

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Gravity 1: Theory

Instructor: Dikun Yang Feb – May, 2019

Contents

- Density
- Physics in gravity
- Interactive apps exercise and discussion
- Programming assignment

Density

$$\rho = \frac{m}{V}$$

Mass: **m** in **g** or **kg**

Volume: V in cm³ or m³

Density: ρ in g/cm^3 or kg/m^3

Archimedes: Pure gold? Measure the density!

Density of earth materials

Air: 0.001225 g/cm³

Petroleum: 0.60 - 0.90 g/cm³

Ice: 0.917 g/cm³

Water: 1.00 g/cm³

Sedimentary Rocks: 1.50 - 3.30 g/cm³

Igneous Rocks: 2.35 - 3.50 g/cm³

Metamorphic Rocks: 2.52 - 3.54 g/cm³

Ore-Bearing Rocks: 2.30 - 7.60 g/cm³

Question:

In general, why do sedimentary rocks have lower density compared to other types of rock?

Porous rocks

Density vs. Depth

Low density

High density

Density vs. Depth

Artyushkov et. al. 2014

Composition

Heavy elements: magnesium, iron, lead, copper, silver, gold ...

Density Contrast

Cavity

Mineralized dyke

Some Physics in Gravity

Gravitational Force

Newton's law of universal gravitation

Gravitational constant (Big G): $G=6.67408(31) imes10^{-11}~\mathrm{m^3~kg^{-1}~s^{-2}}$

Gravitational Field

Field F caused by the source M

Gravitational Potential

Move a unit mass from P_1 to P_2

$$P_2$$
 P_1

The work required to move the unit mass

$$\mathbf{U} = -\int_{P_1}^{P_2} f \, dl = -\int_{P_1}^{P_2} \frac{GM}{r^2} \, dl$$

$$U = -\frac{GM}{r}$$
 when P1 is at infinity and has zero potential

Force, field and potential

Properties of gravitational field F (or g)

Suppose the earth is enclosed by a spherical surface *S*Total flux of *F* through *S* is determined by the total mass within *S*

- If the earth has a uniform density, the earth mass can be represented by a point mass at the center, and F is uniform on S
- If the density distribution of the earth is not uniform, the total flux of F through S is still the same but F is not uniform on S
- Non-uniform F contains <u>anomaly</u> and can be used to infer the density structure of the earth

gravitySphere.ipynb

https://mybinder.org/v2/gh/geoscixyz/geosci-labs/master?filepath=notebooks%2Findex.ipynb

Measure g_z due to a sphere on an observation plane

- Keep z (depth) constant, explore different combinations of radius and density that produce the same g_z curve
- Keep the total mass constant, adjust z to see how the data pattern changes

Properties of gravitational field

Non-uniform sphere (or other complex shapes)

gravityDike.ipynb

https://mybinder.org/v2/gh/geoscixyz/geosci-labs/master?filepath=notebooks%2Findex.ipynb

Measure g_z due to a 2D dike on an observation plane

- Can you tell the dipping direction from the data plot?
- How do you explain the asymmetry in data pattern?

Programming assignment

Gravity of two (or N) spheres

N uniform spheres of different densities located in the 3D space

Be able to calculate the gravitational field F anywhere in the 3D space outside of the spheres

Bury the two spheres underground and compute g_z over a data grid on the surface and make the plot

Compute the potential U over the data grid and make the plot

Finish before next class

Further reading/watching

The Amazing World Of Gravity (https://youtu.be/2_p2ELD7npw)

How to Think About Gravity (https://youtu.be/IY3XV_GGV0M)

Gravity Surveying (https://youtu.be/9P6GEpxFtSY)