P vs. NP

Класс Р и сведение

Сейчас мы переходим в теоретический материал, который является основой классификации алгоритмов. Нас совершенно не интересует эффективность, кроме как разделение на «алгоритмы, которые работают за полиномиальное время» и все остальные.

Договоримся, что мы определяем «алгоритм», как детерминированную машину Тьюринга. И будем использовать тезис Чёрча-Тьюринга о том, что любая вычислимая функция является вычислимой на машине Тьюринга. Также условимся, что мы рассматриваем только задачи принятия решения (принадлежит ли слово)

Определение 1. Задача $A \in P$ (формально говоря язык), если существует машина Тьюринга, проверяющая принадлежность слова языку, время работы $t_A(x)$ которой ограничено полиномом от P(|x|), который является фиксированным для всех входов.

Также, до определения класса NP, определим, что значит язык A сводится к языку B за полиномиальное время.

Определение 2. Язык A **сводится** к языку B за полиномиальное время, если существует функция f, вычислимая за полиномиальное время, такая, что $w \in A \iff f(w) \in B$. Обозначение: $A \leqslant_p B$.

Докажем основное утверждение о сводимости:

Утверждение 1. Пусть $A \leq_p B$ и $B \in \mathsf{P}$ (существует полиномиальный алгоритм решения sadauu). Тогда $A \in \mathsf{P}$.

Доказательство. Достаточно построить алгоритм, показывающий, что для языка A тоже существует полиномиальное решение. Пусть у нас имеются МТ M_A , допускающая язык A, и M_B , допускающая язык B. Поскольку $A \leqslant_p B$, то \exists полиномиальная f, удовлетворяющая определению выше. Построим алгоритм вычисления M_A :

```
Require: слово w вычислить f(w) return M_B(f(w))
```

Поскольку сама функция f является вычислимой за полиномиальное время, то вычисление f(w) потратит полиномиальное время. Кроме того, поскольку $B \in P$, то вычисление $M_B(f(w))$ также займёт полиномиальное время (от размера f(w), но f(w) также вычисляется за полином)! Отсюда $M_A(w)$ также допускает слово w за полиномальное время, что по определению означает, что $A \in P$.

NP класс

Определение 3. Язык L лежит в классе NP, если существует функция от двух аргументов A(x,y) — алгоритм верификации — с полиномиальной сложностью от x такая, что x лежит в L тогда и только тогда, когда для него существует y (его принято называть сертификатом) такой, что A(x,y)=1. При этом сертификат должен быть полиномиально зависим от размера x.

Ясно, что $P \subseteq NP$, так как за алгоритм верификации можно взять просто полиномиальный алгоритм принадлежности слова языку.

Также введём понятие со Р класса:

Определение 4.

$$\mathsf{coNP} = \{ \overline{L} = \Sigma^* \setminus L \mid L \in \mathsf{NP} \}$$

Другими словами, coNP — множество всех языков, которые могут верифицировать непринадлежность слово языку. Например, такая задача — «Нет ли гамильтонового цикла в графе?». Неизвестно, лежит ли она в NP, но она точно лежит в coNP (оставляем упражнение читателю, как предъявить верификатор). Также ясно, что Р ⊆ coNP.

Оставим тоже следующую лемму, как упражнение читателю (думаем, что 2 определения должны быть интуитивно понятны):

NPC классы и теорема Кука-Левина

Определение 5. Язык $A-\mathsf{NP}$ -трудный, если $\forall\ B\in\mathsf{NP}: B\leqslant_{\mathfrak{p}} A.$

Определение 6. Язык $A \in \mathsf{NPC}$ (NP-complete или Nondeterministic Polynomial Complete), если $A \in \mathsf{NP}$ $u \, \forall \, B \in \mathsf{NP} \implies B \leqslant_p A$.

Другими словами, NPC — это в точности те языки, которые являются сами NP и NP-трудными одновременно.

Докажем следующие простые утверждения:

Лемма 2. Пусть $L \in \mathsf{NPC}$. Тогда, если $L \in \mathsf{P}$, то $\mathsf{P} = \mathsf{NP}$.

 \mathcal{A} оказательство. Пусть $L' \in \mathsf{NP}$. Так как $L \in \mathsf{NPC}$, то $L' \leqslant_p L$. Но, поскольку $L \in \mathsf{P}$, то $L' \in \mathsf{P}$, откуда $\mathsf{P} = \mathsf{NP}$.

Лемма 3. Eсли $B \in \mathsf{NPC}$ $u \ B \leqslant_p C \in \mathsf{NP}$, $mo \ C \in \mathsf{NPC}$.

Доказательство. Проверим оба условия, входящих в определение NP-полного класса.

