: 10/714,526 : November

Filed

November 14, 2003

AMENDMENTS TO THE CLAIMS

Please amend the claims as indicated below with insertions underlined (e.g., insertion), and deletions struckthrough or in double brackets (e.g., deletion or [[deletion]]):

- 1. (Canceled)
- 2. (Canceled)
- 3. (Currently Amended) A monitor comprising:
- a primary input from which a spectral characteristic of a tissue site is derivable:
 - a secondary input from which at least one parameter is determinable; and
- a processor configured to output saida compensated physiological measurement in response to said primary input and said secondary input utilizing a compensation relationship between said spectral characteristic and said at least one parameter and [[a]]said compensated physiological measurement;

wherein said compensation relationship comprises:

baseline calibration data relating said spectral characteristic to an uncompensated physiological measurement;

modified calibration data generated from a modification of said baseline calibration data in response to said at least one parameter; and

a look-up table having said spectral characteristic as an input and providing said compensated physiological measurement as an output according to said calibration data;

wherein said at least one parameter is a blood gas measurement and said compensation relationship further comprises:

- a comparison of said uncompensated physiological measurement with said blood gas measurement:
 - a sensitivity control; and
- modification rules responsive to said comparison and said sensitivity control, said modification rules determining said modification.

10/714,526

Filed

November 14, 2003

- 4. (Original) The monitor according to claim 3 wherein said modification rules include at least one polynomial function approximating at least a section of said baseline calibration data and adjustable so as to accommodate said blood gas measurement.
- 5. (Original) The monitor according to claim 4 wherein said at least one polynomial function can be represented as a Bezier curve.
 - 6. (Cancelled)
 - 7. (Currently Amended) A monitor comprising:
 - a primary input from which a spectral characteristic of a tissue site is derivable:
 - a secondary input from which at least one parameter is determinable wherein said spectral characteristic has a dependence on said parameter; and
 - a processor configured to output said compensated physiological measurement in response to saida primary input and said secondary input utilizing a relationship between said spectral characteristic and said at least one parameter and [[a]]said compensated physiological measurement;

wherein said compensation relationship comprises:

calibration data relating said spectral characteristic to an uncompensated physiological measurement;

a look-up table having at least said spectral characteristic and said at least one parameter as an input and providing said uncompensated measurement as an output according to said calibration data; and

a correction of said uncompensated physiological measurement in response to said at least one parameter so as to provide said compensated physiological measurement; and

wherein said at least one parameter is a carboxyhemoglobin concentration and said <u>look up table</u>correction comprises a function which distinguishes carboxyhemoglobin from oxyhemoglobin.

8. (Cancelled)

10/714,526

Filed

November 14, 2003

9. (Currently Amended) A monitor comprising:

a primary input from which a spectral characteristic of a tissue site is derivable;

a secondary input from which at least one parameter is determinable; and

a processor configured to output <u>saida</u> compensated physiological measurement in response to said primary input and said secondary input utilizing a relationship between said spectral characteristic and said at least one parameter and [[a]]said compensated physiological measurement;

wherein said compensation relationship comprises:

calibration data representing a plurality of wavelength-dependent compensation calibration curves, each of said compensation calibration curves relating said spectral characteristic to said compensated physiological measurement;

a look-up table having said spectral characteristic as an input and providing as an output said compensated physiological measurement according to said compensation calibration curves; and

a wavelength determination in response to said at least one parameter so as to select a sensor wavelength and a corresponding one of said compensation calibration curves.

- 10. (Cancelled)
- 11. (Cancelled)
- 12. (Cancelled)

10/714,526

Filed

November 14, 2003

13. (Currently Amended) A monitoring method comprising the steps of: inputting a sensor signal responsive to a spectral characteristic of a tissue site;

deriving a physiological measurement from said characteristic;

obtaining a parameter, wherein said physiological measurement has a dependency on said parameter;

determining a relationship between said spectral characteristic and said parameter that accounts for said dependency;

compensating said physiological measurement for said parameter utilizing said relationship; and

displaying said physiological measurement;

wherein said compensating step comprises the substeps of:

storing baseline calibration data;

modifying said baseline calibration data according to said parameter so as to provide modified calibration data; and

looking-up said physiological measurement from said modified calibration data according to said spectral characteristic; and

wherein said physiological measurement provides an SpO₂ value and said parameter is a manually input SaO₂ value, said modifying substep comprising the further steps of:

comparing said SpO₂ value to said SaO₂ value so as to determine a difference; and

determining said modified calibration data so as to reduce said difference.

