MATH 236	(Calculus	II)
Fall 2017		

Name:	

Tues 31 Oct 2017

Exam 2: Sequences and series (§5.6, 7.1-7.7)

Exam Instructions: You have 75 minutes to complete this exam. Justification is required for all problems. Notation matters! You will also be penalized for missing units and rounding errors. No electronic devices (phones, iDevices, computers, etc) except for a **basic scientific calculator**. On story problems, round to two decimal places.

If you finish early then you may leave, UNLESS there are less than 5 minutes of class left. To prevent disruption, if you finish with less than 5 minutes of class remaining then please stay seated and quiet.

Your signature below indicates that you have read this page and agree to follow the Academic Honesty Policies of James Madison University.

Signature: ((1 pt)	
	/	

Points	Score
12	
13	
14	
15	
15	
15	
15	
99	
	12 13 14 15 15 15 15

Calc II Fall 2017 p. ii (of 7)

1. (12 pts) Find a plausible formula for the general term of the sequence

$$\left\{1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \dots\right\}.$$

Assume the indexing starts at k = -1.

Calc II Fall 2017 p. 1 (of 7)

- 2. Consider the sequence $\sigma = \left\{ \sin \left(\frac{\pi}{2k} \right) \right\}_{k=1}^{\infty}$.
 - (a) (2 pts) Write the first five terms of σ .
 - (b) (3 pts) Determine whether σ is monotone. If so, is it strict? Is it eventual?

(c) (4 pts) Determine the least upper bound and greatest lower bound for σ .

(d) (4 pts) Explain why σ must converge and then find what it converges to.

Calc II Fall 2017 p. 2 (of 7)

- 3. Consider the series $S = \sum_{k=0}^{\infty} \left(\frac{2^k}{(k+3)!} \frac{2^{k+1}}{(k+4)!} \right)$.
 - (a) (3 pts) Write the first five partial sums S_0 , S_1 , S_2 , S_3 , S_4 .

(b) (4 pts) Write a closed formula for the general partial sum S_n .

(c) (4 pts) Evaluate $\lim_{n\to\infty} S_n$.

(d) (3 pts) What is the sum of the series S?

4. (15 pts) Determine whether the series $\sum_{k=0}^{\infty} \frac{5^k + k}{k! + 3}$ converges or diverges. You may need to employ a battery of tests; explain the criteria you are using and why your conclusion is valid.

Calc II Fall 2017 p. 4 (of 7)

5. (15 pts) Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k(1+k)}}$ converges absolutely, converges conditionally, or diverges. Explain the criteria you are using and why your conclusion is valid.

Calc II Fall 2017 p. 5 (of 7)

6. (15 pts) Evaluate $\int_0^1 \frac{dx}{x(x-1)}$. Note: This is an improper integral. You will be penalized for not using limits in your answer.

Calc II Fall 2017 p. 6 (of 7)

7. (15 pts) Prof Wheeler drops a ping pong ball from a height of 1 meter. Each time it bounces, it only rebounds to p% (where 0) of its previous height. Draw a diagram illustrating the problem. Then use a series to determine the total up and down distance the ball travels.

Calc II Fall 2017 p. 7 (of 7)