Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea Guido Ivetta

FaMAF, 29 de septiembre de 2021

Contenidos estimados para hoy

- Deducción natural
 - Definición inductiva de 9
 - Inducción y recursión en derivaciones
 - Relación de deducción y teoremas

- Corrección y completitud de la lógica proposicional
 - Relación entre verdad y demostrabilidad
 - Teorema de corrección

Definimos el conjunto de las derivaciones de manera recursiva.

El conjunto 9 de las derivaciones

Definimos el conjunto de las derivaciones de manera recursiva.

 ${\mathfrak D}$ es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida tales que:

Definimos el conjunto de las derivaciones de manera recursiva.

 ${\mathcal D}$ es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida tales que:

■ Un árbol de un sólo nodo $\varphi \in PROP$ pertenece a \mathscr{D} .

El conjunto 9 de las derivaciones

Definimos el conjunto de las derivaciones de manera recursiva.

 ${\mathcal D}$ es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida tales que:

■ Un árbol de un sólo nodo $\varphi \in PROP$ pertenece a \mathscr{D} .

El conjunto 9 de las derivaciones

Definimos el conjunto de las derivaciones de manera recursiva.

 \mathfrak{D} es el menor conjunto de árboles decorados con proposiciones con pares (proposición, regla) y con una raíz distinguida tales que:

■ Un árbol de un sólo nodo $\varphi \in PROP$ pertenece a \mathfrak{D} .

$$\begin{array}{c} \bullet \ \, \stackrel{:}{\varphi} D_1 \in \mathfrak{D} \ \, \text{y} \ \, \stackrel{:}{\varphi} D_2 \in \mathfrak{D} \ \, \Longrightarrow \ \, D := \ \, \frac{\stackrel{:}{\varphi} D_1 \quad :D_2}{\varphi \wedge \varphi'} \wedge I \\ \\ \bullet \ \, \left(\varphi , \stackrel{\cdot}{\varphi} \right) \qquad \stackrel{\cdot}{\varphi} \left(\varphi' , \stackrel{\cdot}{\varphi} \right) \qquad \longrightarrow \qquad \begin{array}{c} \left(\varphi, \stackrel{\cdot}{\varphi} \right) \left(\varphi' , \stackrel{\cdot}{\varphi} \right) \\ \\ \bullet \ \, \left(\varphi, \stackrel{\cdot}{\varphi} \right) \qquad \stackrel{\cdot}{\varphi} \left(\varphi' , \stackrel{\cdot}{\varphi} \right) \end{array}$$

$$\blacksquare \ \ \vdots \stackrel{D}{:} D \in \mathscr{D} \implies$$

$$\begin{array}{c}
\vdots D \\
\varphi \wedge \varphi'
\end{array} \iff D_1 := \frac{\vdots D}{\varphi \wedge \varphi'} \wedge E \in \mathcal{D}, \qquad D_2 := \frac{\vdots D}{\varphi \wedge \varphi'} \wedge E \in \mathcal{D}.$$

$$\begin{array}{c}
\vdots D \\
\varphi \wedge \varphi' \\
\varphi \wedge \varphi'
\end{array} \Rightarrow D_1 := \frac{\varphi \wedge \varphi'}{\varphi} \wedge E \\
\downarrow Q \\$$

El conjunto 9 de las derivaciones

 \blacksquare $(\lor I)$ y (\bot) son como $(\land E)$

 \blacksquare $(\lor I)$ y (\bot) son como $(\land E)$

$$\begin{array}{ccc} \vdots D & & \vdots D \\ \frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & & \frac{\varphi}{\varphi \vee \varphi'} \vee I \end{array}$$

 \blacksquare $(\lor I)$ y (\bot) son como $(\land E)$

$$\begin{array}{ccc} \vdots D & & \vdots D \\ \frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & & \frac{\varphi}{\varphi \vee \varphi'} \vee I \end{array}$$

 \blacksquare $(\rightarrow E)$ es como $(\land I)$.

 \blacksquare $(\lor I)$ y (\bot) son como $(\land E)$

$$\begin{array}{ccc} \vdots D & & \vdots D \\ \frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & & \frac{\varphi}{\varphi \vee \varphi'} \vee I \end{array}$$

 \blacksquare $(\rightarrow E)$ es como $(\land I)$.

$$\begin{array}{ccc}
\vdots D_1 & \vdots D_2 & \vdots D_1 & \vdots D_2 \\
\frac{\varphi}{\varphi} & \varphi' & \wedge I & \frac{\varphi}{\varphi} & \varphi \to \psi \\
\hline
\psi & & \psi
\end{array} \to E$$

 \blacksquare (RAA) es como (\rightarrow I).

