TEORÍA DE CONTROL

Criterio de Estabilidad de Routh-Hurwitz

$$\frac{\hat{y}(s)}{\hat{R}(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = \frac{B(s)}{A(s)}$$
(1.1)

$$\frac{\hat{y}(s)}{\hat{R}(s)} = \sum \frac{k_{1,i}}{s + \alpha_i} + \sum \frac{k_{2,j} + k_{3,j} \cdot s}{(s + \beta_i)^2 + \gamma_i^2}; m \le n$$
 (1.2)

El criterio de Routh-Hurwitz determina si existen raíces en el semiplano complejo derecho cerrado.

Tabla de Routh

La tabla de Routh es un método para obtener el numero de raíces con parte real positiva que se encontraran en el polinomio característico del sistema (Ecuación 1.3) sin tener que calcular las raíces en cuestión. Se puede dividir en cuatro pasos que se enumeran a continuación.

$$A(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = 0$$
 (1.3)

- 1. Hipótesis Si $a_0=0\Rightarrow$ el polinomio es de orden menor a n. Si $a_n=0\Rightarrow\exists$ una raíz que es $0\Rightarrow A(s)=(\bar{n_0}s^{\bar{n}}+\bar{a_n}s^{\bar{n-1}}+...)s^k$.
- 2. Si existen coeficientes nulos o de diferente (cambio de) signo, entonces existen raíces con parte real positiva.

3. Construir la tabla de Routh (Ver Cuadro 1.1).

Donde:

$$b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1}, b_2 = \frac{a_1 a_4 - a_0 a_5}{a_1}, \dots$$

$$c_1 = \frac{b_1 a_3 - a_1 b_2}{b_1}, c_2 = \frac{b_1 a_5 - a_1 b_3}{b_1}, \dots$$

$$d_1 = \frac{c_1 b_2 - b_1 c_2}{c_1}, d_2 = \frac{c_1 b_3 - b_1 c_3}{c_1}, \dots$$

$$\vdots$$

4. El número de raíces con parte real positiva es igual al numero de cambios de signo en la primera columna(Ver Cuadro 1.2).

$$\begin{array}{c|cccc} s^n & a_0 \\ s^{n-1} & a_1 \\ s^{n-2} & b_1 \\ s^{n-3} & c_1 \\ s^{n-4} & d_1 \\ \vdots & \vdots & \vdots \\ s^2 & e_1 \\ s^1 & g_1 \end{array}$$

Cuadro 1.2: Números en los que hay que revisar el cambio de signo.

Cuadro 1.1: Ejemplo de tabla de Routh.

Casos Especiales

1. En los casos en los que un coeficiente es 0 se puede intercambiar por un ϵ lo suficientemente pequeño para aproximar a 0 (Véase el Cuadro 1.3).

$$A(s) = s^3 + 2s^2 + s + 2 = 0$$

>> A = [1 2 1 2];
>> r = roots(A)
r =
-2.00000 + 0.00000i
-0.00000 + 1.00000i

-0.00000 - 1.00000i

$$\begin{array}{c|cccc}
s^3 & 1 & 1 \\
s^2 & 2 & 2 \\
s^1 & 0 \approx \epsilon \\
s^0 & 2
\end{array}$$

Cuadro 1.3: Caso Especial 1.

2. Cuando existen cambios en los coeficientes del polinomio característico se sabe que existirán raíces con parte real positiva (Véase el cuadro 1.4).

$$A(s) = s^3 - 3s + 2 = 0$$

>> A = [1 0 -3 2];
>> r = roots(A)

r =

-2.00000

1.00000

1.00000

$$\begin{array}{c|cccc}
s^3 & 1 & -3 \\
s^2 & 0 \approx \epsilon & 2 \\
s^1 & -\frac{2}{\epsilon} & 0 \\
s^0 & 2 &
\end{array}$$

Cuadro 1.4: Caso Especial 2.

