- CORDIC METHOD
- ROTATION AND VECTORING MODE
- CONVERGENCE, PRECISION AND RANGE
- SCALING FACTOR AND COMPENSATION
- IMPLEMENTATIONS: word-serial and pipelined
- EXTENSION TO HYPERBOLIC AND LINEAR COORDINATES
- UNIFIED DESCRIPTION
- REDUNDANT ADDITION AND HIGH RADIX

MAIN USES

- REALIZATION OF ROTATIONS
- CALCULATION OF TRIGONOMETRIC FUNCTIONS
- CALCULATION OF INVERSE TRIGONOMETRIC FUNCTION $\tan^{-1}(a/b)$
- CALCULATION OF $\sqrt{a^2+b^2}$, etc.
- EXTENDED TO HYPERBOLIC FUNCTIONS
- DIVISION AND MULTIPLICATION
- CALCULATION OF SQRT, LOG, AND EXP
- FOR LINEAR TRANSFORMS, DIGITAL FILTERS, AND SOLVING LIN. SYSTEMS
- MAIN APPLICATIONS: DSP, IMAGE PROCESSING, 3D GRAPHICS, ROBOTICS.

CIRCULAR COORDINATE SYSTEM

• PERFECT ROTATION:

$$x_R = M_{in}\cos(\beta + \theta) = x_{in}\cos\theta - y_{in}\sin\theta$$

$$y_R = M_{in}\sin(\beta + \theta) = x_{in}\sin\theta + y_{in}\cos\theta$$

- ullet M_{in} THE MODULUS OF THE VECTOR
- β THE INITIAL ANGLE
- IN MATRIX FORM:

$$\begin{bmatrix} x_R \\ y_R \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_{in} \\ y_{in} \end{bmatrix} = ROT(\theta) \begin{bmatrix} x_{in} \\ y_{in} \end{bmatrix}$$

Figure 11.1: VECTOR ROTATION

- ullet USE ELEMENTARY ROTATION ANGLES $lpha_j$
- DECOMPOSE THE ANGLE θ :

$$\theta = \sum_{j=0}^{\infty} \alpha_j$$

SO THAT

$$ROT(\theta) = \prod_{j=0}^{\infty} ROT(\alpha_j)$$

• THEN $ROT(\alpha_j)$:

$$x_R[j+1] = x_R[j]\cos(\alpha_j) - y_R[j]\sin(\alpha_j)$$

$$y_R[j+1] = x_R[j]\sin(\alpha_j) + y_R[j]\cos(\alpha_j)$$

- HOW TO AVOID MULTIPLICATIONS?
- 1. DECOMPOSE ROTATION INTO:

 SCALING OPERATION AND ROTATION-EXTENSION

$$x_R[j+1] = \cos(\alpha_j)(x_R[j] - y_R[j] \tan(\alpha_j))$$

$$y_R[j+1] = \cos(\alpha_j)(y_R[j] + x_R[j] \tan(\alpha_j))$$

2. CHOOSE ELEMENTARY ANGLES

$$\alpha_j = \tan^{-1}(\sigma_j(2^{-j})) = \sigma_j \tan^{-1}(2^{-j})$$

WITH $\sigma_j \in \{-1, 1\}$

RESULTS IN ROTATION-EXTENSION RECURRENCE WITHOUT MPYs

$$x[j+1] = x[j] - \sigma_j 2^{-j} y[j]$$

 $y[j+1] = y[j] + \sigma_j 2^{-j} x[j]$

⇒ONLY ADDITIONS AND SHIFTS

ullet ROTATION-EXTENSION SCALES MODULUS M[j]

$$M[j+1] = K[j]M[j] = \frac{1}{\cos \alpha_j}M[j] = (1+\sigma_j^2 2^{-2j})^{1/2}M[j] = (1+2^{-2j})^{1/2}M[j]$$

• TOTAL SCALING FACTOR

$$K = \prod_{j=0}^{\infty} (1 + 2^{-2j})^{1/2} \approx 1.6468$$

CONSTANT, INDEPENDENT OF THE ANGLE

• RECURRENCE FOR DECOMPOSITION/ACCUMULATION OF ANGLE:

$$z[j+1] = z[j] - \alpha_j = z[j] - \sigma_j \tan^{-1}(2^{-j})$$

CORDIC MICROROTATION

$$x[j+1] = x[j] - \sigma_j 2^{-j} y[j]$$

$$y[j+1] = y[j] + \sigma_j 2^{-j} x[j]$$

$$z[j+1] = z[j] - \sigma_j \tan^{-1}(2^{-j})$$

Figure 11.2: IMPLEMENTATION OF ONE ITERATION.

