

UNSINKABLE VESSEL SYSTEM

BACKGROUND OF THE INVENTION

Field of the invention

[0001] This invention relates to systems which render ships and boats unsinkable.

Description of the related art

[0002] The prior art is aware of supplementary devices which inflate automatically or manually to provide additional buoyancy in the event of water leakage into the vessel. The following is a brief description of the prior art which is pertinent to the present invention.

[0003] US Pat. No. 3,121,888 to Morgan et al discloses a protected inflatable member present along the top of the outside surface of the hull. When needed, this inflatable member is filled with gas from a pressurized air cylinder in order to provide a buoyant bag along the top of the boat to keep the boat afloat

[0004] US Pat. No. 4,512,275 to Drumm discloses a boat which is unsinkable because it is made of polyethylene foam, which will not sink even though the hull becomes filled with water.

[0005] US Pat. No. 4,817,555 to Meinen discloses a boat containing a canister of compressed air which is automatically actuated by the rising of a float inside the boat. Upon opening of the canister, longitudinal bags along the top of the hull outside the boat are inflated to keep the boat afloat.

[0006] US Pat. No. 4,864,961 to Slonski discloses an auxiliary flotation apparatus for vessels which comprises canisters connected to a source of compressed air, an inclinometer, and an independent power source. When needed, the compressed air is

released into the canisters. When pressurized air enters the canisters, a projectile is propelled away from each canister. The projectile ruptures a frangible membrane located flush with the hull of the vessel. The projectile goes beyond the vessel and carries with it an attached inflatable tubular sheath. One end of the tubular sheath is attached to the hull of the vessel. The sheath becomes filled with air from the source of compressed air, providing a buoyant bag on the outside of the vessel to maintain the vessel afloat.

[0007] US Pat. No. 5,357,888 to Insinna discloses a vessel having an elongated inflatable buoyancy tube located on the outside of the hull. The tube is connected to a source of compressed air which, when automatically or manually activated, provides air to the buoyancy tube to keep the vessel afloat.

[0008] Of the above patents, one prevents boats from sinking because the boat is made from foam plastic. The other patents disclose buoyant bags fitted to the outside of the craft. These bags can do nothing to affect the entry of water into the craft, and they do no more than merely provide buoyancy.

[0009] US Pat. No. 4,458,618 to Tuffier is the prior art of which the inventor is aware which is the closest to the present invention. This patent discloses vessels having enclosed areas such as cabins. The vessels are equipped with three inflatable envelopes. A compressed air container is attached to the three envelopes so that, when needed, the envelopes may be automatically or manually inflated to render the boat buoyant. If the event causing water within the craft is a hole in the hull, the inflated envelopes do nothing to keep the water from continuing to come in. Also, repeated contact with the original cause of the damage could cause puncture of one of the envelopes, causing the boat to be capsized.

SUMMARY OF THE INVENTION

[0010] A common cause of sinking in vessels is a rupture in the hull. As a result of the rupture, water enters the hull or the space between a double-walled hull and replaces the air. The added weight of the water eventually causes the vessel to weigh more than its volume of water, and sinking results. A way to avoid sinking is to provide bags of air either within the confines of the hull of the vessel or between the walls of a double-hulled vessel. These bags may provide the necessary buoyancy to keep the vessel afloat and/or apply sufficient pressure against the hull as to prevent the entry of water. It is the purpose of the present invention to provide three alternative systems for performing these functions. The time required for a ship to sink is related to the size of the ship and the size of rupture. According to the present invention, while water is filling the hull, air is being forced into air bags by a compressor. Ultimately, the buoyant effect of the filling air bags will meet with the sinking effect of the incoming water. As the compressor is able to compress air at a higher pressure than the incoming water, the bags will begin to expand into areas occupied by water and to push water back out of the rupture. According to the present invention, the air bags are mounted so that when inflated to a maximum pressure, they will be six inches from the inner wall of the hull. This distance reduces the possibility of a piercing of the bags by jagged edges of the rupture while rendering the vessel sufficiently buoyant to remain afloat and operative. The system of the present invention thus gives the crew adequate time to repair the rupture and render the vessel seaworthy.

BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is an elevational rear view of a vessel of the first embodiment of this invention, partly in cut-away, illustrating a deflated bag during storage, an air compressor, a compression chamber, and a time valve.

