Busca Informada (Heurística)

Professor: Igor da Penha Natal

Recapitulação das aulas anteriores

Busca em Largura

Busca em Profundidade

Definição e exemplos de problemas de busca

- Definição de um problema:
 - Estado inicial
 - Ações possíveis
 - Estado inicial + realização de ações possíveis = espaço de estados (espaço de busca)
 - Teste de objetivo: determina se um dado estado é um estado objetivo.
 - Função de custo: medida de desempenho da busca dentro do processo de resolução do problema

Definição e exemplos de problemas de busca

A solução é o caminho entre uma cidade e outra. A busca retorna o caminho enquanto o encontra.

A solução é um posicionamento específico das 8 rainhas. A busca retorna o tabuleiro "solução".

Estado inicial

Estado objetivo

A solução é um posicionamento específico das pedras do tabuleiro.

A busca retorna o processo para encontrar a solução.

- A busca informada (heurística) utiliza conhecimento específico do problema para poder encontrar soluções de maneira mais eficiente.
- Tentativa de expandir os caminhos mais promissores primeiro.
- Heurística auxilia a encontrar os nós mais promissores a cada passo.
 - Heurística é a função que estima a distância ao objetivo.

- Abordagem Geral: A ideia é usar uma função de avaliação f(n) para cada nó, onde:
 - Será estimado o grau em que um nó é "desejável" como caminho.
 - Serão expandido os nós mais desejáveis.

$$f(n) = g(n) + h(n)$$

g(n) = Custo do caminho do estado inicial até o nó n

h(n) = Custo estimado de n ao estado objetivo pelo caminho mais barato

- Busca de Custo Uniforme: f(n) = g(n).
- Busca pelo melhor primeiro (Gulosa): f(n) = h(n).
- Busca A*: f(n) = g(n) + h(n).

- Definição de heurísticas admissíveis:
 - Mesmo sem conhecer o custo real, muitas vezes é possível garantir que o custo estimado não o ultrapassa.

• Exemplos:

- Quantidades de números fora de posição no quebra-cabeça de 8: para cada número fora de posição, é necessário ao menos um movimento para coloca o número na posição correta.
- Rota mínima entre duas cidade: qualquer caminho entre duas cidade é maior ou igual ao comprimento da reta que une as duas cidades.

Algoritmos de Busca Heurística

Algoritmo de custo uniforme

- Leva em conta apenas o fator de g(n) a cada passo.
- Considere o problema de encontrar o menor caminho entre os nós S e G no grafo a seguir:

Algoritmo de custo uniforme

 Considere o problema de encontrar o menor caminho entre os nós S e G no grafo a seguir:

- Leva em conta apenas o fator heurístico h(n).
- Expande o nó mais próximo à meta, na suposição de que isso provavelmente levará a uma solução rápida e eficiente.

- Pensando no problema do Puzzle a seguir:
 - Configuração Inicial:

2	8	3
1	6	4
7		5

Configuração Objetivo:

1	2	3
8		4
7	6	5

Heurística: Quantidade de números fora de posição.

- Está técnica requer que a estimação do custo f(n) = g(n) + h(n) seja monotônica, ou seja, nunca caia quando se afasta da raiz da árvore de busca. Diferente das duas técnicas anteriores, sob está hipótese, sempre é possível encontrar a solução ótima com a busca A*.
- A busca A* é completa, ótima e eficiente.
- No entanto sua complexidade ainda é exponencial e o seu uso de memória é intenso.
- Ele guarda todos os nós para expandir o que têm menor valor de f(n).

$$f(n) = g(n) + h(n)$$

h(n) otimista \rightarrow heurística admissível

f(n) nunca decresce ao longo de um caminho \rightarrow monotonicidade

n pai de n', $f(n') \le f(n) \rightarrow f(n') = \max[f(n), g(n') + h(n')] \rightarrow pathmax$

 A^* expande todos nós com $f(n) < f^*$

Primeira solução encontrada é a solução ótima

 A^* é otimamente eficiente \rightarrow nenhum outro algoritmo expande menos nós que A^*

- Pensando no problema do Puzzle a seguir:
 - Configuração Inicial:

2	8	3
1	6	4
7		5

Configuração Objetivo:

1	2	3
8		4
7	6	5

 Heurística: Quantidade de números fora de posição.

Síntese da Aula

- Nesta aula vimos
 - Busca Informada (Heurística)
 - Definição de problema de busca e exemplos.
 - Definição e exemplos de heurísticas.
 - Algoritmos
 - Custo Uniforme;
 - Guloso;
 - A*.

Próxima Aula

- Outras Buscas
 - Busca Local;
 - Simulated Annealing;
 - Busca Tabu;
 - Hill Climbing;
 - Algoritmo Genético.

Referências Bibliográficas

- [1] RUSSEL, S.; NORVIG, P.; Artificial Intelligence – A modern approach. 4^a edição. Editora: Pearson Education Limited, 2021.
- [2] POOLE, D.; MACKWORTH; Artificial Intelligence: Foundations of Computational Agents. 2^a edição. Editora: Cambridge University Press, 2017.