문서등급 공개

IPv6 취약점 탐지 기술

목 차

1.	개노	1	. ح
2.	룰으	기 형식	. 4
3.	호혼	한성	. 5
3.1	L를	를의 프로토콜 명시	. 5
3.2	<u>?</u>	앙위 프로토콜 탐지	. 5
4.	탐지	│ 옵션	. 6
4.1	L I	Pv6 헤더 탐지 옵션	. 6
4.1	1	ip6_tc	6
4.1	2	ip6_fl	6
4.1	3	ip6_nh	6
4.1	4	Hop Limit	7
4.2	<u>?</u> 호	막장 헤더 탐지 옵션	. 8
4.2	2.1	ip6_otype	8
4.2	2.2	ip6_id	8
4.2	2.3	ip6_fragoffset	8
4.2	2.4	ip6_fragbits	9
4.3	3 I	CMPv6 탐지 옵션	10
4.3	3.1	icmp6_type	10
4.3	3.2	icmp6_code	10
4.3	3.3	icmp6_id	10
4.3	3.4	icmp6_seq	10
4.3	3.5	icmp6_otype	11
4.3	3.6	icmp6_olen	11
4.3	3.7	icmp6_rl	11
4.3	3.8	icmp6_vl	12
4.3	3.9	icmp6_pl	12
용어	정리		14
연락치	넉		14
회사	소개		14

표 목 차

<표	1>	IPv6	헤더	탐지	옵션	및	설명	. 7
<표	2>	확장	헤더	탐지	옵션	및	설명	. 9
<표	3>	ICMF	Pv6	사지 온	·셔 및	<u>.</u> 설	명	12

1. 개요

본 문서는 IPv6 취약점을 탐지하기 위한 탐지 룰 및 탐지 옵션에 대한 기술을 다룬다. 기존 Snort 와 같은 룰 기반의 IDS/IPS 에서 적용 가능 한 형태의 탐지 옵션을 의미한다. IPv6 헤더, 확장헤더, ICMPv6 를 검사하기 위한 전용 탐지 옵션을 정의하며 기존 룰과의 호환성에 대한 내용을 서술한다.

2. 룰의 형식

기존 snort 룰의 형식과 IPv6 취약점을 탐지하기 위한 룰의 형식은 다음과 같다. 기존 snort 룰과 동일하게 사용된다. 룰 옵션에는 IPv6 헤더와 관련된 필드를 탐지하기 위한 옵션들이 사용될 수 있다.

- Snort (TCP): alert tcp any any -> any any (content:"test";)
- Snort (IP) : alert ip any any -> any any (ttl:3;)
- Snort (ICMP) : alert icmp any any -> any any (itype:8;)
- IPv6 취약점 탐지 룰 : alert ip any any -> any any (ip6_nh:fragment; icmp6_type:134; icmp6_otype:3; icmp6_olen:>4;)

3. 호환성

3.1 룰의 프로토콜 명시

IPv6 및 ICMPv6는 기존 룰이 사용하는 프로토콜인 IP, TCP, UDP, ICMP 내에 포함된다. 즉, IPv6 취약점을 탐지하기 위해서 룰 내의 protocol 필드 부분에 "ipv6" 형식으로 넣지 않아도 된다. 아래 룰들은 이해를 돕기 위한 예제이다.

- alert ip any any -> any any (ttl:6;)IPv4 의 TTL 필드가 6 인지 검사한다.
- alert ipv6 any any -> any any (ip6_nh:6;) 잘못된 예제이다.
- alert ip any any -> any any (ip6_nh:6;)
 IPv6 의 Next Hop 필드가 6 인지 검사한다.
- alert icmp any any -> any any (icmp6_type:134; icmp6_otype:3; icmp6_vl:infinity; icmp6_pl:infinity;)
 ICMPv6 의 타입으로 134 (Router Advertisement), option 타입으로 3 (prefix information), valid lifetime, preferred lifetime 이 각각 무한대인 경우를 검사한다.

3.2 상위 프로토콜 탐지

탐지 룰이 TCP 혹은 UDP일 경우 룰은 IPv4 혹은 IPv6 환경에서 동일하게 적용되며 탐지된다.

■ alert tcp any any -> any any (content:"test";)
IPv4 환경 혹은 IPv6 환경에서의 TCP 프로토콜 내의 데이터 페이로드에서 test라는 문자열을 찾는다.

