UNCLASSIFIED

AD 4 3 9 4 8 8

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

APRIL 1964

OOY-TR-64-103

3

AIRMUNITIONS TEST REPORT

CHARACTERISTICS OF HIGH CURRENT FIRING PULSES ON SQUIBS & BLASTING CAPS

THE ABBRICAGE SHE DOOR AMA BRICA ARE ACTUBLE SEEL

CHARACTERISTICS OF HIGH CURRENT FIRING PULSES

ON

SQUIBS AND BLASTING CAPS

bу

Kenneth A. Kartchner

PUBLICATION REVIEW

This report has been reviewed and is approved

Alex D. PERESICH

Chief

Service Engineering Division 2705th Airmunitions Wing

APRIL 1964

2705TH AIRMUNITIONS WING OGDEN AIR MATERIEL AREA AIR FORCE LOGISTICS COMMAND UNITED STATES AIR FORCE Hill Air Force Base, Utah

00Y-TR-64-103

NOTICES

The information furnished herewith is made available for study with the understanding that the Government's proprietary interests in and relation thereto shall not be impaired. It is desired that the Judge Advocate's Office, (WCJ), Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio, be promptly notified of any apparent conflict between the Government's proprietary interests and those of others.

The conclusions and recommendations in this report are not to be considered directive in nature. This type information becomes official only when published in Technical Orders or other applicable Air Force publications.

Qualified requesters can obtain this report from the Defense Document Center, Cameron Station, Alexandria, Virginia (22314).

ADMINISTRATIVE DATA

PURPOSE OF TESTS:

The purposes of these tests were to extend the direct current firing characteristics curve for some of the most common squibs and blasting caps and to set up radio frequency firing characteristic curves for these squibs and blasting caps.

MANUFACTURER:

E.I. Du Pont De Nemours and Company, Pennsylvania Grove, NJ

MANUFACTURER'S PART NUMBER AND FEDERAL STOCK NUMBER:

S-67	nsl
S-6 8	1375-035-6021-M846
E-76	1375-035-6019-M135
E-81	1375-041-1312-M138

DRAWINGS AND SPECIFICATIONS:

PART NUMBER	DRAWING NUMBER	MAXIMUM NO FIRE	MINIMUM FIRE	RESISTANCE OHMS
E-76	DuPont EL3470		O.55 Amp	0.44
E-81	DuPont EL3496		0.38 Amp	1.5
S-67		0.4 Amp	O.7 Amp	0.65
S-68		0.3 Amp	O.38 Amp	1.37

SECURITY CLASSIFICATION:

Unclassified

DATE TEST COMPLETED:

December 1962

00Y-TR-64-103

TEST CONDUCTED BY:

OOAMA (OOYT - 2705th Airmunitions Wing)

Test Director: Richard O. Miller, Captain, USAF
Project Engineer: Kenneth A. Kartchner, Electronic Engineer

ABSTRACT

Charts were available which gave the low current characteristics of Du Pont squibs and blasting caps. These charts did not extend up to the desired current levels. The objective of the test was to extend these charts to include the high current characteristics. Also an attempt was made to determine the minimum time required to fire the squibs when using short high current pulses.

From this test it was determined that the E-81 Blasting Cap could be functioned in 70 micro-seconds using 140 volts supplied by a direct current arc welder. The charts which were available did not include any curves showing what the squibs and blasting caps reaction would be when exposed to radar frequencies. To determine what this reaction would be both pulsed and continuous wave power was applied to the souibs and blasting caps.

During the radio frequency part of the test, an ART-13 transmitter, set at 8 megacycles, was used to function the test items. The current and time of each firing was recorded using an oscilloscope and Polarcid camera.

An analysis of the test data revealed that even though the direct current arc welder could supply over 300 amperes, this amount was never drawn. A maximum current was not obtained because of inductance in the leads and generator windings.

The functioning of squibs and blasting caps with high direct current and with radio frequency current required several times as much time as the maximum pulse width of our present radar transmitters.

