Machine Learning - Notes

Dom Hutchinson

October 9, 2019

Contents

1	Introduction	2
	1.1 Motivation	2
	1.2 Probability Theory	4
2	Distributions	Ę
0	Appendix	7

General

Lecturer - Carl Henrik Ek

Course Website - http://carlhenrik.com/COMS30007/

Course Repo - https://github.com/carlhenrikek/COMS30007 Course Subreddit - https://www.reddit.com/r/coms30007/

1 Introduction

1.1 Motivation

Definition 1.1 - Deductive Reasoning

A method of reasoning in which the premieses are viewed as supplying <u>all</u> the evidence for the truth of the conclusion.

Definition 1.2 - Inductive Reasoning

A method of reasoning in which the premieses are viewed as supplying <u>some</u> evidence for the truth of the conclusion, rather than all the evidence. This allows for the conclusion of the *Inductive Reasoning* to be false.

Remark 1.1 - Free-Lunch Theorem

There are infinite number of hypotheses that perfectly explain the data. Adding a data point removes an infinite number of possibilities, but still leaves infinite possibilities.

Remark 1.2 - The Task of Machine Learning

When proposing to use machine learning on a task, one should consider the following questions:

- i) How can we formulate beliefes ad assumptions mathematically?
- ii) How can we connect our assumptions with data?
- iii) How can we update our beliefs?

Remark 1.3 - Useful Models are not always True

Our goal is to understand realisations of a system. If we can then we can equate our model to the system. It is important to note that our model does not need to be perfectly true to be useful.

1.2 Probability Theory

Definition 1.3 - Stochastic/Random Variable

A variable whose value depends on outcomes of random phenomona. e.g. $x \sim \mathcal{N}(0,1)$.

Definition 1.4 - Probability Measure, \mathbb{P}

A function with signature $\mathbb{P}: \mathcal{F} \to [0,1]$, where \mathcal{F} is a sample space of rv X, and fulfils $\int_{-\infty}^{\infty} \mathbb{P}(x) dx = 1$.

Definition 1.5 - Joint Probability Distribution

A Probability Measure for multiple variables, $\mathbb{P}: X \times Y \to [0,1]$.

Let n_{ij} be the number of outcomes where $X = x_i$ and $Y = y_j$ then

$$\mathbb{P}(X = x_i, Y = y_j) = \frac{n_{ij}}{\sum_{i,j} n_{ij}}$$

Definition 1.6 - Marginal Probability Distribution

A Probability Measure for one variable when the sample space is over multiple variables. Let n_{ij} be the number of outcomes where $X = x_i$ and $Y = y_j$ then

$$\mathbb{P}(X = x_i) = \frac{\sum_j n_{ij}}{\sum_{i,j} n_{ij}}$$

Definition 1.7 - Conditional Probability Distribution

A *Probability Measure* for a variable, given another variable has a defined value. Let n_{ij} be the number of outcomes where $X = x_i$ and $Y = y_j$ then

$$\mathbb{P}(Y = y_j | X = x_i) = \frac{n_{ij}}{\sum_j n_{ij}}$$

Example 1.1 - Joint, Marginal & Conditional Probability

The below image shows two marginals distributions in the bottom-left, X, & top-right, Y, their joint distribution in the top-left and a conditional in the bottom right $\mathbb{P}(Y|X=1)$.

Theorem 1.1 - Product Rule

For random variables X & Y

$$\mathbb{P}(X = x, Y = Y) = \mathbb{P}(Y = y | X = x) \mathbb{P}(X = x)$$

Theorem 1.2 - Sum Rule

For random variables X & Y

$$\mathbb{P}(X=x) = \sum_{j} \mathbb{P}(X=x, Y=y_j)$$

Theorem 1.3 - Baye's Theorem

For random variables X & Y

$$\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(Y = y | X = x)\mathbb{P}(X = x)}{\mathbb{P}(Y = y)}$$

Definition 1.8 - Elements of Bayes' Theorem

The elements of Bayes' Theory can be broken down to explain parts of the model.

$$\underbrace{\mathbb{P}(\theta|Y)}_{\text{Posterior}} = \underbrace{\frac{\mathbb{P}(Y|\theta)}{\mathbb{P}(Y)}}_{\underbrace{\mathbb{P}(Y)}} \underbrace{\mathbb{P}(Y)}_{\text{Evidence}}$$

Posterior Which parameters of the model do I belive produce distributions have generated the data Y Likelihood How likely is the data to come from the model specifely indexed by θ

Prior What distribution do I think parameter θ has

Evidence | How likely do I think data Y is for all models.

N.B. The Evidence normalises this function.

Definition 1.9 - Conjugate Prior

If the *Prior* is the same probability distribution family as the *Posterior* then the *Prior* is called a *Conjugate Prior*.

Definition 1.10 - Expectaction Value, \mathbb{E}

The mean value a random variable will produce from a large number of samples.

Continuous	Discrete
$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \mathbb{P}(X) dx$	$\mathbb{E}(X) = \sum_{-\infty}^{\infty} x \mathbb{P}(X) dx$
$\mathbb{E}(f(X)) = \int_{-\infty}^{\infty} f(x) \mathbb{P}(X) dx$	$\mathbb{E}(f(X)) = \sum_{-\infty}^{\infty} f(x) \mathbb{P}(X) dx$

Definition 1.11 - Variance

Describes the amount of spread in the values a single random variable will produce.

$$\operatorname{var}(X) = \mathbb{E}\left(x - \mathbb{E}(x)\right)^2\right) = \mathbb{E}(X^2) - \left(\mathbb{E}(X)\right)^2$$

Definition 1.12 - Covariance

Describes the joint variability between two random variables.

$$cov(X, Y) = \mathbb{E}\Big(\big(X - \mathbb{E}(X)\big)\big(Y - \mathbb{E}(Y)\big)\Big)$$

Definition 1.13 - Marginalisation

The process of summing out the probability of one random variable using its joing probability with another rando variable.

$$\begin{array}{rcl} \text{Continuous} & \mathbb{P}(X=x) & = & \int (X=x,Y=y) dy \\ \text{Discrete} & \mathbb{P}(X=x) & = & \sum_i \mathbb{P}(X=x,Y=y_i) \end{array}$$

Definition 1.14 - Likelihood Function

Define $\mathbf{X} \sim f_n(\cdot; \theta^*)$ for some unknown $\theta^* \in \Theta$ and let \mathbf{x} be an observation of \mathbf{X} .

A Likelihood Function is any function, $L(\cdot; \mathbf{x}) : \Theta \to [0, \infty)$, which is proportional to the PMF/PDF of the observed realisation \mathbf{x} .

$$L(\theta; \mathbf{x}) := C f_b(\mathbf{x}; \theta) \ \forall \ C > 0$$

N.B. Sometimes this is called the *Observed* Likelihood Function since it is dependent on observed data.

Definition 1.15 - Log-Likelihood Function

Let $\mathbf{X} \sim f_n(\cdot; \theta^*)$ for some unknown $\theta^* \in \Theta$ and \mathbf{x} be an observation of \mathbf{X} .

The Log-Likelihood Function is the natural log of a Likelihood Function

$$\ell(\theta; \mathbf{x}) := \ln f_n(\mathbf{x}; \theta) + C, \ C \in \mathbb{R}$$

Definition 1.16 - Maximum Likelihood Estimation

The *Maximum Likelihood Estimate* is an estimate for a parameter of a probability distribution which is the value which maximises the *Likelihood Function* (or the *Likelihood Function*).

$$\hat{\theta} := \operatorname{argmax}_{\theta} L(\theta; \mathbf{x})$$

Definition 1.17 - Central Limit Theorem

The distribution of the sum (or mean) of a large number of independent, identically distributied random variables can be approximated to a normal distribution, regardless of the distributions of the random variables.

