THE MELTING OF SOLID AND POROUS ALUMINUM UNDER SHOCK COMPRESSION

BY CLINTON T. RICHMOND

RESEARCH AND TECHNOLOGY DEPARTMENT

22 MARCH 1982

Approved for public release, distribution unlimited.

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

82 06 29 012

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOS NUMBER
NSWC TR 79-279 AD-A 116 19	-
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
THE MELTING OF SOLID AND POROUS ALUMINUM	Technical Report
UNDER SHOCK COMPRESSION	February 1980-February 1981
CARLA STOCK COM NESSTON	6. PERFORMING ORG. REPORT NUMBER
7. AU THOR(s)	3. CONTRACT OR GRANT NUMBER(s)
Clinton T. Richmond	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Surface Weapons Center	
White Oak, Silver Spring, Maryland 20910	61152N; 0; ZR01305; R01AA
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	22 March 1982
	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II ditterent from Controlling Office)	15. SECURITY CLASS. (of this report)
is. MONI: DRING ADENCY NAME & ADDRESS(IT distants from Controlling Office)	Second Center (or and report)
	UNCLASSIFIED
	154. DECLASSIFICATION DOWNGRADING
16. DISTRIBUTION STATEMENT (at this Report)	
Approved for public release, distribution unlim	ited.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 30, if different fro	om Report)
	,
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number,	,
Melting Points	
Hugoniots	
Equation of State	
Porous Materials	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	inum is calculated
The melting point of shock compressed alum according to the prediction of the Lindemann la	wand the Gruneisen
equation of state. The position of this point	on the Lindemann
melting curve varies with two parameters - the	initial state and the
porosity of aluminum. Because the Hugoniot of	aluminum depends upon
these parameters, variation in either the initi	al state or the porosity
implies a family of Hugoniots. Normally, a cha	racteristic (complete)
i	

20. (Cont.)

equation of state is needed to determine these Hugoniots. But, in this work a family of Hugoniots is derived for each parameter by using the Gruneisen equation of state and a single experimental Hugoniot. Several melting points are calculated corresponding to various values of the parameter of a Hugoniot. These melting points, Hugoniots, and other thermal properties calculated from the theory are in excellent agreement with the data cited.

UNCLASSIFIED

FOREWORD

This report is a part of a study to make a reliable assessment of how certain materials behave when placed in a shock loading system. An important aspect of this study is the equation of state which describe the thermodynamics of each material during the loading process. Since aluminum is a significant feature in the design of many systems, a case is made for using the Gruneisen equation of state to describe the thermodynamic properties of aluminum. The Lindemann law of melting is used in conjunction with the Gruneisen equation of state to determine when the shock strength is great enough to melt the aluminum.

The author acknowledges the valuable assistance of Drs. D. J. Pastine, D. J. O'Keeffe and H. D. Jones. This work was prepared under the task number ZR01305.

J. F. PROCTOR By direction

CONTENTS

Chapter		Page
1	INTRODUCTION	5
2	EQUATION OF STATE FOR ALUMINUM	9
3	GENERATING A FAMILY OF HUGONIOTS	13 -
4	MELTING OF ALUMINUM ON A SHOCK HUGONIOT	15
5	THE HUGONIOT FOR POROUS ALUMINUM	17
6	DISCUSSION OF RESULTS	19
7	SUMMARY	37
	REFERENCES	39
	APPENDIX ADEBYE FUNCTION	A-1
	APPENDIX BSHOCK RELATIONS AND THE HUGONIOT	B-1
	APPENDIX CGRUNEISEN FUNCTION	C-1

TABLES

Table	<u>e</u>	<u>Page</u>
1	Numerical Evaluation of the Zero Isotherm and Related Functions	. 20
2	Enthalpy as a Function of Temperature at $P = 0 \dots$. 23
3	Hugoniot Pressures and Temperatures for $T_i = 278^{\circ} K$. 25
4	Hugoniot Pressures and Temperatures for $T_i = 298^{\circ} K$. 26
5	Hugoniot Pressures and Temperatures for $T_i = 318^{\circ} K$. 27
6	Melting Temperature and Pressure as a Function of Compression Ratio	. 28
7	Melting Point Dependent on Initial State of Al	. 30
	ILLUSTRATIONS	
Figu	<u>re</u>	Page
1	Zero-Degree Isotherm for Aluminum	. 21
2	Change of Enthalpy with Absolute Temperature at $P = 0$.	. 24
3	The Melting Point of Aluminum as the Intersection of Lindemann's Melting Curve and the Hugoniot	. 29
4	Effect of Porosity on the Melting Point of Aluminum	. 32
5	Change in Temperature-Pressure Slope with Pressure on the Hugoniot of Porous Aluminum	. 33
6	Shock Speed Versus Particle Speed for Porous Aluminum	. 34

CHAPTER 1

INTRODUCTION

Zel'Dovich¹ and Kormer² have pointed out the difficulties in attempting to measure temperatures in opaque solids. As a result, only limited data on temperatures at the melting state of a solid at ultra high pressures are available. However, a number of attempts have been made to calculate melting state temperatures by constructing the solid's equations-of-state. This approach was used by Urlin³, and Ivanov³ in attempts to calculate the melting points of the elements aluminum, copper, nickel, and lead at high, Hugoniot pressures. Except for some agreement on the pressures required for melting these elements, there is considerable difference between the melting temperatures. In the first treatment, Urlin uses the Lindemann law in conjunction with an equation of state to calculate the melting states of each metal. This particular procedure is supported by O'Keeffe⁵ who has shown, in the case of copper, that the Lindemann law gives an accurate description of the experimentally determined melting states⁶ of a solid.

Zel'Dovich, Ia. M.I.T. B. and Raiser, Ia. P., "Physical Phenomena that Occur When Bodies Compressed by Strong Shock Waves Expand in Vacuo," Soviet Physics, JETP, Vol. 35(8), No. 6, p. 980, June 1959.

²Kormer, S. B., Sinitsyn, M. V., Kirillov, G. A., and Urlin, V. D., "Experimental Determination of Temperature in Shock-Compressed NaCl and KCl and of Their Melting Curves at Pressures Up to 700 kbar," <u>Soviet Physics JETP</u>, Vol. 8, No. 4, p. 689, October 1963.

³Urlin, V. D. and Ivanov, A. A., "Melting Under Shock-Wave Compression," <u>Soviet Physics Doklady</u>, Vol. 8, No. 4, p. 380, October 1963.

⁴Urlin, V. D., "Melting at Ultra High Pressures in a Shock Wave," Soviet Physics JETP, Vol. 22, No. 2, p. 341, February 1966.

⁵O'Keeffe, David J., "Melting of Solids with a Linear U_s - U_p Relationship," Applied Physics Letters, Vol. 21, No. 8, p. 360, 15 October 1972.

⁶Mitra, N. R., Decker, D. L., and Vanfleet, H. B., "Melting Curves of Copper, Silver, Gold, and Platinum to 70 kbar," <u>Physical Review</u>, Vol. 161, No. 3, p. 613, 15 September 1967.

O'Keeffe's technique⁷ minimizes the number of approximations needed in the equation of state. Thus, more reliability is provided to his predictions. On the other hand, the equation-of-state used by Urlin contain additional approximations, such as, constant specific heat capacity and the Dugdale-MacDonald formula⁸ for the Gruneisen parameter. Pastine⁹, White¹⁰, and Anderson have demonstrated the inadequacy of the Dugdale-MacDonald formula.

In this report, O'Keeffe's procedure will be used to recalculate the melting point of aluminum on its Hugoniot by using a Gruneisen equation of state which does not contain any of the approximations already mentioned. Pastine¹¹, Forbes, and O'Keeffe⁷ have shown that this equation-of-state gives an accurate description of the thermal properties of a metal. A more detailed description of this equation and how it is used to calculate the temperature on the Hugoniot as a function of pressure are discussed in Chapters 2 and 4.

A Hugoniot describes the behavior of a specific property of a material as it is compressed through various shock states. A Hugoniot for any flow or thermal property is derivable from the shock relations and a characteristic equation of state. It is clear from the shock relations that the initial state and the initial porosity are parameters of the Hugoniot. A family of Hugoniots can be generated by simply varying either parameter.

