Telekomunikacja światłowodowa

OptiPerformer – Introduction

Mateusz Kowalczyk 268533

W12N, Inteligentna Elektronika

Cel ćwiczenia:

Celem naszego zadania projektowego było zapoznanie się z darmowym narzędziem do automatyzacji projektowania fotonicznego od Optiwave - OptiPerformer. Zadanie realizowane było w oparciu o plik przykładowy Introduction_OptiPerformer.osp oraz zawarty w nim układ światłowodowy zawierający sekcję nadajnikową, obornikową oraz część kanałową. Układ przeanalizowany został przez nas poprzez uruchomienie symulacji w 5 iteracjach, gdzie długość światłowodu zmieniała się od 50 – 150 [km] ze skokiem co 25 [km]. Wartości parametrów w tj. moc odbierana, współczynnik Q i BER w zależności od iteracji symulacji przedstawione zostały w [Tabela1] [Tabela2] oraz [Tabela3] natomiast wykresy tych parametrów dostępne są poniżej na wykresach od [Wykres1] do [Wykres6].

Parametr	Długość światłowodu [km]	Wartość parametru	Jednostka
Moc odbierana	50	47,66 * 10 ⁻⁶	_
	75	$15,32 * 10^{-6}$	
	100	$4,76 * 10^{-6}$	[W]
	125	1,48 * 10 ⁻⁶	
	150	492,2 * 10 ⁻⁹	

Tabela 1: Moc odbierana w zależności od długości światłowodu.

Parametr	Długość światłowodu [km]	Wartość parametru
Max. Współczynnik Q	50	116,72
	75	63,04
	100	45,1

125	31,48
150	21,32

Tabela 2: Max. współczynnik Q w zależności od długości światłowodu.

Parametr	Długość światłowodu [km]	Wartość parametru	
Min. BER	50	0	
	75		
	100		
	125	4,61 * 10 ⁻²⁸⁹	
	150	4,61 * 10 ⁻¹²⁹	

Tabela 3: Min, BER w zależności od długości światłowodu.

Wykres 1:Pierwsza iteracja.

Wykres 2: Druga iteracja.

Wykres 3: Trzecia iteracja.

Wykres 4: Czwarta iteracja.

Wykres 5: Piąta iteracja.

Wykres 6: Porównanie strat i Q Factor dla wszystkich 5 iteracji.

Wnioski:

Na podstawie analizy układu w programie OptiPerformer jesteśmy w stanie wywnioskować, że wrost długości światłowodu skutkuje wzrostem tłumienia od -13 [dBm] do -33 [dBm] oraz spadkiem mocy co dokładnie zaobserwować można w załączonych wyżej tabelach oraz wykresach.

Szerokość charakterystki Min BER zwęża się z każdą iteracją, natomiast zwiększa się jej wartość minimalna (patrz iteracja 4 i 5).

Charakterystyka Q Factor przedstawia dane odwrotnie w stosunku do charakterystki Min. BER, ponieważ z następnymi iteracjami rozszerza się oraz przedstawia nam spadek wartości maksymalnej.