# SECTION D'INFORMATIQUE DE L'ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

# ANNEE ACADEMIQUE 2020 - 2021

| TABLE DES MATIERES                                                               | Page                 |
|----------------------------------------------------------------------------------|----------------------|
| Ordonnance sur le contrôle des études menant au bachelor et au master            | 3                    |
| Plan d'études  - Cycle propédeutique  - Cycle Bachelor  - Cycle Master           | 14<br>15<br>16 et 17 |
| Liste des spécialisations et mineurs                                             |                      |
| Règlement d'application du contrôle des études                                   |                      |
| Passerelle HES                                                                   | 27                   |
| Règlement d'application du contrôle des études concernant la Passerelle HES-EPFL | 28                   |
|                                                                                  |                      |
| Descriptifs des enseignements de la section d'Informatique                       |                      |
| - Cycle propédeutique (1ère année)                                               | 31 à 63              |
| - Cycle Bachelor (2 <sup>ème</sup> et 3 <sup>ème</sup> année)6                   | 7 à 160              |
| - Cycle Master16                                                                 | 3 à 318              |
|                                                                                  |                      |
| Index des cours (par ordre alphabétique                                          | 319                  |
| Index par enseignants-es (par ordre alphabétique)                                | 322                  |

Le livret des cours est aussi disponible depuis l'adresse internet de la section :

https://www.epfl.ch/schools/ic/fr/education-fr/livrets-cours/

# Ordonnance

# sur le contrôle des études menant au bachelor et au master à l'École polytechnique fédérale de Lausanne

(Ordonnance sur le contrôle des études à l'EPFL)

du 30 juin 2015 (Etat le 15 septembre 2019)

La Direction de l'École polytechnique fédérale de Lausanne (Direction de l'EPFL), vu l'art. 3, al. 1, let. b, de l'ordonnance du 13 novembre 2003 sur l'EPFZ et l'EPFL¹,

arrête:

# Chapitre 1 Dispositions générales Section 1 Objet et champ d'application

# Art. 1 Objet

La présente ordonnance arrête les règles de base du contrôle des études à l'EPFL.

# Art. 2 Champ d'application

- <sup>1</sup> La présente ordonnance s'applique à la formation menant au bachelor et au master de l'EPFL
- <sup>2</sup> Dans la mesure où la direction de l'EPFL n'a pas édicté de règles particulières, les art. 8, 10, 12, 14, 15 et 18 à 20 s'appliquent également:
  - aux examens d'admission;
  - b. aux examens du cours de mathématiques spéciales (CMS);
  - aux examens du cours de mise à niveau;
  - d. aux examens de doctorat;
  - e. aux examens des programmes doctoraux;
  - f. aux examens de la formation continue et de la formation approfondie.

# Section 2 Définitions générales

#### Art. 3 Branche

<sup>1</sup> Une branche est une matière d'enseignement faisant l'objet d'une ou de plusieurs épreuves.

RO **2015** 2525

RS 414.110.37

**414.132.2** Haute école

- <sup>2</sup> Une branche dite de semestre est une branche dont les épreuves se déroulent pendant la période de cours.
- <sup>3</sup> Une branche dite de session est une branche dont une épreuve se déroule en session d'examens. Elle peut comporter des épreuves se déroulant pendant la période de cours.
- <sup>4</sup> Une branche de semestre peut consister en un stage.

#### **Art. 4** Crédits et coefficients

À toute branche est associé un nombre de crédits ECTS (European Credit Transfer and Accumulation System) (crédits) ou, pour le cycle propédeutique, un coefficient, qui indiquent son poids dans la formation.

# Section 3 Dispositions communes aux études de bachelor et de master

# **Art. 5** Plans d'études et règlements d'application

Des plans d'études et des règlements d'application sont édictés pour chaque cycle d'études de chaque domaine. Ils définissent en particulier:

- a. les branches de semestre et les branches de session;
- le semestre ou la session pendant lesquels ces branches peuvent être présentées;
- c. la forme (écrite ou orale) de l'épreuve en session;
- d. la composition des blocs et des groupes de branches;
- e. les coefficients ou les crédits attribués à chaque branche;
- f. le nombre de crédits ou le coefficient à acquérir dans chaque bloc et chaque groupe;
- g. les conditions applicables aux prérequis (art. 25);
- h. les conditions de réussite particulières;
- i. les études d'approfondissement, de spécialisation ou interdisciplinaires;
- les éventuels régimes transitoires applicables aux modifications des plans d'études et des règlements d'application.

## **Art. 6** Blocs et groupes de branches

<sup>1</sup> Les branches sont rassemblées en bloc ou en groupe. Chaque branche ne peut faire partie que d'un seul bloc ou d'un seul groupe. Un bloc peut être constitué d'une seule branche.

- <sup>2</sup> Un bloc est réputé réussi:
  - lorsque la somme des crédits acquis par branche est égale ou supérieure au а nombre requis, ou
  - b.<sup>2</sup> lorsque la somme des crédits pour les branches présentées atteint le nombre requis et que la moyenne du bloc (art. 8, al. 5) est égale ou supérieure à 4,00; dans ce cas, la totalité des crédits des branches présentées est acquise.
- <sup>3</sup> Un groupe est réputé réussi lorsque les crédits acquis des branches qui le composent ont été accumulés jusqu'au nombre requis; aucune compensation n'est possible entre les notes des branches du groupe.<sup>3</sup>

#### Art. 7 Fiches de cours

Les fiches de cours publiées indiquent en particulier, pour chaque branche:

5

- les objectifs de formation; a.
- h un bref descriptif de la matière:
- les épreuves composant la note finale, avec leur pondération et leur forme; c.
- d les éventuels prérequis (art. 25);
- e la langue d'enseignement.

#### Art. 8 Notation

- <sup>1</sup> Une épreuve est notée de 1,00 à 6,00. Les notes en dessous de 4,00 sanctionnent des prestations insuffisantes. L'épreuve est notée 0 lorsque l'étudiant ne se présente pas, ne répond à aucune question ou ne respecte pas les délais.
- <sup>2</sup> La note finale de la branche se compose des notes de ses épreuves. Elle est arrêtée au quart de point. Lorsqu'elle est inférieure à 1,00, la branche est considérée comme non acquise et notée NA (non acquis). L'appréciation NA compte comme tentative de réussite
- <sup>3</sup> Le règlement d'application peut prévoir qu'une branche est notée au moyen des appréciations R (réussi) ou E (échec).
- <sup>4</sup> Lorsque la branche est répétée, la note retenue est celle de la seconde tentative.
- <sup>5</sup> Les moyennes sont calculées en pondérant chaque note finale chiffrée de branche par son coefficient ou son nombre de crédits. Elles sont arrêtées au centième. Les appréciations NA et E empêchent l'obtention d'une moyenne, sauf dans les cas visés à l'art. 6, al. 2, let. b, et 3.

<sup>2</sup> Nouvelle teneur selon le ch. I de l'O de la Direction de l'EPFL du 20 août 2019, en vigueur depuis le 15 sept. 2019 (RO **2019** 2641).

<sup>3</sup> Nouvelle teneur selon le ch. I de l'O de la Direction de l'EPFL du 20 août 2019, en vigueur depuis le 15 sept. 2019 (RO 2019 2641).

**414.132.2** Haute école

# Art. 9 Organisation des sessions et des épreuves et inscriptions aux branches

- <sup>1</sup> Deux sessions d'examens sont organisées par année académique. Elles ont lieu entre les semestres.
- <sup>2</sup> Les délais d'inscription aux branches, les délais de retrait, les horaires et les dates des épreuves, ainsi que les autres modalités sont communiqués aux étudiants.
- <sup>3</sup> À l'échéance des délais, les inscriptions aux branches et les retraits sont définitifs.
- <sup>4</sup> Lorsque l'étudiant répète une branche, celle-ci est régie par les dispositions en vigueur au moment de la répétition, à moins que l'école n'en ait disposé autrement.

## Art. 10 Incapacité

- <sup>1</sup> L'étudiant qui se prévaut d'un motif d'incapacité à se présenter à une épreuve doit l'annoncer à l'école dès la survenance de ce motif.
- <sup>2</sup> Il lui présente en outre les pièces justificatives au plus tard trois jours après la survenance du motif d'incapacité. Par pièces justificatives, on entend notamment un certificat médical ou une attestation d'une obligation légale de servir.
- <sup>3</sup> Invoquer un motif d'incapacité après s'être présenté à l'épreuve ne justifie pas l'annulation d'une note.

# Art. 11 Langue des épreuves

- <sup>1</sup> Les épreuves se déroulent dans la langue de l'enseignement de la branche.
- <sup>2</sup> L'étudiant a le droit de répondre en français à une épreuve en anglais. Sur demande écrite de sa part, l'enseignant peut lui accorder de répondre en anglais si l'épreuve est en français.

# **Art. 12** Étudiants en situation de handicap

- <sup>1</sup> Si un candidat en situation de handicap en fait la demande au début de l'année académique, l'école fixe un déroulement d'épreuve adapté à son handicap et décide de l'utilisation de moyens auxiliaires ou de l'assistance personnelle nécessaires.
- <sup>2</sup> Les objectifs de l'épreuve doivent être garantis.

# Art. 13 Tâches de l'enseignant

- <sup>1</sup> L'enseignant remplit notamment les tâches suivantes:
  - donner les informations nécessaires sur ses matières d'enseignement pour qu'elles soient publiées dans la fiche de cours;
  - informer les étudiants, s'il y a lieu, du contenu des matières et du déroulement des épreuves;
  - c. conduire les épreuves;

- d. prendre des notes de chaque épreuve orale, qu'il peut être appelé à produire auprès de la conférence d'examen ou des autorités de recours;
- e. attribuer les notes des épreuves, ainsi que la note finale de branche;
- f. conserver pendant six mois après la fin du cycle concerné (chap. 2 à 4) les épreuves écrites et les notes prises durant les épreuves orales; en cas de recours, ce délai est prolongé jusqu'au terme de la procédure.
- <sup>2</sup> S'il est empêché de remplir ses tâches, le directeur de section désigne un remplacant.

#### Art. 14 Observateur

- <sup>1</sup> Un observateur désigné par le directeur de section assiste à l'épreuve orale ayant lieu en session d'examens, dans le but de veiller à son déroulement régulier.
- <sup>2</sup> Il prend, pour chaque candidat, des notes sur le déroulement de l'épreuve et les conserve conformément à l'art. 13, al. 1, let. f.

# Art. 15 Consultation des épreuves

L'étudiant peut consulter son épreuve dans les 6 mois qui suivent la communication du résultat.

#### **Art. 16** Commissions d'évaluation

Des commissions d'évaluation peuvent être mises sur pied pour les branches de semestre. Outre l'enseignant et un expert, les commissions d'évaluation peuvent comprendre les assistants et les chargés de cours qui ont participé à l'enseignement, ainsi que d'autres professeurs.

# Art. 17 Conférence d'examen

- <sup>1</sup> La conférence d'examen siège à l'issue de chaque session. Elle est composée du vice-président pour l'éducation, qui la préside, du directeur de section et du chef du service académique. Les membres de la conférence d'examen peuvent se faire représenter par leur suppléant.<sup>4</sup>
- <sup>2</sup> La conférence d'examen se prononce sur les cas particuliers conformément aux dispositions légales.

## Art. 18 Fraude

<sup>1</sup> Par fraude, on entend toute forme de tricherie en vue d'obtenir pour soi-même ou pour autrui une évaluation non méritée.

Nouvelle teneur selon le ch. I de l'O de la Direction de l'EPFL du 20 août 2019, en vigueur depuis le 15 sept. 2019 (RO 2019 2641).

8

<sup>2</sup> En cas de fraude, de participation à la fraude ou de tentative de fraude, le règlement disciplinaire du 15 décembre 2008 concernant les étudiants de l'École polytechnique fédérale de Lausanne<sup>5</sup> s'applique.

## **Art. 19** Notification des résultats et communications

- <sup>1</sup> La décision de réussite ou d'échec pour le cycle d'études est notifiée à l'étudiant.
- <sup>2</sup> Elle fait mention des notes obtenues et des crédits acquis.
- <sup>3</sup> La notification de la décision ainsi que les communications ont lieu par voie électronique ou postale.

# **Art. 20** Demande de nouvelle appréciation et recours administratif

- <sup>1</sup> La décision peut faire l'objet d'une demande de nouvelle appréciation auprès de l'école dans les 10 jours qui suivent sa notification. L'art. 63, al. 1, 3 et 4, de la loi fédérale du 20 décembre 1968 sur la procédure administrative<sup>6</sup> est applicable.
- <sup>2</sup> Elle peut également faire l'objet d'un recours administratif auprès de la commission de recours interne des EPF, dans les 30 jours qui suivent sa notification.

# Chapitre 2 Examens du cycle propédeutique

# Art. 21 Conditions de réussite

- <sup>1</sup> L'étudiant qui, à l'issue du premier semestre du cycle propédeutique et de la session d'examens afférente, a atteint une moyenne pondérée (art. 8, al. 5) d'au moins 3,50 pour le premier bloc au sens du règlement d'application est admis au second semestre du cycle.
- <sup>2</sup> À réussi le cycle propédeutique l'étudiant qui, conformément au plan d'études et au règlement d'application:
  - a. a présenté toutes les branches, et
  - b. a obtenu une moyenne égale ou supérieure à 4,00 dans chacun des blocs et, le cas échéant, les coefficients requis dans un groupe.

## Art. 22 Échec et élimination

- <sup>1</sup> Constituent un échec, au niveau du cycle propédeutique:
  - a. la non-atteinte d'une moyenne pondérée d'au moins 3,50 pour le premier bloc, à l'issue du premier semestre et de la session d'examens afférente;
  - la non-atteinte d'une moyenne pondérée d'au moins 4,00 par bloc ou la nonatteinte du nombre de coefficients requis dans un groupe, à l'issue du cycle propédeutique, ou
- 5 RS 414.138.2
- 6 RS 172.021

- c. le fait de ne pas avoir présenté toutes les branches du cycle propédeutique, sous réserve de l'art. 23, al. 4.
- <sup>2</sup> L'étudiant qui suit le cycle propédeutique en première tentative et se trouve dans la situation visée à l'al. 1, let. a, suit au second semestre le cours de mise à niveau de l'EPFL.
- <sup>3</sup> Est assimilé à un échec au cycle propédeutique de l'EPFL un échec ou une absence de réussite subi dans une autre haute école à un niveau comparable au cycle propédeutique, si la majorité des branches sont considérées par l'EPFL comme étant analogues.
- <sup>4</sup> Constitue un échec définitif un second échec au niveau du cycle propédeutique ou le non-respect de la durée maximale de deux ans pour réussir le cycle.
- <sup>5</sup> Constituent un motif d'exclusion définitive de toute formation de bachelor à l'EPFL la non-atteinte d'une moyenne pondérée d'au moins 4,00 à l'issue du cours de mise à niveau ou le non-respect de l'obligation de le suivre.

## Art. 23 Répétition

- <sup>1</sup> L'étudiant qui est en situation d'échec, en première tentative, selon l'art. 22, al. 1, let. b et c, ou qui a atteint une moyenne d'au moins 4,00 au cours de mise à niveau est admis une seconde fois au premier semestre du cycle propédeutique de l'année académique qui suit.
- <sup>1</sup>bis L'étudiant qui, après avoir réussi le cours de mise à niveau, échoue le cycle propédeutique à l'issue du second semestre, peut répéter le second semestre l'année suivante, en dérogation à l'art. 22, al. 4, de la présente ordonnance et à l'art. 7, al. 3, de l'ordonnance du 14 juin 2004 sur la formation à l'EPFL<sup>7</sup>.8
- <sup>2</sup> Les branches d'un bloc ou d'un groupe réussis (art. 21, al. 2, let. b) sont acquises et ne peuvent pas être répétées.
- <sup>3</sup> La répétition des autres branches non réussies est impérative. La répétition des branches réussies est facultative, sauf pour les étudiants issus de la situation visée à l'art. 22, al. 1, let. a, pour lesquels elle est obligatoire au premier semestre. Le règlement d'application peut toutefois prévoir que certaines branches de semestre réussies ne peuvent pas être répétées.<sup>9</sup>
- <sup>4</sup> En cas d'absence justifiée au sens de l'art. 10, l'école examine s'il est raisonnablement exigible de l'étudiant qu'il complète le cycle propédeutique à la session ordinaire correspondante de l'année suivante ou si l'étudiant doit être considéré comme ayant échoué.
- <sup>7</sup> RS 414.132.3
- Introduit par le ch. I de l'O de la Direction de l'EPFL du 20 août 2019, en vigueur depuis le 1<sup>er</sup> juin 2019 (RO 2019 2641).
- Nouvelle teneur selon le ch. I de l'O de la Direction de l'EPFL du 20 août 2019, en vigueur depuis le 15 sept. 2019 (RO 2019 2641).

**414.132.2** Haute école

# Chapitre 3 Examens du cycle bachelor et du cycle master

#### Art. 24 Crédits

Les crédits de la branche sont attribués lorsque la note obtenue est égale ou supérieure à 4,00 ou que la moyenne du bloc de branches à laquelle elle appartient est égale ou supérieure à 4,00.

# Art. 25 Prérequis

Le règlement d'application ou la fiche de cours définit les branches dont l'étudiant doit avoir acquis les crédits afin d'être admis à suivre d'autres branches.

#### Art. 26 Conditions de réussite

- <sup>1</sup> Les crédits requis du cycle bachelor et du cycle master doivent être acquis conformément à la présente ordonnance, à l'ordonnance du 14 juin 2004 sur la formation à l'EPFL<sup>10</sup> et au règlement d'application.
- <sup>2</sup> Dans le cycle bachelor, 60 crédits au moins doivent être acquis par tranche de deux ans.

# Art. 27 Répétition

- <sup>1</sup> Si, dans un bloc ou un groupe, le nombre de crédits requis n'est pas acquis, les branches dont la note est inférieure à 4,00 peuvent être répétées une fois, impérativement à la session ordinaire de l'année qui suit.
- <sup>2</sup> L'étudiant qui échoue deux fois à une branche optionnelle peut en présenter une nouvelle conformément au plan d'études.

#### Art. 28 Échec définitif

Si l'étudiant n'acquiert pas les crédits requis conformément à la présente ordonnance et au règlement d'application, dans le respect des durées maximales fixées par l'ordonnance du 14 juin 2004 sur la formation à l'EPFL<sup>11</sup>, il se trouve en situation d'échec définitif

## **Art. 29** Admission conditionnelle au cycle consécutif

- <sup>1</sup> Peut être admis conditionnellement au cycle master consécutif l'étudiant qui:
  - a. n'a pas plus de 10 crédits manquants sur ceux requis par le plan d'études de dernière année du cycle bachelor de l'EPFL, et
  - b. n'est pas en situation d'échec définitif.
- <sup>10</sup> RS **414.132.3**
- 11 RS 414.132.3

- <sup>2</sup> L'étudiant admis conditionnellement au cycle master consécutif a l'obligation d'acquérir les crédits manquants du bachelor dans l'année de son admission conditionnelle, sous peine d'être exclu du cycle.
- <sup>3</sup> Peut être admis conditionnellement au projet de master l'étudiant qui:
  - a. n'a pas plus de 8 crédits manquants sur ceux requis pour le cycle master y compris les études visées à l'art. 5, let. i;
  - b. n'est pas en situation d'échec définitif.

# Chapitre 4 Projet de master

# Art. 30 Déroulement

- <sup>1</sup> Le sujet du projet de master est fixé ou approuvé par le professeur ou le maître d'enseignement et de recherche qui en assume la direction.
- <sup>2</sup> Sur demande, le directeur de section peut confier la direction du projet de master à un professeur ou un maître d'enseignement et de recherche rattaché à une autre section ou à un collaborateur scientifique.
- <sup>3</sup> L'examen du projet de master consiste en une évaluation de sa présentation finale suivie d'une interrogation orale devant l'enseignant qui a dirigé le projet et un expert externe à l'EPFL désigné par l'enseignant en accord avec le directeur de section. Seul l'enseignant peut inviter d'autres personnes à l'interrogation orale; celles-ci ne participent pas à l'évaluation.
- <sup>4</sup> Si la qualité rédactionnelle du projet est jugée insuffisante, l'enseignant peut exiger que l'étudiant y remédie dans un délai de deux semaines à compter de l'interrogation orale

#### **Art. 31** Conditions de réussite

- <sup>1</sup> Le projet de master est réputé réussi lorsque la note attribuée est égale ou supérieure à 4,00.
- <sup>2</sup> Si le règlement d'application prévoit un stage associé au projet de master, celui-ci doit avoir été réussi préalablement.

# Art. 32 Répétition

- <sup>1</sup> En cas d'échec, un nouveau projet de master peut être présenté dans le respect de la durée maximale prévue par l'ordonnance du 14 juin 2004 sur la formation à l'EPFL.<sup>12</sup>
- <sup>2</sup> Un second échec constitue un échec définitif.

414.132.2 Haute école

#### Chapitre 5 **Dispositions finales**

#### Art. 33 Abrogation

L'ordonnance du 14 juin 2004 sur le contrôle des études à l'EPFL<sup>13</sup> est abrogée.

#### Art. 34 Disposition transitoire

Le chapitre 2 de l'ordonnance du 14 juin 2004 sur le contrôle des études à l'EPFL<sup>14</sup> demeure applicable jusqu'au 31 août 2017 aux étudiants répétant le cycle propédeutique durant l'année académique 2016–2017.

#### Art. 35 Entrée en vigueur

La présente ordonnance entre en vigueur le 1er septembre 2016.

<sup>13</sup> [RO **2004** 4323, **2006** 4125, **2008** 3721] RO **2004** 4323, **2006** 4125, **2008** 3721



# Plan d'études

# **INFORMATIQUE**

2020-2021

arrêté par la direction de l'EPFL le 2 juin 2020

Directeur de la section Prof. A.-M. Kermarrec

Adjointe du directeur de section Mme S. Dal Mas

Conseillers d'études :

Année propédeutique

1ère année cycle bachelor

2ème année cycle bachelor

1ère année cycle master

2ème année cycle master

Prof. B. Faltings

Prof. P. Ienne

Projet de master

Prof. M. Odersky

Responsable passerelle HES Mme S. Dal Mas

Coordinatrice des stages d'ingénieur Mme S. Dal Mas

Délégué à la mobilité M. J.-L. Benz

Secrétaire Bachelor Mme C. Bigler Secrétaire Master Mme A. Veltro

Aux cycles bachelor et master, selon les besoins pédagogiques, les heures d'exercices mentionnées dans le plan d'études pourront être intégrées dans les heures de cours ; les scolarités indiquées représentent les nombres moyens d'heures de cours et d'exercices hebdomadaires sur le semestre

# 2020-2021 INFORMATIQUE

# Cycle propédeutique

# **Cursus commun IN-SC**

| Code       | Matières                                            | 7.1           | Enseignants        | Sections | - T |     |   |    |     |   |    | Période    | - 3 P -  |
|------------|-----------------------------------------------------|---------------|--------------------|----------|-----|-----|---|----|-----|---|----|------------|----------|
|            |                                                     | branches      | sous réserve       |          |     | BA1 | L |    | BAZ | 2 |    | des        | examen * |
|            |                                                     |               | de modification    |          | С   | e   | р | С  | e   | р |    | épreuves * |          |
|            |                                                     |               |                    |          |     |     |   |    |     |   |    |            |          |
|            | Bloc 1:                                             |               |                    |          |     |     |   |    |     |   | 38 |            |          |
| CS-101     | Advanced information, computation, communication I  | Spécifique    | Aberer             | SC       | 4   | 2   |   |    |     |   | 7  | Н          | écrit    |
| COM-102    | Advanced information, computation, communication II | Spécifique    | Rimoldi            | SC       |     |     |   | 4  | 2   |   | 7  | Е          | écrit    |
| MATH-111e  | Algèbre linéaire (en français) ou                   |               | Urech              | MA       |     |     |   |    |     |   |    |            |          |
| MATH-111en | Algèbre linéaire (en anglais)                       | Polytechnique | Maddocks           | MA       | 4   | 2   |   |    |     |   | 6  | Н          | écrit    |
| MATH-111pi | Algèbre linéaire (classe inversée)                  |               | Testerman          | MA       |     |     |   |    |     |   | İ  |            |          |
| MATH-101e  | Analyse I (en français) ou                          |               | Lachowska          | MA       |     |     |   |    |     |   |    |            |          |
| MATH-101de | Analyse I (en allemand) ou                          | Polytechnique | Kressner           | MA       | 4   | 2   |   |    |     |   | 6  | Н          | écrit    |
| MATH-101en | Analyse I (en anglais)                              |               | Svaldi             | MA       |     |     |   |    |     |   |    |            |          |
| MATH-106e  | Analyse II (en français) ou                         | D 1 . 1 .     | Lachowska          | MA       |     |     |   |    | _   |   |    | г          |          |
| MATH-106en | Analyse II (en anglais)                             | Polytechnique | Mountford          | MA       |     |     |   | 4  | 2   |   | 6  | Е          | écrit    |
| PHYS-101g  | Physique générale : mécanique (en français) ou      |               | Bréchet            | PH       |     |     |   |    |     |   |    |            |          |
| PHYS-101de | Physique générale : mécanique (en allemand) ou      | Polytechnique | Gruetter           | PH       | 3   | 3   |   |    |     |   | 6  | Н          | écrit    |
| PHYS-101en | Physique générale : mécanique (en anglais)          |               | Manley             | PH       |     |     |   |    |     |   | İ  |            |          |
| -          |                                                     |               |                    |          |     |     |   |    |     |   |    |            |          |
|            | Bloc 2:                                             |               |                    |          |     |     |   |    |     |   | 22 |            |          |
| CS-173     | Digital system design                               | Spécifique    | Kluter             | IN       |     |     |   | 4  |     | 2 | 6  | sem P      |          |
| HUM-1nn    | Enjeux mondiaux                                     | Polytechnique | Divers enseignants | CDH      |     |     |   | 2  |     |   | 2  | sem P      |          |
| CS-107     | Introduction à la programmation                     | Polytechnique | Sam                | IN       | 2   | 3   |   |    |     |   | 5  | sem A      |          |
| CS-108     | Pratique de la programmation orientée-objet         | Spécifique    | Schinz             | IN       |     |     |   | 2  | 2   | 6 | 9  | sem P      |          |
|            |                                                     |               |                    |          |     |     |   |    |     |   |    |            |          |
|            | Totaux:                                             |               |                    |          | 17  | 12  | 0 | 16 | 6   | 8 | 60 |            |          |
|            | Totaux par semaine :                                |               |                    |          |     | 29  |   |    | 30  |   |    |            |          |

# Remarques:

Les cours en allemand et en anglais sont disponibles sous réserve de la compatiblité des horaire des cours.

<sup>\*</sup> Se référer à l'art. 3 al. 4 du règlement d'application

# 2020-2021 INFORMATIQUE

# **Cycle Bachelor**

| Code              | Matières                                                                          | Enseignants                           | Sections |          |          |   |     | Ser      | nes      | tre      | S   |       |     |     | Cre      | édits | Période    | Type           |
|-------------------|-----------------------------------------------------------------------------------|---------------------------------------|----------|----------|----------|---|-----|----------|----------|----------|-----|-------|-----|-----|----------|-------|------------|----------------|
| couc              | Pitteres                                                                          | sous réserve                          | Sections |          | BA3      | 3 | 1   | BA4      | Ī        |          | 3A5 |       | В   | A6  |          |       | des        | examen *       |
|                   |                                                                                   | de modification                       |          | С        | e        | р | С   | e        | p        | c        | e   | р     | c   | e p | 2e       | 3e    | épreuves ' |                |
| ·                 |                                                                                   |                                       |          |          |          |   |     |          |          |          |     |       |     |     |          |       |            |                |
|                   | Bloc A                                                                            |                                       |          |          |          |   |     |          |          |          |     |       |     |     | 14       |       |            |                |
| CS-210            | Functional programming                                                            | Kuncak/Odersky                        | IN       | 2        | 2        |   |     |          |          |          |     |       |     |     | 5        |       | sem A      |                |
| CS-206            | Parallelism and concurrency                                                       | Kuncak/Odersky                        | IN       | 1        |          |   | 1   |          | 2        |          |     |       |     |     | 4        |       | sem P      |                |
| CS-207            | Programmation orientée système                                                    | Chappelier                            | IN       | 1        |          |   | 1   | -        | _        |          |     |       |     |     | 3        |       | sem P      |                |
| CS-212            | Projet programmation système                                                      | Chappelier/vacat                      | IN       | -        |          |   |     |          | 2        |          |     |       | _   |     | 2        |       | sem P      |                |
|                   | n. n                                                                              |                                       |          | -        |          |   |     |          | 4        |          |     |       | +   |     |          |       |            |                |
| CC 200            | Bloc B                                                                            | ¥                                     | IN       | -        |          |   | 2   |          | 2        | _        |     |       |     |     | 17       |       | D          |                |
| CS-209<br>CS-208  | Computer architecture II                                                          | Ienne<br>Stoiilovic                   | IN<br>IN | 2        |          | 2 | - 2 |          | -        |          |     |       |     |     | 4        |       | sem P      |                |
| COM-208           | Computer architecture I Computer networks                                         | Argyraki                              | SC       | 2        | _        |   |     |          |          |          |     |       |     |     | 5        |       | sem A<br>H | écrit          |
| PHYS-114          | General physics : electromagnetism                                                | Dil                                   | PH       | 2        | _        |   |     |          |          |          |     |       |     |     | 4        |       | Н          | écrit          |
| 11113-114         | deneral physics : electromagnetism                                                | DII                                   | 111      | ť        |          |   |     |          | -        | 1        |     |       | +   |     | _        |       | - 11       | ccrr           |
|                   | Bloc C                                                                            |                                       |          | 1        |          |   |     |          |          |          |     |       |     |     | 20       |       |            |                |
| CS-250            | Algorithms                                                                        | Svensson                              | IN       | 4        | 2        |   |     |          |          |          |     |       |     |     | 6        |       | Н          | écrit          |
| MATH-203c         | Analyse III                                                                       | Struett                               | MA       | 2        | _        |   | İ   |          | T        |          |     |       |     |     | 4        |       | Н          | écrit          |
| MATH-232          | Probabilities and statistics                                                      | Abbe                                  | MA       | 1        |          |   | 4   | 2        |          |          |     |       |     |     | 6        |       | Е          | écrit          |
| CS-251            | Theory of computation                                                             | Göös                                  | IN       | t        |          |   | 2   |          | T        |          |     |       |     |     | 4        |       | sem P      |                |
| -                 |                                                                                   |                                       |          |          |          |   |     |          | ı        |          |     |       |     |     |          |       |            |                |
| -                 | Bloc D                                                                            |                                       |          |          |          |   |     |          |          |          |     |       |     |     |          | 17    |            |                |
| CS-322            | Introduction to database systems                                                  | Ailamaki /Koch                        | IN       |          |          |   |     |          | T        | T        |     | 1     | 2 : | 1 1 |          | 4     | Е          | écrit          |
| CS-323            | Introduction to operating systems                                                 | Payer                                 | IN       |          |          |   |     |          |          | 2        | 1   | 2     |     |     |          | 5     | sem A      |                |
| CS-305            | Software engineering                                                              | Candea                                | IN       |          |          |   |     |          |          | 2        | 1   | 1     |     |     |          | 4     | sem A      |                |
| CS-306            | Software development project                                                      | Candea                                | IN       |          |          |   |     |          |          |          |     |       |     | 4   |          | 4     | sem P      |                |
|                   |                                                                                   |                                       |          |          |          |   |     |          |          |          |     |       |     |     |          |       |            |                |
|                   | Bloc E                                                                            |                                       |          |          |          |   |     |          |          |          |     |       |     |     |          | 8     |            |                |
| CS-307            | Introduction to multiprocessor architecture                                       | Falsafi                               | IN       |          |          |   |     |          |          | 2        |     | 1     |     |     |          | 4     | sem A      |                |
| COM-301           | Computer security                                                                 | Troncoso                              | IN       |          |          |   |     |          |          | 2        | 1   | 1     |     |     |          | 4     | Н          | écrit          |
|                   |                                                                                   |                                       |          |          |          |   |     |          | _        |          |     |       |     |     |          |       |            |                |
|                   | Groupe "projet"                                                                   |                                       |          | -        |          |   |     |          |          |          |     |       |     | L   |          | 8     |            |                |
| CS-398            | Projet en Informatique I                                                          | Divers enseignants                    | IN       | -        |          |   |     |          | _        | ⋖        | - 1 | 2     |     | >   |          | 8     | sem A ou P |                |
|                   |                                                                                   |                                       |          | 1        | <u> </u> |   |     |          |          |          |     |       |     | Ļ   | l        |       |            |                |
|                   | Groupe "options"                                                                  |                                       |          | *        | :        | T | T   | 1 1      | 28       |          | . 1 |       |     | >   | 5        | 23    |            |                |
| MATH-310          | Algebra                                                                           | Lachowska                             | MA       | -        |          |   |     |          |          | 2        | 1   |       | _   |     |          | 3     | Н          | écrit          |
| MATH-207d         | Analyse IV                                                                        | Struett                               | MA       | -        |          |   | 2   | 2        | _        |          |     |       |     |     | 4        |       | E          | écrit          |
| CS-308            | Calcul quantique                                                                  | Macris                                | SC       | -        |          |   |     |          |          |          | _   | 2     | 3 . | 1   | 4        |       | E          | écrit          |
| CH-160b           | Chimie générale                                                                   | Terrettaz                             | CGC      | -        |          |   | -   |          |          |          | 1   |       |     |     |          | 3     | Н          | écrit          |
| CS-320            | Computer language processing                                                      | Kuncak                                | IN       | -        |          |   | -   |          |          | _        | _   | 2     |     |     |          | 6     | sem A      |                |
| EE-200            | Électromagnétisme I : lignes et ondes                                             | Fleury                                | EL       | -        |          |   |     |          |          | 2        | 1   |       |     |     |          | 3     | Н          | écrit          |
| EE-201            | Électromagnétisme II : calcul des champs                                          | Fleury                                | EL       | -        |          |   |     |          | -        |          |     |       | ? 1 | 1   | <b>.</b> | 3     | Е          | écrit          |
| EE-202b           | Électronique I                                                                    | Zysman                                | SC       | 2        | 1        |   | -   |          | -        | 2        | 2   |       |     |     | 4        |       | sem A      |                |
| EE-203b           | Électronique II                                                                   | Zysman                                | SC       | -        |          |   | -   |          | -        | 2        | 2   | ٠.    | ? : |     |          | 4     | sem A      |                |
| EE-381            | Électronique III                                                                  | Zysman                                | SC       | 1        |          |   |     |          |          |          |     | -+    | +   | 1   |          | 3     | sem P      |                |
| CS-330<br>CS-213  | Intelligence artificielle Interaction personne-système (pas donné 2020-2021)      | Faltings                              | IN<br>IN | -        |          |   | 2   |          | 2        | -        |     |       | ? 2 | 2   | 5        | 4     | sem P<br>E | £              |
| CS-213<br>COM-308 | Interaction personne-systeme (pas donne 2020-2021)  Internet analytics            | Dillenbourg                           | SC       | -        |          |   | 2   |          | _        | -        |     | ٠.    | 2   | 1 2 | 5        | 5     | sem P      | écrit          |
| BIO-109           | Introduction aux sciences du vivant (pour IC)                                     | Grossglauser<br>Zufferey R.           | SV       | 1        |          |   |     |          |          |          |     | _     | _   | 2   |          | 6     | E          | écrit          |
|                   |                                                                                   | -                                     |          | -        |          |   |     |          | -        | -        |     |       | _   | 1 2 |          | 6     | 1          |                |
| CS-341            | Introduction to computer graphics                                                 | Pauly                                 | IN       | -        | 2        |   |     |          |          |          |     |       |     | 1 2 |          | О     | E<br>H     | écrit          |
| CS-233a           | Introduction to machine learning (BA3)                                            | Salzmann                              | IN       | 2        | 2        |   | 2   | 2        | -        | -        |     |       |     |     | 4        |       |            | écrit          |
| CS-233b           | Introduction to machine learning (BA4)                                            | Fua Thiran P.                         | IN       | $\vdash$ | -        | - | 2   | 2        | +        | 4        | 2   |       | +   |     | 4        | -     | E          | écrit          |
| COM-300           | Modèles stochastiques pour les communications                                     |                                       | SC       | -        | 1        |   | -   | $\vdash$ | +        | 4        | 2   | -     | +   | +   | _        | 6     | Н          | écrit          |
| CS-328            | Numerical methods for visual computing and ML                                     | Jakob                                 | IN       | 2        | 1        | - | -   | $\vdash$ | +        | -        |     | -     |     | -   | 4        | _     | Н          | écrit          |
| COM-302           | Principles of digital communications                                              | Telatar                               | SC       | -        | -        |   | 1   | $\sqcup$ | 4        | 4        |     | 4     | 1 2 | 2   | <u> </u> | 6     | E          | écrit          |
| CS-309            | Projet de systems-on-chip                                                         | Beuchat                               | IN       | -        | -        | - | +   | $\vdash$ | 4        | -        |     | -     |     | 3   |          | 3     | sem P      | ,              |
| COM-303           | Signal processing for communications                                              | Prandoni                              | SC       | $\vdash$ | -        | - | +-  |          | 4        |          |     | 4     | 1 2 | 2   | <b>.</b> | 6     | E          | écrit          |
| EE-205            | Signals and systems (for EL&IC)                                                   | Shkel                                 | SC       | -        | 1        | 2 | 2   | 2        | 4        | -        |     | -     | +   | +   | 4        |       | E          | écrit          |
| CS-234<br>COM-309 | Technologies of societal self-organization  Traitement quantique de l'information | Ford<br>Macris                        | IN<br>SC | 2        | 1        | 2 | 1   | $\vdash$ | $\dashv$ | 3        | 1   | -     | +   | +   | 5        | 4     | H<br>H     | écrit<br>écrit |
| COM-309           | Francement quantique de l'information                                             | Macris                                | SC.      | 1        |          |   |     |          |          | 3        | 1   |       |     |     |          | 4     | п          | ecrit          |
|                   | Bloc "SHS et MGT transversal" (SHS)                                               |                                       |          | ╁        |          |   | +-  | $\vdash$ | +        | -        |     | -     | +   |     | 1        | 8     | 1          | <u> </u>       |
| HIIM/MCT          | SHS : Cours à choix I selon Plan d'études SHS & MGT                               | Divers enseignants                    | CDH/CDM  | 2        | +        |   | +   | $\vdash$ | +        | $\dashv$ |     | +     | +   | +   | 2        | Ī     | sem A      |                |
|                   | r SHS : Cours à choix II selon Plan d'études SHS & MGT                            |                                       | CDH/CDM  | +        | +        |   | 2   | $\vdash$ | +        | +        |     | -     | +   |     | 2        |       | sem P      |                |
|                   | r SHS : Cours à choix III selon Plan d'études SHS & MGT                           | Divers enseignants Divers enseignants | CDH/CDM  | -        | +        |   |     | $\vdash$ | +        | 2        |     | +     | +   | +   |          | 2     | sem P      |                |
|                   | SHS : Cours à choix III seion Plan d'études SHS & MGT                             | Divers enseignants                    | CDH/CDM  | _        | +        |   | +   | $\vdash$ | +        | -        |     |       | 2   |     | 1        | 2     | sem P      |                |
| 1101-11111        | 10110 . Cours a Choix by Scion Flan a claudes 3ft3 & Migh                         | Divers cuscignants                    | CDII/CDM | ╁        |          |   | +-  | $\vdash$ | +        | -        |     | -   - | +   |     | 1        |       | 3C111 F    |                |
|                   | Totaux:                                                                           |                                       |          | $\vdash$ | -        |   | +   | $\vdash$ | +        |          |     |       | +   | +   | 60       | 52    | 1          |                |
|                   | I VIAUA .                                                                         |                                       |          |          |          |   |     |          |          |          |     |       |     |     | ου       | 34    | <u> </u>   | L              |

# Remarque:

<sup>\*</sup> Se référer à l'art. 3 al. 4 du règlement d'application

# 2020-2021 INFORMATIQUE - Obligatoire

# **Cycle Master**

| Code    | Matières                                | Enseignants             | Sections        |     | Spe    | écia | lisat | tions | s     |      | Semestres          |     |    |   | es  |   | Crédits | Période    | Type     |
|---------|-----------------------------------------|-------------------------|-----------------|-----|--------|------|-------|-------|-------|------|--------------------|-----|----|---|-----|---|---------|------------|----------|
|         |                                         | sous réserve            |                 |     |        |      |       |       |       |      | 1                  | MA  | 1  | I | MAZ | 2 |         | des        | examen * |
|         |                                         | de modification         |                 |     |        |      |       |       |       |      | с                  | e   | p  | С | e   | p |         | épreuves * |          |
|         |                                         |                         |                 |     |        |      |       |       |       |      |                    |     |    |   |     |   |         |            |          |
|         | Groupe "Core courses et options"        |                         |                 |     |        |      |       |       |       |      |                    |     |    |   |     |   | 72      |            |          |
|         |                                         |                         |                 |     |        |      |       |       |       |      |                    |     |    |   |     |   |         |            |          |
|         | Groupe 1 "Core courses"                 |                         |                 |     |        |      |       |       |       |      |                    |     |    |   |     |   | min. 30 |            |          |
| CS-450  | Advanced algorithms                     | Kapralov                | IN              |     | ВС     | : D  | Е     |       |       | I    |                    |     |    | 4 | 3   |   | 7       | E          | écrit    |
| CS-470  | Advanced computer architecture          | Ienne                   | IN              | Α   |        | D    | )     |       | G     |      |                    |     |    | 3 |     | 2 | 6       | E          | oral     |
| COM-401 | Cryptography and security               | Vaudenay                | SC              |     |        | D    | E     |       |       | J    | 4                  | 2   |    |   |     |   | 7       | Н          | écrit    |
| CS-422  | Database systems                        | Ailamaki                | IN              |     | ВС     | :    |       |       | G     | J    |                    |     |    | 3 | 2   | 2 | 7       | sem P      |          |
| CS-438  | Decentralized systems engineering       | Ford                    | IN              |     |        |      |       |       | G     |      | 2                  | 2   | 2  |   |     |   | 6       | Н          | oral     |
| CS-451  | Distributed algorithms                  | Guerraoui               | SC              |     | C      | :    | E     |       | G     | I J  | 3                  | 2   | 1  |   |     |   | 6       | Н          | écrit    |
| CS-452  | Foundations of software                 | Odersky                 | IN              |     | C      | :    |       |       | G     |      | 2                  | 2   |    |   |     |   | 4       | Н          | écrit    |
| COM-402 | Information security and privacy        | Hubaux/Oechslin         | SC              |     | В      | D    | E     |       | G     |      | 3                  | 1   | 2  |   |     |   | 6       | Н          | écrit    |
| CS-433  | Machine learning                        | Jaggi/Flammarion        | IN              |     | В      |      |       | F     |       | I J  | 4                  | 2   |    |   |     |   | 7       | Н          | écrit    |
| COM-407 | TCP/IP networking                       | Le Boudec               | SC              |     |        | D    | E     |       | G H   |      | 2                  | 2   | 2  |   |     |   | 6       | Н          | écrit    |
|         | Groupe 2 "Options"                      | (la somme des crédits d | es groupes 1 et | 2 d | loit ê | tre  | de 7  | 2 cr  | édits | au m | i <del>llí</del> i | nur | n) |   |     | _ |         |            |          |
|         | Cours à option                          | Divers enseignants      | Divers          |     |        |      |       |       |       |      |                    |     |    |   |     |   |         |            |          |
|         |                                         |                         |                 |     |        |      |       |       |       |      |                    |     |    |   |     |   |         |            |          |
|         | Bloc "Projet et SHS" :                  |                         |                 |     |        |      |       |       |       |      |                    |     |    |   |     |   | 18      |            |          |
| CS-498  | Semester project in Computer Science II | Divers enseignants      | IN              |     |        |      |       |       |       |      | ٧                  |     | 2  |   |     | ٧ | 12      | sem A ou P |          |
| HUM-nnn | SHS: introduction au projet             | Divers enseignants      | SHS             |     |        |      |       |       |       |      | 2                  |     | 1  |   |     |   | 3       | sem A      |          |
| HUM-nnn | SHS: projet                             | Divers enseignants      | SHS             |     |        |      |       |       |       |      |                    |     |    |   |     | 3 | 3       | sem P      | -        |
|         |                                         |                         |                 |     |        |      |       |       |       |      |                    |     |    |   |     |   |         |            |          |
|         | Total des crédits du cycle master :     |                         |                 |     |        |      |       |       |       |      |                    |     |    |   |     |   | 90      |            |          |

# Spécialisations

A Computer Engineering - SP F Signals, Images, and Interfaces

B Data Analytics G Software Systems

C Foundations of Software H Wireless Communication
D Cyber Security - SP I Computer Science Theory
E Networking and Mobility J Internet Information Systems

# Remarque:

\* Se référer à l'art. 3 al. 4 du règlement d'application

# Stage d'ingénieur :

Voir les modalités dans le règlement d'application

# Mineurs:

Le cursus peut être complété par un des mineurs figurant dans l'offre de l'EPFL (renseignements à la page sac.epfl.ch/mineurs ),

à l'exclusion des mineurs, "Data science", "Cyber security", "Informatique" et "Systèmes de communication" qui ne peuvent pas être choisis.

 $Parmi\ les\ mineurs\ offerts\ par\ l'EPFL, la\ section\ recommande\ \grave{a}\ ses\ \acute{e}tudiants\ les\ mineurs\ suivants:$ 

- Biocomputing (SIN)
- Computational science and Engineering (SMA)
- Management de la technologie et entrepreunariat (SMTE)
- Technologies biomédicales (SMT)
- Technologies spatiales (SEL)

 $Le \ choix \ des \ cours \ de \ tous \ les \ mineurs \ se \ fait \ sur \ conseil \ de \ la \ section \ de \ l'étudiant \ et \ du \ responsable \ du \ mineur.$ 

# 2020-2021 INFORMATIQUE - Options

# Cycle Master

| Code               | Matières                                                                 | Enseignants                           | Sections Spécialisa | tions     |          | S   | emest  | res |   | Crédits | Période    | Type          | Cours     |
|--------------------|--------------------------------------------------------------------------|---------------------------------------|---------------------|-----------|----------|-----|--------|-----|---|---------|------------|---------------|-----------|
|                    |                                                                          | sous réserve                          |                     |           | 1        | MA1 |        | MA  | 2 |         | des        | examen *      | biennaux  |
|                    |                                                                          | de modification                       |                     |           | c        | e   | р      | e   | р |         | épreuves * |               | donnés en |
|                    | Options                                                                  |                                       |                     |           |          |     |        |     |   |         |            |               |           |
| CS-420             | Advanced compiler construction                                           | Schinz                                | IN A C              | G         |          |     | 2      | _   | 2 | 4       | sem P      |               |           |
| CS-440             | Advanced computer graphics                                               | Jakob                                 | IN                  | F         |          |     | 2      | ? 1 |   | 6       | sem P      |               |           |
| CS-471             | Advanced multiprocessor architecture (pas donné en 2020-2021)            |                                       | IN A                | G         | 4        |     |        |     |   | 6       | sem A      | ,             | 2021-2022 |
| COM-417            | Advanced probability and applications                                    | Lévêque                               | SC B                | ΗI        |          |     | _      | 2   | 1 | 6       | Е          | écrit         |           |
| CS-523<br>MATH-493 | Advanced topics on privacy enhancing technologies  Applied biostatistics | Troncoso<br>Goldstein                 | IN D                |           |          |     | 3      | _   | 2 | 7<br>5  | E and D    | écrit         |           |
| CS-401             | Applied data analysis                                                    | West                                  | IN B                |           | 2        |     | 2      | 2   |   | 6       | sem P<br>H | écrit         |           |
| CS-456             | Artificial neural networks                                               | Gerstner                              | IN B                |           |          |     | _      | 2 2 |   | 5       | E          | écrit         |           |
| EE-554             | Automatic speech processing                                              | Bourlard                              | EL                  | F         | 2        | 1   |        | - 2 |   | 3       | H          | écrit         |           |
| BIO-465            | Biological modeling of neural networks                                   | Gerstner                              | IN                  |           |          | 1   | 2      | 2   |   | 4       | E          | écrit         |           |
| EE-512             | Biomedical signal processing                                             | Vesin                                 | EL                  | F         | 4        |     | 2      | -   |   | 6       | Н          | écrit         |           |
| CS-490             | Business design for IT services                                          | Wegmann                               | SC                  |           |          |     | -<br>3 | :   |   | 3       | E          | oral          |           |
| BIO-105            | Cellular biology and biochemistry for engineers                          | Zufferey R.                           | SV                  |           | 2        | 2   |        |     |   | 4       | Н          | écrit         |           |
| CS-524             | Computational complexity (pas donné en 2020-2021)                        | Svensson                              | IN B                | I         | 3        | 1   |        |     |   | 4       | sem A      |               | 2020-2021 |
| CS-413             | Computational photography                                                | Süsstrunk                             | SC                  | F         |          |     | 2      | ?   | 2 | 5       | sem P      |               |           |
| CS-442             | Computer vision                                                          | Fua                                   | IN                  | F         |          |     | 2      | ? 1 |   | 4       | Е          | écrit         |           |
| CS-453             | Concurrent algorithms                                                    | Guerraoui                             | SC C                | G I       | 3        | 1   | 1      |     |   | 5       | Н          | écrit         |           |
| COM-480            | Data visualization                                                       | Vuillon                               | SC B                |           |          |     | 2      | ?   | 2 | 4       | sem P      |               |           |
| EE-559             | Deep learning                                                            | Fleuret                               | EL                  |           |          |     | 2      | 2   |   | 4       | Е          | écrit         |           |
| CS-472             | Design technologies for integrated systems                               | De Micheli                            | IN A                |           | 3        |     | 2      |     |   | 6       | sem A      |               |           |
| CS-446             | Digital 3D geometry processing (pas donné en 2020-2021)                  | Pauly                                 | IN                  | F         | 2        | 1   | 1      |     |   | 5       | sem A      |               |           |
| CS-411             | Digital education & learning analytics                                   | Dillenbourg/Jermann                   | IN                  |           | 2        |     | 2      |     |   | 4       | Н          | oral          |           |
| CS-423             | Distributed information systems                                          | Aberer                                | SC B E              | J         | 2        | 1   |        |     |   | 4       | Н          | écrit         |           |
| ENG-466            | Distributed intelligent systems                                          | Martinoli                             | SIE A               |           |          |     | 2      | ? 3 |   | 5       | Е          | écrit         |           |
| COM-502            | Dynamical system theory for engineers                                    | Thiran P.                             | SC                  |           | 2        | 1   |        |     |   | 4       | Н          | écrit         |           |
| CS-473             | Embedded systems                                                         | Beuchat                               | IN A                |           | 2        |     | 2      |     |   | 4       | Н          | oral          |           |
| CS-491             | Enterprise and service-oriented architecture                             | Wegmann                               | SC                  | J         |          |     | 6      | í   |   | 6       | Е          | oral          |           |
| CS-489             | Experience design                                                        | Huang                                 | IN                  | F         | 2        |     | 4      |     |   | 6       | sem A      |               |           |
| CS-550             | Formal verification                                                      | Kuncak                                | IN A C D            |           | 2        | _   | 2      |     |   | 6       | sem A      |               |           |
| MATH-483           | Gödel and recursivity                                                    | Duparc                                | MA                  | I         | 2        | 2   |        |     |   | 5       | Н          | écrit         | 2020-2021 |
| CS-486             | Interaction design                                                       | Pu                                    | IN                  | F         | 2        |     | 2      | ? 1 | 1 | 4       | sem P      | 6             |           |
| MICRO-511          | Image processing I                                                       | Unser/Van De Ville Unser/Van De Ville | MT<br>MT            | F         | 3        |     | 3      | ,   |   | 3       | H<br>E     | écrit         |           |
| CS-487             | Image processing II Industrial automation                                | Sommer/Tournier                       | SC                  | Г         |          |     | 2      |     | 1 | 3       | E          | écrit<br>oral |           |
| COM-404            | Information theory and coding                                            | Telatar                               | SC B                | н і       | 4        | 2   |        |     | 1 | 7       | H          | écrit         |           |
| CS-430             | Intelligent agents                                                       | Faltings                              | IN B                | 11 1<br>T | 3        | 3   |        |     |   | 6       | sem A      | CCIT          |           |
| CS-431             | Introduction to natural language processing                              | Rajman/Chappelier                     | IN B                | J         | 2        | 2   |        |     |   | 4       | Н          | écrit         |           |
| CS-526             | Learning theory                                                          | Macris/Urbanke                        | SC                  | 3         | _        | -   | 2      | 2   |   | 4       | E          | écrit         |           |
| CS-421             | Machine learning for behavioral data                                     | Käser                                 | IN                  |           |          |     | 2      | _   | 2 | 4       | E          | écrit         |           |
| COM-516            | Markov chains and algorithmic applications                               | Lévêque/Macris                        | SC B                | I         | 2        | 2   |        |     | - | 4       | Н          | écrit         |           |
| COM-514            | Mathematical foundations of signal processing                            | Simeoni /Behar Haro                   | SC                  | F         | 3        | 2   |        |     |   | 6       | Н          | écrit         |           |
| COM-405            | Mobile networks                                                          | Hubaux                                | SC DE               | G H       |          |     | 2      | ? 1 |   | 4       | Е          | écrit         |           |
| COM-430            | Modern digital communications: a hands-on approach                       | Rimoldi                               | SC E                |           | 2        |     | 2      |     |   | 6       | sem A      |               |           |
| COM-512            | Networks out of control (pas donné en 2020-2021)                         | Thiran P./Grossglauser                | SC B E              | Н Ј       |          |     | 2      | ? 1 |   | 4       | Е          | écrit         | 2021-2022 |
| MATH-489           | Number theory in cryptography                                            | vacat                                 | MA D                |           |          |     | 2      | 2   |   | 5       | Е          | écrit         |           |
| CS-439             | Optimization for machine learning                                        | Jaggi/Flammarion                      | IN                  |           |          |     | 2      | 2   | 1 | 5       | Е          | écrit         |           |
| CS-596             | Optional project in computer science                                     | Divers enseignants                    | IN                  |           | *        |     | 2      |     | > | 8       | sem A ou P |               |           |
| COM-503            | Performance evaluation                                                   | Le Boudec                             | SC B C E            | G J       |          |     | 3      | 1   | 2 | 7       | Е          | écrit         | 2020-2021 |
| CS-522             | Principles of computer systems                                           | Argyraki/Candea                       | SC/IN A C D         | G         | 4        |     |        |     |   | 7       | sem A      |               |           |
| MATH-467           | Probabilistic methods in combinatorics                                   | Marcus                                | MA                  | I         | 2        | 2   |        |     |   | 5       | Н          | écrit         | 2020-2021 |
| CS-476             | Real-time embedded systems                                               | Beuchat                               | IN A                |           |          |     | 2      | _   | 2 | 4       | sem P      |               |           |
| EE-511             | Sensors in medical instrumentation                                       | Aminian                               | EL                  | F         |          |     | 2      | ! 1 |   | 3       | E          | écrit         |           |
| MATH-318           | Set theory                                                               | Duparc                                | MA                  |           |          |     | 2      |     |   | 5       | Е          | écrit         |           |
| EE-472             | Smart grid technologies                                                  | Paolone/Le Boudec                     | EL/SC               |           |          |     | 2      | ? 1 | 2 | 5       | Е          | écrit         |           |
| EE-593             | Social media                                                             | Gillet                                | EL                  | J         |          |     | 1      | '   | 1 | 2       | sem P      | sans retrait  |           |
| CS-412             | Software security                                                        | Payer                                 | IN D                |           |          |     | 3      | _   | 1 | 6       | sem P      |               |           |
| COM-500            | Statistical signal and data processing through applications              | Ridolfi                               | SC B                | F H       |          |     | _      | 2   |   | 6       | Е          | écrit         |           |
| CS-448             | Sublinear algorithms for big data analysis (pas donné en 2020-2021)      |                                       | IN                  | I         |          |     | 3      |     |   | 4       | sem P      |               | 2021-2022 |
| CS-410             | Technology ventures in IC (pas donné en 2020-2021)                       |                                       | IN B                |           | <u> </u> |     | 2      | !   | 2 | 4       | sem P      |               |           |
| CS-455             | Topics in theoretical computer science                                   | Kapralov                              | IN B                | I         | 3        | 1   | 1.     | +   |   | 4       | sem A      |               | 2020-2021 |
| CS-444             | Virtual reality                                                          | Boulic                                | IN                  | F         |          |     | 2      | 1   |   | 4       | sem P      |               |           |

<sup>\*</sup> Se référer à l'art. 3 al. 4 du règlement d'application

# ${\color{red}^{2020-2021}} \qquad \textbf{INFORMATIQUE-sp\'{e}cialisations}$

Les enseignants, les crédits et la période des cours sont indiqués sous réserve de modification.

| Code              |   | Matières                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Enseignants                            | Sections     | Crédits |          | de des<br>urs |
|-------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|---------|----------|---------------|
|                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |         |          |               |
|                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsable : Prof. P. Ienne           |              | 64      |          |               |
| CS-420            |   | Advanced compiler construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Schinz                                 | IN           | 4       |          | P             |
| CS-470            |   | Advanced computer architecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ienne                                  | IN           | 6       |          | P             |
| CS-471            |   | Advanced multiprocessor architecture (pas donné en 2020-21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Falsafi                                | IN           | 6       | Α        |               |
| EE-431            | * | Advanced VLSI design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Burg                                   | EL           | 4       |          | P             |
| CS-472            |   | Design technologies for integrated systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | De Micheli                             | IN           | 6       | Α        |               |
| ENG-466           |   | Distributed intelligent systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Martinoli                              | SIE          | 5       |          | P             |
| CS-473            |   | Embedded systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Beuchat                                | IN           | 4       | A        |               |
| CS-550            |   | Formal verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kuncak                                 | IN           | 6       | Α        |               |
| EE-429            | * | Fundamentals of VLSI Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Burg                                   | EL           | 4       | A        |               |
| EE-432            | * | Hardware systems modeling I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vachoux                                | EL           | 2       | A        |               |
|                   | * | , v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |              |         | A        | P             |
| EE-433            |   | Hardware systems modeling II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vachoux                                | EL           | 2       | <u> </u> | P             |
| EE-490b           | * | Lab in EDA based design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vachoux/Koukab                         | EL           | 4       | Α        |               |
| CS-522            |   | Principles of computer systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Argyraki/Candea                        | SC/IN        | 7       | Α        |               |
| CS-476            |   | Real-time embedded systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Beuchat                                | IN           | 4       |          | P             |
|                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |         |          |               |
|                   |   | Spécialisation B "DATA ANALYTICS"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Responsable: Prof. M. Grossglauser/Pro | f. P. Thiran | 102     |          |               |
| EE-558            | * | A network tour of data science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frossard/Vandergeynst                  | EL           | 4       | Α        |               |
| CS-450            |   | Advanced algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kapralov                               | IN           | 7       |          | P             |
| COM-417           |   | Advanced probability and aplications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lévêque                                | SC           | 6       |          | P             |
| CS-401            |   | Applied data analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | West                                   | SC           | 6       | Α        |               |
| CS-524            |   | Computational complexity (pas donné en 2020-21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | IN           | 4       | A        |               |
| CS-422            |   | The product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the pr | Ailamaki                               | IN           | 7       |          | P             |
|                   |   | Database systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |              |         | <b> </b> | P             |
| COM-480           |   | Data visualization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vuillon                                | SC           | 4       | <b>.</b> | P             |
| CS-423            |   | Distributed information systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aberer                                 | SC           | 4       | Α        |               |
| COM-402           |   | Information security and privacy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hubaux/Oechslin                        | SC           | 6       | Α        |               |
| COM-404           |   | Information theory and coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Telatar                                | SC           | 7       | A        |               |
| COM-308           | * | Internet analytics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Grossglauser                           | SC           | 5       |          | P             |
| CS-431            |   | Introduction to natural language processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rajman/Chappelier                      | IN           | 4       | Α        |               |
| CS-433            |   | Machine learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jaggi/Flammarion                       | IN           | 7       | Α        |               |
| COM-516           |   | Markov chains and algorithmic applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lévêque/Macris                         | SC           | 4       | Α        |               |
| COM-512           |   | Networks out of control (pas donné en 2020-21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | SC           | 4       |          | P             |
| COM-503           |   | Performance evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Le Boudec                              | SC           | 7       |          | P             |
| COM-500           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ridolfi                                | SC           | 6       |          | P             |
|                   | 4 | Statistical signal and data processing through applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |              |         |          | P             |
| MATH-413          | т | Statistics for Data science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Olhede                                 | MA           | 6       | A        |               |
| CS-455            |   | Topics in theoretical computer science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kapralov                               | IN           | 4       | A        |               |
|                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |         |          |               |
|                   |   | Spécialisation C "FOUNDATIONS OF SOFTWARE"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Responsable : Prof. M. Odersky         |              | 53      |          |               |
| CS-450            |   | Advanced algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kapralov                               | IN           | 7       |          | P             |
| CS-420            |   | Advanced compiler construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Schinz                                 | IN           | 4       |          | P             |
| CS-453            |   | Concurrent algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Guerraoui                              | SC           | 5       | Α        |               |
| CS-422            |   | Database Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ailamaki                               | IN           | 7       |          | P             |
| CS-451            |   | Distributed algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Guerraoui                              | SC           | 6       | Α        |               |
| CS-550            |   | Formal verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kuncak                                 | IN           | 6       | Α        |               |
| CS-452            |   | Foundations of software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Odersky                                | IN           | 4       | A        |               |
|                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              | 7       | А        | n             |
| COM-503           |   | Performance evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Le Boudec                              | SC           |         | <b>—</b> | P             |
| CS-522            |   | Principles of computer systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Argyraki/Candea                        | SC/IN        | 7       | A        |               |
|                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |         |          |               |
|                   |   | Spécialisation D "CYBER SECURITY - SP"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Responsable : Prof. C. Troncoso        |              | 71      |          |               |
| CS-450            |   | Advanced algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kapralov                               | IN           | 7       | l        | P             |
| CS-470            |   | Advanced computer architecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ienne                                  | IN           | 6       | <u> </u> | P             |
| COM-501           | * | Advanced cryptography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vaudenay                               | SC           | 4       | l        | P             |
| CS-523            |   | Advanced topics on privacy enhancing technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hubaux/Troncoso                        | IN/SC        | 7       |          | P             |
| EE-431            | * | Advanced VLSI design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Burg                                   | EL           | 4       |          | P             |
| COM-401           |   | Cryptography and security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vaudenay                               | SC           | 7       | Α        |               |
|                   |   | 71 9 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                      |              |         |          |               |
| CS-550            | * | Formal verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kuncak                                 | IN           | 6       | A        |               |
| EE-429            | * | Fundamentals of VLSI Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Burg                                   | EL           | 4       | A        |               |
| COM-402           |   | Information security and privacy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hubaux/Oechslin                        | SC           | 6       | Α        |               |
| COM-405           |   | Mobile networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hubaux                                 | SC           | 4       |          | P             |
| CS-522            |   | Principles of computer systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Argyraki/Candea                        | SC/IN        | 7       | Α        | <u></u>       |
|                   |   | Software security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Payer                                  | IN           | 6       | i        | P             |
| CS-412            |   | boreware security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |              |         |          |               |
| CS-412<br>COM-506 | * | Student seminar : security protocols and applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oechslin/Vaudenay                      | SC           | 3       |          | P             |

