Local Search: Goal Versus Path Search

CS3243: Introduction to Artificial Intelligence – Lecture 5a

Contents

- 1. Administrative Matters
- 2. Goal Versus Path Search
- 3. Local Search via Hill-Climbing
- 4. Local Beam Search

- 6. Constraint Satisfaction Problems (CSPs)
- 7. CSP Formulation
- 8. A First Look at an Algorithm for CSPs

Administrative Matters

Midterm Examination

- Schedule
 - Week 7 Lecture Slot
 - Monday (27 FEB), 1030-1130 hrs (Arrive by 1010 hrs)
- Venue
 - MPSH1a (Conducted in-person)
- Format
 - Duration = 1 hour
 - Total = 30 marks
 - Closed-book + Cheat Sheet (1 × Double-sided A4 Sheet)
 - Lectures 1-5 (i.e., everything up to and including this lecture)
- Practice Papers
 - Canvas > CS3244 > Files. > Past Papers

Consultations

Project 1

- Consultation recording → Canvas
- Important notes on grid representation → Canvas
- For more support → Message TA
- Last resort → Email me (dler@comp.nus.edu.sg)

Midterm

- Review past midterm papers
- Message TAs for clarifications

Upcoming...

- Deadlines
 - TA3 (released last week)
 - Due in your Week 5 tutorial session
 - Submit the a physical copy (more instructions on the Tutorial Worksheet)
 - Prepare for the tutorial!
 - Participation marks = 5%
 - Project 1
 - Due next Sunday (19 February), 2359 hrs

Goal Versus Path Search

Slightly Different Problems

- Thus far: finding a path to a goal
 - Algorithms track paths
 - Systematically search paths
- What if only interested in goal state?
 - Have goal test, but not values to satisfy it
 - Only want goal state values
 - Optimisation problems
 - Vertex cover problems
 - Boolean satisfiability problems (SAT)
 - Travelling salesman problem
 - Timetabling / scheduling problems

Sudoku

		3					9	
	1			7		2		4
4					1		5	
			9			3		
	8			1			7	
		6			4			
	3		5					7
9		5		8			6	
	7					4		

n-queens

Path Versus Goal

- Search problems path planning
 - Path to a goal necessary
 - Path cost is important

Path planning can satisfy the objective of goal search but does more than it needs to since we don't need the path

		3					9	
	1			7		2		4
4					1		5	
			9			3		
	8			1			7	
		6			4			
	3		5					7
9		5		8			6	
	7					4		

- Local search goal determination
 - Abandon systematic search ignore path (and path cost)
 - Maintain "best" successor state greedy approach

Local Search is incomplete

- Advantages
 - Only store current and immediate successor states
 - Space complexity: O(b)
 - Note that space complexity may be reduced to O(1) if successors may be processed one at a time
 - Applicable to very large or infinite search spaces

Local Search via Hill-Climbing

Hill-Climbing Algorithm

```
current = initial_state
while true:
    neighbour = highest_valued_successor(current)
    if value(neighbour) \leq value(current): return current
    current = neighbour
```

- How it works (steepest ascent greedy strategy)
 - Starts with a random initial state (typically) more on this later
 - Only store the current state
 - In each iteration, find a successor that improves on current state
 - Requires actions and transition to determine successors
 - Requires value; a way to value each state e.g., f(n) = -h(n)
 - If none exists, return current state as the best option
 - This algorithm can fail; may return a non-goal state

Requires heuristic (similar to informed search heuristic)

Given an 8×8 chess board

- Place 8 queens
- No queen must threaten another
- Use h: pairs of queens threatening each other

Search problem

- State: 1 queen per column
- Action: move 1 queen to different col. position
- Goal: 0 pairs threatening

Example h

Consider top-most left-most cell (h-value is 18)

Given an 8×8 chess board

- Place 8 queens
- No queen must threaten another
- Use h: pairs of queens threatening each other

Search problem

- State: 1 queen per column
- Action: move 1 queen to different col. position
- Goal: 0 pairs threatening

Example h

Consider top-most left-most cell (18)

C1 (now in top-most left-most call) attacks C4, C5, C6, C7 [4]

Given an 8×8 chess board

- Place 8 queens
- No queen must threaten another
- Use h: pairs of queens threatening each other

Search problem

- State: 1 queen per column
- Action: move 1 queen to different col. position
- Goal: 0 pairs threatening

Example h

Consider top-most left-most cell (18)

C1 (now in top-most left-most call) attacks C4, C5, C6, C7 [4]

C2 attacks C3, C4, C6, C8 [4]

Given an 8×8 chess board

- Place 8 queens
- No queen must threaten another
- Use h: pairs of queens threatening each other

Search problem

- State: 1 queen per column
- Action: move 1 queen to different col. position
- Goal: 0 pairs threatening

