Chương 3. Chuỗi số

Nguyễn Minh Trí

Trường Đại học Công nghệ Thông tin

Ngày 15 tháng 9 năm 2023

- 3.1 Các khái niệm cơ bản
- 3.2 Chuỗi số dương
- 3.3 Hội tụ tuyệt đối
- 3.4 Chuỗi số đan dấu
- 3.5 Chuỗi hàm
- 3.6 Chuỗi Taylor và chuỗi Maclaurin

3.1 Các khái niệm cơ bản

Định nghĩa 3.1

1. Cho dãy số $\{a_n\}$, biểu thức

$$a_1 + a_2 + \cdots + a_n + \cdots$$

được gọi là một **chuỗi số** và kí hiệu $\sum_{n=1}^{\infty} a_n$.

2. Tổng

$$s_k = a_1 + a_2 + \dots + a_k$$

được gọi là **tổng riêng** thứ k của chuỗi.

3. Nếu $S=\lim_{k\to\infty}s_k$ là một số hữu hạn thì chuỗi $\sum_{n=1}^\infty a_n$ được gọi là hội tụ. Ngược lại, ta nói chuỗi số $\sum_{n=1}^\infty a_n$ phân kỳ.

Ví dụ 3.2 Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Giải. Ta thấy

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

và tổng riêng

$$s_k = \sum_{n=1}^k \frac{1}{n(n+1)} = \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k\cdot (k+1)}\right)$$
$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \frac{1}{1} - \frac{1}{k+1}$$

Do đó $\lim_{k\to\infty}s_k=\lim_{k\to\infty}\left(\frac{1}{1}-\frac{1}{k+1}\right)=1,$ suy ra chuỗi số $\sum_{n=1}^\infty\frac{1}{n(n+1)}=1.$

Ví dụ 3.3 Xét chuỗi cấp số nhân

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$

trong đó a,r là các số thực khác 0. Khi đó, với $r \neq 1$, ta có

$$s_k = \sum_{n=1}^k ar^{n-1} = a\frac{1-r^k}{1-r}.$$

Nếu |r|<1 thì chuỗi số $\sum_{n=1}^\infty ar^{n-1}$ hội tụ và $\sum_{n=1}^\infty ar^{n-1}=rac{a}{1-r}.$

Ví dụ 3.4 Tính tổng

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

Giải. Chuỗi số có dạng chuỗi cấp số nhân với số hạng đầu tiên a=5 và $r=-\frac{2}{3}$. Vì |r|<1 nên chuỗi số đã cho hội tụ và tổng của chuỗi đã cho là

$$\frac{5}{1-r} = \frac{5}{1-\left(\frac{2}{3}\right)} = 3.$$

Ví dụ 3.5 Chuỗi số $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ hội tụ hay phân kỳ?

Giải. (Hướng dẫn: Biến đổi chuỗi đã cho về dạng chuỗi cấp số nhân)

.....

.....

Ví dụ 3.6 Một loại thuốc được dùng cho bệnh nhân vào cùng một thời điểm mỗi ngày. Giả sử nồng độ của thuốc là C_n (tính bằng mg/mL) sau khi tiêm vào ngày thứ n. Trước khi tiêm vào ngày hôm sau, chỉ còn lại 30% thuốc trong máu và liều hàng ngày làm tăng nồng độ lên 0,2 mg/mL.

- a. Tìm nồng độ thuốc sau khi tiêm lần thứ ba.
- b. Nồng độ thuốc sau lần tiêm thứ n bằng bao nhiêu?
- c. Nồng độ giới hạn bằng bao nhiêu?

Giải. a. Ngay trước khi tiêm thuốc mỗi ngày, nồng độ thuốc còn 30% nồng độ của ngày hôm trước, tức là $0,3C_n$. Với liều mới, nồng độ tăng thêm 0,2 mg/mL và do đó

$$C_{n+1} = 0, 2+0, 3C_n$$

Đặt $C_0 = 0$ (chưa tiêm) và

$$C_1 = 0, 2 + 0, 3C_0 = 0, 2$$

 $C_2 = 0, 2 + 0, 3C_1 = 0, 26$
 $C_3 = 0, 2 + 0, 3C_2 = 0, 278$

Nồng độ thuốc sau khi tiêm lần thứ ba là $0,278~{\rm mg/mL}.$ b. Nồng độ thuốc sau lần tiêm thứ n là

$$C_n = 0, 2 + 0, 2.0, 3 + 0, 2.(0, 3)^2 + 0, 2.(0, 3)^3 + \dots + 0, 2.(0, 3)^{n-1}$$

Đây là một chuỗi cấp số nhân với số hạng đầu a=0,2 và r=0,3. Khi đó

$$C_n = 0, 2 \frac{1 - (0,3)^n}{1 - 0, 3}$$

c. Vì |r| < 1 nên giới hạn của nồng độ thuốc là

$$\lim_{n \to \infty} C_n = \lim_{n \to \infty} 0, 2 \frac{1 - (0, 3)^n}{1 - 0, 3} = \frac{2}{7} (\text{mg/mL}).$$

Ví dụ 3.7 Biểu diễn số thập phân vô hạn tuần hoàn $a=2,3(17)=2,317171717\dots$ dưới đây dưới dạng số hữu tỉ.

