Course Name: Digital Hardware Design

Course Code: 17B1NEC741

Finite State Machine-6

Dr. Arti Noor
Dean, Academic Affairs
Electronics and Communication Engineering,
Jaypee Institute of Information Technology, Noida

Number System

- Electronic and Digital systems use a variety of different number systems like Decimal, Hexadecimal, Octal, and Binary.
- Depending upon requirement numbers are converted from one system to another.
- The base for the digital system is a binary number (0,1).
- To easily handle a long sequence of binary numbers, it is converted into Binary Coded Decimal or BCD form.

BCD to Excess -3 conversion

- A disadvantage of BCD is that only 10 of the possible 16 (2⁴) codes that four bits can produce are used. Hence it is an inefficient code.
- The excess-3 code is another important BCD code used to overcome BCD limitations.
- In Excess-3 coding adds 3 to the original number. It is an unweighted self-complementary code.

DECIMAL DIGIT	BCD CODE	EXCESS-3 CODE
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

FSM example :BCD to Excess -3 conversion

Jacker OF INFORMATION RELIEVED TO THE PROPERTY OF THE PROPERTY

Serial code converter

FSM example :STG for Excess-3 convertor

Add 0011 to input bit by bit

Level -0(LSB):Start with state SO which means it is having no carry and LBS or first bit of 0011.

Two inputs possible

- 1. Input bit ='0'; ADD 0011+0 => gives O/P =1, carry =0 and next state S1.
- 2. Input bit ='1';
- 3. Repeat same process for 2,3,4 bit position of 0011.
- 4. At last state if carry is generated, it is ignored.

FSM example :STG for Excess-3 convertor

Prepare State transition table 3 bits are required to code 6 states.

	PS			NS							
				In=			In=			In=	In=
				0			1			0	1
	q2	q1	q0	q2 +	q1 +	q0+	q2 +	q1 +	q0 +	O/P	O/P
SO	0	0	0	0	0	1	1	0	1	1	0
S1	0	0	1	1	1	1	0	1	1	1	0
S2	1	0	1	0	1	1	0	1	1	0	1
S3	1	1	1	1	1	0	1	1	0	0	1
S4	0	1	1	1	1	0	0	1	0	1	0
S5	1	1	0	0	0	0	0	0	0	0	1
S6	0	1	0	0	0	0	X	X	X	1	X

AN-DHD-FSM6-JIIT

FSM example: Circuit for Excess-3 convertor

K-map to get equations

Prepare State transition table 3 bits are required to code 6 states.

Using above equation circuit can be made for BCD to excess 3 converter

FSM Example- Traffic Light Controller

- A busy highway is intersected by a little used farmroad.
- Detectors sense the presence of cars waiting on the farmroad.
- With no car is on farmroad, the lights remain Green in the highway direction.
- If vehicle is on the farmroad, highway lights go from Green to Yellow to Red, allowing the farmroad lights to become Green.
- These stay Green only as long as a farmroad car is detected but never longer than a set interval.
- When conditions are met, farm lights transition from Green to Yellow to Red, allowing highway to return to Green.
- Even if farmroad vehicles are waiting, the highway gets at least a set interval as Green.

Diagram of Intersection

Available Timers

- Assume you have an interval timer that generates a short time pulse (TS) and a long time pulse (TL) in response to a start timer (ST) signal.
- TS is to be used for timing Yellow lights and TL for Green lights

Tabulate Inputs & Outputs				
In must Giornal	Description			
Input Signal Reset TS TL	Description place FSM in initial state detect vehicle on farmroad short time interval expired long time interval expired			
Output Signal HG, HY, HR. FG, FY, FR ST	Description assert green/yellow/red highway lights assert green/yellow/red farmroad lights start timing a short or long interval			

Tabulate Unique States

Some light configurations imply others.

State	Description	
S0	Highway (Green)	(farmroad Red)
S1	Highway Yellow	(farmroad Red)
S2	Farmroad Green	(highway Red)
S3	Farmroad Yellov	, ,

- Reset places timer in S0, highway Green and farmroad Red.
- Reset also starts the timer.
- Stay in S0 as long as no one is on the farmroad.
- Even if there is a farmroad vehicle, the highway stays
 Green at least long as the long time interval.
- (Unstated in problem spec) There will never be a bicycle or pedestrian on the farmroad.

From STG, a state transition table and circuit can be designed.