PCT

世界知的所有権機関国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7

A61K 31/40, 31/422, 31/4439, 31/404, 31/4545, 31/4525, 31/4535, 31/454, 31/427, 31/433, 31/4245, 31/4155, 31/5375, 31/459, 31/506, 31/4184, 31/4178, 31/423, 31/4192, 31/445, 31/429, 31/55, A61P A3/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D 207/14, 207/33, 207/34, 405/06, 405/12, 405/14, 401/06, 401/12, 401/14, 405/06, 401/12, 401/14, 405/06, 401/12, 401/14, 405/06, 401/12, 401/14, 405/06, 401/12, 401/14, 405/06, 401/12, 401/14, 401/

(11) 国際公開番号 A1 WO00/69432

(43) 国際公開日

2000年11月23日(23.11.00)

(21) 国際出願番号

PCT/JP00/03203

(22) 国際出願日

2000年5月18日(18.05.00)

(30) 優先権データ

特願平11/175856

1999年5月18日(18.05.99)

特願平11/251464

1999年9月6日(06.09.99)

(71) 出願人 (米国を除くすべての指定国について) 帝人株式会社(TEIJIN LIMITED)[JP/JP]

〒541-0054 大阪府大阪市中央区南本町1丁目6番7号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

塩田辰樹(SHIOTA, Tatsuki)[JP/JP]

宮城文敬(MIYAGI, Fuminori)[JP/JP]

上村 孝(KAMIMURA, Takashi)[JP/JP]

太田知裕(OHTA, Tomohiro)[JP/JP]

高野泰宏(TAKANO, Yasuhiro)[JP/JP]

堀内秀樹(HORIUCHI, Hideki)[JP/JP]

〒191-0065 東京都日野市旭が丘4丁目3番2号

帝人株式会社 東京研究センター内 Tokyo, (JP)

(74) 代理人

前田純博(MAEDA, Sumihiro)

〒100-0011 東京都千代田区内幸町2丁目1番1号

帝人株式会社 知的財産センター内 Tokyo, (JP)

(81) 指定国 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY,

添付公開書類

国際調査報告書

KG, KZ, MD, RU, TJ, TM)

(54)Title: REMEDIES OR PREVENTIVES FOR DISEASES IN ASSOCIATION WITH CHEMOKINES

(54)発明の名称 ケモカインの関与する疾患の治療薬もしくは予防薬

(57) Abstract

Remedies or preventives for diseases in association with chemokines such as MIP-1α and/or MCP-1. Namely, remedies or preventives for diseases in association with chemokines (rheumatoid arthritis, nephritis, etc.) which contain as the active ingredient cyclic amine derivatives represented by general formula (I), pharmaceutically acceptable acid-adducts thereof, or pharmaceutically acceptable C₁₋₆ alkyl-adducts thereof.

(57)要約

本発明は、 $MIP-1\alpha$ および/またはMCP-1などのケモカインが関与する疾患の治療薬もしくは予防薬を提供する。すなわち、下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分として含有する、慢性関節リウマチ、腎炎などのケモカインが関与する疾患の治療薬もしくは予防薬。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報) AE アラブ音長国連邦 DM ドミニカ KZ カザフスタン RU ロシア

1			
AE アラブ首長国連邦	DM ドミニカ DZ アルジェリア	K2 カザフスタン	RU ロシア
AE アラブ首長国連邦 AG アンティグア・バーブーダ	DZ アルジェリア	LC セントルシア LI リヒテンシュタイン LK スリ・ランカ	SD スーダン
AL アルバニア	EE エストニア ES スペイン FI フィンランド	LI リヒテンシュタイン	SE スウェーデン
AM アルメニア	ES スペイン	LK スリ・ランカ	SG シンガポール
AT オーストリア	FI フィンランド	LR リベリア	S1 300-7
AU オーストラリア	FR フランス	ĪŠ VYĒ	SI スロヴェニア SK スロヴァキア
AZ アゼルバイジャン	GA ガポン GB 英国 GD グレナダ	LR リベリア LS リント LT リトア=ア LU ルクセンブルグ	SI・シェラ・レオネ
BA ボズニア・ヘルツェゴビナ	GB 英国	Ĩ Ü ルクセンブルグ	SL シエラ・レオネ SN セネガル
BB パルバドス	GĎ グレナダ	LV ラトヴィア	SZ スワジランド
BE ベルギー	GF グルジア	MA ÉDÝT	TD チャード
BF ブルギナ・ファソ	GE グルジア GH ガーナ	MC モナコ	TD fr-k TG h-d-
BB バルバドス BE ベルギー BF ブルギナ・ファソ BG ブルガリア	GM ガンピア	MD モルドヴァ	TJ タジキスタン
BJ ベナン	GN ギニア	MG マダガスカル	TM トルクメニスタン
BR ブラジル	GR ギリシャ	MK マケドニア旧ユーゴスラヴィア	TR NA
BY ベラルーシ	GW ギニア・ビサオ	共和国	TR トルコ TT トリニダッド・トバゴ
CA カナダ	HR クロアチア	ML マリ	TZ タンザニア
CF 中央アフリカ	HU ハンガリー	MN モンゴル	ÛΑ ウクライナ
CG コンゴー	ID インドネシア	MR モーリタニア	ŬĠ ゥ゙゙゙゙゙゙゙゙゙゙゙゙゙゚゙゙゙゙ヷ゚゚
CH スイス	1F アイルランド	MW マラウイ	ŬŠ 来国 ´
CI コートジポアール	I L イスラエル I N インド I S アイスランド	MX メキシコ	UZ ウズベキスタン
CM カメルーン	i Ñ インド	M2 モザンビーク	VN ヴェトナム
CM カメルーン CN 中国	IS アイスランド	NE ニジェール	YU ユーゴースラヴィア
CR コスタ・リカ	IT イタリア	NL オランダ	2A 南アフリカ共和国
CU キューバ	JP 日本	NO ノールウェー	ZW ジンパブエ
CY キプロス	KE ケニア	NZ ニュー・ジーランド	2.11 337.72
CZ チェッコ	KG キルギスタン	NZ ニュー・ジーランド PL ポーランド PT ポルトガル	
DE ドイツ	KP 北朝鮮	PT ポルトガル	
DK デンマーク	KR 韓国	RO ルーマニア	
L			

明細書

ケモカインの関与する疾患の治療薬もしくは予防薬

5 技術分野

本発明は環状アミン誘導体に関する。さらに詳しくは、単球、リンパ球などの血液白血球成分の組織への浸潤が病気の進行、維持に主要な役割を演じている動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎(腎症)、多発性硬化症、肺線維症、心筋症、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うっ血性心不全、ウィルス性髄膜炎、脳梗塞、ニューロパシー、川崎病、敗血症、アレルギー性鼻炎、およびアレルギー性皮膚炎などの疾患に対する治療薬および/または予防薬として効果が期待できるケモカイン受容体拮抗剤に関する。

背景技術

15 ケモカインは、6-15kDの分子量をもち、各種の細胞、例えば、マクロファ ージ、単球、好酸球、好中球、線維芽細胞、血管内皮細胞、平滑筋細胞、および肥 満細胞によって炎症部位で産生される一群の炎症/免疫制御ポリペプチドの総称で ある。ケモカインは、4個の保存されたシステイン残基の位置の共通性、およびケ モカインをコードする遺伝子の染色体位置における相違によって、CXCケモカイ 20 λ (または α ケモカイン) とC C C ケモカイン(または β ケモカイン)の二つの大き なサブグループに分類される。CXCケモカインの最初の2個のシステインは、1 個のアミノ酸で隔てられているが、CCケモカインの同じシステインは隣接する。 例えば、IL-8(インターロイキン-8の略称)などはCXCケモカインである 一方、CCケモカインとしてはMIP-1α/β (macrophage inflammatory prote 25 in-1α/βの略称)、MCP-1 (monocyte chemoattractant protein-1の略 称)、および、RANTES (regulated upon activation normal T-cell express ed and secretedの略称) があげられる。

さらに、いずれのケモカイン・サブグループにも属しないケモカインもある。そのようなものとしては、2個のシステインしか持たず、Cケモカインに分類される 30 リンフォタクチン(lymphotactin)や、最初の2個のシステインが3個のアミノ酸によって隔てられていることからCX3Cケモカインに分類され、ムチン構造の中 WO 00/69432

にケモカイン様ドメインを持つフラクタルカイン(fractalkine)があげられる。これらのケモカインは細胞遊走を促進し、インテグリンなどの細胞接着分子の発現増強作用、さらには細胞接着増強作用を有しているので、炎症組織などの病変部位に対する白血球などの接着・浸潤に密接な関連を持つ蛋白性因子と考えられている。

- 参考文献としては、例えば、Vaddi、K. ら著、The Chemokine Facts Book, Academic Press, 1997; Horuk, R. 編、Chemoattractant Ligand and Their Receptors, CRC Press, 1996; Ward, G. W. ら、Biochem. J., 1998, 333, 457; Luster, A. D. 、New E ngl. J. Med., 1998, 338, 436; Bagglioni, M. 、Nature, 1998, 392, 565; Rollin s, B. J. 、Blood, 1997, 90, 909; Alam, R. 、J. Allergy Clin. Immunol., 1997, 9 9, 273; Hancock, W. W. 、Am. J. Pathol., 1996, 148, 681; Taub, D. D. 著、Cyotki ne & Growth Factor Rev., 1996, 7, 335; Strieter, R. M. ら、J. Immunol., 1996, 156, 3583; Furie, M. B. ら、Am. J. Pathol., 1995, 146, 1287; Schall, T. J. ら 著、Current Opinion in Immunology, 1994, 6, 865; Edginton, S. M. 、Biotechnology, 1993, 11, 676などを参照されたい。
- 15 例えば、MIP-1αは、細胞内カルシウムイオン濃度の一過性の上昇を惹起し 、Tリンパ球やBリンパ球の細胞遊走(例えば、Taub, D.D.ら、Science, 1993, 26 0, 355; Shall, T.J.ら、J. Exp. Med., 1993, 177, 1821を参照)、好酸球の細胞 遊走(例えば、Rot, A.ら、J. Exp. Med., 1992, 176, 1489参照)、NK細胞の細 胞遊走(例えば、Magazachi, A.A.ら、J. Immunol., 1994, 153, 4969参照)、イン 20 テグリンの発現(例えば、Vaddi, K.ら、J. Immunol., 1994, 153, 4721参照)、お よび破骨細胞の分化(例えば、Kukita, T.ら、Lab. Invest., 1997, 76, 399参照) を誘導する。 $MIP-1\alpha$ はさらに、B細胞におけるIgEおよびIgG4産生を 増加させ(例えば、Kimata, H.ら、J. Exp. Med., 1996, 183, 2397参照)、また、 造血幹細胞の増殖を抑制する(例えば、Mayani, H.ら、Exp. Hematol., 1995, 23. 25 422; Keller, J. R. S. Blood, 1994, 84, 2175; Eaves, C. J. S. Proc. Natl. Acad . Sci. USA, 1993, 90, 12015; Bodine, D.M. ら、Blood, 1991, 78, 914; Broxmeye r, H.E.ら、Blood, 1990, 76, 1110など参照)。

M I P-1 αの生体内における作用、あるいは疾病の病因との関連性に関しては、ウサギにおいて発熱物質であること(例えば、Davatelis, G. ら、Science, 1989, 243, 1066参照)、マウスの足蹠にM I P-1 αを投与すると好中球、単核球浸潤などの炎症反応を惹起すること(例えば、Alam. R. ら、J. Immunol., 1994, 152, 1

298参照)が報告されている。

また、MIP-1αに対する中和抗体は、肉芽腫(例えば、Lukacs, N.W.ら、J. Exp. Med., 1993, 177, 1551参照)、喘息(例えば、Lukacs, N.W.ら、Eur. J. Imm unol., 1995, 25, 245; Lukacs, N.W.ら、J. Immunol., 1997, 158, 4398参照)、 多発性硬化症(例えば、Karpus、W. J. ら、J. Immunol., 1995, 155, 5003; Karpus, W. J. ら、J. Leukoc. Biol., 1997, 62, 681参照)、突発性肺線維症(例えば、Smi th, R.E.ら、J. Immunol., 1994, 153, 4704; Smith, R.E.、Biol. Signals, 1996, 5. 223参照)、急性肺傷害(例えば、Shanley, T.P.ら、J. Immunol., 1995, 154, 4793; Standiford, T.J.ら、J. Immunol., 1995, 155, 1515参照)、および慢性関 10 節リウマチ(例えば、Kasama, T.ら、J. Clin. Invest., 1995, 95, 2868参照)な どの動物モデルにおいて、抑制効果あるいは治療効果を持つことが報告されており 、 $MIP-1\alpha$ 遺伝子欠損マウスにおいては、コクサッキーウィルス感染惹起心筋 炎やヘルペス間質性角膜炎が抑制されることが報告されている(例えば、Cook, D.N .ら、Science, 1995, 269, 1583;Tumpey, T.M.ら、J. Virology, 1998, 72, 3705参 15 照)。

さらに、慢性肺炎症疾患(例えば、Standiford、T. J. ら、J. Immunol., 1993, 15 1, 2852参照)、過敏性肺炎(例えば、Denis, M. 、Am. J. Respir. Crit. Care Med., 1995, 151, 164参照)、慢性関節リウマチ(例えば、Koch, A. E. ら、J. Clin. I nvest., 1994, 93, 921参照)、感染性髄膜炎(例えば、Lahrtz、F. ら、J. Neuroim munol., 1998, 85, 33参照)、および筋の慢性炎症(例えば、Adams, E. M. ら、Proc. Assoc. Am. Physicians, 1997, 109, 275参照)などの患者においてMIP-1 なの有意な発現が認められている。これらの研究は、MIP-1 なが種々の白血球サブタイプの局所への集積、またそれに伴う炎症性疾患の発症、進展、および維持に深く関与していることを示している。

MCP-1 (別称MCAF (macrophage chemotactic and activating factorの略称)またはJE)は、単球/マクロファージ、平滑筋細胞、線維芽細胞、および、血管内皮細胞によって生産されるCCケモカインであり、単球(モノサイト)(例えば、Valente, A. J. ら、Biochemistry, 1988, 27, 4162; Matsushima, K. ら、J. Exp. Med., 1989, 169, 1485; Yoshimura, T. ら、J. Immunol., 1989, 142, 1956 ; Rollins, B. J. ら、Proc. Natl. Acad. Sci., USA, 1988, 85, 3738; Rollins, B. J. ら、Blood, 1991, 78, 1112; Jiang, Y. ら、J. Immunol., 1992, 148, 2423; Vad

di, K.ら、J. Immunol., 1994, 153, 4721など参照)、メモリーTリンパ球(例えば、Carr, M.W.ら、Proc. Natl. Acad. Sci. USA, 1994, 91, 3652参照)、Tリンパ球(例えば、Loetscher, P.ら、FASEB J., 1994, 8, 1055参照)、およびナチュラルキラー細胞(NK細胞)(例えば、Loetscher, P.ら、J. Immunol., 1996, 156, 322; Allavena, P.ら、Eur. J. Immunol., 1994, 24, 3233参照)などに対し細胞遊走活性および細胞接着増強作用を有する。さらに、MCP-1は好塩基球からのヒスタミン放出因子としての作用を有している(Alam R.ら、J. Clin. Invest., 1992, 89, 723; Bischoff, S.C.ら、J. Exp. Med., 1992, 175, 1271; Kuna, P.ら、J. Exp. Med., 1992, 175, 489参照)。

さらに、単球/マクロファージ、および/またはT細胞の蓄積が病変の発症、進 10 展、維持に深く関与していると考えられる粥状動脈硬化症(例えば、Hayes, I.M.ら 、Arterioscler. Thromb. Vasc. Biol., 1998, 18, 397; Takeya, M.ら、Hum. Path ol., 1993, 24, 534; Yla-Herttuala, S. 5, Proc. Natl. Acad. Sci., USA, 1991, 88, 5252; Nelken, N.A.、J. Clin. Invest., 1991, 88, 1121参照)、慢性関節リ ウマチ(例えば、Koch, A.E.ら、J. Clin. Invest., 1992, 90, 772; Akahoshi, T. 15 ら、Arthritis Rheum., 1993, 36, 762; Robinson, E. ら、Clin. Exp. Immunol., 1 01, 398参照)、腎炎(例えば、Noris, M. ら、Lab. Invest., 1995, 73, 804; Wada , T.ら、Kidney Int., 1996, 49, 761; Gesualdo, L.ら、Kidney Int., 1997, 51, 155参照)、腎症(例えば、Saitoh, A.ら、J. Clin. Lab. Anal., 1998, 12, 1; Yo 20 koyama, H.ら、J. Leukoc. Biol., 1998, 63, 493参照)、肺線維症、肺サルコイド ーシス(例えば、Sugiyama, Y. ら、Internal Medicine,1997,36,856参照)、喘 息(例えば、Karina, M.ら、J. Invest. Allergol. Clin. Immunol., 1997, 7, 254 ; Stephene, T.H., Am. J. Respir. Crit. Care Med., 1997, 156, 1377; Sousa, A .R.ら、Am. J. Respir. Cell Mol. Biol., 1994, 10, 142参照)、多発性硬化症(例えば、McManus, C. ら、J. Neuroimmunol., 1998, 86, 20参照)、乾癬(例えば、 25 Gillitzer, R.ら、J. Invest. Dermatol., 1993, 101, 127参照)、炎症性腸疾患(例えば、Grimm,M.C.ら、J. Leukoc. Biol., 1996,59,804;Reinecker,H.C.ら、 Gastroenterology, 1995, 106, 40参照)、心筋症(例えば、Seino, Y.ら、Cytokin e, 1995, 7, 301参照)、子宮内膜症(例えば、Jolicoeur, C.ら、Am. J. Pathol., 1998, 152, 125参照)、腹腔内癒着(例えば、Zeyneloglu, H.B.ら、Human Reprod 30

uction, 1998, 13, 1194参照)、うっ血性心不全(例えば、Aurust, P.ら、Circula

5

tion, 1998, 97, 1136参照)、慢性肝疾患(例えば、Marra, F. ら、Am. J. Pathol., 1998, 152, 423参照)、ウイルス性髄膜炎(例えば、Lahrtz, F. ら、Eur. J. Immunol., 1997, 27, 2484参照)、川崎病(例えば、Wong, M. ら、J. Rheumatol., 1997, 24, 1179参照)、および敗血症(例えば、Salkowski, C. A. ら、Infect. Immun., 1998, 66, 3569参照)においてMCP-1の顕著な発現が報告されている。

5

10

15

また、抗MCP-1 抗体による抑制効果または治療効果が、慢性関節リウマチ(例えば、Schimmer, R. C. ら、J. Immunol., 1998, 160, 1466; Schrier, D. J.、J. Leukoc. Biol., 1998, 63, 359; Ogata, H. ら、J. Pathol., 1997, 182, 106参照)、多発性硬化症(例えば、Karpus, W. J.、J. Leukoc. Biol., 1997, 62, 681参照)、野炎(例えば、Lloyd, C. M. ら、J. Exp. Med., 1997, 185, 1371; Wada, T. ら、FASEB J., 1996, 10, 1418参照)、喘息(例えば、Gonzalo, J. -A. ら、J. Exp. Med., 1998, 188, 157; Lukacs, N. W., J. Immunol., 1997, 158, 4398参照)、粥状動脈硬化症(例えば、Guzman, L. A. ら、Circulation, 1993, 88 (suppl.), 1-371)、遅延型過敏症(例えば、Rand, M. L. ら、Am. J. Pathol., 1996, 148, 855参照)、肺高血圧症(例えば、Kimura, H. ら、Lab. Invest., 1998, 78, 571参照)、および、腹腔内癒着(例えば、Zeyneloglu, H. B. ら、Am. J. Obstet. Gynecol., 1998, 17

さらには、MCP-1 のペプチド性拮抗剤であるMCP-1 (9-76) もマウスモデルにおいて関節炎を抑制することが報告されており(例えば、Gong, J.-H.、I. Fyp. Med. 1997, 186, 131 参照) 同様に <math>MCP-1 潜伝子が担マウスにお

20 J. Exp. Med., 1997, 186, 131参照)、同様に、MCP-1遺伝子欠損マウスにおける研究でも、生体内においてMCP-1が、単球動員に必須であることが示されている(例えば、Lu, B.ら、J. Exp. Med., 1998, 187, 601; Gu, L.ら、Moll. Cell, 1998, 2, 275参照)。

9,438参照)などの動物モデルにおいて報告されている。

これらのデータから、MIP-1 αやMCP-1などのケモカインは、単球、リンパ球などを病変部位に集積させ、それらの細胞を活性化することにより、単球、リンパ球などが病変の進展に深く関わっていると想定され得る疾患、例えば、粥状動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎(腎症)、多発性硬化症、肺線維症、心筋炎、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うっ血性心不全、ウィルス性髄膜炎、脳梗塞、ニューロパシー、川崎病、および敗血症などの発症、進展、維持に深く関与していることが強く示唆されている(例えば、Rovin, B.H.ら、Am. J. Kidney. Dis., 1998, 31, 1065; Lloyd, C.

ら、Curr. Opin. Nephrol. Hypertens., 1998, 7, 281; Conti, P. ら、Allergy and Asthma Proc., 1998, 19, 121; Ransohoff, R. M. ら、Trends Neuroscience., 1998, 21, 154; MacDermott, R. P. ら、Inflammatory Bowel Diseases, 1998, 4, 54参照)。したがって、標的細胞に対するケモカインの作用を阻害する薬剤は、これらの疾病の治療薬および/または予防薬として有用であることが期待できる。

一方、ケモカインに対する特異的受容体をコードする遺伝子のクローニングがす すみ、種々の白血球上に存在するG蛋白共役型の7回膜貫通型受容体であることが 明らかになった。これまでに、少なくとも5個のCXCケモカイン受容体(CXC R1-CXCR5)と8個のCCケモカイン受容体(CCR1-CCR8)が特定 10 されている。例えば、IL-8はCXCR1とCXCR2のリガンドであり、MI P-1 αはCCR1とCCR5のリガンドであり、MCP-1はCCR2AとCC R2Bのリガンドである(例えば、Holmes, W.E.ら、Science 1991, 253, 1278-128 0; Murphy, P. M. 5, Science, 253, 1280-1283; Neote, K. 5, Cell. 1993, 72, 41 5-425; Charo, I. F. S. Proc. Natl. Acad. Sci. USA, 1994, 91, 2752-2756; Yama gami, S. S. Biochem. Biophys. Res. Commun., 1994, 202, 1156-1162; Combadier 15 , C.ら、The Journal of Biological Chemistry, 1995, 270, 16491-16494; Power, C. A. S. J. Biol. Chem., 1995, 270, 19495-19500; Samson, M. S. Biochemistry , 1996, 35, 3362-3367; Murphy, P.M. 5, Annual Review of Immunology, 1994, 1 2, 592-633参照)。

20 さらに、CCR1遺伝子欠損マウスにおいて肺炎症と肉芽形成が抑制されること (例えば、Gao, J.-L.ら、J. Exp. Med., 1997, 185, 1959; Gerard, C.ら、J. Cli n. Invest., 1997, 100, 2022参照)、およびCCR2遺伝子欠損マウスマにおいて マクロファージの集積と動脈硬化病変の形成が減少すること (例えば、Boring, L.ら、Nature, 1998, 394, 894; Kuziel, W.A.ら、Proc. Natl. Acad. Sci., USA, 19 97, 94, 12053; Kurihara, T.ら、J. Exp. Med., 1997, 186, 1757; Boring, L.ら、J. Clin. Invest., 1997, 100, 2552参照)が報告されている。したがって、MI P-1 αおよび/またはMCP-1などのケモカインのこれら受容体に対する結合を阻害する化合物、すなわちケモカイン受容体拮抗剤は、標的細胞に対するMIP -1 αおよび/またはMCP-1などのケモカインの作用を阻害する薬剤として有 用であることが期待できるが、そのような作用を有する薬剤は知られてない。

最近、種々のピペリジン、ピペラジンなどの環状アミン誘導体がケモカイン受

容体拮抗作用を有することが報告されている(例えば、WO9724325; Hesse Igesser, J. ら、J. Biol. Chem., 1998, 273, 15687; Howard, O.M. Z. ら、J. Med. Chem., 1998, 41, 2184; WO9744329; WO9802151; WO980454; WO9825605; WO9825617; WO9825604; WO9831364; WO9856771; WO99909984; WO9904794; WO9917773; WO9937617; WO99937619; WO9737651; WO9938514; WO200014086; WO200014089; EP903349; JP9-249566; JP9-25572; JP11-71350など参照)。しかしながら、これらの化合物は本発明で用いられる化合物とは異なる。

発明の開示

5

10

15

20

 $MIP-1\alpha$ および/またはMCP-1などのケモカインの標的細胞上の受容体に対する結合を阻害する活性を有する低分子化合物を用いて、 $MIP-1\alpha$ および/またはMCP-1などのケモカインが標的細胞上の受容体に結合することが病因の一つであるような疾患の治療法を提供することが本発明の目的である。

本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得る C_1-C_6 アルキル付加体、または薬学的に許容され得る酸付加体が、MIP-1 α および/またはMCP-1 などのケモカインの標的細胞に対する結合を阻害する活性を有することを発見し、さらにはそれらの化合物が、MIP-1 α および/またはMCP-1 などのケモカインが関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、本発明を完成するに至った。

すなわち、本発明は、下記式(I)

25

30 [式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、または、 $^{\circ}$ プロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基

を表す。かかる R^1 におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_3-C_8 アルキレン基、 C_2-C_6 アルキレン基、 C_2-C_4 アルキレンオキシ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベングイルアミノ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノ

- 10 、 C_2-C_7 アルカノイル基、 C_2-C_7 カルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_4-C_9 N-シクロアルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、 C_3-C_8 (アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル
- 基、式:-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される2価基、アミノ基、モノ(C $_1$ -C $_6$ アルキル)アミノ基、またはジ(C $_1$ -C $_6$ アルキル)アミノ基で置換されていてもよく、これらのフェニル基、C $_3$ -C $_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C $_1$ -C $_6$ アルキル基、または C_1 -C $_6$ アルコキシ基によってさらに置換されていてもよい。

 R^2 は水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表す。かかる R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個ののハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のと

25 きは、 R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

kは0-2の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

 R^3 は水素原子または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、または $C_1 - C_6$ アルコキシ基によって置換されて

いてもよい1または2個のフェニル基)によって置換されていてもよい C_1 - C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表す。かかるR⁴およびR⁵におけるC₁-C₆アルキル 基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル 5 基、カルバモイル基、メルカプト基、グアニジノ基、CューC。シクロアルキル基、 C₁-C₆アルコキシ基、C₁-C₆アルキルチオ基、(任意個のハロゲン原子、ヒド ロキシ基、C₁-C₆アルキル基、C₁-C₆アルコキシ基、もしくはベンジルオキシ 基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基 、ベンジルオキシカルボニル基、C。-C,アルカノイル基、C。-C,アルコキシカ 10 ルボニル基、C₂-C₁アルカノイルオキシ基、C₂-C₁アルカノイルアミノ基、C 。- C, N-アルキルカルバモイル基、C, - C, アルキルスルホニル基、アミノ基、 モノ $(C_1 - C_6 アルキル)$ アミノ基、ジ $(C_1 - C_6 アルキル)$ アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有す る芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により 15 置換されていてもよく、あるいはR⁴およびR⁵は両者一緒になって3-6員環状炭 化水素を形成してもよい。

pは0または1を表す。

qは0または1を表す。

- Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は水素原子または C_1-C_6 アルキル基を表すか、あるいは R^7 は R^5 と一緒になって C_2-C_5 アルキレン基を形成してもよい。
- 25 R^6 はフェニル基、 $C_3 C_8$ シクロアルキル基、 $C_3 C_6$ シクロアルケニル基、ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表す。かかる R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 $C_3 C_8$ シクロアルキル基、 $C_3 C_6$ シクロアルケニル基、ベンジル基、芳香族複素環基、ま

たは縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、 ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチ ル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 $C_1 - C_6$ アルキルチオ 基、C₁−C₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ 基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基 、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボ 二ル基、C2-C7アルカノイルオキシ基、C2-C7アルカノイルアミノ基、C2- C_7N -アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバ モイル基、N, N-ジ (C_1 - C_6 アルキル) スルファモイル基、アミノ基、モノ (10 $C_1 - C_6$ アルキル)アミノ基、ジ($C_1 - C_6$ アルキル)アミノ基、ベンジルアミノ 基、C2-C7(アルコキシカルボニル)アミノ基、C1-C6(アルキルスルホニル) アミノ基、またはビス ($C_1 - C_6$ アルキルスルホニル) アミノ基により置換され ていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個の 15 ハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、モノ(C_1 - C_6 ₆アルキル)アミノ基、またはジ(C₁-C₆アルキル)アミノ基によってさらに置換 されていてもよい。]

20 で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 - C_6$ アルキル付加体を有効成分とする、ケモカインもしくはケモカインレセプターが関与する疾患の治療薬もしくは予防薬である。

ここに上記式 (I) で表される化合物は、 $MIP-1\alpha$ および/またはMCP-1などのケモカインの標的細胞に対する結合を阻害する活性、および $MIP-1\alpha$ および/またはMCP-1などのケモカインの標的細胞への生理的作用を阻害する活性を有する。

図面の簡単な説明

25

図1は、化合物番号1583を12週間経口投与した場合の関節炎に対する効果 30 を示す図である。

図2は、化合物番号1583の滑膜の増殖に対する効果を示す図である。

図3は、化合物番号1583の関節軟骨の破壊に対する効果を示す図である。

図4は、化合物番号1583の軟骨下骨の骨破壊に対する効果を示す図である。

図5は、化合物番号1245を3週間経口投与した場合の後肢足蹠腫脹に対する 効果を示す図である。

5 図6は、化合物番号1583の尿蛋白抑制効果を示す図である。

図7は、化合物番号1245の尿蛋白抑制効果を示す図である。

図8は、化合物番号1583の慢性再発性実験的アレルギー性脳脊髄炎動物モデルにおける効果を示す図である。

図9は、化合物番号1245の慢性再発性実験的アレルギー性脳脊髄炎動物モデ 10 ルにおける効果を示す図である。

発明を実施するための最良の形態

上記式(I)において、R¹はフェニル基、C₃-C₃シクロアルキル基、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ベン 15 ゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子 を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、上記R¹ におけるフェニル基、C3-C8シクロアルキル基、芳香族複素環基、または縮合環 は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基 20 、カルバモイル基、C、-C。アルキル基、C、-C。シクロアルキル基、C。-C。ア ルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレ ン基、C2-C4アルキレンオキシ基、C1-C3アルキレンジオキシ基、フェニル基 、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルア ルカノイルオキシ基、C。-C,アルカノイルアミノ基、C。-C,N-アルキルカル 25 バモイル基、C₄-C₆N-シクロアルキルカルバモイル基、C₁-C₆アルキルスル ホニル基、C3-C8(アルコキシカルボニル)メチル基、N-フェニルカルバモイ ル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカル ボニル基、式:-NH(C=O)O-で表される2価基、式:-NH(C=S)O 30 ーで表される2価基、アミノ基、モノ(C, - C, アルキル)アミノ基、またはジ(C₁-C₆アルキル) アミノ基でさらに置換されていてもよい。

 R^1 における「 C_3 - C_8 シクロアルキル基」とは、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシル基などが挙げられる。

5 R¹における「ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基」とは、例えばチエニル、フリル、ピロリル、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

R¹における「縮合環」とは、上記フェニル基または芳香族複素環基がベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としてはナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンゾフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

なかでもR¹は、フェニル基、イソオキサゾリル基、またはインドリル基である場 20 合が特に好ましい。

 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを意味し、その好適な具体例としてはフッ素原子、塩素原子、臭素原子が挙げられる。

 R^1 の置換基としての「 C_1-C_6 アルキル基」とは、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、イソプロピル、イソブチル、n-ペンチル

 R^1 の置換基としての「 $C_3 - C_8$ シクロアルキル基」は、前記 R^1 における「 $C_3 - C_8$ シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 C_2-C_6 アルケニル基」とは、例えばビニル、アリル、10 ープロペニル、2-ブテニル、3-ブテニル、2-メチル-1-プロペニル、4-ペンテニル、5-ヘキセニル、4-メチル-3-ペンテニル基などの C_2 - C_6 の直鎖または分枝状のアルケニル基を意味し、その好適な具体例としてはビニル基および2-メチル-1-プロペニル基などが挙げられる。

 R^1 の置換基としての「 C_1-C_6 アルコキシ基」とは、前記 C_1-C_6 アルキル基 2 とオキシ基とからなる基を意味し、その好適な具体例としてはメトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルチオ基」とは、前記 $C_1 - C_6$ アルキル基とチオ基とからなる基を意味し、その好適な具体例としてはメチルチオ基、エチルチオ基などが挙げられる。

 R^4 の置換基としての「 C_3-C_5 アルキレン基」とは、例えばトリメチレン、テトラメチレン、ペンタメチレン、1-メチルトリメチレン基などの C_3-C_5 の2価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 C_2-C_4 アルキレノキシ基」とは、例えばエチレンオキシ $(-CH_2CH_2O-)$ 、トリメチレンオキシ($-CH_2CH_2CH_2O-)$ 、テトラ メチレンオキシ($-CH_2CH_2CH_2CH_2O-)$ 、1, 1-ジメチルエチレンオキ シ ($-CH_2C(CH_3)_2O-)$ 基などの、 C_2-C_4 の2価アルキレン基とオキシ 基とからなる基を意味し、その好適な具体例としてはエチレンオキシ基、トリメチレンオキシ基などが挙げられる。

 R^1 の置換基としての「 C_1-C_3 アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH$ (CH_3)O-)基などの C_1-C_3 の2価アルキレン基と2個のオキシ基とからなる基を意味し、その好適な具体例としてはメチレンジオキシ基、エチレンジオキシ基などが挙げられる。

R¹の置換基としての「C₂-C₂アルカノイル基」とは、例えばアセチル、プロパ

ノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルブタノイル、2-メチルプタノイル、ピバロイル、4-メチルペンタノイル、3, 3-ジメチルプタノイル、5-メチルヘキサノイル基などの C_2-C_7 の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としてはアセチル基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルコキシカルボニル基」とは、前記 C_1-C_6 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としてはメトキシカルボニル基、エトキシカルボニル基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルオキシ基」とは、前記 C_2-C_7 ア ルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルアミノ基」とは、前記 C_2-C_7 アルカノイル基とアミノ基とから成る基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルキルカルバモイル基」とは、前記 C_1-C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 C_4 - C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3 - C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な

20 具体例としては、N-シクロペンチルカルバモイル基、N-シクロヘキシルカルバ モイル基などが挙げられる。

 R^1 の置換基としての「 C_1 - C_6 アルキルスルホニル基」とは、前記 C_1 - C_6 アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

 R^1 の置換基としての「 $C_3 - C_8$ (アルコキシカルボニル)メチル基」とは、前記 $C_2 - C_7$ アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具 体例としては、(メトキシカルボニル)メチル基、(エトキシカルボニル)メチル 基などが挙げられる。

 R^1 の置換基としての「モノ(C_1-C_6 アルキル)アミノ基」とは、前記 C_1-C_6 30 6アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

 R^1 の置換基としての「ジ(C_1-C_6 アルキル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル- N-メチルアミノ基などが挙げられる。

上記の中でも、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素 環基、または縮合環の置換基としては、Nロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ 基、 C_2-C_4 アルキレンオキシ基、メチレンジオキシ基、N-フェニルカルバモイ ル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基を特に好ましい具体例として挙げることができる。

さらに、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、または $C_1 - C_6$ アルコキシ基によってさらに置換されていてもよい。ここで、ハロゲン原子、 $C_1 - C_6$ アルキル基、および、 $C_1 - C_6$ アルコキシ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

15

20

25

30

上記式(I)において、 R^2 は水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個ののハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

 R^2 における C_1-C_6 アルキル基および C_2-C_7 アルコキシカルボニル基は、R1におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^2 における C_1-C_6 アルキル基またはフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

なかでもR²は、水素原子を表す場合が特に好ましい。

上記式(I)において、jは0-2の整数を表す。jは0である場合が特に好ましい。

上記式(I)において、kは0-2の整数を表し、mは2-4の整数を表す。なかでもkが0であり、mが3である場合の2-置換ピロリジン、kが1であり、mが2である場合の3-置換ピロリジン、kが1であり、mが3である場合の3-置換ピペリジン、kが2であり、mが2である場合の4-置換ピペリジン、またはkが1であり、mが4である場合の3-置換へキサヒドロアゼピンが特に好ましい。上記式(I)において、nは0または1を表す。

10 特に、kが1でmが2であり、nが0である場合の3-アミドピロリジン、および、kが2であり、mが2であり、nが1である場合の4-(アミドメチル)ピペリジンを特に好ましい例として挙げることができる。

上記式(I)において、 R^3 は水素原子または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^3 における C_1-C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基が挙げあげられる。

 R^3 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

なかでも、R³は水素原子である場合が特に好ましい。

30

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または C_1-C_6 アルキル基を表し、 R^4 および R^5 における C_1-C_6 アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 C_3-C_8 シクロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、(任意個のハ

17

ロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは R^4 および R^5 は両者一緒になって3-6員環状炭化水素を形成してもよい。

 R^4 および R^5 における C_1 - C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 - C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における $C_1 - C_6$ アルキル基の置換基としてのハロゲン原子、 C_1 $- C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイルボニル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N-アルキルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、モノ($C_1 - C_6$ アルキル)アミノ基、および、ジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としての C_3-C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

25

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体30 例として挙げることができる。

R⁴、R⁵およびその隣接炭素原子とからなる「3-6員環状炭化水素」の好適な

25

具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロ ヘキサンなどが挙げられる。

なかでも、水素原子と $C_1 - C_6$ アルキル基を、 R^4 と R^5 の特に好ましい例として挙げることができる。

5 上記式(I) において、pは0または1を表し、qは0または1を表す。pとqがともに0であることが特に好ましい。

上記式 (I) において、Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-$ CO-、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7 -SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH-

10 で表される基を表す。ここで、 R^7 は水素原子または $C_1 - C_6$ アルキル基を表すか、あるいは R^7 は R^5 と一緒になって $C_2 - C_5$ アルキレン基を形成してもよい。

ここで、-CO-はカルボニル基を、 $-SO_2-$ はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば $-NR^7-$ CO-および-NH-CO-NH-で表される基などが挙げられる。

 R^7 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^5 と R^7 とからなる「 C_2 - C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 - C_5 の直鎖または分枝状アルキレン基を意味し、その好適な

具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。 なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、 R^6 はフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、

30 芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基

20

、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2 - C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_3-C_8 シクロアルキルオキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、

5 フェニルスルホニル基、 $3-フェニルウレイド基、C_2-C_7$ アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、N,N-ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、グンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、またはビス(C_1-C_6 アルキルスルホニル)ア

ミノ基により置換されていてもよい。

 R^6 における C_3 - C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基、および縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^6 における「 C_3 - C_8 シクロアルケニル基」とは、例えばシクロプテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロオクテニル基など環状アルケニル基を意味し、その好適な具体例としては1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。

なかでも、R⁶としてはフェニル基、フリル基、およびチエニル基を特に好ましい例として挙げることができる。

 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子 $C_1 - C_6$ アルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_1 - C_6$ アルキレンジオキシ基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイル基、 $C_2 - C_7$ アルカノイルボニル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ アルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 $C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 $C_1 - C_6$ アルキル)アミ

好適な具体例として挙げることができる。

 R^6 の置換基としての $C_3 - C_8$ シクロアルキル基は、前記 R^1 における $C_3 - C_8$ シクロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての「 C_3-C_8 シクロアルキルオキシ基」とは、前記 C_3-C_8 シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基などを挙げることができる。

 R^6 の置換基としての「N, N-ジ(C_1-C_6 アルキル)スルファモイル基」とは 、同一または異なった 2 つの前記 C_1-C_6 アルキル基によって置換されたスルファモイル基を意味し、その好適な具体例としては、例えば N, N-ジメチルスルファモイル基、N, N-ジエチルスルファモイル基、N-エチル-N-メチルスルファモイル基などが挙げられる。

 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記・ C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具体例としては、例えば(メトキシカルボニル)アミノ基、(エトキシカルボニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「 C_1-C_6 (アルキルスルホニル)アミノ基」とは、前記 C_1-C_6 アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては(メチルスルホニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同一または異なった 2 つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基などを挙げることができる。

25 なかでも、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、メルカプト基、ニトロ基、チオシアナト基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、フェニル基、フェニルスルホニル基、 $C_2 - C_7$ アルカノイルアミノ基、アミノ基などを特に好ましい例として挙げる30 ことができる。

かかる R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロア

ルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によってさらに置換されていてもよい。

5

10

15

20

 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルキルチオ基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のケモカインの標的細胞上の受容体への結合を阻害する医薬、あるいはケモカインの標的細胞上への結合を阻害する作用をもつ医薬、さらにはケモカインもしくはケモカインレセプターが関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、カプセル剤などが挙げられる。

25 錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤; カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結 合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなど の崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形 30 することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどの グリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に

2 2

よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

5

25

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は 10 、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤 は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの 乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる

15 本発明で用いられる環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢と性別、および、疾患の程度などによって異なるが、通常成人一人当たり1-500mg/日である。

上記式 (I) の環状アミン誘導体の好適な具体例として、以下のTable1 20 . 1-1. 206に示される各置換基を含有する化合物を挙げることができる。

Table1.1-1.206において、「Table」は「表」を意味し、「Compd. No.」は「化合物番号」を意味し、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「-」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

T	а	b	ì	e	1	١.	1

	•••						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1	CH-CH2-	1	2	0	•	Н	- CH ₂ - N- C-
2	CH-CH2-	1	2	0	· -	н	- CH ₂ -N-C-CH ₃
3	C├	1	2	.0		н	- CH ₂ -N-C-⟨
4	CH-CH ₂ -	1	2	0	. -	Н	- CH ₂ -N-C-CF ₃
5	CHCH2-	1	2	0	s .	н	- CH ₂ - N C-CF ₃
6	CH-2-	1	2	0	S	н	-CH ₂ -N-C
7.	С├-(СН₂-	1	2	0	S	н	- CH ₂ -N-C-✓S
8	С⊢С СН₂-	1	2	0	S	н	-CH ₂ -N-C
9	С├-СН₂-	1	2	0	S	Н	- CH ₂ -N-C
10	CH-2-	1	2	0	S	Н	- CH ₂ -N-C
11	CHCH2-	1	2	0	S .	Н	-CH ₂ -N-C-OCH ₃

Table 1.2

lable	1.2						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	¹ R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
12	С├── СН₂-	1	2	0	S	Н	-CH ₂ -N-C
13	CH ₂ -	1	2	0	S	н	- CH ₂ -N-CF ₃
14	C├ - CH ₂ -	1	2	0	S	н .	-CH ₂ -N-C- CH ₃
15	C├ \(\bigcirc CH ₂ -	. 1	2	0	S	н	-CH2-N-C-
16	CH-CH ₂ -	. 1	2	0	S	н	-CH ₂ -N C → OCH ₃
17	CH-CH ₂ -	1	2	0	S	н	- CH ₂ - N- C-
18	CH-CH ₂ -	1	2	0	S	н	- CH ₂ -N-C-✓CN
19	CH2-	1	2	0	S	Н	-CH2-NC
20	C├ - CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C
21	CI—CH₂-	1	2	0	S	Н	- CH ₂ -N-C-CF ₃
22	C├ - CH ₂ -	1	2	0	S	н	$-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{2}-NC$ $-CH_{3}$

Table 1.3	ı a	ום	е	7	٠.
-----------	-----	----	---	---	----

Table '	1.3						•
Compd.	R ¹ (CH ₂)	k	m	n	chirality .	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
23	CH-€-	1	2	0	S	Н	-CH ₂ -N C CF ₃
24	C├ -	1	2	0	S	н	- CH ₂ -N-C-OCF ₃
25	CHCH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-F
26	CHCH2-	1	2	0	S	Н	$-CH_2-N$ O O O_2 O_2 O
27	CHZ-CHz-	1 .	. 2	0	S	н	-CH ₂ -NCNO ₂
28	CH2-	1	2	O	S	Н	- CH ₂ - N C- NO ₂
29	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
30	C├─ੑੑੑੑੑ CH₂-	1	2	0	R	Н	-CH ₂ -N-C
31	C⊢(CH ₂ -	1	2	o .	R	н	CH ₂ -N-C
32	CH-2-	1	2	0	R	н	- CH ₂ -N-C
33	С⊢√СН₂-	1	2	0	R	н	- CH ₂ - N C CI

Τa	b	le	1	.4
----	---	----	---	----

lable	1.4						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. H3	$-(CH_2)_{p} + \frac{R^4}{R^5}(CH_2)_{q} G - R^6$
34	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCH ₃
35	CI—(1	2	0	R	Н	- CH ₂ - № С — ОСН ₃
36	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCH ₃
37	CHCH ₂ -	1	2	0	R	н	- CH ₂ - N- C-
38	CHCH2-	1	2	. 0	R	Н	-CH ₂ -N-C-CH ₃
39	CH2-	1	2	0	R	H	- CH ₂ -N C-CI
40.	CHCH_2-	1	2	0	R	н	- CH ₂ -N-C
41	C├─ੑ_CH₂-	1	2	0	R	н	- CH ₂ - N- C-
42	С⊢СН₂-	1	2	0	R	н	- CH ₂ - N- C- CN
43	С⊢-{СН₂-	1	2	0	R	н	· - CH ₂ -N-C
44	С⊢-{СН₂-	1	2	0	R	н	-CH ₂ -N-CF ₃

Table 1.5

rable	1.5						
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	. H ₃	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
45	С⊢√СН₂-	1	2		R	Н	- CH ₂ -N-C
46	CH-2-	1	2	0	R	. Н	- CH ₂ -N-C
47	CH2-	1	. 2	0	R	Н	-CH ₂ -N-C-COCF ₃
48	С⊢—СН₂-	1	2	0	R	н :	-CH ₂ -N-C
49	с⊢(сн₂-	1	2	0	R	н	$-CH_2-NC$ O_2 O_2 N
50	С⊢—СН₂-		2	0	R ·	H	- CH ₂ - N C - CF ₃
51	СН-СН2-	1	2	0	R _.	н	-CH ₂ -N-C
52	.C⊢————————————————————————————————————	1	2	0	R	· н	-CH ₂ -N-C-
53	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-CI
54	С⊢—СН₂-	1	2	0	R	· н	-CH2-N-C-
55	C⊢√CH ₂ -	1	2	0	R	н	-CH2-NC-CI

Table 1.6

Table 1	1.6						
Compd.	R ¹ (CH ₂) _j -	. k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
56	CH-CH ₂ -	1	2	0	R	Н	- CH ₂ - N- C
57	CH-CH ₂ -	1	2.	0	R	н	-CH ₂ -N-C-
58	CH-CH ₂ -	1	2	0	R	Н	- CH ₂ - N- C-
59	C├ ─ CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C
60	CHCH ₂ -	1	2	0	R.	н	-CH ₂ -N-C-
61	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
62	C├ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
. 63	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
64	CHCH ₂ -	1	2	0	R	н	-CH2-NC
65	CH-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
66	C	1.	2	0	R	Н	- CH ₂ -N-C-

T	a	b	i	е	1		7
---	---	---	---	---	---	--	---

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
67	CH-CH2-	1	2	0	R	Н .	- CH ₂ -NC
68	С├-{Сн₂-	1	2	0	R	Ĥ	-CH ₂ -N-C
69	CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-F
70	CH	1	2	0	R ;	Н	- CH ₂ - N- C- F
71	CHCH ₂ -	1	2	0	R	. н	$-CH_2-NC H_3CO$ OCH_3
72	CH2-	1	- 2	0	R	Н	-CH ₂ -N-C
73	C⊢Ç,—CH₂-	1	2	0	R	н	$-CH_2-NC$ F_3CO
74	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CO ₂ CH ₃
75	CH-2−	1	2	0	R	н	$-CH_2-N$ C F_3C
76	CHCH2-	1	2	0	R·	н	- CH ₂ -N-C
7 7	CH ₂ -	1	2	0	R	н	- CH ₂ - N C F

Table 1.8

Table	1.0						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
78	CH-2-	1	2	0	R	Н	-CH ₂ -NC
79	C	1	2	0	R.	н ∵.	-CH ₂ -N-C
80	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-√CF ₃ F ₃ C
81	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
82 .	CHCH ₂ -	1	2	0	-	−сн _з	-CH ₂ -N-C-CF ₃
83	CH-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
84	C├─ੑੑੑि}─CH₂-	1	2	0	R	н .	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
85	C⊢	1	2	0	-	н	-(CH ₂) ₂ -N-C-
86	C ├── CH ₂ -	1 -	2	0	· -	н	-(CH ₂) ₂ -N-C-NO ₂
87	С⊢√_СН₂-	1	2	0	S	H .	-(CH2)2-N-C- $CF3$ $-(CH2)2-N-C-$ $F3C$
88	С⊢{	1	2	0	S	н	-(CH ₂) ₂ -N-C- H F ₃ C

Тa	ble	1.	9
1 a	ible	1.	

Table 1	1.9						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	−(CH ₂) _p + (CH ₂) _q G−R ⁶
89	C ⊢ CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
90	CH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
91	CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
. 92	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-OCH ₃
93	. CH-2-	1	2	0	S	н .	-(CH ₂) ₂ -N-C-OCH ₃
94	CH2-	1	2	0	S _.	H	-(CH ₂) ₂ -N-C-OCH ₃
95	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-✓
96	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
97	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
98	CI—CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
	CH-2-					н	-(CH ₂) ₂ -N-C-CI

Table 1.10

· abic							
Compd.	R ² (CH ₂),-	k	m	n	chirality	R³	一(CH ₂) p 1 (CH ₂)q G-R ⁶
100	CHCH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-CN
101	CH-2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
102	CHCH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
103	CHCH ₂ -	1	2 .	0	S	н	-(CH ₂) ₂ -N-C
104	CH-2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
105	CH-2-	1	2	0	S	H.	-(CH ₂) ₂ -N-C-
106	C├─ \ CH ₂ -	1 -	2	0	S	н.	-(CH ₂) ₂ -N-C-OCF ₃
107	C├────────────────────────────────────	1	2	0	S	H'	-(CH ₂) ₂ -N-C-F
108	C⊢(1	2	0	S	н	-(CH ₂) ₂ -N-C- H O ₂ N
109	C⊢(1	2	0	S	Н	-(CH ₂) ₂ -N-C-NO ₂
110	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-NC ₂

Table 1.11

lable	1,11						
Compd.	R ¹ /(CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
. 111	СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
112	CH_CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C
113	C	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br
114	C├─ \ CH₂-	1	2	0	R.	н .	-(CH ₂) ₂ -N-C
115	CHCH ₂ -	1.	2	0.	R	н	-(CH ⁵) ⁵ - N- C
116	CH-2-	1	2	0	R	н .	-(CH ₂) ₂ -N-C
117	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
118	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
119	C├ - CH₂-	1	2	0	R	. н	-(CH ₂) ₂ -N-CF ₃
120	С⊢-СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
121	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI

3 4

Table 1.12

Table	1.12	 					
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} + G - R^6$
122	CH_CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-⟨
123	C⊢————————————————————————————————————	1	2	O	R	н	-(CH ₂) ₂ -N-C-CI
124	СН ₂ -	1	2	0	R	н.	-(CH ₂) ₂ -N-C-
125	СН-СН ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
126	CH_CH ₂ -	1	2	0	. R	н	-(CH ₂) ₂ -N-C-
127	CH_CH ₂ -	1	2	0	R	н	$-(CH_2)_2$ -N-CF ₃
128	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-CF ₃
129	С⊢СН₂-	1	2	0	R	н.	-(CH ₂) ₂ -N-C
130	C⊢(1	2	0	R	н	-(CH ₂) ₂ -N-C
131	C⊢-{}-CH₂-	1	2	0	R	.н	$-(CH_2)_2 - N - C \longrightarrow F$ $-(CH_2)_2 - N - C \longrightarrow O_2 N$
132	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-

3 5

Table 1.13

Table 1	1.13					•	
Compd. No.	R (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
133	CHCH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NO ₂
134	C├ - CH ₂ -	1	2	0	R	· н	-(CH ₂) ₂ -N-C-NO ₂
135	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
136	CH_CH ₂ -	1	2	0	R .	н	-(CH ₂) ₂ -N-C-F
137	CH_CH ₂ -	1	2	0	R ·	н	-(CH ₂) ₂ -N-C-
138	CH_CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
139	CH_CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-CI
140	CHCH ₂ -	1	2	0	R	Ĥ	-(CH ₂) ₂ -N-C
141	CHCH ₂ -	1	2	0	R	н	H ₃ CO O O H H ₃ CO O H H ₃ CO
142	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
143	CH-CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-Br

Table	1.1	4
-------	-----	---

200

labie	1.14					
Compd No.	R ² (CH ₂)	k r	ח ת	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ^t
144	С├-СН₂-	1 2	2 0	R	н	-(CH ₂) ₂ -N-C
145	C├ - ⟨}- CH ₂ -	1 2	? 0	R	н	~(CH ₂) ₂ N-C
146	CH-2-	1 2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₃
147	CH2-	1 2	0	,R	н	-(CH ₂) ₂ - N С-СН ₂ СН ₃
148	C├─ੑੑCH₂-	1 2	0	R	. н	-(CH ₂) ₂ -N-C-CN
149	С⊢√_СН₂-	1 2	. 0	R	н	-(CH ₂) ₂ -N-C-
150	CHCH ₂ -	1 2	0	R	н	-(CH ₂) ₂ -N-C-
151	C — CH₂-	1 2	0	R	Н	-(CH ₂) ₂ -N C-F
152	C├─()-CH₂-	1 2	0	R	н	-(CH ₂) ₂ -N-C
153	С⊢—СН₂-	1 2	0	R	н	-(CH ₂) ₂ -N-C-F
154	CH ₂ -	1 2	0	R	н	-(CH ₂) ₂ -N-C-F
						·

3 7

Table 1	١.١	5
---------	-----	---

rable	1.15						•
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
156	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
157	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
158	CH-CH ₂ -	. 1	. 2	0	R	н	-(CH ₂) ₂ -N-C- H C- CH ₃
159	C	1	2	0	R	н	-(CH ₂) ₂ -N-C
160	CHCH ₂ -	1	2	0	·R	H	-(CH ₂) ₂ -N-C
161	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
	C├ - CH ₂ -					н	-(CH ₂) ₂ -N-C-F
163	C├ - CH ₂ -	1	2	0	R	н	-(CH2)2-N-C- CF3 $F3C$
164	CH-2-	1	2.	0	R	н	-(CH ₂) ₂ -N-C- H F ₃ C CF ₃
							-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

iable	1.10						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
166	CI— CH₂-	1	2	0	R	н	(S) CF ₃ -CH-N-C-CF ₃
167	C├ - CH ₂ -	1	2	0	R	н	(5) P -C++N-C- CH ₃ Br
168	CH-2-	1	2	0	R	Н .	(S) P CI -CH-N-C- CI CH ₃
169	CH-CH ₂ -	1	2	0	R ·	н	(5) P CI -CHN-C-CI CH ₃
170	CI—CH ₂ -	1	2	0	R	н.	(S) O CF ₃ -CH-N-C- F
171	CHCH ₂ -	1	2	0	R	Н	(5) P -C+N-C-C-CI CH ₃
172	CHCH ₂ -	1	2	0	·R	н	CH3 -CHV-C-
173	CHCH ₂ -	1	2	0	R	н	(S) P NO₂ -CH-N-C- NO₂ -CH₃
	CHCH ₂ -					H .	(F) P C CF3 -CH-N-C CF3 CH3
175	CH-CH ₂ -	1	2	0	R	н	(A) Br
176	CHCH ₂ -	1	2	0	R	н	(A) P C CI (A) CH3 C CI (A) CH3 C CI (A) CH3

Table 1.17

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ (CH_2)_q$ $+ $
177	CICH ₂ -	. 1	2	0	R	н	(F) Q CI -C+N-C-CI H CH ₃
178	CH ₂ -	1	2	0	R	н	(F) P CF3 -CHNC F
179	С⊢-СН₂-	1	2	0	R	н	(A) P -CH-N-C
180	С├───────── СН₂-	1	2	0	Ř.	н	(A) O - CHN-C- - H CH3
181	CHCH ₂ -	1	2	0	R	Н	(R) PO2 -CH-N-C
182	CH2-	1	2	0	R	н .	CH ₃ O CF ₃ -CH ₃ C CF ₃
183	C├ - CH ₂ -	1	2	0	R .	н	CH3 O Br
184	С⊢—СН₂-	1	2	0	R	Н	CH ₃ O CI -CH N C - CH ₃
185	CI—CH₂-	1	2	0	R	H	СН3 О СІ - СН N С — СІ СН3
186	С├─(СН₂-	1	2	0	R	н	СН3 О СБ3 -СН № С — СБ3 -СН3 Е
187	С⊢√_СН2-				R	H '	CH3 O -CH N C-CI

Table 1.18

lable	1.10				-		
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
188	C	1	2	0	R	Н	CH3 P
189	C├ - CH₂-	1	2	0	R	Н	CH3 0 NO2 CH3 CH3
190	CH-CH ₂ -	1	2	0	R	н	(A) O CF 3
191	CH-2-	1	2	0	R	н	CH-NC-
192	CH-CH ₂ -	1	. 2	0	R	H	CH ₂ CH ₂
193	CH2-	1	. 2	0	R	н	(A) P CI -CH+N-C- CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-
194	CHCH ₂ -	1	2	0	R	н	(F) −CH+NC− CH ₂ F
195	C ├── CH ₂ -	1	2	0	R	н	(F) -CHY-C-CI CH ₂ -CI
196	C ⊢ CH₂-	1	2	0	R	Н	CH ₂ C _S
197	C├ - CH ₂ -	1	2	0	R	Н	(A) P CF 3 (CH2-S) CF 3 (CH2-S) CF 3
198	C ├── CH ₂ -	1	2	0	R	н	CH ₂ -CF ₃

4 1

Table 1.19

lable	1.19						·
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
199	CHCH ₂ -	1	2	0	R	н	(S) P B'
200	C├ - CH ₂ -	1	2	0	R	н	(S) P C C C C C C C C C C C C C C C C C C
201	с⊢⟨Сн₂-	1	2	0	R	н	(5) P C-CI CI C
202	CHCH ₂ -	1	2	0	. R	н	(S) P -CH-N-C- CH ₂ F
203	CH_CH ₂	1	2	. 0	R	H.	(S) P -CHN-C
204	CHCH_2-	1	2	0	R .	Н	CH ₂ -CS)
205	CHCH ₂ -	1	2	0	R	Н	(5) P NO 2 -CHN-C-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-C
206	CHCH ₂ -	1	2	0	R	H	(CH ₂) ₂ CH ₃
207	Ċ ⊢ CH₂-	1	2	0	R	. н	(CH ₂) ₂ -S-CH ₃
208	CHCH ₂ -	1	2	0	R		(O ₁₂) ₂ - S - O ₁₃
209	C ← CH ₂ -	1	2	0	R	н	(CH ₂) ₂ -S-CH ₃

Table 1	.20
---------	-----

1 0016	1.20					
Compd No.	· R1 (CH2)	k	m n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
210	CH2-	1	2 0	R	н	(S) P (CH ₂) ₂ - S CH ₃ F (CH ₃) F (CH ₃)
211	C⊢(CH₂-	1 2	2 0.	R	н	(S) P CI -CH-H-C
212	CH-CH ₂ -	1 2	2 0	R	. н	(S) P -CH-N-C- H O (CH ₂) ₂ -S-CH ₃
213	CH2-	1 2	2 0	R	н	(S) Q -CH-N-C- + Q (OH ₂) ₂ -S-CH ₃
214	C├ - -CH ₂ -	1 . 2	0	-	Н	-(CH ₂) ₃ - C-
215	с⊢С}−сн₂-	1 2	0	-	н	-(CH ₂) ₃ -C
216	CH-2-	1 2	0	-	н	-(CH ₂) ₃ -C-(S)
	C			-	Н	$-(CH_2)_2-C$ OCH_3 H_3CO
218	С⊢СН₂-	1 2	0	-	н	H₃CÓ O -(CH₂)₂- C- H₃C
						-(CH ₂) ₂ - C −
220	CI	1 2	0	-	н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

Table !	1.2 1						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ^{i₃}	-(CH ₂) _p + (CH ₂) _q G-R ⁶
221	C├ - CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-
222	С├-{}СН₂-	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-Q(CH ₂) ₃ CH ₃
224	CH-CH ₂ -	1	2	0	-	н	- CH ₂ -S-CH ₃
225	CHCH ₂ -	1	2	. 0	-	Н	-(CH ₂) ₃ - C- N-
226	C ⊢ CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-OCH ₃
227	CH√_CH₂-	1	2	0		Н	-(CH ₂) ₃ -CI
228	C ⊢ CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N
229	CH-2-	1	2	0	-	н	- CH ₂ -Ç-CH ₂ -C·N-CH ₃
230	CH2-	1	2	0	-	н	- CH ₂ -CH ₂ -CN
							-(CH ₂) ₃ -C-N- C-CH ₃

4 4

Ŧ	_	L	le	4	^	^
ŧ	d	o	ıe		.2	Z

rable 1	1.22						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	·R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
232	СН-СН2-	1	2	0	•	Н	-(CH ₂) ₃ - C-N-
233	CHCH2-	1	2	0	-	Ħ	O -(CH ₂) ₃ -C-N-CH ₂ -
234	CHCH2-	1	2	0	-	H	-(CH ₂) ₃ -C-N-CH ₃
235	· CH-2-	1	2	0	-	н	-CH ₂ -C+CH ₂ -C-N-CH ₂ -C-CI
236	CH-CH ₂ -	1	2	0	. -	н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
237	CH-CH₂-	1	2	0	-	н	- CH ₂ -N-C-O-CH ₂ -
238	CH2−	1.	2	0	-	Н .	-¢+0-¢-N-€CI
239	CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
240	CH₂-	1	2	0	S .	н	-CH ₂ -N-C-CF ₃
	CI CH₂-						-CH ₂ -N-C
242	CH2-	1.	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.23

rabie	1.23						
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
243	CI CI	1	2	0	S	H _.	-СH ₂ -N-С-С-С-
244	CH ₃	1	2	0	Ş	H	-CH ₂ -N-C-CF ₃
245	F CH ₂ -	1	2	0	S	. н	-CH ₂ -N-C-CF ₃
246	CICH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
247	CI CH₂−	1	2	0.	s	н	-CH ₂ -N-C-CF ₃
248	H₃CQ CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
249	F ₃ C ————————————————————————————————————	1	2	0	S	н.	-CH ₂ -N-C-
250	H ₃ C CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
251	FCH ₂ -	1 .	2	0	S	н	-CH ₂ -N-C-⟨CF ₃
252	H₃CO ~ CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
253	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.24

					•		
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
254	CH-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1 .	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF ₃ CH ₂ -	1	2	0	S .	н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	. S .	н 	-CH ₂ -N-C-CF ₃
259	CH ₃	1	2	0	S	н	-CH ₂ -N-C-€
260	CI CH ₂ -	1	2	0	S	н	- CH ₂ -N-C-
261	F ₃ C-CH ₂ -	1	. 2	0	S	н	-СH ₂ -N-С-С-С-
	Br CH ₂ -				•	н	-CH ₂ -N-C-C-CF ₃
263	Br. CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
264	OH2-	1	2	0	S	H	-СH ₂ -N-С-СБ ₃

Table 1.25

Table (1.2.0						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
265	Br—CH₂-	1	2	0	S	н ·	-CH ₂ -N-C-CF ₃
266	O-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	S	. н	-CH ₂ -N-C-CF ₃
268	HC-C-H - CH2	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$	1	2	0	\$.	. н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
271 -	CH ₂ -	1	2		S	. Н	-CH ₂ -N-C-CF ₃
272	HO-{CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
273	CN CH₂−	· 1	2	0	S	Н	-CH ₂ -N-C-CF ₃
274	NC CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	NC-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
						•	

Table 1.26

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
276	F-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	CH ₂	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F ₃ CO-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
280 .	F ₃ CQ —CH ₂ -	1	2	0	S	н.	-СH ₂ -N-С-С-С-3
281	HO ₂ C-CH ₂ -	1	2	0	S .	н	-СH ₂ -N-С-СБ ₃
282	(H₃C)₃C-⟨CH₂-	1	2	0	S	н	-сн ₂ -N-С-С-С-
283	CH ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
284	CH-CH-	1	2	0 .	S	Н	-CH ₂ -N-C-CF₃
285	СH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
286	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

49

Table 1.27

lable	.27						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
287	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
288	CI CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CI	1	2	0	R [°]	н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	Н,	-CH ₂ -N-C-CF ₃
291	F	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
292	CICH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
293	CI CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
294	H ₃ CQ —CH ₂ —	1	2	0	R	н	-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
296	F_3C $-CH_2^ -CH_2^-$	1	2	0	R	н	-CH ₂ -N-C-CF ₃
297	F————————————————————————————————————	1	2	0,	R	н	-CH ₂ -N-C-CF ₃

Table 1.28

iabie	1.20						
Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p -(CH ₂) _q G-R ⁶
298	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ C-\CH ₂ -	1	2	0	R	.H	-CH ₂ -N-C-CF ₃
300	NO ₂	1	2	0	R	н	-CH₂-N-C-CF₃
301	O ₂ N — CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
302	O ₂ N-(-)-CH ₂ -	1	2	0	R	Н	·-CH ₂ -N-C-CF ₃
303	CF ₃ —CH ₂ -	1	2	0	, R	Н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
305	сн ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
306	CI CI CI	1	2	0	R	н	-CH ₂ -N-C-CF ₃
307	F₃C-{	1	2	0	R	н	-CH ₂ -N-C-CF ₃
308	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Ta	h	le	1	.2	9

Table	1.23					·	· ·
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
309	Br, CH₂-	1	2	0	R	H ,	-CH2-N-C-C-CF3
310	Q-Q-QH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
311	Вг-√СН₂-	.1	2	0	R	H	-CH ₂ -N-C-CF ₃
312	CH ₂ -	·1	2	0	R	H	-CH ₂ -N-C-CF ₃
313	OCH ₃	, 1	2	0	R	н	-СH ₂ -N-G-СF ₃
314	4°C-C-N-€>-OH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
315	H ₂ C-\$ OH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
316	H ₃ CO ₂ C	1	2	0	R	H	-сн ₂ -N-с-С ₃
317	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
318	но-{Сн₂-	1	2	0	R	н	-СH ₂ -N-С-СF ₃
319	CN CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.30

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
320	NC —CH₂-	1	2	0	R	н	-CH ₂ -N-C-
321	NC-CH ₂ -	1	2	0	R	н.	CH ₂ -N-C-CF ₃
322	FCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
323	CH₂-	1	2	0	R	Н	CH ₂ -N-C
324	H ₃ ∞ ₂ C-√_)-CH ₂ -	1	.2	0	R .	Н .	-CH ₂ -N-C-CF ₃
325	F ₃ CO-CH ₂ -	1	2	0	R	H	-СH ₂ -N-С- Н
326	F ₃ CQ —CH ₂ —	1	2	0	R	н	$-CH_2\text{-}N\text{-}C\text{-}\!$
327	HO ₂ C-CH ₂ -	1	2	0	R	н .	$-CH_2-N-C CF_3$
,	(H ₃ C) ₃ C-(-)-CH ₂ -					н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-CF ₃
330	CI—CH₂-	0	3	1	-	н	- CH ₂ -N-C-

Table 1.31

Compd.	R ² (CH ₂) _j -	, k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
331	CI-CH ₂ -	0	3	1	<u>.</u>	н	- CH ₂ - N- C-
332	C├ - CH₂-	0	3	1	-	Н	- CH2- H C - OCH3 O OCH3
333	с⊢√СН₂-	0	3	1	-	. н	-CH ₂ -N C N
334	CH2⁻	0	3	1	-	н	-CH ₂ -N-C-CH ₃
335	C⊢√ CH₂-	0	3	.1		H	-CH ₂ -N-C-\(\sigma\).
336	CHCH2-	0	3	1	-	н	- CH ₂ -N-C-
337	CH-CH ₂ -	0	3	1	-	н	$-CH_2-N-C-$ H_3C
338	C├─ (CH ₂ -	0	3	1	-	н	-CH ₂ -N-C- CH ₃
339	С├-{СН2-	0	3	1	R	H	- CH ₂ - N C-CF ₃
340	CHCH ₂ -	0	3	1	S	н	- CH ₂ - N C - CF ₃
341	CH-CH ₂ -	.0	3	1	-	н .	-(CH ₂) ₂ -N-C-

Table 1.32

iable	1.5 4						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
342	С├ - СН₂-	0	3	1	-	н	-CH N-C-
343	С├-{}-СН₂-	0	3	1	-	Н	- CH N- C- H CH(CH ₃) ₂
344	C⊢√_CH₂-	0	3	1	-	. н	-CHN-C- H CH ₂ CH(CH ₃) ₂
345	C├────────────────────────────	0	3	1	-	н	-(CH ₂) ₃ -C-
346	CH-€CH2-	0	3	1		н	-(CH ₂) ₂ -C-C-CH ₃
347	С⊢СН2-	0 ·	3	1	-	н	$-(CH_2)_2 - CH_3$ H_3C
348	CHCH ₂ -	0	3	1	-	Н	O -(CH ₂) ₂ -C-CH ₃
349	CH2-	0	3	1	-	H	- CH ₂ -S-CH ₃
							-CH ₂ -N-S-CH ₃
351	CH2-	0	3	1	-	Н	- CH2- N- C- O- CH2-
352	C├ ~ CH ₂ -	0	3	1	-	Н	- c н о с N — С I

Table 1.33

Compd.	R ¹ (CH ₂) –	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
353	C⊢-€	1	2	1	-	н	- CH ₂ - N- C-
354	C	1	3	0	-	н	-CH ₂ -N-C-
355	с⊢(1	3	0	-	н	- CH ₂ -N-C-CH ₃
356	CHCH ₂ -	1	3	0	-	H _.	-CH ₂ -N-C-\(\bigc\)
357	CH-CH2-	1	3	0		н	-CH ₂ -N-C
358	CH-CH2-	1	. 3	0	-	Н	- CH ₂ - N- C- CF ₃
359	CH-CH2-	1	3	0	-	H	-(CH ₂) ₂ -N-C-
360	CH-CH ₂ -	1	3	0	. -	Н	-(CH ₂) ₂ -N-C-NO ₂
361	CH-CH2-	1	3	0	-	н	-(CH ₂) ₃ -C-
362	C├ - CH ₂ -	1	3	0	<u>-</u>	н	-(CH ₂) ₃ -C
363	СН-СН2-	1	3	0	-	н	-(CH ₂) ₃ -C-S

:

Ta	h	۱۵	1	2	1
ıа	n	ıe	- 1	5	4

							·
Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
364	С⊢СН2-	1	3	0	-	н	$-(CH_2)_2$ - C - O CH ₃ H_3 CO
365	CH-CH ₂ -	1	3	0	-	H	-(CH2)2 - C - CH3 $H3C$
366	CH-2-	1	3	0	-	н	$-(CH_2)_2$ - C
367	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	CH₂-	1	3	0	<u>-</u> ·	. н	-(CH ₂) ₂ -C-
<i>.</i>	CH-€-CH₂-		,			Н	-(CH ₂) ₂ -C-C
370	CH-CH₂-	1	3	0		Н	-(CH ₂) ₂ -С-(СH ₂) ₃ СН ₃
371	CH-CH2-	1	3	0	-		-(CH ₂) ₂ -C
	CH-CH2-					•	- CH ₂ -\$CH₃
							-(CH ₂) ₃ -C-N-
374	C⊢√ CH₂-	1	3	0		н	-(CH ₂) ₃ -C-N-OCH ₃

Table 1.35

rable i							
Compd.	R ¹ /(CH ₂)j/	k	m	n	chirality	R³	ー(CH ₂) _p + (CH ₂) _q G-R ⁶
375	C├	1	3	0	-	н	-(CH ₂) ₃ - C·N-CI
376	C├ - CH ₂ -	1	3	0		н	-(CH ₂) ₃ - C- N- OCH ₃
377	CHCH2-	1	3	0		Н	CH ₃ O - CH ₂ -C-C-H ₂ -C-N-CI CH ₃
378	CH-2-	1	3	0	-	н	- CH ₂ CH ₂ - C- N- F
379.	CH-CH2-	1	3	0	-	н	-(CH ₂) ₃ - С- N- О- С- СН ₃
380	CH-2-	1	3	0	-	н	O "-(CH ₂) ₃ -C-N-CH ₂ -
381	CHCH ₂ -	1	3	0	-	н	- CH ₂ -N-S-CH ₃
382	CH-CH ₂ -	1	3	0	-	н	- CH ₂ - N- C- O- CH ₂ -
383	CHCH ₂ -	1	3	0	-	Ĥ	- ĊH O· Ċ· N- CI
384	CH-2-	2	2	. 0	-		
385	CH2−	2	2	0	-	н	-CH ₂ -N-C-NO ₂

Table 1.3.6

Table 1	.3.6						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
386	CH ₂ -	2	2	0	-	H .	-CH ₂ -N-C-
387	CH₂-	2	2	0	- -	н	-CH ₂ -N-C-
388	—СН ₂ -	2	2	0	-	Н	-CH ₂ -N-C-\(\sigma\)
389	. CH ₂ -	2	2	0	-	. н	-CH ₂ -N-C
.390	· (2	2	0	-	н .	-CH ₂ -N-C-C-CF ₃
391	CH₂-	2	2 .	0	-	Н	-CH ₂ -N-C
392	—CH₂−	2	2	0	-	н	-CH ₂ -N-C
393		2	2	0	-	Н	-CH ₂ -N-C
394	CH₂-	2	2	0	-	н	-CH ₂ -N-C-C
395	CH ₂ -	. 2	2	0	-	н	-CH ₂ -N-C
396	CH₂-	2	2	0	-	н	-CH ₂ -N-C

Table 1.37

Table 1	1.3 7						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
397	CH₂-	2	2	0	-	н	-CH₂-N-C-CI
398	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0	· -	н	-(CH ₂) ₂ -N-C-
400		2	2	0	Ŀ	н	-(CH ₂) ₂ -N-C-\(\infty\)
401		2	2	0	-	H	-(CH ₂) ₂ -N-C-_____\\\\\\\\\\\\\\\\\\\\\\\\\
402	CH₂⁻	2	2	0	-	Н	-(CH ₂) ₂ -N-C-C-CF ₃
· 403	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
404	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-OCF ₃
405	CH₂-	2	2	0	-	н .	-(CH ₂) ₂ -N-C-Br
406	СH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-C
407	—CH₂−	2	2	0	-	H	-(CH ₂) ₂ -N-C-Br

T	а	b	ı	e	1	١.	3	8

:

lable	1.38						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R3	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
408	€сн₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-F
. 409	CH₂⁻	2	2	0	-	н	-(CH ₂) ₂ -N-C-CI
410	CH₂-	2	2	0		н	(S) P -CH-N-C- CH ₂ CH(CH ₃) _{2:}
411	CH ₂ -	2	2	0	-	· Н	(S) (CH ₂ CH ₂ CH ₃) ₂
412		2	2	0	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
413	CH ₂ -	2.	2	0	-	н	(S) CO ₂ CH ₃ CO ₂ CH ₃ CH ₂ CH(CH ₃) ₂ CO ₂ CH ₃
.414		2	2	0	-	н	(S) CF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
415	—CH₂-	2	2	0	-	Н	(5) O CF ₃ -CH-N-C- CF ₃ -CH ₂ CH(CH ₃) ₂ F
416	—CH₂—	2	2	0	-	н	(S) II OCF ₃ -CH-N-C
417	CH₂-	2	2	0	-	Н	(S) P -CH-N-C- H CH ₂ CH(CH ₃) ₂
418	CH₂-	2	2	0	-	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂

6 1

Table 1.39

rable	.39						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	['] R³	$-(CH_2)_{\overline{p}}^{\overline{q}} + (CH_2)_{\overline{q}}^{\overline{q}} - G^{-R^6}$
419.	CH₂-	2	2	0	-	н	(S) P -CH-N-C
420	CH₂-	2	2	0	-	н .	(S) F -CH-N-C
421		2	2	0	-	н	(S) (CI -CH-N-C
422		2	2	0	-	H .	(F)
423		. 2	2	0	-	Н	(F) 0 -CH-N-C-
424	-CH ₂ -	2	· . 2	0	-	н	(F) NO ₂ NO ₂ CH ₂ CH(CH ₃) ₂
425	— CH₂-	. 2	2	0	-	н	(F) -CH-N-C- ↓ H CH ₂ CH(CH ₃) ₂
426	—CH₂-	2	2	0	-	н	(<i>F</i>)
427	CH₂-	2	2	0	-	н .	(H) O CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
428	CH₂-	2	2	0.	-	н	(F) -CH-N-C- H CH ₂ CH(CH ₃) ₂
429	◯ }−CH ₂ −	2	2	0		н	(<i>F</i> i)

T	ab	le	1.	4	0

rable	1.40						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
430	CH₂-	2	2	0	-	н	(F) -CH-N-C- -H CH ₂ CH(CH ₃) ₂
431		2	2	0	-	н	(A) P -CH-N-C-Br
432	€ CH ₂ -	2	2	0	-	н .	(FI) F -CH-N-C-F H CH ₂ CH(CH ₃) ₂
433	€ CH ₂ -	2	2	0	-	н	(F) C C C C C C C C C
434	CH_CH ₂ -	1.	3	1	-	н	-CH ₂ -N-C-
435	C⊢√ CH₂-	1	3	1	- .	н	-CH ₂ -N-C-
436	CHCH2_	1	3	1	-	н	-CH ₂ -N-C-NO ₂
437	CHCH_2-	1	3	1	-	Н	-CH ₂ -N-C
438	_CH	1	3	1	-	н	-CH ₂ -N-C-CF ₃
439	CHCH2-	1	3	1	-	Н	-CH ₂ -N-C-CF ₃
440	CHCH_2-	1	3	1	-	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

Table 1.41

lable	1,41						
Compd.	R ¹ (CH ₂)j-	ķ.	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
441	с⊢(сн₂-	1	3	1	-	н	-CH ₂ -N-C
442	CH-CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-CI
443	CH-CH2-	1	3	1	-	H	-CH ₂ -N-C
444	CH_CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-F
445	CH-CH ₂ -	1	3.	1	-	н	-CH ₂ -N-C-CI
446	CH_CH ₂ -	1	3	1	-	H	-(CH ₂) ₂ -N-C-
447	С⊢—СН₂-	1	3	1		н	-(CH ₂) ₂ -N-C-
448	C├ - CH ₂ -	1	3	1	- .	H	-(CH ₂) ₂ -N-C-
449	С⊢{_}СН₂-	. 1	3	1		н	-(CH ₂) ₂ -N-C- H
450	CH-()-CH ₂ -	1	3	1	-	Н	-(CH ₂) ₂ -N-C-CF ₃
451	C├─ੑੑੑि—CH₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-F ₃

Table 1.42

rable	1.4 2				,	•	
Compd. No.	R ¹ (CH ₂)j	k	m	n (chirality	Ŕ³	$-(CH_2)_{\overline{p}}$ $+ (CH_2)_{\overline{q}}G - R^6$
452	C⊢————————————————————————————————————	1	3	1	•	Н	-(CH ₂) ₂ -N-C-
453 ·	C├ - CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
454 .	CHCH ₂ -	1	3	1	•	н	-(CH ₂) ₂ -N-C-C
455	CH_CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C- Br
456	CH-CH ₂ -	1	3	1.	-	н	-(CH ₂) ₂ -N-C
457	СН-СН ₂ -	1	3	1 .	-	Н	-(CH ₂) ₂ -N-C-CI
458 ·	С├-{СН₂-	2	2	1 .	-	н	-CH ₂ -N-C-
459	CHCH ₂ -	2	2	1	-	н	CH ₂ -N-C-CH ₃
460	CH-CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C-CH ₃
461	с⊢СН2-	2	2	1	-	н .	- CH ₂ -N-C-CF ₃
462	CHCH_2-	2	2	1	-	н	- CH ₂ - N- C-

6 5

Table 1.43

lable	1.43						•
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	⁻ R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
463	CH-CH ₂ -	2	2	1	-	н ,	- CH ₂ - N- C- CH ₃
464	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- OCH ₃ OCH ₃
465	C⊢√ÇH₂-	2	2	1	-	н	- CH ₂ - N-C-N
466	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
467	CH-CH ₂ -	2	2	1		н	- CH ₂ -N-C-
468	CH-2-	2	2	1	•	н	- CH ₂ -N-C-\\ - CH ₂
469	CH	2	2	1	-	н	- CH2- N- C- OCH3
470	CH-2-	2	2	1	-	н	-CH ₂ -N-C
471	CH-2-	2	2	1	<u>.</u>	Н	-CH ₂ -N-C
472	CH-CH ₂ -	2	2	1		Н	- CH ₂ -N-C
473	CH-CH ₂ -	2	2	1	-	н	-CH2-№ C

Ta	h	le	1	.4	4

lable	1.44						
Compd.	R ² (CH ₂),	k	m	n	chirality	. Ř³	$-(CH_2)_{\rho} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
474	CH-CH2-	2	2	1	· -	н	-CH ₂ -N-CF ₃
475	ССН ₂ -	2	2	1	-	H	- CH ₂ - N-C- CH(CH ₃) ₂
476	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-NO ₂
477	CH-CH2-	2	2	1	-	н	- CH ₂ -N-C
. 478	CH-CH2-	2	2	1	- .	н	- CH ₂ -N-C-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
479	CH-(2	2	1	-	H	-CH₂-N-C-
480	C├ -	2	2	1	-	н	- CH ₂ -N-C-O Br
481	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S
482	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S
483 ⁻	ССН2-	2	. 2	1	-	н .	-CH ₂ -NC-SCH ₃
484	CH2-	2	2	1	-	н	- CH ₂ -N-C-S-CH ₃

Table 1.45

Table 1	1.45						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	ー(CH ₂) _p
485	C├-{	2	2	1	-	н	- CH ₂ -N-CF ₃
486	С⊢-{СН₂-	2	2	1	-	н	- CH ₂ -N-C-CN
487	C⊢√CH₂−	2	2	1	-	н	- CH ₂ -N C-
488	CH-€	2	2	1	-	Н	-CH ₂ -N-C-NH ₂
489	C ├── CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
490	C⊢√_CH₂-	2	2	1.	-	н	-CH ₂ -N-C
491	CH2-	2	2	1	-	н	- CH ₂ - N C- CF ₃
492	С⊢√СН2-	2	.2	1	-	н	-CH ₂ -N-C-OCF ₃
493	CH-2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	CH						- CH ₂ -N-C
495	С├-{СН₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
						•	

Table 1.46

iable	1.40					
Compd.	R ¹ (CH ₂)j-	k . ı	ח ח	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
496	С⊢-{СН₂-	2	2 1	-	н	-CH ₂ -N-C
497	CH-2-	2 :	2 1	ż	н	-CH ₂ -N-C
498	С⊢{_}-СН₂-	2 2	2 1	-	н	-CH ₂ -N-C-
499	CH-CH ₂ -	2 2	2 1	-	н	-CH ₂ -N-C-N(CH ₃) ₂
500	.CHCH ₂ -	2 2	2 1	-	н.	-CH ₂ -N-C
501	CI	2 2	2 1	-	н	-CH ₂ -N-C
502	CI—CH ₂ -	2 2	2 1	-	н	-CH ₂ -N-C
503	CH-2-	2 2	? 1	- .	', Н	- CH ₂ -N-CI
504	CHCH ₂ -	2 2	2 1	<u>-</u>	н	$-CH_2-N-C$ OCH ₃ OCH ₃
505	CH√CH₂-	2 2	! 1	-	Н	- CH ₂ -N-C - Br
506	CH2-	2 2	1	-	н	-CH ₂ -N-C-ONO ₂

Table 1.47

lable i	.~ /						
Compd. No.	R (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
507	CI—CH₂-	2	2	1	-	н	- CH ₂ -N-C-O
508	CI—CH₂-	.2	2	1	-	н	- CH ₂ -N-C-S
509	C⊢√CH₂-	2	2	1	-	н	- CH2- N- C- S
510 .	CH₂-	2	2	1	-	н	-CH ₂ -N-C-√ CH ₃
511	C⊢-CH₂-	2	2	1	-	н	CH ₂ -N-C-C(CH ₃) ₃
512	CH-CH ₂	2	2	1	-	н	CHCH₃ CHCH₃ - CH₂-N-C-
513	CH-2-	2	2	1	-	н	- CH ₂ - N- C-
514	CH-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-(CH ₃) ₃
515	CH-2-	2	2	1	-	н	- CH ₂ -N-C
516	H ₂ N	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
517	H ₂ N —CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃

т	2	h	le	4	.4	Ω
	◿	u	16		. 4	. 0

lable	1.48						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	À³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
518	NH ₂	. 2	2	1	-	н	-CH ₂ -N-C-CF ₃
519	O-0-N	2	2	1	÷ ,	н	-CH ₂ -N-C-CF ₃
520	СН-2-	2	2	1	-	−СН ₃	-CH ₂ -N-C-CF ₃
521	C⊢—CH₂-	2	2	1	. • 	-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	C├ - CH₂-	· 2	2	1	<u>-</u>	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	C├ - CH₂-	2	2	1		-(CH ₂) ₂ CH-	-CH ₂ -N-C-
524	C├ - ⟨	2	2	1	-	-CH ₂ CH-	CH ₂ -N-C-
525	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C
526	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-C
527	CH2-	2	2	1	-	Н	-CH ₂ -N-C-\S
528	C├ - CH₂-	2	2	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ F_{3} $-CH_{2}-N-C$ F_{3}

Table 1.49

Idbic	1.43						
Compd.	R ¹ (CH ₂) _i	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-\frac{1}{4}$ G^-R^6
529	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C-\ NO ₂
530	СН2-СН2-	2	2	1	-	. н	-CH2-N-C
531	CI—CH₂-	2	2	1	-	Н	-CH2-N-C-\S
532	CH-{CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C + O + O + O + O$ $+ G$
533	CH-€ CH₂-	. 2	2	1	· -	Н	-CH ₂ -N-C
534	CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_3C NO_2
535	CHCH ₂ -	2	2	1	-	н _	-CH ₂ -N-C- H ₃ C-C ₀
536	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N _C CH ₃
537	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
538	CI—CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-V_{0}$ $-CH_{2}-N-C-V_{0}$ $-CH_{2}-N-C-V_{0}$ $F_{3}C$
539	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃ F ₃ C

.

