Dynamic Near Data Processing Framework for SSDs

Gunjae Koo*, Kiran Kumar Matam*, Te I[†], H.V. Krishina Giri Nara*, Jing Li[‡], Hung-Wei Tseng[†], Steven Swanson[‡], Murali Annavaram*

*University of Southern California

[†]North Carolina State University

[‡]University of California, San Diego

Conventional Storage = Cheap Passive Devices

Conventional storage devices

- Slow, limited bandwidth (SATA 150 ~ 600 MB/s)
- · Passive devices (read, write, erase)

Storage in Modern Server Systems

Storage devices for Big Data

- Huge volumes of data \rightarrow slow, slower, much slower
- Data movement is critical for performance

Intelligent Storage

NVM-based storage devices

- No seek time, higher bandwidth over PCle
- Potential to be active systems

Intelligent Storage

Near Data Processing (NDP)

Near Data Processing (NDP)

Near Data Processing (NDP) on SSDs

Near Data Processing (NDP) on SSDs

Host

Obstacles to in-SSD processing

- Less powerful embedded processor
- Dynamic computation resource availability

WONE Summarizer: Dynamic NDP framework for SSD

With NDP

Summarizer – Basic Concept

Summarizer – Basic Concept

Summarizer – Detailed Firmware Architecture

Summarizer - Initialization (Function Offloading)

Summarizer - Finalization

Evaluation Platform

- LS2085a intelligent SSD development platform
- ARM cores running FTL and **Summarizer** firmware
- FPGA implementing NAND flash controller
- PCIe Gen. 3 4x lanes for host communication

Evaluation Platform

Design Exploration – Better SSD Processor

Better embedded processor is cost effective

Design Exploration - Higher Internal Bandwidth

Design Exploration - Higher Internal Bandwidth

Summarizer is a cost effective NDP solution with powerful storage processors

Conclusion

- ✓ Dynamic NDP framework for SSDs
 - Opportunistically enables in-SSD processing
 - Page-level NDP control
 - Automatic workload partitioning
- ✓ Summarizer programming model
 - Evaluation on the real development platform
 - Explored design space for future SSDs

Thank you

Summarizer: Trading Communication with Computing Near Storage (MICRO '17)

(We thank to Dell EMC for supporting the SSD development board)