Data Structure

Vine

2022年7月11日

目录

1	1 绪论	4
2	2 线性表	5
3	3 栈和队列	6
4	4 串	7
5	5 数组和广义表	8
6	6 树和二叉树	9
7	7 图	10
8	8 动态存储管理	11
9	9 查找	12
J	9.1 静态查找表	
	9.1.1 顺序表的查找	
	9.1.2 有序表的查找	
	9.1.3 静态树表的查找	
	9.1.4 索引顺序表的查找	14
	9.2 动态查找表	14
	9.2.1 二叉排序树和平衡二叉树	14
	9.2.2 B-树和 B+ 树	19
	9.2.3 键树	20
	9.3 哈希表	21
10	10 内部排序	22
	10.1 概述	
	10.2 插入排序	
	10.2.1 直接插入	
	10.2.2 其他插入	
	10.3 快速	23
	10.3.1 起泡排序	23
	10.3.2 快速排序	23
	10.4 选择排序	24
	10.4.1 简单选择排序	24
	10.4.2 树形排序	24
	10.4.3 堆排序	24
	10.5 归并排序	24
	10.6 基数排序	
	10.6.1 多关键字的排序	
	10.6.2 链式基数排序	25
	10.7 各内部排序方法的比较讨论	26
11	11 外部排序	27

12 文件 28

1 绪论

2 线性表

3 栈和队列

4 串

5 数组和广义表

6 树和二叉树

7 图

8 动态存储管理

9 查找

```
//可能关键字类型
typedef float KeyType;
typedef int KeyType;
typedef char *KeyType;
// 可能数据元素类型
typedef struct{
   KeyType key;
}SElemType;
//数值比较
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a) \le (b))
//字符串比较
#define EQ(a,b) (strcmp(!(a),(b)) )
#define LT(a,b) (strcmp((a),(b))<0)
#define LQ(a,b) (strcmp((a),(b))<=0)
```

9.1 静态查找表

9.1.1 顺序表的查找

顺序查找

```
typedef struct{
    ElemType *elem;
    int length;
}SSTable;

int Search_Seq(SSTable ST, KeyType key){
    //在顺序表ST中查找关键字等于key的数据元素
    //若找到, 函数值为该元素在表中位置, 否则为0
    ST.elem[0].key=key;
    for(i=ST.length;!EQ(ST.ele[i].key,key);--i){    //从后往前找
        return i
    }
}
```

平均查找长度

$$ASL = \sum_{i=1}^{n} P_{i}C_{i} \xrightarrow{\underbrace{C_{i}=n-i+1}} = nP_{1} + (n-1)P_{2} + \dots + 2P_{n-1} + P_{n}$$

$$ASL_{SS} = \sum_{i=1}^{n} P_{i}C_{i} \xrightarrow{\underbrace{\sum_{i=1}^{n} P_{i}=1, P_{i}=\frac{1}{n}}_{C_{i}=n-i+1}} = \frac{1}{n} \sum_{i=1}^{n} (n-i+1) = \frac{n+1}{2}$$

$$ASL'_{SS} = \sum_{i=1}^{n} P_{i}C_{i} + Q_{i}D_{i} \xrightarrow{\underbrace{\sum_{i=1}^{n} P_{i}=Q_{i}=\frac{1}{2}}_{C_{i}=n-i+1, D_{i}=n+1}} \frac{1}{2^{n}} \sum_{i=1}^{n} (n-i+1) + \frac{1}{2}(n+1) = \frac{3(n+1)}{4}$$

9.1.2 有序表的查找

折半查找

$$\begin{split} \sum_{j=1}^h j * x^{j-1} &= \left(\sum_{j=1}^h x^j\right)' \\ &= \left(\frac{x-x^{h+1}}{1-x}\right)' \\ &= \frac{[1-(h+1)x^h](1-x)+x-x^{h+1}}{(1-x)^2} \\ \sum_{j=1}^h j * 2^{j-1} &= \frac{x-2}{2} \left[1-(h+1)2^h](1-2)+2-2^{h+1} \\ &= (h+1)2^h-1+2-2\cdot 2^h \\ &= (h-1)2^h+1 \\ 2^h-1=n \Rightarrow h &= \log_2(n+1) \\ ASL_{bs} &= \sum_{i=1}^n P_i C_i \\ &= \frac{1}{n} \sum_{j=1}^h j * 2^{j-1} (\text{层高} * \text{节点数}) \\ &= \frac{1}{n} [(h-1)2^h+1] \\ &= \frac{1}{n} [(\log_2(n+1)-1)2^{\log_2(n+1)}+1] \\ &= \frac{1}{n} [(\log_2(n+1)-1)(n+1)+1] \\ &= \frac{n+1}{n} \log_2(n+1)-1 \\ &\approx \log_2(n+1)-1, (n>50) \end{split}$$

