Semantic Image Synthesis with Spatially-Adaptive Normalization(SPADE)

CVPR2019 Oral paper

+

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization

CVPR2020 Oral paper

20.10.13 Leeminsoo

Introduction

Introduction

Semantic Map

Photo

pix2pixHD

Pix2Pix

- Previous methods(pix2pix based model) directly feed the semantic layout as input to the deep network, which is then processed through stacks of convolution, normalization, and nonlinearity layers.
- The normalization layers tend to "wash away" semantic information.

Why does SPADE work better?

- Specifically, while normalization layers such as the InstanceNorm are essential pieces in almost all the state-of-the-art conditional image synthesis models, they tent to wash away semantic information when applied to uniform of flat segmentation masks.
- Let us consider a simple module that first applies convolution to a segmentation mask and then normalization. Furthermore, let us assume that a segmentation mask with a single label is given as input to the module.
- After applying InstanceNorm, the normalized activation will become all zeros no matter what the input semantic label is given

- The paper proposes spatially-adaptive de-normalization(SPADE), a simple but effective layer for synthesizing photorealistic images given an input semantic layout.
- The segmentation mask is fed through spatially adaptive modulation without normalization, so SPADE can better preserve semantic information.
- SPADE allows user to control over both semantic and style, and to produce multi-modal synthesis

$$\mu_c^i = \frac{1}{NH^i W^i} \sum_{n,y,x} h_{n,c,y,x}^i$$

$$\sigma_c^i = \sqrt{\frac{1}{NH^i W^i}} \sum_{n,y,x} (h_{n,c,y,x}^i)^2 - (\mu_c^i)^2.$$

$$(n \in N, c \in C^i, y \in H^i, x \in W^i)$$

SPADE enjoys the benefit of normalization without losing the semantic input information.

$$\min_{G} ((\max_{D} (L_{GAN}) + L_{Percep} + L_{FM} + L_{KL}))$$

$$L_{FM} = \mathbb{E}_{(\mathbf{s}, \mathbf{x})} \sum_{i=1}^{T} \frac{1}{N_{i}} [||D^{(i)}(\mathbf{s}, \mathbf{x}) - D^{(i)}(\mathbf{s}, G(\mathbf{s}))||_{1}],$$

$$L_{Percep} = \lambda \sum_{i=1}^{N} \frac{1}{M_{i}} [||F^{(i)}(\mathbf{x}) - F^{(i)}(G(\mathbf{s}))||_{1}]$$

[Multi-modal synthesis results on the Flickr Landscapes Dataset]

	COCO-Stuff			ADE20K			ADE20K-outdoor			Cityscapes		
Method	mIoU	accu	FID	mIoU	accu	FID	mIoU	accu	FID	mIoU	accu	FID
CRN [6]	23.7	40.4	70.4	22.4	68.8	73.3	16.5	68.6	99.0	52.4	77.1	104.7
SIMS [43]	N/A	N/A	N/A	N/A	N/A	N/A	13.1	74.7	67.7	47.2	75.5	49.7
pix2pixHD [48]	14.6	45.8	111.5	20.3	69.2	81.8	17.4	71.6	97.8	58.3	81.4	95.0
Ours	37.4	67.9	22.6	38.5	79.9	33.9	30.8	82.9	63.3	62.3	81.9	71.8

[Performance of segmentation model on the synthesized images and FID score]

Method	#param	COCO.	ADE.	City.
decoder w/ SPADE (Ours)	96M	35.2	38.5	62.3
compact decoder w/ SPADE	61M	35.2	38.0	62.5
decoder w/ Concat	79M	31.9	33.6	61.1
pix2pixHD++ w/ SPADE	237M	34.4	39.0	62.2
pix2pixHD++ w/ Concat	195M	32.9	38.9	57.1
pix2pixHD++	183M	32.7	38.3	58.8
compact pix2pixHD++	103M	31.6	37.3	57.6
pix2pixHD [48]	183M	14.6	20.3	58.3

[Ablation study with pix2pixHD]

Two shortcomings

Two modifications

Inject style information at multiple locations

- The paper proposes semantic region-adaptive normalization(SEAN), a simple but effective building block for GAN conditioned on segmentation masks.
- Using SEAN normalization, we can build a network architecture that can control the style of each semantic region individually.
- We can interactively edit images by changing segmentation masks or the style for any given region.

$$\min_{E,G} \left(\left(\max_{D_1,D_2} \sum_{k=1,2} \mathcal{L}_{\text{GAN}} \right) + \lambda_1 \sum_{k=1,2} \mathcal{L}_{\text{FM}} + \lambda_2 \mathcal{L}_{\text{percept}} \right)$$

$$\mathcal{L}_{FM} = \mathbb{E} \sum_{i=1}^{T} \frac{1}{N_i} \left[\left\| D_k^{(i)}(\mathbf{R}, \mathbf{M}) - D_k^{(i)} \left(G(\mathbf{ST}, \mathbf{M}), \mathbf{M} \right) \right\|_1 \right]$$

$$\mathcal{L}_{percept} = \mathbb{E} \sum_{i=1}^{N} \frac{1}{M_i} \left[\left\| F^{(i)} \left(\mathbf{R} \right) - F^{(i)} \left(G(\mathbf{ST}, \mathbf{M}) \right) \right\|_1 \right]$$

[Face image editing controlled via style images and segmentation masks]

[Visual comparison of semantic image synthsis results]

Method	CelebAMask-HQ			CityScapes			ADE20K			Façades
	mIoU	accu	FID	mIoU	accu	FID	mIoU	accu	FID	FID
Ground Truth	73.14	94.38	9.41	66.21	93.69	32.34	39.38	78.76	14.51	14.40
Pix2PixHD [47]	76.12	95.76	23.69	50.35	92.09	83.24	22.78	73.32	43.0	22.34
SPADE [39]	77.01	95.93	22.43	56.01	93.13	60.51	35.37	79.37	34.65	24.04
Ours	75.69	95.69	17.66	57.88	93.59	50.38	34.59	77.16	24.84	19.82

[Performance of segmentation model on the synthesized images and FID score]

EOD