Computergrafik I Kapitel 1: Einführung

Wintersemester 2014/2015

Prof. Dr. Timo Ropinski Forschungsgruppe Visual Computing

Inhalte der Vorlesung

- Computer-gestützte Erstellung von Bildern
 - Rendering, Bildsynthese
- Fokus liegt auf Echtzeit-fähiger Computergrafik

[Credits: Wikipedia User Mimigu] [Crassin et al., P

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

Lernziele der Vorlesung

- Theoretische Kenntnisse
 - Grundlegender Konzepte und Algorithmen
 - Konzeptionelle Stufen der Renderingpipeline
- Praktische Umsetzung
 - Anzeige polygonaler Modelle mit Texturierung und Beleuchtung
 - Implementierung von Grafikalgorithmen auf CPU und GPU

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitei 1: Einführung 3

Über den Dozenten

- 2004 Promotion im Bereich Visualisierung & Computergrafik an der Universität Münster
- 2005-2011 Projektleiter im SFB 656
- 2009 Habilitation im Fach Informatik
- 2011-2014 Professur an der Universität Linköping (SE)
 - Leiter der Forschungsgruppe Visualisierung
- seit 11/2014 Professur an der Universität Ulm
 - Leiter der Forschungsgruppe Visual Computing
- Forschungsinteressen: Volumen Rendering, Interaktive Visualisierung, Visuelle Wahrnehmung, Visuelle Analyse,

• • •

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Einführung

1.1 Organisatorisches

Details zum Ablauf der Vorlesung

Lehrende

- Vorlesung
 - Prof. Dr. Timo Ropinski
 Raum O27/3208
 timo.ropinski@uni-ulm.de

 Sprechstunden nach Vereinbarung

- Übungen
 - Peter Bendel <u>peter.bendel@uni-ulm.de</u> "Sprechstunde" während den Übungen

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

Zielgruppe & Disziplinen

- Studierende der folgenden Studiengänge
 - Informatik (M.Sc., Lehramt)
 - Medieninformatik (B.Sc., M.Sc.)
 - Software-Engineering (M.Sc.)
- Relevante Disziplinen
 - Informatik
 - Mathematik
 - Physik

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Finführung

9

Veranstaltungsformat

- Vorlesung
 - Kompakte Vorlesung im Januar 2015
 - Termine auf der Vorlesungswebsite
 - Vorlesungsfolien
 - Stehen im Skriptdrucksystem online
 - Werden durch Tafelbilder ergänzt!
 - Erklären sich im allgemeinen **nicht** selbst!
 - Zusätzliche Materialien in Moodle abrufbar
- Übungen
 - Parallel zur Vorlesung (Fertigstellung in den Semesterferien)
 - Programmierung in C/C++ (Einführung erfolgt in den Übungen)

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung

Übungen

- Übungstermine
 - 1. Mi 14. Januar, 16-18 (O27/123): Einführung C++
 - 2. Do 22. Januar, 10-12 (O27/123): Ray Tracing
 - 3. Do 29. Januar, 10-12 (O27/123): OpenGL
 - 4. Do 05. Februar, 10-12 (O27/123): Transformationen
 - 5. Mi 08. April(!), 16-18 (O28/H21): Echtzeit Rendering Projekt
- Übungsaufgaben (Theorie & Praxis)
 - 1. Ray Tracing (10Pkt., Abgabe: 21. Januar, 23:59)
 - 2. OpenGL (10Pkt., Abgabe: 28. Januar, 23:59)
 - 3. Transformationen (10Pkt., Abgabe: 04. Februar, 23:59)
 - 4. Echtzeit Rendering Projekt (70Pkt., Abgabe: 05. April, 23:59)
- Die Abgabe erfolgt in zweier Gruppen

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

11

Leistungsnachweis

- Schriftliche Abschlussprüfung
 - Mo 16. Februar 2015, 14-16 (N25/H3)
 - Do 09. April 2015, 14-16 (O28/H20)
- "Notenzuschlag" möglich
 - 60% der Übungspunkte benötigt
 - Nur laufende Lösungen werden bewertet
 - Punkteabzug bei Überschreitung der Abgabefristen
 - 2 Punkte pro Tag (Wochenende zählt als ein Tag)
 - Nicht möglich bei Echtzeit Rendering Projekt
- Vorstellen der Lösung eines Übungszettels
 - Einmal möglich um 10% zu kompensieren
 - Detaillierte Darstellung des Lösungswegs in der Übungsgruppe
 - Beantwortung von Fragen zum Lösungsweg

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung

Kapitelübersicht

- Kapitel 1: Einführung
- Kapitel 2: Ray Tracing
- Kapitel 3: Die Renderingpipeline
- Kapitel 4: Geometrische Transformationen
- Kapitel 5: Geometrische Projektionen
- Kapitel 6: Farbe und Schattierung
- Kapitel 7: Clipping
- Kapitel 8: Rasterisierung
- Kapitel 9: Sichtbarkeitsermittlung
- Kapitel 10: Texturierung
- Kapitel 11: Schattenberechnung
- Kapitel 12: Parametrisches Modellieren
- Kapitel 13: Datenstrukturen

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Einführung

Literatur

- P. Shirley, M. Ashikhmin, S. Marschner: Fundamentals of Computer Graphics (3. Auflage), AK Peters 2009.
- D. Shreiner, G. Sellers, J. Kessenich, B. Licea-Kane:
 OpenGL Programming Guide: The Official Guide to Learning OpenGL (8. Auflage), Addison-Wesley 2013.

