2. Bundle Adjustment

2.1 文献阅读

- 1. 为何说 Bundle Adjustment is slow 是不对的?
 - 说BA慢的大部分原因是没有考虑到问题本身的特点以及其稀疏性,事实上使用合适的方法,BA速度可以很快.
- 2. BA中有哪些需要注意参数化的地方? Pose和Point各有哪些参数化方式?有何优缺点.

BA的参数化空间基本上是一个非线性流形——一个由3D特征投影、3D旋转、和相机标定参数笛卡尔积组成的带有非线性约束的流形. 需要注意参数化空间的奇异性、内部约束(如四元素 $\parallel q \parallel = 1$)、额外的自由度(如齐次坐标带有scale的自由度). 参数化方法对优化的速度、可靠性影响很大, 因此需要在当前估计附近寻找尽可能均匀, 有界, 表现良好的参数化方式.

Point的参数化方式有 $\mathbb{Q}(X,Y,Z)^T$ 和 $\mathbb{Q}(X,Y,Z,W)^T$ 两种参数化方式。参数化方式①下,cost function会很平滑,距离越远需要的调整的步长越长,若点的距离都很近则很好,若有远距离点,则参数化空间的均匀性会被严重破坏。参数化方式②下,对于远距离的点的处理则自然很多,但需要添加额外约束 $\sum X_i^2=1$.

Pose参数化中, 对于旋转部分, 可以使用欧拉角、四元素、李代数. 欧拉角的话需要处理奇异性, 四元素需要归一化.

- 3. 本文写于2000年,但是文中提到的很多内容在后面十几年的研究中得到了印证。你能看到哪些方向在后续工作中有所体现?请举例说明.
 - 。 对于相机深度值的参数化方法, 现在流行使用逆深度. 相比于直接使用深度, 参数化空间更加均匀, 也能更好地表示远近不一的点.
 - 。 其中关于Network Structure的论述, 以及图结构稀疏性的分析, 即是后来的图优化.

2.2 BAL-dataset

投影:

$$\begin{split} \mathbf{q} &= \exp(\phi) \cdot \mathbf{p} + \mathbf{t} \\ \mathbf{q}' &= -\mathbf{q}/\mathbf{q}.z \\ \mathbf{u} &= f \cdot r(\mathbf{q}') \cdot \mathbf{q}' \\ r(\mathbf{q}') &= 1.0 + k1 \cdot \parallel \mathbf{q}' \parallel^2 + k2 \cdot \parallel \mathbf{q}' \parallel^4 \end{split}$$

重投影误差:

$$\mathbf{e} = \mathbf{x}_{observe} - \mathbf{u}$$

令 $c = [f \ k1 \ k2]^T$, 有Jacobian:

$$\begin{split} &\frac{\partial \mathbf{e}}{\partial \mathbf{c}} = [r(\mathbf{q}') \cdot \mathbf{q}' \quad f \cdot (\parallel \mathbf{q}' \parallel^2) \cdot \mathbf{q}' \quad f \cdot (\parallel \mathbf{q}' \parallel^4) \cdot \mathbf{q}'] \\ &\frac{\partial \mathbf{e}}{\partial \mathbf{p}} = -\frac{\partial \mathbf{u}}{\partial \mathbf{q}'} \frac{\partial \mathbf{q}'}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial \mathbf{p}} \\ &\frac{\partial \mathbf{e}}{\partial \phi} = -\frac{\partial \mathbf{u}}{\partial \mathbf{q}'} \frac{\partial \mathbf{q}'}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial \phi} \\ &\frac{\partial \mathbf{e}}{\partial \mathbf{t}} = -\frac{\partial \mathbf{u}}{\partial \mathbf{q}'} \frac{\partial \mathbf{q}'}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial \mathbf{t}} \end{split}$$

程序运行结果(problem-21-11315-pre.txt):

