Sistema de Software para Investigación en Sistemas Dinámicos Discretos

Renato Leriche Vázquez

Jefferson E. King Dávalos

Luis Muñiz Valledor

Departamento de Matemáticas, Facultad de Ciencias, UNAM

Presentaremos los avances de desarrollo de un sistema de software, formado por un ecosistema de bibliotecas y una aplicación,

creado para ser útil en la investigación y docencia en el área de sistemas dinámicos discretos.

Este trabajo es parcialmente financiado por el **Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT)** de la UNAM

en el Proyecto PAPIIT-UNAM IT103720 con título

"Sistema de Software para Investigación en Sistemas Dinámicos Discretos"

Equipo de trabajo:

- Responsable: Dr. Jefferson E. King Dávalos.
- Project Manager: Renato Leriche Vázquez (tesista de Doctorado del Dr. Guillermo Sienra).
- Senior Software Developer: Luis Muñiz Valledor (tesista de Licenciatura del Dr. Marco Montes de Oca).
- Software Developer: José D. Blancas Camarena (tesista de Licenciatura de Renato Leriche).
- Software Developer: Edgar A. Rodríguez Lucio (tesista de Licenciatura de Renato Leriche).
- Software Developer: Fernando Santana Plascencia (tesista de Licenciatura del Dr. Jefferson King).
- Software Developer: lan X. Belaustegui (servicio social).
- Colaborador: Dr. Guillermo F.J. Sienra Loera.
- Colaborador: Dr. Marco A. Montes de Oca Balderas.

(Todos del Departamento de Matemáticas, Facultad de Ciencias, UNAM.)

Bibliotecas de software

Una *biblioteca de software* proporciona un conjunto de instrucciones (sobre un lenguaje de programación) para construir soluciones a problemas en cierta área.

Las principales bibliotecas de software creadas en este proyecto son:

- *SDD*: Para la teoría de iteración de funciones en \mathbb{R} , \mathbb{R}^2 y \mathbb{C} .
- SDDIFS: Para la teoría de sistemas de funciones iteradas.
- SDDKleinianGroups: Para la teoría de grupos Kleinianos.

Además, de las bibliotecas de software complementarias:

- SDDCore. Instrucciones en común a todas las bibliotecas.
- SDDGraphics. Elementos básicos para visualización.
- SDDGeometry. Construcción y manejo de objetos y transformaciones geométricas.

SDD es el nombre de nuestro software y significa "Sistemas Dinámicos Discretos".

El software para este proyecto fué desarrollado utilizando el lenguaje de programación Julia.

Se elegió este *Julia* por ser un lenguaje de programación moderno, especialmente diseñado para cómputo científico y que combina simplicidad con eficiencia.

```
In [1]: using Revise, Pkg
In [2]: Pkg.develop(path="/home/rleriche/Software/Dev/SDD/SDDCore.jl")
In [3]: Pkg.develop(path="/home/rleriche/Software/Dev/SDD/SDDGeometry.jl")
In [4]: Pkg.develop(path="/home/rleriche/Software/Dev/SDD/SDDGraphics.jl")
         Pkg.develop(path="/home/rleriche/Software/Dev/SDD/SDD.jl")
In [5]:
         Pkg.develop(path="/home/rleriche/Software/Dev/SDD/SDDKleinianGroup
In [6]:
         s.jl")
In [7]:
         Pkg.develop(path="/home/rleriche/Software/Dev/SDD/SDDIFS.jl")
In [8]: using Colors, ColorSchemes
In [9]: using SDDCore, SDDGeometry, SDD, SDDIFS, SDDKleinianGroups
         Info: Precompiling SDDIFS [a4a25ec0-9c31-48cb-b4a7-8df420687997] @ Base loading.jl:1317
In [10]:
         import SDDGraphics
         Gr = SDDGraphics
         SDDGraphics.backend(:luxor)
Out[10]: :luxor
```

En esta presentación haremos programación en vivo, pues estamos usando el ambiente *Jupyter* que permite usar *Julia* de manera fácil e interactiva.

