Calculus Bits and Pieces

A. Nonym

November 6, 2022

1 Arc Length

Consider a small DIFFERENTIAL piece of a CURVE $ds^2 = dx^2 + dy^2$. Then LENGTH OF THE CURVE on some interval is given by

$$L = \int_{a}^{b} ds. \tag{1}$$

Which intuitively says that LENGTH OF A CURVE ON AN INTERVAL A TO B IS GIVEN BY A SUM OF ITS DIFFERENTIAL SEGMENTS.

Substituting $dx^2 + dy^2$ for ds and Rearranging yields two possibilities:

Function	ds	L
y = f(x)		$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$
x = f(y)	$\sqrt{\left(\frac{dx}{dy}\right)^2 + 1} dy$	$\int_{a}^{b} \sqrt{\left(\frac{dx}{dy}\right)^{2} + 1} dy$

FIVE STEP PROCEDURE TO DERIVE A FORMULA FOR ARC LENGTH OF A CURVE IN THE WILD:

- 1. Do remember $L = \int_a^b ds$.
- 2. Do remember $ds = \sqrt{(dx^2 + dy^2)}$
- 3. Factor out dx^2 and use it as differential if the function is y=f(x)
- 4. OR FACTOR OUT dy^2 and USE IT AS DIFFERENTIAL if the function is x=f(y)
- 5. There's no step number five

2 Surface Area

If a DIFFERENTIAL segment ds is REVOLVED around x or y axis it will produce a TRUNCATED CONE with a SURFACE AREA

$$2\pi r ds,$$
 (2)

where r is DISTANCE FROM THE CURVE TO THE AXIS OF REVOLUTION defined as

Function	Axis	r
y = f(x)	x	f(x)
x = f(y)	x	y
x = f(y)	y	f(y)
y = f(x)	y	x

Integrating $2\pi rds$ yields area of the surface produced by revolving a segment of a curve on the interval a to b

$$A = 2\pi \int_{a}^{b} r \, ds. \tag{3}$$

REPLACING r and ds yields the FOUR FORMULAS FOR CALCULATING SURFACE AREAS:

Function	Axis	r	A with r replaced	A with ds replaced
				$A = 2\pi \int_{a}^{b} f(x) \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$
				$A = 2\pi \int_{a}^{b} y \sqrt{\left(\frac{dx}{dy}\right)^{2} + 1} dy$
x = f(y)	y	f(y)	$A = 2\pi \int_a^b f(y) ds$	$A = 2\pi \int_a^b f(y) \sqrt{\left(\frac{dx}{dy}\right)^2 + 1} dy$
y = f(x)	y	x	$A = 2\pi \int_a^b x ds$	$A = 2\pi \int_{a}^{b} x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$

The above table can be reduced to just a few steps, allowing you to recreate it from minimum amount of information.

PROCEDURE TO DERIVE A FORMULA FOR SURFACE AREA IN THE WILD:

- 1. Do remember $A = 2\pi \int_a^b r \, ds$.
- 2. Replace r with an expression of independent variable that would represent the distance between the curve and axis
- 3. Replace ds(same as arc length):
 - i Do Remember $ds = \sqrt{(dx^2 + dy^2)}$
 - ii FACTOR OUT dx^2 and USE IT AS DIFFERENTIAL if the function is y = f(x)
 - iii OR FACTOR OUT dy^2 and USE IT AS DIFFERENTIAL if the function is x=f(y)

3 Techniques of Integration

3.1 Integration By Parts

Integration by parts is a technique that uses the following relation between two integrals:

$$\int u \, dv = uv + \int v \, du \tag{4}$$

The relation comes from product rule. Suppose we have a product of two functions f(x)g(x). Differentiate both sides:

$$(f(x)g(x))' = f(x)'g(x) + f(x)g(x)'$$
(5)

Integrate both sides:

$$\int (f(x)g(x))' dx = \int f(x)'g(x) dx + \int f(x)g(x)' dx$$
 (6)

$$f(x)g(x) = \int f(x)'g(x) dx + \int f(x)g(x)' dx$$
 (7)

