

BSM307 İşaretler ve Sistemler

Dr. Seçkin Arı

z-Domeninde Sistem Analizi

İçerik

- Fark Denklemlerinden H(z)
- Devre (Diyagram)dan H(z)
- Durum Denklemlerinden H(z)
- Doğal ve Zorlanmış Çözüm
- Temel Sistem Özellikleri
 - ♦ Hafızalılık
 - ♦ Nedensellik
 - ♦ Kararlılık

- $\bullet \ H(z) = \mathcal{Z}\{h(n)\}$
- $\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{N} b_k x(n-k)$

•
$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{N} b_k x(n-k)$$

•
$$\mathcal{Z}\{\sum_{k=0}^{N} a_k y(n-k)\} = \mathcal{Z}\{\sum_{k=0}^{N} b_k x(n-k)\}$$

•
$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{N} b_k x(n-k)$$

•
$$\mathcal{Z}\{\sum_{k=0}^{N} a_k y(n-k)\} = \mathcal{Z}\{\sum_{k=0}^{N} b_k x(n-k)\}$$

Doğrusallık

- $\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{N} b_k x(n-k)$
- $\mathcal{Z}\{\sum_{k=0}^{N} a_k y(n-k)\} = \mathcal{Z}\{\sum_{k=0}^{N} b_k x(n-k)\}$
- Doğrusallık

•
$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{N} b_k x(n-k)$$

•
$$\mathcal{Z}\{\sum_{k=0}^{N} a_k y(n-k)\} = \mathcal{Z}\{\sum_{k=0}^{N} b_k x(n-k)\}$$

Doğrusallık

•
$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{N} b_k z^{-k} X(z)$$

•
$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{N} b_k x(n-k)$$

•
$$\mathcal{Z}\{\sum_{k=0}^{N} a_k y(n-k)\} = \mathcal{Z}\{\sum_{k=0}^{N} b_k x(n-k)\}$$

Doğrusallık

•
$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{N} b_k z^{-k} X(z)$$

•
$$Y(z)(\sum_{k=0}^{N} a_k z^{-k}) = X(z)(\sum_{k=0}^{N} b_k z^{-k})$$

•
$$H(z) =$$

•
$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{N} b_k x(n-k)$$

•
$$\mathcal{Z}\{\sum_{k=0}^{N} a_k y(n-k)\} = \mathcal{Z}\{\sum_{k=0}^{N} b_k x(n-k)\}$$

Doğrusallıktan

•
$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{N} b_k z^{-k} X(z)$$

•
$$Y(z)(\sum_{k=0}^{N} a_k z^{-k}) = X(z)(\sum_{k=0}^{N} b_k z^{-k})$$

•
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{N} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

•
$$y(n) + ay(n-1) = x(n)$$
 ise $H(z) = ?$

- y(n) + ay(n-1) = x(n) ise H(z) = ?
- $Y(z) + \cdots$

- y(n) + ay(n-1) = x(n) ise H(z) = ?
- $Y(z) + az^{-1}Y(z) = X(z) \rightarrow$

- y(n) + ay(n-1) = x(n) ise H(z) = ?
- $Y(z) + az^{-1}Y(z) = X(z) \rightarrow Y(z)(1 + az^{-1}) = X(z)$
- H(z) =

Dr. Ari

13

- y(n) + ay(n-1) = x(n) ise H(z) = ?
- $Y(z) + az^{-1}Y(z) = X(z) \rightarrow Y(z)(1 + az^{-1}) = X(z)$
- $H(z) = \frac{1}{1+az^{-1}}$
- h(n) = ?

- y(n) + ay(n-1) = x(n) ise H(z) = ?
- $Y(z) + az^{-1}Y(z) = X(z) \rightarrow Y(z)(1 + az^{-1}) = X(z)$
- $H(z) = \frac{1}{1+az^{-1}}$
- $h(n) = Z^{-1} \left\{ \frac{1}{1 + az^{-1}} \right\} =$

- y(n) + ay(n-1) = x(n) ise H(z) = ?
- $Y(z) + az^{-1}Y(z) = X(z) \rightarrow Y(z)(1 + az^{-1}) = X(z)$
- $H(z) = \frac{1}{1+az^{-1}}$
- $h(n) = Z^{-1} \left\{ \frac{1}{1 + az^{-1}} \right\} = (-a)^n u(n)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise H(z) = ?
- *Y*(*z*) ...

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise H(z) = ?
- $Y(z) 3z^{-1}Y(z) 4z^{-2}Y(z) = X(z) + 2z^{-1}X(z)$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise H(z) = ?
- $Y(z) 3z^{-1}Y(z) 4z^{-2}Y(z) = X(z) + 2z^{-1}X(z)$
- $Y(z)(1-3z^{-1}-4z^{-2})=X(z)(1+2z^{-1})$
- H(z) =

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise H(z) = ?
- $Y(z) 3z^{-1}Y(z) 4z^{-2}Y(z) = X(z) + 2z^{-1}X(z)$
- $Y(z)(1-3z^{-1}-4z^{-2})=X(z)(1+2z^{-1})$
- $H(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}}$
- h(n) = ?

