Korea patent office (KR) Unexamined Patent Publication(A)

KOREAN

(51) Int.Ct. H04B 1/38

Publication No

10-2000-0042359

Publication Date

2000-07-15

Application No.

10-1998-0058524

Application Date

1998-12-24

Agent

Hae-Cheon Park

Inventor

Yong-Chang Seo

Seok-Hui Won

Applicant

HanGukJeonGiTongSinGongSa Sang-Hun Gang-

Examination

Requested

Title of Invention

THE TRANSMISSION DEVICE OF THE REVERSE LINK IN THE COMMUNICATIONS

SYSTEM.

1. The technical Field of the Invention which is written in the claims.

In the communications system, the present invention is the thing about the transmission device of the reverse link.

2. The subject which an invention tries to solve.

An object of the present invention are to provide the channel estimation through the optimized channel coding according to the given channel environment and MC-CDMA mode and the transmission device it compensates, and in that way for steadily transmitting data in order to be satisfied the error bit rate which each service requests.

3. The gist of the solution of an invention.

The present invention is to be equipped with the upconverting means altering the signal of the voice traffic for to transmitting and the channel coding means: channel spreading means: first diffusing the output signal of the channel coding means and the diffused second channel, and encodes a signal and reduces the rate of BITS errors up—converts the signal of the first and the second channel outputted according to a modulation, the synchronization means and the predetermined carrier signal fitting to the predetermined user synchronous burst signal and synchronizes the signal which modulates between a user and base station from a modulation and synchronization means to the high frequency signal.

4. The important use of an invention.

The present invention is used for the communications system of the MC-CDMA mode.

Brief Explanation of the Drawing(s)

<u>Fig. 1</u> is a configuration diagram of the transmitting end of the communications system using the MC-CDMA mode in which the present invention is applied to.

Fig. 2 is an illustrative view about the variable orthogonal spreading code of the MC-CDMA mode in which the present invention is applied to.

 $\underline{\text{Fig. 3}}$ is an illustrative view about data rate of the MC-CDMA mode in which the present invention is applied to.

Fig. 4 is an outline illustration diagram of the voice coder in which the present invention is applied to.

Fig. 5 is a configuration example diagram of the convolutional encoder in which the present invention is applied to.

Fig. 6 is an illustrative view about the pilot carrier wave being applied to the present invention.

Fig. 7 is a structure chart of the inverse fast Fourier transform frame applied to the present invention.

<u>Fig. 8</u> is an example construct drawing of the transmission device of the reverse link in the communications system according to the present invention.

Fig. 9 is an other component diagram of enforcement example of the transmission device of the reverse link in the communications system according to the present invention.

The description of reference numerals of the main elements in drawings

811: signal fail transform unit 812: error confirmation part.

813: convolution coder 814: transfer rate synchronization block.

815: signal fail transform unit 816: modulator.

817: channel diffusion part 818, 819: serial-to-parallel converter.

820, 821: frequency synchronization part 822: inverse fast Fourier transform.

823, 824: repeat signal insertion part 825, 826: parallel-to-serial converter.

827. 828: synchronization block 829, 830: digital analog converter.

831: up converter.

831: 삼향 변환부

특 2000-0042359

(19) 대한민국특허청(KR)(12) 공개특허공보(A)

(51) Int. Cl.* H048 1/38 (11) 공개번호 특2000-0042359 (43) 공개일자 2000년07월15일

(21) 출원번호	10-1998-0058524	
(22) 출원일자	1998년 12월24일	
(71) 출원인	한국전기통신공사 미계철	
	경기도 성남시 분당구 정자동 206강상훈	
	대전광역시 유성구 어은동 52	
(72) 발명자	서용창	
	서울특별시 서초구 우면동 17-1번지	
(74) 대리인	박해천, 원석희	

실사경구 : 있음

(54) 통신 시스템에서 역방향 링크의 승신 장치

公学

-). 청구범위에 기재된 발명이 속하는 기술분야
- 본 발명은 통신 시스템에서 역방향 링크의 종신 장치에 관한 것임.
- 2. 발명이 해결하고자하는 과제

본 발명은 주어진 채널 환경에 따른 최적화된 채널 부호회와 MC-COMA 방식을 통한 채널 추정 및 보상을 하며 주므로써, 각 서비스에서 요구하는 에러 비트율을 만족하도록 데이터를 만정적으로 전송할 수 있는 중신 장치를 제공함에 목적이 있다.

3. 발명의 해결방법의 요지

본 발명은, 전송하고자 하는 음성 투래픽 및 선호를 부호하여 비트 에러율을 감소시키는 채널 부호화수단: 채널 부호화수단의 출력 신호를 확신하는 채널 확산수단: 확산된 제 1 및 제 2 채널의 신호 를 변조하고, 소정의 사용자 동기 버스트 신호에 맞추어 사용자와 가지국 간에 변조한 신호를 동기시키는 변조 및 동기화 수단: 및 소정의 반송파 신호에 따라, 상기 변조 및 동기화 수단으로부터 출력된 제 1 및 제 2 채널의 신호를 고주파 신호로 상향 변환하는 상향 변환수단를 포함한다.

4. 발명의 중요한 용도

본 발명은 MC-COMA 방식의 통신 시스템에 미용됨.

