# 計量経済 II: 宿題 12

### 村澤 康友

提出期限: 2023年1月10日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること。

- 1. gretlで VECM を推定する手順は以下の通り.
  - (a) メニューから「モデル」 $\rightarrow$ 「多変量時系列」 $\rightarrow$ 「ベクトル誤差修正モデル(VECM)」を選択.
  - (b)「ラグ次数」を入力.
  - (c)「ランク」を入力.
  - (d)「内生変数」を選択.
  - (e)「外生変数」は選択しない.
  - (f) 定数項・トレンドの扱いを選択.
  - (g) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
  - (h)「OK」をクリック.

gretl のサンプル・データ greene11\_3 は, $1960\sim1982$  年のアメリカのマクロの所得と消費の年次データである.この 2 変数の対数系列について,以下の分析を行いなさい.

- (a) VAR(4) モデル(定数項・トレンドあり)を推定しなさい.
- (b) ラグ次数 4, 共和分階数 1 の VECM (制約付きのトレンド) を推定しない.
- (c) 2つのモデルのインパルス応答関数(点推定値と 95 %信頼区間)のグラフを比較しなさい.
- 2. gretl で Johansen の共和分検定を実行する手順は以下の通り.
  - (a) メニューから「モデル」→「多変量時系列」→「共和分検定(Johansen)」を選択.
  - (b)「ラグ次数」を入力.
  - (c)「検定する変数」を選択.
  - (d)「外生変数」は選択しない.
  - (e) 定数項・トレンドの扱いを選択.
  - (f) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
  - (g)「OK」をクリック.

前問と同じデータを用いて Johansen の共和分検定を実行しなさい.ただし前問との整合性からラグ次数を 4 とし,制約付きのトレンドを仮定する.

# 解答例

# 1. (a) VAR(4) モデル

# VAR モデル, ラグ次数: 4

最小二乗法 (OLS) 推定量, 観測: 1954-1985 (T = 32)

 ${\rm Log\text{-}likelihood} = 209.775$ 

共分散行列の行列式の値 = 6.93501e-009

AIC = -11.8609

BIC = -10.9448

 $\mathrm{HQC} = -11.5573$ 

かばん検定 (Portmanteau test): LB(8) = 31.3529, df = 16 [0.0121]

方程式 1: LY

|               | 係数        | 標準誤差       | $t\operatorname{-ratio}$ | p 値    |
|---------------|-----------|------------|--------------------------|--------|
| const         | 2.52564   | 1.41644    | 1.783                    | 0.0884 |
| $l_{-}Y_{-}1$ | 0.429741  | 0.375724   | 1.144                    | 0.2650 |
| lY2           | 0.762910  | 0.398567   | 1.914                    | 0.0687 |
| $l_Y_3$       | 0.926422  | 0.422392   | 2.193                    | 0.0391 |
| lY4           | -0.549537 | 0.348011   | -1.579                   | 0.1286 |
| $l_{-}C_{-}1$ | 0.653392  | 0.400788   | 1.630                    | 0.1173 |
| $l_{-}C_{-}2$ | -0.746474 | 0.443556   | -1.683                   | 0.1065 |
| $l_{-}C_{-}3$ | -0.982556 | 0.485654   | -2.023                   | 0.0554 |
| $l_{-}C_{-}4$ | 0.109262  | 0.456989   | 0.2391                   | 0.8132 |
| time          | 0.0132458 | 0.00757703 | 1.748                    | 0.0944 |

| Mean dependent var | 7.357680 | S.D. dependent var      | 0.323740 |
|--------------------|----------|-------------------------|----------|
| Sum squared resid  | 0.005128 | S.E. of regression      | 0.015268 |
| $R^2$              | 0.998422 | Adjusted $\mathbb{R}^2$ | 0.997776 |
| F(9, 22)           | 1546.200 | P-value $(F)$           | 1.09e-28 |
| $\hat{ ho}$        | 0.135750 | Durbin-Watson           | 1.597093 |

ゼロ制約のF検定

All lags of l\_Y F(4,22) = 3.43906 [0.0250] All lags of l\_C F(4,22) = 4.34541 [0.0097] All vars, lag 4 F(2,22) = 2.96927 [0.0722]

