1. Übung

Informatik A

WS 13/14

Abgabe: 28.10.2011, 12:00 Uhr

Klaus Kriegel

A C 1 11 1 1 1 1

Aufgaben, die im ersten Tutorium besprochen werden:

Aufgabe 1:

vollständige Induktion

(0 Punkte)

- a) Beweisen Sie mit vollständiger Induktion, dass für jede natürliche Zahl n die Zahl $a_n = n^3 + 5n$ durch 6 teilbar ist.
- b) Zeigen Sie mit vollständiger Induktion, dass man jeden Betrag von $n \geq 18$ Cent durch Briefmarken mit den Werten 4 und 7 Cent zusammensetzen kann.

Aufgabe 2:

Rekursion und formale Sprachen

(0 Punkte)

Sei $\Sigma = \{0,1\}$ ein gegebenes Alphabet und $L \subseteq \Sigma^*$ wie folgt rekursiv definiert:

$$L = \{\varepsilon\} \cup \Sigma \cup 0 \circ L \circ 0 \cup 1 \circ L \circ 1$$

a) Geben Sie eine einfache verbale Beschreibung für die Sprache L und entscheiden Sie, ob die folgenden Wörter zu L gehören:

$$w = 010010$$
 $w' = 010110$ $w'' = 0110110$

Begründen Sie positive Antworten durch Angeben eines Schemas mit dem das Wort als Element der Sprache L nach den gegebenen Regeln aufgebaut werden kann.

b) Wieviele Wörter der Länge 5 gehören zur Sprache L (kurze Begründung)?

Aufgaben zur Abgabe:

Aufgabe 3:

vollständige Induktion

(8 Punkte)

Beweisen Sie Folgendes mit vollständiger Induktion:

- a) Für alle $n \in \mathbb{N}^+$ ist die Summe der ersten n ungeraden Zahlen gleich n^2 ist. Der erste Schritt sollte sein, die Behauptung in eine entsprechende Summenformel zu übersetzen.
- b) Für alle $n \in \mathbb{N}$ ist die Zahl $a_n = 2^n + 5^{n+1}$ durch 3 teilbar.

Aufgabe 4:

Rekursion und Induktion

(4 Punkte)

Die Funktion $f: \mathbb{N} \longrightarrow \mathbb{N}$ wird wie folgt rekursiv definiert:

$$f(0) = 0, f(1) = 2$$
 und

$$f(n) = 4f(n-1) - 4f(n-2)$$
 für alle $n \ge 2$.

Erzeugen Sie die Werte von f(n) für alle $n \leq 5$, entdecken Sie dadurch eine einfache nichtrekursive Formel für f(n) und weisen Sie deren Gültigkeit für alle $n \in \mathbb{N}$ mit vollständiger Induktion nach!

Hinweis: Überprüfen Sie den Zusammenhang zwischen f(n)und 2^n .

Es geht noch weiter auf Seite 2:

Aufgabe 5: Rekursion und formale Sprachen (4+2 Punkte)

Sei $\Sigma = \{a, b\}$ ein gegebenes Alphabet. Die formalen Sprachen $L_1 \subseteq \Sigma^*$ und $L_2 \subseteq \Sigma^*$ sind wie folgt rekursiv definiert:

$$L_1 = \{\varepsilon\} \cup a \circ L_1 \circ b \cup a \circ L_1 \cup L_1 \circ L_1$$

$$L_2 = \{\varepsilon\} \cup a \circ L_2 \circ b \cup b \circ L_2 \circ a$$

a) Geben Sie eine einfache verbale Beschreibung für die Sprachen L_1 und L_2 . Entscheiden Sie, zu welcher(n) Sprache(n) die folgenden Wörter gehören:

$$w = aabab$$
 $w' = abbaab$ $w'' = ababaa$

Begründen Sie positive Antworten durch Angeben eines Schemas mit dem das Wort als Element der Sprache L_i nach den gegebenen Regeln aufgebaut werden kann.

b) Wieviele Wörter der Länge 5 gehören zur Sprache L_1 und wieviele Wörter der Länge 6 gehören zur Sprache L_2 ? Begründen Sie die Antworten kurz!