arquitetura de computadores

UTFPR - DAELN - Engenharia de Computação/Eletrônica prof. Ofuchi; prof. Rafael; prof. Juliano;

rev 4

μProcessador 3.5 Circuitos Síncronos e Programação da FPGA

A partir dos registradores e de circuitos que usam o sinal de clock, teremos uma pausa para verificar como estes conceitos formam a base para a geração de circuitos em HW propriamente dito. Para permitir que um circuito descrito em VHDL seja gravado numa FPGA (Cyclone II da Altera – EP2C20F484C7) será usado o ambiente integrado Quartus. Vamos usar a placa CycloneII FPGA Starter Board. Para este componente deverá ser usada a versão 13, service pack1 (o Quartus Prime só funciona para a Cyclone IV em diante).

De modo similar ao que consideramos até aqui para a geração de estímulos utilizando test bench como *toplevel*, vamos usar os sinais da placa (chaves) e excitar alguns circuitos combinacionais e sequenciais e liga-los a sinais elétricos propriamente ditos (disponíveis em LEDs e displays). O esquemático da placa está disponível no Moodle.

Inicialmente, após baixar e descompactar o projeto exemplo na pasta de trabalho, e abrí-lo no Quartus.

Além de usar chaves, push buttons LEDs e display de 7 segmentos este componente encapsula um divisor de clock principal da placa.

Alguns LEDs indicam apenas um contador global de ciclos e chaves de parada (halt) e "turbo". A história da tecla turbo é bastante interessante no contexto da disciplina. Vale a leitura do verbete: https://en.wikipedia.org/wiki/Turbo_button

A entidade RAMeDisp tem também um periférico de saída que é um registrador. Neste caso, ao escrever no endereço 127d (não será necessário fazer modificação do barramento de endereços por enquanto) o dado é apresentado em decimal num par de displays de 7 segmentos da placa Cyclone II Starter Board. A conversão é feita no modo flash (em um ciclo) para simplificar a temporização e evitar potenciais problemas com a temporização do processador implementado. O display corresponde, portanto, a um periférico mapeado em memória. As escritas são feitas em um endereço específico e a decodificação fica encapsulados nesta entidade (Dec7Seg).

Em VHDL, a nova interface da RAM fica como a seguir.

```
entity ram is
   port(
          clk
                     : in std_logic;
          endereco : in unsigned(6 downto 0);
                    : in std logic;
          wr en
          dado in : in unsigned(15 downto 0);
          dado out : out unsigned(15 downto 0);
                    : out std_logic_vector (6 downto 0);
: out std_logic_vector (6 downto 0);
: out std_logic_vector (6 downto 0);
          HEX0
          HEX1
          HFX2
                     : out std_logic_vector (6 downto 0);
          HEX3
                    : in std_logic;
          halt
                     : in std logic;
          turbo
          clk h
                    : in std logic;
          clk div : out std logic;
                     : in std logic;
   );
end entity;
```

Uma sugestão é, antes de modificar qualquer coisa, verificar o funcionamento da placa executando direto os procedimentos das seções "Compilação do arquivo a ser gravado" e "Gravação do Arquivo Gerado na FPGA" ao final deste documento para testar o processo. Como base neste ponto de partida, é possível modificar detalhes dos circuitos combinacionais e sequenciais bem como os pinos que receberão os sinais do projeto> Para a tribuição dos pinos, há o Pin Planner e o Assignement Editor conforme as telas a seguir.

HEX2[4]

Location

PIN_E3

Yes

19

Fitter (Place & Route)

nblar (Can

Os pinos da placa (chaves, botões, clock, LEDs e Displays) já estão mapeados neste projeto, mas podem ser modificados. Os assinalamentos dos sinais aos pinos deve seguir o roteamento da placa disponível no manual e resumido a seguir (DE1_UserManual_v1018.pdf):

Signal Name	FPGA Pin No.	Description
SW[0]	PIN_L22	Toggle Switch[0]
SW[1]	PIN_L21	Toggle Switch[1]
SW[2]	PIN_M22	Toggle Switch[2]
SW[3]	PIN_V12	Toggle Switch[3]
SW[4]	PIN_W12	Toggle Switch[4]
SW[5]	PIN_U12	Toggle Switch[5]
SW[6]	PIN_U11	Toggle Switch[6]
SW[7]	PIN_M2	Toggle Switch[7]
SW[8]	PIN_M1	Toggle Switch[8]
SW[9]	PIN_L2	Toggle Switch[9]

