Package 'CommonSplines'

May 11, 2018

Title Regression Spline and Smoothing Spline
Version 1.0.0
Authors Xingchen LIU <e0225109@u.nus.edu>, Yuchen SHI <yuchenshinus@gmail.com>, Xiaozhou Yang <yang_xiaozhou@icloud.com></yang_xiaozhou@icloud.com></yuchenshinus@gmail.com></e0225109@u.nus.edu>
Description This is an R package that covers commonly seem regression spline and smoothing spline. For regression spline, commonly seen basis functions are provided such as truncated power basis, natural spline basis and B-spline basis. For smoothing spline, penalties on second order derivative are provided, i.e., cubic smoothing spline.
Depends R (>= $3.3.2$)
Date 2018-05-11
License Apache License 2.0
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests knitr, rmarkdown VignetteBuilder knitr R topics documented:
bsplineBasis bsplineFitting cal_loo_cv_error CubicPowerBasisSpline CubicSmoothingSpline.Fitting CubicSmoothingSpline.Train ncs ncs_eval_basis ncs_predict ncs_train place_knots PowerBasisSpline 1 sel_smoothing_para
Index 1

2 bsplineBasis

Generating B-spline basis

Description

This function generates B-spline basis. The B-splines are defined following the recursive formulas due to de Boor. Only univariate input can be used.

Usage

```
bsplineBasis(x, y, order, innerknots)
```

Arguments

x	The input vector of training dataset.
у	The output vector of training dataset.
order	The order of B-spline functions. The default is order=4 for cubic B-splines.
innerknots	The internal knots that define the spline. innerknots should not contain knots on the boundary.

Value

A list with the following components:

beta	The coefficients of nonparametric regression.
basis	The B-spline basis matrix of dimension $c(length(x), df)$. $df = length(innerknots) + order$.
knots	The knots used to construct the B-splines, including innerknots, boundary knots and phantom knots
order	The order of basis functions. order=degree+1

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
innerknots <- seq(0.1, 0.9, 0.1)
order<-4

basis<-bsplineBasis(x,y,order,innerknots)
plot(x,rep(0,length(x)),type="l",ylim=c(0,1))
for (i in 1: (length(innerknots)+order)){
   lines(x,basis$basismatrix[,i])
}</pre>
```

bsplineFitting 3

bsplineFitting	Regression using B-spline basis
200221101 2002118	regression using 2 spinie susta

Description

This function provides nonparametric regressions using B-splines. The B-splines are generated by the function bsplinBasis. The return value of bsplinBasis is required as an argument of bsplineFitting

Usage

```
bsplineFitting(x_test, basis)
```

Arguments

x_test The input values at which evaluations are required.

basis The return value of function bsplinBasis.

Value

The evaluated output at x_test.

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
innerknots <- seq(0.1, 0.9, 0.01)
order<-4
basis<-bsplineBasis(x,y,order,innerknots)

x_test<-seq(0, 1, 0.01)
fit<-bsplineFitting(x_test,basis)
plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

cal_loo_cv_error

Calculte leave-one-out CV error

Description

Calculte leave-one-out CV error

Usage

```
cal_loo_cv_error(y, f_hat, S)
```

Arguments

У	response variable values	
f_hat	fitted response variable values	
S	smoother matrix	

Value

leave-one-out cross-validation error

CubicPowerBasisSpline Regression using cubic spline

Description

This function provides regressions using cubic splines. The cubic splines are defined as $h1 = 1,h2 = x,h3 = x^2,h4 = x^3,h5 = (x-k1)^3+,h6 = (x-k2)^3+,...$, where k1, k2 and kn are n knots, '+' denotes the positive part.

Usage

```
CubicPowerBasisSpline(x, y, x_test, innerknots)
```

Arguments

x The input vector of training dataset.y The output vector of training dataset.

x_test The input values at which evaluations are required.

innerknots The internal knots that define the spline.

Details

Only univariate input can be used.

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The cubic spline basis matrix of dimension c(length(x), NumKnots+4)

f The evaluated output at x_test.

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
innerknots <- 2*pi*c(1/4,2/4,3/4)
solution <- CubicPowerBasisSpline(t,y1,t,innerknots)
y.hat <- solution$f
plot(t, y1, t="1")
lines(t, y.hat, col=4)</pre>
```

```
CubicSmoothingSpline.Fitting
```

Prediction using smoothing spline with squared 2nd derivative penalty

Description

This function takes the coefficients trained by CubicSmoothingSpline.Train and evaluate the output at x_test

Usage

```
CubicSmoothingSpline.Fitting(basis, x_test)
```

Arguments

basis The return value of function CubicSmoothingSpline.Train. x_test The input values at which evaluations are required.

Value

The evaluated output at x_test.

Examples

```
x<-seq(0, 1, 0.0015)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
lambda<-0.001
basis<-CubicSmoothingSpline.Train(x,y,lambda)

x_test<-seq(0, 1, 0.1)
fit<-CubicSmoothingSpline.Fitting(basis,x_test)

plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

 ${\tt CubicSmoothingSpline.Train}$

Train a smoothing spline with squared 2nd derivative penalty using natural cubic spline

Description

This function trains a smoothing spline with squared 2nd derivative penalty. It has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline. This function can be used for small or moderate number of knots. When the number of data N<=50, all knots are included. When N>50, 50 knots are uniformly chosen from the training dataset.

Usage

```
CubicSmoothingSpline.Train(x, y, lambda)
```

6 ncs

Arguments

x The input vector of training dataset.
 y The output vector of training dataset.
 lambda A fixed smoothing parameter.

Value

A list with the following components:

beta The coefficients of natural splines.

S The smoother matrix.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

Examples