Giải.

$$a = 2, 3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

Sau số hạng đầu tiên, ta có một chuỗi cấp số nhân với $a=\frac{13}{10^3}$ và $r=\frac{1}{10^2}$. Do đó

$$a = 2, 3 + \frac{17}{10^3} \frac{1}{1 - \frac{1}{10^2}} = \frac{23}{10} + \frac{17}{990} = \frac{1147}{495}$$

Định lý 3.8 Nếu chuỗi số $\sum_{n=1}^{\infty} a_n$ hội tụ thì $\lim_{n \to \infty} a_n = 0$.

Chú ý: Nếu $\lim_{n\to\infty}a_n\neq 0$ hoặc $\lim_{n\to\infty}a_n$ không tồn tại thì chuỗi số $\sum_{n=1}^\infty a_n$ phân kỳ.

Ví dụ 3.9

a. Chuỗi số
$$\sum_{n=1}^{\infty} \frac{n+1}{n}$$
 không hội tụ vì $\lim_{n \to \infty} \frac{n+1}{n} = 1 \neq 0.$

b. Chuỗi số
$$\sum_{n=1}^{\infty} n^2$$
 không hội tụ vì $\lim_{n \to \infty} n^2 = \infty$.

c. Chuỗi số $\sum_{n=1}^{\infty} (-1)^n$ không hội tụ vì $\lim_{n \to \infty} (-1)^n$ không tồn tại.

Định lý 3.10 Nếu $\sum_{n=1}^{\infty}a_n=A$ và $\sum_{n=1}^{\infty}b_n=B$ là các chuỗi số hội tụ thì

1.
$$\sum_{n=1}^{\infty} (a_n \pm b_n) = A \pm B$$

$$2. \sum_{n=1}^{\infty} ca_n = cA$$

3. Chuỗi số $\sum_{n=1}^{\infty}a_n$ hội tụ khi và chỉ khi chuỗi $\sum_{n=k}^{\infty}a_n$ hội tụ với mọi $k\geq 1.$

Ví dụ 3.11 Tính $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$

Giải.

$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{n-1}} - \frac{1}{6^{n-1}} \right)$$
$$= \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}} = \frac{1}{1 - 1/2} - \frac{1}{1 - 1/6} = \frac{4}{5}$$

Ví dụ 3.12 Chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$ phân kì (chuỗi điều hòa).

Giải.

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{1} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{1}$$

$$+ \underbrace{\frac{1}{9} + \frac{1}{10} + \frac{1}{11}}_{11} + \underbrace{\frac{1}{12} + \frac{1}{13} + \frac{1}{14}}_{11} + \underbrace{\frac{1}{15} + \frac{1}{16}}_{11} + \underbrace{\frac{1}{17} + \cdots}_{10}$$
 (a)

Xét chuỗi:

$$1 + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{1} + \underbrace{\frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{1} + \underbrace{\frac{1}{16} + \frac{1}{16}}_{16} + \underbrace{\frac{1}{16} + \frac{1$$

Ta kí hiệu $S_n^{(1)}$ là tổng riêng của chuỗi (a) , $S_n^{(2)}$ là tổng riêng của chuỗi (b) . Ta có $S_n^{(1)} > S_n^{(2)}$ Ta tính tổng riêng của chuỗi (b)
$S_{2^n}^{(2)} = 1 + n.\frac{1}{2}$
Do đó với chuỗi $(b): \lim_{n \to \infty} S_n^{(2)} = \infty$ Như vậy $(b): \lim_{n \to \infty} S_n^{(1)} = \infty$ điều này chứng tỏ chuỗi điều hòa là phân kì.
Ví dụ 3.13 Tính tổng (nếu có) các chuỗi sau: a. $\sum_{n=1}^{\infty} \frac{2+n}{1-3n}$ b. $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$
c. Cho $a_1 = 1, a_n = (5-n)a_{n-1}$. Tính $\sum_{n=1}^{\infty} a_n$.
Giải.

3.2 Chuỗi số dương

Định nghĩa 3.14 Chuỗi số $\sum_{n=1}^{\infty} a_n$ được gọi là chuỗi số dương nếu tất cả các số hạng $a_n > 0$.