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1:

15

Relevante Kapitel und Bezug zur Vorlesung

(Kapitel 1)

- Chapter 1: Introduction
- Chapter 3: Raster Images
- Chapter 21: Color
- Chapter 4: Ray Tracing (Kapitel 2)
- Chapter 8: The Graphics Pipeline (Kapitel 3)
- Chapter 6: Transformation Matrices (Kapitel 4)
- Chapter 7: Viewing (Kapitel 5)
- Chapter 10: Surface Shading (Kapitel 6)
- Chapter 11: Texture Mapping (Kapitel 10)
- Chapter 15: Curves (Kapitel 12)
- Chapter 12: Data Structures (Kapitel 13)
- Zum selber nachschlagen
 - Chapter 2: Miscellaneous Math
 - Chapter 5: Linear Algebra
 - Chapter 19: Building Interactive Graphics Applications

P. Shirley et al.: Fundamentals of Computer Graphics.

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung

Kapitelstruktur

- (1.1 Organisatorisches)
- 1.2 Einordnung des Gebiets
- 1.3 Pixel-basierte Darstellung
- 1.4 3D Modelle
- 1.5 Algorithmische Paradigmen
- 1.6 Weiterführende Literatur

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung

17

1.2 Einordnung des Gebiets

Computergrafik in Relation zu anderen Fachgebieten

Geschichte

- Ursprünge in der Kunst
 - Perspektive, Farbe etc.
- Entstehungsgeschichte
 - 1960 "Computer Graphics", William Fetter (Boeing)
 - 1962 *Spacewars*, Steve Russel (MIT)
 - 1963 <u>Simulation of a two-giro gravity</u> <u>attitude control system</u>, Edward Zajac (Bell)
 - 1963 Sketchpad, Ivan Sutherland (MIT)
 - 1964 Boeing Man, William Fetter (Boeing)
 - 1966 <u>Head Mounted Display</u>, Ivan Sutherland (MIT)
 - 1968 Ray Casting, Arthur Appel (IBM)
 - 1979 Ray Tracing, Turner Whitted (Bell)

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

[Reichardt, Jasia, ed. 1968. Cybernetic Serendipity. The Computer

William Fetter (1960)

19

Angrenzende Fachgebiete

- Mensch-Maschine-Interaktion
- Virtuelle und Erweiterte Realität
- Visualisierung
- Bildverarbeitung
- Computer Vision
- 3D Scanning

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

Anwendungen

- Computerspiele
- Animationsfilme
- Cartoons
- Spezialeffekte in Filmen
- CAD/CAM
- Simulation

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

[Toy Story, Walt Disney Pictures 1995]

Kapitel 1: Einführung 21

1.3 Pixel-basierte Darstellung

Was ist ein Pixel?

Bildröhre nach dem Kathodenstrahl Prinzip

Karl Ferdinand Braun (1897)

Vektor Bildschirme

- Zeitraum: 1963-80er Jahre
- Kathodenstrahl zum "zeichnen" von Linien verwendet
- Bildwiederholrate:
 - Abhängig von der Komplexität (Anzahl und Länge) der Linien

Einführung

• Häufig Flackern in der Darstellung

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

Raster Bildschirme

- Zeitraum: 1972-90er Jahre
- Kathodenstrahl trifft durch Matrix
- Flächige Zeichenprimitive möglich

Rastrum (lat. für Rechen)

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung 25

Raster LCD Bildschirme

- Zeitraum: seit den 90er Jahren
- Flüssigkristalle beeinflussen Polarisation des Lichts
- Flache Bauweise möglich

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

Pixel

- Name entstand als Kunstwort für Picture Element
- Ein Pixel ist ein Sample mit assoziierten Sample-Werten (=Pixel Komponenten)
 - Farbwerte
 - Transparenzwerte
 - Tiefenwerte
 - ...

- Pro Sample-Wert steht eine bestimmte Bit-Tiefe zur Verfügung
 - z.B. 24 Bit Farbe, 8 Bit Alpha + 24 Bit Tiefe

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung 31

Farbe

 Farbe in der Realität durch Farbspektrum gegeben

- Im Computer wird Farbe durch Farbmodelle repräsentiert
 - RGB Farbmodell (additiv)
 - CMYK Farbmodell (subtraktiv)
 - HSV Farbmodell (Benutzer-zentriert)

CMYK

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung

Beispielwerte

- Gegeben Bild mit 1024x768 Pixeln und 24Bit Farbtiefe
 - Wieviele unterschiedliche Farben sind darstellbar?

