The singular Weinstein conjecture

Cédric Oms

Universidad Politécnica de Catalunya

Friday Fish

7 August 2020

Daniel Peralta-Salas

Motivating examples from celestial mechanics

Restricted planar circular 3-body problem I

Simplified version of the general 3-body problem:

- One of the bodies has negligible mass.
- The other two bodies move in circles following Kepler's laws for the 2-body problem.
- The motion of the small body is in the same plane.

Restricted planar circular 3-body problem II

- Time-dependent potential: $U(q,t) = \frac{1-\mu}{|q-q_E(t)|} + \frac{\mu}{|q-q_M(t)|}$
- Time-dependent Hamiltonian:

$$H(q, p, t) = \frac{|p|^2}{2} - U(q, t), \quad (q, p) \in \mathbb{R}^2 \setminus \{q_E, q_M\} \times \mathbb{R}^2$$

• Rotating coordinates: Time independent Hamiltonian

$$H(q,p) = \frac{|p|^2}{2} - \frac{1-\mu}{|q-q_E|} + \frac{\mu}{|q-q_M|} + p_1q_2 - p_2q_1$$

- H has 5 critical points: L_i Lagrange points $(H(L_1) \le \cdots \le H(L_5))$
- Periodic orbits of X_H ?
- Perturbative methods (dynamical systems) or.... contact topology!

Level-sets of Hamiltonians

Let (W, ω) be a symplectic manifold and $\Sigma \subset W$ hypersurface.

Definition

A Liouville vector field is a v.f. $X \in \mathfrak{X}(W)$ such that $\mathcal{L}_X \omega = \omega$.

Proposition

Let X be a Liouville vector field transverse to Σ . Then $(\Sigma, \alpha = \iota_X \omega)$ is a contact manifold. If $\Sigma = H^{-1}(c)$, then $R_{\alpha} \cong X_H|_{H=c}$.

Conjecture (Weinstein conjecture)

Let (M, α) closed contact manifold. Then R_{α} admits periodic orbits.

Contact Geometry of the RPC3BP

• For $c < H(L_1)$, $\Sigma_c = H^{-1}(c)$ has 3 connected components: Σ_c^E (the satellite stays close to the earth), Σ_c^M (to the moon), or it is far away.

Proposition (Albers-Frauenfelder-Koert-Paternain)

For
$$c < H(L_1)$$
, $X = (q - q_E) \frac{\partial}{\partial q}$ is transverse to Σ_c^E .

Hence $(\Sigma_c^E, \iota_X \omega)$ is contact.

But Weinstein conjecture does not apply because of non-compactness (collision!)

Moser regularization of the restricted 3-body problem

Via Moser's regularization Σ_c^E can be compactified to $\overline{\Sigma}_c^E \cong \mathbb{R}P(3)$.

Theorem (Albers-Frauenfelder-Koert-Paternain)

For any value $c < H(L_1)$, the regularized RPC3BP has a closed orbit with energy c.

But...

- Where are those periodic orbits?
- Maybe on the collision set?
- Keep track of the singularities in the geometric structure?
- ...b^m-symplectic and b^m-contact geometry!

Or manifold at infinity?

Consider the canonical change of coordinates to polar coordinates:

$$(q,p) \mapsto (r,\alpha,P_r,P_\alpha)$$

- McGehee change of coordinates: $r = \frac{2}{x^2}$, where $x \in \mathbb{R}^+$
- Non-canonical, the symplectic form becomes singular:

$$\omega = -\frac{4}{x^3}dx \wedge d\alpha + dP_r \wedge dP_\alpha$$

• This is a b^3 -symplectic form.