A characteristic equation of state is not used for porous aluminum. Instead, a Gruneisen equation of state is used to generate a family of Hugoniots from a single experimental Hugoniot. This procedure is described in Chapter 3.

O'Keeffe, David, J., "Accurate Pressure, Volume, Temperature Relations for Copper," <u>Journal of Geophysical Research</u>, Vol. 75, p. 1947, 1970.

BDugdale, J. S. and MacDonald, D. K. C., "The Thermal Expansion of Solids," Physical Review, Vol. 89, No. 4, p. 832, February 1953.

Pastine, D. John, "Formulation of the Gruneisen Parameter for Monatomic Cubic Crystals," <u>The Physical Review</u>, Vol. 138, No. 3A, p. A767, May 1965.

White, G. K. and Anderson, O. L., "Gruneisen Parameter of Magnesium Oxide," <u>Journal of Applied Physics</u>, Vol. 37, No. 1, p. 430, January 1966.

Pastine, D. John and Forbes, J. W., "Accurate Relations Determining the Volume Dependence of the Quasiharmonic Gruneisen Parameter," Physical Review Letters, Vol. 21, No. 23, p. 1582, December 1968.

The Lindemann law is used to describe the melting states in both solid and porous aluminum. Therefore, the melting point of aluminum is in a shock state satisfying both the Lindemann law and the Hugoniot of aluminum. Since the Hugoniot is parametric, there is a "family" of melting points corresponding to a family of Hugoniots due to a specific parameter. These melting points and their Hugoniots are compared with data cited from other reports. Thermal propertieseg, the zero-degree isotherm, the enthalpy at zero pressure, the temperatures and pressures on the various Hugoniots-are calculated and compared to the results of other investigators.

CHAPTER 2

EQUATION OF STATE FOR ALUMINUM

Temperatures on a Hugoniot cannot be determined without an equation of state unless they are measured experimentally. In this section, an equation of state for aluminum will be described.

In simple solids, such as aluminum, copper, lead, etc., the Gruneisen equation 7,11 of state is accurate enough for calculating Hugoniot temperatures. The components of this equation are the zero-degree isotherm, $P_{\rm O}(x)$, the Gruneisen function, $\Gamma(x)$, and the specific thermal energy, $E_{\rm T}(x,T)$. The variables are x, the compression ratio, and T, the temperature. In this case, the compression ratio is defined as

$$x = V/V_{O}$$

where V is the specific volume. The density of the solid is ρ = 1/V. A zero subscript on variables denotes their values at zero absolute temperature and zero pressure.

The Gruneisen equation of state for the pressure-volume-temperature relationship is

$$P(x,T) = P_{O}(x) + \rho_{O}\Gamma(x) E_{T}(x,T)/x$$
 (1)

in which P(x,T) is the pressure. The second term in this equation is referred to as the thermal pressure.

The specific thermal energy for the metals of interest can be described reasonably well by the Debye relation

$$E_{T}(x,T) = 3 N_{O}kTD(\theta/T)/M.$$
 (2)

The constants in this equation are N_0 , k, and M which are respectively Avogadro's number, the Boltzmann constant, and the atomic or molecular weight of the solid. In Equation (2), $D(\theta/T)$ is the Debye function, and θ is the Debye temperature (see Appendix A). In the limit, T=0, $E_T(x,0)=0$.

The specific internal energy of a material may be written as

$$E(x,T) = \phi(x) + E_{T}(x,T)$$
 (3)

where $\varphi\left(x\right)$ is associated with the zero-degree isotherm and is defined as

$$\phi(\mathbf{x}) = \mathbf{E}(\mathbf{x}, \mathbf{0}) . \tag{4}$$

The zero-degree isotherm is defined by

$$P_{O}(x) = -\rho_{O} \frac{d\phi(x)}{dx}$$
 (5)

and the Gruneisen function is defined by the relation

$$\rho_{O}\Gamma(x) = x \left(\frac{\partial P}{\partial E}\right)_{X}.$$
 (6)

However, a function defined by

$$\psi(\mathbf{x}, \mathbf{T}_{i}) = \rho_{o} \left[\phi(\mathbf{x}_{i}) - \phi(\mathbf{x}) + \mathbf{E}_{T} (\mathbf{x}_{i}, \mathbf{T}_{i}) \right]$$
 (7)

is found more convenient to work with in describing the zero-degree isotherm along a Hugoniot which takes the form

$$S = a + bu. (8)$$

Here, S is the shock velocity and u is the particle velocity. The subscript i on a variable is used to indicate the initial value of that variable. It is clear from Equation (5) that

$$P_{O}(x) = \left(\frac{\partial \psi}{\partial x}\right)_{T_{i}}$$
 (9)

in terms of $\psi(\mathbf{x}, \mathbf{T_i})$ as expressed by Equation (7). The function $\psi(\mathbf{x}, \mathbf{T_i})$ and $(\frac{\partial \psi}{\partial \mathbf{x}})_{\mathbf{T_i}}$ are calculated by solving the differential equation,

$$\left(\frac{\partial \psi}{\partial x}\right)_{T_{i}} + \Gamma(x)\psi/x = \rho_{0}a^{2}(x_{i}-x)\left[2x-\Gamma(x)(x_{i}-x)/2x x_{i}-b(x_{i}-x)^{2}\right](10)$$

which is valid on the shock Hugoniot. See Appendix B for a derivation of this equation. In this equation, ρ_0 = 2.7334 g/cc, the initial state parameters^{12,13} are a = 5.4 km/sec, b = 1.351, and x_i = 0.0127 at

Simmons, Gene and Wang, Herbert, Single Crystal Elastic Constants
Calculated Aggregate Properties: A Handbook, Cambridge, Mass.,
The M. I. T. Press, pp. 4-8, 1971.

Mitchell, A. C. and Shaner, J. W., Lawrence Livermore Laboratory, University of California, Livermore, California 94550 (Private Communication).

 $T_i = 298^{O}k$ for aluminum. The computed boundary conditions are

$$\psi(x_i, T_i) = \rho_0 E_T(x_i, T_i) = 4.4918 \text{ kbars cc/g},$$
 (11)

$$P_{O}(x_{i}) = \frac{\partial \psi}{\partial x_{i}}|_{T_{i}} = -\Gamma(x_{i}) \psi (x_{i}, T_{i})/x_{i} = -9.96911 \text{ kbars.}$$
 (12)

 $E_T(x_i,T_i)$ is calculated from Equation (2) with an initial Debye temperature taken from Reference 14 and adjusted to the value θ_i = 386.059 so that the condition

$$P(1,0) = P_0(1) = 0$$

is satisfied. This condition describes the uncompressed state of aluminum at V = V_O and T = $0^O K$. An explicit expression for the Gruneisen function, defined by Equation (6), has been derived by Pastine and Forbes. The value of $\Gamma(x_i)$ in Equation (12) is calculated by using this expression. See Appendix C.

Gschneidner, Jr., Karl A., "Physical Properties and Interrelationships of Metallic and Semi-Metallic Elements," Solid State Physics Advances in Research and Applications, New York, Academic Press, Vol. 16, p. 369, 1965.

CHAPTER 3

GENERATING A FAMILY OF HUGONIOTS

A strong shock wave can raise the temperature of a solid to the point of melting. This melting point is one of the shock states specified by a Hugoniot of the solid. Thus, a Hugoniot must be known before the melting point on it can be determined. In this section, a procedure will be described for calculating a family of Hugoniots from a single experimental Hugoniot, the Gruneisen equation of state, and the shock relation of the conservation of energy.

From an experimental Hugoniot of the type given by the shock velocity, particle velocity relation the pressure in Equation (8), can be calculated by eliminating E(x,T), $\phi(x)$, and $E_T(x,T)$ from quations (1), (3), (7), and the Hugoniot relation

$$E - E_i = (x_i - x) (P + P_i) / 2\rho_O$$
 (13)

for the conservation of energy across a shock front (see Appendix B). The result at P_i = o is

$$P(x, T_{i}) = \frac{P_{O}(x) + (x) \psi (x, T_{i})/x}{1 - \Gamma(x) (x_{i} - x)/2x}$$
(14)

This form of the Hugoniot clearly indicates that the pressure is dependent upon the initial state of the material. All of the initial state parameters associated with Equation (14), i.e., \underline{a} , \underline{b} , $x_{\underline{i}}$, $\varphi(x_{\underline{i}})$, $E_{\underline{t}}(x_{\underline{i}}, T_{\underline{i}})$, etc. can be viewed as functions of the initial temperature, $T_{\underline{i}}$. Therefore, Equation (14) represents a one-parameter family of Hugoniots, and each member of the family is distinguished by its initial temperature. Consequently, a different Hugoniot is obtained each time the initial temperature, $T_{\underline{i}}$, changes to another initial temperature, $T_{\underline{i}}$. The resulting Hugoniot pressure, $P(x, T_{\underline{i}})$, can readily be obtained from Equation (14) by evaluating $\psi(x, T_{\underline{i}})$ and $x_{\underline{i}}$.

