

A NOTE ON VALUES OF NONCOMMUTATIVE POLYNOMIALS

MATEJ BREŠAR¹ AND IGOR KLEP²

ABSTRACT. We find a class of algebras \mathcal{A} satisfying the following property: for every nontrivial noncommutative polynomial $f(X_1, \dots, X_n)$, the linear span of all its values $f(a_1, \dots, a_n)$, $a_i \in \mathcal{A}$, equals \mathcal{A} . This class includes the algebras of all bounded and all compact operators on an infinite dimensional Hilbert space.

1. INTRODUCTION

Starting with Helton's seminal paper [Hel] there has been considerable interest over the last years in values of noncommuting polynomials on matrix algebras. In one of the papers in this area the second author and Schweighofer [KS] showed that Connes' embedding conjecture is equivalent to a certain algebraic assertion which involves the trace of polynomial values on matrices. This has motivated us [BK] to consider the linear span of values of a noncommutative polynomial f on the matrix algebra $M_d(\mathbb{F})$; here, \mathbb{F} is a field with $\text{char}(\mathbb{F}) = 0$. It turns out [BK, Theorem 4.5] that this span can be either:

- (1) $\{0\}$;
- (2) the set of all scalar matrices;
- (3) the set of all trace zero matrices; or
- (4) the whole algebra $M_d(\mathbb{F})$.

From the precise statement of this theorem it also follows that if $2d > \deg f$, then (1) and (2) do not occur and (3) occurs only when f is a sum of commutators.

What to except in infinite dimensional analogues of $M_d(\mathbb{F})$? More specifically, let \mathcal{H} be infinite dimensional Hilbert space, and let $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ denote the algebras of all bounded and compact linear operators on \mathcal{H} , respectively. What is the linear span of polynomial values in $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$? A very special (but decisive, as we shall see) case of this question was settled by Halmos [Hal] and Pearcy and Topping [PT] (see also Anderson [And]) a long time ago: every operator in $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$, respectively, is a sum of commutators. That is, the linear span of values of the polynomial $X_1X_2 - X_2X_1$ on $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ is the whole $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$, respectively. We will prove that the same is true for *every* nonconstant polynomial. This result will be derived as a corollary of our main theorem which presents a class of algebras with the property that the span of values of “almost” every polynomial is equal to the whole algebra.

2. RESULTS

By $\mathbb{F}\langle\bar{X}\rangle$ we denote the free algebra over a field \mathbb{F} generated by $\bar{X} = \{X_1, X_2, \dots\}$, i.e., the algebra of all noncommutative polynomials in X_i . Let $f = f(X_1, \dots, X_n) \in \mathbb{F}\langle\bar{X}\rangle$. We say that f is *homogeneous* in the variable X_i if all monomials of f have

Date: 09 September 2009.

2000 Mathematics Subject Classification. 08B20, 16R99, 47L30.

Key words and phrases. Noncommutative polynomial, Lie ideal, Hilbert space, bounded operator, compact operator.

¹Supported by the Slovenian Research Agency (program No. P1-0288).

²Supported by the Slovenian Research Agency (program No. P1-0222).

the same degree in X_i . If this degree is 1, then we say that f is *linear* in X_1 . If f is linear in every variable X_i , $1 \leq i \leq n$, then we say that f is *multilinear*.

Let \mathcal{A} be an algebra over \mathbb{F} . By $f(\mathcal{A})$ we denote the set of all values $f(a_1, \dots, a_n)$ with $a_i \in \mathcal{A}$, $i = 1, \dots, n$. Recall that $f = f(X_1, \dots, X_n) \in \mathbb{F}\langle\bar{X}\rangle$ is said to be an *identity* of \mathcal{A} if $f(\mathcal{A}) = \{0\}$. If $f(\mathcal{A})$ is contained in the center of \mathcal{A} , but f is not an identity of \mathcal{A} , then f is said to be a *central polynomial* of \mathcal{A} . By $\text{span } f(\mathcal{A})$ we denote the linear span of $f(\mathcal{A})$. We are interested in the question when does $\text{span } f(\mathcal{A}) = \mathcal{A}$ hold.

