Matière: Physique-Chimie Professeur: Zakaria HAOUZAN

Unité: Transformations non totales d'un

système chimique Établissement : Lycée SKHOR qualifiant Niveau: 2BAC-SM-PC Heure: 6H

Leçon $N^{\circ}3.3$: Transformations associées à des réactions acido-basiques en solution aqueuse.

Le Produit ionique de l'eau: Ι

I.1 Autoprotolyse de l'eau:

I.1.1 Conductivité de l'eau:

l'eau pure est un mauvais conducteur du courant électrique et que son pH à $25^{\circ}C$ est pH = 7.

• La mauvaise conductivité de l'eau est due à l'existence des ions oxoniums H_3O^+ et des ions hydroxydes HO⁻ qui résultent de l'autoprotolyse de l'eau dont l'équation s'écrit:

$$H_2O_{(l)} + H_2O_{(l)} \stackrel{1}{\rightleftharpoons} H_3O_{(aq)}^+ + HO_{(aq)}^-$$

- Cette réaction dans le sens (1) s'appelle la réaction d'autoprotolyse de l'eau.
- Le pH de l'eau pure à $25^{\circ}C$ est : pH = 7 donc l'eau pure est électriquement neutre : $[H_3O^+]=[HO^-]=10^{-7}mol/L$ Considérons 1L d'eau pure à 25°C, de pH=7.

Tableau d'avancement :

Equation de la réaction		$2 \mathrm{H_2O_{(l)}} \stackrel{1}{\rightleftharpoons} \mathrm{H_3O^+} + \mathrm{HO^-}$			
états	avancement	quantité de Matière en mol			
Etat initial	0	n_i	0	0	
Etat de transformation	x	$n_i - x$	x	x	
Etat final	x_{eq}	$n_i - x_{eq}$	x_{eq}	x_{eq}	

la quantité de Matière initiale de l'eau : $n_i = \frac{m}{M} = \frac{\rho_{eau} \cdot V}{M} = \frac{1g/cm^3 \cdot 10^3 \cdot cm^3}{18} = 55,5mol$

On a $[H_3O^+] = 10^{-pH} = \frac{x_{eq}}{V}$ donc $x_{eq} = 10^{-pH}.V = 10^{-7}.1L = 10^{-7}mol$

Pour L'avancement maximal correspond à la disparition totale de l'eau, $(x_{max} = \frac{n_i}{2})$

Le taux d'avancement à l'équilibre $\tau = \frac{x_{eq}}{x_{max}} = 3,6.10^{-7}\%$

Donc l'autoprotolyse de l'eau est une réaction très limitée.

Produit ionique de l'eau. **I.2**

La réaction d'autoprotolyse de l'eau se produit dans toutes les solutions aqueuses. La constante d'équilibre associée à la réaction d'autoprotolyse de l'eau est :

$$K_e = [H_3O^+]_{(eq)}.[HO^-]_{(eq)}$$

Ke : s'appelle le produit ionique de l'eau.(il ne dépend que de la température).

On utilise aussi le pKe qui est lié au produit ionique par la relation suivante: $K_e = 10^{-pKe}$ et pKe = -log(Ke).

Dans toutes les solutions aqueuses à $25^{\circ}C$: $K_e = [H_3O^+].[HO^-] = 10^{-14}$ donc pKe = 14

Echelle de pH:
$$\frac{0 \quad \text{acide} \quad 7 \quad \text{basique} \quad 14}{[\text{H}_3\text{O}^{\dagger}] > [\text{HO}^{-}]} \quad \text{pH à 25°C}$$

$$[\text{H}_3\text{O}^{\dagger}] = [\text{HO}^{-}]$$

II Constante d'acidité d'un couple acide-base :

II.1 Définition:

Pour un couple acide -base A/B , la réaction de l'acide A avec l'eau s'écrit: $A + H_2O \Longrightarrow B + H_3O^+$

La constante d'acidité du couple acide-base A/B s'écrit: $K_A = \frac{[B][H_3O^+]}{[A]}$

C'est une gradeur sans unité, qui ne dépend que de la température.

