다음 항목으로 이동

1.	Which notation would you use to denote the 4th layer's activations when the input is the 7th example from the 3rd mini-batch?	1/1점
	(a) a ^{(q} (13(r))	
	(a) a(₹(3)4)	
	○ a ^[7] (3)(4)	
	✓ 러보기	
	\odot 契合니다 Yes. In general $a^{[l](t)(k)}$ denotes the activation of the layer l when the input is the example k from the	
	mini-batch t .	
2.	Suppose you don't face any memory-related problems. Which of the following make more use of vectorization.	1/1점
	Batch Gradient Descent	
	Stochastic Gradient Descent, Batch Gradient Descent, and Mini-Batch Gradient Descent all	
	make equal use of vectorization. Mini-Batch Gradient Descent with mini-batch size $m/2$.	
	Stochastic Gradient Descent	
	√² 대보기	
	⊘ 맛습니다	
	Yes. If no memory problem is faced, batch gradient descent processes all of the training set in one pass, maximizing the use of vectorization.	
,	We usually choose a mini-batch size greater than 1 and less than m_i because that way we make use of	1/1점
٥.	vectorization but not fall into the slower case of batch gradient descent.	1/10
	○ False	
	True	
	₹ 터보기	
	 ♥ 맞습니다 	
	Correct. Precisely by choosing a batch size greater than one we can use vectorization; but we choose a	
	value less than m so we won't end up using batch gradient descent.	
4.	While using mini-batch gradient descent with a batch size larger than 1 but less than m, the plot of the cost function J looks like this:	1/1점
	A	
	↑W	
	1 Monte.	
	The Maria	
	te la	
	The state of the s	
	TE DE THE THE THE THE THE THE THE THE THE TH	
	Too to the second of the secon	
	Cost Cost	
	COST THE PROPERTY OF THE PROPE	
	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that?	
	$\label{thm:prop} \mbox{You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that?}$	
	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process, we should use gradient check to debug our implementation. In mini-batch gradient discort we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute	
	You notice that the value of J is not always decreasing, Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process: we should use gradient check to debug our implementation. In mini-batch gradient descent we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data.	
	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process, we should use gradient check to debug our implementation. In mini-batch gradient discort we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute	
	You notice that the value of J is not always decreasing, Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation processes we should use gradient check to debug our implementation. In mini-batch gradient descent we calculate $J(g^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph.	
	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process, we should use gradient check to debug our implementation. In immin-batch gradient descent we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph.	
	You notice that the value of J is not always decreasing, Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation processes we should use gradient check to debug our implementation. In mini-batch gradient descent we calculate $J(g^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph.	
	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process, we should use gradient check to debug our implementation. In mini-batch gradient dissent we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph.	
	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process, we should use gradient check to debug our implementation. In mini-batch gradient descrit we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. The state of the	
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process, we should use gradient check to debug our implementation. In mini-batch gradient descrit we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. The state of the	1/18
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backgropagation process we should use gradient check to debug our implementation. In mini-battor goalent descent we calculate $J(g^{(0)}, y^{(0)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. $V = V = V = V = V = V = V = V = V = V =$	1/12
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backgropagation processes we should use gradient check to debug our implementation. In mini-batch gradient discent we calculate $J(g^{(0)}, y^{(0)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. $V = V = V = V = V = V = V = V = V = V =$	1/16
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the naisy behavior. A bad implementation of the backpropagation processes we should use gradient check to debug our implementation. In minimi-batch gradient descent we calculate $J(g^{(0)}, y^{(0)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. $y^* \in M \times J$ $y^* \in M \times J$ Suppose the temperature in Casablanca over the first two days of January are the same: Jan 1st: $\theta_1 = 10^\circ C$ Jan $2\pi t : \theta_2 = 10^\circ C$ (We used Faltereiteit in the lecture, so we will use Celsius here in honor of the metric world.)	1/16
