

CYPRESS SEMICONDUCTOR CORPORATION Internal Correspondence

Date: 12/4/2019 **WW:** 1949

To: WHAO Author: CHMA

Author File#: CHMA#44*B

Subject: MTB2.0 Dual-Core Support Trial - Create Project via Template

Category:

Distribution: WHAO; XITO; JRTI; ZQLI; MIQI; CCTA; KOZU; HAXI; LWAX

Summary

The memo documents the detailed steps of how to create a dual-core supported application project for specific MPN via the template on MTB2.0.

Feature

- ➤ Add a component.mk file in CM4 to share CM0p's Device Configurator tool
- Dual-Core debugging is supported
- Auto-generate the merged final.hex and final.elf files
- > Add a variable in CM0p project's makefile to implement MPN auto-switching
- > Fixed EEPROM/SMIF etc. limitation on CM0p core
- Extract PDL to public path

Prerequisites

ModusToolbox 2.0: Build ID#1703

https://www.cypress.com/products/modustoolbox-software-environment

Template: V1.1.0

https://github.com/emyhello/mtb2.0/blob/master/dual-

core template/Template V110.zip

Template Introduction

1) Download the template from the above URL.

Note: this template is based on CY8CKIT-062-BLE (CY8C6347BZI-BLD53) kit.

 Un-compressing the template to your workspace (the path cannot contain "Space"), the structure of each one as following, Template_V110

Cm0p folder: CM0p core's project

Cm4 folder: CM4 core's project

Custom_Tool folder: It consists of batch files, which are used to auto-switch MPN

and generate whole MCU image files.

Cy_Pdl: PDL, middleware and lib files etc. provided by cypress

Details

1. Import the template to MTB2.0 IDE

X

Launch MTB2.0 and set the workspace to previous folder
 ModusToolbox IDE Launcher

ModusToolbox IDE uses the workspace directory to store its preferences and development artifacts.

2) Right-Click on the blank space in "Project Explorer", and click "Import...." Option, then select "General->Existing Projects into Workspace" as following,

After Clicking "Finish" button, the projects are loaded as following,

2. Switch the MCU part number

1) Open the makefile in CM0p project, modify the value of "MCU_PART" as your like. For example, switch to CY8C624ABZI-D44.

2) Select the Run->External Tools->External Tools Configurations on IDE menu, then run "DeviceUpdate" tool.

3) The tool auto-switch the MPN, from "Console" we can obtain the result.

3. Build the projects

1) Open the design.modus to configurate the Pin/Device functions then save configuration.

2) Right-click project folder to select "Build Project" to build CM0p and CM4 projects.

3) After building CM4 project, a script will auto-run to merge CM0p and CM4 project's elf to generate whole MCU image file. A reminder is displayed on "Console" window.

CM0p build output: \Cm0p_App\build\CY8CKIT-062-BLE\Debug CM4 build output: \Cm4_App\build\CY8CKIT-062-BLE\Debug Final merged files: \Cm4_App\build\CY8CKIT-062-BLE\Debug

4. Debug Projects

 Run->Debug Configuration in IDE menu, you can debugging/programming MCU here.

Note: the "Final_Program_(KitProg3)" will program whole MCU both CM0p and CM4 project.

"DualCore_Debug" option is under "Launch Group", which is used to dual core debugging

a. Selected Cm4_App project, then launch the "DualCore_Debug (KitProg3)".

b. Debugging have jumped to Cm0p main(). After running to "Cy_SysEnableCM4(CY_FLASH_BASE + 0x10000u);", we can debug the projects separately.

Attention

- 1. The path of MTB project cannot contain "space".
- You can adjust the Flash/Ram size of CM0p and CM4 core via the linker file in /libs/TARGET_CY8CKIT-062-BLE/linker/TOOLCHAIN_GCC_ARM/ folder.
- Make sure the address of following function in your CM0p main.c matches the flash assignment.
 Cy_SysEnableCM4(CY_FLASH_BASE + 0x10000u);
- 4. Before starting the debugging, please select the corresponding project.

Troubleshooting

- 1. Building error, remind " "region `flash' overflowed by 6360 bytes"".
- A: The flash size for project is not enough, modify the linker file and try again.
- Building error, remind "303 cannot move location counter backwards (from 08000bf0 to 08000000)".
- A: The ram size for project is not enough, modify the linker file and try again.
- 3. Linking error after building, remind " ../xxx/xxx.o: No such file or directory " A: Be sure the path does not contain any "Space".
- 4. Building error, remind " 'cy_capsense_tuner' undeclared (first use in this function); did you mean 'Main_CapSenseTuner'? "etc. when using CapSense on Cm0p core?

A: Two ways to fix this issue, in ../lib/TARGET_XXX/COMPONENT_BSP_DESIGN_MODUS/ folder

- 1) Modify the macro **#define** CY_CAPSENSE_CORE 0u) in / GneratedSource /cycfg_peripherals.h file by manual when updating the device configurator every time
- 2) Open the design.modus by editor then modify: <Param id="CapSenseCore" value="0"/>

Reference

1. LWAX-6: Kaadas MTB 2.0 dual-core on-site support

END OF MEMO