DHE

58

BANE

도면의 간단한 설명

- 도 1은 본 발명이 적용되는 MC-CDMA 방식을 이용하는 통신 시스템의 송신단의 구성도.
- 도 2는 본 발명이 적용되는 MC-CDMA 방식의 가변적교확산코드에 대한 설명도.
- 도 3은 본 발명이 적용되는 MC-CDMA 방식의 데이터율에 대한 설명도.
- 도 4는 본 발명이 적용되는 음성 부호기의 개략 예시도.
- 도 5는 본 발명이 적용되는 컨벌루셔널 부호기의 규정 예시도
- 도 6은 본 발명에 적용되는 피일럿 반송피에 대한 설명도.
- 도 7은 본 발명에 적용되는 역퓨리에변환 프레임의 구조도.
- 도 8은 본 발명에 따른 통신 시스템에서 역방향 링크의 송신 장치의 일실시에 구성도.
- 도 9는 본 발명에 따른 통신 시스템에서 역방향 링크의 송신 장치의 다른 실지에 구성도.
- * 도면의 주요 부분에 대한 부호의 설명 *

811: 신호에러 변환부

812: 에러 확인부

813: 컨벌루션 코터

814: 전송숙도 동기화부

815: 신호에러 변환부

816: 변조부

817: 채널 확산부

818, 819: 직/병렬 변환부

820, 821: 주파수 동기화부

822: 역퓨리에변환부

823, 824: 반복신호 삽입부

825, 826: 병/직렬 변환부

827, 828: 동기화부

:831: 상향 변환부

829, 830: D/A 변환부

발명의 상세관 설명.

보명의 목적

발명이 속하는 기술분이 및 그 보아의 중에기술

본 발명은 통신 시스템에서 역방향 링크의 송신 장치에 관한 것으로서, 특히 다중 반송파 코드분할다중접 속(Multi Carrier-Code Division Multiple Access) 방식을 미용하여 역방향 링크의 음성 트래픽과 데이터 트래픽을 전송하기 위한 송신 장치에 관한 것이다.

일반적으로, 다중접속방식은 CDMADI지만 신호파형은 작고 주파수 분할다중(OFDM : Orthogonal Frequency Division Multiple) 원리를 미용한 MC-CDMA방식을 구현하고자 하는 미동 통신 시스템의 승신 장치에 사용 하며 기저대역신호의 변조 방식으로 적용한다.

그러나, 이와 같은 중래의 변조 방식의 경우, 이동 환경의 채널 특성은 유전에 비해서 상당히 열악할 뿐 만 마니라 특히 데이터의 전송 속도가 고속으로 갈수록 열화가 심해지는 문제점이 있었다.

발명이 이루고자 하는 기술적 **과**제

따라서, '본 발명은 상기와 같은 문제점을 해결하기 위하며 안출된 것으로서, 밀리미터파 대역에서 주파수 대역품이 40배2로 주어졌을 때 32배6로의 데이터 전송 속도를 갖는 미통통신 시스템의 역방향 링크의 송신 장치를 구현함에 있어, 주머진 채널 환경에 따른 최적회된 채별 부호화와 MC-COMA 방식을 통한 채널 추정 및 보상을 하며 주므로써, 각 서비스에서 요구하는 에러 비트율을 만족하도록 데이터를 안정적으로 전송 할 수 있는 송신 장치를 제공하는데 그 목적이 있다.

발범의 구성 및 작용

이와, 같은 목적을 들성하기 위한 본 발명은, 통신 시스템에서 음성 트래픽(voice traffic) 및 신호을 전송하는 역방향 링크의 송신 장치에 있어서, 전송하고자 하는 음성 트래픽(voice traffic) 및 신호를 보호하여 비료 에러울을 감소시키는 채일 부호화수단, 채일 부호화수단의 출력 신호를 소청의 활사(Walsh) 교도와 의사집음코드를 이용하여 확산하는 채일 확산수단, 성기 채일 확산수단에 의해 확산된 제 1 및 제 2 채일의 신호를 변조하고, 소정의 사용자 등기 버스트(Burst) 신호에 맞추어 사용자와 기지국 간에 변조한 신호를 통기시키는 변조 및 동기화 수단, 및 소정의 반송파 신호에 따라, 상기 변조 및 동기화 수단으로 부터 즐릭된 제 1 및 제 2 채일의 신호를 고주파 신호로 상향 변환하고, 상향 변환한 제 1 및 제 2 채일의 고주파 신호로 강향 변환하고, 상향 변환한 제 1 및 제 2 채일의 고주파 신호로 강향 변환하고, 상향 변환한 제 1 및 제 2 채일의 고주파 신호를 포함한다.

또한, 본 발명은, 통신 시스템에서 데이터 트래픽 및 신호를 전송하는 역방향 링크의 송신 장치에 있어서, 전송하고자 하는 데이터 트래픽 및 신호를 부호화하며 비트 에러를 정정하는 비트에러 정정수단() 상기 비트 에러 정정수단으로부터 전달된 신호를 부호화하며 비트 에러율을 감소시키는 채널 부호화수단(채널 부호화수단의 출력 신호를 소정의 활시(細(화)코드와 의사잡음코드를 미용하여 확신하는 채널 확산수단() 상기 채널 확산수단에 의해 확산된 제 1 및 제 2 채널의 신호를 변조하고, 소정의 사용자 동기 버수트(Burst) 신호에 맞추어 사용자와 기지국 간에 변조한 신호를 통기시키는 변조 및 통기화 수단() 및 소정의 반송파 신호에 따라, 상기 변조 및 통기화 수단으로부터 출력된 제 1 및 제 2 채널의 신호를 고주파신호로 상한 변환하고, 상향 변환한 제 1 및 제 2 채널의 고주파신호를 가산하며 송신하는 상향 변환수 다음 포함하다. 단을 포함한다.

이하, 첨부된 도면을 참조하며 본 발명의 바람직한 실시예를 상세하게 설명한다.

