

Optimização do Modelo de Dados

- Conceitos
- Objectivo
- Desnormalização
 - Vantagens vs Desvantagens
 - Processo de Desnormalização
 - Estratégias
- Conclusão

© Olga Craveiro, Rosa Matias

Optimização do Modelo de Dados

Normalização

- Objectivo
 - Organizar dados
 - Minimizando redundância
 - Minimizando o número de tabelas
 - Maximizando a disponibilidade dos dados
- Problemas
 - Consultas com problemas de desempenho
 - Acesso n\u00e3o optimizado aos dados
 - Caminhos complexos para extrair informação dos sistemas de bases de dados

Desnormalização

- Melhorar o desempenho no acesso aos dados armazenados numa Base de Dados normalizada
- Como?
 - Diminuir o número de tabelas físicas e consequentemente minimizar a junção de tabelas
 - Aplicando a técnica de desnormalização para a introdução de redundância de modo a melhorar o desempenho
- Porquê?
 - As junções de tabela são operações computacionalmente caras
 - A normalização espalha os dados por inúmeras tabelas, pelo que, extrair informação conduz a comandos SQL (SELECT) com número elevado de tabelas (aumentando consequentemente o número de junções necessárias)

© Olga Craveiro, Rosa Matias

Optimização do Modelo de Dados

Desnormalização

- Quando?
 - Existem problemas de desempenho na base de dados
- Como?
 - Analisar as aplicações que acedem aos dados e as que podem vir a aceder
- Vantagens vs Desvantagens
 - Redundância de dados
 - Código mais complexo, com regras mais complexas para manter a consistência da informação
 - Sacrificada a flexibilidade
 - Aumentada a velocidade das pesquisas, mas diminui as actualizações

Processo de desnormalização

- Análise de Requisitos
- Identificar/caracterizar entidades e relacionamentos
- Diagrama de Entidade-Relacionamento

Indicar no modelo lógico

- a) A cardinalidade dos relacionamentos
- b) O volume de cada tabela (crescimento num intervalo de tempo)
- c) O fluxo (distribuição) dos dados pelas aplicações

A desnormalização não é um processo puramente lógico nem puramente físico

Documentar

- a) Situações de desnormalização
- b) Efeitos na integridade dos dados
- Soluções para os efeitos na integridade dos dados

5

Olga Craveiro, Rosa Matias

Modelo Físico

Optimização do Modelo de Dados

Estratégias

- Reduzir o n.º de tabelas
- Armazenar atributos calculados
- Adicionar colunas redundantes
- Definir vistas e vistas materializadas
- Criar tabelas para substituir vistas
- Dividir uma tabela

Optimização do Modelo de Dados

- Reduzir o n.º de tabelas
 - Entidades com relacionamento 1:1
 - Entidades com relacionamento 1:N (sem participação obrigatória do lado N)
 - Entidades com relacionamento M:N
 - Hierarquias com aplicação da alternativa C
- Armazenar atributos calculados
- Adicionar colunas redundantes
 - Atributos multivalor
 - Propagar chaves estrangeiras e/outras colunas

© Olga Craveiro, Rosa Matias

Optimização do Modelo de Dados

Estratégias

- Definir vistas e vistas materializadas
 - Exemplo 1

```
CREATE VIEW v_NadComp

AS

SELECT NOME

FROM TNADADOR N

WHERE EXISTS

(SELECT *

FROM TSCORE

WHERE CODNADADOR=N.CODNADADOR

AND PCLASSIFICACAO=1);

--Basta consultar a vista

SELECT * FROM v_NadComp;
```


- Definir vistas e vistas materializadas
 - Exemplo 2

```
CREATE MATERIALIZED VIEW v_NadScore
AS
SELECT CODNADADOR, COUNT(*)
FROM TSCORE
GROUP BY CODNADADOR;

--Basta consultar a vista
SELECT * FROM v_NadScore;

--Actualiza os dados
REBUILD v_NadScore;
```

© Olga Craveiro, Rosa Matias

Optimização do Modelo de Dados

Estratégias

- Criar tabelas para substituir vistas
 - consultas que envolvem várias tabelas e milhares ou mesmo milhões de registos, podem demorar várias horas, especialmente porque os mesmos dados podem estar a ser alterados durante a própria execução da consulta
- Dividir uma tabela
 - Verificar se algumas colunas/linhas são mais utilizadas que outras
 - Na divisão deve existir uma vista para acesso a todos os dados em todas as tabelas
 - Vertical
 - Horizontal

Estratégias

- Dividir uma tabela
 - Vertical
 - frequência de acesso a colunas é muito diferente de coluna para coluna
 - reduz-se o número de páginas/blocos de memória que é necessário ler pois as linhas ocupam menos espaço
 - acesso a todos os dados usando a operação JUNÇÃO
 - Particularmente interessante quando existem colunas que armazenam grandes quantidades de texto. Se esses campos forem raramente acedidos, então, podem ser colocados numa tabela à parte

TB			
Col1	Col2	Col3	Col4

VS1							
Col1	Col2	Col3					

Olga Craveiro, Rosa Matias

12

Optimização do Modelo de Dados

Estratégias

- Dividir uma tabela
 - Vertical
 - Exemplo

in livro "Database Administration: The Complete Guide to Practices and Procedures", C. S. Mullins

```
CREATE TABLE ITEM (
    ItemNum INTEGER,
    ItemSize CHAR(1),
    ItemColor CHAR(10),
    ItemDescr CHAR(100),
    (...)
);
```



```
CREATE TABLE ITEM (
    ItemNum INTEGER,
    ItemSize CHAR(1),
    ItemColor CHAR(10),
    (...)
);

CREATE TABLE ITEM_DESC (
    ItemNum INTEGER,
    ItemDesc CHAR(90),
    (...)
);
```


- Dividir uma tabela
 - Horizontal
 - divisão dos registos por tabelas consoante a sua classificação, indicada por uma coluna
 - acesso a todos os dados usando a operação UNIÃO

Col1 Col2 Col3 Col4

HS1			
Col1	Col2	Col3	Col4

HS2							
Col1	Col2	Col3	Col4				

14 Olga Craveiro, Rosa Matias

Optimização do Modelo de Dados

Processo de desnormalização

Modelo Conceptual

- Análise de Requisitos
- Identificar/caracterizar entidades e relacionamentos
- Diagrama de Entidade-Relacionamento

Indicar no modelo lógico

- a) A cardinalidade dos relacionamentos
- b) O volume de cada tabela (crescimento num intervalo de tempo)
- c) O fluxo (distribuição) dos dados pelas aplicações

A desnormalização não é um processo puramente lógico nem puramente físico

Documentar

- a) Situações de desnormalização
- b) Efeitos na integridade dos dados
- Soluções para os efeitos na integridade dos dados

© Olga Craveiro, Rosa Matias

Optimização do Modelo de Dados

Bibliografia

secções 1, 3 e 4 do artigo:

Denormalization Effects on Performance of RDBMS,

Lawrence Sanders & Seungkyoon Shin, Procedings of the 34th Hawai International Conference on System Science, 2001

cap. 4 do livro

Database Administration: The Complete Guide to Practices and Procedures, C. S. Mullins, Addison-Wesley Pub. Co, 2nd edition (2013)

cap. 5 do livro

Oracle Performance Tuning, M. Gurry & P. Corrigan, O'Reilly