Oblig 1

Thobias Høivik

Problem: Oppgave 1.4.2

Vis at standardbasisen $(e_1, ..., e_n)$ er en basis for \mathbb{K}^n .

Bevis. La \mathbb{K} være en kropp og la $E = \{e_1, \dots, e_n\}$ hvor

$$e_1 = \begin{pmatrix} 1 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}, e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

For å vise at $(e_1,...,e_n)$ utgjør en basis for \mathbb{K}^n må vi vise at $\{e_1,...,e_n\}$ er lineært uavhengig og spenner \mathbb{K}^n .

Lineær uavhengighet.

Vi ønsker å vise at det ikke finnes en ikke-triviel løsning til

$$\sum_{i=1}^{n} k_i e_i = \vec{0}$$

hvor $k_i \in \mathbb{K}$. Summen av alle $k_i e_i$ er

$$\sum_{i=1}^{n} k_i e_i = \begin{pmatrix} k_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ k_2 \\ \vdots \\ 0 \end{pmatrix} + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ k_n \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$$

Vi ser at eneste måten

$$\begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} = \vec{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

er den trivielle løsningen $k_1 = k_2 = \cdots = k_n = 0$. Dette betyr at E er lineært uavhengig.

Utspenning av rommet.

Vi ønsker å vise at span $(E) = \mathbb{K}^n$. Husk at

$$\mathbb{K}^{n} = \left\{ \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix} \middle| k_{i} \in \mathbb{K}, i \in \{1, 2, \dots, n\} \right\}$$

Spennrommet span(*E*) er underrommet av alle vektorer av formen

$$k_1e_1 + k_2e_2 + \dots + k_ne_n = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$$

hvor $k_i \in \mathbb{K}$. Med andre ord:

$$\operatorname{span} E = \left\{ \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} \middle| k_i \in \mathbb{K}, i \in \{1, 2, \dots, n\} \right\} = \mathbb{K}^n$$

som ønsket. Med dette har vi vist at E spenner ut hele rommet.
Siden vi har vist at E er lineært uavhengig og spenner ut \mathbb{K}^n konkluderer vi med at E utgjør en basi
for \mathbb{K}^n .

Problem: Oppgave 1.4.6

(a) La $\mathscr{C} = (e_1, \dots, e_n)$ være standardbasisen i \mathbb{K}^n . Vis at

$$[x]_{\mathscr{C}} = x \quad \forall x \in \mathbb{K}^n$$

(b) La U være et vektorrom over \mathbb{K} med en basis $\mathscr{B} = (u_1, \dots, u_n)$. Vis at

$$[u_j]_{\mathscr{B}} = e_j \quad \forall j = 1, ..., n$$

Bevis av (a). La \mathbb{K} være en kropp og la $\mathscr{C} = (e_1, \dots, e_n)$ være standardbasisen i \mathbb{K}^n .

Vi ønsker å vise at basisrepresentasjonen av x i basisen \mathscr{C} , $[x]_{\mathscr{C}} = x$ for alle $x \in \mathbb{K}^n$.

La $x \in \mathbb{K}^n$. Da har vi at det finnes en unik n-tuppel $(b_1, b_2, ..., b_n) \in \mathbb{K}^n$ slik at $x = b_1 e_1 + b_2 e_2 + \cdots + b_n e_n$. Denne tuppelen er basisrepresentasjonen $[x]_{\mathscr{C}} = (b_1, b_2, ..., b_n)$. Med standardbasisen har vi at

$$x = b_{1}e_{1} + b_{2}e_{2} + \dots b_{n}e_{n}$$

$$= \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} b_{1} + \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} b_{2} + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} b_{n}$$

$$= \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix} = (b_{1}, b_{2}, \dots, b_{n}) = [x]_{\mathscr{C}}$$

som er det vi ønsket å vise.

Bevis av (b). La *U* være et vektorrom over kroppen \mathbb{K} med en basis $\mathscr{B} = (u_1, \dots, u_n)$.