5.5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation processes we should use gradient check to debug our implementation. In mini-batch gradient discent we calculate $J(g^{(0)}, y^{(0)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. Signature $J(g^{(0)}, y^{(0)})$ where $J(g^{(0)}, y^{(0)})$ is a possible proving averages will smooth the graph. Signature $J(g^{(0)}, y^{(0)})$ signature $J(g^{(0)}, y^{(0)})$ is the data or batch the loss function doesn't have to be decreasing at each iteration. Suppose the temperature in Casablanca over the first two days of January are the same: Jan 1st: $\theta_1 = 10^{\circ}C$ We used Fahrenhet in the lecture, so we will use Celsius here in honor of the metric world.) Say you use an exponentially weighted average with $J(g^{(0)}, g^{(0)}) = 0.5$ to track the temperature: $g^{(0)} = 0.5$, $g^{(0)} = 0.5$ to track the temperature: $g^{(0)} = 0.5$, $g^{(0)} = 0.5$ to track the temperature: $g^{(0)} = 0.5$, $g^{(0)} = 0.5$ to track the temperature: $g^{(0)} = 0.5$, $g^{(0)} = 0.5$ to track the temperature: $g^{(0)} = 0.5$, $g^{(0)} = 0.$	1/18
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backgropagation process, we should use gradient check to debug our implementation. In mini-batch gradient descrit we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. $V \in V \cap $	1/18
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backgropagation processes, we should use gradient check to debug our implementation. In mini-batch gradient discent we calculate $J(g^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. PLATED TO A set of the properties of the properti	mg
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process, we should use gradient check to debug our implementation. In mini-batch gradient discent we calculate $J(\hat{y}^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. CLEXT GLET GLET Suppose the temperature in Casabianca over the first two days of January are the same: Jan 1st: $\theta_1 = 10^{\circ}C$ Jan 2nd: $\theta_2 = 10^{\circ}C$ (We used Fahrenshelt in the lecture, so we will use Celsius here in honor of the metric world.) Say you use an exponentially weighted average with $\beta = 0.5$ to track the temperature: $\eta_1 = 0$, $\eta_2 = \beta \eta_{2-1} + (1-\beta) \beta_{\beta}$, if η_2 is the value computed after day γ_2 without bias correction, and $\eta_2^{\rm cyrrected}$ is the value you compute with bias correction. That are there evalues? (From inglithe able to do this without a calculator, but you don't actually need one. Remember what bias correction is doing.)	mg
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backgropagation processes, we should use gradient check to debug our implementation. In mini-batch gradient discent we calculate $J(g^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. PLATED TO A set of the properties of the properti	mg
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backgropagation process we should use gradient check to debug our implementation. In mini-bath gradient descent we calculate $J(\hat{g}^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. $V = V = V = V = V = V = V = V = V = V =$	1/18
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backpropagation process: we should use gradient check to debug our implementation. In mini-batch gradient discent we calculate $J(g^{(t)}, y^{(t)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. YELY SQLIC 18.5. Since at each iteration we work with a different set of data or batch the loss function doesn't have to be decreasing at each iteration. Suppose the temperature in Casablanca over the first two days of January are the same: Jan $1st: \theta_1 = 10^nC$ Jan $2nd: \theta_2 = 10^nC$ (We used Fahrenheit in the lecture, so we will use Celsius here in honor of the metric world.) Say you use an exponentially weighted average with $J = 0.5$ to track the temperature: $t_1 = 0, t_1 = 0, t_2 = 0, t_3 = 0$ to $J = 0, t_3 = 0$ the value your compute with bias correction, and fast erd yay without bias correction, and gravited is the value your compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what bias correction is doing.) $v_2 = 1.0 v_3^{ormoded} = 1.5$ $v_2 = 10.0 v_3^{ormoded} = 7.5$ $v_3 = 10.0 v_3^{ormoded} = 1.0$ $v_3 = 10.0 v_3^{ormoded} = 1.0$ $v_4 = 10.0 v_3^{ormoded} = 1.0$ $v_5 = 10.0 v_3^{ormoded} = 1.0$ $v_5 = 10.0 v_3^{ormoded} = 1.0$	1/18
5.	You notice that the value of J is not always decreasing. Which of the following is the most likely reason for that? The algorithm is on a local minimum thus the noisy behavior. A bad implementation of the backgropagation process we should use gradient check to debug our implementation. In mini-batch gradient discent we calculate $J(g^{(i)}, y^{(i)})$ thus with each batch we compute over a new set of data. You are not implementing the moving averages correctly. Using moving averages will smooth the graph. $V = V = V = V = V = V = V = V = V = V =$	1/18

Adam combines the advantages of RMSProp and momentum.

Adam can contribute the hyperparameter α.

Adam can only be used with batch gradient descent and not with mini-batch gradient descent.

The most important hyperparameter on Adam is α and should be carefully tuned.

**CLM7

**CLM7

**CLM7

True. Precisely Adam combines the features of RMSProp and momentum that is why we use two-parameter β₁ and β₂, besides α.

**CLM7

*