PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C07H 15/12, C07K 3/00 C12Q 1/68, C12N 15/00 (11) International Publication Number:

WO 91/12258

A1.

(43) International Publication Date:

22 August 1991 (22.08.91)

(21) International Application Number:

PCT/US91/00399

(22) International Filing Date:

22 January 1991 (22.01.91)

(30) Priority data:

ો

478,071

9 February 1990 (09.02.90)

US

(60) Parent Application or Grant

(63) Related by Continuation US

Filed on

478,071 (CIP) 9 February 1990 (09.02.90)

(71) Applicant (for all designated States except US): THE SALK ÎNSTITUTE FOR BIOLOGICAL STUDIES [US/US]; 10010 North Torrey Pines Road, La Jolla, CA 92037 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MANGELSDORF, David, John [US/US]; 4771 Seaford Place, San Diego, CA 92117 (US). EVANS, Ronald, Mark [US/US]; 8615 La Jolla Scenic Drive, North, La Jolla, CA 92037 (US).

(74) Agents: CAMPBELL, Cathryn et al.; Pretty, Schroeder, Brueggemann & Clark, 444 South Flower Street, Suite 2000, Los Angeles, CA 90071 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), pean patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.

(54) Title: RETINOID RECEPTOR COMPOSITIONS AND METHODS

The present invention relates to novel receptor polypeptides, which, upon interaction with certain ligands, or activation

(57) Abstract

by certain compounds, modulate transcription of certain genes by binding to cognate response elements associated with promoters of such genes. The novel receptors of the invention modulate transcription in the presence of retinoid compounds. The receptors of the present invention differ significantly from known retinoid acid receptors, in protein primary sequence and in responsiveness to exposure to various retinoids. The invention provides DNAs encoding the novel receptors, expression vectors for expression of the receptors, cells transformed with such expression vectors, cells co-transformed

modulation of transcription by the receptors, and methods of using such co-transformed cells in screening for compounds which are capable, directly or indirectly, of activating the receptors. The invention also provides nucleic acid probes for identifying DNAs which encode additional retinoid receptors of the same class as the novel receptors disclosed herein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinca	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazit	หบ	Hungary	PL	Poland
CA	Canada	rr	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CC	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	នប	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		

1

RETINOID RECEPTOR COMPOSITIONS AND METHODS

RELATED APPLICATIONS

This application is a continuation-in-part of application Serial No. 478,071, filed February 9, 1990, now pending, the entire contents of which are hereby incorporated by reference herein.

5

10

TECHNICAL FIELD

The present invention concerns novel, steroid hormone-like receptor proteins and methods of making and using same.

More particularly, the invention relates to steroid hormone-like receptor proteins with transcription-modulating effects. Such proteins are responsive to the presence of retinoid acid and other vitamin A metabolites.

15

20

25

BACKGROUND OF THE INVENTION

The retinoids comprise a group of compounds including retinoid acid, retinol (vitamin A), and a series of natural and synthetic derivatives that together exert profound effects on development and differentiation in a wide variety of systems. Although early studies focused on the effects of retinoids on growth and differentiation of epithelial cells, their actions have been shown to be widespread. Many recent studies have examined the effects of these molecules on a variety of cultured neoplastic cell types, including the human promyelocytic leukemia cell line, HL60, where retinoid acid appears to be a potent inducer of granulocyte differentiation. In F9 embryonal carcinoma cells, retinoid acid will induce the differentiation of parietal endoderm, characteristic of a late mouse blastocyst. Retinoid acid also appears to play an important role in defining spatio-temporal axes in the developing avian limb and the regenerating amphibian limb.

2

Retinoid acid has been shown to induce the transcription of several cDNAs whose gene products have been isolated by differential screening. This observation supports the hypothesis that retinoid acid exerts its action via modulation of gene expression, in a manner analogous to the way in which steroid and thyroid hormones influence their target genes.

The ability to identify compounds which affect transcription of genes which are responsive to retinoid acid or other metabolites of vitamin A, would be of significant value, e.g., for therapeutic applications. Further, systems useful for monitoring solutions, body fluids and the like for the presence of retinoid acid, vitamin A or metabolites of the latter would be of value in various analytical biochemical applications and, potentially, medical diagnosis.

10

15

35

Through molecular cloning studies it has been possible to demonstrate that receptors for steroid, retinoid and thyroid hormones are all structurally related. These receptors comprise a superfamily of 20 regulatory proteins that are capable of modulating specific gene expression in response to hormone stimulation by binding directly to cis-acting elements (Evans, Science 240, 889 (1988); Green and Chambon, Trends genet. 4, 309 (1988)). Structural comparisons and 25 functional studies with mutant receptors have established that these molecules are composed of discrete functional domains, most notably, a DNA-binding domain that is composed typically of 66 - 68 amino acids (including two zinc fingers), and an associated carboxy terminal stretch 30 of approximately 250 amino acids which comprises the ligand-binding domain (reviewed in Evans, supra).

Low-stringency hybridization has permitted the isolation and subsequent delineation of a growing list of gene products which possess the structural features of hormone receptors.

15

20

25

30

35

Recently, a retinoid acid dependent transcription factor, referred to as RAR-alpha (retinoid acid receptoralpha), has been identified. Subsequently, two additional RAR-related genes have been isolated; thus there are now at least three different RAR subtypes (alpha, beta and gamma) known to exist in mice and humans. These retinoid acid receptors (RARs) share homology with the superfamily of steroid hormone and thyroid hormone receptors and have been shown to regulate specific gene expression by a similar ligand-dependent mechanism (Umesono et al., Nature 336, 262 (1988)). These RAR subtypes are expressed in distinct patterns throughout development and in the mature organism.

Other information helpful in the understanding and practice of the present invention can be found in commonly assigned, co-pending United States Patent Application Serial Nos. 108,471, filed October 20, 1987; 276,536, filed November 30, 1988; 325,240, filed March 17, 1989; 370,407, filed June 22, 1989; and 438,757, filed November 16, 1989, all of which are hereby incorporated herein by reference in their entirety.

SUMMARY OF THE INVENTION

We have discovered novel receptors which are activated to modulate transcription of certain genes in animal cells, when the cells are exposed to retinoids, such as retinoid acid and retinal. The novel receptors differ significantly from known retinoid acid receptors, both in terms of the primary protein sequence and responsiveness to various retinoids.

The novel receptors have several isoforms located at genetically distinct loci. They are capable of transactivating through cis elements similar to retinoid acid receptors, but show a different rank potency and dose dependency to retinoids. Northern analyses of the novel receptors of the present invention indicate that each isoform has a unique pattern of expression in adult

Δ

tissue and is temporally and spatially expressed in the Binding experiments demonstrate that the novel receptor proteins have a low affinity for [3H]retinoic These results, taken together with results from transactivation studies, suggest the ligand(s) for the novel receptors is a metabolite(s) or structural analog(s) of retinoic acid. The invention provides DNAs encoding novel receptors, expression vectors for expression of the receptors, cells transformed with such expression vectors, cells co-transformed with such expression vectors and reporter vectors to monitor modulation of transcription by the receptors, and methods of using such co-transformed cells in screening for compounds which are capable, directly or indirectly, of activating the receptors.

10

15

20

25

30

35

The invention also provides single-stranded nucleic acid probes for identifying DNAs encoding additional retinoid receptors.

The invention also provides a method for making the receptors of the invention by expressing DNAs which encode the receptors in suitable host organisms.

Animal cells in which receptors of the invention are present can be employed to assay fluids for the presence of retinoids. Animal cells of the invention can also be employed to screen compounds of potential therapeutic value for their ability to bind and/or promote transactivation (i.e., trans-acting transcriptional activation) by the receptors of the invention.

As will be described in greater detail below, the receptors of the invention modulate transcription of genes. This occurs upon binding of receptor to hormone response elements, which are positioned operatively, with respect to promoters for such genes, for such modulation to occur. Among hormone response elements contemplated for use in the practice of the present invention are TRE_p, the beta-retinoid acid response element, and the estrogen response element, as well as closely related elements

15

20

which are disclosed, for example, in Application Serial No. 438,757, filed November 16, 1989, and Application Serial No. 325,240, filed March 17, 1989.

5 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the extent of amino acid identity (i.e., "homology") between the DNA binding domain ("DNA") and ligand binding domain ("RX") of mouse RXR-alpha (mRXRα), relative to the corresponding domains of human retinoic acid receptor-alpha (hRARα), human estrogen receptor (hER), human thyroid hormone receptor-beta (hTRβ) and human glucocorticoid receptor (hGR).

Figure 2 shows the extent of amino acid identity (i.e., "homology") between the DNA binding domain ("DNA") and ligand binding domain ("LIGAND") of human RXR-alpha (hRARa), relative to the corresponding domains of human retinoic acid receptor-beta (hRARa), human retinoic acid receptor-gamma (hRARa), hTRB and hRXRa.

Figure 3 shows the extent of amino acid identity (i.e., "homology") between the DNA binding domain ("DNA") and ligand binding domain ("RX") of mRXRα, relative to the corresponding domains of mouse RXR-beta (mRXRβ), mouse RXR-gamma (mRXRγ) and hRXRα.

Figure 4 illustrates the production of CAT from the
reporter vector (ADH-TREp-CAT) in Drosophila melanogaster
Schneider line 2 cells, which are co-transformed with
receptor expression vector A5C-RXR-alpha and are in a
medium containing various concentrations of retinoic
acid.

Figure 5 illustrates the differences in transcription-activating activities of hRXR-alpha and hRAR-alpha, in mammalian cells in culture containing different vitamin A metabolites.

Figure 6, like Figure 5, illustrates the differences in transcription-activating activities of hRXR-alpha and hRAR-alpha in mammalian cells in culture containing retinoic acid or different synthetic retinoids.

20

25

30

Figure 7 illustrates the differences between hRXR-alpha and hRAR-alpha in dose-response to retinoic acid in media bathing mammalian cells in which the receptors occur. Figure 8 illustrates the differences between mouse RXR-alpha (mRXRα), mouse RXR-beta (mRXRβ) and mouse RXR-gamma (mRXRγ) in dose response to retinoid acid (RA) in media bathing mammalian cells expressing such receptors.

Figure 9 illustrates the differences between mRXRα, mRXRβ and mRXRγ in dose response to 3,4-didehydroretinoic acid (ddRA) in media bathing mammalian cells expressing such receptors.

DETAILED DESCRIPTION OF THE INVENTION

The invention concerns novel polypeptides, which are characterized by:

- (1) being responsive to the presence of retinoid(s) to regulate transcription of associated gene(s);
- (2) having a DNA binding domain of about 66 amino acids with 9 Cys residues, wherein said DNA binding domain has:
 - (a) less than about 65 % amino acid identitywith the DNA binding domain of hRAR-alpha,
 - (b) less than about 55 % amino acid identity with the DNA binding domain of hTR-beta,
 - (c) less than about 55 % amino acid identity with the DNA binding domain of hGR; and
- (3) not including the sequence set forth in Sequence ID No 7.

The novel polypeptide receptors of the present invention can be further characterized in a variety of ways, e.g., by increasing the rate of transcription of a target gene in a construct comprising a promoter operatively linked to a hormone response element for

15

20

25

30

35

transcriptional activation by said receptors, relative to the rate of transcription in the absence of said receptor and/or in the absence of retinoic acid and retinal. Transcription of said target gene is measured in an animal cell in culture, the medium of which comprises retinoid acid or retinal at a concentration greater than about 5×10^{-7} M.

Alternatively, the polypeptide receptors of the present invention can be further characterized as being encoded by a continuous nucleotide sequence which encodes substantially the same amino acid sequence as that of amino acids 1-462 shown in Sequence ID No. 2 [hRXRa], amino acids 1-467 shown in Sequence ID No. 4 [mRXRa], or amino acids 1-463 shown in Sequence ID No. 6 [mRXRa].

