Correction de TD2-Variables aléatoires et lois de probabilités - Pr.Abdelaziz QAFFOU -

Exercice 1 Soit X la variable aléatoire de loi de probabilité :

k	-2	-1	0	1	2	3
P(X=k)	0,3	0,05	0,1	0,05	0,2	p

Soit F sa fonction de répartition.

a) Calculons p:

On a
$$\sum_{k=-2}^{3} P(X=k) = 1$$

donc
$$0, 3+0, 05+0, 1+0, 05+0, 2+p=1$$

c'à d
$$p = 1 - (0, 3 + 0, 05 + 0, 1 + 0, 05 + 0, 2)$$
 d'où $p = 0, 3$

b) Calculons F(0,5):

On a $F(x) = P(X \le 1)$ donc $F(0,5) = P(X \le 0,5)$, puisque X est discrète et prend les valeurs : $\{-2, -1, 0, 1, 2, 3\}$,

donc l'évènement
$$(X < 0, 5) = (X = -2 \text{ ou } X = -1 \text{ ou } X = 0)$$

d'où
$$P(X \le 0, 5) = P(X = -2) + P(X = -1) + P(X = 0) = 0, 3 + 0, 05 + 0, 1 = 0, 45$$
 donc $F(0, 5) = 0, 45$

c) Calculons E(X):

On a
$$E(X) = \sum_{k=-2}^{3} kP(X=k)$$

done

$$E(X) = (-2 \times 0,3) + (-1 \times 0,05) + (0 \times 0,1) + (1 \times 0,05) + (2 \times 0,2) + (3 \times 0,3)$$

= -0.6 - 0.05 + 0 + 0.05 + 0.4 + 0.9.

d'où
$$E(X) = 0,7$$

d) Calculons $\sigma(X)$:

On calcule d'abord la variance $V(X) = E(X^2) - E^2(X)$ Or

$$E(X^{2}) = \sum_{k=-2}^{3} k^{2} P(X = k)$$

$$= (-2)^{2} \times 0, 3 + (-1)^{2} \times 0, 05 + 0^{2} \times 0, 1 + 1^{2} \times 0, 05 + 2^{2} \times 0, 2 + 3^{2} \times 0, 3$$

$$= 4 \times 0, 3 + 1 \times 0, 05 + 0 + 0, 05 + 4 \times 0, 2 + 9 \times 0, 3$$

$$= 1, 2 + 0, 05 + 0, 05 + 0, 8 + 2, 7$$

$$= 4, 8.$$

d'où
$$E(X^2)=4,8$$
 et $E^2(X)=0,7^2=0,49$ donc $V(X)=4,8-0,49=4,31$ Or l'écart-type $\sigma(X)=\sqrt{V(X)}$ donc $\sigma(X)=\sqrt{4,31}=2,07$

Exercice 2 On considère une variable aléatoire X qui suit une loi binomiale de paramètres 5 et 0,4; donc $X \sim B(5;0,4)$

Or la loi de probabilité d'une v.a $X \sim B(n;p)$ est $P(X=k) = C_n^k p^k (1-p)^{n-k}$ Ici, on a n = 5 et p = 0, 4 donc $P(X = k) = C_5^k 0, 4^k (1 - 0, 4)^{5-k}$

- a) Après calcul on trouve : $\mathbb{P}(X=1)=0,2592$ et $\mathbb{P}(X=4)=0,0768$
- b) Après calcul, on a $\mathbb{P}(X \le 1) = P(X = 0) + P(X = 1) = 0,0778 + 0,2592 = 0,3369$
- et $\mathbb{P}(X \ge 2) = 1 P(X < 2) = 1 0,3369 = 0,6631$

Exercice 3 On tire 5 cartes au hasard dans un jeu de 32 cartes. On appelle cela une main.

Si la main contient 4 rois on gagne 100dhs, si la main contient 3 rois, on gagne 50dhs, si la main contient 2 rois, on ne gagne rien et on ne perd rien, si la main contient 1 rois, on perd 10dhs et si la main ne contient aucun roi, on perd 50dhs. Soit X la variable aléatoire correspondant au gain.