3. Cuando todos los coeficientes en una linea se eliminan se puede crear un nuevo polinomio auxiliar con la linea anterior, obtener su derivada e insertar en la siguiente linea para continuar calculando la tabla (Véase el Cuadro 1.5 y 1.6).

$$A(s) = s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 = 0$$

$$p_{aux}(s) = 2s^4 + 48s^2 - 50$$

$$\frac{d}{dx}p_{aux}(s) = 8s^3 + 96s$$

$$\Rightarrow A = [1 \ 2 \ 24 \ 48 \ -25 \ -50];$$

$$\Rightarrow r = roots(A)$$

$$r =$$

$$-0.00000 + 5.00000i$$

$$-0.00000 + 5.00000i$$

$$1.00000 + 0.00000i$$

$$-2.00000 + 0.00000i$$

$$-1.00000 + 0.00000i$$

Cuadro 1.5: Caso Especial 3a.

Cuadro 1.6: Caso Especial 3b.

Aplicación del criterio de Routh

Si bien los sistemas numéricos actuales permiten el calculo de las raíces de un sistema de manera mas rápida y sencilla que con la aplicación de este método, aun existen aplicaciones practicas en las que es de suma importancia el determinar el numero de raíces positivas. Por ejemplo podemos tener ganancias en un sistema para las que queremos determinar de primera instancia, un rango de valores para los cuales el sistema no se volverá inestable.

Para ello calculamos la tabla de Routh de la misma manera en que lo hicimos anteriormente, pero teniendo en cuenta las ganancias a incluir en el calculo de las raíces (Por ejemplo con una ganancia proporcional véase Cuadro 1.7).

Cuadro 1.7: Aplicación del criterio de Routh.

Ejemplo:

Se toma el sistema $\frac{\hat{y}(s)}{\hat{R}(s)} = \frac{k}{s^4+3s^3+3s^2+2s+k}$, entonces el polinomio característico del sistema será $F(s) = s^4+3s^3+3s^2+2s+k$.

Construimos su tabla de Routh (Cuadro 1.8):

De lo anterior podemos concluir que, para que no existan cambios de signos, toda la primera columna tiene que ser positiva, por lo que

Cuadro 1.8: Ejemplo de Aplicación del criterio de Routh.

k > 0 y $2^{-9}/_{7}k > 0$, por lo que el rango de valores que puede ocupar la ganancia k es 0 < k < 14/9

Si bien esto no nos aporta una ganancia especifica para un comportamiento deseado, si nos da la pauta a los valores a tomar en cuenta, si no se desea que el sistema sea inestable.

Acción Proporcional

Tenemos un sistema de primer orden, al que le agregaremos un controlador de ganancia proporcional y una retroalimentación negativa, por lo que las ecuaciones que describen la salida y el error del sistema quedan:

$$\frac{\hat{y}(s)}{\hat{R}(s)} = \frac{k}{Ts + 1 + k} \tag{1.4}$$

$$\frac{\hat{e}(s)}{\hat{R}(s)} = \frac{R(s) - Y(s)}{R(s)} = \frac{Ts + 1}{Ts + 1 + k}$$
 (1.5)

Estabilidad

El problema reside en encontrar un conjunto de ganancias k para las cuales el sistema es estable.

$$F(s) = s + \frac{1+k}{T} \tag{1.6}$$

Aplicamos una tabla de Routh a este polinomio característico (Cuadro 1.9).

$$\begin{vmatrix} s^1 \\ s^0 \end{vmatrix} = \frac{1}{T}$$

Cuadro 1.9: Tabla de Routh para acción proporcional.

Por lo que concluimos que la ganancia k debe de seguir: k > -1

Error en el estado permanente al escalón unitario

También es importante investigar el error que causara el controlador al introducirse. Si ponemos como señal de referencia al escalón unitario($R(s) = \frac{1}{s}$), podemos ver lo siguiente:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} se(s) = \lim_{s \to 0} \frac{Ts + 1}{Ts + 1 + k} = \frac{1}{1 + k}$$