On utilise aussi le pKA qui est lié à la constante d'acidité par la relation suivante: $K_A = 10^{-pKA}$ et $pKA = -log(K_A)$

II.2 Relation entre le pH et pKA:

D'après la relation de la constante d'acidité on a:
$$K_A = \frac{[B][H_3O^+]}{[A]}$$
 donc $[H_3O^+] = \frac{[A]K_A}{[B]}$ aussi $pH = -log([H_3O^+])$ et $pH = -log(K_A) - log(\frac{[A]}{[B]})$ alors

$$pH = pKA + log(\frac{[B]}{[A]})$$

II.3 La constante d'équilibre K associée à une réaction acido-basique :

Pour le couple acide/base A_1/B_1 : $A_1 + H_2O \Longrightarrow B_1 + H_3O^+$ la constante d'acidité $K_{A1} = \frac{[B_1][H_3O^+]}{[A_1]}$

Pour le couple acide/base A_2/B_2 : $A_2 + H_2O \Longrightarrow B_2 + H_3O^+$ la constante d'acidité $K_{A2} = \frac{[B_2][H_3O^+]}{[A_2]}$

Dans la réaction acido-basique entre l'acide A1 du couple A1/B1 et la base B2 du couple A2/B2:

 $A_1 + B_2 \Longrightarrow A_2 + B_1$ la constante d'équilibre

$$K = \frac{[A_2][B_1]}{[A_1][B_2]} = \frac{K_{A1}}{K_{A2}} = 10^{pKA1 - pKA2}$$

III Comparaison du comportement des acides et des bases :

III.1 Comparaison des forces des acides :

III.1.1 Influence du taux d'avancement final sur la force de l'acide :

Un acide A_1H est plus fort qu'un acide A_2H , si, à concentrations égales, le taux d'avancement de sa réaction avec l'eau est plus grand que celui de la réaction de l'acide A_2H avec l'eau. $\tau_1 \geq \tau_2$).

Pour des solutions de mêmes concentrations, l'acide le plus fort est celui dont le taux d'avancement final est le plus élevé. donc c'est celui pour lequel $[H_3O^+]$ est la plus élevée.

 $[H_3O^+]$ et pH varient en sens inverses $(pH = -log[H_3O^+])$.

donc: l'acide le plus fort est celui pour lequel le pH est le plus faible

III.1.2 Influence de la constante d'acidité:

Tableau d'avancement de la réaction d'un acide A de concentration c, avec l'eau (volume de la solution V).:

Equation de la réaction		$A + H_2O \rightleftharpoons B + H_3O^+$			
états	avancement	quantité de	M	atière	en mol
Etat initial	0	$n_i = C.V$	-	0	0
Etat de transformation	x	C.V-x	-	x	x
Etat final	x_{eq}	$C.V - x_{eq}$	-	x_{eq}	x_{eq}

L'eau est utilisée en excès, donc l'acide A est le réactif limitant. et Taux d'avancement à l'équilibre : $\tau = \frac{x_{eq}}{CV}$.

Avec $[H_3O^+] = [B] = \frac{x_{eq}}{V} = \frac{\tau \cdot C \cdot V}{V} = \tau \cdot C$ et $[A] = \frac{C \cdot V - X_{eq}}{V} = C(1 - \tau)$

La constante: d'acidité:

$$K_A = \frac{[B][H_3O^+]}{[A]} = \frac{(C.\tau)^2}{C(1-\tau)} = \frac{C\tau^2}{1-\tau}$$

Un acide est d'autant plus fort que sa constante d'acidité KA est plus grande ou que son pKA est plus petit.

Comparaison des forces des bases: III.2

III.2.1 Influence du taux d'avancement final sur la force de la base:

Une base B1 est plus forte qu'une base B2, si, à concentrations égales, le taux d'avancement de sa réaction avec l'eau est plus grand que celui de la réaction de la base B2 avec l'eau. ($\tau_1 > \tau_2$.)

III.2.2 Influence de la constante d'acidité:

Tableau d'avancement de la réaction de la base B de concentration c avec l'eau(volume de la solution V) ::

Equation de la réaction		$B + H_2O \stackrel{1}{\rightleftharpoons} A + HO^-$			
états	avancement	quantité de	M	atière	en mol
Etat initial	0	$n_i = C.V$	-	0	0
Etat de transformation	x	C.V-x	-	x	x
Etat final	x_{eq}	$C.V - x_{eq}$	-	x_{eq}	x_{eq}

L'eau est utilisée en excès, donc La base B est le réactif limitant. et Taux d'avancement à l'équilibre : $au = \frac{x_{eq}}{C.V}$

