

(Domain-Adversarial) Neural Network classifiers of *b*-jets origins in top quark pair productions (*ttbar*) with additional *b*-jets in the final state

Master Thesis Defense by Ning Ni

Professor Supervisor: Dmitri Tsybychev

Postdoc Advisor: **Egor Antipov**

Outline

Background Introduction

- The ATLAS detector
- Motivation to analyze top quark pair production

Thesis Work

- Event Selection
- Reconstructed discriminating features
- Construction of neural network (NN)
- Analyzed p_T bias and Compared with Boosted Decision Tree (BDT)
- Exploration of Domain-Adversarial Neural Network (DANN)

The ATLAS Detector

- pp collision in Run2 has √s = 13 TeV.
- Integrated luminosity: ~140 fb⁻¹.
- Major systems:
 - 1. Inner Detector
 - 2. Calorimeters
 - 3. Muon Spectrometer
 - 4. Magnet system

Motivation

- *ttbar* production in association with additional *b*-jets is the major background for many BSM searches (SUSY) as well as to rare SM processes (*ttH*, 4-tops ...).
- Measurement of QCD radiation jets produced in ttbar is crucial for tuning MC generators parameters.
- Theoretical prediction of ttbar + *b*-jets final state is highly non-trivial.

Event Selection

Removal of Overlap

Use Heavy Flavor Filter Flag (HFFF) to avoid overlap of inclusive sample

Sample	DID number	Only keep when HFFF is
$t\bar{t}$ inclusive	410472	0
$t\bar{t} + b\bar{b}$	411076	1
$t\bar{t} + b$	411077	2
$t\bar{t} + c$	411078	3

Reweighted event yield from each source after event selection.

Source	2015+2016	2017	2018
Data	44615	55004	72485
Total MC	44586	55789	70277
$t ar{t}$	42994	53556	67601
single top	1261	1627	2135
$t\bar{t} + V$	201	253	324
$t\bar{t} + H$	81	99	131
diboson	17	212	30
Z+jets	17	24	31
others	16	19	25

Monte Carlo (MC) Modeling

Reconstructed Discriminating Variables

Discriminating Variables: Invariant Mass with lepton

b-jets from tops are expected to have invariant mass $\sim m_{top}$ (smaller) with either of the two leptons.

Discriminating Variables: Invariant Mass between b-jets

b-jets from tops are expected to have invariant mass $\sim m_{top}$ (larger) with each other.

Discriminating Variables: Radial Distance with lepton

b-jets from tops are expected to be closer to leptons.

Discriminating Variables: Radial Distance between b-jets

b-jets from gluons are expected to be closer to each other.

Construction of Neural Network (NN)

- Machine learning system made up of connected nodes/neurons
- Train a model by a set of discriminating features to learn a way that minimizes loss function
- In this project, used to solve a binary classification problem
- Built with the Tensorflow and Keras deep learning API

Hyper-Parameter Setup

Activation Function	Sigmoid
Loss Function	binary crossentropy
Hidden Layers	128, 128
Output Layer	1
Optimizer	Keras Adam
initial learning rate L_0	0.003
decay rate k	0.1

$$L = L_0 * e^{-k*n}$$

L: current learning rate

L₀: initial learning rate

k : decay rate

n : current epoch number

NN Performance

Efficiencies Comparison between NN and BDT

Efficiency: ratio of the number of correctly assigned *b*-jets by the classifier to the truth number of *b*-jets in one category

