21. a. Key steps of proof: 1. $\overline{AB} \cong \overline{AC}$; $\overline{BD} \perp \overline{AC}$; $\overline{CE} \perp \overline{AB}$ (Given) 2. $\triangle ADB \cong \triangle AEC$ (AAS) 3. $\overline{BD} \cong \overline{CE}$ (CPCT) b. The altitudes drawn to the legs of an isos. \triangle are \cong . 23. Q is on the \bot bis. of \overline{PS} , so PQ = SQ. S is on the \bot bis. of \overline{QT} , so QS = TS. Then PQ = TS by the Trans. Prop. 25. a. \overline{OD} is a \bot bis. of \overline{AB} , so $\overline{AD} \cong \overline{BD}$. b. \overline{OC} is a \bot bis. of \overline{AB} , so $\overline{AC} \cong \overline{BC}$. c. By parts (a) and (b) above, $\overline{AD} \cong \overline{BD}$ and $\overline{AC} \cong \overline{BC}$. Then since $\overline{CD} \cong \overline{CD}$, $\triangle CAD \cong \triangle CBD$ by SSS and $\triangle CAD \cong \triangle CBD$ (CPCT).

Self-Test 3, Page 159

1. $\overline{EA} \cong \overline{DB}$ and $\angle AEB \cong \angle BDA$ 2. 1. $\triangle MPQ \cong \triangle PMN$ (Given) 2. $\overline{MN} \cong \overline{QP}$; $\angle MPQ \cong \angle PMN$ (CPCT) 3. $\overline{MS} \cong \overline{PR}$ (Given) 4. $\triangle MSN \cong \triangle PRQ$ (SAS) 3. a. \overline{LJ} or \overline{KJ} b. \overline{KZ} 4. No 5. If a pt. lies on the bis. of an \angle , then the pt. lies on the \bot bis. of the seg.

Chapter Review, Pages 160-161

1. $\triangle QPR$ 3. $\angle W$ 5. Yes; SSS 7. Yes; ASA 9. 1. $\overline{JM} \cong \overline{LM}$; $\overline{JK} \cong \overline{LK}$ (Given) 2. $\overline{MK} \cong \overline{MK}$ (Refl. Prop.) 3. $\triangle MJK \cong \triangle MLK$ (SSS) 4. $\angle MJK \cong \angle MLK$ (CPCT) 11. \overline{ER} , \overline{EV} 13. 25 15. 1. $\overline{GH} \perp \overline{HJ}$; $\overline{KJ} \perp \overline{HJ}$ (Given) 2. $m \angle GHJ = 90$; $m \angle KJH = 90$ (Def. of \perp lines) 3. $\angle GHJ \cong \angle KJH$ (Def. of $\cong \triangle$) 4. $\angle G \cong \angle K$ (Given) 5. $\overline{HJ} \cong \overline{HJ}$ (Refl. Prop.) 6. $\triangle GHJ \cong \triangle KJH$ (AAS) 17. 1. ASA 2. CPCT 3. HL 4. CPCT 5. If 2 lines are cut by a trans. and alt. int. \triangle are \cong , then the lines are \parallel . 19. If a pt. lies on the \perp bis. of a seg., then the pt. is equidistant from the endpts. of the seg.

Algebra Review, Page 163

1. -6, 1 3. -2, 9 5. 0, 13 7. -13, 13 9. -0.2, 0.2 11. 3 13. -6, -2 15. 5 17. -4, 5 19. $\frac{-3 \pm \sqrt{57}}{6}$ 21. $\frac{-5 \pm \sqrt{17}}{2}$ 23. $\frac{5 \pm \sqrt{13}}{2}$ 25. 1, 9 27. -7, 2 29. 20 31. 1 33. 1.5

Preparing for College Entrance Exams, Page 164

1, A 2, C 3, D 4, C 5, B 6, C 7, E 8, D 9, B

Cumulative Review, Page 165

1. Seg. Add. Post. 3. obtuse 5. 16 7. 10 9. SSS 11. $m \angle 5 = 90$, $m \angle 6 = 54$, $m \angle 7 = 36$, $m \angle 8 = 54$ 13. No 15. Yes; $a \parallel b$ 17. Key steps of proof: 1. $\overline{MO} \perp \overline{NP}$, $\overline{NO} \cong \overline{PO}$ (Given) 2. $\triangle NQO \cong \triangle PQO$ (HL) 3. $\triangle NOQ \cong \triangle POQ$ (CPCT) 4. $\triangle MNO \cong \triangle MPO$ (SAS) 5. $\overline{MN} \cong \overline{MP}$ (CPCT)

Chapter 5

Written Exercises, Pages 169-171

1. \overline{CR} , \overline{CE} 3. \overline{ER} , \overline{RC} , \overline{CW} 5. a = 8, b = 10, x = 118, y = 62 7. a = 5, b = 3, x = 120, y = 22 9. a = 8, b = 8, x = 56, y = 68 11. 60 17. (3, 2) 19. x = 3, y = 5 21. x = 13, y = 5 23. x = 5, y = 4 25. 5, 2 27. 10, 70 29. 1. PQRS is a \Box ; $\overline{PJ} \cong \overline{RK}$ (Given) 2. $\angle P \cong \angle R$ (Thm. 5-2) 3. $\overline{SP} \cong \overline{QR}$ (Thm. 5-1) 4. $\triangle SPJ \cong \triangle QRK$ (SAS) 5. $\overline{SJ} \cong \overline{QK}$ (CPCT) 31. 1. $\triangle RCD$ is a \Box ; $\overline{CD} \cong \overline{CE}$ (Given) 2. $\overline{AB} \parallel \overline{CD}$ (Def. of \Box) 3. $\triangle CDE \cong \angle A$ (If lines \parallel , corr. $\triangle \cong$.) 4. $\triangle CDE \cong \angle E$ (Isos. \triangle Thm.) 5. $\triangle A \cong \angle E$ (Subst.) 35. (6, 0), (0, 8), (12, 8)

Written Exercises, Pages 174-176

1. Def. of \square 3. Thm. 5-5 5. Thm. 5-6 7. Thm. 5-7 9. a. Thm. 5-4 b. Thm. 5-6 c. Thm. 5-7 15. $m \angle DAB = m \angle BCD$, so $m \angle NAM = \frac{1}{2}m \angle DAB = \frac{1}{2}m \angle BCD = m \angle NCM$. $m \angle DNA = m \angle NCM$, so \overline{AN} and \overline{CM} are \parallel . \overline{CN} and \overline{AM} are \parallel because ABCD is a \square . Then AMCN is a \square , by def. of \square . 17. Draw \overline{AC} int. \overline{DB} at Z. Since DZ = ZB and DE = FB, EZ = DZ - DE = ZB - FB = ZF. Also, AZ = ZC. If the diags. of a quad. bis. each other, then the quad. is a \square . So AFCE is a \square . 19. x = 18, y = 14 21. x = 10, y = 2 23. Key steps of proof: 1. $\triangle DAE \cong \triangle BCF$ (AAS) 2. $\overline{DE} \cong \overline{BF}$ (CPCT) 3. $\overline{DE} \parallel \overline{BF}$ (Thm. 3-7) 4. DEBF is a \square . (Thm. 5-5)