Acción Integral

Tenemos un sistema de primer orden, al que le agregaremos un controlador de ganancia integral y una retroalimentación negativa, por lo que las ecuaciones que describen la salida y el error del sistema quedan:

$$\frac{\hat{y}(s)}{\hat{R}(s)} = \frac{k}{s(Ts+1)+k}$$
 (1.7)

$$\frac{\hat{e}(s)}{\hat{R}(s)} = \frac{R(s) - Y(s)}{R(s)} = \frac{s(Ts+1)}{s(Ts+1) + k}$$
(1.8)

Estabilidad

El problema reside en encontrar un conjunto de ganancias k para las cuales el sistema es estable.

$$F(s) = s^2 + \frac{1}{T}s + \frac{k}{T} \tag{1.9}$$

Aplicamos una tabla de Routh a este polinomio característico (Cuadro 1.10).

$$\begin{array}{c|cccc}
s^2 & 1 & \frac{k}{T} \\
s^1 & \frac{1}{T} & 0 \\
s^0 & \frac{k}{T}
\end{array}$$

Cuadro 1.10: Tabla de Routh para acción integral.

Por lo que concluimos que la ganancia k debe de seguir: k > 0

Error en el estado permanente al escalón unitario

También es importante investigar el error que causara el controlador al introducirse. Si ponemos como señal de referencia al escalón unitario($R(s) = \frac{1}{s}$), podemos ver lo siguiente:

unitario(
$$R(s) = \frac{1}{s}$$
), podemos ver lo siguiente:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} se(s) = \lim_{s \to 0} s\left(\frac{s(Ts+1)}{s(Ts+1)+k}\frac{1}{s}\right) = 0$$

Acción Proporcional Integral

Estabilidad

Error en el estado permanente al escalón unitario

Lugar de las Raíces

Si tenemos un sistema con retroalimentación, su polinomio característico es el siguiente:

$$F(s) = 1 + H(s)G(s) = 0 (2.1)$$

Donde G(s) es la planta y H(s) es el elemento de retroalimentación. Las condiciones de angulo y magnitud son las siguientes:

$$\angle H(s)G(s) = \pm 180^{\circ}(2R+1) \mid R \in \mathbb{Z}^{+}$$
 (2.2)

$$|H(s)G(s)| = 1$$
 (2.3)

De aquí notamos que la condición de angulo, nos da la forma del lugar de las raíces, y la condición de magnitud nos da su posición.

Pues bien, para trazar el lugar geométrico de las raíces seguimos una serie de pasos enumerados a continuación:

1. Determinar el lugar de las raíces en el eje real.

Ejemplo:
$$H(s) = 1$$
, $G(s) = \frac{k}{s(s+1)(s+2)}$

- 2. Determinar las asintotas del lugar de las raíces.
- 3. Determinar el punto de ruptura o partida de las asintotas en el eje real.
- 4. Determinar los puntos donde el lugar de las raíces atraviesa el eje imaginario.

3 Compensador Adelanto/Atraso (LR)

Compensador de adelanto de fase

Compensador de atraso de fase

Error estático de posición k_p

Error estático de velocidad k_v

4 Diagramas de Bode

Factor integral

Factor derivativo

Factores de primer orden

Factores de segundo orden

Frecuencia de resonancia ω_n y valor par de resonancia M_R

5 Diagramas de Nyquist

Factor integral

Factor derivativo

Factores de primer orden

Factores de segundo orden

Ejemplos

7 Estabilidad Relativa

Margen de Fase

Estable

Inestable

Margen de Ganancia

Estable

Inestable

Compensador de adelanto y atrase de fase (Frecuencia)

Compensador de adelanto de fase

Compensador de atraso de fase

Ejemplos

9 Controladores PID

Sintonización: Reglas de Ziegler-Nichols

Respuesta al escalón

Respuesta a oscilaciones sostenidas

Esquemas modificados

Controlador PID

Controlador PI-D

Controlador I-PD

Representación de estado

La siguiente funcion de transferencia es la Transformada de Laplace de la ecuacion diferencial ordinaria de orden n que describe al sistema.

