Modèle de données modélisation

Contraintes d'intégrité modélisation

Algèbre relationnelle interrogation

Introduction aux Bases de Données - Théorie des BD relationnelles

Galilée Résentation tabulaire d'une base de données

Aeroport	ld	Nom	Ville	Dept	CapaciteAn
	ORY	Orly	Orly	94	32 000 0000
	CDG	Charles de Gaulle	Roissy	93	43 500 000
	MRS	Provence	Marseille	13	1000000
	MTP	Fréjorgues	Montpellier	34	500000

Liaison	Id_Dép	ld₋Arr
	ORY	MRS
	ORY	MTP
	CDG	MRS
	MRS	ORY
	MRS	CDG

Ingénieurs

Information

- explicite : Orly est dans le 94
- implicite: On peut aller du 94 au 13 en avion.

Introduction aux Bases de Données - Théorie des BD relationnelles

Schémas - Instances de relations

Aeroport	ld	Nom	Ville	Dept	CapaciteAn
	ORY	Orly	Orly	94	32 000 0000
	CDG	Charles de Gaulle	Roissy	93	43 500 000
	MRS	Provence	Marseille	13	1000000
	MTP	Fréjorgues	Montpellier	34	500000

Liaison	$Id_{-}D\acute{ep}$	Id_Arr
	ORY	MRS
	ORY	MTP
	CDG	MRS
	MRS	ORY
	MRS	CDG

Base de données

- 2 schémas de relations
 Aeroport(Id, Nom, Ville, Dept, CapaciteAn)
 et Liaison(Id_Dep, Id_Arr)
- 2 tables ou instances de relation

Introduction aux Bases de Données - Théorie des BD relationnelles

Premières définitions (1)

Définition

Un schéma de relation est formé

- **1** d'un nom R (Aeroport, Liaison,...)
- d'un ensemble d'attributs Att(R) (Att(Aeroport) = (Id, Nom, Ville, Dept, CapaciteAn), ...)
- pour chaque attribut A ∈ Att(R), d'un domaine ou ensemble de valeurs Dom(A) (Dom(Nom) = chaînes de caractères de longueur 20, ...)
 - L'arité de R est le cardinal de Att(R), la cardinalité d'une instance r de R est le nombre de n-uplets de l'instance.
 - NB : deux relations différentes peuvent avoir le même schéma.

Introduction aux Bases de Données - Théorie des BD relationnelles

Premières définitions (2)

Définition

Un schéma de base de données relationnelle \mathcal{R} est un ensemble (fini) de schémas de relations $\{R_1, \dots, R_m\}$.

Définition

Soit la relation R de schéma $(A_1:dom_1,\ldots,A_n:dom_n)$. Une instance r du schéma de R est un sous-ensemble fini (éventuellement vide) de n-uplets de $dom(A_1) \times dom(A_n)$.

Définition

Soit une base de données \mathcal{R} , une instance de \mathcal{R} est un ensemble d'instances (éventuellement vides) pour chaque relation R_i $(1 \le i \le m)$ de \mathcal{R} .

Introduction aux Bases de Données - Théorie des BD relationnelles

Contraintes d'intégrité

Une base de données sur \mathcal{R} , \mathcal{A} et \mathcal{D} est définie par

- un schéma sur \mathcal{R} , \mathcal{A}
- une instance de son schéma
- un ensemble de contraintes d'intégrité sur ce schéma

Types de contraintes d'intégrité

- Dépendances fonctionnelles (df) : dépendance entre valeurs d'attributs d'une relation
 - Employe(Nom, Prenom, Fonction, Service), df Nom, Prenom → Service : le nom et le prénom d'une personne déterminent son service
- Dépendances d'inclusion (di) : dépendance entre valeurs d'attributs d'une ou deux relations
 - Annuaire(Nom, Prenom) \subseteq Employe(Nom, Prenom): n'apparaissent dans l'annuaire que des employés de l'entreprise référencés dans Employe.

