2.2 Bipolartransistor (12,5 Pkt)

Gegeben sei die elektrische Schaltung in Abb. 5 und die dazugehörigen Kennlinien $I_B(U_{BE})$ und $I_C(I_B)$. Der Arbeitspunkt sei auf $U_{BE,AP}=0,75\,V$ eingestellt. Außerdem sind folgende Größen gegeben:

$$U_0 = 15 V$$
 $R_E = 375 \Omega$ $R_2 = 1, 5 k\Omega$

Abbildung 5: Elektrische Schaltung mit Bipolartransistor und Kennlinienfelder $I_B(U_{BE})$ und $I_C(I_B)$

- a) Um welche Grundschaltung handelt es sich und wozu wird diese eingesetzt?
- b) Bestimmen Sie R_1 für den gegebenen Arbeitspunkt. Vernachlässigen Sie I_B nicht. (Kurzlösung: $R_1=1,9\,k\Omega$)
- c) Zeichnen Sie das Kleinsignalersatzschaltbild. Die Koppelkondensatoren können hierbei kurzgeschlossen werden. Verwenden Sie das Kleinsignalersatzschaltbild eines Bipolartransistors aus der Formelsammlung.
- d) Bestimmen Sie die Kleinsignalverstärkung $V=\frac{u_a}{u_e}\big|_{i_a=0}$. Folgende Annahmen zur Vereinfachung sind erlaubt: $r_{BE}\ll \beta R_E$ und $r_{CE}\to\infty$. (Kurzlösung: $V=\frac{R_E(\beta+1)}{r_{BE}+R_E(\beta+1)}\approx 1$)

Name: Max Mustermann Matrikelnummer: 000000

