Water distribution Basic concepts

Sandra Soares-Frazão 2018

Where does water come from?

- Hydrology
 - Natural equilibrium
 - Quantity
 - Quality

Water in the ecosystem

• 1 400 000 000 km³

- Salt water 97.30 % 1 362 200 000 km³

- Fresh water 2.70 % 37 800 000 km³

Water in the ecosystem

• 1 400 000 000 km³

- Salt water 97.30 % 1 362 200 000 km³

- Fresh water 2.70 % 37 800 000 km³

37 800 000 km³ fresh water

Unusable
 99.64 %

• Frost water 29 181 600 km³

Too deep groundwater
 8 647 000 km³

Usable0.36 %

• Lakes, marshes 132 000 km³

Atmosphere
 15 120 km³

Waterways
 3 780 km³

The hydrological cycle

Use of water

- Water as a liquid
 - Transport
 - Energy
 - Industry
 - Wastewater drainage
- Water with all its properties
 - Water supply
 - Agriculture

Transport

- Navigation
 - Maritime
 - Fluvial
 - Canals
 - Rivers
- Floating of timber
- Transport by pipes

Wandre bridge Meuse

Energy: hydropower

15 % of the world's electricity production

Hydropower – water intake

Pennstocks

San Francisco Colombie

Hydropower – water intake

Water hammer

Bear Creek CA - USA

Industry

- Paper: 1 kg paper = 40 ... 500 litres
- Steel industry: 1 kg steel = 300 ... 600 litres
- Chemistry: 1 litre fuel = 200 litres
- Agro-food industry: 1 kg sugar =
 300 ... 400 litres

Agrofuel
 1 litre ethanol from corn
 = 1200...3400 litres water

Water supply

- Water intake
- Adduction
 - Ducts
 - Channels

Pont du Gard France

Irrigation

• Haiti

For the present work

- Water distribution
 - Drinkwater: pressurized flow
 - Irrigation: free-surface flow
- Wastewater drainage
 - Free-surface flow

Pressurized flow

- Basic concepts
- Example of calculation
- Definition of the water demand

Pertes de charge

Bernoulli equation

$$z_1 + \frac{p_1}{\gamma} + \frac{V_1^2}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + J_{12}$$

Headlosses: Darcy

$$J = \frac{V^2}{2g} \frac{L}{D} \Phi \left(\text{Re}, \frac{\varepsilon}{D} \right)$$

Moody-Nikuradse

Pertes de charge générales

Rugosité

Matériau	Rugosité ε (mm)		
Ciment	0.30 3.0		
Fonte	0.25		
Fonte asphaltée	0.12		
Acier riveté	0.90 9.0		
Acier galvanisé	0.15		
Tube cintré en acier	0.046		
Tube étiré	0.0015		

Pertes de charge

Pertes de charge générales : Darcy

$$J_{gen} = \frac{V^2}{2 g} \frac{L}{D} \Phi \left(\text{Re}, \frac{\varepsilon}{D} \right)$$
 $J_{gen} = Q^2 K L$

$$J_{gen} = Q^2 K L$$

$$K = \frac{\Phi}{2g \, D \, A^2}$$

Pertes de charge locales

$$J_{loc} = \zeta \frac{V^2}{2g}$$

$$J_{loc} = Q^2 K'N$$

$$K' = \frac{1}{2g A^2}$$

	z (m)
A	7.800
В	6.637
C	6.637
D	3.637
E	3.637
F	3.637
G	0.637
Н	0.000
J	0.000
K	0.800

$$D = 100 \text{ mm}$$

 $\varepsilon = 0.25 \text{ mm (fonte neuve)}$

x/D	ζ
0.181	41.21
0.208	31.35
0.250	22.68
0.333	11.89
0.375	8.63
0.500	3.27
0.583	1.55
0.667	0.77
1.000	

D = 100 mm

 $\epsilon = 0.25 \text{ mm (fonte neuve)}$

Vanne : $x/D = 0.25 \ \zeta = 22.68$

_ A			$L\left(\mathbf{m}\right)$	N
		ВС		0.49
		BD	3.00	
		EF		22.68
В	С	FG	3.00	
	C 3 m	GH	1.00	0.13
	3 M	HJ	3.00	
D _		JK		1.00
E		Total	10.00	24.30
F		KL	2 111	
	3 m	K'N		20 076
	•	K		

D = 100 mm

 $\varepsilon = 0.25 \text{ mm (fonte neuve)}$

Vanne : $x/D = 0.25 \zeta = 22.68$

_ A			H(m)	z (m)	p/γ	$V^2/2g$
		Α	18.132	7.800	10.332	0.000
		В	18.132	6.637	10.817	0.678
В		С	18.005	6.637	11.108	0.261
Ь	С	D	17.806	3.637	13.908	0.261
	3 m	E	17.806	3.637	5.548	8.621
	3 111	F	11.893	3.637	7.996	0.261
D		G	11.693	0.637	10.796	0.261
E		н	11.593	0.000	11.332	0.261
F		J	11.393	0.000	11.132	0.261
	2 m	K	11.132	0.800	10.332	0.000
	3 m		K ,			

D = 100 mm

 ε = 0.25 mm (fonte neuve)

