アルゴリズム論1

第 5 回: 文脈自由文法 (2)

関川 浩

2016/05/18

第4回から第7回の目標

第 4 回から第 7 回の目標

fa と正規表現: よくできたシステムだが能力が低い

より能力が高いシステムを導入する

- 文脈自由文法 (第 4, 5 回)
- プッシュダウンオートマトン (第 6,7回)

第5回の目標:

- 文脈自由文法の標準形の導入
- 文脈自由文法では生成できない言語の例

- 1 文脈自由文法の標準形
 - Chomsky 標準形, Greibach 標準形
 - 単一規則の排除
 - Chomsky 標準形の存在
 - A 生成規則
 - Greibach 標準形の存在
- 2 文脈自由文法では生成できない言語
 - uvwxy 定理
 - 例題

- ① 文脈自由文法の標準形
- ② 文脈自由文法では生成できない言語

文脈自由文法の標準形

 $G = (V, \Sigma, P, S)$: cfg

仮定: $\varepsilon \notin L(G)$ (一般性を大きく失う制限ではない)

定義 (Chomsky 標準形)

G の生成規則が以下の形のみのとき, Chomsky 標準形という $A \to BC$ $(B, C \in V)$, $A \to a$ $(a \in \Sigma)$

定義 (Greibach 標準形)

G の生成規則が以下の形のみのとき, Greibach 標準形という $A \to a\alpha \quad (a \in \Sigma, \ \alpha \in V^*)$

注意

Greibach 標準形が長さ n の列を導出 \Rightarrow 規則の適用回数は n 回

Greibach 標準形の応用

cfg P_1 (Chomsky 標準形) と P_2 (Greibach 標準形) (開始記号 S)

$$P_{1} = \{S \to AX, \ S \to CC, \ X \to SB, \ A \to 0, \ B \to 1, \ C \to 2\}$$

$$P_{2} = \{S \to 0SB, \ S \to 2A, \ A \to 2, \ B \to 1\}$$

 \Longrightarrow 同じ言語 L を生成

問題

 $x = 00221 \in L \ \text{th}$?

解答

 P_2 を使えば簡単

 $x \in L$ と仮定すると, x の最左導出は以下しかあり得ない

$$S \Rightarrow 0SB \Rightarrow 00SBB \Rightarrow 002ABB \Rightarrow 0022BB \Rightarrow 00221B$$

B が残るので x は導出できない

単一規則の排除 (1/3)

定義 (単一規則)

単一規則: $A \rightarrow B$ (A, B) は変数) の形をした生成規則

補題 1

 $\operatorname{cfg} G$ に対し, L(G') = L(G) かつ単一規則がない $\operatorname{cfg} G'$ が存在

証明 (1/3)

$$G=(V,\Sigma,P,S)$$
 とする. 以下の P' は単一規則を含まない
$$P'=\left\{p\mid p\in P\text{ は単一ではない生成規則}\right\} \\ \cup\left\{A\to\alpha\mid G\text{ により }A\stackrel{*}{\Rightarrow}B\left(A,B\in V\right)\right\}$$
 かつ
$$B\to\alpha\text{ は }P\text{ の単一ではない生成規則}$$
 $G'=(V,\Sigma,P',S)$ に対し, $L(G')=L(G)$ を示せばよい

注意 「<math>G により $A\stackrel{*}{\Rightarrow} B$ 」を調べる方法は, あとの例題 1 で説明

単一規則の排除 (2/3)

証明 (2/3)

(1) $L(G) \subseteq L(G')$ $x \in L(G)$ に対し, G による最左導出を考える

$$S = \alpha_0 \Rightarrow \alpha_1 \Rightarrow \dots \Rightarrow \alpha_n = x$$

- G の単一ではない生成規則により $\alpha_i \Rightarrow \alpha_{i+1}$ なら, G' でも $\alpha_i \Rightarrow \alpha_{i+1}$
- 単一規則の適用後,必ず単一ではない生成規則の適用あり (単一規則の右辺は変数なので)
 - (a) $\alpha_i \Rightarrow \alpha_{i+1} \Rightarrow \cdots \Rightarrow \alpha_j$ はすべて G の単一規則
 - (b) $\alpha_j \Rightarrow \alpha_{j+1}$ は G の単一ではない生成規則
 - (a) において置き換えられる変数はすべて同じ位置
 - $\Longrightarrow P'$ のある一つの生成規則によって $\alpha_i \Rightarrow \alpha_{j+1}$
 - $\Longrightarrow G'$ でも $S \stackrel{*}{\Rightarrow} x$ となり $L(G) \subseteq L(G')$

