PAT-NO:

JP355155093A

DOCUMENT-IDENTIFIER:

JP 55155093 A

TITLE:

SYNTHETIC REFRIGERATOR OIL

PUBN-DATE:

December 3, 1980

INVENTOR-INFORMATION:

NAME

KIMURA, TSUNEO

KADOMA, YOSHIHITO

INT-CL (IPC): C10M003/20, C10M003/40

ABSTRACT:

PURPOSE: A synthetic refrigerator oil having excellent chemical stability and lubricating properties, prepared by adding trimethyl phosphate in a specific proportion to neopentyl polyol ester.

CONSTITUTION: A neopentyl polyol such as trimethylolpropane or pentaerythritol is esterified with a natural or synthetic fatty acid such as caproic acid or 2-ethylhexanoic acid to form a neopentyl polyol ester. To the neopentyl polyol ester 0.005∼5wt% of trimethyl phosphate is added. This synthetic refrigerator oil has excellent chemical stability, does not undergo chemical changes even when the oil is allowed to

contact with a cooling medium at high temperatures for a long time, and can keep excellent lubricating properties.

COPYRĮGHT: (C) 1980, JPO&Japio

DERWENT-ACC-NO:

1981-08816D

DERWENT-WEEK:

198106

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Refrigerator lubricant -

contg. neopentyl poly:ol ester

and tri:methyl phosphate,

does not react with refrigerant

PRIORITY-DATA: 1979JP-0061538 (May 21, 1979)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

JP 55155093 A

December 3, 1980

N/A

000

N/A

INT-CL (IPC): C10M003/20

ABSTRACTED-PUB-NO: JP 55155093A

BASIC-ABSTRACT:

Refrigerator lubricant contains 0.005-5 wt.% trimethyl phosphate in neopentyl polyol ester. Pref. neophentyl polyol ester is an ester of natural or synthetic fatty acid e.g. caprylic acid, lauric acid, palmitric acid, stearic acid, etc. or 2-ethylhexanioic acid, iso-nonanoic acid, etc. Pref. polyols are neopentyl glycol, trimethylol ethane, trimethylol propane and pentaerythritol. The lubricant retains its properties even when contacted with a refrigerant at

high temp. for a long time. It is suitable for refrigerators of small size and large capacity, used under severe operating conditions.

In a preparative example trimethylol propane esterified with 2-ethylhexanoic acid with kinematic viscosity (cst), viscosity index, and pour point of 4.41(210 deg F) and 27.8(100 deg.F), 56, and -50.0deg.C respectively, was used. 0.2 wt.% trimethyl phosphate was added, and the mixt. sealed in a thick pyrex glass tube together with a refrigerant CF2Cl2 and a sample of Fe. The mixt. was heated at 180 deg. C for 50 days. The · hue, and quantity of HC1 generated were 1 and less than 10 ppm, respectively. No corrosion of the Iron was observed.

(9) 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭55-155093

DInt. Cl.3 C 10 M 3/20 3/40 識別記号

庁内整理番号 2115-4H 2115-4H

砂公開 昭和55年(1980)12月3日

発明の数 1 審査請求 未請求

(全 4 頁)

69合成冷凍機油

②特

昭54-61538

22出

昭54(1979)5月21日 顧

@発 明 者 木村恒雄

尼崎市松内町18

79発 眲 者 門磨義仁

尼崎市元浜町1-25

创出 願 日本油脂株式会社

東京都千代田区有楽町1丁目10

番1号

させたことを修復とする合成治療機能

並とする化学的安定性の高い冷凍機抽に測する。 近年、各権機械工業の急速を発展にともなつで、 病療油の使用条件が苛酷化しており、優れた調用

明はネオペンチルポリオールエスサルを基

存性ととも化非常に高い化学的安定性がとくに要

なかでも、冷楽機能は冷楽装置の小型大容量化 にともなつてますます使用条件が厳しくなつてき ており、優れた化学的安定性と興用特性を有する 化化学反応が起とりやすい。その結果、塩酸 金属の腐食をよびスラッジの発生が超つ 梅の新笛の原因となる。