Table 1.5	le 1.	oie		е	ŧ	ם	ı	а	l	ı
-----------	-------	-----	--	---	---	---	---	---	---	---

lable	1.50						
Compd. No.	R ¹ (CH ₂)j-	. k	m	n	chirality	'R³	$-(CH_2)_{\overline{p}}^{\overline{R}^4}_{\overline{R}^5}(CH_2)_{\overline{q}}^{\overline{G}}G^{\overline{G}}R^6$
540	CICH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
541	CI—CH ₂ -	2	2	1	-	H	$-CH_2-N-C H_2N$
542	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C-CH ₃
543	CHCH ₂ -	2	. 2	1	-	Н	- CH ₂ -N-C- CH ₂ CH ₃
544	CH-CH ₂ -	?	2	1	-	н .	-CH ₂ -N-C-
545	C⊢-{CH₂-	2	2	1		Н	-CH ₂ -N-C-C
546	CH-{	2	2	1		н .	-CH ₂ -N-C-CI
547	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C-CI
548	CH-2-	2	2	1		Н	-CH ₂ -N-C-CI
549	C	2	2	1	-	н	-CH ₂ -N-C-
550	С⊢{СН₂-	2	2	1	-	н	-CH ₂ -N-C-

:.

Table 1.51

rabic i							
Compd. No.	R ¹ (CH ₂) _j	k ·	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
551	C⊢—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	CH2-	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ -CF ₃
553	C├-\(\bigcirc\) CH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-N-H
555	CH-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-N-H
556	CI————————————————————————————————————	· 2	2	1	-	Н	-CH ₂ -N-C-N-CH ₃
557	C├ - CH ₂ -	. 2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	CH-CH ₂ -	2	2	1	-	н	CH ₃ 0 -CH _N -C-
559	C├ - CH₂-	2	2	1	-	н .	-CHNC-CF3
560	C⊢-(CH₂-	2	2	1	-	н	-CHNC-CN -CH3 CH3
561	C⊢————————————————————————————————————	2	2	1	-	н	-CHNC
							<u> </u>

Ta	b	le	1	.5	2

lable 1							
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	fR³	−(CH ₂) p G (CH ₂) q G−R ⁶
562	С⊢-{_}-СН₂-	2	2	1	-	Н	- CH N C - CI
563	CI—CH ₂ -	2	2	1	-	H	-CHNC-SeC
564	CH-CH ₂ -	2	2	1	-	н	-CH N C- OCH ₂ CH ₃
565	CHCH ₂ -	2	2	1	-	H	-CHNC-CF3 -CH3
`566	CHCH ₂ -	2	2	1	-	н	O OCF ₃
567	CH-CH ₂ -	2	2	.1	-	н [.]	-CHNC-CF3
568	CHCH2	2	2	1		н .	-CHNC-CF3
569	с⊷СН₂-	2	2	1	-	Н	-CHNC-CF3 CH3 F
570	CHCH ₂ -	2	2	1	-	Н	-CHNC-F HH CH ₃
571	CHCH_2-	2	2	1	-	н	OHO CH(CH ₃) ₂ -CH N C - CH ₃ CH ₃
572	СН-СН2-	2	2	1	-	Н	-CHN C

Ta	. h	ı	4	.5	3
Ιċ	10	16	1		

Table 1							·
Compd. No.	R ¹ (CH ₂),-	k	m	n.	chirality	R³	-(CH ₂) p G CH ₂) q G−R ⁶
573	С⊢СН₂-	2	. 2	1		Н	-CHNC-S
574	C	2	2	1	- -	н	-CHN CH3
575	CH-CH ₂ -	2	21	1	-	н	-CH N C - C(CH ₃) ₃
576	CH-CH ₂ -	2	2	1	-	н	-CH-NC-O SCH3
577	CHCH ₂ -	2	2	1		Н	-CH N C-0
578	CH-CH ₂ -	2	ż	1	-	н	-CHNC-S
579	CH-CH ₂ -	2	2	1	-	н	-CHNC-N
580	CHCH ₂ -	2	2	1	-	Н	-CH NC-S CH3
581	CHCH ₂ -	2	2	1	-	н	-CHNC-S
582	CH-CH ₂ -	2	2	1	, -	H	-CH H C - S - CH3
583	C├ - CH ₂ -	2	2	1	•	н	CH ₃ -CH N C N CH ₃ CH ₃

7 6

Table 1.54

lable	1.5 4		•				
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
584	С⊢—СН₂-	2	2	1	-	Н	- CH N C C C
585	CH-CH ₂ -	2	2	1	-	н	- СН- И С — СИ СН3
586	СН-СН2-	2	2	1	-	н	-CH N C-CI
587	CH_CH ₂ -	2	2	1	• •	Н	-CHN C-CF3
588	CH-CH ₂ -	2	2	1	- ,	Н	-CHNC-NH2 H CH3
589	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C
590	CH-CH ₂ -	2	2	1	-	Н	- СН- N С — СН(СН ₃) ₂ СН ₃
591	СН2-	2	2	1	-	н	-CHNC- N(CH ₃) ₂ -CH ₃
592	CH-CH ₂ -	2	2	1	-	н	-сн м с———осн _з Сн ₃
593	C├ - CH ₂ -	2	2	1	-	Н	-сн и с Сн³ - сн⁵он
594	С⊢—СН₂-	2	2	1	-	н	- СН ³ - СН- И-С О

Table 1.55

Table 1	5						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	'R³	ー(CH ₂) _p
595	CHCH ₂ -	2	2	1	-	Н	. O -CHN C- CO2CH3 I H CH3
596	CH-CH2-	2	2	1		н	-СН N С-О-С-СН3
597	С⊢-{СН₂-	2	2	1	-	н	- CH N C - CH ₃
598	CH-CH2-	2	2	1	÷	. н	-CHNC-
5,99	CH-CH ₂ -	2	2	1		. н	-CH W CH3
600	CH-CH ₂ -	2	2	1	-	н	-CHNC-OBr
601	CH-CH ₂ -	2	2	1	-	н	-CHNC-COCH3 CH3
602	CH-CH ₂ -	2	2	1	-	н	-CH N C- (CH ₃) ₂ -CH ₃
603	CH-CH ₂ -	2	2	1	-	н	- CH N C - NH ₂
604	CH-CH ₂ -	2	2	1	-	н	-c++-c
605	C⊢-{CH₂-	2	2	1	-	н	-CH-V-C-

Tal	hia	- 4	.5	2
1 4	ule	ı		О

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ₃	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
606	CH-CH ₂ -	2	2	1	•	H	-CHN-C-S
607	CI—CH ₂ -	2	2	1	-	н	OCH3 -CHNC-S CH3
608	CICH ₂ -	2	2	1	-	. н	-CH-N-C-CH ₃ CH ₃ H ₃ C
609	C⊢√ CH₂-	2	2	1	-	н	-CH-N-C
610 .	CI-CH ₂ -	2	2	1		н.	-CHNC-S CH3 OFCCH3
611	CH-CH ₂ -	2.	2	1	-	Ĥ	-CH-N-C
612	CHCH ₂ -	2	2	1	-	Н	-CH-N-CO
613	C	2	2	1	-	Н	CH ₃ F ₃ C
614	С⊢-{СН₂-	2	2	1	-	н	-CH-N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
615	C⊢—CH₂-	2	2	1	-	Н	-cHN-c-NH
616	CH-2-	2	2	1	-	Н	-CH-N-CN

7 9

Table 1.57

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	['] R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
617	CH-()- CH ₂ -	2	2	1	-	н	-CH-N-C-CF ₃
618	CH-CH ₂ -	2	2	1	-	Н	-CHNC- HHCH3)2
619	CH-CH ₂ -	2	2	1	•	н	- CH N C - CN - CH (CH ₃) ₂
620	C├─ ◯ CH ₂ -	2	2	1	- ·	н	- CH N C - Br CH(CH ₃) ₂
621	CH ₂ -	2	2	1	. -	Н	CHN-C-CI -CHCH3)2
622	CH-€ CH₂-	2	2	1	<u>-</u>	н	- CH N C (CH ₃) ₂ - CH (CH ₃) ₂ CH(CH ₃) ₂
623	C├ - CH ₂ -	2	2	1	-	н	OCH ₃ -CH-N-C
624	CH2-	2	2	1	-	н	- CH N C NO ₂ - CH (CH ₃) ₂
625	СНСН2-	2	2	1	-	н	- CH N C NH ₂ - CH (CH ₃) ₂
626	CH2-	2	2	1	· <u>-</u>	н	-CHN C- -CHN C- CH(CH ₃) ₂ CF ₃
627	C ← CH ₂ -	2	. 2	1	-	н	O OCH ₂ CH ₃ - CH N C O OCH ₂ CH ₃ - CH (CH ₃) ₂

Table 1.58

· lable	1.30						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	À³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
628	CI(CH ₂ -	2	2	1	-	Н	$ \begin{array}{c c} -(CH_2)_{p} & & & & \\ \hline & & & \\ & & $
629	CHCH ₂ -	2	2	1	-	н	O F CF ₃ -CH N C CF3 -CH(CH ₃) ₂
630	CHCH ₂ -	2	2	1	-	н	- CH N C - OCF3 - CH N C - OCF3 - CH (CH3) ₂
631	CHCH ₂ -	2	2	1	-	н	- CH N C - CH CH(CH ₃) ₂ CF ₃
632	CH-CH ₂ -	2	2	1	-	н	-CH N C - CH CH(CH ₃) ₂ CF ₃
633	C├────────────────────────────────────	2	2	1	-	Н	- CH N C CF3 - CH(CH3)2 F
634	CHCH ₂ -	2	2	1	-	н	- CH N C - F H CH(CH ₃) ₂
635	CH-2-	2	2	1	-	н	-CH N C- H CH(CH ₃) ₂
636	CH-2-	2	2	1	-	Н	- CH N- C
637	CH2-	2	2	1	-	н	- CH- N- C- CF ₃ - CH- N- C- CF ₃ - CH(CH ₃) ₂
638	C├ - CH ₂ -	2	2	1	-	н	- CH N C ← CN CH(CH ₃) ₂

Table 1.59

Table							
Compd.	R ² (CH ₂),	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
639	CH-CH2-	2	2	1	-	н	-CH N C - N(CH ₃) ₂ H CH(CH ₃) ₂
640	CHCH ₂ -	2	2	1	-	н	- CH N C - OCH3
641	CH-CH ₂ -	2	2	1	-	н	- CH N C - CO ₂ CH ₃ - CH(CH ₃) ₂
642	CHCH ₂ -	2	2	1	-	н	-CHNC
643	CH-CH ₂ -	2	2	1	-	H .	O - CH-N-C
644	CI—CH₂-	2	2	1		н	- СН N С С С (СН3)3 СН (СН3)2
645	C⊢√CH₂-	2	2	1	-	Н	$-CH \stackrel{O}{\rightarrow} C \longrightarrow NH_2$ $-CH(CH_3)_2$
646	CH2-	2	2	1	-	н .	- СН № С — СН ₂ ОН СН(СН ₃) ₂
647	CH-2-	2	2	1	-	н	- CH N C - C- CH ₃ CH(CH ₃) ₂
648	CH-2-	2	2	1	-	н	-CH-N-C
649	CH_CH2-	. 2	2	1	-	н	- СН- И С- СН(СН3)2 СН(СН3)2

Table 1.60

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
650	CH-CH2-	2	2	1		н	-CH-N-C
651	CH2-	2	2	1	-	н	- CH(CH ³) ⁵ - CHCH ³ - CHCH ³
652	CI—CH ₂ -	2	2	1	-	н	-CH-N-C
653	CHCH ₂ -	2	2	1	-	Н	-CHNC
654	CHCH ₂ -	. 2	2	1	· -	н	- CH+ N-C-+ CH ₃ - CH(CH ₃) ₂
655	CHCH ₂ -	. 2	2	1	-	Н	-CH-N-C
656	CHCH ₂ -	2	2	1	-	н	-снрс- сн(сн₃)₂
657	CH-CH ₂ -	2	2	1	<u>-</u>	Н	-СН-И-С-С СН(СН ₃) ₂
658	CH-CH ₂ -	2	2	1	<u>ن</u>	H·	-CHNC-NH CH(CH ₃) ₂
659	CH-CH2-	2	2	1	-	Н	-CH-N-CS H CH(CH ₃) ₂ NO ₂
660	CH-CH ₂ -	2	2	1	•	н	-CH-N-CN

Table 1.61

Table	.0 1						
Compd. No.	R ² (CH ₂) _j -	k	m _.	n	chirality	R3	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
661	C├ ~ CH₂-	2	2	1	<u>.</u>	н	-CH-N-C S H CH(CH ₃) ₂ OCH ₃
662	C├ - CH₂-	2	2	1 .	-	н	-CH-N-CCH ₃ -CH _{(CH₃)₂ -CH₃}
663	C⊢-€	2	2	1	-	н	-CHNC
664	CI—CH₂-	2	2	1	-	н	-CH-N-C
665	CH-2-	2	. 2	1	-	Н .	-CH-N-C-(S) H CH(CH ₃) ₂
666	CH-2-	2	2	1	-	н	CH-N-C- CH-N-C- CH(CH ₃) ₂ CH ₃
667	СН-СН2-	2	2	1	-	н	-CH-N-C
668	CH-2-	2	2	1	-	н	-CH-N-C
669	CI-CH ₂ -	2	2	1	-	н	-CH-N-C- CH(CH3)2 CH3
670	CH-2-	2	2	1	-	н	-CHNC-OBr
671	с⊢—Сн₂-	2	2	1	<u>.</u> .	н	-CH-N-C

Table 1.62

Table	1.62	٠					
Compd.	R (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
672	с⊢—СН₂-	2	2	1	-	н	CH(CH ³⁾⁵ H
673	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-S C(CH ₃) ₂
674	CH-CH ₂ -	2	2	1	-	,н	-CH-N-C-S CH(CH ₃) ₂
675	.C	2	2	1	-	Н	-снус- С(СН ₃) ₂ СН ₃
676	CH-CH ₂ -	2	2	. 1	-	н	-CH-N-C-N-C-N-C-N-CH(CH ₃) ₂ H .
677	CHCH2-	2	2	1	-	н .	-CH-N-C-N-CH(CH ₃) ₂ CH ₃
678	CH-CH ₂ -	2	2	1	-	н	- CH- N- C CH3 CH(CH3)2
679	CHCH ₂ -	2	2	1		н	-CH-N-C-S CH(CH ₃) ₂
680	C	2	2	1	-	н	-CHN-C-S H S Br
681	C├ - CH ₂ -	2	2	i	-	н	-CH-N-C
682	C├ - CH ₂ -	2	2	1	-	н	-CHNC-OC(CH ₃) ₃

Table 1.63

lable	1.03			·			·
Compd.	R ¹ (CH ₂);	k	m	n	chirality	Ř³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
683	C├-{	2	2	1	-	н	-CHN-C-() H S SCH ₃ CH(CH ₃) ₂
684	CH-CH2-	2	2	1	-	н	-CH-N-C- H C-S G-CH(CH ₃) ₂ CH(CH ₃) ₂ O
685	CH-CH ₂ -	2	. 2	1	-	н	-CH-N-C 9 H S S CH ₃ CH(CH ₃) ₂ 0
686	CH-CH ₂ -	2	2	1	-	н	- CH N- C- H CH ₂ CH(CH ₃) ₂
687	CI—CH ₂ -	2	2	1		н	-CHN-C-
688	CHCH_2-	2	2	1	-	н	-CH N-CCF3
689	CHCH ₂ -	2	2	1	-	Н	-CHNC-
690	CH-2-	2	2	1	-	н	-CH N-C-
691	CHCH ₂ -	2	2	1	-	н	-CH N-C- (NCH3)2
692	CHCH ₂ -	2	2	1	-	Н	-CH N-C
693	CHCH ₂ -	2	2	1		н	-CHNC-OCH3 -CHNC-CF3 -CHNC-F3C

Table 1.64

Table !	1.0 4						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
694	CI-CH ₂ -	2	2	1	-	н .	-CH N C- OCH₂CH₃
695	CI-CH ₂ -	2	2	1	-	н	-CHN-C
696	CH-CH ₂ -	2	2	1	-	н	-CHN-C-C-CF3
697	CI—CH₂-	2	2	1	-	н	-CH-N-CCN
698	CH-2-	2	2	1	٠.	н	-CH N CH ₃) ₂
699	CH2-	2	2	1	-	н	-CH N-C
700	CH-2-	2 -	2	1	-	н	-CHN-C-CO ₂ CH ₃
701	CHCH_2-	2	2	1	-	Н	-CH M-C
702	CHCH2-	2	2	1	-	н	-CHNC-CF3
703	CI-CH ₂ -	2	2	1	-	н	-CH N-C- CH(CH ₃) ₂
704	C ├── CH₂-	2	2	1	-	н	-CH N-C

Table 1.65

Compd. No.	R ² (CH ₂),—	k	m	n	chirality	R³	-(CH ₂) _p - (CH ₂) _q G-R ⁶
705	CHCH2-	2	2	1	-	н .	-CHNC-S H3C
706	CH-2-	2	2	1	-	н	-CHYC-STCH3
707	CHCH ₂ -	2	2	1	-	н	-CH-N-C
708	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-S Br
709	CH-2-	2	2	1	-·.	. н	-CHNC-STSCH₃
710	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-S Br
711	CH-2-	2	2	1	-	н	-CH-N-CCH3
712	ÇH-(CH ₂ -	2	2	1	-	Н	-chyc-s
713	С⊢—СН₂-	2	2	1	-	Н	-CH-N-C
714	С⊢{}СН₂-	2	2	1	-	н	-c+n-c-n
715	C ├── CH ₂ -	2	2	1	-	н	U -

88

T	a	h	le	1	١.١	S	R
	ч	v	10			J	u

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
716	СН2-	2	2	1	-	Н	-c+vc-N
717	C ├── CH₂-	2	2	1	-	H.	-CH-N-C NO2
718	CH-CH ₂ -	2	2	1		н	-c+nc-(n h
719	С├-{	2	2	1	-	н	-c+n-c-
720.	CH-2-	2	2	1	-	Н	-CHN-C-Spr
721	CH_CH2-	2	2	1	-	н	-CH-N-C-\N CH3
722	CH2-	2	2	1	-	н	-сн-n-сСн ₂ Он
723	СН₂-	2	2	1	-	н	-CHN-C-_NH2
724	С⊢—СН₂-	2	2	1	-	н	-CHN-C-(CH3)3
725	С⊢ СН₂-	2	2	1	-	н	-c+4-c
726	CI—CH₂-	2	2	1	-	Н	-снис-сн ₃

Ts	ab	۵۱	1.	S	7
	310			u	•

Table 1	1.67						
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
727	CI-CH ₂ -	2	2	1		н	-CH-N-C-CI
728	СІ—СН₂-	2	2	1	-	н	-CH-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
729	C├ - CH₂-	. 2	2	1	-	Н	-CH-N-C-\(\sigma\) NO2
730	СН ₂ -	2	2	1	-	н	-c+n-c-
731	С⊢—СН2-	2	2	1	-	н.	-c+nc
732	с⊢—СН₂-	2	2	1	-	н	-CHN-C-CF3
733	CHCH2-	2	2	1	-	н	-CH-N-C
734	CH-CH ₂ -	2	2	1	-	H	-c+n-c
	CHCH ₂ -						
736	CH_CH ₂ -	2	2	1	-	н	-CH-N-C- H ₂ N CF ₃
737	CH-2-	2	2	1	-	н	-CHN-C- H ₂ N CF ₃

Table 1.68

Table 1	1.68		·				
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	ij	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
738	CHCH ₂ -	2	2	1	-	н	-CH-N-C
739	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-NH
740	CH-CH ₂ -	2	2	1	-	н	-CHN-C
741	СН-СН2-	2	2	1	-	н	-CHN-C-\S
742	CH2-	2	2	1 ·	-	н .	-CHN-C-S
743	C├ - CH₂-	2	2	1		Н	-chnc-C
744	CH2-	2	2	1	<u>.</u> ·	Н	-CH-N-C
745	CH2-	2	2	1	. -	н	-CHNC- C(CH3)3
746	C├	2	2	1	-	н	-CH-N-C
747	CHCH2-	2	2	1	· <u>-</u>	н	-CH-N-C-CO F ₃ C·
748	CH-CH ₂ -	2	2	1	-	н	-chyc-Cs

10016 1.03	T	ab	ie	1.	6	9
------------	---	----	----	----	---	---

Table !	1.03						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
749	с⊢(2	2	1	-	н	-c+-N-cN
750	CH-CH2-	2	2	1	-	н	-CH-N-CO H ₃ C
751	C├ - CH ₂ -	2	2	1	.	н	-CH-N-C-CH3 CH2OH
752	CH-CH ₂ -	. 2	2	1	-	. н	CF ₃ −CH-N-C− H CH ₂ OH CF ₃
753	CH-CH ₂ -	2	2	1	-	н	-CHNC-CN -CH2OH
754	CH-CH2-	2	2	1	-	н	-CHN-C- H CH2OH
755	CH-CH ₂ -	. 2	2	1	. - .	н	-CH-N-C- CH³OH
756	CI{CH ₂ -	2	2	1	-	Н	-CH-N-C- H CH₂OH
757	CHCH ₂ -	2	2	1		н	OCH ₂ CH ₃ −CH-N-C− CH ₂ OH
758	CH-CH ₂ -	2	2	1		Н	CH ₂ OH CO ₂ CH ₃ -CH-N-C- CH ₂ OH CH ₂ OH CH ₂ OH
759	C├ - CH₂-	2	2	1	-	н	-CHNC-CH2OH

Table 1.70

Compd. No.	R ² (CH ₂)j	k	m	n	chirality	R³.	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
760	С⊢-{СН₂-	2	2	1	-	н	-CH-N-C-CF ₃ -CH ₂ OH F
761	CHCH ₂ -	2	2	1	-	Н	O CF₃ -CH-N-CF H CH₂OH
762	CHCH ₂ -	2	2	1	-	н	-CH-N-C
763	CHCH2-	2	2	1	-	н	CH2OH
764	CH-CH ₂	. 2	2	1	- ·	н	-C-N-C- CH3
765	CHCH ₂ -	2	2	1	-	н	CH ₃ O CH ₃ -C-N-C-CH ₃ -CH ₃
766	CHCH ₂ -	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-
767	CH-CH ₂ -	2.	2	1	-	н	CH3 O CH3 -C-N-C-O
768	CHCH ₂ -	2	2	1	-	н .	CH ₃ P -C-N-C- H CH ₃
769	$CH_2^ CH_2^-$	2	2	1	-	н	CH ₃ P OCF ₃ -C-N-C- CH ₃
770	C├ - CH ₂ -	2	2	1	-	н	CH ₃ CH ₃ CCF ₃

Table 1.71

rable	1.7 1						
Compd. No.	R ² (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
771	CH-2	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-F CH ₃
772	C⊢—CH₂-	2	2	1	-	н	CH ₃ O -C-N-C-C-C-CF ₃ CH ₃
773	CHCH ₂ -	2	2	1	-	H 	CH ₃ P CH ₃ C(CH ₃) ₃
774	CH₂-	2	2	1	-	H <u>.</u>	CH ₃ O -C-N-C- H S SCH ₃
775	C├ - ⟨}-CH ₂ -	2.	2	1	-	н	CH ₃ CC(CH ₃) ₃
776	CH-CH ₂ -	2	2	1	-	н	CH3 0 CH3
777	CH-2-	2	2	1	· <u>-</u>	Н	CH ₃ O CF ₃ -C-N-C- O CH ₃
778	C├ - CH ₂ -	2	2	1	-	н	CH ₃ P NO ₂ -C-N-C- CI CH ₃
779	C├ - CH₂-	2	2	1	<u>-</u> -	Н	CH ₃ P CI -C-N-C-CH ₃
780	CI-CH ₂ -	2	2	1	-	Н	CH ₃ Q NO ₂ -C-N-C-
781	CHCH ₂ -	2	2	1	-	н	-CH3 P

Table 1.72

lable	1.12					*	
Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
782	C├ - CH₂-	2	2	1	-	H	CH ₃ O OCH ₃ -C-N-C-
783	C├ - CH₂-	2	2	1	-	н	CH ₃ P CC-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
784	CH-CH ₂ -	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-CH ₂
785	CHCH ₂ -	2	2	1	-	н	CH ₃ OCH ₃ CH ₃ OCH ₃ OCH ₃
786	C├─ੑ	2	2.	1	-	н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}$
787	С⊢СТ}-СН₂-	2	2	1	ī	H .	H ₂ C CH ₂
788	CHCH ₂ -	2	2	1	- -	H .	H ₂ C—CH ₂
789	CHCH ₂ -	2	2	1	-	н	-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
790	СН-СН2-	2	2	1	-	Н	
791	C├─ ─ CH ₂ -	2	2	1	-	н	-C-N-C-NO ₂
792	C├ - CH ₂ -					Н	H ₂ C—CH ₂ NO ₂ NO ₂ H ₂ C—CH ₂ OCF ₃ H ₂ C—CH ₂

Table 1.73

rable	1.7 5						•
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
793	C⊢-{CH₂-	. 2	2	1	-	н	-C-N-C-F H-C-CH ₂
794	CHCH ₂ -	2	2	1	-	н .	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
795	CHCH ₂ -	2	2	. 1	-	н	$-C-N-C-C+3$ H_2C-CH_2
796	CH ₂ -	2	2	1	÷ :	н	H ₂ C—CH ₂ SCH ₃
797 ·	CH ₂ -	2	2	1,	-	н	O CH ₃ II O C(CH ₃) ₃ H ₂ C CH ₂
798	CHCH ₂ -	2	2	1	-	Н	H ₂ C CH ₂
799	CH-CH ₂ -	2	2	1	-	Н	H ₂ C—CH ₂ CH ₃ CH ₃
800	CH-2-	2	2	1		н	O NO ₂ -C-N-C-CI H ₂ C-CH ₂
	CH-CH ₂ -					н	H ₂ C-CH ₂ H
802	CI-CH ₂ -	2	2	1	-	н	-C-N-C-SOCH ₃
803	С├ - СН ₂ -	2	2	1	-	н	OCH ₃ -C-N-C- H -C-N-C- OCH ₂ OCH ₂ CH ₃ -C-N-C- H H ₂ C-CH ₂
					•		

Table 1.74

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
804	C├	2	2	1	-	Н	P CF ₃ H ₂ C-CH ₂
805	C├-{ CH₂-	2	2	1	-	н	H_2 C— CH_2 OCH_3
806	C├ - CH ₂ -	2	2	1	-	,	H ₂ C CH ₂
807	CH-2-	2	2	1	-	н	-CH-N-C
808	CH-CH ₂ -	2	2	1		н	-CH-N-C-CH3 -CH-N-C-C-NH2 (CH ₂) ₂ -C-NH ₂
809	CHCH2-	2	2	1	-	н	-CH-N-C-CI H (CH ₂) ₂ -C-NH ₂
810	C-CH2-	2	2	1	· •	н	-CH-N-C
811	CH-(CH ₂ -	2	2	1	-	н	-CH-N-C
812	CH-CH ₂ -	2	2	1	- :	н	-CH-N-C- H S SCH ₃ (CH ₂) ₂ -C-NH ₂
813	C⊢-(CH ₂ -	2	2	1	. -	н	-CH-N-C
814	C⊢————————————————————————————————————	2	2	1	•	Н	-CH-N-C

Table 1.75

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
815	C⊢ CH₂-	2	2	1	-	н	-C++N-C
816	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
817	CH-2-	2	2.	1	-	н	CF ₃ -CH-N-C-F (CH ₂) ₂ -C-NH ₂
818	CH2-	2	2	.1	-	н	-CH-N-C
. 819	CH-√CH₂-	2	2	1		н	CF ₃ -CH-N-C
820	C⊢√CH ₂ -	2	2	1	-	н	- CH-N-C
821	CHCH ₂ -	2	2	1	-	н	-CH-N-C
822	CHCH ₂ -	2	2	1	-	· H	Р s SCH ₃ -СН-N-С- СН ₂ ОСН ₃
823	C⊢√ CH₂-	2	2	1	-	н	-CH-N-C- CH₂OCH3
824	CI—CH₂-	2	2	1	-	Н	O CH ₃ -CH-N-C-O I H CH ₂ OCH ₃ C(CH ₃) ₃
825	CH-√CH₂-	2	2	1	-	н	O CH ₃ -CH-N-C-O CH ₂ OCH ₃

Table 1.76

Compd.	R ² (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q-G}-R^6$
826	С⊢-{_}-СН₂-	2	2	1	-	н	CH2OCH3
827	C├ - CH₂-	2	2	1	-	н	-CH-N-C-NH H CH ₂ OCH ₃
828	CH-CH ₂ -	2	2	1		H	-CH-N-C-OCF ₃ -CH ₂ OCH ₃
829	CH-CH ₂ -	Ż	2	1	-	н	-CH-N-C-CF ₃
830	CH-CH ₂ -	2	2	1	- 	. н	-CH-N-C-F CH ₂ OCH ₃
831	С⊢СТ-СН₂-	2	2	1	-	н	CH ⁵ OCH ³
832 .	CHCH ₂ -	, 2	2	1	-	н	-CH-N-C- CH2OCH3
833	CHCH ₂ -	2	2	1	-	н	O −CH−N-C− CH ₂ OCH ₃
834	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CF ₃ -CH ₂ OCH ₃
835	С⊢-{}-СН₂-	2	2	1	-	Н	-CH-N-C- CH ₂ OCH ₃
836	CH-2-	2	2	1	-	н	-CH-N-C-CH ₃ -CH ₂ OCH ₃

Table 1.77

Table					_		
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p
837	С⊢-{Сн₂-	2	2	.1	-	н	- СH-N-С- СH ₂ OСH ₃
838	CH-CH2-	2	2	1		н	-CH-N-C-CH ₂ CH ₃ -CH ₂ OCH ₃
839	CH-CH ₂ -	2	2	1	-	н	ОСН ₃ -СН-N-С-ОСН ₃ -СН ₂ ОСН ₃ ОСН ₃
840	CH2-	2	2	1	-	Н	-(CH ₂) ₃ -C-
841 .	СН-СН2-	2	2	1		н	-(CH ₂) ₂ - C-
842	CHCH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ -C-CI
843	CH	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
844	C├ - CH ₂ -	2	2	1	-	Н	$-(CH_2)_2$ - C - CH_3
845	CH-(2	2	1	-	н	-(CH ₂) ₂ -C
846	CH-CH2-	2	2	1	-	н	-(CH ₂) ₂ -C-\bigcom_0 O-\bigcom_0
							-(CH ₂) ₂ -C

100

Table 1.78

Table 1	1.70	_					
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G-R^6$
848	CH-CH₂-	2	2	1	-	Н	-(CH2)2-CH3 $H3C$
849	С⊢ СН₂-	2	2	1	-	н	-(CH ₂) ₂ -C-OCH ₃
850	CH-2-	2	2	1	-	н	- CH ₂ - S-CH ₃
851	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
852	CH-CH ₂ -	2	2	1	<u>-</u>	н.	-CH ₂ -N-C-N-CF ₃
853	CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- N-
854	CH-(2	2	1	-	н	- CH ₂ - N- C- N- CH ₃
855	CH-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- N- C- CH ₃
856	CH-()-CH ₂ -	2	2	1	-	н	- CH ₂ - N-C- N-C- N-C- N-C- N-C- N-C- N-C- N-
857	CH2-	2	2	1	<u>-</u>	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
858	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N C-N C-N OCH ₃
							,

101

Table 1.79

Tubic .							
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
859	CH2−	2	2	. 1	•	н	-CH2-HC-H
860	CHCH ₂ -	2	2	1	-	н .	- CH ₂ -N-C-N-CN
861	CHCH ₂ -	2	2	1	-	, н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
862	CH√_CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
863	CH2-	2	2	1	-	н	- CH ₂ -N-C-N-
864	CH-CH ₂ -	2	2	· 1	-	Н	- CH ₂ - N-C-N-()- OCH ₃
865	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-S-CH ₃
866	CH-CH ₂ -	2	2	1			- CH ₂ -N-S-
867	C├────────────────────────────────────	2	2	1		н	-CH ₂ -N-S
868	C├ - CH ₂ -	2	2	1	-		-CH ₂ -N-S
869	C⊢√ CH₂-	2	2	1	-	н	-CH ₂ -N-S-CH(CH ₃) ₂

:.

102

Table 1.80

lable	1.80						•
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) , 1 (CH ₂) , G-R ⁶
870	С⊢-{СН₂-	2	2	1	•	н	- CH ₂ - N- S- CH ₃
871	C⊢ √ −CH₂-	2	2	1	-	н	- CH ₂ -N-S
872	CH_CH ₂ -	2	2	1	-	н	- CH ₂ -N-S-
873	CH-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-O CH ₂ -
874	CI-CH ₂ -	2	2	1	-	н	- CH O C N CI
875	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
876	Br—CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
877	NC-CH ₂ -	2	2	.1	-	Н	- CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	H	- CH ₂ -N-C-CF ₃
879	O CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
880	O^O CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃

103

Table 1.81

lable	1.81						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
881	Br CH ₂ -	2	2	1	-	Н	- CH ₂ - N C- СF ₃
882	OH ₂ -	2	2	1		Н	- CH ₂ - N· C- CF ₃
883	CI CH ₂ -	2	2	1	-	н	- CH ₂ -N-CF ₃
884	#c·c-lh αι⁵-	2	2	1		Н	-CH ₂ -N-C-CF ₃
885	H ₃ C-\$-(CH ₂ -	. 2	2	1	-	н	- CH ₂ -N-C-CF ₃
886	F-CH ₂ -	2	2	1	-	н	- CH ₂ - N-C
887	F ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C-CF ₃
888	HO-(CH ₂ -	2	2	1	<u>.</u>	Н	- CH ₂ -N-C-CF ₃ .
·889	CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
890	CH ₂ -	2	2	1	-	н	- CH ₂ - N- CF ₃ - CH ₂ - N- CF ₃ - CH ₂ - N- CF ₃
891	CH2-	2	2	1		н	- CH ₂ - N- C- CF ₃

104

Table 1.82

IADIC	.02						
Compd.	R ¹ / _{R²} -(CH ₂) _j -	k	m	n (chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
892	H ₃ CO CH ₂ -	2	2	1	-	H.	- CH ₂ -N-C-CF ₃
893	O ₂ N CH ₂ -	2	2	1	-	н _.	- CH ₂ - № C
894	HO CH_3 H_3C CH_2 CH_3	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
896	CN CH₂-	2 ′	. 2	1	-	н 	- CH ₂ -N-C
897	HO ₂ C —CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
898	HO ₂ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1		н	-CH ₂ -N-C-CF ₃
	н ₃ ∞ ₂ с-{}-Сн ₂ -						- CH ₂ -N-C-CF ₃
901		2	2	1	-	н	- CH ₂ -N-C-(CF ₃)
.902	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃

105

Table 1.83

lable	1.00						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{-\frac{R^4}{R^5}}(CH_2)^{-\frac{G-R^6}{R^5}}$
903	H ₃ CO ————————————————————————————————————	2	2	1	-	Н	- CH ₂ -N-C
904	HO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	H	- CH ₂ - N- C-CF ₃
906	(CH ₂) ₃ -	2	2	1	- .	н	- CH ₂ -N-C-CF ₃
907	CH(CH ₂) ₂ -	2	2	.1	-	Н	- CH ₂ -N-C-CF ₃
908	N- C, CH 2-	2	2	1	<u>.</u> .	Н	-CH ₂ -N-C-CF ₃
909	N C-√-CH ₂ -	2	2	. 1	-	Н	-CH ₂ -N-C-CF ₃
910	CI CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
911	CI CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
913	H ₃ CO-CH ₂ -	2	2	1		Н	- CH ₂ -N-C-CF ₃

106

Table 1.84

, abic	1.0 4						•
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(\dot{C}H_2)_{p} + (\dot{C}H_2)_{q} - G - R^6$
914	O120-(CH2-	2	2	1	-	H	- CH ₂ - N- C-
915	OH CHCH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
916	N CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
917	N— CH₂-	2	2	1	· _	Н	- CH ₂ - N-C-
918	H ₃ CO ₂ C-CH ₂	2	2	1		н	- CH ₂ -N-C-CF ₃
919	H ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
920	OCF ₃ CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
921	CH ₂ -	2	2	1	<u>.</u> .	н	- CH ₂ -N-C- CF ₃
922	> CH₂-	2	2	1		Н	- CH ₂ -N-C-C-CF ₃
923	CH_CH-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
924	H ₂ N-C//	2	2	1	-	н	-CH2-N-C-CF3

107

Ta	h	0	1.	8	5

rabie	1.00						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}(CH_2)_{q}G-R^6$
925	H ₂ N-C-(-)-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
926	CH2-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CO —CH ₂ -	2	2	1	;	н	-CH ₂ -N-C-CF ₃
928	F ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	H ₃ CS-CH ₂ -	2	2	1		н	-CH ₂ -N-C-C
930	CH₃ CH₂-	2	2	1	-	Н	-СH ₂ -N-С-СБ ₃
931	NC ——CH ₂ —	2	2	1	-	н	-CH ₂ -N-C-CF ₃
932	NO ₂	2	2	1	-	н	-СH ₂ -N-С-СБ ₃
933	CH- CH−	2	2	1	-	н	-CH ₂ -N-C-CF ₃
934	CH ₂ -	2	2	1	Ŀ	н	-CH ₂ -N-C-CF ₃
935	O ₂ N	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.86

lable	1.00						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
936	NO ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
937	(H ₃ C) ₂ N-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O_2N CH CH_2	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
940	OH CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
941	F ₃ C CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
942	C├ - CH ₂ -	2	2	1	-	н	-CH N C-CF ₃ -CH (CH ₃) ₂ CF ₃
943	CH-CH₂-	1	4	0	-	н	-CH ₂ -N-C-CF ₃
944	C├ - CH₂-	1	4 .	0	-	н	-CH ₂ -N-C-CH ₃
945	C ├── CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-\(\sigma\)
946	CI—CH₂-	1	4	0	-	н	-(CH ₂) ₂ -N-CNO ₂

109

Ta	h	ما	1	.8	7
10	_				•

947 $CH \leftarrow CH_2 - 1 4 0 - H -(CH_2)_2 - N - C - CH_2 - 1 4 0 - H -(CH_2)_3 - C - N - C - C$	Table 1.	.87						
948 $CH_{2}^{-} - CH_{2}^{-}$ 1 4 0 - H $_{-(CH_{2})_{3}}^{-}CH_{2}^{-}$ 949 $CH_{2}^{-} - CH_{2}^{-}$ 1 4 0 - H $_{-(CH_{2})_{3}}^{-}CH_{2}^{-}$ 950 $CH_{2}^{-} - CH_{2}^{-}$ 0 4 1 - H $_{-CH_{2}^{-}}H_{2}^{-}CH_{2}^{-}$ 951. $CH_{2}^{-} - CH_{2}^{-}$ 1 2 0 R H $_{-CH_{2}^{-}}H_{2}^{-}CH_{2}^{-}$ 952 $CH_{2}^{-} - CH_{2}^{-}$ 1 2 0 R H $_{-CH_{2}^{-}}H_{2}^{-}CH_{2}^{-}$ 953 $CH_{2}^{-} - CH_{2}^{-}$ 1 2 0 R H $_{-(CH_{2})_{2}^{-}}H_{2}^{-}CH_{2}^{-}$ 954 $CH_{2}^{-} - CH_{2}^{-}$ 1 2 0 R H $_{-(CH_{2})_{2}^{-}}H_{2}^{-}CH_{2}^{-}$ 955 $CH_{2}^{-} - CH_{2}^{-}$ 1 2 0 R H $_{-(CH_{2})_{2}^{-}}H_{2}^{-}CH_{2}^{-}$	Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	ÌR³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
949 $CH - CH_2 - 1 $	947	CH-CH ₂ -	1	4	0	-	н	-(CH ₂) ₂ -N-С-ОСН ₃
950 $CH - CH_2 - 0$ 4 1 - H $-CH_2 - N - CH_2 - N - CH$	948	CH-CH2-	1	4	0	- -	Н	-(CH ₂) ₃ -C-N-CI
951. $CH ightharpoonup CH_2-$ 1 2 0 R H $-CH_2-N-C-$ 952 $CH ightharpoonup CH_2-$ 1 2 0 R H $-CH_2-N-C-$ 953 $CH ightharpoonup CH_2-$ 1 2 0 R H $-(CH_2)_2-N-C-$ 954 $CH ightharpoonup CH_2-$ 1 2 0 R H $-(CH_2)_2-N-C-$ 955 $CH ightharpoonup CH_2-$ 1 2 0 R H $-(CH_2)_2-N-C H_3C ightharpoonup CH_2-$ 1 2 0 R H $-(CH_2)_2-N-C H_3C ightharpoonup CH_2-$ 1 2 0 R H $-(CH_2)_2-N-C-$	949	CH-2-	1	4	0	-	Н	-(CH ₂) ₃ -C-N-CH ₂ -
952 CH_{2}^{-} 1 2 0 R H $-CH_{2}^{-}$ N CH_{2}^{-} 1 2 0 R H $-CH_{2}^{-}$ N CH_{2}^{-}	950	CH2-	0	4	1	-	Н	- CH ₂ - N- C-
953 $CH - CH_2 - 1$ 2 0 R H $-(CH_2)_2 - N - C - CH_2 - 1$ 2 0 R H $-(CH_2)_2 - N - C - CH_2 - 1$ 2 0 R H $-(CH_2)_2 - N - C - CH_2 - 1$ 2 0 R H $-(CH_2)_2 - N - C - CH_2 - N - C - C - C - C - C - C - C - C - C$	951.	CH-2-	1	2	0	R	н	-сн₂-и-с-С-сн₃
954 CH_2^- 1 2 0 R H $\frac{CH_2^-}{H_3}C$ 955 CH_2^- 1 2 0 R H $\frac{CH_2^-}{H_3}C$	952	CH2-	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₂
H ₃ C 955 CI→CH ₂ - 1 2 0 R H -(CH ₂) ₂ -N-(CH ₂) ₂ -N-(CH ₂) ₂ -N-(H ₃) ₃ (CH ₃) ₄ -(CH ₂) ₃ -(CH ₂) ₄ -(CH ₂)	953	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
								-CH ₂ -N-C-NH
956 CH ₂ - 1 2 0 R H -(CH ₂) ₂ -N-(CH ₂)-N-(CH ₂) ₂ -N-(CH ₂)-N-(CH ₂	955	CI-CH ₂ -	1	2	0	R		
•	956	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-\\ HO
956 CH ₂ - 1 2 0 R H -(CH ₂) ₂ -N-CH ₂ - 1 2 0 R H -CH ₂ -N-CH ₂ - 1 2 0 R H -CH ₂ -N-CH ₂ - 1 2 0 R H	957	CH-CH ₂ -	1	2	0	R	н	-CH2-N-C-

1 1 0

Ta	b	le	1	8.	8
----	---	----	---	----	---

Table	1.88						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
958	CH-2-	1	2	0	R	н	-(CH ₂) _Z -N-C
959	CH-€-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
960	CHCH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-CH ₃
961	с-СН2-	1	2	0	R	Н .	-CH2-N-C- H C- H CH3
962	ÇH	1	2	0	R	н .	-(CH ₂) ₂ -N-С
963	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-СОН
964	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H -CO ₂ CH ₃
965	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-\ + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
966	C├─ \ CH ₂ -	1	2	0	R	Н	-СН ₂ -N-С-СН ₃
967	СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
968	С├-СН₂-	1	2	0	R .	н	-CH_N-C-NH

1 1 1

Table 1	.8	9
---------	----	---

Compd. No.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
969	С⊢{СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	CH-CH ₂ -	1	2	0	R	Н	-CH2-N-C-\(\infty\) N(CH3)2
971	С⊢√_СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
972	CHCH2-	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
973 .	CH-2-	1	2	0	R	н	-(CH ₂) _Z -N-C
974	CH-€-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NH ₂
975	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NH ₂
976	C ├── CH ₂ -	1	2	. 0	R	Н	-CH2-N-C-
977	CH-2-	1	2	0	·R	H	-(CH ₂) ₂ -N-C- NH
978	C├ - CH ₂ -	1	2	0	R	н	-CH ² -N-C-NH
979	CH-€-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH

1 1 2

┰-	١.	١	4	_	^
Ta	n	Je:	٦.	9	U

Compd.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
980	C├ - CH₂-	1	2	0	R	н	CH ² -N-C-CH ³
981	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
982	CH-{CH ₂ -	1	2	0	R	· н	$-CH_2-N-C-$ $(H_3C)_2N$
983	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
984	.CH-CH ₂ -	1	2	0	R	н ,	-CH2-N-C- H CH2-OH2-OH
985	CH-CH ₂ -	1	2	0 .	R	н	-(CH ₂) ₂ -N-С-СH ₂ ОН
986	CH-CH-	1	2	0	R	н .	-CH₂-N-C
987	CH−CH₂−	2	2	1	-	н	-CH ₂ -N-C-CF ₃
988	CHCH ₂ -	1	4	0	-	н .	-CH ₂ -N-C-CF ₃
						н	-CH ₂ -N-C-O-CH ₂ -
990	CH2-	1	4	0		H .	-CH ₂ -N-C-

113

Table 1.91

lable i	.9 1						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality.	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G - R^6$
991	CH-CH2-	1	4	0	-	н	-(CH ₂) ₂ -C-
992	CH-CH ₂ -	1	4	0	-	H	OCH ₃
993	CH-CH ₂ -	1	4	0	-	អ	-(CH ₂) ₂ -C-CH ₃
994	C⊢√CH ₂ -	1	4	0	-	H :	-(CH ₂) ₃ -C-
995	CH-€ CH₂-	1	4	0	-	н	-(CH ₂) ₃ -C-\OCH ₃
996	CHCH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CH-CH ₂ -	2	2	1	-	н	-CHN-C-(CH ₃) ₂
998	CH-CH ₂ -	2	2	1	; -	н	CH ₂ CH(CH ₃) ₂
999	CH-2-	2	2	1	-	н	-CH-N-C-CH ₃ -CH ₂ CH(CH ₃) ₂
1000	CH-CH ₂ -	2	2	1	-	H .	ОСН3 -СНК-С- Н ОН2СН(СН3)2
1001	CH-€	2	2	1	-	Н	-CH-N-CH ₂ CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂

114

Т	a	h	le	1	.9	2
	a	_		- 1		~

ianie	1.5 2			•			
Compo	d. R ¹ (CH ₂),	k	m	n	chirality	`R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1002	с⊢{_}-сн₂-	2	2	1	-	H	- CH-N-C- H CH ₂ CH(CH ₃) ₂
1003	CHCH2-	2	2	1	-	н	-CH-N-C
1004	CHCH ₂ -	2	2	1	-	н	O OCH3 - CHN-C- OCH3 - CH(CH3)2 OCH3
1005	CH2-	2	2	1	-	н	ОСН ₃ -СН N-С-СОСН ₃ -СН ₂ СН(СН ₃) ₂ ОСН ₃
1006	CH-CH ₂ -	2	2	1	-	H·	OCH ₂ CH ₃ -CH-N-C CH ₂ CH ₃ -CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1007	CH-CH ₂ -	2	2	1	-	H	OCH ₂ CH ₃ -CH-N-C
1008	CH_CH ₂ -	2	2	1	-	Н	- CH-N-C
1009	CH-CH ₂ -	2	2 ·	1	-	н.	-CH+N-C
1010	CH-{_}CH₂-	2	2	1	-	н	- CH-N-C
1011	C├ - CH ₂ -	2	2	1	-	Н	(CH ₂) ₂ G-NH ₂ -
1012	C├ - CH₂-	2	2	1	-	н.	- CHP, C- CH3

1 1 5

Table 1.93

1013 $CH_{2}-CH_{2}-2$ 2 1 - 1014 $CH_{2}-CH_{2}-2$ 2 1 - 1015 $CH_{2}-CH_{2}-2$ 2 1 - 1016 $CH_{2}-CH_{2}-2$ 2 0 -	н	OCH ₃ -CHN-C
1015 CH ₂ - 2 2 1 - 1016 CH ₂ - 2 2 0 -	н	OCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃ OCH ₂ CH ₃
1016 с⊢√у-сн₂- 2 2 0 -		(CH2)2-C-NH2 OCH2CH3
	н	o , ^{CF₃}
1017 c⊢√ → ch,- 2 2 0 · -		-CH ₂ -N-C-
	н	-сн ₂ -и-с-
1018 c⊢√ CH₂- 2 2 1 -	н	ОСН ₂ СН ₃ -СН ₂ -N-С- Н С-СН ₂ СН ₃
1019 с⊢ Сн₂- 2 2 1 -	н	$-CH_2-N_1-C- \bigcirc OCH_2CH_3$ $-CH_2-N_1-C- \bigcirc OCH_2CH_3$ $-CH_2-CH_3$
1020 CH₂- 2 2 1 -	Н .	-CH ₂ -N-C
1021 CH ₂ - 2 2 1 -	н	-CH ₂ -N-C
1022 CH2- 2 2 1 -	H	(S) OCH ₃ -CH-N-C OCH ₃ OCH ₃
1023 C⊢√ CH₂- 2 2 1 -	н	(S) Q CH ₂ CH ₃ -CH ₂ CH ₃

116

Table 1.94

lable	1.94						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	[*] R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1024	CH-2-	2	2	1	-	Н	(S) OCH ₃ -CH-N-C
1025	C	2	2	1	-	. H	(S) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₃
1026	С⊢СТ СН₂-	2	2	1	-	н	$(S) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C- \bigcirc OCH_2CH_3$ $CH_3 \qquad OCH_2CH_3$
1027	CHCH ₂ -	2	2	1	-	н	(S) P OCH ₂ C H ₃ -CH-N-C-OCH ₃
1028	с⊢ СН₂-	2	2	1	<u>-</u> ·	H	(S) OCH ₂ CF ₃ -CH-N-C
1029	CHCH2-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C-CH ₃ CH ₃
1030	CH-2-	2	2	1		н	(S) OCF ₃ -CH-N-C-CH-CH ₃ CH ₃
1031	C⊢CH₂-	2	2	1	-	Н	(S) OCH3
1032	C├ - CH ₂ -	2	2	1	-	н .	(H) OCH3 -CH-N-C-OCH3 CH3 OCH3
1033	С⊢√_СН₂-	2	2	1	-	н	(F) CH ₂ CH ₃ -CH ₂ CH ₃ CH ₃ CH ₃
1034	C	2	2	1	- .	н	(A) OCH3 -CH-N-C

117

Table 1.95

Table !	1.5 9						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1035	с⊢СН₂-	2	2	1	-	н	(H) OCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃ -CH ₃
1036	CH-CH2-	. 2	2	1		н	(R) OCH ₂ CH ₃ -CH-N-C- OCH ₂ CH ₃ CH ₃ OCH ₂ CH ₃
1037	CH-2-	2	2	1	-	н	(A) OCH2CH3 -CH-N-C- OCH3 H CH3
1038	CHCH ₂ -	2	2	1	- .	Ħ	(F) QCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	CH-CH ₂ -	2	2.	1.	-	н	(A) -CH-N-C- H CH ₃ .
1040	C├ ~ CH₂-	2	2	1	-	н	(F) -CH-N-C- H CH ₃
1041	CH2-	2	2	1	-	н	(F) OCH ₃ -CH-N-C-CH-N-C-CH ₃ CH ₃
1042	CH-{-}CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1043	C⊢√ CH₂-	2	2	1	-	н	$-CH_2-NC$ H_2 H_2 N
1044	C├ ─ CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1045	CH-{-}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

118 .

Table 1.96

Table	1.96						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} - R^6$
1046	CH2-	2	2	1	-	Н	-CH ₂ -N-C-
1047	С⊢√СН₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N CH_3 CH_3
. 1048	С-СН2-	2	2	1	-	H _.	$-CH_2-N-C- \bigcirc CCH_3$ $-CH_2-N-C- \bigcirc CCH_3$ $-CCH_3$ $-CCH_3$ $-CCH_3$
1049	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N B_1
1050 ·	CH-CH2-	2	2	1,	-	н	$(S) \qquad \bigcirc OCH_3$ $-CH+N+C-$ H $CH_2CH(CH_3)_2 OCH_3$
1051	CH2-	2	2	1	-	н .	(S) CH ₂ CH ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
1052	CH-CH ₂ -	2	2	1	-	н	$(S) \qquad \bigcirc OCH_3$ $-CH_1N_1C- \bigcirc OCH_3$ $-CH_2CH(CH_3)_2 OCH_3$
1053	C├ - CH₂-	2	2 .	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1054	C⊢√CH₂-	2	2	1	-	Н	$(S) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C- \bigcirc OCH_2CH_3$ $-CH_2CH(CH_3)_2 OCH_2CH_3$
1055	C├ - CH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1056	С⊢С СН₂-	2	2	1	-	Н	(S) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

119

Table 1.97

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1057	с⊢—Сн₂-	2	. 2	1	-	.H	(F) OCH₂CH₃ -CH-N-C- H H CH₂CH(CH₃)₂
1058	CH-CH ₂ -	2	2	1	-	н	(S) OCH ₃ -CH-N-C-CH-CH ₃ CH ₂ CH(CH ₃) ₂
1059	С⊢—СН₂-	2	2	1	-	н	(S) OCF ₃ -CH-N-C-CH H CH ₂ CH(CH ₃) ₂
1060	С⊢—СН₂-	2	2	1	<u>.</u> .	H	(F) OCH₂CH₃ -CHN-C- OCH₃ H CH₂CH(CH₃)₂
1061	С⊢-{СН₂-	2	2	1		н	(F) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CH-CH ₂ -	2	2	1	-	H _.	(S) Q −CH-N-C- H CH ₂ CH(CH ₃) ₂
1063	с⊢(Сн₂-	2	2	1	-	н	(R) POCH ₃ -CH-N-C
1064	C⊢-{_}-CH₂-	2	2	1	-	н	(FI) OCF ₃ -CH-N-C
1065	CH-CH2-	2	2	1	-	н	(F) OCH ₃ -CH-N-C OCH ₃ H CH ₂ CH(CH ₃) ₂ OCH ₃
1066	С⊢—СН₂-	2	2	1	-	н	(F) CH ₂ CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1067	CH-CH ₂ -	2	2	1	-	н	(F) OCH ₃ -ÇH-N-C

120

Table 1.98

lable							
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}(CH_2)_{q}^{-}G^{-}R^6$
1068	CH-€-	2	2	1		н	(<i>F</i>)
1069	CH-€ CH₂-	2	2	1	-	н .	(FI) OCH ₂ CH ₃ -CH-N-C- OCH ₂ CH ₃ H OCH ₂ CH ₃
1070	CH-€ CH2-	2	2	1	- -	н	CH2OCH2
1071	CI-CH ₂ -	2	2	1		н	-CH-NC-CH ₂ OCH ₂ -C
1072	CH-CH2-	2	2	1	·	н	-CH-NC-C(CH ₃) ₃
1073	С⊢-{СН₂-	2	2	1	-	H .	-CH-N-C
1074	CH-{-}-CH ₂ -	2	2	1	-	Н	-CHNC-CH2
1075	C├ - CH₂-	2	2	1	-	Н	-CH-NC
1076	CH2-	2	2	1	-	Н	-CH-N-C-\\ H
- 1077	С⊢—СН₂-	2	2	1	-	н	-CH-NC-CF3 CH2OCH2-C
1078	с⊢— Сн₂-	2	2	1	-	н'	-ch-Nc-

121

Table 1	.99						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1079	C├ - CH ₂ -	2	2	1		· н	CH ₂ OCH ₂
1080	CH-CH ₂ -	2	2	1	-	н	-сн-й-с осн²ссн²
1081	C	2	2	1	-	н	-CH-N-C-OCH ₃ -CH-N-C-OCH ₃ OCH ₃
1082	CH-CH ₂ -	2	2	1	-	н	(S) P CH ₃
1083	CH-CH ₂ -	2	2	1	-	. н	CH ₃
1084	CHCH ₂ -	. 1	2	0	R	_. H	-CH ₂ -N-C-
1085	CI—Ĉ-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1086	CHCH ₂ -	1	2	0	R	н .	$-CH_2-N-C$ H_2N
					•		-CH ₂ -N-C-N
1088	CH2-	1	2	0	R	н	-CH ₂ -N-C-
1089	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

1 2 2

Tab	No.	1.	1	n	Λ
ıaı) i E	٠.	,	v	v

Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p
1090	СН-СН2-	1	2	0	R	н	-CH ₂ -N-C
1091	C├ - CH ₂ -	1	2	0	R ·	,H	$-CH_2CH_2-NC-$ H_2N
1092	C├ - CH ₂ -	1	2	0	R	н ·	$-CH_2CH_2-N+C H_2N$ H_2N
1093	CH-CH ₂ -	1	2	0	R	н	$-CH_2CH_2-N-C-$ H_2N
1094 •	CH-CH ₂ -	1	2	0	R	н.	-CH ₂ CH ₂ -N-C-N-C-N-H
1095	CH2-	1	2	0	R	н	-сн ₂ сн ₂ -ү-с-С
1096	CH-2-	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1097	CHCH2-	. 1	2	0	R	Н	-CH2CH2-N-C-
1098	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- Br H C- CH ₃
1099	CH-CH2-	1	2	0	R	Н	-CH ₂ -N-C
1100	CH-2-	1	2	0	R	Н	-CH₂-N-CF

123

Ta	h	٥١	1	1	0	1
ıa	u	16	•		v	•

Table 1							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1101	CH-CH2-	1	2	0	R	Н	-CH ₂ -N-C
1102	CH-€	1	2	0	R	н	-CH ₂ -N-CNO ₂
1103	H ₃ C-CH ₂ -	1	2	0	R	н ·	-CH₂-N-C
1104	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- Br
1105	H ₃ C-CH ₂ -	1	2	.0	R	H	$-CH_2-N-CF$
1106	H ₃ C-\(\bigc\)-CH ₂ -	.1	2	0	R	H	-CH ₂ -N-C-CH ₃
	H ₃ C-CH ₂ -					н	-CH ₂ -N-CNO ₂
1108	CH ₃ CH ₂ CH ₃	1 ·	2	0	R	н	-CH ₂ -N-C- H
1109	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-⟨Sr H
1110	CH₃ N—CH₂- CH₃	1	2	O.	R	н	-CH ₂ -N-C
1111	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{3}-N-C-$ $-CH_{3}-N-C-$

124

-			-	-	~ ~
Ta	b	le	7	. 1	02

	0 =						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1112	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-\ NO ₂
1113	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C- H C- CH ₃
1114	CH-2-	2	2	1	-	н	-CH ₂ -N-C
1115	C├ \ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
1116	C⊢-{	2	2.	1	· <u>-</u>	Н	CH ₂ N-C
1117	CHCH2-	2	2	1	-	Н	-CH ₂ -N-C-NO ₂
1118		1	2	0	R	н	-CH ₂ -N-C-CF ₃
1119	H₃CS-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1120	H ₃ CQ CH ₂ - OCH ₃	1	2	0	R	Н .	-CH ₂ -N-C
	H ₃ C O ₂ N-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1122	H3C (H3C)2CH	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 2 5

т	٠,	h	le	1	1	0	3
	a	u	16			v	J

lable	1.103						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	['] R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N_O_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	с 	2	2	1	-	н	- CH-N-C- CI H C- CI CH ₂ O CH ₂ - CI
1126	СН2-	2	2	1	· <u>.</u>	н	-CH-N-C
1127	с————————————————————————————————————	2	2	1	-	н	-CHNC-NH CH2OCH2
1128	с⊢С}−сн₂−	2	2	1	-	н	-ch-h-c
1129	СНСН2-	2	2	1	-	н .	CH ₂ OCH ₂
1130	CHCH ₂ -	2	2	1	· -	н	-CH-N-C
1131	C├─ \ _CH ₂ -	. 2	2	1	·-	н	-CH-N-C
1132	C├ ─ _CH ₂ -	2	2	1	-	. H	-CH-N-C-CF3 -CH ₂ -N-C-CF3
	H ₃ CO CH ₂ -						-CH ₂ -N-C-CF ₃
							•

1 2 6

Table 1.104

lable	1.104						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1134	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
1135	CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	O − CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-⟨S
1137	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	.1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1140	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1141	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1142	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1143	CH2-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1144	H ₃ CQ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 2 7

Table 1.105 .

	R ¹ (CH ₂),						·(CH ₂) p (CH ₂) q G-R ⁶
1145	H ₃ CQ H ₃ CO-CH ₂ - NO ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
	OH ₂ O-CH ₂ -					н	-CH ₂ -N-C-CF ₃
:	HC-C-H CH2					н	-CH ₂ -N-C-CF ₃
1148	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1149	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH₂-N-C
1150	CH ₃ CH ₂ - CH ₃	1	2	o	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH₃ N CH₂- CH₃	1	2	0	R	H .	-CH ₂ -N-C-N-H
1153	CH₃ CH₂- CH₃					•	-CH ₂ -N-C-N-H
1154	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1155	CH₃ CH₃	1	2	0	R	н	$-CH_{2}-N-C-V$ $-CH_{2}-N-C-V$ $F_{3}C$ $-CH_{2}-N-C-V$ $F_{3}C$

128

Table 1.106

Table I								
Compd.	R ¹	-(CH ₂) _[k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1156	2-0	CH ₃ 	1	2	0	R	н	-CH ₂ -N-C
1157	X-0	CH₃ >CH₂- CH₃	1	2	0	R	H .	-CH ₂ -N-C-SSCH ₃
1158	N-0	CH ₃ 	1	2	0	R	н	-CH ₂ -N-C-
1159	2-0	CH ₃ CH ₂ -	1	2 .	0	R	H	$-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$
1160	X-0-	CH₃ CH₂− CH₃	1	2	, 0	R	н	-CH ₂ -N-C CH ₃
		OH CH ₂ -					Н	-CH ₂ -N-C-CF ₃
1162	н₃СО- Н;	CH ₃ -CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-С-С-
1163	н₃со	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1164	н₃со	3G ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1165	<u>~</u>	CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1166	н₃сс	Br CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 2 9

Tab	۱,	4	4	77
ıan	Ie.	- 1.	. 1	\mathbf{u}

Table	1.107						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	'R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
1167	С⊢СН₂-	2	2	1		н	-CH2-N-C-
1168	CL N CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1169	H ₃ C- C- N N CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1170	HN CH₂-	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1171	СН2-	1	2	0	.R	н .	-CH ₂ -N-C
1172	Ç⊢——CH₂-	1	2	0	R	• н	-CH ₂ -N-C-N-C-N-H
1173	C⊢(1	2	0.	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1174	CH-{	1	2	0	R	н	-CH ₂ -N-C-
1175	H ₃ C-CH ₂ -	1	2	0	R .	Н	CH ₃
							-CH ₂ -N-C-N-OH
1177	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-

1 3 0

Table 1.108

lable	1.108				•		
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1178	H₃C-⟨	1	2	0	R	н	-CH ₂ -N-C
1179	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1180	H₃CCH₂-	1	2	0	R	н	-CH ₂ -N-C-N-N-H
	CH ₃ CH ₃						-CH ₂ -N-C-CH ₃
1182	CH ₃						-CH ₂ -N-C-N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1183	CH₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H
1184	CH ₃ CH ₂ − CH ₃	1	2	0	R		CH ₂ N-C
1185	CH ₃ CH ₂ - CH ₃						-CH ₂ -N-C-\ H ₂ N
1186	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H
1187	CI—CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1188	C⊢√CH₂-	2	2	1	-	Н	-CH2-N-C-N-C-N-OH

PCT/JP00/03203

Table 1		10	9
---------	--	----	---

Table 1	.109						
Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	ー(CH ₂) p
1189	с⊢{_}-сн₂-	2	2	. 1	-	н	-CH ₂ -N-C-N-C-N-1
1190	С├-{СН₂-	2	2	1	-	н	-CH ₂ -N-C
1191	CH ₃ CH₂- CH₃	1	2	0	R .	н	-CH ₂ -N-C F
1192	CH ₃ CH ₂ - CH ₃	1	2	0	R	`н	-CH ₂ -N-C-⟨S-F
1193	CH ₃ CH₂- CH₃	1	2	0	R	. н	-CH2-N-C-OCF3
1194	CH ₃ CH ₂ − CH ₃					Н	$-CH_2-N-C$ F_3C
1195	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH₂-N-C-
1196	CH ₃ CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1197	CH₃ N—CH₂− CH₃	1	2	0	R	н	$-CH_2-N-C$ F CF_3
1198	CH₃ N→CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C
1199	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃

1 3 2

Table 1.110

. 45.0							
Compd.	R (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1200	CH ₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1201	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1202	CH₃ N − CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1203	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1204 ·	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N_1C$ F_3C F_3C
1205	H₃C-√CH₂-	1	2	0	R	н	-CH₂-N-C-
1206	H ₃ C-\(\bigce\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1207	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1208	H ₃ C	1	2	0	R	Н	-CH ₂ -N-C-CI
1209	H ₃ C-\CH ₂ -	1	. 2	0	R	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CI$
1210	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI

1 3 3

Table 1.111

Table 1	1.111						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1211	H₃C- (CH₂-	1	ż	0	R	Н	-CH ₂ -N-C-F
1212	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1213	C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1214	C⊢√CH₂-	2	2	1		Н	-CH ₂ -N-C-S
1215	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- CI
1216	C├ - ⟨}-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1217	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1219	CCH ₂ -	1	2	0	R		-CH ₂ -N-C- CH ₃
	CH-CH2-					н	-CH ₂ -N-C-
1221	с⊢ СН₂-	1	2	0	R	н	-CH ₂ -N-C-F H ₂ N

134

Table 1.112

lable	1.112						
Compd.	R ¹ (CH ₂)j-	k .	m	n	chirality	R³	-(CH ₂) _p
1222	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\
1223	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C
1224	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H HO
1225	H₃C—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1226	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	H	CH ₂ -N-C
1227	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1228	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N -C \longrightarrow H_2N$
1229	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F H H ₂ N
							-CH ₂ -N-C
1231	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1232	· H ₃ C-CH ₂ -	1	. 2	0	R	H	-CH ₂ -N-C

1 3 5

Table 1.113

CH ₃ CH ₃ CH ₂ CH ₂ 1 2 0 R HCH ₂ -N-C- CH ₃ 1235 CH ₃ CH ₃ 1236 CH ₃ CH ₃ 1236 CH ₃ CH ₃ 1237 CH ₃ CH ₃ 1237 CH ₃ CH ₃ CH ₃ 1238 CH ₃ CH ₃ 1238 CH ₃ CH ₃ 1239 CH ₂ CH ₂ 1 2 0 R HCH ₂ -N-C- CH ₂ CH ₃ 1239 CH ₃ CH ₃ CH ₃ 1239 CH ₃	
CH ₃ CH ₃ CH ₂ CH ₂ 1 2 0 R HCH ₂ -N-C- CH ₃ 1235 CH ₃ CH ₃ 1236 CH ₃ CH ₃ 1236 CH ₃ CH ₃ 1237 CH ₃ CH ₃ 1237 CH ₃ CH ₃ CH ₃ 1238 CH ₃ CH ₃ 1238 CH ₃ CH ₃ 1239 CH ₂ CH ₂ 1 2 0 R HCH ₂ -N-C- CH ₂ CH ₃ 1239 CH ₃ CH ₃ CH ₃ 1239 CH ₃	(CH ₂) _q -G-R ⁶
1235 CH_3 1 2 0 R H $-CH_2$ 1 2 0 R $-CH_2$ 1 $-CH_2$	CF ₃
1236 CH_3 CH_2 1 2 0 R H $-CH_2$ CH_3 1 2 0 R H $-CH_2$ CH_3 1 2 0 R H $-CH_2$ CH_3 1 2 0 R $-CH_2$ CH_3 CH_4 CH_4 CH_5 CH	CH ₃
CH ₃ CH ₃ 1237 CH ₂ 1 2 0 R H -CH ₂ -N-C H 1238 CH ₃ CH ₃ CH ₃ 1239 CH ₃ CH ₂ 1 2 0 R H -CH ₂ -N-C CH ₃ 1249 CH ₃	CH3
1238 CH ₃ 1238 CH ₂ - 1 2 0 R H -CH ₂ -N-C- CH ₃ 1239 CH ₃ 1239 CH ₂ - 1 2 0 R H -CH ₂ -N-C- CH ₃	H ₂ N
CH ₃ CH ₃ 1239 CH ₂ - 1 2 0 R H -CH ₂ -N-C- CH ₃	C—F
Un ₃	CH ₃
CH ₃ 0 R H -CH ₂ -N-C	
CH ₃	NO₂ C——NO₂ HO
1241 CH ₂ - 2 2 1 - H -CH ₂ -N-C	CF ₃
1242 CH₂- 2 2 1 - H -CH₂-N-C	O CH ₃
1242 CH ₂ - 2 2 1 - H -CH ₂ -N-C 1243 CH ₂ - 2 2 1 - H -CH ₂ -N-C	O CH₃ C—CI

136

Table 1.114

Table	. 1 1 4						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1244	с⊢(сн₂-	2	2	1	-	н	-CH ₂ -N-C-
1245	CCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1246	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C-√N H
1247	С⊢—СН₂-	2	2	1	-	Н	-CH ₂ -N-C
1248	СНСН	. 2	2	1	<u>.</u>	н	-CH ₂ -N-C-NO ₂
1249	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
	H ₃ C-\CH ₂ -						-CH ₂ -N-CI
1251	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-CI
1252	CH2-	1	2	0	R	Н	-CH ₂ -N-C- H CH(CH ₃) ₂
							-CH ₂ -N-C- H C- CH(CH ₃) ₂
1254	CH ₃ CH ₂ -	1	2	0	R	· н	-CH ₂ -N-C⟨CH(CH ₃) ₂

1 3 7

Table 1.115

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−R ⁶
1255	C	1	2	0	R	н	-CH ₂ -N-C
1256	H ₃ C-CH ₂ -	1	2	0	R	, н	-CH ₂ -N-C
1257	CH ₃ CH₂- CH₃	1	2 [·]	0	R	, н	-CH ₂ -N-C
1258	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1259	CH ₃ CH₂− CH₃	1	.2	0	R	н	-CH ₂ -N-C-
1260	H ₃ C-CH ₂ -	1	2	.0	R	H	-CH ₂ -N-C-OCH ₂ CH ₃
1261	C⊢—CH₂−	1	2	0	R	Н	$-CH_{2}-N-C-VO$ $H_{3}C$ $C(CH_{3})_{3}$
1262	H ₃ C-\(\bigcap_\)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-C(CH_3)_3$ H_3C
1263	CH ₃ CH ₂ − CH ₃	1	.2	0	R	. H	-CH ₂ -N-C-C(CH ₃) ₃ H ₃ C
	C├ - CH ₂ -					Н	-сн ₂ -N-с-Со нь с
1265	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C

138

Table 1.116

	•••	_					
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1266	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C
1267	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1268	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1269	CH_CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C
1270	С⊢СН₂-	1	2	. 0	R	H .	-CH₂-N-C- LO .
1271	C⊢————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1272	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C
1274	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1275	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1276.	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

139

Table 1.117

Table	1.117	_					
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	'R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1277	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H-H-N-C-N-C-N-C-N-C-N-C-N-C-N
1278	CH ₃ N CH ₂ − CH ₃	. 1	2	0	R	н	-CH ₂ -N-C- H H ₃ CO
	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C
1280	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H HO
1281	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-√F
1282	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1283	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C- H H ₃ CO
1284	C├───────────────────────────	2	2	1	-	н	-CH ₂ -N-C
1285	C├────────────────────────────	2	2	1	- ·	н	-CH ₂ -N-C-
1286	H ₃ Ç N(OH ₂) ₃ O — OH ₃ -	1	2	0	R	Н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CF_{3}$ $-CH_{2}-N\cdot C$ $+CF_{3}$
1287	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

140

Table 1.118

labie							
Compd.	R ² (CH ₂);	k	m	n	chirality	R³	$_{/}$ $-(CH_{2})_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1288	HQ H₃CO—CH₂-	1	2	0	·R	Н	-CH ₂ -N-C-CF ₃
1289	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-NC- \longrightarrow \\ H_2N$
1290	CH ₃ CH ₂ - CH ₃	1	2	0	, R	Н	$-CH_2-N CH_3$ $H_2N CH_3$
1291	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C-CH ₂ -	1	2	0	R.	н	$-CH_2-N-C$ H_2N Br
1293	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н ·	-CH ₂ -N-C-CF ₃
1294	H₃C-⟨¯¯)-CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1295	H₃C-⟨	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1296	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-SCH ₃
1297	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+CH_{3}$ $-CH_{2}-N\cdot C$ $+CH_{3}$ $-CH_{2}-N\cdot C$ $+CF_{3}$ $-CH_{2}-N\cdot C$
1298	H_3C CH_2 H_3CO CH_2 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C-CF ₃

141

Table 1.119

labie	1.119						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1299	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1300	OCH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1301	H_3CO OCH_3 $-CH_2$ H_3CO	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ CO CH ₃	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1303	H ₃ CO CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1304	H ₀ CQ CH ₂ C	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1306	H ₃ CCH ₂ Q H ₅ CO-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CH ₂ -					н	-CH ₂ -N-C-CF ₃
1309	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

142

Table 1.120

lable							
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{G}G-R^6$
1310	H ₃ CQ HO————————————————————————————————————	1	. 2	0	R	H	-CH ₂ -N-C-CF ₃
1311	O CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1314 [.]	O ₂ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1315	H ₃ COCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH2-	1	2	0	R	н .	-CH ₂ -N-C
1317	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1318	CH	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1319	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	Br-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