Al igual que con PROP, se puede hacer inducción y recursión en \mathfrak{D} .

Al igual que con PROP, se puede hacer inducción y recursión en \mathfrak{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** ${\it Hip}(D)$ de una derivación D.

Al igual que con PROP, se puede hacer inducción y recursión en \mathfrak{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** ${\it Hip}(D)$ de una derivación D.

Al igual que con PROP, se puede hacer inducción y recursión en \mathfrak{D} .

Definimos recursivamente el conjunto de las **hipótesis no canceladas** ${\it Hip}(D)$ de una derivación D.

$$\wedge E$$

$$\mathit{Hip}\left(\frac{\vdots}{\varphi \wedge \varphi'}_{\varphi} \wedge E\right) = \mathit{Hip}\left(\frac{\vdots}{\varphi \wedge \varphi'}_{\varphi'} \wedge E\right) := \mathit{Hip}\left(\frac{\vdots}{\varphi \wedge \varphi'}\right).$$

$$Hip\left(\frac{\vdots}{\varphi \wedge \varphi'} \wedge E\right) = Hip\left(\frac{\vdots}{\varphi \wedge \varphi'} \wedge E\right) := Hip\left(\frac{\vdots}{\varphi \wedge \varphi'}\right).$$

$$Vests defined by the first of t$$

 $\vee E$

$$Hip \begin{pmatrix} \vdots D_1 & \vdots D_2 & \vdots D_3 \\ \varphi \lor \psi & \dot{\chi} & \dot{\chi} \\ \hline \chi \end{pmatrix} := \\ Hip(D_1) \cup \left(Hip(D_2) \smallsetminus \{\varphi\}\right) \cup \left(Hip(D_3) \smallsetminus \{\psi\}\right).$$

 VI, \perp Son como $(\land E)$

 $\forall I, \bot$ Son como $(\land E)$ \longrightarrow Hip se define igual.

 $\boxed{\forall I, \perp}$ Son como $(\land E)$ \longrightarrow Hip se define igual.

$$\begin{array}{ccc}
\vdots D & \vdots D \\
\frac{\varphi \wedge \varphi'}{\varphi'} \wedge E & \frac{\varphi}{\varphi \vee \varphi'} \vee I
\end{array}$$

 $\longrightarrow E$ Es como $(\land I)$.

$$\begin{array}{ccc} \vdots D_1 & \vdots D_2 & \vdots D_1 & \vdots D_2 \\ \varphi & \varphi' & \wedge I & \frac{\varphi}{\varphi} & \varphi \to \psi \\ \hline \varphi \wedge \varphi' & \wedge I & \frac{\varphi}{\psi} & \psi & \to E \end{array}$$

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

■ φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $Hip(D) = \emptyset$ y $Concl(D) = \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- m arphi es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $Hip(D) = \emptyset$ y $Concl(D) = \varphi$.

Ejemplo

HRHV 7RH

■ *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $\mathit{Hip}(D) = \emptyset$ y $\mathit{Concl}(D) = \varphi$.

Ejemplo

■ *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- m arphi es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $Hip(D) = \emptyset$ y $Concl(D) = \varphi$.

Ejemplo

- *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.
 - $\blacksquare \{\psi, \neg \varphi \to \neg \psi\} \vdash \varphi.$

Relación de deducción y teoremas

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $Hip(D) = \emptyset$ y $Concl(D) = \varphi$.

Ejemplo

- *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.
 - $\blacksquare \ \{\psi, \neg \varphi \to \neg \psi\} \vdash \varphi.$

Relación de deducción y teoremas

Sea $\Gamma \subseteq PROP$ y $\varphi \in PROP$.

Definición

- φ se **deduce** de Γ ($\Gamma \vdash \varphi$) si existe $D \in \mathcal{D}$ tal que $Hip(D) \subseteq \Gamma$ y $Concl(D) = \varphi$.
- $m{\varphi}$ es un **teorema** ($\vdash \varphi$) si existe $D \in \mathfrak{D}$ tal que $Hip(D) = \emptyset$ y $Concl(D) = \varphi$.

Ejemplo

- *Tertium non datur* o tercero excluido: $\vdash \varphi \lor \neg \varphi$.
- Principio de no contradicción: $\vdash \neg(\varphi \land \neg \varphi)$.

¿Cómo se comparan las nociones semánticas con la de derivabilidad?

