PROBLEMAS DE CIRCUITOS ELECTRÓNICOS

2º Curso de Grado en Ingeniería Informática – 19/20

TEMA 2: Introducción a los circuitos selectivos en frecuencia

1.- Encontrar la función de transferencia A_V de las siguientes redes y dibujar los correspondientes diagramas de Bode utilizando la simulación del circuito basada en LTspice IV.

- **2.-** En el circuito de la figura, siendo $R_1=1$ K Ω , $R_2=4$ K Ω y $C=10^{-6}$ F,
- a) Encontrar la función de transferencia A_V.
- b) ¿De qué tipo de filtro se trata?
- c) Encontrar la frecuencia para la que $|A_V| = 0.2$.
- 3.- Para el circuito de la figura:
- *a)* Calcular la función de transferencia A_V e identificar el tipo de filtro por su comportamiento.
- b) Identificar las frecuencias de corte.
- c) Suponiendo: $R_1 = 9 \text{ K}\Omega$, $R_2 = 1 \text{ K}\Omega$ y $C = 0.177 \mu\text{F}$, dibujar esquemáticamente el diagrama de Bode del módulo de la función de transferencia A_V .

- **4.-** Dado el siguiente circuito de corriente alterna:
- a) Hallar la función de transferencia $H(j\omega) = v_o/v_i$.
- b) Calcular el valor de la frecuencia angular, ω , para la cuál la impedancia equivalente del circuito, Z_{eq} , es puramente resistiva.

- 5.- El circuito de la figura es un filtro paso de banda. Calcular:
- a) El módulo de la ganancia de voltaje en función de la frecuencia f.
- b) La frecuencia f₀ para la cual la ganancia es máxima.
- c) La ganancia $|A_V^{max}|$ para dicha frecuencia.
- d) Las dos frecuencias de corte, f_1 y f_2 , y su separación Δf (no considerar las soluciones negativas).

- **6.-** En el circuito siguiente la fuente de tensión es una fuente sinusoidal de amplitud V_i y frecuencia variable ω .
- a) Deducir la expresión de la función de transferencia v_{AB}/v_i en función de la frecuencia, y calcular el valor de su módulo para los casos ω→0 y ω→∞.

- b) Dibujar los circuitos equivalentes para los dos casos anteriores ($\omega \rightarrow 0$ y $\omega \rightarrow \infty$) y calcular en ellos v_{AB}/v_i .
- **7.-** Para el circuito de la figura, y suponiendo que V_0 sea una tensión sinusoidal:
- a) Determinar una expresión para el cociente (v_a/v_o), así como los límites de su módulo cuando ω tiende a cero y a infinito.
- b) Para una amplitud de v_o de 6 V y unos valores de $R_1=1~\Omega$, $R_2=3~\Omega$, $A=2~\Omega^{\text{--}1}$ y a una frecuencia a la que $Z_L=j~2~\Omega$ y $Z_C=\text{--}j~5~\Omega$ determinar la amplitud de v_a así como su fase con respecto a v_o .

- **8.-** El circuito de la figura es un filtro:
- a) Dibujar el circuito equivalente en los casos $\omega = 0$ y $\omega \to \infty$, y estimar el valor del módulo de la función de transferencia en ambos casos.
- b) Calcular la impedancia vista desde la entrada $Z(j\omega)$.
- c) Calcular la función de transferencia $A_{\nu}(j\omega)$, su módulo y su fase.

- 9.- El circuito de la figura es un filtro:
- a) Dibujar el circuito equivalente en los casos $\omega = 0$ y $\omega \to \infty$, y estimar el valor del módulo de la función de transferencia en ambos casos.
- b) Calcular la impedancia vista desde la entrada Z(jω).
- c) Calcular la función de transferencia $A_v(j\omega)$, su módulo y su fase.

- 10.- Para cada uno de los filtros, de las siguientes figuras:
- a) Deducir la expresión de la función de transferencia v_o/v_i (ganancia en tensión, A_v), proporcionando además las de su módulo y su fase (en la forma: $A_v = |A_v| e^{j\theta}$).
- b) Estimar la dependencia asintótica del módulo de la ganancia cuando $\omega \rightarrow 0$ y cuando $\omega \rightarrow \infty$.
- c) Deducir la expresión de la frecuencia natural del filtro (i.e., la frecuencia del mínimo o máximo de $|A_v|$).
- d) Esbozar gráficamente el módulo de la ganancia en función de la frecuencia.

C

v_O(ω)

- **11.-** Para el circuito de la figura, y con señales sinusoidales a la entrada, determinar:
- a) La forma aproximada del módulo de la ganancia de voltaje, $G = |v_o/v_i|$, en función de la frecuencia.
- b) La frecuencia para la cual G es máxima.
- c) Valor de G a la frecuencia del apartado anterior.
- d) Desfase entre las señales de entrada y salida para frecuencias mucho menores, iguales y mucho mayores que la del apartado b).
- e) Si la señal de entrada es una señal cosenoidal de amplitud 1V y periodo T=20ms, dibujar la forma de la señal v_0 que se obtendrá a la salida, siendo $R = 6K3\Omega$ y $C = 1\mu F$.

V_i(ω)

- **12.-** En el circuito de la figura la fuente v_i es una fuente de tensión alterna.
- a) Hallar la expresión de la impedancia equivalente de Thévenin del circuito, vista entre su terminal de salida y el origen de potencial.
- b) Encontrar la expresión de la ganancia de voltaje, $A_v = v_o/v_i$, en función de la frecuencia.

- c) Obtener el módulo de la ganancia y deducir de él la función que realiza el circuito.
- d) Representar gráficamente los diagramas de Bode del módulo y de la fase entre 0.1Hz y 100MHz, sabiendo que $R_1 = 100 \text{ K}\Omega$, $R_2 = 1\text{K}\Omega$, $C_1 = 1\mu\text{F}$, $C_2 = 1\text{nF}$ y A = 100.

13.- En el siguiente circuito:

- a) Hallar el módulo y la fase de la ganancia en tensión en el circuito de la figura, siendo $\alpha > 0$.
- b) Calcular el valor de módulo en los casos $\omega \to 0$ y $\omega \to \infty$. Evaluar a continuación el tipo de filtro (paso alto o paso bajo) que resulta en el caso $\alpha \to 0$.

14.- Diseñar un circuito RCL que actúe como filtro paso-banda, con una frecuencia natural (frecuencia en el máximo, ω_0) de $16\pi \cdot 10^5$ rad/s, y un ancho de banda (Δ) de $2\pi \cdot 10^4$ rad/s.