# Multiprocessing: scheduling

COSC 208, Introduction to Computer Systems, 2021-11-12

#### **Outline**

- Scheduling processes
- First In First Out (FIFO) scheduling
- Shortest Job First (SJF) scheduling
- Preemption
- Shortest Time-to-Completion First (STCF) scheduling
- Round Robin (RR) scheduling

# Scheduling processes

- OS decides which process to run and for how long
- What factors should the OS consider when making these decisions?
  - Time for process to complete
  - Overhead of context switching
  - Fairness
  - User interaction
- For now, consider one of these metrics: turnaround time
  - $\circ$  T<sub>turnaround</sub> = T<sub>complete</sub> T<sub>arrive</sub>
- For now, assume a process starts and runs to completion—i.e., no I/O and no preemption

# First In First Out (FIFO) scheduling

| Process | Arrival time | Duration |
|---------|--------------|----------|
| А       | 0            | 15       |
| В       | 5            | 15       |
| С       | 10           | 15       |

• What is the average turnaround time for the processes using FIFO?



- Average Turnaround = (15 + 25 + 35) / 3 = 25
- What happens if A's duration is 60?



- Average Turnaround = (60 + 70 + 80) / 3 = 70
- What happens if C's duration is 60?



- Average Turnaround = (15 + 25 + 80) / 3 = 40
- How can we change the schedule so the average turnaround time when A's duration is 60 is more like the average turnaround time when C's duration is 60?

# Shortest Job First (SJF) scheduling

| Process | Arrival time | Duration |
|---------|--------------|----------|
| А       | 0            | 60       |
| В       | 0            | 15       |
| С       | 0            | 15       |

• What is the average turnaround time for the above processes using SJF?

|   | В   | С  | A  |    |
|---|-----|----|----|----|
| 0 | ) 1 | 15 | 30 | 90 |
|   |     |    |    |    |

• Average Turnaround = (15 + 30 + 90) / 3 = 45

| Process | Arrival time | Duration |
|---------|--------------|----------|
| Α       | 0            | 60       |
| В       | 5            | 15       |
| С       | 10           | 15       |

• What is the average turnaround time for the above processes using SJF?



- Average Turnaround = (60 + 70 + 80) / 3 = 70
- We're back to FIFO—What happened!? How can we fix this?

### Preemption

- OS only regains control when a system call occurs—e.g., read/write file, yield
  - o Syscalls may occur infrequently, or never, due to program design, bugs, or malicious behavior
- How does an OS forcibly regain control?—set a timer that raises an interrupt
  - Interrupt causes a trap instruction to be executed
  - Interrupts can also be raised by devices—e.g., Network Interface Card (NIC)
- What must the OS do if it decides to run another process?—perform a context switch
  - Save the machine state associated with the process that was running—in particular, the contents of all registers are saved in the process's control structure
  - Restore the machine state associated with the process that should run—again, the contents of all registers are loaded from the process's control structure

### Shortest Time-to-Completion First (STCF) scheduling

- · Allow preemption
- If a process arrives that has less computation remaining than the currently running process, then preempt the current process and run the new process
- Also known as Preemptive Shortest Job First (PSJF)

| Process | Arrival time | Duration |
|---------|--------------|----------|
| Α       | 0            | 60       |
| В       | 5            | 15       |
| С       | 10           | 15       |

What is the average turnaround time for the above processes using STCF scheduling?



- Average Turnaround = (90 + 15 + 25) / 3 = 43.3
- Now consider response time: T<sub>response</sub> = T<sub>first\_run</sub> T<sub>arrive</sub>
- What is the average response time for the same processes using STCF scheduling?
  - Average Response = (0 + 0 + 10) / 3 = 3.3
- Now consider wait time: T<sub>wait</sub> = ∑ (T<sub>start\_run</sub> T<sub>become\_ready</sub>)
  - A is waiting from time 5 to 35, so  $T_{wait} = 30$
  - B does not wait, so T<sub>wait</sub> = 0
  - C is waiting from time 10 to 20, so T<sub>wait</sub> = 10
  - Average Wait = (30 + 0 + 10) / 3 = 13.3
- What major assumption have we made thus far that is impractical in a real system?—we know a process's duration (i.e., how much work it has to do)

# Round Robin (RR)

• Let each process run for a small amount of time, then switch to the next process; when you get to the last process, then start again with the first process and repeat

| Process | Arrival time   | Duration |
|---------|----------------|----------|
| А       | Just before 0  | 60       |
| В       | Just before 5  | 15       |
| С       | Just before 10 | <br>15   |

• What is the average turnaround time and response time for the above processes assuming we let a process run for 5 seconds before switching processes?



- Average Turnaround = (90 + 35 + 35) / 3 = 53.3
- Average Response = (0 + 0 + 0) / 3 = 0
- $\circ$  Average Wait = (30 + 20 + 20) / 3 = 23.3
- In practice, there is a queue of processes that are in the ready state, resulting in the following schedule:



• Determine the schedule for the above process with a time quantum of 10.



- Average Turnaround = (90 + 40 + 40) / 3 = 56.6
- Average Response = (0 + 5 + 10) / 3 = 5
- Average Wait = (30 + 25 + 25) / 3 = 26.6
- What happens to average response time as we increase the time quantum?