# Infineon TC275 PWM (Pulse Width Modulation)

### Hyeongrae Kim

Architecture and Compiler for Embedded System LAB.
School of Electronics Engineering, KNU, KOREA
2021-05-11



### **Hitex ShieldBuddy TC275**





- PWM Duty Ratio에 따른 LED 밝기 변화
  - 1. 새로운 예제를 위한 프로젝트를 생성한다.
  - 2. 원하는 동작을 위해 레지스터와 메모리에 직접 접근해서 값을 써야한다.
  - 3. Board Schematic과 Datasheet를 통해 PWM 신호 출력에 대한 정보를 파악한다.
  - 4. PWM 신호 생성을 위해 사용할 GTM 모듈의 동작 원리를 파악하고 메모리 맵을 분석한다.
  - 5. 분석 결과를 활용해 임베디드 프로그래밍을 한다.

- 1. LED 연결 정보 파악
  - ✓ 여러 LED를 사용하기 위해 Target Board가 아닌 Easy Module Shield V1 확장 보드의 LED를 사용한다.



- 1. LED 연결 정보 파악
  - ✓ LED는 Easy Module Shield V1 확장 보드의 Pin D12(RED)/D13(BLUE)과 연결되어 있다.
  - ✓ 타겟 보드는 Easy Module Shield V1 확장 보드의 Pin D12/D13을 통해 LED 출력을 보낼 수 있다.





- 1. LED 연결 정보 파악
  - ✓ TC275 보드의 Schematic과 Datasheet를 확인했을 때, Easy Module Shield V1 확장 보드의 **Pin D12/D13**과 연결되는 IO는 PORT10**의 Pin 1-2**다.
  - ✓ 해당 Pin의 출력이 High-level 일 때 LED는 켜지고, Low-level 일 때 LED는 꺼진다.





- 1. PWM 신호 출력 정보 파악
  - ✓ LED가 연결된 PORT10 Pin 1는 GTM 모듈의 TOUT103과 연결되어 있다.
  - ✓ GTM 모듈의 TOUT103이 PWM 신호를 출력하면 PORT10 Pin 1을 통해 LED에 인가될 수 있다.

P10.2

P10 IN.P2

**TIN104** 

SCLK1A

REQ2

SDI01

T6INB RXDCAN2E

P10 OUT.P2

TOUT104

SCLK1

General-purpose input

GTM input

SCU input

MSC0 input

GTM output

QSPI1 output

Reserved

GPT120 input

CAN node 2 input

General-purpose output

QSPI1 input

P10 IOCR0.

PC2

0XXXX<sub>R</sub>

1X000<sub>B</sub>

1X001<sub>B</sub>

1X010<sub>B</sub>

1X011<sub>B</sub>

TOM2\_10 ATOM ATOM

TOM0\_2

TIN104 TOUT104 TIM0\_2 TIM1\_2

✓ PWM 신호를 통해 LED 밝기를 제어하기 위해 해당 Pin을 GTM 모듈의 TOUT103 (01)으로 설정해야 한다.

| Pin                | Symbol     | Ctrl | Type | Function                    |               |            |             |                     |         |         |                    |                    |                    |
|--------------------|------------|------|------|-----------------------------|---------------|------------|-------------|---------------------|---------|---------|--------------------|--------------------|--------------------|
| 169                | P10.1      | 1    | MP+/ | General-purpose input       |               |            |             |                     |         |         |                    |                    |                    |
|                    | TIN103     |      | PU1/ | GTM input                   |               |            |             |                     |         |         |                    |                    |                    |
|                    | MRST1A     |      | VEXT | QSPI1 input<br>GPT120 input |               |            |             |                     |         |         |                    |                    |                    |
|                    | T5EUDB     |      |      |                             |               |            |             |                     |         |         |                    |                    |                    |
|                    | P10.1      | 00   | 1    | General-purpose output      |               |            |             |                     |         |         |                    |                    |                    |
|                    | TOUT103    | 01   |      | GTM output                  |               |            |             |                     |         |         |                    |                    |                    |
|                    | MTSR1      | 02   |      | QSPI1 output                | Table<br>Port | 25-67 G1   | M to Port I | Mapping<br>Input Ti |         |         | mer Mapped         |                    |                    |
|                    | MRST1      | O3   | 1    | QSPI1 output                |               | Mapped A B |             |                     | A B C D |         |                    |                    |                    |
|                    | EN01       | 04   | 1    | MSC0 output                 | P02.2         |            |             | _                   | _       | _       | TOM1_10<br>TOM1_11 | 0_2                | 1_2                |
|                    | VADCG6BFL1 | O5   | 1    | VADC output                 | P02.4         |            | TOUT4       | TIM0_4              | TIM1_4  | TOM0_12 | TOM1_12            | 0_3<br>ATOM<br>0_4 | 1_3<br>ATOM<br>1_4 |
|                    | END03      | O6   | 1    | MSC0 output                 |               |            |             |                     |         |         | TOM1_14            | 0_5<br>ATOM        | 1_5                |
|                    |            | 07   | 1    | Reserved                    |               |            |             |                     | _       | _       | TOM1_15            | 0_7                | 1_7                |
| <br>. <b>CE</b> La | h          |      | 1    |                             |               | TIN102     | TOUT102     | TIM0_4              | TIM1_4  | TOM0_4  | TOM2_12            | 0_0<br>ATOM<br>1_4 | 1_0<br>ATOM<br>4_4 |
|                    | IJ.        |      |      |                             | P10.1         | 1 TIN103   | TOUT103     | TIMO 1              | TIM1 1  | TOM0 1  | TOM2 9             | ATOM               | ATOM               |



- 2. Data sheet 분석: PORT 설정 (1)
  - ✔ P10\_IOCR Register는 PORT10의 Input/Output을 설정한다.
  - ✓ LED가 PORT10의 Pin 1에 연결되어 있기 때문에 P10\_IOCRO Register의 PC1 bits를 설정한다.

Table 13-3 Registers Address Space

| Module | Base Address           | End Address            | Note    |   |
|--------|------------------------|------------------------|---------|---|
| P00    | F003 A000 <sub>H</sub> | F003 A0FF <sub>H</sub> | 13 pins |   |
| P01    | F003 A100 <sub>H</sub> | F003 A1FF <sub>H</sub> | 5 pins  |   |
| P02    | F003 A200 <sub>H</sub> | F003 A2FF <sub>H</sub> | 12 pins |   |
| P10    | F003 B000 <sub>H</sub> | F003 B0FF <sub>H</sub> | 9 pins  |   |
| P11    | F003 B100 <sub>H</sub> | F003 B1FF <sub>H</sub> | 16 pins | - |
| P12    | F003 B200 <sub>H</sub> | F003 B2FF <sub>H</sub> | 2 pins  |   |
| P13    | F003 B300 <sub>H</sub> | F003 B3FF <sub>H</sub> | 4 pins  |   |
| P14    | F003 B400 <sub>H</sub> | F003 B4FF <sub>H</sub> | 11 pins |   |
| P15    | F003 B500 <sub>H</sub> | F003 B5FF <sub>H</sub> | 9 pins  |   |

P10\_IOCR0 Register 주소: F003\_B010h (F003B000h + 10h) P10\_IOCR0 Register 구조:

Pn\_IOCR0 (n=10-11)
Port n Input/Output Control Register 0

| Port | n inp | ut/Ot | ıtput | Cont | roi Re | egiste | er u |                    |                    |     |     |       |       |      |                   |
|------|-------|-------|-------|------|--------|--------|------|--------------------|--------------------|-----|-----|-------|-------|------|-------------------|
|      |       |       |       |      | (      | (F003  | A610 | ) <sub>н</sub> + r | 1*100 <sub>1</sub> | н)  | Res | et Va | ilue: | 1010 | 1010 <sub>H</sub> |
| 31   | 30    | 29    | 28    | 27   | 26     | 25     | 24   | 23                 | 22                 | 21  | 20  | 19    | 18    | 17   | 16                |
|      |       | PC3   |       |      |        | 0      |      |                    |                    | PC2 |     |       |       | 0    |                   |
|      |       | rw    | -     |      |        | r      | -    | -                  |                    | rw  |     | -     |       | r    |                   |
| 15   | 14    | 13    | 12    | 11   | 10     | 9      | 8    | 7                  | 6                  | 5   | 4   | 3     | 2     | 1    | 0                 |
|      |       | PC1   |       |      |        | 0      |      |                    |                    | PC0 |     |       |       | 0    |                   |
|      | •     | гw    |       |      |        | r      | -    | -                  | -                  | rw  |     | -     | -     | г    |                   |

| Field                       | Bits                                      | Туре | Description                                                                                                                                             |
|-----------------------------|-------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| PC0,<br>PC1,<br>PC2,<br>PC3 | [7:3],<br>[15:11],<br>[23:19],<br>[31:27] | rw   | Port Control for Port n Pin 0 to 3  This bit field determines the Port n line x functionality (x = 0-3) according to the coding table (see Table 13-5). |
| 0                           | [2:0],<br>[10:8],<br>[18:16],<br>[26:24]  | r    | Reserved Read as 0; should be written with 0.                                                                                                           |

2. Data sheet 분석 : PORT 설정 (2)

Table 13-5

11110<sub>B</sub>

11111<sub>B</sub>

✓ PORT10의 Pin 1을 GTM 모듈의 TOUT103 (O1)으로 설정하기 위해 PC1 bits를 10001b로 설정한다.

**PCx Coding** Selected Pull-up / Pull-down / PCx[4:0] I/O Characteristics **Selected Output Function** Push-pull 10000<sub>R</sub> Output General-purpose output 10001<sub>B</sub> Alternate output function 1 10010<sub>B</sub> Alternate output function 2 10011<sub>B</sub> Alternate output function 3 10100<sub>R</sub> Alternate output function 4 10101<sub>B</sub> Alternate output function 5 10110<sub>B</sub> Alternate output function 6 10111<sub>B</sub> Alternate output function 7  $11000_{\rm B}$ Open-drain General-purpose output 11001<sub>R</sub> Alternate output function 1  $11010_{R}$ Alternate output function 2 11011<sub>B</sub> Alternate output function 3  $11100_{R}$ Alternate output function 4 11101<sub>B</sub> Alternate output function 5

Alternate output function 6

Alternate output function 7

- 2. Data sheet 분석: GTM Enable 설정
  - ✓ GTM\_CLC Register는 GTM 모듈의 Enable 설정을 한다.
  - ✓ GTM 모듈을 Enable 하기 위해 DISR bit를 0으로 설정한다.
  - ✓ GTM 모듈이 Enable 되어 있는지 확인하기 위해 DISS bit가 O인지 확인한다.