Landau, L. D. and Lipshitz, E. M., Fluid Mechanics, New York, Bergman Press, p. 319, 1975.

The compression ratio, $\mathbf{x_i}$, at a temperature of $\mathbf{T_i}$ can be calculated from experimental information on the density of the material the function, $\psi(\mathbf{x}, \mathbf{T_i})$, may be evaluated by observing that for an initial temperature of $\mathbf{T_i}$, Equation (7) becomes

$$\Psi(x, T_i) = \rho_0 \left[\phi(x_i) - \phi(x) + E_T(x_i, T_i) \right].$$
 (15)

If $x = x_i$ in Equation (7), then its value is

$$\psi(x_{i}', T_{i}) = \rho_{o}[\phi(x_{i}) - \phi(x_{i}') + E_{T}(x_{i}, T_{i})]$$
 (16)

Elimination of $\phi(x)$, $\phi(x_i)$, $\phi(x_i)$, and $E_T(x_i, T_i)$ from Equations (7), (15), and (16) leads immediately to

$$\psi(x, T_i) = \psi(x, T_i) - \psi(x_i, T_i) + \rho_0 E_T(x_i, T_i).$$
 (17)

Making use of the boundary conditions from Equations (11) and (12) for an initial temperature of T_i , Equation (17) reduces to

$$\psi(x, T_i) = \psi(x, T_i) - \psi(x_i, T_i) - x_i P_O(x_i) / \Gamma(x_i).$$
 (18)

Each term on the right of Equation (18) can be evaluated from the solution of Equation (10) which can be obtained from a single known Hugoniot. (The third term on the right side of Equation (17) could be calculated using Equation (2), but this is not needed.)

Since the new initial temperature, T_i , is arbitrary, a family of Hugoniots, $P(x,\,T_i)$, in the form of Equation (14), can be calcuby using Equation (18), which is evaluated from data along a single Hugoniot.

CHAPTER 4

MELTING OF ALUMINUM ON A SHOCK HUGONIOT

A procedure is described in this section for calculating the melting temperature on any member of the family of Hugoniots for aluminum. The first step in this procedure is to eliminate x between Equations (1) and (14) to obtain the temperature which can be expressed in the form

$$T = f(P, T_i)$$
 (19)

Without the single experimental Hugoniot of Equation (8), this result could not be achieved without a characteristic equation of state. For example, an equation of state in the form E = E(x, P) is sufficent to produce a family of Hugoniots of the form $P = P(x, T_i)$ from Equation (13). However, without additional information, the temperatures on these Hugoniots cannot be calculated.

Next, apply the Lindemann $law^{5,17}$ for melting in the form

$$T = T_S (\theta/\theta_S)^2 (x/x_S)^{2/3}$$
 (20)

Here the subscript s refer to the static values of T, θ , and x for melting at a pressure of P = 0. These values 12,18 are $T_S = 932^{\circ} K$, $\theta_S = 324.085^{\circ} K$, and $x_S = 1.07106$ for aluminum. Elimination of x between Equations (1) and (20) leads to a melting law which can be expressed in the form

$$T = g (P). (21)$$

¹⁶Callen, Herbert B., Thermodynamics, New York, John Wiley and Sons, Inc., p. 50, 1960.

Lindemann, F. A., "The Calculation of the Natural Molecular Frequency," Physikalische Zeitschrift, Vol. 11, p. 609, July 1910.

Hultgren, Ralph, Orr, Raymond L., Anderson, Phillip D., and Kelley, Kenneth A., Selected Values of Thermodynamic Properties of Metals and Alloys, Berkeley, California, John Wiley and Sons, Inc., pp. 33-37, 1963.

The simultaneous solution to Equations (19) and (21) is the melting point of aluminum on a family-member Hugoniot. The solution will be denoted by

$$T_{m} = T_{m}(T_{i}), P_{m} = P_{m}(T_{i})$$
 (22)

which shows that the melting state $(\mathbf{T}_{\mathfrak{m}},\mathbf{P}_{\mathfrak{m}})$ is dependent upon the initial temperature, \mathbf{T}_{1} .

CHAPTER 5

THE HUGONIOT FOR POROUS ALUMINUM

Let V' represent the specific volume of porous aluminum, V_h , the specific volume of the holes, and V, the specific volume of the solid portion of aluminum, then

$$v' = v + v_h$$
.

Dividing all specific volumes by Vo leads to

$$x' = x + x_h. (23)$$

Porosity, M, is defined by the ratio

$$M = \frac{V'}{V} = x'/x.$$

The initial porosity is

$$M_{i} = x_{i}^{\dagger}/x_{i}. \tag{24}$$

Assuming that the Gruneisen equation of state and the conservation law apply to porous aluminum, it follows immediately that Equation (14) is the Hugoniot of porous aluminum with the quantities x, x_i , and T_i replaced by x', x'_i . and T'_i . Except for the initial values, thermal quantities do not depend significantly upon the details 19,20,21 of compaction behavior at high pressures. This means that the shock pressure is too high to experience any substantial resistance to collapse in the porous part of the solid. After collapse, $x_h = 0$, and Equation (14) reduces to

$$P(x, T'_{i}) = \frac{P_{O}(x) + \Gamma(x) \psi(x, T_{i})/x}{1 - \Gamma(x) (M_{i}x_{i} - x)/2x}$$
(25)

¹⁹ Herrmann, W., "Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials," <u>Journal of Applied Physics</u>, Vol. 40, No. 6, p. 2490, May 1969.

Pastine, D. John, "Theoretical Shock Properties of Porous Aluminum," Journal of Applied Physics, Vol. 41, No. 7, p. 3144, June 1970.

O'Keeffe, David J., "Theoretical Determination of the Shock States of Porous Copper," <u>Journal of Applied Physics</u>, Vol. 42, No. 2, p. 888, February 1971.

The fact that $\psi(x, T_i) = \psi(x, T_i)$ is a direct consequence of the theory that the initial energy of a solid does not change with its porosity. Thus, the Hugoniot of a porous material is related to that of a solid by the relation,

$$P(x, T'_{i}) = \frac{2x - \Gamma(x) (x_{i} - x)}{2x - \Gamma(x) (M_{i}x_{i} - x)} P(x, T_{i}).$$
 (26)

In this relation, $P(x, T_i)$ is the Hugoniot of the solid defined by Equation (14). This relation shows that the pressure in a porous solid is greater than the pressure in a non-porous solid. The temperature corresponding to the porous pressure, $P(x, T_i')$, is calculated from Equation (1). The shock velocity (S') and particle velocity (u') for a porous solid may be calculated from the shock relations in the form

$$S' = x'_{i} \sqrt{\frac{P(x, T'_{i})}{\rho_{O}(x'_{i} - x)}}$$
 (27)

$$u' = \sqrt{(x'_i - x) P(x, T'_i)/\rho_0}$$
 (28)

CHAPTER 6

DISCUSSION OF RESULTS

The results from certain components of the Gruneisen equation of state are discussed and compared in this section to the work of other investigators. Also the numerical results for the pressures and temperatures on several Hugoniot-family members are presented and the numerical values of the melting points on these Hugoniots are given.

The Gruneisen equation of state is a sum of two important terms: the zero-degree isotherm and the thermal pressure. (See Chapter 2)

The zero-degree isotherm, $P_O(x)$, defined by Equation (9), was evaluated from the numerical solution to Equation (10). The values $P_O(x)$ is tabulated in Table 1. A corresponding graph of $P_O(x)$ is compared to Pastine's 22 calculation in Figure 1. Although Pastine used a different approach to compute $P_O(x)$ for aluminum, his results are quite close to the current results, especially at lower pressures.

