6. JOB SEQUENCING

JOB SEQUENCING: It used to reduce idle time of the machines.

N JOB 2 MACHINE PROBLEM (STEPS OF JOHNSON ALGORITHM)

- 1. Find out the minimum time between A_i and B_i
 - a. If minimum occurs in A_i , Process or sequence the job First.
 - b. If minimum occurs in B_j , Process or sequence the job Last.
- 2. If there is a tie between A_i and B_j , the process the A_i job first and B_j job Last.
- 3. If there is a tie between A_i , look for the corresponding value of B_i and job having minimum B_i will process Frist.
- 4. If there is a tie between B_i , look for the corresponding value of A_i and job having minimum A_i will process Last.

MAKE SPAN TIME OR ELAPSE TIME (MST):

It's defined as equivalent to the completion time of the last job to leave the system. % Utilisation of Machine = $\left(\frac{MST-Idle\ Time}{MST}\right)$ 100

N JOB 3 MACHINE PROBLEM						
Before converting, 3 machine problem into two fictitious group of	M1 + M2	M3 + M2				
machines, it should satisfy following condition:	A_i	B_i				
• $Min. of M1 \ge Max. of M2$	-	,				
• $Min. of M3 \ge Max. of M2$						

	N JOB 1 MACHINE PROBLEM					
1.	SPT Rule or Shortest processing time: Here jobs are processed in	Given in the problem,				
	increasing order of its processing time.	Job	Processing	Due Date		
2.	EDD Rule or Earliest Due Date: Here jobs are processed in the		time			
	increasing order of its due date.					
3.	Critical Ratio: Here jobs are processed in increasing order of its					
	critical ratio value.		-			
	$Critical\ Ratio(C.R.) = \frac{Date\ Required - Today's\ date}{Dayes\ needed\ to\ complete\ job}$	C.R. < 1	Job is behind schedule			
	Dayes needed to complete job	C.R. > 1	Job is Ahead	schedule		
	Time Remaining	C.R. = 1	Job is on schedule			
	$=\frac{Work\ Remaining}{Work\ Remaining}$					
4.	Least Slack: Job are arranged in increasing order of slack values.	$Slack = Due\ date - Processing\ Time$				

TERMS:

- 1. JOB FLOW TIME: The Flow time for a job is the time from starting time until the job gets completed.
- 2. AVERAGE JOB FLOW TIME: It's the ratio of total job flow time to number of jobs.
- 3. AVERAGE NUMBER OF JOBS IN THE SYSTEM: It's the ratio of the total job flow time to make span time.
- 4. LATENESS:

The deviation between a task completion time and it's due date is called lateness (Out time-Due Date).

+ve Lateness: Project Completes after due date. -ve Lateness: Project Completes before due date.

TARDINESS: It's the amount after due date that jobs gets completed. Positive Lateness is also called Tardiness.

- **6. AVERAGE TARDINESS:** It's the ratio of total tardiness and number of jobs.
- 7. Number of tardy means number of jobs delayed.