

DELight: a Direct search Experiment for Light dark matter

Lea Burmeister on behalf of the DELight Collaboration Dark Matter and Neutrinos School 2025, Paris

The DELight Collaboration

- 3 institutes from Baden-Württemberg, Germany
- Upcoming experiment for light dark matter searches

universität freiburg

Light Dark Matter

Low mass parameter space is largely unexplored!

Superfluid Helium-4

- Excellent choice as a target
 - Low nuclear mass
 - Inexpensive
 - Scalable
 - ER/NR discrimination
 - Self-cleaning:
 - Other atomic species freeze-out

DELight detection principle

DELight detector

- Prompt signals from photons
- Delayed arrival time for triplet excimers

L. Burmeister, Heidelberg University - DELight Collaboration

DELight detector

- Prompt signals from photons
- Delayed arrival time for triplet excimers
- Quasiparticles evaporates He atom (quantum evaporation)
 - Absorbed onto wafer

L. Burmeister, Heidelberg University - DELight Collaboration

DELight detector

- Prompt signals from photons
- Delayed arrival time for triplet excimers
- Quasiparticles evaporates He atom (quantum evaporation)
 - Absorbed onto wafer
- Wafer must be kept free from He

Magnetic MicroCalorimeters (MMCs)

- Operated below 100 mK
- Deposition of energy

Rise in temperature of sensor

Change of magnetic flux

Picture: D. Hengstler et al.

Large-area cryogenic microcalorimeters (LAMCALs)

 Particle generates athermal phonons in absorber

Reach phonon collector: Breaks cooper pairs

• Diffuse to sensor: Release energy and rise temperature of sensor

"DELight Demonstrator"

- Helium cell at UHD
 - MMC testing
 - Background modelling
 - DAQ
 - · ...and much more

DAQ and trigger system for DELight

Level-1 (L1) trigger will run on a FPGA

FIR filter

L. Burmeister, Heidelberg University - DELight Collaboration

DAQ and trigger system for DELight

• Level-1 (L1) trigger will run on a FPGA

• FIR filter \longrightarrow Optimal filter: $S(\nu) = a \cdot A(\nu) + n(\nu)$

Template

Received signal

Noise

Vue-des-Alpes Underground Lab

- Shallow underground lab in Switzerland
 - 230m rock overburden (620m.w.e.)
- Hosts γ-spectrometer GeMSE
 - Operated by the University of Freiburg

Outlook

- Phase I/II
 - Shallow lab at VdA
 - 10L helium target
 - Threshold of 20eV
- Long range plan
 - Underground lab
 - Larger helium target
 - Threshold of <10eV
 - · ...stay tuned!

