Networked Flight Simulation and Control Laboratory

AE Day April 9, 2021

UMBERTO SAETTI Assistant Professor Department of Aerospace Engineering

Introduction

- □ Presenter's Bio
- □Background and Motivation

Laboratory Vision

- □ Approach
- **□**Equipment
- **□**Simulation Models
- □ Configuration

Intended Research

- □ Linearized Models and Control of Rotorcraff Noise
- □ Identification of Time-Periodic Aerospace Systems
- ■Neural ODEs
- □ Dynamics and Control of Flapping-Wing Flight
- □ Dynamics and Control of eVTOL Vehicles

Presenter's Bio

Education

- Penn State
 - ☐ Ph.D., M.Sc. Aerospace Engineering (2019, 2016)
 - ☐ M.Sc. Electrical Engineering (2017)
- Politecnico di Milano (Italy)
 - ☐ B.Sc. Aerospace Engineering (2014)

Research Experience

- June 2021: Assistant Professor (Auburn University)
- 2019-Present: Postdoctoral Fellow (Georgia Tech)
- 2015-2019: Graduate Research Assistant (Penn State)
- 2018: Visiting Scholar (U.S. Army ADD, NASA Ames)

Research Field

Flight Dynamics & Controls, System ID, Time-Periodic Systems
 □Rotorcraft (helicopters, eVTOLs, UAS)
 □Flapping-wing flight (insects/birds, flapping-wing MAVs)
 □Fixed-Wing Aircraft (flapping-tail concept aircraft)

Dr. Umberto Saetti

Incoming Assistant Professor

Department of Aerospace Engineering

Auburn University

Email: saetti@auburn.edu
Web: umbertosaetti.com

Background and Motivation

Background

- Simulation networking started in the 1980's
 - DARPA SimNet [Miller and Thorpe 1995]
 - ☐ MULTISIM [George et al. 1989]
- Used for <u>mission rehearsal</u> and <u>team training</u> in military operations
- Advantages
 - ☐ Linked simulators can be <u>etherogeneous</u>
 - ☐ Simulator need <u>not</u> being <u>co-located</u>
 - □ Simulation units can be added and removed → <u>flexible</u>
- Allows for <u>multi-pilot/aircraft operations</u>
 - □ Aerial refueling
 - □ Cooperative slung load
 - ☐ Air combat
 - ☐ Air traffic management
- Seldom used for research

Link Flight Simulation Division's Multiple Networking (MULTISIM) [George et al. 1989]

Background and Motivation

Motivation

- Past approaches
 - ☐ Projected screens + large motion bases
 - ☐ Realistic physical cockpits
 - ☐ High acquisition, maintenance, and operation cost
 - ☐ Typically government initiatives

Vertical Motion Simulator (NASA Ames)

Background and Motivation

Motivation

- Past approaches
 - ☐ Projected screens + large motion bases
 - Realistic physical cockpits
 - ☐ High acquisition, maintenance, and operation cost
 - ☐ Typically government initiatives
- Advent of Virtual Reality (VR)
 - □ Eliminates need for large projected screens/physical cockpit
 - □ Reduces size and weight of motion platform
 - Lower mass/inertia → Increased motion bandwidth and range
 - □ Lower cost/size → Affordable for academic research
 - ☐ 360° visual environment

Brunner Elektronik NovaSim VR Simulator

Introduction

- □ Presenter's Bio
- □Background and Motivation

Laboratory Vision

- □ Approach
- **□**Equipment
- **□**Simulation Models
- □ Configuration

Intended Research

- □ Linearized Models and Control of Rotorcraff Noise
- □ Identification of Time-Periodic Aerospace Systems
- ■Neural ODEs
- □ Dynamics and Control of Flapping-Wing Flight
- □ Dynamics and Control of eVTOL Vehicles

VR/AR Headset

Haptic Feedback Pilot Suit

Motion-Base Simulator

Simulation Unit #1

Central Computing Unit

Simulation Unit #2

Multi-Purpose

- Can interface w/ MATLAB, Flightlab, Julia, etc.
- Can simulate different cockpit graphics

Reconfigurable

- Fixed-wing (GA + jet) + rotorcraft controls
- Can implement motion cueing algorithms

Modular

Can link multiple units together

Enhanced Motion Cueing

 Low mass/inertia → Increased motion bandwidth and range

Immersive

- VR provides 360° visual environment
- Look-down capability
- Pilot can see its hands and interact with cockpit
- Haptic feedback (force-feel controls + suit + gloves)

Broad Research Topics

- Fundamental research on VR/AR
 - ☐ Piloted flight simulation
 - □ Handling qualities evaluation
- Development and testing of advanced flight control systems
- Novel cueing systems and algorithms
 - □ Tactile
 - ☐ Haptic (force-feel controls and/or suit)
- Multi-pilot/aircraft operations
 - □ Aerial refueling
 - □ Cooperative slung load
 - ☐ Air combat
 - ☐ Air traffic management
- Simulation of high-acceleration flight w/ lowacceleration motion feedback
- Human-machine interaction
- Development of pilot models

Equipment (Cont'd)

Motion Base + VR/AR Headset

6-DoF Motion Platform

- Max payload: 660 lb (300 kg)
- Displacement and velocity
 - \Box Heave: ± 185 mm, ± 600 mm/s
 - **☐** Surge: ±240 mm, ±600 mm/s
 - **☐ Sway**: ±240 mm, ±600 mm/s
 - \square Roll, Pitch, Yaw: $\pm 30 \deg$, $\pm 120 \deg/s$

