где $P_{f\!\!/\!\!1}$ – допустимое значение вероятности совпадения в частотном элементе $\Delta \! f_{\rm p}$ двух или более ИРИ; $\Delta \! f_{\rm ком}$ – максимально ожидаемая ширина спектра компонент РО.

При $M_{\rm c}=10^2;\ P_{f\!\!/\!\!1}=5\cdot 10^{-3}\;;\ \Delta\!f_{\rm n}=\!10^8$ Гц получаем, что $\Delta\!f_{\rm n}=\!10^5$ Гц; $n_{\rm g3}=n_{f\!\!/\!\!c}=\!10^3\;.$

В зависимости от используемого в ЭА вида частотного поиска длительность одного цикла поиска $T_{\mathfrak{q}}$ равна:

$$T_{\text{II}1} = n_{\text{fe}1} \ T_1, \ n_{\text{fe}1} = \frac{\Delta f_{\text{n}}}{\Delta f_{\text{cr}}}; \ \Delta f_{\text{cm}} = n_{\text{k}} \Delta f_{\text{p}};$$

$$T_{\text{II}2} = n_{\text{fe}2} \ T_2, \ n_{\text{fe}2} = \frac{\Delta f_{\text{n}}}{\Delta f_{\text{p}}};$$

$$T_{\text{II}3} = T_1; \ T_{\text{II}i} \le T_{\text{BA}}, \ i \in [1, 2, 3],$$

где $T_{\rm ul}$, $T_{\rm u2}$, $T_{\rm u3}$ – длительность цикла при использовании последовательно-параллельного, последовательного и параллельного методов поиска; $\Delta f_{\rm cm}$ – полоса пропускания частотной ступени, состоящей из $n_{\rm k}$ параллельных каналов, каждый из которых имеет полосу пропускания $\Delta f_{\rm k}$ = $\Delta f_{\rm p}$; $T_{\rm l}$ – время анализа одной ячейки поиска, соответствующей частотной полосе одного канала.

При оптимизации пропускной способности ЭА предпочтение по быстродействию поиска имеет, прежде всего, параллельный метод, затем — последовательно-параллельный. При большом количестве ячеек поиска ($n_{\rm H} > 10^3$) с учетом ограничений на сложность и стоимость аппаратурной реализации при построении ЭА рекомендуется использовать последовательно-параллельный поиск, который реализуется супергетеродинным приемником комбинированного типа.

ЛИТЕРАТУРА

- Дятлов А.П. Оптимизация первичной обработки информации. Таганрог.: ТРТУ, 1993.
- Ипатов В.П., Казаринов Ю.М. и др. Поиск, обнаружение и измерение параметров сигналов в радионавигационных системах. М.: Сов. Радио, 1975.

УДК.681.322

В.А. Алехин

О ВЕРОЯТНОСТИ НЕДРОБЛЕНИЯ ИНТЕРВАЛА МЕЖДУ СМЕЖНЫМИ ИМПУЛЬСАМИ ПЕРИОДИЧЕСКОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ХАОТИЧЕСКОЙ ИМПУЛЬСНОЙ ПОМЕХОЙ

В [1] предложен способ выявления периодических компонент, скрытых в импульсном потоке хаотической импульсной помехой (ХИП). Он

основан на представлении интервалов $\Delta t_{i,i+1}$ между импульсами в реализации потока по модулю некоторого пробного $T \in (T_{c \min}, T_{c \max})$, где $(T_{c \min}, T_{c \max})$ – априорный интервал значений периодов периодических компонент, с последующим статистическим анализом полученного таким образом массива вычетов. Указанное модульное преобразование повторяется начиная с $T=T_{c\min}$ до $T=T_{c\max}$ с приращением δT модуля. Такая процедура требует выполнения большого числа арифметических операций и значительного быстродействия анализатора. В [2] предложен вариант адаптивного модульного анализа на основе начального значения выбора пробного периода $T=\max\{T_{c\min},(\Delta t_{i,i+1})_{\max}\}$, где $(\Delta t_{i,i+1})_{\max}$ — максимальное значение интервала между смежными импульсами в анализируемой реализации потока. Такой подход сулит существенное сокращение времени анализа за счет уменьшения числа выполняемых арифметических операций. Для оценки среднего выигрыша времени анализа необходимо располагать вероятностью P_{H} недробления интервала T_{c} аддитивной ХИП. Если недробление хотя бы одного такого интервала в реализации имеет место, начальное значение пробного периода будет равно T_c , и по первому же массиву вычетов временных интервалов $\Delta t_{i,i+1}$ по модулю $T=T_c$ периодическая последовательность будет обнаружена.

В работе получено выражение $P_{\!\scriptscriptstyle H}$, предполагая, что ХИП представляет собой пуассоновский поток импульсов с интенсивностью λ ,

$$P_{H} = \{1 - (1 - \frac{\lambda \cdot T_{c}}{m_{c}})^{m_{c}}\}^{N_{c}},$$

где λT_c — число импульсов ХИП, приходящихся в среднем на T_c , $m_c=T_c/\delta T$ — число разрешаемых интервалов на отрезке времени T_c , $N_c=T_0/T_c$ — число интервалов T_c в анализируемой реализации длительностью T_0 .

ЛИТЕРАТУРА

- Алехин В.А., Дятлов А.П. Устройство обнаружения периодических импульсных последовательностей и оценки их периода. А.С. №1651225, 22.01.91.
- Алехин В.А., Дятлов А.П. О путях повышения быстродействия модульного алгоритма обнаружения периодических последовательностей импульсов в стохастическом потоке. Тезисы докладов на НТС "Теория и техника многофункциональных устройств обработки сигналов в условиях априорной неопределенности". Таганрог, 1994.