Preface

This is the second edition of a step-by-step tutorial for professionals, researchers and students working in the area of neuroscience in general, and computational neuroscience in particular. It can also be used as an interactive self-study guide to understanding biological neuronal and network structure for those working in the area of artificial neural networks and the cognitive sciences. The tutorials are based upon the GENESIS neural simulation system, which is now being used for teaching and research in at least 26 countries. The following chapters consist of a combination of edited contributions from researchers in computational neuroscience and current users of the system, as well as several chapters that we have written ourselves.

This book, and the tutorial simulations on which it is based, grew out of a simulation laboratory accompanying the annual Methods in Computational Neuroscience course taught at the Marine Biological Laboratory in Woods Hole, MA from 1988 to 1992. Since that time, the tutorials have been further developed and refined while being used in courses taught at Caltech and several other institutions, including the Crete course in Computational Neuroscience. For this second edition, we have made many revisions and additions based on comments, suggestions and corrections from members of the GENESIS Users Group, BABEL, and from students and teachers who have used this book.

The release of GENESIS version 2.1, with its many new features, has resulted in the addition of two new chapters and the addition of new material to existing chapters. With the availability of the GENESIS chemical kinetics modeling library and its graphical interface (*Kinetikit*), we expect to see GENESIS being increasingly used to relate cellular and network properities to biochemical signaling pathways (Chapter 10). The increasing sophistication, realism and size of large network models and the use of computationally intensive automatic parameter fitting methods have led to the development of a new parallel version of GENESIS (PGENESIS) which allows GENESIS to run on parallel computers and networks of workstations (Chapter 21). Other new additions include a section describing ways to implement synaptic modification (learning), a section describing uses of

a new type of GENESIS ionic channel (the two-dimensional tabulated channel) which allows modeling of a wide variety of voltage and ionic concentration-dependent channels, a description of improvements in the procedure for implementing fast "implicit" numerical methods in GENESIS simulations, and descriptions of many new GENESIS commands and simulation components.

This new edition is accompanied by a CD-ROM containing the complete GENESIS 2.1 distribution with *Kinetikit*, PGENESIS and hypertext reference manuals. It also includes numerous tutorial simulations and example simulation scripts, including all of those used in the book, plus a collection of GENESIS models taken from the BABEL archives. Please see Appendix A for further details.

Part I of the book teaches concepts in neuroscience and neural modeling by means of interactive computer tutorials. These allow the student to perform realistic simulations and experiments on model neural systems. The simulations are user-friendly with on-line help and may be used without any prior knowledge of the GENESIS simulator or computer programming. The tutorials in Part II teach the use and programming of the GENESIS simulator for the construction of one's own simulations. Each tutorial is accompanied by a number of suggested exercises, "experiments," or projects which may be either assigned as homework or used for self-study.

Although they form a sequence, these tutorials were designed so that they may be used independently, as supplemental material for existing courses. This presentation, as well as the variety of suggested exercises and optional projects, makes it possible to explore topics at various levels of depth. For example, a survey course without much time to devote to a simulation laboratory might use only one or two simulations selected from the first few chapters, which treat the Hodgkin-Huxley model, passive propagation in dendrites, and the temporal summation of synaptic potentials in a multi-compartmental neuron model. A more advanced course, or one that emphasizes the use of computer simulation as a tool for the understanding of the nervous system, would place more emphasis on the later chapters that deal with the role of ionic conductances in burst firing of neurons, central pattern generator circuits, cortical networks and modeling of biochemical signaling pathways. A course that can devote time to student simulation projects can use the tutorials in Part II to quickly get students to the point of creating their own simulations. In the introductory chapter (Table 1.1), we list the correspondence between the Part I chapters and those in several popular neuroscience textbooks. Later, in Sec. 3.2, we give an overview of the tutorials used in this book.

