18ECC206J- VLSI DESIGN UNIT II

MULTIPLEXER

- "Selects" binary information from one of many input lines and directs it to a single output line.
- Also know as the "selector" circuit,
- Selection is controlled by a particular set of inputs lines whose no. depends on the no. of the data input lines.
- For a 2^n -to-1 multiplexer, there are 2^n data input lines and n selection lines whose bit combination determines which input is selected.

Multiplexer (cont.)

2-to-1 Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - S = 0 selects input I_0
 - S = 1 selects input I_1
- The equation:

$$Y = S'I_0 + SI_1$$

• The circuit:

4-to-1 MUX

MUX as a Universal Gate

• All basic gates can be deisgned using 2-to-1 MUXs. Thus, 2-to-1 MUX is a universal gate.

Implementing Boolean functions with Multiplexers

- Any Boolean function of n variables can be implemented using a 2^{n-1} -to-1 multiplexer.
- The SELECT signals generate the minterms of the function.
- The data inputs identify which minterms are to be combined with an OR.
- Example

```
Implement F(X,Y,Z) = \Sigma m(1,2,6,7) using Multiplexers \Sigma m(1,2,6,7) = X'Y'Z + X'YZ' + XYZ' + XYZ'
```

PJF - 7

- \bullet X'Y'Z + X'YZ' + XYZ' + XYZ
- •There are n=3 inputs, thus we need a 4-to-1 MUX
- •The first n-1 (=2) inputs serve as the selection lines

Efficient Method for implementing Boolean functions

- For an *n*-variable function (*e.g.*, f(A,B,C,D)):
 - Need a 2^{n-1} line MUX with n-1 select lines.
 - Enumerate function as a truth table with consistent ordering of variables (e.g., A,B,C,D)
 - Attach the most significant n-1 variables to the n-1 select lines (e.g., A,B,C)
 - Examine pairs of adjacent rows (only the least significant variable differs, *e.g.*, D=0 and D=1).
 - Determine whether the function output for the (A,B,C,0) and (A,B,C,1) combination is (0,0), (0,1), (1,0), or (1,1).
 - Attach 0, D, D', or 1 to the data input corresponding to (A,B,C) respectively.

PJF - 9

Example

- Consider $F(A,B,C) = \sum m(1,3,5,6)$.
- We can implement this function using a 4-to-1 MUX as follows.
- The inputs are A,B,C. Apply A and B to the S₁ and S₀ selection inputs of the MUX
- Enumerate function in a truth table.

	A	B	C	r
When $A=B=0$, $F=C$	0	0	0	6
	0	0	1	1
When $A=0$, $B=1$, $F=C$	0	1	0	0
Witch 71-0, D-1, 1-0	0	1	1/	1
When $A=1$, $B=0$, $F=C$	1	0		
Witen 71-1, D-0, 1-0	1	0	1/	1
When $A=B=1$, $F=C'$	1	1 JF - 1	(O)	$\binom{1}{}$
VV (16) / (-D-1, 1 -C	1	1	\1/	\0 /

A larger Example

Α	В	C	D	F	
0	0	0	0	0	F = D
0	0	0	1	1	1-0
0	0	1	0	0	F = D
0	0	1	1	1	1-0
0	1	0	0	1	F = D
0	1	0	1	0	I - D
0	1	1	0	0	F = 0
0	1	1	1	0	1 = 0
1	0	0	0	0	F = 0
1	0	0	1	0	1 - 0
1	0	1	0	0	F=D
1	0	1	1	1	1-0
1	1	0	0	1	F = 1
1	1	0	1	1	. =
1	1	1	0	1	F = 1
1	1	1	1	1	1 = 1

PJF - 11

DECODERS

• A combinational circuit that converts binary information from n coded inputs to a maximum 2^n coded outputs

n-to-m decoder, $m \le 2^n$

 \square *n-to-* 2^n decoder

1-2 Decoder

2-to-4 Decoder

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

(a)

2-to-4 Active Low Decoder

3-to-8 Decoder

3-to-8 Decoder (cont.)

- Three inputs, A₀, A₁, A₂, are decoded into eight outputs, D₀ through D₇
- Each output D_i represents one of the minterms of the 3 input variables.
- $D_i = 1$ when the binary number $A_2 A_1 A_0 = i$
- Shorthand: $D_i = m_i$
- The output variables are <u>mutually exclusive</u>; exactly one output has the value 1 at any time, and the other seven are 0.

