Билет 10.

Теория сложности вычислений является разделом теории вычислений, изучающим стоимость работы, требуемой для решения вычислительной проблемы. Стоимость обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами.

Алгоритм отождествляется с детерминированной машиной Тьюринга, которая вычисляет ответ по данному на входную ленту слову из входного алфавита Σ . Временем работы алгоритма ТМ(х) при фиксированном входном слове х называется количество рабочих тактов машины Тьюринга от начала до остановки машины. Сложностью функции $F: \Sigma^* -> \{0, 1\}$, вычисляемой некоторой машиной Тьюринга, называется функция C: N -> N, зависящая от длины входного слова и равная максимуму времени работы машины по всем входным словам фиксированной длины: $C_M(n) = \max\{x: |x| = n\}$ $T_M(x)$.

Если для функции F существует детерминированная машина Тьюринга M такая, что $C_M(n) < P(n)$, то говорят, что она принадлежит классу P, или полиномиальна по времени.

В теории выч сложности обычно играет роль полиномиальность/не полиномиальность. Переход между вычислителями (МТ, язык программирования) можно осуществить за полиномиальную прибавку к времени.

Так же играет роль: используем мы ДМТ или НДМТ.

Если для функции F существует недетерминированная машина Тьюринга M такая, что она может допустить каждый вход языка L за время \leftarrow P(n), то говорят, что она принадлежит классу NP.

NB: может допустить означает, что существует такая последовательность недетерминированных переходов, что w из L будет допущено машиной Тьюринга u время за которое она асилит это сделать \leftarrow P(|w|).

Класс NP включает в себя класс Р.

Язык L_1 называется **сводимым (по Карпу)** к языку L_2 , если существует функция, $F: \sum^* -> \sum^*$, вычислимая за полиномиальное время, обладающая следующим свойством: F(x) принадлежит L_2 тогда и только тогда, когда х принадлежит L_1 . Язык L_2 называется **NP-трудным**, если любой язык из класса NP сводится к нему. Язык называют **NP-полным**, если он NP-труден и при этом сам лежит в классе NP. Таким образом, если будет найден алгоритм, решающий хоть одну NP-полную задачу за полиномиальное время, все NP-задачи будут лежать в классе P.

Класс сложности со-NP – множество языков дополнение которых лежит в NP.

Класс языков PSPACE - множество языков, допустимых детерминированной машиной Тьюринга с полиномиальным ограничением пространства.

Класс языков NPSPACE - множество языков, допустимых недетерминированной машиной Тьюринга с полиномиальным ограничением пространства.

Р входит в (или равно) **NP** входит в (или равно) **PSPACE** == **NPSPACE**. (доказательство PSPACE == NPSPACE смотрим в XMУ, я возьму экземпляр на экзамен ...). Более того: **P** строго входит в **PSPACE**.

Пример сведения по карпу любой задачи из NP к SAT или 3-SAT с доказательством опять смотрим в XMУ.

NB: помимо сведения по Карпу есть ещё и сведение по Куку, которое опирается на наличие ОРАКУЛА, которой умеет "быстро" решать задачу T_2 и к этой задаче мы хотим свести T_1 . Эти сведения не эквивалентны в сведении по Карпу мы "очень верим" в то, что NP != co-NP.

Есть теорема:

NP == co-NP <=> существует NP-С проблема, дополнение до которой лежит в NP.Доказательство – в XMУ.

Задача лежит в PSPACE-С, если она из PSPACE и к ней можно полиномиально свести любую задачу из PSPACE. Примером PSPACE-С является проблема формулы с кванторами (имеет ли данная КБФ без свободных переменных значение 1). Подробности в XMУ.