

深度學習系統與實現

LAB02 – Data augmentation

Dept. of Computer Science and Information Engineering

National Chiao Tung University

Outline

- Background
- LAB 2-1, data augmentation
- LAB 2-2, data sampler
- LAB 2-3, practical experience
- Grading

Data Augmentation

- Want the dataset to be diverse enough to include different positions, angles, lightings ...
- The best way to improve the performance of the deep learning model - Add more data
- Hard to gather more labeled data from the real world > augment existing datasets
- More robust!
 - e.g. use flip & rotate to cover different positions of the interestings

https://towardsdatascience.com/data-augmentation-and-images-7aca9bd0dbe8

Overfitting problem

- Overfitting model fits too well to the training set. Difficult to generalize to unseen data
- Solution larger dataset, simpler model complexity, augmentation, regularization

Imbalanced Dataset

- Take detection of diseases for example
 - Diseased patients are rare
 - More normal samples than disease ones
- "Resampling" is adopted to solve this problem
 - majority class -> remove sample
 - minority class -> add new sample (augmentation)

Data sampling

Advanced

Rebalance the class distribution !!

Constraints of LAB 2

 Continue the previous lab, try to solve the problems about dataset imbalance

Class 0 :	302/368	82.07%		
Class 1 :	100/148	67.57%		
Class 2 :	460/500	92.00%		
Class 3 :	268/335	80.00%		
Class 4 :	237/287	82.58%		
Class 5 :	410/432	94.91%		
Class 6 :	141/147	95.92%		
Class 7 :	93 /96	96.88%		
Class 8 :	263/303	86.80%		
Class 9 :	482/500	96.40%		
Class 10:	169/231	73.16%		

- The baseline accuracy of skewed-food11 need to be better than 80% (recommend: ResNet18, MobileNetV2)
- Cannot add or delete any images of the skewed-food11 dataset in your file system

LAB 2-1 Data Augmentation (1)

- DL frameworks usually have built-in data augmentation functions, but lack some critical features (e.g. noising)
- There are some popular image augmentation python packages(imgaug, Augmentor) designed specifically for deep learning

LAB 2-1

2)

Data Augmentation (2)

- Take <u>imgaug</u> as an example
 - Over 60 image augmentation techniques
 - gaussian noise
 - blurring
 - hue/saturation changes
 - Support augmentation with segmentation masks, bounding boxes, key points
 - Augmentation pipelines

```
seq = iaa.Sequential([
   iaa.GammaContrast(1.5), # add contrast
   iaa.Affine(translate_percent={"x": 0.1}, scale=0.8), # translate the image
   iaa.Fliplr(p = 1.0) # apply horizontal flip
```

LAB 2-1 Data Augmentation (3)

- PyTorch Integration (20%)
 - try to migrate imgaug/Augmentor to torchvision.transforms
 - Visualize samples of Food11 w/ the effects by the migration from imgaug/Augmentor to torchvision.transforms
- Balanced augmentation (30%)
 - □ Try to implement the "augmentaion" function in the customized Dataset (ex: Food11Dataset in food11_dataset.py)
 - Balanced resample the training set with the above transform functions (balance distribution).

LAB 2-2 Data Sampler (1)

- Type of Pytorch Datasets
 - Map-style datasets
 - □ implements the <u>getitem</u>() and <u>len</u>() protocols
 - maintain a map from indices/keys to data samples
 - e.g. Food11Dataset in food11_dataset.py
 - Iterable-style datasets
 - implements the __iter__() protocol
 - iter(dataset), return a stream of data from a database
 - suitable for dynamic batch size
- All the works in LAB 2 must be done through Map-style datasets

LAB 2-2 Data Sampler (2)

- For Map-style Datasets, torch.utils.data.Sampler can be used in data loading.
- Sampler object can yield the next index/key to fetch at each time
- Every Sampler subclass has to provide
 - __iter__() method, a way to iterate over indices
 - __len__() method, the length of the returned iterators

LAB 2-2 Data Sampler (3)

- use
 - torch.utils.data.WeightedRandomSampler to do the balanced sampling (30%)
- compare the results betweenRandomSampler & WeightedRandomSampler

The difference between the amount of each class and the average need to be less than 10% after WeightedRandomSampler with specific weights

class_name	bf.	loading	af. l	oading
Bread	362			
Dairy_product	144			
Dessert	500			
Egg	327			
Fried_food	326			
Meat	449		3	
Noodles	147			
Rice	96			
Seafood	347			
Soup	500		I	
Vegetable_fruit	232			

1896

LAB 2-3 Practical experience

- Please combine the above methods & try to improve the average per-class accuracy (20%)
- Show the per-class accuracy & average perclass accuracy in your report
- How could you make improvement? Please explain in details in your report
- If it doesn't improve, please explain your experiment & analysis in your report

Grading

□ LAB 2-1 (50%)

□ LAB 2-2 (30%)

Total:

□ LAB 2-3 (20%)

115

- Bonus (15%)
 - Reproduce the methods of other papers to solve the imbalance dataset problem (ex: Class-Balanced Loss Based on Effective Number of Samples, CVPR '19)
 - You should finish the above labs first
- Submission: source code + report (.ipynb is accepted)(E3)
 - □ zip format (ex: DLSR_lab2_{student id}.zip) 未依格式者,扣該lab成績5分
- Deadline: 2020/03/30,23:59 (Mon)(2 weeks)
- Demo : Date To Be Determined

Report Spec.

□ EX:

- Introduction Problems & solutions
- Experiment setup
- Results
- Analysis / Discussion
- · Others ...

Reference

- Pytorch dataset:
 - https://pytorch.org/docs/stable/data.html#torch.utils. data.Dataset
- Augmentor:
 - https://github.com/mdbloice/Augmentor
- Imgaug Document & git-repo :
 - https://imgaug.readthedocs.io/en/latest/
 - https://github.com/aleju/imgaug
- How to use Imgaug:
 - https://colab.research.google.com/drive/109vu3F1LTz D1gdVV6cho9fKGx7lzbFll#scrollTo=rQ6DFPNvVD8s

Reference

- Overview of popular augmentation packages and PyTorch examples:
 - https://towardsdatascience.com/data-augmentationfor-deep-learning-4fe21d1a4eb9
- Imbalanced Dataset Sampler:
 - https://github.com/ufoym/imbalanced-datasetsampler
- Pytorch Sampler:
 - https://pytorch.org/docs/stable/data.html#torch.utils.d ata.Sampler
- Paper <u>A survey on Image Data Augmentation for</u>
 Deep Learning