We have found that even experienced researchers who are familiar with the concepts presented in the introductory chapters have been able to learn something from the accompanying simulations, and have been able to use the more advanced simulations as a starting point for original research simulations. As interest in the field of computational neuroscience continues to expand, and as increasing numbers of neuroscientists recognize the necessary connection between modeling and experimental neurobiology, we hope and an-

ticipate that this book will promote access to the power of realistic simulations of neural structures.

Acknowledgments

In writing this book, we have benefited from the help of many people. Most of the credit is due to the hard work of the contributors (listed on page xi) who unselfishly devoted their time to this project. We, of course, take full responsibility for the inevitable errors and omissions. The content and presentation have greatly benefited from the comments and suggestions of those from the many institutions that are now using GENESIS in teaching. Particular thanks are due to Jacques Brisson (Ecole des Hautes Etudes Commerciales), Mark Kamath (McMaster University), Allen Plummer (University of Nevada, Reno) and Ed Vigmond (University of Toronto), who have reviewed or used preliminary drafts of the book. We are indebted to all the students who helped, sometimes under adverse conditions, to refine and debug these simulations during the Woods Hole course. We have also benefited from helpful suggestions by Upi Bhalla (National Centre for Biological Sciences, Bangalore), Erik De Schutter (University of Antwerp), Jason Leigh (University of Illinois, Chicago) and Eve Marder (Brandeis), who have reviewed drafts of chapters from the book, and from Carolyn Keaton (Tennessee State University), who reviewed several chapters and tested the accompanying exercises. We also appreciate the help of Chris Assad (Caltech) in generating figures for Chapter 9.

Special thanks go to our publisher, Allan Wylde of TELOS, for his encouragement and his patience during the long process of completing this book. The whimsical artwork on the cover is the creation of Erika Oller, who is becoming increasingly famous.

This book and the accompanying educational tutorials could not have been developed without the financial support of the Division of Biological Instrumentation and Resources of the National Science Foundation. We wish to thank them for recognizing and supporting the important and growing synergy between research, education and computational science.

Above all, thanks are due to the numerous GENESIS developers who have contributed and continue to contribute to the development of this system: this especially includes Matt Wilson and Upinder Bhalla, the original creators of the simulator and its interface; Erik De Schutter, Alex Protopapas, Mike Vanier, and Upi again, who continue to contribute both ideas and energy to the expansion of the system; Dave Bilitch, Venkat Jagadish, and Jenny Forss for their tireless software support, and former students in our laboratory at Caltech, Dieter Jaeger, Maurice Lee, Maneesh Sahani and Michael Speight for ideas, creativity and guidance to this project.

GENESIS users from outside Caltech who have also played a particularly important role in the development of GENESIS include: David Berkowicz (Yale), Bill Broadley (University of Pittsburgh), Kevin Cunningham (MIT), Dale Fay (ERIM), Nigel Goddard (Pitts-

burgh Supercomputer Center), Randy Gobbel (UC, San Diego), Bruce Graham (Australian National University), Mike Hasselmo (Harvard), William Holmes (Ohio University), Rich Murphey (University of Texas, Galveston), Mark Nelson (University of Illinois), Jim Olds (NIH), Walter Schneider (University of Pittsburgh), David Senseman (University of Texas, San Antonio), Diana Smetters (Salk Institute) and Mike Walker (Brown), as well as many other members of BABEL, who have contributed to GENESIS development through documentation, simulations, simulator code, bug fixes, ports to other machines, suggestions and provocative questions (and sometimes criticisms).

Finally, we are most grateful for the patience and understanding of our families, friends and pets, who have suffered much neglect during the first writing of this book, and have now suffered yet again.