00Y-TR-64-103

TABLE OF CONTENTS

																										PAGE
Notices	١.,			۰	٠	۰			۰	٠	۰	۰	۰	o		٥	۰	٥	0		v	o	0	0	٠	ii
Adminis					at	a	۰	۰	۰	۰	۰	۰	۰	o	۰	۰	۰	٥	٥	۰	۰	۰	٠	o	0	iii
Abstrac	t		٥	٠	۰	۰	٥	۰	۰	0	۰	٠	0	0	۰	o	0	•	0	٥	0	۰	٥	۰	0	v
Table o	f C	on	te	nt	s	۰	۰		۰	۰	۰	۰	۰	o	o	٥	۰	o	۰	0	٥	۰	۰	•	•	vi
Introdu	ict1	on		۰	٥	۰	٥	٥	۰	٥	۰	٥	۰	۰	٥	٥	۰	0	0	۰	o	۰	0	•	0	1
Descrip	tio	n	u	۰	۰	۰	.,	٥	۰	0	c	۰	٥	۰	۰	v	۰	٥	0	•	٥	۰	0	o	0	1
Figure	1			۰	u	۰	٥	۰	۰	۰	۰	۰	۰	۰	0	٥	0	0	۰	۰	0	۰	۰	o	0	2
Figure	2	٥		۰		۰	0	٥	u	۰	0	0	ų	o	o	o	۰	o	o	0	o		۰	o	v	3
Equipme	nt	۰	۰	۰	0	۰	۰	0	•	0	o	0	0	۰	٥	0	0	o	o	o	٥	o	۰	•	٥	4
Test Pr	oce.	du	re	S	o	0	0	0	0	•		v	0	0	•	o	0	o	0	o	۰	•	0	•	0	4
Test Re	sul	ts		0	o		0	0	o	0		0	0	0	o	o	0	0	U	o	•	۰	0	0	•	5
Figure	3	0	۰	o	0	0	٥	0	0	0	0	o	υ	a	o	0	٥	0	o	0	o	۰	o	۰	•	6
Figure	4		•	٥		o	a	o	0	o	0	o	o	0	0	0	U	0	0	0	۰		۰	۰	0	6
Figure	5	٥	0	٥	0	0	σ	0	0	o	0	0	0	٠	0	0	0	۰	٥	۰	0	۰		٠	0	7
Figure	6	o	0	۰	0	o	a	0	0	0	۰	o	o	0	0	v	0	0	۰	0	۰	۰	0	۰	0	7
Figure	7	0	0	0	0	o	۰	۰	٥	o	o	0	0	o	o		o	0	۰	۰	•	٥	٥	•	٥	8
Figure	8	0	۰	o	o	u	0	o	o	o	0	υ	U	o	U	v	u	۰	٠	•	0	٥	۰	۰	۰	8
Figure	9	0	۰	a	۰	0	0	٥	D	0	o		v	0	u	e	o	0	o	o	۰	٥	۰	۰	0	9
Figure	10	o	U	۰	o	0	0	0	0	0	۰	o	o	۰	0	۰	٥		۰	o	۰		۰	۰	۰	9
Figure	11	۰	0	0	o	0	0	0	o	0	o	0	v	v	ú	0	۰	•	0	۰	0	۰	a	٥	۰	10
Figure	12	v	o	۰	ų		0	o	o	0	o	υ	o	٥	v	٥	٥	۰	۰	v	0	۰		۰	۰	10
Figure	13	۰	•	۰	۰	٥	U	0	U	0	u	o	o	۰	u	v	0	v	o	v	۰	۰	۰	٥	•	11
Figure	14	0	0	٥	0	o	۰	o	υ	0	0	0	۰	0	·	v	ø	v	ø	0	۰	v	۰	۰	٥	11
Figure	15	o	0	0	۰	۰	v	U	U	u	Ų	U	v	0	0	0	v	٠	۰	۰	۰	٥	۰	٥	۰	12
Figure	16	٠	•	0	v	٥	۰	۰	o	۰	u	v	v	۰	U	0	۰		0	·	۰	۰	۰	٥	۰	12
Figure	17	•	۰	۰	۰	۰	۰	.,	u	0	0	v	,	v	۰	0	·	٠	v	۰	u	۰	۰	۰	۰	13
Figure	18	۰	v	۰	۰	۰	0	0	o	0	о	ر	v	0	0	0	o	v	٥	0	۰	۰	۰	۰	۰	13
Figure	19	٥			٥	۰	۰	o	v	v		0	۰	0	۰	۰	۰	٠	۰	u	٥	۰	۰	۰	v	14
Figure	20	v	۰	۰	۰	۰		0	·	۰	٥	٥	٠	٥	v	o	۰	0	0	٥	•	۰	۰	۰		14
Figure	21	۰	۰	0	0	o	٥	v	۰	v	v	v	u	٥	o	o	o	o	v	v	٥	ø		U	0	15
Figure	22	۰	۰	۰	۰	0	v	υ	۰	6	ь	0	u	0	0	v	0	v	o	0	0	۰	۰	o	0	15
Figure	23	٥	o	٥	٥	٥	ø	υ	0	o	۰	۰	o	o	v	۰	o	۰	o	U	9	۰		u	0	16
Figure	24	u	o	0	o	J	ø	o	٥	U	o	υ	D	o	o	0	o	U	υ	0	o	0	۰	a	۰	16
Figure	25	٥	0	v	٥	0	v	۰	0	٠	o	۰	o	٥	۰	o	0	0	o	ø	٥	o	0	o	0	17
Figure	26	٥	o	0	۰	۰	u	o	o	9	٥	v	0	u	U	0	ø	U	o	0	0	0	0	υ	0	17
Figure		•	0	٥	٥	0	v	0	•	0	0	0	b	v	0	0	۰	0	o	o	D	o	o	0	۰	18
Figure		0	o	0	v	0	0	4	0	0	0	0	D	u	o	σ	0	э	o	•	0	0	•	0		18
Figure		0	0	•	0	o	0	o	0	0	o	o	0	v	·	0	•	0	٥	o	۰	۰	0	۰	•	19
Figure	-	0	0	0	0	0	ø	0	•	u	0	0	o	o	o	0	v	0	·	٠	0	۰	9	Q	•	19
Figure		0	•,	,	•	9	,	0		0	o	v	o	0	o	0		۰	9	۰		0	v		,	20
Fi mino	22																									20