Haremos recuento de algunas de las posibilidades que ofrecen las bibliotecas y mostraremos en vivo las imágenes generadas.

La biblioteca SDD

In []: using SDD

Gráficas de iteradas

Dada $f:\mathbb{R} o\mathbb{R}$ podemos graficar f^n con la instrucción $\,$ plot .

Ejemplo

L(x)=4x(1-x), la función logística.

In [26]: L4(x) = 4x*(1-x)

Out[26]: L4 (generic function with 1 method)

In []:

Análisis gráfico de órbitas

Dada $f:\mathbb{R} o \mathbb{R}$ podemos graficar el análisis gráfico de laórbita de un punto con la instrucción graphicalanalysis .

Ejemplo

$$L(x) = 4x(1-x).$$

Diagramas de órbitas atractoras (de bifurcación)

Dada la familia $f_\lambda:\mathbb{R} o\mathbb{R}$ podemos graficar el diagrama de órbitas atractoras (de bifurcación) con la instrucción orbitsdiagram .

Ejemplo

La familia logística $L_{\lambda}(x)=\lambda x(1-x).$

In [32]: $L(\lambda,x)=\lambda^*x^*(1-x)$

Out[32]: L (generic function with 1 method)

```
In [33]: Gr.backend(:images)
    Gr.configure(rect=(3,4,0.5,1), canvas=(1800,900))
    draworbitsdiagram(L, 0.5, preiterations=500, iterations=1000)

Out[33]:
In []:
```

Órbitas de puntos

Dada una función en \mathbb{R}^2 o \mathbb{C} podemos dibujar la órbita de un punto con drawpointorbitR2 o drawpointorbitC , la trayecoria de la órbita de un punto con drawpointorbitpathR2 o drawpointorbitpathC , y la órbita de varios puntos con drawpointssetorbitR2 o drawpointssetorbitC .

Ejemplo

 $S(z)=rac{(1+6i)z+1}{z+1+6i}$, una transformación de Möbius loxodrómica.

In [34]: S(z) = ((1+6im)*z+1)/(z+1+6im)

Out[34]: S (generic function with 1 method)

```
In [35]: Gr.backend(:luxor)
    Gr.configure(rect=(-2,2,-1,1), linewidth=6, colormap=:jet)
    drawpointorbitpathC(5, -0.99, iterations=200)

Out[35]:
In []:
```

Ejemplo

 $H(x,y)=(1.4x+0.3y-x^2,x)$, una transformación de Hénon.

```
In [36]: H(x, y) = (1.4 + 0.3y - x^2, x)
```

Out[36]: H (generic function with 1 method)

In [37]: square = [(x,y) for x in -1:0.05:1 for y in -1:0.05:1];

In [38]: Gr.configure(rect=(-6,6,-3,3), pointsize=2)
 drawpointssetorbitR2(H, square, iterations=8)

Out[38]:
In []:

Conjuntos de puntos atrapados

Dada una función en \mathbb{R}^2 o \mathbb{C} podemos dibujar el conjunto de puntos atrapados con drawtrappedpointsR2 o drawtrappedpointsC .

Ejemplo

$$F_1(x,y)=(x^2-y^2-x,2xy+y)$$
 , función en \mathbb{R}^2 .

In [39]: $F1(x,y)=(x^2-y^2-x,2x*y+y)$

Out[39]: F1 (generic function with 1 method)

In [40]: Gr.backend(:images)
 Gr.configure(rect=(-4,4,-2,2), canvas=(1200,600), colormap=:speed)
 drawtrappedpointsR2(F1, maxiterations = 12)
Out[40]:

In []:

Ejemplo

 $R(z)=rac{z^3-0.05+0.1i}{z^2}$, una función racional en $\mathbb C.$

In [41]: $R(z)=(z^4-0.05+0.1im)/(z^2)$

Out[41]: R (generic function with 1 method)

In [42]: Gr.configure(rect=(-2.2,2.2,-1.1,1.1), colormap=:ice)
 drawtrappedpointsC(R, maxiterations = 32)

Out[42]:


```
In [ ]:
```

Ejemplo

 $m(z)=\sin(z)+rac{4}{z}$, una función meromorfa trascendente.