James M. Bower, Pasadena David Beeman, Boulder

Contributors

David Beeman (Chapters 1–3, 7 and 12–20), Department of Electrical and Computer Engineering, University of Colorado, Boulder, CO 80309-0425

Upinder S. Bhalla (Chapters 10 and 21), National Centre for Biological Sciences, TIFR Centre, IISc Campus, PO Box 1234, Bangalore 560012, India

James M. Bower (Chapters 1–3, 7, 9 and 11), Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125

Avis H. Cohen (Chapter 8), Center for Neural and Cognitive Sciences, University of Maryland, College Park, MD 20742

Sharon Crook (Chapter 8), Center for Computational Biology, PO Box 173505, Montana State University, Bozeman, MT 59717-3505

Erik De Schutter (Chapter 20), Born-Bunge Foundation, University of Antwerp - UIA, Universiteitsplein 1, B2610 Antwerp, Belgium

Nigel H. Goddard (Chapter 21), Pittsburgh Supercomputing Center, Pittsburgh, PA 15213

Greg Hood (Chapter 21), Pittsburgh Supercomputing Center, Pittsburgh, PA 15213

Mark Nelson (Chapter 4), Beckman Institute, University of Illinois, Urbana, IL 61801

Alexander Protopapas (Chapter 9), Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125

John Rinzel (Chapter 4), Mathematical Research Branch, National Institutes of Health, Bethesda, MD 20814

Idan Segev (Chapters 5 and 6), Department of Neurobiology, Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel

Michael Vanier (Chapter 18), Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125

Matthew A. Wilson (Chapter 12), Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139

Contents

I	Neur	obiologi	ical Tutorials with GENESIS	1				
1	Introduction							
	1.1	Compu	tational Neuroscience	3				
	1.2	_	Гhis Book	4				
2	Comp	partment	tal Modeling	7				
	2.1	Modeli	ng Neurons	7				
		2.1.1	Detailed Compartmental Models	8				
		2.1.2	Equivalent Cylinder Models	9				
		2.1.3	Single and Few Compartment Models	10				
	2.2	Equival	lent Circuit of a Single Compartment	10				
	2.3		Connections, Synapses and Networks	12				
	2.4		tion Accuracy	13				
		2.4.1	Choice of Numerical Integration Technique	13				
		2.4.2	Integration Time Step	14				
		2.4.3	Accuracy of GENESIS	15				
3	Neura	al Model	ling with GENESIS	17				
	3.1	What is	s GENESIS?	17				
		3.1.1	Why Use a General Simulator?	17				
		3.1.2	GENESIS Design Features	18				
		3.1.3	GENESIS Development	20				
	3.2	Introdu	action to the Tutorials	20				
	3.3		action to the GENESIS Graphical Interface	22				
		3.3.1	Starting the Simulation	22				
		3.3.2	The Control Panel	23				

xiv CONTENTS

		3.3.3	Using Help Menus	. 24
		3.3.4	Displaying the Simulation Results	. 26
4	The H	lodgkin-	Huxley Model	29
	4.1	Introdu	ction	. 29
	4.2	Historio	cal Background	. 30
	4.3	The Ma	thematical Model	. 34
		4.3.1	Electrical Equivalent Circuit	. 34
		4.3.2	HH Conventions	. 35
		4.3.3	The Ionic Current	. 36
	4.4	Voltage	Clamp Experiments	. 38
		4.4.1	Characterizing the K Conductance	. 39
	4.5	GENES	SIS: Voltage Clamp Experiments	. 41
	4.6	Parame	terizing the Rate Constants	. 44
	4.7	Inactiva	ation of the Na Conductance	. 45
	4.8	Current	Injection Experiments	. 47
	4.9	Exercis	es	. 47
5	Cable	and Co	mpartmental Models of Dendritic Trees	51
	5.1	Introdu	ction	. 51
	5.2	Backgr	ound	. 53
		5.2.1	Dendritic Trees: Anatomy, Physiology and Synaptology	. 53
		5.2.2	Summary	. 55
	5.3	The On	e-Dimensional Cable Equation	. 56
		5.3.1	Basic Concepts and Assumptions	
		5.3.2	The Cable Equation	. 56
	5.4	Solution	n of the Cable Equation for Several Cases	
		5.4.1	Steady-State Voltage Attenuation with Distance	. 59
		5.4.2	Voltage Decay with Time	. 60
		5.4.3	Functional Significance of λ and τ_m	
		5.4.4	The Input Resistance R_{in} and "Trees Equivalent to a Cylinder"	
		5.4.5	Summary of Main Results from the Cable Equation	
	5.5	Compa	rtmental Modeling Approach	. 65
	5.6	Compa	rtmental Modeling Experiments	. 68
	5.7	_	nsights for Passive Dendrites with Synapses	
	5.8		sics of Excitable Dendrites	
	5.9		tational Function of Dendrites	
	5.10	_	es	

<u>CONTENTS</u> xv

6.1 Introduction
6.2.1 Voltage Response of Passive Membrane to a Current Pulse 8 6.3 Response to Activation of Synaptic Channels 8 6.3.1 The Postsynaptic Current 8 6.3.2 The Postsynaptic Potential 8 6.3.3 Smooth Synaptic Conductance Change: The "Alpha Function" 8 6.4 A Remark on Synaptic Excitation and Inhibition 8 6.5 GENESIS Experiments with PSPs 9 6.5.1 Temporal Summation of Postsynaptic Potentials 9 6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.3 Response to Activation of Synaptic Channels 8 6.3.1 The Postsynaptic Current 8 6.3.2 The Postsynaptic Potential 8 6.3.3 Smooth Synaptic Conductance Change: The "Alpha Function" 8 6.4 A Remark on Synaptic Excitation and Inhibition 8 6.5 GENESIS Experiments with PSPs 9 6.5.1 Temporal Summation of Postsynaptic Potentials 9 6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.3.1 The Postsynaptic Current 8 6.3.2 The Postsynaptic Potential 8 6.3.3 Smooth Synaptic Conductance Change: The "Alpha Function" 8 6.4 A Remark on Synaptic Excitation and Inhibition 8 6.5 GENESIS Experiments with PSPs 9 6.5.1 Temporal Summation of Postsynaptic Potentials 9 6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.3.2 The Postsynaptic Potential 8 6.3.3 Smooth Synaptic Conductance Change: The "Alpha Function" 8 6.4 A Remark on Synaptic Excitation and Inhibition 8 6.5 GENESIS Experiments with PSPs 9 6.5.1 Temporal Summation of Postsynaptic Potentials 9 6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.3.3 Smooth Synaptic Conductance Change: The "Alpha Function" 8 6.4 A Remark on Synaptic Excitation and Inhibition 8 6.5 GENESIS Experiments with PSPs 9 6.5.1 Temporal Summation of Postsynaptic Potentials 9 6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.4 A Remark on Synaptic Excitation and Inhibition 8 6.5 GENESIS Experiments with PSPs 9 6.5.1 Temporal Summation of Postsynaptic Potentials 9 6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.5 GENESIS Experiments with PSPs 9 6.5.1 Temporal Summation of Postsynaptic Potentials 9 6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.5.1 Temporal Summation of Postsynaptic Potentials 9 6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.5.2 Nonlinear Summation of Postsynaptic Potentials 9 6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.6 Concluding Remarks 9 6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
6.7 Exercises and Projects 9 7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
7 Ion Channels in Bursting Neurons 9 7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
7.1 Introduction 9 7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
7.2 General Properties of Molluscan Neurons 9 7.3 Ionic Conductances — The Dance of the Ions 10 7.3.1 Action Potential Related Conductances 10 7.3.2 Control of Bursting Properties 10 7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
7.3Ionic Conductances — The Dance of the Ions107.3.1Action Potential Related Conductances107.3.2Control of Bursting Properties107.4A Model Molluscan Neuron117.4.1Adrift in Parameter Space117.4.2Implementation of the Model11
7.3.1Action Potential Related Conductances107.3.2Control of Bursting Properties107.4A Model Molluscan Neuron117.4.1Adrift in Parameter Space117.4.2Implementation of the Model11
7.3.2Control of Bursting Properties107.4A Model Molluscan Neuron117.4.1Adrift in Parameter Space117.4.2Implementation of the Model11
7.4 A Model Molluscan Neuron 11 7.4.1 Adrift in Parameter Space 11 7.4.2 Implementation of the Model 11
7.4.1 Adrift in Parameter Space
7.4.2 Implementation of the Model
7.4.5 Wodeling the Chamiers
7.5 The Molluscan Neuron Simulation
7.5.1 Using Neurokit
7.5.2 Understanding the Results
7.6 The Traub Model CA3 Pyramidal Cell
7.6.1 Experiments with the Traub Model
7.6.2 Firing Patterns
7.7 Exercises
8 Central Pattern Generators 13
8.1 Introduction
8.2 Two-Neuron Oscillators
8.2.1 Phase Equation Model of Coupled Oscillators
8.2.2 Simulation Parameters
8.2.3 Initial Conditions
8.2.4 Synaptic Coupling

