EECS 376: Foundations of Computer Science

Nikhil Bansal Michal Derezinski Ben Fish

Today's Agenda

- * Introduction
- * Big questions/Outline
- * Administration
- * Algorithm Design and Analysis
 - * Potential Function arguments

Introduction

- * I'm Seth
- * I've been a Professor at Michigan since 2006.
 - * Visiting prof. at various places: Germany, Denmark, Israel, China.
- * I teach math, theory, and algorithms courses (EECS 203, 376, 477, 586, 598 seminars, etc.)
- Research: Combinatorics/discrete math, data structures distributed computing, statistics, graph algorithms.

Why are we here?

Computer science is no more about computers than astronomy is about telescopes. --- Edsger Dijkstra

Foundations: What is computation? (just number-crunching?)

Is every problem solvable on a computer?

Can every solvable problem be solved quickly?

Are there general algorithmic techniques?

• • •

SOHECE CSE

Why is this useful to me?

Computational Thinking

Natural processes

Computational Biology

Algorithmic Finance

Robotics

Machine learning Big Data

Quantum Computation

Outline

Design and Analysis of Algorithms	Mon 28 Aug	1	Introduction, The Potential Method
	Wed 30 Aug	2	Divide and Conquer 1
	Discussion	1	Review: Proofs, Asymptotic Notation, Induction
	Mon 4 Sep		No class — Labor Day
	Wed 6 Sep	3	Divide and Conquer 2
	Discussion	2	Divide and Conquer
	Mon 11 Sep	4	Dynamic Programming
	Wed 13 Sep	5	Dynamic Programming 2
	Discussion	3	Dynamic Programming
	Mon 18 Sep	6	Greedy Algorithms
Computability	Wed 20 Sep	7	Formal Languages and Finite Automata
	Discussion	4	Greedy Algorithms and Finite Automata
	Mon 25 Sep	8	Turing Machines and Decidability
	Wed 27 Sep	9	Diagonalization
	Discussion	5	Turing Machines and Diagonalization
	Mon 2 Oct	10	The Acceptance and Halting Problems
	Wed 4 Oct	11	Reducibility
	Discussion	6	Acceptance and Reducibility
	Mon 9 Oct	12	Rice's Theorem & Kolmogorov Complexity
Midterm	Wed 11 Oct	13	Midterm Review
	Discussion	MR	Midterm Review
	Mon 16 Oct		No class — Fall Break
	Wed 18 Oct		Midterm, 7-9pm ET
	Discussion		No discussion

Outline

Complexity	Mon 23 Oct	14	The Classes P and NP
	Wed 25 Oct	15	The Cook-Levin Theorem
	Discussion	7	NP Overview
	Mon 30 Oct	16	Reductions and NP-Completeness
	Wed 1 Nov	17	NP-Complete Problems 2
	Discussion	8	NP-Completeness
	Mon 6 Nov	18	Search and Approximation Algorithms
	Wed 8 Nov	19	Approximation Algorithms 2
	Discussion	9	Search and Approximation
Randomness in Computation	Mon 13 Nov	20	Probability, Randomness in Computation
	Wed 15 Nov	21	Randomness in Computation 2
	Discussion	10	Randomness and Modular Arithmetic Review
	Mon 20 Nov	22	Randomness in Computation 3
Thanksgiving	Wed 22 Nov	23	No Class — Thanksgiving Break
	Discussion	11	No Class — Thanksgiving Break
Cryptography	Mon 27 Nov	24	One-time Pad, Diffie-Hellman, and Discrete Logarithm
	Wed 29 Nov	25	RSA and Factoring
	Discussion	12	Intro to Cryptography
Special Topics	Mon 4 Dec	26	Special Topcs (Untested Material)
	Wed 6 Dec	27	Special Topcs (Untested Material)
Final Exam			
	Tue 12 Dec		Final Exam, 7–9pm

Computability

Turing(1936): Formal model of computer (Turing machine)

Computability: (1930's-60's)

What can/cannot be done (in finite time)?

