Cursul 1 Mulțimi. Relații. Funcții

Mulţimi

Teoria mulțimilor reprezintă un domeniu al matematicii care studiază conceptul de mulțime. Studiul sistematic al mulțimilor a fost inițiat de către Georg Cantor¹. In cadrul teoriei descrise de Cantor, prin *mulțime* înțelegem un ansamblu de obiecte bine determinate și distincte în care dispunerea elementelor nu are importanță. Obiectele din care este constituită multimea se numesc *elementele* multimii.

Aceasta teorie, cunoscută în matematică şi sub numele de teoria naivă a mulțimilor, conducea însă la paradoxuri. Unul dintre cele mai cunoscute paradoxuri este cel al "mulțimii tuturor mulțimilor ce nu se conțin ca element", propus de către Bertrand Russel². Dacă notăm cu \mathcal{R} mulțimea mulțimilor ce nu se conțin ca element ($\mathcal{R} = \{X \mid X \notin X\}$). Putem observa că dacă $\mathcal{R} \in \mathcal{R}$ atunci, ținând cont de modul cum a fost definită mulțimea \mathcal{R} , rezultă că $\mathcal{R} \notin \mathcal{R}$, contradicție, dacă $\mathcal{R} \notin \mathcal{R}$ atunci, având în vedere definiția mulțimii, rezultă că $\mathcal{R} \in \mathcal{R}$, din nou obținem contradicție. Astfel de paradoxuri au putut fi eliminate de teoria axiomatică a mulțimilor propusă în anul 1908 de către Erns Zermelo³ şi completată ulterior de Abraham Frankel⁴ în 1922. Înainte de a prezenta setul de axiome, vom introduce următoarea definiție

Definiția 1 Spunem că o mulțime B este **inclusă** în mulțimea $A(sau \ că \ B \ este$ **submulțime**a lui <math>A), și notăm $B \subseteq A$, când orice element al lui B se găsește în A.

Cele opt axiome formulate de Zermelo-Fraenkel sunt:

- **1. Axioma determinării** (a egalității între mulțimi). Spunem că două mulțimi A și B sunt egale dacă orice element al lui A se găsește în B și reciproc (altfel scris, A = B dacă $A \subseteq B$ și $B \subseteq A$).
- **2.** Axioma mulţimilor elementare. Există mulţimi vide, generic notate cu \varnothing . Dacă a este un obiect arbitrar, atunci există mulţimea $\{a\}$ ce îl conţine pe a ca unic element. Dacă a şi b sunt "obiecte" arbitrare diferite, atunci există o mulţime $\{a,b\}$ care conţine pe a şi b ca elemente unice.
- 3. Axioma de regularitate. Orice mulțime nevidă A conține măcar un element a astfel încât a și A nu au nimic în comun.
- **4. Axioma sepărării.** Dacă A este o mulțime şi φ este o proprietate pentru elementele mulțimii A, atunci există o mulțime B ale cărei elemente sunt exact elementele mulțimii A ce satisfac condiția φ .
- 5. Axioma submulțimilor. Pentru orice mulțime A există o mulțime $\mathcal{P}(A)$, numită mulțimea părților mulțimii A, care conține exact submulțimile mulțimii A.
- 6. Axioma reuniunii. Pentru orice mulțime de mulțimi \mathcal{F} , există o mulțime A care conține numai elementele mulțimilor din \mathcal{F} .
- 7. Axioma alegerii. Pentru orice mulțime \mathcal{F} de mulțimi nevide, disjuncte, există o mulțime care conține exact câte un element din fiecare mulțime din \mathcal{F} .

¹Georg Cantor (1845-1918), matematician german

²Bertrand Russell (1872 - 1970), filosof, matematician, istoric britanic

³Erns Zermelo(1871-1953), matematician german

⁴Abraham Fraenkel (1891-1965), matematician german

- **8. Axioma infinitului.** Există o mulțime A astfel încât mulțimea vidă \varnothing este un element al lui A și dacă a este din A, atunci și $\{a\}$ este din A.
- **Observația 1.** Mulțimea părților lui A, notată $\mathcal{P}(A)$, conține \varnothing ca element, deoarece $\varnothing \subseteq A$ oricare ar fi A.