9.1.3 静态树表的查找

$$\begin{split} sw_i &= \sum_{j=l}^i w_j \\ \Delta P_i &= \left| \sum_{j=i+1}^h w_j - \sum_{j=l}^{i-1} w_j \right| \\ &= \left| (sw_h - sw_i) - (sw_{i-1} - sw_{l-1}) \right| \\ &= \frac{sw_{l-1} = 0, w_{l-1} = 0}{|sw_h + sw_{l-1} - sw_i - sw_{i-1}|} \end{split}$$

j	0	1	2	3	4	5	6	7	8	9
key		A	В	\mathbf{C}	D	\mathbf{E}	F	G	Η	I
w_i	0	1	1	2	5	3	4	4	3	5
sw_i	0	1	2	4	9	12	16	20	23	28
$l=1, h=9, \Delta P_i$		27	25	22	15	7	0	8	15	23
$l_1 = 1, h_1 = 5, l_1 = 6, h_1 = 9, \Delta P_i$		11	9	6	1	19		8	1	7


```
typedef BiTree SOSTree;
                               //次优查找树采用二叉链表存储结构
int SecondOptimal(BiTree &T, ElemType R[], float sw[], int low , int high){
   //由有序表R[low...high] 及其累计权值表sw(sw[0]==1) 递归构造次优查找数T
   i=low;min=abs(sw[high]-sw[low]);dw=sw[high]+sw[low-1];
   for(j=low+1;j<=high;++j){</pre>
                                        //选择最小\Delta P_i值
       if(abs(dw-sw[j]-sw[j-1])<min){</pre>
          i=j;min=abs(dw-sw[j]-sw[j-1]);
   }
   T=(BiTree)malloc(sizeof(BiTNode));
   T->data=R[i];
                                               //生成节点
                                               //左子树空
   if(i==low) T->lchild=NULL;
                                               //构造左子树
   else SecondOptimal(T->lchild,R,sw,low,i-1);
                                               //右子树空
   if(i==high) T->rchild=NULL;
   else SecondOptimal(T->rchild,R,sw,i+1,high);
}
Status CreateSOSTree(SOSTree &T,SSTable ST){
   //有序表ST构造一棵次优查找树T, ST的数据元素含有权域weight
   if(ST.length==0) T=NULL;
       FindSW(sw,ST); //按照有序表ST中各元素的weight域求累计权值表sw
       SecondOptimal(T,ST.elem,sw,1,ST.length);
   return OK;
```

$$F_{n} = 0, F_{1} = 1$$

$$F_{n} = F_{n-1} + F_{n-2} \quad (n \geqslant 2)$$

$$F_{n} - sF_{n-1} = (1 - s)(F_{n-1} + \frac{1}{1-s}F_{n-2}) \quad (n \geqslant 2)$$

$$\frac{-s = \frac{1}{1-s}}{2} \quad (1 - s)(F_{n-1} + sF_{n-2}) \quad (n \geqslant 2)$$

$$= (1 - s)^{n-1}(F_{1} + sF_{0})$$

$$= (1 - s)^{n-1}$$

$$F_{n} + k(1 - s)^{n-1} = sF_{n-1} + (1 + k)(1 - s)^{n-1}$$

$$= s[F_{n-1} + \frac{(1 + k)(1 - s)}{s}(1 - s)^{n-1}]$$

$$= s[F_{n-1} + \frac{(1 + k)(1 - s)}{s}(1 - s)^{n-2}]$$

$$\frac{k = \frac{(1 + k)(1 - s)}{s}}{s} = s[F_{n-1} + k(1 - s)^{n-2}]$$

$$= s^{n-1}[F_{1} + k(1 - s)^{0}]$$

$$= s^{n-1}[F_{1} + k(1 - s)^{0}]$$

$$= s^{n-1}(1 + k)$$

$$F_{n} = (1 + k)s^{n-1} - k(1 - s)^{n-1}$$

$$= \frac{1 \pm \sqrt{5}}{2}(\frac{1 \pm \sqrt{5}}{2})^{\frac{1 \pm \sqrt{5}}{2}}(\frac{1 \pm \sqrt{5}}{2})^{\frac{1 + \sqrt{5}}{2}}(\frac{1 \pm \sqrt{5}}{2})^{n-1}$$

$$= \frac{1 \pm \sqrt{5}}{1 \pm \sqrt{5}}(\frac{1 \pm \sqrt{5}}{2})^{n-1} - \frac{1 \pm \sqrt{5}}{1 \pm \sqrt{5}}(\frac{1 \pm \sqrt{5}}{2})^{n-1}$$

$$= \frac{1}{\sqrt{5}}\left[\frac{1 \pm \sqrt{5}}{1 \pm \sqrt{5}}(\frac{1 \pm \sqrt{5}}{2})^{n-1} + \frac{1 \pm \sqrt{5}}{1 \pm \sqrt{5}}(\frac{1 \pm \sqrt{5}}{2})^{n-1}\right]$$

$$= \frac{1}{\sqrt{5}}\left[\frac{1 \pm \sqrt{5}}{1 \pm \sqrt{5}}(\frac{1 \pm \sqrt{5}}{2})^{n-1} + \frac{1 \pm \sqrt{5}}{2}(\frac{1 \pm \sqrt{5}}{2})^{n-1}\right]$$

$$= \frac{1}{\sqrt{5}}\left[(\frac{1 + \sqrt{5}}{2})^{n} - (\frac{1 - \sqrt{5}}{2})^{n}\right]$$

$$\approx \frac{1}{\sqrt{5}}(\frac{1 + \sqrt{5}}{2})^{n} - (\frac{1 + \sqrt{5}}{2})^{n}\right]$$

$$= \frac{1}{\sqrt{5}}(\frac{1$$

9.1.4 索引顺序表的查找

$$ASL_{bs} = L_b + L_w$$

$$= \frac{1}{b} \sum_{j=1}^{b} j + \frac{1}{s} \sum_{j=1}^{s} j$$

$$= \frac{1+b}{2} + \frac{1+s}{2}$$

$$= \frac{1}{2} (\frac{n}{s} + s) + 1$$

$$ASL'_{bs} \approx \log_2(\frac{n}{s} + 1) - 1 + \frac{1+s}{2}$$

$$\approx \log_2(\frac{n}{s} + 1) + \frac{s}{2} - \frac{1}{2}$$

$$\approx \log_2(\frac{n}{s} + 1) + \frac{s}{2}$$

9.2 动态查找表

9.2.1 二叉排序树和平衡二叉树

- 二叉排序树及其查找过程
- (1) 非空左子树上所有节点小于根节点
- 二叉排序树是空树或者具有性质 (2) 非空右子树上所有节点大于根节点
 - (3) 左右子树分别为二叉排序树

