Lineare Algebra II

N. Perrin

Düsseldorf Sommersemester 2013

Inhaltsverzeichnis

1	Wie	ederholung					
	1.1	Äquivalenz Relationen	4				
	1.2	Lineare Abbildungen, Matrizen, Basiswechsel	5				
	1.3	Äquivalenz von Matrizen	6				
	1.4	Basiswechsel für Endomorphismen, Ähnlichkeit	7				
	1.5	Erste Invarianten für die Ähnlichkeitsrelation	7				
	1.6	Eigenwerte und Eigenvektoren	9				
	1.7	Diagonalisierbare Matrizen	10				
	1.8	Eigenwerte und das charakteristische Polynom	10				
	1.9	Trigonalisierbarkeit	11				
	1.10	Minimal Polynom	11				

1 Wiederholung

In diesem Semester werden wir weiter mit lineare Abbildungen arbeiten. Wir nehmen an, dass alles was im Skript LA1 steht ist bekannt. Wir werden aber mit einige Wiederholungen anfangen.

1.1 Äquivalenz Relationen

Definition 1.1.1 1. Sei M eine Menge. Eine **Relation** auf M ist eine Teilmenge R von $M \times M$. Seien x, y zwei Elemente in M, für $(x, y) \in R$ schreibt man $x \sim_R y$.

- 2. R heißt **reflexiv**, wenn $x \sim_R x$ für alle $x \in M$.
- 3. R heißt **symmetrisch**, wenn $x \sim_R y \Rightarrow y \sim_R x$.
- 4. R heißt **transitiv**, wenn $(x \sim_R y \text{ und } y \sim_R z) \Rightarrow x \sim_R z$.

Definition 1.1.2 Eine Relation R heißt Äquivalenzrelation, wenn R reflexiv, symmetrisch und transitiv ist.

Definition 1.1.3 Sei R eine Äquivalenzrelation auf M.

1. Die **Äquivalenzklasse** [x] ist

$$[x] = \{ y \in M \mid x \sim_R y \} \subset M.$$

2. Die **Quotientenmenge** M/R ist die Gesamtheit der Äquivalenzklassen:

$$M/R \ = \{[x] \in \mathfrak{P}(M) \mid x \in M\}.$$

Satz 1.1.4 Sei R eine Äquivalenzrelation auf M. Dann sind alle Elemente aus M in genau eine Äquivalenzklasse.

Für eine Äquivalenzrelation hat sind die folgende Fragen wichtig.

Frage 1.1.5

- 1. Wann sind zwei Elemente $x, y \in M$ äquivalent?
- 2. Suche ein Element in jede Äquivalenzklasse.

1.2 Lineare Abbildungen, Matrizen, Basiswechsel

Für die Definitionen von Abbildungen, Körper, Vektorräume und Basen verweisen wir auf das Skript LA1 (Definition 2.2.1, Definition 3.1.1 und Definition 5.1.1). Sei K ein Körper und seien V und W zwei K-Vektorräume.

Definition 1.2.1 Eine Abbildung $f: V \to W$ heißt **linear**, wenn für alle $x, y \in K$ und alle $v, v' \in V$ gilt

$$f(xv + yv') = xf(v) + yf(v').$$

Sei $\mathcal{B} = (v_1, \dots, v_n)$ eine Basis von V und $\mathcal{B}' = (w_1, \dots, w_m)$ eine Basis von W. Da \mathcal{B}' eine Basis ist, gibt es, für alle $j \in [1, n]$, Skalare $(a_{i,j})_{i \in [1, m]}$ aus K mit

$$f(v_j) = \sum_{i=1}^m a_{i,j} w_i.$$

Für die Definition und eigenschaften von Matrizen, verweisen wir auf das Skript LA1.

Definition 1.2.2 Die Matrix $Mat_{\mathcal{B},\mathcal{B}'}(f)$ von f in den Basen \mathcal{B} , \mathcal{B}' ist

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) = (a_{i,j})_{i \in [1,m], \ j \in [1,n]} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}.$$

Sei $f: V \to W$ eine lineare Abbildung. Wenn wir die Basen $\mathcal{B}, \mathcal{B}'$ wechseln wird sich die Matrix $\operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ verändern. Der Basiswelchelsatz erklärt wie sich die Matrix verändert.