GTM\_CLC Register 주소: F019\_FD00h (F0100000h + 9FD00h)

#### GTM\_CLC Register 구조:

Table 25-63 Registers Address Space

| Modu        | ıle   |          | Base                             | Addr | ess      |    | End  | l Add              | ress |    |     | Not   | te       |          |                   |
|-------------|-------|----------|----------------------------------|------|----------|----|------|--------------------|------|----|-----|-------|----------|----------|-------------------|
| GTM         |       |          | F010 0000 <sub>H</sub> F019 FFFF |      |          |    |      | F <sub>H</sub>     |      |    |     |       |          |          |                   |
| CLC<br>Cloc | k Cor | ntrol    | Regis                            | ter  |          |    | (9FE | )00 <sub>H</sub> ) |      |    | Res | et Va | lue: (   | 0000     | 0003 <sub>H</sub> |
| 31          | 30    | 29       | 28                               | 27   | 26       | 25 | 24   | 23                 | 22   | 21 | 20  | 19    | 18       | 17       | 16                |
|             |       |          |                                  |      |          |    |      | 0                  |      |    |     |       |          |          |                   |
|             | I     | <u> </u> |                                  | I    | <u>I</u> |    | 1    | r                  | I.   | l  |     |       | <u> </u> | 1        |                   |
| 15          | 14    | 13       | 12                               | 11   | 10       | 9  | 8    | 7                  | 6    | 5  | 4   | 3     | 2        | 1        | 0                 |
|             | 1     |          | 1                                | 1    | (        | )  |      | 1                  | 1    | 1  | 1   | EDIS  |          | DIS<br>S | DIS<br>R          |
|             |       |          |                                  |      | ·        | -  |      |                    |      |    | 1   | rw    | r        | r        | rw                |

| Field | Bits         | Туре | Description                                                                                                                                         |
|-------|--------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| DISR  | 0            | rw   | Module Disable Request Bit Used for enable/disable control of the GTM module.  0 <sub>B</sub> No disable requested 1 <sub>B</sub> Disable requested |
| DISS  | 1            | r    |                                                                                                                                                     |
| EDIS  | 3            | rw   | Sleep Mode Enable Control Used for module sleep mode control.                                                                                       |
| 0     | 2,<br>[31:4] | r    | Reserved Read as 0; should be written with 0.                                                                                                       |



- 2. Data sheet 분석 : System Critical Register 설정 (1)
  - ✓ 설정해야 하는 GTM\_CLC Register는 System Critical Register이기 때문에 Write Protected (System ENDINIT, End-of-Initialization) 되어 있다.
  - ✓ 해당 Register를 수정하기 위해서는 System ENDINIT을 해제해야 한다.
  - ✓ SCU\_WDTCPU0CON0 Register는 System Critical Register의 System ENDINIT을 설정/해제한다.

SCU\_WDTCPU0CON0 Register 주소: F003\_6100h (F0036000h + 100h)

#### SCU\_WDTCPU0CON0 Register 구조:

| Table 7-27 | Registers Address Spaces - SCU Kernel Registers |
|------------|-------------------------------------------------|
|------------|-------------------------------------------------|

|             |                  |                        | Note |
|-------------|------------------|------------------------|------|
| SCU F003 60 | 000 <sub>H</sub> | F003 63FF <sub>H</sub> | -    |

#### WDTCPU0CON0







- 2. Data sheet 분석 : System Critical Register 설정 (2)
  - ✓ ENDINIT bit는 System ENDINIT의 설정 상태를 나타내며 Modify Access를 통해서만 수정이 가능하다.
  - ✓ **LCK bit**는 SCU\_WDTCPU0CON0 Register의 Lock 상태를 나타내며 해당 Register의 Lock 상태는 Password Access를 통해 Unlock 되고, Modify Access를 통해 Lock 된다.
  - ✓ PW bits는 SCU\_WDTCPU0CON0 Register에 접근하기 위한 Password를 저장하며 해당 값을

| Field   | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENDINIT | 0    | rwh  | End-of-Initialization Control Bit  0 <sub>B</sub> Access to Endinit-protected registers is permitted.  1 <sub>B</sub> Access to Endinit-protected registers is not permitted.  This bit must be written with a '1' during a Password Access or Check Access (although this write is only used for the password-protection mechanism and is not stored). This bit must be written with the required ENDINIT update value during a Modify Access.                                                                                                                                                                                                                                  |
| LCK     | 1    | rwh  | Lock Bit to Control Access to WDTxCON0  0 <sub>B</sub> Register WDTxCON0 is unlocked  1 <sub>B</sub> Register WDTxCON0 is locked   (default after ApplicationReset)  The current value of LCK is controlled by hardware. It is cleared after a valid Password Access to WDTxCON0 when WDTxSR.US is 0 (or when WDTxSR.US is 1 and the SMU is in RUN mode), and it is automatically set again after a valid Modify Access to WDTxCON0. During a write to WDTxCON0, the value written to this bit is only used for the password-protection mechanism and is not stored.  This bit must be cleared during a Password Access to WDTxCON0, and set during a Modify Access to WDTxCON0. |

| PW | [15:2] | rwh | User-Definable Password Field for Access to WDTxCON0 This bit field is written with an initial password value during a Modify Access. A read from this bitfield returns this initial password, but bits [7:2] are inverted (toggled) to ensure that a                                                                                                      |
|----|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |        |     | simple read/write is not sufficient to service the WDT.  If corresponding WDTxSR.PAS = 0 then this bit field must be written with its current contents during a Password Access or Check Access.  If corresponding WDTxSR.PAS = 1 then this bit field must be written with the next password in the LFSR sequence during a Password Access or Check Access |
|    |        |     | The default password after Application Reset is 00000000111100 <sub>B</sub>                                                                                                                                                                                                                                                                                |
|    |        |     | A-step silicon: Bits [7:2] must be written with 111100 <sub>B</sub> during Password Access and Modify Access. Read returns 000011 <sub>B</sub> for these bits.                                                                                                                                                                                             |

- 2. Data sheet 분석 : System Critical Register 설정 (3)
  - ✓ SCU\_WDTCPU0CON0 Register에 적절한 값을 Write하여 Password Access를 수행한다.
  - ✓ Password Access는 SCU\_WDTCPU0CON0 Register의 Lock 상태를 해제하며 과정은 다음과 같다.
    - 1. SCU\_WDTCPU0CON0 Register의 값을 읽어 REL bits, PW bits를 파악한다.
    - 2. Bits[7:2] (PW bits의 일부)가 반전되어 읽히기 때문에 이를 반전시켜 정확한 PW bits를 얻는다.
    - 3. Write 할 값의 bits[31:16]은 읽혀진 REL bits 값으로 설정하고 bit[15:2]는 앞서 구한 정확한 PW bits 값으로 설정한다.
    - 4. Write 할 값의 bit[1]은 0으로 설정하고, bit[0]은 1로 설정한다.
    - 5. 설정된 값을 SCU\_WDTCPU0CON0 Register에 한번에 쓴다.
    - 6. SCU\_WDTCPU0CON0 Register의 LCK bit를 확인하여 Lock 상태가 해제되었는지 파악한다. (Password Access가 정상적으로 수행되면 Lock 상태가 해제되며 LCK bit가 0으로 설정된다.)
  - ✓ Password Access를 통해 SCU\_WDTCPU0CON0 Register의 Lock 상태가 해제되면 Modify
     Access를 통해 System ENDINIT을 설정/해제할 수 있다.

- 2. Data sheet 분석 : System Critical Register 설정 (4)
- ✓ SCU\_WDTCPU0CON0 Register에 적절한 값을 Write하여 Modify Access를 수행한다.
- ✓ Modify Access는 System ENDINIT을 설정/해제하며 과정은 다음과 같다.
  - 1. SCU\_WDTCPU0CON0 Register의 값을 읽어 REL bits, PW bits를 파악한다.
  - 2. Bits[7:2] (PW bits의 일부)가 반전되어 읽히기 때문에 이를 반전시켜 정확한 PW bits를 얻는다.
  - 3. Write 할 값의 bits[31:16]은 읽혀진 REL bits 값으로 설정하고 bit[15:2]는 앞서 구한 정확한 PW bits 값으로 설정한다.
  - 4. Write 할 값의 bit[1]은 1로 설정하고, bit[0]은 적절한 값으로 설정한다. (System ENDINIT 설정: bit[0] = 1, System ENDINIT 해제 : bit[0] = 0)
  - 5. 설정된 값을 SCU\_WDTCPU0CON0 Register에 한번에 쓴다.
  - 6. SCU\_WDTCPU0CON0 Register의 LCK bit를 확인하여 Lock 상태가 다시 설정되었는지 파악한다. (Modify Access가 정상적으로 수행되면 Lock 상태가 설정되며 LCK bit가 1로 설정된다.)
- ✓ Modify Access를 통해 System ENDINIT을 해제하면 System Critical Register를 수정할 수 있으며 수정을 완료하면 System ENDINIT을 꼭 다시 설정해야 한다.



Figure 25-1 GTM Architecture Block Diagram



| Table 25-1 Submodule groups |                                          |                                  |  |  |  |  |  |  |  |  |
|-----------------------------|------------------------------------------|----------------------------------|--|--|--|--|--|--|--|--|
| Section                     | Submodule                                | Group                            |  |  |  |  |  |  |  |  |
| Section 25.3                | Advanced Routing Unit (ARU)              | Infrastructural components       |  |  |  |  |  |  |  |  |
| Section 25.4                | Broadcast Module (BRC)                   | Infrastructural components       |  |  |  |  |  |  |  |  |
| Section 25.5                | First In First Out Module (FIFO)         | Infrastructural components       |  |  |  |  |  |  |  |  |
| Section 25.6                | AEI-to-FIFO Data Interface (AFD)         | Infrastructural components       |  |  |  |  |  |  |  |  |
| Section 25.7                | FIFO-to-ARU Interface (F2A)              | Infrastructural components       |  |  |  |  |  |  |  |  |
| Section 25.8                | Clock Management Unit (CMU)              | Infrastructural components       |  |  |  |  |  |  |  |  |
| Section 25.9                | Time Base Unit (TBU)                     | Infrastructural components       |  |  |  |  |  |  |  |  |
| Section 25.1                | Timer Input Module (TIM)                 | IO Modules                       |  |  |  |  |  |  |  |  |
| Section 25.1                | Timer Output Module (TOM)                | IO Modules                       |  |  |  |  |  |  |  |  |
| Section 25.1<br>2           | ARU-connected Timer Output Module (ATOM) | IO Modules                       |  |  |  |  |  |  |  |  |
| Section 25.1<br>3           | Multi Channel Sequencer (MCS)            | Signal generation and processing |  |  |  |  |  |  |  |  |

User's Manual GTM, V1.9 25-2 V2.2, 2014-12



#### TC27x D-Step

#### **Generic Timer Module (GTM)**

Table 25-1 Submodule groups (cont'd)

| Table 20 1        | Cabinicatic groups (conta)             |                                   |
|-------------------|----------------------------------------|-----------------------------------|
| Section           | Submodule                              | Group                             |
| Section 25.1<br>4 | Memory Configuration Module (MCFG)     | Infrastructural component for MCS |
| Section 25.1<br>5 | TIM0 Input Mapping Module (MAP)        | Dedicated                         |
| Section 25.1<br>6 | Digital PLL (DPLL)                     | Dedicated                         |
| Section 25.1<br>7 | Sensor Pattern Evaluation Module (SPE) | BLDC support                      |
| Section 25.1<br>8 | Interrupt Concentrator Module (ICM)    | Interrupt services                |
| Section 25.1<br>9 | Output Compare Unit (CMP)              | Safety features                   |
| Section 25.2<br>0 | Monitoring Unit (MON)                  | Safety features                   |

- 2. Data sheet 분석 : GTM 내부 Clock 설정 (1)
  - ✓ GTM 모듈은 내부에 CMU (Clock Management Unit)을 포함하고 있다.
  - ✓ CMU는 GTM 입력 클럭을 분주하여 다양한 내부 클럭을 생성하고, GTM 내부의 하위 모듈에 공급한다.
  - ✓ 본 실습에서 PWM 신호 생성을 위해 사용할 하위 모듈인 TOM (Timer Output Module)은
     CMU\_FXCLK에 따라 동작한다.
  - ✓ 따라서, CMU의 FXU에 대한 설정을 해야 한다.



