Constrained Sampling and Counting: Universal Hashing meets SAT Solving

<u>Kuldeep S. Meel¹</u>, Moshe Y. Vardi¹, Supratik Chakraborty², Daniel J. Fremont³, Sanjit A. Seshia³, Dror Fried¹, Alexander Ivrii⁴, Sharad Malik⁵

¹Rice University, ²IIT Bombay, ³University of California, Berkeley ⁴IBM Research, Haifa ⁵Princeton University

Constrained Sampling and Counting

• F: CNF Formula; R_F: Solution space of F

Approximate Constrained Sampling

$$\forall y \in R_F, \ \frac{1}{(1+\varepsilon)|R_F|} \le \Pr[\mathbf{UniGen}(F,\varepsilon) = y] \le \frac{1+\varepsilon}{|R_F|}$$

Approximate Constrained Counting

$$\Pr\left[\frac{|R_F|}{1+\varepsilon} \le \operatorname{ApproxMC}(F,\varepsilon,\delta) \le (1+\varepsilon)|R_F|\right] \ge 1-\delta$$

Hashing-based Techniques in Nutshell

Key parameters:

- Number of cells
- Size of cell (i.e. number of solutions in a cell)
- Size of XOR constraints

Related Approaches

- · Strong theoretical analysis but conditioned on "right" parameters
- Practical implementations use heuristics or "magically" choosing the right parameters

Our Contribution

• A systematic procedure to determine the right parameters
[CAV 13, CP 13, DAC 14, AAAI 14, TACAS 15, IJCAI 15, CP 15, AAAI 16]

- No gap between theoretical ideas and tool implementation
 - No user-dependent parameters
 - No heuristics without theoretical analysis

• Can handle formulas with hundreds of thousands of variables!

Peek into Runtime Performance

Generator	Normalized runtime
State-of-the-art (2012): XORSample'	50000
UniWit (2013)	5000
UniGen1 (2014)	470
UniGen2 (2015)	20
SAT Solver	1

Experiments over 200+ benchmarks