<sup>\* =</sup> cours hors plan d'études pour les étudiants ne faisant pas la spécialisation

# 2020-2021 INFORMATIQUE - spécialisations

Les enseignants, les crédits et la période des cours sont indiqués sous réserve de modification.

| Code                                                                                                       | Matières                                                                                                                                                                                                                                                                                                                              | Enseignants                                                                                                                                | Sections                                        | Crédits                                         | Périoc<br>cou                                    | de des<br>urs |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------|
|                                                                                                            | Spécialisation E "NETWORKING AND MOBILITY"                                                                                                                                                                                                                                                                                            | Responsable : Prof. JY. Le Boude                                                                                                           | :                                               | 51                                              |                                                  |               |
| CS-450                                                                                                     | Advanced algorithms                                                                                                                                                                                                                                                                                                                   | Kapralov                                                                                                                                   | IN                                              | 7                                               |                                                  | P             |
| COM-401                                                                                                    | Cryptography and security                                                                                                                                                                                                                                                                                                             | Vaudenay                                                                                                                                   | SC                                              | 7                                               | Α                                                |               |
| CS-451                                                                                                     | Distributed algorithms                                                                                                                                                                                                                                                                                                                | Guerraoui                                                                                                                                  | SC                                              | 6                                               | Α                                                |               |
| CS-423                                                                                                     | Distributed information systems                                                                                                                                                                                                                                                                                                       | Aberer                                                                                                                                     | SC                                              | 4                                               | A                                                |               |
| COM-402                                                                                                    | Information security and privacy                                                                                                                                                                                                                                                                                                      | Hubaux/Oechslin                                                                                                                            | SC                                              | 6                                               | Α                                                |               |
| COM-405                                                                                                    | Mobile networks                                                                                                                                                                                                                                                                                                                       | Hubaux                                                                                                                                     | SC                                              | 4                                               |                                                  | P             |
| COM-430                                                                                                    | Modern digital communications : A hands-on approach                                                                                                                                                                                                                                                                                   | Rimoldi                                                                                                                                    | SC                                              | 6                                               | Α                                                |               |
| COM-512                                                                                                    | Networks out of control (pas donné en 2020-21)                                                                                                                                                                                                                                                                                        | Thiran P./Grossglauser                                                                                                                     | SC                                              | 4                                               |                                                  | P             |
| COM-503                                                                                                    | Performance evaluation                                                                                                                                                                                                                                                                                                                | Le Boudec                                                                                                                                  | SC                                              | 7                                               |                                                  | P             |
| COM-407                                                                                                    | TCP/IP networking                                                                                                                                                                                                                                                                                                                     | Le Boudec                                                                                                                                  | SC                                              | 6                                               | A                                                |               |
|                                                                                                            | Spécialisation F "SIGNAL, IMAGES AND INTERFACES"                                                                                                                                                                                                                                                                                      | Responsables : Prof. M. Pauly                                                                                                              |                                                 | 85                                              |                                                  |               |
| CS-440                                                                                                     |                                                                                                                                                                                                                                                                                                                                       | Jakob                                                                                                                                      | IN                                              | 6                                               | <del>                                     </del> | P             |
| EE-554                                                                                                     | Advanced computer graphics                                                                                                                                                                                                                                                                                                            | Bourlard                                                                                                                                   | EL                                              | 3                                               | A                                                | Р             |
|                                                                                                            | Automatic speech processing                                                                                                                                                                                                                                                                                                           |                                                                                                                                            |                                                 |                                                 |                                                  |               |
| EE-512<br>CS-413                                                                                           | Biomedical signal processing                                                                                                                                                                                                                                                                                                          | Vesin<br>Süsstrunk                                                                                                                         | EL<br>SC                                        | 6<br>5                                          | A                                                | P             |
| CS-413<br>CS-442                                                                                           | Computational photography Computer vision                                                                                                                                                                                                                                                                                             | Fua                                                                                                                                        | IN                                              | 4                                               | <del> </del>                                     | P             |
|                                                                                                            | •                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                            | IN                                              | 5                                               | A                                                | Р             |
| CS-446<br>CS-489                                                                                           | Digital 3D geometry processing (pas donné en 2020-2021)                                                                                                                                                                                                                                                                               | -                                                                                                                                          | IN                                              | 6                                               | A                                                |               |
| MICRO-511                                                                                                  | Experience design                                                                                                                                                                                                                                                                                                                     | Huang                                                                                                                                      |                                                 | 3                                               |                                                  |               |
|                                                                                                            | Image processing I                                                                                                                                                                                                                                                                                                                    | Unser/Van De Ville                                                                                                                         | MT                                              |                                                 | A                                                | n             |
| MICRO-512                                                                                                  | Image processing II                                                                                                                                                                                                                                                                                                                   | Unser/Van De Ville                                                                                                                         | MT<br>IN                                        | 3                                               | -                                                | P<br>P        |
| CS-341 *<br>CS-433                                                                                         | Introduction to computer graphics  Machine learning                                                                                                                                                                                                                                                                                   | Pauly                                                                                                                                      | IN                                              | 6<br>7                                          | A                                                | Р             |
| COM-514                                                                                                    | Mathematical foundations of signal processing                                                                                                                                                                                                                                                                                         | Jaggi/Flammarion<br>Simeoni /Behar Haro                                                                                                    | SC                                              | 6                                               | A                                                |               |
| COM-430                                                                                                    | Modern digital communications : A hands-on approach                                                                                                                                                                                                                                                                                   | Rimoldi                                                                                                                                    | SC                                              | 6                                               | A                                                |               |
| EE-511                                                                                                     | Sensors in medical instrumentation                                                                                                                                                                                                                                                                                                    | Aminian                                                                                                                                    | EL                                              | 3                                               |                                                  | P             |
| COM-303 *                                                                                                  | Signal processing for communications                                                                                                                                                                                                                                                                                                  | Prandoni                                                                                                                                   | SC                                              | 6                                               |                                                  | P             |
| COM-500                                                                                                    | Statistical signal and data processing through applications                                                                                                                                                                                                                                                                           | Ridolfi                                                                                                                                    | SC                                              | 6                                               |                                                  | P             |
| CS-444                                                                                                     | Virtual reality                                                                                                                                                                                                                                                                                                                       | Boulic                                                                                                                                     | IN                                              | 4                                               |                                                  | P             |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                 |                                                 |                                                  |               |
|                                                                                                            | Spécialisation G "SOFTWARE SYSTEMS"                                                                                                                                                                                                                                                                                                   | Responsable : Prof. G. Candea                                                                                                              |                                                 | 74                                              | <u> </u>                                         |               |
| CS-420                                                                                                     | Advanced compiler construction                                                                                                                                                                                                                                                                                                        | Schinz                                                                                                                                     | IN                                              | 4                                               | <u> </u>                                         | P             |
| CS-470                                                                                                     | Advanced computer architecture                                                                                                                                                                                                                                                                                                        | Ienne                                                                                                                                      | IN                                              | 6                                               | <u> </u>                                         | P             |
| CS-471                                                                                                     | Advanced multiprocessor architecture (pas donné en 2020-21)                                                                                                                                                                                                                                                                           |                                                                                                                                            | IN                                              | 6                                               | Α                                                |               |
| CS-453                                                                                                     | Concurrent algorithms                                                                                                                                                                                                                                                                                                                 | Guerraoui                                                                                                                                  | SC                                              | 5                                               | Α                                                |               |
| CS-422                                                                                                     | Database Systems                                                                                                                                                                                                                                                                                                                      | Ailamaki                                                                                                                                   | IN                                              | 7                                               |                                                  | P             |
| CS-438                                                                                                     | Decentralized systems engineering                                                                                                                                                                                                                                                                                                     | Ford                                                                                                                                       | IN                                              | 6                                               | Α                                                |               |
| CS-451                                                                                                     | Distributed algorithms                                                                                                                                                                                                                                                                                                                | Guerraoui                                                                                                                                  | SC                                              | 6                                               | Α                                                |               |
| CS-452                                                                                                     | Foundations of software                                                                                                                                                                                                                                                                                                               | Odersky                                                                                                                                    | IN                                              | 4                                               | Α                                                |               |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                 |                                                 |                                                  |               |
| COM-402                                                                                                    | Information security and privacy                                                                                                                                                                                                                                                                                                      | Hubaux/Oechslin                                                                                                                            | SC/IN                                           | 6                                               | A                                                |               |
| COM-405                                                                                                    | Mobile networks                                                                                                                                                                                                                                                                                                                       | Hubaux                                                                                                                                     | SC                                              | 4                                               | A                                                | P             |
| COM-405<br>COM-503                                                                                         | Mobile networks Performance evaluation                                                                                                                                                                                                                                                                                                | Hubaux<br>Le Boudec                                                                                                                        | SC<br>SC                                        | 4<br>7                                          | A                                                | P<br>P        |
| COM-405<br>COM-503<br>CS-522                                                                               | Mobile networks  Performance evaluation  Principles of computer systems                                                                                                                                                                                                                                                               | Hubaux<br>Le Boudec<br>Argyraki/Candea                                                                                                     | SC<br>SC<br>SC/IN                               | 4<br>7<br>7                                     | A                                                |               |
| COM-405<br>COM-503                                                                                         | Mobile networks Performance evaluation                                                                                                                                                                                                                                                                                                | Hubaux<br>Le Boudec                                                                                                                        | SC<br>SC                                        | 4<br>7                                          |                                                  |               |
| COM-405<br>COM-503<br>CS-522                                                                               | Mobile networks  Performance evaluation  Principles of computer systems                                                                                                                                                                                                                                                               | Hubaux<br>Le Boudec<br>Argyraki/Candea                                                                                                     | SC<br>SC<br>SC/IN                               | 4<br>7<br>7                                     | A                                                |               |
| COM-405<br>COM-503<br>CS-522                                                                               | Mobile networks Performance evaluation Principles of computer systems TCP/IP networking                                                                                                                                                                                                                                               | Hubaux<br>Le Boudec<br>Argyraki/Candea<br>Le Boudec                                                                                        | SC<br>SC<br>SC/IN                               | 4<br>7<br>7<br>6                                | A                                                |               |
| COM-405<br>COM-503<br>CS-522<br>COM-407                                                                    | Mobile networks  Performance evaluation  Principles of computer systems  TCP/IP networking  Spécialisation H "WIRELESS COMMUNICATIONS"                                                                                                                                                                                                | Hubaux Le Boudec Argyraki/Candea Le Boudec  Responsable: Prof. E. Telatar                                                                  | SC<br>SC<br>SC/IN<br>SC                         | 4<br>7<br>7<br>6<br>46                          | A                                                | P             |
| COM-405<br>COM-503<br>CS-522<br>COM-407                                                                    | Mobile networks Performance evaluation Principles of computer systems TCP/IP networking  Spécialisation H "WIRELESS COMMUNICATIONS" Advanced probability and applications                                                                                                                                                             | Hubaux Le Boudec Argyraki/Candea Le Boudec  Responsable: Prof. E. Telatar Lévêque                                                          | SC SC/IN SC SC SC EL                            | 4<br>7<br>7<br>6<br>46<br>6                     | A<br>A                                           | P             |
| COM-405<br>COM-503<br>CS-522<br>COM-407<br>COM-417<br>COM-404<br>EE-445 *                                  | Mobile networks Performance evaluation Principles of computer systems TCP/IP networking  Spécialisation H "WIRELESS COMMUNICATIONS" Advanced probability and applications Information theory and coding                                                                                                                               | Hubaux Le Boudec Argyraki/Candea Le Boudec  Responsable: Prof. E. Telatar Lévêque Telatar Skrivervik Hubaux                                | SC SC/IN SC SC SC SC SC SC SC SC EL SC          | 4<br>7<br>7<br>6<br>46<br>6<br>7<br>4<br>4      | A<br>A<br>A                                      | P             |
| COM-405<br>COM-503<br>CS-522<br>COM-407<br>COM-417<br>COM-404<br>EE-445 *                                  | Mobile networks Performance evaluation Principles of computer systems TCP/IP networking  Spécialisation H "WIRELESS COMMUNICATIONS" Advanced probability and applications Information theory and coding Microwaves                                                                                                                    | Hubaux Le Boudec Argyraki/Candea Le Boudec  Responsable: Prof. E. Telatar Lévêque Telatar Skrivervik                                       | SC SC/IN SC SC SC EL                            | 4<br>7<br>7<br>6<br>46<br>6<br>7<br>4           | A<br>A<br>A                                      | P             |
| COM-405<br>COM-503<br>CS-522<br>COM-407<br>COM-417<br>COM-404<br>EE-445 *                                  | Mobile networks Performance evaluation Principles of computer systems TCP/IP networking  Spécialisation H "WIRELESS COMMUNICATIONS" Advanced probability and applications Information theory and coding Microwaves Mobile networks                                                                                                    | Hubaux Le Boudec Argyraki/Candea Le Boudec  Responsable: Prof. E. Telatar Lévêque Telatar Skrivervik Hubaux Rimoldi                        | SC SC/IN SC SC SC SC SC SC SC SC EL SC          | 4<br>7<br>7<br>6<br>46<br>6<br>7<br>4<br>4      | A A A A                                          | P             |
| COM-405<br>COM-503<br>CS-522<br>COM-407<br>COM-417<br>COM-404<br>EE-445 *<br>COM-405<br>COM-430            | Mobile networks Performance evaluation Principles of computer systems TCP/IP networking  Spécialisation H "WIRELESS COMMUNICATIONS" Advanced probability and applications Information theory and coding Microwaves Mobile networks Modern digital communications : A hands-on approach                                                | Hubaux Le Boudec Argyraki/Candea Le Boudec  Responsable: Prof. E. Telatar Lévêque Telatar Skrivervik Hubaux Rimoldi                        | SC SC/IN SC SC SC SC SC SC SC EL SC SC SC       | 4<br>7<br>7<br>6<br>46<br>6<br>7<br>4<br>4<br>6 | A A A A                                          | P             |
| COM-405<br>COM-503<br>CS-522<br>COM-407<br>COM-417<br>COM-404<br>EE-445 *<br>COM-405<br>COM-430<br>COM-512 | Mobile networks Performance evaluation Principles of computer systems TCP/IP networking  Spécialisation H "WIRELESS COMMUNICATIONS" Advanced probability and applications Information theory and coding Microwaves Mobile networks Modern digital communications : A hands-on approach Networks out of control (pas donné en 2020-21) | Hubaux Le Boudec Argyraki/Candea Le Boudec  Responsable: Prof. E. Telatar Lévêque Telatar Skrivervik Hubaux Rimoldi Thiran P./Grossglauser | SC SC/IN SC SC SC SC SC SC SC SC SC SC SC SC SC | 4 7 7 6 6 46 6 7 4 4 6 4 4                      | A A A A A                                        | P             |

# Légende :

<sup>\* =</sup> cours hors plan d'études pour les étudiants ne faisant pas la spécialisat A = automne, P = printemps - 1 semestre comprend 14 semaines

# 2020-2021 INFORMATIQUE - spécialisations

Les enseignants, les crédits et la période des cours sont indiqués sous réserve de modification.

| Code     |   | Matières                                                          | Enseignants                            | Sections     | Crédits |   | de des<br>urs |
|----------|---|-------------------------------------------------------------------|----------------------------------------|--------------|---------|---|---------------|
|          |   | Spécialisation I. "COMPUTER SCIENCE THEORY"                       | Responsable : Prof. O. Svensson        |              | 85      |   |               |
| CS-450   |   | Advanced algorithms                                               | Kapralov                               | IN           | 7       |   | P             |
| COM-417  |   | Advanced probability and applications                             | Lévêque                                | SC           | 6       |   | P             |
| MATH-460 | * | Combinatorial optimization                                        | Eisenbrand                             | MA           | 5       | Α |               |
| CS-524   |   | Computational complexity (pas donné en 2020-21)                   | Svensson                               | IN           | 4       | A |               |
| FIN-472  | * | Computational finance                                             | Pulido/Glau                            | IF           | 5       | Α |               |
| CS-453   |   | Concurrent algorithms                                             | Guerraoui                              | SC           | 5       | Α |               |
| MATH-461 | * | Convexity                                                         | Eisenbrand                             | MA           | 5       | Α |               |
| CS-451   |   | Distributed algorithms                                            | Guerraoui                              | SC           | 6       | Α |               |
| MATH-483 |   | Gödel and recursivity                                             | Duparc                                 | MA           | 5       | A |               |
| COM-404  |   | Information theory and coding                                     | Telatar                                | SC           | 7       | A |               |
| CS-433   |   | Machine learning                                                  | Jaggi/Flammarion                       | IN           | 7       | Α |               |
| COM-516  |   | Markov chains and algorithmic applications                        | Lévêque/Macris                         | SC           | 4       | Α |               |
| COM-300  | * | Modèles stochastiques pour les communications                     | Thiran                                 | SC           | 6       | Α |               |
| MATH-467 |   | Probabilistic methods in combinatorics                            | Marcus                                 | MA           | 5       | Α |               |
| CS-448   |   | Sublinear algorithms for big data analysis (pas donné en 2020-21) | Kapralov                               | IN           | 4       |   | P             |
| CS-455   |   | Topics in theoretical computer science                            | Kapralov                               | IN           | 4       | A |               |
|          |   | Spécialisation J. "INTERNET INFORMATION SYSTEMS"                  | Responsable : Prof. B. Faltings et Pro | f. K. Aberer | 64      |   |               |
| COM-401  |   | Cryptography and security                                         | Vaudenay                               | SC           | 7       | Α |               |
| CS-422   |   | Database systems                                                  | Ailamaki                               | IN           | 7       |   | P             |
| CS-451   |   | Distributed algorithms                                            | Guerraoui                              | SC           | 6       | Α |               |
| CS-423   |   | Distributed information systems                                   | Aberer                                 | SC           | 4       | A |               |
| CS-491   |   | Enterprise and service-oriented architecture                      | Wegmann                                | SC           | 6       |   | P             |
| CS-486   |   | Interaction design                                                | Pu                                     | IN           | 4       |   | P             |
| CS-430   |   | Intelligent agents                                                | Faltings                               | IN           | 6       | Α |               |
| CS-431   |   | Introduction to natural language processing                       | Rajman/Chappelier                      | IN           | 4       | Α |               |
| CS-433   |   | Machine learning                                                  | Jaggi/Flammarion                       | IN           | 7       | A |               |
| COM-512  |   | Networks out of control (pas donné en 2020-21)                    | Thiran P./Grossglauser                 | SC           | 4       |   | P             |
| COM-503  |   | Performance evaluation                                            | Le Boudec                              | SC           | 7       |   | P             |
| EE-593   |   | Social Media                                                      | Gillet/Holzer                          | EL           | 2       |   | P             |

# Légende

A = automne, P = printemps - 1 semestre comprend 14 semaines

 $<sup>\</sup>mbox{*}$  = cours hors plan d'études pour les étudiants ne faisant pas la spécialisation

# 2020-2021 Biocomputing Mineur interdisciplinaire

Section d'Informatique Responsable : Prof. M. Salathé

Les enseignants, les crédits et la période des cours sont indiqués sous réserve de modification. Les cours déjà suivis au bachelor ou au master ne peuvent pas être pris également dans un mineur.

53 crédits offerts

| Code      | Matières                                      | Enseignants        | Livret des cours | Crédits | Période | des cours |
|-----------|-----------------------------------------------|--------------------|------------------|---------|---------|-----------|
|           |                                               |                    |                  |         |         |           |
|           |                                               |                    |                  |         |         |           |
| CS-456    | Artificial neural networks                    | Gerstner           | IN               | 5       |         | P         |
| BIO-465   | Biological modeling of neural networks        | Gerstner           | IN               | 4       |         | P         |
| BIO-315   | Biomolecular structure and mechanics          | Dal Peraro         | SV               | 4       |         | P         |
| CS-432    | Computational motor control                   | Ijspeert           | SV               | 4       |         | P         |
| CS-423    | Distributed information systems               | Aberer             | SC               | 4       | A       |           |
| ENG-466   | Distributed intelligent systems               | Martinoli          | SIE              | 5       |         | P         |
| COM-502   | Dynamical system theory for engineers         | Thiran P.          | SC               | 4       | A       |           |
| MICRO-511 | Image processing I                            | Unser/Van De Ville | MT               | 3       | A       |           |
| MICRO-512 | Image processing II                           | Unser/Van De Ville | MT               | 3       |         | P         |
| BIO-109*  | Introduction aux sciences du vivant (pour IC) | Zufferey R.        | SV               | 6       |         | P         |
| CH-353    | Introduction to electronic structure methods  | Röthlisberger      | CGC              | 4       | A       |           |
| CS-433    | Machine learning                              | Jaggi/Flammarion   | IN               | 7       | A       |           |

<sup>\*</sup> Ce cours (ou cours équivalent) est obligatoire pour ce mineur s'il n'a pas été pris au bachelor / This course (or equivalent) is mandatory for this minor if not already taken into the bach D'autres cours peuvent être pris en approbation avec le Prof. Marcel Salathé / Other courses ca be taken, if approved ba Prof. Marcel Salathé

# Légende :

A = automne, P = printemps

1 semestre comprend 14 semaines.

# **Cyber security** 2020-2021 Mineur disciplinaire

Section d'Informatique Responsable: Prof. C. Troncoso

Les enseignants, les crédits et la période des cours sont indiqués sous réserve de modification. Les cours déjà suivis au bachelor ou au master ne peuvent pas être pris également dans un mineur. 82 crédits offerts

| Codes    | Matières (liste indicative)                           | Enseignants       | Livret des cours | Crédits |   | de des<br>urs |
|----------|-------------------------------------------------------|-------------------|------------------|---------|---|---------------|
| CS-450   | Advanced algorithms                                   | Kapralov          | IN               | 7       |   | P             |
| CS-470   | Advanced computer architecture                        | Ienne             | IN               | 6       |   | P             |
| COM-501  | Advanced cryptography*                                | Vaudenay          | SC               | 4       |   | P             |
| CS-101   | Advanced information, computation, communication I    | Aberer            | SC               | 7       | A |               |
| EE-431   | Advanced VLSI design                                  | Burg              | EL               | 4       |   | P             |
| MATH-310 | Algebra                                               | Lachowska         | MA               | 3       | A |               |
| CS-250   | Algorithms                                            | Svensson          | IN               | 6       | A |               |
| COM-208  | Computer networks                                     | Argyraki          | SC               | 5       | A |               |
| COM-301  | Computer security                                     | Troncoso          | IN               | 4       | A |               |
| COM-401  | Cryptography and security*                            | Vaudenay          | SC               | 7       | A |               |
| EE-429   | Fundamentals of VLSI Design                           | Burg              | EL               | 4       | A |               |
| COM-402  | Information security and privacy                      | Hubaux/Oechslin   | SC               | 6       | A |               |
| COM-405  | Mobile networks*                                      | Hubaux            | SC               | 4       |   | P             |
| CS-412   | Software security                                     | Payer             | IN               | 6       |   | P             |
| COM-506  | Student seminar: security protocols and applications* | Oechslin/Vaudenay | SC               | 3       |   | P             |
| COM-407  | TCP/IP Networking                                     | Le Boudec         | SC               | 6       | A |               |

# Crédits obligatoires

# Légende :

A = automne, P = printemps 1 semestre comprend 14 semaines.

<sup>\*</sup>pour le Mineur en Cyber Security, au moins 17 crédits parmi ces cours doivent obligatoirement être acquis.

<sup>\*</sup> For the Minor in Information Security it will be mandatory to accumulate at least 17 credits from these courses.

# 2020-2021 Informatique Mineur disciplinaire

# Section d'Informatique Responsable : Mme Sylviane Dal Mas

Les enseignants, les crédits et la période des cours sont indiqués sous réserve de modification. Les cours déjà suivis au bachelor ou au master ne peuvent pas être pris également dans un mineur.

140 crédits offerts

| Code              |    | Matières (liste indicative)                                   | Prérequis     | Enseignants               | Livret des cours | Crédits |        | de des<br>urs |
|-------------------|----|---------------------------------------------------------------|---------------|---------------------------|------------------|---------|--------|---------------|
| 00.050            |    | A) (1)                                                        |               |                           |                  |         |        |               |
| CS-250            |    | Algorithms                                                    |               | Svensson                  | IN               | 6       | A      |               |
| CS-208<br>COM-208 | 2  | Computer architecture I                                       |               | Stojilovic                | IN               | 4       | A      |               |
| CS-210            | 3  | Computer networks                                             |               | Argyraki                  | SC<br>IN         | 5<br>5  | A      |               |
| CS-210<br>CS-207  | _  | Functional programming                                        |               | Kuncak/Odersky            |                  | _       | Α      | P             |
| CS-207<br>CS-212  | 4  | -8,                                                           |               | Chappelier                | IN<br>IN         | 3       |        | P             |
| CS-212<br>CS-322  | 6  | Projet programmation système Introduction to database systems |               | Chappelier/Bugnion        | IN               |         |        | P             |
| CS-322<br>COM-301 | 7  | Computer security                                             | 3             | Ailamaki/Koch<br>Troncoso | IN               | 4       | Α.     | Р             |
| CS-323            | 8  |                                                               |               |                           | IN               | 5       | A      |               |
| CS-323<br>CS-305  | 9  | Introduction to operating systems                             | 4             | Payer<br>Candea           | IN               | 4       | A<br>A |               |
|                   | 9  | Software engineering                                          |               | Candea                    | IN               | -       | A      | P             |
| CS-306<br>CS-330  |    | Software development project Intelligence artificielle        | <u>4</u><br>1 | Faltings                  | IN               | 4       |        | P             |
| CS-341            |    | Introduction to computer graphics                             | 1             | Pauly                     | IN               | 6       |        | P             |
| CS-450            | 13 | Advanced algorithms                                           |               | Kapralov                  | IN               | 7       |        | P             |
| CS-450<br>CS-470  |    | Advanced algorithms Advanced computer architecture            |               | Ienne                     | IN               | 6       |        | -             |
| COM-401           |    | Cryptography and security                                     | *             | Vaudenay                  | SC               | 7       | Α      | р             |
| CS-422            |    | Database systems                                              |               | Ailamaki                  | IN               | 7       | A      | P             |
| CS-422<br>CS-438  |    | Decentralized systems engineering                             |               | Ford                      | IN               | 6       | Α      | Г             |
| CS-451            |    | Distributed algorithms                                        |               | Guerraoui                 | SC               | 6       | A      |               |
| CS-451            |    | Foundations of software                                       |               | Odersky                   | IN               | 4       | A      |               |
| COM-402           |    | Information security and privacy                              |               | Hubaux/Oechslin           | SC               | 6       | A      |               |
| CS-433            |    | Machine learning                                              |               | Jaggi/Flammarion          | IN               | 7       | A      |               |
| CS-433            |    | Advanced computer graphics                                    |               | Jakob                     | IN               | 6       | Л      | P             |
| CS-442            |    | Computer vision                                               |               | Fua                       | IN               | 4       |        | P             |
| CS-442<br>CS-430  |    | Intelligent agents                                            |               | Faltings                  | IN               | 6       | A      | 1             |
| CS-596            |    | Optional project in computer science                          | **            | Divers enseignants        | IN               | 8       |        | ou P          |
| CS-455            |    | Topics in theoretical computer science                        |               | Kapralov                  | IN               | 4       | A      |               |

<sup>\*\* -</sup> Inscription sur dossier; Seulement pour étudiants en 2ème année de Master; Superviser par un professeur en IC

# Légende :

A = automne, P = printemps 1 semestre comprend 14 semaines.

# RÈGLEMENT D'APPLICATION DU CONTRÔLE DES ÉTUDES DE LA SECTION D'INFORMATIQUE pour l'année académique 2020-2021 du 2 juin 2020

La direction de l'École polytechnique fédérale de Lausanne

vu l'ordonnance sur la formation menant au bachelor et au master de l'EPFL du 14 juin 2004,

vu l'ordonnance sur le contrôle des études menant au bachelor et au master à l'EPFL du 30 juin 2015,

vu le plan d'études de la section d'Informatique

arrête:

# Article premier - Champ d'application

Le présent règlement fixe les règles d'application du contrôle des études de bachelor et de master de la section d'Informatique qui se rapportent à l'année académique 2020-2021.

# Art. 2 - Étapes de formation

- 1 Le bachelor est composé de deux étapes successives de formation :
- le cycle propédeutique d'une année dont la réussite se traduit par 60 crédits ECTS acquis en une fois, condition pour entrer au cycle bachelor. Le cycle propédeutique est commun avec celui de la section de systèmes de communication.
- le cycle bachelor s'étendant sur deux ans dont la réussite implique l'acquisition de 120 crédits, condition pour entrer au master.
- 2 Le master effectué à l'EPFL est composé de deux étapes successives de formation :
- le cycle master d'une durée de 3 semestres dont la réussite implique l'acquisition de 90 crédits, condition pour effectuer le projet de master.
- le projet de master, d'une durée de 17 semaines à l'EPFL ou de 25 semaines hors EPFL (industrie ou autre haute école) et dont la réussite se traduit par l'acquisition de 30 crédits. Il est placé sous la responsabilité d'un professeur ou MER affilié à la section d'informatique ou de systèmes de communication.

# Art 3 – Sessions d'examen

- 1 Les branches de session sont examinées pendant les sessions d'hiver ou d'été. Elles sont mentionnées dans le plan d'études avec la mention H ou E.
- 2 Les branches de semestre sont examinées pendant le semestre d'automne ou le semestre de printemps. Elles sont mentionnées dans le plan d'études avec la mention sem A ou sem P.
- 3 Une branche annuelle, c'est-à-dire dont l'intitulé tient sur une seule ligne dans le plan d'étude, est examinée globalement pendant la session d'été (E).
- 4 Pour les branches de session, la forme écrite ou orale de l'examen indiquée pour la session peut être complétée par des

contrôles de connaissances écrits ou oraux durant le semestre, selon indications de l'enseignant.

# Chapitre 1 : Cycle propédeutique

# Art. 4 - Examen propédeutique

- 1 L'examen propédeutique comprend des branches « Polytechniques » pour 31 coefficients et des branches « Spécifiques » pour 29 coefficients, distribuées indifféremment sur deux blocs.
- 2 Le premier bloc de branches correspond à 38 coefficients et le second bloc de branches correspond à 22 coefficients.
- 3 L'examen propédeutique est réussi lorsque :
- l'étudiant a obtenu, à l'issue de la session d'hiver, une moyenne égale ou supérieure à 3.50 dans le premier bloc, condition pour entrer au semestre de printemps, et
- qu'il a obtenu, à l'issue de la session d'été, une moyenne égale ou supérieure à 4.00 dans chacun des deux blocs, condition pour entrer au cycle bachelor.
- 4 L'étudiant qui échoue l'examen propédeutique ne sera pas autorisé l'année suivante à répéter les branches de semestre pour lesquelles il a obtenu une note égale ou supérieure à 4.00.

# Chapitre 2: Cycle bachelor

# Art. 5 - Organisation

- 1 Les enseignements du bachelor sont répartis en cinq blocs, le groupe « projet », le groupe « options » et le bloc transversal SHS.
- 2 Le groupe « options » se compose de toutes les branches à option figurant dans la liste du plan d'études de 2<sup>ème</sup> année et 3<sup>ème</sup> année. 28 crédits doivent être obtenus individuellement dans le groupe « options », dont 5 crédits dans les options de 2<sup>ème</sup> année. Les crédits pris en supplément des 5 crédits exigés de 2<sup>ème</sup> année peuvent être validés comme crédits à options de 3<sup>ème</sup> année.
- 3 En 3ème année, des cours comptant pour un maximum de 10 crédits au total peuvent être choisis en dehors de la liste du plan d'études. Les cours pris en dehors de cette liste doivent être acceptés préalablement par le directeur de la section.

# Art. 6 - Examen de 2ème année

- 1 Les **14 crédits** du plan d'études sont obtenus lorsque le bloc A est réussi.
- 2 Les **17 crédits** du plan d'études sont obtenus lorsque le bloc B est réussi.
- 3 Les **20 crédits** du plan d'études sont obtenus lorsque le bloc C est réussi.

4 Les **5 crédits de 2**ème année du groupe « options » s'acquièrent de façon indépendante, par réussite individuelle de chaque branche.

## Art. 7 - Examen de 3e année

- 1 Les **17 crédits** du plan d'études sont obtenus lorsque le bloc D est réussi.
- 2 Les **8 crédits** du plan d'études sont obtenus lorsque le bloc E est réussi.
- 3 Les **8 crédits** du groupe « projet » s'acquièrent de façon indépendante, par réussite individuelle du projet.
- 4 Les **23 crédits de 3**ème année du groupe « options » s'acquièrent de façon indépendante, par réussite individuelle de chaque branche.

# Art. 8 - Examen de 2ème et 3ème années

Le bloc « SHS et MGT transversal » est réussi lorsque les 8 crédits du plan d'études sont obtenus.

# Chapitre 3: Cycle master

# Art. 9 - Organisation

- 1 Les enseignements du cycle master sont répartis en un bloc "Projets + SHS" et deux groupes dont les crédits doivent être obtenus de façon indépendante. Ils peuvent donner lieu à l'obtention d'une spécialisation ou d'un mineur.
- 2 Le Bloc "Projets + SHS" est composé d'un projet de 12 crédits et de l'enseignement SHS.
- 3 Le groupe 1 « Core courses » est composé des cours de la liste du plan d'études dans la rubrique « Master ».
- 4 Le groupe 2 « Options » est composé
  - des cours de la liste du groupe 2 « options » du plan d'études dans la rubrique « Master » ;
  - des crédits surnuméraires obtenus dans le groupe 1
     « Core courses » ;
  - d'un projet optionnel de 8 crédits suivant l'alinéa 5 ;
  - de cours hors plan d'études suivant l'alinéa 6 ;
  - de cours liés à une spécialisation ou un mineur suivant l'art.13,
- 5 Le projet du bloc "Projets et SHS" et le projet optionnel du groupe 2 « Options » ne peuvent être effectués dans le même semestre.
- 6 Des cours, comptant pour un maximum de 15 crédits au total, peuvent être choisis en dehors de la liste des cours sur le plan d'études dans la rubrique « Master ». Le choix de ces cours doit être accepté préalablement par le directeur de la section qui peut augmenter le maximum de 15 crédits si la demande est justifiée.

# Art. 10 - Examen du cycle master

- 1 Le bloc "Projets et SHS" est réussi lorsque **18 crédits** sont obtenus.
- Le groupe « Core courses et Options », composé du groupe
   1 « Core courses » et du groupe 2 « Options » est réussi lorsque
   72 crédits sont obtenus.
- 3 Le groupe 1 « Core courses » est réussi lorsqu'au moins 30 crédits sont obtenus.

# Art. 11 - Enseignement SHS

Les deux branches SHS donnent chacune lieu à 3 crédits. L'enseignement du semestre d'automne introduit à la réalisation du projet du semestre de printemps. Pour autant qu'il considère que le motif est justifié, le Collège des Humanités peut déroger à cette organisation. Il peut également autoriser à ce qu'un étudiant réalise son projet sur un semestre qui ne suit pas immédiatement celui dans lequel a lieu l'enseignement d'introduction.

# Art. 12 - Mineurs et spécialisations

- 1 Afin d'approfondir un aspect particulier de sa formation ou de développer des interfaces avec d'autres sections, l'étudiant peut choisir la formation offerte dans le cadre d'un mineur figurant dans l'offre de l'EPFL ou d'une spécialisation de la section d'Informatique.
- 2 Le choix des cours qui composent un mineur se fait avec la section d'informatique et avec le responsable du mineur. Les mineurs « Data Science », « Cyber security », « Informatique » et « Systèmes de communication » ne peuvent pas être choisis.
- 3 Le choix des cours qui composent une spécialisation est soumis, pour concertation à la section d'informatique.
- 4 L'étudiant annonce le choix d'un mineur à sa section au plus tard à la fin du premier semestre des études de master.
- 5 L'étudiant qui choisit une spécialisation dans la liste figurant dans le plan d'études s'inscrit au plus tard au début du troisième semestre des études de master.
- 6 Un mineur ou une spécialisation est réussi quand 30 crédits au minimum sont obtenus parmi les branches avalisées.

# Chapitre 4 : Stage et projet de master

# Art. 13 - Stage d'ingénieur

- 1 Les étudiants commençant leur cycle master doivent effectuer un stage d'ingénieur durant leur master :
- soit un stage d'été de minimum 8 semaines
- soit un stage de 6 mois en entreprise (en statut stage durant un semestre). Durant la période du COVID-19, la durée du stage peut être adaptée.

- soit un Projet de Master de 25 semaines en entreprise (valide le stage et le Projet de Master)
- 2 Le stage peut être effectué dès le 2<sup>ème</sup> semestre du cycle master, mais avant le projet de master.
- 3 L'étudiant ne peut pas faire de cours/projet en parallèle à son stage.
- 4 Le responsable du stage de la section évalue le stage, par l'appréciation « réussi » ou « non réussi ». Sa réussite sera une condition pour l'admission au projet de master. En cas de non réussite, il pourra être répété une fois, en règle générale dans une autre entreprise.
- 5 Il est validé avec les 30 crédits du projet de master.
- 6 Les modalités d'organisation et les critères de validation du stage font l'objet d'une directive interne à la section.

# Chapitre 5 : Spécialisation Enseignement

# Art. 14 - Spécialisation Enseignement

- 1. Les étudiants en Master Informatique ont la possibilité de suivre une spécialisation en informatique pour l'enseignement.
- 2. L'étudiant admis à cette spécialisation ne peut pas suivre de spécialisation ou de mineur. Le plan d'études est modifié comme suit : (i) Un nouveau groupe de 30 ECTS de cours à la HEP Vaud est rajouté et le nombre de ECTS du Cycle Master passe de 60 à 30 ECTS ; (ii) les cours SHS sont remplacés par un cours à la HEP Vaud ; (iii) le Projet de Master peut s'étaler sur deux semestres et commencer après que l'étudiant ait complété le bloc « Projets et SHS » et le groupe « Core courses » ; (iv) la durée maximale des études ne peut pas dépasser 8 semestres.
- 3. Au moins 50 ECTS doivent avoir été obtenus pour débuter la spécialisation.

# Art. 15 - Procédure d'admission

- 1. L'admission à cette spécialisation n'est pas automatique. Pour être admis à la spécialisation, le candidat doit être inscrit au Master en Informatique de l'EPFL et répondre aux conditions pour l'admission au Diplôme d'enseignement pour le degré secondaire II fixées par le Règlement d'application de la loi sur la HEP du 3 juin 2009 (RLHEP).
- 2. L'étudiant s'inscrit auprès de la HEP Vaud selon les conditions et délais de la candidature en ligne et transmet les pièces requises par le RLHEP ainsi qu'une attestation d'immatriculation à l'EPFL.

# Chapitre 6 : Mobilité

# Art. 16 - Périodes de mobilité autorisées

Les étudiants de la section d'informatique peuvent effectuer un séjour de mobilité en 3<sup>ème</sup> année de bachelor et/ou dans le cadre du projet de master.

# Art. 17 - Conditions

- 1 Pour une mobilité en 3ème année de bachelor, l'étudiant doit avoir réussi l'examen propédeutique avec une moyenne minimale de 4,5 et ne pas avoir de retard dans l'acquisition des 60 crédits de la 2ème année de bachelor.
- 2 Pour une mobilité au projet de master, l'étudiant doit avoir réussi le cycle master.
- 3 Des conditions spécifiques existant en fonction des destinations, l'accord du délégué à la mobilité est nécessaire pour partir en séjour de mobilité.

Au nom de la direction de l'EPFL

Le président, M. Vetterli Le vice-président pour l'éducation, P. Vandergheynst

Lausanne, le 2 juin 2020

#### INFORMATIQUE / CYBERSECURITE 2020-2021

# **Passerelle HES**

| Code      | Matière                                       | Enseignants            | Sections |    |     | Sem | estre |     |   |    | Période  | Type   |
|-----------|-----------------------------------------------|------------------------|----------|----|-----|-----|-------|-----|---|----|----------|--------|
|           |                                               | sous réserve           |          |    | AUT |     | l     | PRI |   |    | des      | examen |
|           |                                               | de modification        |          | c  | e   | p   | c     | e   | p |    | épreuves |        |
|           | D 10 1 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1       | 77. /                  |          |    |     |     |       |     |   |    |          |        |
|           | Proposition de cours 60 crédits du Bachelor p | our passer au Master : |          |    |     |     |       |     |   |    |          |        |
|           | Branches de bases                             |                        |          |    |     |     |       |     |   | 33 |          |        |
| CS-250    | Algorithms                                    | Svensson               | IN       | 4  | 2   |     |       |     |   | 6  | Н        | écrit  |
| MATH-203c | Analyse III                                   | Struett                | MA       | 2  | 2   |     |       |     |   | 4  | H        | écrit  |
| CS-208    | Computer architecture I                       | Stojilovic             | IN       | 2  |     | 2   |       |     |   | 4  | H        | écrit  |
| COM-208   | Computer networks                             | Argyraki               | SC       | 2  | 2   |     |       |     |   | 5  | Н        | écrit  |
| PHYS-114  | General physics : electromagnetism            | Dil                    | PH       | 2  | 2   |     |       |     |   | 4  | Н        | écrit  |
| MATH-232  | Probabilities and statistics                  | Abbé                   | MA       |    |     |     | 4     | 2   |   | 6  | E        | écrit  |
| CS-251    | Theory of computation                         | Göös                   | IN       |    |     |     | 2     | 2   |   | 4  | Е        | écrit  |
|           | Branches d'approfondissement                  |                        |          |    |     |     |       |     |   | 26 |          |        |
| CS-210    | Functional programming                        | Kuncak/Odersky         | IN       | 2  | 2   |     |       |     |   | 5  | Н        | écrit  |
| CS-322    | Introduction to database systems              | Ailamaki /Koch         | IN       |    |     |     | 2     | 1   | 1 | 4  | E        | écrit  |
| CS-323    | Introduction to operating systems             | Payer                  | IN       | 2  | 1   | 2   |       |     |   | 5  | Н        | écrit  |
| CS-206    | Parallelism and concurrency                   | Kuncak / Odersky       | IN       |    |     |     | 1     | 1   | 2 | 4  | sem P    |        |
| CS-305    | Software engineering                          | Candea                 | IN       | 2  | 1   | 1   |       |     |   | 4  | Н        | écrit  |
| CS-306    | Software development project                  | Candea                 | IN       |    |     |     |       |     | 4 | 4  | sem P    |        |
|           | Totaux                                        |                        |          | 18 | 12  | 5   | 9     | 6   | 7 | 59 |          |        |
|           | Totaux par semaine                            |                        |          |    | 35  |     |       | 22  |   |    |          |        |

Légende :

colonnes c/e/p: nb d'heures par semaine 1 semestre comprend 14 semaines. type examination: voir règlement d'application

# RÈGLEMENT D'APPLICATION DU CONTRÔLE DES ÉTUDES CONCERNANT LA PASSERELLE HES-EPFL

pour l'année académique 2020-2021 du 2 juin 2020

La direction de l'École polytechnique fédérale de Lausanne,

Vu l'art. 9 de l'ordonnance du Conseil des hautes écoles sur la coordination de l'enseignement du 29 novembre 2019;

Vu l'art. 11 de l'ordonnance concernant l'admission à l'EPFL du 8 mai 1995 ;

vu les art. 1 et 8 de la directive sur les programmes de master et les mineurs, du 17 octobre 2005 ;

vu l'ordonnance sur la formation menant au bachelor et au master de l'EPFL du 14 juin 2004 ;

vu l'ordonnance sur le contrôle des études menant au bachelor et au master à l'EPFL du 30 juin 2015 ;

arrête :

# Art. 1 - Passerelle HES-EPFL

- 1. Le présent règlement fixe les règles spécifiques à l'admission à la formation de master de l'EPFL sur la base d'un titre de bachelor HES (passerelle HES-EPFL; ci-après la passerelle) qui se rapportent à l'année académique 2019-2020. S'appliquent au surplus les règles d'études générales à l'EPFL, en particulier celles figurant dans son ordonnance sur le contrôle des études.
- 2. Le bachelor HES avec une moyenne minimale correspondant à la notation de 5.0 de l'EPFL permet l'admission à un master EPFL dans la discipline correspondante, avec condition de réussite de la passerelle.
- 3. La passerelle complète la formation HES par l'obtention à l'EPFL de 57 à 60 crédits en sciences de base, en ingénierie ou en architecture, suivant le master suivi.
- 4. Les branches permettant l'obtention des crédits de la passerelle sont divisées en un bloc de branches de base et un bloc de branches d'approfondissement. Chacun des deux blocs comprend entre 25 et 35 crédits.
- 5. Aux branches permettant d'acquérir les crédits de la passerelle, peuvent s'ajouter les éventuelles branches prérequises pour les branches du master suivi, conformément au livret de cours correspondant.
- 6. La réussite de la passerelle permet l'admission définitive au master. Elle ne donne lieu à aucun titre.

# Art. 2 - Inscription anticipée au master

Pour s'inscrire aux branches de master, au moins 30 crédits doivent être acquis dans les branches de la passerelle (branches prises individuellement).

# Art. 3 - Conditions de réussite de la passerelle

- 1. La passerelle est réussie lorsque ses crédits sont obtenus dans un délai de deux ans au maximum. Ces crédits sont obtenus par une moyenne des branches égale ou supérieure à 4.00 pour chacun des deux blocs de la passerelle.
- 2. L'obtention de moins de 30 crédits dans les branches de la passerelle (branches prises individuellement) au terme des examens de la première année entraîne un échec définitif.

# Art. 4 - Règles applicables en deuxième année

- 1. Celui qui doit obtenir des crédits manquants sur une deuxième année demeure soumis au règlement de passerelle qui se rapporte à sa première année (année d'admission à la passerelle).
- 2. La répétition d'une branche est exécutée conformément aux règles de la branche pour l'année de la répétition.

# Art. 5 - Période des cours et épreuves

- 1. Les cours de la passerelle débutent à la rentrée du semestre d'automne. L'entrée en cours d'année est exclue.
- 2. Conformément aux règles de l'EPFL,
  - les branches de session sont examinées aux sessions d'examens d'hiver ou d'été correspondantes avec d'éventuelles épreuves de semestre,
  - les branches de semestre sont examinées pendant le semestre correspondant, et
  - les branches annuelles sont examinées à la session d'examens d'été ponctuant l'année académique.

Au nom de la direction de l'EPFL

Le président, M. Vetterli Le vice-président pour l'éducation, P. Vandergheynst

Lausanne, le 2 juin 2020

# **EPFL**

# **INFORMATIQUE**

# Cycle Propédeutique

(1ère année)

2020 / 2021



# CS-101 Advanced information, computation, communication I

Aberer Karl

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Cyber security minor      | Н    | Opt. |
| Informatique              | BA1  | Obl. |
| Systèmes de communication | BA1  | Obl. |

# Remark

This course focuses on the foundational, discrete mathematics core of advanced computation.

# Summary

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics as diverse as mathematical reasoning, combinatorics, discrete structures & algorithmic thinking.

# Content

- I. Mathematical reasoning: propositional logic, propositional functions, quantifiers, rules of inference; this includes very basic logic circuits.
- II. Sets and counting: cardinalities, inclusion/exclusion principle, sequences and summations.
- III. Algorithms and complexity: basic algorithms, computational complexity, big-O notation and variants, countability.
- IV. Number representations such as binary and hexadecimal and (postponed to 2nd semester) basic number theory: modular arithmetic, integer division, prime numbers, hash functions, pseudorandom number generation; applications.
- V. Induction and recursion: mathematical induction, recursive definitions and algorithms.
- VI. Basic combinatorial analysis: permutations, binomial theorem, basic generating functions.
- VII. Basic probability: events, independence, random variables, Bayes' theorem.
- VIII. Structure of sets: relations, equivalence relations, power set.
- IX. (time permitting) Elementary graph theory: graphs, Euler and Hamilton paths, Dijkstra's algorithm, spanning trees.

# Keywords

Propositional logic, counting, complexity, big-O, number representations, sets, matrices, modular arithmetic, induction, basic probabilities, Bayes theorem, combinatorial analysis, recurrences, generating functions, countability, graph theory.

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Recognize if there is a mistake in a (simple) proof
- Apply general problem-solving techniques
- Recognize the mathematical structures present in applications
- Apply simple recursion and use it to design recursive algorithms
- Apply the tools studied in class to solve problems
- · Demonstrate familiarity with mathematical reasoning
- Solve linear recurrences and use generating functions
- Argue about (un)countability
- · Formulate complete, clear mathematical proofs



# Transversal skills

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Demonstrate the capacity for critical thinking

# **Teaching methods**

Ex cathedra lectures

# **Expected student activities**

Studying the book, test your understanding by making the exercises, ask questions

# Assessment methods

Final exam (100%), mostly (and possibly exclusively) multiple choice

# Supervision

Office hours No
Assistants Yes
Forum No

Others A list of students assistants and their contact data will be made available on the moodle page

for this course, along with an assignment of each registered student to one of the student

assistants.

If you have a question, first contact the student assistant assigned to you. If that does not help, contact one of the teaching assistants (Negar Foroutan, Banaei Mohammadreza). Furthermore, you are always welcome to drop me an email (karl.aberer@epfl.ch) for any type of question

related to this course or your study at EPFL.

Never hesitate to ask questions before, during or after the lectures!

# Resources

# **Bibliography**

"Discrete Mathematics and Its Applications", Kenneth H. Rosen, 8th ed, McGraw-Hill 2019. (You should be able to find the pdf on the web.)

# Ressources en bibliothèque

• Discrete mathematics and its applications / Rosen

# Websites

• http://will be provided later, if any

# **Moodle Link**

• http://will be provided later



# COM-102 Advanced information, computation, communication II

Gastpar Michael C., Rimoldi Bixio

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA2  | Obl. |
| Systèmes de communication | BA2  | Obl. |

Language English Coefficient Session Summer Semester Spring Written Exam Workload 210h Weeks 14 Hours 6 weekly 4 weekly Lecture Exercises 2 weekly Number of positions

# **Summary**

Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?

# Content

- I. How to measure information. Source and probability. Entropy per symbol. Source coding.
- II. Cryptography and information security. Modular arithmetic, modern algebra and number theory. The Chinese remainder theorem and RSA.
- III. Protecting information. A few finite fields. Linear speaces. Hamming distance. Linear codes. Reed-Solomon codes.

# Keywords

Shannon's entropy Linear codes Reed-Solomon codes Number theory Asymmetric Cryptography, RSA

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Understand Shannon's entropy
- Construct an optimal code
- Understand elementary number theory
- · Know what an abelian group is
- Recognize a hidden isomorphism
- Know how RSA works
- Know a few linear codes on simple finite fields

# Transversal skills

- Take feedback (critique) and respond in an appropriate manner.
- · Assess one's own level of skill acquisition, and plan their on-going learning goals.

# **Teaching methods**



# Ex cathedrra with exercises

# **Expected student activities**

Homework (written and grades) ever week.

# **Assessment methods**

Continuous evaluations 10% and final exam 90%

# Resources

# **Bibliography**

"Sciences de l'information", J.-Y. Le Boudec, R. Urbanke et P. Thiran, online

# Ressources en bibliothèque

• Introduction aux sciences de l'information : entropie, compression, chiffrement et correction d'erreurs / Le Boudec

# **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=851



# MATH-111(e) Algèbre linéaire

Urech Christian Lucius

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA1  | Obl. |
| Systèmes de communication | BA1  | Obl. |

| Langue Coefficient Session Semestre Examen Charge Semaines Heures Cours Exercices | français 6 Hiver Automne Ecrit 180h 14 6 hebdo 4 hebdo 2 hebdo |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------|
| Nombre de places                                                                  | 2 nebdo                                                        |
|                                                                                   |                                                                |

# Résumé

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

# Contenu

- 1. Systèmes linéaires
- 2. Algèbre matricielle
- 3. Espaces vectoriels
- 4. Bases et dimension
- 5. Applications linéaires et matrices
- 6. Le déterminant d'une matrice
- 7. Valeurs propres, vecteurs propres, et diagonalisation
- 8. Produit scalaire
- 9. Matrices orthogonales et matrices symétriques

# Mots-clés

espace vectoriel, linéarite, matrice, déterminant, orthogonalité, produit scalaire

# Compétences requises

Cours prérequis indicatifs

cours de base

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Effectuer des calculs standards en algèbre linéaire et en interprêter les résultats;
- Définir des concepts théoriques relevants de l'algèbre linéaire et en donner des exemples illustratifs;
- Identifier des exemples de concepts théoriques relevants de l'algèbre linéaire;
- Construire rigoureusement un raisonnement logique simple;
- Identifier quelques liens entre l'algèbre linéaire et d'autres branches des mathématiques.

# Méthode d'enseignement

Cours ex cathedra, exercices en salle

# Méthode d'évaluation

Algèbre linéaire Page 1 / 2



# examen écrit

# **Encadrement**

Office hours Non Assistants Oui Forum électronique Oui

# Ressources

# **Bibliographie**

Algèbre linéaire et applications, David C. Lay, 5e edition, editeur: Pearson, ISBN: 978-2-7613-9109-2

# Ressources en bibliothèque

• Algèbre linéaire et applications / Lay

# Préparation pour

Algèbre Linéaire II; Analyse II

Algèbre linéaire Page 2 / 2



# MATH-111(en) Algèbre linéaire (anglais)

Maddocks John H.

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Chimie et génie chimique                  | BA1  | Obl. |
| Génie civil                               | BA1  | Obl. |
| Génie mécanique                           | BA1  | Obl. |
| Génie électrique et électronique          | BA1  | Obl. |
| Informatique                              | BA1  | Obl. |
| Ingénierie des sciences du vivant         | BA1  | Obl. |
| Microtechnique                            | BA1  | Obl. |
| Science et génie des matériaux            | BA1  | Obl. |
| Sciences et ingénierie de l'environnement | BA1  | Obl. |
| Systèmes de communication                 | BA1  | Obl. |

| English 6 Winter Fall Written 180h 14 6 weekly 4 weekly 2 weekly |
|------------------------------------------------------------------|
| 308                                                              |
|                                                                  |

#### **Summary**

The purpose of the course is to introduce the basic notions of linear algebra and its applications.

#### Content

- 1. Linear systems;
- 2. Matrix algebra;
- 3. Vector spaces;
- 4. Bases and dimension;
- 5. Linear applications and matrices;
- 6. Determinant of a matrix;
- 7. Eigenvalues and eigenvectors;
- 8. Inner product, orthogonality, quadratic forms;
- 9. Orthogonal & Symmetric Matrices

# Keywords

vector space, linearity, matrix, determinant, orthogonality, inner product

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Accurately make standard computations relevant to linear algebra and interpret the results;
- Define and provide illustrative examples of relevant theoretical notions;
- Identify examples of relevant theoretical notions;
- Construct a simple logical argument rigorously;
- Identify some connections between linear algebra and other branches of mathematics.

# **Teaching methods**

Lectures and exercises in the classroom

# **Assessment methods**

Written exam

# Supervision



Office hours No
Assistants Yes
Forum No

# Resources

# **Bibliography**

Linear Algebra and its Applications / D.C. Lay etal, preferably 5th edition

# Ressources en bibliothèque

• Linear Algebra and its Applications / Lay

# Prerequisite for

Analysis II, III and IV, Numerical Analysis Statistics



# MATH-111(pi) Algèbre linéaire (classe inversée)

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Chimie et génie chimique                  | BA1  | Obl. |
| Génie civil                               | BA1  | Obl. |
| Génie mécanique                           | BA1  | Obl. |
| Génie électrique et électronique          | BA1  | Obl. |
| Informatique                              | BA1  | Obl. |
| Ingénierie des sciences du vivant         | BA1  | Obl. |
| Microtechnique                            | BA1  | Obl. |
| Science et génie des matériaux            | BA1  | Obl. |
| Sciences et ingénierie de l'environnement | BA1  | Obl. |
| Systèmes de communication                 | BA1  | Obl. |

| Langue      | français |
|-------------|----------|
| Coefficient | 6        |
| Session     | Hiver    |
| Semestre    | Automne  |
| Examen      | Ecrit    |
| Charge      | 180h     |
| Semaines    | 14       |
| Heures      | 6 hebdo  |
| Cours       | 4 hebdo  |
| Exercices   | 2 hebdo  |
| Nombre de   | 100      |
| places      |          |
|             |          |

# Remarque

Pas donné en 2020-21 Cours pilote merci de consulter http://go.epfl.ch/algebre-pilote avant de vous inscrire. En vous inscrivant, vous acceptez que des données sur votre apprentissage soient collectée

#### Résumé

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications. Cette classe pilote est donné sous forme inversée.

#### Contenu

- 1. Systèmes linéaires
- 2. Algèbre matricielle
- 3. Espaces vectoriels
- 4. Bases et dimension
- 5. Applications linéaires et matrices
- 6. Le déterminant d'une matrice
- 7. Valeurs propres, vecteurs propres, et diagonalisation
- 8. Produits scalaires et espaces euclidiens
- 9. Matrices orthogonales et matrices symétriques

# Mots-clés

espace vectoriel, linéarite, matrice, déterminant, orthogonalité, produit scalaire

# Compétences requises

# Cours prérequis indicatifs

cours de base

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Effectuer des calculs standards en algèbre linéaire et en interpréter les résultats;
- Définir des concepts théoriques relevants de l'algèbre linéaire et en donner des exemples illustratifs;
- Identifier des exemples de concepts théoriques relevants de l'algèbre linéaire;
- Construire rigoureusement un raisonnement logique simple;
- Identifier quelques liens entre l'algèbre linéaire et d'autres branches des mathématiques.



# Méthode d'enseignement

Cours ex cathedra, exercices en salle.

Le cours est sous forme classe inversée. L'étudiant devra se préparer aux séances en classe en suivant le cours sur le MOOC.

#### Méthode d'évaluation

Examen écrit

#### **Encadrement**

Office hours Non
Assistants Oui
Forum électronique Oui

#### Ressources

#### **Bibliographie**

Algèbre linéaire et applications, David C. Lay, 5e edition, editeur: Pearson, ISBN 978-2-7613-9109-2 (pas besoin de MonLab)

Algèbre linéaire et applications, David C. Lay, 4e edition, editeur: Pearson, ISBN: 978-2-7440-7583-4

# Ressources en bibliothèque

• Algèbre linéaire et applications / Lay

#### Sites web

• https://courseware.epfl.ch/courses/course-v1:EPFL+AlgebreLineaire+2018

#### **Liens Moodle**

- http://moodle.epfl.ch/course/search.php?search=MATH-111%28pi%29
- http://moodle.epfl.ch/course/view.php?id=15414

# Préparation pour

Suite des études en ingénierie.



# MATH-101(e) Analyse I

Lachowska Anna

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA1  | Obl. |
| Systèmes de communication | BA1  | Obl. |

#### Résumé

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

#### Contenu

- Raisonner, démontrer et argumenter en mathématiques
- Nombres, structures et fonctions
- Suites, limites et continuité
- Séries numériques
- Fonctions réelles et processus de limite
- Calcul différentiel et intégral

#### Mots-clés

nombres réels, fonction, suite numérique, suite convergente/divergente, limite d'une suite, sous-suite, fonction, limite d'une fonction, fonction continue, série numérique, série convergente/divergente, convergence absolue, dérivée, classe C^k, théorème(s) des accroissements finis, développement limité, série entière, intégrale de Riemann, primitive, théorème de la valeur moyenne

# Acquis de formation

- Le but fondamental de ce cours est d'acquérir les compétences suivantes :
- Raisonner rigoureusement pour analyser des problèmes
- Choisir ou sélectionner les outils d'analyse pertinents pour résoudre des problèmes
- Identifier les concepts inhérents à chaque problème
- Appliquer efficacement les concepts pour résoudre les exercices similaires aux exemples et exercices traités au cours
- Se montrer capable d'analyser et de résoudre des problèmes nouveaux
- Résoudre les problèmes de convergence, de suites et de séries
- Maîtriser les techniques du calcul différentiel et intégral
- Parmi les outils de base, on trouve les notions de convergence, de suites et de séries. Les fonctions d'une variable seront étudiées rigoureusement, avec pour but une compréhension approfondie des techniques du calcul différentiel et intégral.

#### Méthode d'enseignement

Cours ex cathedra et exercices en salle

# Méthode d'évaluation

Analyse I Page 1 / 2



#### Examen écrit

# **Encadrement**

Office hours Non
Assistants Oui
Forum électronique Non

Autres Tutorat des exercices

autres mesures à définir

# Ressources

# **Bibliographie**

Jacques Douchet and Bruno Zwahlen: Calcul différentiel et intégral. Volume 1. PPUR, 2016.

# Ressources en bibliothèque

- (version électronique)
- Calcul différentiel et intégral / Douchet & Zwahlen

Analyse I Page 2 / 2



# MATH-101(de) Analyse I (allemand)

#### Kressner Daniel

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Chimie et génie chimique                  | BA1  | Obl. |
| Génie civil                               | BA1  | Obl. |
| Génie mécanique                           | BA1  | Obl. |
| Génie électrique et électronique          | BA1  | Obl. |
| Informatique                              | BA1  | Obl. |
| Ingénierie des sciences du vivant         | BA1  | Obl. |
| Microtechnique                            | BA1  | Obl. |
| Science et génie des matériaux            | BA1  | Obl. |
| Sciences et ingénierie de l'environnement | BA1  | Obl. |
| Systèmes de communication                 | BA1  | Obl. |

| Langue Coefficient Session Semestre Examen Charge Semaines Heures Cours Exercices | allemand 6 Hiver Automne Ecrit 180h 14 6 hebdo 4 hebdo 2 hebdo |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------|
| Nombre de<br>places                                                               | 60                                                             |
| Heures Cours Exercices Nombre de                                                  | 6 hebdo<br>4 hebdo                                             |

#### Résumé

Es werden die Grundlagen der Analysis sowie der Differential- und Integralrechnung von Funktionen einer reellen Veränderlichen erarbeitet.

