

Classical Black Holes

O8. Accretion Edward Larrañaga

Outline for Part 1

- 1. Accretion Basics
 - 1.1 Spherical Accretion
 - 1.2 Eddington Luminosity
 - 1.3 Estimation of the Central Mass
 - 1.4 Eddington Accretion Rate
 - 1.5 Growth Time
 - 1.6 Temperatures
 - 1.7 Compactness
- Hydrodynamics Description of Spherical Accretion
 - 2.1 Hydrodynamics Equations
 - 2.2 Spherical Accretion Hydrodynamics

Accretion Basics

Accretion Basics

Process of matter falling into the potential well of a gravitating object.

Accretion Regimes

- 1. Spherical Accretion
- 2. Cylindrical Accretion
- 3. Accretion Disk
- 4. Two-Stream Accretion

Spherical Accretion

- No (significant) angular momentum
- Determined by the relation between
 c_s: speed of sound in matter
 v_{rel}: relative velocity between accretor and matter
- $v_{rel} \ll c_s$
- If the accretor is a BH,

$$v_{rel} = v$$

v: velocity of accreting matter (i.e. the BH doesn't move!)

Cylindrical Accretion

- Small angular momentum
- $v_{rel} \ge c_s$

Accretion Disk

- Angular momentum is high enough to form an accretion disk
- Matter spirals down into the accretor

Two-Stream Accretion

Quasi-spherically symmetric inflow coexist with an accretion disk

Spherical Accretion

Spherical Accretion

First model of accretion. Smooth and time-steady accretion.

We assume a completely ionized hydrogen gas cloud as the accretion structure.

Gas moves very slowly. The description is made in terms of fluid mechanics equations.

First and simplest description: To avoid the disintegration of the accretion structure, the outward force due to radiation pressure must be counterbalanced by the gravitational force.

Radiation Pressure

Outward energy flux at distance r from the center

$$F = \frac{L}{4\pi r^2}$$

L: bolometric luminosity [$\operatorname{erg} \cdot \operatorname{s}^{-1}$] For photons:

$$p^{\mu} = \left(\frac{E}{c}, \vec{p}\right)$$
 $p^2 = \frac{E^2}{c^2} - |\vec{p}|^2 = 0$

Then, the **outwards momentum flux** (or pressure) is

$$P_{rad} = \frac{F}{c} = \frac{L}{4\pi r^2 c}$$

Radiation Pressure

The radiation force on a single electron is

$$\vec{f}_{rad} = (\sigma_e P_{rad})\hat{r} = \sigma_e \frac{L}{4\pi r^2 c} \hat{r}$$

 σ_e : Thomson cross-section

$$\sigma_e = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2} \right)^2 = 6.65 \times 10^{-25} \text{ cm}^2$$

Interaction with protons is negligible because σ_p is lower by a factor of $\left(\frac{m_p}{m_e}\right)^2\sim 3\times 10^6$

Gravitational Force

The gravitational force between the central object *M* and one electron-proton pair is

$$\vec{f}_g = -\frac{GM(m_e + m_p)}{r^2} \hat{r} \sim -\frac{GMm_p}{r^2} \hat{r}$$

Spherical Accretion

To avoid the disintegration of the accretion structure,

$$\begin{split} |\vec{f}_{rad}| &\leq |\vec{f}_g| \\ \sigma_e \frac{L}{4\pi r^2 c} &\leq \frac{GMm_p}{r^2} \\ L &\leq \frac{4\pi GMm_p c}{\sigma_e} \end{split}$$

Eddington Luminosity

$$L \leq L_E$$

$$L_E = \frac{4\pi G M m_p c}{\sigma_e}$$

$$L_E = 6.31 \times 10^4 M \text{ [erg} \cdot \text{s}^{-1} \cdot \text{kg}^{-1}]$$

$$L_E = 1.26 \times 10^{38} \left(\frac{M}{M_{\odot}}\right) \text{ [erg} \cdot \text{s}^{-1}]$$

Eddington Lumionisty: Maximum luminosity of a source M powered by spherical accretion.