In [43]: $m(z) = \sin(z) + 4/z$

Out[43]: m (generic function with 1 method)

In [44]: Gr.configure(rect=(-8,8,-4,4), colormapinv=:ocean)
 drawtrappedpointsC(m, hasescaped = z -> imag(z) > 4, maxiterations
 = 12)

Out[44]:

In []:

Ejemplo

La familia cuadrática $q_c(z)=z^2+c$ en $\mathbb C.$

In [45]: $q(c,z) = z^2 + c$

Out[45]: q (generic function with 1 method)

In [48]: Gr.configure(rect=(-2.4,2.4,-1.2,1.2), colormap=:thermal)
drawtrappedpointsC(z -> q(im,z), maxiterations = 20)

Out[48]:
In []:

Conjuntos de Mandelbrot

Dada una familia de funciones en \mathbb{R}^2 o \mathbb{C} podemos dibujar el conjunto de Mandelbrot con drawmandelbrotR2 o drawmandelbrotC .

Ejemplo

La familia cuadrática $q_c(z)=z^2+c$ en $\mathbb C.$

In [49]: Gr.configure(rect=(-2.4,2.4,-1.2,1.2), colormap=:twilight) drawmandelbrotC(q, maxiterations = 30) Out[49]: In []: In [188]: Gr.backend(:images) Gr.configure(rect=(-1.04, -0.84, 0.24, 0.34), canvas=(1200, 600), color mapinv=:vik0) drawmandelbrotC(q, maxiterations = 120) Out[188]:

In []:

Ejemplo

 $F_{a,b}(x,y)=(x^2-y^2+ax+by,2xy+-ay+bx)$, una familia en \mathbb{R}^2 .

```
In [50]: F(a,b,x,y)=(x^2-y^2+a*x+b*y,2x*y-a*y+b*x)
Out[50]: F (generic function with 1 method)
In [51]: Gr.configure(rect=(-4,4,-2,2), colormap=:berlin)
    drawmandelbrotR2(F, 0.5, hasescaped = (x,y) -> abs(x)+abs(y) > 4, m
    axiterations = 16)
Out[51]:
In []:
```

Cuencas de atracción

Dada una función en \mathbb{R}^2 o \mathbb{C} y una lista de puntos periódicos atractores o parabólicos, podemos dibujar el sus cuencas de atracción con drawbasinsR2 o drawbasinsC.

Ejemplo

$$N(z)=z-rac{1-z^3}{-3z^2}$$
, el método de Newton-Raphson para $f(z)=1-z^3$.

In [52]:
$$N(z)=z+(1-z^3)/(3z^2)$$

Out[52]: N (generic function with 1 method)

In [53]: Gr.configure(rect=(-2.2,2.2,-1.1,1.1), colormap=:CMRmap)
drawbasinsC(N, [1,exp(2pi*im/3),exp(4pi*im/3)], maxiterations=18)

Out[53]:
In []:

Preimágenes

Dada una función en \mathbb{R}^2 o \mathbb{C} , podemos dibujar los mapas de preimágenes de las n-ésimas iteradas con drawpreimages \mathbb{R}^2 o drawpreimages \mathbb{R}^2 .

Ejemplo

 $R_{herman}(z)=e^{2\pi(0.6151732...)i}rac{z^2(z-4)}{1-4z}$, una función racional con anillo de Herman.