Since $P_O(x)$ is connected to the function $\psi(x, T_i)$ through the differential Equation (10), there is an indirect way in which $P_O(x)$ can be compared to experimental data. Consider the thermal quantity, enthalpy, which is given

H = E + PV.

At a pressure of P = 0, the enthalpy,

H = E.

From Equations (3) and (7), it is obvious that

$$\Delta H = E(x_{i}, T_{i}) - E(x_{i}, T_{i}) = V_{o} \psi(x, T_{i}) - V_{o} \psi(x, T_{i})$$

Pastine, D. John and Carroll, M. J., "Equations of State for Sodium and Aluminum," Accurate Characterization of the High Pressure Environment, Gaithersburg, Maryland, USA, 14-18 October 1968, Washington, D. C., USA National Bureau of Standards, pp. 91-104, 1971.

NSWC TR 79-279

TABLE 1 NUMERICAL EVALUATION OF THE ZERO ISOTHERM AND RELATED FUNCTIONS

x	$\Psi(X,T_i)$ (Kbars - cc/g)	Γ(x)	P(X,T _i) (Kbars)	P _o (X) (Kbars)
1.0127	4.49180	2.24759	0.0000	-9.96911
1.0000	4.56213	2.19871	10.2135	0.040132
0.9873	4.50132	2.15322	21.1497	10.7469
0.9746	4.30024	2.11113	32.8673	22.1960
0.9619	3.94920	2.07240	45.4304	34.4358
0.9492	3.43785	2.03702	58.9098	47.5181
0.9365	2.75518	2.00496	73.3834	61.4991
0.9238	1.88942	1.97618	88.9370	76.4384
0.9111	0.828037	1.95065	105.666	92.4003
0.8984	-0.442348	1.92830	123.674	109.453
0.8857	-1.93600	1.90915	143.079	127.669
0.8730	-3.66815	1.89281	164.010	147.124
0.8603	-5.65498	1.87947	186.610	167.899
0.8476	-7.91375	1.86886	211.042	190.078
0.8349	-10.4628	1.86082	237.484	213.748
0.8222	-13.3216	1.85513	266.138	238,999
0.8095	-16.5107	1.85155	297.231	265,923
0.7968	-20.0519	1.84979	331.017	294.612
0.7841	-23.9682	1.84954	367.784	325,161
0.7714	-28.2838	1,85045	407.858	357.664
0.7587	-33.0239	1.85215	451.610	392.214
0.7460	-38.2151	1.85422	499.461	428.901
0.7333	-43.8851	1.85626	551.892	467.814
0.7206	-50.0625	1.85784	609.457	509.040
0.7079	-56.7773	1.85854	672.790	552.661
0.6952	-64.0601	1.85795	742.625	598.758
0.6825	-71.9429	1.85567	819.813	647.411
0.6698	-80.4584	1.85136	905.345	698.697
0.6571	-89.6404	1.84471	1000.38	752.696
0.6444	-99.5238	1.83545	1106.28	809.492
0.6317	-110.144	1.82339	1224.65	869.174
0.6190	-121,539	1.80839	1357.40	931.842
0.6063	-133.745	1.79036	1506.81	997.611
0.5936	-146.804	1.76928	1675.61	1066.61
0.5809	~160.757	1.74521	1867.13	1139.01
0.5682	~175.646	1.71821	2085.39	1215.00
0.5555	-191.519	1.68844	2335.35	1294.80
0.5428	~208.423	1.65606	2623.15	1378.71
0.5301	226.414	1.62127	2956.43	1467.06
0.5301	-245.546	1.58430	2950.43 3344.87	1560.28
0.5047	-245.885		3800.80	1658.89
U.3U4/	-200.080	1.54538	3000.00	60.9001

 $X = V/V_o$, THE COMPRESSION RATIO

 $[\]Psi(X,T_i)$ = ENERGY DENSITY OF EQ (7)

 $[\]Gamma(X) = GRÜNEISEN FUNCTION$

 $P(X,T_i) = HUGONIOT PRESSURE$

Po(X) = ZERO ISOTHERM

FIGURE 1 ZERO DEGREE ISOTHERM FOR ALUMINUM

Using Equation (18), the change in enthalpy reduces to

$$H = -V_0 \psi (x'_i, T_i) - V'_i P_0(x'_i) / \Gamma(x'_i)$$
 (29)

which was readily evaluated numerically and listed in Table 2. The graph of these calculations in Figure 2 is in good agreement* with the experimental data 18 plotted in Figure 2.

A list of values from the Gruneisen function, $\Gamma(x)$ is also included in Table 1. The Gruneisen function is a factor used to calculate the thermal pressure. A listing of thermal pressure on three Hugoniots of the same family for initial temperatures of $T_i = 278^{\circ} \text{K}$, 298°K , and 318°K , is in each of the Tables 3, 4, and 5.

The pressures and temperatures on these same three Hugoniots were calculated using the procedure of Section 4 as represented by Equation (19). These results are also listed in Tables 3, 4, and 5. The experimental Hugoniot at $T_i = 298^{\circ} \text{K}$ is in Figure 3 and is compared with data from the other two Hugoniots at $T_i = 278^{\circ} \text{K}$ and 318°K .

A list of temperatures and pressures calculated from the Lindemann law in the form of Equation (21) is in Table 6. This list is used to graph the melting states of aluminum in Figure 3. The intersections of this curve from Table 6 with the three Hugoniots are the melting points of aluminum for three of its initial states. These three points are listed in Table 7 along with other parameters dependent upon the initial temperature. Since these three points and all other similar melting points must fall on the Lindemann melting curve, this curve gives the melting point of aluminum as a function of initial temperature. Equation (22) is the parametric representation of this melting curve.

The results in Table 7 for the melting point of aluminum may compared with the calculations of Urlin. 3 , 4 He calculated the melting point to be (1.15 Mbars, 4 000°K) or (1 Mbar, 3 000°K), the results of two different procedures. Evidence of melting in aluminum at about 1 Mbar of shock pressure has been indicated also by experiments of Isbell and Sakharon. 23 , 24

Isabell, W. M. Shipman, F. H., and Jones, A. H., "Hugoniot Equation of State of Eleven Materials to Five Megabars," General Motors Materials and Structures, Laboratory Report MSL-68-13.

²⁴Sakharov, A. D., Zaidel, R. M., Mineev, V. N., and Oleinik, A. G., "Experimental Investigation of the Stability of Shock Waves and the Mechanical Properties of Substances at High Pressures and Temperatures," <u>Soviet Physics-Doklady</u>, Vol. 9, No. 12, p. 1091, June 1965.
*This agreement is quite good even though ΔH is calculated beyond the range defined by Equation (29). Equation (29) defines ΔH only within the range of x₁ ≤ x₁, i.e., within the limiting range of the Hugoniot (x ≤ x₁).

TABLE 2 ENTHALPY AS A FUNCTION OF TEMPERATURE AT P = 0

T (°K)	x	(CAL/MOL) 7H	(CAL/MOL)
300.000	1.01270	-2.01053E-11	0
399.888	1.02114	683.58	610
500.047	1.02976	1352.56	1240
600.424	1.03853	2005.82	1890
700.042	1.04739	2636.62	2580
799.803	1.05642	3250.37	3290
399.659	1.06561	3846.33	4040
999.560	1.07496	4423,84	4280

T = ABSOLUTE TEMPERATURE

 $X = V/V_o$, THE COMPRESSION RATIO

²H = THE CALCULATED CHANGE IN ENTHALPY

 $[\]Delta H_{exp}$ = THE EXPERIMENTAL CHANGE IN ENTHALPY (REFERENCE 18)