PJF - 17

Decoder with enable

EN	$\mathbf{A_1}$	\mathbf{A}_0	\mathbf{D}_0	$\mathbf{D_1}$	\mathbf{D}_2	\mathbf{D}_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Implementing Boolean functions using decoders

- Any combinational circuit can be constructed using decoders and OR gates!
- Here is an example: Implement a full adder circuit with a decoder and two OR gates.
- Recall full adder equations, and let X, Y, and Z be the inputs:
 - $-S(X,Y,Z) = X+Y+Z = \Sigma m(1,2,4,7)$
 - $C(X,Y,Z) = \Sigma m(3, 5, 6, 7).$
- Since there are 3 inputs and a total of 8 minterms, we need a 3-to-8 decoder.

Implementing a Binary Adder Using a Decoder

ENCODERS

- An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2^n input lines and n output lines.
- The output lines generate the binary equivalent to the input line whose value is 1.

Encoders (cont.)

Figure 9.12: 2--input binary encoder.

PF - 22

Encoder Example

Example: 8-to-3 binary encoder (octal-to-binary)

				Inputs				Outputs		
D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	A ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$A_0 = D_1 + D_3 + D_5 + D_7$$

 $A_1 = D_2 + D_3 + D_6 + D_7$
 $A_2 = D_4 + D_5 + D_6 + D_7$

Figure 9.13: mplementation of an 8-input binary encoder.

Encoder Design Issues

- There are two ambiguities associated with the design of a simple encoder:
 - 1. Only one input can be active at any given time. If two inputs are active simultaneously, the output produces an undefined combination (for example, if D₃ and D₆ are 1 simultaneously, the output of the encoder will be 111.
 - 2. An output with all 0's can be generated when all the inputs are 0's, or when D_0 is equal to 1.

PRIORITY ENCODERS

- Solves the ambiguities mentioned above.
- Multiple asserted inputs are allowed; one has priority over all others.
- Separate indication of no asserted inputs.

Example:4-to-2 Priority Encoder

	In	outs			Outputs	
D ₃	D ₂	D ₁	D _o	A ₁	Ao	V
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

- The operation of the priority encoder is such that:
 - If two or more inputs are equal to 1 at the same time, the input in the highest-numbered position will take precedence.
 - A *valid output indicator*, designated by V, is set to 1 only when one or more inputs are equal to 1.
 - $V = D_3 + D_2 + D_1 + D_0$ by inspection.

Logic Diagram

8-to-3 Priority Encoder

Ao	A,	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	Zo	Z,	Z ₂	NR
0	0	0	0	0	0	0	0	X	X	X	1
X	X	X	X	X	X	X	1	1	1	1	0
X	X	X	X	X	X	1	0	1	1	0	0
X	X	X	X	X	1	0	0	- 1	0	1	0
X	X	X	X	1	0	0	0	1	0	0	0
X	X	X	1	0	0	0	0	0	1	1	0
X	X	1	0	0	0	0	0	0	1	0	0
X	1	0	0	0	0	0	0	0	0	1	0
1	0	0	0	0	0	0	0	0	0	0	0

PJF - 29

Uses of priority encoders

Figure 9.17: Resolving interrupt requests using a priority encoder.

COMPARATOR

MAGNITUDE COMPARATOR

- •A magnitude comparator determines the larger of two binary numbers.
- •The comparison of two numbers and gives outputs: A >B, A=B, A<B
- Design Approaches
 - the truth table- 2^{2n} entries too cumbersome for large n
 - use inherent regularity of the problem to reduce design efforts

1 bit comparators

Xi	Y_i	X > Y	X = Y	X < Y
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0
		(b)	

X>Y only if Xi=1, Yi=0
X<Y only if Xi=0, Yi=1
X=Y only if Xi=Yi=0 or Xi=Yi=1

4 bit Comparator

- To compare two unsigned numbers A and B, compute B A = B + A + 1.
- If there is a carry-out, $A \le B$; otherwise, A > B.
- The relative magnitude is determined from the carry-out (C) and zero (Z) signals according to Table

Relation	Unsigned Comparison
A = B	Z
$A \neq B$	Z
A < B	$C \cdot \overline{Z}$
A > B	C
$A \le B$	C
$A \ge B$	$\overline{C} + Z$

