Дорешивание

Задача 1. Найдите ГМТ, из которых данный отрезок виден под прямым углом.

Задача 2. Отрок Дементий решил забраться на лестницу, приставленную к стене. Едва он успел добраться до середины, лестница съехала на пол. Какова траектория Дементия до удара об пол?

Вспомните, что вы знаете про прямоугольный треугольник.

Задача 3. Пусть O лежит на отрезке AB. Найдите ГМТ M таких, что $\angle MOB = 2\angle MAB$.

Тупая задача. Ну совсем тупая.

Задача 4. Из точки O на прямой Ox выходит 2^{1000} человек. Из них половина идет направо, половина — налево. Через час каждая группа снова делится пополам и половина идет направо, а половина — налево. Такое разделение происходит каждый час. Сколько человек придет к каждую точку этой прямой через 1000 часов после выхода?

Проверьте для маленьких чисел. Не для миллиона, а скажем 1,2,3,4. Ну и про тему откуда это задача не забываейте

Задача 5. Докажите, что $C_n^0 + C_{n-1}^1 + C_{n-2}^2 + \ldots = F_n$, где $F_n - n$ -ое число Фибоначчи.

Индукция и известные свойства C_n^k .

Задача 6. Докажите, что $(C_n^0)^2 + \ldots + (C_n^n)^2 = C_{2n}^n$.

Тут надо вспомнить, что есть число в треугольнике паскаля, а потом отыскать все C_n^k , которые есть в условии.

Задача 7. Компьютер печатает числа одно за другим по следующему алгоритму: вначале печатаются три натуральных числа, введенных с клавиатуры (все они больше 100), а затем каждую секунду компьютер складывает три последних напечатанных им числа и печатает полученную сумму. Может ли компьютер напечатать восемь простых чисел подряд?

Подумайте, как можно решить эту задачу.

Задача 8. Решите в целых числах уравнение 6xy - 4x + 9y - 366 = 0.

Подумайте, что вы можете сказать про x например, а потом запишите это на мат языке.

Задача 9. Найдите все пары простых p,q, такие что p^2+q^3 и q^2+p^3 точные квадраты.

Запишите уже условие на математическом языке. Ну и про задачу с личной олимпиады уральского турнира не забывайте.

Дорешивание

Задача 10. а) Пусть p простое число и a не делится на p. Докажите, что существует b, что $ab \equiv_p 1$. б) Решите сравнение $x^2 \equiv_p 1$.

Задача 11. а) Пусть p простое число. Докажите, что $(p-1)! \equiv_p -1$.

б) Докажите, что если $(p-1)! \equiv_p -1$, то p — простое число. А причём тут предыдущая задача?

Теорема 1 (Теорема Вильсона). *Число р является простым тогда и толь*ко тогда, когда $(p-1)! \equiv_p -1$.