Hom is continuous and then all right adjoints are

Mario Román

<2018-12-23 Sun 16:20>

This is an exercise on Samson Abramsky's notes on the course Categories, Proofs and Processes. [AT10]

Statement. Let A be an object in the category C. Show that the covariant hom functor C(A, -), as defined in Lecture III, preserves all limits.

Proof. Let \mathcal{I} be a small category, $F: \mathcal{I} \to \mathcal{C}$ a functor and let L with the morphisms $(l_I)_{I \in \mathcal{I}}$ be the limit of that functor. We know that for every morphism $i: I \to J$ in \mathcal{I} , we have $l_J = Fi \circ l_I$.

Let Z be a set with a family of morphisms $f_I\colon Z\to \mathcal{C}(A,FI)$ determining a cone to $\mathcal{C}(A,F-)\colon \mathcal{I}\to \mathbf{Sets}$; that is, such that for each $i\colon I\to J$ in \mathcal{I} , we have that $f_J=(Fi\circ -)\circ f_I$; or, in other words, for each $z\in Z$ we have $f_J(z)=Fi\circ f_I(z)$. Thus, fixing any $z\in Z$ gives as a family of morphisms $f_I(z)\in \mathcal{C}(A,FI)$ defining a cone. This implies that there exists some unique morphism $a(z)\colon A\to L$ such that $l_I\circ a(z)=f_I(z)$.

Repeating this for every $z \in Z$ we have obtained a function $a: Z \to \mathcal{C}(A, L)$ with the property $l_I \circ a = f_I$. This function must be the unique one with this property, because for any other $a': Z \to \mathcal{C}(A, L)$, for each $z \in Z$ we would have $l_I \circ a'(z) = f_I(z)$ and that would imply that a'(z) = a(z).

Proposition 1. Right adjoints preserve limits.

Proof. (From [Awo10]) Let $L : \mathbb{C} \to \mathbb{D}$ and $R : \mathbb{D} \to \mathbb{C}$ be a pair of adjoints $L \dashv R$. Let X_i be objects determining any diagram and Y an arbitrary object. We have the following chain of natural transformations between hom-sets.

$$hom(Y, R \lim X_i) \cong hom(LY, \lim X_i)$$

$$\cong \lim hom(LY, X_i)$$

$$\cong \lim hom(Y, RX_i)$$

$$\cong hom(Y, \lim RX_i)$$

By Yoneda Lemma, $R \lim X_i \cong \lim RX_i$.

References

[AT10] Samson Abramsky and Nikos Tzevelekos. Introduction to categories and categorical logic. In *New structures for physics*, pages 3–94. Springer, 2010.

[Awo10] Steve Awodey. Category theory. Oxford University Press, 2010.