$$L \le L_E$$

$$M \ge \frac{L\sigma_e}{4\pi G m_p c}$$

$$M \ge \frac{L}{1.26 \times 10^{38}} [M_{\odot}]$$

$$M \ge 8 \times 10^5 L_{44} [M_{\odot}]$$

 L_{44} : Central Source Luminosity in units of $10^{44}~{\rm erg\cdot s^{-1}}$ (typical value for AGN's) $M_E=8\times 10^5 L_{44} M_{\odot}$: Eddington's Mass. Minimum mass for a given luminosity

AGN's have typically $L \sim 10^{43} - 10^{47} \text{ erg} \cdot \text{s}^{-1}$

AGN's have typically $L \sim 10^{43} - 10^{47} \text{ erg} \cdot \text{s}^{-1}$ Black holes with $M \sim 10^5 - 10^9 M_{\odot}$

Name	z	L_{bol}		M_{BH}	ref.	Type
3C 120	0.033	45.34	I	7.42	1	SY1
3C 390.3	0.056	44.88	I	8.55	1	SY1
Akn 120	0.032	44.91	I	8.27	1	SY1
F 9	0.047	45.23	F	7.91	1	SY1
IC 4329A	0.016	44.78	I	6.77	1	SY1
Mrk 79	0.022	44.57	I	7.86	1	SY1
Mrk 110	0.035	44.71	F	6.82	1	SY1
Mrk 335	0.026	44.69	I	6.69	1	SY1
Mrk 509	0.034	45.03	I	7.86	1	SY1
Mrk 590	0.026	44.63	I	7.20	1	SY1
Mrk 817	0.032	44.99	I	7.60	1	SY1
NGC 3227	0.004	43.86	I	7.64	1	SY1
NGC 3516	0.009	44.29	I	7.36	3	SY1
NGC 3783	0.010	44.41	I	6.94	2	SY1
NGC 4051	0.002	43.56	I	6.13	1	SY1
NGC 4151	0.003	43.73	I	7.13	1	SY1
NGC 4593	0.009	44.09	I	6.91	3	SY1
NGC 5548	0.017	44.83	I	8.03	1	SY1
NGC 7469	0.016	45.28	I	6.84	1	SY1
PG 0026+129	0.142	45.39	I	7.58	1	RQQ
PG 0052+251	0.155	45.93	F	8.41	1	RQQ
PG 0804+761	0.100	45.93	F	8.24	1	RQQ
PG 0844+349	0.064	45.36	F	7.38	1	RQQ
PG 0953+414	0.239	46.16	F	8.24	1	RQQ
PG 1211+143	0.085	45.81	F	7.49	1	RQQ
PG 1229+204	0.064	45.01	I	8.56	1	RQQ
PG 1307+085	0.155	45.83	F	7.90	1	RQQ
PG 1351+640	0.087	45.50	I	8.48	1	RQQ
PG 1411+442	0.089	45.58	F	7.57	1	RQQ
PG 1426+015	0.086	45.19	I	7.92	1	RQQ
$_{\rm PG~1613+658}$	0.129	45.66	I	8.62	1	RQQ

Name	z	L_{bol}		M_{BH}	ref.	Type
PG 1617+175	0.114	45.52	F	7.88	1	RQQ
PG 1700+518	0.292	46.56	F	8.31	1	RQQ
PG 2130+099	0.061	45.47	I	7.74	1	RQQ
PG 1226+023	0.158	47.35	I	7.22	1	RLQ
$PG\ 1704+608$	0.371	46.33	I	8.23	1	RLQ

* Column (1) Name, (2) redshift, (3) log of the bollometric luminosity (ergs s⁻¹), (4) method for bolontic luminosity estimation (I: flux integration, F: SED fitting), (5) black hole mass estimate from reverberation manage (for Kaspi et al. (2000) sample, where black hole mass is log mean of rms FWHM ands non-FWHM mass, in solar masses), (6) reference for black hole mass estimation, and (7) AGN view.

References. — (1) Kaspi et al. (2000), (2) Onken & Peterson (2002), (3) Ho (1999).

The luminosity is just a fraction of the relativistic energy of the accreting mass, $E = mc^2$. The other fraction goes into the BH making it grow.

$$L \propto \frac{dE}{dt} = \frac{dm}{dt}c^2 = \frac{dM}{dt}c^2$$
$$L = \eta \dot{M}c^2$$

 η : Efficiency of the process

Accretion produces radiation by conversion of gravitational potential.

$$U = \frac{GMm}{r}$$

$$L \sim \frac{dU}{dt} = \frac{GM}{r} \frac{dm}{dt} = \frac{GM}{r} \dot{M}$$

$$\eta = \frac{GM}{rc^2}$$

In order to estimate the efficiency, consider the ISCO for Schwarzchild,

$$r_{\rm ISCO} = 3r_{\rm S} = \frac{6GM}{c^2}$$

Supposing that a particle falling from this orbit into the BH looses all its energy as radiation gives

$$\eta \sim \frac{GM}{r_{ISCO}c^2} = \frac{1}{6}$$

Hence

$$\eta \sim 0.1 - 0.2$$

In some books consider the accretion of particles falling from $r=5r_{\rm S}$, because it gives most of the optical/UV continuum radiation. Using this point, one obtains an efficiency of $\eta \sim 0.1$

$$\begin{split} \dot{M} &= \frac{L}{\eta c^2} = 1.11 \times 10^{23} \frac{L_{44}}{\eta} \left[\frac{\rm gr}{\rm s} \right] \\ \dot{M} &= 1.77 \times 10^{-2} L_{44} \left(\frac{\eta}{0.1} \right)^{-1} \left[\frac{M_{\odot}}{\rm yr} \right] \end{split}$$

For a typical AGN, $L \sim 10^{47} \text{ erg} \cdot \text{s}^{-1}$.

• If $\eta \sim 0.007$ as in the Hydrogen burning process (Nuclear fusion), it gives

$$\dot{M} = \frac{L}{\eta c^2} \sim 250 \,\mathrm{M_{\odot} \cdot yr^{-1}}$$

• If $\eta \sim 0.1$ we obtain a more realistic value of

$$\dot{M} = \frac{L}{nc^2} \sim 18 \, M_{\odot} \cdot \text{yr}^{-1}$$

Eddington Accretion Rate

$$\dot{M}_E = \frac{L_E}{\eta c^2} = \frac{4\pi G M m_p}{\sigma_e \eta c}$$

$$\dot{M}_E = 2.67 \times 10^{-8} \left(\frac{\eta}{0.1}\right)^{-1} \frac{M}{M_{\odot}} \left[\frac{M_{\odot}}{\rm yr}\right]$$

$$\dot{M}_E = 3 \left(\frac{\eta}{0.1}\right)^{-1} M_8 \left[\frac{M_{\odot}}{\rm yr}\right]$$

 \dot{M}_E : Maximum possible accretion rate for a mass $M_8 = \frac{M}{10^8 M_{\odot}}$.

Eddington Accretion Rate

May $\dot{M} > \dot{M}_E$?

- 1. It depends on a careful determination of η . e.g. if η < 0.1, the outwards flux is diminished.
- 2. \dot{M}_E can be exceeded with non-spherical models.

Growth Time

$$\dot{M} = \frac{dM}{dt} = \frac{L}{\eta c^{2}}$$

$$\dot{M} = \frac{dM}{dt} = \frac{L}{L_{E}} \frac{4\pi G M m_{p}}{\sigma_{e} \eta c}$$

$$\int \frac{dM}{M} = \frac{L}{L_{E}} \frac{4\pi G m_{p}}{\sigma_{e} \eta c} \int dt$$

$$M(t) = M_{0} \exp\left(\frac{t}{t_{growth}}\right)$$

$$t_{growth} = \frac{\sigma_{e} \eta c}{4\pi G m_{p}} \left(\frac{L_{E}}{L}\right)$$

Growth Time

$$t_{growth} = \frac{\sigma_e \eta c}{4\pi G m_p} \left(\frac{L_E}{L}\right)$$
$$t_{growth} = 3.7 \times 10^8 \eta \left(\frac{L_E}{L}\right) [yr]$$

For $L \sim L_E$, the BH grows exponentially on time scales of the order $\sim 10^8 \ \mathrm{yr}.$

Radiation Temperature

The *continuum spectrum* of the emitted radiation is characterized by a temperature

$$T_{rad} = \frac{h\bar{\nu}}{k_B}$$

 $\bar{\nu}$: frequency of a typical (average) photon

Black Body Temperature

For a source with accretion luminosity L and radius r, it is defined the blackbody temperature through

$$F = \sigma T_{eff}^4$$

$$\sigma = 5.6 \times 10^{-5} \frac{\text{erg}}{\text{cm}^2 \cdot \text{s} \cdot \text{K}^4 \cdot \text{sr}}$$
Steffan-Boltzman Constant

$$T_{\rm eff} = \left(\frac{L}{4\pi r^2 \sigma}\right)^{1/4}$$

Black Body Temperature

Using
$$L = \frac{GM}{r}\dot{M}$$
,
$$T_{eff} = \left(\frac{GM\dot{M}}{4\pi r^3\sigma}\right)^{1/4}$$

$$T_{eff} = 1.01 \times 10^6 M_8^{-1/4} \left(\frac{\dot{M}}{\dot{M}_E}\right)^{1/4} \left(\frac{r}{r_S}\right)^{-3/4}$$

Compactness

One way to estimate the compactness of a source is using the luminosity and the effective surface temperature.

$$r_{BB} = \sqrt{\frac{L}{4\pi\sigma T_{eff}^4}}$$

Example

Consider a system in our galaxy with $L = 10^{37} \text{ erg} \cdot \text{s}^{-1}$

From the Eddington limit, the mass of the central object must be

$$M \ge \frac{L}{1.26 \times 10^{38}} M_{\odot} \sim \frac{10^{37}}{10^{38}} M_{\odot} \sim 0.1 M_{\odot}$$

The luminosity of the binary Cygnus X-1 is $L \sim 10^5 L_{\odot} \sim 10^{37} \text{ erg} \cdot \text{s}^{-1}$

Example

If the radiation is in the optical-UV, $v_{max} \sim 10^{15} \rm{Hz}$

$$T_{eff} \sim T_c = \frac{10^{15}}{5.88 \times 10^{10}} \sim 10^5 \text{K}$$

$$r_{bb} \sim 10^{12} \text{cm} \sim 10^7 \text{km}$$

Typical size of a Star!

https://rechneronline.de/spectrum

Example

If the radiation is in soft X-rays at 1 keV, $v_{max} \sim 10^{17} \rm{Hz}$

$$T_{eff} \sim T_c = \frac{10^{17}}{5.88 \times 10^{10}} \sim 10^7 \text{K}$$

$$r_{bb} \sim 10^6 \text{cm} \sim 10 \text{km}$$

Typical size of a neutron star or a BH!

https://rechneronline.de/spectrum

Virial Temperature

 T_{th} : Temperature reached by the accreted material if all the gravitational energy is transformed into thermal energy.

$$2\langle K \rangle + \langle U \rangle = 0$$
: Virial Theorem

$$\langle U \rangle = \frac{GM(m_p + m_e)}{r} \sim \frac{GMm_p}{r}$$
$$2 \langle K \rangle \sim 2 \times \frac{3}{2} k_B T_{th}$$
$$T_{th} = \frac{GMm_p}{3k_B r} = T_{vir}$$

Temperatures

If the accretion energy is converted directly into radiation escaping without interaction,

$$T_{rad} \sim T_{th}$$

If the accretion flow is optically thick, the radiation reaches thermal equilibrium with the accreted material before escaping out to the observer,

$$T_{rad} \sim T_{eff}$$

In general,

$$T_{eff} \lesssim T_{rad} \lesssim T_{th}$$

Outline for Part 2

- Accretion Basics
 - 1.1 Spherical Accretion
 - 1.2 Eddington Luminosity
 - 1.3 Estimation of the Central Mass
 - 1.4 Eddington Accretion Rate
 - 1.5 Growth Time
 - 1.6 Temperatures
 - 1.7 Compactness
- 2. Hydrodynamics Description of Spherical Accretion
 - 2.1 Hydrodynamics Equations
 - 2.2 Spherical Accretion Hydrodynamics

