Jia-Bin Huang Virginia Tech

- Hypothesis representation
- Cost function
- Logistic regression with gradient descent
- Regularization
- Multi-class classification

- Hypothesis representation
- Cost function
- Logistic regression with gradient descent
- Regularization
- Multi-class classification

- Threshold classifier output $h_{\theta}(x)$ at 0.5
 - If $h_{\theta}(x) \ge 0.5$, predict "y = 1"
 - If $h_{\theta}(x) < 0.5$, predict "y = 0"

Classification: y = 1 or y = 0

$$h_{\theta}(x) = \theta^{\mathsf{T}} x$$
 (from linear regression) can be > 1 or < 0

Logistic regression: $0 \le h_{\theta}(x) \le 1$

Logistic regression is actually for classification

Hypothesis representation

- Want $0 \le h_{\theta}(x) \le 1$
- $\bullet h_{\theta}(x) = g(\theta^{\mathsf{T}} x),$

where
$$g(z) = \frac{1}{1+e^{-z}}$$

- Sigmoid function
- Logistic function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathsf{T}}x}}$$

Interpretation of hypothesis output

• $h_{\theta}(x) = \text{estimated probability that } y = 1 \text{ on input } x$

• Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

• $h_{\theta}(x) = 0.7$

Tell patient that 70% chance of tumor being malignant

$$h_{\theta}(x) = g(\theta^{\mathsf{T}}x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

$$z = \theta^{\mathsf{T}} x \geq 0$$

predict "y = 0" if $h_{\theta}(x) < 0.5$

$$_{7}$$
 - $A^{T}v < 0$

Decision boundary

• Predict "y = 1" if $-3 + x_1 + x_2 \ge 0$

$$\bullet h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

⇒ E.g.,
$$\theta_0 = -1$$
, $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = 1$, $\theta_4 = 1$

•
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \cdots)$$

Decision Boundaries

- It's important to note that logistic regression models are simple linear models and can only **learn linear decision boundaries**.
- If the true decision boundary in your data is nonlinear, logistic regression may not perform well
- You have to update your hypothesis function from linear to **polynomial** $h_{\Theta}(x) = g[\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_1^2 + \Theta_4 x_2^2]$
- Explore more complex models, such as decision trees, random forests, support vector machines, or neural networks, which can capture nonlinear decision boundaries.

Hypothesis representation

Cost function

- Logistic regression with gradient descent
- Regularization
- Multi-class classification

Training set with m examples

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)}) \\ x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \qquad x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathsf{T}}x}}$$

Please Note: Sigmoid function produced value in range (0,1), how ever it never reaches exactly 0 of exactly 1.

How to choose parameters θ ?

Cost function for Linear Regression

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y))$$

$$Cost(h_{\theta}(x), y) = \frac{1}{2}(h_{\theta}(x) - y)^2$$

Cost function for Logistic Regression

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Logistic regression cost function

•
$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

•
$$\operatorname{Cost}(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

• If
$$y = 1$$
: Cost $(h_{\theta}(x), y) = -\log(h_{\theta}(x))$

• If
$$y = 0$$
: Cost $(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x))$

Slide credit: Andrew Ng

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)}))$$

= $-\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$

Learning: fit parameter θ $\min_{\theta} J(\theta)$

Prediction: given new xOutput $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$

- Hypothesis representation
- Cost function
- Logistic regression with gradient descent
- Regularization
- Multi-class classification

Gradient descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

 $\min_{\theta} J(\theta)$ Goal:

Good news: Convex function!

Bad news: No analytical solution

Repeat {
$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 }

(Simultaneously update all θ_i)

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradient descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Goal: $\min_{\theta} J(\theta)$

Repeat {

(Simultaneously update all θ_j)

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Slide credit: Andrew Ng

Gradient descent for Linear Regression

Repeat {
$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)} \quad h_\theta(x) = \theta^\top x$$
 }

Gradient descent for Logistic Regression

Repeat {
$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) x_j^{(i)} \qquad h_\theta(x) = \frac{1}{1 + e^{-\theta^\top x}}$$
 }

- Hypothesis representation
- Cost function
- Logistic regression with gradient descent
- Regularization
- Multi-class classification

Multi-class classification

• Email foldering/taggning: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

• Weather: Sunny, Cloudy, Rain, Snow

Binary classification

Multiclass classification

One-vs-all (one-vs-rest)

Class 1:

Class 2:

Class 3: ¥

$$h_{\theta}^{(i)}(x) = P(y = i|x;\theta) \quad (i = 1, 2, 3)$$

$$(i = 1, 2, 3)$$

One-vs-all

• Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i

• Given a new input x, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

One-vs-all

• For multiclass classification you will train multiple binary logistic regression models, one for each class

Prediction on new data point:

- Probability of being an apple: 0.7
- Probability of being a banana: 0.2
- Probability of being an orange: 0.1
- Select the class with the highest probability

Fruit	Color	Weight (grams)
Apple	Red	150
Banana	Yellow	120
Orange	Orange	180
Banana	Yellow	130
Apple	Green	160
Orange	Orange	200

Things to remember

• Hypothesis representation $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$

Cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Logistic regression with gradient descent

Regularization

Multi-class classification

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\theta_{j} \coloneqq \theta_{j} - \alpha \lambda \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\max_{i} h_{\theta}^{(i)}(x)$$