On a l'évènement fondamental Ω est de tirer 5 cartes parmi 32, c'à d card $(\Omega) = C_{32}^5$

a) La loi de probabilité de X correspondante au gain est :

k	-50	-10	0	50	100
P(X=k)	$\frac{C_4^0 C_{28}^5}{C_{32}^5}$	$\frac{C_4^1 C_{28}^4}{C_{32}^5}$	$\frac{C_4^2 C_{28}^3}{C_{32}^5}$	$\frac{C_4^3 C_{28}^2}{C_{32}^5}$	$\frac{C_4^4 C_{28}^1}{C_{32}^5}$
P(X=k)	0,4881	0,4067	0,0976	0,0075	0,0001

On vérifie bien que $\sum_{k=-50}^{100} P(X=k) = 0,4881 + 0,4067 + 0,0976 + 0,0075 + 0,0001 = 1$ donc c'est bien une loi de probabilité.

b) Calculer l'espérance mathématique de X:

On a

$$E(X) = \sum_{k=-50}^{100} kP(X=k)$$

$$= (-50 \times 0,4881) + (-10 \times 0,4067) + (0 \times 0,0976) + (50 \times 0,0075) + (100 \times 0,0001)$$

$$= -24, 4 - 4,067 + 0 + 0,375 + 0,01$$

$$= -28,082.$$

Exercice 4 On suppose que le temps d'attente (en minutes) d'un métro suit une loi géométrique. Durant les heures de pointes du matin, le temps d'attente moyen d'un métro pour la ligne 8 est de 3 minutes tandis qu'il est de 2 min pour la ligne 9.

a) Quels sont les paramètres des lois géométriques pour les lignes n8 et n9?

Le temps d'attente moyen est l'espérance, donc E(X) = 3 et E(Y) = 2 avec X est le temps d'attente de la ligne 8 et Y est le temps d'attente de la ligne 9.

Or l'espérance d'une loi géométrique de paramètre p est l'inverse de son paramètre, c'est à dire $\frac{1}{n}$.

Donc le paramètre de X est $\frac{1}{3}$ et celui de Y est $\frac{1}{2}$.

 $X \sim Geo(\frac{1}{3})$ et $Y \sim Geo(\frac{1}{2})$, c'est à dire $P(X = k) = \frac{1}{3}(1 - \frac{1}{3})^{k-1}$ et $P(Y = k) = \frac{1}{2}(1 - \frac{1}{2})^{k-1}$.

b) Quelle est la probabilité d'attendre entre 2 et 4 minutes un métro de la ligne 8? de la

La probabilité d'attente entre 2 et 4 minutes un métro de la ligne 8 est $P(2 \le X \le 4)$.

$$\begin{split} P(2 \leq X \leq 4) &= P(X = 2) + P(X = 3) + P(X = 4) \\ &= \frac{1}{3} \times \left(\frac{2}{3}\right)^{2-1} + \frac{1}{3} \times \left(\frac{2}{3}\right)^{3-1} + \frac{1}{3} \times \left(\frac{2}{3}\right)^{4-1} \\ &= \frac{38}{81} \\ &\simeq 46,91\%. \end{split}$$

Pour la ligne 9 :

$$P(2 \le Y \le 4) = P(Y = 2) + P(Y = 3) + P(Y = 4)$$

$$= \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{4}$$

$$= \frac{7}{16}$$

$$\approx 43.75\%.$$

c) Pour un temps d'attente de plus de 5 minutes :

$$P(X \ge 5) = 1 - P(X \le 4)$$

$$= 1 - P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)$$

$$= \frac{16}{81}.$$

et
$$P(Y \ge 5) = \frac{1}{16}$$
.

Exercice 5 Soit X le nombre de désintégrations d'une substance radioactive durant un intervalle de temps de 7,5 secondes suit une loi de Poison de paramètre 3,87. Donc $P(X=k)=e^{-\lambda}\frac{\lambda^k}{k!}$

a) Le nombre moyen de désintégrations durant un intervalle de temps de 7,5 secondes, c'est l'espérance de X, or $E(X) = \lambda = 3,87$.

Pour l'écart-type, on doit calculer d'abord la variance, pour la loi de Poisson,

on a $V(X) = \lambda = 3,87$, d'où $\sigma(X) = \sqrt{V(X)} = \sqrt{3,87} = 1,97$.

