1. (15 pts) Una partición de un conjunto X es una colección de subconjuntos disjuntos (dos a dos) cuya unión es X. En particular, cada partición de X es una sub-base para una topología sobre X. Pruebe que si S es una partición de X que contiene exactamente 4 subconjuntos, entonces la topología generada por S tiene exactamente 12 abiertos.

2. (15 pts) Sea (X, \mathcal{T}) un espacio topológico. Pruebe que si $\{x_0\} \in \mathcal{T}$ para algún $x_0 \in X$, entonces $\{x_0\} \in \mathcal{B}$ para cada base \mathcal{B} que genera la topología \mathcal{T} .
Si {Xo} e 7 pura algún Xo 6 X,
Suporganos que {Xo} & B genera la topologia
T cono la colección de uniones arbitrarious
de elevertes de B (lene 13.1), pero 1ste
que dado {x,} & B, es imposible que
2x0] e ? (=) (=). Lueyo {x0} e B.
3. (20 pts) Denote por \mathcal{T}_{orden} la topología del orden en \mathbb{Z} con respecto al orden usual. Pruebe que \mathcal{T}_{orden} es la topología discreta. Ayuda: Es suficiente probar que los subsconjuntos $\{n\}$ son abiertos en la topología del orden. ¿Por qué?
Emperents per séralar que la buse pura una topología de order es el conjunto de intervalos de la forma (a,b) para
a,b & Z.
Note que como a, b 6 2/ podemos
feferirles de la Signiate menera:
9 = V-1, b = V+1 pura walquier VEZL
esto a: $(V-1, V+1) = \{V\}$

Ahora como hemos probado, £vz & B. Tv Ell.

Apliando el lena 13.1, veu que es claro que la topología generada a partir de pohourias haciendo una coleción de uniones arbitrarias de elevados de la base va a ser la topdogla discreta. Cesto por que a parir de Uniones arbitrarius puedo generarlo todo).