Download the source code from Github

- 1. Cd to directory where the source code needs to be downloaded.
- 2. Download the code

ml git git clone https://github.com/jcwarner-usgs/COAWST.git

Build MCT libraries - (Needs to be done only one time)

cd ROOT /COAWST/Lib/MCT ml intel ml openmpi ./configure make

1. copy ROOT/Lib/MCT/mpeu/ libmpeu.a → ROOT/COAWST/Lib/MCT/mct/

Changes needed to be done in compiler directory

- 1. Change the value of the following variables in the file **ROOT**/COAWST/Compilers/Linux-ifort.mk
 - a. MCT INCDIR
 - b. MCT LIBDIR

Change them to **ROOT**/Lib/MCT/mct

Compiling COAWST Model

Changes to script to build COAWST Model (coawst.bash)

- 1. Copy the coawst.bash to the project directory
- 2. Change the following variables in coawst.bash

Variable value to be changed	Correct value	remark
COAWST_APPLICATION	Header file name in all caps	
MY_ROOT_DIR	Address to where the project is	
MY_ROMS_SRC	Where the COAWST code is	
MY_HEADER_DIR	\${MY_PROJECT_DIR}	Where the .h file is?
MY_ANALYTICAL_DIR	\${MY_PROJECT_DIR}	For customized bio model .h files?
BINDIR	\${MY_PROJECT_DIR}	Where to create the executable
SCRATCH	\${MY_PROJECT_DIR}/Build	Where to out the project specific f90 files.
For WW3 do the same as necessary		

Building COAWST executable

- 1. Change to a development node
- 2. Copy any other .h files that are needed (analytical.h files)

```
ml ufrc
srundev --time=1:00:00
ml intel/2018.1.163 openmpi/3.1.2 netcdf-f/4.4.4 hdf5/1.10.1 netcdf-c/4.5.0
chmod 777 coawst.bash
./coawst.bash
exit
```

Running a project

- 1. Set correct address for the roms.in and swan.in in the coupler.in file
- 2. Give the number of **processors** (**not nodes really**) needed for roms and swan. The number given for roms should match NtileI X NtileJ.

4.1 Coupler file (coupler.in)

- 1. Change the address for the ROMS, SWAN and WRF .in files
 - a. WAV name
 - b. OCN name
 - c. HYD name

4.2 SWAN (swan.in)

1.

4.3 ROMS (roms.in)

- 1. Set the MyAppCPP to the name of the .h HEADER file. (in all caps)
- 2. Give the needed number of partitions/processors in (NtileI and NtileJ) i and j direction.
- 3. Change the varname **ROOT**/ROMS/EXTERNAL/VARINFO.dat
- 4. Set the names and address for the following as needed.
 - a. GRDNAME
 - b. ININAME
 - c. BRYNAME
 - d. CLMNAME
 - e. TIDENAME
 - f. SSFNAME
 - g. SPOSNAM

5 Submitting the job

- 1. Make sure the number of tasks (--ntasks) matches the cumulative number of processors requested for each model (roms, swan,WRF).
- 2. Give the correct CoawstM address.

6 Reading and processing data

6.1 Some info on the variables

- 1. u,v velocities are locally oriented east and north and NOT global east and north.
- 2. u_eastward and v_eastward are already rotated velocities in correct global direction and they are also in rho points.
- 3. ubar and vbar at depth averaged velocities.
- 4. Hwave the SWAN calculated significant wave height
- 5. bottom and top wave period (can be different due to wave-current interaction)
- 6. pm and pn are inverse of delx and dely.

6.2 View data

1. X11 window server for PuTTY to see figures from the HPC; install Xming

ml neview

neview name of the .nc file

7 Notes

Sometimes the file permissions are not given to run the models. When we try to run the script "permission denied".

To see file permissions in a directory use

ls -lrst

Change the file permissions by

chmod 777 [file name]