For the proof of our main theorem three rather elementary lemmas will be needed. The first and the simplest one is a slightly simplified version of [BK, Lemma 2.2]. Its proof is based on the standard Vandermonde argument.

Lemma 2.1. *Let \mathcal{V} be a vector space over an infinite field \mathbb{F} , and let \mathcal{U} be a subspace. Suppose that $c_0, c_1, \dots, c_n \in \mathcal{V}$ are such that $\sum_{i=0}^n \lambda^i c_i \in \mathcal{U}$ for all $\lambda \in \mathbb{F}$. Then each $c_i \in \mathcal{U}$.*

Recall that a vector subspace \mathcal{L} of \mathcal{A} is said to be a *Lie ideal* of \mathcal{A} if $[\ell, a] \in \mathcal{L}$ for all $\ell \in \mathcal{L}$ and $a \in \mathcal{A}$; here, $[u, v] = uv - vu$. For a recent treatise of Lie ideals from an algebraic as well as functional analytic viewpoint we refer the reader to [BKS].

Our second lemma is a special case of [BK, Theorem 2.3].

Lemma 2.2. *Let \mathcal{A} be an algebra over an infinite field \mathbb{F} , and let $f \in \mathbb{F}\langle\bar{X}\rangle$. Then $\text{span } f(\mathcal{A})$ is a Lie ideal of \mathcal{A} .*

Every vector subspace of the center of \mathcal{A} is obviously a Lie ideal of \mathcal{A} . Lie ideals that are not contained in the center are called *noncentral*. The third lemma follows from an old result of Herstein [Her, Theorem 1.2].

Lemma 2.3. *Let \mathcal{S} be a simple algebra over a field \mathbb{F} with $\text{char}(\mathbb{F}) \neq 2$. If \mathcal{M} is both a noncentral Lie ideal of \mathcal{S} and a subalgebra of \mathcal{S} , then $\mathcal{M} = \mathcal{S}$.*

We are now in a position to prove our main result.

Theorem 2.4. *Let \mathcal{S} and \mathcal{B} be algebras over a field \mathbb{F} with $\text{char}(\mathbb{F}) = 0$, and let $\mathcal{A} = \mathcal{S} \otimes \mathcal{B}$. Suppose that \mathcal{S} is simple, and suppose that \mathcal{B} satisfies*

- (a) *every element in \mathcal{B} is a sum of commutators; and*
- (b) *for each $n \geq 1$, every element in \mathcal{B} is a linear combination of elements b^n , $b \in \mathcal{B}$.*

If $f \in \mathbb{F}\langle\bar{X}\rangle$ is neither an identity nor a central polynomial of \mathcal{S} , then

$$\text{span } f(\mathcal{A}) = \mathcal{A}.$$

Proof. Let $f = f(X_1, \dots, X_n)$. Let us write $f = g_i + h_i$ where g_i is a sum of all monomials of f in which X_i appears and h_i is a sum of all monomials of f in which X_i does not appear. Thus, $h_i = h_i(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$ and hence

$$h_i(a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n) = f(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n)$$

for all $a_i \in \mathcal{A}$. Therefore $\text{span } h_i(\mathcal{A}) \subseteq \text{span } f(\mathcal{A})$, which clearly implies $\text{span } g_i(\mathcal{A}) \subseteq \text{span } f(\mathcal{A})$. At least one of g_i and h_i is neither an identity nor a central polynomial of \mathcal{S} . Therefore there is no loss of generality in assuming that either X_i appears in every monomial of f or f does not involve X_i at all. Since f cannot be a constant polynomial and hence it must involve some of the X_i 's, we may assume, again without loss of generality, that each monomial of f involves all X_i , $i = 1, \dots, n$.

