GAUGE AND HIGGS BOSONS

 γ (photon)

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 1 \times 10^{-18}$ eV Charge $q < 1 \times 10^{-35}$ e Mean life $\tau =$ Stable

g or gluon

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

graviton

J=2

Mass $m < 6 \times 10^{-32}$ eV

W

$$J = 1$$

Charge
$$= \pm 1~e$$
 Mass $m = 80.379 \pm 0.012~{\rm GeV}$ W/Z mass ratio $= 0.88147 \pm 0.00013$ $m_Z - m_W = 10.809 \pm 0.012~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.029 \pm 0.028~{\rm GeV}$ Full width $\Gamma = 2.085 \pm 0.042~{\rm GeV}$ $\langle N_{\pi^\pm} \rangle = 15.70 \pm 0.35$ $\langle N_{K^\pm} \rangle = 2.20 \pm 0.19$ $\langle N_p \rangle = 0.92 \pm 0.14$ $\langle N_{\rm charged} \rangle = 19.39 \pm 0.08$

 W^- modes are charge conjugates of the modes below.

W ⁺ DECAY MODES	F	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[<i>b</i>]	(10.86 ± 0.09) %		_
$e^+ \nu$		$(10.71 \pm 0.16) \%$		40189
$\mu^+ \nu \ \tau^+ \nu$		$(10.63 \pm \ 0.15) \%$		40189
$\tau^+ \nu$		$(11.38 \pm \ 0.21) \%$		40170
hadrons		$(67.41 \pm 0.27) \%$		_

HTTP://PDG.LBL.GOV

Page 1

Z

$$J = 1$$

Charge = 0 Mass
$$m = 91.1876 \pm 0.0021$$
 GeV $[d]$ Full width $\Gamma = 2.4952 \pm 0.0023$ GeV $\Gamma(\ell^+\ell^-) = 83.984 \pm 0.086$ MeV $[b]$ $\Gamma(\text{invisible}) = 499.0 \pm 1.5$ MeV $[e]$ $\Gamma(\text{hadrons}) = 1744.4 \pm 2.0$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 1.0009 \pm 0.0028$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0020 \pm 0.0032$ $[f]$

Average charged multiplicity

$$\langle N_{charged} \rangle = 20.76 \pm 0.16 \quad (S = 2.1)$$

Couplings to quarks and leptons

$$g_V^{\ell} = -0.03783 \pm 0.00041$$
 $g_V^{u} = 0.266 \pm 0.034$
 $g_V^{d} = -0.38^{+0.04}_{-0.05}$
 $g_A^{\ell} = -0.50123 \pm 0.00026$
 $g_A^{u} = 0.519^{+0.028}_{-0.033}$
 $g_A^{d} = -0.527^{+0.040}_{-0.028}$
 $g_A^{v\ell} = 0.5008 \pm 0.0008$
 $g_A^{v\ell} = 0.53 \pm 0.09$
 $g_A^{v\mu} = 0.502 \pm 0.017$

Asymmetry parameters [g]

$$A_e = 0.1515 \pm 0.0019$$
 $A_\mu = 0.142 \pm 0.015$
 $A_\tau = 0.143 \pm 0.004$
 $A_s = 0.90 \pm 0.09$
 $A_c = 0.670 \pm 0.027$
 $A_b = 0.923 \pm 0.020$

Charge asymmetry (%) at \boldsymbol{Z} pole

$$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$$
 $A_{FB}^{(0u)} = 4 \pm 7$
 $A_{FB}^{(0s)} = 9.8 \pm 1.1$
 $A_{FB}^{(0c)} = 7.07 \pm 0.35$
 $A_{FB}^{(0b)} = 9.92 \pm 0.16$

