On the bomb there is a light board that is controlled by 5 switches. You must turn on the right switches so that the lights in the positions below are activated.

Note that each switch controls a set of lights. Pay close attention to what happens to the lights when more than one switch is activated.

On the bomb there is a large grid with several buttons each with a value from 1-9. You must insure that the following holds true:

- 1. There is one button pressed in each row, column, and 3×3 cage.
- 2. Each value from 1-9 is pressed exactly once.

There are 10 levers on the sides of the bomb that must be pulled in ascending order. Each lever corresponds to a unique value. You will need the diagram below to decipher the values:

				1	
					1
1			4		
		1	1 1		
<u></u>			1		
				1	

There is a 6×6 grid of breakers on the bomb. The green breakers are already in the correct positions. The remaining breakers must be turned either ON or OFF so that:

- 1. In each row and column there will never be more than 2 'ON's or 'OFF's in succession. For example, you would never see 'OFF, OFF, OFF' in any row or column.
- 2. There is the same number of 'ON's and 'OFF's in each row and column.

 If there is any confusion a correct breaker schematic is shown below:

ON	ON	OFF	OFF
ON	OFF	OFF	ON
OFF	OFF	ON	ON
OFF	ON	ON	OFF