In [54]: Herman(z::Number) = $\exp(2\pi * 0.6151732*im)*(z^2)*(z-4)/(1-4z)$

Out[54]: Herman (generic function with 1 method)

Ejemplo

Con la familia cuadrática $q_c(z)=z^2+c$ en $\mathbb C$, puntos de periodo 3 con $f(z)=q_c^{36}(z)-z$.

```
In [56]: qrabbit = z \rightarrow q(-0.122656 + 0.744864im, z)
qrabbit36 = SDDCore.compose(qrabbit, 36)
f36(z::Number) = qrabbit36(z) - z
```

Out[56]: f36 (generic function with 1 method)

Ejemplo

Preimagen de un tablero de ajedrez bajo q_c^2 .

```
In [58]: Gr.configure(rect=(-2.4,2.4,-1.2,1.2), colormap=:grays, cf=ChessCF (0,0,1,1)) drawpreimageC(qrabbit, iterations=2)
```

Out[58]:


```
In [ ]:
```

La biblioteca SDDIFS

```
In [ ]: using SDDIFS
```

Atractores

Dado un sistema de funciones iteradas, podemos dibujar su atractor con la instrucción drawattractorC.

Ejemplo

Un triángulo de Sierpinsky como atractor de $\{z\mapsto \frac{1}{2}z,\ z\mapsto \frac{1}{2}z+1, z\mapsto \frac{1}{2}z+i\}$.

```
In [59]: sierpinsky = [LinearTransformation(0.5), AffineTransformation(0.5, 1), AffineTransformation(0.5,im)];
In [60]: Gr.configure(rect=(-0.4,4,-0.1,2.1), colormap=:flag_ae) drawattractorC(sierpinsky, iterations=100000)
Out[60]:
```

Ejemplo

In []:

Una curva de Koch-Peano como atractor de $\{z\mapsto a\bar{z},\,z\mapsto a+(1-a)\bar{z}\}.$

```
In [61]: a = 0.56+0.37im
kochpeano=[z -> a*conj(z), z -> a+(1-a)*conj(z)];
```

In [62]: Gr.configure(rect=(-0.01,0.99,-0.1,0.4), colormap=:jet) drawattractorC(kochpeano, iterations=100000)

Out[62]:

In []:

La biblioteca SDDKleinianGroups

In []: using SDDKleinianGroups

Órbitas de puntos

Podemos dibujar las órbitas de puntos o conjuntos de puntos con drawpointorbit y drawpointssetorbit.

Ejemplo

Carpeta de Apolonio con el grupo $\langle A_1,A_2
angle$ dado por

$$A_2/$$
 data par $A_1(z)=rac{z}{-2iz+1} \ A_2(z)=rac{(1-i)z+1}{z+1+i}$

In [63]: apollonian = [MobiusTransformation(1,0,-2im,1), MobiusTransformation(1-im,1,1,1+im)];

```
In [190]: Gr.backend(:luxor)
    Gr.configure(rect=(-2.2,2.2,-1.1,1.1), pointsize=1, colormap=:coolw
    arm, bgcolor=RGB(0,0,0))
    drawpointssetorbit(apollonian, circlecomplexes(0,1), iterations=8)
```

Out[190]:

In []:

Órbitas de círculos

Podemos dibujar también órbitas de círculos o conjuntos de círculos, con drawcircleorbit y drawcirclessetorbit.

Ejemplo

Carpeta de Apolonio, con la órbita del círculo con centro en $-\frac{1}{2}$ y radio $\frac{1}{2}$.

Out[64]:

In []:

Ejemplo

Grupo de Schottky.

```
In [65]: Da, Db, DA, DB = Circle(2.0+2im,1.75), Circle(1.7-1.4im,1.6), Circle(-2.0-2im,2.0), Circle(-2.0+2im,1.8) schottkycircles = [Da, Db, DA, DB]; fa = \text{MobiusTransformation(pickpoint(DA,0), pickpoint(DA,\pi/4), pickpoint(DA,\pi/2),} \quad \text{pickpoint(Da,3\pi/2), pickpoint(Da,5\pi/4), pickpoint(Da,\pi))} \# D A to Da \\ fb = \text{MobiusTransformation(pickpoint(DB,0), pickpoint(DB,\pi/2), pickpoint(DB,\pi),} \\ pickpoint(Db,0), pickpoint(Db,3\pi/2), pickpoint(Db,\pi)) \# DB t o Db schottkygenerators = [fa, fb];
```

Ejemplo

La carpeta de Apolonio con otros círculos.

