System Engineering Approach to Extending Endurance of Cooperative Gliders

Nahum Camacho1¹, Vladimir Dobrokhodov², Kevin Jones³, and Isaac Kaminer⁴

Abstract—The paper describes the multidisciplinary approach to the development of extended endurance of multiple cooperative gliders capable to harvest solar and thermals energy. Starting with a brief review of the components required to enable the extended endurance flight, the paper concentrates on the need for evolution of previously built architecture that already enabled successful utilization of the energy of sun. The discussion justifies the essential components of the single solar-powered thermaling glider and illustrates the key benefits of multiple platforms collaboration.

I. INTRODUCTION

Who is working in the area? What fundamental results were developed and demonstrated in flight? Why the evolution of the previously built architecture is necessary? What are the key building components?

II. SYSTEM LEVEL ARCHITECTURE

A diagram of the proposed architecture goes here. Discussion of why the components are necessary should be provided.

A. Electric Energy Management Subsystem

Kevin describes the architecture here: diagram, hardware components, wiring e.t.c. Choice of solar cells. Choice of batteries. Experimental setups to verify the energy density claims. Discussion of the experimental results. It's impact on the future control strategies to sustain overnight flight

B. Potential Energy Management

Control stuff goes here

III. HIL AND SIL SETUP

Condor and Condor API

IV. PRELIMINARY FLIGHT TEST RESULTS

System identification = ¿ sink polar= ¿ ID of a thermal= ¿ Thermaling guidance= ¿ Thermal mapping= ¿ Navigation for the purpose of mission goals.

V. FUTURE STEPS

Our plans for the November-February time frame.

- ¹N. Camacho is a graduate student at the Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA, 93943 kaminer@nps.edu
- ²V.N. Dobrokhodov and ³K.D. Jones are Research Associate Professors at the Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA, 93943 vldobr, kdjones@nps.edu
- ⁴I.I. Kaminer is a Professor at the Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, CA, 93943 kaminer@nps.edu

VI. CONCLUSIONS

A conclusion might elaborate on the importance of the work or suggest applications and extensions.

APPENDIX

Appendixes should appear before the acknowledgment.

ACKNOWLEDGMENT

The preferred spelling of the word acknowledgment in America is without an e after the g. Avoid the stilted expression, One of us (R. B. G.) thanks . . . Instead, try R. B. G. thanks. Put sponsor acknowledgments in the unnumbered footnote on the first page.

References are important to the reader; therefore, each citation must be complete and correct. If at all possible, references should be commonly available publications.

REFERENCES

- G. O. Young, Synthetic structure of industrial plastics (Book style with paper title and editor), in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 1564.
- [2] W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123135.
- [3] H. Poor, An Introduction to Signal Detection and Estimation. New York: Springer-Verlag, 1985, ch. 4.
- [4] B. Smith, An approach to graphs of linear forms (Unpublished work style), unpublished.
- [5] E. H. Miller, A note on reflector arrays (Periodical styleAccepted for publication), IEEE Trans. Antennas Propagat., to be publised.
- [6] J. Wang, Fundamentals of erbium-doped fiber amplifiers arrays (Periodical styleSubmitted for publication), IEEE J. Quantum Electron., submitted for publication.
- [7] C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private communication, May 1995.
- [8] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, Electron spectroscopy studies on magneto-optical media and plastic substrate interfaces(Translation Journals style), IEEE Transl. J. Magn.Jpn., vol. 2, Aug. 1987, pp. 740741 [Dig. 9th Annu. Conf. Magnetics Japan, 1982, p. 301].
- [9] M. Young, The Techincal Writers Handbook. Mill Valley, CA: University Science, 1989.
- [10] J. U. Duncombe, Infrared navigationPart I: An assessment of feasibility (Periodical style), IEEE Trans. Electron Devices, vol. ED-11, pp. 3439, Jan. 1959.
- [11] S. Chen, B. Mulgrew, and P. M. Grant, A clustering technique for digital communications channel equalization using radial basis function networks, IEEE Trans. Neural Networks, vol. 4, pp. 570578, July 1993.
- [12] R. W. Lucky, Automatic equalization for digital communication, Bell Syst. Tech. J., vol. 44, no. 4, pp. 547588, Apr. 1965.
- [13] S. P. Bingulac, On the compatibility of adaptive controllers (Published Conference Proceedings style), in Proc. 4th Annu. Allerton Conf. Circuits and Systems Theory, New York, 1994, pp. 816.
- [14] G. R. Faulhaber, Design of service systems with priority reservation, in Conf. Rec. 1995 IEEE Int. Conf. Communications, pp. 38.
- [15] W. D. Doyle, Magnetization reversal in films with biaxial anisotropy, in 1987 Proc. INTERMAG Conf., pp. 2.2-12.2-6.

- [16] G. W. Juette and L. E. Zeffanella, Radio noise currents n short sections on bundle conductors (Presented Conference Paper style), presented at the IEEE Summer power Meeting, Dallas, TX, June 2227, 1990, Paper 90 SM 690-0 PWRS.
- [17] J. G. Kreifeldt, An analysis of surface-detected EMG as an amplitude-modulated noise, presented at the 1989 Int. Conf. Medicine and Biological Engineering, Chicago, IL.
- [18] J. Williams, Narrow-band analyzer (Thesis or Dissertation style), Ph.D. dissertation, Dept. Elect. Eng., Harvard Univ., Cambridge, MA, 1993.
- [19] N. Kawasaki, Parametric study of thermal and chemical nonequilibrium nozzle flow, M.S. thesis, Dept. Electron. Eng., Osaka Univ., Osaka, Japan, 1993.
- [20] J. P. Wilkinson, Nonlinear resonant circuit devices (Patent style), U.S. Patent 3 624 12, July 16, 1990.