14. (Cancelled)

Filed

: 10/714,526 : November November 14, 2003

15. (Currently Amended) A monitoring method comprising the steps of: inputting a sensor signal responsive to a spectral characteristic of a tissue site;

deriving a physiological measurement from said characteristic;

obtaining a parameter, wherein said physiological measurement has a dependency on said parameter;

determining a relationship between said spectral characteristic and said parameter that accounts for said dependency;

compensating said physiological measurement for said parameter utilizing said relationship; and

displaying said physiological measurement;

wherein said compensating step comprises the substeps of:

storing baseline calibration data;

looking-up said compensated physiological measurement from said calibration data according to said spectral characteristic in said parameter; and

correcting said physiological measurement according to said parameter: and

wherein said parameter is a hemoglobin constituent measurement and said correcting substep looking-up comprises the substeps of:

distinguishing said hemoglobin constituent from oxyhemoglobin and reduced hemoglobin; and

providing an adjustinged an-oxygen saturation measurement according to said distinguishing substep.

16. (Cancelled)

: 10/714,526 : November

Filed

November 14, 2003

17. (Currently Amended) A monitoring method comprising the steps of: inputting a sensor signal responsive to a spectral characteristic of a tissue site:

deriving a physiological measurement from said characteristic;

obtaining a parameter, wherein said physiological measurement has a dependency on said parameter:

determining a relationship between said spectral characteristic and said parameter that accounts for said dependency;

compensating said physiological measurement for said parameter utilizing said relationship;

wherein said compensating step comprises the substeps of:

storing wavelength-dependent calibration data;

determining a wavelength according to at least one of said parameter and said physiological measurement;

selecting an active portion of said calibration data according to said wavelength;

adjusting a sensor so that said spectral characteristic corresponds to said wavelength; and

looking-up said physiological measurement from said active portion of said calibration data according to said spectral characteristic; and

displaying said physiological measurement.

18. (Original) The monitoring method according to claim 17 wherein said parameter is a null value and said determining substep comprises the substeps of:

> identifying a range of said physiological measurement; and specifying said wavelength according to said range.

- 19. (Original) The monitoring method according to claim 18 wherein said physiological measurement corresponds to oxygen saturation at said tissue site and said wavelength has a first value at normal oxygen saturation levels and a second value at below normal oxygen saturation levels.
 - 20. (Cancelled)
 - 21. (Cancelled)

-7-

10/714,526

Filed

November 14, 2003

- 22. (Cancelled)
- 23. (Cancelled)
- 24. (Currently Amended) A monitor comprising:

a primary input means for determining a special characteristic associated with a tissue site;

- a secondary input means for relating said spectral characteristic determining a parameter that is relevant to measuring oxygen saturation at said tissue site; and.
- <u>a compensation relationship means for relating said spectral</u>
 <u>characteristic, said parameter and an oxygen saturation measurement;</u>

said-parameter and an oxygen saturation measurement; and

wherein said compensation relationship comprises a means for modifying a sensor wavelength and for selecting corresponding wavelength dependent calibration data.

- 25. (Currently Amended) A monitor comprising:
- a primary input from which a spectral characteristic of a tissue site is derivable:
 - a secondary input from which at least one parameter is determinable; and
- a processor configured to output <u>saida</u> compensated physiological measurement in response to said primary input and said secondary input utilizing a relationship between said spectral characteristic and said at least one parameter and [[a]]said compensated physiological measurement;

wherein said compensation relationship comprises a sensitivity control.

: 10/714,526

Filed

November 14, 2003

26. (Currently Amended) A monitoring method comprising the steps of: receiving a sensor signal responsive to a physiological parameter of a tissue site:

deriving a physiological indication of said physiological parameter,

obtaining a parameter indication, wherein said physiological indication has a dependency on said parameter indication;

determining a relationship between said physiological indication and said parameter indication that accounts for said dependency;

determining a measurement of said physiological parameter utilizationing said relationship;

wherein said relationship comprises a sensitivity control; and displaying said measurements.

10/714,526

Filed

November 14, 2003

SUMMARY OF THE INTERVIEW

Date:

June 21, 2006

Attendees:

Examiner Berhanu

Jarom Kesler

John Grover (Reg. No. 42,610)

Prior Art Discussed

U.S. Patent No. 5,842,979 issued to Jarman

Matters Discussed

The Applicant and the Examiner agreed to various claim amendments reflected herein.