LR Parsers

• The most powerful shift-reduce parsing (yet efficient) is:

- LR parsing is attractive because:
 - LR parsing is most general non-backtracking shift-reduce parsing, yet it is still efficient.
 - The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers.

$$LL(1)$$
-Grammars $\subset LR(1)$ -Grammars

 An LR-parser can detect a syntactic error as soon as it is possible to do so a left-to-right scan of the input.

LR Parsers

• LR-Parsers

- covers wide range of grammars.
- SLR simple LR parser
- LR most general LR parser
- LALR intermediate LR parser (look-head LR parser)
- SLR, LR and LALR work same (they used the same algorithm), only their parsing tables are different.

LR Parsing Algorithm

A Configuration of LR Parsing Algorithm

• A configuration of a LR parsing is:

- S_m and a_i decides the parser action by consulting the parsing action table. (*Initial Stack* contains just S_o)
- A configuration of a LR parsing represents the right sentential form:

$$X_1 ... X_m a_i a_{i+1} ... a_n$$
\$

Actions of A LR-Parser

- 1. shift s -- shifts the next input symbol and the state s onto the stack $(S_0 X_1 S_1 ... X_m S_m, a_i a_{i+1} ... a_n \$) \rightarrow (S_0 X_1 S_1 ... X_m S_m a_i s, a_{i+1} ... a_n \$)$
- 2. reduce $A \rightarrow \beta$ (or rn where n is a production number)
 - pop $2|\beta|$ (=r) items from the stack;
 - then push A and s where $s=goto[s_{m-r},A]$

$$(S_{0} X_{1} S_{1} ... X_{m} S_{m}, a_{i} a_{i+1} ... a_{n} \$) \rightarrow (S_{0} X_{1} S_{1} ... X_{m-r} S_{m-r} A s, a_{i} ... a_{n} \$)$$

- Output is the reducing production reduce $A \rightarrow \beta$
- **3.** Accept Parsing successfully completed
- **4. Error** -- Parser detected an error (an empty entry in the action table)

Reduce Action

- pop $2|\beta|$ (=r) items from the stack; let us assume that $\beta = Y_1Y_2...Y_r$
- then push A and s where $s=goto[s_{m-r},A]$

$$(S_{o} X_{1} S_{1} ... X_{m-r} S_{m-r} Y_{1} S_{m-r+1} ... Y_{r} S_{m}, a_{i} a_{i+1} ... a_{n} \$)$$

 $\rightarrow (S_{o} X_{1} S_{1} ... X_{m-r} S_{m-r} A s, a_{i} ... a_{n} \$)$

• In fact, $Y_1Y_2...Y_r$ is a handle.

$$X_1 ... X_{m-r} A a_i ... a_n \$ \Rightarrow X_1 ... X_m Y_1 ... Y_r a_i a_{i+1} ... a_n \$$$

(SLR) Parsing Tables for Expression Grammar

1) $E \rightarrow E+T$

2) $E \rightarrow T$

3) $T \rightarrow T*F$

4) $T \rightarrow F$

5) $F \rightarrow (E)$

6) $F \rightarrow id$

Action Table

Goto Table

state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s 5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Actions of A (S)LR-Parser -- Example

<u>stack</u>	<u>input</u>	action	<u>output</u>
0	id*id+id\$	shift 5	
0id5	*id+id\$	reduce by F→id	F→id
0F3	*id+id\$	reduce by $T \rightarrow F$	$T \rightarrow F$
0T2	*id+id\$	shift 7	
0T2*7	id+id\$	shift 5	
0T2*7id5	+id\$	reduce by F→id	F→id
0T2*7F10	+id\$	reduce by $T \rightarrow T^*F$	$T\rightarrow T*F$
0T2	+id\$	reduce by $E \rightarrow T$	$E \rightarrow T$
0E1	+id\$	shift 6	
0E1+6	id\$	shift 5	
0E1+6id5	\$	reduce by F→id	F→id
0E1+6F3	\$	reduce by $T \rightarrow F$	$T \rightarrow F$
0E1+6T9	\$	reduce by $E \rightarrow E + T$	$E\rightarrow E+T$
0E1	\$	accept	

Constructing SLR Parsing Tables – LR(0) Item

• An LR(0) item of a grammar G is a production of G a dot at the some position of the right side.