도 1은 본 발명이 적용되는 MC-CDMA 방식을 이용하는 통선 시스템의 중신단의 구성도로서, 증산기(111 내 지구에서, 12차 내지 12사)들과, 가산기(132 내지 13N)들로 구성된다.

여기서, 코드의 길이는 서브캐리어(SUBCARRIER)의 수인 N과 같고 각 코드 의 원소는 칩(CHIP)이라고

의 각 칩은 (1, -1)의 집합에 속하고, 상호직교성을 갖는 특성이 있다.

^{*}즉,다음 [수학식 1]의 조건을 만족한다.

$$\bigcup_{i=0}^{N-1} c_i[i] c_m[i] = Ndelta_{i,m}$$

 $\delta_{i,m}$ I=m 일 때 값이 1이고, 그와 경우는 10인 함수이다.

 $a_m[k]$ m ਏਆਂ ਮੁਤਨਾਹ k ਏੰਘ ਮੁਵਾਫ਼ ਪੰਜਾਬ

/V MC-CDMA 신호는 한개의 데이터 심볼이 개로 병혈로 복사되고, 이렇게 병혈로 흘러오는 심볼의

 $\left[C_{m} \left[i
ight]
ight]$ 에 의해 곱해진다. 째 가지(서브캐리어)는 칩...

 F/T_δ F 전 T_δ =정수. T_δ =FFT 프레임 길이)의 간경으로 일정하게 떨어져 있다.

전승되는 신호는 이러한 가지(BRANCH)출력의 합으로 이루어지며, 이러한 과정을 통해 코드화된 데이터 심 불을 포함하는 서보캐리어를 갖는 멀티캐리어 신호를 산출하게 된다.

'도둑에서 처럼 전승되는 신호는 다음 [수학식 2]와 같이 수식으로 표현할 수 있다.

$$\mathbf{x}_{m(i)} = \bigcup_{i=0}^{N-1} a_m[i] c_m[k] P_T(t-iT) e^{-2\pi kFi/T}$$

 $P_T(t)$ 는 $0\leq t\leq T$ 구간에서는 [약]값을 갖고, 그 외약 구간에서는 0약 값을 갖는 여기사. 함수이다.

도 2는 본 발명이 적용되는 MC-CDMA 방식의 가변적교확산코드에 대한 설명도로서, 도 1에서 데이터 심볼을 코드화하기 위해 사용되었던 적교확산코드를 구체적으로 정의하고, 이 직교확산코드를 사용하여 다양한 이름 얼티미디어 서비스 데이터를 제공하기 위한 가변적교확산코드의 알고리듬을 보여주는 것이다. 여기서, 점교확산코드로는 왈시-하다마드(Walsh-Hardamard) 코드를 사용하였으며, 이 코드는 매트릭스 연 산으로 발생시킬 수 있다.

[이러한, 활시-하다마드(Walsh-Hardamard) 코드 발생의 기본 매트릭스 단위는 다음 [소학식 3]과 같다.

$$H_o = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H_{n} = \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}$$

여기서, 매트릭스 $H_n \in 2^n \times 2^n$ 크기를 가지며 $2^{n-1} \times 2^{n-1}$ 크기의 H_{n-1} 매트릭스를 사용하여 구성된다. 매트릭스의 각 열은 각 사용자의 코드로 주어지게 된다.

한편, 다양한 멀티미디어 서비스를 동시에 제공하기 위해서는 가변직교확산코드의 적용이 필요하다.

전술한 왈시-하다마드(Watsh-Hardàmard) 코드를 이용하여 기변직교확산코드를 생성할 수 있으며, 그 생성 알고리듬은 다음과 같다.

이때, 기본(최저 서비스 데이터)이 되는 서비스 데이터의 전송 속도를 R bps라 했을 때, 그의 N(즉, N=2^{*}임, 여기서 k=정수임) 배가 속도의 데이터는 다음의 규칙에 의해 할당된다.

그리고, R bps 속도의 데이터에 1×1 월시 코드의 하나를 할당하게 되면, NR bps의 데이터는 1번째

$$(i=0,1,\ldots,rac{1}{N})$$
 and $(i+rac{I}{N})$

= 1, 2, ... , N-1)의 코드를 활당하게 된다.

여기서, 사실상 1번째 코드만 사용된다.

도 2에서는 알고리듬을 Re14.4 Kbps 속도의 데이터와 이의 4배가되는 57.6 Kbps 속도의 데이터를 예로 들 더 설명하고 있다.

도 3은 본 발명이 적용되는 MC-CDMA 방식의 데이터율에 대한 설명도로서, 도 1에서 설명한 MC-CDMA 방식과 도 2에서 설명한 가변 직교확산코드를 비용하여 다양한 이동 발티미디어 서비스를 제공하기 위해서 각 서비스 데이터를 전송 속도에 따라 주머진 주파수 대역폭에 사상시킨 것이다:

'멀티밴드는 5/10/20/40배2로 구성되며; 채널간 간격의 단위가 된다. 주어진 최대 주파수 대역폭은 40배2 이며, 여기에 불극오프율(roll-off factor)에 0.22인 저역통과필터를 사용하면 최대 가용한 주파수 대역폭 은 32.768배2가 된다.

그리고, 본 발명에서 제공하고자 하는 서비스 데이터는 32K/64K/384K/1M/5M/10Mbps로 정했으며, 각 서비스 데이터는 순방향 에러 정정(FEC: forward error correction) 고딩과 채널 추정 및 보상을 위한 데이터가 더해져서 중간 단계의 전송 심불로 일단 사상되며, 이후 가변적교확산을 거쳐 각 멀티밴드에 활당되게 된다.