連接菌としてはナフテン系鉱物やアル ペンセン系合成強が基油として一般に使用さ また松加剤としてアミン系酸化防止剤やフェ - ル系圏化防止剤が使用されていた。しかしな から、これらのものでは高温化やける化学的安定 性が不十分であつた。

本発明者らはとれらの点に関して改良すべく説 ステルを基准として。これに特殊な無加剤を輸加 配合した組成物が、冷痕極油として従来にない化 学的安定性を有することを見出し、本発明を完成

TO S

特開昭55-155093(2)

ネオペンテルポリオールとしては、ネオペンテル グリコール、トリメチロールエタン、トリメチロ ールプロバン、ペンタエリスリトール、ジベンタ エリスリトールなどがあり。毎に好きしいのはト リメチロールプロペンとペンタエリスリトールで

また順料の脂肪量としては、天然から待られる 天然脂肪酸や合成樹脂酸が使用でき、たとえば炎 素数が6ないし18の直鎖盤和脂肪漿として。カ プロン酸、エナント酸、カブリル酸、ベラルゴン 根。カブリン衆、ラウリン衆、ミリステン律、パ ルミテン酸。ステアリン服等があり、また炭素数 が8ないし18の合成分枝類飽和脂肪酸として。 イソカブリル酸、1~エチルヘキサン酸。イソノ ナン學。イソカブリン酸。イソラウリン學。イソ もりステン様。イソバルミチン酸。イソステアリ ン数等がある。毎代好ましいのは、2ーエテルへ キサン酸である。

上記のネオペンテルポリオール。直備数和脂肪 駅かよび分投機能和脂肪限は、それぞれ1 復または

よく、さらに通常使用される趣者抽動加剤を抵加 することも可能である。

つぎに本発明を実施例により説明する。

養养棒、窒素吹込み管、温度計および冷凍器付 水分離器を備えた10回シロフラスコに、トリメ ナロールプロパン18629(1モル)、2-エ テルヘキサン歯(7599(38モル)を仕込み。 森皇低能下240℃で8時間、水分離器を用いて 側出水を系外に除きながらエステル化反応を行な つた。つぎにカセイソーダ水器液を用いて80℃ で脱膿を行い。水洗後若性白土処理をして鬱節の 0 5 0 精製ネオペンテルポリオールエステル派 1 (表1)を得た。

以下、同様に反応を行つて表1のネオペンテル ポリオールエステル底ま~瓜目を得た。

袋1にオオペンテルポリオールエステルの動粘 皮(J I S K - 2 2 8 8)。粘度指数(J I S K-2284) および婉動点(JI:8 K-22 14)を示す。

2. 種以上の混合物としてエステル化反応に用いら 通常のエステル化反応やエステル交換反応に よつて本張明に用いるネオペンテルポリオールエ ステルを得るととができる。

上記のネオペンテルポリオールエステルはそれ 自身優れた基価であるが、とれば最加剤としてト リメチルホスフェートを重加すると、特に化学的 安定性の高い冷漠機油を得ることができる トリメチルホスフェートの垂加量は 0.005~5 重量光が好ましく、添加量がこれより少ないと所 定の効果が得られずさた多量に垂加してもそれほ ど効果は増大しない。

本発明の合成治療機治は化学的安定性が非常に 優れており、高雅下で冷鉄と長時間接触しても化 学反応を起こさず、優れた高滑等性を保持すると とかできる。したがつて最近の小型大容量化化と もなり背骼な使用条件下で十分な性能を発揮でき

