Lecture 19-20: Dynamics of Multibody Mechanisms

Vincent Duindam and Ram Vasudevan

UC Berkeley

Contents

Previously: kinematics of bodies and mechanisms

- Forward kinematics: from θ to g_{0n}
- Inverse kinematics: from g_{0n} to θ
- Forward differential kinematics: from $\dot{\theta}$ to V_{0n}^0
- lacktriangle Forward differential kinematics: from F_0 to au
- Inverse differential kinematics: from V_{0n}^0 to $\dot{\theta}$

This week: dynamics

- From geometry to physics
- lacktriangle Relation between torques au and accelerations $\ddot{ heta}$

Introduction to Dynamics

Dynamics

Dynamics: relation between accelerations and forces

- For rigid bodies: accelerations \dot{V} and wrenches F
- lacktriangle For mechanisms: accelerations $\ddot{ heta}$ and torques au

Things we need to know to describe dynamics

- Mass and inertias of all the parts
- All relevant forces and torques (actuation, gravity, friction, interaction, ...)

Newton dynamics

Newton's Second Law for unconstrained point masses

$$f = \frac{d}{dt}(m\dot{x}) = m\ddot{x}$$

with $\dot{x} \in \mathbb{R}^3$ the inertial velocity.

Newton dynamics

Newton's Second Law for unconstrained point masses

$$f = \frac{d}{dt}(m\dot{x}) = m\ddot{x}$$

with $\dot{x} \in \mathbb{R}^3$ the inertial velocity.

Unfortunately, we cannot just write

$$\tau = m\ddot{\theta}$$

Why?

Newton dynamics

Newton's Second Law for unconstrained point masses

$$f = \frac{d}{dt}(m\dot{x}) = m\ddot{x}$$

with $\dot{x} \in \mathbb{R}^3$ the inertial velocity.

Unfortunately, we cannot just write

$$\tau = m\ddot{\theta}$$

Why?

- Mechanism is not a point mass
- Coordinate space is not Euclidean or inertial

Generalized coordinates

Coordinates θ are called generalized coordinates

- Newton's law does not apply in configuration space
- However, system itself lives in Euclidean space

Generalized coordinates

Coordinates θ are called generalized coordinates

- Newton's law does not apply in configuration space
- However, system itself lives in Euclidean space

Properties of generalized coordinates

- Not coordinates of the point masses, but other coordinates that uniquely define their positions
- Coordinates that are not constrained in any way
- For robotics: joint angles θ
- For general systems: usually denoted by q

Dynamics using generalized coordinates

Dynamics for systems with generalized coordinates

- Newton's Law does not apply
- Use the Euler-Lagrange equations instead

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = \Gamma$$

with $L(q, \dot{q})$ the Lagrangian given by

$$L(q, \dot{q}) = \underbrace{T(q, \dot{q})}_{\text{kinetic}} - \underbrace{V(q)}_{\text{potentia}}$$

and Γ the vector of input forces collocated with \dot{q} .

Example: point mass

Example: point mass

- Kinetic energy: $T(q, \dot{q}) = \frac{1}{2}m\dot{q}^T\dot{q}$
- Potential energy: $V(q) = mgq_3$
- Lagrangian: $L(q, \dot{q}) = T(q, \dot{q}) V(q)$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = m\begin{bmatrix} \ddot{q}_1\\ \ddot{q}_2\\ \ddot{q}_3\end{bmatrix} - \begin{bmatrix} 0\\ 0\\ mg\end{bmatrix} = 0$$

Example: cart with stick

Example: cart with stick

■ Kinetic energy:

$$T(q, \dot{q}) = \frac{1}{2}m_1\dot{q}_1^2 + \frac{1}{2}m_2\left(\dot{q}_1^2 + l_2^2\dot{q}_2^2 - 2l_2\cos(q_2)\dot{q}_1\dot{q}_2\right)$$

■ Potential energy: $V(q) = m_2 g(l_1 + l_2 \cos(q_2))$

Application to mechanisms

In order to apply this to robotic mechanisms, we need

- **Coordinates** q: we choose joint angles θ
- Kinetic energy: energies of the links
- Potential energy: gravity on links