Dépendances d'inclusion

- U ensemble d'attributs, R[U]: restriction du schéma R aux attributs U ($U \subseteq att(R)$). t[U] est la valeur du n-uplet t "projeté" sur l'ensemble d'attributs U
- Une dépendance d'inclusion (di) indique une dépendance entre valeurs d'attributs de relation(s) différente(s)
- Portée : une di est définie sur deux relations R et S (R pouvant êre égale à S).
- $R[A_1, \ldots, A_n] \subseteq S[B_1, \ldots, B_n]$ avec
 - $\{A_1, \ldots, A_n\} \subseteq att(R)$
 - $\{B_1,\ldots,B_n\}\subseteq att(S)$
 - pour tout $A_i \in R$, $B_i \in S$: $dom(A_i) \subseteq dom(Bi)$

Introduction aux Bases de Données - Théorie des BD relationnelles

Dépendances d'inclusion

• Sémantique intuitive : les valeurs de A_1, \ldots, A_n de R sont des valeurs de B_1, \ldots, B_n de S.

Définition

si $R[A_1, ..., A_n] \subseteq S[B_1, ..., B_n]$ est une dépendance d'inclusion définie sur deux relations R et S, alors pour toutes instances valide r, s de R et S

Pour tout $t_1 \in r$, il existe $t_2 \in s$ tq $t_1[A_1, \dots, A_n] = t_2[B_1, \dots, B_n]$

r	A	В	С
	a ₁	b_1	c ₁
	a ₁	b_2	c ₂
	a ₂	b ₃	c ₃

5	A	В	D
	a ₁	<i>b</i> ₁	d_1
	a ₁	<i>b</i> ₂	d_2
	a ₂	<i>b</i> ₃	c ₃
	a ₃	<i>b</i> ₄	C4

Introduction aux Bases de Données - Théorie des BD relationnelles

Dépendance fonctionnelle : définition

- Une dépendance fonctionnelle indique une dépendance entre valeurs d'une même relation R
- Sa portée est la relation R
- Une dépendance fonctionnelle se note $X \to Y$ et se lit X détermine Y
- X et Y sont des sous-ensembles d'attributs (éventuellement vides) tels que $X \cup Y \subseteq Att(R)$
- Intuition: la df X → Y associée à une relation R indique que tous les n-uplets de R qui ont la même valeur sur les attributs de X ont aussi la même valeur sur les attributs de Y...

Introduction aux Bases de Données - Théorie des BD relationnelles

pépendance fonctionnelle : définition

Définition

Si $X \to Y$ est une dépendance fonctionnelle définie sur une relation R alors toute instance valide r du schéma de R satisfait $X \to Y$:

$$\forall t_1, t_2 \in r \text{ tq } t_1[X] = t_2[X] \text{ alors } t_1[Y] = t_2[Y]$$

Exemple

Soit la relation Employ'e(Nom, Pr'enom, Fonction, Service) et la dépendance fonctionnelle $Nom, Pr\'enom \rightarrow Service$. Une personne est associ\'ee à un seul service (mais peut avoir plusieurs fonctions dans ce service).

Introduction aux Bases de Données - Théorie des BD relationnelles

Ingénieurs Galilée

Dépendance fonctionnelle : exemple

• Instance d'*Employ* é satisfaisant la df *Nom*, *Prénom* → *Service*

Employé	Nom	Prénom	Fonction	Service
	Rouveirol	Céline	Enseignant	A^3
	Létocart	Lucas	Enseignant	AOC
	Rouveirol	Céline	Chercheur	A^3
	Létocart	Lucas	Chercheur	AOC

• Instance d'*Employé* ne satisfaisant pas la df précédente

Employé	Nom	Prénom	Fonction	Service
	Rouveirol	Céline	Enseignant	A^3
	Létocart	Lucas	Enseignant	AOC
	Rouveirol	Céline	Chercheur	LCR
	Létocart	Lucas	Chercheur	AOC

Introduction aux Bases de Données - Théorie des BD relationnelles

Fermeture d'un ensemble d'attributs

Définition

Soit R un schéma de relation, soit \mathcal{F} un ensemble de dfs portant sur R, et $X \subseteq Y \subseteq Att(R)$. Y est la fermeture de X dans R étant donné \mathcal{F} si et ssi Y est le plus grand ensemble d'attributs tel que $X \to Y$. On note la fermeture de X étant donné \mathcal{F} par X^+ .

