Fortgeschrittenenpraktikum der Fakultät Physik

Versuch 47: Temperaturabhängigkeit der Molwärme von Festkörpern

Luca Dietrich (luca.dietrich@tu-dortmund.de) Cihad Gözsüz (cihad.goezsuez@tu-dortmund.de)

Durchführung: 21.04.2021 Abgabe: xx.05.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3							
2	Theorie 2.1 Dulong-Petit-Gesetz 2.2 Einstein-Gesetz 2.3 Debye-Gesetz 2.4 Weitere Anmerkungen	3 4							
3	Aufbau und Durchführung3.1 Aufbau3.2 Durchführung								
4		12							
5	Diskussion	14							
Lit	Literatur								

1 Zielsetzung

Ziel des Versuches ist es die Temperaturabhängigkeit der Molwärme von Kupfer zu messen. Diese wird mit den Vorhersagen vom klassischen Dulong-Petit-Gesetz sowie mit dem Einstein- und dem Debye-Gesetz zur Molwärme verglichen. Zusätzlich wird ein Wert für die Debye-Temperatur θ_D bestimmt und mit dem Theoriewert verglichen.

2 Theorie

2.1 Dulong-Petit-Gesetz

Atome in einem Festkörper sind durch Gitterkräfte an festen Stellen gebunden. Sie besitzen jedoch drei Freiheitsgrade, in die sie schwingen können. Im Mittel ist deren kinetische Energie gleich der potentiellen Energie. Die Energie pro Freiheitsgrad im klassischen Modell ist gegeben durch $E=\frac{1}{2}k_BT$. Dabei ist k_B die Boltzsmann-Konstante und T die Temperatur. Die mittlere Energie eines Atoms in drei Dimensionen beträgt also

$$E = E_{\rm kin} + E_{\rm pot} = \frac{3}{2}k_B T + \frac{3}{2}k_B T = 3k_B T.$$
 (1)

Bei einem Mol in einem Festkörper ist die innere Energie

$$U = 3 \cdot N_L \cdot k_B \cdot T. \tag{2}$$

Hierbei steht N_L für die Loschmidt-Zahl. Somit ist die klassische spezifische Molwärme gegeben durch eine Konstante:

$$C_V = \frac{\partial E}{\partial T}\Big|_V = 3N_L k_B = 3R \tag{3}$$

In der klassischen Betrachtung ist die Molwärme also sowohl Material als auch Temperaturunabhängig. Dieses Eigenschaft nennt man das Dulong-Petit-Gesetz.

2.2 Einstein-Gesetz

Das Modell von Albert Einstein befasst sich mit einer quantenmechanischen Näherung zur Bestimmung der Molwärme. In dem Einstein-Modell ist die Annahme, dass alle Gitterschwingungen mit der gleichen Frequenz ω schwingen. Diese Gitterschwingungen werden des Weiteren auch gequantelt betrachtet und besitzen demnach ein vielfaches von $\hbar\omega$ als Energie. Diese gequantelten Gitterschwindungen werden auch Phononen genannt.

Die Energien sind im Festkörsper boltzmann-verteilt. Dadurch kann die Wahrscheinlichkeit, dass ein Phonon bei thermischem Gleichgewicht bei der Temperatur T die Energie $n\hbar\omega$ besitzt, einfach mit der Formel

$$W(n) = \exp\frac{-n\hbar\omega}{k_B T} \tag{4}$$

berechnet werden.

Der Erwartungswert X der Energie wird berechnet, indem die über alle n zwischen 0 und ∞ mit den entsprechenden W(n) Koeffizienten summiert wird. Diese Rechnung ergibt

$$X_{\text{Einstein}} = \frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1}.$$
 (5)

Die mittlere Energie im Einstein-Modell beträgt also

$$\langle u \rangle_{\text{Einstein}} = \frac{X}{Z} = \frac{\hbar \omega}{\exp\left(\frac{\hbar \omega}{k_B T}\right)}.$$
 (6)

Abschließend ergibt sich die Molwärme zu

$$(C_V)_{\text{Einstein}} = 3R \left(\frac{\hbar\omega}{k_B T}\right)^2 \frac{\exp\left(\frac{\hbar\omega}{k_B T}\right)}{\left(\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1\right)^2}.$$
 (7)

Es ist festzustellen, dass die Molwärme im Einstein-Modell gegen den klassischen Wert 3R bei hohen Temepraturen konvergiert. Bei niedrigen Temperaturen also $T\to 0$ läuft die Molwärme jedoch gegen 0.