単一規則の排除 (3/3)

証明 (3/3)

(2) $L(G')\subseteq L(G)$ $A\to \alpha$ が P' に属すなら, G により $A\stackrel{*}{\Rightarrow}\alpha$ よって, G' により $S\stackrel{*}{\Rightarrow}x\in\Sigma^*$ なら, G によっても $S\stackrel{*}{\Rightarrow}x$ よって, $L(G')\subseteq L(G)$

Chomsky 標準形の存在 (1/2)

定理 1

L が文脈自由言語なら、Chomsky 標準形である cfg で L を生成するものが存在

証明 (1/2)

 $G=(V,\Sigma,P,S)$: L=L(G) となる cfg, P は単一規則を含まない $A\to \alpha\in P$ に対し, $|\alpha|=1$ なら $\alpha\in \Sigma$

よって, $|\alpha| \geq 2$ となる生成規則を考える $G_1 = (V \cup \{X_t \mid t \in \Sigma\}, \Sigma, P_1, S)$, ただし P_1 は以下の通り

- $P \subset X_t \to t \ (t \in \Sigma)$ を追加
- $P \cap A \rightarrow \alpha (|\alpha| \ge 2)$ は、 α 中の終端記号を、対応する変数 X_t で置き換え

例: 生成規則 $A \rightarrow aABb$ は $A \rightarrow X_aABX_b$ に置き換え

Chomsky 標準形の存在 (2/2)

証明 (2/2)

P₁ に属する生成規則は以下のいずれか

- (a) 右辺が終端記号
- (b) 右辺は変数のみからなり, 長さが 2
- (c) 右辺は変数のみからなり, 長さが3以上

$$A \rightarrow B_1 \dots B_n \ (n \ge 3)$$
 に対し、新しい変数 Y_1, \dots, Y_{n-2} を導入

以下の置き換えをすれば Chomsky 標準形になる

$$A \to B_1 Y_1,$$

 $Y_1 \to B_2 Y_2, \quad Y_2 \to B_3 Y_3, \quad \dots, \quad Y_{n-3} \to B_{n-2} Y_{n-2},$
 $Y_{n-2} \to B_{n-1} B_n$

例題 1 (1/4)

例題 1

以下の生成規則で与えられる cfg G を Chomsky 標準形に直せ (開始記号は A)

$$\begin{array}{lll} A \rightarrow B, & A \rightarrow C, & B \rightarrow D, & D \rightarrow E, & E \rightarrow B, & C \rightarrow F, \\ B \rightarrow b, & E \rightarrow ADa, & C \rightarrow ABB \end{array}$$

解答 (1/4)

与えられた生成規則のうち単一規則ではないものは,

$$B \to b$$
, $E \to ADa$, $C \to ABB$

例題 1 (2/4)

解答 (2/4)

まず、 Ψ 一規則を排除し、 新しい規則を追加 (補題 1) するため、 各変数 X に対し $X \stackrel{\Rightarrow}{\to} Y$ となる変数 Y をすべて求める

- 番号 *i* がついている変数から,
 - 1 ステップで導出でき, かつ,
 - まだ番号のついていない変数,

があれば、そういうすべての変数に番号 i+1 をつけ 3 へそういう変数がなければ終了. 番号のついている変数が答え

③ iを1増やして2へ

例題 1 (3/4)

解答 (3/4)

• A からはすべての変数に到達できることが分かる. よって,

$$A \to b$$
, $A \to ABB$, $A \to ADa$

が追加される規則

B からは B, D, E に到達可能なので、

$$B \to b$$
, $B \to ADa$

が追加される規則

. . . .

