CHAPITRE 10 LES VARIABLES ALÉATOIRES

Activité 1

Une urne comprend une boule verte (V), une boule bleue (B) et deux boules rouges $(R_1 \text{ et } R_2)$.

On tire au hasard une boule, puis une deuxième sans avoir remis la première.

Issues

- 1. Recopier et compléter l'arbre ci-contre afin de déterminer toutes les issues possibles.
- 2. Quelle est la probabilité de chaque issue?

b. Recopier et compléter le tableau.

3. Une boule bleue ne rapporte rien et ne fait rien perdre, une boule verte rapporte 2 points et chaque boule rouge fait perdre 1 point.

On s'intéresse au gain algébrique X (positif ou négatif) que peut obtenir un joueur à ce jeu.

- **c.** Calculer la probabilité, notée P(X = -2), que le joueur perde 2 euros.
- **d.** Calculer de même P(X = -1), P(X = 1) et P(X = 2).

Correction

1) Arbre

- 2) Il y a 12 issues équiprobables. Chaque issue a pour probabilité $\frac{1}{12}$.
- 3) a) X peut prendre les valeurs : -2; -1; 1 et 2.

ы	Événement	(X = -2)	(X = -1)	(X = 1)	(X = 2)
U)	Issues favorables	R_1R_2 ; R_2R_1	$BR_1; BR_2; R_1B; R_2B$	$VR_1; VR_2; R_1V; R_2V$	VB BV

c)
$$P(X = -2) = \frac{2}{12} = \frac{1}{6}$$

c)
$$P(X = -2) = \frac{2}{12} = \frac{1}{6}$$

d) De même, $P(X = -1) = \frac{4}{12} = \frac{1}{3}$; $P(X = 1) = \frac{4}{12} = \frac{1}{3}$; $P(X = 2) = \frac{2}{12} = \frac{1}{6}$.

COMMENTAIRES:

X s'appelle une variable aléatoire : "variable" car elle prend des valeurs numériques qui varient et "aléatoire" car ces valeurs prises dépendent du hasard.

Dans une expérience aléatoire, on cherche d'abord à l'aide de l'énoncé TOUTES les valeurs possibles que peut prendre X.

On veut ensuite trouver avec quelle probabilité chacune de ces valeurs peut être obtenue : on appelle cela le tableau de loi de la variable aléatoire X.

Une fois connu le tableau de loi on peut répondre à n'importe quelle question sur cette expérience et pourquoi pas, parier en toute connaissance de cause.

Dans ce cours, on va formaliser tout ceci:

2 Notion de variable aléatoire réelle

Variable aléatoire discrète

Soit $\Omega = \{e_1; e_2; ...; e_m\}$ l'univers fini d'une expérience aléatoire.

Une variable aléatoire X sur Ω est une fonction qui, à chaque issue de Ω , associe un nombre réel.

Remarque

x est un réel, l'événement "X prend la valeur x" est noté (X=x), il est formé de toutes les issues de Ω ayant pour image x.

Application et méthode:

Enoncé: On lance un dé à 6 faces.

Si on obtient un multiple de 3, on gagne 2 euros.

Sinon, on perd 1 euro.

X est la variable aléatoire qui à chaque lancer associe le gain obtenu (ce gain peut éventuellement être négatif)

Méthode

On cherche toutes valeurs possibles prises par la variable aléatoire X.

On écrit : *X* désigne

puis: X prend les valeurs

Solution

X désigne le gain obtenu à un lancer

X prend les valeurs 1 ou 2

L'évènement (X = 2) est réalisé lorsque l'on obtient un multiple de 3

L'évènement ($X \le 0$) est réalisé lorsque le gain est négatif

3 Loi de probabilité d'une variable aléatoire réelle

Loi de probabilité d'une variable aléatoire discrète

Soit X une variable aléatoire prenant les valeurs $\{x_1; x_2; ...; x_n\}$. Lorsqu'à chaque valeur x_i , on associe la probabilité de l'événement $(X = x_i)$, on définit **la loi de probabilité** de X.

Remarque

La loi de probabilité d'une variable aléatoire se présente à l'aide d'un tableau.

x_i	x_1	x_2	 x_n
$P\left(X=x_{i}\right)$	p_1	p_2	 p_n

On a
$$P(X = x_1) + P(X = x_2) + ... + P(X = x_n) = 1$$
.

METHODE A TRAVAILLER ⚠

Étudier une variable aléatoire :

Pour déterminer la loi de probabilité d'une variable aléatoire X:

- **1.** on détermine les valeurs x_i que peut prendre X;
- **2.** on calcule les probabilités $P(X = x_i)$;
- 3. on résume les résultats dans un tableau.

EXERCICE 1:

Une urne contient cinq jetons indiscernables au toucher numérotés de 1 à 5.