Ví dụ 3.15 Chuỗi $\sum_{n=0}^{\infty} \frac{1}{\sqrt[4]{n^3+2n+1}}$ là chuỗi số dương

Chuỗi $\sum_{n=0}^{\infty} \frac{\sin n}{n!+1}$ không là chuỗi số dương

 $\mathbf{Dinh} \stackrel{\cdot}{\mathbf{l}} \mathbf{j} \mathbf{3.16}$ (Tiêu chuẩn tích phân) Cho $\{a_n\}$ là một dãy số với các số hạng dương. Giả sử $f(n)=a_n$ trong đó f là một hàm số không âm, liên tục và giảm nghiêm ngặt trên

 $[N,+\infty)$ (N là một số nguyên dương). Khi đó chuỗi số $\sum_{n=1}^\infty f(n)$ hội tụ nếu và chỉ nếu

tích phân suy rộng $\int_{N}^{\infty} f(x) dx$ hội tụ.

Ví du 3.17 Xét sự hội tụ của chuỗi số

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
 b.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$

b.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$

Giải. a. Hàm số $f(x)=rac{1}{x^2+1}$ liên tục, dương và giảm trên $[1,+\infty)$. Ta dùng tiêu chuẩn tích phân suy rộng để kiểm tra sự hội tụ của chuỗi số. Ta có

$$\int_{1}^{\infty} \frac{1}{x^{2} + 1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2} + 1} dx = \lim_{t \to \infty} \int_{1}^{t} (\arctan x) \Big|_{1}^{t}$$
$$= \lim_{t \to \infty} \left(\arctan t - \frac{\pi}{4} \right) = \frac{\pi}{4} - \frac{\pi}{2} = \frac{\pi}{4}$$

Do đó tích phân $\int_{1}^{\infty} \frac{1}{x^2+1} \mathrm{d}x$ hội tụ và như vậy chuỗi số đã cho hội tụ.

b. Đặt $f(x) = \frac{\ln x}{x}$ và f(x) là một hàm số dương, liên tục với mọi x>1 vì hàm số logarit là một hàm số liên tục. Để xác định f tăng hay giảm, ta tính đạo hàm của f như sau

$$f'(x) = \frac{x \cdot 1/x - x \ln x}{x^2} = \frac{1 - \ln x}{x^2}.$$

Khi x>e, ta có $f^{\prime}(x)<0$ hay f(x) giảm khi x>e. Xét tính phân suy rộng

$$\int_{1}^{\infty} \frac{\ln x}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\ln x}{x} dx = \lim_{t \to \infty} \left(\frac{(\ln x)^{2}}{2} \right) \Big|_{1}^{t} = \lim_{t \to \infty} \frac{\ln t}{2} = \infty$$

Điều này cho thấy tích phân $\int_{1}^{\infty} \frac{\ln x}{x} \mathrm{d}x$ phân kỳ. Do đó chuỗi số đã cho phân kỳ.

Ví du 3.18 Xét sự hội tụ của chuỗi số

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 với p là hằng số. b. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ c. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^4 + 3n}}$ d. $\sum_{n=1}^{\infty} ne^{-n^2}$

b.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

c.
$$\sum_{1}^{\infty} \frac{1}{\sqrt[3]{n^4 + 3n}}$$

d.
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

Định lý 3.19 (Tiêu chuẩn so sánh) Cho hai chuỗi số dương $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$. Giả sử, tồn tại

N sao cho $a_n \leq b_n$ với mọi n > N. Khi đó

- Nếu $\sum_{n=1}^{\infty} b_n$ hội tụ thì $\sum_{n=1}^{\infty} a_n$ hội tụ.
- Nếu $\sum_{n=1}^{\infty} a_n$ phân kì thì $\sum_{n=1}^{\infty} b_n$ phân kì.

Ví dụ 3.20 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \frac{1}{2^n+1}$ b. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ c. $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}}$

Giải. a. Ta thấy $\frac{1}{2^n+1}<\frac{1}{2^n}$ với mọi $n\geq 1$. Vì chuỗi số $\sum_{n=1}^\infty \frac{1}{2^n}$ hội tụ nên chuỗi số đã cho hôi tu.

b. Ta có $\frac{1}{\sqrt{n}}>\frac{1}{n}$ với mọi n>2. Do chuỗi số $\sum_{n=1}^{\infty}\frac{1}{n}$ phân kì nên chuỗi đã cho phân kì.

c. Ta có $\frac{\ln n}{\sqrt{n}}>\frac{1}{\sqrt{n}}$ với mọi n>3. Do chuỗi số $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ phân kì nên chuỗi đã cho phân kì.

Định lý 3.21 (Tiêu chuẩn tỉ lệ) Cho hai chuỗi số dương $\sum_{n=1}^\infty a_n, \sum_{n=1}^\infty b_n$. Giả sử $\lim_{n\to\infty} \frac{a_n}{b_n} = c$.

- Nếu $0 < c < +\infty$ thì hai chuỗi trên cùng hội tụ hoặc cùng phân kì.
- Nếu $c=+\infty$ và $\displaystyle\sum_{n=1}^{\infty}b_n$ phân kì thì $\displaystyle\sum_{n=1}^{\infty}a_n$ phân kì.
- Nếu c=0 và $\displaystyle\sum_{n=1}^{\infty}b_n$ hội tụ thì $\displaystyle\sum_{n=1}^{\infty}a_n$ hội tụ.

