Acoustic Correlates of Performed Sexual Orientation in Thai Media

NWAV-AP8 Siyu Liang

Background

- > Speech encodes social meaning
 - Speakers index gender, sexual orientation, etc. from acoustic signals such as pitch & phonation (e.g. Gaudio 1994; Pierrehumbert et al. 2004; Zimman 2013).
- > Mixed findings for sexual orientation & acoustics
 - Often contradictory findings across research settings (Suire et al. 2020; Holmes et al. 2024).
- > Most data are English/non-tonal
 - Tonal languages exert extra constraints on f_0 and voice quality (Keating et al. 2023).

Motivations

> Tonal language

- Thai has 5 lexical tones \rightarrow pitch already utilized lexically, so any stylistic f_0 shift would be interesting and non-trivial (Osatananda & Gadavanij 2019).

> Data

- TV dramas cast the same actors as gay and straight characters, holding anatomy constant.
- Scripted yet near-natural dialogue yields comparable gay/straight speech tokens without reading-style artifacts.

> Goal

 Identify which acoustic cues Thai actors manipulate to signal orientation, extending the sociophonetic landscape beyond the Anglophone focus.

Research Questions & Hypotheses

- > RQ1: Do Thai actors systematically adjust pitch when portraying gay vs. straight roles?
- > RQ2: Do they adjust voice quality cues, specifically breathiness?
- > H1: Mean f₀ ↑ in gay-role speech (Gaudio 1994; Barbuio & Paulino 2021).
- > H2: Gay-role speech → breathier phonation (Podesva 2007; Becker et al. 2022).

Mean fo

> Stereotype

 Gay men sound "higher-pitched," lesbians "lower-pitched" (Zwicky 1997; Lakoff 1973).

> Relevant findings

- Mixed: no universal effect (Gaudio 1994; Munson et al. 2006; Rendall et al. 2008).
- Small but significant f_0 raise in some corpora/languages (Suire et al. 2020 French; Barbuio & Paulino 2021 Portuguese).
- Some large-scale work shows lower mean f_0 for gay men (Holmes et al. 2024).

> Interpretation

- f_0 is one cue in a constellation; its social meaning depends on listener expectations, speaker style, language norms (Vaughn 2019; Eckert 2008).

Voice Quality

> What it is

- Long-term settings of laryngeal + vocal-tract settings that shape a voice's "timbre" beyond pitch and loudness (Laver 1968; Klatt & Klatt 1990).
- A continuum from breathy to creaky (Wright et al. 2019).

> Sociophonetic use

 Features such as breathiness and creak routinely index gender, sexuality, stance, and affect (Podesva 2007; Yuasa 2010).

> Cross-linguistic use

 Languages differ in baseline phonation settings (Keating et al. 2023); tonal languages often tie voice quality to tone targets (Kuang 2013).

Wright et al. 2019

Jitter & Shimmer

> Definitions

- Periodic-based measurements of voice quality.
- Jitter = cycle-to-cycle f_0 variability.
- Shimmer = cycle-to-cycle amplitude variability.
- Higher jitter & shimmer: breathier/creakier voice quality.

> Relevant findings

- Higher jitter/shimmer correlate with creaky voice, typical of "straight" styles in English (Zimman 2013; Becker et al. 2022).
- Lesbian voices showed higher jitter, interpreted as a creakier quality (Holmes et al. 2024).

> Interpretation

- Jitter/Shimmer is useful acoustic cues for studying indexing of sexual orientation.
- Could be used to distinguish creakiness/breathiness vs. modal voice, but not creakiness vs breathiness.

Teixeira & Gonçalves 2014

Harmonic-Noise Ratio (HNR)

> What it measures

- Ratio of periodic (harmonic) energy to noise.
- Lower HNR = breathier/creakier voice (Hillenbrand et al. 1994).

> Relevant Studies

- Gay French men had higher HNR than straight men (Suire et al. 2020).
- Gay men showed lower HNR than straight men; lesbian women had similar trend (Holmes et al. 2024).

> Interpretation

- HNR is useful in indexing of sexual orientation.
- Similar to jitter/shimmer, it could be used to distinguish creakiness/breathiness vs. modal voice, but not creakiness vs breathiness.

Spectral Tilt (H1-H2)

What it measures

Difference in the amplitudes of first two harmonics; larger (more positive) = breathier, smaller = tighter/creakier (Chai & Garellek 2022).

Link to orientation

Higher H1*-H2* → more breathy registers used to index flamboyance/femininity (Podesva 2007 & Becker et al. 2022).

Caveat

Need formant-correction: H1*-H2* (Iseli et al. 2007).

Interpretation

A useful metric for breathiness vs creakiness.

(b)

Thai

> Central Thai:

 ~50 M speakers; 5 lexical tones—H, M, L, Falling, Rising (Tingsabadh & Abramson 1993).

> No contrastive phonation

- Breathy/creaky not phonemic.
- However, phonation can co-vary with tone targets (Kuang 2013; Keating et al. 2023).

