Use the PRF to build a secure MAC.

A MAC is Message Authentication Codes. The components of the authentication protocol involves :

- 1. A key generation algorithm that returns a secret key 'k'
- 2. A MAC generating algorithm that returns a tag for a given message 'm' where the tag 't' = $MAC_k(m)$
- 3. A verification algorithm that returns a bit $b = Verify_k(m_1, t_1)$, given a message m_1 and a tag t_1 .
- 4. If the message is not modified then with high probability, the value of b is true otherwise false.

A MAC(Gen, MAC, Verify) is secure if for all probabilistic polynomial-time adversaries A: Pr[MAC-Game(n) = 1] <= negl(n)

If F is a PRF, then the below mentioned scheme gives a secure fixed length MAC:

- 1. Gen(1ⁿ) chooses k to be a random n-bit string
- 2. $MAC_k(m) = F_k(m) = t$ (the tag)
- 3. Verify_k(m, t) = Accept, iff t = F_k (m)