

STATG019 – Selected Topics in Statistics 2015

Lecture 4

Kernel Methods for Big Data

Course organization

In-Course-Assessment

Two take-home ICA, one on kernels, one on point processes

Each counts 50% towards your final grade

Handing out: no.1 on Feb 9, no.2 on Mar 23 (on moodle)

Submission: no.1 on Mar 4, no.2 on Apr 29 (via moodle/TurnitIn)

Submission details for ICA no.1 will be announced

Tutorials and/or practical sessions

Thursday, 11am - 1pm, February 26

Tutorial will be mainly on mathematical concepts and the exercises

Also a bit of R and programming issues, if we have the time

Thursday, 11am - 1pm, February 12?

R programming, kernlab, help on getting started with the ICA?

String kernels: combinatorial kernels for text mining, document classification and genome analysis	10 %	3
Graph kernels: combinatorial kernels on graphs and between graphs for learning molecules, or biological and social networks	7 %	2
Kernel quantile regression: predicting the median and other quantiles in non-linear distributional data, e.g. population analysis	3 %	1
Kernel CCA: finding highly correlating non-linear features in high-dimensional data, e.g. time series	13%	4
Kernel k-means: non-linear clustering with kernels	10 %	3
More on novelty and outlier detection with kernels		2
Vapnik-Chervonenkis learning theory; the VC inequality and the main ideas behind its proof	10 %	3
Cross-validation techniques in general and for kernels in particular	10 %	3
Kernel on-line learning: how to modify kernel methods to cope with sequential data; algorithmic techniques and learning guarantees	13% Today	,
Kernels for big data: how to cope with huge data sets; kernel Hebbian, Nyström approximation, sub-sampling, inducing variables	13%	4
Other: MMD Arthur is doing MMD!	3 %	1

Kernel learning in the presence of BIG DATA

Input: independent data points $x_1, \ldots, x_N \in \mathbb{R}^n$ when supervised: labels $y_1, \ldots, y_N \in \mathbb{R}$

Kernel ridge regression:

$$f(x) = y^{\top} (K + \lambda I)^{-1} \cdot \kappa(x) = \widehat{\alpha}^{\top} \kappa(x)$$
$$K = (k(x_i, x_j))_{ij} \quad \kappa(x) = (k(x_i, x))_i$$

Kernel PCA: $(U, \lambda) = eig(K_{\mu})$ $\tau_i(x) = \tau_i(U, \lambda, \kappa(x), K)$

$$\begin{aligned} & \text{Kernel SVM:} \\ & f(x) = \text{sgn}\left(b + \sum_{i=1}^{N} \alpha_i k(x_i, x)\right) = \text{sgn}\left(\alpha^\top \kappa(x)\right) \\ & \max_{\alpha} W(\alpha) = \|\alpha\|_1 - \frac{1}{2} \cdot \alpha^\top \tilde{K} \alpha \quad \text{ s.t. } \alpha \geq 0, \quad 0 = \sum_{i=1}^{N} \alpha_i y_i \end{aligned}$$

Naïve implementation costs $O(N^2)$ to $O(N^3)$ anything but $O(N \cdot \operatorname{polylog}(N))$ is infeasible for $N \approx 10^6$

Idea no.1: low-rank approximation

main idea: $K \approx Q \cdot Q^{\top}$, with $Q \in \mathbb{R}^{N \times M}$ operate with tall matrices only, e.g. Q yields low-dimensional feature vectors

no.2: iterative/incremental methods

main idea: add x_i incrementally update f, τ , etc, for each addition directly applicable to on-line setting

Low-Rank Approximation

The Pseudo-inverse and row-span projectors

Definition (Penrose-Moore-pseudoinverse):

Let $A \in \mathbb{R}^{m \times n}$ be a matrix.

Pseudoinverse of A is matrix A^+ such that

$$AA^{+}A = A$$
 $A^{+}AA^{+} = A^{+}$ $(AA^{+})^{\top} = AA^{+}$ $(A^{+}A)^{\top} = A^{+}A$

Proposition:

Given $A \in \mathbb{R}^{m \times n}$, the pseudo-inverse A^+ exists and is unique.

