A-2-2. Find the Laplace transform of f(t) defined by

$$f(t) = 0,$$
 for $t < 0$
= te^{-3t} , for $t \ge 0$

Solution. Since

$$\mathcal{L}[t] = G(s) = \frac{1}{s^2}$$

referring to Equation (2-6), we obtain

$$F(s) = \mathcal{L}[te^{-3t}] = G(s+3) = \frac{1}{(s+3)^2}$$

A-2-4. Find the Laplace transform F(s) of the function f(t) shown in Figure 2-3, where f(t) = 0 for t < 0 and $2a \le t$. Also find the limiting value of F(s) as a approaches zero.

Solution. The function f(t) can be written

$$f(t) = \frac{1}{a^2} 1(t) - \frac{2}{a^2} 1(t-a) + \frac{1}{a^2} 1(t-2a)$$

Then

$$\begin{split} F(s) &= \mathcal{L}[f(t)] \\ &= \frac{1}{a^2} \mathcal{L}[1(t)] - \frac{2}{a^2} \mathcal{L}[1(t-a)] + \frac{1}{a^2} \mathcal{L}[1(t-2a)] \\ &= \frac{1}{a^2} \frac{1}{s} - \frac{2}{a^2} \frac{1}{s} e^{-as} + \frac{1}{a^2} \frac{1}{s} e^{-2as} \\ &= \frac{1}{a^2 s} (1 - 2e^{-as} + e^{-2as}) \end{split}$$

As a approaches zero, we have

$$\lim_{a \to 0} F(s) = \lim_{a \to 0} \frac{1 - 2e^{-as} + e^{-2as}}{a^2 s} = \lim_{a \to 0} \frac{\frac{d}{da} \left(1 - 2e^{-as} + e^{-2as}\right)}{\frac{d}{da} \left(a^2 s\right)}$$

$$= \lim_{a \to 0} \frac{2se^{-as} - 2se^{-2as}}{2as} = \lim_{a \to 0} \frac{e^{-as} - e^{-2as}}{a}$$

$$= \lim_{a \to 0} \frac{\frac{d}{da} \left(e^{-as} - e^{-2as}\right)}{\frac{d}{da} \left(a\right)} = \lim_{a \to 0} \frac{-se^{-as} + 2se^{-2as}}{1}$$

$$= -s + 2s = s$$

A-2-7. Find the Laplace transform of f(t) defined by

$$f(t) = 0,$$
 for $t < 0$
= $t^2 \sin \omega t$, for $t \ge 0$

Solution. Since

$$\mathcal{L}[\sin \omega t] = \frac{\omega}{s^2 + \omega^2}$$

applying the complex-differentiation theorem

$$\mathcal{L}[t^2 f(t)] = \frac{d^2}{ds^2} F(s)$$

to this problem, we have

$$\mathscr{L}[f(t)] = \mathscr{L}[t^2 \sin \omega t] = \frac{d^2}{ds^2} \left[\frac{\omega}{s^2 + \omega^2} \right] = \frac{-2\omega^3 + 6\omega s^2}{(s^2 + \omega^2)^3}$$

A-2-11. Find the inverse Laplace transform of F(s), where

$$F(s) = \frac{1}{s(s^2 + 2s + 2)}$$

Solution. Since

$$s^2 + 2s + 2 = (s + 1 + j1)(s + 1 - j1)$$

Figure 2–4
Periodic function (square wave).

we notice that F(s) involves a pair of complex-conjugate poles, and so we expand F(s) into the form

$$F(s) = \frac{1}{s(s^2 + 2s + 2)} = \frac{a_1}{s} + \frac{a_2s + a_3}{s^2 + 2s + 2}$$

where a_1 , a_2 , and a_3 are determined from

$$1 = a_1(s^2 + 2s + 2) + (a_2s + a_3)s$$

By comparing coefficients of s^2 , s, and s^0 terms on both sides of this last equation, respectively, we obtain

$$a_1 + a_2 = 0$$
, $2a_1 + a_3 = 0$, $2a_1 = 1$

from which

$$a_1 = \frac{1}{2}$$
, $a_2 = -\frac{1}{2}$, $a_3 = -1$

Therefore,

$$F(s) = \frac{1}{2} \frac{1}{s} - \frac{1}{2} \frac{s+2}{s^2 + 2s + 2}$$
$$= \frac{1}{2} \frac{1}{s} - \frac{1}{2} \frac{1}{(s+1)^2 + 1^2} - \frac{1}{2} \frac{s+1}{(s+1)^2 + 1^2}$$

