Prediction of Default of Credit Card Clients

Yi Wang Brown University 12/04/2019

Github: https://github.com/yahowang/Data1030Project

Introduction - Recap

- Problem to solve: target potential customers who will default
- Importance: challenging yet vital to minimize the risk of capital loss by determining whether their customers would pay off their balance in the next billing period.
- Type of problem: classification
- Data Source: UCI Machine Learning Repository

Data Preprocessing - Recap

- 30,000 instances with 24 features
- Imbalanced
- No missing values
- 4 sets of features:
 - Demographical data (One hot & Standard)
 - Gender, Education Level, Age, etc.
 - Monthly billing amount (Standard)
 - Monthly payment amount (Standard)
 - Monthly payment delay status (One hot & Minmax)
- 52 features after preprocessing

EDA - Recap: Correlation Matrix

Key points:

- More amount of given credit (limited balance) leads to less chance of default.
- The most recent payment delay status matters.

Cross Validation

Imbalanced Data

 Need to preserve the proportion of each class when do training/validating/testing

Stratified K-folds cross validator

- Based on class label
- K = 5
- 20% stratified test set
- 64% stratified train set in each fold
- 16% stratified cross validation set in each fold

Cross Validation - Models

9 Random States for each model

	Naive Bayes	Logistic Regression	Random Forest	K Nearest Neighbors
Settings		L1 Penalty 10000 Iteration max	50 inner learners	Distance as weights
Parameter 1		Alpha: logspace(-5, 5, 11)	Max_depth: 1 - 10	N_neighbors: 9 numbers from 100 to 900
Parameter 2			Min_split: 2 - 10	

Results

Baseline accuracy: 0.77883

Scoring:

F1 score within each fold

Test accuracy score among the F1 chosen models

	NB	LR	RF	KNN
Mean	0.41534826991868906	0.8193703703703703	0.8214259259259259	0.8025740740740741
Standard Deviation	0.004831305070268036	0.002490448144730449	0.003100289822285545	0.0024483694638575
			6	654
Best Score	0.42287361845266697	0.8241666666666667	0.82716666666666667	0.807
Best Parameter(s)		Alpha: 0.001	Max_depth:8	N_neighbors: 200
			Min_samples_split: 4	

Confusion Matrix

Global Feature Importance

Top 3 Important features:

- Pay_0
- Pay_0_0
- Bill_AMT1

Interpretations:

- 1. The most recent month delay status matters.
- 2. The most recent billing amount matters.

Outlook

 More inner estimators might give a slightly better performance in the random forest classifier.

 Feature reduction is another option to reduce the computing complexity while maintaining accurate models.

 Third party credit score (eg. FICO) could be an add-in feature to boost the detection rate and/or accuracy.

Thank You Q&A