NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

Side 1 av 4

Fagleg kontakt under eksamen: Navn: Iver Brevik, tlf.: 735 93555

EKSAMEN I FAG TEP4105 FLUIDMEKANIKK (Nynorsk) FOR FAK. F1

(Linje for Fysikk og matematikk) Tysdag 18. mai 2004 Tid: 0900 – 1400 Studiepoeng: 7,5

Sensuren fell i veke 24.

Hjelpemeddel C:

Typegodkjend kalkulator, i samsvar med NTNU's reglar.

Trykte hjelpemidler:

Formelsamling i matematikk.

Formelliste, hefta ved oppgåvesettet.

Oppgåve 1

Ein vassjet med fart V_j og tverrsnittsareal A fell inn på ei skovl (engelsk "bucket") på eit turbinhjul og vert avbøyd 180° . Turbinhjulet, som har radius R, roterer med konstant vinkelfart Ω . Tettleiken til vatnet er σ .

- a) Finn den krafta \bar{F}_{kov} som vert overførd til skovlen, samt den tilhørende effekt P.
- b). For kva for ein verdi av Ω vil P være størst, $P = P_{max}$? Finn verdien av P_{max} .

Ei uendeleg stor plan flate oscillerar harmonisk i x-retningen med fart $V\cos\omega t$ i sitt eige plan z=0. Området på oversida av flata, fra z=0 til z=h, er fylt av ei viskøs inkompressibel væske med tettleik ρ og kinematisk viskositet ν . Det øverste planet z=h er i ro. Sjå bort frå tyngdekrafta På grunn av symmetrien vil alle fysiske størrelser være uavhengig av horisontalkoordinatane x og y.

Side 2 av 4

- a) Vis at vertikalkomponenten w av fluidets fart er overalt lik null. Skriv ned komponentane av Navier-Stokes' ligning i x- og z-retning, og vis at trykket p er konstant.
- Søk ei løysing av Navier-Stokes' ligning for den horisontale farten u(z,t) på fylgjande komplekse form:

$$u(z,t) = (A \sin kz + B \cos kz)e^{-i\omega t} , \qquad (1)$$

der A og B er konstantar. Vis fyrst at verdien av k vert kompleks og gjeveved

$$k = \sqrt{i\omega/\nu}$$
.

Bruk deretter heftvilkåra ved dei to flatene til å bestemme konstantane A og B i (1), og vis at horisontalfarten kan uttrykkast på kompleks form slik:

$$u(z,t) = V \frac{\sin k(h-z)}{\sin kh} e^{-i\omega t} . \qquad (2)$$

c) Finn skjærspenninga $\tau(0,t)$ ved nedre plan z=0 på kompleks form, idet du gjer bruk av uttrykket (2).

Lat så $h \to \infty$, og finn korleis den fysiske skjærspenninga ved planet z = 0 varierer med t. Angi faseforskjellen i forhold til planets fart.

[Hint: $\cot kh \rightarrow -i \text{ når } h \rightarrow \infty$.]

Oppgåve 3

a) Straumfunksjonen for ei linjekjelde av styrke m plassert i origo er som kjend gjeve ved $\psi=m\theta$. Anta at ei positiv kjelde m er plassert i punktet (-a,0) og at eit tilsvarande sluk –m er plassert i (a,0). Når m $\rightarrow \infty$, a $\rightarrow 0$ slik at produktet m·a er konstant, får vi ein dipol (dublett). Dipolmomentet er definert som $\lambda=2ma$. Vis at i store avstander r frå dipolen vert

$$\psi = -\frac{\lambda}{r}\sin\theta .$$

b) Dipolstraumen ovanfor vert superponert med ein uniform straum U_m i x-retninga:

$$\psi = U_{\mbox{\tiny mon}} \left(r - \frac{R^2}{r} \right) \! \! \sin \theta \ , \quad \left(U_{\mbox{\tiny mon}} R^2 \equiv \lambda \right) . \label{eq:psi}$$

Denne ψ framstiller for $r \ge R$ potensialstraumen kring ein sylinder med radius R. Vis at straumen er virvelfri, og vis at grensevilkåret ved r = R er oppfylt.