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise H(z) = ?
- $Y(z) 3z^{-1}Y(z) 4z^{-2}Y(z) = X(z) + 2z^{-1}X(z)$
- $Y(z)(1-3z^{-1}-4z^{-2})=X(z)(1+2z^{-1})$
- $H(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}} = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}}$

- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) ise H(z) = ?
- $Y(z) 3z^{-1}Y(z) 4z^{-2}Y(z) = X(z) + 2z^{-1}X(z)$
- $Y(z)(1-3z^{-1}-4z^{-2})=X(z)(1+2z^{-1})$
- $H(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}} = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}}$
- $h(n) = A(-1)^n u(n) + B(4)^n u(n)$

• H(z) = ?

• $\omega(n) =$

• $\omega(n) =$

•
$$\omega(n) =$$

•
$$\omega(n) = \Box + \Box$$

•
$$\omega(n) = y(n) + \square$$

•
$$\omega(n) = y(n) + \left(\Box + \Box \right)$$

•
$$\omega(n) = y(n) + (a\omega(n-1) + \square)$$

•
$$\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$$

•
$$\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$$

• $y(n) = \Box + \Box$

- $\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$
- $y(n) = x(n) + \square$

Dr. Ari

• $\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$

• $y(n) = x(n) + \left(\Box + \Box \right)$

•
$$\omega(n) = y(n) + \left(a\omega(n-1) + b\omega(n-2)\right)$$

•
$$y(n) = x(n) + (c\omega(n-1) + \square)$$

- $\omega(n) = y(n) + \left(a\omega(n-1) + b\omega(n-2)\right)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$

- $\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$ • W(z) =
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$

- $\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$ • W(z) = Y(z) +
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$

- $\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$ • $W(z) = Y(z) + az^{-1}W(z) + bz^{-2}W(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$

- $\omega(n) = y(n) + \left(a\omega(n-1) + b\omega(n-2)\right)$
 - $\bullet W(z) = Y(z) + az^{-1}W(z) + bz^{-2}W(z)$
 - $\bullet W(z) az^{-1}W(z) bz^{-2}W(z) = Y(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$

- $\omega(n) = y(n) + \left(a\omega(n-1) + b\omega(n-2)\right)$
 - $\bullet W(z) = Y(z) + az^{-1}W(z) + bz^{-2}W(z)$
 - $\bullet W(z) az^{-1}W(z) bz^{-2}W(z) = Y(z)$
 - $W(z)(1-az^{-1}-bz^{-2})=Y(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$

- $\omega(n) = y(n) + \left(a\omega(n-1) + b\omega(n-2)\right)$
 - $\bullet W(z) = Y(z) + az^{-1}W(z) + bz^{-2}W(z)$
 - $\bullet W(z) az^{-1}W(z) bz^{-2}W(z) = Y(z)$
 - $W(z)(1-az^{-1}-bz^{-2})=Y(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$
 - $Y(z) = X(z) + cz^{-1}W(z) + dz^{-2}W(z)$

- $\omega(n) = y(n) + \left(a\omega(n-1) + b\omega(n-2)\right)$
 - $\bullet W(z) = Y(z) + az^{-1}W(z) + bz^{-2}W(z)$
 - $\bullet W(z) az^{-1}W(z) bz^{-2}W(z) = Y(z)$
 - $W(z)(1-az^{-1}-bz^{-2})=Y(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$
 - $Y(z) = X(z) + cz^{-1}W(z) + dz^{-2}W(z)$
 - $W(z)(1-az^{-1}-bz^{-2}) = X(z) + cz^{-1}W(z) + dz^{-2}W(z)$

- $\omega(n) = y(n) + \left(a\omega(n-1) + b\omega(n-2)\right)$
 - $\bullet W(z) = Y(z) + az^{-1}W(z) + bz^{-2}W(z)$
 - $\bullet W(z) az^{-1}W(z) bz^{-2}W(z) = Y(z)$
 - $W(z)(1-az^{-1}-bz^{-2})=Y(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$
 - $Y(z) = X(z) + cz^{-1}W(z) + dz^{-2}W(z)$
 - $\bullet W(z)(1-az^{-1}-bz^{-2}) = X(z) + cz^{-1}W(z) + dz^{-2}W(z)$
 - $W(z)(1-az^{-1}-bz^{-2}) W(z)(cz^{-1}+dz^{-2}) = X(z)$

- $\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$
 - $W(z) = Y(z) + az^{-1}W(z) + bz^{-2}W(z)$
 - $\bullet W(z) az^{-1}W(z) bz^{-2}W(z) = Y(z)$
 - $W(z)(1 az^{-1} bz^{-2}) = Y(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$
 - $Y(z) = X(z) + cz^{-1}W(z) + dz^{-2}W(z)$
 - $\bullet \ W(z)(1-az^{-1}-bz^{-2}) = X(z) + cz^{-1}W(z) + dz^{-2}W(z)$
 - $W(z)(1-az^{-1}-bz^{-2})-W(z)(cz^{-1}+dz^{-2})=X(z)$
 - $\bullet \ W(z)(1-(a+c)z^{-1}-(b+d)z^{-2})=X(z)$

- $\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$ • $W(z)(1 - az^{-1} - bz^{-2}) = Y(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$
 - $\bullet \ W(z)(1-(a+c)z^{-1}-(b+d)z^{-2})=X(z)$
- $H(z) = \frac{Y(z)}{X(z)} =$

