ML Foundation HW2 PA Report

B04505036

李慕家

6. (20 points) For Problems 7–8, you will play with the decision stump algorithm. In class, we taught about the learning model of "positive and negative rays" (which is simply one-dimensional perceptron) for one-dimensional data. The model contains hypotheses of the form:

$$h_{s,\theta}(x) = s \cdot \operatorname{sign}(x - \theta).$$

The model is frequently named the "decision stump" model and is one of the simplest learning models. As shown in class, for one-dimensional data, the VC-Dimension of the decision stump model is 2.

In fact, the decision stump model is one of the few models that we could easily minimize E_{in} efficiently by enumerating all possible thresholds. In particular, for N examples, there are at most 2N dichotomies (see page 22 of lecture 5 slides), and thus at most 2N different E_{in} values. We can then easily choose the dichotomy that leads to the lowest E_{in} , where ties an be broken by randomly choosing among the lowest E_{in} ones. The chosen dichotomy stands for a combination of some "spot" (range of θ) and s, and commonly the median of the range is chosen as the θ that realizes the dichotomy.

In the next problem, you are asked to implement such an algorithm and run your program on an artificial data set. We shall start by generating a one-dimensional data by the procedure below:

- (a) Generate x by a uniform distribution in [-1, 1].
- (b) Generate y by $f(x) = \tilde{s}(x) + \text{noise where } \tilde{s}(x) = \text{sign}(x)$ and the noise flips the result with 20% probability.
- 7. (20 points, *) Generate a data set of size 20 by the procedure above and run the one-dimensional decision stump algorithm on the data set. Record E_{in} and compute E_{out} with the formula above. Repeat the experiment 1000 times and plot a histogram of $E_{in} E_{out}$. Describe your findings.

7.

Average Ein rate: 0.170% Average Eout rate: 0.255% Average Ein – Eout: –0.085%

當資料量只有20筆時:

 E_{out} 明顯大於 E_{in} ,平均是 E_{in} 的 1.5 倍。 $E_{in}-E_{out}$ 的值大多落在[-0.2,0.0]。

8. (20 points, *) Generate a data set of size 2000 by the procedure above and run the one-dimensional decision stump algorithm on the data set. Record E_{in} and compute E_{out} with the formula above. Repeat the experiment 1000 times and plot a histogram of $E_{in} - E_{out}$. Describe your findings and compare the findings with those in the previous problem.

8.

Average Ein rate: 0.199% Average Eout rate: 0.201% Average Ein – Eout: –0.001%

當資料量達到 2000 筆時:

 $E_{out}\cong E_{in}$ 。相較前一題,當資料量由 20 筆增加至 2000 筆, E_{in} 上升 17.1%, E_{out} 下降 21.2%。 $E_{in}-E_{out}$ 的值大多落在[-0.015,0.010]。