

CÁTEDRA: "SIMULACIÓN"

Docentes:

Ing. Carlos Vecchi

Ing. Dominga Concepción Aquino

Auxiliar Gabriela Dos Santos

Auxiliar Simón Leonardo Figueroa

NÚMEROS PSEUDOALEATORIOS

- Generación de números pseudoaleatorios
- Pruebas estadísticas para los números pseudoaleatorios

- Algoritmo de cuadrados medios
- Algoritmo de productos medios
- Algoritmo de multiplicador constante
- Algoritmo lineal
- Algoritmo congruencial multiplicativo

Algoritmo de cuadrados medios

- 1) Seleccionar una semilla (X_0) con D dígitos (D>3).
- 2) Sea $Y_0 = (X_0)^2$; sea $X_1 = D$ dígitos del centro; y sea $r_1 = 0.D$ dígitos del centro.
- 3) Sea $Y_i = (X_i)^2$; sea $X_{i+1} = D$ dígitos del centro; y sea $r_{i+1} = 0.D$ dígitos del centro para toda i = 1, 2, ..., n
- 4) Repetir el paso 3 hasta obtener los $\bf n$ números $\bf r_i$ deseados.

Nota: Si no es posible obtener los D dígitos del centro del número Y_i, agregue ceros a la izquierda del número Y_i.

 El algoritmo de cuadrados medios generalmente es incapaz de generar una secuencia de r_i con período de vida n grande.
 Además, en ocasiones sólo es capaz de generar un número.

Por ejemplo:

Si $X_0 = 1000$, entonces $X_1 = 0000$; $r_i = 0,0000$ Se dice que el algoritmo se degenera con la semilla de $X_0 = 1000$.

Ejercicio: Generar los primeros **5** números r_i a partir de una semilla $X_0 = 5015$, de donde se puede observar que D = 4 dígitos.

Tomo los 4 dígitos del centro

Se agrega un 0 (cero) a la izquierda de Y_i para obtener los 4 dígitos del centro

$$Y_0 = (X_0)^2 = (5015)^2 = 25150225$$
 $X_1 = 1502$ $r_1 = 0,1502$ $Y_1 = (X_1)^2 = (1502)^2 = 2256004 = 02256004$ $X_2 = 2560$ $r_2 = 0,2560$ $Y_2 = (X_2)^2 = (2560)^2 = 6553600 = 06553600$ $X_3 = 5536$ $r_3 = 0,5536$ $Y_3 = (X_3)^2 = (5536)^2 = 30647296$ $X_4 = 6472$ $r_4 = 0,6472$ $Y_4 = (X_4)^2 = (6472)^2 = 41886784$ $X_5 = 8867$ $r_5 = 0,8867$

Algoritmo de productos medios

- 1) Seleccionar una semilla (X_0) con D dígitos (D>3).
- 2) Seleccionar una semilla (X_1) con D dígitos (D>3).
- 3) Sea $Y_0 = X_0 * X_1$; sea $X_2 = D$ dígitos del centro; y sea $r_1 = 0.D$ dígitos del centro.
- 4) Sea $Y_i = X_i^* X_{i+1}$; sea $X_{i+2} = D$ dígitos del centro; y sea $r_{i+1} = 0.D$ dígitos del centro para toda i = 1, 2, ..., n.
- 5) Repetir el paso 4 hasta obtener los ${\bf n}$ números ${\bf r}_{\rm i}$ deseados.

Nota: Si no es posible obtener los D dígitos del centro del número Y_i, agregue ceros a la izquierda del número Y_i.

Ejercicio: Generar los primeros 5 números r_i a partir de las semillas $X_0 = 5115$ y $X_1 = 5736$; observe que ambas semillas tienen D = 4 dígitos.

Tomo los 4 dígitos del centro

$$Y_0 = (X_0)^*(X_1) = (5115)^*(5736) = 29339640$$
 $X_2 = 3396$ $r_1 = 0,3396$ $Y_1 = (X_1)^*(X_2) = (5736)^*(3396) = 19479456$ $X_3 = 4794$ $r_2 = 0,4794$ $Y_2 = (X_2)^*(X_3) = (3396)^*(4794) = 16280424$ $X_4 = 2804$ $r_3 = 0,2804$ $Y_3 = (X_3)^*(X_4) = (4794)^*(2804) = 13442376$ $X_5 = 4423$ $x_4 = 0,4423$ $x_5 = 0,4020$

Algoritmo de multiplicador constante

- 1) Seleccionar una semilla (X_0) con D dígitos (D>3).
- 2) Seleccionar una constante (a) con D dígitos (D>3).
- 3) Sea $Y_0 = a^*X_0$; sea $X_1 = D$ dígitos del centro; y sea $r_1 = 0.D$ dígitos del centro.
- 4) Sea $Y_i = a^*X_i$; sea $X_{i+1} = D$ dígitos del centro; y sea $r_{i+1} = 0.D$ dígitos del centro para toda i = 1, 2, ..., n.
- 5) Repetir el paso 4 hasta obtener los ${\bf n}$ números ${\bf r}_{\rm i}$ deseados.

