Perturbation Theory for Dimers, Trimers and Molecular Crystals

Implementation and Application of Density Functional Theory based Symmetry-Adapted Perturbation Theory for Dimers, Trimers and Molecular Crystals

Yi Xie

July 25, 2022

Yi Xie | July 25, 2022 1/37

Noncovalent Interaction

- Phase transition, stability of crystal structure
- Drug binding, DNA/RNA/protein structure
- Many-body Expansion for the energy of complex system:

$$E = \sum_{A} E_A + \sum_{AB} E_{AB}^{\text{int,2}} + \sum_{ABC} E_{ABC}^{\text{int,3}} + \cdots$$

Intermolecular Energies

Supermolecular approach

$$E_{AB}^{\text{int},2} = E_{AB} - E_A - E_B$$

$$E_{ABC}^{\text{int,3}} = E_{ABC} - E_{AB} - E_{AC} - E_{BC} + E_A + E_B + E_C$$

Symmetry-Adapted Perturbation Theory (SAPT)

$$E^{\rm int,2} = E^{(1)}_{\rm elst} + E^{(1)}_{\rm exch} + E^{(2)}_{\rm ind} + E^{(2)}_{\rm exch-ind} + E^{(2)}_{\rm disp} + E^{(2)}_{\rm exch-disp}$$

Yi Xie | July 25, 2022 3/3

SAPT(DFT)

Hamiltonian partitioning:

$$H = F_A + F_B + V_{AB} + W_A + W_B$$
$$H = K_A + K_B + V_{AB}$$

• "Uncoupled" sum-over-states approximation of $E_{
m disp}^{(2)}$ and in terms of frequency-dependent density susceptibility (FDDS):

$$E_{\rm disp,u}^{(2)} = -4 \sum_{ar \in A, bs \in B} \frac{|(ar|bs)|^2}{\epsilon_{ab}^{rs}}$$

$$= -\frac{1}{2\pi} \int_0^\infty d\omega \int d\mathbf{r}_A d\mathbf{r}_A' d\mathbf{r}_B d\mathbf{r}_B'$$

$$\frac{1}{|\mathbf{r}_A - \mathbf{r}_B|} \frac{1}{|\mathbf{r}_A' - \mathbf{r}_B'|} \chi_0^A \left(\mathbf{r}_A, \mathbf{r}_A'|i\omega\right) \chi_0^B \left(\mathbf{r}_B, \mathbf{r}_B'|i\omega\right)$$

Yi Xie | July 25, 2022 4/37

Uncoupled $E_{\mathrm{disp}}^{(2)}$

Fig. 2. Mean (δ) and mean absolute (ϵ) percental deviations of the uncoupled (u) and coupled (c) second-order dispersion energies from the MP2 results.

Mean (δ) and mean absolute (ϵ) percentage deviations of uncoupled (u) and coupled (c) $E_{\rm disp}^{(2)}$ from SAPT2+ results.

Yi Xie | July 25, 2022 5/37

A. Heßelmann and G. Jansen, Chem. Phys. Lett. 367, 778 (2003).

Coupled $E_{\mathrm{disp}}^{(2)}$

Replacing uncoupled FDDS with coupled FDDS, solved from the coupled Kohn–Sham (CKS) TDDFT equation:

$$oldsymbol{\chi} = oldsymbol{\chi}_0 + oldsymbol{\chi}_0 \mathbf{S}^{-1} \mathbf{W} \left(\mathbf{S} - oldsymbol{\chi}_0 \mathbf{S}^{-1} \mathbf{W}
ight)^{-1} oldsymbol{\chi}_0$$

Exchange-correlation kernel term in **W** approximated by adiabatic local-density approximation (ALDA) kernel:

$$W_{PQ} = \left(P|r_{12}^{-1}|Q\right) + \left(P|f_{xc}|Q\right)$$

$$\approx \left(P|r_{12}^{-1}|Q\right) + \left(P|f_{yc}^{ALDA}|Q\right)$$

Yi Xie | July 25, 2022 6/3

M. Pitoňák and A. Hesselmann, J. Chem. Theory Comput. 6, 168 (2010).

Hybrid Functional

- Local Hartree—Fock (LHF) approach
 - Computing LHF potential in each KS SCF iteration
 - $O(N^4)$ with very large constant factor
 - ► Different set of KS orbitals with smaller occupied-virtual gap
- Hybrid ALDA kernel
 - ► Mixing CHF and CKS equations to solve for FDDS
 - ► CKS involves integral of form (ar|a'r'), $O(N^4)$ with density fitting
 - ► CHF involves (aa'|rr') and (ar'|a'r), $O(N^5)$

