

Features

· RoHS Compliant

- · FSTN positive black and white LCD type
- · Transflective Rear Polarizer
- · Built-in CCFL backlight
- 40 characters x 18 line capability
- 240 x 128 dot graphic display
- Excellent readability and high-contrast ratio
- · 6 o'clock viewing direction
- Wide operating temperature range (-20° to +70°C)
- · White backlight color, black frame

Dot Matrix Dimensions

Mechanical Characteristics

Item	Specification	Unit
Outline Dimensions	170.0 (W) x 102.0 (H) x 14.0 Max (D)	mm
Number of Dots	240 x 128 Dots (40 characters x 16 lines)	
Duty Ratio	1/128 Duty	
Viewing Area	132.0 (W) x 76.0 (H)	mm
Controller	T6963C/Toshiba	
Dot Size	0.48 (W) 0.48 (H)	mm
Dot Pitch	0.50 (W) 0.50 (H)	mm
Weight (approx.)	tbd	gram

AND1743FST-T

240 x 128 Dots Intelligent Graphics Display

The AND1743FST-T devices are compact, full dot matrix, with "white page" appearance, LCD modules that have an onboard LCD controller (T6963C) and display memory (RAM). The AND1743FST-T can display TEXT information, numerals, letters and symbols, as well as GRAPHIC patterns. These devices are suitable for medical and measurement equipment, point-of-sale terminals, portable equipment, and marine instrumentation.

Absolute Maximum Ratings

	Absolute Maximum			
Item	Symbol	Min	Max	Unit
Power Supply for Logic	V_{DD} - V_{SS}	-0.3	7.0	V
Power Supply for LCD	V _{DD} - V _{EE}	0	24.0	V
Input Voltage	V1	-0.3	V_{DD}	V
CCFL Driving Voltage ⁽¹⁾	V _{FL}	0	500	V _{rms}
CCFL Input Current	I _{FL}	-	7.0	mA
Normal Storage Temp.	T _{stg}	-20	70	°C
Normal Operating Temp.	T _{op}	0	50	°C
Wide Storage Temp.	T _{stg}	-30	80	°C
Wide Operating Temp.	T _{op}	-20	70	°C

Notes on Humidity (without condensation):

- $1.\text{Ta} \le 50 \,^{\circ}\text{C}$: 80% RH max; ta > 50°C: Absolute humidity must be lower than the humidity of 85% RH at 50°C (for Normal Operating Temp.)
- 2. Ta at -20° C will be <48 hrs; at 70° C will be <120 hrs when humidity is higherthan 75% (for Normal Storage Temp.)
- 3. Background color changes slightly depending on ambient temperature. This phenomenon is reversible (for Normal Operating Temp, Wide Operating Temp and Wide Storage Temp.)
- 4. Ta \leq 70°C: 75RH max; Ta> 70°C: absolute humidity must be lower than the humidity of 75% RH at 70°C (for Normal Storage Temp and Wide Operating Temp.)
- 5. Ta at -30°C will be <48hrs, at 80°C will be <120 hrs when humidity is higher than 75%.(for Wide Storage Temp.)

Product specifications contained herein may be changed without prior notice. It is therefore advisable to contact Purdy Electronics before proceeding with the design of equipment incorporating this product.

Electrical Characteristics (TA = 25°C)

Item	Symbol	Cond.	Min.	Тур.	Max.	Unit
Power Supply for Logic	V _{DD} - V _{SS}		4.5	5.0	5.5	V
	V _{IL}	L level	0	_	0.6	
lanut	V _{IH}	H level	2.2	_	V_{DD}	
Input Voltage	_	Ta = 0°C	_	_	_	V
	_	Ta = 25°C	16.9	17.2	17.5	
	-	Ta = 50°C	_	_	_	
Power	I _{DD}	V _{DD} = 5.0V	_	15.6	18	
Supply Current for LCM	I _{EE}	$V_{DD} - V_{EE} = 17.2V$	_	2.4	_	mA
CCFL Starting Voltage	V _{FLS}	_	_	750	_	V _{rms}
CCFL Driving Voltage	V _{FLD}	_	_	360	_	V _{rms}
CCFL Driving Current	I _{FLD}	V _{FLD} = 450 Vrms	_	5.0	_	mA
CCFL Driving Fre- quency	f _{FL}	f _{FL} = 30kHz	15	30	85	kHz
CCFL Driving Current	t _{SAT}	Ta = 25°C	_	1	_	minute

