TALG. Techniques algébriques

QCOP TALG.2

3. a) Résultat. $Card(\mathcal{P}(E)) = 2^{Card(E)}$. Il s'agit de la somme des coefficients binomiaux :

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}.$$

b) Résultat. Card $(\mathscr{P}(E \times F)) = 2^{\mathsf{Card}(E) \times \mathsf{Card}(F)}$ car $\mathsf{Card}(E \times F) = \mathsf{Card}(E) \times \mathsf{Card}(F)$. Remarquons que, en général, $\mathsf{Card}(\mathscr{P}(E \times F)) \neq \mathsf{Card}(\mathscr{P}(E)) \times \mathsf{Card}(\mathscr{P}(F))$.

QCOP TALG.3

3. On utilise la formule $\binom{n}{k} = \frac{n \times (n-1) \times \cdots \times (n-k+1)}{k!}$, *i.e.* on simplifie (n-k)! avant de débuter le calcul.

QCOP TALG.4

2. Résultat. $S_n = \binom{p+n+1}{p+1}$.

Cet exercice est fait dans le Cahier de calcul en Terminale.

Dans la version 1.5.0, il s'agit de <u>l'énoncé 22.20 de la fiche Term-DENO-01</u>.

QCOP TALG.5

- 1. Résultat. $\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + r \end{cases} \text{ et } \forall n \in \mathbb{N}, \ u_n = a + nr.$
- 2. Résultat. $\sum_{k=0}^{n} u_k = (n+1)\frac{a+u_n}{2}$ et $\sum_{k=N_0}^{N_1} u_k = (N_1-N_0+1)\frac{a+u_{N_1}}{2}$.
- 3. Résultat. $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$, $\sum k = 0^{n-1}k = \frac{n(n-1)}{2}$ et $\sum_{k=0}^{n+1} k = \frac{(n+1)(n+2)}{2}$.

QCOP TALG.6

1. Résultat.
$$\sum_{k=N_0}^{N_1} a^k = \sum_{k=m}^n a^k = \frac{a^{N_0} - a^{N_1+1}}{1-a} = a^{N_0} \frac{1 - a^{N_1-N_0+1}}{1-a} \cdot .$$

2. Résultat.
$$\begin{vmatrix} a \in [0,1[& a=1 & a>1 \\ \lim_{n \to +\infty} \sum_{k=0}^{n} a^{k} & \frac{1}{1-a} & +\infty & +\infty \\ \lim_{n \to +\infty} \sum_{k=1}^{n} a^{k} & \frac{a}{1-a} & +\infty & +\infty. \end{vmatrix}$$

QCOP TALG.7

1. Résultat.
$$a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$$
.

On pourra procéder par télescopage.

2. Remarquer que $P(x) = P(x) - \underbrace{P(c)}_{=0}$ et utiliser la formule précédente.

Exercice : écrire et démontrer un résultat analogue pour $n \in \mathbb{N}^*$ quelconque (ici, c'est le cas n=3).