Sintaxis y Semántica de los lenguajes

Expresiones regulares y equivalencias entre representaciones de lenguajes regulares.

2022

Facultad Regional Delta, Universidad Tecnológica Nacional

Expresiones regulares.

Equivalencias entre las representaciones de los lenguajes regulares.

Pasaje de autómata finito a expresión regular (T).

Pasaje de expresión regular a autómata finito (T).

Pasaje de gramática regular a AFND-λ

Pasaje de un AFD a una GR. Algoritmo (T).

Pasaje de gramática regular a AFND. Algoritmo.

Expresiones regulares:

Es un formalismo para expresar un lenguaje regular.

Sea Σ un alfabeto, las expresiones regulares sobre Σ y los conjuntos que ellas denotan (conjuntos regulares) son definidos recursivamente como sigue:

- 1) φ es una e.r. y denota el conjunto vacío φ.
- 2) λ es una e.r. y denota el conjunto $\{\lambda\}$
- 3) Por cada $\mathbf{a} \in \Sigma$, \mathbf{a} es una e.r. y denota el conjunto $\{\mathbf{a}\}$ con sólo la cadena \mathbf{a} .
- 4) Si **r** y **s** son e.r. denotando los lenguajes R y S, entonces

 \mathbf{r} / \mathbf{s} es una e.r. y denota R \cup S

rs es una e.r. y denota RoS

r* es una e.r. y denota el conjunto R*

Nota:

Orden de precedencia : ((0(1*))/0) puede escribirse como 01*/0

Abreviaturas: rr* es equivalente a r+

Ejemplo:

Sea el alfabeto $\Sigma = \{ 0, 1 \}$:

- -00 es una e.r. que denota el lenguaje { 00 },
- -(0/1)* es una e.r. que denota el lenguaje de todas las cadenas con 0s y 1s,
- -(0/1)*00(0/1)* es una e.r. que denota todas las cadenas de 0s y 1s con al menos dos 0s consecutivos dentro de ellas,
- -(1/10)* es una e.r. que denota el lenguaje cuyas cadenas son 0s y 1s empezando con 1 y sin dos 0s consecutivos,
- -(0/1)*011 es una e.r. que denota el lenguaje cuyas cadenas son 0s y 1s que terminan siempre con 011.

Sea el alfabeto $\Sigma = \{0, 1, 2\}$:

-00*11*22* es una e.r. que denota el lenguaje cuyas cadenas están formadas por una cantidad $n \ge 1$ de 0s seguidas por una cantidad $m \ge 1$ de 1s y terminadas con una cantidad $\tilde{n} \ge 1$ de 2s.

Definición:

Sea un AFD = < K, Σ , δ , q0, F > definimos función de transición extendida o $\hat{\delta}(q,\alpha)$ como

$$\hat{\delta}(\mathbf{q}, \alpha) = \begin{cases} \delta(\mathbf{q}, \mathbf{a}) & \text{si } \alpha = \mathbf{a} \\ \hat{\delta}(\delta(\mathbf{q}, \mathbf{a}), \alpha') & \text{si } \alpha = \mathbf{a}\alpha' \end{cases}$$

donde α , $\alpha' \in \Sigma^*$.

Equivalencias entre las representaciones de los lenguajes regulares

Pasaje de AFD a expresión regular

Teorema:

Si L es aceptado por un AFD M, entonces L puede ser expresado mediante una expresión regular.

<u>Demostración</u> (constructiva):

Sea L el lenguaje aceptado por M = < { $q_1, q_2,..., q_n$ }, Σ , δ , q_1 , F >.

Definimos el conjunto R_{ij}^{k} como aquel formado por todas las cadenas tal que

$$\delta(q_i, x) = q_j,$$

 $\delta(q_i, y) = q_h,$
y es prefijo de x (y\neq x, y \neq \lambda)
h < k con k:0..n.

Esto es, R_{ij}^{k} es el conjunto de cadenas que permiten ir del estado q_{ij} al estado q_{ij} y que si pasan por un estado diferente al q_{ij} y al q_{ij} , el subíndice de ese estado es menor o igual a k.

Nota: i y j pueden ser mayores que k. La restricción es sólo para los estados intermedios, en el caso que los haya.

Fijarse que, en realidad, los que nos interesa son los conjuntos R_{ij}^n donde $q_j \in F$, puesto que el lenguaje aceptado por el autómata es

$$L\!\big(\!M\big)\!=\!\bigcup_{q_i\in F}\!R_{1j}^n$$

donde el estado q₁ es el estado inicial.

Los demás conjuntos serán útiles debido a que son un recurso para calcular los R_{ij}ⁿ.

