Universidad Panamericana Maestría en Ciencia de Datos Econometría

Actividad RLM

Enrique Ulises Báez Gómez Tagle $7~{\rm de~septiembre~de~2025}$

Índice

1. Introducción

Se presentan y analizan el siguiente juego de datos cuyas variables son:

Variable	Descripción
1 Educación	Gasto per cápita en educación pública (en dólares)
2 Ingreso	Ingreso per cápita anual (en dólares)
3 Menores	Porcentaje de menores de 18 años de edad (por cada mil)
4 Urbano	Proporción de la población que reside en áreas urbanas

Cuadro 1: Variables del conjuto de datos

A continuación se presentan las primeras filas del conjunto de datos:

Cuadro 2: Primeras filas del conjunto de datos utilizado en el análisis

Estado	educacion	Ingreso	Menores	Urbano
ME	189	2824	350.7000	508
NH	169	3259	345.9000	564
VT	230	3072	348.5000	322
MA	168	3835	335.3000	846
RI	180	3549	327.1000	871

2. Pregunta 1

Utilizando los datos, considere el modelo de regresión lineal múltiple

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

donde y representa la respuesta educación, x_1 el ingreso per cápita, x_2 el porcentaje de menores de 18 años y x_3 la proporción de habitantes que reside en áreas urbanas. Realice el ajuste del modelo (1).

Ajuste por Mínimos Cuadrados Ordinarios (MCO): El estimador viene dado por:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}, \quad \hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}.$$

Usando los datos, el modelo estimado es:

$$\hat{y} = -286.8388 + 0.080653 x_1 + 0.817338 x_2 - 0.105806 x_3,$$

donde x_1 es ingreso, x_2 menores y x_3 urbano.

Coeficientes y errores estándar:

Cuadro 3: Coeficientes del modelo OLS: Educación vs Ingreso, Menores y Urbano

Parámetro	Coef.	Err. Std.	\mathbf{t}	p	IC 2.5%	IC 97.5 $\%$
Intercepto	-286.8388	64.9199	-4.4183	0.0001	-417.4408	-156.2367
ingreso	0.0807	0.0093	8.6738	0.0000	0.0619	0.0994
menores	0.8173	0.1598	5.1151	0.0000	0.4959	1.1388
urbano	-0.1058	0.0343	-3.0863	0.0034	-0.1748	-0.0368

Métricas del ajuste: $R^2 = 0.690$, $R_{aj}^2 = 0.670$, F(3, 47) = 34.81, p-valor $< 10^{-10}$.

Cuadro 4: Métricas globales del modelo de regresión lineal múltiple

Métrica	Valor
R^2	0.6896
R ² ajustado	0.6698
Estadístico F	34.8105
p-valor (F)	0.0000
AIC	483.5767
BIC	491.3040
Observaciones	51.0000

3. Pregunta 2

Encuentre una estimación de la varianza de los errores $S^2 = e'e/n$, la matriz de covarianzas del vector de parámetros y los errores estándar de los coeficientes individuales.

RESPUESTA:

4. Pregunta 3

Construya un intervalo del 90 % de confianza para el coeficiente β_2 .

RESPUESTA:

5. Pregunta 4

Calcule el gasto en educación pública que se esperaría a un nivel "promedio" de los regresores, esto es $(1, \bar{x})$.

RESPUESTA:

6. Pregunta 5

Realice la prueba de significancia del modelo de regresión (1), indicando claramente la hipótesis, estadístico de prueba, región de rechazo y conclusión.

RESPUESTA:

7. Link al repositorio con código fuente

https://github.com/enriquegomeztagle/MCD-Econometria/tree/main/HWs/MLR-practice