V.Barbera - Chimica Generale - Esame del 28.08.2021

Nome

Cognome

Matricola

ESERCIZIO 1

Data la costante di equilibrio per una delle reazioni sottoelencate, determinare il valore della costante di equilibrio incognita. N_2O_4 (g) \rightleftarrows 2 NO_2 (g) $K_c = 1.4 5 N_2O_4$ (g) \rightleftarrows 10 NO_2 (g) $K_c = ?$

A. 1.

B. 0.2

C.5.63

D.1.4

E. 7

ESERCIZIO 2

Calcolare la concentrazione molare di ioni idronio in una soluzione acquosa che contiene 2.50 \times 10⁻⁶ M di ioni idrossido.

A. 5.00×10^{-9} M

B. 4.00×10^{-8} M

C. 4.00×10^{-7} M

D. Nessuna delle altre risposte è corretta

E. 4.00×10^{-9} M

ESERCIZIO 3

Che cosa si sviluppa agli elettrodi in seguito l'elettrolisi di una soluzione 0,1 M di NaCI?

- A. Si sviluppa Cl₂ al catodo e O₂ all'anodo
- B. Si deposita Na al catodo e si sviluppa O₂ all'anodo
- C. Si sviluppa H₂ al catodo e O₂ all'anodo
- D. Si sviluppa Cl₂ al catodo e H₂ all'anodo
- E. Si sviluppa H2 al catodo e Cl2 all'anodo

Qual è la solubilità del bromuro di argento a 25 °C? Il prodotto di solubilità di tale sale è pari a 5.0 × 10⁻¹³ a 25 °C.

- A. 5.0×10^{-5} M
- B. 7.1×10^{-7} M
- C. 5.0×10^{-13} M D. 2.5×10^{-13} M
- $E. 4.2 \times 10^{-4} M$

ESERCIZIO 5

Qual è l'espressione del prodotto di solubilità per Fe(OH)₃?

- A. $K_{ps} = [Fe^{3+}] [3 OH^{-}]$ B. $K_{ps} = [Fe^{3+}] [3 OH^{-}]^{3}$ C. $K_{ps} = [Fe^{3+}] [OH^{-}] [Fe(OH)_{3}]^{-1}$ D. $K_{ps} = [Fe(OH)_{3}] [Fe^{3+}]^{-1} [OH^{-1}]^{-1}$ E. $K_{ps} = [Fe^{3+}] [OH^{-}]^{3}$

ESERCIZIO 6

Una cella voltaica è costruita con due semielementi argento-cloruro di argento e la semireazione è:

AgCl (s) + $e^- \rightarrow Ag$ (s) + Cl⁻ (ag) $E^\circ = +0.222 \text{ V}$ Le concentrazioni degli ioni cloruro nelle due semicelle sono rispettivamente 0.0222 M and 2.22 M. La f.e.m. della cella vale V.

- A. 0.118
- B. 0.212
- C. 0.00222
- D. 0.232
- E. 22.2

Quanti grammì di $CaCl_2$ si formano quando 15.00 mL di una soluzione 0.00237 M di $Ca(OH)_2$ reagiscono con un eccesso di Cl_2 gassoso? 2 $Ca(OH)_2$ (aq) + 2 Cl_2 $(g) \rightarrow Ca(OCl)_2$ $(aq) + CaCl_2$ (s) + 2 H_2O (I) **Pesi atomici:** Ca = 40.078 g/mol, CI = 35.453 g/mol

- A. 0.0507 q
- B. 0.00789 q
- C. 0.507 g
- D. 0.00394 g
- E. 0.00197 q

ESERCIZIO 8

Dopo aver bilanciato la reazione: $PbO_2(s) + H_2C_2O_4(aq) + HCl(aq) \rightarrow PbCl_2(s) + CO_2(aq) + H_2O(l)$ con i più piccoli numeri interi, individuare i coefficienti stechiometrici che risultano, nell'ordine, per PbO_2 e CO_2 .

- A. 2 e 4
- B. 2 e 1
- C. 2 e 2
- D. 1 e 2
- E. 1 e 1

ESERCIZIO 9

Bilanciare la seguente reazione che avviene in soluzione acida. Quali sono i coefficienti davanti a $H_2C_2O_4$ e H_2O nella reazione bilanciata?

$$MnO_4^-$$
 (aq) + $H_2C_2O_4$ (aq) $\to Mn^{2+}$ (aq) + CO_2 (g)

- A. $H_2C_2O_4 = 3$, $H_2O = 2$
- B. $H_2C_2O_4 = 1$, $H_2O = 1$
- C. $H_2C_2O_4 = 5$, $H_2O = 1$
- D. $H_2C_2O_4 = 1$, $H_2O = 4$
- E. $H_2C_2O_4 = 5$, $H_2O = 8$

Un solido, che si sciolga in esano e non in acqua, è probabile che sia un solido:

- 1) ionico
- 2) covalente
- 3) molecolare
- 4) metallico
- 5) amorfo
 - A. 5
 - 8.4
 - C. 3
 - D. 1
 - E. 2

ESERCIZIO 11

Calcolare il pH di una soluzione acquosa di acido carbonico 0.080 M.

