比较 集合 A和 B (大小)?

• 基数 (cardīnal number) $A \approx B$ (等勢).

Det 1.0 $A \approx B$ \iff $\exists f: A \longrightarrow B$ st f 又单又满 (双射 bījetīve)

② A≲B ⇒ =f:A→B 单射. eg=1到. A⊆B ⇒ A≲B.

Thm 1 (Cantor - Bernstein).

假定AB为两集台, 若A≤B且B≤A, 则A≈B.

Pf: 日单射fg sit $f: A \rightarrow B$. $g: B \rightarrow A$.

用以下Lemma 1, 可构造 F: A→B. s.t.

 $F(x) = \begin{cases} f(x) & x \in A_1 \\ g^{-1}(x), & x \in A_2. \end{cases}$

为双射、(其中A,A,R下Lemma).

(injective)

Lemma 1

假设 $f: A \rightarrow B$, $g: B \rightarrow A$ 为两个映射,则 $9 \rightarrow B$. $A = A_1 \sqcup A_2 (\leftarrow A = A_1 \sqcup A_2 \& A_1 \sqcap A_2 = \emptyset)$, $B = B_1 \sqcup B_2$. s.t. $f(A_1) = B_1 \& g(B_2) = A_2$.

<u>叶</u>: 构造即可,"极大化".

选 A'CA, 考虑. g(B)f(A')) 若 A=A'山g(B)f(A'),则做完. 降低要求, 先找 A' sit A'ng(B) f(A'))
想选一个 极大的 (maxīmal: ヨ A'' 满足科 sit A' Ç A'')的 A' ⊆ A, sit A' ng(B) f(A')).

$$A_1 = A'$$
, $A_2 = A \setminus A'$, $B_1 = f(A')$ $B_2 = B \setminus B_1$.

应用1. · ASBSC、若A≈C,则B≈C.
(Cantor-Bernstein.)

· (H,1) ⊆ [H,1] ⊆ [R. → [H,1] ≈ [R. 但双射在缝。 (tan 汉. → (H,1) ≈ [R.).

随堂小练习:1、若ACB, A2AUC,则B2BUC.

2.
$$A_1 \subseteq A$$
 , $B_1 \subseteq B$ sit $A_1 \approx B_1$ $A \approx B$.

 $\Rightarrow A_1 A_1 \approx B_1 B_1$
(众例: $A = IR$ $A_1 = IR$.
 $B = (0,2)$ $B_1 = (0,1)$.

Det 2. A 可数 (courtable) \Longrightarrow A \approx IN \Longleftrightarrow A= {a, a₂, ... 3. 27 (6偶数) Q (有理数).

Thm 2. [O·1] 不可数. (uncountable). Pf (Cantor 对角线办法).

众证法、设[oi]可数,则(oi]={aia; -- 3

$$a_1 \sim n_{11} n_{12} n_{3}$$
, ----

令
$$a = \sum_{j=1}^{\infty} 2^{-b\bar{\imath}}$$
 , $b_{\bar{\imath}} = (\sum_{j=1}^{\bar{\imath}} n_{\bar{\jmath}j}) + 1$.

凤 $a \neq a_n$, $\forall n$, $a \in (0,1]$. 矛盾 $b_{\bar{\imath}}$.

Corollary = 推记1: 任一非平凡区间不可数!

练习3、设AK可数,k=1,2,3,---水证: 以AK可数.

$$A_{1} = \begin{cases} A_{11}, A_{12}, A_{13}, & \\ A_{2} = \begin{cases} A_{21}, A_{22}, A_{23}, & \\ A_{3} = \begin{cases} A_{31}, A_{32}, A_{33}, & \\ \\ A_{3} = \begin{cases} A_{31}, A_{32}, A_{33}, & \\ \\ \\ A_{3} = \begin{cases} A_{31}, A_{32}, A_{33}, & \\ \\ \\ \\ \\ \end{cases} \end{cases}$$

Cantor集 C. 可数性?

• f: C→ [0,1] Cantor-Lebesgue 函数.满

→ C≈IR.

练习4. 设ESIR2, 且 Y x, y EE, 1x-y1 为有理数. (rational). 求证: E可数.

· 作有理数、粒的圆、即可.