143

Table 1.121

Table	1.121		•		_		
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1321	C⊢√_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- Br
1322	CH-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
1323	CH-CH ₂ -	1	2	0	R	н.	-CH2-N-C-
1324	CH2-CH2-	1	2	0	R	Н	-CH ₂ -N-C
1325	CHCH2-	1	2	0	R	н.	-CH ₂ -N-C
1326	C⊢√_CH₂-	1	2	0	R	н	-CH ₂ -N-C
1327	CHCH2-	1 .	2	0	R	н	-CH ₂ -N-C
1328	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1329	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CI -CH ₃
1330	H ₃ C-(1	2	0	R	н	-CH ₂ -N-C
1331	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

144

T-	L	۱.	-	4	\sim	7
Ta	D.	ıe	1.	. 1	4	4

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1332	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C-\	1	2	. 0	R	н	-CH ₂ -N-C
1334	H ₃ CCH ₂ -	1	2	0	R	н .	$-CH_2-N-C \xrightarrow{CH_3}$
	CH ₃ CH ₂ − CH ₃					н	-CH₂-N-C-S-CI
	CH ₃ CH ₂ - CH ₃					Н	CH ₂ -N-C-CH ₃
1337	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C
1338	CH ₃ CH ₂ -				•	н	-CH₂-N-C- HO
1339	CH ₃ CH ₂ - CH ₃	1	2 ·	0	R	н	-CH ₂ -N-C
1340	CH ₃ CH ₂ − CH ₃	. 1	2	0	R	H	-CH ₂ -N-C-
1341	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
	CHCH_2-						-CH ₂ -N-C- Br

145

Table 1.123

Table 1							
Compd.	R (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1343	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1344	CH2-	2	2	1	-	н	-CH ₂ -N-C-CI
1345	с⊢С≻сн₂-	2	2		-	Н	-CH ₂ -N-C
1346	CH2−CH2−	2	2	1	-	. н	-CH ₂ -N-C-√ HO
1347	CH-2-	1	2	0	R	н	-CH₂-N-C-STCH3
1348	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨S CH ₃
1349	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-S CH ₃
1350	CH- (_)−CH ₂ −	2	2	1	-	н	,CH ₂ -N-CSCH ₃
1351	ССН2-	1	2	0	R	Ĥ	-O+2-H CO+3 -O+2-H CO+3 -O+2-H CO+3
1352	H ₃ CCH ₂ -	1	2	0	R ·	н	-045-HC-042
	CH ₃ CH ₂ - CH ₃						-01 ₂ -N C-01 ₃

146

_					_	_
	<u> </u>	le	1.	•	~	~
1 4	-11)				_	4

lable						· · · · · · · · · · · · · · · · · · ·	
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1354	С⊢СН₂-	. 2	2	1	-	Н	-045-H-C-012
1355	С⊢—СН₂-	. 1	2	. 0	R	Н	$-CH_2-N-C-$ H_2N CN H_2N
1356	Н₃С-СН₂-	1	2		R	н	-CH ₂ -N-C-CN
1357	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CN
1358	СН-СН2-	. 2	2	1	-	Н	-CH ₂ -N-C-CN
1359	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1360	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C
	H ₃ C-CH ₂ -					Н	-CH ₂ -N-C
	CH ₃ CH ₂ - CH ₃						-CH ₂ -N-C-CH ₃
363	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{3}$ $-CH_{2}-N-C$ $-CH_{3}$ $-CH_{3}$ $-CH_{2}-N-C$ $-CH_{3}$
364 F	H₃C-⟨¯¯)CH₂-	1	2	0	R	н	-CH ₂ -N-C

147

Table 1.125

rable i	.125						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1365	CH ₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C
1366	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1367	H ₃ C-CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-СН ₃
1368	CH_CH ₂ -	1	2	0			-CH₂-N-C
1369	CHCH ₂ -	1.	_ 2	0	R	н .	-CH ₂ -N-C
1370	С⊢√_СН₂-	1	2	0	R	н	-CH ₂ -N-C-S Br
1371	CH2-	1	2	0	R	н	-CH ₂ -N-C-
1372	C	1	2	0	R	н	-c+2-Hc-
1373	H ₃ C-CH ₂ -	1	2	0	R		-CH ₂ -N-C
1374	H₃C-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C
1375	H ₃ C-CH ₂ -	1	2	0	R		-CH₂-N-C-(S) Br

:

148

Table 1.126

rable	1.120						·
Compd. No.	R ¹ (CH ₂)	k	m	'n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1376	H₃C-{}CH₂-	1	2	0	R	. н	-CH ₂ -N-C-
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-
1378	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ − CH ₃					Н	-CH ₂ -N-C
1380	CH ₃ CH ₂ - CH ₃					Н	-CH₂-N-C-(S) Br
1381	CH₃ CH₂- CH₃					н	-CH ₂ -N-C-
1382	CH ₃ CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-
1383	CH ₂ −	2	2	1	-	н	-CH ₂ -N-C-CI
	C⊢CH₂-					н .	-CH2-HC-SBr
1385	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S -C
1386	C├ - -CH ₂ -	2	2	1	-	н	-012-HC-

149

Table 1.127

Table	1.127						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}}^{+4}$ $+(CH_2)_{\overline{q}}$ $+G-R^6$
1387	CH ₃ N CH ₂ − CH ₃	. 1	2	0	R	н	-CH2-N-C
1388	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1389	CH₃ N—CH₂- CH₃	1	2	0	R .	н	-CH2-H-C
1390	H ₃ C CH ₃ H ₃ C CH ₂ - CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	. R	H	-CH ₂ -N-C-CF ₃
1392	CI H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	ң₃ссн ₂ —⟨	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1394	O_2N CH_2	1	2	0	R.	н .	-CH ₂ -N-C-CF ₃
1395	H ₂ C=CH-CH ₂ -	1	2	0	Ŗ	н	-CH ₂ -N-C
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1397	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
				•			

Table 1.128

iable	1.120						
Compd.	R.\(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
1398	Cr CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1399	CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1401	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H
1402	H ₃ C-CH ₂ -	1	2	0	Ė	н	$-CH_{2}-N \cdot C \longrightarrow OCH_{3}$ $-CH_{2}-N \cdot C \longrightarrow OCH_{3}$ $H_{2}N OCH_{3}$
1403	H₃C-⟨	. 1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1404	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1405	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1406	H ₃ C-CH ₂ -	1	2 .	0	R	н	$-CH_{2}-N \stackrel{\bigcirc}{C} - \stackrel{\bigcirc}{C} H_{3}$
1407	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N\cdot C\longrightarrow N$ $H_{3}CCH_{2}S$ $-CH_{2}-N\cdot C\longrightarrow N$
1408	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\

151

Table 1.129

Table 1	1.129						
Compd. No.	R ¹ /(CH ₂)j-	· k	m	n	chirality	R³	−(CH ₂) _p + (CH ₂) _q G−R ⁶
1409	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CH ₃
1410	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH2-N-C-
1411	С⊢—СН₂-	.1	2	0	R	Н	-сн ₂ - № с- н, с- с- NH
1412	H ₃ C-CH ₂ -	1	2	0	R	н	H2C-C-NH
.1413	CH ₃ CH ₂ -	1	2	0	R .	н	H ² C-C-NH CH ² -N-C- CH ² -N-C-
1414	Ci—⟨¯}—CH₂−	2	2	1	-	н	-CH ₂ -N-C-N-H
1415	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C SCN
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C SCN
1417	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1418	C⊢√_CH₂-	2	2	1	-	н	-CH ₂ -N-C-SCN
1419	CH-{	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$

1 5 2

Ta	h	ما	1.	4	2	n
10	u				J	u

. 45.0	1.100						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1420	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SH
1421	CH₃ N CH₂- CH₃	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2 N
1422	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SH H ₂ N
1423	CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1424	H ₃ C-CH ₂ -	1	2	0	R	.н	-CH ₂ -N-C-
1425	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1426	C├ ~ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1427	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-NH
1428	C├ - CH ₂ -	2	2	1	-		-CH ₂ -N-C
1429	н₀ссн₂о-{_}Сн₂-	2	2	1	-	Н	-CH ₂ -N-C
1430	O-CH₂-	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ CI $-CH_{2}-N-C$ $H_{2}N$

153

Table 1.131

Compd.	R ¹ / _{CH₂)_i-}	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1431	н _о ссн₂о-Сн₂-	2	2	1	-	н	$-CH_2-NC-$ H_2N Br
1432	O—CH₂-	2	2	1	-	н	-CH ₂ -N-C
1433	њссн₂о-{сн₂-	2	2	1	-	н	-сн _z - н с - сн _z - с
1434	H ₃ CCH ₂ O-CH ₂ -	2	2	1	-	Н	-CH2-NC
1435	н₃ссн ₂ —Сн ₂ -	2	2	1	-	н.	-CH ₂ -N-C-
1436	(HgC)₂CH-(2	2	1	.	н	-CH ₂ -N-C-
1437	H ₃ C(CH ₂) ₂ O	2	2	1	-	Н	-CH ₂ -N-C
1438	н ₃ ссн ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1439	(HgC)2CH-{\bigcirc}-CH2-	2	2	1	-	Н	-CH ₂ -N-C
1'440	н ₃ с(сн ₂) ₂ о-(сн ₂ -	2	2	1	-	н	-CH ₂ -N-C- H H ₂ N
1441	H₃CS-CH₂-	2	2	1	-	н	-CH ₂ -N-C

154

Table 1.132

Compd No.	$\begin{array}{c} R^{1} \\ R^{2} \end{array} - (CH_{2})_{j} -$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1442	ң₃ссн₂—Ср-сн₂-	2	2	1	-	н	-CH2-N-C- HN HN CH2-CH2CH
1443	(нъс)₂сн-{}-сн-г	2	2	1	-	Н	-CH2-WC
1444	Ӊ ₅С(СН₂)₂О-⟨ СН₂-	2	2	1	ï	н	-CH2-NC
1445	H₃CCH2—CH2-	2	2	1	-	Н	-CH2-NC
1446	(H ₆ C) ₂ 'CH-√_)—CH ₂ -	2	2	1	<u>.</u>	·H	-CH2-HC
1447	H ₃ C(CH ₂) ₂ O	2	2	1	-	Н	-012-N-C-
1448	H₃CS-CH₂-	2	2	1		н .	-CH2-N-CH2-SCH
1449	н₃ссн₂-{_}сн₂-	2	2	1	-	н	-сн ₂ -м-с-СF ₃
1450	(H ₀ C) ₂ CH-√OH ₂ -	2	2	1	-	H ,	-CH ₂ -N-C-CF ₃
1451	(H ₃ CCH ₂) ₂ N	2	2	1	-		
1452	HQ H₃CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃

155

Table 1.133

rable	1.133						,
Compd No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1453	H ₂ C(CH ₂) ₂ O	2	2	1	_	Н	-CH ₂ -N-C-CF ₃
1454 .	ңсан 20-⟨сн2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-⟨
1456	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-\(\bigcirc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1458	H ₃ CQ HO-CH ₂ -	2	. 2	1 .	-	н	-CH ₂ -N-C-
1459	(H ₃ C) ₂ N-(T)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SBr
1460	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-NCC\longrightarrow H_2N$
1461	H0-CH ₂ -	2	2	1	-	н	-CH2-NC-OCH
1462	H₃CQ HO-CH₂-	2	2	1	-	н	-CH2-NC
1463	C├─ੑੑੑि}─CH₂─	2	1	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.134

Compd. No.	R^2 (CH ₂) _j	k	m	ı n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1464	СН-СН2-	2	1	1	•	н	-CH ₂ -N-C
1465	CHCH ₂ -	2	1	1	-	Н	-CH ₂ -N-C-CF ₃
1466	с⊢СН₂-	2	1	1	-	Н	-CH ₂ -N-C-
1467	CHCH ₂ -	2	1	1	-	н	-CH ₂ -N-C-CI
1468	СН2	2	1	1	-	н	-CH ₂ -N-C-\\\
1469	CH2-	2	1	1	-	н	-CH₂-N-C-CF₃
1470	с⊢—СН₂-	2	1	1	-	н	-CH ₂ -N-C-CI
471	C⊢∕CH₂∸	2	1	1	-	н	-CH ₂ -N-C
472	CH₃ CH₂−	1	2	0	R	Н	-CH ₂ -N-C-⟨CF ₃
473	Br S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
474	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃

157

					157		
Table	1.135			<u>_</u>			•
Compd. No.	R ² -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
1475	CH _T	1	2	0	R	Н	-CH ₂ -N-C CF ₃
1476	Br S CH ₂ -	1	2	0	R	Н	-СH ₂ -N-С-СF ₃
1477	Br	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	Br 3-012-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1479	CH ₃ CH ₂ - CH ₃	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
1480	CH ₃					н	-CH ₂ -N-C-CF ₃
1481	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1482	Br CH ₂ -					н	-CH ₂ -N-C-CF ₃
1483	H ₃ C O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
							-CH ₂ -N-C
1485	H ₃ C- ⟨ }-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S

158

Tat	ale.	1	13	6
14	J16			•

. 45.6	1.100						
Compd.	R ¹ (CH ₂)	· k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1486	H₃C-⟨}CH₂	<u>-</u> 1	2	0	R	Н	-CH ₂ -N-C
1487	H₃C-⟨¯)-CH₂	- 1	2	0	R	H	$-CH_2-N-C$ H_2N CI
1488	н₃С-{_}-Сн₂	- 1	2	0	R	н	$-CH_2-N\cdot C-$
1489	н₃с-{сн₂	- 1	2	0	R	Н	-сн ₂ -№-с
1490	н ₃ С-СН ₂ -	- 1	2 .	0	R	н	-CH ₂ -N-C-√.
1491	Н₃С—СН₂-	- 1	2	0	R	н	-CH ₂ -N-C-
1492	H₃C−€ CH₂−	. 1	2	0	R	Н	-CH ₂ -N-C-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N
1493	CH ₃ CH ₂ - CH ₃	.1	2	0	R	н	-012-HC-0
1494	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C·
1495	CH ₃	1	2	0	R .	н	$-CH_{2}-N+C-V_{N} \\ -CH_{2}-N+C-V_{N} \\ -CH_{2}-N+C-V_{N} \\ -CH_{2}-N+C-V_{N} \\ -CH_{2}-N+C-V_{N} \\ -CH_{3}$
1496	CH₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-CON H ₃ C

159

Table 1.137

Compd. No.	R ¹ (CH ₂) _j -	. k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1497	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-CH ₃ CH ₃ CH ₃
1498	CH ₃ CH ₂ -	1	2	0	R	н	O CN -CH₂-N-C
1499	CH ₃ CH ₂ -	1	2	0	R	н	-cH³-H-c<
1500	CH ₃ CH ₂ -	1	2	0	R	H-	-CH ₂ -N-C-√CH ₃
1501	CH ₃ CH ₂ - CH ₃	1	2	0	· R	Н	-CH2-N-C-
1502	CH₃ N—CH₂- CH₃	1	2	0	R	• н	-CH ₂ -N-C-CF ₃
1503	CH ₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
	H ₂ N-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1505	CH ₂ O CH ₂ O CH ₂ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	с⊢С}-сн₂-	2	1	1	-	н	$-CH_2-N-C$ H_2N H_2N
	CH ₂ -						-CH ₂ -N-C

160

Table 1.138

· abic	1.100						
Compd No.	I. R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1508	с⊢(сн₂-	2	1	1		н	-CH ₂ -N-C
1509	C├ - CH ₂ -	2	1	1	-	н	-OH2-NC-
1510	С ⊢ √_СH ₂ -	2	. 1	1	-	н	-CH ₂ -N-C
1511	C	2	. 1	1	-	н	-CH ₂ -N-C-(S) Br
1512	C	2	1	1		н	-CH ₂ -N-C-
1513	С├─()—СН₂-	2	1	1	-	н	-CH ₂ -N-C-
1514	(H₃CCH₂)₂N(CH₂-	2	2	1	-	Н	-CH ₂ -N-C-
	H ₃ CO—CH ₂ -				-	Н	$-CH_2-NC-$ H_2N
1516	(H3CCH2)2N-CH2-	2	2	1	-	Н	$-CH_2-N-C-\longrightarrow_{H_2N}^{O}$
1517	HQ . H₃CO-CH₂-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N H_2N
1518	HQ H ₃ CO-CH ₂ -	2	2	1	-	н .	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $-CH_{3}-N-C$ $+L_{4}N$ $-CH_{4}-N-C$ $+L_{5}N$

161

Table 1.139

	1.139	•					
Compd No.	· R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1519	но н₃со-⟨_}-сн	2	2	1	-	H	-сн ₂ -мс-х он
1520	Br-CH ₂ -	· 1	2	0	R	Н	-CH ₂ -N-C-
1521	н₃со-{_}Сн₂	₂ – 1	2	0	R	н	-CH ₂ -N-C-
1522	CH2-	1	2	0	R	Н	-CH ₂ -N-C-
1523	H ₃ CO————————————————————————————————————	_ 1	2	0	, R	н	-CH₂-N-C-S
1524	H ₃ CO HO———————————————————————————————————	1	2	0	R	H	-CH₂-N-C-
1525	BrCH ₂	1	2	0	R	н	-CH ₂ -N-C
1526	H₃CO-{	- 1	2	0	R	н .	-CH ₂ -N-C
	-CH ₂ -					Н	-CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃
1528	H ₃ CO — CH ₂ -	. 1	2	O	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1529	H ₃ CO HO———————————————————————————————————	1	2	0	R	, Н	-CH ₂ -N-C-C-CF ₃

162

Table 1.140

Table '	1.140						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1530 ·	Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1531	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CF ₃
1532	O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1533	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1534	H ₃ CQ HO−CH ₂ −	1	2	0	R	, н	-CH ₂ -N-C- F
1535	Br—CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1536	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1537	CH₂-	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1538	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1539	H₃CQ HO—СН₂-	1	2	0	R	н	-CH ₂ -N-CF
1540	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	•						

163

Table 1.141

Tuble	1.1-7-1					_	,
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p
1541	H ₃ CO-⟨CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1542	CH ₂ -	1	2	0	R ·	Н	-CH₂-N-CF
1543	H ₃ CO C C C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1544	H ₃ CQ HO—CH ₂ −	.1	2	0	R	H	-CH ₂ -N-CF
1545	CL S-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1546	H ₃ CO CH ₂ -	1	2	0	R ,	Н	-CH ₂ -N-C-CF ₃
1547 i	H ₃ CO-CH ₂ -Br	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1548	H₃C-{}-CH₂-	1	2	0	R	· H	-CH ₂ -N-C CH ₃ CH ₃
1549	н₃с-{_}-сн₂-	1	2	0	R	Н	$-CH_2-NCC-CH_3$ $+H_3C$ $+GC+C(CH_3)_2$ $+GC+GC$
							-042-HD HOC-H2
551 1	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH2-HC-

164

Table 1.142

. 45.0							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1552	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1553	H ₃ C-CH ₂ -	1	2	0	R	Н	-c+3-ltc\u00e40
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555 、	H ₃ C-CH ₂ -	1	2	0	, R	н	-CH ₂ -N-CN-CH ₃ H ₃ C
1556	H ₃ C-CH ₂ -	1	2	0	R	н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1557	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-NC-NN$ H_3C
1558	H ₃ C-CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-N-CH ₃
1559	: H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-N H ₃ C
1560	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-CNONO
1561	H ₃ C-CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C
1562	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-O ₂ N OCH ₃

165

Table 1.143

rabie	1.145						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1563	H₃C⟨CH₂-	1	2	0	R	н	-cH-NC-
1564	H ₃ C-CH ₂ -	1	2	0	R	н	-042-17 C
1565	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1566	CH ₃ CH₂− CH₃	1	2	0	R	. н	-CH ₂ -N-C
1567	CH₃ ÇH₂− CH₃	1	2	0	R	н	-CH-NC
1568	CH ₃ CH ₂ - CH ₃					Н	-012-11 C-
1569	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-сн- н с
1570	H₃CS-CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1571	H₃CSCH₂-	2	2	1	-	Н	-CH2-NC-SCH
1572	Cho-OHI	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1573	н,со-О-рс-О-оч.	2	2	1	-	н	-CH ₂ -N-C-CF ₃

166

Table 1.144

rable	1.144						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1574	₩¢-{}-\$¢-{}-a4-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1575	C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1576	€N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1577	HOICH3 = N.C. CH3-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1578	H3C - CH2-	2	2	1	- ·	н	-CH₂-N-C
1579	CH ₃ P CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1580	O-N-C-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1581	CHCH ₂ -	2	2	1	-	н	
1582	C├ -	2	2	1	-	н .	-OH2-N-C-13-N-C-H3
1583	CH-€	1	2	0	R	н	$-CH_2-N-C H_2N$
1584	C	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$

167

Table 1.145

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1585	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CN
1586	CH2−	. 1	2	0	R	н	-CH ₂ -N-C-\
1587	CH_CH2-	1	2	0	R	н	-CH ₂ -N-C
1588	C⊢—CH₂-	1	2	0	R	H	-CH ₂ -N-C-
1589	H ₃ C-CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1590	H ₃ C-CH ₂ -	1	2	0	R	н.	$-CH_2$ -N-C- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1591	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1592	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1593	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1594	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
1595	CH₃ CH₃	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+I_{2}N$ $-CH_{2}-N-C$ $+I_{2}N$

168

Table 1.146

· abic	1.170						
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	H3	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1596	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
_	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C-\ N-\ CI
1598	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1599	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1600	CH-CH ₂ -	2	. 2	1	-	Н	-CH ₂ -N-C
1601	CHCH2-	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3
1602	CH2-	2	2	1	-	н	-CH ₂ -N-C-\Br
1603	CH2-	2	2	1	- ·	Н	-CH2-N-C-N
1604	С⊢{СН₂-	2	2	1	-	н	-CH ₂ -N-C
1605	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	С⊢СН₂-					н	-CH ₂ -N-C-SCF ₃

169

Table 1.147

i ubic i							·
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \int_{R^5}^{R^4} (CH_2)_{q} G - R^6$
1607	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1608	CH₃ O CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	CH-CH2-	2	2	1	-	H	-CH ₂ -N-C-SCF ₃
1610	CF ₃ Q N C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1611	CH CHI	2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
1612	н ² со(сн ³⁾ - ^н с	2	2	1	-	Н	-CH ₂ -N-C-CF₃
1613	щ с С С С С С С С С С С С С С С С С С С	2	2	1	-	н	-CH ₂ -N-C-⟨CF ₃
1614	F₃CS-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1615	F ₃ CS—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1616	F3CS-CH2-	2	2	1	-	Н	-CH ₂ -N-C
1617	F ₃ C S—CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2N H_2N

170

Table 1.148

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1618	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1619	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH2-N-C
1620	HQ H ₃ CO-CH ₂ -	1	2	0	R	.н	-CH ₂ -N-C-CF ₃
1621	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1622	H ₃ CO-CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C-CF ₃
1623	HO-{	1	2	0	R :	н	-CH ₂ -N-C-
1624	HO-\CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-C-C-S
1625	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	HOCH ₂ -						-CH ₂ -N-C-CF ₃
1627	HO-{CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H-C- F
1628	H₃CS(¯)CH₂-	1	2	0	R	н	-CH ₂ -N-C

171

Table 1.149

	1.149						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1629	H₃CS-CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1630	H ₃ C CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ ————————————————————————————————————	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1632	CF_3 CH_2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC	1	2	0	R.	н	-CH ₂ -N-C-CF ₃
1634	(H ₂ C) ₂ CH-{}CH ₂ -	1	.2	0	R	н	-CH ₂ -N-C-CF ₃
1635	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
•	H ₃ C-CH ₂ -					Н	H ₃ C CH ₃
	Cn ₃						-CH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-сн ₂ - н с — с с с н ₂) ₃ с н ₃
1639	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-H C-OCH2CH3

172

Table 1.150

Table 1	1.150						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1640	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C
1641	CH ₃ CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
	CH₃ CH₂ CH₃					н	-CH ₂ -N-C-N H O ₂ N-N
·1643	GH ₃ N CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-
1644	CH ₃ CH ₂ - CH ₃	1	2	0.	R	H .	-CH2-N-C
1645	CI CH ₂ -	1	2	0	R .	н	-CH₂-N-C
1646	Br CH₂-	1.	2	0	R	Н	-CH ₂ -N-C-CF ₃
1647	н ₃ с(сн ₂) ₃ —СН ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ —CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1649	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1		H	-CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃

173

Table 1.151

Compd No.	R ² (CH ₂) _j	k	m	Π	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1651	н ₃ с(сн ₂) ₃ —{	2	2	1		н .	-CH2-N-C-H2
1652	н ₃ С(СН ₂) ₃ —СН ₂ -	2	2	1	-	н	$-CH_2-N$ H_2N H_2N H_2N
1653	H ₃ C(CH ₂) ₂	2	2	1	-	н	-CH ₂ -N-C
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-Br
1655 .	н,с(сн ₂),—Сн ₂ -	2	2	1		н.	-сн _{г-} но сн _г (о-ь _э ьс нь
1656	H3C(CH2)3-CH2-	2	2	1	-	Н	$-CH_2-N-CI$ H_2N
1657	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH2-N-C
1658	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	$-CH_2-NC H_2N$
	CHŹ-CHŹ-						-CH ₂ -N-C
1660	Вг—СН₂-	1	2	0	R	н	-CH ₂ -N-C-S
1661	Вг—СН₂-	1	2	0	R	н	$-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$

174

Table 1.152

Iable	1.132						
Compo	d. R (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1662	ВСН ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1663	B	1	2	0	R	Н	-CH ₂ -N-CI
1664	н₃СЅ(СН₂-	2	2	1	-	н	$-CH_2-N-C \longrightarrow H_2N$
1665	H₃CSCH₂-	2	2	1	-	н .	$-CH_2-N+C-$ H_2N OCF_3 H_2N
1666	н₃сѕ-СҺ₂-	2	2	1	-	н.	-CH ₂ -N-C-F H H ₂ N
1667	н₃ссн₂—Сн₂-	2	2	1	•	н	-CH ₂ -N-C- Br
1668	ң₅ссн₂—(¯)—сн₂-	2	2	1	-	'H	$-CH_2-N-C-$ H_2N
1669	н₃ссн ₂ —Сн ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1670	ң₃ссн₂—(¯)—сн₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1671	н₃ссн₂-√-сн₂-	2	2	1	<u>:</u>	н	$-CH_2-N$ H_2N OCF_3 H_2N
1672	. H ₃ CCH ₂ ————————————————————————————————————	2	. 2	1	-	н	$\begin{array}{c} H_2N \\ \\ CF_3 \\ -CH_2-NC \\ H_2N \end{array}$

175

Table	1.	.1	5	3
-------	----	----	---	---

lable	1,155						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
1673	н₃ссн₂—√р−сн₂-	2	2	1	-	Н	-CH ₂ -N-C
1674	F—⟨CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br
1675	F(2	2	1	<u>-</u>	н	$-CH_2-N$ C H_2N F
1676	F—CH ₂ -	2	2	1		н	-CH ₂ -N-C
1677	F—CH _Z -	2 .	2	1	-	н	-CH ₂ -N-C-Br
1678	F-CH ₂ -	2	2	1	-	н.	$-CH_2-N-C$ H_2N
1679	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1680	FCH ₂ -	2	2	1	-		$-CH_2-NC- \longrightarrow 0$ H_2N
1681	FCH ₂ -	2	2	1	-	н	$-CH_2-NC- CF_3$ H_2N
1682	FCH ₂ -	2	2	1	-	н	-CH₂-N-CSr H
1683		2	2	1	-	н	-CH ₂ -N-C-Br

176

Ta	h	le	1	1	5	4

Table							
Compd.	R ² (CH ₂);-	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1684	N C-CH2-	2	2	1	-	н	-CH ₂ -N-C-F
1685	N C CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1686		2	2	1 .	-	н	$-CH_2-NC$ H_2N H_2N
1687	N+C	2	2	1	-	н	$-CH_2-N$ C H_2N
1688	N+C	2	2	1		н .	$-CH_2-N \cdot C \longrightarrow H_2N$
1689	N-C-CH2-	2	2	1	-	н	-CH ₂ -N-C
1690		2	2	. 1	-	н	$-CH_2-NC-$ H_2N H_2N
1691	O-N-CH2-	2	2	1	-	Н	-CH ₂ -N-C
1692	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-O _{Br}
1693	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1694	CH ₃ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
	•						

177

Table 1.155

Table 1	[,] 55						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1695	CH ₃	1	2	0	R	н	-CH ₂ -N-C-Br
1696	H ₃ C−€ CH ₂ −	1.	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N
1697	CH ₃ H ₃ C−CH ₂ −	1	2	0	R .	.	-CH ₂ -N-C
1698	CH₃ H₃C-(CH₂-	1	2	0	R	Н	$-CH_2-NC-$ H_2N OCF_3 H_2N
1699	CH ₃ ← CH ₂ -·				R	H	-CH ₂ -N-C
1700	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1701	H ₂ C=CH-CH ₂ -	1	2	0	R	н	$-CH_2-NC- \longrightarrow CF_3$ H_2N
1702	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1703	CH₂-	1	2	0	R	н	-CH ₂ -N-C
1704	HO-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1705	CH ₂ -	1	2	0	R	H	$\begin{array}{c} H_2N \\ CF_3 \\ -CH_2-N-C \\ H_2N \\ -CH_2-N-C \\ H_2N \end{array}$

178

Ta	h	ما	1	.1	5	6
10	v.	16			•	•

Table 1							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	⁻ R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + (CH_2)_{\overline{q}} - (CH_2)_{\overline{q}} + (CH_2)_{q$
1706	O-CH ₂ -	1	2	0	R	н	$-CH_2-N \stackrel{C}{C} - $ $H_2N \qquad .$
1707	H ₃ CS-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1708	н ₃ ССН ₂ —СН ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N
1709	(H ₂ C) ₂ CH-⟨-CH ₂ -	. 1	2	0	R	н	$-CH_{2}-N \stackrel{C}{\stackrel{C}{\leftarrow}} \longrightarrow H_{2}N$
1710	H ₃ C Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1711	CH ₃ CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ Q HO—CH ₂ —	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
	H ₃ C CH ₂ -					н	-CH ₂ -N-C
1714	HQ H ₃ CO————————————————————————————————————	. 1	. 2	0	R	Н	-CH₂-N-C-CF₃
1715	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1716	CH₂-	1	2	C) R	н .	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CF_{3}$ $-CH_{2}-N-C$ $-CF_{3}$

179

Table 1.157

Tubic	1.101						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	ー(CH ₂) _p + (CH ₂) _q G~R ⁶
1717	OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
·1718	CH ₃ CH ₂ - CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$
1719	ÇN—CH₂-	1	. 2	0	R .	н	-CH ₂ -N-C-CF ₃
1720	H ₃ CO-C H ₃ C-CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1721	н₃ссн₂-√С-сн₂-	1	2 .	0	R	н	$-CH_2-N-C-$ F
1722	-CH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C-CF ₃
1723	−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1724	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1725	H_3C CH_3 CH_2 CH_2	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
1726	ң₃ссн₂⟨СҺ₂-	1	2	0	R	н	-CH ₂ -N-CF
1727	O—CH₂-	1	2	0	R	н	-CH ₂ -N-C-F ₃

180

Table 1.158

Tubic	1, 100						
Compd.	R ² (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1728	-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-F
1729	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1730	H ₃ C C C C C C C C C C C C C C C C C C C	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1731	H ₃ COL ₂ -	1	2	0	R	н	-CH ₂ -N-C-
. 1732	носн ₂ —Сн ₂ -	1	2	0	R.	Н	-CH ₂ -N-C-CF ₃
1733	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1734	H ₃ CSCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1735	н ₃ ссн ₂ —Сн ₂ -	1	2		R	Н	-CH ₂ -N-C
1736	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF
1737	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1738	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH₂-N-C-←F

. .

181

Table 1.159

, 45.5	, •						
Compd. No.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1739	(H ₃ C) ₂ CH-{}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
1740	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1741	H ₃ CS-CH ₂ -	1	.2	0	R	н	-CH ₂ -N-C
1742	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1743	CH ₂ -	1	2	0	R	• Н.	-CH ₂ -N-C-Br
1744	CH ₃	1	2	. 0	R	Н	-CH ₂ -N-C-Br
1745	H ₃ C CH ₃	1	2	0	R .	Н	-CH ₂ -N-C-Br
1746	(H ₀ C) ₂ CH CH ₂ -	1	2	0	·R	Н	-CH ₂ -N-C
1747	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-Br
	H ₃ CCH ₂ -CH ₂ -						-CH₂-N-C-Br
1749	H ₃ C-CH ₃ -	1	2	0	R	Н	-CH ₂ -N-C-Br

182

Table 1.160

							<u> </u>	
Compd. No.	R ¹ (CH ₂) _j —	k	m	n	chirality	R³	$-(CH_2)_{p=1}^{R^4}(CH_2)_{q}G-R^6$
1750		: }CH₂-	1	2	0	R	н	-CH ₂ -N-C
1751	н₃сѕ-{	_}_Сн₂-	1	2	0	. R	Н	-CH2-N-C-OCF3
1752	н₅ссн₂—⟨		1	2	0	R .	н	-CH2-N-C-OCF3
1753		CH₂-	1	2	0	R	н	-CH2-N-C-CCF3
1754	н₃с-{	,CH₃ }CH₂-	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1755	H₃C-√	,CH₃ }CH₂-	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-S
1756 (њс)₂сн-{)—a1:	1	2	0	R	н	-CH ₂ -N-C-
757	Br E	Br 	1	2	0	R	н	-CH ₂ -N-C-CF ₃
758 i	H₃CO—Br	Br }—CH₂− Br	1	2	0	R	н	-CH₂-N+C-CF3
						R	н	-01-NC
760	н₃с⊸(¯¯)	−CH ₂ −	1	2	0	R	н	-CH2-N-C

:

183

Table 1.161

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. K3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1761	н ₃ С-√СН ₂ -	1	2	0	R	Н	-CH2-HCH-CI
1762	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- HN C-N-C1
1763	CH₂-	2	2	0	-	Н .	-CH ₂ -N-C
1764		2	2	0	-	Н	-CH ₂ CH ₂ -N-C-
1765	. CH ₂ -	2	2	0	- -	н .	(S) Q OCH ₂ CH ₃ -CH-N-C- OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1766	— CH₂-	2	·.· 2	0		н	(R) OCH ₂ CH ₃ -CH-N-C
1767	CHCH ₂ -	1	3	1	-	Н	OCH ₂ CH ₃ −CH ₂ −N-C−
1768	CH2 ⁻	1	3	1	-	Н	-CH2CH2-N-C-
1769	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-NC-CH3 CH-CHCF2O
1770	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH2-N-C-N-CI
·1771	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- (H ₃ C) ₃ C-C+N-C H ₃ C

184

Table 1	1.1	6	2
---------	-----	---	---

· able	1.102		•				
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	-(CH ₂) _p - (CH ₂) _q G-R ⁶
1772	CH ₃ N CH₂- CH₃	1	2	0	R ·	н	-CH ₂ -N-C H ₂ C H ₂ C H ₃ C H ₃ C
1773	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	H ₃ C H ₂ C H ₂ C H ₃ C
1774	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1776	HO' CH₂-	1	2	0	R .	Н	-CH ₂ -N-C CF ₃
1777	.CH_CH2-	2	2	1	-	н	$-CH_2-N-C \longrightarrow CF_3$ H_2N
1778	H₃C-⟨	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
1779	O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C \xrightarrow{\qquad \qquad CF_3}$ $H_2N \xrightarrow{\qquad \qquad }$
1780	Br—CH₂-	2	2	1	•	• н	-CH ₂ -N-C
1781	HO-{	2	2,	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{3}$ $+_{2}N$ $-CF_{3}$ $+_{3}N$ $+_{4}N$
1782 .+	H ₂ C=C H-{\bigce}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Tab	ما	- 1	1	6	3
ıau			. 1	·	J

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	⁻ R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1783	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1784	CH₂-	2	2	1	•	н	$-CH_2-NC- \longrightarrow \begin{matrix} CF_3 \\ H_2 \\ H_2 \\ \end{matrix}$
1785	CH ₃ (CH ₂) ₂ (CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-$ $H_{2}N \cdot$
1786	O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N CF_3
1787	сн ₃ (сн ₂) ₂ {	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
1788	CH ₃	2	2	1	-	H•	-CH ₂ -N-C
1789	H₃CO-{}-CH₂-	2	2	1	-	Н	-CH ₂ -N-C-S
1790	CI—()—CH ₂ —	1	2	0	S	Н	$-CH_2-N-C-$ H_2N
1791	α—()—CH ₂ —					Н	$-CH_2-N-C-$ H_2N
1792	CH ₃	2	2	1	-	Н	-CH ₂ -N-CF
1793	CI CH ₂ —	2	2	1	-	H	H ₂ N −CH ₂ −N-C−−F H ₂ N

Table	1.1	64
-------	-----	----

· abic	1.104						·
Compo No.	$H \xrightarrow{R^1} (CH_2)_j -$	k	m	n	chirality	[*] R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
1794	H ₃ CCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1795	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1796	Br—CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C
1797	HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1798	н₃со-{}сн₂-	. 2	2	1	-	н	$-CH_{2}-N-C-$ H $H_{2}N$ $H_{2}N$
1799	H ₂ C=CH-(2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1800	NC-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1801	_CH ₂ −	2	2	1		Н	-CH ₂ -N-C-F H ₂ N
1802	HO- H₃CCH₂O CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1803	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1804	H ₃ C ₁ CH ₂) ₂ -CH ₂ -	2	2	1		н	$-CH_2-N-C$ H_2N H_2N

Ta	ы	е	1	.1	6	5
----	---	---	---	----	---	---

rabie	1,105						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	(CH ₂) p 1 (CH ₂) q G-R ⁶
1805	8r	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H₃CO-(CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1809	HO-CH ₂ -	1	. 2	. 0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH₂-	1	2	0	R	н	CH ₂ -N-C-SCF ₃
1812	H₃CS-{CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1813	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1815	CH ₃	1	2	0	R	н	-CH₂-N-C-SCF3

Compd No.	R ¹ (CH ₂)	k	m	n	chirality	·R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1816	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	Н.	-CH ₂ -N-C
1817	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2$ $\stackrel{\circ}{\longrightarrow}$ CH_3
1818	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1819	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1820	H ₃ CO HO-CH ₂ -	1	2	O	R	H	-CH ₂ -N-C-OCHF ₂
1821	HQ H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
1822	HO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-OCHF ₂
1823	CH₂-	1	2	0	R	н .	-CH ₂ -N-C-OCHF ₂
1824	CH₂-	1	2	0	. R	. н	-CH ₂ -N-C-OCHF ₂
1825	H ₃ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1826	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-COCHF ₂

Compd.	R 1 (CH ₂) _j -	k	m	n	chirality	R³	−(CH ₂) p 1 (CH ₂) q G-R ⁶
1827	O CH₂-	1	2	0	. R	н	-CH ₂ -N-C-OCHF ₂
1828	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1829	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1830	(СН₃)₂С Н-⟨}_СН-г	1 .	2	0	R	Н	-CH ₂ -N-C-C-CHF ₂
1831	Br—CH₂-	1	2	0	R	н	$-CH_2-N\cdot C- \bigcap_{H} C(CH_3)_3$
1832	H ₃ CO-()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1833	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1834	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-(CH_{3})_{3}$
1835	HO-{	1	2	0	, R	Н	-CH ₂ -N-C-(CH ₃) ₃
1836	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1837	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-(CH ₃) ₃

rable	1.168							
Compo	I. R ¹	⊢(СН ₂) _ј −	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
1838	H₃CS-	-СH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1839	H₃CCH₂	-СН2-	1	2	. 0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1840			1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1841	н₃с⊸	CH ₃	1	2	. 0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1842	H₃C - √	CH ₃	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1843	' (CH₃)₂C⊦	⊢ СН ₂ −	1	2	0	R	. H	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C-	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
		-{_}Сн₂-					н	-CH ₂ -N-C
1846	H₃C— H₃C	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1847	(CH ₃) ₃ C-	~ CH ₂ -	1	2	0	R.	н	-CH ₂ -N-C-C-CHF ₂
1848	H₃CQ HO-{		1	2	0	R ·	н	-CH ₂ -N-C-

Ta	h	le	1.	1	6	9

							•
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1849	CH₂-	1	2	0	R	н	-сн ₂ -м-с-
1850	н ₃ ССН ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1851	H_3C CH_2 CH_2	1	2	0	R	н .	-CH ₂ -N-C-
1852	CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-
1853	H ₃ CQ HO-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-
1854	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1855	н₃ссн₂— Сн₂-	1	2	0	R	Н	-CH ₂ -N-C-
1856	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1857	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1858	Br—⟨□}−CH₂−	1	2	0	R	н	-CH ₂ -N·C- H H ₂ N
1859	H₃CO-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-Br

Comp No.	od. R ¹	-(CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1860	H₃CQ HO-{		1	2	0	R	Н	-CH ₂ -N-C
1861	H ₃ CO{)—CH ₂ —	1	2	0	R	H	-CH ₂ -N-C-Br
1862	но-{¯		1	2	0	R	Н	-CH ₂ -N-C
1863		CH2	1	2	0	R	H	-CH ₂ -N-C
1864	H₃CS-{		1	2	0	R	н	-CH ₂ -N-C
1865	\sim	CH ₂ -			0	R	н	-CH ₂ -N-C
1866	H ₃ C	CH ₃ ——CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C Br
1867	(CH₃)₂C H—⟨	СН₂-	1	2	0	. R	н	$-CH_2-N-C H_2N$
1868	(CH3½C-√		1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1869	Вг	}—СН ₂ –	1	2	0	R	н	$-CH_2-N-C$ H_2N
1870	н₃со-{	сн₂-	1	2	0	R	Н	-CH ₂ -N-C-

Ta	b	le	1	. 1	7	1

Compd No.	R ² (CH ₂) _j -	k	m	n	chirality	۲³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1871	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1872	HQ H ₃ CO—CH ₂ -	. 1	2	0	R	H	$-CH_2-N-C$ H_2N
1873	HO-CH ₂ -	1	2	0	R	н	$-CH_2-NC \longrightarrow H_2N$
1874	CH₂−	1	2	0	R	н .	$-CH_2-N$
1875	. CH2-	1	2	. 0	R	н •	$-CH_2-N-C$ H_2N
1876	H₃CS-()-CH₂-	1	2	0	R	н	-CH ₂ -N-C
1877	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C H_2N
1878	CH ₂ -				R	Н	$-CH_2-NC \longrightarrow H_2N$
1879	CH ₃ H ₃ C ← CH ₂ -	1	2	0	R.	Н	CH ₂ -N-C
1880	(CH ₃) ₂ C H-CH ₂ -				R	н	-CH ₂ -N-C-
1881	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N

194

Tab	le	1.	.1	7	2
-----	----	----	----	---	---

- ubie	1,172						
Compd No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + G^4 + G^6$
1882	Br—CH ₂ —	1	2	0	R .	н	$-CH_2-N-C$ H_2N
1883	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C NO ₂
1884	H ₃ CQ HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1885	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1886	но- С	. 1	2	0	R	н	$-CH_2-N-C \longrightarrow NO_2$ H_2N
1887	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1888	-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
1889	H₃CS-()-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1890	н₃ССН ₂ —{					Н	$-CH_{2}-NC$ $H_{2}N$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $H_{2}N$
1891	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1892	CH ₃ C-CH ₂ -	1	2	0	R .	' н	$-CH_2-NC$ H_2N

T:	ab	le	1.	1	7	3
					•	v

rabie							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\rho} + (CH_2)_{q} - G^{-}R^6$
1893	H ₃ C ← CH ₂ − H ₃ C	1	2	0	R	н	-CH ₂ -N-C
1894	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1895	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N
1896	HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1897	H ₃ CS-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C-$ $\cdot H_2N$ OCF_3
1898	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1899	(CH₃)₂CH-CH₂-	1	2	0	R	Н	$-CH_2-NC- \bigcirc OCF_3$ H_2N
1900	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-NCC-$ H_2N H_2N
1901	н ₃ С(СН ₂) ₂ ————СН ₂ —	1	. 2	0	R _.	ң	-CH ₂ -N-C
1902	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1903	(CH ₃)₂CH-⟨□ CH ₂ -	2	2	1	-	Н	H_2N OCF_3 $-CH_2-NC$ H_2N

	,						
Compd No.	R ¹ (CH ₂),	k	m	n	chirality	R³	-(CH ₂) p + (CH ₂) q G-R ⁶
1904	н,с(сн ₂) ₂ —Сн ₂ -	. 2	2	1	-	н	-CH ₂ -N-C
1905	CH_CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1906	CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 N
1907	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2N OCF_3
1908	H₃CO-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1910	· Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1911	CI—CH ₂ —	2	2	1	-	н	$-CH_2-N$ C H_2N C
1912	HO-CH ₂ -	2	2	1	-	н	$-CH_2-NC$ H_2N CCF_3
1913	CH ₃ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N OCF_3
1914	H ₃ C-CH ₂ -	2	2	1		H ,	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ OCF_{3} $-CH_{2}-N-C$ $H_{2}N$

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1915	H ₃ CC,H ₂ Q HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1916	H ₃ C HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1917	H ₃ CCH ₂ Q HO————————————————————————————————————	2	2	1	-	н	$-CH_2-NCC- OCF_3$ H_2N
1918	H ₃ C HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ OCF_3
1919	CH-CH ₂ -	2 .	2	1	-	н	-CH ₂ -N-C-
1920	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1921	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1922	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1923	Br—CH ₂ -	2	2	1		н	-CH ₂ -N-C-SCF ₃
1924	H ₃ CO-{\bigce}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1925	F(CH ₂	2	2	. 1	•	н	-CH ₂ -N-C-SCF ₃

198

Table	1.	1	7	6
-------	----	---	---	---

	1.170						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
1926	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1927	HO-(2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH₂-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1929	CH ₂ -	2	2	1.	-	н	-CH ₂ -N-C-SCF ₃
1930	H ₃ CS-CH ₂ -	2	2 .	1	- ·	н	-CH ₂ -N-C-SCF ₃
1931	H ₃ CCH ₂ —CH ₂ -	2	- 2	1	-	Н	-CH ₂ -N-C-SCF ₃
1932	O-CH ₂ -	. 2	2	1	-	Н	-CH₂-N-C-
1933	H ₃ C-CH ₂ -				-	H	-CH ₂ -N-C-SCF ₃
1934	H_3C CH_3 CH_2 CH_2	2	2	1	-	H	-CH ₂ -N-C-SCF ₃
	O ₂ N-CH ₂ -						-CH ₂ -N-C-SCF ₃
1936	H ₃ C-\CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃

WO 00/69432 PCT/JP00/03203

Table 1.177

Table	1.177						
Compd.	R ¹ / _{R²} (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1937	(CH ₃) ₂ CH− √ −CH ₂ −	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1938	Br—{CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1939	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1940	F	2	2	1	-	H	-CH ₂ -N-C
1941	F-CH ₂ -	2	2	1		н	-CH ₂ -N-C
1942	HO-(2	2	1	-	н	-CH ₂ -N-C
1943	CH2-	2	2	1	-	H	-CH ₂ -N-C-→CH ₃
1944	CH ₂ -	2	2	1	-	н	−CH ₂ −N-C−−−−CH ₃
1945	H₃CS-⟨CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1946	H₃CCH₂-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1947	CH₂-	2	2	1	-	Н	-CH ₂ -N-C

, able	1.170						
Compd. No.	R ¹ (CH ₂),—	k	m	n	chirality	₽³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1948	H ₃ C-CH ₂ -	2	2	1	· .	Н	-CH ₂ -N-C
1949	H_3C CH_3 CH_2 H_3C	2	2	1	-	Н	-CH ₂ -N-C
1950	O ₂ N-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1951	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- O CH ₃
1952	Br-CH ₂ -	2	. 2	1	- •	H	-CH ₂ -N-C
1953	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1954	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1.955	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1956	HOCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1957	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-⟨-F
1958	-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-Sr

Table	1.179						
Compd.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1959	H₃CS-()-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SF
1960	н₃ссн₂—Сн₂-	2	2	1	-	н	-CH ₂ -N-C
1961	0-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF
1962	H ₃ C-⟨CH ₃	2	2	1	-	н	-CH ₂ -N-CF
1963	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ₂ -N-C
1964	O ₂ N-CH ₂ -	2	2	1		н	-CH ₂ -N-C
1965	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1966	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1967	Br-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1968	H₃CO-{}-CH₂-	2	·. 2	1	-	Н	-CH ₂ -N-C
1969	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Tab	le	1.	. 1	8	0
-----	----	----	-----	---	---

Table	1.180							
Compd. No.	R ¹ (CH ₂	,) _j _	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1970		H ₂ −	2	2	1	-	н	-CH ₂ -N-C
1971	-c	H ₂	2	2	1	-	н	-CH ₂ -N-C
1972	H3CS-(CH ₂ -	2	2	1	· <u>-</u>	н	$-CH_2-\dot{N}C- + CH_2N$
1973	н₃ссн₂—	-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1974	н₃ C-{ CH ₃	:H ₂	2	2	1	- ·	. н	-CH ₂ -N-C
1975	O ₂ N-{\bigs(· ⊁ ₂ — ;	2	2	1	-	н	-CH ₂ -N-C
1976	H₃ C-{	H ₂ − ;	2	2	1	-	н	-CH ₂ -N-C
1977	NC-(C	H ₂ - 2	2	2	1		Н	-CH ₂ -N-C
	(CH₃) ₂ C H—						н	-CH ₂ -N-C
1979	CH-CH	2 2	2	2	1			-CH ₂ -N-C
1980	о-()—сн	²⁻ 2	2	2	1		н	$-CH_2-N-C$ H_2N H_2N

203

Т	а	ь	le	1	1	B	1

Table	1.181						
Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	˳	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
1981	O₂N-{CH₂-	2	2	1	-	н	-CH ₂ -N-C
1982	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	$-CH_2-NCF$ H_2N
1984	Br-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1985	H ₃ CO-CH ₂ -	2	2	1		н .	$-CH_2-N-C$ H_2N
1986	но-⟨}-сн₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N
1987	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1988	-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1989	H₃CS-CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1990	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	CH ₂ -N-C
1991	CH ₂ -	2	2	1	-	Н	-ÇH ₂ -N-C-

Table 1.182	Tab	le	1.	1	8	2
-------------	-----	----	----	---	---	---

- dbie	1.102						
Compd No.	R ² -(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $+ (CH_2)_{q}$ $+ GR^6$
1992	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C - 1
1993	O ₂ N-(CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-
1994	H ₃ C-(2	2	1	-	н	-CH ₂ -N-C-
1995	NC-CH ₂ -	2	2	1	<u>.</u>	н	$-CH_2-N-C$ H_2N
1996	(CH ₃)₂CH-{CH ₂ -	2	2	1		Н	-CH ₂ -N-C
1997	H ₃ C-CH ₂ -CH ₂ -	2	2	1	-	н	$-CH_2-N+C-$ H_2N
1998	Br-CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-
1999	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
. 2000	F—CH₂-	2	2	1	-	H .	-CH ₂ -N-C
	HOCH ₂ -						-CH ₂ -N-C-C
2002	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI

Table	1.1	83
-------	-----	----

· abic	1.100						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	(CH ₂) _p + (CH ₂) _q -G-R ⁶
2003	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C
2004	H₃CS-⟨CH₂-	2	2	1	-	H	-CH ₂ -N-C-C
2005	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CI
2006	H ₃ C-CH ₂ -	2	2	1	· •	н	-CH ₂ -N-C
2007	O ₂ N-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C
2008	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
2009	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
	(CH ₃) ₂ CH-CH ₂ -				-	н	-CH ₂ -N-C-CI
2011	H ₃ C CH ₂ -	2	2	1	-	Ħ	-CH ₂ -N-C
2012	Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2013	H₃CO-CH₂-	2	2	1	•	Н	-CH ₂ -N-C

Come	. p1							
No.	R^2 (C	H ₂) _j —	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
2014	но-{	⊢CH ₂ -	2	2	1	· <u>-</u>	н	-CH ₂ -N-C
2015		-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2016		-CH ₂ -	2	2	1	-	н	-CH₂-N-C-
2017	н₃сѕ-{)—сн ₂ -	2	2	1	-	н	-CH ₂ -N-C-\Br
2018	н₃ссн₂—{) -сн ₂ -	2	2	1	-	H	-CH ₂ -N-C
2019		·CH ₂ –	2	2	1	-	н	CH ₂ -N-C-
-2020	н₃с-{С	H ₃ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2021	O ₂ N-	-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
2022	H ₃ C-(-CH2−	2	2	1	-	н	-CH ₂ -N-C
2023	· NC-(CH₂−	2	2	1		H .	-CH2-N-C
2024	(СН₃)₂СН-)CH ₂	2	2	1	-	н	-CH ₂ -N-C

٠,	ы	α .	1	4	Ω	5	

	•						
Compd.	R ¹ (CH ₂);	k	m	n _.	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2025	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	-CH ₂ -N-C- Br
2026	F-CH ₂ -	2	2	1	· -	н	-CH ₂ -N-C
20 <u>2</u> 7	Br-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N H_2N
2028	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
°2029 •	HO-CH ₂ -	2	2	1	-	н •	$-CH_2-N-C$ H_2N H_2N
2030	CH₂-	2	2	1	-	н	-CH ₂ -N-C
2031	CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N Br
2032	O CH₂-	2	2	1	÷	н .	$-CH_2-N-C$ H_2N Br
2033	CH ₃	2	2	1	-	н	$-CH_2-N$ C H_2N
2034	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2035	H ₃ C-CH ₂ -	2	2	1		н	-CH ₂ -N-C-Br

Compd. No.	R ¹ (0	CH ₂) _j —	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
2036	NC-) —СН2−	2	2	1	-	Н	-CH ₂ -N-C
2037	H ₃ C	CH₃ → CH₂-	2	2	1		Н	$-CH_2-N\cdot C \xrightarrow{Br} H_2 N$
2038	F	: −CH ₂ −	2	2	1	-	Н	$-CH_2-NC \longrightarrow Br$ H_2N
2039	H ₃ C-)—СН ₂ —	2	2	1	-	H	-CH ₂ -N-C- H CN
2040	н₃с-{	}- CH2−	1	2	0	R	н.	-CH2-N-C-CH-COH
2041	н₃с-{	} CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH-
2042	H ₃ C-		1	2	0	R	Н	-CH ₂ -N-C
2043	H ₃ C-					R	н	-CH ₂ -N-C-CH ₂ -CH ₃ CH ₃
2044	- 3						н	-CH ₂ -N-C
2045	CH ₃	H ₂ -	1	2	0	R	н	-cH ₂ -N-C- HN C-N-C-
2046	CH ₃ CH ₃	H ₂ -	1	2	0	R .	Н	-CH2-H-C-M-CH3

Table 1.187

Compd No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
2047	CH ₃ N CH ₂ - CH ₃	1	2	0	R .	н	-CH ₂ -H ₂ -CH ₃ -
2048	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2049	CH ₃ NP CH ₂ - CH ₃	1	2	0	R	H .	-CH ₂ -N-C
2050	H ₃ C S CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2051	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2052	Br CH ₂ − OCH ₂ CH ₃	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2053	H ₃ CQ CH ₂ O-CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C-$ $H_{2}N$
	H ₃ CO-CH ₂ -					Н	$-CH_2-N-C-V$ H_2N
2055	H₃CQ CH₂- OH	2	2	1	-	. н	$-CH_2-N-C-$ H_2N
2056	Br CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
	H ₃ CO—CH ₂ -					Н	-CH ₂ -N-C

2 1 0

Table 1.188

	·····						
Compd No.	n					R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2058	H ₃ CQ OC H ₃ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2059	()- O-()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2060	H ₃ CO CH ₂ - OCH ₃	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2061	F_CH ₃	2	2	1	-	Н	-CH ₂ -N-C
2062	H₃CO	2	2	1	-	Н	-CH ₂ -N-C
2063	H_3CO H_3CO CH_2	2	2	1	· -	н .	-CH ₂ -N-C
2064	B ₅ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2065	H ₃ CCH ₂ O	2	2	1	-	н	-CH ₂ -N-C
2066	OCH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2067	(H ₃ C) ₂ CHCH ₂ CH ₂ .	2	2	1	-	H	-CH ₂ -N-C
2068	Cl F—CH ₂ -	2	2	1		н	-CH ₂ -N-C

2 1 1

Table 1.189

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2069	H ₃ C H ₃ CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
2070	Br_CH ₂ -	2	2	1	-	Н.	$-CH_2-N-C$ H_2N F F
2071	H ₃ CO-CH ₂ -OCH ₃	2	2	1	-	н	$-CH_2-N$ C H_2N
2072	(H ₃ C) ₂ CHO-⟨¯⟩-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2073	CH2Q CH2−CH2−	. 2	2	1	-	н	-CH ₂ -N-C
2074	н₃со-{}-о	2	2	1	-	н .	$-CH_2-N-C$ H_2N
2075	H ₃ CQ CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
2076	F-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2077	Ct——CH ₂ —					H	$-CH_2-N-C$ H_2N F
2078	H ₃ CCH ₂ O OH CH ₂ -	2	2	1	~	н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2079	— сн ₂ о н ₃ со——— с н ₃ -	2	2	1	-	н	-CH ₂ -N-C

2 1 2

Table 1.190

Table	1.190						
Compd No.	$ \begin{array}{c c} R^1 \\ \hline R^2 \\ \hline (CH_2)_j \\ \hline \end{array} $	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
2080	— сн ₂ q н ₃ со———сн ₂ -	2	2	1	-	н	-CH ₂ -N-C
2081	CI	2	2	. 1	· _	н	-CH ₂ -N-C
2082	OH H₃CO-⟨ CH₂-	2	2	1	-	н	-CH2-N-C-F
2083	HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
2084	H ₃ CO HO———————————————————————————————————	.1	2	0	R	Н	-CH ₂ -N-C
2085	OH H₃CO—CH₂—	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2086	CI HO—CH₂—	1	2	0	R	. H	$-CH_2-N-C H_2N$
2087	(H ₃ C) ₂ N-\(\bigcup_\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2088	(H ₃ CCH ₂) ₂ N-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
	F-CH ₂ -					н	-CH ₂ -N-C- H ₂ N
2090	()— О-{	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N-C$ $+_{2}N-C$ $+_{2}N-C$ $+_{2}N-C$ $+_{3}CF_{3}$ $-CH_{2}-N-C$ $+_{2}N-C$ $+_{3}CF_{3}$ $+_{4}N$

213

Table 1.191

•								
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{1}$ $(CH_2)_{q}$ $G-R^6$	
2091	СН ₂ -	2	2	1	-	H	CH-N-C- CH ₂ -CH ₃ R	
2092	C	2	2	· 1	-	н	CH, NH	
2093	С⊢—СН₂-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C	
2094	CHCH ₂ -	2	2	1	-	н	(R O OCH ₂ CH ₃ -CH N C C C C C C C C C C C C C C C C C C	
2095	CH-{	2	2	· 1	-	н	(F) OCH ₂ CH ₃ -CHN-C	
2096	CH-2-	2	2	1	-	įн.	(A O OCH ₂ CH ₃ -CH-N-C-CH CH ₂ CH ₃ CH ₂ -CH CH ₃	
2097	CHCH ₂ -	2	2	1	-	н	(<i>F</i>)	
2098	CH-CH ₂ -	2	2	1	-	н .	(A O OCH ₂ CH ₃ -CH-N-C C CI	
2099	CH-CH ₂ -	2	2	1	-	н	() POCH ₂ CH ₃	
2100	CH ₂ -	2	2	1	-	н	CH2-OCH3	
2101	СН ₂ -	2	2	1	· <u>-</u>	н	CH2 OCH2CH3 CH2 OCH2	

2 1 4

Table 1.192

	7.70 E						
Compo	$H = \frac{R^1}{R^2} - (CH_2)_j - \frac{R^2}{R^2}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2102	CH2-	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ -C-OCH ₂ - A
2103	C├────────────────────────────────────	2	2	1	-	н	() O OCH ₂ CH ₃ -CH-N-C- H H H ₃ C-CHOCH ₂ - B
2104	CH_2-	2	2	1	-	н	CHN-C-OCH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ COCH ₃ O A
2105	H ₃ CQ OH - CH ₂ -	2	2	1	- -	н	-CH ₂ -N-C
2106	H₃C OH CH₂-	2	. 2	1	- •. *	н	-CH ₂ -N-C
2107	Br CH ₂ -	2	2	1	-	н	
2108	CH ₃	2	2	1	-	н	-CH ₂ -N-C
2109	Br CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2110	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2111	CH-2−	2	2	1	-	н	$-CH_2-N-C H_2N$ F
2112	H ₃ CO—CH ₂ —	2	2	1	. ~	н	$-CH_2-N-C H_2N$

2 1 5

Table 1.193

Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2113	H ₂ N H ₃ CO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2114	H ₂ N H ₃ C-CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C
2115	CI(CH ₂ -	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C
2116	CH-√CH₂-	2	2	1	-	H	(R) OCH ₂ CH ₃ -CH-N-C- H CH(CH ₃)CH ₂ CH ₃
2117	CI—(2	. 2	1		H .	CH2-NH
2118	HO—CH ₂ -	· 1	2	0	R .	Н	$-CH_2-N-C-$ H_2N
2119	. ОН НО—СН ₂ —	1	2	0	R ·	н	$-CH_2-N-C-$ H_2N
2120	Br—CH ₂ -					н	$-CH_2-N-C-$ H_2N
2121	ОСН ₃ но-{СН ₂ -	. 1	2	0	R	н.	$-CH_2-N-C H_2N$
2122	CH-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- CF ₃
2123	CH2-CH2-NO2	1	2	0	R	Н	$\begin{array}{c} H_2N \\ \\ CF_3 \\ -CH_2-N-C \\ \\ H_2N \\ -CH_2-N-C \\ \\ H_2N \\ \end{array}$

Table 1,194

Table	1.194						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_q$ $-(CH_2)_q$ $+(CH_2)_q$ $+(CH_2)_q$ $+(CH_2)_q$ $+(CH_2)_q$
2124	O ₂ N CH ₂ —CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C- H _{2-N}
2126	O _{2.N} H ₃ C————————————————————————————————————	1	2	0	R	н	$-CH_2-N-C$ H_2N
2127	CH ₂ -NH ₂	1	2	0	Ŗ	н	-CH ₂ -N-C- H ₂ N
2128	H ₂ N H ₃ CO CH ₂ -	1.	2	0	R	Н	-CH ₂ -N-C
2129 -	H ₂ N H ₃ C—CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$
2130	O-N N=CH ₂ -	2	2	1	<u>.</u>	н	-CH ₂ -N-C
2131	CH ₃ CH ₃	2	2	1		н	-CH ₂ -N-C
2132	H ₂ N CH ₂	1	2	0	R	H	-CH _{2-N} -CF ₃
2133	(H-C)-N				R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

217

Table 1.195

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
2136	(H ₃ C) ₂ N H ₃ C	1	2	0	R	н	-CH ₂ -N-C
2137	CH-2-	1	2	0	R	Н	- CH ₂ -N-C
2138	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2 H_2 H_2
2139	H ₃ C, CI N CH ₂ -	1	2.	0	R	Н	$-CH_2-N-C- \bigvee_{H_2N}^{CF_3}.$
2140	O-CH ₂ -NH ₂	2	2	1	-	н	$-CH_2-N-C-$ H_2-N H_2N
2141	H ₂ N HO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2142	H ₂ N CH ₂	2	2	1	-	н .	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2143	HNC-CH3	2	2	1	-	Н	-CH ₂ -N-C-F H ₂ N
2144	H ₂ N H ₃ CO—CH ₂ -	2	2	1	-	Н	$-CH_2-NC- \bigvee_{H_2N}^{CF_3}$
2145	H ₂ N HO————————————————————————————————————	2	2	1	-	Н	$-CH_2-N C-V$ H_2N

2 1 8

Table 1.196

1 4016	1.190						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)^{\frac{1}{p}}_{\frac{1}{p}}(CH_2)^{\frac{1}{q}}G-R^6$
2146	CH ₂ -	2	.2	1	-	Н	-CH ₂ -N-C
2147	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N F F
2148	H ₃ C-C-NH HO-CH ₂ -	2	2	1	· ·	Ħ.	$-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
2149	O ₂ N HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2150	H ₃ C-C-NH CI-CH ₂ -	1	2	0	. R	н	$-CH_2-N-C-$ H_2N H_2N
2151	CH ₂ -	. 1	2	0	R	н	$-CH_2-NCC$ H_2N CF_3
	Q H₃C-C-NH H₃CO-CH₂-					н	-CH ₂ -N-C
2153	H ₃ C-C-NH H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3
	О Н ₃ C-C-NH Н ₃ CO-СН ₂ -				-	н .	-CH ₂ -N-C-
2155	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ $-CH_2-N-C$ $-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
2156	HMC-CH3	2	2	1	· -	н	-CH ₂ -N-C- H H ₂ N

Table 1.197

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
2157	CH ₃ HO{CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2158	H ₃ C-NH HO———————————————————————————————————	1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2160	H ₃ C-NH HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2161	H ₃ C-NH CH ₂ -CH ₂ -	2	. 2	1	• <u>-</u>	н	$-CH_2-N-C-$ H_2N H_2N
2162	H ₃ CO-NH - CH ₂ -	2	2	1.	-	н	-CH ₂ -N-C-CF ₃
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ CF_3
2164	,сн ₃ СН ₂ -	1	2	. 0	R	, н	$-CH_{2}-N-C \xrightarrow{CF_{3}}$ $H_{2}N$
	CH ₂ -					н	$-CH_2-N_1-C-$ H_2N CF_3
2166	€S−CH₂−	· 1	2	0	R	н	-CH ₂ -N-C- CF ₃
2167	H N CH2	1	2	0	R	. н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $+L_{2}N$ $-CH_{2}-N-C-$ $+L_{2}N$

Table 1.198

rable	1.190						
Compd. No.	R^2					R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2168	H ₃ C C-OCH ₃ H ₃ C CH ₂ -					н .	$-CH_2-N-C-$ H_2N
2169	H ₃ C-CH ₃ CH ₃	1	2	0	R .	н	$-CH_2-N-C-4$ H_2N CF_3
	C)-CH,-					н	$-CH_2-NC- CF_3$ H_2N
2171	H ₃ C ₁ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2172	F ₃ C CH ₂	1	2	0	R ·	Н	$-CH_2-N-C H_2N$
2173	S—CH ₂ - S—CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2174	H ₃ C CH ₃ B CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N CF_3
2175	OCH ₃	1	2	0	R	_. H	-CH ₂ -N-C-CF ₃
2176	H ₃ C - CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2177	CH ₂ OH	1	2	0	R	н	$-CH_2-N-CF_3$ H_2N
2178	0					Н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CF_{3}$ $-CH_{2}-N-C$ $H_{2}N$ $-CF_{3}$

Table 1.199

lable	1.133						
Compd. No.	R ¹ (CH ₂) –	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2179	H ₃ C-Ç ^N N→CH ₂ -	1	2	0	R·	н	-CH ₂ -N-C- H H ₂ N
2180	C-(CH ₂) ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
2181	H ₃ CO	1	2	0	R	H .	-CH ₂ -N-CF ₃
2182	H ₃ C N CH ₂ -	1	2	0	R	Н	CF_3 CH_2-N_1 C H_2 H_2 H_3
2183	Ş-N N= CH₂-	1	2	. 0	R	• н	$-CH_2-N$ C H_2 H_2 N
2184	S-N N= CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2185	Ş-N N= CH₂-	2	2	1	-	Н	$-CH_2-NC- \bigvee_{H_2N}^{CF_3}$
2186	CH ₂ -	2	2	1	-	н	$-CH_2-NC$ H_2N CF_3
2187	H ₂ N - CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
2188	CH ₂ -	2	2	1	•	H	$-CH_2-N-C-$ H_2N
2189	CH ₂ -	1	2	0	R	н	CH ₂ N-C

2 2 2

Table 1.200

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{1}$ $(CH_2)_{q}$ $- GR^6$
2190	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2191	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2192	S H CH2-	2	2 -	1	-	н	CH ₂ N-C
2193	S H CH2-	2	2	1	-	н	$-CH_2-N-C$ H_2N
2194	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-NCC+3$ H_2N
⁻ 2195	H ₂ N CH ₂	2	2	1	-	Н	-CH ₂ -N-C
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2198	H ₃ C-NH CH ₂ -CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C
2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2200	H ₃ C-NH C⊢ CH ₂ -	2	2	1	-	н .	₽CF3

223

Tab	le	1	.2	n	1
IUN	16		-	v	

i abie	1.201						•
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	CH ₂ -N-C
2202	CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
2203	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2204	CH-CH ₂ -	2	2	1-	-	н	$-CH_2-N$ C H_2 H_2 N
2205	CH-2-	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
2206	HO—CH ₂ —	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2207	HO—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
	HN-CH ₃					н	-CH ₂ -N-C-S
2209	HN-CH₃ CH——————————————————————————————————	2	2	1	-	н	-CH ₂ -N-CF H H ₂ N
2210	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2211	CH ₂ −	. 2	2	1	-	н	$-CH_{2}-N-C$

Table 1.202

_	0 _						
Compo	$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	k	m	n	chirality	R³	-(CH ₂) - GH ₂)-G-R ⁶
2212	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2213	CH_2N	2	2	1	-	н	-CH ₂ -N-CF ₃
2214	H ₂ N H ₃ C-CH ₂ -	2	2	1		н	-CH ₂ -N-CF ₃
2215	H ₃ C-HN CH2-CH ₂ -	_ 1	2	0	R	н	-CH ₂ -N-C-CF ₃
2216	CH ₃ N − CH ₂ H ₃ CCH ₂ N H	- 1	2	0	R	н	-CH ₂ -N-C-CF ₃
2217	H₃CO-ÇÎ H₃C-ÇH₂- CH₂-	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
2218	CH-CH ₂ -	1	2	0	R	н	-CH2-N C-N-CF3
2219	CHCH2-	1	2	0	R	н	-CH ₂ -N-CF ₃
2220	CHCH ₂ -	1	2	0	R .	н	-CH2-H C-CH(CH3)2
2221	CH-€ CH ₂ -	1	2	0	R	н	-CHZ-N-CF3 HN C-N-CH3
2222	H ₃ C CO ₂ CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-H ₂ N-CF ₃ -CH ₂ -N-C-H ₂ N-CF ₃ -CH ₂ -N-C-H ₂ N-CF ₃

Table 1	.20	3
---------	-----	---

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2223	C├ - CH ₂ -	1	2	0	R	н	-CH2-N-C-N-N-N
2224	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N _E
2225	C⊢-{	1	2	0	R	н	F3C CH3 CF3 -CH2-HC-NN
2226	H ₃ C CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2227	CHCH ₂ -	1	2	0	R	н	-CH2-H-C
2228	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
2229	CH ₂ -	1	2	0	R ,	н	$-CH_2-N+C H_2N$ OCF_3 H_2N
2230	CH ₃	1	2	0	R .	н	-CH ₂ -N-COCF ₃
	CH ₃ H ₃ CO-⟨CH ₂ -					н	-CH ₂ -N-C
2232	H ₃ C H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
2233	H ₃ C H ₃ CO CH ₂ - CH ₂ - N H	1	. 2	0	R	Н	H_2N H_2N OCF_3 $-CH_2-N^2C$ H_2N OCF_3 $-CH_2-N^2C$ H_2N OCF_3 $-CH_2-N^2C$ H_2N OCF_3 OCF_3 OCF_3 OCF_3 OCF_3 OCF_3

Table 1.204

Compd No.	· R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{1} (CH_2)_{\overline{q}} - G^-R^6$
2234	CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\) H ₂ N
2235	CH ₂ -	1	2	0	R	H .	$-CH_2-N-C$ H_2N H_2N
2236	F CH ₂ -	1	2	0	R,	Н	-CH ₂ -N-C
2237	CI CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C
2238	H ₃ CQ CH ₂ -	İ	2	0	R	н	$-CH_2-N-C-$ H_2-N H_2-N H_2-N
2239	CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
2240	CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2241	H ₃ C N H	1	2	0	R	H _.	-CH ₂ -N-C
2242	CH ₃ H	1	2	0	R	н	-CH ₂ -N-C OCF ₃ H ₂ N O OCF ₃
	(H ₃ C) ₂ N-⟨¯⟩-CH ₂ -					н	$-CH_2-N-C-$ H_2N $-CH_2-N-C-$ H_3N $-CH_2-N-C-$ H_3N
2244	F N H	1	2	0	R	Н	-CH ₂ -N-C-SOCF ₃

227

Table 1.205

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
2245	H ₈ C N CH ₂	1	2	0	R	н	-CH ₂ -N-C
2246	H ² CCH ² -N-CH ² -	1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3
2247	(HGC)2CH N CH2-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2248	CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2249	H ₂ N H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2250	H ₂ N HO-CH ₂ -	1	2	Ó	R	н	-CH ₂ -N-COCF ₃
	H_2N H_3C — CH_2 -				R	н	-CH ₂ -N-C
2252	CH ²	2	2	1	-	н	CH ₂ -N-C- H ₂ N
2253	F CH ₂ -	2	2	1	-	н	ρ ^{CF₃}
2254	H ₃ CQ CH ₂ -	2	2	1	-	н	$-CH_2-N+C-$ H_2N
2255	H ₃ C H ₂	2	2	1	-	н	$-CH_{2}-N$ $+CH_{2}-N$ $-CH_{2}-N$ $+CH_{2}-N$ $+CH_$

228

Table 1.206

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2256	CH ₂ -	2	2	1	<u>-</u> .	н	-CH ₂ -N-C
2257	H ₃ CQ CH ₂ -	2	2	1		Н	-CH ₂ -N-C-CF ₃

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

5 さらに、本発明においては、例えばヨウ化1- (4-クロロベンジル) -1-メ チルー4- [{N- (3-トリフルオロメチルベンゾイル) グリシル} アミノメチル] ピペリジニウムのような、環状アミン化合物のC₁-C₆アルキル付加体も用いられる。ここで、アルキル基としては、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、2-メチルペンチル、1-エチルブチルが好適な具体例として挙げられるが、特に好ましい例としては、メチル基、エチル基などが挙げられる。また、アンモニウム陽イオンの対陰イオンの好適な具体例としては、フッ化物、塩化物、臭化物、またはヨウ化物などのハロゲン化物陰イオンを挙げることができる。

本発明においては、上記式 (I) で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、WO9925686記載の下記に示すいずれかの一般的な製造法を用いることにより合成することができる。

20 (製造法1)

下記式 (II)

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} - NH \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow R^{1}
\end{array}$$
(II)

25

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式 (I) におけるそれぞれの定義と同じである。]

で表される化合物 1 当量と、下記式 (III)

$$\begin{array}{c} O \\ HO - \overset{O}{C} - (CH_2)_p - \overset{R^4}{\longleftarrow} (CH_2)_q - G - R^6 \end{array}$$
 (III)

5 [式中、R⁴、R⁵、R⁶、G、p、およびqは、上記式(I)におけるそれぞれの定義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の 0.1-10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

上記式 (III) で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン 10 化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反 応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシーブなどの脱水剤;ジシクロヘキシルカルボジイミド(DCC)、N-エチル-N'-(3-ジメチルアミノプロピル)カルボジイミド(EDCIまたはWSC)、カルボニルジイミダゾール(CDI)、

- 15 Nーヒドロキシサクシンイミド (HOSu)、Nーヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾールー1ーイルオキシトリス (Pullipsi) ホスホニウム=ヘキサフルオロホスフェート (PyBOP)、2ー (1H-ベンゾトリアゾールー1ー1イル) ー1, 1, 3, 3ーテトラメチルウロニウム=ヘキサフルオロホスフェート (HBTU)、2ー (1H-ベンゾトリアゾールー1ーイル)
- 25 フェート (PyBroP) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチル)ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ (4ービニルピリジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進
- 30 行させることができる。

(製造法2)

WO 00/69432 PCT/JP00/03203

231

下記式 (IV)

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j -X
\end{array} (IV)$$

5

[式中、 R^1 、 R^2 、および j は、上記式(I)におけるそれぞれの定義と同じであり、Xはハロゲン原子、アルキルスルホニルオキシ基、またはアリールスルホニルオキシ基を表す。]

10 で表されるアルキル化試薬1当量と、下記式(V)

$$\begin{array}{c} \text{HN} \\ \text{(CH2)}_{h} \\ \text{(CH2)}_{m} \end{array} - \text{(CH2)}_{n} - \text{N-C} \\ \text{(CH2)}_{p} - \text{(CH2)}_{p} - \text{(CH2)}_{q} - \text{G-R}^{6} \end{array}$$
 (V)

15

[式中、 R^3 、 R^4 、 R^5 、 R^6 、G、k、m、n、p、およびqは、上記式(I)におけるそれぞれの定義と同じである。]

で表される化合物 0.1-10 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、より円滑に に進行させることができる。さらに、本製造方法においてヨウ化カリウム、ヨウ化 ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合がある

上記式 (IV) において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリ つルスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体 例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基 などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシルオキシ基を挙げることができる。

(製造法3)

下記式
$$(VI)$$
 R^1 \rightarrow $(CH_2)_{j-1}$ $-$ CHO (VI) R^2

または、下記式 (VII)

$$R^{1}-CHO$$
 (VII)

[式中、 R^1 は上記式(I)における R^1 の定義と同じであり、jは0を表す場合に 10 相当する。]

で表されるアルデヒド1当量と、上記式 (V) で表される化合物 0.1-10 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、

15 水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナト リウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボラン を用いる水素化反応、または電解還元反応などを用いることができる。

(製造法4)

下記式 (VIII)

20

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} \longrightarrow (CH_{$$

25 [式中、R¹、R²、R³、R⁴、R⁵、R⁷、j、k、m、n、p、およびqは、上記式(I)におけるそれぞれの定義と同じである。]

で表される化合物1当量と、下記式 (IX)

$$HO-A-R^6$$
 (IX)

[式中、 R^6 は上記式(I)における R^6 の定義と同じであり、Aはカルボニル基ま 30 たはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0.1-1

0 当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式(IX)で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野で一般に使用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法5)

5

上記式 (VIII) で表される化合物1当量と、下記式(X)

$$Z = C = N - R^{6} \tag{X}$$

10 [式中、 R^6 は上記式 (I) における R^6 の定義と同じであり、Zは酸素原子または 硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネートO. 1-10当量を、無溶媒 下または溶媒存在下に反応させることによる製造方法。

(製造法6)

15 下記式 (XI)

20

[式中、R¹、R²、R³、R⁴、R⁵、j、k、m、n、p、およびqは、上記式(I)におけるそれぞれの定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表される化合物 1 当量と、下記式 (XII)

$$R^6 - NH_2 \qquad (XII)$$

「式中、R⁶は上記式(I)におけるR⁶の定義と同じである。]

で表されるアミンO. 1-10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる 30 ことにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学におけ

る各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換剤を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

5 さらに、本発明で用いる化合物は、例えばアルキル化反応、アシル化反応、還元 反応などの、一般に有機合成化学において使用される既知の反応を用いて、上記製 造法6により製造される化合物の(単数または複数の)置換基をさらに変換するこ とによっても得ることができる。

上記各製造法において、反応溶媒としては、ジクロロメタン、クロロホルムなど のハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが、反応に応じて適宜用いられる。

15 いずれの製造方法ににおいても、反応温度は-7.8°Cから+1.5.0°C、好ましくは0°Cから1.0.0°Cの範囲である。反応完了後、通常の単離、精製操作、すなわち、濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(1)で表される環状アミン化合物を単離することができる。また、それらは通常の方法により薬学的に許容される酸付加体または C_1-C_6 アルキル付加体に変換することができる。

実施例

25

本発明を以下、具体的に実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に記載された化合物に限定されるものではない。以下の実施例において各化合物に付された化合物番号(Compd. No.)は、Table1.1-1.206において好適な具体例として挙げた化合物に付された化合物番号(Compd. No.)と対応している。

[参考例1] <u>3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩の合成</u>

30 4-クロロベンジルクロリド(4. 15g、25. 8mmol)と Pr₂NEt (6. 67g、51. 6mmol)を、3-[(tert-ブトキシカルボニル)

