Konstrukcja kompilatorów

Lista zadań nr 1

Na zajęcia 14 października 2020

UWAGA! W trakcie prezentacji rozwiązań należy zdefiniować i wyjaśnić pojęcia, które zostały oznaczone **wytłuszczoną** czcionką.

Zadanie 1. Skonstruuj **automat skończony** rozpoznający komentarz w języku C, czyli ciąg znaków rozpoczynający się znakami // i zakończony znakiem \n lub rozpoczynający się znakami /*, kończący się znakami */ i nie zawierający wewnątrz podciągu */.

Zadanie 2. Napisz wyrażenie regularne reprezentujące komentarz w języku C.

Zadanie 3. Na slajdzie numer 58 (w module *wyrażenia regularne*) jest definicja wyrażenia opisującego stałe liczbowe w Pascalu. Narysuj automat odpowiadający temu wyrażeniu. Zadbaj o to, żeby był on **deterministyczny**.

Zadanie 4. Rozważmy rozszerzenie języka C o zagnieżdżone komentarze. Chcielibyśmy, żeby napis /* zagnieżdżony /* komentarz */ */

był poprawnym komentarzem, i żeby można było zagnieżdżać dowolnie wiele razy.

Uzasadnij, że nie istnieje deterministyczny automat skończony rozpoznający takie komentarze.

Wskazówka: Automat deterministyczny o n stanach nie odróżni od siebie pewnych dwóch prefiksów słowa $(/*)^{n+1}$ i można go oszukać — dopisać taki sufiks, który automat zaakceptuje, mimo że całe słowo nie jest poprawnym komentarzem.

Wskazówka 2: To zadanie jest łatwe i wcale nie trzeba uczyć się na pamięć dowodu lematu o pompowaniu.

Na wykładzie powiedzieliśmy, że dla każdego niedeterministycznego automatu skończonego istnieje równoważny (tzn. rozpoznający ten sam język) automat deterministyczny. Determinizacja automatu $\langle \Sigma, S, s_0, F, \Delta \rangle$, gdzie Σ jest alfabetem, S zbiorem stanów, $s_0 \in S$ stanem początkowym, $F \subseteq S$ zbiorem stanów akceptujących, a $\Delta \subseteq S \times \Sigma \times S$ relacją przejścia, polega na

- skonstruowaniu automatu $\langle \Sigma, \mathcal{P}(S), \{s_0\}, \{Q \subseteq S \mid Q \cap F \neq \emptyset\}, \delta \rangle$, gdzie $\delta : \mathcal{P}(S) \times \Sigma \to \mathcal{P}(S)$ jest funkcją przejścia zdefiniowaną wzorem $\delta(Q, a) = \{s \in S \mid \exists q \in Q. \ \langle q, a, s \rangle \in \Delta \}$,
- i ewentualnym usunięciu z niego stanów nieosiągalnych (tzn. takich, których nie można osiągnąć po przeczytaniu żadnego słowa).

Zamiast usuwania stanów nieosiągalnych można je także po prostu pominąć podczas konstrukcji.

Zadanie 5. Narysuj automat niedeterministyczny o nie więcej niż trzech stanach **rozpoznający** język $(0+1)^*0(0+1)$, a następnie go zdeterminizuj.

Zadanie 6. Uzasadnij, że nie istnieje automat deterministyczny o mniej niż czterech stanach rozpoznający język z poprzedniego zadania.

Wskazówka: Automat o mniej niż czterech stanach nie odróżni pewnych dwóch słów w zbiorze $\{00,01,10,11\}$ i można go oszukać.

Zadanie 7. Skonstruuj automat niedeterministyczny o n+1 stanach rozpoznający język $(0+1)^*0(0+1)^{n-1}$. Uzasadnij, że nie istnieje automat deterministyczny o mniej niż 2^n stanach rozpoznający ten język.

Zadanie 8. Determinizacja automatu nie zawsze musi być kosztowna. Naturalny automat niedeterministyczny rozpoznający język opisany wyrażeniem regularnym if + else + endif ma 12 stanów. Istnieje jednak równoważny automat deterministyczny o 8 stanach¹. Narysuj oba automaty.

¹Można go nawet znaleźć automatycznie uruchamiając po determinizacji dodatkowy algorytm minimalizacji automatu. Algorytm ten jednak w ogólnym przypadku jest dość skomplikowany i nie będziemy się nim tutaj zajmować.