APPENDIX L

ANSWERS TO SELECTED PROBLEMS

CHAPTER 1

- 1.1 (a) 5 mA; (b) 5 k Ω ; (c) 1 V; (d) 10 mA
- 1.3 (a) 5 V, 25 mW; (b) 5 k Ω , 5 mW; (c) 10 mA, 1 k Ω ; (d) 10 V, 100 k Ω ; (e) 31.6 mA, 31.6 V
- 1.5 990 kΩ, 190 kΩ, 90 kΩ, 10 kΩ; 9.9 kΩ (1% reduction), 9.09 kΩ (9.1% reduction), $5 \text{ k}\Omega \text{ (50\% reduction)}$
- 1.7 2 V, 1.2 k Ω ; 1.88 V to 2.12 V; 1.26 k Ω to 1.14 k Ω
- 1.9 4.80 V, Shunt the 10-k Ω resistor with 157 k Ω ; Add a series resistance of 200 Ω .
- 1.11 $10 \text{ k}\Omega$, $5 \text{ k}\Omega$
- 1.15 0.77 V, 12.31 k Ω , 0.05 mA
- 1.16 0.75 mA, 0.5 mA, 1.25 mA, 2.5 V
- 1.20 (a) 10^{-7} s, 10^{7} Hz, 6.28×10^{7} rad/s; (f) 10^{3} rad/s, 1.59×10^{2} Hz, 6.28×10^{-3} s
- 1.22 (a) $(1-j1.59) \text{ k}\Omega$; (b) $(247.3-j1553) \Omega$; (c) $(71.72-j45.04) \text{ k}\Omega$; (d) $(100+j628) \Omega$
- 1.24 60 mV, $1.2 \mu A$, $50 k\Omega$
- $1.25 5 k\Omega$
- 1.29 (a) 165 V; (b) 24 V
- 1.32 14 kHz, 441 mV (peak); 312 mV; 693 mV, 71.4 μs
- 1.34 0, 110, 1011, 11100, 111011
- 1.36 (c) 12, 1.2 mV, 0.6 mV
- 1.38 7.056×10^5 bits/second.
- 1.40 11 V/V or 20.8 dB; 22 A/A or 26.8 dB; 242 W/W or 23.8 dB; 120 mW, 95.8 mW, 20.2%
- 1.43 (a) 82.6 V/V or 38.3 dB
- 1.46 0.69 V; 0.69 V/V or −3.2 dB; 8280 A/A or 78.4 dB; 5713 W/W or 37.6 dB.
- 1.48 S-A-B-L is preferred as it provides higher voltage gain.
- 1.51 (a) 400 V/V; (b) $40 \text{ k}\Omega$, $2 \times 10^4 \text{ A/A}$, $8 \times 10^6 \text{ W/W}$; (c) 500Ω ; (d) 750 V/V; (e) $100 \text{ k}\Omega$, 100 Ω, 484 V/V
- 1.56 38.1 V/V

L-1

- 1.59 Voltage amplifier, $R_i = 1 \times 10^5 \,\Omega$, $R_o = 1 \times 10^2 \,\Omega$, $A_{vo} = 121 \,\text{V/V}$
- 1.64 1025 V/V or 60.2 dB, 2500 A/A or 68 dB, 2.63×10^6 W/W or 64.2 dB
- 1.68 4 MHz
- 1.70 64 nF
- 1.73 0.51/CR
- 1.75 $0.8 \text{ k}\Omega$, $8.65 \text{ k}\Omega$, connect 2 nF to node B.
- 1.78 159 kHz; 14.5 Hz; \simeq 159 kHz
- 1.81 10 Hz, 10 kHz, 0.04 dB, 0.04 dB, 10 Hz, 10 kHz

- 2.2 4004 V/V
- 2.5 40,000 V/V
- 2.7 0.1%
- 2.8 In all cases, -5 V/V, $20 \text{ k}\Omega$
- 2.11 (a) -1 V/V; (c) -0.1 V/V; (e) -10 V/V
- 2.13 10 kΩ, 100 kΩ
- 2.15 Average = +5 V, highest = +10 V, lowest = 0 V
- 2.17 $\pm 2x\%$; -98 to -102 V/V
- 2.19 1.8 kΩ; 18 kΩ
- $2.21 \pm 2 \text{ mV}$
- 2.24 $1000\left(1+\frac{R_2}{R_1}\right)$, $100\left(1+\frac{R_2}{R_1}\right)$, $10\left(1+\frac{R_2}{R_1}\right)$; $1000R_1$, $100R_1$, $10R_1$
- **2.26** (b) $1 \text{ k}\Omega$, $100 \text{ k}\Omega$, 909 V/V
- 2.28 (a) 10.2 kΩ
- 2.32 (a) 0.1 mA, 0.1 mA, 10 mA, 10.1 mA, -1 V; (b) 1.19 k Ω ; (c) -11.1 V to -2.01 V
- 2.34 (a) $1 \text{ k}\Omega$; (b) $0, \infty$; (c) -0.57 mA to +0.57 mA (d) 2.2 mA
- 2.36 $v_0 = -(10 v_1 + 5 v_2); -5 V$
- 2.43 12.8 kΩ
- 2.44 (a) ∞ ; 0; (b) 10 kΩ, 10 kΩ; (d) 10 kΩ, 990 kΩ
- 2.46 100 kΩ; no
- $2.50 \ 2 \sin (2\pi \times 1000t)$
- 2.51 1/x; 1 to ∞ ; add 1-k Ω resistor between the left end of the pot and ground.

