Magnetic Scalar and Vector Potentials

We recall that some electrostatic field problems were simplified by relating the electric potential V to the field intensity E ($E = -\nabla V$). Similarly, we can define a potential associated with magnetostatic field B. In fact, the magnetic potential could be scalar V_m or Vielov \overline{A} . In order to define V_m and \overline{A} , we recall two important identities divergence S curl of \overline{S} .

VXB = a Moj

V, B = 0

It in some region of space, current density $\vec{J}=0$, then the above two equations will bee $\nabla x\vec{B}=0$ &

The atore two relations can be related with two identities

VX (VVm) = 0

V. (VXA)=0

Therefore, we may express $E = - \nabla Vm + hence B can be expressed by gradient of a scalar quentity <math>Vm$. Where Vm is called the

magnetic sealar perfential. Since in This case $\nabla \cdot \overline{\mathbb{R}} = 0$ so $\nabla \cdot (-\nabla V_m) = 0$ or $\nabla V_m = 0$, we see V_m satisties Laplace's equation in space where $\overline{J} = 0$.

Magnetic Vector Potential law in magnetostates that always V. B = 0. Agan We know that divergence of my Carl of any Vector is zero. For any Vector A, V. (VXA)=0. Therefore we get V. B = 0 & V. (VXA)=0 from me above two equations we can say that B= VXA. The vector function A which sortisties the above equation is known as magnific Vector potential. This vector potential - com help to delevinine Bat a given point, since B is the space derivative of A. The magnetic Nector potential may lu defined as a victor, the cond of which gives the magnetic induction produced at any

point by a closed-loop carrying enrient.

We know that $\nabla x \bar{B} = \mu_0 \bar{J}$ Also, $\bar{B} = \nabla x \bar{A}$

· VX(VXA)= MOJ

A, $\nabla(\vec{Q}, \vec{A} - \vec{Q}, \vec{A}) = \mu_0 \vec{J}$ Here, \vec{Q}_{a} , $\vec{\nabla} \cdot \vec{A} = 0$, for steeday current as $\vec{\nabla} \cdot \vec{A} = 0$. Therefore, we get $\vec{\nabla} \vec{A} = -\mu_0 \vec{J}$ The earlier equation is same as Poisson's equation in electrostatics which is

Where vis the electrostatic porential and satisfies

V = ITED S Pdv

In analogy with this we can write

A = Mo Sidu for volume current

 $\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{k} \, ds}{r}$ for surface current

 $\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{L}d\ell}{\vec{r}} \, for line eurrent.$

Problem: A magnetic field $4 \times 10^3 \text{ k}$ testa exerts a force of $(4\hat{i} + 3\hat{j}) \times 10^{10} \text{ N}$ of a particle having charge of $1 \times 10^9 \text{ C}$ and moving in the my plane, Calculati the velocity of the particle.

Soln: He know the magnetic force

Here $(4\hat{i}+3\hat{j}) \times 1\bar{\delta}^{10} = 1 \times 1\bar{\delta}^{9} [(v_n\hat{i}+v_y\hat{j}) \times 4 \times 1\bar{\delta}^{3}\hat{k}]$ = $4 \times 10^{-12} [v_n(-\hat{j}) + v_y(\hat{i})]$

 $\frac{10x^{2}}{4x10^{-12}} \frac{3 \times 10^{-10}}{4 \times 10^{-12}} \frac{m}{s} = -75 \frac{m}{s}$ $\frac{10y^{2}}{4 \times 10^{-12}} \frac{4 \times 10^{-12}}{4 \times 10^{-12}} \frac{m}{s} = 100 \frac{m}{s}$

Minfore verocity v = (-75î + 100ĵ) m/s