HW #8

1. Binary Image Matching (30%): Let I_1 and I_2 be binary images. Show that

$$|I_1 - I_2|^2 = \sum \# \text{ of pixels where } I_1 \neq I_2$$

Where $|I|^2 = \sum i_{jk}^2$ is the sum of all (pixels squared) in *I*.

- 2. **Bayes classifier for 3D patterns (40%):** Let's explore the mechanics of the preceding development. We assume that the patterns are samples from two Gaussian populations, and that classes c_1 and c_2 occurs equally likely, c_1 has sample pattern vectors (1,2,3), (2,2,4), (2,2,3), and (2,3,3), and c_2 has sample pattern vectors (1,2,4), (1,3,4), (2,3,4), (1,3,3)
 - a. what is m_1 and m_2 when applying $m_j = \frac{1}{n_j} \sum_{x \in c_j} x$ to the sample pattern vectors? Note that n_j is the number of sample pattern vectors from class c_j , and the summation is taken over these vectors.
 - b. from $C_j = \frac{1}{n_j} \sum_{\mathbf{x} \in C_j} \mathbf{x} \, \mathbf{x}^T m_j m_j^T$, what does $C_1 = C_2 = ?$, and the inverse of this matrix?
 - c. what are the decision functions? Assuming classes are equally likely as $d_j(\mathbf{x}) = \mathbf{x}^T \mathbf{C}^{-1} \mathbf{m}_j \frac{1}{2} \mathbf{m}_j^T \mathbf{C}^{-1} \mathbf{m}_j$.
 - d. The decision boundary separating the two classes is $d_1(x) d_2(x)$
- 3. PCA analysis (30%): For six multispectral satellite images corresponding to six spectral bands,
 - a. please organize the images that leads to the formation of a six-element vector x from each set of corresponding pixels in the images (256 × 256), so the population consisted of $256^2 = 65536$ vectors from which the **mean vector** $m_x = E\{x\}$, **covariance matrix** $C_x = E\{(x m_x)(x m_x)^T\}$, and corresponding **eigenvalues** and **eigenvectors** can be computed.
 - **b.** using eigenvectors as rows of matrix A, compute a set of **y vectors** according to $y = A(x m_x)$. Similarly compute $C_y = AC_xA^T$ which is a matrix with diagonal elements as eigenvalues of C_x .
 - **c.** generate a set of six principal component images using the y vectors, notice the significant portion of the contrast detail is contained in the first two images and decreases rapidly from there.