그리고, 5M/10Mbps의 고속의 서비스 데이터는 멀티코드를 할당하여 필요한 확산이득을 얻는다.

도 4는 본 발명이 적용되는 음성 부호기의 개략 예시도이다.

도 4를 참조하면, 응답 부호기(Response Coder)는 음성 데이터에 대해서는 적용하지 않으며, 여기서는 갈 로마체(GALOIS F1ELD) GF(64)에서 정의된 (63, 59) 응답 부호기에서 15개의 정보 심불을 잘라낸 (48,44) 단축(SHORTENED) 응답 부호기를 사용하였다.

그리고, 이 부호기의 원서 다항함수는 다음 [수학식 5]과 같이 표현된다.

$$p(x)=x^6+x^2+1$$

이와 같은, 응답 부호기를 사용하면 2 심볼내에서는 메러 검출 및 정정이 가능하다.

도 5는 본 발명이 적용되는 컨벌루셔널 부호기(CONVOLUTIONAL CODER)의 구성 에시도로서, D-플립플롭(411 내지 418)들과, 가산기(421, 422)들로 구성된다.

도 5에 도시된 바와 같이, 컨벌루셔널 부호화(convolutional coding)는 주로 전송:데이터가 음성인 경우와 데이터안 경우에 각각 다른 부호율(code rate)로 전송되는데, 여기서는 부호율 R을 '172'로 설정하며 사용한다.

그리고, 구송자(constraint length) K는 '9'로 지정한다.

이러한, 컨벌루셔널 부호기의 생성 다항식은 다음 [수학식 6] 및 [수학식 7]와 같이 표현된다.

$$g_0 = x^8 + x^6 + x^5 + x^3 + x^2 + x + 1$$

 $g_1 = x^8 + x^7 + x^5 + x^4 + x + 1$

도 6은 본 발명에 적용되는 파일럿 반송파에 대한 설명도로서, 본 발명에 적용되는 역퓨리에변환의 부반송파(subcarrier)를 LIEH내고 있다.

여기서, 전체 부반송파의 수는 512개이며, 미중에서 파일럿 반송파(pilot carrier)는 8개 간격으로 삽입하면 전체 부반송파의 1/8을 차지하는 64개로 구성된다.

그리고, 수신단에서는 이러한 파일럿 반송파를 미용하며 테미딩 채널(fading channel)의 영향으로 생긴 부반송파들의 위상 왜곡(phase offset)을 보상해 주므로써, 주파수 동기(frequency syncrolization)를 맞추고 채널 추정 및 보상을 위해서 사용된다.

도 7은 본 발명에 적용되는 역퓨리에변환 프레임의 구조도이다.

도 7에서, 반복신호 삽입(cyclic prefix)은 역퓨리에변환 프레임의 지연으로 생기는 프레임간의 간섭 (interference)을 없애기 위하여 프레임의 48/512정도를 반복하도록하는 것이다.

·도 8은 본(발명에)따른(통신 시스템에서 역방향(황크의 음생)토래픽 및 진호를 중선하는 중신 장치의 일 (실시예: 구성도이다.

실시에 구성도이다.

도 8에 도사된 바와 같이, 본 발명의 일실시에에 따른 송산 장치는, 입력되는 음성 트래픽 및 신호의 버스트 에러를 캔덤(random) 에러로 변환하는 신호에러 변환부(811)와, 신호에러 변환부(811)로부터 출력된신호에 발생된 에러 상태를 확인하는 에러 확인부(812)와, 에러 확인부(812)에 의해 확인된 에러 상태 값에 따라, 에러 확인부(812)로부터 전달된 신호를 컨벌루션(Coriver Inchion) 부호하하며 에러 비트율을 감소시키는 컨벌루션 코더(813)와, 컨벌루션 코더(813)의 출력신호에 '소정의 신호를 겁입하여 건송하고자 하는 속도로 등기시키는 전송속도 등기화부(814)와, 전송식도 등기화부(814)로부터 전달된 신호를 비즈하고 위한 변경에 메리로 변환하는 신호에러 변환부(815)와, 신호에러 변환부(815)으로부터 전달된 신호를 변조하기 위한 변경 메리로 변환하는 신호에러 변환부(815)와, 신호에러 변환부(815)으로부터 전달된 신호를 변조하기 위한 제상 변경 변환부(816)와, 변경부(817)에 의해 확산된 제발 및 1 채널의 직접성을 각각 병렬 신호로 변환하는 직기병을 변환부(818, 819)들과, 구대수를 동기시키는 동기화부(820, 821)들과, 구대수 등기화부(820, 821)들과, 구대수 등기화부(823)로부터 전달된 신호에 반복되는 신호을 삽입하여 심불간의 간접을 제거하는 반복신호 삽입부(823, 824)들과, 반복신호 삽입부(823, 824)들로부터 출력된 직결신호를 각각 병결신호로 변환하는 병/직별 변환부(825, 826)들로부터 출력된 디지털 신호를 각각 사용자 등기 버스트 신호에 맞추어 사용자와 기지국 간에 등기시키는 동기화부(827, 828)들과, 등기화부(827, 828)들로부터 출력된 디지털 신호를 각각 이탈로그 신호로 변환하는 인수 변환부(823, 830)들과, D/A 변환부(823, 830)들로부터 출력된 디지털 신호의 대체될 및 신호를 각각 이탈로그 신호로 변환하는 인수 변환부(823, 830)들과, D/A 변환부(823, 830)들로부터 출력된 디지털 신호의 대체될 및 신호를 가신하여 출력하는 상향 변환부(833)를 구비한다.