Vi ønsker å vise at basisrepresentasjonen, $[u_j]_{\mathscr{B}} = e_j$ hvor e_j refererer til den j-ende vektoren i standard basisen (vektoren med 0 i alle index-er utenom j, hvor vi har 1) og $j \in \{1, 2, ..., n\}$. La u_j være en vilkårlig vektor i basisen. Da er u_j også en vektor i U, næmlig vektoren

$$0 \cdot u_1 + \dots + 1 \cdot u_j + \dots + 0 \cdot u_n$$

Da finens det en n-tuppel $(k_1, k_2, ..., k_n) \in \mathbb{K}^n$ slik at

$$k_1u_1 + \cdots + k_iu_i + \cdots + k_ni_n = u_i$$

Dette er basisrepresentasjonen av u_j i basisen. Spesifikt, er det tuppelen (0,...,1,...,0), hvor alle oppføringer er 0 utenom den j-ende index-en, som er 1. Dette er $e_j = (0,...,1,...,0)$. Med andre ord,

$$[u_i]_{\infty} = e_i$$

som ønsket.

Problem: Oppgave 1.5.2

Vis at

- (a) $\dim \mathcal{P}^n = n+1$
- (b) $\dim \mathcal{P} = \infty$
- (c) $\dim C^0(\mathbb{R}, \mathbb{R}) = \infty$

Bevis av (a). La \mathscr{P}^n være rommet av polynomer med koeffisienter i \mathbb{R} .

Vi ønsker å vise at $\dim \mathcal{P}^n = n+1$. Vi vet at, viss et vektorrom har en basis $(b_1, b_2, ..., b_n)$, så er rommet et endelig-dimensjonelt rom med dimensjon n. La oss se på den kanoniske basisen til \mathcal{P}^n , altså $(1, x, x^2, ..., x^n)$. Denne basisen består av alle x^i hvor i = 0, 1, ..., n. Med andre ord består den av $|\{0, 1, 2, ..., n\}| = n+1$ elementer. Derfor kan vi konkludere at dim $\mathcal{P}^n = n+1$.

Bevis av (b). La \mathscr{P} være rommet av alle polynomer med koeffisienter i \mathbb{R} .

Vi ønsker å vise at dim $\mathscr{P} = \infty$. Vi gjør dette ved å vise at det ikke finnes en endelig basis for \mathscr{P} .

Anta, i søk om kontradiksjon, at det finnes en endelig basis $B = \{p_1, p_2, ..., p_n\}$ for \mathcal{P} , med n elementer. La d_i være graden av polynomet p_i for i = 1, ..., n. La $d = \max\{d_1, ..., d_n\}$. Da er graden av hver p_i mindre enn eller lik d. Hvis vi nå ser på den lineære kombinasjonen

$$q(x) = \sum_{i=1}^{n} k_i p_i(x), k_i \in \mathbb{K}$$

så får vi at graden av q er mindre enn eller lik d. Så for hvert polynom i spennrommet til B har grad høyst d, men $x^{d+1} \in \mathcal{P}$, som motsier antagelsen vår at det finnes en endelig basis for rommet.

Med det kan vi konkludere at dim $\mathscr{P} = \infty$.

Bevis av (c). La $C^0(\mathbb{R},\mathbb{R})$ være rommet av kontinuerlige $f:\mathbb{R}\to\mathbb{R}$.

Hvert polynom er kontinuerlig, så $\mathscr{P} \subset C^0(\mathbb{R}, \mathbb{R})$.

Siden $C^0(\mathbb{R}, \mathbb{R})$ har et uendelig-dimensjonelt underrom, kan ikke $C^0(\mathbb{R}, \mathbb{R})$ være endelig-dimensjonelt. Som sagt i Proposisjon 1.4.11 fra boken, for et underrom V av rommet U har vi at $\dim(V) \leq \dim(U)$.

Konklusjon: $\dim(C^0(\mathbb{R},\mathbb{R})) = \infty$.