Algebraic Topology - Homework 3

Caitlin Beecham

1. Take two copies of the torus $S^1 \times S^1$ and let X be the space obtained by identifying $S^1 \times \{pt\}$ in one torus with $S^1 \times \{pt\}$ in the other torus using the identity map on S^1 . Compute $\pi_1(X, x_0)$.

I claim that it is $F_2 \times \mathbb{Z}$. We use Van Kampen's Theorem to prove this result. Namely, let $A_1 = S^1 \times S^1$ and let $A_2 = S^1 \times S^1$ where $X = A_1 \cup_f A_2$ Now, using the given attaching map f one has that $A_1 \cap A_2 = S^1$. Note that

$$\pi_1(X) = \pi_1(A_1) *_{\pi_1(A_1 \cap A_2)} \pi_1(A_2)$$

Note that $\pi_1(A_1) = \mathbb{Z} \times \mathbb{Z} = \langle a, b | aba^{-1}b^{-1} \rangle$ and $\pi_1(A_2) = \langle b', c | b'cb'^{-1}c^{-1} \rangle$.

Also, note that

$$\pi_1(X) = \langle a, b, b', c | aba^{-1}b^{-1}, b'cb'^{-1}c^{-1}, bb'^{-1} \rangle$$

So,

$$\pi_1(X) = \langle a, b, c | aba^{-1}b^{-1}, bcb^{-1}c^{-1} \rangle = \langle a, b | \rangle \times \langle c | \rangle = F_2 \times \mathbb{Z}$$

(where the relations $aba^{-1}b^{-1}$, $bcb^{-1}c^{-1}$ occur as a result of the structure of the direct product $\langle a,b| \rangle \times \langle c| \rangle$.

2. Given a map $f: X \to X$, the mapping torus T_f of f is the space obtained by identifying $S^1 \times \{pt\}$ in one torus with $S^1 \times \{pt\}$ in the other torus using the identity map on S^1 . Compute $\pi_1(X, x_0)$.

We see that $\pi_1(T_f) = (\pi_1(X, x_0) \times \mathbb{Z}) / \sim$, where \sim is defined by $([\gamma], k) = (f_*([\gamma], k) \text{ for all } k \in \mathbb{Z} \text{ and all } [\gamma] \in \pi_1(X)$. Thus,

$$\pi_1(T_f) = \langle a, b, c | aca^{-1}c^{-1}, aba^{-1}b^{-1}, a^{-1}f_*(a), b^{-1}f_*(b) \rangle.$$

3. Let *X* and *Y* be two non-empty spaces. If *X* is path connected and *Y* has two path components then show that the join X * Y is simply connected. (You may assume the path connected components are open, though that assumption is not necessary).

Let $[(x,y,t)]_R$ denotes the equivalence class of (x,y,t) via the two relations $(x_1,y,0) \sim (x_2,y,0)$ and $(x,y_1,1) \sim (x,y_2,1)$ for all $x,x_1,x_2 \in X$ and all $y,y_1,y_2 \in Y$. Also define setwise notation by $[U \times V \times S]_R = \{[(u,v,s)]_R : u \in U, v \in V, s \in S\}$. Let the two path connected components of Y be Y_1,Y_2 . Now, let

$$A_1 = [X \times Y_1 \times [0, 1]]_R$$

and

$$A_2 = [X \times Y_2 \times [0, 1]]_R.$$

Note that $X*Y=A_1\cup A_2$ and $A_1\cap A_2=[X\times\{y\}\times\{1\}]_R$ for arbitrary fixed $y\in Y$. Then, since $A_1\cap A_2$ is non-empty and path connected, we may invoke the Seifert-Van Kampen theorem to note that $\pi_1(X*Y,[(x',y',1)]_R)=\pi_1(A_1,[(x',y',1)]_R)*_{\pi_1(A_1\cap A_2,[(x',y',1)]_R)}\pi_1(A_2,[(x',y',1)]_R)$ where $[(x',y',1)]_R\in X*Y$ is a fixed basepoint.

Thus, to show X * Y is simply connected, it suffices to show that $\pi_1(A_1, [(x', y', 1)]_R) = \pi_1(A_2, [(x', y', 1)]_R) = \{e\}$, which is how we proceed.

For arbitrary loops $\gamma^1:[0,1]\to A_1$ and $\gamma^2:[0,1]\to A_2$ given by $\gamma^1(t)=[(\gamma^1_x(t),\gamma^1_y(t),q^1(t))]_R$ and $\gamma^2(t)=[(\gamma^2_x(t),\gamma^2_y(t),q^2(t))]_R$ we have the homotopy $h_1':[0,1]\times[0,1]\to A_1$ defined by

$$h'_1(t,r) = [(\gamma_x^1(t), \gamma_y^1(t), (1-r)q^1(t))]_R,$$

meaning that

$$[(\gamma^1_x(t),\gamma^1_y(t),q^1(t))]_R$$
 is homotopic to $[(\gamma^1_x(t),\gamma^1_y(t),0)].$

However since $[x',y,0]_R = [x'',y,0]_R$ for all $x'' \in X$, one obtains that $[(\gamma_x^1(t),\gamma_y^1(t),0)]_R = [(x,\gamma_y^1(t),0)]_R$ for any point $x \in X$ which implies that

$$[(\gamma_x^1(t), \gamma_u^1(t), q^1(t))]_R$$
 is homotopic to $[(x', \gamma_u^1(t), 0)]_R$. (1)