- b) La probabilité qu'il n'y ait aucune désintégration durant un intervalle de temps de 7,5 secondes est $P(X=0)=e^{-\lambda}\frac{\lambda^0}{0!}=e^{-3.87}=0,0209.$
- c) La probabilité qu'il y ait entre 3 et 5 désintégrations durant un intervalle de temps de 7,5 secondes est

$$\begin{split} P(3 \le X \le 5) &= P(X=3) + P(X=4) + P(X=5) \\ &= e^{-\lambda} \frac{\lambda^3}{3!} + e^{-\lambda} \frac{\lambda^4}{4!} + e^{-\lambda} \frac{\lambda^5}{5!} \text{ avec } \lambda = 3,87 \\ &\simeq 0,5473. \end{split}$$

Exercice 6 Soit X la durée de vie des galaxies, elle suit une loi exponentielle de densité $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$. On estime qu'une galaxie a probabilité de disparaître d'ici à un million d'année égale à 0,000002%. c'est à dire $P(X \le 1) = 0,000002\% = 0.000000002$.

a) Déterminons la valeur du paramètre λ de la loi exponentielle mesurant la durée de vie de la galaxie.

On a la fonction de répartition de X est

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt = \int_{0}^{x} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}.$$

$$\begin{split} F(x) &= P(X \leq x) = \int_{-\infty}^x f(t) dt = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}. \\ \text{D'où } P(X \leq 1) &= 1 - e^{-\lambda} = 0,00000002 \text{ ce qui donne } \lambda = 0,00000002. \end{split}$$

- b) L'espérance de vie de la galaxie : $E(X) = \frac{1}{\lambda} = 50000000$ (50 millions d'années)
- c) La probabilité que la galaxie ait disparu d'ici à 3 millions d'années :

 $P(X \le 3 \text{ millions d'années } = P(X \le 3) = 1 - e^{-3\lambda}$

d) La probabilité que la galaxie soit toujours là dans 10 millions d'année :

$$P(X \ge 10) = 1 - P(X < 10) = 1 - (1 - e^{-10\lambda}) = e^{-10\lambda}.$$

Exercice 7 Soit X: le temps entre deux clics d'un compteur, elle suit une loi exponentielle de densité $f(x) = \lambda e^{-\lambda x}$. Le nombre moyens de clics par minutes égal à 50.

a) Le paramètre λ de la loi exponentielle :

Le temps moyen entre deux clics $=\frac{1}{50}=\frac{1}{\lambda}=E(X)$, d'où $\lambda=50$.

b) La probabilité qu'on attende plus d'une seconde entre deux clics :

$$P(X \ge 1 \text{ seconde}) = P(X \ge \frac{1}{60} \text{ minutes}) = 1 - P(X \le \frac{1}{60} \text{ minutes}) = 1 - F(\frac{1}{60}) = 1 - (1 - e^{-50 \times \frac{1}{60}}) \approx 43,45\%.$$

c) On approche un minéral légèrement radioactif du compteur et le nombre de clics passe à 100 par seconde. La probabilité d'attendre moins d'un centième de seconde entre deux clics:

$$P(X \le \frac{1}{100} \text{ secondes }) = F(\frac{1}{100}) = 1 - e^{-100 \times \frac{1}{100}} = 1 - e^{-1} \simeq 63,21\%.$$

Exercice 8 Soit X une variable aléatoire de densité : $f(t) = \frac{c}{1+t^2}$

- a) Pour que f soit bien une densité, elle doit vérifier :
- la positivité : $\forall t \geq 0, f(t) \geq 0 \Rightarrow c \geq 0$.

$$\int_{-\infty}^{+\infty} f(t)dt = 1 \quad \Leftrightarrow \quad \int_{-\infty}^{+\infty} \frac{c}{1+t^2}dt = 1$$

$$\Leftrightarrow \quad 2c \int_0^{+\infty} \frac{1}{1+t^2}dt = 1$$

$$\Leftrightarrow \quad 2c[\operatorname{Arctan}(t)]_0^{+\infty} = 1$$

$$\Leftrightarrow \quad 2c[\operatorname{Arctan}(+\infty) - \operatorname{Arctan}(0)] = 1$$

$$\Leftrightarrow \quad 2c[\frac{\pi}{2} - 0] = 1$$

$$\Rightarrow \quad c = \frac{1}{\pi}.$$

b) La fonction de répartition de X:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt = \frac{1}{\pi} \int_{-\infty}^{x} \frac{1}{1+t}dt = \frac{1}{\pi} [\operatorname{Arctan}(t)]_{-\infty}^{x} = \frac{1}{\pi} [\operatorname{Arctan}(x) + \frac{\pi}{2}]$$
 d'où $F(x) = \frac{1}{\pi} \operatorname{Arctan}(x) + \frac{1}{2}$.

c) On a
$$\mathbb{P}(X < 0) = F(0) = \frac{1}{2}$$
 et $\mathbb{P}(-1 < X < 1) = \int_{-1}^{1} f(t)dt = \frac{1}{2}$.

