Лабораторная работа № 1

Исследование методов планирования и управления процессами в однопроцессорных системах

Задание

При выполнении задания предлагается провести исследование характеристик бесприоритетных дисциплин обслуживания очереди потоков процессов, обрабатываемых в однопроцессорной системе со структурной организацией, показанной на рис.1.

При исследовании предлагается использовать математический аппарат аналитического моделирования, разработанный в теории массового обслуживания.

Результаты математического моделирования должны быть представлены графиками зависимостей времени ожидания $\boldsymbol{\omega}$ и времени обслуживания \boldsymbol{u} очереди потоков процессов при различных значениях производительности V_{π} процессора системы.

При построении зависимости $\omega = \mathbf{f}$ (\mathbf{V}_{π}) и $\mathbf{u} = \mathbf{f}$ (\mathbf{V}_{π}) значение \mathbf{V}_{π} должно варьироваться в пределах от 10^{5} оп/с до 10^{12} оп/с .

По полученным зависимостям должен быть проведен сравнительный анализ полученных экспериментальных данных и сформулированы выводы по результатам исследований.

Порядок выполнения программы исследований

1. В качестве простейшей математической модели исследуемой однопроцессорной системы может быть использована одноканальная СМО с бесприоритетной дисциплиной обслуживания очереди процессов. В этом случае система рассматривается как один ресурс, обеспечивающий обслуживание группы M входных потоков процессов $\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z}_3, \ldots, \mathbf{Z}_M$ (рис. 2) на основе бесприоритетной дисциплины обслуживания **FIFO**.

При использовании бесприоритетных дисциплин обслуживания процессы, поступающие на обработку в систему, не имеют привелигий, все процессы — равноправны. Такое равноправие характерно при выборке процессов из входной очереди по следующим правилам:

- а) процессы принимаются для обслуживания в порядке их поступления в очередь бесприоритетная дисциплина обслуживания **FIFO**;
- б) процессы принимаются для обслуживания в порядке обратном порядку их поступления в очередь бесприоритетная дисциплина обслуживания **LIFO**;
 - в) процессы принимаются для обслуживания в случайном порядке.

Среди перечисленных правил выборки процесса из очереди дисциплина выборки **FIFO** имеет наименьшее значение дисперсии времени ожидания процесса для обслуживания и поэтому наиболее часто применяется для проектирования программ бесприоритетного планирования. При использовании дисциплины **FIFO** в случае обслуживания нескольких потоков процессов времена ω_i ожидания процессов для обслуживания в системе одинаковы и определяются по выражению:

$$\omega = \sum_{i=1}^{M} \frac{\lambda_{i} \vartheta_{i} (1 + v^{2}_{i})}{2 (1 - R)}, \qquad (1.1.)$$

гле

M – количество процессов, поступающих на обслуживание в систему, **R** = $(\rho_1 + \rho_2 + \rho_3 + + \rho_M)$,

 ρ_{i} - коэффициент загрузки ресурсов системы i – ым процессом.

Значение ρ_{i} определяется по выражению (1.2.):

$$\rho_{i} = \lambda_{i} \vartheta$$
 , (1.2.),

где

 λ_i - интенсивность i - потока процессов на обслуживание в систему, $\vartheta = \max \left(\vartheta_1, \vartheta_2, \vartheta_3, ..., \vartheta_k \right), \vartheta_k$ - длительность обслуживания процесса в k - ом ресурсе системы.

Длительность обслуживания процесса в процессорной части системы определяется по выражению 1.3.:

$$\vartheta_{pi} = \Theta_i / V_p \quad , \tag{1.3}$$

где

 \mathbf{V}_{p} – производительность процессора,

 Θ_i - количество вычислительных операций, выполняемых при обслуживании i-го процесса в моделируемой системе. Аналогично определяются длительности обслуживания процесса ϑ_j в других j-ых функциональных модулях и подсистемах.

Результаты исследований по данному пункту задания должны быть представлены в виде графика зависимости длительности обслуживания процессов в системе при варьировании производительности процессора в заданном диапазоне при значениях коэффициента вариаций

$$v_{i} = 0$$
 $u_{i} = 1$.

Соответственно коэффициент вариации при постоянном времени обслуживания процесса $\mathbf{v}_{i}=0$, а и при экспоненциальном законе распределения времени выполнения процесса $\mathbf{v}_{i}=1$.

2. В качестве более точной математической модели исследуемой однопроцессорной системы предлагается рассмотреть пятикомпонентную стохастическую сеть одноканальных СМО с бесприоритетной дисциплиной **FIFO** обслуживания очереди процессов (рис. 3.а.). В этом случае каждая из **СМО** сети моделирует соответствующий ресурс системы — процессор, **ВЗУ1** и **ВЗУ 2.**

Для полного определения этой модели необходимо знать вероятности переходов процессов между **СМО** сети при их обслуживании в системе.

В качестве модели процесса организации обслуживания процессов в стохастической сети **СМО** предлагается модель, показанная на рис. 3.б. в виде графа Маркова.

В этом случае вероятности переходов процессов для обслуживания между СМО сети определяются по выражению 1.4:

$$\mathbf{p}_{i,j} = (\mathbf{N}_{i,j} / \Sigma \mathbf{N}_{J,I}) ,$$
 (1.4)

где $N_{i,j}$ - количество переходов процесса из i – состояния обслуживания в j-ое состояние ,

 Σ $N_{i,j}$ - количество переходов процесса при его обслуживании в состояние j из всех других состояний. Значения $N_{i,j}$ рассчитываются по исходным данным варианта задания.

В результате определения значений **р** _{i, j} строится аналитическая модель обслуживания процессов в системе, представляемой системой

линейных уравнений. Определяются интенсивности λ_i поступления процессов на обслуживания в каждый модуль системы.

Рис. 3.

В результате решения системы уравнений определяются интенсивности поступления процессов λ_i на обслуживание в каждый из ресурсов системы — интенсивность поступления процессов на обслуживание в процессор, **B3У1** и **B3У2**.

Определение значений интенсивностей λ_i дает возможность выполнить более точное построение графиков зависимостей времени ожидания ω и времени обслуживания u от варьируемых параметров ϑ_i для бесприоритетной дисциплины **FIFO** обслуживания процессов.

При построении зависимостей при расчетах также используется выражение 1.1.

Следует учесть, что длительность обслуживания процесса ${\bf u}_i$ в системе в данном случае будет определяться выражениями :

$$\mathbf{u}_{i} = \sum_{j=1}^{\mathbf{k}} \omega_{j} + \sum_{j=1}^{\mathbf{k}} \vartheta_{j} ,$$

$$\mathbf{u} = \sum_{\mathbf{i}=1}^{\mathbf{M}} \mathbf{u}_{\mathbf{i}}$$

где

М – количество исполняемых в системе процессов,

k – количество ресурсов в системе, используемых при обслуживании процесса,

 ω j - длительность ожидания i -го процесса обслуживания в j -ом ресурсе системы,

 ϑ_{j} – длительность обслуживания i -го процесса в j -ом ресурсе системы.

В качестве результата исследований следует привести график зависимости времени ожидания обслуживания процессов и график зависимости времени их обслуживания при варьировании производительности процессора в пределах, указанны в п. 1 задания.