- 2. Data sheet 분석 : GTM 내부 Clock 설정 (2)
  - ✓ GTM\_CMU\_FXCLK\_CTRL Register는 CMU\_FXCLK의 소스 클럭을 설정한다.

FXCLK\_SEL

- ✓ CMU\_FXCLK의 소스 클럭으로 GTM 모듈의 입력 클럭인 CMU\_GCLK\_EN 또는 GTM 모듈 내부에서 생성된 CMU\_CLKx가 사용될 수 있다.
- ✓ 소스 클럭을 CMU\_GCLK\_EN으로 설정하기 위해 FXCLK\_SEL bits를 0000b로 설정한다.

GTM\_CMU\_FXCLK\_CTRL Register 주소: F010\_0344h

Reserved

| JIIV  | 'I_C | IVIU | _' ^          | CLI   | ,_Cı  |        | neg   | 316               | ;ı Ţ            | -⊥.             | 10  | · U_\ | JJ4.  | 711  |                   |               |       |      |                                                                                                                   |
|-------|------|------|---------------|-------|-------|--------|-------|-------------------|-----------------|-----------------|-----|-------|-------|------|-------------------|---------------|-------|------|-------------------------------------------------------------------------------------------------------------------|
|       |      |      |               |       |       |        |       |                   |                 |                 | (F0 | 100   | 000   | )h + | 344               | h)Field       | Bits  | Туре | Description                                                                                                       |
| GTN   | 1_C  | MU   | _FX           | CLK   | CT_   | RL     | Regi  | ist€              | ∙r 刁            | <sup>L</sup> 조: |     |       |       |      |                   | FXCLK_S<br>EL | [3:0] | rw   | Input clock selection for EN_FXCLK line                                                                           |
| Table | 25-6 | 3 R  | egist         | ers A | ddres | ss Spa | ace   |                   |                 |                 |     |       |       |      |                   |               |       |      | 0000 <sub>B</sub> CMU_GCLK_EN selected                                                                            |
| Modu  | ıle  | I    | Base          | Addr  | ess   |        | End   | Add               | ress            |                 |     | No    | te    |      |                   |               |       |      | 0001 <sub>B</sub> CMU_CLK0 selected                                                                               |
| GTM   |      | 1    | F010          | 0000  | н     |        | F019  | FFF               | FF <sub>H</sub> |                 |     |       |       |      |                   |               |       |      | 0010 <sub>B</sub> CMU_CLK1 selected<br>0011 <sub>B</sub> CMU_CLK2 selected                                        |
| _     | _    | _    | CLK_<br>ontro |       |       |        | (0034 | 14 <sub>H</sub> ) |                 |                 | Res | set V | alue: | 0000 | 0000 <sub>H</sub> |               |       |      | 0100 <sub>B</sub> CMU_CLK3 selected<br>0101 <sub>B</sub> CMU_CLK4 selected<br>0110 <sub>B</sub> CMU_CLK5 selected |
| 31    | 30   | 29   | 28            | 27    | 26    | 25     | 24    | 23                | 22              | 21              | 20  | 19    | 18    | 17   | 16                |               |       |      | 0111 <sub>B</sub> CMU_CLK6 selected<br>1000 <sub>B</sub> CMU_CLK7 selected                                        |
|       |      | L    | ı             | ı     | ı     |        | Rese  | ved               |                 | 1               |     | ı     | 1     | 1    | <u> </u>          |               |       |      | Note: This value can only be written, when the CMU FXCLK generation is disabled. See bits                         |
|       |      |      |               |       |       |        | r     |                   |                 |                 |     |       |       |      |                   |               |       |      | 2322 in register CMU_CLK_EN.                                                                                      |
| 15    | 14   | 13   | 12            | 11    | 10    | 9      | 8     | 7                 | 6               | 5               | 4   | 3     | 2     | 1    | 0                 |               |       |      | Note: Other values for FXCLK_SEL are reserved and                                                                 |

should not be used, but they behave like

FXCLK SEL = 0.

- 2. Data sheet 분석 : GTM 내부 Clock 설정 (3)
- ✓ GTM\_CMU\_CLK\_EN Register는 CMU 내부의 클럭에 대한 Enable 설정을 한다.
- ✔ GTM\_CMU\_CLK\_EN Register는 CMU 내부에서 생성된 다양한 클럭에 대한 Enable을 설정할 수 있다.
- ✓ CMU\_FXCLK을 Enable 하기 위해 EN\_FXCLK bits를 10b로 설정한다.

GTM\_CMU\_CLK\_EN Register 주소: F010\_0300h (F0100000h + 300h)

#### GTM\_CMU\_CLK\_EN Register 구조:

| Table 25-63 | Registers | Address Space |
|-------------|-----------|---------------|

| Module | Base Address           | End Address            | Note |
|--------|------------------------|------------------------|------|
| GTM    | F010 0000 <sub>H</sub> | F019 FFFF <sub>H</sub> |      |

#### GTM\_CMU\_CLK\_EN

| CMU  | Cloc | k Ena | able F | Regis | ter  |     | (003 | 00 <sub>H</sub> ) |           |      | Res      | set V | alue:     | 0000 | 0000 <sub>H</sub> |
|------|------|-------|--------|-------|------|-----|------|-------------------|-----------|------|----------|-------|-----------|------|-------------------|
| 31   | 30   | 29    | 28     | 27    | 26   | 25  | 24   | 23                | 22        | 21   | 20       | 19    | 18        | 17   | 16                |
|      |      |       | Rese   | erved | 1    |     | 1    |                   | FXCL<br>K | EN_E | CLK<br>2 | EN_I  | ECLK<br>1 | _    | ECLK<br>0         |
|      |      | •     |        | r     | •    | •   |      | r                 | W         | r    | W        | r     | w         | ľ    | W                 |
| 15   | 14   | 13    | 12     | 11    | 10   | 9   | 8    | 7                 | 6         | 5    | 4        | 3     | 2         | 1    | 0                 |
| EN_C | CLK7 | EN_   | CLK6   | EN_   | CLK5 | EN_ | CLK4 | EN_               | CLK3      | EN_  | CLK2     | EN_   | CLK1      | EN_  | CLK0              |

| Field        | Bits    | Туре | Description                                                                                                                                                                            |
|--------------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN_CLK4      | [9:8]   | rw   | Enable clock source 4 see bits [1:0]                                                                                                                                                   |
| EN_CLK5      | [11:10] | rw   | Enable clock source 5 see bits [1:0]                                                                                                                                                   |
| EN_CLK6      | [13:12] | rw   | Enable clock source 6<br>see bits [1:0]                                                                                                                                                |
| EN_CLK7      | [15:14] | rw   | Enable clock source 7<br>see bits [1:0]                                                                                                                                                |
| EN_ECLK<br>0 | [17:16] | rw   | Enable ECLK 0 generation subunit see bits [1:0]                                                                                                                                        |
| EN_ECLK<br>1 | [19:18] | rw   | Enable ECLK 1 generation subunit see bits [1:0]                                                                                                                                        |
| EN_ECLK<br>2 | [21:20] | rw   | Enable ECLK 2 generation subunit see bits [1:0]                                                                                                                                        |
| EN_FXCL<br>K | [23:22] | rw   | Enable all CMU_FXCLK see bits [1:0]  Note: An enable 00 <sub>B</sub> clock source is disabled (ignore write access) disable clock signal and reset internal states enable clock signal |



P10.0 TIN102 TOUT102 TIM0\_4 TIM1\_4 TOM0\_1 TOM2\_12 ATOM ATOM 1\_4 4\_4

P10.1 TIN103 TOUT103 TIM0\_1 TIM1\_1 TOM0\_1 TOM2\_9 ATOM 1\_1 4\_1

P10.2 TIN104 TOUT104 TIM0\_2 TIM1\_2 TOM0\_2 TOM2\_10 ATOM ATOM ATOM

- 2. Data sheet 분석: TOM 구조 분석
- ✓ PWM 신호 생성을 위해 GTM 모듈 내부의 TOM을 사용한다.
- ✓ GTM 모듈은 3개의 TOM을 포함하고 있고, 각
   TOM은 2개의 TGC (TOM Global Channel Control)와
   16개의 TOM Channel을 가지고 있다.
- ✓ TGC는 8개의 TOM Channel과 연결되어 있으며 이를 통해 TOM Channel을 제어할 수 있다.
- ✓ TOM Channel은 TGC의 제어에 따라 동작을 수행하며 출력 신호를 생성한다.
- ✓ 본실습에서는 TOMO\_CH1를 사용한다. (TOUT103과 연결되어 있기 때문이다.)
- ✓ 따라서, TOMO\_CH1를 사용하기 위한 설정을 수행한다.



- 2. Data sheet 분석: TOM 동작 분석
  - ✓ TOM Channel은 CNO / CMO / CM1을 사용해 PWM 신호를 생성한다.
    - ✓ CNO: 동작 클럭에 따라 증가하는 Count 값을 저장한다.
    - ✓ CM0: PWM 신호의 주기를 결정하는 값을 저장한다.
    - ✓ CM1: PWM 신호의 Duty Ratio를 결정하는 값을 저장한다.
  - ✓ CNO는 동작 클럭에 따라 1씩 증가하며 CMO에 도달하면 0으로 초기화된다.
  - ✓ CNO가 CMO에 도달했을 때, 출력 신호는 SL 값으로 설정된다.
  - ✓ CNO가 CM1에 도달했을 때, 출력 신호는 SL 반전 값으로 설정된다.