$$\frac{\hat{y}(s)}{\hat{u}(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = \frac{B(s)}{A(s)}, m \le n$$
 (10.1)

$$\frac{d^{n}}{dt^{n}}y(t) + a_{1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \dots + a_{n-1}\frac{d}{dt}y(t) + a_{n}\frac{d}{dt}y(t)
= b_{0}\frac{d^{m}}{dt^{m}}u(t) + b_{1}\frac{d^{m-1}dt^{m-1}}{u}(t) + \dots + b_{m-1}\frac{d}{dt}u(t) + b_{m}u(t) \quad (10.2)$$

Haciendo la siguiente asignacion de variables:

$$x_{1} = z$$

$$x_{2} = \frac{d}{dt}x_{1} = \frac{d}{dt}z$$

$$x_{3} = \frac{d}{dt}x_{2} = \frac{d^{2}}{dt^{2}}z$$

$$\vdots = \vdots$$

$$x_{n-1} = \frac{d}{dt}x_{n-2} = \frac{d^{n-2}}{dt^{n-2}}z$$

$$x_{n} = \frac{d}{dt}x_{n-1} = \frac{d^{n-1}}{d^{n-1}}z$$

Donde:

$$\frac{d}{dt}x_n = -a_nx_1 - a_{n-1}x_2 - \dots - a_2x_{n-1} - a_1x_n + u(t)$$
 (10.3)

$$y = b_m x_1 + b_{m-1} x_2 + \dots + b_1 x_{m-1} + b_0 x_m \tag{10.4}$$

Por lo que se obtiene:
$$\left(\frac{d^n}{dt^n} + a_1 \frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1} \frac{d}{dt} + a_n\right) z(t) = u(t)$$

$$y(t) = \left(b_m + b_{m-1} \frac{d}{dt} + \dots + b_1 \frac{d^{m-1}}{dt^{m-1}} + b_0 \frac{d^m}{dt^m}\right) z(t)$$
es decir:

$$M\left(\frac{d}{dt}\right)z(t) = u(t) \tag{10.5}$$

$$y(t) = N\left(\frac{d}{dt}\right)z(t) \tag{10.6}$$

Lo cual implica $M\left(\frac{d}{dt}\right)y(t)=N\left(\frac{d}{dt}\right)u(t)$. Donde:

$$M\left(\frac{d}{dt}\right) = \left(\frac{d^n}{dt^n} + a_1 \frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1} \frac{d}{dt} + a_n\right)$$

$$N\left(\frac{d}{dt}\right) = \left(b_m + b_{m-1} \frac{d}{dt} + \dots + b_1 \frac{d^{m-1}}{dt^{m-1}} + b_0 \frac{d^m}{dt^m}\right)$$
Esta es la misma ecuación diferencial con la que empezamos. Note

que la escritura matricial de esta Ecuación Diferencial Ordinaria es:

$$\frac{d}{dt}\vec{x} = A\vec{x}(t) + \vec{b}u(t) \tag{10.7}$$

$$\vec{y}(t) = \vec{c} \cdot \vec{x}(t) \tag{10.8}$$

Donde:

$$\vec{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$
 (10.9)

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_2 & -a_1 \end{pmatrix}$$
 (10.10)

$$\vec{b} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \tag{10.11}$$

$$\vec{c} = \begin{pmatrix} b_m \\ b_{m-1} \\ \vdots \\ b_1 \\ b_0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$
 (10.12)

Solución temporal de la ecuación de estado

1. Para el caso en que A es un escalar y la solución es homogénea se considera la siguiente Ecuación Diferencial Ordinaria:

$$\frac{d}{dt}x(t) = ax(t) \mid x(0) = x_0$$
 (10.13)

Suponga una solución de la forma:

$$x(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \dots + \alpha_k t^k + \dots$$
 (10.14)

Entonces se tiene:

$$\alpha_1 + 2\alpha_2 t + 3\alpha_3 t^2 + \dots + k\alpha_k t^{k-1} + \dots$$

= $a\alpha_0 + a\alpha_1 t + a\alpha_2 t^2 + \dots + a\alpha_k t^k + \dots$

Por lo que las α_i deben satisfacer:

$$\alpha_{1} = a\alpha_{0} = \frac{1}{1!}a^{1}\alpha_{0}
\alpha_{2} = a\alpha_{1} = \frac{1}{2!}a^{2}\alpha_{0}
\alpha_{3} = a\alpha_{2} = \frac{1}{3!}a^{3}\alpha_{0} ; \quad \alpha_{0} = x_{0}
\vdots = \vdots = \vdots
\alpha_{k} = a\alpha_{k-1} = \frac{1}{k!}a^{k}\alpha_{0}$$
(10.15)

