

Nuclear Reactor Physics

Reactor Kinetics II

Jan Dufek 2022

KTH Royal Institute of Technology

Contents

The inhour equation

Static measurement of reactivity of subcritical system

Dynamic measurement of reactivity by the rod-drop method

Dynamic measurement of reactivity by the source-jerk method

Another variant of the source-jerk and rod-drop methods

Reactor period T

- In the absolute value, the reactor period T is the time that is needed for the system power (number of neutrons) to change e-fold. The period is positive when the power grows, and it is negative when the power decreases.
- When increasing the power during a standard operation, the reactor periods is maintained larger than about 30 or 40 s.
- If the period drops below about 30 s (while increasing the power) then control systems shut down the reactor automatically.

The inhour equation

The inhour equation gives the relation between the reactivity ρ and reactor period T (or its inverse value ω), assuming that ρ is constant for $t \geq 0$.

Derivation of the inhour equation

- The inhour equation is derived with the assumption of no external source q.
- We assume now that $\rho = \rho_0$ for $t \ge 0$. To obtain the inhour equation, we need to solve the kinetic equations

$$\frac{dn}{dt} = \frac{\rho_0 - \beta_{\text{eff}}}{\Lambda} n + \sum_i \lambda_i c_i$$

$$\frac{dc_i}{dt} = \frac{\beta_{\text{eff}\,i}}{\Lambda} n - \lambda_i c_i, \ i = 1, \dots, 6$$

 This can be done easily via Laplace transformation (not done here). The solution is

$$n(t) = \sum_{j=1}^{7} A_j e^{\omega_j t},$$

where ω_i are solutions to the equation

$$\rho_0 = \beta_{\text{eff}} + \Lambda \omega - \sum_i \frac{\beta_{\text{eff}_i} \lambda_i}{\omega + \lambda_i}$$

1

Derivation of the inhour equation

• Since $\beta_{\mathrm{eff}} = \sum_i \beta_{\mathrm{eff}_i} = \sum_i \frac{\beta_{\mathrm{eff}_i} \omega + \beta_{\mathrm{eff}_i} \lambda_i}{\omega + \lambda_i}$ the equation

$$\rho_0 = \beta_{\text{eff}} + \Lambda \omega - \sum_i \frac{\beta_{\text{eff}_i} \lambda_i}{\omega + \lambda_i}$$

can also be written as

$$\rho_0 = \Lambda \omega + \sum_i \frac{\beta_{\text{eff}_i} \omega}{\omega + \lambda_i}$$

which is known as the inhour equation.

• The inhour equation has 6 real negative roots for ω and one real of the same sign as ρ_0 .

5

The solution n(t) has 7 terms $A_j e^{\omega_j t}$. Which term will dominate for large times?

• For large times, the term with the largest ω_j (let's assign it the first index, ω_1) will dominate, and

$$n(t) \rightarrow A_1 e^{\omega_1 t}$$

• For $\rho_0 > 0$, the dominant term is a growing exponential, and the characteristic time

$$T=1/\omega_1$$

is called the reactor period or the asymptotic period.

Based on the kin. equation

$$\frac{dn}{dt} = \frac{\rho - \beta_{\text{eff}}}{\Lambda} n + \sum_{i} \lambda_{i} c_{i} + q$$

what happens when $\rho > \beta_{\rm eff}$?

The first term in the kinetic equation for n(t) then becomes positive for $\rho > \beta_{\rm eff}$, and n(t) can then grow even without the need of delayed neutrons or external source.

When a reactor is so-called prompt-critical?

When $\rho=\beta_{\rm eff}$ then the reactor is called prompt-critical since the chain reaction could be self-sustained just on prompt neutrons.

7

It is not possible to calculate analytically the roots of the inhour equation

$$\rho_0 = \beta_{\text{eff}} + \Lambda \omega - \sum_i \frac{\beta_{\text{eff}_i} \lambda_i}{\omega + \lambda_i}$$

but we can simplify the equation. For large ρ_0 (when $\rho_0 > \beta_{\rm eff}$) we get:

For large $ho_0>eta_{
m eff}$, reactor period ${\cal T}$ is small (ω is very large) and the term

$$\frac{\beta_{\mathrm{eff}_{i}}\lambda_{i}}{\omega + \lambda_{i}}$$

can be neglected in the inhour equation, so we can write

$$\rho_0 = \beta_{\text{eff}} + \Lambda \omega$$

from where it follows that

$$T = \frac{\Lambda}{\rho_0 - \beta_{\text{eff}}}$$

Example with $\rho_0 = 2\beta_{\rm eff}$ (about 1600 pcm)

When we choose e.g. $\rho_0=1600 pcm$, then the reactor period becomes about $T \approx \frac{10^{-3}}{0.008} s = 0.125 s$. The reactor power then increases about $e^{1/0.125} = e^8 \approx 3000$ times during a single second!