Visual System

- XTAL 8k
- Display
 - ☐ Resolution: 3840x2160 (4K) per eye
 - ☐ 180 deg field of view
 - ☐ Refresh rate: 75 hz @ 4K per eye
- Hand Tracking
 - ☐ Ultraleap Motion Rigel
 - ☐ 170 deg circular viewing angle
- Eye tracking @ 100 Hz

Motion-Base Flight Simulator

VR/AR Headset (XTAL 8K)

Equipment (Cont'd)

Haptic Feedback Pilot Suit + Gloves

Pilot Suit

- Haptic system / NMES
 - 80 electrostimulation channels
 - ☐ 114 electrodes
- Biometry
 - Electrocardiography
- Motion tracking
 - IMU 9 axes and 6 axes modes
 - 10 internal motion capture sensors
- Connectivity
 - ☐ Wi-Fi 2.4 ghz

Haptic Gloves

Sensoryx Haptic Gloves

Motion Capture

Gloves

AUBURN ENGINEERING

Simulation Models

ROtorcraft Simulation Engine (ROSE)

- Versions available
 - □ julia
 - ☐ MATLAB*
- Current Models
 - ☐ Simple Helo (UH-60, Bell 430)
 - ☐ **ARMCOP** (UH-60, AH-1, Bell 430)
 - ☐ GenHel (UH-60)
 - ☐ GenHel (UH-60) + Free Wake
- Other Models
 - ☐ F-16
 - ☐ Aeroacoustics Solver (Marching Cubes)
- Graphics
 - □ X-Plane

UH-60 Black Hawk

Bell 430

AH-1 Cobra

F-16 Fighting Falcon

Configuration

Configuration (Cont'd)

ENGINEERING

Configuration (Cont'd)

ENGINEERING

Introduction

- □ Presenter's Bio
- □Background and Motivation

Laboratory Vision

- □ Approach
- **□**Equipment
- **□**Simulation Models
- □ Configuration

Intended Research

- □ Linearized Models and Control of Rotorcraff Noise
- □ Identification of Time-Periodic Aerospace Systems
- ■Neural ODEs
- □ Dynamics and Control of Flapping-Wing Flight
- □ Dynamics and Control of eVTOL Vehicles

Linear Models and Control of Rotorcraft Noise

Ffowcs Williams-Hawkings Equation

Thickness

displacement of fluid generates sound

Loading

accelerating force distribution generates sound (includes **BVI noise**)

Quadrupole

All volume sources, non-linear effects nonuniform sound speed

Linear Models and Control of Rotorcraft Noise

Linear Models and Control of Rotorcraft Noise

Ongoing Work

- Developed methodology to:
 - ☐ Include rotor noise as output of Non-Linear Time-Periodic (NLTP) system
 - ☐ Linearize coupled flight dynamics and acoustics
- Derive high-order LTI models for use in noise predictions

Future Research

- Real-time piloted simulations of coupled flight dynamics, free-wake, and acoustic
- Development of noise-abating flight control laws
 - ☐ Community noise (multiple rotorcraft)
 - ☐ Cabin noise
- Haptic cueing of noise

Nonlinear vs. LTI system for a longitudinal cyclic doublet

Neural ODE Applications to Aerospace Vehicles

Motivation

- Neural networks recently formulated as Ordinary Differential Equations (ODE's)
- Chen. R.T.Q., Y. Rubanova, J. Battencourt,
 D. Duvenaud, "Neural Ordinary
 Differential Equations", Neural INPS,
 2018

Future Research

- Extend neural ODE's to aerospace vehicles applications
- Propose as an alternative to system ID
- Model matching with structured models
- Identification of linear systems

Neural Network

UH-60 Back Hawk

F-16 Fighting Falcon

Identification of Linear Time-Periodic (LTP) Systems from Rotorcraft Flight Test Data

Motivation

- LTP identification for rotrcraft application in its infancy
- Current methods can only identify harmonics multiple of N_b/rev
- Subspace ID shows promise for LTP system ID

Objectives

- Extend subspace ID to rotorcraft applications
 - Simulation data
 - ☐ Flight-test data
- Control design based on flight-identified LTP systems
- Future Vercial Lift (FVL)

Sikorsky SB-1 Defiant (Army FVL)

Bell V-280 (Army FVL)

Control System Design for Pilot Cueing

Motivation

- Pilot may not be able to track desired control inputs from control system
- Expert flight control system for autorotation is an example
- Need for control design that incorporates pilot dynamics

Objectives

- Develop control system design for cueing that account for pilot dynamics
- Study cueing methods for specific tasks
 - Autorotation
 - ☐ Shipboard landing
 - □ Carefree maneuvering
- Innovative cueing methods and test

Pilot model response to cues for safe autorotation

Dynamics and Control of eVTOL Vehicles

Past Work

- Developed 6-DoF Simulation Models
- Propeller-driven rotor inflow model
- Assessed dynamic stability
- Flight Control Design
 - Explicit Model Following (EMF)
 - Dynamic Inversion (DI)
- Autorotation

Future Research

- Piloted flight simulations
- Handling qualities evaluations
- Assess aerodynamically-induced noise

Sponsor

Vinati s.r.l.

F-Helix eVTOL Concept Aircraft (Legacy)

F-Helix eVTOL Concept Aircraft

Stability Analysis and Control of Biological/Bio-inspired Flight

Motivation

- No generalized method to describe the dynamics of flapping-wing flight
- Averaging methods need time-scale separation between
 - ☐ Forcing motion (flapping)
 - ☐ Fastest rigid-body mode

Objectives

- Extend harmonic decomposition methodology to flapping flight
- Analyze dynamic stability of wide spectrum of biological flyers
- Develop flight control laws that account for higher-order dynamics
- Demonstrate flight control laws in simulation and experimental studies

Flapping Frequency for Several Biological Flyers

ENGINEERING

Thank you

Questions?