Hydrodynamics Description of Spherical Accretion

Hydrodynamics Description of Spherical Accretion

Assumptions:

- No viscosity
- No angular momentum
- No electromagnetic fields

We are looking for

- Steady accretion rate \dot{M} in terms of the asymptotic density and temperature of the gas, ρ_{∞} and T_{∞} .
- Size of region where gas is influenced by the gravity of the BH
- Local velocity of the gas and local speed of sound
- Spectrum of the emitted radiation by the accretion structure

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{\mathbf{v}}) = 0$$

Continuity Equation

 ρ : Mass density

 \vec{v} : Velocity of the gas

$$\rho \left[\frac{\partial \vec{\mathbf{v}}}{\partial t} + \left(\vec{\mathbf{v}} \cdot \vec{\nabla} \right) \vec{\mathbf{v}} \right] = -\vec{\nabla} P + \rho \vec{\mathbf{g}} + \vec{\nabla} \cdot \vec{\sigma}$$

Conservation of Momentum (ignoring radiation pressure)

P: Pressure

g: Acceleration due to gravity

If self-gravity of the accretion structure is negligible,

$$\vec{g} = -\vec{\nabla}\Phi = -\frac{GM}{r^2}\hat{r}$$

$$\rho \left[\frac{\partial \vec{\mathbf{v}}}{\partial t} + \left(\vec{\mathbf{v}} \cdot \vec{\nabla} \right) \vec{\mathbf{v}} \right] = -\vec{\nabla} P + \rho \vec{\mathbf{g}} + \vec{\nabla} \cdot \vec{\sigma}$$

Conservation of Momentum (ignoring radiation pressure)

 σ_{ii} : Viscosity Stress Tensor

$$\sigma_{ij} = 2\eta \tau_{ij}$$

$$\tau_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x^j} + \frac{\partial v_j}{\partial x^i} - \frac{2}{3} \frac{\partial v_k}{\partial x^k} \delta_{ij} \right)$$

$$\rho \left[\frac{\partial \vec{\mathbf{v}}}{\partial t} + \left(\vec{\mathbf{v}} \cdot \vec{\nabla} \right) \vec{\mathbf{v}} \right] = -\vec{\nabla} P + \rho \vec{\mathbf{g}} + \vec{\nabla} \cdot \vec{\sigma}$$

Conservation of Momentum (ignoring radiation pressure)

$$\sigma_{ij} = 2\eta \tau_{ij}$$

$$\eta = \rho \nu$$

 η : dynamic viscosity

 ν : kinematic viscosity

(we will assume $\nu = 0$ for spherical accretion!)

^{*} No-viscosity: Euler equation

^{*} Viscosity: Navier-Stokes equation

$$P = P(\rho)$$

Equation of state

Usually a polytropic: $P \propto \rho^{\gamma}$

$$1 \le \gamma \le \frac{5}{3}$$

$$\gamma = 1 \cdot \log t$$

 $\gamma =$ 1: losthermic flow

 $\gamma = \frac{5}{3}$: Adiabatic flow

$$\rho \frac{d\varepsilon}{dt} = -P\vec{\nabla} \cdot \vec{v} + 2\eta \left[S_{ij} S_{ij} - \frac{1}{3} (\vec{\nabla} \cdot \vec{v})^2 \right] + Q$$
Energy Balance

ε: Internal energy per unit mass of the fluid

Q: Net heat exchanged by an element of the fluid per unit time per unit volume

$$S_{ij} = \tau_{ij} - \frac{1}{3} (\vec{\nabla} \cdot \vec{v}) \delta_{ij}$$

$$T = \frac{\mu m_H P}{k_B \rho}$$

Perfect gas temperature

 $m_H \sim m_p$: Hydrogen mass

 μ : Mean molecular weight

 $\mu = 1$ for neutral Hydrogen

 $\mu = \frac{1}{2}$ for fully ionized Hydrogen

Spherical Accretion Hydrodynamics

Spherical Accretion Hydrodynamics

Spherical symmetry and steady state:

$$\rho = \rho(r)$$

$$\vec{v} = v(r)\hat{r}$$

Continuity Equation

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0$$
$$\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \rho v) = 0$$