c) Finn trykket $p_s(\theta)$ som funksjon av vinkelen θ på sylinderens overflate, og lag ei skisse av trykkmotstandskoeffisienten C_p , definert som

$$C_{p} = \frac{p_{s}(\theta) - p_{\omega}}{\frac{1}{2}\rho U_{\omega}^{2}} ,$$

som funksjon av θ når θ varierer frå 0 til 180". (La stagnasjonspunktet på framsida tilsvara $\theta\!=\!0.)$

d) Teikn inn i samme diagram dei verkelege kurvene for C_p ein f\u00e4r ved \u00e4 ta omsyn til fluidets viskositet. Teikn inn dei omtrentlege avl\u00fasningspunktene n\u00e4r grensesjiktet er lamin\u00e4rt, og n\u00e4r det er turbulent. Gjev ei kort forkl\u00e4ring.

Oppgåve 4 (halv vekt)

Ei rektangulær luke i ein dam har sidekantar 2a og a. Luka har mulighet for å svinge fritt om ei akse AA' i avstand b frå nedre kant. Vassdjupet ned til lukas nedre kant er H. Så lenge H er mindre enn ei kritisk grense H_{max} ligg trykksenteret nedanfor aksen AA' slik at luka er stengd, som vist på figuren. Men hvis vasssdjupet vert større enn H_{max} , vil trykksenteret koma på oversida av aksen og luka vil åpne seg automatisk.

Største tillatne vassdjup i dammen er H_{max} . Bestem avstanden b slik at luka opner seg når $H = H_{max}$. Svaret uttrykkast ved a og H_{max} .

Oppgjeve: Lukas treghetsmoment kring x-aksen gjennom centroiden er $I_{xx} = a^4/6$.

Lasury Oppgave 1

a) Går over til medfolgunde koordinafsystem. Pelativ vannhastiglist Vrel = Vj-RD.

J delke systemet er, når en regner i x-rehving,

MIND = /6/29 A = 6(1-50) A

MUT = - SV 2 dA = - 9 (V; -RQ)2 A

Kraft på vanuet: f = hor - hon = -29A (V; -RQ)

Kraft på skovlen: Fskove = -F = 29A(Vj-RO)2, mot høyre

Effect P = F . RQ = ZpARQ(Vj-RQ)2

b) Elstremelverdi for P nor dP(dQ = 0 =>

1 [Q(V3-RQ)2] =0

(V;-RD)2-2RQ(V;-RQ)=0

(V;-RQ)(V; - 3RQ)=0

Fysisk losuing \Q = \frac{1}{3} R

Da W P = Pmax = 8 27 9 AV

12 Lasning Oppyave 2

3, v a) Inhompressibilité v. V = 0 gin lun 1/// X DZ = 0, forsli det in cugun variazion i x- y y-rehringens. Fless er w

nachungig av z , og må være lik mull fordi w = 0 and

Navier - Stoken: DV + N.V)] = - 1 Pp + VFV

Z-rehing: 0 = - 1 op allse er p konstant.

x-reling: 24 + (V.V)a = - 5 2x + 2 7 u

 $3t = 3\frac{3u}{2z^2}$

b) Junselhiez av $u = (A \sin kz + B \cos kz)e$ i (D gin $-i\omega u = -k u , k = \sqrt{i\omega/v}.$

Heftbehingeles ved z=0: Ve = Be c: B=V.

Hefthehigelse and z = h: 0 = Asinkh + Bcookh, alhe A =

= -B cot kh = - V cot kh . Dermel u = (- Vcot kh sinkz + Vcoskz)e = V (-coskh sinkz + sinkh coskz)e

 $U(z,t) = \frac{V}{\sinh k(k-z)e^{-i\omega t}} \cdot \sinh k(k-z)$

c) [(0,t) = \(\lambda \(\sigma \alpha \) = -\(\nu \(\nu \) \k cot kh , \k = \(\frac{\omega}{20} \((\nu \cdot \))

hoo: T(o,t) = - 4V (coset - isinut) \(\frac{\infty}{20} \) (1+i). (-i) =

= - $\mu \sqrt{\frac{\omega}{2\nu}}$ (cos $\omega t - i \sin \omega t$)(1-i) = - $\mu \sqrt{\frac{\omega}{2\nu}}$ (cos $\omega t - \sin \omega t - i \cos \omega t$)

Realdel: T(o,t) = - my \(\frac{\omega}{20} \) (cos \omegat - sin \omegat) = - \(\omega \omega \) (\omegat + \(\frac{\omega}{4} \)). Fasefordijell 35/4 i forhold til harligheten.