その後,単一規則を除く

例題 1 (4/4)

解答 (4/4)

最終的には生成規則は以下の通り

$$\begin{array}{llll} A \rightarrow b, & A \rightarrow AY_1, & Y_1 \rightarrow DX_a, & A \rightarrow AY_2, & Y_2 \rightarrow BB, \\ B \rightarrow b, & B \rightarrow AY_3, & Y_3 \rightarrow DX_a, \\ D \rightarrow b, & D \rightarrow AY_4, & Y_4 \rightarrow DX_a, \\ E \rightarrow b, & E \rightarrow AY_5, & Y_5 \rightarrow DX_a, & C \rightarrow AY_6, & Y_6 \rightarrow BB, \\ X_a \rightarrow a, & X_b \rightarrow b \end{array}$$

補題 2 (1/2)

定義 (A 生成規則)

A 生成規則: 左辺が変数 A である生成規則

補題 2

 $G = (V, \Sigma, P, S)$: cfg

 $A \rightarrow \alpha_1 B \alpha_2$: P に属する生成規則

- $\{B \rightarrow \beta_i \mid i=1,\ 2,\ldots,\ r\}$: すべての B 生成規則の集合
- $P' = (P \setminus \{A \to \alpha_1 B \alpha_2\}) \cup \{A \to \alpha_1 \beta_i \alpha_2 \mid i = 1, 2, \dots, r\}$

$$G' = (V, \Sigma, P', S)$$
 とすると, $L(G) = L(G')$

証明 (1/2)

• $L(G') \subseteq L(G)$ G' による導出中に $A \Rightarrow \alpha_1 \beta_i \alpha_2$ というステップがあれば、 G では $A \Rightarrow \alpha_1 B \alpha_2 \Rightarrow \alpha_1 \beta_i \alpha_2$ とすればよい

補題 2 (2/2)

証明 (2/2)

• $L(G) \subseteq L(G')$ $A \to \alpha_1 B \alpha_2$: G にあって G' にはない唯一の生成規則

 $A \rightarrow \alpha_1 B \alpha_2$ が G による導出に出現 \Longrightarrow 変数 B は, $B \rightarrow \beta_i$ によっていつか書き換えられる

導出結果は生成規則の適用順によらないから,

$$A \Rightarrow \alpha_1 B \alpha_2 \Rightarrow \alpha_1 \beta_i \alpha_2$$

としてよい これは, G' で $A \Rightarrow \alpha_1 \beta_i \alpha_2$ に置き換えが可能

$A \rightarrow A\alpha$ の除去 (1/3)

補題 3

$$G = (V, \Sigma, P, S)$$
: cfg

- $A \rightarrow A\alpha_i \ (i=1,\ldots,\ r)$: A が右辺の左端にある A 生成規則
- $A \rightarrow \beta_i$ (i = 1, ..., s): 残りの A 生成規則
- P': P の A 生成規則を以下で置き換えたもの (Z: 新しい変数)

$$A \to \beta_i, \ A \to \beta_i Z \quad (i = 1, ..., s)$$

 $Z \to \alpha_i, \ Z \to \alpha_i Z \quad (i = 1, ..., r)$

$$G' = (V \cup \{Z\}, \Sigma, P', S)$$
 とすると, $L(G') = L(G)$

$A \rightarrow A\alpha$ の除去 (2/3)

証明 (1/2)

(1)
$$L(G) \subseteq L(G')$$

 $x \in L(G)$ とする

G における x の最左導出中の, $P\setminus P'$ に属する生成規則による導出

$$\gamma_1 A \gamma_2 \Rightarrow \gamma_1 A \alpha_{j_1} \gamma_2 \Rightarrow \gamma_1 A \alpha_{j_2} \alpha_{j_1} \gamma_2 \Rightarrow \cdots$$
$$\Rightarrow \gamma_1 A \alpha_{j_p} \dots \alpha_{j_1} \gamma_2 \Rightarrow \gamma_1 \beta_i \alpha_{j_p} \dots \alpha_{j_1} \gamma_2$$

