SMARTWIZ

GRADE11 PHYSICAL SCIENCE EXAM

MARKS: 100	MARKS	
TIME: 2 HOURS		
SCHOOL		
CLASS (eg. 4A)		
SURNAME		
NAME		

Instructions for Learners:

- Read all instructions carefully before you begin the exam.
- Write your full name and student number clearly on the answer sheet/book.
- Answer all questions unless otherwise instructed.
- Show all your work/calculations where necessary.
- Write neatly and clearly.
- Use only a blue or black pen. Do not use correction fluid or tape.
- Electronic devices (calculators, cell phones, etc.) are not allowed unless explicitly permitted.
- Raise your hand if you have any questions.
- Do not talk to other learners during the exam.
- Any form of dishonesty will result in immediate disqualification from the exam.

This exam consists of five pages, including the cover page.

SECTION A: MULTIPLE CHOICE

$(10 \times 2 = 20 \text{ marks})$

Circle the correct letter for each question.

- 1. A scalar quantity has:
 - a) Magnitude only
 - b) Direction only
 - c) Magnitude and direction
 - d) No measurable quality
- 2. The SI unit of power is:
 - a) Joule
 - b) Newton
 - c) Watt
 - d) Pascal
- 3. Which of these is NOT a vector quantity?
 - a) Velocity
 - b) Acceleration
 - c) Force
 - d) Speed
- 4. A car is moving at constant velocity. The net force acting on it is:
 - a) Zero
 - b) Equal to weight
 - c) Maximum
 - d) Unknown
- 5. A 6 N force is applied to an object of 3 kg. What is its acceleration?
 - a) 2 m/s^2
 - b) 3 m/s^2
 - c) 18 m/s^2
 - d) 0.5 m/s^2
- 6. The area under a velocity-time graph represents:
 - a) Speed
 - b) Acceleration
 - c) Distance
 - d) Displacement
- 7. The resistance of a wire increases when:
 - a) Its length decreases
 - b) Its thickness increases
 - c) Its temperature increases
 - d) It is cooled
- 8. Electric current is defined as:
 - a) Energy per unit charge
 - b) Charge per unit time
 - c) Voltage per resistance
 - d) Force per unit charge
- 9. The slope of a displacement-time graph gives:
 - a) Acceleration
 - b) Force

- c) Speed
- d) Work
- 10. A body in free fall has:
 - a) Constant velocity
 - b) No acceleration
 - c) Constant acceleration
 - d) Increasing mass

SECTION B: SHORT DEFINITIONS & THEORY

 $(5 \times 4 = 20 \text{ marks})$

1.	Define momentum and state its formula.
2.	What is meant by electrical power ? Include the formula.
3.	Explain Newton's First Law of Motion with an example.
4.	Define work and explain when work is said to be zero.
5.	Differentiate between series and parallel circuits.

SECTION C: CALCULATIONS

 $(5 \times 6 = 30 \text{ marks})$

Show all work clearly and include units.

 A 4 kg object is pushed with a force of 12 N. Calculate: a) The acceleration of the object
b) The distance it covers in 3 seconds Work:
Answer a: Answer b:
2. A box is lifted vertically with a force of 200 N over a height of 2.5 m. Calculate the work done. Work:
Answer:
3. A 60 W bulb operates for 4 hours. a) Calculate the energy in kWh b) Convert that energy to joules Work:
Answer a: Answer b:
4. A 1.5 A current flows through a 10 Ω resistor. Find the voltage across the resistor. Work:
Answer:

5. An object travels with uniform acceleration from 5 m/s to 25 m/s in 10 s.

Calculate the distance covered.

Work:						
Answ	Answer:					
	SECTION D: APPLICATION & DIAGRAMS (3 × 10 = 30 marks)					
1.	Draw a free-body diagram of a crate sliding across a rough surface with a constant velocity.					
•	Label all forces. (Diagram must include friction, applied force, weight, and normal force.) ✓ (10 marks)					
2.	A velocity-time graph shows a body accelerating from rest to 15 m/s in 5 seconds. a) Draw and label the graph on a grid.					

	c) Calculate the distance covered during this time.	
ork:		
iswe	er b:er c:	
3.	A 9 V battery is connected in series with two resistors (3 Ω and 6 Ω). a) Draw the circuit diagram with proper symbols.	
	b) Calculate the total resistance.c) Calculate the current in the circuit.	
ork:		
	er b: er c:	

End of Examination

MEMO

SECTION A: MULTIPLE CHOICE

 $(10 \times 2 = 20 \text{ marks})$

No. Answer

- 1 a
- 2 c
- 3 d
- 4 a
- 5 a
- 6 c
- 7
- 8 b
- 0 0
- 9 c
- 10 c

SECTION B: SHORT DEFINITIONS & THEORY

 $(5 \times 4 = 20 \text{ marks})$

1. Momentum:

- Momentum is the product of an object's mass and velocity.
- Formula: p=mvp = mvp=mv
 - (2 marks for definition, 2 marks for formula)