Algorithme de calcul de X^+

```
1: Fonction FermetureX(R, \mathcal{F} \text{ et } X)
       X^{+} := X
2:
       Tant que X^+ n'atteint pas un point fixe Faire
3:
            Pour Tout f: Z \to A \in \mathcal{F} Faire
4.
                Si Z \subseteq X^+ Alors
5:
                    X^+ \cdot = X^+ \sqcup A
6:
7:
                Fin Si
            Fin Pour
8:
        Fin Tant que
```

Introduction aux Base de Données - X Théorie des BD relationnelles

Clés et sur-clés

Le calcul de fermeture permet d'exhiber les clefs d'une relation.

• Idée : une clef de la relation R est un sous-ensemble minimal d'attributs X de R qui permet de distinguer deux n-uplets d'une instance r de R : $\forall t_1, t_2 \in r, t_1[X] \neq t_2[X]$.

Définition

Les sur-clefs d'une relation R avec son ensemble \mathcal{F} de dfs sont les ensembles d'attributs $X\subseteq att(R)$ tels que $X^+=att(R)$ ou $X\to att(R)\in F^+$.

X est une clef s'il n'existe pas de $Y \subset X$ tel que Y est une sur-clef.

Exemple

Soit la relation Service(Nom, Division, Equipe) avec $\mathcal{F} = \{Nom \rightarrow Division, Equipe \rightarrow Division, Equipe \rightarrow Nom\}.$ $\{Equipe\}$ est une clef, $\{Nom, Equipe\}$, $\{Division, Equipe\}$ et Introduction parts Bases de Dipposes Div Théorie des BD, relation relation elected.

Clé étrangère

• Une clé étrangère est une dépendance d'inclusion $R(X) \subseteq S(Y)$ telle que Y est la clé primaire de S.

Exemple

Soit la relation Service(Nom, Division, Equipe) avec $\mathcal{F} = \{Nom \rightarrow Division, Equipe \rightarrow Division, Equipe \rightarrow Nom\}$ et la relation Employe(NomE, PrenomE, Equipe) avec le di $Employe(Equipe) \subseteq Service(Equipe)$. $\{Equipe\}$ est une clé de Service et Equipe est une clé étrangère de Employe.

Introduction aux Bases de Données - Théorie des BD relationnelles

Galilé Page du modèle E/A au modèle relationnel

- On passe d'un modèle disposant de deux structures (entité association) à un modèle ne disposant que d'une seule structure (la relation)
- On applique un ensemble de règles qui garantissent la cohérence sémantique entre le modèle E/A et le modèle relationnel

Introduction aux Bases de Données - Théorie des BD relationnelles

Ingénieurs

Entités

- Chaque entité du modèle E/A devient une relation de même nom, avec les mêmes attributs que l'entité
- L'identifiant de l'entité devient la clef de la relation Les attributs n'appartenant pas à la clef ne doivent êre en df qu'avec la clef et toute la clef.

Introduction aux Bases de Données - Théorie des BD relationnelles

Clés

- Dans un nuplet d'une table une valeur NULL représente une valeur indéterminée
- Impossible d'avoir des valeurs NULL dans les clefs!!!
- Requêe : quelles sont les voitures de couleur grise : 843 BGZ
 94 appartient-elle à la réponseà

Voiture	NIM	Marque	Couleur
	234 AVF 75	Peugeot	Rouge
	843 BGZ 94	Renault	NULL
	542 ZZ 89	Nissan	gris
	621 GTS 93	Renault	bleu

Introduction aux Bases de Données - Théorie des BD relationnelles

Clés étrangères

- Soient R et S deux relations. L'ensemble d'attributs X de R forme une clef étrangère de R ssi il existe une contrainte d'inclusion R[X] ⊆ S[Y] telle que Y est la clef de S.
- On peut avoir des valeur NULL dans les clefs étrangères!!!