Existence: Let
$$A = USV^{\top}$$
 the SVD of A , take $A^{+} := VS^{+}U^{\top}$

with diagonal matrix
$$S^+$$
, where $S^+_{ii} = \left\{ \begin{array}{ll} 1/S_{ii}, & \text{if } S_{ii} \neq 0, \\ 0, & \text{if } S_{ii} = 0. \end{array} \right.$

Uniqueness: For two pseudo-inverses B, C of A:

$$C = CAC = CC^{\top} \cdot (ABA)^{\top} = C \cdot (ACAB) = CAB = BAB = B$$

Remark: For a data matrix $X \in \mathbb{R}^{N \times n}$

projection matrix onto the row-span of X is given as

$$P_X := X^+ X = X^\top (XX^\top)^+ X$$

since $P_X P_X = P_X$ and $P_X v = 0$ for any $v \in \mathbb{R}^n$ with X v = 0

in the middle: (pseudo-)inverse of Gram matrix!

The Nyström approximation (E. Nyström, 1928; idea in the context of integral equations)

Remark: projection matrix onto the row-span of X is given as $P_X := X^\top (XX^\top)^+ X$

Main idea: maybe rowspan X is well-approximated by rowspan Z

where $Z \in \mathbb{R}^{M \times n}$ consists of M rows of $X \in \mathbb{R}^{N \times n}$

so
$$XX^{\top} \approx (XP_Z)(XP_Z)^{\top} = XP_ZX^{\top} = (XZ^{\top})(ZZ^{\top})^+(ZX^{\top})$$

Rewriting with $K_{AB} := AB^{\top} : K_{XX} \approx K_{XZ} \cdot K_{ZZ}^+ \cdot K_{ZX} =: K_{XX|Z}$

Proposition (deterministic approximation):

- (i) the residual matrix $K_{XX} K_{XX|Z}$ is positive semi-definite
- (ii) $\lambda_i(K_{XX}) \geq \lambda_i(K_{XX|Z}) \geq \lambda_{i+\Delta}(K_{XX})$ where $\Delta = \operatorname{rank} X \operatorname{rank} Z$ (by Weyl's theorem) and λ_i denotes the i-th largest eigenvalue
- (iii) $||K_{XX} K_{XX|Z}||_F \le \operatorname{Tr}(K_{XX}) \operatorname{Tr}(K_{ZZ})$ (use positive semi-definiteness)

Theorem (Kumar et al, NIPS 2009): (one example for probabilistic approximation)

Denote by $K_{XX}^{(r)}$ the Frobenius-best rank r approximation to K_{XX} .

Assume Z is uniformly subsampled. If $M \geq 64 \frac{r}{\epsilon^4}$, then

$$\mathbb{E}||K_{XX} - K_{XX|Z}||_F \le ||K_{XX} - K_{XX}^{(r)}||_F + \varepsilon \cdot \max_i (N \cdot k(x_i, x_i))$$

Remark: Data dimension n does not enter the proofs! so statements are fine for arbitrary kernels

(more precisely: use existence of Cholesky decomposition)

Speeding up kernels with Nytröm

Nytsröm-approximation: $K_{XX} \approx K_{XZ} \cdot K_{ZZ}^+ \cdot K_{ZX} =: K_{XX|Z}$

Idea for speed-up:
$$K_{XX|Z} = \left(K_{XZ} \cdot K_{ZZ}^{-1/2}\right) \cdot \left(K_{XZ} \cdot K_{ZZ}^{-1/2}\right)^{\top} =: K_{X|Z} \cdot K_{X|Z}^{\top}$$

PCA

Vanilla: compute eigenpairs of $K_{\mu} := (I - \mathbb{1}_N) \cdot K_{XX} \cdot (I - \mathbb{1}_N)$

