Nom:	Prénom :	Groupe :
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS		
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2012/2013	Note / 20
École d'ingénieurs POLYTECH' NICE-SOPHIA	Epreuve de circuit N°3	

Durée: 1h30

Mardi 18 Décembre 2012

- □ Cours et documents non autorisés.
- □ Calculatrice collège autorisée.
- Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable.

N'OUBLIEZ PAS LES UNITES

CORRECTION

Questions de cours sur les impédances (2 pts)

0,25pt Expression de l'impédance d'une résistance : $\mathbb{Z}_R = \mathbb{R}$

0,25pt Expression de l'impédance d'une bobine : $Z_L = jL\omega$

0,25pt Expression de l'impédance d'un condensateur : $\mathbb{Z}_{\mathbb{C}} = 1/(j\mathbb{C}_{\omega})$

Définition de la fonction de transfert d'un circuit : c'est le rapport (sous la forme complexe) entre la sortie et l'entrée d'un circuit – Par exemple : $H(\omega) = u_s(t) / u_e(t)$

0,25pt Expression du gain : $G(\omega) = \|H(\omega)\|$

0,25pt Expression du gain en décibel : $G_{dB}(\omega) = 20 \log_{10} G(w)$

0,25pt Comment est définie la pulsation de coupure ω_C ? c'est la pulsation pour laquelle le gain en décibel vaut -3 dB

Que représente l'argument de la fonction de transfert ? représente le déphasage existant entre la sortie et l'entrée du circuit

EXERCICE I : Signaux (2 pts)

A. Valeurs crête, crête-crête et moyenne :

Soit le signal représenté ci-dessous :

Déterminez graphiquement les valeurs numériques pour :

0,25pt Valeur crête : **10 V**

0,25pt Valeur crête-crête : **8 V**

0,25pt Valeur moyenne : -6 V (milieu de la sinusoïde)

B. Sinusoïdal:

Soit le signal représenté cicontre.

Déduire du graphe les valeurs numériques suivantes :

Amplitude : 3 V

 $T_0: 12 s$ 0,25pt

 $\mathbf{\omega}_0: \Box \mathbf{/6} \ \mathbf{rad/s}$ 0,25pt

 $T_{\rm S}$: 2s (si expression en sinus) ou 5s (si expression en cosinus) $0.25 {
m pt}$

 $\Phi: -\pi/3 \text{ (si sinus) et } -5\pi/6 \text{ (si cosinus)}$

Expression de u(t) avec les valeurs numériques:

 $3\cos(\pi/6 t - 5\pi/6)$ ou $3\sin(\pi/6 t - \pi/3)$ 0,25pt

EXERCICE II: Elément inconnu (2 pts)

Ci-dessous, on a les formes d'onde du courant et de la tension pour un élément inconnu.

II.1. Constante de temps de l'exponentielle :

a) A partir de quand peut-on estimer que l'exponentielle est nulle?

0,25pt

Réponse : 5 fois la constante de temps 7

b) Déduire de a), la constante de temps de l'exponentielle représentée ci-dessus :

0,25pt

Réponse : $5\tau = 0.05$ s donc $\tau = 0.01$ s (on peut aussi prendre la tangente à l'origine \rightarrow trait vert sur la figure)

II.2. Quel élément admet une tension à ses bornes et un courant le traversant de la forme de celles représentées ci-dessus ? Justifiez brièvement. Donnez sa valeur numérique.

1pt

Réponse :

D'après les graphes, on constate que le courant est la dérivée de la tension, donc il s'agit d'un condensateur.

$$u(t) = 10e^{-\frac{t}{0.01}}$$

$$i(t) = -0,005 e^{-\frac{t}{0,01}}$$

Or:

$$i(t) = C \frac{du(t)}{dt} = -C \frac{10}{0.01} e^{-\frac{t}{0.01}} = -0.005 e^{-\frac{t}{0.01}}$$

On en déduit :

$$C.1000 = 0.005$$

Soit : $C = 5 \mu F$

II.3. Quelle est la valeur de l'énergie stockée par le composant en t=0 ?

Réponse : $E(0) = 1/2 C u^2(0) = 0.25 mJ$

0.5pt

EXERCICE III: Bobines et condensateurs (3 pts)

A. On considère que le régime permanent est atteint. Déterminez (en justifiant brièvement) les tensions aux bornes des résistances et des condensateurs dans le circuit ci-contre :

1pt

Réponse :

Le régime permanent est atteint donc les condensateurs sont chargés et se comportent comme des circuits ouverts. $3\mu F$ 12V Q U_3 G U_4 U_2

Le courant est nul donc : $U_3 = U_2 = 0 \text{ V}$

Le condensateur de 6 μF est en parallèle avec la résistance de 3 Ω donc : U_4 = U_3 = 0 V

Loi des mailles : $12 - U_1 - U_3 - U_2 = 0$ donc $U_1 = 12$ V

 $\boldsymbol{B}.$ Déterminez la capacité équivalente, $C_{AB},$ du circuit cicontre :

 $\begin{array}{c|c} 1\mu F & 1\mu F \\ \hline 1\mu F & 1\mu F \\ \hline 1\mu F & B \\ \hline 0.5\mu F & B \end{array}$

Réponse :

Faites les approximations nécessaires.

En parallèle, les capacités s'ajoutent donc : $1pF + 1 \mu F = 1 \mu F$

En série, ce sont les inverses qui s'ajoutent donc :

 $1 \mu F // 1 \mu F = 0.5 \mu F$

Il reste : $0.5 \mu F$ en parallèle avec $0.5 \mu F$ soit $C_{AB} = 1 \mu F$

C. Déterminez l'inductance équivalente, LAB, du circuit ci-contre :

A 2pH

1pt

Réponse :

Faites les approximations nécessaires.

