FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO/ UNICAMP

EA611 - Circuitos II, turma A Prova nº 2 - 16 de maio de 2007

Nome: Lucos Voz Posto de Avolido F

____RA_062441

Resultados em forma de expressões (quando couber resultado numérico) não serão considerados.

O nmero de significativos deve ser razoável (não copie todos os significativos da calculadora) e potências de 10, se utilizadas, devem ter expoente divisível por 3 (notação de engenharia).

1. Considere um sistema constituído por um gerador, um transformador elevador (1), uma linha de transmissão, um transformador abaixador (2) e uma carga.

São dados:

- Gerador: 50 MVA, 13,8 kV, reatância (de Thévenin) x = 60%
- Transformador 1: 12,5/75 kV, 60 MVA, reatância de dispersão x=8%
- Transformador 2: 69/13,2 kV, 75 MVA, reatância de dispersão x=7%
- Linha: impedância série $j60\Omega$

Adotando na carga uma potência base correspondente a 100 MVA trifásica e uma tensão base correspondente a 13,8 kV de linha, preencha a tabela dos valores base nas três seções do circuito.

	$S_{3\phi}$ (MJA)	S_{ϕ} (MVA)	$V_{ m linh}(V, J)$	$V_{ m fase}(\mathcal{N}\mathcal{V})$	$z \Omega$	I (KA)
Gerador	100	33,3	12,02	6,94	1,45	4,80
Linha	100	33,3	72,14	41,65	52,1	0,80
Carga	100	3 <i>></i> , 3	13.8	7,97	1,91	4,18

2. Considere um sistema constituído por um gerador, um transformador elevador (1), uma linha de transmissão, um transformador abaixador (2) e uma carga.

São dados:

- Gerador: 50 MVA, 13,8 kV, reatância (de Thévenin) x=60%
- Transformador 1: 12,5/69 kV, 60 MVA, reatância de dispersão x = 10%
- Transformador 2: 75/13,8 kV, 75 MVA, reatância de dispersão x=8%
- Linha: impedância série $j40\Omega$
- 2.1 Represente o diagrama unifilar em pu, adotando os valores base dados na tabela

	$S_{3\phi}$ (MVA)	S_{ϕ} (MVA)	$V_{ m linha}~({ m kV})$	$V_{ m fase} ({ m kV})$	$Z\left(\Omega\right)$	I (kA)
Gerador	100	33,3	13,0	7,51	1,69	4,43
Linha	100	33,3	71,7	41,4	51,4	0,804
Carga	100	33,3	13,2	7,62	1,74	4,37

2.2 A tensão de linha na carga vale 13.2 kV. A carga consome uma potência de 40 MVA trifásica com $\cos \phi = 0.92$ (indutivo).

Obtenha o módulo da tensão (de linha, em kV) nos terminais do gerador.

1.)
$$\sqrt{\frac{1}{1000}} = \frac{1,35}{3} = \frac{0,154}{13} = \frac{0,12}{3} = \frac{0,12}$$

3.1 Uma impedância puramente resistiva R é ligada entre as fases b e c de uma rede trifásica equilibrada com seqüência de fases abc e tensão fase-neutro V. Tomando como referência de fase a tensão \hat{V}_{an} , obtenha as correntes \hat{I}_a , \hat{I}_b e \hat{I}_c . Obtenha as componentes simtricas destas correntes, \hat{I}_+ , \hat{I}_- e \hat{I}_0 .

3.2 A rede considerada neste problema é alimentada por um banco trifásico Δ/Y com relação de espiras n_1/n_2 . Sabendo que as componentes simtricas das correntes primárias de um banco Δ/Y se relacionam com as componentes simétricas das correntes secundárias por

$$\left[\begin{array}{c} \hat{I}_{\Delta+} \\ \hat{I}_{\Delta-} \\ \hat{I}_{\Delta0} \end{array}\right] = \frac{\sqrt{3}n_2}{n_1} \left[\begin{array}{ccc} j & 0 & 0 \\ 0 & -j & 0 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array}{c} \hat{I}_{Y+} \\ \hat{I}_{Y-} \\ \hat{I}_{Y0} \end{array}\right]$$

obtenha as componentes simétricas das correntes no primário do banco. Obtenha ainda as correntes de linha \hat{I}_A , \hat{I}_B e \hat{I}_C .consumidas pelo primário do banco.

1.)

Van =
$$\sqrt{20}$$

Van = $\sqrt{200}$

Van = $\sqrt{200}$

Van = $\sqrt{200}$
 $\sqrt{200}$

4.1 Obtenha a transformada de Laplace da função

$$f(t) = t \cosh(at) u(t)$$

4.2 Obtenha a antitransformada da função

1 1 2

$$F(s) = \frac{s+1}{s^2(s+2)^2}$$

1)-
$$f(s)=\frac{1}{2}\left(\frac{1}{(s+a)^2}+\frac{1}{(s-a)^2}\right)$$

Deserv. no

2)
$$\frac{A}{S} + \frac{B}{S^2} + \frac{C}{S+2} + \frac{D}{(S+2)^2} = \frac{S+1}{(S+2)^2}$$

$$A(S(S+2)^2) + B(S+2)^2 + C((S+2).S^2) + DS^2 = S+S$$

$$S^{3}$$
) A + C = 0
 S^{3}) $A + C = 0$
 S^{3}) $A + C = 0$
 $A = -C$
 $A = -C$

 $\frac{5}{1}$ $\frac{44}{1}$ $\frac{43}{1}$ = 1

$$B + D = 0$$

$$B = -D = \frac{1}{4} \Rightarrow D = -\frac{1}{4}$$

$$f(s) = \frac{1}{4} + \frac{-1/4}{(8+2)^2} = \frac{1}{4}u(t) - \frac{1}{4}e^{-2t}u(t) =$$

$$\frac{1}{4}\left(1-e^{-2t}\right)\omega(t) \qquad \mathbf{K}$$

$$\begin{aligned}
t \cdot \left(e^{at} + e^{-at}\right) &= \frac{1}{2} \left(e^{at} + e^{-at}\right) \\
&= \frac{1}{2} \left(+e^{-bt} + +e^{-at}\right) = \frac{1}{2} \left(\frac{1}{(5+b)^2} + \frac{1}{(5+a)^2}\right) \\
b &= -a \\
&= \frac{1}{2} \left(\frac{1}{(5-q^2)^2} + \frac{1}{(5+a)^2}\right)
\end{aligned}$$

03 Results:

$$\frac{\hat{J}_{R}}{\sqrt{\frac{1}{2}}} = \frac{\hat{J}_{nn} - \hat{J}_{cn}}{R} \Rightarrow \frac{\sqrt{3}}{\sqrt{1}} = \frac{2-90^{\circ}}{\sqrt{1}} = \hat{J}_{b}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$