재널 확산부(817)는, 변조부(816)로부터 출력된 「채널의 신호와 활시코드를 증산하는 증산기(832)와, 변조부(816)로부터 출력된 0채널의 신호와 활시코드를 증산하는 증산기(833)와, 증산기(832)로부터 출력된 「채널의 신호와 「채널용 의사잡음코드를 증산하기 위한 증산기(834)와, 증산기(833)로부터 출력된 미채널의 신호와 0채널용 의사잡음코드를 증산하기 위한 증산기(835)로 미루머진다.

상향 변환부(831)는 D/A 변환부(829)로부터 출력된 |채널의 기저대역 선호를 반송파와 혼합하여 고주파신호로 상향 변환하는 상향 변환기(836)와, 반송파의 위상을 90° 천이시키는 위상 천이부(837)와, D/A 변환부(829)로부터 출력된 0채널의 기저대역 신호를 위상 천이부(837)를 통해 전달된 반송파와 혼합하여 상향 변환기(838)와, 상향 변환기(838)들의 출력신호를 가산하는 기산기(839)와, 기산기(839)의 출력신호를 필터링하며 잡음을 제거하는 필터(840)로 구성된다.

상기한 바와 같은 구조를 갖는 본 발명의 역방향 링크의 송신 장치의 동작에 대하여 설명하면 다음과 같다.

신호에러 변환부(811)가 입력되는 음성 트래픽 및 신호의 배스트 에러를 랜덤(random) 에러로 변환하여 에러 비트율을 감소시키면, 에러 확인부(812)는 신호에러 변환부(811)로부터 전달된 신호에 발생된 에러 '상태를 확인하게 되는데, 여기서 확인된 에러 상태는 컨벌루션 코더(813)로 전달된 다음 에러 비트율을 감소시키는데 이용된다.

·그리고, 컨벌루션 :코더(813)는 에러 확인부(812)를 통해 확인된 에러 상태에 맞추어 에러 확인부(812)로 부터 전달된 신호를 컨벌루션(Convertution) 부호화하여 에러 비트물을 감소시킨다.

:이렇게, 컨벌루션 코더(813)에 의해 부호화된 신호는 전송속도 통기화부(814)를 통해 전송하고자 하는 속 도와 동기되어 신호에러 변환부(817)로 전달되고, 이어 신호에러 변환부(817)는 전달된 신호의 버스트 에 러를 랜덤 에러로 변환하여 비트 에러율을 감소시킨다. 이와 같이, 에러 비트율이 감소된 I채널 및 G채널의 신호는 변조부(816)의 QPSK(CPSK : Quadrature Phase Shift Keying) 방식을 통해 변조된 다음, 채널 확산부(817)를 통해 확산된다.

이때, 확산된 「채널 및 C채널의 직렬신호는 각각 직/병렬 변환부(818, 819)들을 통해 병렬신호로 변환된 다음 주파수 동기화부(820, 821)들로 전달된다.

그리고, 주파수 동기화부(820, 821)는 각각 직/병렬 변환부(818, 819)들로부터 전달된 신호에 소정의 파일롯 심볼과 기준신호를 삽입하여 주파수 오프셋을 보정하므로써 주파수 동기를 맞추고, 채널을 추정하며 추정값을 보상하여 준다.

역퓨리에변환부(822)는 주파수 동기화부(820,821)들로부터 전달된 신호를 역퓨리에변환하여 직교 주파수 분할다중(OFDM : Orthogonal Frequency Division Multiple) 신호를 발생한다.

반복신호 삽입(823, 824)들은 각각 역퓨리에변환부(823)로부터 전달된 신호에 반복되는 신호를 삽입하여 심볼간의 간섭을 제거하고, 이렇게 간섭이 제거된 병렬 신호는 각각 병/직렬 변환부(825, 826)들을 통해 직렬 신호로 변환된 다음 동기화부(827, 828)들로 전달된다.

이어서, 동기화부(827, 828)들은 각각 병/직렬 변환부(825, 826)들로부터 출력된 병렬 신호를 사용자 동 기 버스트 신호에 맞추어 사용자와 기지국 간에 동기시키고, 이어 D/A 변환부(829, 830)들은 각각 동기 화부(827, 828)들로부터 출력된 디지털 신호를 마날로그 신호로 전환시킨다.

전술한 바와 같은 과정을 통해 전달된 1채널 및 대체널의 기저대역 신호는 상향 변환부(831)를 통해 고추 파 신호로 상향 변환되어 중신된다.

도 9는 본 발명에 따른 통신 시스템에서 역방향 링크의 데이터 트랙픽 및 신호를 승신하는 송신 장치의 구성도로서, 도 8과 마찬카지로, 신호에러 변환부(811)와, 에러 확인부(812)와, 컨벌루션 코더(813)와, 전송숙도 동기화부(814)와, 신호에러 변환부(815)와, 변조부(816)와, 채널 확산부(817)와, 직/병렬 변환 부(818, 819)들과, 주파수 동기화부(820, 821)들과, 역퓨리에변환부(822)와, 반복산호 삽입부(823, 824) 들과, 병/직렬 변환부(825, 826)들과, 동기화부(827, 828)들과, D/A 변환부(829, 830)들과, 상향 변환부 (831)를 구비한다.

그리고, 도 9에 도시된 본 발명의 다른 실시에에 따른 승신 장치는, 전송하고자 하는 데이터 트랙픽 및 신호를 부호화하면 비트 에러를 정정하는 비트에러 정정부(910)를 더 구비하고 있다.

