# UNIVERSIDADE ESTADUAL DA BAHIA DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA- CAMPUS I BACHARELADO EM SISTEMA DE INFORMAÇÃO

## **LUCAS DOS SANTOS DIAS**

COMUNICAÇÃO TCP ENTRE MÁQUINAS NA REDE LOCAL

Salvador 2025

### **LUCAS DOS SANTOS DIAS**

## COMUNICAÇÃO TCP ENTRE MÁQUINAS NA REDE LOCAL

Projeto apresentado ao Componente Curricular Linguagem de programação III, do Curso de Bacharelado em Sistemas de Informação do Departamento de Ciências Exatas e da Terra (DCET)- Campus I, da Universidade do Estado da Bahia (UNEB),como requisito avaliativo.

Professor: Jose Grimaldo da Silva Filho

Salvador

2025

# 1 INTRODUÇÃO

Este trabalho apresenta o desenvolvimento de uma aplicação cliente-servidor em Python utilizando comunicação via sockets TCP. O sistema permite múltiplas conexões simultâneas, autenticação de usuários, bem como envio, recebimento e gerenciamento de arquivos.

#### 2 OBJETIVOS

- Implementar um servidor multithread que aceite conexões simultâneas de múltiplos clientes.
- Garantir a criação e autenticação de contas de usuários.
- Permitir o envio , recebimento, listagem e remoção de arquivos por parte dos clientes.
- Implementar a exclusão total de contas com remoção de dados vinculados.

#### 3 METODOLOGIA

#### 3.1 Estrutura do Sistema

- Servidor (servidor.py): Inicializa um socket TCP, escuta por conexões e trata comandos enviados pelos clientes. Realiza autenticação, cria diretórios para cada usuário e coordena ações via controladores específicos.
- Cliente (cliente.py): Interface CLI que permite login, registro e execução dos comandos suportados: UPLOAD, DOWNLOAD, LIST, DELETE, DELETE ACCOUNT e QUIT.
- Banco de Dados (db.py): Implementado com SQLite e SQLAlchemy, armazena credenciais de usuários e o identificador do diretório associado.
- Gerenciamento de Arquivos (fileContoller.py): Responsável por salvar, listar, enviar e remover arquivos no servidor.
- Comunicação (until.py, untils.py): Comunicação baseada em comandos de texto e separadores por linha, com leitura byte a byte em certos pontos para sincronização precisa. Os arquivos são enviados em blocos de até 64 KB.
- O servidor utiliza threads para cada conexão, garantindo suporte simultâneo a vários clientes, Além disso o mesmo cliente consegue se conectar na mesma conta em dispositivos diferentes..

#### 3 Resultados

As seguintes funcionalidades foram implementadas com sucesso:

- Registro e login de usuários com criação automática de diretórios exclusivos.
- Upload e download de arquivos entre cliente e servidor.
- Listagem dos arquivos disponíveis no diretório do usuário.
- Exclusão de arquivos específicos e remoção completa da conta com seus dados.
- Interface clara com mensagens de retorno para cada operação.
- Suporte a múltiplos clientes conectados simultaneamente e realizando ações de forma concorrente.

A aplicação foi testada com arquivos variando entre pequenos (1 MB) e grandes (até 180 MB), simulando cenários reais de uso. O tempo de upload foi registrado para cada caso, e os dados obtidos foram utilizados para gerar o gráfico a seguir:



Observa-se uma tendência linear crescente entre o tamanho do arquivo e o tempo de envio, como esperado. A linha azul representa os dados reais coletados em testes unitários, enquanto a linha laranja representa a média móvel, que suaviza as flutuações pontuais provocadas por sobrecarga de rede ou variações no sistema.

#### Observações:

- A média móvel confirma um crescimento estável do tempo com o aumento do tamanho.
- Flutuações esparsas em arquivos maiores indicam gargalos pontuais no envio, possivelmente relacionados ao uso da rede local ou ao disco.
- O sistema comportou-se de forma estável até cerca de 170 MB, com pequenos aumentos de latência previsíveis.