Coupled $E_{\mathrm{exch-disp}}^{(2)}$

lacksquare Scaling from scaling uncoupled $E^{(2)}_{
m exch-disp}$

$$\tilde{E}_{exch-disp,r}^{(2)} = E_{exch-disp,u}^{(2)} \cdot \frac{E_{disp,r}^{(2)}}{E_{disp,u}^{(2)}}$$

Fixed scaling factor from fitting S22×5

$$\tilde{E}_{exch-disp,r}^{(2)} = \alpha \cdot E_{exch-disp,u}^{(2)}(\alpha = 0.686)$$

▶ Value of α above fitted from $E^{(2)}_{exch-disp,u}$ with LHF orbitals

A. Heßelmann and T. Korona, J. Chem. Phys. 141, 094107 (2014).

S22 Dimer Set

Yi Xie | July 25, 2022 9/37

Coupled FDDS with Hybrid Kernel

Recall coupled FDDS for pure ALDA kernel:

$$\chi = \chi_0 + \chi_0 \mathbf{S}^{-1} \mathbf{W} \left(\mathbf{S} - \chi_0 \mathbf{S}^{-1} \mathbf{W} \right)^{-1} \chi_0$$

Coupled FDDS for hybird ALDA kernel, with (aa'|rr') and (ar'|a'r) contributions in χ'_0 and \mathbf{K}' :

$$\boldsymbol{\chi} = \boldsymbol{\chi}_0' + \left(\boldsymbol{\chi}_0' \mathbf{S}^{-1} \mathbf{W} + \mathbf{K}'\right) \left[\mathbf{S} - \left(\boldsymbol{\chi}_0' \mathbf{S}^{-1} \mathbf{W} + \mathbf{K}'\right)\right]^{-1} \boldsymbol{\chi}_0'$$

▶ Dispersion energy from integration over ω :

$$E_{\rm disp,r}^{(2)} = -\frac{1}{2\pi} \int_0^\infty d\omega \operatorname{Tr} \left(\mathbf{S}^{-1} \boldsymbol{\chi}^A \mathbf{S}^{-1} \boldsymbol{\chi} \right)$$

Yi Xie | July 25, 2022 10/3

Refitting $E_{ m exch-disp,r}^{(2)}$ for non-LHF Orbitals

- LHF vs. non-LHF orbitals: Only affects uncoupled second-order terms like $E_{
 m disp,u}^{(2)}$ and $E_{
 m exch-disp,u}^{(2)}$
- Similar $E_{
 m disp,r}^{(2)}$ for LHF + pure ALDA vs. non-LHF + hybrid ALDA, expect the same for $E_{
 m exch-disp,r}^{(2)}$
- ► Can fit non-LHF $E_{
 m disp,u}^{(2)}$ to LHF + pure ALDA $E_{
 m disp,r}^{(2)}$:

$$E_{\rm disp,r}^{(2)}(hybrid) \approx E_{\rm disp,r}^{(2)}(LHF)$$

 $\approx \alpha \cdot E_{exch-disp,u}^{(2)}(non-LHF)$

Fit for α using S22×5 and test with S66×8

Yi Xie | July 25, 2022 11/3

SAPT Terms: LHF vs non-LHF Orbitals

Hybrid vs. LHF values in kcal/mol for each term for S66 data set: (a) $E_{\rm elst}^{(1)}$, (b) $E_{\rm exch}^{(1)}$, (c) $E_{\rm ind}^{(2)}$, (d) $E_{\rm exch-ind}^{(2)}$, (e) $E_{\rm disp,r}^{(2)}$, (f) $E_{\rm disp,u}^{(2)}$, (g) $E_{\rm exch-disp,u}^{(2)}$

