CMSC 510 Regularization Methods for Machine Learning

Reproducing Kernel Hilbert Space

Instructor:

Dr. Tom Arodz

Naïve approach

- Classification with Gaussians: $h(x) = \sum_{j} c_{j} \exp(-||x-m_{j}||^{2}) = \sum_{j} c_{j} K_{mj}(x)$
 - $K_{mj}(x) = K(m_j,x) = \exp(-||x-m_j||^2)$

A better naïve approach:

- Where to place Gaussian centers m_i?
 - Let's place Gaussians at samples
 - $h(x) = \sum_{j} c_{j} \exp(-||x-x_{j}||^{2}) = \sum_{j} c_{j} K_{xj}(x) = \sum_{j} c_{j} K(x_{j},x)$
- What c_i to choose?
 - Minimize the risk on the training set:

$$\underset{\{\alpha_j\},b}{\operatorname{arg min}} \sum_{i=1}^m \ell(y_i(\sum_{j=1}^m \alpha_j y_j K[j,i] + b))$$

Problems:

- Gaussians why only at samples?
- We can increase a_j towards infinity (taller Gaussians)
 and get higher values of h(x)
 - And reduce our loss
- But add L₂ (or L₁) penalty on the vector alpha
 - Still not that good: same penalty, no matter where the Gaussian is...

Do we need both?

- To answer both our problem:
- $K_x(z) = \exp(-||z-x||^2)$
- Why gaussians only at training points?
- How to do better regularization?

we need to define RKHS

- Reproducing Kernel Hilbert Space (for Gaussians)
 - A vector space contains objects (vectors) that we can add and multiply by a real number
 - Gaussians and their linear combinations: we can + and * them
 - Vectors in RKHS: K_{X} , $K_{X'}$, $0.2*K_{X}$, $-0.3*K_{X'}$, $7*K_{X} + 11*K_{X'}$,
 - An inner product between any pair of vectors: $\langle K_{X}, K_{X'} \rangle$, $\langle 0.2*K_{X} + .3*K_{X'}, 7*K_{X} + 11*K_{X'} \rangle = 0.2*7*\langle K_{X}, K_{X} \rangle + .3*7*\langle K_{X'}, K_{X} \rangle + .2*11*\langle K_{X}, K_{X'} \rangle + .3*11*\langle K_{X'}, K_{X'} \rangle$

- Reproducing Kernel Hilbert Space (for Gaussians)
 - A vector space contains objects (vectors) that we can add and multiply by a real number
 - Gaussians and their linear combinations: we can + and * them
 - Vectors in RKHS: K_{X} , $K_{X'}$, $0.2*K_{X}$, $-0.3*K_{X'}$, $7*K_{X} + 11*K_{X'}$,
- We also said: $K_x(y) = K(x,y)$ so RKHS is:

$$\mathcal{H} := \left\{ h : X \to \mathbb{R} : h(x) = \sum_{i=1}^{n} c_j K_{t_j}(x) = \sum_{i=1}^{n} c_j K(t_j, x) \right\}$$

With elements like:

$$f(x) = \sum_{j=1}^{n} c_j K_{t_j}(x)$$
$$g(x) = \sum_{j=1}^{n} c'_j K_{t'_j}(x)$$

- Reproducing Kernel Hilbert Space (for Gaussians)
 - An inner product between any pair of vectors: $\langle K_{x}, K_{x'} \rangle$, $\langle 0.2*K_{Y} + .3*K_{Y'}, 7*K_{Y} + 11*K_{Y'} \rangle = 0.2*7*\langle K_{Y}, K_{Y} \rangle +$ $.3*7*\langle K_{x'}, K_{x} \rangle + .2*11*\langle K_{x}, K_{x'} \rangle + .3*11*\langle K_{x'}, K_{x'} \rangle$
- What should we use as inner product $\langle K_{\mathbf{x}}, K_{\mathbf{x'}} \rangle$?
- We will use our kernel: $\langle K_x, K_{x'} \rangle = K(x, x')$
- Then, for: $f(x) = \sum_{j=1}^n c_j K_{t_j}(x)$ $g(x) = \sum_{j=1}^n c_j' K_{t_j'}(x)$ we have: $\langle f, g \rangle_{\mathcal{H}} = \sum_{j=1}^n \sum_{j=1}^{n} c_j c_j' K(t_j, t_j')$.