21+	- 1121Fb- 264FF								_
	s=11315 num_obs=36455 chi2= 2309673.669349	time= 9.43278	cumTime= 9.43278	edges= 36455	aabur 1		lambda= 352.38	3325 levenbergIter= 1	
iteration= 0 iteration= 1	chi2= 2309673.669349 chi2= 152703.885345	time= 9.43276 time= 9.12934	cumTime= 9.43276		schur= 1 schur= 1		lambda= 332.36		
iteration= 1	chi2= 132703.863343 chi2= 51002.922181	time= 9.12934 time= 9.23198	cumTime= 18.3021	edges= 36455 edges= 36455	schur= 1		lambda= 39.153		
iteration= 2	chi2= 31002.922181 chi2= 40600.527358	time= 9.23196 time= 9.53807	cumTime= 27.7941 cumTime= 37.3322	edges= 36455 edges= 36455	schur= 1		lambda= 13.051		
iteration= 3	chi2= 40000.327336	time= 9.33807 time= 9.25078	cumTime= 37.3322	edges= 36455	schur= 1		lambda= 4.3504		
iteration= 4	chi2= 38477.749369 chi2= 37826.676993	time= 9.23076 time= 9.66228	cumTime= 46.363	edges= 36455 edges= 36455	schur= 1		lambda= 4.3304		
iteration= 5	chi2= 37620.070993	time= 9.00228 time= 9.56897	cumTime= 50.2452	edges= 36455	schur= 1		lambda= 1.5639		
iteration= 0	chi2= 37044.113366 chi2= 37225.357991	time= 9.38897 time= 9.48299	cumTime= 05.8142	edges= 36455 edges= 36455	schur= 1		lambda= 1.3639		
iteration= 7	chi2= 3/223.33/991 chi2= 36898.537227	time= 9.46299 time= 9.07285		36455 schur		l ambda-	0.695107	levenbergIter= 1	
	chi2= 36655.624967	time= 9.07263 time= 9.10672	cumTime= 84.37 edges=	edges= 36455		tallibua=	lambda= 0.4300		
iteration= 9		time= 9.10072 time= 9.09878	cumTime= 93.4766		schur= 1				
iteration= 10	chi2= 36455.002430			edges= 36455	schur= 1		lambda= 0.1433		
iteration= 11	chi2= 36093.472907	time= 9.30195	cumTime= 111.877	edges= 36455	schur= 1		lambda= 0.0477		
iteration= 12	chi2= 35662.826436	time= 10.5192	cumTime= 122.397	edges= 36455	schur= 1		lambda= 0.0577		
iteration= 13	chi2= 35296.904329	time= 9.49559	cumTime= 131.892	edges= 36455	schur= 1		lambda= 0.0384		
iteration= 14	chi2= 35287.433858	time= 9.72328	cumTime= 141.616	edges= 36455	schur= 1		lambda= 0.0256		
iteration= 15	chi2= 33788.151378	time= 10.7609	cumTime= 152.376	edges= 36455	schur= 1		lambda= 0.0294		
iteration= 16	chi2= 33086.340597	time= 10.4462	cumTime= 162.823	edges= 36455	schur= 1		lambda= 0.0341		
iteration= 17	chi2= 32924.254293	time= 9.0683	cumTime= 171.891	edges= 36455	schur= 1		lambda= 0.0227		
iteration= 18	chi2= 31978.946733	time= 10.1318	cumTime= 182.023	edges= 36455	schur= 1		lambda= 0.0228		
iteration= 19	chi2= 31508.447798	time= 10.116	cumTime= 192.139	edges= 36455	schur= 1		lambda= 0.0304		
iteration= 20	chi2= 31230.834049	time= 9.03642	cumTime= 201.175	edges= 36455	schur= 1		lambda= 0.0203		
iteration= 21	chi2= 31125.288534	time= 9.11369	cumTime= 210.289	edges= 36455	schur= 1		lambda= 0.0135		
iteration= 22	chi2= 30226.384058	time= 10.0976	cumTime= 220.386	edges= 36455	schur= 1		lambda= 0.0129		
iteration= 23	chi2= 29887.246669	time= 10.1012	cumTime= 230.488	edges= 36455	schur= 1		lambda= 0.0172		
iteration= 24	chi2= 29744.647646	time= 9.09018	cumTime= 239.578	edges= 36455	schur= 1		lambda= 0.0115		
iteration= 25	chi2= 29738.378210	time= 9.07032	cumTime= 248.648	edges= 36455	schur= 1		lambda= 0.0076		
iteration= 26	chi2= 29114.020083	time= 10.1217	cumTime= 258.77	edges= 36455	schur= 1		lambda= 0.0079		
iteration= 27	chi2= 28934.776002	time= 10.0964	cumTime= 268.866	edges= 36455	schur= 1		lambda= 0.0106	<pre>06 levenbergIter= 2</pre>	
iteration= 28	chi2= 28884.571756	time= 9.09775	cumTime= 277.964	edges= 36455	schur= 1		lambda= 0.0070	71 levenbergIter= 1	
iteration= 29	chi2= 28677.735247	time= 10.1465	cumTime= 288.111	edges= 36455	schur= 1		lambda= 0.0073	93 levenbergIter= 2	
iteration= 30	chi2= 28593.759491	time= 10.1037	cumTime= 298.214	edges= 36455	schur= 1		lambda= 0.0098	57 levenbergIter= 2	
iteration= 31	chi2= 28543.773519	time= 9.10365	cumTime= 307.318	edges= 36455	schur= 1		lambda= 0.0065	71 levenbergIter= 1	
iteration= 32	chi2= 28537.953596	time= 9.08204	cumTime= 316.4 edges=	36455 schur:		lambda=	0.004381	levenbergIter= 1	
iteration= 33	chi2= 28368.711530	time= 10.1612	cumTime= 326.561	edges= 36455	schur= 1		lambda= 0.0055	<pre>19 levenbergIter= 2</pre>	
iteration= 34	chi2= 28299.780396	time= 10.117	cumTime= 336.678	edges= 36455	schur= 1		lambda= 0.0057	27 levenbergIter= 2	
iteration= 35	chi2= 28256.565563	time= 10.1905	cumTime= 346.869	edges= 36455	schur= 1		lambda= 0.0068	<pre>10 levenbergIter= 2</pre>	
iteration= 36	chi2= 28235.733669	time= 9.09262	cumTime= 355.961	edges= 36455	schur= 1		lambda= 0.0045		
iteration= 37	chi2= 28167.339034	time= 10.0674	cumTime= 366.029	edges= 36455	schur= 1		lambda= 0.0051	49 levenbergIter= 2	
iteration= 38	chi2= 28129.877056	time= 10.1205	cumTime= 376.149	edges= 36455	schur= 1		lambda= 0.0056		
iteration= 39	chi2= 28118.568397	time= 9.1303	cumTime= 385.279	edges= 36455	schur= 1		lambda= 0.0037		
			(242020 0 0 0 0 0	· •				•	