25

30

アミノ}ピロリジン(4.81g、25.8mmol)のDMF溶液(50mL)に加えた。反応混合物を70℃で15時間攪拌し、溶媒を減圧下に除去した。再結晶(アセトニトリル、50mL)により目的とする3-[(tertーブトキシカルボニル)アミノ]-1-(4-クロロベンジル)ピロリジン(6.43g、80%)を黄白色固体として得た。¹H NMR(CDCl₃、300MHz)δ 1.37(s,9 H),1.5-1.7(br,1 H),2.1-2.4(m,2 H),2.5-2.7(m,2 H),2.83(br,1 H),3.57(s,2 H),4.1-4.3(br,1 H),4.9-5.1(br,1 H),7.15-7.35(br,4 H);純度はRPLC/MSで求めた(98%)。ESI/MS m/e 311.0(M⁺+H、C₁₆H₂₄ClN₂O₂)

- 3-[(tert-ブトキシカルボニル) アミノ]-1-(4-クロロベンジル) ピロリジン(6.38g、20.5mmol)のメタノール(80mL)溶液に 1M HCl-Et₂O(100mL)を加え、25℃で15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶(メタノール/アセトニトリル=1:2、130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル)ピロリ
- 15 ジン・二塩酸塩(4.939g、85%)を白色粉末として得た。 ¹H NMR(d₆-DMSO、300MHz)δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(>99%)。ESI/MS m/e 211.0 (M⁺+H、C₁₁H₁₆ClN₂)
- 20 光学活性(R) -3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩と(S) -3-アミノ-1-(4-クロロベンジル)ピロジジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ体と同じ¹H NMRを示した。

[実施例1] 3-(N-ベンゾイルグリシル) アミノー1-(4-クロロベンジル) ピロリジン (化合物番号1) の合成

N-ベンゾイルグリシン (9.3 mg、0.055 mmol)、3-エチル-1-[3-(ジメチルアミノ)プロピル]カルボジイミド・塩酸塩(EDCI)(10.5 mg)および1-ヒドロキシベンゾトリアゾール・水和物(HOBt)(7.4 mg)を、3-アミノ-1-(4-クロロベンジル)ピロジジン・二塩酸塩(14.2 mg、0.050 mmol)とトリエチルアミン(15.2 mg)のクロロホルム(2.5 mL)溶液に加えた。この反応混合物を25℃で16時間攪拌し

、2M NaOH水溶液($2mL \times 2$)と食塩水で洗浄した。PTFE膜フィルターによる濾過後、溶媒を減圧下に除去し、3-(N-ベンゾイルグリシル) アミノー1-(4-クロロベンジル) ピロジジン(化合物番号 1)を黄白色油状体として得た(17.7mg、95%)。純度はRPLC/MSで求めた(95%)。ESI/MS m/e 372.0 $(M^++H,C_{20}H_{22}ClN_3O_2)$ [実施例2-32]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1の方法に従って合成した。ESI/MSデータ、収量、および収率を表2にまと めた。

10

5

表 2

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
				νω (mg)	以学 (8)
2	2	C21 H24 C1 N3 O2	386	16.4	85
. 3	3	C19 H21 C1 N4 O2	373	18.7	100
4	4	C21 H21 C1 F3 N3 O2	440	57.2	69
5	82	C22 H23 C1 F3 N3 O2	454	5.6	11
6	85	C21 H24 C1 N3 O2	386	22.6	59
7	86	C21 H23 C1 N4 O4	431	21.2	98
8	214	C22 H25 C1 N2 O2	385	23.9	62
9	215	C23 H27 C1 N2 O3	415	17.4	84
10	216	C20 H23 C1 N2 O2 S	391	21.6	定量的
11	217	C23 H27 C1 N2 O4	431	15.3	66
12	218	C23 H27 C1 N2 O2	399	12.8	64
13	219	C22 H24 C1 F N2 O3	419	18.1	86
14	220	C22 H25 Cl N2 O2	385	16.4	85
15	221	C21 H23 C1 N2 O2	371	14.9	80
16	222	C21 H22 C12 N2 O2	405	13.3	65
17	223	C25 H31 C1 N2 O3	443	18.4*	63
18		C20 H23 C1 N2 O3 S	407	11.2	28
19		C22 H26 C1 N3 O2	400	22.7	定量的
20	226	C23 H28 C1 N3 O3	430	21.0	98
21	227	C22 H25 C12 N3 O2	434	21.9	100
22		C23 H28 C1 N3 O3	430	20.8	97
23	i	C25 H32 C1 N3 O2	462	25.4	定量的
24	230	C26 H31 C1 F N3 O2	472	26.0	定量的

25	231	C24 H28 Cl N3 O3	442	30.3*	定量的
26	232	C22 H32 Cl N3 O2	406	3.9	19
27	233	C23 H28 Cl N3 O2	414	8.5	41
28	234	C22 H27 C1 N4 O2	415	7.3	35
29	235	C24 H29 C12 N3 O2	462	9.0	39
30	236	C25 H29 C1 N4 O3 S	501	17.4	69
31	237	C21 H24 C1 N3 O3	402	14.2	71
32	238	C21 H23 C12 N3 O3	436	23.4	定量的

*トリフルオロ酢酸塩の収率。

[参考例2] (R) - 3 - [(N - t e r t - ブトキシカルボニル) グリシル] アミノー1 - (4 - クロロベンジル) ピロリジンの合成

- (R) -3-アミノー1-(4-クロロベンジル)ピロリジン・二塩酸塩(4.54g、16.0mmol)、2M NaOH溶液(80mL)、および酢酸エチル(80mL)の混合物を攪拌し、有機層を分離し、水層を酢酸エチル(80mL×2)で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、遊離の(R) -3-アミノー1-(4-クロロベンジル)ピロリジン
 (3.35g、99%)を得た。
- (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン(3.35g、16mmol)のジクロロメタン(80mL)溶液に、トリエチルアミン(2.5m L、17.6mmol)、N-tert-ブトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)、およびH OBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2M NaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて水(100mL×2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル)により、目的とする(R 0)-3-[N-(tert-ブトキシカルボニル)グリシル]アミノ-1-(4-クロロベンジル)ピロリジン(5.40g、92%)を得た。

[参考例3] (R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジンの合成

 $(R) - 3 - [N - (tert - \vec{y} + \vec{z}) + \vec{y}

(4-クロロベンジル) ピロリジン (5.39g、14.7mmol) のメタノー ル (60mL) 溶液に、4M HC1ジオキサン (38mL) 溶液を加えた。この 溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液(80m L)を加えた。混合液をジクロロメタン(80mL×3)で抽出し、抽出液を合わ せて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー (SiO₂、 5 酢酸エチル/エタノール/トリエチルアミン=90:5:5) により、(R) -3-(グリシルアミノ)-1-(4-クロロベンジル)ピロリジン(3.374g、 86%) を得た。 1 H NMR (CDC1₃、270MHz) δ 1.77 (dd, J=1.3 および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3および9.6 Hz, 1 H) , 2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3 10 .57(s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39(br, s, 1 H) その他の3-アシルアミノ-1- (4-クロロベンジル) ピロリジン類も、それ ぞれ対応する原料および反応剤を用いて参考例2および3の方法に従って合成され た。

- 15 (S) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジン:3 . 45g、79%(2工程)。
 - (R) $-3-(\beta-r)$ ラニルアミノ) $-1-(4-\rho$ ロロベンジル) ピロリジン: 3.79g、85% (2工程)。
 - (S) -3-(β-アラニルアミノ) -1-(4-クロロベンジル) ピロリジン
- 20 : 3. 72g、86%(2工程)。
 - (R) -3-[(S)-アラニルアミノ)-1-(4-クロロベンジル) ピロリジン:368mg、65%(2工程)。
 - $(R) 3 [(R) アラニルアミノ) 1 (4 クロロベンジル) ピロリジン: <math>425 \,\mathrm{mg}$ 、75%($2 \,\mathrm{T}$ 程)。
- - (4-クロロベンジル) ピロリジン:566mg、78% (2工程)。
 - $(R) -3 [(2R) -2 r \le 1 3 f = 2 r \le 1 1]$
 - (4-クロロベンジル)ピロリジン:5.85mg、81%(2工程)。
- 30 ロベンジル) ピロリジン:404mg、66%(2工程)。
 - (R) 3 [(2S) 2 アミノー 4 (メチルスルホニル) ブタノイル]

WO 00/69432 PCT/JP00/03203

アミノー1ー(4ークロロベンジル)ピロリジン:535mg、72%(2工程)

さちに、(R) - 3 - (グリシルアミノ) - 1 - (4-メチルベンジル) ピロリジン、<math>(R) - 1 - (4-) -

- (R) -3-(グリシルアミノ)-1-(4-メチルベンジル) ピロリジン: 410 . 65g、収率62%(3-[(tert-ブトキシカルボニル) アミノ] ピロリジンからの収率)。
- (R) -1-(4-ブロモベンジル) -3-(グリシルアミノ) ピロリジン: 2 . 55g、収率68% ((R) -3-アミノ-1-(4-ブロモベンジル) ピロリ ジンからの収率); ¹H NMR (CDCl₃、270MHz) δ 1.37-1.78 (m, 3 H), 2.23-2.39 (m, 2 H), 2.50-2.67 (m, 2 H), 2.80-2.89 (m, 1 H), 3.32 (s, 2 H), 3.58 (s, 2 H), 4.39-4.55 (m, 1 H), 7.21 (d, J = 6.5 Hz, 2 H), 7.45 (d, J = 6.5 Hz, 2 H)
 - (R) -1-(2, 4-ジメチルベンジル) -3-(グリシルアミノ) ピロリジン: 1.56g、収率58%(3-[(tert-ブトキシカルボニル) アミノ]
- 20 ピロリジンからの収率); ¹H NMR (CDCl₃、270MHz) δ 1.55-1. 78 (m, 3 H), 2.30 (s, 3 H), 2.23-2.31 (m, 2 H), 2.33 (s, 3 H), 2.51-2.63 (m, 2 H), 2.78-2.87 (m, 1 H), 3.30(s, 2 H), 3.55 (s, 2 H), 4.38-4.60 (m, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.97(s, 1 H), 7.13 (d, J = 7.6 Hz, 1 H), 7.43 (br-s, 1 H)
- 25 (R) -1-(3, 5-ジメチルイソキサゾール-4-イルメチル) -3-(グリシルアミノ) ピロリジン: 3. <math>14g、収率45% (3-[(tert-ブトキシカルボニル) アミノ] ピロリジンからの収率)。

30 5)の合成

3, 5-ビス(トリフルオロメチル)ベンゾイルクロリド(0.060mmol

)のクロロホルム溶液(0.4mL)を、(S)-1-(4-クロロベンジル)-3-(グリシルアミノ)ピロリジン(0.050mmol)とトリエチルアミン(0.070mmol)のクロロホルム(1.0mL)溶液に加えた。この反応混合物を室温で2.5時間攪拌した後、(アミノメチル)ポリスチレン樹脂(1.04mmol/g、50mg、50mmol)を加え、混合物を室温で12時間攪拌した。反応混合物を濾過し、樹脂をジクロロメタン(0.5mL)で洗浄した。濾液と洗液とを合わせ、ジクロロメタン(4mL)を加え、溶液を2M NaOH水溶液(0.5mL)にて洗浄して濃縮することにより、(S)-3-[N-[3,5-ビス(トリフルオロメチル)ベンゾイル]グリシル]アミノー1-(4-クロロベンジル)ピロジジン(化合物番号5)を得た(14.4mg、57%)。純度はRPLC/MSで求めた(97%)。ESI/MS m/e 508.0(M++H、C22H20C1F6N3O2)

[実施例34-239]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 33の方法に従って合成した。ESI/MSデータ、収量、および収率を表3にまとめた。

表 3

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
34	5	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	14.4	57
35	6	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	17.0	77
36	7	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	17.7	79
37	8	C ₂₀ H ₂₁ Cl FN ₃ O ₂	390.0	12.7	65
38	9	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	39.0	定量的
39	10	$C_{21}H_{24}ClN_3O_3$	402.5	23.5	定量的
40	11	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	22.4	定量的
41	12	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	15.9	74
42	13	$C_{21}H_{21}ClF_3N_3O_2$	440.0	13.1	60
43	14	$C_{21}H_{24}ClN_3O_2$	386.0	16.4	85
44	15	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.7	77
45	16	$C_{21}H_{24}ClN_3O_2$	402.0	28.2	定量的
46	17	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	35.6	定量的
47	18	C ₂₁ H ₂₁ ClN ₄ O ₂	397.5	22.8	定量的

48	19	C21H22C1N3O4	416.0	16.3	78
49	20	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	24.9	定量的
50	21	C ₂₁ H ₂₀ C1F ₄ N ₃ O ₂	458.0	17.9	78
51	22	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	9.4	41
52	23	C ₂₁ H ₂₀ C1F ₄ N ₃ O ₂	458.0	15.4	67
53	24	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₃	456.0	20.7	91
54	25	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	18.5	81
55	26	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.9	定量的
56	27	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	16.8	81
57	28	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	6.8	33
58	29	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	20.8	82
59	30	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	15.2	69
60	31	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	15.6	69
61	32	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.0	11.8	61
62	33	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	15.8	72
63	34	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	33.8	定量的
64	35	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	56.1	定量的
65	36	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	37.6	定量的
66	37	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	12.6	57
67	38	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	12.3	64
68	39	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.9	78
69	40	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	11.6	58
70	41	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	17.8	81
71	42	C ₂₁ H ₂₁ ClN ₄ O ₂	397.5	22.4	定量的
72	43	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	30.1	定量的
73	44	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	13.4	59
74	45	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	13.2	58
75	46	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	14.4	63
76	47	$C_{21}H_{21}ClF_3N_3O_3$	456.0	16.4	72
77	48	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458	16.5	72
78	49	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	12.5	60
79	50	. C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	26.3	定量的
80	51	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	8.6	38
81	52	C ₂₀ H ₂₁ C1FN ₃ O ₂	390.5	4.1	21
82	53	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	5.4	27
83	54	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	8.8	40
84	55	C ₂₀ H ₂₀ BrCl ₄ N ₃ O ₂	440.0	7.7	35
85	56	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	4.8	25
86	57	C ₂₂ H ₂₆ ClN ₃ O ₄	429.5	4.9	23

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
108 79 C ₂₂ H ₂₀ C1F ₆ N ₃ O ₂ 508.0 18.8 74 109 80 C ₂₂ H ₂₀ C1F ₆ N ₃ O ₂ 508.0 16.4 65	
109 80 C ₂₂ H ₂₀ C1F ₆ N ₃ O ₂ 508.0 16.4 65	
10.4	
110 81 C ₂₂ H ₂₆ ClN ₃ O ₂ 400.0 13.9 70	
111 83 C ₂₀ H ₂₁ C1N ₄ O ₄ 417.0 16.0 77	
112 84 C ₂₀ H ₂₁ ClN ₄ O ₄ 417.0 21.6 定量的	/ j
113 87 $C_{23}H_{22}C1F_6N_3O_2$ 522.0 17.5 67	
114 88 C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂ 454.0 13.9 61	
115 89 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 15.4 66	
116 90 C ₂₁ H ₂₃ C1FN ₃ O ₂ 404.0 10.7 53	
117 91 C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂ 456.0 13.7 60	
118 92 C ₂₂ H ₂₆ C1N ₃ O ₃ 416.0 38.4 定量的	5
119 93 C ₂₃ H ₂₈ C1N ₃ O ₄ 446.0 25.2 定量的	
120 94 C ₂₃ H ₂₈ C1N ₃ O ₄ 446.0 16.5 74	-
121 <u>95</u> C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂ 454.0 16.3 72	
122 96 C ₂₂ H ₂₆ C1N ₃ O ₂ 400.5 16.7 84	
123 97 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.0 11.2 53	
124 98 C ₂₂ H ₂₆ ClN ₃ O ₂ 416.5 11.8 57	
125 99 $C_{21}H_{22}Cl_3N_3O_2$ 454.0 14.8 65	ŀ

WO 00/69432

		$C_{22}H_{23}ClN_4O_2$	411.0	9.5	46
127	101	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	13.2	61
128	102	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	13.1	56
129	103	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	36.5	定量的
130	104	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	22.8	97
131	105	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	20.1	85
132	106	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₃	470.0	27.4	定量的
133	107	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	18.5	78
134	108	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	11.9	55
135	109	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	23.9	定量的
136	110	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	24.4	定量的
137	111	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	9.5	36
138	112	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	3.9	17
139	113	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.5	32
140	114	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	6.1	30
141	115	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	6.6	29
142	116	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	4.8	23
143	117	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	6.4	29
144	118	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	24.6	定量的
145	119	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	5.2	23
146	120	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	4.4	22
147	121	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	7.8	37
148	122	C ₂₂ H ₂₆ ClN ₃ O ₂	416.5	14.1	68
149	123	$C_{21}H_{22}Cl_3N_3O_2$	454.0	5.4	24
150	124	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	34.0	定量的
151	125	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	32.0	定量的
152	126	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	4.6	19
153	127	$C_{22}H_{22}ClF_4N_3O_2$	472.0	10.4	44
154	128	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	7.3	31
155	129	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	13.5	57
156	130	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₃	470.0	15.1	64
157	131	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	8.6	36
158	132	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	4.4	20
159	133	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	32.0	定量的
160	134	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	6.9	32
161	135	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.8	34
162	136	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	13.7	68
163	137	$C_{21}H_{23}Cl_2N_3O_2$	420.5	14.6	69
164	138	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	17.7	78

165	139	C21H22BrCl4N3O2	454.0	17.2	76
166	140	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	15.0	75
167	141	C ₂₃ H ₂₈ ClN ₃ O ₄	443.5	13.9	62
168	142	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.7	65
169	143	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	16.1	69
170	144	C ₂₇ H ₂₈ ClN ₃ O ₂	462.0	17.6	76
171	145	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	16.0	71
172	146	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.9	75
173	147	C ₂₃ H ₂₈ ClN ₃ O ₂	414.0	16.2	78
174	148	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	14.9	73
175	149	C ₂₅ H ₂₆ C1N ₃ O ₂	436.0	17.1	78
176	150	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	13.1	. 60
177	151	C ₂₁ H ₂₂ C1F ₂ N ₃ O ₂	422.0	14.8	70
178	152	C ₂₁ H ₂₂ C1F ₂ N ₃ O ₂	422.0	15.3	73
179	153	C ₂₁ H ₂₂ C1F ₂ N ₃ O ₂	422.0	15.3	
180	154	C ₂₁ H ₂₂ C1F ₂ N ₃ O ₂	422.0	16.4	73
181	155	C ₂₃ H ₂₈ ClN ₃ O ₄	443.0	16.9	76
182	156	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	470.5	12.6	54
183	157	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	470.0	20.0	
184	158	C ₂₃ H ₂₆ ClN ₃ O ₄	444.0	17.4	85 78
185	159	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	18.4	78
186	160	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	19.6	83
187	161	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	17.0	77
188	162	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	17.1	78
189	163	C ₂₃ H ₂₂ C1F ₆ N ₃ O ₂	522.0	20.8	80
190	164	C ₂₃ H ₂₂ C1F ₆ N ₃ O ₂	522.0	2.7	10
191	165	C ₂₃ H ₂₈ C1N ₃ O ₂	414.0	16.4	79
192	166	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	8.6	38
193	167	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	11.6	50
194	168	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.5	55
195	169	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	10.0	44
196	170	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	10.4	44
197	171	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	8.9	42
198	172	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.3	53
199	173	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	14.6	68
200	174	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	10.4	46
201	175	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	13.4	58
202	176	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	12.7	60
203	177	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	13.2	58

204	178	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	12.9	55
205	179	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.3	63
206	180	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	24.2	定量的
207	181	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	1.0	1
208	182	C ₂₃ H ₂₅ ClF ₃ N ₃ O ₂	468.0	15.1	65
209	183	C ₂₂ H ₂₅ BrClN ₃ O ₂	478.0	18.0	75
210	184	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	16.3	75
211	185	C ₂₂ H ₂₄ Cl ₃ N ₃ O ₂	468.0	18.6	79
212	186	C ₂₃ H ₂₄ C1F ₄ N ₃ O ₂	486.0	16.5	68
213	187	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	14.4	66
214	188	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.0	70
215	189	C ₂₂ H ₂₅ ClN ₄ O ₄	445.0	16.8	76
216	190	C ₂₆ H ₂₅ ClF ₃ N ₃ O ₂ S	536.0	17.7	66
217	.191	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	20.4	75
218	192	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	16.9	67
219	193	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	18.3	68
220	194	C26H24C1F4N3O2S	554.0	19.4	70
221	195	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	19.1	76
222	196	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	16.0	68
223	197	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	18.4	72
224	198	C ₂₆ H ₂₅ ClF ₃ N ₃ O ₂ S	536.0	13.9	52
225	199	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	12.9	47
226	200	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	15.6	62
227	201	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	17.3	64
228	202	C ₂₆ H ₂₄ ClF ₄ N ₃ O ₂ S	554.0	15.4	56
229	203	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	13.5	54
230	204	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	13.7	59
231	205	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	13.9	54
232	206	C ₂₄ H ₂₇ ClF ₃ N ₃ O ₄ S	546.0	10.0	37
233	207	C ₂₃ H ₂₇ BrClN ₃ O ₄ S	558.0	17.1	61
234	208	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	17.0	66
235	209	C ₂₃ H ₂₆ Cl ₃ N ₃ O ₄ S	546.0	7.3	27
236	210	C ₂₄ H ₂₆ ClF ₄ N ₃ O ₄ S	564.0	19.2	68
237	211	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	7.9	31
238	212	$C_{23}H_{28}ClN_3O_4S$	478.0	13.7	57
239	213	C ₂₃ H ₂₇ ClN ₄ O ₄ S	523.0	5.5	21

[実施例240] <u>(R) -3-[N-[3-フルオロ-5-(トリフルオロメチル) ベンゾイル] グリシル] アミノー1-(3,5-ジメチルイソキサゾール-4-イルメチル) ピロリジン (化合物番号1191) の合成</u>

3-フルオロ-5-(トリフルオロメチル)ベンゾイルクロリド(0.058m mol) のジクロロメタン溶液 (1mL) を、(R)-1-(3,5-ジメチルイ5 ソオキサゾール-4-イルメチル)-3-(グリシルアミノ)ピロリジン(0.0 50mmol) およびピペリジノメチルポリスチレン (58mg) のクロロホルム (0.2mL)とジクロロメタン(0.75mL)の溶液に加えた。反応混合物を 室温で2時間攪拌した後、メタノール(1.0mL)を加え、室温で10時間攪拌 した。反応混合物を、VarianTMSCXカラムに負荷し、メタノール(16m 10 L) にて洗浄した。生成物を2M NH_3 のメタノール(6mL)溶液で溶出し、濃 縮することにより、(R)-3- [N-[3-フルオロ-5-(トリフルオロメチ ル) ベンゾイル] グリシル] アミノー1-(3,5-ジメチルイソオキサゾールー 4-イルメチル) ピロリジン (化合物番号1191) (19.5mg、88%) を 得た。純度は、RPLC/MSで求めた(100%)。ESI/MS m/e 4 15 43. 2 $(M^++H, C_{20}H_{22}F_4N_4O_3)$

[実施例241-265]

20

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用い、実施例240の方法に従って合成した。ESI/MSデータ、収量、および収率を表4にまとめた。

表 4

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
241	1192	C20 H22 F4 N4 O3	443.2	19.2	87
242	1193	C20 H23 F3 N4 O4	441.0	17.5	79
243	1194	C21 H22 F6 N4 O3	493.0	20.4	83
244	1195	C19 H23 Br N4 O3	435.1	16.8	77
245	1196	C19 H23 N5 O5	402.2	16.2	81
246	1197	C20 H22 F4 N4 O3	443.2	17.6	80
247	1198	C19 H23 C1 N4 O3	391.0	16.5	84
248	1199	C20 H26 N4 O3	371.0	16.1	87
249	1200	C19 H22 C12 N4 O3	425.0	18.0	85

WO 00/69432

250	1201	C19 H22 F2 N4 O3	393.0	16.6	85
251	1202	C20 H22 F4 N4 O3	443.2	16.8	76
252	1203	C22 H24 F3 N3 O3	436.2	17.1	79
253	1204	C23 H23 F6 N3 O2	488.2	18.1	74
254	1205	C21 H24 Br N3 O2	430.0	17.5	81
255	1206	C21 H24 N4 O4	397.0	16.2	82
256	1207	C22 H23 F4 N3 O2	438.2	17.5	80
257	1208	C21 H24 C1 N3 O2	386.0	15.8	82
258	1209	C22 H27 N3 O2	366.0	15.7	86
259	1210	C21 H23 C12 N3 O2	420.0	17.8	85 .
260	1211	C21 H23 F2 N3 O2	388.0	16.3	84
261	1212	C22 H23 F4 N3 O2	438.2	17.4	80
262	1213	C24 H24 C1 F6 N3 O2	536.2	24.0	90
263	1214	C23 H24 C1 F4 N3 O3	486.2	22.2	91
264	1215	C22 H24 C13 N3 O2	467.9	20.9	89
265	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

・ [実施例266] (R) -1-(4-クロロベンジル) -3-[[N-(4-ジメチルアミノベンゾイル) グリシル] アミノ] ピロリジン(化合物番号952)の合成

5 (R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジン(13.8 mg、0.052 mmol)のクロロホルム(2 mL)溶液に、トリエチルアミン(0.021 mL、0.15 mmol)、4-(ジメチルアミノ) 安息香酸(10 mg、0.061 mmol)、EDCI(10.2 mg、0.053 mmol) およびHOBt(7.5 mg、0.055 mmol)を加えた。この反応混合10 物を室温で15時間攪拌した。溶液を2 M NaOH水溶液(2 mL×2)と食塩水(2 mL)にて洗浄し、ジクロロメタン(3 mL)を用いてPTFE膜で濾過して乾燥した。濃縮により(R)-1-(4-クロロベンジル)-3-[[N-(4-ジメチルアミノベンゾイル)グリシル]アミノ]ピロリジン(化合物番号952)を得た(24.9 mg)。純度は、RPLC/MSで求めた(91%)。ESI/MS m/e 415.0(M++H、C22 H27 C1 N4 O2)

[実施例267-347]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 266の方法に従って合成した。必要であれば、固相抽出(VarianTM SCX

248

カラム)またはクロマトグラフィー($HPLC-C_{18}$)により精製し、目的物を得た。ESI/MSデータ、収量、および収率を表5にまとめた。

表 5

実施例 化合物番号 分子式 ESI/MS m/e 収量 (mg) 収率 267 951 C22 H24 C1 N3 O4 430.0 26.3 定量 268 953 C23 H29 C1 N4 O2 429.0 28.8 定量 269 954 C21 H25 C1 N4 O2 401.0 27.9 定量 270 955 C22 H27 C1 N4 O2 415.0 26.8 定量 271 956 C21 H24 C1 N3 O3 402.0 10.3 5 272 957 C20 H22 C1 N3 O3 388.0 1.4 7 273 958 C21 H24 C1 N3 O3 402.5 1.2 6 274 959 C22 H25 C1 N4 O3 429.5 4.7 2 275 960 C23 H27 C1 N4 O3 443.0 10.9 4 276 961 C21 H25 C1 N4 O2 401.0 28.4 定量 277 962 C22 H27 C1 N3 O3 402.0 4.4 2 278 963 C21 H24 C1 N3 O3 402.0 4.4	the
268 953 C23 H29 C1 N4 O2 429.0 28.8 定量 269 954 C21 H25 C1 N4 O2 401.0 27.9 定量 270 955 C22 H27 C1 N4 O2 415.0 26.8 定量 271 956 C21 H24 C1 N3 O3 402.0 10.3 5 272 957 C20 H22 C1 N3 O3 388.0 1.4 73 273 958 C21 H24 C1 N3 O3 402.5 1.2 6 274 959 C22 H25 C1 N4 O3 429.5 4.7 2 275 960 C23 H27 C1 N4 O3 443.0 10.9 4 276 961 C21 H25 C1 N4 O2 401.0 28.4 定量 277 962 C22 H27 C1 N4 O2 415.0 24.9 定量 278 963 C21 H24 C1 N3 O3 402.0 4.4 2.79 964 C22 H24 C1 N3 O4 430.0 29.5 定量 280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 428.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 27.6 284 969 C23 H25 C1 N4 O2 425.0 27.6 27.6 284 284 969 C23 H25 C1 N4 O2 425.0 27.6 27.6 284 284 969 C23 H25 C1 N4 O2 425.0 27.6 27.6 284 284 969 C23 H25 C1 N4 O2 425.0 27.6 27.6 284 284 969 C23 H25 C1 N4 O2 425.0 27.6 27.6 284 284 969 C23 H25 C1 N4 O2 425.0 27.6 27.6 284 284 969 C23 H25 C1 N4 O2 425.0 27.6 27.6 284 284 284 284 285 C1 N4 O2 425.0 27.6 284 284 284 285 C1 N4 O2 245.0 27.6 27.6 284 284 284 285 C1 N4 O2 245.0 27.6 27.6 284 284 284 285 C1 N4 O2 245.0 27.6 27.6 284 284 285 C1 N4 O2 245.0 27.6 27.6 284 284 285 C1 N4 O2 245.0 27.6 285 285 C1 N4 O2 285 C1 N4	t的 t的 t的 t t t t t t t t t t t t t t t
269 954 C21 H25 C1 N4 O2 401.0 27.9 定量 270 955 C22 H27 C1 N4 O2 415.0 26.8 定量 271 956 C21 H24 C1 N3 O3 402.0 10.3 5 272 957 C20 H22 C1 N3 O3 388.0 1.4 7 273 958 C21 H24 C1 N3 O3 402.5 1.2 60 274 959 C22 H25 C1 N4 O3 429.5 4.7 2 275 960 C23 H27 C1 N4 O3 443.0 10.9 4 276 961 C21 H25 C1 N4 O2 401.0 28.4 定量 277 962 C22 H27 C1 N4 O2 415.0 24.9 定量 278 963 C21 H24 C1 N3 O3 402.0 4.4 2 279 964 C22 H24 C1 N3 O3 402.0 4.4 2 279 964 C22 H24 C1 N3 O4 430.0 29.5 定量 280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 285 286 27.6 285 286 27.6 285 286 286 C22 H23 C1 N4 O2 425.0 27.6 285 286 286 286 C22 H23 C1 N4 O2 425.0 27.6 285 286 286 286 C22 H23 C1 N4 O2 425.0 27.6 285 286 286 286 286 C22 H25 C1 N4 O2 425.0 27.6 286 286 286 286 286 C22 H25 C1 N4 O2 425.0 27.6 286 286 286 286 C22 H25 C1 N4 O2 425.0 27.6 286	k的 k的 L 2 分 的 统的 2
270 955 C22 H27 C1 N4 O2 415.0 26.8 定量 271 956 C21 H24 C1 N3 O3 402.0 10.3 5 272 957 C20 H22 C1 N3 O3 388.0 1.4 7 7 273 958 C21 H24 C1 N3 O3 402.5 1.2 6 274 959 C22 H25 C1 N4 O3 429.5 4.7 2 2 2 2 2 2 2 2 2	k的 1 2 3 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
271 956 C21 H24 C1 N3 O3 402.0 10.3 5	2 分 (的 (的 2 ()
272 957 C20 H22 C1 N3 O3 388.0 1.4 72 73 958 C21 H24 C1 N3 O3 402.5 1.2 60 60 60 60 60 60 60 6	2 分 的 的 2
273 958 C21 H24 C1 N3 O3 402.5 1.2 6 274 959 C22 H25 C1 N4 O3 429.5 4.7 2 275 960 C23 H27 C1 N4 O3 443.0 10.9 4 276 961 C21 H25 C1 N4 O2 401.0 28.4 定量 277 962 C22 H27 C1 N4 O2 415.0 24.9 定量 278 963 C21 H24 C1 N3 O3 402.0 4.4 2 279 964 C22 H24 C1 N3 O4 430.0 29.5 定量 280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	2 分 (的 (的 2 ()
274 959 C22 H25 C1 N4 O3 429.5 4.7 2 275 960 C23 H27 C1 N4 O3 443.0 10.9 4 276 961 C21 H25 C1 N4 O2 401.0 28.4 定量 277 962 C22 H27 C1 N4 O2 415.0 24.9 定量 278 963 C21 H24 C1 N3 O3 402.0 4.4 2 279 964 C22 H24 C1 N3 O4 430.0 29.5 定量 280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	2 分 的 (的 2 (的
275 960 C23 H27 C1 N4 O3 443.0 10.9 4	的 的 2 的
276 961 C21 H25 C1 N4 O2 401.0 28.4 定量 277 962 C22 H27 C1 N4 O2 415.0 24.9 定量 278 963 C21 H24 C1 N3 O3 402.0 4.4 2 279 964 C22 H24 C1 N3 O4 430.0 29.5 定量 280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	的 的 ?
277 962 C22 H27 C1 N4 O2 415.0 24.9 定量 278 963 C21 H24 C1 N3 O3 402.0 4.4 2.6 279 964 C22 H24 C1 N3 O4 430.0 29.5 定量 280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	的 2 (的
278 963 C21 H24 C1 N3 O3 402.0 4.4 22 279 964 C22 H24 C1 N3 O4 430.0 29.5 定量 280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	?
279 964 C22 H24 C1 N3 O4 430.0 29.5 定量 280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	的
280 965 C23 H26 C1 N3 O4 444.0 27.2 定量 281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	
281 966 C22 H24 C1 N3 O3 414.0 27.0 定量 282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	的
282 967 C23 H26 C1 N3 O3 428.0 27.0 定量 283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	
283 968 C22 H23 C1 N4 O2 411.0 21.4 定量 284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	:的
284 969 C23 H25 C1 N4 O2 425.0 27.6 定量	:的
	的
285 970 C22 H27 CL NA O2 A15 O CC +=	的
285 970 C22 H27 C1 N4 O2 415.0 28.6 定量	:的
286 971 C23 H29 C1 N4 O2 429.0 27.9 定量	的
287 972 C20 H23 C1 N4 O2 387.0 26.2 定量	的
288 973 C21 H25 C1 N4 O2 401.0 26.8 定量	的
289 974 C20 H23 C1 N4 O2 387.0 26.6 定星	的
290 975 C21 H25 C1 N4 O2 401.0 28.2 定量	的
291 976 C22 H23 Cl N4 O2 411.0 29.2 定量	的
292 977 C23 H25 C1 N4 O2 425.0 29.5 定量	的
293 978 C20 H21 C1 N6 O2 413.0 2.2 13	
294 979 C21 H23 C1 N6 O2 427.0 10.2 48	
295 980 C22 H25 C1 N4 O3 429.0 28.8 定量	的
296 981 C23 H27 C1 N4 O3 443.0 11.9 54	
297 982 C22 H27 C1 N4 O2 415.0 27.4 定量	
298 983 C23 H29 Cl N4 O2 429.5 28.1 定量	的

299	984	C21 H24 C1 N3 O3	402.0	27.7	定量的
300	985	C22 H26 C1 N3 O3	416.0	28.6	定量的
301	1149	C21 H28 N4 O4	401	15.5*	38
302	1150	C21 H28 N4 O3	385	10.9*	28
303	1151	C21 H25 F3 N4 O3	439	17.3*	39
304	1152	C21 H24 F N5 O3	415	12.7*	30
305	1153	C21 H24 C1 N5 O3	430	17.5*	41
306	1154	C22 H27 N5 O3	410	20.6*	50
307	1155	C19 H23 F3 N4 O4	429	13.8*	32
308	1156	C21 H30 N4 O4	403	17.7*	43
309	1157	C18 H24 N4 O3 S2	409	12.6*	30
310	1158	C19 H23 C12 N5 O3	440	16.9*	38
311	1159	C22 H31 N5 O6	462	38.6*	85
312	1160	C20 H26 Br N5 O3	464	20.4	45
313	1289	C20 H27 N5 O4	403	5.8*	14
314	1290	C21 H29 N5 O3	400	6.9*	17
315	1291	C24 H28 N4 O2	405	22.4	68
316	1292	C22 H27 Br N4 O2	461	23.8	15
317	1293	C22 H23 F4 N3 O2	438	20.9	59
318	1294	C22 H23 F4 N3 O2	438	20.8	59
319	1295	C23 H31 N3 O3	398	17.5	54
320	1296	C20 H25 N3 O2 S2	404	18.8	58
321	1297	C21 H24 F3 N3 O3	424	18.1	53
322	1388	C21 H32 N6 O3	417	7.4*	24
323	1389	C19 H22 N6 O4	399	15.2	48
324	1401	C23 H25 Cl N4 O2	425	8.3*	16
325	1402	C24 H32 N4 O5	457	8.3*	15
326	1403	C20 H24 N4 O2	353	14.8	52
327	1404	C20 H24 N4 O2	353	17.0	60
328	1405	C21 H26 N4 O2 S	399	17.3	54
329	1407	C22 H28 N4 O2 S	413	19.1	57
330	1410	C19 H24 N4 O3	357	9.7*	59
331	1769	C22 H26 Cl F3 N4 O5	519	11.6*	20
332	1770	C26 H28 C12 N6 O4	559	13.1*	21
333	1771	C26 H37 N5 O4	484	12.7*	23
334	1772	C28 H39 N5 O4	510	5.5*	9
335	1773	C28 H37 N5 O4	509	6.2*	11
336	1774	C28 H34 N6 O6	551	13.6*	22
337	2039	C19 H24 N4 O2	341	5.2*	14

WO 00/69432 PCT/JP00/03203

250

338	2040	C22 H27 N3 O4	398	2.0*	5
339	2041	C23 H29 N3 O3	396	6.2*	15
340	2042	C25 H37 N3 O2	413	2.6*	6
341	2043	C24 H31 N3 O2	394	6.8*	17
342	2044	C25 H28 N4 O4	449	8.7*	16
343	2045	C26 H29 C1 N6 O4	525	11.4*	19
344	2046	C27 H32 N6 O4	505	7.7*	13
345	2047	C28 H32 N4 O4	489	10.0*	18
346	2048	C28 H37 N5 O5	524	3.7*	. 6
347	2049	C28 H37 N5 O4	509	5.3*	9

*トリフルオロ酢酸塩の収率。

[実施例348] <u>(R) -1 - (4 - クロロベンジル) -3 - [[N - (2 - ア</u>ミノ - 5 - クロロベンゾイル) グリシル] アミノ] ピロリジン (化合物番号108

5 4)の合成

20

(R) −1− (4−クロロベンジル) −3− (グリシルアミノ) ピロリジン (0 . 050mmol) のクロロホルム (2mL) 溶液に、2−アミノ−5−クロロ安 息香酸 (0.060mL) とジイソプロピルカルボジイミド (0.060mmol) を加えた。この反応混合物を室温で15時間攪拌した。この混合液を、Vari an™ SCXカラムに負荷し、メタノール (15mL) で洗浄した。生成物を、2 M NH₃のメタノール (5mL) 溶液を用いて溶出し、濃縮することにより、(R) −1− (4−クロロベンジル) −3− [N− [2−アミノ−5−クロロベンゾイル) グリシル] アミノ] ピロリジン (化合物番号1084) を得た (12.7mg、60%)。純度は、RPLC/MSで求めた(87%)。ESI/MS m/e 421.0 (M+H、C₂₀H₂₂Cl₂N₄O₂)

[実施例349-361]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 348の方法に従って合成した。原料のアミンが残存している場合には、イソシアナトメチル化ポリスチレン(50mg)のクロロホルム (1mL)溶液を加えて室温で反応させ、濾過、濃縮することによってによって目的物を得た。ESI/MSデータ、収量、および収率を表6にまとめた。

表 6

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
349	1085	C ₂₀ H ₂₂ ClN ₅ O ₄	432.0	4.1	19
350	1086	C ₂₀ H ₂₃ ClN ₄ O ₂	387.0	7.9	41
351	1087	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	15.0	73
352	1088	$C_{18}H_{20}ClN_3O_3$	362.0	12.9	71
353	1089	C ₂₂ H ₂₂ ClFN ₄ O ₂	429.0	16.0	75
354	1090	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	15.8	76
355	1091	C ₂₁ H ₂₄ Cl ₂ N ₄ O ₂	435.0	10.9	50
356	1092	C ₂₁ H ₂₄ ClN ₅ O ₄	446.0	7.9	35
357	1093	$C_{21}H_{25}ClN_4O_2$	401.0	9.5	47
358	1094	C ₂₃ H ₂₅ ClN ₄ O ₂	425.0	15.8	74
359	1095	$C_{19}H_{22}ClN_3O_3$	376.0	13.5	72
360	1096	C ₂₃ H ₂₄ ClFN ₄ O ₂	443.0	11.8	53
361	1097	$C_{23}H_{28}ClN_3O_3$	430.0	15.1	70

[実施例362](R) -1 - (4 - クロロベンジル) -3 - [[N - (3 - ブ)]ロモ-4 - メチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号1098) の合成

(R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジン(0.050mmol)のクロロホルム(1.35mL)とtertーブタノール(0.15mL)の溶液に、3-ブロモー4ーメチル安息香酸(0.060mL)、ジイソプロピルカルボジイミド(0.060mmol)およびHOBt(0.060mmol)を加えた。この反応混合物を室温で15時間攪拌した。この混合液を、Varian™ SCXカラムに負荷し、メタノール/クロロホルム=1:1(12mL)とメタノール(12mL)で洗浄した。生成物を、2M NH3のメタノール(5mL)溶液を用いて溶出し、濃縮することにより、(R) -1-(4-クロロベンジル)-3-[N-(3-ブロモー4ーメチルベンゾイル)グリシル]アミノ]ピロリジン(化合物番号1098)(11.6mg、50%)を得た。純度は、RPLC/MSで求めた(94%)。ESI/MS m/e 466.0(M++H、C21H23BrClN3O2)

[実施例363-572]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例362の方法に従って合成した。必要であれば、分取TLCにより精製し、目的物を得た。ESI/MSデータ、収量、および収率を表7にまとめた。

下記の3化合物は、それぞれ、化合物番号1415、1416、および1417 5 の副生成物として得られた。

化合物番号1419:7.9mg、収率38%、ESI/MS m/e 419

. $0 (C_{20}H_{23}C1N_4O_2S)$

化合物番号1420:7.1mg、収率36%、ESI/MS m/e 399

 $. 2 (C_{23}H_{26}N_4O_2S)$

10 化合物番号1421:7.4mg、収率37%、ESI/MS m/e 404

. 2 $(C_{19}H_{25}N_5O_3S)$

表 7

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
363	1099	C ₂₀ H ₂₀ BrClFN ₃ O ₂	470.0	3.1	13
364	1100	C ₂₀ H ₂₀ Cl ₂ FN ₃ O ₂	424.0	3.1	15
365	1101	C ₂₁ H ₂₃ ClIN ₃ O ₂	512.0	12.5	49
366	1102	C ₂₁ H ₂₃ ClN ₄ O ₄	431.2	7.7	36
367	1103	$C_{22}H_{26}BrN_3O_2$	446.0	13.8	62
368	1104	C ₂₁ H ₂₃ BrFN ₃ O ₂	450.0	16.5	74
369	1105	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.2	14.7	73
370	1106	$C_{22}H_{26}IN_3O_2$	492.0	18.5	75
371	1107	C ₂₂ H ₂₆ N ₄ O ₄	411.2	15.2	74
372	1108	C ₂₀ H ₂₅ BrN ₄ O ₃	449.0	12.8	57
373	1109	C ₁₉ H ₂₂ BrFN ₄ O ₃	455.0	16.2	71
374	1110	$C_{19}H_{22}C1FN_4O_3$	409.2	14.4	70
375	1111	C ₂₀ H ₂₅ IN ₄ O ₃	497.0	17.9	72
376	1112	C ₂₀ H ₂₅ N5O ₅	416.2	14.9	72
377	1113	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	16.1	65
378	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
379	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
380	1116	C ₂₃ H ₂₇ ClIN ₃ O ₂	539.1	21.9	81
381	1117	C ₂₃ H ₂₇ ClN ₄ O ₄	459.2	18.7	81
382	1171	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	4.9	21
383	1172	C ₂₂ H ₂₃ ClN ₄ O ₃	427.2	16.1	75

384	1173	C ₂₃ H ₂₅ ClN ₄ O ₃	441.2	22.8	定量的
	1173	C ₂₀ H ₂₂ C1FN ₄ O ₂	405.2	21.4	
385			446.0	15.8	定量的 71
386	1175	C ₂₂ H ₂₆ BrN ₃ O ₂			
387	1176	C ₂₃ H ₂₆ N ₄ O ₃	407.2	17.6	87
388	1177	C ₂₄ H ₂₈ N ₄ O ₃	421.2	20.2	96
389	1178	C ₂₁ H ₂₅ FN ₄ O ₂	385.0	16.2	84
390	1179	C ₂₁ H ₂₅ N ₅ O ₄	412.2	2.3	11
391	1180	C ₂₃ H ₂₆ N ₄ O ₂	391.0	21.6	定量的
392	1181	C ₂₀ H ₂₅ BrN ₄ O ₃	451.0	20.1	89
393	1182	C ₂₁ H ₂₅ N ₅ O ₄	412.2	13.3	65
394	1183	C ₂₂ H ₂₇ N ₅ O ₄	426.2	20.9	98
395	1184	C ₁₉ H ₂₄ FN ₅ O ₃	390.0	20.0	定量的
396	1185	C ₁₉ H ₂₄ N ₆ O ₅	417.2	18.2	87
397	1186	C ₂₁ H ₂₅ N ₅ O ₃	396.2	17.6	89
398	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
399	1188	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	76
400	1189	C ₂₅ H ₂₉ C1N ₄ O ₃	469.2	21.1	90
401	1190	C ₂₂ H ₂₆ ClFN ₄ O ₂	433.2	20.4	94
402	1217	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	38.5	81
403	1218	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.2	35.6	88
404	1219	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	3.7	9
405	1220	C ₂₀ H ₂₂ ClIN ₄ O ₂	513.0	53.0	定量的
406	1221	C20H21ClF2N4O2	423.0	38.7	92
407	1222	C ₁₉ H ₂₃ ClN ₄ O ₂	375.2	33.6	90
408	1223	$C_{26}H_{26}ClN_3O_2S$	496.0	43.7	88
409	1224	C ₂₀ H ₂₁ ClN ₄ O ₅	433.0	40.6	94
410	1225	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.2	18.4	41
411	1226	C ₂₂ H ₂₆ FN ₃ O ₂	384.0	17.1	45
412	1227	C ₂₂ H ₂₆ ClN ₃ O ₂	400.2	17.5	44
413	1228	C ₂₁ H ₂₅ IN ₄ O ₂	493.0	23.3	47
414	1229	C ₂₁ H ₂₄ F ₂ N ₄ O ₂	403.2	18.4	46
415	1230	C ₂₀ H ₂₆ N ₄ O ₂	355.2	15.7	44
416	1231	C ₂₇ H ₂₉ N ₃ O ₂ S	476.0	20.9	88
417	1232	C ₂₁ H ₂₄ N ₄ O ₅	413.0	19.9	96
418	1233	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	19.4	85
419	1234	C ₂₀ H ₂₅ FN ₄ O ₃	389.0	17.8	92
420	1235	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.7	92
421	1236	C ₁₉ H ₂₄ IN ₅ O ₃	498.0	23.9	96
422	1237	C ₁₉ H ₂₃ F ₂ N ₅ O ₃	408.2	19.0	93
L	<u> </u>			<u> </u>	I

423	1238	C ₁₈ H ₂₅ N ₅ O ₃	360.0	16.3	91
424	1239	C ₂₅ H ₂₈ N ₄ O ₃ S	481.2	21.4	89
425	1240	C ₁₉ H ₂₃ N ₅ O ₆	418.0	19.9	95
426	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	22.5	90
427	1242	C ₂₃ H ₂₇ C1FN ₃ O ₂	432.2	21.2	98
428	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
429	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
430	1245	C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂	451.0	21.3	94
431	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
432	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	524.0	24.7	94
433	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
434	1249	C20 H20 C12 N4 O4	451.0	7.4	33
435	1250	C21 H23 C1 N4 O4	431.2	15.5	72
436	1251	C19 H22 C1 N5 O5	436.0	22.9	定量的
437	1252	C23 H28 Cl N3 O2	414.2	17.9	86
438	1253	C24 H31 N3 O2	394.2	15.8	80
439	1254	C22 H30 N4 O3	399.2	17.3	87
440	1255	C20 H22 Br C1 N4 O2	467.0	21.3	91
441	1256	C21 H25 Br N4 O2	445.0	20.7	93
442	1257	C19 H24 Br N5 O3	450.0	21.8	97
443	1258	C21 H25 C1 N4 O2	401.2	18.1	90
444	1259	C19 H24 C1 N5 O3	406.0	20.1	99
445	1260	C23 H29 N3 O3	396.2	16.8	85
446	1261	C23 H30 C1 N3 O3	432.2	19.8	. 92
447	1262	C24 H33 N3 O3	412.2	17.4	85
448	1263	C22 H32 N4 O4	417.2	18.7	90
449	1264	C25 H26 C1 N3 O3	452.2	29.1	定量的
450	1265	C26 H29 N3 O3	432.2	18.1	84
451	1266	C24 H28 N4 O4	437.2	19.3	88
452	1267	C ₂₃ H ₂₂ ClF ₃ N ₄ O ₃	495.2	20.6	83
453	1268	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₃	436.0	17.5	80
454	1269	C ₂₀ H ₂₁ BrClN ₃ O ₃	468.0	19.2	82
455	1270	$C_{20}H_{21}Cl_2N_3O_3$	422.2	17.3	82
456	1271	C ₂₀ H ₂₀ ClFN ₄ O ₄	435.0	17.1	79
457	1272	C ₂₄ H ₂₅ F ₃ N ₄ O ₃	475.2	21.7	91
458	1273	C ₂₂ H ₂₆ ClN ₃ O ₃	416.2	17.8	86
459	1274	C ₂₁ H ₂₄ BrN ₃ O ₃	448.0	19.5	87
460	1275	$C_{21}H_{24}ClN_3O_3$	402.2	16.7	83
461	1276	C ₂₁ H ₂₃ FN ₄ O ₄	415.2	18.1	87

			-1		
462	1277	C ₂₂ H ₂₄ F ₃ N ₅ O ₄	480.2	20.3	85
463	1278	C ₂₀ H ₂₅ ClN ₄ O ₄	421.2	18.6	88
464	1279	C ₁₉ H ₂₃ BrN ₄ O ₄	451.0	21.3	94
465	1280	C ₁₉ H ₂₃ ClN ₄ O ₄	407.2	19.1	94
466	1281	C ₁₉ H ₂₂ FN ₅ O ₅	420.2	19.1	91
467	1282	C ₂₅ H ₂₆ C1F ₃ N ₄ O ₃	523.2	25.0	96
468	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
469	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
470	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
471	1321	C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂	486.0	5.1	21
472	1322	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	10.5	50
473	1323	C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂	532.0	7.1	27
474	1324	$C_{21}H_{24}ClN_3O_3$	402.2	22.2	定量的
475	1325	C ₂₇ H ₂₆ ClN ₃ O ₃	476.0	22.2	93
476	1326	C ₂₀ H ₂₁ ClIN ₃ O ₃	514.0	26.9	定量的
477	1327	C ₂₁ H ₂₅ ClN ₄ O ₂	401.2	24.2	定量的
478	1328	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	23.1	99
479	1329	C ₂₂ H ₂₆ ClN ₃ O ₂	400.2	16.4	82
480	1330	C ₂₁ H ₂₃ ClIN ₃ O ₂	512.2	20.8	81
481	1331	C ₂₁ H ₂₄ N ₃ O ₃	382.2	19.6	定量的
482	1332	C ₂₈ H ₂₉ N ₃ O ₃	456.2	21.1	93
483	1333	C ₂₁ H ₂₄ IN ₃ O _{3.} .	494.0	25.3	定量的
484	1334	C ₂₂ H ₂₈ N ₄ O ₂	381.2	19.0	定量的
485	1335	C ₁₉ H ₂₂ BrClN ₄ O ₃	471.0	25.8	定量的
486	1336	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.5	91
487	1337	C ₁₉ H ₂₂ ClIN ₄ O ₃	517.0	23.1	89
488	1338	C ₂₀ H ₂₆ N ₄ O4	387.2	20.6	定量的
489	1339	C ₂₆ H ₂₈ N ₄ O ₄	461.2	23.7	定量的
490	1340	C ₁₉ H ₂₃ IN ₄ O ₄	499.0	28.2	定量的
491	1341	C ₂₀ H ₂₆ N ₄ O ₄	386.0	20.5	定量的
492	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0	27.2	定量的
493	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
494	1344	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
495	1345	C ₂₃ H ₂₈ ClN ₃ O ₃	430.2	23.8	定量的
496	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	定量的
497	1347	C ₁₉ H ₂₂ ClN ₃ O ₂ S	392.0	16.9	43
498	1348	C ₂₀ H ₂₅ N ₃ O ₂ S	372.2	6.9	19
499	1349	C ₁₈ H ₂₄ N ₄ O ₃ S	377.2	8.1	43
500	1350	C ₂₁ H ₂₆ ClN ₃ O ₂ S	420.0	13.0	62
					

502						
503	501	1351	C ₂₂ H ₂₄ BrClN ₄ O ₃	509.2	5.0	10
504					3.6	15
505			$C_{21}H_{26}BrN_5O_4$	494.0	2.8	11
506	504		C ₂₄ H ₂₈ BrClN ₄ O ₃	537.2	5.2	19
507	505	1355	C21 H22 C1 N5 O2	412.0	25.5	定量的
508	506	1356	C22 H25 N5 O2	392.0	16.5	84
1368	507	1357	C20 H24 N6 O3	397.2	19.9	定量的
510	508	1358	C23 H26 C1 N5 O2	440.2	21.8	99
511	509	1368	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	18.4	78 .
512	510	1369	C24H24ClF6IN3O4	568.0	24.1	85
513	511	1370	C ₁₈ H ₁₉ BrClN ₃ O ₂ S	458.0	19.4	85
514	512	1371	C ₂₆ H ₂₆ ClN ₃ O ₄ S	512.2	22.1	86
515	513	1372	C ₂₆ H ₂₆ ClN ₃ O ₂	448.0	19.1	85
516	514	1373	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.2	16.2	71
517	515	1374	C ₂₅ H ₂₇ F ₆ IN ₃ O ₄	548.2	22.1	81
518	516	1375	C ₁₉ H ₂₂ BrN ₃ O ₂ S	436.0	17.1	78
519	517	1376	C ₂₇ H ₂₉ N ₃ O ₄ S	492.0	19.4	79
520	518	1377	C ₂₇ H ₂₉ N ₃ O ₂	428.2	18.1	85
521	519	1378	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	17.3	75
522 1381 C ₂₅ H ₂₈ N ₄ O ₅ S 497.0 18.4 74 523 1382 C ₂₅ H ₂₈ N ₄ O ₃ 433.2 17.3 80 524 1383 C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂ 502.0 20.0 80 525 1384 C ₂₀ H ₂₃ BrClN ₃ O ₂ S 486.0 21.0 87 526 1385 C ₂₈ H ₃₀ ClN ₃ O ₄ S 540.2 23.8 88 527 1386 C ₂₈ H ₃₀ ClN ₃ O ₂ 476.0 20.0 84 528 1411 C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃ 463.0 0.4 2 529 1412 C ₂₃ H ₂₇ ClN ₄ O ₂ 443.0 1.3 6 530 1413 C ₂₁ H ₂₆ ClN ₅ O ₄ 448.0 1.1 5 531 1414 C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 C1 N3 O3 476.0 23.9 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97 530	520	1379	$C_{23}H_{26}F_{6}IN_{4}O_{5}$	553.2	21.0	76
523	521	1380	C ₁₇ H ₂₁ BrN ₄ O ₃ S	443.0	16.4	74
524 1383 C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂ 502.0 20.0 80 525 1384 C ₂₀ H ₂₃ BrClN ₃ O ₂ S 486.0 21.0 87 526 1385 C ₂₀ H ₃₀ ClN ₃ O ₄ S 540.2 23.8 88 527 1386 C ₂₀ H ₃₀ ClN ₃ O ₂ 476.0 20.0 84 528 1411 C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃ 463.0 0.4 2 529 1412 C ₂₃ H ₂₇ ClN ₄ O ₂ 443.0 1.3 6 530 1413 C ₂₁ H ₂₆ ClN ₅ O ₄ 448.0 1.1 5 531 1414 C ₂₄ H ₂₆ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97 <	522	1381	C ₂₅ H ₂₈ N ₄ O ₅ S	497.0	18.4	74
525 1384 C ₂₀ H ₂₃ BrClN ₃ O ₂ S 486.0 21.0 87 526 1385 C ₂₈ H ₃₀ ClN ₃ O ₄ S 540.2 23.8 88 527 1386 C ₂₈ H ₃₀ ClN ₃ O ₂ 476.0 20.0 84 528 1411 C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃ 463.0 0.4 2 529 1412 C ₂₃ H ₂₇ ClN ₄ O ₂ 443.0 1.3 6 530 1413 C ₂₁ H ₂₆ ClN ₅ O ₄ 448.0 1.1 5 531 1414 C ₂₄ H ₂₆ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 C1 N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	523	1382	C ₂₅ H ₂₈ N ₄ O ₃	433.2	17.3	80
526 1385 C ₂₈ H ₃₀ ClN ₃ O ₄ S 540.2 23.8 88 527 1386 C ₂₈ H ₃₀ ClN ₃ O ₂ 476.0 20.0 84 528 1411 C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃ 463.0 0.4 2 529 1412 C ₂₃ H ₂₇ ClN ₄ O ₂ 443.0 1.3 6 530 1413 C ₂₁ H ₂₆ ClN ₅ O ₄ 448.0 1.1 5 531 1414 C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 C1 N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	524	1383	$C_{23}H_{24}Cl_2F_3N_3O_2$	502.0	20.0	80
527 1386 C ₂₈ H ₃₀ ClN ₃ O ₂ 476.0 20.0 84 528 1411 C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃ 463.0 0.4 2 529 1412 C ₂₃ H ₂₇ ClN ₄ O ₂ 443.0 1.3 6 530 1413 C ₂₁ H ₂₆ ClN ₅ O ₄ 448.0 1.1 5 531 1414 C ₂₄ H ₂₆ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	525	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
528 1411 C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃ 463.0 0.4 2 529 1412 C ₂₃ H ₂₇ ClN ₄ O ₂ 443.0 1.3 6 530 1413 C ₂₁ H ₂₆ ClN ₅ O ₄ 448.0 1.1 5 531 1414 C ₂₄ H ₂₆ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	526	1385	C ₂₈ H ₃₀ ClN ₃ O ₄ S	540.2	23.8	88
529 1412 C ₂₃ H ₂₇ ClN ₄ O ₂ 443.0 1.3 6 530 1413 C ₂₁ H ₂₆ ClN ₅ O ₄ 448.0 1.1 5 531 1414 C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	527	1386	C ₂₈ H ₃₀ ClN ₃ O ₂	476.0	20.0	84
530 1413 C ₂₁ H ₂₆ ClN ₅ O ₄ 448.0 1.1 5 531 1414 C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	528	1411	C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃	463.0	0.4	2
531 1414 C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃ 491.0 0.8 3 532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	529	1412	C ₂₃ H ₂₇ ClN ₄ O ₂	443.0	1.3	6
532 1415 C ₂₁ H ₂₂ ClN ₅ O ₂ S 444.0 6.8 31 533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	530	1413	C ₂₁ H ₂₆ ClN ₅ O ₄	448.0	1.1	5
533 1416 C ₂₂ H ₂₅ N ₅ O ₂ S 424.0 4.8 23 534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	531	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
534 1417 C ₂₀ H ₂₄ N ₆ O ₃ S 429.2 4.5 21 535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	532	1415	C ₂₁ H ₂₂ ClN ₅ O ₂ S	444.0	6.8	31
535 1418 C ₂₃ H ₂₆ ClN ₅ O ₂ S 472.0 10.4 44 536 1423 C27 H26 Cl N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	533	1416	C ₂₂ H ₂₅ N ₅ O ₂ S	424.0	4.8	23
536 1423 C27 H26 C1 N3 O3 476.0 23.9 定量的 537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	534	1417	C ₂₀ H ₂₄ N ₆ O ₃ S	429.2	4.5	21
537 1424 C27 H29 N3 O4 S 456.2 28.0 定量的 538 1425 C26 H28 N4 O4 461.2 22.3 97	535	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	. 10.4	44
538 1425 C26 H28 N4 O4 461.2 22.3 97	536	1423	C27 H26 C1 N3 O3	476.0	23.9	定量的
500	537	1424	C27 H29 N3 O4 S	456.2	28.0	定量的
539 1426 C29 H30 C1 N3 O3 504.2 26.8 定量的	538	1425	C26 H28 N4 O4	461.2	22.3	97
I I I (1 ± ± 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1	539	1426	C29 H30 C1 N3 O3	504.2	26.8	定量的

PCT/JP00/03203

257

540	1583	C21 H22 C1 F3 N4 O2	455.0	14.6	64
541	1584	C21 H22 C1 F3 N4 O3	471.0	17.4	74
542	1585	C19 H20 Br Cl N4 O2	453.0	15.6	69
543	1586	C19 H20 C12 N4 O2	407.2	2.3	11
544	1587	C26 H26 C1 N3 O3	464.0	15.4	66
545	1588	C20 H23 C1 N4 O2	387.0	14.8	77
546	1589	C22 H25 F3 N4 O2	435.2	11.1	51
547	1590	C20 H25 F3 N4 O3	451.2	16.3	72
548	1591	C20 H23 Br N4 O2	433.0	15.4	71
549	1592	C20 H23 Cl N4 O2	387.0	15.6	81
550	1593	C27 H29 N3 O3	444.2	14.8	67
551	1594	C20 H24 F3 N5 O3	440.2	16.2	74
552	1595	C20 H24 F3 N5 O4	456.2	15.4	68
553	1596	C18 H22 Br N5 O3	436.0	15.6	72
554	1597	C18 H22 C1 N5 O3	391.8	14.4	73
555	1598	C25 H28 N4 O4	449.2	15.9	71
556	1599	C19 H25 N5 O3	372.2	15.8	85
557	1606	C21 H21 C1 F3 N3 O2 S	472.0	17.0	72
558	1607	C21 H21 C1 F3 N3 O2 S	452.2	15.3	68
559	1608	C20 H23 F3 N4 O3 S	457.2	15.9	70
560	1660	C21 H22 Br F3 N4 O2	501.0	19.0	76
561	1661	C21 H22 Br F3 N4 O3	517.0	16.2	63
562	1662	C20 H21 Br F2 N4 O2	469.0	15.1	65
563	1663	C20 H22 Br C1 N4 O2	467.0	14.5	62
564	1692	C20 H23 Br2 N3 O3	514	7.3	28
565	1693	C22 H26 F2 N4 O2	417	16.2	78
566	1694	C22 H27 F N4 O2	399	21.8	定量的
567	1695	C22 H27 Br N4 O2	459	24.5	定量的
568	1696	C22 H27 I N4 O2	507	27.4	定量的
569	1697	C22 H27 C1 N4 O2	415	22.1	定量的
570	1698	C23 H27 F3 N4 O3	465	24.3	定量的
571	1699	C23 H27 F3 N4 O2	449	25.3	定量的
572	1700	C22 H25 Br C1 N3 O2	480	17.8	74

例えば、化合物番号 1583 は、下記のNMRを示した。 1 H NMR(400 M H z、C D $_3$ O D) δ 1.64-1.72 (m, 1 H), 2.20-2.30 (m, 1 H), 2.41-2.51 (m, 2 H), 2.71-2.78 (m, 2 H), 3.59 (dd, J = 15.4, 12.9 Hz, 2 H), 3.94 (s, 2 H), 4 .35-4.41 (m, 1 H), 6.82 (d, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6 Hz, 1 H), 1.29 Hz, 1.29

WO 00/69432

25

30

.6, 1.7 Hz, 1 H), 7.85 (d, J = 0.96 Hz, 1 H)

[参考例4] (S) -3-[N-[3-(トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジンの合成

(S)-1-(4-クロロベンジル)-3-[N-[3-(トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジン (2.93g、6.66mmol) と Pd (OH) 2の、5%蟻酸/メタノール (70mL) 懸濁液を60℃で3時間攪拌 した。パラジウム触媒をセライト濾過により除去し、濾液を濃縮した。この残査に 2M NaOH溶液 (100mL) を加え、酢酸エチル (100mL×3) で抽出 した。抽出物を合わせて食塩水で洗浄し、無水硫酸ナトリウム上で乾燥、濾過、濃 10 縮した。カラムクロマトグラフィー(SiOゥ、酢酸エチル/メタノール/トリエチ ルアミン=85:10:5-60:30:5)で精製することにより、(S)-3 - [N-[3-(トリフルオロメチル)ベンゾイル]グリシル]アミノピロリジン (1.70g、81%) を油状物として得た。¹H NMR (CDCl₃、270M H z) δ 1.76 (d, J = 7.3 Hz, 1 H), 2.07-2.25 (m, 1 H), 2.81-2.98 (m, 2 H) ', 3.02-3.11 (m, 2 H), 4.12 (s, 2 H), 4.41 (br, 1 H), 6.90 (br, 1 H), 7.45 (br, 1 H), 7.58 (dd, $J = 7.3 \pm J \text{ CV} = 7.3 + J \text{ CV}$.02(d, J = 7.3 Hz, 1 H), 8.11(s, 1 H); ESI/MS m/e 3 1 6.0 (M) $^{+}+H_{16}F_{3}N_{3}O_{2}$

さらに、(R) -3- [N-[3-(トリフルオロメチル) ベンゾイル] グリシ 20 ル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。1.49g、68%;生成物は、(S) -異性体のものと同じ¹H NMR とESI/MSを示した。

さらに、(R) $-3-[N-[2-アミノー5-(トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。 <math>316\,\mathrm{mg}$ 、 93%; ESI/MS $\mathrm{m/e}$ 331.2 ($\mathrm{M}^++\mathrm{H}$ 、 $\mathrm{C}_{14}\mathrm{H}_{17}\mathrm{F}_3\mathrm{N}_4\mathrm{O}_2$)

さらに、(R) $-3-[N-[2-(tert-ブトキシカルボニルアミノ)-5-(トリフルオロメトキシ) ベンゾイル] グリシル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。定量的収率; <math>^1$ H NMR (CDCl₃、400MHz) δ 1.51 (s, 9 H), 1.60-1.70 (m, 2 H), 2.10-2.25 (m, 1 H), 2.80-2.88 (m, 1 H), 2.89-2.98 (m, 1 H), 3.04-3.18 (m, 2 H), 4.

05 (d, J = 4.9 Hz, 2 H), 4.43 (br, 1 H), 6.15 (br, 1 H), 7.03 (br, 1 H), 7. 32 (d, J = 9.3 Hz, 1 H), 7.38 (s, 1 H), 8.42 (d, J = 9.3 Hz, 1 H)

[実施例573] (R) - 3 - [[N - [2 - (tert - ブトキシカルボニル アミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] <math>-1 - (4 - 1)

5 <u>クロロ</u>

ベンジル)ピロリジンの合成

(R) −1−(4−クロロベンジル) −3−(グリシルアミノ) ピロリジン(5 . 0g、18.7mmol)のジクロロメタン(100mL)溶液に、トリエチル アミン(2.9mL、20.5mmol)、2−(tertーブトキシカルボニル 10 アミノ) −5−(トリフルオロメチル)安息香酸(6.27g、20.5mmol))、EDCI(3.9g、20.5mmol)およびHOBt(2.8g、20.5mmol)を加えた。この反応混合物を室温で一晩攪拌した。この反応混合物に 2M NaOH水溶液(80mL)を加え、ジクロロメタンで抽出した。この抽出物を無水Na₂SO₄で乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、ヘキサン/酢酸エチル=1:1−1:4)で精製することにより、【R)−3− [[N−(2−(tertーブトキシカルボニルアミノ)−5−トリフルオロメチルベンゾイル)グリシル]アミノ]−1−(4−クロロベンジル)ピロリジン(9.41g、91%)を白色アモルファス状固体として得た。ESI/MS m/e 555.2(M++H、C₂6H30ClF3N₄O₄)

20 [参考例5] (R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジンの合成 (R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-(4-クロロベンジル) ピロリジン(6.3g、11.4mmol)、Pd(OH)₂(1.68g)、蟻酸 (3.7mL) およびメタノール(80mL) の混合物を50℃で一晩攪拌した。この混合物を室温まで冷却した後、パラジウム触媒をセライト濾過により除去し、遮液を濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル/メタノール=5:1-4:1) で精製することにより(R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル} ア 30 ミノ] ピロリジン(4.42g、90%) を白色固体として得た。¹H NMR(C

DCl₃、400MHz) δ 1.48 (s, 9 H), 2.0-2.4 (m, 2 H), 3.42-3.71 (m, 5

20

H), 4.00-4.22 (m, 2 H), 4.56 (br, 1 H), 7.48 (d, J = 9.0 Hz, 1 H), 7.93 (s, 1 H), 8.17 (br, 1 H), 8.33 (d, J = 9.0 Hz, 1 H), 8.45 (br, 1 H)

[実施例 5 7 4] (S) -1-ベンジル-3-[N-[3-(トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジン (化合物番号 2 3 9) の合成

5 (S) -3- [N-[3-(トリフルオロメチル) ベンゾイル] グリシル] アミ ノピロリジン (0.06mmol) のアセトニトリル (1.1mL) 溶液と (ピペ リジノメチル) ポリスチレン(2.6-2.8mmol/g、30mg)を、臭化 ベンジル(0.050mmol)のアセトニトリル(0.4mL)溶液に加えた。 この反応混合物を45℃で5時間攪拌した。混合液を室温まで冷却した後、樹脂を 10 濾過にて除去し、濾液を濃縮した。残査をアセトニトリル(1.0mL)に溶解し 、フェニルイソシアネート(0.008mL、0.05mmol)を加えた。混合 液を室温にて1時間攪拌し、VarianTM SCXカラムに負荷し、メタノール ($15 \,\mathrm{m\,L}$) にて洗浄した。生成物を、 $2 \,\mathrm{M}$ NH₃のメタノール($6 \,\mathrm{m\,L}$)溶液を用 いて溶出し、濃縮することにより(S)-1-ベンジル-3-[N-(3-(トリ フルオロメチル) ベンゾイル] グリシル] アミノピロリジン (化合物番号239) 15 を得た (9.0mg、44%)。純度をRPLC/MSにて求めた (99%)。 E SI/MS m/e 406.0 $(M^++H, C_{21}H_{22}F_3N_3O_2)$ [実施例575] (R) -1- (4-ブチルベンジル) -3- [[N- (3-ト

リフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号164 8) の合成

(R) -3- [N-[3-(トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジン (0.050mmol)、4-ブチルベンズアルデヒド (0.18mmol)、NaBH₃CN (0.23mmol)およびメタノール (1.85mL)の混合物に酢酸 (0.060mL)を加えた。この反応混合物を60℃で12時間25 攪拌した。室温まで冷却し、Varian™ SCXカラムに負荷し、メタノール (15mL)にて洗浄した。生成物を、2M NH₃のメタノール (5mL)溶液を用いて溶出し、濃縮することにより、(R) -1-(4-ブチルベンジル)-3-[N-(3-トリフルオロメチルベンゾイル)グリシル}アミノ]ピロリジン (化合物番号1648)を得た (20.6mg、89%)。純度をRPLC/MSにて30 求めた (91%)。ESI/MS m/e 462.2 (M*+H、C₂₅H₃₀F₃N₃O₂)

261

[実施例576-738]

5

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 5 7 4 または 5 7 5 の方法に従って合成した。必要であれば、分取TLCまたはクロマトグラフィー(HPLC-C₁₈)を用いて精製することにより目的物を得た。ESI/MSデータ、収量、および収率を表 8 にまとめた。

表 8

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
576	240	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	10.2	48
577	241	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	12.1	55
578	242	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.9	59
579	243	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.8	58
580	244	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	13.1	62
581	245	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	11.9	. 56
582	246	C21H21ClF3N3O2	440.0	8.5	39
583	247	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	10.5	44
584	248	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	11.0	51
585	249	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	12.8	54
586	250	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.0	52
587	251	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	13.5	64
588	252	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	11.8	54
589	253	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.1	53
590	254	C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄	485.0	2.4	10
591	255	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	12.2	54
592	256	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	11.4	51
593	257	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	11.1	47
594	258	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	15.3	64
595	259	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	420.0	6.4	31
596	260	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	12.1	51
597	261	$C_{22}H_{21}ClF_6N_3O_2$	474.0	13.6	5 7
598	262	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	15.2	63
599	263	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	14.5	60
600	264	$C_{27}H_{26}F_3N_3O_3$	498.0	9.3	37
601	265	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	11.6	48
602	266	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	8.9	40
603	267	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	10.3	47

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 38 28 59 59 36 59 53 39 56 42 49 22 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 59 59 36 59 53 39 56 42 49 22 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 59 36 59 53 39 56 42 49 22 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 36 59 53 39 56 42 49 22 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 59 53 39 56 42 49 22 52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36 59 53 39 56 42 49 22 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 39 56 42 49 22 52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39 56 42 49 22 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 56 42 49 22 52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42 49 22 52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42 49 22 52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49 22 52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52
618 282 $C_{25}H_{30}F_3N_3O_2$ 462.0 12.0 619 283 $C_{20}H_{23}F_3N_4O_3$ 425.0 8.1 620 284 $C_{27}H_{25}C1F_3N_3O_2$ 516.0 4.8	52
619 283 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 8.1 620 284 C ₂₇ H ₂₅ ClF ₃ N ₃ O ₂ 516.0 4.8	
620 284 C ₂₇ H ₂₅ ClF ₃ N ₃ O ₂ 516.0 4.8	38
	19
621 285 $C_{21}H_{22}F_3N_3O_2$ 406.0 4.8	24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21
623 287 C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂ 440.0 5.8	26
624 288 C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂ 474.0 8.1	34
625 289 C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂ 474.0 8.0	34
626 290 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 420.0 6.0	29
627 291 $C_{21}H_{21}F_4N_3O_2$ 424.0 6.2	29
628 292 C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂ 440.0 4.5	20
629 293 C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂ 474.0 5.1	22
630 294 C ₂₂ H ₂₄ CF ₃ N ₃ O ₃ 436.0 4.2	19
631 295 C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂ 474.0 6.0	25
632 296 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 420.0 4.3	21
633 297 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 8.2	39
634 298 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 12.2	56
635 299 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 420.0 8.1	39
636 300 C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄ 485.0 13.7	57
637 301 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 15.1	67
638 302 C ₂₁ H ₂₁ F ₃ N ₄ O ₄ 451.0 16.6	74
639 303 C ₂₂ H ₂₁ F ₆ N ₃ O ₂ 474.0 12.6	53
640 304 C ₂₄ H ₂₆ F ₃ N ₃ O ₄ 478.0 14.5	61
641 305 C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂ 420.0 8.4	37
642 306 $C_{21}H_{20}Cl_2F_3N_3O_2$ 474.0 13.5	57