Energy of a Rigid Body

Center of mass

Center of mass (center of gravity)

- Balancing point on a rigid body
- If suspended from that point, body will not rotate

Compute CoM position as a weighted average

$$\begin{bmatrix} x_{\text{CoM}} \\ y_{\text{CoM}} \\ z_{\text{CoM}} \end{bmatrix} = \frac{1}{m} \iiint_{x,y,z} \rho(x,y,z) \begin{bmatrix} x \\ y \\ z \end{bmatrix} dx dy dz$$

Potential energy

Gravity is a potential field with gravitational constant g

- Gravitational energy for a point V = mgh
- Gravitational energy for a rigid body V = mgh (total mass m, height of the center of mass h)

Potential energy

Gravity is a potential field with gravitational constant g

- Gravitational energy for a point V = mgh
- Gravitational energy for a rigid body V = mgh (total mass m, height of the center of mass h)

For a rigid body with frame Ψ_1 at the center of mass and inertial reference frame Ψ_0 with z-axis up

$$V = mgp_{01}[3] = mgg_{01}[3, 4]$$

where p_{01} is the position component of $g_{01} \in SE(3)$

Mass vs. inertia

Translation energy vs. Rotation energy

- Point mass m with $\dot{x} = v$: $T = \frac{1}{2}mv^2$
- Point mass m with $\dot{x} = \omega r$: $T = \frac{1}{2}m(\omega r)^2 = \frac{1}{2}(mr^2)\omega^2$

Both energies are the same kinetic energy, just expressed in different coordinates!

Mass vs. inertia

Translation energy vs. Rotation energy

- Point mass m with $\dot{x} = v$: $T = \frac{1}{2}mv^2$
- Point mass m with $\dot{x} = \omega r$: $T = \frac{1}{2}m(\omega r)^2 = \frac{1}{2}(mr^2)\omega^2$

Both energies are the same kinetic energy, just expressed in different coordinates!

Inertia

- Inertia J of a mass m: 'angular weight' s.t. $T = \frac{1}{2}J\omega^2$
- $\omega \in \mathbb{R}$: angular velocity around a specific axis
- Inertia depends on axis direction and location!

Inertias of some objects

Just like mass, inertia can be summed / integrated $J_a=m_1r_1^2$

Inertias of some objects

Just like mass, inertia can be summed / integrated

$$J_a = m_1 r_1^2$$

$$J_b = m_1 r_1^2 + m_2 r_2^2$$

Inertias of some objects

Just like mass, inertia can be summed / integrated

$$J_a = m_1 r_1^2$$
 $J_b = m_1 r_1^2 + m_2 r_2^2$
 $J_c = \int_0^{r_2} \int_0^{2\pi} \rho(\theta, x) r^2(\theta, x) d\theta dx = mr_1^2$

Kinetic energy

Kinetic energy T of a rigid body with density $\rho(r)$

Integral of kinetic energy of all particles

$$T = \frac{1}{2} \int_{V} \rho(r) ||\dot{r}||^2 dV$$

■ If we express the velocity \dot{r} using twists

$$T = \frac{1}{2} \int_{V} \rho(r) \|\hat{\omega}r + v\|^2 dV$$

Kinetic energy

Kinetic energy T of a rigid body with density $\rho(r)$

■ Integral of kinetic energy of all particles

$$T = \frac{1}{2} \int_{V} \rho(r) ||\dot{r}||^2 dV$$

■ If we express the velocity \dot{r} using twists

$$T = \frac{1}{2} \int_{V} \rho(r) \|\hat{\omega}r + v\|^{2} dV = \frac{1}{2} \int_{V} \rho(r) \|v - \hat{r}\omega\|^{2} dV$$
$$= \frac{1}{2} \begin{bmatrix} v^{T} & \omega^{T} \end{bmatrix} \underbrace{\left(\int_{V} \rho(r) \begin{bmatrix} I & \hat{r}^{T} \\ \hat{r} & \hat{r}^{T} \hat{r} \end{bmatrix} dV \right)}_{\text{inertia matrix } \mathcal{M}} \begin{bmatrix} v \\ \omega \end{bmatrix}$$