Esto es:

$$x(t) = \left(\sum_{i=0}^{\infty} \frac{1}{i!} (at)^i\right) x_0$$

$$x(t) = e^{at} x_0 \tag{10.16}$$

Notese que:
$$\frac{d}{dt}x(t) = \left(\sum_{i=0}^{\infty} \frac{1}{i!} \frac{d}{dt} (at)^i\right) x_0 = \left(\sum_{i=1}^{\infty} \frac{1}{(i-1)!} (at)^{i-1}\right) ax_0 = \left(\sum_{j=0}^{\infty} \frac{1}{j!} (at)^j\right) ax_0$$
$$\frac{d}{dt}x(t) = ae^{at}x_0 = ax(t) \quad x(0) = x_0$$

2. Para el caso en que A es una matriz y la solución es homogénea se considera la siguiente Ecuación Diferencial Ordinaria:

$$\frac{d}{dt}\vec{x}(t) = a\vec{x}(t) \mid \vec{x}(0) = \vec{x}_0$$
 (10.17)

De la misma manera que en el caso escalar, se supone una solución de la forma:

$$\vec{x}(t) = \vec{\alpha}_0 + \vec{\alpha}_1 t + \vec{\alpha}_2 t^2 + \dots + \vec{\alpha}_k t^k + \dots$$
 (10.18)

Entonces se tiene:

$$\vec{\alpha}_1 + 2\vec{\alpha}_2 t + 3\vec{\alpha}_3 t^2 + \dots + k\vec{\alpha}_k t^{k-1} + \dots$$

$$= A\vec{\alpha}_0 + A\vec{\alpha}_1 t + A\vec{\alpha}_2 t^2 + \dots + A\vec{\alpha}_k t^k + \dots$$

Por lo que las $\vec{\alpha}_i$ deben satisfacer:

$$\vec{\alpha}_{1} = A\vec{\alpha}_{0} = \frac{1}{1!}A^{1}\vec{\alpha}_{0}
\vec{\alpha}_{2} = A\vec{\alpha}_{1} = \frac{1}{2!}A^{2}\vec{\alpha}_{0}
\vec{\alpha}_{3} = A\vec{\alpha}_{2} = \frac{1}{3!}A^{3}\vec{\alpha}_{0} ; \vec{\alpha}_{0} = \vec{x}_{0}$$

$$\vdots = \vdots = \vdots
\vec{\alpha}_{k} = A\vec{\alpha}_{k-1} = \frac{1}{k!}A^{k}\vec{\alpha}_{0}$$
(10.19)

Esto es:

$$\vec{x}(t) = \left(\sum_{i=0}^{\infty} \frac{1}{i!} (At)^i\right) \vec{x}_0$$

En análisis real, se demuestra que esta serie es absolutamente convergente y se define como:

$$\exp(At) = \sum_{i=0}^{\infty} \frac{1}{i!} (At)^{i}$$
 (10.20)

Notese que:

$$\frac{d}{dt} \exp(At) = \frac{d}{dt} \sum_{i=0}^{\infty} \frac{1}{i!} (At)^{i} = \left(\sum_{i=1}^{\infty} \frac{1}{(i-1)!} (At)^{i-1} \right) A = A \sum_{j=0}^{\infty} \frac{1}{j!} (At)^{j} = A \exp(At)$$

Por lo que:

$$\vec{x}(t) = \exp(At)\vec{x}_0$$

$$\frac{d}{dt}\vec{x}(t) = A\exp(At)\vec{x}_0 = A\vec{x}(t) \quad \vec{x}(0) = \vec{x}_0$$

3. Para el caso en que A es escalar y la solución es forzada:

$$\frac{d}{dt}x(t) = ax(t) + bu(t) \mid x(0) = 0$$
 (10.21)