TABLE OF CONTENTS (Cont)

																										PAGE
Figure	33		٥			۰		٠	٠				۰			۰		۰	٠	۰		٥			۰	21
	34				0	۰	0			۰	0	0	۰		۰	0	۰	0		۰		٥	۰		۰	21
Figure	35				٠	۰	۰	0	٥		۰	٠		0	۰	۰	۰	۰	٠	۰	۰	۰	٠	0	٠	22
Figure	36	۰	0	•	٥	0	۰	۰	o	۰	۰	•	٥	•	v	0	۰		0	۰	•	۰		•	۰	22
Figure	37		٥		۰	٠	٥	٠	۰	u	۰		0	۰	٠	v	٠	۰	۰	v	۰	•	۰	۰	٠	23
Figure	38	۰	v	•	۰	٠	۰	٠	0		۰	٠	0	۰	۰	۰	۰	۰	٠	0	٠	۰	٠	۰	٠	23
	39	۰	ø	0		۰	0	۰	U		•	0	۰	0	0	•	۰	۰	۰	۰	0	۰	٠	0	٠	24
	40	٠	۰	٠	۰	٠	۰	٠	۰	٠	٥	۰	۰	۰	o	۰	٥	٠	۰	•	۰	٠	٠	٠	۰	24
-	41	۰	o	9	۰	۰	o	•	o	0	0	o	۰	۰	o	۰	U	۰	۰	0	٠	۰	۰	0	u	25
Figure		۰	۰	u	•		۰	۰	۰	•	۰	ø	0	•		•	ů		•	۰	٥	٠	٠	٠	٠	25
Figure		•	۰	J	۰	۰	0	0	٥	0	0	v	0	۰	0	0	o	٥	0	0	0	۰	0	0	0	26
Figure		٥	۰	٥		۰	•	٥	•	•	o	۰	۰	٥	0	۰	۰	۰	٥	۰	•	۰	۰	٥	۰	26
Figure		0	0		•	۰	•	۰	•	٠	0	۰	۰	v	۰	٠	0	•	٥	۰	۰	•	0	•	٥	27
Figure			0	υ	•	u	•	٥	0	0	0	۰	•	u	0	۰	•	ø	0	o	•	•	0		٥	27
Figure	47	•	۰	•		۰	٠	٥	۰	٥	٠	۰		۰		0	۰	۰	۰	•	۰		0	٠	•	28
Figure		0	•	e		0	۰	0	•	٥	o	٥	۰	۰	۰	۰	•	ø	۰	•	•	٠	0	•	•	28
Figure		۰	۰	۰	۰	٥	0	۰	•	۰	۰	٥	•	٥	٠	•	۰	۰	۰	۰	•	٠	٠	۰	۰	30
Figure	-	۰	۰	۰	۰	0	۰	۰	۰	0	۰	o	۰	۰	۰	٥	•	۰	۰	۰	0	۰	•	۰	۰	30
_	51	•	o	•	۰	0	۰	•	٥	0	0	۵	۰	ø	•	Q	٥	o	٥	0	0	۰	•	۰	۰	31
	52		۰	٠	٠	•	٠	۰	۰	e	۰	•	•	۰	٠	•	٠	0	٠	۰	٠	•	۰	۰		31
Figure	53	۰	0	•	۰	•	۰	۰	0	•	٠	۰	۰	0	۰	٥	۰	0	0	۰	۰	•	٥	•	۰	32
	54	۰		۰	•	•	۰	۰	۰	۰	۰	۰	۰	۰		۰	v	۰	۰	۰	•	۰	•	٥	۰	32
	55	٠	•	٠	۰	۰	۰	۰	٥	۰	۰	۰	J	٥	0	۰	۰	0		•	۰	۰	٠	۰	•	33
Figure	56	۰	D	•	٥	٥	a	۰	۰	0	0	Ð	o		۰	0	ú	0	۰	۰	•	٥	٥	٥	•	33
Figure	57	•	۰	٠	٠	•	٥	v	۰	٠	۰	۰	٠		۰	۰	۰	۰	0	0	۰	0	۰	•		34
Figure	58	۰	۰	•	0	•	0	۰	0	۰	۰	٥	•	٥	0	0	۰	•	۰	0		٥	•	0		34
Figure		•	•	0	o	۰	o	0	0	0	٥	0	0	0	o	0	u	0	0		۰	9	٠		•	35
Figure							۰	o	۰	۰	v	٠	۰	0	٠	۰	o	۰	۰	٥	٠	•	•	0	۰	35
Figure		•			0				٥		Ų		u	u	0	•	•	0	•	۵	0	u	•	o		36
Figure	-	۰					۰						٥	•	٠	0	۰	o	v	0	o	٥	٠	v	•	36
Figure		o	۰	0	0	o	۰	0	o	0	0	•	U	u	0	v	0	o	0	U	o	۰	0		o	37
Figure		۰	۰	•		0	e	۰	۰	۰	u	0	0	۰	۰	o	a	۰	٠	0	۰	۰	۰	۰		37
Figure	-	۰	9	•	o	0	o	9	0	o	۰	٠	o	0	0	o	0	۰	0	0	۰	0	ø	o	•	38
Figure		٠	۰				۰				۰	ų	v	v	0	۰		۰	9	۰	٥	٠	۰	۰	٠	38
Figure		•	۰				0				ь	۰	٥	٥	٥	۰	۰	٥	٥	۰	۰	•	۰	۰		39
Figure		U	۰				0					v	0	v	0	•	0	v		۰	u	0	۰	٠	J	39
Conclu			۰		-	-	٠	_		-	-	۰	۰	۰	۰	•	٥	v	۰	0	•	۰	۰		۰	. 40
The comm						u	۰	D		٥	۰	0	٥	۰	u	0	0		o	۰		u	۰	v		40
Distri	hnt.	io	n '	T.4	æŧ.																					7.1