• Ex: $A \rightarrow aBb$ Possible LR(0) Items: $A \rightarrow aBb$

(four different possibility) $A \rightarrow a \cdot Bb$

 $A \rightarrow aB \bullet b$

 $A \rightarrow aBb \bullet$

- Sets of LR(0) items will be the states of action and goto table of the SLR parser.
- A collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for constructing SLR parsers.
- Augmented Grammar:

G' is G with a new production rule $S' \rightarrow S$ where S' is the new starting symbol.

The Closure Operation

- If *I* is a set of LR(0) items for a grammar G, then *closure(I)* is the set of LR(0) items constructed from I by the two rules:
 - 1. Initially, every LR(0) item in I is added to closure(I).
 - 2. If $\mathbf{A} \to \alpha \bullet \mathbf{B} \boldsymbol{\beta}$ is in closure(I) and $\mathbf{B} \to \gamma$ is a production rule of G; then $\mathbf{B} \to \bullet \gamma$ will be in the closure(I). We will apply this rule until no more new LR(0) items can be added to closure(I).

What is happening by $B \rightarrow \bullet \gamma$?

The Closure Operation -- Example

```
E' \rightarrow E
                                             closure(\{E' \rightarrow \bullet E\}) =
E \rightarrow E+T
                                                                       \{E' \rightarrow \bullet E \leftarrow \text{kernel items}\}
E \rightarrow T
                                                                            E \rightarrow \bullet E + T
T \rightarrow T*F
                                                                            E \rightarrow \bullet T
T \rightarrow F
                                                                            T \rightarrow {}_{\bullet} T * F
F \rightarrow (E)
                                                                            T \rightarrow \bullet F
F \rightarrow id
                                                                           F \rightarrow \bullet(E)
                                                                           F \rightarrow \bullet id }
```

Computation of Closure

```
function closure ( I ) begin J:=I; repeat for\ each\ item\ A \to \alpha.B\beta\ in\ J\ and\ each\ production B\!\!\to\!\!\gamma of\ G\ such\ that\ B\!\to\!\!.\gamma \ is\ not\ in\ J\ do add\ B\!\to\!.\gamma \ to\ J until no more items can be added to J
```

end

Goto Operation

- If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha \bullet X\beta$ in I then every item in **closure**($\{A \to \alpha X \bullet \beta\}$) will be in goto(I,X).
 - If I is the set of items that are valid for some viable prefix γ , then goto(I,X) is the set of items that are valid for the viable prefix γX .

Example:

```
\begin{split} I = &\{ E' \rightarrow \bullet E, \ E \rightarrow \bullet E + T, \ E \rightarrow \bullet T, \\ &T \rightarrow \bullet T^*F, \ T \rightarrow \bullet F, \\ &F \rightarrow \bullet (E), \ F \rightarrow \bullet id \ \\ &\gcd(I,E) = &\{ E' \rightarrow E \bullet, E \rightarrow E \bullet + T \ \} \\ &\gcd(I,T) = &\{ E \rightarrow T \bullet, T \rightarrow T \bullet F \ \} \\ &\gcd(I,F) = &\{ T \rightarrow F \bullet \ \} \\ &\gcd(I,C) = &\{ F \rightarrow (\bullet E), E \rightarrow \bullet E + T, E \rightarrow \bullet T, T \rightarrow \bullet T^*F, T \rightarrow \bullet F, \\ &F \rightarrow \bullet (E), F \rightarrow \bullet id \ \} \\ &\gcd(I,id) = &\{ F \rightarrow id \bullet \ \} \end{split}
```

Construction of The Canonical LR(0) Collection

• To create the SLR parsing tables for a grammar G, we will create the canonical LR(0) collection of the grammar G'.

• Algorithm:

```
C is { closure({S'→•S}) }
repeat the followings until no more set of LR(0) items can be added to C.
for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in C
add goto(I,X) to C
```

• goto function is a DFA on the sets in C.

The Canonical LR(0) Collection -- Example

$$\begin{split} \textbf{I}_0 & : E' \rightarrow .E \textbf{I}_1 : E' \rightarrow E .\textbf{I}_6 : E \rightarrow E + T & \textbf{I}_9 : E \rightarrow E + T. \\ & E \rightarrow .E + T & E \rightarrow E . + T & T \rightarrow .T * F \\ & E \rightarrow .T & T \rightarrow .F & T \rightarrow .F \\ & T \rightarrow .T * F & \textbf{I}_2 : E \rightarrow T. & F \rightarrow .(E) & \textbf{I}_{10} : T \rightarrow T * F. \\ & T \rightarrow .F & T \rightarrow T . * F & F \rightarrow .id & F \rightarrow .(E) \\ & F \rightarrow .(E) & F \rightarrow .id & \textbf{I}_3 : T \rightarrow F. & \textbf{I}_7 : T \rightarrow T * .F & \textbf{I}_{11} : F \rightarrow (E). \\ & F \rightarrow .(E) & F \rightarrow .id & E \rightarrow .E + T & E \rightarrow .T & \textbf{I}_8 : F \rightarrow (E.) \\ & T \rightarrow .T * F & E \rightarrow E . + T & E \rightarrow E . + T \\ & T \rightarrow .F & F \rightarrow .(E) & F \rightarrow .id & \textbf{I}_5 : F \rightarrow$$

