Lecture-27

Sushrut Tadwalkar; 55554711

November 10, 2023

Quotes of the day

Corollary 1. *In any HTS, if* K *is compact, and* F *is closed, then* $K \cap F$ *is compact.*

Proof. $\mathcal{K} \cap \mathcal{F}$ is closed, and $\mathcal{K} \cap \mathcal{F} \subseteq \mathcal{K}$.

Corollary 2. Let K be compact in some HTS, any infinite set $A \subseteq K$ must have $A' \neq \emptyset$.

Proof. By prove this by contrapositive. Suppose $S \subseteq K$ has $S' = \emptyset$. For each $x \in S$, $x \notin S'$, which implies some open \mathcal{G}_x obeys $\mathcal{G}_x \cap S = \{x\}$. Thus, $\mathscr{G} = \{\mathcal{G}_x : x \in S\}$ is an open cover for S. Observe that $\overline{S} = S \cap S' = S$ is closed, so it is compact; hence \mathscr{G} has a finite subcover $\mathcal{G}_{x_1}, \mathcal{G}_{x_2}, \ldots, \mathcal{G}_{x_N}$, i.e., $S \subseteq \mathcal{G}_{x_1} \cup \mathcal{G}_{x_2} \cup \cdots \cup \mathcal{G}_{x_N}$. Therefore, by construction, $S = \{x_1, x_2, \ldots, x_N\}$ is finite.

0.0.1 Complementary view of compactness

Definition: Finite intersection property

A family of sets \mathscr{F} has the *finite intersection property* (F.I.P.) if every finite choice of $\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_N \in \mathscr{F}$ gives $\bigcap_{k=1}^{N} \mathcal{F}_k \neq \emptyset$.

Theorem

In any HTS $(\mathcal{X}, \mathcal{T})$ with subset $\mathcal{K} \subseteq \mathcal{X}$, assume \mathcal{K} is closed. Then, the following are equivalent:

- (a) \mathcal{K} is compact.
- (b) Every family \mathscr{F} of *closed* subsets of \mathcal{K} with F.I.P. has $\bigcap \mathscr{F} \neq \emptyset$.

Proof. Left as practice (advised to do proof by contrapositive).

0.1 Convergence

Theorem

In a metric space (\mathcal{X}, d) with $\mathcal{K} \subseteq \mathcal{X}$, the following are equivalent:

- (a) \mathcal{K} is compact.
- (b) Every sequence (x_n) in \mathcal{K} has a subsequence that converges to a point in \mathcal{K} .

Proof. $(a\Rightarrow b)$ Let (x_n) be a sequence in \mathcal{K} . Consider $\mathcal{A}=\{x_n:n\in\mathbb{N}\}$ be the range of that sequence. If \mathcal{A} is finite, a constant subsequence exists (some point of \mathcal{A} is "hit" by infinitely many x_n). Otherwise, $\mathcal{A}'\neq\emptyset$; any $x\in\mathcal{A}'$ will have $\mathcal{A}\cap\mathbb{B}\left(x;\frac{1}{n}\right)\neq\emptyset$. Standard methods will give subsequence of (x_n) converging to x. Furthermore, $x\in\mathcal{A}'\subseteq\mathcal{K}$ because \mathcal{K} is closed

 $(b\Rightarrow a)$ Let $\mathcal K$ have property in (b). Given arbitrary open cover $\mathscr G$ for $\mathcal K$, for each $x\in\mathcal K$, some $\mathcal G\subseteq\mathscr G$ obeys $x\in\mathcal G$. Consider

$$R(x) = \begin{cases} \sup\{\varepsilon > 0 : \mathbb{B}[x;\varepsilon) \subseteq \mathcal{G}\}, \text{ for some } \mathcal{G} \in \mathscr{G}, & \text{if the RHS is not } + \infty. \\ 1, & \text{otherwise}. \end{cases}$$

Then, let $r(x) = \frac{1}{2}R(x)$; for all $x \in \mathcal{K}$, $\mathbb{B}[x; r(x)) \subseteq \mathcal{G}$ holds for some $\mathcal{G} \in \mathscr{G}$.

Pick any
$$x_1 \in \mathcal{K}$$
; write $r_1 = r(x_1)$.
Pick any $x_2 \in \mathcal{K} \backslash \mathbb{B}[x_1; r_1)$ write $r_2 = r(x_2)$.
Pick any $x_3 \in \mathcal{K} \backslash \mathbb{B}[x_1; r_1) \cup \mathbb{B}[x_2; r_2)$; write $r_3 = r(x_3)$:

Expect a sequence of x_1, x_2, \ldots with corresponding r_1, r_2, r_3, \ldots such that if q > p, $x_q \notin \mathbb{B}[x_p; r_p)$, i.e., $d(x_q, x_p) \ge r_p$.

Claim 1. This construction cannot run forever.

Proof. For the sake of contradiction, suppose this does work and produce a sequence (x_n) in \mathcal{K} . Use (b) to get a subsequence (x_{n_k}) and $\hat{x} \in \mathcal{K}$ such that $x_{n_k} \to \hat{x}$ as $k \to \infty$. Note that $(p = n_k, q = n_{k+1} \text{ above})$

$$\begin{split} r_{n_k} \leq & d(x_{n_{k+1}}, x_{n_k}) \\ \leq & d(x_{n_{k+1}}, \hat{x}) + d(\hat{x}, x_{n_k}) \to 0 + 0 \text{ as } k \to \infty, \end{split}$$

so $r_{n_k} \to 0$. Now, $\hat{x} \in \mathcal{K}$, so $r(\hat{x})$ is defined and $\mathbb{B}[\hat{x}; r(\hat{x})) \subseteq \hat{\mathcal{G}}$ for some $\hat{\mathcal{G}} \subseteq \mathscr{G}$. Use $x_{n_k} \to \hat{x}$ to say that for all sufficiently large k, $d(x_{n_k}, \hat{x}) < \frac{1}{2}r(\hat{x})$. So,

$$\mathbb{B}\left[x_{n_k}; \frac{r(\hat{x})}{2}\right) \subseteq \mathbb{B}\left[\hat{x}; r(\hat{x})\right) \subseteq \hat{\mathcal{G}},$$

and hence $R(x_{n_k}) \ge \frac{1}{2}r(\hat{x})$, so

$$r_{n_k} = \frac{1}{2}R(x_{n_k}) \ge \frac{1}{4}r(\hat{x}),$$

which is a contradiction. So construction must fail at some stage. Therefore,

$$\mathcal{K}\setminus (\mathbb{B}[x_1;r_1)\cup \mathbb{B}[x_2;r_2)\cup \cdots \cup \mathbb{B}[x_M;r_M))=\emptyset,$$

or

$$\mathcal{K} \subseteq \mathbb{B}[x_1; r_1) \cup \cdots \cup \mathbb{B}[x_M; r_M).$$

Each of these balls fits inside some corresponding \mathcal{G}_k from \mathscr{G} ; finite subcover has been found.

Figure 1: Visualization of the construction in the proof.