TOPOLOGIA GENERALE

DEFINIZIONI DELLE PROPRIETÀ

- N1 Ogni punto ha una base di intorni numerabile.
- N2 Lo spazio ha una base di aperti numerabile.
- Sep Se esiste un sottoinsieme denso e numerabile.
- T0 Dati due punti c'è un aperto che li distingue. $(\forall x,y\in X \exists A \text{ aperto t.c. } x\in A,y\notin A \text{ oppure } x\notin A,y\in A)$
- T1 I punti sono chiusi.
- T2 Punti distinti hanno intorni disgiunti.
- Reg Un punto ed un chiuso che non lo contiene hanno intorni disgiunti.
- Norm Ogni coppia di chiusi disgiunti ha intorni disgiunti.
 - T3 Reg + T0.
 - T4 Norm + T1.
 - Cpt Ogni ricoprimento di aperti ha un sottoricoprimento finito.
- Lind Ogni ricoprimento di aperti ha un sottoricoprimento numerabile.
- Conn Non esistono due aperti propri la cui unione è lo spazio intero. (Vale anche con i chiusi)
- PathConn Presi due punti esiste un arco che li connette $(\forall x,y\in X\ \exists \gamma:[0,1]\to X$ continua t.c. $\gamma(0)=x,\gamma(1)=y)$
- LocConn Ogni punto ha una base di intorni connessi.
- LocPathConn Ogni punto ha una base di intorni connessi per archi.
 - LocCpt Ogni punto ha un intorno compatto
 - SemilocCpt Ogni punto ha un sistema fondamentale di intorni compatti
 - ParaCpt Ogni ricoprimento aperto ha un raffinamento localmente finito.
 - ExCpt Lo spazio possiede un'esaustione in compatti
 - Metr Metrizzabile, ovvero esiste una distanza che induce la topologia.

Da aggiungere:

Metr: Sep ¡=¿ N2 ¡=¿ Lind, Metr =¿ N1, Metr: Cpt =¿ Sep, N2: Cpt ¡=¿ SeqCpt, Cpt =¿ ParaCpt, ParaCpt + T2 =¿ Norm.

EQUIVALENZE

- (Condizione equivalente per essere una base) Dato X insieme e $\mathcal{B} \subseteq \mathcal{P}(X)$ esiste una topologia su X di cui \mathcal{B} è una base se e soltanto se sono soddisfatte le seguenti due condizioni: $X = \cup \{B \mid B \in \mathcal{B}\}$ e per ogni coppia $A, B \in \mathcal{B}$ e per ogni punto $x \in A \cap B$ esiste $C \in \mathcal{B}$ tale che $x \in C \subseteq A \cap B$.
- (Condizioni equivalenti alla continuità) f è continua \Leftrightarrow controimmagine di aperti è aperta $\Leftrightarrow \forall A \subseteq X \quad f(\bar{A}) \subseteq f(A) \Leftrightarrow \forall x \in X \quad \forall U \text{ t.c. } f(x) \in U \quad \exists V \text{ t.c. } x \in V \quad f(V) \subseteq U.$
- (Condizioni equivalenti ad essere un omeomorfismo) $f:X\to Y$ continua. Allora f è un omeomorfismo $\Leftrightarrow f$ è chiusa e biggettiva $\Leftrightarrow f$ è aperta e biggettiva.
- (Condizioni che implicano essere immersione) Sia $f:X\to Y$ continua. Allora se f è chiusa ed iniettiva, essa è un'immersione chiusa. Se invece f è aperta ed iniettiva, allora è un'immersione aperta.
- (Condizioni equivalenti alla sconnessione) X è sconnesso $\Leftrightarrow X$ è unione disgiunta di due aperti propri $\Leftrightarrow X$ è unione disgiunta di due chiusi propri.

CONNESSIONE

- (Multilemma sulla connessione) Sia Y connesso e $f: X \to Y$ una funzione *continua* (?) e surgettiva tale che $f^{-1}(y)$ è connesso $\forall y \in Y$. Se f è aperta oppure se f è chiusa, allora anche X è connesso.
- (Connessione della chiusura) Sia Y un sottospazio connesso di X, e sia $Y\subseteq W\subseteq \bar{Y}$. Allora anche W è connesso.
- (Chiusura delle componenti connesse) Le componenti connesse sono chiuse.
- (Estensione delle componenti connesse) Supponiamo di avere $\{Z_{\lambda}\}_{{\lambda}\in{\Lambda}}$ t.c. Z_i è connesso $\forall i$ e tali che $\forall i,j\in{\Lambda}$ $\exists i=k_1,k_2,\ldots,k_n=j\in{\Lambda}$ tali che $Z_{k_l}\cap Z_{k_{l+1}}\neq\emptyset$. Allora $\cup_{{\lambda}\in{\Lambda}}Z_{\lambda}$ è connesso.

