

Metode Inferensi

Argumen & Logika Proporsional

Pertemuan ke sebelas

Argumen Proporsional

Adalah argumen yang berisi proporsi, sehingga dapat diekspresikan menjadi bentuk formal dalam logika proporsional.

Contoh:

If there is power, the computer will work There is power

The computer will work

Dapat diekspresikan dengan huruf (logika proporsional):

p = There is power

q = The computer will work

Sehingga menjadi:

$$p \rightarrow q$$

Skema inferensi untuk proporsional diatas disebut dengan berbagai istilah : *Direct Reasoning, modus ponens, law of detachment* atau *assuming the antecedent*

Notasi modus ponens

Notasi lain untuk skema modus ponens:

$$p \rightarrow q, p; : q$$

dimana koma digunakan untuk memisahkan premise dan titik koma untuk memisahkan conclusion dari premise.

Bentuk umumnya:

$$P_1, P_2, \ldots P_n$$
; $\cdot \cdot \cdot C$

dimana P = premise dan C = Conclusion

Kesamaan Logika Pada modus ponens

Perhatikan lagi bentuk:

$$p \rightarrow q,p; : q$$

Dalam logika tanda koma (,) setara dengan notasi $^{\wedge}$ (AND) dan tanda titik koma (;) setara dengan notasi \rightarrow (then), sehingga skema diatas dapat ditulis menjadi :

$$(p \rightarrow q) \land p \rightarrow q$$

* Tanda kurung digunakan karena notasi → (then) memiliki hirarki lebih rendah dari notasi ^ (AND)

Validitas modus ponens

Karena modus ponens adalah bentuk khusus dari sylogisme, maka suatu modus ponens dikatakan valid jika untuk kedua premise bernilai benar (T) maka nilai conclusion juga benar (T).

Tabel kebenaran untuk modus ponens diatas:

p	q	$\mathbf{p} \rightarrow \mathbf{q}$	$(p \rightarrow q) \land p$	$(p \rightarrow q) \land p \rightarrow q$
T	T	T	T	${f T}$
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Argumen Palsu

Perhatikan modus ponens berikut:

If there are no bugs, then program compiles

There are no bugs

∴ The Program compiles

Bandingkan dengan modus ponens berikut:

If there are no bugs, then the program compiles

There program compiles

There are no bugs

Salah satunya palsu, dapat dibuktikan dengan tabel

kebenaran logika

STMIK NUSA MANDIRI

COPYRIGHT © Maret 2013

Aturan Inferensi untuk logika yang benar

1. Hukum data skema :
$$p \rightarrow q$$
 (modus ponendo ponens) p
.. q

2. Hukum kontra positif :
$$p \rightarrow q$$
 $\cdot \cdot \sim q \sim p$

3. Hukum modus tollen :
$$p \rightarrow q$$
 (modus tollendo tollens) $\sim q$ $\sim q$ $\sim p$

Aturan Rangkaian : (hukum sylogisme)

5. Hukum inferensi disjunletif : (modus tollendo ponens)

6. Hukum negasi ganda:

 $\sim (\sim p)$

7. Hukum penyederhanaan :

- Konjungsi :

$$\frac{\mathsf{q}}{\mathsf{p} \mathsf{q}} \qquad \frac{\mathsf{p}}{\mathsf{p} \mathsf{q}}$$

9. Hukum De Morgan(1)

$$\frac{\sim (p \vee q)}{\sim (p \vee q)} \qquad \frac{\sim (p \vee q)}{\sim (p \vee q)}$$

10. Hukum De Morgan (2):

$$\sim (p \land q) \sim (p \land q)$$

$$\sim$$
(p ^ q)

Kondisional dan variant-nya

Kondisional	$p \rightarrow q$
Konversi	$q \rightarrow p$
Inversi	~p → ~q
Kontra positif	~q → ~p

Inferensi pada argumen dgn lebih dari 2 premises

Perhatikan contoh berikut:

Harga chip naik hanya jika nilai Yen naik.

Nilai Yen naik hanya jika nilai dollar turun dan jika nilai dollar turun maka nilai yen naik.

Ketika harga chip naik, nilai dollar menurun.

Proporsi dapat ditentukan sbb:

C = harga chip naik

Y = nilai Yen naik

D = nilai dollar turun

Sehingga argumen diatas dapat ditulis :

$$C \rightarrow Y$$

$$(Y \rightarrow D) \land (D \rightarrow Y)$$

$$C$$

$$C$$

$$C$$

Disederhanakan menjadi:

$$\mathsf{C} \to \mathsf{Y}$$

$$Y = D$$

Disunstitusi menjadi:

$$C \rightarrow D$$

Memenuhi hukum modus ponens yang valid
Teknik Informatika

STMIK NUSA MANDIRI

Batasan Logika Proporsional

Logika proporsional tidak dapat mengiferensi atau membuktikan kebenaran sylogisme klasik, seperti :

All men are mortal

Socrates is a man

therefore, Socrates is mortal

Sebelum dirubah menjadi sylogisme proporsional seperti :

If Socrates is a man, then Socrates is mortal

Socrates is a man

therefor, Socrates is mortal