2.1-3 Linear Search

```
1: procedure Linear-Search(A, v)

2: for i \leftarrow 1 to length[A] do

3: if A[i] == v then

4: return i

5: return NILL
```

Proof of correctness To prove linear search is correct, I formulate a *loop invariant* that need to hold true at *initialization*, during *maintainance* and at *termination*.

Loop invariant At the start of loop iteration i, the value v is not in the sub-array A[1..i-1]. In formal terms, $v \notin \{A[j]|j \in \{1,...,i-1\}\}$

Initialization At initialization i = 0, so the sub-array A[1..i-1] is empty. So v is trivially not a member of that array, and the loop invariant holds.

Maintenance Assuming that v is not in the sub-array A[1..i-1] at the start of iteration i, then two outcomes are possible during the iteration. Either, A[i] == v and the loop terminates, or $A[i] \neq v$ and v is not an element of the array A[1..i] which is the loop invariance condition for iteration i+1.

Termination The algoritm terminates in two different ways. The first happens when A[i] == v, assuming $v \notin A[1..i-1]$ before termination, then the loop invariant still holds. Again, assuming $v \notin A[1..i-1]$ before termination. In the second case we have that i = n+1, in that case $v \notin A[1..i-1] = A[1..n]$, which is the entire array, and the procedure returns NILL.

2.2-3

Assuming the index of correct element is uniformly distributed from 1 to n, the expected index is E[i] = n/2. So the average case running time must be $c_1 \frac{n}{2} + c_2$, where c_1 is the running time of each comparison A[i] == v and the loop increment, and c_2 is the running time of the return statement. In the worst case the algorithm needs to run through all n elements as well as returning NILL, so the running time is $c_1 n + c_2$. Both the average and worst case running times of linear search are $\Theta(n)$.