Propoziția următoare menționează câteva proprietăți ale "⊆":

Propoziția 2 Dacă X este o mulțime oarecare, iar $A, B, C \in \mathcal{P}(X)$, atunci:

- i) $A \subseteq A$;
- ii) $A \subseteq B$ si $B \subseteq C$ implică $A \subseteq C$.

Definiția 3 Fie X o multime nevidă și $A, B \in \mathcal{P}(X)$.

a) Se numește **reuniune** a mulțimilor A și B, mulțimea

$$A \cup B := \{x \in X \mid x \in A \text{ sau } x \in B\};$$

b) Se numește intersecție a mulțimilor A și B, mulțimea

$$A \cap B := \{ x \in X \mid x \in A \text{ si } x \in B \};$$

c) Se numește diferența mulțimilor A și B, mulțimea

$$A \setminus B := \{ x \in X \mid x \in A \text{ si } x \notin B \};$$

Complementara absolută a mulțimii A este prin definiție mulțimea $X \setminus A$, notată cu C_A^X sau C_A . Complementara relativă a mulțimii A în raport cu o mulțime $B \supseteq A$, mulțimea $B \setminus A$, notată cu C_A^B .

d) Se numește diferența simetrică a mulțimilor A și B, mulțimea

$$A\Delta B := (A \setminus B) \cup (B \setminus A).$$

Următoarea propoziție prezintă câteva proprietăți ale operațiilor de reuniune, intersecție, diferență, diferență simetrică și complementariere.

Propoziția 4 Fie X o mulțime nevidă. Atunci pentru orice $A, B, C \in \mathcal{P}(X)$, au loc următoarele proprietăți:

- 1. $A \cup A = A$; $A \cap A = A$ (idempotența);
- 2. $A \cup \emptyset = A$; $A \cap \emptyset = \emptyset$;
- 3. $A \cup B = B \cup A$; $A \cap B = B \cap A$ (comutativitate);
- 4. $A \cup (B \cup C) = (A \cup B) \cup C$ (associativitatea reuniunii);
- 5. $A \cap (B \cap C) = (A \cap B) \cap C$ (asociativitatea intersecției);
- 6. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributivitatea intersecției față de reuniune);
- 7. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributivitatea reuniunii față de intersecție);
- 8. $C_{C_A} = A$; $A \cup C_A = X$; $A \cap C_A = \emptyset$;
- 9. $C_{A \cup B} = C_A \cap C_B$; $C_{A \cap B} = C_A \cup C_B$ (legile lui De Morgan);
- 10. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C); A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C);$
- 11. $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$; $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$;
- 12. $A \cup (A \cap B) = A$; $A \cap (A \cup B) = A$ (absorbtie);
- 13. $A\Delta A = \emptyset$; $A\Delta B = B\Delta A$; $A\Delta \emptyset = A$;
- 14. $A\Delta(B\Delta C) = (A\Delta B)\Delta C$.

Operațiile de intersecție și reuniune se pot extinde la cazul unei familii de mulțimi.

Definiția 5 Fie X o mulțime nevidă. Dacă I este o mulțime nevidă de indici, iar $\{A_i\}_{i\in I}$ o familie nevidă de submulțimi ale lui X, atunci **reuniunea tuturor mulțimilor** A_i este definită prin

$$\bigcup_{i \in I} A_i := \{ x \in X \mid \exists i \in I \text{ astfel } \hat{n} c \hat{a} t \ x \in A_i \}$$

iar intersecția multimilor A_i este definită prin

$$\bigcap_{i \in I} A_i = \{ x \in X \mid x \in A_i, \forall i \in I \}$$

Propoziția 6 Fie X o mulțime nevidă, $B \in \mathcal{P}(X)$ și $\{A_i\}_{i \in I}$ o familie nevidă de submulțimi ale lui X. Atunci au loc următoarele:

i)
$$A_i \subseteq \bigcup_{i \in I} A_i$$
 $\S i \bigcap_{i \in I} A_i \subseteq A_i$ pentru orice $i \in I$;

$$ii) \ B \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} (B \cap A_i); \ B \cup \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} (B \cup A_i);$$

$$iii) \ X \setminus \left(\bigcap_{i \in I} A_i\right) = \bigcup_{i \in I} (X \setminus A_i); \ X \setminus \left(\bigcup_{i \in I} A_i\right) = \bigcap_{i \in I} (X \setminus A_i).$$

Dacă I este o mulțime finită, spre exemplu $I = \{1, 2, ..., n\}, n \in \mathbb{N}^*$, atunci reuniunea și respectiv intersecția mulțimilor A_i , $i = \overline{1, n}$, se notează $\bigcup_{i=1}^n A_i$ și respectiv $\bigcap_{i=1}^n A_i$.