- 2.53 (a) 10 mV, $10 \mu A$, $10 \mu A$; (b) 10 V, 10 mA, 0; from the power supply of the op amp
- 2.58 (a) -0.83 V/V, 17%; (c) -0.98 V/V, 2%; (e) -9 V/V, 10%
- 2.60 20 V/V, $10 \text{ k}\Omega$, 0.0095 V/V, 66.4 dB
- $2.64 R_1 = R_3, R_2 = R_4$
- 2.65 0.02x V/V; 0.002 V/V, 54 dB; 0.02 V/V, 34 dB; 0.1 V/V, 20 dB
- 2.67 1 k Ω , 1 M Ω , 1 k Ω , 1 M Ω ; 1% tolerances
- 2.69 $R = 1 \text{ M}\Omega, R_5 = 756 \Omega, R_6 = 6.8 \text{ k}\Omega$
- 2.73 (a) -0.12 V to +0.12 V; (b) -12 V to +12 V
- 2.75 Ideal: 21 V/V, 0, ∞ ; $\pm 1\%$ resistors: $A_d = 21 \pm 4\%$, $|A_{cm}| = 0.02$, CMRR = 60.4 dB
- 2.77 (a) $v_R/v_A = 3 \text{ V/V}$, $v_C/v_A = -3 \text{ V/V}$; (b) 6 V/V; (c) 56 V pp, 19.8 V rms
- 2.79 (a) 1591 Hz; (b) leads by 90°; (c) increases by a factor of 10; (d) the same as in (b)
- 2.81 1 MHz; 0.159 μs
- 2.83 $R = 10 \text{ k}\Omega$, C = 159 pF; $R_F = 1 \text{ M}\Omega$, 1 kHz; (a) v_O decreases linearly to -6.3 V, (b) v_0 decreases exponentially, $v_0(t) = -100(1 - e^{-t/159})$, reaching -6.1 V at the end of the pulse.
- 2.86 $R_1 = 10 \text{ k}\Omega$, $R_2 = 1 \text{ M}\Omega$, C = 0.16 nF; 100 kHz
- 2.88 15.9 kHz, $v_0 = -5 \sin (10^6 t + 90^\circ) \text{ V}$
- 2.90 Square wave of the same frequency, 8 V peak amplitude, average is 0 V; $30 \text{ k}\Omega$
- 2.92 $R_1 = 1 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, C = 79 nF; 20 Hz
- 2.94 4 mV
- 2.96 9 mV; 12 mV
- 2.98 (a) $0.53 \mu A$, into the input terminals; (b) -3 mV; (c) -60 nA
- 2.100 $R_1 = 1.01 \text{ k}\Omega$, $R_2 = R_3 = 100 \text{ k}\Omega$, $C_1 = 1.58 \mu\text{F}$, $C_2 = 0.16 \mu\text{F}$
- 2.102 6 V; 3 V; 9 mV
- 2.104 (a) 0.2 V; (b) 0.4 V; (c) $10 \text{ k}\Omega$, 20 mV; (d) 0.22 V
- 2.106 (a) $9.9 \text{ k}\Omega$; (b) 0.222 V
- 2.108 80,000 V/V, 125 Hz, 10 MHz
- 2.111 19.61 kHz, 49.75 V/V, 4.975 V/V
- 2.113 (a) 5.1 MHz; (c) 10 MHz; (e) 10.1 MHz; (g) 2 MHz
- 2.116 36.6 MHz
- 2.118 500 MHz; 3; 7 MHz; 3.6 MHz
- 2.121 100 mV
- 2.125 1 MHz, 3.18 V

- 3.1 -55° C: 2.68×10^{6} cm⁻³, one out of every 1.9×10^{16} silicon atoms; $+75^{\circ}$ C: 3.70×10^{11} cm⁻³, $N/n_i = 1.4 \times 10^{11}$
- 3.3 $5 \times 10^{18} \text{ cm}^{-3}$; 45 cm⁻³;
- 3.5 At 27°C: $n_n = 10^{17}$ /cm³, $p_n = 2.25 \times 10^3$ cm³; At 125°C: $n_n = 10^{17}$ /cm³, $p_n = 2.23 \times 10^8$ cm³
- 3.7 $v_{p-\text{drift}} = 1.44 \times 10^6 \text{ cm/s}, v_{n-\text{drift}} = 4.05 \times 10^6 \text{ cm/s}$
- $3.9 9.26 \times 10^{17} / \text{cm}^3$
- 3.12 778 mV: 0.2 μ m, 0.1 μ m, 0.1 μ m; 1.6 \times 10⁻¹⁴C
- 3.14 1.6 pC
- 3.16 59.6 mV
- 3.20 7.85×10^{-17} A; 0.3 mA
- 3.22 3.6×10^{-16} A; 0.742 V
- 3.24 31.6 fF; 14.16 fF
- 3.27 0.5 pF; 129.5 ps

- 4.2 (a) -3 V, 0.6 mA; (b) +3 V, 0 mA
- 4.3 (a) V = 2 V, I = 2.5 mA; (b) I = 1 mA, V = 1 V
- 4.6 X = AB; Y = A + B; X and Y are the same for A = B; X and Y are opposite if A # B.
- 4.9 (a) I = 0, V = 1 V; (b) I = 0.25 mA, V = 0 V
- 4.11 $R \ge 4.2 \text{ k}\Omega$, 169.7 V
- 4.13 2.5 V; 1.25 V; 25 mA; 12.5 mA; 2.5 V
- 4.15 34 V; 8.3 Ω; 0.6 A; 29 V; 34 V, 8 Ω; 25%; 103 mA; 0.625 A; 29 V
- 4.17 At -55° C, $V_T = 18.8 \text{ mV}$; At $+55^{\circ}$ C, $V_T = 28.3 \text{ mV}$; $V_T = 25 \text{ mV}$ at 17° C.
- 4.19 0.335 μA
- 4.21 (a) 6.91×10^{-13} A, 0.64 V; (c) 5.11×10^{-17} A, 0.59 V
- 4.23 3.9 mA; -22 mV
- 4.26 $A_4 = 2A_3 = 4A_2 = 8A_1$; 1.5 mA
- 4.28 42Ω
- 4.31 50°C; 6 W; 8.33°C/W
- 4.33 230 mV; independent of temperature

```
4.35 0.6635 V, 0.3365 mA
```

- 4.37 $R = 582 \Omega$
- 4.41 (a) -2.3 V, 0.53 mA; (b) +3 V, 0 mA
- 4.43 (a) I = 0, V = -1.23 V; (b) I = 0.133 mA, V = 0 V
- 4.45 $R \ge 4.23 \text{ k}\Omega$, 169.7 V; essentially the same.
- 4.48 0.24 mV, 2.0 mV, 9.6 mV; 25 μA
- 4.53 $V_o/V_i = 1/(1+j\omega Cr_d)$; $-\tan^{-1}(\omega C V_T/I)$; 157 μ A -84.3° to -5.71°
- 4.56 $R = 417 \Omega$; 7.39 mA; 6.8 mV; -3.4 mV; -6.8 mV; -13.6 mV
- 4.59 (a) $r_z = 8 \Omega$, 1.04 W; (b) $V_{Z0} = 8.8 \text{ V}$, 188 mW
- 4.61 88.9 mV
- **4.63** 167 Ω; 7.65 V; 7.35 V; 7.78 V; 707 Ω; 7.2 V
- 4.66 (a) 9.825 V; (b) 207 Ω ; (c) 33 mV/V, $\pm 1.65\%$; (d) -6.77 V/A, -1.35%; (e) 70.9 mA, 732 mW
- 4.69 0.324 V
- 4.71 13.44 V; 48.4%; 8.3 V; 8.3 mA
- 4.73 (a) 10.1:1; (b) 1.072:1
- 4.75 45 V
- 4.77 (a) 12.77 V, 13.37 V; (b) 7.1%, 2.24%; (c) 192 mA, 607 mA; (d) 371 mA; 1.2 A
- 4.80 (a) 9.7 V; (b) 542 μF; (c) 25.7 V, 38.5 V; (d) 739 mA; (e) 1.42 A
- 4.83 10.74 V; 23.5 μs; 4.913 A; 4.913 A
- 4.85 (a) +1 V, +2 V, +2.7 V; (b) +3 V, +6 V, +6.7 V; (c) 0 V, 0 V, 0 V, -13 V; (d) 0 V, 0 V, -13 V.
- 4.96 7.07 V