E.g. Can one write a program that tests if two given programs in C/C++ have the same functionality? Answer: No

Will see: Various other basic problems are "uncomputable"

Complexity

- * Computability: what can/cannot be computed (in finite time)?
- * Finite time is not good enough; we need to solve <u>fast!</u>
- * Example 1: Sorting *n* numbers
 - * Naïve algorithm: try all n! permutations.
 - * Any better solutions?
- * Example 2: Travelling salesperson problem.
 - * Find shortest tour that visits all n cities
 - * Naïve algorithm: *try all n*! *permutations*.
- * Is there a **polynomial-time algorithm?** $(O(n^2), O(n^3), ...)$

Complexity

1971-72: Efficient computation (polynomial time) notion of P vs NP (STOC'71)

Cook

Levin

Karp

No efficient algorithm for TSP <u>unless</u> P=NP

One of the biggest questions of our time (is P=NP?)

Million dollar prize

We will explore P vs NP in detail later.

Approximation Algorithms

Most problems turn out to be NP-hard (no efficient way to solve exactly)

But can try to solve approximately (99% solution may be good enough)

Hardness is Bad, Right?

* Question: Suppose you know that a certain problem is notoriously "hard". Is it necessarily a bad thing?

Cryptography

Can do miraculous things (modern magic)

Each time you browse: you are sending data over many public networks

Public key cryptography: Can send a secret message to another person, without arranging a code in advance

Digital signatures

• • •

Administration

- * Website: eecs376.org (Syllabus, Schedule)
- * Text: https://eecs376.github.io/notes/https://eecs376.github.io/notes/https://eecs376.github.io/notes/
- * Canvas: HWs, lecture slides, discussion material, OHs, etc...
- * Piazza: questions about homework, lectures; search for teammates
- * **Gradescope:** for exams and HW submission
- * You may attend any lecture/discussion
- * **Discussion:** <u>highly encouraged</u> to attend
- * Note: NO lecture recordings

 (recordings discourage active learning)

Administration

- * 12 weekly HW assignments, due Wednesdays 8pm (Eastern)
 - * No Late Submissions after 9:59pm!
 - * However, two lowest scores will be dropped
 - * Solutions published shortly after the deadline
 - * HW = 40% of grade
- * Midterm: October 18, 2023, 7-9pm. 29% of grade.
- * Final: December 12, 2023, 7-9pm. 30% of grade.
- * Course Evaluation. 1% of grade.
- * Participation is important!
 - * Questions are welcome!
 - * There is no such thing as a "bad question".

Is this an EECS class?

- * Question to the Instructor: Wolverine Access says it is an EECS class. Yet why does it feel like a math class?
- * Answer: It is both. The only way to answer the questions we raised (and others) is to construct a computational model and apply a "proof-based" (mathematical) methodology.

Is this an EECS class?

- * Example: Show that there is no compiler that tests if two given programs in C/C++ have the same functionality.
- * Wrong Approach: Try all the compilers... (infinitely many)
- * Right Answer: Construct a computational model that captures all the compilers and give a "general impossibility argument".

Next 3.5 weeks: Design & Analysis of Algorithms

- * Algorithm Design: A set of methods to create algorithms for certain types of problems.
- * **Examples:** Dynamic Programming, Divide and Conquer, Greedy Algorithms
- * Algorithm Analysis: Methods to prove correctness of algorithms and determine the amount of resources (e.g. time, memory) necessary to execute them.
- Examples: Potential function arguments, recurrences, Master Theorem, exchange arguments
- * Remark: We describe algorithms in "Pseudo-Code" (human readable)

Greatest Common Divisor

- * **Definition:** Let $x, y \in \mathbb{N}$ (natural numbers). The Greatest Common Divisor (gcd) of x and y is the largest $z \in \mathbb{N}$ that divides x and y.
 - * If gcd(x,y) = 1 then x and y are called **coprime**.
- * Examples: gcd(21,9) = ? gcd(121,5) = ?
- * gcd(343473598722323,432029908279) = ?
 - * (gcd is a basic building block for cryptographic algorithms, typically > 100 digits)
- * Naïve Algorithm:
 - * For z from y down to 1:
 - * If $((z|y) \land (z|x))$, return z.
- * Runtime: O(y) operations. Is that good or bad?