#### Contenu

- Mathematisches Begründen, Beweisen, und Argumentieren
- Funktionen
- Folgen, Grenzwerte und Stetigkeit
- Reihen
- Reelle Funktionen und Grenzwerte
- Differential- und Integralrechnung

# Mots-clés

Funktionen, Folge, konvergente/divergente Folge, Grenzwert einer Folge, Teilfolge, Grenzwert einer Funktion, stetige Funktion, Reihe, konvergente/divergente Reihe, absolute Konvergenz, Ableitung, Funktionsklasse C^k, Mittelwertsatz der Differentialrechnung, Taylor-Entwicklung, Potenzreihe, Riemann-Integral, Stammfunktion, Mittelwertsatz der Integralrechnung

# Acquis de formation

- Raisonner rigoureusement pour analyser des problèmes
- Choisir ou sélectionner les outils d'analyse pertinents pour résoudre des problèmes
- Identifier les concepts inhérents à chaque problème
- Appliquer efficacement les concepts pour résoudre les exercices similaires aux exemples et exercices traités au cours
- Résoudre les problèmes de convergence, de suites et de séries
- Analyser des problèmes nouveaux

# Compétences transversales

Analyse I (allemand) Page 1 / 2



- Utiliser une méthodologie de travail appropriée, organiser un/son travail.
- Auto-évaluer son niveau de compétence acquise et planifier ses prochains objectifs d'apprentissage.
- Gérer ses priorités.
- Persévérer dans la difficulté ou après un échec initial pour trouver une meilleure solution.

# Méthode d'enseignement

Vorlesungen und Tutorien

# Méthode d'évaluation

Schriftliche Klausur

#### **Encadrement**

Office hours Non
Assistants Oui
Forum électronique Oui

# Ressources

Service de cours virtuels (VDI)

Non

# **Polycopiés**

Ein ergänzendes deutschsprachiges Vorlesungsskript wird zur Verfügung gestellt.

Analyse I (allemand) Page 2 / 2



# MATH-101(en) Analyse I (anglais)

#### Svaldi Roberto

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Chimie et génie chimique                  | BA1  | Obl. |
| Génie civil                               | BA1  | Obl. |
| Génie mécanique                           | BA1  | Obl. |
| Génie électrique et électronique          | BA1  | Obl. |
| Informatique                              | BA1  | Obl. |
| Ingénierie des sciences du vivant         | BA1  | Obl. |
| Microtechnique                            | BA1  | Obl. |
| Science et génie des matériaux            | BA1  | Obl. |
| Sciences et ingénierie de l'environnement | BA1  | Obl. |
| Systèmes de communication                 | BA1  | Obl. |

| Language    | English  |
|-------------|----------|
| Coefficient | 6        |
| Session     | Winter   |
| Semester    | Fall     |
| Exam        | Written  |
| Workload    | 180h     |
| Weeks       | 14       |
| Hours       | 6 weekly |
| Lecture     | 4 weekly |
| Exercises   | 2 weekly |
| Number of   | 239      |
| positions   |          |

#### **Summary**

We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.

#### Content

- Reasoning, proving and arguing in mathematics
- Numbers, structures and functions
- Sequences, limit and continuity
- Series of reals
- Real-valued functions of a real variable and convergence
- Differential Calculus and the Integral

# Keywords

Real numbers, function, sequence, convergent/divergent sequence, limit, subsequence, limit of a function, continuous function, series of real numbers, convergent/divergent series, absolute convergence, derivative, class C^k, mean value theorem, Taylor's theorem, Taylor series, Riemann integral, indefinite integral, intermediate value theorem.

# **Learning Outcomes**

- The intended learning outcomes of this course are that students acquire the following capacities:
- Reason rigorously to analyse problems
- Choose appropriate analytical tools for problem solving.
- Be able to conceptualise in view of the applications of analysis.
- · Apply efficiently mathematical concepts for problem solving by means of examples and exercises
- Analyze and to solve new problems.
- Master the basic tools of analysis as, for example, notions of convergence, sequences and series.
- Studying rigorously real functions we intend that students will demonstrate a deep understanding of calculus

# **Teaching methods**

Ex cathedra/online lectures and exercise sessions with tutors and student assistants.

# **Assessment methods**

Analyse I (anglais) Page 1 / 2



Written exam

# Supervision

Office hours No
Assistants Yes
Forum No

Others Tutoring of exercises

other measures to be defined

Analyse I (anglais)

Page 2 / 2



# MATH-106(e) Analyse II

Lachowska Anna

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA2  | Obl. |
| Systèmes de communication | BA2  | Obl. |

| Langue Coefficient Session Semestre Examen Charge Semaines Heures Cours | français 6 Eté Printemps Ecrit 180h 14 6 hebdo 4 hebdo |
|-------------------------------------------------------------------------|--------------------------------------------------------|
|                                                                         |                                                        |
| Exercices                                                               | 2 hebdo                                                |
| Nombre de places                                                        |                                                        |

#### Résumé

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.

#### Contenu

- L'espace R^n
- Calcul différentiel des fonctions à plusieurs variables
- Intégrales multiples
- Équations différentielles ordinaires

#### Mots-clés

Espace vectoriel euclidien, , dérivée partielle, différentielle, matrice jacobienne, extremum local d'une fonction de plusieurs variables, matrice hessienne, développement limité, gradient, divergence, rotationnel, règle de composition, théorème des fonctions implicites, multiplicateurs de Lagrange, intégrale multiple, équation différentielle ordinaire

#### Compétences requises

Cours prérequis obligatoires

Analyse I, Algèbre linéaire I

Cours prérequis indicatifs

Analyse I, Algèbre linéaire I

# Concepts importants à maîtriser

- calcul différentiel et intégral des fonctions réelles d'une variable
- les notions de convergence
- espace vectoriel, matrices, valeurs propres

# Acquis de formation

- Le but fondamental de ce cours reste, comme pour la partie I, d'acquérir les capacités suivantes :
- Appliquer
- avec aisance et approfondir les compétences et connaissances acquises en Analyse I :
- Raisonner
- rigoureusement pour analyser les problèmes
- Choisir ou sélectionner

Analyse II Page 1 / 2



- les outils d'analyse pertinents pour résoudre des problèmes
- Identifier
- les concepts inhérents à chaque problème
- Appliquer
- efficacement les concepts pour résoudre les exercices similaires aux exemples et exercices traités au cours
- Se montrer capable d'analyser et de résoudre des problèmes nouveaux
- Maîtriser les techniques du calcul différentiel et intégral.
- Maîtriser les équations différentielles élémentaires, l'espace R^n, les fonctions de plusieurs variables, les dérivées partielles et les intégrales multiples.

# Méthode d'enseignement

Cours ex cathedra et exercices en salle

#### Méthode d'évaluation

Examen écrit

#### **Encadrement**

Office hours Non Assistants Oui Forum électronique Non

Autres Tutorat des exercices

autres mesures à définir

#### Ressources

#### **Bibliographie**

Jacques Douchet and Bruno Zwahlen: Calcul différentiel et intégral. PPUR, 2011. L'enseignant précisera les manuels recommandés dans son cours.

Analyse II Page 2 / 2



# MATH-106(en) Analyse II (anglais)

#### **Mountford Thomas**

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Chimie et génie chimique                  | BA2  | Obl. |
| Génie civil                               | BA2  | Obl. |
| Génie mécanique                           | BA2  | Obl. |
| Génie électrique et électronique          | BA2  | Obl. |
| Informatique                              | BA2  | Obl. |
| Ingénierie des sciences du vivant         | BA2  | Obl. |
| Microtechnique                            | BA2  | Obl. |
| Science et génie des matériaux            | BA2  | Obl. |
| Sciences et ingénierie de l'environnement | BA2  | Obl. |
| Systèmes de communication                 | BA2  | Obl. |

| Language Coefficient Session Semester Exam Workload Weeks | English 6 Summer Spring Written 180h |
|-----------------------------------------------------------|--------------------------------------|
| Hours<br>Lecture                                          | 6 weekly<br>4 weekly                 |
| Exercises                                                 | 2 weekly                             |
| Number of positions                                       | 230                                  |

# **Summary**

The course studies fundamental concepts of analysis and the calculus of functions of several variables.

#### Content

- -The Euclidean space R^n.
- -Vector functions and curves
- -Differentiation of functions of several variables.
- -Multiple integrals
- -Ordinary differential equations.

# **Keywords**

Euclidean vector space, partial derivative, differential, Jacobian, Hessian, Taylor expansion, gradient, chain rule, implicit function theorem, Lagrange multipliers, multiple integrals, ordinary differential equation

# **Learning Prerequisites**

Required courses

Analysis I, Linear Algebra I

# Important concepts to start the course

-

#### **Learning Outcomes**

- The goal of this course consists as for Analysis 1 is that students acquire the following capacities:
- Consolidate the skills and knowledge they acquired in Analysis 1.
- Reason
- rigorously and to analyse problems
- Choose
- appropriate analytical tools for problem solving.
- Conceptualize problems

Analyse II (anglais)



- Apply
- efficiently mathematical concepts for problem solving by means of examples and exercises
- Analyze
- and to solve new problems.
- Master the basic tools of analysis
- Master the basic tools of elementary ordinary differential equations, the Euclidean space R^n and functions of several variables

# **Teaching methods**

Ex cathedra lectures, exercises sessions in the classroom.

# **Assessment methods**

Written exam

# Supervision

Office hours No
Assistants Yes
Forum No

Others Tutoring of exercises

other measures to be defined

#### Resources

#### **Bibliography**

Jacques Douchet and Bruno Zwahlen: Calcul différentiel et intégral. PPUR, 2011.

# Websites

• http://mcss.epfl.ch/page-105207-en.html

Analyse II (anglais) Page 2 / 2



# CS-173 Digital system design

Kluter Ties Jan Henderikus

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA2  | Obl. |
| Systèmes de communication | BA2  | Obl. |

| Language            | English                |
|---------------------|------------------------|
| Coefficient         | 6                      |
| Session             | Summer                 |
| Semester            | Spring                 |
| Exam                | During the<br>semester |
| Workload            | 180h                   |
| Weeks               | 14                     |
| Hours               | 6 weekly               |
| Lecture             | 4 weekly               |
| Practical work      | 2 weekly               |
| Number of positions |                        |

#### **Summary**

The goal is to familiarize the students with the hardware components of computing systems, and to teach the modern methods of analysis and synthesis of combinational and sequential systems, with the assistance of high-level languages such as VHDL.

#### Content

- 1. Analog versus digital, logic: the principles and the operators.
- 2. Boolean algebra, combinational functions, and Karnaugh diagrams.
- 3. Sequential functions and their three representatives.
- 4. Coding, how do we interpret those bits.
- 5. Finite state machines.
- 6. Real gates and technology.
- 7. Programmable logic and their application.
- 8. Describing systems at a higher level by using a hardware description language (VHDL)
- 9. Application of the learned theory by practical problems.

#### **Keywords**

Digital system design, logic gates, Boolean algebra, gates, flip-flops, latches, FPGA, CPLD, FSM, coding, VHDL

#### **Learning Prerequisites**

Required courses

None

Recommended courses

None

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Identify sequential and combinational logic functions
- Recognize logic functions, gates, latches, and flipflops
- Describe simple digital systems in VHDL
- · Analyze digital systems either described in VHDL or implemented with gates
- Implement a digital system from a problem description

Digital system design Page 1 / 2



- Solve boolean equations and number system problems
- Design a complete digital system that runs on FPGA
- Detect differences between the theory and the practical application

#### Transversal skills

- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Use both general and domain specific IT resources and tools
- · Access and evaluate appropriate sources of information.

# **Teaching methods**

Course ex cathedra, exercises and practical laboratory projects

#### **Expected student activities**

The student must attend the course, prepare and solve the exercises, prepare and carry out the laboratory projects

#### **Assessment methods**

Midterm test (40%) Final test (40 %) Midterm practical project (10%) Final practical project (10%)

#### Supervision

Office hours No
Assistants Yes
Forum Yes

## Resources

# Virtual desktop infrastructure (VDI)

Yes

# **Bibliography**

W. J. Dally and R. C. Harting, Digital design: A systems approach, Cambridge University Press, 2012J. Wakerly, Digital design (4th edition), Prentice Hall, 2005P. J. Ashenden, The student's guide to VHDL (2nd edition), Morgan Kaufmann, 2008C. Maxfield, Bebop to the boolean boogie: An unconventional guide to electronics (3rdedition), Newnes, 2008

# Ressources en bibliothèque

- C. Maxfield, Bebop to the boolean boogie: An unconventional guide to electronics (3rd ed)
- W. J. Dally and R. C. Harting, Digital design : A systems approach
- J. Wakerly, Digital design (4th ed)
- P. J. Ashenden, The student's guide to VHDL (2nd ed)

# Notes/Handbook

All material is available on moodle including:

- SlidesTheory bookletExercisesOld exams
- Prerequisite for

Computer Architecture I (CS-208) Computer Architecture II (CS-209)

Digital system design Page 2 / 2



# CS-107 Introduction à la programmation

Sam Jamila

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Auditeurs en ligne        | Н    | Obl. |
| Informatique              | BA1  | Obl. |
| Systèmes de communication | BA1  | Obl. |

| Langue Coefficient Session Semestre Examen Charge Semaines Heures Cours Exercices | français 5 Hiver Automne Ecrit 150h 14 5 hebdo 2 hebdo 3 hebdo |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                                                   |                                                                |
| Nombre de places                                                                  |                                                                |

#### Résumé

Ce cours aborde les concepts fondamentaux de la programmation et de la programmation orientée objet (langage JAVA). Il permet également de se familisarier avec un environnement informatique (station de travail sous UNIX)

#### Contenu

- Introduction à l'environnement UNIX (connection, multi-fenêtrage, édition de textes, email, ...), éléments de base du fonctionnement d'un système informatique et prise en main d'un environnement de programmation (éditeur, compilateur, ...).
- Initiation à la programmation (langage JAVA) : variables, expressions, structures de contrôle, modularisation, entrées-sorties
- Introduction à la programmation objet (langage JAVA) : objets, classes, méthodes, encapsulation, héritage, polymorphisme
- Pratique de concepts algorithmques fondamentaux (récursion, recherche, tri etc.).

# Mots-clés

Java, programmation orientée-objet, Unix.

# Compétences requises

Cours prérequis obligatoires

Aucun

Cours prérequis indicatifs

Aucun

Concepts importants à maîtriser

Aucun

# Acquis de formation



A la fin de ce cours l'étudiant doit être capable de:

- Concevoir des algorithmes résolvant des tâches simples
- Transcrire un algorithme en son programme équivalent en Java
- Modéliser en langage Java une situation simple du monde réelle
- Structurer un problème complexe en sous-problèmes
- Analyser un code pour en décrire le résultat ou le corriger
- Argumenter la validité de décision de conception de base dans un programme orienté-objet
- Tester l'adéquation du résultat d'un programme par rapport à la tâche visée
- Réaliser de façon autonome une application de petite taille au moyen du langage Java et en utilisant les concepts fondamentaux de la programmation orientée objet

## Compétences transversales

- Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.
- Persévérer dans la difficulté ou après un échec initial pour trouver une meilleure solution.
- Utiliser une méthodologie de travail appropriée, organiser un/son travail.
- Accéder aux sources d'informations appropriées et les évaluer.

# Méthode d'enseignement

Ex cathedra, travaux pratiques sur ordinateur et support en ligne MOOC

#### Travail attendu

participation au cours, résolutions d'exercices.

#### Méthode d'évaluation

- 1- Examen écrit individuel (40%)
- 2- Mini-projet 1 (20%)
- 3- Mini-projet 2 (40%)

Les mini-projets se font à deux.

#### **Encadrement**

Office hours Non Assistants Oui Forum électronique Oui

#### Ressources

Service de cours virtuels (VDI)

Oui

# **Bibliographie**

Notes de cours disponibles en ligne. Livre(s) de référence indiqué(s) en début de semestre

# Préparation pour

Pratique de la programmation orientée-objet (CS-108)



# PHYS-101(c) Physique générale : mécanique

Bréchet Sylvain

| Cursus                   | Sem. | Type |
|--------------------------|------|------|
| Chimie et génie chimique | BA1  | Obl. |
| Informatique             | BA1  | Obl. |

| Langue Coefficient Session Semestre Examen Charge Semaines Heures Cours Exercices | français 6 Hiver Automne Ecrit 180h 14 6 hebdo 3 hebdo 3 hebdo |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------|
| Nombre de places                                                                  |                                                                |

#### Résumé

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de prévoir quantitativement les conséquences de ces phénomènes avec des outils théoriques appropriés.

#### Contenu

**Introduction et Cinématique :** référentiels, trajectoire, vitesse, accélération, coordonnées cartésiennes et cylindriques. **Dynamique du point matériel :** quantité de mouvement, lois de Newton, forces fondamentales, empiriques et de liaison, mouvement oscillatoire, moment cinétique.

**Travail, puissance, énergie :** énergies cinétique, potentielle, mécanique, lois de conservation, mouvements gravitationnels, collisions.

Changement de référentiels : dynamique dans les référentiels non inertiels Dynamique des systèmes : centre de masse, moment cinétique, énergie Solide indéformable : moment cinétique, moment d'inertie, effets gyroscopiques

#### Compléments

L'enseignement peut contenir, mais pas exclusivement, les éléments suivants: mécanique analytique, coordonnées sphériques, relativité restreinte

#### Mots-clés

Physique générale, mécanique du point matériel, mécanique du solide, coordonnées, cinématique, relativité, énergie, travail

# Compétences requises

# Cours prérequis indicatifs

- Niveau mathématique de la maturité fédérale, voir par exemple "www.vsmp.ch/crm/cat.htm"
- "Savoir-Faire en Maths bien commencer ses études scientifiques", Y. Biollay, A. Chaabouni, J. Stubbe, PPUR, 2010

#### Concepts importants à maîtriser

Espace vectoriel, produit scalaire et produit vectoriel, dérivation et intégration d'une fonction réelle, équations différentielles ordinaires

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:



- Elaborer un modèle physique d'un système mécanique
- Démontrer un savoir-faire dans la résolution de problèmes
- Structurer les modèles en termes d'équations différentielles
- Formuler et utiliser des hypothèses simplificatrices pour décrire une expérience
- Utiliser les modèles théoriques qui décrivent la Nature
- Estimer les ordres de grandeur
- Relier les notions de cours et les observations du monde quotidien

# Compétences transversales

• Utiliser une méthodologie de travail appropriée, organiser un/son travail.

#### Méthode d'enseignement

Cours, exercices en salle et travail personnel

#### Méthode d'évaluation

Examen écrit à la session d'hiver

#### Ressources

#### **Bibliographie**

- Traité de Physique: La Mécanique. J.-Ph. Ansermet, PPUR 2009
- Physique Générale (vol.1) 2ème édition, Alonso & Finn, InterEditions, Paris, 1988
- Physics for scientists and engineers, 4ème édition, Giancoli. International Edition, Prentice Hall
- Conceptual Physics, 10th edition, Paul G. Hewitt, City college San Francisco, 2005
- Mooc-Mécanique de l'EPFL, J.-Ph. Ansermet, www.coursera.org, 2013

# Ressources en bibliothèque

- La Mécanique / Ansermet
- Physics for scientists and engineers / Giancoli
- Conceptual Physics / Hewitt
- Mooc-Mécanique / Ansermet
- Physique Générale / Alonso

# **Polycopiés**

"Ma Physique", Vol. 1 (polycopié), Giorgio Margaritondo

# Sites web

• http://moodle.epfl.ch/course/view.php?id=14244

# **Liens Moodle**

• http://moodle.epfl.ch/course/view.php?id=14244

# Préparation pour

Physique générale II



# PHYS-101(de) Physique générale : mécanique (allemand)

Gruetter Rolf

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Chimie et génie chimique                  | BA1  | Obl. |
| Génie civil                               | BA1  | Obl. |
| Génie mécanique                           | BA1  | Obl. |
| Génie électrique et électronique          | BA1  | Obl. |
| Informatique                              | BA1  | Obl. |
| Ingénierie des sciences du vivant         | BA1  | Obl. |
| Microtechnique                            | BA1  | Obl. |
| Science et génie des matériaux            | BA1  | Obl. |
| Sciences et ingénierie de l'environnement | BA1  | Obl. |
| Systèmes de communication                 | BA1  | Obl. |

| Langue Coefficient Session Semestre Examen Charge Semaines Heures Cours Exercices Nombre de | allemand 6 Hiver Automne Ecrit 180h 14 6 hebdo 3 hebdo 3 hebdo 60 |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Nombre de<br>places                                                                         | 60                                                                |
|                                                                                             |                                                                   |

#### Résumé

Die Studenten erwerben die Grundkenntnisse zum Verständnis von physikalischen Phänomenen der Mechanik. Sie entwickeln die Fähigkeit, die Auswirkungen dieser Phänomene mit den entsprechenden theoretischen Werkzeugen quantitativ zu bestimmen.

#### Contenu

**Enleitung und Kinematik**: Abschätzen von Grössenordnungen, physikalische Denkweise, Bezugssysteme, Bahnkurve, Geschwindigkeit, Beschleunigung, kartesische und zylindrische Koordinatensysteme

**Dynamik des Massenpunktes**: Impuls, Newton's Axiome, grundlegende und empirische Kräfte(verhältnisse), Mechanische Schwingungen, Drehimpuls.

Arbeit, Leistung, Energie: Kinetische, potentielle und mechanische Energie, Erhaltungssätze, Gravitation. Kollisionen.

Aenderung der Bezugssysteme: beschleunigte Bezugssysteme Mechanik von Systemen: Massenzentrum, (Dreh)impuls, Energie

Mechanik starrer Körper: Drehimpuls, Trägheitsimpuls, Hebelgesetz, gyroskopische Effekte

**Ergänzungen:** Der Stoff kann folgende nicht-inklusive Elemente beinhalten: sphärische Koordinatensystem, Einführung in die spezielle Relativitätstheorie

# Mots-clés

Allgemeine Physik, Koordinaten, Kinematik, Energie, Arbeit, Mechanik des starren Körpers, Koordinaten, Relativität.

# Compétences requises

# Cours prérequis indicatifs

Ausgezeichnete Grundkenntnisse der Mathematik Niveau Schweizerische Maturitätsprüfung (zB. http://www.math.ch/kanon/)

# Concepts importants à maîtriser

**Vektoralgebra**: Skalar- und Vektorprodukt, Zerlegen von Vektoren. Beziehungen des rechtwinkligen Dreiecks.

Lösung von linearen Gleichungsystemen mit 2 oder 3 Unbekannten.

Integration/Differentiation von Funktionen und Vektoren.

Umwandlung physikalischer Einheiten

#### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:



- Erstellen eines physikalischen Modells eines mechanischen Systems.
- Know-how entwickeln, um ein Problem zu lösen
- Erkennen der korrekten Einheiten
- Beurteilen benutzter vereinfachender Annahmen
- Identifizieren des vorhergesehenen qualtitativen Verhaltens
- Abschätzen von Größenordnungen
- Zusammenhänge zwischen Vorlesung und Alltag erkennen
- Berücksichtigen der signifikanten Stellen
- Herleiten der Bewegungsgleichungen

#### Compétences transversales

• Utiliser une méthodologie de travail appropriée, organiser un/son travail.

# Méthode d'enseignement

Kurs, Ubungen im Saal und persönliche Arbeit.

#### Travail attendu

Neben der Vorlesung und Ubungs-sessionen (Diese Zeitangaben können von der geleisteten Vorbereitung aufs Studium und der Qualität der Arbeitsorganisation abhangen):

Vor der Vorlesung, ca. 2 bis 3 Seiten im Vorlesungswerk lesen (ca. 15 min)

Nach der Vorlesung, eine ZUsammenfassung/Formelsammlung erstellen (ca. 30 min.), gefolt von mehreren Vorbereitungsübungen (ca. 60 min)

Ubungen vervollständigen (ca. 3 h), online quiz beantworten (ca. 15 min)

# Méthode d'évaluation

schriftliche Prüfung

# **Encadrement**

Office hours Oui Assistants Oui Forum électronique Non

# Ressources

#### **Bibliographie**

- Physics for scientists and engineers, 4ème édition, Giancoli. International Edition, Pearson/Prentice Hall
- Mathematics for physics with calculus, Das, Pearson/Prentice Hall
- W. Demtröder, Experimentalphysik 1, Springer Verlag

# Ressources en bibliothèque

•

#### Sites web

• http://lifmet.epfl.ch

#### **Liens Moodle**



• http://moodle.epfl.ch/course/view.php?id=14481

# Préparation pour

Physique générale - thermodynamique



# PHYS-101(en) Physique générale : mécanique (anglais)

Manley Suliana

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Chimie et génie chimique                  | BA1  | Obl. |
| Génie civil                               | BA1  | Obl. |
| Génie mécanique                           | BA1  | Obl. |
| Génie électrique et électronique          | BA1  | Obl. |
| Informatique                              | BA1  | Obl. |
| Ingénierie des sciences du vivant         | BA1  | Obl. |
| Microtechnique                            | BA1  | Obl. |
| Science et génie des matériaux            | BA1  | Obl. |
| Sciences et ingénierie de l'environnement | BA1  | Obl. |
| Systèmes de communication                 | BA1  | Obl. |

#### **Summary**

Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the capacity to quantitatively analyze these effects with the appropriate theoretical tools.

#### Content

The course may contain, but not exclusively, the following elements:

#### **Mechanics**

# Introduction and kinematics

Reference frames, trajectories, velocity, acceleration, Cartesian, spherical and cylindrical coordinates.

# Dynamics of the point mass and solid body

Momentum, Newton's laws, fundamental forces, empirical forces and constraints. Oscillatory motion, Angular momentum.

# Work, power, energy

Kinetic energy, potential energy, conservation laws, gravitational motion. Collisions.

#### Keywords

General physics, point masses, coordinates, kinematics, energy, work

#### **Learning Prerequisites**

#### **Recommended courses**

Math level required for "maturité fédérale", see on the left the hyperlinks and the book, indicative of the level of math appropriate for a good start at EPFL.

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Develop a know-how to solve a problem
- Structure models in terms of differentials equations
- Apply simplifying assumptions to describe an experience



- Estimate orders of magnitude
- Distinguish the theoretical models describing Natura
- Contextualise theoretical models in every day life
- Formulate a physical model

#### Transversal skills

• Use a work methodology appropriate to the task.

# **Teaching methods**

Lectures + exercises

#### **Assessment methods**

The course concludes with a written exam

#### Resources

# **Bibliography**

- Serway, Physics for Scientists and Engineers.
- Douglas Giancoli. Physics for Scientists and Engineers. 4th Edition.
- D. Halliday, R. Resnick, K. S. Krane. Physics, Volume 1.

# Ressources en bibliothèque

- Serway, Physics for Scientists and Engineers.
- D. Halliday, R. Resnick, K. S. Krane. Physics, Volume 1
- Douglas Giancoli. Physics for Scientists and Engineers. 4th Edition

# Prerequisite for

General physics II



# CS-108 Pratique de la programmation orientée-objet

Schinz Michel

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA2  | Obl. |
| Systèmes de communication | BA2  | Obl. |

| Langue      | français   |
|-------------|------------|
| Coefficient | 9          |
| Session     | Eté        |
| Semestre    | Printemps  |
| Examen      | Pendant le |
|             | semestre   |
| Charge      | 270h       |
| Semaines    | 14         |
| Heures      | 10 hebdo   |
| Cours       | 2 hebdo    |
| Exercices   | 2 hebdo    |
| Projet      | 6 hebdo    |
| Nombre de   |            |
| places      |            |
|             |            |

#### Résumé

Les étudiants perfectionnent leurs connaissances en Java et les mettent en pratique en réalisant un projet de taille conséquente. Ils apprennent à utiliser et à mettre en œuvre les principaux types de collections (listes, ensembles, tables associatives), et examinent quelques patrons de conception.

#### Contenu

Approfondissement des connaissances du langage Java, en particulier de la généricité (polymorphisme paramétrique), des classes imbriquées et anonymes et des lambdas.

Introduction à différents aspects de la bibliothèque standard Java : collections, entrées-sorties, interfaces utilisateur graphiques, etc.

Etude des mises en œuvre des collections par chaînage, arbres binaires de recherche ou hachage.

Introduction aux patrons de conception (design patterns) et examen des plus importants (Decorator, Composite, Builder, etc.).

Examen de l'utilisation judicieuse de l'héritage et de l'immuabilité.

Réalisation d'un projet de programmation conséquent en Java.

# Mots-clés

Java, programmation orientée-objets, collections, patrons de conception.

# Compétences requises

# Cours prérequis obligatoires

Introduction à la programmation.

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Concevoir et écrire des programmes Java de taille moyenne.
- Utiliser à bon escient la totalité des concepts de Java.
- Utiliser et concevoir des classes et méthodes génériques en Java.
- Utiliser et mettre en oeuvre les principales sortes de collection (listes, ensembles, tables associatives).
- Utiliser judicieusement l'héritage et l'immuabilité dans les langages orienté-objets.
- Reconnaitre et savoir utiliser plusieurs patrons de conception.

#### Compétences transversales



• Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.

# Méthode d'enseignement

Ex-cathedra.

# Travail attendu

Participation au cours, réalisation des exercices, réalisation du projet.

# Méthode d'évaluation

Durant le semestre : projet (60%), examen intermédiaire (15%) et examen final (25%).

#### **Encadrement**

Office hours Non Assistants Oui Forum électronique Oui

# Ressources

Service de cours virtuels (VDI)

Oui

# Ressources en bibliothèque

- Java Generics and Collections / Naftalin
- Effective Java / Bloch

# Sites web

• https://cs108.epfl.ch/

# **EPFL**

# INFORMATIQUE

# Cycle Bachelor

(2ème année et 3ème année)

2020 / 2021



# MATH-310 Algebra

Lachowska Anna

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Chimie                    | BA5  | Obl. |
| Cyber security minor      | Н    | Opt. |
| HES -SC                   | Н    | Obl. |
| Informatique              | BA5  | Opt. |
| Systèmes de communication | BA5  | Obl. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture | English 3 Winter Fall Written 90h 14 3 weekly 2 weekly |
|---------------------------------------------------------------------|--------------------------------------------------------|
| Lecture                                                             | 2 weekly                                               |
| Exercises                                                           | 1 weekly                                               |
| Number of positions                                                 |                                                        |

#### **Summary**

Study basic concepts of modern algebra: groups, rings, fields.

#### Content

- Algebraic structures: sets, groups, rings, fields.
- Groups. Subgroups. Homomorphisms of groups, normal subgroups, quotients. Cyclic groups, symmetric groups. Classification of finite abelian groups.
- Rings. Homomorphisms of rings. Ideals, principal, prime and maximal ideals, principal ideal domains. Quotient rings. The Chinese remainder theorem.
- Examples of rings. Integers. basic properties. Euler's and Fermat's theorems. Polynomial rings. GCD, unique factorization.
- Fields. Finite fields. Characteristic of a field.

#### Keywords

Group, homomorphism, subgroup, normal subgroup, quotient group, cyclic group, symmetric group, order of the group, order of an element in the group, finite abelian groups. Ring, ideal, principal ideal, maximal ideal, unique principal ideal domain, Euler's totient function, field, finite field, characteristic of a field.

# **Learning Prerequisites**

Required courses

Linear Algebra I, Analyse I

#### Recommended courses

Linear Algebra I, Analyse I, Analyse II

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Apply concepts and ideas of the course
- Reason rigorously using the notions of the course
- Choose an appropriate method to solve problems
- Identify the concepts relevant to each problem
- · Apply concepts to solve problems similar to the examples shown in the course and in problem sets
- Solve new problems using the ideas of the course

Algebra Page 1 / 2



• Implement appropriate methods to investigate the structure of a given group, ring or field, and study their properties

## **Teaching methods**

Lectures and exercise sessions

#### **Assessment methods**

Three short in-class tests (15% of the grade) Written exam (85 % of the grade)

# Supervision

Office hours No
Assistants Yes
Forum No

# Resources

#### **Bibliography**

- 1. D.S. Dummit, R. M. Foote, Abstract Algebra. Wiley, Third Edition
- 2. S. Lang, Undergraduate Algebra. Undergraduate texts in Mathematics. Springer-Verlag, Inc. New York, second edition, 1990.
- 3. L. Childs, A Concrete Introduction to Higher Algebra. Undergraduate texts in Mathematics, Springer-Verlag, Inc. New York, 1995.

# Ressources en bibliothèque

- Undergraduate Algebra / Lang
- · A Concrete Introduction to Higher Algebra / Childs
- Abstract algebra /Dummit

#### Notes/Handbook

Complete lecture notes will be available in PDF

#### **Moodle Link**

https://moodle.epfl.ch/course/view.php?id=15441

Algebra Page 2 / 2



# CS-250 Algorithms

# Svensson Ola Nils Anders

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Cyber security minor                | Н        | Opt. |
| HES - IN                            | Н        | Obl. |
| HES -SC                             | Н        | Obl. |
| Informatique                        | BA3      | Obl. |
| Mathématiques                       | BA5      | Opt. |
| Mineur en Data science              | Н        | Opt. |
| Mineur en Informatique              | Н        | Opt. |
| Mineur en Systèmes de communication | Н        | Opt. |
| Science et ing. computationelles    | MA1, MA3 | Opt. |
| Systèmes de communication           | BA3      | Obl. |
|                                     |          |      |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of positions | English 6 Winter Fall Written 180h 14 6 weekly 4 weekly 2 weekly |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|

#### **Summary**

The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, major algorithmic paradigms such as dynamic programming, sorting and searching, and graph algorithms.

#### Content

#### **Mathematical Induction**

• Mathematical background, Euler's formula for trees, Schwartz-Zippel lemma.

#### **Analysis of Algorithms**

• O-notation, time and space complexity, recurrence relations, probabilistic analysis.

# Data structures

· Arrays, linked lists, trees, heaps, hashing, graphs.

# Design of algorithms by induction

· Evaluating polynomials, divide-and-conquer algorithms, dynamic programming.

#### **Greedy Algorithms**

• Spanning tree and shortest path algortihms

# Sorting and searching

• Merge sort, bucket sort, quicksort, heapsort, binary search.

# Graphs algorithms and data structures

• Graphs traversals, shortest paths, spanning trees, transitive closure, decompositions, matching, network flows.

# Complexity

· Polynomial reductions, NP-completeness.

# Keywords

Algorithms Page 1 / 2



algorithms, data structures, efficiency, problem solving

# **Learning Prerequisites**

#### **Recommended courses**

Advanced ICC I

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Illustrate the execution of algorithms on example inputs
- Describe basic data structures such as arrays, lists, stacks, queues, binary search trees, heaps, and hash tables
- · Analyze algorithm efficiency
- Compare alternative algorithms and data structures with respect to efficiency
- Choose which algorithm or data structure to use in different scenarios
- Use algorithms and data structures taught in the course on concrete problem instances
- Design new algorithms and data structures based on known methods
- Prove the correctness of an algorithm

# **Teaching methods**

Ex cathedra lecture, exercises in classroom

#### **Assessment methods**

- Programming exercises (15%)
- Theoretical homework (15%)
- Final exam (70%)

# Resources

## **Bibliography**

Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein: *Introduction to algorithms*, Third Edition, MIT Press, 2009.

# Ressources en bibliothèque

• Introduction to algorithms / Cormen

Algorithms Page 2 / 2



# MATH-203(c) Analyse III

#### Strütt David

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| HES - IN                                  | Н    | Obl. |
| HES - SIE                                 | Н    | Obl. |
| HES -SC                                   | Н    | Obl. |
| Informatique                              | BA3  | Obl. |
| Sciences et ingénierie de l'environnement | BA3  | Obl. |
| Systèmes de communication                 | BA3  | Obl. |

| Langue<br>Crédits<br>Session<br>Semestre | français<br>4<br>Hiver<br>Automne |
|------------------------------------------|-----------------------------------|
| Examen                                   | Ecrit                             |
| Charge                                   | 120h                              |
| Semaines                                 | 14                                |
| Heures                                   | 4 hebdo                           |
| Cours                                    | 2 hebdo                           |
| Exercices                                | 2 hebdo                           |
| Nombre de places                         |                                   |

#### Résumé

Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.

#### Contenu

#### Analyse vectorielle

Les opérateurs gradient, rotationnel, divergence et laplacien. Intégrales curvilignes et intégrales de surfaces. Champs vectoriels et potentiels. Théorèmes de Green, de la divergence et de Stokes.

#### Analyse de Fourier

Séries de Fourier. Identité de Parceval. Transformées de Fourier. Identité de Plancherel. Utilisations et applications.

# Compétences requises

# Cours prérequis obligatoires

Analyse I, Analyse II, Algèbre linéaire.

# Acquis de formation

- Comprendre et maîtriser les notions, les concepts et les méthodes étudiés au cours.
- Comprendre et maîtriser les notions, les concepts et les méthodes pratiqués dans les séries d'exercices.

# Méthode d'évaluation

Examen écrit.

#### **Encadrement**

Office hours Non
Assistants Oui
Forum électronique Non

#### Ressources

Service de cours virtuels (VDI)

Non

# **Bibliographie**

Analyse III Page 1 / 2



B. Dacorogna et C. Tanteri, Analyse avancée pour ingénieurs, PPUR 2018.

# Ressources en bibliothèque

• Analyse avancée pour ingénieurs / Dacorogna

# Préparation pour

Analyse IV.

Analyse III Page 2 / 2



# MATH-207(d) Analyse IV

Strütt David

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Génie civil                               | BA6  | Opt. |
| HES - SIE                                 | Е    | Obl. |
| HES -SC                                   | Е    | Obl. |
| Informatique                              | BA4  | Opt. |
| Sciences et ingénierie de l'environnement | BA4  | Obl. |
| Systèmes de communication                 | BA4  | Obl. |

| Langue    | français  |
|-----------|-----------|
| Crédits   | 4         |
| Session   | Eté       |
| Semestre  | Printemps |
| Examen    | Ecrit     |
| Charge    | 120h      |
| Semaines  | 14        |
| Heures    | 4 hebdo   |
| Cours     | 2 hebdo   |
| Exercices | 2 hebdo   |
| Nombre de |           |
| places    |           |

### Résumé

Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.

### Contenu

### **Analyse complexe**

Définitions et exemples de fonctions complexes. Fonctions holomorphes. Equations de Cauchy-Riemann. Intégrales complexes. Formule de Cauchy. Séries de Laurent. Théorème des résidus.

#### Analyse de Laplace

Transformées de Laplace. Applications à des équations différentielles ordinaires. Applications à des équations aux dérivées partielles.

# Compétences requises

# Cours prérequis obligatoires

Algèbre linéaire, Analyse I, Analyse II, Analyse III.

# Acquis de formation

- Comprendre et maîtriser les notions, les concepts et les méthodes étudiés au cours.
- Comprendre et maîtriser les notions, les concepts et les méthodes pratiqués dans les séries d'exercices.

# Méthode d'évaluation

Examen écrit.

# **Encadrement**

Office hours Non Assistants Oui Forum électronique Non

# Ressources

Service de cours virtuels (VDI)

Non

# **Bibliographie**

Analyse IV Page 1 / 2



B. Dacorogna et C. Tanteri, Analyse avancée pour ingénieurs, PPUR 2018.

# Ressources en bibliothèque

• Analyse avancée pour Ingénieurs / Dacorogna

Analyse IV Page 2 / 2



# CS-308 Calcul quantique

Macris Nicolas

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA6  | Opt. |
| Systèmes de communication | BA6  | Opt. |

Langue français Crédits 4 Session Eté Semestre **Printemps Ecrit** Examen Charge 120h Semaines 14 Heures 4 hebdo 3 hebdo Cours 1 hebdo Exercices Nombre de places

### Remarque

Cours indépendant de "Traitement quantique de l'information" (COM-309)

#### Résumé

La miniaturisation des ordinateurs conduit à réviser les paradigmes du calcul classique pour développer des modèles de calcul quantique. Le cours introduit les notions de bit quantique, portes logiques et circuits quantiques, traite les principaux algorithmes quantiques, et les machines IBM Q.

#### Contenu

### Intrduction au calcul quantique

- Calcul classique: modèle des circuits classiques, calcul réversible.
- Bits quantiques, espace de Hilbert de N qubits, transformations unitaires et portes logiques élémentaires, postulat de la mesure.
- Modèle des circuits quantiques, portes universelles.
- Problème de Deutsch et Josza.

### Algorithmes de base

- Sous espace vectoriel cache et algorithme de Simon.
- Intermède mathématique: factorisation d'un entier et période de fonctions discrètes. Notions sur les fractions continuées.
- Transformée de Fourier quantique et algorithme de recherche de la période d'une fonction discrète.
- Algorithme de factorisation de Shor.
- Algorithme de Grover pour la recherche dans une base de donnée.

# Intrication (sujet a choix et facultatif)

- Etats intriques et circuits associés.
- Protocoles avec opérations locales quantiques + communication classique.
- Protocole de distillation et mesure de l'intrication.

### Codage (sujet a choix et facultatif)

- Modèles de bruit et erreurs dans les états quantiques.
- Code correcteurs de Shor et Steane.
- Codes stabilisateurs.

### Mots-clés

Calcul quantique, circuits quantiques, portes universelles, transformée de Fourier quantique, algorithme de Shor, Grover, intrication, codes quantiques.

# Compétences requises

# Cours prérequis obligatoires

Calcul quantique Page 1 / 2



### Algèbre linéaire.

### Concepts importants à maîtriser

Matrices, valeurs et vecteurs propres, produit scalaire, nombre complexes.

### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Expliquer le concept d'algorithme quantique sur le modèle des circuits.
- Connaitre les portes universelles utilisées dans un circuit quantique.
- Expliquer les principaux algorithmes quantiques
- Calculer l'évolution d'un état à travers un circuit quantique
- Appliquer le postulat de la mesure
- Faire des calculs algébriques impliquant des états à plusieurs qubits en notation de Dirac
- Se familiariser avec IBM Q et Qiskit

# Méthode d'enseignement

Ex-Cathedra. Exercices. Utilisation des ordinateurs quantiques IBM Q

#### Travail attendu

Participation au cours, exercices et utilisation des machines IBM Q

#### Méthode d'évaluation

mini project on IBM Q experience, 4 graded homeworks, examen final ecrit.

### Ressources

### **Bibliographie**

N. David Mermin: Quantum Computer Science, an introduction. Cambridge University Press Nielsen and Chuang: Quantum Computation and Information. Cambridge University Press

# Ressources en bibliothèque

- Quantum Computation and Information / Nielsen
- Quantum Computer Science / Mermin

# **Polycopiés**

Notes de cours

### Sites web

• http://ipg.epfl.ch/doku.php?id=en:courses

# Préparation pour

COM-611 Quantum Information Theory and Computation

Calcul quantique Page 2 / 2



# CH-160(b) Chimie générale

| Т   | ٥r  | retta  | z Sa | muel  |  |
|-----|-----|--------|------|-------|--|
| - 1 | CI. | ıcılaz | L Oa | HIUCI |  |

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Génie civil               | BA1  | Obl. |
| Informatique              | BA5  | Opt. |
| Systèmes de communication | BA5  | Opt. |

| Langue Coefficient Session Semestre Examen Charge Semaines Heures Cours Exercices | français 3 Hiver Automne Ecrit 90h 14 3 hebdo 2 hebdo 1 hebdo |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------|
| Nombre de places                                                                  | Hobdo                                                         |

#### Résumé

Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie permettant de résoudre par le raisonnement et le calcul des problèmes inédits de chimie générale.

#### Contenu

- 1. Atomistique: structure électronique des atomes, orbitales atomiques, spectroscopie, classification périodique
- 2. **Liaison chimique:** représentation de Lewis, règle de l'octet, liaison ionique, liaison covalente, énergie de liaison, modèle VSEPR et géométrie des molécules, orbitales moléculaires, moment dipolaire, forces de van der Waals et de London. Iiaisons intermoléculaires
- 3. Quantités chimiques: masse atomique, isotopes, notion de mole, formules chimiques, concentrations
- 4. **Réactions chimiques et stoechiométrie:** équations chimiques, réactif limitant, électrolytes, lois des gaz parfaits, pressions partielles
- 5. **Thermochimie:** énergie interne, premier principe de la thermodynamique, enthalpies des transformations physiques et des réactions chimiques, entropie deuxième principe, enthalpie libre
- 6. **Equilibres chimiques:** enthalpie libre dans un mélange, potentiel chimique et activité, quotient réactionnel, constante d'équilibre, influence dse paramètres réactionnels sur les équilibres
- 7. **Propriétés des solutions:** dissolution et solvatation, solubilité, lois de Raoult et de Henry, propriétés colligatives des solutions (ébullioscopie, cryoscopie, pression osmotique)
- 8. **Transfert de proton:** équilibres acide-base: théorie de Bronsted-Lowry, couples acide-base, constante d'ionisation, échelle de pH, calcul de pH de solutions, titrages acide-base
- 9. **Transfert d'électron:** électrochimie: équilibrage des équations rédox, piles électrochimiques, potentiels standard, piles et accumulateurs, équation de Nemst, loi de Faraday, électrolyse
- 10. **Cinétique chimique:** vitesse de réaction, lois de vitesse, molécularité et ordre d'une réaction, théorie du complexe activé, loi d'Arrhenius, catalyse

#### Mots-clés

Structure électronique des atomes, liaisons chimiques, stoechiométrie, thermochimie, équilibres thermodynamiques, acides et base, oxydoréduction, cinétique chimique

# Méthode d'évaluation

Examen écrit

# Ressources

# **Bibliographie**

• Chimie générale / Hill

Chimie générale Page 1/2



- Chimie des solutions / Hill
- Exercices de chimie générale / Comninellis

# Ressources en bibliothèque

- Chimie générale / Hill
- Chimie des solutions / Hill
- Exercices de chimie générale / Comninellis

Chimie générale Page 2 / 2



# CS-208 Computer architecture I

Stojilovic Mirjana

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES - IN                  | Н    | Obl. |
| Informatique              | BA3  | Obl. |
| Mineur en Informatique    | Н    | Opt. |
| Systèmes de communication | BA3  | Obl. |

# **Summary**

The course introduces the students to the basic notions of computer architecture and, in particular, to the choices of the Instruction Set Architecture and to the memory hierarchy of modern systems.

### Content

- Complex digital systems in VHDL.
- Basic components of a computer.
- Instruction Set Architectures.
- · Assembly-level programming.
- Multi-cycle implementation of processors.
- Caches.
- Virtual memory.

# Keywords

Computer Architecture, Basic Processor Architecture, Instructions Sets, Cache Hierarchies, Virtual Memory.

# **Learning Prerequisites**

### Required courses

Digital system desing

# Important concepts to start the course

- Digital design in VHDL
- FPGA design software: Intel Quartus
- Simulation and verification of digital systems behavior: ModelSim.

### **Learning Outcomes**

By the end of the course, the student must be able to:

• Design and implement a processor at the register transfer level using logic synthesizers and simulators.

Computer architecture I



- Develop assembly language programs.
- Justify the organization of a modern memory system including cache hierarchy.
- Design and implement a cache memory.

# **Teaching methods**

- Ex cathedra / online lectures and exercises.
- Labs on dedicated FPGA boards.

### **Expected student activities**

- Attending the course and exercise/lab sessions (in person or online)
- Completing the lab assignments.
- Homework: solving individually the exercises in the course exercise book.
- Participating in the discussions on the forum.

#### **Assessment methods**

Graded labs, during the semester (30%) Final exam, during the exam session(70%)

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

### Resources

### Virtual desktop infrastructure (VDI)

Yes

# **Bibliography**

David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Morgan Kauffman, 5th edition, 2013.

# Ressources en bibliothèque

• Computer organization and design

# Websites

• https://parsa.epfl.ch/course-info/cs208/

# **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=14225

# Prerequisite for

Computer architecture II



# CS-209 Computer architecture II

Ienne Paolo

| Cursus                           | Sem.     | Type |
|----------------------------------|----------|------|
| Génie électrique et électronique | MA2, MA4 | Opt. |
| Informatique                     | BA4      | Obl. |
| Systèmes de communication        | BA4      | Opt. |

| Language<br>Credits<br>Session<br>Semester<br>Exam              | English 4 Summer Spring During the          |
|-----------------------------------------------------------------|---------------------------------------------|
| Workload Weeks Hours Lecture Practical work Number of positions | semester 120h 14 4 weekly 2 weekly 2 weekly |

# **Summary**

The course completes the introduction to computer architecture.

### Content

- Inputs/Outputs and Interrupts
- Exceptions
- Computer Performance
- Pipelining
- Dynamic Scheduling
- Superscalar and VLIW Processors
- Multiprocessors and Cache Coherence

# Keywords

Computer Architecture, Processor, CPU, ILP, Multiprocessors, Coherence

# **Learning Prerequisites**

# **Required courses**

- CS-173 (Digital System Design)
- CS-208 (Computer Architecture I)

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Design a simple exception handler in assembler
- Design pipelined digital circuits at Register Transfer Level
- Optimize the performance of a processor pipeline by reordering instructions
- Explain possible solutions to the cache coherence problem

# **Teaching methods**



Ex-cathedra courses and labs on an FPGA board.

### **Assessment methods**

- Lab I (13%)
- Test I (35%)
- Pipeline simulation (4%)
- Lab II (13%)
- Test II (35%)

# Supervision

Office hours No
Assistants Yes
Forum Yes

# Resources

Virtual desktop infrastructure (VDI)

No

# **Bibliography**

David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Morgan Kauffman, 5th edition, 2013.

# Ressources en bibliothèque

• Computer organization and design

# **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=14153

# Prerequisite for

• CS-470 (Advanced Computer Architecture)



# CS-320 Computer language processing

Kuncak Viktor

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA5  | Opt. |
| Systèmes de communication | BA5  | Opt. |

English Language Credits Session Winter Semester Fall Exam During the semester Workload 180h Weeks 14 Hours 6 weekly Lecture 2 weekly Exercises 2 weekly 2 weekly Practical work Number of positions

### **Summary**

We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language into the new web standard for portable binaries called WebAssembly (https://webassembly.org/)

#### Content

See https://lara.epfl.ch/w/cc

- 1. Overview, source languages and run-time models
- 2. Review of formal languages
- 3. Lexical analysis
- 4. Syntactic analysis (parsing)
- 5. Name analysis
- 6. Type checking
- 7. Code generation
- 8. Correctness of compilers

# Keywords

programming language; compiler; interpreter; regular expression; context-free grammar; type system; code generation; static code analysis

# **Learning Prerequisites**

# **Recommended courses**

Discrete Mathematics Theory of computation Functional Programming Computer architecture

### **Learning Outcomes**

By the end of the course, the student must be able to:



- Design a programming language
- Construct a compiler
- · Coordinate development with project partner
- Formulate correctness conditions for compiler
- Estimate time to implement a programming language feature
- Produce a working programming language implementation
- Decide which language features make implementation difficult
- · Specify programming language and compiler functionality

#### Transversal skills

- Assess progress against the plan, and adapt the plan as appropriate.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Respect the rules of the institution in which you are working.
- Continue to work through difficulties or initial failure to find optimal solutions.
- · Demonstrate a capacity for creativity.
- Take feedback (critique) and respond in an appropriate manner.
- Make an oral presentation.
- Write a scientific or technical report.

### **Teaching methods**

- Follow lectures
- · Project work, indepdently and under supervision of assistants

# **Assessment methods**

The grade is based on the programming, testing, documentation, and presentation of projects done on student's own laptops during the semester.

Different groups of students may be assigned different variants of projects. There may be small but unavoidable variations in the difficulty of different variants.

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

### Resources

### **Bibliography**

Andrew W. Appel, **Modern compiler implementation in Java** (or **ML**), Addison-Wesley 1997 (full PDF available from EPFL library)

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman: **Compilers: Principles, Techniques, and Tools** (2nd Edition, 2006)

Niklaus Wirth: **Compiler Construction**, neat textbook from a prominent classical authority. Freely available http://www.ethoberon.ethz.ch/WirthPubl/CBEAII.pdf

# Ressources en bibliothèque

- · Additionally, all material
- · Compilers, principle, techniques and tools / Aho



- Compiler Construction / Wirth
- Modern compiler implementation in Java / Appel

# Notes/Handbook

http://lara.epfl.ch/w/cc

Faboulous and gently paced videos: https://www.coursera.org/course/compilers

# Websites

• https://lara.epfl.ch/w/cc

# Prerequisite for

Advanced compiler construction Recommended for Foundations of software



# COM-208 Computer networks

# Argyraki Katerina

| Cursus                              | Sem. | Type |
|-------------------------------------|------|------|
| Cyber security minor                | Н    | Opt. |
| HES - IN                            | Н    | Obl. |
| HES -SC                             | Н    | Obl. |
| Informatique                        | BA3  | Obl. |
| Mineur en Informatique              | Н    | Opt. |
| Mineur en Systèmes de communication | Н    | Opt. |
| Systèmes de communication           | BA3  | Obl. |
| UNIL - Sciences forensiques         | Н    | Opt. |

| Language English Credits 5 Session Winter Semester Fall Exam Written Workload 150h Weeks 14 Hours 4 weekly Lecture 2 weekly Exercises 2 weekly Number of positions | 5<br>Winter<br>Fall<br>Written<br>150h<br>14<br><b>4 weekly</b><br>2 weekly | Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|

### **Summary**

This course provides an introduction to computer networks. It describes the principles that underly modern network operation and illustrates them using the Internet as an example.

### Content

- Overview of Internet operation (main components and protocols).
- Application layer (web, cookies, peer to peer).
- Socket programming (how to write a very simple network application).
- Transport layer (UDP, TCP, congestion control).
- Network layer (IP forwarding and basic routing).
- Data link layer (switching).
- Security (secure email, SSL, IPsec).

# Keywords

- Computer networks
- Internet
- HTTP
- Peer-to-peer networks
- Sockets, TCP/IP, congestion control, routing, switching, network security.

# **Learning Prerequisites**

# Required courses

- CS 107 Introduction to programming
- COM 101 Advanced Information Computation Communication I

# **Learning Outcomes**

By the end of the course, the student must be able to:

• Design simple network applications.

Computer networks Page 1 / 3



- Choose which functions to implement at each network layer.
- · Compare different network protocols.
- Perform simple network troubleshooting.
- Use simple network monitoring tools.
- Implement simple client-server applications.
- Investigate simple network attacks.
- Explain how basic Internet applications work.
- Explain how TCP/IP works.

#### Transversal skills

- Use both general and domain specific IT resources and tools
- Use a work methodology appropriate to the task.
- Demonstrate the capacity for critical thinking
- Demonstrate a capacity for creativity.

# **Teaching methods**

- Lectures
- Reading sssignments
- Homework problems
- Hands-on exercises

# **Expected student activities**

The students are expected to:

- attend the lectures
- complete homework problems
- complete hands-on exercises
- study their notes and -- when needed -- complement by reading relevant book chapters

### **Assessment methods**

- Final exam
- Midterm exam (online)
- Quizzes (online)

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

### Resources

# **Bibliography**

Computer Networking: A Top-Down Approach by James F. Kurose and Keith W. Ross.

# Ressources en bibliothèque

Computer networks Page 2 / 3



• Computer Networking / Kurose

# Websites

• https://sites.google.com/site/com208computernetworks/

Computer networks Page 3 / 3



# COM-301 Computer security

#### Troncoso Carmela

| Cursus                              | Sem. | Type |
|-------------------------------------|------|------|
| Cyber security minor                | Н    | Opt. |
| Informatique                        | BA5  | Obl. |
| Mineur en Informatique              | Н    | Opt. |
| Mineur en Systèmes de communication | Н    | Opt. |
| Systèmes de communication           | BA5  | Obl. |
| UNIL - Sciences forensiques         | Н    | Opt. |

| Language<br>Credits<br>Session<br>Semester<br>Exam | English 4 Winter Fall  |
|----------------------------------------------------|------------------------|
| Exam                                               | During the<br>semester |
| Workload                                           | 120h                   |
| Weeks                                              | 14                     |
| Hours                                              | 4 weekly               |
| Lecture                                            | 2 weekly               |
| Exercises                                          | 1 weekly               |
| Practical                                          | 1 weekly               |
| work                                               |                        |
| Number of positions                                |                        |

### **Summary**

This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.

#### Content

The goal of this course is to introduce students to security engineering. The course will help students to think as an adversary so that they can analyse systems and establish security policies. We will cover a number of common security mechanisms at all layers, and learn their properties and limitations.

Core topics:

- · Security design principles
- Access control
- Authentication mechanisms
- · Applied cryptography
- · Sotware and Network security
- Privacy

# Keywords

Security Privacy

# **Learning Prerequisites**

#### **Recommended courses**

CS-233a or CS-233b Introduction to Machine Learning (for programming)
COM-208 Computer Networks

CS-323 Operative systems

# Important concepts to start the course

Basic notions TCP/IP
Basic notions programming

# **Learning Outcomes**

Computer security Page 1 / 2



By the end of the course, the student must be able to:

- · Analyze systems for security
- · Decide on security mechanisms to apply
- · Establish a security policy

### **Teaching methods**

Pre-recorded lectures

Practical assignemnts interactivel resolved in class using the concepts learned in the lectures Written exercises to reaffirm the learning of the course

Practical programming homeworks to develop attacks and defenses

# **Expected student activities**

Attending lectures, solving exercises, reading and demonstrating understanding of provided materials.

### **Assessment methods**

- Take home exams (80%)
- Practical homeworks (20%)

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

# **Bibliography**

Computer security by Dieter Gollmann

Security Engineering by Ross Anderson

Computer Security: Principles and Practice by Stallings and Brown

# Ressources en bibliothèque

- Security Engineering by Ross Anderson
- Computer security by Dieter Gollmann
- Computer Security: Principles and Practice by Stallings and Brown

# Prerequisite for

- COM-402 Information security and privacy
- CS-523 Advanced topics on privacy enhancing technologies

Computer security Page 2 / 2



# Electromagnétisme I : lignes et ondes

Fleury Romain

| Cursus                           | Sem. | Type |
|----------------------------------|------|------|
| Génie électrique et électronique | BA3  | Obl. |
| HES - EL                         | Н    | Obl. |
| Informatique                     | BA5  | Opt. |
| Systèmes de communication        | BA5  | Opt. |

| Langue Crédits Session Semestre Examen Charge Semaines Heures Cours Exercices Nombre de | français 3 Hiver Automne Ecrit 90h 14 3 hebdo 2 hebdo 1 hebdo |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Nombre de<br>places                                                                     |                                                               |

#### Résumé

Le signal électrique est un vecteur essentiel pour la transmission d'information et d'énergie. En haute fréquence elle se manifeste comme un signal électromagnétique dont l'étude demande le développement de modèles physiques et mathématiques spécifiques basés sur les équations d'onde.

#### Contenu

# 1) Composants électroniques localisés ou distribués

- 1. Limites de la théorie des circuits localisés
- 2. Temps de montée et temps de propagation
- 3. Période et temps de propagation
- 4. Taille du composant et longueur d'onde
- 5. Les différents types de composants électroniques

### 2) Théorie des lignes de transmission : domaine temporel

- 1. Discussion heuristique
- 2. Equations de base et solutions
- 3. Réflexions aux discontinuités
- 4. Terminaisons résistives
- 5. Terminaisons réactives
- 6. Terminaisons non linéaires : diagramme de Bergeron
- 7. Application : réflectométrie en domaine temporel
- 8. Paramètres des lignes de transmissions courantes

#### 3) Théorie des lignes de transmission : domaine fréquentiel

- 1. Ondes monochromatiques et phaseurs complexes
- 2. Lignes terminées par un court-circuit ou un circuit ouvert
- 3. Lignes terminées par une impédance arbitraire
- 4. Flux de puissance sur une ligne de transmission
- 5. Adaptation d'impédance
- 6. Abaque de Smith
- 7. Effet des pertes et absorption
- 8. Systèmes à deux ports : paramètres S, Z, et M

#### Mots-clés

Signal électromagnétique, Circuits Distribués, Lignes de transmission, Ondes électromagnétiques Guidées, Réflexion et transmission, Circuits équivalents, Circuits radiofréquences, Impédance.

# Compétences requises

# Cours prérequis obligatoires



### EE-100, Science et technologies de l'électricité

#### Cours préreguis indicatifs

Algèbre, Analyse I et II, Physique générale

### Concepts importants à maîtriser

Critères de validité de l'hypothèse des circuits localisés.

Propriétés du signal électromagnétique: vitesse, fréquence, longueur d'onde.

Nature et comportement des signaux et ondes électromagnétiques: propagation guidée unidimensionnelle (lignes de transmission), en domaine temporel et fréquentiel.

Diagrammes des reflections multiples. Réflectométrie en domaine temporel.

Notion de phaseur complexe. Abaque de Smith, Adaptation d'impédance.

### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Analyser un système à lignes de transmission
- Calculer la réponse d'un circuit distribué
- Concevoir un système adapté en impédance
- Utiliser un Abaque de Smith

# Méthode d'enseignement

Ex cathedra avec exercices en salle. Un support de cours est fourni sur Moodle, contenant l'essentiel du cours, ainsi que des cadres vides pour permettre à l'étudiant de prendre notes des démonstrations et exemples effectués avec le professeur. Les exercices, en relation directe avec le cours, peuvent nécessiter l'utilisation d'un ordinateur (MatLab ou Mathematica).

### Travail attendu

Participation active au cours et aux séances d'exercices.

#### Méthode d'évaluation

Examen écrit.

### Ressources

### **Bibliographie**

1) Support de cours par R. Fleury, disponible sur Moodle.

Pour aller plus loin:

- 2) "Électromagnétisme", Vol. III du Traité d'électricité de l'EPFL -
- 3) Ramo: "Fields and Waves in Communication Electronics"

# Ressources en bibliothèque

- Electromagnétisme / Gardiol
- Fields and Waves in Communication Electronics / Ramo

# Préparation pour

Electromagnétisme II: calcul des champs. Transmissions Hyperfréquences et Optiques, Télécommunications, Réseaux électriques, Rayonnement et Antennes, Propagation, Audio, cycle Master EPFL-SEL et EPFL-SC



# Electromagnétisme II : calcul des champs

Fleury Romain

| Cursus                           | Sem. | Type |
|----------------------------------|------|------|
| Génie électrique et électronique | BA4  | Obl. |
| HES - EL                         | Е    | Obl. |
| Informatique                     | BA6  | Opt. |
| Systèmes de communication        | BA6  | Opt. |

| Langue Crédits Session Semestre Examen Charge Semaines Heures Cours | français 3 Eté Printemps Ecrit 90h 14 3 hebdo 2 hebdo |
|---------------------------------------------------------------------|-------------------------------------------------------|
| Heures                                                              | 3 hebdo                                               |
|                                                                     |                                                       |
| Exercices                                                           | 1 hebdo                                               |
| Nombre de                                                           |                                                       |
| places                                                              |                                                       |
|                                                                     |                                                       |

#### Résumé

Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Maxwell dans le vide et dans des milieux matériels complexes.