二叉排序树的插入和删除

```
Status SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p){
   //二叉排序树T中查找key
   //成功p指向节点,返回TRUE,失败p指向访问节点,返回FALSE
   //f指向双亲节点, 初始值为NULL
   if(!T){p=f;return FALSE;} //查找失败
   else if EQ(key,T->data.key){p=T;return TRUE;} //查找成功
   else if LT(key,T->data.key) return SearchBST(T->lchild,key,T,p);
   else return SearchBST(T->rchild,key,T,p);
Status InsertBST(BiTree &T, ElemType e){
   //二叉排序树T中不存在key,插入e返回TRUE
   //否则返回FALSE
   if(!SearchBST(T,e.key,null,p)){
       s=(BiTree)malloc(sizeof (BiTNode));
       s->data=e;s->lchild=s->rchild=NULL;
       if(!p)T=s;
       else if(LT(e.key,P->data.key))p->lchild=s;
       else p->rchild=s;
       return TRUE;
   else return FALSE;
}
```

 p_L, p_R 均为空树, 改双 *f 亲指针

双亲节点 *f 删除节点 *p $p_L or p_R$ 为空树,子树为双亲 *f 子树

 p_L, p_B 均不为空树,

 $(1)p_L$ 为双亲 *f 左子树, p_r 为 p_L 最右

 $(2)p_L$ 最右 *s 替代 * p 删除 * s重复操作

```
Status DeleteBST(BiTree &T, KeyType key){
   //若二叉树T中存在key, 删除该节点
   //并返回TRUE, 否则返回FALSE
                                // 不存在 kev
   if(!T) return FALSE;
       if(EQ(key,T->data.key)) return Delete(T); //找到key
       else if(LT(k,T->data.key)) return DeleteBST(T->lchild,key);
       else return DeleteBST(T->rchild,key);
}
Status Delete(BiTree &p){
   //从二叉树删除节点p, 重接左子树或右子树
   if(!p->rchild){q=p;p=p->lchild;free(q);}
   else if(!p->lchild){q=p;p=p->rchild;free(q);}
   else{
       q=p;s=p->lchild;
       while(s->rchild){q=s;s=s->rchild;} //右转到尽头,
       p->data=s->data;
                                       //s指向p前驱, q指向s双亲
       if(q!=p)q->rchild=s->lchild; //重接q右子树
       else q->lchild=s->lchild; //重接q右子树(左单支)
       free(s);
   7
   return TRUE;
}
```

二叉排序树的查找分析

$$\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^n \geqslant a_1 a_2 \dots a_n$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.76 (自然常數)$$

$$s_n = \left(1 + \frac{1}{n}\right)^n = \left(\frac{1+n}{n}\right)^n \cdot 1 \leqslant \left(\frac{\frac{n+1}{n} + \dots + \frac{n+1}{n} + 1}{n+1}\right)^{n+1} = \left(\frac{n+2}{n+1}\right)^{n+1} = s_{n+1}, 單增 \quad n \geqslant 1$$

$$t_n = \left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right)^{n+1}, 單減 \quad n \geqslant 1$$

$$\frac{1}{t_n} = \left(\frac{n}{n+1}\right)^{n+1} = \left(\frac{n}{n+1}\right)^{n+1} \cdot 1 \leqslant \left(\frac{\frac{n}{n+1} + \dots + \frac{n}{n+1} + 1}{n+2}\right)^{n+2} = \left(\frac{n+1}{n+2}\right)^{n+2} = \frac{1}{t_{n+1}}, t_n \geqslant t_{n+1}$$

$$2 = s_1 < s_n < t_n < t_1 = 4$$

$$(1 + \frac{1}{n})^n < s_{max} = e < t_{min} < (1 + \frac{1}{n})^{n+1}, n \ln\left(\frac{n+1}{n}\right) < 1 < (n+1) \ln\left(\frac{n+1}{n}\right)$$

