ЛЕКЦІЯ 3(Б).

Випадкова величина та її розподіл.

- 1. Приклади випадкових величин. 2. Визначення випадкової величини.
- 3. σ-алгебри множин в евклідових просторах. 4. Операції на скінчених сукупностях випадкових величин. 5. Послідовності випадкових величин.

Словник визначає математику, як «науку про величини», тобто «величина» є головним математичним поняттям, а вимірювання різноманітних величин та дослідження їх властивостей – це одне з головних її завдань.

Теорія ймовірностей, як одна серед великої кількості окремих математичних дисциплін, не ϵ виключенням. Головним об'єктом її вивчення ϵ «випадкова величина», тобто відповідний для теорії ймовірностей, спеціальний тип величини.

Як підкреслювалось, первинним і фундаментальним в теорії ймовірностей є поняття *стохастичного експерименту*. В математичній (аксіоматичній) теорії стохастичний експеримент формалізовано у вигляді *простору елементарних наслідків* Ω . Випадкові події, пов'язані з цим експериментом, виражаються у вигляді певних підмножин цього простору.

На практиці *безпосередньо* будувати такі простори та аналізувати випадкові події на рівні *«елементарних наслідків»* складно, а часто — взагалі неможливо. Маючи на меті математичне вивчення подібних явищ, замість того, щоб *«дослівно»* описувати окремі елементарні наслідки та різноманітні множини, складених з цих наслідків, зручніше було б спробувати поставити їм у відповідність певні *числа* та *числові* множини.

Це дало б можливість, після такої *«трансформації»* простору елементарних наслідків Ω , вдатися до *кількісного* аналізу як окремих елементарних наслідків, так і різноманітних їх множин.

3 цією метою і вводиться поняття випадкової величини.

Спеціальний характер «випадкової величини», що відрізняє її від інших математичних змінних, полягає в тому, що вона безпосередньо пов'язана зі стохастичним експериментом і може існувати тільки в його контексті. Сама назва вказує на те, що значення цієї величини залежить від «випадку», тобто від того, яким чином закінчиться стохастичний експеримент. Тому в найбільш загальній формі випадкову величину можна було б визначити, як:

• Спеціальний спосіб числового *опису*, або числової *презентації* результатів стохастичного експерименту.

1. Приклади випадкових величин.

Перш ніж дати формальне математичне визначення випадкової величини, наведемо кілька простих прикладів, що допоможуть прояснити суть та фізичний зміст присутніх в цьому визначенні абстрактних конструкцій.

Приклад 1. В лекції 1, в першому ж прикладі, що пов'язаний з киданням грального кубика, ми фактично визначили випадкову величину.

Тоді спочатку всі можливі результати експерименту були описані за допомогою множини:

$$\Omega \ = \ \left\{ \omega_1 = \left(\begin{array}{cc} \bullet & \\ \\ \bullet \end{array} \right); \omega_2 = \left(\begin{array}{cc} \bullet & \\ \\ \bullet \end{array} \right); \omega_3 = \left(\begin{array}{cc} \bullet & \\ \\ \bullet \end{array} \right); \omega_4 = \left(\begin{array}{cc} \bullet & \\ \\ \bullet \end{array} \right); \omega_5 = \left(\begin{array}{cc} \bullet & \bullet \\ \\ \bullet \end{array} \right); \omega_6 = \left(\begin{array}{cc} \bullet & \bullet \\ \\ \bullet \end{array} \right) \right\} \ .$$

Однак очевидно, що з точки зору вивчення кількісних закономірностей, притаманних цьому експерименту, зручніше було б замість спеціальних «значків» ω_i , що представляють його результати, в якості простору елементарних подій вибрати наступну множину:

$$\Omega = \{ \omega_1 = 1, \, \omega_2 = 2, \, \omega_3 = 3, \, \omega_4 = 4, \, \omega_5 = 5, \, \omega_6 = 6 \}.$$

Тоді кожна елементарна подія ω_i буде вказувати ту грань кубика, на якій ϵ i очок, тобто буде окремим числом $\omega_i = i$.

