Bericht 2 zur Photovoltaik Simulation(en) durch PV*Sol Software

Aufgabenstellung

Aufgaben:

- Erstellen Sie ein Haus/Gebäude, auf dem Sie eine "netzgekoppelte PV-Anlage mit elektrischen Verbrauchern" bauen. Diese elektrischen Verbraucher stellen den Eigenverbrauch des Gebäudes dar. Wählen Sie vernünftige Annahmen (z.B. Recherche im Netz). Nutzen Sie dabei die 2D-Planung und versuchen Sie 3D-Planung aus. Erstellen Sie hierzu einen Bericht mit Hilfe der Software. Checken Sie den Bericht auf Plausibilität und überarbeiten Sie Ihr Modell gegebenenfalls.
- Erstellen Sie ein weiteres Gebäude nach eigenem Wunsch. Dieses sollte sich von Punkt 1 unterscheiden. In Frage kommen

Dokumentieren Sie auch dieses.

Zwei Simulationen für zwei verschiedene Situation würde hier durchgeführt! Wir haben entscheiden, PV-Anlagen für dieselbe Kundin und Gebäude zu planen, jedoch mit 2 verschiedene Szenarien.

Kundenübersicht, Adresse der Anlage und Satellitenansicht

Hier ist eine Kundin namens Chisato Nishkigi erscheinen, und sie wolle eine PV-Anlage für ihre private Wohnung (4 Personenhaushalt) installieren. Der Standort und Kundendaten sind gleich für beide Simulationen.

Private

Nishkigi, Chisato Fliegerstraße15 67657 Kaiserslautern Deutschland

Kundennr.: 123321

Projekttitel: PV Anlage private Wohnung Fliegerstraße

Angebotsnr.: 13052024

17.05.2024

Ihre PV-Anlage

Adresse der Anlage

Fliegerstraße 15 67657 Kaiserslautern Deutschland

Hergestellt durch solarkataster.rlp.de

Projektbeschreibung:

PV-Anlagenplanung: Chisato's private Wohnung Fliegerstraße

Simulation 2 (Netzgekoppelte PV-Anlage mit elektrischen Verbrauchern, Auto und Batteriesystem)

Abbildung: Übersichtsbild, 3D-Planung

<u>Anlagendaten</u>

Anlagenart : Netzgekoppelte PV-Anlage mit

elektrischen Verbrauchern

PV-Generatorleistung : 21,12 kWp PV-Generatorfläche : 109,6 m²

Anzahl PV-Module : 64
Anzahl Wechselrichter : 2
Anzahl Batteriesysteme : 1
Anzahl Fahrzeuge : 1

<u>Klimadaten</u>

Standort : Kaiserslautern, DEU (1995 - 2012)

Quelle der Werte: DWDAuflösung der Daten: 1 min

Verwendete Simulationsmodelle

Diffusstrahlung auf die Horizontale : HofmannEinstrahlung auf die geneigte Fläche : Hay & Davies

<u>Verbrauchsdaten</u>

Gesamtverbrauch : 4308 kWh 2-Personen-Haushalt mit 2 Kindern : 4308 kWh Spitzenlast : 10 kW

Modulflächen Dach

PV-Module : 52 x LG330N1C-A5 (v1)

> LG330N1C-A5 : 330,00 Wp, mit Strom im MPP 9,8 A $(1,686 \times 1,016 \times 0,03) \text{ m}^3$

Hersteller : LG Electronics Inc.

Neigung : 35°

Ausrichtung : Südosten 150°

Einbausituation : Aufgeständert - Dach (Flachdach)

PV-Generatorfläche : 89,1 m²

: Fest auf einen Winkel eingestellt Montagesystem

Modulflächen Anbau

PV-Module : 12 x LG330N1C-A5 (v1)

> LG330N1C-A5 : 330,00 Wp, mit Strom im MPP 9,8 A (1,686 x 1,016 x 0,03) m^3

Hersteller : LG Electronics Inc.

: 35° Neigung

: Südosten 150° Ausrichtung

: Aufgeständert - Dach (Flachdach) Einbausituation

PV-Generatorfläche : 20,6 m²

: Fest auf einen Winkel eingestellt Montagesystem

Abbildung: 1. Modulfläche - Gebäude 01-Dachfläche Nordwes

Wechselrichterverschaltung Dach

Wechselrichter Modell : 1 x Sunny Tripower X 15 (v3)

Sunny Tripower X 15 (v3) : 15kVA 3-phasig 3 MPP-Tracker 15kW

Hersteller : SMA Solar Technology AG

Dimensionierungsfaktor : 114,4 %

Verschaltung : (Stränge x Module)

