MATB42: Multivariable Calculus II Lecture Notes

Joshua Concon

University of Toronto Scarborough – Winter 2018

Pre-reqs are MATB41. Instructor is Eric Moore. If you find any problems in these notes, feel free to contact me at conconjoshua@gmail.com.

Contents

1	Frid	iday, January 5, 2018						2
	1.1	Fourier Expansions						2

1 Friday, January 5, 2018

1.1 Fourier Expansions

In this section, we will focus on single variable calculus, (so where $f: \mathbb{R} \to \mathbb{R}$)

Let us say that we have a function f(x) and we want to approximate it. We can use an nth degree Taylor Polynomial, but this requires that f(x) has at least n derivatives at some point x_0 and the kth derivative of $f(f^{(k)}(x))$ is determined by properties of f in some neighbourhood of x_0 , but what about outside this neighbourhood? How can we be certain of the approximation outside of this neighbour.

Our problem here is that Taylor Polynomial may only approximate "near" x_0

Now, consider the following function:

$$\Delta(x) = \begin{cases} 1, & \lfloor x \rfloor < x, \lfloor x \rfloor \text{ is odd} \\ 0, & \lfloor x \rfloor < x, \lfloor x \rfloor \text{ is even} \end{cases}$$

In this function, Tayler returns either 0 or 1 depending on your choice of x_0 and cannot work for an $x_0 = p \in \mathbb{Z}$. Therefore Taylor polynomials cannot reflect the true nature of this function. Taylor provides a "local" approximation, but we want a "global" approximation. We need an approximation that is more precise over an interval at the cost of being not as precise as precise at any particular x_0 .

Note that the example function is **periodic**.

Definition 1.1. A function y = f(x) such that $f(x) = f(x+p), p \neq 0, \forall x$ is said to be **periodic** of period p

Example 1.2. The periodic function $\Delta(x)$ is of period 2.

What we want is a global approximation of a periodic function, and the Fourier Approximation will be periodic, so we can use it for exactly that.

Definition 1.3. A trigonometric polynomial of degree N is an expression of the form

$$\frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(kx) + b_k \sin(kx)$$

where the a_i, b_i are constants.

We know that sin(x) and cos(x) are the simplest periodic functions and repeat in intervals of 2π , so cos(kx) and sin(kx) have period $\frac{2\pi}{k}$, but the smallest shared period is 2π . If a trigonometric polynomial has period 2π and f(x) has period p, then we must set $x = \frac{pt}{2\pi}$ to fix the period (where t is a variable).

So to approximate y = f(x) by $F_N(x)$ for some N, we use the following equation:

$$F_N(x) = \frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(kx) + b_k \sin(kx)$$

Now we need to choose the a_k, b_k . We can define it in the following way:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, k = 1, 2, 3, \dots$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx, k = 1, 2, 3, \dots$$

When defined in this way, a_i , b_i are called the Fourier Coefficients of f over the interval $[-\pi, \pi]$ and we call $F_N(x)$ the Fourier Polynomial of degree N.

So why do we add the $\frac{a_0}{2}$? It is the average value of f over $[-\pi, \pi]$.

Note. sometimes you will see a_0 used instead of $\frac{a_0}{2}$ in the Fourier polynomial where

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

Example 1.4. Consider $f(x) = \frac{-x}{2}$ over $[-\pi, \pi]$. Use Fourier Approximation.

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos(kx) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (-\frac{x}{2}) cos(kx) dx \stackrel{odd}{=} 0$$

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (-\frac{x}{2}) dx \stackrel{odd}{=} 0$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) sin(kx) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} (-\frac{x}{2}) sin(kx) dx$$

$$\stackrel{even}{=} -\frac{1}{\pi} \int_{-\pi}^{\pi} x sin(kx) dx$$

$$\stackrel{even}{=} -\frac{1}{\pi} [-\frac{1}{k} x cos(kx) + \frac{1}{k^{2}} sin(kx)]_{0}^{\pi}$$

$$= \frac{1}{\pi k} [\pi cos(k\pi)]$$

$$= \frac{1}{k} cos(k\pi)$$

$$= \frac{(-1)^{k}}{k}$$

Thus we have:

$$F_N(x) = -\sin(x) + \frac{1}{2}\sin(2x) - \frac{1}{3}\sin(3x) + \frac{1}{4}\sin(4x) + \dots$$

$$F_1(x) = -\sin(x)$$

$$F_2(x) = -\sin(x) + \frac{1}{2}\sin(2x)$$

$$F_3(x) = -\sin(x) + \frac{1}{2}\sin(2x) - \frac{1}{3}\sin(3x)$$

And so on.