 $\begin{aligned} & \mathsf{Batiment}(\underline{\mathsf{numero}}, \mathsf{adresse}) \\ & \mathsf{SalleDeCours}(\underline{\mathsf{nom}}, \mathsf{capacite}, \mathsf{equipement}, \mathsf{numero}) \\ & \mathsf{Salle} \ \mathsf{de} \ \mathsf{cours}[\mathsf{numero}] \subseteq \mathsf{Batiment}[\mathsf{numero}] \end{aligned}$

Introduction aux Bases de Données - Théorie des BD relationnelles

Associations

Association de type n-n

- l'association du modèle E/A devient une relation de même nom, avec les mêmes attributs que ceux de l'association
- la clef est la concaténation des clefs de chaque relation qui sont aussi des clefs étrangères

 $\begin{aligned} & \mathsf{Cours}(\underline{\mathsf{code}}, \, \mathsf{libell\'e}) \\ & \mathsf{Etudiant}(\underline{\mathsf{num\'ero}}, \mathsf{nom}, \mathsf{pr\'enom}, \mathsf{datenaissance}) \\ & \mathsf{Inscription}(\underline{\mathsf{num\'ero}}, \underline{\mathsf{code}}, \mathsf{ann\'ee}, \mathsf{semestre}) \\ & \mathsf{Inscription}[\underline{\mathsf{num\'ero}}] \subseteq \mathsf{\'etudiant}[\mathsf{num\'ero}] \\ & \mathsf{Inscription}[\mathsf{code}] \subseteq \mathsf{cours}[\mathsf{code}] \end{aligned}$

Introduction aux Bases de Données - Théorie des BD relationnelles

Association de type 1-n

- La clef côté *n* devient la clef étrangère côté 1
- Les attributs de l'association vont côté 1

Introduction aux Bases de Données - Théorie des BD relationnelles

Association de type 1-n SANS NULL

- On fait de l'association une relation
- Les clefs des entités sont les clefs (étrangères), la clé de la relation codant l'association est la clé côté 1.

Enseignant($\underline{\text{num\'ero}}$,nom,prénom,adresse) Cours($\underline{\text{code}}$,libellé) Assurer(numéro, $\underline{\text{code}}$,volume) Assurer[numéro] \subseteq Enseignant[numéro] Assurer[code] \subset Cours[code]

Introduction aux Bases de Données - Théorie des BD relationnelles

Entités faibles

- La clef côté n devient
 - la clef avec l'identifiant de l'entité faible
 - une clef étrangère côté 1

Introduction aux Bases de Données - Théorie des BD relationnelles

Association de type 1-1

- Si les 2 cardinalités minimales sont 1, on peut fusionner les 2 entités
- Si les 2 cardinalités minimales sont à 0
 - Les clefs deviennent clefs étrangères
 - Les clefs étrangères peuvent prendre la valeur NULL

AVEC NULL

Enseignant(<u>numéro</u>,nom,prénom,adresse,code) Cours(code,libellé)

Enseignant[code] ⊆ Cours[code]

Enseignant(numéro,nom,prénom,adresse)

Cours(code, libellé, numéro)

Cours[numéro] ⊆ Enseignant[numéro]

Introduction aux Bases de Données - Théorie des BD relationnelles

Association de type 1-1

1 cardinalité minimale à 0, sans NULL

Enseignant($\underline{num\acute{e}ro}$,nom, $pr\acute{e}nom$,adresse)
Cours(\underline{code} , $libell\acute{e}$)
Assurer($num\acute{e}ro$, \underline{code})
Assurer[$num\acute{e}ro$] \subseteq Enseignant[$num\acute{e}ro$]
Assurer[code] \subseteq Cours[code]

Ou
Enseignant($\underline{num\acute{e}ro}$,nom, $pr\acute{e}nom$,adresse)
Cours(\underline{code} , $libell\acute{e}$, $num\acute{e}ro$ NOT NULL)
Cours[$num\acute{e}ro$] \subseteq enseignant[$num\acute{e}ro$]