Nyström: compute left singular pairs of $(I - \mathbb{1}_N) \cdot K_{X|Z}$

time cost $O(N^2m)$ O(NMm)

for m pairs

SVM SVM Vanilla: $\max_{\alpha} W(\alpha) = \|\alpha\|_1 - \frac{1}{2} \cdot \alpha^{\top} \tilde{K} \alpha$ $\tilde{K} = \operatorname{diag}(y) K_{XX} \operatorname{diag}(y)$

Nyström: restrict α to column-span of diag $(y)K_{X|Z}$

$$\tilde{\alpha} := K_{X|Z}^\top \mathrm{diag}(y) \cdot \alpha \quad \text{so} \quad \alpha = \left(K_{X|Z}^\top \mathrm{diag}(y)\right)^+ \tilde{\alpha}$$

O(h(N))

 $O(\frac{N}{M}h(M))$

Ridge regression

Vanilla: compute $\widehat{\alpha} = (K_{XX} + \lambda I)^{-1} y$ then $f(x) = \widehat{\alpha}^{\top} \kappa(x)$

Nyström: $(K_{XX} + \lambda I)^{-1} \approx \left(K_{XX|Z} + \lambda I\right)^{-1} = \left(K_{X|Z}K_{X|Z}^{\top} + \lambda I\right)^{-1}$ observe, going backwards in the derivation of ridge regression $\left(K_{X|Z}K_{X|Z}^{\top} + \lambda I\right)^{-1} = \lambda^{-1}I - \lambda^{-1}K_{X|Z}\left(K_{X|Z}^{\top}K_{X|Z} + \lambda I\right)^{-1}K_{X|Z}^{\top}$

alternative: the Woodbury identity (later today)

so compute
$$\widehat{\alpha} = \lambda^{-1}y - \lambda^{-1}K_{X|Z}\left(K_{X|Z}^{\top}K_{X|Z} + \lambda I\right)^{-1}K_{X|Z}^{\top} \cdot y$$

 $O(N^3)$

 $O(NM^2)$

≜UCL

"inducing"

 (z_i, u_i)

Sparse Gaussian processes regression

Input: independent data points $x_1, \ldots, x_N \in \mathbb{R}^n$ dependent data points/labels $y_1, \ldots, y_N \in \mathbb{R}$

Output: Regressor $f: \mathbb{R}^n \to \mathbb{R}$ such that $y_i \approx f(x_i)$ and which predicts well unseen labels f(x)

Main assumptions:

The "true" f is outcome of Gaussian process jointly Gaussian $y_i = f(x_i) + \varepsilon_i$ with $\varepsilon_i \sim \mathcal{N}(0, \lambda)$ i.i.d.

There are jointly Gaussian "inducing variables" $u_1,\ldots,u_M\in\mathbb{R}$ corresponding to (hypothetical) pseudo-inputs $z_1,\ldots,z_M\in\mathbb{R}^n$ (hypothetially) observed without noise, i.e., $u_i=f(z_i)$.

test label f(x) and $f(x_i)$ are independent conditioned on the u_i

Derivation of posterior distribution: (in the case $x \neq x_1, \ldots, x_N$)

By assumption: $y_1, \ldots, y_N | u_1, \ldots, u_M \sim \mathcal{N}\left(K_{XZ}K_{ZZ}^+u, K_{XX} - K_{XX|Z}\right)$

 $f(x)|u_1,\ldots,u_M \sim \mathcal{N}\left(K_{xZ}K_{ZZ}^+u,k(x,x)-K_{xx|Z}\right)$

"inducing

Marginalization over u_i yields

$$f(x)|y_1,\ldots,y_N \sim \mathcal{N}\left(K_{xX|Z}(K_{XX|Z}+\lambda\cdot I)^{-1}y,\ K_{xx|Z}-K_{xX|Z}(K_{XX|Z}+\lambda\cdot I)^{-1}K_{Xx|Z}\right)$$

equivalent to GP regression with covariance function $k(x,y)=K_{xy|Z}=K_{xz}K_{zz}^+K_{zy}$

mean and variance efficiently computable in analogy to ridge regression $O(NM^2)$

how to choose Z for the Nyström approximation $K_{XX} \approx K_{XX|Z}$

Williams, Seeger (2001): uniformly random sub-sample

will be fine due to
$$\|K_{XX} - K_{XX|Z}\|_F \leq \operatorname{Tr}(K_{XX}) - \operatorname{Tr}(K_{ZZ})$$
 and $\mathbb{E}\|K_{XX} - K_{XX|Z}\|_F \leq \|K_{XX} - K_{XX}^{(r)}\|_F + \varepsilon \cdot \max_i (N \cdot k(x_i, x_i))$

