Department of Mathematics School of Advanced Sciences

MAT 1011 – Calculus for Engineers (MATLAB) Experiment 1–B

Maxima and Minima of a function of one variable

Absolute/Global Extrema

- Let f(x) be a function defined in [a,b]. Then f has an absolute maximum value on [a,b] at a point $c \in [a,b]$ if $f(x) \le f(c)$ for all $x \in [a,b]$.
- Let f(x) be a function defined in [a,b]. Then f has an absolute minimum value on [a,b] at a point $c \in [a,b]$ if $f(x) \ge f(c)$ for all $x \in [a,b]$.

Extreme value theorem

If f is continuous on a closed interval [a,b], then f attains both an absolute maximum value M and an absolute minimum value m in [a,b].

Relative/Local Extreme values

- A function f has a local maximum value at an interior point c of its domain if $f(x) \le f(c)$ for all x in some open interval containing c.
- A function f has a local minimum value at an interior point c of its domain if $f(x) \ge f(c)$ for all x in some open interval containing c.

Categorization of Extema

For a continuous function f on a bounded interval [a,b], suppose c is a global externum (a global minimum or a global maximum). Then c must satisfy one of the following:

- f'(c) = 0.
- f'(c) does not exist.
- c is an endpoint.

MATLAB syntax used in the code:

vectorize(s)	Inserts a . before any ^, * or / in string expression `s'
inline(expr)	Constructs an inline function object from the MATLAB
	expression contained in the string expr. The result is a
	character string.
x=fzero(fun,x0)	Tries to find a point x where fun $(x) = 0$. This solution is where
	fun (x) changes sign.
n=numel(A)	Returns the number of elements, n, in array A.
c=unique(A)	Returns the same data as in A, but with no repetitions. The
	values of 'c' are in sorted order.

The following MATLAB code illustrates the evaluation and visualization of global and local extrema of a function f(x) in an interval (a,b).

MATLAB code

```
clear all
clc
syms x
f = input('Enter the function f(x):');
I = input('Enter the interval: ');
a=I(1); b=I(2);
df = diff(f,x);
ddf = diff(df,x);
f = inline(vectorize(f));
df = inline(vectorize(df));
ddf = inline(vectorize(ddf));
range = linspace(a,b,100);
plot(range, f(range), '-b', 'LineWidth', 2);
legstr = {'Function Plot'}; % Legend String
hold on;
응응응응응응
% Due to limitations in symbolic toolbox we find the zeros of
% f'(x) numerically.
응응응응응응응응
guesses = linspace(a, b, 5);
root = zeros(size(guesses));
for i=1:numel(guesses)
root(i) = fzero(df, quesses(i));
end
root = root(a <= root & root <=b);</pre>
root = unique(round(root, 4));
plot(root, f(root), 'ro', 'MarkerSize', 10);
legstr = [legstr, {'Critical Points'}];
disp(['Critical Points of f(x) are: ', num2str(root)])
응응응응응응
%We categorize the critical points by the second derivative test
응응응응응응응응응
maxp = root(ddf(root) < 0);
if(numel(maxp) \sim= 0)
disp(['Local maximum of f(x) occurs at: ',num2str(maxp)])
minp = root(ddf(root) > 0);
if (numel (minp) \sim = 0)
disp(['Local minimum of f(x) occurs at: ',num2str(minp)])
end
fval = f(root);
if (numel (maxp) \sim=0)
gmax = root(fval == max(fval));
disp(['Global maximum of f(x) occurs at: ',num2str(gmax),' and its value
is:', num2str(max(fval))])
plot(gmax, f(gmax), 'm+', 'MarkerSize', 10);
legstr = [legstr, {'Global Maximum'}];
end
if(numel(minp) \sim = 0)
gmin = root(fval == min(fval));
disp(['Global minimum of f(x) occurs at: ',num2str(gmin),' and its value
is: ', num2str(min(fval))])
plot(gmin, f(gmin), 'm*', 'MarkerSize', 10);
legstr = [legstr, {'Global Minimum'}];
end
legend(legstr,'Location','Best')
```

Example: Find the local and global maxima and minima of the function $f(x) = x^4 - 2x^2 + 2$ in the interval (-2,2).

Input

```
Enter the function f(x):x^4-2*x^2+2
Enter the interval: [-2,2]
```

Output

```
Critical Points of f(x) are: -1 0 1

Local maximum of f(x) occurs at: 0

Local minimum of f(x) occurs at: -1 1

Global maximum of f(x) occurs at: 0 and its value is:2

Global minimum of f(x) occurs at: -1 1 and its value is: 1
```


Exercise

- 1. Find the local and global maxima and minima for the function $x^3 12x 5$, $x \in (-4,4)$.
- 2. Find the global extrema of the function $f(x) = x^2 e^{\sin x} \frac{x}{x^3 + 1}$ on the interval [0,5].