THIS PAGE INTENTIONALLY LEFT BLANK

INTRODUCTION

The manufacturer of squibs and blasting caps gave charts showing the characteristics of these items when subjected to normal and low currents. However, the characteristics at high currents were not given on any of these charts. It was expected that the ignition delay would become shorter with higher currents, however, how much shorter this firing time could become, was not known. New high power transmitters are being installed in locations which are near areas in which airmunitions are transported and handled. These new transmitters not only have higher power but have longer pulse widths. These tests were designed to determine how close the radar pulse time length was to the ignition time of the squibs and blasting caps.

The test was designed to determine the amount of current and time required to function these items using radio frequency current, compared to the functioning time required using direct current. Also taken into consideration, was the finite time required to heat the bridge wire hot enough to cause ignition.

This test was conducted under Test Directive S-2-1019-Y issued in May 1962 by the Air Launch Missiles Branch (00YEA) and necessary tests were performed by the Test Squadron (00YT, 2705th Airmunitions Wing (00Y)).

DESCRIPTION

The squibs and blasting caps used were all of the common type used throughout the Air Force in many electro-explosive devices.

The squib is inclosed in a metal shell. The shell is closed on one end and sealed on the other end by two or three crimpings around a 3/8 inch long rubber plug. The lead wires are copper and are molded into the rubber plug. Across the inside ends of these wires a resistance wire (bridge wire) is connected. Around the bridge wire is a sensitive explosive mixture known as the ignition bead. In the squib the ignition bead ignites the charge (Figure 1). In the blasting caps the ignition bead ignites the filler charge which ignites a primer charge and this sets off the base charge (Figure 2). The bridge wire is heated by any current which passes through it, when the bridge wire reaches a designed temperature, ignition takes place.

FIGURE 1. Cross-Section Drawing of Squib.

FIGURE 2. Cross-Section Drawing of Dlasting Cap.