- 5.1 580 to 2900 μ m²; 24 to 54 μ m
- 5.4 (a) 0.5; (b) 0.5; (c) 1.0; (d) 0.5
- $5.7 \quad 0.35 \, \mu \text{m}$
- 5.9 0.5 V; 0.5 mA
- 5.11 (a) -1.1 V; (b) -0.4 V; (c) 0.05 mA; 0.5 mA
- 5.13 116.3 Ω, 116.3 mV; 50
- 5.17 2.8 V; 500 Ω, 100 Ω

L-6 Appendix L Answers to Selected Problems

- 5.19 5 mA/V²; 0.6 V
- 5.21 0.5 V; 20; 145 μA; 1.5 V, 1.125 mA
- 5.23 2.5 k Ω to 125 Ω ; (a) 5 k Ω to 250 Ω ; (b) 1.25 k Ω to 62.5 Ω ; (c) 2.5 k Ω to 125 Ω .
- 5.29 (a) 3%; (b) 5%
- 5.31 200 k Ω , 20 k Ω ; 5%, 5%
- 5.33 104 μ A; 4%; double L to 3 μ m
- 5.35 Increases by a factor of 16.
- 5.38 350 μΑ; 750 μΑ; 864 μΑ; 880 μΑ; 960 μΑ
- 5.41 At 3.0 V, transistor is cut off; at 2.5 V, transistor enters saturation region; at 0.5 V, transistor enters triode region.
- 5.43 1 V, 0 V, 1 V, 0.25 V; 5 k Ω , 5 k Ω , 5 k Ω , 5 k Ω ; 10 k Ω , 2 V; 10 k Ω , -1 V; 10 k Ω , 2 V; 10 k Ω , -0.75 V
- 5.45 0.08 mA; 10 kΩ, 5 kΩ; 17.5 kΩ
- $5.48 4 k\Omega$
- 5.50 4 μ m, 11.1 μ m; 1.4 $k\Omega$
- 5.52 0.45 mA, +7.3 V; quite tolerant.
- 5.54 44.4; 1.25 kΩ
- 5.56 -1 V, -1.43 V, -2.8 V, 1 V, 2.8 V, +1 V, 2.8 V, -1 V
- 5.59 $I_1 = 405 \,\mu\text{A}, V_2 = 1.5 \,\text{V}; I_3 = 217 \,\mu\text{A}, V_4 = 1.232 \,\text{V}; V_5 = 1.5 \,\text{V}, I_6 = 405 \,\mu\text{A}$
- 5.61 (a) 0.5 V, 0.5 V, -0.983 V; (b) 0.1 V, 0.9 V, -1.01 V
- 5.63 −1.24 V
- 5.65 triode, 0.59 mA; triode, 5 mA; saturation, 9 mA; saturation, 9 mA

- 6.2 $4.7 \times 10^{-17} \text{ A}, 1.87 \times 10^{-16} \text{ A}; A_2/A_1 = 4$
- 6.4 0.31 V
- 6.6 Old: 0.673 V; New: 0.846 V
- 6.8 80; 0.988
- **6.10** 0.5; 0.67; 0.91; 0.95; 0.98; 0.99; 0.995; 0.998; 0.999
- 6.12 $I_C = 0.5 \text{ mA} \rightarrow 3 \text{ mA}$; $I_E = 0.51 \text{ mA} \rightarrow 3.01 \text{ mA}$; 30 mW
- 6.14 990 μ A, 99, 0.99; 980 μ A, 49, 0.98; 950 μ A, 19, 0.95
- 6.17 -0.668 V; 1.04 V; 0.02 mA

- 6.19 EBJ: 0.691 V; CBJ: 0.576 V; EBJ: 0.49 μA; CBJ: 48.5 μA
- 6.23 0.758 V: 0.815 V
- 6.25 238 mA: 6×10^{-14} A: 87
- 6.28 (a) 2 mA, -0.7 V; (b) -2 V; (c) 2 V, 0.5 mA; (d) 1.6 mA, -4.5 V
- 6.30 8.3 k Ω ; 20; 100; 200
- 6.32 $R_C = 4 \text{ k}\Omega$; $R_E = 3.64 \text{ k}\Omega$; $R_{\text{Cmax}} = 5.86 \text{ k}\Omega$
- 6.34 $R_E = 3.66 \text{ k}\Omega; R_C = 5 \text{ k}\Omega$
- 6.36 10.24 μA
- 6.38 0.75 V; 0.55 V
- 6.40 3.35 μA; 3000
- 6.43 125 k Ω ; 125 V; 12.5 k Ω
- 6.45 1 mA; 10 V; 50 V; 50 k Ω
- 6.47 $\beta = 100$; $\beta_{ac} = 80$; $\Delta i_C = 0.18$ mA, $i_C = 1.18$ mA
- 6.50 $\beta_{\text{forced}} = 11.2$; $V_C = 4.8 \text{ V}$; $R_B = 45.7 \text{ k}\Omega$
- 6.52 2.05 V, 2.38 V
- 6.55 $R_1 = 18 \text{ k}\Omega$, $R_2 = 12 \text{ k}\Omega$; 0.46 mA, 2.54 V
- 6.58 +0.41 V, +1.11 V, -1.15 V; +1.2 V, +1.9 V, -1.9 V; 204
- 6.61 (a) -0.7 V, +1.2 V; (b) +1.2 V, 0.5 mA; (c) -0.7 V, 0 V, +1.2 V; (d) +1.45 V, -0.5 V; (e) +0.75 V, +1.45 V, -0.5 V
- 6.63 $R_E = 4 \text{ k}\Omega$, $R_B = 50 \text{ k}\Omega$, $R_C = 4 \text{ k}\Omega$, $I_C = 0.85 \text{ mA}$ to 0.98 mA, $V_C = -1.6 \text{ V}$ to
- 6.66 (a) 0 V, +0.7 V, -0.725 V, -1.425 V, +1.1 V; (b) +0.23 V +0.93 V, -1 V, -1.7 V, +1.47 V
- 6.68 0 V, 0 V; +1.8 V, +1.1 V; -2.2 V, -1.5 V; -3 V, -2.3 V

- 7.2 A: (0.5 V, 5 V); B: (0.72 V, 0.22 V)
- 7.3 $20 \text{ k}\Omega$; (0.72 V, 0.22 V); -40 V/V; 0.78 V; 19.5 mV
- 7.6 0.4 V; 8.33
- 7.8 (a) 0.712 V; (b) -42.7 V/V, 11.7 mV; (c) $42.88 \text{ k}\Omega$; 24.9
- 7.10 -160 V/V; 0.7 V; 4.4 mV
- 7.12 1.08 V; 0.78 V; -156.7 V/V
- 7.15 -60 V/V

