MAT 369 Introduction to Graph Theory

Peter Schaefer

Fall 2023

Contents

1	Introduction 1.1 Graphs and Graph Models	2 2 2
2	Degrees	4
3	Isomorphic Graphs	5
4	Trees	6
5	Connectivity	7
6	Traversability	8
7	Digraphs	9
8	Matchings and Factorization	10
9	Planarity	11
10	Coloring Graphs	12
11	Ramsey Numbers	13
12	Distance	14
13	Domination	15

1 Introduction

1.1 Graphs and Graph Models

Graph Definition

A (simple) **graph** is an ordered pair (V, E) where

- \bullet V is a nonempty set of objects called "vertices"
- E is a set containing some two-subsets of V called "edges". E may be empty.

Graphs are often represented pictorially. For example consider

$$G = (V, E)$$
 where $V = \{1, 2, 3, 4, 5\}$ and $E = \{\{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$

G

5

- Vertices 1 and 4 are **adjacent** because they are joined by an edge.
- Vertex 2 and edge 2-3 are **indicent**.
- Edges 2-3 and 3-4 are adjacent.

Order Definition

The **order** of a graph G is |V(G)|, or the number of vertices.

Size Definition

The **size** of a graph G is |E(G)|, or the number of edges. The graph G from above has order 5 and size 4.

1.2 Connected Graphs

Subgraph Definition

Let G and H be graphs. H is a subgraph of G, notated as $H \subseteq G$, if

$$V(H) \subseteq V(G)$$
 and $E(H) \subseteq E(G)$.

Proper Subgraph Definition

H is a **proper subgraph** of G if $H \subseteq G$ and either

$$V(H) \subsetneq V(G)$$
 or $E(H) \subsetneq E(G)$.

Spanning Subgraph Definition

Graph H is a spanning subgraph if $H \subseteq G$ and V(H) = V(G).

Induced Subgraph Definition

Graph H is a **induced subgraph** if $H \subseteq G$ and if

$$u, v \in V(H)$$
 and $u, v \in E(G) \implies u, v \in E(H)$.

Essentially, H contains all valid edges it can take from G. Notation for **induced subgraph** is

G[S], where S is a set of vertices from G.

Edge-induced Subgraph Definition

G[X] is an **edge-induced subgraph** of G if G[X] has edge set $X \subseteq E(G)$ and a vertex set of all vertices incident with at least one edge of X. Interesting fact: G[E(G)] removes any isolated vertices.

More on Spanning and Induced Subgraphs

Let G be a graph with vertex v and edge e. Then,

- G-e is the spanning subgraph of G whose edge set is $E(G)-\{e\}$. This definition can be expanded to G-X for $X\subseteq E(G)$.
- G v is the *induced subgraph* of G whose vertex set is $V(G) \{v\}$ and edge set includes all edges of G except those incident with v.

This definition can be expanded to G - U for $U \subseteq V(G)$.

Let G be a graph, $u, v \in V(G)$ and $e = uv \notin E(G)$. Then G + e is the graph with vertex set V(G) and edge set $E(G) \cup \{e\}$. G is a spanning subgraph of G + e

2 Degrees

3 Isomorphic Graphs

4 Trees

5 Connectivity

6 Traversability

7 Digraphs

8 Matchings and Factorization

9 Planarity

10 Coloring Graphs

11 Ramsey Numbers

12 Distance

13 Domination