Optical Characteristics (TA = 25 $^{\circ}$ C, ϕ = 0 $^{\circ}$, θ = 0)

Item	Symbol	Min.	Тур.	Max.	Unit
	Φ f(12 o'clock)	-	34	-	
Viewing Angle	ving Angle Φ b (6 o'clock)		41	-	dograa
Range (1)	Ф I (9 o'clock)	-	35	-	degree
	Φr (3 o'clock)	-	30	-	
Rise Time ⁽²⁾	Tr	-	140	-	mS
Fall Time ⁽²⁾	Tf	-	240	-	11113
Frame Frequency ⁽²⁾	Frm	-	64	-	Hz
Contrast ⁽²⁾	Cr	_	5.2	_	-

Note 1:Condition: When $Cr \ge 2$ Note 2: V_{DD} - V_{EE} = 17.2V; Ta = 25°C

Connector Pin Assignment

Pin No.	Signal	Level	Function
1	FGND	_	Frame Ground
2	V _{ss}	0V	Power Supply Ground
3	$V_{\scriptscriptstyle DD}$	5V	Power Supply Voltage
4	V _O	_	Contrast Adjustment Voltage
5	/WR	L	Write Signal
6	/RD	L	Read Signal
7	/CE	L	Enable Signal
8	C/D	H/L	WR = "L", C/D = "H": Command Write WR = "L", C/D = "L": Data Write RD = "L", C/D = "H": Status Read RD = "L", C/D = "L": Data Read
9	NC	-	No connection
10	/RST	L	Reset Signal
11	DB0	H/L	Data Bit 0
12	DB1	H/L	Data Bit 1
13	DB2	H/L	Data Bit 2
14	DB3	H/L	Data Bit 3
15	DB4	H/L	Data Bit 4
16	DB5	H/L	Data Bit 5
17	DB6	H/L	Data Bit 6
18	DB7	H/L	Data Bit 7
19	FS	H/L	H: 6*8/L: 8*8 Select of Font
20	RV	_	Reverse Data IN

FL Connector

Pin No,	Signal	Function
1	V_{FL}	Power supply for FL backlight
5	V _{FL}	Power supply for FL backlight

Note: Connector: IL-G-55-53C2, Japan Aviation Electronics Industry. Mating Housing: IL-M-5P-S3C2-PM. Contact: IL-M-C2.

Recommended FL Inverter

Part number E1118 is Endicott Research Group, Inc.. Method of connecting is illustrated.

Power Supply

LCD panel is driven by the voltage $V_{DD}-V_{EE}$, so adjustable V_{EE} is required for contrast control and temperature compensation.

Temperature Variations

Temperature	V _{DD} -V _{EE} (MST)	V _{DD} -V _{EE} (BST)
0°C	21.0	20.0
+25°C	19.5	18.5
+50°C	17.6	16.6

Power Supply

Timing Relationships and Diagram

Signal Timing Relationships

Item	Symbol	Min.	Max.	Unit
C/D Set Up Time	t _{CDS}	100	_	
C/D Hold Time	t _{CDH}	10	-	
CE, RD, WR Pulse Width	t _{CE} t _{RD} ,t _{WR}	80	-	
Data Set Up Time	t _{DS}	80	_	ns
Data Hold Time	t _{DH}	40	-	
Access Time	t _{ACC}	-	150	
Output Hold Time	t _{OH}	10	50	

Timing Diagram

Block Diagram

