数理逻辑作业 Week10

PB20111686 黄瑞轩

P93 T3

3°
$$orall x_1(
eg R_1^1(x_1)
ightarrow
eg R_1^1(c_1))$$

只需证明 $\nvDash p$,为此只需找一个解释域 M 与解释 $\phi \in \Phi_M$,使得 $|p|(\phi) = 0$ 。

取
$$M: \mathbb{N} = \{0, 1, 2, \dots\}, \overline{c_1} = 0, \overline{R_1^1} : 是 0, \ \mathbb{R} \phi : \phi(x_1) = 1_{\bullet}$$

设 $p = \forall x_1 q$,则 $|q|(\phi) = 0$,由于 ϕ 也是 ϕ 的变通,所以 $|p|(\phi) = 0$ 。

所以 p 不是有效式。

4°
$$orall x_1 R_1^2(x_1,x_1)
ightarrow \exists x_2 orall x_1 R_1^2(x_1,x_2)$$

设 $p=r
ightarrow s, r=orall x_1 r_0$ 。

设
$$s = \neg s_0, s_0 = \forall x_2(\neg \forall x_1 R_1^2(x_1, x_2)), s_0 = \forall x_2(\neg s_1), s_1 = \forall x_1 R_1^2(x_1, x_2)$$
。

取
$$M: \mathbb{N}, \overline{R_1^2}:$$
 相等,取 $\phi: \phi(x_1) = 1, \phi(x_2) = 2$ 。

对于 ϕ 的任意 x_1 变通 ϕ' ,都有 $|r_0|(\phi')=1$,因此 $|r|(\phi)=1$ 。

因为存在 ϕ 的 x_1 变通使得 $|R_1^2(x_1,x_2)|(\phi'')=0$,所以 $|s_1|(\phi)=0$,所以 $|\neg s_1|(\phi)=1$ 。

因为对于 ϕ 的任何 x_2 变通 ϕ' , 都有 $|\neg s_1|(\phi')=1$, 所以 $|s_0|(\phi)=1$, 所以 $|s|(\phi)=0$.

所以 $|p|(\phi) = |r|(\phi) \rightarrow |s|(\phi) = 0$,不是有效式。

P94 T4

(a)

对项 $t \in K$ 的项集 T 中层次 n 做归纳。

- (1) 当 n=0 时, $t\in X\cup C_K$,由于对任意 $x_i\in X$, $\phi^+(x_i)=\phi(x_i)$,故 $\phi(t)=\phi^+(t)$;
- (2) 设当 n < k 时命题成立;
- (3) 当 n=k 时,设 $t=f_i^k\left(t_1,\ldots,t_k
 ight)$,这里 $t\in T_k,t_1,\ldots,t_k\in igcup_{i=0}^{k-1}T_i$,故

$$\phi(t) = \phi\left(f_i^k\left(t_1, \dots, t_k\right)\right) = \overline{f_i^n}\left(\phi\left(t_1\right), \dots, \phi\left(t_k\right)\right) = \overline{f_i^n}\left(\phi^+\left(t_1\right), \dots, \phi^+\left(t_k\right)\right) = \phi^+(t) \tag{1}$$

故结论成立。

对公式 p 在 K 的公式集 K(Y) 中的层次 n 做归纳。

(1) 当 n=0 时, p(x) 是原子公式, 设 $p(x)=R_i^m(t_1(x),\ldots,t_m(x))$, 于是

$$|R_i^m(t_1(x),\ldots,t_m(x))|(\phi^+)=1\Leftrightarrow (\phi^+(t_1(x)),\ldots,\phi^+(t_m(x)))\in \overline{R_i^m}\ \Leftrightarrow (\phi(t_1(x)),\ldots,\phi(t_m(x)))\in \overline{R_i^m}\ \Leftrightarrow |R_i^m(t_1(x),\ldots,t_m(x))|(\phi)=1$$

为假的情况同理,故 $|p|(\phi^+) = |p|(\phi)$ 。

- (2) 设当 n < k 时命题成立;
- (3) 当 n = k 时,分以下四种情况讨论。
- $\exists p(x) = q(x) \to r(x), \ \mathbb{M} \ |p|(\phi^+) = |q|(\phi^+) \to |r|(\phi^+) = |q|(\phi) \to |r|(\phi) = |p|(\phi);$
- 若 $p(x) = \forall yq(x)$,若 ϕ' 是 ϕ 的任意 y 变通, ϕ^{+} ' 是 ϕ' 在 K^+ 的扩张,则 ϕ^{+} ' 是 ϕ^+ 的 y 变通,则

$$|p|(\phi^+)=1$$
 ⇔对任意 ϕ^+ 的 y 变通 $\phi^{+\prime}$,都有 $|p|(\phi^{+\prime})=1$ ⇔对任意 ϕ 的 y 变通 ϕ^\prime ,都有 $|q|(\phi^\prime)=1$ ⇔ $|p|(\phi)=1$

P98 T2

反证法,如果 $\vdash \exists x_2 R_1^2(x_1,x_2) \to \exists x_2 R_1^2(x_2,x_2)$ 成立,由可靠性定理,则 $\models \exists x_2 R_1^2(x_1,x_2) \to \exists x_2 R_1^2(x_2,x_2)$ 成立。

给一个解释域 $M: \mathbb{N}, \overline{R_1^2} \mathbb{R} <$,并且给 Φ_M 上的一个项解释 $\phi: \phi(x_1) = 1, \phi(x_2) = 2$,此时公式 前件为真,后件为假,整个式子语义上是假的,故矛盾,所以原式不成立。