Poisson Process

Definition: A Counting Process N(t) is a Poisson Process N(t) if

- # of arrivals in $(t_0,t_1]$, $N(t_1) N(t_0)$, is a Poisson RV with expected value $\lambda(t_1-t_0)$
- # of arrivals in each non-overlapping interval are independent random variable

1

Poisson Process

- Process rate $(\lambda) = E[N(t)] / t$
- $M = N(t_1) N(t_0) = Poisson RV$

$$P_{M}(m) = \begin{cases} \frac{[\lambda(t_{1}-t_{0})]^{m}}{m!} e^{-\lambda(t_{1}-t_{0})} & m = 0,1,2,... \\ 0 & \text{Otherwise} \end{cases}$$

Joint PMF

Theorem: Poisson Process N(t) of rate λ , Joint PMF of N(t₁),...,N(t_k), t₁ <...<t_k

$$P_{N(t_1)N(t_2)N(t_3)...N(t_k)}(n_1, n_2, n_3, ..., n_k)$$

$$= \begin{cases} \frac{\alpha_1^{n_1} e^{-\alpha_1}}{n_1!} \frac{\alpha_2^{(n_2 - n_1)} e^{-\alpha_2}}{(n_2 - n_1)!} ... \frac{\alpha_k^{(n_k - n_{k-1})} e^{-\alpha_k}}{(n_k - n_{k-1})!}, & 0 \le n_1 \le n_2 \le ... \le n_k \\ 0, & \text{otherwise} \end{cases}$$

$$\alpha_i = \lambda(t_i - t_{i-1})$$

-

Joint PMF

$$P_{N(t_{1})N(t_{2})N(t_{3})...N(t_{k})}(n_{1}, n_{2}, n_{3},...,n_{k})$$

$$= P_{N(t_{1})}(n_{1}) P_{N(t_{2})|N(t_{1})}(n_{2} | n_{1}) P_{N(t_{3})|N(t_{2})N(t_{1})}(n_{3} | n_{1}, n_{2}) \cdots$$

$$P_{N(t_{k})|N(t_{1})N(t_{2})...N(t_{k-1})}(n_{k} | n_{1}, n_{2},...,n_{k-1})$$

$$= P_{N(t_{1})}(n_{1}) P_{N(t_{2})|N(t_{1})}(n_{2} | n_{1}) P_{N(t_{3})|N(t_{2})}(n_{3} | n_{2}) \cdots$$

$$P_{N(t_{k})|N(t_{k-1})}(n_{k} | n_{k-1})$$

$$= \begin{cases} \frac{\alpha_{1}^{n_{1}} e^{-\alpha_{1}}}{n_{1}!} \frac{\alpha_{2}^{(n_{2}-n_{1})} e^{-\alpha_{2}}}{(n_{2}-n_{1})!} ... \frac{\alpha_{k}^{(n_{k}-n_{k-1})} e^{-\alpha_{k}}}{(n_{k}-n_{k-1})!}, \quad 0 \leq n_{1} \leq n_{2} \leq ... \leq n_{k} \end{cases}$$

$$= \begin{cases} \alpha_{1}^{n_{1}} e^{-\alpha_{1}} \frac{\alpha_{2}^{(n_{2}-n_{1})} e^{-\alpha_{2}}}{(n_{2}-n_{1})!} ... \frac{\alpha_{k}^{(n_{k}-n_{k-1})} e^{-\alpha_{k}}}{(n_{k}-n_{k-1})!}, \quad 0 \leq n_{1} \leq n_{2} \leq ... \leq n_{k} \end{cases}$$
otherwise
$$\alpha_{i} = \lambda(t_{i} - t_{i-1})$$

Example

A mobile station transmits data packet as Poisson process with rate 12 packets/sec

- Find PMF # of packets transmitted in the kth hour
- Find Joint PMF of # of packets transmitted in the kth hour and zth hour

Example

- Let $N_k = \#$ of packets transmitted in k^{th} hour
- # packets in each hour is IID

$$\begin{split} P_{Nk}(n) &= \sqrt{\frac{[12(3600\text{-}0)]^n \ e^{-12\,(3600\text{-}0)}}{n!}} \quad n = 0,1,2,.. \\ 0 & \text{Otherwise} \\ &= \sqrt{\frac{[43200]^n \ e^{-43200}}{n!}} \quad n = 0,1,2,.. \end{split}$$

