Ing. Fisica AA.2019-2020 prova del 28-01-2020

Nome:....

Cognome:

Matricola:....

Ai fini della valutazione, consegnare: il presente foglio compilato con nome, cognome, matricola e risultati numerici negli appositi spazi e i fogli protocollo con lo svolgimento dei calcoli.

Problema 1

Il meccanismo ABC rappresentato in figura è costituito da un attuatore idraulico AC, incernierato a terra in A e incernierato ad un corsoio in C. Il corsoio è vincolato a terra mediante un pattino che consente la traslazione orizzontale. Le forze esterne agenti sono la pressione Δp nel pistone (incognita) e la forza di gravità e la forza F applicata in C. Tutte le posizioni e lunghezze sono note. L'area del pistone è $S = 1 m^2$.

Figura 1:

Si chiede di:

- 1. calcolare la velocità e l'accelerazione di allungamento del pistone in funzione della posizione x del corsoio C, e delle sue derivate \dot{x}, \ddot{x} .
- 2. calcolare la velocità e l'accelerazione di G_2 ;
- 3. la pressione Δp .
- 4. le reazioni vincolari in B.

Dati

 $d=0.103~m,\,h=0.021~m,\,AG_1=0.034~m,\,CG_2=BC/2=0.051~m,\,F=245~N,\,J=0.10\,kgm^2,\,m=1.7$ kg, M=3.9kg, x=0.269m, $\dot{x}=2.2~m/s,\,\ddot{x}=2.6~m/s^2.$

Risposte

1.
$$\dot{\Delta \ell} = \dots m/s; \qquad \ddot{\Delta \ell} = \dots m/s^2$$

2.
$$\vec{v}_{G_2} = \dots \vec{i} + \dots \vec{j} \text{ m/s}; \qquad \vec{a}_{G_2} = \dots \vec{i} + \dots \vec{j} \text{ m/s}^2$$

3.
$$\Delta p = \dots$$
 [Pa]

4.
$$\vec{R}_B = \dots \vec{j'}$$
 N; $\vec{M}_B = \dots \vec{k}$ Nm;

Problema 2

Il sistema in figura, posto nel piano orizzontale, è costituito da due corpi rigidi di baricentro G_1 e G_2 e da un disco uniforme. Il corpo G_2 è vincolato a terra mediante un pattino orizzontale. Il corpo G_1 e vincolato al corpo G_2 mediante un pattino orizzontale. Il disco è incernierato a terra al centro O. Una fune inestensibile si avvolge sul disco e collega il corpo G_1 al corpo G_2 . Il corpo G_1 e il corpo G_2 sono anche collegati mediante una molla di rigidezza k. G_2 è anche collegato a terra attraverso uno smorzatore r. Una coppia C(t) è applicata al disco.

Si chiede di:

- 1. Scrivere l'equazione di moto del sistema usando come coordinata libera la traslazione orizzontale x del baricentro G_1 .
- 2. Calcolare la pulsazione propria del sistema non smorzato ω_0 ed il coefficiente di smorzamento h
- 3. Calcolare la risposta a regime nel caso in cui la coppia applicata al disco $C(t) = C_0 \sin(\Omega t)$

Dati

m = 5.4 kg, $M_d = 7.4$ kg, $J_d = 9.2kgm^2$, $J = 8.4kgm^2$, R = 3.4 m, r = 41 Ns/m, k = 9983 N/m, $C_0 = 218.6 Nm$, $\Omega = 21.6 rad/s$,

Risposte

- 1. eq. di moto: $\dots \ddot{x} + \dots \dot{x} + \dots \dot{x} + \dots \dot{x} = \dots \sin(\Omega t)$
- 2. $\omega_0 = \ldots rad/s; \qquad h = \ldots n$
- 3. $x_P(t) = \ldots \sin(\Omega t + \ldots)$

Domande di teoria

Discutere dei seguenti argomenti in maniera discorsiva, facendo eventualmente anche uso di equazioni, di dimostrazioni, di esempi.

- 1. Approccio modale per la soluzione del moto libero di sistemi vibranti a 2-n g.d.l.
- 2. Applicazione del PLV nella dinamica dei sistemi.

SOLUZIONI TRACCIA

PROBLEMA

$$\overline{AC} = \sqrt{X^2 + d^2}$$

$$\overline{dQ} = \frac{d}{X}$$

$$\overline{AC} = \overline{AC}$$

$$(C-A) = (C-D) + (D-A)$$

$$\begin{cases} \overline{AC} \cos 2 = X \\ \overline{AC} \sin 2 = d \end{cases} \Rightarrow \begin{cases} \tilde{X} = Al \cos 2 + Ac(-mix)^{2} \\ 0 = Al \sin 2 + Ac \cos 2 \end{cases}$$

$$\begin{bmatrix} \cos \chi & -\bar{\chi} & \sin \chi \\ \cos \chi & \bar{\chi} & \cos \chi \end{bmatrix} \begin{bmatrix} \mathring{\Delta} \mathring{L} \\ \mathring{\chi} \end{bmatrix} = \begin{bmatrix} \mathring{\chi} \\ \mathring{\chi} \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathring{\Delta} \mathring{L} \\ \mathring{\chi} \end{bmatrix} = \dots$$

$$\overrightarrow{V}_{G2} = \overrightarrow{V}_{C} + \overrightarrow{X} \overrightarrow{K} \wedge \left(G_{z} - C\right)$$

$$\vec{Q}_{GZ} = \vec{Q}_{C} + \vec{Z} \vec{k} \wedge (G_{z} - C) - \vec{Q}^{2}(G_{z} - C)$$

$$(G_2-C) = \overline{CG_2} \left(\cos \left(\alpha + \pi \right) \vec{l} + \infty \left(\alpha + \pi \right) \vec{l} \right)$$

$$\frac{dE_{c}}{dt} = m \vec{V}_{G1} \circ \vec{Q}_{G1} + \vec{J} \cdot \vec{Z} \cdot \vec{Z} + M \vec{V}_{G2} \circ \vec{Q}_{G2} + \vec{J} \cdot \vec{Z} \cdot \vec{Z} + M \vec{V}_{C3} \circ \vec{Q}_{C2}$$

PROBLEMA Z

$$\mathcal{A}_{k} = 2 \times \longrightarrow \mathbb{R}^{*} = 4 \mathbb{R}$$

$$\mathcal{A}_{R} = -\mathring{X} \longrightarrow \mathbb{Z}^{*} = \mathbb{Z}$$

$$m^{*} = \left(m + m + \frac{J}{R^{2}}\right)$$

$$Q = -\frac{C_{0}}{R} \sin st$$