## **Ampel**

Khatera Naser & Fabian Kahlich

#### **Funktionstabelle**

| Fußgänger    | rot     | rot     | rot     | rot     | grün    | rot     | rot      | rot     |
|--------------|---------|---------|---------|---------|---------|---------|----------|---------|
| Auto         | grün    | grün    | gelb    | rot     | rot     | rot     | rot-gelb | grün    |
| Zeit in s    | idle    | 5       | 1       | 5       | 30      | 5       | 1        | 30      |
| Zeit addiert | 0       | 5       | 6       | 11      | 41      | 46      | 47       | 77      |
| Zeit in Bits | 0000000 | 0000101 | 0000110 | 0001010 | 0101001 | 0101110 | 0101111  | 1001101 |

#### Zustandsdiagramm Legende



| Zustand      | Codierung |
|--------------|-----------|
| Idle         | 000       |
| rot/grün     | 001       |
| rot/gelb     | 010       |
| rot/rot      | 011       |
| grün/rot     | 100       |
| rot/rot-gelb | 101       |
| undefiniert  | 110       |
| undefiniert  | 111       |

### Zustandsdiagramm



## Übergangsschaltnetz

| <b>Z2</b> | <b>Z1</b> | Z0 | Е | Z | Z2+ | Z1+ | Z0+ |
|-----------|-----------|----|---|---|-----|-----|-----|
| 0         | 0         | 0  | 0 | 0 | 0   | 0   | 0   |
| 0         | 0         | 0  | 0 | 1 | 0   | 0   | 0   |
| 0         | 0         | 0  | 1 | 0 | 0   | 0   | 0   |
| 0         | 0         | 0  | 1 | 1 | 0   | 0   | 1   |
| 0         | 0         | 1  | 0 | 0 | 0   | 0   | 1   |
| 0         | 0         | 1  | 0 | 1 | 0   | 1   | 0   |
| 0         | 0         | 1  | 1 | 0 | 0   | 0   | 1   |
| 0         | 0         | 1  | 1 | 1 | 0   | 0   | 1   |
| 0         | 1         | 0  | 0 | 0 | 0   | 1   | 0   |
| 0         | 1         | 0  | 0 | 1 | 0   | 1   | 1   |
| 0         | 1         | 0  | 1 | 0 | 0   | 1   | 0   |
| 0         | 1         | 0  | 1 | 1 | 0   | 1   | 0   |
| 0         | 1         | 1  | 0 | 0 | 0   | 1   | 1   |
| 0         | 1         | 1  | 0 | 1 | 1   | 0   | 0   |
| 0         | 1         | 1  | 1 | 0 | 0   | 1   | 1   |
| 0         | 1         | 1  | 1 | 1 | 0   | 1   | 1   |
| 1         | 0         | 0  | 0 | 0 | 1   | 0   | 0   |
| 1         | 0         | 0  | 0 | 1 | 0   | 1   | 1   |
| 1         | 0         | 0  | 1 | 0 | 1   | 0   | 0   |
| 1         | 0         | 0  | 1 | 1 | 1   | 0   | 0   |
| 1         | 0         | 1  | 0 | 0 | 1   | 0   | 1   |
| 1         | 0         | 1  | 0 | 1 | 0   | 0   | 1   |
| 1         | 0         | 1  | 1 | 0 | 1   | 0   | 1   |
| 1         | 0         | 1  | 1 | 1 | 1   | 0   | 1   |
| 1         | 1         | 0  | 0 | 0 | X   | X   | X   |
| 1         | 1         | 0  | 0 | 1 | Х   | X   | Х   |
| 1         | 1         | 0  | 1 | 0 | X   | X   | X   |
| 1         | 1         | 0  | 1 | 1 | Х   | X   | Х   |
| 1         | 1         | 1  | 0 | 0 | X   | X   | X   |
| 1         | 1         | 1  | 0 | 1 | X   | X   | Х   |
| 1         | 1         | 1  | 1 | 0 | X   | X   | X   |
| 1         | 1         | 1  | 1 | 1 | X   | X   | X   |

# KV – Diagramm +Funktionsgleichungen (ÜS)

Das KV-Diagramm wird in Logisim leider nicht dargestellt.

$$Z0+= (E \wedge Z0 \wedge \neg Z1 \wedge Z2) \vee (S \wedge \neg Z2) \vee (S \wedge Z1)$$

Z2+ = 
$$(\neg S \land \neg E \land Z1 \land Z2) \lor (Z0 \land Z1) \lor (E \land \neg Z0 \land \neg Z1 \land Z2) \lor (E \land Z0 \land \neg Z2) \lor (S \land \neg Z1 \land Z2) \lor (S \land Z0)$$

