BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE , PILANI K. K. BIRLA Goa Campus First Semester 2020 - 2021 CS F342 Computer Architecture

Lab - 4

Implement **single cycle datapath** for the following instructions.

ALU Control Unit: -

Input : ALUOp , Instruction[5:0]

Output : Operation

ALUOp	Instruction	Operation
00	XXXXXX	0010
X1	XXXXXX	0110
	XX0000	0010
	XX0010	0110
1X	XX0100	0000
	XX0101	0001
	XX1010	0111

Control Circuit: -

Input: Instruction[31-26]

Output: RegDst, Branch, MemRead, MemtoReg, ALUOp, MemWrite, ALUSrc, RegWrite, Jump

Instructions	RegDst	Branch	MemRead	MemToReg	ALUOp	MemWrite	ALUSrc	RegWrite	Jump
000000	1	0	0	0	10	0	0	1	0
001000	0	0	0	0	00	0	1	1	0
100011	0	0	1	1	00	0	1	1	0
101011	х	0	0	х	00	1	1	0	0
000100	х	1	0	х	01	0	0	0	0
000010	х	0	х	х	xx	х	х	х	1

ALU:-

Input : ALUIn1 , ALUIn2 Output : Zero , ALUout

Instruction	ALUout
0000	ALUIn1 & ALUIn2
0001	ALUIn1 ALUIn2
0010	ALUIn1 + ALUIn2
0110	ALUIn1 - ALUIn2
0111	If(ALUIn1 < ALUIn2) then 32'd1
	If(ALUIn1 > ALUIn2) then 32'd0
1100	~(ALUIn1 ALUIn2)

ALUOut	Zero
32'b0	1
!= 32'b0	0

Data Memory:-

Input: Address[6:2], Write Data, memWrite, memRead, clk, reset

Output : Read Data

Data Memory circuit diagram: -

Single cycle datapath circuit diagram(Circuit diagram):-

Note:- The [31:28] bits of PC+4 are being concatenated with the left shifted 28 bits of the Instruction. The zoomed in diagram is as follows:

Expected Outcome (Expected Outcome Link):-

- 1. Convert IR[31:0] to hexadecimal base for comparison.
- 2. Rest all are on decimal base.

Marking Scheme:

2 Marks - IR[31:0]

1 Mark - aluln1 , aluln2 , aluOut

1 Mark - read_data

Submission Method:

- Save your singleCycle.v source file as <Your ID>_Lab4.v
 NOTE: Change yourID to your 13 digit BITS ID in the testbench
- Save the vcd dump file generated as <Your ID>_Lab4.vcd (this will already be called <Your ID>_Lab4.vcd since you have changed it in the testbench)
- 3. Save your GTKWave output as **<Your ID>_Lab4.gtkw** using the 'Save As' option in File->Write

Create a **zip file** containing the above 3 files and submit it on Quanta. **Do not create archives** in other formats (rar, tar.gz etc).

Once uploaded on Quanta, remember to submit for grading. Do not leave it as a draft.

NOTE: In case you are using a case statement with a don't care, use casex instead of case. For example casex xx000 instead of case xx000.