Como no hay estados con índice mayor que n, sólo interesan los conjuntos de cadenas R_{ij}^k con $k \le n$.

Definamos formalmente R_{ij}^k:

$$R_{ij}^{k} = \begin{cases} R_{ij}^{0} = \begin{cases} \{a/\delta(q_{i},a) = q_{j}\} & \text{si } i \neq j \\ \{a/\delta(q_{i},a) = q_{j}\} \cup \lambda & \text{si } i = j \end{cases} \\ R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{kj}^{k-1} \cup R_{ij}^{k-1} & \text{si } k > 0, k \leq n \end{cases}$$

La parte 2 de la definición dice que las cadenas que pertenezcan a R_{ij}^k serán aquellas que ya pertenecían a R_{ij}^{k-1} unión las concatenaciones de:

- las cadenas que permitan ir del estado q_i al estado q_k sin pasar por un estado cuyo subíndice sea mayor a k-1,
- la clausura de las cadenas que permitan pasar del estado q_k al q_k sin pasar por un estado cuyo subíndice sea mayor a k-1, y
- las cadenas que permitan pasar del estado q_k al q_j sin pasar por un estado cuyo subíndice sea mayor a k-1.

De esta manera, sobre la información que se tiene de R^{k-1} construimos $R_{ii}{}^k$.

Para demostrar que las expresiones que corresponden a R_{ij}^k se pueden construir a partir de las expresiones obtenidas de R^{k-1} usamos inducción sobre k.

Caso base (k = 0)

 R_{ij}^{0} es un conjunto finito de cadenas las cuales son λ o un elemento del alfabeto y e_{ij}^{0} la e.r. asociada a dicho conjunto.

Así, e_{ij}^{0} será $a_{1}/a_{2}/../a_{p}$ (o $a_{1}/a_{2}/../a_{p}/\lambda$ si i = j)

donde $a_1..a_p$ son símbolos tal que $\delta(q_i, a_1) = q_i$ o $\delta(q_i, a_2) = q_i$ o ..

.. o
$$\delta(q_i, a_p) = q_i$$
. Si $p = 0 \Rightarrow (e_{ij} = \phi \lor e_{ij} = \lambda \text{ si } i = j)$.

Paso inductivo (asumimos que ∃ una expresión e_{lm}^{k-1} para cada R_{lm}^{k-1)}

La expresión e_{ij}^{k} para R_{ij}^{k} estará dada por $(e_{ik}^{k-1})(e_{kk}^{k-1})^{*}(e_{kj}^{k-1})/e_{ij}^{k-1}$

y aplicando unión, concatenación y clausura de los conjuntos de cadenas que forman los e^{k-1} obtenemos la expresión para e_{ii}^k.

Una vez obtenidos los $e_{ij}^k \ \forall \ k,i,j,$ el lenguaje aceptado por M estará dado por $L(M) = \bigcup_{q_i \in F} R_{1j}^n$

lo cual corresponderá a la expresión regular $e_{1j_1}^n / e_{1j_2}^n / ... / e_{1j_p}^n$ donde $\left\{q_{j_1}, q_{j_2}, ..., q_{j_p}\right\} = F$.

Ejemplo:

Encuentre una expresión regular que exprese el mismo lenguaje aceptado por M.

Veamos primero los valores de los conjuntos R⁰ cuyas expresiones regulares asociadas son

$$\begin{array}{llll} R_{11}^0 = \{\lambda\} & \text{e.r.} \to \lambda & R_{21}^0 = \{0\} & \text{e.r.} \to 0 & R_{31}^0 = \emptyset & \text{e.r.} \to \emptyset \\ \\ R_{12}^0 = \{0\} & \text{e.r.} \to 0 & R_{22}^0 = \{\lambda\} & \text{e.r.} \to \lambda & R_{32}^0 = \{0,1\} & \text{e.r.} \to 0/1 \\ \\ R_{13}^0 = \{1\} & \text{e.r.} \to 1 & R_{23}^0 = \{1\} & \text{e.r.} \to 1 & R_{33}^0 = \{\lambda\} & \text{e.r.} \to \lambda \end{array}$$

Calculemos, por ejemplo R₂₂¹

$$\mathsf{R}_{22}^1 = \mathsf{R}_{21}^0 \Big(\mathsf{R}_{11}^0 \Big)^* \, \mathsf{R}_{12}^0 \, \bigcup \, \mathsf{R}_{22}^0 = \big\{ \! 0 \big\} \! \circ \big\{ \! \lambda \big\}^* \, \circ \big\{ \! 0 \big\} \! \bigcup \big\{ \! \lambda \big\}$$

y por lo tanto la expresión regular correspondiente es $e_{22}^1 = 00/\lambda$.

