Rudin Chapter 3: Convergent Sequences

Alex L.

August 7, 2025

Definition: (Convergent Sequences)

A sequence $\{p_n\}$ in a metric space X is convergent in X if there is some point p with the property that for every $\epsilon > 0$ in the real numbers there is some nonnegative integer N such that for all $n \geq N$, $d(p, p_n) \leq \epsilon$.

In simpler terms, there is some point p where the distance between the sequence and p will eventually become smaller than any distance you can set.

Example:

The sequence $\{p_n\}=\frac{1}{n}$ is convergent to 0 in \mathbb{R} but not in \mathbb{R}^+ because 0 does not exist in it! The convergence of a sequence depends on the metric space it is in.

Theorem:

Let $\{p_n\}$ be a sequence in a metric space X. Then:

- 1. $\{p_n\}$ converges to $p \in X$ if and only if every neighborhood of p contains p_n for all but finitely many n.
- 2. If $p \in X$ and $p' \in X$, and if $\{p_n\}$ converges to both p and p', then p = p'
- 3. If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- 4. If $E \subset X$ and if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to \infty} p_n$

Proof:

- 1. We first do a forward proof by contradiction. Suppose $\{p_n\}$ converges to p but there is some neighborhood of p that excludes infinitely many p_n . Choose such a neighborhood p, called k_d with distance d. Since $\{p_n\}$ converges to p, given the distance d, all but a finite number of p_n lie within d of p, so they are in the neighborhood, so there is a contradiction, the neighborhood must exclude infinitely many p_n but also cannot exclude infinitely many p_n .
 - Now we do a reverse proof. Suppose every neighborhood contained all but finitely many p_n . Then, for every neighborhood of p, called k_d , by virtue of there only being finitely many p_n not in the neighborhood, at some finite integer N, all n > N would be less than distance d from p, so $\{p_n\}$ does converge to p.
- 2. Suppose that d(p, p') > 0, and call that distance d. Suppose that $\{p_n\}$ converged to p, so for any $x = d(p_n, p)$, there were all but finitely many p_n whose distance is greater than x. However, by the triangle inequality of metric spaces, $d(p_n, p) + d(p_n, p') \ge d(p, p')$, and so $d(p_n, p') \ge d(p, p') d(p_n, p)$ so long as we choose $d(p_n, p) < d(p, p')$. Suppose we do just that. Then, there are an infinite number of terms closer to p than $d(p_n, p)$, meaning there are an infinite number of terms farther than $d(p_n, p')$ from p', which means that the sequence cannot converge to p' if d(p, p') > 0 so they can only do it if d(p, p') = 0, or if p = p'
- 3. Suppose that $\{p_n\}$ converges, but $\{p_n\}$ was not bounded. Then, an infinite number of terms lie farther than $d(p, p_n)$ from p. If they didn't then we could pick the largest of those finite outliers, and set our bound to be that distance, $d(p, p_{max})$. Therefore, $\{p_n\}$ cannot be both convergent and unbounded.
- 4. Since p is a limit point of E, this means that any neighborhood of p will have elements of E in it, so no matter the distance from p, there will always be an element of E lesser than that distance from p, so we can pick that element for inclusion in our sequence.

Theorem:

Suppose $\{s_n\}$ is a sequence converging to s, and $\{t_n\}$ is a sequence converging to t. Then:

- 1. $\{s_n + t_n\}$ converges to s + t
- 2. $\{cs_n\}$ converges to c
- 3. $\{s_n t_n\}$ converges to st
- 4. $\{\frac{1}{s_n}\}$ converges to $\frac{1}{s}$ provided none of the values of s_n are zero and neither is s

Proof:

- 1. Since $\{s_n\}$ converges to s and $\{t_n\}$ converges to t, for any ϵ we take, we can find an N_1 such that s_n where $n > N_1$ means that $d(s_n, s) < \frac{\epsilon}{2}$ and we can find N_2 such that $d(t_n, t) < \frac{\epsilon}{2}$. We take the greater of N_1 and N_2 , and all $s_n + t_n$ where n is greater than that will be less than ϵ from s + t, so the sequence $\{s_n + t_n\}$ converges to that number.
- 2. For any ϵ , all the s_n within $\frac{\epsilon}{c}$ of s will correspond to cs_n which are ϵ from cs
- 3. Given ϵ , we can find N_1 and N_2 where $d(s_n, s) < \sqrt{epsilon}$ and $d(t_n, t) < \sqrt{epsilon}$ for all $n > N_1, N_2$ respectively. Then, if we take the greater of N_1, N_2 , we know that all n greater than that number will result in $d(s_n t_n, st) < \epsilon$.
- 4. If we choose N such that $|s_n| > \frac{1}{2}|s|$, then given $\epsilon > 0$, there is an integer N > m such that $n \ge N$ implies $|s_n s| < \frac{1}{2}|s|^2\epsilon$, so for $n \ge N$, $d(\frac{1}{s_n}, \frac{1}{s}) < \frac{2}{|s|^2}d(s_n, s) < \epsilon$

The results of the previous proof apply to operations in \mathbb{R}^k , not just \mathbb{R}^2

Theorem:

Suppose $x_n \in \mathbb{R}^k$ and $x_n = (\alpha_{1,n}, \alpha_{2,n}, ..., \alpha_{k,n})$. Then, $\{x_n\}$ only converges to x if $a_{m,n}$ converges to a_m for every m from 1 to k.

Proof:

We do a proof by contradiction. Lets say that $\{x_n\}$ converged to x but there was at least one dimension $\{x_{m,n}\}$ which did not converge to x_m . This means that for some $\epsilon > 0$, there was a finite number of $x_{m,n}$ where $d(x_{m,n},x_m) < \epsilon$. Then, find the closest of those finite points, and we know that no element in the sequence $\{x_{m,n}\}$ can approach closer than that. Due to how distance works in \mathbb{R}^k , no element of $\{x_n\}$ can approach x close than that either. Therefore, $\{x_n\}$ is not convergent.