Ví dụ 3.22 Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{3 \cdot 2^n + 4}$

Giải. Đặt $a_n=\frac{1}{3.2^n+4}$ và $b_n=\frac{1}{2^n},$ khi đó

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2^n}{3 \cdot 2^n + 4} = \frac{1}{3}.$$

Chuỗi số $\sum_{n=1}^{\infty} \frac{1}{2^n}$ hội tụ do đó chuỗi số đã cho hội tụ.

Ví dụ 3.23 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + 3\sqrt[3]{2n} + 2}$ b. $\sum_{n=1}^{\infty} \frac{n^2 + 3n}{2n^4 - n}$

c.
$$\sum_{n=1}^{\infty} \frac{3+2n}{\sqrt{n^3+3}}$$
 d. $\sum_{n=1}^{\infty} \frac{\cos^2(2n)}{n^3}$

Giải	

3.3 Hội tụ tuyệt đối

Định nghĩa 3.24 Chuỗi số $\sum a_n$ được gọi là hội tụ tuyệt đối nếu chuỗi $\sum |a_n|$ hội tụ.

Định lý 3.25 Nếu một chuỗi số hội tụ tuyệt đối thì nó hội tụ.

Ví dụ 3.26 Xét sự hội tụ của chuỗi a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 b. $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$

Giải. a. Đặt
$$a_n=\frac{(-1)^n}{n^2}$$
 và xét chuỗi $\sum_{n=1}^\infty |a_n|=\sum_{n=1}^\infty \frac{1}{n^2}.$ Vì chuỗi $\sum_{n=1}^\infty \frac{1}{n^2}$ hội tụ nên

chuỗi số đã cho hội tụ.

b. Xét chuỗi
$$\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\infty}\frac{|\sin n|}{n^2}$$
. Vì $\frac{|\sin n|}{n^2}\leq \frac{1}{n^2}$ và chuỗi $\sum_{n=1}^{\infty}\frac{1}{n^2}$ hội tụ nên chuỗi số đã cho hội tụ.

Định lý 3.27 Cho chuỗi số
$$\sum_{n=1}^\infty a_n$$
 và $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = d$. Khi đó

- 1. Nếu d < 1 thì chuỗi số hội tụ tuyệt đối
- 2. Nếu d>1 thì chuỗi số phân kì.

Ví dụ 3.28 Xét sự hội tụ của chuỗi số

a.
$$\sum_{n=1}^{+\infty} \frac{2^n + 5}{3^n}$$

a.
$$\sum_{n=1}^{+\infty} \frac{2^n + 5}{3^n}$$
 b. $\sum_{n=1}^{+\infty} \frac{(-1)^n + (-2)^{n+1}}{3^n}$ c. $\sum_{n=1}^{+\infty} \frac{(-1)^n n}{3^n}$ d. $\sum_{n=1}^{+\infty} \frac{(2n)!}{n!n!}$

c.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n n}{3^n}$$

$$\mathsf{d.} \sum_{n=1}^{+\infty} \frac{(2n)}{n!n!}$$

 	٠.			 •	 •				•		•		 	 	•								 •							 			-	 			
 				 •									 	 								-								 			-	 			
 													 	 													•			 				 			
 													 	 													•			 				 			
 													 	 	•						•					•	•	 		 	•			 			

Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đổi. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^n^2 2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ tụ a chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chuấ sốt luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum\limits_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì, • Nếu $c=1$ thì chuỗi số phân kì, • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum\limits_{n=1}^{\infty}\left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum\limits_{n=1}^{\infty}\frac{(n+1)^n}{n^n^22^n}$ c. $\sum\limits_{n=1}^{\infty}\frac{1}{3^n}\left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chua kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì, • Nếu $c=1$ thì chuỗi số phân kì, • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Định lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^n^2 2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^n^2 2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n \to \infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c < 1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c > 1$ thì chuỗi số phân kì. • Nếu $c = 1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n + 3}{3^n + 5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n \to \infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c < 1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c > 1$ thì chuỗi số phân kì. • Nếu $c = 1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n + 3}{3^n + 5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty}a_n$ và $\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	Dịnh lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và $\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
$\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	$\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty}\left(\frac{2^n+3}{3^n+5}\right)^n \qquad \text{b.} \sum_{n=1}^{\infty}\frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \text{c.} \sum_{n=1}^{\infty}\frac{1}{3^n}\left(\frac{n+1}{n+2}\right)^{n^2}$						
$\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	$\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty}\left(\frac{2^n+3}{3^n+5}\right)^n \qquad \text{b.} \sum_{n=1}^{\infty}\frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \text{c.} \sum_{n=1}^{\infty}\frac{1}{3^n}\left(\frac{n+1}{n+2}\right)^{n^2}$						
$\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	$\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty}\left(\frac{2^n+3}{3^n+5}\right)^n \qquad \text{b.} \sum_{n=1}^{\infty}\frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \text{c.} \sum_{n=1}^{\infty}\frac{1}{3^n}\left(\frac{n+1}{n+2}\right)^{n^2}$						
$\lim_{n\to\infty} \sqrt[n]{ a_n } = c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	$\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n \qquad \qquad \text{b.} \sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \qquad \text{c.} \sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$						
$\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	$\lim_{n\to\infty}\sqrt[n]{ a_n }=c.$ Khi đó • Nếu $c<1$ thì chuỗi số hội tụ tuyệt đối. • Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty}\left(\frac{2^n+3}{3^n+5}\right)^n \qquad \text{b. } \sum_{n=1}^{\infty}\frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \text{c. } \sum_{n=1}^{\infty}\frac{1}{3^n}\left(\frac{n+1}{n+2}\right)^{n^2}$			2	∞		
Khi đó $ \bullet \text{Nếu } c<1 \text{ thì chuỗi số hội tụ tuyệt đối.} $	Khi đó $ \bullet \text{Nếu } c < 1 \text{ thì chuỗi số hội tụ tuyệt đối.} $ $ \bullet \text{Nếu } c > 1 \text{ thì chuỗi số phân kì.} $ $ \bullet \text{Nếu } c = 1 \text{ thì chưa kết luận được.} $ $ \textbf{Ví dụ 3.30} \text{ Xét sự hội tụ của chuỗi số} $ $ \textbf{a.} \sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n \qquad \textbf{b.} \sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \textbf{c.} \sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2} $	Định l	l ý 3.29 (Tiêu ch	nuấn căn) Cho chuỗi	$s\hat{o} \sum_{1} a_n \ v\hat{a}$		
Khi đó $ \bullet \text{Nếu } c<1 \text{ thì chuỗi số hội tụ tuyệt đối.} $	Khi đó $ \bullet \text{Nếu } c < 1 \text{ thì chuỗi số hội tụ tuyệt đối.} $ $ \bullet \text{Nếu } c > 1 \text{ thì chuỗi số phân kì.} $ $ \bullet \text{Nếu } c = 1 \text{ thì chưa kết luận được.} $ $ \textbf{Ví dụ 3.30} \text{ Xét sự hội tụ của chuỗi số} $ $ \textbf{a.} \sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n \qquad \textbf{b.} \sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \textbf{c.} \sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2} $				n=1		
• Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	• Nếu $c>1$ thì chuỗi số phân kì. • Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n \qquad \text{b.} \sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \text{c.} \sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$			$\lim_{n\to\infty}$	$\sqrt[n]{ a_n } = c.$		
• Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số	• Nếu $c=1$ thì chưa kết luận được. Ví dụ 3.30 Xét sự hội tụ của chuỗi số a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n \qquad \text{b.} \sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n} \qquad \text{c.} \sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$		Ś	$\lim_{n o \infty}$	$\sqrt[n-1]{ a_n } = c.$		
Ví dụ 3.30 Xét sự hội tụ của chuỗi số		Khi đć	lếu $c < 1$ thì ch	uỗi số hội tụ tuyệt đ			
a. $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+5}\right)^n$ b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2}2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$		Khi đć • N • N	lếu $c<1$ thì ch lếu $c>1$ thì ch	uỗi số hội tụ tuyệt đ uỗi số phân kì.			
$\frac{2}{n-1}\left(\frac{3^n+5}{3^n+5}\right) \qquad \frac{2}{n-1}\frac{n^22^n}{n^{n-2}2^n} \qquad \frac{2}{n-1}\frac{3^n}{3^n}\left(\frac{n+2}{n+2}\right)$		Khi đć • N • N • N	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch ${f 3.30}$ Xét sự hộ	uỗi số hội tụ tuyệt đ uỗi số phân kì. ưa kết luận được. i tụ của chuỗi số	ối.		
		Khi đć • N • N • N	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch ${f 3.30}$ Xét sự hộ	uỗi số hội tụ tuyệt đ uỗi số phân kì. ưa kết luận được. i tụ của chuỗi số	ối.	$\sum_{n=0}^{\infty} \frac{1}{n} \left(\frac{n+1}{n} \right)$	n^2
		Khi đć • N • N • N	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch 3.30 Xét sự hộ $\left(\frac{2^n+3}{3^n+5}\right)^n$	uỗi số hội tụ tuyệt đợ uỗi số phân kì. $ ext{va}$ kết luận được. $ ext{i}$ tụ của chuỗi số $ ext{b.} \sum_{n=1}^{\infty} rac{(n+1)^n}{n^{n^2}2^n}$	ối. - c.		
		Khi đớ \bullet N \bullet N \bullet N \bullet Ví dụ \bullet a. $\sum_{n=1}^{\infty}$	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch 3.30 Xét sự hộ $\left(\frac{2^n+3}{3^n+5}\right)^n$	uỗi số hội tụ tuyệt đợ uỗi số phân kì. $ ext{va}$ kết luận được. $ ext{i}$ tụ của chuỗi số $ ext{b.} \sum_{n=1}^{\infty} rac{(n+1)^n}{n^{n^2}2^n}$	ối. - c.		
		Khi đớ \bullet N \bullet N \bullet N \bullet Ví dụ \bullet a. $\sum_{n=1}^{\infty}$	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch 3.30 Xét sự hộ $\left(\frac{2^n+3}{3^n+5}\right)^n$	uỗi số hội tụ tuyệt đợ uỗi số phân kì. ưa kết luận được. \dot{b} tụ của chuỗi số \dot{b} . $\displaystyle\sum_{n=1}^{\infty} \dfrac{(n+1)^n}{n^{n^2}2^n}$	ối. c		
		Khi đớ \bullet N \bullet N \bullet N \bullet Ví dụ \bullet a. $\sum_{n=1}^{\infty}$	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch 3.30 Xét sự hộ $\left(\frac{2^n+3}{3^n+5}\right)^n$	uỗi số hội tụ tuyệt đ $_{0}$ uỗi số phân kì. ưa kết luận được. i tụ của chuỗi số b. $\sum_{n=1}^{\infty} rac{(n+1)^n}{n^{n^2}2^n}$	ối. c		
		Khi đớ \bullet N \bullet N \bullet N \bullet Ví dụ \bullet a. $\sum_{n=1}^{\infty}$	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch 3.30 Xét sự hộ $\left(\frac{2^n+3}{3^n+5}\right)^n$	uỗi số hội tụ tuyệt đ $_{0}$ uỗi số phân kì. ưa kết luận được. i tụ của chuỗi số b. $\sum_{n=1}^{\infty} rac{(n+1)^n}{n^{n^2}2^n}$	ối. c		
		Khi đớ \bullet N \bullet N \bullet N \bullet Ví dụ \bullet a. $\sum_{n=1}^{\infty}$	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch 3.30 Xét sự hộ $\left(\frac{2^n+3}{3^n+5}\right)^n$	uỗi số hội tụ tuyệt đ $_{0}$ uỗi số phân kì. ưa kết luận được. i tụ của chuỗi số b. $\sum_{n=1}^{\infty} rac{(n+1)^n}{n^{n^2}2^n}$	ối c.		
		Khi đớ $ullet$ N $ullet$ N $ullet$ N $ullet$ Ví dụ a. $\sum_{n=1}^{\infty}$	lếu $c<1$ thì ch lếu $c>1$ thì ch lếu $c=1$ thì ch 3.30 Xét sự hộ $\left(\frac{2^n+3}{3^n+5}\right)^n$	uỗi số hội tụ tuyệt đ $_{0}$ uỗi số phân kì. ưa kết luận được. i tụ của chuỗi số b. $\sum_{n=1}^{\infty} rac{(n+1)^n}{n^{n^2}2^n}$	ối. c		