COMPATTEZZA

• (**Heine-Borel**) Un sottospazio $K \subset \mathbb{R}^n$ è compatto se e solo se è chiuso e limitato.

- (Multilemma sulla compattezza) Sia Y compatto e $f: X \to Y$ una funzione chiusa. Se $f^{-1}(y)$ è compatto $\forall y \in Y$, allora anche X è compatto.
- (Catene discendenti di compatti) Siano K_i chiusi e compatti tali che ... $\subset K_2 \subset K_1$ una catena discendente numerabile di chiusi non vuoti e compatti di uno spazio topologico. Allora $\cap_i K_i \neq \emptyset$.
- (Lemma di Wallace) X, Y spazi topologici. $A \subseteq X, B \subseteq Y$ sottospazi compatti e $W \subset X \times Y$ un aperto tale che $A \times B \subseteq W$. Allora $\exists U \subseteq X, V \subseteq Y$, aperti tali che $A \subseteq U, B \subseteq V, U \times V \subseteq W$.
- (Compatti hanno proiezioni chiuse) Se X è compatto, la proiezione $p: X \times Y \to Y$ è un'applicazione chiusa.
- (Localmente compatto ⇒ ammette un ricoprimento fondamentale in compatti).

COMPATTIFICAZIONI

- (La compattificazione di Alexandroff è T_2) \hat{X} è di Hausdorff se e solo se X è di Hausdorff ed ogni punto di X possiede un intorno compatto.
- (Immersioni aperte si estendono ad Alexandroff) $f: X \to Y$ immersione aperta. Allora l'applicazione $g: Y \to \hat{X}$ definita da $g(y) := \left\{ \begin{array}{cc} x & \sec y = f(x) \\ \infty & \sec y \notin f(X) \end{array} \right.$ è continua. In particolare ogni spazio topologico compatto di Hausdorff Y coincide con la compattificazione di Alexandroff di $Y \setminus \{y\} \quad \forall y \in Y$

ALTRI LEMMI

- (Continuità e ricoprimenti fondamentali) Sia $\mathcal A$ un ricoprimento fondamentale di X. Un'applicazione $f:X\to Y$ è continua $\Leftrightarrow \forall A\in \mathcal A$ la restrizione $f\mid_A:A\to Y$ è continua.
- ([0,1] è tutto quanto) L'intervallo [0,1] per la topologia euclidea è connesso, connesso per archi, compatto, localmente connesso, localmente connesso per archi, localmente compatto.
- (Ricoprimenti localmente finiti) I ricoprimenti aperti ed i ricoprimenti chiusi localmente finiti sono fondamentali.

SOTTOSPAZI

- (**Passaggio della chiusura**) $Y \subseteq X$ sottospazio, $A \subseteq Y$. Allora la chiusura di A in Y è uguale all'intersezione di Y con la chiusura di A in X.
- (**Passaggio di aperti-chiusi**) $Y \subseteq X$, $Z \subseteq Y$. Allora si hanno:
 - se Y aperto in X, allora Z aperto in $Y \Leftrightarrow Z$ aperto in X
 - se Y chiuso in X, allora Z chiuso in $Y \Leftrightarrow Z$ chiuso in X
 - se Y intorno di y, allora Z intorno di y in $Y \Leftrightarrow Z$ intorno di y in X

TOPOLOGIE COMUNI

- (**Topologia discreta**) $\tau = \mathcal{P}(X)$ quindi ogni insieme è aperto. è indotta dalla distanza discreta: $d(x,y) = \left\{ \begin{array}{ll} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{array} \right.$
- (**Topologia indiscreta**) $\tau = \{\emptyset, X\}$, la meno fine tra tutte le topologie.

- (Topologia euclidea su \mathbb{R}) Un sottoinsieme $U \subseteq \mathbb{R}$ è aperto se e solo se è unione di intervalli aperti.
- (**Topologia della semicontinuità superiore di** \mathbb{R}) Gli aperti non vuoti sono tutti e soli i sottoinsiemi della forma $(-\infty, a)$, al variare di $a \in \mathbb{R} \cup \{+\infty\}$

METRIZZABILITÀ

• (Proprietà di un metrico) Sia X spazio metrico. Allora X è T2.