FIGURE 2 CHANGE OF ENTHALPY WITH ABSOLUTE TEMPERATURE AT P = 0

NSWC TR 79-279 TABLE 3 HUGONIOT PRESSURES AND TEMPERATURES FOR T_i = 278° K

x	T(X,T _i)	P(X,T _i)	U(X,T _i)	$P_{T}(X,T_{i})$
	(°K)	(Kbars)	(KM/SEC)	(Kbars)
1.0127	279.102	-0.971025	6.65703E-3	8.99838
1.0000	287.402	9.22374	6.21659E-2	9.18602
0.9873	296.191	20.1388	0.133397	9.40273
0.9746	304.980	31.8325	0.207166	9.62504
0.9619	314.746	44.3688	0.283609	9.90286
0.9492	326.465	57.8178	0.362876	10.2856
0.9365	340.137	72.2571	0.445125	10.7745
0.9238	355.762	87.7719	0.530528	11.3722
0.9111	371.387	104.457	0.619270	11.9847
0.8984	394,824	122.415	0.711552	13.0066
0.8857	418.262	141.764	0.807588	14.0547
0.8730	449.512	162.631	0.907612	15.5331
0.8603	484.668	185.159	1.01188	17.2583
0.8476	523.730	209.509	1,12067	19.2438
0.8349	578.418	235.857	1.23427	22,1336
0.8222	640,918	264.405	1.35302	25.5511
0.8095	711,230	295.376	1.47727	29,5273
0.7968	789.355	329.024	1.60742	34.0945
0.7841	898.73	365.632	1.74390	40.6472
0.7714	1015.92	405.525	1.88717	47.9136
0.7587	1156.54	449.069	2.03776	56.8744
0.7460	1328.42	496.680	2.19624	68,1040
0.7333	1515.92	548.836	2.36326	80.7322
0.7206	1750.29	606.082	2.53951	96.827
0.7079	2031.54	669.046	2.72580	116.552
0.6952	2344.04	738.453	2.92299	139.006
0.6825	2750.29	815.143	3.13207	168.533
0.6698	3187.79	900.094	3.35417	201.055
0.6571	3719.04	994.448	3.59052	241.006
0.6444	4350.00	1099.55	3.84255	288.999
0.6317	5100.00	1216.97	4.11186	346.586
0.6190	6006.25	1348.60	4.40031	416.641
0.6063	7068.75	1496.68	4.71001	499.307
0.5936	8318.75	1663.89	5.04339	596.975
0.5809	9818.75	1853.50	5.40328	714.382
0.5682	11631.3	2069.45	5.79297	856.274
0.5555	13756.3	2316.60	6.21632	1022.55
0.5428	16318.8	2600.95	6.67790	1222.57
0.5301	19443.8	2929.98	7.18311	1465.62
0.5301	23193.8	2929.98 3313.14		
0.5174			7.73847	1756.00
U.5U47	27693.8	3762.44	8.35182	2102.59

 $X = V/V_o$, THE COMPRESSION RATIO $T(X,T_i) = HUGONIOT TEMPERATURE$

 $P(X,T_i) = HUGONIOT PRESSURE$

 $U(X,T_i)$ = HUGONIOT PARTICLE SPEED

 $P_{T}(X,T_{i})$ = THERMAL PRESSURE ON HUGONIOT

TABLE 4 HUGONIOT PRESSURES AND TEMPERATURES FOR T = 298 K

x	Τ(X,T _i) (°K)	P(X,T _i)	U(X,T _i)	$P_{T}(X,T_{i})$
	(K)	(Kbars)	(KM/SEC)	(Kbars)
1.0127	298.000	0.0000	0.00000	9.96911
1.0000	306.789	10.2135	6.88871E-2	10.1727
0.9873	316.067	21.1497	0.14019	10.4065
0.9746	325.832	32.8673	0.214039	10.6713
0.9619	336.574	45.4304	0.290572	10.9931
0.9492	348.293	58.9 09 8	0.369938	11.3730
0.9365	361.965	73.3834	0.452298	11.8616
0.9238	377.590	88.9370	0.537824	12.4613
0.9111	397.121	105.666	0.626703	13.2736
0.8984	420.559	123.674	0.719135	14.3048
0.8857	443.996	143.079	0.815339	15.3636
0.8730	475.246	164.010	0.915548	16.8570
0.8603	514.30 9	186.610	1.02002	18.8038
0.8476	553.371	211.042	1.12903	20.8116
0.8349	608.059	237.484	1.24289	23.7289
0.8222	670.559	266.138	1.36191	27.1758
0.8095	740.871	297.231	1.48647	31.1831
0.7968	834.621	331.017	1.61696	36.6742
0.7841	928,371	367.784	1.75381	42.3716
0.7714	1053.37	407.858	1.89750	50.1388
0.7587	1194.00	451.610	2.04855	59.1469
0.7460	1365.87	499.461	2.20755	70.4250
0.7333	1562.50	551.892	2.37514	83.6794
0.7206	1812.50	609.457	2.55203	100.844
0.7079	2093.75	672.790	2.73902	120.650
0.6952	2406.25	742.625	2.93701	143.183
0.6825	2812.50	819.813	3.14698	172.788
0.6698	3265.63	905.345	3.37007	206.472
0.6571	3812.50	1000.38	3.60755	247.618
0.6444	4468.75	1106.28	3.86084	297.528
0.6317	5218.75	1224.65	4.13158	355.233
0.6190	6125.00	1357.40	4.42165	425.397
0.6063	7187.5	1506.81	4.73319	508.160
0.5936	8500.0	1675.61	5.06867	610.616
0.5809	10000.0	1867.13	5.43096	728.134
0.5682	11812.5	2085.39	5.82342	870.118
0.55 55	14000.0	2335.35	6.24997	1041.27
0.5428	16625.0	2623.15	6.71525	1246.17
0.5301	19750.0	2956.43	7.22480	1489.29
0.5174	23562.5	3344.87	7.78525	1784.53
0.5047	28187.5	3800.80	8.40462	2140.79

 $X = V/V_o$, THE COMPRESSION RATIO T(X,T_i) = HUGONIOT TEMPERATURE

P(X,T) = HUGONIOT PRESSURE

U(X,T;) = HUGONIOT PARTICLE SPEED

 $P_T(X,T_i)$ = THERMAL PRESSURE ON HUGONIOT

NSWC TR 79-279 TABLE 5 HUGONIOT PRESSURES AND TEMPERATURES FOR $T_{_{\parallel}}$ = 318° K

v	$T(X,T_i)$	$P(X,T_i)$	$U(X,T_i)$	$P_{T}(X,T_{i})$
X	(°K)	(Kbars)	(KM/SEC)	(Kbars)
1.0127	316.650	0.968041	6.64679E-3	10.9369
1.0000	325.928	11,2003	7.55983E-2	11.1568
0.9873	335.693	22,1577	0.146974	11,4077
0.9746	346,436	33,8992	0.220903	11.7158
0.9619	358,154	46.4893	0.297526	12,0821
0.9492	369.873	59,9991	0.376992	12,4587
0.9365	385.498	74.5071	0.459463	13.0449
0.9238	401,123	90.0995	0.545113	13.6459
0.9111	420.654	106.872	0.634128	14.4628
0.8984	444.092	124.930	0.726712	15.5015
0.8857	471.436	144.391	0.823083	16,7698
0.8730	502.686	165.386	0.923478	18.2780
0.8603	541.748	188.059	1.02816	20.2430
0.8476	588.623	212.573	1.13739	22.6868
0.8349	635.498	239.109	1.25150	25.2117
0.8222	697.998	267.870	1.37080	28.6847
0.8095	776.123	299.084	1.49567	33.1579
0.7968	869.873	333.009	1.62650	38.6886
0.7841	963.623	369.936	1.76373	44.4258
0.7714	1088.62	410.192	1.90783	52.2359
0.7587	1244.87	454.153	2.05935	62.2374
0.7460	1416.75	502.245	2.21887	73.5805
0.7333	1619.87	554.954	2.38703	87,3119
0.7206	1854.25	612.839	2.56456	103.542
0.7079	2135.50	676.543	2.75227	123,402
0.6952	2479.25	746.809	2.95105	148,087
0.6825	2885.50	824,499	3,16194	177,782
0.6698	3354.25	910.618	3.38695	212,642
0.6571	3885.50	1006.34	3.62462	252,782
0.6444	4556.25	1113.05	3.87918	303.813
0.6317	5337.50	1232.37	4.15137	363.881
0.6190	6243.75	1366.25	4.44307	434.152
0.6063	7337.5	1517.01	4.75647	519,341
0.5936	8650.0	1687.43	5.09407	621.906
0.5809	10181.3	1880.88	5.45880	741.886
0.5682	12025.0	2101.50	5.85406	886.349
0.5555	14212.5	2354.32	6.28385	1057.58
0.5428	16900.0	2645.62	6.75290	1267.37
0.5301	20087.5	2983.24	7.26686	1515.36
0.5174	23962.5	3377.08	7.83248	1815.48
0.5047	28712.5	3839.80	8.45799	2181.41

