Q1 (1 point)

a) (1/4 point)

* if any of the following points are mentioned, they will get all the credit points*

- Difference 1:
 - Traditional vector space models: computing similarity based on the query vector and the document vector
 - Statistical language models: finding the likelihood a document language model generates a given query
- Difference 2:
 - Traditional vector space model: contains information about word frequency, no information on the sequence of the words
 - o Statistical language models: consider the correlation between the words

b) (1/4 point)

- Information need: the information the user wants to look for
- Query: the search term the user comes up with for their information need
- Example:
 - User is looking for a way to install Microsoft Office on their system
 - o Information need: steps to purchase and install Microsoft Office
 - Query: "Microsoft Office Subscription" or "How to purchase Microsoft Office"

c) (1/4 point)

- Similar to relevance feedback
- Instead of asking the user, assumes the top k results are already relevant, performance relevance feedback based on that
- Query expansion:
 - o a method for incorporating relevance feedback
 - $\circ\quad$ Can involve adding new terms, adjusting the weights of existing terms

<u>d)</u> (1/4 point)

 Users focused on the top few positions of the search results, not examining the rest

Q2 (1 point)

a) (1/4 point)

$$precision = 5/10 = 0.5$$

b) (1/4 point)

$$recall = 5/30 = 0.17$$

c) (1/4 point)

$$F - measure = 2 * 0.5 * 0.17/(0.5 + 0.17) = 0.25$$

d) (1/4 point)

$$precision = 30/100 = 0.3$$
 (1/16 point)
 $recall = 30/30 = 1$ (1/16 point)

- Precision: (1/16 point)
 - o drops from 0.5 to 0.3
 - Because the proportion of the relevant documents to all documents is lower than the proportion of relevant documents retrieved in the first scheme to all retrieved documents.
- Recall: (1/16 point)
 - o Increases from 0.17 to 1
 - Recall can only increase.
 - Because it is the number of relevant documents that are retrieved compared to all relevant documents which can only increase by returning more documents.

Q3 (3 points)

a) (1 point)

For system 1, the real value is: 3, 2, 2, 0, 1, 3, 0, 0, 0, 0

$$DCG = \frac{2^{3}-1}{\log_{2} 2} + \frac{2^{2}-1}{\log_{2} 3} + \frac{2^{2}-1}{\log_{2} 4} + \frac{2^{0}-1}{\log_{2} 5} + \frac{2^{1}-1}{\log_{2} 6} + \frac{2^{3}-1}{\log_{2} 7} + \frac{2^{0}-1}{\log_{2} 8} + \frac{2^{0}-1}{\log_{2} 9} + \frac{2^{0}-1}{\log_{2} 10} + \frac{2^{0}-1}{\log_{2} 10} + \frac{2^{0}-1}{\log_{2} 11} = 13.273$$

For system 2, the real value is: 3, 3, 2, 2, 0, 0, 0, 1, 0, 0

$$DCG = \frac{2^{3}-1}{\log_{2} 2} + \frac{2^{3}-1}{\log_{2} 3} + \frac{2^{2}-1}{\log_{2} 4} + \frac{2^{2}-1}{\log_{2} 5} + \frac{2^{0}-1}{\log_{2} 6} + \frac{2^{0}-1}{\log_{2} 7} + \frac{2^{0}-1}{\log_{2} 8} + \frac{2^{1}-1}{\log_{2} 9} + \frac{2^{0}-1}{\log_{2} 10} + \frac{2^{0}-1}{\log_{2} 11} = 14.524$$

As a result, system 2 has a higher NDCG score.

- Ideal ranking the same for both systems.
- So NDCGs could be compared using the values at hand.

- **b)** (1 point)
 - **b1)** (1/3 point)
 - Both the same: 3/3

- **b2)** (1/3 point)
- Both the same: 4/5

b3) (1/3 point)

MAP for system 1:

$$(1/1 + 2/2 + 3/3 + 4/5 + 5/6)/5 = 0.9266$$

MAP for system 2:
 $(1/1 + 2/2 + 3/3 + 4/4 + 5/8)/5 = 0.925$

- **c)** (1 point)
 - System 2 (0.5 point)
 any of the following, 0.5 point
 - Because provides a higher NDCG, provides best results for the first 4
 - Which helps users have very relevant information in the first few results.