- $\omega(n) = y(n) + (a\omega(n-1) + b\omega(n-2))$ • $W(z)(1 - az^{-1} - bz^{-2}) = Y(z)$
- $y(n) = x(n) + \left(c\omega(n-1) + d\omega(n-2)\right)$
 - $\bullet \ W(z)(1-(a+c)z^{-1}-(b+d)z^{-2})=X(z)$
- $H(z) = \frac{Y(z)}{X(z)} = \frac{1 az^{-1} bz^{-2}}{1 (a+c)z^{-1} (b+d)z^{-2}}$

- q(n+1) = Aq(n) + Bx(n)
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $\mathbf{q}(n+1) = \mathbf{A}\mathbf{q}(n) + \mathbf{B}x(n)$
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

• $\square = \mathbf{AQ}(z) + \mathbf{B}X(z)$

- $\mathbf{q}(n+1) = \mathbf{A}\mathbf{q}(n) + \mathbf{B}x(n)$
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $z\mathbf{Q}(z) = \mathbf{A}\mathbf{Q}(z) + \mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$

- q(n+1) = Aq(n) + Bx(n)
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $z\mathbf{Q}(z) = \mathbf{A}\mathbf{Q}(z) + \mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$

- $\mathbf{q}(n+1) = \mathbf{A}\mathbf{q}(n) + \mathbf{B}x(n)$
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $z\mathbf{Q}(z) = \mathbf{A}\mathbf{Q}(z) + \mathbf{B}X(z)$

 - $\bullet \; \Big(\Box \Big) \mathbf{Q}(z) = \mathbf{B} X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$

- $\mathbf{q}(n+1) = \mathbf{A}\mathbf{q}(n) + \mathbf{B}x(n)$
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $z\mathbf{Q}(z) = \mathbf{A}\mathbf{Q}(z) + \mathbf{B}X(z)$

 - $\bullet (z\mathbf{I} \mathbf{A})\mathbf{Q}(z) = \mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$

- q(n+1) = Aq(n) + Bx(n)
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $z\mathbf{Q}(z) = \mathbf{A}\mathbf{Q}(z) + \mathbf{B}X(z)$

 - $\bullet (z\mathbf{I} \mathbf{A})\mathbf{Q}(z) = \mathbf{B}X(z)$
 - \bullet **Q**(z) =
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$

- $\mathbf{q}(n+1) = \mathbf{A}\mathbf{q}(n) + \mathbf{B}x(n)$
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $z\mathbf{Q}(z) = \mathbf{A}\mathbf{Q}(z) + \mathbf{B}X(z)$

 - $\bullet (z\mathbf{I} \mathbf{A})\mathbf{Q}(z) = \mathbf{B}X(z)$
 - $Q(z) = (z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$

- q(n+1) = Aq(n) + Bx(n)
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $\mathbf{Q}(z) = (z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$
- Y(z) =

- q(n+1) = Aq(n) + Bx(n)
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $\mathbf{Q}(z) = (z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$
- $Y(z) = \mathbf{C}(z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z) + \mathbf{D}X(z)$

- q(n+1) = Aq(n) + Bx(n)
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $\mathbf{Q}(z) = (z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$
- $Y(z) = \mathbf{C}(z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z) + \mathbf{D}X(z)$
- $\bullet \ Y(z) = (\quad)X(z)$
- H(z) =

- q(n+1) = Aq(n) + Bx(n)
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$

- $\mathbf{Q}(z) = (z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$
- $Y(z) = \mathbf{C}(z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z) + \mathbf{D}X(z)$
- $Y(z) = (\mathbf{C}(z\mathbf{I} \mathbf{A})^{-1}\mathbf{B} + \mathbf{D})X(z)$
- H(z) =

- $\mathbf{q}(n+1) = \mathbf{A}\mathbf{q}(n) + \mathbf{B}x(n)$
- $y(n) = \mathbf{Cq}(n) + \mathbf{D}x(n)$
- $\mathbf{Q}(z) = (z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z)$
- $Y(z) = \mathbf{CQ}(z) + \mathbf{D}X(z)$
- $Y(z) = \mathbf{C}(z\mathbf{I} \mathbf{A})^{-1}\mathbf{B}X(z) + \mathbf{D}X(z)$
- $Y(z) = (\mathbf{C}(z\mathbf{I} \mathbf{A})^{-1}\mathbf{B} + \mathbf{D})X(z)$
- $H(z) = \frac{Y(z)}{X(z)} = \mathbf{C}(z\mathbf{I} \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = \underbrace{[3 \quad 2]}_{C} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \underbrace{1}_{D} x(n) \text{ ise } H(z) = ?$$

$$\cdot \begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = \underbrace{[3 \quad 2]}_{C} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \underbrace{1}_{D} x(n) \text{ ise } H(z) = ?$$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} =$$

$$\cdot \begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = \underbrace{[3 \quad 2]}_{C} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \underbrace{1}_{D} x(n) \text{ ise } H(z) = ?$$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} z & -1 \\ -3 & z - 2 \end{bmatrix}$$

