Space from data

Real world data (finite set of points in Rd or a metric sp)

as it self it is a boring topological space.

it is not endowed with a simplicial structure.

How to associate a space to the

Assumption: Your data is sampled from a nice topological space, say a compact manifold.

Today's plan Examples of simplicial Structures. nerve of a Covering. Data effects & the homology inference theorem The nerve Complex & the nerve lemma Cech & VR Complex.

Recall: An abstract simplicial Complex on a finite set V is a collection K of sursets of V that have the heridetory property, i.e., if AEK then Y BCA, BEK.

Given an abstract simpliciple there is how one constructs its geometric realization. ||X||Example $V = \{1, 2, 3\}$, X = P(V)ground set

Step 1: Consider $\mathbb{R}^{1/3}$, in our example \mathbb{R}^3 . The standard unit vectors with the elds of \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 in our example \mathbb{R}^3 . The standard unit vectors \mathbb{R}^3 . The standard unit vectors \mathbb{R}^3 . \mathbb{R}^3 is \mathbb{R}^3 . \mathbb{R}^3 if \mathbb{R}^3 in our example \mathbb{R}^3 . The standard unit vectors \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 . If \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 is \mathbb{R}^3 .

Two examples from graph theory we'll consider finite simple graph.

1 Independence complex.: V= the set of all vertices of a graph G.

A subset A C V is called independently the induced subgraph GEAI is discrete.

If A is an independent set then so is

every subset of A. X = Collection of all ind soursets of G :. (V, %) is an A.S.C. G[3]: Ex. $G[1,2] = \frac{1}{2}$ $G[2,3] = \frac{1}{2}$ $G[2,3] = \frac{1}{2}$ 2) The clique cplx: A Swrset ACV is a clique if GEAT is a complete grouph.

(V, X) is on A. S.C.

19x11:2 Nerve of a covering. Let x be a set and U be a coll of subsets $U = \{ U_1, \ldots, V_n \}$ s.-1. X = U1 U - . . V Un Let • V= {1, ..., n} R be the all of sweets of {1,..., n} $X = \mathbb{R}$ $u = \{(-0, 0), (-1, 1), (0, 0)\}$

s.t. if J < {1, ..., n} U 1 1 1/2 + \$ then OU; is non empty. Uz AU3 + Ø (V, &) is called the nerve of this covering it is an ASE. Let X be a pt. Cloud in IRd, IXI=n. The r-offset of X , VERO, 0) X := B(x)x) closed ball

X ex

X ex

X ex

X adius 8. For y \ Rd d(y, X) := in+ 1/2-711 x = 1 ([0,7]) Homology inference theorem: adjectives The Betti numbers of Riemanian mflds can be recovered with high probability from offsets of a sample on (or close to) the mild. w. v.t. the Gromov. Hausdorff dist.

Nerve of an open Guering Let x be a top. Space and I be an open Guer Lie, I in a collection of open sets in X s.t. their union covers X).

nerve
$$(\mathcal{U}) = \mathcal{N}(\mathcal{U}) := \{ \mathcal{U}_i \in \mathcal{U} \mid \mathcal{U}_i \neq \emptyset \}$$

The vertices or the O-simpliers of nerve (N)
corr. to open sets.

1 - simplicer > pairs of open sets which intersect non trivially

2- simplies «> friples with nonemply interes

2 SOOM.

The Čech complex Let X be a PCD mbert of in a real number Cechy (X) := {6CX | A B(x, x) + 9 The 1-skeleton of the nerve The 2-skeleton of the nerve metric space

VIETURIS - TMPS COMIPIEX
finite.
A simple grouph can be considered
as a metric space-
The vertices are elds of the
metric space.
everyedge has length 1'
distance bed" + wa pts in the
grouph distance
1 9 d (1, 2) = 1
(1,4) = 1
$X = \frac{1}{2}$
$(G_1d) = 2$
$X = \begin{cases} d(1,2) = 1 \\ d(1,4) = 1 \\ d(1,3) = 2 \\ d(2,4) = 1 \end{cases}$ $d(3,4) = 1$
d(2,3) = 1
7=0
VR.(X) = {1, 2, 3, 4}
VR.(X) = 31.23 4 12.28 36 165
VR2(X) - VR, (X) U & 123, 134, 234, 128,
VR2(X) - VR(X) U & 123, 134, 234, 128,