잔차검진 - Residual Diagnositics

분석에 사용된 회귀모형의 적절성과 통계적 추론의 가정을 만족하는지를 확인하는 방법에 대해 알아보 겠습니다.

1. 오차항의 가정

$$\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n \sim iid N(0, \sigma^2)$$

오차항에서는 세 가지가 가정되어야 합니다.

(1) 정규성

중심축량이 자유도가 n-2인 t분포를 따른다고 유도할 때 데이터가 정규분포를 만족한다고 가정하에 t분포를 유도합니다.

(2) 등분산성

MSE는 모든 분산이 동일하다는 가정하에 유도합니다.

회귀분석과 분산분석에서 제일 중요한 것은 등분산 성입니다.

(3) 독립성

Y들이 선형 결합인 상태에서 분산을 유도하는데 이때 Y가 독립이라고 가정합니다.

2. 잔차 - residual

잔차는 관측값과 예측값의 차이를 의미합니다.

이론 값을 도출할 때는 확률변수 Y를 이용합니다.

$$e_i = Y_i - \widehat{Y}_i$$

실제 분석을 할 때는 관측값 y를 이용합니다.

$$e_i = y_i - \widehat{y}_i$$

잔차가 특정한 패턴을 가진다면 모형(설명되는 부분)에 추가해야 할 요소가 남아 있음을 의미합니다. 따라서 잔차는 특정한 패턴이 없어야 합니다.

잔차가 오차항의 가정을 심각하게 위반하면 통계적 추론에 문제가 발생합니다.

(1) 정상적인 잔차그림

등분산성을 만족하는 잔차그림입니다.

시계열 장상성의 등환성을 파악하는 방법과 공일

정상적인 잔차그림은 0을 중심으로 \hat{y} 값에 관계없이 일정 범위 내에서 특정한 패턴을 가지지 않게 분포됩니다.

(2) 대표적인 비정상적 잔차 그림

잔차그림을 통해 **어떤 문제가 있는지 시각적으로 확 인하고 해결방법**을 찾을 수 있습니다.

$\mathbf{a}.\ \hat{y}$ 가 커지면서 \mathbf{e} 의 폭이 커짐

잔차그림을 보았을 때 퍼져있는 정도가 다른 것을 알 수 있습니다.

이 경우에 등분산성을 만족하지 않습니다.

대안으로 반응변수의 변환이 있습니다.

y값을 그대로 사용하지 않고 변환하는 것입니다.

이처럼 log로 변환하면 어느정도 등분산성을 만족 하게 됩니다.

b. \hat{y} 가 커지면서 e가 하강(상승)하다가 상승(하강)

이 경우에 설명변수의 제곱항이 생략되어 있을 가능성이 큽니다.

또한 등분산성을 만족하지 않습니다.

대안으로 제곱항을 추가하거나 변수변환방법이 있습니다.

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 (\epsilon_i^2) + \epsilon_i, \quad \epsilon_i \sim iid N(0, \sigma^2)$$

이처럼 제곱항을 추가하면 어느정도 등분산성을 만 족하게 됩니다.