方程式 2: 1\_C

|                | 係数          | 標準調     | 误差 $t$ -rat             | io p値         |      |
|----------------|-------------|---------|-------------------------|---------------|------|
| const          | 4.02518     | 1.4076  | 3 2.86                  | 0.0091        |      |
| $l_{-}Y_{-}1$  | 0.200009    | 0.3733  | 89 0.53                 | 0.5976        |      |
| 1_Y_2          | 0.929567    | 0.3960  | 90 2.34                 | 7 0.0283      |      |
| $l_{-}Y_{-}3$  | 0.502951    | 0.4197  | 67 1.19                 | 0.2436        |      |
| l_Y_4          | -0.199634   | 0.3458  | -0.57                   | 72 0.5696     |      |
| $l_{-}C_{-}1$  | 0.794861    | 0.3982  | 97 1.99                 | 0.0585        |      |
| $1_{-}C_{-}2$  | -1.15497    | 0.4407  | 99 -2.62                | 0.0156        |      |
| $1_{-}C_{-}3$  | -0.567545   | 0.4826  | 35 -1.17                | 0.2522        |      |
| $l_{-}C_{-}4$  | -0.143471   | 0.4541  | -0.31                   | .59 0.7550    |      |
| time           | 0.0210867   | 0.0075  | 2994 2.80               | 0.0104        |      |
| Mean depend    | dent var 7. | 258948  | S.D. depende            | ent var 0.318 | 8996 |
| Sum squared    | resid 0.    | 005065  | S.E. of regres          | ssion 0.015   | 5173 |
| $\mathbb{R}^2$ | 0.          | 998394  | Adjusted $\mathbb{R}^2$ | 0.99'         | 7738 |
| F(9, 22)       | 15          | 520.018 | P-value $(F)$           | 1.31          | e–28 |
| $\hat{ ho}$    | 0.          | 001383  | Durbin–Wats             | son 1.955     | 3720 |
| ゼロ制約のF検定       |             |         |                         |               |      |
|                |             | 7// 22) |                         | [0.0000]      |      |

 $\begin{array}{lll} \mbox{All lags of 1.Y} & F(4,22) = 2.38769 & [0.0820] \\ \mbox{All lags of 1.C} & F(4,22) = 4.57647 & [0.0077] \\ \mbox{All vars, lag 4} & F(2,22) = 1.12695 & [0.3420] \end{array}$ 

連立方程式全体に関して ―

帰無仮説: 最長のラグは 3 である 対立仮説: 最長のラグは 4 である 尤度比検定:  $\chi_4^2=10.400$  [0.0342]

# (b) VECM

# ベクトル誤差修正モデル (VECM), ラグ次数: 4 最尤法 推定量, 観測: 1954-1985 (T=32)共和分ランク = 1

ケース 4: 制約つきのトレンド, 制約のない定数項

共和分ベクトル (丸括弧内は標準誤差)

 $\begin{array}{ccc} \text{L-Y}_{t-1} & 1.00000 \\ & (0.000000) \\ \text{L-C}_{t-1} & -1.37391 \\ & (0.0686471) \\ \text{trend} & 0.0122864 \\ & (0.00241680) \\ \end{array}$ 

Adjustment vectors

 $l_{-}Y_{t-1}$  1.00000  $l_{-}C_{t-1}$  1.77853

Log-likelihood = 207.957共分散行列の行列式の値 = 7.76945e-009

 $\begin{aligned} & \text{AIC} = -11.8723 \\ & \text{BIC} = -11.0478 \\ & \text{HQC} = -11.5990 \end{aligned}$ 

