MapReduce: Simplified Data Processing on Large Clusters

A Comparison of Approaches to Large-Scale Data Analysis

One Size Fits All – An Idea Whose Time Has Come and Gone (2005)

10/20/2016

OBTAINED FROM LABOUSER.COM

MAPREDUCE - MAIN IDEA

- MapReduce is a model for processing and generating large data sets
- It is written to run on a cluster of many machines
- The Map refers to an input pair which produces the intermediate key/value pairs and then those are Reduced to zero or one output value
- It is designed to process data that is way to big for one computer to process
- It does this by creating a master worker relation ships with other computers

MAPREDUCE - IMPLEMENTATION

- Implementation starts with the user creating the input and reduce functions
- Then a master computer is chosen, and it divides up the work to give to the worker computers.
- The goes to the workers during the map phase where the data is processed
- The intermediate data is then moved on to the reduce phase where the data is combined back
- Finally the data is out put to zero or one files

MAPREDUCE - ANALYSIS

- The idea is simple break up the work into a lot of small parts so that many different computers can work on it
- But implementation is not simple, there is a lot decisions that have to be made
- Map reduce created a solution that lets the user have a lot of control over the part that the user cares about and the automation of the parts they don't

LARGE-SCALE DATA ANALYSIS - MAIN IDEAS

- Why is MapReduce such a radical idea why not just use parallel DBMS's
- Parallel DBMS's are much more efficient, 3.1 to 6.5 times more efficient on a scale of 100 nodes
- As you get to more and more nodes MapReduce becomes more efficient but not many pieces of data are that big yet.

LARGE-SCALE DATA ANALYSIS — IMPLEMENTATION

- When using MapReduce and a different programmer has to know how the whole function is written to be able to use the data
- When using DBMS's the data is stored on a separate schema which is easier to access
- MapReduce proposes the idea that it has no rigid structure of data fields, programmers at some point do have to agree on a format for their data for it to be useful.
- In MapReduce it is agreed upon outside of the program, in DBMS's its is inforced inside of the program

LARGE-SCALE DATA ANALYSIS - ANALYSIS

- The programming model of presenting an algorithm for data access is typical of a DBMS system and seems to be the preferred way to ask for information, and seems to be the efficient.
- Hadoop seems to be more efficient on the computers no matter how many nodes are in the system for loading data but not doing calculations on data in any way.

MAPREDUCE VS. LARGE-SCALE DATA ANALYSIS

- MapReduce according to the first paper seemed like a great new way to process data that will let us use all of our equipment so much better
- But the second paper introduced DMBSs and how they have been around for ever and out preform MapReduce on any realistic level at the current time.
- When our data gets so big that we need 1000 computers in a cluster to be able to handle it then at that point MapReduce will have the advantage.

STONEBRAKER TALK - MAIN IDEAS

- One data processing system is not going to meet all the needs of the world
- Making relational databases universal is not possible
- Column store is 2 orders of magnitude faster than row store
- The big data base companies are not going to adapt to the new system, but if anyone will it will be SQLServer

STONEBRAKER - ADVANTAGES & DISADVANTAGES

- Data Warehouse Market Colum stores are 2 magnitudes faster than column stores
- OLTP Market All data in main memory lightweight SQL is necessary
- NoSQL Market No standards what so ever but none look like traditional row stores
- Complex Analytics Data scientist are going to replace business analysists
- Streaming Market adding streaming to a OLTP engine much easier than adding persistence to a streaming engine