Simple Linear Model

1. Motivation

▶ Given the data

x	y
1	1.1
2	1.8
3	2.7
4	4.5

Scatter plot

Which line is closer to the points?

Linear Model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- Model Assumptions
 - (A1) The response variable y_i is a random variable and the predictor x_i is non-random

Parameters Estimation

The best fitted line

► The least squared methods give us the formula for the closest line or the best fitted line:

$$y = \hat{\beta_1} x + \hat{\beta_0}$$

 \blacktriangleright The estimated parameters $\hat{\beta}_0$ and $\hat{\beta}_1$ are

$$\begin{split} \hat{\beta_1} &= \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \\ &= \frac{\sum_{i=1}^n x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 - n \bar{x}} = \frac{S_{xy}}{S_{xx}} \\ \hat{\beta_0} &= \bar{y} - \hat{\beta_1} \bar{x} \end{split}$$

Example: Calculate from Data

x	y
1	1.1
2	1.8
3	2.7
4	4.5
_	

$$\bar{x} = \frac{1+2+3+4}{4} = 2.5$$

$$\bar{y} = \frac{1.1+1.8+2.4+4.5}{4} = 2.525$$

 $\hat{\beta}_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2} = 1.11$ $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1\bar{x} = -0.25$

Best fitted line

Example: Calculate from Sumations

The regression model is $y = \beta_0 + \beta_1 x + \epsilon$. There are six observations. The summary statistics are

$$\begin{split} \sum y_i &= 42, \\ \sum x_i &= 21, \\ \sum x_i^2 &= 91, \\ \sum x_i y_i &= 187, \\ \sum y_i^2 &= 390 \end{split}$$

Calculate the least squares estimate of β_1 .

Example: Calculate from Sumations

The regression model is $y=\beta_0+\beta_1x+\epsilon$. There are five observations. The summary statistics are

$$\begin{split} \sum y_i &= 30, \\ \sum x_i &= 15, \\ \sum (x_i - \bar{x})(y_i - \bar{y}) &= 25, \\ \sum (x_i - \bar{x})^2 &= 10, \\ \sum (y_i - \bar{y})^2 &= 64, \end{split}$$

Write the equation of the best fitted line using the least squares method.

Goodness of Fit

Coefficient of Determination

Residual SS =
$$(7,-9)^2 + (7,-9)^2 + \cdots$$

Residual SS = $(7,-9)^2 + (7,-9)^2 + \cdots$

▶ Baseline model:

$$y = \beta_0 + \epsilon$$

- lacktriangle In this model, y_i is estimated by one number, \bar{y}
- Linear Model:

$$y=\beta_0+\beta_1x+\epsilon$$

 \blacktriangleright In this model, y_i is estimated by

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$
 Residual SS $= \left(\exists_1 - \hat{\exists}_1 \right)^2 + \left(\exists_2 - \hat{\exists}_2 \right)^2 + \cdots$

$$\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2} + 2 \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})(\hat{y}_{i} - \bar{y})$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}.$$

$$||\hat{y}|| \leq \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}.$$

$$||\hat{y}|| \leq \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}.$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
(Reg SS)

Coefficient of Determination

$$R^2 = 1 - \frac{RSS}{TSS} = \frac{\text{ress}}{\text{ress}}$$

 $ightharpoonup R^2$ runs from 0 to 1. The larger R^2 , the better the model

Perfect fit when:
$$2SS = 0 \Rightarrow \text{perfect fit}$$

$$2SS = 1SS \Rightarrow \text{as spod as } \text{fit}$$

$$2SS = 1SS \Rightarrow \text{as spod as } \text{fit}$$

Example

You are given the following results from a regression model.

		14
Observation number (i	y_i	$\hat{f}(x_i)$
1	1	1
2	2	3
3	3	7
4	5	9
5	9	10
	KSS	

Calculate the sum of squared errors (SSE), the total sum squares (TSS), and the regression sum squares, and the \mathbb{R}^2 of the model.

Observation number (i)
$$y_i$$
 $\hat{f}(x_i)$ $(\forall_i - \forall_i)^2$ $(\forall_$

$$RSS = SSE = 34$$

 $1SS = 40$
 $Reg SS = 40 - 34 = 865$

For a simple linear regression model the total sum of squares (TSS) is 150 and the \mathbb{R}^2 statistic is 0.7. Calculate the sum of squares of the residuals for this model.

TSS =
$$10^{\circ}$$
 10°
 10°

F-test

i.i.d model (Baseline Model)

$$\forall y = \beta_0 + \epsilon$$

▶ SLR model

$$H_0: \beta_1 = 0$$

vs.

$$F = \frac{\text{Reg SS/1}}{\text{RSS/}(n-2)}$$

- The smaller p-value (the larger F-statistics) supports ${\cal H}_1$
- Small p-value ($\leq .05$): We reject H_0 . The linear model is a significant improvement over the baseline model.
- Large p-value (> .05): Fail to reject H_0

Example

Two actuaries are analyzing car accident claims for a group of n = 52 participants. The predictor x is driving experience (years).

Actuary 1 uses the following regression model:

$$Y = \beta + \epsilon$$

Actuary 2 uses the following regression model:

$$Y = \beta_0 + \beta_1 \times x + \epsilon$$

The residual sum of squares for the regression of Actuary 2 is 120 and the total sum of squares is 150.

Calculate the F-statistic to test whether the model of Actuary 2 is a significant improvement over the model of Actuary 1.

t-test

and

 $lackbox{ }$ We use t-test to test the value of $\underline{eta_1}$ and $\underline{eta_0}$

$$t(\hat{eta}_j) = rac{\hat{eta}_j - d}{\mathrm{SE}(\hat{eta}_j)}, \quad j = 0,1,$$
 $\mathrm{SE}(\hat{eta}_j) = \sqrt{s^2 \left(rac{1}{n} + rac{ar{x}^2}{S_{xx}}
ight)} = \sqrt{rac{s^2 \sum_{i=1}^n x_i^2}{nS_{xx}}}$
 $\mathrm{SE}(\hat{eta}_1) = \sqrt{rac{s^2}{S_{xx}}}.$
 $H_{\epsilon}: \beta_1 = d$
 $H_{$

Example

The results of fitting five observations by the regression model, $y=\beta_0+\beta_1x+\epsilon$, are given below.

			4	C	
	Estimate	Std. Error	t value	Pr(> t)	186 = 8
Intercept	-1.5	0.7416	-2.023	0.13631 0.00153	d
X	2.5	0.2236	11.180 (0.00153	G 2 0
-					PI

Determine the test results of the hypothesis $H_0:\beta_1=0$ against $H_\alpha:\beta_1\neq 0.$ $\rho=0.00153 \quad (0.05\Rightarrow) \quad \text{fixed the substituted of the hypothesis } H_0:\beta_1=0.$