<u>xvi</u> <u>CONTENTS</u>

		8.2.5	Non-phase Equation Models		 			139
	8.3	Four-Net	ıron Oscillators					
		8.3.1	Chains of Coupled Oscillators					
		8.3.2	Simulation Parameters					
		8.3.3	Modeling Gaits					
	8.4	Summar	y		 			146
	8.5	Exercises	8			•		146
9	Dynar	nics of Ce	erebral Cortical Networks					149
	9.1	Introduct	ion		 			149
	9.2	Piriform	Cortex		 			150
	9.3	Structure	of the Model		 			150
		9.3.1	Cellular Complexity		 			151
		9.3.2	Network Circuitry		 			152
	9.4	Electroe	ncephalography		 			154
	9.5	Using the	e Tutorial		 			158
		9.5.1	Getting Started		 			158
		9.5.2	Generating Simulated Data		 			159
		9.5.3	Initial Look at Simulated Activity	 	 			160
		9.5.4	Observing Network Behavior		 			162
		9.5.5	Varying Network Parameters		 			162
	9.6	Detailed	Examination of Network Behavior	 	 			164
	9.7	Summar	y		 			167
	9.8	Exercises	S		 		 •	167
10	The N	etwork V	Vithin: Signaling Pathways					169
	10.1	Introduct	ion		 		 	169
		10.1.1	Nomenclature		 		 	170
		10.1.2	A Short Short Course in Biochemistry	 	 			171
		10.1.3	Common Signaling Pathways		 			172
	10.2	Modeling	g Signaling Pathways		 			175
		10.2.1	Theory		 		 	175
		10.2.2	Sources of Data		 		 	176
		10.2.3	Figuring Out the Mechanisms					
		10.2.4	Reaction Rate Constants		 		 	178
		10.2.5	Enzyme Rate Constants		 		 	178
		10.2.6	Initial Concentrations		 			179
		10.2.7	Refining the Model		 		 	180
	10.3	Building	Kinetics Models with GENESIS and Kinetikit					
		10.3.1	The kinetics Library		 		 	180

CONTENTS	xvii
	•

		10.3.3 10.3.4	Kinetikit	84 87
	10.4 10.5	Summary Exercises	r: Molecular Computation	
II	Crea	ting Sim	ulations with GENESIS 1	93
11	Consti	ructing No	ew Models 1	95
	11.1	Structural	lly Realistic Modeling	96
	11.2	The Mode	eling Process	98
		11.2.1	Single Neurons or Networks	99
		11.2.2	Modeling Steps	200
12	Introd	uction to	GENESIS Programming 2	203
	12.1	Simulatin	g a Simple Compartment	203
	12.2	Getting S	tarted with GENESIS	203
	12.3	GENESIS	S Objects and Elements	205
		12.3.1	Creating and Deleting Elements	206
		12.3.2	Examining and Modifying Elements	206
	12.4	Running	a GENESIS Simulation	208
		12.4.1	Adding Graphics	208
		12.4.2	Linking Elements with Messages	209
			Adding Buttons to a Form	
	12.5	How GEN	NESIS Performs a Simulation	211
	12.6	Exercises		212
13	Simula	ating a Ne	euron Soma	215
	13.1	Some GE	NESIS Script Language Conventions	215
		13.1.1	Defining Functions in GENESIS	215
	13.2	Making a	More Realistic Soma Compartment	218
		13.2.1	Some Remarks on Units	218
		13.2.2	Building a "Squid-Like" Soma	219
		13.2.3	GIGO (Garbage In, Garbage Out)	221
	13.3	Debuggin	ng GENESIS Scripts	223
	13.4	Exercises		224