Отже можна говорити, що випадковий результат кидання грального кубика описується величиною:

$$\xi = \xi(\omega), \ \omega \in \Omega,$$

значення якої визначається наступним чином:

$$\xi = \xi(\omega_i) = \omega_i = i, i = 1, 2, 3, 4, 5, 6.$$

Можна вводити різноманітні випадкові події, що пов'язані із значеннями величини ξ , наприклад:

$$\{\xi = 3\}, \{\xi < 3\}, \{\xi > 3\}$$

ітп. Використовуючи класичне визначення ймовірності можна, наприклад, стверджувати, що:

$$P(\xi = 3) = 1/6; P(\xi < 3) = 1/3; P(\xi > 3) = \frac{1}{2}.$$

Приклад 2. Припустимо, що кидаємо монету один раз. Простір елементарних наслідків в цьому експерименті $\Omega = \{\omega_1, \omega_2\}$ складається з двох елементів:

$$\omega_1 = \text{«О» (орел)}; \ \omega_2 = \text{«Р» (решка)}.$$

Подібно, як і в попередньому прикладі, при кількісному аналізі результатів багатократного повторення експерименту зручно було б поставити у відповідність кожному із «спеціальних символів» $\omega_1 = ,, O$ " та $\omega_2 = ,, P$ " певні числа, наприклад: ,, O" $\leftrightarrow 0$; ,, P" $\leftrightarrow 1$. Тобто представити результат кидання монети, визначивши на множині $\Omega = \{\omega_1, \omega_2\}$ функцію $\xi = \xi(\omega), \omega \in \Omega$, наступним чином: $\xi(\omega_1) = 0$; $\xi(\omega_2) = 1$.

Тоді різноманітні випадкові події можна представляти за допомогою величини ξ , наприклад:

$$P$$
(Результатом кидання буде « $Open$ ») = $P(\xi = 0) = \frac{1}{2}$, P (Результатом кидання буде « $Pewka$ ») = $P(\xi = 1) = \frac{1}{2}$.

Приклад 3. Стохастичний експеримент полягає в тому, що *трикратно* кидаємо монету. Елементарний наслідок цього експерименту повинен відображати результат кожного окремого кидання і може мати, наприклад, наступний вигляд $\omega = \langle \omega_1 \omega_2 \omega_3 \rangle$, де $\omega_i = \langle O \rangle$ або $\omega_i = \langle P \rangle$. Тому простір елементарних наслідків в цьому експерименті $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7, \omega_8\}$, складається з восьми елементів:

$$\omega_1$$
 = «OOO», ω_2 = «OOR», ω_3 = «ORO», ω_4 = «ROO», ω_5 = «ORR», ω_6 = «ROR», ω_7 = «RRO», ω_8 = «RRR».

Припустимо тепер, що нас цікавить скільки разів в цьому експерименті з'явиться «*Open*».

Очевидно, що тільки після його проведення можна дати точну відповідь на це питання. Єдине, що можна зробити перед його початком, так це вказати множину $\{0, 1, 2, 3\}$ можливих появ «*Орла*» в трьох киданнях.

Формально *«точну»* відповідь на питання дає випадкова величина $\xi = \xi(\omega)$, $\omega \in \Omega$, тобто величина, значення якої визначається елементарним наслідком ω . Іншими словами, в цьому випадку природнім чином ставимо у відповідність кожному елементарному наслідку ціле число:

$$\begin{split} \xi(\omega_1) &= \xi(\text{``OOO''}) = 3, \ \xi(\omega_2) = \xi(\text{``OOR''}) = 2, \ \xi(\omega_3) = \xi(\text{``ORO''}) = 2, \\ \xi(\omega_4) &= \xi(\text{``ROO''}) = 2, \ \xi(\omega_5) = \xi(\text{``ORR''}) = 1, \ \xi(\omega_6) = \xi(\text{``ROR''}) = 1, \\ \xi(\omega_7) &= \xi(\text{``RRO''}) = 1, \ \xi(\omega_8) = \xi(\text{``RRR''}) = 0. \end{split}$$

Приклад 4. Стохастичний експеримент полягає в тому, що кидаємо монету до тих пір, поки вперше не з'явиться «*Орел*». Використовуючи прийняті раніше позначення «О» та «Р» для можливих результатів чергових кидань монети, можемо простір елементарних наслідків $\Omega = \{\omega\}$ в цьому експерименті записати у наступному вигляді:

$$\Omega = \{\omega_1, \omega_2 \omega_3, \omega_4, ...\} = \{$$
«О», «РО», «РРО», «РРО», ...}. Елементарна подія $\omega_k = \underbrace{PPP...PO}_{k-1}$ » означає, що «*Орел*» з'явиться вперше

в k-тим по порядку киданні монети. При цьому k може бути довільним цілим, невід'ємним числом k=1,2,3,.... Отже простір Ω — нескінчений, а першочерговим при дослідженні цього експерименту є питання: cкільки повторних спроб він триває. Тому логічно поставити у відповідність кожному елементарному наслідку ω_k ціле, невід'ємне число k, тобто визначити випадкову величину $\xi = \xi(\omega)$, $\omega \in \Omega$, наступним чином:

$$\xi(\omega_k) = k_{\underline{k}}\omega_k = \langle \langle \underline{PPP...PO} \rangle \rangle \omega \in \Omega.$$

2. Визначення випадкової величини.