Losuing Oppgare 3

Fra kibe i (-a,0), 4 = man

Fra sluk i (+0,0), 42 = -m 02

Superpowerer: 4 = m(0,-0) = -m. DD

luon so en hoppvinkeland feltpunklet ?

As figuren: DD = 20 Sind i Store austander 12.

Altra $\psi = -\frac{2ma}{r} \sin \theta = -\frac{\lambda}{r} \sin \theta$.

U₀ (9/R)

 $\Psi = \mathcal{O}_{\infty} \left(n - \frac{R^2}{h} \right) \sin \theta, \quad \mathcal{O}_{\infty} R^2 = \lambda.$

I plane koordinsker gjelder \$ 4 = - 52. Trenger dermed bore à spekke our $\sqrt{2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial \psi}{\partial A^2}$ en lik well.

Region at $\frac{\partial \psi}{\partial h} = U_{\infty} \left(1 + \frac{R^2}{h^2}\right) \sin \theta$, \Rightarrow

 $\frac{1}{n}\frac{\partial}{\partial n}\left(n\frac{\partial\psi}{\partial n}\right) = \frac{Q_{\infty}}{n}\frac{d}{dn}\left(n+\frac{R^2}{n}\right). \text{ Sin } \theta = \frac{Q_{\infty}}{n}\left(1-\frac{R^2}{n^2}\right)\text{ Sin } \theta$

 $\frac{1}{n^2} \frac{3 \cdot \psi}{\partial \theta^2} = -\frac{V_{\infty}}{n} \left(1 - \frac{R^2}{n^2}\right) \sin \theta . \quad \text{Although } \nabla \psi = 0, \Rightarrow S_z = 0$

Hashiphelshomponenter: $V_{R} = \frac{1}{r} \frac{\partial \Psi}{\partial \theta} = \frac{U_{\infty} (1 - \frac{R^{2}}{r^{2}}) \cos \theta$

 $V_{\theta} = -\frac{\partial \Psi}{\partial n} = -V_{\infty} \left(1 + \frac{R^2}{n^2}\right) \sin \theta$.

En grunelehingshe vil N=R: VR(R)=0, som stemmer

Oppgive 3 , forts.

c) Da 5z = 0 kan Bernoulli beryttes mellom vilkarlige punkter:

Da V(0) = V, + V0 = 400 sin 0, fro

$$P_{\Delta}(\theta) = \frac{1}{2}gV_{\infty}^{2} + p_{\infty} - 2gV_{\infty}^{2}\sin^{2}\theta$$

 $\frac{C_{p}}{L_{p}} = \frac{P_{0}(\theta) - P_{\infty}}{\frac{1}{2}P_{0}Q_{\infty}^{2}} = \frac{1 - 4\sin^{2}\theta}{1 - 4\sin^{2}\theta}.$

Laminard grensesjicht: Thofosining and B = 82°. For house 0 en typicket prablish tell knownet.

Turbulent grenseyitet: Polosning and ⊕ ~120°. Storne kinetiske energi i grenseyitet, og dermal storre klebende erne til overflaten.

Firstand fra toppunktet T til centroiden langs planet er \S_{CG} . Tilwarende avstand til trykhrutet en \S_{CP} .

$$\xi_{cp} - \xi_{cq} = \frac{\Gamma_{xx}}{\xi_{cq} \cdot A} \qquad \Phi$$

Kritisk paulet biboarende H= Huax nar brykenenhet feller sammen med alson AA! Da er

3. = H - b = 2H - b.

5.02°

Centroiden ligger midt på luka: $3cq = 2H - \frac{a}{2}.$ Altsu $5cp - 5cq = 2H - b - (2H - \frac{a}{2}) = \frac{a}{2} - b$, som egg også
som deieble av figuren.
Seller an i D:

$$\frac{a}{2} - b = \frac{\frac{1}{6}a^{4}}{(2H - \frac{a}{2}) \cdot 2a^{2}} = \frac{a^{2}}{(4H - a) \cdot 6}$$

$$l = \frac{a}{2} - \frac{a^2}{6(4H-a)}$$
, was H esstelles med H max.