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = \underbrace{[3 \quad 2]}_{C} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \underbrace{1}_{D} x(n) \text{ ise } H(z) = ?$$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} z & -1 \\ -3 & z - 2 \end{bmatrix}$$

• $(z\mathbf{I} - \mathbf{A})^{-1} =$

$$(z\mathbf{I} - \mathbf{A})^{-1} =$$

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = \underbrace{[3 \quad 2]}_{C} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \underbrace{1}_{D} x(n) \text{ ise } H(z) = ?$$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} z & -1 \\ -3 & z - 2 \end{bmatrix}$$

•
$$(z\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{z(z-2)-3} \begin{bmatrix} z-2 & 1 \\ 3 & z \end{bmatrix}$$

Dr. Ari

$$\cdot \begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = \underbrace{[3 \quad 2]}_{C} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \underbrace{1}_{D} x(n) \text{ ise } H(z) = ?$$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} z & -1 \\ -3 & z - 2 \end{bmatrix}$$

•
$$(z\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{z(z-2)-3} \begin{bmatrix} z-2 & 1 \\ 3 & z \end{bmatrix}$$

•
$$H(z) = \frac{Y(z)}{X(z)} = \mathbf{C}(z\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} = \frac{1}{z(z-2)-3}[3 \ 2]\begin{bmatrix} z-2 \ 3 \end{bmatrix}\begin{bmatrix} 0 \ 1 \end{bmatrix} + 1$$

$$\cdot \begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = \underbrace{[3 \quad 2]}_{C} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \underbrace{1}_{D} x(n) \text{ ise } H(z) = ?$$

•
$$H(z) = \frac{1}{z(z-2)-3} \begin{bmatrix} 3 & 2 \end{bmatrix} \begin{bmatrix} z-2 & 1 \\ 3 & z \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1$$

•
$$H(z) = \frac{1}{z(z-2)-3} \begin{bmatrix} 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ z \end{bmatrix} + 1 =$$

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = \underbrace{[3 \quad 2]}_{C} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \underbrace{1}_{D} x(n) \text{ ise } H(z) = ?$$

•
$$H(z) = \frac{1}{z(z-2)-3} \begin{bmatrix} 3 & 2 \end{bmatrix} \begin{bmatrix} z-2 & 1 \\ 3 & z \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1$$

•
$$H(z) = \frac{1}{z(z-2)-3} \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ z \end{bmatrix} + 1 = \frac{3+2z}{z(z-2)-3} + 1 = \frac{z^2}{z(z-2)-3}$$

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = [4 5] \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + x(n)$$
 is $ext{is } H(z) = ?$

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = [4 5] \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + x(n)$$
 is $ext{is } H(z) = ?$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} z & -1 \\ -4 & z - 3 \end{bmatrix}$$

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = [4 5] \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + x(n)$$
 is $ext{is } B(z) = ?$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} z & -1 \\ -4 & z - 3 \end{bmatrix}$$

•
$$(zI - A)^{-1} =$$

Dr. Ari

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = [4 5] \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + x(n)$$
 is $ext{is } H(z) = ?$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} z & -1 \\ -4 & z - 3 \end{bmatrix}$$

•
$$(z\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{z(z-3)-4} \begin{bmatrix} z-3 & 1 \\ 4 & z \end{bmatrix}$$

•
$$y[n] = [4 5] \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + x(n)$$
 is $ext{is } H(z) = ?$

•
$$z\mathbf{I} - \mathbf{A} = z \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} z & -1 \\ -4 & z - 3 \end{bmatrix}$$

•
$$(z\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{z(z-3)-4} \begin{bmatrix} z-3 & 1\\ 4 & z \end{bmatrix}$$

•
$$H(z) = \frac{Y(z)}{X(z)} = \mathbf{C}(z\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} = \frac{1}{z(z-3)-4} \begin{bmatrix} 4 & 5 \end{bmatrix} \begin{bmatrix} z-3 & 1 \\ 4 & z \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1$$

•
$$\begin{bmatrix} q_1(n+1) \\ q_2(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(n)$$

•
$$y[n] = [4 5] \begin{bmatrix} q_1(n) \\ q_2(n) \end{bmatrix} + x(n)$$
 is $ext{is } H(z) = ?$

•
$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z(z-3)-4} \begin{bmatrix} 4 & 5 \end{bmatrix} \begin{bmatrix} z-3 & 1 \\ 4 & z \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1$$

•
$$H(z) = \frac{1}{z(z-3)-4} \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 1 \\ z \end{bmatrix} + 1 = \frac{4+5z}{z(z-3)-4} + 1 = \frac{z^2+2z}{z(z-3)-4}$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = X(z)H(z) =$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}} + \frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}} + \underbrace{\frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}}_{Y_Z(z)}$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}} + \underbrace{\frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}}_{Y_z(z)}$$

• $y_d(n) =$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \underbrace{\frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}}}_{Y_d(z)} + \underbrace{\frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}}_{Y_z(z)}$$

•
$$y_d(n) = \alpha_1(p_1)^n u(n) + \dots + \alpha_N(p_N)^n u(n) =$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}} + \underbrace{\frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}}_{Y_Z(z)}$$