Wechselrichterverschaltung Anbau

Wechselrichter Modell : 1 x Sunny Boy 3.0-1AV-41 (v3)

Sunny Boy 3.0-1AV-41 (v3) : 15kVA 3-phasig 3 MPP-Tracker 15kW

Hersteller : SMA Solar Technology AG

Dimensionierungsfaktor : 94,6 %

Verschaltung : (Stränge x Module)

MPP 1 : 1+2: 1 x 12eee

<u>Batteriesystem</u>

Modell : Tesla Powerwall + SMA Sunny Boy

Storage : 2.5 (6,4 kWh) (v1) Hersteller : Tesla Motors

Anzahl: 1

<u>Batteriewechselrichter</u>

Art der Kopplung :AC Kopplung
Nennleistung :2,5 kW

<u>Batterie</u>

Hersteller :Tesla Motors Modell :Powerwall (v1)

Anzahl :1

Batterieenergie :6,4 kWh

Batterietyp :Lithium-Eisen-Phosphat

Elektrofahrzeug

Modell :Model S 90D (v1)

Hersteller :Tesla
Anzahl Fahrzeuge :1

Reichweite :557 km Batteriekapazität :90 kWh

Verbrauch :22 kWh / 100km

Ladestation

Ladeleistung :120 kW

Ladetechnik :Supercharger Lademodus :Standard

Benutzung

Gewünschte Reichweite pro Woche :210 km Fahrleistung pro Jahr :10950 km

Ergebnisse der Gesamtanlage

PV-Anlage

r v-Amage			
PV-Generatorleistung	21,12	kWp	PV-Generatorenergie (AC-Netz)
Spez. Jahresertrag	908,55	kWh/kWp	, , , , , , , , , , , , , , , , , , ,
Anlagennutzungsgrad (PR)	76,74	%	
Ertragsminderung durch Abschattung	14,4	%/Jahr	
PV-Generatorenergie (AC-Netz)	19.228	kWh/Jahr	
Direkter Eigenverbrauch	1.485	kWh/Jahr	
Batterieladung	1.622	kWh/Jahr	
Ladung des E-Fahrzeugs	1.023	kWh/Jahr	Direkter Eigenverbrauch
Abregelung am Einspeisepunkt	0	kWh/Jahr	Batterieladung
Netzeinspeisung	15.098	kWh/Jahr	Ladung des E-Fahrzeugs Abregelung am Einspeisepunkt
Eigenverbrauchsanteil	21,3	%	Netzeinspeisung
Vermiedene CO₂-Emissionen	8.949	kg/Jahr	

Verbraucher

Verbraucher	4.308 kWh/Jahr	Gesamtverbrauch
Standby-Verbrauch (Wechselrichter)	39 kWh/Jahr	
Ladung des E-Fahrzeugs	2.699 kWh/Jahr	
Gesamtverbrauch	7.046 kWh/Jahr	
gedeckt durch PV	2.508 kWh/Jahr	
gedeckt durch Netz	3.058 kWh/Jahr	
gedeckt durch Batterie netto	1.480 kWh/Jahr	
gedeckt durch E-Fahrzeug	0 kWh/Jahr	
Solarer Deckungsanteil	56,6 %	gedeckt durch PV gedeckt durch Netz gedeckt durch Batterie netto gedeckt durch E-Fahrzeug

Elektrofahrzeug

Liekti Olalii Zeug			
Ladung am Anfang	90	kWh	Ladung des E-Fahrzeugs (Gesamt
Ladung des E-Fahrzeugs (Gesamt)	2.699	kWh/Jahr	
gedeckt durch PV	1.023	kWh/Jahr	
gedeckt durch Batterie	2	kWh/Jahr	
gedeckt durch Netz	1.673	kWh/Jahr	
Entladen des E-Fahrzeugs zur	0	kWh/Jahr	
Verbrauchsdeckung			
Verluste durch Laden/Entladen	224	kWh/Jahr	
Verluste in Batterie	156	kWh/Jahr	
Verbrauch durch gefahrene Kilometer	2409	kWh/Jahr	gedeckt durch PV gedeckt durch Batterie
Fahrleistung pro Jahr	10950	km/Jahr	gedeckt durch Netz
davon solar	4162	km/Jahr	

Batteriesystem

Ladung am Anfang	6	kWh	Batterieladung (Gesamt)
Batterieladung (Gesamt)	1.682	kWh/Jahr	, , , , , , , , , , , , , , , , , , , ,
gedeckt durch PV	1.622	kWh/Jahr	
gedeckt durch Netz	60	kWh/Jahr	
Batterieenergie zur Verbrauchsdeckung	1.540	kWh/Jahr	
Ladung des E-Fahrzeugs	2	kWh/Jahr	
Verbrauch	1.538	kWh/Jahr	
Verluste durch Laden/Entladen	139	kWh/Jahr	
Verluste in Batterie	9	kWh/Jahr	
Zyklenbelastung	7,3	%	
Lebensdauer	14	Jahre	gedeckt durch PV gedeckt durch Net

