MATH60604 Modélisation statistique § 2h Colinéarité

Léo Belzile

HEC Montréal Département de sciences de la décision

Multicolinéarité

- On dit que deux covariables X₁ et X₂ sont colinéaires si
 - X₁ et X₂ sont toutes deux corrélées avec Y
 - X₁ et X₂ sont fortement corrélées entre elles elles contiennent essentiellement la même information.
- Il peut y avoir de la multicolinéarité entre plus de deux variables...de la même façon qu'il pourrait y avoir plus d'un facteur confondant.
- Dans ce cas, la multicolinéarité (ou colinéarité) sert à décrire le cas de figure où une (ou plusieurs) variable explicative est fortement corrélée avec une combinaison linéaire des autres covariables.
- Une conséquence nuisible de la multicolinéarité est la perte de précision dans l'estimation des paramètres, et donc l'augmentation des erreurs-type des paramètres.

Un exemple débile pour illustrer la colinéarité

 Considérez le log du nombre quotidien de locations de Bixi en fonction de la température en degrés Celcius et Farenheit (et la température en °F arrondie au degré près). Soit le modèle linéaire

lognutilisateur =
$$\beta_0 + \beta_c$$
celcius + β_f farenheit + ε .

- L'interprétation de β_c est « le facteur d'augmentation du nombre de locations quotidiennes quand la température croît de 1° C, tout en gardant la température F constante »...
- Les deux unités de températures sont liées par la relation linéaire

1.8celcius +32 = farenheit.

 Supposons que le vrai effet (fictif) de la température sur le log du nombre de locations de vélo est

$$\texttt{lognutilisateur} = \alpha_0 + \alpha_1 \texttt{celcius} + \varepsilon.$$

 Les coefficients du modèle qui n'inclut que la température Farenheit sont donc

$$\texttt{lognutilisateur} = \gamma_0 + \gamma_1 \texttt{farenheit} + \varepsilon.$$

où
$$\alpha_0 = \gamma_0 + 32\gamma_1$$
 et $1.8\gamma_1 = \alpha_1$.

Les paramètres du modèle postulé avec les deux variables,

lognutilisateur =
$$\beta_0 + \beta_c$$
celcius + β_f farenheit + ε ,

ne sont pas **identifiables**: n'importe laquelle combinaison linéaire des deux solutions donne le même modèle ajusté.

Bixi et multicolinéarité

On utilise des données tirées du site de Bixi avec la température à 16h (rfarenheit dénote la température Farenheit arrondie) pour expliquer le nombre de locations quotidiennes entre 2014 et 2019.

Paramètre	Estimation	Erreur type	Valeur du test t	Pr > t
Constante	8.844327052	0.02819099	313.73	<.0001
celcius	0.048566261	0.00135205	35.92	<.0001

Paramètre	Estimation	Erreur type	Valeur du test t	Pr > t
Constante	7.980926861	0.05132678	155.49	<.0001
farenheit	0.026981256	0.00075114	35.92	<.0001

Paramètre	Estimation		Erreur type	Valeur du test t	Pr > t
Constante	8.844327052	В	0.02819099	313.73	<.0001
celcius	0.048566261	В	0.00135205	35.92	<.0001
farenheit	0.000000000	В			

Paramètre	Estimation	Erreur type	Valeur du test t	Pr > t
Constante	9.555086770	1.14747585	8.33	<.0001
celcius	0.088592866	0.06461502	1.37	0.1706
rfarenheit	-0.022227045	0.03587330	-0.62	0.5356

SAS imprime un avertissement en cas de colinéarité.

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Effet de la colinéarité

Règle générale, la colinéarité a les impacts suivants:

- Les estimés des coefficients changent drastiquement quand de nouvelles observations sont ajoutées au modèle, ou quand on ajoute/enlève des variables explicatives.
- Les erreurs-type des coefficients de la régression linéaire sont très élevées, parce que les β ne peuvent pas être estimés précisément.
- Conséquemment, les intervalles de confiance pour ces coefficients sont très larges.
- Les paramètres individuels ne sont pas statistiquement significatifs, mais le test F pour l'effet global du modèle indiquera que certaines variables sont utiles.