644 308 C21H21BFF3N3O2 484.0 7.2 30 645 309 C21H21BFF3N3O2 484.0 6.7 28 646 310 C21H26F3N3O2 484.0 6.7 28 647 311 C21H21BF3NO2 484.0 6.3 26 648 312 C22H22F3NO3 450.0 2.4 11 649 313 C22H22F3NO3 463.0 1.9 9 650 314 C23H22F3NO3 463.0 5.0 22 651 315 C22H22F3NO3 464.0 3.3 14 652 316 C22H22F3NO3 464.0 3.3 14 653 317 C2H20F5NO2 442.0 4.5 20 654 318 C21H22F3NO3 431.0 6.5 30 655 319 C22H21F3NO2 431.0 6.5 30 655 320 C2H21F3NO2 431.0 14.2 66 657	643	307	C ₂₂ H ₂₁ C1F ₆ N ₃ O ₂	474.0	3.7	16
645 309 C21H21BrF3N3O2 484.0 6.7 28 646 310 C27H26F3N3O3 498.0 4.2 17 647 311 C21H21BrF3N3O2 484.0 6.3 26 648 312 C22H22F3NJO3 436.0 1.9 9 650 314 C23H22F3NJO3 436.0 1.9 9 650 314 C23H22F3NJO4S 464.0 2.5 10 651 315 C22H22F3NJO4 464.0 3.3 14 652 316 C23H22F3NJO2 442.0 4.5 20 653 317 C22H22F3NJO2 442.0 4.5 20 654 318 C21H22F3NJO2 431.0 6.5 30 655 319 C22H21F3NJO2 431.0 14.2 66 657 321 C22H21F3NJO2 442.0 13.6 62 657 321 C22H21F3NJO2 442.0 13.6 62 65	644	308	.L	484.0	7.2	30
646 310 C2;H26F3N3O3 498.0 4.2 17 647 311 C2;H21BFF3N3O2 484.0 6.3 26 648 312 C22H22F3N3O4 450.0 2.4 11 649 313 C22H22F3N3O3 436.0 1.9 9 650 314 C23H22F3N3O4S 484.0 2.5 10 651 315 C22H24F3N3O4 464.0 3.3 14 652 316 C23H24FN3O4 464.0 3.3 14 653 317 C2H267F3NO4 464.0 3.3 14 653 317 C2H267F3NO2 442.0 4.5 20 654 318 C21H22F3NO2 431.0 6.5 30 655 319 C22H21F3NO2 431.0 14.2 66 657 321 C22H21F3NO2 442.0 13.6 62 657 323 C27H26F3NO2 442.0 13.6 62 659	645	309		484.0	6.7	28
647 311 C21H21BrF3N3O2 484.0 6.3 26 648 312 C22H22F3N3O4 450.0 2.4 11 649 313 C22H24F3N3O3 436.0 1.9 9 650 314 C23H25F3N4O3 463.0 5.0 22 651 315 C22H26F3N3O4 464.0 3.3 14 652 316 C3H22F3N3O4 464.0 3.3 14 653 317 C21H20F3N3O2 442.0 4.5 20 654 318 C21H22F3N3O3 422.0 7.9 34 655 319 C22H21F3NO2 431.0 6.5 30 655 320 C22H21F3NO2 431.0 14.2 66 657 321 C22H21F3NO2 431.0 14.9 69 657 322 C22H22F3N3O2 442.0 13.6 62 659 323 C27H22F3N3O2 482.0 3.9 16 660	646	310		498.0	4.2	17
649 313 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 436.0 1.9 9 650 314 C ₂₃ H ₂₅ F ₃ N ₄ O ₃ 463.0 5.0 22 651 315 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ \$ 484.0 2.5 10 652 316 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 3.3 14 653 317 C ₂₁ H ₂₀ F ₃ N ₃ O ₂ 442.0 4.5 20 654 318 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 422.0 7.9 34 655 319 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 6.5 30 656 320 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.2 66 657 321 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.9 69 658 322 C ₂₁ H ₂₀ F ₃ N ₃ O ₂ 442.0 3.9 16 660 324 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 442.0 13.6 62 657 321 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.9 69 668 322 C ₂₁ H ₂₆ F ₃ N ₃ O ₂ 442.0 13.6 62 659 323 C ₂₁ H ₂₆ F ₃ N ₃ O ₂ 442.0 13.6 62 661 325 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.9 69 666 326 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 464.0 15.2 66 661 325 C ₂₂ H ₂₁ F ₃ N ₃ O ₄ 464.0 15.2 66 662 326 C ₂₂ H ₂₁ F ₃ N ₃ O ₄ 464.0 15.2 66 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 490.0 16.1 66 662 326 C ₂₂ H ₂₁ F ₃ N ₃ O ₃ 490.0 15.6 56 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 490.0 15.6 56 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 490.0 15.6 56 664 328 C ₂₃ H ₃₀ F ₃ N ₃ O ₂ 462.0 10.9 47 665 329 C ₂₀ H ₂₂ F ₃ N ₃ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 5452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C25 H23 Bx F3 N3 O2 5496 34.8 62 675 1134 C24 H28 F3 N3 O5 496 34.8 62 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 496 34.8 62 678 1137 C22 H21 Bx F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O4 446 32.7 86 680 1139 C22 H24 F3 N3 O2 446 32.7 86	647	311		484.0	6.3	26
650 314 C ₂₃ H ₂₄ F ₃ N ₃ O ₃ 463.0 5.0 22 651 315 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S 484.0 2.5 10 652 316 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 3.3 14 653 317 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 4.5 20 654 318 C ₂₁ H ₂₂ F ₃ N ₃ O ₃ 422.0 7.9 34 655 319 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 6.5 30 656 320 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.2 66 657 321 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.9 69 658 322 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 13.6 62 659 323 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.9 69 6660 324 C ₂₃ H ₂₄ F ₃ N ₃ O ₂ 482.0 3.9 16 661 325 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 482.0 3.9 16 662 326 C ₂₂ H ₂₁ F ₅ N ₃ O ₃ 490.0 16.1 66 63 327 C ₂₂ H ₂₂ F ₅ N ₃ O ₃ 490.0 13.6 56 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 5.4 24 664 328 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 462.0 10.9 47 665 329 C ₂₀ H ₂₂ F ₃ N ₃ O ₂ 462.0 10.9 47 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O4 466 20.5 67 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 440 36.6 89 678 1137 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 679 1138 C24 H24 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 446 32.7 86	648	312	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	2.4	11
651 315 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ 484.0 2.5 10 652 316 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 3.3 14 653 317 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 4.5 20 654 318 C ₂₁ H ₂₂ F ₃ N ₄ O ₂ 431.0 6.5 30 655 319 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.2 66 656 320 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.9 69 657 321 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 431.0 14.9 69 658 322 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 442.0 13.6 62 659 323 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 3.9 16 660 324 C ₂₃ H ₂₄ F ₃ N ₃ O ₃ 490.0 15.2 66 661 325 C ₂₂ H ₂₁ F ₃ N ₃ O ₃ 490.0 16.1 66 662 326 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 490.0 13.6 56 663 327	649	313	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	1.9	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	650	314	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	5.0	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	651	315	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	2.5	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	652	316	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	3.3	14
655 319 C22H21F3N4O2 431.0 6.5 30 656 320 C22H21F3N4O2 431.0 14.2 66 657 321 C22H21F3N4O2 431.0 14.9 69 658 322 C21H20F3N3O2 442.0 13.6 62 659 323 C2H26F3N3O2 482.0 3.9 16 660 324 C23H24F3N3O4 464.0 15.2 66 661 325 C22H21F6N3O3 490.0 16.1 66 661 325 C22H21F6N3O3 490.0 13.6 56 662 326 C22H21F6N3O3 490.0 13.6 56 663 327 C22H22F3N3O4 450.0 5.4 24 664 328 C29H30F3N3O2 462.0 10.9 47 665 329 C20H23F3N4O3 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6	653	317	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	4.5	20
656 320 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.2 66 657 321 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 14.9 69 658 322 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 13.6 62 659 323 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 3.9 16 660 324 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 15.2 66 661 325 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 16.1 66 662 326 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 13.6 56 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 5.4 24 664 328 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 10.9 47 665 329 C ₂₆ H ₂₃ F ₃ N ₄ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C26 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 440 32.7 86	654	318	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	7.9	34
657 321 C ₂₂ H ₂ 1 _F S _N 4 _O 2 431.0 14.9 69 658 322 C ₂₁ H ₂ 0 _F S _N 3 _O 2 442.0 13.6 62 659 323 C ₂₇ H ₂ 6 _F S _N 3 _O 2 482.0 3.9 16 660 324 C ₂₃ H ₂ 4 _F S _N 3 _O 4 464.0 15.2 66 661 325 C ₂₂ H ₂ 1 _F S _N 3 _O 3 490.0 16.1 66 662 326 C ₂₂ H ₂ 1 _F S _N 3 _O 3 490.0 13.6 56 663 327 C ₂₂ H ₂ 2 _F 3 _N 3 _O 4 450.0 5.4 24 664 328 C ₂₅ H ₃ 0 _F 3 _N 3 _O 2 462.0 10.9 47 665 329 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 504 20.5 67 670 1121 C22 H23 F	655	319	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	6.5	30
658 322 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 13.6 62 659 323 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 3.9 16 660 324 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 15.2 66 661 325 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 16.1 66 662 326 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 13.6 56 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 5.4 24 664 328 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 10.9 47 665 329 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 452 16.9 57 669 1120 C23 H26 F3 N3 O2 504 20.5 67 670 1121 C22 H23 F3 N4 O4	656	320	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.2	66
659 323 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 3.9 16 660 324 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 15.2 66 661 325 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 16.1 66 662 326 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 13.6 56 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 5.4 24 664 328 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 10.9 47 665 329 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 452 16.9 57 668 1119 C22 H23 F3 N3 O4 466 20.5 67 670 120 C23 H26 F3 N3 O2	657	321	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.9	69
660 324 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 15.2 66 661 325 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 16.1 66 662 326 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 13.6 56 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 5.4 24 664 328 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 10.9 47 665 329 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 516.0 1.5 6 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2	658	322	$C_{21}H_{20}F_5N_3O_2$	442.0	13.6	62
661 325 C22H21F6N3O3 490.0 16.1 66 662 326 C22H21F6N3O3 490.0 13.6 56 663 327 C22H22F3N3O4 450.0 5.4 24 664 328 C25H30F3N3O2 462.0 10.9 47 665 329 C20H23F3N4O3 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O5 496 34.8 82<	659	323	C ₂₇ H ₂₆ F ₃ N ₃ O ₂	482.0	3.9	16
662 326 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 13.6 56 663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 5.4 24 664 328 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 10.9 47 665 329 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 <td>660</td> <td>324</td> <td>C₂₃H₂₄F₃N₃O₄</td> <td>464.0</td> <td>15.2</td> <td>66</td>	660	324	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	15.2	66
663 327 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 5.4 24 664 328 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 10.9 47 665 329 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496	661	325	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	16.1	66
664 328 C25H30F3N3O2 462.0 10.9 47 665 329 C20H23F3N4O3 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6	662	326	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	13.6	56
665 329 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 12.0 57 666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 <	663	327	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	5.4	24
666 986 C27 H25 C1 F3 N3 O2 516.0 1.5 6 667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7	664	328	C ₂₅ H ₃₀ F ₃ N ₃ O ₂	462.0	10.9	47
667 1118 C28 H27 F3 N4 O3 525 21.5 62 668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 </td <td>665</td> <td>329</td> <td></td> <td>425.0</td> <td>12.0</td> <td>57</td>	665	329		425.0	12.0	57
668 1119 C22 H24 F3 N3 O2 S 452 16.9 57 669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	666	986		516.0		6
669 1120 C23 H26 F3 N3 O4 466 20.5 67 670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	667	1118	C28 H27 F3 N4 O3	525	21.5	62
670 1121 C22 H23 F3 N4 O4 465 16.8 55 671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	668	1119	C22 H24 F3 N3 O2 S	452	16.9	57
671 1122 C28 H36 F3 N3 O2 504 21.0 63 672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51				466	20.5	
672 1123 C25 H23 Br F3 N3 O2 534 26.6 75 673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	1					
673 1124 C19 H19 F3 N4 O5 441 21.3 73 674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	671	1122	C28 H36 F3 N3 O2	504	21.0	63
674 1133 C23 H26 F3 N3 O4 467 33.6 84 675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	672					75
675 1134 C24 H28 F3 N3 O5 496 34.8 82 676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	673				,	73
676 1135 C22 H21 F3 N4 O6 495 32.6 77 677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51				<u> </u>		8 4
677 1136 C23 H24 F3 N3 O5 480 36.6 89 678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	675		<u> </u>		34.8	
678 1137 C22 H21 Br F3 N3 O4 529 30.8 69 679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	676			495	32.6	77
679 1138 C24 H26 F3 N3 O2 446 32.7 86 680 1139 C22 H24 F3 N3 O2 420 18.6 51	677					89
680 1139 C22 H24 F3 N3 O2 420 18.6 51						69
	679			446	32.7	86
681 1140 C21 H20 F3 N5 O6 496 20.5 49	680			420	18.6	51
	681	1140	C21 H20 F3 N5 O6	496	20.5	49

PCT/JP00/03203

682	1141	C25 H24 F3 N3 O2	456	22.5	58
683	1142	C25 H24 F3 N3 O2	456	21.6	55
684	1143	C35 H34 F3 N3 O4	618	27.3	53
685	1144	C23 H26 F3 N3 O4	466	25.5	64
686	1145	C23 H25 F3 N4 O6	511	38.0	88
687	1146	C28 H28 F3 N3 O3	512	38.3	89
688	1147	C23 H25 F3 N4 O3	463	27.1	62
689	1148	C27 H26 F3 N3 O2	482	22.4	57
690	1161	C22 H24 F3 N3 O4	452	13.5	58
691	1162	C24 H28 F3 N3 O3	464	16.7	70
692	1163	C22 H23 F4 N3 O3	454	15.8	68
693	1164	C23 H26 F3 N3 O3	450	15.7	68
694	1165	C23 H24 F3 N3 O4	464	16.3	68
695	1166	C22 H23 Br F3 N3 O3	513	15.0	57
696	1168	C17 H17 C1 F3 N5 O2 S	448	6.9*	23
697	1169	C20 H22 F3 N5 O3 S	470	1.7*	6
698	1170	C22 H22 F3 N5 O2	446	2.3*	8
699	1286	C26 H33 F3 N4 O3	507	25.3*	51
700	1287	C21 H20 F3 N5 O6	496	4.0*	8
701	1288	C22 H24 F3 N3 O4	452	3.6*	13
702	1298	C23 H25 Br F3 N3 O4	544	28.4	定量的
703	1299	C24 H28 F3 N3 O5	496	1.4	6
704	1300	C23 H26 F3 N3 O4	466	7.3	33
705	1301	C24 H28 F3 N3 O5	496	12.6	53
706	1302	C24 H28 F3 N3 O3 .	464	24.5	定量的
707	1303	C23 H25 Br F3 N3 O4	544	22.2	86
708	1304	C29 H30 F3 N3 O4	542	28.6	定量的
709	1305	C26 H26 F3 N3 O3	486	35.4	定量的
710	1306	C24 H28 F3 N3 O4	480	8.1	35
711	1307	C23 H26 F3 N3 O5	482	27.9	定量的
712	1308	C23 H24 F3 N3 O3	448	5.9	28
713	1309	C23 H25 F3 I N3 O4	592	24.0	85
714	1310	C22 H24 F3 N3 O4	452	3.4	16
715	1311	C22 H22 F3 N3 O4	450	3.4	16
716	1312	C21 H21 F3 I N3 O2	532	18.1	72
717	1313	C21 H21 Br F3 N3 O2	484	17.4	76
718	1314	C19 H19 F3 N4 O4 S	457	16.8	77
719	1315	C20 H22 F3 N3 O3	410	13.6	70
720	1316	C22 H20 C1 F6 N3 O2	508	18.6	77

721	1317	C21 H20 C1 F3 N4 O4	485	17.0	74
722	1318	C21 H20 C1 F4 N3 O2	458	17.0	78
723	1319	C21 H20 C1 F4 N3 O2	458	17.6	81
724	1320	C21 H20 Br F4 N3 O2	502	18.5	77
725	1390	C26 H32 F3 N3 O2	476	16.1	51
726	1391	C23 H26 F3 N3 O2	434	20.0	76
727	1392	C22 H23 C1 F3 N3 O2	454	20.0	67
728	1393	C23 H26 F3 N3 O2	434	20.1	70
729	1394	C22 H23 F3 N4 O4	465	18.4	60
730	1395	C23 H24 F3 N3 O2	432	21.4	75
731	1396	C26 H26 F3 N3 O2	470	20.4	66
732	1397	C21 H20 Br2 F3 N3 O2	562	14.5	54
733	1398	C22 H22 C12 F3 N3 O2	488	10.8	47
734	1399	C22 H22 C12 F3 N3 O2	488	9.4	40
735	1400	C22 H23 C1 F3 N3 O2	454	19.1	88
736	1614	C22 H21 F6 N3 S	506.0	24.2	96
737	2050	C20 H22 F3 N3 O2 S	426	6.0	30
738	2051	C21 H23 F3 N4 O2	421	6.5	32

^{*}トリフルオロ酢酸塩の収率。

[実施例739-748]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例5 75の方法に従って合成した。必要であれば、分取TLCで精製することにより目 的物を得た。ESI/MSデータ、収量、および収率を表9にまとめた。

表 9

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
739	1650	C24 H28 F3 N3 O2	448.0	20.4	91
740	1706	C23 H25 F3 N4 O3	463.2	3.7	11
741	1707	C22 H25 F3 N4 O2 S	467.0	10.3	29
742	1708	C23 H27 F3 N4 O2	449.2	11.4	34
743	1709	C24 H29 F3 N4 O2	463.2	15.2	44
744	1775	C22 H25 F3 N4 O4	467.2	9.2	26.3
745	1776	C22 H25 F3 N4 O4	467.2	8.9	25.4
746	1787	C24 H29 F3 N4 O2	463.2	5.6	16.1
747	1802	C23 H27 F3 N4 O4	481.2	11.7	32.5

748	1803	C22 H25 F3 N4 O3	451.2	9.6	28.4
		l			

[実施例749] <u>(R) -3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] アミノ] -1-(3-ヒドロキシ-4-メトキシベンジル) ピロリジン (化合物番号1896) の合成</u>

 $(R) - 3 - [N - [2 - (tert - \vec{J}) + \hat{J}) - 5 - (k)$ 5 リフルオロメトキシ) ベンゾイル] グリシル] アミノピロリジン(O. O50mm $(0.060 \, \text{mmol})$ 、NaBH₃CN (0. 15mmol) およびメタノール (1. 3mL) の混合物に 、酢酸(0.050mL)を加えた。この反応混合物を60℃で8時間攪拌した。 室温にまで冷却後、VarianTM SCXカラムに負荷し、メタノール(10mL 10)にて洗浄した。生成物を2M NH₃のメタノール(5mL)溶液を用いて溶出し 、濃縮した。得られた残さに4M HClの1, 4-ジオキサン溶液を加え、この 溶液を室温にて一晩攪拌した。濃縮後、分取TLCで精製することにより、(R) -3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル)・グリシル] 15 アミノ] -1-(3-ヒドロキシ-4-メトキシベンジル) ピロリジン (化合物番 号1896)を得た(9. 1mg、38%)。純度をRPLC/MSにて求めた(93%) \cdot ESI/MS m/e 483 (M⁺+H, C₂₂H₂₅F₃N₄O₅) [実施例750-757]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 20 749の方法に従って合成した。ESI/MSデータ、収量、および収率を表10 にまとめた。

表 10

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
750	1897	C22 H25 F3 N4 O3 S	483	22.7	94.1
751	1898	C23 H27 F3 N4 O3	465	12.2	52.5
752	1899	C24 H29 F3 N4 O3	479	14.4	60.2
753	1900	C22 H25 F3 N4 O5	483	2.6	10.8
754	1901	C24 H29 F3 N4 O3	479	14.5	60.6
755	1902	C23 H25 F3 N4 O4	479	12.0	50.2
756	1915	C23 H27 F3 N4 O5	467.2	2.5	6.7

267

757	1916	C22 H25 F3 N4 O4	467.2	3.1	8.9
		<u></u>	<u> </u>		

[実施例758] (R) -3-[[N-(2-アミノ-5-トリフルオロメチル) ベンゾイル) グリシル] アミノ] -1-(4-ビニルベンジル) ピロリジン(化合物番号1701) の合成

5 (R) -3-[[N-(2-アミノ-5-(トリフルオロメチル) ベンゾイル) グリシル] アミノ] ピロリジン (O. 050mmol)、4-ビニルベンジルクロリド (9.9mg、0.065mL)、ピペリジノメチルポリスチレン (60mg)、アセトニトリル (1.0mL)、およびクロロホルム (0.30mL)の混合物を50℃で12時間攪拌した。この反応混合物を室温まで冷却し、Varian[™] 10 M SCXカラムに負荷し、メタノール (15mL)にて洗浄した。生成物を、2MNH₃のメタノール (5mL) 溶液を用いて溶出し、濃縮することにより、(R) -3-[[N-(2-アミノ-5-(トリフルオロメチル)ベンゾイル)グリシル] アミノ] -1-(4-ビニルベンジル) ピロリジン (化合物番号1701)を得た (19.6mg、88%)。純度をRPLC/MSにて求めた (92%)。ES I/MS m/e 547.2 (M+H、C₂₃H₂₅C1F₃N₄O₂) [実施例759-762]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例758の方法に従って合成した。必要であれば、分取TLCで精製することにより目的物を得た。ESI/MSデータ、収量、および収率を表11にまとめた。

20

25

表 11

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
759	1702	C22 H25 F3 N4 O3	451.2	5.3	24
760	1703	C22 H23 F3 N4 O4	465.2	5.0	22
761	1704	C21 H23 F3 N4 O3	437.2	20.9	96
762	1705	C21 H21 C12 F3 N4 O2	489.2	9.3	38

[実施例763] <u>(R) -3-[[N-(2-アミノ-5-(トリフルオロメト</u>キシ) ベンゾイル) グリシル] アミノ] -1-(2, 4-ジクロロベンジル) ピロリジン (化合物番号1905) の合成

268

) グリシル] アミノ] ピロリジン (0.050mmol)、2,4-ジクロロベン ジルクロリド(O.066mL)、ピペリジノメチルポリスチレン(60mg)、 アセトニトリル (0.8mL)、およびクロロホルム (0.5mL) の混合物を6 O°Cで12時間攪拌した。この反応混合物を室温まで冷却し、Varian™ SC Xカラムに負荷し、50%クロロホルム/メタノール(10mL)とメタノール(10mL) にて洗浄した。生成物を、2M NH₃のメタノール (5mL) 溶液を用 いて溶出し、濃縮した。得られた残さに4M HClの1, 4ジオキサン (2mL)溶液を加え、室温で一晩攪拌した。濃縮後、分取TLCにて精製することにより 、(R)-3- [[N-(2-アミノ-5-(トリフルオロメトキシ)ベンゾイル 10) グリシル] アミノ] -1-(2,4-ジクロロベンジル) ピロリジン(化合物番 号1905) を得た (17.6mg、70%)。純度をRPLC/MSにて求めた (93%) o ESI/MS m/e 505 $(M^++H, C₂₁H₂₁Cl₂F₃N₄O₃$

15 [実施例764-770]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 7 63の方法に従って合成した。ESI/MSデータ、収量、および収率を表12に まとめた。

表 12

20

5

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
764	1906	C22 H23 F3 N4 O5	481	9.4	39.1
765	1907	C21 H23 F3 N4 O4	453	7.5	33.2
766	1908	C22 H25 F3 N4 O4	467	7.7	33.0
767	2180	C22 H24 C1 F3 N4 O2	469	1.3	26
768	2181	C23 H25 F3 N6 O3	491	4.3	52
769	2182	C19 H22 F3 N5 O2 S	442	7.0	51
770	1909	C23 H25 F3 N4 O3	463	8.7	37.6

[実施例771] (R) -3 - [[N-(2-アミノ-5-トリフルオロメトキ]]シベンゾイル) グリシル] アミノ] -1-(2-アミノ-4-クロロベンジル) ピ ロリジン (化合物番号1921) の合成

(R) -3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル} アミノ] ピロリジン(0.050mmol)、4-クロロー2ーニトロベンジルクロリド(0.050mmol)、ピペリジノメチルポリスチレン(60mg)、アセトニトリル(1.0mL)、および、クロロホルム(0.7mL)の混 合物を50℃で一晩攪拌した。この反応混合物を冷却し、Varian™ SCXカラムに負荷し、50%クロロホルム/メタノール(10mL)とメタノール(10mL)にて洗浄した。生成物を、2M NH3のメタノール(5mL)溶液を用いて溶出し、濃縮した。得られた残さにエタノール(3mL)と10%パラジウム炭素を加え、この溶液を水素雰囲気下、室温で1.5時間攪拌した。濾過、濃縮後、分10 取TLCで精製することにより、(R) -3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル)グリシル]アミノ]-1-(2-アミノー4-クロロベンジル)ピロリジン(化合物番号1921)を得た(2.2mg,6%)。純度をRPLC/MSにて求めた(81%)。ESI/MS m/e 486.2(M++H、C21H23C1F3N5O3)

15 [実施例 7 7 2] (R) -3-[[N-(2-アミノ-5-ドリフルオロメチル ベンゾイル) グリシル] アミノ] -1-(4-ブロモ-2-フルオロベンジル) ピロリジン (化合物番号 2 1 2 0) の合成

 $(R) - 3 - [[N - (2 - (tert - \vec{J}) + \hat{J}) - 3 - [N - (2 - (tert - \vec{J}) + \hat{J}) - 3 - \hat{J})]$ リフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (0.050mmo 20 1)、4-ブロモ-2-フルオロベンズアルデヒド(0.015mmol)、メタ ノール (1.5mL)、および、酢酸 (0.016mL) の混合物に、NaBH₃C N(0.25mmol)のメタノール(0.50mL)溶液を加えた。この反応混 合物を50℃で一晩攪拌した。室温まで冷却後、Varian™ SCXカラムに負 荷し、メタノール(5mL×2)にて洗浄した。生成物を、2M NH₃のメタノー 25 ル (5 m L) 溶液を用いて溶出し、濃縮した。残査をメタノール (0.25 m L) に溶解し、4M HC1のジオキサン溶液を加えた。この溶液を室温にて5時間攪 拌し、濃縮した。残査をメタノールに溶解し、VarianTM SCXカラムに負荷 し、メタノール(5mL×2)にて洗浄した。生成物を2M NH₃のメタノール(5 m L) 溶液を用いて溶出し、濃縮した。得られた残さを酢酸エチル (0.5 m L 30)に溶解し、Varian™ SCXカラムに負荷し、酢酸エチル/メタノール=5

:1(6mL)を用いて溶出し、濃縮することにより、(R)-3-[[N-(2

270

-アミノ-5-トリフルオロメチルベンゾイル)グリシル] アミノ] -1-(4-ブロモ-2-フルオロベンジル)ピロリジン(化合物番号2120)を得た(16.0 mg、31%)。純度をRPLC/MSにて求めた(99%)。ESI/MS m/e 517.0 (M^+ +H、 $C_{21}H_{21}$ BrF $_4$ N $_4$ O $_2$)

5 [実施例773-793]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 7 7 2 の方法に従って合成した。ESI/MSデータ、収量、および収率を表 1 3 にまとめた。

表 13

10

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
773	2083	C22 H24 Br F3 N4 O4	545.2	2.9	11
774	2084	C23 H27 F3 N4 O5	497.2	5.1	21
775	2085	C22 H25 F3 N4 O4	467.2	3.1	13
776	2086	C21 H22 C1 F3 N4 O3	471.0	4.6	.20
777	2087	C23 H28 F3 N5 O2	464.2	5.6	24
778	2088	C25 H32 F3 N5 O2	492.2	5.9	24
779	2089	C21 H21 F5 N4 O2	457.2	4.5	20
780	2090	C27 H27 F3 N4 O3	513.2	8.0	31
781	2118	C21 H23 F3 N4 O4	453.1	2.7	12
782	2119	C21 H23 F3 N4 O4	453.1	4.3	19
783	2121	C22 H25 F3 N4 O4	467.0	1.2	2
784	2122	C21 H21 C1 F4 N4 O2	472.9	13.1	28
785	2123	C22 H22 F3 N5 O6	510.1	13.1	51
786	2124	C21 H21 C1 F3 N5 O4	500.1	15.6	62
787	2125	C22 H24 F3 N5 O5	496.0	16.0	65
788	2126	C22 H24 F3 N5 O4	480.1	15.6	65
789	2137	C22 H24 C1 F3 N4 O2	469.2	2.6	11
790	2138	C26 H29 F3 N6 O2	515.3	25.1	98
791	2139	C20 H24 C1 F3 N6 O2	473.2	25.0	98
792	2149	C21 H22 F3 N5 O5	482.3	4.9	34
793	2157	C22 H25 F3 N4 O3	451.2	15.5	70

271

 $(R) - 3 - [[N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [[N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 5 - 1 + 1)] - 3 - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1 - 1 + 1)] - [N - (2 - 7 \le 1$ シル) アミノ] ピロリジン (17. 2mg、0. 04mmol) をTHF (1mL)に溶解し、2、4ージメトキシー5ーピリミジンカルボキサアルデヒド(6.7 mg、O. O4mmol)を加え、続いてトリアセトキシ水素化ホウ素ナトリウム 5 (12.7mg、0.06mmol)と氷酢酸(2.4mg、0.04mmol) を加えた。この混合物を50℃で24時間攪拌した後、濃縮した。残査をジクロロ メタン(1 m L)に溶解し、1 M NaOH水溶液(1 m L)で洗浄した。有機層 を回収し、濃縮後、25%トリフルオロ酢酸のジクロロメタン (1mL) 溶液を加 えて室温で1時間攪拌した後、濃縮した。残査をHPLCにて精製することにより 10 、(R)-3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリ シル] アミノ] -1-(2, 4-ジメトキシピリミジン-5-イルメチル) ピロリ ジン (化合物番号2175) を得た (18.6mg、78%)。純度をRPLC/ MSにて求めた (98%)。ESI/MS m/e 483 (M^++H 、 $C_{21}H_{25}$ $F_3N_6O_4$

15 [実施例795-803]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 7 9 4 の方法に従って合成した。ESI/MSデータ、収量、および収率を表 1 4 にまとめた。

表 14

20

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
795	2165	C18 H21 F3 N6 O2	411	2.0	27.
796	2166	C18 H20 F3 N5 O2 S	428	9.9	66
797	2167	C24 H25 F3 N6 O2	487	15.1	73
798	2169	C24 H29 F3 N4 O2	463	1.2	24
799	2170	C26 H25 C1 F3 N5 O2	520	6.0	40
800	2171	C19 H23 F3 N6 O2	425	16.8	88
801	2174	C23 H24 Br F3 N4 O2 S2	591	5.3	53
802	2178	C25 H28 F3 N5 O4	518	5.4	62
803	2179	C25 H28 F3 N5 O3	502	6.3	60

[実施例804] $(R) - 1 - (2 - T \le J - 4, 5 - J \ne L)$ (R) -

] アミノ] ピロリジン(化合物番号2127)の合成

シル] アミノ] -1-(4.5-メチレンジオキシ-2-ニトロベンジル) ピロリ ジン (30.5mg)、10% Pdカーボン (6mg)、およびメタノール (3 mL) の混合物を水素雰囲気下、室温で10時間攪拌した。パラジウム触媒をセラ イトで濾過し、濾液を濃縮した。固相抽出(Bond Elut™ SI、20%メ タノール/酢酸エチル) で精製することにより、(R)-1-(2-アミノー4, 5-メチレンジオキシベンジル) -3-[[N-2-アミノ-5-トリフルオロメ チルベンゾイル)グリシル]アミノ]ピロリジン(化合物番号2127)を得た(21.9mg、76%)。純度をRPLC/MSにて求めた(95%)。ESI/ 10 MS m/e 480. 1 $(M^++H, C_{22}H_{24}F_3N_5O_4)$

[実施例805-806]

25

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例8 04の方法に従って合成した。ESI/MSデータ、収量、および収率を表15に 15' まとめた。

表 15

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
805	2128	C22 H26 F3 N5 O3	466.0	8.6	30
806	2129	C22 H26 F3 N5 O2	450.1	13.1	37

[実施例807] (R)-1-(3-r)-4-0ロロベンジル) -3-[[N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロ 20 リジン(化合物番号2132)の合成

シル] アミノ] -1- (4-クロロ-3-ニトロベンジル) ピロリジン (32.6 mg)、10% パラジウム炭素 (8 mg)、酢酸エチル (2.7 mL)、および メタノール (0.3mL) の混合物を水素雰囲気下、室温にて15時間攪拌した。 パラジウム触媒を濾過により除去し、濾液を濃縮した。固相抽出(Bond El $u t^{TM} S I$ 、20%メタノール/酢酸エチル)で精製することにより、(R) -1- (3-アミノー4-クロロベンジル) -3- [N- (2-アミノー5-トリフ

ルオロメチルベンゾイル)グリシル] アミノ] ピロリジン(化合物番号2132)を得た(10.5 mg、34%)。純度をRPLC/MSにて求めた(84%)。 ESI/MS m/e 470.2 $(M^++H,C_{21}H_{23}F_3N_5O_2)$

[実施例808] (R) -1-(2-アミノ-4, 5-メチレンジオキシベンジ
 5 ル) -3-[[N-(2-(tert-ブトキシカルボニルアミノ) -5-トリフルオロメチレベンゾイル) グリシル] アミノ] ピロリジンの合成

(R) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン <math>(0.150 mmol) 、 4,5 - メチレンジオキシー 2 - ニトロベンズアルデヒド <math>(0.45 mmol)

10 1)、メタノール(4.5 mL)、および酢酸(0.048 mL)の混合物に、N $a\,B\,H_3\,C\,N$ (0.75 mm o l)のメタノール(1.50 mL)溶液を加えた。この反応混合物を50℃で一晩攪拌した。室温まで冷却し、 $V\,a\,r\,i\,a\,n^{\mathsf{TM}}\,S\,C\,X\,$ カラムに負荷し、メタノールにて洗浄した。生成物を2 M $N\,H_3$ のメタノール溶液を用いて溶出し、濃縮することにより(R) $-3-[[N-(2-(t\,e\,r\,t\,-\,\vec{J})+1]]$ キシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル] アミノ

] -1-(4,5-メチレンジオキシ-2-ニトロベンジル)ピロリジンを得た。
 得られた(R)-3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル]アミノ]-1-(4,5-メチレンジオキシ-2-ニトロベンジル)ピロリジン(0.150mmol)、10%

20 P d カーボン (22 mg)、およびメタノール (4.5 m L) の混合物を水素雰囲 気下、室温で一晩攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮する ことにより (R) -1-(2-アミノー4,5-メチレンジオキシベンジル)-3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメ チルベンゾイル) グリシル]アミノ] ピロリジンを得た(87.1 mg、定量的)

25 。特記すべき副生成物はTLCにおいて検出されなかった。

30

さらに、(R)-1-(3-Tミノ-4-メトキシベンジル)-3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジンと、(R)-1-(3-アミノ-4-メチルベンジル)-3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジンを、それぞれ対応する原料および反応剤を用いて実施例808の方法に従って合成した。

25

30

- 5 (R) -1-(3-アミノ-4-メチルベンジル) -3-[[N-(2-(tert-7)++シカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン: 97.2 mg、定量的;特記すべき副生成物はTLCにおいて検出されなかった。

[実施例809] (R) -1-(3-アミノ-4-クロロベンジル) -3-[[
 N-(2-(tert-ブトキシカルボニルアミノ) -5-トリフルオロメチレベンゾイル) グリシル] アミノ] ピロリジンの合成

 $(R) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン <math>(0.150 \, mmo \, 1)$ 、 $4 - クロロ - 3 - ニトロベンズアルデヒド <math>(0.45 \, mmo \, 1)$ 、メタノー

- ル (4.5 m L)、および、酢酸 (0.048 m L) の混合物に、NaBH₃CN (0.75 m m o l) のメタノール (1.50 m L) 溶液を加えた。この反応混合物を50℃で一晩攪拌した。室温まで冷却し、Varian MSCXカラムに負荷し、メタノールにて洗浄した。生成物を2MNH₃のメタノール溶液を用いて溶出し、濃縮することにより (R) -3-[[N-(2-(tert-ブトキシカルボニ
- 20 ルアミノ) -5-トリフルオロメチレベンゾイル) グリシル] アミノ] -1- (4 -クロロ-3-ニトロベンジル) ピロリジンを得た。

得られた(R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル]アミノ]-1-(4-クロロー3-ニトロベンジル)ピロリジン、<math>10%Pdカーボン(22mg)、酢酸エチル(2.7mL)、およびメタノール(0.3mL)の混合液を水素雰囲気下、室温で15時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮することにより(R)-1-(3-アミノ-4-クロロベンジル)-3-[[N-(2-tert-ブトキシカルボニルアミノ)-5-トリフルオロメチレンベンゾイル)グリシル]アミノ]ピロリジンを得た(89.7mg、定量的)。特記すべき副産物は

[実施例810] (R)-1-(3-アミノ-4-ヒドロキシベンジル)-3-

TLCにおいて検出されなかった。

[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号2187) の合成

実施例808の方法に従って合成した(R) $-1-(3-T \le J-4-E)$ にないジル)-3-[N-(2-(tert-J)+2)] ピロリジン(20mg)の -1 (-1 (-1 (-1 (-1 (-1)) ピロリジン(20mg)の -1 (-1) (-1 (-1)) 不可以 -1 (-1) 不可以 -1) 不可以 -1 (-1) 不

15 [実施例811] (R) -3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-[4-クロロ-3-(ジメチルアミノ) ベンジル] ピロリジン (化合物番号2133) の合成

rtーブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシ ル] アミノ] ピロリジン(44.9mg)、メタノール(0.95mL)、酢酸(20 0. 05mL)、および37%HCHO水溶液 (0. 15mL) の混合物にNaB H₃CN (38mg) を加えた。この反応混合物を50℃で一晩攪拌した。室温まで 冷却し、濃縮後、残査に2M NaOH水溶液と酢酸エチルを加え、有機層を分離 し、水層を酢酸エチルで抽出した。有機層を合わせて、乾燥、濃縮した。残査をV arianTM SCXカラムに負荷し、メタノールにて洗浄した。生成物を2M N 25 H₃のメタノール溶液を用いて溶出し、濃縮した。残査を50%濃塩酸/ジオキサン に溶解し、室温で1時間攪拌した。この反応液を5M NaOH水溶液でpH10 に調節し、酢酸エチルで抽出した(2回)。抽出物を合わせてNa₂SO₄で乾燥、 濾過、濃縮した。分取TLC(SiO $_2$ 、20% メタノール/酢酸エチル)で精製 することにより、(R) - 3 - [[N - (2 - アミノ - 5 - トリフルオロメチルベ 30 ンゾイル) グリシル] アミノ] -1- [4-クロロ-3-(ジメチルアミノ) ベン

276

ジル] ピロリジン (化合物番号2133) (10.9 mg、28%) を得た。純度 をRPLC/MSにて求めた (95%)。ESI/MS m/e 498.3 (M $^+$ +H、C $_{23}$ H $_{27}$ ClF $_3$ N $_5$ O $_2$)

[実施例812-814]

5 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例8 11の方法に従って合成した。ESI/MSデータ、収量、および収率を表16に まとめた。

表 16

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
812	2134	C ₂₄ H ₂₈ F ₃ N ₅ O ₄	508.4	19.0	50
813	2135	C ₂₄ H ₃₀ F ₃ N ₅ O ₃	494.4	21.8	50
814	2136	$C_{24}H_{30}F_3N_5O_2$	478.4	29.2	69

10

25

[実施例815] (R) -3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-(3-メチルアミノ-4-ヒドロキシベンジル) ピロリジン(化合物番号2158)の合成

(R) -1-(3-アミノ-4-ヒドロキシベンジル) -3-[[N-(2-(15 tert-ブトキシカルボニルアミノ) -5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン(27.3mg、0.049mmol)、37%HC HO溶液(4.0mg、0.049mmol)、酢酸(0.10mL)、およびメタノール(1.3mL)の混合物にNaBH₃CN(9.2mg)を加えた。この反応混合物を60℃で一晩攪拌した。室温まで冷却し、VarianTM SCXカラムに負荷し、メタノールにて洗浄した(5mL×2)。生成物を2M NH₃のメタノール溶液(8mL)を用いて溶出し、濃縮した。

277

アミノー4ーヒドロキシベンジル)ピロリジン(化合物番号2158)(4.3 mg、19%)を得た。純度をRPLC/MSにて求めた(71%)。ESI/MS m/e 480.3 (M^++H 、 $C_{22}H_{26}F_3N_5O_3$)

[実施例816] (R) -1-(3-アセチルアミノ-4-メトキシベンジル)
 -3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン(化合物番号2152)の合成

得られた(R) -1-(3-rセチルアミノ-4-メトキシベンジル)-3-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジンを<math>50%6 M塩酸のジオキサン溶液に溶解し、室温で2時間攪拌した。5 M NaOH溶液でp H10 とし、酢酸エチルで抽出した。有機層を濃縮し、分取T LC (S i O_2) で精製することにより、(R) -1-(3-rセチルアミノ-4-メトキシベンジル)-3-[N-(2-rミノ-5-トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジン(化合物番号<math>2152)(3.7 mg、8%)を得た。純度をR P LC / M S にて求めた(100%)。E S I / M S m/ e 508.3 (M⁺+H、 C_{24} H $_{28}$ F $_{3}$ N $_{5}$ O $_{4}$

[実施例817-819]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例8 16の方法に従って合成した。ESI/MSデータ、収量、および収率を表17に まとめた。

30

20

10

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
817	2150	C23H25C1F3N5O3	512.3	3.8	9
818	2151	C24H26F3N5O5	522.2	3.1	8
819	2153	C24H28F3N5O3	492.3	4.3	10

5 ピロリジン(化合物番号2189)の合成

実施例808の方法に従って合成した(R)-1-(3-r)-4-tに口キシベンジル)-3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-t] ピロリジン(20mg)の THF(2mL)溶液に、オルト蟻酸トリエチル(0.20mL、3.3当量)とピリジニウムpートルエンスルホネート(1.2mg、0.4当量)を加えた。この反応混合物を還流下、一晩攪拌した。室温まで冷却後、濃縮した。残査を酢酸エチルに溶解し、BondElutTM Siカラムに負荷し、酢酸エチル/メタノール=4:1を用いて溶出し、濃縮した。

得られた残さを酢酸エチル(1.5 m L)に溶解し、4 M HClのジオキサン 溶液を加えた。この溶液を室温で一晩攪拌し、5 M NaOH水溶液でpH10に 調節し、酢酸エチルで抽出した。抽出液を濃縮し、分取TLC(SiO2、酢酸エチル/メタノール=4:1)で精製することにより、(R)-3-[[N-(2-r)]] (2) -1-(x) (2) -1-(x) (3) -1-(x) (4) -1-(x) (6) -1-(x) (7) -1-(x) (7) -1-(x) (8) -1-(x) (9) -1-(x) (10) -1-(x) (11) -1-(x) (12) -1-(x) (13) -1-(x) (14) -1-(x) (15) -1-(x) (15) -1-(x) (15) -1-(x) (16) -1-(x) (17) -1-(x) (18) -1-(x) (1

20 3%) を得た。純度をRPLC/MSにて求めた(97%)。ESI/MS m/ e 462.3 (M++H、C₂₂H₂₂F₃N₅O₃)

[実施例821] (R) -3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-[ベンゾ [c] チアジアゾール-5-イル) ピロリジン (化合物番号2183) の合成

25 5- (ヒドロキシメチル) ベンゾ [c] チアジアゾール (8.3 mg、0.05 0 mm o l) 、 (ピペリジノメチル) ポリスチレン (86 mg) 、およびクロロホルム (1 mL) の混合物にメタンスルホニルクロリド (0.0042 mL) を加え

、室温で1.5時間攪拌した。アセトニトリル($1 \, \text{mL}$)と(R) $-3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンジル)グリシル] アミノ] ピロリジン(<math>0.060 \, \text{mmol}$)を加え、 $50 \, \text{C} \, \text{C} \, \text{3}$ 時間攪拌した。室温まで冷却後、フェニルイソシアネート($30 \, \text{mg}$)を加え、室温で1時間攪拌し、 $Varian^{\text{TM}} SCXカラムに負荷し、メタノール(<math>5 \, \text{mL}$)とクロロホルム($5 \, \text{mL}$)にて洗浄した。生成物を $2 \, \text{M} \, NH_3 \, \text{のメタノール溶液(} 3 \, \text{mL)を用いて溶出し、濃縮した。}$

5

25

分取TLC(SiO₂、酢酸エチル/メタノール=3:1)で精製することにより、(R) -3-[[N-(2-T > 1-5-h)]フルオロメチルベンゾイル)グリシル] アミノ] -1-[ベンゾ[c] チアジアゾール-5-1イル)ピロリジン(化合物番号2183)(11.5 mg、48%)を得た。純度をRPLC/MSにて求めた(86%)。ESI/MS m/e 479.2(M^++H 、 $C_{21}H_{21}F_3N_6O_2S$)

[参考例6] <u>4-[[N-(1-(9-フルオレニルメトキシカルボニル)ピロ</u> 20 <u>リジン-3-イル)カルバモイルメチル]アミノメチル]-3-メトキシフェニルオキシメチルーポリスチレンの合成</u>

(R) -1-(9-7)ルオレニルメトキシカルボニル) -3-6グリシルアミノピロリジン・塩酸塩(4.38g、10mmol)のDMF(65mL)溶液に、酢酸(0.3mL)、トリアセトキシ水素化ホウ素ナトリウム(1.92g)、および4ーホルミルー3-(メトキシフェニルオキシメチル)ーポリスチレン(1mmol/g、200g)を加えた。この混合物を2時間振とうした後、濾過した。樹脂をメタノール、DMF、ジクロロメタン、およびメタノールで洗浄し、乾燥することにより目的物を得た(2.73g)。

[実施例822-912] 3-アミノピロリジンの固相合成法

30 相当するカルボン酸(1.6mmol)、HBTU(1.6mmol)、および DMF (6mL) の混合物にジイソプロピルエチルアミン(3.6mL)を加え、

5 得られた樹脂、ピペリジン(3.2mL)、およびDMF(12.8mL)の混合物を10分間振とう後、濾過した。樹脂をDMFとジクロロメタンで洗浄し乾燥した。

この乾燥した樹脂(0.05mL)にNaBH(OAc)₃(0.25mmol)、酢酸(0.025mL)とDMF (1mL)の混合物を加えた。相当するアル でヒド(2.5mmol)を加え、2時間振とう後、濾過し、メタノール、10% ジイソプロピルエチルアミンのDMF溶液、DMF、ジクロロメタン、およびメタノールにて洗浄した。樹脂、水(0.050mL)、およびトリフルオロ酢酸(0.95mL)の混合液を1時間振とう後、濾過した。樹脂をジクロロメタンとメタノールにて洗浄した。濾液と洗液を合わせ、濃縮した。得られた粗製生物をVarian™SCXカラムに負荷し、メタノール(15mL)にて洗浄した。生成物を2M NH₃のメタノール(5mL)溶液を用いて溶出し、濃縮した。

必要であれば、分取TLCまたはHPLCにより精製することにより、目的物を 得た。ESI/MSデータ、収量、および収率を表18にまとめた。

表 18

実施例	化合物番号	分子式 	ESI/MS m/e	収量 (mg)	収率 (%)
822	1805	C21 H21 Br F3 N3 O2 S	516	13.3	76
823	1806	C22 H24 F3 N3 O3 S	468	12.8	81
824	1807	C22 H24 F3 N3 O4 S	484	13.7	83
825	1808	C22 H24 F3 N3 O4 S	484	14.9	91
826	1809	C21 H22 F3 N3 O3 S	454	12.9	84
827	1810	C22 H22 F3 N3 O4 S	482	12.9	79
828	1811	C24 H26 F3 N3 O2 S	478	12.9	79
829	1812	C22 H24 F3 N3 O2 S2	484	5.3	32
830	1813	C23 H26 F3 N3 O2 S	466	12.8	81
831	1814	C23 H24 F3 N3 O3 S	480	9.7	59
832	1815	C23 H26 F3 N3 O2 S	466	12.7	80
833	1816	C24 H28 F3 N3 O2 S	480	14.4	88

835 1818 C21 H22 Br F2 N3 O3 482 13.4 82 836 1819 C22 H25 F2 N3 O4 434 11.7 79 837 1820 C22 H25 F2 N3 O5 450 11.8 77 838 1821 C22 H25 F2 N3 O5 450 13.3 87 839 1822 C21 H23 F2 N3 O4 420 11.9 83 840 1623 C22 H23 F2 N3 O5 448 11.9 78 841 1824 C24 H27 F2 N3 O3 444 9.1 60 842 1825 C22 H25 F2 N3 O3 450 11.3 74 843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O3 432 11.7 80 845 1828 C23 H27 F2 N3 O3 432 11.7 80 845 1829 C24 H29 F2 N3 O3 446 12.7 84 847 1830 C24 H29 F2 N3 O3 446 14.0	834	1817	C25 H30 F3 N3 O2 S	494	14.1	84
836 1819 C22 H25 F2 N3 O4 434 11.7 79 837 1820 C22 H25 F2 N3 O5 450 11.8 77 838 1821 C22 H25 F2 N3 O5 450 13.3 87 839 1822 C21 H23 F2 N3 O4 420 11.9 83 840 1823 C22 H23 F2 N3 O5 448 11.9 78 841 1824 C24 H27 F2 N3 O3 444 9.1 60 842 1825 C22 H25 F2 N3 O3 450 11.3 74 843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O3 432 11.7 80 845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H29 F2 N3 O3 446 10.0			1	<u> </u>		
837 1820 C22 H25 F2 N3 O5 450 11.8 77 838 1821 C22 H25 F2 N3 O5 450 13.3 87 839 1822 C21 H23 F2 N3 O4 420 11.9 83 840 1823 C22 H23 F2 N3 O5 448 11.9 78 841 1824 C24 H27 F2 N3 O3 444 9.1 60 842 1825 C22 H25 F2 N3 O3 450 11.3 74 843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O4 446 12.7 84 845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H29 F2 N3 O3 446 10.0 66 848 1831 C24 H33 F3 O3 446 10.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
838 1821 C22 H25 F2 N3 O5 450 13.3 87 839 1822 C21 H23 F2 N3 O4 420 11.9 83 840 1823 C22 H23 F2 N3 O5 448 11.9 78 841 1824 C24 H27 F2 N3 O3 444 9.1 60 842 1825 C22 H25 F2 N3 O3 430 11.3 74 843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O4 446 12.7 84 845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 446 10.0 66 848 1831 C22 H29 N3 O4 410 10.4 <td< td=""><td></td><td></td><td><u> </u></td><td><u> </u></td><td></td><td></td></td<>			<u> </u>	<u> </u>		
839 1822 C21 H23 F2 N3 O4 420 11.9 83 840 1823 C22 H23 F2 N3 O5 448 11.9 78 841 1824 C24 H27 F2 N3 O3 444 9.1 60 842 1825 C22 H25 F2 N3 O3 450 11.3 74 843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O4 446 12.7 84 845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O5 430 12.1 83 851 1833 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58					_	
840 1823 C22 H23 F2 N3 O5 448 11.9 78 841 1824 C24 H27 F2 N3 O3 444 9.1 60 842 1825 C22 H25 F2 N3 O3 450 11.3 74 843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O4 446 12.7 84 845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H29 N3 O5 428 11.1 76 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
841 1824 C24 H27 F2 N3 O3 444 9.1 60 842 1825 C22 H25 F2 N3 O3 S 450 11.3 74 843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O3 446 12.7 84 845 1828 C23 H27 F2 N3 O3 446 12.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O4 414 10.4 74 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H29 N3 O5 428 11.1 76 853 1836 C23 H29 N3 O5 428 11.1 76						
842 1825 C22 H25 F2 N3 O3 S 450 11.3 74 843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O4 446 12.7 84 845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O5 430 12.1 83 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H39 N3 O5 428 11.1 76 852 1835 C22 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 424 13.3 92						
843 1826 C23 H27 F2 N3 O3 432 10.8 74 844 1827 C23 H25 F2 N3 O4 446 12.7 84 845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O4 414 10.4 74 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 412 11.3 81				•		
844 1827 C23 H25 F2 N3 O4 446 12.7 84 845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O4 414 10.4 74 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O3 412 11.3 81	842			450		74
845 1828 C23 H27 F2 N3 O3 432 11.7 80 846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O4 414 10.4 74 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 412 11.3 81 857 1840 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O3 426 12.9 89 <t< td=""><td>843</td><td>1826</td><td></td><td>432</td><td>10.8</td><td>74</td></t<>	843	1826		432	10.8	74
846 1829 C24 H29 F2 N3 O3 446 14.3 94 847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O4 414 10.4 74 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 412 11.3 81 856 1839 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H33 N3 O3 412 11.3 81 858 1841 C24 H33 N3 O3 426 8.7 60	844	1827	C23 H25 F2 N3 O4	446	12.7	84
847 1830 C24 H29 F2 N3 O3 446 10.0 66 848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O4 414 10.4 74 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 S 430 8.7 60 856 1839 C24 H33 N3 O3 S 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60	845	1828	C23 H27 F2 N3 O3	432	11.7	80
848 1831 C22 H28 Br N3 O3 462 4.8 31 849 1832 C23 H31 N3 O4 414 10.4 74 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 S 430 8.7 60 856 1839 C24 H33 N3 O3 S 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84	846	1829	C24 H29 F2 N3 O3	446	14.3	94
849 1832 C23 H31 N3 O4 414 10.4 74 850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 412 11.3 81 856 1639 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 <	847	1830	C24 H29 F2 N3 O3	446	10.0	66
850 1833 C23 H31 N3 O5 430 12.1 83 851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 S 430 8.7 60 856 1839 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30	848	1831	C22 H28 Br N3 O3	462	4.8	31
851 1834 C23 H31 N3 O5 430 12.0 82 852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 S 430 8.7 60 856 1839 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 8.7 60 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.2 78	849	1832	C23 H31 N3 O4	414	10.4	74
852 1835 C22 H29 N3 O4 400 7.9 58 853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 S 430 8.7 60 856 1839 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 6.1 39	850	1833	C23 H31 N3 O5	430	12.1	83
853 1836 C23 H29 N3 O5 428 11.1 76 854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 S 430 8.7 60 856 1839 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98	851	1834	C23 H31 N3 O5	430	12.0	82
854 1837 C25 H33 N3 O3 424 13.3 92 855 1838 C23 H31 N3 O3 S 430 8.7 60 856 1839 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85 <td>852</td> <td>1835</td> <td>C22 H29 N3 O4</td> <td>400</td> <td>7.9</td> <td>58</td>	852	1835	C22 H29 N3 O4	400	7.9	58
855 1838 C23 H31 N3 O3 S 430 8.7 60 856 1839 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	853	1836	C23 H29 N3 O5	428		76
856 1839 C24 H33 N3 O3 412 11.3 81 857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	854	1837	C25 H33 N3 O3	424	13.3	92
857 1840 C24 H31 N3 O4 426 12.9 89 858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	855	1838	C23 H31 N3 O3 S	430	8.7	60
858 1841 C24 H33 N3 O3 413 12.8 91 859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	856	1839	C24 H33 N3 O3	412	11.3	81
859 1842 C25 H35 N3 O3 426 8.7 60 860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	857	1840	C24 H31 N3 O4	426	12.9	89
860 1843 C25 H35 N3 O3 426 12.2 84 861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	858	1841	C24 H33 N3 O3	413	12.8	91
861 1844 C26 H37 N3 O3 440 11.3 76 862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	859	1842	C25 H35 N3 O3	426	8.7	60
862 1845 C31 H37 Br N4 O2 577 6.4 30 863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	860	1843	C25 H35 N3 O3 .	426	12.2	84
863 1846 C23 H28 F3 N3 O2 S 480 12.8 81 864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	861	1844	C26 H37 N3 O3	440	11.3	76
864 1847 C25 H31 F2 N3 O3 460 12.2 78 865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	862	1845	C31 H37 Br N4 O2	577	6.4	30
865 1848 C27 H29 N3 O4 460 6.1 39 866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	863	1846	C23 H28 F3 N3 O2 S	480	12.8	81
866 1849 C29 H31 N3 O2 454 15.1 98 867 1850 C28 H31 N3 O2 442 12.7 85	864	1847	C25 H31 F2 N3 O3	460	12.2	78
867 1850 C28 H31 N3 O2 442 12.7 85	865	1848	C27 H29 N3 O4	460	6.1	39
	866	1849	C29 H31 N3 O2	454	15.1	98
000 1051 000 001 000 140 140	867	1850	C28 H31 N3 O2	442	12.7	85
000 1001 C20 H31 N3 U2 442 14.3 95	868	1851	C28 H31 N3 O2	442	14.3	95
869 1852 C28 H29 N3 O3 456 3.4 22	869	1852	C28 H29 N3 O3	456	3.4	22
870 1853 C27 H29 N3 O6 S 524 15.4 87	870	1853	C27 H29 N3 O6 S	524	15.4	87
871 1854 C29 H31 N3 O4 S 518 15.8 90	871	1854	C29 H31 N3 O4 S	518	15.8	90
872 1855 C28 H31 N3 O4 S 506 17.0 99	872	1855	C28 H31 N3 O4 S	506	17.0	99

282

874 1857 C28 H29 N3 O5 S 520 10.0 57 875 1858 C20 H22 Br2 N4 O2 511 9.3* 37 876 1859 C21 H25 Br N4 O3 461 6.7* 29 877 1860 C21 H25 Br N4 O4 477 9.5* 40 878 1861 C21 H25 Br N4 O4 477 10.0* 42 879 1862 C20 H23 Br N4 O4 477 10.0* 42 879 1862 C20 H23 Br N4 O4 477 3.4* 14 8801 1863 C21 H25 Br N4 O4 475 3.4* 14 8801 1864 C21 H25 Br N4 O2 477 3.9* 16 882 1865 C22 H25 Br N4 O2 472 7.0* 29 883 1866 C23 H29 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 473 7.6* 32 885 1868 C24 H31 Br N4 O2 467 9.1* 37 886 1869 C20 H22 Br I N4 O3 509 9.2* 37 886 1871 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 899 1872 C21 H25 I N4 O4 525 5.9* 23 899 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O3 509 9.2* 37 891 1874 C21 H25 I N4 O4 525 5.9* 23 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O3 509 9.2* 32 894 1877 C22 H27 I N4 O2 525 4.3* 17 894 1877 C22 H23 I N4 O4 523 8.2* 32 895 1878 C21 H25 I N4 O2 525 4.3* 17 896 1879 C23 H29 I N4 O2 525 4.3* 17 897 1880 C24 H31 I N4 O2 525 5.9* 32 899 1876 C21 H25 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O3 525 5.9* 32 899 1879 C22 H27 I N4 O2 525 4.3* 17 899 1880 C21 H25 I N4 O3 521 8.4* 33 899 1880 C21 H25 I N4 O3 521 8.4* 33 899 1880 C22 H25 I N4 O3 521 8.4* 33 899 1880 C22 H25 I N4 O3 521 8.4* 33 899 1880 C22 H25 I N4 O3 521 8.4* 33 899 1880 C22 H25 I N4 O3 521 8.4* 33 899 1880 C22 H25 I N4 O3 521 8.4* 33 899 1880 C23 H29 I N4 O2 521 8.1* 32 899 1880 C22 H25 I N5 O5 428 5.7* 26 900 1883 C21 H25 N5 O6 444 8.2* 36 900 1883 C21 H25 N5 O6 444 8.2* 36 900 1886 C20 H23 N5 O5 444 13.2* 58 900 1889 C21 H25 N5 O6 444 13.2* 58 900 1890 C22 H25 N5 O4 426 11.3* 51 900 1890 C22 H27 N5 O4 426 5.5* 25 900 1890 C22 H27 N5 O4 426 5.5* 25 900 1890 C22 H27 N5 O4 426 5.5* 25 910 1890 C22 H27 N5 O4 426 5.5* 25 910 1890 C22 H27 N5 O4 426 5.5* 25	873	1856	C28 H31 N3 O4 S	506	3.0	17
875 1858 C20 H22 Br2 N4 O2 511 9.3* 37 876 1859 C21 H25 Br N4 O3 461 6.7* 29 877 1860 C21 H25 Br N4 O4 477 9.5* 40 878 1861 C21 H25 Br N4 O4 477 10.0* 42 879 1862 C20 H23 Br N4 O3 447 7.8* 34 880 1863 C21 H25 Br N4 O4 475 3.4* 14 881 1864 C21 H25 Br N4 O2 477 3.4* 14 881 1865 C22 H25 Br N4 O3 477 6.4* 27 883 1866 C23 H29 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 487 9.1* 37 886 1869 C24 H31 Br N4 O2 487 9.1* 37 886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O4 525 6.3* 32 891 1874 C21 H25 I N4 O2 527 4.3* 17 891 1874 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 525 4.3* 17 895 1876 C23 H27 I N4 O2 525 4.3* 17 896 1879 C23 H27 I N4 O2 525 4.3* 17 897 1880 C24 H25 I N4 O2 525 4.3* 17 898 1887 C22 H25 I N4 O2 525 4.3* 17 899 1800 C23 H25 I N4 O2 525 4.3* 17 891 1874 C21 H25 I N4 O2 525 4.3* 17 895 1876 C21 H25 I N4 O2 525 4.3* 17 896 1879 C23 H27 I N4 O2 521 8.2* 32 897 1880 C23 H27 I N4 O2 521 8.2* 32 898 1881 C24 H31 I N4 O2 521 8.2* 32 899 1882 C24 H25 I N4 O2 521 8.2* 32 899 1883 C21 H25 I N4 O2 521 8.2* 32 899 1880 C23 H27 I N4 O2 521 8.2* 32 890 1880 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H25 I N4 O2 521 8.2* 32 899 1880 C23 H25 I N4 O2 521 8.2* 32 899 1880 C23 H25 I N4 O2 521 8.2* 32 899 1880 C23 H25 I N4 O2 521 8.2* 32 899 1880 C23 H25 I N4 O2 521 8.2* 32 899 1880 C23 H25 I N4 O2 521 8.2* 32 899 1880 C23 H25 I N5 O4 476 5.3* 22 890 1883 C21 H25 N5 O6 444 8.2* 36 900 1883 C21 H25 N5 O6 444 8.2* 36 900 1889 C21 H25 N5 O4 444 8.2* 36 900 1889 C21 H25 N5 O4 444 8.2* 36 900 1889 C21 H25 N5 O4 444 13.2* 58 900 1890 C22 H27 N5 O4 426 11.3* 51 908 1890 C22 H27 N5 O4 426 5.5* 55 909 1890 C22 H27 N5 O4 426 5.5* 55 900 1890 C22 H27 N5 O4 426 5.5* 55 901 1894 C23 H25 N5 O4 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 55 901 1894 C23 H25 N5 O4 440 7.4* 33						
876 1859 C21 H25 Br N4 O3 461 6.7* 29 877 1860 C21 H25 Br N4 O4 477 9.5* 40 878 1861 C21 H25 Br N4 O4 477 10.0* 42 879 1862 C20 H23 Br N4 O3 447 7.8* 34 880 1863 C21 H23 Br N4 O4 475 3.4* 14 881 1864 C21 H25 Br N4 O2 477 3.9* 16 882 1865 C22 H25 Br N4 O3 477 3.9* 16 882 1865 C22 H25 Br N4 O3 473 6.4* 27 883 1866 C23 H29 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 477 7.6* 32 885 1868 C24 H31 Br N4 O2 487 9.1* 37 886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O4 525 5.9* 31 891 1874 C21 H23 I N4 O4 525 6.7* 32 892 1875 C23 H27 I N4 O2 557 7.9* 32 893 1876 C21 H25 I N4 O2 557 7.9* 32 894 1877 C22 H27 I N4 O2 559 6.7* 32 895 1878 C22 H25 I N4 O3 509 9.2* 37 897 1806 C21 H25 I N4 O4 525 6.3* 25 899 1873 C20 H23 I N4 O3 509 9.2* 37 891 1874 C21 H25 I N4 O4 525 6.3* 32 892 1875 C23 H27 I N4 O2 559 6.7* 31 893 1806 C21 H25 I N4 O2 559 6.7* 32 894 1877 C22 H27 I N4 O2 559 6.7* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 525 8.6* 33 897 1880 C24 H31 I N4 O2 557 7.9* 32 898 1881 C24 H31 I N4 O2 555 8.6* 33 899 1882 C20 H22 Br N5 O4 444 8.2* 36 900 1883 C21 H25 N5 O6 444 8.2* 36 901 1884 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H25 N5 O4 446 5.0* 25 906 1889 C21 H25 N5 O4 446 5.5* 25 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O4 440 5.7* 25 909 1893 C23 H25 N5 O4 440 5.7* 25 909 1893 C23 H25 N5 O4 440 5.7* 25 909 1893 C23 H25 N5 O4 440 5.7* 25 909 1893 C23 H25 N5 O4 440 5.7* 25						
877 1860 C21 H25 Br N4 O4 477 9.5* 40 878 1861 C21 H25 Br N4 O4 477 10.0* 42 879 1862 C20 H23 Br N4 O3 447 7.8* 34 880 1863 C21 H23 Br N4 O4 475 3.4* 14 881 1864 C21 H25 Br N4 O2 S 477 3.9* 16 882 1865 C22 H25 Br N4 O2 S 477 3.9* 16 882 1865 C22 H25 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 472 7.0* 29 8864 1867 C23 H29 Br N4 O2 477 7.6* 32 885 1868 C24 H31 Br N4 O2 487 9.1* 37 886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O4 525 5.9* 23 891 1874 C21 H25 I N4 O4 525 6.3* 32 892 1875 C23 H27 I N4 O2 519 6.7* 31 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 525 4.3* 17 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.1* 32 897 1880 C23 H29 I N4 O2 521 8.4* 33 898 1881 C24 H31 I N4 O2 521 8.4* 33 899 1882 C20 H22 Br N4 O3 521 8.4* 33 899 1882 C20 H22 Br N4 O3 521 8.4* 33 899 1880 C23 H29 I N4 O2 521 8.1* 32 899 1880 C23 H29 I N4 O2 525 8.6* 33 899 1880 C24 H25 I N4 O3 521 8.4* 33 899 1880 C25 H25 I N4 O3 521 8.4* 33 899 1880 C25 H25 I N4 O3 521 8.4* 33 899 1880 C23 H29 I N4 O2 525 8.6* 33 899 1880 C24 H25 I N4 O3 521 8.4* 33 899 1880 C25 H25 I N5 O5 428 5.7* 26 900 1883 C21 H25 N5 O5 444 8.2* 36 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 8.2* 36 903 1886 C20 H22 Br N5 O4 446 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H25 N5 O6 444 13.2* 58 906 1889 C21 H25 N5 O4 446 5.0* 22 907 1888 C23 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 900 1893 C23 H25 N5 O4 440 5.7* 25 901 1893 C23 H25 N5 O4 440 5.7* 25 901 1894 C23 H25 N5 O4 440 5.7* 25				<u> </u>		
878				<u> </u>		
879 1862 C20 H23 Br N4 O3 447 7.8* 34 880 1863 C21 H23 Br N4 O4 475 3.4* 14 881 1864 C21 H25 Br N4 O2 S 477 3.9* 16 882 1865 C22 H25 Br N4 O3 473 6.4* 27 883 1866 C23 H29 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 473 7.6* 32 885 1868 C24 H31 Br N4 O2 487 9.1* 37 886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 886 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H23 I N4 O4 523 8.2*						
880		<u> </u>				
881 1864 C21 H25 Br N4 O2 S 477 3.9* 16 882 1865 C22 H25 Br N4 O3 473 6.4* 27 883 1866 C23 H29 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 473 7.6* 32 885 1868 C24 H31 Br N4 O2 487 9.1* 37 886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H25 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
882 1865 C22 H25 Br N4 O3 473 6.4* 27 883 1866 C23 H29 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 473 7.6* 32 885 1868 C24 H31 Br N4 O2 487 9.1* 37 886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H23 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O3 521 8.4* 33 894 1877 C22 H27 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 521 8.4* 3						
883 1866 C23 H29 Br N4 O2 472 7.0* 29 884 1867 C23 H29 Br N4 O2 473 7.6* 32 885 1868 C24 H31 Br N4 O2 487 9.1* 37 886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H25 I N4 O3 523 8.2* 32 892 1875 C23 H27 I N4 O2 521 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.1* 32			<u> </u>			
884 1867 C23 H29 Br N4 O2 473 7.6* 32 885 1868 C24 H31 Br N4 O2 487 9.1* 37 886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H23 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C22 H25 I S N5 O4 476 5.3* 2						L
885						
886 1869 C20 H22 Br I N4 O2 557 8.9* 33 887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H23 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.1* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 <td></td> <td></td> <td></td> <td></td> <td></td> <td>32</td>						32
887 1870 C21 H25 I N4 O3 509 9.2* 37 888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H23 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.6* 33 899 1880 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22						37
888 1871 C21 H25 I N4 O4 525 6.3* 25 889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H23 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36				557		33
889 1872 C21 H25 I N4 O4 525 5.9* 23 890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H23 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 8.7* 40 <				509	9.2*	37
890 1873 C20 H23 I N4 O3 495 7.7* 31 891 1874 C21 H23 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 5.0* 22 <	888			525	6.3*	25
891 1874 C21 H23 I N4 O4 523 8.2* 32 892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 8.7* 40 904 1887 C21 H23 N5 O6 444 5.0* 22 903 1886 C23 H27 N5 O4 438 5.6* 25	889			525	5.9*	23
892 1875 C23 H27 I N4 O2 519 6.7* 26 893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 8.7* 40 904 1887 C21 H23 N5 O5 414 8.7* 40 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O5 444 13.2* 58	890	1873		495	7.7*	31
893 1876 C21 H25 I N4 O2 525 4.3* 17 894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 8.7* 40 904 1887 C21 H23 N5 O6 444 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O5 444 13.2* 58	891	1874	C21 H23 I N4 O4	523	8.2*	32
894 1877 C22 H27 I N4 O2 507 7.9* 32 895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 8.7* 40 904 1887 C21 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 444 13.2* 58 907 1890 C22 H25 N5 O5 440 7.4* 33	892	1875	C23 H27 I N4 O2	519	6.7*	26
895 1878 C22 H25 I N4 O3 521 8.4* 33 896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 426 11.3* 51 908 1891 C22 H27 N5 O4 426 11.3* 51 909 1892 C22 H27 N5 O4 426 5.5* 25 <	893	1876	C21 H25 I N4 O2	525	4.3*	17
896 1879 C23 H29 I N4 O2 521 8.2* 32 897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 426 11.3* 51 908 1891 C22 H27 N5 O4 426 11.3* 51 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 <tr< td=""><td>894</td><td>1877</td><td>C22 H27 I N4 O2</td><td>507</td><td>7.9*</td><td>32</td></tr<>	894	1877	C22 H27 I N4 O2	507	7.9*	32
897 1880 C23 H29 I N4 O2 521 8.1* 32 898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 <tr< td=""><td>895</td><td>1878</td><td>C22 H25 I N4 O3</td><td>521</td><td>8.4*</td><td>33</td></tr<>	895	1878	C22 H25 I N4 O3	521	8.4*	33
898 1881 C24 H31 I N4 O2 535 8.6* 33 899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41 <td>896</td> <td>1879</td> <td>C23 H29 I N4 O2</td> <td>521</td> <td>8.2*</td> <td>32</td>	896	1879	C23 H29 I N4 O2	521	8.2*	32
899 1882 C20 H22 Br N5 O4 476 5.3* 22 900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	897	1880	C23 H29 I N4 O2	521	8.1*	32
900 1883 C21 H25 N5 O5 428 5.7* 26 901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	898	1881	C24 H31 I N4 O2	535	8.6*	33
901 1884 C21 H25 N5 O6 444 8.2* 36 902 1885 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	899	1882	C20 H22 Br N5 O4	476	5.3*	22
902 1885 C21 H25 N5 O6 444 5.0* 22 903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	900	1883	C21 H25 N5 O5	428	5.7*	26
903 1886 C20 H23 N5 O5 414 8.7* 40 904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	901	1884	C21 H25 N5 O6	444	8.2*	36
904 1887 C21 H23 N5 O6 442 7.8* 34 905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	902	1885	C21 H25 N5 O6	444	5.0*	22
905 1888 C23 H27 N5 O4 438 5.6* 25 906 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	903	1886	C20 H23 N5 O5	414	8.7*	40
906 . 1889 C21 H25 N5 O4 S 444 13.2* 58 907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	904	1887	C21 H23 N5 O6	442	7.8*	34
907 1890 C22 H27 N5 O4 426 11.3* 51 908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	905	1888	C23 H27 N5 O4	438	5.6*	25
908 1891 C22 H25 N5 O5 440 7.4* 33 909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	906	1889	C21 H25 N5 O4 S	444	13.2*	58
909 1892 C22 H27 N5 O4 426 5.5* 25 910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	907	1890	C22 H27 N5 O4	426	11.3*	51
910 1893 C23 H29 N5 O4 440 5.7* 25 911 1894 C23 H29 N5 O4 440 9.4* 41	908	1891	C22 H25 N5 O5	440	7.4*	33
911 1894 C23 H29 N5 O4 440 9.4* 41	909	1892	C22 H27 N5 O4	426	5.5*	25
	910	1893	C23 H29 N5 O4	440	5.7*	25
	911		C23 H29 N5 O4	440	9.4*	41

283

912	1895	C24 H31 N5 O4	455	8.5*	37
				1	1

*トリフルオロ酢酸塩の収率。

25

30

[参考例7] <u>2ーカルバモイルー1ー(4ークロロベンジル)ピロリジンの合成</u> d 1 ープロリンアミド・塩酸塩(2.5g、21.8mmol)のアセトニトリ ル (35mL) 溶液に、トリエチルアミン(7.45mL)と4ークロロベンジルクロリド(3.88g、24.1mmol)を加えた。この反応混合物を70℃で4時間、続いて25℃で16時間攪拌した。得られた混合物をジクロロメタン(20mL)で希釈し、水で洗浄した(30mL×3)。有機層を乾燥し(MgSO₄)、濃縮した。クロマトグラフィー(SiO₂、メタノールージクロロメタン)により 2 ーカルバモイルー1ー(4ークロロベンジル)ピロリジンを得た(5.21g、81%)。

[参考例8] 2-(アミノメチル)-1-(4-クロロベンジル) ピロリジンの 合成

2-カルバモイル-1-(4-クロロベンジル) ピロリジンを1M BH₃-TH・15 F (9.4 mL) に溶解し、70℃に加熱した。16時間と25時間後の2回、さらに1M BH₃-THF (0.5当量)を加えた。40時間後1M塩酸を加え、3時間還流させ、3M塩酸(6 mL)を加え、反応物をさらに3時間加熱攪拌した。25℃まで冷却し、6M NaOH水溶液にてアルカリ性とし、ジクロロメタン(4×15 mL)にて抽出した。クロマトグラフィー(SiO₂、PrOH/H₂O/20 NH₄OH=8:1:1)で精製することにより、2-(アミノメチル)-1-(4-クロロベンジル)ピロリジン(1.21g、86%)を得た。

さらに、光学的活性な(S)-2-(アミノメチル)-1-(4-クロロベンジル)ピロリジンと(R)-2-(アミノメチル)-1-(4-クロロベンジル)ピロリジンを、それぞれ相当する原料および反応剤を用いて上記の方法に従って合成した。

(S) $-2-(アミノメチル) -1-(4-クロロベンジル) ピロリジン: {}^{1}H$ NMR(CDCl $_{3}$ 、400MH z) δ 1.40-1.80 (m, 5 H), 1.80-1.95 (m, 1 H), 2.12-2.21 (m, 1 H), 2.48-2.65 (m, 1 H), 2.66-2.78 (m, 2 H), 2.85-2.95 (m, 1 H), 3.26 (d, J = 13.2 Hz, 1 H), 3.93 (d, J = 13.2, 1 H), 7.20-7.40 (m, 4 H)

(R) -2- (アミノメチル) -1- (4-クロロベンジル) ピロリジンは、 (S) - 異性体と同じ 1 H NMRを示した。

 [実施例913]
 2-[(N-ベンゾイルロイシル) アミノメチル] -1-(4

 -クロロベンジル) ピロリジン (化合物番号344) の合成

- 2 (アミノメチル) -1 (4 クロロベンジル) ピロリジン (22.5 mg
 、0.10 mmol) とdl-ベンゾイルロイシン (0.12 mL) のクロロホルム (1 mL) 溶液に、EDCI (23 mg)、HOBt (16.2 mg)、およびトリエチルアミン (15.2 μL) を加え、25℃で16時間攪拌した。この反応混合物を、ジクロロメタン (0.5 mL) で希釈し、2M NaOH水溶液 (0.
- 10 75 m L × 2) で洗浄し、PTF E 膜で濾過することによって乾燥し、濃縮することにより、2-[(N-ベンゾイルロイシル) アミノメチル] -1-(4-クロロベンジル) ピロリジン (化合物番号 3 4 4) を得た (74 m g、定量的)。純度をRPLC/MSにて求めた (85%)。ESI/MS m/e 442 (M++H、C23H32CIN3O2)

15 [実施例914-933]

20

表 19

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
914	330	C21 H24 C1 N3 O2	386	75*	定量的
915	331	C22 H26 C1 N3 O2	400	44*	70
916	332	C24 H30 C1 N3 O5	476	57	定量的
917		C20 H23 C1 N4 O2	387	40	定量的
918	334	C22 H26 C1 N3 O2	400	68	定量的
919		C21 H23 C1 N4 O4	431	73	定量的
920		C22 H23 C1 F3 N3 O2	454	75	定量的
921		C22 H26 C1 N3 O2	400	68	定量的
922	338	C22 H26 C1 N3 O2	400	70	定量的

285

923	341	C22 H26 C1 N3 O2	400	80*	定量的
924	342	C22 H26 C1 N3 O2	400	68	定量的
925	343	C24 H30 C1 N3 O2	428	63	定量的
926	345	C23 H27 C1 N2 O2	399	68*	定量的
927	346	C23 H26 C1 F N2 O3	433	51	定量的
928	347	C24 H29 C1 N2 O2	413	47	定量的
929	348	C23 H27 C1 N2 O2	399	26	定量的
930	349	C21 H25 C1 N2 O3 S	421	42	定量的
931	350	C26 H33 C1 N2 O3	457	12.4	54
932	351	C22 H26 C1 N3 O3	416	34	81
933	352	C22 H25 C12 N3 O3	450	51	定量的

*トリフルオロ酢酸塩の収率。

5

20

[実施例 9 3 4] <u>化合物番号 3 3 9</u>: 8 2 %; ¹H NMR (CDC 1₃) δ 1 . 52-1.75 (m, 4 H), 1.84-1.95 (m, 1 H), 2.10-2.20 (m, 1 H), 2.67-2.78 (m, 1 H), 2.80-2.90 (m, 1 H), 3.10-3.20 (m, 1 H), 3.25 (d, J = 13.1 Hz, 1 H), 3.5 0-3.60 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H); 4.28-4.20 (m, 2 H), 7.00-7.05 (m, 1 H), 7.12-7.29 (m, 4 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 8.10-8.27 (m, 2 H)

[実施例 9 3 5] <u>化合物番号 3 4 0</u>: 6 8 %; ¹H NMR (CDC 1₃) δ 1.5 5-1.73 (m, 4 H), 1.86-1.97 (m, 1 H), 2.12-2.21 (m, 1 H), 2.67-2.76 (m, 1 H), 2.86-2.93 (m, 1 H), 3.14-3.21 (m, 1 H), 3.27 (d, J = 13.1 Hz, 1 H), 3.52-3 .59 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H), 4.09-4.21 (m, 2 H), 7.00-7.07 (m, 1 H), 7.12-7.30 (m, 4 H), 7.50 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.10-8.25 (m, 2 H)

15 [参考例9] <u>3-(アミノメチル)-1-(4-クロロベンジル)ピロリジンの</u> 合成

4-カルボキシー1- (4-クロロベンジル) ピロリジン-2-オン (5.05g、20mmol)、EDCI (2.85g、22mmol)、HOBt (2.97g、22mmol)、およびジクロロメタン (100mL) の混合物に0.5Mアンモニアのジオキサン溶液 (60mL、30mmol) を加えた。この反応混合物を室温で15時間攪拌し、2M HCI (3回) と2M NaOH水溶液 (100mL×4) で洗浄した。有機層を無水硫酸マグネシウムで乾燥、濾過、濃縮す

た。

ることにより、4-カルバモイル-1-(4-クロロベンジル) ピロリジン-2-オン(1.49g) を無色の固体として得た。

4- カルバモイルー1-(4- クロロベンジル)ピロリジンー2- オン (1.49g) のTHF (1.5mL) 溶液に1.0M BH_3 のTHF 溶液 (2.5mL) を加えた。この反応混合物を室温で1.5 時間攪拌した。室温まで冷却後、溶媒を減圧下に除去した。水 (3.0mL) と濃塩酸 (1.0mL) を加え、混合物を1.00 で2時間、室温で1 時間攪拌した。2M NaOH 水溶液 (1.00mL) を加え、酢酸エチル $(5.0mL \times 3)$ で抽出した。有機層を合わせて、 K_2CO_3 で乾燥、濾過、濃縮した。カラムクロマトグラフィー $(SiO_2, 1.5\%$ メタノールー5% トリエチルアミン/ジクロロメタン)で精製することにより、3-(アミノメチル)-1-(4-クロロベンジル)ピロリジン <math>(8.60mg, 1.9%) を無色油状物として得

[参考例10] <u>1-(4-クロロベンジル)-3-[(グリシルアミノ)メチル</u>] ピロリジンの合成

3-(アミノメチル)-1-(4-クロロベンジル) ピロリジン(860mg、3.8mmol)、トリエチルアミン(5.7mmol)、N-tert-ブトキシカルボニルグリシン(704mg)、EDCI(594mg)、HOBt(673mg)、およびジクロロメタン(20mL)の混合物を室温で15時間攪拌した。ジクロロメタン(50mL)を加え、溶液を2M NaOH水溶液(50mL×2)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、3-[[N-(tert-ブトキシカルボニル)グリシル]アミノメチル]-1-(4-クロロベンジル)ピロリジン(1.31g、90%)を得た。

3-[[N-(tert-ブトキシカルボニル) グリシル] アミノメチル] -1 - (4-クロロベンジル) ピロリジン (804mg、2.11mmol) のメタノ 25 ール (10mL) 溶液に4M HClのジオキサン溶液 (5mL) を加えた。室温で3.5時間攪拌した後、濃縮し、1M NaOH水溶液 (20mL) を加えた。ジクロロメタン (20mL×3) で抽出し、抽出物を合わせて、硫酸ナトリウムで乾燥、濃縮することにより、1-(4-クロロベンジル) -3-[(グリシルアミノ)メチル] ピロリジン (599mg、100%) を得た。純度をRPLC/MS 100%) にて求めた (100%)。ESI/MS m/e 282.2 (M++H、C14H20C1N3O)

287

[実施例936] 3-[[N-[3-トリフルオロメチルベンゾイル) グリシル
] アミノメチル] -1-(4-クロロベンジル) ピロリジン (化合物番号1463)
) の合成

3-(トリフルオロメチル) ベンゾイルクロリド (0.058mmol) のジクロロメタン (0.2mL) 溶液を、1-(4-クロロベンジル) -3-[(グリシルアミノ) メチル] ピロリジン (0.050mmol) のクロロホルム (0.2m L) 溶液とピペリジノメチルポリスチレン (60mg) のジクロロメタン (1mL) 溶液の混合物に加えた。この反応混合物を室温で2.5時間攪拌した後、メタノール (0.30mL) を加え、この反応混合物をVarianTM SCXカラムに負荷し、メタノール (15mL) で洗浄した。生成物を、2M NH₃のメタノール (5mL) 溶液を用いて溶出し、濃縮することにより、 (3-[[N-[3-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル) ピロリジン (化合物番号1463) を得た (22.4mg、99%)。純度をRPLC/MSにて求めた (97%)。ESI/MS m/e 454.2 (M++H、C22H23C1F3N3O2)

[実施例937-944]

5

10

15

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例936の方法に従って合成した。ESI/MSデータ、収量、および収率を表20にまとめた。

20 表 20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
937	1464	C22 H23 C1 F3 N3 O3	470.0	21.0	89
938	1465	C23 H22 C1 F6 N3 O2	522.0	24.5	94
939	1466	C21 H23 Br Cl N3 O2	466.0	20.8	90
940	1467	C21 H23 C12 N3 O2	420.0	19.6	93
941	1468	C21 H23 Cl N4 O4	431.2	19.5	91
942	1469	C22 H22 Cl F4 N3 O2	472.0	21.8	92
943	1470	C21 H22 C13 N3 O2	456.0	22.1	97
944	1471	C21 H22 C1 F2 N3 O2	422.0	20.9	99

[実施例945] 3-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル)

<u>グリシル] アミノメチル] -1- (4-クロロベンジル) ピロリジン (化合物番号</u> 1506) の合成

1-(4-クロロベンジル) -3-[(グリシルアミノ)メチル] ピロリジン(
0.050mmol)のクロロホルム(1.35mL)とtertーブタノール(
5 0.05mL)の溶液に、2-アミノ-4,5-ジフルオロ安息香酸(0.060mmol)、ジイソプロピルカルボジイミド(0.060mmol)およびHOB
t(0.060mmol)を加えた。この反応混合物を室温で19時間攪拌した後、VarianTM SCXカラムに負荷し、メタノール/クロロホルム=1:1(10mL)とメタノール(10mL)で洗浄した。生成物を、2M NH3のメタノール(5mL)溶液を用いて溶出し、濃縮することにより、3-[[N-[2-アミノー4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-クロロベンジル)ピロリジン(化合物番号1506)を得た(22.0mg、定量的)。純度をRPLC/MSにて求めた(92%)。ESI/MS m/e 437(M+H、C21H23CIF2N4O2)

15 [実施例946-952]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例945の方法に従って合成した。ESI/MSデータ、収量、および収率を表21にまとめた。

表 21

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
946	1506	C21 24 Br Cl N4 O2	481	20.6	86
947	1507	C21 H24 F Cl N4 O2	419	21.7	定量的
948	1509	C27 H28 C1 N3 O2	462	26.5	定量的
949	1510	C21 H24 Cl I N4 O2	527	22.0	84
950	1511	C19 H21 Br Cl N3 O2 S	472	23.7	定量的
951	1512	C21 H24 C12 N4 O2	435	22.3	定量的
952	1513	C27 H28 C1 N3 O4 S	526	24.6	94

[参考例11] 1-(4-2)ロロベンジル) ニペコチン酸の合成

4-クロロベンジルクロリド (6. 42g、39. 9mmol) と i Pr $_{2}$ NE t (7. 74g、40. 0mmol) を、ニペコチン酸エチル (6. 29g、40.