[0012] Fig. 2 is an elevational side view of a vessel of the first embodiment of this invention, partly in cut-away, illustrating a deflated bag during storage, an air compressor, a compression chamber, and a time valve. The vessel is shown as having a rupture.

[0013] Fig. 3 is an elevational front view of a vessel of the first embodiment of this invention, partly in cut-away, illustrating a deflated bag during storage. The craft is shown as having a rupture.

[0014] Fig. 4 is a cut-away bottom view of a vessel of the first embodiment of this invention illustrating a deflated bag during storage. The bag is held by tie-down straps. Also illustrated are diameter restrictor/gauge tracks and airbag diameter securing fasteners.

[0015] Fig. 5 is an elevational rear view of a vessel of the first embodiment of this invention, partly in cut-away, illustrating a fully inflated airbag following activation of the system of the present invention.

[0016] Fig. 6 is an elevational side view, partly in cut away, of a vessel of the first embodiment of this invention illustrating a fully inflated airbag pushing water out through a rupture.

[0017] Fig. 7 is an elevational front view of a vessel of the first embodiment of this invention, partly in cut-away, illustrating a fully inflated airbag pushing water out through a rupture.

[0018] Fig. 8 is a cut-away bottom view of a vessel of the first embodiment of this invention illustrating an inflating airbag expanding on diameter restrictor/gauge tracks, an air compressor, and a compression chamber.

[0019] Fig. 9 is an elevational rear view of a vessel of the second embodiment of this invention, partly in cut-away, illustrating a deflated bag during storage, an air compressor, a compression chamber, and a time valve.

[0020] Fig. 10 is an elevational side view of a vessel of the second embodiment of this invention, partly in cut-away, illustrating a deflated bag during storage, an air compressor, a compression chamber, and a time valve. The vessel is shown as having a rupture.

[0021] Fig. 11 is an elevational front view of a vessel of the second embodiment of this invention, partly in cut-away, illustrating a deflated bag during storage. The craft is shown as having a rupture.

[0022] Fig. 12 is a cut-away bottom view of a vessel of the second embodiment of this invention illustrating a deflated bag during storage. The bag is held by tie-down straps. Also illustrated are diameter restrictor/gauge tracks and airbag diameter securing fasteners.

[0023] Fig. 13 is an elevational rear view of a vessel of the second embodiment of this invention, partly in cut-away, illustrating a fully inflated airbag following activation of the system of the present invention.

[0024] Fig. 14 is an elevational side view of a vessel of the second embodiment of this invention, partly in cut-away, illustrating a fully inflated airbag pushing water out through a rupture.

[0025] Fig. 15 is an elevational front view of a vessel of the second embodiment of this invention, partly in cut-away, illustrating a fully inflated airbag pushing water out through a rupture.

[0026] Fig. 16 is a cut-away bottom view of a vessel of the second embodiment of this invention illustrating an inflating airbag expanding on diameter restrictor/gauge tracks, an air compressor, a compression chamber, and a time valve.

[0027] Fig. 17 is an elevational rear view of a vessel of the third embodiment of this invention, partly in cut-away, illustrating a deflated bag during storage and an air compressor.

[0028] Fig. 18 is an elevational side view of a vessel of the third embodiment of this invention, partly in cut-away illustrating a deflated bag during storage and an air compressor. The vessel is shown as having a rupture.

[0029] Fig. 19 is an elevational front view of a vessel of the third embodiment of this invention, partly in cut-away, illustrating a deflated bag during storage. The craft is shown as having a rupture.

[0030] Fig. 20 is a cut-away bottom view of a vessel of the third embodiment of this invention illustrating a deflated bag during storage. The bag is held by tie-down straps. Also illustrated are diameter restrictor/gauge tracks and airbag diameter securement fasteners.

[0031] Fig. 21 is an elevational rear view of a vessel of the third embodiment of this invention, partly in cut-away, illustrating fully inflated airbags following activation of the system of the present invention.

[0032] Fig. 22 is an elevational side view of a vessel of the third embodiment of this invention, partly in cut-away, illustrating fully inflated airbags pushing water out through a rupture.