Review: Running Time

- * We measure the "efficiency" of an algorithm by how its worst case runtime scales with the input size.
- * We express this trade-off in asymptotic notation,³⁵⁰ e.g. $O(\log n)$, O(n), $O(n^2)$, etc., where n is the 300 size of the input.
- * Common interpretations of "size"
 - * Size of an array: #array cells
 - * Size of a graph: #vertices + #edges
 - * Size of an integer: #digits.
 - * Rule of thumb: ≈ # bits needed to represent input on a computer.

Efficient ≡ "runtime is polynomial in size of input"

Step 2: Analyze runtime of the naïve solution

- Q: Suppose x and y each have n digits.
 How large can y be?
 * 10ⁿ 1
- * Note: the "size" of y is log y.
- * The runtime of the naïve algorithm is O(y), which is <u>exponential</u> in the size of the input: $n = \log y$. (This is not efficient!)

NaiveGCD(x, y)For z = y, y - 1, ..., 1If $(z|x) \land (z|y)$ then Return(z)

Step 3: Think about the "structure" of the problem.

- * **Strategy:** Recursively solve the problem, by reducing to *smaller* numbers.
- * Suppose $x \ge y$. Observe: gcd(x, y) = gcd(y, x y).

Proof: If d divides both x and y, d also divides x-y. Conversely, any d that divides both x-y and y also divides x.

So the common divisors of x, y are exactly the common divisors of y, x - y. Hence, their **greatest** common divisors are equal

How far can we reduce?

- * In general, we can reduce k times until x ky < y.
- * Q: What is x ky?
 - * $x \mod y =$ the remainder of x divided by y.
- * Thereom: $gcd(x, y) = gcd(y, x \mod y)$

Step 4: Code it up

* We have just discovered the Euclidean Algorithm to compute the greatest common divisor of two integers

Euclid(x, y): // for $x \ge y > 0$ if $x \mod y = 0$: return y return **Euclid** $(y, x \mod y)$

Let's do some examples: gcd (21,9), gcd(13,8) gcd(42273,9516) Calculator

Euclid, 300 BCE

Seems fast

Calculator

42273, 9516

- -> 9516, 4209
- -> 4209, 1098
- -> 1098, 915
- -> 915, 183
- -> 183,0

(gcd = 183)

- "How can be bound the runtime of Euclid?"
- * We need some tools...

Euclid(x, y): // for $x \ge y > 0$ if(x mod y = 0), return y. else return **Euclid**(y, $x \mod y$)

Euclid, 300 **BCE**

Example: A Flipping Game

* 3 x 3 board covered with two-sided chips:

- * Two players, R and C, alternately perform "flips"
 - * R-flip (C-flip): flip a row (col) with # 🔊 > # 🔀
- * If no flip is possible, then the game ends.
- * **Q:** Does the game always end?

R-flip (3)

C-flip (1)

Analysis Tool: Potential Function Argument

- * Intuitively, a potential function argument says that:
- * If I start with a *finite* amount of water in a *leaky bucket*, then eventually water stops leaking out.
- * 3 main ingredients of the argument:
 - * Discrete units of time t = 0,1,2,3,... (Loop iteration, recursion depth, etc.)
 - * Measure how much water is in the bucket. Map to an integer $s_t \ge 0$.
 - * How is the bucket leaking? Show $s_{t+1} < s_t$.