Next we claim that there is no loss of generality in assuming that f is homogeneous in X_1 . Write $f = f_1 + \dots + f_m$, where f_i is the sum of all monomials of f

that have degree i in X_1 . Note that

$$f(\lambda a_1, a_2, \dots, a_n) = \sum_{i=1}^m \lambda^i f_i(a_1, \dots, a_n) \in \text{span } f(\mathcal{A})$$

for all $\lambda \in \mathbb{F}$ and all $a_i \in \mathcal{A}$, so $f_i(a_1, \dots, a_n) \in \text{span } f(\mathcal{A})$ by Lemma 2.1. Thus, $\text{span } f_i(\mathcal{A}) \subseteq \text{span } f(\mathcal{A})$. At least one f_i is neither an identity nor a central polynomial of \mathcal{S} . Therefore it suffices to prove the theorem for f_i . This proves our claim.

Let us now show that there is no loss of generality in assuming that f is linear in X_1 . If $\deg_{X_1} f > 1$, we apply the multilinearization process to f , i.e., we introduce a new polynomial $\Delta_{1,n+1} f = f'(X_1, \dots, X_n, X_{n+1})$:

$$f' = f(X_1 + X_{n+1}, X_2, \dots, X_n) - f(X_1, X_2, \dots, X_n) - f(X_{n+1}, X_2, \dots, X_n).$$

This reduces the degree in X_1 by one. Clearly, $\text{span } f'(\mathcal{A}) \subseteq \text{span } f(\mathcal{A})$. Observe that f can be retrieved from f' by resubstituting $X_{n+1} \mapsto X_1$, more exactly

$$(2^{\deg_{X_1} f} - 2)f = f'(X_1, \dots, X_n, X_1).$$

Hence f' is not an identity nor a central polynomial of \mathcal{S} . Note however that f' is not necessarily homogeneous in X_1 , but for all its homogeneous components f'_i we have $\text{span } f'_i(\mathcal{A}) \subseteq \text{span } f'(\mathcal{A})$; one can check this by using Lemma 2.1, like in the previous paragraph. At least one of these components, say f'_j , is not an identity nor a central polynomial of \mathcal{S} . Thus we restrict our attention to f'_j . If necessary, we continue applying $\Delta_{1,n+1}$, and after a finite number of steps we obtain a polynomial Δf linear in X_1 , which is neither an identity nor a central polynomial of \mathcal{S} , and satisfies $\text{span } \Delta f(\mathcal{A}) \subseteq \text{span } f(\mathcal{A})$. Hence we may assume f is linear in X_1 .

Repeating the same argument with respect to other variables we finally see that without loss of generality we may assume that f is multilinear.

Set $\mathcal{L} = \text{span } f(\mathcal{A})$ and $\mathcal{M} = \{m \in \mathcal{S} \mid m \otimes \mathcal{B} \subseteq \mathcal{L}\}$. By Lemma 2.2, \mathcal{L} is a Lie ideal of \mathcal{A} . Therefore $[m, s] \otimes b^2 = [m \otimes b, s \otimes b] \in \mathcal{L}$ for all $m \in \mathcal{M}$, $b \in \mathcal{B}$, $s \in \mathcal{S}$. Using (b) it follows that $[m, s] \in \mathcal{M}$. Therefore \mathcal{M} is a Lie ideal of \mathcal{S} . Pick $s_1, \dots, s_n \in \mathcal{S}$ such that $s_0 = f(s_1, \dots, s_n)$ does not lie in the center of \mathcal{S} . For every $b \in \mathcal{B}$ we have

$$s_0 \otimes b^n = f(s_1 \otimes b, s_2 \otimes b, \dots, s_n \otimes b) \in \mathcal{L}.$$