Figure 25-39 PWM Output with respect to configuration bit SL in continuos mode

- 2. Data sheet 분석 : TOMO TGCO 설정 (1), TOM Global Control
  - ✓ GTM\_TOMO\_TGCO\_GLB\_CTRL Register는 Channel 0-7을 제어하는 TGCO에 대한 설정을 한다.
  - ✓ Channel에 대한 Enable/Disable 설정 및 Output Enable 설정은 트리거 신호에 의해 일괄적으로 반영된다.
  - ✓ HOST\_TRIG bit를 1로 설정하여 사용자가 소프트웨어적으로 트리거 신호를 발생시킬 수 있다.

RIG

GTM\_TOM0\_TGC0\_GLB\_CTRL Register 주소: F010\_8030h (F0100000h + 8030h)

#### GTM\_TOM0\_TGC0\_GLB\_CTRL Register 구조:

| Table 25-65 | -63 Registers Address Space |             |      |  |  |  |  |  |  |  |  |
|-------------|-----------------------------|-------------|------|--|--|--|--|--|--|--|--|
| Module      | Base Address                | End Address | Note |  |  |  |  |  |  |  |  |
|             |                             |             |      |  |  |  |  |  |  |  |  |

| GIM        |            | '  | -010       | UUUU <sub>F</sub> | ł          |    | FUI        | 9                  | ГН                |            |        |            |       |      |                   |
|------------|------------|----|------------|-------------------|------------|----|------------|--------------------|-------------------|------------|--------|------------|-------|------|-------------------|
| GTM<br>TOM | _          | _  | _          | _                 |            | •  | •          | 30 <sub>H</sub> +i | *800 <sub>H</sub> | )          | Res    | set Va     | alue: | 0000 | 0000 <sub>H</sub> |
| 31         | 30         | 29 | 28         | 27                | 26         | 25 | 24         | 23                 | 22                | 21         | 20     | 19         | 18    | 17   | 16                |
| UPEI<br>RI | N_CT<br>L7 |    | N_CT<br>L6 |                   | N_CT<br>L5 |    | N_CT<br>_4 | UPEI<br>Ri         | N_CT              | UPEI<br>RI | _      | UPEI<br>RI | N_CT  |      | N_CT<br>L0        |
| r          | W          | r  | W          | r                 | N          | r  | N          | r                  | N                 | r\         | V      | r          | N     | r    | W                 |
| 15         | 14         | 13 | 12         | 11                | 10         | 9  | 8          | 7                  | 6                 | 5          | 4      | 3          | 2     | 1    | 0                 |
| RST<br>CH  | RST<br>CH  |    |            | RST<br>CH         |            |    | RST<br>CH  |                    |                   | Re         | eserve | ed         |       |      | HOS<br>T T        |

| Field         | Bits  | Type | Description                                                                                                                                                                                                                                                                                        |
|---------------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HOST_TRI<br>G | 0     | W    | Trigger request signal (see TGC0, TGC1) to update the register ENDIS_STAT and OUTEN_STAT  0 <sub>B</sub> no trigger request  1 <sub>B</sub> set trigger request Read as 0.  Note: This flag is cleared automatically after triggering the update                                                   |
| Reserved      | [7:1] | r    | Reserved Read as zero, should be written as zero                                                                                                                                                                                                                                                   |
| RST_CH0       | 8     | W    | Software reset of channel 0  0 <sub>B</sub> No action  1 <sub>B</sub> Reset channel Read as 0.  Note: This bit is cleared automatically after write by CPU. The channel registers are set to their reset values and channel operation is stopped immediately. The S-r FlipFlop SOUR is set to '1'. |

- 2. Data sheet 분석 : TOMO TGCO 설정 (2)
  - ✔ TOM 동작을 위한 CM0 / CM1 / CLK\_SRC 값은 먼저 Shadow Register에 저장된다.
  - ✓ 업데이트가 Enable 되어 있으면 업데이트를 할 때 Shadow Register에 저장되어 있는 값이 일괄적으로 반영되어 CM0 / CM1 / CLK\_SRC가 설정된다.
  - ✓ TOM Channel 1이 동작하기 위해서는 해당 Channel에 대한 CM0 / CM1 / CLK\_SRC 값이 설정되어야 하며 이를 위해 UPEN\_CTRL1 bits를 10b로 설정하여 업데이트를 Enable 한다.



- 2. Data sheet 분석 : TOMO TGCO 설정 (3)
  - ✓ GTM\_TOMO\_TGCO\_FUPD\_CTRL Register는 트리거 신호에 따른 동작 설정을 한다.
  - ✓ FUPD\_CTRLx bits는 CM0 / CM1 / CLK\_SRC의 업데이트가 트리거 신호에 의해 실행되도록 설정하며 이를 Channel 1에 적용하기 위해 FUPD\_CTRL1 bits를 10b로 설정한다.
  - ✓ RSTCNO\_CHx bits는 CNO의 초기화가 트리거 신호에 의해 실행되도록 설정하며 이를 Channel
     1에 적용하기 위해 RSTCNO\_CH1 bits를 10b로 설정한다.



- 2. Data sheet 분석 : TOMO TGCO 설정 (4)
  - ✔ GTM\_TOMO\_TGCO\_ENDIS\_CTRL Register는 트리거 신호에 따른 Enable/Disable을 설정한다.
  - ✓ 트리거 신호에 따라 각 Channel을 Enable 할지 Disable 할지 설정할 수 있다.
  - ✓ 트리거 신호 발생 시, Channel 1가 Enable 되게 ENDIS\_CTRL1 bits를 10b로 설정한다.

GTM\_TOM0\_TGC0\_ENDIS\_CTRL Register 주소: F010\_8070h (F0100000h + 8070h)

#### GTM TOMO TGCO ENDIS CTRL Register 구조:

| Table 25-63  | Registers Add | ress Snace |
|--------------|---------------|------------|
| I able 25-05 | Neuisieis Auu | icss Space |

| Modu                                                                                                                                                          | ıle        |    | Base | Addr | ess        |    | End                    | d Add | ress       |       |    | No | te         |    |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|------|------|------------|----|------------------------|-------|------------|-------|----|----|------------|----|------------|
| GTM                                                                                                                                                           |            |    | F010 | 0000 | Н          |    | F019 FFFF <sub>H</sub> |       |            |       |    |    |            |    |            |
| GTM_TOMi_TGC0_ENDIS_CTRL (i=0-2)<br>TOMi TGC0 Enable/Disable Control Register<br>(08070 <sub>H</sub> +i*800 <sub>H</sub> ) Reset Value: 00000000 <sub>H</sub> |            |    |      |      |            |    |                        |       |            |       |    |    |            |    |            |
| 31                                                                                                                                                            | 30         | 29 | 28   | 27   | 26         | 25 | 24                     | 23    | 22         | 21    | 20 | 19 | 18         | 17 | 16         |
|                                                                                                                                                               | ı          | 1  | 1    | 1    | 1          | 1  | Rese                   | erved | 1          |       |    |    | ı          | 1  |            |
|                                                                                                                                                               |            |    | •    |      |            |    |                        | r     |            |       |    |    |            |    |            |
| 15                                                                                                                                                            | 14         | 13 | 12   | 11   | 10         | 9  | 8                      | 7     | 6          | 5     | 4  | 3  | 2          | 1  | 0          |
|                                                                                                                                                               | S_CT<br>L7 | 1  | S_CT |      | S_CT<br>L5 | 1  | S_CT<br>L4             |       | S_CT<br>L3 | ENDI: | _  |    | S_CT<br>L1 |    | S_CT<br>L0 |
| r                                                                                                                                                             | W          |    | w    | r    | W          | r  | W                      | r     | W          | r     | N  | r  | W          | r  | W          |

**ENDIS CT** [3:2] (A)TOM channel 1 enable/disable update value RL1 See If a TOM channel is disabled, the counter CN0 is stopped and the FlipFlop SOUR is set to the inverse value of control bit SL. On an enable event, the counter CN0 starts counting from its current value. Write of following double bit values is possible: 00<sub>B</sub> don't care, bits 1:0 of register ENDIS STAT will not be changed on an update trigger 01<sub>B</sub> disable channel on an update trigger 10<sub>B</sub> enable channel on an update trigger 11<sub>B</sub> don't change bits 1:0 of this register Note: if the channel is disabled (ENDIS[0]=0) or the output is disabled (OUTEN[0]=0), the TOM channel 0 output TOM OUT[0] is the inverted value of bit SL.

- 2. Data sheet 분석 : TOMO TGCO 설정 (5)
  - GTM\_TOMO\_TGCO\_OUTEN\_CTRL Register는 트리거 신호에 따른 Output Enable을 설정한다.
  - ✓ 트리거 신호에 따라 각 Channel의 Output을 Enable 할지 Disable 할지 설정할 수 있다.
  - ✓ 트리거 신호 발생 시, Channel 1의 Output이 Enable 되게 OUTEN\_CTRL1 bits를 10b로 설정한다.

