

[Pushdown Automata - g. (+1,4)]

Submitted by: TASNIM RAHMAN MOUMITA

ID: 22301689

Course Title: Automata & Computability

Courcse Code : C5E331

Section : 20

Group type: Solo (1 member only)

Date of submission: 15.05.2025

Ans. to the g. NO-01

There are five cases where knowledge from CSE331 (Automata & Computability) - can be applied are described below:

a) Designing compiler:

The concept of finite automata & contextfree grammars are used to design lexical analyzers and parsers, which are essential components of compilers.

b) Pattern matching:

Regular expressions — based on finite automata are widely used in search engines, text editors, data validation (like email/phone input formats).

c) Designing & Verifying Protocols:

Finite State machines help in modeling and verifying communication protocols (e.g. TCP handshake, network authentication sequences, etc.)

[O.T.9]

d) Natural Language Processing (NLP):-

Context - free grammars are the most core foundational element in parcing sentences and analyzing the syntactic structure of human languages.

e) Ardificial Intelligence Rule Engines:

Implementation of simple-rule based AI engines using state-based logic, where theory of automata helps define valid transitions and decisions.

use sidely used in seased empires, ted o

long. Danny Wilsons (alt) institution actual

linke philippes in qlad senidence stole skill

10 plan dament insulianing predicedly (S. o. 16P in

Design of Design of the Co

Amower to the g. NO-04 (a)

(3)(a)

Given,

L= $\{\omega \in \{a,b,C,\rho,q,\pi,\#\}^* : a^i \#^c K \rho^{2\alpha} q^i \pi^{\overline{c}b^j}\}$ where, i = j + K, $y = 3\alpha + \overline{z}$ n is odd and

i, j, K, n, x, y, ₹ >0}

Amower to the g. NO-04 (b)(11)

Given,

Ten,
$$L = \left\{ w \in \left\{ 0, 1, 2 \right\}^{*} : w = 0^{i} 2^{j} 1^{K}, \text{ where } \right\}$$

$$i = 3K,$$

$$j \text{ is odd,}$$

$$i, j, K \geq 0 \right\}$$

Oston

Answer to the 9. NO-04(b)(111)

Given

L=
$$\{\omega \in \{0,1,2\}^{*}: \omega = 0^{i}2^{j}1^{K}, \text{ where}$$

i is a multiple of two,

K is two more than a multiple of

 $j = K+i$,

 $j = K+i$,

 $j = K+i$,

PDA:

Am. to the 9. NO-04(b)(IV)

Given,

$$L = \{ \omega \in \{0, 1, 2\}^* : \omega = 0^{\frac{1}{2}} \mathbf{1}^{\frac{1}{2}}$$

where
$$i+j>K$$
 and $i,j,K\geq 0$

Am. to the g. NO-04 (c)

Givens

PDA:

even O odd 1

odd o odd 1 YOUE

Am. to the 9. NO-04(d)

Am. to the . 9. NO-04(e)

Given,

L=
$$\{1i02^{j}1^{k}|i,j,k>0\}$$

3 $i \ge 4k+2$

j is not divisible by 37

Silvens

Am. to the g. NO - 04(f)

Given,

= { w \in \sum \tau \cdots \tau \contains \exactly}

+two 15?

 $L_2 = \{ 2 \# y : 2 \in \Sigma^*, y \in L_1, |x| = |y|^2 \}$

PDA forc L28 = 121

Sharet
$$0, \xi \to \kappa$$
 $0, \chi \to \xi$
 $0,$

Am. to the 9. NO-04(8)

Given,

L1=
$$\{ w \in \Sigma^* : w \text{ contains at least} \}$$

$$L_2 = \{ x \# y \text{ s } x \in (\Sigma \Sigma)^*, y \in L_1, \\ |x| = |y| \}$$

0,278

Tridopa Pariko