Transmissão Digital em Banda Base

Banda base

Modelo do sistema

← No transmissor

 \leftarrow A saída do gerador de pulsos é dada por: $s(t) = \sum a_k p(t - kT_b)$

$$s(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kT_b)$$

 \boxtimes onde a_k é uma variável aleatória discreta: { a, -a } (polar),

∅ p(t) é modelado por um pulso retangular de amplitude unitária e largura

 $\boxtimes \tau \ll T_b$ (pulsos estreitos).

← No Receptor

← Admitindo atraso nulo, então na saída do filtro receptor tem-se:

$$y(t) = \sum_{k=-\infty}^{\infty} a_k p_R(t - kT_b) + n_R(t)$$

$$P_R(f) = H_T(f)C(f)H_R(f)$$
 $\tau \ll T_b$

☑ O circuito de decisão decide [a cada T_b] qual símbolo a_k foi transmitido:
 ☑ O instante de decisão é determinado por um sinal de sincronismo (*clock* - relógio) obtido a partir de y(t).

← Nos instantes de decisão: t = T_b tem-se que:

$$y(nT_b) = a_n p_R(0) + \sum_{k \neq n} a_k p_R((n-k)T_b) + n_R(nT_b)$$

- \boxtimes a_n é o pulso detectado no instante t = nT_b.
- So outro dois termos são: a interferência entre símbolos (ies) e ruído,
- Eles podem causar erros no processo de detecção.
- **☑** Desafio de projeto:
 - Projetar filtros do transm. e receptor que minimizem a ies e o ruído.
 - □ De modo a minimizar a probabilidade de erro de bit.

Considerações sobre o canal

- ← Pares de fios ou cabos, fibras ópticas, link de microondas,
 - ✓ Introdução de ruído [n(t)],
 - ✓ Distorção [C(f)],
 - ∠ Atenuação,
 - Estes problemas aumentam com a distância. (Solução: colocar regeneradores ao longo da linha)

← Regeneradores ao longo da linha:

1. Potência do sinal digital

Parâmetros importantes do sistema

- \Box Taxa de bits (f_b ou R_b),
- Potência média transmitida,
- Formato do Pulso,
- ← A potência média de um trem de pulsos é definida como:

$$P_{T} = \left\langle \lim_{N \to \infty} \frac{1}{(2N+1)T_{b}} \int_{-NT_{b}/2}^{NT_{b}/2} \left[\sum_{k=-N}^{N} a_{k} p(t-kT_{b}) \right]^{2} dt \right\rangle$$

 \leftarrow Admitindo símbolos equiprováveis, onde $a_k = \{ a ou -a \} então:$

$$P_{T} = \frac{a^{2}}{T_{b}} \int_{-\infty}^{\infty} |P_{R}(f)|^{2} df = \frac{a^{2}}{T_{b}} \int_{-\infty}^{\infty} p_{R}^{2}(t)^{2} dt$$

2. Transmissão de pulsos retangulares

$$\leftarrow$$
 p(t) = ret(t/ τ) (T_b/2 < τ < T_b) <==> P(f) = τ .sinc(f τ)

Problemas:

- ☑A largura de faixa deve se estender até o infinito: A função de transferência do sistema deve ser plana e com fase linear.
 - ☑ Introdução de ruído (quanto maior Bw, maior o ruído).
- ☑O canal não tem resposta plana (pulso decai com o tempo).
- As caudas dos pulsos interferem nos adjacentes podendo inverter a polaridade (ies) acarretando erros.
- \boxtimes Dado prático: Bw. $\tau > 0.5$
- ☑Na prática não é necessário preservar a largura de faixa.

3. Formato do pulso

← Vamos estudar uma maneira de especificar o pulso recebido, dado que:

$$P_R(f) = H_T(f)C(f)H_R(f)$$

- ← Com as seguintes restrições:
 - ∠ O sistema deve apresentar banda limitada.
 - ✓ Interferência entre símbolos deve ser nula.

Interferência entre Símbolos

← Admitindo transmissão livre de ruído: ■

$$y(t) = \sum_{k=-\infty}^{\infty} a_k p_R(t - kT_b)$$

← No instante de decisão t = 0 deveria-se ter: $y(0) = a_0 p_R(0)$. Contudo tem-se:

$$y(0) = a_0 p_R(0) + a_1 p_R(-T_b) + a_2 p_R(-2T_b) + \cdots + a_{-1} p_R(T_b) + a_{-2} p_R(2T_b) + \cdots$$

← No instante de decisão qualquer t = nT_b:

$$y(nT_b) = a_n p_R(0) + \sum_{k \neq n} a_k p_R[(n-k)T_b]$$
pulso desejado ies

← Condição para ies nula:

$$p_R(nT_b) = \begin{cases} a, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

critério de Nyquist

para ies nula

$$\sum_{b=1}^{\infty} P_r(f - kf_b) = aT_b$$

← Solução Ideal

- ← O segundo critério de Nyquist (para ies nula) nos mostra que:
 - \boxtimes Pode-se transmitir dados com taxa R = f_b bps através de um sistema com P_R(f) constante entre o e f_b/2 e zero fora deste intervalo.