GRUPPI TOPOLOGICI

- G è T2 \Leftrightarrow $\{e\}$ è chiuso
- $H \sqsubseteq G$. Se la parte interna di H è non vuota, allora H è aperto e chiuso in G
- $H \sqsubseteq G \implies \bar{H} \sqsubseteq G$
- ullet La componente connessa di e è un sottogruppo chiuso di G

π_1 E RIVESTIMENTI

- Sia $Y \subseteq \mathbb{R}^n$ un sottospazio convesso. Allora per ogni spazio topologico X si ha che due qualunque funzioni $f,g:X\to Y$ sono omotope attraverso $H(t,x):=t\cdot f(x)+(1-t)\cdot g(x)$
- Se A è un retratto di X allora $i_*:\pi_1(A,a)\to\pi_1(X,a)$ è iniettiva
- Se A è un retratto per deformazione di X allora $i_*: \pi_1(A,a) \to \pi_1(X,a)$ è un isomorfismo di gruppi
- Sia $f: X \to Y$ un'equivalenza omotopica di spazi topologici. Allora $\forall a \in X$, l'applicazione $f_*: \pi_1(X,a) \to \pi_1(Y,f(a))$ è un isomorfismo di gruppi
- S^n per $n \ge 2$ è semplicemente connesso (ovvero $\pi_1(S^n) = \{e\}$)
- $\mathbb{R}^n \setminus \{p_1, \dots, p_m\}$ è semplicemente connesso per $n \geq 3$
- Lo spazio proiettivo complesso $\mathbb{P}^m(\mathbb{C})$ è semplicemente connesso per ogni $m \geq 0$
- Sia X uno spazio topologico semplicemente connesso. Allora ogni rivestimento connesso $p:E\to X$ è banale, ossia un omeomorfismo

•

ESISTENZA DI SOLLEVAMENTI

Siano $p:E\to X$ un rivestimento e $f:S\to X$ un'applicazione continua. Per ogni $y\in S$ ed ogni $e\in p^{-1}(f(y))$ esiste un unico sollevamento $g:S\to E$ dell'applicazione f tale che g(y)=e. Gli S per cui è noto che si possa fare sono: [0,1], $[0,1]^2$, S^2 , \mathbb{R}^2

TEOREMI DI NON-ESISTENZA

- (Borsuk) Non esistono applicazioni continue $f:S^2 \to S^1$ tali che f(-x)=-f(x) per ogni $x \in S^2$
- Per ogni applicazione continua $g:S^2 \to \mathbb{R}^2$ esiste un punto $x \in S^2$ tale che g(x) = g(-x)
- Siano $n \geq 3$ ed $A \subseteq \mathbb{R}^n$ un aperto non vuoto. Allora ogni applicazione continua $f: A \to \mathbb{R}^2$ non è iniettiva
- Non esistono applicazioni continue $r: D^2 \to S^1$ tali che r(-x) = -r(x) per ogni $x \in S^1$

• (**Brouwer**) Ogni applicazione continua $f: D^2 \to D^2$ possiede almeno un punto fisso

Attenzione! Non vi fidate troppo delle cose in rosso perchè devo ancora verificare i risultati

• Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ un'applicazione continua. Si assuma che esistano due costanti positive a e b con a < 1 tali che $||x - f(x)|| \le a ||x|| + b$ per ogni $x \in \mathbb{R}^2$. Allora f è surgettiva

(+T2) SemiLocCpt

N1

CHE PROPRIETÀ PASSANO A COSA?

Vediamo alcune proprietà degli spazi

Prodotti **Quozienti** Funzioni C^0 **Implica** Proprietà Sottospazi Numerabili N1 Sep, Lind, N1 N2 Numerabili Aperti Aperte Numerabili (+Metr) N2 Sep X <u>T0</u> Arbitrari $\overline{\checkmark}$ T1 Arbitrari T0 T2 Arbitrari T1 Arbitrari Reg Norm Chiusi × T3 Arbitrari T2 T4 T3 Chiusi (+T2) Chiuso Cpt Chiusi Arbitrari Lind Chiusi Conn X Arbitrari PathConn × Arbitrari Conn LocConn Aperti

LEMMI

LocPathConn

SemiLocCpt ParaCpt

LocCpt

ExCpt

Metr

• LocCpt + T2 + N2 = ExCpt

Aperti Chiusi

Chiusi

Finiti

×

Numerabili