- 7.18 3 mA; -120 V/V; +5 mV: exp. $\rightarrow -660 \text{ mV}$, linear $\rightarrow -600 \text{ mV}$; -5 mV: exp. $\rightarrow +540 \text{ mV}$, linear $\rightarrow +600 \text{ mV}$.
- 7.25 (a) 0.1 mA, 0.8 V; (b) 1 mA/V; (c) -10 V/V; (d) $100 \text{ k}\Omega$, -9.1 V/V
- 7.26 0.5 mA/V; 0.067 mA, 0.27 V; 9.14; 0.67 V
- 7.29 16 µm; 0.75 V
- 7.31 -18.2 V/V; 1.207 V, -23.6 V/V
- 7.33 (b) 2 mA/V, 200 k Ω ; (d) 3.33 M Ω , 0.94 V/V, -15.38 V/V, -14.5 V/V
- 7.35 2.5 V; 0.611 mA, 1.95 V; 5 mV; -0.55 V; -110 V/V; -100 V/V
- 7.37 40 mA/V; 25 Ω ; 2.5 k Ω ; 1 V
- 7.39 1.04 kΩ to 4.7 kΩ
- 7.42 (a) 1.000, ∞ , 1.00 mA, 1.00 mA, 0 mA, 0 mA, 40 mA/V, 25 Ω , ∞ Ω ; (c) 0.980, 50, 1.00 mA, 1.02 mA, 0.02 mA, 40 mA/V, 24.5 Ω , 1.25 k Ω ; (e) 0.990, 100, 0.248 mA, 0.25 mA, 0.002 mA, 9.92 mA/V, 100 Ω , 10.1 k Ω
- 7.48 1 V; 125 Ω ; 80 V/V
- 7.53 $R_{\rm in} = 75 \Omega$; $v_o/v_{\rm sig} = 39.6 \text{ V/V}$
- 7.55 -1000 V/V; -5000 V/V
- 7.57 8.6 kΩ, 7.7 kΩ; 77 V/V
- 7.59 79.4 V/V; 4762 A/A
- 7.64 -10 V/V
- 7.66 1 mA/V; 125 μ A; -7.5 V/V
- 7.68 5 k Ω , 10 k Ω , -200 V/V; -100 V/V, -33.3 V/V; 15 mV, 0.5 V
- 7.70 (b) 1250 V/V
- 7.72 0.5 kΩ
- 7.74 $30.3 \text{ k}\Omega$, -40 V/V, $12 \text{ k}\Omega$; -20 V/V, -15 V/V; 6.65 mV, 100 mV
- 7.76 80 V/V, 44.4 V/V to 109.1 V/V; $R_e = 275 \Omega$, 25 V/V, 20 V/V to 27.3 V/V
- 7.78 2.5 mA/V; 0.2 V
- 7.80 $i_{\rm sig}R_C$
- 7.82 0.357 k Ω ; 1.6 mA; 1.13 V
- 7.84 1.25 mA; 1.5 mA, 1.0 mA; 0.5 V/V; 1 V
- 7.86 149 Ω , 0.87 V/V; 116 Ω to 246 Ω ; 0.80 V/V to 0.90 V/V
- 7.89 -91 V/V
- 7.91 27.5 V/V, 41.2 V/V, 55.6 V/V, 57.1 V/V, 55.6 V/V; 0.325 mA
- 7.92 18 MΩ, 22 MΩ, 3 kΩ, 3 kΩ; 2 V
- 7.94 5.07 V, 1.27 mA to 2.48 mA; 620Ω ; 0.91 mA to 1.5 mA

- 7.96 2 V; 2.4 V; 1.2 mA
- 7.101 (a) 2.7 V, 2.2 V; (b) 3.05 V, 3.05 V
- 7.103 2.5 k Ω , 22 M Ω , 20 M Ω
- 7.105 (a) 230 kΩ; 0.5 mA to 1.5 mA; 1 V to 0 V (saturated transistor), design very intolerant of β variation.
- 7.108 (a) 5.73; (b) $V_{BB} = V_{BE} + 0.352 V_{CC}$; (c) 38.8 k Ω , 37.5 k Ω , 3.33 k Ω ; (d) 8.1 k Ω ; 0.475 mA to 0.509 mA with a nominal value of 0.5 mA
- 7.110 5.75 k Ω , 6.2 k Ω ; 10.8%
- 7.112 (a) $R_C = 1.5 \text{ k}\Omega$, $R_B = 80 \text{ k}\Omega$; (b) $R_C = 1.5 \text{ k}\Omega$, $R_B = 82 \text{ k}\Omega$; 1.52 V, 0.98 mA; (c) 0.7 V, 1.53 mA; (d) $R_{B1} = 40 \text{ k}\Omega$, $R_{B2} = 70 \text{ k}\Omega$, $R_C = 1.47 \text{ k}\Omega$, 1.1 V, 1.28 mA
- 7.116 8.6 k Ω , +0.4 V
- 7.118 (a) $V_D = 2.5 \text{ V}$, $k_n = 11.1 \text{ mA/V}^2$; (b) 120 k Ω , -4.1 V/V; (c) 0.264 V, 1.08 V; (d) 300Ω , 1.08 V
- 7.120 20 mA/V; 0.1 mA; 5 mV; $10 \text{ k}\Omega$
- 7.122 (a) 0.99 V/V, 99 Ω ; (b) 99 Ω , 14.3 V/V; (c) 7.15 V/V
- 7.124 (a) 1.6 V, 0.1 mA, 82.4 k Ω ; (b) 1 mA/V; (d) 1.95 V/V, 39.1 k Ω
- 7.126 $R_1 = 47 \text{ k}\Omega, R_2 = 24 \text{ k}\Omega, R_E = 2.2 \text{ k}\Omega, R_C \text{ either } 4.7 \text{ k}\Omega \text{ or } 5.1 \text{ k}\Omega$
- 7.128 $R_R = 91 \text{ k}\Omega$, $R_C = 22 \text{ k}\Omega$, I = 0.2 mA; -176 V/V; -29.7 V/V
- 7.130 (a) 1 mA, 8.2 V; (c) 2.32 k Ω , 0.32 V/V; (d) 2.32 k Ω , -69.2 V/V; (e) -61.8 V/V; (f) 1368.5 V/V
- 7.132 (a) 0.495 mA, 1.18 V; -71.9 V/V
- 7.134 $\beta = 50$: (a) 0.78 mA, 0.78 V, 1.48 V; (b) 21.3 k Ω ; (c) 0.64 V/V; $\beta = 200$: (a) 1.54 mA, 1.54 V, 2.24 V; (b) $50.9 \text{ k}\Omega;$ (c) 0.81 V/V
- 7.136 (a) 1.73 mA, 68.4 mA/V, 14.5 Ω , 1.4645 k Ω ; (b) 148.3 k Ω , 0.93 V/V; (c) 18.21 k Ω , 0.64 V/V
- 7.138 75 Ω; 25 Hz; 25 V/V

- 8.1 $12 \text{ k}\Omega$; 0.2 V; $25 \text{ k}\Omega$; $20 \mu\text{A}$
- 8.3 50; 8.75 kΩ
- 8.6 5 μ m, 25 μ m, 10 μ m, 2.5 μ m, 5 μ m; 15 $k\Omega$; 25 $k\Omega$, 31.25 $k\Omega$
- 8.8 (a) 0.691 V to 0.863 V, $10 \,\mu\text{A}$ to $10 \,\text{mA}$; (b) $9.62 \,\mu\text{A}$, $0.098 \,\text{mA}$, $0.98 \,\text{mA}$, $9.62 \,\text{mA}$
- 8.11 0.1 mA, 10%