As yet another alternative, the polypeptide receptors of the present invention can be characterized as being encoded by a continuous nucleotide sequence which encodes substantially the same amino acid sequence as that of amino acids 135-200 shown in Sequence ID No. 2 [DNA binding domain of hRXRa], amino acids 140-205 shown in Sequence ID No. 4 [DNA binding domain of mRXRa], or amino acids 139-204 shown in Sequence ID No. 6 [DNA binding domain of mRXRa].

As still another alternative, the polypeptide receptor of the present invention can be characterized as being encoded by a continuous nucleotide sequence which is substantially the same as nucleotides 76-1464 shown in Sequence ID No. 1 [hRXRa], nucleotides 181-1581 shown in Sequence ID No. 3 [mRXRa], or nucleotides 123-1514 shown in Sequence ID No. 3 [mRXRa].

As employed herein, the term "retinoids" refers to naturally occurring compounds with vitamin A activity synthetic analogs and various metabolites thereof. The retinoids are a class of compounds consisting of four isoprenoid units joined in head-to-tail manner.

Numerous retinoids have been identified, as described, for example, by Sporn, Roberts and Goodman in

8

the two volume treatise entitled The Retinoids (Academic Press, NY, 1984), to which the reader is directed for further detail. Exemplary retinoids include retinol, retinyl acetate, retinyl hexadecanoate, α-retinyl, 4,14retroretinol, deoxyretinol, anhydroretinol, 3,4didehydroretinol, 15,15-dimethyl retinol, retinyl methyl ether, retinyl phosphate, mannosyl retinyl phosphate, retinol thioacetate, retinal (retinaldehyde), 3,4didehydroretinal, retinylidene acetylacetone, retinylidene-1,3-cyclopentanedione, retinal oxime, 10 retinaldehyde acetylhydrazone, retinoic acid, 4-hydroxyretinoic acid, 4-oxoretinoic acid, 5,6-dihydroretinoic acid, 5,6-epoxyretinoic acid, 5,8-epoxyretinoic acid, the open-chain C20 analog of retinoid acid (i.e., (all-E-3,7,11,15-tetramethyl-2,4,6, 8,10, 2,14-hexadecaheptaenoic acid), 7,8didehydroretinoic acid, 7,8-dihydroretinoic acid, "C,5 Acid" (E, E)-3-methyl-5-(2,6,6-trimethyl-2-cyclohexen-1yl)-2,4-pentanedioic acid), "C₁₇ Acid" ((E,E,E)-5-methyl-7-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6-hepatrienoic acid), "C, Acid" (14'-apo- β , ψ -carotenoic acid), retinoic acid esters (e.g., methyl ester, ethyl ester, etc.), retinoid acid ethylamide, retinoic acid 2hydroxyethylamide, methyl retinone, "C,8" Ketone" ((E,E, \underline{E}) -6-methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3,5,7-25 ocatrien-2-one), and the like.

In addition, according to the present invention, there are provided DNA sequences which encode novel polypeptides as described above.

30

35

Further in accordance with the present invention, there are provided DNA constructs which are operative in animal cells in culture to make said polypeptides.

According to a still further embodiment of the present invention, there are provided animal cells in culture which are transformed with DNA constructs (as described above), which are operative in said cells to

10

20

25

30

35

make receptor polypeptides, by expression of DNA segments which encode the above described polypeptides.

Among the animal cells contemplated for use in the practice of the present invention are those which are further transformed with a reporter vector which comprises:

- (a) a promoter that is operable in the cell,
- (b) a hormone response element, and
- (c) a DNA segment encoding a reporter protein,
 wherein said reporter protein-encoding DNA
 segment is operatively linked to said promoter
 for transcription of said DNA segment, and
 wherein said hormone response element is
 operatively linked to said promoter for

operatively linked to said promoter for activation thereof.

In accordance with the present invention, the

In accordance with the present invention, there is also provided a method of testing a compound for its ability to regulate the transcription-activating properties of the above-described receptor polypeptides, which method comprises assaying for the presence or absence of reporter protein upon contacting of cells containing a reporter vector and receptor polypeptide with said compound; wherein said reporter vector and said receptor polypeptide are as described above.

In accordance with a still further embodiment of the present invention, there are provided various probes, which can be used to identify genes encoding receptors related to those of the present invention. In this regard, particular reference is made to Examples V and VI below. More particularly, the invention provides labeled, single-stranded nucleic acids comprising sequences of at least 20 contiguous bases having substantially the same sequence as any 20 or more contiguous bases selected from:

(i) bases 2 - 1861, inclusive, of the DNA illustrated in Sequence ID No. 1 [hRXR-α],

5

10

15

20

25

30

35

10

(ii) bases 20 - 2095, inclusive, of the DNA illustrated in Sequence ID No. 2 [mRXR- α], or

(iii) bases 15 - 1653, inclusive, of the DNA illustrated in Sequence ID No. 3 [mRXR- γ], or

(iv) the complement of any one of the sequences according to (i), (ii), or (iii).

As employed herein, the term "labeled single-stranded nucleic acid sequences" refers to single-stranded DNA or RNA sequences which have been modified by the addition thereto of a species which renders the "labeled" sequence readily detectable from among other unmodified sequences. Exemplary labels include radioactive label (e.g., ³²P, ³⁵S), enzymatic label (e.g., biotin), and the like.

Preferred probes contemplated for use in the practice of the present invention are those having at least about 100 contiguous bases selected from the above-described sequences. Especially preferred are probes having in the range of about 198 up to several hundred nucleotides, because greater selectivity is afforded by longer sequences.

The invention also encompasses a method of making the above-described receptor polypeptides, which method comprises culturing suitable host cells which are transformed with an expression vector operable in said cells to express DNA which encodes receptor polypeptide. Suitable hosts contemplated for use in the practice of the present invention include yeast, bacteria, mammalian cells, insect cells, and the like. E. coli is the presently preferred bacterial species. Any of a number of expression vectors are well known to those skilled in the art that could be employed in the method of the invention. Among these are the prokaryotic expression vectors pNH8A, pNH16A and pNH18A available from Stratagene, La Jolla, California USA.

35

Further information on the invention is provided in the following non-limiting examples and description of an exemplary deposit.

5 EXAMPLES

Example I

The KpnI/SacI restriction fragment (503bp) including the DNA-binding domain of hRAR-alpha-encoding DNA [See Giguere et al., Nature 330, 624 (1987); and commonly 10 assigned United States Patent Application Serial No. 276,536, filed November 30, 1988; and European Patent Application Publication No. 0 325 849, all incorporated herein by reference] was nick-translated and used to screen a lambda-gtl1 human liver cDNA library 15 (Kwok et al., Biochem. 24, 556 (1985)) at low stringency. The hybridization mixture contained 35% formamide, 1X Denhardt's, 5X SSPE (1X SSPE=0.15 M NaCl, 10mm Na, HPO, 1mm EDTA), 0.1% SDS, 10% dextran sulfate, 100 mg/ml denatured salmon sperm DNA and 10° cpm of [32P]-labelled probe. 20 Duplicate nitrocellulose filters were hybridized for 16h at 42°C, washed once at 25°C for 15 min with 2X SSC (1X SSC=0.15 M NaCl, 0.015 M sodium citrate), 0.1% SDS and then washed twice at 55°C for 30 min. in 2X SSC, 0.1% SDS. The filters were autoradiographed for 3 days at -70°C 25 using an intensifying screen.

Positive clones were isolated, subcloned into pGEM vectors (Promega, Madison, Wisconsin, USA), restriction mapped, and re-subcloned in various sized restriction fragments into M13mp18 and M13mp19 sequencing vectors. DNA sequence was determined by the dideoxy method with Sequenase sequencing kit (United States Biochemical, Cleveland, Ohio, USA) and analyzed by University of Wisconsin Genetics Computer Group programs (Devereux et al., Nucl. Acids Res. 12, 387 (1984)). A unique receptor-like sequence was identified and designated lambda-HL3-1.

PCT/US91/00399

5

10

15

20

25

30

35

Lambda-HL3-1 was used as a hybridization probe to rescreen a lambda-gt10 human kidney cDNA library (Arriza et al., Science 237, 268 (1987)) which produced several clones, the longest of which was sequenced and designated lambda-XR3-1. The DNA sequence obtained as an EcoRI-fragment from lambda-XR3-1 has the sequence indicated in Sequence ID No. 1 [hRXRa].

Similar screening of a mouse whole embryo library with the full-length hRXR-alpha clone described above provided additional sequences which encode different isoforms of the human RXR-alpha receptor. In addition, the mouse homolog (mouse RXR-alpha) was also identified in this way.

Thus, mRNA was isolated from 14.5 day post-coitus (p.c.) mouse embryos, translated into cDNA, linkered with EcoRI/NotI linkers, then inserted into the unique EcoRI site of the cloning vector λ -ZAP (Stratogene). The resulting library was screened at reduced stringency with 32 P-labeled, full length hRXR-alpha as the probe.

The DNA sequences of the resulting clones are set forth as Sequence ID No. 3 [mRXRa] and Sequence ID No. 5 [mRXRa].

Example II

Amino acid sequences of mRXR-alpha, hRAR-alpha (human retinoic acid receptor-alpha), hER (human estrogen receptor) hTR-beta (human thyroid hormone receptor-beta) and hGR (human glucocorticoid receptor) were aligned using the University of Wisconsin Genetics Computer Group program "Bestfit" (Devereux et al., supra). Regions of significant similarity between mRXR-alpha and the other receptors, i.e., the 66 - 68 amino acid DNA binding domains and the ligand-binding domains, are presented schematically in Figure 1 as percent amino acid identity.

Similarly, the amino acid sequences of human RAR-alpha (hRAR α), human RAR-beta (hRAR β), human RAR-gamma (hRAR γ), human TR-beta (hTR β) and human RXR-alpha (hRXR α)

10

15

25

30

35

were aligned. As done in Figure 1, regions of significant similarity between hRAR-alpha and the other receptors are presented schematically in Figure 2 as percent amino acid identity.

A further comparison of receptors is set forth in Figure 3. Thus, the amino acid sequences of mouse RXR-alpha (mRXR α), mouse RXR-beta (mRXR β), mouse RXR-gamma (mRXR γ) and human RXR-alpha (hRXR α) were aligned, and the percent amino acid identity presented schematically in Figure 3.

Although the DNA-binding domains of both mRXR-alpha and hRXR-alpha are conserved relatively well with respect to other receptors (such as hRAR-alpha and hTR-beta), the ligand binding domain is poorly conserved. (See Figures 1 and 3). A comparison between the retinoic acid receptor subfamily of receptors and hRXR-alpha reveals nothing to suggest that hRXR-alpha is related to any of the known retinoid receptors (Fig. 2).

20 Example III

Drosophila melanogaster Schneider line 2 ("S2") cells (Schneider, Embryol. Exp. Morphol. 27, 353 (1972), which are readily available, were seeded at 2 x 10^6 per 35 mm² culture dish and maintained in Schneider medium (GIBCO/Life Technologies, Inc., Grand Island, New York, USA) supplemented with penicillin, streptomycin and 12% heat-inactivated fetal bovine serum (Irvine Scientific, Santa Ana, California, USA). The cells were transiently co-transfected with $10~\mu \rm g/dish$ of plasmid DNA by calcium phosphate precipitation (Krasnow et al., Cell 57, 1031 (1989): 4.5 $\mu \rm g/dish$ of receptor expression vector or control construct (producing no hRXR-alpha); 0.5 $\mu \rm g/dish$ of reporter plasmid or control reporter plasmid; 0.5 $\mu \rm g/dish$ of reference plasmid; and 4.5 $\mu \rm g$ inert plasmid DNA.