Efficiencies Comparison between NN and BDT

100	50	60	22	-2	8	61	61	33	34	61	61	33	37	-8	dR_lep_close	
50	99	36	52	5	17	59	61	41	43	61	58	43	44	1	dR_lep_far	Correlation matrix
60	36	100	55	8	15	38	39	66	67	31	47	63	76	46	mass_lep_close	Correlation matrix
22	52	55	100	15	22	30	29	76	76	45	14	89	63	57	mass_lep_far	$\sum (x-m_x)(y-m_y)$
-2	5	8	15	100	40	0	1	11	11	-2	3	10	14	11	dR_bjet_close	$r = rac{\sum (x-m_x)(y-m_y)}{\sqrt{\sum (x-m_x)^2 \sum (y-m_y)^2}}$
8	17	15	22	40	99	9	10	17	18	8	12	17	20	6	dR_bjet_far	
61	59	38	30	0	9	100	-1	60	1	51	46	32	31	-2	dR_lep_el	
61	61	39	29	1	10	-1	100	0	61	47	51	30	34	-3	dR_lep_mu	
33	41	66	76	11	17	60	0	99	33	37	23	73	62	50	mass_lep_el	As the classifier will be
34	43	67	76	11	18	1	61	33	100	36	26	72	64	48	mass_lep_mu	used for unfolding of
61	61	31	45	-2	8	51	47	37	36	99	-1	62	4	0	dR_lep_1pt	leading, sub-leading from tops and additional <i>b</i> -jets
61	58	47	14	3	12	46	51	23	26	-1	99	0	62	-6	dR_lep_2pt	p_{T} (4 variables in total),
33	43	63	89	10	17	32	30	73	72	62	0	100	40	53	mass_lep_1pt	we aim that prediction of
37	44	76	63	14	20	31	34	62	64	4	62	40	100	47	mass_lep_2pt	classifier is independent of
-8	1	46	57	11	6	-2	-3	50	48	0	-6	53	47	100	pt	transverse momentum p _T
%	OR lep	h _{ep} fa	nas lek	ss lex	O'A bjet far	olp of the state o	0/p/6/6/6/	na h h	ss lex	OR SS SE	de 160 160 160 160 160 160 160 160 160 160	lep ?	Ss lex	SS PE	-30,	18

pT bias in Boosted Decision Tree (BDT) Model

 p_T of the leading b-jet from tops assigned by NN algorithms and compared to the truth from leading p_T tops spectrum.

Efficiencies of Three NN Classifiers

pT bias in NN Model

deviation of All_var model: 0.023575461021797226 deviation of dR model: 0.15537811271183247 deviation of Mass model: 0.17183578715599848 weighted deviation of All_var model: 0.3243938529932606 weighted deviation of dR model: 2.6663535106861938 weighted deviation of Mass model: 2.434090543234854

pT bias Comparison between NN and BDT

Leading *b*-jet from tops in 3j3b events

pT bias Comparison between NN and BDT

Leading *b*-jet from tops in 4j4b events

Domain-Adversarial Neural Network (DANN)

- p_T bias suppression setups
- Build nominal vs. alternative MCs-independent classifier

DANN: Suppress pT Bias

- Classifier label: the original set of variables for b-jets, no b-jet p_T (set to 0 for all).
- Domain label: the original set of variables for b-jets plus real b-jet p_T .

DANN: Suppress pT Bias

DANN: PowPy8 vs. Sherpa 2.2.10

DANN: PowPy8 vs. Sherpa 2.2.10

DANN: PowPy8 vs. Sherpa 2.2.10

- Increasing deviation of *b*-jets from gluons
- Decreasing deviation of b-jets from tops

The absolute difference value between class/domain ratio and 1, in dependence of the scale factor.

DANN: PowPy8 vs. MG_aMC@NLO+Py8

DANN: PowPy8 vs. MG_aMC@NLO+Py8

DANN: PowPy8 vs. MG_aMC@NLO+Py8

- Increasing deviation of b-jets from gluons
- Decreasing deviation of b-jets from tops
- Similar pattern but flat after 9

Conclusion

DNN:

- Higher efficiency than the previous BDT classifier in 4j4b events (~5%).
- Lower p_T bias than the BDT, making DNN better (~6% in 3j3b events and ~10% in 4j4b events).

DANN:

- Decease p_T bias even more by showing an optimal $\lambda = 0.6$.
- Potential of MC-independent classifier.

Back up

Back up