 H_2CO_3 (aq), che ha le seguenti costanti di dissociazione acida $K_{a1}=4.3\times10^{-7}$ e $K_{a2}=5.6\times10^{-11}$

- A. 3.73
- B. 6.37
- C. 10.25
- D. 7.00
- E. 1.10

ESERCIZIO 12

Date le seguenti costante di dissociazione degli acidi

$$K_a (H_3PO_4) = 7.5 \times 10^{-3}$$

$$K_a (NH_4^+) = 5.6 \times 10^{-10}$$

Determinare la costante di equilibrio a 25 °C per la reazione:

$$H_3PO_4$$
 (aq) + NH_3 (aq) $\rightleftharpoons NH_4^+$ (aq) + $H_2PO_4^+$ (aq)

- A. 4.2×10^{2}
- B. 2.4×10^{8}
- C. 7.5×10^{-8}
- D. 4.2×10^{-12}
- E. 1.3×10^7

Considera l'equilibrio PCI_3 $(g) + CI_2$ $(g) \rightarrow PCI_5$; $\Delta H = -92$ kJ La concentrazione all'equilibrio di PCI_3 può essere aumentata attraverso:

- A. diminuendo la temperatura
- B. aggiungendo PCl₅ al sistema
- C. aggiungendo un catalizzatore
- D. aggiungendo Cl₂ al sistema
- E. aumentando la pressione

ESERCIZIO 14

Quale/i dei seguenti acidi presenta/no la base coniugata più forte?

- 1) HCI
- 2) H₂SO₄
- 3) H₂O
- 4) CH₃COOH
 - A. 1, 2
 - B. 1
 - C. 2
 - D. 3
 - E. 4

Calcolare il ΔS° della seguente reazione. Gli S° delle varie specie sono indicati sotto la reazione.

 $P_4(g) + 10 Cl_2(g) \neq 4 PCl_5(g)$

S°(J/mol·K)

 $P_4(g) = 280.0$

 $Cl_2(g) = 223.1$

 $PCl_5(g) = 364.6$

- A. +2334.6 J/K
- B. -583.6 J/K
- C. +171.3 J/K
- D. -1052.6 J/K
- E. -138.5 J/K

ESERCIZIO 16

Quanti protoni, elettroni e neutroni, rispettivamente, contiene il 81Br

- A. 35, 46, 35
- B. 35, 35, 46
- C. 35, 81, 46
- D. 35, 35, 81
- E. 46, 35, 81

ESERCIZIO 17

William Crookes fu il primo ad osservare particelle prodotte da un tubo catodico. Queste particelle sono oggi chiamate _____

- A. protoni
- B. neutrini
- C. neutroni
- D. nuclei atomici
- E. elettroni

Quale delle risposte definisce l'andamento generale del raggio atomico nella tavola periodica?

- A. Diminuisce scendendo lungo un gruppo e aumenta andando da sinistra a destra in un periodo
- B. Aumenta scendendo lungo un gruppo e diminuisce andando da sinistra a destra in un periodo
- C. Nessuna delle altre risposte
- D. Aumenta scendendo lungo un gruppo e aumenta andando da sinistra a destra in un periodo
- E. Diminuisce scendendo lungo un gruppo e diminuisce andando da sinistra a destra in un período

ESERCIZIO 19

Quale delle seguenti rappresenta la struttura di Lewis per la specie S²-?

ESERCIZIO 20

Se mescolando due liquidi A e B, la soluzione risultante si riscalda, significa che:

- A. nessuna delle altre soluzioni è corretta
- B. le interazioni fra A e B sono più deboli di quelle di A con A e di B con B
- C. le interazioni fra A e A e quelle fra B e B sono dello stesso tipo di quelle fra A e B
- D. le interazioni fra A e A e quelle fra B e B sono più forti di quelle fra A e B
- E. le interazioni fra A e A e quelle fra B e B sono meno forti di quelle fra A e B

Qual è la configurazione elettronica del guscio esterno dello iodio?