Example h

Consider top-most left-most cell (18)

C1 (now in top-most left-most call) attacks C4, C5, C6, C7 [4]

C2 attacks C3, C4, C6, C8 [4]

Given an 8×8 chess board

- Place 8 queens
- No queen must threaten another
- Use h: pairs of queens threatening each other

Search problem

- State: 1 queen per column
- Action: move 1 queen to different col. position
- Goal: 0 pairs threatening

Example h

Consider top-most left-most cell (18)

C1 (now in top-most left-most call) attacks C4, C5, C6, C7 [4] C4 attacks C5, C6, C7 [3]

C2 attacks C3, C4, C6, C8 [4]

Given an 8×8 chess board

- Place 8 queens
- No queen must threaten another
- Use h: pairs of queens threatening each other

Search problem

- State: 1 queen per column
- Action: move 1 queen to different col. position
- Goal: 0 pairs threatening

Example h

Consider top-most left-most cell (18)

C1 (now in top-most left-most call) attacks C4, C5, C6, C7 [4]
C4 attacks C5, C6, C7 [3]
C5 attacks C6, C7 [2]

C2 attacks C3, C4, C6, C8 [4]

Given an 8×8 chess board

- Place 8 queens
- No queen must threaten another
- Use h: pairs of queens threatening each other

Search problem

- State: 1 queen per column
- Action: move 1 queen to different col. position
- Goal: 0 pairs threatening

Example h

Consider top-most left-most cell (18)

C1 (now in top-most left-most call) attacks C4, C5, C6, C7 [4]
C4 attacks C5, C6, C7 [3]
C5 attacks C6, C7 [2]

C2 attacks C3, C4, C6, C8 [4]

C6 attacks C7, C8 [2]

Given an 8×8 chess board

- Place 8 queens
- No queen must threaten another
- Use h: pairs of queens threatening each other

Search problem

- State: 1 queen per column
- Action: move 1 queen to different col. position
- Goal: 0 pairs threatening

Example h

Consider top-most left-most cell (18)

C1 (now in top-most left-most call) attacks C4, C5, C6, C7 [4] C4 attacks C5, C6, C7 [3] C5 attacks C6, C7 [2]

C2 attacks C3, C4, C6, C8 [4]
C6 attacks C7, C8 [2]

C3 attacks C5, C7 [2] C7 attacks C8 [1]

Complete-State Formulations

- States in the 8-Queens search problem have all 8 queens present
- Every state has all components of a solution
 - No partially completed states
 - All actions perturb current state by 1 move
- Each state is a potential solution
 - Apt for problems where path is not important
 - Simply "guess" a solution
 - "Check" its value
 - Make a "systemic guess" by moving to states of higher value (e.g., via f(n) = -h(n))
 - Assumes that states with higher f values are closer to the goal (i.e., more likely to reach a goal)
- Most local search problems may be formulated in this manner

Practically, it is fine to use f(n) = h(n) and seek a local minima as well. In such cases, we simply replace the \leq in the algorithm with \geq .

Hill-Climbing Algorithm (Revisited)

```
current = initial_state
while true:
    neighbour = highest_valued_successor(current)
    if value(neighbour) \leq value(current): return current
    current = neighbour
```

- NOT guaranteed to find a goal!
 - value defined by informed search heuristic, h; e.g., f(n) = -h(n)
 - Goal \rightarrow h(n) = 0
- What happens if the returned state is not a goal state?
- When does this happen?

Issues & the Potential for Failure

Hill-climbing may not return a solution

- May get stuck at
 - Local Maxima
 - Shoulder or Plateau
 - Ridge (sequence of local maxima)
- Require strategies to counter these problems

Hill-Climbing Variants

- Stochastic hill climbing
 - Changes highest_valued_successor(..)
 - Chooses randomly among states with values better than current
 - May take longer to find a solution but sometimes leads to better solutions

- First-choice hill climbing
 - Changes highest valued successor (...)
 - Handles high by randomly generating successors until one with better value than current is found (instead of generating all possible successors)

Hill-Climbing Variants

- Sideways move
 - Replaces \le with <; allows continuation when value (neighbour) == value (current)
 - Can traverse shoulders / plateaus

- Random-restart hill climbing
 - Different algorithm
 - Adds an outer loop which randomly picks a new starting state
 - Keeps attempting random restarts until a solution is found

Random Restarts Hill-Climbing Algorithm

```
current = random_initial_state()
while not isGoal(current):
    while true:
        neighbour = highest_valued_successor(current)
        if value(neighbour) < value(current):
            return current
        current = neighbour
        current = random_initial_state()</pre>
```

- Changes from the Hill-Climbing Algorithm
 - Requires function to generate random initial state: random_initial_state()
 - Utilises isGoal; if goal not found then loops with a random restart
 - Considers sideways moves since it utilises < instead of ≤