3.4 Chuỗi số đan dấu

Định nghĩa 3.31 Chuỗi đan dấu là chuỗi số có dạng $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ hay $\sum_{n=1}^{\infty} (-1)^n a_n$, với $a_n \geq 0$.

Dịnh lý 3.32 (Leibniz) Nếu dãy các số dương $\{a_n\}$ giảm nghiêm ngặt và $\lim_{n \to \infty} a_n = 0$

thì chuỗi đan dấu $\sum_{n=1}^{\infty} (-1)^n a_n$ hội tụ.

Ví dụ 3.33 Chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ là hội tụ vì $\{a_n=\frac{1}{n}\}$ là dãy giảm và $\lim_{n\to\infty} a_n=0$

Định nghĩa 3.34 Các chuỗi số thỏa mãn Định lý Leibniz được gọi là chuỗi Leibniz.

Định nghĩa 3.35 Nếu chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ nhưng không hội tụ tuyệt đối thì ta nói nó là bán hôi tu.

Ví dụ 3.36 Chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ là bán hội tụ.

Định lý 3.37 Nếu chuỗi số hội tụ tuyệt đối thì khi thay đổi vị trí các số hạng một cách tùy ý ta vẫn được chuỗi mới hội tụ tuyệt đối và có cùng tổng.

Định lý 3.38 Cho một chuỗi số bán hội tụ. Khi đó, với mọi số B đều tồn tại một cách thay đổi vị trí các số hạng của chuỗi để được chuỗi mới có tổng là B.

