COMP3670: Introduction to Machine Learning

• Question 1

Let X be a random variable representing a biased coin with possible outcomes $\mathcal{X} = \{0, 1\}$. The bias of the coin is controlled by a parameter $\theta \in [0, 1]$, so

$$p(X = 1 \mid \theta) = \theta$$

$$p(X = 0 \mid \theta) = 1 - \theta$$

or, more compactly,

$$p(X = x) = \theta^x (1 - \theta)^{1 - x}$$

We wish to learn what θ is, based on experiments by flipping the coin. Before we flip the coin, we have no knowledge about what θ could be, so we let the prior distribution on θ be uniform on the unit interval,

$$p(\theta) = \mathcal{U}([0,1]) := \mathbb{1}_{[0,1]}(\theta)$$

where $\mathbb{1}_{E}(x)$ is the indicator function on the set E, defined as

$$\mathbb{1}_{E}(x) := \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

We flip the coin a number of times.¹ After each coin flip, we update the distribution for θ to reflect what we learned from the coin flip.

Suppose we flip the coin three times, and obtain the sequence 2 $x_{1:3} = 101$. For each subsequence $x_1, x_{1:2}, x_{1:3}$,

- a) Compute the posterior distributions;
- b) The expectation values μ ;
- c) The variances σ^2 ;
- d) The maximum a posteriori estimation θ_{MAP} .

Present your results in a table like as shown below. The first has been done for you.

Posterior	PDF	μ	σ^2	$ heta_{MAP}$
$p(\theta)$	$\mathbb{1}_{[0,1]}(\theta)$	1/2	1/12	Any θ in $[0,1]$.
$p(\theta x_1=1)$?	?	?	?
$p(\theta x_{1:2}=10)$?	?	?	?
$p(\theta x_{1:3} = 101)$?	?	?	?

You should show your derivations, but you may use a computer algebra system to assist with integration or differentiation.³.

e) Plot each of the probability distributions.

¹The coin flips are independent and identically distributed (i.i.d).

²We write $x_{1:n}$ as shorthand for the sequence $x_1x_2...x_n$.

³For example, asserting that $\int_0^1 x^2 \left(x^3 + 2x\right) dx = 2/3$ with no working out is adequate, as you could just plug the integral into Wolfram Alpha using the command Integrate[x^2(x^3 + 2x), {x,0,1}]

f) What behaviour would you expect of the posterior distribution $p(\theta|x_{1:n})$ if we updated on a very long sequence of alternating coin flips $x_{1:n} = 10101010...$?

• Question 2

We have a Bayesian agent running on a computer, trying to learn information about what the parameter θ could be in the coil flip problem, based on observations through a noisy camera. The noisy camera takes a photo of each coin flip and reports back if the result was a 0 or a 1. The camera has a probability⁴ of returning the wrong answer of $\phi \in [0, 0.5]$, Letting X denote the true outcome of the coin, and \hat{X} denoting what the camera reported back, we can draw the relationship between X and \hat{X} as shown.

So, we have

$$p(\widehat{X} \neq X \mid \phi) = \phi$$
$$p(\widehat{X} = X \mid \phi) = 1 - \phi$$

We would now like to investigate what posterior distributions are obtained, as a function of the parameter ϕ . Let $\hat{x}_{1:n}$ be a sequence of coin flips as observed by the camera.

- a) Briefly comment about how the camera behaves for $\phi = 0$ and $\phi = 0.5$, and how you expect this would affect Bayesian updating on the observations \widehat{X} .
- b) Compute $p(\hat{X} = x | \theta, \phi)$ for all $x \in \{0, 1\}$.
- c) Given the same choice of prior $p(\theta|\phi) = \mathcal{U}([0,1])$ as before, compute $p(\theta|\hat{x}_{1:2} = 10, \phi)$. What term (from Question 1) does $p(\theta|\hat{x}_{1:2} = 10, \phi)$ simplify to when $\phi = 0$? When $\phi = 0.5$? Explain your observations.
- d) Derive θ_{MAP} for the posterior $p(\theta|\hat{x}_{1:2} = 10, \phi)$. How does θ_{MAP} depend on the parameter ϕ ? Can you explain this behaviour?
- e) Plot $p(\theta|\hat{x}_{1:2} = 10, \phi)$ as a function of θ for all $\phi \in \{0, \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}, \frac{5}{10}\}$ and comment on how the shape of the distribution changes with ϕ . Explain your observations.
- f) Prove⁵ that for every $\phi \in [0, 0.5]$ there exists some $\alpha \in [0, 1]$ such that

$$p(\theta \mid \widehat{X} = 1, \phi) = p(\theta \mid X = 1)\alpha + p(\theta)(1 - \alpha)$$

• Question 3

Consider two random variables x, y, with distribution p(x, y). Show that

$$\mathbb{E}_X[x] = \mathbb{E}_Y[\mathbb{E}_X[x|y]]$$

Note that $\mathbb{E}_X[x|y]$ is the expectation on X with respect to the conditional distribution p(x|y) instead of the usual p(x).

⁴The reason we don't define ϕ to be any number in the range of [0, 1], is that we can always emulate any number in the range [0.5, 1] by a number in [0, 0.5], and then flipping the result. A camera that always says the wrong answer 100% of the time is still very useful, as you just report back the opposite of what it says.

⁵We are essentially proving that the posterior based on evidence from the noisy camera, is a convex combination of the posterior based on true evidence, and the original prior.

• Question 4

Let X be a random variable, on $[0, \infty)$, with probability density function

$$p(x) = e^{-x}$$

Let Y be a random variable on $[0, \infty)$, such that $Y = X^2$. Find the probability density function for Y.