Back to 8-Queens: Analysis

- Hill climbing (via steepest-ascent) with random restarts
 - Solution: $p_1 = 14\%$ (expected solution in 4 steps; expected failure in 3 steps)
 - Expected computation = $1 \times (\text{steps for success}) + ((1 p_1) / p_1) \times (\text{steps for failure}) + (0.86/0.14) \times (3)$

= 22.428571428571427 steps

 $(1 - p_1) / p_1)$ determines the expected number of failed attempts

- Adding sideways moves
 - Solution: p₂ = 94% (expected solution in 21 steps; expected failure in 64 steps)
 - Expected computation = $1 \times (\text{steps for success}) + ((1 p_1) / p_1) \times (\text{steps for failure})$ = $1 \times (21)$ + $(0.06/0.94) \times (64)$ = 25.085106382978722 steps
- 8-Queens possible states = $8^8 = 16777216$

Extremely efficient for such a large space

Expected values taken from AIMA pp. 131

Local Beam Search

Local Beam Search

- Store k states instead of 1
 - Hill climbing just stores the current state
 - Beam (window) stores k
- Algorithm
 - Begins with k random starts
 - Each iteration generates successors for each of the k random start states
 - Repeat with best k among ALL generated successors unless goal found
- Better than k parallel random restarts
 - Since best k among ALL successors taken (not best from each set of successors, k times)
- Stochastic beam search
 - Original variant may still get stuck in a local cluster
 - Adopt stochastic strategy similar to stochastic hill climbing to increase state diversity

Questions about the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Ask on Archipelago
 - Specify a question
 - Upvote someone else's question

Invitation Link (Use NUS Email --- starts with E) https://archipelago.rocks/app/resend-invite/12384352999

Constraint Satisfaction Problems: Generalising Goal Search I

CS3243: Introduction to Artificial Intelligence – Lecture 5b

Systematic Goal Search

- With local search we apply greedy search strategies
 - Are there more *systematic* search strategies applicable?
- Issues with systematic searching
 - Systematic approaches tend to be computationally expensive
 - Incorporating domain knowledge via heuristics helped direct the search such that less was searched
 - Need to reduce the search space to make a systematic search more viable
- A general solution
 - Use a factored representation for each state
 - State: set of variables $X = \{x_1, ..., x_n\}$, where each variable x_i has a domain $D_i = \{d_1, ..., d_m\}$
 - Divide the goal test into a set of constraints
 - If a state satisfies all constraints, it is a goal state.
 - Constraint satisfaction problem (CSP)
 - Any state that does not satisfy a constraint should not be further explored

CSPs systematically search for goal states by pruning invalid subtrees as early as possible

CSP Formulation

Formulating CSPs

- State representation
 - Variables: $X = \{x_1, ..., x_n\}$
 - Domains: $D = \{d_1, ..., d_k\}$
 - Such that x_i has a domain d_i
 - Initial state: all variables unassigned
 - Intermediate state: partial assignment

- Actions, costs and transition
 - Assignment of values (within domain) to variables
 - Costs are not utilised

- Goal test
 - Constraints: $C = \{c_1, ..., c_m\}$
 - Defined via a constraint language
 - Algebra, Logic, Sets
 - Each c_i corresponds to a requirement on some subset of X

- Objective is a complete and consistent assignment
 - Find a legal assignment $(y_1, ..., y_n)$
 - y_i ∈ d_i for all i ∈ [n]
 - Complete: all variables assigned values
 - Consistent: all constraints C satisfied

CSP Formulation Example 1: Graph Colouring

- Colour each state of Australia such that no two adjacent states share the same colour
- Variables
 - $X = \{ WA, NT, Q, NSW, V, SA, T \}$
- Domains
 - $-d_i = \{ \text{ Red, Green, Blue } \}$
- Constraints
 - $\forall (x_i, x_j) \in E$, $\operatorname{colour}(x_i) \neq \operatorname{colour}(x_j)$

CSP Formulation Example 2: Cryptarithmetic Puzzle

 Given that each letter represents a digit, determine the letter-digit mapping that solves the given sum

Variables

- $X = \{ T, W, O, F, U, R, B_1, B_2, B_3 \}$
- Where B_1 , B_2 , B_3 are carry bits for (20, 2W, 2T respectively)

Domains

- $-d_i = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Strictly, B₁, B₂, B₃ should have domain {0, 1}

Constraints

- alldiff(T, W, O, F, U, R)
- $O + O = R + 10.B_1$
- $-B_1 + W + W = U + 10.B_2$
- $-B_2 + T + T = O + 10.B_3$
- $B_3 = F$
- $-T, F \neq 0$

