Joint International Scientific Conferences on AI BNAIC/BENELEARN 10-12.10.2021

The Effect of Noise Level on the Accuracy of Causal Discovery Methods with Additive Noise Models

Benjamin KAP, Dr. Marharyta ALEKSANDROVA, Prof. Thomas ENGEL

Outline

Introduction to Causal Discovery

State of the Art

RESIT

- \rightarrow Definition
- \rightarrow Experiments + Results

Uncertainty Scoring

- \rightarrow Definition
- \rightarrow Experiments + Results

Conclusion

Future Work

What is Causal Discovery?

Image-Source: https://letstalkscience.ca/educational-resources/backgrounders/weather-temperature

Image-Source: https://letstalkscience.ca/educational-resources/backgrounders/weather-temperature

Importance

 $\overline{\text{Controlled Tests}} \to \overline{\text{A}/\text{B Tests}}$

Observational Data only

$$P(X,Y) = P(X) \cdot P(Y|X) = P(Y) \cdot P(X|Y)$$

$$P(X) \cdot P(Y|X) = P(Y) \cdot P(X|Y)$$

$$P(X) \cdot P(Y|X) > P(Y) \cdot P(X|Y)$$

$$P(X) \cdot P(Y|X) < P(Y) \cdot P(X|Y)$$

Very complex

A lot of assumptions

Additive Noise Models (ANM)

$$Y = X + Noise$$

Not enough attention to noise levels in the noise term!

&

Uncertainty Scoring

Regression with Subsequent Independence Test

No assumption on the distribution type

Optimization problem is generally non-convex

$$Y := X + N_y$$

$$X := Y + N_x$$

$$C_{X \rightarrow Y} = \operatorname{Ind}(X, Y_{res})$$

 $\overline{\mathrm{C}_{\mathrm{Y} o\mathrm{X}}} = \mathrm{Ind}(\mathrm{Y},\, \overline{\mathrm{X}_{\mathrm{res}}})$

$$C_{X\to\;Y}$$

$$C_{Y \to \; X}$$

$$Y = X + Noise (X \rightarrow Y)$$

Assumption: $(X \to Y) \text{ xor } (Y \to X)$

$$ightarrow \ C_{ ext{X}
ightarrow \ Y}$$
 ? $C_{ ext{Y}
ightarrow \ X}$

Independence estimators:

- Hilbert-Schmidt Independence Criterion (HSIC) with RBF Kernel
- HSIC using incomplete Cholesky decomposition with high precision
- HSIC using incomplete Cholesky decomposition with low precision
- Distance covariance
- Distance correlation
- Hoeffding's Phi

Entropy estimators:

- Shannon differential entropy using k-nearest neighbours with k=3
- Shannon differential entropy using k-nearest neighbours with k=3 and kd-tree
- Shannon differential entropy using k-nearest neighbours with k=3
- Maximum entropy distribution based Shannon entropy estimator
- Maximum entropy distribution based Shannon entropy estimator, different parameters
- Shannon entropy estimator using Vasicek's spacing method

$$Y = X + Noise (X \rightarrow Y)$$

$$Y = X^3 + Noise$$

Kap B., Aleksandrova M., Engel T. - BNAIC/BENELEARN 2021

 $X \sim Gaussian(0, 1)$ or Uniform(-1, 1) or Laplace(0, 1)

Noise $\tilde{}$ Gaussian $(0, 1 \cdot i)$ or Uniform $(-1 \cdot i, 1 \cdot i)$ or Laplace $(0, 1 \cdot i)$

"i-factor"

18 Combinations in total

$$i \in \{0.01, 0.02, \dots, 1.00\} \cup \{1, 2, \dots, 100\}$$

$$(Y = X + Noise)$$

Example: Y = Gaussian(0, 1) + Laplace(0, 20)

Test RESIT 100 times

1000 new samples for each test

HSIC HSIC IC

DISTCOV DISTCORR HOEFFDING

SH KNN SH KNN 2

SH_KNN_3 SH MAXENT1

SH_MAXENT2 SH_SPACING_V

Kap B., Aleksandrova M., Engel T.

32/42

Uncertainty Scoring

Uncertainty Scoring

No assumption on the distribution type

Y = Gaussian + Gaussian

Uncertainty Scoring

Conditional Fisher's Independence Test

18 Combinations (Linear + Non-Linear + Distribution types)

100 tests; 1000 new samples

Y = X + Noise; Accuracy as a function of i

 $Y = X^3 + Noise;$ Accuracy as a function of i

Conclusion

Different noise levels \rightarrow Impact!

Different distribution types

Significantly small or big \rightarrow Unidentifiability

Future Work

Point of failure \rightarrow Estimators

Formalization

Generalization

Thank you!

State of the Art

Source: Janzing et al. (2012): "Information-geometric approach to inferring causal directions"

Conclusion

Best and Worst Ind. Estimators:

HSIC with RBF Kernel
HSIC with Cholesky Decomposition

Best and Worst Entropy Estimators:

Shannon E. with Vasicek's spacing method Maximum entropy dist. based Shannon entropy estimator

$$\mathrm{Y} := \mathrm{X} + \mathrm{N_y}$$

$$X := Y + N_x$$

$$Y = \beta \cdot X + Noise$$

$$Var(Y)/Var(X) > 1 - \beta^2$$

$$1) \, \operatorname{Var}(Y) = \operatorname{E}(\operatorname{Var}(Y|X)) + \operatorname{Var}(\operatorname{E}(Y|X)) = \operatorname{Var}(Y) + \beta^2 \operatorname{Var}(X) > \operatorname{Var}(X)$$

$$\begin{array}{l} 2) \; \mathrm{E}(\mathrm{Var}(\mathrm{X}|\mathrm{Y})) = \mathrm{Var}(\mathrm{X}) - \mathrm{Var}(\mathrm{E}(\mathrm{X}|\mathrm{Y})) \\ = \; \mathrm{Var}(\mathrm{X}) \text{ - } (\beta^2 \mathrm{Var}(\mathrm{X})^2) \; / \; (\beta^2 \mathrm{Var}(\mathrm{X}) + \mathrm{Var}(\mathrm{Y})) < \mathrm{Var}(\mathrm{Y}) \\ = \; \mathrm{E}(\mathrm{Var}(\mathrm{Y}|\mathrm{X})) \end{array}$$

$$Set S = \{ X, Y, W, V \}$$

Ordering
$$\pi = [V, X, W, Y]$$

Ordering
$$\pi = [V, X, W, Y]$$

Ind(W,V): Independent

Ind(W,X): Dependent

 \rightarrow X is a parent of W!