In the receptor expression vector, λ 5C-RXR-alpha (4.5 μ g/dish), receptor hRXR-alpha is constitutively

14

expressed in the S2 cells under the control of the Drosophila actin 5C promoter (A5C; Thummel et al., Gene 74: 445 (1988)) driving transcription of the EcoRI-site-bounded insert of lambda-XR3-1. In the control vector, A5C-RXR_{rev} (also 4.5 μ g/ml), the EcoRI-site-bounded insert from lambda-XR3-1 is inserted in the reverse (i.e., non-coding or non-sense-coding) orientation.

A5C-RXR-alpha was made by first inserting at the unique BamHI site of A5C a linker of sequence:

10

15

5'-GATCCGATATCCATATGGAATTCGGTACCA,

and then inserting, at the EcoRI site of the linker (underlined above), the EcoRI-site-bounded insert of lambda-XR3-1 (See Example I).

The reporter plasmid ADH-TRE $_p$ -CAT (at 0.5 μ g/dish) contains the palindromic thyroid hormone response element TREp, having the sequence:

20

25

5 '-AGGTCATGACCT

[(Glass et al. Cell 54, 313 (1988); Thompson and Evans, Proc. Natl. Acad. Sci. (USA) 86, 3494 (1989)], inserted into position -33 (with respect to the transcription start site) of a pD33-ADH-CAT background (Krasnow et al., Cell 57, 1031 (1989)).

pD33-ADH-CAT is a plasmid with the distal promoter of the Drosophila melanogaster alcohol dehydrogenase gene linked operably for transcription to the bacterial (E. coli) chloramphenicol acetyltransferase ("CAT") gene, a gene for the indicator protein CAT. ADH-TREp-CAT was made by inserting the oligonucleotide of sequence:

5'-CTAGAGGTCATGACCT TCCAGTACTGGAGATC-5'

30

15

20

25

30

35

into the XbaI site at position -33 in pD33-ADH-CAT. pD33-ADH-CAT, without TREp, served as a control reporter (i.e., background) plasmid.

A reference plasmid encoding beta-galactosidase driven by the actin 5C promoter also was transfected (0.5 μ g/dish) along with pGEM DNA (4.5 μ g/dish) (Promega, Madison, Wisconsin) to make up the final DNA concentration to 10 μ g/dish. The reference plasmid was made by inserting a BamHI-site bounded, beta-galactosidase-encoding segment into the unique BamHI site of A5C. The purpose of the reference plasmid was to normalize results for transfection efficiency.

Twenty-four hours post-transfection, various retinoids were added to the cultures. The retinoids were dissolved in dimethyl-sulfoxide and/or ethanol and the resulting solution was added to 0.1 % v/v of culture medium. Initial concentration of the retinoids in the culture media was 10^{-6} M, except for the experiments underlying the data displayed in Figure 4, for which varying concentrations of retinoic acid were used.

In control runs, ethanol, at 0.1 % v/v in the medium, was used in place of a solution of retinoid.

Cultures were maintained in the dark for 36 hr after addition of retinoid and then harvested. All other parts of the experiments, involving retinoids, were carried out in subdued light.

Cell lysates were centrifuged. Supernatants were assayed for beta-galactosidase, following Herbomel et al., Cell 39, 653-662 (1984), and units/ml of beta-galactosidase activity was calculated. CAT assays (normalized to beta-galactosidase activity) of supernatants were incubated for 75 unit-hours ("units" referring to units of beta-galactosidase activity), as described by Gorman et al., Mol. Cell. Biol. 2, 1044 (1982), usually 150 units for 30 minutes.

No hRXR-alpha dependent activation of CAT expression was noted in any experiment in which control reporter was

used in place of ADH-TREp-CAT. Similarly, essentially no activation was observed for runs where control plasmid, A5C-hRXR_{rev}, was used in place of A5C-hRXR.

The induction of CAT activity in retinoid-treated cells was compared with induction in untreated (i.e., only ethanol-treated) cells. Induction was measured in the presence of retinoic acid (RA), retinal (RAL), retinol acetate (RAC), retinol (ROH), and retinol palmitate (RP). The production of chloramphenical acetyltransferase (CAT) from the reporter vector (ADH-TREp-CAT) was measured in Drosophila melanogaster Schneider line 2 cells, co-transformed with the hRXR-alpha expression vector A5C-RXRalpha, and exposed to a medium to which retinoic acid (RA), retinal (RAL), retinol acetate (RAC), retinol (ROH), or retinol palmitate (RP) has been added concentration of 10⁻⁶ M. The relative induction observed was RA > RAL > RAC > ROH > RH.

In Figure 4 are displayed the results, also expressed in terms of "fold-induction" of CAT activity, as described in the previous paragraph, with retinoic acid at a number of different concentrations, to show the "dose response" of hRXR-alpha (in trans-activation at TREp in insect cells) to retinoid acid in the medium of the cells.

25 Example IV

10

15

20

30

35

This example, describing experiments similar to those described in Example III, shows that hRAR-alpha and hRXR-alpha differ significantly in their properties, specifically with respect to trans-activation of transcription from promoters.

The mammalian receptor-expression vector RS-hRAR-alpha, from which hRAR-alpha is produced under control of the 5'-LTR promoter of the rous sarcoma virus proviral DNA, is described in Giguere et al., Nature 330, 624 (1987); commonly asigned United States Patent Application Serial No. 276,536, filed November 30, 1988; and European

10

15

20

25

30

35

Patent Application Publication No. 0 325 849, all incorporated herein by reference.

The receptor-expression vector RS-hRXR-alpha is constructed similarly to RS-hRAR-alpha, by inserting the EcoRI-site-bounded, hRXR-alpha-encoding segment of lambda-XR3-1 into plasmid pRS (Giguere et al., Cell 46, 645 (1986)).

Control plasmid pRSns is pRS with a non-sense-coding sequence inserted in place of receptor-coding sequence.

Reporter plasmid delta-MTV-TREp-CAT, also known as TREp1MCAT, has also been described (Umesono et al., Nature 336, 262 (1988), Thompson and Evans, supra., see also Umesono and Evans, Cell 57, 1139 (1989). When a control reporter, designated delta-MTV-CAT, which is substantially delta-MTV-TREp-CAT with TREp removed, was used in place of delta-MTV-TREp-CAT, no CAT activity was found with either receptor with any of the retinoids or retinoid analogs.

Reference plasmid, RS-beta-galactosidase, is also known and is substantially the same as RS-hRAR-alpha and RS-hRXR-alpha but has a beta-galactosidase-encoding segment in place of the receptor-encoding segment.

Culture of CV-1 cells, co-transfections (with reporter plasmid, receptor-expression-plasmid or control plasmid, reference plasmid and inert plasmid DNA) and CAT assays were performed as described in Umesono et al., Nature 336, 262 (1988). Co-transfections and CAT assays were carried out by methods similar to those described in Example III. Similar to the experiments in Example III, subdued light was used.

When CV-1 cells co-transformed with reporter plasmid (delta-MTV-TREp-CAT), reference plasmid, control plasmid (i.e., expressing no receptor), and receptor plasmid (RS-hRAR-alpha or RS-hRXR-alpha), were exposed to retinoids RA, RAL, RAC, ROH, RP, (which are naturally occurring vitamin A metabolites), or retinoid-free ethanol, the results shown in Figure 5 were obtained. The Figure illustrates production of CAT from reporter plasmid

18

in monkey kidney cells of the CV-1 line, which are cotransformed with hRXR-alpha-producing expression vector RS-hRXR-alpha or hRAR-alpha-producing expression vector RS-hRAR. Experiments are carried out in a medium to which RA, RAL, RAC, ROH, or RP has been added to a concentration of 10⁻⁶ M. The bars over the "-" sign indicate the levels of CAT production when the cells are exposed to no retinoid (i.e., retinoid-free ethanol). The hatched bars indicate the level of CAT production when a control expression vector, from which no receptor is expressed, is employed in place of the receptor expression vector. open bars indicate the level of CAT production when receptor-producing expression vector is employed. each case, the retinoids were added as ethanolic solutions, with the volume of solution 0.1 % (v/v) in the Retinoid-free ethanol was added to 0.1 % v/v. medium. Results are plotted as percentages of the maximal response observed in the experiments, i.e., hRXR-alpha with RA.

10

15

In Figure 6, the results are provided for experiments 20 carried out as described in the previous paragraph but with, in place of RAL, RAC, ROH and RP, the synthetic 4-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-4iodo-2-antrhracenyl)-benzoic acid ("R1"), ethyl-P-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)-1-25 propenyl]-benzoic acid ("R2"), ethyl-all trans-9-(4methoxy-2,3,6-trimethyl)-3,7-dimethyl-2,4,6,8nonatetranoate ("R3"), and ethyl-all trans-9-(4-methoxy-2,3,6-trimethyl)-3,7-dimethyl-2,4,6,8-nonatetraenoic acid ("R4") initially at a concentration of 10⁻⁶ M. 30 illustrates production of CAT from the reporter plasmid (delta-MTV-TREp-CAT), CV-1 cells, which are co-transformed with hRXR-alpha-producing expression vector RS-hRXR-alpha or the constitutive hRAR-alpha-producing expression vector RS-hRAR. Experiments are carried out in a medium to which RA, R1, R2, R3, or R4 has been added to a concentration of 35 10⁻⁶ M. The bars over the "-" sign indicate the levels of CAT production when the cells are exposed to no retinoid. The hatched bars indicate the level of CAT production when a control expression vector, from which no receptor is expressed, is employed in place of the receptor expression vector. The open bars indicate the level of CAT production when receptor-producing expression vector is employed.

In Figure 7, results are presented for experiments carried out as described in this Example using various concentrations of retinoic acid. The Figure illustrates production of CAT from the reporter plasmid (delta-MTV-TRE_p-CAT), in CV-1 cells, which are co-transformed with the receptor-producing expression vector RS-RXR-alpha or RS-RAR-alpha. Experiments are carried out in a medium to which RA has been added to various concentrations. In the Figure, the results are in terms of fold-induction observed with cells exposed to RA, and control cells (exposed to only RA-free ethanol).

10

15

20

25

30

35

In Figure 8, results are presented for experiments carried out as described above, using various concentrations of retinoic acid with expression vectors encoding mRXR-alpha, mRXR-beta and mRXR-gamma.

In Figure 9, results are presented for experiments carried out as described above, using various concentrations of 3, 4-didehydroretinoic acid (ddRA) with expression vectors encoding mRXR-alpha, mRXR-beta and mRXR-gamma.

Example V

To determine the distribution of hRXR-alpha gene expression, poly A⁺ RNAs isolated from a variety of adult rat tissues were size fractionated, transferred to a nylon filter, and hybridized with hRXR-alpha cDNA.

Thus, for each tissue of adult male rat that was analyzed, total RNA was prepared from the tissue (see Chomczynski and Sacchi, Anal. Biochem. 162, 156 (1987)) and poly A* selected by oligo(dT)-cellulose chromatography. Ten micrograms of poly A* RNA were separated by 1% agarose-

formaldehyde gel electrophoresis, transferred to a Nytran filter (Schleicher and Schuell) (see McDonnell et al., Science 235, 1214 (1987)), and hybridized under stringent conditions with the hRXR-alpha-encoding, EcoRI insert of lambda-XR3-1. Hybridization was performed at 42°C in a buffer containing 50% formamide, 5X Denhardt's, 5X SSPE, 0.1% SDS, 100mg/ml salmon sperm DNA, 200mg/ml yeast RNA, and [32P]-labelled probe. The filter was then washed twice with 2X SSC, 0.1% SDS at 22°C and twice at 50°C. Autoradiography was for 24h at -70°C with an intensifying screen. RNA ladder size markers from Bethesda Research Laboratories (Gaithersburg, Maryland, USA)

10

The distribution of RXR-alpha mRNA in the rat reveals a pattern of expression distinct from that of the retinoid acid receptors (Giguere et al., Nature 330, 624 (1987); Zelent et al., Nature 339, 714 (1989); Benbrook, Nature 333, 669 (1988)). The rat RXR-alpha message appears to be a single species of about 4.8 kbp (kilobase pairs) which is expressed in many tissues, but most abundantly in the liver, muscle, lung, and kidney and somewhat less abundantly in adrenal, heart, intestine, and spleen.

