МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Кафедра «Програмна інженерія та інформаційні технології управління»

Лабораторна робота №2 з предмету «Моделювання систем»

Виконав:

ст. групи КН-34г

Чепурний А. С.

Перевірила:

ст. в. каф. ППТУ

Єршова C. I.

РОЗРОБКА ВИМОГ ЩОДО ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ МОДЕЛЮВАННЯ НЕПЕРЕРВНИХ ДЕТЕРМІНОВАНИХ СИСТЕМ

Мета роботи

Дослідити особливості моделювання неперервних детермінованих систем та отримати практичні навички моделювання програмних вимог.

Хід роботи

- 1 Отримати та дослідити неперервний детермінований процес за індивідуальним завданням.
 - 2 Проаналізувати модель, визначити цілі моделювання.
 - 3 Розробити вимоги до програмного забезпечення.
- 4 Задокументувати розроблені вимоги, використовуючи UML (за допомогою Requirement diagram).
- 5 Оформити звіт, який повинен містити опис досліджуваного процесу, його модель (диференційні рівняння та їх вирішення), цілі моделювання, опис програмних вимог та моделі програмних вимог, розроблені за допомогою UML.

1 Індивідуальне завдання

Вантаж з масою P підвішений на вертикальній пружині, довжина якої дорівнює l. Вантаж злегка відтягнутий донизу і потім відпущений. Знайти закон руху вантажу, нехтуючи масою пружини та опором повітря.

2 Аналіз та дослідження моделі

Направимо вісь O_x вниз по вертикальній прямій, що проходить через точку підвісу вантажу. Початок координат O виберемо в положенні рівноваги вантажу, тобто в точці, в якій вага вантажу врівноважується силою натягу пружини (рисунок 1).

Рисунок 1 — Деформація розтягу пружини

Нехай λ означає подовження пружини в даний момент, а λ_{st} — статичне подовження, тобто відстань від кінця нерозтягнутої пружини до положення рівноваги. Тоді $\lambda=\lambda_{st}+x$ або $\lambda-\lambda_{st}=x$.

Згідно до закону Гука сила натягу пружини пропорційно її подовженню:

$$F_{\rm np} = -c\lambda$$

де c — жорсткість пружини.

$$\begin{split} F_p &= F_{\text{пр}} + F_{\text{тяг}}, \\ F_{\text{тяг}} &= P, \\ a &= \frac{d^2x}{dt^2}, \\ m \frac{d^2x}{dt^2} &= F_{\text{пр}} + F_{\text{тяг}}, \\ m \frac{d^2x}{dt^2} &= -c\lambda - P. \end{split}$$

Так як в положені рівноваги сила рівноваги натягу пружини врівноважується вагою тіла, то $P=c\lambda_{st}$. Підставимо в диференціальне рівняння вираз $P=c\lambda_{st}$ та замінимо $\lambda-\lambda_{st}$ через x:

$$m\frac{d^2x}{dt^2} + k^2x = 0.$$

де
$$k^2 = \frac{c}{m}$$

Отримане рівняння визначає так звані вільні коливання вантажу. Воно називається рівнянням гармонічного осцилятора. Це лінійне диференціальне рівняння другого порядку з постійними коефіцієнтами. Його характеристичне рівняння $r^2+k^2=0$ має уявні корені $r=\pm ik$. Загальне рішення:

$$x = C_1 \cos kt + C_2 \sin kt.$$

Для з'ясування фізичного сенсу рішення зручніше привести його до іншої форми, помноживши та поділивши на $\sqrt{C_1^2+C_2^2}$:

$$x = \sqrt{C_1^2 + C_2^2} \cdot \left(\frac{C_1}{\sqrt{C_1^2 + C_2^2}} \cos kt + \frac{C_2}{\sqrt{C_1^2 + C_2^2}} \sin kt \right).$$

Якщо покласти, що

$$\begin{split} \sqrt{C_1^2 + C_2^2} &= A, \\ \frac{C_1}{\sqrt{C_1^2 + C_2^2}} &= \sin \alpha, \\ \frac{C_2}{\sqrt{C_1^2 + C_2^2}} &= \cos \alpha, \end{split}$$

тоді

$$x = A \cdot (\sin \alpha \cdot \cos kt + \cos \alpha \cdot \sin kt) = A \cdot \sin(kt + \alpha),$$

де A — амплітуда коливання;

 $kt + \alpha$ — фаза коливання;

k — частота коливання.

Період коливання $T=2\pi\sqrt{m/c}$ і частота k залежать тільки від жорсткості пружини та маси системи:

$$c = \frac{P}{\lambda_{st}} = \frac{mg}{\lambda_{st}},$$
$$T = 2\pi \sqrt{\frac{\lambda_{st}}{g}}.$$

Швидкість руху вантажу виходить диференціюванням рішення:

$$v = \frac{dx}{dt} = A \cdot \cos(kt + \alpha).$$

- 3 Вимоги до програмного забезпечення
- 1 Функціональні вимоги

Stub

2 Нефункціональні вимоги

Stub