

Не забыть включить запись!

Правила вебинара

Активно участвуем

Задаем вопрос в чат или голосом

Off-topic обсуждаем в Slack

Вопросы вижу в чате, могу ответить не сразу

Цели вебинара После занятия вы сможете

Перечислить типы данных SQL Server

Понимать различие между типами данных

3 Осознанно выбирать типы данных для атрибутов таблиц

Смысл Зачем вы это уметь

для оптимального использования типов данных при описании атрибутов таблиц

для наложения логических ограничений в соответствии с бизнес-логикой проекта

Что было на прошлом занятии ???

- 1. Какие файлы создаются при выполнении команды CREATE DATABASE?
- 2. Какие поля должны быть в системно-версионных таблицах?
- 3. Назовите виды графовых таблиц?
- 4. Что такое объект SEQUENCE и для чего он нужен?
- 5. В чем отличие команды TRUNCATE от DELETE?

Типы данных MS SQL Server

Типы данных SQL Server

Стандартные типы данных

	PostgreSQL	MySQL	MS SQL Server
Целый	smallint integer bigint	int integer	smallint int bigint
Вещественный	numeric(N,M) real double	float(N, M) double(N,M) decimal(N,M)	float real numeric(N,M)
Символьный	varchar(N) char(N) text	varchar(N) char(N) text	varchar(N) char(N) text nvarchar(N) nchar(N)
Логический	boolean	bool	- (bit)

Типы данных

	PostgreSQL	MySQL	MS SQL Server
Целый с автоувеличением	smallserial serial bigserial	serial (bigint + auto_increment)	- (атрибут identity)
Денежный	money	-	money
Дата/время	timestamp date (4713 до н.э - 5874897 н.э.) time interval	date (1000-01-01 9999-12-31) datetime time	date (0001-01-01 9999-12-31) datetime datetime2 Time
Геометрические фигуры	geometry/ point, line, box, path, circle, polygon	geometry	geometry geography

Целый тип данных

Bit — 1 б. (0 или 1)

TinyInt – 1 б. (0 - 255)

SmallInt $-26.(-2^{15}-2^{15}-1)$

Int $-46.(-2^{31}-2^{31}-1)$

BigInt - 8 f. $(-2^{63} - 2^{63} - 1)$

Вещественный тип с фиксированной точностью

```
decimal (N, M)
или
numeric(N, M)
```

N – количество цифр в числе (1 - 38)

М – количество цифр после запятой (0 - N)

Рекомендуется использовать если важна точность при хранении и вычислении (например, денежных сумм).

Денежный тип

SmallMoney - 4 б. эквивалентен decimal(10, 4)

Money - 8 б. эквивалентен decimal(19, 4)

Вещественный тип с плавающей точкой

```
Float [ (n) ] -n = 1 - 24 4 б. (7 знаков) n = 25 - 53 8 б. (15 знаков) по умолчанию n = 53
```

Real - 4 б.

Дата и время

DATE 3 б. от 0001-01-01 (1 января 0001 года) до 9999-12-31

(31 декабря 9999 года)

TIME 3 – 5 б. от 00:00:00.0000000 до 23:59:59.999999

DATETIME 8 б. от 01/01/1753 до 31/12/9999

DATETIME2 6 - 8 6. ot 01/01/0001 00:00:00.0000000

до 31/12/9999 23:59:59.9999999

SMALLDATETIME 4 б. от 01/01/1900 до 06/06/2079

DATETIMEOFFSET 10 б. от 0001-01-01 до 9999-12-31 (сохраняет детальную информацию о времени с точностью до 100 наносекунд)

Строковый тип

```
CHAR [ (n) ]
VARCHAR [ (n | max) ]
NCHAR [ (n) ]
NVARCHAR [ (n | max) ]
TEXT / NTEXT – можно забыть
n – длина строки в <u>БАЙТАХ</u> !!!
```

Unicode vs Non-unicode

Connon	KRMOUT	Произвущества или ограничения
Сервер	клиент	Преимущества или ограничения
Юникод	Юникод	Так как данные в Юникоде широко используются в системе, этот сценарий обеспечивает наилучшую производительность и защиту полученных данных от повреждения. Это случай применения объектов данных ActiveX (ADO), OLE DB, а также ODBC версии 3.7 или более поздней.
Юникод	Не Юникод	В этом случае при перемещении данных на клиентский компьютер возможны ограничения или ошибки, особенно если сервер под управлением новой операционной системы соединяется с клиентом старой версии SQL Server или под управлением старой операционной системы. Предпринимается попытка преобразовать находящиеся на сервере данные в Юникоде с помощью соответствующей кодовой страницы в клиенте, кодировка которого отлична от Юникода.
Не Юникод	Юникод	Это не лучшая конфигурация для работы с данными на нескольких языках. Невозможно записать данные в Юникоде на сервер, работающий не в Юникоде. Вероятнее всего, неполадки могут произойти при отправке данных на серверы, которые поддерживают другие кодовые страницы.
He	Не	В этом сценарии очень много ограничений для применения данных на нескольких языках.
Юникод	Юникод	Можно использовать только одну кодовую страницу.

Collation

Collation задает параметры сортировки для строк.

На уровне:

- SQL Server Instance
- Database
- Column
- Query

Collation

Параметры:

- CI / CS Case Insensitive / Case Sensitive
- AI / AS Accent Insensitive / Accent Sensitive
- KS Kana-sensitive иероглифы Hiragana и Katakana
- WS Width Sensitive
- VSS Variation-selector-sensitive

Example: SQL_Latin1_General_CP1_CI_AS

- Prefix: SQL_ SQL Collation
- Sort Rules: Latin1_General English
- Code Page: CP1 Code Page 1252
- Case Sensitivity: Insensitive
- Accent Sensitivity: Sensitive

Uniqueldentifier

GUID (Global Unique Identifier) – универсальный уникальный идентификатор

GUID - 32 значный шестнадцатеричный код (8-4-4-4-12) Функции задания:

NEWID

NEWSEQUENTIALID

Операции:

сравнения (=, <>, <, >, <=, >=) проверки на NULL

RowVersion

rowversion - автоматически сформированные уникальные двоичные числа в базе данных. Размер 8 б.

timestamp - синоним типа данных rowversion

Hierarchyld

Тип данных с SQL Server 2008 для отображения и хранения иерархий.

Плюсы:

Встроенные методы работы с иерархией

Минусы:

Нет отслеживания корректности иерархии (при удалении родительского узла).

Не следит за уникальностью.

Hierarchyld

Преобразование типов данных

Явное и неявное преобразование типов данных

Домашнее задание

AHETY))

Рефлексия

отметьте 3 пункта, которые вам запомнились с вебинара

