COMP 540 HW 1

Peiguang Wang, Xinran Zhou

Due: 1/18/2018

Part 0: Background refresher

- 1. Generate different distributions from uniform distribution:
 - (a) Plot the histogram of a categorical distribution with probabilities [0.2,0.4,0.3,0.1].
 - (b) Plot the univariate normal distribution with mean of 10 and standard deviation of 1.
 - (c) Produce a scatter plot of the samples for a 2-D Gaussian with mean at [1,1] and a covariance matrix [[1,0.5],[0.5,1]]
 - (d) Test your mixture sampling code by writing a function that implements an equal weighted mixture of four Gaussians in 2 dimensions, centered at $(\pm 1; \pm 1)$ and having covariance I. Estimate the probability that a sample from this distribution lies within the unit circle centered at (0.1, 0.2).
- 2. Prove that the sum of two independent Poisson random variables is also a Poisson random variable.

Proof. The characteristic function of a Poisson random variable is

$$\Phi_1(u) = e^{\lambda_1(e^{iu} - 1)}$$

Let X_1 and X_2 denote two independent Poisson random variables. Let $X = X_1 + X_2$ Let $\Phi_1(u)$ and $\Phi_2(u)$ denote the characteristic functions of X_1 and X_2 :

$$\Phi_1(u) = e^{\lambda_1(e^{iu} - 1)}$$

$$\Phi_2(u) = e^{\lambda_2(e^{iu} - 1)}$$

Let $\Phi(u)$ denote the characteristic functions of X. Since $X = X_1 + X_2$, we have:

$$\Phi(u) = \Phi_1(u)\Phi_2(u) = e^{\lambda_1(e^{iu}-1)}e^{\lambda_2(e^{iu}-1)}$$

Simplify the equation above.

$$\Phi(u) = e^{(\lambda_1 + \lambda_2)(\frac{\lambda_1}{\lambda_1 + \lambda_2}e^{iu} + \frac{\lambda_2}{\lambda_1 + \lambda_2}e^{iu}) - 1}.$$

That is

$$\Phi(u) = e^{(\lambda_1 + \lambda_2)(e^{iu} - 1)}.$$

Comparing with the characteristic function of Poisson distribution, we can see that X is also a Poisson random variable.

3. Let X_0 and X_1 be continuous random variables. Show that if

$$P(X_0 = x_0) = \alpha_0 e^{-\frac{(x_0 - \mu_0)^2}{2\sigma_0^2}}$$

$$P(X_1 = x_1 | X_0 = x_0) = \alpha e^{-\frac{(x_1 - x_0)^2}{2\sigma^2}}$$

there exists α_1 , μ_1 and σ_1 such that

$$P(X_1 = x_1) = \alpha_1 e^{-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}}$$

Write down expressions for these quantities in terms of α_0 , α , μ_0 , σ_0 and σ .

Solution. If X,Y are both Gaussian random variable, then

$$Y|X = x \sim N\left(\mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(X - \mu_X), \quad \sigma_Y^2(1 - \rho^2)\right)$$

where μ_X , μ_Y are mean of X and Y; σ_X^2 , σ_Y^2 are variance of X and Y; ρ is the correlation coefficient between X and Y.

According to the problem, X_0 , X_1 and $X_1|X_0$ are all Gaussian. So we have the following equations:

$$\begin{cases} \mu_1 + \rho \frac{\sigma_1}{\sigma_0} (x_0 - \mu_0) = x_0, \text{ for all } x_0 \\ \sigma_1^2 (1 - \rho^2) = \sigma^2 \end{cases}$$

Solve the equation, then $\sigma_1^2 = \sigma^2 + \sigma_0^2$, $\mu_1 = -\mu_0$. And since $\alpha_1 = \frac{1}{\sqrt{2\pi}\sigma_1}$, we have

$$\alpha_1 = \sqrt{\frac{1}{(1/\alpha)^2 + (1/\alpha_0)^2}}$$

.