Transition Diagram (DFA) of Goto Function

Constructing SLR Parsing Table

(of an augumented grammar G')

- 1. Construct the canonical collection of sets of LR(0) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha \cdot a\beta$ in I_i and $goto(I_i,a)=I_j$ then action[i,a] is shift j.
 - If $A \rightarrow \alpha$ is in I_i , then **action[i,a]** is **reduce** $A \rightarrow \alpha$ for all a in **FOLLOW(A)** where $A \neq S'$.
 - If $S' \rightarrow S$ is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not SLR(1).
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i,A)=I_j$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S$

Parsing Tables of Expression Grammar

Action Table

Goto Table

state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s 5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

SLR(1) Grammar

- An LR parser using SLR(1) parsing tables for a grammar G is called as the SLR(1) parser for G.
- If a grammar G has an SLR(1) parsing table, it is called SLR(1) grammar (or SLR grammar in short).
- Every SLR grammar is unambiguous, but every unambiguous grammar is not a SLR grammar.

shift/reduce and reduce/reduce conflicts

- If a state does not know whether it will make a shift operation or reduction for a terminal, we say that there is a **shift/reduce conflict**.
- If a state does not know whether it will make a reduction operation using the production rule i or j for a terminal, we say that there is a reduce/reduce conflict.
- If the SLR parsing table of a grammar G has a conflict, we say that that grammar is not SLR grammar.

Conflict Example

Conflict Example2

Problem

$$FOLLOW(A) = \{a,b\}$$

$$FOLLOW(B)=\{a,b\}$$

a reduce by
$$A \to \epsilon$$
 reduce by $B \to \epsilon$

reduce/reduce conflict

b reduce by
$$A \rightarrow \epsilon$$
 reduce by $B \rightarrow \epsilon$ reduce/reduce conflict

Constructing Canonical LR(1) Parsing Tables

- In SLR method, the state i makes a reduction by $A\rightarrow\alpha$ when the current token is **a**:
 - if the $A\rightarrow\alpha$ in the I_i and **a** is FOLLOW(A)
- In some situations, βA cannot be followed by the terminal a in a right-sentential form when $\beta \alpha$ and the state i are on the top stack. This means that making reduction in this case is not correct.
- Back to Slide no 22.

LR(1) Item

- To avoid some of invalid reductions, the states need to carry more information.
- Extra information is put into a state by including a terminal symbol as a second component in an item.
- A LR(1) item is:

 $A \rightarrow \alpha \cdot \beta, a$

where **a** is the look-head of the LR(1) item

(a is a terminal or end-marker.)

- Such an object is called LR(1) item.
 - 1 refers to the length of the second component
 - − The lookahead has no effect in an item of the form [A \rightarrow α.β,a], where β is not ∈.
 - But an item of the form $[A \to \alpha.,a]$ calls for a reduction by $A \to \alpha$ only if the next input symbol is a.
 - The set of such a's will be a subset of FOLLOW(A), but it could be a proper subset.

LR(1) Item (cont.)

- When β (in the LR(1) item $A \to \alpha \cdot \beta$, a) is not empty, the look-head does not have any affect.
- When β is empty $(A \to \alpha_{\bullet}, a)$, we do the reduction by $A \to \alpha$ only if the next input symbol is **a** (not for any terminal in FOLLOW(A)).
- A state will contain $A \to \alpha_{\bullet}, a_1$ where $\{a_1, ..., a_n\} \subseteq FOLLOW(A)$

 $A \rightarrow \alpha_{\bullet}, a_n$

Canonical Collection of Sets of LR(1) Items

• The construction of the canonical collection of the sets of LR(1) items are similar to the construction of the canonical collection of the sets of LR(0) items, except that *closure* and *goto* operations work a little bit different.

closure(I) is: (where I is a set of LR(1) items)

- every LR(1) item in I is in closure(I)
- if $A \rightarrow \alpha \cdot B\beta$, a in closure(I) and $B \rightarrow \gamma$ is a production rule of G; then $B \rightarrow .\gamma$, b will be in the closure(I) for each terminal b in FIRST(βa).

goto operation

- If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha.X\beta$, a in I then every item in **closure**($\{A \to \alpha X.\beta,a\}$) will be in goto(I,X).

