**Exercice 1.** Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = x^2$ .

- 1. Soit h un réel non nul. Exprimer f(1+h) f(1) en fonction de h.
- 2. Montrer que f est dérivable en 1 et donner la valeur du nombre dérivé de f en 1.

**Exercice 2.** Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = -x^2 + x$ .

- 1. Soit h un réel non nul. Exprimer f(2+h) f(2) en fonction de h.
- 2. Montrer que f est dérivable en 2 et donner la valeur du nombre dérivé de f en 2.

**Exercice 3.** Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = x^3$ .

- 1. Vérifier que pour tous réels a et b, on a  $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ .
- 2. Soit h un réel non nul. Exprimer le quotient  $\frac{(2+h)^3-2^3}{h}$  en fonction de h.
- 3. En déduire que f est dérivable en 2 et calculer f'(2).

**Exercice 4.** On considère une fonction f définie et dérivable sur l'intervalle [-3; 3] dont on donne le tableau de valeurs suivant.

| x     | -3 | -2 | 0 | $\frac{3}{2}$  | 3  |
|-------|----|----|---|----------------|----|
| f(x)  | -2 | 0  | 2 | 0              | -4 |
| f'(x) | 0  | 2  | 0 | $-\frac{5}{2}$ | 0  |

Tracer une courbe représentative possible pour la fonction f dans un repère orthonormé.

#### Exercice 5.

Soit f une fonction définie et dérivable sur [-2;4] dont on donne une représentation graphique  $\mathscr{C}_f$  cicontre. Les doites  $T_A$  et  $T_B$  sont les tangentes respectives en A et en B à  $\mathscr{C}_f$ .

- 1. Par lecture graphique, déterminer la valeur du nombre dérivé de f en 0.
- 2. Déterminer f'(3) graphiquement.



**Exercice 6.** Soit f la fonction définie sur  $]0; +\infty[$  par  $f(x) = \frac{1}{x}$ . Soient deux réels a > 0 et  $h \neq 0$  tels que a + h > 0.

- 1. Déterminer f(a+h) f(a) en fonction de h.
- 2. En déduire une expression du taux de variation  $\tau(h)$  de f en a.
- 3. Que peut-on dire de  $\tau(h)$  lorsque h devient de plus en plus proche de 0?
- 4. Justifier alors que f est dérivable sur  $]0; +\infty[$  et exprimer f'(a).
- 5. Démontrer que f est dérivable sur  $]-\infty;0[$  et exprimer f'(a) lorsque a est un réel strictement négatif.

Exercice 7. On considère la fonction f définie sur  $\mathbb{R}_+$  par  $f(x) = 3\sqrt{x}$ . On admet que f est dérivable sur  $]0; +\infty[$  et on donne  $f'(1) = \frac{3}{2}$  et  $f'(2) = \frac{3\sqrt{2}}{4}$ . Déterminer l'équation réduite de chacune des tangentes à la courbe de f aux points d'abscisses 1 et 2.

Exercice 8. Pour les fonctions suivantes, donner l'ensemble de dérivabilité et la fonction dérivée.

a) 
$$f: x \mapsto 4x - 7$$
 b)  $g: x \mapsto x^4$  c)  $h: x \mapsto (2x - 1)(x + 3)$  d)  $t: x \mapsto (x^2 - x + 2)(2x^3 - 4)$ 

#### Exercice 9.

- 1. (a) Calculer f'(x) pour f(x) = (2x+3)(1-4x) définie sur  $\mathbb{R}$ .
  - (b) Déveloper et réduire f(x) et calculer la dérivée de l'expression obtenue.
- 2. (a) Calculer g'(x) pour  $g(x) = (x^2 1)(x^3 + x)$  définie sur  $\mathbb{R}$ .
  - (b) Déveloper et réduire g(x) et calculer la dérivée de l'expression obtenue.

**Exercice 10.** Soit f et g les fonctions définies par  $f(x) = \sqrt{x}(x+1)$  et  $g(x) = \sqrt{x}(x^2-x+1)$ .

- 1. Déterminer l'ensemble de définition et de dérivabilité des fonctions f et g.
- 2. Calculer f'(x) et g'(x).

#### Exercice 11.

- 1. Soit f la fonction définie sur  $I = \mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$  par  $f(x) = \frac{4}{2x-3}$ . Calculer f'(x) pour  $x \in I$ .
- 2. Soit g la fonction définie sur  $J = \mathbb{R} \setminus \left\{ \frac{1}{4} \right\}$  par  $g(x) = \frac{2}{1-4x}$ . Calculer g'(x) pour  $x \in J$ .

## Exercice 12.

- 1. Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = 2x^2 3x + 1$ . Calculer f'(x) pour  $x \in \mathbb{R}$ .
- 2. Soit g la fonction définie sur  $\mathbb{R}$  par  $g(x) = x^3 + 4x^2 + 5x 6$ . Calculer g'(x) pour  $x \in \mathbb{R}$ .

## Exercice 13.

- 1. Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = (3x-1)^5$ . Calculer f'(x) pour  $x \in \mathbb{R}$ .
- 2. Soit g la fonction définie sur  $\mathbb{R}$  par  $g(x) = (7x+2)^4$ . Calculer g'(x) pour  $x \in \mathbb{R}$ .
- 3. Soit h la fonction définie sur  $\mathbb{R}_+$  par  $h(x) = \sqrt{3x}$ . Calculer h'(x) pour  $x \in \mathbb{R}_+^*$ .

## Exercice 14.

- 1. Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = \frac{-2}{x^2 + x + 1}$ . Calculer f'(x) pour  $x \in \mathbb{R}$ .
- 2. Soit g la fonction définie sur  $\mathbb{R}$  par  $g(x) = \frac{3}{x^4 + 1}$ . Calculer g'(x) pour  $x \in \mathbb{R}$ .

**Exercice 15.** Soit f une fonction définie sur un ensemble I de  $\mathbb{R}$ . Dans chaque cas, préciser l'ensemble de dérivabilité de f et calculer f'(x).

- 1.  $f(x) = \sqrt{2x+3} + \frac{1}{x}$ ;  $I = \left[-\frac{3}{2}; 0\right] \cup (0; +\infty)$ .
- 2.  $f(x) = \sqrt{x-2}(x^2-1)$ ;  $I = [2; +\infty[$ .
- 3.  $f(x) = \frac{1}{\sqrt{1-2x}}$ ;  $I = \left[-\infty; \frac{1}{2}\right]$ .
- 4.  $f(x) = \frac{\sqrt{3-x}}{x^3}$ ;  $I = [-\infty; 0[\cup]0; 3]$ .

# Exercices d'approfondissement

**Exercice A.** Soient deux fonctions u et v définies et dérivables sur un intervalle I de  $\mathbb{R}$ . On considère la fonction f définie sur I par f(x) = u(x) + v(x). À l'aide du taux de variation, démontrer que la fonction f est dérivable sur I de dérivée f' définie par f'(x) = u'(x) + v'(x).

**Exercice B.** Soit f la fonction définie sur  $\mathbb{R}$  par f(x) = k où k est un réel. Soit g la fonction définie sur  $\mathbb{R}$  par g(x) = mx + p où m et p sont des réels.

- 1. Démontrer que f est dérivable sur  $\mathbb{R}$  et que sa fonction dérivée f' est la fonction constante égale à 0.
- 2. Démontrer que g est dérivable sur  $\mathbb{R}$  et que sa fonction dérivée g' est la fonction constante égale à m.