We can also simplify the inhour equation

$$\rho_0 = \Lambda \omega + \sum_i \frac{\beta_{\text{eff}_i} \omega}{\omega + \lambda_i}$$

for small ρ_0 (close to 0).

When ρ_0 is very small then T is very large (slow increase in power), and so ω is very small, and the term

$$\frac{\beta_{\mathrm{eff}_i}\omega}{\omega+\lambda_i}\to\frac{\beta_{\mathrm{eff}_i}\omega}{\lambda_i}$$

Then we can write the inhour equation as

$$\rho_0 = \left(\Lambda + \sum_i \frac{\beta_{\text{eff}_i}}{\lambda_i}\right) \omega$$

Since ω changes sign with ρ_0 here, it must be the ω_1 . The period is then

$$T = \left(\Lambda + \sum_{i} \frac{\beta_{\text{eff}_{i}}}{\lambda_{i}}\right) / \rho_{0}$$

a

We can write

$$T = \left(\Lambda + \sum_{i} \frac{\beta_{\text{eff}_{i}}}{\lambda_{i}}\right) / \rho_{0}$$

also as

$$T = \left(\Lambda + \frac{\beta_{\text{eff}}}{\lambda}\right)/\rho_0$$

where

$$\lambda = \beta_{\text{eff}} / \sum_{i} \frac{\beta_{\text{eff}\,i}}{\lambda_{i}}$$

The $\beta_{\rm eff}/\lambda$ is several orders of magnitude larger than Λ for most reactors $(\beta_{\rm eff}/\lambda \doteq 0.0847$ for thermal reactors with $^{235} \rm U,$ or 0.0327 for therm. reactors with $^{239} \rm Pu),$ so if we can neglect Λ then we get

$$T pprox rac{eta_{ ext{eff}}}{\lambda}/
ho_0$$

Example for $\rho = 0.1\beta_{\rm eff}$:

Then $T \approx 0.0847/0.0008 \approx 106s$, and power will increase only $e^{1/106} = 1.0095$ times (by less than 1%) during a single second.

 $\textbf{Figure 1:} \ \ \textbf{Plot of the inhour equation for six groups of delayed neutrons}$

Static measurement of reactivity of subcritical system

Apparent neutron multiplication

Let's define the apparent neutron multiplication, M, in a sub-critical system as the total number of neutrons appearing in the system per a neutron from the external source.

The value of M

can be calculated as the sum of neutrons from the source S and from all succeeding fission generations (Sk, Sk^2 , etc.) divided by the number of neutrons from the external source,

$$M = \frac{S + Sk + Sk^2 + \dots}{S} = \frac{1}{1 - k}, \quad k < 1$$

Therefore, by measuring M we can obtain k,

$$k=1-\frac{1}{M}$$

As $k \to 1$ the value $\frac{1}{M} \to 0$.

Approaching criticality

The method is commonly used for monitoring reactivity of a subcritical reactor during its approaching to criticality.

Reciprocal multiplication method

The method for safe approach to criticality consists of plotting 1/M (reciprocal neutron counting rate) as a function of some parameter that controls reactivity and extrapolating 1/M plot to zero after each stepwise increase in the reactivity.

- The actual shape of the 1/M curve depends on the system and the position of the neutron detector and source.
- Large separation between the neutron source and detector give positive curvature (e.g. curve 8 on the previous slide).
- Caution must be taken when 1/M curve exhibit negative curvature
 (e.g. curve 1) since the extrapolated critical mass decreases as criticality is
 approached. (Critical mass can be easily overestimated.)
- The correct multiplication following a reactivity change in a subcritical system is observed only after the power is stabilised, which takes a long time for close-to-critical systems.

Dynamic measurement of reactivity by the rod-drop method

Consider a reactor operating at some equilibrium level, n_0 , $\rho_0=0$, which is suddenly shut down by the introduction of a negative reactivity ρ_1 (rod drop).