Pros: works very often, fast **Cons:** slow on degenerate/clustered data

Fine et al, Bach et al (2001/2): Greedy for approximation (unsupervised)

Bach et al (2005): Greedy for goodness of prediction (supervised)

due to factorization method called "incomplete Cholesky decomposition"

Pros: informed, thus converges quickly Cons: greedy ≠optimal

Snelson et al (2006): Bayesian inference on inducing variables

Pros: Bayesian Cons: Bayesian

Kiraly et al (2014): sample rows of Z i.i.d. from random variable ${\mathcal Z}$

Theorem: $||K_{XX} - K_{XX|Z}||_F = O(M^{-1/4})$ (if support of \mathcal{Z} covers X) (constants depending on \mathcal{Z}, k)

Pros: independent of data degeneracies
Cons: slower convergence (constants)

An overview can also be found in Kumar (2012): Sampling methods for the Nyström method

Iterative kernel methods

Low-rank updates for inversion

Proposition (Sherman, Morrison, Woodbury):

"the Woodbury formula"

(despite Sherman & Morrison being earlier)

$$(A + UV)^{-1} = A^{-1} - A^{-1}U(I + VA^{-1}U)^{-1}VA^{-1}$$

for matrices of the right size where all the above is invertible

Proof: verify that $(A + UV) \cdot$ the right hand side = I (or use the SVD argument)

On-line learning update for ridge regression/Gaussian processes:

 $X \in \mathbb{R}^{N \times n}$ old data batch $y \in \mathbb{R}^N$ old labels $Z \in \mathbb{R}^{M \times n}$ row-subsample

 $Y \in \mathbb{R}^{\ell imes n}$ new data batch $y' \in \mathbb{R}^\ell$ new labels

old coefficients: $\widehat{\alpha} = \lambda^{-1}y - \lambda^{-1}BK_{X|Z}^{\top} \cdot y$ where $B = \left(K_{X|Z}^{\top}K_{X|Z} + \lambda I\right)^{-1}$ naive recomputation comes at a cost of $O(NM^2)$

new coeff's: $\widehat{\alpha}_{new} = \lambda^{-1}(y, y') - \lambda^{-1}K_{X,Y|Z} \cdot B' \cdot K_{X,Y|Z}^{\top} \cdot (y, y')$ where $K_{X,Y|Z} = \begin{bmatrix} K_{X|Z} \\ K_{Y|Z} \end{bmatrix}$ and where $B' = \left(K_{X,Y|Z}^{\top}K_{X,Y|Z} + \lambda I\right)^{-1} = \left(K_{X|Z}^{\top}K_{X|Z} + K_{Y|Z}^{\top}K_{Y|Z} + \lambda I\right)^{-1}$

SMW-formula yields $B' = B - BK_{Y|Z}^{\top}(I + K_{Y|Z} \cdot B \cdot K_{Y|Z}^{\top})^{-1}K_{Y|Z}B$

so B-matrix and $\widehat{\alpha}$ can be updated at time cost of $O(NM\ell)$

Similar updates can be derived for posterior variance and Z

Note that repeated updating may lead to cumulative time cost of $O(N^2M)$

The (kernel) Hebbian algorithm

or Sanger's rule (1989) (for neural networks)

Goal: Given data matrix $X \in \mathbb{R}^{N \times n}$, whose rows are presented at times $t = 1, 2, \ldots$ as an n-variate time series x(t) compute eigenvectors of $X^{\top}X = \text{Cov}(X, X)$