Introduction aux Bases de Données - Théorie des BD relationnelles

Association d'héritage

 Chaque sous-entité est transformée en une relation; la clef primaire de la sur-entité migre dans les relations issues des sous-entités et devient clef et clef étrangère

Personnel(<u>numIdent</u>, adresse, grade) Enseignant(<u>numIdent</u>, HeureCours) Chercheur(<u>numIdent</u>, NomLabo) Enseignant[numIdent] ⊆ Personnel[numIdent] Chercheur[numIdent] ⊆ Personnel[numIdent]

Introduction aux Bases de Données - Théorie des BD relationnelles

Ingénieurs

Galilée endances fonctionnelles impliquées (1)

- Toutes les dépendances fonctionnelles ne sont pas explicites!
- Certaines dfs sont impliquées par d'autres dfs.
- Exhiber ces dfs lors de la modélisation :
 - calcul des clefs des relations
 - découvrir que les dfs définies a priori pour une application à développer impliquent des dfs non souhaitées pour cette application
 - découvrir des dfs redondantes
 - . . .
- Exhiber ces dfs lors de la conception :
 - améliorer le schéma d'une base de données par normalisation (cf. partie du cours sur la normalisation)
 - . . .

Introduction aux Bases de Données - Théorie des BD relationnelles

Ingénieurs

Galilée Pendances fonctionnelles impliquées (2)

- Il existe un système qui permet de calculer toutes les dépendances impliquées d'un ensemble de dfs : le système d'Armstrong
- Les trois axiomes d'Armstrong sont :
 - lacktriangle Reflexivité : si $Y \subseteq X$ alors $X \to Y$
 - 2 Augmentation : si $X \to Y$ alors $XZ \to YZ$ pour tout Z
 - **3** Transitivité : si $X \to Y$ et $Y \to Z$ alors $X \to Z$
- Des règles additionnelles se déduisent des précédentes :
 - ① Union: si $X \to Y$ et $X \to Z$ alors $X \to YZ$
 - 2 Décomposition : si $X \to YZ$ alors $X \to Y$ et $X \to Z$
 - **1** Pseudo-transitivité : si $X \to Y$ et $YZ \to W$ alors $XZ \to W$
 - Augmentation à gauche : si $X \to Y$ alors $XZ \to Y$
- Le système d'Armstrong est correct et complet.

Introduction aux Bases de Données - Théorie des BD relationnelles

Ingénieurs

Galilée pendances fonctionnelles impliquées (3)

 Les axiomes d'Armstrong traduisent effectivement la sémantique des dfs.

Démonstration.

Preuve pour l'augmentation. Soient R une relation et F son ensemble de dfs associé contenant la df $X \rightarrow Y$. Soit r une instance valide de R ($r \models F$). Soient t_1 et t_2 deux n-uplets de rtels que $t_1[XZ] = t_2[XZ]$.

On cherche à démontrer que $t_1[YZ] = t_2[YZ]$.

Comme
$$t_1[XZ] = t_2[XZ]$$
 et $X \to Y$, et par définition des dfs, on a $t_1[XYZ] = t_2[XYZ]$, et donc $t_1[YZ] = t_2[YZ]$.

Introduction aux Bases de Données - Théorie des BD relationnelles

Galilée Pendances fonctionnelles impliquées (4)

 On retrouve les règles additionnelles par dérivation à partir des axiomes d'Armstrong

Démonstration.

Pour l'union : si $X \to Y$ et $X \to Z$ alors $X \to YZ$

- (1) $X \rightarrow Y$ donné
- (2) $X \rightarrow XY$ augmentation de (1)
- (3) $X \rightarrow Z$ donné
- (4) $XY \rightarrow YZ$ augmentation de (3)
- (5) $X \rightarrow YZ$ transitivité de (2) et (4)

Introduction aux Bases de Données - Théorie des BD relationnelles

de l'épersances fonctionnelles impliquées et fermeture

Définition

Ingénieurs

La fermeture d'un ensemble $\mathcal F$ de dépendances fonctionnelles (notée $\mathcal F^+$) d'une relation R est telle que $\mathcal F\models X\to Y$ ssi il existe $X\to X^+\in \mathcal F^+$ avec $Y\subseteq X^+$

