

Диоди

Преговор – право и обратно включване на PN преход (Диод)

Figure 3.11 The pn junction in: (a) equilibrium; (b) reverse bias; (c) forward bias.

Разпределение на неосновните токоносители при право включване на PN преход

При право включване, доминантен е дифузния ток.

Дупките от Р-областта (основни токоносители) преминават в N областта, където става неосновни токоносители. Колкото повече се отдалечават от прехода, толкова по-вероятно е да рекомбинират. С други думи, концентрацията на дупките p_n в N-областта намалява с отдалечаване от границата на обеднената зона.

Подобен процес протича и с електроните дифундиращи от N-областта в Р-областта.

Токът през прехода се създава от основни токоносители. Но когато те напуснат обеднената област, те стават неосновни. Следователно, в неутралните региони (т.е. извън обеднената област), токът се пренася от неосновни токоносители за дадената област.

Процеси при преминаване от право към обратно включване

При право включване, в неутралните области на PN прехода (диода) се натрупват неосновни токоносители.

Ако изведнъж сменим полярността на подаденото напрежение, токът не може да спре мигновенно.

За кратко време диодът пропуска ток в обратна посока. Това продължава докато неосновните токоносители се "разнесът като рекомбинират или напуснат диода.

Импулсни параметри на диод

 I_{RM} – импулсна стойност на тока при обратно включване t_{rr} – време за възстанояване на обратното съпротивление на диода

 $t_{\rm s}$ – време на разнасяне на неосновните токоносители

 t_r – време за нарастване на обратното съпротивление

Каталожни данни за диоди

Максимално допистими стойности

●Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Conditions	Limits	Unit				
Repetitive peak Reverse voltage	V_{RM}	D≤0.5 8		V				
Reverse voltage	V_R	Direct voltage	800	V				
Average rectified forward current	lo	Glass epoxy substrate mounted	0.2	Α				
		R-road, 60Hz half sin wave	0.2					
Forward current surge peak	I _{FSM}	60Hz half sin wave, Non-repetitive	1	Α				
		one cycle peak value, Tj=25°C	'					
Junction temperature	Tj		150	°C				
Storage temperature	Tstg		-55 to +150	°C				

●Electrical characteristics (Tj=25°C)

Типични стойности

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward voltage	V_{F}	I _F =0.2A	_	2.2	3.0	V
Reverse current	I _R	V _R =800V	_	0.01	10	μΑ
Reverse recovery time	trr	$I_F = 0.1A, I_R = 0.1A, Irr = 0.1 \times I_R$	_	20	35	ns
Reverse recovery time	trr	I_F =0.1A, I_R =0.2A, I_R =0.1× I_R		13	25	ns
Thermal capacitance	Ct	V _R =0V,f=1MHz	_	4		pF

Каталожни данни за диоди – волт-амперни характеристики

Каталожни данни за диоди – дисперсионни карти

Приложения на диод

Приложения – изправител

През положителния полупериод диодът е отпушен. Протичащият през него ток създава пад върху товарното съпротивление R_∟. Полученото в изхода напрежение повтаря формата на входния сигнал.

През отрицателния полупериод диодът се запушва, през веригата не тече ток и напрежението в изхода е нула.

Филтрация

През положителният полупериод диодът се отпушва и протичащият през него ток зарежда кондензатора приблизително до върховата стойност на входното напрежение (ако се пренебрегне падът върху диода).

Филтрация

Когато входното напрежение започне да спада под върховата си стойност, кондензаторът запазва заряда си и диодът се включва в обратна посока като прекъсва веригата към входния източник.

През останалата част от цикъла кондензаторът може да се разрежда само през товарното съпротивление със скорост, определена от времеконстанта $R_L C$.

Колкото по-голяма е времеконстантата, толкова по-бавно ще се разреди кондензаторът. В резултат се осигурява относително постоянно напрежение със слаби флуктуации.

Диодите често се използват да ограничат части от даден сигнал над или под определено ниво.

През положителния полупериод диодът е отпушен, напрежението върху него е 0,7 V. Тогава изходното напрежение се ограничава на ниво + 0,7 V за случаите, когато входното напрежение превиши тази стойност.

През отрицателния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното напрежение.

Диодът в право включване през отрицателния полупериод и ограничава изходния сигнал на ниво -0.7 волта.

През положителния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното.

Диодът ще се отпуши, когато напрежението върху анода му надвиши сумата от стойността на напрежението на батериата и пада 0,7 V върху диода. Тогава изходното напрежение се ограничава до тази стойност (3,7 V в случая) и всички по-високи входни напрежения се отрязват.

През отрицателния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното.

Когато входното напрежение надвиши +4,7 V диодът D_1 се отпушва и ограничава входното напрежение до +4,7 V.

Диодът D_2 се отпушва когато напрежението достигне – 4,7 V. Следователно положителни напрежения над 4,7 V и отрицателни под – 4,7 V се отрязват.