Definiția 7 Fie A și B două mulțimi nevide. **Produsul cartezian** al mulțimilor A și B, notat cu $A \times B$, este mulțimea tuturor perechilor ordonate (a,b) cu $a \in A$ și $b \in B$, adică mulțimea

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}.$$

Propoziția 8 Fie X o mulțime nevidă și $A, B, C \in \mathcal{P}(X)$. Atunci au loc egalitățile:

1.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
:

2.
$$A \times (B \cap C) = (A \times B) \cap (A \times C);$$

3.
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
;

4.
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
.

Pentru un număr finit de mulțimi nevide $A_1, A_2, ..., A_n$, produsul cartezian al mulțimilor A_i este definit prin

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}.$$

Dacă $A_1, A_2, ..., A_n$ coincid, având $A_1 = A_2 = ... = A_n = A$, atunci produsul cartezian $A_1 \times A_2 \times ... \times A_n$ se notează, mai simplu, cu A^n .

Relaţii

Definiția 9 Fie A și B două mulțimi nevide arbitrare. O **relație** R de la mulțimea A la mulțimea B este, prin definiție, o submulțime a produsului cartezian $A \times B$. Terminologic, spunem că R este o **relație binară** între elemente ale lui A și elemente ale lui B. Dacă $(x,y) \in R \subseteq A \times B$ citim că x **este în relația** R **cu** y, unde $x \in A$ și $y \in B$. De asemenea, vom scrie xRy pentru a desemna faptul că $(x,y) \in R$.

În cazul în care A = B, relația binară R pe A se numește **omogenă**. Relația binară definită prin $\{(x, x) \mid x \in A\}$ se numește **identitate** pe A și se notează cu 1_A .

Definiția 10 Fie A și B două mulțimi nevide și relația binară $R \subseteq A \times B$. Se definesc următoarele noțiuni:

a) Inversa relației binare R, notată cu R^{-1} , este, prin definiție, relația

$$R^{-1} := \{ (y, x) \in B \times A \mid xRy \};$$

b) **Domeniul relației** R, notat cu D(R), este, prin definiție, mulțimea

$$D(R) := \{x \in A \mid \exists y \in B \text{ astfel } \hat{i}nc\hat{a}t \ xRy\};$$

c) Imaginea (sau codomeniul) relației R, notată cu Im(R), este, prin definiție, mulțimea

$$\operatorname{Im}(\mathbf{R}) := \{ y \in B \mid \exists x \in A \text{ astfel } \widehat{\operatorname{incat}} \ xRy \}.$$

Definiția 11 Fie A,B,C mulțimi nevide și relațiile $R \subseteq A \times B$ și $S \subseteq B \times C$ astfel încât $\operatorname{Im}(R) \cap \operatorname{D}(S) \neq \varnothing$. Compusa relațiilor S și R, notată cu $S \circ R$, este relația binară de la A la C definită prin

$$S \circ R = \{(x, z) \in A \times C \mid \exists y \in B \text{ astfel } \hat{n} \hat{c} \hat{a} t \ (x, y) \in R \text{ } \hat{s} i \ (y, z) \in S \}.$$

Definiția 12 Fie A o mulțime nevidă și fie $R \subseteq A \times A$ o relație binară pe A.

- a) Relația R se numește **reflexivă** dacă oricare ar fi $x \in A$, avem xRx (altfel spus, dacă $1_A \subseteq R$);
- b) Relația R se numește **simetrică** dacă oricare ar fi $x, y \in A$, avem $xRy \Rightarrow yRx$ (altfel scris, dacă $R^{-1} = R$);
- c) Relația R se numește **antisimetrică** dacă pentru orice $x, y \in A$, din xRy și $yRx \Rightarrow x = y$ (altfel spus dacă $R \cap R^{-1} = 1_A$);
- d) Relația R se numește **tranzitivă** dacă pentru orice $x, y, z \in A$, din xRy și yRz rezultă xRz (altfel spus dacă $R \circ R \subseteq R$).
- **Definiția 13** i) O relație $R \subseteq A \times A$ se numește **relație de echivalență** pe A dacă este simultan reflexivă, simetrică și tranzitivă.
 - ii) Dacă R este o relație de echivalență pe mulțimea nevidă A, iar $x \in A$, atunci prin **clasa de echivalență** a elementului x în raport cu R, notată cu $[x]_R$ sau \widehat{x}_R , înțelegem mulțimea

