基于 Wolfe-Powell 准则的非精确一维步长搜索算法

Xiaoma

2023年1月6日

问题描述

给定目标函数 f(x):

• 二维 Rosenbrock 函数:

$$f(x) = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2$$

求解无约束优化问题:

$$\min_{x} f(x)$$

实验原理

拟牛顿法

牛顿法

牛顿法的基本思想是利用目标函数的二次 Taylor 展开,并将其极小化。设 f(x) 是可微实函数, $x^{(k)} \in \mathbb{R}^n$,Hesse 矩阵 $\nabla^2 f(x^{(k)})$ 正定,在 $x^{(k)}$ 附近用二次 Taylor 展开近似 f

$$q^{(k)}(s) = f(x^{(k)}) + \nabla f(x^{(k)})^T s + \frac{1}{2} s^T \nabla^2 f(x^{(k)}) s$$

其中 $s = x - x^{(k)}$, $q^{(k)}(s)$ 为 f(x) 的二次近似, 将上式右边极小化得

$$x^{(k+1)} = x^{(k)} - [\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)})$$

在该公式中,步长因子 $a_k=1$,令 $G_k=\nabla^2 f(x^{(k)}), g^{(k)}=\nabla f(x^k)$,则原式可写为

$$x^{(k+1)} = x^{(k)} - G_k^{-1} g^{(k)}$$

显然,牛顿法也可看成在椭球范数 $\|\cdot\|_{G_k}$ 下的最速下降法,对于 $f(x^k+s) \approx f(x^{(k)}) + g^{(k)T}s$, $s^{(k)}$ 是极小化问题

$$\min \frac{g^{(k)\mathcal{T}}}{\|s\|}$$

的解, 当采用 l_2 范数时

$$s^{(k)} = -q^{(k)}$$

所得方法是最速下降法,当采用椭球范数 $\|\cdot\|_{G_k}$ 时

$$s^{(k)} = -G_k^{-1} g^{(k)}$$

所得方法是牛顿法。

经典牛顿迭代法的运算步骤为

Algorithm 1: 牛顿法

Input: 初始点 x_0 , 阈值误差 ε

Output: $x^{(k)}, f(x^{(k)})$

- (1) 初始化 k=0
- (2) 计算 $g^{(k)} = \nabla f(x^{(k)})$, 如果 $||g^{(k)}|| < \varepsilon$, 则停止迭代
- (3) 解线性方程组 $s^{(k)} = -G_k^{-1}g^{(k)}$
- (4) 更新 $x^{(k+1)} = x^{(k)} + s^{(k)}, k = k+1$, 返回步骤 (2)

拟牛顿法

牛顿法虽然收敛速度较快,但计算 Hense 矩阵的成本过大,并且若矩阵不是正定的,则牛顿法失效。

对 $\nabla f(x)$ 在 $x^{(k)}$ 出 Taylor 展开得到如下近似

$$\nabla f(x) = g^{(k)} + H_k(x - x^{(k)})$$

令
$$x = x^{(k+1)}$$
 即可得到 $g^{(k+1)} - g^{(k)} = H_k(x^{(k+1)} - x^{(k)})$ 记 $y^{(k)} = g^{(k+1)} - g^{(k)}, \delta_k = x^{(k+1)} - x^{(k)}$

$$y^{(k)} = H_k \delta_k$$

称为拟牛顿条件

DFP 法

设对称秩二矫正为

$$H_{k+1} = H_k + auu^T + bvv^T$$

令拟牛顿条件满足,则

$$H_k y^{(k)} + a u u^T y^{(k)} + b v v^T y^{(k)} = s^{(k)}$$

这里 u 和 v 并不唯一确定, 但 u 和 v 的明显选择是

$$u = s^{(k)} \quad v = H_k v^{(k)}$$

确定出

$$a = 1/y^{(k)}u^T = 1/s^{(k)T}y^{(k)}b = -1v^T/y^{(k)} = -1/y^{(k)T}H_ky^{(k)}$$

