首先,根据已经有数据集来构造用户评分矩阵。数据集如下图

用户	项目	项目评分	
1	6	4	
2	2	2	
6	7	3	
2	8	2	
8	9	1	
5	6	5	
4	2	4	
:	:	:	

可以得到对应的矩阵如下图,横轴是项目,纵轴是用户

	1	2	3	4	5	6	7	8	9	•••
1						4				
2		2						2		
3										
4		4								
5						5				
6							3			
7										
8									1	
9										
:	•••		:	••	•••	•	:	:	:	:

根据矩阵分解公式 R≈PQ^T,可知可以用两个矩阵 P、Q^T乘积来近似表示原矩阵 R。

则要构造 P、Q矩阵,假定用户有 m 个,项目有 n 个

P :

1 2 ··· k

Q:

- 1、随机初始化 P、Q 矩阵
- 2、根据 $P_u=P_u-\alpha \frac{\partial L}{\partial P_u}$ 、 $Q_i=Q_i-\alpha \frac{\partial L}{\partial Q_i}$,梯度下降来求得更拟合数据的 P、

Q矩阵

推导:

$$\begin{split} \mathsf{L} &= \sum_{(\mathsf{i}, \mathsf{j}) \in \Omega} \frac{1}{2} \sum (r_{\mathsf{i}\mathsf{j}} - r'_{\mathsf{i}\mathsf{j}})^2 + \frac{\lambda_{\mathsf{i}}}{2} \|P\|_F^2 + \frac{\lambda_{\mathsf{i}}}{2} \|Q\|_F^2 \\ &= \sum_{(\mathsf{i}, \mathsf{j}) \in \Omega} \frac{1}{2} \sum (r_{\mathsf{i}\mathsf{j}} - \operatorname{Pi} \operatorname{Qj}^{\wedge} T)^2 + \frac{\lambda_{\mathsf{i}}}{2} \|P\|_F^2 + \frac{\lambda_{\mathsf{i}}}{2} \|Q\|_F^2 \\ &\frac{\partial L}{\partial P_{\mathsf{i}}} = - (\mathbf{r}_{\mathsf{i}\mathsf{j}} - \mathbf{P}_{\mathsf{i}} \operatorname{Qj}^{\mathsf{T}}) \ ^* \mathbf{Q}_{\mathsf{j}}^{\mathsf{T}} + \frac{\partial}{\partial P_{\mathsf{i}}} \ (\frac{\lambda_{\mathsf{i}}}{2} \|P\|_F^2 + \frac{\lambda_{\mathsf{i}}}{2} \|Q\|_F^2) \\ &\mathcal{N} \mathcal{F} \ddot{\mathcal{F}} \longrightarrow \mathcal{N} \ddot{\mathcal{H}} \ddot{\mathcal{E}} \dot{\mathcal{D}} \ (\dot{\mathsf{i}}, \dot{\mathsf{j}}), \ \frac{\lambda_{\mathsf{i}}}{2} \|P\|_F^2 + \frac{\lambda_{\mathsf{i}}}{2} \|Q\|_F^2 \ \mathcal{N} \ \mathbf{P}_{\mathsf{i}} \ \ddot{\mathcal{R}} \ddot{\mathcal{F}} \ddot{\mathcal{F}} \ddot{\mathcal{F}} \end{split}$$

$$= \lambda P_i + 0$$

则 ,
$$\frac{\partial L}{\partial P_i}$$
 =- $(\mathbf{r}_{ij} - \mathbf{P}_i \mathbf{Q}_j^\mathsf{T}) * \mathbf{Q}_j^\mathsf{T} + \lambda \mathbf{P}_i$

同理
$$\frac{\partial L}{\partial Q_i}$$
=- $(\mathbf{r}_{ij} - \mathbf{P}_i \mathbf{Q}_j^\mathsf{T}) * \mathbf{P}_i^\mathsf{T} + \lambda \mathbf{Q}_j$

计算代价函数
$$L = \sum_{(i, j) \in \Omega} \frac{1}{2} \sum_{(r_{ij} - r'_{ij})^2 + \frac{\lambda_i}{2}} ||P||_F^2 + \frac{\lambda_i}{2} ||Q||_F^2$$