Otro ejemplo R₁₂¹:

$$\mathsf{R}_{12}^1 = \mathsf{R}_{11}^0 \Big(\mathsf{R}_{11}^0 \Big)^* \, \mathsf{R}_{12}^0 \, \cup \, \mathsf{R}_{12}^0 = \big\{ \lambda \big\} \circ \big\{ \lambda \big\}^* \circ \big\{ 0 \big\} \cup \big\{ 0 \big\}$$

con la expresión $e_{12}^1 = 0$.

Otro ejemplo R₂₃¹:

$$\mathsf{R}_{23}^1 = \mathsf{R}_{21}^0 \Big(\mathsf{R}_{11}^0 \Big)^* \, \mathsf{R}_{13}^0 \, \cup \, \mathsf{R}_{23}^0 = \big\{ 0 \big\} \circ \big\{ \lambda \big\}^* \circ \big\{ 1 \big\} \cup \big\{ 1 \big\}$$

con la expresión $e_{23}^1 = 01/1$. . .

Recordemos que
$$e_{12}^1 = 0$$

$$e_{22}^1 = 00/\lambda$$

$$e_{23}^1 = 01/1$$

Otro ejemplo R₁₃²:

$$R_{13}^2 = R_{12}^1 \Big(R_{22}^1 \Big)^* R_{23}^1 \cup R_{13}^1 = \{0\} \circ \{00, \lambda\}^* \circ \{01, 1\} \cup \{1\}$$

con la expresión

$$e_{13}^2 = 0(00)*(01/1)/1$$

Ver que $(01/1) = (\lambda/0)1$ y que $(00)*(\lambda/0)=0*$.

De este modo, $0(00)^*(\lambda/0)1/1 = 00^*1/1 = 0^*1$.

Veamos, lo que nos interesa a nosotros es R_{12}^3 y R_{13}^3 ya que L(M) $R_{12}^3 \cup R_{13}^3$.

Tenemos que

	k = 1	k = 2
e ₁₁	λ	(00)*
e ₁₂	0	0(00)*
e ₁₃	1	0 * 1
e ₂₁	0	0(00)*
e ₂₂	λ/00	(00)*
e_{23}^k	1/01	0 * 1
e ₃₁	ф	(0/1)(00)*0
e ₂₃ e ₃₁ e ₃₂ e ₃₃	0/1	(0/1)(00)*
e ₃₃	λ	λ/(0/1)0*1

Vamos a proceder operando directamente sobre las expresiones

$$\begin{split} e_{12}^3 &= e_{13}^2 \Big(e_{33}^2 \Big)^* \, e_{32}^2 \, / \, e_{12}^2 = \\ e_{12}^3 &= 0 * 1 (\lambda / (0/1) 0 * 1) * (0/1) (00) * / 0 (00) * = \\ e_{12}^3 &= 0 * 1 ((0/1) 0 * 1) * (0/1) (00) * / 0 (00) * \end{split}$$

Por otro lado,

$$e_{13}^3 = 0 * 1((0/1)0 * 1)*$$

Finalmente,

$$L(M) = e_{12}^3 / e_{13}^3 = 0 * 1((0/1)0 * 1) * (\lambda/(0/1)(00) *)/0(00) *$$

Pasaje de expresión regular a AFD

Dada un lenguaje L deseamos remover el primer símbolo **a** de las cadenas que forman parte de L. A esta operación la llamaremos «derivar L respecto de **a**» y la definimos según:

```
1. \partial_{\lambda}(L) = L

2. \partial_{a}(L) = \{ \alpha / a\alpha \in L \} donde a \in \Sigma, \alpha \in \Sigma^{*}

3. \partial_{w}(L) = \partial_{u}(\partial_{a}(L)) si w = a.u, a \in \Sigma, u \in \Sigma^{*}
```

Ejemplos:

```
Sea L = \{a^{3n} / n \in N\} = \{aaa, aaaaaaa, aaaaaaaaaa, ...\} \partial_a(L) = \{a^{3n-1} / n \in N\} = \{aa, aaaaaa, aaaaaaaaa, ...\} \partial_b(L) = \emptyset \partial_{aaa}(L) = L U \{\lambda\}
```

```
Para un lenguaje L definimos T(L) según: T(L) = \phi \text{ si L no contiene a } \lambda y T(L) = \{\lambda\} \text{ si L contiene a } \lambda
```

Derivada de una expresión regular

De forma análoga podemos definir la derivada de una expresión regular según:

- 1. $\partial_{\lambda}(u) = u$, para u expresión regular
- 2. Para cada $a \in \Sigma$

$$\partial_{a}(\phi) = \phi$$

 $\partial_{a}(\lambda) = \phi$
 $\partial_{a}(b) = \lambda \text{ si } a = b,$
 $\partial_{a}(b) = \phi \text{ si } a \neq b$