因此

$$H_{k+1} = H_k + \frac{s^{(k)}s^{(k)T}}{s^{(k)T}y^{(k)}} - \frac{H_k y^{(k)}y^{(k)T}H_k}{y^{(k)T}H_k y^{(k)}}$$

这个公式称为 DFP 公式。DFP 法的运算步骤为

BFGS

类似的,可以得到关于 B_k 的对称秩二矫正公式

$$B_{k+1}^{(BFGS)} = B_k + \frac{\mathbf{y}^{(k)}\mathbf{y}^{(k)^T}}{\mathbf{y}^{(k)^T}\mathbf{s}^{(k)}} - \frac{B_k\mathbf{s}^{(k)}\mathbf{s}^{(k)^T}B_k}{\mathbf{s}^{(k)^T}B_k\mathbf{s}^{(k)}}$$

Algorithm 2: DFP

Input: 初始点 x_0 ,阈值误差 ε

Output: $x^{(k)}, f(x^{(k)})$

(1) 初始化 $H_0 = I, k = 0$

(2) 计算搜索方向: $d^{(k)} = -H_k \nabla f(x^{(k)})$, 如果 $||q^{(k)}|| < \varepsilon$, 停止迭代

(3) 一维搜索确定步长 α_k ,令 $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$

(4) 令
$$\mathbf{s}^{(k)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \mathbf{y}^{(k)} = \nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)}), 当$$
 $\mathbf{s}^{(k)^T} \mathbf{y}^{(k)} > 0$,作更新 $H_{k+1} = H_k + \frac{\mathbf{s}^{(k)} \mathbf{s}^{(k)^T}}{\mathbf{s}^{(k)^T} \mathbf{y}^{(k)}} - \frac{H_k \mathbf{y}^{(k)} \mathbf{y}^{(k)^T} H_k}{\mathbf{y}^{(k)^T} H_k \mathbf{y}^{(k)}}$ 。置 $k = k+1$,返回步骤 (2)

 H_k 的 BFGS 校正公式为

$$\begin{split} H_{k+1}^{(BFGS)} = & H_k + \left(1 + \frac{\mathbf{y}^{(k)^T} H_k \mathbf{y}^{(k)}}{\mathbf{s}^{(k)^T} \mathbf{y}^{(k)}}\right) \frac{\mathbf{s}^{(k)} \mathbf{s}^{(k)^T}}{\mathbf{s}^{(k)^T} \mathbf{y}^{(k)}} \\ & - \frac{H_k \mathbf{y}^{(k)} \mathbf{s}^{(k)^T} + \mathbf{s}^{(k)} \mathbf{y}^{(k)^T} H_k}{\mathbf{s}^{(k)^T} \mathbf{y}^{(k)}}. \end{split}$$

BFGS 法的运算步骤为

Algorithm 3: BFGS

Input: 初始点 x_0 ,阈值误差 ε

Output: $x^{(k)}, f(x^{(k)})$

- (1) 初始化 $H_0 = I, k = 0$
- (2) 计算搜索方向: $d^{(k)} = -H_k \nabla f(x^{(k)})$, 如果 $||g^{(k)}|| < \varepsilon$, 停止迭代
- (3) 一维搜索确定步长 α_k ,令 $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$

(4) 令
$$\mathbf{s}^{(k)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}, \mathbf{y}^{(k)} = \nabla f\left(\mathbf{x}^{(k+1)}\right) - \nabla f\left(\mathbf{x}^{(k)}\right),$$
作更新 $H_{k+1}^{(BFGS)} = H_k + \left(1 + \frac{\mathbf{y}^{(k)^T} H_k \mathbf{y}^{(k)}}{\mathbf{s}^{(k)^T} \mathbf{y}^{(k)}}\right) \frac{\mathbf{s}^{(k)} \mathbf{s}^{(k)^T}}{\mathbf{s}^{(k)^T} \mathbf{y}^{(k)}} - \frac{H_k \mathbf{y}^{(k)} \mathbf{s}^{(k)^T} + \mathbf{s}^{(k)} \mathbf{y}^{(k)^T} H_k}{\mathbf{s}^{(k)^T} \mathbf{y}^{(k)}}$ 。 置 $k = k+1$,返回步骤(2)

