new version of the Package Convex

0.1

14/01/2016

Kamal Saleh

Kamal Saleh

Email: kamal.saleh@rwth-aachen.de Homepage: Kamal.saleh@rwth-aachen.de

Address: Templergraben

Contents

1	Cones	3
	1.1 Creating cones	3
	1.2 Attributes of Cones	3
	1.3 Properties of Cones	5
	1.4 Operations on cones	5
2	NConvex automatic generated documentation	9
	NConvex automatic generated documentation of global functions	9
In	Dy.	10

Chapter 1

Cones

1.1 Creating cones

1.1.1 ConeByInequalities (for IsList)

▷ ConeByInequalities(arg)

(operation)

Returns: a Cone Object

The function takes a list in which every entry represents an inequality and returns the cone defined by them.

1.1.2 ConeByEqualitiesAndInequalities (for IsList, IsList)

▷ ConeByEqualitiesAndInequalities(arg)

(operation)

Returns: a Cone Object

The function takes two lists. The first list is the equalities and the second is the inequalities and returns the cone defined by them.

1.1.3 Cone (for IsList)

Cone(arg) (operation)

Returns: a Cone Object

The function takes a list in which every entry represents a ray in the ambient vector space and returns the cone defined by them.

1.1.4 Cone (for IsCddPolyhedron)

 \triangleright Cone(cdd_cone) (operation)

Returns: a Cone Object

This function takes a cone defined in CddInterface and converts it to a cone in NConvex

1.2 Attributes of Cones

1.2.1 DefiningInequalities (for IsCone)

▷ DefiningInequalities(cone)

(attribute)

Returns: a List

Returns the list of the defining inequalities of the cone cone.

1.2.2 EqualitiesOfCone (for IsCone)

▷ EqualitiesOfCone(cone)

(attribute)

Returns: a List

Returns the list of the equalities in the defining inequalities of the cone cone.

1.2.3 DualCone (for IsCone)

▷ DualCone(cone)

(attribute)

Returns: a cone

Returns the dual cone of the cone cone.

1.2.4 Faces (for IsCone)

▷ Faces(cone)

(attribute)

Returns: a list of cones

Returns the list of all faces of the cone cone.

1.2.5 Facets (for IsCone)

▷ Facets(cone)

(attribute)

Returns: a list of cones

Returns the list of all faces of the cone cone.

1.2.6 RelativeInteriorRayGenerator (for IsCone)

▷ RelativeInteriorRayGenerator(cone)

(attribute)

Returns: a point

Returns an interior point in the cone cone.

1.2.7 HilbertBasis (for IsCone)

▷ HilbertBasis(cone)

(attribute)

Returns: a list

Returns the Hilbert basis of the cone cone

1.2.8 HilbertBasisOfDualCone (for IsCone)

▷ HilbertBasisOfDualCone(cone)

(attribute)

Returns: a list

Returns the Hilbert basis of the dual cone of the cone cone

1.2.9 LinealitySpaceGenerators (for IsCone)

▷ LinealitySpaceGenerators(cone)

(attribute)

Returns: a list

Returns a basis of the lineality space of the cone cone.

1.2.10 ExternalCddCone (for IsCone)

▷ ExternalCddCone(cone)

(attribute)

Returns: a CddPolyhedron

Converts the cone to a CddPolyhedron. The functions of CddInterface can then be applied on this polyhedron.

1.3 Properties of Cones

1.3.1 IsRegularCone (for IsCone)

▷ IsRegularCone(cone)

(property)

Returns: true or false

Returns if the cone cone is regular or not.

1.3.2 IsEmptyCone (for IsCone)

▷ IsEmptyCone(cone)

(property)

Returns: true or false

Returns if the cone cone is empty or not.

1.3.3 IsRay (for IsCone)

▷ IsRay(cone)

(property)

Returns: true or false

Returns if the cone cone is ray or not.

1.3.4 IsContainedInFan (for IsCone)

▷ IsContainedInFan(cone)

(attribute)

Returns: true or false

Returns if the cone cone is contained in fan or not.

1.4 Operations on cones

1.4.1 FourierProjection (for IsCone, IsInt)

▷ FourierProjection(cone, m)

(operation)

Returns: a cone

Returns the projection of the cone on the space $(O, x_1, ..., x_{m-1}, x_{m+1}, ..., x_n)$.

1.4.2 IntersectionOfCones (for IsCone, IsCone)

▷ IntersectionOfCones(cone1, cone2)

(operation)

Returns: a cone

Returns the intersection of the cones cone1 and cone2.

1.4.3 IntersectionOfConelist (for IsList)

1.4.4 Contains (for IsCone, IsCone)

Contains (cone1, cone2) (operation)
Returns: a true or false
Returns if the cone cone1 contains the cone cone2.

