Stability Conditions in Genus 2

Marco Fava and Rhys Wells

Wednesday 19th July, 2023

Introduction 1

Given all the mildly superadditive functions f^2 on n indices, with given values on the singletons, we want to obtain all the compatible f^3 s, and the polytopes they define.

The idea is that, given f^2 , a compatible function f^3 is obtained in the same way as extending f^2 to \mathcal{P}_{n+1}^+ and imposing an extra symmetry condition.

The functions f^2 and f^3 2

We would like to extend the bijection that exists in genus 1 between universal weak stability conditions for $\overline{\mathcal{J}}_{1,n}^d$ and mildly superadditive functions $f: \mathcal{P}_{n-1}^+ \to \mathbb{Z}$ with fixed $f(i), i \in \{1, \ldots, n-1\}$. In the genus 2 case, we use pairs of functions (f^2, f^3) , that encode the admissible multidegrees of line bundles of the Jacobians of vine curves with 2 and 3 edges respectively.

Remark. There still needs to be proven that, given a pair (f^2, f^3) , its restriction to a single curve C defines a full set of representatives for line bundle multidegrees.

We know that a universal ϕ -stability always gives a pair (f^2, f^3) .

Let us give the relevant definitions:

Definition 2.1. A mildly superadditive function $f^2: \mathcal{P}_n^+ \to \mathbb{Z}$ is given by the condition: Let $A, B \subset [n]$ be disjoint and non empty, then

$$f^{2}(A) + f^{2}(B) \le f^{2}(A \cup B) \le f^{2}(A) + f^{2}(B) + 1. \tag{1}$$

Definition 2.2. Let $A, B \subset [n]$ be disjoint and such that $B \neq \emptyset$. Given f^2 as above, $f^3 : \mathcal{P}_n \to \mathbb{Z}$ is said to be *compatible with* f^2 if it satisfies the following conditions:

$$f^{3}(A) + f^{2}(B) \le f^{3}(A \cup B) \le f^{3}(A) + f^{2}(B) + 1;$$

$$f^{3}(A^{c}) = -2 - f^{3}(A).$$
(2)

$$f^{3}(A^{c}) = -2 - f^{3}(A). (3)$$

3 Obtaining the stability conditions

In order to adapt Rhys' algorithm for computing the MSA functions in genus 1, we need to express condition (2) in a more suitable form.

Definition 3.1. Let $I \subset \mathcal{P}_n$ and $g: \mathcal{P}_n \to \mathbb{Z}$, we define an *indicator function* to be

$$\varepsilon_I(A) = \begin{cases} g(\emptyset) & \text{if } A \notin I, \\ g(\emptyset) + 1 & \text{if } A \in I. \end{cases}$$

Let f^2 be a MSA. An indicator function is said to be *compatible with* f^2 if it satisfies the condtions of lemma 1.1 in Rhys' notes, that is: for each $A \subseteq B \in \mathcal{P}_n^+$

- If $A \subseteq B$ is f^2 -minimal and $\varepsilon_I(A) = g(\emptyset) + 1$, then $\varepsilon_I(B) = g(\emptyset) + 1$;
- If $A \subseteq B$ is f^2 -maximal and $\varepsilon_I(B) = g(\emptyset) + 1$, then $\varepsilon_I(A) = g(\emptyset) + 1$.

Proposition 3.1. Let f^2 be a mildly superadditive function. A function $g: \mathcal{P}_n \to \mathbb{Z}$ satisfies condition (2) with respect to f^2 if and only if there exists $I \subset \mathcal{P}_n$ such that ε_I is compatible with f^2 and

$$g = f^2 + \varepsilon_I. (2')$$

Proof. Let g satisfy (2). Then, in particular, $f^2(B) + g(\emptyset) \leq g(B) \leq f^2(B) + g(\emptyset) + 1$ for each $B \in \mathcal{P}_n^+$. Define $I \subset \mathcal{P}_n$ such that $B \in I \iff g(B) = f^2(B) + g(\emptyset) + 1$. Then

$$g = f^2 + \varepsilon_I$$
.

Let $A \subseteq B$, then, by condition (2),

$$0 \le (f^2(B) - f^2(A) - f^2(B \setminus A)) + (\varepsilon_I(B) - \varepsilon_I(A)) \le 1,$$

which implies that ε_I is compatible with f^2 .

Viceversa, let $g = f^2 + \varepsilon_I$ satisfy (2') and let $A \subsetneq B$.

$$g(B) - g(A) - f^{2}(B \setminus A) = \begin{cases} \varepsilon_{I}(B) - \varepsilon_{I}(A), & \text{if } A \subsetneq B \text{ is minimal,} \\ \varepsilon_{I}(B) - \varepsilon_{I}(A) + 1, & \text{if } A \subsetneq B \text{ is maximal.} \end{cases}$$

By compatibility of ε_I this is always contained in $\{0,1\}$, so g satisfies condition (2).

Now, Rhys' algorithm finds all the functions g that satisfy condition (2'). Therefore, it is sufficient to select the ones that additionally satisfy condition (3), to obtain all the pairs (f^2, f^3) we are looking for.

Moreover, we have the following:

Definition 3.2. Let (f^2, f^3) be a pair of functions as above. The *stability polytope* determined by (f^2, f^3) is given my the system of inequalities

$$\begin{cases} f^{2}(A) < x_{A} < f^{2}(A) + 1, & \forall A \in \mathcal{P}_{n}^{+}, \\ 1 + 2f^{3}(A) < x_{A} - x_{A^{c}} < 3 + 2f^{3}(A), & \forall A \in \mathcal{P}_{n}, \end{cases}$$

where $x_A = \sum_{i \in A} x_i$, with $\{x_1, \dots, x_n\}$ coordinates in \mathbb{R}^n .

If we manage to find a pair (f^2, f^3) such that the stability polytope is empty, we have a counterexample that shows that not all the universal stability conditions are ϕ -stabilities.

3.1 The algorithm

The idea of the algorithm is the following:

- Generate all the f^2 s with domain \mathcal{P}_n^+ and starting conditions $\{f^2(\{i\}) = 0\}_{1 \leq i \leq n}$ and $\{f^2(\{1\}) = 1\} \cup \{f^2(\{i\}) = 0\}_{2 \leq i \leq n}$. (This is trivial for n = 1).
- Extend them to all the f^2 s with domain \mathcal{P}_{n+1}^+ via the old algorithm. These are the same as the gs with domain \mathcal{P}_n , translated by $g(\emptyset)$, which satisfy condition (2).
- Impose the extra condition (3), to obtain all the pairs (f^2, f^3) on n indices.
- Check if the polytopes are empty.