- 1. $C \in \mathsf{NP}$ по условию.
- 2. Пусть $L' \in \text{NP}$. Так как $B \in \text{NPC}$, то $L' \leqslant_p B$, что по определению означает, что существует некая функция $f_{L'B}$ (которая сводит одну задачу к другой), вычислимая за полиномиальное время. Кроме того, $B \leqslant_p C$, что по определению означает, что существует некая функция f_{BC} , вычислимая за полиномиальное время.

Но это означает, что $L' \leq_p C$, так как существует функция $f_{L'C}$, такая, что $f_{L'C}(w) = f_{BC}(f_{L'B}(w))$ – она также является вычислимой за полиномиальное время.

Следовательно, $\forall L' \in \mathsf{NP} : L' \leqslant_p C$, откуда $C - \mathsf{NP}$ -трудный по определению.

Оба условия выполняются, значит, $C \in \mathsf{NPC}$.

Но всё равно должны же остаться вопросы по тому, зачем всё это надо и как вообще доказывать, что задача трудна, то есть лежит в классе NP. Ведь должна же быть какая-то «первая» задача из NPC. Если вы решаете задачу и вдруг понимаете, что она эквивалентна какой-то задаче из NPC, то возможно стоит либо перечитать задачу (и понять, каким условием надо точно пользоваться), либо решить и получить \$1000000.

Одна из первых NPC задач была задача SAT (от англ. Satisfiability). Можем считать, что нам дана булева формула в конъюнктивно нормальной форме. Сейчас мы покажем, что любая NP задача сводится к этой. Вообще, так как если мы хотим сводить любую NP задачу к SAT, то какие-то обычные рассуждения вряд ли пройдут. Действительно, мы будем стараться моделировать работу МТ через $KH\Phi$.

Теорема 1 (Теорема Кука-Левина). $SAT \in \mathsf{NPC}$.

Доказательство. Сначала покажем, что $SAT \in \mathsf{NP}$. Действительно, по входу булевой формулы и верификатору (значение переменных x_1,\ldots,x_n) мы с лёгкостью проверим выполнимость формулы. Поэтому есть линейный алгоритм верификации.

Пусть $\mathcal{P} \in \mathsf{NP}$. Надо понять, как полиномиально свести эту задачу к SAT. По определению класса NP существует полином p и алгоритм \mathcal{P}' , который верифицирует задачу \mathcal{P} , причём верификатор размера не больше, чем |p(|x|)|.

Пусть

$$\Phi: \{0,\ldots,N\} \times \overline{A} \to \{-1,\ldots,N\} \times \overline{A} \times \{-1,0,1\}$$

МТ, работающая за полиномиальное время, отвечающая за задачу \mathcal{P}' с алфавитом A. Добавим пустой символ к A, чтобы легче было работать. Пусть работа этой МТ ограничена полиномом q, то есть time($\Phi, x \# c$) $\leq q(|x \# c|)$. Сейчас мы соорудим набор дизъюнктов (или клауз) Z(x), который ограничен полиномом $Q \leftarrow q(|x \# c|)$, такой, что Z(x) выполняется тогда и только тогда, когда слово принадлежит языку \mathcal{P} .

Ясно, что мы не уйдём за пределы ленты от -Q до Q.

Теперь создадим несколько переменных:

- переменные $v_{ij\sigma}$ для всех $0 \le i \le Q$, $-Q \le j \le Q$ и $\sigma \in \overline{A}$. Верно ли, что в момент i (после i шагов выполнения MT) позиция с номером j содержала символ σ .
- переменные w_{ijn} для всех $0 \le i \le Q$, $-Q \le j \le Q$ и $-1 \le n \le N$. Верно ли, что в момент i на позиции j МТ была в состоянии n. За минус 1 отвечает финальное состояние.

Поэтому, если у нас есть конфигурация МТ на i-ом шаге с позицией $\pi^{(i)}$, символами $s^{(i)}$ и состоянием $n^{(i)}$, тогда мы должны выставить $v_{ij\sigma}:=true$ тогда и только тогда, когда $s^{(i)}_j=\sigma$ (s_j — позиция на j-ом месте ленты МТ). И мы должны выставить $w_{ijn}:=true$ тоже тогда и только тогда, когда $\pi^{(i)}=j$ и $n^{(i)}=n$.

Сейчас мы предъявим набор клауз Z(x), который будет выполняться тогда и только тогда, когда существует строка c полиномиального размера, что МТ Φ на входе x#c выдаёт единицу.

В каждый момент времени на каждой позиции стоит строго один символ:

- дизъюнкт $(v_{ij\sigma} \mid \sigma \in \overline{A})$ по всем $0 \leqslant i \leqslant Q$ и $-Q \leqslant j \leqslant Q$.
- $(\overline{v_{ij\sigma}}, \overline{v_{ij\tau}})$ по всем $0 \leqslant i \leqslant Q$, и $-Q \leqslant j \leqslant Q$, и $\sigma \neq \tau \in \overline{A}$.