For the equilibrium conditions existing prior to the rod drop, the kinetic equations with no external source become

$$0 = \frac{\rho_0 - \beta_{\text{eff}}}{\Lambda} n_0 + \sum_i \lambda_i c_{i0}$$

$$0 = \frac{\beta_{\mathrm{eff}_{\it i}}}{\Lambda} n_0 - \lambda_i c_{i0}, \ i = 1, \ldots, 6$$

From the first equation

$$0 = \frac{\rho_0 - \beta_{\text{eff}}}{\Lambda} n_0 + \sum_i \lambda_i c_{i0}$$

we can write (since $\rho_0 = 0$)

$$n_0 = \frac{\Lambda \sum_i \lambda_i c_{i0}}{\beta_{\text{eff}}}$$

Within a few prompt-neutron lifetimes after the drop,

the system adjusts to a lower neutron level determined by the new prompt neutron reproduction and remains nearly constant at this "quasistatic level" until it is ultimately decreased by delayed-neutron decay.

For the "quasistatic level" we can write

$$0 = \frac{\rho_1 - \beta_{\text{eff}}}{\Lambda} n_1 + \sum_i \lambda_i c_{i0}$$

(since the concentration of delayed neutrons remains about the same at this point), from where

$$n_1 = \frac{\Lambda \sum_i \lambda_i c_{i0}}{\beta_{\text{eff}} - \rho_1}$$

From equations

$$n_0 = \frac{\Lambda \sum_i \lambda_i c_{i0}}{\beta_{\text{eff}}}$$

and

$$n_1 = \frac{\Lambda \sum_i \lambda_i c_{i0}}{\beta_{\text{eff}} - \rho_1}$$

we can see that

$$\frac{n_1}{n_0} = \frac{\beta_{\rm eff}}{\beta_{\rm eff} - \rho_1}$$

from where

$$\left\lceil rac{
ho_1}{eta_{
m eff}} = 1 - rac{ extit{n}_0}{ extit{n}_1}
ight
ceil$$

Hence, the reactivity value of the rod drop in units of dollars can be obtained directly from the observed power ratio.

Dynamic measurement of reactivity by the source-jerk method

Consider a subcritical system,

 $\rho_0 < 0$, with an external source q at an equilibrium level n_0 , from which the source is suddenly removed.

For the equilibrium conditions existing prior to the "source jerk", the kinetic equations are

$$0 = \frac{\rho_0 - \beta_{\text{eff}}}{\Lambda} n_0 + \sum_i \lambda_i c_{i0} + q$$

$$0 = \frac{\beta_{\mathrm{eff}_{\it i}}}{\Lambda} n_0 - \lambda_i c_{i0}, \ i = 1, \dots, 6$$

From the first equation

$$0 = \frac{\rho_0 - \beta_{\text{eff}}}{\Lambda} n_0 + \sum_i \lambda_i c_{i0} + q$$

we get

$$n_0 = \frac{\Lambda \sum_i \lambda_i c_{i0} + \Lambda q}{\beta_{\text{eff}} - \rho_0}$$

Within a few prompt-neutron lifetimes after removal of the source,

the system will adjust to a lower "quasistatic" neutron level n_1 determined by the multiplied delayed-neutron source strength alone:

$$n_1 = \frac{\Lambda \sum_i \lambda_i c_{i0}}{\beta_{\text{eff}} - \rho_0}$$

From equations

$$n_0 = \frac{\Lambda \sum_i \lambda_i c_{i0} + \Lambda q}{\beta_{\text{eff}} - \rho_0}$$

and

$$n_1 = \frac{\Lambda \sum_i \lambda_i c_{i0}}{\beta_{\text{eff}} - \rho_0}$$

we get

$$\frac{n_0}{n_1} = 1 + \frac{q}{\sum_i \lambda_i c_{i0}}$$

At steady-state, before the source-jerk,

a specific power level n_0 is established according to the external source q, which can be seen from an equation (derived in one of the previous lectures)

$$n_0 = -\frac{-\Lambda q}{\rho_0}$$

From there we can write

$$q = -\frac{n_0 \rho_0}{\Lambda}$$

which can be substituted into

$$\frac{n_0}{n_1} = 1 + \frac{q}{\sum_i \lambda_i c_{i0}}$$

Also, the term $\sum_{i} \lambda_{i} c_{i0}$ in equation

$$\frac{n_0}{n_1} = 1 + \frac{q}{\sum_i \lambda_i c_{i0}}$$

can be expressed from equation

$$0 = \frac{\beta_{\text{eff}_i}}{\Lambda} n_0 - \lambda_i c_{i0}, \ i = 1, \dots, 6$$

