STAT 331 - Applied Linear Models

Cameron Roopnarine

Last updated: September 21, 2020

Contents

Conten	ts	1
0.1	Multiple Linear Regression (MLR)	10

LECTURE 1 | 2020-09-08

Regression model infers the relationship between:

• Response (dependent) variable: variable of primary interest, denoted by a capital letter such as Y.

• Explanatory (independent) variables: (covariates, predictors, features) variables that potentially impact response, denoted (x_1, x_2, \dots, x_p) .

Alligator data:

• *Y*: length (m)

• x_1 : male/female (categorical, 0 or 1)

Mass in stomach:

• x₂: fish

• x_3 : invertebrates

• x_4 : reptiles

• x_5 : birds

• x_6, \ldots, x_p : other variables

We imagine we can explain Y in terms of (x_1, \ldots, x_p) using some function so that $Y = f(x_1, \ldots, x_p)$.

In this course, we will be looking at linear models.

The Linear regression model assumes that

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

• Y =value of response

• x_1, \ldots, x_p = values of p explanatory variables (assumed to be fixed constants)

• $\beta_0, \beta_1, \dots, \beta_p = \text{model parameters}$

- β_0 = intercept, expected value of Y when all $x_j = 0$.

- β_1, \ldots, β_p all quantify effect on x_j on Y, $j = 1, \ldots, p$

 $- \varepsilon = \text{random error}$

A good quote:

"All models are wrong, but some are useful."

Assume $\varepsilon \sim N(0, \sigma^2)$. In general, the model will not perfectly explain the data.

Q: What is the distribution of Y under these assumptions?

We know:

• $\mathbf{E}[Y] = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$, and

• $\operatorname{Var}[Y] = \operatorname{Var}[\varepsilon] = \sigma^2$.

Therefore,

$$Y \sim N \left(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p, \sigma^2\right)$$

A linear model with response variable (Y) and *one* explanatory variable (x) is called a **simple linear regression**; that is,

$$\bar{Y} = \beta_0 + \beta_1 x + \varepsilon$$

Data consists of pairs (x_i, y_i) where i = 1, ..., n.

Before fitting any model, we might

- make a scatterplot to visualize if there is a linear relationship between x and y
- calculate correlation

If *X* and *Y* are random variables, then

$$\rho = \mathbf{Corr}\left[X,Y\right] = \frac{\mathbf{Cov}\left[X,Y\right]}{\mathbf{Sd}\left[X\right]\mathbf{Sd}\left[Y\right]}$$

Based on (x_i, y_i) we can estimate the sample correlation:

$$r = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})}}$$

$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$= \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

The sample correlation measures the strength and direction of the *linear* relationship between X and Y.

- $|r| \approx 1$ strong linear relationship
- $|r| \approx 0$ lack of linear relationship
- r > 0 positive relationship
- r < 0 negative relationship
- $-1 \leqslant r \leqslant 1$

But does not tell us how to predict Y from X. To do so, we need to estimate β_0 and β_1 .

For data (x_i, y_i) for i = 1, ..., n, the simple linear regression model is

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Assume

$$\varepsilon \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

Therefore,

$$Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

In other words,

$$\mathbf{E}[Y_i] = \mu_i = \beta_0 + \beta_1 x_i \text{ and } \mathbf{Var}[Y_i] = \sigma^2$$

Note that the Y_i 's are independent, but they are *not* independently distributed.

Use the *Least Squares* (LS) to estimate β_0 and β_1 .

$$\min_{\beta_0, \beta_1} \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2 = S(\beta_0, \beta_1)$$

LS is equivalent to MLE when ε_i 's are iid and Normal.

Taking partial derivatives:

$$\frac{dS}{d\beta_0} = 2\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)] (-1)$$
$$\frac{dS}{d\beta_1} = 2\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)] (-x_i)$$

Now,

$$\frac{dS}{d\beta_0} = 0 \iff \sum_{i=1}^n y_i - n\beta_0 - \beta_1 \sum_{i=1}^n x_i = 0 \iff \beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$\frac{dS}{d\beta_1} = 0 \iff \sum_{i=1}^n [y_i - \bar{y} + \beta_1 \bar{x} - \beta_1 x_i] x_i = 0$$

$$\iff \sum_{i=1}^n x_i (y_i - \bar{y}) - \beta_1 \sum_{i=1}^n x_i (x_i - \bar{x}) = 0$$

$$\iff \beta_1 = \frac{\sum_{i=1}^n x_i (y_i - \bar{y})}{\sum_i x_i (x_i - \bar{x})}$$

We can also show that

$$\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

We use a hat on the β 's to show that they are estimates; that is,

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Call $\hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ the **fitted values** and $e_i = y_i - \hat{\mu}_i$ the **residual**.

