On Soft Clustering for Correlation Estimators:

Model Uncertainty, Differentiability, and Surrogates

¹ Correlation Function Overview

- ^{2.} Model Uncertainty
- 3. Differentiability
- 4 Surrogates

Correlation Functions Science Presentation

Correlation Functions

Expected value of the product between two quantities as a function of how far apart they are. Used all over cosmology.

Correlation Functions Science Presentation

Correlation Functions

- The number of distance calculations grows quadratically with the number of objects (SLOW!!!)
- Thus, we cluster :D

- ¹ Correlation Function Overview
- ^{2.} Model Uncertainty
- 3. Differentiability
- 4 Surrogates

- For a significant number of objects, the number of distances that are overestimated is close to the number that are underestimated
- We can even restrict the error to one distance bin [Jarvis 2004]
- But what if we don't have that many objects?

- For a significant number of objects, the number of distances that are overestimated is close to the number that are underestimated
- We can even restrict the error to one distance bin [Jarvis 2004]
- But what if we don't have that many objects?

- How can we quantify the uncertainty caused by the clustering?
- Can we reconcile clustering uncertainties from data uncertainties?

- How can we quantify the uncertainty caused by the clustering? Make cluster assignments probabilistic (fuzzy-c-means). Repeat inference!
- Can we reconcile clustering uncertainties from data uncertainties? Yes! Combine the inference error bar with a bootstrapping or jackknife technique.

- How can we quantify the uncertainty caused by the clustering? Make cluster assignments probabilistic (fuzzy-c-means). Repeat inference!
- Can we reconcile clustering uncertainties from data uncertainties? Yes! Combine the inference error bar with a bootstrapping or jackknife technique.

Model Uncertainty

 We find that for data sparse science cases, the error bars are comparable!!

- ¹ Correlation Function Overview
- ² Model Uncertainty
- 3. Differentiability
- 4 Surrogates

Differentiability Science Presentation

Differentiability

- I LOVE SIMULATIONS :D
- I want to go from forward model, to galaxy catalog, to correlation function
- How do correlations depend on parameters in the forward model
- We want gradient based optimization

Differentiability Science Presentation

Differentiability

- Our algorithm for model uncertainty relied on sampling (not differentiable)
- We can amend this with three different approaches:
 - Gumbel-max reparameterization
 - No assignments (weighted averaging)
 - Skip Gradients

¹ Correlation Function Overview

- ² Model Uncertainty
- 3. Differentiability
- 4 Surrogates

Surrogates Science Presentation

Surrogates

- Some differentiation techniques are already approximate
- They can also be slow to compute
- Can we learn the relationship between astrophysical model parameters and correlations directly and use that for our differentiable solution? Yes:D

Fin Science Presentation

Conclusions. contact, and thanks =]

- Correlation Functions are Kewl
- For more, see: https://github.com/EdwardBerman/cosmo-corr
- [Berman et al in prep.] [AAS winter session 2025]
- http://ebrmn.space/
- f(berman, ed, northeastern) where f(x,y,z) = x.y@z.edu
- Thanks for list'nin'