EQUALITY COMPARATOR

• An equality comparator determines if (A = B) with XNOR gates and a ones detector,

ADDITION OF BINARY NUMBERS

Full Adder. The full adder is the fundamental building block of most arithmetic circuits:

The sum and carry outputs are described as:

Carry-Ripple Adder

Simplest design: Cascading full adders

Critical path goes from C_{in} to C_{out}

Worst case delay linear with the number of bits

$$t_d = O(N)$$

$$t_{adder} \approx (N-1)t_{carry} + t_{sum}$$

Carry Look-ahead Adder

- Try to "predict" Ci earlier than $T_c *n$
- Instead of passing through n stages, compute C_i separately
- A carry-lookahead adder improves speed by reducing the amount of time required to determine carry bits.

-1	Inputs			tputs
c_{i}	a_i	b_i	Si	c_{i+I}
0	0	0	0	0
0	0	1	1	O Dropagata
0	1	0	1	O Propagate
0	1	1	0	1 Generate
1	0	0	1	0
1	0	1	0	1 Dronagata
1	1	0	0	1 Propagate
1	1	1	1	1 Generate

• Carry look-ahead logic uses the concepts of *generating* and *propagating* carries.

$$g_i = a_i \bullet b_i$$
$$p_i = a_i \oplus b_i$$

• The addition of two inputs A and B is said to generate if the addition will always carry, regardless of whether there is an input carry

 $s_i = a_i \oplus b_i \oplus c_i = p_i \oplus c_i$

• The addition of two inputs A and B is said to propagate if the addition will carry whenever there is an input carry

$$c_{i+1} = g_i + p_i c_i$$

$$Cout = A \bullet B + A \bullet C + B \bullet C$$

$$Cout = A \bullet B + (A + B) \bullet C$$

$$Carry Generate$$

Carry Propagate

CLA: 4-bit adder

$$C_{1} = G_{0} + P_{0}C_{0}$$

$$C_{2} = G_{1} + P_{1}C_{1}$$

$$C_{3} = G_{2} + P_{2}C_{2}$$

$$C_{3} = G_{2} + P_{2}C_{2}$$

$$C_{4} = G_{1} + P_{1}(G_{0} + P_{0}C_{0})$$

$$C_{5} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{6} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{7} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{8} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{9} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{1} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{2} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2}G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_4 = G_3 + P_3 C_3$$

$$C_4 = G_3 + P_3 (G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0)$$

$$C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

- As the number of bit increases length of the expression increases.
- However each expression is only three logic levels deep.
- Logic does rapidly become cumbersome and provides fan-out and fan-in problem.

Carry lookahead depends on two things:

- •Calculating, for each digit position, whether that position is going to propagate a carry if one comes in from the right.
- •Combining these calculated values to be able to deduce quickly whether, for each group of digits, that group is going to propagate a carry that comes in from the right.

 Supposing that groups of four digits are chosen. Then the sequence of events goes something like this:
- •All 1-bit adders calculate their results. Simultaneously, the lookahead units perform their calculations.
- •Suppose that a carry arises in a particular group. Within at most five gate delays, that carry will emerge at the left-hand end of the group and start propagating through the group to its left.
- •If that carry is going to propagate all the way through the next group, the lookahead unit will already have deduced this. Accordingly, *before the carry emerges from the next group*, the lookahead unit is immediately (within one gate delay) able to tell the *next* group to the left that it is going to receive a carry and, at the same time, to tell the next lookahead unit to the left that a carry is on its way.
- •The net effect is that the carries start by propagating slowly through each 4-bit group, just as in a ripple-carry system, but then move four times as fast, leaping from one lookahead carry unit to the next. Finally, within each group that receives a carry, the carry propagates slowly within the digits in that group.

Let Δ be One gate delay

- •Delay of one Δ to calculate p, g
- •Delay of two Δ to generate Ci
- •Delay of two Δ to generate Si
- •Total of five Δ regardless of n.