Exercice 9 Soit X la variable aléatoire dont la fonction densité est définie sur \mathbb{R}^+ par $f(x) = 4e^{-4x}$

Calculons sa fonction de répartition :

F(x) =
$$P(X \le x) = \int_0^x 4e^{-4t} dt = -[e^{-4t}]_0^x = -[e^{-4x} - e^0],$$
 d'où $F(x) = 1 - e^{-4x}.$

a) On a $F(5) = 1 - e^{-20}$

b) On a
$$\mathbb{P}(1 < X < 3) = F(3) - F(1) = (1 - e^{-4 \times 3}) - (1 - e^{-4 \times 1}) = e^{-4} - e^{-12}$$
.

Exercice 10 Une usine fabrique des billes de diamètre 8mm. Les erreurs d'usinage provoquent des variations de diamètre. On estime, sur les données antérieures, que l'erreur est une variable aléatoire qui obeit à une loi normale, les paramètres étant : moyenne : 0mm, écart-type : 0,02mm. On rejette les pièces dont le diamètre n'est pas compris entre 7,97mm et 8,03mm.

Calculons la proportion de billes rejetées :

On a X la variable aléatoire qui désigne l'erreur d'usinage, donc $X \sim N(0;0,02^2)$ et la moyenne de diamètre des billes est 8mm.

$$P(7,97 \le X \le 8,03) = P\left(\frac{7,97-8}{0,02} \le \frac{X-8}{0,02} \le \frac{8,03-8}{0,02}\right)$$

$$= P(-1,5 \le Z \le 1,5) \text{ avec } Z = \frac{X-8}{0,02} \sim N(0,1) \text{ loi normale centrée réduite}$$

$$= \Phi(1,5) - \Phi(-1,5) \text{ avec } \Phi \text{ est la fct de répartition standard de la loi normale}$$

$$= \Phi(1,5) - [1 - \Phi(1,5)]$$

$$= 2\Phi(1,5) - 1$$

$$= 2 \times 0,9332 - 1 \text{ d'après la table de la loi normale, on a } \Phi(1,5) = 0,9332$$

$$= 0,8664.$$

D'où la proportion de billes rejetées est 13,36%.

Exercice 11 Des machines fabriquent des plaques de tôle destinées à être empilées. a) Soit X la variable aléatoire "épaisseur de la plaque en mm", on suppose que X suit une loi normale de paramètres $\mu=0,3$ et $\sigma=0,1$.

Calculons la probabilité pour que X soit inférieur à $0.36 \mathrm{mm}$:

$$P(X \le 0, 36) = P\left(\frac{X - 0, 3}{0, 1} \le \frac{0, 36 - 0, 3}{0, 1}\right)$$
$$= P(Z \le 0, 6)$$
$$= \Phi(0, 6)$$
$$= 0, 7257.$$

Calculons la probabilité pour que X soit compris entre 0,25mm et 0,35mm.

$$P(0, 25 \le X \le 0, 35) = P\left(\frac{0, 25 - 0, 3}{0, 1} \le \frac{X - 0, 3}{0, 1} \le \frac{0, 35 - 0, 3}{0, 1}\right)$$

$$= P(-0, 5 \le Z \le 0, 5)$$

$$= \Phi(0, 5) - \Phi(-0, 5)$$

$$= \Phi(0, 5) - [1 - \Phi(0, 5)]$$

$$= 2\Phi(0, 5) - 1$$

$$= 2 \times 0, 6915 - 1$$

$$= 0, 383.$$

b) L'utilisation de ces plaques consiste à en empiler n, numérotées de 1 à n en les prenant au hasard : soit X_i la variable aléatoire "épaisseur de la plaque numéro i en mm" et Z la variable aléatoire "épaisseur des n plaques en mm".

Pour n=20, calculons la loi de Z, son espérance et sa variance : On a $Z = \sum_{i=1}^{n} X_i$.

La loi de Z est une loi normale de paramètres $E(Z) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} 0,3$ or n = 20 donc $E(Z) = 20 \times 0, 3 = 6$ $V(Z) = V(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} V(X_i)$ si les X_i sont indépendantes, d'où $V(Z) = 20 \times (0, 1)^2 = 0, 2,$ donc $Z \sim N(6; 0, 2).$