HTTP://PDG.LBL.GOV

Z DECAY MODES	Fraction (Γ_i/Γ)				Scale factor/ Confidence level	
e^+e^-	[h] (3.3632	2 ± 0.0042	2) %		45594
$\mu^+\mu^-$	[h] (3.3662±0.0066) %				45594	
$ au^+ au^-$	[h] (3.3696	5 ± 0.0083	3) %		45559
$\ell^+\ell^-$	[b,h] (3.3658	3 ± 0.0023	3) %		_
$\ell^+\ell^-\ell^+\ell^-$	[i] (4.58	± 0.26	$) \times 10^{-6}$	i	45594
invisible	`		±0.055	,		_
hadrons	[<i>h</i>] (69.911	± 0.056) %		_
$(u\overline{u}+c\overline{c})/2$	`	11.6	± 0.6) %		_
$(dd+s\overline{s}+bb)/3$	•	15.6	± 0.4) %		_
c c	`	12.03	± 0.21) %		_
b <u>b</u>	,	15.12	± 0.05) %		_
<i>b</i> b b b	(3.6	± 1.3	$) \times 10^{-4}$		_
ggg	<			%	CL=95%	_
$\pi^0 \gamma$	<	2.01		× 10 ⁻⁵		45594
$\eta \gamma_0$	<	5.1			CL=95%	45592
$\rho^0 \gamma$	<			$\times 10^{-5} \times 10^{-4}$		45591
$\frac{\omega \gamma}{\eta'(958)\gamma}$	<			\times 10 \times 10 \times 10 \times		45590
$\phi \gamma$	< <	4.2 9			CL=95% CL=95%	45589 45588
	<	9 1.46			CL=95%	45594
$\frac{\gamma}{\pi}$ $\frac{\gamma}{\pi}$ 0	<	1.52		× 10 × 10 ⁻⁵		45594
$\gamma \gamma \gamma$	<	2.2			CL=95%	45594
$\pi^{\pm}W^{\mp}$	[<i>j</i>] <	7		× 10 ⁻⁵		10167
$ ho^{\pm}W^{\mp}$	[<i>j</i>] <			× 10 ⁻⁵		10142
$J/\psi(1S)$ X		3.51	$^{+0.23}_{-0.25}$) × 10 ⁻³		_
$J/\psi(1S)\gamma$	<	2.3		\times 10 ⁻⁶	CL=95%	45541
$\psi(2\hat{S})X$	(1.60	± 0.29	$) \times 10^{-3}$	1	_
ψ (2S) γ	<	4.5		\times 10 ⁻⁶	CL=95%	45519
$\chi_{c1}(1P)X$	(2.9	±0.7	$) \times 10^{-3}$		_
$\chi_{c2}(1P)X$	<	3.2		$\times 10^{-3}$	CL=90%	_
$\Upsilon(1S) \ X + \Upsilon(2S) \ X + \Upsilon(3S) \ X$	(1.0	± 0.5) × 10 ⁻⁴	•	-

Page 3

$\Upsilon(1S)X$			< 3.4		\times 10 ⁻⁶	CL=95%	_
$\Upsilon(1S)\gamma$			< 2.8		$\times 10^{-6}$	CL=95%	45103
$\Upsilon(2S)X$			< 6.5		$\times 10^{-6}$	CL=95%	_
$\Upsilon(2S)\gamma$			< 1.7		$\times 10^{-6}$	CL=95%	45043
$\Upsilon(3S)X$			< 5.4		$\times 10^{-6}$	CL=95%	_
$\Upsilon(3S)\gamma$			< 4.8		$\times 10^{-6}$	CL=95%	45006
$(D^0/\overline{D}{}^0)$ X			(20.7	±2.0) %		_
$D^{\pm}X$			(12.2	±1.7) %		_
$D^*(2010)^{\pm}X$		[<i>j</i>]	(11.4	±1.3) %		_
$D_{s1}(2536)^{\pm}X$			(3.6	±0.8	$) \times 10^{-3}$		_
$D_{sJ}(2573)^{\pm} X$			(5.8	±2.2	$) \times 10^{-3}$		_
$D^{*'}(2629)^{\pm}X$		S	searched f	or			_
B^+X		[<i>k</i>]	(6.08	± 0.13) %		_
$B_s^0 X$		[<i>k</i>]	(1.59	± 0.13) %		_
B_c^+X		9	searched f	or			_
$B_c^+ X$ $A_c^+ X$ $\Xi_c^0 X$			(1.54	± 0.33) %		_
$=$ $\overset{\circ}{0}$ X			seen				_
$\equiv_b^c X$			seen				_
<i>b</i> -baryon X		[<i>k</i>]	(1.38	± 0.22) %		_
anomalous $\gamma+$ hadrons			< 3.2		$\times 10^{-3}$	CL=95%	_
$e^+e^-\gamma$			< 5.2		$\times 10^{-4}$	CL=95%	45594
$\mu^+\mu^-\gamma$		[/]	< 5.6		$\times 10^{-4}$	CL=95%	45594
$ au^+ au^-\gamma$		[/]	< 7.3		$\times 10^{-4}$	CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[<i>n</i>]	< 6.8		$\times 10^{-6}$	CL=95%	_
$q \overline{q} \gamma \gamma$		[<i>n</i>]	< 5.5		$\times 10^{-6}$	CL=95%	_
$ u \overline{ u} \gamma \gamma$		[<i>n</i>]	< 3.1			CL=95%	45594
$e^\pm\mu^\mp$	LF	[<i>j</i>]	< 7.5		$\times 10^{-7}$	CL=95%	45594
$e^{\pm} au^{\mp}$	LF	[<i>j</i>]	< 9.8			CL=95%	45576
$\mu^{\pm} \tau^{\mp}$	LF	[<i>j</i>]	< 1.2			CL=95%	45576
pe	L,B		< 1.8			CL=95%	45589
$\rho\mu$	L,B		< 1.8		× 10 ⁻⁶	CL=95%	45589

$$J=0$$

Mass $m=125.10\pm0.14$ GeV Full width $\Gamma<0.013$ GeV, CL =95% (assumes equal on-shell and off-shell effective couplings)

