MVPA with SpaceNet: sparse structured priors

https://hal.inria.fr/hal-01147731/document

Elvis DOHMATOB

(Joint work with: M. EICKENBERG, B. THIRION, & G. VAROQUAUX)

1 Introducing the model

1 Brain decoding

- **■**We are given:
 - n = # scans; p = number of voxels in mask
 - design matrix: $X \in \mathbb{R}^{n \times p}$ (brain images)
 - response vector: $y \in \mathbb{R}^n$ (external covariates)
- Need to predict y on new data.
- Linear model assumption: $\mathbf{y} \approx \mathbf{X} \mathbf{w}$
- ■We seek to estimate the weights map, w that ensures best prediction / classification scores

1 The need for regularization

- **III-posed problem**: high-dimensional $(n \ll p)$
- Typically $n \sim 10 10^3$ and $p \sim 10^4 10^6$
- ■We need **regularization** to reduce dimensions and encode practioner's priors on the weights **w**

1 Why spatial priors?

■3D spatial gradient (a linear operator)

$$\nabla: \mathbf{w} \in \mathbb{R}^p \longrightarrow (\nabla_{\!x} \mathbf{w}, \nabla_{\!y} \mathbf{w}, \nabla_{\!z} \mathbf{w}) \in \mathbb{R}^{p \times 3}$$

- penalize image grad ∇w ⇒ regions
- Such priors are reasonable since brain activity is spatially correlated
- more stable maps and more predictive than unstructured priors (e.g SVM)

[Hebiri 2011, Michel 2011,

Baldassare 2012, Grosenick 2013,

Gramfort 2013

1 SpaceNet

- SpaceNet is a family of "structure + sparsity" priors for regularizing the models for brain decoding.
- SpaceNet generalizes
 - TV [Michel 2001],
 - Smooth-Lasso / GraphNet [Hebiri 2011, Grosenick 2013], and
 - TV-L1 [Baldassare 2012, Gramfort 2013].

Methods

2 The SpaceNet regularized model

$$\mathbf{y} = \mathbf{X} \, \mathbf{w} + \text{"error"}$$

Optimization problem (regularized model):

minimize
$$\frac{1}{2} ||\mathbf{y} - \mathbf{X} \mathbf{w}||_2^2 + \text{penalty}(\mathbf{w})$$

 $\frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ is the loss term, and will be different for squared-loss, logistic loss, ...

2 The SpaceNet regularized model

penalty(\mathbf{w}) = $\alpha\Omega_{\rho}(\mathbf{w})$, where

$$egin{aligned} & oldsymbol{\Omega}_{
ho}(\mathbf{w}) :=
ho \|\mathbf{w}\|_1 + (1-
ho) egin{cases} rac{1}{2} \|
abla w\|^2, & ext{for GraphNet} \ \|\mathbf{w}\|_{TV}, & ext{for TV-L1} \ ... \end{cases} \end{aligned}$$

- $\alpha \ (0 < \alpha < +\infty)$ is total amount regularization
- ρ (0 < $\rho \le 1$) is a mixing constant called the ℓ_1 -ratio
 - $\rho = 1$ for Lasso

2 The SpaceNet regularized model

penalty(\mathbf{w}) = $\alpha\Omega_{\rho}(\mathbf{w})$, where

$$egin{aligned} & oldsymbol{\Omega}_{
ho}(\mathbf{w}) :=
ho \|\mathbf{w}\|_1 + (1-
ho) egin{cases} rac{1}{2} \|
abla w\|^2, & ext{for GraphNet} \ \|\mathbf{w}\|_{TV}, & ext{for TV-L1} \ ... \end{cases} \end{aligned}$$

- $lacksq lpha \ (0 < lpha < +\infty)$ is total amount regularization
- ho $(0 < \rho \le 1)$ is a mixing constant called the ℓ_1 -ratio
 - $\rho = 1$ for Lasso
- Problem is **convex**, **non-smooth**, and **heavily-ill-conditioned**.

2 Interlude: zoom on ISTA-based algorithms

■ Settings: min f + g; f smooth, g non-smooth f and g convex, ∇f L-Lipschitz; both f and g convex

ISTA: $\mathcal{O}(\mathcal{L}_{\nabla f}/\epsilon)$ [Daubechies 2004] **Step 1:** Gradient descent on f **Step 2:** Proximal operator of g

FISTA: $\mathcal{O}(\mathcal{L}_{\nabla f}/\sqrt{\epsilon})$ [Beck Teboulle 2009] = ISTA with a "Nesterov acceleration" trick!

2 FISTA: Implementation for TV-L1

[DOHMATOB 2014 (PRNI)]

2 FISTA: Implementation for GraphNet

- Augment **X**: $\tilde{X} := [X \ c_{\alpha,\rho} \nabla]^T \in \mathbb{R}^{(n+3p) \times p}$ $\Rightarrow \tilde{\mathbf{X}} \mathbf{z}^{(t)} = \mathbf{X} \mathbf{z}^{(t)} + c_{\alpha,\rho} \nabla (\mathbf{z}^{(t)})$
 - 1. Gradient descent step (datafit term): $\mathbf{w}^{(t+1)} \leftarrow \mathbf{z}^{(t)} \gamma \tilde{\mathbf{X}}^T (\tilde{\mathbf{X}} \mathbf{z}^{(t)} \mathbf{v})$
 - 2. **Prox step** (penalty term): $\mathbf{w}^{(t+1)} \leftarrow soft_{\alpha\rho\gamma}(\mathbf{w}^{(t+1)})$
 - 3. Nesterov acceleration: $\mathbf{z}^{(t+1)} \leftarrow (1 + \theta^{(t)}) \mathbf{w}^{(t+1)} \theta^{(t)} \mathbf{w}^{(t)}$

Bottleneck: $\sim 80\%$ of runtime spent doing $X_Z^{(t)}$!