2 Distributions

Definition 2.1 - Bernoulli Distribution

Models an event with a binary outcome (0 or 1) with parameter p st $\mathbb{P}(X=1)=p$ Let $X \sim \mathrm{Bernoulli}(p)$. Then

$$f_X(x) = \begin{cases} p & , x = 1 \\ 1 - p & , x = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$F_X(x) = \begin{cases} 0 & , x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

$$\mathbb{E}(X) = p$$

$$\text{Var}(X) = p(1 - p)$$

Definition 2.2 - β -Distribution

A β -Distribution is a continuous distribution over interval [0,1] which is parameterised by two positive shape parameters, α & β . A β -Distribution can be used to encode assumptions as a *Prior*.

Let $X \sim \beta(\alpha, \beta)$. Then

$$f_X(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)+\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

Definition 2.3 - Direchlet Distribution

Let $X \sim \text{Dir}(\boldsymbol{\alpha})$. Then

$$f_X(x) := \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \times \dots \times \Gamma(\alpha_N)} \prod_{i=1}^N x_i^{\alpha_{i-1}}$$

Definition 2.4 - Exponential Distribution Family

The Exponential Distribution Family is a set of probability distributions which fit the form.

$$\mathbb{P}(\mathbf{x}|\boldsymbol{\theta}) = h(\mathbf{x})g(\boldsymbol{\theta})e^{\boldsymbol{\theta}^T\mathbf{u}(\mathbf{x})}$$

With conjugate prior

$$\mathbb{P}(\boldsymbol{\theta}|\boldsymbol{\chi},\nu) = f(\boldsymbol{\chi},\nu)g(\boldsymbol{\chi})^{\nu}e^{\nu\boldsymbol{\theta}^{T}\boldsymbol{\chi}}$$

Definition 2.5 - Multivariate Normal Distribution

Let $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{N/2} |\mathbf{\Sigma}^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

N.B. Also known as $Gaussian\ Distribution$.

Remark 2.1 - Conjugate Prior for Normal Distribution

For a Normal Distribution the conjugate prior of μ is Gaussian and the conjugate prior of Σ is Inverse-Wishard.

0 Appendix

 ${\bf Proof~0.1} \hbox{ - } Deriving~Gaussian~Marginal~Distribution$

NOTE - This is dense as fuck & uses quite a bit of bullshit.

$$\text{Let } \mathbf{X} \sim \mathcal{N} \left(\begin{pmatrix} \pmb{\mu}_1 \\ \pmb{\mu}_2 \end{pmatrix}, \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix}^{-1} \right).$$

 μ_1, μ_2 can be considered as two parts of the mean vector μ .

Let \mathbf{x} be a realisation of \mathbf{X} where $\mathbf{x} := (\mathbf{x}_1, \mathbf{x}_2)$ with $\mathbf{x}_1 \& \mathbf{x}_2$ representing the same partition as $\boldsymbol{\mu}_1 \& \boldsymbol{\mu}_2$ respectively.

Define $D := \dim(\mathbf{x}), \ D_1 := \dim(\mathbf{x}_1) \& D_2 := \dim(\mathbf{x}_2).$

Here we want to get from $\mathbb{P}(\mathbf{x}_1, \mathbf{x}_2)$ to $\mathbb{P}(\mathbf{x}_1)$.

Consider the exponent of the joint distribution

$$E = -\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)^T \Lambda_1 1(\mathbf{x}_1 - \boldsymbol{\mu}_1) - \frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)^T \Lambda_{12}(\mathbf{x}_2 - \boldsymbol{\mu}_2) - \frac{1}{2}(\mathbf{x}_2 - \boldsymbol{\mu}_2)^T \Lambda_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1) - \frac{1}{2}(\mathbf{x}_2 - \boldsymbol{\mu}_2)^T \Lambda_{22}(\mathbf{x}_2 - \boldsymbol{\mu}_2)$$

To produce the marginal for x_1 we want to isolate the terms involving x_2 so they are easy to remove.