Satz 1.2.3 Sei $f: V \to W$ eine lineare Abbildung. Seien \mathcal{B}, \mathcal{C} Basen von V und seien $\mathcal{B}', \mathcal{C}'$ Basen von W. Sei $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ und $B = \operatorname{Mat}_{\mathcal{C},\mathcal{C}'}(f)$. Dann gilt

$$B = QAP$$

wobei $P = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(\operatorname{Id}_V)$ und $Q = \operatorname{Mat}_{\mathcal{B}',\mathcal{C}'}(\operatorname{Id}_W)$.

Wir werden zwei Beispiele von Äquivalenzrelationen für Matrizen einführen.

6 1 Wiederholung

1.3 Äquivalenz von Matrizen

Definition 1.3.1 1. Seien $A, B \in M_{m,n}(K)$. Dann sind A und B äquivalent, falls es $P \in GL_n(K)$ und $Q \in GL_m(K)$ gibt mit

$$B = QAP$$
.

In diesem Fall schreiben wir $A \sim B$.

2. Sei R die Relation $R = \{(A, B) \in M_{m,n}(K) \mid A \sim B\}.$

Lemma 1.3.2 Die Relation R ist eine Äquivalenzrelation.

Satz 1.3.3 Seien $A, B \in M_{m,n}(K)$.

$$A \sim B \Leftrightarrow \operatorname{Rg}(A) = \operatorname{Rg}(B).$$

Wir können also die Frage: wann sind zwei Elemente $A, B \in M$ äquivalent? antworten. Zwei Matrizen A, B sind äquivalent genau dann, wenn Rg(A) = Rg(B).

Um die zweite Frage: suche ein Element in jede Äquivalenzklasse zu antworten brauchen wir die folgende Definition.

Definition 1.3.4 Sei $A \in M_{m,n}(K)$ mit Rg(A) = r Dann heißt

$$\left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right) \in M_{m,n}(K)$$

die Normalform von A bzg. Äquivalenz von Matrizen.

Wir haben gesehen, dass die Äquivalenzklasse einer Matrix A mir Rg(A) = r ist die Menge

$$[A]_{\sim} = \{ B \in M_{n,m}(K) \mid \text{Rg}(B) = \text{Rg}(A) = r \}.$$

Wir haben in [A] ein sehr einfache Element: die **Normalform** von A.

$$\left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right) \in [A]_{\sim}.$$

1.4 Basiswechsel für Endomorphismen, Ähnlichkeit

Satz 1.4.1 Sei V ein n-dimensionaler Vektorraum. Seien \mathcal{B} und \mathcal{C} Basen von V und sei $f: V \to V$ linear. Sei $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$ und $B = \operatorname{Mat}_{\mathcal{C},\mathcal{C}}(f)$. Dann gilt

$$B = P^{-1}AP,$$

wobei $P = \operatorname{Mat}_{\mathcal{C}, \mathcal{B}}(\operatorname{Id}_V)$.

Definition 1.4.2 1. Seien $A, B \in M_n(K)$. Dann sind A und B **ähnlich**, falls es $P \in GL_n(K)$ gibt mit

$$B = P^{-1}AP.$$

In diesem Fall schreiben wir $A \approx B$.

2. Sei R' die Relation $R' = \{(A, B) \in M_n(K) \mid A \approx B\}.$

Lemma 1.4.3 Die Relation R' ist eine Äquivalenzrelation.

Die wichtige zwei Fragen für die Ähnlichkeitrelation sind:

Frage 1.4.4

- 1. Wann sind zwei Matrizen $A, B \in M_n(K)$ ähnlich?
- 2. Suche eine Normalform bzg. Ähnlichkeit von Matrizen.

Wir werden dieses Semester diese Fragen beantworten.

1.5 Erste Invarianten für die Ähnlichkeitsrelation

Lemma 1.5.1 Seien $A, B \in M_n(K)$. Es gilt

$$A \approx B \Rightarrow A \sim B$$
.

Beweis. Seien $A, B \in M_n(K)$ mit $A \approx B$. Nach der Definition gibt es ein $P \in GL_n(K)$ mit $B = P^{-1}AP$. Sei $Q = P^{-1} \in GL_n(K)$, dann gilt B = QAP und $A \sim B$.

Korollar 1.5.2 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann gilt Rg(A) = Rg(B).

Beweis. Folgt aus Satz 1.3.3.