2.3 Debye-Gesetz

Im Vergleich zum Einstein-Modell, wird im debyeschem Modell angenommen, dass Phononen bis zu einer Grenzfrequenz ω_D eine Verteilung von Frequenzen besitzen können. Eine Grenzfrequenz existiert, weil ein Festkörper eine endlich große Dimension und somit auch nur endlich viele Eigenschwingungen hat. Diese Grenzfrequenz wird Debye-Frequenz genannt. Es wird auch angenommen, dass bis zu der Grenzfrequenz eine lineare Dispersionsrelations, also $\omega = \nu_s k$, gegeben ist. Die Anzahl der Eigenschwingungen beträgt $3N_L$ wobei N_L die Loschmidt-Konstante darstellt. Die Loschmidt-Konstante gibt die Anzahl N der Moleküle pro Volumen V eines idealen Gases bei einer Temperatur von $T=273,15\mathrm{K}$ und einem Druck von $p=101,325\mathrm{kPa}$ an also:

$$N_L = \frac{N}{V} = \frac{p}{k_B T}. (8)$$

Wird die Frequenzverteilung $Z(\omega)$ bis zu der Grenzfrequenz ω_D integriert, so sollte also $3N_L$ rauskommen

$$\int_0^{\omega_D} Z(\omega) d\omega = 3N_L. \tag{9}$$

Um Einblicke aus diesem Integral zu erhalten, ist es nützlich die Zustandsdichte $Z(\omega)$ im k-Raum zu schreiben. Das geht über die Umformung

$$Z(\omega)d\omega = Z(k)dk \tag{10}$$

$$\Leftrightarrow \qquad Z(\omega) = Z(k) \frac{dk}{d\omega} \tag{11}$$

Die Zustandsdichte im k-Raum ist im dreidimensionalem Fall immer

$$Z(k) = \frac{L^3}{(2\pi)^3} \frac{4\pi k^3}{3} = \frac{V}{8\pi^3} \frac{4\pi k^3}{3}$$
 (12)

also ist die Zustandsdichte im Frequenzraum

$$Z(\omega)d\omega = \frac{L^3}{2\pi^2}\omega^2 \left(\frac{1}{\nu_t^3} + \frac{2}{\nu_{tr}^3}\right)d\omega \tag{13}$$

$$Z(\omega)d\omega = \frac{9N_L}{\omega_D^3}\omega^2 d\omega. \tag{14}$$

Die Gesamtenergie U ergibt sich dann durch das Integrieren über alle Frequenzen

$$U = \int_0^{\omega_D} \frac{Z(\omega)}{\exp\left(\frac{\hbar\omega}{k_B T} - 1\right)} d\omega. \tag{15}$$

Abschließend ergibt sich die Molwärme zu

$$C_{V,\text{Debye}} = \frac{d}{dT} \frac{9N_L}{\omega_D^3} \int_0^{\omega_D} \frac{\omega^3}{\exp\left(\frac{\hbar\omega}{k_BT} - 1\right)} d\omega. \tag{16}$$

Damit lässt sich die innere Energie wie folgt berechnen:

$$U = \int_0^{\omega_D} Z(\omega) \langle n(\omega) \rangle \hbar \omega d\omega = \int_0^{\omega_D} \frac{Z(\omega) \hbar \omega d\omega}{\left(\exp\left(\frac{\hbar \omega}{k_B T}\right) - 1\right)}.$$
 (17)

wobei $\langle n(\omega) \rangle$ die Bose-Einstein-Statistik angibt. Die Ableitung nach T der inneren Energie ergibt die Lösung für die Molwärme. Die Molwärme im Debye-Modell hat die Form

$$C_{V, \text{Debye}} = \frac{d}{dT} \frac{9N_L}{\omega_D^3} \int_0^{\omega_D} \frac{\omega^3 d\omega}{\left(\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1\right)}$$

Durch Einsetzen der Substitution

$$x = \frac{\hbar\omega}{k_B T} \tag{18}$$

$$\frac{\theta_D}{T} = \frac{\hbar \omega_D}{k_B T} \tag{19}$$

wird die Molwärme zu

$$C_{V,\text{Debye}} = 9R \left(\frac{\theta_D}{T}\right)^3 \int_0^{\frac{\theta_D}{T}} \frac{x^4 \exp(x)}{(\exp(x) - 1)^2}.$$
 (20)

Das θ_D wird die Debye-Temperatur genannt. Die Molwärme im Debye-Modell bei großen Temperaturen also x << 1 kovnergiert gegen 3R, die klassischen Näherung. Bei kleinen Temperaturen ist die Molwärme jedoch proportional zu T^3 .

