3NF Decomposition

R&G Chapter 19

Features of a Good Decomposition

- A good decomposition is
 - Lossless
 - Can obtained by BCNF decomposition
 - Dependency preserving

Problem #2 of Decomposition: Dependency preservation

A	В	C
1	2	3
4	5	6
7	2	8

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

loin

$$X=\{A, C\}, Y=\{B, C\}, X \cap Y=\{C\}, C->\{B, C\}$$

Lossless decomposition!

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

But, now we can't check A -> B without doing a join! (Problem #2 of decomposition!)

BCNF and 3NF Decomposition

Some rules to remember

	BCNF	3NF
Data redundancy	NONE	May still have some
Lossless-join decomposition	Guaranteed	Guaranteed
dependency- preserving decomposition	Not guaranteed	Guaranteed

Task #2

 How to decompose the table so that dependency checking does not need joins?

Dependency Preserving Decomposition

Projection of set of FDs F

If R is decomposed into X and Y, then the projection of F on X (denoted F_X) is the set of FDs U -> V in F⁺ such that all of the attributes U, V are in X. (similarly for F_V)

- $E.g., F^{+} = \{A->B, A->C, D->E\}$
- Two tables: X={A, B, C}, Y={C, D, E}
- What are F_X and F_y ?

Dependency Preserving Decomposition

Projection of set of FDs F

If R is decomposed into X and Y, the projection of F on X (denoted F_X) is the set of FDs U -> V in F⁺ such that all of the attributes U, V are in X. (similarly for F_V)

- $E.g., F^{+} = \{A->B, A->C, D->E\}$
- Two tables: X={A, B, C}, Y={C, D, E}
- What are F_X and F_y ?
 - $F_X = \{A -> B, A -> C\},$
 - $F_y = \{D -> E\}.$

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is <u>dependency</u> preserving if $(F_X \cup F_Y)^+ = F^+$
 - i.e., consider only dependencies in the closure F + that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F +.

Decomposition into 3NF

- The algorithm for BCNF decomposition does not ensure dependency preservation (it only assures lossless join)
- To ensure dependency preservation (and lossless-join)
 - Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- Given a set of FDs F, G is the <u>minimal cover</u> of F if G satisfies the following three conditions:
 - 1. Right hand side (RHS) of each FD in G is <u>a single</u> <u>attribute</u>;
 - 2. $G^+ = F^+$; and
 - 3. G is <u>minimal</u>: if we modify G by deleting an FD in G, G⁺ changes.
- Intuitively, every FD in G is needed, and ``as small as possible' in order to get the same closure as F.

Finding Minimal Cover

- Step 1: Minimize right-hand-side (RHS) of FDs so that they only contain single attributes
 - Change X->YZ to be X->Y and X->Z
- Step 2: Minimize left-hand-side (LHS)
 - If there are two FDs: A->B and ABX->Z, replace ABX->Z
 with AX->Z
 - For example: if AB->C and A->B, then replace AB->C with A->C.
- Step 3: Remove redundant FDs
 - If X->Y can be inferred from other FDs, remove X->Y

Example

- R(ABCDE)
- F={A->D, BC->AD, C->B, E->A, E->D}
- What is the minimal cover of F?

Example - Solution

- R(ABCDE)
- F={A->D, BC->AD, C->B, E->A, E->D}
- What is the minimal cover of F?
- Way of thinking:
 - Step 1: Minimize RHS to be single attribute:
 - Split BC->AD to BC->A, BC->D
 - Step 2: Minimize LHS:
 - Since C->B, replace BC->A with C->A, and BC->D with C->D
 - Step 3: Remove redundant FDs
 - C->A, A->D => C->D, so remove C->D
 - E->A, A->D => E->D, so remove E->D
 - Minimal cover: {A->D, C->A, C->B, E->A}

3NF Decomposition

Input: a relation R with FDs F.

- Step 1: Find the minimal cover F' of F.
- Step 2: Generate a BCNF decomposition {R1, ...Rn} of R w.r.t. F'
- Step 3: Identify the dependencies N in F' that is not preserved by BCNF decomposition {R1, ...Rn}
 - i.e., those dependencies in F' whose attributes are not included in any table in {R1, ...Rn}
- Step 4: For each X-> Y in N, create a relation schema XY and add it to {R1...Rn}

Notes:

- Step 2 guarantees it is a lossless decomposition
- Step 3 and 4 ensure it is a dependency-preserving decomposition
 - Both steps ensure $F_{R1} \cup ... \cup F_{Rn} = F'$
 - Thus it must be true $(F_{R1} \cup ... \cup F_{Rn}) + = F' +$
- 3NF decomposition is guaranteed to be lossless and dependencypreserving

3NF Decomposition Example

- R(ABCDE)
- F={A->D, BC->AD, C->B, E->B, E->D}
- Decompose R in a lossless-join, dependencypreserving way (i.e., decompose R into 3NF tables!)

3NF Decomposition Example (cont.)

Solution:

- Step 1: Find minimal cover F' of F
 - $F' = \{A->D, C->A, C->B, E->B, E->D\}$
- Step 2: create a lossless-join BCNF decomposition D of R
 - Step 2.1. find candidate key(s): CE
 - Step 2.2. construct BCNF decomposition based on F': D = {BC, CE, AC, AD} (following order of A->D, C->A, C->B)
- Step 3: Identify the dependencies N in F' that is not preserved by D
 - $N = \{E->D, E->B\}$
- Step 4: For each X-> Y in N, create a relation schema XY and add it to D
 - D={BC, CE, AC, AD, ED, EB}

BCNF Versus 3NF Decomposition

	BCNF	3NF
Redundancy	NONE	May still have some
Lossless-join decomposition	Guaranteed	Guaranteed
dependency-preserving decomposition	Not guaranteed	Guaranteed

For any given R, there is always a 3NF decomposition.

- But it may not have a BCNF decomposition
- Remember, BCNF is stricter than 3NF
- A BCNF decomposition is always a 3NF decomposition.