Nota: Si no es posible obtener los D dígitos del centro del número Y_i, agregue ceros a la izquierda del número Y_i.

Ejercicio: Generar los primeros **5** números r_i a partir de la semilla X_0 =**5115** y con la constante **a=3624**. Observe que tanto la semilla como la constante tienen D = 4 dígitos.

$$Y_0 = (X_0)^*a = (5115)^*(3624) = 18536760$$
 $X_1 = 5367$ $r_1 = 0,5367$ $Y_1 = (X_1)^*a = (5367)^*(3624) = 19450008$ $X_2 = 4500$ $r_2 = 0,4500$ $Y_2 = (X_2)^*a = (4500)^*(3624) = 16308000$ $X_3 = 3080$ $r_3 = 0,3080$ $Y_3 = (X_3)^*a = (3080)^*(3624) = 11161920$ $X_4 = 1619$ $x_4 = 0,1619$ $x_5 = 0,8672$

Algoritmo lineal

Genera una secuencia de números enteros S={0,1,2,...,m-1} por medio de la siguiente ecuación recursiva:

$$X_{i+1} = (a^* X_i + c) \mod (m)$$

$$i = 0, 1, 2, ..., n$$

donde:

X₀ es la semilla; X₀ > 0
a es la constante multiplicativa; a > 0
c es una constante aditiva; c > 0
m es el módulo; m > 0

deben ser números enteros

Para obtener números pseudoaleatorios en el intervalo (0,1) se requiere la siguiente ecuación:

Condiciones que los parámetros deben cumplir para alcanzar el máximo período de vida **n**:

$$m = 29$$

$$a = 1 + 4 k$$

k debe ser entero

c relativamente primo a **m**

g debe ser entero

Bajo estas condiciones se obtiene un período de vida máximo:

$$N = m = 29$$

<u>Conclusión</u>: si no se cumple alguna de las condiciones, el período de vida máximo **N = m** no se garantiza, por lo que el período de vida será menor que **m**.

Ejercicio Nº 1: Generar 4 números entre 0 y 1 con los siguientes

parámetros:

$$X_0 = 37$$

$$a = 19$$

$$c = 33$$

$$m = 100$$

Nota: Se dice que dos números son relativamente primos si su factor común más grande es 1.

Los factores de **33** son: 1; 3; 11; 33

Los factores de **100** son: 1; 2; 4; 5; 10; 20; 25; 50

El único factor común es 1.

Por lo tanto 33 y 100 son relativamente primos.

Ejercicio N° 2: Generar suficientes números entre 0 y 1 con los parámetros $X_0 = 6$, k = 3, g = 3 y c = 7, hasta encontrar el período de vida máximo (N).

Ejercicio N° 3: Consideremos nuevamente el ejercicio anterior, pero tratemos de violar arbitrariamente alguna de las condiciones.

Supongamos que \mathbf{a} = 12; se sabe que \mathbf{a} no es el resultado de 1 + 4*k, donde \mathbf{k} es un entero. Veamos el comportamiento del algoritmo congruencial lineal ante tal cambio.

Algoritmo congruencial multiplicativo

Surge del algoritmo congruencial lineal cuando $\underline{c} = \underline{0}$. Entonces la ecuación recursiva es:

$$X_{i+1} = (a^* X_i) \mod (m)$$

$$i = 0, 1, 2, ..., n$$

donde:

 X_0 es la semilla; $X_0 > 0$ e impar **a** es la constante multiplicativa; **a** > 0 **m** es el módulo; **m** > 0 deben ser números enteros

Para obtener números pseudoaleatorios en el intervalo (0,1) se requiere la siguiente ecuación:

$$r_i = \frac{X_i}{m-1}$$
 $i = 1, 2, ..., r$

Condiciones que los parámetros deben cumplir para alcanzar el máximo período de vida **N**:

$$m = 2^g$$

 $a = 3+8*k$ ó $a = 5+8*k$
 $\mathbf{k} = 0,1,2,3,...$ debe ser entero
 X_0 debe ser un número impar
 \mathbf{g} debe ser entero

A partir de estas condiciones se logra un período de vida máximo:

$$N = m/4 = 2^{g-2}$$

<u>Nota</u>: Toda vez que la semilla X_0 se repite, volverán a generarse los mismos números.

Ejercicio Nº 1: Generar suficientes números entre 0 y 1 con los siguientes parámetros:

 $X_0 = 17$, k = 2 y g = 5, hasta encontrar el período o ciclo de vida.

Nota: Para calcular **a** utilice la siguiente ecuación: a = 5+8*k

Ejercicio Nº 2: Consideremos nuevamente el ejercicio anterior, pero tratemos de violar arbitrariamente la condición de que la semilla sea un número impar. Supongamos que $X_0 = 12$.

Veamos el comportamiento del algoritmo congruencial multiplicativo ante tal cambio.