3. Si u y v son dos expresiones regulares

$$\begin{array}{l} \partial_{a}(u/v) = \partial_{a}(u) \, / \, \partial_{a}(v) \\ \partial_{a}(u.v) = \partial_{a}(u).v \, / \, \mathsf{T}(\mathsf{u}).\partial_{a}(v) \\ \partial_{a}(u^{*}) = \partial_{a}(u).\mathsf{u}^{*} \end{array}$$

donde T(u) está definida según:

$$T(u) = \phi$$
 si $L(u)$ no contiene a λ

y

$$T(u) = {\lambda}$$
 si $L(u)$ contiene a λ

4. Sea
$$a \in \Sigma$$
, $u \in \Sigma^*$

$$\partial_{ax}(u) = \partial_{x}(\partial_{a}(u))$$

Ejemplos:

$$\partial_{\mathbf{a}}(\mathbf{a}) = \lambda$$

$$\partial_{\mathbf{a}}(\mathbf{a} / \mathbf{b}) = \partial_{\mathbf{a}}(\mathbf{a}) / \partial_{\mathbf{a}}(\mathbf{b}) = \lambda / \phi = \lambda$$

$$\partial_{\mathbf{a}}((a / b).\mathbf{c}) = \partial_{\mathbf{a}}(a / b).\mathbf{c} / \mathsf{T}(a / b). \ \partial_{\mathbf{a}}(\mathbf{c}) = \lambda.\mathbf{c} / \phi. \ \phi = \mathbf{c}$$

$$\partial_a(a^*) = a^*$$

$$\partial_a(a^+) = \partial_a(a.a^*) = \partial_a(a).a^* / T(a). \ \partial_a(a^*) = \lambda.a^* / \phi.a^* = a^*$$

Consideremos el AFD M = < K, Σ , δ , q_0 , F > que acepta el lenguaje L = L(M) y sea Σ = {a, b}.

Desde q_0 , M aceptará el lenguaje L, pero desde q_0 existe, al menos, una transición por a, o por b, o dos transiciones, una para a y otra para b.

Fijarse que, luego de una transición por a, el autómata M evoluciona a un estado q_i , desde el cual aceptará el lenguaje $\partial_a(L)$. Análogamente, luego de una transición por b, el autómata M evoluciona a un estado q_k , desde el cual aceptará el lenguaje $\partial_b(L)$.

De esta forma, dada una expresión regular u, calculando sistemáticamente las derivadas de u para cada símbolo de Σ , y luego, nuevamente calculando sistemáticamente las derivadas de las derivada de u para cada símbolo de Σ , y así sucesivamente, podremos ir descubriendo la estructura del autómata que acepte el leguaje expresado por u.

Veamos un ejemplo:

Consideremos la expresión regular

$$u = a^{+}(b.a^{*}/\lambda) / ba^{+}$$

Llamaremos L_0 a L(u) y lo consideramos el lenguaje aceptado desde q_0 . Ahora, calculamos la derivada de L_0 respecto de a, esto es $\partial_a(L_0)$.

$$\begin{split} \partial_{a}(\mathsf{L}_{0}) &= \partial_{a}(\mathsf{a}^{+}(\mathsf{b}.\mathsf{a}^{*}/\lambda) \, / \, \mathsf{ba}^{+}) \\ &= \partial_{a}(\mathsf{a}^{+}(\mathsf{b}.\mathsf{a}^{*}/\lambda)) \, / \, \partial_{a}(\, \mathsf{ba}^{+}) \\ &= \left[\partial_{a}(\mathsf{a}^{+}).(\mathsf{b}.\mathsf{a}^{*}/\lambda) \, / \, \mathsf{T}(\mathsf{a}^{+}). \, \partial_{a}(\mathsf{b}.\mathsf{a}^{*}/\lambda) \, \right] \, / \, \left[\partial_{a}(\mathsf{b}). \, \mathsf{a}^{+} \, / \, \mathsf{T}(\mathsf{b}). \partial_{a}(\mathsf{a}^{+}) \right] \\ &= \left[\mathsf{a}^{*}.(\mathsf{ba}^{*}/\lambda) \, / \, \phi. \, \left(\partial_{a}(\mathsf{b}.\mathsf{a}^{*}) \, / \, \partial_{a}(\, \lambda) \right) \right] \, / \, \left[\phi. \, \, \mathsf{a}^{+} / \, \phi. \mathsf{a}^{*} \right] \\ &= \mathsf{a}^{*}.(\mathsf{ba}^{*}/\lambda) \, / \, \phi = \mathsf{a}^{*}.(\mathsf{ba}^{*}/\lambda) = \mathsf{L}_{1} \end{split}$$

Esto es, desde el estado q_0 , M acepta L_0 , pero al hacer una transición a un próximo estado consumiendo a, desde dicho estado aceptará L_1 . Llamaremos a dicho estado q_1 .

