

2019

Working

UC Davis - Metabolomics: Sample preparation for Lipidomics 👄

Oliver Fiehn¹

¹University of California, Davis

dx.doi.org/10.17504/protocols.io.ytpfwmn

Mouse Metabolic Phenotyping Centers Tech. support email: info@mmpc.org

🔔 Lili Liang 🚱

ABSTRACT

Summary:

This SOP describes sample extraction and sample preparation for lipid profiling by liquid chromatography / quadrupole time of flight mass spectrometry (LC-QTOF) or nanoelectrospray ion trap-FTICR MS.

EXTERNAL LINK

https://mmpc.org/shared/document.aspx?id=122&docType=Protocol

MATERIALS

NAME V	CATALOG # V	VENDOR ~
Centrifuge	5415 D	Eppendorf Centrifuge
Calibrated pipettes 1-200 ul and 100-1000ul	1-200 ul and 100-1000ul	
Eppendorf tubes 1.5 mL uncolored	022363204	Eppendorf Centrifuge
ThermoElectron Neslab RTE 740 cooling bath at – 20°C	RTE 740 cooling bath	
MiniV ortexer	58816-121	VWR Scientific
Orbital Mixing Chilling/Heating Plate		Torrey Pines Scientific Instruments
Speed vacuum concentration system		Labconco Centrivap cold trap
Eppendorf tips for organic solvents such as acetonitrile methanol and MTBE		
Glass Amber Vials	C4000-2W	National Scientific
Glass Inserts	27400-U	Supelco
Blue Tops for Vials	5182-0717	Agilent Technologies
Crushed ice		
Nitrogen line with pipette tip		
Pure water		
MTBE: Sigma Chromasolv 99.8% for HPLC 100mL (smallest available) (34875-100mL)	34875-100ML	Sigma Aldrich
Methanol: J.T. Baker LC/MS Grade (9830-03)	9830-03	JT Baker
CUDA (12-[[(cyclohexylamino)carbonyl]amino]- dodecanoic acid)	10007923	Cayman Chemical Company

MATERIALS TEXT

Note:

Sigma-Aldrich RRID:SCR_008988 Cayman Chemical RRID:SCR_008945

1 Starting material:

Plasma/serum: 30 µl sample volume or aliquot

9 Sample Preparation:

Switch on bath to pre-cool at -20° C ($\pm 2^{\circ}$ C validity temperature range)

Extraction solvents

- ◆ Purge both MeOH and MTBE for 5 min with nitrogen.
- ♦ Store solvents in the -20°C freezer to pre-chill

Homogenization and extraction

- Thaw plasma on ice, and gently rotate or invert the blood samples for about 10s to obtain a homogenized sample.
- ♦ Take out 60 μL and add 220 μL cold MeOH. Add 5 μL of QC mix as internal standard (see SOP "QC mix for LC-MS lipid analysis").
- ♦ Vortex each sample for 10s, keeping the rest on ice
- ♦ Add 750 µL MTBE
- ♦ Vortex for 10s
- ♦ Shake for 6min at 4°C
- ♦ Add 187.5 µL distilled water
- ♦ Vortex for 20s
- ♦ Centrifuge for 2 min @ 14000 rcf
- ♦ Remove supernatant, splitting into two aliquots of 300 µL, keeping one at -20°C for backup
- ♦ Dry samples to complete dryness in the speed vacuum concentration system

Preparation for analysis

- ♦ Re-suspend dry samples in 70 µL MeOH containing CUDA (10 µM), degassed using the above method.
- \blacklozenge Transfer 30 μL to two separate amber glass vial with micro-insert. Cap vials with Agilent blue top.
- ♦ Use independent vials for positive and negative mode acquisitions.

3 Quality assurance

- For each sequence of sample extractions, perform one blank negative control extraction by applying the total procedure (i.e. all materials and plastic ware) without biological sample.
- ♦ Use one commercial plasma/serum pool sample per 10 authentic subject samples as control. If no suitable commercial blood sample is available, prepare a large pool sample during the thawing/mixing step by aliquoting 100 ul per 1 ml plasma sample, and aliquot such pool sample for 1 pool extract per 10 authentic subject samples.
 - ♦ Prepare at least six NIST plasma extracts in the same manner as positive controls

4 Final Protocol

IMPORTANT: To prevent contamination disposable material is used. To prevent inhalation of toxic ether vapor, use fume hood during lipid extraction.

DISPOSAL OF WASTE: Collect all chemicals in appropriate bottles and follow the disposal rules. Collect residual plasma/serum samples in specifically designed red 'biohazard' waste bags.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited