Cours Méthodes Numériques

Dr. Safia RASLAIN Centre Universitaire Abd elhafid boussouf-Mila

Institut des Sciences et de Technologie

Département EM-GM

Email: s.raslain@centre-univ-mila.dz

1.0 Mars 2024

Cours Méthodes Numériques

Dr. Safia RASLAIN

Table des matières

I - Chapitre 1 : Méthodes de résolution des équations non linéaires	
1. Introduction	4
2. Objectifs	4
3. Les méthodes utilisées	5
3.1. Méthode de la bissection (dichotomie)	5
3.2. Méthode du point fixe (approximations successives)	6
3.3. Méthode de Newton-Raphson	7
Bibliographie	9

I Chapitre 1 : Méthodes de résolution des équations non linéaires

1. Introduction

Dans la pratique, la plupart des problèmes se ramenant à la résolution d'une équation de la forme f(x)=0 La résolution de cette équation dépend de la classe à laquelle appartient la fonction f(f) est un polynôme de degré $n\geq 3$ ou l'expression f est complexe). Les méthodes classiques de résolution ne permettent pas de résoudre de tels problèmes, on fait donc appel aux techniques des méthodes numériques. Les méthodes proposées sont : la méthode de la bissection, approximations successives et de Newton-Raphson.

2. Objectifs

Ce chapitre vise à :

- Identifier les différentes méthodes numériques pour résoudre les équations non linéaires, telles que la méthode de Newton-Raphson, la méthode de la bissection et la méthode du point fixe.
- Expliquer les principes sous-jacents de chaque méthode et les conditions de convergence.
- Résoudre des équations non linéaires simples à l'aide des méthodes apprises.
- Comparer les méthodes en termes de vitesse de convergence et de précision.
- Proposer une stratégie pour choisir la méthode la plus appropriée selon les spécificités du problème.
- Évaluer l'efficacité des solutions obtenues et justifier le choix des méthodes utilisées.

3. Les méthodes utilisées

3.1. Méthode de la bissection (dichotomie)

a) Introduction

Le but de cette méthode est de construire une suite d'intervalle de plus en plus petites contenants une racine séparée de f(x) = 0.

b) Principe de la méthode

La méthode de dichotomie est basée sur le théorème de la valeur intermédiaire Soit f(x)=0 , aune racines séparée de f(x) dans [a,b] .

1- On pose $[a,b]=[a_0,b_0]$, on divise $[a_0,b_0]$ en deux on obtient $c_0=rac{a_0+b_0}{2}$

et ainsi de suite on construit la suite d'intervalles $I_n=[c_n,b_n]$ et donc $c_n=rac{a_n+b_n}{2}$ Si $f(a_n)f(c_n)$ <0 Alors $I_{n+1}=[a_n,b_n]$ Si non $I_{n+1}=[c_n,b_n]$

2- On prend comme approximation de α la valeur c_n en utilisant n itérations. Plus loin, on verra comment déterminer le nombre d'itération nécessairen en se donnant une erreur d'approximation ϵ telle que $|c_n-\alpha|\leq \epsilon$

c) Test d'arrêt

 $b_{n+1}-a_{n+1}=\frac{b_n-a_n}{2}=\frac{b_0-a_0}{2^{n+1}} \text{ D'où } \text{ a est racine de } f(x)=0 \text{ donc } c_n-\alpha \leq \frac{b_0-a_0}{2^{n+1}} \text{ Si on d\'esire de calculer le nombre d'itération suffisante } n \text{ pour approcher } \alpha \text{ à } \epsilon \text{ , on proc\`ede comme suit } : c_n-\alpha \leq \frac{b_0-a_0}{2^{n+1}} \leq \epsilon \to n \geq \frac{\ln\left(\frac{b_0-a_0}{2\epsilon}\right)}{\ln 2} \text{ Il suffit de prendre } n=\frac{\ln\left(\frac{b_0-a_0}{2\epsilon}\right)}{\ln 2}+1$

d) Exercice

Soit la fonction f(x)=x-0.2sin(x)-0.5 Calculer la valeur approchée par la méthode de bissection avec $\epsilon=0,5.10^{-1}$ dans[0,2].

e) Solution

d'itérations nombre suffisants $n \geq rac{ln\left(rac{b_0 - a_0}{2arepsilon}
ight)}{ln2} o n \geq rac{ln\left(rac{2 - 0}{2.0, 5.10^{-1}}
ight)}{ln2} o n \geq 4, 32 o n = 5$ c_n $f(a_n)$ $f(c_n)$ n 0 2 1 0 0.5 2 0.5 1 0.75 3 0.5 0.75 0.625 4 0.5 0.625 0.5625 5 0.5625 0.625 0.5938