Otherwise

Example

 Joint PMF of # of packets transmitted in the kth hour and zth hour

$$\begin{split} P_{N^k,N^z}(n_k,n_z) &= \begin{cases} \frac{\alpha_k^{\,n_k}\,e^{-\,\alpha_k}}{n_k!} & \frac{\alpha_z^{\,n_z}\,e^{-\,\alpha_z}}{n_z!} & n_k = 0,1,\dots \\ 0 & \text{Otherwise} \end{cases} \\ &= \begin{cases} \frac{\alpha^{(n_k+n_z)}}{n_k!\,n_z!} & e^{-\,2\alpha} & n_k = 0,1,\dots \\ n_z = 0,1,\dots & n_z = 0,1,\dots \\ 0 & \text{Otherwise} \end{cases} \\ &= \alpha_k = \alpha_z = \lambda \, T = 12(3600\text{-}0)] = 43200 \end{split}$$

Interarrival Time

Theorem: Poisson Process of rate λ , the interarrival times X_1, X_2, \dots are an iid random sequence with **Exponential PDF**

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{Otherwise} \end{cases}$$

9

Interarrival Time

Theorem: A Counting Process with independent exponential interarrival time $X_1, X_2, ...$ with $E[X_i] = 1/\lambda$ is a **Poisson Process** of rate λ

Brownian Motion Process

• A continuous time, continuous value random process

Definition: A Brownian Motion Process X(t) has the property that

- X(0) = 0
- For $\tau > 0$, $X(t + \tau) X(t) = Gaussian RV$ with $E[X(t+\tau) - X(t)] = 0$ and $Var[X(t+\tau) - X(t)] = \alpha \tau$ that is independent of X(t') for $t' \le t$

11

Brownian Motion Process

Gaussian RV

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Joint PDF

• **Theorem:** For the Brownian motion process X(t), joint PDF of $X(t_1),...,X(t_k)$

$$\begin{split} f_{X(t_1),\dots,X(t_k)}(x_1,\dots,x_k) \\ &= \prod_{n=1}^k \frac{1}{\sqrt{2\pi\alpha(t_n-t_{n\text{-}1})}} \; e^{\frac{-(x_n-x_{n\text{-}1})^2}{2\;\alpha(t_n-t_{n\text{-}1})}} \end{split}$$

13

Expected Value

$$\mathbf{X}(\mathbf{t}): \mathbf{X}(\mathbf{t}_1) \rightarrow \mathbf{f}_{\mathbf{X}(\mathbf{t}_1)}(\mathbf{x}) \rightarrow \mathbf{E}[\mathbf{X}(\mathbf{t}_1)]$$

Definition: The expected value of a stochastic process X(t) is the deterministic function

$$\mu_{x}(t) = E[X(t)]$$

Covariance of X and Y

Definition: $Cov[X,Y] = E[(X-\mu_x)(Y-\mu_Y)]$

$$\begin{split} Cov[X,Y] &= E[XY - \mu_x Y - \mu_Y X + \mu_x \, \mu_y] \\ &= E[XY] - \mu_x E[Y] - \mu_Y E[X] \, + \mu_x \, \mu_y \\ &= E[XY] - \mu_x \, \mu_y - \mu_x \, \mu_y + \mu_x \, \mu_y \end{split}$$

Theorem: $Cov[X,Y] = E[XY] - \mu_x \mu_y$

• High covariance = an observation of X provides an accurate indication of Y

. .

Autocovariance

Definition: The autocovariance function of a stochastic process X(t) is

$$C_X(t,\tau) = Cov[X(t),X(t+\tau)]$$

Note

• For
$$\tau = 0 \rightarrow C_X(t,0) = Var[X(t)]$$

Autocovariance

- Auto = self = same process
- For a same process X(t), in 2 different times t₁ = t and t₂ = t + τ
- For high covariance = a sample function, is unlikely to change in τ interval
- For near zero covariance = rapid change

How much the sample function is likely to change in the τ interval after t

17

Correlation

Definition: The correlation of X and Y is $r_{X,Y} = E[XY]$

Theorem: $Cov[X,Y] = r_{X,Y} - \mu_x \mu_y$

Autocorrelation

• **Definition**: The autocorrelation function of a stochastic process X(t) is

$$R_X(t,\tau) = E [X(t) X(t+\tau)]$$

19

Autocovariance & Autocorrelation

Theorem: The autocovariance and autocorrelation functions of a process X(t) satisfy

$$C_X(t,\tau) = R_X(t,\tau) - \mu_x(t) \; \mu_x(t+\tau)$$

Note:

Autocovariance \rightarrow use X(t) to predict a future $X(t+\tau)$

Autocorrelation → describe the power of a random signal

Random Sequence

For a discrete time process, the sample function is described by the ordered sequence of random variable $X_n = X(nT)$

Definition: A random sequence X_n is an ordered sequence of random variable X₀,X₁,...

