МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

3BIT

ПРОХОДЖЕННЯ СИГНАЛІВ ЧЕРЕЗ ПАСИВНІ ЛІНІЙНІ ЧОТИРИПОЛЮСНИКИ

студента 2-го курсу 5-Б групи Стрибулевича Олександра Сергійовича

РЕФЕРАТ

Об'єкт дослідження – RC та CR чотириполюсники, їх частотні та перехідні характеристики.

Мета робота – вивчити роботу найпростіших частотних фільтрів, виміряти їх частотні та перехідні характеристики.

Методи дослідження — аналіз вхідного та вихідного сигналів чотириполюсників за допомогою осцилографа.

Зміст

1 RC фільтр	4
1.1 Схема та характеристики	4
1.2 Перехідні характеристики	6
1.3 Частотні характеристики	8
2 CR фільтр	10
2.1 Схема та характеристики	10
2.2 Перехідні характеристики	12
2.3 Частотні характеристики	13

1 RC фільтр

1.1 Схема та характеристики

RC фільтром називають чотириполюсник, схема якого зображена на рис. 1.1

Рис. 1.1

Розрахуємо його амплітудно-частотну та фазо-частотну характеристику. Нехай на вхід подається змінна напруга з комплексною амплітудою \tilde{V}_{in} . Тоді напруги на виході і вході відносяться як імпеданс конденсатора до імпедансу всієї схеми:

$$\frac{\widetilde{V}_{out}}{\widetilde{V}_{in}} = \frac{\frac{1}{i\omega C}}{R + \frac{1}{i\omega C}} = \frac{1}{1 + i\omega RC} = \frac{1}{1 + i\omega \tau},$$

де $\tau = RC$ – час релаксації.

Відношення амплітуд вихідного і вхідного сигналів рівне:

$$\frac{V_{out}}{V_{in}} = \frac{1}{\sqrt{1+\omega^2 \tau^2}},\tag{1}$$

тоді як зсув фаз:

$$\phi = - arctg(\omega \tau)$$
.

Графіки цих характеристик зображені на рис. 1.2 [1].

Вводять поняття частоти зрізу, для якої відношення (1) рівне $\frac{1}{\sqrt{2}}$: $\omega_c = \frac{1}{\tau}$.

Щоб проаналізувати перехідні характеристики чотириполюсника потрібно

Рис. 1.2

подати на його вхід сходинку. Вихідна напруга схеми зображена на рис. 1.3 [1], де U_e – вхідна напруга, U_a – вихідна, U_r – висота сходинки. Її вигляд:

$$U_{out} = U_{max} (1 - e^{-\frac{t}{\tau}})$$
 (рис. 1.3a),

$$U_{out} = U_{max} e^{-\frac{t}{\tau}}$$
 (рис. 1.36).

Рис. 1.3

Вихідна напруга наближається до кінцевого значення асимптотичного. Час за який вона збільшується від $0.1U_{max}$ до $0.9U_{max}$ називають часом наростання. Він рівний:

$$t_{_{\rm H}} = \tau \ln \ln (9) \approx 2.2\tau.$$

У роботі досліджувався RC фільтр з характеристиками компонентів R = 13.9 κ Oм, C = 150 μ Ф. При цьому маємо теоретичне значення τ = 2.085 мс.

1.2 Перехідні характеристики

Спочатку досліджувалися перехідні характеристики чотириполюсника. Для цього на вхід був поданий прямокутний сигнал (меандр) з частотою 100 Гц. Вхідна і вихідна напруга чотириполюсника показана на рис. 1.4.

Рис. 1.4

3 цієї залежності знаходимо час наростання $t_{_{
m H}}=5.69$ мс. Звідси $\tau=2.59$ мс.

Будуючи залежність логарифма напруги від часу (рис. 1.5), знаходимо, що $\frac{1}{\tau}=383.\,9,7\,c^{-1}.\,\text{Тоді}\,\tau=2.\,61\,\text{мс}.$

Рис. 1.5

Надалі будемо вважати $\tau=2.61$ мс, $f_c=61.1$ Гц.

1.3 Частотні характеристики

Для дослідження частотних характеристик на вхід чотириполюсника подавався синусоїдальний сигнал, і вихідний сигнал порівнювався з ним на осцилографі. Виміряна амплітудно-частотна характеристика зображена на рис. 1.6, де по осі Ох відкладено відношення частоти сигналу, до частоти зрізу, а по осі Оу — відношення амплітуди вихідного сигналу до вхідного в децибелах. Фазово-частотна характеристика зображена на рис. 1.7. Червоною лінією зображені теоретичні залежності.

