Modelagem e análise de dados da F1

dataWizards

Abílio Nogueira Alana Vieira Alano Coelho Mauriz Menezes Antônio Carlos Sandoque dos Santos Breno Jones Agrelli Dias da Silva Bruno Ferreira da Silva

Divisão das atividades

Não houve definição formal de tarefas. Cada membro desenvolvia soluções de forma independente e frequentemente nos reuníamos para construir o projeto. No entanto, alguns membros foram mais proativos e contribuíram mais em determinadas etapas do projeto:

Modelagem Transacional	Modelagem Multidimensional	Análise dos dados no Python
Alano	Alano	Abílio
Breno	Antônio	Breno
	Breno	

Etapas do projeto

1. Modelagem Relacional/Transacional

- a. Diagrama Entidade-Relacionamento
- b. Criação do Banco de dados (DDL)
- c. Povoamento do Banco de Dados (DML)

2. Modelagem Multidimensional

- a. Diagrama Entidade-Relacionamento (Fatos e Dimensões)
- b. Criação do DW
- c. Tratamento de dados e povoamento do DW
- d. Exportação dos dados para análise

3. Análise dos dados em Python

- a. Criação do Notebook
- b. Importação de bibliotecas e bases
- c. Desenvolvimento
- d. Apresentação dos resultados

1) Modelagem Transacional

Ferramentas utilizadas:

- SAP Powerdesigner: Utilizado na criação do DER
- Oracle Cloud 19c Autonomous Database (Free trial 30 dias)
- Oracle SQL Developer (ambiente de desenvolvimento)
- Notepad ++ e Excel

O que foi feito:

- Definição das entidades (tabelas), atributos (colunas) e relacionamentos (integridade referencial, cardinalidades)
- Criação das tabelas no banco através de scripts DDL
- Povoamento do banco através de scripts DML e ferramentas do SGBD.

Diagrama Entidade Relacionamento Transacional

Script DDL

No PowerDesigner:

- Database > Generate Database...
- Script gerado automaticamente pelo software levando em conta todas as definições feitas na modelagem.
- Instaciado um banco de dados no Oracle Cloud
- Estabelecimento da conexão com o Oracle SQL Developer através da criação de uma Wallet.

Script DDL

```
create table CIRCUITS (
    CIRCUITID
                        INTEGER
                                            not null.
    CIRCUITREF
                        VARCHAR2 (30)
                                            not null.
    NAME
                        VARCHAR2 (50)
                                            not null.
    LOCATION
                        VARCHAR2 (30)
                                            not null.
   COUNTRY
                       VARCHAR2 (30)
                                            not null,
   LAT
                       NUMBER (8,6)
                                            not null.
   LNG
                       NUMBER (9,6)
                                            not null,
                        INTEGER
                                            not null,
    constraint PK CIRCUITS primary key (CIRCUITID)
 /* Table: CONSTRUCTORS
 create table CONSTRUCTORS (
   CONSTRUCTORID
                       INTEGER
                                            not null.
                     VARCHAR2 (25)
   CONSTRUCTORREF
                                            not null.
   NAME
                       VARCHAR2 (25)
                                            not null.
   NATIONALITY
                       VARCHAR2 (25)
                                             not null.
   constraint PK CONSTRUCTORS primary key (CONSTRUCTORID)
 /* Table: CONSTRUCTORS_STANDINGS
Create table CONSTRUCTORS_STANDINGS (
    CONSTRUCTORSTANDINGSID INTEGER
                                              not null,
    RACEID
                       INTEGER
                                            not null.
    CONSTRUCTORID
                       INTEGER
                                           not null,
    POINTS
                       INTEGER
                                           not null.
                       INTEGER
    POSITION
                                          not null,
   POSITIONTEXT
                      VARCHAR2 (3)
                                           not null,
                       INTEGER
                                            not null,
    constraint PK CONSTRUCTORS STANDINGS primary key (CONSTRUCTORSTANDINGSID)
```

```
alter table CONSTRUCTORS STANDINGS
   add constraint FK CON STAND REFERENCE CON foreign key (CONSTRUCTORID)
      references CONSTRUCTORS (CONSTRUCTORID):
alter table CONSTRUCTORS STANDINGS
   add constraint FK CON STAND REFERENCE RACES foreign key (RACEID)
      references RACES (RACEID);
alter table CONSTRUCTOR RESULTS
   add constraint FK CON REFERENCE CON RESULTS foreign key (CONSTRUCTORID)
      references CONSTRUCTORS (CONSTRUCTORID);
alter table CONSTRUCTOR RESULTS
   add constraint FK CON RESULTS REFERENCE RACES foreign key (RACEID)
      references RACES (RACEID):
alter table DRIVER STANDINGS
   add constraint FK DRIVERS REFERENCE DRIVERS foreign key (DRIVERID)
      references DRIVERS (DRIVERID):
alter table DRIVER STANDINGS
   add constraint FK DRIVERS REFERENCE RACES foreign key (RACEID)
      references RACES (RACEID):
alter table LAP TIMES
   add constraint FK LAP TIME REFERENCE DRIVERS foreign key (DRIVERID)
      references DRIVERS (DRIVERID):
alter table LAP TIMES
   add constraint FK LAP TIME REFERENCE RACES foreign key (RACEID)
      references RACES (RACEID):
alter table PIT STOPS
   add constraint FK PIT STOP REFERENCE DRIVERS foreign key (DRIVERID)
      references DRIVERS (DRIVERID);
```