- 8.14 Both cases: -0.7 V, +2 V, +0.7 V, -0.7 V, -1.7 V; (a) I = 0.4 mA; (b) I = 0.04 mA
- 8.17 700 Ω, 5 A/A, 10 kΩ.
- 8.19 $v_o = g_{m1}v_i (W_3/W_2)R_L; g_{m1}R_L (W_3/W_2); 1/g_{m2}; -g_{m1}/g_{m2}$
- 8.21 (a) $1.6 \text{ k}\Omega$; (b) 250Ω
- 8.25 $I = 10 \,\mu\text{A}$: $0.4 \,\text{mA/V}$, $250 \,\text{k}\Omega$, $1 \,\text{M}\Omega$, $400 \,\text{V/V}$; $I = 100 \,\mu\text{A}$: $4 \,\text{mA/V}$, $25 \,\text{k}\Omega$, $100 \,\text{k}\Omega$, $400 \,\text{V/V}$; $I = 1 \,\text{mA}$: $40 \,\text{mA/V}$, $2.5 \,\text{k}\Omega$, $10 \,\text{k}\Omega$, $400 \,\text{V/V}$
- 8.27 50 V/V; 0.2 mA; 12.5 μm
- 8.29 0.4 µm; 25; 0.2 mA
- 8.31 0.5 mA; 4 mA/V
- 8.33 1 mA/V; 15 k Ω ; 15 V/V; 3.9 μ m
- 8.35 0.144 mA
- 8.37 (a) $80~\mu\text{A/V},~0.18~\text{M}\Omega,~14.4~\text{V/V};$ (b) $0.79~\text{V},~0.253~\text{mA/V},~18~\text{k}\Omega,~4.55~\text{V/V};$
 - (c) 0.8 mA/V, $18 \text{ k}\Omega$, 14.4 V; (d) 0.08 V, 0.253 mA/V, $180 \text{ k}\Omega$, 45.5 V/V;
 - (e) lowest A_0 : first design when operated at $I_D = 100 \,\mu\text{A}$, $A_0 = 4.55 \,\text{V/V}$, highest A_0 : second design when operated at $I_D = 10 \,\mu\text{A}$, $A_0 = 45.5 \,\text{V/V}$; gain increases by a factor 10.
- 8.39 0.5 μm; 12.5
- 8.41 1.05 V; 2 μm; 8; 32
- 8.43 (a) 0.95 V, 0.475 μ A, 2.375 V; (b) -86.5 V/V, 1.9 V, 22 mV; (c) 33.7 k Ω
- 8.45 0.913 V; 1.07 V
- 8.47 (a) $25 \mu A$; (b) 0.33 V and 2.98 V; (c) -189.3 V/V; (d) -195.8 V/V; (e) -210.6 V/V
- 8.49 (a) 0.25 mA; (b) 120 k Ω , 120 k Ω , 60 k Ω ; (c) 5 k Ω , 10 mA/V; (d) 5 k Ω , -600 V/V, 60 k Ω
- 8.51 980 Ω ; 61 k Ω ; 10.1 V/V
- 8.53 2 kΩ; 1.1 V
- 8.55 (a) 100 μ A, 1.03 V; (b) 0.9 mA/V, 200 k Ω ; (c) 2.2 k Ω ; (d) 209 k Ω ; (e) 90.9 V/V, 89 V/V; (f) 32 mV
- 8.57 r_o
- 8.59 0.99 (or more exactly, 0.975); 14.8 M Ω
- 8.61 (a) 208 Ω ; (b) 500 Ω ; (c) 4.8 k Ω ; 101 with $R_e = \infty$
- 8.63 (a) 50, 1.6 M Ω ; (b) 250, 320 k Ω
- 8.65 0.5 µm; 20; 1 V; 0.25 mA; 0.5 V
- 8.67 0.6 μ m; 0.125 mA; $(W/L)_{1,2} = 10$; $(W/L)_{3,4} = 40$
- $8.69 \ g_{m2}r_{o2}$

- 8.71 0.2 V: 0.5 V to 0.8 V
- 8.74 1.2 V; 1.0 V; 0.8 V; 100; 6.91 M Ω
- $8.76 1 M\Omega$
- $8.79 10^5 \text{ V/V}$
- 8.81 (a) 1.41 mA/V, 822.3 k Ω , -1159 V/V; (b) 1.41 mA/V, 457 k Ω , -644 V/V
- 8.83 $(g_{m3}r_{o3}) (g_{m2}r_{o2})r_{o1}$
- 8.85 (a) $I_{O1} = I_{O2} = \frac{1}{2}I_{REF}/(1+2/\beta^2)$; (b) Use $I_{REF} = 0.7$ mA and 3 transistors Q_3 , Q_4 and Q_5 whose EBJ areas are in the ratio 1:2:4; currents realized are 0.0999 mA, 0.1999 mA and 0.3997 mA.
- 8.88 (a) 0.3 V, 0.8 V; (b) 8 μ A, 172 μ A; (c) 180 μ A; (d) 1.1 V; (e) 12 M Ω ; (f) 0.08 μ A,
- 8.90 (a) $R_E = 2.88 \text{ k}\Omega$; (b) 8.2 M Ω , 0.7 μ A
- 8.92 (a) 58.5 k Ω ; (b) 79.9 M Ω ,
- 8.95 360 μA; 2.4 mA/V; 0.48 mA/V; 27.8 kΩ; 0.81 V/V; 339 Ω; 0.7 V/V
- 8.97 (b) $g_{m1} = 0.632$ mA/V, $g_{m2} = 40$ mA/V, $r_{\pi 2} = 5$ k Ω ; (c) -19.5 V/V; (d) 487 k Ω , -9.6 V/V; (e) $10 \text{ M}\Omega$, -18.6 V/V
- 8.99 50.2 V/V

- 9.1 (a) 0.2 V, 0.6 V; (b) -0.6 V, 0.08 mA, 0.08 mA, +0.6 V, +0.6 V; (c) -0.2 V, 0.08 mA, 0.08 mA, +0.6 V, +0.6 V; (d) -0.7 V, 0.08 mA, 0.08 mA, +0.6 V, +0.6 V; (e) 1.0 V; (f) -0.8 V, -0.2 V
- 9.3 (a) 0 V, -0.6 V, 0.6 V, 0.6 V, 0 V; (b) 0.104 V, -0.541 V, 0.4 V, 0.8 V, 0.4 V; (c) 0.283 V, -0.4 V, +0.2 V, 1 V, 0.8 V; (d) -0.104 V, -0.645 V, +0.8 V, +0.4 V, -0.4 V; (e) -0.283 V, -0.683 V, +1 V, +0.2 V, -0.8 V
- 9.5 0.587 V; -0.587 V; 0.612 V; 0.025 V; 0.10 V, 4 V/V; -0.025 V
- 9.7 0.35 V; 16.3; 1.14 mA/V
- 9.9 0.212 V; 554.5 μA
- 9.11 (a) 0.1 V_{OV} ; (b) 0, 0.338 V_{OV} , 0.05 V_{OV} , 0.005 V_{OV} , 1.072 V_{OV}
- 9.13 0.25 V; 0.5 mA; $5 \text{ k}\Omega$; 40
- 9.15 0.5 mA; 3.6 k Ω ; 38.6
- 9.17 $I = 2I_D$; $P_{\text{diff}} = 2P_{CS}$
- 9.19 (a) $g_{m1,2} \left[\frac{1}{g_{m2,4}} \| r_{o3,4} \| r_{o1,2} \right]$; (b) $\sqrt{[\mu_n(W/L)_{1,2}]/[\mu_p(W/L)_{3,4}]}$; (c) 25