Veamos ahora qué ocurre si desde q₀ el autómata M transiciona consumiendo *b*.

$$\begin{split} \partial_b(\mathsf{L}_0) &= \, \partial_b(\mathsf{a}^+(\mathsf{b}.\mathsf{a}^* \, / \, \lambda) \, / \, \mathsf{ba}^+) \\ &= \, \partial_b(\mathsf{a}^+(\mathsf{b}.\mathsf{a}^* \, / \, \lambda)) \, / \, \partial_b(\; \mathsf{ba}^+) \\ &= \left[\partial_b(\mathsf{a}^+).(\mathsf{b}.\mathsf{a}^* \, / \, \lambda) \, / \, \mathsf{T}(\mathsf{a}^+). \, \partial_b(\mathsf{b}.\mathsf{a}^* \, / \, \lambda) \, \right] \, / \, \left[\partial_b(\mathsf{b}). \, \mathsf{a}^+ \, / \, \mathsf{T}(\mathsf{b}). \partial_b(\mathsf{a}^+) \right] \\ &= \left[(\partial_b(\mathsf{a}).\mathsf{a}^* \, / \, \mathsf{T}(\mathsf{a}). \, \partial_b(\mathsf{a}^*)).(\mathsf{ba}^* / \, \lambda) \, / \, \phi.(\partial_b(\mathsf{b}.\mathsf{a}^*) \, / \, \partial_b(\; \lambda)) \right] \, / \, \left[\lambda. \, \, \mathsf{a}^+ / \, \phi \, .\mathsf{a}^* \right] \\ &= \left[(\phi \, / \, \phi). \, (\mathsf{ba}^* / \, \lambda) \, / \, \phi \right] \, / \, \left[\mathsf{a}^+ \, / \, \phi \, \right] = \mathsf{a}^+ = \mathsf{L}_2 \end{split}$$

Ahora, seguimos desde L_1 , es decir, desde q_1 :

$$\partial_{a}(L_{1}) = \partial_{a}(a^{*}(b.a^{*} / \lambda)) = \partial_{a}(a^{*})(b.a^{*} / \lambda) / T(a^{*}) \partial_{a}((b.a^{*} / \lambda)) = a^{*}(b.a^{*} / \lambda) / \lambda \phi = a^{*}(b.a^{*} / \lambda) = L_{1}$$

$$\begin{array}{l} \partial_{b}(\mathsf{L}_{1}) = \ \partial_{b}(\mathsf{a}^{*}(\mathsf{b}.\mathsf{a}^{*} \ / \ \lambda)) = \partial_{b}(\mathsf{a}^{*})(\mathsf{b}.\mathsf{a}^{*} \ / \ \lambda) \ / \ \mathsf{T}(\mathsf{a}^{*}) \ \partial_{b}(\mathsf{b}.\mathsf{a}^{*} \ / \ \lambda) \\ = \ \phi \ / \ (\lambda \ \partial_{b}(\mathsf{b}.\mathsf{a}^{*}) \ / \ \phi)) = \ \phi \ / \ (\partial_{b}(\mathsf{b}).\mathsf{a}^{*} \ / \ \mathsf{T}(\mathsf{b}). \ \partial_{b}(\mathsf{a}^{*})) = \\ = \ \lambda \ .\mathsf{a}^{*} \ / \ \phi. \ \phi = \ \mathsf{a}^{*} = \mathsf{L}_{3} \end{array}$$

Procedemos igual para L₂

$$\partial_{a}(L_{2}) = \partial_{a}(a^{+}) = \partial_{a}(a.a^{*}) = \partial_{a}(a).a^{*} / T(a). \ \partial_{a}(a^{*}) = \lambda.a^{*} / \phi = a^{*} = L_{3}$$

$$\partial_b(L_2) = \partial_b(a^+) = \phi = L_t$$

donde L_t es el lenguaje aceptado por el estado trampa.

Para L₃ y L_t tenemos

$$\partial_a(L_3) = \partial_a(a^*) = L_3$$

$$\partial_b(L_3) = \partial_b(a^*) = \phi$$

$$\partial_{a}(L_{t}) = \phi = L_{t}$$

$$\partial_{\mathbf{b}}(\mathsf{L}_{\mathsf{t}}) = \phi = \mathsf{L}_{\mathsf{t}}$$

El autómata finito determinístico resultante es

donde los estados finales son aquellos que aceptan un lenguaje que contiene a λ .

Pasaje de expresión regular a AFND-λ

Teorema:

Sea r una e.r., entonces existe un AFND- λ que acepta L(r).

<u>Demostración</u> (por inducción sobre el número de operadores de r)

Caso base (sin operadores)

Sea r una expresión ϕ , λ o a / $a \in \Sigma$, el AFDN- λ correspondiente en cada caso es

En cada caso el AFND- λ acepta exactamente a L(r).

<u>Paso inductivo</u> (asumimos que la HI es verdadera para expresiones regulares con menos de n operadores)

Caso 1:

Sea $r = r_1 / r_2$ tal que r_1 y r_2 tienen menos de n operadores. Luego, por HI existen $M_1 = \langle K_1, \Sigma_1, \delta_1, q_1, \{f_1\} \rangle$ y $M_2 = \langle K_2, \Sigma_2, \delta_2, q_2, \{f_2\} \rangle / M_1$ y M_2 son AFND- λ y L(M_1) = L(r_1) y L(M_2) = L(r_2).

Se define M AFND-λ según

$$M = \langle K_1 \cup K_2 \cup \{ q_0, f_0 \}, \Sigma_1 \cup \Sigma_2, \delta, q_0, \{ f_0 \} \rangle$$

donde δ está definido por

i)
$$\delta(q_0, \lambda) = \{q_1, q_2\},\$$

ii)
$$\delta(q, a) = \delta_1(q, a)$$
 si $q \in K_1 - \{f_1\} \land a \in \Sigma_1 \cup \{\lambda\},\$

iii)
$$\delta(q, a) = \delta_2(q, a)$$
 si $q \in K_2 - \{f_2\} \land a \in \Sigma_2 \cup \{\lambda\},\$

iv)
$$\delta(f_1, \lambda) = \delta(f_2, \lambda) = \{f_0\}.$$

y los estados q₀ y f₀ son el estado inicial y final de M, respectivamente.

Luego L(M) = L(r). Ejercicio: Demostrar

 $r = r_1 / r_2 \wedge L(r_1) = L(M_1) \wedge L(r_2) = L(M_2), L(r) = L(M)$

Caso 2:

Sea $r = r_1 r_2$ tal que r_1 y r_2 tienen menos de n operadores. Luego, por HI existen $M_1 = \langle K_1, \Sigma_1, \delta_1, q_1, \{ f_1 \} \rangle$ y $M_2 = \langle K_2, \Sigma_2, \delta_2, q_2, \{ f_2 \} \rangle / M_1$ y M_2 son AFND- λ y L(M_1) = L(r_1) y L(M_2) = L(r_2).

Se define M el AFND-λ según

$$M = \langle K_1 \cup K_2, \Sigma_1 \cup \Sigma_2, \delta, q_1, \{ f_2 \} \rangle$$

donde δ está definido por

i)
$$\delta(q, a) = \delta_1(q, a)$$
 si $q \in K_1 - \{f_1\} \land a \in \Sigma_1 \cup \{\lambda\},\$

ii)
$$\delta(q, a) = \delta_2(q, a)$$
 si $q \in K_2 - \{f_2\} \land a \in \Sigma_2 \cup \{\lambda\},\$

iii)
$$\delta(f_1, \lambda) = q_2$$
.

Luego L(M) = L(r). Ejercicio: Demostrar

$$r = r_1 r_2, L(r_1) = L(M_1), L(r_2) = L(M_2), L(r) = L(M)$$

Caso 3:

Sea $r = r_1^*$ tal que r_1 tienen menos de n operadores. Luego, por HI existe $M_1 = \langle K_1, \Sigma_1, \delta_1, q_1, \{f_1\} \rangle / M_1 \text{ AFND-}\lambda \text{ y L}(M_1) = \text{L}(r_1).$

Se define M el AFND- λ según

$$M = \langle K1 \cup \{ q_0, f_0 \}, \Sigma_1, \delta, q_0, \{ f_0 \} \rangle$$

donde δ está definido por

i)
$$\delta(q, a) = \delta_1(q, a)$$
 si $q \in K_1 - \{f_1\} \land a \in \Sigma_1 \cup \{\lambda\},\$

ii)
$$\delta(q_0, \lambda) = \delta(f_1, \lambda) = \{ q_1, f_0 \}.$$

Luego L(M) = L(r). Ejercicio: Demostrar

$$r = r_1^* \wedge L(r_1) = L(M_1), L(r) = L(M)$$

Pasaje de AFD a expresión regular

Tal como mencionamos anteriormente, dado un AFD M con estado inicial q_0 , el lenguaje aceptado por M desde q_0 , lo podemos denotar con una expresión regular.