Example: A Flipping Game (As a Potential Function Argument)

- * Let $s_t \ge 0$ be the number of Ohio chips after t flips.
 - * Unit of time: 1 flip
 - * Amount of water in the bucket: $s_t = \#$ Ohio chips.
 - * Claim: Each flip decreases the number of Ohio chips, i.e., $s_{t+1} < s_t$.
- * The game must end! There are no infinitely decreasing <u>integer</u> sequences $s_0 > s_1 > s_2 > \dots > 0$.

Back to Euclid: Idea of analysis

* We will show that, in each recursive call to Euclid, the x,y arguments are collectively decreasing very quickly.

A good potential function

* The **sum** of the arguments to **Euclid** decreases quite rapidly.

Euclid
$$(x, y)$$
: // for $x \ge y > 0$
if $(x \mod y = 0)$, return y .
else return Euclid $(y, x \mod y)$

- * Example: Euclid(13,8) \rightarrow Euclid(8,5) \rightarrow Euclid(5,3) \rightarrow Euclid(3,2) \rightarrow Euclid(2,1) = 1
- * Define x_t, y_t to be the arguments to the tth call to **Euclid**, where $x_t \ge y_t$.
- * Define the **potential** to be $s_t = x_t + y_t$.

* Claim.
$$s_{t+1} < \frac{2}{3}s_t$$
.

A good potential function

* Claim. $s_{t+1} < \frac{2}{3}s_t$.

Euclid(x, y): // for $x \ge y > 0$ if $(x \mod y = 0)$, return y. else return Euclid $(y, x \mod y)$

- * Proof. Write $x_t = k_t y_t + r_t$, where $k_t \ge 1$, $r_t < y_t$
 - * What is $x_{t+1} = ? y_t$
 - * What is $y_{t+1} = ? \overline{r_t}$
- * $s_t = x_t + y_t = k_t y_t + r_t + y_t \ge 2y_t + r_t$

*
$$> 2y_t + r_t - \frac{y_t - r_t}{2} = \frac{3}{2}(y_t + r_t) = \frac{3}{2}s_{t+1}.$$

A good potential function

* Claim. $s_{t+1} < \frac{2}{3}s_t$.

Euclid(x, y): // for $x \ge y > 0$ if $(x \mod y = 0)$, return y. else return Euclid $(y, x \mod y)$

- * Thus, if there are t calls to **Euclid**, $2 \le s_t < \left(\frac{2}{3}\right)^t (x+y)$
- * Which implies that $t < \log_{3/2}((x + y)/2)$
- * I.e., t = O(n), where $n = \log x + \log y$ is the size of the input.

Sprouts Game

There are n points initially.

Each step: Connect any two points by a line (or curve) and introduce a new point on the line.

Rule: Each point can have at most 3 lines attached to it

(i.e. degree of point at most 3)

Given n points, can the game continue forever? If not, how many steps to terminate?

Sprouts

Let's do a couple of more examples.

What's a good potential? (something that decreases over time)

Hint: Consider modified game where we add two new points on the line. Can this go on forever?

Can this tell us something about our original game?

Potential Function: Sprouts

At time t, let us call the deficit of a point p as 3 - # of lines attached to p

Note: By rules of the game, the deficit of each point at any time is >=0.

Consider potential s_t = sum of deficits of all points at time t. Initially: $s_0 = 3n$

Claim: For each time step t >= 1, we have $s_t = s_{t-1} - 1$

Proof: Let us see what happens at time t.

- (i) adding the new line decreases deficit by 1 for each of its two end points.
- (ii) the new added point has deficit 3-2 = 1 (the new point has two attachments)

So overall change in potential s_t – s_{t-1} = -2 + 1 = -1.

Theorem: The game stops after at most 3n-1 steps.

Proof: Initial potential s_0 = 3n.

Game must stop when deficit reaches 1 (as no two points available to connection