SCC0270/SCC5809 - Redes Neurais Aula 12 - PCA e Rede PCA

Profa. Dra. Roseli Aparecida Francelin Romero SCC - ICMC - USP

2017

Sumário

- PCA clássica
- Caracterização
- ExemploRedução de dimensionalidade
- Algoritmo
- 2) Rede PCA adaptativa

- Dado um conjunto de amostras, cada qual com um conjunto finito de variáveis.
- Derivar novas componentes que produzam uma descrição mais simples do sistema.
- Reduzir as variáveis originais a um número menor de variáveis ortogonais (não correlacionadas).
- Mudança de espaço de variáveis.

Objetivo

Dadas p variáveis, deseja-se achar combinações lineares dessas para produzir índices que **não** sejam correlacionados, de tal forma que:

• Indices Z: componentes principais.

PCA clássica

Sumário

- PCA clássica
- Caracterização
- Exemplo
- Redução de dimensionalidade
- Algoritmo
- 2 Rede PCA adaptativa

i-ésima componente principal.

$$Z_i = a_{i1}X_1 + a_{i2}X_2 + \cdots + a_{ip}X_p$$

Com restrição:

$$a_{i1}^2 + a_{i2}^2 + \dots + a_{ip}^2 = 1$$

• E com $Z_1, Z_2, \ldots, Z_{i-1}, Z_i$ não correlacionados.

• PCA: resume-se em encontrar os autovalores e autovetores da matriz C de covariância dos dados.

$$= \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ c_{p1} & c_{p2} & \cdots & c_{pp} \end{bmatrix}$$

 Supondo que os autovalores da matriz C estejam ordenados da seguinte forma:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_j \geq \cdots \geq \lambda_p$$

Os autovetores associados são:

$$a_1, a_2, \cdots, a_j, \cdots, a_p$$

Propriedades:

$$a_i^{\mathcal{T}}a_j=egin{cases} 1, & i=j \ 0, & i
eq j \end{cases}$$

Para:

$$Z_i = a_{i1}X_1 + a_{i2}X_2 + \cdots + a_{ip}X_p$$

• $(a_{i1}, a_{i2}, \ldots, a_{ip})$ são os elementos do i-ésimo autovetor correspondente.

 A soma dos autovalores corresponde ao traço da matriz covariância C:

$$\lambda_1 + \lambda_2 + \dots + \lambda_p = c_{11} + c_{22} + \dots + c_{pp}$$

• $var(Z_1) \geq var(Z_2) \geq \cdots \geq var(Z_p)$

$$var(Z_i) = \lambda_i$$

Sumário

- PCA clássica
- Caracterização
- Exemplo
- Redução de dimensionalidade
- Algoritmo
- 2) Rede PCA adaptativa

11/45

Exemplo: conjunto Iris.dat

Tabela 1: Aplicando PCA na base de dados Iris.dat

			Autovetores	Autovetores (coeficientes)	
Componente Autovalor	Autovalor	$\chi_{ m I}$	X_2	X_3	X_4
1	2.91082	0.522371	-0.263356	0.581254	0.565611
2	0.92122	0.372320	0.925556	0.021094	0.065417
3	0.14735	-0.721015	0.242033	0.140889	0.633804
4	0.02061	-0.261998	0.124137	0.801155	-0.523543

Exemplo: conjunto Iris.dat

Conclusões:

- ullet Z $_1$ é responsável por 72.77% do total da variância.
- Z_2 é responsável por 23.03% do total da variância.
- Z₃ é responsável por 3.68% do total da variância.
 - Z_4 é responsável por 0.52% do total da variância.

Exemplo

Reconstrução dos dados originais

$$Z = [Z_1, Z_2, \dots, Z_p]^T$$

= $[X^T a_1, X^T a_2, \dots, X^T a_{p-1}]^T$
= $A^T X$

matriz ortogonal
$$\rightarrow A^T = A^{-1}$$

$$X = A \cdot Z = \sum_{i=1}^{p} Z_i a_i$$

PCA clássica

Sumário

- PCA clássica
- Caracterização
- Exemplo
- Redução de dimensionalidade
- Algoritmo
- 2 Rede PCA adaptativa

15/45

PCA clássica

Redução de dimensionalidade

• Sejam $\lambda_1, \lambda_2, \ldots, \lambda_m$ os m autovalores da matriz C.

