Circuit Quantization and Diagonalization with scqubits

Sai Pavan Chitta Northwestern University

Outline

- → Challenges:
 - Identification of the boundary conditions
 - Appropriate variable choice

Boundary Conditions and Variable Classification

- → Boundary conditions:
 - affect the nature of Hilbert space
 - influence the choice of basis states
- → How do we get to the boundary conditions? Potential
- → Degree of Freedom (DoF): periodic and extended

$$E_J\cos(\varphi)$$

$$-E_J \cos(\varphi_3) - E_J \cos(\varphi_2 - \varphi_1)$$

+
$$\frac{1}{2} E_L (\varphi_2 - \varphi_3)^2 + \frac{1}{2} E_L (\varphi_1)^2$$

Boundary Conditions and Variable Classification

- Boundary conditions:
 - affect the nature of Hilbert space
 - influence the choice of basis states
- → How do we get to the boundary conditions? Potential
- Degree of Freedom (DoF): periodic and extended
- → 'good' vs 'bad' choice?

$$E_J\cos(\varphi)$$

$$-E_J \cos(\varphi_3) - E_J \cos(\varphi_2 - \varphi_1)$$

$$+ \frac{1}{2} E_L (\varphi_2 - \varphi_3)^2 + \frac{1}{2} E_L (\varphi_1)^2$$

Boundary Conditions and Variable Classification

- Boundary conditions:
 - affect the nature of Hilbert space
 - influence the choice of basis states
- → How do we get to the boundary conditions? Potential
- → Degree of Freedom (DoF): periodic and extended
- → 'good' vs 'bad' choice?
- → Special cases: free and frozen

$$E_J\cos(\varphi)$$

Construction of Variables

- → Ho do we identify such variables? Inspect circuit topology
 - Inductors generate extended DoFs
 - "Islands" generate periodic DoFs
- → Eliminate non-dynamical variables
 - Frozen missing capacitive connections
 - Cyclic associated with "capacitive islands"

$$arphi_1 = lpha$$
 $arphi_2 = rac{1}{2}eta + rac{ heta}{ heta}$
 $arphi_3 = rac{1}{2}eta + rac{ heta}{ heta}$
extended periodic

Automating Circuit Quantization

Algorithm and Implementation

New module to be published in next major release of scqubits


```
nodes: 4
branches:

JJ 1,3 EJ EC

JJ 1,4 EJ EC

L 1,2 EL

C 1,2 eC

L 2,3 eL

L 2,4 eL
```

Algorithm and Implementation

New module to be published in next major release of scqubits

