Lecture 13: Physics-Informed Neural Networks (PINNs)

Sergei V. Kalinin

Building Linear Neuron

Input:
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

Weights:
$$\boldsymbol{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$$

Linear
$$z = w_1x_1 + ... + w_mx_m + b =$$

transform: $= w^Tx + b$

Output:
$$\sigma(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

From S. Raschka, Machine Learning with PyTorch and Scikit-Learn

Training Linear Neuron

- Initialize the weights and bias unit to o or small random numbers
- For each training example, **x(i)**:
- Compute the output value, $y(i) = w^T x(i) + b$
- Update the weights and bias unit: $w_j \coloneqq w_j + \Delta w_j$ and $b := b + \Delta b$
- Where $\Delta w_j = \eta (y^{(i)} \hat{y}^{(i)}) x_i^{(i)}$ and $\Delta b = \eta (y^{(i)} \hat{y}^{(i)})$

Each weight, w_i , corresponds to a feature, x_i , in the dataset,

- η is the **learning rate** (typically a constant between 0.0 and 1.0),
- $y^{(i)}$ is the **true class label** of the *i*th training example,
- $\hat{y}^{(i)}$ is the **predicted class label**

Putting Neurons Together

- Composed of multiple layers of artificial neurons.
- Each layer processes inputs received, applies a transformation (weights, biases, activation function), and passes the output to the next layer.
- Training a DNN involves adjusting weights and biases using backpropagation and a chosen optimization algorithm.
- The deep architecture enable the network to learn complex and abstract patterns in data.

Activation functions

Loss functions for supervised ML

A loss function, also known as a cost function, quantifies the difference between the predicted values and the actual target values. It guides the training of neural networks by providing a measure to minimize during optimization

Mean Squared Error (MSE): Used for regression problems.

$$MSE = rac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Measures the average squared difference between actual and predicted values

Cross-Entropy Loss: Used for classification problems.

$$CE = -\sum_{i=1}^{N} y_i \log(\hat{y}_i)$$

Measures the performance of a classification model whose output is a probability value between o and 1

- Loss functions provide the primary feedback signal for learning.
- The choice of loss function can significantly affect the model's performance and convergence

Backpropagation

Backpropagation is a mechanism used to update the weights in a neural network efficiently, based on the error rate obtained in the previous epoch (i.e., iteration). It effectively distributes the error back through the network layers

- Forward Pass: Calculating the predicted output, moving the input data through the network layers
- Loss Function: Determining the error by comparing the predicted output to the actual output
- **Backward Pass:** Computing the gradient of the loss function with respect to each weight by the chain rule
- **Weight Update:** Adjusting the weights of the network in a direction that minimally reduces the loss (gradient descent)

 $Input\ Data \rightarrow Forward\ Pass \rightarrow Calculate\ Loss \rightarrow Backward\ Pass \rightarrow Update\ Weights$

https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c

Neural Network Based Regression

$$Loss_{reg} = rac{1}{N} \sum_{i}^{N} (f(x_i| heta) - y_i)^2 + \lambda || heta||_2^2$$

https://medium.com/@theo.wolf/physics-informed-neural-networks-a-simple-tutorial-with-pytorch-f28a890b874a

Physics-Informed Neural Networks

We have:

- a differential equation g(x, y) = 0,
- some data $\{x_i, y_i\}$ and
- a neural network $f(x \mid \theta)$ that approximates y.

For a PINN, we would get a loss function that looks like the following,

$$Loss_{PINN} = \underbrace{\frac{1}{N}\sum_{j}^{N}||f(x_{j}| heta) - y_{j}||_{2}^{2}}_{ ext{Data loss}} + \lambda \underbrace{\frac{1}{M}\sum_{i}^{M}||g(x_{i},f(x_{i},| heta))||_{2}^{2}}_{ ext{Physics loss}}$$

- Here x_i are *collocation* points. These can be any value we want them to be, usually you would want them to be in the range of values we are interested in.
- The x_i and y_i are our data.
- We can also add a parameter controlling the relative strength of the data loss function and the physics loss function, here we use λ .
- · And then just train as you would any other neural network.

https://medium.com/@theo.wolf/physics-informed-neural-networks-a-simple-tutorial-with-pytorch-f28a890b874a

PINNs are Very Recent

George Em Karniadakis

The Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics and Engineering
Verified email at brown.edu - <u>Homepage</u>

Math+Machine Learning Probabilistic Scientific Com... Stochastic Multiscale Mode...

TITLE	CITED BY	YEAR	
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations M Raissi, P Perdikaris, GE Karniadakis Journal of Computational physics 378, 686-707	13291	2019	
The WienerAskey polynomial chaos for stochastic differential equations D Xiu, GE Karniadakis SIAM journal on scientific computing 24 (2), 619-644	6034	2002	
Physics-informed machine learning GE Karniadakis, IG Kevrekidis, L Lu, P Perdikaris, S Wang, L Yang Nature Reviews Physics 3 (6), 422-440	5210	2021	
Microflows and nanoflows: fundamentals and simulation G Karniadakis, A Beskok, N Aluru Springer Science & Business Media	4160 *	2006	
Spectral/hp element methods for computational fluid dynamics G Karniadakis, SJ Sherwin Oxford University Press	3645	2005	
Discontinuous Galerkin methods: theory, computation and applications B Cockburn, GE Karniadakis, CW Shu Springer Science & Business Media	3100 *	2012	
Learning nonlinear operators via DeepONet based on the universal approximation theorem of	2248	2021	

	All	Since 2020
Citations	125349	79944
h-index	149	106
i10-index	646	509
		26000
	19500	
	13000	
	a IIIII	6500
2018 2019 2020 20	021 2022 2023 2	024 2025
Public access		VIEW ALL
24 articles		312 articles
not available		available
Based on funding	mandates	
Co-authors		

FOLLOW

NNs and PINNs for a simple cooling problem

$$rac{dT(t)}{dt} = r(T_{env} - T(t))$$

T(t): temperature

 T_{env} : temperature of the environment

r: cooling rate

NNs Solution

$$rac{dT(t)}{dt} = r(T_{env} - T(t))$$

T(t): temperature

 T_{env} : temperature of the environment

r: cooling rate

Setting up PINN

$$g(t,T) = rac{dT(t)}{dt} - r(T_{env} - T(t)) = 0$$
 $g(t,f(t| heta)) = rac{df(t| heta)}{dt} - r(T_{env} - f(t| heta))$ $Loss_{PINN} = \underbrace{rac{1}{10}\sum_{j}^{10}(f(t_{j}| heta) - T_{j})^{2}}_{ ext{data loss}} + \lambda \underbrace{rac{1}{M}\sum_{i}^{M}\left(rac{df(t_{i}| heta)}{dt_{i}} - r(T_{env} - f(t_{i}| heta))
ight)^{2}}_{ ext{physics loss}}$

To take the derivative of your neural network, *torch.autograd* module has a function called *grad()* which does exactly that (you can even take higher order derivatives). Just ensure that *create_graph* is set to True

PINN for known cooling rate

But what if the cooling rate is unknown?

Our differential equation is then $g(t, T \mid r) = o$ where r is unknown. Thanks to PyTorch, all we need to do is just one small change: add r as a differentiable parameter.