CLA compared to ripple-carry adder:

- 4 times Faster but delay still linear (w.r.t. # of bits)
- Larger area

P, G signal generation

Carry generation circuits

Carry generation circuit for each bit position (no re-use)

•Limitation: cannot go beyond 4 bits of look-ahead Large fan-out slows down carry generation

```
module CLA_4bmod(sum,c_4,a,b,c_0);
input [3:0]a,b;
                             assign
input c_0;
                             c1=g0|(p0&c_0)
output [3:0]sum;
                             c2=g1|(p1&g0)|(p1&p0&c_0)
output c 4;
wire p0,p1,p2,p3,g0,g1,g2,g3;c3=g2|(p2&g1)|(p2&p1&g0)|(p2&p1&p0&
                             c 0).
wire c1.c2.c3.c4;
                             c4=g3|(p3&g2)|(p3&p2&p1&g1)|(p3&p2&
assign
                             p1&g0)|(p3&p2&p1&p0&c_0);
p0=a[0]^b[0]
                             assign
p1=a[1]^b[1],
                             sum[0]=p0^c_0,
p2=a[2]^b[2]
                             sum[1]=p1^c1,
p3=a[3]^b[3]
                             sum[2]=p2^c2,
g0=a[0]\&b[0],
                             sum[3]=p3^c3,
g1=a[1]&b[1],
                             c 4=c4;
g2=a[2]\&b[2],
                             endmodule
g3=a[3]&b[3];
```

Carry Skip Adder

• A carry-skip adder/ carry-bypass adder improves the delay of a ripple-carry adder.

• A *n*-bit-carry-skip adder consists of a *n*-bit-carry-ripple-chain, a *n*-input AND-gate and one multiplexer.

FΑ S_o b_o FΑ S_1 b, FA S_2 & b, FA

- For each operand input bit pair (a_i, b_i) the propagate-conditions $p_i = a_i \oplus b_i$ are determined using an XOR-Gate.
- Each propagate bit that is provided by the carry-ripple-chain is connected to the *n*-input AND-gate.
- The resulting bit is used as the select bit of a multiplexer that switches either the last carry-bit or the carry-in to the carry-out signal.
- The carry bit for each block can now "skip" over blocks with a *group* propagate signal set to logic 1. This greatly reduces the latency of the adder
- The number of inputs of the AND-gate is equal to the width of the adder. For a large width, this becomes impractical and leads to additional delays, because the AND-gate has to be built as a tree.
- A good width is achieved, when the sum-logic has the same depth like the *n*-input AND-gate and the multiplexer.

```
module carry_skip_4bit(a, b, cin, sum,
cout);
input [3:0] a,b;
                                   module ripple_carry_4_bit(a, b, cin,
input cin;
                                  sum, cout);
output [3:0] sum;
output cout;
                                  input [3:0] a,b;
                                  input cin;
wire [3:0] p;
                                  wire c1, c2, c3;
wire c0:
                                  output [3:0] sum;
wire bp;
                                  output cout;
ripple_carry_4_bit rca1
                                  full_adder fa0(a[0], b[0],cin,
(a[3:0],b[3:0],cin,sum[3:0],c0);
                                  sum[0],c1);
propagate_p p1(a,b,p,bp);
                                  full_adder fa1(a[1], b[1],c1,
mux2X1 mO(cO,cin,bp,cout);
                                  sum[1],c2);
endmodule
                                  full_adder fa2(a[2], b[2],c2,
 module propagate_p(a,b,p,bp);
                                  sum[2],c3);
 input [3:0] a,b;
                                  full_adder fa3(a[3], b[3],c3,
 output [3:0] p;
                                  sum[3],cout);
 output bp;
 assign p= a^b;//get all propagate binsodule
 assign bp= &p;// and pOp1p2p3 bits
 endmodule
```

```
module full_adder(a,b,cin,sum, cout);
input a,b,cin;
output sum, cout;
wire x,y,z;
half_adder h1(a,b,x,y);
half_adder h2(x,cin,sum,z);
or or_1(cout,z,y);
endmodule
module half_adder( a,b, sum, cout );
input a,b;
output sum, cout;
xor xor_1 (sum,a,b);
and and_1 (cout,a,b);
endmodule
module mux2X1( in0, in1, sel, out);
input in0, in1;
input sel;
output out;
assign out=(sel)?in1:in0;
endmodule
```

Carry Select Adder

- Consists of two ripple carry adders and a multiplexer.
- Adding two n-bit numbers with a carry-select adder is done with two adders (therefore two ripple carry adders).
- The calculation is performed twice,
- one time with the assumption of the carry-in being zero the other assuming it will be one.
- After the two results are calculated, the correct sum, as well as the correct carry-out, is then selected with the multiplexer once the correct carry-in is known.