Dynamics of X_H ?

 b^m -symplectic and b^m -contact geometry

Introducing b-symplectic

- b-symplectic structures can be seen as symplectic structures modeled over a Lie algebroid (the b-cotangent bundle).
- A vector field v is a b-vector field if v_p ∈ T_pZ for all p ∈ Z. The b-tangent bundle ^bTM is defined by

$$\Gamma(U, {}^bTM) = \left\{ \begin{array}{l} \text{b-vector fields} \\ \text{on } (U, U \cap Z) \end{array} \right\}$$

b-cotangent bundle

Consider a hypersurface $Z = f^{-1}(0)$ of M, the **critical set**

$${}^b\mathfrak{X}(M)=\left\{ \mathrm{v.f.\ tangent\ to\ }Z\right\} =\left\langle f\frac{\partial}{\partial f},\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_{n-1}}\right\rangle$$

<u>Serre-Swan</u>: There exists a bundle bTM such that $\Gamma({}^bTM) = {}^b\mathfrak{X}(M)$.

The dual: ${}^bT^*M$ and forms: ${}^b\Omega^k(M) = \Gamma(\Lambda^k({}^bT^*M))$.

Extending differential calculus

$$\omega \in {}^b\Omega^k(M)$$
 can be decomposed

$$\omega = \alpha \wedge \frac{df}{f} + \beta$$
 where $\alpha \in \Omega^{k-1}(M), \beta \in \Omega^k(M)$.

Extending differential calculus

 $\omega \in {}^b\Omega^k(M)$ can be decomposed

$$\omega = \alpha \wedge \frac{df}{f} + \beta$$
 where $\alpha \in \Omega^{k-1}(M), \beta \in \Omega^k(M)$.

Extension of the exterior derivative by defining

$$d(\alpha \wedge \frac{df}{f} + \beta) := d\alpha \wedge \frac{df}{f} + d\beta.$$

Extending differential calculus

 $\omega \in {}^b\Omega^k(M)$ can be decomposed

$$\omega = \alpha \wedge \frac{df}{f} + \beta$$
 where $\alpha \in \Omega^{k-1}(M), \beta \in \Omega^k(M)$.

Extension of the exterior derivative by defining

$$d(\alpha \wedge \frac{df}{f} + \beta) := d\alpha \wedge \frac{df}{f} + d\beta.$$

b-symplectic and b-contact manifolds

Definition ([GMP])

A *b*-symplectic form on W^{2n} is $\omega \in {}^b\Omega^2(W)$ such that

- $d\omega = 0$,
- ullet ω is non-degenerate.

Definition

A manifold (M^{2n+1}, α) where $\alpha \in {}^b\Omega^1(M)$ is b-contact if $\alpha \wedge (d\alpha)^n \neq 0$.

b-symplectic and b-contact manifolds

Definition ([GMP])

A b^m -symplectic form on W^{2n} is $\omega \in b^m \Omega^2(W)$ such that

- $d\omega = 0$,
- ullet ω is non-degenerate.

Definition

A manifold (M^{2n+1}, α) where $\alpha \in {}^{b^m}\Omega^1(M)$ is b^m -contact if $\alpha \wedge (d\alpha)^n \neq 0$.

Local study of b^m -contact manifolds I

Example

- $(\mathbb{R}^3, \frac{dz}{z} + xdy)$, $R_{\alpha} = z\frac{\partial}{\partial z}$
- $(\mathbb{R}^3, dx + y\frac{dz}{z})$, $R_\alpha = \frac{\partial}{\partial x}$

The Reeb vector field R_{α} is defined by the equations

$$\begin{cases} \iota_{R_{\alpha}} d\alpha = 0 \\ \iota_{R_{\alpha}} \alpha = 1 \end{cases}$$

Local study of b^m -contact and b^m -symplectic manifolds II

One can prove Darboux theorem, analyze the induced structure on the critical set...see [MO1].

Proposition

Let (W, Z, ω) be a b^m -symplectic manifold and $X \in {}^{b^m}\mathfrak{X}(W)$ such that $\mathcal{L}_X \omega = \omega$ and $X \not h \Sigma$. Then $(\Sigma, \iota_X \omega)$ is b^m -contact with critical set $\widetilde{Z} = Z \cap \Sigma$.