Ommol) のアセトニトリル (15mL) 溶液に加えた。この反応混合物を70 ℃で1. 5時間攪拌した後、溶媒を減圧下に除去した。残査に飽和NaHCO3水溶 液(50mL)を加え、酢酸エチル(100mL)で抽出した。有機層を飽和Na HCO₃水溶液で洗浄し、Na₂SO₄で乾燥した。溶媒を減圧下に除去することによ り、1-(4-クロロベンジル)ニペコチン酸エチルを赤黄色の油状物として得た (11.0g、97.8%)。このものは精製することなく使用した。純度をRP LC/MSにて求めた (97%)。ESI/MS m/e 382.2 (M++H、 $C_{15}H_{21}CINO_2$

LiOH(1.66g)のH₂O(25mL)溶液を、1-(4-クロロベンジル) ニペコチン酸エチルのTHF(60mL)溶液に加えた。この反応混合物を室温 10 で1.5時間攪拌した。溶媒を減圧下に除去しアモルファス状固体を得た。カラム クロマトグラフィー(SiO₂、50%メタノールージクロロメタン)にて精製し、 1- (4-クロロベンジル) ニペコチン酸 (9.75g、98.2%) を黄白色ア モルファス状固体として得た。純度をRPLC/MSにて求めた(>95%)。E SI/MS m/e 254. 0 (M++H, $C_{13}H_{17}CINO_2$) 15 [参考例12] 1-(4-2)000 1-(1-2)00 1-(1-2)1 1-(1-2)2 1-(1-2)2 1-(1-2)3 1-(1-2)3 1-(1-2)4 1-(1-2)5 1-(1-2)6 1-(1-2)7 1-(1-2)7 1-(1-2)8 1-(1-2)7 1-(1-2)8 1-(1-2)8 1-(1-2)9 1-(1-2)

ボニル) アミノ] ピペリジンの合成

 $_{17}H_{26}CIN_{2}O_{2}$

30

 $1-(4-\rho \mu \nu \nu)$ ニペコチン酸 (7.06g, 27.8mmol) のな BuOH (500mL) 溶液に、トリエチルアミン (3.38g) と活性化した3 モレキュラーシーブ (30g) を加えた。ジフェニルホスホリルアジド (8.58 20 g)を加え、この反応混合物を還流下、18時間攪拌した。冷却し、溶媒を減圧下 に除去した後、残査を酢酸エチル(500mL)に溶解し、有機層を飽和NaHC O₃水溶液(100mL×2)と食塩水(50mL)で洗浄、乾燥(Na₂SO₄)、 滅圧下に濃縮した。クロマトグラフィー(SiO₂、25%酢酸エチルーヘキサン) 25 により精製し、1- (4-クロロベンジル) -3- [(tert-ブトキシカルボ ニル) アミノ] ピペリジン(2.95g、32.6%) を白色結晶質固体として得 $t_{\rm c}^{1}$ H NMR (CDC $t_{\rm c}^{1}$ 3 0 0 MH $t_{\rm c}^{2}$) $t_{\rm c}^{1}$ 1.4-1.75 (br. 4 H), 2.2-2.7 (br, 4 H), 3.5 (br, 2 H), 3.8 (br, 4 H), 7.3 (br, 4 H);純度をRPLC/MS にて求めた (>99%)。ES1/MS m/e 269.2 (M++H-56、C

[参考例13] 3-アミノー1-(4-クロロベンジル) ピペリジンの合成

290

 $1-(4-\rho \Box \Box \sim) -3-[(tert- \Box \wedge +) +) -3 - [(tert- \Box \wedge +) +) -3 -]$ ピペリジン (2.55g,7.85mmol) のメタノール (25mL) 溶液に、 $1MHCl-Et_2O(50mL)$ を加えた。この反応混合物を25 で 15 時間攪拌した。溶媒を減圧下に除去し、3-r ミノー $1-(4-\rho \Box \sim)$ ピペリジン・二塩酸塩をアモルファス状固体として得た(2.49g、定量的)。純度をRPLC/MSにて求めた(>95%)。ESI/MS m/e 225.2 $(M^++H,C_{12}H_{18}ClN_2)$

[実施例953]1-(4-クロロベンジル) - 3-[[N-(3-メチルベンゾイル) グリシル] アミノ] ピペリジン (化合物番号355) の合成

N- (3-メチルベンゾイル) グリシン (10.6mg、0.055mmol) 、EDCI (10.5mg) および1-ヒドロキシベンゾトリアゾール水和物 (7.4g) を、1- (4-クロロベンジル) -3-アミノピペリジン・二塩酸塩 (14.9mg、0.050mmol) とトリエチルアミン (15.2mg)のクロロホルム (2.5mL) 溶液に加えた。この反応混合物を25℃で16時間攪拌し、2 N NaOH水溶液 (2mL×2) と食塩水 (1mL) で洗浄した。PTF E膜による濾過後、溶媒を減圧下に除去し、1- (4-クロロベンジル) -3- [N- (3-メチルベンゾイル) グリシル] アミノ] ピペリジン (化合物番号355) を得た (17.4mg、87%)。純度をRPLC/MSにて求めた (97%)。ESI/MS m/e 400.0 (M*+H、C22H26C1N3O2)

20 [実施例954-982]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例953の方法に従って合成した。ESI/MSデータ、収量、および収率を表22にまとめた。また、化合物番号358は下記の¹H NMRを示した。

表 22

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
954	354	C21 H24 Cl N3 O2	386	16.1	83
955	356	C20 H23 C1 N4 O2	387	19.4	100
956	357	C22 H26 C1 N3 O2	400	16.8	84
957	359	C22 H26 Cl N3 O2	400	8.9	17
958	360	C22 H25 C1 N4 O4	445	25.6	定量的

291

WO 00/69432 PCT/JP00/03203

959	361	C23 H27 C1 N2 O2	399	15.5	29
960	362	C24 H29 C1 N2 O3	429	12.4	58
961	363	C21 H25 C1 N2 O2 S	405	22.2	定量的
962	364	C24 H29 C1 N2 O4	445	20.7	93
963	365	C24 H29 Cl N2 O2	413	15.6	75
964	366	C23 H26 C1 F N2 O3	433	21.6	100
965	367	C23 H27 C1 N2 O2	399	11.9	60
966	368	C22 H25 C1 N2 O2	385	16.0	83
967	369	C22 H24 C12 N2 O2	419	13.9	60
968	370	C26 H33 C1 N2 O3	457	15.9	54
969	371	C25 H31 C1 N2 O3	443	19.6	84
970	372	C21 H25 C1 N2 O3 S	421	23.0	定量的
971	373	C23 H28 C1 N3 O2	414	19.1	92
972	374	C24 H30 C1 N3 O3	444	18.6	84
973	375	C23 H27 C12 N3 O2	448	18.0	80
974	376	C24 H30 C1 N3 O3	444	19.6	88
975	377	C25 H31 C12 N3 O2	476	20.7	87
976	378	C27 H33 C1 F N3 O2	486	23.9	98
977	379	C25 H30 C1 N3 O3	456	33.3	定量的
978	380	C24 H30 C1 N3 O2	428	9.8	46
979	381	C21 H26 Cl N3 O3 S	436	10.3	47
980	382	C22 H26 C1 N3 O3	416	24.4	定量的
981	383	C22 H25 C12 N3 O3	450	27.5	定量的

[実施例982] <u>化合物番号358</u>: 88%; 1 H NMR (CDC1 $_{3}$) δ 1.5 3-1.75 (m, 4 H), 2.12-2.20 (m, 1 H), 2.37-2.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 4.06-4.20 (m, 3 H), 7.10-7.13 (m, 1 H), 7.18-7.30 (m, 4 H), 7.59 (t, J = 7.8 Hz, 1 H), 7.79 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.11 (s, 1 H) [参考例14] <u>1 - ベンジルー4ー [[Nー(tertーブトキシカルボニル)</u> グリシル] アミノ] ピペリジンの合成

5

4-アミノー1-ベンジルピペリジン(3.80g、20mmol)のジクロロ
 10 メタン(40mL)溶液に、N-(tert-プトキシカルボニル)グリシン(3.48g、20mmol)、EDCI(4.02g、21mmol)、およびHOBt(2.83g、21mmol)を加えた。この反応混合物を室温で12時間攪

拌した後、2M NaOH溶液を加えた。有機層を分離し、水層をジクロロメタンで抽出した($20mL \times 2$)。有機層を合わせて水(20mL)および食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO_2 、酢酸エチル/メタノール/トリエチルアミン=85:12:3)で精製することにより、1-ベンジル-4-[N-(tert-ブトキシカル

3) で精製することにより、1 ーベンジルー4 - [N-(tertーブトキシカル ボニル) グリシル] アミノピペリジンを得た(6.59g、95%)。

[参考例15] <u>1-ベンジル-4-(グリシルアミノ)ピペリジンの合成</u>

10

15

1-ベンジル-4-[N-(tert-ブトキシカルボニル) グリシル] アミノピペリジン(6.59g)のメタノール(80mL)溶液に、4M HClのジオキサン溶液を加えた。この溶液を室温で2時間攪拌した。濃縮後、2M NaOH水溶液(20mL)を加え、ジクロロメタン(40mL)で抽出し、抽出物を合わせて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル/メタノール/トリエチルアミン=85:12:3)で精製することにより1-ベンジルー4-(グリシルアミノ)ピペリジン(3.91g、83%)を得た: 1 H NMR(CDCl₃、400MHz) δ 1.47-1.59 (m, 2 H), 1.59 (br, 2 H), 1.76-1.96 (m, 2 H), 2.10-2.19 (m, 2 H), 2.75-2.87 (m, 2 H), 3.29 (

r, 2 H), 1.76-1.96 (m, 2 H), 2.10-2.19 (m, 2 H), 2.75-2.87 (m, 2 H), 3.29 (s, 2 H), 3.50 (s, 2 H), 3.65-3.89 (m, 1 H), 7.15-7.23 (m, 1 H), 7.23-7.33 (m, 5 H)

その他の4-アシルアミノ-1-ベンジルピペリジンを、それぞれ対応する原料 20 および反応剤を用いて参考例14と15の方法に従って合成した。

 $4-(\beta-r$ ラニルアミノ)-1-ベンジルピペリジン: 2. 46g、51%(2工程)。

1-ベンジル-4-((S) -ロイシルアミノ)ピペリジン:1.78g、74% (2工程)。

25 1 ーベンジルー4ー((R) ーロイシルアミノ)ピペリジン: 1.48g、61% (2工程)。

[実施例983] <u>4-(N-ベンゾイルグリシル)アミノー1-ベンジルピペリジン (化合物番号386)の合成</u>

塩化ベンゾイル (0.060mmol) のクロロホルム (0.4mL) 溶液を、 30 1ーベンジルー4ー (グリシルアミノ) ピペリジン (0.050mmol) とトリ エチルアミン (0.070mmol) のクロロホルム (1.0mL) 溶液に加えた

293

。この反応混合物を室温で12時間振とうした後、(アミノメチル)ポリスチレン 樹脂(1.04mmol/g、50mg、50mmol)を加え、室温で12時間 振とうした。反応混合物を濾過し、樹脂をジクロロメタン(0.5mL)で洗浄した。濾液と洗液を合わせて、ジクロロメタン(4mL)を加え、溶液を2M Na OH水溶液(0.5mL)で洗浄し、4-(N-ベンゾイルグリシル)アミノー1 ーベンジルピペリジン(化合物番号386)を得た(11.3mg、64%)。純度をRPLC/MSにて求めた(94%)。ESI/MS m/e 352.0(M^++H 、 $C_{21}H_{25}N_3O_2$)

[実施例984-1034]

5

10 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 983の方法に従って合成した。ESI/MSデータ、収量、および収率を表23 にまとめた。

表 23

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
984	384	C22 H26 C1 N3 O2	400	60.0	定量的
985	385	C21 H23 Cl N4 O4	431	58.7	91
986	387	C25 H27 N3 O2	402.5	15.5	77
987	388	C21 H24 N4 O4	397.0	16.2	82
988	389	C23 H27 N3 O4	410.0	16.2	79
989	390	C22 H24 F3 N3 O2	420.0	17.4	83
990	391	C22 H23 F4 N3 O2	438.0	18.4	84
991	.392	C22 H24 F3 N3 O3	436.0	17.1	79
992	393	C21 H24 Br N3 O2	430.0	18.0	84
993	394	C21 H24 C1 N3 O2	386.0	16.4	85
994	395	C21 H24 Br N3 O2	430.0	17.2	80
995	396	C21 H23 F2 N3 O2	388.0	15.1	78
996	397	C21 H23 C12 N3 O2	420.0	11.7	56
997	398	C22 H27 N3 O2	366.0	13.1	72
998	399	C26 H29 N3 O2	416.0	15.8	76
999	400	C22 H26 N4 O4	411.0	17.4	85
1000	401	C24 H29 N3 O4	424.0	16.9	80
1001	402	C23 H26 F3 N3 O2	434.0	17.7	82
1002	403	C23 H25 F4 N3 O2	452.0	18.6	82

1003	404	C23 H26 F3 N3 O3	450.0	17.8	79
1004	405	C22 H26 Br N3 O2	444.0	17.9	81
1005	406	C22 H26 C1 N3 O2	400.0	15.5	78
1006	407	C22 H26 Br N3 O2	444.0	17.8	80
1007	408	C22 H25 F2 N3 O2	402.0	15.6	78
1008	409	C22 H25 C12 N3 O2	434.0	17.6	81
1009	410	C25 H33 N3 O2	408.0	16.2	79
1010	411	C29 H35 N3 O2	458.5	18.8	82
1011	412	C25 H32 N4 O4	453.0	19.4	86
1012	413	C27 H35 N3 O4	466.0	19.8	85
1013	414	C26 H32 F3 N3 O2	476.0	20.2	85
1014	415	C26 H31 F4 N3 O2	494.0	20.5	83
1015	416	C26 H32 F3 N3 O3	492.0	19.5	79
1016	417 ·	C25 H32 Br N3 O2	486.0	19.1	79
1017	418	C25 H32 C1 N3 O2	442.0	17.7	80
1018	419	C25 H32 Br N3 O2	486.0	20.3	83
1019	420	C25 H31 F2 N3 O2	444.0	18.6	84
1020	421	C25 H31 C12 N3 O2	476.0	19.4	81
1021	422	C25 H33 N3 O2	408.0	14.4	71
1022	423	C29 H35 N3 O2	458.0	16.4	72
1023	424	C25 H32 N4 O4	453.0	18.1	80
1024	425	C27 H35 N3 O4	466.0	·16.4	70
1025	426	C26 H32 F3 N3 O2	476.0	17.3	73
1026	427	C26 H31 F4 N3 O2	494.0	18.8	76
1027	428	C26 H32 F3 N3 O3	492.0	18.4	75
1028	429	C25 H32 Br N3 O2	486.0	17.9	74
1029	430	C25 H32 C1 N3 O2	442.0	15.7	71
1030	431	C25 H32 Br N3 O2	486.0	17.7	73
1031	432	C25 H31 F2 N3 O2	444.0	16.6	75
1032	433	C25 H31 C12 N3 O2	476.0	18.7	78
1033	1016	C22 H23 C1 F3 N3 O2	454	32.5*	53
1034	1017	C21 H24 C1 N3 O2	386	55.2*	定量的

^{*}トリフルオロ酢酸塩の収率。

[参考例16] <u>3-カルバモイル-1-(4-クロロベンジル) ピペリジンの合</u> 成

5 ニペコタミド (6.40g、50mmol) のアセトニトリル (150mL) と

PCT/JP00/03203

エタノール(20mL)溶液に、トリエチルアミン(7.0mL、50mmol)と4ークロロベンジルクロリド(8.05g、50mmol)を加えた。この反応混合物を50℃で16時間攪拌した。室温に冷却後、飽和NaHCO3水溶液(50mL)と水(150mL)を加え、酢酸エチル(150mL×3)で抽出し、抽出液を食塩水で洗浄した。Na2SO4で乾燥し、濃縮して淡赤の固体を得た。この粗製固体をエーテル(100mL)で洗浄し、3ーカルバモイルー1ー(4ークロロベンジル)ピペリジンを得た(6.98g、54%)

[参考例17] <u>3-(アミノメチル)-1-(4-クロロベンジル)ピペリジン</u> の合成

10 3-カルバモイルー1ー(4ークロロベンジル)ピペリジン(3.80g、15 mmol)をTHF(30mL)に溶解し、1M BH₃-THF(9.4mL)を加え、70℃で15時間攪拌した。0℃に冷却後、2M塩酸(50mL)を加え、室温でさらに3時間攪拌し、4M NaOH水溶液にてアルカリ性とし、酢酸エチル(100mL×3)で抽出した。抽出液を合わせて食塩水で洗浄し、無水Na₂S O₄で乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル/エタノール/トリエチルアミン=80:15:5)で精製することにより3ー(アミノメチル)−1ー(4ークロロベンジル)ピペリジン(2.05g、55%)を得た: ¹H NMR(CDCl₃、400MH₂)δ 1.00-1.09 (m, 1 H), 1.50-1.87 (m, 7 H), 1.97-2.06 (m, 1 H), 2.65-2.77 (m, 2 H), 3.16-3.26 (m, 2 H), 3.20 32 (s, 2 H), 3.40 (d, J=13.3 Hz, 1 H), 3.49 (d, J=13.3 Hz, 1 H), 7.22-7.33 (m, 5 H)

. . .

[実施例1035] 3-[(N-ベンゾイルグリシル) アミノ] メチル-1-(4-クロロベンジル) ピペリジン (化合物番号434) の合成

塩化ベンゾイル (0.060mmol)のクロロホルム (0.4mL)溶液を、3-[(グリシルアミノ)メチル]-1-(4-クロロベンジル)ピペリジン (0.050mmol)とトリエチルアミン (0.070mmol)のクロロホルム (1.0mL)溶液に加えた。この反応混合物を室温で2.5時間振とうした後、(アミノメチル)ポリスチレン樹脂 (1.04mmol/g、50mg、50mmol)を加え、室温で12時間振とうした。濾過し、樹脂をジクロロメタン (0.5mL)で洗浄した。濾液と洗液を合わせ、ジクロロメタン (4mL)を加えて、2M NaOH水溶液 (0.5mL)で洗浄、濃縮することにより、3-[(N-ベ

ンゾイルグリシル)アミノ] メチルー $1-(4-\rho$ ロロベンジル)ピペリジン(化合物番号434)を得た(14.7mg、74%)。純度をRPLC/MSにて求めた(91%)。ESI/MS m/e 400(M^++H 、 $C_{22}H_{26}ClN_3O_2$)

5 [実施例1036-1058]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1035の方法に従って合成した。ESI/MSデータ、収量、および収率を表 24にまとめた。

表 24

実施例	化合物平尺	ハフーや	EGT /NG /		
大旭門	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1036	435	C26 H28 C1 N3 O2	450	16.0	71
1037	436	C22 H25 C1 N4 O4	445	18.9	85
1038	437	C24 H28 C1 N3 O4	458	18.2	79
1039	438	C23 H25 Cl E3 N3 O2	468	19.0	81
1040	439	C23 H24 C1 F4 N3 O2	486	20.2	83
1041	440	C23 H25 C1 F3 N3 O3	484	18.9	78
1042	441	C22 H25 Br Cl N3 O2	478	19.2	80
1043	442	C22 H25 C12 N3 O2	434	17.3	80
1044	443	C22 H25 Br Cl N3 O2	478	18.8	79
1045	444	C22 H24 C1 F2 N3 O2	436	16.7	77
1046	445	C22 H24 C13 N3 O2	468	17.9	76
1047	446	C23 H28 C1 N3 O2	414	14.6	71
1048	447	C27 H30 C1 N3 O2	464	17.0	73
1049	448	C23 H27 C1 N4 O4	459	19.5	85
1050	449	C25 H30 C1 N3 O4	472	17.1	72
1051	450	C24 H27 C1 F3 N3 O2	482	19.4	81
1052	451	C24 H26 C1 F4 N3 O2	500	18.2	73
1053		C24 H27 C1 F3 N3 O3	498	18.8	76
1054		C23 H27 Br Cl N3 O2	492	19.4	79
1055	. 454	C23 H27 C12 N3 O2	448	16.5	74
1056	455	C23 H27 Br Cl N3 O2	492	19.3	78
1057	456	C23 H26 C1 F2 N3 O2	450	17.1	76
1058	457	C23 H26 C13 N3 O2	482	16.9	70

297

[参考例18] <u>4-(アミノメチル)-1-(4-クロロベンジル) ピペリジンの合成</u>

4-(アミノメチル) ピペリジン(7.00g、61.3mmol)のアセトニトリル(100mL)溶液に、 K_2CO_3 (3.02g)と4-クロロベンジルクロリド(3.52g、21.8mmol)を順に加えた。この反応混合物を 60° で16時間攪拌した後、 25° Cに冷却し、濃縮した。残査をジクロロメタン(75mL)と水(50mL)の間に分画し、水($50mL\times 2$)と食塩水($50mL\times 1$)で洗浄した。有機層を乾燥($MgSO_4$)、濃縮後、クロマトグラフィー(SiO_2 、 $4\%H_2O^{-i}PrOH$)により精製し、4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン(3.58g、69%)を得た。

[実施例1059]4-[(N-ベンゾイルグリシル) アミノ] メチル-1-(4-クロロベンジル)ピペリジン (化合物番号458) の合成

4- (アミノメチル) -1- (4-クロロベンジル) ピペリジン (50mg、021mmol) のジクロロメタン (1mL) 溶液に、馬尿酸 (38mg、0.2 inmol)、EDCI (48mg、0.24mmol)、HOBt (31mg、0.23mmol)、およびトリエチルアミン (38μL、0.27mmol)を加えた。この反応混合物を25℃で16時間振とうした後、1mLのジクロロメタンで希釈し、2M NaOH水溶液 (0.75mL×2)で洗浄し、乾燥(MgSO4)し、濃縮した。クロマトグラフィー(SiO2、6-8%メタノール/ジクロロメタン)で精製することにより4-[(Nーベンゾイルグリシル)アミノ]メチルー1- (4-クロロベンジル)ピペリジン(化合物番号458)を得た。これをTFAにて処理し、TFA塩を得た(105mg、97%)。純度をRPLC/MSにて求めた(85%)。ESI/MS m/e 400(M++H、C22H26ClN3O2)

25 [実施例1060-1086]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1059の方法に従って合成した。ESI/MSデータ、収量、および収率を表25にまとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
,,,,,,,					
1060	459	C23 H28 C1 N3 O2	414	86*	78
1061	460	C23 H28 Cl N3 O2	414	55	定量的
1062	461	C23 H25 C1 F3 N3 O2	468	65	定量的
1063	462	C23 H28 C1 N3 O2	414	61	定量的
1064	463	C23 H28 C1 N3 O2	414	54	定量的
1065	464	C25 H32 C1 N3 O5	490	56	定量的
1066	465	C21 H 25 Cl N4 O2	401	38	96
1067	466	C22 H25 Cl N4 O4	445	15	34
1068	557	C23 H28 C1 N3 O2	414	58*	66
1069	558	C23 H 28 Cl N3 O2	414	55	定量的
1070	618	C25 H32 C1 N3 O2	442	58	定量的
1071	686	C26 H34 C1 N3 O2	456	62	定量的
1072	749	C34 H37 C1 N4 O2	569	7.2*	18
1073	750	C24 H30 Cl N3 O3	444	4.7*	14
1074	840	C24 H29 Cl N2 O2	413	52*	58
1075	841	C23 H27 C1 N2 O2	399	52	定量的
1076	842	C23 H26 C12 N2 O2	433	55	定量的
1077	843	C25 H31 C1 N2 O2	427	58	定量的
1078	844	C24 H29 Cl N2 O2	413	56	定量的
1079	845	C24 H29 C1 N2 O4 S	477	62	定量的
1080	846	C29 H31 C1 N2 O3	491	43	88
1081	847	C24 H28 C1 F N2 O3	447	54	定量的
1082	848	C25 H31 Cl N2·02	427	47	定量的
1083	849	C25 H31 C1 N2 O4	459	55	定量的
1084	850	C22 H27 C1 N2 O3 S	435	46	定量的
1085	873	C20 H28 C1 N3 O2	378	. 44.8	定量的
1086	874	C23 H27 C12 N3 O3	464	51	定量的

[参考例19] 1-(4-)0ロベンジル) -4-[N-(3, 3-)ジフェニルプロピル) アミノメチル] ピペリジンの合成

4-(アミノメチル)-1-(4-クロロベンジル) ピペリジン(120mg)を、NaI(2.6当量)の存在下、アセトニトリル中、<math>70℃で16時間、3,3-ジフェニルプロピルメタンスルホネート(<math>1.0当量)と反応させた。常法処理の後、カラムクロマトグラフィー(SiO_2)で精製することにより、1-(4-0)0ロベンジル)-4-[N-(3,3-ジフェニルプロピル)アミノメチル]ピ

ペリジン (118 m g、54%) を得た。純度は、RPLC/MSで求めた (98%)。

4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン(120mg)をメタノール中、2,2-ジフェニルアセトアルデヒド(0.66当量)とポリマー担持水素ホウ素を用いて25℃で16時間還元的アミノ化反応を行い、次いで常法処理とカラムクロマトグラフィー(SiO₂)により、1-(4-クロロベンジル)-4-[N-(2,2-ジフェニルエチル)アミノメチル]ピペリジン(70mg、49%)を得た。純度は、RPLC/MSで求めた(98%)。

[実施例1087] <u>4-[N-(N-ベンゾイルグリシル)-N-(2,2-ジフェニルエチル)アミノメチル]-1-(4-クロロベンジル)ピペリジン(化合物番号524)の合成</u>

1-(4-クロロベンジル)-4-[N-(2,2-ジフェニルエチル)アミノメチル)ピペリジン(0.084mmol)のジクロロメタン溶液に、馬尿酸(1.1当量)、HBTU(1.1当量)、HOBt(1.1当量)を加えた。この反応混合物を40℃で24時間攪拌した。常法処理と分取TLC(SiO₂)により、4-[N-(N-ベンゾイルグリシル)-N-(2,2-ジフェニルエチル)アミノメチル]-1-(4-クロロベンジル)ピペリジン(化合物番号524)を得た(8.5mg、17%)。純度をRPLC/MSにて求めた(98%)。ES1/MS m/e 580(M++H、C36H38ClN3O₂)

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1 0 8 7 の方法に従って合成した。ESI/MSデータ、収量、および収率を表 2 6 にまとめた。

[実施例1088-1090]

表 26

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1088	521	C38 H39 C1 F3 N3 O2	662	5.5	10
1089	522	C37 H37 C1 F3 N3 O2	648	8.6	16
1090	523	C37 H40 Cl N3 O2	594	4.8	10

[参考例21] <u>1-(4-クロロベンジル)-4-[(バリルアミノ)メチル]</u> ピペリジンの合成

4- (アミノメチル) -1- (4-クロロベンジル) ピペリジン (1. 0g、4

. 2mmol)のジクロロメタン (21mL)溶液に、トリエチルアミン (0.7 6mL、5.44mmol)、dl-N-(tert-ブトキシカルボニル)バリン (1.09g、5.03mmol)、EDCI(883mg、4.61mmol)、およびHOBt(623mg、4.61mmol)を加えた。この反応混合物を25℃で16時間攪拌した後、ジクロロメタン (20mL)で希釈し、2M NaOH溶液 (20mL×2)と食塩水 (20mL×1)で洗浄し、乾燥 (MgSO4

10)し、濃縮した。クロマトグラフィー(SiO_2 、3%メタノール/ジクロロメタン)で精製することにより、1-(4-)クロロベンジル)-4-[[(N-Boc-バリル) アミノ]メチル] ピペリジン(1.1g、60%)を淡琥珀色油状物として得た。ESI/MS m/e 438 (M^++H)

1 - (4 - クロロベンジル) - 4 - [[(N - Boc - バリル) アミノ] メチル

- 15] ピペリジン(1.1g、2.51mmol)を3M HCl-メタノール溶液(25mL)に溶解し、25℃で1時間攪拌した。この反応混合物を濃縮し、得られた塩を'BuOH/H₂O=3:1 (25mL)に溶解した。陰イオン(OH⁻)交換樹脂を、溶液がやや塩基性となるまで加えた。濾過、濃縮することにより、1-(4-クロロベンジル)-4-[(バリルアミノ)メチル]ピペリジン(819mg)
- 20 、97%)を得た。この化合物はこれ以上の精製を必要としなかった。ESI/M S m/e 338.1 (M^++H 、 $C_{18}H_{28}CIN_3O$)

さらに、その他の4-[(アシルアミノ)メチル]-1-(4-クロロベンジル)ピペリジンを、それぞれ対応する原料および反応剤を用いて参考例21の方法に従って合成した。

- 25 1-(4-クロロベンジル)-4-[(グリシルアミノ)メチル]ピペリジン:
 0.830g、67%(2工程)、ESI/MS 269(M++H)
 - 1-(4-0ロロベンジル) -4-[(セリルアミノ) メチル] ピペリジン: 0. 286g、20% (2工程)、ESI/MS 326 (M^++H)
 - 4-[(アラニルアミノ)メチル]-1-(4-クロロベンジル)ピペリジン:
- 30 1.20g、65% (2工程)、ESI/MS 310 (M++H) 1-(4-クロロベンジル)-4-[(プロリルアミノ)メチル]ピペリジン:

301

1. 48g、86% (2工程)、ESI/MS 336 (M++H)

1-(4-クロロベンジル)-4-[(グルタミニルアミノ)メチル]ピペリジ ン: 0. 830g、27% (2工程)、ESI/MS 367 (M++H)

] ピペリジン: 2. 24g、62% (2工程)、ESI/MS 324 (M⁺+H) 1-(4-クロロベンジル)-4-[((O-メチルセリル)アミノ)メチル] ピペリジン: 0. 686g、38% (2工程)、ESI/MS 340 (M⁺+H) 1-(4-クロロベンジル)-4-[((1-アミノシクロプロピルカルボニル) アミノ) メチル] ピペリジン: 2. 03g、82% (2工程)、ESI/MS

 $322 (M^++H)$ 10

. . .

1-(4-クロロベンジル)-4-[(ロイシルアミノ)メチル]ピペリジン:

1. 30g、58% (2工程)、ESI/MS 352 (M++H)

1- (4-クロロベンジル)-4-[((O-ベンジルセリル)アミノ)メチル] ピペリジン: 1. 34g、56% (2工程)、ESI/MS 416 (M⁺+H)

[参考例22] 1-(tert-ブトキシカルボニル)-4-[[N-(9-フ 15 ルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジンの合成

4- (アミノメチル) -1- (tert-ブトキシカルボニル) ピペリジン (5 . 72g) のジクロロメタン (150mL) 溶液に、トリエチルアミン (3.51

g)、N-(9-フルオレニルメチルオキシカルボニル)グリシン(7.93g、

20 26.7mmol)、EDCI(3.80g)、HOBt(4,33g)を加えた 。この反応混合物を室温で18時間攪拌した後、水(100mL×3)と食塩水(100mL×2) で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮した。0℃でアセ トニトリル/メタノール(150mL/1mL)で再結晶し、1-(tert-ブ トキシカルボニル) -4-[[N-(9-フルオレニルメチルオキシカルボニル)

グリシル] アミノメチル] ピペリジン (5.75g、44%) を黄白色の結晶とし 25 て得た。

[参考例23] 4-[[N-(9-フルオレニルメチルオキシカルボニル) グリ シル] アミノメチル] ピペリジンの合成

1 - (tert -)トキシカルボニル) - 4 - [[N - (9 -)ルオレニルメチ ルオキシカルボニル) グリシル] アミノメチル] ピペリジンピペリジン (3.17 30 g、6.42mmol)を、4M HClのジオキサン溶液に加えた。この溶液を 10

15

室温で5時間攪拌後、濃縮し、4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジン(3.85g)を黄白色の固体として得た。この生成物はこれ以上の精製をせずに用いた。

[参考例24] 4-[[N-(9-7)] 4-[N-(9-7)] 4-[N-(9-7)] 4-[N-(9-7)] 1-(4-8) 1-(1-2)

 $4-\left[\left[N-\left(9-\text{フルオレニルメチルオキシカルボニル}\right) \, \mathcal{J} \, \mathcal{J$

4-[[N-(9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジン (1.00g、2.33mmol) の2.5%酢酸/メタノール (80mL) 溶液に、4-エチルベンズアルデヒド (1.09g、8.16mmol) とNaBH₃CN (6.59g、10.5mmol) を加えた。この反応混合物を60℃で13時間攪拌した。室温に冷却後、1M NaOH水溶液(50mL)とジクロロメタン (50mL) を加えた。有機層を分離し、水層をジクロロメタン(50mL×3)で抽出した。有機層を合わせて食塩水で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー (SiO₂、メタノール/酢酸エチル=2:8)により1-(4-エチルベンジル)-4-[[N-(9-フ

酢酸エチル=2:8) により1-(4-xチルベンジル)-4-[N-(9-z)]ルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジン (740mg、62%) を得た。

[参考例26] <u>4-[(グリシルアミノ)メチル]-1-(4-メチルチオベン</u> 30 ジル)ピペリジンの合成

4-[[N-(9-フルオレニルメチルオキシカルボニル) グリシル] アミノメ

チル] -1-(4-メチルチオベンジル) ピペリジン (590mg) とピペリジン (1mL) のDMF (4mL) 溶液を60℃で2時間攪拌した。濃縮後、カラムクロマトグラフィー (SiO₂、トリエチルアミン/メタノール/ジクロロメタン=1:1:9) で精製することにより4-[(グリシルアミノ)メチル]-1-(4- メチルチオベンジル) ピペリジン (365mg) を白色の固体として得た。 1H NMR (CDC1₃、270MHz) δ 1.25(dd, J=12 Hz, 4.1 Hz, 2H), 1.34(dd, J=12 Hz, 4.1 Hz, 2H), 1.77(d, J=7.3 Hz, 1H), 1.94(t, J=9.5 Hz, 2H), 2.48(s, 3H), 2.80(d, J=12 Hz, 2H), 3.18(t, J=6.2 Hz, 2H), 3.35(s, 2H), 3.45(s, 2H), 7.18-7.29(m, 4H), 7.3 5(br-s, 1H)

さらに、1-(4-xチルベンジル) -4-[(グリシルアミノ) メチル] ピペリジンを、対応する原料および反応剤を用いて参考例 26 の方法に従って合成した:333 mg、79%。

[参考例27] 4-[(グリシルアミノ)メチル]-1-(4-フルオロベンジ

15 ル) ピペリジンの合成

4-[[N-(9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジン(1.50g、3.49mmol)、4-フルオロベンジルブロミド(0.478mL、3.84mmol)、およびトリエチルアミン(1.47mL、10.5mmol)のアセトニトリル(200mL)溶液を室温で13時間20 攪拌した。カラムクロマトグラフィー(SiO2、10%メタノール/ジクロロメタン)により4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル] アミノメチル] ピペリジンとピペリジンを得た。さらに、4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル] アミノメチル] ピペリジンとピペリジンを得た。さらに、4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル] アミノメチル] ピペリジンとピペリジン(5mL)のDMF(5mL)溶液を室温で17時間攪拌した。濃縮後、カラ25ムクロマトグラフィー(SiO2、トリエチルアミン/メタノール/ジクロロメタン=0.5:2:8) により精製し、4-[(グリシルアミノ) メチル] -1-(4-フルオロベンジル) ピペリジン(453mg、46%)を得た。

[参考例28] 4-[(グリシルアミノ)メチル]-1-(4-N-フェニルカルバモイル) ベンジル] ピペリジンの合成

10

 $5\,\mathrm{mL}$ 、8.88 mmol)、KI($50\,\mathrm{mg}$ 、0.30 mmol)、およびアセトニトリル($200\,\mathrm{mL}$)の混合物に、 $4-(\mathrm{N}-\mathrm{7}\,\mathrm{mmol})$ 、バンジルクロリド($800\,\mathrm{mg}$ 、3.26 mmol)のアセトニトリル($100\,\mathrm{mL}$)溶液を滴下した。この混合物を室温で19時間攪拌し、さらに $60\,\mathrm{C}$ で5時間攪拌した。濃縮後、カラムクロマトグラフィー(SiO_2 、 $5\,\mathrm{Sym}$ メタノール/ジクロロメタンートリエチルアミン/メタノール/ジクロロメタン=2:2:96)により精製し、 $4-[(\mathrm{My}\,\mathrm{my}\,\mathrm{my}\,\mathrm{my}\,\mathrm{my}\,\mathrm{my}]$ インジル] ピペリジン($340\,\mathrm{mg}$ 、 $30\,\mathrm{mg}$)を得た。

[実施例1091] <u>1-(4-クロロベンジル)-4-[[N-(3-シアノベンゾイル) バリル] アミノメチル]</u> ピペリジン (化合物番号619) の合成

1-(4-クロロベンジル)-4-[(バリルアミノ)メチル]ピペリジン(20mg、0.059mmol)のジクロロメタン(0.60mL)溶液に、トリエチルアミン(0.011mL、0.077mmol)、m-シアノ安息香酸(28mg、0.071mmol)、EDCI(13mg、0.065mmol)、および、HOBt(9mg、0.065mmol)を加えた。この反応混合物を25℃で16時間攪拌した。得られた溶液をジクロロメタン(0.75mL)で希釈し、2M NaOH水溶液(0.75mL×2)で洗浄し、PTFE膜で濾過することによって乾燥した。濃縮により1-(4-クロロベンジル)-4-[[N-(3-シアノベンゾイル)バリル]アミノメチル]ピペリジン(化合物番号619)(24.2mg、88%)を得た。これはそれ以上の精製を要しなかった。純度をRPLC/MSにて求めた(85%)。ESI/MS m/e 467(M++H、C26

[実施例1092-1543]

 $H_{31}CIN_4O_2$

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1091の方法に従って合成した。ESI/MSデータ、収量、および収率を表 2 7にまとめた。

表 27

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1092	467	C22 H25 Br Cl N3 O2	478	11	46
1093	468	C24 H31 Cl N4 O2	443	9	41

1094	469	C23 H28 C1 N3 O3	430	7*	27
1095	470	C23 H25 C1 N4 O2	425	21	定量的
1096	471	C24 H28 C1 N3 O4	458	7	29
1097	472	C29 H31 N3 O3	504	5*	21
1098	473	C24 H28 C1 N3 O3	442	16	71
1099	474	C23 H25 C1 F3 N3 O2	468	14	60
1100	475	C25 H32 C1 N3 O2	442	5	22
1101	476	C22 H25 C1 N4 O4	445	4	17
1102	477	C25 H32 C1 N3 O3	458	10*	36
1103	478	C21 H27 C1 N4 O2	403	9	47
1104	479	C20 H24 C1 N3 O3	390	17	87
1105	480	C20 H23 Br Cl N3 O3	470	23	定量的
1106	481	C20 H24 C1 N3 O2 S	406	7	33
1107	482	C21 H26 C1 N3 O2 S	420	9	45
1108	483	C21 H26 C1 N3 O2 S	420	8	40
1109	484	C24 H27 C1 N4 O2	439	9*	34
1110	485	C24 H24 C1 F6 N3 O2	536	13	49
1111	486	C23 H25 C1 N4 O2	425	16	74
1112	487	C22 H25 C12 N3 O2	434	5	24
1113	488	C22 H27 C1 N4 O2	415	7	32
1114	489	C24 H24 C1 F6 N3 O2	536	21	78
1115	490	C24 H30 C1 N3 O3	444	8	35
1116	491	C23 H24 C1 F4 N3 O2	486	19	79
1117	492	C23 H25 C1 F3 N3 O3	484	18	76
1118	493	C23 H24 C12 F3 N3 O2	502	23	92
1119	494	C23 H24 C1 F4 N3 O2	486	19	79
1120	495	C23 H24 C1 F4 N3 O2	486	20	83
1121	496	C23 H24 Cl F4 N3 O2	486	12	48
1122	497	C25 H32 C1 N3 O3	458	4	16
1123	498	C23 H26 C1 F3 N4 O2	483	13	52
1124	499	C24 H31 C1 N4 O2	443	8	36
1125	500	C23 H28 C1 N3 O3	430	10	48
1126	501	C22 H24 Br Cl N4 O4	523	10	39
1127	502	C22 H24 C1 F N4 O4	463	4	17
1128	503	C22 H24 C12 N4 O4	479	12	52
1129	504	C24 H30 C1 N3 O4	460	11	43
1130	505	C22 H24 Br Cl N4 O4	523	2	8
1131	506	C20 H23 C1 N4 O5	435	2	10
1132	507	C21 H26 C1 N3 O3	404	9	44

1	500	Teo			·
1133	508	C24 H26 C1 N3 O2 S	456	1	5
1134	509	C20 H23 Br Cl N3 O2 S		12	48
1135	510	C22 H28 C1 N3 O3	418	9	44
1136	511	C24 H32 C1 N3 O3	446	9	40
1137	512	C25 H29 C1 N4 O2	453	10	45
1138	513	C24 H28 C1 N3 O3	442	9	41
1139	514	C26 H34 C1 N3 O2	456	11	49
1140	515	C23 H28 C1 N3 O3	430	5	24
1141	525	C23 H28 C1 N3 O4 S	478	20	85
1142	526	C20 H24 C1 N3 O3	390	6	31
1143	527	C20 H24 C1 N3 O2 S	406	8	39
1144	528	C25 H30 C1 F3 N4 O4	543	28.2	95
1145	529	C20 H23 C1 N4 O4 S	451	9	39
1146	530	C31 H33 Cl N4 O2	529	5	17
1147	531	C21 H26 C1 N3 O3 S	436	8	37
1148	532	C22 H28 C1 N3 O3	418	8	40
1149	533	C21 H26 C1 N3 O3	404	6	32
1150	534	C21 H25 C1 N4 O5	449	5	20
1151	535	C22 H26 C1 N3 O3 S	448	8	37
1152	536	C23 H31 C1 N4 O2	431	6	28
1153	537	C25 H34 C1 N3 O3	460	8	34
1154	538	C27 H30 C1 N3 O3	480	9	36
1155	539	C22 H25 Cl F3 N3 O3	472	18	75
1156	540	C25 H29 C1 N4 O2	453	8	36
1157	541	C22 H26 C1 N5 O4	460	2.4	10
1158	542	C24 H30 C1 N3 O2	.428	4.6*	51
1159	543	C24 H30 C1 N3 O2	428	20.6*	71
1160	544	C22 H25 C1 F N3 O2	418	15.8*	56
1161	545	C22 H24 C13 N3 O2	468	7.3*	23
1162	546	C22 H24 C13 N3 O2	468	17.4*	55
1163	547	C22 H24 C13 N3 O2	468	14.1*	44
1164	548	C22 H24 C13 N3 O2	468	6.8*	22
1165	549	C22 H24 C12 N4 O4	479	5.7*	18
1166	550	C22 H24 C12 N4 O4	479	18.9*	58
1167	551	C24 H30 C1 N3 O2	428	14.2*	49
1168	552	C24 H27 C1 F3 N3 O2	482	30.6*	94
1169	553	C25 H26 Cl F6 N3 O2	550	38.0*	定量的
1170	554	C24 H26 C1 F N4 O2	457	0.9*	3
1171	555	C24 H26 C12 N4 O2	· 473	11.1*	35
					

1172	556	C25 H29 C1 N4 O2	453	12.5*	41
				<u> </u>	72
1173	559	C25 H26 C1 F6 N3 O2	550	15	
1174	560	C24 H27 C1 N4 O2	439	12	68
1175	561	C23 H27 Br Cl N3 O2	494	14	73
1176	562	C23 H27 C12 N3 O2	448	13	75
1177	563	C25 H26 C1 F6 N3 O2	550	14	66
1178	564	C25 H32 C1 N3 O3	458	5	28
1179	565	C24 H26 C1 F4 N3 O2	500	12	61
1180	566	C24 H27 C1 F3 N3 O3	498	12	62
1181	567	C24 H26 C12 F3 N3 O2	516	12	61
1182	568	C24 H26 C1 F4 N3 O2	500	15	77
1183	569	C24 H26 C1 F4 N3 O2	500	11	59
1184	570	C24 H26 C1 F4 N3 O2	500	16	84
1185	571	C26 H34 C1 N3 O3	472	14	77
1186	572	C24 H28 C1 F3 N4 O2	497	11	55
1187	573	C21 H25 Br Cl N3 O2 S	500	12	64
1188	574	C21 H25 Br Cl N3 O2 S	500	15	75
1189	575	C25 H34 C1 N3 O3	460	16	87
1190	576	C22 H28 C1 N3 O2 S2	466	13	71
1191	577	C22 H28 C1 N3 O3	418	12	72
1192	578	C25 H28 C1 N3 O2 S	470	15	81
1193	579	C25 H29 Cl N4 O2	453	17	94
1194	580	C22 H28 C1 N3 O2 S	434	15	91
1195	581	C21 H26 C1 N3 O2 S	420	13	80
1196	582	C22 H28 C1 N3 O2 S	434	10	59
1197	583	C26 H31 C1 N4 O2	467	6	31
1198	584	C30 H32 C1 N3 O3	518	18	92
1199	585	C24 H27 C1 N4 O2	439	14	85
1200	586	C23 H27 C12 N3 O2	448	17	97
1201	587	C24 H27 C1 F3 N3 O2	482	17	91
1202	588	C23 H29 Cl N4 O2	429	5	29
1203	589	C27 H36 C1 N3 O2	470	4	24
1204	590	C26 H34 C1 N3 O2	456	6	36
1205	591	C25 H33 Cl N4 O2	457	7	38
1206	592	C24 H30 C1 N3 O3	444	4	20
1207	593	C24 H30 C1 N3 O3	444	2	14
1208	594	C23 H28 C1 N3 O3	430	4	25
1209	595	C25 H30 C1 N3 O4	472	7	38
1210	596	C25 H30 Cl N3 O3	456	7	40
					

1211	597	C25 H30 C1 N3 O3	456	15	85
1212	598	C21 H26 C1 N3 O3	404	15	94
1213	599	C22 H29 C1 N4 O2	417	5	30
1214	600	C21 H25 Br Cl N3 O3	484	6	34
1215	601	C24 H30 C1 N3 O3	444	5	28
1216	602	C25 H33 C1 N4 O2	457	5	28
1217	603	C23 H29 C1 N4 O2	429	4	22
1218	604	C21 H27 C1 N4 O2	403	9	58
1219	605	C21 H26 C1 N3 O3	404	17	87
1220	606	C21 H26 C1 N3 O2 S	420	15	74
1221	607	C22 H28 C1 N3 O3 S	450	31	定量的
1222	608	C23 H30 C1 N3 O3	432	17	80
1223	609	C22 H28 C1 N3 O3	418	18	89
1224	610	C23 H28 C1 N3 O3 S	462	20	86
1225	611	C26 H36 C1 N3 O3	474	21	90
1226	612	C28 H32 C1 N3 O3	494	20	84
1227	613	C23 H27 C1 F3 N3 O3	486	19	81
1228	614	C24 H33 C1 N4 O2	445	23	定量的
1229	615	C25 H29 C1 N4 O2	453	4	20
1230	616	C32 H35 C1 N4 O2	543	11	40
1231	617	C25 H27 C1 F3 N3 O2	482	6.7	37
1232	620	C25 H31 Br Cl N3 O2	520	15	49
1233	621	C25 H31 C12 N3 O2	476	18	64
1234	622	C27 H37 C1 N4 O2	485	14	50
1235	623	C26 H34 C1 N3 O3	472	19	69
1236	624	C25 H31 Cl N4 O4	487	21	73
1237	625	C25 H33 C1 N4 O2	457	19	69
1238	626	C27 H30 C1 F6 N3 O2	578	8	25
1239	627	C27 H36 C1 N3 O3	486	16	55
1240	628	C27 H34 C1 N3 O4	500	24	80
1241	629	C26 H30 C1 F4 N3 O2	528	18	56
1242	630	C26 H31 C1 F3 N3 O3	526	21	68
1243	631	C26 H30 C12 F3 N3 O2	544	15	48
1244	.632	C26 H30 C1 F4 N3 O2	528	13	41
1245	633	C26 H30 C1 F4 N3 O2	528	20	63
1246	634	C26 H30 C1 F4 N3 O2	528	19	62
1247	635	C28 H38 C1 N3 O3	500	11	36
1248	636	C26 H34 C1 N3 O2	456	21	89
1249	637	C26 H31 C1 F3 N3 O2	510	20	95

1250	638	C26 H31 C1 N4 O2	467	15	54
1251	639	C27 H37 C1 N4 O2	485	19	66
1252	640	C26 H34 C1 N3 O3	472	16	56
1253	641	C27 H34 C1 N3 O4	500	18	59
1254	642	C32 H36 C1 N3 O3	546	24	73
1255	643	C26 H31 Cl F3 N3 O2	510	16	54
1256	644	C29 H40 C1 N3 O2	498	18	61
1257	645	C25 H33 C1 N4 O2	457	22	78
1258	646	C26 H34 C1 N3 O3	472	13	47
1259	647	C27 H34 C1 N3 O3	500	13	46
1260	648	C28 H38 C1 N3 O2	484	17	60
1261	649	C28 H38 C1 N3 O3	500	12.5	42
1262	650	C32 H36 C1 N3 O3	546	1*	2
1263	651	C28 H35 C1 N4 O2	495	4*	12
1264	652	C25 H31 Cl N4 O4	487	5*	14
1265	653	C30 H42 C1 N3 O3	528	1*	3
1266	654	C27 H34 C1 N3 O3	484	7*	21
1267	655	C26 H32 C1 F3 N4 O2	525	6*	16
1268	656	C23 H30 C1 N3 O3	432	6*	18
1269	657	C23 H30 C1 N3 O2 S	448	4*	13
1270	658	C27 H33 C1 N4 O2	48	1*	4
1271	659	C23 H29 C1 N4 O4 S	493	4*	10
1272	660	C34 H39 C1 N4 O2	571	3*	7
1273	661	C24 H32 C1 N3 O3 S	478	3*	7
1274	662	C25 H34 C1 N3 O3	460	2*	6
1275	663	C24 H32 C1 N3 O3	446	2*	5
1276	664	C24 H31 C1 N4 O5	491	2*	5
1277	665	C25 H32 C1 N3 O3 S	490	1*	3
1278	666	C26 H37 C1 N4 O2	473	3*	7
1279	667	C30 H36 C1 N3 O3	522	3*	7
1280	668	C25 H31 C1 F3 N3 O3	514	2*	6
1281	669	C24 H33 C1 N4 O2	445	15*	45
1282	670	C23 H29 Br Cl N3 O3	510	3*	7
1283	671	C23 H29 C1 N4 O5	477	2*	5
1284	672	C23 H31 C1 N4 O2	431	2*	7
1285	673	C23 H30 C1 N3 O2 S	448	2*	6
1286	674	C24 H32 C1 N3 O2 S	462	3*	9
1287	675	C24 H32 C1 N3 O2 S	462	1*	4
1288	676	C27 H33 C1 N4 O2	482	2*	6
	L				

1289	677	C28 H35 C1 N4 O2	495	2*	6
1290	678	C24 H32 C1 N3 O3	446	3*	9
1291	679	C27 H32 C1 N3 O2 S	498	1*	3
1292	680	C23 H29 Br C1 N3 O2 S	526	2*	6
1293	681	C25 H34 C1 N3 O3	460	. 2*	5
1294	682	C27 H38 C1 N3 O3	488	2*	4
1295	683	C24 H32 C1 N3 O2 S2	494	1*	4
1296	684	C26 H36 C1 N3 O4 S2	554	2*	5
1297	685	C24 H32 C1 N3 O4 S2	526	3*	7
1298	687	C25 H30 C1 N3 O2	440	24	定量的
1299	688	C27 H28 C1 F6 N3 O2	576	28	98
1300	689	C26 H29 C1 N4 O2	465	23	99
1301	690	C25 H29 Br Cl N3 O2	518	26	99
1302	691	C27 H35 C1 N4 O2	483	24	97
1303	692	C26 H32 C1 N3 O3	470	24	定量的
1304	693	C27 H28 C1 F6 N3 O2	576	16	55
1305	694	C27 H34 C1 N3 O3	484	25	定量的
1306	695	C27 H32 C1 N3 O4	498	12	47
1307	696	C26 H29 C1 F3 N3 O3	524	25	95
1308	697	C26 H29 Cl N4 O2	465	15	б4
1309	698	C27 H35 Cl N4 O2	483	24	定量的
1310	699	C26 H32 C1 N3 O3	470	26	定量的
1311	700	C27 H32 C1 N3 O4	498	15	62
1312	701	C27 H32 C1 N3 O3	482	11	44
1313	702	C26 H29 C1 F3 N3 O2	508	23	94
1314	703	C28 H36 C1 N3 O2	482	26	定量的
1315	704	C25 H29 Cl N4 O4	485	11	43
1316	705	C24 H30 Cl N3 O2 S	460	25	定量的
1317	706	C24 H30 C1 N3 O2 S	460	25	定量的
1318	707	C26 H29 C1 F3 N3 O2	508	. 15	, 55
1319	708	C23 H27 Br Cl N3 O2 S	526	25	92
1320	709	C24 H30 Cl N3 O2 S2	492	26	定量的
1321	710	C23 H27 Br Cl N3 O2 S	526	25	94
1322	711	C25 H32 Cl N3 O3	458	26	定量的
1323	712	C27 H30 C1 N3 O2 S	496	26	定量的
1324	713	C24 H30 C1 N3 O3	444	26	定量的
1325	714	C28 H33 C1 N4 O2	493	12	50
1326	715	C23 H28 C1 N3 O2 S	446	24	定量的
1327	716	C27 H31 C1 N4 O2	479	32	定量的
		•			

	212	1000 1100 01 111 05			
1328	717	C23 H27 C1 N4 O5	475	23	95
1329	718	C23 H29 C1 N4 O2	429	24	定量的
1330	719	C23 H28 C1 N3 O3	430	24	定量的
1331	720	C23 H27 Br Cl N3 O3	510	24	95
1332	721	C24 H31 C1 N4 O2	443	22	98
1333	722	C26 H32 C1 N3 O3	470	9	37
1334	723	C25 H31 C1 N4 O2	455	10	44
1335	724	C29 H38 C1 N3 O2	496	28	定量的
1336	725	C32 H34 Cl N3 O3	544	26	95
1337	726	C27 H33 C1 N4 O3	497	3	11
1338	727	C25 H29 C12 N3 O2	474	25	定量的
1339	728	C25 H31 C1 N4 O2	455	21	92
1340	729	C25 H29 C1 N4 O4	485	26	定量的
1341	730	C25 H29 C12 N3 O2	474	21	90
1342	731	C27 H32 C1 N3 O3	482	10	41
1343	732	C26 H28 C1 F4 N3 O2	526	27	定量的
1344	733	C28 H36 C1 N3 O3	498	22	89
1345	734	C26 H28 C1 F4 N3 O2	526	25	94
1346	735	C26 H28 C1 F4 N3 O2	526	23	87
1347	736	C26 H30 Cl F3 N4 O2	523	24	78
1348	737	C26 H28 C1 F4 N3 O2	526	21	66
1349	738	C25 H32 C1 N3 O3	458	23	84
1350	739	C27 H31 C1 N4 O2	479	19	66
1351	740	C24 H31 C1 N4 O5	489	23	77
1352	741	C23 H27 C1 N4 O4 S	491	26	88
1353	742	C24 H30 C1 N3 O3 S	476	23	82
1354	743	C23 H28 Cl N3 O3	430	21	81
1355	744	C26 H32 C1 N3 O2	454	25	91
1356	745	C27 H36 C1 N3 O3	486	23	80
1357	746	C26 H35 C1 N4 O2	471	27	96
1358	747	C25 H29 C1 F3 N3 O3	512	23	74
1359	748	C23 H28 C1 N3 O2 S	446	22	82
1360	751	C24 H30 C1 N3 O3	444	3	11
1361	752	C25 H26 C1 F6 N3 O3	566	7	20
1362	753	C24 H27 C1 N4 O3	455	6	22
1363	754	C23 H27 C12 N3 O3	464	8	29
1364	755	C24 H30 C1 N3 O4	460	б	22
1365	756	C23 H27 C1 N4 O5	475	5	18
1366	757	C25 H32 Cl N3 O4	474	5	18
L		<u> </u>	LL		

1367	758	C25 H30 C1 N3 O5	100		
1368	759		488	5	18
		C24 H27 C1 F3 N3 O4	514	6	20
1369	760	C24 H26 Cl F4 N3 O3	516	6	18
1370	761	C24 H26 C1 F4 N3 O3	516	3	10
1371	762	C24 H27 C1 F3 N3 O3	498	2	95
1372	763	C23 H28 C1 N3 O3	430	4	95
1373	764	C24 H30 C1 N3 O2	428	9	42
1374	765	C25 H32 C1 N3 O2	442	10	47
1375	. 766	C25 H29 C1 F3 N3 O2	496	10	42
1376	767 、	C25 H32 C1 N3 O4 S	506	8	32
1377	768	C24 H29 Br Cl N3 O2	506	9	35
1378	769	C25 H29 C1 F3 N3 O3	512	6	22
1379	770	C25 H28 C1 F4 N3 O2	514	3	10
1380	771	C25 H28 C1 F4 N3 O2	514	10	37
1381	772	C25 H29 C1 F3 N3 O2	496	8	33
1382	773	C26 H36 C1 N3 O3	474	10	41
1383	774	C23 H30 C1 N3 O2 S2	480	12	50
1384	775	C27 H38 Cl N3 O3	488	14	57
1385	776	C29 H34 Cl N3 O3	508	12	49
1386	777	C24 H29 C1 F3 N3 O3	500	22	87
1387	778	C24 H28 C12 N4 O4	507	6	22
1388	779	C24 H29 C12 N3 O2	462	10	46
1389	780	C24 H29 C1 N4 O4	473	15	65
1390	781	C26 H31 C1 N4 O2	467	7*	20
1391	782	C25 H32 C1 N3 O3	458	8*	23
1392	783	C26 H34 Cl N3 O3	472	7*	19
1393	784	C26 H31 C1 F3 N3 O2	510	7*	17
1394	785	C26 H34 Cl N3 O4	488	6*	17
1395	786	C24 H28 C1 N3 O2	426	22	9
1396	787	C25 H30 C1 N3 O2	440	21	94
1397	788	C25 H27 C1 F3 N3 O2	494	4 *	14
1398	789	C25 H30 Cl N3 O4 S	504	9	35
1399	790	C24 H27 C12 N3 O2	460	5*	16
1400	791	C24 H27 C1 N4 O4	471	3*	10
1401	792	C25 H27 C1 F3 N3 O3	510	5*	16
1402	793	C25 H26 C1 F4 N3 O2	511	5*	16
1403	794	C25 H26 C1 F4 N3 O2	512	5*	16
1404	795	C25 H27 C1 F3 N3 O2	494	6*	21
1405	796	C23 H28 C1 N3 O2 S2	478	4 *	14
L		4	<u>-</u>	· · · · · · · · · · · · · · · · · · ·	

1406	797	C27 H36 C1 N3 O3	486	7*	29
1407	798	C29 H32 C1 N3 O3	506	3	13
1407	790	C24 H27 C1 F3 N3 O3	498	3*	11
1409	800	C24 H26 C12 N4 O4	505	5*	15
1410	801	C24 H20 C12 N4 O4	465	12	41
		C25 H30 C1 N3 O3	456	5*	
1411	802			6*	15
1412	803	C26 H32 C1 N3 O3	470	L	16
1413	804	C26 H29 C1 F3 N3 O2	508	8*	20
1414	805	C26 H32 C1 N3 O4	486	6*	15
1415	806	C24 H27 Br Cl N3 O2	506	5*	14
1416	807	C27 H32 C1 N5 O3	510	29.7	定量的
1417	808	C26 H33 C1 N4 O3	485	29.9	定量的
1418	809	C25 H30 C12 N4 O3	505	30.2	定量的
1419	810	C30 H35 C1 N4 O4	551	31.0	定量的
1420	811	C25 H29 C12 N5 O5	550	30.4	定量的
1421	812	C24 H31 C1 N4 O3 S2	523	25.0	88
1422	813	C26 H30 C1 F3 N4 O3	539	20.5	70
1423	814	C26 H30 C1 F3 N4 O4	555	22.7	75
1424	815	C26 H29 C1 F4 N4 O3	557	25.8	85
1425	816	C26 H30 Cl F3 N4 O3	539	25.3	86
1426	817	C26 H29 C1 F4 N4 O3	557	26.8	88
1427	818	C25 H30 Br Cl N4 O3	551	27.1	90
1428	819	C27 H29 C1 F6 N4 O3	607	13.9	42
1429	820	C25 H30 C1 N5 O5	516	14.1	51
1430	821	C24 H28 C12 N4 O5	523	40	86
1431	822	C23 H30 C1 N3 O3 S2	496	41	93
1432	823	C26 H31 C1 N4 O3	483	43	定量的
1433	824	C27 H38 C1 N3 O4	503	37	83
1434	825	C29 H34 C1 N3 O4	524	28	61
1435	826	C24 H29 C1 F3 N3 O4	516	40	87
1436	827	C26 H31 Cl N4 O3	483	31	72
1437	828	C25 H29 C1 F3 N3 O4	528	40	86
1438	829	C25 H28 Cl F4 N3 O3	530	45	97
1439	830	C25 H28 C1 F4 N3 O3	530	35	74
1440	831	C24 H29 Br Cl N3 O3	523	45	98
1441	832	C24 H29 C12 N3 O3	478	38	91
1442	833	C24 H29 C1 N4 O5	488	38	87
1443	834	C25 H29 C1 F3 N3 O3	512	42	93
1444	835	C24 H30 C1 N3 O3	444	43	定量的
	L		L		

1445	836	C25 H32 C1 N3 O3	458	27	01
1446	837	C25 H29 C1 F3 N3 O3	512	37	91
1447	838	C26 H34 C1 N3 O4		41	91
1448	839	C27 H36 C1 N3 O6	488	34	78
1449	942	C27 H30 C1 N3 O6	534	37	71
			578	17	48
1450	997	C26 H34 C1 N3 O2	456	7.6*	23
	998	C27 H33 C1 F3 N3 O2	524	6	15
1452	999	C27 H36 C1 N3 O2	470	8	24
1453	1000	C27 H36 C1 N3 O3	486	9	24
1454	1001	C28 H38 C1 N3 O3	500	4	10
1455	1002	C27 H33 C1 F3 N3 O3	540	9	23
1456	1003	C28 H38 C1 N3 O2	484	7	21
1457	1004	C28 H38 C1 N3 O4	516	11	30
1458	1005	C29 H40 C1 N3 O5	547	9	23
1459	1006	C30 H42 C1 N3 O4	544	8	21
1460	1007	C32 H46 C1 N3 O5	589	7	17
1461	1008	C25 H31 C1 N4 O3	471	25	79
1462	1009	C26 H33 C1 N4 O4	501 [.]	35	97
1463	1010	C27 H35 C1 N4 O4	515	35	9
1464	1011	C27 H35 C1 N4 O3	499	32	54
1465	1012	C27 H35 C1 N4 O5	531	27	77
1466	1013	C28 H37 C1 N4 O6	561	14	37
1467	1014	C29 H39 C1 N4 O5	559	24	66
1468	1015	C31 H43 C1 N4 O6	603	25	65
1469	1018	C26 H34 C1 N3 O4	488	13.0*	39
1470	1019	C28 H38 C1 N3 O5	532	13.4*	37
1471	1020	C25 H32 C1 N3 O4	474	12.7*	40
1472	1021	C26 H28 C1 F6 N3 O4	596	13.8*	34
1473	1022	C25 H32 C1 N3 O4	474	14.2*	37
1474	1023	C25 H32 C1 N3 O2	442	11.5*	32
1475	1024	C26 H34 C1 N3 O5	504	12.0*	30
1476	1025	C27 H36 C1 N3 O4	502	14.7*	37
1477	1026	C29 H40 C1 N3 O5	546	13.5*	32
1478	1027	C26 H34 C1 N3 O4	488	11.9*	31
1479	1028	C27 H30 C1 F6 N3 O4	610	14.6*	31
1480	1029	C25 H32 C1 N3 O3	458	14.0*	38
1481	1030	C24 H27 C1 F3 N3 O3	498	14.0*	35
1482	1031	C24 H30 Cl N3 O3	444	10.4*	29
1483	1032	C25 H32 C1 N3 O4	474	14.9*	39
			L		

1484	1033	C25 H32 C1 N3 O2	442	13.3*	37
1485	1034	C26 H34 C1 N3 O5	504	13.7*	34
1486	1035	C27 H36 C1 N3 O4	502	16.7*	42
1487	1036	C29 H40 C1 N3 O5	547	15.5*	36
1488	1037	C26 H34 C1 N3 O4	488	14.1*	36
1489	1038	C27 H30 C1 F6 N3 O4	610	17.5*	37
1490	1039	C25 H32 C1 N3 O3	458	15.1*	41
1491	1040	C24 H27 C1 F3 N3 O3	498	15.4*	39
1492	1041	C24 H30 C1 N3 O3	444	12.7*	35
1493	1042	C22 H26 Br Cl N4 O2	495	10.4*	25
1494	1043	C22 H26 C12 N4 O2	449	11.1*	29
1495	1044	C23 H29 C1 N4 O2	429	5.2*	14
1496	1045	C23 H29 C1 N4 O3	445	12.4*	33
1497	1046	C22 H25 C13 N4 O2	483	10.0*	25
1498	1047	C24 H31 C1 N4 O2	443	12.1*	32
1499	1048	C25 H33 C1 N4 O5	505	16.1*	39
1500	1049	C23 H28 Br Cl N4 O2	507	12.0*	29
1501	1050	C28 H38 C1 N3 O4	516	39.2*	定量的
1502	1051	C28 H38 C1 N3 O2	484	34.0*	定量的
1503	1052	C29 H40 C1 N3 O5	546	14.5*	39
1504	1053	C30 H42 C1 N3 O4	544	11.8*	32
1505	1054	C32 H46 C1 N3 O5	588	12.2*	31
1506	1055	C29 H40 C1 N3 O4	530	44.5*	定量的
1507	1056	C30 H36 C1 F6 N3 O4	652	46.0*	定量的
1508	1057	C28 H38 C1 N3 O3	500	11.2*	32
1509	1058	C27 H36 C1 N3 O3	486	35.5*	定量的
1510	1059	C27 H33 C1 F3 N3 O3	540	41.4*	定量的
1511	1060	C29 H40 C1 N3 O4	530	13.6*	37
1512	1061	C30 H36 C1 F6 N3 O4	652	44.2*	定量的
1513	1062	C28 H38 C1 N3 O3	500	39.9*	定量的
1514	1063	C27 H36 C1 N3 O3	486	12.0*	35
1515	1064	C27 H33 C1 F3 N3 O3	540	37.8*	定量的
1516	1065	C28 H38 Cl N3 O4	516	12.3*	. 34
1517	. 1066	C28 H38 C1 N3 O2	484	30.7*	90
1518	1067	C29 H40 C1 N3 O5	546	13.8*	37
1519	1068	C30 H42 C1 N3 O4	544	13.1*	35
1520	1069	C32 H46 C1 N3 O5	589	14.1*	35
1521	1070	C29 H34 C1 N3 O3 S2	572	38.3	93
1522	1071	C32 H35 C1 N4 O3	559	39.6	98

3 1 6

1523 1072 C33 H42 C1 N3 O4 580 40.9 98 1524 1073 C35 H38 C1 N3 O4 600 40.5 94 1525 1074 C30 H33 C1 F3 N3 O4 592 38.7 91 1526 1075 C31 H33 C1 F3 N3 O4 604 38 87 1527 1076 C30 H33 C1 N4 O5 565 38.5 94 1528 1077 C31 H33 C1 F3 N3 O3 588 35.8 84 1529 1078 C30 H34 C1 N3 O3 520 34.7 93 1530 1079 C31 H36 C1 N3 O3 534 38.4 定量的 1531 1080 C32 H38 C1 N3 O4 564 39.3 97 1532 1081 C33 H40 C1 N3 O3 498 4.1* 10 1534 1083 C28 H36 C1 N3 O3 498 4.1* 10 1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 BF C1 N4 O5 644 3.4* 7 1539 1129 C31 H32 C1 F4 N3 O3 606 </th <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th>	•					
1525 1074 C30 H33 C1 F3 N3 O4 592 38.7 91 1526 1075 C31 H33 C1 F3 N3 O4 604 38 87 1527 1076 C30 H33 C1 N4 O5 565 38.5 94 1528 1077 C31 H33 C1 F3 N3 O3 588 35.8 84 1529 1078 C30 H34 C1 N3 O3 520 34.7 93 1530 1079 C31 H36 C1 N3 O3 534 38.4 定量的 1531 1080 C32 H38 C1 N3 O4 564 39.3 97 1532 1081 C33 H40 C1 N3 O6 610 45.5 定量的 1533 1082 C28 H36 C1 N3 O3 498 4.1* 10 1534 1083 C28 H36 C1 N3 O3 498 6.4* 16 1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 C12 N4 O5 599 3.4* 8 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606	1523	1072	C33 H42 C1 N3 O4	580	40.9	98
1526 1075 C31 H33 C1 F3 N3 O4 604 38 87 1527 1076 C30 H33 C1 N4 O5 565 38.5 94 1528 1077 C31 H33 C1 F3 N3 O3 588 35.8 84 1529 1078 C30 H34 C1 N3 O3 520 34.7 93 1530 1079 C31 H36 C1 N3 O3 534 38.4 定量的 1531 1080 C32 H38 C1 N3 O4 564 39.3 97 1532 1081 C33 H40 C1 N3 O6 610 45.5 定量的 1533 1082 C28 H36 C1 N3 O3 498 4.1* 10 1534 1083 C28 H36 C1 N3 O3 498 6.4* 16 1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 Br C1 N4 O5 644 3.4* 7 1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 588 6.3* 15	1524	1073	C35 H38 Cl N3 O4	600	40.5	94
1527 1076 C30 H33 C1 N4 O5 565 38.5 94 1528 1077 C31 H33 C1 F3 N3 O3 588 35.8 84 1529 1078 C30 H34 C1 N3 O3 520 34.7 93 1530 1079 C31 H36 C1 N3 O3 534 38.4 定量的 1531 1080 C32 H38 C1 N3 O4 564 39.3 97 1532 1081 C33 H40 C1 N3 O6 610 45.5 定量的 1533 1082 C28 H36 C1 N3 O3 498 4.1* 10 1534 1083 C28 H36 C1 N3 O3 498 6.4* 16 1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 Br C1 N4 O5 644 3.4* 7 1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599	1525	1074	C30 H33 Cl F3 N3 O4	592	38.7	91
1528 1077 C31 H33 Cl F3 N3 O3 588 35.8 84 1529 1078 C30 H34 Cl N3 O3 520 34.7 93 1530 1079 C31 H36 Cl N3 O3 534 38.4 定量的 1531 1080 C32 H38 Cl N3 O4 564 39.3 97 1532 1081 C33 H40 Cl N3 O6 610 45.5 定量的 1533 1082 C28 H36 Cl N3 O3 498 4.1* 10 1534 1083 C28 H36 Cl N3 O3 498 6.4* 16 1535 1125 C30 H32 Cl2 N4 O5 599 3.4* 8 1536 1126 C30 H32 Br Cl N4 O3 559 1.6* 4 1537 1127 C32 H35 Cl N4 O3 559 1.6* 4 1538 1128 C31 H32 Cl F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 Cl F4 N3 O3 599 5.7* 13 1541 1131 C30 H33 Cl2 N3 O3 554 6.4* 16 1542 1132 C31 H33 Cl2 F3 N3 O3 5	1526	1075	C31 H33 C1 F3 N3 O4	604	38	87
1529 1078 C30 H34 C1 N3 O3 520 34.7 93 1530 1079 C31 H36 C1 N3 O3 534 38.4 定量的 1531 1080 C32 H38 C1 N3 O4 564 39.3 97 1532 1081 C33 H40 C1 N3 O6 610 45.5 定量的 1533 1082 C28 H36 C1 N3 O3 498 4.1* 10 1534 1083 C28 H36 C1 N3 O3 498 6.4* 16 1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 Br C1 N4 O5 644 3.4* 7 1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 588 6.3* 15	1527	1076	C30 H33 C1 N4 O5	565	38.5	94
1530 1079 C31 H36 C1 N3 O3 534 38.4 定量的 1531 1080 C32 H38 C1 N3 O4 564 39.3 97 1532 1081 C33 H40 C1 N3 O6 610 45.5 定量的 1533 1082 C28 H36 C1 N3 O3 498 4.1* 10 1534 1083 C28 H36 C1 N3 O3 498 6.4* 16 1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 Br C1 N4 O5 644 3.4* 7 1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 588 6.3* 15	1528	1077	C31 H33 Cl F3 N3 O3	588	35.8	84
1531 1080 C32 H38 C1 N3 O4 564 39.3 97	1529	1078	C30 H34 C1 N3 O3	520	34.7	93
1532 1081 C33 H40 C1 N3 06 610 45.5 定量的 1533 1082 C28 H36 C1 N3 03 498 4.1* 10 1534 1083 C28 H36 C1 N3 03 498 6.4* 16 1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 Br C1 N4 O5 644 3.4* 7 1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 554 6.4* 16 1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1530	1079	C31 H36 C1 N3 O3	534	38.4	定量的
1533 1082 C28 H36 C1 N3 O3 498 4.1* 10 1534 1083 C28 H36 C1 N3 O3 498 6.4* 16 1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 Br C1 N4 O5 644 3.4* 7 1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 588 6.3* 15	1531	1080	C32 H38 Cl N3 O4	564	39.3	97
1534	1532	1081	C33 H40 Cl N3 O6	610	45.5	定量的
1535 1125 C30 H32 C12 N4 O5 599 3.4* 8 1536 1126 C30 H32 Br C1 N4 O5 644 3.4* 7 1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 554 6.4* 16 1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1533	1082	C28 H36 Cl N3 O3	498	4.1*	10
1536 1126 C30 H32 Br C1 N4 O5 644 3.4* 7 1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 554 6.4* 16 1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1534	1083	C28 H36 Cl N3 O3	498	6.4*	16
1537 1127 C32 H35 C1 N4 O3 559 1.6* 4 1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 554 6.4* 16 1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1535	1125	C30 H32 C12 N4 O5	599	3.4*	8
1538 1128 C31 H32 C1 F4 N3 O3 606 4.3* 10 1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 554 6.4* 16 1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1536	1126	C30 H32 Br Cl N4 O5	644	3.4*	7
1539 1129 C31 H32 C1 F4 N3 O3 606 5.9* 14 1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 554 6.4* 16 1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1537	1127	C32 H35 C1 N4 O3	559	1.6*	4
1540 1130 C30 H33 Br C1 N3 O3 599 5.7* 13 1541 1131 C30 H33 C12 N3 O3 554 6.4* 16 1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1538	1128	C31 H32 C1 F4 N3 O3	606	4.3*	10
1541 1131 C30 H33 C12 N3 O3 554 6.4* 16 1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1539	1129	C31 H32 C1 F4 N3 O3	606	5.9*	14
1542 1132 C31 H33 C1 F3 N3 O3 588 6.3* 15	1540	1130	C30 H33 Br Cl N3 O3	599	5.7*	13
	1541	1131	C30 H33 C12 N3 O3	554	6.4*	16
1543 1167 C27 H34 C1 N3 O3 484 1.8* 4	1542	1132	C31 H33 C1 F3 N3 O3	588	6.3*	15
	1543	1167	C27 H34 C1 N3 O3	484	1.8*	4

*トリフルオロ酢酸塩の収率。

[実施例1544] 1-(4-クロロベンジル)-4-[N-(3,5-ビス(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合

5 物番号1213)の合成

3, 5ービス(トリフルオロメチル)ベンゾイルクロリド(0.058mmol)のジクロロメタン(1mL)溶液を、1-(4-クロロベンジル)-4-[(グリシルアミノ)・メチル]ピペリジン(0.050mmol)、クロロホルム(0.2mL)、ピペリジノメチルポリスチレン(58mg)、ジクロロメタン(0.7 10 5mL)の混合物に加えた。この反応混合物を室温で2時間攪拌した後、メタノール(1.0mL)を加え、室温で30分攪拌した。反応混合物をVarian™SCXカラムに負荷し、メタノール(16mL)で洗浄した。生成物を、2MNH3のメタノール(6mL)溶液を用いて溶出し、濃縮することにより、1-(4-クロロベンジル)-4-[[N-(3,5-ビス(トリフルオロメチル)ベンゾイル

3 1 7

) グリシル] アミノメチル] ピペリジン(化合物番号 $1\,2\,1\,3$)($2\,4$. $0\,m\,g$,90%)を得た。純度をRPLC/MSにて求めた($1\,0\,0\,\%$)。ESI/MSm/e $5\,3\,6$. $2\,(M^++H,C_{2\,4}H_{2\,4}Cl\,F_6N_3O_2)$

[実施例1545-1547]

5 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1544の方法に従って合成した。ESI/MSデータ、収量、および収率を表 2 8にまとめた。

表 28

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1545	1214	C23 H24 Cl F4 N3 O3	486.2	22.2	91
1546	1215	C22 H24 C13 N3 O2	467.9	20.9	89
1547	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

10

[実施例1548] <u>4-[[N-(3-プロモ-4-メチルベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル) ピペリジン (化合物番号1113) の合成</u>

1-(4-クロロベンジル) -4-[(グリシルアミノ)メチル)ピペリジン(
0.050mmol)のクロロホルム(1.35mL)およびtertーブタノール(0.15mL)の溶液に、3-ブロモー4-メチル安息香酸(0.060mmol)、ジイソプロプルカルボジイミド(0.060mmol)、およびHOBt(0.060mmol)を加えた。この反応混合物を室温で15時間攪拌した。混合物をVarian TM SCXカラムに負荷し、メタノール/クロロホルム=1:1
(12mL)およびメタノール(12mL)で洗浄した。生成物を、2M NH3のメタノール(5mL)溶液を用いて溶出し、濃縮することにより、4-[[N-(3-ブロモー4-メチルベンゾイル)グリシル]アミノメチル]ー1-(4-クロロベンジル)ピペリジン(化合物番号1113)を得た(16.1mg、65%)。純度をRPLC/MSにて求めた(95%)。ESI/MS m/e 494.