we have:
$$\langle f,g\rangle_{\mathcal{H}}=\sum_{j=1}^n\sum_{j=1}^{n'}c_jc_j'K(t_j,t_j')$$

•
$$K_x(z) = K(x,z) = \exp(-||z-x||^2)$$

RKHS - Summary

• For Mercer kernel K(x,z), (e.g. Gaussian) define functions $K_x(z)=K(x,z)$ and construct H as:

$$\mathcal{H} := \left\{ h : X \to \mathbb{R} : h(x) = \sum_{i=1}^{n} c_j K_{t_j}(x) = \sum_{i=1}^{n} c_j K(t_j, x) \right\}$$

Vector space H has inner product defined as:

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{j=1}^{n} \sum_{j=1}^{n'} c_j c'_j K(t_j, t'_j).$$

which can be evaluated very easily!

$$f(x) = \sum_{j=1}^{n} c_j K_{t_j}(x)$$
$$g(x) = \sum_{j=1}^{n'} c'_j K_{t'_j}(x)$$

- Gaussian is a valid Mercer kernel:
 - Symmetric
 - Positive semi-definite (matrix K eigenvalues are >=0)

input space => feature space

- We have a classification problem over some samples/vectors x,z, ...
 - Vector space with these vectors will now be called "input space", not "feature space"
- Define kernel K(x,z)=K(z,x) e.g. gaussian kernel $K(x,z)=\exp(-||x-z||^2)$
- Define *representers* K_x as functions K_x : $K_x(z) = K(x,z)$
- Define inner product of representers as: $\langle K_x, K_z \rangle_H = K(x,z)$
- We have a valid vector space with representers and their linear cominations in it (the RKHS, aka "feature space" in kernel learning)
- How to connect the two spaces?
 - The input space with x,z etc.
 - The feature space K_x, K_z
- Obvious: define a function Φ(x)=K_x
 - Φ maps x to its representer K_x

- Let's define a linear classifier in RKHS ("feature space")
- One approach: use the mapping $\Phi(x)=K_x$ to obtain vectors in RKHS

•
$$h = \sum_{j} c_{j} \Phi(x_{j}) = \sum_{j} c_{j} K_{xj}$$

•
$$h(x) = \sum_{j} c_{j} \Phi(x_{j})(x) = \sum_{j} c_{j} K_{xj}(x) = \sum_{j} c_{j} K(x_{j},x)$$

= $\sum_{i} c_{i} \exp(-||x-x_{i}||^{2})$

Alternative – avoid calculating the mapping Φ, use inner products instead

- Alternative avoid calculating the mapping Φ, use inner products instead
 - What is a linear classifier?
 - We used $h(x)=w^Tx$
 - We can instead write h(x)=<w,x>
 - Adding keeps them linear: h(x)=0.3*< w, x> + 0.2< v, x> is also linear
 - What can we use as vector w? any vector of the same dimensionality, including training samples $x_1, x_2, ...$
 - $h(x)=0.3*< x_1, x> + 0.2< x_2, x> + ...$ is a linear classifier with $w=0.3x_1+0.2x_2+...$