[0033] Fig. 23 is an elevational front view of a vessel of the third embodiment of this invention, partly in cut-away, illustrating fully inflated airbags pushing water out through a rupture.

[0034] Fig. 24 is a cut-away bottom view of a vessel of the third embodiment of this invention illustrating inflating airbags expanding on diameter restrictor/gauge tracks and an air compressor.

[0035] Fig. 25 is an elevational bottom view of a diameter restrictor/gauge track and an airbag diameter securement latch device coupled to it illustrating the relaxed position of the airbag diameter securement latch device secured into a fixed diameter setting and springs.

[0036] Fig. 26 is an elevational bottom view, partly in cut-away, of a diameter restrictor/gauge track and an airbag diameter securement latch device coupled to it riding the narrow neck to snap into the next setting. The Fig. illustrates the compression of a spring-loading mechanism.

[0037] Fig. 27 is an elevational side view of an air compressor illustrating generator impellers, a partial view of the control panel, and cold air input for the heating elements.

[0038] Fig. 28 is an elevational top view of an air compressor, partly in cut-away, illustrating inner gears, a generator, and an air filter.

[0039] Fig. 29 is an elevational side view of a clutch device used in this invention.

[0040] Fig. 30 is an elevational side view of a primary conduit, a secondary conduit, and an inter-bag valve.

[0041] Fig. 31 is an elevational side view, partly in cut-away, of a vessel containing the warning system which is part of this invention.

[0042] Fig. 32 is an elevational front view of sonar equipment which may be used in this invention.

[0043] Fig. 33 is an elevational perspective view of sonar equipment which may be used in this invention.

[0044] Fig. 34 is an elevational exploded front view of sonar equipment which may be used in this invention.

[0045] Fig. 35 is an elevational exploded perspective view of sonar equipment which may be used in this invention.

[0046] Fig. 36 is a rear elevational view, partly in cut-away showing a re-entry system of the present invention.

[0047] Fig. 37 is a side elevational view, partly in cut-away, showing a re-entry system of this invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0048] The present invention will now be more fully described with reference to the above drawing, wherein like identifying numerals refer to like parts throughout.

[0049] Prior to the discussion of the separate embodiments of this invention, the different parts of the system of a vessel 2 will be discussed.

[0050] The separate parts of the system are at least one air compressor 4, a compression chamber 6, a compressor/propeller clutch 8, at least one inflatable airbag 10, heating elements 12, and a diameter restrictor/gauge track 14. Additional features of this invention include sonar warning system 16 for warning to avoid potential harm to the vessel 2 and a re-entry system 18 which transfers air from the inflated airbags 10 to the inside of a repaired vessel 2.

[0051] It has been seen that the systems of the prior art, especially those systems used for smaller boats wherein the airbags are on the outside of the boat, use air or other gas provided from a gas cylinder. The system of the present invention is intended for use in larger vessels 2 where size and weight of the vessel would be considerably higher and wherein gas cylinders could not supply adequate volumes of air. Thus, in the present invention, an air compressor 4 is used. Two types of air compressors are preferred, each having its own strengths and preferred times of use. Each of these air compressors is made of plastic or metal. Plastic is preferred as plastic is not affected by the sea air and water while metal is and plastic is lighter in weight than metal of a corresponding strength.

[0052] The first type of air compressor 4 is a large impeller 20-equipped compressor 4 which is capable of moving large quantities of air from the surrounding atmosphere to the compression chamber 6. This compressor 4 contains multiple long, overlapping impeller blades 20. It powers a generator 22 through electromagnetic induction provided by the vessel's 2 engine 24 through a clutch 8 to supply power to heating elements 12 for use when needed and to the control panel 28. The control panel supplies activation controls and diameter indicator lights which indicate the position of

the air bag 10 along the diameter restrictor/gauge track 14. The compressor 4 is connected to a control panel 28 which provides switches for the activation of the system and/or to determine the position of the inflatable bags 10 through indicator lights connected to sensors located on the diameter restrictor/gauge tracks 14. The air compressor 4 is bolted down on the deck above the engine 24. A long axle 30 extends from the air compressor 4 into a clutch 8 device which is attached to the axles 32 connecting the engine 24 and propeller (not shown). An electric motor (not shown) is provided to power the air compressor 4 in the event of failure of the vessel's 2 engine 24. The electric motor provides a back-up system in the event of engine 24 failure. An electric cord connects the electric motor to the vessel's 2 batteries allowing the motor to spin the compressor's 4 impellers 20 as needed. To lessen the load on the electric motor, a ratchet clutch in the compressor 4 may disengage the shaft to the compressor/propeller clutch 8.