8 1 Wiederholung

Beispiel 1.5.3 Im Korollar 1.5.2 haben wir nicht $Rg(A) = Rg(B) \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Für $C \approx A$ gilt: es gibt $P \in GL_2(K)$ mit

$$C = P^{-1}AP = P^{-1}I_2P = P^{-1}P = I_2 = A.$$

Es gilt also

$$[A]_{\approx} = \{A\}.$$

Die einzige Matrix die ähnlich zu A ist, ist die Matrix A. Also es gilt Rg(A) = 2 = Rg(B) (z.b. beide Determinanten sind ungleich 0) aber $A \not\approx B$.

Nächstes Semester haben wir den folgende Satz bewiesen.

Satz 1.5.4 Seien
$$A, B \in M_n(K)$$
 mit $A \approx B$. Dann gilt $\chi_A = \chi_B$.

Korollar 1.5.5 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann sind die Eigenwerte von A und B gleich.

Beispiel 1.5.6 Im Satz 1.5.4 haben wir nicht $\chi_A = \chi_A \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Es gilt

$$\chi_A = (X - 1)^2 = \chi_B.$$

Die Eigenwerte von A und B sind gleich (die einzige Eigenwerte ist 1). Aber, wie im Beispiel 1.5.3, gilt $A \not\approx B$.

Wir geben hier eine hinreichende Bedingung für ähnlichkeit von Matrizen.

Satz 1.5.7 Seien $A \in M_n(K)$ mit n paarweise verschiedene Eigenwerte $\lambda_1, \dots, \lambda_n$ und sei $B \in M_n(K)$ mit $\lambda_1, \dots, \lambda_n$ als Eigenwerte. Dann gilt $A \approx B$.

Beweis. Wir wissen (siehe Satz 1.7.5), dass die Matrix A und auch die Matrix B diagonalisierbar mit Eigenwerte $\lambda_1, \dots, \lambda_n$ sind. Es gibt also Matrizen $P, Q \in GL_n(K)$ mit

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} = Q^{-1}BQ.$$

Es gilt also $A \approx D \approx B$.

Beispiel 1.5.8 Im Satz 1.5.7 haben wir nicht

 $(A \approx B) \Rightarrow (A \text{ und } B \text{ haben die gleiche } n \text{ paarweise verschiedene Eigenwerte}).$

Seien

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) = B.$$

Dann gilt $A \approx B$ und A und B haben die gleiche Eigenwerte aber A und B haben nur eine Eigenwerte und nicht 2 paarweise verschiedene Eigenwerte.

Diese Beispiele und erste Invarianten zeigen, dass Diagonalisierbarkeit eine starke Zusammenhang mit Ähnlichkeit hat. Wir werden aber mehr brauchen. Wir wiederholen jetzt die Eigenchaften von diagonalisierbaren Matrizen.

1.6 Eigenwerte und Eigenvektoren

Definition 1.6.1 1. Sei $f: V \to V$ ein Endomorphismus von V. Ein Vektor $v \in V \setminus \{0\}$ heißt **Eigenvektor mit Eigenwerte** $\lambda \in K$ falls gilt

$$f(v) = \lambda v.$$

2. Sei $A \in M_n(K)$ eine Matrix. Ein Vektor $v \in K^n \setminus \{0\}$ heißt **Eigenvektor mit Eigenwerte** $\lambda \in K$ falls gilt

$$Av = \lambda v$$
.

Definition 1.6.2 Sei $\lambda \in K$ und $f: V \to V$ eine Endomorphismus. Der **Eigenraum** $E(f, \lambda)$ **zu** f **und** λ ist der Unterraum

$$E(f,\lambda) = \operatorname{Ker}(\lambda \operatorname{Id}_V - f) = \{ v \in V \mid f(v) = \lambda v \}.$$

Satz 1.6.3 Die Eigenwerte von f sind die Nullstelen von χ_f .

Satz 1.6.4 Sei $f \in \text{End}(V)$.

- 1. Für $\lambda \neq \mu$ gilt $E(f, \lambda) \cap E(f, \mu) = 0$.
- 2. Systeme von Eigenvektoren mit paarweise verschiedene Eigenwerte von f sind linear unabhängig.

Sei $n = \dim V$

Korollar 1.6.5 Sei $f \in \text{End}(V)$. Dann hat f höchstens n Eigenwerte.

