Departamento de Computación, FCEyN, UBA

Procesamiento del Habla

Agustín Gravano

1er Cuatrimestre 2017

Procesamiento del Habla

- Acústica, fonética y fonología
- Síntesis del habla TTS
- Sistemas de diálogo hablado
- Aprendizaje automático en habla
- Reconocimiento del habla ASR
- Temas avanzados

Breve introducción al Aprendizaje Automático (Machine Learning)

• Tenemos *N* puntos en el plano.

- Tenemos *N* puntos en el plano.
- Cada punto tiene dos coordenadas: (x, y).

- Tenemos *N* puntos en el plano.
- Cada punto tiene dos coordenadas: (x, y).
- Cada punto tiene un color: azul o rojo.
- Queremos hallar una forma de predecir el color de puntos nuevos.
- Función $f(x, y) \rightarrow \text{color}$
- f(x, y) =
 rojo si x > 8
 azul en caso contrario

- f(x, y) =
 rojo si y > m x + b
 azul en caso contrario
- **m** y **b** son constantes del modelo que deben ajustarse a los datos.

Humanos vs. Máquinas

- Los humanos somos buenos encontrando (y programando) estas reglas en 2D.
- Pero, ¿qué pasa si los puntos tienen miles de coordenadas?
- Ejemplo: Detección de caras.

- Los humanos somos muy buenos detectando (y reconociendo) caras.
- Pero ¿podemos programar estas funciones?

Terminología de ML

- Puntos \rightarrow Instancias.
- $x, y \rightarrow Atributos de las instancias.$
- Color → Clase de las instancias.
- Encontrar una función → Entrenar un modelo.

Algoritmos de ML

• Árboles de decisión (C4.5)

Reglas (Ripper)

IF (Cielo=Sol ∧ Temperatura>30)

IF (Cielo=Nublado Λ Viento=Débil)

IF (Cielo=Lluvia)

THEN Tenis=No

THEN Tenis=Sí

THEN Tenis=No

- Naive Bayes
- Support Vector Machines

• ...

Herramientas de ML

Python scikit learn

http://scikit-learn.org

• Weka (algo vieja ya)

http://www.cs.waikato.ac.nz/ml/weka/

Esquema General de ML

Datos:

- Separar datos de desarrollo y validación.
- Definir instancias, clases y atributos.
- Experimentación:
 - Selección de atributos.
 - Medidas de performance.
 - Validación cruzada de k iteraciones.
- Validación de los modelos.

Datos de Desarrollo y Validación

DESARROLLO

(Selección de atributos, cross-validation, etc.)

VALIDACIÓN (TEST)

- Lo antes posible, hay que separar un conjunto de datos de validación.
- Todas las pruebas y ajustes se hacen sobre el conjunto de desarrollo.
- Cuando termina el desarrollo, se evalúa sobre los datos separados.

Instancias, clases y atributos

- Tenemos que definir:
 - cuáles son las instancias de nuestra tarea;
 - cuáles son sus clases y sus atributos.
- En nuestro ejemplo:
 - Instancias: Strings reconocidos como siglas en una etapa anterior del front-end.
 - Clases: Deletrear vs. Leer como un acrónimo.
 - Atributos: longitud de la sigla; #consonantes; #vocales;
 #consonantes consecutivas; ...

Selección de Atributos

- ¿Demasiados atributos?
 - Aprendizaje muy lento (ej, para SVM).
 - Riesgo de sobreajuste (overfitting).
- Selección de atributos: usar sólo un subconjunto útil.
- Ejemplos:
 - Búsqueda exhaustiva (normalmente impracticable).
 - Ranking según su ganancia de información.
 - Greedy forward selection
 - S ← Ø (S = conjunto de atributos)
 - Para cada atributo a_i no usado, evaluar $S \cup \{a_i\}$.
 - Si ningún $S \cup \{a_i\}$ produce una mejora, devolver S.
 - En caso contrario, $S \leftarrow S \cup \{a_i\}$ y volver a 2).
 - Greedy backward elimination

Experimentación con Clasificadores

- Ya elegimos los mejores atributos.
- Siguiente: elegir un clasificador para entrenar un modelo.
- Para ello, experimentamos con diferentes clasificadores y configuraciones, siempre sobre los datos de desarrollo:
 - Árboles de decisión
 - Reglas
 - Naive Bayes
 - Support Vector Machines
 - **–** ...
- Una vez elegido el mejor clasificador, entrenamos el modelo usando todos los datos de desarrollo.

