

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Natural Response : First Order Circuits

Course Instructors:

Manav Bhatnagar, Subashish Dutta, Debanjan Bhowmik, Harshan Jagadeesh

Department of Electrical Engineering, IITD

Natural Response

• Response of the circuit without external input when the state of the circuit is non-zero at the start. (t=0)

Natural Response

- Response of the circuit without external input when the state of the circuit is non-zero at the start. (t=0)
- State: Collection of all energy defining quantities.
 - Current through Inductor
 - Voltage across Capacitor

Natural Response

- Response of the circuit without external input when the state of the circuit is non-zero at the start. (t=0)
- State: Collection of all energy defining quantities.
 - Current through Inductor
 - Voltage across Capacitor
- Typically, the circuit is energized for some time and then let go to observe how it settles **naturally**.
- It is also called free/unforced response
- Forced response: Part of response solely due to external input.

First order Circuits

- If the circuit can be reduced to have **one** energy storing element, it is possible to represent the response with a first order differential equation.
- Eg: Circuits which can be reduced to an equivalent circuit with a single inductor OR capacitor connected to a resistor (with/without a source)

Interconnects matter ...

First order Circuits

- If the circuit can be reduced to have **one** energy storing element, it is possible to represent the response with a first order differential equation.
- Eg: Circuits which can be reduced to an equivalent circuit with a single inductor OR capacitor connected to a resistor (with/without a source)
- The **state** can be represented using a first order differential equation.

Initially the switch is in position 1 for a long time, later the switch is moved to position 2. Find response of the circuit after the switch is thrown to position 2.

Initially the switch is in position 1 for a long time, later the switch is moved to position 2. Find response of the circuit after the switch is thrown to position 2.

• After the switch is toggled from '1' to '2', KVL in the L-R loop gives

Initially the switch is in position 1 for a long time, later the switch is moved to position 2. Find response of the circuit after the switch is thrown to position 2.

• After the switch is toggled from '1' to '2', KVL in the L-R loop gives

$$L\frac{di}{dt} + Ri = 0$$

L-R Circuit - The Solution

$$L\frac{di}{dt} + Ri = 0$$

L-R Circuit - The Solution

$$L\frac{di}{dt} + Ri = 0$$

 It is expected that the current starts at a nonzero value and goes to zero due to energy dissipation through resistor

L-R Circuit - The Solution

$$L\frac{di}{dt} + Ri = 0$$

- It is expected that the current starts at a nonzero value and goes to zero due to energy dissipation through resistor
- The template solution is $i(t) = Ae^{st}$ where A and s are to be found.

$$LsAe^{st} + RAe^{st} = 0$$
$$(sL + R)Ae^{st} = 0$$

$$L\frac{di}{dt} + Ri = 0$$

- It is expected that the current starts at a nonzero value and goes to zero due to energy dissipation through resistor
- The template solution is $i(t) = Ae^{st}$ where A and s are to be found.
- Plugging in the template into the ODE

$$LsAe^{st} + RAe^{st} = 0$$
$$(sL + R)Ae^{st} = 0$$

$$\implies s = -\frac{R}{L}$$

$$L\frac{di}{dt} + Ri = 0$$

- It is expected that the current starts at a non-zero value and goes to zero due to energy dissipation through resistor
- The template solution is $i(t) = Ae^{st}$ where A and s are to be found.
- Plugging in the template into the ODE

$$LsAe^{st} + RAe^{st} = 0$$
$$(sL + R)Ae^{st} = 0$$

$$\implies s = -\frac{R}{L}$$

$$L\frac{di}{dt} + Ri = 0$$

- It is expected that the current starts at a non-zero value and goes to zero due to energy dissipation through resistor
- The template solution is $i(t) = Ae^{st}$ where A and s are to be found.
- Plugging in the template into the ODE
- Time constant of L-R circuit is $\tau = L/R$

$$LsAe^{st} + RAe^{st} = 0$$
$$(sL + R)Ae^{st} = 0$$

$$\implies s = -\frac{R}{L}$$

$$L\frac{di}{dt} + Ri = 0$$

- It is expected that the current starts at a non-zero value and goes to zero due to energy dissipation through resistor
- The template solution is $i(t) = Ae^{st}$ st=t/ τ where A and s are to be found.
- Plugging in the template into the ODE
- Time constant of L-R circuit is $\tau = L/R$

L-R Circuit – Initial Condition

 Solving for A: Before the switch was toggled, the inductor current would have been I₀ (say).