#### Contenu

# 1) Rappels d'analyse vectorielle

- 1. Champs vectoriels et champ scalaires
- 2. Systèmes de coordonnées
- 3. Gradient, divergence et rotationnel

#### 2) Théorie du champ électromagnétique

- 1. Principes fondamentaux: Équations de Maxwell, Conservation de la charge, Champs monochromatiques, Relations constitutives. Conditions aux limites
- 2. Théorèmes fondamentaux: Théorème de Poynting, Dualité électromagnétique, Unicité du champ, Réciprocité de Lorentz

### 3) Ondes planes monochromatiques

- 1. Relation de dispersion
- 2. Polarisation
- 3. Conducteurs et effet de peau
- 4. Coefficients de Fresnel
- 5. Théorie des lignes de transmission

#### 4) Rayonnement en espace libre

- 1. Solution exacte: Potentiel vecteur et potentiel scalaire, Jauge de Lorentz, Fonction de Green, Dipôle infinitésimal
- 2. Solution en champ lointain
- 3. Méthode des images
- 4. Principe d'équivalence de Huygens
- 5. Limite de diffraction

# 5) Milieux dispersifs (si le temps le permet)

- 1. Matériaux plasmoniques : modèle de Drude
- 2. Relations de Kramers-Kronig

#### Mots-clés

electromagnetisme, théorie du champ, distributions de charges et courants électriques, propagation des ondes électromagnétiques, rayonnement, champ lointain, milieux continus

# Compétences requises

# Cours prérequis obligatoires

Physique Générale (Electromagnétisme)



# Cours prérequis indicatifs

Analyse I, II, III

# Concepts importants à maîtriser

Charges et courant, Champ électromagnétique, Ondes électromagnétiques (longueur d'onde, fréquence, vitesse, impédance caractéristique, polarisation), Radiation, polarisation de la matière, dissipation.

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Théoriser les principes fondamentaux de l'électromagnétisme
- Comparer les différentes propriétés électromagnétiques des matériaux
- Calculer les champs électriques et magnétiques rayonnés par une distribution de charge

# Méthode d'enseignement

Ex cathedra avec exercices en salle.

### Travail attendu

Participation active au cours et aux séances d'exercices.

### Méthode d'évaluation

Examen écrit.

#### Ressources

# **Bibliographie**

Support de cours par R. Fleury, disponible sur Moodle.

# Ressources en bibliothèque

- Fields and Waves in Communication Electronics / Ramo
- Electromagnétisme / Gardiol

# **Polycopiés**

Disponible sur Moodle.

# Préparation pour

Transmissions Hyperfréquences et Optiques, Photonique, Télécommunications, Orientation Communications mobiles, Rayonnement et Antennes, Propagation, Audio



# EE-202(b) Electronique I

Zysman Eytan

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA3  | Opt. |
| Systèmes de communication | BA3  | Opt. |

| Langue    | français   |
|-----------|------------|
| Crédits   | 4          |
| Session   | Hiver      |
| Semestre  | Automne    |
| Examen    | Pendant le |
|           | semestre   |
| Charge    | 120h       |
| Semaines  | 14         |
| Heures    | 3 hebdo    |
| Cours     | 2 hebdo    |
| Exercices | 1 hebdo    |
| Nombre de |            |
| places    |            |
|           |            |

#### Résumé

Découvrir le monde de l'électronique depuis les lois fondamentales des composants discrets linéaires et non linéaires. Les circuits obtenus avec des assemblages de composants nécessitent de nombreuses techniques de modélisation et d'analyse ainsi que des vérification exploitant un simulateur

### Contenu

#### Cours

- · Composants passifs linéaires
- Techniques de résolution de circuits linéaires
- · Les diodes
- introduction aux transistors
- Techniques de modélisation des composants non linéaires
- Simulation électronique

### **Exercices**

L'étudiant appliquera les nombreuses méthodes vues en cours pour résoudre des exercices pratiques qui pourront être vérifiés avec la simulation.

### Mots-clés

Composants passifs, composants actifs, composants linéaires, composants non linéaires, diodes, transistors, modélisation, simulation, Lois de Kirchhoff, Thévenin-Norton, Superposition, impédances complexes, fonctions de transfert, Bode, concept d'amplification.

# Compétences requises

### Cours préreguis obligatoires

Cours d'analyse: équation différentielles du premier et second ordre, nombres complexes, résolution de système d'équations linéaires.

# Cours prérequis indicatifs

Electricité de base: électrostatique, électrocinétique.

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

Electronique I Page 1 / 2



- Analyser des circuits complexes
- Modéliser des composants non linéaires
- Modéliser des circuits complexes
- Raisonner à partir de méthode d'observation
- Dessiner des comportements temporels et fréquentiels
- Interpréter des signaux de natures diverses
- Utiliser les bonnes méthodes de résolution

# Compétences transversales

- Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.
- · Auto-évaluer son niveau de compétence acquise et planifier ses prochains objectifs d'apprentissage.

### Méthode d'enseignement

En raison du COVID-19, l'enseignement, incluant cours et exercices, se fera en visioconférence. Les enregistrements des séances seront disponibles sur Moodle.

#### Méthode d'évaluation

Toujours en raison du COVID-19, l'évaluation se fera sous la forme d'un rapport individuel sur des problèmes de conception et les résultats devront être validés par des simulations. Le rapport sera suivi d'une interrogation orale. Le rapport devra être remis avant les vacances de Noël et l'oral sera organisé dès la rentrée de janvier.

#### **Encadrement**

Office hours Non
Assistants Oui
Forum électronique Oui

#### Ressources

### **Bibliographie**

• Principes d'électronique: cours et exercices corrigés. Albert Paul Malvino ; trad. de l'américain par Bernard Boittiaux ; Paris : Dunod, 2002

# Ressources en bibliothèque

• Principes d'électronique / Malvino

### **Polycopiés**

- liste de sites approfondissant les notions vues en cours
- Diapositives du cours
- Diapositives commentées
- Exercices et corrigés.
- Développements en cours sur écran interactif ou tablet

#### **Liens Moodle**

• http://moodle.epfl.ch/course/view.php?id=13726

### Préparation pour

Électronique II

Electronique I Page 2 / 2



# EE-203(b) Electronique II

Zysman Eytan

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA5  | Opt. |
| Systèmes de communication | BA5  | Opt. |

| Langue    | français   |
|-----------|------------|
| Crédits   | 4          |
| Session   | Hiver      |
| Semestre  | Automne    |
| Examen    | Pendant le |
|           | semestre   |
| Charge    | 120h       |
| Semaines  | 14         |
| Heures    | 4 hebdo    |
| Cours     | 2 hebdo    |
| Exercices | 2 hebdo    |
| Nombre de |            |
| places    |            |
|           |            |

### Résumé

Maîtriser des blocs fonctionnels nécessitant un plus haut niveau d'abstraction. Réalisation de fonctions électroniques de haut niveau exploitant les amplificateurs opérationnels.

### Contenu

### Cours

- Modèles d'amplificateurs
- Bande passante des amplificateurs
- Familles logiques
- l'amplificateur opérationnel en réaction négative
- l'amplificateur opérationnel en réaction positive
- les filtres actifs d'ordre N
- l'amplificateur opérationnel et ses imperfections
- les bascules

### Exercices et travaux pratiques

Comme en électronique I, l'étudiant appliquera de nombreuses méthodes vues en cours pour résoudre des exercices pratiques qui pourront être vérifiés avec la simulation.

### Mots-clés

Amplificateur, Modèle de quadripôle, polarisation, schéma petit signaux, Filtres, bande passante, puissante statique, puissance dynamique, Slew-rate, Tchebychev, Butterworth, Trigger de Schmitt, comparateur, intégrateur, différentiateur, monostable, bistable, astable, générateur de signaux, marge de bruit, Fan-In, Fan-Out, Puissance dissipée, tension d'offset.

# Compétences requises

Cours prérequis indicatifs

Électronique I

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

· Concevoir des filtres actifs

Electronique II Page 1 / 2



- · Concevoir des circuits amplificateurs
- Comparer les différentes familles logiques
- Analyser la bande passante d'une fonction électronique
- Exploiter des blocs fonctionnels de haut niveau
- Représenter la notion de temps
- Synthétiser des circuits logiques

# Compétences transversales

- Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.
- Auto-évaluer son niveau de compétence acquise et planifier ses prochains objectifs d'apprentissage.

# Méthode d'enseignement

En raison du COVID-19, l'enseignement, incluant cours et exercices, se fera en visioconférence. Les enregistrements des séances seront disponibles sur Moodle.

### **Encadrement**

Office hours Non Assistants Oui Forum électronique Oui

### Ressources

# **Bibliographie**

Principes d'électronique: cours et exercices corrigés. Albert Paul Malvino ; trad. de l'américain par Bernard Boittiaux ; Paris : Dunod, 2002

### Ressources en bibliothèque

• Principes d'électronique / Malvino

### **Polycopiés**

- liste de sites approfondissant les notions vues en cours
- Diapositives du cours
- Diapositives commentées
- Exercices et corrigés.
- Développements en cours sur écran interactif ou tablet

#### **Liens Moodle**

• http://moodle.epfl.ch/course/view.php?id=13727

# Préparation pour

Electronique III

Electronique II Page 2 / 2



# EE-381 Electronique III

Zysman Eytan

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA6  | Opt. |
| Systèmes de communication | BA6  | Opt. |

| Langue    | français   |
|-----------|------------|
| Crédits   | 3          |
| Session   | Eté        |
| Semestre  | Printemps  |
| Examen    | Pendant le |
|           | semestre   |
| Charge    | 90h        |
| Semaines  | 14         |
| Heures    | 3 hebdo    |
| Cours     | 2 hebdo    |
| Exercices | 1 hebdo    |
| Nombre de |            |
| places    |            |
|           |            |

#### Résumé

Comparaison entre les systèmes à composants discrets et les systèmes intégrés. Introduction aux systèmes électroniques numériques et analogiques et à leur interfaçage. Analyse sous forme d'un projet d'un cahier des charges d'un système intégré mixte analogique/numérique.

#### Contenu

#### Cours

- Cellules analogiques: miroir de courant, paire différentielle, Push-pull,...
- Conversion A/N et N/A: introduction définitions, conversion numérique/analogique, conversion analogique/numérique.
- Oscillateur et boucles à verrouillage de phase ou Phase-Locked Loops (PLL)
- Introduction aux technologies mixtes analogiques et numériques
- Techniques de conception de circuits intégrés
- Application aux ASIC analogiques/numériques

#### **Exercices**

l'étudiant analysera et simulera de nombreux blocs fonctionnels vus en cours

#### projet

L'étudiant fera la conception d'un petit système électronique mixte analogique et numérique et évaluera sa complexité sous forme de circuit intégré.

# Mots-clés

paire différentielle, miroir de courant, structure cascod, charge active, Push-Pull, Darlington, Wilson, Widlar, Full Custom, Semi-custom, Librairie de cellules, FPGA, EPLD, PLA, ROM, Architecture de circuit intégré, Technologie des semiconducteurs, PLL, Stabilité, Oscillateur, Convertisseur incrémental, convertisseur logarithmique, convertisseur flash et semi Flash, Sigma/Delta.

# Compétences requises

Cours prérequis indicatifs

Cours d'électronique de base I et II

### Concepts importants à maîtriser

Automates de Moore et de Mealy.

# Transformée de Laplace.

# Acquis de formation

Electronique III Page 1 / 3



A la fin de ce cours l'étudiant doit être capable de:

- Analyser un cahier des charges en électronique
- Concevoir un système électronique
- Décrire le comportement du circuit sous forme algorithmique
- Estimer la complexité et les performances du circuit

# Compétences transversales

- Fixer des objectifs et concevoir un plan d'action pour les atteindre.
- Planifier des actions et les mener à bien de façon à faire un usage optimal du temps et des ressources à disposition.
- Communiquer efficacement et être compris y compris par des personnes de languages et cultures différentes.
- Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.
- Accéder aux sources d'informations appropriées et les évaluer.
- Ecrire un rapport scientifique ou technique.
- Faire une présentation orale.

### Méthode d'enseignement

- Cours ex cathedra et exercices dirigés en salle.
- Animation de séances de projet

#### Travail attendu

• Remise d'un rapport d'analyse de système électronique

### Méthode d'évaluation

- Travail écrit
- Rapport et présentation orale du projet

### **Encadrement**

Office hours Non
Assistants Non
Forum électronique Oui

### Ressources

### **Bibliographie**

Traité de l'électronique analogique et numérique , 1, Techniques analogique et numérique, Paul Horowitz, Winfield Hill, Elektor, 2009

# Ressources en bibliothèque

• Traité de l'électronique analogique et numérique (vo.1)/ Horrowitz

# **Polycopiés**

• liste de sites approfondissant les notions vues en cours

Electronique III Page 2 / 3



- Diapositives du cours
- Diapositives commentées
- Exercices et corrigés.
- Développements en cours sur Tablet
- Cahier des charges du projet

Electronique III Page 3 / 3



# CS-210 Functional programming

Kuncak Viktor, Odersky Martin

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES - IN                  | Н    | Obl. |
| HES -SC                   | Н    | Obl. |
| Informatique              | BA3  | Obl. |
| Mineur en Data science    | Н    | Opt. |
| Mineur en Informatique    | Н    | Opt. |
| Systèmes de communication | BA3  | Opt. |

### **Summary**

Understanding of the principles and applications of declaratative programming, the fundamental models of program execution, application of fundamental methods of program composition, meta-programming through the construction of interpreters and advanced programming techniques.

#### Content

Introduction to programming in Scala
Functions and Evaluation
Higher-Order Functions
Data and Abstraction
Types and pattern matching
Lists
Collections
Lazy evaluation
For expressions, generators and monads
Functions and State

Lambda calculus and Lisp Interpreting Functional Languages

# **Learning Prerequisites**

#### Required courses

CS-107 Introduction to programming CS-108 Practice of object-oriented programming

# **Learning Outcomes**

By the end of the course, the student must be able to:

- · Create functional programs
- Design robust and readable software
- Formalize program correctness
- · Interpret programs automatically
- Prove correctness using induction
- Construct software
- Demonstrate a capacity for creativity.
- Use a work methodology appropriate to the task.
- Set objectives and design an action plan to reach those objectives



• Give feedback (critique) in an appropriate fashion.

# **Teaching methods**

MOOC. Ex Cathedra. Exercises and projects

### **Assessment methods**

- 70% exam in the exam session
- 25% programming lab assignments during the semester
- 5% written exercises during the semester

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

### Resources

# **Bibliography**

Abelson/Sussman: Structure and Interpretation of Computer Programs, MIT Press Martin Odersky, Lex Spoon, and Bill Venners: Programming in Scala (Third Edition). A comprehensive step-by-step guide. https://www.artima.com/shop/programming\_in\_scala

# Ressources en bibliothèque

- Structure and Interpretation of Computer Programs / Abelson
- Programming in Scala (Third Edition) / Odersky

### Websites

- https://www.artima.com/shop/programming\_in\_scala
- https://www.scala-lang.org/
- https://gitlab.epfl.ch/lamp/cs210

Functional programming



# PHYS-114 General physics: electromagnetism

Dil Hugo

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES - IN                  | Н    | Obl. |
| HES -SC                   | Н    | Obl. |
| Informatique              | BA3  | Obl. |
| Systèmes de communication | BA3  | Obl. |

### **Summary**

The course first develops the basic laws of electricity and magnetism and illustrates the use in understanding various electromagnetic phenomena.

#### Content

### **ELECTRICITY AND MAGNETISM**

Electric fields: electric charges and fields; Coulomb's law; Gauss's law

Electric potential and energy: potential; energy; capacitance and capacitors; dielectric materials

Magnetism: magnetic forces and fields; Ampere's law; Biot-Savart law

Electromagnetism: electromotive force; Farady's law; inductance and inductors; Maxwell's equations

Electromagnetic waves: electromagnetic spectrum; antennas

### **Learning Prerequisites**

**Recommended courses** 

General Physics I

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Formulate approach for solving physics problems
- Analyze physical systems
- Establish competence in complex problem solving

### Transversal skills

- Use a work methodology appropriate to the task.
- Take feedback (critique) and respond in an appropriate manner.
- Access and evaluate appropriate sources of information.

# **Teaching methods**

Ex cathedra with demonstrations, exercises in class

# **Assessment methods**

only final written exam



Supervision

Assistants Yes

Resources

**Bibliography** 

polycopiés / course notes



# CS-330 Intelligence artificielle

Faltings Boi

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA6  | Opt. |
| Mineur en Informatique    | Е    | Opt. |
| Systèmes de communication | BA6  | Opt. |

| Langue    | français   |
|-----------|------------|
| Crédits   | 4          |
| Session   | Eté        |
| Semestre  | Printemps  |
| Examen    | Pendant le |
|           | semestre   |
| Charge    | 120h       |
| Semaines  | 14         |
| Heures    | 4 hebdo    |
| Cours     | 2 hebdo    |
| Exercices | 2 hebdo    |
| Nombre de |            |
| places    |            |
|           |            |

### Résumé

Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.

### Contenu

Le cours comporte trois segments qui traitent les 3 différents formes d'inférence logique : déduction, abduction et induction :

- 1. Représentation de connaissances en logique de prédicats, algorithmes d'inférence
- 2. Systèmes experts
- 3. Raisonnement imprécis et incertain
- 4. Algorithmes de recherche
- 5. Satisfaction de Contraintes
- 6. Diagnostic et Planification
- 7. Apprentissage supervisé
- 8. Apprentissage non-supervisé
- 9. Apprentissage bio-inspiré

# Compétences requises

Cours prérequis indicatifs

Functional programming

Concepts importants à maîtriser

Logique de prédicats Algorithmes de base Théorie de probabilités Programmation

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Choisir le bon type d'inférence pour une application
- Choisir la méthode la plus appropriée pour un certain type d'inférence
- Evaluer la faisabilité d'une application de l'Intelligence Artificielle
- Choisir, implémenter et décrire des algorithmes d'inférence déductive sur la base de calcul de prédicats

Intelligence artificielle Page 1 / 2



- Formuler des connaissances utilisant la logique des prédicats
- Décrire des méthodes d'inférence avec des informations imprécises et incertaines
- · Choisir, implémenter et décrire des algorithmes de recherche et de satisfaction de contraintes
- Choisir et décrire des méthodes pour le diagnostic
- Choisir, implémenter et décrire des méthodes pour la planification
- Choisir, implémenter et décrire des méthodes d'apprentissage supervisé sur la base d'exemples
- Choisir, implémenter et décrire des méthodes d'apprentissage non-supervisé

# Méthode d'enseignement

Ex cathedra, travaux pratiques sur ordinateur

#### Travail attendu

Participation au cours et exercices: 4 heures/semaine

Lecture: 2 heures/semaine

Travail independant: 3 heures/semaine

# Méthode d'évaluation

Exercices 30%, examens intermediaire et final 70%

#### Ressources

### **Bibliographie**

Boi Faltings, Michael Schumacher: Intelligence Artificielle par la pratique, PPUR (Russel & Norvig: Artificial Intelligence: A Modern Approach / Prentice Hall)

# Ressources en bibliothèque

- Artificial Intelligence / Russell
- Intelligence Artificielle par la pratique / Faltings

# Sites web

- http://liawww.epfl.ch/
- http://moodle.epfl.ch/

### Préparation pour

Intelligent Agents

Intelligence artificielle Page 2 / 2



# CS-213 Interaction personne-système

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA4  | Opt. |
| Systèmes de communication | BA4  | Opt. |

| Langue           | français  |
|------------------|-----------|
| Crédits          | 5         |
| Session          | Eté       |
| Semestre         | Printemps |
| Examen           | Ecrit     |
| Charge           | 150h      |
| Semaines         | 14        |
| Heures           | 4 hebdo   |
| Cours            | 2 hebdo   |
| Projet           | 2 hebdo   |
| Nombre de places |           |

### Remarque

pas donné en 2020-21

#### Résumé

Le domaine de "human computer interaction" rassemble les connaissances et méthodes permettant d'optimiser la manière dont un utilisateur interagit avec un ordinateur/un robot. Ces connaissances portent sur le fonctionnement des systèmes, mais aussi sur le fonctionnement des humains qui l'utilisent.

#### Contenu

#### Partie 1: Interactions

- 1. Styles d'##interaction. Quelles sont les propriétés des différentes interfaces : langages de commandes, interfaces tangibles, vocales, gestuelles, réalité virtuelle ou augmentée, etc. ?
- 2. Cognition. Pourquoi les utilisateurs commettent-ils des erreurs ? Comment apprennent-ils à utiliser une nouvelle application ?
- 3. Perception. Que faut-il comprendre de la vision humaine pour développer une interface ? Comment crée-t-on une perception 3D sur un écran 2D ?
- 4. Interaction design. Quels sont les principes à respecter lors de la conception d'##une interface ? Partie 2 : Contextes
- 5. Interaction personne-robot. L'##interaction avec un robot diffère-t-elle de l'##interaction avec un ordinateur ? Quel est le rôle du feedback "##haptic"Â ? Un robot peut-il percevoir nos émotions ? Qui anticipe les intentions de l'##autre ?
- 6. "##Ubiquitous computingâ##. Quelles difficultés apparaissent dans l'##interaction avec un téléphone, "une voiture, un micro-onde ou un distributeur de boissons ?
- 7. Interactions médiatisées entre personnes. Comment le digital supporte-t-il la collaboration à distance ? Quelles différences entre une réunion présentielle et une visio-conférence ?
- 8. Les jeux. Quels "##games mechanics"## permettent de concevoir un jeu et d'##accrocher le joueur ? Partie 3 : Mét"hodes
- 9. "##Usability Testing"##. Comment vérifier si une application est facile à utiliser ? Quand utiliser le "##magicien d'##Oz" ?
- 10. "##User experience"##. Quelles compétences sont requises pour un "##UX designer" ?
- 11. Méthodes expérimentales. Comment conduire une expérience formelle avec les utilisateurs ? Que peut-on tirer d'##un "##eye tracker" ?
- 12. Mécanismes d'##adaptation. Comment l'##interface doit-elle s'##adapter aux spécificités d'##un utilisateurs ?

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Détecter les défauts d'une interface
- Expliquer les défautsdu point de vue de l'utilisateur
- Suggérer des améliorations à une interface
- Réaliser un test de "usability"



- Concevoir une expérience
- Analyser les données d'un "eye tracker"
- Recommander un style d'interaction pour une tâche donnée

# Méthode d'enseignement

Cours ex-cathedra incluant des expériences

Projet: développement d'un jeu multi-utilisateurs avec des robots. Cellulos au moyen de la platforme Unity 3D.

### Travail attendu

Développer un jeu à partir de la platforme Unity

### Méthode d'évaluation

Projet (50%)

Examen écrit (50%)

# **Encadrement**

Office hours Non Assistants Oui Forum électronique Oui

# Préparation pour

CS-486 Interaction design



# COM-308 Internet analytics

Grossglauser Matthias

| Cursus                              | Sem. | Type |
|-------------------------------------|------|------|
| Informatique                        | BA6  | Opt. |
| Mineur en Systèmes de communication | Е    | Opt. |
| Systèmes de communication           | BA6  | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 5          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 150h       |
| Weeks     | 14         |
| Hours     | 5 weekly   |
| Lecture   | 2 weekly   |
| Exercises | 1 weekly   |
| Project   | 2 weekly   |
| Number of |            |
| positions |            |
|           |            |

### **Summary**

Internet analytics is the collection, modeling, and analysis of user data in large-scale online services, such as social networking, e-commerce, search, and advertisement. This class explores a number of the key functions of such online services that have become ubiquitous over the past decade.

#### Content

The class seeks a balance between foundational but relatively basic material in algorithms, statistics, graph theory and related fields, with real-world applications inspired by the current practice of internet and cloud services. Specifically, we look at social & information networks, recommender systems, clustering and community detection, search/retrieval/topic models, dimensionality reduction, stream computing, and online ad auctions. Together, these provide a good coverage of the main uses for data mining and analytics applications in social networking, e-commerce, social media, etc.

The course is combination of theoretical materials and weekly laboratory sessions, where we explore several large-scale datasets from the real world. For this, you will work with a dedicated infrastructure based on Hadoop & Apache Spark.

### Keywords

data mining; machine learning; social networking; map-reduce; hadoop; recommender systems; clustering; community detection; topic models; information retrieval; stream computing; ad auctions

### **Learning Prerequisites**

Required courses

Stochastic models in communication (COM-300)

Recommended courses

Basic linear algebra Algorithms & data structures

Important concepts to start the course

Graphs; linear algebra; Markov chains; Java

# **Learning Outcomes**

By the end of the course, the student must be able to:

Internet analytics Page 1 / 2



- Explore real-world data from online services
- Develop frameworks and models for typical data mining problems in online services
- Analyze the efficiency and effectiveness of these models
- data-mining and machine learning techniques to concrete real-world problems

# **Teaching methods**

Ex cathedra + homeworks + lab sessions

# **Expected student activities**

Lectures with associated homeworks explore the basic models and fundamental concepts. The labs are designed to explore very practical questions based on a number of large-scale real-world datasets we have curated for the class. The labs draw on knowledge acquired in the lectures, but are hands-on and self-contained.

### **Assessment methods**

Project 20%, midterm 30%, final exam 50%

### Resources

### **Bibliography**

C. Bishop, Pattern Recognition and MachineLearning, Springer, 2006

A. Rajaraman, J. D. Ullman: Mining of Massive Datasets, 2012

M. Chiang: Networked Life, Cambridge, Cambridge, 2012

D. Easley, J. Kleinberg: Networks, Crowds, and Markets, Cambridge, 2010

Ch. D. Manning, P. Raghavan, H. Schütze: Introduction to Information Retrieval, Cambridge, 2008

M.E.J. Newman: Networks: An Introduction, Oxford, 2010

# Websites

http://icawww1.epfl.ch/ix/

Internet analytics Page 2 / 2



# BIO-109 Introduction aux sciences du vivant (pour IC)

**Zufferey Romain** 

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA6  | Opt. |
| Mineur en Biocomputing    | Е    | Opt. |
| Systèmes de communication | BA6  | Opt. |

| Langue           | français  |
|------------------|-----------|
| Crédits          | 6         |
| Session          | Eté       |
| Semestre         | Printemps |
| Examen           | Ecrit     |
| Charge           | 180h      |
| Semaines         | 14        |
| Heures           | 6 hebdo   |
| Cours            | 4 hebdo   |
| Exercices        | 2 hebdo   |
| Nombre de places |           |
|                  |           |

#### Résumé

Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.

#### Contenu

Le cours aborde la plupart des concepts fondamentaux des Sciences de la Vie.

Les sujets développés parce qu'ils sont à l'interface avec l'informatique incluent :

- alignement des séquences, assemblage de séquences en génome
- matrice de distances et déduction d'un arbre phylogénétique
- détection de domaines transmembranaires et de signaux de localisation subcellulaire dans une séquence d'acides aminés.
- compositon en bases d'un génome entier, deuxième loi de parité de Chargaff, variations locales de la densité en CpG
- optimisation des codons dans diverses application pratiques.

### Mots-clés

Bioinformatique, génome, séquençage, évolution, communication intercellulaires

#### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Identifier les principales structures cellulaires et comprendre les méthodes utilisées pour les observer
- Identifier les segments informatifs d'un génome
- · Appliquer des algorithmes pour résoudre des questions en relation avec les Sciences de la Vie
- Expliquer le processus de l'expression génique
- Analyser des données expérimentales brutes et en tirer des conclusions sensées

# Compétences transversales

- Accéder aux sources d'informations appropriées et les évaluer.
- Communiquer efficacement et être compris y compris par des personnes de languages et cultures différentes.

# Travail attendu

En plus de la participations active aux cours et aux exercices, 4 heures de travail personnel sont attendues.

# Méthode d'évaluation



Examen écrit durant la session d'été.

# **Encadrement**

Office hours Oui Assistants Oui Forum électronique Non

# Ressources

# Polycopiés

Les dias du cours et les séries d'exercices sont mises à disposition du Moodle.



# CS-341 Introduction to computer graphics

Pauly Mark

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Génie électrique et électronique    | MA2, MA4 | Opt. |
| Informatique                        | BA6      | Opt. |
| Mineur en Informatique              | Е        | Opt. |
| Mineur en Systèmes de communication | Е        | Opt. |
| Systèmes de communication           | BA6      | Opt. |

### **Summary**

The students study and apply fundamental concepts and algorithms of computer graphics for rendering, geometry synthesis, and animation. They design and implement their own interactive graphics programs.

#### Content

This course provides an introduction to the field of Computer Graphics. We will cover elementary rendering algorithms such as rasterization and raytracing, examine mathematical concepts and algorithms for geometric modeling, and then study concepts and algorithms for computer animation. Students will experiment with modern graphics programming and build small interactive demos. Complemented by some theoretical exercises, these programming tasks lead to a graphics software project, where small teams of students design and implement a complete graphics application.

# Keywords

Pixels and images, 2D and 3D transformations, perspective transformations and visibility, rasterization, interpolation and lighting, raytracing, shader programming, texture mapping, procedural modeling, curves and surfaces, polygonal meshes, particle systems

# **Learning Prerequisites**

Required courses

Linear Algebra, Calculus

# **Recommended courses**

Numerical Methods for Visual Computing

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Explain and apply the fundamental mathematical concepts of computer-based image and geometry synthesis
- Implement a basic rendering pipeline based on rasterization and raytracing
- Design and implement geometry synthesis based on procedural modeling
- · Design and implement basic computer animation algorithms
- Integrate individual components into a complete graphics application
- · Coordinate a team during a software project



# **Teaching methods**

Lectures, interactive demos, theory and programming exercises, programming project, project tutoring

# **Expected student activities**

The student are expected to study the provided reading material and actively participate in class. They should prepare and resolve the exercises, prepare and carry out the programming project. Exercises and project are done in groups of three students.

### **Assessment methods**

Exercises and Project, Final Examination

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

# **Bibliography**

A list of books will be provided at the beginning of the class

# Ressources en bibliothèque

• Polygon mesh processing / Botsch

# Notes/Handbook

Slides and online resources will be provided in class

# Websites

• http://lgg.epfl.ch/ICG

# Prerequisite for

**Advanced Computer Graphics** 



# CS-322 Introduction to database systems

Ailamaki Anastasia, Koch Christoph

| Sem.     | Type                          |
|----------|-------------------------------|
| MA2, MA4 | Opt.                          |
| Е        | Obl.                          |
| E        | Obl.                          |
| BA6      | Obl.                          |
| E        | Opt.                          |
| Е        | Opt.                          |
| Е        | Opt.                          |
| MA2, MA4 | Opt.                          |
| BA6      | Opt.                          |
|          | MA2, MA4 E E BA6 E E MA2, MA4 |

| Language            | English                    |
|---------------------|----------------------------|
| Credits             | 4                          |
| Session             | Summer                     |
| Semester            | Spring                     |
| Weeks Hours Lecture | 14<br>4 weekly<br>2 weekly |
| Exercises           | 1 weekly                   |
| Project             | 1 weekly                   |
| Number of positions | ·                          |

# **Summary**

This course provides a deep understanding of the concepts behind data management systems. It covers fundamental data management topics such as system architecture, data models, query processing and optimization, database design, storage organization, and transaction management.

### Content

This course provides a deep understanding of the concepts behind data management systems.

# During this course, the students will learn about:

- The Entity-relationship and Relational Models
- · Relational Algebra and Calculus
- The SQL Query Language
- · Traditional and Modern Data Storage, File Organizations, and Indexing
- · Hashing and Sorting
- Query Evaluation and Relational Operators
- Query Optimization
- Schema Refinement
- Transaction Management (Concurrency Control and Recovery)

### Homework

Homeworks will be assigned to aid and assess comprehension of the above material. Homework will be either done using pen and paper or they will be programming exercises. During the semester the students will be asked to do a project to gain experience on how to build a database application, and to apply what they learn in class.

# Keywords

databases, database design, data modeling, normalization, database management systems (DBMS), files, indexes, storage, external sorting, queries, query evaluation, query optimization, transactions, concurrency, recovery, SQL

# **Learning Prerequisites**

# Required courses

Data structures

### **Recommended courses**



For the practical part of the course (project) the following skills will be needed:

- System oriented programming, with focus on scripting languages to enhance the parsing process of raw data
- Building user interfaces, either web (e.g., PHP, JSP, ASP, ...) or application GUI (e.g., java).

### Important concepts to start the course

Before the beginning of the course students must be familiar with:

- Data structures
- · Algorithms concepts

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Express application information requirements
- Use a relational DBMS
- · Create a database on a relational DBMS
- Design a database with a practical application in mind
- Model the data of an application using ER and relational modeling
- Explore how a DBMS performs its work
- Report performance and possible optimizations for applications using DBMS
- · Justify design and implementation choices

#### Transversal skills

- Assess progress against the plan, and adapt the plan as appropriate.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Write a scientific or technical report.
- Make an oral presentation.

# **Teaching methods**

Ex cathedra; including exercises in class, practice with pen and paper or with a computer, and a project

# **Expected student activities**

During the semester, the students are expected to:

- attend the lectures in order to ask questions and interact with the professor,
- attend the exercises session to solve and discuss exercises abou the recently taught material,
- work on a project during the semester which covers the practical side of building an application using a database system,
- take a midterm
- take a final exam

# Assessment methods

Homework, project, written examinations and continuous control.

# Resources



# **Bibliography**

Slides, list of books, additional material (research articles), all indicated and/or available on moodle page.

# Ressources en bibliothèque

• Database Management Systems / Ramakrishnan

# Notes/Handbook

The slides that are used in the class are available for the students.



# CS-233(a) Introduction to machine learning (BA3)

Salzmann Mathieu

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Informatique                              | BA3  | Opt. |
| Sciences et ingénierie de l'environnement | BA5  | Opt. |
| Systèmes de communication                 | BA3  | Opt. |

### **Summary**

Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.

#### Content

- Introduction: General concepts, data representation, basic optimization.
- Linear methods: Linear regression, least-square classification, logistic regression, linear SVMs.
- Nonlinear methods: Polynomial regression, kernel methods, K nearest neighbors
- Deep learning: Multi-layer perceptron, CNNs.
- Unsupervised learning: Dimensionality reduction, clustering.

# Keywords

Machine learning, classification, regression, algorithms

# **Learning Prerequisites**

# Required courses

Linear algebra

### Important concepts to start the course

- Basic linear algebra (matrix/vector multiplications, systems of linear equations, SVD).
- Multivariate calculus (derivative w.r.t. vector and matrix variables).
- Basic programming skills (labs will use Python).

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Define the following basic machine learning problems: regression, classification, clustering, dimensionality reduction
- Explain the main differences between them
- Derive the formulation of these machine learning models
- · Assess / Evaluate the main trade-offs such as overfitting, and computational cost vs accuracy
- Implement machine learning methods on real-world problems, and rigorously evaluate their performance using



cross-validation.

# **Teaching methods**

- Lectures
- Lab sessions

# **Expected student activities**

- Attend lectures
- Attend lab sessions and work on the weekly theory and coding exercises

# **Assessment methods**

- Two graded exercise sessions (10% each). Can be done remotely with a zoom presence to answer questions
- Final exam (80%)

# Supervision

Office hours No
Assistants Yes
Forum Yes

Others Course website



# CS-233(b) Introduction to machine learning (BA4)

Fua Pascal

| Cursus                                    | Sem. | Type |
|-------------------------------------------|------|------|
| Informatique                              | BA4  | Opt. |
| Sciences et ingénierie de l'environnement | BA6  | Opt. |
| Systèmes de communication                 | BA4  | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises | English 4 Summer Spring Written 120h 14 4 weekly 2 weekly 2 weekly |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Number of positions                                                           | ·                                                                  |
|                                                                               |                                                                    |

### **Summary**

Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.

#### Content

- Introduction : K nearest neighbors, data representation, basic optimization.
- · Linear models: Linear regression, least-square classification, logistic regression, linear SVMs.
- Nonlinear method: Polynomial regression, kernel methods.
- Deep learning: Multi-layer pereceptron, CNNs.
- Unsupervised learning: Dimensionality reduction, clustering.

# Keywords

Machine learning, classification, regression, algorithms

# **Learning Prerequisites**

# Required courses

Linear algebra

### Important concepts to start the course

- Basic linear algebra (matrix/vector multiplications, systems of linear equations, SVD).
- Multivariate calculus (derivative w.r.t. vector and matrix variables).
- Basic programming skills (labs will use Python).

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Define the following basic machine learning problems : regression, classification, clustering, dimensionality reduction
- Explain the main differences between them
- Implement algorithms for these machine learning models
- Optimize the main trade-offs such as overfitting, and computational cost vs accuracy
- Implement machine-learning methods to real-world problems, and rigorously evaluate their performance using



cross-validation. Experience common pitfalls and how to overcome them.

# **Teaching methods**

- Lectures
- Lab sessions

# **Expected student activities**

- Attend lectures
- Attend lab sessions and work on the weekly theory and coding exercises

# **Assessment methods**

- Continuous control (graded labs)
- Written final exam

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

Others Course website



# CS-307 Introduction to multiprocessor architecture

Falsafi Babak

| Cursus                           | Sem.     | Type |
|----------------------------------|----------|------|
| Informatique                     | BA5      | Obl. |
| Science et ing. computationelles | MA1, MA3 | Opt. |
| Systèmes de communication        | BA5      | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture | English 4 Winter Fall Written 120h 14 3 weekly 2 weekly |
|---------------------------------------------------------------------|---------------------------------------------------------|
|                                                                     | ,                                                       |
| Project                                                             | 1 weekly                                                |
| Number of positions                                                 |                                                         |

# **Summary**

Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce the essential technologies required to combine multiple processing elements into a single computer.

#### Content

- Forms of parallelism
- Parallel programming models
- Cache coherence
- Memory consistency
- Synchronization
- Interconnection networks
- Software efficiency & optimization
- GPU architecture & programming

# Keywords

Multiprocessors, multicores, manycores, cache coherence, memory consistency models, memory ordering, manycore cache hierarchies, interconnection networks, synchronization, parallelism, GPU

### **Learning Prerequisites**

### Required courses

CS-206 Parallelism and concurrency

CS-208 Computer architecture

# Important concepts to start the course

Introductory understanding of computer architecture & organization Basic C/C++ systems programming

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Detect and address inefficiencies in parallel software
- Design and evaluate software for multiple parallel platforms
- Design and evaluate hardware for shared memory
- Compare and contrast hardware design choices in parallel platforms



• Demonstrate and describe the operation of snooping and directory coherence protocols

# **Teaching methods**

Lectures, homework and project

# **Assessment methods**

- Programming Assignements 30%
- Exercises 30%
- Final exam 40%

# Supervision

Office hours Yes Assistants Yes

### Resources

# Websites

• https://parsa.epfl.ch/course-info/cs307/



#### CS-323 Introduction to operating systems

Payer Mathias

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES - IN                  | Н    | Obl. |
| Informatique              | BA5  | Obl. |
| Mineur en Informatique    | Н    | Opt. |
| Systèmes de communication | BA5  | Opt. |

### **Summary**

Introduction to basic concepts of operating systems.

#### Content

The purpose of this course is to discuss the design of operating systems, and operating systems concepts. Topics we will cover include operating system organization, system programming, networked and distributed systems, and storage systems. Most of the time will be spent on multi-process systems (processes, interprocess communication, and synchronization), memory organization(paging), resource allocation and scheduling, file systems, and I/O. Core topics:

125

- Function and general structure of an operating system.
- Process management.
- Memory management.
- File systems.
- · Virtualization and virtual machines.
- · Security aspects of operating systems

# Keywords

Operating systems

# **Learning Prerequisites**

# **Required courses**

CS-206 Parallelisme and concurrency

CS-207 Programmation orientée système

CS-212 Projet programmation système

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Manage key components of operating systems
- Interpret virtualization of resources
- · Discriminate persistence policies



- Manage concurrency between tasks
- Specify security aspects of operating systems

# **Teaching methods**

Lectures and exercises.

### **Expected student activities**

Attendance at lectures and completing exercises.

#### Assessment methods

The students are assessed both on their theoretical knowledge about operating systems as well as based on implementing parts of an operating system.

- Theoretical assessments during the semester in the forum of weekly quizzes (10% of the grade)
- Practical assessments through several programming labs during the semester (50% of the grade)
- Theoretical assessments in the form of a final exam in the exam session (40% of the grade).

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

# **Bibliography**

Operating Systems: Three Easy Pieces, R. Arpaci-Dusseau and A. Arpaci-Dusseau (free online book). Slides available on Moodle.

# Ressources en bibliothèque

• Operating Systems : Three Easy Pieces / Arpaci-Dusseau

# Références suggérées par la bibliothèque

• Operating Systems Concepts / Silberschatz



# COM-300 Modèles stochastiques pour les communications

Thiran Patrick

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Bioingénierie                       | MA3      | Opt. |
| HES -SC                             | Н        | Obl. |
| Informatique                        | BA5      | Opt. |
| Ingénierie des sciences du vivant   | MA1, MA3 | Opt. |
| Mineur en Data science              | Н        | Opt. |
| Mineur en Systèmes de communication | Н        | Opt. |
| Sciences du vivant                  | MA3      | Opt. |
| Systèmes de communication           | BA5      | Obl. |
|                                     |          |      |

| Langue    | français |
|-----------|----------|
| Crédits   | 6        |
| Session   | Hiver    |
| Semestre  | Automne  |
| Examen    | Ecrit    |
| Charge    | 180h     |
| Semaines  | 14       |
| Heures    | 6 hebdo  |
| Cours     | 4 hebdo  |
| Exercices | 2 hebdo  |
| Nombre de |          |
| places    |          |
|           |          |

#### Résumé

L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'informatique.

#### Contenu

- Rappels de probabilité: axiomes de probabilité, variable aléatoire et vecteur aléatoire.
- · Quelques inégalités utiles.
- Processus stochastiques à temps continu et à temps discret : analyse du second ordre (stationarité, ergodisme, densité spectrale, relations de Wiener-Khintchine, réponse d'un système linéaire invariant à des entrées aléatoires, processus gaussien, processus ARMA, filtres de Wiener). Exemples d'application à des cas simples de détection optimale ou de traitement d'image.
- Processus de Poisson et bruit impulsif de Poisson. Exemple d'application aux transmissions sur fibres optiques.
- Chaînes de Markov à temps discret. Classification des états, chaînes ergodiques: comportement asymptotique, chaînes absorbantes: temps d'atteinte, marches aléatoires simples, processus de branchement. Exemples d'application à l'analyse d'un algorithme ou d'un système informatique distribué.
- Chaînes de Markov à temps continu. Classification des états, chaînes ergodiques: comportement asymptotique. Processus de naissance et de mort à l'état transitoire et stationnaire. Exemples d'application à l'analyse de files d'attente simples: définition, loi de Little, files M/M/1... M/M/s/K, M/G/1.

#### Mots-clés

Probabilité, Processus stochastique, Moments, stationarité, Processus gaussien, Processus de Poisson, Chaîne de Markov, File d'attente.

# Compétences requises

# Cours prérequis obligatoires

- Algèbre linéaire (MATH 111 ou équivalent).
- Analyse I, II, III (MATH 101, 106, 203 ou équivalent).
- Premier cours de probabilité (MATH 232 ou équivalent).
- Circuits et systèmes II (EE 205 ou équivalent), ou Signaux et systèmes (MICRO310/311 ou équivalent), pour les notions de base de théorie des systèmes (déterministes) linéaires.

### Cours prérequis indicatifs



- Circuits et systèmes I (EE 204 ou équivalent) pour les notions de base de théorie des circuits.
- Analyse IV (MATH 204 ou équivalent) pour les notions d'analyse complexe.

### Concepts importants à maîtriser

Notions d'algèbre linéaire, en particulier opérations matricielles (inversion, diagonalisation, vaelurs propres d'une matrice).

Notions d'analyse (fonctions d'une ou plusieurs variables réelles, suites et séries, équations différentielles ordinaires linéaires).

Notions de théorie des systèmes linéaires (convolution, transformées de Fourier, Laplace et en z).

### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Modéliser un système aléatoire.
- Analyser un problème avec une composante aléatoire.
- Evaluer les solutions d'un problème avec une composante aléatoire.

# Méthode d'enseignement

- Ex cathedra (au tableau), 4h par semaine.
- Séances d'exercices, 2h par semaine.

#### Travail attendu

• Exercices en séance et à domicile

### Méthode d'évaluation

- Examen intermédiaire : ne peut être organisé ce semestre. Deux examens intermédiaires à blanc seront offerts.
- Examen final 100%

#### **Encadrement**

Office hours Oui Assistants Oui Forum électronique Oui

# Ressources

# **Bibliographie**

Polycopié; textes de référence sur la page moodle du cours.

# Ressources en bibliothèque

- Introduction to Probability Models / Ross (10th ed.)
- Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues / Brémaud
- Probability and Random Processes / Grimmett & Stirzaker
- Stochastic Processes / Ross
- Probability, Random Variables, and Stochastic Processes / Papoulis (4th ed.)
- Markov Chains / Norris



# Polycopiés

Polycopié disponible au début du cours et sur la page moodle du cours.

### Sites web

• http://moodle.epfl.ch/course/view.php?id=14236

### **Liens Moodle**

• https://moodle.epfl.ch/course/view.php?id=14236

# Préparation pour

Tous les cours en systèmes de communication, science des données et informatique utilisant des modèles stochastiques ou des méthodes aléatoires.



# CS-328 Numerical methods for visual computing and ML

Jakob Wenzel

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA3  | Opt. |
| Systèmes de communication | BA3  | Opt. |

Language English Credits Session Winter Fall Semester Written Workload 120h Weeks 14 Hours 3 weekly 2 weekly Lecture Exercises 1 weekly Number of positions

### **Summary**

Visual computing and machine learning are characterized by their reliance on numerical algorithms to process large amounts of information such as images, shapes, and 3D volumes. This course will familiarize students with a range of essential numerical tools to solve practical problems in this area.

130

#### Content

This course provides a first introduction to the field of numerical analysis with a strong focus on visual computing and machine learning applications. Using examples from computer graphics, deep neural networks, geometry processing, computer vision, and computational photography, students will gain hands-on experience with a range of essential numerical algorithms.

The course will begin with a review of floating point arithmetic and error propagation in numerical computations. Following this, we will study and experiment with several techniques that solve systems of linear and non-linear equations and perform dimensionality reduction. Since many interesting problems cannot be solved exactly, numerical optimization techniques constitute the second major topic of this course. We will take an extensive look at automatic differentiation, the mechanism underlying popular deep learning frameworks such as PyTorch and Tensorflow. The course concludes with a review of numerical methods that introduce randomness to solve problems that would otherwise be intractable.

Students will have the opportunity to gain practical experience with the discussed methods using programming assignments based on Scientific Python.

# Keywords

Visual computing, machine learning, numerical linear algebra, numerical analysis, optimization, scientific computing

# **Learning Prerequisites**

# Required courses

MATH-101 (Analysis I) and MATH-111 (Linear Algebra).

#### Recommended courses

### Important concepts to start the course

Students are expected to have good familiarity with at least one programming language (e.g. C/C++, Java, Scala, Python, R, Ruby...). The course itself will rely on Python, but this is straightforward to learn while taking the course.

During the first weeks of the semester, there will be tutorial sessions on using Python and Scientific Python.



### **Learning Outcomes**

By the end of the course, the student must be able to:

- Develop computer programs that use numerical linear algebra and analysis techniques to transform and visualize data.
- Reason about ways of structuring numerical computations efficiently.
- Analyze the numerical stability of programs built on top of floating point arithmetic.
- Recognize numerical problems in visual computing applications and cast them into a form that can be solved or optimized.

### **Teaching methods**

Lectures, interactive demos, theory and programming exercises

# **Expected student activities**

Students are expected to study the provided reading material and actively participate in class and in exercise sessions. They will be given both theoretical exercises and a set of hands-on programming assignments.

### **Assessment methods**

- 1. Continuous assessment during the semester via project assignments (35%)
- 2. Final exam (65%)

#### Resources

### **Bibliography**

Slides and other resource will be provided in class.

The course textbook is

Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics by Justin Solomon (freely available at the following link: http://people.csail.mit.edu/jsolomon/share/book/numerical\_book.pdf) An optional reference is

Scientific Computing: An Introductory Survey (2nd edition) by Michael Heath

#### Ressources en bibliothèque

- Scientific Computing: An Introductory Survey / Heath
- Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics / Solomon

# Prerequisite for

Although it is not a strict prerequisite, this course is highly recommended for students who wish to pursue studies in the area of Visual Computing, in particular: CS-341 (Introduction to computer graphics), CS-440 (Advanced computer graphics), CS-442 (Computer vision), CS-413 (Computational Photography), CS-444 (Virtual Reality), and CS-445 (Digital 3D geometry processing)



#### CS-206 Parallelism and concurrency

Kuncak Viktor, Odersky Martin

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES - IN                  | Е    | Obl. |
| Informatique              | BA4  | Obl. |
| Systèmes de communication | BA4  | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 4          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 1 weekly   |
| Exercises | 1 weekly   |
| Project   | 2 weekly   |
| Number of |            |
| positions |            |
|           |            |

### **Summary**

The course introduces parallel programming models, algorithms, and data structures, map-reduce frameworks and their use for data analysis, as well as shared-memory concurrency.

#### Content

See https://lara.epfl.ch/w/parcon17:top Parallel programming & execution models Functional parallelism Data-level parallelism Threads and fork/join parallelism Synchronization Threads and Shared Memory in Java

Keywords

Parallelism, threads, synchronization, locks, memory models.

Large-Scale Parallel programming using Apache Spark

### **Learning Prerequisites**

### Required courses

- Functional programming (CS-210)
- Algorithms (CS-250)
- Computer Architecture (CS-208)

### **Recommended courses**

System oriented programming (CS-207)

# Important concepts to start the course

Functional programming and functional data structures

Algorithms and data structures

# **Learning Outcomes**

By the end of the course, the student must be able to:



- Construct parallel software.
- Perform tuning parallel software.

# **Teaching methods**

Ex cathedra, labs, exercices

# **Assessment methods**

With continuous control

# Resources

Notes/Handbook

Lecture notes, copies of the slides



# COM-302 Principles of digital communications

Telatar Emre

| Cursus                              | Sem. | Type |
|-------------------------------------|------|------|
| HES -SC                             | E    | Obl. |
| Informatique                        | BA6  | Opt. |
| Mineur en Systèmes de communication | Е    | Opt. |
| Systèmes de communication           | BA6  | Obl. |

| English 6 Summer Spring Written 180h 14 6 weekly 4 weekly 2 weekly |
|--------------------------------------------------------------------|
|                                                                    |
|                                                                    |

# **Summary**

This course is on the foundations of digital communication. The focus is on the transmission problem (rather than being on source coding).

#### Content

Optimal receiver for vector channels
Optimal receiver for waveform (AWGN) channels
Various signaling schemes and their performance
Efficient signaling via finite-state machines
Efficient decoding via Viterbi algorithm
Communicating over bandlimited AWGN channels
Nyquist Criterion

Communicating over passband AWGN channels

#### Keywords

Detection, estimation, hypothesis testing, Nyquist, bandwidth, error probability, coding, decoding, baseband, passband, AM, QAM, PSK.

# **Learning Prerequisites**

# Required courses

Signal processing for communications and Modèles stochastiques pour les communications

# Important concepts to start the course

Linear algebra, probability.

# **Learning Outcomes**

By the end of the course, the student must be able to:

- · Estimate the error probability of a communication link
- Design a "physical layer" communication link
- Implement a prototype of a "physical layer" transmitter/receiver via Matlab

### **Teaching methods**

Ex cathedra + exercises + project. Lots of reading at home and exercises in class.

### **Assessment methods**



With continuous control

# Resources

# Websites

• http://moodle.epfl.ch

# Prerequisite for

Advanced Digital Communications Software-Defined Radio: A Hands-On Course



# MATH-232 Probabilities and statistics

Abbé Emmanuel

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES - IN                  | E    | Obl. |
| HES -SC                   | Е    | Obl. |
| Informatique              | BA4  | Obl. |
| Systèmes de communication | BA4  | Obl. |

### **Summary**

A basic course in probability and statistics

#### Content

Revision of basic set theory and combinatorics.

Elementary probability: random experiment; probability space; conditional probability; independence.

Random variables: basic notions; density and mass functions; examples including Bernoulli, binomial, geometric,

Poisson, uniform, normal; mean, variance, correlation and covariance; moment-generating function; joint distributions, conditional and marginal distributions; transformations.

Many random variables: notions of convergence; laws of large numbers; central limit theorem; delta method; applications.

Statistical inference: different types of estimator and their properties and comparison; confidence intervals; hypothesis testing; likelihood inference and statistical modelling; Bayesian inference and prediction; examples.

### **Learning Prerequisites**

# Required courses

Analyse I, II Algèbre linéaire

### **Teaching methods**

Ex cathedra lectures, exercises and problems

#### **Assessment methods**

Mid-term and final exams

# Resources

### **Bibliography**

Ross, S. (2012) A first course in probability (9th edition). Pearson.

Aussi disponible en traduction française (PPUR): 'Initiation aux probabilités'.

A polycopié of the course notes, with the problems etc., will also be available.

# Prerequisite for

Electrométrie, Théorie du signal, Télécommunications, Information et codage, Fiabilités, ...

Probabilities and statistics Page 1 / 1



# CS-207 Programmation orientée système

Chappelier Jean-Cédric

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES -SC                   | Е    | Obl. |
| Informatique              | BA4  | Obl. |
| Mineur en Informatique    | Е    | Opt. |
| Systèmes de communication | BA4  | Obl. |

| Langue    | français   |
|-----------|------------|
| Crédits   | 3          |
| Session   | Eté        |
| Semestre  | Printemps  |
| Examen    | Pendant le |
|           | semestre   |
| Charge    | 90h        |
| Semaines  | 14         |
| Heures    | 3 hebdo    |
| Cours     | 1 hebdo    |
| Exercices | 2 hebdo    |
| Nombre de |            |
| places    |            |
|           |            |

#### Résumé

Cours de programmation en langage C se focalisant sur l'utilisation des ressources système, en particulier la gestion de la mémoire (pointeurs).

#### Contenu

Initiation à la programmation en C : variables, expressions, structures de contrôle, fonctions, entrées-sorties, ...

Approfondissement des spécificités de la programmation système rudimentaire : gestion de la mémoire (pointeurs), des fichiers et autres entrées/sorties.

Les concepts théoriques introduits lors des cours magistraux seront mis en pratique dans le cadre d'exercices sur machine.

### Mots-clés

Programmation, langage C, pointeurs, gestion mémoire

# Compétences requises

# Cours prérequis indicatifs

Introduction à la programmation (CS-107) + Pratique de la programmation orientée-objet (CS-108)

### Concepts importants à maîtriser

bases de programmation

# Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Modéliser en langage C une situation simple du monde réelle décrite en Français
- Analyser un problème complexe relatifs aux systèems d'information pour le décomposer en sous-problèmes
- Concevoir des algorithmes résolvant des tâches simple à avancées relatives au systèmes informatiques
- Réaliser de façon autonome une application de petite taille au moyen du langage C
- Analyser du code C pour en décrire le résultat ou le corriger s'il est erroné
- Tester l'adéquation du résultat d'un programme par rapport à la tâche demandée



• Transcrire un algorithme en son programme équivalent en C

### Compétences transversales

- Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.
- Persévérer dans la difficulté ou après un échec initial pour trouver une meilleure solution.
- Accéder aux sources d'informations appropriées et les évaluer.
- Utiliser une méthodologie de travail appropriée, organiser un/son travail.
- Recevoir du feedback (une critique) et y répondre de manière appropriée.
- · Gérer ses priorités.

# Méthode d'enseignement

Ex cathedra, travaux pratiques sur ordinateur

# Travail attendu

participation au cours et aux exercices ; travail personnel à la maison.

# Méthode d'évaluation

1 exercice à rendre (10 %), 1 série pratique notée (40%) et examen final papier (50%)

### **Encadrement**

Office hours Non
Assistants Oui
Forum électronique Oui

# Ressources

# Service de cours virtuels (VDI)

Oui

# **Bibliographie**

Notes de cours

### **Liens Moodle**

• http://moodle.epfl.ch/course/view.php?id=6731

# Préparation pour

Introduction au bases de données (CS-322) ; Concurrence (CS-206) ; Systèmes d'exploitation (CS-323) ; Genie logiciel (CS-305)



# CS-309 Projet de systems-on-chip

Beuchat René

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA6  | Opt. |
| Systèmes de communication | BA6  | Opt. |

Langue français Crédits Session Eté Semestre **Printemps** Pendant le Examen semestre Charge 90h Semaines 14 Heures 3 hebdo Projet 3 hebdo Nombre de places

#### Résumé

L'objectif de ce cours est de s'approprier les connaissances nécessaires pour réaliser du développement "full stack" depuis le hardware jusqu'au software application et s'exécutant sur un système d'exploitation Linux. La base des laboratoires est une plateforme embarquée basée sur un SOC FPGA & ARM.

#### Contenu

Ce cours-labos va surtout permettre aux étudiants de comprendre les liens entre une application, un operating system (Linux) et le matériel informatique. Une plateform ayant une FPGA et 2 processeurs ARM intégrés est utilisée comme support des labos.

Ce cours est centré sur des laboratoires pratiques à réaliser par les étudiants. Généralement une introduction d'une heure est suivie de 1 à 3 sessions pour réaliser des mini-projets par groupes.

Lors des laboratoires, les travaux seront effectués sur des cartes FPGA-SOC avec processeurs embarqués sous forme softcore (NIOSII) et/ou hardcore (ARM). Des interfaces programmables simples et complexes seront développées en VHDL pour s'interfacer avec des modules externes à contrôler. La méthodologie pas-à-pas sera utilisée pour arriver à la réalisation de systèmes relativement complexes.

Les sujets suivants seront étudiés et au final une application complète sera implémentée :

- 1. Analyse du système : Multicore ARMs, FPGA, I/Os, et interfaces programmables spécialisées ;
- 2. Design et simulation d'une interface programmable en VHDL, pour un ADC permettant de lire des joysticks analogiques, et un contrôle de servo-moteurs ;
- 3. Design et simulation d'un accélérateur spécifique en VHDL pour une caméra thermique ;
- 4. Test du système spécifique avec développement de logiciel en C avec des outils de cross-debugging (baremetal coding) ;
- 5. Boot et test d'un système embarqué, baremetal design ;
- 6. Installation d'un OS: Adaptation et compilation de Linux pour la carte de laboratoire ;
- 7. Mini-projet final où les étudiants utiliseront leurs connaissances pour capturer une image thermique et à l'aide de joystick définiront divers paramètres et afficheront les résultats sur un affichage LCD ou écran VGA.

### Mots-clés

Micro-controllers, Micro-contrôleurs, FPGA, SOC, Embedded Systems, Logic Analyzer, Oscilloscope, projects, work in groups, C, VHDL.

# Compétences requises

# Cours prérequis obligatoires

- CS-173: Digital system design / Conception de systèmes numériques
- CS-208: Computer architecture I
- CS-209: Computer architecture II



### Cours prérequis indicatifs

CS-307: Introduction to multiprocessor architecture

### Concepts importants à maîtriser

Les étudiants doivent connaître l'architecture d'un processeur, d'un système informatique, quelques notions de programmation en C, en langage assembleur et en VHDL.

### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Analyser le problème à résoudre ;
- Planifier le travail à réaliser ;
- Créer l'architecture du système à réaliser ;
- Coordonner le travail ;
- · Concevoir le système à réaliser ;
- Implémenter la solution ;
- Intégrer les modules disponibles ;
- Expliquer la solution développée.

### Compétences transversales

- Planifier des actions et les mener à bien de façon à faire un usage optimal du temps et des ressources à disposition.
- Fixer des objectifs et concevoir un plan d'action pour les atteindre.
- Communiquer efficacement et être compris y compris par des personnes de languages et cultures différentes.
- Persévérer dans la difficulté ou après un échec initial pour trouver une meilleure solution.
- Faire preuve d'esprit critique
- Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.

### Méthode d'enseignement

- Travail par groupes d'étudiants ;
- Laboratoires pratiques ;
- · Mini-projets spécifiques par groupe ;
- Travaux avec des outils de développement croisé et de systèmes matériels réels ;
- Utilisation des outils de débogage tels que oscilloscopes et analyseurs logiques ;
- Les travaux sont réalisés sur les systèmes matériels réels avec des micro-contrôleurs et FPGA.

### Travail attendu

- Brainstorming par groupe;
- Répartition de la charge de travail à travers le groupe ;
- Gestion de la planification ;
- Analyse des données des data-sheet des composants utilisés ;
- Résolution de problèmes pratiques sur des systèmes matériels ;
- Développement de modules FPGA en VHDL ;
- Développement de logiciels en C et observation en assembleur du déroulement du programme ;



• Configuration et construction d'un Linux sur un système embarqué.

# Méthode d'évaluation

- 1. Rapports réguliers (60%)
- 2. Présentation orale finale (20%)
- 3. Démonstration (15%)
- 4. Tenue d'un journal de laboratoire (5%)

### **Encadrement**

Office hours Non
Assistants Oui
Forum électronique Oui

### Ressources

# Service de cours virtuels (VDI)

Non

# Sites web

• http://wiki.epfl.ch/prsoc

# **Liens Moodle**

• http://moodle.epfl.ch/course/view.php?id=14480

# Préparation pour

CS-473: Embedded Systems

CS-476: Real Time Embedded systems



# CS-398 Projet en informatique I

Profs divers \*

| Cursus       | Sem.     | Type |
|--------------|----------|------|
| Informatique | BA5, BA6 | Obl. |

Langue français Crédits Session Hiver, Eté Semestre Automne Examen Pendant le semestre 240h Charge Semaines 14 2 hebdo Heures Projet 2 hebdo Nombre de places

### Résumé

Travaux de recherche individuelle à effectuer pendant le semestre, selon les directives d'un professeur ou d'un assistant.

#### Contenu

Sujet de travail à choisir parmi les domaines proposés sur le site web :

https://www.epfl.ch/schools/ic/fr/education-fr/bachelor-fr/informatique/projets-labo-in/

### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Organiser un projet
- Evaluer sa progression au cours du projet
- Présenter un projet

# Compétences transversales

- Ecrire un rapport scientifique ou technique.
- Ecrire une revue de la littérature qui établit l'état de l'art.

#### Méthode d'évaluation

Rapport écrit et présentation orale

# **Encadrement**

Office hours Non
Assistants Non
Forum électronique Non

#### Ressources

Service de cours virtuels (VDI)

Non

# Sites web

https://www.epfl.ch/schools/ic/fr/education-fr/bachelor-fr/projet\_de\_semestre/

Projet en informatique I



# CS-212 Projet programmation système

Bugnion Edouard, Chappelier Jean-Cédric

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA4  | Obl. |
| Mineur en Informatique    | E    | Opt. |
| Systèmes de communication | BA4  | Opt. |

| Langue    | français   |
|-----------|------------|
| Crédits   | 2          |
| Session   | Eté        |
| Semestre  | Printemps  |
| Examen    | Pendant le |
|           | semestre   |
| Charge    | 60h        |
| Semaines  | 14         |
| Heures    | 2 hebdo    |
| Projet    | 2 hebdo    |
| Nombre de |            |
| places    |            |
|           |            |

### Résumé

L'objectif de ce cours à projet est de donner aux étudiants une expérience de la pratique de la programmation système : écriture, correction, amélioration et analyse critique de leur code.