Dynamics on b^m -contact manifolds

The Reeb vector field R_{α} is defined by the equations

$$\begin{cases} \iota_{R_{\alpha}} d\alpha = 0 \\ \iota_{R_{\alpha}} \alpha = 1. \end{cases}$$

The Reeb vector field can vanish!

Do there exists plugs?

A trap is a smooth vector field on the manifold $D^{n-1} \times [0,1]$ such that

- the flow of the vector field is given by $\frac{\partial}{\partial t}$ near the boundary of $\partial D \times [0,1]$, where t is the coordinate on [0,1];
- ② there are no periodic orbits contained in $D \times [0,1]$;
- **3** the orbit entering at the origin of the disk $D \times \{0\}$ does not leave $D \times [0,1]$ again.

If the vector field additionally satisfies entry-exit matching condition, that is that the orbit entering at (x,0) leaves at (x,1) for all $x \in D \setminus \{0\}$, then the trap is called a *plug*.

- Weinstein conjecture: There are no plugs.
- Eliashberg-Hofer: non-existence of traps for dim=3.
- Geiges-Roettgen-Zehmisch: existence in higher dimension.
- Traps and plugs for *b*^{*m*}-contact?

Theorem

There exists traps for the b^m -Reeb flow.

Theorem

There exists traps for the b^m -Reeb flow.

Question: Existence/Non-existence of periodic Reeb orbits away and on Z?

Proposition

Let $(M, \alpha = u \frac{dz}{z} + \beta)$ be a b^m -contact manifold of dimension 3. Then the restriction on Z of the 2-form $\Theta = ud\beta + \beta \wedge du$ is symplectic and the Reeb vector field is Hamiltonian with respect to Θ with Hamiltonian function u, i.e. $\iota_R\Theta = du$.

This is highly 3-dimensional!

Infinitely many periodic orbits on Z

Proposition

Let (M, α) be a 3-dimensional b^m -contact manifold and assume the critical hypersurface Z to be closed. Then there exists infinitely many periodic Reeb orbits on Z.

Proof.

- \circ u is non-constant on Z
- **3** R_{α} is Hamiltonian on Z for -u,
- \bullet $u^{-1}(p)$ where p regular is a circle,
- **5** R_{α} periodic on $u^{-1}(p)$.

No periodic orbits away from Z

There are compact b^m -contact manifolds (M, Z) of any dimension for all $m \in \mathbb{N}$ without periodic Reeb orbits on $M \setminus Z$.

Example

- $\bullet \ S^3 \subset \left(\mathbb{R}^4, \omega = \frac{dx_1}{x_1} \wedge dy_1 + dx_2 \wedge dy_2\right)$
- $X = \frac{1}{2}x_1\frac{\partial}{\partial x_1} + y_1\frac{\partial}{\partial y_1} + \frac{1}{2}(x_2\frac{\partial}{\partial x_2} + y_2\frac{\partial}{\partial y_2})$ Liouville v.f.
- $R_{\alpha} = 2x_1^2 \frac{\partial}{\partial x_1} x_1 y_1 \frac{\partial}{\partial y_1} + 2x_2 \frac{\partial}{\partial y_2} 2y_2 \frac{\partial}{\partial x_2}$
- On $Z = S^2$: rotation,
- Away from Z, no periodic orbits.

Periodic orbits away from *Z*?

Definition

 $(M^3, \xi = \ker \alpha)$ is *overtwisted* if there exists D^2 s.t. $TD \cap \xi$ defines a 1-dimensional foliation given by

A contact manifold that is not overtwisted is called *tight*.

Let (M^3, α) a closed OT contact manifold. Then there exists a periodic orbit.

Let (M^3, α) a closed OT contact manifold. Then there exists a periodic orbit.

Not true for open OT manifolds!

Let (M^3, α) a closed OT contact manifold. Then there exists a periodic orbit.

Not true for open OT manifolds!

Definition

A b^m -contact manifold is overtwisted if there exists an overtwisted disk away from the critical hypersurface Z.

Let (M^3, α) a closed OT contact manifold. Then there exists a periodic orbit.