$$\frac{1}{n+1} < \ln\left(\frac{n+1}{n}\right) < \frac{1}{n}$$

$$\begin{split} \gamma_n &= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \\ &> \ln(\frac{2}{1}) + \ln(\frac{2}{3}) + \dots + \ln(\frac{n+1}{n}) - \ln n \\ &> \ln(n+1) - \ln n > 0, \text{ If } \frac{1}{3} + \dots + \ln(\frac{n+1}{n}) - \ln n \\ &> \ln(n+1) - \ln n > 0, \text{ If } \frac{1}{3} + \dots + \frac{1}{n+1} - \ln(\frac{n+1}{n}) < 0, \gamma_{n+1} < \gamma_n \text{ $\dot{\mathbb{H}}$} \frac{1}{3} \\ 0 &< \gamma_n < 1 \\ k &= \sum_{j=1}^n \frac{1}{j} \\ \int_1^n \frac{1}{2} dx = \ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} = k + \frac{1}{n} \\ \int_1^n \frac{1}{2} dx = \ln n < \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \dots + \frac{1}{n} = k - 1 \\ \int_1^n \frac{1}{2} dx = \ln n < \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \dots + \frac{1}{n} = k - 1 \\ \int_1^n \frac{1}{2} dx = \ln n < \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = k - 1 \\ \int_1^n \frac{1}{2} dx = \ln n < \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = k - 1 \\ \int_1^n \frac{1}{2} dx = \ln n < \frac{1}{2} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = k - 1 \\ \lim n \to \gamma_n < 1 \\ k - \ln n \to \gamma < 0.577(\frac{n}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} + \frac{1}{3} + \dots + \frac{1}{n} = k - 1 \\ \lim n \to \gamma_n < 1 \\ \lim n \to \gamma_n < 1 \\ \lim n \to \gamma_n < 1 \\ \lim n \to \gamma_n > 1 \\ \lim$$

$$\begin{split} s_2 &= s_1 + \delta_2 \\ s_1 &= s_0 + \delta_1 \\ s_n &= \sum_{j=1}^n \delta_j = \sum_{j=1}^n \frac{2j-1}{j(j+1)} = \sum_{j=1}^n (2j-1)(\frac{1}{j} - \frac{1}{j+1}) \\ &= \sum_{j=1}^n \frac{2j-1}{j} - \frac{2j-1}{j+1} \\ &= \sum_{j=1}^n \frac{2j-1}{j} - \frac{2j+2-3}{j+1} \\ &= \sum_{j=1}^n \frac{-1}{j} + \sum_{j=1}^n \frac{3}{j+1} \\ &= \sum_{j=1}^n \frac{-1}{j} + \sum_{j=1}^n \frac{1+2}{j+1} \\ &= \sum_{j=1}^n (\frac{-1}{j} + \frac{1}{j+1}) + \sum_{j=1}^n \frac{2}{j+1} \\ &= \sum_{j=1}^n (\frac{-1}{j} + \frac{1}{j+1}) + \sum_{j=1}^n \frac{2}{j+1} \\ &= -\frac{n}{n+1} + \sum_{j=1}^n \frac{2}{j+1} \\ P(n) &= \frac{n+1}{n} s_n = -1 + 2\frac{n+1}{n} \sum_{j=1}^n \frac{1}{j+1} = -1 + 2\frac{n+1}{n} (\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1}) \\ &= 2\frac{n+1}{n} (\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}) + \frac{2}{n} - 1 \\ &= 2\frac{n+1}{n} (k-1) + \frac{2}{n} - 1 = 2\frac{n+1}{n} (\ln n + \gamma - 1) + \frac{2}{n} - 1 \leqslant 2\frac{n+1}{n} \ln n \end{split}$$

平衡二叉树是空树或者具有性质

- (1)左右子树都是平衡二叉树
- (2)左右子树高度差绝对值小于1

平衡因子左子树高度减右子树高度

- (1)空树,e 为根节点
- (2)e 等于根节点,不插入
- (3)e 小于根节点,左子树无 e,插入左子树根节点平衡因子 =-1,改为 0,树深度 +0根节点平衡因子 =0,改为 1,树深度 +1根节点平衡因子 =1

(1)单向右旋

失衡调整 (2)单向左旋

插入 e 算法描述

(3)双向旋转 (先左后右)

(4)双向旋转 (先右后左)

左子树根节点平衡因子 =1,单向右旋 左子树根节点平衡因子 =-1,先左后右

(4)e 大于根节点,右子树无 e,插入右子树根节点平衡因子 =1,改为 0,树深度 +0根节点平衡因子 =0,改为 1,树深度 +1根节点平衡因子 =-1

右子树根节点平衡因子 =-1, 单向左旋 右子树根节点平衡因子 =1, 先右后左

```
#define LH +1;
#define EH 0;
#define RH -1;
typede struct BSTNode{
                               //节点平衡因子
int bf;
struct BSTNode * lchild ,*rchild; //左右孩子指针
}BSTNode,*BSTree;
void R_Rotate(BSTree &p){
   //对以*p为根的二叉排序树作右旋处理,处理后p指向新的根节点,即左子树根节点
   lc=p->lchild; //lc指向*p的左子树的根节点
p->lchild=lc->rchild; //lc的右子树挂接为*p的左子树
   lc->rchild=p;p=lc;
                           //p指向新的根节点
void L_Rotate(BSTree &p){
   //对以*p为根的二叉排序树作左旋处理,处理后p指向新的根节点,即右子树根节点
                         //rc指向*p的右子树的根节点
//rc的左子树挂接为*p的右子树
   rc=p->rchild;
   p->rchild=rc->lchild;
   rc->lchild=p;p=rc;
                           //p指向新的根节点
void LeftBalance(BSTree &T){
   //对平衡二叉树T作左平衡处理, 结束时T指向新的根点
   lc=T->lchild;
   switch(lc->bf){
       case LH:
          T->bf=lc-bf=EH; R_Rotate(T); break;
       case RH:
          rd=lc->rchild;
          switch(rd->bf){
              case LH:T->bf=RH;lc->bf=Eh;break;
              case EH:T->bf=lc->bf=EH;break;
              case RH:T->bf=EH;lc->bf=LH;break;
          }
          rd->bf=EH;
          L_Rotate(T->rchild);
          R Rotate(T);
   }
}
```

```
Status InsertAVL(BSTree &T.ElemTvpe e.Boolean &taller){
   //平衡二叉树T不存在e,插入返回1,否则返回0
   //若插入失衡,则平衡处理,taller反映长高与否
       T=(BSTree) malloc(sizeof(BSTNode));T->data=e;
       T->lchild=T->rchild=NULL:T->bf=EH:taller=TRUE:
   }
       if(EQ(e.key,T->data.key)){taller=FALSE;return 0;}
       if(LT(e.key,T->data.key)){
           if(!InsertAVL(T->lchild,e,taller)) return 0;
           if(taller) switch(T->bf){
               case LH:
                   LeftBalance(T); taller=FALSE; break;
               case EH:
                   T->bf=LH;taller=TRUE;break;
               case RH:
                   T->bf=EH; taller=FALSE; break;
           }
       }
       else{
           if(!InsertAVL(T->rchild,e,taller)) return 0;
           if(taller) switch(T->bf){
               case LH:
                   T->bf=EH:taller=FALSE:break:
               case EH:
                  T->bf=RH:taller=TRUE:break:
               case RH:
                   RightBalance(T); taller=FALSE; break;
           }
       }
   }
   return 1;
```