xviii CONTENTS

14	Addin	ng Voltage-Activated Channels	225
	14.1	Review	
	14.2	More Fun With XODUS	
	14.3	Voltage-Activated Channel Objects	
	11.0	14.3.1 The hh_ channel Object	
		14.3.2 Adding Hodgkin-Huxley Na and K Channels to the Soma	
	14.4	Final Additions and Improvements	
	1 111	14.4.1 Use of the Compartment <i>initVm</i> Field	
		14.4.2 Overlaying GENESIS Plots	
	14.5	Extended Objects	
	14.6	Exercises	
15		ng Dendrites and Synapses	243
	15.1	Adding a Dendrite Compartment	
	15.2	Providing Synaptic Input	
	15.3	Connections Between Neurons	248
	15.4	Learning and Synaptic Plasticity	251
		15.4.1 Continous Modification of the Synaptic Weight	251
		15.4.2 Use of the MOD Message	251
		15.4.3 Hebbian Learning with the hebbsynchan	251
		15.4.4 Customizing the synchan or hebbsynchan	252
	15.5	Where Do We Go from Here?	252
	15.6	Exercises	253
16	Auton	nating Cell Construction with the Cell Reader	255
-0	16.1	Introduction	
	16.2	Creating a Library of Prototype Elements	
	10.2	16.2.1 Future Changes in the Cell Reader	
		16.2.2 The <i>protodefs.g</i> Script	
	16.3	The Format of the Cell Descriptor File	
	16.4	Modifying the Main Script to Use the Cell Reader	
	16.5	The Neurokit Simulation	
	16.6	Exercises	
17		ing a Cell With Neurokit	265
	17.1	Introduction and Review	265
	17.2	Customizing the <i>userprefs</i> File	266
		17.2.1 Step 1	267
		17.2.2 Step 2	267
		17.2.3 Step 3	270

CONTENTS xix

	17.3	The Cell Descriptor File	273	
	17.4	Some Experiments Using Neurokit	273	
17.5 Exercises and Projects				
18	Const	ructing Neural Circuits and Networks	279	
10	18.1	Introduction		
	18.2	The Orient_ tut Simulation		
	18.3	Running the Simulation		
	18.4	Creating a Network Simulation		
	18.5	Defining Prototypes		
	18.6			
		Creating Arrays of Cells		
	18.7	Making Synaptic Connections		
		18.7.1 Specifying Individual Synaptic Connections		
		18.7.2 Commands Involving Groups of Synapses		
		18.7.3 Utility Functions for Synapses		
	18.8	Setting Up the Inputs		
	18.9	Summary		
	18.10	Exercises	300	
19	Imple	menting Other Types of Channels	301	
	19.1	Introduction	301	
	19.2	Using Experimental Data to Make a tabchannel		
		19.2.1 Setting the tabchannel Internal Fields		
		19.2.2 Testing and Editing the Channel		
	19.3	Using Equations for the Rate Constants		
	19.4	Implementing Calcium-Dependent Conductances		
		19.4.1 Calculating the Calcium Concentration		
		19.4.2 The AHP Current		
		19.4.3 The C-Current		
		19.4.4 Other Uses of the table Object		
		19.4.5 The vdep_gate Object		
		19.4.6 Using the tab2Dchannel Object		
	19.5	NMDA Channels		
	19.6	Gap Junctions		
	19.7	Dendrodendritic Synapses		
	19.8	Exercises	327	
			J _ 1	
20	-	ing Up GENESIS Simulations	329	
	20.1	Introduction	329	
	20.2	Some General Hints	329	