Korollar 1.6.6 Sei $f \in \text{End}(V)$. Dann gilt

$$\sum_{\lambda \in K} E(f, \lambda) = \bigoplus_{\lambda \in K} E(f, \lambda).$$

1 Wiederholung

1.7 Diagonalisierbare Matrizen

Definition 1.7.1 Eine Matrix $A = (a_{i,j}) \in M_n(K)$ heißt diagonal wenn $a_{i,j} = 0$ gilt für alle $i \neq j$.

Definition 1.7.2 Eine Matrix $A \in M_n(K)$ ist **diagonalisierbar** falls sie ähnlich zu einer Diagonalmatrix ist *i.e.* falls es $P \in GL_n(K)$ gibt so dass PAP^{-1} eine Diagonalmatrix ist.

Bemerkung 1.7.3 Eine Matrix A is diagonalisierbar genau dann, wenn es, in der Ähnlichkeitsklasse von A eine Diagonalmatrix D gibt. Für diagonalisierbare Matrizen gibt es ein sehr einfache Element: die Diagonalmatrix D. Diese Diagonalmatrix D wird die (Jordan) Normalform von A sein.

Satz 1.7.4 Sei $A \in M_n(K)$. Dann sind folgende Aussagen äquivalent:

- 1. A ist diagonalisierbar.
- 2. Es gibt eine Basis \mathcal{B} von K^n , welche aus Eigenvektoren von A besteht.
- 3. $\sum_{\lambda \in K} \dim E(A, \lambda) = n$.

$$4. \oplus_{\lambda \in K} E(A, \lambda) = K^n.$$

Satz 1.7.5 Sei $n = \dim V$ und $f \in \operatorname{End}(V)$. Hat f genau n vershiedene Eigenwerte, dann ist f diagonalisierbar.

Eigenwerte und das charakteristische Polynom

Satz 1.8.1 Sei $A \in M_n(K)$ und sei $f \in \text{End}(V)$. Es gilt

{Eigenwerte von
$$A$$
} = {Nullstellen von χ_A } {Eigenwerte von f } = {Nullstellen von χ_f }.

Satz 1.8.2 Sei $n = \dim V$ und sei $f \in \operatorname{End}(V)$. Für jedes $\lambda \in K$ gilt dann

$$\dim E(f,\lambda) \leq m(\chi_f,\lambda),$$

wobei $m(\chi_f, \lambda)$ die Vielfachkeit von λ in χ_f ist.

Korollar 1.8.3 Sei $n = \dim V$ und sei $f \in \operatorname{End}(V)$. Das Endomorphismus f is diagonalisierbar genau dann, wenn, χ_f vollständig in Linearfaktoren zerfällt und für jedes $\lambda \in K$, gilt dim $E(f, \lambda) = m(\chi_f, \lambda)$.

1.9 Trigonalisierbarkeit

Definition 1.9.1 1. Eine Matrix $A = (a_{i,j}) \in M_n(K)$ ist eine obere Dreieckmatrix wenn $a_{i,j} = 0$ für i > j.

2. Sei $n = \dim V$ und $f \in \operatorname{End}(V)$. Das Endomorphismus f heißt **trigonalisierbar** falls es eine Basis \mathcal{B} gibt mit $\operatorname{Mat}_{\mathcal{B}}(f)$ eine obere Dreieckmatrix.

Bemerkung 1.9.2 Eine Matrix A is diagonalisierbar genau dann, wenn es, in der Ähnlichkeitsklasse von A eine obere Dreieckmatrix D gibt.

Satz 1.9.3 Sei $f \in \text{End}(V)$. Die folgende Aussagen sind äquivalent:

- 1. f ist trigonalisierbar.
- 2. χ_f zerfällt über K vollstandig in Linearfaktoren.

Korollar 1.9.4 Falls K algebraisch abgeschlossen ist, falls also jedes Polynom in $K[X] \setminus \{0\}$ über K in Linearfaktoren zerfällt, dann ist jedes $f \in \operatorname{End}(V)$ mit dim $V < \infty$ trigonalisierbar.

Bemerkung 1.9.5 Für K algebraisch abgeschlossen, gibt es immer in der Ähnlichkeitsklasse $[A]_{\approx}$ von A eine obere Dreieckmatrix. Wir können also als einfache Element in der Ähnlichkeitsklasse eine obere Dreieckmatrix wählen. Wir werden sehen, dass man noch einfachere Matrix wählen können: die (Jordan) Normalform von A.