LECTURE 3 | 2020-09-14

Model: $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$

Equation of fitted line: $y = \hat{\beta}_0 + \hat{\beta}_1 x$

Interpretation:

- $\hat{\beta}_0$ is the estimate of the expected response when x = 0 (but not always meaningful if outside range of x_i 's in data)
- $\hat{\beta}_1$ is the estimate of expected change in response for unit increase in x

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}) \sum_{i=1}^n (y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}$$

• σ^2 is the "variability around the line."

Recall that
$$\sigma^2 = \mathbf{Var}\left[\varepsilon_i\right] = \mathbf{Var}\left[Y_i\right]$$

Q: How to estimate σ^2 ?

$$\varepsilon_i = Y_i - (\beta_0 + \beta_1 x_i)$$
$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

Intuition: use variability in residuals to estimate σ^2 .

We use

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n - 2}$$

which looks looks like sample variance of e_i 's. Therefore,

$$\hat{\sigma}^2 = \frac{\sum\limits_{i=1}^n e_i^2}{n-2} = \frac{\mathbf{Ss} \left[\mathbf{Res} \right]}{n-2}$$

Note that "Square Sum" is abbreviated as "Ss". Now,

$$\bar{e} = \bar{y} - (\hat{\beta}_0 + \hat{\beta}_1 \bar{x}) = 0$$

The n-2 will be looked are more carefully later, but for now it suffices to say that n-2=d.f.= number of parameters estimated. It allows $\hat{\sigma}^2$ to be an unbiased estimator for the true value of σ^2 ; that is,

$$\mathbf{E}\left[\hat{\sigma}^2\right] = \sigma^2$$

whenever $\hat{\sigma}^2$ is viewed as a random variable.

Q: Is there a statistically significant relationship?

Fact (proved using mgf in STAT 330): Suppose $Y_i \sim N(\mu_i, \sigma_i^2)$ are all independent. Then,

$$\sum_{i=1}^{n} a_i Y_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right)$$

for any constant a_i .

In words,

"Linear combination of Normal is Normal."

Viewing $\hat{\beta}_1$ as a random variable:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})Y_i - \bar{Y}\sum_{i=1}^n (x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})x_i - \bar{x}\sum_{i=1}^n (x_i - \bar{x})} = \frac{\sum_{i=1}^n (x_i - \bar{x})Y_i}{\sum_{i=1}^n (x_i - \bar{x})x_i}$$

So,

$$\hat{\beta}_1 = \sum_{i=1}^n a_i Y_i$$

where
$$a_i = \frac{x_i - \bar{x}}{\sum\limits_{i=1}^n x_i(x_i - \bar{x})}$$
.

$$\mathbf{E} \left[\hat{\beta}_{1} \right] = \sum_{i=1}^{n} a_{i} \mathbf{E} \left[Y_{i} \right]$$

$$= \sum_{i=1}^{n} a_{i} (\beta_{0} + \beta_{1} x_{i})$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(\beta_{0} + \beta_{1} x_{i})}{\sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})}$$

$$= \frac{\beta_{0} \sum_{i=1}^{n} (x_{i} - \bar{x}) + \beta_{1} \sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})}{\sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})}$$

$$= \beta_{1}$$

On average, $\hat{\beta}_1$ is an unbiased estimator for β_1 .

Now, we calculate the variance of $\hat{\beta}_1$:

$$\mathbf{Var}\left[\hat{\beta}_{1}\right] = \sum_{i=1}^{n} a_{i}^{2} \mathbf{Var}\left[Y_{i}\right]$$

$$= \sigma^{2} \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{\left[\sum_{i=1}^{n} x_{i} (x_{i} - \bar{x})\right]^{2}}$$

$$= \sigma^{2} \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{\left[\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right]^{2}}$$

$$= \frac{\sigma^{2}}{S_{xx}}$$

So, since $\hat{\beta}_1$ is a linear combination of Normals,

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}}\right)$$

In a similar manner,

$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right)\right)$$

That is, $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimates.

