# Theory of Answer Set Programming

Negation as Failure: Informal Introduction



## **Objectives**



Objective

Explain the intuitive meaning of negation as failure

Stable Models of Programs with Negation

### Recall: Syntax of Propositional Rules

### A (propositional) rule is either

- a propositional formula F that does not contain any implication symbol, or
- a formula of the form  $F \leftarrow G$  where F and G are implication-free.

A propositional program is a set of propositional rules.

### Prolog vs. ASP

$$p :- not q$$

### P < 78 8 < 7P

# Prolog does not terminate on query p or q

ERROR: Out of local stack

Exception: (729,178)

#### clingo returns

Answer: 1

p

Answer: 2

9

Finite ASP programs are guaranteed to terminate

### **Negation as Failure**

**Q:** How do we extend the definition of a stable model in the presence of negation?

$$p,$$
  $p,$   $p,$   $p,$   $q,$   $q,$   $q,$   $q,$   $q,$   $r \leftarrow p,$   $r \leftarrow p \land \neg s,$   $r \leftarrow p \land \neg s,$   $s \leftarrow q.$   $s \leftarrow q.$   $s \leftarrow q.$   $s \rightarrow p, q, s \rightarrow s$   $s \rightarrow p, q, s \rightarrow s$   $s \rightarrow p, q, s \rightarrow s$ 

Add r to the model if p is included under the condition that s is not included in the model and will not be included in the future.

### Informal Reading: Rationality Principle

- Informally, program  $\Pi$  can be viewed as a specification for stable models--sets of beliefs that could be held by a rational reasoner associated with  $\Pi$ .
- Stable models will be represented by collections of atoms.
- In forming such sets the reasoner must be guided by the following informal principles:
  - Satisfy the rules of  $\Pi$ .
    - If one believes in the body of a rule, one must also believe in its head.
  - Adhere to the "the rationality principle."
    - "Believe nothing you are not forced to believe."



## Negation as Failure, cont'd

$$p \leftarrow \exists q$$
 3p5

$$p \leftarrow q$$
 $q \leftarrow \neg r \uparrow$ 
 $q \leftarrow \neg r \uparrow$