自然言語処理一強化学習入門一

https://satoyoshiharu.github.io/nlp/

強化学習入門導入

動画

深層学習 vs 強化学習

学 習

深層学習

教師なし学習

データ: 入力x。ゴール: xに隠れた構造を学習する。例: これはあれに近いな

教師あり学習

データ: 入力x、ラベルy。ゴール: x->yを学習する。例: これはリンゴだ

強化学習

やってみる。う まくいったら、 それを続ける。 データ: 状態とアクション。 ゴール: 将来にわたっての報 酬を最大化する。例: これ食 べれば生きられるから食べよ

う

深層学習 vs 強化学習

羽

教師なし学習 深層学習

教師あり学習

静的

強化学習やってみる。

動的

強化学習 vs ヒトの学習

強化学習はなぜ取りつきにくいか?

いま主流のアルゴリズムから始めよ

・vs 古典的なアルゴリズム

かんたんな設定から始めよ

・vs 一般的な設定

強化学習入門基礎

動画

エージェント Agent アクションをとる人

観察 Observation エージェントがアクション

をとった後の環境変化

報酬 Reward

エージェントのアクションが成功か失 敗かを示すフィードバック、報酬は遅 れて与えられることもある 行動
Action
エージェントが環境で
とる行動

環境 Environment

エージェントがアクションをとる空間

状態 State エージェントが受け取る環境状況

エピソード、終端状態

- 最終結果が出るまでの「状態、行動、報酬、…」系列、ないしその部分を、**エピソード**という
- 最終結果が出た状態 state(n) を終端状態という

累積報酬

• 累積報酬值

$$R_t = \sum r_i = r_t + r_{t+1} + \cdots \quad (i = t... \infty)$$

ディスカウントされた累積報酬値(将来の報酬を今よりより小さいとみなす)

$$R_t = \sum \gamma^i r_i \quad (0 < \gamma < 1)$$

マルコフ決定過程

・ 強化学習は、以下のマルコフ過程を前提とする。

ある時点の状態が、履歴から独立して、直前の状態だけで決まる場合、マルコフ的という。

$$P[S_{t+1} | S_t] = P[S_{t+1} | S_1, \dots S_t]$$

強化学習のプレイヤー

Policy/方 策

エージェント の行動を決め る

Value/価値

ある状態ない し行動がどれ だけいいか

Model/モ デル

エージェント が持つ環境知 識

行動価値Q(s,a), 状態価値V(s)

• 行動価値Q(s,a): 状態sでaction aをとったときに期待される ディスカウント累積報酬値

$$Q(s_t, a_t) = 期[fid[R_t | s_t, a_t]]$$

$$= 期待値[\Sigma\gamma_i r_i] (i=t...\infty, 0<\gamma<1)$$

• 状態価値V(s): 状態sで期待されるディスカウント累積報酬値 $V(s_t) = \sum_a \pi(s_t, a_t) Q(s_t, a_t)$

強化学習入門代表的なアルゴリズム

動画

価值学習

価値の漸化式的な関係(ベルマン等式)を利用する

アルゴリズム例: DQN

ゴール:Q(s,a)を見つける

最適ポリシー: a=argmaxQ(s,a)

応用例:Googleのレコメ ンド

ポリシー学 習

ポリシーを直接最適化する

アルゴリングム例:PG

ゴール: π(s)を直接見つ ける

最適ポリシー π (s)は確率 的に a を決める

応用例:AlphaGo

Actor-Critic

価値学習とポリシー学習 のいいとこどりハイブリッ ド

ベルマン等式

ある時刻の選択とそれ以降の決定問題の価値との関係(後ろ向き 再帰)を示すことで、単純な部分問題に分割する

状態価値 $V(s_t) = \max_a \{ \text{即時報酬} r(s_t, a_t) + \gamma V(s_{t+1}) \}$

TD(時間的差分)学習

• ベルマン等式を使い、次の状態s'の価値と $r+ \gamma V(s')$ との差を使って、学習する。

状態価値V(st)

<- 状態価値V(s_t)

 $+\alpha$ { 即時報酬 $r_t+\gamma$ *次の状態の価値 $V(s_{t+1})$ -

- 状態価値V(s_t)}

次の時刻の推定値、より正しい

現在の推定値

強化学習はニュールネットによる関数近人を利用

ネットワークの学習 バックプロパゲーション(逆伝播)

