«Поволжская электротехническая компания»

42 1851

БЛОК СИГНАЛИЗАЦИИ ПОЛОЖЕНИЯ БСП-10

Руководство по эксплуатации ВЗИС.426449.002 РЭ

ООО «Поволжская электротехническая компания»

Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

Электронный адрес E-mail: info@piek.ru Caйт: www.piek.ru

Настоящее руководство по эксплуатации (далее - РЭ) предназначено для ознакомления потребителя с блоком сигнализации положения БСП-10 (далее – блок) и его модификациями с целью полного и правильного использования его технических возможностей.

РЭ распространяется на типы блоков, указанные в таблице 1.

Приступать к работе с блоком только после ознакомления с настоящим РЭ.

К эксплуатации блока допускаются лица изучившие настоящее РЭ, и имеющие необходимую подготовку по технике безопасности, монтажу и наладке.

1 ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1.1 Назначение изделия

Блок предназначен для установки в электрические исполнительные механизмы и приводы.

Блок предназначен для преобразования положения выходного вала механизма в пропорциональный электрический сигнал и сигнализации о крайних и промежуточных его положениях. Рабочее положение блока – любое, определяемое положением механизма.

Информация по конструктивным особенностям блоков приведена в таблице 1 Таблица 1

Наименование блока	Состав
Блок концевых выключателей БСПМ-10;	Четыре микровыключателя
БСПМ-10Ш	
Блок сигнализации положения реостатный	Четыре микровыключателя и реостатный датчик
БСПР-10; БСПР-10Ш	
Блок сигнализации положения	Четыре микровыключателя и индуктивный датчик
индуктивный БСПИ-10; БСПИ-10Ш	
Блок сигнализации положения токовый	Блок датчика БД-10; четыре микровыключателя. Блок
БСПТ-10М; БСПТ-МШ	питания БП-20 (встроенный или выносной)

1.2 Меры безопасности при подготовки блока к использованию

Работы по монтажу, регулировке и пуску блока разрешается выполнять лицам, имеющим допуск к эксплуатации электроустановок напряжением до 1000 V и ознакомленным с РЭ на механизм и блок. Все работы по монтажу и настройке блока производить при полностью снятом напряжении питания. Работы с блоком производить только исправным инструментом.

1.3 Технические характеристики изделия

Технические характеристики блоков приведены в таблице 2.

- 1.3.1 Микровыключатели обеспечивают коммутацию тока через замкнутые контакты:
- от 5 до 1000 mA при напряжении постоянного тока 24V и 48V;
- от 20 до 500 mA в цепях переменного тока напряжением до 220 V.

При этом падение напряжения на замкнутых контактах не более 0,25 V.

При проверках и испытаниях микровыключатель не должен коммутировать ток более 20mA и напряжение более 24 V.

После коммутации цепей с токами и напряжениями более указанных, коммутация малых токов не гарантируется.

ВНИМАНИЕ! Согласно нормативному документу «Микровыключатели. Правила выбора, установки и эксплуатации» не допускается в процессе работы микровыключателя изменение нагрузки с большей на меньшую.

1.3.2 Блок предназначен для эксплуатации под крышкой механизма и соответствует климатическому исполнению по ГОСТ 15150-69.

Таблица 2

Тип блока	БСПМ-10	БСПТ-10М	БСПР-10	БСПИ-10
Код в обозначении механизма	M	У	P	И
Напряжение питания:				
- постоянного тока	-	24 V	12 V	12 V
- переменного тока частотой 50 Hz	_	220 V ¹	12 V	
Тип и параметры выходного сигнала положения		0-5; 0-20;	0-100 Ω	Изменение
вала механизма	_	4-20 mA	0 -3,3 k Ω	индуктивности
Входной сигнал-угол поворота вала (ход вала), 0(R)	0-90° (0-0,25) 0-225° (0-0,63)			
Нелинейность выходного сигнала	Не более 1,5 % от максимального значения			
Гистерезис выходного сигнала	Не более 1,5 % от максимального значения			
Дифференциальный ход электрических	Не более 3° полного хода выходного вала			
ограничителей положения и сигнализации	механизма			
Местный указатель положения выходного вала	Имеется, только для механизмов МЭОФ			