ROTATION MODE

- ullet ROTATE AN INITIAL VECTOR (x_{in},y_{in}) BY heta
- DECOMPOSE THE ANGLE

$$z[j+1] = z[j] - \sigma_j \tan^{-1}(2^{-j})$$

$$z[0] = \theta \quad x[0] = x_{in} \quad y[0] = y_{in}$$

$$\sigma_j = \begin{cases} 1 & \text{if } z[j] \ge 0 \\ -1 & \text{if } z[j] < 0 \end{cases}$$

- PERFORM MICRO-ROTATIONS
- FINAL VALUES

$$x_f = K(x_{in}\cos\theta - y_{in}\sin\theta)$$

$$y_f = K(x_{in}\sin\theta + y_{in}\cos\theta)$$

$$z_f = 0$$

Figure 11.3: Rotating a vector using microrotations.

ROTATE (x_{in}, y_{in}) BY 67° USING n = 12 MICRO-ROTATIONS

INITIAL COORDINATES: $x_{in} = 1$, $y_{in} = 0.125$

FINAL COORDINATES: $x_R = 0.2756$, $y_R = 0.9693$

j	z[j]	σ_{j}	x[j]	y[j]
0	1.1693	1	1.0	0.125
1	0.3839	1	0.875	1.125
2	-0.0796	-1	0.3125	1.1562
3	0.1653	1	0.7031	1.4843
4	0.0409	1	0.5175	1.5722
5	-0.0214	-1	0.4193	1.6046
6	0.0097	1	0.4694	1.5915
7	-0.0058	-1	0.4445	1.5988
8	0.0019	1	0.4570	1.5953
9	-0.0019	-1	0.4508	1.5971
10	0.0000	1	0.4539	1.5962
11	-0.0009	-1	0.4524	1.5967
12	-0.0004	-1	0.4531	1.5965
13			0.4535	1.5963

- AFTER COMPENSATION OF SCALING FACTOR K=1.64676 COORDINATES ARE x[13]/K=0.2753 and y[13]/K=0.9693
- ERRORS $< 2^{-12}$

• TO COMPUTE $\cos \theta$ AND $\sin \theta$

MAKE INITIAL CONDITION x[0] = 1/K AND y[0] = 0

• IN GENERAL, FOR a AND b CONSTANTS

$$a\cos\theta - b\sin\theta$$

$$a\sin\theta + b\cos\theta$$

COMPUTED BY SETTING x[0] = a/K AND y[0] = b/K

VECTORING MODE

- ROTATE INITIAL VECTOR (x_{in}, y_{in}) UNTIL y = 0
- FOR INITIAL VECTOR IN THE FIRST QUADRANT:

$$\sigma_j = \begin{cases} 1 & \text{if } y[j] < 0 \\ -1 & \text{if } y[j] \ge 0 \end{cases}$$

- ullet ACCUMULATE ROTATION ANGLE IN z
- ullet FOR $x[0]=x_{in}$, $y[0]=y_{in}$ and $z[0]=z_{in}$, THE FINAL VALUES ARE

$$x_f = K(x_{in}^2 + y_{in}^2)^{1/2}$$

 $y_f = 0$
 $z_f = z_{in} + \tan^{-1}(\frac{y_{in}}{x_{in}})$

- INITIAL VECTOR $(x_{in} = 0.75, y_{in} = 0.43)$
- ullet y FORCED TO ZERO IN n=12 MICRO-ROTATIONS
- ROTATED VECTOR: $x_R = \sqrt{x_{in}^2 + y_{in}^2} = 0.8645$, $y_R = 0.0$
- ROTATED ANGLE $z_f = \tan^{-1}(\frac{0.43}{0.75}) = 0.5205$

j	y[j]	σ_{j}	x[j]	z[j]
0	0.43	-1	0.75	0.0
1	-0.32	1	1.18	0.7853
2	0.27	-1	1.34	0.3217
3	-0.065	1	1.4075	0.5667
4	0.1109	-1	1.4156	0.4423
5	0.0224	-1	1.4225	0.5047
6	-0.0219	1	1.4232	0.5360
7	0.0002	-1	1.4236	0.5204
8	-0.0108	1	1.4236	0.5282
9	-0.0053	1	1.4236	0.5243
10	-0.0025	1	1.4236	0.5223
11	-0.0011	1	1.4236	0.5213
12	-0.0004	1	1.4236	0.5208
13			1.4236	0.5206