非精确一维步长搜索

非精确一维搜索

找出满足某些适当条件的粗略近似解作为步长,提升算法的整体计算 效率

Wolfe-Powell conditions:

$$\varphi(\alpha) \le \varphi(0) + \rho \alpha \varphi'(0)$$

 $\varphi'(\alpha) \ge \sigma \varphi'(0)$

其中 $\rho \in (0, \frac{1}{2}), \sigma \in (\rho, 1)$ 是固定参数。 设 $\hat{\alpha}_k$ 是使得 $f(x^{(k)} + \alpha d^{(k)}) = f(x^{(k)})$ 的最小正数 α

基于 Wolfe-Powell 准则的非精确一维步长搜索

- (1) 给定初始一维搜索区间 $[0,\bar{\alpha}]$, 以及 $\rho \in (0,\frac{1}{2})$, $\sigma \in (\rho,1)$. 计算 $\varphi_0 = \varphi(0) = f(x^{(k)})$, $\varphi'_0 = \varphi'(0) = \nabla f(x^{(k)})^T d^{(k)}$. 并令 $a_1 = 0$, $a_2 = \bar{\alpha}$, $\varphi_1 = \varphi_0$, $\varphi'_1 = \varphi'_0$. 选取适当的 $\alpha \in (a_1, a_2)$.
- (2) 计算 $\varphi = \varphi(\alpha) = f\left(x^{(k)} + \alpha d^{(k)}\right)$. 若 $\varphi(\alpha) \leq \varphi(0) + \rho \alpha \varphi'(0)$, 则转到第 (3) 步。否则,由 $\varphi_1, \varphi'_1, \varphi$ 构造二次插值多项式 $p^{(1)}(t)$, 并得其极小点 $\hat{\alpha}$. 令 $a_2 = \alpha$, $\alpha = \hat{\alpha}$, 重复第 (2) 步.
- (3) 计算 $\varphi' = \varphi'(\alpha) = \nabla f \left(x^k + \alpha d^{(k)}\right)^T d^{(k)}$. 若 $\varphi'(\alpha) \geq \sigma \varphi'(0)$, 则输出 $\alpha_k = \alpha$, 并停止搜索. 否则由 $\varphi, \varphi', \varphi'_1$ 构造两点二次插值多项式 $p^{(2)}(t)$, 并求得极小点 $\hat{\alpha}$. 令 $a_1 = \alpha, \alpha = \hat{\alpha}$, 返回第 (2) 步.

数据说明

二维 Rosenbrock 函数

程序输入输出说明

输入 1、2 选择 DFP/BFGS, 然后输入初始点。 输出值为迭代次数与最优解

程序测试结果

DFP	epoch	x1, x2	f
0 0	17	0.999999986994 0.999999981660	6.055373455850762e-17
0.5 0.5	16	1.00000001203758 1.0000000247276	1.8747613102236447e-16
-1 1	1	1.0 1.0	0.0
2 -3	37	0.9999999503545 0.9999999346	1.176336523561564e-15
-100 150		无法收敛	
\mathbf{BFGS}	epoch	x1, x2	f
BFGS 0 0	epoch 18	x1, x2 0.9999999786 0.9999999574	f 4.635405677357143e-18
		, 	
0 0	18	0.9999999786 0.9999999574	4.635405677357143e-18
0 0 0.5 0.5	18 15	0.99999999786 0.99999999574 0.999999995 0.9999999990	4.635405677357143e-18 2.4722121607796934e-19

分析总结

不同的初始点也可能产生截然不同的结果,甚至无法收敛。 经过测试发现,BFGS 法具有比 DFP 法更稳定的数值。