In [67]: specialcircles = [Circle(1000im,1000),Circle(-1-im,1), Circle(-0.25
im,0.25), Circle(1-im,1)];

In [68]: Gr.configure(rect=(-2.2,2.2,-1.1,1.1), style=:fill, colormap=:sola
 r, bgcolor=RGB(0,0,0))
 drawcirclessetorbit(apollonian, specialcircles, iterations=9, trave
 rse=:firstbreath, paired=true)

Out[68]:

Conjuntos límite

Podemos dibujar conjuntos límite, con varios algoritmos, utilizando draw Λ , drawfixedpoints Λ o drawchaosgame Λ .

Ejemplo

Un grupo quasi-Fuchsiano.

```
In [69]: ta, tb = 1.87 + 0.1im, 1.87 - 0.1im  
    tab = (ta*tb + sqrt(complex(ta*ta*tb*tb-4(ta*ta+tb*tb)))/2  
    z0 = (tab-2)*tb/(tab*tb-2ta+2im*tab)  
    a1, b1, c1 = ta/2, (ta*tab-2tb+4im)/((2tab+4)*z0), (ta*tab-2tb-4im)  
    *z0/(2tab-4)  
    a2, b2, d2 = (tb-2im)/2, tb/2, (tb+2im)/2  

    quasifuchsian = [MobiusTransformation(a1,b1,c1,a1), MobiusTransform  
    ation(a2,b2,b2,d2)];
```

In [70]: Gr.configure(rect=(-4,4,-2,2), pointsize=0.5, colormap=:blackbody, bgcolor=RGB(0,0,0)) drawchaosgame Λ (quasifuchsian, iterations=200000)

Out[70]:


```
In [ ]:
```

Trabajo futuro

Estamos trabajando en lo siguiente, que debe estar finalizado a principios de Enero del 2022:

• En *SDD*

- Diagramas de bifurcación de familias de funciones reales.
- Implementaciones de más algoritmos de dibujo de cuencas de atracción.
- Implementaciones de más algoritmos de dibujo de conjuntos de Mandelbrot.
- Cálculo de exponenentes de Lyapunov.

• En SDDIFS

- Implementaciones de más algoritmos de dibujo de atractores.
- Cálculo de dimensión fractal de atractores.

• En SDDKleinianGroups

- Implementaciones de más algoritmos de dibujo de conjuntos límite.
- Cálculo de dimensión fractal de conjuntos límite.

Y lo más importante:

• Aplicación de fácil uso para estudiantes, profesores e investigadores no programadores.

Todo el software que hemos desarrollado es libre y se puede descargar desde *GitHub*.

<u>github.com/Colectivo-SDD (github.com/Colectivo-SDD)</u>

La versión 1.0 estable será publicada hasta Enero del 2022.

¡Gracias!

```
In [11]: EW(\lambda::Number,z::Number) = \lambda*z*exp(z)
```

Out[11]: EW (generic function with 1 method)

In [31]: Gr.backend(:images)
 Gr.configure(rect=(-16,16,-8,8), canvas=(1200,600), colormap=:ocea
 n, axes=true)
 drawtrappedpointsC(z -> EW(1.5+3im,z), hasescaped = z -> real(z) >
 16, maxiterations = 16)

Out[31]:

In [30]: Gr.configure(rect=(-16,16,-8,8), canvas=(1200,600), colormap=:ocea n, axes=true) drawmandelbrotC(EW, -1, hasescaped = z -> real(z) > 16, maxiteratio ns = 12)

Out[30]:

In [32]: $\zeta 4(z::Number) = 1+1/(2^z)+1/(3^z)+1/(4^z)$

Out[32]: ζ4 (generic function with 1 method)