¿Cómo se comparan las nociones semánticas con la de derivabilidad? Recordemos: $\Gamma \models \varphi \iff \text{para toda } v \text{ que valide } \Gamma, \llbracket \varphi \rrbracket_v = 1.$

$$\forall \psi \in \Gamma$$
, $[\psi]_v = 1$
 $[\Gamma]_v = 1$

¿Cómo se comparan las nociones semánticas con la de derivabilidad? Recordemos: $\Gamma \models \varphi \iff \text{para toda } v \text{ que valide } \Gamma, [\![\varphi]\!]_v = 1.$

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

¿Cómo se comparan las nociones semánticas con la de derivabilidad? Recordemos: $\Gamma \models \varphi \iff \text{para toda } v \text{ que valide } \Gamma, [\![\varphi]\!]_v = 1.$

Semántica	Cálculo
Tautologías (valuar 1)	Teoremas (derivable)
=	⊢
Asignaciones (modelo)	Derivaciones (pruebas formales)

Completitud y Corrección de la Lógica Proposicional

Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

lacktriangle Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

■ Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La implicación (\Rightarrow) es la **Completitud** y (\Leftarrow) es la **Corrección**.

lacktriangle Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La implicación (\Rightarrow) es la **Completitud** y (\Leftarrow) es la **Corrección**.

Teorema (Corrección)

Si
$$\Gamma \vdash \varphi$$
, entonces $\Gamma \models \varphi$.

■ Para todos $\Gamma \subseteq PROP$ y $\varphi \in PROP$, se tiene

$$\Gamma \models \varphi \iff \Gamma \vdash \varphi$$

La implicación (\Rightarrow) es la **Completitud** y (\Leftarrow) es la **Corrección**.

Teorema (Corrección)

Si $\Gamma \vdash \varphi$, entonces $\Gamma \models \varphi$.

Demostración.

Probamos por inducción en $D \in \mathcal{D}$:

"Para todo Γ tal que $Hip(D) \subseteq \Gamma$, se da $\Gamma \models Concl(D)$ ".

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

$$\mathsf{Para} \ \mathsf{todo} \ \Gamma, \ \mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$$

$$oxed{PROP} D = arphi. \ \, ext{Sea} \ \Gamma \subseteq PROP.$$
 $Hip(D) = \{arphi\} \subseteq \Gamma$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

$$\operatorname{Hip}(D) = \{\varphi\} \subseteq \Gamma \implies \varphi \in \Gamma$$

Para todo
$$\Gamma$$
, $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

$$\boxed{PROP}$$
 $D = \varphi$. Sea $\Gamma \subseteq PROP$.

$$\mathit{Hip}(D) = \{\varphi\} \subseteq \Gamma \implies \varphi \in \Gamma \implies \Gamma \models \varphi = \mathit{Concl}(D).$$

Para todo Γ , $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip \begin{pmatrix} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 & \wedge I \end{pmatrix}$ $\subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2$.

$$\begin{matrix} || \\ Hip(D_1) \cup Hip(D_2) \end{matrix}$$

Para todo Γ , $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

- $\wedge I$ Suponiendo HI para $:D_1$ y $:D_2$,
- 1 para todo Γ , $\widetilde{Hip}(D_1) \subseteq \Gamma$ \Longrightarrow $\Gamma \models \varphi_1$, \mathbf{y} 2 para todo Γ , $Hip(D_2) \subseteq \Gamma$ \Longrightarrow $\Gamma \models \varphi_2$,

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Suponiendo HI para
$$D_1$$
 y D_2 , D_2 , D_3 para todo D_1 D_2 D_3 para todo D_1 D_2 D_3 D_4 D_5 D_5 D_5 D_7 D_8 D_8

- **2** para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models$

■ para todo
$$\Gamma$$
, $Hip \begin{pmatrix} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{pmatrix} \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\parallel \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2).$$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

■ para todo
$$\Gamma$$
, $Hip\left(\begin{array}{cc} \vdots D_1 & \vdots D_2 \\ \varphi_1 & \varphi_2 \\ \hline \varphi_1 \wedge \varphi_2 \end{array} \wedge I \right) \subseteq \Gamma \implies \Gamma \models \varphi_1 \wedge \varphi_2.$

$$\begin{matrix} || \\ Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2). \end{matrix}$$

