

Engenharia de Software

Aula 5

Profa. Maristela Weinfurter Teixeira

Organização da Aula

- Projeto de software
 - Espectro de gerenciamento
 - Estrutura de projeto
 - √ Metodologias e requisitos
 - ✓ Arquitetura
 - ✓ Interfaces
 - ✓ Padrões
 - √ Estimativas e riscos

Projeto de Software

Espectro de Gerenciamento

O Gerenciamento do Projeto

- O que é um projeto?
 - Um empreendimento com objetivo bem definido, que consome recursos e opera sob pressões de prazos, custos e qualidade

 Projetos tornam-se cada vez maiores e mais complexos Um projeto também pode ser definido como uma atividade multifuncional

- Gerentes de projetos são cada vez mais integradores do que especialistas técnicos
- Ou seja, projeto pode ser definido como:
 - o planejamento
 - a programação
 - o controle de uma série de tarefas integradas

- Tarefas que atinjam seus objetivos com êxito, para benefício dos participantes
- Gestão de projetos bem-sucedida exige:
 - planejamento e controle

- Tal gestão é dita horizontal, e traz consigo mais produtividade, eficiência e eficácia
- Até aqui vimos conceitos sobre gerenciamento para qualquer tipo de projeto

E para gerenciar desenvolvimento de software, é diferente?

• Não, mas há particularidades...

- Precisamos entender:
 - ✓ pessoas
 - ✓ produtos
 - ✓ processos
 - ✓ projeto

Pessoas

People-CMM (People Capability and Maturity Model para RH)

Define que toda organização precisa aprimorar continuamente sua habilidade para atrair, desenvolver, motivar e organizar e reter a força de trabalho necessária para atingir os objetivos estratégicos de seus negócios

> Produtos

Antes de traçar qualquer projeto é importante estabelecermos:

escopo

soluções

restrições técnicas

restrições de gerenciamento

❖ Lembre-se:

Produto é desenvolvido para uma ou um grupo de pessoas

Engenharia de Requisitos pode ajudar muito

➤ Processos

A metodologia que iremos utilizar para o desenvolvimento de software

Atividades-tarefas

Pontos de controle

Artefatos de software

Pontos de garantia de qualidade

> Projeto

Há mais de 30 anos aplicam-se projetos com planejamento e controle, porém, em uma pesquisa entre 1998 a 2004, entre 250 grandes projetos, constatou-se:

25% de projetos com sucesso

50% não cumpriram cronograma, custos e objetivos de qualidade

35% não obtiveram problemas sérios

Apesar dos números, evoluímos muito nos projetos, porém, ainda precisamos melhorar muito

- Pessoas
 - O sucesso de um projeto de software s\u00e3o pessoas
- Produzimos capital intelectual, então precisamos de:
 - especialistas
 - seleção da equipe
 - bom ambiente

- Comprometidos:
 - gerentes
 - líderes técnicos
 - programadores
 - clientes
 - usuários finais

- Líderes:
 - motivação
 - organização
 - ideias e inovação
 - comunicação

Projeto de Software

 Estrutura, Metodologias e Requisitos

Projeto de Software

- Estrutura
 - Metodologia
 - Engenharia de Requisitos
 - Projeto e Arquitetura
 - Projeto de Componentes
 - Projeto de Interfaces
 - Projeto Baseado em Padrões
 - Projeto WebApps

PS - Metodologia

- Metodologia
 - Clássico
 - Incremental
 - Evolucionário
 - Componentes
 - Processo Unificado
 - Desenvolvimento Ágil

PS – Engenharia de Requisitos

- Engenharia de Requisitos
 - Criar software pode ser desafiador, criativo e divertido

 Mas a tarefa de entendimento dos requisitos é ampla

- Concepção
 - Pessoas + Viabilidade + Informações + Solução desejada + COLABORAÇÃO
- Levantamento
 - Problemas de escopo
 - Problemas de entendimento
 - Problemas de volatilidade (mudam)

- Elaboração
 - Criação e refinamento de cenários de usuários
 - Cada cenário pode ser analisado para extração de classes e serviços
 - ✓ Pode-se utilizar diagramas de casos de uso e classes, por exemplo

- Negociação
 - Usuários podem propor necessidades conflitantes
 - Conciliação de conflitos
 - Processo de negociação
 - Priorizações

- Especificação
 - · Documento escrito
 - Gráficos
 - Modelos matemáticos formais
 - Cenários de uso
 - Protótipo
 - Combinação de todos

 SRS é um tipo de especificação de requisitos criado para estabelecer um modelo-guia de especificação de requisitos

✓ SRS:

- 1. Introdução
- 2. Descrição geral
- 3. Características do sistema
- 4. Requisitos de interfaces externas
- 5. Outros requisitos funcionais
- 6. Outros requisitos
- 7. Apêndices

