TP1 - Focométrie

Objectifs

- → Former l'image d'un objet dans des situations variées.
- → Mettre en œuvre une mesure de longueur par déplacement d'un viseur entre deux positions.
- → Éclairer un objet de manière adaptée.
- → Choisir une ou plusieurs lentilles en fonction des contraintes expérimentales, et choisir leur focale de façon raisonnée.
- → Optimiser la qualité d'une image (alignement, limitation des aberrations, etc.).
- → Estimer une valeur approchée d'une distance focale.

1 Formation d'images

- 1. On souhaite former l'image d'un objet réel sur un écran avec une lentille convergente de focale f'. Montrer que la distance D séparant l'objet de son image ne peut être inférieure à 4f'.
- Faire un schéma, poser $x = |\overline{OA}|$ et $D = \overline{AA'}$, réécrire la relation de Descartes en fonction de D, x et f' puis déterminer les positions de la lentille x qui permettent d'obtenir une image nette quand D est fixée.
 - 2. Réaliser un montage optique permettant de projeter l'image d'un objet rétroéclairé sur un écran situé à environ 1 m de l'objet. Votre réflexion doit porter sur le choix de la lentille. Caractériser l'image : est-elle réelle, virtuelle, droite, renversée, agrandie, réduite?
 - 3. Former sur l'écran une image agrandie de l'objet en utilisant au moins une lentille divergente. Faire un schéma du montage.

APPEL PROF 1

2 Focométrie

La focométrie regroupe l'ensemble des techniques de mesure de distance focale de lentilles. On s'intéresse à une lentille **convergente** de focale $f' = 100 \,\mathrm{mm}$ dont on souhaite vérifier la distance focale en utilisant trois méthodes différentes.

2.1 En optique, l'infini commence à un mètre...

REA ANA

REA VAL

REA

REA

- 4. Former l'image nette d'un objet éloigné (néon, fenêtre, etc...) sur une feuille de papier. À quoi correspond la distance entre la lentille et l'écran?
- 5. En déduire une première valeur f'_1 de la distance focale de la lentille.

APPEL PROF 2

2.2 Autocollimation

6. Mettre en œuvre la méthode d'autocollimation pour déterminer une nouvelle valeur f'_2 de la distance focale de la lentille.

2.3 Relation de Descartes

7. Proposer un protocole permettant de mesurer une nouvelle valeur f'_3 de la distance focale de la lentille en exploitant la relation de Descartes.

RFA VA

8. Le mettre en œuvre.

VAL

9. Comparer les résultats obtenus avec les différentes méthodes.

APPEL PROF 3

2.4 Et les lentilles divergentes?

- 10. On associe deux lentilles \mathcal{L}_1 et \mathcal{L}_2 de distances focales f'_1 et f'_2 côte à côte, si bien que l'on considère que leurs centres optiques sont confondus. Déterminer la focale équivalente f' de ce doublet en fonction de f'_1 et f'_2 . Exprimer cette relation en termes de vergence.
- Écrire la relation de conjugaison de Descartes pour chaque lentille en faisant apparaître l'image intermédiaire A_1B_1 de AB par $\mathcal{L}_1:AB \xrightarrow{\mathcal{L}_1} A_1B_1 \xrightarrow{\mathcal{L}_2} A_2B_2$.

ANA

11. Décrire succinctement un protocole expérimental permettant de déterminer la distance focale d'une lentille divergente.

APPEL PROF 4

REA VAL

12. Le mettre en œuvre.

Compétence	Observable	Appréciation
ANA	Le protocole (Q. 7) est pertinent et peut être mis en	
	pratique par un physicien ne connaissant pas le TP : il contient l'objectif de la manipulation, la liste du matériel,	
	le schéma de l'expérience et les étapes à suivre.	
REA	Exprimer correctement les distances algébriques : nota-	
	tion \overline{OA} , signes.	
VAL	Les résultats de mesure sont exprimés correctement sous	
	la forme $X = (x \pm u(X))$ unité. Le nombre de chiffres	
	significatifs est adapté. Les incertitudes sont raisonnable-	
	ment estimées.	
COM	Le compte-rendu est bien présenté, les résultats mis en	
	valeur, écrit dans un français correct.	

Documents

Document 1 - Relation de conjugaison

On rappelle la relation de conjugaison avec origine au centre optique, ou relation de Descartes :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}},$$

où \overline{OA} est la distance algébrique lentille-objet, $\overline{OA'}$ la distance algébrique lentille-image et $\overline{OF'}$ la distance focale de la lentille.

Document 2 - Méthode d'autocollimation

L'autocollimation est une méthode avant tout utilisée pour former une image à l'infini avec une lentille convergente. Il faut pour cela placer l'objet dans le plan focal objet de la lentille.

En pratique, se contenter de placer l'objet à la distance focale annoncée est trop imprécis pour former des images de bonne qualité. Pour améliorer la précision, on place un miroir derrière la lentille, comme représenté sur le schéma ci-dessus. Lorsque l'objet est situé dans le plan focal objet de la lentille, l'image en sortie de la lentille est à l'infini. Le miroir renverse géométriquement le faisceau sortant de la lentille, et ainsi, pour le trajet retour, le faisceau incident provient de l'infini. Lorsqu'ils traversent à nouveau la lentille, les rayons convergent dans le plan focal... qui se trouve ici être sur l'objet. Si besoin, le miroir peut être légèrement incliné par rapport à l'axe optique pour que l'image ne se superpose pas complètement à l'objet.