第二章 逻辑代数基础

逻辑代数是分析和设计数字电路的数学工具,本章讨论的内容:

- 1. 逻辑代数的运算、公式
- 2. 逻辑函数及其表达式
- 3. 化简逻辑函数的方法

逻辑:条件和结果之间的因果关系

逻辑代数:又称布尔代数,是描述和研究客观世界中事物间逻辑关系的数学

逻辑变量:逻辑代数中的变量

逻辑常量:逻辑代数中的常量

逻辑函数:如果逻辑变量 $x_1, x_2, \dots x_n$ 的取值确定以后,逻辑变量 F 的取值也唯一的确定,则称 F 是 $x_1, x_2, \dots x_n$ 的逻辑函数。记作:

$$F = f(x_1, x_2, \cdots, x_n)$$

逻辑函数可以用真值表、或逻辑表达式来描述

2.2 逻辑代数中的运算

2.2.1 3种基本逻辑运算

1) 与逻辑运算

(a) 说明与逻辑的电路

2.2 逻辑代数中的运算

2.2.1 3种基本逻辑运算

(a) 说明与逻辑的电路

设:	开关≺	打开—	-"0"	灯	灭—	-"0"
		闭合-	-"1"		_亮_	_"1"

输	入	输出
Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

真值表

2.2 逻辑代数中的运算

2.2.1 3种基本逻辑运算

(a) 说明与逻辑的电路

- (1) 逻辑表达式: F = A · B
- (2) 算符
 - "·"(或者"×"、"∧"、 "∩"、"AND")读作"与" (或读作"逻辑乘")
- (3) 运算规则

$$0 \cdot 0 = 0$$
 $1 \cdot 0 = 0$
 $0 \cdot 1 = 0$ $1 \cdot 1 = 1$

2.2 逻辑代数中的运算

- 2.2.1 3种基本逻辑运算
- 1) 与逻辑运算

(a) 说明与逻辑的电路

逻辑符号

2.2 逻辑代数中的运算

2.2.1 3种基本逻辑运算

2) 或逻辑运算

(b) 说明或逻辑的电路

输	入	输出
Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

真值表

2.2 逻辑代数中的运算

2.2.1 3种基本逻辑运算

2) 或逻辑运算

(b) 说明或逻辑的电路

- (1) 逻辑表达式: F=A+B
- (2) 算符
- "+"(或者"∨"、"∪"、 "OR")读作"或"(或读作"逻 辑加")
- (3) 运算规则

$$0 + 0 = 0$$
 $1 + 0 = 1$

$$0+1=1$$
 $1+1=1$

2.2 逻辑代数中的运算

2.2.1 3种基本逻辑运算

2) 或逻辑运算

(b) 说明或逻辑的电路

$$\begin{array}{c|c} A \longrightarrow & + \\ B \longrightarrow & - \end{array}$$

$$A \longrightarrow B \longrightarrow -F$$

逻辑符号

2.2 逻辑代数中的运算

- 2.2.1 3种基本逻辑运算
- 3) 非逻辑运算

(c) 说明非逻辑的电路

输入	输出	
A	F	
0	1	
1	0	

真值表

2.2 逻辑代数中的运算

2.2.1 3种基本逻辑运算

3) 非逻辑运算

(c) 说明非逻辑的电路

- (1) 逻辑表达式: F = A
- (2) 算符 符号"—"读作"非"

2.2 逻辑代数中的运算

- 2.2.1 3种基本逻辑运算
- 3) 非逻辑运算

(c) 说明非逻辑的电路

逻辑符号

2.2.2 复合逻辑运算

1)与非运算:

$$(1)$$
 逻辑表达式: $F = AB$

2.2.2 复合逻辑运算

1) 与非运算:

F=AB AC ACD BD

2.2.3 复合逻辑运算

2)或非运算:

$$(1)$$
 逻辑表达式: $F = A + B$

2.2.2 复合逻辑运算

3)与或非运算:

$$(1)$$
 逻辑表达式: $F = AB + CD$

w

2.2.2 复合逻辑运算

4) 异或运算:

(1) 逻辑表达式:
$$F = A \oplus B = AB + AB$$

- "异或"门电路的用处:
 - (1)可控的数码原/反码输出器 $A \oplus 0 = A$ $A \oplus 1 = \overline{A}$
 - (2)作数码比较器
 - (3)求两数码的算术和

2.2.2 复合逻辑运算

5) 同或运算:

(1) 逻辑表达式:
$$F = A \odot B = A B + A B$$

关于门电路符号的说明

先"与"后"非"和先"非"后"或"等价

先"或"后"非"和先"非"后"与"等价

×

2.3 逻辑代数的公式

2.3.1 基本公式

$$\mathbf{A} + \mathbf{0} = \mathbf{A}$$

$$\mathbf{A} \cdot \mathbf{1} = \mathbf{A}$$

$$\mathbf{A} + \mathbf{1} = \mathbf{1}$$

$$\mathbf{A} \cdot \mathbf{0} = \mathbf{0}$$

$$A + A = A$$

$$A \cdot A = A$$

$$A + \overline{A} = 1$$

$$\mathbf{A} \cdot \overline{\mathbf{A}} = \mathbf{0}$$

$$\overline{\overline{\mathbf{A}}} = \mathbf{A}$$

$$A + B = B + A$$

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

2.3 逻辑代数的公式

2.3.1 基本公式

7.结合律
$$A + B + C$$
 $A \cdot B \cdot C$
 $= (A + B) + C$ $= (A \cdot B) \cdot C$
 $= A + (B + C)$ $= A \cdot (B \cdot C)$
8.分配律 $A \cdot (B + C)$ $A + BC$
 $= AB + AC$ $= (A + B) \cdot (A + C)$

9.反演律
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
 $\overline{AB} = \overline{A} + \overline{B}$

基本定律的正确性可以用列真值表的方法加以证明。

- 2.3 逻辑代数的公式
- 2.3.2 异或、同或逻辑的公式
- 1) 异或运算、同或运算互为对偶运算 (参见课本page18)

2.3 逻辑代数的公式

- 2.3.2 异或、同或逻辑的公式
- 2) 多个变量的异或、同或间关系
- (1)偶数个变量的异或、同或互补

$$A_1 \oplus A_2 \oplus ... \oplus A_n = A_1 \odot A_2 \odot ... \odot A_n (n 为偶数)$$

(2)奇数个变量的异或、同或相等

 $A_1 \oplus A_2 \oplus ... \oplus A_n = A_1 \odot A_2 \odot ... \odot A_n (n 为奇数)$

M

2.3 逻辑代数的公式

- 2.3.2 异或、同或逻辑的公式
- 3) 多个常量的异或、同或运算
- (1)异或时,起作用的是"1"的个数

$$0 \oplus 0 = 0 \quad 0 \oplus 0 \oplus 0 = 0$$

$$1 \oplus 1 = 0$$
 $1 \oplus 1 \oplus 1 = 1$

(2)同或时,起作用的是 "0"的个数

$$0 \odot 0 = 1 \quad 0 \odot 0 \odot 0 = 0$$

$$101 = 1 \quad 10101 = 1$$

2.3 逻辑代数的公式

- 2.3.3 常用公式
- 1. 合并相邻项公式 $AB + A\overline{B} = A$
- 2. 消项公式 A + AB = A
- 3. 消去互补因子公式 $A + \overline{AB} = A + B$
- 4. 多余项(生成项)公式

$$AB + \overline{A}C + BC = AB + \overline{A}C$$

证明: $AB + \overline{AC} + BC = AB + \overline{AC} + (A + \overline{A})BC$

$$= AB + \overline{A}C + ABC + \overline{A}BC = AB + \overline{A}C$$

2.4 逻辑代数的基本规则

2.4.1 代入规则:

理论依据:任何一个逻辑函数也和任何一个逻辑 变量一样,只有逻辑0和逻辑1两种取值。因此,可将 逻辑函数作为一个逻辑变量对待。

利用代入规则可以扩大公式的应用范围。

2.4 逻辑代数的基本规则

2.4.2 反演规则:

→ A (2) 不属于单个变量上的非号, 在变换时应保留

例1: 若 $F = \overline{A} \overline{B} + C D$, 试用反演规则求反函数 \overline{F} 。

解:
$$\overline{\mathbf{F}} = (\mathbf{A} + \mathbf{B}) \cdot (\overline{\mathbf{C}} + \overline{\mathbf{D}})$$

例2: 若
$$F = \overline{A} + \overline{B+C} \cdot D$$
, 试用反演规则求反函数 \overline{F} 。

解:
$$\overline{F} = A \cdot \overline{\overline{B} \, \overline{C}} + \overline{D}$$

常用关系式:

$$(1) \overline{F} = F;$$

(2) 若 F = G,则 $\overline{F} = \overline{G}$;反之也成立。

2.4 逻辑代数的基本规则

2.4.3 对偶规则:

常用关系式:

$$(1) (F')' = F;$$

(2) 若 F = G,则 F' = G';反之也成立。

将 F'中的变量原反互换后即可得到 F; 将 F中的变量原反互换后即可得到 F'。

例1:已知 $A \oplus 0 = A$,则其对偶公式为:

$$A \odot 1 = A$$

例2: 已知 $F = A \oplus B$,则其反函数可写为:

$$\overline{\mathbf{F}} = \overline{\mathbf{A}} \odot \overline{\mathbf{B}}$$

与反演律 $\overline{A+B} = \overline{A} \cdot \overline{B}$ 形式类似

内容回顾

- 什么是逻辑代数? 有什么用?
- ■逻辑代数有哪些运算?
- ■逻辑代数有哪些公式?
- ■逻辑代数有哪些规则?