- Alternative avoid calculating the mapping Φ, use inner products instead
 - What is a linear classifier?
 - We used $h(x)=w^Tx$
 - We can instead write $h(x) = \langle w, x \rangle$
 - Adding keeps them linear: h(x)=0.3*< w, x> + 0.2< v, x> is also linear
 - What can we use as vector w? any vector of the same dimensionality, including training samples $x_1, x_2, ...$
 - $h(x)=0.3*< x_1, x> + 0.2< x_2, x> + ...$ is a linear classifier with $w=0.3x_1+0.2x_2+...$
 - If we have *linear_function*(x) = $\langle x_j, x \rangle$ in the input space, in feature space we have *linear_function*($\Phi(x)$)= $\langle \Phi(x_j), \Phi(x) \rangle$
 - But $\Phi(x)=K_x$, and also $K(x,z)=K_x(z)$, so we get:
 - $h(x) = \sum_{j} c_{j} < \Phi(x_{j}), \ \Phi(x_{i}) > = \sum_{j} c_{j} < K_{xj}, K_{x} > = \sum_{j} c_{j} \ K(x_{j}, x) = \sum_{j} c_{j} \ K_{xj}(x)$
 - $h(x) = \sum_{j} c_{j} \exp(-||x_{i}-x_{j}||^{2})$
 - h(x) is a linear classifier in the feature space, nonlinear in input space

Kernel classifier

 We have an optimization problem where we're looking for the optimal function h(x)

$$\min_{h \in \mathcal{H}} C \sum_{i=1}^{m} \ell(y_i, h(x_i), b) + \frac{1}{2} ||h||_{\mathcal{H}}^2$$

- We use h: $h(x_i) = \sum_{j=1}^m c_j K_{x_j}(x_i)$ where $K_t(x) = \langle K_t, K_x \rangle_H = K(t,x)$ based on kernel K
 - Symmetric, positive definite K

$$K[i,j] := K(x_i,x_j)$$

We know how to get norm: from inner product

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{j=1}^{n} \sum_{j=1}^{n'} c_j c'_j K(t_j, t'_j).$$
 $||h||_{\mathcal{H}} = \sqrt{\langle h, h \rangle_{\mathcal{H}}}.$

• We can solve using vectors (we used $c_j = \alpha_j y_j$)

$$\underset{\{\alpha_j\},b}{\operatorname{arg min}} \sum_{i=1} \ell(y_i (\sum_{j=1} \alpha_j y_j K[j,i] + b)) + \sum_{j=1} \sum_{k=1} \alpha_j y_j \alpha_k y_k K[j,k].$$

Principled (math) approach

We have an optimization problem where we're looking for the optimal function h(x)

$$\min_{h \in \mathcal{H}} C \sum_{i=1}^{m} \ell(y_i, h(x_i), b) + \frac{1}{2} ||h||_{\mathcal{H}}^2$$

■ Let's focus on ||h||²

$$\min_{h \in \mathcal{H}, b} C \sum_{i=1}^{m} \ell(x_i, y_i, h(x_i), b) + \frac{1}{2} ||h||_{\mathcal{H}}^2$$

$$= \min_{c \in \mathbb{R}^m, b} C \sum_{i=1}^m \ell(x_i, y_i, \sum_{j=1}^m c_j K_{x_j}(x_i), b) + \frac{1}{2} || \sum_{j=1}^m c_j K_{x_j} ||_{\mathcal{H}}^2)$$

$$= \min_{c \in \mathbb{R}^m, b} C \sum_{i=1}^m \ell(x_i, y_i, \sum_{j=1}^m c_j K(x_j, x_i), b) + \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m c_i c_j K(x_i, x_j)$$

Low $K(x_i,x_j)$, so: not much incentive for low c_ic_j

$$||h||_{\mathcal{H}} = \sqrt{\langle h, h \rangle_{\mathcal{H}}} \cdot \langle f, g \rangle_{\mathcal{H}} = \sum_{j=1}^{n} \sum_{j=1}^{n} c_j c'_j K(t_j, t'_j).$$

$$K(x_j,x_i) = \exp(-||x_i-x_j||^2)$$

High $K(x_i,x_j)$, so: low c_ic_j highly preferred