FONDAMENTI DI INFORMATICA

Prof. PIER LUCA MONTESSORO Università degli Studi di Udine

Architettura e funzionamento del calcolatore

Modello di calcolatore

- Si farà uso di un modello semplificato di elaboratore di tipo RISC (Reduced Instruction Set Computer)
- Per esso vengono nel seguito definiti:
 - architettura
 - linguaggio macchina/linguaggio assembly

Architettura del processore

Caratteristiche del processore

- Parallelismo: 16 bit
- 16 registri general purpose da 16 bit
- 3 registri special purpose non direttamente indirizzabili dalle istruzioni

```
Program Counter (PC)
Instruction Register (IR)
Stack Pointer (SP)
```

flag:

Z (zero) N (negative)
C (carry: Cn) V (overflow: Cn-1 ⊕ Cn)

Caratteristiche del processore

- Isolated I/O: 16 bit per gli indirizzi di I/O
- Macchina "load & store":
 - le uniche istruzioni che possono accedere alla memoria sono quelle che trasferiscono i dati da e verso i registri
 - tutte le altre operazioni operano soltanto sui registri
- Nell'accesso alla memoria l'indirizzo può essere espresso in tre modi ("modi di indirizzamento")

Modi di indirizzamento

- Operando immediato
 - la parola che segue l'istruzione contiene il dato (e quindi l'indirizzo del dato è contenuto nel PC)
- Indirizzo assoluto
 - la parola che segue l'istruzione (indirizzo nel PC) contiene l'indirizzo del dato
- Indirizzo in registro
 - l'indirizzo del dato è contenuto nel registro specificato dal codice dell'istruzione

Unità di controllo

Unità aritmetico-logica

control signals circuits and data registers

control to control unit

flags

Il control bus

 R/\overline{W}

La CU lo pone a 1 per le operazioni di lettura, a 0 per le operazioni di scrittura

M/IO

La CU lo pone a 1 per le operazioni di lettura o scrittura in memoria, a 0 per le operazioni di lettura o scrittura su dispositivi di input/output

W/B

La CU lo pone a 1 per le operazioni di lettura/scrittura di 1 word, a 0 per le operazioni di lettura/scrittura di 1 byte

Memoria RAM

Dispositivi di I/O

Indirizzo del monitor 0000

Indirizzo della tastiera 0001

Instruction fetch (I)

Instruction fetch (II)

Operand fetch - op. immediato (I)

Operand fetch - op. immediato (II)

Operand fetch - ind. assoluto (I)

Operand fetch - ind. assoluto (II)

Operand fetch - ind. assoluto (III)

Operand fetch - ind. in registro (I)

Operand fetch - ind. in registro (II)

Memory store - ind. assoluto (I)

Memory store - ind. assoluto (II)

Memory store - ind. assoluto (III)

Memory store - ind. in registro (I)

Memory store - ind. in registro (II)