は, G' においては以下で導出できる

$$\gamma_1 A \gamma_2 \Rightarrow \gamma_1 \beta_i Z \gamma_2 \Rightarrow \gamma_1 \beta_i \alpha_{j_p} Z \gamma_2 \Rightarrow \cdots
\Rightarrow \gamma_1 \beta_i \alpha_{j_p} \dots \alpha_{j_2} Z \gamma_2 \Rightarrow \gamma_1 \beta_i \alpha_{j_p} \dots \alpha_{j_1} \gamma_2$$

よって, $x \in L(G')$, すなわち, $L(G) \subseteq L(G')$

$A \rightarrow A\alpha$ の除去 (3/3)

証明 (2/2)

- (2) $L(G') \subseteq L(G)$ $x \in L(G')$ とし, G' における x の最左導出を考える
 - \bullet $P'\setminus P$ に属する生成規則 (Z を含む生成規則) の適用があれば、以後、生成規則の適用順を変更、Z を左辺に持つものを優先
 - G' において, Z が現れてから消えるまでの部分 $\gamma_1 A \gamma_2 \Rightarrow \gamma_1 \beta_i \mathbf{Z} \gamma_2 \Rightarrow \gamma_1 \beta_i \alpha_{j_p} \mathbf{Z} \gamma_2 \Rightarrow \cdots$ $\Rightarrow \gamma_1 \beta_i \alpha_{j_p} \dots \alpha_{j_2} \mathbf{Z} \gamma_2 \Rightarrow \gamma_1 \beta_i \alpha_{j_p} \dots \alpha_{j_1} \gamma_2$

は、
$$G$$
 においては以下で導出できる
$$\gamma_1 A \gamma_2 \Rightarrow \gamma_1 A \alpha_{j_1} \gamma_2 \Rightarrow \gamma_1 A \alpha_{j_2} \alpha_{j_1} \gamma_2 \Rightarrow \cdots$$

$$\Rightarrow \gamma_1 A \alpha_{j_2} \dots \alpha_{j_1} \gamma_2 \Rightarrow \gamma_1 \beta_i \alpha_{j_2} \dots \alpha_{j_1} \gamma_2$$

よって, $x \in L(G)$, すなわち, $L(G') \subseteq L(G)$

Greibach 標準形の存在 (1/5)

定理 2

L が文脈自由言語なら、Greibach 標準形である cfg で L を生成 するものが存在

証明 (1/5)

 $G = (\{A_1, \ldots, A_m\}, \Sigma, P, A_1)$: L を生成する Chomsky 標準形

- (1) 生成規則を修正して,以下の二条件を満たすようにする
 - (\sharp) $A_i \to A_j \gamma$ が生成規則なら i < j.
 - (b) すべての生成規則の右辺は高々 1 個の終端記号の あとに 0 個以上の変数の列

Chomsky 標準形は (b) を満たすことに注意

Greibach 標準形の存在 (2/5)

証明 (2/5)

- (1) の続き i が小さい方から順に生成規則を修正していく
 - i = 1 のとき
 - $A_1 \rightarrow A_1 \gamma$ という生成規則が存在すれば, 補題 3 を適用して (新しく導入する変数を Z_1 とする), (\sharp), (\flat) を満たすように できる

Greibach 標準形の存在 (3/5)

証明 (3/5)

- (1) の続き
 - $i \le k$ で (\sharp), (\flat) を満たすとして, i = k+1 のとき
 - \circ $A_{k+1} o A_j \gamma$ (k+1>j) には補題 2 を適用 $(A_{k+1}$ 生成規則は変更していないので, γ は一つの変数)

 $\{A_j o \beta_{jp}\}$: A_j 生成規則の全体 $A_{k+1} o A_j \gamma$ を取り除き, $A_{k+1} o \beta_{jp} \gamma$ を付け加える $(\beta_{jp}$ は (\flat) を満たすので, $\beta_{jp} \gamma$ もそう)

 eta_{jp} の左端が A_q なら、帰納法の仮定より、q>j ⇒ 有限ステップで $A_{k+1} \to A_l \gamma$ $(k+1 \le l)$ の形にできる

。 $A_{k+1} \rightarrow A_{k+1} \gamma$ には補題 3 を適用 (新しい変数を Z_{k+1})

Greibach 標準形の存在 (4/5)

証明 (4/5)

(2) 条件(‡),(b) を満たすようになると, 生成規則は以下の形のみ

- (a) $A_k \to A_l \gamma$, k < l, $\gamma \in (V \cup \{Z_1, \dots, Z_m\})^*$
- (b) $A_k \to \alpha \gamma$, $\alpha \in \Sigma$, $\gamma \in (V \cup \{Z_1, \dots, Z_m\})^*$
- (c) $Z_k \to \gamma$, $\gamma \in (V \cup \{Z_1, \ldots, Z_m\})^*$

(a), (b) の場合:

- k=m のときは、右辺の左端は終端記号
- ullet k=m-1 のときは、右辺の左端は終端記号か A_m
 - \Rightarrow A_m のときは補題 2 を適用して, 右辺が終端記号で始まるものに置き換え可能. (\flat) も満たす
- $k=m-2,\ldots,k=1$ も同様にすれば、 A_i 生成規則はすべて (b) の形にできる

Greibach 標準形の存在 (5/5)

証明 (5/5)

- (c) の Z_i 生成規則の場合:
 - (*) Z_i 生成規則の右辺の左端が A_j の場合 補題 2 を適用して A_j を置き換え, 右辺の左端が終端記号 とできる
 - (†) Z_i 生成規則の右辺の左端が Z_j の場合 補題 2 を適用して Z_j を置き換える 左端の置き換えを繰り返すと、いつか必ず A_l が左端に 現れるので、(*) に帰着 $(Z_k$ は変数の列にのみ置き換わるから)

- 1 文脈自由文法の標準形
- 2 文脈自由文法では生成できない言語

文脈自由文法では生成できない言語

cfg は fa や正規表現より真に能力が高い しかし, cfg でも生成できない言語が存在する

- fa では認識できない言語の存在証明 記憶が有限という性質を利用
- cfg では生成できない言語の存在証明 複数の繰り返し構造に関連をつけられるが、その関連づけの 能力には制限があること (例: 次ページの uvwxy 定理) を利用

注意

fa では, ある部分の繰り返しと他の部分の繰り返しの間に関連を つけることができない

例: $\{0^n1^n \mid n \geq 0\}$ は正規言語ではない

uvwxy 定理 (1/3)

定理 3 (uvwxy 定理)

L: 文脈自由言語, 無限集合

L によって決まる定数 K が存在して, $|z| \ge K$ である任意の列 $z \in L$ に対し, 以下の 4 条件を満たす列 u, v, w, x, y が存在

- \bullet z = uvwxy
- 任意の $i \ge 0$ に対して $uv^i w x^i y \in L$
- $vx \neq \varepsilon$
- $\bullet |vwx| \leq K$

注意

定理 3 は, 挿入定理, 反復定理, ポンプ定理 (補題) などともいう

uvwxy 定理 (2/3)

証明 (1/2)

L = L(G) となる cfg $G = (V, \Sigma, P, S)$ を取る

r: G の導出木の枝分かれの最大数 (≥ 2) (生成規則の右辺の (変数の数) + (終端記号の数) の最大値)

注意: 根から葉までの最長のパス (枝をたどっていく経路) の長さがm (≥ 1) である導出木は、高々 r^m 個の葉しかもたない

 $K=r^{|V|+2}$ とおき, $|z|\geq K$ を満たす $z\in L$ を取る $S\stackrel{*}{\Rightarrow} z$: 対応する導出木 T の頂点数が最少となる導出 γ : T の最長のパスの一つ

(T の葉の数) $\geq |z| \geq K > r^{|V|+1}$ より, γ の長さは |V|+2 以上 $\Longrightarrow \gamma$ が通る頂点に少なくとも二回現れる $A \in V$ が存在

葉の方から |V|+2 個目の頂点までに A が二回現れるとしてよい

uvwxy 定理 (3/3)

証明 (2/2)

z = uvwxy と分解する

A を根とする大きい方の部分木 T_1 : $A \stackrel{*}{\Rightarrow} vwx$ A を根とする小さい方の部分木 T_2 : $A \stackrel{*}{\Rightarrow} w$

- ullet T_1 を T_2 で置き換え \Longleftrightarrow $S \stackrel{*}{\Rightarrow} uwy$
- T_2 を T_1 で i-1 回 $(i \ge 1)$ 置き換え \iff $S \stackrel{*}{\Rightarrow} uv^i wx^i y$

