

WAF是时候跟正则表达式说再见

破见

议题内容

Part 1

正则表达式不适合用于构建WAF

Part 2

现有WAF的解决方案

■ Part 3

如何构建未来的WAF

Part 1

正则表达式不适合用于构建WAF

感性认识—误报和漏报难以平衡

关键字【waf】的搜索结果共112记录

提交时间	标题
2016-05-17	中国石油某电商SQL注入(waf绕过)
2016-05-04	韩国本土最大电商linterpark全球站/主站存在sql注入/9库/大量表/双编码/有waf/可union
2016-04-29	中石化某业务SQL注入漏洞 (绕过WAF)
2016-04-21	汽车安全之奔驰某站SQL注入/可影响大量客户信息(bypass waf)
2016-04-21	虎扑体育某站注入 (绕waf)
2016-04-13	2345某主要站点SQL注入影响所有用户数据影响N个同服网站数据(注入需绕过WAF)
2016-04-09	迅雷官方APP存在SQL注入 (跨70库/艰难绕WAF)
2016-04-05	绿盟WAF SQL注入检测bypass
2016-03-28	宁波某p2p平台存在SQL注入漏洞(可绕过WAF)
2016-03-28	申银万国证券mssqi注射绕waf写shell
2016-03-19	车易拍某系统SQL注入40W用户数据(绕过WAF)
2016-03-05	海尔某站绕过wafi主入至Getshell(附脚本)
2016-02-20	天融信数据安全管理系统存在SQL注入无需登陆(非注释绕waf)
2016-02-03	搜狐基站30hSOI注入漏洞(solman绕讨数据编解码流程与waf)

WAF攻防研究之四个层次Bypass WAF

2016-08-11 12:15:58 删除

见招拆招:绕过WAF继续SQL注入常用方法

尝试寻找有理证明

正则表达式DDOS攻击

提出一种正则表达式的DDOS攻击:

正则表达式的最坏时间复杂度大于等于 $o(n^2)$,该正则表达式可被DDOS攻击

Regex DDOS与Regex DOS不同

- $O(n^2)$, $O(2^n)$
- · Regex DDOS目前普遍存在
- Regex DOS很难找到了

输入长度 (K)	PCRE/PHP(ms)	JAVA(ms)
1	0.5	32
2	23	53
4	111	142
8	458	500
10	720	786
20	2910	2941

寻找能被DDOS的正则表达式

寻找最坏时间复杂度大于等于 $O(n^2)$ 的正则表达式

利用正则表达式匹配的回溯

正则表达式匹配原理:NFA

正则表达式:(a|b)*abb 对应的NFA

匹配算法需要尝试每一条路径,直到找到一条匹配路径。尝试所有路径失败则匹配失败。

- 尝试所有匹配路径
- 路径尝试失败,需要回溯

正则表达式DDOS原理

A.*B 😝 Create 🍔 Convert 🔍 Test 👪 Debug 🕝 Use 📳 Library 📭 GREP 🤐 Ford Beginning match attempt at character 0 2 AAN **AAN**backtrack AAbacktrack AAbacktrack Aok Abacktrack Match attempt failed after 7 steps ⊟Beginning match attempt at character 1 2222 2 AN AN backtrack 4 Aok Abacktrack 2 Match attempt failed after 5 steps □Beginning match attempt at character 2 backtrack Match attempt failed after 1 steps

正则:A.*B 文本:AAN

可被DDOS的一种正则表达式模式

影响范围

owasp-modsecurity-crs

(?i:(?:(union(.*?)select(.*?)from))) (?i:<META[\s/+].*?charset[\s/+]*=)

wordpress-4.7.1

class-wp-text-diff-renderertable.php: Line 266: (<ins>.*?)

Discuz_X3.3_SC_UTF8

admincp_announce.php

- Line 136: '/(.*?)<\/b>/i',
- •Line 139: '/<i>(.*?)<\/i>/i',
- •Line 142: '/<u>(.*?)<\/u>/i',

某云WAF/360_safe3.php

集云WAF: union\s+select.*from 360_safe3.php:

- *.+?*\\
- <\s*script\b</pre>
- UNION.+?SELECT

正则表达式不适合用于构建WAF

维护几十条到几百条正则表达式规则,保证拦截率,误报率前提下,所有规则最坏时间复杂度小于 $O(n^2)$,是一件很难事情。

正则表达式不适合用于构建WAF

Part 2

现有WAF的解决方案

基于语义检测的WAF

文本: What's problem about 'Select id,name from', give me a hand。

正则: select.*from

正则只关注 'Select id,name from' , 忽略了上下文的信息。在做注入判断时,对输入进行片面的理解,导致误报。

Improved

整个输入作为一个整体,尝试理解意图。 How?

基于语义检测的WAF

基于语义检测的WAF—实现

基于语义检测的WAF—优缺点

基于统计的机器学习WAF—异常模型

思路

- 正常的请求总是相似
- 异常却各有各的不同

线上请求

- 优点:识别未知的攻击、及攻击变形。
- 面临问题:
 - 准确率
 - 应用变更

一阿里云 | **河云盾先知**

基于统计的机器学习WAF—异常模型&威胁模型

思路:在异常数据的基础上,注入一些领域知识,从而构成一个分类器,从异常中剥离出攻击

优点:

• 准确率相对单独异常模型,提升了许多。

问题:

- 模型滞后性:领域知识注入导致。
- 修复响应:出现漏报,在线上如何修复。

基于统计的机器学习WAF—个人总结

WAF运营手段 - WAF安全水位 ・WAF瓶颈 ・payload的变化

Part 3

如何构建未来的WAF

基于深度学习构建WAF

思路:用深度学习的模型代替语义检测中的词法分析、语法分析。

一阿里云 | 新云盾先知

攻击语义的深度学习网络

为什么深度学习、RNN:

- 深度学习可通过学习一种深层非线性网络结构,实现攻击语义的逼近。
- · RNN能够使信息持续保存,根据已有知识进行思考,更容易学习到攻击语义。