L-R Circuit – Initial Condition

- Solving for A : Before the switch was toggled, the inductor current would have been I_0 (say).
- Inductor current cannot change instantaneously.

L-R Circuit — Initial Condition

- Solving for A : Before the switch was toggled, the inductor current would have been I_0 (say).
- Inductor current cannot change instantaneously.
- So the current remains $i(0^+) = I_0$, at $t = 0^+$

L-R Circuit – Initial Condition

- Solving for A : Before the switch was toggled, the inductor current would have been I_0 (say).
- Inductor current cannot change instantaneously.
- So the current remains $i(0^+)=I_0$, at $t=0^+$

$$\left. Ae^{-\frac{R}{L}t} \right|_{t=0^+} = I_0$$

L-R Circuit -The Solution

- Solving for A : Before the switch was toggled, the inductor current would have been I_0 (say).
- Inductor current cannot change instantaneously.
- So the current remains $i(0^+) = I_0$, at $t = 0^+$

$$Ae^{-\frac{R}{L}t}\Big|_{t=0^+} = I_0$$

$$A = I_0$$

$$i(t) = I_0e^{-\frac{R}{L}t}$$

R-C Circuit

• Initially the switch is in posn. 1 for a long time, then moved to posn. 2. Find response of the circuit after the switch is thrown to posn. 2

R-C Circuit

- Initially the switch is in posn. 1 for a long time, then moved to posn. 2. Find response of the circuit after the switch is thrown to posn. 2
- In the R-C circuit, KCL gives

$$\frac{v}{R} + C\frac{dv}{dt} = 0$$

R-C Circuit - Solution

- Initially the switch is in posn. 1 for a long time, then moved to posn. 2. Find response of the circuit after the switch is thrown to posn. 2
- In the R-C circuit, KCL gives

$$\frac{v}{R} + C\frac{dv}{dt} = 0$$

• Apply the template solution $v(t) = Ae^{st}$

- Initially the switch is in posn. 1 for a long time, then moved to posn. 2. Find response of the circuit after the switch is thrown to posn. 2
 - In the R-C circuit, KCL gives

$$\frac{v}{R} + C\frac{dv}{dt} = 0$$

• Apply the template solution $v(t) = Ae^{st}$

$$\frac{A}{R}e^{st} + ACse^{st} = 0$$

$$s = -\frac{1}{RC}$$
$$v(t) = Ae^{-\frac{t}{RC}}$$

- Initially the switch is in posn. 1 for a long time, then moved to posn. 2. Find response of the circuit after the switch is thrown to posn. 2
 - In the R-C circuit, KCL gives

$$\frac{v}{R} + C\frac{dv}{dt} = 0$$

• Apply the template solution $v(t) = Ae^{st}$

$$\frac{A}{R}e^{st} + ACse^{st} = 0$$

$$s = -\frac{1}{RC}$$
$$v(t) = Ae^{-\frac{t}{RC}}$$

Time constant of R-C circuit is τ =RC

- Initially the switch is in posn. 1 for a long time, then moved to posn. 2. Find response of the circuit after the switch is thrown to posn. 2
- In the R-C circuit, KCL gives

$$\frac{v}{R} + C\frac{dv}{dt} = 0$$

• Apply the template solution $\ v(t) = Ae^{st}$

$$\frac{A}{R}e^{st} + ACse^{st} = 0$$

R-C Circuit – Initial Conditions

$$s = -\frac{1}{RC}$$
$$v(t) = Ae^{-\frac{t}{RC}}$$

• Before the switch was toggled, the voltage across the capacitor was V_0 , and capacitor voltage cannot change instantaneously.