25 0 $(C_{23}H_{27}BrClN_3O_2)$

[実施例1549-1619]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1

3 1 8

548の方法に従って合成した。必要であれば、分取TLCにより精製して目的物を得た。ESI/MSデータ、収量、および収率を表29にまとめた。

化合物番号1422は化合物番号1418の副生成物として得られた: 5.6 mg、収率25%; ESI/MS m/e 447.2 (C₂₂H₂₇ClN₄O₂S)

表 29

physics fol	11. A 41 = 17		ESI/MS m/e	dra PR	de etc.
実施例	化合物番号	分子式	ESTAMS WAS	収量 (mg)	収率 (%)
1549	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
1550	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
1551	1116	C ₂₃ H ₂₇ ClIN ₃ O ₂	539.1	21.9	81
1552	1117	C ₂₃ H ₂₇ C1N ₄ O ₄	459.2	18.7	81
1553	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
1554	1188	C ₂₄ H ₂₇ C1N ₄ O ₃	455.2	17.2	76
1555	1189	C ₂₅ H ₂₉ ClN ₄ O ₃	469.2	21.1	90
1556	1190	C ₂₂ H ₂₆ C1FN ₄ O ₂	433.2	20.4	94
.1557	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0.	22.5	90
1558	1242	C ₂₃ H ₂₇ C1FN ₃ O ₂	432.2	21.2	98
1559	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
1560	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
1561	1245	C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂	451.0	21.3	94
1562	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
1563	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	524.0	24.7	94
1564	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
1565	1282	C ₂₅ H ₂₆ C1F ₃ N ₄ O ₃	523.2	25.0	96
1566	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
1567	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
1568	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
1569	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	.514.0	27.2	定量的
1570	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
1571	1344	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
1572	., 1345	C ₂₃ H ₂₈ ClN ₃ O ₂	430.2	23.8	定量的
1573	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	定量的
1574	1350	$C_{21}H_{26}ClN_3O_2S$	420.0	13.0	. 62
1575	1354	C ₂₄ H ₂₈ BrClN ₄ O ₃	537.2	5.2	19
1576	1358	C ₂₃ H ₂₆ ClN ₅ O ₂	440.2	21.8	99
1577	1383	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0	20.0	80
1578	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87

3 1 9

1579	1385	C ₂₈ H ₃₀ ClN ₃ O ₄ S	540.2	23.8	88
1580	1386	C ₂₈ H ₃₀ ClN ₃ O ₂	476.0	20.0	84 ·
1581	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
1582	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	44
1583	1436	C29 H30 C1 N3 O3	504.2	26.8	定量的
1584	1600	C23 H26 C1 F3 N4 O2	483.2	16.5	68
1585	1601	C23 H26 C1 F3 N4 O3	499.0	20.0	80
1586	1602	C21 H24 Br Cl N4 O2	481.0	18.1	75
1587	1603	C21 H24 C12 N4 O2	435.0	5.5	25
1588	1604	C27 H30 C1 N3 O3	492.0	18.6	76
1589	1605	C21 H27 C1 N4 O2	415.2	18.1	87
1590	1609	C23 H25 N3 O2 S	500.0	18.3	73
1591	1659	C22 H26 C12 N4 O2	449.0	366.0	83
1592	1664	C24 H29 F3 N4 O2 S	495.2	13.7	55
1593	1665	C24 H29 F3 N4 O3 S .	511.2	14.9	58
1594	1666	C23 H28 F2 N4 O2 S	463.2	12.9	· 56
1595	1667	C22 H27 Br2 N3 O3	542	26.1	96
1596	1668	C24 H30 F2 N4 O2	445	22.9	定量的
1597	1669	C24 H31 F N4 O2	427	24.0	定量的
1598	1670	C24 H31 I N4 O2	535	28.1	定量的
1599	1671	C25 H31 F3 N4 O3	493	26.8	定量的
1600	1672	C25 H31 F3 N4 O2	478	24.7	定量的
1601	1673	C24 H29 Br Cl N3 O2	508	24.9	98
1602	1674	C20 H22 Br2 F N3 O3	532 .	25.6	96
1603	1675	C22 H25 F3 N4 O2	435	21.5	99
1604	1676	C22 H26 F2 N4 O2	417	21.4	定量的
1605	1677	C22 H26 Br F N4 O2	479	23.4	98
1606	1678	C22 H26 F I N4 O2	525	27.4	定量的
1607	1679	C22 H26 C1 F N4 O2	433	22.4	定量的
1608	1680	C23 H26 F4 N4 O3	483	25.5	定量的
1609	1681	C23 H26 F4 N4 O2	467	23.2	99
1610	1682	C23 H26 Br Cl F N3 O	498	24.2	98
1611	1683	C27 H28 Br2 N4 O4	633	31.8	定量的
1612	1684	C29 H31 F2 N5 O3	536	28.3	定量的
1613	1685	C29 H32 F N5 O3	518	31.1	定量的
1614	1686	C29 H32 Br N5 O3	578	29.6	定量的
1615	1687	C29 H32 I N5 O3	626	32.4	定量的
1616	1688	C29 H32 C1 N5 O3	534	28.2	定量的
1617	1689	C30 H32 F3 N5 O4	584	31.7	定量的

320

1618	1690	C30 H32 F3 N5 O3	568	30.6	定量的
1619	1691	C29 H30 Br Cl N4 O3	599	31.4	定量的

例えば、化合物番号 $1\ 2\ 4\ 5\ 2\ 1\ 6\ 0\ 0\ d$ 下記のNMRスペクトラムを示した。 化合物番号 $1\ 2\ 4\ 5\ :\ ^1$ H NMR($2\ 7\ 0$ MH $2\ 、CDC 1_3$) δ 1. 20-1: $97\ (m$, 7H), $2.\ 80$ - $2.\ 86\ (m, 2H)$, $3.\ 19\ (t, J=6.5\ Hz, 2H)$, $3.\ 43\ (s, 2H)$, $4.\ 02\ (d, J=5.3\ Hz, 2H)$, $5.\ 52\ (br\ s, 2H)$, $6.\ 44\ (d, J=11.9, 6.6\ Hz, 1H)$, $7.\ 02\ (br\ s, 1H)$, $7.\ 21$ - $7.\ 32\ (m, 5H)$

化合物番号 $1\ 6\ 0\ 0\ :\ ^1\ H$ NMR($2\ 7\ 0\ MH\ z$ 、CDC $1\ _3$) δ 1.25-1.97 (m , 9H), 2.82-2.87 (m, 2H), 3.21 (t, $J=6.5\ Hz$, 2H), 3.44 (s, 2H), 4.06 (d, $J=5.1\ Hz$, 2H), 5.98 (br s, 1H), 6.71 (d, $J=8.3\ Hz$, 1H), 6.87 (br s, 1H), 7.26 (s, 4H), 7.43 (dd, $J=5.9\ Hz$, 1H), 7.64 (s, 1H)

 [実施例1620]
 1-(4-クロロベンジル) -4-[[N-(4-イソプロ ピルフェニルスルホニル) グリシル] アミノメチル] ピペリジン (化合物番号86

 9)
 の合成

10

25

1-(4-クロロベンジル)-4-[(グリシルアミノ)メチル]ピペリジン(15 14.8mg、0.05mmol)のクロロホルム(2mL)溶液に、(ピペリジノメチル)ポリスチレン樹脂(28mg、2.8mmol/g)と4-イソプロピルベンゼンスルホニルクロリド(1.5当量)を加え、25℃で16時間攪拌した。濾過後、濃縮することにより、1-(4-クロロベンジル)-4-[[N-(4-イソプロピルフェニルスルホニル)グリシル]アミノメチル]ピペリジン(化合20 物番号869)(22.1mg、92%)を得た。純度をRPLC/MSにて求めた(86%)。ESI/MS m/e 478(M++H、C24H32N3O3S)「実施例1621-1627]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1620の方法に従って合成した。ESI/MSデータ、収量、および収率を表30にまとめた。

表 30

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1621	865	C22 H28 Cl N3 O3 S	450	16.2	72

1622	866	C22 H25 C1 F3 N3 O3 S	504	8.8	35
1623	867	C23 H24 C1 F6 N3 O3 S	572	8.0	28
1624	868	C23 H30 C1 N3 O3 S	464	9.6	41
1625	870	C22 H28 C1 N3 O3 S	450	8.8	39
1626	871	C25 H34 C1 N3 O3 S	492	11.1	45
1627	872	C21 H26 C1 N3 O3 S	436	9.6	44

1 ー (4 ークロロベンジル) ー4ー [(グリシルアミノ) メチル] ピペリジン (14.8 mg、0.05 mmol) のクロロホルム (2 m L) 溶液に、(ピペリジノメチル) ポリスチレン樹脂 (28 mg、2.8 mmol/g)、3ー(トリフルオロメチル) フェニルイソシアネート (1.3当量)を加え、25℃で16時間攪拌した。(アミノメチル) ポリスチレン樹脂を加え、25℃で16時間攪拌した。(アミノメチル) ポリスチレン樹脂を加え、25℃で16時間攪拌し、残のイソシアネートを捕捉した。濾過および濃縮により、1ー(4ークロロベンジル)ー4ー [[2ー(3ー(4ートリフルオロメチルフェニル) ウレイド) アセチルアミノ] メチル] ピペリジン (化合物番号852) (19 mg、78%)を得た。純度をRPLC/MSにて求めた (92%)。ESI/MS m/e 483(M+H、C23H26ClF3N4O2)

15 [実施例1629-1641]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1628の方法に従って合成した。ESI/MSデータ、収量、および収率を表31にまとめた。

表 31

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1629	851	C23 H26 Cl F3 N4 O2	483	13.2	55
1630	853	C22 H27 Cl N4 O2	416	8.5*	32
1631	854	C23 H29 C1 N4 O2	429	11.4*	42
1632	855	C23 H29 C1 N4 O2	429	10.1*	37
1633	856	C24 H29 C1 N4 O3	457	10.3*	36
1634	857	C23 H29 Cl N4 O3	445	10.9*	39

322

1635	858	C23 H29 C1 N4 O3	445	8.6*	31
1636	859	C22 H26 C12 N4 O2	449	11.0*	39
1637	860	C23 H26 C1 N5 O2	440	9.2*	33
1638	861	C22 H27 C1 N4 O S	431	13.3	62
1639	862	C23 H29 C1 N4 O S	445	15.3	69
1640	863	C23 H29 C1 N4 O2 S	461	14.7	64
1641	864	C23 H29 C1 N4 O2 S	461	13.1	57

*トリフルオロ酢酸塩の収率。

5

15

20

25

[実施例1642]1-(4-クロロベンジル) -4-[[N-(3-エトキシ ベンゾイル) -D-フェニルアラニル] アミノメチル] ピペリジン (化合物番号2 091) の合成

1-(4-クロロベンジル)-4-(アミノメチル)ピペリジン(100mg)のクロロホルム (3mL)溶液に、トリエチルアミン(0.090mL)、N-(tert-ブトキシカルボニル)-D-(フェニルアラニン)(122mg)、EDCI(89mg)、およびHOBt(62mg)を加え、室温で17時間攪拌した。この反応混合物を1M NaOH水溶液(2mL×2)と食塩水(2mL)で洗浄し、有機層を乾燥、濃縮することにより、1-(4-クロロベンジル)-4-[[N-(tert-ブトキシカルボニル)-D-フェニルアラニル]アミノメチル]ピペリジンを得た。

得られた残さと3-xトキシ安息香酸($80\,\mathrm{mg}$ 、 $0.48\,\mathrm{mmol}$)のクロロホルム溶液($1\,\mathrm{mL}$)にトリエチルアミン($0.090\,\mathrm{mL}$)、EDCI($90\,\mathrm{mg}$)、およびHOBt($68\,\mathrm{mg}$)を加え、室温で $17\,\mathrm{時間}$ 攪拌した。この反応混合物を $1\,\mathrm{M}$ 、 $Na\,OH$ 水溶液($1.5\,\mathrm{mL} \times 2$)と食塩水($1.5\,\mathrm{mL}$)で洗浄し、有機層を乾燥、濃縮した。カラムクロマトグラフィー($Si\,O_2$ 、ジクロロメタン/メタノール=95:5)により精製し、1-(4-2)000、1-(4-2)10、1-(4-2)2、ジクロロメタンジン(化合物番号1-(4-2)2、ジクロロズンジル)1-(4-2)3、1-(4-2)4、1-(4-2)5、1-(4-2)5、1-(4-2)5、1-(4-2)6、1-(4-2)7、1-(4-2)7、1-(4-2)7、1-(4-2)8、1-(4-2)8、1-(4-2)9、1-(4-

3 2 3

/MSにて求めた (99%)。 ESI/MS m/e 534.0 (M^++H 、 C_{31} $H_{36}ClN_3O_3$)

[実施例1643-1657]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 5 642の方法に従って合成した。ESI/MSデータ、収量、および収率を表32 にまとめた。

表 32

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1643	2092	C33 H37 C1 N4 O3	572.8	152.9	64
1644	2093	C27 H36 C1 N3 O3 S	518.0	177.4	82
1645	2094	C29 H34 C1 N3 O3 S	539.9	164.4	73
1646	2095	C28 H38 C1 N3 O3	500.0	139.1	66
1647	2096	C31 H42 C1 N3 O3	540.0	161.7	71
1648	2097	C27 H36 C1 N3 O3	485.8	157.8	78
1649	2098	C31 H35 C12 N3 O3	567.9	172.2	72
1650	2099	C30 H34 C1 N3 O3	519.8	144.7	66
1651	2100	C32 H38 Cl N3 O4	564.0	181.5	77
1652	2101	C38 H42 C1 N3 O4	639.9	192.3	72 ·
1653	2103	C33 H40 Cl N3 O4	577.8	159.9	66
1654	2104	C28 H36 C1 N3 O5	530.1	99.7	45
1655	2115	C27 H36 C1 N3 O3	486.2	122.9	60
1656	2116	C28 H38 C1 N3 O3	500.1	118.3	57
1657	2117	C28 H34 Cl N5 O3	524.1	98.3	45

10 [参考例29] 1-(tert-ブトキシカルボニル)-4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジンの合成 N-[3-(トリフルオロメチル) ベンゾイル] グリシン (4.22g、17.0mmol)、EDCI(4.25g、22.1mmol)、1-ヒドロキシベン ゾトリアゾール水化物(2.99g、22.1mmol)、およびトリエチルアミ ン (1.72g)を、1-(tert-ブトキシカルボニル)-4-(アミノメチル] ピペリジン(4.03g)の乾燥ジクロロメタン(200mL)溶液に加えた。この反応混合物を25℃で20時間攪拌した後、H₂O(100mL)を加え、ジ

10

クロロメタン($50\,\mathrm{m\,L}\times2$)で抽出した。抽出物を合わせて、 H_2O ($50\,\mathrm{m\,L}\times2$)と食塩水($50\,\mathrm{m\,L}$)で洗浄し、乾燥($Mg\,SO_4$)、濃縮することにより、黄色油状物を得た。これをカラムクロマトグラフィー($Si\,O_2$ 、 $70\,\%$ 酢酸エチルーへキサン)にて精製し、 $1-(t\,\mathrm{e.r}\,t-7)$ トキシカルボニル)-4-[[N-(3-(h))]] アミノメチル)ピペリジンを白色の固体として得た(6, $39\,\mathrm{g}$, $85\,\%$): 1 H NMR(2 CDC 1 3、 3 0 0 MHz) 3 1.4 (3 9, 3 9H), 3 1.0-1.8 (3 9H), 3 2.6-2.8 (3 9H), 3 3.15-3.3 (3 9H), 3 4.0-4.3 (3 9H), 3 6.6-6.7 (3 9H), 3 7.60 (3 9d, 3 1H), 3 7.60 (3 9d, 3

[参考例30] <u>4-[[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジンの合成</u>

1-(tert-ブトキシカルボニル)-4-[[N-(3-(トリフルオロメ チル) ベンゾイル) グリシル] アミノメチル] ピペリジン (2. 29g、5. 16 mmol) のメタノール (40mL) 溶液に、1M HCl-Et₂O (55mL) を加え、25℃で15時間攪拌した後、溶媒を減圧下に除去した。2M NaOH 水溶液 (100mL) を加え、酢酸エチル (100mL×3) で抽出した。抽出液 を合わせ、食塩水 (50mL) で洗浄し、乾燥 (K₂CO₃) 濃縮することにより、 20 白色の固体を得た。これをカラムクロマトグラフィー (SiO₂、メタノール/ジク ロロメタン/トリエチルアミン=7:6:1) により精製し、4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジンを白色 固体として得た (1. 27g、72%)。純度はRPLC/MSにて求めた (98 %)。ESI/MS m/e 344.1 (M++H、C₁₆H₂₀N₃O₂)

25 [実施例1658] <u>1-[3-(トリフルオロメトキシ)ベンジル]-4-[(N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリ</u>ジン(化合物番号927)の合成

4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン(19.9mg、0.058mmol) のアセトニトリル(1.0 mL) 溶液と(ピペリジノメチル)ポリスチレン(55mg、2.7mmol塩基/gレジン)を、3-(トリフルオロメトキシ) ベンジルブロミド(12.3mg

3 2 5

、0.048mmol)のアセトニトリル(1.0mL)溶液に加え60℃で2.5時間攪拌した。フェニルイソシアネート(6.9mg、0.048mmol)を冷却した反応混合物に加え、25℃で1時間攪拌した後、反応混合物をVarian™ SCXカラムに負荷し、メタノール(20mL)で洗浄した。生成物を2MNH3のメタノール溶液で溶出し、濃縮することにより、1-[3-(トリフルオロメトキシ)ベンジル]-4-[(N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号927)を黄白色油状物として得た(22.8mg、91%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 518.1 (M++H、C24H25F6N3O3)

10 [実施例1659-1710]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1658に従って合成した。ESI/MSデータ、収量、および収率を表33にま とめた。

表 33

					,
実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1659	875	C23 H26 F3 N3 O2	434	6.3	40
1660	876	C23 H25 Br F3 N3 O2	512	4.3	23
1661	877	C24 H25 F3 N4 O2	459	11.3	68
1662	878	C23 H25 F3 N4 O4	479	8.3	48
1663	884	C25 H29 F3 N4 O3	491	10.8	61
1664	885	C24 H28 F3 N3 O4 S	512	9.0	49
1665	886	C23 H25 F4 N3 O2	452	12.7	78
1666	887	C24 H25 F6 N3 O2	502	13.9	77
1667	888	C23 H26 F3 N3 O3	450	11.5	71
1668	889	C29 H30 F3 N3 O2	510	12.4	68
1669	890	C27 H28 F3 N3 O2	484	12.0	69
1670	891	C23 H24 C12 F3 N3 O2	502	11.4	63
1671	892	C24 H28 F3 N3 O3	464	11.7	70
1672	893	C24 H26 F3 N5 O5	522	13.9	74
1673	894	C26 H32 F3 N3 O3	492	11.3	64
1674	895	C24 H28 F3 N3 O2	448	4.8	30
1675	896	C24 H25 F3 N4 O2	459	17.5	定量的
1676	897	C24 H26 F3 N3 O4	478	9.2	57

1677	898	C24 H26 F3 N3 O4	478	8.9	55
1678	899	C24 H28 F3 N3 O3	464	13.7	82 -
1679	900	C25 H28 F3 N3 O4	492	18.6	定量的
1680	901	C29 H30 F3 N3 O2	510	13.7	75
1681	902	C23 H24 F3 N5 O6	524	12.6	. 67
1682	903	C25 H30 F3 N3 O4	494	14.0	79
1683	906	C25 H30 F3 N3 O2	462	11.2	67
1684	907	C31 H34 F3 N3 O2	538	19.6	75
1685	908	C30 H31 F3 N4 O3	553	30.4	76
1686	909	C30 H31 F3 N4 O3	553	12.6	63
1687	910	C23 H24 C12 F3 N3 O2	502	11.0	61
1688	911	C23 H25 C1 F3 N3 O2	468	20.2	89
1689	912	C23 H24 Br2 F3 N3 O2	590	20.2	95
1690	913	C24 H28 F3 N3 O3	464	12.6	76
1691	914	C30 H32 F3 N3 O3	540	13.9	72
1692	915	C24 H28 F3 N3 O3	464	8.3	25
1693	916	C22 H25 F3 N4 O2	435	2.5	8
1694	917	C22 H25 F3 N4 O2	435	2.7	9
1695	918	C26 H30 F3 N3 O4	506	3.9	22
1696	919	C24 H28 F3 N3 O2	448	15.9	99
1697	920	C24 H25 F6 N3 O3	518	20.3	81
1698	921	C27 H28 F3 N3 O2	484	15.5	89
1699	922	C20 H26 F3 N3 O2	398	7.3	51
1700	. 923	C29 H29 C1 F3 N3 O2	544	12.5	48
1701	928	C24 H25 F6 N3 O3	518	21.4	86
1702	929	C24 H28 F3 N3 O2 S	480	23.7	定量的
1703	930	C24 H28 F3 N3 O2	448	21.3	99
1704	931	C24 H25 F3 N4 O2	459	21.4	97
1705	932	C23 H24 C1 F3 N4 O4	513	15.6	63
1706	933	C24 H28 F3 N3 O2	448	16.6	77
1707	934	C22 H25 F3 N4 O2	435	18.0	43
1708	935	C23 H25 F3 N4 O4	479	15.1	65
1709	936	C23 H25 F3 N4 O4	479	15.4	67
1710	1615	C24 H25 F6 N3 O2 S	534.2	26.3	99

[実施例1711]1-[4-(ジメチルアミノ) ベンジル] -4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号937)の合成

3 2 7

4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン(20.0mg、0.058mmol)のメタノール(1.0mL)溶液とNaBH3CN(16.5mg)を、4-(ジメチルアミノ) ベンズアルデヒド(30.4mg、0.204mmol)の5%酢酸溶液(1.0mL)に加え、60℃で19時間攪拌した。溶媒を留去して固体を得た。アセトニトリル(2.0mL)とフェニルイソシアネート(6.9mg、0.048mmol)を加え、25℃で1時間攪拌した。反応混合物をVarian™ SCXカラムに負荷し、メタノール(20mL)で洗浄した。生成物を2M NH3-メタノール(6mL)を用いて溶出し、溶出液を濃縮することにより、1-[4-(ジメチルアミノ) ベンジル]-4-[(N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン(化合物番号937)を黄白色油状物として得た(13.5mg、49%)。純度はRPLC/MSにて求めた(87%)。ESI/MS m/e 477.3 (M++H、C25H31F3N4O2)

[実施例1712-1729]

10

15 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1711に従って合成した。必要であれば、分取TLC(SiO_2)で精製し、目的物を得た。ESI/MSデータ、収量、および収率を表 <math>34にまとめた。

表 34

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1712	879	C24 H26 F3 N3 O4	478	13.0	62
1713	880	C24 H26 F3 N3 O4	478	16.3	78
1714	881	C23 H25 Br F3 N3 O2	512	11.4	51
1715	882	C29 H30 F3 N3 O3	526	13.4	58
1716	883	C23 H25 Cl F3 N3 O2	468	7.9	39
1717	904	C23 H26 F3 N3 O3	450	3.3	17
1718	905	C21 H23 F3 N4 O4 S	485	27.7	98
1719	938	C23 H24 C1 F4 N3 O2	486	8.6	30
1720	939	C23 H24 C1 F3 N4 O4	513	11.0	37
1721	940	C23 H26 F3 N3 O3	450	5.5	21
1722	941	C24 H24 C1 F6 N3 O2	536	11.2	36
1723	987	C30 H32 F3 N3 O2	524	17.5	76
1724	1449	C25 H30 F3 N3 O2	462	21.6	80

1450	C26 H32 F3 N3 O2	476	23.5	85
1452	C27 H35 F3 N4 O2	505	5.1	17 ·
1453	C26 H32 F3 N3 O3	492	22.0	77
1454	C25 H30 F3 N3 O3	478	21.4	77
1456	C25 H28 F3 N3 O4	492	23.8	83
	1452 1453 1454	1452 C27 H35 F3 N4 O2 1453 C26 H32 F3 N3 O3 1454 C25 H30 F3 N3 O3	1452 C27 H35 F3 N4 O2 505 1453 C26 H32 F3 N3 O3 492 1454 C25 H30 F3 N3 O3 478	1452 C27 H35 F3 N4 O2 505 5.1 1453 C26 H32 F3 N3 O3 492 22.0 1454 C25 H30 F3 N3 O3 478 21.4

[実施例1730]1-[3-ヒドロキシー4-メトキシベンジル] -4-[[
N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリ
ジン (化合物番号1452) の合成

5 4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン(20.0mg、0.058mmol) と3-ヒドロキシ-4-メトキシベンズアルデヒド(33mg)の5%酢酸/メタノール(1.0mL) 溶液を、NaBH₃CN(16.5mg)の5%酢酸/メタノール(1.0mL)溶液に加え、60℃で15時間攪拌した。反応混合物をVarian™ SCXカラムに負

荷し、メタノール (15mL) で洗浄した。生成物を2M NH₃-メタノール (5mL) を用いて溶出し、濃縮することにより、1-[3-ヒドロキシー4-メトキシベンジル] -4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号1452) を得た (25.8mg、92%)。純度はRPLC/MSにて求めた (91%)。ESI/MS m/e 48
 0 (M++H、C₂₄H₂₈F₃N₃O₄)

[実施例1731-1733]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1730の方法に従って合成した。必要であれば分取TLCによって目的物を得た。 ESI/MSデータ、収量、および収率を表35にまとめた。

20

表 35

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1731	1455	C24 H28 F3 N3 O4	480	24.0	86
1732	1647	C27 H34 F3 N3 O2	490.2	23.6	96
1733	1649	C26 H32 F3 N3 O2	476.2	23.1	97

[実施例1734] 1-(4-ベンジルベンジル]-4-[[N-(3-(トリ

フルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号926) の合成

メタンスルホニルクロリド (4.2mg、0.037mmol) のクロロホルム (1.0mL) 溶液および (ピペリジノメチル) ポリスチレン (54mg、2.7 mmol塩基/g樹脂)を、4-(ベンジル)ベンジルアルコール(8.7mg、 0. 044mmol) のクロロホルム (1.0mL) 溶液に加え、25℃で15時 間攪拌した。4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル) アミノメチル] ピペリジン (15. 1mg、0. 044mmol) とKI (2mg) をこの反応混合物に加え、混合液をさらに65℃で5時間攪拌した。フェニルイ ソシアネート(5.2mg)を冷却した反応混合物に加え、25℃で1時間攪拌後 10 、反応混合物をVarian™ SCXカラムに負荷し、メタノール(20mL)で 洗浄した。生成物を2M NH₃のメタノール (5mL) 溶液を用いて溶出、濃縮す ることにより、1- (4-ベンジルベンジル] -4- [[N- (3- (トリフルオ ロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号926)を黄白色油状物として得た(5.6mg、29%)。純度はRPLC/MSにて 15 求めた (94%)。ESI/MS m/e 524.1 (M++H、C30H32F3N $_3O_2$

[参考例31] 4-[[(N-(ベンジルオキシカルボニル) グリシル) アミノ] メチル] <math>-1-(tert-ブトキシカルボニル) ピペリジンの合成

4 ー (アミノメチル) ー1ー(tertーブトキシカルボニル) ピペリジン(3.54g、16.5mmol)のクロロホルム(80mL)溶液に、トリエチルアミン(2.8mL、20mmol)、Nー(ベンジルオキシカルボニル)グリシン(3.77g、18mmol)、EDCI(3.45g、18mmol)、およびHOBt(2.43g、18mmol)を加え、室温で15時間攪拌した後、2MNaOH水溶液(100mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO2、酢酸エチル)により精製し、4ー[[(Nー(ベンジルオキシカルボニル)グリシル)アミノ]メチル]ー1ー(tertーブトキシカルボニル)ピペリジンをアモルファス状固体として得30た(6.27g、94%)

[参考例32] 4-[(グリシルアミノ) メチル] -1-(tert-ブトキシ

25

30

カルボニル) ピペリジンの合成

4-[[(N-(ベンジルオキシカルボニル) グリシル) アミノ] メチル] -1 -(tert-ブトキシカルボニル) ピペリジン (6.26g、15.4mmol) のメタノール (100mL) 溶液を、5%パラジウム炭素 (620mg) の存在下に、室温で7時間水素化させた。触媒をセライト濾過により除去後、濾液を濃縮し、<math>4-[(グリシルアミノ) メチル] -1-(tert-ブトキシカルボニル) ピペリジンを固体として得た (3.84g、92%)。

10 4-[(グリシルアミノ)メチル]-1-(tert-ブトキシカルボニル)ピペリジン(1.33g、4.90mmol)のクロロホルム(25mL)溶液に、トリエチルアミン(0.75mL、5.4mmol)、2-アミノ-5-クロロ安息香酸(840mg、4.9mmol)、EDCI(940mg、4.9mmol)、およびHOBt(660mg、4.9mmol)を加え、室温で3時間攪拌した後、2M NaOH水溶液(20mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(20mL×3)。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO2、酢酸エチル)により精製し、4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル)アミノ]メチル]-1-(tert-ブトキシカルボニル)ピペリジンを固体として得20 た(1.63g、78%)。

[参考例34] 4-[[(N-(2-アミノ-5-クロロベンゾイル) グリシル) アミノ] メチル] ピペリジンの合成

4-[[(N-(2-T)-5-0)] メチル] -1-(tert-ブトキシカルボニル) ピペリジン(1.63g、3.84 mmol)のメタノール(20mL)溶液に、4M HClのジオキサン(9.5 mL)溶液を加え、室温で6時間攪拌した。反応混合物を濃縮し、2M NaOH 水溶液(20mL)を加え、ジクロロメタン($20mL \times 3$)で抽出した。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、4-[[(N-(2-T)-5-0)]] メチル)グリシル)アミノ)メチル〕ピペリジンを得た(1.19g、 $95%): <math>^1H$ NMR(1H CDCl 1H 1

3 3 1

J = 6.2 Hz, 2H), 3.48 (s, 2H), 4.03 (d, J = 4.9 Hz, 2H), 5.50 (br. s, 2H), 6.1 $1-6.23 (m, 1H), 6.60 (d. <math>J = 8.8 \text{ Hz}, 1\text{H}), 6.85-7.02 (m, 1H), 7.15 (dd, <math>J = 2.7 \text{ B} \cdot 8.8 \text{ Hz}, 1\text{H}), 7.38 (d, J = 2.4 \text{ Hz}, 1\text{H}); ESI/MS m/e 325.2 (M++H, <math>C_{15}H_{23}C1N_4O_2$)

5 さらに、4-[[(N-(2-アミノ-5-プロモベンゾイル) グリシル) アミノ] メチル] ピペリジンも、対応する原料および反応剤を用いて参考例<math>33および34に従って合成した。951 mg、64%(2 工程); ESI/MS m/e 369.2(M^++H 、 $C_{15}H_{21}$ Br N_4O_2)

1- (4-クロロベンジル) -4- [(グリシルアミノ) メチル] ピペリジン・ 二塩酸塩 (738mg、2mmol) のジクロロメタン (20mL) 溶液に、トリ エチルアミン (1.1mL、8mmol)、2- (tert-ブトキシカルボニル アミノ) -4,5-ジフルオロ安息香酸 (607mg、2.2mmol)、EDC

15

I (422mg、2.2mmol)、およびHOBt(337mg、2.2mmol)を加え、室温で14時間攪拌した後、0.6M NaOH水溶液(50mL)を加え、ジクロロメタンで抽出した(3回)。有機層を合わせ、無水硫酸ナトリウムで乾燥、濾過、濃縮し、4-[[(N-(2-(tert-ブトキシカルボニル)の)ので、

さらに、4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル) アミノ] メチル] <math>-1-(4-クロロ

25 ベンジル)ピペリジンも対応する原料および反応剤を用い、上記の方法に従って合成した。 3.03g、82%; ESI/MS m/e 583.2 (M^++H 、 C_{28} $H_{34}C1F_3N_4O_4$)

[参考例 3.5] 4-[[(N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル) アミノ] メチル] ピペリジンの合成

5

 $3\,\mathrm{mmol}$) EPd (OH) $_2$ (60 mg、0.23 mmol) の5%蟻酸/メタノール (10 mL) 溶液を50 $\mathrm{C}\mathrm{col}$ 4時間攪拌した。パラジウム触媒をセライト濾過して除去し、濾液を濃縮した。残査に1 M NaOH水溶液 (15 mL) を加え、酢酸エチルで抽出した(30 mL×3)。有機層を合わせて、無水硫酸ナトリウム上乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO_2 、酢酸エチル/メタノール/トリエチルアミン=70:25:5)により精製し、4 ー [[(N-(2-アミノー5-トリフルオロメチルベンゾイル)グリシル)アミノ] メチル] ピペリジンを得た(284 mg、86%)。ESI/MS m/e 359.0 (M++H、 $\mathrm{Cl}_{16}\mathrm{H}_{21}\mathrm{F}_3\mathrm{N}_4\mathrm{O}_2$)

- さらに、4-[[(N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル) アミノ] メチル] ピペリジン、4-[[N-(2-(tert-ブトキシカルボニルアミノ) -5-トリフルオロメトキシベンゾイル) グリシル] アミノメチル] ピペリジン、および4-[[(N-(2-(tert-ブトキシカルボニルアミノ) -5-トリフルオロメトキシベンゾイル) グリシル) アミノ] メチル] ピペリジンもそれぞれ対応する原料および反応剤を用いて上記の方法に従って合成した。
- 4-[[(N-(2-T))] というには、 4-[[(N-(2-T))] というには、 4-[[(N-(2-T))] というには、 4-[(N-(2-T))] というには、 4-[(N-(2-T))] というには、 4-[(N-(2-T))] というには、 2-[(N-(2-T))]
4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフル 20 オロメトキシベンゾイル) グリシル] アミノメチル] ピペリジン:定量的; ¹H N MR (CDC1₃、400MHz) δ 1.10-1.25(m, 2H), 1.45-1.73(m, 3H), 1.51 (s, 9H), 2.53-2.64(m, 2H), 3.04-3.13(m, 2H), 3.22(t, J=6.3 Hz, 2H), 4.09(d, J=4.6 Hz, 2H), 5.91(br. s, 1H), 7.08(br, s., 1H), 7.32(d. J=9.0 Hz, 1H), 7.38(s, 1H), 8.43(d, J=9.0 Hz, 1H)

25 4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル)アミノ]メチル]ピペリジン:<math>310mg、40%; ESI/MS m/e 427. $3(M^++H,C_{20}H_{28}F_2N_4O_4)$ 4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル)アミノ]メチル]ピペリジン:<math>1.35g、5

3 3 3

ル] アミノメチル] -1- (4-エトキシベンジル) ピペリジン (化合物番号1429)、および1- (4-エトキシベンジル) -4- [[N- (2- (4-エトキシベンジル) アミノ-5-クロロベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号1433) の合成

シアノ水素化ホウ素ナトリウム(140mmol)のメタノール(0.4mL)溶液を4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル]アミノメチル]ピペリジン(0.10mmol)、4-エトキシベンズアルデヒド(0.10mmol)、酢酸(0.050mL)、およびメタノール(1.6mL)の混合物に加え、60℃で14時間攪拌した。反応混合物をVarian™SCXカラムに負荷し、メタノール(20mL)で洗浄した。生成物を2MNH3のメタノール溶液で溶出し、濃縮した。分取TLC(SiO2、酢酸エチル/メタノール)により4-[[N-(2-アミノ-5-クロロベンゾイル)グリシル]アミノメチル]-1-(4-エトキシベンジル)ピペリジン(化合物番号1429)、および1-(4-エトキシベンジル)ー4-[[N-(2-(4-エトキシベンジル)アミノー5-クロロベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号1433)を得た。

化合物番号1429:4.5 mg、20%; 純度はRPLC/MSにて求めた(95%)。ESI/MS m/e 459.2 (M++H、C₂₄H₃₁ClN₄O₃)化合物番号1433:8.4 mg、28%; 純度はRPLC/MSにて求めた(98%)。ESI/MS m/e 593.2 (M++H、C₃₃H₄₁ClN₄O₄)[実施例1737-1779]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1736の方法に従って合成した。ESI/MSデータ、収量、および収率を表36にまとめた。

25

表 36

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1737	1430	C24 H29 Cl N4 O4	473.0	3.1	13
1738	1431	C24 H31 Br N4 O3	505.2	5.8	23
1739	1432	C24 H29 Br N4 O4	517.0	4.1	16
1740	1434	C33 H41 Br N4 O6	637.2	9.7	30

1741	1435	C24 H31 C1 N4 O2	443.2	9.7	44
1742	1436	C25 H33 C1 N4 O2	457.2	12.5	55 -
1743	1437	C25 H33 C1 N4 O3	473.2	9.4	40
1744	1438	C24 H31 Br N4 O2	489.2	5.9	24
1745	1439	C25 H33 Br N4 O2	503.2	15.2	61
1746	1440	C25 H33 Br N4 O3	519.2	11.0	43
1747	1441	C23 H29 Br N4 O2 S	507.2	9.3	37
1748	1442	. C33 H41 C1 N4 O2	561.4	6.8	24
1749	1443	C35 H45 C1 N4 O2	589.4	9.8	33
1750	1444	C35 H45 C1 N4 O4	621.4	9.4	30
1751	1445	C33 H41 Br N4 O2	605.2	6.5	21
1752	1446	C35 H45 Br N4 O2	635.2	10.7	34
1753	1447	C35 H45 Br N4 O4	665.4	12.4	37
1754	1448	C31 H37 Br N4 O2 S2	643.2	7.6	24
1755	1457	C24 H32 C1 N5 O2	458.2	4.5	20
1756	1458	C23 H29 Cl N4 O4	461.2	6.0	26
1757	1459	C24 H32 Br N5 O2	504.0	6.8	27
1758	1460	C23 H29 Br N4 O4	505.0	8.0	32
1759	1461	C31 H37 C1 N4 O6	597.2	5.9	20
1760	1462	C31 H37 Br N4 O6	643.2	6.0	19
1761	1514	C26 H36 C1 N5 O2	486.2	5.5	23
1762	1515	C23 H29 C1 N4 O4	463.0	5.8	25
1763	1516	C26 H36 Br N5 O2	530.2	4.2	16
1764	1517	C23 H29 Br N4 O4	505.0	6.5	26
1765	1518	C31 H37 C1 N4 O6	597.2	4.3	14
1766	1519	C31 H37 Br N4 O6	641.2	5.3	17
1767	1570	C23 H29 C1 N4 O2 S	461.0	2.7	12
1768	1571	C31 H37 C1 N4 O2 S2	597.2	4.9	16
1769	1651	C37 H49 Br N4 O2	663.2	5.5	17
1770	1652	C26 H35 Br N4 O2	515.2	6.0	23
1771	1653	C35 H45 Br N4 O2	633.2	5.0	16
1772	1654	C25 H33 Br N4 O2	501.0	6.2	25
1773	1655	C37 H49 C1 N4 O2	617.4	5.6	18
1774	1656	C26 H35 Cl N4 O2	471.2	5.9	25
1775	1657	C35 H45 C1 N4 O2	589.2	4.6	16
1776	1658	C25 H33 C1 N4 O2	457.2	5.3	23
1777	1785	C26 H33 F3 N4 O2	491.2	4.7	12.8
1778	1786	C25 H29 F3 N4 O3	491.2	3.7	10.1
1779	1804	C25 H32 F2 N4 O2	459.2	3.3	9.6

[実施例1780] 4-[[N-(2-アミノ-5-トリフルオロメトキシベン ソイル) グリシル] アミノメチル] -1-(4-イソプロピルベンジル)ピペリジ ン(化合物番号1903)の合成

4- [[N- (2- (tert-ブトキシカルボニルアミノ) -5- (トリフル 5 オロメトキシ) ベンゾイルグリシル] アミノメチル] ピペリジン(O. 050mm o 1) 、4-イソプロピルベンズアルデヒド (0.060mmol)、NaH3CN (O. 15mmol)、およびメタノール(1.3mL)の混合物に、酢酸(10 mL)を加え、60℃で8時間攪拌した。室温に冷却後Varian™ SCXカラ ムに負荷し、メタノール (10mL) で洗浄した。生成物を2M NH3のメタノー 10 ル (5 m L) 溶液で溶出し、濃縮した。残さに、4 M HClのジオキサン溶液(2 m L) を加え、溶液を室温で一晩攪拌した。濃縮後、分取TLCにより精製し、 4- [N- (2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] ア ミノメチル]-1-(4-イソプロピルベンジル)ピペリジン(化合物番号190 3) を得た (6.6 mg、26%)。純度はRPLC/MSにて求めた (93%) · 15 \circ SI/MS m/e 507 (M⁺+H, C₂₆H₃₃F₃N₄O₃)

[実施例1781-1783]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 780の方法に従って合成した。ESI/MSデータ、収量、および収率を表37 20 にまとめた。

表 37

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1781	1904	C26 H33 F3 N4 O3	507	9.6	37.9
1782	1917	C25 H31 F3 N4 O5	525.2	1.2	3.1
1783	1918	C24 H29 F3 N4 O4	495.2	2.8	7.5

[実施例1784] 4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル]_)グリシル] アミノメチル] -1-(5-ブロモ<u>-2-エトキシベンジル)ピペリ</u> 25 ジン (化合物番号2052) の合成

 $4 - [[N - (2 - (tert - \vec{J}) + \vec{J})] - 4, 5 - (\vec{J})$

ルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0.050mmol) 、5-ブロモ-2-エトキシベンズアルデヒド(0.15mmol)、メタノール (1. 2mL)、および酢酸(0. 030mL)の混合物に、NaBH。CN(0. 25mmol) を加え、50℃で13時間攪拌した。室温に冷却し、Varian^T M SCXカラムに負荷し、メタノール (5mL×3) で洗浄した。生成物を2M NH_3 のメタノール (5 mL) 溶液で溶出し、濃縮した。残さに、ジクロロメタン (1mL) およびトリフルオロ酢酸(0.50mL) を加え、室温で10分攪拌した 。反応混合物を濃縮し、残査をメタノールに溶解し、VarianTM SCXカラム に負荷し、メタノール(5mL)で洗浄した。生成物を2M NH。のメタノール (10 5mL)溶液で溶出し、濃縮した。分取TLC(SiOo、酢酸エチル/メタノール =10:1) により精製し、4-[[N-(2-アミノ-4, 5-ジフルオロベン \dot{y} (1) \dot{y} (1) \dot{y} (2) \dot{y} (3) \dot{y} (4) \dot{y} (5) \dot{y} (7) \dot{y} (8) \dot{y} (8) \dot{y} (9) \dot{y} (1) \dot{y} (1 ピペリジン (化合物番号2052) を得た (10.2mg、38%)。純度はRP LC/MSにて求めた (96%)。SI/MS m/e 539.2 (M++H、C 15 $_{24}H_{29}BrF_{2}N_{4}O_{3}$

[実施例1785-1792]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1784の方法に従って合成した。ESI/MSデータ、収量、および収率を表38にまとめた。

20

表 38

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1785	2053	C30 H34 F2 N4 O4	553.4	12.7	46
1786	2054	C27 H30 F2 N4 O3	497.2	13.7	55
1787	2055	C23 H28 F2 N4 O4	463.2	10.1	44
1788	2056	C22 H24 Br F3 N4 O2	515.2	7.7	30
1789	2057	C23 H27 Br F2 N4 O3	527.0	8.6	33
1790	2058	C24 H30 F2 N4 O4	477.2	6.4	27
1791	2059	C28 H30 F2 N4 O3	509.4	6.7	26
1792	2060	C25 H32 F2 N4 O5	507.2	7.2	28

[実施例1793] 4-[N-(2-アミノ-4,5-ジフルオロベンゾイル

3 3 7

<u>) グリシル] アミノメチル] -1-(3,4-ジエトキシベンジル)ピペリジン(</u> 化合物番号2065)の合成

 $4 - [[N - (2 - (tert - \vec{J}) + \vec{J}) + \vec{J}) - 4, 5 - (\vec{J})$ ルオロベンゾイル) グリシル] アミノメチル] ピペリジン(O. O50mmol) 、3,4-ジエトキシベンズアルデヒド(0.15mmol)、メタノール(1. 2mL)、および酢酸 (0.050mL) の混合物にNaBH₃CN (0.25mm ol)を加え、50℃で一晩攪拌した。室温に冷却し、Varian™ SCXカラ ムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH3のメタノ ール (5 m L) 溶液で溶出し、濃縮した。残さにジクロロメタン (2 m L) とフェ ニルイソシアネート (O. 10mL) を加え、室温で1時間攪拌し、Varian^T 10 M SCXカラムに負荷してメタノール (5 mL) で洗浄した。生成物を2 M NH₃ のメタノール (5 m L) 溶液を用いて溶出し、濃縮した。残査をメタノール (0. 25mL) に溶解し、4M HClのジオキサン (0.125mL) 溶液を加え、 室温で一晩攪拌し濃縮した。残査をメタノールに溶解し、Varian™ SCXカ ラムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH₃のメタ 15 ノール (5 m L) 溶液を用いて溶出し、濃縮することにより、4-[[N-(2-アミノ-4. 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3, 4-ジエトキシベンジル) ピペリジン (化合物番号2065) を得た (21.2m g、84%)。純度はRPLC/MSにて求めた(97%)。ESI/MS m/ e 505. 2 $(M++H, C_{26}H_{34}F_{2}N_{4}O_{4})$

[実施例1794-1808]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 793の方法に従って合成した。ESI/MSデータ、収量、および収率を表39 にまとめた。

25

表 39

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1794	2061	C23 H27 F3 N4 O2	449.2	12.6	56
1795	2062	C23 H27 F3 N4 O3	465.2	19.7	85
1796	2063	C25 H32 F2 N4 O4	491.2	19.8	81
1797	2064	C22 H24 Br F3 N4 O2	515.2	17.5	68
1798	2066	C29 H32 F2 N4 O3	523.2	18.0	69

1799	2067	C26 H34 F2 N4 O2	473.2	21.9	93
1800	2068	C22 H24 C1 F3 N4 O2	469.2	11.2	48 .
1801	2069	C24 H30 F2 N4 O3	461.4	20.2	88
1802	2070	C23 H27 Br F2 N4 O3	527.2	17.7	67
1803	2071	C24 H30 F2 N4 O4	477.2	10.9	46
1804	2072	C25 H32 F2 N4 O3	475.2	19.3	81
1805	2073	C29 H32 F2 N4 O3	523.2	22.8	87
1806	2074	C29 H32 F2 N4 O4	539.2	22.5	84
1807	2075	C23 H27 F3 N4 O3	465.2	14.9	64
1808	2076	C22 H24 F4 N4 O2	453.2	21.9	97

[実施例1809] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(2-ヒドロキシ-3-メチルベンジル) ピペリジン(化合物番号2106)の合成

5 $4 - [[N - (2 - (tert - \vec{J}) + \vec{J})] - 4, 5 - (\vec{J})$ ルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0.050mmol) 、2-ヒドロキシ-3-メチルベンズアルデヒド(0.25mmol)、メタノー ル (1. 0mL)、および酢酸 (0. 040mL) の混合物にNaBH₃CN (0. 40mmol) を加え、50℃で一晩攪拌した。室温に冷却しVarian™ SC Xカラムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH₃の メタノール(5mL)溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール= 5:1 (1mL) に溶解しVarian™ SCXカラムに負荷し、酢酸エチル/メ タノール=5:1 (5 m L) を用いて溶出し、濃縮した。残査をメタノール (2 m L) に溶解し、4M HC1のジオキサン (0.50mL) 溶液を加え、室温で一 晩攪拌し、濃縮した。残査をメタノールに溶解し、VarianTM SCXカラムに 15 負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH3のメタノール (5 m L)溶液を用いて溶出し、濃縮した。分取TLCにより4- [[N ー (2 ー アミノー4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(2-ヒドロキシー3-メチルベンジル)ピペリジン(化合物番号2106)を得た。純 20 度はRPLC/MSにて求めた (97%)。ESI/MS m/e 447.0 (M++H, $C_{23}H_{28}F_{2}N_{4}O_{3}$

[実施例1810-1823]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1

339

809の方法に従って合成した。ESI/MSデータ、収量、および収率を表40にまとめた。

表 40

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1810	2077	C22 H25 Cl F2 N4 O3	467.2	3.7	16
1811	2078	C24 H30 F2 N4 O4	477.2	1.9	8
1812	2079	C30 H34 F2 N4 O4	553.4	4.8	17
1813	2080	C22 H25 C1 F2 N4 O3	467.2	13.5	58
1814	2081	C22 H25 C1 F2 N4 O3	467.2	13.8	59
1815	2082	C23 H28 F2 N4 O4	463.2	9.6	42
1816	2105	C23 H28 F2 N4 O4	463.2	ND	ND
1817	2106	C23 H28 F2 N4 O3	447.0	ND	ND
1818	2107	C20 H23 Br F2 N4 O2 S	503.1	ND	ND
1819	2108	C25 H28 F2 N4 O2 S	487.2	ND	ND
1820	2109	C20 H23 Br F2 N4 O3	487.0	ND	ND
1821	2110	C22 H28 F2 N4 O3	435.1	ND	ND
1822	2111	C22 H24 Cl F3 N4 O2	469.0	ND	ND
1823	2112	C24 H29 Br F2 N4 O4	557.0	ИĎ	ND

5 ND: 未決定

[実施例1824] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-メチルベンジル) ピペリジン (化合物番号2114) の合成

10 4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-(ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン(0.050mmol)、4-メチル-3-ニトロベンズアルデヒド(0.25mmol)、メタノール(1.2mL)、および酢酸(0.050mL)の混合物にNaBH₃CN(0.50mmol)を加え、50℃で一晩攪拌した。室温に冷却しVarian™SCXカラムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2MNH₃のメタノール(5mL)溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール=2:1(2mL)に溶解し、Varian™Siカラムに負荷し、酢酸エチル/メタノール=2:1(6mL)を用いて溶出し、濃縮した。残査をメタノール(1mL)に溶解し、4MHClのジオキサン(0.50mL)溶液を加え、室温で一晩攪

5

25

30

得られた4- [[N-(2-アミノー4, 5-ジフロロベンゾイル) グリシル] アミノメチル] -1-(4-メチル-3-ニトロベンジル) ピペリジン、5%パラジウムカーボン($15\,$ mg)、およびメタノール($2\,$ mL)の混合物を水素雰囲気下、室温で4時間攪拌した。パラジウム触媒をセライト濾過により除去し、濾液を

- 10 濃縮した。分取TLC(SiO₂、酢酸エチル/メタノール=3:1)により4-[N-(2-アミノ-4,5-ジフロロベンゾイル)グリシル]アミノメチル]-1-(3-アミノ-4-メチルベンジル)ピペリジン(化合物番号2114)を得た(2.9mg、13%)。純度はRPLC/MSにて求めた(100%)。ESI/MS m/e 446.1 (M++H、C₂₃H₂₉F₂N₅O₂)
- 15 [実施例1825] <u>4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-メトキシベンジル) ピペリジン (化合物番号2113) の合成</u>

表記の化合物4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-メトキシベンジル) ピペリジン (20 化合物番号2113) を、対応する原料および反応剤を用い、実施例1824の方法に従って合成した。4.6mg、20%収率;ESI/MS m/e 462.2 (M++H、C₂₃H₂₉F₂N₅O₃)

[実施例1826] 1-(3-アミノ-4-ヒドロキシベンジル) -4-[N-(2-(tert-ブトキシカルボニルアミノ) -4、<math>5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンの合成

4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフル オロベンゾイル)グリシル]アミノメチル]ピペリジン(<math>0.35mmol)、4-tドロキシ-3-ニトロベンズアルデヒド(<math>1.22mmol)、メタノール(3.8mL)、および酢酸(0.175mL)の混合物に $NaBH_3CN$ (1.58mmol)のメタノール(3.2mL)溶液を加え、50で一晩攪拌した。室温まで冷却し、 $Varian^{TM}SCXカラムに負荷し、メタノール(<math>5mL\times2$)で

WO 00/69432

洗浄した。生成物を 2M NH_3 のメタノール(5mL)溶液で溶出し、濃縮した。 残さを酢酸エチル/メタノール= 5:1 に溶解し、 $Varian^{TM}$ Siカラムに負荷し、酢酸エチル/メタノール= <math>5:1 (10mL) を用いて溶出し、濃縮することにより、4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4,5]

5 ージフルオロベンゾイル) グリシル] アミノメチル] ー1ー(4ーヒドロキシー3 ーニトロベンジル) ピペリジンを得た(175mg、87%)。

得られた4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4,5 -ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-ヒドロキシ-3 -ニトロベンジル)ピペリジン、10%パラジウムカーボン(45mg)、および

10 、メタノール(5 m L)の混合物を水素雰囲気下、室温で4時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮して1 - (3 - アミノー4 - ヒドロキシベンジル) - 4 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 4、5 - ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジンを得た(100 mg、60%)。

15 [実施例1827] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-ヒドロキシベンジル) ピペリジン(化合物番号2141)の合成

- 20 ノメチル]ピペリジン(20.0mg、0.035mmol)のメタノール(1mL)溶液に、4M HClのジオキサン(0.50mL)溶液を加え、室温で一晩攪拌した。濃縮した後、残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メタノール(5mL×2)で洗浄し、2M NH₃のメタノール(5mL)溶液で溶出した。濃縮により4-[[N-(2-アミノ-4,5-ジフルオロベ
- 25 ンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-ヒドロキシベンジル) ピペリジン(化合物番号2141)を得た(17.6 mg、定量的)。純度はRPLC/MSにて求めた(85%)。ESI/MS m/e 448.3(M^++H 、 $C_{22}H_{27}F_2N_5O_3$)

[実施例1828-1831]

30 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 826と1827の方法に従って合成した。必要であれば、分取TLCで精製し、

342

目的物を得た。ESI/MSデータおよび最終工程の収量、収率を表41にまとめた。

表 41

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1828	2140	C23 H27 F2 N5 O4	476.3	6.7	28.4
1829	2144	C24 H30 F3 N5 O3	494.2	18.7	82.0
1830	2145	C23 H28 F3 N5 O3	480.3	19.8	63.7
1831	2146	C24 H28 F3 N5 O4	508.3	13.5	81.7

5

25

[実施例1832] 1-(3-アミノ-4-クロロベンジル) -4-[[N-(2-(tert-ブトキシカルボニルアミノ) -4, 5-ジフルオロベンゾイル)
 グリシル] アミノメチル] ピペリジンの合成

4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフル

10 オロベンゾイル)グリシル]アミノメチル]ピペリジン(0.14mmol)、4
-クロロ-3-ニトロベンズアルデヒド(0.50mmol)、メタノール(1.5mL)、および酢酸(0.070mL)の混合物に、NaBH₃CN(0.63mmol)のメタノール(1.3mL)溶液を加え、50℃で一晩攪拌した。室温に冷却し、Varian™SCXカラムに負荷し、メタノールで洗浄した。生成物を

15 2M NH₃のメタノール溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール
=5:1に溶解し、Varian™Siカラムに負荷し、酢酸エチル/メタノール
=5:1(6mL)を用いて溶出し、濃縮することにより、4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-クロロ-3-ニトロベンジル)ピペリジンを得た

20 (44mg、53%)。ESI/MS m/e 596.3(M++H)

4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-クロロー3-ニトロベンジル)ピペリジン(121mg、0.20mmol)、10%パラジウムカーボン(85mg)、酢酸エチル(10mL)、およびメタノール(1mL)の混合物を水素雰囲気下、室温で19時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮することにより、1-(3-アミノー4-クロロベンジル)-4-[[N

PCT/JP00/03203

- (2-(tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンを得た (78mg、68%)。

[実施例1833] 1-(3-アミノ-4-クロロベンジル)-4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジ

5 ン (化合物番号2142)の合成

10

1- (3-アミノ-4-ヒドロキシベンジル) -4- [[N- (2- (tert ープトキシカルボニルアミノ) -4, 5-ジフルオロベンゾイル) グリシル] アミ 15 ノメチル] ピペリジン(2 7 m g 、0. 0 4 9 m m o 1) 、 (ピペリジノメチル) ポリスチレン(2.7 mmol/g,60mg,0.15mmol)、およびジク ロロメタン (2mL) の混合物に、無水酢酸 (0.12mmol) のジクロロメタ ン(O. 12mL)溶液を加え、室温で3時間攪拌した。混合物をVarianTM SCXカラムに負荷し、メタノールで洗浄した。生成物を2M NH₃のメタノール 20 溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール=5:1に溶解し、Va rianTM Siカラムに負荷し、酢酸エチル/メタノール=5:1 (6mL)を用 いて溶出、濃縮することにより1-(3-アセチルアミノ-4-ヒドロキシベンジ (1) -4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンを得た(30mg、定 25 量的)。ESI/MS m/e 590.4 $(M^++H, C_{29}H_{37}N_5O_6)$ 上記で得た1-(3-アセチルアミノ-4-ヒドロキシベンジル)-4-[[N - (2- (tert-プトキシカルボニルアミノ) -4、5-ジフルオロベンゾイ ル) グリシル] アミノメチル] ピペリジンのメタノール(1 m L) 溶液に、4 M HCIのジオキサン溶液(0.50mL)を加え、溶液を室温で一晩攪拌した。濃 30

縮した後、残査をメタノールに溶解し、Varian[™] SCXカラムに負荷し、メ

タノール($5\,\mathrm{mL} \times 2$)で洗浄し、 $2\,\mathrm{M}$ NH $_3$ のメタノール($5\,\mathrm{mL}$)溶液で溶出した。濃縮後、分取TLC(SiO_2 、酢酸エチル/メタノール=3:2)により精製し、 $1-(3-\mathrm{P}$ セチルアミノー $4-\mathrm{E}$ ドロキシベンジル) $-4-[N-(2-(\mathrm{P})^2)^2]$ アミノメチル] ピペリジン(化合物番号2148)を得た($2.3\,\mathrm{mg}$ 、9.2%)。純度は RPLC/M Sにて求めた(98%)。ESI/MS m/e 490.3($\mathrm{M}^4+\mathrm{H}$ 、 $\mathrm{C}_{24}\mathrm{H}_2$ $_9\mathrm{F}_2\mathrm{N}_5\mathrm{O}_4$)

[実施例1835-1839]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 826と1834の方法に従って合成した。ESI/MSデータおよび最終工程の 収量および収率を表42にまとめた。

実施例	化合物番号	分子式	ESI/MS m	収量 (mg)	収率 (%)
1835	2143	C25 H29 F2 N5 O5	518.3	4.8	45
1836	2147	C25 H31 F2 N5 O4	504.3	3.0	23
1837	2154	C26 H32 F3 N5 O4	536.4	4.1	66
1838	2155	C25 H30 F3 N5 O4	522.3	5.5	71
1839	2156	C26 H30 F3 N5 O5	550.3	7.0	78

表 42

15 [実施例1840] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-メチルアミノ-4-ヒドロキシベンジル) ピペリジン(化合物番号2160)の合成

4-[N-(2-(tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンゾイル) グリシル] アミノメチル]-1-(3-アミノー4-ヒドロキシ)ピペリジン(20.4mg、0.037mmol)、37%HCHO溶液(3.0mg、0.037mmol)、酢酸(0.1mL)、およびメタノール(1.3mL)の混合物に、NaBH₃CN(7.0mg)のメタノール(0.2mL)溶液を加え、60℃で一晩攪拌した。室温に冷却し、Varian™ SCXカラムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH₃のメタノール(25 8mL)溶液で溶出し、濃縮することにより4-[N-(2-tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンゾイル)グリシル] アミノメチル

] -1-(3-メチルアミノー4-ヒドロキシベンジル)ピペリジンを得た。上記で得た4-[N-(2-tert-ブトキシカルボニルアミノ)-4,5
-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(3-メチルアミノー4-ヒドロキシベンジル)ピペリジンのメタノール(1.0mL)溶液に、4M
 5 HClのジオキサン(1.0mL)溶液を加え、室温で3時間攪拌した。濃縮後、残査をメタノール(1mL)に溶解し、Varian™SCXカラムに負荷し、メタノール(5mL×2)で洗浄し、2M NH3のメタノール(8mL)溶液で溶出した。濃縮後、分取TLC(SiO₂)により精製し、4-[N-(2-アミノー4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(3-メチルア10 ミノー4ーヒドロキシベンジル)ピペリジン(化合物番号2160)を得た(3.4g、20%)。純度はRPLC/MSにて求めた(96%)。ESI/MS m/e 462.4(M++H、C23H29F2N5O3)

[実施例1841-1844]

25

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 826と1840の方法に従って合成した。ESI/MSデータおよび最終工程の 収量および収率を表43にまとめた。

表 43

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1841	2159	C24 H31 F2 N5 O3	476.3	7.6	48
1842	2161	C23 H28 C1 F2 N5 O2	480.3	7.3	45
1843	2162	C25 H32 F3 N5 O3	508.4	6.0	24
1844	2163	C24 H30 F3 N5 O3	494.3	4.3	15

20 [実施例1845] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(ベンゾ [c] フラザン-5-イル) ピペリジン (化合物番号2130) の合成

4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジン(<math>0.050mmo1)、5-(ブロモメチル) ベンゾ <math>[c] フラザン(0.75mL)、(ピペリジノメチ

ル) ポリスチレン (2.6-2.8 mmol/g, 60 mg, 0.15 mmol)

、メタノール (0.2 mL)、アセトニトリル (1.0 mL)、およびクロロホルム (0.50 mL) の混合物を50℃で一晩攪拌した。室温まで冷却し、Varian[™] SCXカラムに負荷し、メタノール (5 mL×2) で洗浄した。生成物を2 M NH₃のメタノール (5 mL) 溶液で溶出し、濃縮した。残さにクロロホルム (5 mL)とフェニルイソシアネート (0.075 mL)を加え、室温で1時間攪拌し、Varian[™] SCXカラムに負荷し、メタノール (5 mL×2)で洗浄した。生成物を2 M NH₃のメタノール (5 mL)溶液で溶出し、濃縮した。残査をメタノール (1 mL) に溶解し、4 M HClのジオキサン (0.50 mL)溶液を加え、室温で一晩攪拌し、濃縮した。残査をメタノールに溶解し、Varian[™] SCXカラムに負荷し、メタノール (5 mL×2)で洗浄し、2 M NH₃のメタノール (5 mL)溶液で溶出した。濃縮後、分取TLC (SiO₂、酢酸エチル/メタノール=5:1)により精製し、4-[[N-(2-アミノー4,5-ジフ

15 はRPLC/MSにて求めた(87%)。ESI/MS m/e 459.3 (M^{-1} +H、 $C_{22}H_{24}F_{2}N_{6}O_{3}$)

[実施例1846] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3, 5-ジメチルイソキサゾール-4-イル) ピペリジン(化合物番号2131)の合成

- 表記の化合物4-[N-(2-アミノ-4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(3,5-ジメチルイソキサゾール-4-イル)ピペリジン(化合物番号2131)を、対応する原料および反応剤を用いて実施例1845の方法に従って合成した。3.8mg、18%収率;ESI/MS m/e436.2(M++H、C21H27F2N5O3)
- 25 [実施例1847] <u>4-[[N-(2-アミノ-5-クロロベンゾイル) グリシル] アミノメチル] -1-[4-トリフルオロメチルチオ) ベンジル] ピペリジン (化合物番号1616) の合成</u>

4-[[N-(2-アミノ-5-クロロベンゾイル) グリシル] アミノメチル] ピペリジン(16.2mg、0.050mmol)、4-(トリフルオロメチルチ 30 オ) ベンジルクロリド(20.3mg、0.075mmol)、アセトニトリル(1.0mL)、およびクロロホルム(0.50mL)の混合物を60℃で15時間 攪拌した。冷却後、 $Varian^{TM}$ SCXカラムに負荷し、メタノール(<math>15mL)で洗浄した。生成物を2M NH_3 のメタノール(5mL)溶液で溶出し、濃縮することにより4-[N-(2-アミノ-5-クロロベンゾイル)グリシル] アミノメチル] <math>-1-[4-(トリフルオロメチルチオ)ベンジル] ピペリジン(化合物番号1616)を得た(21.9mg、85%)。純度はRPLC/MSにて求めた(96%)。ESI/MS m/e 545.2(M^++H 、 $C_{23}H_{26}CIF_3N_4O_2S$)

[実施例1848-1868]

本発明で用いる化合物をそれぞれ対応する原料および反応剤を用いて実施例18 10 47の方法に従って合成した。必要であれば、分取TLCによって精製し、目的物 を得た。ESI/MSデータおよび最終工程の収量および収率を表44にまとめた

表 44

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1848	1617	C23 H26 Br F3 N4 O2 S	559.0	21.0	. 75
1849	1777	C23 H25 C12 F3 N4 O2	517.0	16.3	63.0
1850	1778	C24 H29 F3 N4 O2	463.2	9.5	41.1
1851	1779	C24 H27 F3 N4 O4	493.2	12.7	51.6
1852	1780	C23 H26 Br F3 N4 O2	527.0	16.4	62.2
1853	1781	C23 H27 F3 N4 O3	465.2	10.0	28.7
1854	1782	C25 H29 F3 N4 O2	475.2	12.2	34.3
1855	1783	C24 H26 F3 N5 O2	474.2	17.2	48.4
1856	1784	C23 H27 F3 N4 O2	449.2	11.3	33.6
1857	1788	C25 H31 F3 N4 O2	477.2	10.0	42.0
1858	1789	C24 H29 F3 N4 O3	479.2	10.0	27.9
1859	1792	C24 H30 F2 N4 O2	445.2	5.9	26.5
1860	1793	C22 H24 C12 F2 N4 O2	485.2	9.2	37.9
1861	1794	C23 H28 F2 N4 O2	431.2	5.7	26.5
1862	1795	C23 H26 F2 N4 O4	461.2	6.0	26.1
1863	1796	C22 H25 Br F2 N4 O2	497.0	10.5	42.4
1864	1797	C22 H26 F2 N4 O3	433.2	3.5	16.2
1865	1798	C23 H28 F2 N4 O3	447.2	5.6	25.1
1866	1799	C24 H28 F2 N4 O2	443.2	5.5	24.9

1867	1800	C23 H25 F2 N5 O2	442.2	9.4	42.6
1868	1801	C22 H26 F2 N4 O2	417.2	6.5	31.2

[実施例1869] 4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] <math>-1-(4- ブロモベンジル) ピペリジン (化合物番号1910) の合成

4-[[N-(2-tert-ブトキシカルボニルアミノ) - 5-トリフルオロ5 メトキシベンゾイル) グリシル] アミノメチル] ピペリジン (0.050mmol)、4-ブロモベンジルブロミド(0.060mmol)、ピペリジノメチルポリ スチレン(60mg)、アセトニトリル(0.8mL)、およびクロロホルム(0 . 5 m L) の混合物を60℃で12時間攪拌した。冷却後、Varian™ SCX カラムに負荷し、50%クロロホルム/メタノール (10mL) およびメタノール 10 (10mL) で洗浄した。生成物を2M NH₃のメタノール (5mL) 溶液で溶出 し、濃縮した。残さに4M HCIの1, 4-ジオキサン(2mL)溶液を加え、 室温で一晩攪拌した。濃縮後、分取TLCにより精製し、4- [[N-(2-アミ ノー5-トリフルオロメトキシベンゾイル) グリシル] アミノメチル] -1-(4 ープロモベンジル) ピペリジン (化合物番号1910) を得た (6.5mg、24 15 %)。純度はRPLC/MSにて求めた(96%)。ESI/MS m/e 54 $5 (M^+ + H, C_{23}H_{26}BrF_3N_4O_3)$

[実施例1870-1873]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 20 869の方法に従って合成した。ESI/MSデータおよび最終工程の収量および 収率を表45にまとめた。

表 45

I	実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
ľ	1870	1911	C23 H25 C12 F3 N4 O3	533	10.6	. 39.7
I	1871	1912	C23 H27 F3 N4 O4	481	12.5	52.0
ı	1872	1913	C25 H31 F3 N4 O3	493	7.5	30.5
Ī	1873	1914	C24 H29 F3 N4 O3	479	11.0	46.0

WO 00/69432

15

20

PCT/JP00/03203

349

イル) グリシル] アミノメチル] -1- (ベンズ [d] イミダゾール-5-イル) ピペリジン (化合物番号2186) の合成

4-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] ピペリジン (0.060mmol) 、1-(tert-ブトキシカルボニル)-6-(ブロモメチル) ベンズ [d] イミダゾール (15.6mg、0.050mmol)、(ピペリジノメチル) ポリスチレン (86mg、0.15mmol)、およびアセトニトリル (2mL) の混合物を50℃で3時間攪拌した。室温に冷却後、フェニルイソシアネート (30mg)を加え、室温で1時間攪拌し、Varian™ SCXカラムに負荷し、メタノール (5mL) とクロロホルム (5mL) で洗浄した。生成物を2M NH3のメタノール (5mL) 溶液で溶出し、濃縮した。

[実施例1875] <u>4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル</u>) グリシル] アミノメチル] -1-(ベンゾ [c] チアジアゾール-5-イル) ピペリジン (化合物番号2184) の合成

5-(ヒドロキシメチル) ベンゾ [c] チアジアゾール (8.3 mg、0.05
25 Ommol)、(ピペリジノメチル) ポリスチレン (86 mg)、およびクロロホルム (1 mL) の混合物に、メタンスルホニルクロリド (0.0042 mL) を加え、この混合物を室温で1.5時間攪拌した。アセトニトリル (1 mL) と4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンを加え、この反応混合物を50℃で3時間攪拌した。室温に冷却後、フェニルイソシアネート (30 mg)を加え、室温で1時間攪拌し、Varian™ SCXカラムに負荷し、メタノール (5 mL

5

10

WO 00/69432 PCT/JP00/03203

)およびクロロホルム($5\,\mathrm{m\,L}$)で洗浄した。生成物を $2\,\mathrm{M}$ NH $_3$ のメタノール($3\,\mathrm{m\,L}$)溶液で溶出し、濃縮した。得られた残さをジクロロメタン($1\,\mathrm{m\,L}$)に溶解し、 $1\,\mathrm{M}$ クロロトリメチリシランおよび $1\,\mathrm{M}$ フェノールのジクロロメタン($1\,\mathrm{m\,L}$)溶液を加えた。室温で $5\,\mathrm{時間 微性後、\,V\,a\,r\,i\,a\,n^{\,\mathrm{TM}}\,S\,C\,X}$ カラムに負荷し、

メタノールおよびジクロロメタンで洗浄した。生成物を 2M NH $_3$ のメタノール溶液で溶出した。分取TLC(S i O_2 、酢酸エチル/メタノール= 3 : 1)により精製し、4 ー [[N ー (2 ーアミノー4, 5 ージフルオロベンゾイル)グリシル] アミノメチル] ー 1 ー (ベンゾ [c] チアジアゾールー 5 ーイル)ピペリジン(化合物番号 2 1 8 4)を得た(1 . 3 mg、5 . 5 %)。純度はRPLC/MSにて求めた(1 0 0 %)。ESI/MS m/e 4 7 5 . 2 (M + H、 C_{22} H $_{24}$ F $_{2}$ N $_{6}$ O_{2} S)

[実施例1876] 4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(ベンゾ [c] チアジアゾール-5-イル) ピペリジン(化合物番号2185)の合成

20 [実施例1877] <u>4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(2-アミノ-4-クロロベンジル) ピペリジン (化合物番号1919) の合成</u>

4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] ピペリジン(0.050mmol)、4-クロロ-2-ニトロベンジルクロリド(0.050mmol)、ピペリジノメチルポリスチレン(60mg)、アセトニトリル(1.0mL)、およびクロロホルム(0.7mL)の混合物を50℃で一晩攪拌した。冷却後、Varian™ SCXカラムに負荷し、クロロホルム/メタノール(10mL)およびメタノール(10mL)で洗浄した。生成物を2M NH₃のメタノール(5mL)溶液で溶出し、濃縮した。得られた残さにエタノール(3mL)と10%パラジウムカーボン(15mg)を加え、混合物を水

素雰囲気下、室温で1.5時間攪拌した。濾過、濃縮後、分取TLCにより精製し

、4-[N-(2-アミノー5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(2-アミノ-4-クロロベンジル) ピペリジン(化合物番号 1919)を得た(5. $1\,\mathrm{mg}$ 、14%)。純度はRPLC/MSにて求めた(90%)。; ${}^{1}\mathrm{H}$ NMR($400\mathrm{MHz}$ 、CDC 1_{3}) δ 1.09-1.32(m, 4H), 1.41-1.59(m, 1H), 1.66(d, $J=12.5\,\mathrm{Hz}$, 2H), 1.88(t, $J=11.5\,\mathrm{Hz}$, 2H), 2.82(d, $J=11.5\,\mathrm{Hz}$, 2H), 3.17(t. $J=6.5\,\mathrm{Hz}$, 2H), 3.42(s, 2H), 4.05(d, $J=3.5\,\mathrm{Hz}$, 2H), 4.85(br s, 1H), 5.92(br s, 2H), 6.25-6.36(m, 1H), 6.55-6.66(m, 1H), 6.70(d, $J=8.5\,\mathrm{Hz}$, 1H), 6.85(d, $J=8.5\,\mathrm{Hz}$, 1H), 7.26(s, 1H), 7.42(d, $J=8.5\,\mathrm{Hz}$, 1H), 7.68(s, 1H); ESI/MS m/e 498.2 ($M^{+}+H$ 、C $_{23}\,H$ 27 C $_{1}\,F_{3}\,N_{5}\,O_{2}$)

[実施例1878-1879]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1877の方法に従って合成した。ESI/MSデータおよび最終工程の収量および収率を表46にまとめた。

15

25

10

表 46

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1878	1920	C22 H26 C1 F2 N5 O2	466.2	3.5	10.0
1879	1922	C23 H27 C1 F3 N5 O3	514.2	1.2	3.1

[実施例1880] 4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] <math>-1-(ベンズ[d] オキサゾール-5-イル)

20 ピペリジン (化合物番号2188) の合成

実施例1826の方法に従って合成した1-(3-アミノー4-ヒドロキシベンジル)-4-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] ピペリジン (34.8mg、0.060mmol) のTHF (2mL) 溶液に、オルト蟻酸トリエチル (0.033mL、3.3当量) およびピリジニウムpートルエンスルホネート (2mg、0.4当量) を加え、還流下、一晩攪拌した。室温まで冷却後、混合物を濃縮した。残査を酢酸エチルに溶解し、BondElutTM Siカラムに負荷し、酢酸エチル/メタノール=4:1で溶出し、濃縮した。

得られた残さを酢酸エチル(1.5 m L)に溶解し、4 M HCIのジオキサン溶液(0.5 m L)を加えた。室温で一晩攪拌した後、5 M NaOH水溶液で p H10に調節し、酢酸エチルで抽出した。抽出液を濃縮し、分取TLC(SiO₂、酢酸エチル/メタノール=4:1)で精製して4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリシル]アミノメチル]-1-(ベンズ [d]オキサゾール-5-イル)ピペリジン(化合物番号2188)を得た(1.6 mg、5%)。純度はRPLC/MSにて求めた(94%)。ESI/MS m/e 490.3(M^+ +H、 $C_{24}H_{26}F_3N_5O_3$)

[実施例1881] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル]
 10)グリシル]アミノメチル]-1-(2-オキソ-2, 3-ジヒドロ-1, 3-ベンズオキサゾール-5-イル)ピペリジン(化合物番号2190)の合成

1- (3-アミノ-4-ヒドロキシ) -4- [[N- (2- (tert-ブトキシカルボニルアミノ) -4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジン (22mg、0.040mmol)、NaHCO3 (0.040mmol)、水 (0.7mL)、およびメタノール (1.5mL) の混合物に、クロロ蟻

15 1)、水(0.7mL)、およびメタノール(1.5mL)の混合物に、クロロ蟻酸フェニル(0.040mL)を加え、室温で3時間攪拌した。1M NaOH溶液(0.040mL)を加え、さらに1.5時間攪拌した後、酢酸エチルで抽出し、抽出液を濃縮した。残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH₃のメタノール

20 (5 mL) 溶液で溶出し、濃縮した。得られた残さに、1 M クロロトリメチルシランと1 M フェノールのジクロロメタン(2 mL) 溶液を加えた。室温で2 時間 攪拌し、濃縮後、残査をメタノールに溶解し、V a r i a n TM S C X カラムに負荷し、X タノール(5 m L)溶液で溶出し、濃縮した。分取T L C(S i O $_2$ 、酢酸エチル/メタノール=

25 5:2)により精製し、4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(2-オキソ-2, 3-ジヒドロ-1, 3-ベンゾキサゾール-5-イル) ピペリジン(化合物番号2190)を得た(4.1mg、22%)。純度はRPLC/MSにて求めた(100%);ESI/MSm/e 474.2(M++H、C23H25F2N5O4)

30 [実施例1882-1884]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例

353

1881の方法に従って合成した(化合物番号2192と2193の合成には、クロロ蟻酸フェニルの代わりにクロロチオ蟻酸フェニルを用いた)。ESI/MSデータおよび最終工程の収量および収率を表47にまとめた。

表 47

5

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1882	2191	C24 H26 F3 N5 O4	506.3	3.1	10
1883	2192	C23 H25 F2 N5 O3 S	490.2	6.9	35
1884	2193	C24 H26 F3 N5 O3 S	522.2	3.6	11 .