$$[x]_R = \{ y \in A \mid (x, y) \in R \}.$$

iii) Mulţimea claselor de echivalenţă determinate de relaţia de echivalenţă R pe A, se numeşte **mulţime cât** şi se notează cu $A_{/R}$ (altfel scris $A_{/R} = \{[x]_R \mid x \in A\}$).

Exemplu: Considerăm pe mulțimea $\mathbb{R} \setminus \{0\}$ relația $x \rho y \iff x \cdot y > 0$. Arătați că ρ este o relație de echivalență și determinați clase de echivalență $[x]_{\rho}$.

Solutie:Relația " ρ " este o relație de echivalență. Mulțimea cât se găsește astel:

$$\forall x > 0 \Rightarrow [x]_{\rho} = \{ y \in \mathbb{R} \mid y \cdot x > 0 \} = (0, +\infty).$$

Similar, pentru fiecare x < 0 se obține $[x]_{\rho} = (-\infty, 0)$. Prin urmare, $\mathbb{R} \setminus \{0\}_{\rho} = \{(-\infty, 0), (0, +\infty)\}$.

Exerciții:

- 1. Fie $E = \{1, 2, 3, 4\}$ și relația $\rho \subset \mathbb{R}^2$, $(x, y)\rho(x', y') \iff xy' = x'y$. Să se arate că ρ este o relație binară de echivalență. Determinați clasele de echivalență [(1, 2)] și [(2, 3)].
 - 2. Fie relația $R \subset \mathbb{N}^2$ definită astfel $xRy \iff x \mid y$. Să se verifice că R este o relație de ordine pe \mathbb{N} .
 - 3. Fie următoarele relații pe mulțimea \mathbb{R} :
 - i) $(a,b) \in R$ dacă și numai dacă $a^2 = b^2$,
 - ii) $(a,b) \in S$ dacă și numai dacă $a-b \leq 3$.

Verificați dacă relațiile R și S sunt reflexive, simetrice, antisimetrice, sau tranzitive. (gasiti contraexemple pentru cazul in care nu verifica unele dintre proprietati)

4. Dați exemple, pe rând, de relații care:

- (i) sunt reflexive și tranzitive, dar nu sunt simetrice;
- (ii) sunt reflexive și simetrice, dar nu sunt tranzitive;
- (iii) sunt simetrice și tranzitive, dar nu sunt reflexive.

Definiția 14 j) O relație $R \subseteq A \times A$ care este simultan reflexivă și tranzitivă se numește **relație de preordine** pe A.

- jj) O relație de preordine $R \subseteq A \times A$ care este în plus și antisimetrică se numește **relație de parțială ordine** pe A.
- jjj) O relație de ordine R, pe mulțimea A, se numește **totală** dacă oricare două elemente $x, y \in A$ sunt "comparabile", adică oricare ar fi $x, y \in A$ avem xRy sau yRx.
- jv) Dacă A este o mulțime nevidă și R este o relație de preordine/parțială ordine/ordine totală pe A, atunci perechea (A, R) se numește, respectiv, mulțime preordonată/parțial ordonată/total ordonată.

Definiția 15 Fie o multime parțial ordonată (A, R) și $B \subseteq A$ o multime nevidă.

- l) Se numește majorant pentru mulțimea B orice element $x \in A$ astfel încât $yRx, \forall y \in B$. Dacă există majorant pentru mulțimea B, atunci spunem că B este o mulțime majorată în raport cu R.
- ll) Analog, se numește minorant pentru B un element $x \in A$ așa încât $xRy, \forall y \in B$. Dacă B are cel puțin un minorant, atunci spunem că B este o mulțime minorată.
- lll) Dacă mulțimea B este simultan minorată și majorată, atunci spunem că B este o mulțime mărginită.
- lv) Dacă $x \in A$ este un minorant pentru A în raport cu relația de parțială ordine R, atunci x se numește **cel mai mic element** al lui A, relativ la R, și se notează cu $\min_R A$.
- v) Dacă $y \in A$ este un majorant pentru A în raport cu relația de parțială ordine R, atunci y se numește **cel mai** mare element al mulțimii A, notat cu $\max_R A$

Definiția 16 Dacă (A,R) este o mulțime parțial ordonată și $\varnothing \neq B \subseteq A$ este o mulțime majorată, iar cel mai mic majorant există pentru B, atunci acesta se numește **margine superioară** a mulțimii B, și se notează cu $\sup_R B$.