R-C Circuit — Initial Conditions

$$s = -\frac{1}{RC}$$
$$v(t) = Ae^{-\frac{t}{RC}}$$

- Before the switch was toggled, the voltage across the capacitor was V_0 , and capacitor voltage cannot change instantaneously.
- So, at time $t=0^+$,

$$v(0^+) = Ae^{-\frac{t}{RC}}\Big|_{t=0^+} = V_0$$

R-C Circuit — Solution

$$s = -\frac{1}{RC}$$
$$v(t) = Ae^{-\frac{t}{RC}}$$

- Before the switch was toggled, the voltage across the capacitor was V_0 , and capacitor voltage cannot change instantaneously.
- So, at time $t=0^+$, $v(0^+)=Ae^{-\frac{t}{RC}}\Big|_{t=0^+}=V_0$ $v(t)=V_0e^{-\frac{t}{RC}}$

Example 2

Initially, capacitor C_1 is charged till $t=0^-$ from the voltage source V_0

C₂ is uncharged

Switch is toggled at t=0.

Determine the voltage across and current through C_2 .

Applying KCL to the loop

$$iR + v_2 - v_1 = 0$$

Applying KCL to the loop

$$iR + v_2 - v_1 = 0$$

• Differentiating w.r.t. time,

$$R\frac{di}{dt} + \frac{dv_2}{dt} - \frac{dv_1}{dt} = 0$$

Applying KCL to the loop

$$iR + v_2 - v_1 = 0$$

• Differentiating w.r.t. time,

$$R\frac{di}{dt} + \frac{dv_2}{dt} - \frac{dv_1}{dt} = 0$$

• Note that $i = C_2 \frac{dv_2}{dt} = -C_1 \frac{dv_1}{dt}$

Applying KCL to the loop

$$iR + v_2 - v_1 = 0$$

Differentiating w.r.t. time,

$$R\frac{di}{dt} + \frac{dv_2}{dt} - \frac{dv_1}{dt} = 0$$

• Note that $i = C_2 \frac{dv_2}{dt} = -C_1 \frac{dv_1}{dt}$

$$\implies R\frac{di}{dt} + i(\frac{1}{C_2} + \frac{1}{C_1}) = 0$$

$$R\frac{di}{dt} + i\frac{C_1 + C_2}{C_1 C_2} = 0$$

• Plugging in the template equation $i(t) = Ae^{st}$

$$Ae^{st} \frac{C_1 + C_2}{C_1 C_2} + ARse^{st} = 0$$

$$s = -\frac{C_1 + C_2}{RC_1 C_2}$$

• Plugging in the template equation $i(t) = Ae^{st}$

$$Ae^{st} \frac{C_1 + C_2}{C_1 C_2} + ARse^{st} = 0$$

$$s = -\frac{C_1 + C_2}{RC_1 C_2}$$

• Initial Conditions : At t=0+, $V_{C1}=V_0$, $V_{C2}=0$, so current through resistor is V_0/R

$$Ae^{st}|_{t=0^+} = A = \frac{V_0}{R}$$

 $i(t) = \frac{V_0}{R}e^{-\frac{C_1 + C_2}{RC_1C_2}t}$

Integrating i(t), to obtain v₂(t)

$$v_{2}(t) = \frac{1}{C_{2}} \int i(t)dt = \frac{1}{C_{2}} \int Ae^{st}dt$$

$$= \frac{1}{C_{2}} \frac{A}{s} e^{st} + K$$

$$= -V_{0} \frac{C_{1}}{C_{1} + C_{2}} e^{-t\frac{C_{1} + C_{2}}{RC_{1}C_{2}}} + K$$

Integrating i(t), to obtain v₂(t)

$$v_{2}(t) = \frac{1}{C_{2}} \int i(t)dt = \frac{1}{C_{2}} \int Ae^{st}dt$$

$$= \frac{1}{C_{2}} \frac{A}{s} e^{st} + K$$

$$= -V_{0} \frac{C_{1}}{C_{1} + C_{2}} e^{-t\frac{C_{1} + C_{2}}{RC_{1}C_{2}}} + K$$

Noting that $v_2(0)=0$

$$K = V_0 \frac{C_1}{C_1 + C_2}$$

$$v_2(t) = V_0 \frac{C_1}{C_1 + C_2} \left(1 - e^{-t \frac{C_1 + C_2}{RC_1 C_2}} \right)$$

General Procedure for First order Circuits

General procedure to solution :

- Write governing equations with KVL/KCL
- Reduce to a homogenous differential equation
- Assume solution as Ae^{st}
- Plug in to the homogenous differential equation to get s.
- Plug in initial condition in the solution to get A.