> Glottal/nasal influence

 Vowels after /h, ?/ often nasalize & shift voice quality—"rhinoglottophilia" (Cooke 1989; Johnson 2019).

> Note

Thai lets us test how orientation-linked cues fit into a tonal system where f_0 already carries lexical load.

Z-score (Lobanov) Normalization

Why normalize

 Removes anatomical differences (vocal-tract length, habitual voice) so role/speaker effects aren't confounded (Adank et al. 2004).

> For each speaker

- $-z=\frac{x-\mu}{\sigma}$
- Where x = token value, $\mu =$ speaker mean, $\sigma =$ speaker SD.

> Benefits

- Comparable effect sizes across speakers & measures.
- Recommended for sociophonetic mixed-effects models (Johnson 2019; Munson & Babel 2019).

> Limitations

Loses absolute physiological info; interpret in SD units.

Data

- Petch Paopetch Charoensook (straight).
- Ter Ratthanant Janyajirawong (gay).
- **Roles portrayed in TV shows**
 - Gay (Diary of Tootsies 2016).
 - Straight (Social Syndrome 2018).
- > 105 vowel tokens (Table 1)
 - No background music/noise.
 - In open syllable content words at non-reducing prosodic positions, not around /h, ?/ (Johnson et al. 2019).
 - M. tone.

Speaker	Role	Tokens		
Petch	Gay	19		
Petch	Straight	30		
Ter	Gay	39		
Ter	Straight	17		

Ter

Diary of Tootsies

Social Syndrome

Data Processing & Analysis

- > Segmentation
 - Manually using periodic voicing as cue in Praat (Boersma 2007).
- > Measurements
 - 30 ms at midpoint using Parselmouth (Jadoul et al. 2018).
 - Mean f_0 , jitter, shimmer, HNR, H1*-H2*.
- > Normalization
 - Lobanov z-score.
- > Stats
 - Linear mixed-effects using statsmodels in Python.
 - Model: z-Measure ~ Role + Speaker + (1 | Speaker)
 - > Role: baseline = [G]ay, contrast level = [S]traight
 - > Speaker: baseline = [P]etch, contrast level = [T]er
 - In plain terms: given each actor's own performative gay speech baseline, does portraying a straight character reliably effect pitch, jitter, etc.?

Results

- **Speaker effects**
 - No significant differences once role is accounted for (p>.80).
- Role effects: relative to performed gay speech, straight speech is
 - Lower pitched: mean $f_0 \downarrow 1.008$ σ.
 - Less breathy: H1*–H2* \downarrow 0.871 σ.
 - Maybe creakier: Jitter & Shimmer ↑, HNR ↓.

Table 2. Summary of fixed effects from the mixed-effects models (reference levels: Speaker = Petch, Role = Gay).

Dependent Variable	Predictor	Estimate	Std. Err	Z	p-value
f_0	(Intercept)	0.612	0.902	0.679	0.497
	speaker[T]	-0.306	1.267	-0.242	0.809
	role[S]	-1.008	0.183	-5.508	< 0.001
Jitter	(Intercept)	-0.419	0.973	-0.431	0.666
	speaker[T]	0.214	1.366	0.157	0.875
	role[S]	0.676	0.197	3.424	< 0.001
Shimmer	(Intercept)	-0.378	0.977	-0.387	0.699
	speaker[T]	0.191	1.372	0.139	0.889
	role[S]	0.618	0.198	3.119	0.002
HNR	(Intercept)	0.531	0.936	0.568	0.570
	speaker[T]	-0.267	1.314	-0.203	0.839
	role[S]	-0.871	0.190	-4.592	< 0.001
H1*-H2*	(Intercept)	0.548	0.933	0.587	0.557
	speaker[T]	-0.283	1.310	-0.216	0.829
	role[S]	-0.872	0.189	-4.612	< 0.001

Interpretation

- > H1 confirmed.
 - A full σ pitch increase in performed gay speech.
 - In line with some cross-language findings of a higher-pitched "gay voice" (Gaudio 1994; Suire et al. 2020).
- > H2 confirmed.
 - Gay roles are breathier (↑ H1*-H2*).
 - However, straight role speech might not be just modal but also shift towards creak (↑ Jitter/Shimmer, ↓ HNR).

Discussion

> Performative, not anatomical

 No baseline speaker effect → both actors execute the same role shift, showing orientation cues are flexible resources (Daniele et al. 2020).

> Tone compatibility

- Sociophonetic variation of mean- f_0 and laryngeal manipulations occur even in the presence of Thai lexical tones (Cheng 2020; Ordin & Mennen 2017).

> Indexical bundle

 Results underscore Eckert's (2008) indexical field: pitch, voice quality, and maybe other acoustic correlates work together; reading any single cue in isolation risks misinterpretation.

Summary

- > "Gay voice" is multi-cue & context-sensitive.
- > Mean f_0 & phonation leveraged in Thai, a tonal language.
- > Media portrayals reinforce enregistered gay style (Bell 1984; Eckert 2008).

Questions

Bibliography

> See paper.