Смеси моделей векторной авторегрессии в задаче прогнозирования временных рядов

Дмитрий Сергеевич Федоряка

Московский физико-тенический институт

20 апреля 2017 г.

Цель исследования

Цель

Строить предсказание периодических временных рядов методом векторной авторегрессии

Проблема

Линейная регрессия даёт низкую точность и переобучается

Решение

Построить композицию линейных моделей

Литература

- Стрижов, Нейчев, Катруца Выбор оптимального набора признаков из мультикоррелирующего множества в задаче прогнозирования, 2015
- Bishop Pattern Recognition and Machine Learning, 2006
- Freund Y., Schapire R. E Experiments with a new boosting algorithm, 1996

Работа в одном слайде

Постановка задачи

Набор временных рядов:

$$\mathfrak{D} = \{s_1, s_2, \dots, s_p\}$$

$$\mathbf{s}_{i} = \{s_{i}(\Delta t_{i}), s_{i}(2\Delta t_{i}), \dots s_{i}(L_{i}\Delta t_{i})\} = \{s_{i}^{1}, s_{i}^{2}, \dots s_{i}^{L_{i}}\}$$

Прогноз:

$$f(\mathfrak{D}) = \{\hat{s}_1^{L_1-r+1}, \hat{s}_1^{L_1-r+2}, \dots, \hat{s}_1^{L_1}\}$$

Функция потерь:

$$S(f) = \sum_{i=L_1-r+1}^{L_1} (s_1^i - \hat{s}_1^i)^2$$

Задача прогнозирования:

$$f^* = \underset{f}{\operatorname{arg\,min}} S(f, \mathfrak{D})$$

Решение: сведение к задаче регрессии

$$f^* = \arg\min_{f} \sum_{j=1}^{m-1} ||f(X_i) - Y_i||_2^2$$

Решение

Линейная модель:

$$f(\mathbf{x}) = \mathbf{x}W$$

W - матрица коэффициентов:

$$W = X^{+}Y = (X^{T}X)^{-1}X^{T}Y$$

Проблемы:

- низкая точность
- переобучение

Решение

Композиция моделей:

$$f(\mathbf{x}) = \sum_{i=1}^{K} \pi_i(\mathbf{x}) f_i(\mathbf{x})$$

Алгоритмы:

- Бэггинг и метод случайных подпространств
- Адаптивный бустинг
- Кластерная регресиия

Кластерная регрессия

Гипотеза: обучающая выборка разбивается на кластеры, так что объекты i-го класса описываются некоторой своей моделью f_i :

$$\overline{1,m} = \bigsqcup_{j=1}^K C_j$$

Предложение: использовать эти модели как базовые модели смеси экспертов.

Алгоритм кластеризации K-means

Центры \to модели Поиск центров \to обучение моделей Ближайший центр \to наиболее точно описывающая объект модель

Кластерная регрессия: обучение

```
\forall j \in \overline{1,m} \ C_i = rand(1,m)
для iter \in 1, N_{it}
   для j \in 1, K
      Обучаем модель f_i на объектах с индексами C_i.
   для i \in \overline{1, m}
      для j \in \overline{1}, K
          S(i,j) = ||f_i(X_i) - Y_i||
   для i \in \overline{1, m}
      для i \in \overline{1,K}
          C_j = \{i \in \overline{1, m} | argmin(S(i, k)) = j\}
```

Кластерная регрессия: предсказание

Обучаем алгоритм
$$f_0$$
 на всей выборке. $\tilde{Y^0} = f_0(X^0)$ — предварительный ответ. $\forall \ j \in \overline{1,K} \ \pi'_j = \mathfrak{E}(\frac{||f_j(X^0) - Y^0||}{||Y^0||})$ — вычисление вероятностей. $\forall \ j \in \overline{1,K} \ \pi_j = \frac{\pi'_j}{\sum_{k=1}^K \pi'_k}$ — нормировка. $Y^0 = \sum_{j=1}^K \pi_j \cdot f_j(X^0)$ — ответ.

Примеры возможных функций $\mathfrak{E}(S)$: $\frac{1}{S+\varepsilon}$, e^{-S} , $1-\frac{1}{1+e^{-S}}$

Эксперимент

Турция - потребление энергии

Германия - рыночные цены на электричество

Ошибки предсказаний

	Турция 1	Турция 2	Германия 1	Германия 2	Польша
Лин. рег.	6.3%	4.0%	30.1%	28.8%	2.0%
Бустинг	3.8%	3.6%	24.1%	23.0%	3.6%
Бэггинг	3.6%	3.0%	27.5%	26.4%	1.7%

$$\textit{MSE}(\hat{s}) = \frac{\sqrt{<(s_1 - \hat{s_1})^2>}}{< s_1>} = \frac{1}{\sqrt{r}} \frac{\sqrt{\sum_i (s_1^i - \hat{s_1^1})^2}}{\sum_i s_1^i}$$

Зависимость ошибки от числа базовых моделей

Заключение

- Задача прогнозирования временных рядов с периодичностью сведена к задаче регрессии.
- Задача регрессии решается с помощью линейной модели.
- Построены композиции моделей (бэггинг и бустинг), повышающие точность прогноза.
- Предложен эвристический итерационный алгоритм композиции моделей, который не оказался эффективным в данной задаче из-за его требований к размеру обучающей выборки и из-за свойств временных рядов.