Machine Learning I: Supervised Methods

B. Keith Jenkins

Announcements

- Slido event code: 5499248
 - slido.com
- Posted on D2L:
 - Class-participation grading criteria
- Announced on piazza:
 - Instructions to register regular recurring lecture-time conflicts
 - Homework file submission please follow stated guidelines; otherwise you will lose points (HW4 and after)
- Homework 4 is due Friday

- No new homework will be posted this Friday
 - HW5 will be posted Friday 2/23
- Midterm exam is Wed., 3/6/2024
 - Vote for materials allowed: watch for piazza post with poll
 - 1 hour 45 min. exam
- No class on Monday 2/19 Presidents'
 Day

Reading

- Bishop 6.0-6.2, App. E
 - Lagrangian optimization; kernels

Lecture 11 EE 559 Feb 14, 2024

Machine Learning I: Supervised Methods

B. Keith Jenkins

Today's lecture

- Nonlinear classification and regression
 - Learning
- Complexity in supervised learning
 - Degrees of freedom
 - Constraints
 - Example

Emachine (Nilsson) - Ø(x) are polynomials in x (originally)

- Linear in u

-> Linear in Wi

Also called (for general nonlinear functions of X):

\$\phi(x): \nonlinear transformation"

or basis-set expansion"

((u) \ref(u) \cdots \cdots

feature

space

space formation

g(u) or f(u): "generalized linear (discriminant or regression) functions?

Learning nonlinear (in x) models

- 1. Use nonlinear transformation $\phi(x)$ to map x into u-space. (pre-processing)
- 2. Use any linear learning algorithm to find w' or w'.
 - 3. Optionally, map:
 - (i) decision boundaries (and regions) or (ii) regression function $\hat{f}(\underline{u})$

back into original feature space (x-space).

4. How to make predictions on unknowns x, given w'or w' ?

$$a \cdot \underline{u} = \phi(\underline{x})$$

- b. Calculate $g_k(u) = \hat{w}'_k u$ then apply decision rule (classification) or Calculate $\hat{y} = \hat{f}(u) = w'_k u$ (regression)
- De same as linear case, except variable change x > y, w > w w will give other examples of & mappings later [with kernels SVM's].

Complexity of Learning by Machine

Nonlinear # scalar
transformation weight
of x before variables
learning to learn

Linear

D+1

 2^{nd} order $\frac{1}{2}(D^2+3D)+1$ polynomial $=O(D^2)$

3rd order $O(D^3)$ polynomial

pth order O(DP)
polynomial

- ⇒ Generalization depends on how flexible the decision
- S boundary can be!

Complexity of Learning - degrees of freedom (d.o.f.) and constraints (Nc)

Consider a system of linear equations and unknowns: (augmented notation)

$$\frac{X}{A} = \frac{b}{A} \qquad (orig. feat. space)$$

$$[N \times (D+1)] [D+1] [N]$$

$$\frac{\Phi}{N} = \frac{b'}{N} \quad \text{(expanded feature space)}$$

$$[N_{\times}(D'+1)] \quad [N']$$

 $\approx N_c$ d.o.f

we can define <u>degrees of freedom</u> (d.o.f.) in a learning problem as the number of variables that the learning algorithm can adjust independently.

Ex: $g(x) = w^{\dagger}x$ (augm. notation) (z-class)

d.o.f. = D+1

Constraints constrain choices of these variables.

Ex: X w = b is a set of N constraints on w. Let $N_c = \#$ of constraints.

Complexity: No and do.f.

Consider: X w=b (original feat, spc.)

1 w'= b' (expanded feat. spc.)

Feature space

Nc comments

orig. N = D+1 exactly determined $f = \sum_{i=1}^{n} f(x_i) = \sum_{i=1}^{n$

(more generally, No = d.o.f.)

orig. N > D+1

orig. N > D+1 over determined of if X or $\frac{1}{2}$ has full expanded N > D+1 " column rank.

(more generally, No > d.o.f.)

orig. N<D+1 under determined }
expanded N<D'+1 "
"
"
"

(more generally, No Kd.o.f.)

Linear model for 2-class problem N = 3

$$N_c = \#_{eqhs} = 3$$

 $d.o.f. = \#_{w_j} = 3$

=) exactly determined if X is of full rank.

D

-> In Ml, we prefer to learn in overdetermined realm.

(house price 1) o Sz (house price)

wide variety of decision boundavies is possible.

χ,

General rule of thumb: Typically we want $N_c > (3-10) \times d.o.f.$

e-g., N > (3-10) x (D+1) for linear discr. for case, orig. feat space,

(Empirical Inumerical result.)

What if No (3-10) x d.o.f.?

=) Risk of overfitting

Possible approaches:

- 1. Increase No by increasing N= # data points
 - Collect more data
 - Synthetically generate more data
- 2. Increase No by adding other constraints
 Use prior knowledge in some way

 - Restrict choices of optimal w
- -> 3. Decrease d.o.f.
 - Reduce D or D' (e.g., feature selection or transformation)
 - Reduce amount of nonlinearity in the model

Today

Consider a 1D regression problem [Bishop, Sec-1.1]

Let the known output values y; in the dataset come from a target fin:

thus: $\delta = \{(x_i, y_i), 0 \le x_i \le l \text{ (uniformly spaced on } [0, l]), y_i = \sin(2\pi x_i) + n_i, n_i \sim N(0, \sigma^2), i = 1, 2, ..., N \}$

Let N=10.

We will use a set of (mostly nonlinear) models - polynomials in x:

$$f(x) = \sum_{i=0}^{d} w_i x^i$$
, dis a parameter we specify.

Let
$$u = \begin{bmatrix} x^0 \\ x^1 \end{bmatrix}$$
, \underline{w}' is defined above, x^2

Expanded f.s. dimensionality = $\frac{2}{1}$ d+1

Original f.s. dimensionality = $\frac{2}{1}$ l feature x

d.o.f.=? d+1 scalar w. values. dim. 2 (augmented)

Nc = ? N data points

Use MSE criterion -> least-squares regression.

Regression complexity example: varying d

Regression complexity example: varying d

$$N = 10$$
 $N_C = 10$

Polynomial Coefficients

^ (M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
$w_1^{\star} \longrightarrow w_1^{\star}$		-1.27	7.99	232.37
, w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
\wedge , w_8^{\star}				-557682.99
$\mathcal{W}_0 \longrightarrow w_9^{\star}$				125201.43
4				