Лекция 9. Интерференция света

Поляризация света - упорядоченность в ориентации векторов напряженностей электрического поля E и магнитного поля H световой волны в плоскости, перпендикулярной распространению света

Различают:

- 1. линейную поляризацию света, когда ориентация вектора E сохраняет постоянное направление (плоскость, в которой лежит E и световой луч, называются плоскостью поляризации)
- 2. эллиптическую поляризацию, при которой конец E в проекции на плоскость, перпендикулярную направлению света, описывает эллипс
- 3. круговою поляризацию, при которой конец E описывает круг

Обычный, естественный свет, например, от солнца, хаотично поляризован - конец E описывает хаотичные фигуры

Интерференция света - нелинейное сложение интенсивностей двух или нескольких световых волн, сопровождающееся пространственным перераспределением энергии светового излучения Если через точку проходят две волны с векторами \vec{E}_1 и \vec{E}_2 , то в точке напряженность равна $E = E_1 + E_2$, а интенсивность света определяется так: $\langle \vec{E}^2 \rangle = \langle \vec{E}_1^2 \rangle + \langle \vec{E}_2^2 \rangle + 2 \langle (\vec{E}_1^2, \vec{E}_2^2) \rangle$ Если $2 \langle (\vec{E}_1^2, \vec{E}_2^2) \rangle = 0$, то интерференции нет, если $2 \langle (\vec{E}_1^2, \vec{E}_2^2) \rangle \neq 0$, то есть

В частности, если $E_1 \perp E_2$, то интерференции нет

При этом интенсивность света в точке равна $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\langle\delta\rangle$, где $\langle\delta\rangle$ - разность фаз Нарушение аддитивности интенсивности связано не с нарушением ЗСЭ, а с перераспределением энергии по волновому фронту при взаимодействии волн

Если разность фаз колебаний в точке постоянна, то есть $\langle \delta \rangle = \delta(r_1, r_2)$, то колебания и волны называют когерентными

Чтобы две световые синусоидальные волны были когерентными, их частоты должны быть одинаковыми. Слагаемое $2\sqrt{I_1I_2}\cos\langle\delta\rangle$ называют интерференционным членом

Рассмотрим два точечным источника света, которые описывают интерференционную картину на экране

Величина l=ns, где n - показатель преломления, называется оптической длиной пути, величина $\Delta \equiv l_1 - l_2$ - оптической разностью пути

Если $\Delta = n \frac{xd}{l} = m \lambda_0 \ (m \in \mathbb{Z})$, то $\cos \delta = \cos 2\pi m = 1$, свет будет в одной фазе и в точке будет наблюдаться максимум интенсивности

A если $\Delta = \frac{2m+1}{2}\lambda_0$, то будет наблюдаться минимум

В общем, на экране будет наблюдаться картина, состоящая из темных и светлых полос. Светлые полосы отображают максимумы, а темные - минимумы

Если свет пропустить через решетку с тоненькими прорезями, то излучаемый оттуда свет можно считать точечными источникам. И на экране получается картина из светлых и темных полос. Явление света огибать решетку получило название дифракция