1장. 물리학과 측정 (Physics and Measurement)

1.1 길이, 질량 그리고 시간의 표준

1.2 차원 분석

1.3 단위의 환산

1.4 어림과 크기의 정도 계산

1.5 유효 숫자

1장. 서론

- * 물리학(Physics)이란?
- 물리현상을 다루는 학문으로 보통 수학적으로 표현된다.
 - : 자연현상을 이해
- 분야: 역학, 전자기학, 양자역학, 고체물리, 입자물리...

: 물체가 받는 힘과 물체의 운동, 변형 사이의 관계를 분석(자유낙하, 힘의 평형, 진자운동 ...)

(예) 정역학, 동역학, 고체역학...

- * Why study Physics?
- 물리학은 물질과 물질 사이의 기본적인 상호작용을 다루기 때문에 모든 자연과학은 물리학 법칙을 기초로 세워진다.
- 물리학을 공부하면 다른 분야에서도 유용한 기술을 습득할 수 있다.

논리적이고 분석적 사고, 단순한 가정의 구성 능력 수학적 모형 만들기, 적절한 어림법의 사용 명확한 정의를 내릴 수 있는 능력, 문제 해결(problem-solving) 능력

- 중요한 기기나 자연 현상들이 물리학적 지식을 통해서 정확히 이해될 수 있다.

1.1 길이, 질량 그리고 시간의 표준

(Standards of Length, Mass, and Time)

- * 물리량(physical quantity)의 정의
- 물리 현상을 다루는데 필요한 개념 📥

길이
$$(l)$$
, 질량 (m) , 시간 (t) ,
속도 (v) , 가속도 (a) , 힘 (F) ...

- * 물리량의 단위
- 기본 물리량과 단위: 길이 (l), 질량(m), 시간(t)
- * MKS 단위계(SI 단위계):
- m, kg, s
- * cgs 단위계(가우스 단위계): cm, g, s
- 유도 물리량과 단위: 두 개 이상의 기본 단위로 이루어짐 📥

	속도 (v)	가속도(a)	힘 (F)
MKS	m/s	m/s ²	$kg \cdot m/s^2 = N$
cgs	cm/s	cm/s ²	$g \cdot cm/s^2 = dyne$

* 국제단위계

- -1960년 제11차 국제도량형총회에서 결정
- -우리나라: 1964년 1월 1일 계량법
- -2007년 제23차 국제도량형총회

질량, 전류, 온도, 질량에 대한 재정의

☞ SI 단위계

(SI System International Units)

양	명침	기호	정의
길이	미터 (meter)	m	빛이 진공에서 1/299,792,458초 동안 진행한 경로의 길이
질량	킬로그램 (kilogram)	kg	(변경 전) 킬로그램 원기(합금)의 질량 (변경 후) 플랑크 상수 h가 6.626 070 15*10 ⁻³⁴ [kg·m²·s ⁻²]가 되도록 하는 질량
시간	초 (second)	S	세슘-133 원자의 바닥 상태에 준위의 두 초미세 사이의 전이에 대응하는 복사선 9,192,631,770 주기의 시간

· kg 국제표준원기

- 1795년 섭씨 0도의 물 1cm³의 질량을 1g으로 정의
- 1798년 섭씨 4도의 물로 바꿈
- 표준 원기는 프랑스 파리 근처의 세브르(Sèvres)에 있는 국제도량형국에 보관 중, 백금(Pt, 89.9%) + 이리듐(Ir, 10.09%) 합금, 직경과 높이 약 39 mm의 원기둥 모양(1878년 제조)
- 국제도량형국, 국제도량형위원회, 국제문서보관소 책임자들이 각각의 열쇠를 동시에 꽂아야 열 수 있는 특수 금고에 보관, 1878년 제조된 후 지금까지 3회 금고 밖으로
- 한국: 국제고유번호 72번인 복제품 (한국표준과학연구원), 국제도량형국에 보내져 정기적으로 점검
- 최근, 이 원기의 무게가 50 마이크로 그램 줄어든 것으로 밝혀져 새로운 kg 정의가 필요, 2011년 10월 21일 제24차 국제도량형총회에서 kg에 대한 정의를 바꾸기로 결정
 - 1. 독일, 일본, 이탈리아, 호주 등 아보가드로 수 (6.02214199 x 10²³ mol⁻¹)
 - 2. 미국, 프랑스, 스위스, 캐나다 등 플랑크 상수 (6.62606876 x 10⁻³⁴ J s)

시간	초 (second)	S	세슘-133 원자의 바닥 상태에 준위의 두 초미세 사이의 전이에 대응하는 복사선 9,192,631,770 주기의 시간
암페어 전류		٨	(변경 전) 진공에서 이상적인 평행한 직선상 두 도체 사이에 매 미터당 2*10 ⁻⁷ [N]의 힘을 발생하게 하는 전류 크기
211	(ampere) A		(변경 후) 전자의 전하량이 e=1.602 176 634 * 10 ⁻¹⁹ [C]가 되도록 하는 전류
	<mark>몬도</mark> 캘빈 (kelvin)		(변경 전) 물의 삼중점 온도와 절대영도 사이를 273.16으로 나눈 크기
몬도			(변경 후) 볼츠만 상수가 k=1.380 649 * 10 ⁻²³ [JK ⁻¹]가 되도록 하는 온도
	- P		(변경 전) 탄소-12 12 [g]의 원자 개수
물질의 양	몰 (mole)	mol	(변경 후) 아보가드로 상수가 N_A = $6.022\ 140\ 76 * 10^{23} [mol^{-1}]$ 이 되도록 하는 물질의 양
빛의 세기 (광도)	칸델라 (candela)	cd	진동수 540*10 ¹² [Hz]의 단색광을 방출하는 광원의 복사도가 스테라디안당 1/638 [W]일 때의 광도

우리나라 표준-http://www.kriss.re.kr

표준시각 맞추기

HOME > 표준이란 > 표준시각 맞추기 > UTCk3.1

UTCk3,1

인터넷을 이용한 새 시각동기 프로그램

UTCk3,1

다운로드

윈도우 비스타 및 윈도우 7 에서 UTCK 버전 3.1 동기시키는 방법

국제고유번호가 No.72 이중 유리 덮개 속에 보관 백금 90%-이리듐 10%의 합금 모양은 높이 = 직경 = 39mm인 실린더 1 989년 국제 도량형국(BIPM)에서 제작하여 한국에 배포 1992 BIPM 초기교정을 받아 1993년 한국표준과학연구원에 도입

우리나라 표준-http://www.kriss.re.kr

길이, 질량, 시간표준의 역사

저자 : 로버트 P. 크리스

(Robert P. Crease)

미국 뉴욕 스토니브룩 대학 철학과 교수

역자: 노승영

출판사 : 에이도스

출간일: 2012년 06월 01일

"욕망, 권력, 문화, 세계화 그리고 과학····· 측정은 인류 문명을 이해하는 핵심 키워드!"

에이도스

국제 단위계와 가우스 단위계에서 10의 거듭제곱을 나타내는 접두사와 약자를 이용하여 물리량을 표현!!

1보다 큰 접두사				
배수	접두어	기호		
10 ²⁴	요타	Υ		
10 ²¹	제타	Z		
10 ¹⁸	엑사	Е		
10 ¹⁵	페타	Р		
10 ¹²	테라	Т		
10 ⁹	기가	G		
10 ⁶	메가	М		
10 ³	킬로	k		
10 ²	헥토	h		
10 ¹	데카	da		

1보다 작은 접두사				
배수	접두어	기호		
10 ⁻¹	데시	d		
10 ⁻²	센티	С		
10 ⁻³	밀리	m		
10 ⁻⁶	마이크로	Щ		
10 ⁻⁹	나노	n		
10 ⁻¹²	피코	р		
10 ⁻¹⁵	펨토	f		
10 ⁻¹⁸	아토	а		
10 ⁻²¹	젭토	Z		
10 ⁻²⁴	욕토	У		

예) 10의 거듭제곱을 이용하여 괄호 안에 적당한 값을 찾으시오.