2.4 Weitere Anmerkungen

Es ist wichtig zu erwähnen, dass die Leitungselektronen im Festkörper ebenfalls einen Beitrag zur Molwärme leisten. Vor allem bei niedrigen Temperaturen spielt der Einfluss der Leitungselektronen eine größere Rolle. Die Elektronen sind nach der Fermi-Dirac-Statistik verteilt. Daraus folgt, dass der Einfluss auf die Molwärme der Leitungselektronen proportional zu T sein muss.

3 Aufbau und Durchführung

3.1 Aufbau

Der Aufbau des Experiments ist in Abbildung 1 dargestellt. Für den Versuch wird ein Dewar-Gefäß verwendet, in dem im Laufe des Experiments flüssiger Stickstoff gefüllt wird, damit der Rezipient gekühlt werden kann. Im Rezipienten befindet sich die zu untersuchende Kupferprobe. In der Kupferprobe befindet sich eine Heizwicklung, womit die Probe erhitzt werden kann. Um die Kupferprobe befindet sich noch ein Kupfer-Zylinder, der ebenfalls über eine Heizwicklung verfügt. Beide Heizwicklungen können jeweils getrennt voneinander über eine Stromversorgung bzw. ein Konstantstromgerät mit elektrischer Energie versorgt werden. Zusätzlich befindet sich im Zylinder und an der Probe jeweils ein PT-100 Messwiderstand über den mit Hilfe eines Ohmmeters der Widerstand gemessen werden kann. Der Widerstand varriert mit der Temperatur, dadurch kann aus dem Widerstand auf die Temperatur geschlossen werden. Außerdem ist der Rezipient noch mit einer Vakuumpumpe und einer Heliumflasche inklusive Absperrhahn und Reduzierventil verbunden.

Abbildung 1: Schematischer Aufbau des Versuchs [1]

3.2 Durchführung

Zu Beginn wird der Rezipient mit Hilfe der Vakuumpumpe evakuiert. Nach der Evakuierung wird der Rezipient mit Helium gefüllt, damit beim Abkühlen ein möglichst großer Wärmefluss stattfinden kann, denn Helium hat eine hohe thermische Leitfähigkeit. Anschließend wird das Dewar-Gefäß mit flüssigen Stickstoff gefüllt und der Rezipient wird bis zu einer Temperatur von 80 K abgekühlt. Wenn sowohl die Probe als auch der Zylinder die gewünschte Temperatur erreicht haben, wird der Rezipient wieder evakuiert, damit möglichst keine Konvektion mehr stattfinden kann und die Messung kann beginnen.

Dazu wird die Probe über ein Konstantstromgerät beheizt und die Zeitmessung wird gestartet. Damit keine Wärmeverluste durch Konduktion von der Probe zum Zylinder stattfinden, sollte die Temperatur zwischen Zylinder und Probe immer identisch gehalten werden. Dafür muss die Leistung für die Heizwicklung vom Zylinder so varriert werden, dass die beiden Temperaturen sich nicht unterscheiden. Also sollte die Stromversorgung zur Gehäuseheizung stetig angepasst werden. Im Kontext der Durchführung bedeutet dies, dass der Widerstand der beiden Messwiderstände identisch gehalten werden sollte. Während der Messung sollte in regelmäßigen Abständen die Werte der beiden Widerstände, die aktuelle Messzeit, die Heizspannung und der Heizstrom für die Heizwicklung der Probe notiert werden. Wichtig ist zudem, dass die Spannung und der Strom der Heizwicklung für die Probe nur direkt nach der Aufnahme eines Messwertes verändert werden darf. Die Starttemperatur für die Messung beträgt 80 K und die Endtemperatur 300 K.

