11. En muchas aplicaciones se necesita encontrar caminos de peso multiplicativo mínimo en un digrafo D pesado con una función positiva $c \colon E(G) \to \mathbb{R}_{>1}$. Formalmente, el peso multiplicativo de un camino v_1, \ldots, v_k es la multiplicatoria de los pesos de sus aristas. Este tipo de caminos se buscan, por ejemplo, cuando los pesos de las aristas representan probabilidades de eventos independientes y se quiere encontrar una sucesión de eventos con probabilidad máxima/mínima. Modelar el problema de camino de peso multiplicativo mínimo como un problema de camino mínimo. **Demostrar** que el algoritmo es correcto. **Ayuda:** transformar el peso de cada arista usando una operación conocida que sea creciente y transforme cualquier multiplicatoria en una sumatoria.

Cosas útiles

Lo que queremos minimizar es para cada camino $v_1...v_k$

$$\prod_{i=1}^{k-1} c(v_i \to v_{i+1})$$

Y sabemos que $\log(x \cdot y) = \log x + \log y$,

como el codominio es $\mathbb{R}_{>1}$ entonces $x < y \iff \log x < \log y$

Por lo que para todo par de caminos $A, B \in G$ vale que:

$$\log \left(\prod_{a \in A} a \right) = \sum_{a \in A} \log a$$

$$\prod_{a \in A} a < \prod_{b \in B} b \iff \sum_{a \in A} \log a < \sum_{b \in B} \log b$$

Algoritmo

Armamos D' tal que para cada $e \in E(D)$ corresponde un $e' = e, e' \in E(D')$, y $c(e') = \log_b c(e)$, con b > 1 cualquiera.

Luego podemos usar Dijkstra $(D',s) \to \delta$ (vector de distancias) para cualquier nodo $s \in V(D)$ y "recuperar" el peso multiplicativo de s a cualquier $t \in V(D)$ haciendo

$$b^{\delta(s,t)}$$

Correctitud

La equivalencia de caminos mínimos está justificada en "Cosas útiles"

La solución es correcta porque

$$b^{\log_b\left(\prod_{a\in A}a
ight)}=\prod_{a\in A}a$$

done en nuestro caso, $a=c(v\to w)$ con $v\to w$ en un camino $A=s\to \ldots \to t$.

En otras palabras, nos devuelve $(s,v_1) \times (v_1,v_2) \times ... \times (v_k,t)$, donde $s,v_1,v_2...v_k,t$ es el camino que minimiza la suma de los logaritmos del peso de cada arista, que es equivalente al logaritmo del mínimo producto, que es lo que queríamos buscar.