La solución a esta ecuación es:

$$x(t) = \int_0^t e^{a(t-\tau)} bu(\tau) d\tau \tag{10.22}$$

$$\frac{d}{dt}x(t) = e^{a(t-t)}bu(t) + \int_0^t \frac{d}{dt}e^{a(t-\tau)}bu(\tau) d\tau = bu(t) + a\int_0^t e^{a(t-\tau)}bu(\tau) d\tau$$

$$\frac{d}{dt}x(t) = bu(t) + ax(t) \tag{10.23}$$

Por lo que la solución general (con $x(0) = x_0$):

$$x(t) = e^{at}x_0 + \int_0^t e^{a(t-\tau)}bu(\tau) d\tau$$
 (10.24)

4. Para el caso en que A es una matriz y la solución es forzada:

$$\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t) \mid \vec{x}(0) = 0$$
 (10.25)

La solución de esta ecuación es:

$$\vec{x}(t) = \int_0^t \exp\left(A(t-\tau)\right) \vec{b}u(\tau) d\tau \tag{10.26}$$

En efecto, derivando tenemos:

$$\frac{d}{dt}\vec{x}(t) = \exp\left(A(t-t)\right)\vec{b}u(t) + \int_0^t \frac{d}{dt}\exp\left(A(t-\tau)\right)\vec{b}u(\tau)\,d\tau = \vec{b}u(t) + A\int_0^t \exp\left(A(t-\tau)\right)\vec{b}u(\tau)\,d\tau$$

$$\frac{d}{dt}\vec{x}(t) = \vec{b}u(t) + a\vec{x}(t) \tag{10.27}$$

Por lo que la solución general (con $x(0) = x_0$):

$$\vec{x}(t) = \exp(At)\vec{x}_0 + \int_0^t \exp(A(t-\tau))\vec{b}u(\tau) d\tau$$
 (10.28)

Función (Matriz) de transferencia de la ecuación de estado

1. Para el caso escalar, se tiene que la transformada de Laplace con coeficientes independientes nulos es:

$$sx(s) = ax(s) + bu(s)$$
$$(s - a)x(s) = bu(s)$$
$$x(s) = (s - a)^{-1}bu(s)$$
$$x(s) = \frac{b}{s - a}u(s)$$

Por lo que:

$$e^{at} = \mathcal{L}^{-1}\left\{ (s-a)^{-1} \right\}$$
 (10.29)

2. Para el caso matricial, tenemos que la transformada de Laplace con coeficientes independientes nulos es:

$$s\vec{x}(s) = A\vec{x}(s) + \vec{b}u(s)$$
$$(sI - A)\vec{x}(s) = \vec{b}u(s)$$
$$x(s) = (sI - A)^{-1}\vec{b}u(s)$$

Por lo que:

$$\exp(At) = \mathcal{L}^{-1}\left\{ (sI - A)^{-1} \right\}$$
 (10.30)

Función de transferencia de la representación de estado

Sea la siguiente Ecuación Diferencial Ordinaria:

$$M\left(\frac{d}{dt}\right)y(t) = N\left(\frac{d}{dt}\right)u(t)$$

donde:

$$M\left(\frac{d}{dt}\right) = \frac{d^{n}}{dt^{n}} + a_{1}\frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1}\frac{d}{dt} + a_{n}$$

$$N\left(\frac{d}{dt}\right) = b_{m} + b_{m-1}\frac{d}{dt} + \dots + b_{1}\frac{d^{m-1}}{dt^{m-1}} + b_{0}\frac{d^{m}}{dt^{m}}$$

La función de transferencia con coeficientes independientes nulos de las ecuaciones es:

$$F(s) = \frac{N(s)}{M(s)} = \frac{\frac{d^n}{dt^n} + a_1 \frac{d^{n-1}}{dt^{n-1}} + \dots + a_{n-1} \frac{d}{dt} + a_n}{b_m + b_{m-1} \frac{d}{dt} + \dots + b_1 \frac{d^{m-1}}{dt^{m-1}} + b_0 \frac{d^m}{dt^m}}$$
(10.31)

Ceros. Las raíces del polinomio N(s).

