Banco de Dados

Gerenciamento de Transações - Continuação

- Escalonamento Serializável por Visão
 - Dois escalonamentos S e S' são equivalentes por visão se:
 - Se a transação T_i lê o valor inicial do item de dado X em S, ele também lê o valor inicial de X em S'
 - Se T_i lê o valor de X escrito por T_i em S, o mesmo acontece em S'
 - Se T_i é o último a gravar X em S, ele também é o último a gravar X em S'
 - Um escalonamento é serializável por visão se ele é equivalente por visão a um escalonamento serial.
 - Equivalente ao escalonamento serial < T1,T2,T3 >
 - Um escalonamento serializável por conflito sempre é serializável por visão
 - Um escalonamento serializável por visão nem sempre é serializável por conflito
 - o Definição alternativa
 - Considere que existe uma transação T₀ que escreve todos os itens de dados
 - Considere que existe uma transação T_f que lê todos os itens de dados
 - Condição para dois escalonamentos S e S' serem equivalentes por visão: Se T_i lê o valor de X escrito por T_j em S, o mesmo acontece em S'
 - Algoritmo
 - 1. Crie um vértice para T_0 , T_f e para cada transação no escalonamento
 - 2. Se a transação T_j lê um item de dado X escrito pela transação T_i e *ineqj*, crie uma aresta de T_i para T_i
 - 3. Se uma transação T_k ($k \neq i$ e $k \neq j$) também escreve o mesmo item de dado X, crie um **par** de arestas de T_k para T_i e de T_k para T_i
 - ▶ Se T_i for T_0 não crie a aresta de T_k para T_0
 - Se T_i for T_f não crie a aresta de T_f para T_k
 - 4. Considere os grafos gerados considerando apenas um elemento de cada par de arestas do passo anterior. Se em todos os grafos houver um ciclo, então o escalonamento não é serializável por visão; caso contrário, o escalonamento é equivalente a um escalonamento serial
- Escalonamento Serial Equivalente
 - Ordenação Topológica do grafo acíclico direcionado (DAG): ordenação linear dos vértices, na qual cada vértice aparece antes de seus descendentes
 - Algoritmo de Ordenação Topológica = Algoritmo de Kahn

```
L:= vazio;
S:= vértices sem arestas incidentes;
enquanto S não estiver vazio faça
remova um vértice n de S
insira n em L
para cada vértice m com uma aresta e = (n, m) faça
remova a aresta e do grafo
se m não tiver mais arestas incidentes então
insira m em S
se o grafo não estiver vazio então
o grafo contém pelo menos um ciclo
senão
returne L
```

Controle de Concorrência

- Assegura o isolamento de execução concorrente
- Garante efeito da serialidade utilizando bloqueios (evita a necessidade de conhecer previamente o agendamento)
- Métodos de bloqueios: Compartilhado, 2PL, 2PL Estrito
- o Bloqueio Compartilhado
 - Compartilhado: Se T_i obteve bloqueio compartilhado S sobre Q, T_i pode ler mas não escrever: lock-s(A)
 - Exclusivo: Se T_i obteve bloqueio exclusivo X sobre Q, T_i pode ler e escrever: lock-x(A)
 - T_i desbloqueia Q com unlock(A)
 - Matriz de bloqueios

- Ainda podem ocorrer problemas no banco
- Bloqueio de 2 fases
 - Fase 1 (expansão): pode obter bloqueios, mas não pode liberar qualquer bloqueio
 - Fase 2 (encolhimento): pode liberar bloqueios, mas não pode obter novos bloqueios
 - As 2 fases mantém a serialidade do agendamento negando pedidos de recursos com bloqueios exclusivos
 - Ainda podem ocorrer impasses
- o Prevenção de impasse
 - Algoritmos de prevenção de impasse usam selo temporal (timestamp) para testar a prioridade das transações.
 - Esperar-Morrer: Quanto mais antiga a transação, maior probabilidade de espera
 - Ferir-Esperar: Transação antiga nunca espera