Lecture 7: MCMC Diagnostics & Adaptive Metropolis

Merlise Clyde

September 22

Example from Last Class

Priors with $\sigma^2 = 1$:

$$p(\mu) \propto 1$$

- Use a Cauchy(0,1) prior on σ_{μ} independent of μ and
- Symmetric proposal for μ and σ_{τ}
- Independent normals centered at current values of μ and σ_{μ} with covariance $\frac{2.4^2}{d} \text{Cov}(\theta)$ where d=2 (the dimension of θ)

Convergence diagnostics

- Diagnostics available to help decide on number of burn-in & collected samples.
- **Note**: no definitive tests of convergence but you should do as many diagnostics as you can, on all parameters in your model.
- With "experience", visual inspection of trace plots perhaps most useful approach.
- There are a number of useful automated tests in R.
- **CAUTION**: diagnostics cannot guarantee that a chain has converged, but they can indicate it has not converged.

Diagnostics in R

- The most popular package for MCMC diagnostics in R is coda.
- coda uses a special MCMC format so you must always convert your posterior matrix into an MCMC object.
- For the example, we have the following in R.

```
#library(coda)
theta.mcmc <- mcmc(theta,start=1) #no burn-in (simple problem!)</pre>
```


Diagnostics in R

summary(theta.mcmc)

```
##
## Iterations = 1:10000
## Thinning interval = 1
  Number of chains = 1
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
##
##
##
                         SD Naive SE Time-series SE
## mu
           -0.07977 0.1046 0.001046
                                          0.002839
##
  sigma_mu 0.17550 0.1273 0.001273
                                          0.004397
##
  2. Quantiles for each variable:
##
##
                          25%
                 2.5%
                                   50%
                                            75%
                                                 97.5%
## mu
           -0.283420 -0.1508 -0.08193 -0.00848 0.1337
## sigma_mu
            0.007995 0.0758 0.15024 0.25228 0.4693
```


The naive SE is the **standard error of the mean**, which captures simulation error of the mean rather than the posterior uncertainty.

Effective sample size

- The **effective sample size** translates the number of MCMC samples *s* into an equivalent number of independent samples.
- It is defined as

$$\text{ESS} = \frac{S}{1 + 2\sum_{k} \rho_{k}},$$

where S is the sample size and ρ_k is the lag k autocorrelation.

■ For our data, we have

effectiveSize(theta.mcmc)

```
## mu sigma_mu
## 1356.6495 838.2613
```

■ So our 10,000 samples are equivalent to 1356.6 independent samples for μ and 838.3 independent samples for σ_{μ} .

Trace plot for mean

plot(theta.mcmc[,"mu"])

Trace of var1

Density of var1

N = 10000 Bandwidth = 0.01757

Trace plot for σ_{μ}

plot(theta.mcmc[,"sigma_mu"])

Trace of var1

Density of var1

OK (be careful of scaling in plots!)

Autocorrelation

- Another way to evaluate convergence is to look at the autocorrelation between draws of our Markov chain.
- The lag k autocorrelation, ρ_k , is the correlation between each draw and its kth lag, defined as

$$ho_k = rac{\sum_{s=1}^{S-k} (heta_s - ar{ heta})(heta_{s+k} - ar{ heta})}{\sum_{s=1}^{S-k} (heta_s - ar{ heta})^2}.$$

- We expect the autocorrelation to decrease as k increases.
- If autocorrelation remains high as *k* increases, we have slow mixing due to the inability of the sampler to move around the space well.

Autocorrelation for mean

```
autocorr.plot(theta.mcmc[,"mu"])
```


So-So

Autocorrelation for variance

```
autocorr.plot(theta.mcmc[,"sigma_mu"])
```


worse

Gelman-Rubin

Gelman & Rubin suggested a diagnostic \mathbb{R} based on taking separate chains with dispersed initial values to test convergence

Gelman-Rubin Diagnostic

- Run m > 2 chains of length 2S from overdispersed starting values.
- Discard the first S draws in each chain.
- Calculate the pooled within-chain variance *w* and between-chain variance *B*.

$$R = \frac{\frac{S-1}{S}W + \frac{1}{S}B}{W}$$

- numerator and denominator are both unbiased estimates of the variance if the two chains have converged
 - otherwise w is an underestimate (hasn't explored enough)
 - numerator will overestimate as B is too large (overdispersed starting points)
- As $S \to \infty$ and $B \to 0$, $R \to 1$

■ Note: version in R is slightly different

Gelman-Rubin Diagnostic

```
theta.mcmc = mcmc.list(mcmc(theta1, start=5000), mcmc(theta2, star
gelman.diag(theta.mcmc)
```

- Values of R > 1.1 suggest lack of convergence
- Looks OK

See also gelman.plot

Geweke statistic

- Geweke proposed taking two non-overlapping parts of a single
 Markov chain (usually the first 10% and the last 50%) and
 comparing the mean of both parts, using a difference of means test
- The null hypothesis would be that the two parts of the chain are from the same distribution.
- The test statistic is a z-score with standard errors adjusted for autocorrelation, and if the p-value is significant for a variable, you need more draws.

