Foundations of Audio Signal Processing Assignment 5

Giulia Baldini, Luis Fernandes, Agustin Vargas Toro November 23, 2018

Exercise 5.1

A signal f is said to belong to the vector space $L^p(\mathbb{R})$ if $||f||_p < \infty$. **a.** The $L^1(\mathbb{R})$ norm of f:

$$||f||_1 = \int_0^1 |f(t)| dt$$

$$= \int_0^1 \frac{1}{\sqrt{t}} dt$$

$$= \left| 2\sqrt{t} \right|_0^1$$

$$= 2 - 0 = 2$$

So $f \in L^1(\mathbb{R})$. The $L^2(\mathbb{R})$ norm of f:

$$||f||_2 = \left(\int_0^1 |f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$= \left(\int_0^1 \frac{1}{t} dt\right)^{\frac{1}{2}}$$

$$= \left(|\log(t)|_0^1\right)^{\frac{1}{2}}$$

$$= (0 + \infty)^{\frac{1}{2}} = \infty$$

So $f \notin L^2(\mathbb{R})$. Thus $f \in L^1(\mathbb{R}) \setminus L^2(\mathbb{R})$.

b. The $L^1(\mathbb{R})$ norm of g:

$$||g||_1 = \int_1^\infty |g(t)|dt$$

$$= \int_1^\infty \frac{1}{t} dt$$

$$= |\log(t)|_1^\infty$$

$$= \infty - 1 = \infty$$

So $f \notin L^1(\mathbb{R})$. The $L^2(\mathbb{R})$ norm of g:

$$||g||_{2} = \left(\int_{1}^{\infty} |g(t)|^{2} dt\right)^{\frac{1}{2}}$$

$$= \left(\int_{1}^{\infty} \frac{1}{t^{2}} dt\right)^{\frac{1}{2}}$$

$$= \left(\left|-\frac{1}{t}\right|_{1}^{\infty}\right)^{\frac{1}{2}}$$

$$= \left(-\frac{1}{\infty} + 1\right)^{\frac{1}{2}} = 1$$

So $f \in L^2(\mathbb{R})$. Thus $f \in L^2(\mathbb{R}) \setminus L^1(\mathbb{R})$.

Exercise 5.2

a. $x(n) = e^n$

According to Jensen's Inequality we have that

$$\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z}) \subset \ell^3(\mathbb{Z}) \subset ... \subset \ell^\infty(\mathbb{Z})$$

Since the ℓ^{∞} norm is

$$||x(n)||_{\infty} = \sup_{n \in \mathbb{Z}} |x(n)|$$
$$= \sup_{n \in \mathbb{Z}} e^{n} = \infty$$

and the series $\sum_{n\in\mathbb{Z}}^{\infty} x(n)$ diverges because of the geometric series convergence test, then we know that there is no $p\in[1,\infty]$ for which $x\in\ell^p(\mathbb{Z})$.

b.
$$x(n) = e^{2\pi i n}$$

Because of what we proved in (a), it holds that there is no $p \in [1, \infty]$ for which $x \in \ell^p(\mathbb{Z})$. In fact, multiplying the value n by other values (even i) will not change the divergence of this series.

c.
$$x(n) = \frac{1}{\sqrt{n}}, n > 0$$

We know that the $||x(n)||_2 = \frac{1}{n}$, which is divergent, so also $||x(n)||_1 = \frac{1}{\sqrt{n}}$ is. Instead $||x(n)||_3 = \frac{1}{n^{\frac{3}{2}}}$ converges, because the numerator is a constant (and so does not increase) while the denominator is an increasing function, which means that it will eventually converge. Thus, according to Jensen's inequality, for $p \in [3, \infty]$ it holds that $x \in \ell^p(\mathbb{Z})$.

Exercise 5.3

a-b. The solutions can be found inside the code folder.