Similarly the map $h'_2:[0,1]\times[0,1]\to A_2$ defined by

$$h_2'(t,r) = [(\gamma_x^2(t), \gamma_y^2(t), (1-r)q^2(t))]_R$$

is a homotopy, and thus, for any path $[(\gamma_x^2(t), \gamma_y^2(t), q^2(t))]_R \subseteq A_2$ we see that

$$[(\gamma_x^2(t), \gamma_y^2(t), q^2(t))]_R$$
 is homotopic to $[(x', \gamma_y^2(t), 0)]_R$. (2)

Also, note that we have homotopies $H_1:[0,1]\times[0,1]\to A_1$ and $H_2:[0,1]\times[0,1]\to A_2$ defined by

$$H_1([(\gamma_x^1(t), \gamma_y^1(t), q^1(t))]_R, s) = [(\gamma_x^1(t), \gamma_y^1(t), (1-s)q^1(t) + s)]_R$$

and also

$$H_2([(\gamma_x^2(t), \gamma_y^2(t), q^2(t))]_R, s) = [(\gamma_x^2(t), \gamma_y^2(t), (1-s)q^2(t) + s)]_R$$

meaning that in particular one has that $[x',\gamma_y^1(t),0]_R$ is homotopic to $[x',\gamma_y^1(t),1]_R$ but since $[x',y',1]_R=[x',y'',1]_R$ for all $y''\in X$ that means $[x',\gamma_y^1(t),1]_R=[x',y',1]_R$. Thus, for any $x\in X$ and any $\gamma_y^1:[0,1]\to Y_1$

$$[x', \gamma_y^1(t), 0]_R$$
 is homotopic to $[x', y', 1]_R$. (3)

Likewise we have in particular that for any $x \in X$ and any $\gamma_n^2 : [0,1] \to Y_2$

$$[x', \gamma_y^2(t), 1]_R$$
 is homotopic to $[x', y', 1]_R$. (4)

Now, note that (1) and (3) imply that all paths $\gamma^1:[0,1]\to A_1$ are homotopic to the constant path $[(x',y',1)]_R$. Likewise (2) and (4) imply that all paths $\gamma^2:[0,1]\to A_2$ are homotopic to the constant path $[(x,y,1)]_R$. Thus, each of A_1 and A_2 are simply connected. Now, recall that for any space U one has that U is simply connected if and only if U is path connected and $\pi_1(U,u) = \{e\}$ for all points $u \in U$. Thus, A_1, A_2 simply connected implies that $\pi_1(A_1, [(x', y', 1)]_R) = \pi_1(A_2, [(x', y', 1)]_R) = \{e\}$ and thus $\pi_1(X * Y, [(x', y', 1)]_R) = \{e\}$ which implies that X * Yis simply connected since X * Y is path connected.

4. If X is a space with a contractible universal cover then show that any map $S^n \to X$, $n \ge 2$ can be extended to a map $\overline{D^{n+1} \to X}$.

Call our contractible universal cover \tilde{X} . First, note that $D^{n+1} \cong (S^n \times (0,1]) \cup \{0\}$ via the homeomorphism ϕ : $D^{n+1} \cong (S^n \times (0,1]).$

Say $f: S^n \to X$ is our given map.

Note that S^n is path connected and locally path connected. Also, since for any $y_0 \in Y$ we have that $\pi_1(S^n, y_0) = \{e\}$ is trivial for any $y_0 \in S^n$ we certainly have that $f_*(\pi_1(S^n,y_0)) \subseteq p_*(\pi_{\tilde{1}}(\tilde{X},f(y_0)))$ since $f_*(\pi_1(S^n,y_0)) = \{e\}$ is the trivial group in $\pi_1(X, f(y_0))$. That means Prop 1.33 says we have a lift $\tilde{f}: S^n \to \tilde{X}$.

Say that our contraction map is $\tau : \tilde{X} \times [0,1] \to {\{\tilde{x}\}}$.

Define, $y_0 \in f^{-1}(p(\tilde{x}))$. Now, define $\hat{F}: S^n \times [0,1] \to X$ by

$$\hat{F}(x,t) = \tau(\tilde{f}(x), 1-t).$$

If we define

$$F = \hat{F} \circ \phi$$

we are done.

5. Let X be a path connected, locally path connected space with $\pi_1(X, x_0)$ finite, show that any map $X \to S^1$ is nullhomotopic.

 $\pi_1(X,x_0)$ finite means that $f_*(\pi_1(X,x_0))\subseteq \pi_1(S^1,f(x_0))$ a finite subgroup of Z meaning just the trivial group $f_*(\pi_1(X, x_0)) = \{e\}.$

So, as in Prop 1.33, we have that

$$f_*(X, x_0) \subseteq p_*(\pi_1(Z, 0)) = \{f(x_0)\}\$$

the constant loop. So, Prop 1.33 says we can lift f to $\tilde{f}: X \to \mathbb{R}$.

Now, we define the homotopy

$$H_t = q^{-1} \circ h_t \circ q : \mathbb{R} \to \mathbb{R}$$

by

$$gx \mapsto x - \tilde{f(x_0)}$$

and

$$q_t: x \mapsto (1-t)x$$
.

We note that this defines a homotopy

$$\tilde{H}_t = H_t \circ \tilde{f} : X \to \mathbb{R}.$$

Note that indeed we have that

$$\tilde{H}_1(X) = \{\tilde{f(x_0)}\}.$$

Finally, we project this homotopy down to S^1 to get

$$\hat{H}_t: X \to S^1$$

defined by

$$\hat{H}_t = p \circ \tilde{H}_t.$$

Note that indeed

$$\hat{H}_1(X) = p(\{f(x_0)\}) = \{f(x_0)\}$$

and thus any such arbitrary $f:X\to S^1$ is homotopic.