as

$$\sum_{i} \lambda_{i} c_{i0} = \frac{\beta_{\text{eff}}}{\Lambda} n_{0}$$

After substitution of terms q and $\sum_{i} \lambda_{i} c_{i0}$ in equation

$$\frac{n_0}{n_1} = 1 + \frac{q}{\sum_i \lambda_i c_{i0}}$$

by the derived expressions

$$q=-rac{n_0
ho_0}{\Lambda} \ \sum \lambda_i c_{i0} = rac{eta_{
m eff}}{\Lambda} n_0$$

we get

$$\frac{\mathit{n}_0}{\mathit{n}_1} = 1 - \frac{\rho_0}{\beta_{\mathrm{eff}}}$$

From

$$\frac{\mathit{n}_0}{\mathit{n}_1} = 1 - \frac{\rho_0}{\beta_{\mathrm{eff}}}$$

we can see that reactivity in dollars can be measured as

$$\frac{\rho_0}{\beta_{\mathrm{eff}}} = 1 - \frac{n_0}{n_1}$$

This method requires the rapid removal of only a small mass (the source) compared with the rod-drop method which requires the rapid transfer of one or more control rods.

After the source-jerk or rod-drop the system is described by kinetic equations without an external source

$$\frac{dn}{dt} = \frac{\rho - \beta_{\text{eff}}}{\Lambda} n + \sum_{i} \lambda_{i} c_{i}$$

$$\frac{dc_{i}}{dt} = \frac{\beta_{\text{eff}}}{\Lambda} n - \lambda_{i} c_{i}, \ i = 1, \dots, 6$$

These equations can be integrated from the time of the dynamic change to infinity

$$\begin{split} &\int_{0}^{\infty}dn=\int_{0}^{\infty}\frac{\rho-\beta_{\mathrm{eff}}}{\Lambda}ndt+\sum_{i}\lambda_{i}\int_{0}^{\infty}c_{i}dt\\ &\int_{0}^{\infty}dc_{i}=\int_{0}^{\infty}\frac{\beta_{\mathrm{eff}\,i}}{\Lambda}ndt-\lambda_{i}\int_{0}^{\infty}c_{i}dt,\ i=1,\ldots,6 \end{split}$$

where

$$\int_0^\infty dn = n_\infty - n_0$$
$$\int_0^\infty dc_i = c_{i,\infty} - c_{i,0}$$

Since we assume a subcritical reactor, we can state that $n_{\infty}=0$ and $c_{i,0}=0$, so we can re-write the equations as

$$-n_0 = \int_0^\infty rac{
ho - eta_{
m eff}}{\Lambda} n dt + \sum_i \lambda_i \int_0^\infty c_i dt$$
 $-c_{i,0} = \int_0^\infty rac{eta_{
m eff}_i}{\Lambda} n dt - \lambda_i \int_0^\infty c_i dt, \ i = 1, \dots, 6$

We can sum up the equations for precursors over all groups, and we get

$$-\sum_{i}c_{i,0}=\int_{0}^{\infty}\frac{\beta_{\mathrm{eff}}}{\Lambda}ndt-\sum_{i}\lambda_{i}\int_{0}^{\infty}c_{i}dt$$

The above equation combines with the equation at the top into

$$-n_0 = \int_0^\infty \frac{\rho}{\Lambda} n dt + \sum_i c_{i,0}$$

We know that there is a relation between equilibrium number of neutrons and precursors:

$$c_{i,0} = \frac{\beta_{\text{eff}_i}}{\lambda_i \Lambda} n_0$$

Hence, we can use it for the equation

$$-n_0=\int_0^\infty rac{
ho}{\Lambda} n dt + \sum_i c_{i,0}$$

and we get

$$-n_0 = \int_0^\infty \frac{\rho}{\Lambda} n dt + \sum_i \frac{\beta_{\text{eff}_i}}{\lambda_i \Lambda} n_0$$

which can be solved for reactivity as

$$\frac{\rho}{\beta_{\text{eff}}} = -\frac{n_0 \times A}{\int_0^\infty n dt}$$

where

$$A = \frac{\Lambda}{\beta_{\text{eff}}} + \sum_{i} \frac{\beta_{\text{eff}_{i}}}{\beta_{\text{eff}} \lambda_{i}}$$

Note

The value of A in the equation

$$\frac{\rho}{\beta_{\text{eff}}} = -\frac{n_0 \times A}{\int_0^\infty n dt}$$

is a characteristic of the reactor. It can be for instance equal to 11s.

The value of $\int_0^\infty ndt$ can be measured during the experimant.