2. Electrical Power:

- Power is the rate at which electrical energy is transferred.
- Formula: P=VIP=VIP=VI or $P=I2RP=I^2RP=I2R$
 - (2 for definition, 2 for formula)

3. Newton's First Law:

- An object remains at rest or in uniform motion unless acted upon by a net external force.
- Example: A ball on a flat surface remains still unless pushed.
 - (2 for law, 2 for example)

4. Work:

- Work is done when a force causes displacement in the direction of the force.
- Work is zero when there is no displacement or force is perpendicular to displacement.
 - **✓** (2 for definition, 2 for explanation)

5. Series vs Parallel Circuits:

- Series: One path; current is the same.
- Parallel: Multiple paths; voltage is the same across branches.
 - (2 marks per distinction)

SECTION C: CALCULATIONS

 $(5 \times 6 = 30 \text{ marks})$

1. Force & Distance

- a) $a=Fm=124=3 \text{ m/s}2a = \frac{F}{m} = \frac{12}{4} = 3 \text{ m/s}^2a = mF=412=3 \text{ m/s}^2$ (3 marks)
- b) $d=ut+12at2=0+0.5\times3\times32=13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut+21at2=0+0.5\times3\times32=13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \text{ md} = ut + \frac{1}{2}at^2 = 0 + 0.5 \times 3 \times 3^2 = 13.5 \times 3 \times 3 \times 3^2 = 13.5 \times 3 \times$

2. Work Done

3. Energy from Bulb

- a) $E=60 \text{ W}\times4 \text{ h}=0.06 \text{ kW}\times4=0.24 \text{ kWhE} = 60 \setminus \text{ times } 4 \setminus \text{times } 4 \setminus \text{text}\{h\} = 0.06 \setminus \text{text}\{kW\} \setminus 4 = 0.24 \setminus \text{text}\{kWh\}E=60W\times4h=0.06kW\times4=0.24kWh$ (3 marks)
- b) $E=0.24\times3.6\times106=864\ 000\ JE=0.24\ \text{times } 3.6\ \text{times } 10^6=864\,000\ \text{,}$ $JE=0.24\times3.6\times106=864000\ \text{J}\ \text{(3 marks)}$

4. Voltage

• $V=IR=1.5\times10=15 \text{ VV} = IR = 1.5 \text{ \times } 10 = 15 \text{ \times } 10=15 \text{ VV} = IR=1.5\times10=15 \text{ V}$ (6 marks)

5. Distance with Uniform Acceleration

- First, find acceleration: $a=v-ut=25-510=2 \text{ m/s}2a = \frac{v-u}{t} = \frac{25-510=2 \text{ m/s}2a}{v-u}=1025-5=2\text{m/s}2$

SECTION D: APPLICATION & DIAGRAMS

 $(3 \times 10 = 30 \text{ marks})$

- 1. Free-Body Diagram
- Must include:
 - o Downward force: Weight (W = mg)
 - Upward force: Normal force
 - Left/right force: Friction (opposes motion)
 - Applied force (opposite direction to friction)
 - (2 marks per correctly labeled force)

2. Velocity-Time Graph & Calculations

- a) Graph: Straight line from (0,0) to (5,15)
 - ✓ (5 marks for correct, neat, labeled graph)
- b) $a=v-ut=15-05=3 \text{ m/s}2a = \frac{v u}{t} = \frac{15 0}{5} = 3 \text{ m/s}^2a = tv-u=515-0=3m/s}$ (2 marks)
- c) $d=12(v+u)t=0.5\times(0+15)\times5=37.5 \text{ md} = \frac{1}{2}(v+u)t=0.5 \times (0+15) \times 5=37.5 \text{ md} = \frac{1}{2}(v+u)t=0.5\times(0+15)\times5=37.5 \text{ md} = \frac{1}{2}(v+u)t=0.5 \times (0+15)\times5=37.5 \times (0+15)\times5=37.5 \times (0+15)\times5=37.5 \times (0+15)\times5=37.5 \times (0+15)\times5=37.5 \times (0+15)\times5=$
- 3. Circuit with 9 V Battery and Two Resistors (3 Ω + 6 Ω)
- a) Circuit Diagram:
 - Correct symbols for battery, resistors in series
 - o Clear labeling and correct direction of current
 - **✓** *(5 marks)
- b) Rtotal= $3+6=9 \Omega R_{total} = 3 + 6 = 9 \setminus OmegaRtotal= 3+6=9 \Omega \checkmark (2 marks)$
- c) I=VR=99=1 $AI = \frac{V}{R} = \frac{9}{9} = 1$, AI=RV=99=1 \checkmark (3 marks)

▼ TOTAL: 100 MARKS