2

Autocovariance & Autocorrelation of a Random Sequence

Definition: The autocovariance of a random sequence X_n is

$$C_{X}[m,k] = Cov[X_{m}, X_{m+k}]$$

Definition: The autocorrelation of a random sequence X_n is

$$R_{X}[m,k] = E[X_{m} X_{m+k}]$$

m and k are integers

Autocovariance & Autocorrelation of a Random Sequence

Stationary Process

- For a general random process X(t), normally, at t_1 : $X(t_1)$ has $pdf = f_{X(t_1)}(x)$ [depends on t_1]
- For a stationary random process X(t), at t_1 : $X(t_1)$ has $pdf = f_{X(t_1)}(x)$ [not depend on t_1]

Stationary Process

- = same random variable at all time
- = no statistical properties change with time

$$f_{X(t_1)}(x) = f_{X(t_1 + \tau)}(x) = f_X(x)$$

Stationary Process

Definition: A stochastic process X(t) is stationary iif for all sets of time $t_1, ..., t_m$ and any time different τ ,

$$\begin{split} f_{X(t_1),...,X(t_m)}(x_1,...,x_m) = \\ f_{X(t_1+\tau),...,X(t_m+\tau)}(x_1,...,x_m) \end{split}$$

25

Stationary Random Sequence

Definition: A random sequence X_n is stationary iif for any finite sets of time instants $n_1, ..., n_m$ and any time different k,

$$f_{X_{n_1,...,X_{n_m}}}(x_1,...,x_m) = f_{X_{n_1+k},...,X_{n_m+k}}(x_1,...,x_m)$$

Stationary Process

Theorem: A stationary process X(t),

$$\begin{split} & \mu_X(t) = \ \mu_X \\ & R_X(t,\tau) = R_X(0,\tau) = R_X(\tau) \\ & C_X(t,\tau) = R_X(0,\tau) - \mu^2_X = C_X(\tau) \end{split}$$

27

Stationary Random Sequence

Theorem: A stationary random sequence X_n , for all m

$$\begin{split} E[X_m] &= \mu_X \\ R_X[m.k] &= R_X[0,k] = R_X[k] \\ C_X[m,k] &= R_X[0,k] - \mu^2_X = C_X[k] \end{split}$$

Wide Sense Stationary

Definition: X(t) is a wide sense stationary random process iff for all t,

$$\begin{split} E[X(t)] &= \mu_X \\ R_X(t,\tau) &= R_X(0,\tau) = R_X(\tau) \end{split}$$

Definition: X_n is a wide sense stationary random sequence iff for all n,

$$E[X_n] = \mu_X$$

$$R_X[n,k] = R_X[0,k] = R_X[k]$$

Wide Sense Stationary

- For every stationary process or sequence, it is also wide sense stationary.
- However, if it is a wide sense stationary it may or may not be stationary.

Example

• For n = even

$$X_n = \pm 1$$
 with prob = $\frac{1}{2}$ (n = even)

• For n = odd

$$X_n = -1/3 \text{ with prob} = 9/10$$

$$X_n = 3$$
 with prob = $1/10$

- Stationary?
 - No
- Wide sense stationary?
 - Mean = 0 for all n
 - $-C_{x}(t,\tau)=0$ for $\tau>0$
 - $-C_X(t,\tau) = 1 \text{ for } \tau = 0$
 - Yes, it's wide sense stationary

Wide Sense Stationary

Theorem: For a wide sense stationary process X(t),

$$R_X(0) \ge 0$$

$$R_X(\tau) = R_X(-\tau)$$

$$\big|R_X(\tau)\big| \leq R_X(0)$$

Wide Sense Stationary

Theorem: For a wide sense stationary sequence X_n ,

$$\begin{split} R_X[0] &\geq 0 \\ R_X[k] &= R_X[-\tau] \\ |R_X[k]| &\leq R_X[0] \end{split}$$

Average Power

- From Ohm's Law: V = IR
- For v(t), i(t), $R \Omega$, the instantaneous power dissipated, P(t),

$$P(t) = v^2(t)/R = i^2(t)R$$

- For $R = 1 \Omega$, $P(t) = v^2(t) = i^2(t)$
- For a voltage or current is a sample function of random process, x(t,s)
 - \rightarrow P across 1 Ω resistor = $x^2(t,s)$

Average Power

- Define x²(t,s) as the instantaneous power of x(t,s)
- For a X(t), X²(t) is the instantaneous of power X(t)

Definition:

For a wide sense stationary process X(t),

$$R_X(0) = E[X^2(t)]$$

Homework

- 6.2.2
- 6.3.3
- 6.4.1
- 6.5.3
- 6.7.2
- 6.8.2