3. 直接法的 Bundle Adjustment

3.1 数学模型

1. 如何描述任意一点投影在任意一图像中形成的error? 任意一点在任意一图像中形成的error与直接法一样: 为投影后整个patch与对应图像上的patch的光度误差.

$$e = I(p_i) - I_j(\pi(KT_jp_i))$$

- 2. 每个error关联几个优化变量? 每个error关联优化变量: 相机位姿和3D点的坐标.
- 3. error关于各变量的雅可比是什么? 令 $q=T(\xi)p, u=\pi(Kq)$

$$\begin{split} \frac{\partial e}{\partial p} &= -\frac{\partial I}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial \mathbf{p}} \\ \frac{\partial e}{\partial \xi} &= -\frac{\partial I}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial \xi} \end{split}$$

这里

$$egin{aligned} \mathbf{u} &= rac{1}{Z} egin{bmatrix} fx & 0 & cx \ 0 & f_y & cy \end{bmatrix} \mathbf{p} \ &\Rightarrow rac{\partial \mathbf{u}}{\partial \mathbf{q}} = egin{bmatrix} rac{f_x}{Z} & 0 & -rac{xf_x}{Z^2} \ 0 & rac{f_y}{Z} & -rac{yf_y}{Z^2} \end{bmatrix} \ &rac{\partial \mathbf{q}}{\partial \xi} = [I & -\mathbf{q}^{\wedge}] \ &rac{\partial \mathbf{q}}{\partial \mathbf{p}} = T(\xi) \end{aligned}$$

3.2实现

程序运行效果:

- 1. 能否不要以 $[x,y,z]^T$ 的形式参数化每个点? 可以以 $[x,y,z_{inv}]^T$ 的方式参数化每个点, $z_{inv}=rac{1}{z}$.
- 2. 取 4x4 的 patch 好吗?取更大的 patch 好还是取小一点的 patch 好? 取4x4的patch好,这个问题和之前直接法计算相机位姿一样,当patch取小了,没有区分性.而patch取大了则会加入很多outlier.
- 3. 由于图像的差异,你可能需要鲁棒核函数,例如 Huber. 此时Huber的阈值如何选取? 分析投影后的误差, 根据误差以及匹配情况 ,分析匹配和不匹配的分界, 选取Huber的阈值.