•
$$y_d(n) = \alpha_1(p_1)^n u(n) + \dots + \alpha_N(p_N)^n u(n) = \sum_{k=1}^N \alpha_k(p_k)^n u(n)$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}} + \underbrace{\frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}}_{Y_z(z)}$$

- $y_d(n) = \alpha_1(p_1)^n u(n) + \dots + \alpha_N(p_N)^n u(n) = \sum_{k=1}^N \alpha_k(p_k)^n u(n)$
 - $\forall k \text{ için } |p_k| < 1 \text{ ise } y_d(n)$, geçici cevap

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}} + \underbrace{\frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}}_{Y_z(z)}$$

- $y_d(n) = \alpha_1(p_1)^n u(n) + \dots + \alpha_N(p_N)^n u(n) = \sum_{k=1}^N \alpha_k(p_k)^n u(n)$
 - $\forall k \text{ için } |p_k| < 1 \text{ ise } y_d(n)$, geçici cevap

•
$$y_z(n) =$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}} + \underbrace{\frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}}_{Y_z(z)}$$

- $y_d(n) = \alpha_1(p_1)^n u(n) + \dots + \alpha_N(p_N)^n u(n) = \sum_{k=1}^N \alpha_k(p_k)^n u(n)$
 - $\forall k \text{ için } |p_k| < 1 \text{ ise } y_d(n)$, geçici cevap

•
$$y_z(n) = \beta_1(q_1)^n u(n) + \dots + \beta_L(q_L)^n u(n) =$$

•
$$H(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$

•
$$X(z) = \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = H(z)X(z) = \frac{A(z)}{\prod_{k=1}^{N} (1 - p_k z^{-1})} \frac{B(z)}{\prod_{k=1}^{L} (1 - q_k z^{-1})}$$

•
$$Y(z) = \frac{\alpha_1}{1 - p_1 z^{-1}} + \dots + \frac{\alpha_N}{1 - p_N z^{-1}} + \underbrace{\frac{\beta_1}{1 - q_1 z^{-1}} + \dots + \frac{\beta_L}{1 - q_L z^{-1}}}_{Y_z(z)}$$

- $y_d(n) = \alpha_1(p_1)^n u(n) + \dots + \alpha_N(p_N)^n u(n) = \sum_{k=1}^N \alpha_k(p_k)^n u(n)$
 - $\forall k$ için $|p_k| < 1$ ise $y_d(n)$, geçici cevap
- $y_z(n) = \beta_1(q_1)^n u(n) + \dots + \beta_L(q_L)^n u(n) = \sum_{k=1}^L \beta_k(q_k)^n u(n)$
 - $\bullet \ \ \forall k \ \text{için} \ |q_k| < 1 \ \text{ise} \ y_z(n)$, kalıcı durum cevabı

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?
- H(z) =

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?
- $H(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}}$
- $\bullet X(z) =$

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?
- $H(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}}$
- $X(z) = \frac{1 \frac{1}{2}z^{-1}}{1 z^{-1} + z^{-2}}$

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?
- $H(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}}$
- $X(z) = \frac{1 \frac{1}{2}z^{-1}}{1 z^{-1} + z^{-2}}$
- Y(z) =

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?
- $H(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}}$
- $X(z) = \frac{1 \frac{1}{2}z^{-1}}{1 z^{-1} + z^{-2}}$
- $Y(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}} \frac{1-\frac{1}{2}z^{-1}}{1-z^{-1}+z^{-2}}$

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?
- $H(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}}$
- $X(z) = \frac{1 \frac{1}{2}z^{-1}}{1 z^{-1} + z^{-2}}$
- $Y(z) = \frac{1+2z^{-1}}{1-3z^{-1}-4z^{-2}} \frac{1-\frac{1}{2}z^{-1}}{1-z^{-1}+z^{-2}} = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})}$

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?
- $Y(z) = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})}$
- Y(z) =

- $n \ge 0$ için
- y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1)
- $x(n) = \cos\left(\frac{\pi}{3}n\right)u(n)$ ise z-dönüşümü ile doğal ve zorlanmış çözüm?

•
$$Y(z) = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})}$$

•
$$Y(z) = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}} + \frac{C}{1-e^{j\frac{\pi}{3}}z^{-1}} + \frac{D}{1-e^{-j\frac{\pi}{3}}z^{-1}}$$

•
$$Y(z) = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})}$$

•
$$Y(z) = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}} + \frac{C}{1-e^{j\frac{\pi}{3}}z^{-1}} + \frac{D}{1-e^{-j\frac{\pi}{3}}z^{-1}}$$

•
$$A = \frac{1+2z^{-1}}{(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=-1} = -\frac{1}{10}$$

•
$$B = \frac{1+2z^{-1}}{(1+z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=\frac{1}{4}} = \frac{21}{13}$$

•
$$Y(z) = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}z^{-1}})(1-e^{-j\frac{\pi}{3}z^{-1}})}$$

•
$$Y(z) = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}} + \frac{C}{1-e^{j\frac{\pi}{3}}z^{-1}} + \frac{D}{1-e^{-j\frac{\pi}{3}}z^{-1}}$$

•
$$A = \frac{1+2z^{-1}}{(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=-1} = -\frac{1}{10}$$