Example VI

Molecular cloning analyses of the thyroid hormone and 25 retinoic acid receptor genes indicate that each of these receptors belongs to a discreet gene subfamily which encode several receptor isoforms. To determine if this was also true of RXR, a series of Southern blot analyses were carried out. High stringency hybridization of 30 restriction endonuclease-digested human DNA labelled DNA fragment derived from lambda-XR3-1 produced a similar number of bands in every digestion, consistent with a single genetic locus. When the hybridization conditions were relaxed, however, many additional bands were observed in the products of each enzyme digestion. Careful inspection of this hybridization demonstrated that it is unrelated to a similar analysis

25

30

35

described for hRAR-alpha (Giguere et al., Nature 330, 624 (1987). These observations indicate the presence of at least one other locus in the human genome related to the hRXR-alpha gene. Further, a genomic DNA zooblot representing mammalian, avian, yeast, and Drosophila species was obtained. Thus far, the RXR gene family appears to be present in all species tested except yeast, which to date has not been shown to contain any members of the steroid receptor superfamily.

For the analyses of human DNA, two human placenta genomic DNA Southern blots were prepared in parallel with identical DNA samples. The blots were hybridized at high or low stringency with a 1200 bp [32P]-labelled fragment of lambda-XR3-1 which included the coding portions of the DNA and ligand binding domains (Sequence ID No. 1, nucleotides 459-1631).

For the zooblot, genomic DNA from human, monkey, rat, mouse, dog, cow, rabbit, chicken, S. cerevisiae and Drosophila melanogaster were hybridized at low stringency with a 330 bp [32P]-labelled fragment of lambda-XR3-1 which included the DNA-binding domain (Sequence ID No. 1, nucleotides 459-776). Differently sized bands (in comparison with HindIII-digested lambda DNA for sizing) were found for the various species. The blots for all of the species (including both for D. melanogaster), except yeast, mouse and rabbit appeared to have more than one band.

For the analysis of human DNA, the placental DNA was restricted with BamHI, BglII, EcoRI, HindIII, PstI and PvuII, separated in a 0.8% agarose gel (10 μ g per lane) and transferred to nitrocellulose (see McDonnell et al., supra) and hybridized as described below.

For the zooblot, EcoRI-digested DNA from the several species (Clontech, Palo Alto, California, USA), other than D. melanogaster, was used for Southern blot analysis. EcoRI- and XhoI-digested D. melanogaster DNA was included also.

22

Blots were hybridized at 42°C in the low stringency buffer described in Example I or at high stringency in the same buffer modified by addition of formamide to 50 %. Low stringency blots were washed twice at room temperature and twice at 50°C in 2X SSC, 0.1% SDS. The high stringency blot was washed twice at room temperature in 2X SSC, 0.1% SDS and twice at 65°C in 0.5X SSC, 0.1% SDS.

Example VII

10

20

25

30

Northern analysis were carried out on the mouse RXR isoforms alpha, beta and gamma, to determine the tissue distribution of these receptors in adult tissues and in developing embryos.

Thus, mRNA (10 μ g) was isolated from various adult rat tissues of from day 10.5-day 18.5 p.c. whole mouse embryos. These samples were subjected to Northern analysis using ³²P-labeled cDNA probes derived from regions specific to mRXR α , mRXR β , or mRXR γ .

In the adult, the various RXR isoforms are seen to be expressed in both a specific and overlapping distribution pattern.

In the embryo, the various isoforms are highly expressed in what appears to be a specific temporal pattern.

The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

23

Deposit

On January 31, 1990, a sample of replicatable phagescript SK double-stranded DNA (Stratagene, La Jolla, California, USA), with the 1860 base-pair, EcoRI-site-bounded DNA, the sequence of which is illustrated in

Figure 1, inserted at the unique EcoRI site, was deposited under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure at the American Type Culture Collection, Rockville, Maryland, USA ("ATCC"). The accession number assigned to this deposit is ATCC 40741. The deposited DNA is designated pSK(hRXR-alpha).

Phagescript SK double-stranded DNA is a modified M13mp18 bacteriophage DNA (double-stranded). Derivatives, such as pSK(hRXR-alpha), of phagescript SK double-stranded DNA can be cloned in the same way as M13mp18 and its derivatives.

Samples of pSK(hRXR-alpha) will be publicly available from the ATCC without restriction, except as provided in 37 CFR 1.801 et seq., at the latest on the date an United States Patent first issues on this application or a continuing application thereof. Otherwise, in accordance with the Budapest Treaty and the regulations promulgated thereunder, samples will be available from the ATCC to all persons legally entitled to receive them under the law and regulations of any country or international organization in which an application, claiming priority of this application, is filed or in which a patent based on any such application is granted.

10

15

20

25

24

SUMMARY OF SEQUENCES

Sequence ID No. 1 is the coding sequence of an EcoRI-site-bounded DNA segment which encodes the novel receptor disclosed herein, referred to as human RXR-alpha [hRXR α]

5

10

15

20

Sequence ID No. 2 is the amino acid sequence of the novel receptor referred to herein as $hRXR\alpha$.

Sequence ID No. 3 is the nucleotide (and amino acid) sequence of the novel receptor disclosed herein, referred to as mouse RXR-alpha [mRXR α].

Sequence ID No. 4 is the amino acid sequence of the novel receptor referred to herein as $mRXR\alpha$.

Sequence ID No. 5 is the nucleotide (and amino acid) sequence of the novel receptor disclosed herein, referred to as mouse RXR-gamma [mRXR γ].

Sequence ID No. 6 is the amino acid sequenase of the novel receptor referred to herein as mRXRy.

Sequence ID No. 7 is the nucleotide sequence of the receptor disclosed by Hamada, et al in PNAS $\underline{86}$: 8298-8293 (1989). This receptor is similar to the receptor referred to herein as mRXR β .

SEQ ID NO:1:

	GAATTCCGGC GCCGGGGGCC GCCCGCCCGC CGCCCGCTGC CTGCGCCGCC GGCCGGCC	60
5	GAGTTAGTCG CAGAC ATG GAC ACC AAA CAT TTC CTG CCG CTC GAT TTC TCC Met Asp Thr Lys His Phe Leu Pro Leu Asp Phe Ser 1 5 10	111
10	ACC CAG GTG AAC TCC TCC CTC ACC TCC CCG ACG GGG CGA GGC TCC ATG Thr Gln Val Asn Ser Ser Leu Thr Ser Pro Thr Gly Arg Gly Ser Het 15 20 25	159
15	GCT GCC CCC TCG CTG CAC CCG TCC CTG GGG CCT GGC ATC GGC TCC CCG Ala Ala Pro Ser Leu His Pro Ser Leu Gly Pro Gly Ile Gly Ser Pro 30 35 40	207
20	GGA CAG CTG CAT TCT CCC ATC AGC ACC CTG AGC TCC CCC ATC AAC GGC Gly Gln Leu His Ser Pro Ile Ser Thr Leu Ser Ser Pro Ile Asn Gly 45 50 55 60	255
	ATG GGC CCG CCT TTC TCG GTC ATC AGC TCC CCC ATG GGC CCC CAC TCC Met Gly Pro Pro Phe Ser Val Ile Ser Ser Pro Met Gly Pro His Ser 65 70 75	303
25	ATG TCG GTG CCC ACC ACC CCC ACC CTG GGC TTC AGC ACT GGC AGC CCC Het Ser Val Pro Thr Thr Pro Thr Leu Gly Phe Ser Thr Gly Ser Pro 80 85 90	351
30	CAG CTC AGC TCA CCT ATG AAC CCC GTC AGC AGC AGC GAG GAC ATC AAG Gln Leu Ser Ser Pro Met Asn Pro Val Ser Ser Ser Glu Asp Ile Lys 95 100 105	399
35	CCC CCC CTG GGC CTC AAT GGC GTC CTC AAG GTC CCC GCC CAC CCC TCA Pro Pro Leu Gly Leu Asn Gly Val Leu Lys Val Pro Ala His Pro Ser 110 115 120	447
40	GGA AAC ATG GCT TCC TTC ACC AAG CAC ATC TGC GCC ATC TGC GGG GAC Gly Asn Het Ala Ser Phe Thr Lys His Ile Cys Ala Ile Cys Gly Asp 135 140	495
	CGC TCC TCA GGC AAG CAC TAT GGA GTG TAC AGC TGC GAG GGG TGC AAG Arg Ser Ser Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys 145 150 150	543
45	GGC TTC TTC AAG CGG ACG GTG CGC AAG GAC CTG ACC TAC ACC TGC CGC Gly Phe Phe Lys Arg Thr Val Arg Lys Asp Leu Thr Tyr Thr Cys Arg 160 165 170	591
50	ASP ASP Lys ASP Cys Leu Ile ASP Lys Arg Gln Arg Ash Arg Cys Gln 175 180 185	639
55	TAC TGC CGC TAC CAG AAG TGC CTG GCC ATG GGC ATG AAG CGG GAA GCC Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Hef Bly Het Lys Arg Glu Ala 190 195 200	687
60	GTG CAG GAG GAG CGG CAG CGT GGC AAG GAC CGG AAC GAG AAT GAG GTG Val Glu Glu Arg Glu Arg Gly Lys Asp Arg Asn Glu Asn Glu Val 205 210 215 220	735
	GAG TCG ACC AGC AGC GCC AAC GAG GAC ATG CCG GTG GAG AGG ATC CTG Glu Ser Thr Ser Ser Ala Asn Glu Asp Het Pro Val Glu Arg Ile Leu 225 230 235	783
65	GAG GCT GAG CTG GCC GTG GAG CCC AAG ACC GAG ACC TAC GTG GAG GCA Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala 240 245 250	831
70	AAC ATG GGG CTG AAC CCC AGC TCG CCG AAC GAC CCT GTC ACC AAC ATT ASN Met Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile 255 260 265	879

	TGC Cys	CAA Gln 270	GCA Ala	GCC Ala	GAC Asp	AAA Lys	CAG Gln 275	CTT Leu	TTC Phe	ACC Thr	CTG Leu	GTG Val 280	GAG Glu	TGG Trp	GCC Ala	AAG Lys	92
5			CCA Pro														97
10			GCA Ala														102
15			GCC Ala		Lys												1071
20			AAC Asn 335														1119
20			ACG Thr														1167
25			CTG Leu														1215
30			CTC Leu														1263
35			TCC Ser														.1311
40			TTC Phe 415														1359
40			AAA Lys														1407
45			ATT Ile														1455
50		ACT Thr	TAG	CCTO	CG (GCC	CATCO	וז ז:	GTGC	CCAC	: cc	TTC	GGC	CACC	CTGC	сст	1511
	GGAI	CGCCJ	AGC 1	GTT	TTC	C A	CCTC	AGC	сте	TCCC	TGC	CCTI	стст	rgc c	TGGC	CTGTT	1571
55	TGG	ACTTI	rgg (GCAC	CAGCO	CT GI	CACT	GCTO	: TGC	CTA	GAG	ATGI	GTTG	itc /	CCCT	CCTTA	1631
	TTT	CTGTT	rac 1	ACTI	GTC1	G TO	GCCC	AGGG	CAG	TGGC	:111	ССТО	AGCA	IGC #	GCCT	TCGTG	1691
60																CTGCC	1751
																IGGAGT .	1811
	TEGG	GAACI	GGG (CTT	TGTT	T CC	GTTO	CTG1	TTA	TCG	TGC	TGGT	TTTC	AG A	WITC	;	1866

