HIGH PERFORMANCE COMPUTING

BIRD'S EYE VIEW PROGETTO DI CORSO

DI BLASI FABRIZIO A.A. 2018/2019

SCOPO PROGETTUALE

- Trasformazione omografica dei punti di un'immagine in un piano orientato a piacere.
 Tale tipologia di proiezione è molto utilizzata nel campo della visione artificiale, in particolare in ambito automotive per la misura della distanza dagli ostacoli
- Ricerca delle zone soggette a più carico computazionale e fornire una parallelizzazione
- Benchmarking dell'algoritmo e diversi general purphose
- Benchmarking su Nvidia jetson

LIBRERIE UTILIZZATE

- OpenCV
- CUDA
- FFmpeg

CENNI MATEMATICI

• L'omografia è una particolare trasformazione lineare in cui a ciascun punto dello spazio di partenza corrisponde un solo punto in quello di arrivo

 Ai fini di scopi progettuali, si suppone il punto di osservazione in posizione fissate

• L'utente ha la possibilità di variare l'inclinazione del piano «) a suo piacimento, e la distanza tra il punto di osservazione «o» ed il piano « r »

SCHEMA A BLOCCHI

INTERFACCIA UTENTE

- L'utente ha a disposizione 5 diverse regolazione
- Le prime tre impostano l'inclinazione del nuo piano
- f : apertura focale della fotocamera
- Distance : distanza del punto di osservazione
- Esecuzione con soli kernel CUDA
 - \$./app y
 - \$./app y <video path>
- Esecuzione con solo chiamate ad OpenCV:
 - \$./app n
 - \$./app n <video path>

CONFRONTO DEI BENCHMARK (1)

WORKSTATION: AMD® RYZEN 7 2700X EIGHT-CORE PROCESSOR × 16 THREAD @ 4.3GHZ GEFORCE GTX 750 2GB TI/PCIE/SSE2 16 GB RAM 3200MHZ DUAL CHANNEL

Benchmark Workstation

CONFRONTO DEI BENCHMARK (2)

LAPTOP: INTEL® CORE™ 15-6200U CPU @ 2.30GHZ × 4 GEFORCE 920M 2GB /PCIE/SSE2 8 GB RAM 1600MHZ DUAL CHANNELL

CONFRONTO DEI BENCHMARK (3)

JETSON NANO: 64-BIT QUAD-CORE ARM A57 @ 1.43GHZ 128-CORE NVIDIA MAXWELL @ 921MHZ 4GB 64-BIT LPDDR4 @ 1600MHZ | 25.6 GB/S

CONCLUSIONI SUI BENCHMARK

- Definendo lo Sacolune Chris tempi objetimo che che si ottiene che:
- Nella workstation risulta un rapporto di 0.98, ciò significa che le due versioni quasi si equivalgono, ma quella utilizzante solo OpenCV e leggermente più veloce
- Nel laptop, invece si ottiene un lieve peggioramento delle performance eseguendo la Nel laptop, invece, si ottiene un lieve peggioramento delle performance eseguendo la versione opency rispetto a quella usante performance eseguendo la versione opency rispetto a quella usante solo kornol CUDA
- Per Il Jetson, invece, si ha un peggioramento di circa il 50% eseguendo la versione
- Per il Jetson, invece, si ha un peggioramento di circa il 50% eseguendo nemoria fatto e di circa il 50% eseguendo nemoria fatto e di circa il 50% eseguendo nemoria della gestione della memoria, fattore ininfluente nel casi precedenti, inoltre può anche essere legato ad una alimentazione non idonea, poiché al di sotto di quella consigliata.

GRAZIE PER L'ATTENZIONE