Übungsblatt 6

Abgabetermin: 01.06.2017, 9:20 Uhr.

Aufgabe 1 (2+2+3+1 = 8 Punkte)

Sei (V, γ) ein euklidischer Raum und $U \subset V$ ein Untervektorraum. Eine lineare Abbildung $\pi: V \to U$ heisst $Projektion \ nach \ U$, wenn $\pi|U = \mathrm{id}_U$ gilt. Ist zusätzlich $\gamma(v-\pi(v),u)=0$ für alle $v \in V, u \in U$ erfüllt, so heisst π eine $orthogonale \ Projektion \ nach \ U$.

a) Zeigen Sie: Für fixiertes V und U existiert genau eine orthogonale Projektion π nach U. Diese ist gegeben durch

$$\pi(v) = \sum_{b \in B} \frac{\gamma(v, b)}{\gamma(b, b)} b,$$

wobei b eine orthogonale Basis $B = (b_1, \ldots, b_{\dim U})$ von U durchläuft. (Insbesondere ist die Wohldefiniertheit dieser Zuordnung zu zeigen.)

- b) Seien V, U wie oben und sei π eine orthogonale Projektion nach U. Zeigen Sie: Die Verkettung $\iota_U \circ \pi$ von π mit der kanonischen Einbettung $\iota_U : U \hookrightarrow V$ ist diagonalisierbar und es können nur die Eigenwerte 0 und 1 auftreten.
- c) Berechnen Sie $\pi(v)$ in folgenden Fällen und fertigen Sie darüber hinaus eine Zeichnung an:

i)
$$V = \mathbb{R}^2$$
 (mit Standard-Skalarprodukt), $U = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid x + 3y = 0 \right\}, v = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$;

ii)
$$V = \mathbb{R}^3$$
 (mit Standard-Skalar
produkt), $U = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid 2x + 3y = z \}, v = \begin{pmatrix} 5 \\ 5 \\ 1 \end{pmatrix};$

iii) $V = \operatorname{span}(\sin(x),\sin(2x),\sin(3x),v(x)) \subseteq \mathcal{C}([0,\pi])$ mit dem Skalarprodukt

$$\gamma(f,g) := \int_0^{\pi} f(x)g(x)dx,$$

$$U = \operatorname{span}(\sin(x), \sin(2x), \sin(3x)), v : [0, \pi] \to \mathbb{R}, v(x) = \begin{cases} x & \text{wenn } x < \frac{\pi}{2} \\ \pi - x & \text{wenn } x \ge \frac{\pi}{2} \end{cases}$$

(Hinweis: In i) und ii) skizzieren Sie U, v und $\pi(v)$ und beschreiben, wie man elementargeometrisch von v zu $\pi(v)$ gelangt. In iii) skizzieren Sie lediglich die Funktionsgraphen von v und von $\pi(v)$. Die Berechnung der auftretenden Integrale bildet nicht den Schwerpunkt der Aufgabe, Sie dürfen die Werte daher mit einem Computer-Algebra-System bestimmen.)

d) Berechnen Sie jeweils den Abstand $d(v, U) := \min_{u \in U} ||v - u||$ in den drei Fällen in Aufgabenteil c).

Aufgabe 2 $(1+2+2 = 5 \ Punkte)$

Sei (V, γ) ein euklidischer Vektorraum. Für $v, w \in V$ definieren wir den Winkel als $\angle(v, w) = \arccos\left(\frac{\gamma(v, w)}{\|v\|\|w\|}\right)$ (Bogenmaß) bzw. $\angle(v, w) = \frac{360^{\circ}}{2\pi} \arccos\left(\frac{\gamma(v, w)}{\|v\|\|w\|}\right)$ (Gradmaß), wobei $\|\cdot\|$ die von γ induzierte Norm bezeichnet und $\arccos: [-1, 1] \to [0, \pi]$ die Umkehrfunktion des Cosinus ist. Ein Winkel $90^{\circ} < \alpha < 180^{\circ}$ heisst stumpf.

- a) Seien $v, w \in V$ linear unabhängig. Zeigen Sie: $\angle(v, w) + \angle(w, -v) = 180^{\circ}$. Fertigen Sie eine Skizze für den Fall $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ an.
- b) Seien v_1, \ldots, v_k paarweise verschiedene Vektoren aus V so dass $\angle(v_i, v_j) = 60^{\circ}$ gilt für alle $i \neq j$. Zeigen Sie: dim $(V) \geq k$.
- c) Seien v_1, \ldots, v_k paarweise verschiedene Vektoren aus V so dass $\angle(v_i, v_j)$ ein stumpfer Winkel ist für alle $i \neq j$. Zeigen Sie: $\dim(V) + 1 \geq k$.

(Hinweis: Sie dürfen die üblichen Rechenregeln für Kreisfunktionen ohne Beweis benutzen.)

Aufgabe 3 $(2+2 = 4 \ Punkte)$

Die Links-Multiplikation der Gruppe SO(n) auf \mathbb{R}^n vermittelt eine Abbildung

$$\delta: \mathrm{SO}(n) \times \mathbb{R}^n \to \mathbb{R}^n \qquad (A, v) \mapsto A \cdot v$$

mit den Eigenschaften $\delta(E_n, v) = v$ und $\delta(A, \delta(B, v)) = \delta(A \cdot B, v)$ für alle $v \in \mathbb{R}^n$ und $A, B \in SO(n)$.

a) Sei $v \in \mathbb{R}^2$. Finden Sie eine explizite Beschreibung für die Menge

$$B(v) := \{ \delta(A, v) \mid A \in SO(2) \}.$$

Fertigen Sie hierzu auch eine Zeichnung an.

- b) Konstruieren Sie eine Teilmenge $\Gamma \subset \mathbb{R}^2$ mit den folgenden Eigenschaften:
 - Für $v, w \in \Gamma$ gilt: $v \neq w \Rightarrow B(v) \cap B(w) = \emptyset$.
 - $\mathbb{R}^2 = \bigcup_{v \in \Gamma} B(v)$.