Para todo
$$\Gamma$$
, $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\overline{ \bigcirc I }$ Suponiendo HI para $\vdots D_1$ y $\vdots D_2$,
- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subset \Gamma \implies \Gamma \models \varphi_2$,

probamos

 $Hip(D_1) \cup Hip(D_2) \supseteq Hip(D_1), Hip(D_2).$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

probamos

Sea v una asignación que valide $\Gamma \implies \llbracket \varphi_1 \rrbracket_v = 1$ y $\llbracket \varphi_2 \rrbracket_v = 1$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- **1** para todo Γ , $Hip(D_1) \subseteq \Gamma \implies \Gamma \models \varphi_1$, y
- 2 para todo Γ , $Hip(D_2) \subseteq \Gamma \implies \Gamma \models \varphi_2$,

probamos

Sea v una asignación que valide $\Gamma \Longrightarrow \llbracket \varphi_1 \rrbracket_v = 1$ y $\llbracket \varphi_2 \rrbracket_v = 1$. Luego $\llbracket \varphi_1 \land \varphi_2 \rrbracket_v = \min\{\llbracket \varphi_1 \rrbracket_v, \llbracket \varphi_2 \rrbracket_v\} = 1$.

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

Para todo $\Gamma,\; Hip(D)\subseteq \Gamma \implies \Gamma \models Concl(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\mathcal{C}}{:}D$,
 - \blacksquare para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \psi$, y

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

lacksquare para todo Γ , $\mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

Para todo $\Gamma,\ \mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - lacksquare para todo Γ' , $Hip(D)\subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\longrightarrow \ \ \, \text{para todo} \ \, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \ \Longrightarrow \ \, \Gamma \models \varphi \to \psi.$ Supongamos $Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \mathrm{para\ todo}\ \, \Gamma, \mathit{Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

 $\operatorname{Supongamos} \operatorname{\it Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \operatorname{\it Hip}(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Para todo $\Gamma,\ \mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \mathrm{para \ todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

 $\operatorname{Supongamos} \operatorname{\it Hip}(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \operatorname{\it Hip}(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{\varphi}{:}D$,
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Sea v una asignación que valide Γ .

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \,\, \Longrightarrow \,\, \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \Longrightarrow Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'.$

Sea v una asignación que valide Γ . Casos en $[\![\varphi]\!]_v$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$. Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$. Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea v una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_v$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$. Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:

Para todo Γ , $Hip(D) \subseteq \Gamma \implies \Gamma \models Concl(D)$

- $|\to I|$ Suponiendo HI para $\cdot D$.
 - \blacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

para todo Γ , $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi$.

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea v una asignación que valide Γ . Casos en $[\![\varphi]\!]_v$:

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- $\longrightarrow I$ Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\cdot}}D,$
 - lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$
- Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:
 - 1 $\llbracket \varphi \rrbracket_{\nu} = 1 \implies \nu \text{ valida } \Gamma \cup \{\varphi\} \implies \llbracket \psi \rrbracket_{\nu} = 1$ $\implies \llbracket \varphi \to \psi \rrbracket_{\nu} = 1.$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

$$\longrightarrow I$$
 Suponiendo HI para $\stackrel{arphi}{\overset{\cdot}{\dot{U}}}\!\!D,$

lacksquare para todo Γ' , $\mathit{Hip}(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

probamos

 $\blacksquare \ \, \text{para todo} \,\, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$

Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea ν una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_{\nu}$:

- $\begin{array}{l} \blacksquare \ \, [\![\varphi]\!]_v = 1 \implies v \text{ valida } \Gamma \cup \{\varphi\} \implies [\![\psi]\!]_v = 1 \\ \implies [\![\varphi \to \psi]\!]_v = 1. \end{array}$

Para todo Γ , $\mathit{Hip}(D) \subseteq \Gamma \implies \Gamma \models \mathit{Concl}(D)$

- - lacksquare para todo Γ' , $Hip(D) \subseteq \Gamma' \implies \Gamma' \models \psi$, y

- $\blacksquare \ \, \text{para todo} \, \, \Gamma, Hip(D) \smallsetminus \{\varphi\} \subseteq \Gamma \implies \Gamma \models \varphi \to \psi.$
- Supongamos $Hip(D) \setminus \{\varphi\} \subseteq \Gamma \implies Hip(D) \subseteq \Gamma \cup \{\varphi\} =: \Gamma'$. Sea v una asignación que valide Γ . Casos en $\llbracket \varphi \rrbracket_v$:
 - $\begin{array}{ccc} \blacksquare & [\![\varphi]\!]_v = 1 & \Longrightarrow v \text{ valida } \Gamma \cup \{\varphi\} & \Longrightarrow & [\![\psi]\!]_v = 1 \\ & \Longrightarrow & [\![\varphi \to \psi]\!]_v = 1. \end{array}$

