Introducción al Análisis Matemático Tema 1 Clase Práctica 1

Licenciatura en Matemática Curso 2022

Al estudiante:

Bienvenido a la Clase Práctica 1 del Tema 1 del curso *Introducción al Análisis Matemático*. Los siguientes ejercicios pueden ser abordados con los conocimientos adquiridos en la Conferencia 1.1 sobre coeficientes binomiales y desarrollo del binomio de Newton. ¡Esperamos que le vaya bien!

Colectivo de la asignatura

EJERCICIOS

Ejercicio 1. (\star)

- a) Halle el coeficiente de x^7 en el desarrollo de $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^{16}$.
- b) Halle el coeficiente de x^{13} en $\left(x^3 + \frac{3}{x^2}\right)^6$.
- c) Halle el coeficiente de x^8 en $\left(x + \frac{2}{\sqrt{x}}\right)^{23}$.
- d) Halle el coeficiente del término independiente en $\left(x^2 + \frac{1}{r^3}\right)^{10}$.
- e) Halle n si se conoce que en la expansión de $(x+2)^n$ el coeficiente de x^3 es dos veces el de x^4 (siendo ambos no nulos).

Ejercicio 2.

Demuestre que para todo n natural y todo k natural con $k \le n$ el número combinatorio $\binom{n}{k}$ es entero.

Ejercicio 3. (\star)

Demuestre que $(5+\sqrt{26})^{20}+(5-\sqrt{26})^{20}$ es entero.

- a) Diga si para todo a y b enteros se cumple que $(a+b)^n + (a-b)^n$, con n natural, es entero.
- b) Diga si el resultado anterior es válido para a y b reales.

Ejercicio 4.

Calcule $\sum_{i=0}^{8} {9 \choose i} {12 \choose 8-i}$ igualando los coeficientes de x^n en

$$(1+x)^9(1+x)^{12} = (1+x)^{21}$$

Observación: En general es válido para $m, n, k \in \mathbb{N}, \ k \leq m+n$:

$$\sum_{i=0}^{k} {m \choose i} {n \choose k-i} = {m+n \choose k}.$$

Ejercicio 5. (\star)

Calcule:

a)
$$\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

b)
$$\binom{n}{1} - \binom{n}{2} + \binom{n}{3} + \dots + (-1)^{n+1} \binom{n}{n}$$

c)
$$\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{k}$$
 donde $k = n$ si n es impar y $k = n - 1$ si n es par.

d)
$$2 \binom{n}{1} + 3 \binom{n}{2} + \dots + (n+1) \binom{n}{n}$$

e)
$$\binom{n}{1}^2 + \binom{n}{2}^2 + ... + \binom{n}{n}^2$$

Ejercicio 6.

Halle el término de valor máximo en el desarrollo de $(1+\sqrt{2})^{30}$.

Ejercicio 7.

Halle la solución de la inecuación siguiente

$$\binom{n}{3} - \binom{2n}{2} > 32n, \ n \in \mathbb{N}, \ n \ge 3.$$