EQUIPMENT

The following equipment was used in performance of this test:

Portable Aircraft Rectifier (0-100 Amperes)

Portable Direct Current Arc Welder

Oscilloscope

Polaroid Camera and Oscilloscope Attachment

Instrument Shunt (100 Amperes)

A 28 Volt DC to 115 Volt 400 Cycle Converter

ARC-27 Transmitter

ART-13 Transmitter

TEST PROCEDURES

All squibs and blasting caps were visually inspected for rough handling, dents and broken wires before being used in the test.

The wires from the direct current arc welder were connected to a 300 ampere relay. The other terminal of the relay was connected through an instrument shunt. This relay was placed in series with the positive cable. These wires were then connected to the squib or blasting cap. Shielded coax cable was used to connect the output from the shunt to the oscilloscope. Another shielded coax cable was connected across the terminals of the squib and used to provide a voltage signal to the oscilloscope. A single beam dual trace oscilloscope was used to display the current and voltage signals. A polaroid camera mounted on the front of the oscilloscope was used to record the traces of voltage and current during each firing. The camera shutter was set on one second and the shutter was opened at the same time as the current was applied to close the firing relay. The current to the squibs or blasting caps was controlled by increasing the voltage of the DC arc welder in 10-volt steps. Five items were functioned with each voltage setting.

The radio frequency portion of the test was conducted using two transmitters. The first transmitter used was the ARC-27. This transmitter was operated at 300 megacycles with a peak power of 9 watts and an average power of three (3) watts. The second transmitter used was an ART-13. This transmitter was set to operate at eight megacycles with a peak power of 100 watts. The length of coax cable between the transmitter and the squib or blasting caps was varied to determine a length which would give the best power transfer and impedance match. Shielded cables were used for firing and instrumentation lines. Both continuous wave and voice transmission were used during this test. The measurement of RF current was taken from a noninductive resistance placed in the firing line as close to the squib or blasting cap as possible.

TEST RESULTS

A visual inspection of all squibs and blasting caps used in this test indicated that they were in serviceable condition. A considerable variation was obtained in the firing time and current for each type of squib or blasting cap. The minimum time and current required to function the E-75 blasting cap was 100 microseconds and 25 amperes of direct current. The minimum time and current required to function the E-81 blasting cap was 70 microseconds and 50 amperes of direct current. The minimum time and current required to function the S-68 squibs was 130 microseconds and 30 amperes of direct current.

Each of the above types of squibs and blasting caps were functioned using higher current. However, the time required to function those receiving higher current was longer than the values given above. When using high firing currents, other factors built into the squibs and blasting caps had as much control over the length of time required to function as did the applied current. Examples of traces obtained when firing with direct current are given in Figures 3 through 48.

FIGURE 3. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Cap - 28 Amperes for 121 Microseconds.

FIGURE 4. Oscilloscope Trace of DC Firing Polse on 8-76 Hasting Cap - 26 Amperes for 140 Microseconds.

FIGURE 5. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Cap - 26.4 Amperes for 130 Microseconds.

FIGURE 6. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Can - 28 Amperes for 140 Microseconds.

FIGURE 7. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Cap - 30 Amperes for 160 Microseconds.

FIGURE 8. Uscilloscope Trace of D. Firing Pulse on E-76 Denties to +1. Amberes for the Microseconds.

漢字の教育の対象には、 American State Americ

FIGURE 9. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Cap - 28 Amperes for 125 Microseconds.

. FIGURE 10. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Cap - 2/ Amperes for 190 Microseconds.

FIGURE 11. Oscilloscope Trace of DC Firing Pulse on E-76-Blasting Cap - 28 Amperes for 160 Microseconds.

FIGURE 12. Oscilloscope Traco of DC Firing Pulse on E-76
Blasting Cap - 28 Amperes for 180 Microseconds.

FTGURE 13. Oscilloscope Trace of DC Firing Pulse on E-76
Blastin; Cap - 22 Amperes for 220 Microseconds.

FIGURE 14. Oscilloscope Trace of DC Firing Pulse on E-76
Blasting Cap - 2/ Amperes for 220 Microseconds.

FIGURE 15. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Cap - 22 Amperes for 220 Microseconds.

FIGURE 16. Oscilloscope trade of DC Firing Pulse on E-76
Resting Cap 20 Amperos for 260 Microsconds.

FIGURE 17. Oscilloscope Trace of DC Firing Pulse on E-76
Blasting Gap - 18 Amperes for 290 Microseconds.