Idea (Sanger): sequential update with candidate matrix $W(t) \in \mathbb{R}^{r \times n}$ (rows=eigenvectors)

$$W(t+1) = W(t) + \gamma(t) \left(y(t) x(t)^\top - \mathsf{LT} \left[y(t) y(t)^\top \right] W(t) \right) \quad \text{where} \ \ y(t) = W(t) x(t)$$

$$\gamma(t) \text{ is "learning rate"} \quad \text{LT sets everyting above diagonal to zero}$$

Sanger's rule combines gradient descent (Oja's rule) and Gram-Schmidt **Theorem** (Oja, Sanger, 1982/1989): converges under very mild conditions

Kernelization: compute eigenvectors of $K = XX^{\top}$

by a search in the feature span of the data: $W(t) = A(t)X^{ op}$ (compare representer thm)

$$A(t+1)X^{\top} = A(t)X^{\top} + \gamma(t)\left(y(t)x(t)^{\top} - \mathsf{LT}\left[y(t)y(t)^{\top}\right]A(t)X^{\top}\right)$$

If the columns of X are linearly independent, then right multiplication with X^{\top} is injective, so

$$A(t+1) = A(t) + \gamma(t) \left(y(t) e_{i(t)}^{\top} - \mathsf{LT} \left[y(t) y(t)^{\top} \right] A(t) \right)$$

where $e_{i(t)}$ denotes the standard unit vector selecting $\boldsymbol{x}(t)$

Theorem (Kim et al, 2003): converges under very mild conditions Günter et al, 2007: even faster (empirically) for a good $\gamma(t)$

O(Nr) per iteration

Stochastic gradient descent on regularized risk

Setting: Given sequential data $x(t) \in \mathbb{R}^n$, labels $y(t) \in \mathbb{R}$ Learn predictor/classifier f such that $f(x(t)) \approx y(t)$

Idea (various): sequential update of candidate predictor f_t

$$f_{t+1} = f_t - \gamma(t) \cdot \frac{\partial}{\partial f} R_{reg,t}(f)|_{f=f_t} = f_t - \gamma(t) \cdot \frac{\partial}{\partial f} \ell(f, x(t), y(t)) + \frac{\lambda}{2} ||f||^2|_{f=f_t}$$

$$\gamma(t) \text{ is "learning rate"} \qquad \ell \text{ is some loss, e.g. } \ell = (y(t) - f_t(x(t)))^2$$

by representer theorem, current minimizer $f_t(.) = \sum_{\tau=1}^t \alpha_\tau k(x(\tau),.)$

so
$$f_{t+1} = (1 - \gamma(t)\lambda) \cdot f_t - \gamma(t) \cdot \ell'(f_t(x(t)), y(t)) \cdot k(x(t), .)$$

Observation: f_t is "phased out" in f_{t+m} by factor $(1 - \gamma(t)\lambda)^m$

(so $\gamma(t)$ is rather the "forgetting rate")

Theorem (Kivinen et al, 2004):

Let N be any number of seen data, let g be any function (in the RKHS)

then
$$\sum_{t=1}^{N} R_{reg,t}(f_t) \leq \left(\sum_{t=1}^{N} R_{reg,t}(g)\right) + a\sqrt{N} + b$$

where a, b are constants depending only on λ, γ, k, ℓ

And there is much more...

... but not in kernlab

Some methods are implemented in scikit, Shogun, LibSVM, etc

Next week: ?

String kernels: combinatorial kernels for text mining, document classification and genome analysis	10 %	3
Graph kernels: combinatorial kernels on graphs and between graphs for learning molecules, or biological and social networks	7 %	2
Kernel quantile regression: predicting the median and other quantiles in non-linear distributional data, e.g. population analysis	3 %	1
Kernel CCA: finding highly correlating non-linear features in high-dimensional data, e.g. time series	13%	4
Kernel k-means: non-linear clustering with kernels	10 %	3
More on novelty and outlier detection with kernels		2
Vapnik-Chervonenkis learning theory; the VC inequality and the main ideas behind its proof	10 %	3
Cross-validation techniques in general and for kernels in particular	10 %	3