- При подключении через блок питания БП-20 (встроенный или выносной). Примечания:
 - 1 Допустимые отклонения параметров питающей сети переменного тока:
 - напряжения питания от минус 15 до плюс 10%;
 - частоты питания от минус 2 до плюс 2 %.
 - 2 Для БСПТ сопротивление нагрузки до 0,5 k Ω для диапазонов (4-20) или (0-20) mA и до 2 k Ω для диапазона (0-5) mA по ГОСТ 26011-80
- 3 Тип и параметры реостатного элемента:
 - резистор СП5-21A -3,3 $k\Omega$;
 - резистор СП5-21A-150 Ω .

Величина тока, проходящего через подвижный контакт резистора не должна превышать 1mA.

2 БЛОК КОНЦЕВЫХ ВЫКЛЮЧАТЕЛЕЙ БСПМ-10 (БСПМ-10Ш)

2.1 Состав, устройство и работа блока БСПМ-10

Блок изготавливается для сочленения с однооборотными механизмами и приводами и с многооборотными механизмами и приводами.

Габаритные и установочные размеры блока приведены в приложении А, рисунок А1, А2.

Блок БСПМ-10 содержит четыре микровыключателя. Два из них используются как конечные выключатели открытия и закрытия, а два - как путевые выключатели открытия и закрытия и сигнализации промежуточных положений выходного вала механизма.

Блок состоит из основания 1, корпуса 2 с установленными на нём микровыключателями 3. На корпусе имеется маркировка места расположения микровыключателей S1...S4 выполненная методом литья.

- S1, S2 промежуточные микровыключатели соответственно закрытия и открытия.
- S3, S4 конечные микровыключатели соответственно закрытия и открытия.

Для регулировки дифференциального хода микровыключателей предусмотрены регулировочный винт 7. Четыре кулачка 5 закреплены на валу 6 с помощью гайки 4. При повороте вала кулачок через шарик и пружину нажимает на толкатель микровыключателя и вызывает его срабатывание.

Блок может быть изготовлен в одном из двух исполнений:

- БСПМ-10Ш с местным указателем положения выходного вала;
- БСПМ-10 без местного указателя положения.

Перед установкой механизма на объект необходимо проверить срабатывание микровыключателей блока. Для этого поворачивая вал механизма убедиться в четком срабатывании микровыключателей.

2.2 Настройка механизма с блоками БСПМ-10

- 2.2.1 Настройку механизма с блоком БСПМ-10 производить следующим образом:
- установить регулирующий орган арматуры в положение «ЗАКРЫТО»;

- -установить выходной вал механизма (привода) в положение «ЗАКРЫТО»
- установить и закрепить механизм (привод) на арматуру;
- ослабить крепление кулачков 5, отвернув с помощью ключа гайку 4 на 1-2 оборота;
- повернуть кулачок микровыключателя «ЗАКРЫТО» с помощью ключа до срабатывания контактов микровыключателя S3 и S1 (S1 должен сработать раньше);
- настроив кулачок против микровыключателя в заданном положении выходного органа, затянуть гайку;
 - установить регулирующий орган в конечное положение «ОТКРЫТО»;
 - ослабить крепление кулачков, отвернув с помощью ключа гайку на 1-2 оборота;
- повернуть кулачок микровыключателя «ОТКРЫТО» с помощью ключа до срабатывания контактов микровыключателя S4 и S2 (S2 должен сработать раньше).

2.2.2 Настройка шкалы блока БСПМ-10Ш:

- установить выходной вал механизма в положение, соответствующее начальному положению рабочего органа объекта (положение «ЗАКРЫТО»), совместить положение шкалы, со смотровым стеклом. На крышке положение «ЗАКРЫТО» (в прозрачных частях крышки надпись «ЗАКРЫТО» расположена в секторе красного цвета);
- повернуть рабочий орган трубопроводной арматуры в положение «ОТКРЫТО». На крышке положение «ОТКРЫТО» (в прозрачных частях крышки надпись «ОТКРЫТО» расположена в секторе зеленого цвета);
 - затянуть винт 10.