Geweke Diagnostic

■ The output is the z-score itself (not the p-value).

```
geweke.diag(theta.mcmc)
```

```
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
         mu sigma_mu
##
   -0.7779 0.7491
##
##
##
##
   [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
         mu sigma_mu
##
##
     0.4454
              0.6377
```


Practical advice on diagnostics

- There are more tests we can use: Raftery and Lewis diagnostic, Heidelberger and Welch, etc.
- The Gelman-Rubin approach is quite appealing in using multiple chains
- Geweke (and Heidelberger and Welch) sometimes reject even when the trace plots look good.
- Overly sensitive to minor departures from stationarity that do not impact inferences.
- Most common method of assessing convergence is visual examination of trace plots.

Improving

- more iterations and multiple chains
- thinning to reduce correlations and increase ESS
- change the proposal distribution q

Proposal Distribution

Common choice

$$\mathsf{N}(\theta^\star; \theta^{(s)}, \delta^2 \Sigma)$$

- rough estimate of Σ based on the asymptotic Gaussian approximation $Cov(\theta \mid y)$ and $\delta = 2.38/\sqrt{\dim(\theta)}$
 - find the MAP estimate (posterior mode) $\hat{\theta}$
 - take

$$\Sigma = \left[-rac{\partial^2 \log(\mathcal{L}(heta)) + \log(\pi(heta))}{\partial heta \partial heta^T}
ight]_{ heta = \hat{ heta}}^{-1}$$

`

ignore prior and use inverse of Fisher Information (covariance of MLE)

Adaptive Metropolis?

- MCMC doesn't allow you to use the full history of the chain $\theta^{(1)}, \dots, \theta^{(s)}$ in constructing the proposal distributions
- violates the Markov assumption
- Workaround? run an initial MCMC for an initial tuning phase (e.g. 1000 samples) and then fix the kernel to depend only on $\theta^{(s-1)}$ and y.
- more elegant approach formal adaptive Metropolis
 - keep adapting the entire time!
 - this may mess up convergence!
 - need conditions for vanishing adaptation e.g. that the proposal depends less and less on recent states in the chain - Roberts & Rosenthal (2006) and other conditions

Adaptive MCMC

- Haario et al (2001) propose a simple and effective adaptive random walk Metropolis (RWM)
- run RWM with a Gaussian proposal for a fixed number of iterations for $s < s_0$
- estimate of covariance at state s

$$\Sigma^{(s)} = rac{1}{s} \Biggl(\sum_{i=1}^s heta^{(i)} { heta^{(i)}}^T - s ar{ heta}^{(s)} ar{ heta}^{(s)}^T \Biggr)$$

• proposal for $s>s_0$ with $\delta=2.38/\sqrt{d}$

$$heta^* \sim \mathsf{N}(heta^{(s)}, \delta^2(\Sigma^{(s)} + \epsilon I_d))$$

- $\epsilon > 0$ insures covariance is positive definite
- if s_0 is too large will take longer for adaptation to be seen

Example again

Acceptance rate now around 30-35 % of 10,000 iterations!

Metropolis-Hastings (MH)

- Metropolis requires that the proposal distribution be symmetric
- Hastings (1970) generalizes Metropolis algorithms to allow asymmetric proposals aka Metropolis-Hastings or MH $q(\theta^* \mid \theta^{(s)})$ does not need to be the same as $q(\theta^{(s)} \mid \theta^*)$
- propose $\theta^* \mid \theta^{(s)} \sim q(\theta^* \mid \theta^{(s)})$
- Acceptance probability

$$\min \left\{ 1, rac{\pi(heta^*) \mathcal{L}(heta^*) / q(heta^* \mid heta^{(s)})}{\pi(heta^{(s)}) \mathcal{L}(heta^{(s)}) / q(heta^{(s)} \mid heta^*)}
ight\}$$

adjustment for asymmetry in acceptance ratio is key to ensuring convergence to stationary distribution!

Special cases

- Metropolis
- Independence chain
- Gibbs samplers
- Metropolis-within-Gibbs
- combinations of the above!

Independence Chain

- suppose we have a good approximation $\tilde{\pi}(\theta \mid y)$ to $\pi(\theta \mid y)$
- Draw $\theta^* \sim \tilde{\pi}(\theta \mid y)$ without conditioning on $\theta^{(s)}$
- acceptance probability

$$\min \left\{ 1, rac{\pi(heta^*) \mathcal{L}(heta^*)/ ilde{\pi}(heta^* \mid heta^{(s)})}{\pi(heta^{(s)}) \mathcal{L}(heta^{(s)})/ ilde{\pi}(heta^{(s)} \mid heta^*)}
ight\}$$

- what happens if the approximation is really accurate?
- probability of acceptance is ≈ 1
- Important caveat for convergence: tails of the posterior should be at least as heavy as the tails of the posterior (Tweedie 1994)
- Replace Gaussian by a Student-t with low degrees of freedom

• transformations of θ