平衡二叉树查找的分析

比较次数不超过树的深度

```
N_h 深度为 h 的平衡二叉树的最少节点数 N_{n+1}+1=N_n+1+N_{n-1}+1, N_0=0, N_1=1, N_2=2 b_{n+1}=b_n+b_{n-1}, b_0=1, b_1=2, b_2=3 b_{n+1}-sb_n=(1-s)(b_n-sb_{n-1})=(1-s)^n(b_1-sb_0)=(2-s)(1-s)^n (s-1)s=1, s_1=\frac{1+\sqrt{5}}{2}, s_2=\frac{12\sqrt{5}}{2} b_{n+1}-s_1b_n=(2-s_1)(1-s_1)^n b_{n+1}-s_2b_n=(2-s_2)(1-s_2)^n -(s_2-s_1)b_n=(2-s_2)(1-s_2)^n-(2-s_1)(1-s_1)^n s_2-s_1=-\sqrt{5}, 2-s_2=\frac{3+\sqrt{5}}{2}, 2-s_1=\frac{3-\sqrt{5}}{2}, 1-s_2=\frac{1+\sqrt{5}}{2}, 1-s_1=\frac{1-\sqrt{5}}{2} b_n=\frac{(2-s_2)}{-(s_2-s_1)}(1-s_2)^n-\frac{(2-s_1)}{-(s_2-s_1)}(1-s_1)^n b_n=\frac{1}{\sqrt{5}}\left[(1+\frac{1+\sqrt{5}}{2})(\frac{1+\sqrt{5}}{2})^n-(1+\frac{1-\sqrt{5}}{2})(\frac{1-\sqrt{5}}{2})^n\right]=F_n+F_{n+1} N_n=b_n-1=F_n+F_{n+1}-1=F_{n+2}-1 F_h\approx\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^h=c(\varphi)^h N_h=c(\varphi)^{h+2}-1 \log(\frac{N_h+1}{c})=(h+2)\log\varphi \frac{\log(\frac{N_h+1}{c})}{\log\varphi}-2=\log_\varphi(\frac{N_h+1}{c})-2=h 先排序,再构造次优查找树,生成树是二叉排序树
```

9.2.2 B-树和 B+ 树

B-树及其查找

B-树是平衡的多路查找树,

- (1)每个节点至多有 m 棵子树
- (2)若根节点不是叶子节点,则至少有两棵子树
- (3)除根结点之外的所有非终端节点,至少包含[3]棵子树
- m 阶 B-树是空树或具有性质
- (4)所有的非终端节点,包含信息 $(n, A_0, k_1, A_1, K_2, \dots, K_n, A_n), K_i$ 为关键字, A_i 指向根节点的指针 A_{i-1} 指向子树的所有节点小于 K_i, A_{i+1} 指向子树的所有节点大于 K_i 关键字个数 $n, \lceil \frac{m}{2} \rceil 1 \leqslant n \leqslant m-1$
- (5)所有的叶子节点都出现在同一层次上,且不带信息

```
//B-树的阶
#define m 3
typedef struct BTNode{
                            //关键字个数, 即节点大小
   int keynum;
   struct BTNode * parent; //双亲结点

      KeyType key[m+1];
      //关键字向量,0号单元未用

      struct BTNode * ptr[m+1];
      //子树指针向量

   KeyType key[m+1];
   Record *recptr[m+1]:
                            //记录指针向量,0号单元未用
}BTNode,*BTree;
typedef struct{
   BTNode *pt;
                    //指向找到的节点
                    //在节点中的关键字号
   int i;
   int tag;
                     //1成功,0失败
Result:
                     //B-树查找结果类型
Result SearchBTree(BTree T, KeyType K){
   //在m阶B-树T上查找K, 返回(pt,i,tag)
   //成功返回位置,失败插入返回插入位置
   p=T;q=NULL;found=FALSE;i=O; //初始化,p指向待查节点,q指向p的双亲节点
   while(p && !found){
      i=Search(p,k);
                               //在p->key [1...keynum] 中查找
       if(i>0 && p->key[i]==k) found =TRUE; //查到关键字
       else{q=p;p=p->ptr[i];}
   if(found) return (p.i.1):
   else return (q,i,0);
}
```

