Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2022 EC3CO23 Signals and Systems

Branch/Specialisation: EC Programme: B.Tech.

Maximum Marks: 60 **Duration: 3 Hrs.**

		estions are compulsory. Inter- should be written in full inste	nal choices, if any, are indicated. Answer ad of only a, b, c or d.	s of		
Q.1	i.	The cross correlation of orthogonal signals is-				
		(a) Zero (b) 1	(c) Infinity (d) None of these			
	ii.	If x(t) is an energy signal, the	nen-	1		
		(a) Its energy is finite and po	ower is also finite			
		(b) Its energy is finite and power is infinite				
		(c) Its energy is finite and power is zero				
		(d) None of these				
	iii.	If the time domain signal is	continuous then its Fourier transform is-	1		
		(a) Continuous	(b) Discrete			
		(c) Periodic	(d) Aperiodic			
	iv.	The bandwidth required to t	ransmit an impulse function is-	1		
		(a) Zero (b) Infinite	(c) Unity (d) None of these			
	v.	If we convolve two signa	als in time domain then in frequency	1		
		domain their individual spectrum gets-				
		(a) Added	(b) Subtracted			
		(c) Multiplied	(d) None of these			
	vi.		ing systems are described by partial	1		
		differential functions?				
		(a) Causal Systems and dynamic systems				
		(b) Distributed parameter sy	stems and linear systems			
		(c) Distributed parameter sy	stems and dynamic systems			
		(d) Causal systems and linear systems				
	vii.	What is the convolution of a	signal with an impulse?	1		
		(a) Signal itself	(b) Impulse			
		(c) A new signal	(d) Signal multiplied by impulse			
			P.T	Ο.		

	viii. If a signal $x(n)$ is passed through a system to get an output sign $y(n)=x(n+1)$, then the signal is said to be-					
		(a) Delayed (b) Advanced				
		• • • • • • • • • • • • • • • • • • • •				
	:	• • • • • • • • • • • • • • • • • • • •	1			
ix.			1			
		(z). If $Y(z)=X(-z)$ is the z-transform of another signal $y[n]$, then				
		(a) $y[n] = x[n]$ (b) $y[n] = x[-n]$				
		(c) $y[n] = -x[n]$ (d) $y[n] = -x[-n]$				
	х.	Find $x(\infty)$ if $X(z) = \frac{z+3}{(z+1)(z+2)}$	1			
		(a) ∞ (b) -1 (c) 1 (d) 0				
Q.2	i.	What are orthogonal signals? Explain two explications of orthogonal signals.	2			
	ii.	Find out the even and odd part of $U(t)$.	3			
	iii.	Define impulse function. Discuss any four properties. 5				
OR	iv.	Define the following with one example each-	5			
		(a) Even and odd signals				
		(b) Energy and power signal				
		(c) Analog signal and digital signal				
	(d) Causal and non-causal signal					
		(e) Periodic and aperiodic signal				
Q.3	i.	State Dirichlet conditions for the existence of Fourier transform.	2			
	ii.	State and prove the time division convolution theorem. Also explain 8				
		its physical significance.				
OR	iii.	Find the DTFT of the signal $x(n)$ given by $x(n) = u(n) - u(n-N)$;	8			
		where N is any positive integer. Determine the magnitude and phase components for N=5.				
Q.4	i.	Define convolution integral. Discuss its applications.	3			
	ii.	A discrete-time system have an input $x[n]$ and output as	7			
		y[n] = x[n-1]. Determine whether the system is-				
		(a) Memoryless (b) Causal				
		(c) Linear (d) Time-invariant				
		(e) Stable				

OR	iii.	A system is formed by connecting two systems in cascade mode.	,
		The impulse responses of the systems are given by $h_1(t)$ and $h_2(t)$	
		respectively, and $h_1(t) = e^{-2t}u(t)$; $h_2(t) = 2e^{-t}u(t)$.	

- (a) Find the impulse response h(t) of the overall systems.
- (b) Determine if the overall system is BIBO stable.
- Q.5 i. A causal LTI discrete-time system satisfying the difference equation y[n] = x[n] 2x[n-2] + x[n-3]. Find out the impulse response h[n] of this system. Also, find whether the system is FIR or an IIR system.
 - ii. Determine the response of the system characterized by the impulse 6 response $h(n) = {1 \choose 3}^n u(n)$ to the input signal $x(n) = 3^n u(n)$.
- OR iii. Discuss convolution sum and its properties.
- Q.6 Attempt any two:
 - i. Explain ROC and its properties.
 - i. Consider the sequence-

6

5

$$x[n] = \begin{cases} a^n, & 0 \le n \le N - 1, a > 0 \\ 0, & otherwise \end{cases}$$

Find X[z] and plot the poles and zeros of X[z].

iii. Discuss the relationship between the Z-transform and Laplace 5 transform.

Marking Scheme EC3CO23 Signal and System

Q.1	i)	a) zero	1
	ii)	c) its energy is finite and power is zero	1
	iii)	d) aperiodic	1
	iv)	b) infinite	1
	v)	c) multiplied	1
	vi)	c) Distributed parameter systems and Dynamic systems	1
	vii)	a) Signal itself	1
	viii)	b) Advanced	1
	ix)	c) y[n] = -x[n]	1
	x)	d) 0	1
Q.2	i.	Definition - 1 mark	2
		Each application- 0.5 mark	
	ii.	Even part: 1.5 marks	3
		Odd part: 1.5 marks	_
	iii.	Definition of impulse function – 1 mark	5
ΩD		Each of the four properties – 1 mark each	5
OR	iv.	Definition with example – 1 mark each	5
Q.3	i.	Conditions- 0.5 marks for each	2
	ii.	Statement – 1 marks	8
		Proof – 5 marks	
0.0		Physical significance – 2marks	0
OR	iii.	DTFT – 4 marks	8
		Magnitude component – 2 marks Phase component – 2 marks	
		Thase component – 2 marks	
Q.4	i.	Definition – 1 mark	3
		Application -2 marks	
	ii.	a) not memoryless – 1.5 marks	7
		b) causal -1.5 marks	
		c) linear – 1.5 marks	
		d) time-invariant – 1.5 marks	
OR	iii.	e) BIBO Stable – 1 mark	7
OK	111.	a) $h(t) = 2(e^{-t} - e^{-2t})u(t)$ - 4 marks	,
		b) The system is BIBO stable - 3 marks	

Q.5	i.	$h[n] = \{1, 0, -2, 1\}$ - 2 marks		4
		Since $h[n]$ has only 4 terms – FIR	- 2 marks	

ii.
$$y[n] = y_{-1}a^{n+1} + k\frac{b^{n+1} - a^{n+1}}{b - a}u[n]$$
, do step marking also

ii.
$$X[z] = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}$$
 2 marks
