Final Presentation of Graduation Project 2

- Diary Emotion based Movie Recommendation System -

Yeji Gim 201814246

Inwoo Park 201512265

Soyeong Sohn 201711649

(Leader) Changhae Jung 201710304

CONTENTS

Project Introduction

Team Members and Roles

Model Description

Q4 App & Server Description

Scalability

01 Project Introduction

02. Team Members and Roles

03. Model Description

04. App & Server Description

05. Scalability

Project Background

- It is normal to suppress inner feelings nowadays.
 - → Knowing how to understand and express the emotions is good for the mental health.
- Let users analyze the emotions in their diary so that they can understand the emotions of the day
- There are some ways to express emotions such as writing a diary, watching movies, etc.
- Nowadays, OTT platforms can be found anywhere and more people spend their free time watching movies since there is no space and time constraints watching movies anymore.
- Let's recommend movies that fit the emotions of the day by analyzing the emotions in the diary!

O1 Project Introduction

01 Project Introduction

02. Team Members and Roles

03. Model Description

04. App & Server Description

05. Scalability

Our Topic

iOS App that <u>Recommends Movies</u> by <u>Analyzing Emotions of the</u> <u>User's Diary</u>

O1 Project Introduction

01 Project Introduction

- 02. Team Members and Roles
- 03. Model Description
- 04. App & Server Description
- 05. Scalability

System Architecture

- When user writes a diary in the app, the pre-trained model returns the emotion vectors of the diary from the server
- Return recommended movies and emotion probabilities by calculating similarities between the emotion vector of diary and emotion vectors of movies

1 Team Members and Roles

01. Project Introduction

02 Team Members and Roles

03. Model Description

04. App & Server Description

05. Scalability

Team Members and Roles

Yeji Gim

Model Design &

Data Labelling

Soyeong Sohn

Model Design &

Implementation

Inwoo Park

iOS App & Server

Development

Changhae Jung

Model Design &

Implementation

01. Project Introduction

02. Team Members and Roles

03 Model Description

04. App & Server Description

05. Scalability

Emotion Analysis Model - ELECTRA + LSTM

- ELECTRA: Pre-trained Language Model, which is one of the derived models of BERT
- Added bi-LSTM layer to reflect the flow of the diary
- Added <SEP> token between the sentences by using KSS(Korean Sentence Split), concatenate the embeddings from <SEP> tokens of the first sentence and the last sentence and put it in bi-LSTM layer
- Trained the model with the loss which is the sum of the loss from <CLS> token and the losses from <SEP> tokens of first sentence and last sentence

01. Project Introduction

02. Team Members and Roles

03 Model Description

04. App & Server Description

05. Scalability

Emotion Analysis Model - Fine Tuning

- Due to the feature of diary written in the App, the vocabularies used to pre-train must be used frequently in daily life or online
- → Used kcELECTRA which is pre-trained with Korean online comments
- Used KOTE dataset, which multi-labeled sentences into 44 emotions, to classify the emotions
- Created silver label of each sentence which is retrieved by PLM, then made gold label by editing silver label by ourselves

01. Project Introduction

02. Team Members and Roles

03 Model Description

04. App & Server Description

05. Scalability

Emotion Analysis Model - Scheduler

Cosine Annealing Scheduler

$$\eta_t = \eta_{\min} + rac{1}{2}(\eta_{\max} - \eta_{\min}) \left(1 + \cos\left(rac{T_{cur}}{T_{\max}}\pi
ight)
ight)$$

- Scheduler for solving Local Minimum problem
- The Learning Rate drops to eta_min along the Cosine function, then rises to the initial Learning Rate

01. Project Introduction

02. Team Members and Roles

03 Model Description

04. App & Server Description

05. Scalability

Emotion Analysis Model - Testing Result

모델	micro F1	차이
kcELECTRA	0.57	
kcELECTRA + bi-LSTM	0.62	+0.05
kcELECTRA + bi-LSTM + CosineAnnealingLR Scheduler	0.65	+0.03

- When kcELECTRA + bi-LSTM is applied, there was 5% improvement in performance compare to kcELECTRA only model
- Changing the scheduler to the <u>Cosine Annealing LR scheduler</u> added <u>3% improvement</u> in performance
- <u>8% improvement</u> in total

01. Project Introduction

02. Team Members and Roles

03 Model Description

04. App & Server Description

05. Scalability

Movie Recommendation - Cosine Similarities

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^n A_i \times B_i}{\sqrt{\sum\limits_{i=1}^n (A_i)^2} \times \sqrt{\sum\limits_{i=1}^n (B_i)^2}}$$

- Metrics that compute the closeness between two vectors
- Compute similarities between the diary written by users and the plots of the movies
- Recommend 5 movies which are most similar to emotion of diary based on cosine similarity

App & Server Description

01. Project Introduction

02. Team Members and Roles

03. Model Description

04 App & Server Description

05. Scalability

App & Server Description

App

- System based on MVVM architecture
- UseCase layer in the middle → reduce redundant code for the same task
- Data Binding in Combine → be able to receive data asynchronously

Server

- Implemented with Flask
- Check and export the data when the app requests the data
- The request consists of HTTP Request in the form of REST API

05 Testing Video

- 01. Project Introduction
- 02. Team Members and Roles
- 03. Model Description
- 04. App & Server Description

05 Scalability

Scalability

Service Side

- Link to psychiatric counseling based on emotions derived from the diary
- Expand to recommendation not only movies but also contents such as TV series, book, music, etc.

Performance Side

- Recreating the dataset from scratch to improve accuracy
- Improvement in the recommendation system by reflecting user history such as a list of watched movies, review, etc.
- Experiment models with new approaches

Thank You