•
$$B = \frac{1+2z^{-1}}{(1+z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})} \Big|_{z^{-1}=\frac{1}{4}} = \frac{21}{13}$$

•
$$y_d(n) =$$

•
$$Y(z) = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})}$$

•
$$Y(z) = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}} + \frac{C}{1-e^{j\frac{\pi}{3}}z^{-1}} + \frac{D}{1-e^{-j\frac{\pi}{3}}z^{-1}}$$

•
$$A = \frac{1+2z^{-1}}{(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=-1} = -\frac{1}{10}$$

•
$$B = \frac{1+2z^{-1}}{(1+z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})} \Big|_{z^{-1}=\frac{1}{4}} = \frac{21}{13}$$

•
$$y_d(n) = -\frac{1}{10}(-1)^n u(n) + \frac{21}{13}(4)^n u(n)$$

•
$$Y(z) = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})}$$

•
$$Y(z) = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}} + \frac{C}{1-e^{j\frac{\pi}{3}}z^{-1}} + \frac{D}{1-e^{-j\frac{\pi}{3}}z^{-1}}$$

•
$$C = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{-j\frac{\pi}{3}}z^{-1})} \Big|_{z^{-1}=e^{-j\frac{\pi}{3}}} = 0,2118e^{-j117^{\circ}}$$

•
$$D = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=e^{j\frac{\pi}{3}}} = 0,2118e^{j117^{\circ}}$$

•
$$y_z(n) =$$

•
$$Y(z) = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})}$$

•
$$Y(z) = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}} + \frac{C}{1-e^{j\frac{\pi}{3}}z^{-1}} + \frac{D}{1-e^{-j\frac{\pi}{3}}z^{-1}}$$

•
$$C = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{-j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=e^{-j\frac{\pi}{3}}} = 0,2118e^{-j117^{\circ}}$$

•
$$D = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=e^{j\frac{\pi}{3}}} = 0,2118e^{j117^{\circ}}$$

•
$$y_z(n) = 0.2118e^{-j117^{\circ}}e^{j\frac{\pi}{3}n}u(n) + 0.2118e^{j117^{\circ}}e^{-j\frac{\pi}{3}n}u(n)$$

•
$$y_z(n) =$$

•
$$Y(z) = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})(1-e^{-j\frac{\pi}{3}}z^{-1})}$$

•
$$Y(z) = \frac{A}{1+z^{-1}} + \frac{B}{1-4z^{-1}} + \frac{C}{1-e^{j\frac{\pi}{3}}z^{-1}} + \frac{D}{1-e^{-j\frac{\pi}{3}}z^{-1}}$$

•
$$C = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{-j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=e^{-j\frac{\pi}{3}}} = 0,2118e^{-j117^{\circ}}$$

•
$$D = \frac{1+2z^{-1}}{(1+z^{-1})(1-4z^{-1})} \frac{1-\frac{1}{2}z^{-1}}{(1-e^{j\frac{\pi}{3}}z^{-1})} \bigg|_{z^{-1}=e^{j\frac{\pi}{3}}} = 0,2118e^{j117^{\circ}}$$

•
$$y_z(n) = 0.2118e^{-j117^{\circ}}e^{j\frac{\pi}{3}n}u(n) + 0.2118e^{j117^{\circ}}e^{-j\frac{\pi}{3}n}u(n)$$

•
$$y_z(n) = 0.4236 \cos\left(\frac{\pi}{3}n - 117^\circ\right) u(n)$$

Hafızalılık

• Dönüşüm Denklemine Göre, $T\{x(n)\}$

101

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Hafızasız
 - Sistem çıkışının, giriş işaretinin zamanın sadece o andaki bilgisine bağlı olması
 - ♦ Hafızalı
 - Sistem çıkışının, giriş işaretinin ötelenmiş hallerine bağlı olması
- Birim Darbe Cevabına Göre, h(n)

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Hafızasız
 - Sistem çıkışının, giriş işaretinin zamanın sadece o andaki bilgisine bağlı olması
 - ♦ Hafızalı
 - Sistem çıkışının, giriş işaretinin ötelenmiş hallerine bağlı olması
- Birim Darbe Cevabına Göre, h(n)
 - $\bullet \ \forall n \neq 0 \ \text{için} \ h(n) = 0 \ \text{ise Hafizasiz}. \ h(n) = K\delta(n)$
 - $\bullet \exists n \neq 0 \text{ için } h(n) \neq 0 \text{ ise Hafızalı.}$

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Hafızasız
 - Sistem çıkışının, giriş işaretinin zamanın sadece o andaki bilgisine bağlı olması
 - ♦ Hafızalı
 - Sistem çıkışının, giriş işaretinin ötelenmiş hallerine bağlı olması
- Birim Darbe Cevabına Göre, h(n)
 - \bullet $\forall n \neq 0$ için h(n) = 0 ise Hafızasız. $h(n) = K\delta(n)$
 - ♦ $\exists n \neq 0$ için $h(n) \neq 0$ ise Hafızalı.
- Transfer Fonksiyonuna Göre, H(z)

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Hafızasız
 - Sistem çıkışının, giriş işaretinin zamanın sadece o andaki bilgisine bağlı olması
 - ♦ Hafızalı
 - Sistem çıkışının, giriş işaretinin ötelenmiş hallerine bağlı olması
- Birim Darbe Cevabına Göre, h(n)
 - $\forall n \neq 0$ için h(n) = 0 ise Hafızasız. $h(n) = K\delta(n)$
 - ♦ $\exists n \neq 0$ için $h(n) \neq 0$ ise Hafızalı.
- Transfer Fonksiyonuna Göre, H(z)
 - + H(z) = K ise Hafızasız.
 - $H(z) \neq K$ ise Hafızalı.

