Ejercicios en clase: Notación asintótica

Análisis y Diseño de Algoritmos

13 de abril de 2020

Ejercicio 1. Demostrar, usando las definiciones que

(a)
$$n^2 + 10n + 2 = O(n^2)$$

(b)
$$\lceil n/3 \rceil = O(n)$$

(c)
$$\lg n = O(\log_{10} n)$$

(d)
$$n = O(2^n)$$

(e) $\lg n$ no es $\Omega(n)$

$$(f) \ n/100 \text{ no es } O(1)$$

$$(g)$$
 $n^2/2$ no es $O(n)$

Calentamiento: Proba
r $n^2/2+3n=O(n^2)$ Borrador: $n^2/2+3n\leq cn^2.$ Probamos co
nc=1tendria $3n\leq n^2/2.$ Esto se cumple si
 nes mayor o igual a 6.

Demostración. Note que para $n \ge 6$, tenemos que $6n \le n^2$. Luego $3n \le n^2/2$.

Portanto,

$$n^2/2 + 3n \le n^2/2 + n^2/2 = n^2.$$

Concluimos que $n^2/2 + 3n = O(n^2)$ (ya que $0 \le n^2/2 + 3n \le cn^2$ para $n \ge n_0$, con $n_0 = 6$ y c = 1).

(a) Probar $n^2 + 10n + 2 = O(n^2)$

Borrador: $n^2 + 10n + 2 \le cn^2$. Probamos con c = 3.

Demostración. Note que para $n \geq 10$, tenemos que $10n \leq n^2$ Luego $n^2 + 10n + 2 \leq n^2$ $n^2 + n^2 + n^2 = 3n^2.$

Portanto, Concluimos que $n^2 + 10n + 2 = O(n^2)$.

- (b) Cuando $n \geq 1$, tenemos que $\lceil n/3 \rceil \leq n/3 + 1 \leq n/3 + n = \frac{4}{3}n$. Concluimos que $\lceil n/3 \rceil = O(n).$
- (c) Sabemos que $\lg n = \frac{\log_{10} n}{\log_{10} 2}$. Luego para todo $n \ge 1$, $\lg n \le \lg 10 \cdot \log_{10} n$.

Obs.
$$\frac{1}{\log_x y} = \log_y x$$

(d) Comenzaremos probando por inducción en n, que para todo número natural n se cumple que $n \leq 2^{n-1}$. Cuando n=1, tenemos que $n=1 \leq 2^{1-1}=2^{n-1}$. Considere ahora el caso en que n>1. Por hipótesis de inducción, tenemos que $n-1 \leq 2^{n-2}$. Luego $n=\frac{n}{n-1}(n-1)\leq \frac{n}{n-1}2^{(n-2)}=\frac{n}{2(n-1)}2^{(n-1)}\leq 2^{(n-1)}$.

Considere ahora $n \in \mathbb{R}$. Como $\lceil n \rceil \in \mathbb{N}$, tenemos que $n \leq \lceil n \rceil \leq 2^{\lceil n \rceil - 1} \leq 2^n$. Portanto $n = O(n^2)$.

(e) Suponga por contradicción que $\lg n = \Omega(n)$. Luego existen $c, n_0 > 0$ tales que $\lg n \geq cn$ para todo $n \geq n_0$. Es decir, $f(n) = n/\lg n \leq \frac{1}{c} = d$ para todo $n \geq n_0$. Sea $d' = \max\{f(n): n \geq n_0\}$ y sea n' tal que f(n') = d'. Note que, como $n'^2 \geq n' \geq n_0$, tenemos que $f(n'^2) = \frac{n'^2}{\lg n'^2} = \frac{n'}{2} \cdot \frac{n'}{\lg n'} > \frac{n'}{\lg n'} = d'$. Hemos encontrado un n tal que f(n) > d', contradicción.

Otra manera: probar que $n/\lg n$ es una función creciente y concluir que no puede ser acotada por una constante.

- (f) Suponga por contradicción que n/100 = O(1). Entonces existen constantes $n_0, c > 0$ tales que $\frac{n}{100} \le c$ para todo $n \ge n_0$. Como $n_0 \ge n_0$ tenemos que $n_0/100 \le c$ lo que implica que $n_0 \le 100c$. Tome $n = 200c \ge n_0$ y note que $\frac{n}{100} = \frac{200c}{100} = 2c > c$, contradicción.
- (g) Suponga por contradicción que $n^2/2 = O(n)$. Entonces existen constantes $n_0, c > 0$ tales que $n^2/2 \le cn$ para todo $n \ge n_0$. Como $n_0 \ge n_0$ tenemos que $n_0^2/2 \le cn_0$ lo que implica que $n_0 \le 2c$. Tome $n = 4c \ge n_0$ y note que $\frac{n^2}{2} = \frac{(4c)^2}{2} = 8c^2 = 2c \cdot 4c = 2cn > cn$, contradicción.

