Mux pultiplexers (Mux)

a) Block Diogram of 1-bit 2 tol Myx

(b) Block objection of I bit, who I may

Design of Ibit a 2 to 1 Mux

1. Block deogram of Ibit, 2 to 1 Mux

X Y

(bit, 2 to 1 mm _____ selector (s)

r (Output)

3. I bit, 2 to I plux Truth Table

di		Input Signals		Output	
	5	*	1	5	
1	0	0	0	0	
0	0	0	1	. 1	
3	0	1	0	0	
@	0		110	1	
5	1	10	0	101	
6		0	1	0	
3	1	1	0	1	
0				~~	
-					

Outputs y when s=0; Outputs x when s=1.

Design of 1 bit, 2 to 1 Mux 3. Simplify the logical Expression: Minimal SOP Expression: SY + 5 X r = 3 xy + 3 xy + sxy + sxy Simplify Using K-map _ Imp - 2

FIVE STAR

Design of Ibit, 2 to 1 mux

4. Pesign/Circuit diagram for 1 bit, 2 to 1 mux

Validation of 1 bit, 2 to 1 Mux $r = \hat{S} + S \times Claimed: Outputs Y when S = 0;$ $Outputs \times when S = 1$ S = 0 $r = \hat{O} \times + \hat{O} \times C$ $= 1 \times + \hat{O} \times C$

= X