Un joueur participe à la loterie en payant 2€, ce qui lui donne le droit de prélever au hasard un jeton dans l'urne.

- Si le numéro est pair, il gagne en euros le double de la valeur indiquée par le jeton.
- Si le numéro est impair, il perd sa mise.

Soit *X* la variable aléatoire égale au "gain algébrique".

Déterminer la loi de probabilité de X.

CORRECTION:

L'univers est l'ensemble des 5 jetons.

Les cinq issues sont équiprobables.

Les jetons 1, 3 et 5 font perdre 2 euros;

le jeton 2 fait gagner $2 \times 2 - 2 = 2$ euros;

le jeton 4 fait gagner $4 \times 2 - 2 = 6$ euros.

X peut prendre les valeurs -2; 2 et 6.

L'événement (X = -2) est réalisé pour les issues 1; 3; 5 donc $P(X = -2) = \frac{3}{5}$.

L'événement (X = 2) est réalisé pour l'issue 2 donc $P(X = 2) = \frac{1}{5}$.

L'événement (X = 6) est réalisé pour l'issue 4 donc $P(X = 6) = \frac{1}{5}$

On présente la **loi de probabilité** de *X* dans un tableau.

x_i	-2	2	6
$P(X=x_i)$	3	1 -	1 -
, ,,	5	_ 5_	5

4 Espérance, variance et écart-type

Dans cette partie, X est une variable aléatoire réelle définie sur un univers Ω prenant les valeurs $x_1, x_2, ..., x_r$ avec les probabilités respectives $p_1, p_2, ..., p_r$.

4.1 Espérance d'une variable aléatoire

L'espérance de X est le nombre réel, noté E(X), défini par $E(X) = \sum p_i x_i = p_1 x_1 + p_2 x_2 + p_r x_r$

Remarque:

E(X) peut s'interpréter comme la valeur moyenne des valeurs prises par X lorsque l'expérience aléatoire est répétée un très grand nombre de fois.

Exemple:

La loi de probabilité d'une variable aléatoire *X* est donnée ci-dessous :

$$\begin{array}{|c|c|c|c|c|c|} \hline x_i & -2 & 1 & 4 \\ \hline P(X = x_i) & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ \hline \text{On a } E(X) = 2 \times \frac{1}{6} + 1 \times \frac{1}{2} + 4 \times \frac{1}{3} = \frac{3}{2}. \\ \hline \end{array}$$

Sur un très grand nombre d'expériences, en moyenne, la valeur de X est $\frac{3}{2}$.

Remarque:

Dans un jeu de hasard, l'espérance sera liée au gain potentiel du joueur (ou de lorganisateur).

- Un jeu est équitable si l'espérance du gain est nulle.
- Un jeu est favorable au joueur si l'espérance est positive
- Un jeu est défavorable au joueur si l'espérance est négative

Propriété

Soit *X* une variable aléatoire et soient *a* et *b* des réels. Alors : $E(aX + b) = a \times E(X) + b$.

Démonstration à faire plus tard

METHODE

EXERCICE 2:

Soit X une variable aléatoire dont on donne la loi de probabilité dans le tableau suivant. Calculer et interpréter E(X).

x_i	-2	1	4
$P(X = x_i)$	0,2	0,5	0,3

Méthode

- 1. On applique la formule du cours en remplaçant les x_i par les valeurs prises par la variable aléatoire X et les p_i par les probabilités correspondantes.
- **2.** On interprète le résultat à l'aide d'une moyenne en se rappelant que cela est valable uniquement pour un très grand nombre d'expériences identiques réalisées.

Correction:

 $E(X) = 2 \times 0, 2 + 1 \times 0, 5 + 4 \times 0, 3 = 1, 3$

Sur un très grand nombre de répétitions de cette expérience aléatoire, la valeur moyenne de X est 1,3.

4.2 Variance et écart-type d'une variable aléatoire

La **variance de** X est le réel positif, noté Var(X), défini par $Var(X) = \sum p_i(x_i - E(X))^2 = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + p_r(x_r - E(X))^2$.

L'**écart-type de** X est le nombre positif, noté $\sigma(X)$, défini par $\sigma(X) = Var(X)$.

Remarque:

L'écart-type de X est la moyenne quadratique des écarts des valeurs avec lespérance.