 - **☒ Filtro ideal de Nyquist.**

- Muito sensível a erros de temporização,

← Solução Prática

- ← O critério de Nyquist não especifica unicamente P_R(f),

 - O pulso cosseno levantado, mostrado abaixo, apresenta ies nula e largura de faixa máxima f_h, dependendo do valor do parâmetro β.

$$P_{R}(f) = \begin{cases} T_{b}, & |f| < f_{b}/2 - \beta \\ T_{b} \cos^{2} \frac{\pi}{4\beta} \left(|f| - \frac{f_{b}}{2} + \beta \right), & |f_{b}/2 - \beta \leq |f| \leq f_{b}/2 + \beta \\ 0, & |f| > f_{b}/2 + \beta \end{cases}$$

$$p_R(t) = \frac{\cos 2\pi \beta t}{1 - (4\beta t)^2} \operatorname{sinc}(f_b t)$$

domínio da frequência

domínio do tempo

Observações

- \leftarrow A largura de faixa depende de β ($f_b/2$ e f_b),
- \leftarrow Quanto maior β , os pulsos decaem a zero mais rapidamente,
 - Facilidade de sincronização
 - ✓ Os erros de temporização são minimizados.
- $\leftarrow \beta = 0$ conduz ao filtro ideal de Nyquist,
- ← O pulso não é causal => solução prática: implementar uma versão atrasada.

← Exemplo:Suponha que se está transmitindo a seguinte seqüência:

{ ... 1 0 1 1 ... }

... 1 0 1 1 ...

0.5

0

-0.5

-1

T 2T 3T 4T

4. Diagrama de olho

- ← Aplicação:
 - Análise dos efeitos de ruído, interferência entre símbolos, erros de temporização, etc. utilizando um osciloscópio.
- ← Modo de obtenção do diagrama de olho:
 - a base de tempo do osciloscópio é sincronizada com a taxa de bits ou
 de símbolos,
 - ✓ ela é limitada a um ou dois períodos,
 - O sinal digital é aplicado na entrada vertical,
 - ✓ vários pulsos são superpostos,

Exemplo:

← Diagrama de olho:

Algumas Informações obtidas no diagrama de olho

Diagrama de olho real

5. Probabilidade de erro

- ← O ruído em um sinal digital tende a degradar o sistema,
- ← Esta degradação se manifesta na forma de erros no processo de detecção. O sinal na entrada do filtro receptor consiste do sinal digital mais uma componente de ruído:

$$y(t) = s(t) + n(t)$$

- O filtro receptor, com característica passa-baixas, limita o ruído em sua saída.
- ← O sinal na saída do filtro é então amostrado, através de um circuito "sample and hold", nos picos do pulso recebido onde a SNR é máxima.
- ← O circuito de decisão decide que símbolo foi transmitido.

sistema com qualidade aceitável:

 $10^{-4} < ber < 10^{-8}$

← Cálculo da probabilidade de erro

- ← Admitindo ruído branco gaussiano com valor médio nulo e variância N₀/2.
- Nos instantes de amostragem tem-se:

$$y(t_0) = a_0 + n_R(t_0)$$
 onde: $a_0 = \pm a$

← Um erro irá ocorrer se:

Admitindo símbolos equiprováveis:

$$Pe = \frac{1}{2}P[n_R > a] + \frac{1}{2}P[n_R < -a]$$

$$Pe = P[n_R > a]$$

← como o ruído é branco, gaussiano com média nula e variância N₀/2

$$p(n) = \frac{1}{2\pi\sigma} \exp\left[\frac{-n^2}{2\sigma^2}\right], \quad onde: \ \sigma^2 = \frac{N_0}{2}$$

$$Pe = \frac{1}{2} \operatorname{erfc} \left(\frac{a}{\sqrt{N_0}} \right)$$

erfc: complementar da função erro

Potência do pulso com amplitude unitária e largura T_b.

$$P_s = a^2$$

$$Pe = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{P_s}{P_N}} \right)$$

