Exercices, 1

EXERCICE 1 (Lemme de Slutsky et Delta-méthode). — On se donne $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$ deux suites de variables aléatoires réelles, telles que $X_n \underset{n\to\infty}{\Rightarrow} X$ et $Y_n \underset{n\to\infty}{\Rightarrow} c$, où X est une variable aléatoire réelle et c est une constante.

- 1. Montrer que $Y_n \xrightarrow[n\to\infty]{\mathbb{P}} c$.
- 2. Montrer que $(X_n, Y_n) \underset{n \to \infty}{\Rightarrow} (X, c)$, en déduire que $X_n + Y_n$, $X_n \times Y_n$ convergent respectivement en loi vers X + c et cX.
- 3. Trouver (X_n, Y_n) tel que $X_n \underset{n \to \infty}{\Rightarrow} X$ et $Y_n \underset{n \to \infty}{\Rightarrow} Y$, mais $((X_n, Y_n))_{n \ge 1}$ ne converge pas en loi.
- 4. On suppose maintenant que $(X_n)_{n\geq 1}$ est une suite de variables aléatoires i.i.d, de moyenne μ et de variance σ^2 . Soit g une fonction dérivable en μ , telle que $g'(\mu)\neq 0$. Montrer que

$$\sqrt{n} \left(g(\bar{X}_n) - g(\mu) \right) \underset{n \to \infty}{\Rightarrow} \mathcal{N}(0, \sigma^2 g'(\mu)^2),$$

et en déduire un intervalle de confiance asymptotique au niveau 95% pour $g(\mu)$.

EXERCICE 2. — On se donne Y_1, \ldots, Y_n , i.i.d de moyenne μ et variance σ^2 .

- 1. On suppose μ connu. Donner un estimateur non biaisé de σ^2 .
- 2. On suppose μ inconnu. Calculer l'espérance de $\sum_{i=1}^{n} (Y_i \bar{Y}_n)^2$. En déduire un estimateur non biaisé de σ^2 .

EXERCICE 3. — Un actif financier rapporte $R_n\%$ au jour n; le rendement moyen de cet actif après n époques est donc $\varrho_n = \prod_{i=1}^n (1+X_i)^{1/n} - 1$. On suppose pour simplifier que les R_i sont des variables aléatoires iid à valeurs dans $[-\varepsilon, \varepsilon]$ pour un certain $\varepsilon < 1$.

- 1. Montrer que ϱ_n converge en probabilité vers une constante r.
- 2. Trouver un intervalle de confiance à 95% pour r.

EXERCICE 4. — On suppose que l'on observe X_1, \ldots, X_n i.i.d de loi $\mathscr{P}(\theta)$.

- 1. Montrer que \bar{X}_n est un estimateur non-biaisé de θ . Est-il consistant? Quel est son risque quadratique?
- 2. Montrer que $\sqrt{\bar{X}_n} \xrightarrow[n \to \infty]{\mathbb{P}} \sqrt{\theta}$.
- 3. Donner deux intervalles de confiance au niveau 98% pour $\sqrt{\theta}$, et les comparer.

Exercice 5. — Soient X_1, \dots, X_n , i.i.d. de loi

$$\mu_{\theta}(dx) = \exp(\theta - x) \mathbb{1}_{[\theta, +\infty[}(x)dx, \ \theta > 0.$$

- 1. Calculer $\mathbb{E}_{\theta}[X_1]$ et en déduire un estimateur de θ que l'on notera $\hat{\theta}_n$.
- 2. Étudier le risque quadratique de l'estimateur $\hat{\theta}_n$. $\hat{\theta}_n$ est-il consistant ?
- 3. Donner un intervalle de confiance $I_1(\alpha)$ non-asymptotique pour θ au niveau de risque $0 < \alpha < 1$.

- 4. Construire un intervalle de confiance asymptotique $I_2(\alpha)$ pour θ à partir de $\hat{\theta}_n$.
- 5. Montrer que, pour $x>1/\sqrt{2\pi},\ \int_x^\infty \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}}dt \le e^{-x^2/2},$ puis en déduire une majoration du quantile d'ordre $1-\beta$ de la loi $\mathcal{N}(0,1)$.
- 6. Comparer les longueurs des intervalles de confiance $I_1(\alpha)$ et $I_2(\alpha)$, pour $\alpha \to 0$.
- 7. Montrer que l'estimateur $\theta_n^* := \min_{1 \le i \le n} X_i$ est meilleur que $\hat{\theta}_n$, au sens du risque quadratique.
- 8. Donner un intervalle de confiance $I_3(\alpha)$ pour θ au niveau de risque α , basé sur θ_n^{\star} .
- 9. Comparer les longueurs de $I_2(\alpha)$ et $I_3(\alpha)$ lorsque $n \to \infty$.

EXERCICE 6. — Au cours de la seconde guerre mondiale, l'armée alliée notait les numéros de série X_1, \ldots, X_n de tous les tanks nazis capturés ou détruits, afin d'obtenir un estimateur du nombre total N de tanks produits.

- 1. Proposer un modèle pour le tirage de X_1, \ldots, X_n .
- 2. Calculer l'espérance de \bar{X}_n . En déduire un estimateur non biaisé de N. Indication: la loi de n tirages sans remise est échangeable.
- 3. Étudier la loi de $X_{(n)}$ et en déduire un estimateur non biaisé de N.
- 4. Proposer deux intervalles de confiance de niveau α . On pourra utiliser le fait que l'inégalité de Hoeffding s'applique également aux tirages sans remise.

Remarque d'ordre historique — Selon Ruggles et Broodie (1947, JASA), la méthode statistique a fourni comme estimation une production moyenne de 246 tanks/mois entre juin 1940 et septembre 1942. Des méthodes d'espionnage traditionnelles donnaient une estimation de 1400 tanks/mois. Les chiffres officiels du ministère nazi des Armements ont montré après la guerre que la production moyenne était de 245 tanks/mois.

EXERCICE 7. — 1. On considère (X_1, \ldots, X_n) un échantillon de loi uniforme sur $]\theta, \theta + 1[$.

(a) Donner la densité de la loi de la variable

$$R_n = X_{(n)} - X_{(1)},$$

où
$$X_{(1)} = \min(X_1, \dots, X_n)$$
 et $X_{(n)} = \max(X_1, \dots, X_n)$.

- (b) Étudier les différents modes de convergence de R_n quand $n \to \infty$.
- (c) Étudier le comportement en loi de $n(1-R_n)$ quand $n\to\infty$.
- 2. Soit X_1, \ldots, X_n un échantillon de loi $\mathscr{U}([0, \theta])$, on veut estimer $\theta > 0$.
 - (a) Déterminer un estimateur de θ à partir de \bar{X}_n . On considère l'estimateur suivant : $X_{(n)} = \max_{1 \le i \le n} X_i$.
 - (b) Déterminer les lois limites de ces estimateurs. Que pouvez-vous dire des propriétés de ces estimateurs.
 - (c) Comparer les performances des deux estimateurs.
 - (d) Donner un intervalle de confiance non asymptotique de niveau 1α pour θ .