Yi Xie | July 25, 2022 12/3

Fitting: S22×5

Yi Xie | July 25, 2022 13/37

Testing: S66×8

Yi Xie | July 25, 2022 14/37

Computational Approach

- Benchmarking with S66 dimer set
- Using SAPT2+3(CCD)δMP2/aug-cc-pVTZ as reference
- Compare electrostatics, exchange, induction, dispersion terms and total IE
- Using aug-cc-pVDZ for SAPT0 and SAPT2+, aug-cc-pVTZ for other methods

Yi Xie | July 25, 2022 15/3

S66 Results

Method	Total	нв	MX	DD	Error Distribution
				4	OB 1 0 1 UB 4
Electrostatics					
SAPT(DFT) hybrid	0.374	0.556	0.177	0.311	mandard (m.)
SAPT(DFT) LHF	0.423	0.666	0.196	0.319	i dinini i inini i i
SAPT0	0.613	1.034	0.439	0.297	
SAPT2+	0.236	0.270	0.136	0.263	III @i ji
$SAPT2+(3)\delta MP2$	0.000	0.000	0.000	0.000	
Exchange					
SAPT(DFT) hybrid	0.886	1.127	0.426	0.926	
SAPT(DFT) LHF	0.886	1.121	0.431	0.928	11
SAPT0	0.675	0.942	0.263	0.658	
SAPT2+	0.337	0.467	0.222	0.277	
$_{\rm SAPT2+(3)\delta MP2}$	0.000	0.000	0.000	0.000	
Induction					
SAPT(DFT) hybrid	0.211	0.201	0.212	0.220	
SAPT(DFT) LHF	0.224	0.223	0.223	0.225	[
SAPT0	0.241	0.200	0.261	0.271	
SAPT2+	0.327	0.384	0.250	0.318	
SAPT2+(3) δ MP2	0.152	0.179	0.121	0.145	

Yi Xie | July 25, 2022 16/37

S66 Results (cont.)

Method	Total	нв	MX	DD	Error Distribution
					4 OB 1 0 1 UB 4
Dispersion					
SAPT(DFT) hybrid	0.370	0.260	0.219	0.573	
SAPT(DFT) LHF	0.308	0.200	0.173	0.499	
SAPT(DFT) non-hybrid	0.635	0.581	0.419	0.822	
SAPT0	0.443	0.862	0.162	0.195	 (10) (11011 111 1
SAPT2+	0.235	0.397	0.169	0.115	
$SAPT2+(3)\delta MP2$	0.093	0.129	0.056	0.080	••
Total					
SAPT(DFT) hybrid	0.334	0.588	0.107	0.217	II I II I III
SAPT(DFT) LHF	0.234	0.382	0.046	0.199	III III
SAPT(DFT) non-hybrid	0.604	0.955	0.389	0.385	
SAPT0	0.990	1.197	0.692	0.965	
SAPT2+	0.230	0.235	0.138	0.280	111
$SAPT2+(3)\delta MP2$	0.105	0.056	0.082	0.169	1.0(0.1)

Yi Xie | July 25, 2022 17/37

Timing Systems

Dimer systems for timing: (a) Watson-Crick adenine-thymine complex, (b) RDX dimer, (c) C_{60} -buckycather complex.

Yi Xie | July 25, 2022 18/37

Watson-Crick Adenine-Thymine

 $N_{\rm bf} = 1127$

RDX Dimer

Yi Xie | July 25, 2022 20/37

C₆₀-Buckycatcher Complex

Yi Xie | July 25, 2022 21/37

Conclusions

- Implemented SAPT(DFT) using hybrid xc kernel, applicable to up to 3000 basis functions
- lacksquare Scaling factor of $E_{
 m exch-disp}^{(2)}$ determined to be 0.770
- Accuracy of SAPT(DFT) comparable to SAPT2+ which scales as $O(N^7)$
- Iterative ${\cal O}(N^4)$ terms not negligible; even dominating for smaller systems

Three-Body Interaction Energies

- Cheapest conventional methods to model three-body interaction energies scale as $O(N^6)$ [MP2.5, SCS(MI)-CCSD]
- MP2 lacks three-body dispersion interactions
- Combine supermolecular MP2 with three-body dispersion correction term
- $\,\blacktriangleright\,$ Reduces computational cost for three-body interaction energies to the level of $O(N^5)$