In view of (b) this yields $s_0 \in \mathcal{M}$. Accordingly, \mathcal{M} is a noncentral Lie ideal of \mathcal{S} . Next, given $m \in \mathcal{M}$ and $b, b' \in \mathcal{B}$, we have

$$m^2 \otimes [b, b'] = [m \otimes b, m \otimes b'] \in \mathcal{L}.$$

By (a), this gives $m^2 \in \mathcal{M}$. From

$$m_1 m_2 = \frac{1}{2}([m_1, m_2] + (m_1 + m_2)^2 - m_1^2 - m_2^2)$$

it now follows that \mathcal{M} is a subalgebra of \mathcal{S} . Using Lemma 2.3 we now conclude that $\mathcal{M} = \mathcal{S}$, i.e., $\mathcal{A} = \mathcal{S} \otimes \mathcal{B} \subseteq \mathcal{L} \subseteq \mathcal{A}$. \blacksquare

It is easy to see that (b) is fulfilled if \mathcal{B} has a unity. In this case the proof can be actually slightly simplified by avoiding involving powers of elements in \mathcal{B} . Further, every C^* -algebra \mathcal{B} satisfies (b). Indeed, every element in \mathcal{B} is a linear combination of positive elements, and for positive elements we can define n th roots.

Corollary 2.5. *Let \mathcal{H} be an infinite dimensional Hilbert space. Then*

$$\text{span } f(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H}) \quad \text{and} \quad \text{span } f(\mathcal{K}(\mathcal{H})) = \mathcal{K}(\mathcal{H})$$

for every nonconstant polynomial $f \in \mathbb{C}\langle\bar{X}\rangle$.

Proof. It is well known that there does not exist a nonzero polynomial that was an identity of $M_d(\mathbb{C})$ for every $d \geq 1$, cf. [Row, Lemma 1.4.3]. Therefore there exists $d \geq 1$ such that $[f, X_{n+1}]$ is not an identity of $M_d(\mathbb{C})$. This means that f is neither an identity nor a central polynomial of $M_d(\mathbb{C})$. Since \mathcal{H} is infinite dimensional, we have $\mathcal{B}(\mathcal{H}) \cong M_d(\mathcal{B}(\mathcal{H})) \cong M_d(\mathbb{C}) \otimes \mathcal{B}(\mathcal{H})$, and similarly $\mathcal{K}(\mathcal{H}) \cong M_d(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H})$. Now we are in a position to use Theorem 2.4. Indeed, $M_d(\mathbb{C})$ is a simple algebra, and the algebras $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ satisfy (a) by [Hal] and [PT], and they satisfy (b) by the remark preceding the statement of the corollary. ■

REFERENCES

- [And] J. Anderson, Commutators of compact operators, *J. reine angew. Math.* **291** (1977) 128-132.
- [BKS] M. Brešar, E. Kissin, V. Shulman, Lie ideals: from pure algebra to C*-algebras, *J. reine angew. Math.* **623** (2008) 73-121.
- [BK] M. Brešar, I. Klep, Values of noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze, *Math. Res. Lett.* **16** (2009), 605-626.
- [Hal] P. R. Halmos, Commutators of operators II, *Amer. J. Math.* **76** (1954) 191-198.
- [Hel] J. W. Helton, “Positive” noncommutative polynomials are sums of squares, *Ann. of Math.* (2) **156** (2002) 675-694.
- [Her] I. N. Herstein, *Topics in ring theory*, The University of Chicago Press, 1969.
- [KS] I. Klep, M. Schweighofer, Connes’ embedding conjecture and sums of hermitian squares, *Adv. Math.* **217** (2008) 1816-1837.
- [PT] C. Pearcy, D. Topping, On commutators in ideals of compact operators, *Michigan J. Math.* **18** (1971) 247-252.
- [Row] L. H. Rowen, *Polynomial identities in ring theory*, Academic Press, 1980.

FACULTY OF MATHEMATICS AND PHYSICS, UNIVERSITY OF LJUBLJANA, AND, FACULTY OF NATURAL SCIENCES AND MATHEMATICS, UNIVERSITY OF MARIBOR, SLOVENIA

E-mail address: matej.bresar@fmf.uni-lj.si

E-mail address: igor.klep@fmf.uni-lj.si