- ullet ACCUMULATED ANGLE z[13] = 0.5206
- \bullet AFTER PERFORMING COMPENSATION OF K=1.64676 , x[13]/K=0.864
- ERRORS $< 2^{-12}$

- ROTATION MODE
- CONVERGENCE

$$|z[i]| \le \sum_{j=i}^{\infty} \tan^{-1}(2^{-j})$$

$$\theta_{max} = z[0]_{max} = \sum_{j=0}^{\infty} \tan^{-1}(2^{-j}) \approx 1.7429 \ (99.88^{\circ})$$

FOR THIS ANGLE ALL $\sigma_j = 1$ and z[j] > 0.

• CONSIDER $\theta < \theta_{max}$

$$|z[i]| \le \tan^{-1}(2^{-(i-1)})$$

CONSEQUENTLY

$$\tan^{-1}(2^{-i-1}) \le \sum_{j=i}^{\infty} \tan^{-1}(2^{-j})$$

OR

$$\tan^{-1}(2^{-i}) \le \sum_{j=i+1}^{\infty} \tan^{-1}(2^{-j})$$

SATISFIED FOR ALL i

 $\label{eq:Figure 11.4: CONVERGENCE CONDITION: THE MAXIMUM NEGATIVE CASE.}$

- n ITERATIONS (FINITE SEQUENCE)
- ullet RESIDUAL ANGLE AFTER n ITERATIONS z[n]

$$|z[n]| \le \tan^{-1}(2^{-(n-1)})$$

$$2^{-n} < \tan^{-1}(2^{-(n-1)}) < 2^{-(n-1)}$$

THE MAXIMUM ANGLE FOR CONVERGENCE

$$\theta_{max} = \sum_{i=0}^{n-1} \tan^{-1}(2^{-i}) + 2^{-n+1}$$

• 2^{-n+1} THE MAXIMUM RESIDUAL ANGLE

- ullet MOST DIRECT METHOD: MULTIPLY BY 1/K
- USE SCALING ITERATIONS OF THE FORM (1 ± 2^{-i})

$$x_s = x \pm x(2^{-i})$$

USE REPETITIONS OF CORDIC ITERATIONS

$$|z[i+1]| \le \tan^{-1}(2^{-i})$$

• OPTIMIZATION: FIND THE MINIMUM NUMBER OF SCALING ITERATIONS PLUS REPETITIONS SO THAT THE SCALE FACTOR IS COMPENSATED.

Table 11.4: Scale factor compensation for n = 24

Scaling iterations	(-1)(+2)(-5)(+10)(+16)(+19)(+22)
Scalings	(-2)(+16)(+17)
+ repetitions	1,3,5,6

Figure 11.5: WORD-SERIAL IMPLEMENTATION.

Figure 11.6: PIPELINED IMPLEMENTATION.

HYPERBOLIC COORDINATES

$$\begin{bmatrix} x_R \\ y_R \end{bmatrix} = \begin{bmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{bmatrix} \begin{bmatrix} x_{in} \\ y_{in} \end{bmatrix}$$

CORDIC HYPERBOLIC MICROROTATION:

$$x[j+1] = x[j] + \sigma_j 2^{-j} y[j]$$

$$y[j+1] = y[j] + \sigma_j 2^{-j} x[j]$$

$$z[j+1] = z[j] - \sigma_j \tanh^{-1}(2^{-j})$$

ullet SCALING FACTOR IN ITERATION j

$$K_h[j] = (1 - 2^{-2j})^{1/2}$$

• $\tanh^{-1} 2^0 = \infty$ (and $K_h[0] = 0$) \Longrightarrow NECESSARY TO BEGIN FROM ITERATION j=1

 $\label{eq:Figure 11.7:ROTATION IN HYPERBOLIC COORDINATE SYSTEM.}$

• DOES NOT CONVERGE WITH SEQUENCE OF ANGLES $\tanh^{-1}(2^{-j})$ SINCE

$$\sum_{j=i+1}^{\infty} \tanh^{-1}(2^{-j}) < \tanh^{-1}(2^{-i})$$

A SOLUTION: REPEAT SOME ITERATIONS

$$\sum_{i=j+1}^{\infty} \tanh^{-1}(2^{-i}) < \tanh^{-1}(2^{-j}) < \sum_{i=j+1}^{\infty} \tanh^{-1}(2^{-i}) + \tanh^{-1}(2^{-(3j+1)})$$

 \Longrightarrow REPEATING ITERATIONS 4, 13, 40, ..., k, 3k + 1, ... RESULTS IN A CONVERGENT ALGORITHM.