CSP Formulation Example 3: Sudoku

Variables

-
$$X = \{A_1, ..., A_9, ..., I_1, ..., I_9\}$$

- 81 variables
- Domains
 - $d_i = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Constraints
 - alldiff(...)
 - 27 cases
 - 9 columns
 - 9 rows
 - 9 boxes

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Ε	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
_			5		1		3		

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7	6	9
1	6	9	5	4	1	7	3	8	2

Variable Domain Types & Constraint Types

- Variable domain types
 - Continuous Finite
 - DiscreteInfinite
 - Continuous and Infinite
 - Real values
 - Discrete and Infinite
 - All integers
 - Discrete and finite
 - Sudoku

CS3243 focuses on discrete, finite domains

- Constraint types
 - Linear
 - Nonlinear

Continuous domain and linear constraints → linear programming

Not covered in CS3243

More on Constraints

- A language is necessary to express the constraints
 - Arithmetic
 - Sets (of legal values)
 - Logic

- For example, x_1 greater than x_2 given $d = \{1, 2, 3\}$ may be written
 - $((x_1, x_2), x_1 > x_2)$
 - $\langle (x_1, x_2), \{ (2, 1), (3, 1), (3, 2) \} \rangle$

- Each constraint, c_i
 - Describes the necessary relationship, rel, between a set of variables, scope
 - For the example above, scope = (x_1, x_2) . rel = $x_1 > x_2$
- Types of constraints
 - Unary: | scope | = 1
 - Binary: | *scope* | = 2
 - Global: | scope | > 2 (i.e., higher-order constraints)

Constraint Graphs

Drawing Constraint Graphs and Hypergraphs

- Constraint graphs represent the constraints in a CSP
 - Simple Vertex: variable

- Linking Vertex: for global constraints

- Edge: links all variables in the scope of a constraint (rel)

Unary constraints

Binary constraints

Binary/Global constraints

Constraint Graph for Example 1: Graph Colouring

Constraint Graph for Example 2: Cryptarithmetic Puzzle

$$\begin{array}{ccccc} T & W & O \\ + & T & W & O \\ \hline F & O & U & R \end{array}$$

Constraints

- alldiff(T, W, O, F, U, R)
- $O + O = R + 10.B_1$
- $-B_1 + W + W = U + 10.B_2$
- $-B_2 + T + T = O + 10.B_3$
- $B_3 = F$
- $-T, F \neq 0$

A First Look at an Algorithm for CSPs

General Idea for the Algorithm

```
assignments = initial state (no assignments made)
while assignments incomplete:
    if no possible assignments left return failure
        current = assign a value to non-assigned variable
    if current consistent then assignments.store(current)
return assignments
```

- Applicable to all CSPs
- Search path irrelevant
 - May use complete-state formulation
- All solutions require |X| = n assignments

Which algorithm should be used?

DFS

Search Tree Size

- Example CSP
 - $X = \{A, B, C, D\}$
 - All domains: $d = \{1, 2, 3\}$
 - No constraints
- Analysis

b at depth 1: 4 variables × 3 values = 12 states b at depth 2: 3 variables × 3 values = 9 states b at depth 3: 2 variables × 3 values = 6 states b at depth 4: 1 variables × 3 values = 3 states

At depth ℓ : ($|X| - \ell$).|d| states

Total number of leaf states: $nm \times (n-1)m \times (n-2)m \times ... \times 2m \times m = n!m^n$ where n = |X| and m = |d|

Order of variable assignments not important

Just consider assignments to ONE variable per level (mⁿ leaves)

Basic uninformed search for CSPs: Backtracking
Backtrack when no legal assignments

Backtracking Algorithm for CSPs

```
function BACKTRACKING-SEARCH(csp) returns a solution or failure
  return BACKTRACK(csp, \{\})
function BACKTRACK(csp, assignment) returns a solution or failure
  if assignment is complete then return assignment
  var \leftarrow Select-Unassigned-Variable(csp, assignment)
  for each value in Order-Domain-Values(csp, var, assignment) do
      if value is consistent with assignment then
        add \{var = value\} to assignment
        inferences \leftarrow Inference(csp, var, assignment)
        if inferences \neq failure then
           add inferences to csp
           result \leftarrow \texttt{BACKTRACK}(csp, assignment)
           if result \neq failure then return result
           remove inferences from csp
        remove \{var = value\} from assignment
  return failure
```

Determine the variable to assign to

Determine the value to assign

Trying to determine if the chosen assignment will lead to a terminal state

Continues recursively as long as the *assignment* is *viable*

We will look into making these choices in the next lecture

Questions about the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Ask on Archipelago
 - Specify a question
 - Upvote someone else's question

Invitation Link (Use NUS Email --- starts with E) https://archipelago.rocks/app/resend-invite/12384352999