ИТМО

ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ОТЧЕТ

по лабораторной работе

Исследование характеристик источника электрической энергии постоянного тока

Группа *Р3331*

Вариант *004*

Выполнил(а): Чураков Александр Алексеевич

Дата сдачи отчета: 10.09.2025

Дата защиты:

Контрольный защиты: 06.10.2025

Количество баллов:

Цель работы: исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии.

Исходные данные для выполнения лабораторной работы:

	Параметры источника		Параметры нагрузки, [Ом]										
Bap.	<i>E</i> , B	<i>r</i> , Ом	R_1	R_2	R_3	R ₄	R_5	$R_6=r$	R_7	R_8	R_9	R_{10}	R_{11}
013	4	200	∞	720	320	187	120	80	53	34	20	9	0

Схема эксперимента

Таблица экспериментальных и расчетных данных

k	Измер	ения	Расчет r = 80,003 [Ом], E = 4 [В], Iкз = 50 [мА]						
	R_k [OM]	U_k [B]	I_k [MA]	P_k [BT]	η	r_k [OM]			
0	∞	4	0	0	1				
1	720	3.6	5	0.018	0.9	80			
2	320	3.2	10	0.032	0.8	79.6			
3	187	2.802	15	0.042	0.7	80.4			
4	120	2.4	20	0.048	0,6	80			
5	80	2	25	0.05	0.5	81.2			
6	53	1.594	30	0.048	0.398	80.2			
7	34	1.193	35	0.042	0.298	78.6			
8	20	0.8	40	0.032	0.2	79.2			
9	9	0.404	45	0.018	0.101	80.8			
10	0	0	50	0	0				

Параметры схемы замещения

- ЭДС источника $E = U_{xx} = 4$ [В]
- внутреннее сопротивление

$$\sqrt[2]{\frac{80^2 + 79.6^2 + 80.4^2 + 80^2 + 81.2^2 + 80.2^2 + 78.6^2 + 79.2^2 + 80.8^2 2}{9}} = 80.003[OM]$$

- ток короткого замыкания (сила тока источника) $J = I_{\mbox{\tiny K3}} = E \ / \ r = 4 \ / \ 80,003 = 50 \ \mbox{[mA]}$

Пример измерений и расчета для строки «5»

- пример измерений
- пример расчета

$$R_5 = 80$$
 [OM], $U_5 = 2$ [B], $r = 80,003$ [OM]
 $I_5 = U_5 / R_5 = 2 / 80 = 25$ [MA]
 $P_5 = U_5^2 / R_5 = 2^2 / 80 = 0,05$ [Bt]
 $\eta = R_5 / (R_5 + r) = 80 / (80 + 80,003) = 0,5$
 $r_5 = (U_5 - U_6) / (I_6 - I_5) = 1000 \cdot (2 - 1,594) / (30 - 25) = 81.2$ [OM]

ВЫВОДЫ по работе

В результате выполнения работы я экспериментально проверил выполнимость закона Ома и выяснил, что наибольшая мощность цепи достигается в согласованном режиме работы, но КПД максимален при самом высоком допустимом напряжении и минимальной силе тока.