### Ausgangsschaltnetz

| <b>Z2</b> | <b>Z1</b> | <b>Z</b> 0 | Е | S | RF | GF | RA | YA | GA | Reset |
|-----------|-----------|------------|---|---|----|----|----|----|----|-------|
| 0         | 0         | 0          | 0 | 0 | 1  | 0  | 0  | 0  | 1  | 1     |
| 0         | 0         | 0          | 0 | 1 | 1  | 0  | 0  | 0  | 1  | 1     |
| 0         | 0         | 0          | 1 | 0 | 1  | 0  | 0  | 0  | 1  | 1     |
| 0         | 0         | 0          | 1 | 1 | 1  | 0  | 0  | 0  | 1  | 0     |
| 0         | 0         | 1          | 0 | 0 | 1  | 0  | 0  | 0  | 1  | 0     |
| 0         | 0         | 1          | 0 | 1 | 1  | 0  | 0  | 1  | 0  | 0     |
| 0         | 0         | 1          | 1 | 0 | 1  | 0  | 0  | 0  | 1  | 0     |
| 0         | 0         | 1          | 1 | 1 | 1  | 0  | 0  | 0  | 1  | 0     |
| 0         | 1         | 0          | 0 | 0 | 1  | 0  | 0  | 1  | 0  | 0     |
| 0         | 1         | 0          | 0 | 1 | 1  | 0  | 1  | 0  | 0  | 0     |
| 0         | 1         | 0          | 1 | 0 | 1  | 0  | 0  | 1  | 0  | 0     |
| 0         | 1         | 0          | 1 | 1 | 1  | 0  | 0  | 1  | 0  | 0     |
| 0         | 1         | 1          | 0 | 0 | 1  | 0  | 1  | 0  | 0  | 0     |
| 0         | 1         | 1          | 0 | 1 | 0  | 1  | 1  | 0  | 0  | 0     |
| 0         | 1         | 1          | 1 | 0 | 1  | 0  | 1  | 0  | 0  | 0     |
| 0         | 1         | 1          | 1 | 1 | 1  | 0  | 1  | 0  | 0  | 0     |
| 1         | 0         | 0          | 0 | 0 | 0  | 1  | 1  | 0  | 0  | 0     |
| 1         | 0         | 0          | 0 | 1 | 1  | 0  | 1  | 0  | 0  | 0     |
| 1         | 0         | 0          | 1 | 0 | 0  | 1  | 1  | 0  | 0  | 0     |
| 1         | 0         | 0          | 1 | 1 | 0  | 1  | 1  | 0  | 0  | 0     |
| 1         | 0         | 1          | 0 | 0 | 1  | 0  | 1  | 1  | 0  | 0     |
| 1         | 0         | 1          | 0 | 1 | 1  | 0  | 0  | 0  | 1  | 0     |
| 1         | 0         | 1          | 1 | 0 | 1  | 0  | 1  | 1  | 0  | 0     |
| 1         | 0         | 1          | 1 | 1 | 1  | 0  | 1  | 1  | 0  | 0     |
| 1         | 1         | 0          | 0 | 0 | X  | Х  | Х  | X  | X  | X     |
| 1         | 1         | 0          | 0 | 1 | Х  | X  | Х  | Х  | X  | Х     |
| 1         | 1         | 0          | 1 | 0 | X  | X  | X  | X  | X  | X     |
| 1         | 1         | 0          | 1 | 1 | Х  | Х  | Х  | Х  | X  | Х     |
| 1         | 1         | 1          | 0 | 0 | X  | X  | X  | X  | X  | X     |
| 1         | 1         | 1          | 0 | 1 | Х  | Х  | Х  | Х  | X  | Х     |
| 1         | 1         | 1          | 1 | 0 | X  | X  | X  | X  | X  | X     |
| 1         | 1         | 1          | 1 | 1 | X  | X  | X  | X  | X  | X     |

## KV – Diagramm +Funktionsgleichungen (AS)

Das KV-Diagramm wird in Logisim leider nicht dargestellt.

RF = 
$$(\neg Z2 \land \neg Z1) \lor (\neg Z2 \land \neg Z0) \lor (\neg Z2 \land \neg S) \lor (\neg Z1 \land \neg E \land S) \lor (\neg Z2 \land E) \lor (\neg Z1 \land Z0)$$

$$\mathsf{GF} = (\mathsf{Z1} \land \mathsf{Z0} \land \neg \mathsf{E} \land \mathsf{S}) \lor (\mathsf{Z2} \land \neg \mathsf{Z0} \land \neg \mathsf{S}) \lor (\mathsf{Z2} \land \neg \mathsf{Z0} \land \mathsf{E})$$

$$RA = (Z1 \land \neg E \land S) \lor (Z1 \land Z0) \lor (Z2 \land \neg Z0) \lor (Z2 \land \neg S) \lor (Z2 \land E)$$

$$YA = (\neg Z2 \land \neg Z1 \land Z0 \land \neg E \land S) \lor (Z1 \land \neg Z0 \land \neg S) \lor (Z1 \land \neg Z0 \land E) \lor (Z2 \land Z0 \land \neg S) \lor (Z2 \land Z0 \land E)$$

$$GA = (\neg Z2 \land \neg Z1 \land \neg Z0) \lor (\neg Z2 \land \neg Z1 \land \neg S) \lor (\neg Z2 \land \neg Z1 \land E) \lor (Z2 \land Z0 \land \neg E \land S)$$

Reset = 
$$(\neg Z2 \land \neg Z1 \land \neg Z0 \land \neg E) \lor (\neg Z2 \land \neg Z1 \land \neg Z0 \land \neg S)$$