- The number of bits in each carry select block can be uniform, or variable. In the uniform case, the optimal delay occurs for a block size of $(O\sqrt{n})$
- When variable, the block size should have a delay, from addition inputs A and B to the carry out, equal to that of the multiplexer chain leading into it

Tadd=Tsetup+M*tcarry+(N/M)*Tmux+Tsum

Carry Save Adder

- •Set of one-bit full adders, without any carry-chaining.
- •n-bit CSA receives three n-bit operands, namely A,B and CIN and generates two n-bit result values SUM,COUT.
- •The final stage must be a normal adder because we need to obtain a single output.

$$(C,S) = C + S = A_0 + A_1 + A_2$$

 $2c_{i+1} + s_i = a_{0,i} + a_{1,i} + a_{2,i}$
 $i = 0,1,...,n-1$

- The delay is the same as for a conventional look-ahead adder tree but uses much less circuitry.
- The irregularity of the tree causes a reduction in efficiency but this is relatively small (and becomes even smaller for large K).

Multiplier

• Multiplicand:
$$Y = (y_{M-1}, y_{M-2}, ..., y_1, y_0)$$

• Multiplier:
$$X = (x_{N-1}, x_{N-2}, ..., x_1, x_0)$$

$$P = \left(\sum_{j=0}^{M-1} y_j 2^j\right) \left(\sum_{i=0}^{N-1} x_i 2^i\right) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_i y_j 2^{i+j}$$

multiplicand multiplier

partial products

product

Array Multiplier

Critical path

$$t_{mult} = [(M-1) + (N-2)]t_{carry} + (N-1)t_{sum} + (N-1)t_{and}$$

Multiplication Algorithm

- Generation of partial products
- Adding up partial products
 - Sequentially (sequential shift and add)
 - Serially (combinational shift and add)
 - In parallel
- Speed-up techniques
 - Reduce the number of partial products
 - Accelerate addition of partial products

BRAUN Multiplier

- Consists of an array of AND gates and CSA arranged in an iterative structure and a final CPA
- Does not require any logic registers
- Restricted to multiplication of two unsigned numbers

- Performs well for unsigned operands that are less than 16 bits in terms of speed, power and area
- Simple and regular structure as compared to the other multipliers
- No. of components required increases quadratically with the no. of bits

• The delay of the multiplier is given by

$$t_{mult} = (N-1)t_{carry} + (N-1)t_{and} + t_{merge}$$

Booth's Multiplier

- •Multiplies two signed binary numbers in two's compliment notation.
- •Uses shifting than adding to increase their speed.
- Recall grade school trick
 When multiplying by 9:
 - Multiply by 10 (easy, just shift digits left)
 - Subtract once
- ·Booth's algorithm applies same principle

When using Booth's Algorithm:

- You will need twice as many bits in your product as you have in your original two operands.
- •The **leftmost bit** of your operands (both your multiplicand and multiplier) is a SIGN bit, and cannot be used as part of the value.
- Decide which operand will be the multiplier and which will be the multiplicand
- •Convert both operands to two's complement representation using X no. of bits

- X must be at least one more bit than is required for the binary representation of the numerically larger operand
- Begin with a product that consists of the multiplier with an additional 'X no. of leading zero bits'.
- For our example, let's multiply (-5) x 2

 The numerically larger operand (5) would require 3 bits to represent in binary (101). So we must use AT LEAST 4 bits to represent the operands, to allow for the sign bit.
- Let's use 5-bit 2's complement
- -5 is 11011 (multiplier)
- 2 is 00010 (multiplicand)

- The multiplier is:
 11011(-5 in 2's compliment)
- Add 5 leading zeros to the multiplier to get the beginning product:

00000 11011

STEP 1

 Use the LSB and the previous LSB to determine the arithmetic action.

If it is the FIRST pass, use 0 as the previous LSB.

