

Exponents

Dylan Yu

February 12, 2021

Contents

1	Introduction	1
	1.1 Definition	1
	1.2 An (easy) example	2
2	Exponent Rules	2
3	Exponents in Number Theory	2
	3.1 Heuristics	3

1 Introduction

These lecture notes will be short. In general, there are two (main) types of problems that appear on ML:

- converting to the same base, like changing 9 and 27 to 3² and 3³, respectively, and
- **number-theoretic problems**, which mostly involve finding the last few digits of some number in the form a^b .

The NT problems require *modular arithmetic*.

1.1 Definition

Exponent

An *exponent* is a symbol written above and to the right of a mathematical expression to indicate the operation of raising to a power.

In other words, in a^b , b is the exponent. An example of raising a number to an exponent or power is 3^2 . All this means is that you are multiplying 3 by itself 2 times, so it's the same thing as $3 \cdot 3$. You can also have 3^{100} which is the same thing as $3 \cdot 3 \cdot 3 \cdot 3 \cdot \dots$, but multiplying 3 by itself a total of 100 times. We can also do the same thing with variables. For example, x^3 is the same thing as $x \cdot x \cdot x$.

1.2 An (easy) example

Example 1.2

Compute 2^3 .

Solution. This means 2 multiplied with itself 3 times, so $2 \times 2 \times 2 = \boxed{8}$.

Q2 Exponent Rules

- 1. (Multiplication) $x^m \cdot x^n = x^{m+n}$
- 2. (Division) $\frac{x^m}{x^n} = x^{m-n}$
- 3. (Power Rule) $(x^m)^n = x^{m \cdot n}$
- 4. $\frac{1}{x^a} = x^{-a}$
- 5. $x^0 = 1$ when $x \neq 0$
- 6. $1^a = 1$
- 7. $x^{\frac{a}{b}} = x^{a \cdot \frac{1}{b}} = \sqrt[b]{x^a}$

Example 2.1

Compute $(2^3)^2$.

Solution. Using the power rule, we get $2^6 = 64$.

Example 2.2

Compute $\frac{(4x^2y^4)^3}{(8xy^3)^2}$.

Solution. The top is $64x^6y^{12}$ and the bottom is $64x^2y^6$, so the answer is x^4y^6 .

Q3 Exponents in Number Theory

Usually, you will see huge exponents and you'll be terrified of that. Here is how to deal with them:

Fact 3.1 (Large Exponents Method). If there is something in the form a^b , where b is large, and we are looking for the units digit, for example, try to find a pattern.

Example 3.2

Find the last two digits of $5^{20202020}$.

Solution. Through testing, we see that $5^2, 5^3, \ldots$ all end in 25, so the answer is 25 (probably).

We'll try some harder examples in the problem set.

Q3.1 Heuristics

A few strategies to apply:

- **follow a pattern**: usually, the problem asks for the last few digits, and these digits will eventually repeat. If you follow the pattern long enough, it should work out.
- apply modular arithmetic: in particular, try reducing the base to a number smaller than the modulo. Manipulation of the exponent requires heavier machinery, like Fermat's Little Theorem or Euler's Totient Theorem.