Projeto de Software

 Estrutura, Projeto de Arquitetura e Componentes

PS – Projeto de Arquitetura

- Esse projeto reflete a estrutura de dados e componentes de programa para construção do sistema
- A arquitetura não é o software operacional, mas a representação para análise, alternativas e redução de riscos para construção de software

- Qual a importância?
 - Facilitar a comunicação entre as partes
 - Trabalhar a engenharia do software
 - Modelo compreensível da estrutura do software

- Estilos de arquitetura
 - Centrada em dados
 - Centrada em fluxo de dados
 - Centrada em chamadas e retornos
 - Orientada a objetos
 - Em camadas
 - Em padrões

PS - Projeto de Componentes

 Projeto de Componentes é um conjunto completo de componentes (código) Visão pode ser orientada a objetos (serviços)

 Visão pode ser tradicional (elementos funcionais e estruturas de dados)

 Visão pode ser orientada a processos

Projeto de Software

Interfaces

Cria um meio de comunicação efetivo entre o ser humano e o computador

PS - Interfaces

- Projeto de Interfaces
 - Nas primeiras décadas da era computacional, usabilidade não era preocupação dominante, hoje é essencial

- Regras importantes
 - Deixe o usuário no comando
 - Reduza carga de memória do usuário
 - Interface consistente

- Usabilidade
 - É uma medida do quanto um sistema facilita o aprendizado, ajuda os aprendizes a se lembrarem do que aprenderam, reduz a probabilidade de erros, permite que sistemas se tornem eficientes e criam satisfação de uso do sistema
- Há processos, técnicas e ferramentas para apoiar o projeto de interfaces

 Hoje há uma variedade de interfaces: mobile, WebApps, entre outras O projeto de interface inicia com uma série de tarefas. Definição de perfis de usuários, aplicação de casos de uso, elaboração de tarefas, objetos e análise de fluxos de trabalho

Projeto de Software

Padrões e WebApps

PS - Padrões e WebApps

 Padrão é uma regra de três partes que expressa a relação entre contexto, problema e solução

- Tipos
 - Criacionais
 - Estruturais
 - Comportamentais

- √ Criacionais
 - > Fábrica abstrata
 - > Métodos de fábrica
 - > Construtor
 - > Protótipo
 - ➤ Único

- ✓ Estruturais
 - > Adaptador
 - > Agregação
 - > Ponte
 - > Composição (composite)
 - > Container
 - ➤ Proxy
 - > Tubos e filtros

- > Iterador
- ➤ Mediador
- > Visitante

tabelas

- > Visitante atendimento único
- > Visitante hierárquico

 Não esqueça de documentar os padrões, o que pode ser feito através de descritivo de

- √ Comportamentais
 - > Cadeia de responsabilidades
 - > Comandos
 - > Escutador de eventos
 - > Interpretador

- Tarefas no projeto
 - Examinar modelo de requisitos
 - Desenvolver hierarquia de problemas
 - Determinar padrões cfe linguagem e domínio do problema
 - Critérios de qualidade

- Padrões WebApps
 - Arquitetura de informações
 - Navegação
 - Interação
 - Apresentação
 - Funcionais

PS - Projeto de WebApps

- Segurança
- Disponibilidade
- Escalabilidade
- Tempo para colocação no mercado

- Simplicidade
- Consistência
- Identidade
- Robustez
- Navegabilidade

- Apelo visual
- Compatibilidade
- Projeto de conteúdo

 Não se pode esquecer da fase de gestão da qualidade, com testes de avaliação e verificação

Projeto de Software

Estimativas e Riscos

PS - Estimativas e Riscos

 Estimativas de custo e esforço de software não são parte de uma ciência exata

- Fatores humanos
 - Técnicas
 - Ambientais
 - Políticos
 - ✓ São difíceis de se medir em conjunto

- Estimativas confiáveis podem ser baseadas em:
 - projetos similares completos
 - técnicas de decomposição para gerar estimativas de custo e esforço
 - modelos empíricos para estimativas de custo e esforço

- Técnicas de decomposição
 - Dimensionamento Lógica Fuzzy
 - Dimensionamento de pontos de função
 - Dimensionamento de componentes-padrão
 - Dimensionamento de alteração

- Não importa o quão sofisticada seja a técnica, deve passar por uma verificação cruzada com outra abordagem
- Bom senso e experiência prevalecem

PS – Estimativas e Riscos (Método LOC)

Função	LOC estimado
Interface de usuário e recurso de controle	2.300
Análise geométrica bidimensional	5.300
Análise geométrica tridimensional	6.800
Gerenciamento de base de dados	3.350
Recursos de visualização da computação gráfica	4.950
Função de controle de periféricos	2.100
Módulos de análise do projeto	8.400
Linhas de código estimadas	33.200