4 Auswertung

4.1 Bestimmung von C_p und C_V

Zunächst wird die Molwärme bei konstantem Druck C_p bestimmt. C_p kann wie folgt bestimmt werden:

$$C_p = \frac{U \cdot I \cdot M \cdot \Delta t}{m \cdot \Delta T} \tag{21}$$

U und I sind hierbei die angelegte Heizspannung und Heizstrom der Probe für den jeweiligen Zeitraum zwischen 2 Messwerten, M ist die Molmasse des Materials der Probe, m ist die Masse der Probe, ΔT ist die Temperaturdifferenz, die zwischen 2 Messwerten auftritt und Δt ist die Zeitdifferenz zwischen 2 Messwerten. Die Molmasse M und die Masse m der Probe beträgt:

$$M = 0.06355 \frac{\text{kg}}{\text{mol}}$$
$$m = 0.342 \,\text{kg}$$

Um die gemessenen Pt-100-Widerstände in die entsprechenden Temperaturen umzurechnen kann folgende Formel genutzt werden:

$$T = 0.00134 R^2 + 2.296R - 243.02 (22)$$

Für R wird der Widerstand in Ohm eingesetzt und die sich daraus ergebende Temperatur T besitzt die Einheit °C. Anschließend wird die Temperatur von der Probe T_P und dem Zylinder T_Z gemittelt und mit der gemittleten Temperatur T wird im Folgenden gerechnet.

Aus C_p lässt sich mit Formel (23) C_V bestimmen:

$$C_p - C_V = 9 \cdot \alpha^2 \cdot \kappa \cdot V_0 \cdot T \quad \Leftrightarrow \quad C_V = C_p - 9 \cdot \alpha^2 \cdot \kappa \cdot V_0 \cdot T \tag{23}$$

 α ist dabei der lineare Ausdehnungskoeffizient, κ [2] ist das Kompressionsmodul und V_0 [3] ist das Molvolumen. Für Kupfer können folgende Werte für κ und V_0 verwendet werden:

$$\kappa = 140\,\mathrm{GPa}$$

$$V_0 = 7.11 \cdot 10^{-6} \, \frac{\mathrm{m}^3}{\mathrm{mol}}$$

Die Werte von α sind nicht konstant sondern abhängig von der Temperatur der Probe, deswegen wird eine Ausgleichsrechnung mit einem Polyonom 4. Grades

$$\alpha(T) = a \cdot T^4 + b \cdot T^3 + c \cdot T^2 + d \cdot T + e \tag{24}$$

durch die Werte aus Abbildung 2 durchgeführt.

T [K]	70	80	90	100	110	120	130	140
α [10 ⁻⁶ grd ⁻¹]	7,00	8,50	9,75	10,70	11,50	12,10	12,65	13,15
т [к]	150	160	170	180	190	200	210	220
α [10 ⁻⁶ grd ⁻¹]	13,60	13,90	14,25	14,50	14,75	14,95	15,20	15,40
т [к]	230	240	250	260	270	280	290	300
α [10 ⁻⁶ grd ⁻¹]	15,60	15,75	15,90	16,10	16,25	16,35	16,50	16,65

Abbildung 2: α für verschiedene Temperaturen T[1]

Diese Ausgleichsrechnung wird mit Python und $scipy.optimize.curve_fit$ erstellt und die Unsicherheiten mit uncertainties.ufloat berechnet. Dies ergab folgende Werte für die Parameter

$$\begin{split} a &= (-8.2 \pm 0.7) \cdot 10^{-9} \, \mathrm{K}^{-5} \\ b &= (7.4 \pm 0.5) \cdot 10^{-6} \, \mathrm{K}^{-4} \\ c &= (2.5 \pm 0.1) \cdot 10^{-3} \, \mathrm{K}^{-3} \\ d &= (0.41 \pm 0.02) \, \mathrm{K}^{-2} \\ e &= (11.3 \pm 0.6) \, \mathrm{K}^{-1} \end{split}$$

und folgenden Plot:

Abbildung 3: α in Abhängigkeit von T mit Ausgleichsrechnung

Mit Hilfe von dieser Ausgleichsfunktion in Abbildung 3 kann C_V in Abhängigkeit von der Temperatur T mit Formel (23) berechnet werden. Die Werte für C_p und C_V sind in Tabelle ?? zu sehen.

Diese Werte in einem Diagramm aufgetragen gegen die Temperatur T ergibt:

Abbildung 4: C_V in Abhängigkeit von T mit Fehlerbalken

In Abbildung 4 ist zu erkennen, dass es bei der Messung einige Messfehler aufgetreten. Deswegen werden die Werte Nummer 4, 5 und 21 aus Tabelle $\ref{thm:prop}$ als Messfehler herausgenommen und erneut in einem Diagramm gegen die Temperatur T aufgetragen.