GTM\_TOM0\_TGC0\_OUTEN\_CTRL Register 주소: F010\_8078h Field  $(F0100000h + 8078h_{T}^{O})$ GTM TOMO TGCO OUTEN CTRL Register 구조: Table 25-63 Registers Address Space Module **Base Address End Address** Note GTM F010 0000<sub>11</sub> F019 FFFF<sub>H</sub> GTM\_TOMi\_TGC0\_OUTEN\_CTRL (i=0-2) TOMi TGC0 Output Enable Control Register  $(08078_{H}+i*800_{H})$ Reset Value: 00000000<sub>H</sub> Reserved OUTEN C TRL7 TRL6 TRL5 TRL4 TRL3 TRL2 TRL1 TRL0 rw rw rw rw

|                 |         | 7. | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|---------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUTEN_C<br>TRL0 | [1:0]   | rw | Output (A)TOM_OUT(0) enable/disable update value Write of following double bit values is possible:  00 <sub>B</sub> don't care, bits 1:0 of register OUTEN_STAT will not be changed on an update trigger  01 <sub>B</sub> disable channel output on an update trigger  10 <sub>B</sub> enable channel output on an update trigger  11 <sub>B</sub> don't change bits 1:0 of this register  Note: if the channel is disabled (ENDIS[0]=0) or the output is disabled (OUTEN[0]=0), the TOM channel 0 output TOM_OUT[0] is the inverted value of bit SL. |
| OUTEN_C<br>TRL1 | [3:2]   | rw | Output (A)TOM_OUT(1)enable/disable update value<br>See bits 1:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OUTEN_C<br>TRL2 | [5:4]   | rw | Output (A)TOM_OUT(2) enable/disable update value See bits 1:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OUTEN_C<br>TRL3 | [7:6]   | rw | Output (A)TOM_OUT(3) enable/disable update value See bits 1:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OUTEN_C<br>TRL4 | [9:8]   | rw | Output (A)TOM_OUT(4) enable/disable update value See bits 1:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OUTEN_C<br>TRL5 | [11:10] | rw | Output (A)TOM_OUT(5) enable/disable update value See bits 1:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Type Description

Bits

rw

25.11.8.9 Register TOMi\_CHx\_CTRL (x:0...14)

GTM\_TOM0\_CHx\_CTRL (x=0-14)
TOM0 Channel x Control Register'

(08000<sub>H</sub>+x\*0040<sub>H</sub>)
GTM\_TOM1\_CHx\_CTRL (x=0-14)

TOM1 Channel x Control Register'
(08800 + x\*0040 Reset Value: 00000800 Reset Value: 0000

(08800<sub>H</sub>+x\*0040<sub>H</sub>)
GTM TOM2\_CHx\_CTRL (x=0-14)

TOM2 Channel x Control Register'

(09000<sub>H</sub>+x\*0040<sub>H</sub>) Reset Value: 00000800<sub>H</sub>

Reset Value: 00000800<sub>H</sub>

- 2. Data sheet 분석 : TOMO Channel 1 설정 (1)
  - ✓ GTM\_TOMO\_CHx\_CTRL Register는 TOMO의 각 Channel에 대한 동작 설정을 한다.
  - ✓ TOM Channel 1의 동작을 설정하기 위해 GTM\_TOMO\_CH1\_CTRL Register를 설정한다.
  - ✓ 출력 신호의 Duty Cycle에 대한 Signal level을 High로 설정하기 위해 SL bit를 1로 설정한다.

GTM\_TOM0\_CH1\_CTRL Register 주소: F010\_8040h (F0100000h + 8040h)

#### GTM\_TOM0\_CH1\_CTRL Register 구조:

Table 25-63 Registers Address Space

| Module | Base Address           | End Address            | Note |
|--------|------------------------|------------------------|------|
| GTM    | F010 0000 <sub>H</sub> | F019 FFFF <sub>H</sub> |      |

#### GTM\_TOM0\_CHx\_CTRL (x=0-14)

TOM0 Channel x Control Register'

|              |      |       |          |              | J   | (08000 <sub>H</sub> +x*0040 <sub>H</sub> ) |             |    |        |    | Reset Value: 00000800 <sub>H</sub> |    |      |       |    |
|--------------|------|-------|----------|--------------|-----|--------------------------------------------|-------------|----|--------|----|------------------------------------|----|------|-------|----|
| 31           | 30   | 29    | 28       | 27           | 26  | 25                                         | 24          | 23 | 22     | 21 | 20                                 | 19 | 18   | 17    | 16 |
| Rese         | rved | GCM   | SPE<br>M | Rese<br>rved | OSM | Rese<br>rved                               | TRIG<br>OUT | R  | eserve | ed | RST<br>_CC<br>U0                   |    | Rese | erved |    |
| r            | •    | rw rw |          | r            | rw  | r                                          | rw          | r  |        |    | rw                                 |    | r    |       | •  |
| 15           | 14   | 13    | 12       | 11           | 10  | 9                                          | 8           | 7  | 6      | 5  | 4                                  | 3  | 2    | 1     | 0  |
| Rese<br>rved | CLK  | SRC   | _SR      | SL           |     | Reserved                                   |             |    |        |    |                                    |    |      |       |    |
| r            |      | rw    |          | rw           |     |                                            |             |    |        | r  |                                    |    |      |       |    |

| Field | Bits | Туре | Description                                                                                                                                               |
|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL    | 11   | rw   | Signal level for duty cycle                                                                                                                               |
|       |      |      | 0 <sub>B</sub> Low signal level<br>1 <sub>B</sub> High signal level<br>If the output is disabled, the output TOM_OUT[x] is set<br>to inverse value of SL. |

- 2. Data sheet 분석 : TOMO Channel 1 설정 (2)
- ✔ TOM Channel 1의 동작 클럭을 CMU\_FXCLK1로 설정하기 위해 CLK\_SRC\_SR bits를 001b로 설정한다.
- ✓ CMU\_FXCLK1의 주파수는 100MHz / 16 = 6,250kHz 이다.

✓ CLK\_SRC\_SR bits가 업데이트를 할 때 반영되기 때문에 TOM Channel 1의 동작 클럭 또한 업데이트를 할 때 반영된다.



| CLK_SRC | [14:12] | rw | Clock source select for channel                                                |
|---------|---------|----|--------------------------------------------------------------------------------|
| _SR     |         |    | The register CLK_SRC is updated with the value of                              |
|         |         |    | CLK_SRC_SR together with the update of register CM0                            |
|         |         |    | and CM1.                                                                       |
|         |         |    | The input of the FX clock divider depends on the value of FXCLK SEL (see CMU). |
|         |         |    | 000 <sub>B</sub> CMU_FXCLK(0) selected: clock selected by EXCLKSEL             |
|         |         |    | 001 <sub>B</sub> CMU_FXCLK(1) selected: clock selected by FXCLKSEL/ 2^4        |
|         |         |    | 010 <sub>B</sub> CMU_FXCLK(2) selected: clock selected by FXCLKSEL / 2^8       |
|         |         |    | 011 <sub>B</sub> CMU_FXCLK(3) selected: clock selected by FXCLKSEL / 2^12      |
|         |         |    | 100 <sub>B</sub> CMU_FXCLK(4) selected: clock selected by FXCLKSEL / 2^16      |
|         |         |    | 101 <sub>B</sub> no CMU_FXCLK selected, clock of channel stopped               |
|         |         |    | 110 <sub>B</sub> no CMU_FXCLK selected, clock of channel stopped               |
|         |         |    | 111 <sub>B</sub> no CMU_FXCLK selected, clock of channel stopped               |
|         |         |    | Note: if clock of channel is stopped (i.e. CLK_SRC =                           |
|         |         |    | 101/110/111), the channel can only be restarted by                             |
|         |         |    | resetting CLK_SRC_SR to a value of 000 to 100 and                              |
|         |         |    | forcing an update via the force update mechanism.                              |



- 2. Data sheet 분석 : TOMO Channel 1 설정 (3)
- ✔ GTM\_TOMO\_CHx\_SR0 Register는 CM0에 대한 Shadow Register이다.
- ✓ TOM Channel 1의 CM0를 설정하기 위해 GTM\_TOM0\_CH1\_SR0 Register를 설정한다.
- ✓ GTM\_TOMO\_CH1\_SR0 Register에 설정할 CM0 값을 저장하면 업데이트를 할 때 CM0에 반영된다.
- ✓ 본 실습에서는 PWM 신호의 주기를 2ms로 설정하기 위해 해당 Register의 값을 (12500 1)로 설정한다.

GTM\_TOM0\_CH1\_SR0 Register 주소: F010\_8044h (F0100000h + 8044h)

#### GTM\_TOM0\_CH1\_SR0 Register 구조:

| Table 25-63 | Registers Address Space |
|-------------|-------------------------|
|-------------|-------------------------|

| Module | Base Address           | End Address            | Note |
|--------|------------------------|------------------------|------|
| GTM    | F010 0000 <sub>H</sub> | F019 FFFF <sub>H</sub> |      |

GTM\_TOM0\_CHx\_SR0 (x=0-15)

TOM0 Channel x CCU0 Compare Shadow Register

 $(08004_{H}+x*0040_{H})$ 

Reset Value: 00000000<sub>H</sub>



$$(Period of PWM) = \frac{(Value of CM0) + 1}{(Freq. of CMU\_FXCLK1)}$$
$$= \frac{12500}{6250kHz} = 0.002s$$



- 2. Data sheet 분석 : TOMO Channel 1 설정 (4)
  - ✓ GTM\_TOMO\_CHx\_SR1 Register는 CM1에 대한 Shadow Register이다.
  - ✓ TOM Channel 1의 CM1을 설정하기 위해 GTM\_TOMO\_CH1\_SR1 Register를 설정한다.
  - ✓ GTM\_TOMO\_CH1\_SR1 Register에 설정할 CM1 값을 저장하면 업데이트를 할 때 CM1에 반영된다.
  - $\checkmark$  CM1에 의한 **Duty Ratio**는  $\left(\frac{CM1+1}{CM0+1} \times 100\right)$  (%) 이다. GTM\_TOM0\_CH1\_SR1 Register 주소: F010\_8048h (F0100000h + 8048h)

#### GTM\_TOM0\_CH1\_SR1 Register 구조:

Table 25-63 Registers Address Space

| Module | Base Address           | End Address            | Note |
|--------|------------------------|------------------------|------|
| GTM    | F010 0000 <sub>H</sub> | F019 FFFF <sub>H</sub> |      |

**GTM\_TOM0\_CHx\_SR1 (x=0-15)** 

TOM0 Channel x CCU1 Compare Shadow Register

(08008<sub>H</sub>+x\*0040<sub>H</sub>) Reset Value: 00000000<sub>H</sub>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

SR1

- 2. Data sheet 분석: TOUT 설정 (1)
  - ✓ GTM 모듈 내 하위 모듈에서 생성한 출력 신호를 외부에 전달하기 위해서는 GTM 모듈의 출력 포트 (TOUT)와 연결 설정을 해야 한다.
  - ✓ 하나의 출력 포트에는 하위 모듈에서 생성된 출력 신호 4개가 MUX를 통해 연결되어 있으며 MUX 제어를 통해 하나의 신호가 출력 포트와 연결된다.
  - ✓ GTM\_TOUTSEL Register는 MUX에 제어 신호를 입력하며 하나의 Register가 16개의 MUX를 제어한다.
  - ✓ 따라서, LED가 연결된 TOUT103 (PORT10 Pin 1)은 **GTM\_TOUTSEL6 Register**의 **SEL7 bits**를 통해 설정할 수 있다.

- 2. Data sheet 분석: TOUT 설정 (2)
- ✓ GTM\_TOUTSEL Register는 TOUT을 통해 출력될 신호를 설정한다.
- ✓ TOUT103에 대해 설정하기 위해 GTM\_TOUTSEL6 Register의 SEL7 bits를 설정한다.
- ✓ TOM0 Channel 1를 통해 생성한 PWM 신호를 TOUT103로 출력하기 위해 SEL7 bits를 00b로 설정한다.