SEQ ID NO:2:

_	Het 1	Asp	Thr	Lys	His 5	Phe	Leu	Pro	Leu	Asp 10	Phe	Ser	Thr	Gln	Val 15	Asn
5	Ser	Ser	Leu	Thr 20	Ser	Pro	Thr	Gly	Arg 25	Gly	Ser	Met	Ala	Ala 30	Pro	Ser
10	Leu	His	Pro 3 5	Ser	Leu	Gly	Pro	Gly 40	Ile	Gly	Ser	Pro	Gly 45	Gln	Leu	His
	Ser	Pro 50	Ile	Ser	Thr	Leu	Ser 55	Ser	Pro		Asn		Ket	Glý	Pro	Pro
15	Phe 65	Ser	Val	Ile	Ser	Ser 70	Pro	Met	Gly		His 75	Ser	Met	Ser	Val	Pro 80
20	Thr	Thr	Pro	Thr	Leu 85	Gly	Phe	Ser	Thr	6ly 90	Ser	Pro	Gln	Leu	Ser 95	Ser
	Pro	Met	Asn	100	Val	Ser	Ser	Ser	Glu 105	Asp	Ile	Lys	Pro	110	Leu	Gly
25	Leu	Asn	Gly 115	Val	Leu	Lys	Val	Pro 120	Ala	His	Рго	Ser	Gly 125	Asn	Met	Ala
	Ser	Phe 130	Thr	Lys	His	lle	Cys 135	Ala	Ile	Cys	Gly	Asp 140	Arg	Ser	Ser	Gly
30	Lys 145		Туг	Gly	Val	Tyr 150	Ser	Cys	Glu	Gly	Cys 155	Lys	Gly	Phe	Phe	Lys 160
35	Arg	Thr	Val	Arg	Lys 165	Asp	Leu	Thr	Туг	Thr 170	Cys	Arg	Asp	Asn	Lys 175	Asp
	Cys	Leu	Ile	Asp 180	Lys	Arg	Gln	Arg	Asn 185	Arg.	Cys	Gln	Туг	Cys 190	Arg	Туг
40	Gln	Lys	Cys 195	Leu	Ala	Met	Gly	Met 200	Lys	Arg	Glu	Ala	Val 205	Gin	Glu	Glu
	Arg	Gln 210	Arg	Gly	Lys	Asp	Arg 215	Asn	Glu	Asn	6lu	Val 220	Glu	Ser	Thr	Ser
45	Ser 225		Asn	Glu	Asp	Met 230	Pro	Val	Glu		11e 235	Leu	Glu	Ala	Glu	Leu 240
50	Ala	Val	Glu	Pro	Lys 245	Thr	Glu	Thr	Туг	Val 250		Ala	Asn	Het	Gly 255	Leu
	Asn	Рго	Ser	Ser 26 0	Pro	Asn	Asp	Pro	Val 265	Thr	Asn	He	Cys	Gln 270	Ala :	Ala
55	Asp	Lys	Gln 275	Leu	Phe	Thr	Leu	Val 280	Glu	Тгр	Ala	Lys	Arg 285	Ile	Pro	His
	Phe	Ser 290	Glu	Leu	Pro	Leu	Asp 295	Asp	Gln	Val	Ile	Leu 300	Leu	Arg	Ala	Gly
60	Trp 305		Glu	Leu	Leu	11e 310	Ala	Ser	Phe	Ser	His 3 15	Arg	Ser	Ile	Ala	V al 320
65	Lys	Asp	Gly	Ile	Leu 325	Leu	Ala	Thr	Gly	Leu 330	His	Val	His	Arg	Asn 335	Ser
	Ala	His	Ser	Ala 340	Gly	Val	Gly	Ala	11e 345	Phe	Asp	Arg	Val	Leu 350	Thr	Glu
70	Leu	Val	Ser 355		Met	Arg	Asp	Met 360	Gln	Het	Asp	Lys	Thr 3 65	Glu	Leu	Gly
	Cys	Leu 370	_	Ala	Ile	Val	Leu 375	Phe	Asn	Pro	Asp	\$er 380	Lys	Gly	Leu	Ser

PCT/US91/00399

28

	Asn 385	Рго	Ala	Glu	Val	Glu 390	Ala	Leu	Arg	Glu	Lys 395	Val	Туг	Ala	Ser	Leu 400
5	Glu	Ala	Туг	Cys	Lys 405	His	Lys	Туг	Рго	Glu 410	Gln	Pro	Gly	Arg	Phe 415	Ala
	Lys	Leu	Leu	Leu 420	Arg	Leu	Pro	Ala	Leu 425	Arg	Ser	Ile	Gly	Leu 430	Lys	Cys
10	Leu	Glu	His 43 5	Leu	Phe	Phe	Phe	Lys 440	Leu	Ile	Gly	Asp	Thr 445	Pro	Ile	Asp
15	Thr	Phe 450	Leu	Het	Glu	Met	Leu 455	Glu	Ala	Pro	His	Gln 460	Met	Thr		

SEQ ID NO:3:

	GAA	TTCG	CGG	cccc	GGCG	AC T	TTTG	CAAC	A AC	TCGC	CGCG	CCG	CGGC	CTC	CECG	CGCCG	C	6
5	CGC	CGCC	GCT	GCCG	CCGC	CG G	CTCC	CCGC	C GC	CCGG	GCCC	CGG	GCGG	GCC	GCGC	22223	G	120
	CCG	CCGC	GCT	GCCG	CCCT	GC T	GCTC	CGCC	G CC	6GÇT	GGGC	ATG	AGTT	AGT	CGCA	GAC		17
10	ATG Met 1	GAC A sp	ACC Thr	AAA Lys	CAT His	TTC Phe	CTG Leu	CCG Pro	CTC Leu	GAC Asp 10	Phe	TCT Ser	ACC	CAG Gln	GTG Val	AAC Asn		22:
15	TCT Ser	TCG Ser	TCC Ser	CTC Leu 20	Asn	TCT Ser	CCA Pro	ACG	GGT Gly 25	Arg	GCC	TCC Ser	ATG Met	GCT Ala 30	Val	Pro		273
20	TCG Ser	CTG Leu	CAC His 35	Pro	TCC Ser	TTG Leu	GGT Gly	CCG Pro 40	GGA Gly	ATC I le	GGC	TCT Ser	CCA Pro 45	Leu	GGC	TCG Ser		321
	CCT Pro	GGG Gly 50	CAG Gln	CTG Leu	CAC His	TCT Ser	CCT Pro 55	ATC Ile	AGC Ser	ACC	CTG Leu	AGC Ser 60	Ser	Pro	ATC	AAT Asn		369
25	GGC Gly 65	ATG Met	GGT Gly	CCG Pro	CCC Pro	TTC Phe 70	TCT Ser	GTC Val	ATC Ile	AGC Ser	TCC Ser 75	Pro	ATG Met	GGC	CCG	CAC His 80		417
30	TCC Ser	ATG Met	TCG Ser	GTA Val	CCC Pro 85	ACC Thr	ACA Thr	CCC Pro	ACA Thr	TTG Leu 90	Gly	TTC Phe	GGG	ACT Thr	GGT Gly 95	AGC Ser		465
35	CCC Pro	CAG Gln	CTC Leu	AAT Asn 100	TCA Ser	CCC Pro	ATG Met	AAC Asn	CCT Pro 105	GTG Val	AGC Ser	AGC Ser	ACT Thr	GAG Glu 110	Asp	ATC Ile		513
40	AAG Lys	CCG Pro	CCA Pro 115	CTA Leu	GGC Gly	CTC Leu	AAT Asn	GGC Gly 120	GTC Val	CTC Leu	AAG Lys	GTT Val	CCT Pro 125	GCC Ala	CAT His	CCC Pro		561
- •	TCA Ser	GGA Gly 130	AAT Asn	ATG Het	GCC Ala	TCC Ser	TTC Phe 135	ACC Thr	AAG Lys	CAC Ris	ATC	TGT Cys 140	GCT Ala	ATC	TGT Cys	GGG Gly		609
45	GAC Asp 145	CGC Arg	TCC Ser	TCA Ser	GGC Gly	AAA Lys 150	CAC His	TAT Tyr	GGG Gly	GTA Val	TAC Tyr 155	AGT Ser	TGT Cys	er n	GELY	TGC Cys 160		657
50	AAG Lys	GGC Gly	TTC Phe	TTC Phe	AAG Lys 165	AGG Arg	ACA Thr	GTA Val	Arg	AAA Lys 170	Asp	CTG Leu	ACC Thr	TAC Tyr	ACC Thr 175	TGC Cys	5	705
55	Arg	GAC Asp	AAC Asn	AAG Lys 180	GAC A sp	TGC Cys	CTG Leu		GAC Asp 185	AAG Lys	AGA Arg	CAG Gln	CGG Arg	AAC Asn 190	CGG Arg	TGT Cys		7 53
50	CAG Gln	TAC Tyr	TGC Cys 195	Arg	TAC Tyr	CAG Gln	Lys	TGC Cys 200	CTG Leu	Ala	ATG Het	Gly	ATG Het 205	AAG Lys	CGG Arg	GAA Glu		801
- •	GCT	GTG Val 210	CAG Gln	GAG Glu	GAG Glu	Arg	CAG Gln 215	CGG Arg	GGC	Lys	GAC Asp	Arg	AAT Asn	GAG Glu	AAC Asn	GAG Glu		849
55	GTG Val 225	GAG Glu	TCC Ser	ACC Thr	Ser	AGT Ser 230	GCC Ala	AAC Asn	GAG Glu	Asp	ATG Het 235	Pro	Val	GLu	AAG Lys	Ile		897
70	CTG Leu	GAA Glu	GCC Ala	Glu	CTT Leu 245	GCT Ala	GTC Val	GAG Glu	Pro	AAG Lys 250	ACT Thr	GAG Glu	ACA Thr	TAC Tyr	GTG Val 255	GAG Glu		945

	GCA AAC ATG GGG CTG AAC CCC AGC TCA CCA AAT GAC CCT GTT ACC AAC Ala Asn Het Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn 260 265 270	993
5	ATC TGT CAA GCA GCA GAC AAG CAG CTC TTC ACT CTT GTG GAG TGG GCC Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala 275 280 285	1041
10	AAG AGG ATC CCA CAC TIT TCT GAG CTG CCC CTA GAC GAC CAG GTC ATC Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile 290 295 300	1089
15	CTG CTA CGG GCA GGC TGG AAC GAG CTG CTG ATC GCC TCC TTC TCC CAC Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His 305 310 315 320	1137
20	CGC TCC ATA GCT GTG AAA GAT GGG ATT CTC CTG GCC ACC GGG CTG CAC Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His 325 330 335	1185
	GTA CAC CGG AAC AGC GCT CAC AGT GCT GGG GTG GGC GCC ATC TTT GAC Val His Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp 340 345 350	1233
25	AGG GTG CTA ACA GAG CTG GTG TCT AAG ATG CGT GAC ATG CAG ATG GAC ATG Val Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met Gln Met Asp 355 360 365	1281
30	AAG ACG GAG CTG GGC TGC CTG CGA GCC ATT GTC CTG TTC AAC CCT GAC Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp 370 375 380	1329
35	TCT AAG GGG CTC TCA AAC CCT GCT GAG GTG GAG GCG TTG AGG GAG AAG Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys 385 390 395 400	1377
40	GTG TAT GCG TCA CTA GAA GCG TAC TGC AAA CAC AAG TAC CCT GAG CAG Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln 405 410 415	1425
	CCG GGC AGG TTT GCC AAG CTG CTG CTC CGC CTG CCT GCA CTG CGT TCC Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser 420 425 430	1473
45	ATC GGG CTC AAG TGC CTG GAG CAC CTG TTC TTC TTC AAG CTC ATC GGG Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys Leu Ile Gly 435 440 445	1521
50	GAC ACG CCC ATC GAC ACC TTC CTC ATG GAG ATG CTG GAG GCA CCA CAT Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu Ala Pro His 450 455 460	1569
55	CAA GCC ACC TAGGCCCCCG CCGCCGTGTG CCGGTCCCGT GCCCTGCCTG	1618
	GACACAGCTG CICAGCTCCA GCCCTGCCCC TGCCCTTTCT GATGGCCCGT GTGGATCTTT	1678
60	GGGGTGCAGT GTCCTTATGG GCCCAAAAGA TGCATCACCA TCCTCGCCAT CTTTACTCAT	1738
	CATEAGGETE TAAGGETATG CTGCTGTCAC CCCGAGGGTC GTGGGGTTCG TCATGGGGCC	1798 1858
65	TICAGCACCT GGAGCTGCAA GAGCTGGGAA AAGGGCTTGT TCTGGTTGCT GGTTGCTGGT	1918
	COCTOGTTCT CGACATCCCA CATGGCACCT CTGTTTGGAG TGCCCCATCT TGGCCTGTTC	1978
~ -	AGAGTECTGG TACCCAGTTA GGGTGGGAAT CCACCTGGGA TCAAGAAGGA GCAGGTGGGG	2038
70	CAGGCCGTAT CCTCCTGGGT CATAGCTAAC CTATAAAGGC GCCGCGAATT CCTCGAG	2095