Vanne : $x/D = 0.25 \zeta = 22.68$

Α			$L\left(\mathbf{m}\right)$	N
		ВС		0.49
		BD	1.50	
		EF		22.68
В	C _{1.5} m	FG	4.50	
D 1	1.5 111	GH	1.00	0.13
Ę		HJ	3.00	
FΊ		JK		1.00
		Total	10.00	24.30
	4.5 m	KL	2 111	
		K'N		20 076
		K		

D = 100 mm

 $\varepsilon = 0.25 \text{ mm (fonte neuve)}$

Vanne : $x/D = 0.25 \zeta = 22.68$

3 m

_ A			H(m)	z (m)	p/γ	$V^2/2g$
		A	18.132	7.800	10.332	0.000
		В	18.132	6.637	10.817	0.678
В		C	18.005	6.637	11.108	0.261
D_	^C 1.5 m	D	17.905	5.137	12.508	0.261
E		E	17.905	5.137	4.148	8.621
F 4		F	11.993	5.137	6.596	0.261
		G	11.693	0.637	10.796	0.261
		Н	11.593	0.000	11.332	0.261
	4.5 m	J	11.393	0.000	11.132	0.261
	1.0 111	K	11.132	0.800	10.332	0.000
			K			

D = 100 mm

 ε = 0.25 mm (fonte neuve)

Vanne : $x/D = 0.25 \zeta = 22.68$

Consommations (normes françaises)

Communes rurales (< 2000 habitants)
 125 ... (200) litres / jour / habitant

Besoins domestiques	60 litres/jr/hab.		
Elevage	Cheval ou bovidé	50 litres/jr	
	Porc	20 litres/jr	
	Mouton	5 litres/jr	
Arrosage des jardins	3.6 9 litres/jr		
Exploitation agricole	Exploitation agricole Fromagerie		
	Cidrerie	4 litres par litre de cidre	
Vinification		2 litres par litre de vin	
	Brasserie	5 litres par litre de bière	
	Sucrerie	100 litres par kg de sucre	

Consommations (normes françaises)

Communes urbaines (> 2000 habitants)

```
- < 20000 habitants : 125 ... 200 litres / jr / hab.</p>
```

20000 à 100000 hab. :200 ... 300 litres / jr / hab.

- > 100000 hab.: 300 ... 400 litres / jr / hab.

Ecole	100 litres/jr par élève		
Sanatorium	250 litres/jr par lit		
Hôpital	500 litres/jr par lit		
Colonie de vacances	100 litres/jr par personne		
Urinoir	20 litres/jr par place		
Lavoir	1200 litres/jr par place		
Bain-douche	200 litres/jr par poste		
Abattoir	500 litres/jr par tête de bétail		
Nettoyage des marchés	5 litres/m² par jour de marché		
Lavage des caniveaux	25 litres/m par jour		

Consommations (normes françaises)

- Pertes: 25 ... 35 ... 50 %
- Incendies: 60 m³/h pendant 2 heures
- Marge: + 20 ... 30 % sur 25 ans

Coefficient de pointe

- Estimation moyenne : p = 2.
- Estimation différenciée
 - En tête de réseau : p = 2.0
 - Aux points de distribution : p = 3.
- Estimation globale $p = 1.5 + \frac{2.5}{\sqrt{Q}}$ Q_{moy} en litres/s
- Variation horaire

Consommations (normes OMS)

- Eau potable : ≥ 1 à 2 litres/jour par personne
- Eau pour l'hygiène et la nourriture :
 52 à 54 litres/jour par personne

Haïti Accès à l'eau et à l'assainissement		Population urbaine (46 % de la population)	Population rurale (54 % de la population)	Population totale
Eau	Accès Domicile	52 % 24 %	56 % 3 %	54 % 14 %
Assainissement		57 %	14 %	30 %

WHO/UNICEF Joint Monitoring Program, 2004

Open-channel flow

- Reference flow for
 - Urban drainage
 - Irrigation
- Uniform flow
 - General case
 - Urban sewer

Equilibrium flow

Chézy

$$V = C \sqrt{R S_0} = C \sqrt{R S_f}$$

Manning-Strickler

$$C = \frac{1}{n} R^{1/6} = K R^{1/6}$$

$$V = \frac{1}{n} R^{2/3} S_0^{1/2} = K R^{2/3} S_0^{1/2}$$

A aire mouillée P périmètre mouillé R = A/P rayon hydraulique

$$n \text{ en m}^{-1/3} \text{ s}$$
 $K \text{ en m}^{1/3} \text{ s}^{-1}$

• $h_u = f(Q)$

•
$$h_u = f(S_0)$$

• $h_u = f(n)$

Urban drainage hydraulics

Urban drainage hydraulics

Constraints

Velocity

- Self-cleaning: $V \ge 0.60 \text{ m/s}$ for $Q = 0.1 Q_{\text{max}}$ $V \ge 0.30 \text{ m/s}$ for $Q = 0.01 Q_{\text{max}}$
- Attrition: $V \le 2$ m/s

Slope

- Installation accuracy : $S_0 \ge 0.005$
- Earthwork volume limitation: $S_0 \le 0.04 \dots 0.05$

Diameter

- Non obstruction : $D \ge 0.20 \text{ m}$ at the head of the network $D \ge 0.30 \text{ m}$ inside the network
- Inspection manholes: inter-distance 10 ... 35 m

Avoid pressurized flow

https://www.youtube.com/watch?v=10d
 Sbmtq1cU