Підсумовуючи можемо виділити наступні елементи, які необхідно врахувати при формально-математичному визначенні випадкової величини.

- Випадкова величина існує виключно в контексті певного стохастичного експерименту.
- Випадкова величина це один із способів числового опису результатів стохастичного експерименту.
- На відміну від «*звичайних*» величин (чи змінних), які зустрічаємо в інших розділах математики і які інтерпретуємо, як конкретні *фіксовані* значення, випадкова величина (ξ) це функція елементарного наслідку:

$$\omega$$
: $\xi = \xi(\omega), \omega \in \Omega$.

Приймаючи до уваги, що математичною формалізацією стохастичного експерименту є ймовірнісний простір (Ω, \mathcal{F}, P) , можемо тепер дати визначення випадкової величини.

Визначення. Нехай (Ω, \mathcal{F}, P) деякий ймовірнісний простір. Випадковою величиною, визначеною на цьому ймовірнісному просторі, будемо називати будь-яку дійсну функцію $\xi = \xi(\omega), \ \omega \in \Omega$, визначену на просторі елементарних наслідків: $\xi \colon \Omega \to R = (-\infty, +\infty)$, що має наступну властивість:

ightharpoonup Для довільного дійсного числа $-\infty < c < +\infty$

$$A_c = \{ \omega : \xi(\omega) < c \} \in \mathfrak{I}.$$

Ця умова в функціональному аналізі означає, що функція $\xi(\omega)$ є вимірною відносно σ -алгебри \Im , а в теорії ймовірностей по відношенню до випадкової величини це означає:

ightharpoonup що для довільного дійсного числа $-\infty < c < +\infty$, множина

$$A_c = \{ \omega : \xi(\omega) < c \}$$

буде випадковою подією і можна визначити її ймовірність.

3. о-алгебри множин в евклідових просторах.

Отже випадкова величина — це спеціальна функція, визначена на ймовірнісному просторі (Ω, \mathcal{F}, P) . Аргументом цієї функції $\xi = \xi(\omega)$ являються елементарні наслідки $\omega \in \Omega$.

Як було встановлено, структура простору Ω та вигляд його елементів може бути найрізноманітніший, що теж додає специфічних ознак поняттю «випадкова величина» в порівнянні з іншими математичними змінними:

- Як правило, в математичних дисциплінах поняття «функція y = f(x)» передбачає, що y та x це конкретні величини, що належать тій самій множині.
- У випадку ж випадкової величини $\xi = \xi(\omega)$ значенням функції $\xi(\omega)$ є дійсне число $\xi \in (-\infty, +\infty)$, в той час, як аргумент $\omega \in \Omega$ може мати найрізноманітнішу структуру.

Структура простору Ω та вигляд його елементів має також велике значення при визначені випадкових подій та побудові ймовірнісного прос-

тору (Ω, \mathcal{F}, P) . Тому варто виділити два типи просторів елементарних наслідків $\Omega = \{\omega\}$, які найчастіше зустрічаються в практичних задачах.

1. Ω – дискретна (*скінчена* або з*лічена*) множина.

В цьому випадку випадковою подією слід вважати будь-яку підмножину Ω , а \mathcal{J} – це сукупність всіх підмножин Ω .

Будь-яка випадкова величини $\xi = \xi(\omega)$ визначена на такому просторі може приймати не більше, ніж злічену кількість різних значень.

2. $\Omega \subset R = (-\infty, +\infty)$ — незлічена підмножина на числовій прямій (або в евклідовому просторі $\Omega \subset R^k$).

В цьому випадку виникають проблеми, пов'язані з тим, що не для всякої сукупності підмножин простору R^k можна *коректно визначити* ймовірнісну міру P.

Прикладом такої σ -алгебри подій може бути множина $\mathfrak{I}(R^k)$ всіх підмножин в R^k .

Ось чому необхідно визначити сукупність ${\mathfrak J}$ випадкових подій таким чином, щоб:

- З одного боку, ця сукупність була достатньо чисельною і можна було б збудувати змістовну математичну теорію, яка має практичний сенс.
- \circ 3 іншого боку сукупність ця не повинна бути «занадто» чисельною і була можливість в коректний спосіб визначити ймовірність P(A) для кожної події $A \in \mathcal{F}$.