Conexão do ambiente de desenvolvimento com o banco de dados

Novo / Selecionar Conexão do Ban	co de Dados	×
Nome da Conexão Detalhes da Con FIA_ACCENTURE ADMIN@fia_high	Name FIA_ACCENTURE Tipo de Banco de Dados Oracle ▼ Informações do Usuário Usuário Proxy Tipo de Autenticação Padrão ▼ Nome do Usuário ADMIN Senha Tipo de Conexão Wallet do Cloud ▼ Detalhes Avançado Proxy Arquivo de Configuração ents\DATAWIZARDS_ACCENTURE\Wallet_Serviço fia_high Configurar OSS Classic	Atribuição padrão ▼ ✓ Saļvar Senha
Status:	Salvar Limpar Testar Co	onectar Cancelar

Povoamento do banco (DML)

Inserção manual através de concatenações no Excel

B2	2	- i ×	✓ f _× hamilton			~
4	D	E	F	G	Н	
1	code	forename	surname	dob	nationality	
2	HAM	Lewis	Hamilton	1985-01-07	British	insert into DRIVERS values (1, 'hamilton', 44, 'HAM', 'Lewis', 'Hamilton', NVL(",TO_DATE('1985-01-07', 'YYYY/MM/DD')), 'British');
3	HEI	Nick	Heidfeld	1977-05-10	German	insert into DRIVERS values (2, 'heidfeld', \N, 'HEI', 'Nick', 'Heidfeld', NVL(",TO_DATE('1977-05-10', 'YYYY/MM/DD')), 'German');
4	ROS	Nico	Rosberg	1985-06-27	German	insert into DRIVERS values (3, 'rosberg', 6, 'ROS', 'Nico', 'Rosberg', NVL(",TO_DATE('1985-06-27', 'YYYY/MM/DD')), 'German');
5	ALO	Fernando	Alonso	1981-07-29	Spanish	insert into DRIVERS values (4, 'alonso', 14, 'ALO', 'Fernando', 'Alonso', NVL(",TO_DATE('1981-07-29', 'YYYY/MM/DD')), 'Spanish');
6	KOV	Heikki	Kovalainen	1981-10-19	Finnish	insert into DRIVERS values (5, 'kovalainen', \N, 'KOV', 'Heikki', 'Kovalainen', NVL(",TO_DATE('1981-10-19', 'YYYY/MM/DD')), 'Finnish
7	NAK	Kazuki	Nakajima	1985-01-11	Japanese	insert into DRIVERS values (6, 'nakajima', \N, 'NAK', 'Kazuki', 'Nakajima', NVL(",TO_DATE('1985-01-11', 'YYYY/MM/DD')), 'Japanese');
8	BOU	Sébastien	Bourdais	1979-02-28	French	insert into DRIVERS values (7, 'bourdais', \N, 'BOU', 'Sébastien', 'Bourdais', NVL(",TO_DATE('1979-02-28', 'YYYY/MM/DD')), 'French');
9	RAI	Kimi	Räikkönen	1979-10-17	Finnish	insert into DRIVERS values (8, 'raikkonen', 7, 'RAI', 'Kimi', 'Räikkönen', NVL(",TO_DATE('1979-10-17', 'YYYY/MM/DD')), 'Finnish');