The inverse Laplace transform of F(s) gives

$$f(t) = \frac{1}{2} - \frac{1}{2}e^{-t}\sin t - \frac{1}{2}e^{-t}\cos t, \quad \text{for } t \ge 0$$

A-2-12. Obtain the inverse Laplace transform of

$$F(s) = \frac{5(s+2)}{s^2(s+1)(s+3)}$$

Solution.

$$F(s) = \frac{5(s+2)}{s^2(s+1)(s+3)} = \frac{b_1}{s} + \frac{b_2}{s^2} + \frac{a_1}{s+1} + \frac{a_2}{s+3}$$

where

$$a_{1} = \frac{5(s+2)}{s^{2}(s+3)} \Big|_{s=-1} = \frac{5}{2}$$

$$a_{2} = \frac{5(s+2)}{s^{2}(s+1)} \Big|_{s=-3} = \frac{5}{18}$$

$$b_{2} = \frac{5(s+2)}{(s+1)(s+3)} \Big|_{s=0} = \frac{10}{3}$$

$$b_{1} = \frac{d}{ds} \left[\frac{5(s+2)}{(s+1)(s+3)} \right]_{s=0}$$

$$= \frac{5(s+1)(s+3) - 5(s+2)(2s+4)}{(s+1)^{2}(s+3)^{2}} \Big|_{s=0} = -\frac{25}{9}$$

$$F(s) = -\frac{25}{9} \frac{1}{s} + \frac{10}{3} \frac{1}{s^2} + \frac{5}{2} \frac{1}{s+1} + \frac{5}{18} \frac{1}{s+3}$$

The inverse Laplace transform of F(s) is

$$f(t) = -\frac{25}{9} + \frac{10}{3}t + \frac{5}{2}e^{-t} + \frac{5}{18}e^{-3t}, \quad \text{for } t \ge 0$$

A-2-17. Solve the following differential equation:

$$\ddot{x} + 2\dot{x} + 10x = t^2$$
, $x(0) = 0$, $\dot{x}(0) = 0$

Solution. Noting that the initial conditions are zeros, the Laplace transform of the equation becomes as follows:

$$s^2X(s) + 2sX(s) + 10X(s) = \frac{2}{s^3}$$

Hence

$$X(s) = \frac{2}{s^3(s^2 + 2s + 10)}$$

We need to find the partial-fraction expansion of X(s). Since the denominator involves a triple pole, it is simpler to use MATLAB to obtain the partial-fraction expansion. The following MATLAB program may be used:

 $num = [0 \ 0 \ 0 \ 0 \ 0 \ 2];$

From the MATLAB output, we find

$$X(s) = \frac{0.006 - 0.0087j}{s + 1 - 3j} + \frac{0.006 + 0.0087j}{s + 1 + 3j} + \frac{-0.012}{s} + \frac{-0.04}{s^2} + \frac{0.2}{s^3}$$

Combining the first two terms on the right-hand side of the equation, we get

0

$$X(s) = \frac{0.012(s+1) + 0.0522}{(s+1)^2 + 3^2} - \frac{0.012}{s} - \frac{0.04}{s^2} + \frac{0.2}{s^3}$$

The inverse Laplace transform of X(s) gives

$$x(t) = 0.012e^{-t}\cos 3t + 0.0174e^{-t}\sin 3t - 0.012 - 0.04t + 0.1t^2, \quad \text{for } t \ge 0$$