4. Find the eigenvalues and eigenvectors of the following 2×2 matrix A.

$$A = \begin{pmatrix} 13 & 5 \\ 2 & 4 \end{pmatrix}$$

Solution. Let λ and x denote the eigenvalue and eigenvector of A. According to the definition of eigenvalue,

$$Ax = \lambda x$$

Solve the equation to get eigenvalues

$$|A - \lambda I| = 0$$

That is,

$$\lambda^2 - 14\lambda + 42 = 0$$

A has two eigenvalues: $\lambda_1 = 14$, $\lambda_2 = 3$.

When $\lambda = 14$,

$$(A - \lambda I)\mathbf{x} = \begin{pmatrix} -1 & 5 \\ 2 & -10 \end{pmatrix} \mathbf{x} = 0$$
$$\mathbf{x} = \begin{pmatrix} 5 & 1 \end{pmatrix}^{T}$$

When $\lambda = 3$,

$$(A - \lambda I)x = \begin{pmatrix} 10 & 5 \\ 2 & 1 \end{pmatrix} x = 0$$
$$x = \begin{pmatrix} 1 & -2 \end{pmatrix}^{T}$$

In summary, A has two eigenvalues, $\lambda_1 = 14$, $\lambda_2 = 3$. The corresponding eigenvectors are $\mathbf{x_1} = \begin{pmatrix} 5 & 1 \end{pmatrix}^T$ and $\mathbf{x_2} = \begin{pmatrix} 1 & -2 \end{pmatrix}^T$.

5. Provide one example for each of the following cases, where A and B are 2 2 matrices.

(a)
$$(A+B)^2 \neq A^2 + 2AB + B^2$$

(b)
$$AB = 0, A \neq 0, B \neq 0$$

Solution. (a) one example that satisfies (a) is:

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Calculate left,

$$left = (A+B)^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

Calculate right,

$$right = A^2 + 2AB + B^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \mathbf{0} + \mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

And $left \neq right$

(b) one example that satisfies (b) is:

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

where $A \neq 0$, and $B \neq 0$. Calculate AB,

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{0}$$

6. Let u denote a real vector normalized to unit length. That is, $u^T u = 1$. Show that

$$A = I - 2uu^T$$

is orthogonal, i.e., $A^T A = 1$.

Proof. Derive from left,

$$A^{T}A = (I - 2uu^{T})^{T}(I - 2uu^{T}) = (I - 2uu^{T})(I - 2uu^{T}) = I - 2uu^{T} - 2uu^{T} + 4uu^{T} = I$$

So $left = right$.

Part 1: Locally weighted linear regression

1. Show that $J(\theta)$ can be written in the form

$$J(\theta) = (X\theta - y)^T W (X\theta - y)$$

for an appropriate diagonal matrix W, where X is the $m \times d$ input matrix and y is a $m \times 1$ vector denoting the associated outputs. State clearly what W is.

Proof. We know that $J(\theta)$ can also be written as

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} w^{(i)} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$

where $x^{(i)}$ is $d \times 1$ vector and θ is a $d \times 1$ vector. We consider each row of the matrix X as as a $1 \times d$ vector x^i , so we can write $X = [x^1, x^2, ..., x^m]^T$. So

$$J(\theta) = (X\theta - y)^T W(X\theta - y) = [x^1\theta - y^1, x^2\theta - y^2, ..., x^m\theta - y^m] W[x^1\theta - y^1, x^2\theta - y^2, ..., x^m\theta - y^m]^T$$

So W is a $m \times m$ diagonal matrix

$$W = \begin{pmatrix} 2w^{(1)} & 0 & 0 & 0\\ 0 & 2w^{(2)} & 0 & 0\\ 0 & 0 & \dots & 0\\ 0 & 0 & 0 & 2w^{(m)} \end{pmatrix}$$

2. If all the $w^{(i)}$'s are equal to 1, the normal equation to solve for the parameter θ is:

$$X^T X \theta = X^T y$$

and the value of θ that minimizes $J(\theta)$ is $(X^TX)^{-1}X^Ty$. By computing the derivative of the weighted $J(\theta)$ and setting it equal to zero, generalized the normal equation to the weighted setting and solve for θ in closed form in terms of W, X and y.