Autarkiegrad

Gesamtverbrauch	7.046 kWh/Jahr
gedeckt durch Netz	3.058 kWh/Jahr
Autarkiegrad	56,6 %

Abbildung: Energiefluss

Diagramme

Hier sind die Verbrauchsdaten aus der Software angenommen. (2-Personen-Haushalt mit 2 Kindern)

Abbildung: Nutzung der PV-Energie

Nutzung Der PV Energie

Hausverbrauch: Das Haus nutzt das ganze jahr die Energie

EAuto: Fast nur in den Sommermonaten wir das EAuto Effektiv Geladen

Batterie: Die Batterie wird über das ganze jahr gut genutzt

Abbildung: Deckung des Verbrauchs

Deckung des Verbrauchs

Hausverbrauch: Im Sommer werden hohe Deckungsgrade erreicht, gerade in den Wintermonaten hilft die Batterie Ungemein, eine akzeptable Deckung zu erreichen.

Abbildung: Deckung des Gesamtverbrauchs

Deckung des Gesamtverbrauchs

EAuto: nur von Mai bis August wird das EAuto zum größten teil über die Pv Anlage geladen es Profitiert hier davon dass für Speicher und EAuto genug Solarenergie zur verfügung Steht Batterie: Die Batterie Arbeitet Das Ganze Jahr Im Winter steht nicht genug Solarenergie zur verfügung für Batterie und EAuto

Ertragsprognose

PV-Generatorleistung : 21,12 kWp

: 908,55 kWh/kWp spez. Jahresertrag

Anlagennutzungsgrad (PR) : 76,74 % Ertragsminderung durch Abschattung : 14,4 %/Jahr

PV-Generatorenergie (AC-Netz) : 19.228 kWh/Jahr Eigenverbrauch : 1.485kWh/Jahr Netzeinspeisung : 15.098 kWh/Jahr

Eigenverbrauchsanteil : 21,3 %

Vermiedene CO₂-Emissionen : 8.949 kg/Jahr

Wirtschaftlichkeitsanalyse

Betrachtungszeitraum : 20 Jahre : 5.174,09 € Kumulierter Cashflow **Amortisationsdauer** : 17.9 Jahre

Stromgestehungskosten 0,0919 €/kWh

spezifische Investitionskosten : 1.449,72 €/kWp (abgeschätzt)

Investitionskosten : 30.618,00 € : 21.120,00 € Artikelinvestition Installationskosten : 3.499,00 € Einmalzahlungen 100,00 €

Betriebskosten 300,00 €/Jahr Betriebskosten 100,00 €/Jahr

Versicherung 100,00 €/Jahr

Nach EEG 2024, Februar - Juli, (Teileinspeisung) - Gebäudeanlagen Gültigkeit 01.02.2024 - 31.12.2044

Spezifische Einspeisevergütung: 0,0754 €/kWh

Einspeisevergütung:

1138,5581 €/Jahr

<u>Pläne</u>

<u>Schaltplan</u>

<u>Stückliste</u>

Stückliste

#	Тур	Artikelnummer	Hersteller	Name	Menge	Einheit
1	PV-Modul		LG Electronics Inc.	LG330N1C-A5	64	Stück
2	Wechselrichter		SMA Solar Technology AG	Sunny Boy 3.0-1AV- 41	1	Stück
3	Wechselrichter		SMA Solar Technology AG	Sunny Tripower X 15	1	Stück
4	Batteriesystem		Tesla Motors	Tesla Powerwall + SMA Sunny Boy Storage 2.5 (6,4 kWh)	1	Stück
5	Elektrofahrzeug		Tesla	Model S 90D	1	Stück
6	Kabel			AC-Kabel 3-phasig 10 mm² Kupfer	20	m
7	Kabel			Strangleitung 2,5 mm² Kupfer	95	m
8	Kabel			AC-Kabel 1-phasig 4 mm² Kupfer	20	m
9	Komponenten			Lasttrennschalter	1	Stück
10	Komponenten			Einspeisezähler	1	Stück
11	Komponenten			Zweirichtungszähler	1	Stück
12	Komponenten			Hausanschluss	1	Stück

Strangplan Dach

Strangplan Anbau

Bemaßungsplan Anbau

Bemaßungsplan Dach

Screenshots 3D Planung