- Possible arithmetic actions:
 - 00 □ no arithmetic operation
 - **01** □ add multiplicand to left half of product
 - **10** subtract multiplicand from left half of product
 - 11 □ no arithmetic operation

STEP 2

- •Perform an arithmetic right shift (ASR) on the entire product.
- •NOTE: For X-bit operands, Booth's algorithm requires X passes.
- •Initial Product and previous LSB 00000 11011 0
- •(Note: Since this is the first pass, we use 0 for the previous LSB)
- •Pass 1, Step 1: Examine the last 2 bits 00000 11011 0
- The last two bits are 10, so we need to subtract the multiplicand from left half of product

```
Pass 1, Step 1: Arithmetic action
(1) 00000 (left half of product)
    <u>-00010</u> (mulitplicand)
     11110 (uses a phantom borrow)
Place result into left half of product
      11110 11011
Step 2: ASR (arithmetic shift right)
   Before ASR
          11110 11011
   After ASR
          11111 01101
   (left-most bit was 1, so a 1 was shifted in on the left)
```

Pass 1 is complete.

- Current Product and previous LSB
 11111 01101 1
- Pass 2, Step 1: Examine the last 2 bits
 11111 01101 1
- The last two bits are 11, so we do NOT need to perform an arithmetic action just proceed to step 2.
- Step 2: ASR (arithmetic shift right)
 Before ASR
 11111 01101 1
 After ASR
 11111 10110 1
 (left-most bit was 1, so a 1 was shifted in on the left)
- Pass 2 is complete.

- Current Product and previous LSB
 11111 10110 1
- Pass 3, Step 1: Examine the last 2 bits
 11111 10110 1

The last two bits are 01, so we need to add the **multiplicand** to the left half of the product

Arithmetic action

```
    (1) 11111 (left half of product)
    +00010 (mulitplicand)
    00001 (drop the leftmost carry)
```

Place result into **left half** of product 00001 10110 1

```
    Step 2: ASR (arithmetic shift right)
        Before ASR
        00001 10110 1
        After ASR
        00000 11011 0
        (left-most bit was 0, so a 0 was shifted in on the left)
```

Pass 3 is complete.

PASS 4

- Current Product and previous LSB 00000 11011 0
- Step 1: Examine the last 2 bits
 00000 11011 0
- The last two bits are 10, so we need to subtract the multiplicand from the left half of the product

Step 1: Arithmetic action

```
    (1) 00000 (left half of product)
    -00010 (mulitplicand)
    11110 (uses a phantom borrow)
```

Place result into left half of product
 11110 11011 0

Step 2: ASR (arithmetic shift right)
 Before ASR

```
11110 11011 0
```

After ASR

```
11111 01101 1
```

(left-most bit was 1, so a 1 was shifted in on the left)

Pass 4 is complete.

- Current Product and previous LSB
 11111 01101 1
- Pass 5, Step 1: Examine the last 2 bits
 11111 01101 1
- The last two bits are 11, so we do NOT need to perform an arithmetic action just proceed to step 2.
- Step 2: ASR (arithmetic shift right) Before ASR

```
11111 01101 1
```

After ASR

```
11111 10110 1
```

(left-most bit was 1, so a 1 was shifted in on the left)

Pass 5 is complete.

Dropping the previous LSB, the resulting final product is:

```
11111 10110
```

- To confirm we have the correct answer, convert the 2's complement final product back to decimal.
- Final product: 11111 10110
- Decimal value: -10 which is the CORRECT product of: $(-5) \times 2$

Modified Booth Multiplier (Booth Encoding)

 Can encode the digits by looking at three bits at a time

Booth recoding table:
 i+1i
 i-1 add

1711		<u> </u>	auu
0	0	0	0*M
0	0	1	1*M
0	1	0	1*M
0	1	1	2*M
1	0	0	−2*M
1	0	1	−1*M
1	1	0	−1*M
1	1	1	0*M

Must be able to add
multiplicand times -2,
-1, 0, 1 and 2

Algorithm

- 1. Pad the LSB with one zero.
- 2. Pad the MSB with 2 zeros if n is even and 1 zero if n is odd.
- Divide the multiplier into overlapping groups of 3-bits.
- 4. Determine partial product scale factor from modified booth 2 encoding table.
- 5. Compute the Multiplicand Multiples
- 6. Sum Partial Produ Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 0

Example

Barrel Shifter

- A barrel shifter is a digital circuit that can shift a data word by a specified number of bits in one clock cycle.
- It can be implemented with multiplexers (MUX)

Function Table for 4-Bit Barrel Shifter

Select			Ou			
S ₁	S ₀	$\overline{Y_3}$	Y ₂	Y ₁	Y ₀	Operation
0	0	D_3	D_2	D_1	D_0	No rotation
0	1	D_2	$\overline{D_1}$	D_0	D_3	Rotate one position
1	0	$\overline{D_1}$	D_0	D_3	D_2	Rotate two positions
1	1	D_0	D_3	D_2	D_1^2	Rotate three positions

i positions of left rotation is the same as 2^n-i bits of right rotation

implementing a barrel shifter would be to use N (where N is the number of input bits) parallel N-to-1 multiplexers, one multiplexer that multiplexes all inputs into one of the outputs.