SEQ ID NO:4:

_	Met 1	As	p Th	r Ly:	s His	s Phe	e Lee	J Pri	Leu	ASP 10		e Se	r Th	r Gli	n Va	l Asr
5	Ser	Se	r Sei	r Lei 20	J Asr	n Ser	Pro) Thi	r Gly 25	Arg	ely	/ Sei	r Ne	t Ala 30		l Pro
10	Ser	Le	u His 3!	s Pro	Ser	Lec	ı Gly	/ Pro 40	o Gly	/ Ile	e Gly	/ Sei	r Pro 4!		ı Gl	y Ser
	Pro	GL)	y Gli	Lei	ı His	: Ser	• Pro	ıle ;	e Ser	Thr	Leu	Sei 60		Pro) Il	e Asr
15	Gly 65	Net	t Gly	/ Pro) Pro	Phe 70	Ser	· Val	Ile	: Ser	Ser 75) Net	Gly	/ Pro	o His OB
20					85	,				90	1				9:	
				100	,				105					110)	o Ile
25			115	•				120	1				125	i		s Pro
		130	,				135					140	l			Gly
30	145					150					155					Cys 160
35					165					170	2				175	
				180					185					190		Cys
40			כעו					200					205			Glu
4.5		210					215					220				Glu
45	225					230					235	, .			in.	11e 240
50					245	Ala			• •	250					255	
				260		Asn			265					270		
55			2/5					280					285			Ala
		2 90					295				4.	300				Ile
60	Leu 305					310					315					320
65	Arg :				3 25					330					335	
	Val :			340					345					350		-
70	Arg 1	Val	Leu 35 5	Thr	Glu	Leu '	Val	Ser 3 60	Lys I	Met /	Arg /		Met 365	Gln	Met	Asp
	Lys 1	Thr 370	Glu	Leu	Gly		Leu . 375	Arg	Ala :	Ile '		Leu 380	Phe	Asn	Pro	Asp

	Ser 385	Lys	Gly	Leu	Ser	Asn 390	Рго	Ala	Glu	Val	Glu 395	Ala	Leu	Arg	Glu	Lys 400
5	Val	Туг	Ala	Ser	Leu 405	Glu	Ala	Туг	Cys	Lys 410	His	Lys	Туг	Pro	Glu 415	Glr
	Pro	Gly	Arg	Phe 420	Ala	Lys	Leu	Leu	Leu 425	Arg	Leu	Pro	Ala	Leu 430	Arg	Ser
10	Ile	Gly	Leu 435	Lys	Cys	Ļeu	Glu	His 44 0	Leu	Phe	Phe	Phe	Lys 445	Leu	Ile	Gly
	Asp	Thr 450	Pro	Ile	Asp	Thr	Phe 45 5	Leu	Het	Glu	Ket	Leu 460	Glu	Ala	Pro	His
15	Gln 465	Ala	Thr													

SEQ ID NO:5:

	GAATTCGCGG CCGCGCTGTG CCTGGGAGCC GAGAGAGAGA GAGAGAGAGA GAGAGAGAGA	60
5	GAGAGAGAGA GAGAGGCTGT ACTCTTCAGA AGCSCACGAG AGGAATGAAC TGAGCAGCCA	120
	AC ATG TAT GGA AAT TAT TCC CAC TTC ATG AAG TTT CCC ACC GGC TTT Met Tyr Gly Asn Tyr Ser His Phe Met Lys Phe Pro Thr Gly Phe 1 5 15	167
10	GGT GGC TCC CCT GGT CAC ACT GGC TCG ACG TCC ATG AGC CCT TCA GTA Gly Gly Ser Pro Gly His Thr Gly Ser Thr Ser Net Ser Pro Ser Val 25	215
15	GCC TTG CCC ACG GGG AAG CCA ATG GAC AGC CAC CCC AGC TAC ACA GAC Ala Leu Pro Thr Gly Lys Pro Met Asp Ser His Pro Ser Tyr Thr Asp 35 40 45	263
20	ACC CCA GTG AGT GCC CCT CGG ACG CTG AGT GCT GTG GGA ACC CCC CTC Thr Pro Val Ser Ala Pro Arg Thr Leu Ser Ala Val Gly Thr Pro Leu 50 55 60 ~	311
25	AAT GCT CTT GGC TCT CCG TAT AGA GTC ATC ACT TCT GCC ATG GGT CCA Asn Ala Leu Gly Ser Pro Tyr Arg Val Ile Thr Ser Ala Met Gly Pro 65 70 75	359
30	CCC TCA GGA GCA CTG GCA GCT CCT CCA GGA ATC AAC TTG GTG GCT CCA Pro Ser Gly Ala Leu Ala Ala Pro Pro Gly Ile Asn Leu Val Ala Pro 80 85 90 95	407
	CCC AGC TCC CAG CTA AAT GTG GTC AAC AGT GTC AGC AGC TCT GAG GAC Pro Ser Ser Gln Leu Asn Val Val Asn Ser Val Ser Ser Ser Glu Asp 100 105 110	455
35	ATC AAG CCC TTA CCA GGT CTG CCT GGG ATT GGA AAT ATG AAC TAC CCA Ile Lys Pro Leu Pro Gly Leu Pro Gly Ile Gly Asn Met Asn Tyr Pro 115 120 125	503
40	TCC ACC AGC CCT GGG TCT CTG GTG AAA CAC ATC TGT GCC ATC TGT GGG Ser Thr Ser Pro Gly Ser Leu Val Lys His Ile Cys Ala Ile Cys Gly 130 135 140	551
45	ASP Arg Ser Ser Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys 145 150 155	599
50	AAA GGC TTC TTC AAA AGG ACC ATC AGG AAA GAT CTC ATC TAC ACC TGT Lys Gly Phe Phe Lys Arg Thr Ile Arg Lys Asp Leu Ile Tyr Thr Cys 160 165 170 175	647
	CGG GAT AAC AAA GAT TGT CTC ATC GAC AAG CGC CAG CGC AAC CGC TGC Arg Asp Asn Lys Asp Cys Leu Ile Asp Lys Arg Gln Arg Asn Arg Cys 180 185 190	695
55	CAG TAC TGT CGC TAC CAG AAG TGC CTG GTC ATG GGC ATG AAG CGG GAA Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Val Met Gly Met Lys Arg Glu 195 200 205	743
60	GCT GTG CAA GAA GAA AGG CAG AGG AGC CGA GAG CGA GCA GAG AGT GAG Ala Val Glu Glu Arg Glu Arg Ser Arg Glu Arg Ala Glu Ser Glu 210 215 220	791
65	GCA GAA TGT GCC AGT AGT AGC CAC GAA GAC ATG CCC GTG GAG AGG ATT Ala Glu Cys Ala Ser Ser His Glu Asp Het Pro Val Glu Arg Ile 225 230 235	839
70	CTA GAA GCC GAA CTT GCT GTG GAA CCA AAG ACA GAA TCC TAC GGT GAC Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Ser Tyr Gly Asp 240 245 250 255	887
, 0	ATG AAC GTG GAG AAC TCA ACA AAT GAC CCT GTT ACC AAC ATA TGC CAT Met Asn Val Glu Asn Ser Thr Asn Asp Pro Val Thr Asn Ile Cys His 260 265 270	935

	GCT Ala	GCA Ala	GAT Asp	AAG Lys 275	CAA Gln	CTT Leu	TTC Phe	ACC Thr	CTC Leu 280	GTT Val	GAG Glu	TGG Trp	Ala	AAA Lys 285	CGC Arg	ATC Ile	983
5						CTC Leu											1031
10						CTG Leu											1079
15						ATC Ile 325											1127
20					-	CGG Arg											1175
20						AAG Lys											1223
25						GCC Ala											1271
30						GAG Glu											1319
35						ACC Thr 405											1367
40						CTG Leu											1415
						CTC Leu											1463
45						ATG Met											1511
50	TGA	ACCTO	CT C	AGCT	GCAG	C TI	CCCC	ACCO	: AGG	GTG	CCC	TTG	GCGG	GT G	TGT	TGTGT	1571
	GGCC	CCTAC	CC 1	GCAC	ACTO	CT CC	CCC/	TCTI	CCA	CTCI	GGC	CTCC	CTTC	CT G	TCCC	CAAAA	1631
	TGT	GATGO	:TT 6	TAAT	AAGC	G GC	CGC	TAA	C								1662

SEQ ID NO:6:

5	Net 1	Туг	Gly	Asn	Туг 5	Ser	His	Phe	Met	Lys 10		Pro	Thr	Gly	Phe 15	Gly
5	Gly	Ser	Рго	Gly 20	His	Thr	Gly	Ser	Thr 25	Ser	Met	Ser	Pro	Ser 30	Val	Ala
10	Leu	Pro	Thr 3 5	Gly	Lys	Pro	Met	Asp 40	Ser	His	Pro	Ser	Туг 45	Thr	Asp	Thr
	Pro	Val 50	Ser	Ala	Pro	Arg	Thr 55	Leu	Ser	Ala	Val	Gly 60	Thr	Pro	Leu	Asn
15	Ala 65	Leu	Gly	Ser	Pro	Туг 70	Arg	Val	Ile	Thr	Ser 75	Ala	Het	Gly	Pro	Pro 80
20	Ser	Gly	Ala	Leu	Ala 85	Ala	Pro	Pro	Ġły	Ile 90	Asn	Leu	Val	Ala	Pro .95	Рго
20	Ser	Ser	Gln	Leu 100	Asn	Val	Val	Asn	Ser 105	Val	Ser	Ser	Ser	Glu 110	Asp	Ile
25	Lys	Pro	Leu 115	Pro	Gly	Leu	Pro	Gly 120	Ile	Gly	Asn	Met	Asn 125	Туг	Pro	Ser.
	Thr	Ser 120	Pro	Gly	Ser	Leu	Val دد۱	Lys	His	Ile	Cys	Ala 140	Ile	Cys	Gly	Asp
30	Arg 145	Ser	Ser	Gly	Lys	His 150	Туг	Gly	Val	Туг	Ser 155	Cys	Glu	Gly	Суз	Lys 160
35	Gly	Phe	Phe	Lys	Arg 165	Thr	Ile	Arg	Lys	Asp 170	Leu	Ile	Туг	Thr	Cys 175	Arg
55	Asp	Asn	Lys	Asp 180	Cys	Leu	Ile	Asp	Lys 185	Ärg	Gln	Arg		Arg 190	Cys	Gln
40	Туг	Cys	Arg 195	Tyr	Gln	Lys	Cys	Leu 200	Val	Net	Gly	Het	Lys 205	Arg	Glu	Ala
	Val	Gln 210	Glu	Glu	Arg	Gln	Arg 215	Ser	Arg	Glu	Arg	Ala 220	Glu	Ser	Glu	Ala
45	Glu 225	Cys	Ala	Ser	Ser	Ser 230	His	Glu	Asp	Met	Pro 235	Val	Glu	Arg	Ile	Leu 240
50	Glu	Ala	Glu	Leu	Ala 245	Val	6lu	Pro	Lys	Thr 250	Glu	Ser	Туг	Gly	A sp 2 55	Het
	Asn	Val	Glu	Asn 260	Ser	Thr	Asn	Asp	Pro 265	Val	Thr	Asn	Ile	Cys 270	His	Ala
55	Ala	Asp	Lys 275	Gln	Leu	Phe	Thr	Leu 280	Val ,	Glu	Trp	Ala	Lys 285	Arg	Ile	Pro
	His	Phe 29 0	Ser	Asp	Leu	Thr	Leu 295	Glu	Asp	Gln	Val	11e 300	Leu	Leu	Arg	Ala
60	Gly 305	Trp	Asn	Glu	Leu	Leu 310	Ile	Ala	Ser	Phe	Ser 315	His	Arg	Ser		Ser 320
65	Val	Gin	Asp	Gly	1 le 325	Leu	Leu	Ala	Thr	Gly 330	Leu	His	Val	His	Arg 335	Ser
	Ser	Ala	His	Ser 340	Arg	Gly	Val	Gly	Ser 345	Ile	Phe	Asp	Arg	V al 3 50	Leu	Thr
70	Glu	Leu	Val 3 55	Ser	Lys	Het	Lys	Asp 360	Net	Gln.	Het	Asp	Lys 36 5	Ser	Glü	Leu
		Cys 370	Leu	Arg	Ala		Val 375	Leu	Phe	Asn		Asp 380	Ala	Lys	Gly	Ļeu

PCT/US91/00399

	Ser 385	Asn	Pro	Ser	Glu	Val 390	Glu	Thr	Leu	Arg	Glu 395	Lys	Val	Туг	Ala	Thr 400
5	Leu	Glu	Ala	Tyr	Thr 405	Lys	Gln	Lys	Туг	Рго 410	Glu	Gln	Рго	Gly	Arg 415	Phe
	Ala	Lys	Leu	Leu 420	Leu	Arg	Leu	Рго	Ala 425	Leu	Arg	Ser	Ile	Gly 430	Leu	Lys
10	Cys	Leu	Glu 435	His	Leu	Phe	Phe	Phe 440	Lys	Leu	Ile	Gly	Asp 445	Thr	Pro	Ile
15	Asp	Ser 450	Phe	Leu	Het	Glu	Het 455	Leu	Glu	Thr	Рго	Leu 460	Gln	Ile	Thr	

SEQ ID NO:7:

	GAATICCCCC GAAGCCCAGA CAGCTCCTCC CCAAATCCCC TTTCTCAGGG GATCCGTCCG	60
5	TETTETECTE CTGGCCCACC TETTACCCCT TCAGCACCTC CACCTCCA ATG CCA CCC	117
10	CCG CCA CTG GGC TCC CCC TTC CCA GTC ATC AGT TCT TCC ATG GGG TCC Pro Pro Leu Gly Ser Pro Phe Pro Val Ile Ser Ser Ser Met Gly Ser 5 10 15	165
15	CCT GGT CTG CCC CCT CCG GCT CCC CCA GGA TTC TCC GGG CCT GTC AGC Pro Gly Leu Pro Pro Pro Ala Pro Pro Gly Phe Ser Gly Pro Val Ser 20 25 30 35	213
20	AGC CCT CAG ATC AAC TCC ACA GTG TCG CTC CCT GGG GGT GGG TCT GGC Ser Pro Gln Ile Asn Ser Thr Val Ser Leu Pro Gly Gly Gly Ser Gly 40 .48 50	261
20	CCC CCT GAA GAT GTG AAG CCA CCG GTC TTA GGG GTC CGG GGC CTG CAC Pro Pro Glu Asp Val Lys Pro Pro Val Leu Gly Val Arg Gly Leu His 55 60 65	309
25	TGT CCA CCC CCT CCA GGT GGT CCT GGG GCT GGC AAA CGG CTC TGT GCA Cys Pro Pro Pro Pro Gly Gly Pro Gly Ala Gly Lys Arg Leu Cys Ala 70 75 80	357
30	ATC TGC GGG GAC CGA AGC TCA GGC AAG CAC FAT GGG GTT TAC AGC TGC Ile Cys Gly Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr Ser Cys 85 90 95	405
35	GAG GGC TGC AAG GGT TTC TTC AAG CGC ACC ATT CGG AAG GAC CTG ACC Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Ite Arg Lys Asp Leu Thr 100 105 110 115	453
40	TAC TCG TGT CGT GAT AAC AAA GAC TGT ACA GTG GAC AAG CGC CAG CGG Tyr Ser Cys Arg Asp Asn Lys Asp Cys Thr Val Asp Lys Arg Gln Arg 120 125 130	501
70	AAT CGC TGT CAG TAC TGT CGC TAT CAG AAG TGC CTG GCC ACT GGC ATG Asn Arg Cys Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Thr Gly Met 135 140 145	549
45	AAA AGG GAG GCG GTT CAG GAG GAG CGT CAA CGG GGG AAG GAC AAA GAC Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Lys Asp 150 155 160	597
50	GGG GAT GGA GAT GGG GCT GGG GGA GCC CCT GAG GAG ATG CCT GTG GAC Gly Asp Gly Asp Gly Ala Gly Gly Ala Pro Glu Glu Het Pro Val Asp 165 170 175	645
55	AGG ATC CTG GAG GCA GAG CTT GCT GTG GAG CAG AAG AGT GAC CAA GGC Arg Ile Leu Glu Ala Glu Leu Ala Val Glu Gln Lys Ser Asp Gln Gly 180 185 190 195	693
60	GTT GAG GGT CCT GGG GCC ACC GGG GGT GGT GGC AGC AGC CCA AAT GAC Val Glu Gly Pro Gly Ala Thr Gly Gly Gly Ser Ser Pro Asn Asp 200 205 210	741
00	CCA GTG ACT AAC ATC TGC CAG GCA GCT GAC AAA CAG CTG TTC ACA CTC Pro Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu 215 220 225	789
65	GTT GAG TGG GCA AAG AGG ATC CCG CAC TTC TCC TCC CTA CCT CTG GAC Val Glu Trp Ala Lys Arg Ile Pro His Phe Ser Ser Leu Pro Leu Asp 230 235 240	837
70	GAT CAG GTC ATA CTG CTG CGG GCA GGC TGG AAC GAG CTC CTC ATT GCG Asp Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala 245 250 255	885

38

	TCC TTC TCC CAT CGG TCC ATT GAT GTC CGA GAT GGC ATC CTC CTG GCC Ser Phe Sér His Arg Ser Ile Asp Val Arg Asp Gly Ile Leu Leu Ala 260 265 270 275	933
5	ACG GGT CTT CAT GTG CAC AGA AAC TCA GCC CAT TCC GCA GGC GTG GGA Thr Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val Gly 280 285 290	981
10	GCC ATC TIT GAT CGG GTG CTG ACA GAG CTA GTG TCC AAA ATG CGT GAC Ala Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg Asp 295 300 305	1029
15	ATG AGG ATG GAC AAG ACA GAG CTT GGC TGC CTG CGG GCA ATC ATA CTG Met Arg Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Ile Leu 310 315 320	1077
20	TTT AAT CCA GAC GCC AAG GGC CTC TCC AAC CCT GGA GAG GTG GAG ATC Phe Asn Pro Asp Ala Lys Gly Leu Ser Asn Pro Gly Glu Val Glu Ile 325 330 335	1125
	CTT CGG GAG AAG GTG TAC GCC TCA CTG GAG ACC TAT TGC AAG CAG AAG Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu Thr Tyr Cys Lys Gln Lys 340 345 350 355	1173
25	TAC CCT GAG CAG CAG GGC CGG TTT GCC AAG CTG CTG TTA CGT CTT CCT Tyr Pro Glu Gln Gln Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro 360 365 370	1221
30	GCC CTC CGC TCC ATC GGC CTC AAG TGT CTG GAG CAC CTG TTC TTC TTC Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe 375 380 385	1269
35	AAG CTC ATT GGC GAC ACC CCC ATT GAC ACC TTC CTC ATG GAG ATG CTT Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met Leu 390 395 400	1317
40	GAG GCT CCC CAC CAG CTA GCC TGAGCCCAGA TGCACACCGA GTGTCACTGA Glu Ala Pro His Gln Leu Ala 405 410	1368
	GGAGGACTIG AGCCTGGGCA GGGGGCAGAG CCATGGGACA GGTGCAGAGC AGGAGGGGAC	1428
45	TTGCCCAGCC TGCCAGGGAT CTGGCAACAC TTAGCAGGGT TCGCTTGGTC TCCAAGTCGA	1488
40	ATTICLEGE CYCLECTAR GIGGAGTITA TGTCTACCTT CAGTGGCCTT GAGTCTCTGA	1548
	ATTTGTCGGG GTCTCCCATG GTGCAGGTGA TTCTTCATCC TGGCTCCCCA GCACAAAGCA CTGCCCTGCT TCCTTCTCAT TTGGCCTCAC TCCCTTCTGA AGAGTGGAAC AGAGCTCCCC	
50	CAGANAGGGG TGTTGTGGGG CAGGCCCCCC AAGCTGATGA TCATGGGAGC AGGGCTCTGA	1668 1728
	CAGCCTTTAT CCTCTCAGAC TTGACAGATG GGGGCAGAGG AGGGACCTGC CTCTGTCTCC	1788
55	TETCAGECCE ATTTCCACAG TECETECTGE AGTCAGACTG AAGAATAAAG GGGTAGTGAA	1848
	GGGGCTGCTG GAGGTGGAGG AACCCATTGC TCTTTTAATT TCCTGTGAGG AGAGACTGGG	1908
60	AGTTAGACTC AAAGAAGTAC TGTACATCCC CAGGTTGACT TAAATGTCAG GGCTGGAGAT	1968
60	GECATGTGGG CAAGGAGGCC CCTCAGGTGG GCTGTCCCAA AGCTCCCTGG GCTCTGCCTC	2028
	GEGTEGECCT ACAGCTCTTC CCTAGTCTTA AGCACAGCTA GGCTGGGAGC AAGTGGGGAC	2088
65	ATTGATGGGG GTGGCCAGCC TGCAGAGTTG GGTGCTGGGC TGCATGGTTT TTGCCCTGGA	2148
	CCTCTTTTGG GGGTTCCCTC CCATCTTTCA CTTGCACATA AAGTTGCTTT CCAGTTAAAA	2208
70	AAAAAAAAA A	2219

39

CLAIMS

That which is claimed is:

A substantially pure DNA sequence which encodes
 a polypeptide, wherein said polypeptide is characterized
 by:

- (1) being responsive to the presence of retinoid(s) to regulate the transcription of associated gene(s);
- 10 (2) having a DNA binding domain of about 66 amino acids with 9 Cys residues, wherein said DNA binding domain has:
 - (a) less than about 65 % amino acid identitywith the DNA binding domain of hRAR-alpha,

15

(b) less than about 55 % amino acid identity with the DNA binding domain of hTR-beta, and

(c) less than about 55 % amino acid identity

20

- with the DNA binding domain of hGR; and (3) not including the sequence set forth in
- Sequence ID No 7.
- A DNA sequence according to Claim 1 wherein said
 polypeptide is encoded by a continuous sequence which encodes substantially the same sequence as that of:
 amino acids 1 462 shown in Sequence ID No. 2
 [hRXR-α],

amino acids 1 - 467 shown in Sequence ID No. 4 30 [mRXR- α], or

amino acids 1 - 463 shown in Sequence ID No. 6 [mRXR- γ].