Algorithme de calcul de fermeture d'un ensemble de dfs

- 1: Fonction Fermeture $Df(R, \mathcal{F})$
- 2: Retourner $\bigcup_{\forall X \subset Att(R)} \{X \to X^+\}$
- 3: Fin Fonction

Introduction aux Bases de Données - Théorie des BD relationnelles

Fermeture d'un ensemble de dfs

Exemple

```
\mathcal{F}^+=\{egin{array}{ll} \textit{Nom} 
ightarrow \textit{Nom}, \textit{Division}; \textit{Division}, \textit{Division}; \\ \textit{Equipe} 
ightarrow \textit{Equipe}, \textit{Division}, \textit{Nom}; \\ \textit{Nom}, \textit{Division} 
ightarrow \textit{Nom}, \textit{Division}; \\ \textit{Nom}, \textit{Equipe} 
ightarrow \textit{Nom}, \textit{Equipe}, \textit{Division}; \\ \textit{Division}, \textit{Equipe} 
ightarrow \textit{Division}, \textit{Equipe}, \textit{Nom}; \\ \textit{Nom}, \textit{Equipe}, \textit{Division} 
ightarrow \textit{Nom}, \textit{Equipe}, \textit{Division} \}
```

Introduction aux Bases de Données - Théorie des BD relationnelles

Expendances fonctionnelles, redondance

- La fermeture d'un ensemble de dfs permet de calculer des ensembles de dfs minimaux.
- Idée : on cherche les plus petits sous-ensembles F' d'un ensemble F de dfs tels que :
 - les dépendances de F \ F', (explicites dans F), sont impliquées (implicites) dans F'
 - les dfs de F' comportent le moins d'attributs possibles

Introduction aux Bases de Données - Théorie des BD relationnelles

Galilée ependances fonctionnelles, redondance

Définition

Soit F un ensemble de dfs défini sur une relation R. F est minimal ssi pour tout $F' \subset F$ $F'^+ \neq F^+$ avec :

- toutes les df de F' ont un seul attribut à droite
- ullet si X o Y est dans F' alors il n'existe pas X' o Y dans F'avec $X' \subset X$

Exemple

Soit la relation Service(Nom, Division, Equipe) avec l'ensemble de dfs $\mathcal{F} = \{Nom \rightarrow Division; Equipe \rightarrow Division; Equipe \rightarrow Nom\}.$ $F_{min} = \{Nom \rightarrow Division; Equipe \rightarrow Nom\}.$

Introduction aux Bases de Données - Théorie des BD relationnelles

GAlgorieme de calcul d'UN ensemble de dfs minimal

```
1: Fonction DFMinimal(R, \mathcal{F})
 2:
         \mathcal{F}' := \mathcal{F}
                                                                   \triangleright Réduction à droite des dfs de \mathcal{F}'
 3:
          Pour Tout f: X \to A_1, \ldots, A_n \in \mathcal{F}' Faire
 4:
              Remplacer f dans \mathcal{F}' par \{X \to A_1, \dots, X \to A_n\}
 5:
          Fin Pour
 6:
                                                                  \triangleright Réduction à gauche des dfs de \mathcal{F}'
 7:
          Pour Tout f: X \to A_i \in \mathcal{F}' Faire
8:
              Remplacer f par X' \to A_i si X' \subset X et A_i \in X'^+ et qu'il n'existe pas de
     X'' tel que X'' \subset X' et A_i \subset X''^+
 9:
          Fin Pour
10:
                                                                               ▶ Réduction des dfs de F¹
11:
          Pour Tout f: X \to A_i \in \mathcal{F}' Faire
12:
               Si \mathcal{F} \setminus \{X \to A_i\} \models X \to A_i Alors Supprimer f
13:
               Fin Si
14: Fin Pour
15:
          Retourner \mathcal{F}'
16: Fin Fonction
```

Introduction aux Bases de Données - Théorie des BD relationnelles

Ingénieurs