Inertia matrix

Kinetic energy $T = \frac{1}{2}V_{01}^T \mathcal{M}V_{01}$ with

$$\mathcal{M} = \int_{V} \rho(r) \begin{bmatrix} I & \hat{r}^{T} \\ \hat{r} & \hat{r}^{T} \hat{r} \end{bmatrix} dV = \begin{bmatrix} \int_{V} \rho(r) I dV & \int_{V} \rho(r) \hat{r}^{T} dV \\ \int_{V} \rho(r) \hat{r} dV & \int_{V} \rho(r) \hat{r}^{T} \hat{r} dV \end{bmatrix}$$

The numerical values and properties depend on the choice of coordinate frame for V_{01} and \mathcal{M}

- For any choice: $\int_V \rho(r) dV = m$ with m the total mass
- Choose body frame Ψ_1 : \mathcal{M} constant!
- Choose Ψ_1 at the center of mass: $\int_V \rho(r)\hat{r}dV = 0$
- Choose Ψ_1 aligned with principle axes: $\mathcal M$ diagonal

Inertia matrix

Inertial properties of any rigid body are determined by

- Total mass
- Center of mass (balancing point)
- Inertias around three principle axes

Rigid Body Energy Mechanism Energy Mechanism Dynamics Computed Torque Conclusions

Inertia matrix

Inertial properties of any rigid body are determined by

- Total mass
- Center of mass (balancing point)
- Inertias around three principle axes

Any rigid body of any shape behaves just like an ellipsoid with the same mass and inertia

Dynamics of a rigid body

Newton-Euler equations

$$\begin{bmatrix} mI & 0 \\ 0 & \mathcal{I} \end{bmatrix} \begin{bmatrix} \dot{v}_{01}^1 \\ \dot{\omega}_{01}^1 \end{bmatrix} + \begin{bmatrix} \omega_{01}^1 \times mv_{01}^1 \\ \omega_{01}^1 \times \mathcal{I}\omega_{01}^1 \end{bmatrix} = F_1$$

Derivation can be found in MLS Chapter 4.

Newton-Euler equations

$$\begin{bmatrix} mI & 0 \\ 0 & \mathcal{I} \end{bmatrix} \begin{bmatrix} \dot{v}_{01}^1 \\ \dot{\omega}_{01}^1 \end{bmatrix} + \begin{bmatrix} \omega_{01}^1 \times mv_{01}^1 \\ \omega_{01}^1 \times \mathcal{I}\omega_{01}^1 \end{bmatrix} = F_1$$

Derivation can be found in MLS Chapter 4.

Interesting properties

- Energy is conserved: $\frac{d}{dt}(T+V) = F_1^T V_{01}^1$
- Momentum (in coordinates Ψ_0) is conserved
- Stability of rotations: the lunchbox experiment

Energy of a Robotic Mechanism

Potential energy

Sum potential energies of the links

- Coordinate frame Ψ_i attached to each link i
- Center of mass has constant coordinates in Ψ_i
- Compute height $h_i(\theta)$ of center of mass using FK
- Potential energy equals

Kinetic energy

Express kinetic energy using θ and $\dot{\theta}$

■ Kinetic energy of body *i*:

$$T_i = \frac{1}{2} \left(V_{0i}^i \right)^T \mathcal{M}_i \ V_{0i}^i$$

Kinetic energy

Express kinetic energy using θ and $\dot{\theta}$

■ Kinetic energy of body i:

$$T_i = \frac{1}{2} \left(V_{0i}^i \right)^T \mathcal{M}_i \ V_{0i}^i$$

■ Twist of body *i* can be written using body Jacobian

$$V_{0i}^0 = J_i(\theta)\dot{\theta} = \begin{bmatrix} \xi_1' & \cdots & \xi_i' & 0 & \cdots & 0 \end{bmatrix}\dot{\theta}$$