Medidas de Performance

- Ejemplo: Detección de spam. Clases: {mail, spam}
- Matriz de confusión
 - 100 datos de test: 50 siglas y 50 acrónimos.

Valor predicho

	mail	spam
mail	40 (tn)	5 (fn)
spam	10 (fp)	45 (tp)

```
tp = true positive
fp = false positive
tn = true negative
fn = false negative
```

- Accuracy (% de aciertos) = (tp + tn) / total = 0.85
- Precisión = tp/(tp + fp) = 45/(45 + 10) = 0.82
- Recall = tp/(tp + fn) = 45/(45 + 5) = 0.90
- F-measure = (2 · precision · recall) / (precision + recall) = 0.86

Validación Cruzada de k iteraciones

(k-fold cross validation)

- ¿Qué puede pasar si tenemos mala suerte al separar los datos para entrenamiento/validación?
- k-Fold Cross Validation:
 - 1) Desordenar los datos.
 - 2) Separar en *k* folds del mismo tamaño.
 - 3) Para i = 1..k:

Entrenar sobre todos los folds menos el i.

Evaluar sobre el fold i.

• Ej. para *k*=5:

Aplicaciones en PLN y Habla

- Segmentación en oraciones.
- Etiquetado de clases de palabra (POS tagging).
- Desambiguación del sentido (ej: abreviaturas, expresiones numéricas).
- Asignación de prosodia (TTS front-end).
- Detección del idioma (p.ej., para saber cómo sintetizar).
- Pronunciación de siglas.

• ...

Ejemplo: Pronunciación de Siglas

- Tarea: Determinar cómo pronunciar siglas en español.
 - Input: sigla.
 - Ejemplos: DGI, IBM, FBI, FMI, ATP, UBA, ALUAR, CONADUH, CONADEP, APTRA, AFA, FIFA.
 - Output: decidir si debe deletrearse, o leerse como un acrónimo.
- Este clasificador puede ser útil cuando encontramos una sigla desconocida en el texto a sintetizar.
- Por simplicidad, excluimos siglas con pronunciación especial:
 MIT (emaití), CNEA (conea), FCEN (efecen).
- siglas.csv, clasificador-siglas.ipynb

Validación del Modelo Final

- Una vez terminado el desarrollo (seleccionamos los atributos, elegimos y configuramos el clasificador con mejores resultados con validación cruzada sobre los datos de desarrollo, y entrenamos el clasificador usando todos los datos de desarrollo), podemos evaluar el modelo final sobre los datos de validación.
- Esto nos da una estimación realista de la performance del modelo.
- Una vez usados los datos de validación, no se debe volver atrás.

Aprendizaje Automático en Habla

Aprendizaje Automático y el Procesamiento del Habla

- Palabras (reconocimiento del habla).
- Identidad, género, edad del hablante.
- Lenguaje, dialecto, variantes regionales.
- Emociones, intoxicación, cansancio, atención.
- Estructura del discurso, niveles de prominencia.

¿De qué segmentos de habla extraemos atributos?

- La longitud del segmento depende de la tarea.
 - Desde pocos milisegundos (ej: ASR ~20ms).

 Hasta múltiples frases (ej: detección de emociones, identificación del hablante).

¿Qué atributos podemos extraer de un segmento de habla?