- 9.23 $8 \text{ k}\Omega$; W/L, I_D (mA) and $|V_{GS}|$ (V) are: $Q_1(50, 0.1, 0.7), Q_2(50, 0.1, 0.7), Q_3(100, 0.2, 0.7), Q_4(20, 0.1, 0.7), Q_5(20, 0.1, 0.7), Q_6(100, 0.2, 0.7), Q_7(40, 0.2, 0.7)$
- 9.25 0.632 μm; 0.28 mA
- 9.27 $v_{B1} = +0.5 \text{ V}$: -0.177 V, +0.52 V, 2.5 V; $v_{B1} = -0.5 \text{ V}$: -0.677 V, +2.5 V, +0.52 V
- 9.30 (a) -0.574 V, 0.4 V, 0.4 V; (b) -0.326 V to 0.674 V; (c) 5 mV
- 9.32 (a) $V_{CC} (I/2)R_C$; (b) 2 V; (c) 0.4 mA, 5 k Ω
- 9.34 $R_C = 5.05 \text{ k}\Omega$, +1.6 V
- 9.36 0.5 mA, 1.0 mA; 17.3 mV
- 9.38 8 mA/V; 40 kΩ
- 9.40 5 mV; 250 Ω; -40 V/V; 200 mV; 400 mV
- 9.42 Each emitter has a resistance $R_e = 450 \Omega$, $R_C = 10 \text{ k}\Omega$; I = 1 mA; Possible value of $V_{CC} = 10 \text{ V}$
- 9.49 12 V/V
- 9.51 16 V/V
- 9.53 25 V/V; 101 kΩ
- 9.55 7.7 V/V; 5×10^{-4} V/V; 1.54×10^{4} or 83.8 dB
- 9.57 (a) 2.332 V; (b) 5.06 k Ω ; (c) 2.47 V; (d) -1.92 V/V; (e) 0.287 V
- $9.59 \, 4 \, \mu m$
- 9.61 (a) 20 V/V; (b) 0.23 V/V; (c) 86.5 or 38.7 dB; (d) $-0.023 \sin 2\pi \times 60t + 0.2 \sin 2\pi \times 1000t$, volts
- 9.63 (a) 100 V/V; (b) 50 k Ω ; (c) 2.5 × 10⁻⁴ V/V; (d) 4 × 10⁵ or 112 dB; (e) 25 M Ω
- 9.65 (a) 50 V/V; (b) 2.5×10^{-3} V/V, 2×10^{4} or 86 dB; (c) 5×10^{-5} V/V, 10^{6} or 120 dB
- 9.67 (a) Two emitter resistances and a single bias-current source I; $R_e = 25 \Omega$; $R_C = 10 \text{ k}\Omega$; $V_{CC} = +15 \text{ V}$; $R_{EE} = 50 \text{ k}\Omega$; $V_A = 100 \text{ V}$; 2.4 M Ω
- 9.69 2/3 in one transistor and 1/3 in the other; 0.008 V/V
- 9.72 11 mV; variability of V_t ; 7.33%
- 9.74 2.5 mV
- 9.77 0.25 mV
- 9.79 1.25 mV
- 9.81 (a) $x = 0.3 \text{ k}\Omega$; (b) $x = 0.225 \text{ k}\Omega$
- 9.83 $2\alpha I/3$ and $\alpha I/3$; $\alpha IR_C/3$; 18.75 mV; 17.3 mV
- 9.85 $20 \text{ k}\Omega$; 40 V/V
- 9.87 1.4 mA/V; 25 k Ω ; 25 k Ω ; 17.5 V/V

- 9.89 3 V
- 9.92 1 mA/V; 75 k Ω ; 75 V/V; 75 k Ω
- 9.94 $20 \text{ k}\Omega$; $20 \text{ k}\Omega$; 10 mA/V; 200 V/V; 100 V/V
- 9.96 $-2V_T/\beta_P^2$; $-20 \,\mu\text{V}$
- $9.98 2.67 \times 10^4 V/V$
- 9.100 $\frac{I/2}{\beta+1} / (\frac{\beta}{2})$, a reduction by a factor of $(\beta/2)$; R_{id} increases by a factor $(\beta/3)$
- 9.102 1.13 mA/V; 75 k Ω ; 85 V/V
- 9.105 1 mA/V; $25 \text{ k}\Omega$; 25 V/V; $25 \text{ k}\Omega$, 0.02 mA/V; $0.98 \text{ k}\Omega$; 0.98 A/A; $50 \text{ k}\Omega$; $2600 \text{ k}\Omega$; -0.0196 V/V: 1274 or 62.1 dB
- 9.107 0.1
- 9.110 8 mA/V; $100 \text{ k}\Omega$; 800 V/V; $37.5 \text{ k}\Omega$; $100 \text{ k}\Omega$; -0.013 V/V; 60,000 or 96 dB; 444.4 V/V
- 9.112 (a) 83.3 k Ω ; (b) 1200 V/V; (c) 21 × 10⁶ or 146 dB
- 9.114 (a) W/L: 12.5, 12.5, 50, 50, 25, 100, 25, 25, 0 V; (b) -0.1 V to +0.7 V; (c) -0.7 V to +0.7 V; (d) 900 V/V
- 9.116 108 µA; 909 mV; 0.86 mV
- 9.118 (a) W/L: 32.9, 32.9, 178, 178, 65.8, 356, 65.8, 32.9; (b) 0.65 V to 1.05 V; (c) 0.15 V to 1.05 V; 144 V/V
- 9.120 25 V/V; $20 \text{ k}\Omega$; 5000 A/A
- 9.122 R_5 ; 7.37 k Ω ; reduced to about half its original value; change R_4 to 1.085 k Ω , this will slightly reduce A_2 .
- 9.124 (a) 0.52 mA, 1.04 mA, 2.1 mA, 0 V; (b) $4 \text{ k}\Omega$, 65.5 Ω ; (e) 8770 V/V

- 10.1 20 nf
- 10.3 10 μF; 88.4 Hz; 8.84 Hz
- 10.5 (a) $10 \text{ k}\Omega$; (b) $3.53 \mu\text{F}$; (c) 10 Hz; (d) 100 Hz; (e) dc gain = 2, makes perfect sense since C_s behaves as an open-circuit at dc.
- 10.7 5 μ F; 0.5 μ F; 0.5 μ F; 92.2 Hz; 6 μ F
- 10.10 141.4
- 10.13 $g_m = 1.3 \text{ mA/V}; g_{mb} = 0.25 \text{ mA/V}; r_o = 100 \text{ k}\Omega; C_{gs} = 61.6 \text{ fF}; C_{gd} = 4.3 \text{ fF};$ $C_{sb} = 12.8 \text{ fF}; C_{db} = 9.4 \text{ fF}; f_T = 3.1 \text{ GHz}$
- 10.17 $L = L_{\min}$: 6.5 V/V, 113 GHz; $2L_{\min}$: 13 V/V, 28.3 GHz; $3L_{\min}$: 19.5 V/V, 12.6 GHz; 4L_{min}: 26 V/V, 7.1 GHz; 5L_{min}: 32.5 V/V, 4.5 GHz

