Colon Cancer

Jose Tamez

2023-04-28

Contents

1 RRPlot and the Colon data set 1.1 The data set 1.2 Modeling 1.3 Cox Model Performance 1.4 Cross-Validation 1 RRPlot and the Colon data set	1 2 2 3 27
1.0.1 Libraries	
library(survival) library(FRESA.CAD)	
## Loading required package: Rcpp	
## Loading required package: stringr	
## Loading required package: miscTools	
## Loading required package: Hmisc	
## Attaching package: 'Hmisc'	
## The following objects are masked from 'package:base': ##	
## format.pval, units	
## Loading required package: pROC	
## Type 'citation("pROC")' for a citation.	
## ## Attaching package: 'pROC'	
<pre>## The following objects are masked from 'package:stats': ##</pre>	
## cov, smooth, var	
<pre>#library(corrplot) #source("~/GitHub/FRESA.CAD/R/RRPlot.R") #source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R") op <- par(no.readonly = TRUE) pander::panderOptions('digits', 3)</pre>	

```
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1.1 The data set

```
data(cancer)
colon <- subset(colon,etype==1)
colon$etype <- NULL
rownames(colon) <- colon$id
colon$id <- NULL
colon <- colon[complete.cases(colon),]
time <- colon$time
status <- colon$status
data <- colon
data$time <- NULL
data$study <- NULL
table(data$status)</pre>
```

0 1 442 446

```
dataColon <- as.data.frame(model.matrix(status~.*age,data))
dataColon$`(Intercept)` <- NULL
dataColon$time <- time/365
dataColon$status <- status
colnames(dataColon) <-str_replace_all(colnames(dataColon),":","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\.","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\","_")
data <- NULL

trainsamples <- sample(nrow(dataColon),0.7*nrow(dataColon))
dataColonTrain <- dataColon[trainsamples,]
dataColonTest <- dataColon[-trainsamples,]</pre>
```

0	1
313	308

pander::pander(table(dataColonTest\$status))

0	1
129	138

1.2 Modeling

