Document on Question 28 Exercise(8.1)

Pothukuchi Siddhartha

Abstract—This a simple document explaining a question about the concept of similar triangles.

Download all python codes from

svn co https://github.com/SiddharthPh/ Summer2020/trunk/document/codes

QUESTION

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:

- a) $\triangle AMC \cong \triangle BMD$
- b) $\triangle DBC$ is a right angle.
- $c)\triangle DBC \cong \triangle ABC$
- d)CM = $\frac{1}{2}$ AB

b) By Latex-tikz

The tables below are the values used for constructing the triangles in both Python and Latex-Tikz.

	Initial Input Values.		
	$\vec{BC}(a)$	$-4\hat{i}$	
ĺ	$\vec{AC}(b)$	$3\hat{j}$	
	$\angle(ACB)$	90°	

To construct $\triangle ACB$

Derived Values.		
\vec{CM}	$2\hat{i} + 1.5\hat{j}$	
$ec{CD}$	$4\hat{i} + 3\hat{j}$	

To construct $\triangle DCB$

CONSTRUCTION

The python code for the figure is

./code/traingle.py	

The latex- tikz code is

The above latex code can be compiled as standalone document

./figs/triangle_fig.tex	
-------------------------	--

SOLUTION

From the figure, lets assume \vec{C} to be the origin.

Fig. 1: $\triangle ACB$

$$\vec{C} = 0$$

$$\vec{CA} = b\hat{j}$$

$$\vec{CB} = a\hat{i}$$

$$\vec{M} \text{ is the position vector of mid-point of } \vec{BA}.$$

$$\vec{CM} = \vec{CB} + \vec{BM} \ [\vec{BM} = (1/2) * \vec{BA}]$$

$$\vec{CM} = a\hat{i} + (1/2)(b\hat{j} - a\hat{i})$$
Therefore, $\vec{CM} = (1/2)(b\hat{j} + a\hat{i})$

Fig. 2: $\triangle DBC$

From the figure, $\vec{CD} = 2(\vec{CM})$ $\vec{CD} = a\hat{i} + b\hat{j}$

Sol.a)

 $\triangle AMC$ and $\triangle DMB$ are congruent to each other by SAS congruency.

- (i) Side AM is equal to the corresponding side BM [As M is midpoint of AB]
- (ii)Side CM of is equal to corresponding side DM [As M is midpoint of DC]
- (iii) $\angle AMC = \angle DMB$ [Vertically Opposite Angles]

Sol.b)

In
$$\triangle ACB$$
 $(\|\vec{BA}\|)^2 = a^2 + b^2$ Since $\angle ACB = 90^{\circ}$ [Pythagorus theorem]
In $\triangle DBC$ $\cos \angle DBC$ = $[((a^2 + b^2 - a^2))^2]$

 $\begin{array}{lll} (\left\| \vec{CD} \right\|)^2)/2ab)] & \text{With the given vector values} \\ \text{we get norm of } (\left\| \vec{BA} \right\|) = (\left\| \vec{CD} \right\|) \\ \cos\angle DBC &= \left[((a^2 + b^2 - (\left\| \vec{CD} \right\|)^2)/2ab) \right] \\ \cos\angle DBC = 0 \\ \text{Therefore, } \angle DBC \text{ is right angle} \\ \end{array}$

Sol.c)

 $\triangle ACB$ and $\triangle DCB$ are congruent to each other in SAS congruency. (i)Both the triangles have a common base , a.

(ii)AC = DB by using distance formula

 $(iii) \angle ACB = \angle DBC = 90^{\circ}$ [From Solution b)]

Sol.d)

Since
$$\vec{CM}$$
 is halfway of \vec{CD} $\|\vec{CM}\| = \|\vec{CD}\|$
From Solution b) it is clear that $\|\vec{CD}\| = \|\vec{BA}\|$
Therefore $\|\vec{CM}\| = \frac{1}{2} \|\vec{AB}\|$