GTM\_TOUTSEL6 Register 주소: F019\_FD48h

(F0100000h + 9FD48h)

SEL9

rw

SEL8

#### GTM\_TOUTSEL6 Register 구조:

SEL13

rw

Table 25-63 Registers Address Space

| Modu | ıle |    | Base             | Addr | ess  |    | End  | I Add             | ress             |    |     | No    | te     |      |                   |
|------|-----|----|------------------|------|------|----|------|-------------------|------------------|----|-----|-------|--------|------|-------------------|
| GTM  |     |    | F010             | 0000 | +    |    | F01  | 9 FFF             | FFH              |    |     |       |        |      |                   |
|      |     | •  | = 0-14<br>Select | •    | ster | (9 | FD30 | <sub>H</sub> +n*4 | 1 <sub>H</sub> ) |    | Res | et Va | lue: 0 | 0000 | 0000 <sub>H</sub> |
| 31   | 30  | 29 | 28               | 27   | 26   | 25 | 24   | 23                | 22               | 21 | 20  | 19    | 18     | 17   | 16                |
|      | 1   |    | 1                |      | 1    |    | 1    |                   | 1                |    | 1   |       | 1      |      | '                 |

SEL11

| 15 | 14  | 13 | 12 | 11 | 10         | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----|-----|----|----|----|------------|----|----|----|----|----|----|----|----|----|----|
| SI | EL7 | SE | L6 | SE | <b>L</b> 5 | SE | L4 | SE | L3 | SE | L2 | SE | L1 | SE | L0 |

SEL12

rw



rw

SEL14

SEL15

rw

rw

103/16 = 6, 103%16 = 7

SEL10

104/16 = 6, 104%16=8

| Field              | Bits            | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|-----------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SELx<br>(x = 0-15) | [x*2+1:<br>x*2] | rw   | TOUT(n*16+x) Output Selection This bit defines which timer out is connected as TOUT(n*16+x). The mapping for each pin is defined by Table 25-67Table 25-68.  OOB Timer A form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports  O1B Timer B form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports  Timer C form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports  Timer D form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports  Timer D form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports  Note: If TOUT(n*16+x) is not defined in Table 25-67Table 25-68 this bit field has to be treated as reserved. |

Table 25-67 GTM to Port Mapping for QFP-176

| Port  | Input  | Output  |        | Input Timer<br>Mapped |        | Output Timer Mapped |             |             |  |  |  |
|-------|--------|---------|--------|-----------------------|--------|---------------------|-------------|-------------|--|--|--|
|       |        |         | Α      | В                     | Α      | В                   | С           | D           |  |  |  |
| P10.1 | TIN103 | TOUT103 | TIM0_1 | TIM1_1                | TOM0_1 | TOM2_9              | ATOM<br>1_1 | ATOM<br>4_1 |  |  |  |

- 3. 프로그래밍
  - 1) LED가 연결된 PORT에 대한 설정을 수행하는 함수를 구현한다.

PORT IO 설정관련 레지스터 주소 및 비트 필드 정의

PORT IO 설정 함수

#### 3. 프로그래밍

- 2) GTM을 설정하기 위한 함수를 구현한다.
  - ① SCU\_WDTCPU0CON0 Register를 통해 Password/Modify Access를 수행하여 System ENDINIT을 해제한다.
  - ② GTM\_CLC Register를 통해 GTM 모듈을 Enable 한다.
  - ③ SCU\_WDTCPU0CON0 Register를 통해 Password/Modify Access를 수행하여 System ENDINIT을 설정한다.
  - ④ GTM\_CMU\_FXCLK\_CTRL Register와 GTM\_CMU\_CLK\_EN Register를 통해 CMU\_FXCLK를 설정한다.
  - ⑤ GTM\_TOMO\_TGCO\_GLB\_CTRL Register를 통해 CMO / CM1 / CLK\_SRC에 대한 업데이트를 Enable 한다.
  - ⑥ GTM\_TOMO\_TGCO\_FUPD\_CTRL Register를 통해 트리거 신호에 따른 동작 (Force update, Clear CNO)을 설정한다.
  - ① GTM\_TOMO\_TGCO\_ENDIS\_CTRL Register와 GTM\_TOMO\_TGCO\_OUTEN\_CTRL Register를 통해 트리거 신호에 따른 동작 (Channel enable, Output enable)을 설정한다.
  - ⑧ GTM\_TOM0\_CH1\_CTRL Register를 통해 Signal level을 설정한다.
  - ⑨ GTM\_TOM0\_CH1\_CTRL / GTM\_TOM0\_CH1\_SR0 / GTM\_TOM0\_CH1\_SR1 Register를 통해 CM0 / CM1 / CLK\_SRC에 대한 Shadow Register를 설정한다.
  - ⑩ GTM\_TOUTSEL6 Register를 통해 TOMO Channel 1의 PWM 신호가 TOUT103로 출력되도록 설정한다.
  - ⑪ GTM\_TOMO\_TGCO\_GLB\_CTRL Register를 통해 모든 설정이 반영되도록 HOST TRIGGER를 발생시킨다. ACE Lab.

- 3. 프로그래밍
  - 2) GTM을 설정하기 위한 함수를 구현한다.

```
31⊖ /* Address of Registers */
32 // SCU Registers
33 #define SCU BASE
                            (0xF0036000)
34 #define SCU WDT CPU0CON0 (*(volatile unsigned int*)(SCU BASE + 0x100))
36 #define LCK
37 #define ENDINIT
39⊖ // GTM Registers
40 // GTM - CMU
41 #define GTM BASE
                                        (0xF0100000)
42 #define GTM CMU CLK EN
                                        (*(volatile unsigned int*)(GTM BASE + 0x00300))
43 #define GTM_CMU_FXCLK_CTRL
                                       (*(volatile unsigned int*)(GTM BASE + 0x00344))
45 #define EN_FXCLK
                                       22
46 #define FXCLK SEL
48 // GTM - TOMØ
49 #define GTM_TOM0_TGC0_GLB_CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x08030))
50 #define GTM TOM0 TGC0 ENDIS CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x08070))
                                        (*(volatile unsigned int*)(GTM BASE + 0x08078))
51 #define GTM TOM0 TGC0 OUTEN CTRL
52 #define GTM_TOM0_TGC0_FUPD_CTRL
                                        (*(volatile unsigned int*)(GTM_BASE + 0x08038))
53 #define GTM TOM0 CH1 CTRL
                                        (*(volatile unsigned int*)(GTM_BASE + 0x08040))
54 #define GTM TOM0 CH1 SR0
                                        (*(volatile unsigned int*)(GTM BASE + 0x08044))
55 #define GTM TOM0 CH1 SR1
                                        (*(volatile unsigned int*)(GTM BASE + 0x08048))
57 #define UPEN CTRL1
                                       18
58 #define HOST TRIG
59 #define ENDIS CTRL1
                                       2
60 #define OUTEN_CTRL1
61 #define RSTCN0 CH1
62 #define FUPD CTRL1
63 #define CLK_SRC_SR
64 #define SL
65
67 #define GTM_CLC
                                        (*(volatile unsigned int*)(GTM_BASE + 0x9FD00))
68 #define GTM_TOUTSEL6
                                        (*(volatile unsigned int*)(GTM_BASE + 0x9FD48))
70 #define DISS
                                       1
   #define DISR
                                       0
   #define SEL7
```



GTM 설정관련 레지스터 주소 및 비트 필드 정의

- 3. 프로그래밍
  - 2) GTM을 설정하기 위한 함수를 구현한다.

```
116@ void init GTM TOMO PWM(void)
117 {
118
         /* GTM Enable */
119
       // Password Access to unlock WDTCPU0CON0
120
     (1) SCU WDT CPUØCONØ = ((SCU WDT CPUØCONØ ^ ØxFC) & ~(1 << LCK)) | (1 << ENDINIT);</p>
         while((SCU WDT CPU0CON0 & (1 << LCK)) != 0);
121
122
123
        // Modify Access to clear ENDINIT bit
124
        SCU_WDT_CPU0CON0 = ((SCU_WDT_CPU0CON0 ^ 0xFC) | (1 << LCK)) & ~(1 << ENDINIT);
         while((SCU WDT CPU0CON0 & (1 << LCK)) == 0);
125
126
127
                                                       // Enable GTM Module
     (2) GTM CLC &= ~(1 << DISR);
128
129
        // Password Access to unlock WDTCPU0CON0
130
     (3) SCU WDT CPUØCONØ = ((SCU WDT CPUØCONØ ^ ØxFC) & ~(1 << LCK)) | (1 << ENDINIT);</p>
131
         while((SCU WDT CPU0CON0 & (1 << LCK)) != 0);</pre>
132
133
        // Modify Access to set ENDINIT bit
        SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^{\circ} 0xFC) | (1 << LCK)) | (1 << ENDINIT);
134
        while((SCU WDT CPU0CON0 & (1 << LCK)) == 0);</pre>
135
136
        while((GTM CLC & (1 << DISS)) != 0);
                                               // Wait until module is enabled
137
138
139
         /* GTM Clock Setting */
140
     (4) GTM CMU FXCLK CTRL &= ~((0xF) << FXCLK SEL); // Input clock of CMU FXCLK : CMU GCLK EN
141
                                                         // Enable all CMU FXCLK
        GTM_CMU_CLK_EN |= ((0x2) << EN_FXCLK);
```

ACE Lab.

#### 3. 프로그래밍

2) GTM을 설정하기 위한 함수를 구현한다.

```
/* GTM TOMO PWM Setting */
       GTM TOMO TGCO GLB CTRL = ((0x2) \ll UPEN CTRL1);
                                                           // TOM0 channel 1 enable update of
                                                           // register CM0, CM1, CLK_SRC
146
147
    (6) GTM_TOMO_TGCO_FUPD_CTRL |= ((0x2) << FUPD_CTRL1); // Enable force update of TOMO channel 1
        GTM TOMO TGCO FUPD CTRL |= ((0x2) << RSTCNO CH1); // Reset CNO of TOMO channel 1 on force update
149
150
    (7) GTM_TOMO_TGCO_ENDIS_CTRL |= ((0x2) << ENDIS_CTRL1); // Enable channel 1 on an update trigger
151
152
        GTM TOMO TGCO OUTEN CTRL = ((0x2) << OUTEN CTRL1); // Enable channel 1 output on an update trigger
153
    8 GTM_TOM0_CH1_CTRL |= (1 << SL);
                                                          // High signal level for duty cycle
155
        GTM TOMO CH1 CTRL &= \sim((0x7) << CLK SRC SR);
156
                                                           // Clock source : CMU FXCLK(1) = 6250 kHz
157
        GTM TOMO CH1 CTRL |= (1 << CLK SRC SR);
        GTM TOM0 CH1 SR0 = 12500 - 1;
                                                           // PWM freq. = 6250 kHz / 12500 = 500 Hz
158
159⊖ //
          GTM TOMO CH1 SR1 = 0;
                                                            // Duty cycle = 0
                                                             // Duty cycle = 50
         GTM TOM0 CH1 SR1 = 6250-1;
160 //
        GTM TOM0 CH1 SR1 = 12500 - 1;
                                                           // Duty cycle = 100
161
162
        GTM TOUTSEL6 &= \sim((0x3) << SEL7);
                                                           // TOUT103 : TOM0 channel 1
163
164
    (B)
        GTM TOMO TGCO GLB CTRL = (1 << HOST TRIG);
                                                           // Trigger request signal to update
165
166
```