FIGURE 18. Oscilloscope Trace of DC Firing Pulse on E-76
Blasting Cup - 16.7 Amperes for 115 Microseconds.

FIGURE 19. Oscilloscope Trace of DC Firing Pulse on E-76
Blasting Cap - 16.7 Amperes for 112 Microseconds.

FIGURE 20. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Cap - 25 Amperes for 105 Microseconds.

FIGURE 21. Oscilloscope Trace of DC Firing Pulse on E-76
Blasting Cap - 25 Amperes for 100 Microseconds.

FIGURE 22. Oscilloscope Trace of DC Firing Pulse on E-76 Blasting Cop - 27.5 Amperes for 105 Microseconds.

FIGURE 23. Oscilloscope Trace of DC Firing Pulse on E-81 Blasting Cap - 18 Amperes for 340 Microseconds.

FIGURE 24. Oscilloscope Thace of DC Firing Pulse on E-81 Blasting Cap 19 Amperes for 236 Microseconds.

FIGURE 25. Oscilloscope Trace of DC Firing Pulse on E-81 Blasting Gap - 24 Amperes for 270 Microseconds.

FIGURE 26. Oscilloscope Trace of DC Firing Pulse on E-81
Blasting Cap - 2/ Amperes for 310 Microseconds.

FIGURE 27. Oscilloscope Trace of DC Firing Pulse on E-81 Blasting Cap - 25.2 Amperes for 280 Microseconds.

FIGURE 28. Oscilloscope Trace of DC Firing Pulse on E-81 Dlasting Cap - 26 Ampores for 265 Microseconds.

The state of the s

FIGURE 29. Oscilloscope Trace of DC Firing Pulse on E-81 Blasting Cap - 26 Amperes for 2/0 Microseconds.

FIGURE 30. Oscilloscope Trace of DC Firing Pulse on E-81 Blasting Cap - 28.4 Amperes for 190 Microseconds.

FIGURE 31. Oscilloscope trace of B3 Firing Pulse on E-81 Blasting Cap - 30 Amperes for 200 Microseconds.

FIGURE 32. Oscilloscope Trace of DC Firing Pulse on E-81 Blasting Cap - a Ampores for 190 Microscopeds.

FIGURE 33. Oscilloscope Trace of DC Firing Pulse on E-81 Blasting Cap - 28 Amperes for 150 Microseconds.

FIGURE 34. Oscilloscope Trace of DC Firing Pulse on E-81 Blasting Cap - 28 Amperes for 135 Microseconds.

FIGURE 35. Oscilloscope Trace of DC Firing Pulse on S-68 Squib - 7.2 Amperes for 350 Microseconds.

FIGURE 36. Oscilloscope Traco of DC Firing Pulse on S-68 Squib -6.6 Amperes for 300 Microseconds.

FIGURE 37. Queilloscope Trace of DC Firing Pulse on S-68 Squib - 24.4 Amperes for 220 Microseconds.

FIGURE 38. Oscilloscope Trace of DC Firing Pulse on 8-68 Squib - 24 Amperes for 280 Microseconds.

FIGURE 39. Oscilloscope Trace of DC Firing Pulse on S-68
*Squib = TC Monarce for 170 Microseconds.

FIGURE 40. Oscilloscope Tipace of BC Firing Pulse on S-68 Squit - 11.0 Amperes for 190 Microseconds.

FIGURE 41. Oscilloscope Trace of DC Firing Pulse on S-68 Squib - 31.6 Amperes for 180 Microseconds.

FIGURE 42. Coefficiency of DC Firing Pulse on S-68 Squire - 32 Amperes for 190 (Heroseconds.

FIGURE 43. Oscilloscope Trace of DC Firing Pulse on S-68 Square to America for 180 Microseconds.

FIGURE AA. Uncillow open Trace of the Firing Pulse on S-68 Squite of Appends for 150 Microseconds.

Figure 45. Greilloscope Trace of DC Firing Pulss on Safe Scott - 42 Ammeres for 138 Microscopets.

A section of the property of the contract of the

FIGURE 47. Oscilloscope Trace of DC Firing Pulse on S-68 Squib - 27.5 Amperes for 125 Microseconds.

FIGURE 48. Oscilloscope Trace of DC Firing Pulse on S-68 Squib - 25 Amperon for 120 Microscophia.