Construction of The Canonical LR(1) Collection

• Algorithm:

```
C is { closure({S'} \rightarrow .S,$}) }

repeat the followings until no more set of LR(1) items can be added to C.

for each I in C and each grammar symbol X

if goto(I,X) is not empty and not in C

add goto(I,X) to C
```

• goto function is a DFA on the sets in C.

A Short Notation for The Sets of LR(1) Items

• A set of LR(1) items containing the following items

$$A \rightarrow \alpha \cdot \beta, a_1$$

• • •

$$A \rightarrow \alpha \cdot \beta, a_n$$

can be written as

$$A \rightarrow \alpha \cdot \beta, a_1/a_2/.../a_n$$

Canonical LR(1) Collection -- Example

$$S \rightarrow AaAb$$

 $S \rightarrow BbBa$

$$A \rightarrow \epsilon$$

$$B \rightarrow \epsilon$$

$$I_0: S' \rightarrow .S,$$

$$S \rightarrow .AaAb$$
,

$$S \rightarrow .BbBa ,$$
\$

$$A \rightarrow ., a$$

$$B \rightarrow ., b$$

$$I_{0}: S' \rightarrow .S , \$$$

$$S \rightarrow .AaAb , \$$$

$$S \rightarrow .BbBa , \$$$

$$A \rightarrow . , a$$

$$B \rightarrow . , b$$

$$I_{1}: S' \rightarrow S. , \$$$

$$A \rightarrow I_{2}: S \rightarrow A.aAb , \$ \xrightarrow{a} to I_{4}$$

$$I_{3}: S \rightarrow B.bBa , \$ \xrightarrow{b} to I_{5}$$

$$I_4: S \to Aa.Ab , \$ \xrightarrow{A} I_6: S \to AaA.b , \$ \xrightarrow{a} I_8: S \to AaAb. , \$$$

$$A \to . , b$$

$$I_5: S \to Bb.Ba$$
, $\$ \longrightarrow I_7: S \to BbB.a$, $\$ \longrightarrow I_9: S \to BbBa$., $\$ \to BbBa$.

1.
$$S' \rightarrow S$$

2. S
$$\rightarrow$$
 C C

3.
$$C \rightarrow c C$$

4. C
$$\rightarrow$$
 d

I₀: closure(
$$\{(S' \rightarrow \bullet S, \$)\}$$
) =
 $(S' \rightarrow \bullet S, \$)$
 $(S \rightarrow \bullet C C, \$)$
 $(C \rightarrow \bullet c C, c/d)$

$$I_1$$
: goto(I_1 , S) = ($S' \rightarrow S \bullet$, \$)

I₂: goto(I₁, C) =
(S
$$\rightarrow$$
 C \bullet C, \$)
(C \rightarrow \bullet c C, \$)
(C \rightarrow \bullet d, \$)

 $(C \rightarrow \bullet d, c/d)$

I₃: goto(I₁, c) =
$$(C \rightarrow c \bullet C, c/d)$$

$$(C \rightarrow \bullet c C, c/d)$$

$$(C \rightarrow \bullet d, c/d)$$

$$I_4$$
: goto(I_1 , d) = ($C \rightarrow d \bullet$, c/d)

$$l_5$$
: goto(l_3 , C) = (S \rightarrow C C \bullet , \$)

I₆: goto(I₃, c) =
(C
$$\rightarrow$$
 c \bullet C, \$)
(C \rightarrow \bullet c C, \$)
(C \rightarrow \bullet d, \$)

$$I_7$$
: goto(I_3 , d) = ($C \rightarrow d \bullet$, \$)

$$l_8$$
: goto(l_4 , C) = (C \rightarrow c C \bullet , c/d)

:
$$goto(I_4, c) = I_4$$

:
$$goto(I_4, d) = I_5$$

$$l_9$$
: goto(l_7 , c) = (C \rightarrow c C \bullet , \$)

:
$$goto(I_7, c) = I_7$$

:
$$goto(I_7, d) = I_8$$

	С	d	\$	S	С	
0	s3	s4		g1_	g2	
1			a			
2 3 4 5 6	s6	s7			g5	
3	s3	s4			g5 g8	
4	r3	r3				
5			r1			
6	s6	s7			g9	
7			r3			
8	r2	r2				_
9			r2			