3.5 Chuỗi hàm

Định nghĩa 3.39 Cho một dãy các hàm số $u_1(x), u_2(x), \ldots$ cùng xác định trên một tập $D \subseteq \mathbb{R}$. Tổng hình thức có dạng

$$u_1(x) + u_2(x) + \dots = \sum_{n=1}^{\infty} u_n(x)$$

được gọi là chuỗi hàm số (hay chuỗi hàm) trên D.

Ví dụ 3.40

a.
$$\sum_{n=1}^{\infty} \frac{1}{2n+1} \Big(\frac{1-x}{1+x}\Big)^n$$
 là một chuỗi hàm xác định trên $\mathbb{R}\setminus\{-1\}$.

b.
$$\sum_{n=1}^{\infty} \frac{1}{1+x^{2n}}$$
 là một chuỗi hàm xác định trên $\mathbb{R}.$

Định nghĩa 3.41

- 1. Nếu chuỗi số $\sum_{n=1}^{\infty}u_n(a)$ hội tụ thì điểm a được gọi là điểm hội tụ.
- 2. Tập hợp tất cả các điểm hội tụ được gọi là *miền hội tụ* của chuỗi hàm.

Ví dụ 3.42 Tìm miền hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} \Big(\frac{1-x}{1+x}\Big)^n$$

Giải. Giả sử chuỗi hàm hội tụ tại $a \neq -1$.

1. Đặt
$$u_n(a)=\frac{(-1)^n}{2n+1}\Big(\frac{1-a}{1+a}\Big)^n$$
 và $\sum_{n=1}^\infty u_n(a)$ là một chuỗi số hội tụ. Khi đó

$$\lim_{n \to \infty} \frac{|u_{n+1}(a)|}{|u_n(a)|} = \left| \frac{1-a}{1+a} \right| < 1.$$

- 2. Ta có $\left|\frac{1-a}{1+a}\right| < 1$ khi và chỉ khi a > 0.
- 3. Tại a=0, chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$ hội tụ theo tiêu chuẩn Leibnitz.
- 4. Tại a < 0, chuỗi $\sum_{n=1}^{\infty} u_n(a)$ phân kì.

Vậy miền hội tụ của chuỗi là $[0,+\infty)$.

Ví dụ 3.43 Tìm miền hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{1}{1+x^{2n}}$.

Giải. Giả sử chuỗi hàm hội tụ tại a.

• Đặt $u_n(a)=rac{1}{1+a^{2n}}$ và $\sum_{n=1}^\infty u_n(a)$ là một chuỗi số hội tụ. Ta có

$$\lim_{n \to \infty} \frac{|u_{n+1}(a)|}{|u_n(a)|} = \lim_{n \to \infty} \frac{1 + a^{2n}}{1 + a^{2n+2}} = \lim_{n \to \infty} \frac{1 + \frac{1}{a^{2n}}}{a^2 + \frac{1}{a^{2n}}} < 1.$$

- Nếu |a|>1 thì $\lim_{n\to\infty}\frac{|u_{n+1}(a)|}{|u_n(a)|}=\frac{1}{a^2}<1$
- Nếu |a|=1 thì $u_n(a)=rac{1}{2}$ nên chuỗi phân kì.
- Nếu |a| < 1 thì $\lim_{n \to \infty} u_n(a) = 1$ nên chuỗi phân kì.

Vậy miền hội tụ của chuỗi hàm là $(-\infty,-1)\cup(1,+\infty)$.

Ví dụ 3.44 Tìm miền hội tụ của chuỗi hàm

a.
$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{n}$$
 b. $\sum_{n=0}^{\infty} n! x^n$ c. $\sum_{n=0}^{\infty} \frac{x^n}{(2n)!}$ Giải.

.....

 		 	•	 •		 	 				•									 		٠.	•	 		 	•	 	
 		 			 •	 	 													 			•	 	 	 ٠.		 	
 		 				 	 													 			•	 	 	 		 	
 		 			 •	 	 													 			•	 	 	 		 	
 		 				 	 													 			•	 	 	 		 	
 		 				 	 													 			•	 	 	 		 	
 		 	•			 	 													 			•	 	 	 		 	
 		 			 •	 	 													 			•	 	 	 		 	
 		 		 •		 	 													 				 	 	 		 	
 		 		 •		 	 													 				 	 	 		 	

Định nghĩa 3.45 Chuỗi lũy thừa là chuỗi hàm có dạng

$$\sum_{n=0}^{\infty} a_n (x-c)^n \tag{1}$$

trong đó a_n, c là các hằng số. Nếu c = 0 thì chuỗi (1) có dạng

$$\sum_{n=0}^{\infty} a_n x^n \tag{2}$$

Mỗi chuỗi dạng (1) có thể đưa về dạng (2) bằng cách đặt x-c=t.

Định lý 3.46 Nếu chuỗi (2) hội tụ tại $a \neq 0$ thì nó hội tụ tuyệt đối tại mọi x thỏa mãn |x| < |a|. Nếu chuỗi (2) phân kỳ tại x = b thì chuỗi phân kỳ với mọi x thỏa mãn |x| > |d|.