DQN

課題設定: 入力(s,a)からQ(s,a)の関数を得たいところ、以下のように変更する。

DQN: 価値ネットワークのトレーニング

・以下のQロスを使い、バックプロパゲーション学習させる Qロス = || target - prediction || target = $r+\gamma$: naxQ(s_{t+1} , a_{t+1}) prediction = Q(s_t , a_t)

 targetとpredictionで別々のQ表を持つのがDouble DQN。targetの Q表の更新を1000回に1回などど遅らせることで、トレーニングを安定させ る。

離散アクション空間

右左への移動など、有限 個のアクションからなる 空間

連続アクション空間

・右へ3.5の力で、左へ1.2の力で、などと、実数値で表現できるアクションからなる空間。

確定的ポリシー

アクション空間が、上下左右 へのどれかへの移動、と いった、有限個な世界にお けるポリシー

確率的ポリシー

・左へは確率0.8,右へは確率0. 05,などと、アクションを確率分 布で持っておくポリシー。

Exploit-Explore必要

DQNの欠点

・離散で小さなアクション空間しか対応できない。

• DQNのポリシーは、確定的なもの。

Policy Gradient (REINFORCE)

 $\Sigma P(a_i|s)=1$ 、 アクション空間は連続値でもよく、その場合 $\int P=1$

PG: ポリシーネットワークのトレーニング

- ・初期化後、以下を繰り返す
- ・ポリシーを使い、終了状態まで実行する。
- 全(状態、アクション、報酬)を記録。
- ・ポリシー更新: 失敗したエピソードの全アクションの確率を低くし、成功したエピソードの全アクションの確率を高くする

PG: ポリシーネットワークのトレーニング

・報酬が大きいほど確率を大きくするために、ロス関数は、アクション確率の対数尤度 logP(at|st) にディスカウント総報酬Rtをかけた以下のものとし、バックプロパゲーション学習させる。

 $\Box Z = -\log P(a_t|s_t) R_t$

報酬の大きいほうへ ポリシー(とるべきア クションの確率分布) が寄っていく様子

http://karpathy.github.io/2016/05/31/rl/

PGの欠点

• それぞれのアクションがどれくらい結果に貢献したか明確でない。

MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep RL)

Advantage Actor-Critic (A2C)

- 二つのニューラルネットワークを持つ
- Actor: ポリシー学習
 - w <- w + ▽logP(a|s)R で、確率勾配に重みを与えるRの代わりに Q(s,a)を使うことで、各アクションのポリシー確率に対し、最終結果にど のくらい貢献したかの個別の重みづけを与える
- Critic: Q学習

強化学習入門実際

トレーニングの実際

自動運転では、ポリシーを起動し終了状態まで実行することは難しい(失敗は自動車の破壊)。

実環境へ転移 学習

RLの進歩: ゲームの場合

AlphaGo (2016): 人のエキスパートの記録で教師あり学習。その後、エンジン自身で対戦させ強化学習。

MuZero (2020): ゲームの規則も学習。環境 を観測、次の状態を木探 索、ポリシーをプラン、アク ション、これを繰り返す。

AlphaZero (2018): 強化学習のみ。碁以外の ゲームも。

強化学習入門 参考資料

入門的資料

- ★★★[YouTube] <u>A friendly introduction to deep reinforcement learning, Qnetworks and policy gradients</u>, by Serrano.Academy 英語
 - 内容が入門的。ベルマン方程式、価値(Q)ネットワーク、ポリシーネットワーク、ポリシー・グラディエントに関して、数式なしで、アニメーションで説明していて、基本的な概念が直観的にわかりやすい。説明は、ほぼ MIT 6.S191 (2021) の流れに同じ。
- ★★★[YouTube] MIT 6.S191 (2021): Reinforcement Learning, by Alexander Amin 英語
 - Q価値学習とポリシー学習とその違いの解説
 - 数式少なく、基本的なところを説明できている。日本語のものにはない優れモノ。
- ★[YouTube] MIT 6.S091: Introduction to Deep Reinforcement Learning (Deep RL), by Lex Fridman, 2019 英語
 - 前半から末尾まで、広い視野からの実践的な解説。
 - 後半、DQN、PG、Actor-Criticなどのアルゴリズムの説明および関連の説明が、簡潔で明快。数式少なめで、ここまで説明できるのはすごい。