$$E = -\frac{1}{2} \left[\left(\mathbf{x}_{2}^{T} \Lambda_{22} \mathbf{x}_{2} - 2 \mathbf{x}_{2}^{T} \Lambda_{2} 2 (\boldsymbol{\mu}_{2} - \Lambda_{22}^{-1} \Lambda_{21} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})) \right) - 2 \mathbf{x}_{1}^{T} \Lambda_{12} \boldsymbol{\mu}_{2} + 2 \boldsymbol{\mu}_{1}^{T} \Lambda_{12} \boldsymbol{\mu}_{2} + \boldsymbol{\mu}_{2}^{T} \Lambda_{22} \boldsymbol{\mu}_{2} + \mathbf{x}_{1}^{T} \Lambda_{11} \mathbf{x}_{1} - 2 \mathbf{x}_{1}^{T} \Lambda_{11} \boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{1}^{T} \Lambda_{11} \boldsymbol{\mu}_{1} \right] = \underbrace{-\frac{1}{2} \left(\mathbf{x}_{2} - (\boldsymbol{\mu}_{2} - \Lambda_{22}^{-1} \Lambda_{21} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})) \right)^{T} \Lambda_{22} \left(\mathbf{x}_{2} - (\boldsymbol{\mu}_{2} - \Lambda_{22}^{-1} \Lambda_{21} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})) \right)}_{E_{1}} + \underbrace{\frac{1}{2} \left(\mathbf{x}_{1}^{T} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \mathbf{x}_{1} - 2 \mathbf{x}_{1}^{T} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{1}^{T} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \boldsymbol{\mu}_{1} \right)}_{A}}_{-\underbrace{\frac{1}{2} \left(\mathbf{x}_{1}^{T} \Lambda_{11} \mathbf{x}_{1} - 2 \mathbf{x}_{1}^{T} \Lambda_{11} \boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{1} \Lambda_{11} \boldsymbol{\mu}_{1} \right)}_{B}}_{B}$$

Note that A & B do not contain any x_2 terms.

Since the co-variance matrix is symmetric we have $\Lambda_{12} = \Lambda_{21}^T$ we have

$$\mathbf{x}_1^T \Lambda_{12} \boldsymbol{\mu}_2 = \mathbf{x}_1^T \Lambda_{21}^T \boldsymbol{\mu}_2 = (\Lambda_{21} \mathbf{x}_1)^T \boldsymbol{\mu}_2 = \boldsymbol{\mu}_2^T \Lambda_{21} \mathbf{x}_1$$

We shall not rewrite A & B as quadratic expressions

$$A = \frac{1}{2} \left(\mathbf{x}_{1}^{T} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \mathbf{x}_{1} - 2 \mathbf{x}_{1}^{T} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{1}^{T} \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} \boldsymbol{\mu}_{1} \right)$$

$$= \frac{1}{2} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})^{T} (\Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21}) (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})$$

$$B = \frac{1}{2} (\mathbf{x}_{1}^{T} \Lambda_{11} \mathbf{x}_{1} - 2 \mathbf{x}_{1}^{T} \Lambda_{11} \boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{1} \Lambda_{11} \boldsymbol{\mu}_{1})$$

$$= \frac{1}{2} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})^{T} \Lambda_{11} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})$$

$$\Rightarrow A - B = \frac{1}{2} (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})^{T} (\Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21} - \Lambda_{11}) (\mathbf{x}_{1} - \boldsymbol{\mu}_{1})$$

$$\text{Let } E_{2} := A - B$$

Now the exponent has been organised we can consider the whole gaussian expression.

$$\mathbb{P}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \frac{e^{E_{1}}e^{E_{2}}}{(2\pi)^{\frac{D}{2}}|\Sigma|^{\frac{1}{2}}}$$

$$\mathbb{P}(\mathbf{x}_{1}) = \int \mathbb{P}(\mathbf{x}_{1}, \mathbf{x}_{2})d\mathbf{x}_{2}$$

$$= \int \frac{e^{E_{1}}e^{E_{2}}}{(2\pi)^{\frac{D}{2}}|\Sigma|^{\frac{1}{2}}}d\mathbf{x}_{2}$$

$$= \frac{e^{E_{2}}}{(2\pi)^{\frac{D}{2}}|\Sigma|^{\frac{1}{2}}}\int e^{E_{1}}d\mathbf{x}_{2} \quad \text{Since } E_{2} \text{ is independent of } \mathbf{x}_{2}$$

Now we consider $\int e^{E_1} d\mathbf{x}_2$.