1.10 Minimal Polynom

Sei V mit dim V = n und sei $f \in \text{End}(V)$.

Satz 1.10.1 ann existiert genau ein normiertes Polynom $\mu_f \in K[X]$, das Minimalpolynom von f mit

- 1. $\mu_f(f) = 0$
- 2. Ist $P \in K[X]$ mit P(f) = 0, so ist μ_f ein Teiler von P.

Satz 1.10.2 Dann sind folgende Aussagen äquivalent:

- 1. f ist diagonalisierbar.
- 2. μ_f zerfällt vollständig in Linearfaktoren und besitzt nur einfache Nullstellen.

Satz 1.10.3 (Satz von Cayley-Hamilton) Es gilt
$$\chi_f(f) = 0$$
.

Korollar 1.10.4 Es gilt μ_f ist ein Teiler von χ_f .

1 Wiederholung

Korollar 1.10.5 μ_f und χ_f haben die gleiche Nullstelle (die Eigenwerte). Seien λ eine solche Nullstelle, es gilt

$$m(\mu_f, \lambda) \leq m(\chi_f, \lambda).$$

Satz 1.10.6 Seien $A, B \in M_n(K)$ mit $A \approx B$. Dann gilt $\mu_A = \mu_B$.

Beweis. Sei $P \in GL_n(K)$ mit $B = P^{-1}AP$. Es gilt also auch $A = PBP^{-1}$. Eine einfache Induktion gibt für alle $i \in \mathbb{N}$:

$$B^i = P^{-1}A^iP$$

Sei $\mu_A = \sum_{i=0}^k a_i X_i \in K[X]$. Es gilt $\mu_A(A) = 0$. Wir zeigen, dass $\mu_A(B) = 0$. Es gilt

$$\mu_A(B) = \sum_{i=0}^k a_i B^k = \sum_{i=0}^k a_i P^{-1} A^k P = P^{-1} \left(\sum_{i=0}^k a_i A^k \right) P = P^{-1} \mu_A(A) P = 0.$$

Es gilt also $\mu_A(B) = 0$ und nach Satz ?? ist μ_B ein Teiler von μ_A .

Wir können A und B vertauchen und es gilt auch $\mu_B(A) = 0$. Daraus folgt, dass μ_A ein Teiler von μ_B ist. Es folgt, dass $\mu_A = \lambda \mu_B$ mit $\lambda \in K$ und weil μ_A und μ_B beide normiert sind folgt $\mu_A = \mu_B$.

Beispiel 1.10.7 Im Satz 1.10.6 haben wir nicht $\mu_A = \mu_B \Rightarrow A \approx B$. Seien

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Nach Korollar 1.10.5 hat μ_A (bzg. μ_B) die Eigenwerte von A (bzg. B) als Nullstellen. Also haben μ_A und μ_B die Zahlen 1 und 2 als Nullstellen. Die beide Matrizen A und B sind Diagonalmatrizen also diagonalisierbar. Nach Satz 1.10.2 folgt, dass μ_A und μ_B einfache Nullstellen haben. Es folgt

$$\mu_A = (X-1)(X-2) = \mu_B.$$

Wir zeigen, dass $A \not\approx B$. Hätten wir $A \approx B$, dann folgt nach Satz 1.5.4 $\chi_A = \chi_B$. Aber es gilt

$$\chi_A = (X-1)^2(X-2) \neq (X-1)(X-2)^2 = \chi_B.$$

Also $A \not\approx B$.

Beispiel 1.10.8 Es gibt Matrizen A und B mit

$$Rg(A) = Rg(B), \ \chi_A = \chi_B \text{ und } \mu_A = \mu_B$$

aber mit $A \not\approx B$.

Seien

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Es gilt

$$Rg(A) = 4 = Rg(B), \ \chi_A = (X - 1)^4 = \chi_B \text{ und } \mu_A = (X - 1)^2 = \mu_B.$$

Aber es gilt $A \not\approx B$.

Übung 1.10.9 Seien A und B wie im Beispiel 1.10.8.

- 1. Zeigen Sie, dass Rg(A) = 4 = Rg(B), $\chi_A = (X-1)^4 = \chi_B$ und $\mu_A = (X-1)^2 = \mu_B$.
- 2. Zeigen Sie, dass $A \not\approx B$.