Dịnh nghĩa 3.47 Số $r \geq 0$ được gọi là bán kính hội tụ của chuỗi (2) nếu chuỗi (2) hội tụ tuyệt đối trên (-r,r) và phân kì trong các khoảng $(-\infty,-r),(r,+\infty)$. Tại -r,r chuỗi (2) có thể hội tụ hoặc phân kì.

Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=0}^{\infty} a_n x^n$

1. Tìm bán kính hôi tu:

$$r=\lim_{n o\infty}rac{1}{\sqrt[n]{|a_n|}}$$
 hoặc $r=\lim_{n o\infty}rac{|a_n|}{|a_{n+1}|}.$

- Nếu $r=+\infty$ thì chuỗi lũy thừa đã cho hội tụ với mọi x.
- Nếu r=0 thì chuỗi lũy thừa đã cho phân kì với mọi $x\neq 0$.

2. Xét sự hội tụ của các chuỗi số (tại x = r, x = -r)

$$\sum_{n=0}^{\infty} a_n r^n \text{ và } \sum_{n=0}^{\infty} (-1)^n a_n r^n.$$

Ví dụ 3.48 Tìm miền hội tụ của chuỗi hàm

a.
$$\sum_{n=1}^{\infty} \frac{n!}{a^{n^2}} x^n$$
 $(a > 1)$ b. $\sum_{n=1}^{\infty} n^n x^n$ c. $\sum_{n=1}^{\infty} \frac{x^n}{n}$ d. $\sum_{n=1}^{\infty} \frac{(x-1)^n}{3^n \sqrt{n^2+1}}$

b.
$$\sum_{n=1}^{\infty} n^n x^n$$

c.
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

d.
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{3^n \sqrt{n^2+1}}$$

Giải. a. Tìm bán kính hội tụ

$$r = \lim_{n \to \infty} \frac{(n)! a^{(n+1)^2}}{a^{n^2} (n+1)!} = \lim_{n \to \infty} \frac{a^{2n+1}}{n+1} = +\infty.$$

Vậy chuỗi hàm đã cho hội tụ với mọi $x \in \mathbb{R}$.

b. Tìm bán kính hội tụ

$$r = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n^n}} = 0$$

Vậy chuỗi hàm đã cho hội tụ tại x=0.

c. Ta có bán kính hôi tu

$$r = \lim_{n \to \infty} \frac{n+1}{n} = 1.$$

Do đó chuỗi đã cho hội tụ trong -1 < x < 1.

Tại x=1, chuỗi đã cho có dạng

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Đây là chuỗi phân kì. Do đó chuỗi hàm phân kì tại x=1. Tại x = -1, chuỗi hàm có dạng

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Đó là chuỗi đan dấu hội tụ. Vậy chuỗi hàm đã cho hội tụ tại x=-1. Vậy miền hội tụ cần tìm là [-1,1)

3.6 Chuỗi Taylor và chuỗi Maclaurin

Định nghĩa 3.49 Cho f(x) là một hàm số có đạo hàm mọi cấp trong một khoảng chứa số a. Khi đó chuỗi Taylor sinh bởi f(x) tại x=a là

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

Chuỗi Maclaurin sinh bởi f(x) là

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x)^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

chuỗi Taylor sinh bởi f(x) tại x = 0.

Ví dụ 3.50 Tìm chuỗi Taylor sinh bởi $f(x) = \frac{1}{x}$ tại x = 2.

Giải. Tính các đạo hàm $f'(2), f''(2), f'''(2), \dots, f^{(n)}(2), \dots,$

$$f(x) = x^{-1}$$

$$f(2) = 2^{-1} = \frac{1}{2}$$

$$f'(x) = -x^{-2}$$

$$f'(2) = -2^{-2} = -\frac{1}{2^{2}}$$

$$f''(x) = 2!x^{-3}$$

$$\frac{f''(2)}{2!} = 2^{-3} = \frac{1}{2^{3}}$$

$$f^{(3)}(x) = -3!x^{-4} \qquad \frac{f^{(3)}(2)}{3!} = -2^{-4} = -\frac{1}{2^4}$$
$$f^{(n)}(x) = (-1)^n n! x^{-(n+1)} \qquad \frac{f^{(n)}(2)}{n!} = 2^{-(n+1)} = \frac{(-1)^n}{2^{(n+1)}}$$

Như vậy, chuỗi Taylor cần tìm là

$$f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \dots + \frac{f^{(n)}(2)}{n!}(x-2)^n + \dots$$
$$= \frac{1}{2} - \frac{1}{2^2}(x-2) + \frac{1}{2^3}(x-2)^2 + \dots + \frac{(-1)^n}{2^{n+1}}(x-2)^n + \dots$$

Khai triển Maclaurin một số hàm số

•
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3!} - \dots + (-1)^{n+1} \frac{x^n}{n!} + \dots$$