3 БЛОК СИГНАЛИЗАЦИИ ПОЛОЖЕНИЯ ТОКОВЫЙ БСПТ-10М (БСПТ-10МШ) 3.1Состав, устройство и работа блока БСПТ-10М

- **3.1.1** Запись обозначения блока имеет вид БСПТ-10XX, где буквы на месте индексов XX означают:
 - М индекс разработки блока модернизированный;
 - Ш блок с указателем местного положения (шкала).

В состав блоков БСПТ-10М входят блок датчика БД-10М или БД-10МШ и блок питания БП-20 (выносной БП-20 или встроенный), входящий в состав механизма.

Блок датчика БД-10M соответствует IV группе исполнения по устойчивости к электромагнитным воздействиям с критерием качества функционирования A по ГОСТ Р 50746-2000.

Блок БСПТ- 10М может быть изготовлен в одном из двух исполнений:

- БСПТ-10МШ с местным указателем положения выходного вала;
- БСПТ-10М без местного указателя положения.
- **3.1.2** Габаритные и присоединительные размеры блока БСПТ-10М приведены в приложении A, рисунок A3 и A4. Блок датчика состоит из основания 10, корпуса 1 с установленными на нём микровыключателями 8 и согласующего устройства 9.

Для регулировки дифференциального хода микровыключателей предусмотрен регулировочный винт 7. Четыре кулачка 3 закреплены на валу 2 с помощью гайки 4. При повороте вала 2 кулачок 3 через шарик 5 и пружину нажимает на толкатель микровыключателя и вызывает его срабатывание. Согласующее устройство 9 закреплено на кронштейне 11. На валу 2 установлен кулачок 6 с двумя профилями, выполненными по спирали Архимеда. Высота подъема профилей – 5 mm, угол подъема - 90° и 225°. При повороте вала изменение радиуса кулачка 6 через рычаг 12 передается на сердечник 13 датчика согласующего устройства. Схема блока питания БП-20 приведена в приложении Ж.

3.1.3 Устройство согласующие имеет настроечные резисторы «0%» и «100%» и двухпозиционный микропереключатель.

С помощью резистора «0%» настраивается начальное значение выходного сигнала -0 или 4 mA.

С помощью резистора «100%» настраивается максимальное значение выходного сигнала – 5 или 20 mA.

Двухпозиционный микропереключатель предназначен для изменения диапазона выходного сигнала «(0-5) mA» или «(4-20) mA».

3.2 Настройка механизма с блоком БСПТ-10М

3.2.1 Перед настройкой выбрать с помощью двухпозиционного микровыключателя на устройстве согласующем диапазон изменения выходного сигнала (0-5) mA – положение микровыключателя (0-5) mA» или (0(4)-20) mA – положение микровыключателя (4-20) mA».

Внимание! Переключение микропереключателя на устройстве, согласующем при выборе диапазона выходного сигнала производить только при выключенном напряжении питания!

Перед установкой механизма (привода) на объект необходимо проверить блок БСПТ-10М. Проверку производить по схеме приложения Ж. Включить напряжение питания. Перемещая выходной орган механизма (привода), убедиться в изменении выходного сигнала от начального до его максимального значения, предварительно настроив блок по методике 3.2.2. Переместить рабочий орган механизма (привода) на полный ход, убедиться в четком срабатывании микровыключателей

- 3.2.2 Настройку механизма с блоком БСПТ-10М производить следующим образом:
- произвести настройку положения профильного кулачка (шайба Архимеда), настройку диапазона выходного сигнала;
 - произвести настройку указателя положения.

Настройка положения профильного кулачка и диапазона выходного сигнала:

- установить регулирующий орган арматуры в положение «ЗАКРЫТО»;
- -установить выходной вал механизма (привода) в положение «ЗАКРЫТО»
- установить и закрепить механизм (привод) на арматуру;
- ослабить с помощью ключа гайку 4;
- поворачивая профильный кулачок 6 с помощью ключа, установить риску у начала подъема выбранного профиля напротив подшипника 14. Установить начальное положение выходного сигнала с помощью резистора «0%»;
 - выполнить настройку микровыключателей согласно 2.2.1 (положение «ЗАКРЫТО»);
- установить выходной орган механизма (регулирующий орган) в конечное положение «ОТКРЫТО». Ослабить крепление кулачков гайкой 4;
 - выполнить настройку микровыключателей согласно 2.2.1 (положение «ОТКРЫТО»);
 - установить максимальный сигнал блока датчика с помощью резистора «100%».
- перемещая выходной орган, проверить настройку токового сигнала. При необходимости откорректировать настройку с помощью резисторов «0%» ... «100%».
 - 3.2.3 Настройка шкалы блока БСПТ- 10МШ производить следующим образом:
- установить выходной вал механизма в положение, соответствующее начальному положению рабочего органа объекта (положение «ЗАКРЫТО»), совместить положение шкалы, со смотровым стеклом. На крышке положение «ЗАКРЫТО» (в прозрачных частях крышки надпись «ЗАКРЫТО» расположена в секторе красного цвета);
- повернуть рабочий орган трубопроводной арматуры в положение «ОТКРЫТО». На крышке положение «ОТКРЫТО» (в прозрачных частях крышки надпись «ОТКРЫТО» расположена в секторе зеленого цвета);
 - затянуть винт 10.

Примечание: Перед настройкой выбрать с помощью двухпозиционного микровыключателя SA1 диапазон изменения выходного сигнала от 0 до 5 mA или от 0 до 20 (4 до 20) mA.

Внимание!

1. Переключение двухпозиционного микровыключателя SA1 производить только при выключенном питании.

2. Если при перемещении выходного органа к конечному положению выходной сигнал блока не увеличивается, а уменьшается, то необходимо поменять местами провода, идущие к контактам катушки датчика от контактов 2 и 6 колодки согласующего устройства (приложение Ж), а за начальную принять риску у конца подъема выбранного профиля.

- **3.** Рабочий орган арматуры в крайних положениях может выйти на механический упор. В этом случае рекомендуется оговоренные выше положения «ОТКРЫТО» и «ЗАКРЫТО» настраивать, не доводя до упоров 2-3% хода рабочего органа.
- **4.** Если выходной сигнал должен изменяться в диапазоне 4-20 mA, то при настройке рекомендуется в начальное положение устанавливать резистором «0%» сигнал (0,2-0,1)mA. В конечном положении резистором «100%» устанавливать 16 mA и резистором «0%» увеличить до 20 mA.

4 БЛОК СИГНАЛИЗАЦИИ ПОЛОЖЕНИЯ РЕОСТАТНЫЙ БСПР-10 4.1Состав, устройство и работа блока БСПР-10

В состав блока входят два основных узла: блок микровыключателей и блок датчика.

Габаритные и присоединительные размеры блока БСПР-10 приведены в приложении A, рисунок A5.

Блок микровыключателей состоит из основания 10, корпуса 1 с установленными на нём микровыключателями 2.

Для регулировки дефференциального хода микровыключателей предусмотрен регулировочный винт 11. Четыре кулачка 3 в блоке закреплены на валу 6 с помощью гайки 4.

При повороте вала кулачок 3 через шарик 5, упор и пружину нажимает на толкатель микровыключателя и вызывает его срабатывание.

Блок датчика состоит из закрепленного на корпусе 1 резистора 7, соединенного с валом 6 посредством зубчатой передачи, состоящей из шестерен 8 и 9. При повороте вала 6 на полный рабочий ход валик резистора проходит полный диапазон. Четыре кулачка 3 в блоке закреплены на валу 6 с помощью гайки 4. Шестерня 9 и кулачки 3 фиксируются на валу датчика путем затяжки гайки 4, чтобы кулачки не воздействовали друг на друга при повороте одного из них, между кулачками установлены разделительные шайбы, не поддерживающие поворот остальных кулачков.

4.2 Настройка механизма с блоком БСПР-10

К блоку БСПР-10 подключить омметр к клемме X2 по схеме (приложение Б, согласно РЭ исполнительного механизма).

Настройку механизма с блоком БСПР-10 производить следующим образом:

- установить регулирующий орган арматуры в положение «ЗАКРЫТО»;
- установить выходной вал механизма (привода) в положение «ЗАКРЫТО»
- установить и закрепить механизм (привод) на арматуру;
- отвернуть гайку 4 на 1-2 оборота (приложение A, рисунок A5), поворотом шестерен 8 и 9 установить валик резистора на начало диапазона, а кулачок датчика 3 управляющий микровыключателем S1 или S3 на 0° .