GTM 설정 함수



#### 3. 프로그래밍

3) 동작에 따라 'main' 함수를 구현한다. (앞서 구현한 함수들을 호출한다.)

```
31⊖ /* Address of Registers */
32 // SCU Registers
33 #define SCU BASE
                           (0xF0036000)
34 #define SCU WDT CPU0CON0 (*(volatile unsigned int*)(SCU BASE + 0x100))
35
36 #define LCK
37 #define ENDINIT
39⊖ // GTM Registers
40 // GTM - CMU
41 #define GTM BASE
                                       (0xF0100000)
42 #define GTM CMU CLK EN
                                       (*(volatile unsigned int*)(GTM BASE + 0x00300))
43 #define GTM CMU FXCLK CTRL
                                       (*(volatile unsigned int*)(GTM BASE + 0x00344))
45 #define EN FXCLK
                                       22
46 #define FXCLK SEL
47
48 // GTM - TOMØ
49 #define GTM TOMO TGCO GLB CTRL
                                       (*(volatile unsigned int*)(GTM BASE + 0x08030))
50 #define GTM TOM0 TGC0 ENDIS CTRL
                                       (*(volatile unsigned int*)(GTM BASE + 0x08070))
51 #define GTM TOM0 TGC0 OUTEN CTRL
                                       (*(volatile unsigned int*)(GTM BASE + 0x08078))
52 #define GTM TOM0 TGC0 FUPD CTRL
                                       (*(volatile unsigned int*)(GTM BASE + 0x08038))
53 #define GTM TOM0 CH1 CTRL
                                       (*(volatile unsigned int*)(GTM BASE + 0x08040))
54 #define GTM TOM0 CH1 SR0
                                       (*(volatile unsigned int*)(GTM BASE + 0x08044))
55 #define GTM TOM0 CH1 SR1
                                       (*(volatile unsigned int*)(GTM BASE + 0x08048))
57 #define UPEN CTRL1
                                       18
58 #define HOST TRIG
59 #define ENDIS CTRL1
60 #define OUTEN_CTRL1
                                       2
61 #define RSTCN0 CH1
62 #define FUPD CTRL1
                                       2
63 #define CLK SRC SR
                                       12
64 #define SL
65
66 // GTM
67 #define GTM CLC
                                       (*(volatile unsigned int*)(GTM BASE + 0x9FD00))
68 #define GTM_TOUTSEL6
                                       (*(volatile unsigned int*)(GTM_BASE + 0x9FD48))
69
70 #define DISS
71 #define DISR
72 #define SEL7
                                       14
```

```
74 // PORT10 Registers
75 #define PORT10 BASE
                             (0xF003B000)
   #define PORT10 IOCR0
                             (*(volatile unsigned int*)(PORT10 BASE + 0x10))
77
78
   #define PC1
                            11
79
80
    /* Function Prototype */
   void init LED(void);
   void init GTM TOMO PWM(void);
83
84
   IfxCpu syncEvent g cpuSyncEvent = 0;
85
86⊖ int core0_main(void)
87
88
        IfxCpu enableInterrupts();
89
90⊝
        /* !!WATCHDOGO AND SAFETY WATCHDOG ARE DISABLED HERE!!
91
         * Enable the watchdogs and service them periodically if it is required
92
93
        IfxScuWdt disableCpuWatchdog(IfxScuWdt getCpuWatchdogPassword());
94
        IfxScuWdt disableSafetyWatchdog(IfxScuWdt getSafetyWatchdogPassword());
95
96
        /* Wait for CPU sync event */
97
        IfxCpu emitEvent(&g cpuSyncEvent);
98
        IfxCpu waitEvent(&g cpuSyncEvent, 1);
99
100
        init LED();
01
        init GTM TOM0 PWM();
02
103
        while(1)
104
.05
106
        return (1);
.07
```

#### 4. 동작 확인

✓ Build 및 Debug 후 ('Resume' 버튼 클릭), CM1 값을 바꿔보며 Duty Ratio에 따른 LED 밝기를 확인한다.







Duty = 50%



Duty = 100%

- 1. import tc275\_PWM
- 2. BLUE LED 추가 P10.2 <del>></del> TOUT104





TC27x D-Step

#### **Generic Timer Module (GTM)**

Table 25-67 GTM to Port Mapping for QFP-176

| Port  | Input  | Output  | Input Timer<br>Mapped |        | Output Timer Mapped |         |             |             |
|-------|--------|---------|-----------------------|--------|---------------------|---------|-------------|-------------|
|       |        |         | Α                     | В      | Α                   | В       | С           | D           |
| P02.2 | TIN2   | TOUT2   | TIM0_2                | TIM1_2 | TOM0_10             | TOM1_10 | ATOM<br>0_2 | ATOM<br>1_2 |
| P02.3 | TIN3   | TOUT3   | TIM0_3                | TIM1_3 | TOM0_11             | TOM1_11 | ATOM<br>0_3 | ATOM<br>1_3 |
| P02.4 | TIN4   | TOUT4   | TIM0_4                | TIM1_4 | TOM0_12             | TOM1_12 | ATOM<br>0_4 | ATOM<br>1_4 |
| P02.5 | TIN5   | TOUT5   | TIM0_5                | TIM1_5 | TOM0_13             | TOM1_13 | ATOM<br>0_5 | ATOM<br>1_5 |
| P02.6 | TIN6   | TOUT6   | TIM0_6                | TIM1_6 | TOM0_14             | TOM1_14 | ATOM<br>0_6 | ATOM<br>1_6 |
| P02.7 | TIN7   | TOUT7   | TIM0_7                | TIM1_7 | TOM0_15             | TOM1_15 | ATOM<br>0_7 | ATOM<br>1_7 |
| P02.8 | TIN8   | TOUT8   | TIM2_0                | TIM3_0 | TOM0_8              | TOM1_0  | ATOM<br>0_0 | ATOM<br>1_0 |
| P10.0 | TIN102 | TOUT102 | TIM0_4                | TIM1_4 | TOM0_4              | TOM2_12 | ATOM<br>1_4 | ATOM<br>4_4 |
| P10.1 | TIN103 | TOUT103 | TIM0_1                | TIM1_1 | TOM0_1              | TOM2_9  | ATOM<br>1_1 | ATOM<br>4_1 |
| P10.2 | TIN104 | TOUT104 | TIM0_2                | TIM1_2 | TOM0_2              | TOM2_10 | ATOM<br>1_2 | ATOM<br>4_2 |
| P10.3 | TIN105 | TOUT105 | TIM0_3                | TIM1_3 | TOM0_3              | TOM2_11 | ATOM<br>1_3 | ATOM<br>4_3 |
| P10.4 | TIN106 | TOUT106 | TIM0_6                | TIM1_6 | TOM0_6              | TOM2_6  | ATOM<br>0_6 | ATOM<br>4_6 |
| P10.5 | TIN107 | TOUT107 | TIM0_2                | TIM1_2 | TOM0_2              | TOM2_10 | ATOM<br>1_2 | ATOM<br>4_2 |
| P10.6 | TIN108 | TOUT108 | TIM0_3                | TIM1_3 | TOM0_3              | TOM2_11 | ATOM<br>1_3 | ATOM<br>4_3 |
| P10.7 | TIN109 | TOUT109 | TIM0_0                | TIM1_0 | TOM0_0              | TOM2_8  | ATOM<br>1_0 | ATOM<br>4_0 |
| P10.8 | TIN110 | TOUT110 | TIM0_5                | TIM1_5 | TOM0_5              | TOM2_13 | ATOM<br>1_5 | ATOM<br>4_5 |

- 1. import tc275\_PWM
- 2. BLUE LED 추가

P10.2 → TOUT104

- 3. ADC4.7(Potential Meter) RED LED Duty
- 4. ADC4.6(Light Sensor) BLUE LED Duty

ADC → duty calculation

duty = ADC/4095\*pwm period

https://github.com/swip6th/swip6th/mcu/tree/main/tc275\_PWM

```
CpuO_Main_LAB0.c
```

my\_lib.h

my\_lib.c



- 1. import tc275\_PWM
- 2. BLUE LED 추가

P10.2 → TOUT104

- 3. ADC4.7(Potential Meter) RED LED Duty
- 4. ADC4.6(Light Sensor) BLUE LED Duty

#### dynamic range scaling

```
light_sensor_duty = ((light_sensor - light_sensor_min)*4095)/(max-min) light_sensor_max, light_sensor_min 은 debugger break 기능 사용하여 측정 min 보다 작은 경우 0, max 보다 클 경우 4095 처리
```

while(1)

systick\_curr = SYSTEM\_TIMER\_0\_31\_0;
systick = systick\_curr - systick\_prev;
if( systick > SYSTICK\_100MHZ/10 ) // 100ms

systick\_prev = systick\_curr;
potential\_meter = GetUADC4(7);
light\_sensor = GetUADC4(6);

// FIXME: light sensor scaling

if( potential\_meter\_duty == 0 )
 GTM\_TOMO\_CH1\_SR1 = 0;

if( light\_sensor\_duty == 0 )
 GTM\_TOMO\_CH2\_SR1 = 0;

GTM\_TOMO\_CH1\_SR1 = potential\_meter\_duty - 1;

GTM\_TOM0\_CH2\_SR1 = light\_sensor\_duty - 1;

// FIXME: duty calculation

GTM\_TOM0\_CH1\_SR0 = 12500 - 1;

GTM\_TOM0\_CH2\_SR0 = 12500 - 1;

ADC → duty calculation

duty = ADC/4095\*pwm period

https://github.com/swip6th/swip6th/mcu/tree/main/tc275\_PWM

```
CpuO_Main_LAB1.c
my_lib.h
my_lib.c
```



## **RGB.PWM**

**RGB PWM** 

Red

TOUT7

Green

**TOUT107** 

Blue

**TOUT105** 

Blue

Red

SW1 누르면, Blue LED 켜고 RGB.Blue Duty 설정 SW2 누르면, Red LED 켜고 RGB.Red Duty 설정

둘다 누르면, Blue/Red LED 켜고 RGB.Green Duty 설정

SW Debounce: 1초, SW state Debounce: 1초

| 모듈      |       | TC275 Shield<br>Buddy Pin | TC275 Pin | TC275 관련기능 |
|---------|-------|---------------------------|-----------|------------|
| RGB LED | Red   | D9                        | P02_7     | GPIO, PWM  |
|         | Green | D10                       | P10_5     | GPIO, PWM  |
|         | Blue  | D11                       | P10_3     | GPIO, PWM  |

tc275\_PWM\_RGB project 생성 https://github.com/swip6th/mcu/tree/main/tc275\_PWM\_RGB CpuO\_Main.c my lib.h my\_lib.c