Найчастіше в практичних застосуваннях таку сукупність $\mathfrak T$ виступає σ -алгебра борелівських множин.

Визначення. σ -алгеброю множин Бореля (або σ -алгеброю борелівських множин) на числовій прямій $R = (-\infty, +\infty)$ називається мінімальна σ -алгебра B(R), яка містить в собі всі лівостороннє-замкнені інтервали:

$$B(R) = \sigma\{[a, b)/a \in R, b \in R, a < b\},\$$

де

$$[a, b) = \{x \in R: a \le x < b\}.$$

Визначення. σ -алгеброю множин Бореля (або σ -алгеброю борелівських множин) в евклідовому просторі R^k називається мінімальна σ -алгебра $B(R^k)$, яка містить в собі всі лівостороннє-замкнені k-вимірні паралелепіпеди:

$$B(R^k) = \sigma\{\Pi[a_i, b_i), a_i < b_i \in R, i = 1, ..., k\},\$$

де

$$\Pi[a, b) = \{(x_1, x_2, ..., x_k) \in \mathbb{R}^k : a_i \le x_i < b_i, i = 1, ..., k\}.$$

Лема 1. Нехай ξ буде випадковою величиною, визначеною на імовірнісному просторі (Ω, \mathcal{S}, P) . Тоді для довільних дійсних чисел $a < b, a \in R$, $b \in R$, наступні множини:

$$\{\omega \in \Omega \colon \xi(\omega) \ge a\} \in \mathfrak{I}, \{\omega \in \Omega \colon \xi(\omega) \le a\} \in \mathfrak{I}, \{\omega \in \Omega \colon \xi(\omega) > a\} \in \mathfrak{I}, \{\omega \in \Omega \colon \xi(\omega) = a\} \in \mathfrak{I}, \{\omega \in \Omega \colon a \le \xi(\omega) < b\} \in \mathfrak{I},$$

будуть випадковими подіями.

Доведення теореми випливає безпосередньо з визначення σ -алгебри та визначення випадкової величини. Наприклад

$$\{\xi(\omega) \ge a\} = \Omega \setminus \{\xi(\omega) < a\} \in \mathcal{F},$$

і тп.

Лема 2. Нехай ξ буде випадковою величиною, визначеною на імовірнісному просторі (Ω, \mathcal{F}, P) . B_R — борелівська σ -алгебра в просторі R. Тоді для будь-якої множини $B \in B_R$ множина $\{\omega \in \Omega : \xi(\omega) \in B\} \in \mathcal{F}$ є випадковою подією.

Доведення. Розглянемо сімейство множин B, для яких виконується умова:

$$\{\omega \in \Omega : \xi(\omega) \in B\} \in \mathfrak{I},$$

Необхідно довести, що до цього сімейства належать всі борелівські множини $B \in B_R$. Легко перевірити, що:

- \circ 3 одного боку, введене сімейство множин утворює σ -алгебру.
- о 3 іншого боку, виходячи з леми 1, можемо стверджувати, що це сімейство містить інтервали типу [a, b) (тобто лівостороннє-замкнені інтервали).

Таким чином, воно містить також мінімальну σ -алгебру B_R , утворену на основі таких інтервалів, тобто σ -алгебру борелівськіх множини.

Подібним чином можна довести більш загальне твердження.

Лема 3. Нехай ξ_1 , ξ_2 , ..., ξ_k – скінчена сукупність випадкових величин, визначених на ймовірнісному просторі (Ω, \mathcal{F}, P) . $B_{R(k)}$ – борелівська σ -алгебра в просторі R^k . Тоді для будь-якої множини $B \in B_{R(k)}$ множина:

$$\{\omega \in \Omega: (\xi_1(\omega), \xi_2(\omega), ..., \xi_k(\omega)) \in B\} \in \mathcal{F}$$

 ϵ випадковою подією.

4. Операції на скінчених сукупностях випадкових величин.

Наступне дуже важливе питання, пов'язане з визначенням випадкової величини, стосується *допустимих операцій*, які можуть виконуватися з випадковими величинами. Виявляється, множина таких операцій досить широка та різноманітна.

Визначення. Борелівською функцією однієї дійсної змінної $x \in R$ називається така функція f(x), для якої виконується наступна умова:

• Для будь-якого дійсного числа $c \in R$

$$\{x \in R: f(x) < c\} \in B_R.$$

Визначення. Борелівською функцією багатьох змінних $x_i \in R$, i = 1, ..., k, називається така функція $f(x_1, x_2,..., x_k)$, для якої виконується наступна умова:

• Для будь-якого дійсного числа $c \in R$

$$\{(x_1, x_2, ..., x_k) \in R^k : f(x_1, x_2, ..., x_k) < c\} \in B_{R(k)}.$$

Варто відзначити, що сімейство функцій Бореля досить широке. У будь-якому випадку, всі елементарні функції та функції, що зустрічаються в практичних моделях, ϵ борелівськими.

