Secure Communications

Attacks Against One Time Pad

MSc in Information Security & Digital Forensics.

Mark Cummins

Review

- Cipher over (K,M,C): a pair of "efficient" algs (E, D) s.t.
 - \forall m \in M, k \in K: D(k, E(k, m)) = m
- Weak ciphers: subs. cipher, Vigener, ...
- A good cipher: **OTP** $M=C=K=\{0,1\}^n$

$$E(k, m) = k \oplus m$$
, $D(k, c) = k \oplus c$

- Lemma: OTP has perfect secrecy (i.e. no CT only attacks)
- Bad news: perfect-secrecy ⇒ key-len ≥ msg-len

Mark Cummins

Steam Ciphers: Making OTP Practical

Idea: replace "random" key by "pseudorandom" key

A Pseudo random generator (PRG) take an input (seed) and generators a random steam of output.

It is computed by a deterministic algorithm.

We basically use the output from our PRG as if it were our key to a OTP.

Real key would have been out input to the PRG, our **seed** and would be much shorter than any key needed for a OTP

Mark Cummins

Steam Ciphers: Making OTP Practical

Can a stream cipher have perfect secrecy?

- Yes, if the PRG is really "secure"
- No, there are no ciphers with perfect secrecy
- Yes, every cipher has perfect secrecy
- No, since the key is shorter than the message

Mark Cummins

Weak PRGs

Stream cipher: $E(k,m) = m \oplus G(k)$, $D(k,c) = c \oplus G(k)$

Security: PRG must be unpredictable

We should never use weak PRGs, as these make the entire stream cipher insecure.

Some weak PRGs are commonly used and should be avoided:

Random(), should never be used for crypto (Kerberos V4) linear congruential generator

Mark Cummins

Attack 1: Two time pad is insecure!!

Never use stream cipher key more than once!!

$$C_1 \leftarrow m_1 \oplus PRG(k)$$

$$C_2 \leftarrow m_2 \oplus PRG(k)$$

Eavesdropper does:

$$C_1 \oplus C_2 \rightarrow m_1 \oplus m_2$$

Enough redundancy in English and ASCII encoding that:

$$m_1 \oplus m_2 \rightarrow m_1, m_2$$

Mark Cummins

Real World Examples

- Project Venona
- MS-PPTP (windows NT)
- 802.11b WEP
- Disk Encryption

Mark Cummins

Two Time Pad: Summary

- Never use stream cipher key more than once!!
- Network traffic: negotiate new key for every session (e.g. TLS)
- Disk encryption: typically do not use a stream cipher

Mark Cummins

Attack 2: No Integrity (OTP is malleable)

Modifications to ciphertext are undetected and have predictable impact on plaintext

Mark Cummins

Attack 2: No Integrity (OTP is malleable)

Modifications to ciphertext are undetected and have predictable impact on plaintext

Mark Cummins

Secure Communications

Thank You!

End of Section

Mark Cummins