En série les inductances s'ajoutent : 1mH + 1mH = 2mHEn parallèle, ce sont les inverses qui s'ajoutent : 2mH # 2pH = 2pHIl reste 2pH en série avec 1mH soit $L_{AB} = 1mH$

EXERCICE IV : Etude du régime transitoire (11 pts)

Soit le circuit ci-contre. A t=0, l'interrupteur est fermé.

Les conditions initiales sont :

$$i_L(0) = 0$$

$$\mathbf{u}_{\mathrm{C}}(0)=0$$

On donne : E = 24 V ; R = r = 60 Ω .

On ne connait ni L, ni C.

IV.1. Détermination de l'expression du courant traversant la bobine.

IV.1.a. Déterminez l'expression du courant $i_L(t)$ traversant la bobine. On rappelle que $i_L(0) = 0$

Réponse : si vous ne montrez pas votre raisonnement, vous aurez la moitié des points

2pt

Loi des mailles:

$$E - Ri_L(t) - L \frac{di_L(t)}{dt} = 0$$
 donc $\frac{L}{R} \frac{di_L(t)}{dt} + i_L(t) = \frac{E}{R} = 0.4$

La solution est composée de :

* la solution de l'ED sans second membre : $i_1(t) = K e^{-\frac{tR}{L}}$

* une solution particulière de l'ED avec second membre : $i_2(t)$ est du même type que le second membre, c'est donc une constante. Pour la trouver on l'injecte dans l'ED :

 $\frac{L}{R}\frac{di_2(t)}{dt}+i_2(t)=\frac{E}{R}=0,4$ comme $i_2(t)$ est une constante, sa dérivée est nulle, et on trouve :

$$i_2(t) = 0.4 A$$

La solution complète est donc :

$$i_L(t) = K e^{-\frac{tR}{L}} + 0.4$$

Pour trouver K, on utilise la condition initiale : $i_L(0) = 0$ donc K = -0.4.

Soit la solution : $i_L(t) = 0.4 (1 - e^{-\frac{tR}{L}})$

IV.1.b. Sachant que le courant dans la bobine atteint 0,38A en t=3ms, déterminez la valeur de l'inductance L de la bobine.

_{1pt} Réponse :

Dans l'expression de $i_L(t)$ trouvée ci-dessus, on remplace t par 3 ms et R par 60Ω . On trouve : L=0.06~H

IV.2. Détermination de l'expression du courant dans la branche contenant le condensateur.

IV.2.a. Déterminez l'expression de la tension $u_C(t)$ aux bornes du condensateur. On rappelle que $u_C(0) = 0$

2pt

Réponse : si vous ne montrez pas votre raisonnement, vous aurez la moitié des points ; si vous l'avez bien détaillé au **IV.1.a.** alors vous pouvez vous contenter de mettre les principaux points du raisonnement sans trop détailler.

La loi des mailles permet de déterminer l'ED suivante :

$$rC \; \frac{du_C(t)}{dt} + u_C(t) = E = 24$$

La solution complète est composée de deux parties comme précédemment :

$$u_C(t) = K e^{-\frac{t}{rC}} + 24$$

On utilise la condition initiale pour déterminer K et on trouve : K = -24V

Soit:
$$u_c(t) = 24 (1 - e^{-\frac{t}{rc}})$$

IV.2.b. En déduire l'expression du courant ic(t) :

Réponse :
$$i_C(t) = C \frac{du_C(t)}{dt} = \frac{24}{r} e^{-\frac{t}{rC}} = 0.4 e^{-\frac{t}{rC}}$$

1pt

IV.3. En fonction des réponses précédentes, donnez l'expression du courant i(t) délivré par le générateur. Mettez les valeurs numériques. La seule inconnue restant est C.

Réponse :
$$i(t) = i_L(t) + i_C(t) = 0.4 (1 - e^{-\frac{t}{0.001}} + e^{-\frac{t}{60C}})$$

1pt

IV.4. Quelle relation doit satisfaire C pour que ce courant, i(t), soit constant? Justifiez brièvement et calculez la valeur numérique de C.

1pt

Réponse : Les exponentielles doivent s'annuler donc les constantes de temps doivent être égales, soit : 0.001=60~C d'où $C=16.67~\mu F$

IV.5. Quelle est la valeur numérique (constante) du courant délivré par le générateur ?

0.5pt Réponse : i(t) = 0.4 A

IV.6. Représentation graphique.

2,5pt Réponse :

Expression de i_L(t): $i_L(t) = 0.4 (1 - e^{-\frac{t}{0.001}})$

Représentez il(t) à l'aide de 3 points judicieusement choisis :

 1^{er} point : $i_L(0) = 0$ A

 2^{nd} point : $i_L(0,001) = 0.25$ A

 $3^{ième}$ point : iL(0,005) = 0.4 A

Expression de ic(t): $i_c(t) = 0.4 e^{-\frac{t}{0.001}}$

Représentez ic(t) à l'aide de 3 points judicieusement choisis :

 1^{er} point : $i_{C}(0) = 0.4$ A

 2^{nd} point : $i_{\text{C}}(0,001) = 0,147$ A

 $3^{i\`{e}me}$ point : $i_{C}(0,005) = 0$ A

Expression de i(t): i(t) = 0.4 A

Représentez i(t).