• Então, $X' \sim X$, onde:

$$X' = \sum_{i=1}^{m} Z_i a_i \qquad m < \mu$$

• Erro: e = X - X', de modo que:

$$e = \sum_{i=m+1}^{p} Z_i a_i$$

• O vetor de erro e é ortogonal ao vetor X', que aproxima X.

• Princípio da ortogonalidade: $e^T X' = 0$

Aplicação

Tabela 2: Taxas de compressão para blocos 8x8.

Número de	Dimensão do Bloco	Taxa de Compressão
Componentes	Compactado	
Principais		
1	8x1	$1 - \left(\frac{1}{8}\right) = 87,5\%$
2	8x2	1 - (2/8) = 75%
3	8x3	$1 - \left(\frac{3}{8}\right) = 62,5\%$
4	8x4	$1 - \left(\frac{4}{8}\right) = 50\%$

18/45

Aplicação

Tabela 3: Taxas de compressão para blocos 16x16.

Taxa de Compressão			$1 - (\frac{1}{16}) = 93,75$	1 - (2/16) = 87,59
Dimensão do Bloco	Compactado		16x1	16x2
Número de	Componentes	Principais		2

Sumário

- PCA clássica
- Caracterização
- ExemploRedução de dimensionalidade
- Algoritmo
- 2) Rede PCA adaptativa

20/45

Algoritmo

- Padronize os dados correspondentes às variáveis para que estes tenham média igual a 0 e variância igual a 1.
- Calcule a matriz de correlação C.
- autovetores. Os coeficientes da i-ésima componente principal Encontre os autovalores da matriz C e seus correspondentes são dados pelo autovetor associado ao i-ésimo autovalor.
- Descarte as componentes que acumulem uma pequena proporção da variação dos dados.
- 90% do total da variância, as outras 17 componentes principais três primeiras componentes principais forem responsáveis por • Por exemplo, se os dados originais tiverem 20 variáveis e as podem ser ignoradas.

Normalizando os dados (passo 1 do algoritmo)

Dados centrados na média e variância 1:

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

$$x_i \leftarrow \frac{(x_i - \bar{x})}{var(x_i)}$$

 Escalonamento pela variância (quando há variáveis muito dominantes em relação às demais):

$$var(x_j) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ji} - \bar{x_j})^2$$
$$x_i \leftarrow \frac{x_i}{var(x_i)}$$

Sumário

- 1) PCA clássica
- Rede PCA adaptativa
- RNA para compressão de imagens
 - Regra de Hebb
- Convergência
- Algoritmo
- Experimentos e resultados
- Conclusões

0000000000000000000

PCA clássica

RNA para compressão de imagens

Sumário

- 1) PCA clássica
- 2 Rede PCA adaptativa
- RNA para compressão de imagens
 - Regra de Hebb
- Convergência
- Algoritmo
- Experimentos e resultados
- Conclusões

24/45

RNA para compressão de imagens

- Padrão JPEG: mais utilizado.
- PCA Clássica: método estatístico multivariado.
- Rede PCA Adaptativa: arquitetura de Redes Neurais Artificiais.

Motivação

• Redução da quantidade de dados armazenadas em sistemas computacionais. • Redução da dimensionalidade de imagens que ocupem grande quantidade de memória.

Obtenção de métodos que:

Atinjam altas taxas de compressão.

Não prejudiquem a qualidade visual.