#### Contenu

Ce cours sera enseigné en parallèle du cours « Programmation Orientée Système » (CS-207). Il offre aux étudiants l'opportunité de développer dans un cadre pratique à large échelle les concepts présentés dans cet autre cours. Les étudiants devront en effet non seulement développer leur propre code à partir de rien sur un cas concret, mais aussi lire du code professionnel développé par d'autres de sorte à pouvoir s'en inspirer.

Ce cours consistera en un projet constitué de plusieurs parties réparties sur le semestre. Il insistera sur les concepts clés présentés dans les autres cours liés au domaine de la programmation système (systèmes de fichiers, réseaux, accès mémoire, concurrence, ...), mais mettra aussi en place de façon pratique plusieurs élémens qui seront approfondis plus tard dans le cursus (aspects réseaux avancés, planification, etc.) dans le but d'offrir aux étudiants une première approche pratique à ces concepts.

### Mots-clés

programmation système, gestion mémoire, système de fichiers

# Compétences requises

Cours prérequis obligatoires

Programmation Orientée Système (CS-207)

Parallelism & Concurrency (CS-206)

### Cours prérequis indicatifs

Computer Networks



### Concepts importants à maîtriser

programmation

•

parallélisme et concurrence

### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Modéliser en langage C des problèmes système typiques
- Analyser des problèmes complexes relatifs aux sytèmes informatiques et les décomposer en sous-problèmes
- Réaliser des applications de taille moyenne en langage C
- Analyser des projet en langage C pour être capable de comprendre ce qu'ils font et comment ils sont organisés
- Tester les résultat d'un projet en langage C et le corriger là où cela est nécessaire

# Compétences transversales

- Accéder aux sources d'informations appropriées et les évaluer.
- Recevoir du feedback (une critique) et y répondre de manière appropriée.
- Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.
- · Gérer ses priorités.
- Persévérer dans la difficulté ou après un échec initial pour trouver une meilleure solution.

# Méthode d'enseignement

projet

#### Travail attendu

écrire le code et la documentation d'un projet de groupe

# Méthode d'évaluation

rendu du projet en plusieurs étapes progressives au cours du semestre.

### **Encadrement**

Office hours Non Assistants Oui Forum électronique Oui

### Préparation pour

CS-323 (Operating Systems)



# COM-303 Signal processing for communications

Prandoni Paolo

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Auditeurs en ligne                  | Е        | Obl. |
| HES -SC                             | Е        | Obl. |
| Informatique                        | BA6      | Opt. |
| Mineur en Systèmes de communication | Е        | Opt. |
| Science et ing. computationelles    | MA2, MA4 | Opt. |
| Systèmes de communication           | BA6      | Obl. |

## **Summary**

Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image processing and data communication system design.

#### Content

- 1. Basic discrete-time signals and systems: signal classes and operations on discrete-time signals, signals as vectors in Hilbert space
- 2. Fourier Analysis: properties of Fourier transforms, DFT, DTFT; FFT.
- 3. Discrete-Time Systems: LTI filters, convolution and modulation; difference equations; FIR vs IIR, stability issues.
- 4. Z-transform: properties and regions of convergence, applications to linear systems.
- 5. Filter Design: FIR design methods, IIR design methods, filter structures.
- 6. Stochastic and Adaptive Signal Processing: random processes, spectral representation, Optimal Least Squares adaptive filters.
- 7. Interpolation and Sampling: the continuous-time paradigm, interpolation the sampling theorem, aliasing.
- 8. Quantization: A/D and D/A converters.
- 9. Multi-rate signal processing: upsampling and downsampling, oversampling.
- 10. Multi-dimensional signals and processing: introduction to Image Processing.
- 11. Practical applications: digital communication system design, ADSL.

# Keywords

signal processing, discrete-time, continuous-time, filter, filter design, sampling, aliasing, DSP, Fourier transform, FFT, modem, ADSL

## **Learning Prerequisites**

#### Required courses

calculus, linear algebra

#### Recommended courses

Circuits and systems, basic probability theory

# Important concepts to start the course

vectors and vector spaces, functions and sequences, infinite series

# **Learning Outcomes**

By the end of the course, the student must be able to:



- · Identify signals and signal types
- · Recognize signal processing problems
- Apply the correct analysis tools to specific signals
- · Check system stability
- Manipulate rational transfer functions
- Implement signal processing algorithms
- · Design digital filters
- Interpret complex signal processing systems

#### Transversal skills

- Use a work methodology appropriate to the task.
- · Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Use both general and domain specific IT resources and tools

# **Teaching methods**

Course with exercises sessions and coding examples and exercises in Python (Jupyter Notebooks)

# **Expected student activities**

complete weekly homework, explore and modify Jupyter Notebook examples

#### **Assessment methods**

final exam fully determines final grade.

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

# **Bibliography**

**Signal processing for Communications**, EPFL Press, 2008, by P. Prandoni and M. Vetterli. The book is available for sale in printed form online and in bookstores; in iBook format on the Apple store and is also available as a free pdf file at http://www.sp4comm.org/

# Ressources en bibliothèque

• Signal processing for Communications / Prandoni

#### Notes/Handbook

lecture slides available for download at the beginning of the semester. A complete online DSP MOOC is available on Coursera.

# Websites

- http://www.sp4comm.org/
- https://www.coursera.org/learn/dsp1/
- https://www.coursera.org/learn/dsp2/
- https://www.coursera.org/learn/dsp3/
- https://www.coursera.org/learn/dsp4/



# **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=15139

# Prerequisite for

adaptive signal processing, image processing, audio processing, advanced signal processing



# Signals and systems (for EL&IC)

Shkel Yanina

| Cursus                              | Sem. | Type |
|-------------------------------------|------|------|
| Génie électrique et électronique    | BA4  | Obl. |
| HES - EL                            | Е    | Opt. |
| HES -SC                             | Е    | Obl. |
| Informatique                        | BA4  | Opt. |
| Mineur en Systèmes de communication | Е    | Opt. |
| Systèmes de communication           | BA4  | Obl. |

| Language Credits Session Semester Exam Workload Weeks | English 4 Summer Spring Written 120h 14 |
|-------------------------------------------------------|-----------------------------------------|
| vveeks<br><b>Hours</b>                                | • •                                     |
| Hours<br>Lecture                                      | 4 weekly                                |
| Exercises                                             | 2 weekly<br>2 weekly                    |
| Number of positions                                   | 2 WOORIY                                |

## **Summary**

This class teaches the theory of linear time-invariant (LTI) systems. These systems serve both as models of physical reality (such as the wireless channel) and as engineered systems (such as electrical circuits, filters and control strategies).

#### Content

The design of advanced systems (such as WiFi, cell phones, drones, airplanes) requires a thorough theoretical underpinning. This class teaches one of the most powerful and important pillars: The theory of linear time-invariant (LTI) systems. These systems serve both as models of physical reality (such as the wireless channel) and as engineered systems (such as filters and control strategies).

The class will cover the following topics:

- 1. Systems: Definitions (1 week)
- 2. LTI Systems (3 weeks)
- 3. The Frequency Response of stable LTI Systems (1 week)
- 4. Fourier Techniques for stable LTI Systems (3 weeks); with applications to Communication Systems and Signal Processing
- 5. Laplace and Z-Transform Techniques for LTI Systems (5 weeks); with applications to Control Systems

# Keywords

Systems, Circuits, Signals, Frequency Response, Transfer Function, Fourier Transform, Laplace Transform, Z Transform, Stability, Causality, Sampling

# **Learning Prerequisites**

#### Required courses

Analysis I, II, III. Linear algebra I.

## Recommended courses

Linear algebra II

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Describe properties of LTI systems
- · Solve for poles and zeros of LTI systems
- Recall properties of CT Fourier transform
- Analyze LTI systems by spectral analysis



- Operate with Fourier transform tools
- Work out / Determine impulse response of CT LTI

# **Teaching methods**

- Classroom lectures
- Written exercises
- · Graded homework problems

# **Expected student activities**

• Read course book in english (the course is taught in english)

#### Assessment methods

Homeworks and written mid-term exam and final exams

# Resources

# **Bibliography**

The following is a recommended (but not required) book:

A. V. Oppenheim and A. S. Willsky, with S. Hamid Nawab, Signals and Systems. Upper Saddle River, NJ: Prentice Hall, 2nd ed., 1996.

# Ressources en bibliothèque

• A. V. Oppenheim and A. S. Willsky, with S. Hamid Nawab, Signals and Systems

# Notes/Handbook

will be made available



# CS-306 Software development project

Candea George

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES - IN                  | Е    | Obl. |
| Informatique              | BA6  | Obl. |
| Mineur en Informatique    | Е    | Opt. |
| Systèmes de communication | BA6  | Opt. |

| Language  | English    |
|-----------|------------|
| Language  | Liigiisii  |
| Credits   | 4          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Project   | 4 weekly   |
| Number of |            |
| positions |            |
|           |            |

# **Summary**

This course teaches the basics of developing real-world software, i.e., software that is large and complex, is developed by a team, evolves and needs to be maintained, and can cause serious harm if it fails. Students develop an Android app and do a lot of programming.

#### Content

- Problem solving for software engineers
- · Development processes, in particular agile methods
- Tools (source control, project management, issue trackers, debuggers, etc.)
- Android

# **Learning Prerequisites**

# Required courses

• CS-305 Software Engineering (strict requirement, no exceptions)

# Important concepts to start the course

First and foremost, students taking Software Engineering must be proficient Java programmers. Without a good prior knowledge of Java, it is very difficult to keep up with the pace of the class. Familiarity with Android development is a plus but not required.

# **Learning Outcomes**

By the end of the course, the student must be able to:

- · Design mobile apps
- · Coordinate a team of developers

# Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Assess progress against the plan, and adapt the plan as appropriate.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.



- Manage priorities.
- Take feedback (critique) and respond in an appropriate manner.

# **Teaching methods**

Team-based project

# **Expected student activities**

Work with team members to complete a substantial project

## **Assessment methods**

Throughout the semester (contrôle continu).

Grade determined based on both team and individual performance in the project.

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

# Resources

Virtual desktop infrastructure (VDI)

No

# Websites

• http://sweng.epfl.ch/



# CS-305 Software engineering

Candea George

| Cursus                           | Sem.     | Type |
|----------------------------------|----------|------|
| HES - IN                         | Н        | Obl. |
| Informatique                     | BA5      | Obl. |
| Mineur en Informatique           | Н        | Opt. |
| Science et ing. computationelles | MA1, MA3 | Opt. |
| Systèmes de communication        | BA5      | Opt. |

| Language  | English  |
|-----------|----------|
| Credits   | 4        |
| Session   | Winter   |
| Semester  | Fall     |
| Exam      | Written  |
| Workload  | 120h     |
| Weeks     | 14       |
| Hours     | 4 weekly |
| Lecture   | 2 weekly |
| Exercises | 1 weekly |
| Project   | 1 weekly |
| Number of |          |
| positions |          |
|           |          |

# **Summary**

This course teaches the basics of modern software development: designing software, working in a team, writing good code, shipping software, and evolving software. It emphasizes building software that meets high standards of quality, reliability, security, and manageability.

# Content

# Writing software

- Modularity
- Interfaces
- Software architecture

# Getting software right

- Requirements
- Testing
- Verification
- Debugging
- Security
- Performance

# Shipping software

- Development processes
- DevOps
- Software evolution

Continuous and independent learning is essential to being a good software engineer because, unlike mathematics or physics, the field changes fast. This course prepares students to become lifelong auto-didacts who build upon the foundation of immutable principles that govern good software engineering.

# Keywords

design patterns, fault tolerance, software testing, code analysis, software verification, security, performance, usability, refactoring, agile development methods, version control systems, continuous integration

# **Learning Prerequisites**

# Required courses

Software engineering Page 1 / 3



- CS-108 Practice of Object-Oriented Programming
- CS-206 Parallelism and Concurrency
- CS-207 System-oriented Programming
- COM-208 Computer Networks
- CS-208/209 Computer Architecture
- CS-210 Functional Programming

Students who do not master the material taught in the prerequisite courses prior to starting CS-305 typically do not manage to pass this course.

## Important concepts to start the course

Students are required to have good programming skills in an object-oriented language (e.g., Java).

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Design software that is reliable, secure, user-friendly, and performs well
- Implement sophisticated designs and algorithms
- Specify requirements for software systems
- Develop code that is maintainable
- Organize a team to execute a medium-sized software project
- · Assess / Evaluate design and implementation alternatives

# **Teaching methods**

- · Combination of online and in-class lectures
- Online textbook
- Homework exercises

## **Expected student activities**

- Attend and actively participate in lectures
- Read and understand assigned materials
- · Complete homework exercises independently

#### **Assessment methods**

- 20% based on online quizzes and homeworks (during the semester)
- 80% based on a final exam (during the exam session)

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

# Resources

Virtual desktop infrastructure (VDI)

Software engineering Page 2 / 3



No

# **Bibliography**

Please see the course website for the latest information and up-to-date bibliography

# Ressources en bibliothèque

- •
- •

# Websites

• https://sweng.epfl.ch

Software engineering Page 3 / 3



# CS-234 Technologies of societal self-organization

Ford Bryan Alexander

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA3  | Opt. |
| Systèmes de communication | BA3  | Opt. |

Language English Credits 5 Session Winter Fall Semester Written Exam Workload 150h Weeks 14 Hours 5 weekly Lecture 2 weekly Exercises 1 weekly Practical 2 weekly work Number of positions

# **Summary**

This course will offer students a broad but hands-on introduction to technologies of human self-organization.

#### Content

The course will present students with a view of self-organization technologies set in a long-term historical perspective, extending from their roots in ancients principles of democracy and governance, up to recent high-tech innovation such as social networking, e-voting, blockchains, and delegative democracy. The course will cover the many fundamental organization challenges these technologies attempt to address, such as:

- Coordination: do participants communicate in person, electronically, or by passing secret notes?
- Membership: who has the right to participate as a member or citizen? Can membership be faked?
- Equity or fairness : how much power or weight does each participant have ? Can weight be hacked ?
- Filtering: how to separate signal from noise, real expertise from appealing bluster?
- Scalability: does the self-organizing technology work for only 10 members, or 100? 1000? 1 M? 1 B?
- Integrity: how does self-organizing technology prevent hacking or tampering by malicious parties?
- Self-determination: does the technology protect freedoms such as expression and association?
- Privacy : what acts of participation does the technology keep private, and what are considered public?
- Representation : is participation direct or representative ? How are representatives chosen ?
- Accountability: how are participants and/or representatives kept accountable for their actions?
- Transparency: does the technology allow participants to verify that it is operating correctly? How?
- Incentives : how does the technology encourage or incentivize people to use it, for good or ill ?
- Psychology: how does the technology interplay with the unique properties of the human mind?

# **Learning Prerequisites**

Important concepts to start the course Basic computing and programming skills

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Explore technologies available for societal self-organization
- Expound key challenges and risks in using these technologies



• Discuss social implications of digital communication and organization technologies

# **Teaching methods**

The course will use readings, discussions, and exercises to lead students through an exploration of the vast number of different technological approaches to these challenges and issues, from extremely low-tech (e.g., picking representatives by drawing straws) to the latest experimental technologies. In different weeks the students will explore hands-on the architecture, design, practical use, and strenghts and weaknesses of different self-organization technologies, such as:

- Public discussion forums such as UseNet, Twitter, and Reddit
- Community self-organization systems such as Loomio
- Peer review systems such as HotCRP
- E-voting systems in use in around the world (especially the US and Switzerland)
- Experimental participatory delegative democracy systems such as LiquidFeedback
- Cryptocurrencies and smart contract systems such as Bitcoin and Ethereum

The course work will involve a substantial amount of reading background materials, both technical and non-technical and from a variety of disciplines including computer science, social science, political science, and law. The lectures will be heavily discussion-oriented, covering both the background readings and hands-on exercises in addition to material presented in the lectures.

#### **Expected student activities**

The course will encourage students to "learn by doing" through exercises with practical systems. Students will be required to use some of these systems in groups in "hands-on" self-organization exericses, to get firsthand comparative experience of how they work, and in what ways they succeed and fail.

#### Assessment methods

Students will be assessed through regular exercises and mini-quizzes, participation in "peer review" activities, a small project in the second half of the semester on which the students must report, and a written final exam. Grading will be based substantially on demonstrated active participation in the deliberative course exercises, in addition to learning and understanding of the course content itself.

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

# Resources

# Ressources en bibliothèque

- Who governs? : democracy and power in an American city
- · Citizens without shelter: homelessness, democracy, and political exclusion
- The Death of Money
- The master switch : the rise and fall of information empires

#### **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=15738



# CS-251 Theory of computation

Göös Mika Tapani

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| HES - IN                  | E    | Obl. |
| Informatique              | BA4  | Obl. |
| Systèmes de communication | BA4  | Obl. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture | English 4 Summer Spring Written 120h 14 4 weekly 2 weekly |
|---------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                     | •                                                         |

## **Summary**

This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematically precise understanding of their fundamental capabilities and limitations.

#### Content

- Basic models of computation (finite automata, Turing machine)
- Elements of computability theory (undecidability, reducibility)
- Introduction to time complexity theory (P, NP and theory of NP-completeness)

# Keywords

theory of computation, Turing machines, P vs. NP problem, complexity theory, computability theory, finite automata, NP-completeness

# **Learning Prerequisites**

# Required courses

CS-101 Advanced information, computation, communication I CS-250 Algorithms

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Perform a rigorous study of performance of an algorithm or a protocol
- · Classify computational difficulty of a decision problem
- Define the notion of NP-completeness
- Analyze various computation models
- Design a reduction between two computational problems
- Characterize different complexity classes
- Explain P vs. NP problem

# Transversal skills

Theory of computation Page 1 / 2



- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.

# **Teaching methods**

Ex cathedra with exercises

# **Assessment methods**

Written exam and continuous control

Theory of computation Page 2 / 2



# COM-309 Traitement quantique de l'information

Macris Nicolas

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA5  | Opt. |
| Systèmes de communication | BA5  | Opt. |

Langue français Crédits Session Hiver Semestre Automne Ecrit Examen Charge 120h Semaines 14 Heures 4 hebdo Cours 3 hebdo 1 hebdo Exercices Nombre de places

#### Résumé

L'information est traitée et stockée dans des composants matériels. Avec leur miniaturisation, il faut remplacer le concept de bit classique par celui de bit quantique. Ce cours développe le sujet des communications, de la cryptographie et des corrélations quantiques. La machine IBM Q sera abordée.

#### Contenu

# Introduction a la mecanique quantique des systemes discrets.

- Polarisation des photons, états quantiques, règle de Born.
- Expérience de Stern-Gerlach, spin 1/2, états quantiques sur la sphère de Bloch.
- Dynamique du spin, Oscillations de Rabi et manipulations de l'état quantique.
- Notion abstraite de qubit. Etats à plusieurs qubits.

# Cryptographie, Communications et Corrélations

- Génération d'une clé secrète: protocoles BB84 et B92.
- Intrication: paires de Einstein-Podolsky-Rosen.
- Inégalités de Bell. Expériences d'Aspect-Grangier. Protocole de Ekert pour une clé secrète.
- Protocoles de téléportation et dense coding.

#### Mots-clés

Polarisation, spin, bit quantique, intrication, téléportation, cryptographie quantique.

# Compétences requises

# Cours prérequis obligatoires

Algèbre linéaire.

# Cours prérequis indicatifs

physique de base: mécanique et ondes.

#### Concepts importants à maîtriser

Matrices, valeurs et vecteurs propres, produit scalaire, manipulations algébriques de base avec des nombres complexes.

## Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Expliquer les principes de la physique quantique pour les systèmes discrets
- Expliquer le concept de qubit et donner quelques exemples



- Décrire comment manipuler des gubits
- Connaitre les protocoles de base de la cryptographie quantique.
- Connaitre les protocoles de dense coding et de téléportation.
- Expliquer ce qu'est l'intrication.
- Etre familier avec les ordinateurs IBM Q

# Méthode d'enseignement

Ex-Cathedra. Séances d'exercices. Discussions des lectures pédagogiques proposées aux étudiants.

#### Travail attendu

Participation au cours. Résolution d'exercices. Lectures de revues pédagogiques.

#### Méthode d'évaluation

miniprojet on IBM Q machine, 4 graded homeworks, examen final écrit.

## Ressources

# **Bibliographie**

**David Mermin**, *Quantum computer science, An introduction*, *Cambridge university press 2000.* Livre écrit pour des informaticiens et qui ne requiert pas de connaissances en physique..

Michel Le Bellac, *A short introduction to quantum information and quantum computation,* Cambridge University Press. Pour l'édition en français voir Editions Belin 2005. Un livre pédagogique qui introduit quelques aspects physiques elementaires du sujet.

**Neil Gershenfeld.** *The physics of information technology. Cambridge University Press.* Un livre original sur les technologies de base utiles en informatique et communication classique et/ou quantique.

# Ressources en bibliothèque

- The physics of information technology / Gershenfeld
- Quantum computer science / Mermin
- A short introduction to quantum information and quantum computation / Le Bellac

# **Polycopiés**

Notes fournies en classe. Revues sur le sujet. exercices et corrigés fournis en cours d'année.

# Sites web

• https://ipg.epfl.ch/doku.php?id=en:courses

# Préparation pour

Calcul quantique

# **EPFL**

# **INFORMATIQUE**

# **Cycle Master**

2020 / 2021



# CS-450 Advanced algorithms

Kapralov Mikhail

| Cyber security minor E Opt. Cybersecurity MA2, MA4 Obl. Data Science MA2, MA4 Obl. Informatique et communications Opt. Informatique MA2, MA4 Obl. | е |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Data Science MA2, MA4 Obl. Informatique et communications Opt.                                                                                    |   |
| Informatique et communications Opt.                                                                                                               |   |
|                                                                                                                                                   |   |
| Informatique MA2, MA4 Obl.                                                                                                                        |   |
| •                                                                                                                                                 |   |
| Mineur en Data science E Opt.                                                                                                                     |   |
| Mineur en Informatique E Opt.                                                                                                                     |   |
| Robotique, contrôle et systèmes intelligents Opt.                                                                                                 |   |
| SC master EPFL MA2, MA4 Obl.                                                                                                                      |   |
| Science et ing. computationelles MA2, MA4 Opt.                                                                                                    |   |

| Credits Session Semester Exam Workload Weeks | English 7 Summer Spring Written 210h 14 7 weekly 4 weekly 3 weekly |
|----------------------------------------------|--------------------------------------------------------------------|
|----------------------------------------------|--------------------------------------------------------------------|

# **Summary**

A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a repertory of basic algorithmic solutions to problems in many domains.

#### Content

Algorithm analysis techniques: worst-case and amortized, average-case, randomized, competitive, approximation. Basic algorithm design techniques: greedy, iterative, incremental, divide-and-conquer, dynamic programming, randomization, linear programming. Examples from graph theory, linear algebra, geometry, operations research, and finance.

# Keywords

See content.

# **Learning Prerequisites**

# Required courses

An undergraduate course in Discrete Structures / Discrete Mathematics, covering formal notation (sets, propositional logic, quantifiers), proof methods (derivation, contradiction, induction), enumeration of choices and other basic combinatorial techniques, graphs and simple results on graphs (cycles, paths, spanning trees, cliques, coloring, etc.).

#### Recommended courses

An undergraduate course in Data Structures and Algorithms. An undergraduate course in Probability and Statistics.

# Important concepts to start the course

Basic data structures (arrays, lists, stacks, queues,trees) and algorithms (binary search; sorting; graph connectivity); basic discrete mathematics (proof methods, induction, enumeration and counting, graphs); elementary probability and statistics (random variables, distributions, independence, conditional probabilities); data abstraction.

# **Learning Outcomes**

By the end of the course, the student must be able to:

Advanced algorithms Page 1 / 2



- Use a suitable analysis method for any given algorithm
- Prove correctness and running-time bounds
- Design new algorithms for variations of problems studied in class
- Select appropriately an algorithmic paradigm for the problem at hand
- Define formally an algorithmic problem

# **Teaching methods**

Ex cathedra lecture, reading

#### Assessment methods

# Supervision

Others For details, see the course web page.

# Resources

# **Bibliography**

See web page for the course.

## Ressources en bibliothèque

- Randomized Algorithms / Motwani
- Approximation Algorithms / Vazirani
- Computational Complexity / Papadimitrou
- · Algebraic Complexity Theory / Buergisser
- Quantum Computation and Quantum Information / Nielsen

# Notes/Handbook

Class notes and references for the running semester will be provided as needed within a few days after each lecture.

Advanced algorithms Page 2 / 2



# CS-420 Advanced compiler construction

Schinz Michel

| Cursus        | Sem.     | Type |
|---------------|----------|------|
| Cybersecurity | MA2, MA4 | Opt. |
| Informatique  | MA2, MA4 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 4          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 2 weekly   |
| Project   | 2 weekly   |
| Number of |            |
| positions |            |

# Summary

Students learn several implementation techniques for modern functional and object-oriented programming languages. They put some of them into practice by developing key parts of a compiler and run time system for a simple functional programming language.

# Content

Part 1: implementation of high-level concepts

- functional languages: closures, continuations, tail call elimination,
- object-oriented languages: object layout, method dispatch, membership test.

## Part 2: optimizations

- compiler intermediate representations (RTL, SSA, CPS),
- · inlining and simple optimizations,
- · register allocation,
- instruction scheduling.

# Part 3: run time support

- · interpreters and virtual machines,
- memory management (including garbage collection).

# Keywords

compilation, programming languages, functional programming languages, object-oriented programming languages, code optimization, register allocation, garbage collection, virtual machines, interpreters, Scala.

# **Learning Prerequisites**

**Recommended courses** 

Computer language processing

## Important concepts to start the course

Excellent knowledge of Scala and C programming languages

# **Learning Outcomes**



By the end of the course, the student must be able to:

- Assess / Evaluate the quality of a compiler intermediate representation
- Design compilers and run time systems for object-oriented and functional programming languages
- Implement rewriting-based compiler optimizations
- Implement efficient virtual machines and interpreters
- Implement mark and sweep or copying garbage collectors

# **Teaching methods**

Ex Cathedra, mini-project

## **Assessment methods**

Continuous control (mini-project 80%, final exam 20%)

# Supervision

Office hours No
Assistants Yes
Forum Yes

#### Resources

Virtual desktop infrastructure (VDI)

No

## Ressources en bibliothèque

- Engineering a Compiler / Cooper
- Modern Compiler Implementation in Java / Appel
- The garbage collection handbook : the art of automatic memory management / Jones
- Compiling with continuations / Appel

# Websites

https://cs420.epfl.ch/



# CS-470 Advanced computer architecture

Ienne Paolo

| Cursus                           | Sem.     | Type |
|----------------------------------|----------|------|
| Cyber security minor             | Е        | Opt. |
| Cybersecurity                    | MA2, MA4 | Obl. |
| Génie électrique et électronique | MA2, MA4 | Opt. |
| Informatique                     | MA2, MA4 | Obl. |
| Mineur en Informatique           | E        | Opt. |
| SC master EPFL                   | MA2, MA4 | Opt. |

| Credits Session Semester Exam Workload Weeks 1 | English S Summer Spring Oral 180h 14 S weekly 3 weekly 2 weekly |
|------------------------------------------------|-----------------------------------------------------------------|
|------------------------------------------------|-----------------------------------------------------------------|

# **Summary**

The course studies techniques to exploit Instruction-Level Parallelism (ILP) statically and dynamically. It also addresses some aspects of the design of domain-specific accelerators. Finally, it explores security challenges based on microarchitectural features and hardware isolation techniques.

#### Content

Pushing processor performance to its limits:

- Principles of Instruction Level Parallelism (ILP)
- Register renaming techniques
- Prediction and speculation
- Simultaneous multithreading
- Optimized memory hierarchies and efficient virtualization
- VLIW and compiler techniques for ILP
- Dynamic binary translation

Domain specific architectures and accelerators:

- Specificities of embedded vs. general computing processors
- Overview of DSPs and related compilation challenges
- Basic notions of High-Level Synthesis
- Statically and dynamically scheduled accelerators

#### Security concerns:

- Information leakage through the memory hierarchy
- Information leakage through the front-end (branch prediction)
- Hardware-based architectures for isolation (e.g., ARM TrustZone and Intel SGX)
- Power-analysis side-channel attacks

## **Keywords**

Processors, Instruction Level Parallelism, Systems-on-Chip, Embedded Systems, High-Level Synthesis, Hardware Security.

# **Learning Prerequisites**

# Required courses



CS-208 Architecture des ordinateurs or Computer Architecture I

#### Recommended courses

CS-209 Architecture des systèmes-on-chip or Computer Architecture II

## Important concepts to start the course

Undergraduate knowledge of digital circuit design and of computer architecture

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Design strategies to exploit instruction level parallelism in processors.
- Contrast static and dynamic techniques for instruction level parallelism.
- Design effective processor (micro-)architectures for which efficient compilers can be written.
- Develop hardware accelerators competitive to best commercial processors
- Defend against security threats based on microarchitectural processor features

## **Teaching methods**

Courses, labs, and compulsory homeworks.

#### **Assessment methods**

Labs, homeworks, and final exam.

# Supervision

Office hours No
Assistants Yes
Forum Yes

# Resources

# Virtual desktop infrastructure (VDI)

No

# **Bibliography**

• John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufman, 6th edition, 2017.

# Ressources en bibliothèque

• Computer Architecture / Hennessy

#### **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=15017

# Prerequisite for

CS-471 Advanced Multiprocessor Architecture



# CS-440 Advanced computer graphics

Jakob Wenzel

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Cybersecurity                       | MA2, MA4 | Opt. |
| Humanités digitales                 | MA2, MA4 | Opt. |
| Informatique                        | MA2, MA4 | Opt. |
| Mineur en Informatique              | Е        | Opt. |
| Mineur en Systèmes de communication | Е        | Opt. |
| SC master EPFL                      | MA2, MA4 | Opt. |

| English                |
|------------------------|
| 6                      |
| Summer                 |
| Spring                 |
|                        |
| During the<br>semester |
|                        |
| 180h                   |
| 14                     |
| 3 weekly               |
| 2 weekly               |
| 1 weekly               |
|                        |
|                        |
|                        |

# Summary

This course covers advanced 3D graphics techniques for realistic image synthesis. Students will learn how light interacts with objects in our world, and how to recreate these phenomena in a computer simulation to create synthetic images that are indistinguishable from photographs.

#### Content

This is a project-based course: students will initially receive a basic software package that lacks most rendering-related functionality.

Over the course of the semester, we will discuss a variety of concepts and tools including the basic physical quantities, how light interacts with surfaces, and how to solve the resulting mathematical problem numerically to create realistic images. Advanced topics include participating media, material models for sub-surface light transport, and Markov Chain Monte Carlo Methods.

Each major topic is accompanied by an assignment so that students can implement solution algorithms and obtain practical experience with these techniques within their own software framework.

Towards the end of the course, students will realize a self-directed final project that extends their rendering software with additional features of their own choosing. The objective of the final project is to create a single image of both technical and artistic merit that is entered into a rendering competition and judged by an independent panel of computer graphics experts.

# **Learning Prerequisites**

Required courses

Nothing

# **Recommended courses**

Introduction to Computer Graphics

#### Important concepts to start the course

We will rely on calculus, linear algebra and use basic concepts of algorithms and data structures. Students are expected to be familiar with the C++ programming language that is used in the programming assignments.

# **Learning Outcomes**

By the end of the course, the student must be able to:

• Recognize and understand the physical quantities of light transport and be able to perform basic computations using pencil+paper



- Explain a range of surface and subsurface material models
- Explain the rendering and radiative transfer equation and show how to construct Monte Carlo methods to solve them
- Design and implement an advanced rendering system based on Monte Carlo integration
- · Assess / Evaluate the performance and conceptual limits of the implemented simulation code

# **Teaching methods**

Lectures, interactive demos, theory and programming exercises, programming project, project tutoring

# **Expected student activities**

The student are expected to study the provided reading material and actively participate in class. They should prepare and resolve the exercises, prepare and carry out the programming project.

# **Assessment methods**

Intermediate assignments (60%), final project (40%)

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

## Resources

## **Bibliography**

A list of books will be provided at the beginning of the class

# Ressources en bibliothèque

Physically Based Rendering: From Theory to Implementation / Pharr

# Notes/Handbook

Slides and online resources will be provided in class

# Websites

• https://rgl.epfl.ch/courses/ACG18



# CS-471 Advanced multiprocessor architecture

| Cursus                           | Sem.     | Type |
|----------------------------------|----------|------|
| Cybersecurity                    | MA1, MA3 | Opt. |
| Génie électrique et électronique | MA1, MA3 | Opt. |
| Informatique                     | MA1, MA3 | Opt. |
| SC master EPFL                   | MA1, MA3 | Opt. |
| Science et ing. computationelles | MA1, MA3 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 6          |
| Session   | Winter     |
| Semester  | Fall       |
| Exam      | During the |
|           | semester   |
| Workload  | 180h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 4 weekly   |
| Number of |            |
| positions |            |
|           |            |

#### Remark

Cours biennal donné une année sur deux les années impaires (pas donné en 2020-21

#### **Summary**

Multiprocessors are now the defacto building blocks for all computer systems. This course will build upon the basic concepts offered in Computer Architecture I to cover the architecture and organization of modern multiprocessors from mobile and embedded platforms to servers, data centers and cloud computing platforms.

#### Content

Introduction to multiprocessor systems, parallel programming models including Pthreads, MPI, hardware and software transactional memory, synchronization primitives, memory consistency mdels, cache coherence, on-chip shared cache architectures, on-chip interconnects, multi-chip interconnects, multi-chip bus-based and general-purpose interconnect-based shared-memory systems, clusters.

The course will include weekly readings, discussions, and student reviews and reports on publications (besides the text book) of seminal and recent contributions to the field of computer architecture. Student reviews, class discussions, and an independent research project will account for a significant fraction of the grade. Feedback on performance will be given only upon request by a student. There will be no recitation classes.

The course will also include an independent and original research project, in which students study, improve, and evaluate multiprocessor innovations using a software simulation infrastructure. There will be a list of project ideas given out, but students can suggest and work on their own ideas with potentials for advancing the state of the art.

## **Learning Prerequisites**

## **Recommended courses**

Computer Architecture I, basic C/C++ systems programming.

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Design and evaluate parallel computer organizations
- Develop parallel programs and benchmarks for parallel systems
- Design the basic components of modern parallel systems including multiple processors, cache hierarchies and networks
- · Quantify performance metrics for parallel systems
- Interpret and critique research papers
- Plan, propose and conduct a research project empirically
- Present research contributions



# **Teaching methods**

Lectures, homeworks, and a research project

# **Assessment methods**

Continuous control:

Homework: 30 %, Project 15 %, Midterm test: 20 %,

End term test : 35 %

# Resources

# Websites

• https://parsa.epfl.ch/course-info/cs471/



# COM-417 Advanced probability and applications

Lévêque Olivier

| Cursus                                       | Sem.     | Type |
|----------------------------------------------|----------|------|
| Cybersecurity                                | MA2, MA4 | Opt. |
| Data Science                                 | MA2, MA4 | Opt. |
| Génie électrique                             |          | Opt. |
| Informatique et communications               |          | Obl. |
| Informatique                                 | MA2, MA4 | Opt. |
| Mineur en Data science                       | Е        | Opt. |
| Robotique, contrôle et systèmes intelligents |          | Opt. |
| SC master EPFL                               | MA2, MA4 | Obl. |

# **Summary**

In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequalities), while the second part focuses on the theory of martingales in discrete time.

#### Content

- sigma-fields, random variables
- probability measures, distributions
- independence, convolution
- expectation, characteristic function
- random vectors and Gaussian random vectors
- inequalities, convergences of sequences of random variables
- laws of large numbers, applications and extensions
- convergence in distribution, central limit theorem and applications
- moments and Carleman's theorem
- concentration inequalities
- conditional expectation
- martingales, stopping times
- martingale convergence theorems

# Keywords

probability theory, measure theory, martingales, convergence theorems

# **Learning Prerequisites**

# Required courses

Basic probability course

Calculus courses

## Recommended courses

complex analysis

# Important concepts to start the course

This course is NOT an introductory course on probability: the students should have a good understanding and practice of basic probability concepts such as: distribution, expectation, variance, independence, conditional probability.

The students should also be at ease with calculus. Complex analysis is a plus, but is not required. On the other hand, no prior background on measure theory is needed for this course: we will go through the



basic concepts one by one at the beginning.

# **Learning Outcomes**

By the end of the course, the student must be able to:

• understand the main ideas at the heart of probability theory

# **Teaching methods**

Ex cathedra lectures + exercise sessions

#### **Expected student activities**

active participation to exercise sessions

#### **Assessment methods**

5 graded homeworks, worth 5% each; total 25% final exam 75%

#### Resources

# **Bibliography**

Sheldon M. Ross, Erol A. Pekoz, A Second Course in Probability,1st edition, www.ProbabilityBookstore.com, 2007.

Jeffrey S. Rosenthal, A First Look at Rigorous Probability Theory,2nd edition, World Scientific, 2006. Geoffrey R. Grimmett, David R. Stirzaker, Probability and Random Processes,3rd edition, Oxford University Press, 2001.

Richard Durrett, Probability: Theory and Examples, 4th edition, Cambridge University Press, 2010. Patrick Billingsley, Probability and Measure, 3rd edition, Wiley, 1995.

#### Ressources en bibliothèque

- Sheldon M. Ross, Erol A. Pekoz, A Second Course in Probability, 1st ed
- Jeffrey S. Rosenthal, A First Look at Rigorous Probability Theory, 2nd ed
- Richard Durrett, Probability: Theory and Examples, 4th ed
- · Patrick Billingsley, Probability and Measure, 3rd ed

# Notes/Handbook

available on the course website

#### Websites

• https://moodle.epfl.ch/course/view.php?id=14557

# Prerequisite for

Advanced classes requiring a good knowledge of probability



#### CS-523 Advanced topics on privacy enhancing technologies

Troncoso Carmela

| Cursus         | Sem.     | Type |
|----------------|----------|------|
| Cybersecurity  | MA2, MA4 | Opt. |
| Data Science   | MA2, MA4 | Opt. |
| Informatique   | MA2, MA4 | Opt. |
| SC master EPFL | MA2, MA4 | Opt. |

| Language<br>Credits<br>Session<br>Semester<br>Exam<br>Workload<br>Weeks | English 7 Summer Spring Written 210h 14      |
|-------------------------------------------------------------------------|----------------------------------------------|
| Lecture Exercises Project Number of positions                           | 6 weekly<br>3 weekly<br>1 weekly<br>2 weekly |

# **Summary**

This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to protect privacy, and how to evaluate the protection they provide.

# Content

The course will cover the following topics:

Privacy definitions and concepts.

Privacy-preserving cryptographic solutions: anonymous credentials, zero-knowledge proofs, secure multi-party computation, homomorphic encryption, Private information retrieval (PIR), Oblivious RAM (ORAM)

Anonymization and data hiding: generalization, differential privacy, etc

Machine learning and privacy

Protection of metadata: anonymous communications systems, location privacy, censorpship resistance.

Online tracking and countermeasures

Privacy engineering: design and evaluation (evaluation metrics and notions)

Legal aspects of privacy

## **Keywords**

Privacy, anonymity, homomorphic encryption, secure multi-paty computation, anonymous credentials, ethics

## **Learning Prerequisites**

Required courses

COM-402 Information Security and Privacy

COM-301 Computer Security



# **Recommended courses**

COM-401 Cryptography

# Important concepts to start the course

Basic programming skills; basics of probabilities and statistics; basics of cryptography

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Select appropriately privacy mechanisms
- Develop privacy technologies
- Assess / Evaluate privacy protection
- Reason about privacy concerns

# **Teaching methods**

Lectures and written exercises to deepen understanding of concepts

Programming-oriented assignments to practice use of privacy technologies

# **Expected student activities**

Participation in the lectures. Active participation is encouraged. Participation in exercise session and complete the exercises regularly Completion of programming assignments

# **Assessment methods**

Final exam

# Supervision

Office hours Yes
Assistants Yes
Forum Yes



# MATH-493 Applied biostatistics

#### Goldstein Darlene

| Cursus                            | Sem.     | Type |
|-----------------------------------|----------|------|
| Bioingénierie                     | MA4      | Opt. |
| Cybersecurity                     | MA2, MA4 | Opt. |
| Data Science                      | MA2, MA4 | Opt. |
| Génie civil & environnement       |          | Opt. |
| Informatique                      | MA2, MA4 | Opt. |
| Ingmath                           | MA2, MA4 | Opt. |
| Ingénierie des sciences du vivant | MA2, MA4 | Opt. |
| Mathématicien                     | MA2      | Opt. |
| Mineur en Data science            | Е        | Opt. |
| SC master EPFL                    | MA2, MA4 | Opt. |
| Sciences du vivant                | MA4      | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 5          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 150h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 2 weekly   |
| Exercises | 2 weekly   |
| Number of |            |
| positions |            |
|           |            |

# **Summary**

This course covers topics in applied biostatistics, with an emphasis on practical aspects of data analysis using R statistical software. Topics include types of studies and their design and analysis, high dimensional data analysis (genetic/genomic) and other topics as time and interest permit.

#### Content

- Types of studies
- · Design and analysis of studies
- R statistical software
- Reproducible research techniques and tools
- Report writing
- Exploratory data analysis
- Liniear modeling (regression, anova)
- Generalized linear modeling (logistic, Poission)
- · Survival analysis
- · Discrete data analysis
- Meta-analysis
- High dimensional data analysis (genetics/genomics applications)
- · Additional topics as time and interest permit

# Keywords

Data analysis, reproducible research, statistical methods, R, biostatistical data analysis, statistical data analysis

# **Learning Prerequisites**

# Required courses

This course will be very difficult for students with no previous course or experience with statistics. **Previous experience with R is neither assumed nor required.** 

## **Recommended courses**

Applied biostatistics Page 1 / 2



# Undergraduate statistics course

# Important concepts to start the course It is useful to review statistical hypothesis testing.

# **Learning Outcomes**

By the end of the course, the student must be able to:

- · Interpret analysis results
- · Justify analysis plan
- Plan analysis for a given dataset
- Analyze various types of biostatistical data
- · Synthesize analysis into a written report
- Report plan of analysis and results obtained

#### Transversal skills

- · Write a scientific or technical report.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Take feedback (critique) and respond in an appropriate manner.
- Use a work methodology appropriate to the task.

# **Teaching methods**

Lectures and practical exercises using R. Typically, each week covers an analysis method in the lecture and then the corresponding exercise session consists of an R proactical showing how to implement the methods using R. In each practical, students use R to carry out analyses of the relevant data type for that week.

# **Expected student activities**

Students are expected to participate in their learning by attending lectures and practical exercise sessions, posing questions, proposing topics of interest, peer reviewing of preliminary reports, and interacting with teaching staff regarding their understanding of course material. In addition, there will be a number of short activities in class aimed at improving English for report writing.

# **Assessment methods**

Evaluation is based on written reports of projects analyzing biostatistical data.

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Applied biostatistics Page 2 / 2



# CS-401 Applied data analysis

West Robert

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Bioengineering                          | MA3      | Opt. |
| Civil & Environmental Engineering       |          | Opt. |
| Computational Neurosciences minor       | Н        | Opt. |
| Computational science and Engineering   | MA1, MA3 | Opt. |
| Computer science                        | MA1, MA3 | Opt. |
| Cybersecurity                           | MA1, MA3 | Opt. |
| Data Science                            | MA1, MA3 | Obl. |
| Data science minor                      | Н        | Opt. |
| Digital Humanities                      | MA1, MA3 | Obl. |
| Electrical Engineering                  |          | Opt. |
| Electrical and Electronical Engineering | MA1, MA3 | Opt. |
| Energy Science and Technology           | MA1, MA3 | Opt. |
| Financial engineering                   | MA1, MA3 | Opt. |
| Internet of Things minor                | Н        | Opt. |
| Life Sciences Engineering               | MA1, MA3 | Opt. |
| Managmt, tech et entr.                  | MA1, MA3 | Opt. |
| Mineur STAS Chine                       | Н        | Opt. |
| SC master EPFL                          | MA1, MA3 | Opt. |
| UNIL - Sciences forensiques             | Н        | Obl. |
|                                         |          |      |

## **Summary**

This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the data science world: pandas, scikit-learn, Spark, etc.

# Content

Thanks to a new breed of software tools that allows to easily process and analyze data at scale, we are now able to extract invaluable insights from the vast amount of data generated daily. As a result, both the business and scientific world are undergoing a revolution which is fueled by one of the most sought after job profiles: the data scientist. This course covers the fundamental steps of the data science pipeline:

Data Wrangling

- Data acqusition (scraping, crawling, parsing, etc.)
- Data manipulation, array programming, dataframes
- The many sources of data problems (and how to fix them): missing data, incorrect data, inconsistent representations
- Schema alignment, data reconciliation
- · Data quality testing with crowdsourcing

# Data Interpretation

- Stats in practice (distribution fitting, statistical significance, etc.)
- Working with "found data" (design of observational studies, regression analysis)
- Machine learning in practice (supervised and unsupervised, feature engineering, more data vs. advanced algorithms, curse of dimensionality, etc.)

Applied data analysis Page 1 / 3



- Text mining: vector space model, topic models, word embedding
- Social network analysis (influencers, community detection, etc.)

# Data Visualization

- Introduction to different plot types (1, 2, and 3 variables), layout best practices, network and geographical data
- Visualization to diagnose data problems, scaling visualization to large datasets, visualizing uncertain data

#### Reporting

- · Results reporting, infographics
- How to publish reproducible results
- · Anonymiziation, ethical concerns

The students will learn the techniques during the ex-cathedra lectures and will be introduced, in the lab sessions, to the software tools required to complete the homework assignments and the in-class quizzes.

In parallel, the students will embark on a semester-long project, split in agile teams of 3-4 students. The project consists of two parts: (1) replication of a data analysis pipeline from a published scientific paper, (2) a "free-style" component where students propose and execute their own extension of part 1. The outcome of this team effort will be a project portfolio that will be made public (and available as open source).

At the end of the semester, students will also take a 3-hour final exam in a classroom with their own computer, where they will be asked to complete a data analysis pipeline (both with code and extensive comments) on a dataset they have never worked with before.

## **Keywords**

data science, data analysis, data mining, machine learning

# **Learning Prerequisites**

# Required courses

The student must have passed an introduction to databases course, OR a course in probability & statistics, OR two separate courses that include programming projects.

# **Recommended courses**

- CS-423 Distributed Information Systems
- CS-433 Machine Learning

#### Important concepts to start the course

Algorithms, (object-oriented) programming, basic probability and statistics

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Construct a coherent understanding of the techniques and software tools required to perform the fundamental steps of the Data Science pipeline
- Perform data acquisition (data formats, dataset fusion, Web scrapers, REST APIs, open data, big data platforms, etc.)
- Perform data wrangling (fixing missing and incorrect data, data reconciliation, data quality assessments, etc.)

Applied data analysis Page 2 / 3



• Perform data interpretation (statistics, knowledge extraction, critical thinking, team discussions, ad-hoc visualizations, etc.)

181

· Perform result dissemination (reporting, visualizations, publishing reproducible results, ethical concerns, etc.)

#### Transversal skills

- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Give feedback (critique) in an appropriate fashion.
- · Demonstrate the capacity for critical thinking
- Write a scientific or technical report.

## **Teaching methods**

- Physical in-class recitations and lab sessions
- · Homework assignments
- In-class quizzes
- Course project

#### **Expected student activities**

Students are expected to:

- Attend the lectures and lab sessions
- Complete 2-3 homework assignments
- Complete 3 in-class quizzes (held during lab sessions)
- · Conduct the class project
- Read/watch the pertinent material before a lecture
- Engage during the class, and present their results in front of the other colleagues

## **Assessment methods**

- 33% continuous assessment during the semester (homework and in-class quizzes)
- 33% final exam, data analysis task on a computer (3 hours)
- 33% final project, done in groups of 3

#### Supervision

Others http://ada.epfl.ch

Applied data analysis Page 3 / 3



# CS-456 Artificial neural networks

#### Gerstner Wulfram

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Biocomputing minor                        | E        | Opt. |
| Bioengineering                            | MA4      | Opt. |
| Computational Neurosciences minor         | Е        | Opt. |
| Computational science and Engineering     | MA2, MA4 | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Data Science                              | MA2, MA4 | Opt. |
| Digital Humanities                        | MA2, MA4 | Opt. |
| Electrical Engineering                    |          | Opt. |
| Financial engineering                     | MA2, MA4 | Opt. |
| Life Sciences Engineering                 | MA2, MA4 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |
| Sciences du vivant                        | MA4      | Opt. |
|                                           |          |      |

#### **Summary**

Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into the main models of deep artificial neural networks: Supervised Learning and Reinforcement Learning.

#### Content

- Simple perceptrons for classification
- Reinforcement Learning 1: Bellman equation and SARSA
- Reinforcement Learning 2: variants of SARSA, Q-learning, n-step-TD learning
- · Reinforcement Learning 3: Policy gradient
- Deep Networks 1: BackProp and Multilayer Perceptrons
- Deep Networks 2: Regularization and Tricks of the Trade in deep learning
- Deep Networks 3. Error landscape and optimization methods for deep networks
- Deep Networks 4. Statistical Classification by deep networks
- Application 1: Convolutional networks
- Application 2: Sequence prediction and recurrent networks
- · Deep reinforcement learning: Actor-Critic networks
- Deep reinforcement learning: applications

## Keywords

Deep learning, artificial neural networks, reinforcement learning, TD learning, SARSA,

## **Learning Prerequisites**

Artificial neural networks Page 1 / 3



#### Required courses

CS 433 Machine Learning (or equivalent)

Calculus, Linear Algebra (at the level equivalent to first 2 years of EPFL in STI or IC, such as Computer Science, Physics or Electrical Engineering)

#### Recommended courses

stochastic processes optimization

#### Important concepts to start the course

- Regularization in machine learning,
- Training base versus Test base, cross validation.
- Gradient descent. Stochastic gradient descent.
- Expectation, Poisson Process, Bernoulli Process.

# **Learning Outcomes**

- · Apply learning in deep networks to real data
- · Assess / Evaluate performance of learning algorithms
- Elaborate relations between different mathematical concepts of learning
- Judge limitations of algorithms
- Propose algorithms and models for learning in deep networks
- Apply Reinforcement Learning

#### Transversal skills

- Continue to work through difficulties or initial failure to find optimal solutions.
- · Access and evaluate appropriate sources of information.
- Write a scientific or technical report.
- Manage priorities.

#### **Teaching methods**

ex cathedra lectures and 2 miniprojects. Every week the ex cathedra lectures are interrupted for a short in-class exercise which is then discussed in classroom before the lecture continues. Additional exercises are given as homework. For the exercise sessions two time slots of 45 minutes will be offered, and students will sign up for one of the two.

#### **Expected student activities**

work on miniproject solve all exercises attend all lectures and take notes during lecture, participate in quizzes. If you cannot attend a lecture, then you must read the recommended book chapters

#### **Assessment methods**

written exam (70 percent) and miniproject (30 percent)

#### Supervision

Office hours Yes

Artificial neural networks Page 2 / 3



Assistants Yes Forum Yes

Others TAs are available during exercise sessions.

Every week one of the exercises is run as 'integrated exercise' during the lecture.

Choice between two different exercise sessions

## Resources

# **Bibliography**

- Textbook: Deep Learning by Goodfellow, Bengio, Courville (MIT Press)
- Textbook: Reinforcement Learning by Sutton and Barto (MIT Press)

Pdfs of the preprint version for both books are availble online

# Ressources en bibliothèque

- Deep Learning by Goodfellow, Bengio, Courville
- Reinforcement Learning by Sutton and Barto

Artificial neural networks Page 3 / 3



# EE-554 Automatic speech processing

| D 1  |     |       | ,          |
|------|-----|-------|------------|
| Bour | ard | HON   | /Δ         |
| Doui | aru | 1 101 | <i>'</i> - |

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Computer science                        | MA1, MA3 | Opt. |
| Cybersecurity                           | MA1, MA3 | Opt. |
| Data Science                            | MA1, MA3 | Opt. |
| Digital Humanities                      | MA1, MA3 | Opt. |
| Electrical and Electronical Engineering | MA1, MA3 | Opt. |
| SC master EPFL                          | MA1, MA3 | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of positions | English 3 Winter Fall Written 90h 14 3 weekly 2 weekly 1 weekly |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|

#### **Summary**

The goal of this course is to provide the students with the main formalisms, models and algorithms required for the implementation of advanced speech processing applications (involving, among others, speech coding, speech analysis/synthesis, and speech recognition).

#### Content

- 1. Introduction: Speech processing tasks, language engineering applications.
- 2. <u>Basic Tools</u>: Analysis and spectral properties of the speech signal, linear prediction algorithms, statistical pattern recognition, dynamic programming.
- 3. <u>Speech Coding</u>: Human hearing properties, quantization theory, speech coding in the temporal and frequency domains.
- 4. Speech Synthesis: Morpho-syntactic analysis, phonetic transcription, prosody, speech synthesis models.
- 5. <u>Automatic Speech Recognition</u>: Temporal pattern matching and Dynamic Time Warping (DTW) algorithms, speech recognition systems based on Hidden Markov Models (HMMs).
- 6. Speaker recognition and speaker verification: Formalism, hypothesis testing, HMM based speaker verification.
- 7. Linguistic Engineering: state-of-the-art and typical applications

#### Keywords

speech processing, speech coding, speech analysis/synthesis, automatic speech recognition, speaker identification, text-to-speech

# **Learning Prerequisites**

#### Required courses

Basis in linear algebra, signal processing (FFT), and statistics

# Important concepts to start the course

Basic knowledge in signal processing, linear algebra, statistics and stochastic processes.

#### **Learning Outcomes**

By the end of the course, the student must be able to:



- speech signal properties
- Exploit those properties to speech codign, speech synthesis, and speech recognition

## Transversal skills

- Use a work methodology appropriate to the task.
- Access and evaluate appropriate sources of information.
- Use both general and domain specific IT resources and tools

# **Teaching methods**

Lecture + lab exercises

# **Expected student activities**

Attending courses and lab exercises. Read additional papers and continue lab exercises at home if necessary. Regulary answer list of questions for feedback.

#### **Assessment methods**

Written exam without notes

#### Resources

# Ressources en bibliothèque

• Traitement de la parole / Boite

187



# Biological modeling of neural networks

Gerstner Wulfram

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Auditeurs en ligne                      | Е        | Obl. |
| Biocomputing minor                      | Е        | Opt. |
| Biomedical technologies minor           | E        | Opt. |
| Computational Neurosciences minor       | E        | Opt. |
| Computational science and Engineering   | MA2, MA4 | Opt. |
| Computer science                        | MA2, MA4 | Opt. |
| Cybersecurity                           | MA2, MA4 | Opt. |
| Data Science                            | MA2, MA4 | Opt. |
| Electrical Engineering                  |          | Opt. |
| Electrical and Electronical Engineering | MA2, MA4 | Opt. |
| Life Sciences Engineering               | MA2, MA4 | Opt. |
| Neuroprosthetics minor                  | Е        | Opt. |
| Neuroscience                            |          | Opt. |
| SC master EPFL                          | MA2, MA4 | Opt. |
| Sciences du vivant                      | MA4      | Opt. |
|                                         |          |      |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises | English 4 Summer Spring Written 120h 14 4 weekly 2 weekly 2 weekly |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Number of positions                                                           |                                                                    |

## **Summary**

In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition.

#### Content

I. Models of single neurons 1. Introduction: brain vs computer and a first simple neuron model 2. Models on the level of ion current (Hodgkin-Huxley model) 3./4. Two-dimensional models and phase space analysis II. Neuronal Dynamics of Cognition 5./6. Associative Memory and Attractor Dynamics (Hopfield Model) 7. Neuronal Populations and networks 8. Continuum models and perception 9. Competition and models of Decision making III. Noise and the neural code 10. Noise and variability of spike trains (point processes, renewal process, interval distribution) 11: Variance of membrane potentials and Spike Response Models IV. Plasticity and Learning 12. Synaptic Plasticity and Long-term potentiation and Learning (Hebb rule, mathematical formulation) 13. Summary: Fitting Neural Models to Data

## Keywords

neural networks, neuronal dynamics, computational neuroscience, mathematical modeling in biology, applied mathematics, brain, cognition, neurons, memory, learning, plasticity

#### **Learning Prerequisites**

#### Required courses

undergraduate math at the level of electrical engineering or physics majors undergraduate physics.

#### **Recommended courses**

Analysis I-III, linear algebra, probability and statistics

For SSV students: Dynamical Systems Theory for Engineers or "Mathematical and Computational Models in Biology"

## Important concepts to start the course



### Differential equations, stochastic processes,

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Analyze two-dimensional models in the phase plane
- Solve linear one-dimensional differential equations
- Develop a simplified model by separation of time scales
- · Analyze connected networks in the mean-field limit
- Formulate stochastic models of biological phenomena
- · Formalize biological facts into mathematical models
- Prove stability and convergence
- · Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

#### Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- · Collect data.
- Write a scientific or technical report.

#### **Teaching methods**

Classroom teaching, exercises and miniproject. One of the two exercise hours is integrated into the lectures.

# **Expected student activities**

- participate in ALL in-class exercises.
- do all homework exercises (paper-and-pencil)
- study video lectures if you miss a class
- study suggested textbook sections for in-depth understanding of material
- submit miniprojects

#### **Assessment methods**

Written exam (70%) & miniproject (30%)

#### Supervision

Office hours No
Assistants Yes
Forum Yes

Others The teacher is available during the breaks of the class.

Some exercises are integrated in class in the presence of the teacher and the teaching

assistants.

#### Resources

#### **Bibliography**

Gerstner, Kistler, Naud, Pansinski: Neuronal Dynamics, Cambridge Univ. Press 2014

# Ressources en bibliothèque



• Neuronal Dynamics / Gerstner

# Notes/Handbook

The textbook is online at: http://neuronaldynamics.epfl.ch/

# **Videos**

• http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC2.html



# EE-512 Biomedical signal processing

Vesin Jean-Marc

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Bioengineering                          | MA3      | Opt. |
| Biomedical technologies minor           | Н        | Opt. |
| Computer science                        | MA1, MA3 | Opt. |
| Cybersecurity                           | MA1, MA3 | Opt. |
| Electrical and Electronical Engineering | MA1, MA3 | Opt. |
| Life Sciences Engineering               | MA1, MA3 | Opt. |
| SC master EPFL                          | MA1, MA3 | Opt. |

| Credits 6 Session Win Semester Fall Exam Wri Workload 180 Weeks 14 Hours 6 w Lecture 4 | tten |
|----------------------------------------------------------------------------------------|------|
|----------------------------------------------------------------------------------------|------|

# Summary

The goal of this course is to introduce the techniques most commonly used for the analysis of biomedical signals, and to present concrete examples of their application for diagnosis purposes.

#### Content

- 1. Generalities on biomedical signal processing
- 2. Digital signal processing basics
  - sampling
  - Fourier transform
  - filtering
  - stochastic signals correlation, and pwoer spectral density

### 3. Time-frequency analysis

- short-term Fourier transform
- time-frequency distributions, Cohen's class
- wavelet transform

# 4. Linear modeling

- · autoregressive models
- linear prediction
- · parametric spectral estimation
- criteria for model selection

# 5. Adaptive filtering

- · adaptive prediction
- adaptive estimation of transfert functions
- adaptive interference cancellation

#### 6. Miscellaneous

- · polynomial models
- singular value decomposition
- principal component analysis

## Keywords



signal processing, biomedical engineering, signal modeling, spectral analysis, adaptive filtering

# **Learning Prerequisites**

## **Recommended courses**

Signal processing for telecommunications COM-303 Signal processing EE-350

# Important concepts to start the course

basics of discrete-time signal analysis

# **Teaching methods**

lectures, lab sessions using Matlab

## **Assessment methods**

1 point for lab/exercise sessions reports

2 exams: end of November 2points - final exam 3 points

## Supervision

Office hours Yes Assistants Yes



# CS-490 Business design for IT services

Wegmann Alain

| Cursus            | Sem.     | Type |
|-------------------|----------|------|
| Computer science  | MA2, MA4 | Opt. |
| Cybersecurity     | MA2, MA4 | Opt. |
| Mineur STAS Chine | Е        | Opt. |
| SC master EPFL    | MA2, MA4 | Opt. |

### **Summary**

We teach how to "design" a business initiative. Students work in groups on a project of their choice. We develop insights with business and system thinking literature. Concrete fieldwork outside class and substantial readings are necessary.

### Content

The students work, in groups, on a project. They:

- (1) imagine a new business service offering to develop,
- (2) validate their model with real customers and potential partners,
- (3) analyze the relevant segments (competitors, regulators, etc)
- (4) define the service implementation, and especially the supporing IT services.
- (5) validate the financial model

Individually, the students have to read the documents listed below. They make a synthesis of their contents. They need to apply the concepts presented in these documents on case studies and on their own project.

To represent and analyze their business idea, the students use TheSeamCanvas a web-based and paper-based business modelling tool. The course is based on the SEAM method.

This course requires a significant workload.

#### Keywords

Business services, IT services, business design, innovation in startups, revolutionary ventures and corporate initiatives, entrepreneur profiles.

Business design, service design, SEAM modeling (service models, supplier-adopter relationship, motivation models)

Segmentation, value networks, PESTLE analysis, 5 forces, core competency, coopetition, blue ocean, transaction cost. Integrated marketing concept, SWOT analysis, strategy canvas.

New technology adoption, crossing-the chasm, decision making units.

Pricing strategy, cashflow management, break-event time

Systems thinking, homeostasis, appreciative system.

Psychological types, epistemology, ontology, axiology (ethics and aesthetics).

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Create a precise and detailed description for a new business design
- Analyze environmental as well as organizational factors in a business design
- Design a business model in details (service, value, finance)



- Assess / Evaluate alternative business strategies
- Synthesize multiple marketing theories (from seminal publications)
- Represent the key concepts of a business design (ecosystem, value, finance)
- Interpret evidences collected through extensive interviews
- Investigate innovative views of a business design

#### Transversal skills

- · Collect data.
- Access and evaluate appropriate sources of information.
- Write a scientific or technical report.
- Make an oral presentation.
- Summarize an article or a technical report.

# **Teaching methods**

Experiential learning + group work

## Resources

# Ressources en bibliothèque

- Strategy Safari / Mintzberg
- Generic Strategies / Porter
- The Origin and Evolution of New Businesses / Bhide (being processed)

•

# BIO-105 Cellular biology and biochemistry for engineers

194

Zufferey Romain

| Cursus                        | Sem.     | Type |
|-------------------------------|----------|------|
| Biomedical technologies minor | Н        | Opt. |
| Computer science              | MA1, MA3 | Opt. |
| Cybersecurity                 | MA1, MA3 | Opt. |
| Neuroprosthetics minor        | Н        | Opt. |
| SC master EPFL                | MA1, MA3 | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of | English 4 Winter Fall Written 120h 14 4 weekly 2 weekly 2 weekly |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|
| positions                                                                               |                                                                  |
|                                                                                         |                                                                  |

#### **Summary**

Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essential notions necessary for a training in biology-related engineering fields.