Ejercicio 2. Demostrar o dar un contraejemplo

(a)
$$\lg \sqrt{n} = O(\lg n)$$

(b) Si
$$f(n) = O(g(n))$$
 y $g(n) = O(h(n))$ entonces $f(n) = O(h(n))$

(c) Si
$$f(n) = O(g(n))$$
 y $g(n) = \Theta(h(n))$ entonces $f(n) = \Theta(h(n))$

(d) Si
$$f(n) = O(g(n))$$
 entonces $2^{f(n)} = O(2^{g(n)})$

(e)
$$o(g(n)) \cap \omega(g(n)) = \emptyset$$

$$(f) \max\{f(n), g(n)\} = \Theta(f(n) + g(n))$$

$$(g)$$
 $(n+a)^b = \Theta(n^b)$, donde $a, b \in \mathbb{R}$ y $b > 0$.

(a) Note que para todo $n \ge 0$ tenemos que $\lg \sqrt{n} = \frac{1}{2} \lg n \le \frac{1}{2} \lg n$. Luego $\lg \sqrt{n} = O(\lg n)$

(b) Del enunciado tenemos que existen constantes $c_0, n_0, c_1, n_1 > 0$ tales que

$$0 \le f(n) \le c_0 g(n)$$
 para todo $n \ge n_0$

y

$$0 \le g(n) \le c_1 h(n)$$
 para todo $n \ge n_1$

Luego

$$0 \le f(n) \le c_0 g(n) \le c_0 c_1 h(n)$$
 para todo $n \ge \max\{n_0, n_1\},$

lo que implica que f(n) = O(h(n)).

- (c) Falso, tome f(n) = n, $g(n) = n^2$, $h(n) = n^2$.
- (d) Si f(n) = O(g(n)) entonces $2^{f(n)} = O(2^{g(n)})$? Falso, tome $f(n) = 100 \lg n$, $g(n) = \lg n$. Entonces $2^{f(n)} = 2^{100 \lg n} = (2^{\lg n})^{100} = n^{100}$. Pero $2^{g(n)} = n$. Como $n^{100} \neq O(n)$, tenemos una contradicción.
- (e) $o(g(n)) \cap \omega(g(n)) = \emptyset$?

Verdadero. Suponga por contradicción que $o(g(n)) \cap \omega(g(n)) \neq \emptyset$. Luego, existen funciones f(n), g(n) tales que f(n) = o(g(n)) y $f(n) = \omega(g(n))$. Sea c una constante positiva arbitrária. Por definción de o y ω , tenemos que existen $n_0, n_1 > 0$ tales que

$$0 \le f(n) < cg(n)$$
 para todo $n \ge n_0$

y

$$0 \le cg(n) < f(n)$$
 para todo $n \ge n_1$

Luego

 $0 \le cg(n) < f(n) < cg(n)$ para todo $n \ge \max\{n_0 n_1\}$, una contradicción.

(f) Es facil ver que máx $\{f(n),g(n)\} \le f(n)+g(n)$ lo que implica que máx $\{f(n),g(n)\}=O(f(n)+g(n)).$

También, máx $\{f(n), g(n)\} \ge \frac{f(n) + g(n)}{2}$ lo que implica que máx $\{f(n), g(n)\} = \Omega(f(n) + g(n))$.

(g) Sera dejado como tarea con puntos (evaluacion continua)

Ejercicio 3. (a) Usando la aproximación de Stirling, muestre que $\lg n! = \Theta(n \lg n)$. También, pruebe que $n! = \omega(2^n)$ y $n! = o(n^n)$

(b) Muestre que $a^{\log_b c} = c^{\log_b a}$

- (c) Muestre que si $k \ln k = \Theta(n)$ entonces $k = \Theta(n/\ln n)$
- (d) Verdadero o falso: $\lceil \lg n \rceil! = O(n)$
- (d) Muestre que $\sum_{i=1}^{n} i^k = \Theta(n^{k+1})$