- Nivel tonal (pitch)
- Intensidad (RMS)
- Jitter
- Shimmer
- Relación ruido-armónico (NHR)

- Máximo, mínimo
- Media, mediana
- Percentiles
- Desviación estándar

- Suavizado
- Derivadas

MFCC

- Atributos espectrales muy usados en muchas tareas.
- MFCC (Mel frequency cepstral coefficient):
 - 1) Aplicar FFT a la señal. → Espectro

MFCC

- Atributos espectrales muy usados en muchas tareas.
- MFCC (Mel frequency cepstral coefficient):
 - 1) Aplicar FFT a la señal. → Espectro
 - 2) Mapear las amplitudes del espectro a la escala mel.

Escala Mel

- Escala tonal basada en la percepción humana.
- $mel = 1127,01048 \ln(1 + f/700)$

MFCC

- Atributos espectrales muy usados en muchas tareas.
- MFCC (Mel frequency cepstral coefficient):
 - 1) Aplicar FFT a la señal. → Espectro
 - 2) Mapear las amplitudes del espectro a la escala mel.
 - 3) Calcular el logaritmo de las amplitudes del espectro.
 - 4) Aplicar la transformada discreta del coseno (DCT) de la lista de valores resultantes (como si fuera una señal).
 - 5) Los MFCC son las amplitudes del espectro resultante.

Reconocimiento del Habla

Con los MFCC vamos a poder clasificar frames (~20ms) de la señal en fonos, según sus características espectrales, usando GMM o DNN. (Clase que viene)

Herramientas

(todas código abierto, GNU-GPL, multi-plataforma)

- Praat (praat.org)
- Opensmile (audeering.com/technology/opensmile/)
 - En los labos, instalado en /home/ph-30/opensmile, se puede usar con:
 \$DIR/SMILExtract -C \$DIR/config/IS10_paraling.conf -I in.wav -O out.arff
 donde \$DIR=/home/ph-30/opensmile
 IS10_paraling.conf es una configuración con 1582 atributos usada en el INTERSPEECH 2010 Paralinguistic Challenge (+info: openSMILE book, p32).
 - Biblioteca en Python para parsear ARFF: liac-arff (pip install --user liac-arff)
- Aubio (aubio.org)
 - Biblioteca para C, Python. Versión actual: 0.4.5

Ejercicio: Detección del género del hablante

- O) Datos: /home/ph-30/clase-05/datos/NNNgMMh.{wav,ipu}
 NNN=id hablante (000-092) g=f/m MM=edad h=r/s (habla leída o espontánea)
 wav=audio ipu=transcripción de unidades sin pausas
 184 audios, grabados por 92 personas (46m, 46f; edad: 20-74).
 (Descripción más detallada en la clase de Estadística.)
- 1) Extraer atributos de los audios y/o transcripciones.
 Para el audio, usar Praat, openSMILE, Aubio o cualquier otra herramienta.
- 2) [opcional] Realizar selección de atributos. Idealmente, #atributos debe ser un orden de magnitud inferior a #instancias (conservar ~40 atributos).
- **3) Entrenar un modelo** de ML: árboles, SVM, Random Forests, etc. Evaluar la performance usando cross-validation. Quedarse con el mejor modelo.
- **4) Escribir un programa** que, dado un wav nuevo, extraiga los atributos necesarios, invoque al modelo aprendido para realizar la clasificación, y devuelva "m" o "f".
- Otras tareas: clasificar en habla leída vs. espontánea;
 - predecir la edad del hablante (clasificación o regresión).

Repaso de ML y Habla

- Fundamentos de aprendizaje supervisado.
 - Clasificación, instancias, atributos, clases.
 - Extracción y selección de atributos.
 - Medidas de performance: accuracy, precisión, recall, F.
- Aplicaciones en habla.
 - ASR, id, género, edad, lenguaje, emociones, discurso, etc.
 - Atributos acústicos.
- Próxima clase:
 - Reconocimiento automático del habla.