Integrating,

$$\dot{M} = 4\pi r^2 \rho v$$

Conservation of Momentum

$$\rho \left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} \right] = -\vec{\nabla}P + \rho \vec{g}$$

$$v \frac{dv}{dr} + \frac{1}{\rho} \frac{\partial P}{\partial r} + \frac{GM}{r^2} = 0$$

Equations Governing Spherical Accretion

$$\dot{M} = 4\pi r^2 \rho v$$

$$v \frac{dv}{dr} + \frac{1}{\rho} \frac{\partial P}{\partial r} + \frac{GM}{r^2} = 0$$

$$P \propto \rho^{\gamma}$$

Local Speed of Sound

$$c_s^2 = \gamma \frac{P}{\rho}$$

Sonic radius: The gas moves with the speed of sound,

$$r_{s} = \frac{GM}{2c_{s}^{2}}$$

Behavior of the gas in the accretion structure

For $r \gg r_s$

$$c_{s} \approx c_{\infty} \left[1 - \frac{\gamma - 1}{4} \frac{r_{acc}}{r} \right] \approx c_{\infty}$$

$$v \approx \frac{c_{\infty}}{16} \left(\frac{2}{5 - 3\gamma} \right)^{\frac{5 - 3\gamma}{2(\gamma - 1)}} \left(\frac{r_{acc}}{r} \right)^{2} \left[1 - \frac{1}{2} \frac{r_{acc}}{r} \right] \approx 0$$

$$\rho \approx \rho_{\infty} \left[1 - \frac{1}{2} \frac{r_{acc}}{r} \right] \approx \rho_{\infty}$$

$$r_{acc} = \frac{2GM}{c_{\infty}^2}$$
: Accretion radius

Behavior of the gas in the accretion structure

For $r \ll r_s$

$$v \approx \sqrt{\frac{2GM}{r}} = v_{ff}$$

$$\rho \approx \rho(r_s) \left(\frac{r_s}{r}\right)^{\frac{3}{2}}$$

$$T = \frac{\mu m_{H}}{k_{B}} \frac{P}{\rho}$$

$$T = T(r_{s}) \left(\frac{r_{s}}{r}\right)^{\frac{3}{2}(\gamma - 1)}$$

First law of thermodynamics:

$$d\varepsilon = dQ - PdV$$

$$d\varepsilon = dQ + \frac{k_B}{\mu m_H} \frac{T}{\rho}$$

Bremsstrahlung (free-free) radiation

$$\begin{split} &\frac{\text{dQ}}{\text{dt}} = -\alpha_{\text{ff}} T^{1/2} \rho \\ &\alpha_{\text{ff}} \approx 5 \times 10^{20}~\rm{erg~cm^3~g^{-2}~s^{-1}~K^{-1/2}} \, \text{for Hydrogen.} \end{split}$$

$$\frac{dT}{dr} = -\frac{T}{r} - \alpha_{\rm ff} \rho(r_s) \sqrt{\frac{r_s}{2GM}} \frac{T^{1/2}}{r} \left(\frac{2\mu m_{\rm H}}{3k_{\rm B}} r_s \right) + \frac{2\mu m_{\rm H}}{3k_{\rm B}} \frac{dQ}{dr}$$

If there is only Bremsstrahlung radiation,

$$\frac{dT}{dr} = -\frac{T}{r} - \alpha_{ff} \rho(r_s) \sqrt{\frac{r_s}{2GM}} \frac{T^{1/2}}{r} \left(\frac{2\mu m_H}{3k_B} r_s \right)$$

Therefore,

$$\frac{dT}{dr} < 0$$

The temperature of the flow decreases as the gas approaches the BH (cooling flow).

$$T = \left[-\frac{4}{K} + \sqrt{\frac{16}{K^2} + \frac{4}{K\sqrt{r}} + C} \right]^2$$

Next Lecture

09. Accretion in Binary Systems