Amend claims 7, 8, 12 and 15 as follows:

"

In claim 7, page 33, line 17, delete "6" and insert therefor -- 12 --.

In claim 8, page 34, line 16, delete "6" and insert therefor -- 12 --.

In claim 15, line 1, delete "6" and insert therefor -- 12 --.

12. (Amended) A process for the preparation of a polyolefin molding composition having a broad, bimodal or multimodal melting range in the DSC spectrum, where the melting range maximum is between 20 and 165°C, the half-intensity width of the melting peak is broader than 10°C and the width determined at quarter peak height is greater than 15°C, wherein such process comprises direct polymerization or copolymerization of at least two polyolefins of different melting point, where the melting points must differ by at least 5°C, and wherein the olefins have the formula RaCH = CHRb, in which Ra and Rb are identical or different and are a hydrogen atom or an alkyl radical having 1 to 14 carbon atoms, or Ra and Rb, together with the atoms connecting them, can form a ring, and are polymerized at a temperature of from -60 to 200°C, and a pressure of from 0.5 to 100 bar, in solution, in suspension or in the gas phase, in the presence of a catalyst, where the catalyst comprises at least two metallocenes as transition-metal components and an aluminoxane of the formula II

$$\begin{array}{c|c}
R & & \\
 & & \\
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R & & \\
\hline
\end{array}$$

for the linear type and/or of the formula III

for the cyclic type, where, in the formulae II and III, the radicals R may be identical or different and are a C_1 - C_6 -alkyl group, a C_1 - C_6 -fluoroalkyl group, a C_6 - C_{18} -aryl group, a C_6 - C_{18} -fluoroaryl group or hydrogen, and n is an integer from 0 to 50, and the aluminoxane component may additionally contain a compound of the formula $A1R_3$.

where the transition-metal component used comprises at least two metallocenes of the formula I:

$$(CR^{8}R^{9})_{m} - R^{3}$$

$$R^{5}$$

$$M^{1} < R^{2}$$

$$(CR^{9}R^{9})_{n} - R^{4}$$

$$(1)$$

in which

M1 is Zr, Hf or Ti,

 R^1 and R^2 are dentical or different and are a hydrogen atom, a C_1-C_{10} -alkyl group, a C_1-C_{10} -alkoxy group, a C_6-C_{10} -aryl group, a C_6-C_{10} -aryloxy group,

B' contid

a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group or a halogen atom,

R³ and R⁴ are identical or different and are a monocyclic or polycyclic, unsubstituted or substituted hydrocarbon radical which, together with the metal atom M¹, can form a sandwich structure,

R⁵ is

Contid

 $=BR^{11}$, $=A1R^{11}$, $-Ge^-$, $-S^-$, -S

<u>where</u>

R¹¹, R¹² and R¹³ are identical or different and are a hydrogen atom, a halogen atom, a C_1 – C_{10} –alkyl group, a C_1 – C_{10} –fluoroalkyl group, a C_6 – C_{10} –aryl group, a C_6 – C_{10} –alkoxy group, a C_2 – C_{10} –alkenyl group, a C_7 – C_{10} –alkenyl group, a C_7 – C_{10} –alkylaryl group, a C_8 – C_{10} –arylalkyl group or a C_7 – C_{10} –alkylaryl group, or R¹¹ and R¹² or R¹¹ and R¹³, in each case together with the atoms connecting them, form a ring, and

Bita

M² is silicon, germanium or tip,

R8 and R9 are identical or different and are as defined for R11,

m and n are identical and are zero.

Add new claim 16:

BZ

16. The process as claimed in claim 12, wherein the polyolefin molding composition produced has a molecular weight distribution M_w/M_n that is ≤ 3 .

REMARKS

A. Amendments to the Claims

Claim 6, now canceled, has been incorporated into amended claim 12. The dependency of claims 7, 8 and 15 has been changed from canceled claim 6 to claim 12. New claim 16 recites a particular embodiment wherein the polyolefin molding composition has a molecular weight distribution M_w/M_n that is ≤ 3 . Support for new claim 16 is found in Examples 6–16. In these examples, a polyolefin molding composition is prepared in accordance with the process of claim 12 and the reported M_w/M_n are as follows:

Example	6	7	8	9	10	11	12	13	14	15	16
M _w /M _n	2.2	2.8	3.3	2.0	2.3	2.5	2.7	2.9	3.3	2.9	2.5