File Distribution: Server-Client vs P2P

<u>Question</u>: How much time to distribute file from one server to N peers?

File distribution time: server-client

- server sequentially sends N copies:
 - *NF/u_s* time
- □ client i takes F/d_i time to download


```
Time to distribute F to N clients using client/server approach = d_{cs} = max \{ NF/u_s, F/min(d_i) \} increases linearly in N (for large N)
```

File distribution time: P2P

- \square server must send one copy: F/u_s time
- client i takes F/d; time
 to download
- NF bits must be downloaded (aggregate)
 - \square fastest possible upload rate: $u_s + \sum u_i$

$$d_{P2P} = \max \left\{ F/u_s, F/min(d_i), NF/(u_s + \sum_i u_i) \right\}$$

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

<u>BitTorrent</u>

- Arguably biggest source of p2p traffic
 - P2P 54%-70% of ISP traffic
 - BT 20%-57% of ISP traffic

Ipoque Internet study 2008/09

- Second generation file-sharing protocol
 - Contents split into many small pieces
 - Pieces are downloaded from both leechers and seeds
 - Distribution paths are dynamically determined
 - Based on data availability
 - One overlay per content

File distribution: BitTorrent

☐ P2P file distribution

BitTorrent (1)

- ☐ file divided into 256KB *chunks*.
- peer joining torrent:
 - has no chunks, but will accumulate them over time
 - registers with tracker to get list of peers, connects to subset of peers ("neighbors")
- while downloading, peer uploads chunks to other peers.
- peers may come and go
- once peer has entire file, it may (selfishly) leave or (altruistically) remain

Background Peer discovery in BitTorrent

- □ Torrent file
 - Tracker address
- Trackers
 - Register torrent file
 - Maintain state information
 - Swarm torrent
- Peers
 - Obtain torrent file
 - Announce
 - Report status
 - Peer exchange (PEX)
- Issues
 - Central point of failure
 - Tracker load

Background Multi-tracked torrents

- Torrent file
 - Trackers' addresses
- Trackers
 - Register torrent file
 - Maintain state information
 - Swarm torrent
- Peers
 - Obtain torrent file
 - Choose one tracker at random
 - Announce
 - Report status
 - Peer exchange (PEX)
- Issue
 - Multiple smaller swarms

BitTorrent: Tit-for-tat

- (1) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

Download using BitTorrent

Background: Incentive mechanism

- Establish connections to large set of peers
 - At each time, only upload to a small (changing) set of peers
- □ Rate-based tit-for-tat policy
 - Downloaders give upload preference to the downloaders that provide the highest download rates

BitTorrent: Rarest first

Pulling Chunks

- □ at any given time, different peers have different subsets of file chunks
- periodically, a peer (Alice) asks each neighbor for list of chunks that they have.
- Alice sends requests for her missing chunks
 - o rarest first

Download using BitTorrent

Background: Piece selection

- Rarest first piece selection policy
 - Achieves high piece diversity
- Request pieces that
 - o the uploader has;
 - the downloader is interested (wants); and
 - o is the rarest among this set of pieces TDDD36: Peer-to-peer

BitTorrent-like systems

- File split into many smaller pieces
- Pieces are downloaded from both seeds and downloaders
- Distribution paths are dynamically determined
 - Based on data availability

BitTorrent Model

Assumptions and Parameters

- ☐ Single swarm; homogeneous peers
- x downloaders and y seeds at time t
- □ D download conns > U upload conns
- \square System is <u>demand-driven</u>: xD > (x+y)U
- □ Download latency = T
- □ Number of pieces in the file = M
- \square Startup delay = τ
- ☐ Media Playback Rate = r

Fluid Model Overview

Model: Rarest-First

□ Conversion of downloaders to seeds at rate (x+y)UC.

☐ Therefore the change of swarm population:

$$\frac{dx}{dt} = \lambda - (x+y)UC,$$

$$\frac{dy}{dt} = (x+y)UC - \mu y$$

Model: Rarest-First

□ Download latency: $T = \frac{1}{UC} - \frac{1}{\mu}$

$$T = \frac{1}{UC} - \frac{1}{\mu}$$

Sequential progress:

$$k = M + 1 - \sqrt{(M+1)/r}$$

☐ Startup delay:

$$\tau = 1 - \frac{2\sqrt{(M+1)} - 2}{M}$$