Supongamos que en M, $\Sigma = \{ a, b \}$ y notemos L₀ como el lenguaje aceptado por M desde q₀.

Sea $\delta(q_0, a) = q_1,$

ya vimos que el lenguaje aceptado por M desde q_1 lo podemos denotar como $\partial_a(L_0)$ y

sea $\delta(q_0,b) = q_2$, el lenguaje aceptado por M desde q_2 lo podemos denotar como $\partial_b(L_0)$.

Así, podemos notar

$$L_0 = aL_1 / bL_2$$

donde L₁ es el lenguaje aceptado por M desde q₁ y L₂ desde q₂.

Sea el siguiente AFD M:

Podemos plantear las siguientes ecuaciones:

$$\begin{split} L_0 &= a.L_1 / b.L_2 \\ L_1 &= a.L_1 / b.L_3 / \lambda \\ L_2 &= a.L_3 / b.L_t \\ L_3 &= a.L_3 / b.L_t / \lambda \\ L_t &= a.L_t / b.L_t / \phi \end{split}$$

¿Cómo resolvemos este sistema de ecuaciones?

Lema de Arden

Sean R, S y T expresiones regulares

Si R = S.R / T y $\lambda \notin$ S entonces

$$R = S^*.T$$

Demostración (para toda cadena x)

i) $L(S.R / T) \subseteq L(S^*.T)$

Caso base $(x = \lambda)$

Si $x \in L(S.R / T)$ entonces $x \in T$ ya que $\lambda \notin S$.

Pero si $x \in T$ entonces $x \in S^*.T$

Paso inductivo (la HI se cumple para todo x / $|x| \le n$)

Sea x / |x| = n + 1

Si $x \in L(S.R / T)$ entonces $x \in L(S.R)$ o $x \in L(T)$.

Si $x \in L(T)$ entonces $x \in L(S^*.T)$.

Si $x \in L(S.R)$, entonces, sea $x = yw / y \in L(S)$ y $w \in L(R)$.

Como $\lambda \notin S$ entonces |y| > 0 y por lo tanto |x| > |w|.

Entonces, si w pertenece a L(R), por HI $w \in L(S^*.T)$ y

 $x \in L(SS^*.T)$ y como $L(SS^*.T) \subseteq L(S^*T),$ entonces

 $x \in L(S^*.T)$.

ii) $L(S^*.T) \subseteq L(S.R / T)$ o $L(S^i.T) \subseteq L(S.R / T)$, $i \ge 0$. Caso base (i = 0) Si $x \in L(S^0.T) \Rightarrow x \in L(T) \Rightarrow x \in L(S.R / T)$ Paso inductivo (la HI es verdadera para i < n) Si $x \in L(S^n.T) \Rightarrow x \in L(S).L(S^{n-1}.T) \Rightarrow x \in L(S).L(R) \Rightarrow x \in L(S.R) \Rightarrow x \in L(S.R / T)$

Volviendo al sistema de ecuaciones del ejemplo:

$$L_{0} = a.L_{1} / b.L_{2}$$

$$L_{1} = a.L_{1} / b.L_{3} / \lambda$$

$$L_{2} = a.L_{3} / b.L_{t}$$

$$L_{3} = a.L_{3} / b.L_{t} / \lambda$$

$$L_{t} = a.L_{t} / b.L_{t} / \phi$$

podemos resolverlo usando la propiedad enunciada en el Lema de Arden haciendo:

$$\begin{split} & L_t = (a/b). \ L_t \ / \varphi, \ y \ como \ \lambda \not\in (a/b) \ entonces \ L_t = (a/b)^*. \ \varphi = \varphi \\ & L_3 = a.L_3 \ / \ b.L_t \ / \ \lambda = a.L_3 \ / \ \lambda = a^*. \ \lambda = a^* \\ & L_2 = a.L_3 \ / \ b.L_t = a.L_3 = a.a^* = a^+ \\ & L_1 = a.L_1 \ / \ b.L_3 \ / \ \lambda = a^*. (b. \ L_3 \ / \ \lambda) = a^*. (b.a^* \ / \ \lambda) \\ & L_0 = a.L_1 \ / \ b.L_2 = a. \ a^*. (b.a^* \ / \ \lambda) \ / \ b. \ a^+ \end{split}$$