Настройка микровыключателей согласно 2.2.1.

5 БЛОК СИГНАЛИЗАЦИИ ПОЛОЖЕНИЯ ИНДУКТИВНЫЙ БСПИ-10; (БСПИ-10Ш)

5.1Состав, устройство и работа блока БСПИ-10

В состав блока входят два основных узда: блок микровыключателей и блок датчика.

Габаритные и присоединительные размеры блока БСПИ-10 приведены в приложении A, рисунок A6.

Блок микровыключателей состоит из основания 10, корпуса 1 с установленными на нем микровыключателями 8.

Для регулировки дифференциального хода микровыключателей предусмотрен регулировочный винт 7. Четыре кулачка 3 закреплены на валу 2 с помощью гайки 4. При повороте вала 2 кулачок 3 через шарик 5 и пружину нажимает на толкатель микровыключателя и вызывает его срабатывание.

На валу 2 установлен кулачек 6 с двумя профилями, выполненный по спирали Архимеда. Высота подъема профилей - 5 mm, угол подъема - 90° и 225°. При повороте вала изменение радиуса кулачка через рычаг передается на сердечник индуктивного датчика. Сердечник перемещается внутри соленоидных катушек индуктивного датчика, изменяя их полное сопротивление. При включении катушек датчика в мостовую схему выходной сигнал мостовой схемы пропорционален смещению сердечника.

Блок может быть изготовлен в одном из двух исполнений:

- БСПИ-10Ш с местным указателем положения выходного вала;
- БСПИ-10 без местного указателя положения.

5.2 Настройка механизма с блоком БСПИ-10

Перед установкой механизма на объект необходимо проверить блок. Включить напряжение питания. Перемещая выходной орган механизма, убедиться в изменении выходного сигнала от начального до его максимального значения.

5.2.1 Настройка механизма с блоком БСПИ-10.

Настройка механизма с блоком БСПИ-10 производить следующим образом:

- установить регулирующий орган арматуры в положение «ЗАКРЫТО»;
- -установить выходной вал механизма (привода) в положение «ЗАКРЫТО»
- установить и закрепить механизм (привод) на арматуру;
- отвернуть с помощью ключа гайку 4 (приложение A, рисунок A5) на 1-2 оборота. Поворачивая профильный кулачок 6 установить его так, чтобы средняя риска на выбранном профиле, а1 или а2 (смотреть рисунок 1), находилась напротив подшипника 13 на рычаге 11. Настроить кулачки привода микровыключателей в заданных положениях выходного органа, затянуть гайку 4.
 - 5.2.2 Настройка шкалы блока БСПИ-10Ш согласно 2.2.1.

a1 -середина профиля (0-225°);

a2 - середина профиля (0-90°)

Рисунок 1 – профильный кулачок

6 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ В БЛОКЕ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Причинами выхода из строя блока могут быть:

- перегрузка по питанию;
- воздействие более жестких условий эксплуатации, чем предусмотрено РЭ;
- выход из строя микровыключателей;
- выход из строя согласующего устройства;
- выход из строя резистора (для БСПР-10).

Перед поиском неисправности необходимо убедиться в отсутствии внешних повреждений.

Наиболее вероятной причиной отказа микровыключателей могут являться:

- заклинивание шарика в блоке микровыключателей. При проверке нажать лезвием отвертки на шарик. Если шарик не перемещается, снять микровыключатель, удалить загрязнения, нанести тонкий слой смазки на шарик. Смазка ЦИАТИМ-203;
- нарушение контакта в контактной системе резистора. Если при вращении выходного вала блока БСПР-10 не наблюдается изменение сигнала на шкале прибора, измеряющего электрическое сопротивление и подключенного к выводам резистора 1 и 3, необходимо заменить резистор в БСПР-10.

Попадание смазки на микровыключатель недопустимо!

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание блока проводить совместно с техническим обслуживанием механизма (привода), в котором он устанавливается.

