Введение в Data Science Занятие 12. MapReduce

Николай Анохин Михаил Фирулик

25 мая 2014 г.

TEXHOCOEPA @mail.ru

Вопрос 1 (1)

Кого на Боярском языке обозначают следующими понятиями? Всеведъ-Воевода, Князь Явственность, Сотникъ Вестимо, Догада-Богатырь

Подсказка: lurkmore

Примечание один человек не может победить больше 2 раз подряд и 4 раз в общей сложности

Стек технологий Big Data

(H)DFS

MapReduce

Стек технологий Big Data

Сотни Гигабайт – нижняя граница Big Data

- ▶ Pacчет PageRank всех страниц в интернете
- ▶ Поиск по друзьям в социальной сети

Суперкомпьютер VS кластер

Проблемы

- ▶ данные не помещаются на HDD одной машины
- ▶ чтение со скоростью порядка сотен MB/s

Решения

- Супрекомпьютер много процессоров, специальное железо
- ▶ Кластер много "обычных" машин, соединенных сетью

Архитектура кластера

Racks of compute nodes

- ▶ Dual-processor x86, 2-4 GB, Linux machines
- ▶ 1Gb/s Network switches
- ► Inexpensive IDE disks

Многое может пойти не так...

DFS Хранить несколько реплик данных MR Вычисления нужно разбивать на части

Реализации DFS

Примеры

- ▶ The Google File System (GFS)
- ► Hadoop Distributed File System (HDFS)
- CloudStore DFS by Kosmix

Свойства

- Файлы могут быть огромного размера
- ▶ Данные не меняются, только добавляются
- ▶ Файлы хранятся кусками (chunks)

HDFS

HDFS – не файловая система общего назначения

- Создана для хранения огромных массивов данных (Петабайты)
- Предоставляет надежный доступ к данным
- ▶ Поддерживает горизонтальное масштабирование
- ▶ Хорошо интегрирована с Hadoop MapReduce

Архитектура HDFS

- файлы хранятся блоками на Data Node по умолчанию 64М
- метаданные хранятся в RAM на Name Node имя, права, расположение блоков на Data Node

Доступ к файлам в HDFS

Kоманды HDFS http://hadoop.apache.org/docs/r0.18.3/hdfs_shell.html

```
$ cat sample.txt
A 12
B 12
A 14
A 22
C 12
$ hadoop fs -put sample.txt /user/anokhin
$ hadoop fs -ls /user/anokhin
```

Команды: cat, cp, mv, rm, ls, put, get,...(см документацию)

Подключение к кластеру Hadoop

Для Windows скачиваем putty, подключаемся к sfera-ds.openrise.org

Для других OC ssh username@sfera-ds.openrise.org

Пользователи

- alibekov
- blagoveschenskiy
- filipenko
- kemaev
- koltsov
- kondratiev

- kulikov
- kulpinov
- ludovichenko
- medvedev
- melnikov
- mozharova

- nikolaev
- novikov
- ovlasuk
- shvets
- sovetov
- taraban

Данные

Данные об активности пользователей в интернете за апрель 2014 находятся в директороии HDFS /data/logs

$\$ hadoop fs -cat /data/logs/20140425/part-00008 | head -5

Ν	Название	Описание	Пример
1	user_id	ID пользователя	100034b5
2	timestamp	Unix time (сек)	1398409877
3	gender	0 – муж. 1 – жен.	1
4	age	кол-во полных лет	26
5	os	операционная система	win/win-xp
6	browser	браузер и версия	chrome/chrome-34
7	resolution	разрешение экрана	4
8	touch	наличие тачскрин	1
9	hit url	URL посещенной страницы	https://e.mail.ru/
10	$referrer_url$	URL-referrer	http://mail.ru
11	load _start	время начала загрузки	1398065613566
12	load end	время окончания загрузки	1398065613590
	_		ТЕХНОСФЕРА ОМ

Вопрос 2 (1)

Найти *user_id* последней записи в файле

/data/logs/20140421/part-00008

Вопрос 3 (1)

Найти referrer url четвертой записи в файле

/data/logs/20140421/part-00000

Подсказка: head

Вопрос 4 (1)

Посчитать количество записей в файле

/data/logs/20140421/part-00000

Подсказка: wc -l

Вопрос 5 (2)

Посчитать количество записей, сделанных мужчинами и женщинами в файле

/data/logs/20140421/part-00000

Подсказка: sort, uniq, cut

Вопрос 6 (2)

Вывести список $user_id[tab]age$ из 10 самых старых пользователей в файле

/data/logs/20140421/part-00000

Подсказка: sort, cut, head

Идея MapReduce

Цель – обработка больших объемов данных параллельно на нескольких машинах

Мар

Из исходного файла последовательно считываются пары ключ-значение и подаются в функцию **тар**

Сигнутура: $(k_1,\ v_1)
ightarrow \mathtt{list}(k_2,\ v_2)$

Reduce

Все значения, принадлежащие одному ключу, обрабатываются функцией **reduce**

Сигнутура: $(k_2$, list (v_2)) ightarrow list $(k_2$, $v_2)$

Умножение матрицы на вектор

Пример

Дана матрица M размера $n \times n$ с элементами m_{ij} и вектор v с элементами v_j .

Расмотрим случаи

- 1. v помещается в память одной машины
- 2. *v* не помещается в память одной машины

MapReduce на Hadoop

Combine

Пусть reduce – коммутативен и ассоциативен

Когда что-то все-же пошло те так

- П1 Недоступна машина, выполняющая Reduce другие машины выполняют заново не законченные ей задачи
- П2 Недоступна машина, выполняющая Мар другие машины выполняют заново все ее задачи

Вывод: минимизировать коммуникацию между машинами

Операторы реляционной алгебры

- S Selection с условием $C: \sigma_C(R)$
- Р Projection на подмножество $S: \pi_S(R)$
- J Natural Join: $R \bowtie S$
- U Union (intersection, difference): $R \cup S$
- G Grouping аттрибутами X: $\gamma_X(R)$

Hadoop экосистема

- Hadoop (MapReduce)
- ► Hive (SQL-like via MR)
- Pig (язык запросов для Hadoop)

- ► Mahout (ML)
- ➤ Spark (SQL + ML + Graphs + Streaming)
- ► Tez (ациклические workflow)

Вопрос 8 (3)

Реализовать Hadoop job для вычисления количества посещений на каждом из доменов. Распечатать список из 20 самых посещаемых доменов 15 апреля (вместе с количеством посещений).

Вопрос 9 (3)

Построить график распределения количества посещений доменов в натуральной шкале и в логарифмической по обоим осям.