Supplementary Material: Interpretable Transformations with Encoder–Decoder Networks

Daniel E. Worrall

Stephan J. Garbin

Daniyar Turmukhambetov

d.worrall@cs.ucl.ac.uk

s.garbin@cs.ucl.ac.uk

d.turmukhambetov@cs.ucl.ac.uk

Gabriel J. Brostow

g.brostow@cs.ucl.ac.uk

Computer Science Department University College London

Abstract

Here we present classification performance on the ModelNet10 dataset and the mathematical definition of the homomorphism property from the main paper.

1. ShapeNets (ModelNet10) classification accuracy

The ModelNet10 classification task is evaluated on 908 models from the test set. For this task we trained the Modelnet architecture autoencoder with a 2-layer MLP (256-128-10) on the relative phase between all subvectors of the codes.

We minimize the sum of two losses: cross-entropy loss for classification and the reconstruction loss. We follow [3] for the binary cross-entropy reconstruction loss:

$$\mathcal{L}_{\text{recon}} = \sum_{i \in \text{voxels}} -\gamma t_i \log(o_i) - (1 - \gamma)(1 - t_i) \log(1 - o_i), \tag{1}$$

where t_i are the target values rescaled to [-1,2], o_i is the output of the autoencoder rescaled to [0.1,0.9999] and γ is set to 0.98 to compensate for the sparseness of volumetric data. Thus, the loss is:

$$\mathcal{L} = \mathcal{L}_{\text{recon}} + 10\mathcal{L}_{\text{classification}} \tag{2}$$

We optimize the loss using Adam and minibatch size 16, and learning rate of 10^{-4} . We use the augmentation strategy of Maturana *et al.* [6].

We accurately classify 821 models out of 908, with an accuracy of 90.4%.

2. The Homomorphism Property

The homomorphism property (Equation 6) is

$$\mathbf{F}_{\theta_2\theta_1} = \mathbf{F}_{\theta_2}\mathbf{F}_{\theta_1}.\tag{3}$$

Thus if $I \in \Theta$ is the identity transformation, then

$$\mathbf{F}_{\theta} = \mathbf{F}_{I\theta} = \mathbf{F}_{\theta I} = \mathbf{F}_{I}\mathbf{F}_{\theta} = \mathbf{F}_{\theta}\mathbf{F}_{I} \tag{4}$$

$$\Longrightarrow \mathbf{F}_I = \mathbf{I},$$
 (5)

where **I** is the identity matrix. This in turn implies the invertability property $\mathbf{F}_{\theta^{-1}} = \mathbf{F}_{\theta}^{-1}$, since

$$\mathbf{I} = \mathbf{F}_I = \mathbf{F}_{\theta\theta^{-1}} = \mathbf{F}_{\theta}\mathbf{F}_{\theta^{-1}} \tag{6}$$

$$\Longrightarrow \mathbf{F}_{\theta^{-1}} = \mathbf{F}_{\theta}^{-1}.\tag{7}$$

Method	Accuracy
VRN Ensemble [3]	97.14%
ORION [7]	93.8%
LightNet [1]	93.39%
FusionNet [4]	93.11%
Pairwise [5]	92.8%
GIFT [2]	92.35%
VoxNet [6]	92%
3D-GAN [8]	91.00%
Ours	90.4%

Table 1. State of the Art methods and their classification accuracy on ModelNet10 benchmark.

References

- [1] A lightweight 3d convolutional neural network for real-time 3d object recognition. http://modelnet.cs.princeton.edu/. 2
- [2] S. Bai, X. Bai, Z. Zhou, Z. Zhang, and L. Jan Latecki. Gift: A real-time and scalable 3d shape search engine. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 5023–5032, 2016. 2
- [3] A. Brock, T. Lim, J. Ritchie, and N. Weston. Generative and discriminative voxel modeling with convolutional neural networks. *arXiv preprint arXiv:1608.04236*, 2016. 1, 2
- [4] V. Hegde and R. Zadeh. Fusionnet: 3d object classification using multiple data representations. arXiv preprint arXiv:1607.05695, 2016. 2
- [5] E. Johns, S. Leutenegger, and A. J. Davison. Pairwise decomposition of image sequences for active multi-view recognition. In *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3813–3822, 2016. 2
- [6] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. In IROS, 2015. 1, 2
- [7] N. Sedaghat, M. Zolfaghari, and T. Brox. Orientation-boosted voxel nets for 3d object recognition. arXiv preprint arXiv:1604.03351, 2016. 2
- [8] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In *Advances in Neural Information Processing Systems*, pages 82–90, 2016. 2