

自动控实践A-7

脉宽调制(PWM)技术

复习

Power Loss: $\left(\frac{V_{dc}}{r + R_L}\right)^2 r$

Power Consumption: $\left(\frac{V_{dc}}{r+R_L}\right)^2 R_L$

复习

 Current Control Using Variable Resistor

 Current Control Using Switching Device

复习

线性功放	开关功放			
优点:	优点:			
电磁兼容性好;	效率高;			
电路简单,适于低成本简单应用。	适合于数字化控制			
电压电流纹波小	适合于大功率驱动应用			
缺点:	缺点:			
效率低,仅用于小功率场合	有可能产生电磁兼容性问题			

MIL-PRF-38534 CERTIFIED

M.S.KENNEDY CORP.

POWER 115

4707 Dey Road Liverpool, N.Y. 13088

(315) 701-6751

FEATURES:

- High Output Current 15A peak
- Ultra Low Thermal Resistance 0.43°C/W Typ.
- Excellent Linearity Class A/B Output
- Wide Supply Range ±10V to ±50V
- High Output Power Dissipation Capability
- · Output Short Circuit Protected
- User Programmable Current Limit
- · Isolated Case Allows Direct Heat Sinking
- Low Quiescent Current ± 22mA. Typ.
- Contact MSK for MIL-PRF-38534 Qualification Status

DESCRIPTION:

The MSK 115 is a High Power Operational Amplifier. Due to the extremely low thermal resistance from the transistor junctions to the case, the MSK 115 can dissipate extreme amounts of power at a case temperature of 125°C.

EQUIVALENT SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

c	3	1
Č	5	j
	Ċ	ö

$\pm V_{CC}$	Supply Voltage ±50V
lout	Output Current
V_{IN}	Differential Input Voltage ±37V
Tc	Case Operating Temperature Range
	(MSK 115B/E)55 °C to + 125 °C
	(MSK 115)40°C to +85°C

TsT	Storage Temperature Range65 °C to +150 °C
Tld	Lead Temperature Range
	(10 Seconds)
P_D	Power Dissipation See SOA Curve
T_J	Junction Temperature

TYPICAL APPLICATIONS

- Magnetic Deflection Circuit Driver
- Programmable Power Supplies
- Motor, Valve and Actuator Control
- Audio Amplifier

High Voltage Power Operational Amplifiers [1315]

FEATURES

- HIGH VOLTAGE 450V (±225V)
- HIGH SLEW RATE 1000V/µS
- HIGH OUTPUT CURRENT 200mA

APPLICATIONS

- HIGH VOLTAGE INSTRUMENTATION
- PIEZO TRANSDUCER EXCITATION
- PROGRAMMABLE POWER SUPPLIES UP TO 430V
- ELECTROSTATIC TRANSDUCERS & DEFLECTION

8-PIN TO-3 PACKAGE STYLE CE

EQUIVALENT SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

SUPPLY VOLTAGE, +V _s to -V _s	450V
OUTPUT CURRENT, continuous within SOA	200mA
POWER DISSIPATION, continuous @ T _c = 25°C ²	30W
INPUT VOLTAGE, differential	±25V
INPUT VOLTAGE, common mode	$\pm V_s$
TEMPERATURE, pin solder - 10s max	300°C
TEMPERATURE, junction ²	150°C
TEMPERATURE, storage	−65 to +150°C
OPERATING TEMPERATURE RANGE, case	-55 to +125°C

液压马达伺服阀的电流驱动

自习任务

电阻电感负载的开关过程(自学)

PWM 技术1

- 1。PWM驱动基本原理
- 2。H 桥与PWM信号
- 3。双极性PWM驱动
- 4。单极性PWM与受限PWM驱动
- 5。PWM驱动特性

> 基本原理

- 一 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时 ,其(响应)效果基本相同
- 冲量指窄脉冲的面积
- 效果基本相同,是指环节的输出响应波形基本相同
- 低频段非常接近,仅在高频段略有差异

> 面积等效原理的一个实例

下图电路输入为前一图所示的窄脉冲,a、b、c、d,相应的电流响应为:

· PWM信号产生的基本原理

用一系列等幅不等宽的脉冲来代替一个正弦半波

- 正弦半波N等分,可看成N个彼此相连的脉冲序列, 宽度相等,但幅值不等
- 用矩形脉冲代替,等幅,不等宽,中点重合,面积 (冲量) 相等
- 宽度(不等宽)按正弦规律变化
- 要改变等效输出正弦波<mark>幅值</mark>,按同一比例改变各脉 冲宽度即可