В каждый момент времени единственная позиция в строке сканируется и единственная инструкция выполняется:

- $(w_{ijn} \mid -Q \leqslant j \leqslant Q, -1 \leqslant n \leqslant N)$ для всех $0 \leqslant i \leqslant Q$.
- $(\overline{w_{ijn}}, \overline{w_{ij'n'}})$ по всем $0 \leqslant i \leqslant Q$ и $-Q \leqslant j, j' \leqslant Q$ и $-1 \leqslant n, n' \leqslant N$ с условием, что $(j,n) \neq (j',n')$.

Алгоритм корректно начинает свою работу:

- (v_{0,j,x_i}) по всем $1 \le j \le |x|$.
- $(v_{0,|x|+1,\#})$ разделяющий символ.
- $(v_{0,|x|+1+j,0}, v_{0,|x|+1+j,1})$ по всем $1 \le j \le p(|x|)$.
- $(v_{0,i,\sqcup})$ по всем $-Q \leqslant j \leqslant 0$ и $|x| + 2 + p(|x|) \leqslant j \leqslant Q$ пустые символы не с входа.
- $(w_{0.1,0})$ начальное положение головки.

Алгоритм работает корректно:

• $(\overline{v_{ij\sigma}}, \overline{w_{ijn}}, v_{i+1,j,\tau})$ и $(\overline{v_{ij\sigma}}, \overline{w_{ijn}}, w_{i+1,j+\delta,m})$ по всем $0 \le i < Q, -Q \le j \le Q; \sigma, \tau \in \overline{A}, \delta \in \{-1,0,1\}$, где $\Phi(n,\sigma) = (m,\tau,\delta)$ (переход по состоянию n, символу σ в какое-то состояние m, символ τ пишем на j-ом месте и сдвиг на -1,0 или 1).

Когда алгоритм достигает финального состояния (минус 1 в нашем случае), алгоритм останавливается:

• $(\overline{w_{i,j,-1}}, w_{i+1,j,-1})$ и $(\overline{w_{i,j,-1}}, \overline{v_{i,j,\sigma}}, v_{i+1,j,\sigma})$ по всем $0 \le i < Q; -Q \le j \le Q$ и $\sigma \in \overline{A}$ — как раз, если достигли состояния -1, тогда все состояния в каждое время должны быть минус один и символ меняться не должен.

Позиции, которые не были просмотрены, должны остаться неизменными:

• $(\overline{v_{ij\sigma}}, \overline{w_{ij'n}}, v_{i+1,k,\sigma})$ по всем $0 \leqslant i \leqslant Q; \sigma \in \overline{A}; -1 \leqslant n \leqslant N$ и $-Q \leqslant j, j' \leqslant Q$ при условии, что $j \neq j'$.

Алгоритм выводит единицу:

• $(v_{Q,1,1})$ и $(v_{Q,2,\sqcup})$ — на первой позиции стоит единица, а потом пробел (можно считать, что только один, можно, что все последующие, это не играет на роль полиномиальности МТ и полиномиальности размера КНФ).

Заметим, что размер Z(x) будет не больше, чем $\mathcal{O}(Q^3 \log Q)$, существует $\mathcal{O}(Q^3)$ литералов и нужно $\mathcal{O}(\log Q)$ памяти, чтобы закодировать индексы.

Осталось показать, что Z(x) выполняется тогда только тогда, когда x принадлежит языку.

Если Z(x) выполняется, то пусть T — это набор переменных, удовлетворяющим всем клаузам. Поставим $c_j=1$ по всем j для которых $T(v_{o,|x|+1+j,1})=true$ и $c_j=0$ в ином случае. Сверху мы описали работу МТ Φ на входе x#c. Поэтому мы можем заключить, что $\Phi(x\#c)=1$. Так как Φ — алгоритм верификации, то это значит, что x принадлежит языку.

Пусть x принадлежит языку. Тогда пусть c — сертификат проверки для x. Тогда пусть конфигурация МТ на входе x#c на i-ом шаге пусть будет равна $(n^{(i)},s^{(i)},\pi^{(i)})$. Тогда давайте поставим $T(v_{i,j,\sigma})=true$ тогда и только тогда, когда $s_j^{(i)}=\sigma$ и $T(w_{i,j,n})=true$ тогда и только тогда, когда $\pi^{(i)}=j, n^{(i)}=n$ по всем $i\leqslant m$. Для бо́льших i выставим $T(v_{i,j,\sigma}):=T(v_{i-1,j,\sigma})$ и $T(w_{i,j,n}):=T(w_{i-1,j,n})$ по всевозможным j,n,σ . Тогда можно убедиться, что формула выполняется, что завершает наше доказательство.