Proof.

$$J(\theta) = (X\theta - y)^T W (X\theta - y) = \theta^T X^T W X \theta^T - \theta^T X^T W y - y^T W X \theta + y^T W y$$

Compute the derivative of $J(\theta)$

$$\frac{\partial J(\theta)}{\partial (\theta)} = 2X^TWX\theta - X^TWy - X^TW^Ty$$

Since W is a diagonal matrix $W = W^T$, the equation can be written as

$$\frac{\partial J(\theta)}{\partial (\theta)} = 2X^T W X \theta - 2X^T W y$$

By setting it equal to zero, we can find the value of θ that minimizes $J(\theta)$, the equation is:

$$X^T W X \theta = X^T W y$$

So the value of θ in form in terms of W, X and y is $(X^TWX)^{-1}X^TWy$.

3. To predict the target value for an input vector x, one choice for the weighting function $w^{(i)}$ is:

$$w^{(i)} = \exp(-\frac{(x - x^{(i)})^T (x - x^{(i)})}{2\tau^2})$$

Points near x are weighted more heavily than points far away from x. The parameter τ is a band width defining the sphere of influence around x. Note how the weights are defined by the input x. Write down an algorithm for calculating θ by batch gradient descent for locally weighted linear regression. Is locally weighted linear regression a parametric or a non-parametric method?

Part 2: Properties of the linear regression estimator

1. Show that $E[\theta] = \theta^*$ for the least squares estimator.

Proof. In part 1 problem 2, we can get thee value of θ given the normal equation $X^TX\theta = X^Ty$ is

$$\theta = (X^T X)^{-1} X^T y$$

The date comes from the linear model:

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

the expectation of θ is

$$\begin{split} E[\theta] &= E[(X^T X)^{-1} X^T y] \\ &= E[(X^T X)^{-1} X^T (X \theta^* + \epsilon)] \\ &= E[(X^T X)^{-1} (X^T X \theta^* + X^T \epsilon)] \\ &= E[(X^T X)^{-1} X^T X \theta^* + (X^T X)^{-1} X^T \epsilon] \\ &= E[\theta^*] + E[(X^T X)^{-1} X^T \epsilon] \end{split}$$

since each $\epsilon^{(i)}$ is an independent random variable drawn from a normal distribution with zero mean and variance σ^2 and θ^* is a true parameter that has certain value. Then $E[\theta]$ can be written as

$$E[\theta] = E[\theta^*] + 0 = \theta^*$$

2. Show that the variance of the least squares estimator is $Var(\theta) = (X^TX)^{-1}\sigma^2$.

Proof.

$$Var(\theta) = E[\theta^2] - (E[\theta])^2$$

since we already knew that $E[\theta] = \theta^*$. So in order to get $Var(\theta)$, all we need to do is to compute $E[\theta^2]$.

$$\begin{split} E[\theta^2] &= E[((X^TX)^{-1}X^Ty)((X^TX)^{-1}X^Ty)^T] \\ &= E[(\theta^* + (X^TX)^{-1}X^T\Sigma)(\theta^* + (X^TX)^{-1}X^T\Sigma)^T] \\ &= E[\theta^*\theta^{*T} + (X^TX)^{-1}X^T\Sigma\theta^{*T} + \theta^*\Sigma^TX(X^TX)^{-1} + (X^TX)^{-1}X^T\Sigma\Sigma^TX(X^TX)^{-1}] \end{split}$$

 Σ is the covariance matrix generated by ϵ and each $\epsilon^{(i)}$ is an independent random variable drawn from a normal distribution with zero mean and variance σ^2 . Therefore the expectation of Σ is zero. Σ is also independent to X and θ^* , $\Sigma = \sigma^2 I$, where I is the identity matrix. Therefore

$$E[\theta^{2}] = (\theta^{*})^{2} + \sigma^{2} I(X^{T} X)^{-1}$$

Then we have

$$Var(\theta) = E[\theta^{2}] - (E[\theta])^{2}$$

$$= (\theta^{*})^{2} + \sigma^{2}I(X^{T}X)^{-1} - (\theta^{*})^{2}$$

$$= (X^{T}X)^{-1}\sigma^{2}$$