 $v=x=\varepsilon$ なら, $S \stackrel{*}{\Rightarrow} uwy=z$ に対応 する導出木の頂点数は T の頂点数より 少なくなり矛盾

 T_1 の最長パスの長さは高々 |V|+2 $\Longrightarrow |vwx| < r^{|V|+2} = K$

例題 2 (1/2)

例題 2

 $L = \{a^n b^n c^n \mid n \ge 1\}$ は文脈自由言語ではないことを示せ

証明 (1/2)

背理法による

L が文脈自由言語であると仮定 \Longrightarrow uvwxy 定理が成立 K: L に対する定数

 $a^K b^K c^K \in L$ を uvwxy 定理の条件を満たすよう uvwxy と分解 $vx \neq \varepsilon$ なので, v, x のうち, 少なくとも一方は ε ではない $\Longrightarrow v \neq \varepsilon$ とする $(x \neq \varepsilon)$ の場合も同様)

(1) $v = a^i b^j$ $(i, j \ge 1)$ の場合 $(v = b^i c^j (i, j \ge 1))$ の場合も同様) uvwxy 定理より $uv^2 wx^2 y \in L$ ところが, $uv^2 wx^2 y = a^K b^j a^i \cdots \notin L$ となり, 矛盾

例題 2 (2/2)

証明 (2/2)

- (2) $v = a^i$ の場合 ($v = b^i$, $v = c^i$ の場合も同様)
 - $x = \varepsilon$ なら, $uv^2wx^2y = a^{K+i}b^Kc^K \notin L$ 一方, uvwxy 定理より $uv^2wx^2y \in L$ だから矛盾
 - $x \neq \varepsilon$ のとき (1) $b, x = a^j, b^j, c^j$ のいずれか $\Longrightarrow b$. c の少なくとも一方は v にも x にも現れない

よって, b, c の少なくとも一方は, uvwxy, uv^2wx^2y の双方で 現れる個数が同じ a の個数は後者の方が多い

 $\implies uv^2wx^2y \notin L$

一方. uvwxv 定理より $uv^2wx^2y \in L$ だから矛盾

文脈自由言語の共通部分が文脈自由言語とならない例

- $L_1 = \{a^nb^nc^m \mid n, m \ge 1\}$, $L_2 = \{a^mb^nc^n \mid n, m \ge 1\}$ はいずれも文脈自由言語
 - 。 L_1 を生成する生成規則 $S \to S_1C, \quad S_1 \to aS_1b, \quad S_1 \to ab, \quad C \to cC, \quad C \to c$
 - L_2 を生成する生成規則 $S \to AS_2, \quad S_2 \to bS_2c, \quad S_2 \to bc, \quad A \to aA, \quad A \to a$
- しかし, 例題 2 より, $L_1 \cap L_2 = \{a^n b^n c^n \mid n \geq 1\}$ は 文脈自由言語ではない

例題 3 (1/2)

例題 3

 $L = \{z^2 \mid z \in \{a, b\}^*\}$ は文脈自由言語ではないことを示せ.

注意

 $\{zz^{\mathbf{R}} \mid z \in \{a,b\}^*\}$ は文脈自由言語 (第 4 回の例題 2)

証明 (1/2)

L を文脈自由言語と仮定して矛盾を導く

 $z' = a^K b^K a^K b^K \in L$ とする (K: L に対する uvwxy 定理の定数)

uvwxy 定理 の 4 条件を満たす分解 z' = uvwxy が存在

 $|vwx| \le K$ より, vwx は $a^K b^K$ あるいは $b^K a^K$ に入る

vwx			
a^{K}	b^K	a^K	b^K

例題 3 (2/2)

証明 (2/2)

 $a^K b^K = pvwxq$ (あるいは $b^K a^K = pvwxq$) とする

注意: pv^2wx^2q の最初の K 個は a (b), 最後の K 個は b (a)

 \bullet vwx が最初の a^Kb^K に含まれる場合 (二番目の場合も同様)

• wwx が b^Ka^K に含まれる場合

いずれも矛盾