入門的資料、サンプルコード付き

- ・ ★作りながら学ぶ強化学習 -初歩からPyTorchによる深層強化学習 まで、by 小川雄太郎
 - 第4回~第8回
 - GridWorldのサンプルコードをいじりながら、深層学習以前のSARSA、Q表学習まで。
 - Windows+Chrome+TryJupyter でなく、Google Colabのほうが楽。
 - ・ 第9回~解説は優れているが、gymを使うサンプルコードが古く、動かない。
 - 同作者による、PyTorch Tutorial Sampleコードの改造版 <u>PyTorch 「強</u> 化学習(DQN)チュートリアル 」 サンプルコード も動かなくなっている。

入門的資料、サンプルコード付き、Policy Gradient

- ** Deep Reinforcement Learning: Pong from Pixels by Andrej Karpathy (Tesla)
 - 英語
 - ポリシー・グラディエントに関し、わかりやすいと評判のブログ解説
 - ・ 教師あり学習の変種という説明。
 - 方策勾配定理に関する最もわかりやすい直感的な説明。
 - YouTube版 Deep RL Bootcamp Lecture 4B Policy Gradients Revisited
 - Gymは激しく動き、表示系を含むと諸々依存性が高いため、すぐに動かなくなる。
 - 2022/12/11時点で動くコードは、 https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4e a32c5 => https://colab.research.google.com/drive/1w1EklesVqWaCOK2KyidJb auarn/kUoaV#scrollTo=G6Ka 5Vl9Orm

入門的資料、サンプルコード付き、Deep Q-Learning

- [Weekly RL with code] DQNでCartPole問題を解く
 - "CartPole-v1" で2022.12.07時点で動いている
 - コード (ほぼGymの中)
 https://colab.research.google.com/gist/AGIRobots/1358b17a6169746842002783086f3282/-weekly-rl-with-code-dqn-cartpole.ipynb
- ★【入門】Q学習の解説とpythonでの実装 ~シンプルな迷路問題を 例に~
 - コード https://github.com/tocom242242/QLearning_in_GridWorld
- ・以下は、動作未確認
 - https://github.com/icoxfog417/chainer pong

入門的資料、サンプルコード付き、古典的 アルゴリズム

- ・ ★★Sutton教科書記載の古典的なアルゴリズムを見ていくのだが、本人がもやもやしたことを納得いくように図込み、コード込みで説明しなおしたもの。とても理解しやすい。
 - 今さら聞けない強化学習(1):状態価値関数とBellman方程式
 - 今さら聞けない強化学習(2):状態価値関数の実装
 - 今さら聞けない強化学習(3):行動価値関数とBellman方程式
 - 今さら聞けない強化学習(4):行動価値関数の実装
 - 今さら聞けない強化学習(5):状態価値関数近似と方策評価
 - 今さら聞けない強化学習(6):反復法による最適方策
 - 今さら聞けない強化学習(7):モンテカルロ法で価値推定
 - 今さら聞けない強化学習(8): モンテカルロ法でOpenAI GymのCartpoleを学習
 - 今さら聞けない強化学習(9): TD法の導出 <= これ秀逸
 - 今さら聞けない強化学習(10): SarsaとQ学習の違い
- ・ ★[YouTube] 強化学習の概要 に始まる10個の動画、Tasuki Oike
 - 古典的アルゴリズム(表形式)とDQNを、簡単な具体例とコード例と一緒に解説している。Sutton系のアルゴリズムに関し、とてもいい教材。

研究者向き解説資料

- Sutton系
 - <u>Tutorial: Deep Reinforcement Learning</u>, by David Silver, Google DeepMind
 - ・ 英語の66ページスライド
 - 実際のシステム例の説明は高度、ある程度なじんだあとでないと難しい。それ以外、前半から半ばまでは、 入門者向きで、コンパクトにわかりやすくまとめられている。
 - Reinforcement Learning: An Introduction, by Sutton & Barto
 - 英語、フリーで読める
 - この分野の古典、標準教科書
 - Introduction to Reinforcement Learning with David Silver
 - 英語
 - Suttonさんの標準教科書相当のトピックをDavid Silverさんが再構築した講義録
- [Slideshare] ゼロから始める深層強化学習, by Preferred Networkの人
- 深層強化学習アルゴリズムまとめ