```
x < -seq(0, 1, 0.001)

y < -x^3 * 3 - x^2 * 2 + x + exp(1) + rnorm(length(x), 0, 0.1)

plot(x,y)

lambda < -0.001

basis < -Cubic Smoothing Spline \_Train(x,y, lambda)

cat("the knots chosen are: ", basis $knots)
```

ncs

Regression using natural cubic splines

Description

This function provides regression using natural cubic splines with truncated power basis functions. Only univariate input can be used.

Usage

```
ncs(x_{train}, y_{train}, x_{test}, df = NULL, knots = NULL)
```

for more knots.

Arguments

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
x_test	The input values at which evaluations are required.
df	Degrees of freedom. One can supply df rather than knots; $ncs()$ then chooses $(df + 1)$ knots at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline. The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles

ncs_eval_basis 7

Value

y_pred

A vector of dimension length(x), the prediction vector evaluated at x_test values.

Examples

```
x_train <- seq(1, 10, 0.1)
y_train <- cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1)+rnorm(length(x_train),0,1)
plot(x_train,y_train)
x_test <- seq(1, 10, 0.1)
lines(x_test,cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1),col="red")

df <- 2
y_pred <- ncs(x_train, y_train, x_test, df)
lines(x_test,y_pred, col='blue')
df <- 4
y_pred <- ncs(x_train, y_train, x_test, df)
lines(x_test,y_pred, col='green')
df <- 10
y_pred <- ncs(x_train, y_train, x_test, df)
lines(x_test,y_pred, col='black')
legends <- c("Actual", "Prediction: 2 df", "Prediction: 4 df", "Prediction: 10 df")
legend('topleft', legend=legends, col=c('red', 'blue', 'green', 'black'), lty=1, cex=0.8)
title('Smoothing Comparison of Different Degrees of Freedom')</pre>
```

ncs_eval_basis

Evaluate basis functions as each x and return the evaluated basis matrix N

Description

Evaluate basis functions as each x and return the evaluated basis matrix N

Usage

```
ncs_eval_basis(x, knots, nknots)
```

Arguments

x Predictor variable vector.

knots Knots location in terms of quantiles of x_train, optional, default will be evenly

spaced quantiles based on number of knots.

nknots Number of knots useded in training.

Value

Basis matrix evaluated at each x value.

8 ncs_train

ncs_predict	Prediction based on trained regression model	
-------------	--	--

Description

Prediction based on trained regression model

Usage

```
ncs_predict(x_test, betas, knots, nknots)
```

Arguments

x_test	The input values at which evaluations are required.
betas	Least squure fit parameters obtained from training.
knots	Knots location in terms of quantiles of x_train, optional, default will be evenly spaced quantiles based on number of knots.
nknots	Number of knots used in training.

Value

y_pred A vector of dimension length(x), the prediction vector evaluated at x_test values.

ncs_train	Generate an evaluated basis matrix for natural cubic splines

Description

Generate an evaluated basis matrix for natural cubic splines

Usage

```
ncs_train(x_train, y_train, df = NULL, knots = NULL)
```

Arguments

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
df	Degrees of freedom. One can supply df rather than knots; $ncs()$ then chooses $(df + 1)$ knots at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline, in terms of quantiles of x. The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.

place_knots 9

Value

A list of following components:

nknots Number of knots.

knots A vector of knot locations.

N Basis matrix evaluated at each x value.

betas Least squure fit parameters.

Examples

```
x_train <- seq(1, 10, 0.1)
y_train <- cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1)+rnorm(length(x_train),0,1)
plot(x_train,y_train)
x_test <- seq(1, 10, 0.1)
df <- 10
train_result <- ncs_train(x_train, y_train, df)
print(train_result$\text{betas})
print(train_result$\text{N[1:5,1:5]})</pre>
```

place_knots

Find evenly spaced knots by quantile

Description

Knots found include boundary knots at 0th and 100th quantile.

Usage

```
place_knots(nknots, x)
```

Arguments

nknots Number of knots to be located.

x Data vector on which knots are placed.

Value

A named vector with knot quantiles and values.

10 PowerBasisSpline

PowerBasisSpline	Regression using	Power Basis spline
		p

Description

This function is a generalization of CubicPowerBasisSpline with arbitrary order

Usage

```
PowerBasisSpline(x, y, x_test, order, innerknots)
```

Arguments

X	The input vector of training dataset.
У	The output vector of training dataset.
x_test	The input values at which evaluations are required.
order	The order that defines the spline.
innerknots	The internal knots that define the spline.

Details

Only univariate input can be used.

Value

A list with the following components:

```
beta The coefficients of nonparametric regression.

basis The spline basis matrix of dimension c(length(x), NumKnots+order)

f The evaluated output at x\_test.
```

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
innerknots <- 2*pi*c(1/4,2/4,3/4)
order <- 4
solution <- PowerBasisSpline(t,y1,t,order,innerknots)
y.hat <- solution$f
plot(t, y1, t="1")
lines(t, y.hat, col=2)</pre>
```

sel_smoothing_para 11

sel_smoothing_para

Select smoothing parameter based on leave-one-out CV error

Description

Select smoothing parameter based on leave-one-out CV error

Usage

```
sel_smoothing_para(x, y, cv_lambda)
```

Arguments

x predictor variabley response variable

cv_lambda vector of candidate lambda values

Value

lamdba value that minimizes leave-one-out CV error

Index

```
bsplineBasis, 2
bsplineFitting, 3

cal_loo_cv_error, 3
CubicPowerBasisSpline, 4
CubicSmoothingSpline.Fitting, 5
CubicSmoothingSpline.Train, 5

ncs, 6
ncs_eval_basis, 7
ncs_predict, 8
ncs_train, 8

place_knots, 9
PowerBasisSpline, 10

sel_smoothing_para, 11
```