A Generic Method For Estimating System Reliability Using Bayesian Networks

Lecturer: Amir M. Pirhosseinloo

Professor: Dr. Safabakhsh

Overview

1.Introduction

Bayesian Networks, System Reliability, Traditional Approaches, Challenges

2.K2 algorithm

Notations, Pseudo code

3. Illustrative step by step example

4.Experimental analysis

Performance, Accuracy, Error rate

5.Conclusion

Bayesian Networks

What is a Bayesian Network?

DAG: Directed Acyclic Graph

Nodes: System Components

Edges: Relations

www.math.stackexchange.com/questions/1709832/confusion-in-a-simple-bayesian-network

System Reliability

- Probability
- Intended function
- Specific period of time
- Stated condition

www.verifyrecruitment.com/blog/index.php/site-reliability-engineer/

www.spark.apache.org/docs/latest/cluster-overview.html

Traditional Approaches

- Fault trees
 - Minimal cut sets
 - Minimal path sets
- Gran and Helminen
 - Nuclear power plants
 - Software system
 - Plant hardware
- Halden project (HRP)
- Amasaki software quality assessment
- Requires domain experts to
 - Evaluate prior probabilities
 - Understand the structure of BN.
 - Construct the BN

Challenges

- System domain specific
- Finding relations between components
- Systems evolve
- Finding domain expert
 - Difficult
 - Costly
 - Unintentional mistakes
 - Need for keeping same expert

www.technologynetworks.com/informatics/lists/7-data-challenges-in-the-life-sciences-288265

K2 Algorithm

Notations

- \bullet α_{ijk}
- α_{ii}
- \bullet π_i
- d_i

- P(A)• $P(A|B) = \frac{P(A,B)}{P(B)}$ $P(A|B,C) = \frac{P(A,B,C)}{P(B,C)}$ $P(A|B,C) = P(B,C|A) * \frac{P(A)}{P(B,C)}$

Pseudo Code

- Machine learning algorithm
- Scoring function
- Heuristic function
- Efficient(polynomial time) $O(n^2)$
- System specific
- Historical data about the system

Algorithm K2(T, u)

Input: A dataset T of historical observations on system S, an upper bound u for the number of parents

Output: A full BN *B*.

- 1. For each column *i* in dataset *T*
 - Create node X_i and add it to B.
 - $\pi_i = \phi$ for node X_i .
 - Calculate $f(i, \pi_i)$ using empty set ϕ
 - While the size of $\pi_i \leq u$
 - \circ Let X_z be a node preceding node X_i
 - Calculate $f(i, \pi_i U \{X_z\})$ using X_z
 - If the new score is better than the previous score Add X_z to π_i permanently
- 2. Return B

$$f(i,\pi_i) = \prod_{j=1}^{q_i} \frac{(d_i - 1)!}{(\alpha_{ij} + d_i - 1)!} \prod_{k=1}^{d_i} \alpha_{ijk}!$$

Illustrative Step By Step Example

Dataset for example

کا ک	observation	X ₁	X ₂	X ₃	X ₄	X ₅	system behavior
	1	1	1	0	0	0	0
	2	0	1	1	1	1	1
	3	1	1	0	1	1	1
	4	0	0	0	0	0	0
	5	1	0	1	0	0	1
	6	0	0	0	0	0	0
	7	1	1	0	1	1	1
\bigcirc	8	0	1	1	1	1	1
5	9	1	0	1	0	0	1
	0	0	0	0	0	0	0

f score for all possible candidate parent sets

parent set	f score
{}	1/2772
$\{X_1\}$	1/3600
$\{X_2\}$	1/3600
${X_1}$ ${X_2}$ ${X_{1'}X_2}$	1/144

$$f(X_2, \phi) = \frac{(2-1)!}{(10+2-1)!} \prod_{k=1}^{2} \alpha_{i0k}! = \frac{1!}{11!} \times 5! \times 5! = \frac{1}{2772}$$

$$f(X_2, \{X_1\}) = \frac{(2-1)!}{(5+2-1)!} \prod_{k=1}^{2} \alpha_{21k}! \times \frac{(2-1)!}{(5+2-1)!} \prod_{k=1}^{2} \alpha_{22k}! = \frac{1}{3600}$$

Result Of K2 Algorithm

Fig. 1

CPT Of The X₃ Node

pare	ents	probability		
X_1	X_2	$X_3 = 0$	$X_3 = 1$	
0	0	1	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Probability Of Success Calculation For Node X_3

$$p(X_3 = 1) = \sum p(X_1, X_2, X_3 = 1) =$$

$$p(X_1 = 0, X_2 = 0, X_3 = 1) + p(X_1 = 0, X_2 = 1, X_3 = 1) + p(X_1 = 1, X_2 = 0, X_3 = 1) + p(X_1 = 1, X_2 = 1, X_3 = 1)$$

= 0.5 * 0.5 * 0 + 0.5 * 0.5 * 1 + 0.5 * 0.5 * 1 + 0.5 * 0.5 * 0 = 0.5

CPT Of The System Behavior Node

par	ents	probability		
X_3	X_5	System Behavior = 0	System Behavior = 1	
0	0	1	0	
0	1	0	1	
1	0	0	1	
1	1	0	1	

Experimental Analysis

How To Increase Performance? How To Reduce Error Rate?

- More observations (more data) results more accuracy.
- More observations (more data) increases computation time.
- Trade OFF
- A_{FP}
- A_{FN}
- A_T
- $p = (A_{PF} + A_{PN})/A_T$

Some BNs For Test K2 Algorithm

Performance-Runtime Chart

Accuracy-Association Chart

Error Rate - Time Chart

Conclusion

Conclusion

- Numerous method for estimating reliability but challenges still remained
- K2 algorithm:
 - No need to domain expert
 - But needs historical data about the system
 - Efficient for substantially large systems
- Can further be improved when the already existing associations between components are taken in to account(needs a domain expert of the system)

References

- 1. Ozge Doguc, Jose Emmanuel Ramirez-Marquez. A generic method for estimating system reliability using Bayesian networks. (February 2009).
- 2. Christopher M. Bishop. (2006). Pattern Recognition and Machine Learning.
- 3. Stuart J. Russell and Peter Norvig. Artificial Intelligence A Modern Approach 3th Edition.
- 4. Helge Langseth, Luigi Portinale. Bayesian networks in reliability. (19 January 2006).
- 5. Sankaran Mahadevan ,Ruoxue Zhang , Natasha Smith.Bayesian networks for system reliability reassessment.(2001).

THANK YOU