1.4.5 RayGeneratorContainedInCone (for IsList, IsCone)

▷ RayGeneratorContainedInCone(ray, cone)

(operation)

Returns: true or false

Returns if the cone contains the ray ray.

```
\_ Example _-
gap> P:= Cone([[2, 7], [0, 12], [-2, 5]]);
<A cone in |R^2>
gap> d:= DefiningInequalities( P );
[[-7, 2], [5, 2]]
gap> Q:= ConeByInequalities( d );
<A cone in |R^2>
gap> P=Q;
true
gap> IsPointed( P );
true
gap> RayGenerators( P );
[[2,7],[-2,5]]
gap> HilbertBasis( P );
[[-2,5],[-1,3],[0,1],[1,4],[2,7]]
gap> HilbertBasis( Q );
[[-2, 5], [-1, 3], [0, 1], [1, 4], [2, 7]]
gap> P_dual:= DualCone( P );
<A cone in |R^2>
gap> RayGenerators( P_dual );
[[-7, 2], [5, 2]]
gap> Dimension( P );
gap> Facets( P );
[ \langle A \text{ ray in } | R^2 \rangle, \langle A \text{ ray in } | R^2 \rangle ]
gap> List( last, RayGenerators );
[[[2,7]],[[-2,5]]]
gap> faces := Faces( P );
[ <A cone in |R^2\rangle, <A ray in |R^2\rangle, <A ray in |R^2\rangle
gap> RelativeInteriorRayGenerator( P );
[ -2, 29 ]
gap> LinealitySpaceGenerators( P );
gap> IsRegularCone( P );
false
```

```
gap> IsEmptyCone( P );
false
gap> IsRay( P );
false
gap> proj_x1:= FourierProjection( P, 2 );
<A cone in |R^1>
gap> RayGenerators( proj_x1 );
[[1],[-1]]
gap> DefiningInequalities( proj_x1 );
[[0]]
gap> R:= Cone( [ [ 4, 5 ], [ -2, 1 ] ] );
<A cone in |R^2>
gap> T:= IntersectionOfCones( P, R );
<A cone in |R^2>
gap> RayGenerators( T );
[[-2, 5], [2, 7]]
gap> W:= Cone( [ [-3,-4 ] ] );
<A ray in |R^2>
gap> I:= IntersectionOfCones( P, W );
<A cone in |R^2>
gap> RayGenerators( I );
[ ]
gap> Contains( P, I );
true
gap> Contains( W, I );
true
gap> Contains( P, R );
false
gap> Contains( R, P );
gap> cdd_cone:= ExternalCddCone( P );
< Polyhedron given by its V-representation >
gap> Display( cdd_cone );
V-representation
begin
3 X 3 rational
   0
      2
         7
     0 12
   0
   0
     -2
          5
gap> Cdd_Dimension( cdd_cone );
gap> H:= Cdd_H_Rep( cdd_cone );
< Polyhedron given by its H-representation >
gap> Display( H );
H-representation
begin
   2 X 3 rational
   0 -7
           2
   0
     5
          2
end
```

```
gap> P:= Cone([[1, 1, -3], [-1, -1, 3], [1, 2, 1], [2, 1, 2]]);
< A cone in |R^3>
gap> IsPointed( P );
false
gap> Dimension( P );
gap> IsRegularCone( P );
false
gap> P;
< A cone in |R^3 of dimension 3 with 4 ray generators>
gap> RayGenerators( P );
[[1, 1, -3], [-1, -1, 3], [1, 2, 1], [2, 1, 2]]
gap> d:= DefiningInequalities( P );
[[-5, 8, 1], [7, -4, 1]]
gap> facets:= Facets( P );
[ <A cone in |R^3>, <A cone in |R^3> ]
gap> faces := Faces( P );
[ <A cone in |R^3>, <A cone in |R^3>, <A cone in |R^3>, <A cone in |R^3>]
gap> FVector( P );
[1, 2, 1]
gap> List( faces, Dimension );
[3, 2, 1, 2]
gap> LatticePointsGenerators( P );
[[[0,0,0]],[[2,1,2],[1,1,-2],[1,2,1]],[[1,1,-3]]]
gap> DualCone( P );
< A cone in |R^3>
gap> RayGenerators( last );
[[-5, 8, 1], [7, -4, 1]]
gap> Q_x1x3:= FourierProjection(P, 2 );
<A cone in |R^2>
gap> RayGenerators( Q_x1x3 );
[[1, -3], [-1, 3], [1, 1]]
```

Chapter 2

NConvex automatic generated documentation

2.1 NConvex automatic generated documentation of global functions

2.1.1 NConvex_Example

▷ NConvex_Example(arg)

(function)

Returns:

Insert documentation for you function here

Index

NConvex, 3		
Cone		
for IsCddPolyhedron, 3		
for IsList, 3		
${\tt ConeByEqualitiesAndInequalities}$		
for IsList, IsList, 3		
ConeByInequalities		
for IsList, 3		
Contains		
for IsCone, IsCone, 6		
DefiningInequalities		
for IsCone, 3		
DualCone		
for IsCone, 4		
EqualitiesOfCone		
for IsCone, 4		
ExternalCddCone		
for IsCone, 5		
Faces		
for IsCone, 4		
Facets		
for IsCone, 4		
FourierProjection		
for IsCone, IsInt, 5		
HilbertBasis		
for IsCone, 4		
HilbertBasisOfDualCone		
for IsCone, 4		
IntersectionOfConelist		
for IsList, 6		
IntersectionOfCones		
for IsCone, IsCone, 5		
${\tt IsContainedInFan}$		
for IsCone, 5		

IsEmptyCone

```
for IsCone, 5
IsRay
    for IsCone, 5
{\tt IsRegularCone}
    for IsCone, 5
{\tt LinealitySpaceGenerators}
    for IsCone, 4
{\tt NConvex\_Example}, 9
{\tt RayGeneratorContainedInCone}
    for IsList, IsCone, 6
{\tt RelativeInteriorRayGenerator}
    for IsCone, 4
```