[0053] The first type of air compressor 4 is responsible for building up the necessary compression for the initial filling of the inflatable bags 10.

[0054] A second type of air compressor (not shown) may optionally be used in unison with the first type of compressor 4. The second type, a piston air compressor, may be initiated when the impeller compressor 4 has reached its maximum compression. The piston compressor is slower, but is capable of generating higher compression values. Both the impeller compressor 4 and the piston compressor are known in the art and need not be further detailed.

[0055] The compressors 4 feed atmospheric air under pressure into compression chambers 6. The compression chambers 6 are capable of holding large amounts of air

under high pressure. A large diaphragm 34 makes up part of one wall of the compression chamber 6. There are three valves in the compression chamber 6. The first is a time valve 36 which opens and closes at pre-determined intervals set at the control panel 28. This valve 36 allows pressurized air to be stored and released into the inflatable bags 10. The second is made up by the throat for the piston-type compressor (not shown). The third valve is the bypass valve (not shown) for exhaust gasses. Each compression chamber 6 has two water sensors (not shown) inside the chamber 6, one just below, and one just above, the time valve 36. When water is sensed, indicating the presence of water in the compression chamber 6, a signal is sent to the control panel 28 to shut down the system. This signal may be overridden by a crew member. The closing down of the system is a safety feature which prevents the taking on of water by the air compressor 4 and air compression chamber 6 in the event the vessel 2 becomes submerged or overturned. By stopping the system, the inflatable airbags 10 will retain whatever air they have rather than have the bags 10 filled with water. This feature allows the vessel 2 to maintain whatever buoyancy has been provided by the air already introduced into the system.

[0056] A compressor/propeller clutch 8 is in a T-shaped housing and permits independent or simultaneous operation of the air compressor 4 impellers 20 and propellers (not shown) for the vessel 2. A toothed gear axle 30 from the compressor 6 is attached to this clutch 8 which, in turn, is attached to the driveshaft 32 of the vessel's 2 engine 24 to turn the vessel's 2 propellers (not shown). The electrically controlled clutch 8 can be set at the control panel to run either or both the vessel's 2 propellers (not shown) and the air compressor's 4 impellers 20.

[0057] Inflatable airbags 10 are large airbags 10 made of tear- and puncture-resistant material. A wide variety of materials may be used to prepare the bags 10. Metal foil, especially aluminum foil is one example. Multi-ply rubber and canvas are other examples. The most preferred material is KEVLAR, noted for its strength and ability to resist punctures. In this respect, any one bag 10 may have multiple layers. The bags 10 may be single bags 10 or have a bag-in-a-bag configuration. The inflatable bags 10 are adapted to be inflated from an outside source of air. Thus, in the event the vessel 2 is sunk or overturned, the inflatable bags 10 may be filled with air by connecting a hose to the intake port of the compression chamber 6 and supplying pressurized air to fill the inflatable bags 10 to add buoyancy to the vessel 2.

[0058] In addition to being inflated by air from the compression chamber 6, the inflatable airbags 10 may be inflated by using the exhaust gasses from the vessel's engine 24.

[0059] The inflatable airbags 10 are provided with sealed, water-proof heating elements 12. These elements 12 heat and expand the air in the bags 10 in the event a larger volume or degree of compression of the air in the bags 10 is required. Thus, if the rupture is so large that the incoming water is greater in volume than the air introduced into the airbags 10 by the compressor 4, the air in the bags 10 is heated to expand it and so provide a larger volume effect. The uninflated bags 10 are held in place by tie-down straps 38 which snap upon inflation of the bags 10.