B-树查找分析

磁盘节点, 内存顺序

 $1, 2, 2\lceil \frac{m}{2} \rceil, 2\lceil \frac{m}{2} \rceil^2, \dots, 2\lceil \frac{m}{2} \rceil^{n-2}, \dots$

N 关键字 B-树,深度 l+1(叶子算深度),N+1 叶子节点

$$N+1\geqslant 2\lceil \frac{m}{2}\rceil^{l+1-2}$$

 $\log_{\lceil \frac{m}{2} \rceil}(N+1) \geqslant \log_{\lceil \frac{m}{2} \rceil} 2 + l - 1$

 $\log_{\lceil \frac{m}{2} \rceil} (\frac{N+1}{2}) + 1 \geqslant l$

B-树插入和删除

最底层非终端节点添加,添加后关键字个数不超过 m-1 完成,超过分裂

节点分裂 *p 节点含 m-1 关键字,插入后节点信息 $(m, A_0, K_1, A_1, K_2, A_2, \ldots, K_m, A_m)$

*
$$p_1$$
, ($\lceil \frac{m}{2} \rceil - 1$, A_0 , K_1 , A_1 , K_2 , A_2 , ..., $K_{\lceil \frac{m}{2} \rceil - 1}$, $A_{\lceil \frac{m}{2} \rceil - 1}$)
* p_2 , ($m - \lceil \frac{m}{2} \rceil$, $A_{\lceil \frac{m}{2} \rceil + 1}$, $A_{\lceil \frac{m}{2} \rceil + 1}$, $A_{\lceil \frac{m}{2} \rceil + 2}$, $A_{\lceil \frac{m}{2} \rceil + 2}$, ..., K_m , A_m)
 key , ($K_{\lceil \frac{m}{2} \rceil}$, * p_2) 合并到双亲

```
Status InsertBtree(BTree &T ,KeyType T,BTree q ,int i){
   //m阶B-树, *q的key[i],key[i+1] 之间插入关键字k
  //插入后节点过大则分裂
   x=k;ap=NULL;finished=FALSE;
   while(q && !finished){
      Insert(q,i,x,ap);
                           //将x,ap分别插入q->key[i+1],q->ptr[i+1],
      if(q->keynum<m) finished=TRUE; //插入完成
                                     //分裂节点*c
          s=m/2+1; splite(q,s,ap); x=q->key[s];
          //移动相应元素q->key[s+1..m], q->ptr[s..m]q->recptr[s+1..m] 到新节点*ap
         q=q->parent;
          if(q) i=Search(q,x);
   }
                        //T是空树或者节点已分裂为节点*p, *ap
   if(!finished)
      NewRoot(T,q,x,ap); //生成含信息(T,x,ap)的新的根节点*T,原T和ap为子树指针
   return OK;
```

最底层非终端节点删除,删除后关键字个数不小于 $\lceil \frac{m}{2} \rceil$ 完成,小于合并非终端节点 K_i 用指针 A_i 子树最小关键字 Y 替代 K_i 再删除 Y (1)所在节点大于等于 $\lceil \frac{m}{2} \rceil$

非终端删除情况 (关键字个数) (2)所在节点等于 $\left\lceil \frac{m}{2} \right\rceil - 1$,存在兄弟节点大于 $\left\lceil \frac{m}{2} \right\rceil - 1$ 双亲借兄弟,靠近给自己 (3)所在节点等于 $\left\lceil \frac{m}{2} \right\rceil - 1$,兄弟节点都等于 $\left\lceil \frac{m}{2} \right\rceil - 1$ 毁灭自己,留给兄弟

9.2.3 键树

键树又称数字查找树,度大于 2 的树。元素是组成关键字的符号。关键字是数值,单词。 **键树**是有序树,结束符 \$ 小于任何字符

键树存储结构

(1) 孩子兄弟链表,分支节点 (symbol, first, next),叶子节点 infoptr 域,双链树

```
#define MAXKEYLEN 16
                      //关键字最大长度
typedef struct{
   char ch[MAXKEYLEN]:
                    // 关键字
                       //关键字长度
                       //关键字类型
}KeysType;
typedef enum{LEAF, BRANCH} NodeKind; //节点种类: {叶子, 分支}
typedef struct DLTNode{
   char symbol:
   struct DLTNode *next;
                           //指向兄弟节点的指针
   NodeKind kind;
   union{
      Record *infoptr;
                               // 叶子节点的记录指针
      struct DLTNode *first
                               // 分支节点的孩子链指针
}DLTNode,*DLTree;
                                // 双链树的类型
Record * SearchDLTree(DLTree T, KeysType K){
   //在非空双链树T中查找K,存在返回记录指针,失败返回空指针
   p=-T->first;i=0;
   while(p&& i<k.num){</pre>
      while(p&& p->symbol !=K.ch[i]) p=p->next;
                                              // 查找第i
                                              //准备查找下一位
      if(p&& i<K.num-1) p=p->first;
      ++i;
                                              //查找成功
   if(!p) return NULL;
                                               //查找失败
   else return p->infoptr;
```