3.2. Méthode du point fixe (approximations successives)

a) Introduction

Soit g une fonction définie et continue sur un intervalle [a,b], le point qui vérifie x=g(x) est dit point fixe de la fonction g avec $x\in [a,b]$

b) Principe de la méthode

Le principe de cette méthode consiste à transformer l'équation f(x)=0 sous la forme x=g(x), pour chercher le point fixe x de la fonction g(x) on crée la suite : $x_{n+1}=g(x_n)(n=1,2,3,\ldots)$, avec une valeur initiale x_0 donnée La Méthode des approximations successives utilise une procédure itérative simple On démarre de x_0 , on calcule $x_1=g(x_0)$ ensuite $x_2=g(x_1)\ldots x_{n+1}=g(x_n)$ Le problème principal est de savoir si la suite des mesures x_1,x_2,\ldots,x_{n+1} converge vers la solution x de g(x)

D Exemple:

Écrire l'équation f(x)=0 sous la forme x=g(x) si $f(x)=lnx-x^2+2$ On peut écrire

$$x = g_1(x) = lnx - x^2 + 2 + x$$

$$x = g_2(x) = e^{x^2 - 2}$$

$$x = g_3(x) = \sqrt{lnx + 2}$$

Pour pouvoir choisir la forme de g adéquate pour le calcul, un critère de convergence de cette méthode doit être vérifié.

c) Critère de convergence

Soit g une fonction dérivable définie sur l'intervalle[a,b] tel que $|\grave{g}(x)| \leq k < 1 \forall x \in [a,b]$ Le processus itératif $x_{n+1} = g(x_n) (n=1,2,\dots)$ converge indépendamment de la valeur de x_0 vers l'unique point fixe x de g(x). Si plusieurs formes de g vérifient cette condition, on aura plusieurs valeurs de x_0 . On choisit celle avec la valeur minimale de x_0 .

En pratique, la valeur de k est : $k = max_{x \in [a,b]} |\dot{g}(x)|$

d) Test d'arrêt

On peut arrêter les calcules lorsque la différence absolue entre deux itérations successives est inférieure à une certaine précision ϵ donnée.

$$|x_{n+1}-x_n|< \varepsilon$$

e) Exercice

trouver la première racine de l'équation $f(x)=x^2+3e^x-12$ qui appartient à [1,2] avec une précision arepsilon=0,01

f) Solution

On écrit cette fonction sous la forme x=g(x) . On peut écrire :

$$x = g_1(x) = x^2 + 3e^x - 12 + x$$

$$x = g_2(x) = \sqrt{12 - 3e^x}$$

$$x=g_3(x)=lnrac{12-x^2}{3}$$

Vérifions la condition de convergence pour la fonction $g_3(x)$

$$k = max_{x \in [a,b]} |\grave{g}(x)|$$

$$k_3 = max_{x \in [1,2]} |\hat{g}_3(x)| = max_{x \in [1,2]} ig|_{rac{-2x}{12-x^2}} ig|$$

On a

$$\hat{g}_3(1) = -0.181$$

$$\hat{g}_3(2)=-0.5$$
 Donc

 $k_3 = max_{x \in [1,2]} |\hat{g}_3(x)| = 0.5 < 1$, cette forme converge.

Donc on écrit :
$$x_{n+1}=g_3(x_n)=lnrac{12-x^2}{3}(n=1,2\dots)$$

La valeur initiale $x_0 = 1.5$ (le milieu de l'intervalle donné)

n	x_i	$ x_{n+1}-x_n $
0	1.179	0.321
1	1.263	0.084
2	1.244	0.019
3	1.248	0.009

$$|x_4 - x_3| = 0.009 < 0.01$$
, la solution est $x_4 = 1.248$

Pour voir la vidéo cliquer ici¹

3.3. Méthode de Newton-Raphson

a) Introduction

La méthode de Newton est utilisée pour résoudre l'équation f(x)=0 sous les contions de convergence suivantes :

1-
$$f(a)f(b) < 0$$

2- La fonction f est deux fois dérivable, $f^{\prime}(x)$ et $f^{\prime\prime}(x)$

3- Si x_0 est une solution de départ $:f(x_0)f''(x_0)>0$

b) Procédure de calcul

D'après l'équation de la tangente à la courbe de f au point $(x_0,f(x_0))$ donnée par $y=f'(x_0)(x-x_0)+f(x_0)$ Dans

la figure 1 on prend $x_0=b$. le point x_1 constitue une première approximation de lpha alors:

$$x_k = x_{k-1} - rac{f(x_{k-1})}{f'(x_{k-1})}, k = 1, \dots n$$

Figure 2: Convergence et divergence

® Remarque :

On constate que le choix de la condition initial x_0 peut influencer sur la convergence de la méthode

Bibliographie

K. MEBARKI , Analyse Numérique, Cours, 2éme année licence mathématiques , Université Abderrahmane Mira de Béjaia.

A. Boutayeb, M. Derouich, M. Lamlili et W. Boutayeb, Analyse Numérique: SMA-SMI S4.

P. GOATIN, Analyse Numérique, Université du Sud Toulon-Var ISITV - 1ère année.

Dr BOUSSOUFI Mustapha , Méthodes Numériques , Université des sciences et de technologie MOHAMED BOUDIAF D'oran - Conforme au programme de la 2eme année licence.