Then,

$$\frac{\hat{\beta}_1 - \beta_1}{\sigma / \sqrt{S_{xx}}} \sim N(0, 1)$$

However, σ is unknown, so need to estimate with $\hat{\sigma}$:

$$\frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{S_{xx}}} \sim t(n-2)$$

Since $\operatorname{Sd}\left[\hat{\beta}_{1}\right]=\hat{\sigma}^{2}/S_{xx}$, we say the standard error of $\hat{\beta}_{1}$ is $\operatorname{Se}\left[\hat{\beta}_{1}\right]=\hat{\sigma}/\sqrt{S_{xx}}$

DEFINITION 0.0.1: Student's T-distribution

T is said to follow a **Student's T-distribution** with k degrees of freedom, denoted $T \sim t(k)$, if

$$T = \frac{Z}{\sqrt{U/k}}$$

where $Z \sim N(0,1)$ and $U \sim \chi^2(k)$.

Fact: For the simple linear regression model,

$$\frac{\hat{\sigma}^2(n-2)}{\sigma^2} = \frac{\mathbf{Ss} \left[\mathbf{Res} \right]}{\sigma^2} \sim \chi^2(n-2)$$

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}/\sqrt{S_{xx}}} = \frac{\frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{S_{xx}}}}{\sqrt{\frac{\hat{\sigma}^2(n-2)}{\sigma^2} \left(\frac{1}{n-2}\right)}} \sim t(n-2)$$

A $(1 - \alpha)$ confidence interval for β_1 is

$$\hat{\beta}_1 \pm (c) \mathbf{Se} \left[\hat{\beta}_1 \right]$$

where c is the $1 - \frac{\alpha}{2}$ quantile of t(n-2); that is,

- $P(|T| \le c) = 1 \alpha$, or
- $P(T \leqslant c) = 1 \frac{\alpha}{2}$

where $T \sim t(n-2)$.

Hypothesis test: H_0 : $\beta = 0$ versus H_A : $\beta_1 \neq 0$.

If H_0 is true, then

$$\frac{\hat{\beta}_1 - \beta_1}{\mathbf{Se}\left[\hat{\beta}_1\right]} = \frac{\hat{\beta}_1}{\mathbf{Se}\left[\hat{\beta}_1\right]} \sim t(n-2)$$

so calculate

$$t = \frac{\hat{\beta}_1}{\mathbf{Se}\left[\hat{\beta}_1\right]}$$

and reject H_0 at level α if |t| > c where c is $1 - \frac{\alpha}{2}$ quantile of t(n-2).

$$p\text{-value} = P(|T| \geqslant |t|) = 2P(T \geqslant |t|)$$

<u>Prediction for SLR</u>: Suppose we want to predict the response y for a new value of x. Say $x = x_0$. Then, SLR model says

$$Y_0 \sim N(\beta_0 + \beta_1 x_0, \sigma^2)$$

where Y_0 is a r.v. for response when $x = x_0$.

The fitted model predicts the *value* of *y* to be

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

As a random variable,

$$\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

then,

$$\mathbf{E}\left[\hat{Y}_{0}\right] = \mathbf{E}\left[\hat{\beta}_{0}\right] + x_{0}\mathbf{E}\left[\hat{\beta}_{1}\right] = \beta_{0} + \beta_{1}x_{0} = \mathbf{E}\left[Y_{0}\right]$$

since $\hat{\beta}_i$ for i = 0, 1 are unbiased. We can say that \hat{Y}_0 is an unbiased estimate of the random variable for the prediction: Y_0 .