[0060] The operation of the diameter restrictor/gauge track 14 and associated airbag diameter securement latch device 40 may be best understood with reference to Figs. 25 and 26. The diameter restrictor/gauge track 14 is a slotted track on which the

inflatable bag 10 rides as it is expanding toward maximum inflation. The airbag diameter securement latch devices 40 possess spring-loaded adjusting rings 42. The airbag diameter securement latch devices 40 attach the inflatable bags 10 to the diameter restrictor/gauge track 14. The track 14 provides large orifices 44 in which the male protruding nub (not shown) of the airbag diameter securement latch device 40 is secured in a relaxed manner, allowing the buildup of air pressure. Pressure from the air compressor 4 forces the airbag diameter securement latch device 40 along the track 14 to larger diameter settings. In doing so, the spring-loaded adjusting ring 42 of the airbag diameter securement latch device 40 is compressed, which causes it to go into the narrow passage 46 and ultimately into the next large relaxed orifice 44 setting where it snaps back open, securing the position of the inflatable bag 10 until increased back pressure becomes so great as to push it through the next narrow passage 46.

[0061] Each bag 10 contains a diameter track guide/securement latch 48, which is a coupling attaching the airbag 10 to the tracks 14 at the perimeter of the airbag 10 which rides along the tracks 14. As noted above, pressure within the airbag 10 overcomes the resistance of the tracks 14 by forcing the spring-loaded adjustment ring 42 of the airbag securement latch device 40 to compress and ride through the narrow passages 46, snapping into the next large orifice 44.

[0062] In each of the embodiments, the inflatable bag 10 may be placed between the inner 50 and outer 52 walls of the hull 54 or may be placed in the open space of the interior 56 of the vessel 2. It is required that the space for the bag 10 be enclosed so that the bag 10, upon inflating, will not expand into the atmosphere surrounding the vessel 2 but will tend to form pressure against the inner 50 and/or outer wall 52 of the hull 54.

[0063] When the inflatable bag 10 is located in the interior 56 of the vessel 2, it will, upon inflating, form pressure against the inner aspect of the inner wall 50 of the hull 54 and lend buoyancy to the interior 56 of the vessel 2. When forming pressure against the inner wall 50 of the hull 54, water is kept from entering the interior 56 of the vessel 2.

[0064] When the inflatable bag 10 is located between the inner 50 and outer 52 walls of the hull 54, it will, upon inflating, form pressure against both the inner 50 and outer 52 walls of the hull 54 and lend buoyancy to the space between the inner 50 and outer 52 walls of the hull 54. When forming pressure against the inner 50 and outer 52 walls of the hull 54, water is kept from entering the space between the inner 50 and outer 52 walls of the hull 54 and is kept from entering the interior 56 of the vessel 2.

[0065] The first embodiment will now be described with reference to Figs. 1-8.

[0066] In the first embodiment, a series of single bags 10 (as opposed to a bag within a bag) is deployed on the diameter restrictor/gauge track 14 by the airbag securing latch device 40. The bags 10 are deployed on the interior of the hull 54. Upon activation, the compressor 4 forces air under pressure into the compression chamber 6. The time valve 36 of the compression chamber 6 opens at designated time intervals which vary according to the size of the vessel 2. Upon opening of the time valve 36, air is sent through primary conduits 58 (pipes and/or hoses) to the inflatable bags 10. The primary conduits 58 branch off into secondary conduits 60 which contain one-way valves (not shown). These valves prevent the loss of air in the remainder of the system in the event one bag 10 is ruptured. Inflation of the inflatable bags 10 adds buoyancy to the vessel 2 to keep it afloat. In the event the rupture to the hull 54 has penetrated both the inner 50 and outer 52 wall of the hull 54, the pressure of a bag 10

against the inner aspect of the inner wall 50 of the hull 54 will tend to confine the water to the space between the inner 50 and outer 52 walls of the hull 54. In the event the inflatable bag ruptures 10, the continued feeding of pressurized air to the ruptured bag 10 will result in the feeding of air to a sealed-off compartment of the vessel 2. This will tend to prevent complete flooding of the compartment.