Not true for open OT manifolds!

Definition

A b^m -contact manifold is overtwisted if there exists an overtwisted disk away from the critical hypersurface Z.

Definition

A contact form α is \mathbb{R}^+ -invariant around the critical set if there exists a contact vector field that $\alpha = u \frac{dz}{z^m} + \beta$, where $u \in C^{\infty}(Z)$ and $\beta \in \Omega^1(Z)$

Theorem

Let (M,α) be a closed b^m -contact manifold with critical set Z. Assume there exists an overtwisted disk in $M \setminus Z$ and assume that α is \mathbb{R}^+ -invariant in a tubular neighbourhood around Z. Then there exists

- **1** a periodic Reeb orbit in $M \setminus Z$ or
- 2 a family of periodic Reeb orbits approaching the critical set Z.

The proof is an adaptation of Hofer's technique.

Question: Other applications of this theorem?

Back to the motivating example

Contact geometry of RPC3BP revisited

In rotating coordinates:
$$H(q,p) = \frac{|p|^2}{2} - \frac{1-\mu}{|q-q_E|} - \frac{\mu}{|q-q_M|} + p_1q_2 - p_2q_1$$

Lemma

The vector field $Y = p \frac{\partial}{\partial p}$ is a Liouville vector field and is transverse to Σ_c for c > 0.

- Symplectic polar coordinates: $(r, \alpha, P_r, P_\alpha)$.
- McGehee change of coordinates: $r = \frac{2}{x^2}$.

 b^3 -symplectic form: $-4\frac{dx}{x^3} \wedge dP_r + d\alpha \wedge dP_\alpha$.

Is Σ_c b^3 -contact after McGehee? Can we apply the results on periodic orbits?

b³-contact form in the RPC3BP

Theorem

After the McGehee change, the Liouville vector field $Y=p\frac{\partial}{\partial p}$ is a b^3 -vector field that is everywhere transverse to Σ_c for c>0 and the level-sets $(\Sigma_c, \iota_Y \omega)$ for c>0 are b^3 -contact manifolds. Topologically, the critical set is a cylinder and the Reeb vector field admits infinitely many non-trivial periodic orbits on the critical set.

Proof.

- Y transverse at the critical set?
- On critical set, Hamiltonian $H = \frac{1}{2}P_r^2 P_{\alpha}$, so that $Y(H)|_{H=c} = P_r^2 P_{\alpha} = \frac{1}{2}P_r^2 + c > 0$;
- b^3 -contact form $\alpha = (P_r \frac{dx}{x^3} + P_\alpha d\alpha)|_{H=c}$ with $Z = \{(x, \alpha, P_r, P_\alpha)|_{X=0}, \frac{1}{2}P_r^2 P_\alpha = c\};$
- $\bullet R_{\alpha}|_{Z} = X_{P_{r}};$
- Cylinder is foliated by periodic orbits.

Open questions and future work

Can those periodic orbits be continued away from the critical set?

Figure: A Singular periodic orbit a.k.a. heteroclinic

Conjecture (Singular Weinstein conjecture)

Let (M, α) be a compact b^m -contact manifold. Then there exists always a singular periodic Reeb orbit.

Recent work (joint with Miranda and Peralta-Salas: "Generically", the conjecture is satisfied.

References

- Albers, Peter, Urs Frauenfelder, Otto Van Koert, and Gabriel P. Paternain. "Contact geometry of the restricted three-body problem." Communications on pure and applied mathematics 65, no. 2 (2012): 229-263.
- Guillemin, Victor, Eva Miranda, and Ana Rita Pires. "Symplectic and Poisson geometry on b-manifolds." Advances in mathematics 264 (2014): 864-896.
- Miranda, Eva, and Cédric Oms. "The geometry and topology of contact structures with singularities." arXiv preprint arXiv:1806.05638 (2018).
- Miranda, Eva, and Cédric Oms. "The singular Weinstein conjecture." arXiv preprint arXiv:2005.09568 (2020).