- LOC linhas de código com medida-chave
 - Não acomoda linguagens não procedurais
 - Nível de detalhe difícil
 - Penaliza programas bem projetados

PS – Estimativas e Riscos (Método FP)

Valor do domínio	Saídas	Esti- mativa	Consulta	Estimativa computada	Peso	FB computado
Número de entradas externas	20	24	30	24	4	97
Número de saídas externas	12	15	22	16	5	78
Número de consultas externas	16	22	28	22	5	88
Número de arquivos lógico internos	4	4	5	4	10	42
Número de arquivos de interface extern	os 2	2	3	2	7	15
Contagem total						320

Fator	Valor	
Backup e recuperação	4	
Comunicações de dados	2	
Processamento distribuído	0	
Desempenho crítico	4	
Ambiente operacional existente	3	
Entrada de dados on-line	4	
Transações de entrada em múltiplas telas	5	
Arquivos mestres atualizados on-line	3	
Complexidade dos valores dos domínios de informação	5	
Complexidade do processamento interno	5	
Código projetado para reutilização	4	
Conversão/instalação no projeto	3	
Instalações múltiplas	5	
Aplicação projetada para alteração	5	
Fator de ajuste de valor	1,17	
Por fim, é obtido o número estimado de FP:		

PS - Estimativas e Riscos

- FP Orientada à função
 - Determina tamanho e complexidade do software sob perspectiva do usuário
 - Quantifica a funcionalidade proporcionada ao usuário a partir do desenho lógico

- Oferece ferramenta para dimensionar aplicações
- Quantifica custo, esforço e tempo
- Calcula índices de produtividade e qualidade
- Normalização para comparar software

- Outras estimativas
 - Baseada em processos
 - Casos de uso
 - Modelos empíricos
 - COCOMO II
 - 00
 - Métodos ágeis

• Riscos?

- Eles existem para quaisquer tipos de projetos, para Engenharia de Software não é diferente
- Gestão de Riscos: auxilia nas ações que suportam as equipes de software no entendimento do gerenciamento de incertezas

- O risco, independentemente dele ocorrer ou n\u00e3o, deve ser previsto em todo projeto, em especial, em projeto de software
- Riscos de projeto ameaçam o planejamento do projeto, em potencial: orçamento, cronograma, pessoal, recursos, clientes e requisitos

 Riscos técnicos: ameaçam a qualidade e a data de entrega do software a ser produzido.
 Problemas em potencial de projeto, implementação, interface, verificação e manutenção

 Riscos de negócio: ameaçam a viabilidade do software a ser criado, bem como o projeto ou o produto

Component	es	Desempenho	Suporte	Custo	Cronograma	
		Falha em satisfazer em falha da missão	o requisito resultaria	A falha resulta em aumento de custo e atrasos no cronograma com valores previstos que excedem \$ 500 mil		
Catastrófico	2	Degradoção significativa até não cumprimento do desempenho técnico	Software que não responde com agilidade ou que é dificil de dar suporte	Dificuldades financeiras significativas, provável estouro no orçamento	Data de entrega não exequível	
Crítico 2	desempenho do siste	requisito degradară o ama até um ponto no issão é questionável	Falha resulta em atrasos operacionais e/ou aumento de custos com valores estimados entre \$ 100 mil e \$ 500mil			
	2	Alguma redução no desempenho técnico	Pequenos atrasos nas modificações de software	Alguma falta de recursos financeiros, possíveis estouros de orçamento	Possível atraso na data de entrega	
Marginal 2	1	Falha em atender o na degradação de		Custos, impoctos e/ou atrasos de cronograma recuperáveis com valores estimados de \$ 1 mil a \$ 100 mil		
	2	De mínima a pequena redução no desempenho técnico	Suporte responsivo de software	Recursos financeiros suficientes	Cronograma realistico e possivel	
1 1		Falha em atingir o r inconveniência ou li operacional		Erro resulta em pequeno impacto no custo e/ou cronograma com valor esperado de menos de \$ 1 mil		
Negligenciável	2	Nenhuma redução do desempenho técnico	Software facilmente suportável	Possivel sobra no orçamento	Data de entrega pode ser antecipada	

Referências de Apoio

- SOMMERVILLE, Ian. Engenharia de Software. 9. ed. São Paulo: Pearson, 2011.
- PRESMAN, Roger. Engenharia de Software. 7. ed. Porto Alegre: Bookman, 2011.

- PFLEEGER, Shari L. Engenharia de Software: teoria e prática.
 2. ed. São Paulo: Prentice Hall, 2004.
- PAGE-JONES, Meilir.
 Fundamentos do desenho orientado a objeto com UML.
 São Paulo: Pearson, 2001.