10	KUB	Robert	Kubica	1984-12-07	Polish	insert into DRIVERS values (9, 'kubica', 88, 'KUB', 'Robert', 'Kubica', NVL(",TO_DATE('1984-12-07', 'YYYY/MM/DD')), 'Polish');
11	GLO	Timo	Glock	1982-03-18	German	insert into DRIVERS values (10, 'glock', \N, 'GLO', 'Timo', 'Glock', NVL(",TO_DATE('1982-03-18', 'YYYY/MM/DD')), 'German');
12	SAT	Takuma	Sato	1977-01-28	Japanese	insert into DRIVERS values (11, 'sato', \N, 'SAT', 'Takuma', 'Sato', NVL(",TO_DATE('1977-01-28', 'YYYY/MM/DD')), 'Japanese');
13	PIQ	Nelson	Piquet Jr.	1985-07-25	Brazilian	insert into DRIVERS values (12, 'piquet_jr', \N, 'PIQ', 'Nelson', 'Piquet Jr.', NVL(",TO_DATE('1985-07-25', 'YYYY/MM/DD')), 'Brazilian')
14	MAS	Felipe	Massa	1981-04-25	Brazilian	insert into DRIVERS values (13, 'massa', 19, 'MAS', 'Felipe', 'Massa', NVL(",TO_DATE('1981-04-25', 'YYYY/MM/DD')), 'Brazilian');
15	COU	David	Coulthard	1971-03-27	British	insert into DRIVERS values (14, 'coulthard', \N, 'COU', 'David', 'Coulthard', NVL(",TO_DATE('1971-03-27', 'YYYY/MM/DD')), 'British');
16	TRU	Jarno	Trulli	1974-07-13	Italian	insert into DRIVERS values (15, 'trulli', \N, 'TRU', 'Jarno', 'Trulli', NVL(",TO_DATE('1974-07-13', 'YYYY/MM/DD')), 'Italian');
17	SUT	Adrian	Sutil	1983-01-11	German	insert into DRIVERS values (16, 'sutil', 99, 'SUT', 'Adrian', 'Sutil', NVL(",TO_DATE('1983-01-11', 'YYYY/MM/DD')), 'German');
18	WEB	Mark	Webber	1976-08-27	Australian	insert into DRIVERS values (17, 'webber', \N, 'WEB', 'Mark', 'Webber', NVL(",TO_DATE('1976-08-27', 'YYYY/MM/DD')), 'Australian');
19	BUT	Jenson	Button	1980-01-19	British	insert into DRIVERS values (18, 'button', 22, 'BUT', 'Jenson', 'Button', NVL(",TO_DATE('1980-01-19', 'YYYY/MM/DD')), 'British');
20	DAV	Anthony	Davidson	1979-04-18	British	insert into DRIVERS values (19, 'davidson', \N, 'DAV', 'Anthony', 'Davidson', NVL(",TO_DATE('1979-04-18', 'YYYY/MM/DD')), 'British')
21	VET	Sebastian	Vettel	1987-07-03	German	insert into DRIVERS values (20, 'vettel', 5, 'VET', 'Sebastian', 'Vettel', NVL(",TO_DATE('1987-07-03', 'YYYY/MM/DD')), 'German');
	4 1-	Planilha1	(+)			