CKS FDDS Dispersion

Two-body FDDS dispersion term in SAPT(DFT):

$$E_{\rm disp,r}^{(2)} = -\frac{1}{2\pi} \int_0^\infty d\omega \operatorname{Tr} \left(\mathbf{S}^{-1} \boldsymbol{\chi}^A \mathbf{S}^{-1} \boldsymbol{\chi} \right)$$

Generalize to three-body case:

$$E_{\rm disp,r}^{(3)} = \int_0^\infty d\omega \operatorname{Tr} \left(\mathbf{S}^{-1} \boldsymbol{\chi}^A \mathbf{S}^{-1} \boldsymbol{\chi}^B \mathbf{S}^{-1} \boldsymbol{\chi}^C \right)$$

Axilrod—Teller—Muto Dispersion

Dispersion energy of atom triplet:

$$E_{\text{ATM}}^{abc} = C_9^{abc} \frac{1 + 3\cos\theta_a \cos\theta_b \cos\theta_c}{(R_{ab}R_{bc}R_{ca})^3}$$
$$C_9^{abc} \approx \sqrt{C_6^{ab}C_6^{bc}C_6^{ca}}$$

Sum over atom triplets:

$$E_{\mathrm{ATM}}^{ABC} = \sum_{a \in A} \sum_{b \in B}, \sum_{c \in C} f_{9}^{abc} E_{\mathrm{ATM}}^{abc}$$

Empirical Damping

Tang–Toennies damping function:

$$f_9^{abc} = f_6^{ab}(R_{ab}, \beta) f_6^{ac}(R_{ab}, \beta) f_6^{ca}(R_{ab}, \beta)$$

$$f_6(R,\beta) = 1 - \sum_{k=0}^{6} \left(\frac{(\beta R)^k}{k!}\right) e^{-\beta R}$$

Chai–Head-Gordon damping function:

$$f_9^{abc} = \frac{1}{1 + 6 \left(\bar{R}_{abc}\right)^{-16}}$$

$$\bar{R}_{abc} = \left(R_{ab}R_{bc}R_{ca}/R_{0,BJ}^{ab}R_{0,BJ}^{ac}R_{0,BJ}^{ca}\right)^{1/3}$$

Yi Xie | July 25, 2022 26/37

Geometric Parameters

- Define geometrical parameters based on intermolecular distances
- R_{min}: Smallest of three closest-contact distances
- $ightharpoonup R_{
 m max}$: Largest of three closest-contact distances
- Analyze growth of three-body contribution to crystal lattice energy with respect to R_{\min} and R_{\max}

Geometric Parameters

Yi Xie | July 25, 2022 28/37

Computational Methods

- Crystalline benzene, carbon dioxide and triazine
- Using CCSD(T) with focal point approach as reference

$$E = E^{\rm HF}({\rm aQZ}) + \Delta E^{\rm MP2}({\rm aTZ/aQZ}) + \Delta E^{\rm CCSD(T)}({\rm aDZ})$$

 Compare three-body contribution to crystal lattice energies with various methods: MP2, MP2+ATM(undamped/TT/CHG), MP2+CKS, MP2.5, SCS(MI)-CCSD, CCSD(T)

Yi Xie | July 25, 2022 29/3

R_{\min} Dependence: Benzene

Yi Xie | July 25, 2022 30/37

R_{\min} Dependence: Carbon Dioxide

Yi Xie | July 25, 2022 31/37

R_{\min} Dependence: Triazine

$R_{ m max}$ Dependence: Benzene

Yi Xie | July 25, 2022 33/37

$R_{ m max}$ Dependence: Carbon Dioxide

Yi Xie | July 25, 2022 34/37

$R_{ m max}$ Dependence: Triazine

Yi Xie | July 25, 2022 35/37

Conclusions

- Three-body crystal lattice energies converge quickly as R_{\min} increases, less smooth for R_{\max} but can be cutoff at 10 Å
- Three-body dispersion contributions crucial to lattice energies for crystals studied
- CKS FDDS dispersion overestimates three-body dispersion, likely missing exchange-dispersion terms
- Performance of Tang-Toennies damped ATM comparable to MP2.5
- \blacktriangleright Can use CCSD(T) for trimers with small $R_{\rm min}$ and MP2+ATM(TT) for larger ones

Yi Xie | July 25, 2022 36/37

Acknowledgment

Yi Xie | July 25, 2022 37/37