4. 탐지 옵션

옵션 종류는 IPv6 헤더, 확장 헤더, ICMPv6 로 분류할 수 있다.

4.1 IPv6 헤더 탐지 옵션

IPv6 헤더 탐지 옵션의 종류는 다음과 같다.

4.1.1 ip6_tc

ip6_tc는 IPv6 헤더의 Traffic Class 필드를 검사한다. Traffic Class는 IPv6 패킷의 클래스나 우선순 위를 나타낸다. IPv4 의 TOS와 동일한 기능을 수행한다.

- 사용법
 - ✓ ip6_tc:[!] < number >;
- 예제
 - √ ip6_tc:!4;

4.1.2 ip6_fl

ip6_fl은 IPv6 헤더의 Flow Label 필드를 검사한다. Flow Label는 라우터의 실시간 처리, QoS 처리 등 특별한 처리를 요구한다. Flow label 지원하지 않는 호스트/라우터는 패킷 생성시 0으로 설정한다.

- 사용법
 - √ ip6_fl:[!|<|>]<number>;
- 예제
 - ✓ ip6_fl:1000;

4.1.3 ip6_nh

ip6_nh는 IPv6 헤더의 Next Header 필드를 검사한다. Next Header는 IPv6 헤더 뒤에 오는 헤더의 타입을 명시한다.

- 사용법
 - ✓ ip6_nh:[!|<|>]<name or number>;

■ 예제

- √ ip6_nh:6;
- ✓ ip6_nh:tcp;

4.1.4 Hop Limit

ip6_hl은 IPv6 헤더의 Hop Limit 필드를 검사한다. Hop Limit는 각 노드를 지날 때 1씩 감소한다. 0일 경우 패킷을 버린다. IPv4의 TTL 필드와 동일한 역할을 수행한다.

■ 사용법

- ✓ ip6_hl:[<, >, =, <=, >=]<number>;
- ✓ ip6_hl:[<number>]-[<number>];

■ 예제

- ✓ ip6_hl:<3;
- ✓ ip6_hl:3-5; (3~5)
- ✓ ip6_hl:-5; (0~5)
- ✓ ip6_hl:5-; (5~255)
- √ ip6_hl:<=5;
 </p>
- √ ip6_hl:>=5;
- √ ip6_hl:=5;

<표 1> IPv6 헤더 탐지 옵션 및 설명

순번	필드 명	탐지옵션 명	탐지 옵션 설명
1	Traffic Class	ip6_tc	ip6_tc는 IPv6 헤더의 Traffic Class 필드를 검사한다.
2	Flow Label	ip6_fl	ip6_fl은 IPv6 헤더의 Flow Label 필드를 검사한다.
3	Next Header	ip6_nh	ip6_nh는 IPv6 헤더의 Next Header 필드를 검사한다.
4	Hop Limit	ip6_hl	ip6_hl은 IPv6 헤더의 Hop Limit 필드를 검사한다.

4.2 확장 헤더 탐지 옵션

확장 헤더는 IPv6 헤더의 Next Header 필드의 값으로 구별할 수 있다. IPv6 확장 헤더 탐지 옵션의 종류는 다음과 같다.

4.2.1 ip6_otype

ip6_otype은 확장 헤더 중 Hop-By-Hop Options 헤더와 Destination Options 헤더 내에 존재하는 옵션 타입 필드를 검사한다.

■ 사용법

- √ ip6_otype:min < > max;
- ✓ ip6_otype:[<|>]<number>;

■ 예제

✓ ip6_otype:128;

4.2.2 ip6_id

ip6_id는 확장 헤더 중 Fragment 헤더 내의 Identification 필드를 검사한다. IPv4 헤더의 Identification 과 동일한 역할을 수행한다. IPv4는 16bit, IPv6는 32bit이다.

■ 사용법

√ ip6_id:<number>;

■ 예제

√ ip6_id:31337;

4.2.3 ip6_fragoffset

ip6_fragoffset은 확장 헤더 중 Fragment 헤더 내의 Fragoffset 필드를 검사한다. IPv4 헤더의 Fragoffset 과 동일한 역할을 수행한다.

