Exercise 4: More Complexity analysis

- 1.) The worst case for Quick sort $O(n^2)$ occurs when the largest or smallest element is always chosen for the pivot point. This results in a sub-array of size 0 and another with a size of n-1.
 - T(n) = T(n-1) + O(n)
 - Expand until base case is reached:
 - T(n-1) = T(n-2) + O(n-1)
 - T(n-2) = T(n-3) + O(n-2)
 - T(2) = T(1) + O(2)
 - Substitute the expansion back in:
 - T(n) = T(n-1) + O(n)
 - T(n) = [T(n-2) + O(n-1)] + O(n)
 - T(n) = [T(n-3) + O(n-2)] + O(n-1) + O(n)
 - $T(n) = T(1) + O(2) + O(3) + \dots + O(n-1) + O(n)$
 - Simplifying:
 - $1+2+3+\cdots+n=\frac{n(n+1)}{2}$
 - $O(1+2+3+\cdots+n) = O(\frac{n(n+1)}{2}) = O(n^2)$
 - Finally:
 - $T(n) = T(1) + O(n^2)$
 - $T(n) = O(n^2)$

Since Quicksort's worst-case complexity is $O(n^2)$ a quadratic interpolation function was selected to reflect this. Based on the graph this matches our complexity analysis because the time closely follow the quadratic fit. For n < 1000 the execution time is very low, and the deviation between the actual execution time and $O(n^2)$ is minimal. As the size increases to n > 3000 the execution time follows a clearer quadratic growth pattern which is a characteristic of $O(n^2)$. This validates the expectation that Quicksort degrades to $O(n^2)$ when a bad pivot point is chosen, such as the first element.