Exercise 2.10. Let X be a topological space, \mathscr{F} a sheaf on X and let $s,t\in\mathscr{F}(U)$ be 1. two sections of \mathscr{F} over an open subset $U\subseteq X$. Show that the set of $x\in U$ such that $s_x = t_x$ is open in U.

site are the mages of s, t in the state Solution: we can unite

$$F_x = \lim_{U \ni x} F(U)$$

= 11 F(U) /~ where fEF(U), gEF(V) subsidies frog it there is an open WEUNV s.t. flw = glw. This means but Sx = tx ilt here is an open set Ux combaining x s.t. $S|_{U_x} = t|_{U_x}$. Hence the sub of $x \in X$ s.t. $s_x = t_x$ is the union of open sets Ux.

Show that it to is the structure should an althe scheme X = Spec A blen Oxip = Ap for any point PESpecA (TWs is what you did i'm the Homework).

Solution: We have

$$O_{X,P} = \lim_{U \to P} O_X(U)$$

$$= \lim_{U \to P} O_X(D(f))$$

Note that we have a map

$$A_f \longrightarrow A_p$$

$$\frac{a}{f^n} \longmapsto \frac{a}{f^n} \quad \forall f \neq p.$$
This gives a well-det. ving map

$$T: \coprod A_f / \longrightarrow A_p$$
Since
$$\frac{a}{f^n} = \frac{b}{b^n} \quad \text{if they lave the same image in } A_p. \quad \text{If } \frac{b}{b^n} \quad \text{super an elem. in } A_p \quad \text{kun Skp}$$
and
$$\frac{b}{b^n} = \frac{b}{b^n} \quad \text{is in the theorem } A_p \quad \text{thence}$$

$$The is also impectate since if
$$T(\frac{a}{f^n}) = 0$$
then
$$T(\frac{a}{f^n}) = 0 \quad \text{in } A_{b^n}$$
which was that
$$\frac{a}{f^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = \frac{b}{b^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$

$$\frac{a}{f^n} = 0 \quad \text{in } \coprod A_f / n \quad \text{since}$$$$

Exercise 2.17. Let (X, \mathcal{O}_X) be locally ringed space.

(a) Let $U \subseteq X$ be an open and closed subset. Show that there exists a unique section $e_U \in \Gamma(X, \mathscr{O}_X)$ such that $e_{U|V} = 1$ for all open subsets V of U and $e_{U|V} = 0$ for all open subsets V of $X \setminus U$. Show that $U \mapsto e_U$ yields a bijection

$$\mathrm{OC}(X) \leftrightarrow \mathrm{Idem}(\Gamma(X, \mathscr{O}_X))$$

from the set of open and closed subsets of X to the set of idempotent elements of the ring $\Gamma(X, \mathscr{O}_X)$.

Solubron: We have $T'(X_1O_X) \cong T'(U_1O_X) \times T'(X_1U_1O_X)$ Since $U \cap (X_1U) = \emptyset$. Hence we let en be the element $(A_1O) \in T'(U_1O_X) \times T'(X_1U_1O_X).$

Shee the restr. morphisms are why norphisms, hey send 1 to 1 and 0 to 0. This gives a map

OC(X) -> Iden(T(X,Ox)).

Conversely, if $e \in T(X_1O_X)$ is identificant then so $U_S = 1 - e$ solute $(1-e)^2 = 1 - 2e + e^2 = 1 - e$. Note that we have $e(1-e) = e - e^2 = 0$ and hence every elem. $x \in T(X_1O_X)$ may be written as

 $X = |\cdot X|$ $= (1-e+e) \times$ $= (1-e) \times + e \times$

and bus representativon is unique some eli-ereo.

 $T(X_1O_X) \cong (1-e)T(X_1O_X) \oplus eT(X_1O_X).$

Note (rule e(ex) = ex and (i-e)(i-e)x) = (i-e)x $\forall x \in T(x, 6x)$

which nears that e and (1-e) are mult. identifys and (1-e) $T(X_1O_X)$ and $eT(X_1O_X)$ are in fact ways. Define Ue to be the open subset $U_e = \{x \in X : (1-e)_x = 0\}$ $= X \setminus \{x \in X : e_x = 0\}.$

The Ue is open and closed.