

Ranking Models

Quality Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

The ranking problem

Inferring relevance

$$f(q,d) = P(d|q)$$
$$= \frac{P(q|d)P(d)}{P(q)}$$

How does observing q affect the probability of d?

 $\circ P(d|q)$: document posterior (a posteriori relevance)

 $\circ P(d)$: document prior (a priori relevance)

The ranking problem

The ranking problem

Quality as prior relevance

High quality of the web document content increases the a priori probability of the document being relevant o a.k.a. document prior

Quality factors should be combined in a way that directly improves the retrieval effectiveness

∘ e.g., nDCG or MAP

Document quality in web search

Web is decentralized and heterogeneous

- o Different authority
- o Different goals
- o Different credibility
- o Different publishing standards

Document quality in web search

Quality of a web page is determined by many factors

- o Original, up-to-date content of genuine value
- Links to related resources
- Layout for easy reading and navigation

Continuous spectrum from high-quality pages to spam

o Most web documents are somewhere in between

Document quality in web search

As pure web spam has decreased over time, attention has shifted instead to sites with shallow or low-quality content. • Matt Cutts, 2011

Document quality in web search

Document quality in search engines

- Promote high-quality content
- o Demote low-quality content

Two broad sources of quality evidence

- o On-document evidence
- Off-document evidence

On-document evidence

Verbosity

Readability

Cohesiveness

Navigability

Support

Verbosity

Document nominal length

• Full length in tokens (Singhal et al., 1996)

Document visible length (Zhu & Gauch, 2000)

o Content actually rendered

Document title length (Bendersky et al., 2011)

 \circ Measures descriptiveness of page metadata

Readability

Average term length (Kanungo & Orr, 2009)

o Longer terms denote thoughtful selection

Stopwords ratio/coverage (Ntoulas et al., 2006)

o Correlated with informativeness

Fraction of table text (Bendersky et al., 2011)

 \circ High fraction denotes poor readability

Cohesiveness

Entropy of the page content (Bendersky et al., 2011) • Lower entropy denotes better focus

$$H(\theta_d) = -\sum_{t \in d} P(t|d) \log P(t|d)$$

Navigability

URL length (Kraaij et al., 2002)

URL depth (number of parts splitting by '/')

• Lower length and depth denote easier navigation

URL type (domain, subdomain, path, file)

 \circ Homepages tend to be of type domain

Support

Fraction of anchor text (Ntoulas et al., 2006)

- Denote the amount of supporting information provided from external sources
- Excess denotes shallowness

Off-document evidence

On-document evidence provides valuable evidence about the quality of the document

 \circ Also prone to manipulation by the document author

Off-document evidence isn't immune, but is less biased

- o Hyperlink structure
- o Click-through data

Link analysis

Links are a key component of the Web

 \circ Important for navigation, but also for search

Two complementary sources of information

Example website

- "Example website": anchor text
- "http://example.com": destination link

Authority

Billions of web pages, more or less informative

• Links can be viewed as information about the popularity (authority?) of a web page

Inlink count could be used as simple measure

 Link analysis algorithms like PageRank provide more reliable ratings (less susceptible to link spam)

Random surfer model

Choose a random number r between 0 and 1

 \circ If $r < \lambda$: go to a random page (avoid getting stuck)

 \circ If $r \ge \lambda$: follow a link at random on the current page Repeat

PageRank

PageRank of a page is the probability that the "random surfer" will be looking at that page as $t \to \infty$

$$PR^{(t+1)}(u) = \frac{\lambda}{n} + (1 - \lambda) \sum_{v \in I_{t}} \frac{PR^{(t)}(v)}{|O_{v}|}$$

 $\circ I_u$: inlinks of page u

 $\circ O_v$: outlinks of page v

PageRank example ($\lambda = 0$)

$$PR^{(t+1)}(A) = \frac{PR^{(t)}(C)}{1}$$

$$PR^{(t+1)}(B) = \frac{PR^{(t)}(A)}{2}$$

$$PR^{(t+1)}(C) = \frac{PR^{(t)}(A)}{2}$$

	$PR^{(t)}(A)$	$PR^{(t)}(\boldsymbol{B})$	$PR^{(t)}(\boldsymbol{C})$
t = 0	0.33	0.33	0.33
t = 1	0.33	0.17	0.50
t = 2	0.50	0.17	0.33
t = 3	0.33	0.25	0.42
$t = \infty$	0.40	0.20	0.40

Convergence check

Typical stopping criteria

$$\circ \, \big\| \overrightarrow{PR}^{(t)} - \overrightarrow{PR}^{(t-1)} \big\| / n < \epsilon$$

Setting ϵ

 \circ Small ϵ : slow convergence, accurate PR

 \circ Large ϵ : fast convergence, inaccurate PR

Click-through rate

Global click likelihood

$$CTR(d) = \frac{\sum_{q \in L} 1_{K_q}(d)}{\sum_{q \in L} 1_{R_q}(d)}$$

 $\circ q \in L$: a query in the \log

 \circ K_q : documents clicked for q

 $\circ R_q$: documents displayed for q

What is web spam?

Spamming = any deliberate action solely in order to boost a web page's position in search engine results, incommensurate with page's real value

- ∘ Spam = web pages that are the result of spamming
- Approximately 10-15% of web pages are spam
- High premium to appear on the first page of results

Web spam taxonomy

Boosting techniques

- Aim at scoring high for topicality / authoritativeness Hiding techniques
- o Aim at hiding the use of boosting

Boosting techniques

Term spamming

- Inflate content to appear relevant to many queries
 Link spamming
- Creating link structures that boost authority

Term spamming

Repetition

- o Repeat one or a few specific terms (e.g., free, cheap)
- o Goal is to subvert tf-idf ranking schemes

Dumping

- o Add a large number of unrelated terms
- o Goal is to match a variety of queries

Term spamming

Weaving

- Randomly stick spam terms along legitimate content
 Phrase stitching
- Glue together sentences from different sources

Link spamming

Spammer's inaccessible pages

 $\circ \, \mathsf{Most} \, \, \mathsf{of} \, \, \mathsf{the} \, \, \mathsf{Web} \, \,$

Spammer's accessible pages

 \circ e.g., blog comments pages

Spammer's own pages

o Completely controlled by spammer

Link farms

Spammer's goal

- \circ Maximize the authority of target page t Spammer's approach
- \circ Get many links from accessible pages to page t
- ∘ Construct "link farm" to get multiplier effect

Hiding techniques

Content hiding

- Use same color for text and page background
 Cloaking
- o Return different page to crawlers and browsers

Detecting spam

Term spamming

- Analyze text using statistical classifiers
- o Also useful: near duplicate detection

Link spamming

- Trust propagation (ham pages link to ham pages)
- o Open research area

How to combine relevance and quality?

Quality as a static score

Query-independent scoring

o Typically computed offline

Precomputed scores leveraged in multiple ways

- As a multiplier in vector space models
- As a prior in probabilistic models
- o As a feature in feature-based models

Summary

Document quality can be heterogeneous

- Quality models can help distinguish between documents with similar relevance scores
- Also useful for queries that explicitly seek for highquality content (authority, readability)
- ∘ Lots of signals, high potential for integration

References

<u>Quality-biased ranking of web documents</u> Bendersky et al., WSDM 2011

The importance of prior probabilities for entry page search Kraaij et al., SIGIR 2002

The PageRank citation ranking: bringing order to the Web Page and Brin, Tech report 1999

References

Adversarial web search
Castillo and Davison, FnTIR 2011
Relevance weighting for query independent evidence
Craswell et al., SIGIR 2005