WITH THESE REPETITIONS

$$K_h \approx 0.82816$$

$$\theta_{max} = 1.11817$$

FINAL VALUES:

• FOR ROTATION MODE

$$x_f = K_h(x_{in} \cosh \theta + y_{in} \sinh \theta)$$

$$y_f = K_h(x_{in} \sinh \theta + y_{in} \cosh \theta)$$

$$z_f = 0$$

FOR VECTORING MODE

$$x_f = K_h (x_{in}^2 - y_{in}^2)^{1/2}$$

 $y_f = 0$
 $z_f = z_{in} + \tanh^{-1}(\frac{y_{in}}{x_{in}})$

$$x_R = x_{in}$$

$$y_R = y_{in} + x_{in}z_{in}$$

$$x[j+1] = x[j]$$

 $y[j+1] = y[j] + \sigma_j 2^{-j} x[j]$
 $z[j+1] = z[j] - \sigma_j (2^{-j})$

THE SCALING FACTOR IS 1. FOR THE VECTORING MODE THE FINAL VALUES

$$x_f = x_{in}$$

$$z_f = z_{in} + \frac{y_{in}}{x_{in}}$$

 $\label{eq:Figure 11.8:ROTATION IN LINEAR COORDINATE SYSTEM.}$

- m=1 FOR CIRCULAR COORDINATES
- m = -1 FOR HYPERBOLIC COORDINATES
- m = 0 FOR LINEAR COORDINATES
- UNIFIED MICROROTATION IS

$$x[j+1] = x[j] - m\sigma_j 2^{-j} y[j]$$

$$y[j+1] = y[j] + \sigma_j 2^{-j} x[j]$$

$$z[j+1] = \begin{cases} z[j] - \sigma_j \tan^{-1}(2^{-j}) & \text{if } m = 1\\ z[j] - \sigma_j \tanh^{-1}(2^{-j}) & \text{if } m = -1\\ z[j] - \sigma_j (2^{-j}) & \text{if } m = 0 \end{cases}$$

ALSO
$$z[j+1] = z[j] - \sigma_j m^{-1/2} \tan^{-1}(m^{1/2}2^{-j})$$

• THE SCALING FACTOR IS

$$K_m[j] = (1 + m2^{-2j})^{1/2}$$

Table 11.5: UNIFIED CORDIC

Coordinates	Rotation mode	Vectoring mode
	$\sigma_j = sign(z[j])^+$	$\sigma_j = -sign(y[j])^+$
Circular $(m=1)$	$x_f = K_1(x_{in}\cos(z_{in}) - y_{in}\sin(z_{in}))$	$x_f = K_1(x_{in}^2 + y_{in}^2)^{1/2}$
$\alpha_j = \tan^{-1}(2^{-j})$	$y_f = K_1(x_{in}\sin(z_{in}) + y_{in}\cos(z_{in}))$	$y_f = 0$
initial $j = 0$	$z_f = 0$	$z_f = z_{in} + \tan^{-1}(\frac{y_{in}}{x_{in}})$
j = 0, 1, 2,, n		
$K_1 \approx 1.64676$		
$\theta_{max} \approx 1.74329$		
Linear $(m=0)$	$x_f = x_{in}$	$x_f = x_{in}$
$\alpha_j = 2^{-j}$	$y_f = y_{in} + x_{in}z_{in}$	$y_f = 0$
initial $j = 0$	$z_f = 0$	$z_f = z_{in} + \frac{y_{in}}{x_{in}}$
j = 0, 1, 2,, n		
$K_0 = 1$		
$\theta_{max} = 2 - 2^{-n}$		
Hyperbolic $(m = -1)$	$x_f = K_{-1}(x_{in}\cosh(z_{in}) + y_{in}\sinh(z_{in}))$	$x_f = K_{-1}(x_{in}^2 - y_{in}^2)^{1/2}$
$\alpha_j = \tanh^{-1}(2^{-j})$	$y_f = K_{-1}(x_{in}\sinh(z_{in}) + y_{in}\cosh(z_{in}))$	
initial $j=1$	$z_f = 0$	$z_f = z_{in} + \tanh^{-1}(\frac{y_{in}}{x_{in}})$
j = 1, 2, 3, 4, 4, 513, 13,		
$K_{-1} \approx 0.82816$		
$\theta_{max} \approx 1.11817$		