 $X = V/V_0$, THE COMPRESSION RATIO $T(X,T_i) = HUGONIOT TEMPERATURE$

 $P(X,T_i) = HUGONIOT PRESSURE$

 $U(X,T_i)$ = HUGONIOT PARTICLE SPEED

 $P_T(X,T_i)$ = THERMAL PRESSURE ON HUGONIOT

NSWC TR 79-279

TABLE 6 MELTING TEMPERATURE AND PRESSURE AS A FUNCTION OF COMPRESSION RATIO

v	τ	P	Г(Х)
X	(°K)	(Kbars)	1 (X)
1.07106	932.000	1.33014E-3	2.51666
1.06523	954.399	4.19652	2.48642
1.05939	977.142	8.51557	2.45693
1.05356	1000.24	12.9622	2.42819
1.04772	1023.68	17.5403	2,40019
1.04188	1047.49	22.2539	2.37293
1.03605	1071.67	27.1072	2.34640
1.03021	1096,22	32.1048	2.32061
1.02437	1121.15	37.2512	2.29554
1.01854	1146.48	42.5514	2.27120
1.0127	1172.20	48.0102	2.24759
1.0000	1229.60	60.4414	2.19871
0.9873	1289.03	73.7065	2.15322
0.9746	1350.63	87.8692	2.11113
0.9619	1414.54	102.999	2.07240
0.9492	1480.92	119.172	2.03702
0.9365	1549.96	136.472	2.00496
0.9238	1621.88	154.987	1.97618
0.9111	1696.93	174.816	1.95065
0.8984	1775.38	196.064	1.92830
0.8857	1857.56	218.844	1.90905
0.8730	1943.81	243.278	1.89281
0.8603	2034.54	269.493	1.87947
0.8476	2130.20	297.629	1.86886
0.8349	2231.27	327.828	1.86082
0.8222	2338.31	360.242	1.85513
0.8095	2451.92	395.030	1.85155
0.7968	2572.78	432.353	1.84979
0.7841	2%. 4.59	472.379	1.84954
0.7714	2835.16	515.277	1.85045
0.7587	2986.32	561.220	1.85215
0.7460	3144.00	610.377	1.85422
0.7333	3313.18	662.919	1,85626
0.7206	3494.88	719.013	1.85784
0.7079	3690.20	778.821	1.85854
0.6952	3900.28	842.500	1.85795
0.6825	4126.32	910.204	1,85567
0.6698	4369.54	982,078	1.85136
0.6571	4631.19	1058.26	1,84471
0.6444	4912.55	1138.90	1.83545
0.6317	5214.90	1224.13	1.82339
0.6190	5539.50	1314.08	1.80839
0.6063	5887.63	1408.89	1.79036
0.5936	6260.49	1508.73	1.76928
0.5809	6659.28	1613.75	1.74521
0.5682	7085.08	1724.15	1,71821
0.5555	7538.96	1840.14	1,68844
0.5428	8021.83	1961.98	1.65606
0.5301	8534.54	2089.97	1.62127
0.5174	9077.79	2224.48	1.58430
0.5047	9652.14	2365.98	1.54538
V.5V-7	3004,17		1.54536

FIGURE 3 THE MELTING POINT OF ALUMINUM AS THE INTERSECTION OF LINDEMANN'S MELTING CURVE AND THE HUGONIOT (SHIFTS IN HUGONIOT DUE TO INITIAL TEMPERATURE DIFFERENCES IS ALSO SHOWN)

TABLE 7
MELTING POINT DEPENDENT ON INITIAL STATE OF Al

T _i	P _m	Tm	a(T _i)	b(T _i)	× _i
(^O K)	(Mbars)	(°K)	(mm/µsec)		
278	1.24	5268	4.40647	1.3486	1.01145
298	1.223	5218	5.4	1.351	1.0127
318	1.204	5147	5.39349	1.35338	1.01395

Once the Hugoniot is established, a similar procedure is used to calculate the melting point of porous aluminum at porosities of M_i = 1.4 and 1.7. To accomplish this, the Gruneisen relation is used to express the Hugoniot, Equation (25), of a porous solid into the form of Equation (19).

The intersection of these Hugoniots with the melting curve is in Figure 4. These points show that the melting point of aluminum decreases as its porosity increases. At $\rm M_i=1.7$, Figure 4 shows that the melting point is about 66 kbars and 1260°K. This result is in excellent agreement with the experimental estimate of 66 kbars 1220°K reported by Asay and Hayes. They calculated a value of 75 kbars and 1340°K as their best theoretical result for this point. This indicates that the theoretical result from Figure 4 is more accurate than their result.

The straight-line appearance of the Hugoniot graphs in Figure 4 indicate that the slope of these graphs may be constant. Plots of the slope, $\frac{dT}{dP}$, as a function of pressure are in Figure 5. These plots show that the slope of the Hugoniot, $\frac{dT}{dP}$, does vary with the pressure, but is not much different from the initial value,

$$\frac{dT}{dP}_{p=0} = \frac{x_{i} - x_{i}}{2\rho_{0} C_{vi}} + \Gamma_{i} T_{i} x_{i} - \Gamma_{i}(x_{i} - x_{i})/2 /\rho_{0}a^{2}.$$

(Note that C_{vi} is the initial specific heat at constant volume, $\Gamma_i = \Gamma(x_i)$, and $x_i' = M_i x_i$.)

The theoretical Hugoniots of porous aluminum are calculated from Equations (27) and (28). Figure 6 shows that these Hugoniots are in good agreement with reported data. 25,26 Pastine 20 has also calculated the results shown in Figure 6, but he used first principles to derive the Gruneisen equation of state.

The specific values of $M_1 = 1.4$ and 1.7 above no porosity of $M_2 = 1$ were chosen because these values clearly show the dramatic change that porosity can produce in the melting point of a simple solid. Figure 4 clearly shows the large changes in the melting point of aluminum as the porosity of aluminum takes on the values of

Asay, J. R. and Hayes, D. B., "Shock-Compression and Release Behavior Near Melt States in Aluminum," <u>Journal of Applied Physics</u>, Vol. 46, No. 11, p. 4789, November 1975.

Anderson, G. D., Doran, D. G., and Fahrenbruch, A. L., Equation of State of Solids: Aluminum and Teflon, Stanford Research Institute, Menlo Park, California, 1965, Technical Report No. AFWL-TR-65-147.

FIGURE 4 EFFECT OF POROSITY ON THE MELTING POINT OF ALUMINUM

FIGURE 5 CHANGE IN TEMPERATURE - PRESSURE SLOPE WITH PRESSURE ON THE HUGONIOT OF POROUS ALUMINUM

FIGURE 6 SHOCK SPEED VERSUS PARTICLE SPEED FOR POROUS ALUMINUM

 $\text{M}_{:}=1,\,1.4,\,\text{and}\,1.7.$ In addition, these specific values for M $_{:}$ were chosen because data and other calculations have been reported on these same values of $\mu_{\:\:i}$ so that the current results can be compared to these previous works.

There was concern with whether small changes in the initial state of aluminum would change significantly the melting point of aluminum. As can be seen from Table 7 and Figure 3 that small changes in the initial state of aluminum from $T_i = 298\,^{\circ}\text{K}$ to $T_i = 318\,^{\circ}\text{K}$ or $T_i = 278\,^{\circ}\text{K}$ do not produce any great change in the melting point.

CHAPTER 7

SUMMARY

The dependence of a Hugoniot on the initial state of aluminum is represented by a one-parameter family of pressure-volume Hugoniots. The initial temperature is used as the parameter of the family. Instead of a characteristic equation of state for aluminum, the Gruneisen equation of state is used to generate a family of Hugoniots from a single experimental Hugoniot. In the absence of available experimental temperatures, the P-V-T form of the Gruneisen equation of state is used to calculate temperatures on these Hugoniots.

