KNOWLEDGE-AUGMENTED GRAPH MACHINE LEARNING FOR DRUG DISCOVERY: FROM PRECISION TO INTERPRETABILITY

Zhiqiang Zhong & Davide Mottin Aarhus University

OUTLINE

- Introduction and Motivation
- Background of Drug Discovery
- Graph Machine Learning (GML) and Knowledge Graph (KG) in Drug Discovery
- IV. Knowledge-augmented Graph Machine Learning (KaGML) for Drug Discovery
- V. Practical Resources
- VI. Open Challenges and Future Directions

FUNDAMENTALS OF GRAPH MACHINE LEARNING (GML) AND KNOWLEDGE GRAPH (KG)

DEALING WITH GRAPHS IS DIFFICULT

Graphs are far more complex!

Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering
- Often dynamic and have multimodal features

(KNOWLEDGE) GRAPH MACHINE LEARNING

- (Knowledge) Graph Representation Learning
- Graph Embedding space ENC(u) h_u h_v

■ Node property prediction

$$\widehat{Y}_u = f(h_u)$$

■ Link prediction

$$\widehat{Y}_{uv} = f(h_u, h_v, e_{uv})$$

Graph property prediction

$$\widehat{Y}_{\mathcal{G}} = f(\bigoplus_{u \in \mathcal{V}} h_u)$$

☐ Etc.

(KNOWLEDGE) GRAPH MACHINE LEARNING

• (Knowledge) Graph Representation Learning

■ Node property prediction

$$\hat{Y}_u = f(h_u) - PREDENTITY$$

☐ Link prediction

$$\hat{Y}_{uv} = f(h_u, h_v, e_{uv}) - PAIRENTITY$$

Graph property prediction

$$\hat{Y}_{\mathcal{G}} = f(\bigoplus_{u \in \mathcal{V}} h_u) - \mathbf{ENTITY2ENTITY}$$

☐ Etc.

(KNOWLEDGE) GRAPH MACHINE LEARNING

Estimate the probability of visiting node von a random walk starting from node uusing some random walk strategy R.

"Deep" (K)GML Approaches

HOW TO TRAIN (K)GML MODELS?

Parameter optimisation

GML AND KG FOR DRUG DISCOVERY

GML FOR DRUG DISCOVERY

SE(3)-TRANSFORMER (NERUIPS'20)

- Rich information about molecules can be summarised into molecular graphs
- A variant of Transformer for 3D biomedical graphs, which is equivariant under continuous 3D rototranslations

DEEPFRI (NAT. COMMUN.'21)

- One protein can be represented as a graph by connecting residues close in 3D space
- Proteins can be organised into a big graph based on their similarities
- GML encoders can capture information from different perspectives about proteins

ONE MORE STEP: INVESTIGATE GML

- High data dependency
 - The effectiveness of GML depends on high-qualified training data
 - Biomedical data generation is time-consuming and expensive
- Poor generalisation
 - Uncertain performance on instances that have never been observed in training data
- Lacks interpretability
 - "Black box" damages the usability of clinical treatment

GML FOR DRUG DISCOVERY – PAPER LIST

Survey papers

- Utilizing graph machine learning within drug discovery and development, Brief. Bioinformatics, 2021.
- Graph representation learning in biomedicine and healthcare, Nat. Biomed. Eng., 2022.
- Graph-based generative models for de novo drug design, Drug Discov. Today Technol., 2019.
- A compact review of molecular property prediction with graph neural networks, Drug Discov. Today Technol., 2020.
- Some representative papers
 - Protein sequence design with a learned potential, Nat. Commun., 2022.
 - Learning from protein structure with geometric vector perceptrons, ICLR, 2021.
 - Deep learning of high-order interactions for protein interface prediction, KDD, 2020.
 - An E(3) equivariant variational autoencoder for molecular linker design, ICML, 2022.

KG FOR DRUG DISCOVERY

DECAGON (BIOINFOM. 18)

- KGRL methods summarise information about each drug
- The side effect is predicted based on the knowledge about each drug

ZENG ET AL. (CURR. OPIN. STRUCT. BIOL.'22)

- A complete pipeline from raw data sources to construct KGs
- Making predictions based on knowledge from KG

ONE MORE STEP: INVESTIGATE KG

- High data dependency
 - The effectiveness of KG depends on large-scale high-qualified training data
 - Biomedical data generation is time-consuming and expensive
- Poor generalisation
 - Supported tasks are limited to the KG context
- Good interpretability
 - Results generated based on human knowledge are more reliable.

KG FOR DRUG DISCOVERY – PAPER LIST

- Survey papers
 - Building a knowledge graph to enable precision medicine, Biarxiv, 2022.
 - Toward better drug discovery with knowledge graph, Curr. Opin. Struct. Biol., 2022.
- Some representative papers
 - Drug knowledge bases and their applications in biomedical informatics research, Brief. Bioinformatics, 2019.
 - Machine learning prediction and tau-based screening identifies potential alzheimer's disease genes relevant to immunity, Commun. Biol., 2022.
 - Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer, Nat. Commun., 2022.

ACKNOWLEDGEMENT

Zhiqiang Zhong Postdoc Aarhus University

Davide Mottin Asst. Prof. **Aarhus University**

Our work is supported by the Horizon Europe and Danmarks Innovations fond under the Eureka, Eurostar grant no E115712.

Thank you!

Questions?

zzhong@cs.au.dk https://zhiqiangzhongddu.github.io/