•
$$2^{24} = 2^8 \cdot 2^8 \cdot 2^8 = 256^3 = 16.777.216$$

- Wieviel Speicher benötigt ein Bild?
 - $1024 \cdot 768 \cdot 24 = 18.874.368b = 2.359.296B = 2,25MB$
- Wie lange ist jedes Bild bei einer Bildwiederholrate von 30Hz sichtbar?
 - $\frac{1.000ms}{30} = 33,33ms$
- Wieviel Daten werden pro Sekunde generiert?
 - $2,25MB \cdot 30 = 67,5MB$

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

33

1.4 3D Modelle

Modellierung mit Dreiecken und anderen Primitiven

Arten von Modellen

- Modelle spezifizieren die darzustellenden Strukturen
- Drei häufig verwendete Modellierungsarten
 - Implizite Flächen
 - Polygonale Modelle
 - Volumetrische Modelle

 $f(x,y,z) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2$

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1:

35

Implizite Flächen

- Menge aller Punkte mit f(x, y, z) = 0
- Alle Punkte mit f(x, y, z) < 0 definieren den durch f(x, y, z) = 0 begrenzten Körper
- Darstellungsmöglichkeiten
 - Nullstellensuche
 - Polygonalisierung
 - Rasterisierung
- Nicht alle Objekte direkt abbildbar

 $f(x,y,z) = (x-x_c)^2 + (y-y_c)^2 + (z-z_c)^2 - r^2$

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

Quadriken

• Flächen basierend auf quadratischen Gleichungen Einschaliges Hyperboloid

$$f(x, y, z) = \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\gamma^2} - 1$$

 $f(x, y, z) = \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} - \frac{z^2}{\gamma^2} - 1$

Hyperbolisches Paraboloid

 $f(x, y, z) = \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} - \frac{z^2}{\gamma^2} + 1$

Elliptischer Kegel

[Eldar Sultanow: Implizite Flächen] 37

Computergrafik I (WS14/15)

Polygonale Modelle

- Oberflächenrepräsentation wird durch Polygone angenähert
- Darstellung
 - Rendering durch Rasterkonvertierung von Dreiecken

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung

Volumetrische Modelle

- Voxel (Volume Elements) repräsentieren einen Körper
- Darstellungsformen
 - Rendering extrahierter Oberflächen
 - Direktes Rendering mit spezialisierten Algorithmen

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung 41

Generierung von Modellen

- Polygonale Modelle: 3D Scanner & 3D Modellierungssoftware
- Volumetrische Modelle: Medizinische Scanner, Seismische Messungen, Simulation, ...

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

Koordinatensysteme

- Modelle werden in ihrem eigenen Koordinatensystem spezifiziert (Modellkoordinatensystem)
- Bei Überführung ins Weltkoordinatensystem können Modelle verschoben, skaliert und rotiert werden

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung 43

1.5 Algorithmische Konzepte

Grundlegende Paradigmen und unterschiedliche Schulen

Bild-basierte Algorithmen

 Anzahl auszuführender Verarbeitungsschritte direkt proportional zur Anzahl der Pixel

```
for all Pixels do {
    for all SceneObjects do {
        ...
    }
}
```

- Vorteile
 - Einfache Umsetzung
 - Schatten & Reflexionen einfach umsetzbar, da in der Schleife alle Objekte zugreifbar sind
- Nachteile
 - Lange Berechnungszeiten

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Einführung

45

Objekt-basierte Algorithmen

 Anzahl auszuführender Verarbeitungsschritte direkt proportional zur Anzahl der Modelle (Szenenobjekte)

```
for all SceneObjects do {
   for all Pixels do {
     ...
   }
}
```

- Vorteile
 - Schnelle Berechnungszeiten
- Nachteile
 - Komplexe Umsetzung
 - Schatten & Reflexionen schwierig umsetzbar, da in der Schleife nur jeweils ein Objekte zugreifbar ist

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Einführung

1.6 Weiterführende Literatur

Zugrundeliegende und ergänzende Quellen

Literatur

- P. Shirley, M. Ashikhmin, S. Marschner: Fundamentals of Computer Graphics (3. Auflage), AK Peters 2009.
 - Kapitel 1: Introduction
 - Kapitel 3: Raster Images

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15) Kapitel 1: Einführung

Ergänzende Ressourcen

- Tafelbilder
 - RGB Farbwürfel
 - HLS Farbkegel
 - Normalenberechnung über Kreuzprodukt (für ein Dreieck, unter Einbezug der Nachbarn)
- YouTube Videos
 - Spacewar! (MIT 1962)
 - Simulation of a two-giro gravity attitude control system Edward Zajac
 - Sketchpad
 - Ivan Sutherland Head Mounted Display
 - Quest: A Long Ray's Journey Into Light

Timo Ropinski (FG VisCom) Computergrafik I (WS14/15)

Kapitel 1: Einführung

ЭΙ