Analog, dacă B este minorată şi există un cel mai mare minorant pentru B, atunci acesta se numeşte **margine** inferioară a lui B, şi se notează cu $\inf_R B$.

Definiția 17 O mulțime parțial ordonată (A, R), se numește **relativ completă** (sau complet ordonată) dacă pentru orice $B \subseteq A, B \neq \emptyset$, minorată, există $\inf_R B$ și pentru orice $C \subseteq A, A \neq \emptyset$ majorată, există $\sup_R C$.

O mulțime total ordonată strict este numită bine ordonată dacă orice submulțime nevidă a ei are cel mai mic element.

Exemplu: Mulțimea numerelor naturale (\mathbb{N}, \leq) este bine ordonată, în schimb mulțimile $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, împreună cu relația uzuală de ordine, " \leq ", nu sunt bine ordonate.

Funcții

Definiția 18 Fie $A
i B două mulțimi nevide. O submulțime <math>f \subseteq A \times B$ se numește **funcție** (sau **relație funcțională**) dacă au loc următoarele condiții:

- 1) pentru orice $x \in A$ există $y \in B$, astfel încât $(x,y) \in f$ (altfel scris, D(f) = A);
- 2) pentru orice $x \in A$, și orice $y, z \in B$, astfel încât $(x, y) \in f$ și $(x, z) \in f \Rightarrow y = z$.

Domeniul funcției $f \subseteq A \times B$ poartă numele de **mulțime de definiție** a funcției f, iar codomeniul lui f se numește **mulțimea în care** f **ia valori**.

Notația consacrată pentru o funcție f cu domeniul de definiție A și codomeniul B este $f:A\to B$.

- **Definiția 19** i) Pentru $f: A \to B$, mulțimea $G_f \subseteq A \times B$ definită prin $G_f = \{(x, f(x)) \mid x \in A\}$ se numește graficul funcției f.
 - ii) Spunem că două funcții $f:A\to B$ și $g:C\to D$ sunt **egale** dacă $A=C,\ B=D$ și $f(x)=g(x),\ pentru$ orice $x\in A=C.$

Definiția 20 Fie funcția $f: A \to B$ și fie $C \subset A$ și $D \subseteq B$ o mulțimi nevide.

a) Se numește imagine a mulțimii C prin f, mulțimea $f(C) = \{y \in B \mid \exists x \in C \text{ astfel } \hat{n} c \hat{a} t \ y = f(x)\}.$

b) Se numește **preimaginea lui** D prin f (sau **imaginea inversă a mulțimii** D prin f) mulțimea $f^{-1}(D) = \{x \in A \mid y \in D \text{ astfel } \hat{n} \hat{c} \hat{a} t y = f(x)\}.$

Definiția 21 Fie A și B două mulțimi nevide. Atunci funcția $f: A \to B$ se numește:

- i) injectivă (sau injecție) dacă pentru orice $x_1, x_2 \in A$ cu $x_1 \neq x_2$, rezultă $f(x_1) \neq f(x_2)$ (sau echivalent: pentru orice $x_1, x_2 \in A$, din $f(x_1) = f(x_2)$, rezultă $x_1 = x_2$);
- ii) surjectivă (sau surjecție) dacă $\operatorname{Im}(f) = B$ (altfel scris, dacă pentru orice $y \in B$, există $x \in A$ astfel încât f(x) = y);
- iii) bijectivă (sau bijecție) dacă f este injectivă și surjectivă.

Propoziția 22 Fie $f: A \to B$ și $g: B \to C$ două funcții.

- i) Dacă f şi g sunt injective/surjective/bijective atunci $g \circ f$ este injectivă/surjectivă/bijectivă. În acest ultim caz avem $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- ii) Dacă $g \circ f$ este injectivă/surjectivă/bijectivă atunci f este injectivă/g este surjectivă/f este injectivă şi g este surjectivă.