The Core of LR(1) Items

- The core of a set of LR(1) Items is the set of their first components (i.e., LR(0) items)
- The core of the set of LR(1) items

```
 \{ (C \rightarrow c \bullet C, c/d), \\ (C \rightarrow \bullet c C, c/d), \\ (C \rightarrow \bullet d, c/d) \} 
is  \{ C \rightarrow c \bullet C, \\ C \rightarrow \bullet c C, \\ C \rightarrow \bullet d \}
```

Construction of LR(1) Parsing Tables

1. Construct the canonical collection of sets of LR(1) items for G'.

$$C \leftarrow \{I_0,...,I_n\}$$

- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha \cdot a\beta$, b in I_i and $goto(I_i,a)=I_j$ then action[i,a] is **shift j**.
 - If $A \rightarrow \alpha_{\bullet}$, a is in I_i , then action[i,a] is **reduce** $A \rightarrow \alpha$ where $A \neq S'$.
 - If $S' \rightarrow S_{\bullet}$, is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not LR(1).
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i,A)=I_j$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S,$ \$

LALR Parsing Tables

- 1. LALR stands for Lookahead LR.
- 2. LALR parsers are often used in practice because LALR parsing tables are smaller than LR(1) parsing tables.
- 3. The number of states in SLR and LALR parsing tables for a grammar G are equal.
- 4. But LALR parsers recognize more grammars than SLR parsers.
- 5. yacc creates a LALR parser for the given grammar.
- 6. A state of LALR parser will be again a set of LR(1) items.

Creating LALR Parsing Tables

Canonical LR(1) Parser

LALR Parser

shrink # of states

- This shrink process may introduce a **reduce/reduce** conflict in the resulting LALR parser (so the grammar is NOT LALR)
- But, this shrik process does not produce a **shift/reduce** conflict.

The Core of A Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component.

Ex:
$$S \to L \bullet = R, \$$$
 \Rightarrow $S \to L \bullet = R$ Core $R \to L \bullet, \$$ $R \to L \bullet$

• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with same cores. Then we will merge them as a single state.

$$I_1:L \to id \bullet ,=$$
 A new state: $I_{12}:L \to id \bullet ,=$ $L \to id \bullet ,\$$ $I_2:L \to id \bullet ,\$$ have same core, merge them

- We will do this for all states of a canonical LR(1) parser to get the states of the LALR parser.
- In fact, the number of the states of the LALR parser for a grammar will be equal to the number of states of the SLR parser for that grammar.

Creation of LALR Parsing Tables

- 1. Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar.
- 2. For each core present; find all sets having that same core; replace those sets having same cores with a single set which is their union.

 $C = \{I_0,...,I_n\} \rightarrow C' = \{J_1,...,J_m\}$ where $m \le n$

- 3. Create the parsing tables (action and goto tables) same as the construction of the parsing tables of LR(1) parser.
 - 1. Note that: If $J=I_1 \cup ... \cup I_k$ since $I_1,...,I_k$ have same cores \rightarrow cores of $goto(I_1,X),...,goto(I_2,X)$ must be same.
 - 1. So, goto(J,X)=K where K is the union of all sets of items having same cores as $goto(I_1,X)$.
- 4. If no conflict is introduced, the grammar is LALR(1) grammar. (We may only introduce reduce/reduce conflicts; we cannot introduce a shift/reduce conflict)

LALR Parse Table

	С	d	\$	S	С
0	s36	s47		11	2
1			acc		
2 36	s36	s47			5
	s36	s47			89
47	<u>r</u> 3	r3r	r3		
5	l		r1		
89	r2	r2	r2_		
	I				

Shift/Reduce Conflict

- We say that we cannot introduce a shift/reduce conflict during the shrink process for the creation of the states of a LALR parser.
- Assume that we can introduce a shift/reduce conflict. In this case, a state of LALR parser must have:

$$A \rightarrow \alpha \bullet ,a$$
 and $B \rightarrow \beta \bullet a\gamma ,b$

• This means that a state of the canonical LR(1) parser must have:

$$A \rightarrow \alpha \bullet ,a$$
 and $B \rightarrow \beta \bullet a\gamma ,c$

But, this state has also a shift/reduce conflict. i.e. The original canonical LR(1) parser has a conflict.

(Reason for this, the shift operation does not depend on lookaheads)

Reduce/Reduce Conflict

• But, we may introduce a reduce/reduce conflict during the shrink process for the creation of the states of a LALR parser.

$$I_{1}: A \to \alpha \bullet, a$$

$$B \to \beta \bullet, b$$

$$I_{2}: A \to \alpha \bullet, b$$

$$B \to \beta \bullet, c$$

$$I_{12}: A \to \alpha \bullet, a/b \quad \rightarrow \text{ reduce/reduce conflict}$$

$$B \to \beta \bullet, b/c$$

Canonical LALR(1) Collection – Example2

$$S' \rightarrow S \qquad I_0:S' \rightarrow \bullet S, \$ \qquad I_1:S' \rightarrow S \bullet, \$ \qquad I_{411}:L \rightarrow * \bullet R, \$/= \\ 1) S \rightarrow L=R \qquad S \rightarrow \bullet L=R, \$ \qquad R \rightarrow \bullet L, \$/= \\ 2) S \rightarrow R \qquad S \rightarrow \bullet R, \$ \qquad I_2:S \rightarrow L \bullet = R, \$ \rightarrow to \ I_6 \qquad L \rightarrow \bullet *R, \$/= \\ 3) L \rightarrow *R \qquad L \rightarrow \bullet *R, \$/= \qquad L \rightarrow \bullet id, \$/= \\ 4) L \rightarrow id \qquad L \rightarrow \bullet id, \$/= \qquad L \rightarrow \bullet id, \$/= \\ 5) R \rightarrow L \qquad R \rightarrow \bullet L, \$ \qquad I_{512}:L \rightarrow id \bullet, \$/=$$

LALR(1) Parsing Tables – (for Example2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4	r4			
6	s12	s11				10	9
7			r3	r3			
8			r5	r5			
9				r1			

no shift/reduce or no reduce/reduce conflict

so, it is a LALR(1) grammar

Using Ambiguous Grammars

- All grammars used in the construction of LR-parsing tables must be un-ambiguous.
- Can we create LR-parsing tables for ambiguous grammars?
 - Yes, but they will have conflicts.
 - We can resolve these conflicts in favor of one of them to disambiguate the grammar.
 - At the end, we will have again an unambiguous grammar.
- Why we want to use an ambiguous grammar?
 - Some of the ambiguous grammars are **much natural**, and a corresponding unambiguous grammar can be very complex.
 - Usage of an ambiguous grammar may eliminate unnecessary reductions.
- Ex.

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid id$$

Sets of LR(0) Items for Ambiguous Grammar

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I₇ has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{+} I_4 \xrightarrow{E} I_7$$

when current token is +

shift \rightarrow + is right-associative

reduce \rightarrow + is left-associative

when current token is *

shift \rightarrow * has higher precedence than +

reduce → + has higher precedence than *

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I₈ has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{*} I_5 \xrightarrow{E} I_8$$

when current token is *

shift → * is right-associative

reduce → * is left-associative

when current token is +

shift \rightarrow + has higher precedence than *

reduce → * has higher precedence than +

SLR-Parsing Tables for Ambiguous Grammar

Goto

	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s 5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s 5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	

Error Recovery in LR Parsing

- An LR parser will detect an error when it consults the parsing action table and finds an error entry. All empty entries in the action table are error entries.
- Errors are never detected by consulting the goto table.
- An LR parser will announce error as soon as there is no valid continuation for the scanned portion of the input.
- A canonical LR parser (LR(1) parser) will never make even a single reduction before announcing an error.
- The SLR and LALR parsers may make several reductions before announcing an error.
- But, all LR parsers (LR(1), LALR and SLR parsers) will never shift an erroneous input symbol onto the stack.

Panic Mode Error Recovery in LR Parsing

- Scan down the stack until a state s with a goto on a particular nonterminal A is found. (Get rid of everything from the stack before this state s).
- Discard zero or more input symbols until a symbol **a** is found that can legitimately follow A.
 - The symbol a is simply in FOLLOW(A), but this may not work for all situations.
- The parser stacks the nonterminal **A** and the state **goto[s,A]**, and it resumes the normal parsing.
- This nonterminal A is normally is a basic programming block (there can be more than one choice for A).
 - stmt, expr, block, ...

Phrase-Level Error Recovery in LR Parsing

- Each empty entry in the action table is marked with a specific error routine.
- An error routine reflects the error that the user most likely will make in that case.
- An error routine inserts the symbols into the stack or the input (or it deletes the symbols from the stack and the input, or it can do both insertion and deletion).
 - missing operand
 - unbalanced right parenthesis

The End