The first test using RF Energy was made using a 300 megacycle transmitter. No squibs or blasting caps were functioned with this transmitter. The low impedance of the bridge wire and the length of the leads prevented any squibs or blasting caps being functioned with the low power supplied by this transmitter. The next step was performed using an eight (8) megacycle transmitter (ART-13). A number of squibs and blasting caps were functioned with this transmitter using both continuous wave (CW) and voice modulated (MVC) outputs. An analysis of the data obtained during the CW firings did not establish any trends. The ignition time and current levels measured were random. The best photographs of the traces when using CW are given in Figures 49 through 56. When using voice modulation the transmitter power builds up slower than it does in CW operation. Most of the items in which voice modulation was used functioned while the power was still increasing. Therefore, when a little higher power was required to function the items a longer ignition time was obtained. This condition indicated only that a higher current was required and not that the items would not function in a shorter time if a higher current had been obtained sooner. The trace in Figure 57 is of a blasting cap which did not function. The best photographs of the traces when firing with MVC are given in Figures 58 through 68. It is noted that the photographs given in Figures 3 through 68 do not cover all the items for which data is available. Many other photographs were readable but were not clear enough for reproduction.

During the voice modulated firings, three firings were made in which a loop of 1/4 inch metal tape was placed on the blasting cap leads. This metal tape produced a pulse just after the blasting cap functioned. This pulse is shown in Figure 60. The next two firings were made using two loops of the 1/4 inch metal tape. The loops were placed about one-half inch apart. In the first firing using the two loops the pulse occurred just before the blasting cap functioned. This trace is shown in Figure 61. In the second firing using two loops the pulse was delayed until 45 milliseconds after the blasting cap functioned. The photograph of this firing trace is given in Figure 62. It can be seen from these traces that some energy is absorbed by the metal tape and then given back again at another time. It is possible that this method could reduce the RF Energy going to the squib or blasting cap. However, if the energy absorbed by the metal tape was returned to the electrical circuit before the item functioned, as shown in Figure 61, the presence of the metal tape could add to the RF Energy hazard.

001-TR-64-103

CURE 49. Oscilloscope Trace of 8 Megacycle CM Fire E-76 Blasting Cap - 9.5 Amperes for 300 March

FIGURE 50. Oscilloscope trace of 8 Megacycle CW Firing E-76 Blasting Cap - 9.5 Amperes for 300 Millians

Oscilloscope Trace of 8 Megacycle CW Firing Pulse on E-76 Blasting Cap - 10 Amperes for 280 Milliseconds.

FIGURE 52. Oscilloscope Trace of 8 Megacycle CW Firing Pulse on E-76 Blasting Cap - 9.5 Amperes for 290 Milliseconds.

FIGURE 53. Oscilloscope Trace of 8 Megacycle CW Firing S-68 Squib - 10 Amperes for 250 Milliseconds

Oscilloscope Trace of S Megacycle CW Firing Pulse on S-68 Squib - 10 Amperes for 290 Milliseconds.

FIGURE 55. Oscilloscope Trace of 8 Megacycle CW Firing Files.
S-68 Squib - 9.5 Amperes for 270 Milliseconds.

FIGURE 56. Oscilliscope Trace of 8 Megacycle CW Firing Pulse of S-68 Squib - 9.5 Amperes for 260 Milliseconds.

FIGURE 57. Oscilloscope Trace of 8 Megacycle MVC Firing Pulse on E-76 Blasting Cap - 16.5 Amperes for 440 Milliseconds.

FIGURE 58. Uscilloscope Trace of Wake payets and mirring Pulse on E-76 Blasting Cap - 13.6 Ambered for 125 Milliseconds.

* FREE SO.: Open Houseone James of a Suppress CVT social Chile of Social Social Social Annaes Computer (SMI) Historical

*IGBRE 60. Gentlioncope Trace of 8 Megacycle Mvs. Firita Cult. ... * * ** Thinting Cap. ... Amperes for 90 Milliaceousts.

FIGURE 61. Oselllogrope Trace of 8 Megacycle MVC Firing Pulse on Eldb Flanking Cap - 7 Amperes for 320 Milliseconds.

FIGURE 62. Oscilloscope Trace of a Menacycle MVC Firing Pulse on E-21 Blacking Cap - 4.5 Amperes for 100 Milliseconds.

THE STREET PROPERTY OF THE PRO

FIGURE 63. Oscilloscope Trace of 8 Megacycle MVC Firing Pulse on E-81 Blasting Cap - 5 Amperes for 100 Milliseconds.

FIGURE 64. Oscilloscope Trace of 8 Megacycle MVC Firing Pulse on E-81 Blasting Cap - 10.5 Amperes for 110 Milliseconds.

FIGURE 65. Oscilloscope " and to difference to the Firing Pulse on E-R1 (Fredlic 1900) It Ambered for L10 Hilliseconds.