## **RGB.PWM**

RGB PWM

Red TOUT7

Green TOUT107

Blue TOUT105

SW1 누르면, Blue LED 켜고 RGB.Blue Duty 설정 SW2 누르면, Red LED 켜고 RGB.Red Duty 설정 둘다 누르면, Blue/Red LED 켜고 RGB.Green Duty 설정 SW Debounce: 1초, SW state Debounce: 1초

| 모듈         |       | TC275 Shield<br>Buddy Pin | TC275 Pin | TC275 관련기능 |
|------------|-------|---------------------------|-----------|------------|
| RGB<br>LED | Red   | D9                        | P02_7     | GPIO, PWM  |
|            | Green | D10                       | P10_5     | GPIO, PWM  |
|            | Blue  | D11                       | P10_3     | GPIO, PWM  |

```
112
            // FIXME: 1s state debounce
113
            SW_state_prev = SW_state_curr;
114
            SW_state_curr = (SW2_debounce<<1) | (SW1_debounce<<0);</pre>
115
116
            if( SW_state_debounce != 0 )
117
118
                potential_meter = GetUADC4(7);
119
                potential_meter_duty = (potential_meter*12500)/4095;
120
121
                if( potential_meter_duty == 0 )
122
                    potential_meter_duty = 0;
123
124
                    potential_meter_duty -= 1;
                // FIXME
                // SW1 pushed
                                                                           TOMO_CH3
                                   : blue
                                              led on, RGB.blue duty
128
                // SW2 pushed
                                   : red
                                              led on, RGB.red duty
                                                                           TOMO CH15
129
                // SW1&SW2 pushed : blue&red led on, RGB.green duty
                                                                           TOMO_CH2
130
131
                // End of FIXME
132
            }
133
            else
                                                                      // SW1 & SW2 are open
134
135
                    PORT10_OMR = (1<<PCL1) |
                                                                      // LED RED off
136
                                  (1<<PCL2) ;
                                                                      // LED BLUE off
137
138
139
        return (1);
140 }
141
142
143 // 100ms timer
    __interrupt( 0x0F ) __vector_table( 0 )
145 void CCU61_T12_ISR(void)
146 (
147
        SW1_prev = SW1_curr;
148
        SW1_curr = (PORT02_IN & (1<<P0)) == 0;
        SW2_prev = SW2_curr;
150
        SW2\_curr = (PORTO2\_IN & (1<<P1)) == 0;
152
        // FIXME: SW1, SW2 software debounce for 1 second
153
154
        irq_timer = 1;
155 }
```

## Buzzer

 $GTM_CMU_CLK_EN &= \sim ((0x2) << EN_FXCLK); // disable$ 

TOUT3 GTM\_TOMO

Channel 11

delay 앞 Buzzer Enable delay 뒤 Buzzer Disable

int pwm\_cnt = PWM\_FREQ / tones[i]; break 시 Buzzer 들리지 않게!!!!!

| 모듈       |       | TC275 Shield<br>Buddy Pin | TC275 Pin | TC275 관련기능 |  |
|----------|-------|---------------------------|-----------|------------|--|
| LED1     |       | D13                       | P10_2     | GPIO, PWM  |  |
| LED2     |       | D12                       | P10_1     | GPIO, PWM  |  |
| SW1      |       | D2                        | P02_0     | GPI0       |  |
| SW2      |       | D3                        | P02_1     | GPI0       |  |
|          | Red   | D9                        | P02_7     | GPIO, PWM  |  |
| RGB LED  | Green | D10                       | P10_5     | GPIO, PWM  |  |
|          | Blue  | D11                       | P10_3     | GPIO, PWM  |  |
| Rotation |       | AO                        | SAR4_7    | ADC        |  |
| Buzzer   |       | D5                        | P02_3     | PWM        |  |
| Light    |       | A1                        | SAR4_6    | ADC        |  |
| LM35     |       | A2                        | SAR4_5    | ADC        |  |



#### VDD(5V)

Trig P15\_4

Echo P15\_5

GND GND

거리(cm) Live Update



https://github.com/swip6th/mcu/tree/main/tc275\_Ultrasonic Cpu0\_Main.c





Figure 7 TC275 to Arduino Connector Mapping

```
GND
ASC2RX,ASC3TX P33_5 P15_8
                         0 0
                               CANTXIO P11_12, P20_10
PIN50 P33_4, P21_2
                          O O PIN52 P02_8, P13_3
                         O O PIN49 P21_0
            PIN48 PIN48
            PIN46 P11_3
                          O O PIN47 P11_6
            PIN44 P33_3
                          O O PIN45 P11_2
                          O O PIN43 P11_11
            PIN40 P33_0
                          O O PIN41 P11_9
            PIN38 P33_1
                               PIN39 P00 7
                              PIN37 P00_6
            PIN34 P00_12
                          O O PIN35 P00_5
            PIN32 P00 11
                          O O PIN33 P00 4
            PIN30 P00_10
                          O O PIN31 P00_3
            PIN28 P00_9
            PIN26 P00 8
                         O O PIN27 P00 1
                         O O PIN25 P00 0
                          O O PIN23 P14_1
            VDD / 5V ?
```

```
SAR5 7 = P20 8
          SAR5 6 = P20 7
          SAR5 5 = P33 11
          SAR5 4 = P20 9 = P33 10
                       P13 1 SCL1
                       P13 2 SDA1
                        AREF0
                       GND
NC
                       P10_2 SPCK
IOREF / VDD / 5V ?
                       P10 1 MISO
/PORST RESET
                       P10 3 MOSI
+3.3V
                       P10_5 SS0/PWM10 O
VDD VIA RES521
                       P02.7 PWM9
GND
                       P02 6 PWM8
GND
VIN 9..12V
                       P02_5 PWM7
                       P02_4 PWM6
SAR4 7 AD0
                       P02 3 PWM5
SAR4 6 AD1
                       P10 4 SS1/PWM4
SAR4 5 AD2
                       P02 1 PWM3
SAR4 4 AD3
                       P02_0 PWM2
SAR3 1 AD4
                       P15 2 TX
SAR3 0 AD5
                       P15_3 RX
SAR2_5 AD6
SAR2_4 AD7
                    P15_0 TXD0
                       P15 1 RXD0
SAR0 3 AD8
                       P33 9 TXD1
SAR0 2 AD9
                       P33_8 RXD1
SAR0 1 AD10
                       P20 0 TXD2
SARO 0 AD11
                       P20 3 RXD2
SAR5 4 DAC0
                       P15 5 SDA0-3
SAR5 5 DAC1
                       P15 4 SCL0-3
SAR5 6 CANRX0
SAR5 7 CANTX0
 000000000000000000
                                          EXT.IO / J406
 00000000000000000
```

Figure 7 TC275 to Arduino Connector Mapping

```
O O CANTXIO P11_12, P20_10
ASC2RX,ASC3TX P33 5 P15 8
                         O O PIN52 P02_8, P13_3
PIN50 P33 4, P21 2
                         O O PIN49 P21_0
            PIN46 P11 3
                         O O PIN47 P11 6
            PIN44 P33_3
                         O O PIN45 P11_2
            PIN42 P11_10
                        O O PIN43 P11_11
            PIN40 P33_0
                         O O PIN41 P11_9
            PIN38 P33 1
                         O O PIN39 P00 7
            PIN36 P33_2
                        O O PIN37 P00_6
            PIN34 P00_12
                         O O PIN35 P00_5
            PIN32 P00 11
                         O O PIN33 P00 4
            PIN30 P00_10 O O PIN31 P00_3
            PIN28 P00_9
                         O O PIN29 P00_2
            PIN26 P00 8
                        O O PIN27 P00 1
            PIN24 P15 6
                        O O PIN25 P00 0
            PIN22 P14 0
                         O O PIN23 P14_1
                         □ O VDD / 5V ?
            VDD / 5V ?
```



```
void init_ERU(void)
    /* ERU Input Channel 4 Setting */
    /* Password Access to unlock WDTSCON0 */
    SCU_WDTSCON0 = ((SCU_WDTSCON0 ^ 0xFC) & ~(1 << LCK)) | (1 << ENDINIT);</pre>
    while((SCU WDTSCON0 & (1 << LCK)) != 0);</pre>
    // Modify Access to clear ENDINIT bit
    SCU_WDTSCON0 = ((SCU_WDTSCON0 ^ 0xFC) | (1 << LCK)) & ~ (1 << ENDINIT);
    while((SCU WDTSCON0 & (1 << LCK)) == 0);</pre>
                                                 // External input 3 is selected
    SCU EICR2 &= \sim((0x7) << EXIS0);
    SCU EICR2 = ((0x3) << EXISO);
    SCU_EICR2 |= (1 << REN0);
                                                  // Rising edge enable
    SCU EICR2 |= (1 << FEN0);
                                                  // Falling edge enable
    SCU_EICR2 |= (1 << EIEN0);
                                                  // The trigger event is enabled
    SCU EICR2 \&= \sim ((0x7) << INP0);
                                                 // An event from input ETL 4 triggers output OGU 0
                                                 // IOUT(0) is activated in response to a trigger event
    SCU IGCR0 \&= \sim ((0x3) << IGP0);
    SCU IGCR0 = (1 << IGP0);
                                                 // The pattern is not considered
    /* Password Access to unlock WDTSCON0 */
    SCU_WDTSCON0 = ((SCU_WDTSCON0 ^ 0xFC) & \sim (1 << LCK)) | (1 << ENDINIT);
    while((SCU_WDTSCON0 & (1 << LCK)) != 0);</pre>
    /* Modify Access to set ENDINIT bit */
    SCU_WDTSCON0 = ((SCU_WDTSCON0 ^ 0xFC) | (1 << LCK)) | (1 << ENDINIT);
    while((SCU WDTSCON0 & (1 << LCK)) == 0);</pre>
    /* SRC Interrupt Setting For ECU */
    SRC SCUERU0 &= \sim((0xFF) << SRPN);
                                                 // Set Priority : 0x0B
    SRC\_SCUERU0 \mid = ((0x0B) << SRPN);
    SRC SCUERUØ \&= \sim ((0x3) << TOS);
                                                 // CPU0 services
    SRC SCUERU0 |= (1 << SRE);
                                                 // Service Request is enabled
```





# Q&A

# Thank you for your attention

OOOOO Architecture and
Compiler
for Embedded Systems Lab.

School of Electronics Engineering, KNU

ACE Lab (hn02301@gmail.com)

