定理(PC的合理性定理): PC是合理的,即对任意的公式集合 Γ 和公式 A,如果 $\Gamma \vdash A$ 那么 $\Gamma \Rightarrow A$. 特别地,如果 A 是PC的定理 ($\vdash A$),那么 A 是永真式 ($\Rightarrow A$).

证明:对 $\Gamma \vdash A$ 对应的演绎序列的长度m用归纳法。设 $\Gamma \vdash A$ 演绎序列为

 $A_1, A_2, \cdots, A_m (= A).$

(1) 当m=1时。序列中只有 A,此时 A 为公理或者 A 为 Γ 中的一元。如果 A 为公理,那么 A 为永真式。从而 $\Gamma \Rightarrow A$. 如果 A 为 Γ 的成员,此时也有 $\Gamma \Rightarrow A$.

(2) 假设当m〈n时结论成立,往证m=n结论也成立。 此时序列为 $A_1,A_2,\cdots,A_n(=A)$. 观察 A. 此时 A 为公理或者 A 为 Γ 中的一元或者 A 为 A_j 或者 A 为 $A_j,A_k(j,k < n)$ 用分离规则导出。 当 A 为公理或者 A 为 Γ 中的成员时,可仿照 (1) 的情形证明结论成立。 如果 A 为 $A_j(j < n)$,由于 $\Gamma \vdash A_j$ 且 j < n ,由归纳假设知 $\Gamma \Rightarrow A_j$ 即 $\Gamma \Rightarrow A$.

如果 A 为 A_j , $A_k(j,k < n)$ 用分离规则导出。不妨设 $A_k = A_j \rightarrow A$, 由于 $\Gamma \vdash A_j$ 且 $\Gamma \vdash A_j \rightarrow A$, 从而 $\Gamma \Rightarrow A_j$, $\Gamma \Rightarrow A_j \rightarrow A$. 对任意的指派 α 此指派弄真 Γ 中的所有公式,从而弄真 A_j 和 $A_j \rightarrow A$,从而必把 A 弄真。