Polos. Las raíces del polinomio M(s).

Sea la siguiente representación de estado de la Ecuación Diferencial Ordinaria:

$$\frac{d}{dt}x = Ax + bu$$
$$y = cx + du$$

La función de transferencia con coeficientes independientes nulos en esta representación es:

$$sx(s) = Ax(s) + bu(s)$$

 $y(s) = cx(s) + du(s)$

$$(sI - A)x(s) = bu(s)$$
$$y(s) = cx(s) + du(s)$$

$$x(s) = (sI - A)^{-1}bu(s)$$

$$y(s) = cx(s) + du(s)$$

$$y(s) = c[(sI - A)^{-1}bu(s)] + du(s) = [c(sI - A)^{-1}b + d]u(s)$$

$$F(s) = c(sI - A)^{-1}b + d (10.32)$$

Matriz sistema

$$\Sigma(s) = \begin{pmatrix} sI - A & b \\ -c & d \end{pmatrix} \tag{10.33}$$

Note que:

$$\begin{pmatrix} (sI-A)^{-1} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} sI-A & b \\ -c & d \end{pmatrix} \begin{pmatrix} I & -(sI-A)b \\ 0 & I \end{pmatrix}$$
$$= \begin{pmatrix} I & (sI-A)^{-1}b \\ -c & d \end{pmatrix} \begin{pmatrix} I & -(sI-A)b \\ 0 & I \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ -c & (c(sI-A)^{-1}b+d) \end{pmatrix}$$

Por lo que:

$$\det\left((sI-A)^{-1}\right)\cdot\det\left(\Sigma(s)\right)\cdot I=c(sI-A)^{-1}b+d$$

$$F(s) = \frac{\det(\Sigma(s))}{\det(sI - A)}$$
(10.34)

Por lo que los polos coinciden con los valores propios de A y los ceros son los números complejos que hacen perder rango a la matriz sistema.

Polos:
$$F(s) = \{ s \in \mathbb{C} \mid \det(sI - A) = 0 \}$$
 (10.35)

Ceros:
$$F(s) = \{ s \in \mathbb{C} \mid \det(\Sigma(s)) = 0 \}$$
 (10.36)

Propiedades de la Matriz A

I)
$$\exp(At) = \sum_{i=0}^{\infty} \frac{1}{i!} (At)^{i}$$
 (10.37)

II)
$$\frac{d}{dt}\exp\left(At\right) = A\exp\left(At\right) = (\exp\left(At\right))A \tag{10.38}$$

111)

$$\exp(At) \exp(A\tau) = \left(\sum_{i=0}^{\infty} \frac{1}{i!} (At)^{i}\right) \left(\sum_{j=0}^{\infty} \frac{1}{j!} (A\tau)^{j}\right)$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} A^{i+j} \frac{t^{i}\tau^{j}}{i!j!} = \sum_{k=0}^{\infty} A^{k} \sum_{i=0}^{k} \frac{t^{i}\tau^{k-i}}{i!(k-i)!}$$

$$= \sum_{k=0}^{\infty} A^{k} \frac{(t+\tau)^{k}}{k!} = \exp(A(t+\tau)) \quad (10.39)$$

$$\exp((A+B)t) = \exp(At)\exp(Bt) \iff AB = BA$$
 (10.40)

v) Cambio de base.

Sean dos matrices similares A y \bar{A} , esto es, dos matrices relacionadas por un cambio de base, T matriz invertible, esto es $\bar{A} = T^{-1}AT$.