We claim that:

$$\mathbf{Var}\left[\hat{Y}_0\right] = \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)$$

by expressing $\hat{Y}_0 = \sum_{i=1}^n a_i Y_i$. This implies that,

$$\hat{Y}_0 \sim N \left(\beta_0 + \beta_1 x_0, \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right) \right)$$

The random variable for prediction error is

$$Y_0 - \hat{Y}_0$$

where Y_0 and \hat{Y}_0 are independent.

$$\mathbf{E}\left[Y_0 - \bar{Y}_0\right] = \mathbf{E}\left[Y_0\right] - \mathbf{E}\left[\hat{Y}_0\right] = 0$$

$$\mathbf{Var}\left[Y_{0} - \bar{Y}_{0}\right] = \mathbf{Var}\left[Y_{0}\right] + (-1)^{2}\mathbf{Var}\left[\hat{Y}_{0}\right] = \sigma^{2} + \sigma^{2}\left(\frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{S_{xx}}\right)$$

Again, we have a linear combination of independent Normals, so

$$Y_0 - \hat{Y}_0 \sim N\left(0, \sigma^2\left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)\right)$$

Since σ is unknown, we use $\hat{\sigma}$ and get the following:

$$\frac{Y_0 - \hat{Y}_0}{\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}} \sim t(n - 2)$$

Intuition for prediction error composed of 2 terms:

- Var $[Y_0]$: random error of new observation
- Var $\left[\hat{Y}_{0}\right]$ (predictor): estimating β_{0} and β_{1}

Those are 2 sources of uncertainty.

Note: Be careful that the prediction may not make sense if x_0 is outside the range of the x_i 's in the data.

 $(1-\alpha)$ prediction interval for y_0 :

$$\hat{y}_0 \pm c\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

where c is the $1 - \frac{\alpha}{2}$ quantile of t(n-2).

Orange production 2018 in FL

- x: acres
- *y*: # boxes of oranges (thousands)
- (x_i, y_i) recorded for each of 25 FL counties
- r = 0.964
- $\bar{x} = 16133$
- $\bar{y} = 1798$
- $S_{xx} = 1.245 \times 10^{10}$
- $S_{xy} = 1.453 \times 10^9$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = 0.1167$$

which is a positive slope (positive correlation between x and y). The expected number of boxes produced is estimated to be about 117 higher per an additional acre.

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = -85.3$$

Not meaningful to interpret, since it is the expected production if there were 0 acres (outside the range of x_i) as no county has x = 0.

Now suppose

Ss [Res] =
$$1.31 \times 10^7$$

the residuals are the differences between y_i and the fitted regression line.

•
$$\hat{\sigma}^2 = \frac{\sum\limits_{i=1}^{n} e_i^2}{n-2} = \frac{1.31 \times 10^7}{25-2} = 5.7 \times 10^5$$

- **Se** $\left[\hat{\beta}_1\right] = \frac{\hat{\sigma}}{\sqrt{S_{xx}}} = 0.00676$
- To test H_0 : $\beta_1 = 0$, calculate

$$t = \frac{\hat{\beta}_1 - 0}{\mathbf{Se}\left[\hat{\beta}_0\right]} = \frac{0.1167}{0.00676} \approx 17.3$$

Select the 0.975 quantile (for demonstration purposes) of t(23) is 2.07.

• Note that 17.3 is very unlikely to see in t(23).

Since 17.3 > 2.07, we reject H_0 at $\alpha = 0.05$ level, conclude there's a significant linear relationship between acres and oranges produced.

The 95% confidence interval for β_1 is

$$0.1167 \pm 2.07 (0.00676)$$

which does not contain 0.

p-value =
$$P(|t_{23}| \ge 17.3) = 2P(t_{23} \ge 17.3) \approx 1.2 \times 10^{-14}$$

Predict the # of boxes in thousands produced if we had 10000 acres to grow oranges.

$$\hat{\beta}_0 + \hat{\beta}_1 x_0 = -85.3 + (0.1167)(10000) \approx 1082$$

The 95% prediction interval is:

$$1082 \pm 2.07 \sqrt{5.69 \times 10^5} \sqrt{1 + \frac{1}{25} + \frac{(6133)^2}{1.245 \times 10^{10}}}$$

Note: not trying to establish causation.

Check LEARN for florange.csv.

Is σ the same for all values of y?

It appears to be violated, can consider taking the \log .

Are the error terms plausibly independent? (e.g. does knowing one e_i help predict e_i for a different county?)

0.1 Multiple Linear Regression (MLR)

p explanatory variables which can be categorical, continuous, etc.

Rocket

- x_1 : nozzle area (large or small)
- x_2 : mixture in propellent, ratio oxidized fuel
- *Y*: thrust

Want to develop linear relationship between y and x_1, x_2, \ldots, x_n .