Express kinetic energy using θ and θ

Kinetic energy of body i:

$$T_i = \frac{1}{2} \left(V_{0i}^i \right)^T \mathcal{M}_i \ V_{0i}^i$$

Twist of body i can be written using body Jacobian

$$V_{0j}^0 = J_i(\theta)\dot{\theta} = \begin{bmatrix} \xi_1' & \cdots & \xi_i' & 0 & \cdots & 0 \end{bmatrix}\dot{\theta}$$

Combining these two expressions

$$egin{aligned} \mathcal{T}_i &= rac{1}{2} \left(\mathsf{Ad}_{g_{i0}} J_i \dot{ heta}
ight)^T \mathcal{M}_i \; \left(\mathsf{Ad}_{g_{i0}} J_i \dot{ heta}
ight) \ &= rac{1}{2} \dot{ heta}^T \left(J_i^T \, \mathsf{Ad}_{g_{i0}}^T \, \mathcal{M}_i \, \mathsf{Ad}_{g_{i0}} J_i
ight) \dot{ heta} \end{aligned}$$

$$T_i(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^T \left(J_i^T \operatorname{Ad}_{g_{i0}}^T \mathcal{M}_i \operatorname{Ad}_{g_{i0}} J_i \right) \dot{\theta}$$

$$T_i(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^T \left(J_i^T \operatorname{Ad}_{g_{i0}}^T \mathcal{M}_i \operatorname{Ad}_{g_{i0}} J_i \right) \dot{\theta}$$

$$T(\theta, \dot{\theta}) = \sum_{i=1}^{n} \frac{1}{2} \dot{\theta}^{T} \left(J_{i}^{T} \operatorname{Ad}_{g_{i0}}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}} J_{i} \right) \dot{\theta}$$

$$T_i(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^T \left(J_i^T \operatorname{Ad}_{g_{i0}}^T \mathcal{M}_i \operatorname{Ad}_{g_{i0}} J_i \right) \dot{\theta}$$

$$T(\theta, \dot{\theta}) = \sum_{i=1}^{n} \frac{1}{2} \dot{\theta}^{T} \left(J_{i}^{T} \operatorname{Ad}_{g_{i0}}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}} J_{i} \right) \dot{\theta}$$

$$= \frac{1}{2} \dot{\theta}^{T} \sum_{i=1}^{n} J_{i}^{T} \operatorname{Ad}_{g_{i0}}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}} J_{i} \dot{\theta}$$
inertia matrix $M(\theta)$

$$T_i(\theta, \dot{\theta}) = \frac{1}{2}\dot{\theta}^T \left(J_i^T \operatorname{Ad}_{g_{i0}}^T \mathcal{M}_i \operatorname{Ad}_{g_{i0}} J_i\right)\dot{\theta}$$

$$T(\theta, \dot{ heta}) = \sum_{i=1}^{n} rac{1}{2} \dot{ heta}^{T} \left(J_{i}^{T} \operatorname{Ad}_{g_{i0}}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}} J_{i} \right) \dot{ heta}$$

$$= rac{1}{2} \dot{ heta}^{T} \sum_{i=1}^{n} J_{i}^{T} \operatorname{Ad}_{g_{i0}}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}} J_{i} \ \dot{ heta}$$
inertia matrix $M(\theta)$

$$= rac{1}{2} \dot{ heta}^{T} M(\theta) \dot{ heta}$$

$$M(\theta) = \sum_{i=1}^{n} J_{i}^{T}(\theta) \operatorname{Ad}_{g_{i0}(\theta)}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}(\theta)} J_{i}(\theta)$$

$$M(\theta) = \sum_{i=1}^{n} J_{i}^{T}(\theta) \operatorname{Ad}_{g_{i0}(\theta)}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}(\theta)} J_{i}(\theta)$$

 $M(\theta)$: inertia matrix / mass matrix / inertia tensor

■ Symmetric: $M^T(\theta) = M(\theta)$

$$M(\theta) = \sum_{i=1}^{n} J_{i}^{T}(\theta) \operatorname{Ad}_{g_{i0}(\theta)}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}(\theta)} J_{i}(\theta)$$