- PWM控制的思想源于通信技术,1964年德国A. Schonung和 H. stemmler首先提出把这项通讯技术应用到交流传动中, 从此为交流传动的推广应用开辟了新的局面。进入上世纪 80年代后,全控型器件的发展使得实现PWM控制变得十分 容易。
- PWM技术的应用十分广泛,它使电力电子装置的性能大大 提高,成为现代电力电子技术的代名词。

开关电路PWM驱动分析

- H 型桥式电路,四个晶体管和四个续流二极管。*A 、B*是电路的输出端。以直流电动机为负载进行原理分析。
- · 输入PWM信号,它的频率和周期就是开关频率和开关周期。

开关电路驱动原理

为了方便分析,假设:

- 忽略晶体管开关过程,只讨论其稳态阶段。
 但要分析晶体管开关时,电路中电压电流的瞬态与稳定响应。
- 2) 一个开关周期内电机转速及反电势为常值。
- 3) 电枢回路用电阻、电感和电势等效。
- 4) 电磁转矩平均值和负载转矩相平衡时,
- 是准稳定状态,电枢电流周期性变化。
 - 5) 电机默认为正向转动;
 - 6)电流A到B为正向。

输入控制信号: $u_{B1} = u_{B4} = -u_{B2} = -u_{B3}$

IGBT

输出电压:

$$U_{\text{av}} = \frac{1}{T} \int_{0}^{t_1} U_{\text{D}} dt - \frac{1}{T} \int_{t_1}^{T} U_{\text{D}} dt$$
$$= U_{\text{D}} \left(2 \frac{t_1}{T} - 1 \right)$$

由此可知,当 $t_1 > T/2$ 时,输出电压的平均值 U_{av} 为正。当 $t_1 < T/2$ 时,平均电压 U_{av} 为负。当 $t_1 = T/2$ 时, U_{av} 为零。根据平均电压 U_{av} 和反电势E的大小不同,电路的工作可分为两个状态四种情况。

1. 电动机状态 电流与电动势反向

$$i_{\rm a} > 0$$
 $U_{\rm av} > E$

1) 0<t<t₁ T₁、T₄ 饱和导通,T₂、T₃截止断开。

电流: $U_D \rightarrow T_1 \rightarrow A \rightarrow B \rightarrow T_4 \rightarrow \mathbb{1} \rightarrow U_D$

$$0 < t < t_1$$
 电流: $U_D \to T_1 \to A \to B \to T_4 \to \mathbb{1} \to U_D$

$$u_{AB} = R_{a}i_{a} + L_{a}\frac{di_{a}}{dt} + E = U_{D} \implies i_{a}(t) = \frac{U_{D} - E}{R_{a}} - (\frac{U_{D} - E}{R_{a}} - I_{0})e^{-\frac{R_{a}}{L_{a}}t}$$

$$i_{\rm a}(t) \uparrow: I_0 \rightarrow \frac{U_{\rm D} - E}{R_{\rm a}}$$

电源输出电能,电流增加,磁场能增加。 电能转化机械动能。

转速n正向,与Tem同向 Uav>E,电流从A到B (E电流从B到A, Ud电流从A到B)

电动机状态: $0 < t < t_1$

 $t_1 < t < T$ 只有 D_2 和 D_3 正常导通 $i_a > 0$ $U_{av} > E$

$$_{
m a} > 0$$
 $U_{
m av} >$

$$i_{a}:$$
地 \rightarrow \mathbf{D}_{2} \rightarrow A \rightarrow B \rightarrow \mathbf{D}_{3} \rightarrow U_{D} \rightarrow 地

 T_1 、 T_4 截止, $i_a(t)$ 减小。 $i_a:A\to B$

电动机状态: $t_1 < t < T$

$$U_{AB} = -U_{D}$$

电枢电感释放能量, 维持整个电流ia向右, Ia给Ud充电(Ud极性左-右+) 电源吸收电能。

满足: Tem=Kt*Ia Ea=Ke*n

$$t_1 < t < T$$

$$i_{a}:$$
地 \rightarrow D₂ \rightarrow A \rightarrow B \rightarrow D₃ \rightarrow U_D \rightarrow 地

$$u_{AB} = R_{a}i_{a} + L_{a}\frac{di_{a}}{dt} + E = -U_{D} \implies i_{a}(t) = -\frac{U_{D} + E}{R_{a}} + \left[\frac{U_{D} + E}{R_{a}} + I(t_{1})\right]e^{-\frac{R_{a}}{L_{a}}(t-t_{1})}$$

$$i_{\rm a}(t) \downarrow : I(t_1) \rightarrow -\frac{U_{\rm D} + E}{R_{\rm a}}$$