a) Las matrices exponenciales asociadas a las matrices A y \bar{A} también son similares. En efecto:

$$T^{-1} \exp(At)T = T^{-1} \left(\sum_{i=0}^{\infty} \frac{1}{i!} (At)^{i} \right) T = \sum_{i=0}^{\infty} \frac{1}{i!} T^{-1} A^{i} T t^{i}$$
$$= \sum_{i=0}^{\infty} \frac{1}{i!} (T^{-1} A T)^{i} t^{i} = \exp \bar{A} t$$

b) Los valores propios son invariantes bajo cambio de base. En efecto:

$$\begin{split} \det\left(sI-\bar{A}\right) &= \det\left(sI-T^{-1}AT\right) = \det\left(sT^{-1}T-T^{-1}AT\right) \\ &= \det\left(T^{-1}(sI-A)T\right) = \det\left(T^{-1}\right)\det\left(sI-A\right)\det\left(T\right) \\ &= \frac{1}{\det\left(T\right)}\det\left(sI-A\right)\det\left(T\right) = \det\left(sI-A\right) \end{split}$$

c) Las raíces de la matriz sistema son invariantes bajo cambio de base. En efecto, sea el sistema representado por:

$$\frac{d}{dt}x = Ax + bu$$
$$y = cx + du$$

Sea el cambio de variable $x = T\bar{x}$, T invertible. Entonces:

$$T\frac{d}{dt}\bar{x} = AT\bar{x} + bu$$
$$y = cT\bar{x} + du$$

$$\frac{d}{dt}\bar{x} = T^{-1}AT\bar{x} + T^{-1}bu$$
$$y = cT\bar{x} + du$$

:

$$\frac{d}{dt}\bar{x} = \bar{A}\bar{x} + \bar{b}u$$

$$y = \bar{c}\bar{x} + du \tag{10.41}$$

donde $\bar{A}=T^{-1}AT$, $\bar{b}=T^{-1}b$, $\bar{c}=cT$. La matriz sistema se puede escribir de la siguiente manera:

$$\Sigma = \begin{pmatrix} sI - A & b \\ -c & d \end{pmatrix} \implies \bar{\Sigma} = \begin{pmatrix} sI - \bar{A} & \bar{b} \\ -\bar{c} & d \end{pmatrix}$$
 (10.42)

Notese que:

$$\bar{\Sigma} = \begin{pmatrix} sI - \bar{A} & \bar{b} \\ -\bar{c} & d \end{pmatrix} = \begin{pmatrix} T^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} sI - A & b \\ -c & d \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & 1 \end{pmatrix}$$

Por lo que:

$$\det \bar{\Sigma} = \det T^{-1} \det \Sigma \det T = \det \Sigma$$

vi) Forma de Jordan

Dada una matriz A, existe una matriz de cambio de base T, tal que:

$$T^{-1}AT = J = D + N (10.43)$$

donde D es una matriz diagonal (conteniendo los valores propios) y N es una matriz nilpotente ($\exists \gamma \in \mathbb{N} \mid N^{\gamma} = 0$) de la forma:

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$N = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Note que DN = ND, por lo que:

$$\exp((D+N)t) = \exp(Dt)\exp(Nt) \tag{10.44}$$

donde:

$$\exp(Dt) = \begin{pmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & e^{\lambda_n t} \end{pmatrix}$$

$$\exp(Nt) = \sum_{i=0}^{\infty} \frac{1}{i!} (Nt)^{i} = \sum_{i=0}^{\gamma-1} \frac{1}{i!} (Nt)^{i}$$

vII) Teorema de Cayley-Hamilton

Toda transformación lineal A satisface su polinomio característico.

$$\Pi(s) = \det(sI - A) = s^n + \Pi_1 s^{n-1} + \dots + \Pi_{n-1} s + \Pi_n$$
 (10.45)

$$\Pi(A) = A^n + \Pi_1 A^{n-1} + \dots + \Pi_{n-1} A + \Pi_n I = 0$$
 (10.46)

Una implicación directa es que la *n*-esima potencia de una transformación lineal A, es una combinación lineal de sus potencias predecesoras.

$$A^{n} = -\Pi_{n}I - \Pi_{n-1}A - \dots - \Pi_{1}A^{n-1}$$

A su vez, esto implica:

$$\exp(At) = \sum_{i=0}^{\infty} \frac{1}{i!} A^i t^i = \sum_{i=0}^{n-1} \varphi(t) A^n$$
 (10.47)

donde:

$$\varphi_i(t) = \sum_{j=0}^{\infty} \varphi_{ij} t^j$$