Вопрос.

В решении задачи 1.25 граничные условия $\Delta E_{\tau}=0,\ \Delta H_{\tau}=0$ на нижней и верхней границах имеют вид

иеют вид
$$E_0 + E_1 = E_2 + E_3$$

$$k_{0z}E_0 - k_{0z}E_1 = k_{2z}E_2 - k_{2z}E_3$$

$$E_2 e^{i\delta} + E_3 e^{-i\delta} = E_4$$

$$k_{2z}E_2 e^{i\delta} - k_{2z}E_3 e^{-i\delta} = k_{0z}E_4$$
are $\delta = k_{2z}d$. (1)

где введено обозначение $\delta = k_{2z}d$.

Если волна падает под углом полного внутреннего отражения, то $k_{2z} = 0$ и получается система

$$E_{0} + E_{1} = E_{2} + E_{3}$$

$$k_{0z}E_{0} - k_{0z}E_{1} = 0$$

$$E_{2} + E_{3} = E_{4}$$

$$0 = k_{0z}E_{4}$$
(2)

Система (2) несовместна. Действительно, из последних двух уравнений (2) следует, что

$$E_4 = 0, E_2 + E_3 = 0.$$

Тогда с учетом первого уравнения

$$E_0 + E_1 = 0.$$

Сложив это уравнение со вторым уравнением, деленным на k_{0z} , получим, что $E_0=0$. Это противоречит условию. При $E_0\neq 0$ данная система не имеет решений.

Но понятно, что условие задачи легко осуществить экспериментально и какое-то решение для E_1 , E_2 , E_3 , E_4 должно существовать. Это означает, что при переходе от системы (1) к (2) в случае $k_{2z} = 0$ была допущена ошибка. В чем она? (1 бонус) Как получить решение и какое оно? (+1 бонус)

Ответ.

Ошибка заключается в том, что нельзя занулять левую часть в последнем уравнении (2) при $k_{2z} \to 0$, так как одновременно с этим $E_2 - E_3 \to \infty$. Действительно, из второго уравнения (1) следует, что

$$E_2 - E_3 = \frac{k_{0z}}{k_{2z}} (E_0 - E_1).$$

Поэтому последнее уравнение (1) в пределе $k_{2z} \to 0$ принимает вид

$$k_{2z}E_2 e^{i\delta} - k_{2z}E_3 e^{-i\delta} = k_{2z}(E_2 e^{ik_{2z}d} - E_3 e^{-ik_{2z}d}) \rightarrow k_{2z}(E_2(1 + ik_{2z}d) - E_3(1 - ik_{2z}d)) =$$

$$= k_{2z}(E_2 - E_3) + ik_{2z}^2 d(E_2 + E_3) = k_{0z}(E_0 - E_1) + ik_{2z}^2 d(E_2 + E_3) = k_{0z}(E_0 - E_1) = k_{0z}E_4,$$
то есть $E_4 = E_0 - E_1$.

С другой стороны, из третьего уравнения (1) следует, что

$$E_4 = E_2 e^{i\delta} + E_3 e^{-i\delta} \rightarrow E_2(1 + ik_{2z}d) + E_3(1 - ik_{2z}d) = E_2 + E_3 + ik_{2z}d(E_2 - E_3) =$$

$$= E_0 + E_1 + ik_{0z}d(E_0 - E_1).$$
(4)

Из уравнений (3) и (4) получим

$$E_0 + E_1 + ik_{0z}d(E_0 - E_1) = E_0 - E_1 \rightarrow E_1 = \frac{ik_{0z}d}{ik_{0z}d - 2}E_0, \ E_4 = \frac{2}{2 - ik_{0z}d}E_0.$$

Разделение волн в слое на прямую E_2 и отраженную E_3 оказывается искусственным. Обе волны движутся в направлении x и образуют в сумме ограниченное по величине поле, линейное по z (выражение получается из (4) с заменой d на z):

$$E_{23} = E_2(z) + E_3(z) = E_0 + E_1 + ik_{0z}z(E_0 - E_1) = \frac{2ik_{0z}d - 2}{ik_{0z}d - 2}E_0 + i\frac{2k_{0z}z}{2 - ik_{0z}d}E_0 = 2 \cdot \frac{1 + ik_{0z}(z - d)}{2 - ik_{0z}d}E_0.$$

Итак, имеем:

 $E_1 = \frac{ik_{0z}d}{ik_{0z}d-2}E_0$ — отраженная волна отсутствует при $d \to 0$, а полное отражение наступает при $d \to \infty$; $E_4 = \frac{2}{2-ik_{0z}d}E_0$ — результат полностью согласуется с решением задачи 1.25 в пределе $k_{2z} \to 0$. E_{23} в слое линейно по z, волна движется вдоль x.

Магнитное поле в слое определяется уравнением Максвелла

$$\operatorname{rot} \mathbf{E}_{23} = -\frac{\partial \mathbf{B}_{23}}{c \partial t}$$

и имеет x- и z-компоненты. Компонента $H_{23z} \sim \frac{\partial E_{23}}{\partial x}$ линейна по z, а $H_{23x} \sim \frac{\partial E_{23}}{\partial z}$ от z не зависит. При этом сохраняется условие div $\mathbf{B}_{23} \sim$ div rot $\mathbf{E}_{23} = 0$. Также можно убедиться, что $\langle S_z \rangle \sim \text{Re} \{E_{23}H_{23}^*\}$ от z не зависит.