Since we know a gaussian must intergrate to 1 over the whole domain we deduce that

$$\int \frac{1}{(2\pi)^{\frac{D_2}{2}} |\Lambda_{22}^{-1}|^{\frac{1}{2}}} e^{E_1} d_{\mathbf{x}_2} = 1$$

$$\implies \int e^{E_1} d\mathbf{x}_2 = (2\pi)^{\frac{D_2}{2}} |\Lambda_{22}^{-1}|^{\frac{1}{2}}$$

 $N.B. \Lambda_{22}^{-1}$ is the variance of \mathbf{x}_2 .

Using the result of this intergal we have

$$\mathbb{P}(\mathbf{x}_{1}) = (2\pi)^{\frac{D_{2}}{2}} |\Lambda_{22}^{-1}|^{\frac{1}{2}} \frac{1}{(2\pi)^{\frac{D}{2}} |\Sigma|^{\frac{1}{2}}} e^{E_{2}} \\
= \frac{e^{E_{2}}}{(2\pi)^{\frac{D-D_{2}}{2}} |\Lambda_{22}^{-1}|^{-\frac{1}{2}} |\Sigma|^{\frac{1}{2}}}$$

The Schur complement of Λ_{22} is $\Lambda_{22}^{-1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.

Thus

$$\begin{array}{lcl} |\Lambda_{22}^{-1}|^{-\frac{1}{2}}|\Sigma|^{\frac{1}{2}} & = & |\Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}|^{-\frac{1}{2}}|\Sigma_{11}|^{\frac{1}{2}}|\Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}|^{\frac{1}{2}} \\ & = & |\Sigma_{11}|^{\frac{1}{2}} \end{array}$$

Now we have a full expression

$$\mathbb{P}(\mathbf{x}_{1}) = \frac{e^{E_{2}}}{(2\pi)^{\frac{D-D_{2}}{2}} |\Lambda_{22}^{-1}|^{-\frac{1}{2}} |\Sigma|^{\frac{1}{2}}} \\
= \frac{1}{(2\pi)^{\frac{D_{1}}{2}} |\Sigma_{11}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}_{1} - \boldsymbol{\mu}_{1})^{T} \Sigma_{11}^{-1}(\mathbf{x}_{1} - \boldsymbol{\mu}_{1})}$$

Proof 0.2 - Deriving Gaussian Conditional Distribution

Let
$$\mathbf{X} \sim \mathcal{N}\left(\begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}\right)$$
.
 $\boldsymbol{\mu}_1, \boldsymbol{\mu}_2$ can be considered as two parts of the mean vector $\boldsymbol{\mu}$.

Let **x** be a realisation of **X** where $\mathbf{x} := (\mathbf{x}_1, \mathbf{x}_2)$ with $\mathbf{x}_1 \& \mathbf{x}_2$ representing the same partition as $\mu_1 \& \mu_2$ respectively.

Define $D := \dim(\mathbf{x})$.

We want to find the distribution of $\mathbb{P}(\mathbf{x}_1|\mathbf{x}_2)$.

From the product rule we know that $\mathbb{P}(\mathbf{x}_1, \mathbf{x}_2) = \mathbb{P}(\mathbf{x}_1 | \mathbf{x}_2) \mathbb{P}(\mathbf{x}_2)$ and we already know the joint & marginal distributions for a gaussian.