<u>Data</u> n observations each consists of response and explanatory variables $(y_i, x_{i1}, x_{i2}, \dots, x_{ip})$. Then,

$$Y_i \sim N(\underbrace{\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}}_{\mathbf{E}[Y_i] = u_i}, \sigma^2)$$

or $Y_i = \mu_i + \varepsilon_i$ where $\varepsilon_i \sim N(0, \sigma^2)$.

We can write in vector/matrix form

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} \beta_0 + \beta_1 x_{11} + \dots + \beta_p x_{1p} \\ \beta_0 + \beta_1 x_{21} + \dots + \beta_p x_{2p} \\ \vdots \\ \beta_0 + \beta_1 x_{n1} + \dots + \beta_p x_{np} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Which we can write as

$$\vec{Y} = X\vec{\beta} + \vec{\varepsilon}$$

where

$$\vec{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1}, \ X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ & & \vdots & & \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}_{n \times (p+1)}, \ \vec{\beta} = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_p \end{bmatrix}_{(p+1) \times 1}, \ \vec{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{n \times 1}$$

We call $\vec{Y} = (Y_1, Y_2, \dots, Y_n)^{\top}$ a **random vector** (vector of r.v.'s), analogue of expectation and variance properties.

· Mean vector:

$$\mathbf{E} \begin{bmatrix} \vec{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{E} \begin{bmatrix} Y_1 \end{bmatrix} \\ \mathbf{E} \begin{bmatrix} Y_2 \end{bmatrix} \\ \vdots \\ \mathbf{E} \begin{bmatrix} Y_n \end{bmatrix} \end{bmatrix}$$

• Covariance matrix (variance-covariance matrix):

$$\mathbf{Var} \begin{bmatrix} \vec{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{Var} \left[Y_1 \right] & \mathbf{Cov} \left[Y_1, Y_2 \right] & \cdots & \mathbf{Cov} \left[Y_1, Y_n \right] \\ \mathbf{Cov} \left[Y_2, Y_1 \right] & \mathbf{Var} \left[Y_2 \right] & \cdots & \mathbf{Cov} \left[Y_2, Y_n \right] \\ \vdots & & & & \\ \mathbf{Cov} \left[Y_n, Y_1 \right] & \mathbf{Cov} \left[Y_n, Y_2 \right] & \cdots & \mathbf{Var} \left[Y_n \right] \end{bmatrix}$$

- symmetric since $\mathbf{Cov}[Y_i, Y_j] = \mathbf{Cov}[Y_j, Y_i]$
- positive semi-definite since $\vec{a}^{\top} \mathbf{Var} \begin{bmatrix} \vec{Y} \end{bmatrix} \vec{a} \geqslant 0$ for all $\vec{a} \in \mathbb{R}^n$.

$$- \ \mathbf{Var} \left[\vec{Y} \right] = \mathbf{E} \left[\left(\vec{Y} - \mathbf{E} \left[\vec{Y} \right] \right) \left(\vec{Y} - \mathbf{E} \left[\vec{Y} \right] \right)^\top \right]$$

Properties of random vector: let \vec{a} be a $1 \times n$ matrix (row vector) of constants and A be an $n \times n$ matrix of constants.

$$\begin{split} \mathbf{E} \left[\vec{a} \vec{Y} \right] &= \vec{a} \vec{Y} \\ \mathbf{E} \left[A \vec{Y} \right] &= A \mathbf{E} \left[\vec{Y} \right] \\ \mathbf{Var} \left[\vec{a} \vec{Y} \right] &= \vec{a} \mathbf{Var} \left[\vec{Y} \right] \vec{a}^{\top} \\ \mathbf{Var} \left[A \vec{Y} \right] &= A \mathbf{Var} \left[\vec{Y} \right] A^{\top} \end{split}$$