여기서, 비트에러 정정부(910)는 리드 솔로몬(Read Solomon) 코더를 이용할 수 있다.

본 발명의 기술 사장은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문 가라면 본 발명의 기술 사장의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.

#89 57

이상에서 설명한 바와 같이 본 발명은, 주어진 채널 환경에 따른 최적화된 채널 부호회와 MC-CDM 방식을 통한 채널 추정 및 보상을 하여 주어 각 서비스에서 요구하는 에러 비트율을 만족하도록 데이터를 안정적 으로 전송하므로써, 한 사용자에게 서비스탈 수 있는 가능한 최대 데이터 전송속도는 10Mbps 정도가 되도 록 하여 엠펙(MPEG)-2와 같은 디지털 영상 서비에 이르기까지 다양한 멀티미디어 서비를 제공할 수 있는 호과가 있다.

(57) 경구의 벌위

청구함 1

통신 시스템에서 음성 트래픽(voice traffic) 및 신호을 전승하는 역방향 링크의 송신 장치에 있어서,

·전증하고자:하는 '음성 트래픽(voice traffic) 및 신호를 부호하여 비트 에러율을 감소시키는 채널 부호화 수단:

채널 부호화수단의 종력 신호를 소청의 왈시(Walsh)코드와 의사잡음코드를 미용하여 확산하는 채널 확산 수단:

상기 채널 확산수단에 의해 확산된 제 1 및 제 2 채널의 신호를 변조하고, 소정의 사용자 동기 버스트 (Burst) 신호에 맞추어 사용자와 기지국 간에 변조한 신호를 동키시키는 변조 및 동기화 수단) 및

소정의 반송파 선호에 따라, 상기 변조 및 동기화 수단으로부터 출력된 제 1 및 제 2 채널의 신호를 고주 파 신호로 상향 변환하고, 상향 변환한 제 1 및 제 2 채널의 고주파 신호를 가신하며 송신하는 상향 변환 수단

를 포함하며 미루어진 통신 시스템에서 역방향 링크의 증신 장치.

청구항 2

제 1 함에 있머서,

상기 채널 부호화수단은,

상기 음성 트래픽 및 신호의 버스트 메러를 랜덤(random) 메러로 변환하는 제 1 신호에러 변환수단;

상기 제 1 신호에러 변환수단으로부터 출력된 신호에 발생된 에러 상태를 확인하는 에러 확인수단;

상기 에러 확인수단에 의해 확인된 에러 상태 값에 따라, 상기 에러 확인수단으로부터 전달된 신호를 컨

- ·▶ 벌루션(Converlution) 부호화하면 에러 비트율을 감소시키는 에러 비트율 감소수단;
 - 상기 에러 비트율 감소수단의 출력신호에 소정의 신호를 삽입하며 전송하고자 하는 속도로 동기시키는 전송속도 동기화수단; 및
 - 상기 전송속도 동기화수단으로부터 전달된 신호의 버스트 에러를 랜덤 에러로 변환하는 제 2 신호에러 변환수단
 - 을 포함하여 이루어진 통신 시스템에서 역방향 링크의 송신 장치.

청구항 3

- 제 1 항에 있어서,
- 상기 채널 확산수단은,
- 상기 채널 부호화수단으로부터 전달된 신호를 변조하기 위한 변조수단는
- 상기 변조수단에 의해 변조된 상기 제 1 채널의 신호와 상기 소정의 활시코드를 승산하기 위한 제 1 승산 수단:
- 상기 변조수단에 의해 변조된 상기 제 2 채널의 산호와 상기 조정의 활시코드를 중산하기 위한 제 2 중산 수단
- 상기 제 1 승산수단의 출력신호와 상기 소정의 의사잡음코드를 승산하기 위한 제 3 승산수단, 및
- 상기 제 2 승산수단의 출력신호와 상기 소정의 의사잡음코드를 승산하기 위한 제 4 승산수단
- 을 포함하며 이루어진 통신 시스템에서 역방향 링크의 승신 장치.

청구항 4.

- 제 1 항에 있어서,
- 상기 변조 및 동기화수단은,
- 상기 채널 확산수단에 의해 확산된 제기 채널의 신호를 변조하고, 상기 소정의 사용자 동기 버스트 신호 에 맞추어 사용자와 기지국 간에 변조한 신호를 동기처키는 제기 변조 및 동기화 수단 및
- 상기 채널 확산수단에 의해 확산된 제 강 채널의 신호를 변조하고, 상기 소청의 사용자 동기 버스트 신호 에 맞추어 사용자와 기자국 간에 변조한 신호를 통기시키는 제 2 변조 및 동기화 수단
- 을 포함하며 미루어진 통신 시스템에서 역방향 링크의 송신 장치,

청구항 5

- 제 4 항에 있어서,
- 상기 제 1 변조 및 동기회수단은,
- 상기 채널 확산수단에 의해 확산된 제 1 채널의 직렬 신호를 병렬 신호로 변환하는 직/병렬 변환수단를
- 상기 직/병열 변환수단으로부터 출력된 병열 신호에 소정의 파일통 심볼과 기준신호를 삽입하여 주파수를 동기시키는 주파수 동기회수단:
- 상기 주파수 동기화수단의 출력신호를 역표리에변환하기 위한 역표리에변환수단:
- 상기 역퓨리에 변환수단으로부터 전달된 신호에 반복되는 신호를 삽입하며 심볼간의 간섭을 제거하는 반복 신호 삽입수단
- 상기 반복산호 삽입수단으로부터 출력된 병렬 신호를 직렬 신호로 변환하기 위한 병/직렬 변환수단;
- 상기 사용자 동기 버스트 신호에 따라, 삼기 사용자와 기지국 간에 상기 병/직렬 변환수단에 의해 변환된 직렬 신호를 동기시키는 동기화수단: 및
- 상기 동기화수단로부터 출력된 디지털 신호를 마날로그 신호로 변환하며 상기 상향 변환수단으로 출력하는 D/A 변환수단
- 을 포함하여 이루어진 통신 시스템에서 역방향 링크의 승신 장치.

