PhD Seminar
- Arctic Sea
Ice Feature
Detection

Alison Kleffner

PhD Seminar - Arctic Sea Ice Feature Detection

Alison Kleffner

11/19/21

Seminar Agenda

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Introduction to Problem and Data Set
- Previous Methods
- Our proposed Method: Bounding Box Approach
- Interpolation of Missing Data
- Future Work

Project 1: Arctic Sea Ice Feature Detection

PhD Seminar
- Arctic Sea
Ice Feature
Detection

Figure 1: Figures of Ice Cracks

Motivation

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- What are We trying to Do?
 - Develop a method to determine where possible Ice Cracks may form given only movement data
- Data Given
 - Gpid: Identify of part of ice chunk
 - Location of gpids (x/y)
 - Observation Time: Have 22 days worth of data
 - k: image index (sometimes will have multiple observations for a gpid on a day)

Sea Ice Motion Animation

PhD Seminar
- Arctic Sea
Ice Feature
Detection

Figure 2: Ice Motion

Explanation of Problem

PhD Seminar
- Arctic Sea
Ice Feature
Detection

Alison

Comparison: Previous Work by Guan et al (2019)

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- There is another dataset that has more information (like derivations of estimates of ice deformation)
- Then they ran a kinematic analysis of the deformations.
 - Fit a jump in displacement that would account for the observed deformation in a cell.
 - So gives some indication of where cracks may form, and the level of opening of the crack.

Overview: Spatio-Temporal Clustering

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Ansari et. al (2019)
 - Event Clustering
 - Geo-Referenced data item clustering
 - Geo-Referenced time series clustering
 - Trajectory Clustering (Focus)
 - Moving Clusters
 - Semantic Based Trajectory Mining
- Clustering of sub-trajectories (Lee et al (2007))

Challenges

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- How gpids are laid out (can't use density-based clustering)
- Missing chunks of data (issues with calculations of distances)
- Only motion data is observed
- Typical interpolation methods aren't suitable
 - Non-smooth spatial process
 - Nonstationarity due to ice moving as patches.

Our Proposed Method

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Cluster similar trajectories to identify patches of ice using information from a Bounding Box
 - A way to work around the missing data problem
- Space-time interpolation within each ice pack where ice movements are similar.

Clustering with Bounding Box

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Included in Bounding Box
 - Min/Max Latitude
 - Min/Max Longitude
 - Average Lat/Long
 - Length of Latitude
 - Length of Longitude
 - Angle/Direction Moved
- Use the features of the bounding box as inputs into KMeans Clustering
 - The boundaries of each cluster would be where the ice crack forms
 - The number of clusters was determined using the silhouette statistic

Results: Bounding Box of All Days

PhD Seminar
- Arctic Sea
Ice Feature
Detection

Comparison to Yawen's Previous Work

PhD Seminar
- Arctic Sea
Ice Feature
Detection

Figure 3: RGPS opening magnitude from the kinematic algorithm

Results: Bounding Box By Week

PhD Seminar
- Arctic Sea
Ice Feature
Detection

Figure 4: Clustering Bounding Boxes by Week

Next: Interpolation of Missing Information

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Want to be able to interpolate the missing x/y gpid information
 - Challenges:
 - When missing gpid information, missing it in chunks
 - For spatial- temporal interpolation, in order to calculate the distance matrix, need latitude and longitude.
- Our Method: Use of Polygon Intersections
 - Find Spatial and temporal neighbors and use these to interpolate onto a grid

Interpolation Process

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Find Spatial-Temporal Neighbor groupings for each week.
 - Created Polygons for each week of the Clusters given previous (spatial neighbors)
 - Find intersection of polygons for the different weeks (temporal neighbors)
- Develop a grid for starting values if missing.
- At a time point, find the known data, and use this to develop a model using fit_model in the GpGp package
 - Exponential Space-Time Covariance Function
- Then predict the gpids x or y location using the developed model with the initial value being the grid cell.
 - Current Issues

Interpolation Pics

PhD Seminar
- Arctic Sea
Ice Feature
Detection

Figure 5: Spatial-Temporal Neighbors of Week 1

Current Work: Analyzing Nonstationary Spatial Data Using Gaussian Processes

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Find a method that can determine groupings, and also model our data in one step.
 - Methods on analyzing nonstationary spatial data using piecewise Gaussian processes
 - Voronoi Tesselation (Kim et al. (2005))
 - Bayesian Tree (Konomi et al. (2014))
- Problems so far:
 - Methods don't have a time component
 - Developing the Code.

Future Work

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Figure out errors in interpolation model
- Validation of my interpolation method
 - See how it does holding out known data
 - Comparison to Linear Interpolation
- Keep exploring the modeling of nonstationary data using Gaussian Processes.
- Create a pipeline so can become more automated (for example, if have more days)

Selected References

PhD Seminar
- Arctic Sea
Ice Feature
Detection

- Ansari, M.Y., Ahmad, A., Khan, S.S. et al. Spatiotemporal clustering: a review. Artif Intell Rev 53, 2381–2423 (2020). https://doi.org/10.1007/s10462-019-09736-1
- Bledar A. Konomi, Huiyan Sang & Bani K. Mallick (2014)
 Adaptive Bayesian Nonstationary Modeling for Large Spatial
 Datasets Using Covariance Approximations, Journal of
 Computational and Graphical Statistics, 23:3, 802-829, DOI:
 10.1080/10618600.2013.812872
- Guan, Y., Sampson, C., Tucker, J.D. et al. Computer Model Calibration Based on Image Warping Metrics: An Application for Sea Ice Deformation. JABES 24, 444–463 (2019). https://doi.org/10.1007/s13253-019-00353-7
- Kim, H., B. Mallick, and C. Holmes (2005). Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes. Journal of the American Statistical Association, 100(470), 653–668. http://www.jstor.org/stable/27590585

Selected References

PhD Seminar
- Arctic Sea
Ice Feature
Detection

Alison Kleffner

Lee, J. G., Han, J., & Whang, K. Y. (2007). Trajectory clustering: A partition-and-group framework. In SIGMOD 2007: Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 593-604). https://doi.org/10.1145/1247480.124754