键树节点最大度 d,深度 h,双链树平均查找长度 $\frac{h}{2}(1+d)$ 插入删除节点,等于在树中某个节点插入删除子树

(2) 多重链表,单支树压缩为叶子节点,

```
typedef struct TrieNode{
```

```
NodeKind kind;
union{
    struct{KeysType k;Record * infoptr;} lf; //叶子节点
    struct{TrieNode *ptr[27]; int num;} bh; //分支节点
    }
}TrieNode,*TrieTree;

Record * SearchTrie(TrieTree T,KeysType k){
    //在键树T中查找关键字等于K的记录
    for(p=T,i=0; //对k的每个字符逐个查找
    p&& p->kind==BRANCH && i<K.num; //*p为分支节点
    p=p->bh.ptr[ord(K.ch[i])],++i); //ord 求字符在字母表中序号,$为0
    if(p=&& p->kind==LEAF&& p->lf.k==k) return p->lf.infoptr; //查找成功
    else return NULL;
}
```

多重链表键树分割, 无查找分析

9.3 哈希表

10 内部排序

10.1 概述

```
#define MAXSIZE 20
typedef int KeyType;
typedef struct{
   KeyType key;
   InfoType ontherinfo;
}RedType;
typedef struct{
   RedType r [MAXSIZE+1];
   int length;
}Sqlist;
```

10.2 插入排序

10.2.1 直接插入

10.2.2 其他插入

折半插入

```
void BInsertSort(Sqlist &L){
   //对顺序表做折半插入排序
   for(i=2;i<=L.length;i++){</pre>
       L.r[0]=L.r[i];
                                    //将L.r[i]暂存到L.r[0]
       low=1,high=i-1;
       while(low<=high){</pre>
                                   //在L.r[low...high] 中折半查找有序插入位置
          m=(low+high)/2;
                                   //折半
          if(LT(L.r[0].key,L.r[m].key)) high=m-1; //插入点在高
                                               //插入点在低
          else low =m+1;
       }
       for(j=i-1;j>=high+1;--j) L.r[j+1]=L.r[j]; //记录后移
       L.r[high+1]=L.r[0];
                                               //插入
}//BInsertSort
```

二路插入

表插入

希尔排序

```
void ShellInsort(Sqlist &L, int dk){
  //对顺序表做希尔插入排序
   //1.位置增量dk
   //2.L.r[0] 是暂存不是哨兵, j<=0 时插入位置已找到
   for(i=dk+1;i<=L.length;i++){</pre>
      L.r[0]=L.r[i];
                                //暂存L.r[0]
         for(j=i-dk; j>0 && LT(L.r[0].key,L.r[j].key); j-=dk)
            L.r[j+dk]=L.r[j]; //记录后移,查找插入位置
[j+dk]=L.r[0]; //插入正确位置
         L.r[j+dk]=L.r[0];
      }
   }
}//ShellInsort
void ShellSort(Sqlist &L, int dk[],int t){
   //按增量序列 dk[0...t-1] 对顺序表做希尔插入排序
   for(k=0;k<t;k++){
      ShellInsort(L,dk[k]); //一趟增量为dk[k]的插入排序
   }
}//ShellSort
```

10.3 快速

10.3.1 起泡排序

```
void BubbleSort(int a[],int n){
    for(i=n-1,change=TRUE;i>=1 && change;--i){
        change=FALSE;
        for(j=0;j<i,j++){
            if(a[j]>a[i]){SWAP(a[j],a[i]);change=TRUE;}
        }
    }
}
```

10.3.2 快速排序

```
void Partition(Sqlist &L,int low,int high){
   //交换顺序表L中子序列L.r[low...high]的记录, 枢轴记录到位, 返回位置此时
   //在枢轴前 (后) 记录不大于 (不小于) 它
   L.r[0]=L.r[low];
                      // 第一个记录做枢轴
   pivotkey=L.r[low].key; //枢轴记录关键字
   while(low<high){</pre>
                        //从表的两端交替向中间扫描
       while(low<high && L.r[high].key>=pivotkey) --high;
       L.r[low]=L.r[high]; //小的左移
       while(low<high && L.r[low] <= pivotkey) ++low;</pre>
       L.r[high]=L.r[low]; //大的右移
                         //枢轴到位
   L.r[low]=L.r[0];
                          //返回枢轴位置
   return low;
}
void QSort(Sqlist &L,int low,int high){
   //对顺序表L中子序列L.r[low...high] 作快速排序
                                   //长度大于1
   if(low<high){</pre>
       pivotkey=Partition(L,low,high); //将L.r[low...high] 一分为二
       QSort(L,low,pivotkey-1); //低子表递归
QSort(L,pivotkey+1,high); //高子表递归
       QSort(L,pivotkey+1,high);
   }
}
void QuickSort(Sqlist &L){
   //对顺序表L作快速排序
   QSort(L,1,L.length)
```

10.4 选择排序

10.4.1 简单选择排序

10.4.2 树形排序

10.4.3 堆排序

```
void HeapAdjust(HeapType &H,int s ,int m ){
   //已知H.r[s...m]中记录除H.r[s]外均满足堆的定义
   //调整H.r[s] 使得H.r[s...m] 称为大顶堆
   rc=H.r[s];
                       //沿key较大的孩子节点向下筛选
   for(j=2*s;j<=m;j*=2){
       if(j<m && LT(H.r[j].key,H.r[j+1].key)) ++j; //j为key 较大的记录的下标
                                            //rc插入s
       if(!LT(rc.key,H.r[j].key)) break;
       H.r[s]=H.r[j];s=j;
                                             //插入
   }
   H.r[s]=rc;
void HeapSort(HeapType &H ){
   for(i=H.length/2;;i>0;--i)
                                    //把H.r[1...H.length] 建成大顶堆
      HeapAdjust(H,i,H.length);
   for(i=H.length;i>1;--i){
                                     // 堆顶记录和未经排序子序列H.r[1...i] 中最后一个记录交换
      SWAP(H.r[1],H.r[i]);
                                     //将[1...i-1] 建成大顶堆
       HeapAdjust(H,1,i-1);
}
```

