Partitioning Variability ANOVA

READING: 2.2

EXERCISES: CH 2. 15a, 17a

ASSIGNED: MIDTERM 1

PRODUCER: DR. MARIO

Effectiveness of a Model

- Idea 1: A simple linear regression model is **not effective** if we **cannot conclude** with confidence that the slope $\beta_1 \neq 0$
- Idea 2: A simple linear regression model is not effective if we
 determine that the predictions from the fitted model only explain a
 small amount of the total variability of the response variable Y
- Analysis of Variance (ANOVA) = Method for Implementing Idea 2

Textbook Explanation of Statistical Modeling

$$Data = Model + Error$$

Partitioning Variability

ANOVA Makes Inference Based Off This Partition

Mathematical Proof

$$y - \bar{y} = (\hat{y} - \bar{y}) + (y - \hat{y})$$
$$(y - \bar{y})^2 = (\hat{y} - \bar{y})^2 + 2(\hat{y} - \bar{y})(y - \hat{y}) + (y - \hat{y})^2$$

$$\sum (y - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum 2(\hat{y} - \bar{y})(y - \hat{y}) + \sum (y - \hat{y})^2$$

$$= \sum (\hat{y} - \bar{y})^2 + 2\sum (\hat{y}y - \hat{y}^2 - \bar{y}y + \bar{y}\hat{y}) + \sum (y - \hat{y})^2$$

$$= \sum (\hat{y} - \bar{y})^2 + 2\sum \hat{y}(y - \hat{y}) + 2\sum \bar{y}(\hat{y} - y) + \sum (y - \hat{y})^2$$

$$= \sum (\hat{y} - \bar{y})^2 + 2\sum \hat{y}(y - \hat{y}) - 2\bar{y}\sum (y - \hat{y}) + \sum (y - \hat{y})^2$$

$$= \sum (\hat{y} - \bar{y})^2 + \sum (y - \hat{y})^2$$

Conclusion

$$\sum (y - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum (y - \hat{y})^2$$

$$SSTotal = SSModel + SSE$$

- In General, We Want SSModel to be Larger Than SSE
- In Many Textbooks, SSModel is sometimes called SSR for Sum of Squares Regression

IMG CREDIT: CHRISTIAN GOLD

ANOVA Table

Classic Table

Source	d.f.	Sum of Squares	Mean Square	F	P-value
Model	1	SSModel	SSModel/1	MSModel	E
Residual	n-2	SSE	SSE/(n-2)	MSE	$F_{1,n-2}$
Total	n-1	SSTotal			

 Degrees of Freedom and Sum of Squares for Total are Both a Summation of Values for Model and Residual

ANOVA Test for Simple Linear Regression

- Equivalent to the t-Test for the Slope
 - Identical Hypotheses (in Simple Linear Regression)
 - Perform Simple Linear Regression and Obtain Table
 - Different Test Statistic

$$F^* = \frac{SSModel/1}{SSE/(n-2)} = \frac{MSModel}{MSE}$$

- Compute p-value Based off F-Distribution and Not t-Distribution
 - F-distribution based off numerator degrees of freedom and denominator degrees of freedom
- Decision and Interpretation is the Same (in SLR)

F-Distribution

Typically, Right Skewed

• Used Typically When Test Statistic is a Ratio of Variances

Example: Fatalities

- Question: Is there a linear relationship between the proportion of young drivers in a state and the number of vehicle fatalities in a state?
- Data for States from 1982 Through 1988
 - From AER Package
 - fatal = Number of Vehicle Fatalities
 - youngdrivers = Percent of Drivers Aged 15 24 (inclusive)
- Question: What is the problem with fitting a linear regression for the relationship **fatal** versus **youngdrivers**?

Supplement for Lecture 10

- Conducting t-Test for Slope
- Confidence Interval for Parameters
- Getting ANOVA Table
- Conducting F-test and Comparing Results

Thank You

Make Reasonable Decisions

