The group G is isomorphic to the group labelled by [36, 13] in the Small Groups library. Ordinary character table of $G \cong C2 \times ((C3 \times C3) : C2)$:

Trivial source character	table of $G \cong$	$C2 \times ((C3 \times$	C3): C2) at $p = (2)^n$
--------------------------	--------------------	-------------------------	-------------------------

Normalisers N_i			N_1					N_2			N_3	$\mid N_4 \mid$	N_5
p-subgroups of G up to conjugacy in G			P_1					P_2			P_3	P_4	P_5
Representatives $n_j \in N_i$	1a	3a	3b	3c	3d	1 <i>a</i>	3b	3a	3c	3d	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	4	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	-2	-2	-2	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	4	-2	-2	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	-2	-2	4	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	4	-2	-2	4	-2	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	2	2	2	2	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	-1	-1	-1	2	-1	2	-1	-1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	-1	2	-1	-1	2	2	-1	-1	-1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	2	-1	-1	2	-1	2	-1	-1	2	-1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	-1	-1	-1	2	2	-1	-1	-1	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	0	0	0	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1
												•	

 $P_{1} = Group([()]) \cong 1$ $P_{2} = Group([(1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36)]) \cong C2$ $P_{3} = Group([(1,2)(3,6)(4,16)(5,18)(7,11)(8,13)(9,24)(10,26)(12,34)(14,19)(15,21)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(30,32)]) \cong C2$

 $P_4 = Group([(1,6)(2,3)(4,24)(5,26)(7,19)(8,21)(9,16)(10,18)(11,14)(12,36)(13,15)(17,35)(20,34)(22,33)(23,32)(25,31)(27,30)(28,29)]) \cong \mathbb{C}_2$

 $P_5 = Group([(1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36), (1,2)(3,6)(4,16)(5,18)(7,11)(8,13)(9,24)(10,26)(12,34)(14,19)(15,21)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(30,32)]) \cong C2 \times C2$

 $N_1 = Group([(1,2)(3,6)(4,16)(5,18)(7,11)(8,13)(9,24)(10,26)(12,34)(14,19)(15,21)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(30,32), (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(13,25)(44,24)(8,17,27)(10,20,29)(13,23)(14,25,33)(16,27,34)(19,29,35)(24,32,36)] \\ = Group([(1,2)(3,6)(4,16)(5,18)(7,11)(8,13)(9,24)(10,26)(12,34)(14,19)(15,21)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(30,32), (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(13,25)(44,24)(8,17,27)(10,20,29)(13,23)(14,25,33)(16,27,34)(19,29,35)(24,32,36)] \\ = Group([(1,2)(3,6)(4,16)(5,18)(7,11)(8,13)(9,24)(10,26)(12,34)(14,19)(15,21)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(30,32), (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(13,25)(24,32)(29,23)(23,32)(25,31)(27,30)(28,28)(23,27)(25,35)(29,33)(30,32), (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36)] \\ = Group([(1,6)(2,3)(4,24)(5,26)(7,19)(8,21)(9,16)(10,18)(11,14)(12,36)(13,15)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(30,32), (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36)]) \\ = Group([(1,2)(3,6)(4,16)(5,18)(7,11)(8,13)(9,24)(10,26)(12,34)(14,19)(15,21)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(30,32), (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36)]) \\ = Group([(1,2)(3,6)(4,16)(5,18)(7,11)(8,13)(9,24)(10,26)(12,34)(14,19)(15,21)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(30,32), (1,3)(2,6)(4,9)(5,10)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36)]) \\ = Group([(1,2)(3,6)(4,16)(5,18)(7,11)(8,13)(9,24)(10,26)(12,34)(14,19)(15,21)(17,31)(20,36)(22,28)(23,27)(25,35)(29,33)(31,35)(34,36)]) \\ = Group([(1,2)(3,6)(4,16)(5,18)(13,24)(13,24)(14,24)(13,24)(14,24)(13,24)(14,24)(13,24)(14,24)(14,24)(14,24)(14,24)(1$

 $\begin{vmatrix} \chi_9 \\ \chi_{10} \\ 2 & 0 & -2 & -1 & -1 & 0 & 1 & 1 & -1 & 1 & 2 & -2 \\ \chi_{10} \\ 2 & 0 & -2 & -1 & -1 & 0 & 1 & 1 & 2 & -2 & -1 & 1 \\ \chi_{11} \\ 2 & 0 & 2 & -1 & -1 & 0 & -1 & -1 & -1 & 2 & 2 \\ \chi_{12} \\ 2 & 0 & 2 & -1 & -1 & 0 & -1 & -1 & 2 & 2 & -1 & -1 \end{vmatrix}$