Classical Inference: Point Estimation

- Let θ^* denote the unknown parameter of a random variable X (typically mean, variance, scale, shape etc) and suppose we observe i.i.d samples of X which are recorded in the dataset $\mathcal{D} = \{x_1, x_2, \dots, x_n\}$.
- In frequentist approach, we estimate θ^* , by defining a point estimator $\hat{\Theta}$ as a function of the random samples $X_1, \ldots X_n$ as $\hat{\Theta} = h(X_1, \ldots X_n)$.
- While $\hat{\Theta}$ is a random variable, given \mathcal{D} the estimator takes the value $\hat{\Theta} = h(x_1, \dots x_n)$.
- Example : Sample mean $\hat{\mu}_n = \frac{\sum_{i=1}^n X_i}{n}$.

Point Estimators: Properties

The Bias $B(\hat{\Theta})$ of an estimator $\hat{\Theta}$ is defined as

$$B(\hat{\Theta}) = E[\hat{\Theta}] - \theta^*$$

- Unbiased estimators are estimators with zero bias, i.e., $B(\hat{\Theta}) = 0$ and hence $E[\hat{\Theta}] = \theta^*$
- Are all unbiased estimators good ? Let $\hat{\Theta}_1 = X_1$ and $\hat{\Theta}_2 = \frac{\sum_{i=1}^n X_i}{n}$. Which estimator is better?
- Var $(\hat{\Theta}_1) = \sigma^2$ while $Var(\hat{\Theta}_2) = \frac{\sigma^2}{n}$.
- ► We need other measures to determine how good an estimator is, something that looks at the variance of these estimators.

Mean square error of Point Estimators

ightharpoonup The mean squared error of an estimator $\hat{\Theta}$ is defined as

$$MSE(\hat{\Theta}) = E[(\hat{\Theta} - \theta^*)^2]$$

Note that

$$MSE(\hat{\Theta}) = E[(\hat{\Theta} - \theta^*)^2]$$

= $Var(\hat{\Theta} - \theta^*) + E[\hat{\Theta} - \theta^*]^2$
= $Var(\hat{\Theta}) + Bias(\hat{\Theta})^2$

- This means that biased estimators could possibly have lower MSE error if they have extremely low variance!
- ► Find MSE of $\hat{\Theta}_1 = X_1$ and $\hat{\Theta}_2 = \hat{\mu}_n + 1$.
- Bias-Variance tradeoff talks a lot in machine learning!

Consistency of estimators

- What happens to estimators as the size of the data set $(|\mathcal{D}| = n)$ increases? Do all estimators converge to θ^* ?
- Not necessarily! For examples $\hat{\Theta}_1 = X_i$ where X_i is picked random from \mathcal{D} does not converge.
- \triangleright What about $\hat{\mu}_n$. Using SLLN, we see that this does.
- Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_n, \dots$, be a sequence of point estimators of θ^* (here n denotes the size of the dataset) We say that $\hat{\Theta}_n$ is a **consistent estimator** of θ , if

$$\lim_{n\to\infty} P(|\hat{\Theta}_n - \theta^*| \ge \epsilon) = 0, \quad \text{for all } \epsilon > 0$$

- ► This is convergence in probability. If almost sure convergence holds, it is called strongly consistent.
- ightharpoonup Clearly, $\hat{\Theta}_n = \hat{\mu}_n$ is strongly consistent and hence consistent.

Consistency of estimators

Theorem

Let $\hat{\Theta}_1, \hat{\Theta}_2, \ldots$, be a sequence of point estimators of θ^* . If

$$\lim_{n\to\infty} MSE(\hat{\Theta}_n) = 0$$

then $\hat{\Theta}_n$ is a consistent estimator of θ^*

$$P(|\hat{\Theta}_{n} - \theta^{*}| \geq \epsilon) = P(|\hat{\Theta}_{n} - \theta^{*}|^{2} \geq \epsilon^{2})$$

$$\leq \frac{E[\hat{\Theta}_{n} - \theta^{*}]^{2}}{\epsilon^{2}} \text{ Markov Inequality}$$

$$= \frac{MSE(\hat{\Theta}_{n})}{\epsilon^{2}}$$

$$\to 0 \text{ as } n \to \infty.$$