

layer. Accordingly, the transparent laminate configured as described above can be provided as a surface marproof transparent laminate without spoiling optical performance.

Please replace page 31, table 1, with the following table:

		Example	
Sample Number		(1)	(2)
Surface Resistance (Ω/sq)		1.6	1.6
Visible Light Transmittance (%)	Wavelength: 450nm	54.8	55.9
	Wavelength: 500nm	56.5	57.7
	Wavelength: 550nm	57.7	58.8
	Wavelength: 600nm	56.7	57.7
	Wavelength: 650nm	52.6	53.1
	Standard Deviation	2.0	2.2
Average Luminosity Transmittance (%)		57.0	58.1
Near-Infrared Cutting Rate (%) <wavelength: 850 nm>		95.6	95.2
Average Luminosity Reflectivity (%)		2.7	2.8
Color Tone of Transmitted Light		ND	ND

Please replace page 31, table 2, with the following table:

		Example	
Sample Number		(3)	(4)
Surface Resistance (Ω/sq)		1.8	1.9
Visible Light Transmittance (%)	Wavelength: 450nm	53.9	54.0
	Wavelength: 500nm	55.9	58.9
	Wavelength: 550nm	58.2	61.5
	Wavelength: 600nm	58.0	59.3
	Wavelength: 650nm	52.4	55.1
	Standard Deviation	2.5	3.1
Average Luminosity Transmittance (%)		56.4	60.1
Near-Infrared Cutting Rate (%) <wavelength: 850 nm>		95.3	94.4
Average Luminosity Reflectivity (%)		0.9	0.8
Color Tone of Transmitted Light		ND	ND

Please replace page 32, table 3, with the following table:

		Comparative Example			
Sample Number		(5)	(6)	(7)	(8)
Surface Resistance (Ω/sq)		1.8	1.8	5.9	6.6
Visible Light Transmittance (%)	Wavelength: 450nm	63.8	63.1	37.5	45.3
	Wavelength: 500nm	69.8	68.9	32.6	34.1
	Wavelength: 550nm	66.7	69.1	25.9	30.2
	Wavelength: 600nm	61.8	61.2	18.8	25.4
	Wavelength: 650nm	52.9	53.8	13.6	16.0
	Standard Deviation	6.4	6.3	9.8	10.8
Average Luminosity Transmittance (%)		65.3	67.7	24.9	29.7
Near-Infrared Cutting Rate (%) <wavelength: 850nm>		95.4	95.1	98.2	98.1
Average Luminosity Reflectivity (%)		2.7	2.6	2.4	0.8
Color Tone of Transmitted Light		G	G	DB	DB

Please replace page 36, table 4, with the following table:

		Example		Comparative Example		
Sample Number		(9)	(10)	(11)	(12)	(13)
Marproofness		X	O	O	O	O
Visible Light Transmittance (%)	Wavelength: 450nm	55.9	52.5	50.9	51.4	48.8
	Wavelength: 500nm	57.5	55.9	54.2	54.2	51.5
	Wavelength: 550nm	58.8	56.3	54.7	53.9	50.7
	Wavelength: 600nm	57.9	55.0	53.4	53.4	51.2
	Wavelength: 650nm	53.5	51.4	49.9	50.4	48.4
	Standard Deviation	2.1	2.2	2.1	1.7	1.4
Average Luminosity Transmittance (%)		58.1	55.9	53.2	52.8	49.7
Near-Infrared Cutting Rate (%) <wavelength: 850 nm>		95.5	96.3	97.1	96.8	96.9
Average Luminosity Reflectivity (%)		0.9	2.7	2.9	4.8	7.1
Color Tone of Transmitted Light		ND	ND	ND	ND	ND

IN THE CLAIMS:

Please cancel non-elected claims 1-12 without prejudice or disclaimer.

Please amend claims 13 and 14 and add new claims 15-22 as follows:

13. (Amended) A method for producing a transparent laminate comprising:
preparing a transparent substrate;
depositing a high-refractive-index transparent thin film by a vacuum dry process;
depositing a silver transparent conductive thin film by a vacuum dry process;
repeating the depositing of the high-refractive-index transparent thin film and the

silver transparent conductive thin film at least three times to thereby form at least three combination thin-film layers of the high-refractive-index transparent thin film and the silver transparent conductive thin film successively laminated on a surface of said transparent substrate; and

depositing another high-refractive-index transparent thin film on a surface of said combination thin-film layer by the vacuum dry process,

wherein, when said silver transparent conductive thin films are deposited by the vacuum dry process, temperature T (K) of said transparent substrate at the time of the deposition of said films is set to be in a range $340 \leq T \leq 410$.

NJ 14. (Amended) A method for producing a transparent laminate comprising [steps of]: preparing a transparent substrate; depositing a high-refractive-index transparent thin film by a vacuum dry process; depositing a silver transparent conductive thin film by a vacuum dry process; repeating [said steps for] forming of the high-refractive-index transparent thin film and the silver transparent conductive thin film at least three [or four] times to thereby form at least three [or four] combination thin-film layers of the high-refractive-index transparent thin film and the silver transparent conductive thin film successively laminated on a surface of said transparent substrate; and

depositing another high-refractive-index transparent thin film on a surface of said combination thin-film layer by the vacuum dry process,

wherein, when said silver transparent conductive thin films are deposited by the vacuum dry process, temperature T (K) of said transparent substrate at the time of the deposition of said films is set to be in a range $340 \leq T \leq 390$, and deposition rate R (nm/sec) of said silver transparent conductive thin films is set to be $R = (1/40)(T-300) \pm 0.5$.

QPC 15. (Newly Added) The method of claim 13, further comprising depositing a low-refractive-index transparent thin film.

QPC 16. (Newly Added) The method of claim 15, wherein the low-refractive-index

~~transparent thin film is deposited before the high-refractive-index thin film depositing.~~

~~17. (Newly Added) The method of claim 15, wherein the low-refractive-index transparent thin film is deposited after the high-refractive-index thin film depositing.~~

~~18. (Newly Added) The method claim 13, further comprising forming a plasma display panel filter with the transparent laminate.~~

~~19. (Newly Added) The method of claim 14, further comprising depositing a low-refractive-index transparent thin film.~~

~~20. (Newly Added) The method of claim 19, wherein the low-refractive-index transparent thin film is deposited before the high-refractive-index thin film depositing.~~

~~21. (Newly Added) The method of claim 19, wherein the low-refractive-index transparent thin film is deposited after the high-refractive-index thin film depositing.~~

~~22. (Newly Added) The method claim 14, further comprising forming a plasma display panel filter with the transparent laminate.~~

REMARKS

This Amendment amends the specification and claims 13 and 14. Claims 1-22 are pending. Claims 1-12 have been withdrawn from prosecution. Of the remaining claims, claims 13 and 14 are independent.

Attached hereto is a marked-up version of the changes made to the specification and/or claims by the current Amendment. The attached page is captioned "VERSIONS WITH MARKINGS TO SHOW CHANGES MADE".

The Office Action requires restriction under 35 U.S.C. § 121 between group I: claims 1-12 and group II: claims 13-14. Applicants affirm the election of group II: claims 13-14 without traverse.