■ 사용법

√ ip6_fragoffset:[!|<|>]<number>;

■ 예제

√ ip6_fragoffset:0;

4.2.4 ip6_fragbits

ip6_fragbits는 확장 헤더 중 Fragment 헤더 내의 Fragbits 필드를 검사한다. IPv4 헤더의 Fragbits 와 동일한 역할을 수행한다. IPv6의 M플래그는 1혹은 0이며 Reserved 비트는 2비트로 사용하지 않으므로 0으로 설정되어 있다.

■ 사용법

✓ ip6_fragbits:<[MD]>;

■ 예제

✓ ip6_fragbits:M;

<표 2> 확장 헤더 탐지 옵션 및 설명

순번	필드 명	탐지옵션 명	탐지 옵션 설명
			ip6_otype은 확장 헤더 중 Hop-By-Hop Options 헤
1	option type	ip6_otype	더와 Destination Options 헤더 내에 존재하는 옵션
			타입 필드를 검사한다.
	EXTENSION		ip6_id는 확장 헤더 중 Fragment 헤더 내의
2	HEADER	ip6_id	Identification 필드를 검사한다.
	fragment id		
	EXTENSION		ip6_fragoffset은 확장 헤더 중 Fragment 헤더 내의
3	HEADER	ip6_fragoffset	Fragoffset 필드를 검사한다.
	fragment offset		
	extension		ip6_fragbits는 확장 헤더 중 Fragment 헤더 내의
4	HEADER	ip6_fragbits	Fragbits 필드를 검사한다.
	fragment bits		

4.3 ICMPv6 탐지 옵션

ICMPv6 탐지 옵션은 다음과 같다.

4.3.1 icmp6_type

icmp6_type은 ICMPv6의 Type 필드를 검사한다.

■ 사용법

- √ icmp6_type:min < > max;
- ✓ icmp6_type:[<|>]<number>;

■ 예제

√ icmp6_type:>30;

4.3.2 icmp6_code

icmp6_code은 ICMPv6의 Code 필드를 검사한다.

■ 사용법

- √ icmp6_code:min<>max;
- ✓ icmp6_code:[<|>]<number>;

■ 예제

√ icmp6_code:>30;

4.3.3 icmp6_id

icmp6_id는 ICMPv6의 Echo Request Message의 Identification 필드를 검사한다.

- 사용법
 - √ icmp6_id:<number>;

■ 예제

√ icmp6_id:0;

4.3.4 icmp6_seq

icmp6_seq는 ICMPv6의 Echo Request Message의 Sequence Number 필드를 검사한다.

- 사용법
 - √ icmp6_seq:<number>;
- 예제
 - √ icmp6_seq:0;
- 4.3.5 icmp6_otype

icmp6_otype은 ICMPv6의 Neighbor Discovery의 각 Option의 타입 필드를 검사한다.

- 사용법
 - √ icmp6_otype:<name or number>;
- 이름정의
 - ✓ sla Source Link-Layer Address
 - √ tla Target Link-Layer Address
 - ✓ pi Prefix Information
 - √ rh Redirected Header
 - ✓ MTU MTU
- 예제
 - √ icmp6_otype:3;
 - √ icmp6_otype:pi
- 4.3.6 icmp6_olen

icmp6_olen은 ICMPv6의 Neighbor Discovery의 각 Option의 길이 필드를 검사한다.

- 사용법
 - ✓ icmp6_olen:[<, >, =, <=, >=]<number>;
- 예제
 - √ icmp6_olen:4;
- 4.3.7 icmp6_rl

icmp6_rl은 ICMPv6의 Neighbor Discovery Router Advertisement의 Router lifetime 필드를 검사한다.

- 사용법
- Copyright ⓒ 2012 ㈜정보보호기술. All rights reserved. -

- ✓ icmp6_rl:[<, >, =, <=, >=]<number>;
- 예제
 - √ icmp6_rl:0;

4.3.8 icmp6_vl

icmp6_vl은 ICMPv6의 Neighbor Discovery Router Advertisement의 valid lifetime 필드를 검사한다.

- 사용법
 - ✓ icmp6_vl:[<, >, =, <=, >=]<number or name>;
- 예제
 - √ icmp6_vl:100000;
 - ✓ icmp6_vl:infinity; (32bit all 1)

4.3.9 icmp6_pl

icmp6_pl은 ICMPv6의 Neighbor Discovery Router Advertisement의 preferred lifetime 필드를 검사한다.