Derivation of (4):

$$\begin{aligned} \mathbf{Var} \begin{bmatrix} A\vec{Y} \end{bmatrix} &= \mathbf{E} \left[\left(A\vec{Y} - \mathbf{E} \left[A\vec{Y} \right] \right) \left(A\vec{Y} - \mathbf{E} \left[A\vec{Y} \right] \right)^{\top} \right] \\ &= \mathbf{E} \left[\left(A\vec{Y} - A\mathbf{E} \left[\vec{Y} \right] \right) \left(A\vec{Y} - A\mathbf{E} \left[\vec{Y} \right] \right)^{\top} \right] \\ &= \mathbf{E} \left[A \left(\vec{Y} - \mathbf{E} \left[\vec{Y} \right] \right) \left(A \left(\vec{Y} - \mathbf{E} \left[\vec{Y} \right] \right) \right)^{\top} \right] \\ &= \mathbf{E} \left[A \left(\vec{Y} - \mathbf{E} \left[\vec{Y} \right] \right) \left(\vec{Y} - \mathbf{E} \left[\vec{Y} \right] \right)^{\top} A^{\top} \right] \\ &= A\mathbf{E} \left[\left(\vec{Y} - \mathbf{E} \left[\vec{Y} \right] \right) \left(\vec{Y} - \mathbf{E} \left[\vec{Y} \right] \right)^{\top} \right] A^{\top} \\ &= A\mathbf{Var} \left[\vec{Y} \right] A^{\top} \end{aligned}$$

Numerical example: $\vec{Y} = (Y_1, Y_2, Y_3)^{\top}$. Suppose

$$\mathbf{E}\left[\vec{Y}\right] = \begin{bmatrix} 3\\1\\2 \end{bmatrix}$$

and

$$\mathbf{Var}[Y] = \begin{bmatrix} 4 & 1/2 & -2 \\ 1/2 & 1 & 0 \\ -2 & 0 & 3 \end{bmatrix}$$

and

$$\vec{a} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$$

and

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Exercise:

- $\mathbf{E}\left[\vec{a}\vec{Y}\right]$
- Var $\left[\vec{a}\vec{Y}\right]$
- $\mathbf{E}\left[A\vec{Y}\right]$
- Var $A\vec{Y}$

Let's do the first two,

$$\mathbf{E} \begin{bmatrix} \vec{a}\vec{Y} \end{bmatrix} = \vec{a}\mathbf{E} \begin{bmatrix} \vec{Y} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = 1(3) - 1(1) + 2(2) = 6$$

$$\mathbf{Var} \begin{bmatrix} \vec{a} \vec{Y} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 1/2 & -2 \\ 1/2 & 1 & 0 \\ -2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 4(1) + (1/2)(-1) - 2(2) \\ (1/2)(1) + 1(-1) + 0(2) \\ -2(1) + 0(-1) + 3(2) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} -1/2 \\ -1/2 \\ 4 \end{bmatrix}$$

$$= 1(-1/2) - 1(-1/2) + 2(4)$$

$$= 8$$

Multivariate normal distribution (MVN): We say that $\vec{Y} \sim \text{MVN}(\vec{\mu}, \Sigma)$ where $\vec{\mu} = \text{mean vector}$ and $\Sigma = \text{covariance matrix}$. Suppose $Y = (Y_1, \dots, Y_n)^\top$.

$$f(\vec{y}; \vec{\mu}, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\vec{y} - \vec{\mu}) \Sigma^{-1} (\vec{y} - \vec{\mu})^{\top}\right\}$$

where Σ^{-1} is the inverse of the covariance matrix and $|\Sigma|$ is the determinant of Σ .

Properties of MVN: Suppose $\vec{Y} = (Y_1, \dots, Y_n)^\top \sim \text{MVN}(\vec{\mu}, \Sigma)$ and \vec{a} is a $1 \times n$ constant and A is an $n \times n$ matrix of constants.

1. Linear transformations of MVN is MVN, so

$$\vec{a}\vec{Y} \sim \text{MVN}(\vec{a}\vec{\mu}, \vec{a}\Sigma\vec{a}^\top)$$

$$A\vec{Y} \sim \text{MVN}(A\vec{\mu}, A\Sigma A^{\top})$$

2. Marginal distribution of Y_i is Normal,

$$Y_i \sim N(\mu_i, \Sigma_{ii})$$

In fact, any subset of Y_i 's is MVN

- 3. Conditional MVN is MVN, e.g. $Y_1 \mid Y_2, \dots, Y_n$
- 4. Another property:

$$\mathbf{Cov}\left[Y_i,Y_j\right]=0\iff Y_i,Y_j \text{ independent}$$

that is, Y_i and Y_j are uncorrelated.

$$\Sigma_{ij} = 0$$