Exemple:

On reprend la variable aléatoire X de l'exemple précédent.

$$Var(X) = \frac{1}{6} \times (-2 - \frac{3}{2})^2 + \frac{1}{2} \times (1 - \frac{3}{2})^2 + \frac{1}{3} \times (4 - \frac{3}{2})^2 = \frac{1}{6} \times (-\frac{7}{2})^2 + \frac{1}{2} \times (\frac{1}{2})^2 + \frac{1}{3} \times (2\frac{5}{2})^2 = \frac{1}{6} \times \frac{49}{4} + \frac{1}{2} \times \frac{1}{4} + \frac{1}{3} \times \frac{25}{4} = \frac{17}{4}$$
et
$$\sigma(X) = \sqrt{Var(X)} = \sqrt{\frac{17}{4}} = \frac{\sqrt{17}}{2}$$

Exemple:

EXERCICE 3:

Méthode:

- On applique la formule du cours en remplaçant les x_i par les valeurs prises par la variable aléatoire X et les p_i par les probabilités correspondantes.
- L'écart-type s'obtient simplement en calculant la racine carrée de la variance

Correction:

On a vu précédemment que E(X) = 1,3.

On a alors:

$$Var(X) = 0.2 \times (21,3)^2 + 0.5 \times (11,3)^2 + 0.3 \times (41,3)^2 = 0.2 \times (3,3)^2 + 0.5 \times 0.32 + 0.3 \times 2.72 = 0.2 \times 10.89 + 0.5 \times 0.09 + 0.3 \times 7.29 = 2.178 + 0.045 + 2.187 = 4.41$$
 Doù $\sigma(X) = \sqrt{Var(X)} = \sqrt{4.41} = 2.1$

5 Simulation d'une variable aléatoire

Un jeu consiste à lancer n fois deux dés parfaitement équilibrés. Lorsqu'on obtient un double, on gagne 5 euros, sinon on perd 1 euro.

```
from random import randint
   n=int(input("Quel est le nombre de lancers?"))
   G=0
   for i in range(n):
        R=randint(1,6)
        S=randint(1,6)
        if R==S:
            G=G+5
        else:
            G=G-1
print(G/n)
```

- 1. On considère l'algorithme ci-dessus.
 - a. Qu'affiche cet algorithme?
 - **b.** Programmer cet algorithme sur une calculatrice ou un logiciel. Effectuer plusieurs simulations pour n = 10; n = 50 et n = 100. Que constate-t-on?
- 2. Recopier et compléter le tableau à double entrée.

	1	2	3	4	5	6
1	+5	-1				
2						
3						
4						
5						
6						

- **3.** Calculer la probabilité p de perdre 1 euro, puis la probabilité q de gagner 5 euros à ce jeu.
- **4.** Soit *X* la variable aléatoire correspondant au gain de ce jeu.
 - Quelles sont les valeurs prises par *X*?
 - Donner le tableau de loi de la variable aléatoire *X* (vous pouvez vous aider de la question précédente)
 - Calculer l'espérance de *X*
 - Que pensez-vous du gain moyen que peut espérer le joueur sur un grand nombre de parties? Ce jeu favorise-t-il le joueur ou l'organisateur?

Correction:

- 1) a) Cet algorithme simule n lancers de 2 dés et calcule le gain moyen algébrique obtenu par partie.
 - b) Exemple de programme sur TI.

	pr9mSIM	
PROGRAM:SIM :Input N :0→G	?10	2
:For(I,1,N) :entAléat(1,6)→R	er9mSIM	Done
:entAléat(1,6)+S	?50	
:If R=S :Then :G+5+G	er9mSIM	.08 Done
:Else	2100	
: G-1+G : End		28 Done
:End :Disp G/N		Done

On constate que le gain moyen peut être négatif ou positif. Lorsqu'on répète un grand nombre de simulations, le gain moyen algébrique semble se rappocher de 0.

2)							
۷)		1	2	3	4	5	6
	1	+5	-1	-1	-1	-1	-1
	2	-1	+5	-1	-1	-1	-1
	3	-1	-1	+5	-1	-1	-1
	4	-1	-1	-1	+5	-1	-1
	5	-1	-1	-1	-1	+5	-1
	6	-1	-1	-1	-1	-1	+5
3)	3) $p = \frac{30}{36} = \frac{5}{6}$ et $q = \frac{6}{36} = \frac{1}{6}$						
9)	P	36	6	36	6		

X prend les valeurs 5 ou -1.

$$P(X = 5) = \frac{casfavorables}{caspossibles} = \frac{6}{36} = \frac{1}{6}$$

$$P(X = -1) = \frac{casfavorables}{caspossibles} = \frac{30}{36} = \frac{5}{6}$$
Lei de prehabilité.

Loi de probabilité:

x_i	5	-1
$P(X=x_i)$	$\frac{1}{6}$	$\frac{5}{6}$

$$E(X) = 5 \times \frac{1}{6} + (-1) \times \frac{5}{6} = 0$$

Calcul de l'espérance : $E(X) = 5 \times \frac{1}{6} + (-1) \times \frac{5}{6} = 0$ L'espérance est nulle, le jeu est donc équitable (le jeu ne favorise ni le joueur ni l'organisateur)