3. A DNA sequence according to Claim 1 wherein said polypeptide is encoded by a continuous sequence which encodes substantially the same sequence as that of:

PCT/US91/00399

10

20

25

amino acids 135 - 200 shown in Sequence ID No. 2 $[hRXR-\alpha]$,

amino acids 140 - 205 shown in Sequence ID No. 4 $[mRXR-\alpha]$, or

5 amino acids 139 - 204 shown in Sequence ID No. 6 $[mRXR-\gamma]$.

4. A DNA sequence according to Claim 1 which comprises a segment having a continuous nucleotide sequence which is substantially the same as:

nucleotides 76 - 1464 shown in Sequence ID No. 1 [hRXR- α],

nucleotides 181 - 1581 shown in Sequence ID No. 2 $[mRXR-\alpha]$, or

nucleotides 123 - 1514 shown in Sequence ID No. 3 [mRXR- γ].

- 5. A DNA sequence according to Claim 4 which is psk(hRXR-alpha), psk(mRXR-alpha), or psk(mRXR-gamma).
 - 6. A substantially pure DNA construct comprising:
 - (i) the DNA sequence of Claim 1 operatively linked to
 - (ii) regulatory element(s) operative for transcription of said DNA sequence and expression of said polypeptide in an animal cell in culture.
- A DNA construct according to Claim 6 which is selected from A5C-hRXR-alpha, A5C-mRXR-alpha, A5C-mRXR-gamma, RS-hRXR-alpha, RS-mRXR-alpha, or RS-mRXR-gamma.
- 8. An animal cell in culture which is transformed with a DNA construct according to Claim 6.

41

- 9. A cell according to Claim 8 wherein said cell is an insect cell or a mammalian cell.
- 10. A cell according to Claim 9 wherein the DNA construct is selected from A5C-hRXR-alpha, A5C-mRXR-alpha, A5C-mRXR-gamma, RS-hRXR-alpha, RS-mRXR-alpha, or RS-mRXR-gamma.
- 11. A cell according to Claim 8, wherein said cell
 10 is further transformed with a reporter vector which
 comprises:
 - (a) a promoter that is operable in said cell,
 - (b) a hormone response element, and
 - (c) a DNA segment encoding a reporter protein,
 wherein said reporter protein-encoding DNA
 segment is operatively linked to said promoter
 for transcription of said DNA segment, and
 wherein said hormone response element is
 operatively linked to said promoter for
 activation thereof.
 - 12. A cell according to Claim 11 wherein:
 the promoter is the 5'-LTR promoter of a mouse
 mammary tumor virus,
 - the hormone response element is selected from $\ensuremath{\mathsf{TRE}}_p$ or beta-RARE, and

the reporter protein is selected from chloramphenical acetyltransferase, luciferase, or beta-galactosidase.

13. A cell according to Claim 12 wherein the reporter vector is selected from delta-MTV-TRE_p-CAT, delta-TK-TRE_p-CAT, delta-SV-TRE_p-CAT, delta-MTV-TRE_p-LUC, delta-TK-TRE_p-LUC, or delta-SV-TRE_p-LUC.

35

30

15

20

25

PCT/US91/00399

20

25

30

- 14. A cell according to Claim 12 wherein the reporter vector is selected from ADH-TRE_p-CAT, ADH-TRE_p-LUC, TK-TRE_p-CAT, or TK-TRE_p-LUC.
- 5 15. A cell according to Claim 14 which is a Drosophila melanogaster Schneider line 2 cell.
- 16. A method of testing a compound for its ability to regulate transcription-activating effects of a receptor polypeptide, said method comprising assaying for the presence or absence of reporter protein upon contacting of cells containing a receptor polypeptide and reporter vector with said compound;

wherein said receptor polypeptide is characterized by:

- (1) being responsive to the presence of retinoid(s) to regulate the transcription of associated gene(s); and
- (2) having a DNA binding domain of about 66 amino acids with 9 Cys residues, wherein said DNA binding domain has:
 - (a) less than about 65 % amino acid identity with the DNA binding domain of hRAR-alpha,
 - (b) less than about 55 % amino acid identity with the DNA binding domain of hTR-beta, and
- (c) less than about 55 % amino acid identity with the DNA binding domain of hGR, and wherein said reporter vector comprises:
 - (a) a promoter that is operable in said cell,
 - (b) a hormone response element, and
 - (c) a DNA segment encoding a reporter protein,

5

20

25

35

wherein said reporter protein-encoding DNA segment is operatively linked to said promoter for transcription of said DNA segment, and wherein said hormone response element is operatively linked to said promoter for activation thereof.

- 17. A method according to Claim 16 wherein said contacting is carried out in the further presence of at least one retinoid species.
- 18. A method according to Claim 16 wherein the cells employed are CV-1 cells co-transformed with a vector capable of expressing said receptor polypeptide,

 15 wherein said vector is selected from RS-hRXR-alpha, RS-mRXR-alpha, or RS-mRXR-gamma and a reporter vector selected from delta-MTV-TRE_p-CAT, delta-TK-TRE_p-CAT, delta-SV-TRE_p-CAT, delta-MTV-TRE_p-LUC, delta-TK-TRE_p-LUC, or delta-SV-TRE_p-LUC.

19. A method according to Claim 16 wherein the cells employed are Drosophila melanogaster Schneider line 2 cells co-transformed with a vector capable of expressing said receptor polypeptide, wherein said vector is selected from A5C-hRXR-alpha, A5C-mRXR-alpha, or A5C-mRXR-gamma, and a reporter vector selected from ADH-TRE_p-CAT, ADH-TRE_p-LUC.

- 20. A labeled single-stranded nucleic acid

 30 sequence, comprising at least 20 contiguous bases in length having substantially the same sequence as any 20 or more contiguous bases selected from:
 - (i) bases 2 1861, inclusive, of the DNA illustrated in Sequence ID No. 1 [hRXR- α], or
 - (ii) bases 20 2095, inclusive, of the DNA illustrated in Sequence ID No. 2 [mRXR- α], or

44

(iii) bases 15 - 1653, inclusive, of the DNA illustrated in Sequence ID No. 3 [mRXR- γ], or

(iv) the complement of any one of the sequences according to (i), (ii), or (iii).

5

15

20

- 21. A nucleic acid according to Claim 20 which is labelled with $^{32}\mathrm{P}.$
- 22. A method of making a receptor polypeptide,
 10 wherein said polypeptide is characterized by:
 - (1) being responsive to the presence of retinoid(s) to regulate the transcription of associated gene(s); and
 - (2) having a DNA binding domain of about 66 amino acids with 9 Cys residues, wherein said DNA binding domain has:
 - (a) less than about 65 % amino acid identitywith the DNA binding domain of hRAR-alpha,
 - (b) less than about 55 % amino acid identity with the DNA binding domain of hTR-beta, and
 - (c) less than about 55 % amino acid identity with the DNA binding domain of hGR;
- said method comprising culturing cells containing an expression vector operable in said cells to express a DNA sequence encoding said polypeptide.
- 23. A method according to Claim 22 wherein said 30 receptor polypeptide has substantially the same sequence as that of:

amino acids 1 - 462 shown in Sequence ID No. 2 $[hRXR-\alpha]$,

amino acids 1 - 467 shown in Sequence ID No. 4 $35 \text{ [mRXR-}\alpha]$, or

45

amino acids 1 - 463 shown in Sequence ID No. 6 $[mRXR-\gamma]$.

24. A method according to Claim 22 wherein said receptor polypeptide comprises a DNA binding domain with substantially the same sequence as that of:

amino acids 135 - 200 shown in Sequence ID No. 2 [hRXR- α],

amino acids 140 - 205 shown in Sequence ID No. 4 10 [mRXR- α], or

amino acids 139 - 204 shown in Sequence ID No. 6 $[mRXR-\gamma]$.

25. A method according to Claim 22 wherein said DNA sequence comprises a segment with substantially the same nucleotide sequence as that of:

nucleotides 76 - 1464 shown in Sequence ID No. 1 $[hRXR-\alpha]$,

nucleotides 181 - 1581 shown in Sequence ID No. 2 20 [mRXR- α], or

nucleotides 123 - 1514 shown in Sequence ID No. 3 [mRXR- γ].

Fig. 1

BEST AVAILABLE COPY

FIG. 3

FIGURE 4

CAT Activity (% Maximal Conversion)

FIGURE 7

a

Fig. 8

Fig. 9

INTERNATIONAL SEARCH REPORT

1 61 4 5		POT USG1 (00300					
I CLAS	SIFICATION OF SUBJECT MATTER OF SHAPE - 155	1.414.44					
	a to international chieff Classification (IPC) of to poin by	100314					
	· · · · · · · · · · · · · · · · · · ·	(120 1765, (123 1270					
	· cr 220/2 230/300: 433/9:	<u>935 ′77</u> . 78					
1 FIELD	S SEARCHED						
	Minimum Ducume	ntation Searches ?					
Cassincati	on avstem	Classification Symposis					
1. 5	61 -24.05						
۲.۵	. Cl. 536/27; 530/35··· 435/6	: 935/77,78					
	· ''						
	Desimon						
	Documentation Searched other to the Extent that such Documents	than Minimum Documentation Fare Included in the Fields Searched #					
		ore meroded in the Fleid's Searched •					
_							
Gen	Bank, EMBL	•					
	MENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of Document, 11 with indication, where app	ropriate, of the relevant passages 12 Rolevant to Colim No. 3					
,,							
X	Nature, Vol. 337, issued 09 Feb	pruary 1989, Giguere 1-25					
	er di. Spatial and lemporal F	YDraccion of the					
	i verinoic acid Kecepter in the	Reconomica Amelia					
:	Limb", pages 566-569, see espe	regenerating Amphibian:					
		crarry rigure 1.					
X ,	Nature, Vol. 330, issued 17 De	ocombon 1007 C:					
	et al. "Identification of a Re	cember 1987, Giguere 1-25					
ì	Morphogen Retinoic Acid", page	ceptor for the					
i	especially Figure 1.	s 024-629, see					
	corectaity rigure 1.						
X	Naturo Vol. 221 :						
	Nature. Vol. 331, issued O7 January 1988, Giguere 1-25						
i	; or dr. identification of a New Class of Champin						
į	Hormore Receptors", pages 91-94, see especially						
	rigure 1.						
ļ	·						
!							
'		;					
() ·							
:							
* Special	calegories of cited documents -1	The other descument published after the anterest lead to any other					
A" docu	iment detending the general state of the art which is not supported to the children and there may be	The buildy mate and notice form of which is not practiced as the first transfer and the room, page on the contract of the cont					
"E" earne	or document to tipublishes on its tipe the property of	#4 #4\$ s ₂ *					
•	Form date Continues where the production of the continues of the continue						
^	A SECTION OF THE SECT						
	MO decomposition and the second secon						
Office	Office ments and the control of the second s						
"P" docu	"P" document of a series of the many process of the series						
		Control of the second statement of the control of t					
IV. CERTI							
Date of the	Actual Completion of the Proprietor is perf	Date of Manual of the international policy in the page					
14 M	larch 1991	/ 9 MAY 1001					
		// U O MAI 1331					
Internations	Control of the Contro	1					
ISA/	us .	Joseph w// yours					
		Mindy B. Fleisher					