H⁰ Signal Strengths in Different Channels

Combined Final States = 1.10 ± 0.11 $WW^* = 1.08^{+0.18}_{-0.16}$ $ZZ^* = 1.19^{+0.12}_{-0.11}$ $\gamma \gamma = 1.10^{+0.10}_{-0.09}$ $c\overline{c}$ Final State < 110, CL = 95% $b\overline{b} = 1.02 \pm 0.15$ $\mu^+\mu^- = 0.6 \pm 0.8$ $\tau^+\tau^- = 1.11 \pm 0.17$ $Z\gamma < 6.6$, CL = 95% $t\overline{t}H^0$ Production = 1.28 ± 0.20 H^0H^0 Production < 12.7 H^0 Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV = 57 ± 7 pb

H ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$< 1.9 \times 10^{-3}$	95%	62550
$J/\psi\gamma$	$< 3.5 \times 10^{-4}$	95%	62511
ψ (2S) γ	$< 2.0 \times 10^{-3}$	95%	62495
$\Upsilon(1S)\gamma$	$< 4.9 \times 10^{-4}$	95%	62192
$\Upsilon(2S)\gamma$	$< 5.9 \times 10^{-4}$	95%	62148
$\Upsilon(3S)\gamma$	$< 5.7 \times 10^{-4}$	95%	62121
$ ho$ (770) γ	$< 8.8 \times 10^{-4}$	95%	62547
ϕ (1020) γ	$< 4.8 \times 10^{-4}$	95%	62546
$e\mu$	$< 3.5 \times 10^{-4}$	95%	62550
e au	$< 6.1 \times 10^{-3}$	95%	62537
μau	$< 2.5 \times 10^{-3}$	95%	62537
invisible	<24 %	95%	_

Neutral Higgs Bosons, Searches for

Mass Limits for heavy neutral Higgs bosons (H_2^0 , A^0) in the MSSM

m > 389 GeV (tan β =10); > 1613 GeV (tan β =60), CL = 95% [obtained in the m $_h^{mod+}$ scenario]

Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$), Searches for

```
mass for [m_{H^+} < m(top)] > 155 GeV mass for [m_{H^+} > m(top)] > 180 GeV (tan\beta = 10); > 1103 GeV (tan\beta=60) [obtained in the m_h^{mod-} scenario]
```

New Heavy Bosons (W', Z', leptoquarks, etc.), Searches for

Additional W Bosons

```
W' with standard couplings

Mass m > 5200 GeV, CL = 95\% (pp direct search)

W_R (Right-handed W Boson)

Mass m > 715 GeV, CL = 90\% (electroweak fit)
```

Additional Z Bosons

```
Z'_{\rm SM} with standard couplings Mass m>4.500\times10^3 GeV, CL = 95% (pp direct search) Z_{LR} of SU(2)_L\timesSU(2)_R\timesU(1) (with g_L=g_R) Mass m>630 GeV, CL = 95% (p\overline{p} direct search) Mass m>1162 GeV, CL = 95% (electroweak fit) Z_\chi of SO(10) \to SU(5)\timesU(1)_\chi (with g_\chi=e/\cos\theta_W) Mass m>4.100\times10^3 GeV, CL = 95% (pp direct search) Z_\psi of E_6\to SO(10)\times U(1)_\psi (with g_\psi=e/\cos\theta_W) Mass m>3900 GeV, CL = 95% (pp direct search) Z_\eta of E_6\to SU(3)\times SU(2)\times U(1)\times U(1)_\eta (with g_\eta=e/\cos\theta_W) Mass m>3.900\times10^3 GeV, CL = 95% (pp direct search)
```

Scalar Leptoquarks

```
m>1050 GeV, CL = 95% (1st gen., pair prod., B(\tau t)=1) m>1755 GeV, CL = 95% (1st gen., single prod., B(\tau t)=1) m>1420 GeV, CL = 95% (2nd gen., pair prod., B(\mu t)=1) m>660 GeV, CL = 95% (2nd gen., single prod., B(\mu q)=1) m>900 GeV, CL = 95% (3rd gen., pair prod., B(eq)=1) m>740 GeV, CL = 95% (3rd gen., single prod., B(eq)=1) (See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)
```

Diquarks

Mass m > 6000 GeV, CL = 95% (E_6 diquark)

Axigluon

Mass m > 6100 GeV, CL = 95%

Axions (A^0) and Other Very Light Bosons, Searches for

The standard Peccei-Quinn axion is ruled out. Variants with reduced couplings or much smaller masses are constrained by various data. The Particle Listings in the full *Review* contain a Note discussing axion searches.

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.
- [d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [e] This partial width takes into account Z decays into $\nu \overline{\nu}$ and any other possible undetected modes.
- [f] This ratio has not been corrected for the τ mass.
- [g] Here $A \equiv 2g_V g_A / (g_V^2 + g_A^2)$.
- [h] This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06 (Physics Reports (Physics Letters C) **427** 257 (2006)).
- [i] Here ℓ indicates e or μ .
- [j] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [k] This value is updated using the product of (i) the $Z \rightarrow b\overline{b}$ fraction from this listing and (ii) the b-hadron fraction in an

- unbiased sample of weakly decaying *b*-hadrons produced in *Z*-decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).
- [/] See the Z Particle Listings for the γ energy range used in this measurement.
- [n] For $m_{\gamma\,\gamma}=$ (60 \pm 5) GeV.