Sub A1

[0067] In the second embodiment, a series of three-chambered main airbags 62 (a bag-within-a-bag-within-a-bag) having an inner chamber 64, a central chamber 66, and an outer chamber 68 along with smaller auxiliary inflatable bags 70 at the top of the main bags 62 is deployed on the diameter restrictor/gauge track 14 by the airbag securement latch device 40. The bags 62, 70 are deployed on the interior of the hull 54. Upon activation, the compressor 4 forces air under pressure into the compression chamber 6. The time valve 36 of the compression chamber 6 opens at designated time intervals which vary according to the size of the vessel 2. Upon opening of the time valve 36, air is sent through primary conduits 58 (pipes and/or hoses) to the inflatable bags 10. The primary conduits 58 branch off into secondary conduits 60 which contain one-way valves. These valves prevent the loss of air in the remainder of the system in the event one bag 62, 70 is ruptured. As shown in Fig. 30, the system having three-chambered bags 62 contains a series of inter-bag valves 72 which separate the chambers 64, 66, 68 from each other. These valves 72 permit the inner chambers 64 to be filled first as ports 74 to these chambers 64 are free. After the inner chamber 64 is pressurized to its maximum capacity, a butterfly valve (not shown) seals the port to the inner chamber 64 to shut off and lock this port so that no air can leave or enter the inner chamber 64 and all additional air from the compressor 4 is directed into the central 66 and outer 68

chambers. The central 66 and outer 68 chambers also contain butterfly valves that seal the ports to these chambers 66, 68 when maximum pressure is attained. These valves are spring loaded and are capable of reopening to allow the entrance of air if the pressure in the chambers 64, 66, 68 drops below the set maximum pressure. However, the entrance ports 76, 78 to the central 66 and outer 68 chambers of the three-chambered bags 62 are later pressure-loaded to the maximum pressure setting of the inner chambers 64. After the maximum pressure setting of the inner chamber 64 is attained, a butterfly valve (not shown) seals the port 74 to the inner chamber 64 so that no air can leave or enter the inner chamber 64 and all additional air from the air compressor 4 is directed into the central chamber 66 and then into the main outer chamber 68. The central chamber 66 and the main outer chamber 68 possess reverse butterfly valves (not shown) which close when maximum pressure is attained. These valves may be reopened if the pressure within the controlled chamber 66, 68 drops below the maximum setting. These valves are electrically connected to the compressor 4 controls so that the compressor 4 may be shut down when all of the valves are closed and is opened when one or more of the valves is opened. Inflation of the inflatable bags 62, 64 adds buoyancy to the vessel 2 to keep it afloat. In the event rupture to the hull 54 has penetrated both the inner 50 and outer 52 wall of the hull 54, the pressure of a bag 62, 70 against the inner aspect of the inner wall 50 of the hull will tend to confine the water to the space between the inner 50 and outer 52 walls of the hull 54. In the event the outer chamber 68 of the main bag 62 ruptures, the presence of inflated central 66 and inner 64 chambers and auxiliary bags 70 will maintain pressure against the inner aspect of the inner wall 50 to continue to