电源吸收电能,电流减小,磁场能减小。 转速n正向,与Tem同向 Ea给Ud充电,电流从A到B。

磁场能变成机械能与电能。

说明:

- (1) $t_1 < t < T$ 时段, $T_2 < T_3$ 基极正向偏压,但 $U_{CE} = -0.7V$,故不导通。
- (2) 若无 D_2 、 D_3 , T_1 、 T_4 截止时将被击穿。

电流与电势同向。

$$i_{\rm a} < 0$$
 $U_{\rm av} < E \quad B \rightarrow A$

1) $t_1 < t < T$ T_2 、 T_3 饱和导通, T_1 、 T_4 截止断开

$$i_{a}(t): U_{D} \to T_{3} \to B \to A \to T_{2} \to \mathbb{H}$$
 $U_{AB} = -U_{D}$

$$u_{AB} = R_{\rm a}i_{\rm a} + L_{\rm a}\frac{{
m d}i_{\rm a}}{{
m d}t} + E = -U_{\rm D} \Longrightarrow$$

$$i_{a}(t) = -\frac{U_{D} + E}{R_{a}} + \left[\frac{U_{D} + E}{R_{a}} + I(t_{1})\right]e^{-\frac{R_{a}}{L_{a}}(t-t_{1})}$$

$$|i_{\mathbf{a}}(t)| \uparrow: I(t_1) \rightarrow -\frac{U_{\mathbf{D}} + E}{R_{\mathbf{a}}}$$

电流增加,磁场能增加。

转速n正向,与Tem反向(制动)

Uav<E,且同向,电流从B到A

发电机制动状态,电能变成机械能。【?】

2)
$$0 < t < t_1 (T < t < T + t_1)$$
 $i_a : B \to A$

• T2、T3 截止,电流减小,只有 D_1 、 D_4 正常导通。

$$i_{a}(t): \mathbb{1} \to D_{4} \to B \to A \to D_{1} \to U_{D}$$

输出电压 $u_{AB} = U_{D}$

$$u_{AB} = R_{a}i_{a} + L_{a}\frac{di_{a}}{dt} + E = U_{D} \Rightarrow$$

$$i_{a}(t) = \frac{U_{D} - E}{R_{a}} - (\frac{U_{D} - E}{R_{a}} - I_{0})e^{-\frac{R_{a}}{L_{a}}t}$$

$$|i_{a}(t)| \downarrow : I_{0} \rightarrow \frac{U_{D} - E}{R_{a}}$$

电枢电感释放能量,磁场能减小,电流减小,电源吸收电能。

转速n正向,与Tem反向(制动)

Uav<E,电流从B到A(与E电流同向)

说明:

- (1) $0 < t < t_1$ ($T < t < T + t_1$), T_1 、 T_4 基极正向偏压,但 U_{CE} =-0.7V ,故不导通。
- (2) 若无 D_1 、 D_4 , T_2 、 T_3 截止时将被击穿。

3. 轻载状态

$$T_{\rm em} pprox 0, i_{\rm a}(t) pprox 0, I_{\rm av} pprox 0, U_{\rm av} pprox E_{\circ}$$

电流有正有负,上述两个状态 中的四种情况,在一个周期内交替 出现。

- ✓ 在一个开关周期中,输出电压Uav是方波,有正、负两个极性,电源交替地输出电能和吸收电能(但电动机状态以输出电能为主,发电机状态以吸收能量为主)。
- ✓ 电源输出电能时电流值增加,吸收电能时电流减小。
- ✓ 电流方向取决于电机工作状态。当为电动机时,电流为正向;当为发电机时,电流为负向。
- ✓ 当为电动时,Tem与n同向,电能变机械能; 当为发电时,Tem与n反向,机械能变电能。

双极性输出总结:

图 15-23 H形桥式电路

微观状态下,Ia, Tem,n,Ea都有增加/减少 ,但变化极小可认为不变

针对方向,定义从左到右是+,反之为-。

当占空比为50%时,电机不转,Uav=0,开始n不为0,但最终为0,此阶段为能耗制动.

