#### Lecture 10b Neural Networks Continued

Breitzman 8/8/2018

### Previously...

We built a couple of neural networks by hand and in Excel

The last example computed square roots of numbers between 1 and 100 The Model had an average error of 4% with the worst case being 11% for small numbers

The last lecture had a lot of math and theory. This one we'll do some R

#### $\square$

We will show how R implements a neural net

Hopefully since R optimizes the learning rate, we will get a better result

Go to R – SquareRootR.doc

Go To Excel – SquareRootFinishedModels.xls embed it into anything {e.g. Excel, Java, an (This shows we can build a model in R but embedded system on a car or boat})

### **Census Data**

- 32,000+ records from the 1994 census to predict people Recall over the last several weeks we've used the with income below or above \$50k in 1994.
- We've used Decision Trees and Naïve Bayes classifiers and in both cases had an error rate of 16-17%
- Note only 24% of people had income above 50k, so if we built a predictor that always returned <50k, we would have an error rate of 24%

## **Census Data for Neural Nets**

- Recall the census data is full of various class variables Relationship, Race, Job
- Recall also that Neural Nets can only deal with numeric values between 0 and 1.
- For education years, age, etc. we can use min-max normalization
- Since there are many job titles that have no relationship with each other we need to create multiple variables such as IsFarmer, IsFileClerk, etc. all with values of 0 or 1
- Go to R to finish

### Sensitivity Analysis

- Compute average input vector
- Compute result of average vector
- Check results of average vector by varying each variable between 0 and 1
- Go to R

## Partial Sensitivity Analysis for Census Data

|          | Mean   | Change | Change | Change | Change                  | Total  |
|----------|--------|--------|--------|--------|-------------------------|--------|
|          | Output | to 0   | (0)    | to 1   | (1)                     | Swing  |
| Married  | 0.880  | 1.015  | 15.4%  | 0.705  | -19.9%                  | 35.3%  |
| Educ     | 088'0  | 1.252  | 42.4%  | 0.580  | -34.0%                  | 76.4%  |
| TechSupp | 0.880  | 0.845  | -3.9%  | 0.916  | 4.1%                    | 8.1%   |
| Gain     | 0.880  | 0.812  | -7.7%  | -0.426 | -148.4%                 | 140.7% |
| Loss     | 088'0  | 158.0  | -2.5%  | 0.104  | -88.2%                  | 85.6%  |
| Sex      | 088'0  | 268.0  | 2.0%   | 0.895  | 1.8%                    | 0.1%   |
| Race     | 088'0  | 668'0  | 2.2%   | 0.723  | <b>%8</b> " <b>/1</b> - | 20.0%  |
| Age      | 0.880  | 0.881  | 0.2%   | 1.297  | 47.5%                   | 47.3%  |
| Farmer   | 088'0  | 269'0  | -20.8% | 1.147  | 30.5%                   | 51.2%  |
| Etc      |        |        |        |        |                         |        |
|          |        |        |        |        |                         |        |
|          |        |        |        |        |                         |        |
|          |        |        |        |        |                         |        |

## Why do Sensitivity Analysis?

- Dimension is our enemy
- I killed a process didn't finish after an hour with 21 variables, 20 hidden layers and one output
- It ran in 8 minutes with 21 variables and 15 hidden layers
- If I can remove a few variables things will run faster and I can optimize the number of hidden layers
- At some point we will talk about general strategies for reducing dimension, but sensitivity analysis is not a bad place to start

# Random Meme that's only funny after you've waited forever for a NN to finish