a
cont

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
66410
66411
66412
66413
66414
66415
66416
66417
66418
66419
66420
66421
66422
66423
66424
66425
66426
66427
66428
66429
66430
66431
66432
66433
66434
66435
66436
66437
66438
66439
66440
66441
66442
66443
66444
66445
66446
66447
66448
66449
66450
66451
66452
66453
66454
66455
66456
66457
66458
66459
66460
66461
66462
66463
66464
66465
66466
66467
66468
66469
66470
66471
66472
66473
66474
66475
66476
66477
66478
66479
66480
66481
66482
66483
66484
66485
66486
66487
66488
66489
66490
66491
66492
66493
66494
66495
66496
66497
66498
66499
664100
664101
664102
664103
664104
664105
664106
664107
664108
664109
664110
664111
664112
664113
664114
664115
664116
664117
664118
664119
664120
664121
664122
664123
664124
664125
664126
664127
664128
664129
664130
664131
664132
664133
664134
664135
664136
664137
664138
664139
664140
664141
664142
664143
664144
664145
664146
664147
664148
664149
664150
664151
664152
664153
664154
664155
664156
664157
664158
664159
664160
664161
664162
664163
664164
664165
664166
664167
664168
664169
664170
664171
664172
664173
664174
664175
664176
664177
664178
664179
664180
664181
664182
664183
664184
664185
664186
664187
664188
664189
664190
664191
664192
664193
664194
664195
664196
664197
664198
664199
664200
664201
664202
664203
664204
664205
664206
664207
664208
664209
664210
664211
664212
664213
664214
664215
664216
664217
664218
664219
664220
664221
664222
664223
664224
664225
664226
664227
664228
664229
664230
664231
664232
664233
664234
664235
664236
664237
664238
664239
664240
664241
664242
664243
664244
664245
664246
664247
664248
664249
664250
664251
664252
664253
664254
664255
664256
664257
664258
664259
664260
664261
664262
664263
664264
664265
664266
664267
664268
664269
664270
664271
664272
664273
664274
664275
664276
664277
664278
664279
664280
664281
664282
664283
664284
664285
664286
664287
664288
664289
664290
664291
664292
664293
664294
664295
664296
664297
664298
664299
664300
664301
664302
664303
664304
664305
664306
664307
664308
664309
664310
664311
664312
664313
664314
664315
664316
664317
664318
664319
664320
664321
664322
664323
664324
664325
664326
664327
664328
664329
664330
664331
664332
664333
664334
664335
664336
664337
664338
664339
664340
664341
664342
664343
664344
664345
664346
664347
664348
664349
664350
664351
664352
664353
664354
664355
664356
664357
664358
664359
664360
664361
664362
664363
664364
664365
664366
664367
664368
664369
664370
664371
664372
664373
664374
664375
664376
664377
664378
664379
664380
664381
664382
664383
664384
664385
664386
664387
664388
664389
664390
664391
664392
664393
664394
664395
664396
664397
664398
664399
664400
664401
664402
664403
664404
664405
664406
664407
664408
664409
664410
664411
664412
664413
664414
664415
664416
664417
664418
664419
664420
664421
664422
664423
664424
664425
664426
664427
664428
664429
664430
664431
664432
664433
664434
664435
664436
664437
664438
664439
664440
664441
664442
664443
664444
664445
664446
664447
664448
664449
664450
664451
664452
664453
664454
664455
664456
664457
664458
664459
664460
664461
664462
664463
664464
664465
664466
664467
664468
664469
664470
664471
664472
664473
664474
664475
664476
664477
664478
664479
664480
664481
664482
664483
664484
664485
664486
664487
664488
664489
664490
664491
664492
664493
664494
664495
664496
664497
664498
664499
664500
664501
664502
664503
664504
664505
664506
664507
664508
664509
664510
664511
664512
664513
664514
664515
664516
664517
664518
664519
664520
664521
664522
664523
664524
664525
664526
664527
664528
664529
664530
664531
664532
664533
664534
664535
664536
664537
664538
664539
664540
664541
664542
664543
664544
664545
664546
664547
664548
664549
664550
664551
664552
664553
664554
664555
664556
664557
664558
664559
664560
664561
664562
664563
664564
664565
664566
664567
664568
664569
664570
664571
664572
664573
664574
664575
664576
664577
664578
664579
664580
664581
664582
664583
664584
664585
664586
664587
664588
664589
664590
664591
664592
664593
664594
664595
664596
664597
664598
664599
664600
664601
664602
664603
664604
664605
664606
664607
664608
664609
664610
664611
664612
664613
664614
664615
664616
664617
664618
664619
664620
664621
664622
664623
664624
664625
664626
664627
664628
664629
664630
664631
664632
664633
664634
664635
664636
664637
664638
664639
664640
664641
664642
664643
664644
664645
664646
664647
664648
664649
664650
664651
664652
664653
664654
664655
664656
664657
664658
664659
664660
664661
664662
664663
664664
664665
664666
664667
664668
664669
664670
664671
664672
664673
664674
664675
664676
664677
664678
664679
664680
664681
664682
664683
664684
664685
664686
664687
664688
664689
664690
664691
664692
664693
664694
664695
664696
664697
664698
664699
664700
664701
664702
664703
664704
664705
664706
664707
664708
664709
664710
664711
664712
664713
664714
664715
664716
664717
664718
664719
664720
664721
664722
664723
664724
664725
664726
664727
664728
664729
664730
664731
664732
664733
664734
664735
664736
664737
664738
664739
664740
664741
664742
664743
664744
664745
664746
664747
664748
664749
664750
664751
664752
664753
664754
664755
664756
664757
664758
664759
664760
664761
664762
664763
664764
664765
664766
664767
664768
664769
664770
664771
664772
664773
664774
664775
664776
664777
664778
664779
664780
664781
664782
664783
664784
664785
664786
664787
664788
664789
664790
664791
664792
664793
664794
664795
664796
664797
664798
664799
664800
664801
664802
664803
664804
664805
664806
664807
664808
664809
664810
664811
664812
664813
664814
664815
664816
664817
664818
664819
664820
664821
664822
664823
664824
664825
664826
664827
664828
664829
664830
664831
664832
664833
664834
664835
664836
664837
664838
664839
664840
664841
664842
664843
664844
664845
664846
664847
664848
664849
664850
664851
664852
664853
664854
664855
664856
664857
664858
664859
664860
664861
664862
664863
664864
664865
664866
664867
664868
664869
664870
664871
664872
664873
664874
664875
664876
664877
664878
664879
664880
664881
664882
664883
664884
664885
664886
664887
664888
664889
664890
664891
664892
664893
664894
664895
664896
664897
664898
664899
664900
664901
664902
664903
664904
664905
664906
664907
664908
664909
664910
664911
664912
664913
664914
664915
664916
664917
664918
664919
664920
664921
664922
664923
664924
664925
664926
664927
664928
664929
664930
664931
664932
664933
664934
664935