(1) 20cm = (?) nm

(2) $3 \text{kg} \cdot \text{m/s}^2 = ($?) $\text{g} \cdot \text{cm/s}^2$

풀이 첫째, kg을 g으로 바꾼다. $1 \text{kg} = 10^3 \text{g}$

$$3kg \cdot m/s^2 = 3 \times 10^3 g \cdot m/s^2$$

둘째, m를 cm로 바꾼다. $1m = 10^2 cm$

 $3 \times 10^{3} \,\mathrm{g \cdot m/s^{2}} = 3 \times 10^{3} \times (10^{2}) \,\mathrm{g \cdot cm/s^{2}} = 3 \times 10^{5} \,\mathrm{g \cdot cm/s^{2}}$

측정된 여러 가지 길이의 어림값

길이, 질량, 시간의 근사값

표 1.1 여러 가지 측정된 길이들의 근사값

	길 이(m)
지구로부터 가장 먼 퀘이사까지의 거리	1.4×10^{26}
지구로부터 가장 먼 은하까지의 거리	9×10^{25}
지구로부터 가장 가까운 큰 은하(M31, 안드로메다은하)까지의 거리	2×10^{22}
태양으로부터 가장 가까운 별(알파 센타우리)까지의 거리	4×10^{16}
1광년	9.46×10^{15}
지구의 평균 공전 궤도 반지름	1.50×10^{11}
지구로부터 달까지의 평균 거리	3.84×10^{8}
적도에서 북극까지의 거리	1.00×10^{7}
지구의 평균 반지름	6.37×10^{6}
지구 주위를 도는 전형적인 인공위성의 고도	2×10^5
미식 축구장의 길이	9.1×10^{1}
집파리의 크기	5×10^{-3}
가장 작은 먼지 입자의 크기	$\sim 10^{-4}$
살아있는 유기체의 세포 크기	$\sim 10^{-5}$
수소 원자의 지름	$\sim 10^{-10}$
원자핵의 지름	$\sim 10^{-14}$
양성자의 지름	$\sim 10^{-15}$

가장 먼 은하

- -2014년 3월 1일
- -프랑스 국립과학연구센터
- -아벨 1835 IR 1916
- -132억3000만광년
- -3000만광년 (지구은하계의 1/10)

길이, 질량, 시간의 근사값

우리 은하와의 충돌 -시속 40만 km로 접근 (총알시속 3,500km의 114배)

-충돌확률 100 %

-두 은하사이의 간격 : 200만 광년 (36억년 후)

길이, 질량, 시간의 어림값

[여러 가지 시간의 어림값]

	시간 간격(s)
우주의 나이	5×10^{17}
지구의 나이	1×10^{17}
대학생의 평균 나이	6×10^{8}
1년	3×10^7
하루	9×10^{4}
심장의 정상 박동 시간	8×10^{-1}
가청 음파의 주기	1×10^{-3}
대표적인 라디오파의 주기	1×10^{-6}
고체 원자의 진동 주기	1×10^{-13}
가시광선의 주기	2×10^{-15}
핵 충돌 지속 시간	1×10^{-22}
빛이 양성자를 통과하는데 걸리는 시간	3×10^{-24}

[여러 가지 질량의 어림값]

	질량(kg)		질량(kg)
관측 가증한 우주	1×10^{52}	사람	7×10^{1}
은하 성단	7×10^{41}	개구리	1×10^{-1}
태양	2×10^{30}	모기	1×10^{-5}
지구	6×10^{24}	박테리아	1×10^{-15}
달	7×10^{22}	수소 원자	2×10^{-27}
상어	1×10^{2}	전자	9×10^{-31}