Во время профилактических осмотров необходимо очистить поверхность блока от загрязнения, проверить его настройку, при необходимости, произвести его подрегулировку согласно методике настоящего РЭ.

8 СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

Блок не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем блок.

8.1 Сведения о содержании в изделии цветных металлов и сплавов приведены в таблице 3.

Таблица 3

Наименование	Суммарная масса, kg	Куда входит
Сплав алюминиевый	0,22	Корпус, крышка, кронштейны

8.2 Сведения о содержании в изделии драгоценных материалов приведены в таблице 4. Таблица 4

Наименование	Суммарная масса, д	Куда входит
Серебро	0,9	Микровыключатели

ПЕРЕЧЕНЬ ПРИЛОЖЕНИЙ

А - Габаритные и присоединительные размеры блока БСП-10

Ж – Габаритные размеры блока питания БП-20

Схема электрическая принципиальная БП-20

Схема проверки блока БСПТ-10М

Вниманию потребителей!

Предприятие непрерывно проводит работы по совершенствованию блока, поэтому некоторые конструктивные изменения в руководстве могут быть не отражены.

Приложение А (обязательное) Обющий вид и габаритные и присоединительные размеры блоков

- S1 промежуточный микровыключатель ЗАКРЫТИЯ
- S2 промежуточный микровыключатель ОТКРЫТИЯ
- S3 конечный микровыключатель ЗАКРЫТИЯ
- S4 конечный микровыключатель ОТКРЫТИЯ

1– основание; 2 – корпус; 3 – микровыключатель; 4 – гайка; 5 – кулачок; 6 – вал; 7 – регулировочный винт; 8 – шарик.

Рисунок А.1 – Блок БСПМ–10 для однооборотных механизмов и приводов

Рисунок А.2 – Блок БСПМ–10Ш для однооборотных механизмов и приводов, остальное смотреть рисунок А.1

- 1– корпус; 2 вал; 3 четыре кулачока; 4 гайка; 5 шарик;
- 6 профильный кулачок (шайба Архимеда), 7 регулировочный винт,
- 8 микровыключатель, 9 согласующие устроиство,
- 10 основание; 11 кронштейн; 12 рычаг; 13 сердечник; 14 подшипник.

Рисунок А.3 – Блок датчика БД-10М

15 – шкала; 16 – винт

Рисунок А.4 – Блок датчика БД –10 МШ, остальное смотреть рисунок А.3

1-корпус, 2– вал, 3-кулачок, 4-гайка, 5– шарик, 6– профильный кулачок (шайба Архимеда) 7– винт регулировки микровыключателей, 8 – микровыключатель, 9– катушка индуктивного датчика, 10-основание, 11– рычаг, 12– сердечник, 13– подшипник.

Рисунок А.5 – δ лок БСПИ-10

14 — шщкала, 15 — винт

Рисунок А.6 – блок БСПИ–10Ш

1-корпус; 2-микровыключатель; 3-кулачок; 4-гайка; 5-шарик; 6-вал; 7-резистор; 8, 9-шестерни, 10 - основание.

Рисунок А7 – блок БСПР–10

Приложение Ж (Обязательное) Габаритные размеры и схемы блока питания БП-20

Рисинок X1 – Габаритные размеры блока БП-20 (на DIN-рейке)

Рисунок ЖЗ Схема электрическая принципиальная блока питания БП-20

БД-10М - согласующее устройство

БП-20 – блок питания

РА – миллиамперметр М4200 30 мА

PV – вольтметр 3545

Rнг – сопротивление нагрузки не более 2 кОм.

Рисунок Ж4 Схема проверки ълока БСПТ−10M

Рисинок Ж2 – Габаритные размеры блока питания БП-20

Примечание :

- 1. Выбор диапозона выходного сигнала происходит переключением тимблера, находящегося на корпусе согласующего устройства БД-10М:
- положение тимблера в X4 диапозон 0–5 мА положение тимблера в X5 – диапозон 4–20 мА
- 2. Если при перемещении выходного органа к конечному положению выходной сигнал блока не цвеличивается, а именьшается, то необходимо поменять местами провода, идущие к контактам катушки датчика от контактов 2 и 6 колодки согласующего устройства.