Лема 4. Нехай ξ_1 , ξ_2 , ..., ξ_k – скінчена сукупність випадкових величин, визначених на ймовірнісному просторі (Ω, \mathcal{F}, P) . $f(x_1, x_2, ..., x_k)$ – деяка борелівська функція. Тоді $\eta = f(\xi_1, \xi_2, ..., \xi_k)$ буде випадковою величиною, визначеною на ймовірнісному просторі (Ω, \mathcal{F}, P) .

Доведення. З визначення борелівської функції випливає, що для будьякого дійсного числа c множина:

$$B = \{(\xi_1(\omega), \xi_2(\omega), ..., \xi_k(\omega)): f(\xi_1(\omega), \xi_2(\omega), ..., \xi_k(\omega)) < c\}$$

буде борелівською множиною: $B \in B_{R(k)}$.

Таким чином, на підставі леми 3, для будь-якого дійсного числа c множина:

$$\{\omega \in \Omega: \eta(\omega) < c\} = \{\omega \in \Omega: (\xi_1(\omega), \xi_2(\omega), ..., \xi_k(\omega)) \in B\} \in \mathcal{F}$$
 буде випадковою подією.

5. Послідовності випадкових величин.

Отже різноманітні перетворення скінченої кількості випадкових величин, визначених на тому самому ймовірнісному просторі (Ω, \mathcal{F}, P) , дають в результаті випадкову величину на тому ж просторі (Ω, \mathcal{F}, P) .

Залишилось розглянути основні математичні операції, що виконуються з *нескінченими сукупностями*, або послідовностями:

$$\xi_1, \, \xi_2, \, ..., \, \xi_k, \, ...,$$

Лема 5. Нехай ξ_1 , ξ_2 , ..., – нескінчена послідовність випадкових величин, визначених на ймовірнісному просторі $(\Omega, \mathfrak{F}, P)$. Тоді:

- (a) множина таких $\omega\in\Omega$, що границя $\lim_{n\to\infty}\xi_n(\omega)$ існує, є випадковою подією;
- (б) множина таких $\omega\in\Omega,$ що $\lim_{n\to\infty}\xi_n(\omega)=\xi(\omega),$ є випадковою подією;
- (в) результати наступних операцій щодо послідовності випадкових величин $\xi_1,\,\xi_2,\,...$

$$\lim_{n\to\infty}\xi_n(\omega),\ \overline{\lim_{n\to\infty}}\,\xi_n(\omega),\ \underline{\lim_{n\to\infty}}\,\xi_n(\omega),\ \inf_n\xi_n(\omega),\ \sup_n\xi_n(\omega)$$

будуть випадковими величинами, визначеними на ймовірнісному просторі $(\Omega, \mathfrak{T}, P)$.

Доведення. У випадку твердження (*a*) на основі теореми Коші, границя послідовності $\xi_1(\omega)$, $\xi_2(\omega)$, ..., $\xi_n(\omega)$, ... існує тоді, і тільки тоді, коли для будь-якого натурального числа k існує таке число N, що для будь-якого числа n > N і для будь-якого числа m > N виконується нерівність:

$$/\xi_n(\omega)-\xi_m(\omega)/<\frac{1}{k}$$
.

3 доведених результатів випливає, що будь-яких конкретних чисел $k,\,n,\,m,$ множина

$$B_{n,m}^{k} = \left\{ / \xi_{n}(\omega) - \xi_{m}(\omega) / < \frac{1}{k} \right\} \in \mathfrak{F}$$

буде випадковою подією.

Таким чином, використовуючи операції над подіями, ми отриму- ϵ мо наступну рівність:

$$\{\omega\in\Omega \text{ такі, що границя } \lim_{n\to\infty}\xi_n(\omega) \text{ існу} \epsilon\} = \bigcap_{k=1}^\infty \bigcup_{n=N+1}^\infty \bigcap_{m=N+1}^\infty B_{n,m}^k \ .$$

А оскільки $\Im \in \sigma$ -алгеброю, то приходимо до висновку, що

$$\{\omega\in\Omega$$
 такі, що границя $\lim_{n\to\infty}\xi_n(\omega)$ існує $\}\in\mathcal{J}$.

Подібним чином доводяться також твердження (δ) та (ϵ) леми 5.