Nedensellik

• Dönüşüm Denklemine Göre, $T\{x(n)\}$

Nedensellik

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Nedensel
 - Sistem çıkışının, giriş işaretinin zamanın o andaki ve/veya geçmişteki bilgisine bağlı olması
 - ♦ Nedensel olmayan
 - Sistem çıkışının, giriş işaretinin gelecekteki bilgisine bağlı olması
- Birim Darbe Cevabına Göre, h(n)

Nedensellik

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Nedensel
 - Sistem çıkışının, giriş işaretinin zamanın o andaki ve/veya geçmişteki bilgisine bağlı olması
 - Nedensel olmayan
 - Sistem çıkışının, giriş işaretinin gelecekteki bilgisine bağlı olması
- Birim Darbe Cevabına Göre, h(n)
 - \bullet $\forall n < 0$ için h(n) = 0 ise Nedensel. Sağ taraflı
 - ♦ $\exists n < 0$ için $h(n) \neq 0$ ise Nedensel Değil.
- Transfer Fonksiyonuna Göre, H(z)

Nedensellik

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Nedensel
 - Sistem çıkışının, giriş işaretinin zamanın o andaki ve/veya geçmişteki bilgisine bağlı olması
 - Nedensel olmayan
 - Sistem çıkışının, giriş işaretinin gelecekteki bilgisine bağlı olması
- Birim Darbe Cevabına Göre, h(n)
 - \bullet $\forall n < 0$ için h(n) = 0 ise Nedensel. Sağ taraflı
 - ♦ $\exists n < 0$ için $h(n) \neq 0$ ise Nedensel Değil.
- Transfer Fonksiyonuna Göre, H(z)
 - ♦ YB: $|z| > |\alpha|$ ise Nedensel.
 - ♦ YB: $|z| \Rightarrow |\alpha|$ ise Nedensel Değil.

Kararlılık

• Dönüşüm Denklemine Göre, $T\{x(n)\}$

110

Kararlılık

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Kararlı
 - $\forall n, |x[n]| < N$ iken $\forall n, |y[n]| < M$ ise
 - ♦ Kararsız
 - $\forall n, |x[n]| < N$ iken $\forall n, |y[n]| \rightarrow \infty$ ise
- Birim Darbe Cevabına Göre, h(n)

Kararlılık

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Kararlı
 - $\forall n, |x[n]| < N$ iken $\forall n, |y[n]| < M$ ise
 - ♦ Kararsız
 - $\forall n, |x[n]| < N \text{ iken } \forall n, |y[n]| \rightarrow \infty \text{ ise}$
- Birim Darbe Cevabına Göre, h(n)
 - $\star \sum_{n=-\infty}^{\infty} |h(n)| < \infty$ ise Kararlı.
 - $\bullet \sum_{n=-\infty}^{\infty} |h(n)| \to \infty$ ise Kararsız.
- Transfer Fonksiyonuna Göre, H(z)

Kararlılık

- Dönüşüm Denklemine Göre, $T\{x(n)\}$
 - ♦ Kararlı
 - $\forall n, |x[n]| < N \text{ iken } \forall n, |y[n]| < M \text{ ise}$
 - ♦ Kararsız
 - $\forall n, |x[n]| < N \text{ iken } \forall n, |y[n]| \rightarrow \infty \text{ ise}$
- Birim Darbe Cevabına Göre, h(n)
 - $\sum_{n=-\infty}^{\infty} |h(n)| < \infty$ ise Kararlı.
 - $\sum_{n=-\infty}^{\infty} |h(n)| \to \infty$ ise Kararsız.
- Transfer Fonksiyonuna Göre, H(z)
 - ♦ YB, birim çemberi içeriyorsa Kararlı.
 - ♦ YB, birim çemberi içermiyorsa Kararsız.

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, $YB: \frac{1}{2} < |z| < 3$

Hafızalı	Nedensel	Kararlı

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, $YB: \frac{1}{2} < |z| < 3$

Hafızalı	Nedensel	Kararlı

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, $YB: \frac{1}{2} < |z| < 3$

Hafızalı	Nedensel	Kararlı
	X	

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $\frac{1}{2} < |z| < 3 h(n) = ?$

Hafızalı	Nedensel	Kararlı
	X	

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $\frac{1}{2} < |z| < 3 h(n) = ?$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}} = \frac{A}{1-\frac{1}{2}z^{-1}} + \frac{B}{1-3z^{-1}}$$

$$\bullet$$
 $A =$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $\frac{1}{2} < |z| < 3 h(n) = ?$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}} = \frac{A}{1-\frac{1}{2}z^{-1}} + \frac{B}{1-3z^{-1}}$$