10.5 归并排序

```
void Merge(RcdType SR[],RcdType & TR[],int i,int m,int n ){
    //将有序的SR[i...m],SR[m+1,n]归并为有序的TR[i...n]
    for(j=m+1,k=i;i<=m && j<=n;++k){ //将SR中记录从小到大并入TR
        if(LQ(SR[i].key,SR[j].key)) TR[k]=SR[i++];
        else TR[k]=SR[j++];
                                       // 将剩余的 SR[i...m] 复制到 TR[K...n]
    if(i<=m) TR[K...n]=SR[i...m];</pre>
    if(j<n) TR[k...n]=SR[j...n];</pre>
                                        // 将剩余的SR[j...n] 复制到TR[K...n]
void Msort(RcdType SR[],RcdType & TR1[],int s,int t){
    //将SR[s...t] 归并为TR1[s...t]
    if(s==t) TR1[s]=SR[s];
    else{
        m=(s+t)/2;
                            //将SR[s...t]平分为SR[s...m], SR[m+1...t]
        Msort(SR,TR2,s,m); //递归SR[s...m] 为有序 TR2[s...m]
Msort(SR,TR2,m+1,t); //递归SR[m+1...t]为有序 TR2[m+1...t]
        Merge[TR2,TR1,s,m.t]; //将TR2[s...m],TR2[m+1...t] 归并到 TR1[s...t]
    }
}
void MergeSort(Sqlist &L){
    Msort(L.r,L.r,1,L.length);
```

10.6 基数排序

10.6.1 多关键字的排序

10.6.2 链式基数排序

```
#define MAX_NUM_OF_KEY 8
 #define RADIX 10
#define MAX SPACE 10000
typedef struct{
   KeysType Keys[MAX_NUM_OF_KEY];
   InfoType ontheritems;
   int next:
}SLCell;
typedef struct{
   SLCell r[MAX_SPACE];
   int keynum;
   int recnum;
}SLList:
typedef int ArrType[RADIX];
void Distribute(SLCell &r,int i,ArrType &f,ArrType &e){
   //静态链表L的r域中记录已按keys[0]...keys[i-1]有序
   //本算法按第i个关键字keys[i]建立RADIX个子表,使得同一子表中记录的keys[i]相同
   //f[0...RADIX-1], e[0...RADIX-1]分别指向各子表中第一个和最后一个记录
   for(j=0;j<Radix;++j) f[j]=0 //各子表初始化为空
   for(p=r[0].next;p;p=r[p].next){
      j=ord(r.[p].keys[i]); //ord将记录中第i个关键字映射到[0...RADIX-1]
      if(!f[j]) f[j]=p;
      else r[e[j]].next=p;
                          //将p指向的结点插入第j个子表中
      e[i]=p:
   7
}//Distribute
void Collect(SLCell &r,int i,ArrType f,ArrType e){
   //本算法按keys[i]从小至大地将f[0...RADIX-1]所指个子表依次链接成一个链表
   //e[0...RADIX-1] 为各子表的尾指针
   for(j=0;!f[j];j=succ(j)); //找到第一个非空子表, succ为求后继函数
   r[0].next=f[j];t=e[j];
                          //r[0].next指向第一个非空子表中第一个节点
   while(j<RADIX){</pre>
      for(j=succ(j);j<RADIX-1 && !f[j];j=succ(j)); //找到下一个非空子表
      if(f[j] {r[t].next=f[j];t=e[j];})
                                            //链接两个非空子表
                                             //t指向最后一个非空子表中的最后一个节点
   r[t].next=0:
}//Collect
void RadixSort(SLList &L){
   //L是采用静态链表表示的顺序表
   //对L作基数排序, 使得L成为按关键字自小到大的有序静态链表, L.r[0] 为头节点
   for(i=0;i<L.recnum;++i) L.r[i].next=i+1;</pre>
                             //将改造为静态链表
   L.r[L.recnum].next=0;
                             //按最低位优先依次对各关键字进行分配和收集
   for(i=0;i<L.keynum;++i){</pre>
                            //第i趟分配
      Distribute(L.r,i,f,e);
      Collect(L.r,i,f,e);
                             //第i趟收集
   }
}//RadixSort
```

10.7 各内部排序方法的比较讨论

排序方法	平均时间	最坏情况	辅助存储
简单排序	$O(n^2)$	$O(n^2)$	O(1)
快速排序	O(nlogn)	$O(n^2)$	O(logn)
堆排序	O(nlogn)	O(nlogn)	O(1)
归并排序	O(nlogn)	O(nlogn)	O(n)
基数排序	O(d(n+rd))	O(d(n+rd))	O(rd)

简单排序包括除希尔排序之外所有插入排序,起泡排序,简单选择排序,直接插入排序 地址向量重排算法

11 外部排序

12 文件