Smile Interpolation

Alexandre Humeau

February 12, 2014

1 Motivations

Using a smile is useful to define the distribution of a financial underlying at a given date

Theorem 1.1 (Breeden-Litzenberger formula). Let S be a financial asset. Let ϕ be the probability density function of S_T . Then

$$\phi(K) = \frac{d^2 C^T}{dK^2} \tag{1}$$

where C^T is the T-forward price of a call of strike K

Let us assume that we have a smooth parametrisation of the smile $K \mapsto \sigma(K)$ for a given maturity T.

Proposition 1.2. With the above notations

$$\phi(K) = \frac{\partial^2 C^T}{\partial K^2} + \sigma''(K) \frac{\partial C^T}{\partial \sigma} + \sigma'(K)^2 \frac{\partial^2 C^T}{\partial \sigma^2}$$
 (2)

If we want the density function to be a \mathcal{C}^1 function of the strike $K, K \mapsto \sigma(K)$ has to be at least a \mathcal{C}^3 function

2 Interpolation via a polynomial function of degree 5