

A Wearable Calorie Expenditure Monitoring Device Based on Predicted Heat Strain Model

Bioelectronics Research Lab Yen-Chun Yeh, John J. Ladasky, Jingya Xu, Ziao Guo, Yongcan Huang, Sheng Yang, Karl Wang, and Dominik J. Schmidt

Abstract

Existing wearable fitness trackers use algorithms to estimate metabolic rate from pedometers and heart rate monitors. These systems have two known sources of inaccuracy: first, the relationship between heart rate and oxygen uptake varies between individuals; second, a variety of conditions, such as stress, illness, dehydration, high temperatures, and environmental humidity can contribute to a heart rate increase, even when the subject is not experiencing metabolic rate changes and the oxygen uptake stays the same. To avoid these sources of inaccuracy, we propose a new wearable calorie expenditure monitoring device based on a predicted heat strain model (PHSM). PHSM has been used to evaluate the thermal stress experienced by a human subject during exercise in a hot environment. Using the heat balance equations of the PHSM in reverse, we can calculate the metabolic rate from physiological and environmental sensor readings. We propose a wearable system that uses PHSM to calculate the metabolic rate with several temperature sensors, a humidity sensor, a sweat rate sensor, and an accelerometer. The collected data will be sent to a smart phone with Bluetooth. A machine-learning algorithm will use the accelerometer data to determine walking speed and posture. Other information (age, environmental conditions) will be obtained from the user and the Internet.

PHSM

An equation that describes a predictive heat strain model (PHSM) from the ISO 7933 standard) is summarized as:

$$M = C_{res} + E_{res} + C + R + E + S$$

M: Metabolic rate (calorie expenditure) C_{res} : Heat flow by respiratory convection E_{res} : Heat flow by respiratory evaporation

C: Heat exchange on the skin through convectionR: Heat exchange on the skin through radiationE: Heat exchange on the skin through evaporation

S: Heat storage

Model Theory

PHSM predicts sweat rate and body temperature from environmental conditions, and an assumed metabolic rate (blue arrows). Our proposed *inverse PHSM* would predict metabolic rate from environmental conditions, and measurements of sweat rate and body temperature (red arrows).

Wearable System and Experimental Design

A smart-phone application is being developed to collect data from a wearable platform, and to use PHSM to estimate calorie expenditure. Reference calorie consumption data will be obtained by indirect calorimetry, which is the accepted clinical standard.