물질과 모형세우기

* 원자구조

	원자핵(nucleus	;) +	전자(electron)
--	-------------	-------------	--------------

: 양성자(proton), 중성자(neutron)

- 양성자: 전자와 전하량의 크기는 같지만 부호가 반대인 전하
- 중성자: 전기적 성질을 갖고 있지 않으며 질량은 양성자와 같다.
- 양성자와 중성자로 구성된 원자핵은 양의 전기를 띄고 있다.

* 쿼크(quark)

- 종류: 위(up), 아래(down), 기묘(strange), 맵시(charm), 바닥(bottom), 꼭대기(top)
- 양성자는 2개의 위(up) 쿼크와 1개의 아래(down) 쿼크로 구성 중성자는 1개의 위(up) 쿼크와 2개의 아래(down) 쿼크로 구성

1.2 차원 분석 (Dimensional Analysis) Length [L] Mass [M] Time [T]

* 차원(dimension)

- 기본 물리량 단위의 기본적 형태

* 차원 분석(dimensional analysis)

- 차원을 대수적인 양으로 취급하여 물리량 사이의 관계를 추측, 확인

☞ 차원이 없는 물리량

- 각을 표시하는 '도(degree), 라디안(rad)'은 차원이 없다.

☞ 단위와 차원

<라디안(rad)의 정의>

$$\theta = \frac{s}{r} rad, \ s = 2\pi r$$

$$\rightarrow \theta = 2\pi rad = 360^{\circ}$$

$$\therefore 1 rad = \frac{360^{\circ}}{2\pi} = 57.3^{\circ}$$

'각'은 차원이 없다!!!

Quiz

-에라토스테네스 Radian을 이용한 지구의 크기 측정

<라디안(rad)의 정의>

$$\theta = \frac{s}{r} rad, \ s = 2\pi r$$

$$\rightarrow \theta = 2\pi rad = 360^{\circ}$$

$$\therefore 1 rad = \frac{360^{\circ}}{2\pi} = 57.3^{\circ}$$

'각'은 차원이 없다!!!

예제 1.1) 관계식 찾기

v = at 가 차원적으로 옳음을 보여라. 여기서 \vee 와 \vee_0 는 속도이고, a 는 가속도, t 는 시간을 나타낸다.

풀이

(식의 좌변) 속도
$$u$$
 의 차원: $\left\lceilrac{ extsf{L}}{ extsf{T}}
ight
ceil$

(식의 좌변) 속도
$$v$$
 의 차원: $\left\lceil \frac{L}{T} \right
ceil$ (식의 우변) 속도 v 의 차원: $\left\lceil \frac{L}{T} \right\rceil$

가속도
$$a$$
 의 차원: $\left[rac{ ext{L}}{ ext{T}^2}
ight]$

시간 t 의 차원: T

$$v_0 + at \rightarrow \left[\frac{L}{T}\right] + \left[\frac{L}{T^2}\right] \times \left[T\right] = \left[\frac{L}{T}\right]$$

☞ 식의 좌변과 우변의 차원이 일치하므로 식은 차원적으로 옳다

예제 1.2 지수 법칙의 분석

원운동하고 있는 입자의 가속도a 를 속력v와 원의 반지름 r로 나타내어라

풀이

가속도
$$a$$
의 차원: $\left[rac{\mathbf{L}}{\mathbf{T}^2}
ight]$

속도
$$\nu$$
 의 차원: $\left\lfloor rac{\mathbf{L}}{\mathbf{T}} \right
floor$

T를 [a]에 대한 식에 대입한다.

$$\alpha = \left[\frac{\mathbf{L}}{\mathbf{T}^2}\right] = \frac{\mathbf{L}}{\left(\mathbf{L}/[v]^2\right)} = \frac{[v]^2}{\mathbf{L}}$$

L에 [r]을 대입하고 추측한다

$$\alpha = \frac{[v]^2}{[\mathbf{r}]} \longrightarrow \alpha = \frac{v^2}{\mathbf{r}}$$

1.3 단위의 환산 (Conversion of Units)

* 길이를 나타내는 단위들

예를 들어, 15.0 in. 를 cm 로 바꿀 때, 1 in. = 2.54 cm 이므로 다음과 같다.