The Lindemann law of melting is used to calculate the melting point of aluminum on three Hugoniots. The pressures producing melting were calculated and are in good agreement with the results of other investigators. However, the corresponding melting temperatures differed appreciable from values reported by others. This difference is attributed to differences in the more exact form of the Gruneisen equation of state chosen for these calculations as compared to the equations used by other investigators. For this reason, the current results should be an improvement over previous calculations.

Using the theory of compaction, a one-parameter family of Hugoniots has been derived for porous aluminum with porosity as the family parameter. The melting points and the Hugoniots of porous aluminum are in good agreement with reported data.

REFERENCES

- Zel'Dovich, Ia. M.I.T. B. and Raiser, Ia. P., "Physical Phenomena that Occur When Bodies Compressed by Strong Shock Waves Expand in Vacuo," <u>Soviet Physics</u>, <u>JETP</u>, Vol. 35(8), No. 6, p. 980, June 1959.
- Kormer, S. B., Sinitsyn, M. V., Kirillov, G. A., and Urlin, V. D., "Experimental Determination of Temperature in Shock-Compressed NaCl and KCl and of Their Melting Curves at Pressures Up to 700 kbar," <u>Soviet Physics JETP</u>, Vol. 8, No. 4, p. 689, October 1963.
- Urlin, V. D. and Ivanov, A. A., "Melting Under Shock-Wave Compression," <u>Soviet Physics Doklady</u>, Vol. 8, No. 4, p. 380, October 1963.
- 4. Urlin, V. D., "Melting at Ultra High Pressures in a Shock Wave," Soviet Physics JETP, Vol. 22, No. 2, p. 341, February 1966.
- O'Keeffe, David J., "Melting of Solids with a Linear U_S U_D Relationship," <u>Applied Physics Letters</u>, Vol. 21, No. 8, p. 360, 15 October 1972.
- Mitra, N. R., Decker, D. L., and Vanfleet, H. B., "Melting Curves of Copper, Silver, Gold, and Platinum to 70 kbar," Physical Review, Vol. 161, No. 3, p. 613, 15 September 1967.
- O'Keeffe, David, J., "Accurate Pressure, Volume, Temperature Relations for Copper," <u>Journal of Geophysical Research</u>, Vol. 75, p. 1947, 1970.
- Dugdale, J. S. and MacDonald, D. K. C., "The Thermal Expansion of Solids," <u>Physical Review</u>, Vol. 89, No. 4, p. 832, February 1953.
- Pastine, D. John, "Formulation of the Gruneisen Parameter for Monatomic Cubic Crystals," <u>The Physical Review</u>, Vol. 138, No. 3A, p. A767, May 1965.
- 10. White, G. K. and Anderson, O. L., "Gruneisen Parameter of Magnesium Oxide," <u>Journal of Applied Physics</u>, Vol. 37, No. 1, p. 430, January 1966.

REFERENCES (Cont.)

- Pastine, D. John and Forbes, J. W., "Accurate Relations Determining the Volume Dependence of the Quasiharmonic Gruneisen Parameter," <u>Physical Review Letters</u>, Vol. 21, No. 23, p. 1582, December 1968.
- 12. Simmons, Gene and Wang, Herbert, <u>Single Crystal Elastic Constants Calculated Aggregate Properties: A Handbook</u>, Cambridge, Mass., The M. I. T. Press, pp. 4-8, 1971.
- 13. Mitchell, A. C. and Shaner, J. W., Lawrence Livermore Laboratory, University of California, Livermore, California 94550 (Private Communication).
- 14. Gschneidner, Jr., Karl A., "Physical Properties and Interrelationships of Metallic and Semi-Metallic Elements," <u>Solid State Physics Advances in Research and Applications</u>, New York, Academic Press, Vol. 16, p. 369, 1965.
- 15. Landau, L. D. and Lipshitz, E. M., <u>Fluid Mechanics</u>, New York, Bergman Press, p. 319, 1975.
- 16. Callen, Herbert B., Thermodynamics, New York, John Wiley and Sons, Inc., p. 50, 1960.
- 17. Lindemann, F. A., "The Calculation of the Natural Molecular Frequency," Physikalische Zeitschrift, Vol. 11, p. 609, July 1910.
- 18. Hultgren, Ralph, Orr, Raymond L., Anderson, Phillip D., and Kelley, Kenneth A., Selected Values of Thermodynamic Properties of Metals and Alloys, Berkeley, California, John Wiley and Sons, Inc., pp. 33-37, 1963.
- 19. Herrmann, W., "Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials," <u>Journal of Applied Physics</u>, Vol. 40, No. 6, p. 2490, May 1969.
- 20. Pastine, D. John, "Theoretical Shock Properties of Porous Aluminum," <u>Journal of Applied Physics</u>, Vol. 41, No. 7, p. 3144, June 1970.
- O'Keeffe, David J., "Theoretical Determination of the Shock States of Porous Copper," <u>Journal of Applied Physics</u>, Vol. 42, No. 2, p. 888, February 1971.

REFERENCES (Cont.)

- 22. Pastine, D. John and Carroll, M. J., "Equations of State for Sodium and Aluminum," Accurate Characterization of the High Pressure Environment, Gaithersburg, Maryland, USA, 14-18 October 1968, Washington, D. C., USA National Bureau of Standards, pp. 91-104, 1971.
- 23. Isabell, W. M., Shipman, F. H., and Jones, A. H., "Hugoniot Equation of State of Eleven Materials to Five Megabars," General Motors Materials and Structures, Laboratory Report MSL-68-13.
- 24. Sakharov, A. D., Zaidel, R. M., Mineev, V. N., and Oleinik, A. G., "Experimental Investigation of the Stability of Shock Waves and the Mechanical Properties of Substances at High Pressures and Temperatures," Soviet Physics Doklady, Vol. 9, No. 12, p. 1091, June 1965.
- 25. Asay, J. R. and Hayes, D. B., "Shock-Compression and Release Behavior Near Melt States in Aluminum," <u>Journal of Applied Physics</u>, Vol. 46, No. 11, p. 4789, November 1975.
- 26. Anderson, G. D., Doran, D. G., and Fahrenbruch, A. L., Equation of State of Solids: Aluminum and Teflon, Stanford Research Institute, Menlo Park, California, 1965, Technical Report No. AFWL-TR-65-147.

APPENDIX A

DEBYE FUNCTION

In terms of the Gruneisen function, the Debye temperature $^{A-1}$ is

$$\theta(x) = \theta(x_i) \exp \left[\int_x^x \frac{\Gamma(z)}{z} d_z \right]$$
.

Correspondingly, the Debye function A-2 is defined by the integral relation

$$D(y) = \frac{3}{y3} \int_{0}^{y} \frac{z^{3}dz}{e^{z} - 1}$$

for $y = \theta/T$.

A-10'Keeffe, David J., "Melting of Solids with a Linear Us - Up Relationship," Applied Physics Letters, Vol. 21, No. 8, p. 360, 15 October 1972.

A-2 Mayer, Joseph E. and Mayer, Maria G., <u>Statistical Mechanics</u> John Wiley and Sons, Inc., New York, p. 251, 1940.

APPENDIX B

SHOCK RELATIONS AND THE HUGONIOT

The shock relations $^{B-1}$ for the conservation of mass, momentum, and energy across the shock front are

$$x_i (S - u) = xS$$
 (B1)

$$x_i (P - P_i) = \rho_0 Su$$
 (B2)

$$\frac{(S - u)^{2}}{2} + P/\rho + E = \frac{S^{2}}{2} + P_{i}/\rho_{i} + E_{i}.$$
 (B3)

Elimination of S and u among the Equations (8), (Bl), and (B2) leads to a Hugoniot of the form

$$P(x, T_{i}) = \frac{\rho_{o}a^{2} (x_{i} - x)}{\left[x_{i} - b(x_{i} - x)\right]^{2}}, (x \le x_{i}).$$
 (B4)

Elimination of S and u among Equations (B1), (B2), and (B3) leads to the conservation of energy Equation (13). Comparing Equations (14) to (B4) and making use of Equation (9) lead to the differential Equation (10).

B-1 Landau, L. D. and Lipshitz, E. M., Fluid Mechanics, New York, Bergman Press, p. 319, 1975.

