Sep 26, 2016

Active stereo vision system for object position estimation

Lab Seminar

Han Sol Kang

Contents

Introduction

Active Stereo Vision

Progress of the Project

- Line scanning, Phase Shifting, Binary Code
- Projector Intensity Correction
- Periodic Color Code
- Experimental Results

Conclusion

Introduction

Conventional Stereo Vision

Conventional Stereo Vision

: Stereo vision is the extraction of 3D information from digital images, such as obtained by a CCD camera. **By comparing information about a scene from two vantage points**, 3D information can be extracted by examination of the relative positions of objects in the two panels. This is similar to the biological process **stereopsis**.

Introduction

Active Stereo Vision

Active Stereo Vision

: The active stereo vision is a form of stereo vision which actively employs a light such as a laser or a structured light to simplify the stereo matching problem.

Line Scanning, Phase Shifting, Binary Code

Line Scanning

$$\therefore Z = \frac{bf}{x_l - x_r}$$

Line Scanning, Phase Shifting, Binary Code

Phase Shifting – Three step algorithm

$$I_{1}(x, y) = I'(x, y) + I''(x, y) \cos[\phi(x, y) - \alpha]$$

$$I_{2}(x, y) = I'(x, y) + I''(x, y) \cos[\phi(x, y)]$$

$$I_{3}(x, y) = I'(x, y) + I''(x, y) \cos[\phi(x, y) + \alpha]$$

Using the trigonometric addition identities

cf. Four step algorithm
$$I_4 - I_2 = 2I''(x, y) \sin[\phi(x, y)]$$

$$I_1 - I_3 = 2I''(x, y) \cos[\phi(x, y)]$$

$$\frac{I_4 - I_2}{I_1 - I_3} = \frac{\sin[\phi(x, y)]}{\cos[\phi(x, y)]} = \tan[\phi(x, y)]$$

$$\begin{split} I_{1}(x,y) &= I'(x,y) + I''(x,y) \big\{ \cos[\phi(x,y)] \cos(\alpha) + \sin[\phi(x,y) \sin(\alpha)] \big\} \\ I_{2}(x,y) &= I'(x,y) + I''(x,y) \cos[\phi(x,y)] \\ I_{3}(x,y) &= I'(x,y) + I''(x,y) \big\{ \cos[\phi(x,y)] \cos(\alpha) - \sin[\phi(x,y) \sin(\alpha)] \big\} \end{split}$$

$$\begin{split} I_1 - I_3 &= 2I''(x, y) \sin[\phi(x, y)] \sin(\alpha) \\ I_2 - I_1 &= I''(x, y) \cos[\phi(x, y)] \{1 - \cos(\alpha)\} - I''(x, y) \sin[\phi(x, y)] \sin(\alpha) \\ I_2 - I_3 &= I''(x, y) \cos[\phi(x, y)] \{1 - \cos(\alpha)\} + I''(x, y) \sin[\phi(x, y)] \sin(\alpha) \\ 2I_2 - I_1 - I_3 &= 2I''(x, y) \cos[\phi(x, y)] \{1 - \cos(\alpha)\} \end{split}$$

Line Scanning, Phase Shifting, Binary Code

Phase Shifting – Three step algorithm

$$I_{1} - I_{3} = 2I''(x, y) \sin[\phi(x, y)] \sin(\alpha)$$

$$2I_{2} - I_{1} - I_{3} = 2I''(x, y) \cos[\phi(x, y)] \{1 - \cos(\alpha)\}$$

$$\frac{I_{1} - I_{3}}{2I_{2} - I_{1} - I_{3}} = \frac{2I''(x, y) \sin[\phi(x, y)] \sin(\alpha)}{2I''(x, y) \cos[\phi(x, y)] \{1 - \cos(\alpha)\}}$$

$$= \frac{\sin[\phi(x, y)] \sin(\alpha)}{\cos[\phi(x, y)] \{1 - \cos(\alpha)\}} = \frac{\sin(\alpha)}{1 - \cos(\alpha)} \tan(\phi(x, y))$$

$$\phi(x, y) = \tan^{-1} \left\{ \left[\frac{1 - \cos(\alpha)}{\sin(\alpha)} \right] \frac{I_{1} - I_{3}}{2I_{2} - I_{1} - I_{3}} \right\}$$

$$when \alpha = \frac{2\pi}{3}$$

$$\phi(x, y) = \tan^{-1} \left(\sqrt{3} \frac{I_{1} - I_{3}}{2I_{2} - I_{1} - I_{3}} \right)$$

Line Scanning, Phase Shifting, Binary Code

Phase Shifting – Three step algorithm

Line Scanning, Phase Shifting, Binary Code

Binary Code

 $2^n = X$ n: the number of image X: resolution

eg. 1024x768 : 10 images

																x8 x4 x2 x1
0	0	0	0	0	0	0	0	8	8	8	8	8	8	8	8	
0	0	0	0	4	4	4	4	0	0	0	0	4	4	4	4	
0	0	2	2	0	0	2	2	0	0	2	2	0	0	2	2	
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

Projector Intensity Correction

Left Image

Right Image

Projector Intensity Correction

Projector Intensity Correction

Projector Intensity Correction

Projector Intensity Correction

Projector Intensity Correction

Observed Intensity:

0	0	0	1	0
0	1	1	1	0
0	1	2	1	0
0	1	1	0	0
0	1	1	0	0

8	8	10	8	7
9	10	10	10	7
9	10	12	10	8
9	10	10	8	7
8	8	10	7	6

	48	50	50	49	48	
	50	56	58	58	52	
Ī	50	55	59	57	54	
Ī	50	56	57	57	53	
Ī	49	49	50	49	49	
-						•

True Intensity:

0

10

50

data size: 256x4240x2824x2

Periodic Color Code

Periodic Color Code

Stereo matching using line scanning

Stereo matching using periodic color code

matching using coded pattern

Periodic Color Code

Flow Chart

*PCC : Periodic Color Code

Periodic Color Code

Processing ROI

ROI image

Periodic Color Code

Processing ROI

Original Image

Projection Image

Processing ROI

Periodic Color Code

Disparity ROI

Periodic Color Code

Decoding

Periodic Color Code

Decoding

Periodic Color Code

Decoding

Experimental Results

Intensity Correction

Corrected:

True Intensity: 51

True Intensity: 81

Experimental Results

Line Scan method

2448x2048

Experimental Results

Phase Shifting method

Uncorrected unwrapping

Corrected unwrapping

Experimental Results

Phase Shifting method

2448x2048

Experimental Results

Binary Code method

2448x2048

Conclusion

- Measure the 1mm thick object
- Perform the intensity correction of projector
- Propose the PCC method

