Senior Project UAV Quadcopter Spring 2021

California State
Polytechnic University,
Pomona

Chad Ryan, Kory Shopp, Peter Tiet, Liam Yeargin

Overview:

- 1. Raspberry Pi "RPi"
- 2. Python Programming
- 3. Power
- 4. ESCs, DC Brushless Motors, & PWM
- 5. MPU6050 Gyro/Accel/Temp Sensor
- 6. Printed Circuit Board "DPIE" Digital Power Interface Electronics
- 7. Tests and Results

GitHub used for Documentation

https://github.com/ryanchad22/UAV Quad

Raspberry Pi (RPi)

- -Setup guide was created for initializing a new Raspberry Pi along with all necessary equipment to control the terminal via SSH.
- -Some research was done on how to program in Python, especially with how to program the GPIO's of the RPi.
- -Two tests have been completed using PWM generated from the RPi inputting into the ESC (Electronic Speed Controller). Both tests have validated successful PWM behavior from the RPi.

Raspberry Pi Programming

```
GNU nano 3.2
                                5V pwm
#PWM ramping up with computer control via console input
import RPi.GPIO as GPIO
import time
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(37, GPIO.OUT)
pwm = GPIO.PWM(37, 590)
                                 #sets f to 590Hz, pin 37
dc = 0
                                #duty cycle inital value
pwm.start(dc)
while 1:
        a = int(input())
        print(a)
        if a > 5:
                dc = dc + 1
                pwm.ChangeDutyCycle(dc)
                print('duty cycle increased by 1%')
                print('Current duty cycle is ')
        if a < 5:
                dc = dc - 1
                pwm.ChangeDutyCycle(dc)
                print('duty cycle decreased by 1%')
                print('Current duty cycle is ')
                print(dc)
GPIO.cleanup()
                           Read 32 lines
```

```
duty cycle increased by 1%
Current duty cycle is
duty cycle decreased by 1%
Current duty cycle is
duty cycle increased by 1%
Current duty cycle is
duty cycle decreased by 1%
Current duty cycle is
duty cycle increased by 1%
Current duty cycle is
duty cycle decreased by 1%
Current duty cycle is
98
duty cycle increased by 1%
Current duty cycle is
duty cycle decreased by 1%
Current duty cycle is
^CTraceback (most recent call last):
 File "5V pwm", line 17, in <module>
    a = int(input())
KeyboardInterrupt
pi@chadpi1:~ $ sudo reboot
```

Purchasing Equipment

-After researching Batteries, ESC's, and Motors, we purchased the following equipment:

-Motor:

https://www.amazon.com/XUSUYUNCHUANG-Racing-Brushless-Helicopter-Accessories/dp/B08FZLG56D

-Battery:

https://www.amazon.com/gp/product/B087R1RQ3M/ref=ppx yo dt b asin title o01 s00?ie= UTF8&psc=1

-ESC:

https://www.getfpv.com/spedix-is30-2-4s-30a.html

- Raspberry Pi 4
- MPU6050
- ESC

Kory Shopp

Raspberry Pi 4

- Supports Python code
- Supporting code for ESC
- SSH
- Headless mode

MPU6050

- Accelerometer and Gyroscope
- Measure acceleration, velocity, orientation, and displacement
- Two main components
 - Accelerometer
 - Gyroscope
- Communicates using I2C protocol

ESC

- Electronic Speed Controllers
- Control/adjust speed of the motors
- Inside brushless motor
- MOSFETs inside ESC

Motor & Propellers

Motor

BR2216 Motor

• 810 kV Brushless DC motor

Specs:

• Height: 45 mm

• Width: 27.7 mm

• Weight: about 66 g

• Voltage: 7.4 V- 14.8V

Clockwise (Red) & Counterclockwise (Black)

Brushless DC Motor

Rotation

Current Waveform

Full motor rotation

BR2216 Motor

- Light and efficient
- Can be controlled continuously at maximum torque
- Motor controllability
- High durability

Most efficient for devices that run continuously

Placement of Motors

Motor Schematic

Datasheet

MOTOR PERFORMANCE DATA

MODEL	KV (rpm/V)	Voltage (V)	Prop	Load Current (A)	Pull (g)	Power (W)	Efficiency (g/W)	Lipo Cell	Weight (g)Approx
BR2216	810	11.1	1147	12. 9	832	143	5.8	2-4S	66
		14.8	1038	15. 6	1065	231	4.6		
	1400	11.1	9045	24. 2	1180	269	4.4		
		14.8	8060	36. 5	1350	540	2. 5		

Propellers

RAYCorp 10-inch quadcopters performance propellers

- 10 inch diameter
- 4.5 shaft diameter
- 2 blade Propellers
- Plastic Propellers
- Hybrid bullnose (HBN)

Clockwise (Red) and Counterclockwise (Black)

Size

• 10 inch diameter

Long Propellers

- Increased Thrust
- Better "grip" during hover
- Better movement control

Pitch

• 4.5 shaft diameter

Higher pitch propellor

- Increased thrust
- Better top end speed
- Efficient when drone is moving quickly

Blade configuration

2 blade Propellers

- Faster motor response
- Reduced power consumption
- More efficiency of each blades while maintaining balance

*Increasing propellor size is more efficient than increasing the number of blades

Material

Plastic Propellers

- Stiff
- Lightweight
- Durable

Shape

Hybrid bullnose (HBN)

- Most efficient shape
- Generates less thrust

Pulse Width Modulation (PWM)

Raspberry Pi PWM

import RPi.GPIO as GPIO

GPIO.setup(37, GPIO.OUT)
GPIO.setup(16, GPIO.OUT)
GPIO.setup(22, GPIO.OUT)
GPIO.setup(11, GPIO.OUT)

```
freq37 = 590  #motor 1, pin 37
freq16 = 590  #motor 2, pin 16
freq22 = 590  #motor 3, pin 22
freq23 = 590  #motor 4, pin 23
```

```
pwm37 = GPIO.PWM(37, freq37)
pwm16 = GPIO.PWM(16, freq16)
pwm22 = GPIO.PWM(22, freq22)
pwm11 = GPIO.PWM(11, freq23)
```

```
dc = 54
pwm37.start(dc)
pwm16.start(dc)
pwm22.start(dc)
pwm11.start(dc)
```

PWM Amplifier

PWM Amplifier Cont.

Voltage Regulator

Voltage Regulator Cont.

DPIE - Digital Power Interface Electronics + RPi 4

Workmanship

Final Assembly (without Battery)

Final Tests

Thank you for your time

Special thanks to Dr. Kang and the EE Department

- If you have any questions, please contact any of the members below
 - Chad RyanEmail: cpryan@cpp.edu
 - Kory ShoppEmail: kshopp@cpp.edu
 - Peter TietEmail: ptiet@cpp.edu
 - Liam YearginEmail: Inyeargin@cpp.edu