15.0in. = 15.0in.
$$\times \frac{2.54 \text{ cm}}{\text{in.}} = 38.1 \text{ cm}$$

예제 1.3 운전자는 과속을 하고 있는가

제한 속력이 75.0 mi/h인 고속도로에서 38.0 m/s의 속력으로 자동차가 달리고 있다. 이 자동차의 운전자는 제한 속력을 초과하였는가?

풀이

$$(38.0 \text{ m/s}) \left(\frac{1 \text{ mi}}{1609 \text{ m}} \right) = 2.36 \times 10^{-2} \text{ mi/s}$$

초를 시간으로 바꾼다.

$$(2.36 \times 10^{-2} \,\mathrm{mi/s}) \left(\frac{60 \,\mathrm{s}}{1 \,\mathrm{min}}\right) \left(\frac{60 \,\mathrm{min}}{1 \,\mathrm{h}}\right) = 85.0 \,\mathrm{mi/h}$$

운전자는 제한 속력을 초과하고 있으므로, 속력을 줄여야 한다.

1.4 어림과 크기의 정도 계산

(Estimates and Order-of-Magnitude Calculations)

- 수학적 이유나 제한된 정보로 인하여 계산에 대한 정밀한 답을 얻기 어려운 경우 어림 계산을 이용
- 정확한 계산의 점검에도 이용

* 크기의 정도(order of magnitude)

- 10의 거듭 제곱 꼴로 나타낸 근사값, '~'의 기호로 표시
 - 예) 75kg인 사람: $\sim 10^2 \text{kg}$

어떤 양이 크기의 정도 3 증가했다: $10^3 = 1000$ 배 정도 증가했음.

예제 1.4 평생 동안의 호흡

1년을 분으로 어림하여 계산한다.

$$1 \text{ yr} \left(\frac{400 \text{ days}}{1 \text{ yr}}\right) \left(\frac{25 \text{ h}}{1 \text{ day}}\right) \left(\frac{60 \text{ min}}{1 \text{ h}}\right) = 6 \times 10^5 \text{ min}$$

평생 동안의 호흡 횟수를 어림으로 구한다.

호흡 횟수 = (10 breaths/min)
$$(4 \times 10^7 \text{ min})$$

= $4 \times 10^8 \text{ breaths}$

70년을 분으로 어림하여 계산한다.

분수 =
$$(70 \text{ yr})(6 \times 10^5 \text{ min/yr}) = 4 \times 10^7 \text{ min}$$

1.5 유효 숫자 (Significant Figures)

유효숫자(significant figure)

: '신뢰할 수 있는 숫자', '얼마나 정확한가'의 기준 정밀도

- ① 유효 숫자의 곱셈과 나눗셈
 - : 어떤 수들을 곱하거나 나누는 경우, 결과값의 유효 숫자는 ➡모든 숫자 중 가장 작은 자릿수의 유효 숫자와 같아야 한다.
- 예) 가로가 16.3cm 이고, 세로가 4.5cm 인 직사각 판의 넓이를 구하여라. 유효 숫자를 고려하시오. $S = (16.3cm) \times (4.5cm) = 73.35cm^2 \rightarrow S = 73cm^2$

