Class: BE – 6

Roll. No: 42260

Assignment No.: 5

Assignment Name: CMOS Inverter

Date Of Performance: 18/10/2021

Block Diagram:

Truth-Table:

INPUTS (s)	OUTPUT (s)
Α	A

Layout:

Asymmetric

Symmetric

Waveforms:

a) Vin, Vout

Asymmetric

Symmetric

b) Vout, lout

Asymmetric

Symmetric

Pdynamic	40.076uW
fmax	2.5GHz

Assignment Name: NAND GATE

Date Of Performance: 8/11/2021

Block Diagram:

CMOS NAND Gate

Truth-Table:

Symbol	Truth Table		
A & Q Q Q 2-input NAND Gate	A	В	Q
	0	0	1
	0	1	1
	1	0	1
	1	1	0

Layout:

Waveforms:

a) Vin, Vout

b) Vout, lout

Pdynamic	1.795uW
Fmax	0.63GHz

Assignment Name: NOR GATE

Date Of Performance: 8/11/2021

Block Diagram:

CMOS NOR Gate

Truth-Table:

Symbol	Truth Table		
	A	В	Q
A ≥1 Q 2-input NOR Gate	0	0	1
	0	1	0
	1	0	0
	1	1	0

Layout:

Waveforms:

a) Vin, Vout

b) Vout, lout

Pdynamic	5.866uW
fmax	2.5GHz

Assignment Name: HALF ADDER

Date Of Performance: 8/11/2021

Block Diagram:

Truth-Table:

Inj	put	Ou	tput
A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Layout:

Waveforms:

a) Vin, Vout

b) Vout, lout

Pdynamic	23.177uW
fmax	0.63GHz

Conclusions:

Thus, we have:

- 1) Drawn the LAYOUT for CMOS Inverter, NAND GATE, NOR GATE AND HALF ADDER using 90 nm & 120 nm Foundry.
- 2) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 3) Noted the values of Pdynamic for floating Load.
- 4) Appreciated the validity of the mathematical model : Pdynamic = CL * (Vdd) 2*fclk by Doubling & Halving the values of <math>CL & fclk
- 5) Found a reduction in Pdynamic by using a better Foundry i.e. 90 nm instead of 120 nm
- 6) Learnt that the presence of spikes in O / P waveform at Switching instants indicate the inability of the MOSFETs to switch at GHz frequencies.
- 7) Learnt that the using a better Foundry enables the MOSFETs the inability of the MOSFETs to switch at Higher GHz frequencies ,as proved by the removal of Spikes at the O/P.