### 方程式 1: Δl\_Y

|              | 係数             | 標準誤差       | t-ratio       | p 値          |
|--------------|----------------|------------|---------------|--------------|
| const        | 2.14802        | 1.39220    | 1.543         | 0.1365       |
| $d\_l\_Y\_1$ | -1.36705       | 0.580414   | -2.355        | 0.0274       |
| $d\_l\_Y\_2$ | -0.551470      | 0.442509   | -1.246        | 0.2252       |
| $d\_l\_Y\_3$ | 0.434638       | 0.324999   | 1.337         | 0.1942       |
| $d_lC_1$     | 1.83261        | 0.693707   | 2.642         | 0.0146       |
| $d\_l\_C\_2$ | 1.01524        | 0.572267   | 1.774         | 0.0893       |
| $d_1C_3$     | -0.0506523     | 0.461823   | -0.1097       | 0.9136       |
| EC1          | 0.913390       | 0.595371   | 1.534         | 0.1386       |
| Mean depende | ent var 0.0327 | '41 S.D. d | dependent v   | var 0.018413 |
| Sum squared  | resid 0.0055   | 599 S.E. o | of regression | n 0.015602   |
| $R^2$        | 0.4673         | 300 Adjus  | sted $R^2$    | 0.282013     |
| $\hat{ ho}$  | 0.1758         | 323 Durbi  | in-Watson     | 1.559707     |
|              |                |            |               |              |

方程式 2: Δl\_C

|                     | 係数           | 標準誤差     | t-ratio       | p 値          |
|---------------------|--------------|----------|---------------|--------------|
| const               | 3.82846      | 1.34309  | 2.850         | 0.0091       |
| $d\_l\_Y\_1$        | -1.35951     | 0.559941 | -2.428        | 0.0234       |
| $d_1Y_2$            | -0.400598    | 0.426900 | -0.9384       | 0.3578       |
| $d_lY_3$            | 0.135610     | 0.313534 | 0.4325        | 0.6694       |
| $d_L C_1$           | 1.98459      | 0.669237 | 2.965         | 0.0069       |
| $d_{-}l_{-}C_{-}2$  | 0.790110     | 0.552081 | 1.431         | 0.1658       |
| $d_{-}l_{-}C_{-}3$  | 0.176130     | 0.445532 | 0.3953        | 0.6962       |
| EC1                 | 1.62449      | 0.574370 | 2.828         | 0.0095       |
| Mean depender       | nt var 0.033 | 075 S.D. | dependent     | var 0.016820 |
| Sum squared resid 0 |              | 211 S.E. | of regression | n 0.015052   |
| $R^2$               | 0.405        | 855 Adju | sted $R^2$    | 0.199196     |
| $\hat{ ho}$         | 0.023        | 442 Durb | in-Watson     | 1.920117     |

 ${\it Cross-equation\ covariance\ matrix}$ 

 $\Delta l_{-}Y$  $\Delta l\_C$  $\Delta l\_Y = 0.000174969 = 0.000143955$  $\Delta l_{-}C = 0.000143955 = 0.000162843$ 

行列式の値 = 7.76945e-009

# (c) VAR(4)



#### 2. Johansen の共和分検定

#### Johansen 検定:

式の数 = 2

ラグ次数 = 4

推定期間: 1954 - 1985 (T = 32)

ケース 4: 制約つきのトレンド,制約のない定数項

Log-likelihood = 300.587 (定数項を含む: 209.775)

# ランク 固有値 トレース検定 p値 最大固有値検定 p値

0 0.32004 15.979 [0.5022] 12.343 [0.3963]

1 0.10740 3.6358 [0.7891] 3.6358 [0.7909]

#### 標本のサイズに合わせて修正した検定 (df = 22)

### ランク トレース検定 p値

0 15.979 [0.5664]

1 3.6358 [0.7982]

固有値 0.32004 0.10740

beta (cointegrating vectors)

1\_Y 215.86 -89.665 1\_C -296.57 75.240

trend 2.6521 0.52767

alpha (adjustment vectors)

1\_Y 0.0042314 0.0038349

1\_C 0.0075257 0.0021369

renormalized beta

1\_Y 1.0000 -1.1917

1\_C -1.3739 1.0000

trend 0.012286 0.0070132

renormalized alpha

1\_Y 0.91339 0.28854

1\_C 1.6245 0.16078

long-run matrix (alpha \* beta')

 $1_{Y}$   $1_{C}$  trend

1\_Y 0.56954 -0.96638 0.013246

1\_C 1.4329 -2.0711 0.021087