Abbildung 5: C_V in Abhängigkeit von T mit Fehlerbalken

In den folgenden Abschnitten wird auch nur mit den Werten von C_V aus Abbildung 5 gerechnet.

4.2 Experimentelle Bestimmung der Debye-Temperatur θ_D

Zur Bestimmung der Debye Temperatur θ_D werden nur die Molwärmen C_V für eine Temperatur von unter 170 K betrachtet. Mit Hilfe der Debye-Funktion aus Quelle [1] können die Werte für $\frac{\theta_D}{T}$ für die entsprechenden C_V bestimmt werden. $\frac{\theta_D}{T}$ multipliziert mit der entsprechenden Temperatur T ergibt dann die Debye Temperatur θ_D . Die Werte für T, C_V , $\frac{\theta_D}{T}$ und θ_D sind in Tabelle ?? aufgetragen.

Die verschiedenen Werte für die Debye-Temperatur θ_D ergeben gemittelt:

$$\theta_D = (329 \pm 19) \,\mathrm{K}$$

Der Mittelwertsfehler wurde mit Formel (25) bestimmt.

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n^2 - n} \cdot \sum_{i=1}^{n} (\overline{x} - x_i)^2}$$
 (25)

Dabei ist $\sigma_{\overline{x}}$ der Mittelwertsfehler, n ist die Anzahl der Werte über die gemittelt wird und \overline{x} ist der Mittelwert.

Abbildung 6: θ_D in Abhängigkeit von C_V

Abbildung 7: θ_D in Abhängigkeit von T

4.3 Theoretische Bestimmung der Debye-Temperatur θ_D

Die Debye Temperatur kann auch theoretisch bestimmt werden. Dazu wird Formel (15) aus Abschnitt 2.3 verwendet. Für die Geschwindigkeiten v_l und v_{tr} werden die Werte aus Quelle [1] genutzt, diese lauten:

$$v_l = 4.7 \, \frac{\text{km}}{\text{s}}$$
$$v_{tr} = 2.26 \, \frac{\text{km}}{\text{s}}$$

Mit Hilfe von Formel (13) ergibt sich dann mit den Geschwindigkeiten v_l und v_{tr} für die Debye-Frequenz ω_D folgende Formel:

$$\omega_D = \sqrt[3]{\frac{18\pi^2 N_A}{V_0} \cdot \left(\frac{1}{v_l^3} + \frac{2}{v_{tr}^3}\right)^{-1}}$$
 (26)

 $N_A=6{,}022\cdot10^{23}\,{
m mol}^{-1}$ ist dabei die Avogadro-Konstante. Die Werte eingesetzt ergibt dann für die Debye-Frequenz folgenden Wert:

$$\omega_D = 4{,}349 \cdot 10^{13} \, \mathrm{Hz}$$

Die Debye-Temperatur θ_D lässt sich nun mit Formel (27) bestimmen.

$$\theta_D = \frac{\hbar}{k_B} \cdot \omega_D \tag{27}$$

Dabei ist $\hbar=1{,}055\cdot 10^{-34}\,\mathrm{Js}$ [4] das reduzierte planksche Wirkungsquantum und $k_B=1{,}381\cdot 10^{-23}\,\frac{\mathrm{J}}{\mathrm{K}}$ [5] ist die Boltzmann-Konstante. Damit ergibt sich für die Debye-Temperatur θ_D ein theoretischer Wert von:

$$\theta_D = 332{,}102\,{\rm K}$$

5 Diskussion

Literatur

- [1] TU Dortmund. Versuchsanleitung zu Versuch V47: Temperaturabhängigkeit der Molwärme von Festkörpern.
- [2] Literaturwert für das Kompressionsmodul von Cu. URL: http://www.periodensystem-online.de/index.php?el=29&id=modify (besucht am 27.05.2021).
- [3] Literaturwert für das Molvolumen von Cu. URL: https://de.wikipedia.org/wiki/ Kupfer (besucht am 27.05.2021).
- [4] Literaturwert für das reduzierte planksche Wirkungsquantum. URL: https://de.wikipedia.org/wiki/Plancksches_Wirkungsquantum#Reduziertes_Plancksches_Wirkungsquantum (besucht am 27.05.2021).
- [5] Literaturwert für die Boltzmann-Konstante. URL: https://de.wikipedia.org/wiki/Boltzmann-Konstante (besucht am 27.05.2021).