- Symmetric: $M^T(\theta) = M(\theta)$
- Positive (semi-)definite: $M(\theta) \ge 0$

$$M(\theta) = \sum_{i=1}^{n} J_{i}^{T}(\theta) \operatorname{Ad}_{g_{i0}(\theta)}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}(\theta)} J_{i}(\theta)$$

- Symmetric: $M^T(\theta) = M(\theta)$
- Positive (semi-)definite: $M(\theta) \ge 0$
- In practice strictly positive definite: $M(\theta) > 0$
- Physical reason: any motion $\dot{\theta}$ has kinetic energy (point masses and infinitely thin rods do not exist)

$M(\theta) = \sum_{i=1}^{n} J_{i}^{T}(\theta) \operatorname{Ad}_{g_{i0}(\theta)}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}(\theta)} J_{i}(\theta)$

- Symmetric: $M^T(\theta) = M(\theta)$
- Positive (semi-)definite: $M(\theta) \ge 0$
- In practice strictly positive definite: $M(\theta) > 0$
- Physical reason: any motion $\dot{\theta}$ has kinetic energy (point masses and infinitely thin rods do not exist)
- Exception: badly chosen coordinates w/singularities

$$M(\theta) = \sum_{i=1}^{n} J_{i}^{T}(\theta) \operatorname{Ad}_{g_{i0}(\theta)}^{T} \mathcal{M}_{i} \operatorname{Ad}_{g_{i0}(\theta)} J_{i}(\theta)$$

- Symmetric: $M^T(\theta) = M(\theta)$
- Positive (semi-)definite: $M(\theta) \ge 0$
- In practice strictly positive definite: $M(\theta) > 0$
- Physical reason: any motion θ has kinetic energy (point masses and infinitely thin rods do not exist)
- Exception: badly chosen coordinates w/singularities
- Compare null-motions: $J(\theta)\dot{\theta}=0$

Dynamics of a Robotic Mechanism

Remember the dynamics in generalized coordinates

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = \Gamma$$

with $L(q, \dot{q})$ the Lagrangian given by

$$L(q, \dot{q}) = \underbrace{T(q, \dot{q})}_{\text{kinetic}} - \underbrace{V(q)}_{\text{potentia}}$$

and Γ the vector of input forces collocated with \dot{q} .

Lagrangian of a Mechanism

For a robotic mechanism with joint angles θ

$$T(heta,\dot{ heta}) = rac{1}{2}\dot{ heta}^{T}M(heta)\dot{ heta} \ V(heta) = \sum_{i=1}^{n}m_{i}gh_{i}(heta)$$

So the Lagrangian becomes

$$L(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^{\mathsf{T}} M(\theta) \dot{\theta} - V(\theta)$$

$$L(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^{T} M(\theta) \dot{\theta} - V(\theta)$$

Substituting into the Euler-Lagrange equation gives

$$M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + N(\theta) = \tau$$

with

$$N(\theta) = \frac{\partial V}{\partial \theta}$$

$$C_{ij}(\theta, \dot{\theta}) = \sum_{k=1}^{n} \Gamma_{ijk} \dot{\theta}_{k} = \frac{1}{2} \sum_{k=1}^{n} \left(\frac{\partial M_{ij}}{\partial \theta_{k}} + \frac{\partial M_{ki}}{\partial \theta_{j}} - \frac{\partial M_{jk}}{\partial \theta_{i}} \right) \dot{\theta}_{k}$$

Dynamics of a mechanism

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta) = \tau$$

- $C(\theta, \dot{\theta})$ represents Coriolis and centrifugal effects
- Efficient algorithms exist to find $M(\theta)$ and $C(\theta, \dot{\theta})$