청구항 6

- 제 4 항에 있어서.
- 상기 제 2 변조 및 동기화수단은,
- 상기 채널 확산수단에 의해 확산된 제 2 채널의 직렬 신호를 병렬 신호로 변환하는 직/병렬 변환수단;
- :상기 직/병렬: 변환수단으로부터 출력된 병렬 신호에 소정의 피일론 심불과 기준신호를 삽입하며 주파수를 동기시키는 주파수 동기화수단:
- 상기 주파수 동기화수단의 출력신호를 역표리에변환하기 위한 역표리에변환수단;
- 상기 역퓨리에변환수단으로부터 전달된 신호에 반복되는 신호를 삽입하며 심볼간의 간섭을 제거하는 반복 신호 삽입수단:

- 상기 반복신호 삽입수단으로부터 풀력된 병렬 신호를 직렬 신호로 변환하기 위한 병/직렬 변환수단;
- 상기 사용자 동기 버스트 신호에 따라, 상기 사용자와 기지국 간에 상기 병/직렬 변환수단에 의해 변환된 직렬 신호를 동기시키는 동기화수단; 및
- 상기 동기화수단로부터 출력된 디지털 신호를 마날로그 신호로 변환하며 상기 상향 변환수단으로 출력하는 D/A 변환수단
- 을 포함하며 이루어진 통신 시스템에서 역방향 링크의 승신 장치.

청구항 7

- 제 1 항 내지 제 6 항중 어느 한 항에 있어서,
- 상기 상향 변환수단은,
- 상기 소정의 반송파 신호에 따라, 상기 변조 및 동기화수단으로부터 전달된 제 1 채널의 신호를 고주파 신호로 상향 변환하는 제 1 상향 변환부;
- 상기 소정의 반송파 신호의 위상을 천이시키는 위상 천이부;
- 상기 위상 천미부에 의해 위상이 천미된 반송파 신호에 따라, 상기 변조 및 동기화수단으로부터 전달된 제 2 채널의 신호를 고주파 신호로 상향 변환하는 제 2 상향 변환부;
- 상기 제 1 및 제 2 상향 변환부에 위해 상향 변환된 제 1 및 제 2 채널의 신호를 기산하기 위한 가산부; 및
- 상기 가산부에 의해 가산된 신호를 필터링하여 잡음을 제거하는 필터링수단
- 을 포함하며 이루어진 통신 시스템에서 역방향 링크의 송신 장치,

청구항 8

- 제 기항에 있어서,
- 상기 위상 천미부는,
- 성기 소장의 반송파 신호를 실질적으로 90° 천미시키는 것을 특징으로 하는 통신 시스템에서 역방향 링크 의 송신 장치

청구항 9

- 통신 서스템에서 데이터 트래픽 및 신호를 전승하는 역방향 링크의 승신 장치에 있어서,
- 전송하고자 하는 데이터 트래픽 및 신호를 부호화하여 비트 에러를 정정하는 비트에러 정정수단
- 상기 비트 에러 정정수단으로부터 전달된 신호를 부호화하며 비트 에러율을 감소시키는 채널 부호화수단 채널 부호화수단의 출력 신호를 소정의 활시(Walsh)코드와 의사잡음코드를 미용하여 확신하는 채널 확산 수단:
- 상기 채널: 확산수단에 의해:확산된 제 1 및 제 2 채널의 신호를 변조하고, 소정의 사용자 동기 버스트 (Burst) 신호에 맞추어 사용자와 기지국 간에 변조한 신호를 동기시키는 변조 및 동기화 수단: 및
- 소정의 반송파 신호에 따라, 상기 변조 및 동기화 수단으로부터 출력된 제 1 및 제 2 채널의 신호를 고주 파 신호로 상향 변환하고, 상향 변환한 제 1 및 제 2 채널의 고주파 신호를 가신하며 중신하는 상향 변환 수단
- 를 포함하며 이루어진 통신 시스템에서 역방향 링크의 송신 장치.

청구한 10

- 제 9 항에 있머서,
- 상기 채널 부호화수단은,
- | 상기-비트에러 청청수단으로부터 출력된 신호의 비스트 에러를 랜덤(random) 에러로 변환하는 제 1 전호 에러 변환수단:
- 상기 제 1 신호에러 변환수단으로부터 출력된 신호에 발생된 에러 상태를 확인하는 에러 확인수다.
- 상기 에러 확인수단에 의해 확인된 에러 상태 값에 [따라, 상기 에러 확인수단으로부터 전달된 신호를 컨 벌루션(Convertorion) 부호화하여 에러 비트율을 감소시키는 에러 비트율 감소수단;
- 성기, 에러 비트율 감소수단의 출력신호에 소정의 신호를 삽입하며 전송하고자 하는 속도로 동기시키는 전송속도 동기화수단; 및
- ·상기 전송속도 동기화수단으로부터 전달된 선호의 버스트 에러를 랭덤 에러로 변환하는 제 2:신호에러 변 환수단
- 을 포함하며 이루어진 통신 시스템에서 역방향 링크의 송신 장치.