Através do Assistente de Importação de Dados do Oracle SQL Developer

Ferramentas utilizadas:

- SAP Powerdesigner: Utilizado na criação do DER
- Oracle Cloud 19c Autonomous Database (Free trial 30 dias)
- Oracle SQL Developer (ambiente de desenvolvimento)

O que foi feito:

- Definição do esquema (star schema), da granularidade e das tabelas fato e dimensão.
- Criação e povoamento das tabelas no banco através de SELECTS e JOINS

2) Diagrama Entidade Relacionamento Multidimensional

Esquema: Star Schema

Granularidade: Piloto por Corrida

Fato:

Resultados das corridas

Dimensões:

Piloto

Tempo

Corrida

Circuito

Construtora

DDL DW

```
-- factResults
CREATE TABLE FACT RESULTS AS (
SELECT
RESULTS.RESULTID AS "RESULT ID",
DRIVERS.DRIVERID AS "DRIVER ID",
CONSTRUCTORS.CONSTRUCTORID AS "CONSTRUCTOR ID",
RACES.RACEID AS "RACE ID",
CIRCUITS.CIRCUITID AS "CIRCUIT ID",
TO CHAR (RACES. "DATE", 'YYYYMMDD') AS "DATE ID",
NVL (CONSTRUCTOR RESULTS. POINTS, 0) AS "CONSTRUCTOR RESULTS POINTS",
RESULTS.GRID AS "GRID POSITION",
RESULTS. POSITIONORDER AS "DRIVER FINISH POSITION",
RESULTS. POINTS AS "RACE DRIVER POINTS",
NVL (RESULTS. "RANK", 0) AS "FASTEST LAP RANK",
RESULTS. FASTESTLAPSPEED AS "FASTEST LAP SPEED"
FROM RESULTS
 LEFT JOIN RACES
ON RESULTS.RACEID = RACES.RACEID
 LEFT JOIN DRIVERS
ON RESULTS. DRIVERID = DRIVERS. DRIVERID
 LEFT JOIN CONSTRUCTORS
ON RESULTS.CONSTRUCTORID = CONSTRUCTORS.CONSTRUCTORID
 LEFT JOIN CIRCUITS
ON RACES.CIRCUITID = CIRCUITS.CIRCUITID
LEFT JOIN CONSTRUCTOR RESULTS
ON CONSTRUCTORS.CONSTRUCTORID = CONSTRUCTOR RESULTS.CONSTRUCTORID
AND RACES.RACEID = CONSTRUCTOR RESULTS.RACEID
-);
```

```
CREATE TABLE DIM RACES AS (
 SELECT
 RACEID AS "RACE_ID",
 CONCAT (NAME, CONCAT (' ', YEAR)) AS "RACE NAME"
 FROM
 RACES
-):
CREATE TABLE DIM CIRCUITS AS (
 SELECT
 CIRCUITID AS "CIRCUIT ID",
 "NAME" AS "CIRCUIT NAME",
 LOCATION AS "CIRCUIT LOCATION",
 COUNTRY AS "CIRCUIT COUNTRY",
 LAT AS "CIRCUIT LATITUDE",
 LNG AS "CIRCUIT LONGITUDE",
 ALT AS "CIRCUIT ALTITUDE"
 FROM
 CIRCUITS
-):
CREATE TABLE DIM DRIVERS AS (
 SELECT
 DRIVERID AS "DRIVER ID",
 CONCAT (FORENAME, CONCAT (' ', SURNAME)) AS "DRIVER_NAME",
 NATIONALITY AS "DRIVER NATIONALITY"
 FROM
 DRIVERS
-1:
CREATE TABLE DIM CONSTRUCTORS AS (
 SELECT
 CONSTRUCTORID AS "CONSTRUCTOR ID",
 "NAME" AS "CONSTRUCTOR NAME",
 NATIONALITY AS "CONSTRUCTOR NATIONALITY"
 FROM
 CONSTRUCTORS
```

Exportação do DW para análise

Análise dos dados em Python

Notebook desenvolvido no Google Colab