L-14 Appendix L Answers to Selected Problems

- 10.19 265.3 MHz
- 10.21 500 MHz; 600 MHz; 252 ps; 0.43 pF
- 10.23 50 MHz: 10 MHz
- 10.25 5 pF; < 31.8 kΩ
- 10.28 200.2 pF; $-1000/[1 + sC_{in}R_{sig}]$; 795 kHz; 795 MHz
- 10.31 870 kHz; -6.1 V/V; $R_{in} = 33.3 \text{ k}\Omega \rightarrow 3.1 \text{ V/V}$; $R_L = 1.24 \text{ k}\Omega \rightarrow 1.6 \text{ V/V}$
- 10.33 −9.2 V/V; 525 kHz
- 10.35 61 pF; 522 kHz
- 10.37 -33 V/V; 873 kHz; 28.8 MHz; f_H increases by a factor of 1.16 and voltage gain decreases by the same factor while GB remains nearly constant. Power dissipation increases by a factor of 2.
- 10.39 −32.8 V/V; 572 kHz
- 10.41 (a) 1001 pF, 1.001 pF; (c) 20 pF, 20 pF; (e) -90 pF, 9 pF; +90 pF
- 10.44 (a) 0.54 mA; (b) 21.6, A/V, 4.63 k Ω ; (c) -10.8 V/V; (d) 4 k Ω , 2.14 k Ω ; (e) -7.4 V/V; (f) 14.37 pF; (g) 16.3 MHz
- 10.46 −80 V/V; 3.8 MHz; 6.4 GHz; 304 MHz
- 10.48 -81.4 V/V; 21.4 MHz; 11.2 GHz
- 10.50 (a) 99.2 MHz; (b) 227.6 MHz
- 10.53 (a) 4.26; (b) 49.3
- 10.55 5.67×10^7 rad/s
- 10.57 -40.6 V/V; $\tau_{es} = 243.8 \text{ ns}$; $\tau_{ed} = 3112.8 \text{ ns}$; $\tau_{CL} = 300 \text{ ns}$; 43.5 MHz
- 10.59 80 V/V; 10.1 pF; 788 kHz; 652 kHz; the latter as it takes into account C_L .
- 10.61 41.6 fF
- 10.63 -138.9 V/V; 2.98 MHz; 2.28 MHz, the latter as it takes into account C_L .
- 10.66 8.3 V/V; 239 MHz; 7.23 MHz; 7.23 MHz
- 10.69 11.1 fF
- 10.71 −913 V/V; 6.28 MHz
- 10.73 0.2 V; 0.2 mA; 289.4 MHz; 57.9 kHz, -100 V/V (40 dB)
- 10.76 −26.5 V/V; 5.7 MHz
- 10.78 −100,000 V/V; 31.8 kHz, 31.8 kHz; 3.18 GHz
- 10.79 0.91 V/V; 200 Ω; 398 MHz; 33.4 MHz, 90.7 MHz; 31.6 MHz
- 10.82 $0.8/[s^2 + 8.886 \times 10^6 \text{ s} + 39.48 \times 10^{12}]$
- 10.84 0.96 V/V; 2 GHz; 676 MHz, 4.6 GHz; 676 MHz
- 10.86 1.59 MHz

- 10.88 4 MHz; decreases by a factor of 4 to 1 MHz
- 10.90 (b) -49.8 V/V; (c) 53.2 pF, 598 kHz, 29.8 MHz
- 10.92 50 V/V; 15.9 MHz; 1.59 GHz; 3.18 GHz
- 10.96 (a) -100 V/V, 603 kHz, 60.3 MHz; (b) -50 V/V, 1.02 MHz, 51.2 MHz
- 10.101 (a) 2.5 M Ω , -4000 V/V; (b) 107.6 kHz; two dominant capacitances: C_L (most significant) and $C_{\mu 2}$
- 10.103 66.7 V/V; 2 MHz
- 10.106 (a) 10,000 V/V; (b) 11.1 MHz

- 11.1 4.9×10^{-3} ; 169.5; -15.3%
- 11.3 1; 0.999 V/V; 60 dB; 0.999 V, 0.001 V; -0.011%
- 11.5 (b) (i) 1000; (ii) 100; (iii) 20
- 11.7 2500 V/V; 0.0196 V/V; 49; 50 V/V; 34 dB
- 11.10 99; 4
- 11.12 1000 V/V; 0.099 V/V
- 11.14 416.6 V/V; 9.33×10^{-3} V/V; 5016.8 V/V, 9.95×10^{-3} V/V; 41.66 V/V, 9.33×10^{-2} V/V; 501.68 V/V, 9.95×10^{-2} V/V
- 11.16 500 V/V; 0.098 V/V; 653.4 V/V
- 11.19 1 MHz, 1 Hz
- 11.21 Three stages; each with a closed-loop gain of 10 V/V, an amount of feedback of 100, and $\beta = 0.099 \text{ V/V}$.
- 11.23 50 V/V; 0.008 V/V; 16 Hz
- 11.25 0.089; for $|v_s| \le 0.9 \text{ V}$, $v_O/v_S = 11.1 \text{ V/V}$, for $0.9 \text{ V} \le |v_S| \le 1.4 \text{ V}$, $v_O/v_S = 11.1 \text{ V/V}$ 10.1 V/V, and for $|v_S| \ge 1.4 \text{ V}$, $v_O = \pm 15 \text{ V}$
- 11.27 (a) $90 \text{ k}\Omega$; (b) 43.11, 9.77 V/V; (c) 2.343
- 11.29 (a) $1 + \frac{R_2}{R} = 11 \text{ V/V}$; (b) 0.1 mA, 0.3 mA, +7.7 V; (c) 23.2; (d) 10.5 V/V
- 11.31 (a) $0.9 \text{ k}\Omega$; (b) 31.33, 9.7 V/V, -3%, change R_F to 933Ω
- 11.33 (a) 47.62β , 47.62 V/V; (b) $821 \text{ k}\Omega$, $179 \text{ k}\Omega$
- 11.35 Lower; 199; $20 \text{ k}\Omega$
- 11.37 100 V/V; 1.001 M Ω
- 11.39 (a) $1 + (R_2/R_1) = 11 \text{ V/V}$; (b) 0.1 mA, 0.3 mA, +7.7 V; (c) 255.3 V/V, 0.359 k Ω , $0.917 \text{ k}\Omega$; (d) 1/11; (e) 10.5 V/V, $8.59 \text{ k}\Omega$, 39.4Ω , 4.5%