#### Content

The course gives basic knowledge on various phenoma taking place within a cell, and among cells within tissues and organs. The course gives an integrated view of various molecular mechanisms (rather in the second half of the class). It should therefore allow engineering students involved in future projects touching on biomedical problems to better integrate the constraints of a biological system and to enable them to communicate with specialists in both fields. This course is not available to students who had already taken basic cell biology or biochemistry classes during their Bachelor studies at EPFL or elsewhere. This applies for example to the course BIO-109 "Introduction to Life Sciences for Information Sciences" and MSE 212 "Biology for engineers"

#### Keywords

The course contains chapters on the following subjects:

- 1.Cells and Organs
- 2.Chemical components of cells
- 3. Proteins, Enzymes
- 4. Energy, Metabolism
- 5.DNA, Chromosomes, Replication
- 6.Gene expression
- 7.Recombinant techniques
- 8.Membrane and Transport
- 9.Intracellular trafficking
- 10.Cytoskeleton
- 11.Cell division, Mitosis
- 12. Genetics, Meiosis
- 13.Cell communication, Signaling
- 14. Tissue, Tissue regeneration

#### **Learning Prerequisites**

#### Required courses

Bachelor degree in engineering or other non-life science discipline

#### Recommended courses

Some basic knowledge in chemistry can help, but not required

## Important concepts to start the course



Curiosity about how biological systems work, willingness to acquire a certain amount of facts and details necessary to understand and discuss the various molecular mechanisms present in cells or related to modern biology

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Describe the basic components and functions found in cells
- Draw schemes explaining essential cellular phenomena
- Explain which are the important metabolic pathways
- · Translate information from genetic code
- · Verify statements about specific cellular mechanisms
- Integrate knowledge from different cellular mechanisms

#### Transversal skills

Access and evaluate appropriate sources of information.

# **Teaching methods**

2 hours of ex cathedra-type of lecture

2 hours of exercises: the instructor gives out appr. 10 questions out (through Moodle and in the beginning of the session). The questions have different formats, and can in some cases just retrieve the acquired facts, in others have a more integrative problem-based learning approach.

#### **Expected student activities**

- review regularly the presented lectures.
- participate actively in the exercise sessions when the questions and problems are discussed altogether

#### **Assessment methods**

- a written exam at the winter exam session

#### Supervision

Office hours Yes
Assistants Yes
Forum No

Others - the teacher can always be reached through Email or phone to fix a one-to-one discussion

about specific subjects

#### Resources

#### **Bibliography**

The lecture is aligned to selected chapters in the following book (recommended although not required): "Essential Cell Bioogy" by B Alberts et al., 3rd edition, Garland Science Taylor & Francis Group

#### Ressources en bibliothèque

· Essential Cell Biology / Alberts



# CS-524 Computational complexity

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA1, MA3 | Opt. |
| Cybersecurity    | MA1, MA3 | Opt. |
| Data Science     | MA1, MA3 | Opt. |
| SC master EPFL   | MA1, MA3 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 4          |
| Session   | Winter     |
| Semester  | Fall       |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 3 weekly   |
| Exercises | 1 weekly   |
| Number of |            |
| positions |            |
|           |            |

#### Remark

(pas donné en 2020-21)

#### **Summary**

In computational complexity we study the computational resources needed to solve problems and understand the relation between different types of computation. This course advances the students knowledge of computational complexity, and develop an understanding of fundamental open questions.

#### Content

- · Complexity classes (time, space, nondeterminism)
- Boolean circuits and nonuniform computation
- Role of randomness in computation (extractors, pseudo-random generators)
- Interactive proofs and zero knowledge proofs
- Probabilistically checkable proofs and their characterization of the complexity class NP (PCP Theorem)
- Communication complexity

#### **Keywords**

theoretical computer science computational complexity

## **Learning Prerequisites**

# **Recommended courses**

Theory of computation (CS-251) Algorithms (CS-250)

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Demonstrate an understanding of computational complexity and the P vs NP problem
- Formalize and analyze abstractions of complex scenarios/problems
- Express a good understanding of different concepts of proofs



- Prove statements that are similar to those taught in the course
- Use and understand the role of randomness in computation
- Illustrate a basic understanding of probabilistically checkable proofs and their characterization of the class NP (the PCP-Theorem)
- Explain recent exciting developments in theoretical computer science
- Compare different models of computation

#### Transversal skills

- · Demonstrate the capacity for critical thinking
- Summarize an article or a technical report.

# **Teaching methods**

Lecturing and exercises

## **Expected student activities**

Actively attending lectures and exercise sessions. Also homeworks and exam.

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

Virtual desktop infrastructure (VDI)

No

# **Bibliography**

Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern Approach, Cambridge University Press.

## Ressources en bibliothèque

• Computational Complexity: A Modern Approach / Arora

#### Websites

• http://theory.epfl.ch/courses/complexity/



# CS-413 Computational photography

#### Süsstrunk Sabine

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Computer science                        | MA2, MA4 | Opt. |
| Cybersecurity                           | MA2, MA4 | Opt. |
| Data Science                            | MA2, MA4 | Opt. |
| Digital Humanities                      | MA2, MA4 | Opt. |
| Electrical and Electronical Engineering | MA2, MA4 | Opt. |
| SC master EPFL                          | MA2, MA4 | Opt. |

| Language<br>Credits<br>Session<br>Semester<br>Exam | English 5 Summer Spring During the |
|----------------------------------------------------|------------------------------------|
| Xam                                                | semester                           |
| Workload                                           | 150h                               |
| Weeks                                              | 14                                 |
| Hours                                              | 4 weekly                           |
| Lecture                                            | 2 weekly                           |
| Project                                            | 2 weekly                           |
| Number of positions                                |                                    |

## Summary

The students will gain the theoretical knowledge in computational photography, which allows recording and processing a richer visual experience than traditional digital imaging. They will also execute practical group projects to develop their own computational photography application.

#### Content

Computational photography is the art, science, and engineering of creating a great (still or moving) image. Information is recorded in space, time, across visible and invisible radiation and from other sources, and then post-processed to produce the final - visually pleasing - result.

Basics: Human vision system, Light and illumination, Geometric optics, Color science, Sensors, Digital camera systems. Generalized illumination: Structured light, High dynamic range (HDR) imaging, Time-of-flight.

Generalized optics: Coded Image Sensing, Coded aperture, Focal stacks.

Generalized sensing: Low light imaging, Depth imaging, Plenoptic imaging, Light field cameras.

Generalized processing: Super-resolution, In-painting, Compositing, Photomontages, Panoramas, HDR imaging, Multi-wavelength imaging, Dynamic imaging.

Generalized display: Stereoscopic displays, HDR displays, 3D displays, Mobile displays.

## Keywords

Computational Photography, Coded Image Sensing, Non-classical image capture, Multi-Image & Sensor Fusion, Mobile Imaging.

### **Learning Prerequisites**

# Required courses

- A basic Signal Processing, Image Processing, and/or Computer Vision course.
- Linear Algebra.

## **Recommended courses**

- Introduction to Computer Vision.
- Signal Processing for Communications.

# Important concepts to start the course



- · Basic signal processing.
- · Basic computer vision.
- Basic programming (iOS, Android, Matlab).

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Identify the main components of a computational photography system.
- · Contextualise the main trends in computational optics, sensing, processing, and displays.
- Create a computational photography application on a mobile platform.
- Design a computational photography solution to solve a particular imaging task.
- Assess / Evaluate hardware and software combinations for their imaging performance.
- Formulate computational photography challenges that still need to be resolved.

#### Transversal skills

- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Continue to work through difficulties or initial failure to find optimal solutions.

### **Teaching methods**

The course consists of 2 hours of lectures per week that will cover the theoretical basics. An additional 2 hours per week are dedicated to a group project designing, developing, and programming a computational photography application on a mobile plateform (iOS, Android).

# **Expected student activities**

The studens is expected to attend the class and actively participate in the practical group project, which requires coding on either Android or iOS plateform. The student is also required to read the assigned reading material (book chapters, scientific articles).

#### **Assessment methods**

The theoretical part will be evaluated with an oral exam at the end of the semester, and the practical part based on the students' group projects.

#### Resources

## **Bibliography**

- Selected book chapters
- Course notes (on moodle)
- Links to relevant scientific articles and on-line resources will be given on moodle.



# CS-442 Computer vision

Fua Pascal

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Communication systems minor               | E        | Opt. |
| Computer science minor                    | Е        | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Data Science                              | MA2, MA4 | Opt. |
| Data science minor                        | E        | Opt. |
| Digital Humanities                        | MA2, MA4 | Opt. |
| Hors plans                                | Н        | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA2, MA4 | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |

| Language<br>Credits | English<br>4 |
|---------------------|--------------|
|                     | ·            |
| Session             | Winter,      |
|                     | Summer       |
| Semester            | Spring       |
| Exam                | Written      |
| Workload            | 120h         |
| Weeks               | 14           |
| Hours               | 3 weekly     |
| Lecture             | 2 weekly     |
| Exercises           | 1 weekly     |
| Number of           |              |
| positions           |              |
| poortions           |              |

## **Summary**

Computer Vision aims at modeling the world from digital images acquired using video or infrared cameras, and other imaging sensors. We will focus on images acquired using digital cameras. We will introduce basic processing techniques and discuss their field of applicability.

#### Content

#### Introduction

- History of Computer Vision
- Human vs Machine Vision
- Image formation

## **Extracting 2D Features**

- Contours
- Texture
- Regions

# 3D Shape Recovery

- From one single image
- From multiple images

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Choose relevant algorithms in specific situations
- Perform simple image-understanding tasks

# **Teaching methods**

Ex cathedra lectures and programming exercises using matlab.

#### **Assessment methods**

Computer vision Page 1 / 2



#### With continuous control

## Resources

# **Bibliography**

- R. Szeliski, Computer Vision: Computer Vision: Algorithms and Applications, 2010.
- A. Zisserman and R. Hartley, Multiple View Geometry in Computer Vision, Cambridge University Press, 2003.

# Ressources en bibliothèque

- Multiple View Geometry in Computer Vision / Zisserman
- Computer Vision: Algorithms and Applications / Szeliski

Computer vision Page 2 / 2



# CS-453 Concurrent algorithms

#### Guerraoui Rachid

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA1, MA3 | Opt. |
| Cybersecurity    | MA1, MA3 | Opt. |
| Data Science     | MA1, MA3 | Opt. |
| SC master EPFL   | MA1, MA3 | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Practical work Number of | English 5 Winter Fall Written 150h 14 5 weekly 3 weekly 1 weekly 1 weekly |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Number of positions                                                                                    |                                                                           |

# **Summary**

With the advent of multiprocessors, it becomes crucial to master the underlying algorithmics of concurrency. The objective of this course is to study the foundations of concurrent algorithms and in particular the techniques that enable the construction of robust such algorithms.

#### Content

#### Model of a parallel system

A multicore architect Processes and objects Safety and liveliness

# **Parallel programming**

Automatic parallelism Mutual exclusion and locks Non-blocking data structures

# **Register Implementations**

Safe, regular and atomic registers General and limited transactions Atomic snapshots

# Hierarchy of objects

The FLP impossibility
The consensus number
Universal constructions

# **Transactional memories**

Transactional algorithms
Opacity and obstruction-freedom

### Keywords

Concurrency, parallelism, algorithms, data structures

## **Learning Prerequisites**

Required courses

ICC, Operatings systems

#### Recommended courses

Concurrent algorithms Page 1 / 2



This course is complementary to the Distributed Algorithms course.

# Important concepts to start the course

Processes, threads, datas structures

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Reason in a precise manner about concurrency
- Design a concurrent algorithm
- Prove a concurrent algorithm
- Implement a concurrent system

# **Teaching methods**

Lectures, exercises and practical work

# **Expected student activities**

Midterm and final exam

Project

# **Assessment methods**

With continuous control, midterm final exams and project

# Supervision

Office hours Yes
Assistants Yes
Forum No

# Resources

## Notes/Handbook

Concurrent Algorithms, R. Guerraoui and P. Kouznetsov

# Websites

• http://lpd.epfl.ch/site/education

Concurrent algorithms Page 2 / 2



# COM-401 Cryptography and security

Vaudenay Serge

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Communication systems minor         | Н        | Opt. |
| Computer and Communication Sciences |          | Opt. |
| Computer science minor              | Н        | Opt. |
| Computer science                    | MA1, MA3 | Obl. |
| Cyber security minor                | Н        | Opt. |
| Cybersecurity                       | MA1, MA3 | Obl. |
| Data Science                        | MA1, MA3 | Opt. |
| Financial engineering               | MA1, MA3 | Opt. |
| SC master EPFL                      | MA1, MA3 | Obl. |

#### Summary

This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how they work and sketch how they can be implemented.

#### Content

- 1. Ancient cryptography: Vigenère, Enigma, Vernam cipher, Shannon theory
- 2. Diffie-Hellman cryptography: algebra, Diffie-Hellman, ElGamal
- 3. RSA cryptography: number theory, RSA, factoring
- 4. Elliptic curve cryptography: elliptic curves over a finite field, ECDH, ECIES
- 5. Symmetric encryption: block ciphers, stream ciphers, exhaustive search
- 6. Integrity and authentication: hashing, MAC, birthday paradox
- 7. Applications to symmetric cryptography: mobile telephony, Bluetooth, WiFi
- 8. Public-key cryptography: cryptosystem, digital signature
- 9. Trust establishment: secure communication, trust setups
- 10. Case studies: Bluetooth, TLS, SSH, PGP, biometric passport

### Keywords

cryptography, encryption, secure communication

# **Learning Prerequisites**

# Required courses

- Algebra (MATH-310)
- Probabilities and statistics (MATH-310)
- Algorithms (CS-250)

# **Recommended courses**

• Computer security (COM-301)

# Important concepts to start the course

· Mathematical reasoning



- Probabilities
- · Algebra, arithmetics
- Algorithmics

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Choose the appropriate cryptographic primitive in a security infrastructure
- Judge the strength of existing standards
- Assess / Evaluate the security based on key length
- Implement algorithms manipulating big numbers and use number theory
- Use algebra and probability theory to analyze cryptographic algorithms
- Identify the techniques to secure the communication and establish trust

### **Teaching methods**

ex-cathedra

## **Expected student activities**

- active participation during the course
- take notes during the course
- do the exercises during the exercise sessions
- · complete the regular tests and homework
- read the material from the course
- self-train using the provided material
- · do the midterm exam and final exam

### **Assessment methods**

Mandatory continuous evaluation:

- homework (30%)
- regular graded tests (30%)
- midterm exam (40%)

Final exam averaged (same weight) with the contiuous evaluation, but with final grade between final\_exam-1 and final exam+1.

#### Supervision

Others

Lecturers and assistants are available upon appointment.

#### Resources

## **Bibliography**

- Communication security: an introduction to cryptography. Serge Vaudenay. Springer 2004.
- A computational introduction to number theory and algebra. Victor Shoup. Cambridge University Press 2005.

# Ressources en bibliothèque



- Communication security / Vaudenay
- A computational introduction to number theory and algebra / Shoup

# Prerequisite for

- Advanced cryptography (COM-401)
- Algorithms in public-key cryptography (COM-408)



# CS-422 Database systems

#### Ailamaki Anastasia

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Computer and Communication Sciences |          | Obl. |
| Computer science minor              | Е        | Opt. |
| Computer science                    | MA2, MA4 | Obl. |
| Cybersecurity                       | MA2, MA4 | Obl. |
| Digital Humanities                  | MA2, MA4 | Opt. |
| SC master EPFL                      | MA2, MA4 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 7          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 210h       |
| Weeks     | 14         |
| Hours     | 7 weekly   |
| Lecture   | 3 weekly   |
| Exercises | 2 weekly   |
| Project   | 2 weekly   |
| Number of | ·          |
| positions |            |
|           |            |

# **Summary**

This course is intended for students who want to understand modern large-scale data analysis systems and database systems. It covers a wide range of topics and technologies, and will prepare students to be able to build such systems as well as read and understand recent research publications.

#### Content

- Database systems
- Online analytics; data stream processing
- Column stores
- Decision support systems and data warehouses
- Large-scale data analytics infrastructure and systems
- Transaction processing. OLTP systems and concurrency control algorithms
- Distributed data management systems
- Query optimization; database tuning
- Logging and recovery
- Modern storage hierarchies

# **Learning Prerequisites**

## Required courses

- CS-322: Introduction to database systems
- CS-107: Introduction to programming

# **Recommended courses**

- CS-323: Introduction to operating systems
- CS-452: Foundations of software

# **Learning Outcomes**

By the end of the course, the student must be able to:

Database systems Page 1 / 2



- Design big data analytics systems using state-of-the-art infrastructures for horizontal scaling, e.g., Spark
- Implement algorithms and data structures for streaming data analytics
- Decide between different storage models based on the offered optimizations enabled by each model and on the expected query workload
- Compare concurrency control algorithms, and algorithms for distributed data management
- Identify performance culprits, e.g., due to concurrency control

#### **Teaching methods**

Lectures, project, homework, exercises

### **Expected student activities**

During the semester, the students are expected to:

- attend the lectures in order to ask questions and interact with the professor,
- attend the exercise sessions to solve and discuss exercises about the recently taught material,
- work on projects, which cover the practical side of the taught material,
- take a midterm,
- · take a final exam,
- · read scientific papers related to the course material

#### Assessment methods

- 60% exams
- 40% project

## Supervision

Office hours Yes

Others Office hours on request. Q&A sessions in lectures and exercises.

# Resources

### **Bibliography**

- J. Hellerstein & M. Stonebraker, Readings in Database Systems, 4th Edition, 2005
- R. Ramakrishnan & J. Gehrke: "Database Management Systems", McGraw-Hill, 3rd Edition, 2002.
- A. Rajaraman & J. Ullman: "Mining of Massive Datasets", Cambridge Univ. Press, 2011.

#### Ressources en bibliothèque

- Database Management Systems / Ramakrishnan
- Readings in Database Systems / Hellerstein
- Mining of Massive Datasets / Rajaraman

Database systems Page 2 / 2



# COM-480 Data visualization

#### Vuillon Laurent Gilles Marie

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Computer science                        | MA2, MA4 | Opt. |
| Cybersecurity                           | MA2, MA4 | Opt. |
| Data Science                            | MA2, MA4 | Opt. |
| Data science minor                      | Е        | Opt. |
| Digital Humanities                      | MA2, MA4 | Opt. |
| Electrical Engineering                  |          | Opt. |
| Electrical and Electronical Engineering | MA2, MA4 | Opt. |
| SC master EPFL                          | MA2, MA4 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 4          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 2 weekly   |
| Project   | 2 weekly   |
| Number of |            |
| positions |            |

### **Summary**

Understanding why and how to present complex data interactively in an effective manner has become a crucial skill for any data scientist. In this course, you will learn how to design, judge, build and present your own interactive data visualizations.

#### Content

#### Tentative course schedule

Week 1: Introduction to Data visualization Web development

Week 2: Javascript

Week 3: More Javascript

Week 4: Data Data driven documents (D3.js)

Week 5: Interaction, filtering, aggregation (UI /UX). Advanced D3 / javascript libs

Week 6: Perception, cognition, color Marks and channels

Week 7: Designing visualizations (UI/UX) Project introduction Dos and don'ts for data-viz

Week 8: Maps (theory) Maps (practice)

Week 9: Text visualization

Week 10: Graphs

Week 11: Tabular data viz Music viz

Week 12: Introduction to scientific visualisation

Week 13: Storytelling with data / data journalism Creative coding

Week 14: Wrap-Up

# Keywords

Data viz, visualization, data science

# **Learning Prerequisites**

# Required courses

CS-305 Software engineering (BA)

CS-250 Algorithms (BA)

CS-401 Applied data analysis (MA)

# **Recommended courses**

EE-558 A Network Tour of Data Science (MA)

CS-486 Human computer interaction (MA)

CS-210 Functional programming (BA)

#### Important concepts to start the course

Data visualization Page 1 / 3



Being autonomous is a prerequisite, we don't offer office hours and we won't have enough teaching assistants (you've been warned!).

Knowledge of one of the following progrmaming language such as C++, Python, Scala. Familiarity with web-development (you already have a blog, host a webiste). Experience with HTML5, Javascript is a strong plus for the course.

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Judge visualization in a critical manner and suggest improvements.
- Design and implement visualizations from the idea to the final product according to human perception and cognition
- Know the common data-viz techniques for each data domain (multivariate data, networks, texts, cartography, etc) with their technical limitations
- · Create interactive visualizations int he browser using HTM5 and Javascript

### Transversal skills

- · Communicate effectively, being understood, including across different languages and cultures.
- · Negotiate effectively within the group.
- Resolve conflicts in ways that are productive for the task and the people concerned.

# **Teaching methods**

Ex cathedra lectures, exercises, and group projects

#### **Expected student activities**

- Follow lectures
- · Read lectures notes and textbooks
- Create an advanced data-viz in groups of 3.
- Answer questions assessing the evolution of the project.
- Create a 2min screencast presentation of the viz.
- Create a process book for the final data viz.

### **Assessment methods**

- Data-viz (35%)
- Technical implementation (15%)
- Website, presentation, screencast (25%)
- Process book (25%)

### Supervision

Office hours No
Assistants No
Forum No

#### Resources

### **Bibliography**

Data visualization Page 2 / 3



**Visualization Analysis and Design** by Tamara Munzner, CRC Press (2014). Fee online version at EPFL. **Interactive Data Visualization for the Web** by Scott Murray O'Reilly (2013) - D3 - Free online version.

# Ressources en bibliothèque

- Visualization Analysis and Design / Munzner
- Interactive Data Visualization for the Web / Murray

#### Notes/Handbook

Lecture notes

## Websites

• https://www.kirellbenzi.com

# **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=15487

Data visualization Page 3 / 3



# CS-438 Decentralized systems engineering

Ford Bryan Alexander

| Cursus                 | Sem.     | Type |
|------------------------|----------|------|
| Computer science minor | Н        | Opt. |
| Computer science       | MA1, MA3 | Obl. |
| Cybersecurity          | MA1, MA3 | Obl. |
| SC master EPFL         | MA1, MA3 | Opt. |

# **Summary**

A decentralized system is one that works when no single party is in charge or fully trusted. This course teaches decentralized systems principles while guiding students through the development and testing of their own decentralized system incorporating messaging, encryption, and blockchain concepts.

#### Content

Topics this course covers include:

- Addressing, Forwarding, Routing. Peer-to-peer communication.
- Information gossip. UseNet: technical, security, and social lessons. Randomized rumor-mongering and anti-entropy algorithms.
- Communicating Securely: Basic Cryptographic Tools. Symmetric-key encryption. Hash functions, message authentication. Diffie-Hellman key exchange. Public-key encryption, digital signatures.
- Trust and Reputation. Authorities, trust networks. Sybil attacks and defenses.
- Naming and search. Request flooding. Hierarchical directories, landmark structures. Self-certifying identities. Distributed hash tables.
- Distributed consensus, distributed ledgers (blockchains), and cryptocurrencies.
- Anonymous Communication. Onion routing, mix networks. Dining cryptographers. Voting, verifiable shuffles, homomorphic encryption. Anonymous disruption.
- Fireproofing Alexandria: Decentralized Storage. Replication. Parity, erasure coding. Renewal. Digital preservation.
- Content Distribution. Opportunistic caching (FreeNet). Content integrity: hash trees, hash file systems. Convergent encryption. Swarming downloads: BitTorrent. Free-riding, incentives.
- Gaining perspective. Spam, malicious content. Review/moderation and reputation systems. Leveraging social networks (Peerspective). Balancing local and global viewpoints.
- Decentralized Collaboration. Network file systems, version management. Consistency.
- Consistency Models. Disconnected operation, eventual consistency, conflict resolution.
- Distributed Consensus. Paxos. Accountability (PeerReview). Byzantine fault tolerance.
- Mobile Code. Smart contract systems. Privacy: trusted computing, fully homomorphic encryption. Decentralized virtual organizations.

# Keywords

distributed systems, decentralized systems, security, privacy, anonymity, cryptography, gossip, consensus, swarming, blockchain, cryptocurrency

#### **Learning Prerequisites**



#### Required courses

COM-208Computer networks

#### Recommended courses

- CS-206 Parallelism and concurrency
- COM-301 Computer security
- CS-323 Introduction to operating systems

#### Important concepts to start the course

Students must already be highly competent at programming and debugging in a high-level systems programming language such as Java, C#, or Go. Programming exercises will be in Go, but students already well-versed and experienced in programming with comparable systems languages should be able to pick up Go during the course.

Students should have both solid foundational knowledge of how networks function, and some experience actually writing network programs, e.g., TCP/IP programming using the Sockets API.

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Design practical distributed and decentralized systems
- Implement systems via hands-on coding, debugging, and interoperability testing

# **Teaching methods**

**Lectures**: The course's lectures will present and discuss challenges, known techniques, and open questions in decentralized system design and implementation. Lectures will often be driven by examination of real decentralized systems with various purposes in widespread use the past or present, such as UseNet, IRC, FreeNet, Tor, BitTorrent, and Bitcoin. Throughout the course we will explore fundamental security and usability challenges such as decentralized identification and authentication, denial-of-service and Sybil attacks, and maintenance of decentralized structures undergoing rapid changes (churn).

Labs: During the semester, students will develop a small but usable peer-to-peer communication application that reflects a few of the important design principles and techniques to be explored in the course, such as gossip, social trust networks, distributed hash tables, consensus algorithms, and cryptocurrencies. The labs will designed so that solutions can initially be tested individually on private, virtual networks running on one machine, then tested collectively by attempting to make different students' solutions interoperate on a real network.

**Warning:** This course is extremely programming-intensive. Students should be strong and confident in their programming skills in general, and be willing to spend substantial time outside of class debugging difficult distributed concurrency bugs and other challenges. TAs will be available to help at the exercise sessions, but *they will not solve your problems or debug your code for you.* 

#### **Expected student activities**

Students will be expected to attend lectures to understand the concepts needed for the course, but the main workload will be actual hands-on programming assignments, which the students will perform on their own during the first part of the course and optionally in small teams during the final project-oriented part of the course.

### **Assessment methods**



- Lecture attendance: 10%
- Programming assignment grading (evaluating both function and student documentation): 50%
- Final project grading (accounting for both scope, appropriateness, and follow-through in implementation quality and documentation): 40%

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

## **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=15483



# EE-559 **Deep learning**

Fleuret François

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Civil & Environmental Engineering         |          | Opt. |
| Computational science and Engineering     | MA2, MA4 | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Data Science                              | MA2, MA4 | Opt. |
| Data science minor                        | Е        | Opt. |
| Digital Humanities                        | MA2, MA4 | Opt. |
| Electrical Engineering                    |          | Opt. |
| Electrical and Electronical Engineering   | MA2, MA4 | Opt. |
| Financial engineering                     | MA2, MA4 | Opt. |
| Life Sciences Engineering                 | MA2, MA4 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA2, MA4 | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |
|                                           |          |      |

#### **Summary**

The objective of this course is to provide a complete introduction to deep machine learning. How to design a neural network, how to train it, and what are the modern techniques that specifically handle very large networks.

#### Content

The course aims at providing an overview of existing processings and methods, at teaching how to design and train a deep neural network for a given task, and at providing the theoretical basis to go beyond the topics directly seen in the course.

It will touch on the following topics:

- What is deep learning, introduction to tensors.
- Basic machine-learning, empirical risk minimization, simple embeddings.
- Linear separability, multi-layer perceptrons, back-propagation.
- Generalized networks, autograd, batch processing, convolutional networks.
- Initialization, optimization, and regularization. Drop-out, batchnorm, resnets.
- Deep models for Computer Vision.
- · Analysis of deep models.
- Auto-encoders, embeddings, and generative models.
- Recurrent and attention models, Natural Language Processing.

Concepts will be illustrated with examples in the PyTorch framework (http://pytorch.org).

# Keywords

machine learning, neural networks, deep learning, computer vision, python, pytorch

# **Learning Prerequisites**

# Required courses

Deep learning Page 1 / 2



- Linear algebra (vector, matrix operations, Euclidean spaces).
- Differential calculus (Jacobian, Hessian, chain rule).
- Python programming.
- Basics in probabilities and statistics (discrete and continuous distributions, normal density, law of large numbers, conditional probabilities, Bayes, PCA)

#### **Recommended courses**

- Basics in optimization (notion of minima, gradient descent).
- Basics in algorithmic (computational costs).
- Basics in signal processing (Fourier transform, wavelets).

# **Teaching methods**

Ex-cathedra with exercise sessions and mini-projects. Possibly invited speakers.

#### Assessment methods

Mini-projects by groups of students, and one final written exam.

#### Resources

#### Notes/Handbook

Not mandatory: http://www.deeplearningbook.org/

#### Websites

• https://fleuret.org/ee559/

Deep learning Page 2 / 2



# CS-472 Design technologies for integrated systems

De Micheli Giovanni

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Computer and Communication Sciences     |          | Opt. |
| Computer science                        | MA1, MA3 | Opt. |
| Cybersecurity                           | MA1, MA3 | Opt. |
| Electrical and Electronical Engineering | MA1, MA3 | Opt. |
| MNIS                                    | MA3      | Obl. |
| Mineur STAS Chine                       | Н        | Opt. |
| SC master EPFL                          | MA1, MA3 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 6          |
| Session   | Winter     |
| Semester  | Fall       |
| Exam      | During the |
|           | semester   |
| Workload  | 180h       |
| Weeks     | 14         |
| Hours     | 5 weekly   |
| Lecture   | 3 weekly   |
| Project   | 2 weekly   |
| Number of |            |
| positions |            |
|           |            |

## Summary

Hardware compilation is the process of transforming specialized hardware description languages into circuit descriptions, which are iteratively refined, detailed and optimized. The course presents algorithms, tools and methods for hardware compilation and logic synthesis.

### Content

The course will present the most outstanding features of hardware compilation, as well as the techniques for optimizing logic representations and networks. The course gives a novel, uptodate view of digital circuit design. Practical sessions will teach students the use of current design tools. Syllabus 1) Modeling languages and specification formalisms; 2) High-level synthesis and optimization methods (scheduling, binding, data-path and control synthesis); 3) Representation and optimization of combinational logic functions (encoding problems, binary decision diagrams); 4) Representation and optimization of multiple-level networks (algebraic and Boolean methods, "don't care" set computation, timing verification and optimization); 5) Modeling and optimization of sequential functions and networks (retiming); 6) Semicustom libraries and library binding.

## Keywords

Hardware, VLSI, Synthesis, Optimization, Algorithms

# **Learning Prerequisites**

Required courses

No specific course

## **Recommended courses**

Knowledge of digital design, algorithm design and programming.

### Important concepts to start the course

Knowledge of digital design, algorithm design and programming.

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Recognize important problems in digital design
- Examine and evaluate available design tools and methods
- Decide upon a design tool flow to perform a digital design



### Transversal skills

• Plan and carry out activities in a way which makes optimal use of available time and other resources.

## **Assessment methods**

Continuous control:

Homework: 30 %, Project 15 %, Midterm test: 20 %,

End term test: 35 %

## Resources

Virtual desktop infrastructure (VDI)

No

# **Bibliography**

G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw'Hill.

# Ressources en bibliothèque

• Synthesis and Optimization of Digital Circuits / De Micheli

### Notes/Handbook

Copies of the slides used for lectures will be given in class and posted.

### Websites

• http://lsi-www.epfl.ch/dtis/



# CS-446 Digital 3D geometry processing

| Cursus                                | Sem.     | Type |
|---------------------------------------|----------|------|
| Computational science and Engineering | MA1, MA3 | Opt. |
| Computer science                      | MA1, MA3 | Opt. |
| Cybersecurity                         | MA1, MA3 | Opt. |
| Digital Humanities                    | MA1, MA3 | Opt. |
| SC master EPFL                        | MA1, MA3 | Opt. |

| Language            | English             |
|---------------------|---------------------|
| Credits             | 5                   |
| Session             | Winter              |
| Semester            | Fall                |
| Exam                | During the semester |
| Workload            | 150h                |
| Weeks               | 14                  |
| Hours               | 4 weekly            |
| Lecture             | 2 weekly            |
| Exercises           | 1 weekly            |
| Project             | 1 weekly            |
| Number of positions |                     |

#### Remark

pas donné en 2020-21

## Summary

Students study & apply core concepts and algorithms for digital geometry processing. They create their own digital and physical geometry that follows the digital 3D content creation pipeline from data acquisition, geometry processing, to physical fabrication.

#### Content

The course will follow the digital 3D content creation pipeline. We will first discuss the fundamentals of geometry representations and cover continuous and discrete differential geometry concepts. Polygon mesh representations will be at the center of our investigations. We derive the core processing methods for triangle meshes, such as surface smoothing, parameterization, remeshing or deformation. Besides the mathematical concepts and algorithmic foundations, the course puts strong emphasis on implementation and features an extensive project. Students will scan their own 3D models, edit and enhance them with geometry processing algorithms, and map their geometric models to digital fabrication processes (3D printing, laser cutting) to create physical realizations of their models. A group project will explore dynamic simulation methods for physics-based animation of the scanned geometric models.

### Keywords

geometry, 3D modeling, polygon meshes, numerical simulation, digital fabrication

## **Learning Prerequisites**

**Required courses** 

Linear Algebra, Calculus, Programming

## **Recommended courses**

Introduction to Computer Graphics

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Explain and contrast fundamental geometry representations
- Explain and apply basic concepts from discrete differential geometry
- Analyze the 3D content creation pipeline and understand its limitations



- Implement and evaluate basic geometry processing algorithms, such as smoothing, remeshing, deformation, and constructive solid geometry
- Create digital 3D models from photographs and process the acquired raw geometry to build physical prototypes
- · Coordinate a team during a software project

# **Teaching methods**

Lectures, interactive demos, theory and programming exercises, programming project, project tutoring

## **Expected student activities**

The student are expected to study the provided reading material and actively participate in class. They should prepare and resolve the exercises, prepare and carry out the programming project. Exercises in the first half of the course are done in groups of three students. For the second half of the course, the project is done in larger teams.

### **Assessment methods**

Exercises, project, written examination

### Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

## **Bibliography**

A list of books will be provided at the beginning of the class

## Ressources en bibliothèque

• Polygon Mesh Processing / Botsch

### Notes/Handbook

Slides and online resources will be provided in class

### Websites

• http://lgg.epfl.ch/DGP



# CS-411 Digital education & learning analytics

Dillenbourg Pierre, Jermann Patrick

| Cursus             | Sem.     | Type |
|--------------------|----------|------|
| Computer science   | MA1, MA3 | Opt. |
| Cybersecurity      | MA1, MA3 | Opt. |
| Data Science       | MA1, MA3 | Opt. |
| Digital Humanities | MA1, MA3 | Opt. |
| SC master EPFL     | MA1, MA3 | Opt. |

## **Summary**

This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do student actually learn due to technologies?

#### Content

Learning theories and learning processes. Instructional design: methods, patterns and principles. Orchestration graphs. On-line education. Effectiveness of learning technologies. Methods for empirical research. Learning analytics. History of learning technologies.

## Keywords

learning, pedagogy, teaching, online education, MOOCs

## **Learning Prerequisites**

## **Recommended courses**

One of these courses is recommended:

- Machine Learning (Jaggi / Urbanke)
- Applied Data Analysis (West)

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Describe the learning processes triggered by a technology-based activity
- Explain how a technology feature influences learning processes
- Elaborate a study that measures the learning effects of a digital environment
- Select appropriately a learning technology given the target audience and the expected learning outcomes
- · Apply machine learning methods to educational traces

## Transversal skills

• Set objectives and design an action plan to reach those objectives.

### **Teaching methods**

The course will combine participatory lectures with a project around learning analytics



# **Expected student activities**

The project will include several milestones to be delivered along the semester.

# **Assessment methods**

- Project + exam
- 50 / 50

# Supervision

Office hours No
Assistants Yes
Forum Yes

## Resources

# **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=14248



# CS-451 **Distributed algorithms**

Guerraoui Rachid

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Computer and Communication Sciences |          | Opt. |
| Computer science minor              | Н        | Opt. |
| Computer science                    | MA1, MA3 | Obl. |
| Cybersecurity                       | MA1, MA3 | Obl. |
| Data Science                        | MA1, MA3 | Opt. |
| SC master EPFL                      | MA1, MA3 | Obl. |

| Credits 6 Session Win Semester Fall Exam Writ Workload 180 Weeks 14 Hours 6 w Lecture 3 Exercises 2 | tten |
|-----------------------------------------------------------------------------------------------------|------|
|-----------------------------------------------------------------------------------------------------|------|

### **Summary**

Computing is often distributed over several machines, in a local IP-like network, a cloud or in a P2P network. Failures are common and computations need to proceed despite partial failures of machines or communication links. The foundations of reliable distributed computing will be studied.

#### Content

Reliable broadcast

Causal Broadcast

**Total Order Broadcast** 

Consensus

Non-Blocking Atomic Commit

Group Membership, View Synchrony

Terminating Reliable Broadcast

Shared Memory in Message Passing Systems

Byzantine Fault Tolerance

Self Stabilization

Population protocols (models of mobile networks)

Bitcoin, Blockchain

Distributed Machine Learning

Gossip

## Keywords

Distributed algorithms, checkpointing, replication, consensus, atomic broadcast, ditributed transactions, atomic commitment, 2PC, Machine Learning

## **Learning Prerequisites**

### Required courses

Basics of Algorithms, networking and operating systems

## **Recommended courses**

The lecture is orthogonal to the one on concurrent algorithms: it makes a lot of sense to take them in parallel.

# **Learning Outcomes**

By the end of the course, the student must be able to:

Distributed algorithms Page 1 / 2



- Choose an appropriate abstraction to model a distributed computing problem
- Specify the abstraction
- Present and implement it
- Analyze its complexity
- Prove a distributed algorithm
- Implement a distributed system

# **Teaching methods**

Ex cathedera

Lectures, exercises and practical work

### **Assessment methods**

Midterm and final exams

Project

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

### Resources

# Ressources en bibliothèque

• Introduction to reliable and secure distributed programming / Cachin

## Notes/Handbook

Reliable and Secure Distributed Programming Springer Verlag C. Cachin, R. Guerraoui, L. Rodrigues

## Websites

• http://lpdwww.epfl.ch/education

Distributed algorithms Page 2 / 2



# CS-423 **Distributed information systems**

#### Aberer Karl

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Biocomputing minor                      | Н        | Opt. |
| Civil & Environmental Engineering       |          | Opt. |
| Communication systems minor             | Н        | Opt. |
| Computer science                        | MA1, MA3 | Opt. |
| Cybersecurity                           | MA1, MA3 | Opt. |
| Data Science                            | MA1, MA3 | Opt. |
| Digital Humanities                      | MA1, MA3 | Opt. |
| Electrical and Electronical Engineering | MA1, MA3 | Opt. |
| Energy Management and Sustainability    | MA1, MA3 | Opt. |
| Environmental Sciences and Engineering  | MA1, MA3 | Opt. |
| SC master EPFL                          | MA1, MA3 | Obl. |
|                                         |          |      |

| Language English Credits 4 Session Winter Semester Fall Exam Written Workload 120h Weeks 14 Hours 3 weekly Lecture 2 weekly Exercises 1 weekly Number of positions |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## **Summary**

This course introduces the key concepts and algorithms from the areas of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.

### Content

### **Information Retrieval**

- 1. Information Retrieval Introduction
- 2. Text-Based Information Retrieval
- 3. Vector Space Retrieval
- 4. Inverted Files
- 5. Distributed Retrieval
- 6. Probabilistic Information Retrieval
- 7. Query Expansion
- 8. Latent Semantic Indexing
- 9. Word Embeddings
- 10. Link-Based Ranking

# **Data Mining**

- 1. Data Mining Introduction
- 2. Association Rule Mining
- 3. Clustering
- 4. Classification
- 5. Classification Methodology
- 6. Document Classification
- 7. Recommender Systems
- 8. Mining Social Graphs

## **Knowledge Bases**

- 1. Semi-structured data
- 2. Semantic Web
- 3. RDF Resource Description Framework
- 4. Semantic Web Resources
- 5. Keyphrase extraction
- 6. Named entity recognition
- 7. Information extraction
- 8. Taxonomy Induction
- 9. Entity Disambiguation
- 10. Label Propagation



- 11. Link Prediction
- 12. Data Integration

## **Learning Prerequisites**

## **Recommended courses**

Introduction to Database Systems

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Characterize the main tasks performed by information systems, namely data, information and knowledge management
- · Apply collaborative information management models, like crowd-sourcing, recommender systems, social networks
- Apply knowledge models, their representation through Web standards and algorithms for storing and processing semi-structured data
- Apply fundamental models and techniques of text retrieval and their use in Web search engines
- Apply main categories of data mining techniques, local rules, predictive and descriptive models, and master representative algorithms for each of the categories

## **Teaching methods**

Ex cathedra + programming exercises (Python)

### **Assessment methods**

25% Continuous evaluations with bonus system during the semester 75% Final written exam (180 min) during exam session



# ENG-466 Distributed intelligent systems

Martinoli Alcherio

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Biocomputing minor                        | Е        | Opt. |
| Civil Engineering                         | MA2, MA4 | Opt. |
| Computational science and Engineering     | MA2, MA4 | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Data Science                              | MA2, MA4 | Opt. |
| Electrical and Electronical Engineering   | MA2, MA4 | Opt. |
| Energy Management and Sustainability      | MA2, MA4 | Opt. |
| Energy Science and Technology             | MA2, MA4 | Opt. |
| Environmental Sciences and Engineering    | MA2, MA4 | Opt. |
| Microtechnics                             | MA2, MA4 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA2, MA4 | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |
|                                           |          |      |

| Language  | English  |
|-----------|----------|
| Credits   | 5        |
| Session   | Summer   |
| Semester  | Spring   |
| Exam      | Written  |
| Workload  | 150h     |
| Weeks     | 14       |
| Hours     | 5 weekly |
| Lecture   | 2 weekly |
| Exercises | 3 weekly |
| Number of |          |
| positions |          |

### **Summary**

The goal of this course is to provide methods and tools for modeling distributed intelligent systems as well as designing and optimizing coordination strategies. The course is a well-balanced mixture of theory and practical activities using simulation and real hardware platforms.

#### Content

- Introduction to key concepts such as self-organization and software and hardware tools used in the course
- Examples of natural, artificial and hybrid distributed intelligent systems
- Modeling methods: sub-microscopic, microscopic, macroscopic, multi-level; spatial and non-spatial; mean field, approximated and exact approaches
- · Machine-learning methods: single- and multi-agent techniques; expensive optimization problems and noise resistance
- Coordination strategies and distributed control: direct and indirect schemes; algorithms and methods; performance evaluation
- Application examples in distributed sensing and action

## Keywords

Artificial intelligence, swarm intelligence, distributed robotics, sensor networks, modeling, machine-learning, control

## **Learning Prerequisites**

## **Required courses**

Fundamentals in analysis, probability, and programming for both compiled and interpreted languages

## **Recommended courses**

Basic knowledge in statistics, programming language used in the course (C, Matlab, Python), and signals



## and systems

## **Learning Outcomes**

By the end of the course, the student must be able to:

- · Design control algorithms
- Formulate a model at different level of abstraction for a distributed intelligent system
- Analyze a model of a distributed intelligent system
- Analyze a distributed coordination strategy/algorithm
- Design a distributed coordination strategy/algorithm
- Implement code for single robot and multi-robot systems
- Carry out systematic performance evaluation of a distributed intelligent system
- Apply modeling and design methods to specific problems requiring distributed sensing and action
- · Optimize a controller or a set of possibly coordinated controllers using model-based or data-driven methods

### Transversal skills

- Demonstrate a capacity for creativity.
- Access and evaluate appropriate sources of information.
- · Collect data.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Make an oral presentation.
- Write a scientific or technical report.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.

## **Teaching methods**

Ex-cathedra lectures, assisted exercises, and a course project involving teamwork

# **Expected student activities**

Attending lectures, carrying out exercises and the course project, and reading handouts.

#### **Assessment methods**

Continuous control (40%) with final written exam (60%).

### Supervision

Office hours Yes
Assistants Yes
Forum Yes

## Resources

### **Bibliography**

Lecture notes, selected papers and book chapters distributed at each lecture.

### Websites

• https://disal.epfl.ch/teaching/distributed\_intelligent\_systems/



# **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=15472

# Prerequisite for

R&D activities in engineering



# COM-502 **Dynamical system theory for engineers**

Thiran Patrick

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Biocomputing minor                        | Н        | Opt. |
| Bioengineering                            | MA3      | Opt. |
| Computational Neurosciences minor         | Н        | Opt. |
| Computational science and Engineering     | MA1, MA3 | Opt. |
| Computer science                          | MA1, MA3 | Opt. |
| Cybersecurity                             | MA1, MA3 | Opt. |
| Life Sciences Engineering                 | MA1, MA3 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA1, MA3 | Opt. |
| Sciences du vivant                        | MA3      | Opt. |
| Systems Engineering minor                 | Н        | Opt. |
|                                           |          |      |

### Summary

Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the qualitative analysis of nonlinear systems, both in discrete-time and continuous-time.

#### Content

- Introduction: Dynamics of linear and non linear systems. Definitions; Unicity of a solution; Limit Sets, Attractors.
- Linear Systems: Solutions; Stability of autonomous systems, Geometrical analysis, connection with frequency domain analysis.
- Nonlinear Systems: Solutions; Examples. Large-scale notions of stability (Lyapunov functions). Hamiltonian systems, gradient systems. Small-scale notions of stability (Linearization; stability and basin of attraction of an equilibrium point, stability of periodic solutions, Floquet Multipliers). Graphical methods for the analysis of low-dimensional systems. Introduction to structural stability, Bifurcation theory. Introduction to chaotic systems (Lyapunov exponents).
- The class is methodology-driven. It may present some limited examples of applications, but it is not application-driven.

## **Keywords**

Dynamical Systems, Attractors, Equilibrium point, Limit Cycles, Stability, Lyapunov Functions, Bifurcations, Lyapunov exponents.

## **Learning Prerequisites**

## Required courses

- Linear algebra (MATH 111 or equivalent).
- Analysis I, II, III (MATH 101, 106, 203 or equivalent).
- Circuits & Systems II (EE 205 or equivalent) or a Systems & Signals class (MICRO 310/311 or equivalent).

## Recommended courses



- A first-year Probabilty class, such as MATH-232, MATH-231, MATH-234(b), MATH-234(c), or equivalent.
- Analysis IV (MATH 207 or equivalent)

#### Important concepts to start the course

- Linear Algebra (vector spaces, matrix operations, including inversion and eigendecomposition).
- Calculus (linear ordinary differential equations; Fourier, Laplace and z-Transforms).
- · Basic notions of topology.
- · Basic notions of probability.

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Analyze a linear or nonlinear dynamical system.
- Anticipate the asymptotic behavior of a dynamical system.
- Assess / Evaluate the stability of a dynamical system.
- Identify the type of solutions of a dynamical sytem.

## **Teaching methods**

- · Lectures (blackboard), 2h per week
- Exercise session, 1h per week.

## **Expected student activities**

Exercises in class and at home (paper and pencil, and Matlab)

### **Assessment methods**

- 1. Mid-term: cannot be given this year.
- 2. Final exam 100%

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

### Resources

## **Bibliography**

Course notes; textbooks given as reference on the moodle page of the course.

# Notes/Handbook

Course notes, exercises and solutions provided on the moodle page of the course.

### **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=303

# Prerequisite for

Classes using methods from dynamical systems.



# CS-473 Embedded systems

Beuchat René

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Computer science                          | MA1, MA3 | Opt. |
| Cybersecurity                             | MA1, MA3 | Opt. |
| Electrical and Electronical Engineering   | MA1, MA3 | Opt. |
| Microtechnics                             | MA1, MA3 | Opt. |
| Mineur STAS Chine                         | Н        | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA1, MA3 | Opt. |
| SC master EPFL                            | MA1, MA3 | Opt. |
|                                           |          |      |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Project | English 4 Winter Fall Oral 120h 14 4 weekly 2 weekly 2 weekly |
|-----------------------------------------------------------------------------|---------------------------------------------------------------|
| Number of positions                                                         | 2 weekiy                                                      |
|                                                                             |                                                               |

### **Summary**

The main topics of this course are understanding and designing embedded system on a programmable circuit (FPGA). Students will be able to design a camera or a LCD controller on an FPGA in VHDL and will use their controller through a softcore processor.

#### Content

- · Microcontrollers and their associated programmable interfaces (GPIO, Timer, SPI, A/D, PWM, interrupts)
- Hardcore/softcore processors (ie. NIOS II, ARM)
- Memory organizations, little/big endian
- Synchronous busses, dynamic bus sizing (ie. Avalon Bus in Memory Mapped mode)
- Processor busses, busses realized in a FPGA
- Serial busses(ie. UART, SPI, i2c, ...)
- How an LCD graphical screen and a CMOS camera work
- FPGA-based conception of Embedded Systems
- · Embedded systems with processors on FPGAs

Laboratories provide knowledge & practice to develop an embedded system based on an FPGA device.

### Keywords

microprocessors, microcontroller, FPGA, embedded systems, SoC, programmable interface

### **Learning Prerequisites**

### Required courses

Introduction to computing systems, Logic systems, Computer architecture

### **Recommended courses**

Electronic, Programming (C/C++), Project System On Chip

## Important concepts to start the course

- Computer architecture (processor, memory, programmable interfaces)
- Processor Architecture (PC, registers, ALU, instruction decoding, instruction execution)
- Knowledge of C programming language

Embedded systems Page 1/3



## Knowledge of VHDL

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Design an embedded system on an FPGA
- Analyze a specific problem to be solved and propose an FPGA-based system to solve it
- Implement a solution to the given problem
- Realize and simulate the design
- Test the developed solution on an FPGA
- Use complex development tools and hardware debugging tools such as a logic analyzer and an oscilloscope

#### Transversal skills

- Use a work methodology appropriate to the task.
- Negotiate effectively within the group.
- Set objectives and design an action plan to reach those objectives.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Use both general and domain specific IT resources and tools
- Make an oral presentation.

## **Teaching methods**

Ex cathedra and exercises, laboratories by specific sub-topics, final mini-project

## **Expected student activities**

- Reading and deepening of course concepts
- Preparation of exercises performed in the laboratory
- Writing reports on different labs
- Realization of a final mini-project by group with oral presentation, report and demonstration

## **Assessment methods**

With continuous control. all labs 30%, mini-projet 20%, oral exam 50%

## Supervision

Office hours No
Assistants Yes
Forum Yes

Others Course on Moodle with forum

# Resources

Virtual desktop infrastructure (VDI)

No

## **Bibliography**

Embedded systems Page 2/3



Teaching notes and suggested reading material on moodle Specialized datasheets (micro-controllers, FPGA) and standards(ie, SPI, i2c, Amba, Avalon, etc.)

## Notes/Handbook

Documents and slides provided on moodle

## **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=1231

# Prerequisite for

CS-476 Real-time embedded systems

Embedded systems Page 3 / 3



# CS-491 Enterprise and service-oriented architecture

Wegmann Alain

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA2, MA4 | Opt. |
| Cybersecurity    | MA2, MA4 | Opt. |
| SC master EPFL   | MA2, MA4 | Opt. |

Language English Credits Session Summer Semester Spring Oral Exam Workload 180h Weeks 14 Hours 6 weekly Lecture 6 weekly Number of positions

## Summary

In this course, we teach how to define the requirements for an IT service that would best serve the needs of an organization. The course is taught using a non-conventional style in which the students learn mostly through the stress of a series of concrete experiences that mimic real-life situation.

### Content

The goal of this course is closely related to IT, but a substantial part the material is related to business, as well as to systems thinking. Even if some visual programming is taught, the course can be taken by non IT-students. The course can be especially useful for students interested in business analysis, IT consulting and in the specification part of IT development.

#### **Detailed contents:**

- 1) Business Part (4 weeks): practical experimentation and theoretical understanding of the key business processes of a manufacturing company: tendering, product development, manufacturing, quality management and accounting.
- 2) Business / IT Part (7 weeks): specification of an IT application that provides after-sales service. We do a critical analysis of BPMN. We then teach the following techniques: interviews & contextual inquiry, analysis/design of the business services and of the IT services. The specified solution is implemented in a commercial tool (Software as a Service). The underlying theory to business and IT service design is system thinking.
- **3) IT Consulting and Strategy Part (3 weeks):** IT strategy and its impact on technology selection, enterprise architecture to coordinate IT technology, tender process applied to IT development. In this course, the students have to do a critical analysis of some "classics" of the IT litterature.

## Keywords

Tender process, quotation, purchase order, leadtime, bill of material, development process, V process, spirale process, quality system, traceability, ISO 9000, financial statements, year-end book closing, ERP,

BPMN, business process reengineering, interview, contextual inquiry, business service, IT service, requirements engineering, SEAM service modeling, SEAM motivation modeling.

Interpretivism, model / reality, homeostasis, appreciative systems

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Describe business domains (sales, engineering, manufacturing, quality, accounting)
- Coordinate reply to a tender
- Design quality system based on ISO 9000



- Analyze business stakeholder perceptions and motivations
- Assess / Evaluate existing business processes
- · Conduct overall business/IT alignment project
- Design specifications of business services and IT services
- Implement prototype on a SaaS

#### Transversal skills

- Continue to work through difficulties or initial failure to find optimal solutions.
- Use both general and domain specific IT resources and tools
- · Write a scientific or technical report.
- · Collect data.
- Make an oral presentation.
- Summarize an article or a technical report.

## **Teaching methods**

Experiential learning and group work

### Resources

Virtual desktop infrastructure (VDI)

Nο

### **Bibliography**

ISO9001:2015 - available through SAGA via EPFL library

OMG (2004), Introduction to BPMN

Hammer M. (1990). reengineering Work: Don't Automate, Obliterate, Harvard Business Review, July - August

Regev, g. et al. (2016) What We Have Unlearned Since the Early Days of the Process Movement?, Enterprise, Business-Process and Information Systems Modeling, 113-121

Beyer, H. R. and K. Holtzblatt (1995). "Apprenticing with the customer." Commun. ACM 38(5): 45-52. Beyer, H. and K. Holtzblatt (1999). "Contextual design." interactions 6(1): 32-42.

Markus M.L., Keil M. (1994). If We Build It, They Will Come: Designing Information Systems that People Want to use, Sloan Management Review; Summer 1994; 35, 4; ABI/INFORM Global pg. 11

Regev, G. et al.(2013) What We Can Learn about Business Modeling from Homeostasis, Lecture Notes in Business Information Processing, 142, 1-15, 2003

Regev, G. et al.(2011) Service Systems and Value Modeling from an Appreciative System Perspective, Exploring Services Science, 82, 146-157, 2011

Carr, N. G. (2003). "IT Doesn't matter", Harvard Business Review

Zachman, J. A. (1987). "A framework for information systems architecture." IBM Syst. J. 26 (3): 276-292.

### Ressources en bibliothèque

· Contextual design / Beyer



# CS-489 Experience design

**Huang Jeffrey** 

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA1, MA3 | Opt. |
| Cybersecurity    | MA1, MA3 | Opt. |
| SC master EPFL   | MA1, MA3 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 6          |
| Session   | Winter     |
| Semester  | Fall       |
| Exam      | During the |
|           | semester   |
| Workload  | 180h       |
| Weeks     | 14         |
| Hours     | 6 weekly   |
| Lecture   | 2 weekly   |
| Project   | 4 weekly   |
| Number of |            |
| positions |            |
|           |            |

## Summary

As we move towards a design economy, the success of new products, systems and services depend increasingly on the excellence of personal experience. This course introduces students to the notion and practice of experience design following a hands-on, studio-based approach.

### Content

Experience design in practice encompasses the collection, analysis and design of users experiences based on a deep understanding of the context concerned. We will examine these processes using a series of mini-workshops, to rapidly iterate on multiple design experience options. The goal is to create a meaningful, interactive, data-driven (and possibly Al-assisted) digital interface and physical prototypes for new experiences.

We explore questions at the intersection of physical and digital architecture through an experience design approach, involving: (1) a mapping of the social dynamics surrounding an experience; (2) a critical analysis of the geographical and temporal flows (experience journeys); and (3) a detailed evaluation of the experience touch points. Based on this experience diagnosis, we propose alternative designs of experience blueprints that combine physical and digital touch points which in turn will constitute the elements of future typologies.

Our particular focus will be on information intensive typologies in the contemporary city, such as museums, libraries, airports, banks, boutiques, governments, hospitals and homes. Each year, we will investigate a different typology. Digital interfaces and augmented artifacts will be considered as possible alternatives to reconfigure the senses of perception, redistribute time, and reorchestrate the configuration of social, emotional and spatial experiences.

The seminar will combine students from both IC and ENAC to work together in a real interdisciplinary process.

# Keywords

User Experience (UX) Design, Design Thinking, Journey Mapping, Optioneering, Critical Prototyping, Value Proposition

## **Learning Prerequisites**

## Required courses

Bachelor in Computer Science or equivalent

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Identify issues of experience design in relation to an actual design project
- Perform rigorous analysis of the problem space and map the design opportunities
- Develop alternative design concepts for future artifacts

Experience design Page 1/2



- Translate design concepts into meaningful experiences through iterative prototyping at appropriate scales and levels of granularity
- · Create convincing arguments for the design propositions and persuasive visual and tangible evidence

## **Teaching methods**

Workshops, Design reviews, Presentations, Group projects

## **Expected student activities**

Group discussion, Case studies, Design Reviews, Pin-Up, Desk Crits

#### **Assessment methods**

Grading will be based upon the quality of the projects in the preliminary workshops (30%), intermediary reviews (20%) and in the final review (50%). Projects will be reviewed and assessed based on their conceptual strength, the coherence of their translation into prototypes, their narrative clarity and experiential power, and the persuasiveness of their communication, both orally and through the presented artifacts.

# Supervision

Office hours Yes Assistants Yes

### Resources

## **Bibliography**

To be made available during the course

Experience design Page 2 / 2



# CS-550 Formal verification

Kuncak Viktor

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Computer and Communication Sciences |          | Opt. |
| Computer science                    | MA1, MA3 | Opt. |
| Cybersecurity                       | MA1, MA3 | Opt. |
| Data Science                        | MA1, MA3 | Opt. |
| SC master EPFL                      | MA1, MA3 | Opt. |

| Language Credits Session Semester Exam  Workload Weeks Hours Lecture Exercises Practical | English 6 Winter Fall During the semester 180h 14 6 weekly 2 weekly 2 weekly 2 weekly |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| work Number of positions                                                                 | ·                                                                                     |

### **Summary**

We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to use formal verification tools and explain the theory and the practice behind them.

#### Content

Topics may include among the others some of the following:

- Importance of Reliable Systems. Methodology of Formal Verification. Soundness and Completeness in Modeling and Tools. Successful Tools and Flagship Case Studies
- Review of Sets, Relations, Computability, Propositional and First-Order Logic Syntax, Semantics, Sequent Calculus.
- Completeness and Semi-Decidability for First-Order Logic. Inductive Definitions and Proof Trees. Higher-Order Logic and LCF Approach.
- State Machines. Transition Formulas. Traces. Strongest Postconditions and Weakest Preconditions.
- · Hoare Logic. Inductive Invariants. Well-Founded Relations and Termination Measures
- · Modeling Hardware: Verilog to Sequential Circuits
- Linear Temporal Logic. System Verilog Assertions. Monitors
- · SAT Solvers and Bounded Model Checking
- Model Checking using Binary Decision Diagrams
- Loop Invariants. Hoare Logic. Statically Checked Function Contracts. Relational Semantics and Fixed-Point Semantics
- · Symbolic Execution. Satisfiability Modulo Theories
- · Abstract Interpretation and Predicate Abstraction
- Information Flow and Taint Analysis
- · Verification of Security Protocols
- · Dependent and Refinement Types

## **Learning Prerequisites**

## **Recommended courses**

Computer Language Processing / Compilers

Important concepts to start the course

Formal verification Page 1 / 3



### **Discrete Mathematics**

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Formalize specifications
- Synthesize loop invariants
- · Specify software functionality
- · Generalize inductive hypothesis
- Critique current software development practices

### **Teaching methods**

Instructors will present lectures and exercises and supervise labs on student laptops.

### **Expected student activities**

Follow the course material and complete and explain projects during the semester.

#### **Assessment methods**

The grade is based on the code, documentation, and explanation of projects during the semester.

There are no written exams.

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

### Resources

## **Bibliography**

- Michael Huth and Mark Rayan: Logic in Computer Science Modelling and Reasoning about Systems.
   Cambridge University Press 2004.
- Handbook of Model Checking, https://www.springer.com/de/book/9783319105741 Springer 2018.
   Including Chapter Model Checking Security Protocols by David Basin.
- Tobias Nipkow, Gerwin Klein: Concrete Semantics with Isabelle/HOL. http://concrete-semantics.org/concrete-semantics.pdf
- Aaron Bradley and Zohar Manna: The Calculus of Computation Decision Procedures with Applications to Verification, Springer 2007.
- Nielson, Flemming, Nielson, Hanne R., Hankin, Chris: Principles of Program Analysis. ISBN 978-3-662-03811-6. Springer 1999.
- Peter B. Andrews: An Introduction to Mathematical Logic and Type Theory (To Truth Through Proof), Springer 2002.
- http://logitext.mit.edu/tutorial

## Ressources en bibliothèque

- · Handbook of model checking
- · Introduction to mathematical logic and type theory
- · Handbook of Model Checking

Formal verification Page 2 / 3



- Tobias Nipkow, Gerwin Klein: Concrete Semantics with Isabelle/HOL
- Michael Huth and Mark Rayan: Logic in Computer Science Modelling and Reasoning about Systems
- Peter B. Andrews: An Introduction to Mathematical Logic and Type Theory
- Nielson, Flemming, Nielson, Hanne R., Hankin, Chris: Principles of Program Analysis
- Aaron Bradley and Zohar Manna: The Calculus of Computation Decision Procedures with Applications to Verification

### Websites

https://lara.epfl.ch/w/fv

### **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=13051

### **Videos**

- https://youtu.be/mm6CCGSDmOw?t=39
- https://www.youtube.com/watch?v=oLS\_y842fMc
- https://www.youtube.com/channel/UCP2eLEql4tROYmIYm5mA27A

Formal verification Page 3 / 3



# CS-452 Foundations of software

Odersky Martin

| Cursus                 | Sem.     | Type |
|------------------------|----------|------|
| Computer science minor | Н        | Opt. |
| Computer science       | MA1, MA3 | Obl. |
| Cybersecurity          | MA1, MA3 | Obl. |

## **Summary**

The course introduces the foundations on which programs and programming languages are built. It introduces syntax, types and semantics as building blocks that together define the properties of a program part or a language. Students will learn how to apply these concepts in their reasoning.