- A. $6s^2 6p^6$
- B. 5s² 5p⁴ C. 5s² 5p⁶ D. 5s² 5p⁵

- E. 6s² 6p⁵

ESERCIZIO 22

- Un legame covalente doppio è formato da di elettroni.
 - A. 3 paia
 - B. 0 paia
 - C. 4 paia
 - D. 1 paio
 - E. 2 paia

ESERCIZIO 23

L'elettronegatività è una misura:

- A. della carica negli anioni poliatomici
- B. del numero di ossidazione di un atomo molecola o ione poliatomico
- C. della carica nei cationi poliatomici
- D. dell'abilità di un atomo o molecola di attrarre elettroni a sé
- E. dell'abilità di una sostanza a condurre elettricità

Quale/i delle seguenti affermazioni riguardo al principio di esclusione di Pauli è/sono CORRETTA/E

- 1) se due elettroni occupano lo stesso orbitale devono avere spin opposto
- 2) due elettroni nello stesso atomo non possono avere gli stessi quattro numeri quantici
- 3) elettroni con spin opposti sono attratti tra di loro
- A. 2
- B. 1, 2 e 3
- C. 3
- D. 1 e 2
- E. 1

ESERCIZIO 25

Quale delle risposte definisce l'andamento generale del raggio atomico nella tavola periodica?

- A. Diminuisce scendendo lungo un gruppo e aumenta andando da sinistra a destra in un periodo
- B. Aumenta scendendo lungo un gruppo e diminuisce andando da sinistra a destra in un periodo
- C. Nessuna delle altre risposte
- D. Aumenta scendendo lungo un gruppo e aumenta andando da sinistra a destra in un periodo
- E. Diminuisce scendendo lungo un gruppo e diminuisce andando da sinistra a destra in un periodo

ESERCIZIO 26

Che pressione esercitano 50 g di ${\rm O_2}$ in un recipiente di 5 l a 25 °C?

- A. 100 Pa
- B. 1.45 atm
- C. 499 torr
- D. 7.46 atm
- E. 10.4

Determinare la quantità di HCI che si forma quando 60.0 q di BCl₃ e 37.5 q di H₂O reagiscono secondo la seguente reazione bilanciata. La massa molare di BCl₃ è 117.16 q/mol.

 $BCl_3(g) + 3 H_2O(I) \rightarrow H_3BO_3(s) + 3 HCI(g)$ **Pesi atomici:** H = 1.0079 g/mol, Cl = 35.453g/mol, O = 15.99 a/mol

- A. 56.0 g di HCl
- B. 187 g di HCl
- C. 75.9 q di HCl
- D. 132 g di HCl
- E. 25.3 g di HCl

ESERCIZIO 28

Indicare il numero delle coppie di elettroni attorno ad un atomo centrale in una molecola di geometria tetraedrica.

- A. 2
- B. 5
- C. 4
- D. 3
- E. 1

ESERCIZIO 29

Secondo il manuale dell'istituto nazionale degli standard, la costante della legge di Henry per l'ossigeno è 0.0013 mol kg⁻¹ bar⁻¹ a 25 °C. Qual è il valore della stessa costante in mol kg-1 mmHg-1? (1 bar = 0.9869 atm)

- A. 1.3×10^{-3} mol kg⁻¹ mmHg⁻¹ B. 5.8×10^{5} mol kg⁻¹ mmHg⁻¹ C. 7.6×10^{2} mol kg⁻¹ mmHg⁻¹ D. 1.7×10^{-6} mol kg⁻¹ mmHg⁻¹ E. 9.9×10^{-1} mol kg⁻¹ mmHg⁻¹

Erwin Schrödinger sviluppò un modello per il comportamento degli elettroni negli atomi che è noto come meccanica quantistica. Quale/i delle seguenti affermazioni riguardo a questo modello è/sono CORRETTA/E?

- 1) l'energia degli elettroni è quantizzata
- 2) l'energia di un elettrone è pari alla sua massa moltiplicato il quadrato della sua velocità
- 3) gli elettroni si muovono in orbite circolari attorno al nucleo
 - A. 1, 2 e 3
 - B. 1 e 2
 - C. 1
 - D. 3
 - E. 2

 $\left(\left\langle x^{m} - (n,n) \right\rangle_{2} = \left(\left\langle x^{m} - \frac{1}{2} \right\rangle_{2} + \left\langle x^{m} - \frac{1}{2} \right\rangle_{2$

- 1 1

.

.

,

-

*

Quale di questi descrive la reazione che avviene durante l'elettrolisi dell'acqua?

- A. L'ossigeno e l'idrogeno sono entrambi ridotti
- B. Nessuna delle altre risposte è corretta
- C. L'ossigeno e l'idrogeno sono entrambi ossidati
- D. L'ossigeno è ossidato e l'idrogeno è ridotto
- E. L'ossigeno è ridotto e l'idrogeno è ossidato