APPENDIX C

GRUNEISEN FUNCTION

The Pastine-Forbes C-1 expression for the Gruneisen function is

$$\Gamma(x) = \frac{2x\eta \left[2bx - \delta(x_i - b\eta)\right] + 2x^2(x_i - b\eta) + 4x\eta^2 v}{2\eta^3 v + \eta^2 \left[2bx - s(x_i - b\eta)\right] + \eta(x + x_i)(x_i - b\eta) + 2(x_i - b\eta)^3 C_p / \alpha a^2}$$

In this equation, $\eta=x_1-x$. The unidentified parameters in this equation are C_p , the specific heat capacity at constant pressure; α , the volume coefficient of thermal expansion; and the others are defined by the relations C-2

$$\delta = 1 - \frac{1}{\alpha} \left[\frac{\partial}{\partial T_i} \log a^2 \right]_{P_i = 0}$$

$$v = \frac{1}{\alpha} \frac{\partial b}{\partial T_i} \Big|_{P_i = 0}.$$

C-1 Pastine, D. John and Forbes, J. W., "Accurate Relations Determining the Volume Dependence of the Quasiharmonic Gruneisen Parameter,"

Physical Review Letters, Vol. 21, No. 23, p. 1582, December 1968.

C-20'Keeffe, David, J., "Accurate Pressure, Volume, Temperature Relations for Copper," <u>Journal of Geophysical Research</u>, Vol. 75, p. 1947, 1970.

The values $^{C-3}, C-4, C-5$ of the new parameters in the Gruneisen function are α = 69.6 x 10^{-6}/{}^{O}K, C_{D} = 5.82 cal/mole ^{O}K = .90298 J/g ^{O}K , δ = 2.95135, and ν = 1.9407 for aluminum at T_{1} = 298 ^{O}K .

C-3 Simmons, Gene and Wang, Herbert, Single Crystal Elastic Constants
Calculated Aggregate Properties: A Handbook, Cambridge, Mass.,
The M. I. T. Press, pp. 4-8, 1971.

C-4
Hultgren, Ralph, Orr, Raymond L., Anderson, Phillip D., and
Kelley, Kenneth A., Selected Values of Thermodynamic Properties
of Metals and Alloys, Berkeley, California, John Wiley and
Sons, Inc., pp. 33-37, 1963.

C-5Corruccini, Robert J. and Gniewek, John J., "Thermal Expansion of Technical Solids at Low Temperatures," National Bureau of Standards Monograph, 29 May 1961.

DISTRIBUTION

Co	pies		Copies
Superintendent Naval Academy Attn: Hd. Weapons Dept. Annapolis, MD 21402	1	Director Defense Technical Information Center Cameron Station	
		Alexandria, VA 22314	12
Superintendent Naval Post Graduate School Attn: Code 2124 Monterey, CA 93940	1	National Aeronautics & Space Admin. Headquarters 600 Independence Avenue Washington, D. C. 20546	3
Commander			_
David W. Taylor Naval Ship Research and Development Center	,	Denver Research Institute University of Denver Denver, CO 80210	1
Attn: Technical Library Bethesda, MD 20034	1	IIT Research Institute Illinois Institute of	
Commanding General Redstone Arsenal		Technology 10 West 35th Street	
Attn: Technical Library	1	Chicago, IL 60616	1
Huntsville, AL 35809		Office of Naval Technology	
Commanding Officer		Attn: Code MAT-07P	
U. S. Army Research Office P. O. Box 12211		(J. W. Enig)	1 1
Res. Triangle Park, NC 27709	1	(E. Zimet) 800 North Quincy Street Arlington, VA 22217	ī
Commanding Officer		Tibuani of Congress	
Air Force Missile Development Center		Library of Congress Attn: Gift and Exchange	
Attn: Technical Data Holloman AFB, NM 88330	1	Division Washington, D. C. 20540	4
Commander Air Force Cambridge Research Center L. G. Hanscom Field Bedford, MA 01730	1	Chief of Naval Material Attn: MAT-08T2 Department of the Navy Washington, D. C. 20360	1

DISTRIBUTION (Cont.)

<u>Copi</u> Commander	ies Commander	pies
Naval Sea Systems Command	Naval Research Laboratory	1
Attn: SEA-62R (W. W. Blaine) 1 SEA-64E (R. Beauregard)1		ī
SEA-99612	2 H. Carhart	1
Washington, D. C. 20362	W. Moniz Technical Librarv	1
Commander	Washington, D. C. 20375	
Naval Air Systems Command Attn: AIR-350	L Commanding Officer	
AIR-350D (H. Benefiel) 1	U. S. Army Armament Research	,
AIR-00D4 (Technical Library) l	and Development Command L Attn: R. Walker	1
Department of the Navy	N. Slagg	ī
Arlington, VA 20361	O. Sandus J. Alster	1
Chief of Naval Research	C. Capellos	1
Office of Naval Research Attn: ONR-102 (J. Smith)	F. Owens L Technical Library	1
ONR-432 (R. S. Miller) 1		•
ONR-410	L Commanding Officer	
	l Ballistics Research	
· · · · · · · · · · · · · · · · · · ·	Laboratory	
ONR-400 (E. Salkovitz) l Technical Library l	L U.S. ARRADCOM L Attn: R. Frey	1
Arlington, VA 22217	P. Howe	1
Commanding Officer	Technical Library Aberdeen, MD 21005	1
Naval Ordnance Station	•	
Attn: Research and Develop- ment Department 1	Director l Air Force Office of	
Technical Library 1	Scientific Research	_
Indian Head, MD 20640	Attn: L. Kravitz Library	1
Commander	Bolling Air Force Base	•
Naval Weapons Center Attn: A. Addison	Washington, D. C. 20332	
T. Joyner 1	l Commander	
A. B. Amster l Technical Library l	l Air Force Armamament Laboratory	
China Lake, CA 93555	Attn: AFATL/BLG (M. Zimmer)	l
	Eglin Air Force Base, FL 32542	

DISTRIBUTION (Cont.)

	Copies		ppies
U. S. Department of the		Director	
Interior		Sandia National Laboratories	_
Bureau of Mines		Attn: D. Hayes	1
Attn: R. Watson	1	J. Kennedy	1
4800 Forbes Avenue		J. Nunziato	1
Pittsburgh, PA 15213		L. Davison	1
•		R. Graham	1
Director		J. Asay	1
Lawrence Livermore Nationa	1	Technical Library	1
Laboratory		P. O. Box 5800	
Attn: B. Hayes	1	Albuquerque, NM 87115	
E. Lee	ī		•
F. Ree	ī	SRI International	
M. Finger	ī	Attn: M. Cowperthwaite	1
R. McGuire	ī	333 Ravenswood Avenue	-
C. Tarver	1	Menlo Park, CA 94025	
	1	Melito Park, CA 94025	
A. Karo		Walanamaika of California	
F. Walker	1	University of California,	
M. Ross	1	Irvine	
W. Nellis	1	Department of Chemistry	
Technical Library	1	Attn: Prof. M. Wolfsberg	1
P. O. Box 808		Irvine, CA 92717	
Livermore, CA 94550			
		Washington State University	
Director		Department of Physics	
Los Alamos National		Attn: Prof. G. Duvall	1
Laboratory		Y. Gupta	1
Attn: W. Davis	1	Pullman, WA 99163	
R. Rogers	1	•	
W. Fickett	1	University of Utah	
C. Mader	ī	Department of Chemistry	
J. Bdzil	1	Salt Lake City, UT 84112	1
J. Wackerle	ī		_
J. Shaner	ī	Director	
G. Hughes	ī	John Hopkins Applied Physics	
M. Fowler	ī	Laboratory	
		Attn: S. Koslov	1
Technical Library P. O. Box 1663	1	J. Kincaid	î
			1
Los Alamos, NM 87544		Technical Library	±
		John Hopkins Road	
Commander		Laurel, MD 20810	
Naval Weapons Station		a. 111 a	
Attn: L. Rothstein Yorktown, VA 23691	1	Goddard Space Flight Center, NASA	
·		Attn: Technical Library	1
		Glenn Dale Road	
		Greenbelt, MD 20771	

DISTRIBUTION (Cont.)

Copies

F. J. Seiler Research
Laboratory
Attn: Technical Library 1
U. S. Air Force Academy
Colorado Springs, CO 80840