#### Content

- simple types, lambda-calculus
- normalization, references, exceptions
- subtyping
- recursive types
- polymorphism
- advances features of the Scala type system

# **Learning Prerequisites**

## **Recommended courses**

Advanced topics in programming, Compiler construction

## Important concepts to start the course

Functional programming

Basic knowledge of formal languages

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Argue design decisions of programming languages
- Assess / Evaluate soundness of type systems
- Compose higher-order functions
- Verify progress and preservation in type systems
- Work out / Determine operational equivalences
- Carry out projects of 2-3 weeks duration
- Distinguish valid from invalid proofs
- Implement type systems and operational semantics

### Transversal skills

Foundations of software Page 1 / 2



- Assess progress against the plan, and adapt the plan as appropriate.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.
- Manage priorities.

# **Teaching methods**

Ex cathedra, practical exercises

## **Assessment methods**

With continuous control

## Resources

# Ressources en bibliothèque

• Types and Programming Languages / Pierce

### Websites

• http://lampwww.epfl.ch/teaching/index.html.en

Foundations of software Page 2 / 2



# MATH-483 Gödel and recursivity

**Duparc Jacques** 

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA1, MA3 | Opt. |
| Cybersecurity    | MA1, MA3 | Opt. |
| Ingmath          | MA1, MA3 | Opt. |
| Mathématicien    | MA1, MA3 | Opt. |
| SC master EPFL   | MA1, MA3 | Opt. |

| Lecture 2<br>Exercises 2<br>Number of | ter |
|---------------------------------------|-----|
| positions                             |     |

## Summary

Gödel incompleteness theorems and mathematical foundations of computer science

### Content

### Gödel's theorems:

Peano and Robinson Arithmetics. Representable functions. Arithmetic of syntax. Incompleteness, and undecidability theorems.

#### Recursivity:

Turing Machines and variants. The Church-Turing Thesis. Universal Turing Machine. Undecidable problems (the halting and the Post-Correspondance problems). Reducibility. The arithmetical hierarchy. Relations to Turing machines. Turing degrees.

## Keywords

Gödel, incompleteness theorems, Peano arithmetic, Robinson arithmetic, decidability, recursively enumarable, arithmetical hierarchy, Turing machine, Turing degrees, jump operator, primitive recursive functions, recursive functions, automata, pushdown automata, regular languages, context-free languages, recursive languages, halting problem, universal Turing machine, Church thesis.

### **Learning Prerequisites**

### Recommended courses

Mathematical logic (or equivalent). A good understanding of 1st order logic is required - in particular the relation between syntax and semantics.

# Important concepts to start the course

1st order logic: syntax, semantics, proof theory, completeness theorem, compactness theorem, Löwenheim-Skolem theorem.

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Estimate whether a given theory, function, language is recursive or no
- Decide the class that a language belongs to (regular, context-free, recursive,...)
- Elaborate an automaton
- · Design a Turing machine

Gödel and recursivity Page 1 / 3



- Formalize a proof in Peano arithmetic
- Sketch the incompleteness theorems
- Propose a non-standard model
- · Argue why Hilbert program failed

## **Teaching methods**

Ex cathedra lecture and exercises

#### **Assessment methods**

Written: 3 hours

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

Virtual desktop infrastructure (VDI)

No

### **Bibliography**

## Set Theory:

- Thomas Jech: Set theory, Springer 2006
- Kenneth Kunen: Set theory, Springer, 1983
- Jean-Louis Krivine: Theory des ensembles, 2007
- Patrick Dehornoy: Logique et théorie des ensembles; Notes de cours, FIMFA ENS: http://www.math.unicaen.fr/~dehornoy/surveys.html
- Yiannis Moschovakis: Notes on set theory, Springer 2006
- Karel Hrbacek and Thomas Jech: Introduction to Set theory, (3d edition), 1999

### Recursion Theory:

- Micheal Sipser: Introduction to the Theory of Computation, Thomson Course Technology Boston, 2006
- Piergiorgio Odifreddi: Classical recursion theory, vol. 1 and 2, Springer, 1999
- Robert I. Soare: Recursively Enumerable Sets and Degres, A Study of Computable Functions and Computably Generated Sets, Springer-Verlag 1987
- Nigel Cutland: Computability, an introduction to recursive function theory, 1980
- Raymond M. Smullyan: recursion theory for methamathematics, Oxford, 1993

### Proof theory:

- · Wolfram Pohlers: Proof Theory, the first step into impredicativity, Springer, 2008
- A. S. Troelstra, H. Schwichtenberg, and Anne S. Troelstra: Basic proof theory, Cambridge, 2000
- S.R. Buss: Handbook of proof theory, Springer, 1998

## Gödel's results:

- Raymond M. Smullyan: Gödel's incompleteness theorems, Oxford, 1992
- Peter Smith: An introduction to Gödel's theorems, Cambridge, 2008

Gödel and recursivity Page 2 / 3



- Torkel Franzen: Inexhaustibility, a non exhaustive treatment, AK Peteres, 2002
- Melvin Fitting: Incompleteness in the land of sets, King's College, 2007
- Torkel Franzen: Gödel's theorem: an incomplete guide to its use and abuse, AK Peters, 2005

### Ressources en bibliothèque

- Théorie des ensembles / Krivine
- Inexhaustibility, a non exhaustive treatment / Franzen
- Proof Theory / Pohlers
- Notes on theory / Moschovakis
- Basic proof theory / Troelstra
- Introduction to the Theory of Computation / Sipser
- · Handbook of proof theory / Buss
- Set theory / Jech
- Classical recursion theory / Odifreddi
- Recursion theory for methamathematics / Smullyan
- Set theory / Kunen
- · Incompleteness in the land of sets / Fitting
- Recursively Enumerable Sets and Degres / Soare
- Gödel's theorem / Franzen
- Computability, an introduction to recursive function theory / Cutland
- Logique et théorie des ensembles / Dehornoy
- Gödel's incompleteness theorems / Smullyan
- An introduction to Gödel's theorems / Smith
- Introduction to Set theory / Hrbacek

#### Websites

• http://www.hec.unil.ch/logique/enseignement/recursivity

### **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=14569

Gödel and recursivity Page 3 / 3



# MICRO-511 Image processing I

Unser Michaël, Van De Ville Dimitri

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Biocomputing minor                        | Н        | Opt. |
| Bioengineering                            | MA3      | Opt. |
| Computational Neurosciences minor         | Н        | Opt. |
| Computational science and Engineering     | MA1, MA3 | Opt. |
| Computer science                          | MA1, MA3 | Opt. |
| Cybersecurity                             | MA1, MA3 | Opt. |
| Digital Humanities                        | MA1, MA3 | Opt. |
| Environmental Sciences and Engineering    | MA1, MA3 | Opt. |
| Life Sciences Engineering                 | MA1, MA3 | Opt. |
| Microtechnics                             | MA1, MA3 | Opt. |
| Neuroprosthetics minor                    | Н        | Opt. |
| Photonics minor                           | Н        | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA1, MA3 | Opt. |
| SC master EPFL                            | MA1, MA3 | Opt. |
| Sciences du vivant                        | MA3      | Opt. |
|                                           |          |      |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Number of positions | English 3 Winter Fall Written 90h 14 3 weekly 3 weekly |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------|
|-----------------------------------------------------------------------------------------|--------------------------------------------------------|

# Summary

Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping in JAVA. Application to real-world examples in industrial vision and biomedical imaging.

### Content

- Introduction. Image processing versus image analysis. Applications. System components.
- · Characterization of continuous images. Image classes. 2D Fourier transform. Shift-invariant systems.
- Image acquisition. Sampling theory. Acquisition systems. Histogram and simple statistics. Linear and Max-Lloyd Quantization.
- Characterization of discrete images and linear filtering. z-transform. Convolution. Separability. FIR and IIR filters.
- Image-processing operations. Point operators (thresholding, histogram modification). Spatial operators (smoothing, enhancement, nonlinear filtering). Morphological operators.
- Introduction to image analysis and computer vision. Segmentation, edge detection, objet detection, image comparison.

## **Learning Prerequisites**

**Required courses** 

Signals and Systems I & II (or equivalent)

Important concepts to start the course

1-D signal processing: convolution, Fourier transform, z-transform

## **Learning Outcomes**

Image processing I Page 1 / 2



By the end of the course, the student must be able to:

- Exploit the multidimensional Fourier transform
- Select appropriately Hilbert spaces and inner-products
- Optimize 2-D sampling to avoid aliasing
- Formalize convolution and optical systems
- Design digital filters in 2-D
- Analyze multidimensional linear shift-invariant systems
- Apply image-analysis techniques
- Construct image-processing software
- Elaborate morphological filters

# Transversal skills

- Use a work methodology appropriate to the task.
- Manage priorities.
- Use both general and domain specific IT resources and tools

Image processing I Page 2 / 2



# MICRO-512 Image processing II

Liebling Michael, Sage Daniel, Unser Michael, Van De Ville Dimitri

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Biocomputing minor                        | Е        | Opt. |
| Bioengineering                            | MA4      | Opt. |
| Computational Neurosciences minor         | Е        | Opt. |
| Computational science and Engineering     | MA2, MA4 | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Digital Humanities                        | MA2, MA4 | Opt. |
| Life Sciences Engineering                 | MA2, MA4 | Opt. |
| Microtechnics                             | MA2, MA4 | Opt. |
| Neuroprosthetics minor                    | Е        | Opt. |
| Photonics minor                           | Е        | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA2, MA4 | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |
| Sciences du vivant                        | MA4      | Opt. |

## **Summary**

Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in JAVA; application to real-world examples in industrial vision and biomedical imaging.

#### Content

- Review of fundamental notions. Multi-dimensional Fourier transform. Convolution. z-transform. Digital filters.
- Continuous representation of discrete data. Splines. Interpolation. Geometric transformations. Multi-scale decomposition (pyramids and wavelets).
- Image transforms. Karhunen-Loève transform (KLT). Discrete cosine transform (DCT). JPEG coding. Image pyramids. Wavelet decomposition.
- **Reconstruction from projections.** X-ray scanners. Radon transform. Central slice theorem. Filtered backprojection. Iterative methods.
- Deconvolution. Inverse and Wiener filtering. Matrix formulations. Iterative techniques (ART).
- Statistical pattern classification. Decision making. Bayesian classification. Parameter estimation. Supervised learning. Clustering.
- Image analysis. Pixel classification. Contour extraction and representation. Shape. Texture. Snakes and active contours.

# **Learning Prerequisites**

**Required courses** 

Image Processing I

## **Recommended courses**

Signals and Systems I & II, linear algebra, analysis

Image processing II Page 1 / 2



## Important concepts to start the course

Basic image processing and related analytical tools (Fourier transform, z-tranform, etc.)

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Construct interpolation models and continuous-discrete representations
- Analyze image transforms
- Design image-reconstruction algorithms
- Formalize multiresolution representations using wavelets
- · Design deconvolution algorithms
- Perform image analysis and feature extraction
- Design image-processing software (plugins)
- Synthesize steerable filters

### Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Manage priorities.
- Access and evaluate appropriate sources of information.
- Use both general and domain specific IT resources and tools

Image processing II Page 2 / 2



## CS-487 Industrial automation

Sommer Philipp Alexander, Tournier Jean-Charles

| Sem.     | Type                                         |
|----------|----------------------------------------------|
| MA2, MA4 | Opt.                                         |
| MA2, MA4 | Opt.                                         |
| MA2, MA4 | Opt.                                         |
| MA2, MA4 | Opt.                                         |
|          | Opt.                                         |
| MA2, MA4 | Opt.                                         |
| MA2, MA4 | Opt.                                         |
|          | MA2, MA4<br>MA2, MA4<br>MA2, MA4<br>MA2, MA4 |

| Language Credits 3 Session Summer Semester Spring Exam Oral Workload 90h Weeks 14 Hours 13 weekly Lecture Project Number of positions  English Summer Spring Leman Spring Leman Spring Leman Spring Leman Spring Leman Spring Leman Summer Spring Leman Summer Spring Leman Summer Spring Leman Summer Spring Leman Summer Spring Leman Summer Summer Spring Leman Summer Summer Summer Summer Spring Leman Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summe |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### Remark

This course can be taken by students of all engineering sections.

### **Summary**

This course consists of two parts: 1) architecture of automation systems, hands-on lab 2) handling of faults and failures in real-time systems, including fault-tolerant computing

#### Content

Trends like digitalization and internet of things affect the way industrial plants are designed, deployed and operated. Industrial Automation comprises the control, communication and software architecture in (real-time) automation systems: factories, energy production and distribution, vehicles and other embedded systems.

# Keywords

- 1. Processes and plants, automation system architecture
- 2. Instrumentation, Programmable Logic Controllers and embedded computers
- 3. Industrial communication networks, field busses
- 4. Field device access protocols and application program interfaces
- 5. Human interface and supervision
- 6. Manufacturing Execution Systems
- 8. Real-time response and performance analysis
- 9. Dependability (Reliability, Availability, Safety, ...)

### **Learning Prerequisites**

#### **Recommended courses**

Communication networks

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Characterize the (software) architecture of a automation system
- Apply methods and trade-offs in real-time systems
- Analyze a plant
- Propose suitable automation solutions meeting the requirements
- · Analyze the reliability, availability, safety of a system

Industrial automation Page 1/2



#### Transversal skills

- Write a scientific or technical report.
- Use both general and domain specific IT resources and tools
- Communicate effectively with professionals from other disciplines.
- · Keep appropriate documentation for group meetings.
- Access and evaluate appropriate sources of information.

## **Teaching methods**

Oral presentation aided by slides, exercises as part of the lecture, practical work (workshop at Siemens and group assignment).

## **Expected student activities**

- Understand material presented during lectures by asking questions and/or independent (online) searches
- Attend Siemens workshop (one full day on Siemens premises in Renens)
- · Work on group assignment
- Hand-in artifacts for assignment on time

### **Assessment methods**

Assignment 25% and final oral exam 75%

### Resources

# **Bibliography**

Nussbaumer, Informatique Industrielle (EPFL)

Olsson, Gustav & Rosen, Christian - industrial automation, Dept. of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden.

## Ressources en bibliothèque

• Informatique Industrielle / Nussbaumer

### **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=14114

Industrial automation Page 2 / 2



# COM-402 Information security and privacy

Hubaux Jean-Pierre, Oechslin Philippe

| Cursus                                | Sem.     | Type |
|---------------------------------------|----------|------|
| Computational science and Engineering | MA1, MA3 | Opt. |
| Computer and Communication Sciences   |          | Opt. |
| Computer science minor                | Н        | Opt. |
| Computer science                      | MA1, MA3 | Obl. |
| Cyber security minor                  | Н        | Opt. |
| Cybersecurity                         | MA1, MA3 | Obl. |
| Data Science                          | MA1, MA3 | Obl. |
| Data science minor                    | Н        | Opt. |
| Financial engineering                 | MA1, MA3 | Opt. |
| SC master EPFL                        | MA1, MA3 | Obl. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Project Number of | English 6 Winter Fall Written 180h 14 6 weekly 3 weekly 1 weekly 2 weekly |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Number of positions                                                                             |                                                                           |

## **Summary**

This course provides an overview of information security and privacy topics. It introduces students to the knowledge and tools they will need to deal with the security/privacy challenges they are likely to encounter in today's Big Data world. The tools are illustrated with relevant applications.

#### Content

- Overview of cyberthreats
- Exploiting vulnerabilities
- Authentication, access control, compartmentalization
- Basic applied cryptography
- Operational security practices and failures
- Machine learning and privacy
- Data anonymization and de-anonymization techniques
- Privacy enhancing technologies
- Blockchain and decentralization

## Keywords

security, privacy, protection, intrusion, anonymization, cryptography

# **Learning Prerequisites**

**Required courses** 



COM-301 Computer security
Basic Python programming or better
Basic networking knowledge

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Understand the most important classes of information security/privacy risks in today's "Big Data" environment
- Exercise a basic, critical set of "best practices" for handling sensitive information
- Exercise competent operational security practices in their home and professional lives
- · Understand at overview level the key technical tools available for security/privacy protection

## **Expected student activities**

Attending lectures, solving assigned problems and "hands-on" exercises, reading and demonstrating understanding of provided materials.

### **Assessment methods**

• continuous control: 30% of the grade

• final exam : 70% of the grade



# COM-404 Information theory and coding

Telatar Emre

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Communication systems minor             | Н        | Opt. |
| Computer and Communication Sciences     |          | Opt. |
| Computer science                        | MA1, MA3 | Opt. |
| Cybersecurity                           | MA1, MA3 | Opt. |
| Data Science                            | MA1, MA3 | Opt. |
| Electrical and Electronical Engineering | MA1, MA3 | Opt. |
| SC master EPFL                          | MA1, MA3 | Obl. |
|                                         |          |      |

| Language<br>Credits<br>Session<br>Semester<br>Exam<br>Workload<br>Weeks | English 7 Winter Fall Written 210h 14   |
|-------------------------------------------------------------------------|-----------------------------------------|
| _                                                                       |                                         |
|                                                                         | *************************************** |
| Workload                                                                | 210h                                    |
| Weeks                                                                   | 14                                      |
| Hours                                                                   | 6 weekly                                |
| Lecture                                                                 | 4 weekly                                |
| Exercises                                                               | 2 weekly                                |
| Number of                                                               |                                         |
| positions                                                               |                                         |
|                                                                         |                                         |

### **Summary**

The mathematical principles of communication that govern the compression and transmission of data and the design of efficient methods of doing so.

#### Content

- 1. Mathematical definition of information and the study of its properties.
- 2. Source coding: efficient representation of message sources.
- 3. Communication channels and their capacity.
- 4. Coding for reliable communication over noisy channels.
- 5. Multi-user communications: multi access and broadcast channels.
- 6. Lossy source coding: approximate representation of message sources.
- 7. Information Theory and statistics

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Formulate the fundamenal concepts of information theory such as entropy, mutual information, channel capacity
- Elaborate the principles of source coding and data transmission
- Analyze source codes and channel codes
- Apply information theoretic methods to novel settings

## **Teaching methods**

Ex cathedra + exercises

### **Assessment methods**

With continuous control

## Resources

## Ressources en bibliothèque

• Elements of Information Theory / Cover



# CS-430 Intelligent agents

Faltings Boi

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Computer and Communication Sciences       |          | Opt. |
| Computer science minor                    | Н        | Opt. |
| Computer science                          | MA1, MA3 | Opt. |
| Cybersecurity                             | MA1, MA3 | Opt. |
| Data Science                              | MA1, MA3 | Opt. |
| Data science minor                        | Н        | Opt. |
| Energy Management and Sustainability      | MA1, MA3 | Opt. |
| Financial engineering minor               | Н        | Opt. |
| Financial engineering                     | MA1, MA3 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA1, MA3 | Opt. |
| SC master EPFL                            | MA1, MA3 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 6          |
| Session   | Winter     |
| Semester  | Fall       |
| Exam      | During the |
|           | semester   |
| Workload  | 180h       |
| Weeks     | 14         |
| Hours     | 6 weekly   |
| Lecture   | 3 weekly   |
| Exercises | 3 weekly   |
| Number of |            |
| positions |            |
|           |            |

## **Summary**

Software agents are widely used to control physical, economic and financial processes. The course presents practical methods for implementing software agents and multi-agent systems, supported by programming exercises, and the theoretical underpinnings including computational game theory.

#### Content

The course contains 4 main subject areas:

1) Basic models and algorithms for individual agents:

Models and algorithms for rational, goal-oriented behavior in agents: reactive agents, reinforcement learning, exploration-exploitation tradeoff, Al planning methods.

2) Multi-agent systems:

multi-agent planning, coordination techniques for multi-agent systems, distributed algorithms for constraint satisfaction.

3) Self-interested agents:

Models and algorithms for implementing self-interested agents motivated by economic principles: elements of computational game theory, models and algorithms for automated negotiation, social choice, mechanism design, electronic auctions and marketplaces.

4) Implementing multi-agent systems:

Agent platforms, ontologies and markup languages, web services and standards for their definition and indexing.

## **Learning Prerequisites**

## **Recommended courses**

Intelligence Artificielle or another introductory course to Al

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Choose and implement methods for rational decision making in software agents, based on decision processes and Al planning techniques
- Choose and implement methods for efficient rational decision making in teams of multiple software agents
- Model scenarios with multiple self-interested agents in the language of game theory
- Evaluate the feasibility of achieving goals with self-interested agents using game theory

Intelligent agents Page 1 / 2



- Design, choose and implement mechanisms for self-interested agents using game theory
- Implement systems of software agents using agent platforms

## **Teaching methods**

Ex cathedra, practical programming exercises

## **Expected student activities**

Lectures: 3 hours Reading: 3 hours

Assignments/programming: 4 hours

#### Assessment methods

Mini-projects and exercises 40%, final exam 60%

### Resources

## **Bibliography**

Michael Wooldridge: An Introduction to MultiAgent Systems - Second Edition, John Wiley & Sons, 2009 Stuart Russell and Peter Norvig: Artificial Intelligence: A Modern Approach (2nd/3rd Edition), Prentice Hall Series in Artificial Intelligence, 2003/2009.

## Ressources en bibliothèque

- An Introduction to MultiAgent Systems / Wooldridge
- Artificial Intelligence: A Modern Approach / Russell

Intelligent agents Page 2 / 2



# CS-486 Interaction design

Pu Pearl

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Data Science                              | MA2, MA4 | Opt. |
| Digital Humanities                        | MA2, MA4 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 4          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 2 weekly   |
| Exercises | 1 weekly   |
| Project   | 1 weekly   |
| Number of |            |
| positions |            |
|           |            |

## Summary

This course focuses on goal-directed design and interaction design, two subjects treated in depth in the Cooper book (see reference below). To practice these two methods, we propose a design challenge, which is to be carried out by a team of three students.

#### Content

## **Design methods for HCI**

What is HCI: its aims and goals

Design thinking Goal-directed Design

Mental model and different types of users

Qualitative research and user interviews

User modeling: persona and empathy diagram

Scenarios, requirements and framework design

Visual design

Information Visualization design

# Basic prototyping methods for HCI

Storyboarding

Context scenario

Interactive prototype

Video prototype

## Human computer interaction evaluation methods

Cognitive walkthrough

Heuristic evaluation

Evaluation with users

## **Keywords**

Interaction design, design thinking, design for playfulness, rapid prototyping techniques, evaluation with users.

# **Learning Prerequisites**

## Required courses

Introduction to Visual Computing

Interaction design Page 1 / 2



#### **Recommended courses**

Open to students enrolled in the Master and PhD programs in IC.

## Important concepts to start the course

Goal-direction design

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Interview users and elicit their needs using the goal-directed design method
- Design and implement interfaces and intearctions
- Project management: set objectives and device a plan to achieve them
- Group work skills: discuss and identify roles, and assume those roles including leadership
- Communication: writing and presentation skills

## **Teaching methods**

Lectures, exercises, hands-on practice, design review

## **Expected student activities**

Lectures, readings, design project, quiz

### **Assessment methods**

Group project, presentation, mid-term exam

### Resources

## **Bibliography**

About Face 3: The Essentials of Interaction Design by Alan Cooper et al. (available as e-book at NEBIS)

## Ressources en bibliothèque

About Face 3

Interaction design Page 2 / 2



# CS-431 Introduction to natural language processing

Chappelier Jean-Cédric, Rajman Martin

| Cursus                      | Sem.     | Type |
|-----------------------------|----------|------|
| Computer science            | MA1, MA3 | Opt. |
| Cybersecurity               | MA1, MA3 | Opt. |
| Data Science                | MA1, MA3 | Opt. |
| Data science minor          | Н        | Opt. |
| Digital Humanities          | MA1, MA3 | Opt. |
| SC master EPFL              | MA1, MA3 | Opt. |
| UNIL - Sciences forensiques | Н        | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours | English 4 Winter Fall Written 120h 14 4 weekly |
|-------------------------------------------------------------|------------------------------------------------|
| Lecture<br>Exercises                                        | 2 weekly<br>2 weekly                           |
| Number of positions                                         | 2 Weekly                                       |

### **Summary**

The objective of this course is to present the main models, formalisms and algorithms necessary for the development of applications in the field of natural language information processing. The concepts introduced during the lectures will be applied during practical sessions.

#### Content

Several models and algorithms for automated textual data processing will be described: (1) morpho-lexical level: electronic lexica, spelling checkers, ...; (2) syntactic level: regular, context-free, stochastic grammars, parsing algorithms, ...; (3) semantic level: models and formalisms for the representation of meaning, ...

Several application domains will be presented: Linguistic engineering, Information Retrieval, Text mining (automated knowledge extraction), Textual Data Analysis (automated document classification, visualization of textual data).

#### **Keywords**

Natural Language Processing; Computationnal Linguisitics; Part-of-Speech tagging; Parsing

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Compose key NLP elements to develop higher level processing chains
- · Assess / Evaluate NLP based systems
- Choose appropriate solutions for solving typical NLP subproblems (tokenizing, tagging, parsing)
- · Describe the typical problems and processing layers in NLP
- Analyze NLP problems to decompose them in adequate independant components

## **Teaching methods**

Ex cathedra; practical work on computer

## **Expected student activities**

attend lectures and practical sessions, answer quizzes.

### Assessment methods

4 quiz during semester 25%, final exam 75%

### Resources



# Virtual desktop infrastructure (VDI)

No

## **Bibliography**

- 1. M. Rajman editor, "Speech and Language Engineering", EPFL Press, 2006.
- 2. Daniel Jurafsky and James H, Martin, "Speech and Language Processing", Prentice Hall, 2008 (2nd edition)
- 3. Christopher D. Manning and Hinrich Schütze, "Foundations of Statistical Natural Language Processing", MIT Press, 2000
- 4. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, *Introduction to Information Retrieval*, Cambridge University Press. 2008
- 5. Nitin Indurkhya and Fred J. Damerau editors, "*Handbook of Natural Language Processing*", CRC Press, 2010 (2nd edition)

# Ressources en bibliothèque

- Handbook of Natural Language Processing / Indurkhya
- Introduction to Information Retrieval / Manning
- Foundations of Statistical Natural Language Processing / Manning
- Speech and Language Engineering / Rajman
- Speech and Language Processing / Jurafsky

### Websites

• http://coling.epfl.ch



# CS-526 Learning theory

Macris Nicolas, Urbanke Rüdiger

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA2, MA4 | Opt. |
| Cybersecurity    | MA2, MA4 | Opt. |
| Data Science     | MA2, MA4 | Opt. |
| SC master EPFL   | MA2, MA4 | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of | English 4 Summer Spring Written 120h 14 4 weekly 2 weekly 2 weekly |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Number of positions                                                                     |                                                                    |

### **Summary**

Machine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.

#### Content

- Basics: statistical learning framework, Probably Approximately Correct (PAC) learning, learning with a finite number of classes, Vapnik-Chervonenkis (VC) dimension, non-uniform learnability, complexity of learing.
- Neural Nets: representation power of neural nets, learning and stability, PAC Bayes bounds.
- Graphical model learning.
- Non-negative matrix factorization, Tensor decompositions and factorization.
- · Learning mixture models.

## **Learning Prerequisites**

#### **Recommended courses**

- Analysis I, II, III
- Linear Algebra
- Machine learning
- Probability
- Algorithms (CS-250)

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Explain the framework of PAC learning
- Explain the importance basic concepts such as VC dimension and non-uniform learnability
- Describe basic facts about representation of functions by neural networks
- Describe recent results on specific topics e.g., graphical model learning, matrix and tensor factorization, learning mixture models

### **Teaching methods**

Learning theory Page 1 / 2



- Lectures
- Exercises

# **Expected student activities**

- Attend lectures
- Attend exercises sessions and do the homework

# **Assessment methods**

Final exam and graded homeworks

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

Others Course website

Learning theory Page 2 / 2



# CS-433 Machine learning

Flammarion Nicolas, Jaggi Martin

| Cursus                                    | Sem.     | Туре |
|-------------------------------------------|----------|------|
| Biocomputing minor                        | Н        | Opt. |
| Civil & Environmental Engineering         |          | Opt. |
| Communication systems minor               | Н        | Opt. |
| Computational Neurosciences minor         | Н        | Opt. |
| Computational science and Engineering     | MA1, MA3 | Opt. |
| Computer and Communication Sciences       |          | Opt. |
| Computer science minor                    | Н        | Opt. |
| Computer science                          | MA1, MA3 | Obl. |
| Cybersecurity                             | MA1, MA3 | Obl. |
| Data Science                              | MA1, MA3 | Obl. |
| Data science minor                        | Н        | Opt. |
| Digital Humanities                        | MA1, MA3 | Opt. |
| Electrical Engineering                    |          | Opt. |
| Electrical and Electronical Engineering   | MA1, MA3 | Opt. |
| Financial engineering                     | MA1, MA3 | Opt. |
| Life Sciences Engineering                 | MA1, MA3 | Opt. |
| Managmt, tech et entr.                    | MA1, MA3 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA1, MA3 | Obl. |
| Sciences du vivant                        | MA3      | Opt. |
|                                           |          |      |

| English 7 Winter Fall Written 210h 14 6 weekly 4 weekly 2 weekly |
|------------------------------------------------------------------|
|                                                                  |
|                                                                  |

## **Summary**

Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.

## Content

- 1. Basic regression and classification concepts and methods: Linear models, overfitting, linear regression, Ridge regression, logistic regression, and k-NN.
- 2. Fundamental concepts: cost-functions and optimization, cross-validation and bias-variance trade-off, curse of dimensionality.
- 3. Unsupervised learning: k-Means Clustering, Gaussian mixture models and the EM algorithm.
- 4. Dimensionality reduction: PCA and matrix factorization, word embeddings
- 5. Advanced methods: generalized linear models, SVMs and Kernel methods, Neural networks and deep learning

# Keywords

• Machine learning, pattern recognition, deep learning, data mining, knowledge discovery, algorithms

## **Learning Prerequisites**

**Required courses** 

Machine learning Page 1 / 3



- · Analysis I, II, III
- Linear Algebra
- Probability and Statistics (MATH-232)
- Algorithms (CS-250)

### Recommended courses

- Introduction to differentiable optimization (MATH-265)
- Linear Models (MATH-341)

#### Important concepts to start the course

- Basic probability and statistics (conditional and joint distribution, independence, Bayes rule, random variables, expectation, mean, median, mode, central limit theorem)
- Basic linear algebra (matrix/vector multiplications, systems of linear equations, SVD)
- Multivariate calculus (derivative w.r.t. vector and matrix variables)
- Basic Programming Skills (labs will use Python)

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Define the following basic machine learning problems: Regression, classification, clustering, dimensionality reduction, time-series
- Explain the main differences between them
- Implement algorithms for these machine learning models
- Optimize the main trade-offs such as overfitting, and computational cost vs accuracy
- Implement machine learning methods to real-world problems, and rigorously evaluate their performance using cross-validation. Experience common pitfalls and how to overcome them
- Explain and understand the fundamental theory presented for ML methods

## **Teaching methods**

- Lectures
- Lab sessions
- Course Projects

## **Expected student activities**

Students are expected to:

- attend lectures
- attend lab sessions and work on the weekly theory and coding exercises
- work on projects using the code developed during labs, in small groups

## **Assessment methods**

Machine learning Page 2 / 3



- Written final exam
- Continuous control (Course projects)

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

Virtual desktop infrastructure (VDI)

No

## **Bibliography**

- Christopher Bishop, Pattern Recognition and Machine Learning
- Kevin Murphy, Machine Learning: A Probabilistic Perspective
- Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning
- Michael Nielsen, Neural Networks and Deep Learning
- (Jerome Friedman, Robert Tibshirani, Trevor Hastie, The elements of statistical learning : data mining, inference, and prediction)

## Ressources en bibliothèque

- · Linear algebra and learning from data
- The elements of statistical learning : data mining, inference, and prediction / Friedman
- Pattern Recognition and Machine Learning / Bishop
- Neural Networks and Deep Learning / Nielsen
- Machine Learning: A Probabilistic Perspective / Murphy
- Understanding Machine Learning / Shalev-Shwartz

## Notes/Handbook

https://github.com/epfml/ML\_course

## Websites

• https://www.epfl.ch/labs/mlo/machine-learning-cs-433/

Machine learning Page 3 / 3



# CS-421 Machine learning for behavioral data

Käser Tanja

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA2, MA4 | Opt. |
| Cybersecurity    | MA2, MA4 | Opt. |
| Data Science     | MA2, MA4 | Opt. |
| SC master EPFL   | MA2, MA4 | Opt. |

| English 4 Summer Spring Written 120h 14 4 weekly 2 weekly 2 weekly |
|--------------------------------------------------------------------|
|                                                                    |
|                                                                    |

### **Summary**

Computer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will cover the core methods of user modeling and personalization, with a focus on educational data.

#### Content

The users of computer environments such as intelligent tutoring systems, interactive games, and web services are often very heterogeneous and therefore it is important to adapt to their specific needs and preferences.

This course will cover the core methods of adaptation and personalization, with a focus on educational data. Specifically we will discuss approaches to the task of accurately modeling and predicting human behavior within a computer environment. Furthermore, we we will also discuss data mining techniques with the goal to gain insights into human behavior. We will cover the theories and methodologies underlying the current approaches and then also look into the most recent developments in the field.

- 1. 'Cycle' of adaptation: representation, prediction, intervention (e.g. recommendation)
- 2. Data Processing and Interpretation (missing data, feature transformations, distribution fitting)
- 3. Performance evaluation (cross-validation, error measures, statistical significance, overfitting)
- 4. Representation & Prediction (probabilistic graphical models, recurrent neural networks, logistic models, clustering-classification approaches)
- 5. Recommendation (collaborative filtering, content-based recommendations, multi-armed bandits)
- 6. Stealth Assessment (seemless detection of user traits)
- 7. Multimodal analytics (represent & analyze data from non-traditional sources. i.e. sensors, classroom analytics, human-robot interaction)

### **Learning Prerequisites**

#### Required courses

The student must have passed a course in probability and statistics and a course including a programming project

## **Recommended courses**

- CS-433 Machine learning or
- CS-233a / CS-233b Introduction to machine learning

# Important concepts to start the course

Probability and statistics, basic machine learning knowledge, algorithms and programming

## **Learning Outcomes**

By the end of the course, the student must be able to:



- Explain the main machine learning approaches to personalization, describe their advantages and disadvantages and explain the differences between them
- Implement algorithms for these machine learning models
- Apply them to real-world data
- Assess / Evaluate their performance
- Explain and understand the fundamental theory underlying the presented machine learning models

# **Teaching methods**

- Lectures
- Weekly lab sessions
- Course project

# **Expected student activities**

- Attend the lectures
- Attend the lab sessions and work on the homework assignments
- Project work

### **Assessment methods**

- Project work (50%)
- Final exam (50%)

# Supervision

Office hours Yes
Assistants Yes
Forum Yes



# COM-516 Markov chains and algorithmic applications

Lévêque Olivier, Macris Nicolas

| Cursus                 | Sem.     | Type |
|------------------------|----------|------|
| Computer science       | MA1, MA3 | Opt. |
| Cybersecurity          | MA1, MA3 | Opt. |
| Data Science           | MA1, MA3 | Opt. |
| Electrical Engineering |          | Opt. |
| SC master EPFL         | MA1, MA3 | Opt. |

### **Summary**

The study of random walks finds many applications in computer science and communications. The goal of the course is to get familiar with the theory of random walks, and to get an overview of some applications of this theory to problems of interest in communications, computer and network science.

#### Content

Part 1: Markov chains (~6 weeks):

- basic properties: irreducibility, periodicity, recurrence/transience, stationary and limiting distributions,
- ergodic theorem: coupling method
- detailed balance
- convergence rate to the equilibrium, spectral gap, mixing times
- cutoff phenomenon

Part 2: Sampling (~6 weeks)

- classical methods, importance and rejection sampling
- Markov Chain Monte Carlo methods, Metropolis-Hastings algorithm, Glauber dynamics, Gibbs sampling
- applications: function minimization, coloring problem, satisfiability problems, Ising models
- coupling from the past and exact simulation

### Keywords

random walks, stationarity, ergodic, convergence, spectral gap, mixing time, sampling, Markov chain Monte Carlo, coupling from the past

### **Learning Prerequisites**

### Required courses

Basic probability course

Basic linear algebra and calculus courses

## **Recommended courses**

Stochastic Models for Communications (COM-300)

#### Important concepts to start the course

Good knowledge of probability and analysis.

Having been exposed to the theory of Markov chains.

## **Learning Outcomes**

By the end of the course, the student must be able to:



- Analyze the behaviour of a random walk
- Assess / Evaluate the performance of an algorithm on a graph
- Implement efficiently various sampling methods

## **Teaching methods**

ex-cathedra course

## **Expected student activities**

active participation to exercise sessions and implementation of a sampling algorithm

### **Assessment methods**

graded homeworks (20%), mini-project (20%), final exam (60%)

### Resources

# **Bibliography**

Various references will be given to the students during the course, according to the topics discussed in class.

## Ressources en bibliothèque

• Probability and random processes / Grimmett

### Notes/Handbook

Lecture notes will be provided

### Websites

• https://moodle.epfl.ch/course/view.php?id=15016

# Prerequisite for

This course is not so to speak a prerequisite for other courses, but could complement well the course COM-512 on Networks out of control, as well as other courses in statistics.



# COM-514 Mathematical foundations of signal processing

Bejar Haro Benjamin, Simeoni Matthieu

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Communication systems minor               | Н        | Opt. |
| Computational science and Engineering     | MA1, MA3 | Opt. |
| Computer and Communication Sciences       |          | Opt. |
| Computer science                          | MA1, MA3 | Opt. |
| Cybersecurity                             | MA1, MA3 | Opt. |
| Data Science                              | MA1, MA3 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA1, MA3 | Opt. |
| Systems Engineering minor                 | Н        | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of | English 6 Winter Fall Written 180h 14 5 weekly 3 weekly 2 weekly |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Number of positions                                                                     |                                                                  |
| positions                                                                               |                                                                  |

#### **Summary**

Signal processing tools are presented from an intuitive geometric point of view which is at the heart of all modern signal processing techniques. The student will develop the mathematical depth and rigor needed for the study of advanced topics in signal processing and approximation theory.

#### Content

**Sequences**, **Discrete-Time Systems**, **Functions and Continuous-Time Systems** (review of discrete-time Fourier transform; DFT; Fourier transform and Fourier series).

From Euclid to Hilbert: Linear Algebra Fundamentals for Representation Theory (vector spaces; Hilbert spaces; approximations, projections and decompositions; bases and frames; linear operators; adjoint; generalized inverses; matrix representations; computational aspects)

**Sampling and Interpolation** (sampling and interpolation with normal and non orthogonal vectors, sequences and functions; sampling and interpolation of bandlimited sequences and functions)

**Polynomial and Spline Approximation** (Legendre and Chebyshev polynomials; Lagrange interpolation; minimax approximation; Taylor expansions; B-splines)

**Regularized Inverse Problems** (regularized convex optimisation; Tikhonov regularisation; penalised basis pursuit; proximal algorithms; pseudo-differential operators and L-splines; representer theorems for continuous inverse problems with Tikhonov penalties)

**Computerized Tomography** (line integrals and projections, Radon transform, Fourier projection/slice theorem, filtered backprojection algorithm, algebraic reconstruction techniques).

**Finite Rate of Innovation: Sampling Non Bandlimited Signals** (overview and definitions, reconstruction methods and applications)

Adaptive Filtering (Wiener filtering, matrix inversion lemma, RLS, LMS, beamforming)

## **Learning Prerequisites**

## Required courses

Signal processing for communications (or Digital signal processing on Coursera) Linear Algebra I and II (or equivalent).

#### Recommended courses

Signals and Systems

## Important concepts to start the course

Good knowledge of linear algebra concepts. Basics of Fourier analysis and signal processing.



# **Learning Outcomes**

By the end of the course, the student must be able to:

- Master the right tools to tackle advanced signal and data processing problems
- Develop an intuitive understanding of signal processing through a geometrical approach
- Get to know the applications that are of interest today
- Learn about topics that are at the forefront of signal processing research

# **Teaching methods**

Ex cathedra with exercises and homeworks.

## **Expected student activities**

Attending lectures, completing exercises

# **Assessment methods**

mini project 30%, final exam (written) 70%

### Resources

Virtual desktop infrastructure (VDI)

Nο

## **Bibliography**

M. Vetterli, J. Kovacevic and V. Goyal, "Signal Processing: Foundations", Cambridge U. Press, 2014. Available in open access at http://www.fourierandwavelets.org

## Ressources en bibliothèque

• Signal Processing: Foundations / Vetterli



# COM-405 Mobile networks

Hubaux Jean-Pierre

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Communication systems minor               | E        | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cyber security minor                      | Е        | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Electrical and Electronical Engineering   | MA2, MA4 | Opt. |
| Mineur STAS Chine                         | Е        | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA2, MA4 | Obl. |
|                                           |          |      |

| Language English Credits 4 Session Summer Semester Spring Exam Written Workload 120h Weeks 14 Hours 3 weekly Lecture 2 weekly Exercises 1 weekly Number of positions |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## **Summary**

This course provides a detailed description of the organization and operating principles of mobile communication networks.

#### Content

Introduction to wireless networks
Organization of the MAC layer
Wireless Local Area Networks - WiFi
Cellular networks
Mobility at the network and transport layers
Security and privacy in mobile networks

### Keywords

Communication networks, protocols, mobility

### **Learning Prerequisites**

**Required courses** 

COM-208 Computer Networks

### **Recommended courses**

COM-302 Principles of Digital Communications

COM-301 Computer security

## Important concepts to start the course

Operating principles of communication protocols and layer organization.

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Synthesize the way a mobile network operates
- Interpret the behavior of such networks
- Propose evolutions to existing protocols
- Identify weaknesses, bottlenecks and vulnerabilities

## **Teaching methods**

Mobile networks Page 1 / 2



Ex cathedra lectures Weekly quizzes Exercise sessions Hands-on exercises

# **Expected student activities**

Class participation, quizzes, homework, hands-on exercises

# **Assessment methods**

Quizzes + final exam

# Supervision

Office hours No
Assistants Yes
Forum No

## Resources

# **Bibliography**

Handouts, recommended books (see course URL)

# Ressources en bibliothèque

• Fundamentals of Mobile Data Networks / Miao

Mobile networks Page 2 / 2



# COM-430 Modern digital communications: a hands-on approach

Rimoldi Bixio

| Cursus                      | Sem.     | Type |
|-----------------------------|----------|------|
| Communication systems minor | Н        | Opt. |
| Computer science            | MA1, MA3 | Opt. |
| Cybersecurity               | MA1, MA3 | Opt. |
| SC master EPFL              | MA1, MA3 | Obl. |

| Language Credits Session Semester Exam  Workload Weeks Hours Lecture Practical work Number of | English 6 Winter Fall During the semester 180h 14 4 weekly 2 weekly 2 weekly |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Number of positions                                                                           |                                                                              |

## **Summary**

This course complements the theoretical knowledge learned in PDC with more advanced topics such as OFDM, MIMO, fading chancels, and GPS positioning. This knowledge is put into practice with hands-on exercises based on Matlab and on a software-defined radio platform.

#### Content

- 1. Software radio : key concepts.
- 2. Matlab implementation of the signal processing chain to the level of detail in Principles of Digital Communications.
- 3. Channel modeling, estimation, equalization.
- 4. Implementation of a basic wireless communication system using a software-defined radio testbed.
- 5. Fading and diversity.
- 6. OFDM and MIMO: theory and implementation.
- 7. CDMA in the context of a GPS system.
- 8. Decoding of a GPS signal and positioning.

## Keywords

Wireless, OFDM, Diversity, Coding, GPS, CDMA, MMSE, Rayleigh fading, software-defined radio, channel estimation.

## **Learning Prerequisites**

## Required courses

COM-302 Principles of digital communication or equivalent

## Important concepts to start the course

Solid understanding of linear algebra and probability as well as real and complex analysis.

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Design and implement and advanced digital communication system (data rate, spectral bandwidth, energy requirements, error probability, implementation complexity)
- Model physical properties of wired and wireless communication channels
- Implement various parts of a "physical-layer" digital communication system
- · Understand what software-defined radio is all about

### **Teaching methods**



Ex cathedra lectures and small projects

# **Expected student activities**

Follow lectures; guided as well as independent work on projects

## **Assessment methods**

Written and practical midterm and final exam during the semester. 40% midterm exam, 60% final exam.

# Supervision

Office hours Yes
Assistants Yes
Forum Yes

### Resources

Notes/Handbook

Lecture notes



# COM-512 Networks out of control

| Cursus                    | Sem.     | Type |
|---------------------------|----------|------|
| Computer science          | MA2, MA4 | Opt. |
| Cybersecurity             | MA2, MA4 | Opt. |
| Data Science              | MA2, MA4 | Opt. |
| Data science minor        | Е        | Opt. |
| Electrical Engineering    |          | Opt. |
| SC master EPFL            | MA2, MA4 | Opt. |
| Systems Engineering minor | Е        | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Number of positions | English 4 Summer Spring Written 120h 14 3 weekly 2 weekly 1 weekly |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|

#### Remark

Cours biennal (pas donné en 2020-21)

#### **Summary**

The goal of this class is to acquire mathematical tools and engineering insight about networks whose structure is random, as well as learning and control techniques applicable to such network data.

#### Content

- Random graph models: Erdös-Renyi, random regular, geometric, percolation, small worlds, stochastic block model
- Learning graphs from data: centrality metrics, embeddings, Hawkes processes, network alignment
- Control of processes on graphs: epidemics, navigation

# Keywords

Random graphs, network data, machine learning, graph processes.

# **Learning Prerequisites**

## Required courses

Stochastic models in communication (COM-300), or equivalent.

## Important concepts to start the course

Basic probability and stastistics; Markov chains; basic combinatorics.

## **Teaching methods**

Ex cathedra lectures, exercises, mini-project

### **Expected student activities**

Attending lectures, bi-weekly homeworks, mini-project incl. student presentation at the end of semester, final exam.

### **Assessment methods**

- 1. Homeworks 10%
- 2. Mini-project 40%
- 3. Final exam 50%.

Networks out of control Page 1 / 2



#### Resources

# **Bibliography**

- A. D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford Science Publications, 1992.
- B. Bollobas, Random Graphs (2nd edition), Cambridge University Press, 2001.
- R. Durrett, Random Graph Dynamics, Cambridge University Press, 2006 (electronic version).
- D. Easley, J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010 (electronic version).
- G. Grimmett, Percolation (2nd edition), Springer, 1999.
- S. Janson, T. Luczak, A. Rucinski, Random Graphs, Wiley, 2000.
- R. Meester and R. Roy, Continuum Percolation, Cambridge University Press, 1996.

## Ressources en bibliothèque

- Random Graphs / Bollobas
- Random Graphs / Janson
- Continuum Percolation / Meester
- Percolation / Grimmett
- Networks, Crowds and Markets / Easley
- · Poisson Approximation / Barbour
- Random Graph Dynamics / Durrett

#### Notes/Handbook

Class notes will be available on the course website.

Networks out of control Page 2 / 2



# MATH-489 Number theory in cryptography

| SA | rban  | \/ | ad |
|----|-------|----|----|
| OE | ıvanı | VI | au |

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA2, MA4 | Opt. |
| Cybersecurity    | MA2, MA4 | Opt. |
| Ingmath          | MA2, MA4 | Opt. |
| Mathématicien    | MA2      | Opt. |
| SC master EPFL   | MA2, MA4 | Opt. |

### **Summary**

The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC.

#### Content

Basic notions and algorithms from public key cryptography such as RSA, ElGamal, key exchange protocols, zero knowledge proofs. Main topics may include, but are not limited to

- · modular and finite field arithmetic
- · primality testing
- polynomial and integer factorization algorithms
- index calculus and discrete logarithm-based schemes
- · elliptic curve arithemtic and cryptography
- basic notions from lattice-based cryptography

Much of the course draws inspiration from the Math-489 (-2019) curriculum taught by Prof. Dimitar Jetchev.

# Keywords

public key cryptography, key exchange, digital signatures, zero knowledge proofs, RSA, ElGamal, integer factorization, index calculus, elliptic curve cryptography

## **Teaching methods**

lectures, exercises, additional references

## **Assessment methods**

**Homework assignments:** Weekly problem sets focusing on number-theoretic and complexity-theoretic aspects. These will be complemented by programming exercises in SAGE which is a Python-based computer algebra system. No prior experience with SAGE or Python is required. A subset of the homework will be handed in and graded, counting for 40% of the final grade.

The written **final exam** counts for 60% of the final grade. There will be no graded midterm since the class is online. The final exam will test theoretical understanding as well as understanding of the algorithms and protocols. The exam will include no SAGE programming exercises. If needed, algorithms could be presented with pseudo-code. The exact final exam format will be adapted to the epidemiological situation and resulting guidelines.

Dans le cas de l¿art. 3 al. 5 du Règlement de section, l¿enseignant décide de la forme de l¿examen qu¿il communique aux étudiants concernés.



# CS-439 Optimization for machine learning

Flammarion Nicolas, Jaggi Martin

| Cursus                                | Sem.     | Type |
|---------------------------------------|----------|------|
| Computational science and Engineering | MA2, MA4 | Opt. |
| Computer science                      | MA2, MA4 | Opt. |
| Cybersecurity                         | MA2, MA4 | Opt. |
| Data Science                          | MA2, MA4 | Obl. |
| Data science minor                    | Е        | Opt. |
| Electrical Engineering                |          | Opt. |
| SC master EPFL                        | MA2, MA4 | Opt. |
|                                       |          |      |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises Practical | English 5 Summer Spring Written 150h 14 5 weekly 2 weekly 2 weekly 1 weekly |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| work Number of positions                                                                | , woonly                                                                    |
|                                                                                         |                                                                             |

## Summary

This course teaches an overview of modern optimization methods, for applications in machine learning and data science. In particular, scalability of algorithms to large datasets will be discussed in theory and in implementation.

#### Content

This course teaches an overview of modern optimization methods, for applications in machine learning and data science. In particular, scalability of algorithms to large datasets will be discussed in theory and in implementation. Fundamental Contents:

• Convexity, Gradient Methods, Proximal algorithms, Stochastic and Online Variants of mentioned methods, Coordinate Descent Methods, Subgradient Methods, Non-Convex Optimization, Frank-Wolfe, Accelerated Methods, Primal-Dual context and certificates, Lagrange and Fenchel Duality, Second-Order Methods, Quasi-Newton Methods, Gradient-Free and Zero-Order Optimization.

## Advanced Contents:

- Non-Convex Optimization: Convergence to Critical Points, Saddle-Point methods, Alternating minimization for matrix and tensor factorizations
- Parallel and Distributed Optimization Algorithms, Synchronous and Asynchronous Communication
- Lower Bounds

On the practical side, a graded **group project** allows to explore and investigate the real-world performance aspects of the algorithms and variants discussed in the course.

## Keywords

Optimization, Machine learning

#### **Learning Prerequisites**

### **Recommended courses**

• CS-433 Machine Learning

#### Important concepts to start the course

• Previous coursework in calculus, linear algebra, and probability is required.



• Familiarity with optimization and/or machine learning is useful.

## **Learning Outcomes**

By the end of the course, the student must be able to:

- · Assess / Evaluate the most important algorithms, function classes, and algorithm convergence guarantees
- Compose existing theoretical analysis with new aspects and algorithm variants.
- Formulate scalable and accurate implementations of the most important optimization algorithms for machine learning applications
- Characterize trade-offs between time, data and accuracy, for machine learning methods

### Transversal skills

- Use both general and domain specific IT resources and tools
- · Summarize an article or a technical report.

## **Teaching methods**

- Lectures
- Exercises with Theory and Implementation Assignments

## **Expected student activities**

Students are expected to:

- Attend the lectures and exercises
- Give a short scientific presentation about a research paper
- Read / watch the pertinent material
- Engage during the class, and discuss with other colleagues

### **Assessment methods**

- Continuous control (course project)
- Final Exam

### Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

Virtual desktop infrastructure (VDI)

No

#### Websites

• https://github.com/epfml/OptML\_course



# CS-596 Optional project in computer science

Profs divers \*

| Cursus                 | Sem.                  | Type |
|------------------------|-----------------------|------|
| Computer science minor | E, H                  | Opt. |
| Computer science       | MA1, MA2,<br>MA3, MA4 | Opt. |
| Cybersecurity          | MA1, MA2,<br>MA3, MA4 | Opt. |

| Language<br>Credits | English<br>8        |
|---------------------|---------------------|
| Session             | Winter,<br>Summer   |
| Semester            | Fall                |
| Exam                | During the semester |
| Workload            | 240h                |
| Weeks               | 14                  |
| Hours               | 2 weekly            |
| Project             | 2 weekly            |
| Number of positions |                     |

#### Remark

for students doing a minor in Computer Science : Registration upon authorization of the section. Only for 2nd year Master students. Supervision by an IC professor

## **Summary**

Individual research during the semester under the guidance of a professor or an assistant.

#### Content

Subject to be chosen among the themes proposed on the web site : https://www.epfl.ch/schools/ic/education/master/computer-science/projects-lab-mcs/

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Organize a project
- Assess / Evaluate one's progress through the course of the project
- · Present a project

#### Transversal skills

- Write a scientific or technical report.
- Write a literature review which assesses the state of the art.

### **Teaching methods**

Individual and independant work, under the guidance of a professor or an assistant.

## **Assessment methods**

Oral presentation and written report.

## Resources

Virtual desktop infrastructure (VDI)

Yes

## Websites

https://www.epfl.ch/schools/ic/education/master/semester-project-msc/



## COM-503 Performance evaluation

Le Boudec Jean-Yves

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Computer and Communication Sciences       |          | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Data Science                              | MA2, MA4 | Opt. |
| Data science minor                        | E        | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |
|                                           |          |      |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture | English 7 Summer Spring Written 210h 14 6 weekly 3 weekly |
|---------------------------------------------------------------------|-----------------------------------------------------------|
| Lecture<br>Exercises<br>Project                                     | •                                                         |
| Number of positions                                                 |                                                           |

#### Remark

This course will be last given in spring 2021

## **Summary**

In this course you will learn the methods and techniques that are used to perform a good performance evaluation during a research or development project.

#### Content

**Methodology**A Performance Evaluation Methodology. The scientific method. Dijkstra and Occam's principle. **Statistics and Modeling.** 

Statistics and modeling, why and how. Comparing systems using sampled data. Regression models. Factorial analysis. Stochastic load and system models. Load forecasting. The Box-Jenkins method.

#### Practicals.

Using a statistics package (Matlab). Measurements. Discrete event simulation. Stationarity and Steady State. Analysis of simulation results. Perfect Simulations.

**Elements of a Theory of Performance.**Performance of systems with waiting times. Utilization versus waiting times. Operational laws. Little's formula. Forced flows.law. Stochastic modeling revisited. The importance of the viewpoint. Palm calculus. Application to Simulation Performance patterns in complex systems. Bottlenecks. Congestion phenomenon. Performance paradoxes.

Mini-Project proposed by student.

## **Learning Prerequisites**

## Required courses

A first course on probability

A first course on programming

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Estimate confidence intervals
- Design a simulation method
- · Critique performance metrics and factors
- Organize a performance evaluation study
- Quantify performance

Performance evaluation Page 1 / 2



- · Conduct a performance analysis
- Synthesize performance results
- Systematize factors and metrics
- Present results of a performance analysis

### Transversal skills

- Use a work methodology appropriate to the task.
- · Demonstrate the capacity for critical thinking

## **Teaching methods**

Lectures + pencil and paper exercises + labs + miniproject

## **Expected student activities**

Lectures

Paper and pencil exercises

Labs

Miniproject (last 4 weeks)

Online quizzes.

## **Assessment methods**

E = grade at final exam (during exam session)

L = average of labs

M = miniproject grade

Final grade = 1/3 (E+L+M), rounded to the nearest half integer.

All grades except the final grade are not rounded.

## Resources

## Virtual desktop infrastructure (VDI)

No

### **Bibliography**

- Performance Evaluation of Computer and Communication Systems, Le Boudec Jean-Yves, EPFL Press 2010
- also freely available online at perfeval.epfl.ch

## Ressources en bibliothèque

• Performance evaluation of computer and communication systems / Le Boudec

### **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=14395

Performance evaluation Page 2 / 2



# CS-522 Principles of computer systems

Argyraki Katerina, Candea George

| Cursus                              | Sem.     | Type |
|-------------------------------------|----------|------|
| Computer and Communication Sciences |          | Opt. |
| Computer science                    | MA1, MA3 | Opt. |
| Cybersecurity                       | MA1, MA3 | Opt. |
| SC master EPFL                      | MA1, MA3 | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Number of | English 7 Winter Fall Written 210h 14 4 weekly 4 weekly |
|-------------------------------------------------------------------------------|---------------------------------------------------------|
| positions                                                                     |                                                         |
|                                                                               |                                                         |

## **Summary**

This advanced graduate course teaches the key design principles underlying successful computer and communication systems, and shows how to solve real problems with ideas, techniques, and algorithms from operating systems, networks, databases, programming languages, and computer architecture.

#### Content

A modern computer system spans many layers: applications, libraries, operating systems, networks, and hardware devices. Building a good system entails making the right trade-offs (e.g., between performance, durability, and correctness) and understanding emergent behaviors. Great system designers make these trade-offs in a principled fashion, whereas average ones make them by trial-and-error. In this course we develop a principled framework for computer system design, covering the following topics:

- · Modules and interfaces
- Names
- Layers
- Indirection and virtualization
- · Redundancy and fault tolerance
- Client/server architectures
- · Decentralized architectures
- · Transactional building blocks

## **Learning Prerequisites**

## **Required courses**

The course is intellectually challenging and fast-paced, and it requires a solid background in operating systems, databases, networking, programming languages, and computer architecture. The basic courses on these topics teach how the elemental parts of modern systems work, and this course picks up where the basic courses leave off. To do well, a student must master the material taught in the following courses:

- COM-208 Computer networks
- CS-208/209 Computer architecture
- CS-210 Functional programming
- CS-305 Software engineering
- CS-322 Introduction to database systems
- CS-323 Introduction to operating systems

## **Recommended courses**



The following EPFL courses cover material that significantly helps students taking this course, however they are not strictly required:

- CS-320: Computer language processing
- CS-470: Advanced computer architecture
- CS-422: Database systems
- COM-407: TCP/IP networking

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Design computer and communication systems that work well
- Make rational design trade-offs (e.g., performance vs. correctness, latency vs. availability)
- Anticipate emergent system behaviors (e.g., failure cascades, security vulnerabilities)
- Integrate multiple techniques, ideas, and algorithms from different fields of computing/communication into a working system

## **Teaching methods**

- · A combination of online and in-class lectures
- Interactive design sessions
- · Reading assignments
- Homework assignments

## **Expected student activities**

- Attend lectures and design sessions
- Complete the reading and writing assignments
- Participate actively in the course (physically and online)

#### **Assessment methods**

- 30% written assignments (during the semester)
- 10% research presentation (during the semester)
- 10% course participation and discussion (during the semester)
- 50% written final exam (during the exam session)

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

## **Bibliography**

See course website for the latest information and an up-to-date bibliography.



# Ressources en bibliothèque

• Principles of computer system design : an introduction / Saltzer

# Websites

• https://pocs.epfl.ch



## MATH-467 Probabilistic methods in combinatorics

Marcus Adam W.

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA1, MA3 | Opt. |
| Cybersecurity    | MA1, MA3 | Opt. |
| Ingmath          | MA1, MA3 | Opt. |
| Mathématicien    | MA1, MA3 | Opt. |
| SC master EPFL   | MA1, MA3 | Opt. |

# **Summary**

We develop a sophisticated framework for solving problems in discrete mathematics through the use of randomness (i.e., coin flipping). This includes constructing mathematical structures with unexpected (and sometimes paradoxical) properties for which no other methods of construction are known.

#### Content

- · Linearity of expectation
- The second moment method
- Local lemma
- Random graphs and matrices
- · Applications in combinatorics and graph theory

## **Keywords**

random variable, expected value, probabilistic method, random graph

## **Learning Prerequisites**

**Required courses** 

Probability theory

## **Recommended courses**

- Discrete Mathematics or Graph Theory
- Linear Algebra

# Important concepts to start the course

Graph, random variable, expectation, variance, binomial coefficients, asymptotics, eigenvalues

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Define and explain basic concepts in probability and discrete mathematics
- Prove explain, and apply the first and second moment methods



- Prove explain, and apply the Local Lemma
- Solve exercises, design randomized algorithms
- Describe and explain the method of interlacing polynomials

#### Transversal skills

- Summarize an article or a technical report.
- Demonstrate the capacity for critical thinking
- Assess progress against the plan, and adapt the plan as appropriate.

## **Teaching methods**

Lectures and exercises

## **Expected student activities**

Attending the lectures, solving the exercises, reading sections from the textbook

#### **Assessment methods**

Exam written

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

#### Resources

#### **Bibliography**

Noga Alon-Joel Spencer: The Probabilistic Method (Wiley)

## Ressources en bibliothèque

• Noga Probabilistic method



## CS-476 Real-time embedded systems

|     |      |       |                        | ,             |
|-----|------|-------|------------------------|---------------|
| Bei | ICh. | 2† L  | $'$ $\triangle$ $\cap$ | $\circ$       |
| DC  | ווטג | מו וי | CII                    | $\overline{}$ |

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Computer science                        | MA2, MA4 | Opt. |
| Cybersecurity                           | MA2, MA4 | Opt. |
| Electrical and Electronical Engineering | MA2, MA4 | Opt. |
| Mineur STAS Chine                       | Е        | Opt. |
| Robotics                                | MA2, MA4 | Opt. |
| SC master EPFL                          | MA2, MA4 | Opt. |

| Language<br>Credits<br>Session<br>Semester | English<br>4<br>Summer<br>Spring |
|--------------------------------------------|----------------------------------|
| Exam                                       | During the semester              |
| Workload                                   | 120h                             |
| Weeks                                      | 14                               |
| Hours                                      | 4 weekly                         |
| Lecture                                    | 2 weekly                         |
| Project                                    | 2 weekly                         |
| Number of positions                        |                                  |

## Summary

A real time system is subject to important temporal constraints. This course is about understanding where processing time is spent and what a designer can do in order to achieve real-time processing systems. Some solutions are Multiprocessors, accelerators, custom instructions, specialized hardware.

#### Content

During this course, response time measurements of interrupts are studied in laboratories, such as for example: the influence of dynamic memories, cache memories, compilation flags. Interrupts response time measurements, task commutations and synchronizations primitives are carried out on an embedded system based on an FPGA.

The course includes the study of embedded systems management models through polling, interrupts and using a real time kernel with its task management and synchronization primitives.

Specialized programmable interfaces are implemented in VHDL to help with these measurements. A real time kernel is studied and used during the labs. An acquisition system is implemented and the gathered data is transmitted by a Web server. To ensure the real time acquisition and reading by the Web server, a multiprocessor system is developed and implemented on an FPGA.