•
$$A = \frac{3-4z^{-1}}{1-3z^{-1}}\Big|_{z^{-1}=2} = 1$$
 $B =$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, $YB: \frac{1}{2} < |z| < 3 \ h(n) = ?$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}} = \frac{A}{1-\frac{1}{2}z^{-1}} + \frac{B}{1-3z^{-1}}$$

•
$$A = \frac{3-4z^{-1}}{1-3z^{-1}}\Big|_{z^{-1}=2} = 1$$
 $B = \frac{3-4z^{-1}}{1-\frac{1}{2}z^{-1}}\Big|_{z^{-1}=\frac{1}{3}} = 2$

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}_{YB:?}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}_{YB:?}}}$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, $YB: \frac{1}{2} < |z| < 3 \ h(n) = ?$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}} = \frac{A}{1-\frac{1}{2}z^{-1}} + \frac{B}{1-3z^{-1}}$$

•
$$A = \frac{3-4z^{-1}}{1-3z^{-1}}\Big|_{z^{-1}=2} = 1$$
 $B = \frac{3-4z^{-1}}{1-\frac{1}{2}z^{-1}}\Big|_{z^{-1}=\frac{1}{3}} = 2$

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}}}_{YB:|z| < 3} \to h(n) = ?$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $\frac{1}{2} < |z| < 3 \ h(n) = ?$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}} = \frac{A}{1-\frac{1}{2}z^{-1}} + \frac{B}{1-3z^{-1}}$$

•
$$A = \frac{3-4z^{-1}}{1-3z^{-1}}\Big|_{z^{-1}=2} = 1$$
 $B = \frac{3-4z^{-1}}{1-\frac{1}{2}z^{-1}}\Big|_{z^{-1}=\frac{1}{3}} = 2$

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}}}_{YB:|z| < 3} \to h(n) = \left(\frac{1}{2}\right)^n u(n) +$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $\frac{1}{2} < |z| < 3 \ h(n) = ?$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}} = \frac{A}{1-\frac{1}{2}z^{-1}} + \frac{B}{1-3z^{-1}}$$

•
$$A = \frac{3-4z^{-1}}{1-3z^{-1}}\Big|_{z^{-1}=2} = 1$$
 $B = \frac{3-4z^{-1}}{1-\frac{1}{2}z^{-1}}\Big|_{z^{-1}=\frac{1}{3}} = 2$

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}_{YB:|z| < 3}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}_{YB:|z| < 3}}}_{YB:|z| > \frac{1}{2}} \to h(n) = \left(\frac{1}{2}\right)^n u(n) - 2(3)^n u(-n-1)$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| > 3 h(n) = ?$

Hafızalı	Nedensel	Kararlı

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| > 3 h(n) = ?$

Hafızalı	Nedensel	Kararlı

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| > 3 h(n) = ?$

Hafızalı	Nedensel	Kararlı

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| > 3 h(n) = ?$

Hafızalı	Nedensel	Kararlı
		X

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}_{YB:?}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}_{YB:?}}}$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| > 3 h(n) = ?$

Hafızalı	Nedensel	Kararlı
		X

•
$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 3z^{-1}} \rightarrow h(n) = YB: |z| > \frac{1}{2}$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| > 3 h(n) = ?$

Hafızalı	Nedensel	Kararlı
		X

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}_{YB:|z| > \frac{1}{2}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}_{YB:|z| > 3}}_{YB:|z| > \frac{1}{2}} \rightarrow h(n) = \left(\frac{1}{2}\right)^n u(n) +$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| > 3$ $h(n) = ?$

Hafızalı	Nedensel	Kararlı
		X

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}_{YB:|z| > \frac{1}{2}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}_{YB:|z| > 3}}_{YB:|z| > \frac{1}{2}} \rightarrow h(n) = \left(\frac{1}{2}\right)^n u(n) + 2(3)^n u(n)$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| < \frac{1}{2}$ $h(n) = ?$

Hafızalı	Nedensel	Kararlı

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| < \frac{1}{2}$ $h(n) = ?$

Hafızalı	Nedensel	Kararlı

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| < \frac{1}{2}$ $h(n) = ?$

Hafızalı	Nedensel	Kararlı
	X	

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| < \frac{1}{2}$ $h(n) = ?$

Hafızalı	Nedensel	Kararlı
	X	X

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}_{YB:?}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}_{YB:?}}}$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| < \frac{1}{2}$ $h(n) = ?$

Hafızalı	Nedensel	Kararlı
	X	X

•
$$H(z) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1}}} + \underbrace{\frac{2}{\underbrace{1 - 3z^{-1}}}}_{YB:|z| < 3}$$

•
$$h(n) =$$

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| < \frac{1}{2}$ $h(n) = ?$

Hafızalı	Nedensel	Kararlı
	X	X

•
$$H(z) = \frac{3-4z^{-1}}{1-\frac{7}{2}z^{-1}+\frac{3}{2}z^{-2}}$$
, YB: $|z| < \frac{1}{2}$ $h(n) = ?$

Hafızalı	Nedensel	Kararlı
	X	X

•
$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 3z^{-1}}$$

 $YB: |z| < \frac{1}{2}$

•
$$h(n) = -\left(\frac{1}{2}\right)^n u(-n-1) - 2(3)^n u(-n-1)$$