

@ Experiment Data Depot (EDD) data quality analysis pipeline

Nurgul Kaplan Lease¹, Yan Chen¹, Jennifer Gin¹, Christopher Petzold¹

¹Lawrence Berkeley National Laboratory

Christopher Petzold
Lawrence Berkeley National Laboratory

ARSTRACT

This protocol details setting up and running a data quality analysis workflow for data available in the Experiment Data Depot (EDD).

https://www.protocols.io/private/A2B4B174CB7411EA9C520A58A9FEAC2A

https://repo.ibei.org/users/nkaplan/repos/ese automation/browse

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Morrell, William C., et al. "The experiment data depot: a web-based software tool for biological experimental $data\ storage,\ sharing,\ and\ visualization."\ ACS\ synthetic\ biology\ 6.12\ (2017):\ 2248-2259.$

EXTERNAL LINK

https://repo.jbei.org/users/nkaplan/repos/ese_automation/browse

Nurgul Kaplan Lease, Yan Chen, Jennifer Gin, Christopher Petzold . Experiment Data Depot (EDD) data quality analysis pipeline. **protocols.io**

https://protocols.io/view/experiment-data-depot-edd-data-quality-analysis-pi-biuqkevw

MANUSCRIPT CITATION please remember to cite the following publication along with this protocol

Morrell, William C., et al. "The experiment data depot: a web-based software tool for biological experimental data storage, sharing, and visualization." ACS synthetic biology 6.12 (2017): 2248-2259

Data quality, EDD, Jupyter Notebook, proteomics, metabolomics, omics data

CREATED

Jul 21, 2020

LAST MODIFIED

Nov 24, 2020

PROTOCOL INTEGER ID

39536

GUIDELINES

This python script takes data directly from a study deposited in the Experiment Data Depot (EDD).

MATERIALS TEXT

Access to a Jupyter Notebook

BEFORE STARTING

Set up EDD study and import your data. Users are referred to Morrell et al. in Step #1 for details about setting up a study in the EDD and uploading data

EDD Study setup

- 1 Following are additional requests that are needed for successfully execute the script:
 - 1. Line names should NOT include special characters shown below

!"#\$%&'()*+,./:;<=>?@[\]^`{|}~

2. Line Name includes 2 parts:

Line-1-R1

Line-1 This is a descriptive line name and it is okay to use:

- "-" dash
- ""space
- "_"underscore
- -R1 If assay has replicates, MUST append "-", letter "R or r", and number. Here is the list that is ok to use:
- -r1
- -R001 -r001

Line Name Examples:

- LK15_14500-R2
- LK15_14500-r2 LK15 14500-R002
- LK15_14500-r002

Example EDD study

https://public-edd.agilebiofoundry.org/s/example-data-quality-study/

Morrell WC, Birkel GW, Forrer M, Lopez T, Backman TWH, Dussault M, Petzold CJ, Baidoo EEK, Costello Z, Ando D, Alonso-Gutierrez J, George KW, Mukhopadhyay A, Valino I, Keasling JD, Adams PD, Hillson NJ, Garcia Martin H (2017). The Experiment Data Depot: A Web-Based Software Tool for Biological Experimental Data Storage, Sharing, and Visualization.

Download and Open Jupyter Notebook

- 2 Click on Jupyter server URL link.
 - jupyter.agilebiofoundry.org
 - jupyter.jbei.org

Use your LBL LDAP account (lowercase username) to login.

If prompted, choose the 'ESE Data Analysis' Kernel.

 $Note: If your account has not been activated, please reach out to Mark Kulawik. \ mkulawik@lbl.gov$

3 Omics-20201123.ipynb is saved in repo.jbei.org

 $\underline{https://repo.jbei.org/users/nkaplan/repos/ese_automation/browse}$

To clone updated repository for the Omics data analysis jupyter notebooks:

Click on the "+" sign on the upper left corner of jupyter server.

3.1 Or you can download this python notebook and upload it to the jupyter notebook server.

Omics-20201123.ipynb

4 Click on Terminal

5 Copy the command shown below, and run it at your terminal window.

git clone https://repo.jbei.org/scm/~nkaplan/ese_automation.git

YourLDAPusername@jupyter:~\$ git clone https://repo.jbei.org/scm/~nkaplan/ese_au

Now, you should be able to see the ese-automation folder at your jupyter server directory.