- 사용법
 - √ icmp6_pl:[<, >, =, <=, >=]<number or name>;
- 예제
 - √ icmp6_pl:100000;
 - ✓ icmp6_pl:infinity; (32bit all 1)

<표 3> ICMPv6 탐지 옵션 및 설명

순번	필드 명	탐지옵션 명	탐지 옵션 설명
1	ICMPv6 type	icmp6_type	icmp6_type은 ICMPv6의 Type 필드를 검사한다.
2	ICMPv6 code	icmp6_code	icmp6_code은 ICMPv6의 Code 필드를 검사한다.
3	ICMPv6 echo id	icmp6_id	icmp6_id는 ICMPv6의 Echo Request Message의
			Identification 필드를 검사한다.
4	ICMPv6 echo seq	icmp6_seq	icmp6_seq는 ICMPv6의 Echo Request Message의
			Sequence Number 필드를 검사한다.
5	ICMPv6 option type	icmp6_otype	icmp6_otype은 ICMPv6의 Neighbor Discovery의
			각 Option의 타입 필드를 검사한다.

6	ICMPv6 option	icmp6_olen	icmp6_olen은 ICMPv6의 Neighbor Discovery의 각
	length		Option의 길이 필드를 검사한다.
7	ICMPv6 ND Router	icmp6_rl	icmp6_rl은 ICMPv6의 Neighbor Discovery Router
	lifetime		Advertisement의 Router lifetime 필드를 검사한다.
8	ICMPv6 ND valid	icmp6_vl	icmp6_vl은 ICMPv6의 Neighbor Discovery Router
	lifetime		Advertisement의 valid lifetime 필드를 검사한다.
9	ICMPv6 ND preferred	icmp6_pl	icmp6_pl은 ICMPv6의 Neighbor Discovery Router
	lifetime		Advertisement의 preferred lifetime 필드를 검사한
			다.

용어 정리

본 보고서에서 사용된 용어들에 대한 정리는 아래 glossary를 참조하십시오. https://tms.infosec.co.kr/SClient2/community/word.php?c2=C0006

연락처

문서와 관련된 궁금 사항 발생 시 아래 연락처로 연락하시기 바랍니다.

E-mailcert@infosec.co.kr전화02-6003-0953FAX접수02-3445-0991

회사 소개

㈜정보보호기술은 침입탐지시스템(TESS IDS) 연구/개발 분야에서, K4 인증, OPSEC 인증, ICSA 인증, NOKIA 인증 및 CHECKMARK 인증 등 전세계 공인 인증 기관 및 산업 표준 인증 획득을 통하여 기술력과 우수성을 인정 받았습니다. 이러한 기술을 바탕으로, 위협분석시스템(TESS TAS) 및 위협관리시스템(TESS TMS) 등으로 솔루션 개발 분야를 확대하고, 글로벌 조기 예/경보 서비스 및 긴급 취약성 경보 서비스를 제공하는 위협관리 전문기업입니다.

최근 인터넷 웜, 바이러스, 해킹 등의 사이버 위협에 대한 종합적인 대응 체계로서, 주요 정부 기관 및 ISP들이 연이어 ㈜정보보호기술의 위협관리 솔루션 및 서비스를 채택함으로써 ㈜정보보호기술의 위협관리 전문기업으로 서의 위상을 확고히 하고 있습니다.

어떠한 보안 제품도 "Magic Security"를 만족할 수 없습니다. 활성화된 위협의 형태, 원인 및 현상에 따라 적절한 보안 수단을 적용할 수 있도록 Technology(솔루션)과 Information(서비스)가 상호 유기적으로 결합되어야만 합니다.

㈜정보보호기술은 사이버 위협으로부터 고객의 소중한 자산을 안전하게 보호할 수 있도록 종합적인 솔루션 및 서비스를 제공하도록 언제나 최선을 다하여 노력하겠습니다.

회 사 명 : ㈜정보보호기술 (INFOSEC Technologies Co., Ltd.) http://www.infosec.co.kr/

대표이사 : 조명제

설립일자 : 2000년 4월 7일

• 소재지 : 서울시 강남구 논현동 57-38번지 원영빌딩 3층~5층 (우:135-010)

• 대표전화: 02-6003-0999 FAX: 02-3445-0991

• 사업영역 : 위협관리솔루션 및 서비스 판매