On a
$$[B] = \frac{C.V - x_{eq}}{V} = C(1 - \tau)$$
 et $[HO^{-}] = [A] = \frac{x_{eq}}{V} = C\tau$

la constante d'équilibre associée à cette réaction :

$$K = \frac{[A].[HO^-]}{[B]} = \frac{(C\tau)^2}{C(1-\tau)} = \frac{C\tau^2}{1-\tau}$$

D'autre parte on a :
$$K_A = \frac{[B].[H_3O^+]}{[A]} = \frac{Ke}{K} = \frac{1-\tau}{C.\tau}.Ke$$

Une base est d'autant plus forte que la constante d'acidité KA associée au couple acide/base auquel elle appartient est plus petite ou que le pKA correspondant est plus grand.

Diagramme de prédominance et celui de distribution : IV

IV.1Diagramme de prédominance :

Relation liant le pH et le pKA est: $pH = pK_A + log(\frac{|B|}{|A|})$

Si pH = pKA;
$$log(\frac{[B]}{[A]}) = 0$$
 donc $\frac{[B]}{[A]} = 1$ [B] = [A] acune des espèces A et B ne prédomine

Si
$$pH > pKA$$
; $log(\frac{[B]}{[A]}) > 0$ donc $\frac{[B]}{[A]} > 1$ alors $[B] > [A]$ la base B prédomine

Si pH = pKA ;
$$log(\frac{[B]}{[A]}) = 0$$
 donc $\frac{[B]}{[A]} = 1$ [B] = [A] acune des espèces A et B ne prédomine Si $pH > pKA$; $log(\frac{[B]}{[A]}) > 0$ donc $\frac{[B]}{[A]} > 1$ alors $[B] > [A]$ la base B prédomine Si $pH < pKA$; $log(\frac{[B]}{[A]}) < 0$ donc $\frac{[B]}{[A]} < 1$ alors $[B] < [A]$ l'acide A prédomine

Diagramme de prédominance:

domaine de prédominance de l'acide A
$$pH = pK_A$$
 domaine de prédominance de la base B $[A] > [B]$ $[A] = [B]$ $[B] > [A]$ pH

IV.2Diagramme de répartition :

On considère une solution contenant l'acide A et sa base conjuguée B.

On appelle pourcentage de l'acide A dans la solution, $\alpha(A) = \frac{[A]}{[A]+[B]}$

On appelle pourcentage de la base B dans la solution, $\alpha(B) = \frac{[B]}{[A]+[B]}$

Des logiciels de simulation permettent de donner les courbes représentant les pourcentages des espèces acide A et basique B d'un même couple dans une solution en fonction du pH de cette solution. On donne l'allure générale de cette distribution :.

IV.3 Les Indicateur colorés:

Un indicateur coloré est un couple acide base HIn/In^- , dont les la forme acide HIn et la forme basique Inont des teintes différentes en solution aqueuse.

Pour le bleu de bromothymol par exemple: la couleur de HIn est jaune et celle de In^- est bleue.

La forme acide HIn de l'indicateur réagit avec l'eau : $HIn + H_2O \rightleftharpoons In^- + H_3O^+$

Donc le pH de la solution est lié au pKA de l'indicateur coloré par la relation suivante : $pH = pKA + log(\frac{[In^-]}{[HIn]})$

- Lorsque la valeur du pH est voisine de celle du pKA , les deux formes HIn et Insont présentes avec des concentrations voisines , il y'a superposition des deux teintes et la couleur observée est dite teinte sensible.
- Généralement l'une des teintes prédomine et impose sa couleur si sa quantité est k fois supérieure à celle de l'autre.
- la valeur de k dépend de l'indicateur , pour le (BBT) k=9 , c'est-à-dire si la concentration de HIn qui est jaune est 9 fois supérieure à celle de Inqui est bleu il prédomine et sa teinte apparait) ceci qui entraine l'existence d'un intervalle de pH qui correspond à la teinte sensible qu'on appelle : la zone de virage. On donne dans le tableau suivant la zone de virage de quelques indicateurs colorés

Indicateur	pK _A	Zone de virage
hélianthine	3,6	3,14,4
Rouge de méthyle	5,0	4,26,2
Jaune de nitrazine	6,4	6,07,0
Bleu de bromothymol	7,2	6,07,6
Rouge de crésol	8,0	7,28,8
Phénol phtaléine	9,5	8,110