Signal Name	FPGA Pin No.	Description
KEY[0]	PIN_R22	Pushbutton[0]
KEY[1]	PIN_R21	Pushbutton[1]
KEY[2]	PIN_T22	Pushbutton[2]
KEY[3]	PIN_T21	Pushbutton[3]

Signal Name	FPGA Pin No.	Description
LEDR[0]	PIN_R20	LED Red[0]
LEDR[1]	PIN_R19	LED Red[1]
LEDR[2]	PIN_U19	LED Red[2]
LEDR[3]	PIN_Y19	LED Red[3]
LEDR[4]	PIN_T18	LED Red[4]
LEDR[5]	PIN_V19	LED Red[5]
LEDR[6]	PIN_Y18	LED Red[6]
LEDR[7]	PIN_U18	LED Red[7]
LEDR[8]	PIN_R18	LED Red[8]
LEDR[9]	PIN_R17	LED Red[9]
LEDG[0]	PIN_U22	LED Green[0]
LEDG[1]	PIN_U21	LED Green[1]
LEDG[2]	PIN_V22	LED Green[2]
LEDG[3]	PIN_V21	LED Green[3]
LEDG[4]	PIN_W22	LED Green[4]
LEDG[5]	PIN_W21	LED Green[5]
LEDG[6]	PIN_Y22	LED Green[6]
LEDG[7]	PIN_Y21	LED Green[7]

Signal Name	FPGA Pin No.	Description
CLOCK_27	PIN_D12, PIN_E12	27 MHz clock input
CLOCK_50	PIN_L1	50 MHz clock input
CLOCK_24	PIN_A12, PIN_B12	24 MHz clock input from USB Blaster
EXT_CLOCK	PIN_M21	External (SMA) clock input

Algumas sugestões de objetivos a serem implementados:

- 1 Alterar as chaves para outra posição Botão de reset Chave de parada
- 2 Contar até 64 ao invés de até 16
 Mostrar no display
 Mostrar nos LEDs
- 3 Mudar a velocidade da contagem Alterar o clock inserindo um outro patamar intermediário de frequencia, selecionável a partir de outra chave.
- 4 Alterar a base de contagem para base 7.

Compilação do arquivo a ser gravado

Após as modificações sugeridas "execute a síntese". Para isso, usar o menu **Processing** > **Start Compilation**. Observe no relatório final da síntese a quantidade de elementos lógicos utilizados.

Alguns Warnings (novos) podem ocorrer. A maioria diz respeito

apenas ao fato de ser usada uma versão de avaliação do pacote de software de síntese Quartus e detalhes de simulação que não foram definidos.

Se todos os sinais foram ligados corretamente, a síntese do circuito gerará um arquivo que pode ser gravado no componente. Ter certeza disso pode levar algum tempo e a necessidade de ir colocando sinais de diagnóstico em LEDs caso o projeto não esteja bem organizado.

A gravação do arquivo gerado na FPGA

Para gravar o arquivo gerado: MikroP.sof basta usar o programador (menu *Tools > Programmer*). Abaixo é mostrada a tela do Programador.

Clique duas vezes no arquivo .sof para ter certeza de que a versão no diretório corrente de trabalho está sendo usada. Com a placa conectada a qualquer porta USB, use o botão "*Auto Detect*" e o componente deve aparecer conforme a figura, com um triângulo azul sobre o chip.

A chave SW12 da placa deve estar na posição "RUN". Clique no botão **Start** para descarregar o arquivo para o componente.

Após a gravação, o circuito funciona diretamente na placa. O reset está mapeado no botão KEYO e as chaves de halt e turbo estão mapeadas nas chaves SW9 e SW8, respectivamente.

Arquivos a Entregar

Além da demonstração em sala, postar um único ZIP contendo toda a pasta do projeto em Quartus da equipe com um cabeçalho descrevendo a funcionalidade implementada (Obs: para que o arquivo Zip fique menor, pode apagar a pasta "simulation".)