a/ cont.

maintain pressure against the incoming water, and will tend to confine the incoming water to the space between the inner **50** and outer **52** walls of the hull **54**.

[0068] In the third embodiment, a series of single bags **10** is deployed on the diameter restrictor/gauge track **14** by the airbag securement latch device **40**. The bags **10** are deployed between the inner **50** and outer **52** walls of the hull **54**. Upon opening of the time valve **36**, air is sent from the compression chamber **6** through primary conduits **58** (pipes and/or hoses) to the inflatable bags **10**. The primary conduits **58** branch off into secondary conduits **60** which contain one-way valves (not shown). These valves prevent the loss of air in the remainder of the system in the event one bag **10** is ruptured. The inflation of the inflatable bags **10** adds buoyancy to the vessel **2** to keep it afloat. The pressure of a bag **10** against the inner aspect of the outer wall **52** of the hull **54** will tend to prevent the water from entering the space between the inner **50** and outer **52** walls of the hull **54**. Should both the inner **50** and outer **52** walls of the hull **54** be ruptured, pressure of the inflatable bag **10** against the inner wall **50** of the hull **54** tends to cover the point of rupture of the inner hull and prevent water from entering the interior of the vessel.

[0069] While it is intended to present a system which will be capable of keeping a vessel **2** afloat in the event the hull **54** has been punctured, it is obvious that it is best if the system is never needed. For this reason, the inventor has coupled the above-described buoyancy system with a sonar warning system **16** to be described below.

[0070] The warning system **16** can best be understood by reference to Figs. 31-35. According to this invention, the transmitter **80** and the receiver **82** may be located in a single unit or in two separate units. Both the transmitter **80** and the receiver **82** are

located on the exterior of the vessel 2 in such a way that they may be easily removed. This includes attachment bases 84 attached to the front of the vessel 2 and a transmitter 80 and receiver 82 removably attached to the attachment bases 84. The sonar system 16 is to be used in conjunction with the buoyancy system in order to provide a safety system. The first element of the safety system warns of danger and allows the controller of the vessel 2 to avoid danger. The second element of the safety system provides for buoyancy and water elimination in the event of rupture in spite of the presence of the first element.

[0071] The deployment of the above-described system adds buoyancy to the vessel 2 and also prevents water from entering the vessel 2. This gives the crew time to make temporary repairs to the hull 54 which may be in the form of sealants or welded patches.

[0072] With reference to Figs. 36 and 37, a reentry system 18 is described which finds utility following the stopping of water intake and repair of the rupture of the hull 54. Once air in the inflatable bags 10 is no longer necessary, the air may be released through escape valves (not shown). In the event it is still necessary or desirable to have pressurized air in a compartment which has a slow leak, air may be transferred from an inflated bag 10, through the air compression chamber 6, and through an air re-entry conduit 90 to the affected sealed compartments where pressurized air is desired.

[0073] Although the invention has been described and illustrated in detail, it is to be clearly understood that the same is by way of illustration and example, and is not to be taken by way of limitation. The spirit and scope of the present invention are to be limited only by the terms of the appended claims.