XX CONTENTS

	20.3		cal Methods Used in GENESIS				
		20.3.1	The Differential Equations Used in GENESIS				
		20.3.2	Explicit Methods				
		20.3.3	Implicit Methods				
		20.3.4	Instability and Stiffness				
	20.4	20.3.5	Implementation of the Implicit Methods				
	20.4		nethod Command				
	20.5	•	e hsolve Object				
		20.5.1	Modes of Operation				
		20.5.2	Rules for Table Dimensions				
	20.6	•	up hsolve				
		20.6.1	The findsolvefield Function				
		20.6.2	The DUPLICATE Action				
	20.7	•	ents with the hsolve Object				
	20.8	Exercise	S	 •		•	347
21	Large.	-Scale Sir	mulation Using Parallel GENESIS				349
	21.1		tion				_
	21.2		of Parallel Platforms				
	21.3		Script Development				
	21.4		anguage Programming Model				
		21.4.1	Parallel Virtual Machine				
		21.4.2	Namespace				
		21.4.3	Execution (Threads and Synchronization)				
		21.4.4	Simulation and Scheduling				
		21.4.5	Node-Specific Script Processing				
		21.4.6	Asynchronous Simulation				
		21.4.7	Zones and Node Identifiers				
		21.4.8	Remote Function Call				
		21.4.9	Asynchronous Remote Function Call				
		21.4.10	Message Creation				
	21.5		PGENESIS				
	21.3	21.5.1	The pgenesis Startup Script				
		21.5.2	Debug Modes				
	21.6		Model Example				363
	21.0	21.6.1	Setup				363
		21.6.1	Simulation Control				
		21.6.2	Lookahead				
	21.7		er Search Examples				
	21.7		-				
	21.8	I/O ISSUE	es				3/4

CONTENTS xxi

	21.9	Summary	y of Script Language Extensions
		21.9.1	Startup/Shutdown
		21.9.2	Adding Messages
		21.9.3	Synaptic Connections
		21.9.4	Remote Command Execution and Synchronization 376
		21.9.5	PGENESIS Objects
		21.9.6	Modifiable PGENESIS Parameters
		21.9.7	Unsupported and Dangerous Operations
	21.10	Exercises	s
22	Advan	ced XOD	OUS Techniques: Simulation Visualization 381
	22.1	Introduct	ion
	22.2	What Ca	n Your User Interface Do for You?
	22.3	Draw/Pix	x Philosophy
	22.4	Meet the	Cast
		22.4.1	The Draw Widget Family
		22.4.2	The Pix Family
	22.5	XODUS	Events
		22.5.1	Returning Arguments to Script Functions
	22.6	Using A	dvanced Widgets: A Network Builder
		22.6.1	The Library Window
		22.6.2	Making Prototype Cells
		22.6.3	The Work Window
		22.6.4	Editing Cells
		22.6.5	Connecting Cells
		22.6.6	Plotting Cell Activity
		22.6.7	Running Netkit
		22.6.8	Extending Netkit
	22.7	Interface	vs. Simulation
	22.8	Summar	y
A	Acqui	ring and l	Installing GENESIS 407
	A.1	•	Requirements
	A.2	Using the	e CD-ROM
	A.3	Obtainin	g GENESIS over the Internet
	A.4	Installati	on and Documentation
	Δ 5	Convrigh	at Notice 409

xxii CONTENTS

В	GENE	ESIS Script Listings	411							
	B.1	tutorial2.g	411							
	B.2	tutorial3.g	413							
	B.3	tutorial4.g	415							
	B.4	tutorial5.g	420							
	B.5	hhchan.g	422							
	B.6	hhchan_ K.g	425							
	B.7	userprefs.g	426							
	B.8	cellproto.g	428							
	Biblio	graphy	431							
	Index	of GENESIS Commands	449							
	Index of GENESIS Objects									
	Index		453							

Part I

Neurobiological Tutorials with GENESIS