4 Derivatives

4.1 Example: Motion of a Particle

We are given an equation describing law of motion of a particle $s(t) = t^4 - 6t^3 + 4t^2 + 3$ where t >= 0. To find its velocity we need to derivate the function s(t) with respect to t:

$$s(t)' = 4 \times t^3 - 6 \times 3t^2 + 4 \times 2t^1 + 0 \times 3 \tag{8}$$

$$s(t)' = 4t^3 - 18t^2 + 8t^2 (9)$$

To find the derivative s(t)' above we made use of power rule from calculus which states:

$$(X^N)' = N \times x^{N-1} \tag{10}$$

By substituting 0 into equation (9) we can find the velocity of the particle at the t = 0:

$$s(0)' = 4 \times 0^3 - 18 \times 0^2 = 0 \tag{11}$$

The particle is at rest when s(t)' = 0. To find time t when this happens we let s(t)' = 0 and solve for t:

$$s(x)' = 4t^3 - 18t^2 + 8t = 0 (12)$$

This is a cubic equation, but we can solve it by factoring out t:

$$s(x)' = t(4t^2 - 18t + 8) = 0 (13)$$

If the product of two factors equals zero then either or both factors must be zero for that to be true.

$$t = 0 4t^2 - 18t + 8 = 0 (14)$$

$$t_1 = 4, t_2 = \frac{1}{2} \tag{15}$$

The particle is at rest at $t = 0, \frac{1}{2}, 4$. We can evaluate s(t)' on each of the time intervals to find signs of s(t)' (and whenever the particle's distance is *increasing* or decreasing):

Interval	s(t)'	Sign of $s(t)'$
$(-\infty,0)$	s(-1) = -30	_
$(0,\frac{1}{2})$	s(0.25) = 0.9375	+
$(\frac{1}{2}, 4)$	s(1) = -6	_
$(4,+\infty)$	s(5) = 90	+

Plotting s(t) and s(t)' confirms the behavior of the function:

Examining the graph we see that s(t) is flat whenever s(t)' crosses the x axis, meaning the particle stays at rest at those points. We can also see that s(t) is decreasing whether s(t)' is below the x axis and increasing whenever s(t)' is above the x axis.

Let D be the *total distance* traveled by the particle after 6 seconds. To calculate D we need to sum up distances traveled by the particle on the intervals $(0, \frac{1}{2}), (\frac{1}{2}, 4), (4, 6)$:

$$D_{6sec} = |f(\frac{1}{2}) - f(0)| + |f(4) - f(\frac{1}{2})| + |f(6) - f(4)|$$
(16)

$$D_{6sec} = 0.3125 + 64.3125 + 208 = 272.625 \tag{17}$$

By differentiating s(t) one more time we get expression for acceleration of the particle, from which we can also find s(0)'':

$$s(x)'' = 12t^2 - 36t + 8 (18)$$

$$s(0)'' = 12 \times 0^2 - 36 \times 0 + 8 = 8 \tag{19}$$

To perform sign analysis of s(t)'' we need to know the values of t where it crosses the x axis. Let s(t)'' = 0 and solve for t:

$$s(x)'' = 12t^2 - 36t + 8 = 0 (20)$$

$$4(3t^2 - 9t + 2) = 0 (21)$$

$$t_1 = \frac{9 + \sqrt{57}}{6} \approx 2.76, t_2 = \frac{9 - \sqrt{57}}{6} \approx 0.24$$
 (22)

Velocity of the particle is not changing at t = 0.24, 2.76. We can evaluate s(t)'' on each of the time intervals to find signs of s(t)'' (and whether the particle is accelerating or decelerating on each of them):

Interval
$$s(t)''$$
 Sign of $s(t)''$ $(-\infty, \frac{9-\sqrt{57}}{6})$ $s(-1) = 56$ + $(\frac{9-\sqrt{57}}{6}, \frac{9+\sqrt{57}}{6})$ $s(1) = -16$ - $(\frac{9+\sqrt{57}}{6}, +\infty)$ $s(3) = 8$ +

The particle is accelerating on the intervals $(-\infty, 0.24)$ and $(2.76, +\infty)$. The particle is decelerating on (0.24, 2.76).

The graph confirms this behavior:

Examining the graph we see that s(t)' is flat whenever s(t)'' is crossing the x axis, meaning the particle is not accelerating at those points. We also see that the particle is accelerating whenever s(t)'' is above the x axis and decelerating whenever s(t)'' is below the x axis.

5 Multiple Integrals

5.1 Surface Area

$$A = \iint\limits_{D} \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \, dA \tag{23}$$

Or

$$A = \iint_{D} \sqrt{f_x(x,y)^2 + f_y(x,y)^2 + 1} \, dA$$
 (24)

- 1. Compute partial derivatives f_x and f_y .
- 2. EVALUATE DOUBLE INTEGRAL ABOVE