We have that

$$\mathbb{P}(\mathbf{x}_1, \mathbf{x}_2) \propto e^{-\frac{1}{2} \begin{pmatrix} \mathbf{x}_1 - \boldsymbol{\mu}_1 \\ \mathbf{x}_2 - \boldsymbol{\mu}_2 \end{pmatrix}^T \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{x}_1 - \boldsymbol{\mu}_1 \\ \mathbf{x}_2 - \boldsymbol{\mu}_2 \end{pmatrix}}$$

We now want to factor the marginal distribution out of this expression.

$$\mathbb{P}(\mathbf{x}_2) \propto e^{-\frac{1}{2}(\mathbf{x}_2 - \boldsymbol{\mu}_2)^T \sum_{22}^{-1} (\mathbf{x}_2 - \boldsymbol{\mu}_2)}$$

Lets look at the exponent of the joint distribution.

N.B. About to use a lot of Schur Complements

$$E = -\frac{1}{2} \begin{pmatrix} \mathbf{x}_{1} - \boldsymbol{\mu}_{1} \\ \mathbf{x}_{2} - \boldsymbol{\mu}_{2} \end{pmatrix}^{T} \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{x}_{1} - \boldsymbol{\mu}_{1} \\ \mathbf{x}_{2} - \boldsymbol{\mu}_{2} \end{pmatrix}$$

$$= -\frac{1}{2} \begin{pmatrix} \mathbf{x}_{1} - \boldsymbol{\mu}_{1} \\ \mathbf{x}_{2} - \boldsymbol{\mu}_{2} \end{pmatrix}^{T} \begin{pmatrix} I & 0 \\ \Sigma_{22}^{-1} \Sigma_{21} & I \end{pmatrix}^{T} \begin{pmatrix} (\Sigma/\Sigma_{22})^{-1} & 0 \\ 0 & \Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} I & -\Sigma_{12} \Sigma_{22}^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1} - \boldsymbol{\mu}_{1} \\ \mathbf{x}_{2} - \boldsymbol{\mu}_{2} \end{pmatrix}$$

$$= -\frac{1}{2} \begin{pmatrix} \mathbf{x}_{1} - \boldsymbol{\mu}_{1} \\ \mathbf{x}_{2} - \boldsymbol{\mu}_{2} \end{pmatrix}^{T} \begin{pmatrix} (\Sigma/\Sigma_{22})^{-1} & -(\Sigma/\Sigma_{22})^{-1} \Sigma_{12} \Sigma_{22}^{-1} \\ -\Sigma_{21} \Sigma_{22}^{-1} (\Sigma/\Sigma_{22})^{-1} & \Sigma_{22}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{x}_{1} - \boldsymbol{\mu}_{1} \\ \mathbf{x}_{2} - \boldsymbol{\mu}_{2} \end{pmatrix}$$

$$= -\frac{1}{2} \left[\mathbf{x}_{1} - (\boldsymbol{\mu}_{1} + \Sigma_{21} \Sigma_{22}^{-1} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})) \right]^{T} (\Sigma/\Sigma_{22})^{-1} \left[\mathbf{x}_{1} - (\boldsymbol{\mu}_{1} + \Sigma_{21} \Sigma_{22}^{-1} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})) \right]$$

$$= -\frac{1}{2} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})^{T} \Sigma_{22}^{-1} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})$$

$$= -\frac{1}{2} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})^{T} \Sigma_{22}^{-1} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})$$

Note that E_2 is exactly the exponent for the marginal distribution of \mathbf{x}_2 and thus what we want to factory out in order to get to the conditional distribution.

$$-\frac{1}{2} \left[\mathbf{x}_1 - \underbrace{\left(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}_2 - \boldsymbol{\mu}_2)\right)}_{\text{mean}} \right]^T \underbrace{\left(\boldsymbol{\Sigma} / \boldsymbol{\Sigma}_{22}\right)^{-1} \left[\mathbf{x}_1 - (\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}_2 - \boldsymbol{\mu}_2)) \right]}_{\text{covariance}}$$

9