PCA clássica ooooooooooooooo

Sumário

- 1) PCA clássica
- 2 Rede PCA adaptativa
- RNA para compressão de imagens
- Regra de Hebb
- Convergência
- Algoritmo
- Experimentos e resultados
- Conclusões

27/45

Regra de Hebb

Postulado de Hebb

processo crescente ou mudanças metabólicas ocorrem em ambas as "Quando um axônio da célula A está suficientemente próximo para excitar uma célula B e repetidamente tenta excitá-la, algum

- Transformando em regras:
- Se dois neurônios ligados por uma sinapse são simultaneamente ativados, a intensidade dessa sinapse(conexão) é aumentada.
- assincronamente, a intensidade dessa sinapse é diminuída ou Se dois neurônios ligados por uma sinapse são ativados até mesmo eliminada.

Regra de Hebb

Regra de Hebb:

$$\Delta w_{kj}(n) = \eta y_k(n) x_j(n)$$

Onde:

• η é uma constante positiva \rightarrow velocidade de aprendizado.

• $y_k(n)$ é a saída do neurônio k no tempo n.

• x_j é o j-ésimo elemento do vetor de entrada no tempo n.

Regra anti-hebbiana:

$$\Delta w_{kj}(n) = -\eta y_k(n) x_j(n)$$

Sumário

- 1 PCA clássica
- Rede PCA adaptativa
- RNA para compressão de imagens
 - Regra de Hebb
- Convergência
- Algoritmo
- Experimentos e resultados
- Conclusões

Rede PCA adaptativa

Convergência

Rede PCA adaptativa

Saída:
$$y_j(n) = \sum_{i=0}^{p-1} w_{ij}(n)x_i(n) + \sum_{l < j} u_{lj}(n)y_l(n),$$

Ajuste dos pesos:
$$\Delta w_{ij}(n) = \eta \kappa_i(n) y_j(n)$$

Ajuste dos pesos laterais:
$$\Delta u_{lj}(n) = -\mu y_l(n) y_j(n)$$

Convergência

Teorema de convergência

eorema

generalizada de Hebb irá convergir na média e, no limite, irá se aleatórios no tempo n=0, então, com probabilidade 1, a regra autovetores da matriz C de covariância dos vetores de entrada Se a matriz de pesos sinápticos W(n) for associada a valores aproximar de uma matriz cujas colunas serão os primeiros m x(n), ordenados por ordem decrescente de autovalor.

leorema de convergência

Portanto, no limite, pode-se escrever:

$$\Delta w_j(n) \to 0, \quad w_j \to a_j \qquad j = 0, 1, \dots, m - 1$$

- Tal que $||w_j(n)|| = 1$ para todo j.
- covariância dos vetores de entrada x(n), estando esses associados aos *m* maiores autovalores da matriz C de Os valores representam os autovetores normalizados autovalores ordenados em ordem decrescente.

leorema de convergência

 Pode-se acelerar a convergência da rede introduzindo um aprendizagem e o momentum diminuam com o tempo. termo momentum β e deixando que os parâmetros de

$$\Delta w_{ij}(n+1) = \eta(n)x_iy_i + \beta(n)\Delta w_{ij}(n)$$
 (1)

$$\Delta u_{ij}(n+1) = -\mu(n)y_iy_j + \beta(n)\Delta u_{ij}(n) \tag{2}$$

•
$$\eta(n+1) = \max\{\alpha\eta(n), 0.0001\}$$

• $\mu(n+1) = \max\{\alpha\eta(n), 0.0002\}$

$$\mu(n+1) = \max\{\alpha \eta(n), 0.0002\}$$

•
$$\beta(n+1) = \max\{\alpha\eta(n), 0.0001\}$$

•
$$\alpha$$
 é o fator de limitação.