1. Double Click on ese_automation folder

2. Double Click on the Omics-20201113.ipynb 3.Choose the Kernel (on the top right side): ESE Data Analysis (if necessary)

Running the Data Quality Notebook

7 From the 'Kernel' dropdown menu:

Select 'Restart Kernel and Run All Cells'

Select 'Restart' at the prompt

8 Copy the EDD url link and paste into code line properly

Example:

https://public-edd.agilebiofoundry.org/s/example-data-quality-study/

Enter $\ensuremath{\textbf{EDD}}$ study URL link, Please see the example shown above

9 You will need to enter your LBNL LDAP password in the box, and click on the return button

Enter LDAP password

- session = login(edd_server=edd_server)
- Password for YourLDAPusername: LDAP password

session = login(edd_server=edd_server)

Password for YourLDAPusername: •••••••

Once the progress bar reaches 100%, that means your data has been uploaded successfully

10 By default, the script will analyze the first protocol in the dataset. If there are multiple protocols, please identify the protocol in dropdown menu.

11 By default, the script will analyze ALL of the assays in the dataset. Specific assays can be excluded from the analysis via selection if desired.

Output Files and Plots

- 12 Summary report files and plots will be generated in the same folder as your jupyter notebook. The list of files includes:
 - Summary report (Average, Standard deviation, Coefficient of variation)
 - Full data report (Full data export)
 - Bar charts
 - Line charts (if there are multiple time points)
 - Data quality charts and tables (Scatter plot, Violin plots, Data quality metrics)
 - To view the plots in jupyter server, click on "Trust". Alternatively, download the plots and open them in your browser.

Full data report:

Value	Units	Hours	Measurement Type	Type_Abb	Type_ID	Replicate_Num	Assay_Name	Protocol
15492.0	COUNTS	24.0	L-GLUTAMIC ACID	L-GLUTAMIC ACID	CID:33032	R1	A1	METABOLOMICS
25097.04	COUNTS	48.0	L-GLUTAMIC ACID	L-GLUTAMIC ACID	CID:33032	R1	A1	METABOLOMICS
29899.56	COUNTS	72.0	L-GLUTAMIC ACID	L-GLUTAMIC ACID	CID:33032	R1	A1	METABOLOMICS
59589.0	COUNTS	24.0	GLYOXYLATE	GLYOXYLATE	CID:3614358	R1	A1	METABOLOMICS
107856.09	COUNTS	48.0	GLYOXYLATE	GLYOXYLATE	CID:3614358	R1	A1	METABOLOMICS
115006.77	COUNTS	72.0	GLYOXYLATE	GLYOXYLATE	CID:3614358	R1	A1	METABOLOMICS
3291.0	COUNTS	24.0	OSE 6-PHOSPHATE	OSE 6-PHOSPHATE	CID:439958	R1	A1	METABOLOMICS
5331.42	COUNTS	48.0	OSE 6-PHOSPHATE	OSE 6-PHOSPHATE	CID:439958	R1	A1	METABOLOMICS
6944.01	COUNTS	72.0	OSE 6-PHOSPHATE	OSE 6-PHOSPHATE	CID:439958	R1	A1	METABOLOMICS
2772.0	COUNTS	24.0	MALIC ACID	MALIC ACID	CID:525	R1	A1	METABOLOMICS
5017.32	COUNTS	48.0	MALIC ACID	MALIC ACID	CID:525	R1	A1	METABOLOMICS
5349.96	COUNTS	72.0	MALIC ACID	MALIC ACID	CID:525	R1	A1	METABOLOMICS
8820.0	COUNTS	24.0	D-GLUCOSE	D-GLUCOSE	CID:5793	R1	A1	METABOLOMICS
15964.2	COUNTS	48.0	D-GLUCOSE	D-GLUCOSE	CID:5793	R1	A1	METABOLOMICS
17022.6	COUNTS	72.0	D-GLUCOSE	D-GLUCOSE	CID:5793	R1	A1	METABOLOMICS

Summary data report:

Protocol	Assay_Name	Type_ID	Type_Abb	Units	Hours	mean	std	cv
METABOLOMICS	A1	CID:33032	L-GLUTAMIC ACID	COUNTS	24.0	13412.25	1876.68	0.14
METABOLOMICS	A1	CID:33032	L-GLUTAMIC ACID	COUNTS	48.0	23426.58	3697.09	0.16
METABOLOMICS	A1	CID:33032	L-GLUTAMIC ACID	COUNTS	72.0	27513.87	3484.74	0.13
METABOLOMICS	A1	CID:3614358	GLYOXYLATE	COUNTS	24.0	51646.42	3702.2	0.07
METABOLOMICS	A1	CID:3614358	GLYOXYLATE	COUNTS	48.0	90042.09	8205.66	0.09
METABOLOMICS	A1	CID:3614358	GLYOXYLATE	COUNTS	72.0	104685.51	6537.44	0.06
METABOLOMICS	A1	CID:439958	OSE 6-PHOSPHATE	COUNTS	24.0	1763.0	961.8	0.55
METABOLOMICS	A1	CID:439958	OSE 6-PHOSPHATE	COUNTS	48.0	3014.36	1612.17	0.53
METABOLOMICS	A1	CID:439958	OSE 6-PHOSPHATE	COUNTS	72.0	3653.98	2049.82	0.56
METABOLOMICS	A1	CID:525	MALIC ACID	COUNTS	24.0	3525.25	1073.94	0.3
METABOLOMICS	A1	CID:525	MALIC ACID	COUNTS	48.0	6176.33	1917.4	0.31
METABOLOMICS	A1	CID:525	MALIC ACID	COUNTS	72.0	7247.93	2229.91	0.31
METABOLOMICS	A1	CID:5793	D-GLUCOSE	COUNTS	24.0	9555.75	1064.36	0.11
METABOLOMICS	A1	CID:5793	D-GLUCOSE	COUNTS	48.0	16346.4	1862.77	0.11
METABOLOMICS	A1	CID:5793	D-GLUCOSE	COUNTS	72.0	19371.27	2684.6	0.14

Bar charts:

Line charts:

13 Data Quality:

If there are no replicates in the study, the Data Quality script will not generate Scatter or Violin plots.

If there are replicates in the dataset, scatter and violin plots will be generated with the complete dataset.

Users have an option to input an intensity threshold to exclude data with values less than the cutoff line. There is a live feedback of the action by showing the number and the percentage of remaining data points.

Subset Data				Full Data				Percentage %			ge %
	0				27					0.0%	
	Protocol	Assay_Name	Type_ID	Type_Abb	Units	Time_Point	mean	std	cv	CV%	type_units
0	TARGETED PROTEOMICS	LINE-1	P00698	LYSC_CHICK	COUNTS	24.0	3257.00	145.66	0.04	4.0	LYSC_CHICK*counts
1	TARGETED PROTEOMICS	LINE-1	P00698	LYSC_CHICK	COUNTS	48.0	4885.50	218.50	0.04	4.0	LYSC_CHICK*counts
2	TARGETED PROTEOMICS	LINE-1	P00698	LYSC_CHICK	COUNTS	72.0	6351.15	284.04	0.04	4.0	LYSC_CHICK*counts
3	TARGETED PROTEOMICS	LINE-1	P00761	TRYP_PIG	COUNTS	24.0	9861.00	3750.49	0.38	38.0	TRYP_PIG*counts
4	TARGETED PROTEOMICS	LINE-1	P00761	TRYP_PIG	COUNTS	48.0	14791.50	5625.74	0.38	38.0	TRYP_PIG*counts

AFTER CHANGING THE INTENSITY, YOU MUST GO TO THE NEXT CELL Run --> Run Selected Cell and All Below

Scatter Plot:

Violin Plot:

Data Quality metrics:
DataQuality%: The percentage of the data is below 20% CV (coefficient variation) for each set of replicates

Assay_Name	Time_Point	DataPointCounts	DataQuality%
A1	24	13	46.15
A1	48	13	46.15
A1	72	13	46.15
A10	24	13	69.23
A10	48	13	69.23
A10	72	13	69.23
A11	24	13	69.23
A11	48	13	69.23
A11	72	13	69.23
A12	24	13	76.92
A12	48	13	76.92
A12	72	13	76.92
A2	24	13	69.23
A2	48	13	69.23
A2	72	13	69.23
A3	24	13	69.23
A3	48	13	61.54

Overall Data Quality%: The percentage of the overall data is below 20% CV (coefficient variation).

Overall Data Quality%

66.03