

FACE ENCRYPTION

Now you don't.

Team TensorOverflow Jiaxun Gao 300063462 Bowen Zeng 300115382 Xiang Li 300056427

Recap

How can we protect privacy when sharing facial images?

- · Privacy leakage on social media
- Personal identity stealing by 3rd parties

Unauthorized Face Recognition System

How can we protect privacy when sharing facial images?

A face encryption system that can:

- Fool the SOTA facial recognition algorithms to protect personal privacy
- Doesn't harm UX
- Lightweight enough to be able to run on phone/laptop

ADVERSARIAL ATTACKING

adversarial example

Figure: the picture is taken from (Goodfellow et al).

Real Face Image X

Noised Face Image X'

Unauthorized Face Recognition System

Noised Face Image X'

Methodology

- Dataset
 - · Public available dataset
 - Private dataset
- Backbone Model: ResNet-18
- Adversarial attacking
 - Targeted Attack
 - Non-targeted attack

DATASET: CelebA

- Coleta dataset
 - · Reflect real day scenario on social media
 - · Widely used in facial recognition projects
 - 307 identities

Sample Images (an excerpt from the data)

DATASET: Private

40 custom pictures per team member

- 30 in training set
- 10 in testing set
- MediaPipe to extract facial images

Bowen Zeng

Xiang Li

Jiaxun Gao

Bounding boxes generated by MediaPipe

Backbone Model: ResNet-18

Backbone Model: ResNet-18

Methodology: Projected Gradient Descent(PGD)

- Target Attack
 Fool the model with a pre-set target
- Non-Target Attack
 Fool the model with any other label

Target PGD:

Model to Attack

Target PGD:

- Input: Real face Image , Target Label, Model
- Initialize: Delta = Random Noise
- For each Iteration:

Modify the Delta with Step Size such that:

is minimum

Prediction of Perturbed Data

• Return Delta

Non-Target PGD:

Model to Attack

Non-Target PGD:

- Input: Real face Image , True Label, Model
- Initialize: Delta = Random Noise
- For each Iteration:

Modify the Delta with Step Size such that:

is Maximum

Prediction of Perturbed Data

• Return Delta

Important Parameters

- Input: Real face Image , True Label, Model
- Initialize: Delta = Random Noise
- For each Iteration:

Modify the Delta with Step Size such that:

Difference(Model(Face Image + Delta), True Label)

is Maximum

• Return Delta

Experimental Results of targeted attack

Step Size \ # Step	1	2	3	4
0.1	0.02	0.965	0.997	0.999
0.2	0.001	0.839	0.983	0.990
0.3	0.001	0.637	0.805	0.993
0.4	0	0.328	0.779	0.976

Accuracy of the encrypted face to be predict to the target class

Future work & Ethic concerns

- · Unsupervised, general purpose encryption
 - · One step forward: non Ad hoc model encryption
- Ethical issue:
 - · I'm happy but Bowen is sad
 - Ethics model

THANKS!

code: github.com/coollx/FaceEncryption