AEEM 3042 – Aircraft Performance & Design

Aircraft Nomenclature and Dimensions

Aircraft Nomenclature

Usually symmetric "mirror images"

Start with an XYZ coordinate system

X axis: front to back

Y axis: from centerline to wing tip

Z axis: from ground to top

Place the Origin at (0,0,0)

Dimensions are usually measured in inches or feet

X axis: Fuselage Station (FS)

Y axis: Buttock Line (BL)

Z axis: Water Line (WL)

Z axis: Water Line (WL)

Area =
$$h * \frac{a+b}{2}$$

Wing Planform Assumption

- Convex quadrilateral = trapezoid
- Acute, Right, or Obtuse Trapezoid

Trapezoids

Wing Planform Assumption

- Convex quadrilateral = trapezoid
- Acute, Right, or Obtuse Trapezoid

Area of Trapezoid =
$$h * \frac{a+b}{2}$$

Wing Planform Characteristics

Tip Chord (c_t) Taper Ratio (λ) Root Chord (c_r) Average Chord (c_t)

$$\lambda = \frac{c_1}{c_1}$$

$$c = \frac{c_t + c_r}{2}$$

Taper Ratio Graphical Determination

- 1. Extend the leading edge to the aircraft centerline
- 2. Extend the trailing edge to the aircraft centerline
- 3. Draw the aircraft centerline to find the root chord
- 4. Draw the tip chord
- 5. Measure the tip chord and the root chord
- 6. Divide the tip chord by the root chord to get Taper Ratio

$$\lambda = \frac{c_t}{c_r}$$

Wing Planform Characteristics

Wing Span (b) Wing Area (S)

Tip Chord (c_i) Taper Ratio (λ)

Root Chord (c_r) Average Chord (c)

Aspect Ratio (AR)

Area of Trapezoid = $h * \frac{a+b}{2}$

$$c = \frac{c_t + c_r}{2}$$

$$S = b c$$

Wing Planform Characteristics

Tip Chord (c_t) Root Chord (c_r) Wing Span (b)

Leading Edge Sweep (Λ_{LE}) Trailing Edge Sweep (Λ_{TE}) Taper Ratio (λ) Average Chord (c) Wing Area (S) Aspect Ratio (AR) Quarter-Chord Sweep ($\Lambda_{c/4}$)

 Λ_{LE}

$$\Lambda_{c/4} = tan^{-1}[tan \Lambda_{LE} - 0.25 * c_r * (1 - \lambda)/(b/2)]$$

LE Wing Sweep Graphical Determination

- 1. Extend the leading edge to the aircraft centerline
- 2. Draw the aircraft centerline
- 3. Draw the perpendicular to the aircraft centerline
- 4. Measure the angle from the perpendicular to the leading edge

TE Wing Sweep Graphical Determination

- 1. Extend the trailing edge to the aircraft centerline
- 2. Draw the aircraft centerline
- 3. Draw the perpendicular to the aircraft centerline
- 4. Measure the angle from the perpendicular to the trailing edge

Wing Dihedral

Anhedral angle = - Dihedral Angle

Wing Placement

Draw a line connecting the two extensions

CG Location as % MAC

Aircraft Height Graphical Determination

Aircraft Length Graphical Determination

Fuselage Diameter Graphical Determination

Fineness Ratio: length / diameter

Fuselage Fineness Ratio
$$= \frac{L_{fuse}}{D_{fuse}}$$

Engine Dimensions Graphical Determination

www.the-blueprints.com

Wing Position Graphical Determination

Tail Bump Angle Graphical Determination

- 1. Draw a line along the ground
- 2. Draw a line from the most rear wheel to the point where the tail would bump on rotation
- 3. Measure the Tail Bump Angle (θ)

Landing Gear Graphical Determination

- 1. Draw a line in the middle of the nose landing gear
- 2. Draw a line in the middle of the main landing gear
- 3. Measure the distance to those two lines from the nose tip

Landing Gear Graphical Determination

- 1. Draw a line in the middle of the nose landing gear
- 2. Draw a line in the middle of the main landing gear
- 3. Measure the distance to those two lines from the nose tip

Wing Position Graphical Determination

Nose Landing Gear Position = $(FS_{NG}, 0, 0)$

Main Landing Gear Position = $(FS_{MG}, BL_{MG}, 0)$

Homework Assignment

HW #2 – Aircraft Dimensions (due by 11:59 pm ET on Monday)

HW Help Session

Monday 1:00 – 2:00 pm ET

Posted on Canvas

HW #2 Assignment with instructions, tips, and checklist

HW #2 Template for data table in Excel

HW #2 WING Excel worksheet

HW #2 Protractor & Ruler

Questions?