 $+ sign(a) = 1 \text{ if } a \ge 0, \quad sign(a) = -1 \text{ if } a < 0.$

\boxed{m}	Mode	Initial values			Functions	
		x_{in}	y_{in}	z_{in}	x_R	y_R or z_R
1	rotation	1	0	θ	$\cos \theta$	$y_R = \sin \theta$
-1	rotation	1	0	θ	$\cosh \theta$	$y_R = \sinh \theta$
-1	rotation	a	a	heta	ae^{θ}	$y_R = ae^{\theta}$
1	vectoring	1	a	$\pi/2$	$\sqrt{a^2+1}$	$z_R = \cot^{-1}(a)$
-1	vectoring	a	1	0	$\sqrt{a^2-1}$	$z_R = \coth^{-1}(a)$
-1	vectoring	a+1	a-1	0	$2\sqrt{a}$	$z_R = 0.5 \ln(a)$
-1	vectoring	$a+\frac{1}{4}$	$a-\frac{1}{4}$	0	\sqrt{a}	$z_R = \ln(\frac{1}{4}a)$
-1	vectoring	a+b	a-b	0	$2\sqrt{ab}$	$z_R = 0.5 \ln(\frac{a}{b})$

Table 11.6: SOME ADDITIONAL FUNCTIONS

Note: the final values x_R and y_R are obtained after compensation of the scale factor.

- CRITICAL PATH of CORDIC ITERATION: ADDER (CPA)
- TO REDUCE IT: USE OF REDUNDANT ADDER
- PROBLEM WITH SIGN DETECTION:
 - If $\sigma \in \{-1,1\}$, must convert to conventional NO GOOD
 - If $\sigma \in \{-1, 0, 1\}$, can use estimate in selection \Rightarrow SCALING FACTOR NO LONGER CONSTANT
- TWO APPROACHES FOR $\sigma \in \{-1, 0, 1\}$
 - 1. CALCULATE VARIABLE SCALING FACTOR AND PERFORM COM-PENSATION
 - 2. DOUBLE-ROTATION APPROACH
- TWO APPROACHES FOR $\sigma \in \{-1, 1\}$
 - 1. USE ADDITIONAL ITERATIONS (Correcting iterations)
 - 2. USE 2 CORDIC MODULES (Plus/Minus)

DOUBLE ROTATION APPROACH

- σ_j is $\{-1, 0, 1\}$
- To maintain the constant scale factor, perform a double rotation
 - $-\sigma_j = 1$. Both rotations are by angle $\tan^{-1}(2^{-(j+1)})$
 - $-\sigma=0$. The two rotations are by the angles $\tan^{-1}(2^{-(j+1)})$ and $-\tan^{-1}(2^{-(j+1)})$.
 - $-\sigma_j = -1$. Both rotations are by the angle $-\tan^{-1}(2^{-(j+1)})$.
- Consequently, the scaling factor is constant and has value

$$K = \prod_{j=1}^{n} (1 + 2^{-2j})$$

• The elementary are $\alpha_j = 2 \tan^{-1}(2^{-(j+1)})$

$$x[j+1] = x[j] - q_j 2^{-j} y[j] - p_j 2^{-2j-2} x[j]$$

$$y[j+1] = y[j] + q_j 2^{-j} x[j] - p_j 2^{-2j-2} y[j]$$

$$z[j+1] = z[j] - q_j (2 \tan^{-1}(2^{-(j+1)}))$$

- Two control variables (q_j, p_j) : (1,1) for $\sigma_j = 1$; (0,-1) for $\sigma_j = 0$; and (-1,1) for $\sigma_j = -1$
- ullet The value of σ_j determined from an estimate of variable (z[j] for rotation and y[j] for vectoring)
- ullet since the variable converges to 0, the estimate of the sign uses the bits j-1, j, and j+1.
- Advantage: uses a redundant representation and produces a constant scaling factor
- Disadvantage: the recurrence requires three terms instead of two