Thermodynamics

For a given chemical reaction:

$$aA + bB \rightarrow cC + dD$$

•
$$\Delta G_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - T \Delta S_{rxn}^{\circ}$$

•
$$\Delta G_{rxn} = \Delta G_{rxn}^{\circ} + RT \ln(\frac{a_C^c a_D^d}{a_A^a a_B^b})$$

•
$$\ln K_{eq} = \ln(\frac{a_C^c a_D^d}{a_A^a a_B^b}) = \frac{-\Delta G_{rxn}^{\circ}}{RT}$$

van't Hoof equation:

$$\ln(K_{T2}) - \ln(K_{T1}) = \frac{\Delta H_{rxn}^{\circ}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Thermodynamics continued

For a given chemical reaction:

$$aA + bB \rightarrow cC + dD$$

For
$$\Delta G_{rxn} = \Delta G_{rxn}^{\circ} + RT \ln(\frac{a_C^c a_D^d}{a_A^a a_B^b})$$

If we define $Q = \frac{a_C^c a_D^d}{a_A^a a_B^b}$ (reaction quotient)

Then
$$\Delta G_{rxn} = \Delta G_{rxn}^{\circ} + RT \ln(Q)$$

K_{eq} is the Q at equilibrium

What about Activity?

Aqueous Geochemistry