Рис. 1.6

Рис. 1.7

2 CR фільтр

2.1 Схема та характеристики

СК фільтром називають чотириполюсник, схема якого зображена на рис. 2.1.

Рис. 2.1

Розрахуємо його амплітудно-частотну та фазо-частотну характеристику. Нехай на вхід подається змінна напруга з комплексною амплітудою \tilde{V}_{in} . Тоді напруги на виході і вході відносяться як імпеданс резистора до імпедансу всієї схеми:

$$\frac{\widetilde{V}_{out}}{\widetilde{V}_{in}} = \frac{R}{R + \frac{1}{i\omega C}} = \frac{1}{1 + \frac{1}{i\omega RC}} = \frac{1}{1 + \frac{1}{i\omega T}},$$

де $\tau = RC$ – час релаксації.

Відношення амплітуд вихідного і вхідного сигналів рівне:

$$\frac{V_{out}}{V_{in}} = \frac{1}{\sqrt{1 + \frac{1}{\omega^2 \tau^2}}},\tag{1}$$

тоді як зсув фаз:

$$\Phi = arctg(\frac{1}{\omega \tau}).$$

Графіки цих характеристик зображені на рис. 2.2 [1].

Частота зрізу для цього фільтру теж рівна $\omega_c = \frac{1}{\tau}$.

Щоб проаналізувати перехідні характеристики чотириполюсника потрібно

Рис. 2.2

подати на його вхід сходинку. Вихідна напруга схеми зображена на рис. 2.3 [1], де U_e – вхідна напруга, U_a – вихідна, U_r – висота сходинки. Її вигляд:

$$U_{out} = U_{max} e^{-\frac{t}{\tau}}$$
 (рис. 2.3a),

$$U_{out} = -U_{max}e^{-\frac{t}{\tau}}$$
 (рис. 2.36).

Рис. 2.3

Вихідна напруга асимптотично наближається до нуля. Те, наскільки вона зменшується за час t називають сколюванням:

$$\delta = \left| \frac{U(t) - U_{max}}{U_{max}} \right| = 1 - e^{-\frac{t}{\tau}} \approx \frac{t}{\tau}.$$

У роботі досліджувався CR фільтр з характеристиками компонентів R = 13.9 кОм, C = 150 нФ. При цьому маємо теоретичне значення $\tau = 2.085$ мс.

2.2 Перехідні характеристики

Спочатку досліджувалися перехідні характеристики чотириполюсника. Для цього на вхід був поданий прямокутний сигнал (меандр) з частотою 50 Гц. Вхідна і вихідна напруга чотириполюсника показана на рис. 2.4.

Рис. 2.4

3 цієї залежності знаходимо час $t_1=1.7$ мс, за який сколювання рівне $\delta=0.5.\ {\rm Звідсu}\ \tau=2.\ 45\ {\rm мc}.$

Будуючи залежність логарифма напруги від часу (рис. 2.5), знаходимо, що $\frac{1}{\tau} = 411,7~c^{-1}.$ Тоді $\tau = 2.43$ мс.

Рис. 2.5

Надалі будемо вважати $\tau=2.44$ мс, $f_c=65.2$ Гц.

2.3 Частотні характеристики

Для дослідження частотних характеристик на вхід чотириполюсника подавався синусоїдальний сигнал, і вихідний сигнал порівнювався з ним на осцилографі. Виміряна амплітудно-частотна характеристика зображена на рис. 2.6, де по осі Ох відкладено відношення частоти сигналу, до частоти зрізу, а по осі Оу — відношення амплітуди вихідного сигналу до вхідного в децибелах. Фазово-частотна характеристика зображена на рис. 2.7. Червоною лінією зображені теоретичні залежності.

Рис. 2.6

ВИСНОВОК

У результаті даної лабораторної роботи були виміряні перехідні та частотні характеристики RC та CR чотириполюсників. Вигляд обох характеристик збігається з теоретично розрахованим. Час релаксації, отриманий з перехідних характеристик, співпадає з часом, отриманим з частотних характеристик, проте вони відрізняються від часу, розрахованого через номінали елементів. Це можна пояснити допустимою похибкою в номіналах. В цілому експериментальні дані збігаються з теорією.

ДЖЕРЕЛА

1. Титце У., Шенк К. Полупроводниковая схемотехника.- М.: Мир.- 1982.- С.14-18.