청구항 11

제 9 항에 있어서,

- 상기 채널 확산수단은,
 - 상기 채널 부호화수단으로부터 전달된 신호를 변조하기 위한 변조수단;
 - 상기 변조수단에 의해 변조된 상기 제 1 채널의 신호와 상기 소정의 왈시코드를 승산하기 위한 제 1 승산 수단;
 - 상기 변조수단에 의해 변조된 상기 제 2 채널의 신호와 상기 소정의 활시코드를 승산하기 위한 제 2 승산 수단;
- 삼기 제 1 승산수단의 출력신호와 상기 소청의 의사잡음코드를 증산하기 위한 제 3 승산수단; 및
- 상기 제 2 승산수단의 출력신호와 상기 소정의 의사잡음코드를 승산하기 위한 제 4 승산수단
- 을 포함하여 미루어진 통신 시스템에서 역방향 링크의 송신 장치.

·청구항 12*

제 9 항에 있머서,

상기 변조 및 동기화수단은,

상기 채널 확산수단에 의해 확산된 제 1 채널의 신호를 변조하고, 상기 소정의 사용자 동기 버스트 신호 에 맞추어 사용자와 기지국 간에 변조한 신호를 동기시키는 제 1 변조 및 동기화 수단/및

'삼기 채널 확실수단에 의해 확신된 제 2 채널의 선호를 변조하고, 상기 소정의 사용자 동기 버스트 신호 에 맞추어 사용자와 기자국 간에 변조한 신호를 동기시키는 제 2 변조 및 동기화 수단

을 포함하여 미루어진 통신 시스템에서 역방향 링크의 승신 장치.

청구항 13

제 12 항에 있어서,

상기 제 1 변조 및 동기회수단은,

- 상기 채널 확산수단에 의해 확산된 제 1 채널의 직렬 신호를 병렬 신호로 변환하는 직/병렬 변환수단》
- 성기 직기병을 변환수단으로부터 출력된 병렬 신호에 소정의 파일론 심볼과 기준신호를 삽입하며 주파수를 동기시키는 주파수 동기화수단
- 상기 주파수 동기화수단의 출력신호를 역퓨리에변환하기 위한 역퓨리에변환수단;
- 성기 역퓨리에변환수단으로부터 전달된 신호에 반복되는 신호를 삽입하며 심볼간의 간섭을 제거하는 반복 신호 삽입수단:
- 상기 반복신호 삽입수단으로부터 출력된 병혈 선호를 직할 신호로 변환하기 위한 병/직혈 변환수다;
- '상기' 사용자 동기 버스트 전호에 따라, 상기 사용자와 기지국 간에 상기 병/작렬 변환수단에 의해 변환된 '작렬' 전호를 동기시키는 동기화수단: 및
- 상기 동기화주단로부터 출력된 디지털 신호를 이탈로그 신호로 변환하여 상기 상향 변환수단으로 출력하 분 974 변환수단
- 을 포함하여 이루어진 통신 시스템에서 역방향 링크의 송신 장치.

천 그하나14

제 12 항에 있어서,

상기 제 2 변조 및 동기회수단은,

- 상기 채널 확산수단에 의해 확산된 채 2 채널의 직렬 신호를 병렬 신호로 변환하는 직/병렬 변환수단)
- 상기 집/병렬 변환수단으로부터 출력된 병렬 신호에 소정의 파일롯 심볼과 기준신호를 삽입하여 주파수를 동기시키는 주파수 동기화수단:
- 상기 주파소 동기화수단의 출력신호를 역품리에변환하기 위한 역품리에변환수단;
- 상기 역퓨리에변환수단으로부터 전달된 신호에 반복되는 신호를 삽입하여 심볼간의 간섭을 제거하는 반복 신호 삽입수단:
- ·상기 반복진호 집입수단으로부터 폴력된 병렬 신호를 직렬 신호로 변환하기 위한 병/직렬 변환수단;
- 성기 사용자 등기 버스트 신호에 따라, 상기 사용자와 기지국 간에 상기 병/직렬 변환수단에 의해 변환된 직렬:신호를 동기시키는 동기화수단; 및
- 상기 등기화수단로부터 출력된 터지털 신호를 이날로고 신호로 변환하여 상기 상향 변환수단으로 출력하는 IP/A 변화스다
- 을 포함하며 이루어진 통신 시스템에서 역방향 링크의 승신 장치.

청구항 15

제 9 항 내지 제 14 항중 어느 한 항에 있어서,

상기 상향 변환수단은,

상기 소정의 반송파 신호에 따라, 상기 변조 및 동기화수단으로부터 전달된 제 1 채널의 신호를 고주파 신호로 상향 변환하는 제 1 상향 변환부;

상기 소정의 반송파 신호의 위상을 천이시키는 위상 천이부;

상기 위상 천이부에 의해 위상이 천이된 반송파 신호에 따라, 상기 변조 및 동기화수단으로부터 전달된 제 2 채널의 신호를 고주파 신호로 상향 변환하는 제 2 상향 변환부;

상기 제 1 및 제 2 상향 변환부에 의해 상향 변환된 제 1 및 제 2 채널의 신호를 가산하기 위한 가산부; 및

상기 가산부에 의해 가산된 신호를 필터링하며 잡음을 제거하는 필터링수단

을 포함하여 이루어진 통신 시스템에서 역방향 링크의 승신 장치.

청구항 16

제 15 항에 있어서,

상기 위상 천미부는,

상기 소정의 반송파 신호를 실질적으로 90°천미시키는 것을 특징으로 하는 통신 시쇼템에서 역방향 링크 의 송신 장치.

도만

<u> EU</u> j

<u> 582</u>

<u>503</u>

<u>584</u>

505

*⊊8*8

5B7