回路	控 出	Ud	Ea	U _{av}	la	Tem	n	电机 状态	象限	充/放电,能量关系	导通 器件
1	>50 %	+ / -	-	>Ea	+	+	+	电动	1	电源Ud释放能量,电机存储能量, 电能变成机械能,磁场能增加。	T1, T4
2	>50 %	-/+	-	>Ea	+	+	+	电动	1	电源Ud吸收能量,电机释放能量, 磁场能变成电能,磁场能减小。	D2, D3
3	<50 %	- /+	1	<ea< td=""><td>1</td><td>-</td><td>+</td><td>制动 (反接)</td><td>2</td><td>电源Ud释放能量,电机存储能量, 电能变成机械能,磁场能增加。</td><td>T2, T3</td></ea<>	1	-	+	制动 (反接)	2	电源Ud释放能量,电机存储能量, 电能变成机械能,磁场能增加。	T2, T3
4	<50 %	+ /-	-	<ea< td=""><td>-</td><td>-</td><td>+</td><td>制动 (发电)</td><td>2</td><td>电源Ud吸收能量,电机释放能量, 磁场能变成电能,磁场能减小。</td><td>D1, D4</td></ea<>	-	-	+	制动 (发电)	2	电源Ud吸收能量,电机释放能量, 磁场能变成电能,磁场能减小。	D1, D4

直流电机的转向控制

- 电机驱动主要采用N沟道MOSFET构建H桥驱动电路,要使电机运转,必需使对角线上的一对开关导通,经过不同的电流方向来控制电机正反转。
- Q1 Q4导通,电机正转,按以上分析其电动与发电状态。 Q3 Q2导通,电机反转,按以上分析其电动与发电状态。
- 上表只是讨论其正转时,其工作象限在1或2。当电机为反向工作时,其工作象限对称为2,4,电路控制回路是由正转1变成反转3,正转2变成反转4。即电机反转时,回路3为其电动状态,回路2为其制动状态。

当 ρ >1/2时, γ 为正,电动机正转; 当 ρ <1/2时, γ 为负,电动机反转; 当 ρ =1/2时, γ =0,电动机停止。

双极式控制的桥式可逆PWM变换器优点

- (1) 电流一定连续;
- (2) 可使电动机在四象限运行;
- (3) 电动机停止时有微振电流,能消除静磨擦死区;
- (4) 低速平稳性好,系统的调速范围大;
- (5) 低速时,每个开关器件的驱动脉冲仍较宽,有利于保证器件的可靠导通。

单极性PWM与受限单极性PWM驱动

单极性PWM

优点:减少开关管导通次数,增加其 寿命

缺点:控制复杂。

· 受限单极性PWM(自学)

单极性PWM驱动

PWM驱动的特性

- 调制比ρ
- 占空比 D
- · 单极性、双极性PWM的ρ、D关系
- · PWM 驱动的输出电压
- · PWM 驱动的输出电流

每日1题

- 2.5 功率器件是电机驱动重要的元件,以下说法正确的是______。
- A. 绝缘欄双极晶体管 IGBT、电力场效应晶体管 P-MOSFET、晶闸管都是全控型器件
- B. MOSFET 器件工作在开关状态时,在截止区和饱和区之间来回转换
- C. 一般来说,相比于 IGBT 器件,MOSFET 器件开关速度更快,输出功率更高
- D. 对于 MOSFET 器件,漏极电流 I_a 和栅源间电压 U_{CS} 的关系,反映了输入电压和输出电流的关系,当漏极电流 I_d 和较大时, I_d 与 U_{CS} 的关系近似线性。
 - 3.3 如下所示的 H 形桥式驱动电路,其中四个二极管称为续流二极管,它们是 PWM 功率放大器输出级中不可缺少的组成部分。以下说法正确的是______。

- A. 二极管 D3 的作用是为了避免开关器件 T4 工作于击穿区
- B. 双极性 PWM 驱动时,当为电动机状态时,电源输出电能,电流增加,磁场能增加。
- C. 电源输出电能时电流值增加, 吸收电能时电流减小
- D. 当为电动机状态时,电磁力矩 Tem 与转速 n 同向,电能变成机械能,当为发电机状态时,电磁力矩 Tem 与转速 n 反向,机械能变成电能。

致 谢

本文档所引用的许多素材,来源于互联网上国内外的课件、科技论文、文章等。本文引用只是为了给学生提供更好的教学素材,非商业目的。对这些所引用素材的原创者,在此表示深深的谢意。