Demonstrație: i) Fie $x, y \in A$ astfel încât $(g \circ f)(x) = (g \circ f)(y)$. Atunci g(f(x)) = g(f(y)) și cum g este injectivă, deducem că f(x) = f(y), iar cum și f este injectivă deducem că x = y, adică $g \circ f$ este injectivă.

Să presupunem acum că f şi g sunt surjective şi fie $z \in C$. Cum g este surjectivă, rezultă z = g(y) cu $y \in B$ şi cum şi f este surjectivă, avem y = f(x) cu $x \in A$. Astfel avem $z = g(y) = g(f(x)) = (g \circ f)(x)$, adică $g \circ f$ este surjectivă.

Dacă f și g sunt bijective, atunci faptul că $g \circ f$ este bijectivă rezultă imediat din cele expuse mai sus. Pentru a proba în acest caz egalitatea $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. Fie $z \in C$. Avem că z = g(y) cu $y \in B$ și y = f(x) cu $x \in A$. Deoarece $(g \circ f)(x) = g(f(x)) = g(y) = z$, deducem că $(g \circ f)^{-1}(z) = x = f^{-1}(y) = f^{-1}(g^{-1}(z)) = (f^{-1} \circ g^{-1})(z)$, adică $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

ii) Să presupunem că $g \circ f$ este injectivă şi fie $x, x' \in A$ astfel încât f(x) = f(x'). Atunci $g(f(x)) = g(f(x')) \iff (g \circ f)(x) = (g \circ f)(x') \Rightarrow x = x'$, adică f este injectivă.

Dacă $g \circ f$ este surjectivă, atunci, pentru $z \in C$, există $x \in A$ astfel încât $(g \circ f)(x) = z \iff g(f(x)) = z$, adică g este surjecție.

Dacă $g \circ f$ este bijecție, atunci, în particular, $g \circ f$ este injecție și surjecție, deci, conform celor de mai sus, cu necesitate rezultă că f este injecție iar g surjecție.

Definiția 23 O funcție $f: A \to B$ se numește inversabilă dacă există o funcție $g: B \to A$ astfel încât $g \circ f = 1_A$ și $f \circ g = 1_B$. Dacă există, funcția unică g se numește inversa lui f și se notează uzual cu f^{-1} .

Exercițiu: O funcție este bijectivă dacă și numai dacă este inversabilă.

Definiția 24 Fie funcția $f: A \to B$ și $\emptyset \neq C \subseteq A$. Se numește **restricție** a lui f pe C, și se notează $f_{|C}$, funcția $f_{|C}: C \to B$ definită prin $f_{|C}(x) = f(x), \forall x \in C$. În acest caz funcția f se numește prelungire a funcției $f_{|C}$ la mulțimea A.

Definiția 25 Fie (A, R) şi (B, S) două mulțimi parțial ordonate și fie $f: A \to B$ o funcție. Spunem că f este **monotonă** dacă pentru orice $x_1, x_2 \in A$, cu x_1Rx_2 , avem $f(x_1)Sf(x_2)$.

În cele ce urmează, vom introduce noțiunea de funcție caracteristică (indicatoare) a unei mulțimi.

Definiția 26 Fie A o mulțime nevidă oarecare. Se numește funcție caracteristică (indicatoare) a mulțimii A, și se notează χ_A , funcția definită prin

$$\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A. \end{cases}$$

 $Dac\check{a} A = \emptyset$, $atunci \chi_A \equiv 0$.

 $\textbf{Propoziția 27} \ \textit{Fie X o multime nevidă. Funcția caracteristică a unei mulțimi satisface următoarele proprietăți: } \\$

- i) $\chi_A^2 = \chi_A$, $\chi_{C_A} = 1 \chi_A$, $\forall A \in \mathcal{P}(X)$, unde $C_A = X \setminus A$,
- $ii) \ \chi_A = \chi_B \Longleftrightarrow A = B,$
- iii) $\chi_{A\cap B} = \chi_A \cdot \chi_B$, $\chi_{A\cup B} = \chi_A + \chi_B \chi_A \cdot \chi_B$,
- iv) $\chi_{A \setminus B} = \chi_A \chi_A \cdot \chi_B$, $\chi_{A \Delta B} = \chi_A + \chi_B 2\chi_A \cdot \chi_B$, $\forall A, B \in \mathcal{P}(X)$.