Sumário

- 1 PCA clássica
- 2 Rede PCA adaptativa
- RNA para compressão de imagens
 - Regra de Hebb
- Convergência
- Algoritmo
- Experimentos e resultados
- Conclusões

Algoritmo

- Inicialize todos os pesos de conexões com pequenos valores aleatórios, escolha os valores para os parâmetros de aprendizagem e normalize-os em [0, 1].
- Se normalizar em [-1,1], pode mudar os sinais dos autovetores.
- Repita:
- Selecione aleatoriamente um padrão p-dimensional e apresente-o à rede.
- σ Ajuste os pesos das conexões entre a camada de entrada e camada de saída, de acordo com a equação 1.
- Normalize os vetores-peso (em colunas).
- Atualize os pesos laterais, de acordo com a equação 2 (não precisa normalizar).
- **6** Modifique os parâmetros β , η e μ .

pequenos OU um número de iterações máximo seja atingido. Até que todos os pesos laterais sejam suficientemente

0000000000000000000

PCA clássica

Sumário

- 1) PCA clássica
- 2 Rede PCA adaptativa
- RNA para compressão de imagens
 - Regra de Hebb
- Convergência
- Algoritmo
- Experimentos e resultados
- Conclusões

Experimentos

- Dados sobre as imagens:
- Conjunto composto por 208 imagens médicas.
- Dimensão: 480x640 pixels (valor em nível de cinza).
- Representação de cortes de um fígado humano
- aquisição a partir de um microscópio laser, pelo Departamento de Patologia da Fiocruz.

Compressão de imagens através do JPEG

Utilização do aplicativo xv (xview), para Linux.

Possui módulo para compressão JPEG.

Permite que o usuário selecione taxa de compressão.

Taxas de compressão

comprimento da cadeia de dados comprimidos Taxa de Compress $ilde{a}o = 1$ – –

comprimento da cadeia de dados originais

Taxas de Compressão para Blocos 32x32

		6	
Taxa de Compressão	$1 - \left(\frac{1}{32}\right) = 96,875\%$	1 - (2/32) = 93,75%	$1 - \left(\frac{3}{32}\right) = 90,625\%$
Número de Componentes Principais	I	2	3

Experimentos e resultados

Resultados

				Taxa d	Taxa de Compressão	ssão			
MSE	Rede 1	Rede PCA Adaptativa	otativa	PC	PCA Clássica	ca		JPEG	
	96,875%	93,75%	90,625%	96,875%	93,75%	90,625%	96%	93%	%06
Imagem 1	5.82	4.91	4.27	5.43	4.69	4.21	9.72	7.01	6.10
Imagem 2	6.75	5.49	4.78	6.17	5.17	4.62	9.97	7.58	6.65
Imagem 3	5.20	4.08	3.40	4.64	3.77	3.26	8.91	6.44	5.39
Imagem 4	5.80	4.36	3.58	5.18	4.07	3.44	9.30	6.72	5.64
Imagem 5	6.08	4.50	3.67	5.30	4.16	3.50	9.47	92.9	5.65
Imagem 6	5.19	4.00	3.34	4.64	3.75	3.22	8.90	6.44	5.36
Imagem 7	5.41	3.96	3.33	4.81	3.74	3.21	9.04	6.51	5.39
Imagem 8	5.39	4.06	3.39	4.79	3.81	3.26	8.99	6.48	5.37
Imagem 9	5.32	3.92	3.27	4.66	3.68	3.16	8.93	6.40	5.32
Imagem 10	5.61	4.22	3.53	5.01	3.97	3.41	9.47	6.63	5.57

S S S

plipl

Resultados

Compressão Rede PCA

Compressão JPEG

Sumário

- 1 PCA clássica
- Rede PCA adaptativa
- RNA para compressão de imagens
 - Regra de Hebb
- Convergência
- Algoritmo
- Experimentos e resultados
- Conclusões

Conclusões

- Três técnicas de compressão foram apresentadas e aplicadas em uma sequência de imagens médicas.
- Analisando os MSE obtidos pelas técnicas:
- Os resultados da Rede PCA foram bem similares aos obtidos pela PCA clássica.
- O desempenho do padrão JPEG foi inferior aos desempenhos obtidos pelas duas outras técnicas.

Conclusões

- Analisando a qualidade das imagens recuperadas:
- A compressão JPEG forma padrões que dificultam a análise das imagens.
- As técnicas PCA preservam pequenas estruturas que possibilitam a detecção de doenças.