Comparative Analysis of the Efficiency of Techniques for Detecting Misinformation in Healthcare Data

Engineering Methods 2023/2024

Alžbeta Žiarovská

Faculty of Informatics and Information Technologies Slovak Technical University in Bratislava

November 23, 2023

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

n troduction

Motivation, problem and my contribution

Related Work

Met h o do log y

Results and Analysis

Table of Contents

- 1. Introduction
- 2. Motivation, problem and my contribution
- 3. Related Work
- 4. Methodology
- 5. Results and Analysis
- 6. Discussion and conclusion

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

ntroduction

Motivation, problem and my

elated Work

Methodology

Results and

Discussion and

Discussion and conclusion

Introduction

- Why are we here?
- What is the article about?

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

Introduction

Motivation, problem and my

Palatad Work

/lethodology

Results and

Motivation, problem and my contribution

- Motivation
 - Personal interest in misinformation
 - Learning about machine learning techniques
- Problem
 - Perception of healthcare information found on the Internet
- My contribution
 - Summarizing use of machine learning techniques for healthcare information retrieval
 - Possible use in everyday life for medical misinformation recognition

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

ntroduction

Motivation, problem and my contribution

elated Work

<mark>Vlethod</mark>ology

Results and

Related Work

- Machine learning techniques used for information retrieval
 - Naive Bayes
 - Support Vector Machine
 - New machine learning techniques
- Misinformation
 - Misinformation vs. disinformation
 - Medical misinformation

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

ntroduction

Motivation, problem and my contribution

Related Work

Methodolog

Results and Analysis

Methodology

- Finding and understanding the sources
- Extraction of relevant data for the topic
- Creating a comparison of the efficiency of machine learning techniques
- Analyzing the results

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

ntroduction

Motivation, problem and my contribution

elated Work

Methodology

Results and Analysis

Results and Analysis

• Summary of all success rates in accuracy, recall, precision and F1 score according to used sources

	Accuracy			
Naive Bayes	88.37% ¹	98.71% ²	85.85% ³	84.06% ⁴
Support Vector Machine	84%1	94.17% ²	90.95% ³	95.05% ⁴
	Recall			
Naïve Bayes	84% ¹	98.70% ²	$-\%^{3}$	70.53% ⁴
Support Vector Machine	84%1	92.87% ²	<i>−</i> %³	93.73% ⁴
	Precision			
Naïve Bayes	84% ¹	99.56% ²	-% ³	96.98% ⁴
Support Vector Machine	85% ¹	99.31% ²	<i>−</i> %³	92.56% ⁴
	F1 score			
Naïve Bayes	83.5% ¹	99.13% ²	-% ³	81.67%4
Support Vector Machine	84% ¹	95.98% ²	-% ³	93.14% ⁴

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

troduction

Motivation, problem and my contribution

elated VVork

Methodology

Results and Analysis

Discussion and conclusion

Results and Analysis

- Harmonic average of each category according to the sources
- Graphical visualization of the data

Naïve Bayes and Support Vector Machine average efficiency comparison

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

n troduction

Motivation, problem and my contribution

elated Work

Methodology

Results and Analysis

Discussion and conclusion

- Conclusion of results
- Comparing efficiency
- Limitations
- Future work

Comparative
Analysis of the
Efficiency of
Techniques for
Detecting
Misinformation
in Healthcare
Data

Alžbeta Žiarovská

ntroduction

Motivation, problem and my contribution

elated Work

1eth o dology

Results and

Discussion and conclusion