Exerciții:

Fie $X \neq \emptyset$ și $A, B, C \in \mathcal{P}(X)$. Utilizând proprietățile funcției caracteristice, arătați că:

- a) $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C) \iff A \cap (B\Delta C) = \emptyset;$
- b) $A \setminus (B \cap C) = (A \setminus B) \cap (A \setminus C) \iff A \cap (B\Delta C) = \emptyset;$
- c) $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C) \iff A = \emptyset$;
- d) $(A \cap B) \cup (C \setminus A) = C \iff A \cap (B\Delta C) = \emptyset$;
- e) $(A\Delta B)\Delta C = A\Delta (B\Delta C)$.

Numere cardinale

Încă din școala generală am învățat să stabilim numărul elementelor unor mulțimi numărându-le, adică realizând o corespondență bijectivă între elementele mulțimii pe care dorim să o numărăm și o mulțime de numere naturale $\{1, 2, ..., n\}$. Această idee poate fi aplicată pentru cazul general al mulțimilor oarecare.

Fie X o multime nevidă fixată.

Definiția 28 Spunem că două mulțimi $A, B \in \mathcal{P}(X)$ sunt **echipotente** sau **cardinal echivalente** dacă există o funcție bijectivă de la A la B. Vom nota $A \sim B$.

Observație: Se poate arăta cu uşurință că " \sim " este o relație de echivalență pe $\mathcal{P}(X)$.

Definiția 29 Pentru orice mulțime $A \in \mathcal{P}(X)$ vom numi cardinalul mulțimii A, notată cu $\operatorname{card}(A)$, clasa de echivalență a mulțimii A, adică familia tuturor submulțimilor lui X echipotente cu A.

Aşadar pentru orice $A, B \in \mathcal{P}(X)$, spunem că A este echipotent cu B dacă și numai dacă card(A) = card(B).

Definiția 30 (i) O mulțime $A \in \mathcal{P}(X)$ echipotentă cu o mulțime de numere naturale de forma $\{1, 2, ..., n\}$ se numește mulțime finită iar în acest caz vom spune că A are cardinalul n.

(ii) O mulțime $A \in \mathcal{P}(X)$ care nu este finită se numește mulțime infinită. Cardinalul unei mulțimi infinite se numește cardinal transfinit.

Observație: Prin convenție mulțimea vidă este considerată finită, având cardinalul 0.

Definiția 31 O mulțime $A \in \mathcal{P}(X)$ echipotentă cu \mathbb{N} se numește **mulțime numărabilă**, iar cardinalul său se notează prin \aleph_0 (alef zero). O mulțime $A \in \mathcal{P}(X)$ care este finită sau numărabilă se numește **cel mult numărabilă**.

Definiția 32 Fie $A, B \in \mathcal{P}(X)$. Spunem că avem $\operatorname{card}(A) \leq \operatorname{card}(B)$ dacă există o funcție injectivă de la mulțimea A la mulțimea B.

Lemma 33 Fie $A, B, C \in \mathcal{P}(X)$. Dacă $A \supset B \supset C$ și $\operatorname{card}(A) = \operatorname{card}(C)$, atunci $\operatorname{card}(A) = \operatorname{card}(B)$.

Propoziția 34 (i) $Dacă \alpha = card(A)$, atunci

$$\operatorname{card}(\mathcal{P}(A)) = 2^{\alpha}$$
.

(ii) Pentru orice număr cardinal α are loc inegalitatea

$$\alpha < 2^{\alpha}$$

Teorema 35 (i) Orice submulțime a unei mulțimi cel mult numărabile este cel mult numărabilă.

(ii) Produsul cartezian al două mulțimi cel mult numărabile este o mulțime cel mult numărabilă.

Bibliografie

- [1] F. Iacob, Curs Matematică, https://profs.info.uaic.ro/~fliacob/
- [2] F.L. Tiplea, Introducere în teoria multimilor, Editura Universității "Al. I. Cuza", Iași, 1998.
- [3] M. Postolache, Analiză matematică (teorie și aplicații), Editura Fair Partners, București, 2011.
- [4] G. Bergman, An Invitation to General Algebra and Universal Constructions, Henry Helson, 15 the Crescent, Berkeley CA, 94708 1998, 398, pp. 45. (http://math.berkeley.edu/~gbergman/245/)
- [5] G. O'Regan, Mathematics in Computing, Springer Verlag, London, 2013.