	Ulech
Name:	(4)
Roll No.:	To Demonity 2nd Exclored
Invigilator's Signature :	

RF AND MICROWAVE ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) Which of the following modes does not exist in a rectangular waveguide?
 - a) TE

b) TM

c) TEM

- d) None of these.
- ii) The cut-off frequency for the dominant mode in an air-filled rectangular waveguide with internal dimension of $4~\text{cm}\times2.5~\text{cm}$ is
 - a) 7.5 GHz
- b) 6 GHz
- c) 4.5 GHz
- d) 3.75 GHz.

7002 Turn over

a) TE ₁₁₀

b) TE₀₁₁

c) TM ₁₁₀

- d) TM₁₁₁.
- iv) Caseagrain feed is used with parabolic reflector to
 - a) increase the gain of the system
 - b) increase the beam width of the system
 - c) reduce the size of the main reflector
 - d) allow the feed to be placed at a convenient point.
- v) A Microstrip line is analogous to a
 - a) Co-axial line
 - b) Parallel wire line
 - c) Rectangular waveguide
 - d) Circular waveguide.

- vi) Klystron operates on the principle of
 - a) amplitude modulation
 - b) frequency modulation
 - c) pulse modulation
 - d) velocity modulation.
- vii) A magnetic field is used in the cavity magnetron to
 - a) prevent anode current in the absence of oscillations
 - b) ensure that the oscillations are pulsed
 - c) help in focussing the electron beam, thus preventing spreading
 - d) ensure that the electrons will orbit around the cathode.
- viii) Gunn diode cannot be fabricated with which of the following materials?
 - a) GaAs

b) Si

c) InP

- d) CdTe.
- ix) If the minimum range of radar is to be doubled, the peak power has to be increased by a factor
 - a) 2

b) 4

c) 8

d) 16.

- x) The uplink and downlink frequencies of satallite communication are
 - a) 6 GHz, 4 GHz
- b) 4 GHz, 6 GHz
- c) 6 GHz, 6 GHz
- d) 3 GHz, 5 GHz.
- xi) Scattering parameter can be measured with the help of
 - a) Spectrum analyzer
 - b) Network analyzer
 - c) CRO
 - d) Bolometer.
- xii) The range of microwave frequency is
 - a) 1 GHz to 2 GHz
 - b) 2 GHz to 4 GHz
 - c) 3 GHz to 300 GHz
 - d) 300 GHz to 3000 GHz.

7002

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. a) Compare the performance of rectangular waveguide and circular waveguide.
 - b) Define the term 'dominant mode' and 'degenerate mode' as applied to waveguide. $2\frac{1}{2} + 2\frac{1}{2}$
- 3. What is an E-plane Tee? Derive its S-matrix. 1 + 4
- 4. Explain the working principle of a 4-port circulator consisting of 2-Magic Tees and a non-reciprocal phase shifter.
- 5. Derive the Radar range equation.
- 6. Explain how 'velocity modulation' and 'current modulation' are achieved in reflex klystron.

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) What is the difference between 'O-type' and 'M-type' microwave tubes?
 - b) Explain the function of two-cavity klystron amplifier with schematic diagram.
 - c) The parameters of a two-cavity klystron amplifier are as follows:

Beam voltage = 1200V, beam current = 28 mA, frequency = 8 GHz, gap spacing in either cavity d = 1 mm and spacing between two cavities L = 4 cm. Find maximum input voltage, gap transit angle, beam coupling co-efficient, DC transit angle. 2 + 8 + 5

- 8. a) Find out the expressions for the different components of electric and magnetic fields inside a rectangular waveguide for TE mode of propagation.
 - b) Calculate the ratio of the cross-section of a circular waveguide to that of rectangular one if each is to have the same cut-off wavelength for its dominant mode.

10 + 5

- 9. a) What is the advantage of heterojunction bipolar transistor (HBT) over BJT ? Describe the operational mechanism of HBT.
 - b) Derive the expression for the condition for negative differential mobility of 'transferred effectron devices'.
 - c) What are different modes of operation of Gunn diode?

(2+4)+5+4

- 10. a) Derive Fris's transmission formula. What do you mean by 'EIRP' and 'path loss' ?
 - b) What is G/T ratio of an earth station ? What is its significance ?
 - c) State the principle of operation of Moving Target Indication (MTI) Radar. (5+2)+(2+1)+5

7002

- 11. a) Explain how high value of VSWR can be measured by the double minimum method.
 - b) What do you mean by 'directivity' and 'effective aperture' of an antenna? Derive the relation between directivity and effective apperture of a Horn antenna.

7 + (3 + 5)

- 12. Write short notes on any *three* of the following : 3×5
 - a) Excitation modes in rectangular waveguide
 - b) TWT
 - c) IMPATT diode
 - d) Microstrip line
 - e) Bolometer.