Filtrage

Valentin TUGOT

18 Décembre 2023

Définition

Filtres:

- Système (ensemble de composants)
- Schema: (Une boite, 2 entrées, 2 sorties) -> Système multivariables
- Schema: (Une boite, 1 entrée, 1 sortie) -> Système monovariable

On utilise des systèmes linéaires Un système linéaire obéit au principe de superposition

Système Linéaire

Si:
$$e_1(t) \to s_1(t)$$
 et $e_2(t) \to s_2(t)$

Alors:
$$a.e_1(t) + b.e_2(t) \rightarrow a.s_1(t) + b.s_2(t)$$

Les systèmes modifient les signaux qui les traversent.

Analayse harmonique d'un filtre

L'analyse harmonique d'un filtre consiste à appliquer des signaux sinusoïdaux à l'entrée du filtre et à étudier sa sortie.

On prend un filtre linéaire avec e(t) signal sinusoïdale en entrée.

$$e_1(t) = 1.sin(\omega_1 t)$$
 avec $\omega_1 = 2\pi f_1$

Entre le signal en sortie et le signal en entrée on remarque une différence d'amplitude ΔA et une différence de phase $\Delta \Phi$.

$$s_1(t) = a_1(\omega_1(t) + \phi_1)$$

Représentation d'un filtre par un diagramme de Bode

Figure 1: Exemple de Diagramme de Bode

Le Gain en Db, c'est l'amplitude du signal de sortie, sur l'amplitude du signal en entrée. On a : $G(dB)=20.\log(G)$ avec $G=\frac{S}{E}$ $G=10^{(\frac{G}{20})}$, on peut en déduire l'amplitude du signal en sortie: $S=G\times E$

Dans le diagramme de phase, cette dernière peut être soit en degrés, soit en radian.

Comment obtenir un diagramme de Bode

- Python, plusieurs librairie permettent de tracer un diagramme de Bode en fonction de la fonction de transfert du système
- Scilab
- Matlab (payant)

On place notre fréquence sur les 2 diagrammes et on peut observer sur l'axe des ordonnées le gain et la phase correspondant. Cela explique que si j'applique un filtre à une fréquence f_1 , j'obtiendrais un gain G_1 en dB grâce au diagramme.

Figure 2: Lecture à la fréquence ω_0

Pour trouver la fréquence de coupure du filtre, on se place sur l'axe du gain et on descends de 3dB. A 3dB, la puissance du signal est divisé par 2 et l'amplitude A est divisé par $\sqrt{2}$. Sur la figure précédente, ω_0 est la fréquence de coupure.

Différents types de filtres

Figure 3: Exemples de filtres de base