本発明の合成府機構抽は、単独で使用すること

37		

Æ	オナルンプスル	ドリオールエステル	創枯度(est)		41	i i	i
	オオーシザル ポリオールキ	施防機(重進火)	2107	1007	粘度指數	産動点(C)	2字追加
1	TMP	2-27A-17/# (100)	4.4 1	27.8	56	-50.0	-
2	TMP	ペラルゴン 章 (100)	4.7 8	2 3.2	141	-525	
8	TMP	カブリル飯 (100)	4.1.4	1 9.2	132	- 5 2.5	
4	PE	イソノナン寮 (100)	7.8 5	5.8.6	93	-2 2.5	
5	TMP	2-エテルキリン酸 (75) カブリル酸 (25)	4.3 5	25.7	74	-5 0.0	
•	TMP	イソカプリン酸 (38)	491	2 & 6	128	-5 5.0	
	,	カプリル歌 (62)	491	2 & 6	128	-55.0	

実箱例 2

表1の各ネオペンデボリオールエステルにトリ メチルホスフェートを最加配合した紅料油につい て、高速にかける化学的安定性を評価するために シールドチュープテストを行つた。

すなわち、肉厚パイレックス試験者に試料油と 冷修〔フロンR-12(ジクロロジフロロメチン) フロンR-22(クロロジフロロメチン)〕と放 体として鉄片を入れ減圧下で封管した。そして 180℃のオイルパスに入れて50日間の加熱テ ストを行つた。テスト後の色相、塩酸生成量、金 薬の腐食状態を養2に示す。比較のために市販冷 凍機値とネオペンチルポリオールエステルに養棄 から使用されている吸化防止剤を能加配合した試 科他についても同様にテストした。

要はより、本発明品は比較品、市販品と比較し で非常に化学的安定性が優れていることがわれる。

.

	談料	毒")	新加	Î	7 m × R - 1 2			7 m × R - 2 2		
	Æ	抽	剤	X	色 相	塩 駅生成量	金属库会	色 相	塩康生成量	金属库会
	1	1	P	0.2	. 1	Ö	無	1	0	無
*	2	2	•	0.2	3	O	無	1	0	無
発	3	8	•	0.2	4	۵	少し有	1	0	無
	. 4	4		0.2	2	0	無	1	70	* #
鄸	5	5	•	0.2	1	0	無	1	O	*
æ	•	6	•	0.2	2	0	無	· 1	0	無
	7	1	•	0.0 5	2	0	無	1	0	無
		1,	•	0.7	1	0	*	1	0	無
比	9	1	Q	0.2	10	×	有帐	1 0	. ×	有
教 品	10	1	R	0.2	10	×	有	1 0	×	有
市	11	A			10	×	有	1 0	×	有
厰	1 2	В			10	×	有。	1 0	×	有
Æ	13	С		*	10	×	有	5	Δ.	有

- 注 1)表10系に対応するネオペンテルポリ オールエステル。
 - 2) 色相は1(最良)~10(最級)の 10段階表示。
 - 3) ○印… 1 0 ppm 以下, △… 1 0 ~ 100
 ppm, X… 100 ppm 以上。
 - P: トリメテルホスフェートo
 - Q: \mathcal{O} π \mathcal{O} \mathcal{F} \mathcal{N} \mathcal{O} \mathcal{O}
 - R: B H T (ジター シャリーブテルヒドロ キシトルエン)。
 - A:A社高級冷凍機油。
 - B:B社高级冷冻推油。
 - C:C社アルヤルペンゼン系合成治療機能。

突旋例 1

1500Wコンパクト製冷液機用圧縮機化冷液 機物として本発明品(表 2 の飲料点1)を充てん して、フロンB-22を冷能として50日間の通 負荷基礎運転を行つた。試験後、冷液機能および 冷能について観べたところ、いずれも分解は臨め られなかつた。また、圧機機の吐出外や機械部品

特開昭55-155093 (4)

についても全く異常が解められなかつた。とのと とから、本発明品は化学的安定性が優れていると ともに潤滑性も良好であるととがわかつた。

特許出順人 日本抽版教式会社