Dynamics of a mechanism

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta) = \tau$$

- \blacksquare $C(\theta, \dot{\theta})$ represents Coriolis and centrifugal effects
- Efficient algorithms exist to find $M(\theta)$ and $C(\theta, \dot{\theta})$
- Multiply by M^{-1} to find $\ddot{\theta}$ as function of τ
- Define states θ and $\dot{\theta}$ to get

$$\frac{d}{dt}\begin{bmatrix}\theta\\\dot{\theta}\end{bmatrix} = \begin{bmatrix}\dot{\theta}\\-M^{-1}C\dot{\theta} - M^{-1}N\end{bmatrix} + \begin{bmatrix}0\\M^{-1}\end{bmatrix}\tau$$

- Result: first order ODE of the form $\dot{x} = f(x) + g(x)u$
- Use in simulation, analysis, nonlinear control design

$$M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + N(\theta) = \tau$$

Only suitable for simple joints with $\theta \in \mathbb{R}$

■ More general joints: ball joint, free-floating

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta) = \tau$$

Only suitable for simple joints with $\theta \in \mathbb{R}$

More general joints: ball joint, free-floating

Only suitable for so-called holonomic joints

- Non-holonomic: dimension of velocity space is smaller than dimension of configuration space
- Examples of nonholonomic joints: unicycle, car...

Application in Computed Torque Control

Naive Computed Torque Control

The dynamics of the plant are given as

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta) = \tau$$

Naive Computed Torque Control

The dynamics of the plant are given as

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta) = \tau$$

What if we choose the control inputs τ as follows?

$$au = M(\theta)\ddot{ heta}_d + C(\theta,\dot{ heta})\dot{ heta} + N(\theta)$$

For this choice, the interconnection of the two becomes

$$\ddot{\theta} = \ddot{\theta}_d$$

Extended Computed Torque Control

To deal with initial conditions and disturbances, choose

$$\tau = M(\theta) \ddot{\theta}_d + C(\theta, \dot{\theta}) \dot{\theta} + N(\theta) - M(\theta) K_V \dot{e} - M(\theta) K_p e$$

with $e := \theta - \theta_d$.

Extended Computed Torque Control

To deal with initial conditions and disturbances, choose

$$\tau = M(\theta)\ddot{\theta}_d + C(\theta,\dot{\theta})\dot{\theta} + N(\theta) - M(\theta)K_\nu\dot{e} - M(\theta)K_\rho e$$

with $e := \theta - \theta_d$. The closed loop equation then becomes

$$\ddot{e} + K_{\nu}\dot{e} + K_{p}e = 0$$

which can be stabilized with suitable K_p , K_v .

Matlab simulation example

What about an error in the model $M \rightarrow \tilde{M}$?

$$\tau = \tilde{M}(\theta) \ddot{\theta}_d + C(\theta, \dot{\theta}) \dot{\theta} + N(\theta) - \tilde{M}(\theta) K_{\nu} \dot{e} - \tilde{M}(\theta) K_{p} e$$

The closed loop becomes

$$\ddot{\theta} = M^{-1} \tilde{M} \ddot{\theta}_d - M^{-1} \tilde{M} K_\nu \dot{e} - M^{-1} \tilde{M} K_\rho e$$

Robustness of Computed Torque Control

What about an error in the model $M \rightarrow \tilde{M}$?

$$\tau = \tilde{M}(\theta)\ddot{\theta}_d + C(\theta,\dot{\theta})\dot{\theta} + N(\theta) - \tilde{M}(\theta)K_\nu\dot{e} - \tilde{M}(\theta)K_\rho e$$

The closed loop becomes

$$\ddot{\theta} = M^{-1} \tilde{M} \ddot{\theta}_d - M^{-1} \tilde{M} K_\nu \dot{e} - M^{-1} \tilde{M} K_\rho e$$

This may be unstable, even for \tilde{M} close to M!

Matlab simulation example

Conclusions

Dynamics of robotic mechanisms

- Lagrange egns: dynamics in generalized coords
- Any rigid body acts like an ellipsoid
- We can write kinetic energy in terms of V or $\dot{\theta}$
- We can write potential energy in terms of g or θ
- Result: second-order explicit differential eqns

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta) = \tau$$

- Use: simulation, analysis, controller design
- Computed torque: beware of model deviations

