7 Variables aléatoires 9

7 Variables aléatoires

₽ 2 semaines

Valystés/popy/polys/vard déjà fait

- Contenu
 - ✓ Variable aléatoire réelle : modélisation du résultat numérique d'une expérience aléatoire ; formalisation comme fonction définie sur l'univers et à valeurs réelles.
- Capacités
 - ✓ Interpréter en situation et utiliser les notations $\{X = a\}$, $\{X \le a\}$, P(X = a), $P(X \le a)$. Passer du registre de la langue naturelle au registre symbolique et inversement.
 - ✓ Modéliser une situation à l'aide d'une variable aléatoire.
 - ✓ Déterminer la loi de probabilité d'une variable aléatoire.
 - ✓ Calculer une espérance, une variance, un écart type.
 - ✓ Utiliser la notion d'espérance dans une résolution de problème (mise pour un jeu équitable...).
- Démonstrations
 - a)
- Algorithmes
 - a) Algorithme renyonant Nespérance, la rarience on Nécart/type d'une raviable aléatoine.
 - b) Fréquence/d'apparition/des/lettres/d'un/texte/donné,/en/français,/en/anglais/
- Approfondissements
 - ✓ Formule de König-Huygens.
 - ✓ Pour X variable aléatoire, étude de la fonction du second degré $x \mapsto E((X-x)^2)$.
- Expérimentations
 - ✓ Simuler une variable aléatoire avec Python.
 - ✓ Lire, comprendre et écrire une fonction Python renvoyant la moyenne d'un échantillon de taille n d'une variable aléatoire.
 - \checkmark Étudier sur des exemples la distance entre la moyenne d'un échantillon simulé de taille n d'une variable aléatoire et l'espérance de cette variable aléatoire.
 - Simuler, avec Python ou un tableur, N échantillons de taille n d'une variable aléatoire, d'espérance μ et d'écart type σ . Si m désigne la moyenne d'un échantillon, calculer la proportion des cas où l'écart entre m et μ est inférieur ou égal à $\frac{2\sigma}{\sqrt{n}}$