Comment détecter la multicolinéarité et les facteurs confondants?

- Si les variables sont exactement colinéaires, SAS et R en enlèvera une (SAS imprime la même remarque que lorsque vous déclarez des variables catégorielles à l'aide de class).
 - Les variables qui ne sont pas parfaitement colinéaires (par exemple arrondies) ne seront pas détectées par le logiciel et poseront problème.
- On peut regarder la corrélation linéaire entre variables explicatives et les changements dans les estimés des paramètres pour les régressions avec et sans certaines variables.
- Quand il y a plus de deux variables multicolinéaires, la détection est moins facile.
- Une variable explicative peut être corrélée avec une combinaison linéaire d'autres variables sans forcément avoir une corrélation très forte avec les variables individuelles.

Facteur d'inflation de la variance

- Un autre outil pour détecter la multicolinéarité est le facteur d'inflation de la variance (VIF).
- Pour une variable explicative donnée X_i , son VIF est

$$\mathsf{VIF}(j) = \frac{1}{1 - R^2(j)}$$

où $R^2(j)$ est le R^2 du modèle obtenu en régressant \mathbf{X}_j sur les autres variables explicatives.

• On parle parfois de facteur de tolérance, ${\sf TOL}=1-R^2(j)$, soit la réciproque du VIF.

Quand est-ce que la colinéarité est problématique?

- $R^2(j)$ représente la proportion de la variance de X_j qui est expliquée par les autres prédicteurs.
- Il n'y a pas de concensus mais, règle générale,
 - VIF(j) > 4 ou TOL < 0.25 si $R^2(j) > 0.75$
 - VIF(j) > 5 ou TOL < 0.2 si $R^2(j) > 0.8$
 - ${\sf VIF}(j) > 10$ ou ${\sf TOL} < 0.1$ si $R^2(j) > 0.9$.

Multicolinéarité et Bixi

- La valeur de la statistique F pour le test de significativité globale (omise de la sortie) du modèle linéaire simple avec température Celcius est 1292 avec une valeur-p de moins de 0.0001; cela suggère que la température est un excellent prédicteur (5% d'augmentation du nombre d'utilisateurs pour chaque augmentation de 1° C).
- En revanche, dès qu'on inclut Celcius et Farenheit (arrondi au degré près), les coefficients individuels ne sont plus statistiquement significatifs à niveau 5%.
- Qui plus est, le signe du coefficient de rfarenheit est différent de celui du modèle avec farenheit!
- Remarquez que les erreurs-type de Celcius sont 48 fois plus grandes dans le modèle avec les deux variables.
- Les facteur d'inflations de la variance de celcius et rfarenheit sont énormes (2282) et permet de diagnostiquer le problème.

Diagrammes de régression partielle pour Bixi

Exemple fictif d'un modèle avec un problème de multicolinéarité

- Voici un exemple fictif avec 100 observations d'une variable réponse Y avec cinq variables explicatives X_1 à X_5
- Les données sont dans la base de données simcolineaire, sas7bdat.
- ullet En réalité, les valeurs de Y ont été générées aléatoirement selon le modèle

$$Y = X_1 + X_2 + X_3 + X_4 + X_5 + \varepsilon$$

• Le paramètre associé à chaque variable explicative est 1.

Exemple fictif de multicolinéarité

Voici d'abord la matrice des corrélations entre toutes ces variables.

code SAS pour la corrélation

```
proc corr data=infe.simcolineaire noprob;
var y x1-x5;
run;
```

	Coefficients de corrélation de Pearson, N = 100					
	Υ	X1	X2	Х3	X4	X5
Y	1.00000	0.45184	0.45549	0.64572	0.41047	0.34706
X1 X1	0.45184	1.00000	0.05607	0.68896	0.14553	0.01874
X2 X2	0.45549	0.05607	1.00000	0.64534	0.07247	-0.02981
X3 X3	0.64572	0.68896	0.64534	1.00000	0.15883	0.00667
X4 X4	0.41047	0.14553	0.07247	0.15883	1.00000	0.11266
X5 X5	0.34706	0.01874	-0.02981	0.00667	0.11266	1.00000

Modèle linéaire simple pour l'exemple fictif

- ullet La corrélation entre Y et chaque variable explicative est significative et positive.
- Par conséquent, si on ajustait séparément les cinq modèles avec une seule variable explicative à la fois, le paramètre de la variable serait significatif et positif à chaque fois. Ceci est cohérent avec le vrai modèle qui a généré les données.
- Ceci démontre aussi qu'il y a assez d'observations pour bien estimer les paramètres et avoir les bonnes conclusions quant à leurs effets, du moins lorsque qu'on les considère un à la fois.

Exemple fictif de multicolinéarité

- En revanche, X₁, X₂ et X₃ sont très corrélées entre elles, ce qui peut causer un problème de multicolinéarité.
- Ajustons d'abord le modèle contenant toutes les variables explicatives avec proc reg tout en demandant les diagnostics de multicolinéarité.

Code SAS pour calculer les facteurs d'inflation de la variance

```
proc reg data=infe.simcolineaire;
model y=x1-x5 / vif;
run;
proc glm data=infe.simcolineaire;
model y=x1-x5 / ss3 solution tolerance;
run;
```

Procédures reg versus glm en SAS

La procédure reg permet également d'ajuster des modèles linéaires dans SAS.

- Par défaut, les graphiques sont imprimés (option plots=diagnostics dans glm).
- La procédure reg a des fonctionnalités pour la sélection de modèle (pas utile en inférence).
- Le tableau des coefficients est également imprimé (option solution dans glm).
- En revanche, la procédure reg ne permet pas d'inclure des variables catégorielles: ces dernières doivent obligatoirement être encodées à l'aide de variables indicatrices binaires (0-1) (erreur fréquente).
- Dans SAS, on peut utiliser l'option vif dans la procédure reg ou tol (réciproque du VIF) avec les procédures reg et glm.

Estimés des paramètres et des VIF

Résultats estimés des paramètres							
Variable	Libellé	DDL	Valeur estimée des paramètres		Valeur du test t	Pr > t	Inflation de variance
Intercept	Intercept	1	-0.76110	2.43241	-0.31	0.7551	0
X1	X1	1	0.43149	0.45829	0.94	0.3488	3.75609
X2	X2	1	0.68894	0.45638	1.51	0.1345	3.38306
Х3	Х3	1	1.94048	0.77306	2.51	0.0138	6.42789
X4	X4	1	1.06329	0.24587	4.32	<.0001	1.04162
X5	X5	1	1.14430	0.23231	4.93	<.0001	1.01507

Variable dépendante : Y

Tolérances

Variable	Tolérance de Type I	Tolérance de Type II
Intercept	100	6.3051461638
X1	1	0.2662342154
X2	0.9968564885	0.2955903718
Х3	0.1560669286	0.1555721533
X4	0.9722559013	0.9600474856
X5	0.9851577945	0.9851577945

Adéquation pour l'exemple fictif de multicolinéarité

- Dans l'ensemble, le modèle semble adéquat; le R^2 est de 62%.
- En revance, les coefficients X_1 et X_2 ne sont pas significatifs une fois les autres variables prises en compte.
- Les facteurs d'inflation de la variance VIF de X_3 est grand (6.43) et ceux de X_1 et X_2 oscillent entre 3 et 4.
- Ceci indique également un problème potentiel de multicolinéarité. La précision dans l'estimation de ces paramètres n'est pas aussi bonne que s'il n'y avait pas de multicolinéarité.
- Notez que le VIF est une mesure individuelle. Elle ne nous dit pas quelles variables sont corrélées entre elles.