Pasaje de AFD a GR

Algortimo

Entrada: AFD M = < K, Σ , δ , q_0 , F >

Salida : $G = \langle V_N, V_T, P, Q_0 \rangle$

- 1. Hacer $V_T \leftarrow \Sigma$
- 2. Hacer $V_N \leftarrow K$ (con sus estados escritos en mayúsculas)
- 3. Para cada estado $q \in K$ y para cada $a \in \Sigma$ Si $r = \delta(q, a)$ agregar a P, $(Q \rightarrow a R)$, $Q,R \in V_N$ si $r \in F$ agregar a P, $(Q \rightarrow a)$
- 4. Si $q_0 \in F$ agregar a P $(Q_0 \rightarrow \lambda)$

Lema:

Sea el AFD M = < K, Σ , δ , q_0 , F > y G = < V_N, Σ , P, S > una gramática regular, luego (q, α) $\vdash \!\!\!\!- \!\!\!\!+ (r, \lambda) \Leftrightarrow Q \rightarrow \!\!\!\!+ \alpha R$ donde los símbolos no terminales se notan como los estados de K pero en mayúsculas.

<u>Demostración</u> (por inducción en la longitud de α):

Caso base $(\alpha = \lambda)$

$$(q, \lambda) \vdash *(r, \lambda) \Leftrightarrow (q, \lambda) = (r, \lambda) \Leftrightarrow q = r \Leftrightarrow Q \rightarrow \lambda R$$

Nota: siempre es cierto $Q \rightarrow \lambda R$ con R = Q pues basta no aplicar ninguna producción, así como en el AFD $(q, \lambda) \vdash (r, \lambda) \Rightarrow q = r$.

Paso inductivo ($\alpha = a \alpha'$)

$$(q, a\alpha') \longmapsto (r, \lambda) \Leftrightarrow (q, a\alpha') \longmapsto (q', \alpha') \longmapsto (r, \lambda) \Leftrightarrow \frac{\text{def}}{\text{HI}}$$
$$\Leftrightarrow Q \to aQ' \land Q' \to \alpha' R \Leftrightarrow Q \to aQ' \to a\alpha' R \Leftrightarrow Q \to \alpha R$$

Teorema:

Sean M y G como los dados en el algoritmo precedente,

entonces L(M) = L(G).

Demostración:

i)
$$L(M) \subseteq L(G)$$

Si
$$\alpha \in L(M) \Rightarrow (q_0, \alpha) \vdash (f, \lambda), f \in F$$
.

Si $\alpha = \lambda \Rightarrow q_0 \in F$, pero en ese caso existe una producción $Q_0 \rightarrow \lambda$ (paso 4 del algoritmo).

Si $\alpha \neq \lambda \Rightarrow \alpha = \alpha$ 'a y podemos escribir $(q_0, \alpha) \vdash (f, \lambda)$ como $(q_0, \alpha'a) \vdash (f, \lambda)$.

Por el lema anterior, existe $Q_0 \rightarrow \alpha'Q'$.

Como (q', a) \vdash (f, λ) \Rightarrow f = δ (q', a), f \in F

entonces existe una derivación Q'→a.

Así que, $Q_0 \rightarrow \alpha' Q' \rightarrow \alpha' a \Rightarrow Q_0 \rightarrow \alpha \Rightarrow \alpha \in L(G)$.

ii)
$$L(G) \subseteq L(M)$$

Si $\alpha \in L(G) \Rightarrow Q_0 \rightarrow^* \alpha$.

 $(q_0, \alpha) \vdash +(f, \lambda) \Rightarrow \alpha \in L(M).$

Si $\alpha = \lambda \Rightarrow$ existe en G, $Q_0 \rightarrow \lambda$, luego $q_0 \in F \Rightarrow \lambda \in L(M)$.

Si $\alpha \neq \lambda \Rightarrow \alpha = \alpha$ 'a, entonces $Q_0 \rightarrow \alpha' Q' \rightarrow \alpha'$ a, dado que $Q' \rightarrow a$.

Por el lema anterior, $Q_0 \rightarrow \alpha' Q' \Rightarrow (q_0, \alpha' a) \vdash (q', a)$.

Pero Q' \rightarrow a \Rightarrow f = δ (q', a), f \in F, luego existe en M (q', a) \vdash —(f, λ). Así (q₀, α) = (q₀, α 'a) \vdash —*(q', a) \vdash —(f, λ) que es lo mismo que

Pasaje de GR a AFND- λ

Algoritmo

Entrada: $G = \langle V_N, V_T, P, S \rangle$

Salida: M = < K, Σ , δ , q_0 , F >

- 1. Hacer $K \leftarrow V_N \cup \{f\}$
- Para cada derivación A→aB ∈ P
 Agregar B a δ(A, a)
- Para cada derivación A→a

Agregar f a $\delta(A, a)$

4. Si existe derivación $S \rightarrow \lambda$

Agregar f a $\delta(S, \lambda)$