[参考例36] <u>4-[[N-(1-(9-フルオレニルメトキシカルボニル)ピペリジン-4-イルメチル)カルバモイルメチル]アミノメチル]-3-メトキシフェニルオキシメチルーポリスチレン</u>

10 1-(9-フルオレニルメトキシカルボニル)-4-(グリシルアミノメチル) ピペリジン・塩酸塩(10mmol)のDMF(65mL)溶液に、酢酸(0.3 mL)、トリアセトキシ水素化ホウ素ナトリウム(1.92g)、および4-ホルミル-3-(メトキシフェニルオキシメチル)ーポリスチレン(1mmol/g、200g)を加え、2時間振とうし、濾過した。樹脂をメタノール、DMF、ジクロロメタン、および、メタノールで洗浄し、乾燥して目的の物質を得た。

[実施例1885-2000] 4-アミノメチルピペリジン類の固相合成

相当するカルボン酸(1.6 mm o l)、HBTU(1.6 mm o l)、および DMF(6 m L)の混合物にジイソプロピルエチルアミン(3.6 mm o l)を加え、2分間振とうした。4-[[N-(1-(9-7) ルールメトキシカルボニル) ピペリジンー4-イルメチル)カルバモイルメチル] アミノメチル] <math>-3-メトキシフェニロキシメチルーポリスチレン(0.4 mm o l)を加え、1時間振とうし、濾過した。樹脂をDMFとジクロロメタンで洗浄し、乾燥した。

得られた樹脂(0.05mmol)に、NaBH(OAc)₃(0.25mmol)、酢酸(0.025mmol)、およびDMFの混合物を加え、さらに相当する
25 アルデヒド(2.5mmol)を加えて2時間振とう後、濾過し、メタノール、1
0%ジイソプロピルエチルアミンのDMF溶液、DMF、ジクロロメタン、および
メタノールにて洗浄した。この樹脂と水(0.050mL)、およびトリフルオロ

酢酸($0.95\,\mathrm{mL}$)の混合物を1時間振とうし、濾過し、樹脂をジクロロメタンとメタノールで洗浄した。濾液と洗液をまとめて、濃縮した。残さを $Varian^{\mathrm{M}}$ SCXカラムに負荷し、メタノール($15\,\mathrm{mL}$)にて洗浄した。生成物を $2\,\mathrm{M}$ NH $_3$ のメタノール($5\,\mathrm{mL}$)溶液にて溶出し、濃縮した。必要であれば、分取TL CまたはHPLCにより精製し、目的物を得た。ESI/MSデータ、収量、および収率を表 48にまとめた。

表 48

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1885	1923	C23 H25 Br F3 N3 O2 S	544	15.7	87
1886	1924	C24 H28 F3 N3 O3 S	496	14.6	. 89
1887	1925	C23 H25 F4 N3 O2 S	484	11.7	73
1888	1926	C23 H24 F5 N3 O2 S	502	13.9	84
1889	1927	C23 H26 F3 N3 O3 S	482	10.7	67
1890	1928	C24 H26 F3 N3 O4 S	510	14.3	85
1891	1929	C26 H30 F3 N3 O2 S	506	14.7	88
1892	1930	C24 H28 F3 N3 O2 S2	512	14.4	85
1893	1931	C25 H30 F3 N3 O2 S	494	14.3	88
1894	1932	C25 H28 F3 N3 O3 S	509	7.1*	35
1895	1933	C25 H30 F3 N3 O2 S	494	14.3	88
1896	1934	C26 H32 F3 N3 O2 S	509	14.4	86
1897	1935	C23 H25 F3 N4 O4 S	511	14.9	88
1898	1936	C24 H28 F3 N3 O2 S	480	13.3	84
1899	1937	C26 H32 F3 N3 O2 S	509	11.1	66
1900	1938	C23 H27 Br2 N3 O2	538	5.3*	25
1901	1939	C24 H30 Br N3 O3	488	5.0*	25
1902	1940	C23 H27 Br F N3 O2	476	4.9*	25
1903	1941	C23 H26 Br F2 N3 O2	494	6.1*	30
1904	1942	C23 H28 Br N3 O3	474	1.7*	9
1905	1943	C24 H28 Br N3 O4	502	6.6*	32
1906	1944	C26 H32 Br N3 O2	498	7.0*	35
1907	1945	C24 H30 Br N3 O2 S	504	11.1	67
1908	1946	C25 H32 Br N3 O2	488	3.2*	16
1909	1947	C25 H30 Br N3 O3	500	5.7	35
1910	1948	C25 H32 Br N3 O2	486	4.9*	25
1911	1949	C26 H34 Br N3 O2	500	6.7*	33

1912	1950	C23 H27 Br N4 O4	503	5.0*	25
1913	1951	C24 H30 Br N3 O2	472	5.1*	26
1914	1952	C22 H24 Br2 F N3 O2	542	14.9	83
1915	1953	C23 H27 Br F N3 O3	492	13.9	86
1916	1954	C22 H24 Br F2 N3 O2	480	12.5	79
1917	1955	C22 H23 Br F3 N3 O2	498	13.2	80
1918	1956	C22 H25 Br F N3 O3	478	7.0	44
1919	1957	C23 H25 Br F N3 O4	506	4.0*	20
1920	1958	C25 H29 Br F N3 O2	502	14.6	88
1921	1959	C23 H27 Br F N3 O2 S	508	13.1	78
1922	1960	C24 H29 Br F N3 O2	490	13.8	85
1923	1961	C24 H27 Br F N3 O3	504	2.7*	13
1924	1962	C24 H29 Br F N3 O2	490	12.7	78
1925	1963	C25 H31 Br F N3 O2	504	13.5	81
1926	1964	C22 H24 Br F N4 O4	507	14.8	88
1927	1965	C23 H27 Br F N3 O2	476	12.1	77
1928	1966	C25 H31 Br F N3 O2	504	13.4	80
1929	1967	C22 H26 Br F N4 O2	477	4.7*	20
1930	1968	C23 H29 F N4 O3	429	6.9*	32
1931	1969	C22 H27 F N4 O3	415	3.7*	17
1932	1970	C23 H27 F N4 O4	443	5.4*	24
1933	1971	C25 H31 F N4 O2	439	4.3*	20
1934	1972	C23 H29 F N4 O2 S	445	6.2*	28
1935	1973	C24 H31 F N4 O2	427	6.3*	29
1936	1974	C24 H31 F N4 O2	427	4.9*	23
1937	1975	C22 H26 F N5 O4	444	5.9*	27
1938	1976	C23 H29 F N4 O2	413	6.7*	32
1939	1977	C23 H26 F N5 O2	424	5.1*	24
1940	1978	C25 H33 F N4 O2	441	6.3*	29
1941	1979	C25 H30 F2 N4 O2	457	8.0*	35
1942	1980	C24 H28 F2 N4 O3	459	6.0*	26
1943	1981	C22 H25 F2 N5 O4	462	9.3*	41
1944	1982	C23 H25 F2 N5 O2	442	6.0*	27
1945	1983	C25 H32 F2 N4 O2	459	8.3*	37
1946	1984	C22 H26 Br I N4 O2	585	9.7*	36
1947	1985	C23 H29 I N4 O3	537	9.2*	36
1948	1986	C22 H27 I N4 O3 .	523	5.8*	23
1949	1987	C23 H27 I N4 O4	551	8.2*	32
1950	1988	C25. H31 I N4 O2	547	6.7*	26
					

1951	1989	C23 H29 I N4 O2 S	553	6.4*	25
1952	1990	C24 H31 I N4 O2	535	7.2*	29
1953	1991	C24 H29 I N4 O3	549	5.6*	22
1954	1992	C24 H31 I N4 O2	535	6.2*	25
1955	1993	C22 H26 I N5 O4	552	10.2*	40
1956	1994	C23 H29 I N4 O2	521	7.5*	30
1957	1995	C23 H26 I N5 O2	532	6.8*	27
1958	1996	C25 H33 I N4 O2	549	7.1*	28
1959	1997	C25 H33 I N4 O2	549	3.0*	12
1960	1998	C22 H25 Br Cl N3 O2	478	7.6*	39
1961	1999	C23 H28 C1 N3 O3	430	7.0*	39
1962	2000	C22 H25 C1 F N3 O2	418	14.1	102
1963	2001	C22 H26 C1 N3 O3	416	6.3*	36
1964	2002	C23 H26 C1 N3 O4	444	7.1*	39
1965	2003	C25 H30 C1 N3 O2	440	15.3	105
1966	2004	C23 H28 C1 N3 O2 S	446	8.4*	45
1967	2005	C24 H30 Cl N3 O2	428	7.4*	41
1968	2006	C24 H30 Cl N3 O2	428	13.8	98
1969	2007	C22 H25 C1 N4 O4	445	16.0	109
1970	2008	C23 H28 C1 N3 O2	414	14.1	103
1971	2009	C23 H25 C1 N4 O2	425	14.8	106
1972 -	· 2010	C25 H32 C1 N3 O2	442	14.5	99
1973	2011	C25 H32 C1 N3 O2	442	14.5	99
1974	2012	C22 H24 Br2 Cl N3 O2	558	12.8*	58
1975	2013	C23 H27 Br Cl N3 O3	508	8.6*	42
1976	2014	C22 H25 Br Cl N3 O3	494	6.0*	30
1977	2015	C23 H25 Br Cl N3 O4	522	8.4*	40
1978	2016	C25 H29 Br Cl N3 O2	518	17.6	103
1979	2017	C23 H27 Br Cl N3 O2 S	524	17.1	99
1980	2018	C24 H29 Br Cl N3 O2	506	14.7	88
1981	2019	C24 H27 Br Cl N3 O3	520	8.0*	38
1982	2020	C24 H29 Br C1 N3 O2	506	14.7	88
1983	2021	C22 H24 Br Cl N4 O4	523	12.0*	57
1984	2022	C23 H27 Br Cl N3 O2	492	8.5*	42
1985	2023	C23 H24 Br Cl N4 O2	503	6.3*	31
1986	2024	C25 H31 Br Cl N3 O2	520	9.6*	46
1987	2025	C25 H31 Br Cl N3 O2	520	15.0	87
1988	2026	C22 H23 Br C1 F2 N3 O2	514	15.8	93
1989	2027	C22 H26 Br2 N4 O2	537	10.7*	42

357

1990	2028	C23 H29 Br N4 O3	489	8.5*	36
1991	2029	C22 H27 Br N4 O3	475	7.5*	32
1992	2030	C23 H27 Br N4 O4	503	6.8*	28
1993	2031	C25 H31 Br N4 O2	499	6.2*	26
1994	2032	C24 H29 Br N4 O3	501	8.9*	37
1995	2033	C24 H31 Br N4 O2	487	9.1*	39
1996	2034	C22 H26 Br N5 O4	504	6.4*	26
1997	2035	C23 H29 Br N4 O2	473	6.5*	28
1998	2036	C23 H26 Br N5 O2	484	6.3*	27
1999	. 2037	C25 H33 Br N4 O2	501	5.4*	22
2000	2038	C22 H25 Br F2 N4 O2	495	5.4*	23

*トリフルオロ酢酸塩の収率。

[実施例2001] 1-(3-カルバモイルベンジル)-4-[[N-(3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番

5 号924) の合成

EDCI(10.7mg)、1-ヒドロキシベンゾトリアゾール・水和物(7.5mg)、トリエチルアミン(15.4mg)、0.5M NH $_3$ のジオキサン溶液(0.1mL、0.05mmol)、およびDMF(0.5mL)を、1-(3-カルボキシベンゾイル)-4-[[N-(3-トリフルオロメチル)ベンゾイル)

- グリシル] アミノメチル] ピペリジン (19.4mg、0.041mmol)のクロロホルム溶液 (2.5mL)の溶液に加え、25℃で20時間振とうし、2MNaOH水溶液 (2 × 2mL)と食塩水 (1mL)にて洗浄した。PTFE膜フィルターによる濾過後、溶媒を減圧下に除去し、1-(3-カルバモイルベンジル)-4-[[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチ
- 15 ル] ピペリジン(化合物番号924)を黄白色の固体として得た(17.9mg、92%)。純度はRPLC/MSにて求めた(89%)。ESI/MS m/e 447.3 (M⁺+H、C₂₄H₂₇F₃N₄O₃)

[実施例2002] 1-(4-カルバモイルベンジル)-4-[[N-(3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番

20 号925)の合成

化合物番号925は、対応する原料および反応剤を用いて実施例2001の方法 に従って合成した。14.2mg、72%。純度はRPLC/MSにて求めた(8

358

6%)。ESI/MS m/e 447 (M^++H 、 $C_{24}H_{27}F_3N_4O_3$) [実施例2003] 1-(4-P > 1/4 >

- 1 ー (4 ーニトロベンジル) ー 4 ー [[N ー (3 ートリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (2 2. 4 mg、0. 0 4 7 mm o l) のエタノール (3 mL) 溶液を、25℃において、5%パラジウム炭素 (1 0 mg) の存在下に1時間、1気圧の水素雰囲気下で水素化した。触媒を濾過により除去し、エタノール (5 mL) で洗浄した。濾液をまとめて、濃縮することにより、10 1 ー (4 ーアミノベンジル) ー 4 ー [[N ー (3 ートリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号 5 1 6) を黄白色の固体として得た (2 0. 1 mg、9 6 %)。純度はRPLC/MSにて求めた (9 9 %)。ESI/MS m/e 4 4 9. 1 (M++H、C23 H27 F3 N4 O2) [実施例 2 0 0 4 − 2 0 0 5]
- 15 化合物番号517と518を、それぞれ対応する原料および反応剤を用いて、実施例2003の方法に従って合成した。ESI/MSデータおよび最終工程の収量および収率を表49にまとめた。

表 49

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2004	517	C23 H27 F3 N4 O2	449	26.5	78
2005	518	C23 H27 F3 N4 O2	449	25.3	71

20

[実施例2006]1-[4-(ベンゾイルアミノ) ベンジル] -4-[[N-(3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号519) の合成

EDCI(4.7mg)、1-ヒドロキシベンゾトリアゾール・水和物(3.3 mg)、トリエチルアミン(2.5mg)、および安息香酸(3.0mg)を、1-(4-アミノベンジル)-4-[[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(10.1mg、0.023mmol)のジクロロメタン溶液(2.5mL)に加え、25℃で16時間振とうした。反応混

5

合物を 2M NaOH水溶液($2mL \times 2$)と食塩水(1mL)にて洗浄した後、PTFE膜フィルターにより濾過し、溶媒を減圧下に留去することにより、黄色油状体を得た。これを分取TLC(SiO_2 、10%メタノール/ジクロロメタン)にて精製し、<math>1-[4-(ベンゾイルアミノ)ベンジル]-4-[[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号519)を無色の油状体として得た(<math>4.6mg、36%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 553.2 (M^++H 、 $C_{30}H_3$ $1F_3N_4O_3$)

[実施例2007] 1-[4-(ピペリジノカルボニル) ベンジル] -4-[[
 N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン(化合物番号1572) の合成

ピペリジン (0. 048mg)、ジイソプロピルカルボジイミド (0. 45mm ol)のDMF溶液 (0. 15mL)、1-ヒドロキシベンゾトリアゾール水化物 (0. 45mmol)のDMF溶液を、1- (4-カルボキシベンジル)-4-[
15 [N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン (0. 040mmol)のDMF (1. 0mL)溶液に加え、室温で17時間振とう後、VarianTM SCXカラムに負荷し、クロロホルム/メタノール=1:1(5mL)およびメタノール (5mL)にて洗浄した。生成物を2M NH3のメタノール (5mL)溶液で溶出し、濃縮して1-[4-(ピペリジノカルボニル20)ベンジル]-4-[[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン (化合物番号1572)を得た(14. 3mg、66%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 545 (M++H、C29H35F3N4O3)

[実施例2008-2015]

25 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例2 007の方法に従って合成した。ESI/MSデータおよび最終工程の収量および 収率を表50にまとめた。

表 50

実施例 化合物番号 分子式 ESI/MS m/e 収量 (mg) 収率	
】 実施例 【化合物番号 分子式 ESI/MS m/e 収量 (mg) 収率	(8)
	` '

WO 00/69432

2008	1573	C31 H33 F3 N4 O4	583	17.6	76
2009	1574	C31 H33 F3 N4 O3	567	18.8	83
2010	1575	C30 H30 C1 F3 N4 O3	587	3.2	14
2011	1576	C28 H33 F3 N4 O4	547	21.1	97
2012	1577	C26 H31 F3 N4 O4	521	5.1	24
2013	1578	C31 H33 F3 N4 O3	567	16.9	75
2014	1579	C31 H33 F3 N4 O3	567	6.0	26
2015	1580	C29 H35 F3 N4 O3	545	15.1	69

[実施例2016] 1- [4-(クロロホルミル) ベンジル] -4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジンの合成

1-(4-カルボキシベンジル)-4-[[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(240mg)と塩化チオニル(1mL)の混合物を室温で12時間攪拌した後、余分の塩化チオニルを減圧下に除去することにより、1-[4-(クロロフォルミル)ベンジル]-4-[[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジンを
 10 得た。この酸塩化物は、それ以上精製することなく用いた。

[実施例2017] 1-[4-[N-(2-メトキシエチル) カルバモイル] ベンジル] <math>-4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号1612) の合成

1- [4- (クロロホルミル) ベンジル] -4- [[N- (3-トリフルオロメ チル) ベンゾイル) グリシル] アミノメチル] ピペリジン (0.042mmol) 、2-メトキシエチルアミン (3.8mg、0.050mmol)、ピペリジノメ チルポリスチレン (46mg)、およびジクロロメタン (1.5mL) の混合物を 室温で17時間攪拌した。水 (0.020mL)を加え、混合物を30分攪拌した 後、メタノール (1mL)を加え、混合物をVarian™ SCXカラムに負荷し 、メタノール (10mL) にて洗浄した。生成物を、2M NH3のメタノール溶液で溶出し、濃縮することにより、1- [4- [N- (2-メトキシエチル) カルバモイル] ベンジル] -4- [[N- (3- (トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号1612)を得た (26.7mg、100%)。純度はRPLC/MSにて求めた (92%)。ESI/MS m/

e 535. 2 $(M^++H, C_{27}H_{33}F_3N_4O_4)$

[実施例2018-2020]

号1428) の合成

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例2 017に従って合成した。必要であれば、分取TLCによって精製し、目的物を得 5 た。ESI/MSデータ、収量、および収率を表51にまとめた。

表 51

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2018	1610	C31 H30 F6 N4 O3	621.2	4.4	14
2019	1611	C30 H29 C12 F3 N4 O3	621.2	35.7	定量的
2020	1613	C32 H35 F3 N4 O3	581.2	29.9	定量的

4-[N-(2-アミノ-5-ブロモベンゾイル) グリシル] アミノメチル-1 - (4-クロロベンジル) ピペリジン (化合物番号1042) (50mg、0.1 0 mm o 1) のオルト蟻酸トリエチル (6.5 mL) 溶液を150℃で17時間攪 拌した。濃縮により黄色固体を得た。この黄色固体のエタノール (3 m L) 溶液に 15 、水素化ホウ素ナトリウム (7.6mg、0.2mmol) を加え、室温で14時 間攪拌した。得られた白色沈殿をジクロロメタンに溶解し、溶液を1M NaOH 水溶液(2mL)にて洗浄した。有機層を分離し、K_vCO_xで乾燥し、濾過、濃縮 した。カラムクロマトグラフィー(SiO,、20%メタノール/クロロホルム)に よって精製し、4-[N-[5-ブロモ-2-(メチルアミノ)ベンゾイル]グリ 20 シル] アミノメチルー1ー (4ークロロベンジル) ピペリジン (化合物番号142 7) を得た(40mg、80%)。純度はRPLC/MSにて求めた(100%) $_{\circ}$ ESI/MS m/e 505 (M⁺+H, $C_{23}H_{28}BrClF_{6}N_{4}O_{2}$) [実施例2022] 4-[N-[5-ブロモ-2-(ジメチルアミノ) ベンゾイ25 ル] グリシル] アミノメチルー1-(4-クロロベンジル)ピペリジン(化合物番

シアノ水素化ホウ素ナトリウム (26mg、0.42mmol) と酢酸 (14L

WO 00/69432 3 6 2

)を、4-[N-(2-アミノ-5-ブロモベンゾイル) グリシル] アミノメチル -1-(4-クロロベンジル) ピペリジン (化合物番号1042) (67mg、0 . 14mmol)、37%ホルムアルデヒド水溶液 (0. 112mL、1. 4mm ol)、アセトニトリル (2mL)、およびメタノール (1. 5mL) の混合物に 加え、50℃で30時間攪拌した後、1M NaOH水溶液およびジクロロメタン を加えた。水層を分離し、有機層をK₂CO₃で乾燥、濾過、濃縮した。カラムクロ

PCT/JP00/03203

を加えた。水層を分離し、有機層を K_2 CO $_3$ で乾燥、濾過、濃縮した。カフムクロマトグラフィー(SiO_2 、20%メタノール/酢酸エチル)により精製し、4-[N-[5-ブロモ-2-(ジメチルアミノ)ベンゾイル]グリシル]アミノメチル<math>-1-(4-クロロベンジル)ピペリジン(化合物番号1428)を得た(60m

10 g、82%)。純度はRPLC/MSにて求めた(100%)。ESI/MS m /e 523 (M++H、C24H30BrClF6N4O2)

[実施例2023] 4-[[N-[5-ブロモ-2-(メチルスルホニルアミノ) ベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル) ピペリジン (化合物番号1581) の合成

4-[N-[2-アミノー5-ブロモベンゾイル] グリシル] アミノメチル]
 -1-(4-クロロベンジル) ピペリジン (25mg、0.05mmol)、メタンスルホニルクロリド (0.0045mL)、トリエチルアミン (0.026mL)、およびジクロロメタン (2mL) の混合物を室温で17時間攪拌した。反応混合物をカラムクロマトグラフィー (SiO₂)で精製し、Varian™ SCXカ

20 ラムに負荷し、メタノール (5 m L) にて洗浄した。生成物を、0.1 M HC l のメタノール (5 m L) 溶液で溶出し、濃縮して4 - [[N-[5-ブロモー2-(メチルスルホニルアミノ) ベンゾイル] グリシル] アミノメチル] -1-(4-クロロベンジル) ピペリジン (化合物番号1581) を得た (5.4 m g、19%)。ESI/MS m/e 573.0 (M++H、C23H28BrClN4O4S)

25 [実施例2024] <u>4-[[N-[5-プロモ-2-(ビス(メチルスルホニル) アミノ) ベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル)</u> ピペリジン (化合物番号1582) の合成

1-(4-クロロベンジル)-4-[[N-[2-アミノー5-ブロモベンゾイル] グリシル] アミノメチル] ピペリジン(57mg、0.10mmol)、メタ
 30 ンスルホニルクロリド(0.018mL、0.024mL)、トリエチルアミン(0.068mL)、およびジクロロメタン(2mL)の混合物を室温で8時間攪拌

20

25

を無色の油状体として得た。

WO 00/69432 PCT/JP00/03203

363

4-[N-[3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (30mg、0.087mmol) のアセトニトリル (1.0mL) 溶液と (ピペリジノメチル) ポリスチレン (80mg、2.7mmol塩基/g樹脂) を、4-クロロベンジルクロリド (11.7mg、0.073mmol) のクロロホルム (1.0mL) 溶液に加え、60℃で2時間攪拌した。フェニルイソシアネート (10.4mg、0.087mmol) を、室温まで冷却した反応混合物に加え、25℃で1時間攪拌した後、Varian™ SCXカラムに負荷し、メタノール (20mL) にて洗浄した。生成物を、2M NH3のメタノール (6mL)溶液で溶出し、濃縮しすることにより、1-(4-クロロベンジル) -4-[N-[3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン

[実施例2026] 1-(4-クロロベンジル)-4-[N-メチル-N-[N]
 30 -(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号520) の合成

WO 00/69432

ホルムアルデヒド水溶液(108mg、1.33mmol、37wt%)を1-(4-クロロベンジル)-4-(アミノメチル)ピペリジン(318mg、1.33mmol)とNaBH₃CN(668mg)の10%酢酸/メタノール(3mL)溶液に加え、25℃で1時間攪拌した。反応混合物をDowexTM 50Wx2カラム(10mL)に負荷し、メタノール(20mL)にて洗浄した。生成物を、2MNH₃のメタノール(6mL)溶液で溶出し、濃縮して1-(4-クロロベンジル)-4-[(メチルアミノ)メチル]ピペリジンを無色の油状体として得、これを精製せずに用いた。

EDCI (85mg)、1-ヒドロキシベンゾトリアゾール・水和物(60mg 10)を、1-(4-クロロベンジル)-4-[(メチルアミノ)メチル]ピペリジン (111mg、0、44mmol)のジクロロメタン(4mL)溶液に加え、25 ℃で1時間攪拌後、2M NaOH(2mL×2)水溶液で洗浄した。PTFE膜フィルターで濾過後、溶媒を減圧下に除去して黄色油状体を得、これを分取TLCにて精製し、1-(4-クロロベンジル)-4-[N-メチルーN-[N-(3-15 (トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号520)を黄白色油状体として得た(14.0mg、3.4%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 482.1 (M++H、C24H27C1F3N3O2)

[参考例37] 3-アミノホモピペリジンの合成

DL-á-アミノー ε-カプロラクタム(2g、16mmol)のTHF(70mL)溶液に、1M BH₃-THF溶液(80mL)を加え、3時間還流した。2 M塩酸(50mL)を加え、反応をさらに1時間加熱、還流し、その後25℃に冷却した。反応物を4M NaOH溶液を加えてアルカリ性とし(pH10)、酢酸エチル(200mL×3)で抽出した。有機層を合わせ、飽和NaHCO₃水で洗浄し、乾燥(MgSO₄)、濃縮することにより、目的物を得た(990mg、54%)。これをそれ以上精製することなく使用した。

[参考例3.8] <u>3-アミノー1-(4-クロロベンジル)ホモピペリジンの合成</u> 3-アミノホモピペリジン(1.71g、15mmol)のアセトニトリル(4 5mL)溶液に、p-クロロベンジルクロリド(463mg、2.9mmol)と K₂CO₃(828g、6mmol)を加え、70℃で9時間加熱攪拌した。25℃ に冷却し、濃縮して黄色固体を得た。残査をH₂O(5mL)と酢酸エチル(50m

L)の間に分配し、酢酸エチル(50mL×2)で抽出した。有機層を合わせて食 塩水 (20mL) で洗浄し、乾燥 (MgSO₄)、濃縮した。得られた黄色油状物を クロマトグラフィー(SiO₂、5-20%メタノール/ジクロロメタン勾配溶出) にて精製し、目的物を黄色油状体として得た(639mg、93%)。

5 [実施例2027] 1-(4-クロロベンジル)-3-[(4-ベンゾイルブチリル) アミノ] ホモピペリジン(化合物番号994)の合成

3-アミノ-1-(4-クロロベンジル) ホモピペリジン(24mg、0.10mmol) および4-ベンゾイルブチル酸(1.2当量) のクロロホルム(1mL) の溶液に、EDCI (23mg)、HOBt (16.2mg)、およびトリエチ 10 ルアミン(15.2μL)を加え、25℃で16時間攪拌した。この反応混合物を ジクロロメタン (O. 5mL) にて希釈し、PTFE膜にて濾過し、濃縮して1-(4-クロロベンジル) -3-[(4-ベンゾイルブチリル) アミノ] ホモピペリ ジン (化合物番号994) を得た (43mg、99%)。純度はRPLC/MSに て求めた (98%)。ESI/MS m/e 413 (M++H、C24H29ClN2 15 O_2)

[実施例2028-2042]

20

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 2027に従って合成した。必要であれば、クロマトグラフィー (HPLC-C」8)によって精製し、目的物をTFA塩として得た。ESI/MSデータ、収量、お よび収率を表52にまとめた。

表 52

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2028	943	C23 H25 C1 F3 N3 O2	468	6	28
2029	944	C23 H28 Cl N3 O2	414	5	29
2030	945	C22 H25 C1 N4 O4	445	6	30
2031	946	C23 H27 C1 N4 O4	459	5	24
2032	947	C25 H31 C1 N2 O4	459	4	20
2033	948	C24 H29 C12 N3 O2	462	6	32
2034	949	C25 H32 C1 N3 O2	442	6	31
2035	988	C23 H25 C1 F3 N3 O2	468	45	92
2036	989	C23 H28 C1 N3 O3	430	44	97

366

2037	990	C22 H26 C1 N3 O2	400	41	99
2038	991	C23 H27 C1 N2 O2	399	41	97
2039	992	C25 H31 C1 N2 O4	459	47	98
2040	993	C25 H31 C1 N2 O2	427	44	98
2041	995	C25 H31 C1 N2 O3	443	44	95
2042	996	C24 H31 C1 N4 O2	443	5*	11

*トリフルオロ酢酸塩の収率。

20

25

[実施例 2 0 4 3] THP-1細胞へのMIP-1 α結合に対する被験化合物の 阻害能の測定

ヒト前単球白血病細胞であるTHP-1細胞を、1×10⁷個/mLになるようにアッセイバッファー(RPMI-1640(Gibco-BRL社製)に0.1%BSA、25mM HEPESを加えpH7.4に調整したもの)に懸濁し、細胞懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を、被験化合物溶液とした。ヨウ素標識されたヒトMIP-1α(DuPont NEN社製)2
 50nCi/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。96ウェルフィルタープレート(ミリポア社製)に、1ウェルあたり被験化合物25μL、標識リガンド溶液25μL、細胞懸濁液50μLの順番に分注し攪拌後(反応溶液100μL)、18℃で1時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷PBS200μLで2 15 回洗浄した(冷PBS200μL加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の細胞が保持する 放射能をトップカウント(パッカード社製)で測定した。

試験化合物の代わりに、非標識ヒト $MIP-1\alpha$ (Peprotech社製)100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを<math>100%としてヒト $MIP-1\alpha$ のTHP-1細胞への結合に対する被験化合物の阻害能を算出した。

阻害率 (%) = $[1-(A-B)/(C-B)] \times 100$

(A:試験化合物添加時のカウント、B:非標識ヒトMIP- $1\alpha100ng$ 添加時のカウント、C: $[^{125}I]$ 標識ヒトMIP- 1α のみ添加したときのカウント)本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下記の化合物は、 2μ Mまたは 10μ Mの濃度おいて、それぞれ20-50%、50

367

%-80%、および>80%の阻害能を示した。

 $10 \mu M$ の濃度において20% - 50%の阻害能を示した化合物:

化合物番号29、37、41、45、46、47、50、82、85、107、1 20, 134, 214, 217, 218, 220, 222, 225, 226, 22 5 7, 228, 229, 230, 231, 233, 234, 236, 237, 238 , 333, 334, 335, 336, 338, 340, 342, 347, 348, 349, 350, 352, 357, 359, 361, 366, 372, 374, 3 75, 376, 380, 382, 383, 385, 470, 471, 472, 47 3, 474, 483, 484, 488, 489, 491, 497, 499, 500 10 . 502, 506, 508, 510, 514, 515, 518, 524, 543 553, 554, 555, 556, 563, 571, 575, 576, 578, 5 79, 580, 583, 586, 587, 588, 590, 591, 592, 59 5, 596, 598, 603, 610, 611, 612, 614, 624, 625 , 626, 629, 635, 638, 639, 640, 641, 642, 643, 15 644, 646, 647, 648, 649, 652, 653, 658, 659, 6 60, 665, 666, 669, 671, 675, 677, 679, 681, 68 2, 684, 691, 695, 696, 700, 702, 704, 706, 711 , 712, 714, 717, 721, 723, 724, 726, 727, 728, 729, 731, 737, 739, 740, 741, 742, 744, 746, 7 20 65, 767, 772, 773, 774, 775, 776, 780, 781, 78 5, 786, 787, 788, 790, 791, 792, 793, 795, 796 . 797, 798, 805, 806, 807, 810, 813, 820, 821, 822、824、825、827、829、830、833、834、837、8 38, 844, 853, 855, 873, 877, 878, 880, 882, 88 25 7, 888, 891, 894, 901, 903, 904, 905, 911, 929 . 932, 933, 935, 938, 940, 948, 993, 996, 1006 , 1018, 1026, 1028, 1035, 1048, 1053, 1054, 1 055, 1056, 1068, 1070, 1071, 1072, 1073, 107 5, 1076, 1081, 1763, 1764

10μMの濃度において50%-80%の阻害能を示した化合物:化合物番号1、2、3、4、7、13、22、23、24、25、27、31、3

368

2, 38, 48, 83, 119, 121, 123, 131, 215, 216, 22 1, 235, 337, 351, 354, 358, 362, 363, 365, 367 , 368, 369, 373, 378, 381, 384, 458, 459, 463, 465, 466, 467, 468, 478, 479, 480, 482, 485, 4 86, 487, 492, 493, 494, 495, 496, 498, 501, 50 3, 504, 507, 511, 512, 513, 520, 523, 527, 529 530,531,532,533,534,535,536,537,538, 539, 540, 541, 542, 545, 546, 547, 548, 549, 5 50, 551, 552, 558, 559, 560, 561, 562, 565, 56 10 7, 568, 569, 570, 572, 573, 574, 577, 581, 582 594, 597, 599, 600, 602, 604, 606, 607, 608, 609, 613, 615, 616, 618, 619, 620, 621, 628, 6 30, 631, 632, 633, 634, 636, 637, 645, 651, 65 4, 655, 657, 661, 662, 664, 673, 674, 676, 678 15 680, 683, 685, 687, 688, 689, 693, 703, 705, 707, 708, 709, 710, 713, 716, 718, 719, 720, 7 25, 730, 732, 733, 734, 735, 736, 749, 750, 75 1, 752, 753, 754, 756, 758, 760, 762, 763, 764 , 766, 768, 769, 770, 771, 777, 778, 779, 784, 794, 799, 800, 802, 804, 808, 809, 811, 812, 8 20 15, 816, 819, 828, 831, 832, 835, 836, 839, 84 0, 845, 846, 847, 848, 850, 851, 854, 857, 858 , 859, 860, 861, 862, 863, 865, 866, 867, 868, 872, 874, 876, 886, 899, 910, 942, 998, 1004, 25 1005, 1007, 1013, 1015, 1016, 1017, 1019, 10 20, 1021, 1022, 1024, 1030, 1037, 1042, 1043 1044, 1045, 1046, 1047, 1049, 1050, 1052, 1059, 1060, 1061, 1067, 1069, 1074, 1078, 107 9, 1080, 1766

30 10μMの濃度において>80%の阻害能を示した化合物:化合物番号461、464、469、481、490、505、509、521、

526, 528, 544, 564, 566, 601, 605, 617, 622, 6
23, 627, 650, 656, 663, 668, 672, 686, 690, 69
2, 694, 715, 743, 747, 748, 755, 757, 759, 761
, 782, 783, 803, 814, 817, 818, 826, 849, 856,
864, 869, 870, 871, 999, 1000, 1001, 1002, 10
03, 1008, 1009, 1010, 1011, 1012, 1023, 1029
, 1031, 1032, 1033, 1034, 1036, 1038, 1039, 1
040, 1041, 1051, 1057, 1058, 1062, 1063, 106
4, 1065, 1066, 1082, 1083

10 2μMの濃度において20%-50%の阻害能を示した化合物: 化合物番号1042、1043、1244、1245、1416、1435、14 36、1438、1441、1480、1570、1583、1584、1589

1590, 1594, 1595, 1601, 1660, 1672, 1687, 1 724, 1779, 1780, 1787, 1795, 1796, 1798, 179

15 9, 1802, 1893, 1894, 1898, 1900, 1915, 1919, 1920, 2092, 2096, 2098, 2100

2 μ Mの濃度において50%-80%の阻害能を示した化合物:

化合物番号1190、1414、1600、2091、2094、2095 2μMの濃度において>80%の阻害能を示した化合物:

20 化合物番号2093、2097、2099、2103、2104

25

30

[実施例2044] <u>THP-1細胞へのMCP-1の結合に対する阻害能の測定</u> 1. ヒトMCP-1遺伝子含有組換えバキュロウィルスの作製

公知のヒトMCP-1遺伝子配列(例えばYoshimura、T. et al. Febs Letters 1 989、244、487-493など参照)に基づき制限酵素認識部位を付加したDNA合成プライマーを2種類(5・-CACTCTAGACTCCAGCATGA-3・および5・-TAGCTGCAGATTCTTGGGTTG-3・)を用いて、ヒト血管内皮細胞(クラボー社より購入)由来cDNAをPCR法により増幅し、制限酵素(PstIおよびXbaI)切断後、トランスファーベクターpVL1393(Invitrogen社製)に組み込んだ。かかるベクターと感染性バキュロウィルスをSf-9昆虫細胞にコトランスフェクトし、その上清からプラークアッセイ法によりヒトMCP-1遺伝子組換えバキュロウィルスを単離した。

10

25

370

2. [125 I] 標識バキュロウィルス発現ヒトMCP-1の取得

ISHII、K. らの方法(Biochemical and Biophysical Research Communicat ions 1995, 206, 955-961参照)に従い、Sf-9昆虫細胞 5×10^6 個に、上記ヒトMCP-1遺伝子組換えバキュロウィルス 5×10^7 PFU(プラーク形成ユニット)を感染させ、EX-CELL401培地にて7日間培養し、得られた培養上清をヘパリンセファロースカラム(ファルマシア社製)でアフィニティー精製した後、逆相HPLC(Vydac C18 カラム)に付し、精製ヒトMCP-1を得た。得られた精製ヒトMCP-1につき、アマシャム社に蛋白標識を依頼し、ボルトン・ハンター法により作製された [125 I] 標識バキュロウィルス発現ヒトMCP-1を得(比活性:2000Ci/mmol)、以下の試験に用いた。

3-1. [125 I] 標識バキュロウィルス発現ヒトMCP-1のTHP-1細胞への結合に対する阻害能の測定 (方法1)

ヒト前単球由来白血病細胞であるTHP-1細胞を1×10⁷個/mLになるようにアッセイバッファー(RPMI-1640(Gibco-BRL社製)に0.1
 15 %BSA、25mM HEPESを加え、pH7.4に調整したもの)に懸濁し細胞懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。上述の[125 I]標識バキュロウィルス発現ヒトMCP-1を1μCi/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。96ウエルフィルタープレート(ミリポア社製)に、1ウエルあたり被験化合物溶液 25μL、標識リガンド溶液 25μL、細胞懸濁液 50μLの順番に分注し、撹拌後(反応溶液 100μL)、18℃で1時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷PBS 200 μ Lで 2回洗浄した(冷PBS 200 μ Lを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを 1 ウエルあたり 25 μ L ずつ加え、フィルター上の細胞が保持する放射能をトップカウント(パッカード社製)で測定した。

被験化合物の代わりに上述のバキュロ発現ヒトMCP-1 (非標識) 100ng を添加した時のカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%としてヒトMCP-1のTHP-1細胞への結合に対する被験化合物の阻害能を算出した。

30 阻害率(%) = {1-(A-B) / (C-B)} × 100(A:被験化合物添加時のカウント、B:非標識ヒトMCP-1 100ng添加

371

PCT/JP00/03203

時のカウント、 $C:[^{125}1]$ 標識ヒトMCP-1のみ添加した時のカウント) 本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下記の化合物は、 $1\,\mu$ M、 $10\,\mu$ M、または $100\,\mu$ Mの濃度おいて、それぞれ $20\,\mu$ Mの

-50%、50%-80%、および>80%の阻害能を示した。

100μMの濃度において20%-50%の阻害能を示した化合物:
 化合物番号3、6、11、15、16、19、28、44、88、92、94、104、111、112、124、125、133、219、220、224、228、236、338、343、346、347、348、349、362、363、367、368、371、373、381、618、847、849、850、

10 866, 867, 869, 870, 871, 872, 873

100μMの濃度において50%-80%の阻害能を示した化合物:

化合物番号1、8、10、12、18、21、26、30、33、35、39、8 4、89、90、91、96、97、98、99、100、101、103、10 6、108、109、110、116、122、126、216、218、221

- 15 、 2 2 5、 2 2 6、 2 3 1、 3 3 0、 3 3 2、 3 3 3、 3 3 4、 3 3 7、 3 4 1、 3 4 2、 3 5 0、 3 5 2、 3 5 4、 3 5 6、 3 5 9、 3 6 0、 3 6 1、 3 6 4、 3 6 6、 3 7 4、 3 7 5、 3 7 9、 3 8 2、 4 6 2、 4 6 3、 4 6 4、 5 5 7、 6 8 6、 8 4 0、 8 4 1、 8 4 2、 8 4 3、 8 4 4、 8 4 5、 8 4 6、 8 4 8、 8 6 2、 8 6 3、 8 6 4、 8 6 5、 8 6 8
- 20 1 0 0 μ Mの濃度において> 8 0 %の阻害能を示した化合物:

化合物番号2、4、5、7、13、14、17、20、22、23、24、25、27、29、31、32、34、36、38、40、41、42、43、45、46、47、48、49、50、83、85、86、95、102、105、107、113、114、115、119、120、121、123、127、128、

25 129, 130, 131, 132, 134, 214, 215, 217, 227, 2 37, 238, 331, 335, 336, 339, 340, 345, 351, 35 5, 357, 358, 383, 458, 459, 460, 466, 558, 851 , 852, 861, 874

10 u Mの濃度において20%-50%の阻害能を示した化合物:

30 化合物番号12、18、30、34、40、42、43、51、52、53、54 、55、56、57、59、60、64、66、75、76、77、78、79、

82, 89, 90, 97, 98, 102, 103, 116, 127, 128, 12 9, 130, 132, 135, 136, 140, 141, 144, 156, 157 , 159, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 1 90, 191, 192, 195, 197, 200, 202, 203, 204, 20 5, 208, 233, 234, 235, 239, 240, 241, 242, 243 \[
 \tau 245 \, 247 \, 249 \, 250 \, 255 \, 263 \, 264 \, 269 \, 274 \,
 \] 278, 279, 282, 306, 316, 317, 323, 324, 380, 4 04, 409, 433, 446, 448, 449, 451, 470, 471, 47 10 3, 476, 479, 486, 488, 489, 497, 498, 499, 501 , 504, 507, 508, 509, 510, 512, 514, 516, 519, 527, 530, 532, 542, 545, 560, 563, 564, 565, 5 66, 568, 569, 572, 573, 574, 575, 578, 583, 58 4, 586, 587, 589, 590, 599, 600, 601, 603, 606 15 612,613,620,621,622,624,625,627,629, 630, 632, 634, 636, 637, 640, 641, 642, 643, 6 44, 645, 646, 647, 648, 649, 658, 678, 682, 68 7, 692, 694, 764, 775, 856, 857, 860, 881, 882 \[
 883\, 884\, 890\, 892\, 899\, 900\, 903\, 905\, 907\,
 \] 20 908, 911, 912, 916, 917, 921, 922, 923, 925, 9 27, 931, 932, 935, 939, 940, 968, 986, 1039, 1 041, 1045, 1047, 1062, 1063, 1083

10μMの濃度において50%-80%の阻害能を示した化合物:

化合物番号7、32、36、61、62、63、65、67、69、70、71、 72、73、74、81、91、105、114、121、123、134、13 7、138、139、146、147、148、149、151、154、165 、177、232、244、248、251、252、253、256、259、 261、266、267、276、286、292、293、295、301、3 05、307、310、314、315、320、322、328、434、43 30 5、436、437、439、440、443、447、450、452、453 、454、455、456、468、469、472、474、475、477、 478, 480, 481, 482, 483, 485, 490, 493, 494, 5
00, 505, 511, 517, 520, 529, 534, 540, 543, 54
4, 548, 555, 556, 561, 562, 570, 576, 579, 611
, 617, 853, 854, 855, 858, 859, 875, 877, 879,
880, 885, 886, 887, 888, 891, 894, 895, 904, 9
06, 909, 910, 913, 914, 918, 928, 930, 933, 93
7, 938, 945, 970, 1040, 1044, 1046

10μMの濃度において>80%の阻害能を示した化合物:

化合物番号31、45、46、48、58、68、80、83、113、115、10 142、143、145、150、152、265、268、272、275、283、285、287、288、290、291、294、296、297、302、308、309、313、321、325、326、358、438、441、442、444、445、457、466、467、484、487、491、492、495、496、503、518、537、538、547、554、815 76、878、919、929、943

 1μ Mの濃度において 2 0% - 5 0%の阻害能を示した化合物:

化合物番号1118、1121、1136、1143、1146、1158、11 59、1167、1170、1359、1361、1362、1363

1 μ Mの濃度において 5 0 % - 8 0 %の阻害能を示した化合物:

20 化合物番号1133、1134、1137、1141、1156、1161、11 62、1163、1164、1166

1μΜの濃度において>80%の阻害能を示した化合物:

化合物番号1147

25

30

<u>3-2. [125 I] 標識バキュロウィルス発現ヒトMCP-1のTHP-1細胞への</u> 結合に対する阻害能の測定(方法 2)

ヒト前単球由来白血病細胞であるTHP-1細胞を 1×10^7 個/mLになるようにアッセイバッファー(50mM HEPES、pH7. 4、1. 0mM CaC 1_2 、5. 0mM MgC 1_2 、0. 5%BSA)に懸濁し細胞懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。上述の [125 I] 標識バキュロウィルス発現ヒトMCP-1を 1_μ Ci/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。 96ウエルフィルター

プレート(ミリポア社製)に、1ウエルあたり被験化合物溶液25 μ L、標識リガンド溶液25 μ L、細胞懸濁液 5 O μ Lの順番に分注し、撹拌後(反応溶液10 O μ L)、18℃で1時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷PBS 200μ Lで $2回洗浄した(冷PBS <math>200\mu$ Lを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウエルあたり 25μ Lずつ加え、フィルター上の細胞が保持する放射能をトップカウント(パッカード社製)で測定した。被験化合物の代わりに上述のバキュロ発現ヒトMCP-1(非標識)100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%としてヒトMCP-1のTHP-1細胞への結合に対する被験化合物の阻害能を算出した。

阻害率 (%) = $\{1 - (A - B) / (C - B)\} \times 100$

(A:被験化合物添加時のカウント、B:非標識ヒトMCP-1 100ng添加時のカウント、C: [125 I] 標識ヒトMCP-1のみ添加した時のカウント)

本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下記の化合物は、 $0.2\mu M$ 、 $1\mu M$ 、または $10\mu M$ の濃度おいて、それぞれ20-50%、50%-80%、および>80%の阻害能を示した。

 $10 \mu M$ の濃度において 20% - 50%の阻害能を示した化合物: 化合物番号 1560

10μMの濃度において50%-80%の阻害能を示した化合物: 化合物番号1550

10μMの濃度において>80%の阻害能を示した化合物:

化合物番号541、1042、1043、1559

5

10

20

1μΜの濃度において20%-50%の阻害能を示した化合物:

3 7 5

1336, 1337, 1343, 1344, 1353, 1355, 1356, 1 357, 1358, 1368, 1372, 1385, 1386, 1392, 140 0, 1413, 1422, 1423, 1425, 1426, 1429, 1430, 1432, 1437, 1440, 1445, 1446, 1447, 1448, 14 50, 1452, 1453, 1455, 1458, 1459, 1461, 1463 1464, 1466, 1468, 1469, 1470, 1471, 1474, 1 479, 1482, 1485, 1507, 1508, 1510, 1511, 151 2, 1513, 1514, 1515, 1516, 1518, 1519, 1521, 1522, 1524, 1535, 1538, 1540, 1542, 1544, 15 10 71, 1573, 1574, 1575, 1576, 1577, 1578, 1579 , 1580, 1581, 1582, 1585, 1587, 1598, 1602, 1 603, 1604, 1609, 1611, 1612, 1613, 1614, 161 5, 1616, 1617, 1618, 1622, 1627, 1630, 1643, 1646, 1662, 1669, 1716, 1717, 1723, 1728, 17 15 31, 1733, 1736, 1739, 1740, 1747, 1750, 1755 , 1757, 1758, 1759, 1760, 1761, 1762, 1769, 1 770, 1771, 1772, 1773, 1774, 1777, 1783, 178 4, 1785, 1791, 1793, 1904, 1911, 1917, 2057, 2061, 2063, 2064, 2065, 2066, 2067, 2068, 20 20 69, 2071, 2072, 2073, 2074, 2075, 2076, 2080 , 2081, 2082, 2110, 2112, 2123, 2130, 2131, 2 139, 2170, 2180, 2181, 2182, 2212, 2216, 221 7, 2219, 2220, 2222, 2224, 2225, 2228, 2247, 2253, 2254, 2255, 2256, 2257

1μMの濃度において50%-80%の阻害能を示した化合物:
 化合物番号37、298、318、1084、1091、1103、1106、1108、1111、1113、1114、1115、1138、1142、1165、1179、1190、1192、1193、1195、1196、1204、1205、1206、1207、1208、1245、1246、1255、12
 57、1258、1262、1263、1293、1300、1342、1351、1352、1354、1370、1371、1373、1375、1377、1

376

378, 1380, 1381, 1383, 1384, 1391, 1411, 141 2, 1414, 1417, 1418, 1419, 1421, 1424, 1431, 1436, 1439, 1449, 1454, 1456, 1457, 1460, 14 62, 1472, 1473, 1487, 1502, 1504, 1506, 1517 1525, 1526, 1527, 1529, 1530, 1531, 1532, 1 5 533, 1534, 1536, 1537, 1539, 1541, 1545, 159 3, 1600, 1601, 1606, 1608, 1619, 1620, 1621, 1623, 1624, 1625, 1626, 1628, 1629, 1645, 16 50, 1654, 1658, 1663, 1664, 1665, 1670, 1671 10 , 1672, 1673, 1675, 1678, 1679, 1681, 1684, 1 687, 1688, 1689, 1690, 1711, 1712, 1714, 171 8, 1722, 1725, 1726, 1727, 1729, 1730, 1732, 1734, 1735, 1737, 1741, 1742, 1743, 1744, 17 45, 1746, 1748, 1751, 1753, 1754, 1756, 1779 15 1781, 1782, 1786, 1788, 1789, 1790, 1792, 1 795, 1797, 1798, 1800, 1801, 1804, 1848, 186 2, 1883, 1885, 1886, 1887, 1889, 1893, 1894, 1903, 1905, 1910, 1912, 1913, 1914, 1918, 19 22, 1976, 1985, 2027, 2035, 2062, 2083, 2084 20 2088, 2089, 2090, 2111, 2124, 2125, 2126, 2 135, 2167, 2171, 2175, 2211, 2221, 2226, 223 1, 2240

1 μ Μの濃度において>80%の阻害能を示した化合物:

化合物番号299、311、312、329、1042、1043、1085、1
25 119、1191、1203、1220、1228、1236、1244、1256、1288、1295、1308、1310、1376、1382、1393、1395、1415、1416、1420、1435、1438、1441、1480、1481、1570、1583、1584、1589、1590、1594、1595、1607、1634、1660、1661、1666、1668、1
30 695、1696、1697、1698、1699、1701、1702、1703、1704、1704、1705、1706、1707、1708、1709、1713、

3 7 7

1724, 1749, 1752, 1775, 1776, 1778, 1780, 17 87, 1794, 1796, 1799, 1802, 1803, 1841, 1869 , 1870, 1871, 1872, 1876, 1877, 1892, 1896, 1 897, 1898, 1899; 1900, 1901, 1902, 1906, 190 7, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 2085, 2086, 2087, 2113, 2114, 2118, 2119, 21 20, 2121, 2122, 2127, 2128, 2129, 2132, 2133 2136, 2137, 2138, 2159, 2161, 2162, 2169, 2 172, 2178, 2179, 2187, 2189, 2193, 2210, 221 10 3, 2214, 2215, 2218, 2227, 2229, 2230, 2232, 2233, 2235, 2236, 2237, 2238, 2241, 2242, 22 43, 2244, 2245, 2246, 2248, 2249, 2250, 2251 , 2252

2 μ Mの濃度において20%-50%の阻害能を示した化合物:

化合物番号1680、1682、1686、1691、1694、1700、18 15 05, 1810, 1811, 1812, 1813, 1815, 1816, 1817 1818, 1819, 1820, 1824, 1825, 1826, 1827, 1 828, 1832, 1833, 1834, 1835, 1836, 1839, 184 0、1842、1843、1851、1852、1853、1854、1855、 20 1856, 1858, 1859, 1860, 1863, 1864, 1865, 18 66, 1868, 1874, 1878, 1879, 1880, 1888, 1890 , 1891, 1895, 1926, 1927, 1928, 1929, 1930, 1 934, 1935, 1937, 1945, 1946, 1951, 1952, 195 3, 1954, 1959, 1960, 1961, 1962, 1966, 1969, 25 1970, 1971, 1972, 1973, 1977, 1978, 1979, 19 80, 1981, 1985, 2014, 2027, 2028, 2033, 2035 2039, 2040, 2041, 2042, 2044, 2045, 2046

0. 2 μ Mの濃度において50%-80%の阻害能を示した化合物:

化合物番号1677、1678、1679、1681、1687、1688、16 30 89, 1690, 1695, 1697, 1808, 1809, 1841, 1848 , 1861, 1862, 1869, 1870, 1871, 1872, 1873, 1

876, 1877, 1883, 1884, 1885, 1886, 1887, 188 9, 1893, 1894, 1976

 $0.2 \mu M$ の濃度において> 80%の阻害能を示した化合物:

化合物番号1696、1892

- 5 [実施例2045] MCP-1レセプター発現細胞へのMCP-1の結合に対する阻害能の測定([¹²⁵I] 標識ヒトMCP-1を用いた評価)
 - 1. MCP-1レセプター発現細胞の取得

YAMAGAMI, S. らが取得したMCP-1レセプターcDNA断片 (Bio chemical and Biophysical Research Communications 1994, 202, 1156-1162参照)

- 10 を発現プラスミドpCEP-4 (Invitrogen社製)のNotI部位に連結し、得たプラスミドをLipofectamine試薬 (Gibco-BRL社製)によりヒト腎上皮由来293-EBNA細胞にトランスフェクトし、選択薬剤 (ハイグロマイシン) 存在下で培養後、安定発現株を取得した。レセプターの発現は、[125 I] 標識ヒトMCP-1の結合性で確認した。
- 15 <u>2. [125 I] 標識バキュロウィルス発現ヒトMCP-1のMCP-1レセプター発</u>
 現細胞への結合に対する阻害能の測定

培養シャーレ上のMCP-1レセプター発現細胞をセルスクレーパーではがして 6×10^6 個/mLになるように、アッセイバッファー(D-MEM(Gibco-BRL社製)に 0.1%BSA、25mM HEPESを加え、pH7. 4に調製

20 したもの)に懸濁し、細胞懸濁液とした。その後の操作は実施例2044と同様に実施した。

本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例2044において示された阻害能とほぼ同等であった。

25 [実施例2046] 細胞遊走阻害活性の測定

本発明による化合物の細胞遊走阻害活性を調べる目的で、モノサイト遊走因子M CP-1 によって引き起こされる細胞遊走の測定をヒト前単球由来白血病細胞TH P-1 を遊走細胞として用い、Fall Son
30 ャンバー (Neuroprobe;登録商標)のチャンバー上室(200μL)にはTHP-1細胞を2×10⁶/mL(RPMI-1640(Flow Labor

WO 00/69432

10

15

atories社製)+10%FCSで懸濁したもの)、下室(35μL)には同液でヒト・リコンビナントMCP-1(Peprotech社製)を最終濃度20ng/mLになるように希釈したものを入れ、両室の間にポリカーボネートフィルター(PVP-free, Neuroprobe;登録商標)を固定し、37℃で5%CO₂存在下に2時間インキュベートを行った。

フィルターを取り出し、Diff Quick液 (国際試薬社製) にてフィルター下面に遊走した細胞を固定染色し、次いでプレートリーダー (Molecular Device社製) にて、測定波長 550 nmで測定し、3穴の平均値を求めることにより、遊走細胞数の指標とした。このとき、被験化合物を上室にTHP-1 細胞とともに各種濃度にして添加し、細胞遊走阻害活性 (阻害度: IC_{50} (μ M))を求めた。阻害度は { (上室に被験化合物無添加の場合のMCP-1による遊走細胞数) - (下室にMCP-1無添加の場合の遊走細胞数) = 100%} としてその 50% の阻害を示した化合物の濃度を IC_{50} とした。

本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば、下記の化合物の ΓC_{50} 値は 0. $1~\mu$ M以下であった。

IC₅₀値が 0. 1 μ M以下である化合物の例:

化合物番号4、37、298、299、311、312、318、329、461 \[
 886, 909, 1042, 1043, 1085, 1119, 1138, 114
 \] 2, 1165, 1179, 1191, 1203, 1205, 1220, 1228, 20 1236, 1244, 1245, 1256, 1288, 1293, 1295, 13 08, 1310, 1352, 1376, 1382, 1393, 1395, 1416 , 1420, 1435, 1436, 1438, 1441, 1480, 1531, 1 532, 1570, 1583, 1584, 1589, 1590, 1594, 159 5, 1600, 1601, 1607, 1660, 1661, 1664, 1666, 25 1668, 1698, 1699, 1701, 1702, 1703, 1704, 17 06, 1707, 1708, 1709, 1713, 1775, 1776, 1778 , 1779, 1787, 1794, 1796, 1799, 1802, 1803, 1 896, 1898, 1899, 1900, 1901, 1902, 1906, 190 7, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 30 2087, 2114, 2128, 2129, 2132, 2137, 2141, 21 44, 2157, 2158, 2189, 2213, 2214, 2235, 2236 2241, 2242, 2244, 2249, 2250, 2251

実施例2043、2044、2045、および2046における結果は、本発明 の化合物がMIP-1αおよび/またはMCP-1などのケモカインのレセプター 拮抗剤として、ケモカインの標的細胞への作用を阻害する活性を有することを明確 に示している。

[実施例2047] マウスコラーゲン関節炎に対する抑制効果の検討

マウスコラーゲン関節炎は、Katoらの方法 (Arthritis in mice induced by a single immunization with collagen. Ann. Rheum. Dis., 55, 535-539, 1996) に準じて作製した。

10 1. 方法

5

15

ウシ関節由来のタイプIIコラーゲン(コラーゲン技術研修会)を等量のフロインドの完全アジュバント(ICN Immunobiologicals)と混合し、均質なエマルジョンを作製した。エマルジョン作製には、超音波ホモジナイザー(タイテック株式会社)を使用した。エマルジョンをDBA/1マウス(日本チャールス・リバー株式会社)の尾根部皮内にツベルクリン用ガラスシリンジおよび27G注射針を用いり、15mg/0、1mL/body)投与した。

被験化合物を乳鉢にて0.5%カルボキシメチルセルロースナトリウム (CMC、和光純薬工業株式会社)水溶液に懸濁し、所定の投与液を調整し、エマルジョンを投与した翌日から経口投与した。

20 投与群は、0.5%CMCを投与した群(以下コントロール群)、被験化合物の30あるいは100mg/kgを投与した3群である。溶媒あるいは被験化合物は -日一回投与した。各群の動物数は16匹とした。

2. 関節炎の評価

エマルジョン投与後12週間後に、安部の方法(関節炎モデルにおける免疫療法 25 。炎症 12, 417-422, 1992)によって関節腫脹の程度を四肢それぞれの指関節について採点した。各肢は、点数0から3の4段階で採点し、最高を12点とした。

3. 滑膜の増殖、関節軟骨の破壊、および軟骨下骨の骨破壊に対する作用

関節炎点数を観察した後、右後肢を採取した。パラフィン包埋後、膝関節部位の 30 薄切切片を作製し、ヘマトキシリン・エオジン染色を施し、滑膜の増殖、関節軟骨 の破壊、および軟骨下骨の骨破壊に対する作用を常法により評価した。点数は、各

381

々の測定項目について点数0から4の5段階で行った。

4. 評価結果

コントロール群に対するカテゴリー型のダネット試験を実施し、p値が0.05 以下の場合を有意差があるとした。以下の図表は、平均値±標準偏差(SD)で表示した。化合物番号1583を12週間経口投与した場合の関節炎に対する結果を図1に示す。化合物番号1583を投与した群は、コントロール群に対し有意に関節炎スコアを抑制した。

化合物番号1583の滑膜の増殖、関節軟骨の破壊、および軟骨下骨の骨破壊に 対する結果をそれぞれ図2-4に示す。化合物1583は、いずれの評価項目についても有意に抑制した。

[実施例2048] ラットコラーゲン関節炎に対する抑制効果の検討

ラットコラーゲン関節炎は、Trenthamらの方法 (Autoimmunity to type II collagen: an experimental model of arthritis. J. Exp. Med., 146, 857-68(1977)) に基づき、これを以下のように改変して作製した。

15 1. 方法

10

ウシ関節由来のタイプIIコラーゲン(コラーゲン技術研修会)およびムラミルジペプチド(CHEMICON International社)を、最終濃度が、各々0.08%および0.02%となるようにフロイント不完全アジュバンド(CHEMICON International社)と混合して均質なエマルジョンを作製した。エマルジョンは、4℃にて、コネクターで結合した2本のガラスシリンジ内で、激しく攪拌して調製した。エマルジョンをLewis系雌性ラット(日本チャールス・リバー;6週齢)の背部内皮に、ツベルクリン用のガラスシリンジおよび26G注射針を用いて、1mLを10か所に分けて免疫した。1週後、上記と同様に調製したエマルジョンを、尾根部皮内に0.1mL追加免疫した(ブース25 ト)。

被験化合物を乳鉢にて0.5%カルボキシメチルセルロースナトリウム(CMC、和光純薬工業株式会社)水溶液に懸濁し、所定の投与液を調製し、初回のエマルジョン投与日から3週間連日経口投与した。

投与群は、無処置の群(以下インタクト群)、0.5%CMCを投与した群(以 30 下コントロール群)および化合物番号1245の300mg/kgを投与した3群 である。溶媒あるいは被験化合物は1日1回投与した。各群の動物数は8匹とした 382

<u>2. 関節炎の評価</u>

後肢の足関節腫脹を、その体積変化を測定することで評価した。ブースト実施日 および、その2、5、7、9、12、14日後の計7回にわたって、ラット左右後 肢の足蹠容積を、ラット後肢足蹠浮腫容積測定装置(TK-105、UNICON)を用いて測定した。結果は、ブースト実施日の足蹠容積を100%とし、その後 の増加率で示した。各群における、すべての左右後肢容積の平均をもって、その群 の平均値とした。

3. 評価結果

5

20

25

10 化合物番号1245を3週間連日経口投与した場合の関節炎に対する結果を図5に示す。図中の値は平均値±S. E. で表示した。コントロール群に対してStudentのt検定あるいはWilcoxon検定を実施し、P値が0.05以下の場合を有意差があるとした。化合物番号1245を投与した群は、ブースト後5、7、9、12、14日後の各タイムポイントにおいて、コントロール群に対し有意15 (5、7、14日後:P<0.01、9、12日後:P<0.001)に関節腫脹を抑制した。

実施例2047および実施例2048における結果により、本発明の薬剤は、関 節炎、慢性関節リウマチ、変形性関節症、外傷性の関節破壊、骨粗鬆症、腫瘍など 、軟骨破壊あるいは骨破壊を伴う疾患に対して有効な治療もしくは予防効果を有す ることが示された。

[実施例2049] <u>WKY-rat馬杉腎炎モデルにおける抑制作用の検討</u> 1. 方法 (実験1、2共通)

ラット腎臓皮質のトリプシン消化物をウサギに免疫して得た抗糸球体基底膜血清を4週齢雌のWKYラット(チャールスリバー株式会社)に2.5 mL/kg体重の割合で静脈内投与して糸球体腎炎を惹起した。

当該抗血清を投与後、1、4、7、10、14日目にラット用代謝ケージ(日本クレア)により各動物の尿を24時間採取し、尿量を尿重量を以て測定し、尿中に含有される蛋白質濃度を尿髄液中蛋白測定キット(トネインTP-II、大塚製薬)を用いて測定して1日あたりの尿中排泄蛋白量を求めた。

30 また、当該抗血清投与後15日目に実験に供した動物の血清を採取し、血中クレアチニンをクレアチニン測定キット(オートセラCRE、第一化学株式会社)を用

383

い、日立7070型オートアナライザーにて測定した。

被験化合物は100mg/kg体重を抗糸球体基底膜血清投与日より1日2回(実験1では午前10時前後および午後6時前後、実験2では午前10時前後および午後5時前後)、毎日経口投与した。対照群では投与液溶媒(0.5%カルボキシメチルセルロース水溶液)のみを経口投与した。投与容量は10mL/kg体重とした。動物のN数は10とした。

2. 結果と考察

抗糸球体基底膜血清投与後4日目にて各実験群にて尿蛋白が検出され始め、以後14日目まで経時的に尿蛋白量は増加して腎炎が惹起された。化合物番号1583を投与した群では当該抗血清投与後7日目に対照群に比較して26%の尿蛋白量の抑制傾向を認め、同10、14日目では各々51、54%の有意な(p<0.01、Mann-Whitney U test)尿蛋白量の抑制を認めた(図6)。抗糸球体基底膜血清投与後15日目の血中クレアチニンを測定したところ,化合物1583投与群は対照群に比較して20%の有意な(p<0.01、Mann-Whitney U test)減少を認めた(表53)。

従って、化合物1583によりラットの糸球体障害および腎機能増悪が軽減され 腎炎が抑制されたことがわかる。

表53

<u>血清クレアチニン抑制効果</u>

20

15

10

化合物投与15日日の皿荷グレノナーン値(mg/u)		
Placebo	化合物 1583	
0. 49±0. 06	0. 39±0. 03"	

2-2. 実験 2

25 抗糸球体基底膜血清投与後4日目頃より各実験群にて尿蛋白が検出され始め、以後14日目まで経時的に尿蛋白量は増加して腎炎の惹起が確認された。化合物12 45を投与した群では当該抗血清投与後4、7、10、14日目に対照群に比較して各々74、85、81、82%の有意な(p<0.001、Mann-Whitney U test)尿蛋白量の抑制を認めた(図7)。抗糸球体基底膜血清投30 与後15日目の血中クレアチニンを測定したところ、化合物A投与群は対照群に比較して10%の有意な(p<0.05、Student's t-test)減少

PCT/JP00/03203

384

を認めた(表54)。

従って、化合物1245によりラットの糸球体障害および腎機能増悪が軽減され 腎炎が抑制されたことがわかる。

表54

血清クレアチニン抑制効果

5

化合物 1245 投与 1 5 日目の血清クレアチニン値(mg/dl)

control	化合物 1245
0.53±0.05	0.48±0.04 [‡]

以上の結果より、本発明の化合物が、糸球体腎炎、間質性腎炎、またはネフロー 10 ゼ症候群などの腎炎もしくは腎症に対して有効な治療もしくは予防効果を有するこ とが示された。

[実施例2050] マウス慢性再発性実験的アレルギー性脳脊髄炎モデルにおけ る抑制効果の検討

1. 方法 15

Okuda Sの報告 (Okuda Y., et al. J. Neuroimmunol. 81, 201-210 (1998)) に記載の方法に準じ、慢性再発性実験的アレルギー性脳脊髄炎動物モデルを作製し

8週齢雌のSIL/IXPL/J F1マウス (Jackson Lab.)の 腹部に500µgのRabbit myelin basic protein (・ 20 Sigma) および500μgのMycobacterium tubercul osis H37Ra (Difco) を含んだ不完全アジュバント (Difco) /生理食塩水=1:1(体積比)のエマルジョン100μLを皮下注射した。24 時間後、400ngのBordetella pertussis toxin (Sigma) を含む100μLの生理食塩水を腹腔内投与し、慢性再発性実験的ア 25 レルギー性脳脊髄炎の誘導を行った。標本数は10とした。

被験化合物を乳鉢にて0.5%(重量/体積)カルボキシメチルセルロースナト リウム (和光純薬工業株式会社) 水溶液に懸濁し、所定の溶液を調製し、エマルジ ョンを投与した日から経口投与した。

慢性再発性実験的アレルギー性脳脊髄炎の臨床症状は田平らが記載した方法(『 30 免疫実験操作法』p. 1178-1181、南江堂(1995))を用い、動物各

385

個体を1日1回観察することにより評価した。すなわち、スコア0=正常;スコア1=尾の緊張低下(limp tail);スコア2=軽い歩行異常;スコア3=明らかな後肢脱力;スコア4=後肢対麻痺;スコア5=瀕死または死亡、とした。 2. 結果および考察

5 2-1. 実験1:化合物番号1583の効果

エマルジョン投与後41日までの結果を表55と図8に示す。

症状の推移は各観察日における各実験群の平均値で示した。また、表55における最大症状スコアでは、各動物が観察期間中に示した症状スコアの最大値を当該例の代表値として採用した。統計解析方法は、症状スコアについては対照群に対する対応のない多群間のノンパラメトリック検定を使用した。その他の計量値については対照群に対する多重比較(Dunnnettoの多重比較)を用いた。

対照群に比較して化合物番号1583投与群では100mg/kg体重投与群において発症1回目での発症日遅延傾向(有意差なし)、症状抑制(p<0.05)、発症期間短縮(p<0.05)が認められた。化合物1583の30mg/kg体重投与群では、これらの項目に対する明確な効果が見られないが、用量依存効果の傾向は見られた。尚、図8中、「化合物1」は本発明における化合物番号1ではなく、化合物番号1583の化合物を意味する。

表55

٠,	n
4	v

10

15

		,	
実験群	対照群	化合物番号 1583	化合物 1583
		30 mg/kg 体重	100 mg/kg 体重
発症1回目			
発症日	12.6 ± 1.9	12.3 ± 1.9	13.6 ± 2.0
最大症状スコア	3.9 ± 0.6	3.5 ± 0.9	2. 4 ± 1. 3*
発症期間	8. 8 ± 2. 5	9.8 ± 3.3	5. 7 ± 3. 8*
発症2回目(再発)			
発症日	26. 8 ± 7. 5	26. 3 ± 3. 4	28. 5 ± 4. 7*
最大症状スコア	3.8 ± 0.8	3.7 ± 0.6	3.0 ± 0.9*
発症期間	計算せず	計算せず	計算せず

25

* : p < 0.05

2-2. 実験2:化合物番号1245の効果

エマルジョン投与後21日までの結果を表56と図9に示す。

症状の推移は各観察日における各実験群の平均値で示した。また、表56におけ 30 る最大症状スコアでは、各動物が観察期間中に示した症状スコアの最大値を当該例 の代表値として採用した。統計解析方法は、症状スコアについては対照群に対する

386

対応のない2群間のノンパラメトリック検定を使用した。その他の計量値については対照群に対する2群比較 (Student's t-test)を用いた。

対照群に比較して、化合物番号1245の300mg/kg体重投与群では発症 日遅延(p<0.05)、症状抑制傾向(有意差なし)が認められた。

5

表 56

実験群	対照群	化合物番号1245
		300mg/kg体重
発症頻度(発症動物数/免疫動物数)	34/39	17/19
発症日	11.2±2.0	13.2±2.4*
最大症状スコア	3. 0±0. 9	2. 5±1. 5
発症期間	5. 5±1. 7	5. 4±2. 4

* p < 0.0 $\overline{5}$

以上の結果より、本発明の化合物が、多発性硬化症などの脱髄疾患に対して有効 な治療もしくは予防効果を有することが示された。

10 また、実施例2043-2050において示された結果は、本発明の化合物が、ケモカインレセプター拮抗剤として、動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎(腎症)、多発性硬化症、肺線維症、心筋症、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うっ血性心不全、ウィルス性髄膜炎、脳梗塞、ニューロパシー、川崎病、敗血症、アレルギー性鼻炎、およびアレルギー性皮膚炎など、MIP-1αおよび/またはMCP-1などのケモカインが関与すると考えられる諸疾患の治療薬もしくは予防薬となり得ることを示している。

「実施例2051」 錠剤の製造

化合物1583を30mg含有する錠剤を下記処方により製造した。

20 化合物 1 5 8 3

30mg

ラクトース

87 mg

デンプン

30mg

ステアリン酸マグネシウム

3 m g

[実施例2052] 注射剤の製造

387

1 m L 中に化合物 1 5 8 3 の塩酸塩を 0. 3 m g 含有する注射用溶液を下記の処方により製造した。

化合物1583(塩酸塩)

30mg

食塩

900mg

5 注射用蒸留水

100mL

産業上の利用可能性

388

請求の範囲

1. 下記式(1)

$$\begin{array}{c|c}
 & R^{1} & \stackrel{(CH_{2})_{k}}{\nearrow} & \stackrel{(CH_{2})_{k}}{\nearrow} & \stackrel{(CH_{2})_{n}}{\nearrow} & \stackrel{(CH_{2})_{n}}{\nearrow} & \stackrel{(CH_{2})_{n}}{\nearrow} & \stackrel{(CH_{2})_{p}}{\nearrow} & \stackrel{(CH_{2})_{q}}{\nearrow} & \stackrel{(CH_{2}$$

[式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を 10 表し、上記R¹におけるフェニル基または芳香族複素環基はベンゼン環、またはヘテ ロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳 香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R1におけるフェ ニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個の ハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイ・ 15 ル基、C₁-C₆アルキル基、C₃-C₈シクロアルキル基、C₂-C₆アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_6$ アルキレン基、 $C_5 - C_6$ アルキレン基、 $C_5 - C_6$ アル C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキシ 基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C。- C_1 アルカノイル基、 C_2 - C_1 カルコキシカルボニル基、 C_2 - C_1 アルカノイルオ 20 キシ基、C。-C、アルカノイルアミノ基、C。-C、N-アルキルカルバモイル基、 C₄-C₉ N-シクロアルキルカルバモイル基、C₁-C₆アルキルスルホニル基、C 3-C₈ (アルコキシカルボニル) メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH (C=O) O-で表される2価基、式:-NH (C=S) O-で表される 25 2価基、アミノ基、モノ (C,-C₆アルキル) アミノ基、またはジ (C,-C₆アル キル)アミノ基で置換されていてもよく、これらのフェニル基、C₃-C₈シクロア ルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒ ドロキシ基、アミノ基、トリフルオロメチル基、C,-C,アルキル基、またはC,-C₆アルコキシ基によってさらに置換されていてもよい。 30

 R^2 は、水素原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_7$ アルコキシカルボニル基、ヒ

ドロキシ基、またはフェニル基を表し、R 2 における C_1-C_6 アルキル基またはフェニル基は、任意個ののハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは R^2 はヒドロキシ基ではない。

5 jは0-2の整数を表す。

k は 0 - 2 の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子または(それぞれ同一または異なった任意個のハロゲン原子、ヒ 10 ドロキシ基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 または $C_1 - C_6$ アルキル基を表し、 R^4 および R^5 における $C_1 - C_6$ アルキル基は、 15 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ ルバモイル基、メルカプト基、グアニジノ基、C₃-C₈シクロアルキル基、C₁-C gアルコキシ基、C1-Cgアルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 、C1-C6アルキル基、C1-C6アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、Co-Coアルカノイル基、Co-Coアルコキシカルボニル 20 基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C,-C,アルキル) アミノ基、ジ(C,-C,アルキル) アミノ基、または(ヘテロ 原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香 25 族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換さ

pは0または1を表す。

を形成していてもよい。

q は 0 または 1 を表す。

30 Gt, -CO-, $-SO_2-$, -CO-O-, $-NR^7-CO-$, $-CO-NR^7-$, -NH-CO-NH-, -NH-CS-NH-, $-NR^7-SO_2-$, $-SO_2-N$

れていてもよく、あるいはR⁴およびR⁵は両者一緒になって3-6員環状炭化水素

390

 R^7 -、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は水素原子または C_1 - C_6 アルキル基を表すか、あるいは R^7 は R^5 と一緒になって C_2 - C_6 アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基 、ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子、および/もしくは 5 窒素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベ ンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原 子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合 して縮合環を形成していてもよく、さらに上記R⁶におけるフェニル基、C₃-C₈シ クロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、芳香族複素環基、ま 10 たは縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、 ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチ ル基、C,-C₆アルキル基、C₃-C₈シクロアルキル基、C₂-C₆アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 $C_1 - C_6$ アルキルチオ 基、C1-C3アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ 15 基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基 、3-フェニルウレイド基、C₂-C₂アルカノイル基、C₂-C₂アルコキシカルボ ニル基、C₂-C₇アルカノイルオキシ基、C₂-C₇アルカノイルアミノ基、C₂- C_7 N-アルキルカルバモイル基、 C_1 - C_6 アルキルスルホニル基、フェニルカル バモイル基、N, N-ジ(C₁-C₆アルキル)スルファモイル基、アミノ基、モノ 20 $(C_1 - C_6 T \mu + \mu)$ アミノ基、ジ $(C_1 - C_6 T \mu + \mu)$ アミノ基、ベンジルアミ ノ基、C。-C。(アルコキシカルボニル)アミノ基、C1-C6(アルキルスルホニ ル) アミノ基、またはビス $(C_1 - C_6 アルキルスルホニル)$ アミノ基により置換さ れていてもよく、これらのフェニル基、C₃-C₈シクロアルキル基、C₃-C₈シク ロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個 25 のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、C1 $-C_6$ アルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、モノ(C_1 -C₆アルキル) アミノ基、またはジ(C₁-C₆アルキル) アミノ基によってさらに置 換されていてもよい。〕

30 で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分とする、ケモカインもしくはケモカインレ

セプターが関与する疾患の治療薬もしくは予防薬。

2. 疾患が軟骨破壊または骨破壊を伴う疾患である請求の範囲第1項記載の治療 薬もしくは予防薬。

5

- 3. 軟骨破壊または骨破壊を伴う疾患が、関節炎、慢性関節リウマチ、変形性関節症、外傷、骨粗鬆症、または腫瘍である請求の範囲第2項記載の治療薬もしくは 予防薬。
- 10 4. 疾患が慢性関節リウマチである請求の範囲第1項記載の治療薬もしくは予防薬。
 - 5. 疾患が、腎炎もしくは腎症である請求の範囲第1項記載の治療薬もしくは予防薬。

15

- 6. 疾患が、糸球体腎炎、間質性腎炎、またはネフローゼ症候群である請求の範囲第5項記載の治療薬もしくは予防薬。
- 7. 疾患が、脱髄疾患である請求の範囲第1項記載の治療薬もしくは予防薬。

20

- 8. 疾患が、多発性硬化症である請求の範囲第7項記載の治療薬もしくは予防薬

25

- 10. ケモカインレセプターがCCR1もしくはCCR2である請求の範囲第1項記載の治療薬もしくは予防薬。
- 11. 上記式(I)で表される化合物、その薬学的に許容される酸付加体、また はその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする医薬組成物。

2/8

図 2

3/8

4/8

(図5%

図 7

6/8

(战平) てにス状立

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/03203

			<u> </u>	
A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ A61K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 427, 433, 4245, 4155, 5377, 4709, 506, 4184, 4178, 423, 4192, 445, 429, 55, A61P43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D207/14, 33, 34, 405/06, 12, 14, 401/06, 12, 14, 409/06, 12, 14, 403/06, 12, 14, According to International Patent Classification (IPC) of to both national classification and IPC				
		ătional classification and IPC	,	
	S SEARCHED ocumentation searched (classification system followed	hu ologičasti a a met da		
Int. 4709 // C 413/	Cl' A61K31/40, 422, 4439, 404, 454 , 506, 4184, 4178, 423, 4192, 445, 429, 07D207/14, 33, 34, 405/06, 12, 14, 40 14, 417/06, 211/34, 60, 62, 513/04, 2	5, 4525, 4535, 454, 427, 433, 55, A61P43/00, 29/00, 9/00, 301/06, 12, 14, 409/06, 12, 14	7/00, 25/00, 11/00 , 403/06, 12, 14,	
	ion searched other than minimum documentation to th			
REGI	ata base consulted during the international search (nan ISTRY (STN), CA (STN), CAOLD (STN), CA	ne of data base and, where practicable, sea	rch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.	
X A	Khalid, M. et al., "N,N'-disubs as novel cancer chemotherapeutic Res., Vol.13, Suppl.1, pp.57-6	agents", Drugs Exp. Clin.	1-3,9-11 4-8	
X A	WO, 98/50534, A1 (SMITHKLINE B 12 November, 1998 (12.11.98) & EP, 991753, A1 & AU, 9872 & ZA, 9803843, A & NO, 9905	885, A	1-3,9-11 4-8	
X A	EP, 217286, A1 (OKAMOTO, SHOSU 08 April, 1987 (08.04.87), compounds No.42 & JP, 63-022061, A & US, 4895 & CA, 1297633, A & AU, 6305	842, A	11 1-10	
PX	WO, 99/25686, A1 (TEIJIN LIMIT) 27 May, 1999 (27.05.99) & AU, 9913741, A	ED),	1-11	
PX	WO, 00/31032, A1 (F.HOFFMANN-L) 02 June, 2000 (02.06.00), & DE, 19955794, A	A ROCHE AG),	1-11	
Further	documents are listed in the continuation of Box C.	See patent family annex.		
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date date "C" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 09 August, 2000 (09.08.00) "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 22 August, 2000 (22.08.00)				
	ailing address of the ISA/ nese Patent Office	Authorized officer		
Facsimile No	ı.	Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/03203

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
	& GB, 2343893, A & FR, 2786185, A		
	4.*		
•			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調査報告

国際出願番号 PCT/JP00/03203

発明の属する分野の分類(国際特許分類(IPC))

Int. C1 A61K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 427, 433, 4245, 4155, 5377, 4709, 506, 4184, 4178, 423, 4192, 445, **4**29, 55, A61P43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D207/14, 33, 34, 405/06, 12, 14, 401/06, 12, 14, 409/06, 12, 14, 403/06, 12, 14, 413/14, 417/06, 211/34, 60, 62, 513/04, 223/02

В. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ A61K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 427, 433, 4245, 4155, 5377, 4709, 506, 4184, 4178, 423, 4192, 445, 429, 55, A61P43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07D207/14, 33, 34, 405/06, 12, 14, 401/06, 12, 14, 409/06, 12, 14, 403/06, 12, 14, 413/14, 417/06, 211/34, 60, 62, 513/04, 223/02

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN)

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
X A	Khalid, M. et al., "N, N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res., Vol. 13, Suppl. 1, p. 57-60 (1987)	1-3, 9-11 4-8	
X A	WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION) 12.11月.1998(12.11.98) &EP, 991753, A1 &AU, 9872885, A &ZA, 9803843, A &NO, 9905433, A	1-3, 9-11 4-8	

x C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献 .
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

国際調査を完了した日 09.08.00	国際調査報告の発送日 22.08.00
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 榎本 佳予子 印 4 P 9 6 3 8
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3492

国際調査報告

国際出願番号 PCT/JP00/03203

C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
Х	EP, 217286, A1 (OKAMOTO, SHOSUKE) 8.4月.1987(08.04.87)	11	
A	化合物NO. 42参照	1-10	
	&JP, 63-022061, A &US, 4895842, A &CA, 1297633, A &AU, 6305186, A		
PX	WO, 99/25686, A1 (TEIJIN LIMITED) 27.5月.1999(27.05.99)	1-11	
	&AU, 9913741, A		
PX	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00)	1-11	
	&DE19955794, A &GB, 2343893, A &FR, 2786185, A		
	the ten product the tensor		
•			
-			
		,	
	•		
		'	
		,	
	·		

