EE513 Audio Signals and Systems

Instructor: Dr. K.D. Donohue **Phone:** 859-257-4004 **Email:** donohue@engr.uky.edu

Offices: 201 Davis Marksbury Hours: By appointment https://kevin-uRL:http://www.engr.uky.edu/~donohue/

Bldg. and 469 FPAT <u>donohue.youcanbook.me/</u>

Background: Students should have engineering standing and have completed EE422 before taking this course (or equivalent experience with Matlab and have taken EE421G).

Expected Student Outcomes:

A student who has successfully completed this course should be able to:

- 1. Characterize digital audio systems with difference equations and transfer functions.
- 2. Characterize digital audio signals with correlation functions and power spectra.
- 3. Design systems for processing audio data for applications such as filtering, audio effects, and signal classification.
- 4. Know the fundamental principles of beamforming and acoustic imaging.
- 5. Program with mathematics software to implement and evaluate designs.
- 6. Solve multi-component problems related to audio signal processing.

Text: Class Notes and Assigned Articles.

Materials: Matlab will be needed for most assignments.

Grading: Final Project (1) 22%

Quizzes (4) 24% Project Assignments (4) 40%

Homework (7) 14% for undergraduate students

7% for graduate students

Paper Review (1) 7% for graduate students (not required for undergraduate students)

Grading scale: For undergraduates 100-90% = A, 90-80% = B, 80-70% = C, 70-60% = D, and 60-0% E.

For graduates 100-90% = A, 90-80% = B, 80-70% = C, 70-0% E.

Project Assignments: Project assignments involve designing, implementing, and demonstrating a solution to a posed problem. Time in class will be given to interact with other students and instructor to comment on code and problem solving/design process. Some assignments may require a short description of the results (a few paragraphs and figures), but also may require a short demonstration to the class and oral questions from the instructor. The final grade will have a common component based on the solution. The project assignments primarily assess all course outcomes.

Final Project: The final project will be to the other project assignments but will draw on multiple the topics from the class. This will address course outcomes 3, 5 and 6.

Quizzes: Quizzes will be given throughout the semester to test recently acquired skills / knowledge. In-class quizzes will typically involve problems that can be solved without the help of specialized computer software. Take-home quizzes will require the use of specialized software and the solutions are to be completed **independently**. There will likely be 5 quizzes, and the 4 highest quiz scores will be taken to compute the final grade. The quizzes primarily assess course outcomes 1 through 4.

Homework: Homework primarily involves problems assigned in the lecture notes and assesses outcomes 1 through 4.

Paper Review: For graduate students only, read a research paper (approved first by instructor) on audio signals/systems and write a critical report on it. The report must accurately summarize what the authors claim to show, describe their methods, site other related works that support/contradict the findings, and critically assess the degree to which they established their claims. The paper review primarily assesses outcomes 1 through 4.

Tentative Course Schedule EE513				
	Lecture Dates	Projects	Problems	Lecture Topics
1	1-11,13	Project 1 Due 1/20	Synthesize sound with Matlab (Problem in lecture note)	History/Introduction to Matlab's sound functions
2	1-18,20		HW 1 problems in lecture notes Due 1/27	DSP general models (Z-transforms and difference equations)
3	1- 23,25,27	Project 2 Due 2/3	Digital oscillator for a complex tone	Digital oscillators, Complex tones
4	1-30, 2-1,3		HW 2 problems in lecture notes Due 2/10	(Quiz 1) DFTs, Power spectra, Spectrograms, and correlation functions (graduate students: select review paper)
5	2-6,8,10		HW 3 problems in lecture notes Due 2/17	(Quiz2) Filter design
6	2- 13,15,17		HW 4 problems in lecture notes Due 2/24	(Quiz 3) Noise and distortion
7	2-20,22,24	Project 3 Due 3/6		Beamforming/Spatial Filtering/Acoustic Imaging
8	2-27,3-1,3			
9	3- 6,8,10		HW 5 problems in lecture notes Due 3/24	(Quiz 4) Speech (modeling sounds from human voice mechanics)
			Spring Break	
10	3-20,22,24		HW 6 problems in lecture notes Due 3/31	LPC analysis/synthesis and windowing
11	3-27,29,31	Project 4 Due 4/7		Voice analysis and modification detection of voice and unvoiced speech
12	4-3,5,7			
13	4 -10,12,14		HW 7 problems in lecture notes Due 4/21	
14	4-17,19,21	Final Project		(Quiz 5)
15	4-24,26,28		Review	
	Wednesday 5/3 1pm		Final Project Due 5/3 at 1pm	