- ② 유효 숫자의 덧셈과 뺄셈
 - : 어떤 수들을 더하거나 뺄 때, 결과값의 소수점 이하 자릿수는 모든 숫자 중 소수점 이하 자릿수가 가장 적은 경우와 같아야 한다.
 - <mark>다</mark> 예) 123+5.35=128.35 ├. → 유효 숫자를 고려하면 답은 128이 된다.
- ③ 마지막 유효 숫자의 바로 아래가 5미만이면 버리고 5이상이면 반올림한다.
- ④ 0.03 과 0.0075 같이 어떤 숫자에서 자릿수를 맞추기 위해서 사용되는 0은 유효 숫자가 아니다.
- ⑤ 과학적 표기법 □ 0.00015 의 유효 숫자가 두 자리이면 1.5×10⁻⁴,
 세 자리이면 1.50×10⁻⁴ 이다.

예) 다음 측정값의 유효숫자를 말하여라. (단, [] 안은 측정 기구의 최소 눈금의 단위이다.)

- (1) 1400m [100m] (2) 0.052kg [1g]
- (3) 31.4m [10cm] (4) 4050g [1g]

풀이

풀이

최소눈금이 나와 있는 경우에는 그 자리수까지가 유효숫자이다.

- (1) 1400m [100m] ---> 1,4
- (2) $0.052 \text{kg} = 52 \text{g} [1 \text{g}] \longrightarrow 5.2$
- (3) $31.4m = 3140cm [10cm] \longrightarrow 3,1,4$
- (4) 4050g [1g] ---> 4,0,5,0

예) 다음 식으로부터 전자의 에너지를 구하시 오. (유효숫자를 고려하시오.)

$$E = mc^2$$
 $m = 9.11 \times 10^{-31} \text{kg}$: 전자의 질량 $c = 3.0 \times 10^8 \text{ m/s}$: 빛의 속도

예) 과학적 표기법을 사용하고 유효숫자를 감안하여 지구의 밀도를 계산하여라.

$$m_{\text{reg}} = 5.98 \times 10^{24} \text{kg}, \ R_{\text{reg}} = 6.37 \times 10^6 \text{m}$$

물이 $E = (9.11 \times 10^{-31} \text{kg}) \times (3.0 \times 10^8 \text{ m/s})^2$ = $81.99 \times 10^{-15} \text{kg} \cdot \text{m}^2/\text{s}^2$

$$\therefore E = 82 \times 10^{-15} \,\mathrm{kg} \cdot \mathrm{m}^2/\mathrm{s}^2 = 82 \times 10^{-15} \,\mathrm{J}$$

밀도=
$$\frac{질량}{부피} = \frac{5.98 \times 10^{24} \text{ kg}}{\frac{4\pi}{3} \times (6.37 \times 10^6 \text{ m})^3}$$

$$\approx 5.52 \times 10^3 \text{ kg/m}^3$$
 :: 밀도 = $5.52 \times 10^3 \text{ kg/m}^3$

예제 1.5 카펫 깔기

카펫을 바닥에 까는 기술자들이 여러 가지 크기가 다른 방에 카펫을 깔려고 할 때 측정값이 정확하게 일치하지 않는 다고 한다. 표에 나타낸 (a) 연회장, (b) 회의실, (c) 식당의 넓이를 계산하고 (d) 각각의 방에 필요한 카펫의 전체 넓이를 계산하라.자릿수로 방의 넓이를 계산하라.

	길이(m)	너비(m)
연회장	12.71	3.46
회의실	4.822	5.1
식당	13.8	9

풀이 (12.71m) x (3.46m)=43.9766m²

유효 숫자의 개수가 가장 작은 측정값(3.46 m)이 세 개의 유효 숫자를 가지므로 최종 답은 44.0 m²

- * 유효 숫자의 곱셈과 나눗셈
 - : 어떤 수들을 곱하거나 나누는 경우, 결과값의 유효 숫자는모든 숫자 중 가장 작은 자릿수의 유효 숫자와 같아야 한다.
- * 마지막 유효 숫자의 바로 아래가 5미만이면 버리고 5이상이면 반올림한다.