This would create an equivalent N*N to N multiplexer, which would use significant hardware resources (multiplexer input grows in $O(N^2)$.

A more efficient implementation is possible by creating a hierarchy of multiplexers.

- · 32-bit barrel shifter: can use 32 32-to-1multiplexers
- However, large fan-in undesirable. So, use layers of multiplexers

Example: Use 2 layers of 4 2-to-1 multiplexers for 4-bit barrel shifter

For an 8 bit rotate component the multiplexers would be constructed as follows:

- •the top level multiplexers rotate the data by 4 bits
- •the second level rotates the data by 2 bits
- •the third level rotates the data by 1 bit.

The number of multiplexers required is n*log2(n), for an n bit word.

Four common word sizes and the number of multiplexers needed are:

64-bit — 64 *
$$log2(64) = 64 * 6 = 384$$

32-bit — 32 * $log2(32) = 32 * 5 = 160$
16-bit — 16 * $log2(16) = 16 * 4 = 64$
8-bit — 8 * $log2(8) = 8 * 3 = 24$

```
module barrel shifter(d,out,q,c); / Main module of 8-Bit Barrel shifter
 input [7:0]d;
 output [7:0]out,q;
 input[2:0]c;
 mux m1(q[0],d,c);
 \max m2(q[1],\{d[0],d[7:1]\},c);
 mux m3(q[2],{d[1:0],d[7:2]},c);
 mux m4(q[3], \{d[2:0], d[7:3]\}, c);
 mux m5(q[4], \{d[3:0], d[7:4]\}, c);
 mux m6(q[5], \{d[4:0], d[7:5]\}, c);
 mux m7(q[6], \{d[5:0], d[7:6]\}, c);
 mux m8(q[7],{d[6:0],d[7:7]},c);
 assign out=q;
endmodule
```

Baugh-Wooley Multiplier

- Efficient way to handle sign bits
- Regular Multipliers, suited for 2's-compliment numbers
- Signed number representation

$$X = -x_{n-1}2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i \qquad eg: (1110)_2$$

$$= (-2)$$

$$A = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

$$B = -b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$$

$$P = A \times B$$

$$= \left(-a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i\right) \times \left(-b_{n-1}2^{n-1} + \sum_{j=0}^{n-2} b_j 2^j\right)$$

$$= a_{n-1}b_{n-1}2^{2n-2} + \sum_{i=0}^{n-2} \sum_{j=0}^{n-2} a_i b_j 2^{i+j}$$

$$-2^{n-1}\sum_{i=0}^{n-2} a_i b_{n-1}2^i - 2^{n-1}\sum_{j=0}^{n-2} a_{n-1}b_j 2^j$$

The Baugh-Wooley Method and Its Modified Form

Wallace-Tree Multiplier

Partial products

First stage

Second stage

Final adder

Full adder = (3,2) compressor

(4,2) Counter

- Built out of two (3,2) counters (just FA's!)
 - all of the inputs (4 external plus one internal) have the same weight (i.e., are in the same bit position)
 - the internal carry output is fed to the next higher weight position (indicated by the)

Note: Two carry outs - one "internal" and one "external"

Tiling (4,2) Counters

- Reduces columns four high to columns only two high
 - Tiles with neighboring (4,2) counters
 - Internal carry in at same "level" (i.e., bit position weight) as the internal carry out

Tiling (4,2) Counters

4x4 Partial Product Array Reduction

 \Box Fast 4x4 multiplication using (4,2) counters

\Box Fast 4x4 multiplication using (4,2) counters

8x8 Partial Product Array Reduction

'icand Wallace tree 'ier multiplier partial two rows of product nine (4,2) counters array reduced one row of partial thirteen product (4,2)counters array to a 13-bit fast CPA