■We badly need speedup!

2 Speedup via univariate screening

■Whereby we **detect and remove irrelevant**voxels before optimization problem is even entered!

100% brain vol

- ■The 20% mask has the 3 bright blobs we would expect to get
- ... but contains much less voxels ⇒ less run-time

2 Our screening heuristic

- $\underline{} \underline{} t_p := p \overline{} h$ percentile of the vector $|X^T y|$.
- Discard jth voxel if $|X_i^T y| < t_p$

- Marginal screening [Lee 2014], but without the (invertibility) restriction $k \leq \min(n, p)$.
- The regularization will do the rest...

2 Our screening heuristic

See [DOHMATOB 2015 (PRNI)] for a more detailed exposition of speedup heuristics developed.

2 Automatic model selection via cross-validation

■regularization parameters:

$$0 < \alpha_L < \dots < \alpha_3 < \alpha_2 < \alpha_1 = \alpha_{max}$$

mixing constants:

$$0 < \rho_M < \dots < \rho_3 < \rho_2 < \rho_1 \le 1$$

Thus $L \times M$ grid to search over for best parameters

α_1, ρ_1	(α_1, ρ_2)	(α_1, ρ_3)	 (α_1, ρ_M)
(α_2, ρ_1)	(α_2, ρ_2)	(α_2, ρ_3)	 (α_2, ρ_M)
(α_3, ρ_1)	(α_3, ρ_2)	(α_3, ρ_3)	 (α_3, ρ_M)
(α_L, ρ_1)	(α_L, ρ_2)	(α_L, ρ_L)	 (α_L, ρ_M)

2 Automatic model selection via cross-validation

- The final model uses average of the per-fold best weights maps (bagging)
- This bagging strategy ensures more stable and robust weights maps

3 Some experimental results

3 Weights: SpaceNet versus SVM

3 Classification scores: SpaceNet versus SVM

3 Concluding remarks

- SpaceNet enforces both sparsity and structure, leading to better prediction / classification scores and more interpretable brain maps.
- The code runs in \sim 15 minutes for "simple" datasets, and \sim 30 minutes for very difficult datasets.

3 Concluding remarks

- SpaceNet enforces both sparsity and structure, leading to better prediction / classification scores and more interpretable brain maps.
- The code runs in \sim 15 minutes for "simple" datasets, and \sim 30 minutes for very difficult datasets.
- In the next release, SpaceNet will feature as part of Nilearn [Abraham et al. 2014] http://nilearn.github.io.

3 Why X^Ty maps give a good relevance measure ?

■In an orthogonal design, least-squares solution is

$$\hat{\mathbf{w}}_{LS} = (X^TX)^{-1}X^Ty = (I)^{-1}X^Ty = X^Ty$$

 \Rightarrow (intuition) X^Ty bears some info on optimal solution even for general \mathbf{X}

3 Why X^Ty maps give a good relevance measure ?

■In an orthogonal design, least-squares solution is

$$\hat{\mathbf{w}}_{LS} = (X^T X)^{-1} X^T y = (I)^{-1} X^T y = X^T y$$

- \Rightarrow (intuition) X^Ty bears some info on optimal solution even for general **X**
- Marginal screening: Set S = indices of top kvoxels j in terms of $|\mathbf{X}_{j}^{T}\mathbf{y}|$ values
 - In [Lee 2014], $k \leq min(n, p)$, so that $\hat{\mathbf{w}}_{LS} \sim (\mathbf{X}_S^T \mathbf{X}_S)^{-1} \mathbf{X}_S^T \mathbf{y}$
 - We don't require invertibility condition $k \leq \min(n, p)$. Our spatial regularization will do the rest!

- 3 Why X^Ty maps give a good relevance measure?

 ■In an orthogonal design, least-squares solution is
 - $\hat{\mathbf{w}}_{LS} = (X^T X)^{-1} X^T y = (I)^{-1} X^T y = X^T y$
 - \Rightarrow (intuition) $X^T y$ bears some info on optimal solution even for general X
 - Marginal screening: Set S = indices of k
 - **voxels** j in terms of $|\mathbf{X}_{j}^{T}\mathbf{y}|$ values

Fercog 2015

- In [Lee 2014], $k \leq min(n, p)$, so that $\hat{\mathbf{w}}_{LS} \sim (\mathbf{X}_{S}^{T}\mathbf{X}_{S})^{-1}\mathbf{X}_{S}^{T}\mathbf{y}$
- We don't require invertibility condition $k \leq \min(n, p)$. Our spatial regularization will do
- Lots of screening rules out there: [El Ghaoui 2010, Liu 2014, Wang 2015, Tibshirani 2010,
- $k \leq \min(n, p)$. Our spatial regularization will do the rest!