FIGURE 66. Oscilloscope Trace of 8 Magacycle MVC Wiring Pulse on S-68 Squib - 11.5 Amperes for 130 Milliseconds.

FIGURE 67. Oscilloscope Trace of 8 Megacycle MVC Firing Pulse on S-68 Squib - 12 Amperes for 130 Milliseconds.

FIGURE 68. Oscilloscope Trace of 8 Megacycle MVC Firing Pulse on S-68 Squib - 13 Amperes for 130 Milliseconds.

00Y-TR-64-103

CONCLUSIONS

When using high current it is possible to function some items in 70 microseconds. This time is more than twice that produced by any of our present transmitters. The firings with RF Energy required somewhat longer times due to the lower current levels available. It is concluded from these tests that functioning of squibs or blasting caps with RF Energy is due to thermal stacking rather than to a single pulse.

RECOMMENDATIONS

It is recommended that in future tests of this kind a battery or capacitor type of power source be used. This will provide a faster rise time for the DC portion of this test.

DISTRIBUTION LIST

- 3 Dep, Inspector General, Director of Aerospace Safety (Dep, TIG for Safety), Hq USAF (AFTAS-G2), Norton AFB, Calif
- 1 Hq USAF (AFSSS-AE), Wash 25, DC
- 2 AFLC (MCSWT & MCIA-E), Wright-Patterson AFB, Ohio
- 1 AUL, Maxwell AFB, Ala
- 20 DDC (TISIR), Cameron Stn, Alexandria, Va (22314)
- 1 Bureau of Naval Wpns (Code RMMO-5), Dep of the Navy, Wash 25,DC
- 1 US Army Nat Comd, Fld Safety Agcy, Charlestown, Ind 1 Safety Div (AMCAD-SA), US Army Mat Comd, Wash 25, DC
- 1 US Army Ammo Procurement and Supply Agoy (SMUAP-Q), Joliet, Ill
- 1 Hq AFSC (SCMMS-3), Andrews AFB, Wash 25, DC
- 1 CO, Picatinny Arsenal (Tech Info Lib), Dover NJ
- 1 MATS (MAMSS/SBG), Scott AFB, Ill
- 1 US Naval Propellant Plant (Tech Lib Code T2), Indian Head, Md
- 10 00AMA (1-00YÎT, 1-00YIT-1, 1-00YSS, 1-00YEO, 1-00AEP, 5-00YEA), Hill AFB. Utah
- 3 ESD (ESSGD, ESSGE, ASRRM), Hanscom Field, Bedford, Mass
- 1 AFSC (SCSN), Andrews AFB, Wash 25, DC
- 2 ASD (ASSME, ASNDTE), Wright-Patterson AFB, Ohio
- 1 GEEIA (ROZIPS), Griffiss AFB, NY
- 2 E.I. DuPont De Nemours and Co, Pennsylvania Grove, NJ

OLIVER THE STATE OF THE STATE O	1. Squiles 2. Marking Caps 1. Zenneth A. Kertchaur	QUARSPINE.	1. Section 2. Marking Caps 1. Security Caps 1. Essentia A. Escicioner 1. Security A. Escicioner 1. Security A. Escicioner 1. Security A. Security S	
a .	COMPACTIONS OF ECH COMMENT FILIDS (M. SORE) has placed and controlled and control		7000th Attractitions Wing (CORM), Will fit Prote hear, Uth ACCOST Attractitions Wing (CORM), Will fit Prote hear, Uth ACCOST Attraction of the Country of th	
DIGLASSI PUD	1. Souths 2. Marting Caps 1. Removib A. Kartchner	CRITA ISSPERIO	UNCLASSIFIED 1. Haarting Caps 1. Learneth 4. Lattchmer BRIZASIFIED	
q	2005 Mismedighes thing (0000) mill at the bear and a constitution of the constitution		2009th Attendations Wing (00000), HILL Att: Note Bees, The Californianistics of the Californianistics of the Californianistics of SCHIES and MASCHIE. (017.71-64.00) Charles was realthable abids gave the lot of the Ligners. (017.71-64.00) Charles was realthable abids gave the lot current characteristics of the Note quelle and Masching stage. These charles did not the californianistics of the Note quelle and Masching stage. These charles did not the californian to be abid to the californian to be abid to the second and the californian the left Masching and Californianis Charles and Masching and Californianis Californianis and Masching superscript with the Californian that the left Masching represently the attendant to Masching and Masching was described by a direct current tro-school and the Californian and Masching on the Masching	