```
ml <- BSWiMS.model(Surv(time, status)~1, data=dataColonTrain, NumberofRepeats = 10)
```

pander::pander(sm\$coefficients)

Table 3: Table continues below

	Estimate	lower	HR	upper	u.Accuracy
age_nodes	0.000491	1.000	1.000	1.001	0.599
$rxLev_5FU_age$	-0.004668	0.993	0.995	0.997	0.576
${ m rxLev_5FU}$	-0.095014	0.869	0.909	0.952	0.576
${f age_node4}$	0.001524	1.001	1.002	1.002	0.601
${f node 4}$	0.243768	1.088	1.276	1.496	0.601
extent	0.218117	1.086	1.244	1.424	0.546
age	-0.006355	0.989	0.994	0.998	0.510
\mathbf{rxLev}	0.015881	1.001	1.016	1.031	0.541
\mathbf{nodes}	0.024687	1.003	1.025	1.047	0.609

Table 4: Table continues below

	r.Accuracy	full.Accuracy	u.AUC	r.AUC	full.AUC
age_nodes	0.541	0.614	0.598	0.541	0.614
$rxLev_5FU_age$	0.607	0.625	0.578	0.606	0.627
${ m rxLev_5FU}$	0.607	0.610	0.578	0.606	0.610
${f age_node4}$	0.598	0.610	0.599	0.598	0.610
${\bf node 4}$	0.616	0.625	0.599	0.617	0.627
\mathbf{extent}	0.624	0.625	0.549	0.623	0.627
age	0.600	0.613	0.510	0.599	0.613
\mathbf{rxLev}	0.614	0.618	0.540	0.613	0.618
\mathbf{nodes}	0.626	0.625	0.608	0.627	0.626

	IDI	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
age_nodes	0.02389	0.362	4.92	4.79	0.07320	1.0
$rxLev_5FU_age$	0.02439	0.311	4.61	4.18	0.02104	1.0
$rxLev_5FU$	0.01992	0.311	4.10	4.18	0.00379	0.6
${f age_node4}$	0.01222	0.329	3.34	4.89	0.01158	0.6
${f node 4}$	0.01172	0.327	3.17	4.85	0.00998	1.0
${f extent}$	0.01252	0.169	3.16	2.98	0.00386	1.0
age	0.00911	0.129	2.79	1.63	0.01351	1.0
\mathbf{rxLev}	0.00531	0.159	2.26	2.11	0.00500	0.9
nodes	0.00462	0.173	2.23	2.27	-0.00118	1.0

1.3 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.3.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

Cumulative vs. Observed: Raw Train: Colon Cancer

Decision Curve Analysis: Raw Train: Colon Cancer

Relative Risk: Raw Train: Colon Cancer

ROC: Raw Train: Colon Cancer

Time vs. Events: Raw Train: Colon Cancer

Kaplan-Meier: Raw Train: Colon Cancer

1.3.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 6: O/E Ratio

est	lower	upper
0.985	0.878	1.1

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 7: O/E Ratio

mean	50%	2.5%	97.5%
1.52	1.52	1.49	1.55

pander::pander(t(rrAnalysisTrain\$OAcum95ci),caption="0/Acum Ratio")

Table 8: O/Acum Ratio

mean	50%	2.5%	97.5%
1.32	1.32	1.32	1.33

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.652	0.652	0.622	0.684

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 10: ROC AUC

est	lower	upper
0.686	0.644	0.727

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 11: Sensitivity

est	lower	upper
0.292	0.242	0.346

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 12: Specificity

est	lower	upper
0.898	0.859	0.929

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 13: Probability Thresholds

90%	
0.473	

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 14: Risk Ratio

est	lower	upper
1.69	1.46	1.95

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 15: Logrank test Chisq = 64.689536 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
class=0	499	218	266.1	$8.71 \\ 55.35$	64.7
class=1	122	90	41.9		64.7

1.3.3 Cox Calibration

h0	Gain	DeltaTime
0.669	1.5	2.96

1.3.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: Colon

Decision Curve Analysis: Calibrated Train: Colon

Relative Risk: Calibrated Train: Colon

Time vs. Events: Calibrated Train: Colon

Kaplan-Meier: Calibrated Train: Colon

1.3.5 Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 17: O/E Ratio

est	lower	upper
0.765	0.682	0.856

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 18: O/E Ratio

mean	50%	2.5%	97.5%
0.969	0.969	0.951	0.985

pander::pander(t(rrAnalysisTrain\$OAcum95ci),caption="0/Acum Ratio")

Table 19: O/Acum Ratio

mean	50%	2.5%	97.5%
1.02	1.02	1.02	1.03

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.652	0.652	0.624	0.68

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 21: ROC AUC

est	lower	upper
0.686	0.644	0.727

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 22: Sensitivity

est	lower	upper
0.292	0.242	0.346

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 23: Specificity

est	lower	upper
0.898	0.859	0.929

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 24: Probability Thresholds

90%	
0.618	

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 25: Risk Ratio

est	lower	upper
1.69	1.46	1.95

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 26: Logrank test Chisq = 64.689536 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
class=0 class=1	$499 \\ 122$	218 90	266.1 41.9	$8.71 \\ 55.35$	64.7 64.7

1.3.6 Evaluating on the test set

The calibrated h0 and timeinterval were estimated on the training set

Cumulative vs. Observed: Test: Colon Cancer

Decision Curve Analysis: Test: Colon Cancer

Relative Risk: Test: Colon Cancer

Time vs. Events: Test: Colon Cancer

Kaplan-Meier: Test: Colon Cancer

1.3.7 Test Performance

pander::pander(t(rrAnalysisTest\$0ERatio),caption="0/E Ratio")

Table 27: O/E Ratio

est	lower	upper
0.831	0.698	0.981

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Ratio")

Table 28: O/E Ratio

mean	50%	2.5%	97.5%
0.98	0.98	0.954	1.01

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Ratio")

Table 29: O/Acum Ratio

mean	50%	2.5%	97.5%
1.06	1.06	1.06	1.07

pander::pander(rrAnalysisTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.656	0.656	0.612	0.699

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 31: ROC AUC

est	lower	upper
0.679	0.616	0.742

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 32: Sensitivity

est	lower	upper
0.312	0.236	0.396

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 33: Specificity

est	lower	upper
0.922	0.862	0.962

pander::pander(t(rrAnalysisTest\$thr_atP), caption="Probability Thresholds")

Table 34: Probability Thresholds

90%	
0.618	

pander::pander(t(rrAnalysisTest\$RR_atP),caption="Risk Ratio")

Table 35: Risk Ratio

est	lower	upper
1.79	1.46	2.18

pander::pander(rrAnalysisTest\$surdif,caption="Logrank test")

Table 36: Logrank test Chisq = 46.790198 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	214	95	121.1	5.63	46.8
class=1	53	43	16.9	40.44	46.8

1.4 Cross-Validation

Here we will cross validate the training set and evaluate also on the testing set. The h0 and the timeinterval are the ones estimated on the calibration process

```
title="CV Test: Colon Cancer",
ysurvlim=c(0.00,1.0),
riskTimeInterval=timeinterval)
```

Cumulative vs. Observed: CV Test: Colon Cancer

Decision Curve Analysis: CV Test: Colon Cancer

Relative Risk: CV Test: Colon Cancer

Time vs. Events: CV Test: Colon Cancer

Kaplan-Meier: CV Test: Colon Cancer

1.4.1 CV Test Performance

pander::pander(t(rrAnalysisCVTest\$0ERatio),caption="0/E Ratio")

Table 37: O/E Ratio

est	lower	upper
0.768	0.698	0.842

pander::pander(t(rrAnalysisCVTest\$0E95ci),caption="0/E Ratio")

Table 38: O/E Ratio

mean	50%	2.5%	97.5%
0.957	0.957	0.943	0.97

pander::pander(t(rrAnalysisCVTest\$OAcum95ci),caption="0/Acum Ratio")

Table 39: O/Acum Ratio

mean	50%	2.5%	97.5%
1.03	1.03	1.03	1.03

pander::pander(rrAnalysisCVTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.648	0.648	0.622	0.674

pander::pander(t(rrAnalysisCVTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 41: ROC AUC

est	lower	upper
0.674	0.639	0.709

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 42: Sensitivity

est	lower	upper
0.291	0.25	0.336

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 43: Specificity

est	lower	upper
0.896	0.864	0.923

pander::pander(t(rrAnalysisCVTest\$thr_atP), caption="Probability Thresholds")

Table 44: Probability Thresholds

90%	
0.618	3

pander::pander(t(rrAnalysisCVTest\$RR_atP),caption="Risk Ratio")

Table 45: Risk Ratio

est	lower	upper
1.66	1.47	1.87

pander::pander(rrAnalysisCVTest\$surdif,caption="Logrank test")

Table 46: Logrank test Chisq = 88.579988 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
class=0	712	316	384.3	12.1	88.6
class=1	176	130	61.7	75.6	88.6