An Accelerator designed in VHDL makes it possible to facilitate the optimization of functions through hardware on an FPGA. Cross development tools are used.

Each topic is treated by a theoretical course and an associated laboratory. The laboratories are realized on an FPGA board including a hardcore multiprocessor. A real time operating system is studied and used with the laboratories.

#### Keywords

Real Time, FPGA, SOC, microprocessor, hardware accelerator, custom instruction, Real Time OS

## **Learning Prerequisites**

## Required courses

Introduction to computing systems, Logic systems, Computer architecture

#### **Recommended courses**

Embedded Systems, Real time Programming

### Important concepts to start the course

Programmable Logic Architecture (FPGA), Computer Architecture, VHDL, C programming, Real Times basic knowledge (semaphor, synchronization)

## **Learning Outcomes**



By the end of the course, the student must be able to:

- Design a multiprocessor system on an FPGA
- Analyze the performance of a real time embedded system
- Use design tools for SOC conception on an FPGA
- Implement a complete real-time system based on a multiprocessor design on an FPGA
- Test the realized system
- Defend the choices during the design phases

#### Transversal skills

- Set objectives and design an action plan to reach those objectives.
- · Communicate effectively, being understood, including across different languages and cultures.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Make an oral presentation.
- Write a scientific or technical report.

#### **Teaching methods**

Ex cathedra, laboratories and a mini-project

#### **Expected student activities**

- 3 groups of laboratories on specific topics, with a report by group for each of them, 3-4 weeks/topic;
- A final mini-project to practically synthesize the content of the course, with the design of a multiprocessor system on an FPGA, including for example a Web-server, a camera controller, a specific algorithm to be implemented in an FPGA hardware accelerator, 3~4 weeks for this mini-project

### **Assessment methods**

Continuous control with reports and oral presentation all labs 50% + final mini-project 50%

#### Supervision

Office hours No
Assistants Yes
Forum Yes

#### Resources

#### Virtual desktop infrastructure (VDI)

No

#### **Bibliography**

Teaching notes and suggested reading material.

Specialized datasheets (ie.ex. FPGA et specific microcontrollers) and standards.

## Notes/Handbook

Slides and documents on moodle

#### **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=391



# CS-498 Semester project in Computer Science II

Profs divers \*

| Cursus           | Sem.                  | Type |
|------------------|-----------------------|------|
| Computer science | MA1, MA2,<br>MA3, MA4 | Obl. |

Language English Credits 12 Session Winter, Summer Semester Fall Exam During the semester Workload 360h Weeks 14 Hours 2 weekly 2 weekly Project Number of positions

## **Summary**

Individual research during the semester under the guidance of a professor or an assistant.

#### Content

Subject to be chosen among the themes proposed on the web site :

https://www.epfl.ch/schools/ic/education/master/computer-science/projects-lab-mcs/

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Organize a project
- Assess / Evaluate one's progress through the course of the project
- Present a project

#### Transversal skills

- Write a scientific or technical report.
- Write a literature review which assesses the state of the art.

#### **Assessment methods**

Written report and oral presentation

#### Resources

Virtual desktop infrastructure (VDI)

No

#### Websites

• https://www.epfl.ch/schools/ic/education/master/semester-project-msc/



## Sensors in medical instrumentation

#### **Aminian Kamiar**

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Bioengineering                            | MA4      | Opt. |
| Biomedical technologies minor             | E        | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Electrical and Electronical Engineering   | MA2, MA4 | Opt. |
| Life Sciences Engineering                 | MA2, MA4 | Opt. |
| Microtechnics                             | MA2, MA4 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| Robotics                                  | MA2, MA4 | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |
| Sciences du vivant                        | MA4      | Opt. |

| Language            | English  |
|---------------------|----------|
| Credits             | 3        |
| Session             | Summer   |
| Semester            | Spring   |
| Exam                | Written  |
| Workload            | 90h      |
| Weeks               | 14       |
| Hours               | 3 weekly |
| Lecture             | 2 weekly |
| Exercises           | 1 weekly |
| Number of positions |          |

## **Summary**

Fundamental principles and methods used for physiological signal conditioning. Resistive, capacitive, inductive, piezoelectric and optical techniques used to detect and convert physiological information's to electrical signals. Laboratory and ambulatory devices for monitoring and therapy.

#### Content

#### 1. Physiological Mesurands

Biopotentials; bioimpedance; mechanical, acoustic and thermal signals

## 2. Noise in medical instrumentation

Source and nature of the noise; noise reduction; instrumentation amplifier for biopotential measurement

#### 3. Biopotential measurement

Electrodes; ECG, EMG and EEG measurement

#### 4. Resistive sensors

Thermistor and its biomedical applications; strain gage for the measurement of blood pressure; force and accelerations of the body

### 5. Inductive sensors

Simple and mutual inductance and its medical applications

## 6. Capacitive sensors

Respiratory flow measurement by the gradient of pressure

#### 7. Piezoelectric sensors

Force platform, accelerometer, angular rate sensor for the measurement of tremors and body movements, ultrasound transducer: measurement of pressure and flow rate

#### 8. Optical sensors

Photoplethysmography; pulsed oxymetry

#### 9. Example of applications

## **Keywords**

sensors, instrumentation, biomedical devices, physiological measurement, monitoring

## **Learning Prerequisites**

## Required courses

courses en electrical circuit, basic electronics



#### **Recommended courses**

measuring systems or electronics or sensors

## Important concepts to start the course

basic electronics, basic physics

## **Learning Outcomes**

By the end of the course, the student must be able to:

- · Choose techniques detecting and convert physiological information's to electrical signals
- Exploit fundamental principles and methods used for physiological signal conditioning
- Design measuring devices
- Interpret error, noise in biomedical measuring systems

#### Transversal skills

- Use a work methodology appropriate to the task.
- Communicate effectively with professionals from other disciplines.

#### **Teaching methods**

Ex cathedra, with exercises

#### **Expected student activities**

home work, short quizzes during semester

#### **Assessment methods**

Written

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

## **Bibliography**

Medical Instrumentation: Application and design, JG Webster

## Ressources en bibliothèque

Medical Instrumentation / Webster

#### Notes/Handbook

Slides copies (to be completed during the lectures) Polycopies (in French only)

#### **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=2571

## Prerequisite for

## Semester project and Master project



# MATH-318 Set theory

| Duparc J | acques |
|----------|--------|
|----------|--------|

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA2, MA4 | Opt. |
| Cybersecurity    | MA2, MA4 | Opt. |
| Ingmath          | MA2, MA4 | Opt. |
| Mathématicien    | MA2      | Opt. |
| SC master EPFL   | MA2, MA4 | Opt. |

#### Remark

Cours donné en alternance tous les deux ans

#### **Summary**

Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets, the existence of a countable family of pairs without any choice function.

#### Content

Set Theory: ZFC. Extensionality and comprehension. Relations, functions, and well-ordering. Ordinals. Class and transfinite recursion. Cardinals. Well-founded relations, axiom of foundation, induction, and von Neumann's hierarchy. Relativization, absoluteness, reflection theorems. Gödel's constructible universe L. Axiom of Choice (AC), and Continuum Hypothesis inside L. Po-sets, filters and generic extensions. Forcing. ZFC in generic extensions. Cohen Forcing. Independence of the Continuum Hypothesis. HOD and AC: independence of AC. The reals without AC. Symmetric submodels of generic extensions. Applications of the symmetric submodel technique (the reals as a countable union of countable sets, the reals not well-orderable, every ultirafilter on the integers is trivial). ZF with atoms and permutation models. Simultating permutation models by symmetric submodels of generic extensions.

### **Keywords**

Set Theory, Relative consistency, ZFC, Ordinals, Cardinals, Transfinite recursion, Relativization, Absoluteness, Constructible universe, L, Axiom of Choice, Continuum hypothesis, Forcing, Generic extensions

### **Learning Prerequisites**

## Required courses

MATH-381 Mathematical Logic.

In particular ordinal numbers and ordinal arithmetic will be considered known and admitted.

#### Recommended courses

Mathematical logic (or any equivalent course on first order logic). Warning: without a good understanding of first order logic, students tend to get lost sooner orl later.

#### Important concepts to start the course

- 1st order logic
- · basics of proof theory

Set theory Page 1/3



- Basics of model theory
- · Compacity theorem
- Löwenheim-Skolem
- Completeness theorem

## **Learning Outcomes**

By the end of the course, the student must be able to:

- · Specify a model of ZFC
- Prove consistency results
- Develop a generic extension
- Argue by transfinite induction
- Decide whether ZFC proves its own consistency
- Formalize the axioms of ZF, AC, CH, DC
- Sketch an inner model
- · Justify the axiom of foundation

## **Teaching methods**

Ex cathedra lecture and exercises

### **Expected student activities**

- · Attendance at lectures
- Solve the exercises

## **Assessment methods**

- Writen exam (3 hours)
- Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

## Resources

Virtual desktop infrastructure (VDI)

No

## **Bibliography**

- 1. Kenneth Kunen: Set theory, Springer, 1983
- 2. Lorenz Halbeisen: Combinatorial Set Theory, Springer 2018
- 3. Thomas Jech: Set theory, Springer 2006
- 4. Jean-Louis Krivine: Theorie des ensembles, 2007

Set theory Page 2 / 3



- 5. Patrick Dehornoy: Logique et théorie des ensembles; Notes de cours, FIMFA ENS: http://www.math.unicaen.fr/~dehornoy/surveys.html
- 6. Yiannis Moschovakis: Notes on set theory, Springer 2006
- 7. Karel Hrbacek and Thomas Jech: Introduction to Set theory, (3d edition), 1999

## Ressources en bibliothèque

- Introduction to Set theory / Hrbacek
- Set theory / Jech
- Theorie des ensembles / Krivine
- Set theory / Kunen
- Notes on set theory / Moschovakis
- Logique et théorie des ensembles / Dehorny

#### Notes/Handbook

Lecture notes (350 pages).

## Websites

• http://www.hec.unil.ch/logique/

## **Moodle Link**

• http://moodle.epfl.ch/course/index.php?categoryid=72

Set theory Page 3/3



Page 1 / 2

# Smart grids technologies

Le Boudec Jean-Yves, Paolone Mario

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Computer science                        | MA2, MA4 | Opt. |
| Cybersecurity                           | MA2, MA4 | Opt. |
| Electrical and Electronical Engineering | MA2, MA4 | Obl. |
| Energy Management and Sustainability    | MA2, MA4 | Opt. |
| Energy Science and Technology           | MA2, MA4 | Opt. |
| Energy minor                            | Е        | Obl. |
| SC master EPFL                          | MA2, MA4 | Opt. |

### **Summary**

Learn the technologies and methodologies used in the context smart electrical grids and be able to deploy/implement/test them in a lab environment.

#### Content

- 1. Modern monitoring: phasor measurement units technology, synchrophasors extraction processes and time alignement
- 2. Smart grid communication; reliability, real time and security issues
- 3. Topology assessment and contingency analysis of power grids
- 4. Admittance matrix calculus, numerical solution of the load flow problem and state estimation
- 5. Energy management and dispatch plans, the optimal power flow problem
- 6. Demand response

## **Keywords**

Smart grid, power systems

### **Learning Prerequisites**

## Required courses

Electric power systems, power distribution networks, TPC/IP Networking

## **Recommended courses**

Signal processing, discrete optimization methods, model predictive control, industrial electronics.

## Important concepts to start the course

Understanding of electrical grids and communication networks.

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Design monitoring and control platforms for smart grids
- Test a smart grid
- Implement a smart grid
- · Analyze performance of a smart grid

Smart grids technologies



#### Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Demonstrate the capacity for critical thinking
- Manage priorities.
- Use both general and domain specific IT resources and tools

## **Teaching methods**

Ex cathedra, classroom integrated exercises and computer laboratory sessions.

## **Expected student activities**

Attend lectures and labs Do lab homeworks Do online quizzes

## **Assessment methods**

Written exam (50%) and graded lab reports (50%)

## Prerequisite for

Master projects in the areas of power systems and energy conversion systems.

Smart grids technologies Page 2 / 2



## EE-593 Social media

Gillet Denis

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Computer science                        | MA2, MA4 | Opt. |
| Cybersecurity                           | MA2, MA4 | Opt. |
| Electrical and Electronical Engineering | MA2, MA4 | Opt. |
| Mineur STAS Chine                       | Е        | Opt. |
| SC master EPFL                          | MA2, MA4 | Opt. |
| UNIL - HEC                              | Е        | Opt. |

| Language<br>Credits | English      |
|---------------------|--------------|
| 0.000               | _            |
| Withdrawal          | Unauthorized |
| Session             | Summer       |
| Semester            | Spring       |
| Exam                | During the   |
|                     | semester     |
| Workload            | 60h          |
| Weeks               | 14           |
| Hours               | 2 weekly     |
| Lecture             | 1 weekly     |
| Project             | 1 weekly     |
| Number of positions | 45           |

## **Summary**

The objective is to enable students to critically apprehend the Human Computer Interaction (HCI) challenges associated with the design and the exploitation of social media platforms.

#### Content

- Social media platforms and the long tail (definition and typology)
- · Usability and adoption of social media platforms
- Web 2.0 features and adoption factors
- Privacy, trust and reputation models
- Identities, traces, and Web analytics
- Interplay, between platforms and communities (interdisciplinary perspective)
- Opportunities, requirements and constraints for organization and enterprises
- Participatory design methodologies
- Future ad hoc social applications

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Choose
- Design
- Critique
- Defend

## Transversal skills

- Set objectives and design an action plan to reach those objectives.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Use a work methodology appropriate to the task.
- · Communicate effectively, being understood, including across different languages and cultures.

Social media Page 1 / 2



- Communicate effectively with professionals from other disciplines.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Negotiate effectively within the group.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.

## **Teaching methods**

Lectures, invited speakers, individual work and teamwork

#### **Assessment methods**

One individual project and one teamwork with combined peer and expert assesment (reports and presentations)

## Supervision

Office hours No
Assistants Yes
Forum No

## Resources

## **Bibliography**

- Chris Anderson (2006) The Long Tail: Why the Future of Business is Selling Less of More. New York, NY: Hyperion. ISBN 1-4013-0237-8.
- Joshua Porter Designing for the Social Web
- Matthew A. Russel Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites. O¿Reilly 2011

#### Ressources en bibliothèque

- Designing for the Social Web / Porter
- The Long Tail / Anderson
- Mining the Social Web / Russel

Social media Page 2 / 2



# CS-412 Software security

Payer Mathias

| Cursus               | Sem.     | Type |
|----------------------|----------|------|
| Computer science     | MA2, MA4 | Opt. |
| Cyber security minor | E        | Opt. |
| Cybersecurity        | MA2, MA4 | Opt. |
| Data Science         | MA2, MA4 | Opt. |
| SC master EPFL       | MA2, MA4 | Opt. |

| Language Credits Session Semester Exam Workload Weeks Hours Lecture Exercises | English 6 Summer Spring During the semester 180h 14 6 weekly 3 weekly 2 weekly |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Practical<br>work                                                             | 1 weekly                                                                       |
| Number of positions                                                           |                                                                                |

### **Summary**

This course focuses on software security fundamentals, secure coding guidelines and principles, and advanced software security concepts. Students learn to assess and understand threats, learn how to design and implement secure software systems, and get hands-on experience with security pitfalls.

#### Content

This course focuses on software security fundamentals, secure coding guidelines and principles, and advanced software security concepts. Students will learn to assess and understand threats, learn how to design and implement secure software systems, and get hands-on experience with common security pitfalls.

Software running on current systems is exploited by attackers despite many deployed defence mechanisms and best practices for developing new software. In this course students will learn about current security threats, attack vectors, and defence mechanisms on current systems. The students will work with real world problems and technical challenges of security mechanisms (both in the design and implementation of programming languages, compilers, and runtime systems).

Secure software lifecycle: design, implementation, testing, and deployment

Basic software security principles

basic software security principle

Reverse engineering: understanding code

Security policies: Memory and Type safety

Software bugs and undefined behavior

•

Attack vectors: from flaw to compromise

Runtime defense: mitigations

Software testing: fuzzing and sanitization

Focus topic : Web security

.

Software security Page 1 / 3



Focus topic: Mobile security

#### **Keywords**

Software security, mitigation, software testing, sanitization, fuzzing

#### **Learning Prerequisites**

## Required courses

•

COM-402 Information security and privacy

## Important concepts to start the course

Basic computer literacy like system administration, build systems, basic C/C++ programming skills, debugging, and development skills. Understanding of virtual machines and operating systems.

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Explain the top 20 most common weaknesses in software security and understand how such problems can be avoided in software.
- Identify common security threats, risks, and attack vectors for software systems.
- Assess / Evaluate current security best practices and defense mechanisms for current software systems. Become aware of limitations of existing defense mechanisms and how to avoid them.
- Identify security problems in source code and binaries, assess the associated risks, and reason about their severity and exploitability.
- Assess / Evaluate the security of given source code or applications.

#### Transversal skills

- Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.
- · Keep appropriate documentation for group meetings.
- · Summarize an article or a technical report.
- Access and evaluate appropriate sources of information.
- Write a scientific or technical report.
- Make an oral presentation.

#### **Teaching methods**

The lectures are denser early in the semester, then tapering off before the end. They may be peppered with occasional short surprise quizzes that are not mandatory but may earn points for successful participants. They are backed up by PDF files of all the lecture material, as well as a few textbook recommendations.

The exercises sessions start slowly early in the semester but pick up and occupy all time towards the end. They consist mostly of paper questions involving the analysis, critical review, and occasional correction of software. They include a reading, writing, and presentation assignment.

## **Expected student activities**

Software security Page 2 / 3



Students are encouraged to attend lectures and exercise sessions. In addition to normal studying of the lecture and practice of the exercises, the reading assignment consists of analyzing a few suggested scientific papers on a large selection of topics; the presentation assignment consists of holding a 15-minute presentation on the selected topic; and the writing assignment of documenting what was learned in a term paper due at the end of the semester.

## **Assessment methods**

The grade will continuously be evaluated through a combination of practical assignments in the form of several labs and theoretical quizzes and assignments throughout the semester. The labs will account for 70%, the quizzes and assignments to 30%.

## Supervision

Office hours Yes
Assistants Yes
Forum No

#### Resources

## Notes/Handbook

Software Security: Principles, Policies, and Protection (SS3P, by Mathias Payer)

http://nebelwelt.net/SS3P/

Software security Page 3 / 3



# COM-500 Statistical signal and data processing through applications

Ridolfi Andrea

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Communication systems minor               | E        | Opt. |
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA2, MA4 | Obl. |

| Semester Sp Exam W Workload 18 Weeks 14 Hours 5 Lecture Exercises Number of | ummer<br>oring<br>ritten<br>80h |
|-----------------------------------------------------------------------------|---------------------------------|
| positions                                                                   |                                 |

## **Summary**

Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, with an application oriented approach and hands-on numerical exercises.

#### Content

- **1. Fundamentals of Statistical Signal and Data Processing:** Signals and systems from the deterministic and the stochastic point of view; Processing and analysing signals and systems with a mathematical computing language.
- **2. Models, Methods, and Algorithms:** Parametric and non-parametric signal models (wide sense stationary, Gaussian, Markovian, auto-regressive and white noise signals); Linear prediction and estimation (orthogonality principle and Wiener filter); Maximum likehood estimation and Bayesian a priori; Maximum a posteriori estimation.
- **3. Statistical Signal and Data Processing Tools for Spread Spectrum Wireless Transmission:** Coding and decoding of information using position of pulses (annihilating filter approach); Spectrum estimation (periodogram, line spectrum methods, smooth spectrum methods, harmonic signals).
- **4. Statistical Signal and Data Processing Tools for the Analysis of Neurobiological Recordings:** Poisson process for neurobiological spikes; Characterization of multiple state neurons (Markovian models and maximum likelihood estimation); Classifying firing rates of neuron (Mixture models and the EM algorithm); Hidden Markov models; Spike sorting and Principal Component Analysis.
- **5. Statistical Signal and Data Processing Tools for Echo Cancellation:** Adaptive filtering (least mean squares and recursive least squares); Adaptive echo cancellation and denoising.

#### Keywords

Statistical tools, spectral analysis, prediction, estimation, annihilating filter, mixture models, principal component analysis, stochastic processes, hidden Markov models, adaptive filtering, mathematical computing language (Matlab, Python, or similar).

## **Learning Prerequisites**

#### Required courses

Stochastic Models in Communications (COM-300), Signal Processing for Communications (COM-303).

#### Recommended courses

Mathematical Foundations of Signal Processing (COM-514).

## Important concepts to start the course

Calculus, Algebra, Fourier Transform, Z Transform, Probability, Linear Systems, Filters.

## **Learning Outcomes**



By the end of the course, the student must be able to:

- Choose appropriate statistical tools to solve signal processing problems;
- Analyze real data using a mathematical computing language;
- · Interpret spectral content of signals;
- · Develop appropriate models for observed signals;
- · Assess / Evaluate advantages and limitations of different statistical tools for a given signal processing problem;
- Implement numerical methods for processing signals.

## **Teaching methods**

Ex cathedra with exercises and numerical examples.

## **Expected student activities**

Attendance at lectures, completing exercises, testing presented methods with a mathematical computing language (Matlab, Python, or similar).

#### **Assessment methods**

- 20% midterm
- 10% mini project
- 70% Final exam

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

## Resources

## **Bibliography**

#### **Background texts**

- P. Prandoni, Signal Processing for Communications, EPFL Press;
- P. Bremaud, An Introduction to Probabilistic Modeling, Springer-Verlag, 1988;
- A.V. Oppenheim, R.W. Schafer, Discrete Time Signal Processing, Prentice Hall, 1989;
- B. Porat, A Course in Digital Signal Processing, John Wiley & Sons, 1997;
- C.T. Chen, Digital Signal Processing, Oxford University Press;
- D. P. Bertsekas, J. N. Tsitsiklis, *Introduction to Probability*, Athena Scientific, 2002 (excellent book on probability).

#### More advanced texts

- L. Debnath and P. Mikusinski, Introduction to Hilbert Spaces with Applications, Springer-Verlag, 1988;
- A.N. Shiryaev, *Probability*, Springer-Verlag, New York, 2nd edition, 1996;
- S.M. Ross, Introduction to Probability Models, Third edition, 1985;
- P. Bremaud, Markov Chains, Springer-Verlag, 1999;
- P. Bremaud, Mathematical Principles of Signal Processing, Springer-Verlag, 2002;
- S.M. Ross, Stochastic Processes, John Wiley, 1983;
- B. Porat, Digital Processing of Random Signals, Prentice Hall, 1994;
- P.M. Clarkson, Optimal and Adaptive Signal Processing, CRC Press, 1993;
- P. Stoïca and R. Moses, Introduction to Spectral Analysis, Prentice-Hall, 1997.



## Ressources en bibliothèque

- Probability / Shiryaev
- Stochastics Processes / Ross
- Discrete Time Signal Processing / Oppenheim
- Introduction to Spectral Analysis / Stoïca
- Digital Processing of Random Signals / Porat
- Introduction to Probability / Bertsekas
- Introduction to Hilbert Spaces with Applications / Debnath
- Signal Processins for Communications / Prandoni
- An Introduction to Probabilistic Modeling / Bremaud
- A Course in Digital Signal Processing / Porat
- Optimal and Adaptive Signal Processing / Clarkson
- Digital Signal Processing / Chen
- Introduction to Probability Models / Ross

## Notes/Handbook

- Slides handouts;
- Collection of exercises.



# CS-448 Sublinear algorithms for big data analysis

| Cursus           | Sem.     | Type |
|------------------|----------|------|
| Computer science | MA2, MA4 | Opt. |
| Cybersecurity    | MA2, MA4 | Opt. |
| Data Science     | MA2, MA4 | Opt. |
| SC master EPFL   | MA2, MA4 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 4          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 3 weekly   |
| Lecture   | 3 weekly   |
| Number of |            |
| positions |            |
|           |            |

#### Remark

Cours biennal, donné les années impaires (pas donné en 2020-21)

#### **Summary**

In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data processing. We will also discuss limitations inherent to computing with constrained resources.

#### Content

The tentative list of topics is:

**Streaming:** given a large dataset as a stream, how can we approximate its basic properties using a very small memory footprint? Examples that we will cover include statistical problems such as estimating the number of distinct elements in a stream of data items, finding heavy hitters, frequency moments, as well as graphs problems such as approximating shortest path distances, maximum matchings etc.;

**Sketching:** what can we learn about the input from a few carefully designed measurements (i.e. a `sketch') of the input, or just a few samples of the input? We will cover several results in sparse recovery and property testing that answer this question for a range of fundamental problems;

**Sublinear runtime:** which problems admit solutions that run faster than it takes to read the entire input? We will cover sublinear time algorithms for graph processing problems, nearest neighbor search and sparse recovery (including Sparse FFT);

**Communication:** how can we design algorithms for modern distributed computation models (e.g. MapReduce) that have low communication requirements? We will discuss graph sketching, a recently developed approach for designing low communication algorithms for processing dynamically changing graphs, as well as other techniques.

## Keywords

streaming, sketching, sparse recovery, sublinear algorithms

## **Learning Prerequisites**

#### Required courses

Bachelor courses on algorithms, complexity theory, and discrete mathematics

## Important concepts to start the course

Discrete probability; mathematical maturity

## **Learning Outcomes**

By the end of the course, the student must be able to:



- Design efficient algorithms for variations of problems discussed in class
- Analyze space/time/communication complexity of randomized algorithms
- Prove space/time/communication lower bounds for variations of problems discussed in class
- Choose an appropriate algorithmic tool for big data problem at hand

## **Teaching methods**

Ex cathedra, homeworks, final

## **Assessment methods**

Continuous control

## Supervision

Office hours Yes
Assistants Yes
Forum Yes



## COM-407 TCP/IP networking

Le Boudec Jean-Yves

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Communication systems minor             | Н        | Opt. |
| Computer science                        | MA1, MA3 | Obl. |
| Cyber security minor                    | Н        | Opt. |
| Cybersecurity                           | MA1, MA3 | Obl. |
| Electrical and Electronical Engineering | MA1, MA3 | Opt. |
| SC master EPFL                          | MA1, MA3 | Obl. |

### **Summary**

In the lectures you will learn and understand the main ideas that underlie and the way communication networks are built and run. In the labs you will exercise practical configurations.

#### Content

LECTURES: 1. The TCP/IP architecture 2. Layer 2 networking; Bridging. 3. The Internet protocol versions 4 and 6 4. The transport layer, TCP, UDP, sockets, QUIC. 5. Link state routing, OSPF, Distance Vector routing. Interdomain routing, BGP. 6. Congestion control principles. Application to the Internet. The fairness of TCP. Tunnels and hybrid architectures. LABS: 1. Configuration of a network, virtual machines and mininet, packet captures 2. MAC; NATs and troubleshooting 3. Socket programming 4. OSPF routing 5. Congestion control and flow management 6. BGP

## Keywords

TCP/IP

Computer Networks

## **Learning Prerequisites**

**Required courses** 

A first programming course

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Run and configure networks
- Understand the main ideas that underlie the Internet
- Write simple communicating programs
- Use communication primitives for internet and industrial applications.

## Transversal skills

- Access and evaluate appropriate sources of information.
- Continue to work through difficulties or initial failure to find optimal solutions.

### **Teaching methods**

TCP/IP networking Page 1 / 2



Lectures with questionnaires.

Online guizzes.

Labs on student's computer and if required and if possible, in the Internet Engineering Workshop

## **Expected student activities**

Participate in lectures

Participate in online quizzes

Make lab assignments (in the rule, every other week, including handing in a written report)

#### **Assessment methods**

Theory grade = final exam

Practice grade = average of labs

Final grade = mean of theory grade (50%) and practice grade (50%).

The research exercice may give a bonus of at most 0.5 points in 1-6 scale on the practice grade.

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

#### Resources

### **Bibliography**

"Computer Networking: Principles, Protocols and Practice", O. Bonaventure, open source textbook, http://inl.info.ucl.ac.be/CNP3

## Ressources en bibliothèque

• Computer Networking / Bonaventure

## Notes/Handbook

Slides are on moodle

### Websites

• http://moodle.epfl.ch/course/view.php?id=523

## **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=523

## **Videos**

• http://moodle.epfl.ch/course/view.php?id=523

TCP/IP networking Page 2 / 2



# CS-410 Technology ventures in IC

| Cursus            | Sem.     | Type |
|-------------------|----------|------|
| Computer science  | MA2, MA4 | Opt. |
| Cybersecurity     | MA2, MA4 | Opt. |
| Data Science      | MA2, MA4 | Opt. |
| Mineur STAS Chine | Е        | Opt. |
| SC master EPFL    | MA2, MA4 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 4          |
| Session   | Summer     |
| Semester  | Spring     |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 2 weekly   |
| Project   | 2 weekly   |
| Number of |            |
| positions |            |
|           |            |

#### Remark

pas donné en 2020-21

#### **Summary**

This hands-on class gives graduate students in IC interested in startups the opportunity to learn and put in practice the fundamental skills required to assess a technology concept in the context of a business opportunity. This class is focused only on business opportunities where high-technology

#### Content

Working in teams, students will learn the fundamentals of:

- · Opportunity assessement
- Customer development and validation
- · Business model alternatives
- Intellectual Property
- · Strategy and Financial planning
- · Go-to-market, launch, and growth

This is a hands-on class where students start the class with their own technology venture concept (e.g. the work done as part of their PhD, or some well-formed idea, maybe with a prototype). During the class, they convert their concept into a integrated business plan.

## Keywords

Entrepreneurship, startups, technology transfer, intellectual property

## **Learning Prerequisites**

#### Required courses

• None – but available to MS and Ph.D. students only

#### **Learning Outcomes**

By the end of the course, the student must be able to:



- Analyze a business plan
- Create a business plan

## **Teaching methods**

- Short ex-cathedra presentations of each topic
- Hands-on seminar with many short student presentations
- Presentations from invited guests, in particluar industry executives and entrepeneurs
- Discussion and case studies

## **Assessment methods**

- In-class participation (30%)
- In-class presentations (30%)
- Final pitch (40%)



## CS-455 Topics in theoretical computer science

Kapralov Mikhail

| Cursus                 | Sem.     | Type |
|------------------------|----------|------|
| Computer science minor | Н        | Opt. |
| Computer science       | MA1, MA3 | Opt. |
| Cybersecurity          | MA1, MA3 | Opt. |
| Data Science           | MA1, MA3 | Opt. |
| SC master EPFL         | MA1, MA3 | Opt. |

| Language  | English    |
|-----------|------------|
| Credits   | 4          |
| Session   | Winter     |
| Semester  | Fall       |
| Exam      | During the |
|           | semester   |
| Workload  | 120h       |
| Weeks     | 14         |
| Hours     | 4 weekly   |
| Lecture   | 3 weekly   |
| Exercises | 1 weekly   |
| Number of |            |
| positions |            |

#### Remark

Cours biennal

#### **Summary**

The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of fundamental questions that underlie some of the key problems of modern computer science.

#### Content

Examples of topics that will be covered include:

- Laplacians, random walks, graph sparsification: It is possible to compress graphs while approximately preserving their spectral properties (in particular, properties of random walks)? We will cover the main results from the recent influential line of work on spectral sparsification that provides such compression schemes.
- Laplacian system solvers: given a linear system Ax=b, how quickly can we find x? We will cover nearly linear time algorithms for solving Ax=b when A is a symmetric diagonally dominant matrix (a common scenario in practice) that crucially rely on spectral graph sparsification.
- Spectral clustering: given a graph, can we find a partition of the graph into k vertex disjoint parts such that few edges cross from one part to another? This is the fundamental graph clustering problem that arises in many applications. We will cover several results on spectral graph partitioning, where one first embeds vertices of the graph into Euclidean space using the bottom few eigenvectors of the graph Laplacian, and then employs Euclidean clustering primitives to find the partition.
- Local clustering with random walks: Given a very large graph and a seed node in it, can we find a small cut that separates the seed node from the rest of the graph, without reading the entire graph? We will cover local clustering algorithms, which identify such cuts in time roughly proportional to the number of vertices on the small side of the cut, by carefully analyzing distributions of random walks in the graph.

#### **Keywords**

spectral graph theory, sparsification, clustering, random walks

#### **Learning Prerequisites**

Required courses



Bachelor courses on algorithms and discrete mathematics, mathematical maturity.

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Design efficient algorithms for variations of problems discussed in class;
- Analyze approximation quality of spectral graph algorithms;

## **Teaching methods**

Ex cathedra, homeworks, reading

## **Expected student activities**

Attendance at lectures, completing exercises, reading written material

#### **Assessment methods**

• Continuous control

## Supervision

Others Electronique forum : Yes

## Resources

**Bibliography** 

There is no textbook for the course. Notes will be posted on the course website.

## Ressources en bibliothèque

• Randomized Algorithms / Motwani



# CS-444 Virtual reality

Boulic Ronan

| Cursus                                    | Sem.     | Type |
|-------------------------------------------|----------|------|
| Computer science                          | MA2, MA4 | Opt. |
| Cybersecurity                             | MA2, MA4 | Opt. |
| Data Science                              | MA2, MA4 | Opt. |
| Digital Humanities                        | MA2, MA4 | Opt. |
| Robotics, Control and Intelligent Systems |          | Opt. |
| SC master EPFL                            | MA2, MA4 | Opt. |

| Language<br>Credits | English<br>4 |
|---------------------|--------------|
| Session             | Summer       |
| Semester            | Spring       |
| Exam                | During the   |
|                     | semester     |
| Workload            | 120h         |
| Weeks               | 14           |
| Hours               | 3 weekly     |
| Lecture             | 2 weekly     |
| Exercises           | 1 weekly     |
| Number of           |              |
| positions           |              |
|                     |              |

## Summary

The goal of VR is to embed the users in a potentially complex virtual environment while ensuring that they are able to react as if this environment were real. The course provides a human perception-action background and describes the key techniques for achieving efficient VR applications.

#### Content

The first lectures focus more on the technical means (hw & sw) for acheiving the hands-on sessions:

- Visual display
- Interaction devices and sensors
- Software environment (UNITY3D)

The proportion of more theoretical VR and Neuroscience background increases over the semester:

- Key Human perception abilities, Cybersickness, Immersion, presence and flow
- Basic 3D interaction techniques: Magic vs Naturalism
- The perception of action
- Haptic interaction
- What makes a virtual human looking alive?
- Motion capture for full-body interaction
- VR, cognitive science and true experimental design

## Keywords

3D interaction, display, sensors, immersion, presence

## **Learning Prerequisites**

## Required courses

(CS 341) Introduction to Computer Graphics

### **Recommended courses**

(CS 211) Introduction to Visual Computing

## Important concepts to start the course

from Computer Graphics:

- perspective transformations
- representation of orientation

Virtual reality Page 1/3



- 3D modelling hierarchy
- matrix algebra: translation, orientation, composition

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Describe how the human perception-action system is exploited in VR
- · Apply the concepts of immersions, presence and flow
- Give an example of applications of VR in different industrial sectors
- Choose a method of immersion suited for a given 3D interaction context
- Explain the possible causes of cybersickness in a given VR system configuration
- Design a VR system involving 3D interactions

#### Transversal skills

- Set objectives and design an action plan to reach those objectives.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.

## **Teaching methods**

Ex cathedra + Hands-on sessions on VR devices in the first half of the semester,

A mini-project in groups of 2-3 persons will have to integrate various components of 3D real-time interaction. The group will submit their project proposal to the course responsible TAs who will assess whether it meets the key specifications and is original enough. The proposal will include the use of some VR devices that the IIG research group will lend during the mini-project period.

## **Expected student activities**

exploit citation analysis tools to evaluate a scientific paper combine 3D interaction components to produce an original 3D experience experiment the hands-on practical work in the lab synthesize the knowledge acquired in course and hands-on in the quizzes and final oral

#### **Assessment methods**

Throughout semester: 4-5 Hand-on sessions (5%), 2 Quizzes (10%), 1 paper citation study (20%), 1 mini-project (40%), 1 oral (25%)

## Supervision

Office hours No
Assistants Yes
Forum Yes

#### Resources

#### Virtual desktop infrastructure (VDI)

No

## **Bibliography**

- Course notes will be updated and made available after each course, with links to key sites and on-line documents
- J. Jerald, The VR Book, ACM Press 2015
- Parisi, Learning Virtual Reality, O'Reilly 2015
- Le Traité de Réalité Virtuelle (5 vol.) Presses des Mines, ParisTech, 2006-2009, available on-line, free for

Virtual reality Page 2 / 3



## student upon registration.

- Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. 2004. 3D User Interfaces: Theory and Practice. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

## Ressources en bibliothèque

- 3D User Interfaces: Theory and Practice / Bowman
- Learning Virtual Reality / Parisi
- The VR Book / Jerald
- Le Traité de Réalité Virtuelle / Fuchs

## Notes/Handbook

pdf of slides are made visible after the ex-cathedra courses

Virtual reality Page 3 / 3

| Cours                                               | Enseignant                  | Semestre                              | Page |
|-----------------------------------------------------|-----------------------------|---------------------------------------|------|
| Advanced algorithms                                 | Kapralov M.                 | MA2, MA4                              | 163  |
| Advanced compiler construction                      | Schinz M.                   | MA2, MA4                              | 165  |
| Advanced computer architecture                      | lenne P.                    | MA2, MA4                              | 167  |
| Advanced computer graphics                          | Jakob W.                    | MA2, MA4                              | 169  |
| Advanced information, computation, communication I  | Aberer K.                   | BA1                                   | 31   |
| Advanced information, computation, communication II | Rimoldi B. / Gastpar M.     | BA2                                   | 33   |
| Advanced probability and applications               | Lévêque O.                  | MA2, MA4                              | 173  |
| Advanced topics on privacy enhancing technologies   | Troncoso C.                 | MA2, MA4                              | 175  |
| Algèbra                                             | Lachowska A.                | BA5                                   | 67   |
| Algèbre linéaire                                    | Urech Ch.                   | BA1                                   | 35   |
| Algèbre linéaire (anglais)                          | Maddocks J.                 | BA1                                   | 37   |
| Algorithms                                          | Svensson O.                 | BA3                                   | 69   |
| Analyse I                                           | Lachowska A.                | BA1                                   | 41   |
| Analyse I (allemand)                                | Kressner D.                 | BA1                                   | 43   |
| Analyse I (anglais)                                 | Svaldi R.                   | BA1                                   | 45   |
| Analyse II                                          | Lachowska A.                | BA2                                   | 47   |
| Analyse II (anglais)                                | Mountford Th.               | BA2                                   | 49   |
| Analyse III                                         | Struett D.                  | BA3                                   | 71   |
| Analyse IV                                          | Struett D.                  | BA4                                   | 73   |
| Applied biostatistics                               | Goldstein D.                | MA2, MA4                              | 177  |
| Applied data analysis                               | West R.                     | MA1, MA3                              | 179  |
| Artificial neural networks                          | Gerstner W.                 | MA2, MA4                              | 182  |
| Automatic speech processing                         | Bourlard H.                 | MA1, MA3                              | 185  |
| Biological modeling of neural network               | Gerstner W.                 | MA2, MA4                              | 187  |
| Biomedical signal processing                        | Vesin JM.                   | MA1, MA3                              | 190  |
| Business design for IT services                     | Wegmann A.                  | MA2, MA4                              | 192  |
| Calcul quantique                                    | Macris N.                   | BA6                                   | 75   |
| Cellular biology and biochemistry for engineers     | Zufferey R.                 | MA1, MA3                              | 194  |
| Chimie générale                                     | Terrettaz S.                | BA5                                   | 77   |
|                                                     | Süsstrunk S.                | MA2. MA4                              |      |
| Computational photography                           |                             | · · · · · · · · · · · · · · · · · · · | 198  |
| Computer architecture I                             | Stojilovic M.               | BA3                                   | 79   |
| Computer architecture II                            | lenne P.                    | BA4                                   | 81   |
| Computer language processing                        | Kuncak V.                   | BA5                                   | 83   |
| Computer networks                                   | Argyraki A.                 | BA3                                   | 86   |
| Computer security                                   | Troncoso C.                 | BA5                                   | 89   |
| Computer vision                                     | Fua P.                      | MA2, MA4                              | 200  |
| Concurrent algorithms                               | Guerraoui R.                | MA1, MA3                              | 202  |
| Cryptography and security                           | Vaudenay S.                 | MA1, MA3                              | 204  |
| Database systems                                    | Ailamaki A.                 | MA2, MA4                              | 207  |
| Data visualization                                  | Vuillon L.                  | MA2, MA4                              | 209  |
| Decentralized systems engineering                   | Ford B.                     | MA1, MA3                              | 212  |
| Deep Learning                                       | Fleuret F.                  | MA2, MA4                              | 215  |
| Design technologies for integrated systems          | De Micheli G.               | MA1, MA3                              | 217  |
| Digital education & learning analytics              | Dillenbourg P. / Jermann P. | MA1, MA3                              | 221  |
| Digital system design                               | Kluter T.                   | BA2                                   | 51   |
| Distributed algorithms                              | Guerraoui R.                | MA1, MA3                              | 223  |
| Distributed information systems                     | Aberer K.                   | MA2, MA4                              | 225  |
| Distributed intelligent systems                     | Martinoli A.                | MA1, MA3                              | 227  |
| Dynamical system theory for engineers               | Thiran P.                   | MA1, MA3                              | 230  |
| Électromagnétisme I : lignes et ondes               | Fleury R.                   | BA5                                   | 91   |
| Électromagnétisme II : calcul des champs            | Fleury R.                   | BA6                                   | 93   |

|          | Cours                                                                    | Enseignant                 | Semestre                              | Page |
|----------|--------------------------------------------------------------------------|----------------------------|---------------------------------------|------|
|          | Électronique I                                                           | Zysman E.                  | BA3                                   | 95   |
|          | Électronique II                                                          | Zysman E.                  | BA5                                   | 97   |
|          | Électronique III                                                         | Zysman E.                  | BA6                                   | 99   |
|          | Embedded systems                                                         | Beuchat R.                 | MA1, MA3                              | 232  |
|          | Enterprise and service-oriented architecture                             | Wegmann A.                 | MA2, MA4                              | 235  |
|          | Experience design                                                        | Huang J.                   | MA1, MA3                              | 237  |
| <u>F</u> | Formal verification                                                      | Kuncak V.                  | MA1, MA3                              | 239  |
|          | Foundations of software                                                  | Odersky M.                 | MA1, MA3                              | 242  |
|          | Functional programming                                                   | Kuncak V. / Odersky M.     | BA3                                   | 102  |
| <u>G</u> | General physics: electromagnetism                                        | Dil J. H.                  | BA3                                   | 104  |
| _        | Gödel and recursivity                                                    | Duparc J.                  | MA1, MA3                              | 244  |
| ı        | Image processing I                                                       | Unser M. / Van de Ville D. | MA1, MA3                              | 247  |
| -        | Image processing II                                                      | Unser M. / Van de Ville D. | MA2, MA4                              | 249  |
|          | Industrial automation                                                    | Sommer Ph. / Tournier JCh. | MA2, MA4                              | 251  |
|          | Information security and privacy                                         | Hubaux JP/Oechslin Ph.     | MA1, MA3                              | 253  |
|          | Information theory and coding                                            | Telatar E.                 | MA1, MA3                              | 255  |
|          | Intelligence artificielle                                                | Faltings B.                | BA6                                   | 106  |
|          | Intelligent agents                                                       | Faltings B.                | MA1, MA3                              | 256  |
|          | Interaction design                                                       | Pu Faltings P.             | MA2, MA4                              | 258  |
|          | Internet analytics                                                       | Grossglauser M.            | BA6                                   | 110  |
|          | Introduction à la programmation                                          | Sam J.                     | BA1                                   | 53   |
|          | Introduction aux sciences du vivant (pour IC)                            | Zufferey R.                | BA6                                   | 112  |
|          | Introduction to computer graphics                                        | Pauly M.                   | BA6                                   | 114  |
|          | Introduction to database systems                                         | Ailamaki A. / Koch Ch.     | BA6                                   | 116  |
|          | Introduction to database systems  Introduction to machine learning (BA3) | Salzmann M.                | BA3                                   | 119  |
|          | Introduction to machine learning (BA4)                                   | Fua P.                     | BA4                                   | 121  |
|          | Introduction to multiprocessor architecture                              | Falsafi B.                 | BA5                                   | 123  |
|          | Introduction to matural language processing                              | Chappelier JC. / Rajman M. | MA1, MA3                              | 260  |
|          | Introduction to riatinal language processing                             | Payer M.                   | BA5                                   | 125  |
|          | Learning theory                                                          | Macris N. /Urbanke R.      | MA2. MA4                              | 262  |
| <u>L</u> | <u> </u>                                                                 | Jaggi M. / Flammarion N.   | MA1, MA3                              | 264  |
| <u>M</u> | Machine learning  Machine learning for behavioral data                   | Käser T.                   | MA2, MA4                              | 267  |
|          | Markov chains and algorithmic applications                               | Lévêque O. / Macris N.     | MA1, MA3                              | 269  |
|          | Mathematical foundations of signal processing                            | Simeoni M. / Bejar Haro B. | MA1, MA3                              | 271  |
|          | Mobile networks                                                          | Hubaux JP.                 | MA2, MA4                              | 271  |
|          | Modèles stochastiques pour les communications                            | Thiran P.                  | BA5                                   | 127  |
|          | Modern digital communications: a hands-on approach                       | Rimoldi B.                 | MA1, MA3                              | 275  |
| NI       |                                                                          | Serban V.                  | · · · · · · · · · · · · · · · · · · · | 279  |
| <u>N</u> | Number theory in cryptography                                            |                            | MA2, MA4<br>BA3                       |      |
| ^        | Numerical methods for visual computing and ML                            | Jakob W.                   |                                       | 130  |
| <u>o</u> | Optimization for machine learning                                        | Jaggi M. / Flammarion N.   | MA2, MA4<br>MA1, MA2,                 | 280  |
| ь        | Optional project in computer science                                     | Divers enseignants         | MA3, MA4                              | 282  |
| <u>P</u> | Parallelism and concurrency                                              | Kuncak V. / Odersky M.     | BA4                                   | 132  |
|          | Performance evaluation                                                   | Le Boudec JY.              | MA2, MA4                              | 283  |
|          | Physique générale : mécanique                                            | Bréchet S.                 | BA1                                   | 55   |
|          | Physique générale : mécanique (allemand)                                 | Gruetter R.                | BA1                                   | 57   |
|          | Physique générale : mécanique (anglais)                                  | Manley S.                  | BA1                                   | 60   |
|          | Pratique de la programmation orientée-objet                              | Schinz M.                  | BA2                                   | 62   |
|          | Principles of computer systems                                           | Argyraki A. / Candea G.    | MA1, MA3                              | 285  |
|          | Principles of digital communications                                     | Telatar E.                 | BA6                                   | 134  |
|          | Probabilistic methods in combinatorics                                   | Marcus A.                  | MA1, MA3                              | 288  |
|          | Probabilities and statistics                                             | Abbé E.                    | BA4                                   | 136  |

|          | Cours                                                    | Enseignant                  | Semestre              | Page |
|----------|----------------------------------------------------------|-----------------------------|-----------------------|------|
|          | Programmation orientée système                           | Chappelier JC.              | BA4                   | 137  |
|          | Projet de systems-on-chip                                | Beuchat R.                  | BA6                   | 139  |
|          | Projet en Informatique I                                 | Divers enseignants          | BA5, BA6              | 142  |
|          | Projet programmation système                             | Chappelier JC. / Bugnion E. | BA4                   | 143  |
| <u>R</u> | Real-time embedded systems                               | Beuchat R.                  | MA2, MA4              | 290  |
| <u>s</u> | Semester project in Computer Science II                  | Divers enseignants          | MA1, MA2,<br>MA3. MA4 | 292  |
|          | Sensors in medical instrumentation                       | Aminian K.                  | MA2, MA4              | 293  |
|          | Set theory                                               | Duparc J.                   | MA2, MA4              | 295  |
|          | Signal processing for communications                     | Prandoni P.                 | BA6                   | 145  |
|          | Signals and systems (for EL&IC)                          | Shkel Y.                    | BA4                   | 148  |
|          | Smart grid technologies                                  | Le Boudec JY. / Paolone M.  | MA2, MA4              | 298  |
|          | Social media                                             | Gillet D.                   | MA2, MA4              | 300  |
|          | Software development project                             | Candea G.                   | BA6                   | 150  |
|          | Software engineering                                     | Candea G.                   | BA5                   | 152  |
|          | Software security                                        | Payer M.                    | MA2, MA4              | 302  |
|          | Statist. signal and data processing through applications | Ridolfi A.                  | MA2, MA4              | 305  |
| <u>T</u> | TCP/IP Networking                                        | Le Boudec JY.               | MA1, MA3              | 310  |
|          | Technologies of societal self-organization               | Ford B.                     | BA3                   | 155  |
|          | Theory of computation                                    | Göös M.                     | BA4                   | 157  |
|          | Topics in theoretical computer science                   | Kapralov M.                 | MA1, MA3              | 314  |
|          | Traitement quantique de l'information                    | Macris N.                   | BA5                   | 159  |
| <u>V</u> | Virtual reality                                          | Boulic R.                   | MA2, MA4              | 316  |

# Cours pas donnés en 2020-2021

| Advanced multiprocessor architecture       | Falsafi B.                  | MA1, MA3 | 171 |
|--------------------------------------------|-----------------------------|----------|-----|
| Algèbre linéaire (classe inversée)         | Testerman D.                | BA1      | 39  |
| Computational complexity                   | Svensson O.                 | MA1, MA3 | 196 |
| Digital 3D geometry processing             | Pauly M.                    | MA1, MA3 | 219 |
| Interaction personne-système               | Dillenbourg P.              | BA4      | 108 |
| Networks out of control                    | Thiran P. / Grossglauser M. | MA2, MA4 | 277 |
| Sublinear algorithms for big data analysis | Kapralov M.                 | MA2, MA4 | 308 |
| Technology ventures in IC                  | Bugnion E.                  | MA2, MA4 | 312 |

# **INDEX PAR ENSEIGNANTS**

|          | Enseignant         | Cours                                               | Semestre              | Page |
|----------|--------------------|-----------------------------------------------------|-----------------------|------|
| <u>A</u> | Abbé E.            | Probabilities and statistics                        | BA4                   | 136  |
|          | Aboror V           | Advanced information, computation, communication I  | BA1                   | 31   |
|          | Aberer K.          | Distributed information systems                     | MA2, MA4              | 225  |
|          | Ailamaki A.        | Database systems                                    | MA2, MA4              | 207  |
|          | Aliailiaki A.      | Introduction to database systems                    | BA6                   | 116  |
|          | Aminian K.         | Sensors in medical instrumentation                  | MA2, MA4              | 293  |
|          | Arguraki A         | Computer networks                                   | BA3                   | 86   |
|          | Argyraki A.        | Principles of computer systems                      | MA1, MA3              | 285  |
| <u>B</u> | Bejar Haro B.      | Mathematical foundations of signal processing       | MA1, MA3              | 271  |
|          |                    | Embedded systems                                    | MA1, MA3              | 232  |
|          | Beuchat R.         | Projet de systems-on-chip                           | BA6                   | 139  |
|          |                    | Real-time embedded systems                          | MA2, MA4              | 290  |
|          | Boulic R.          | Virtual reality                                     | MA2, MA4              | 316  |
|          | Bourlard H.        | Automatic speech processing                         | MA1, MA3              | 185  |
|          | Bréchet S.         | Physique générale : mécanique                       | BA1                   | 55   |
|          | Bugnion E.         | Projet programmation système                        | BA4                   | 143  |
| C        |                    | Principles of computer systems                      | MA1, MA3              | 285  |
|          | Candea G.          | Software development project                        | BA6                   | 150  |
|          |                    | Software engineering                                | BA5                   | 152  |
|          |                    | Introduction to natural language processing         | MA1, MA3              | 260  |
|          | Chappelier JC.     | Programmation orientée système                      | BA4                   | 137  |
|          |                    | Projet programmation système                        | BA4                   | 143  |
| D        | De Micheli G.      | Design technologies for integrated systems          | MA1, MA3              | 21   |
|          | Dil J. H.          | General physics: electromagnetism                   | BA3                   | 104  |
|          | Dillenbourg P.     | Digital education & learning analytics              | MA1, MA3              | 22:  |
|          | Divers enseignants | Optional project in computer science                | MA1, MA2,<br>MA3, MA4 | 282  |
|          |                    | Projet en Informatique I                            | BA5, BA6              | 142  |
|          |                    | Semester project in Computer Science II             | MA1, MA2,             | 292  |
|          |                    | Gödel and recursivity                               | MA3, MA4<br>MA1, MA3  | 244  |
|          | Duparc J.          | Set theory                                          | MA2, MA4              | 29   |
| <u>F</u> | Falsafi B.         | Introduction to multiprocessor architecture         | BA5                   | 123  |
|          |                    | Intelligence artificielle                           | BA6                   | 106  |
|          | Faltings B.        | Intelligent agents                                  | MA1, MA3              | 256  |
|          |                    | Machine learning                                    | MA1, MA3              | 264  |
|          | Flammarion N.      | Optimization for machine learning                   | MA2, MA4              | 280  |
|          | Fleuret F.         | Deep Learning                                       | MA2, MA4              | 21   |
|          | -                  | Électromagnétisme I : lignes et ondes               | BA5                   | 9:   |
|          | Fleury R.          | Électromagnétisme II : calcul des champs            | BA6                   | 9:   |
|          |                    | Decentralized systems engineering                   | MA1, MA3              | 212  |
|          | Ford B.            | Technologies of societal self-organization          | BA3                   | 15   |
|          |                    | Computer vision                                     | MA2, MA4              | 200  |
|          | Fua P.             | Introduction to machine learning (BA4)              | BA4                   | 12:  |
| G        | Gastpar M.         | Advanced information, computation, communication II | BA2                   | 33   |
| _        | Cuotput W.         | Artificial neural networks                          | MA2, MA4              | 182  |
|          | Gerstner W.        | Biological modeling of neural network               | MA2, MA4              | 187  |
|          | Gillet D.          | Social media                                        | MA2, MA4              | 300  |
|          | Goldstein D.       | Applied biostatistics                               | MA2, MA4              | 17   |
|          | Göös M.            | Theory of computation                               | BA4                   | 15   |
|          | Grossglauser M.    | Internet analytics                                  | BA6                   | 110  |
|          | Gruetter R.        | Physique générale : mécanique (allemand)            | BA1                   | 5    |
|          | Gluettel N.        |                                                     | MA1, MA3              | 20:  |
|          |                    | Concurrent algorithms                               | N/// N///             | ,,,  |

|              | Enseignant     | Cours                                                               | Semestre                              | Page      |
|--------------|----------------|---------------------------------------------------------------------|---------------------------------------|-----------|
| <u>н</u>     | Huang J.       | Experience design                                                   | MA1, MA3                              | 237       |
|              | Hubaux JP      | Information security and privacy                                    | MA1, MA3                              | 253       |
|              | Tiubaux JF     | Mobile networks                                                     | MA2, MA4                              | 273       |
| <u> </u>     | James D        | Advanced computer architecture                                      | MA2, MA4                              | 167       |
|              | lenne P.       | Computer architecture II                                            | BA4                                   | 81        |
| <u>J</u>     | lanci M        | Machine learning                                                    | MA1, MA3                              | 264       |
|              | Jaggi M.       | Optimization for machine learning                                   | MA2, MA4                              | 280       |
|              | lakah M        | Advanced computer graphics                                          | MA2, MA4                              | 169       |
|              | Jakob W.       | Numerical methods for visual computing and ML                       | BA3                                   | 130       |
|              | Jermann P.     | Digital education & learning analytics                              | MA1, MA3                              | 221       |
| <u>K</u>     | 17 1 14        | Advanced algorithms                                                 | MA2, MA4                              | 163       |
| <del>_</del> | Kapralov M.    | Topics in theoretical computer science                              | MA1, MA3                              | 314       |
|              | Käser T.       | Machine learning for behavioral data                                | MA2, MA4                              | 267       |
|              | Kluter T.      | Digital system design                                               | BA2                                   | 51        |
|              | Koch Ch.       | Introduction to database systems                                    | BA6                                   | 116       |
|              | Kressner D.    | Analyse I (allemand)                                                | BA1                                   | 43        |
|              |                | Computer language processing                                        | BA5                                   | 83        |
|              |                | Formal verification                                                 | MA1, MA3                              | 239       |
|              | Kuncak V.      | Functional programming                                              | BA3                                   | 102       |
|              |                | Parallelism and concurrency                                         | BA4                                   | 132       |
| <u>L</u>     |                | Algèbra                                                             | BA5                                   | 67        |
| =            | Lachowska A.   | Analyse I                                                           | BA1                                   | 41        |
|              |                | Analyse II                                                          | BA2                                   | 47        |
|              |                | Performance evaluation                                              | MA2, MA4                              | 283       |
|              | Le Boudec JY.  | Smart grid technologies                                             | MA2, MA4                              | 298       |
|              |                | TCP/IP Networking                                                   | MA1, MA3                              | 310       |
|              | Lévêque O.     | Advanced probability and applications                               | MA2, MA4                              | 173       |
|              |                | Markov chains and algorithmic applications                          | MA1, MA3                              | 269       |
| <u>M</u>     |                | Calcul quantique                                                    | BA6                                   | 75        |
| <u>IVI</u>   |                | Learning theory                                                     | MA2, MA4                              | 262       |
|              | Macris N.      | Markov chains and algorithmic applications                          | · · · · · · · · · · · · · · · · · · · |           |
|              |                |                                                                     | MA1, MA3<br>BA5                       | 269       |
|              | Maddocks J.    | Traitement quantique de l'information                               | BA1                                   | 159<br>37 |
|              | Manley S.      | Algèbre linéaire (anglais)  Physique générale : mécanique (anglais) | BA1                                   |           |
|              | Marcus A.      | Probabilistic methods in combinatorics                              | MA1, MA3                              | 60        |
|              | Martinoli A.   |                                                                     | · ·                                   | 288       |
|              | Mountford Th.  | Distributed intelligent systems                                     | MA1, MA3<br>BA2                       |           |
|              | Mountiord III. | Analyse II (anglais) Foundations of software                        |                                       | 49<br>242 |
| <u>o</u>     | Odoroky M      |                                                                     | MA1, MA3<br>BA3                       |           |
|              | Odersky M.     | Functional programming                                              |                                       | 102       |
|              | O l li Dl-     | Parallelism and concurrency                                         | BA4                                   | 132       |
|              | Oechslin Ph.   | Information security and privacy                                    | MA1, MA3                              | 253       |
| <u>P</u>     | Paolone M.     | Smart grid technologies                                             | MA2, MA4                              | 298       |
|              | Pauly M.       | Introduction to computer graphics                                   | BA6                                   | 114       |
|              | Payer M.       | Introduction to operating systems                                   | BA5                                   | 125       |
|              | <u> </u>       | Software security                                                   | MA2, MA4                              | 302       |
|              | Prandoni P.    | Signal processing for communications                                | BA6                                   | 145       |
|              | Pu Faltings P. | Interaction design                                                  | MA2, MA4                              | 258       |
| <u>R</u>     | Rajman M.      | Introduction to natural language processing                         | MA1, MA3                              | 260       |
|              | Ridolfi A.     | Statist. signal and data processing through applications            | MA2, MA4                              | 305       |
|              | Rimoldi B.     | Advanced information, computation, communication II                 | BA2                                   | 33        |
|              |                | Modern digital communications: a hands-on approach                  | MA1, MA3                              | 275       |

|          | Enseignant      | Cours                                             | Semestre | Page |
|----------|-----------------|---------------------------------------------------|----------|------|
| <u>s</u> | Salzmann M.     | Introduction to machine learning (BA3)            | BA3      | 119  |
|          | Sam J.          | Introduction à la programmation                   | BA1      | 53   |
|          | Schinz M.       | Advanced compiler construction                    | MA2, MA4 | 165  |
|          | SCHIIIZ IVI.    | Pratique de la programmation orientée-objet       | BA2      | 62   |
|          | Serban V.       | Number theory in cryptography                     | MA2, MA4 | 279  |
|          | Shkel Y.        | Signals and systems (for EL&IC)                   | BA4      | 148  |
|          | Simeoni M.      | Mathematical foundations of signal processing     | MA1, MA3 | 271  |
|          | Sommer Ph.      | Industrial automation                             | MA2, MA4 | 251  |
|          | Stojilovic M.   | Computer architecture I                           | BA3      | 79   |
|          | Struett D.      | Analyse III                                       | BA3      | 71   |
|          | Structi D.      | Analyse IV                                        | BA4      | 73   |
|          | Süsstrunk S.    | Computational photography                         | MA2, MA4 | 198  |
|          | Svaldi R.       | Analyse I (anglais)                               | BA1      | 45   |
|          | Svensson O.     | Algorithms                                        | BA3      | 69   |
| I        | Talatas C       | Information theory and coding                     | MA1, MA3 | 255  |
|          | Telatar E.      | Principles of digital communications              | BA6      | 134  |
|          | Terrettaz S.    | Chimie générale                                   | BA5      | 77   |
|          | Thiran P.       | Dynamical system theory for engineers             | MA1, MA3 | 230  |
|          |                 | Modèles stochastiques pour les communications     | BA5      | 127  |
|          | Tournier JCh.   | Industrial automation                             | MA2, MA4 | 251  |
|          | Troncoso C.     | Advanced topics on privacy enhancing technologies | MA2, MA4 | 175  |
|          |                 | Computer security                                 | BA5      | 89   |
| <u>U</u> | Unser M.        | Image processing I                                | MA1, MA3 | 247  |
|          |                 | Image processing II                               | MA2, MA4 | 249  |
|          | Urbanke R.      | Learning theory                                   | MA2, MA4 | 262  |
|          | Urech Ch.       | Algèbre linéaire                                  | BA1      | 35   |
| <u>V</u> | Van de Ville D. | Image processing I                                | MA1, MA3 | 247  |
|          |                 | Image processing II                               | MA2, MA4 | 249  |
|          | Vaudenay S.     | Cryptography and security                         | MA1, MA3 | 204  |
|          | Vesin JM.       | Biomedical signal processing                      | MA1, MA3 | 190  |
|          | Vuillon L.      | Data visualization                                | MA2, MA4 | 209  |
| W        | \\\ \\          | Business design for IT services                   | MA2, MA4 | 192  |
|          | Wegmann A.      | Enterprise and service-oriented architecture      | MA2, MA4 | 235  |
|          | West R.         | Applied data analysis                             | MA1, MA3 | 179  |
| <u>Z</u> | 7. ff a many D  | Cellular biology and biochemistry for engineers   | MA1, MA3 | 194  |
| _        | Zufferey R.     | Introduction aux sciences du vivant (pour IC)     | BA6      | 112  |
|          |                 | Électronique I                                    | BA3      | 95   |
|          | Zysman E.       | Électronique II                                   | BA5      | 97   |
|          |                 | Électronique III                                  | BA6      | 99   |