- 11.41 (b) 10 V/V; (c) 0.2 V, 1.1 V, 0.2 V, 0.9 V; (d) -35.3 V/V, -50 V/V, 0.935 V/V, 1650 V/V; (e) 0.1 V/V; (f) 9.94 V/V, -0.6%; (g) 5.6 Ω
- 11.44 (c) 1.2 k Ω ; (d) 1.42 k Ω , 628 Ω ; (e) 23.8 V/V; (f) 145 k Ω , 0.53 Ω
- 11.46 100 Ω : 9.94 mA/V
- 11.48 (c) -0.999 kΩ
- 11.50 (a) 0.135 V/V; (b) 7.4 V/V; (c) 0.14 Ω
- 11.53 (a) 200 Ω ; (b) 1418.4 mA/V; (c) 283.7, 284.7; (d) 4.982 mA/V, very close; (e) 28.2 k Ω , 8 M Ω
- 11.56 9.56 mA/V; 503.4 k Ω
- 11.58 (a) 0 V, +0.6 V, +0.6 V; (b) 0.1 mA/V; (c) 0.099 mA/V; (d) 203 M Ω ; (e) 0.99 V/V; 1.25 Ω
- 11.60 -9.88 kΩ, 11.1 Ω, 1.1 Ω compared to -9.99 kΩ, 1.11 Ω, 0.11 Ω.
- 11.62 3.23; -0.1 mA/V; -32.3 k Ω ; -7.63 k Ω ; due to the approximation used in the systematic analysis method.
- 11.64 (a) $-R_F/R_s$, 20 k Ω ; (b) -9.88 V/V, 21.7 Ω , 22.1 Ω ; (c) 82.18 kHz
- 11.66 159, larger by about 2.5%, a result of the approximations involved in the general method. The more accurate value is the one obtained here.
- 11.68 10 kΩ; -9.52 kΩ; 11.9 Ω; 244 Ω
- 11.70 (b) -98.8 V/V; 7.2 Ω ; 10.3 Ω
- 11.72 0.53 k Ω ; 10.5 Ω ; 526 Ω
- 11.74 (d) -99.8 A/A, -0.1 A/A, 9.98, -9.1 A/A, $0.2 \text{ k}\Omega$, 18.2Ω ; (e) $328.4 \text{ k}\Omega$
- 11.76 970.9, -9709 A/A, -9.99 A/A; $A\beta$ and A differ slightly from the results in Example 11.10; however, A_f is identical.
- 11.81 $I_{C1} = 0.1 \text{ mA}, I_{C2} = 10 \text{ mA}; V_o/V_s = 3.62 \text{ V/V}; R_{in} = 176.7 \Omega$
- 11.83 20 krad/s; 4×10^{-3} V/V; 250 V/V
- $11.85 8 \times 10^{-4}$
- 11.87 10 V/V; 10^5 Hz; 1 MHz; by the amount-of-feedback $\simeq 10^4$.
- 11.89 (a) 2.025×10^{-4} , 5.5×10^{4} Hz; (b) 3306 V/V, 1653 V/V; (c) 0.5; (d) $(-5.5 \pm j \ 13.25) \times 10^{4}$ Hz, 1.325
- 11.91 0.1; 0.686; 2.1
- 11.93 2; 173.2 kHz
- 11.95 $3.085 \times 10^3 \text{ Hz}$; 18.15° ; 10^{-3}
- 11.97 3.16×10^{-4} ; 2.4×10^{3} V/V or 67.6 dB.
- 11.99 2.4×10^4 V/V or 87.6 dB: 9.09×10^3 V/V or 79.2 dB.
- 11.101 2 kHz; 500

- 11.104 10 Hz: 15.9 nF
- 11.106 (b) 3.16×10^4 Hz, 1.8° ; (c) zero: -10^3 rad/s, poles: $(-0.505 \pm i 31.62) \times 10^3$ rad/s, the response is very peaky with a peak of 1000 at 31.62 krad/s.

```
12.1 -9.3 V to +9.7 V; -8.6 V to +10.4 V; -4.65 V to +9.7 V; -3.95 V to +10.4 V;
-9.7 \text{ V} to +9.7 \text{ V}; -9 \text{ V} to +10.4 \text{ V}
```

- 12.3 2.7 kΩ; 24 mW
- 12.6 $V_{CC}I$ (in all cases)
- 12.8 \hat{V} ; \hat{V}/R_L ; 25%
- 12.11 4.5 V; 6.4%; 625 Ω
- 12.13 10 V; 6.37 V; 6.85 Ω , 7.3 W; 9.62 Ω , 1.3 W
- 12.17 1.266 V; 12.5 Ω; 0.889 V/V; 0.998 V/V
- 12.19 2.15 mA
- 12.22 1 mA; -1.06 V; +4 V; -6 V
- 12.24 0.98 mA; +5.1 V; -10 V; 99; 1.96 mA; 1.92 mA
- 12.28 20.7 mA; 788 mW; 7.9° C; I_{o} becomes 37.6 mA, etc., etc.
- 12.30 (a) $1.365 \text{ k}\Omega$, $1.365 \text{ k}\Omega$, 1.365 V; (b) 1.420; (c) 1.512 V; (d) 1.641 V
- 12.32 (a) For $R_L = \infty$: at $v_I = 0$, $I_1 = 0$; at $v_I = +10$ V, $I_1 = 20$ μ A, at $v_I = -10$ V, $I_1 = -20 \,\mu\text{A}$; (b) $R_L = 100 \,\Omega$; at $v_I = 0$, $I_1 = 0$, at $v_I = +10 \,\text{V}$, $I_1 = 22.5 \,\mu\text{A}$, at $v_t = -10 \text{ V}, I_1 = -22.5 \,\mu\text{A}.$
- 12.34 215 Ω , 215 Ω , 0.75 Ω , 0.75 Ω ; 0.7 Ω ; 0.704 V
- 12.37 (a) 0.0164 mA, 1.64 mA; (b) 32.8 v_i , -66.2 V/V; (c) 27.2 k Ω
- 12.39 $R_1 = 300 \text{ k}\Omega$, $R_2 = 632 \text{ k}\Omega$; 9.484 V and -10.644 V
- 12.41 3.84 Ω ; 384 mV; 0.94 μ A
- 12.43 6.5 Ω; 487.5 mV; 2.9 μ A
- 12.45 (b) 1.25 V, 1.56 mA
- 12.47 (a) Q_1 : 35.6, Q_2 : 88.9, Q_N : 356, Q_P : 889; (b) -0.6 V; (c) 1.38 V
- $12.49 \pm 2.05 \text{ V}$
- 12.51 (b) 0.15 V
- 12.53 (a) 533.3, 1333.3; (b) 10 V/V; (c) -5%; (d) 1.85 V and -1.85 V; (e) 0.3 V and -0.3 V; (f) -1.77 V to +1.77 V
- 12.55 R_2 and R_3 ; R_3 ; R_2 ; $R_2 = 33.3 \text{ k}\Omega$ and $R_3 = 1.33 \text{ k}\Omega$

- 12.57 16 V; 2.7 W; 13 V p p
- 12.59 30 kΩ, 40 kΩ
- 12.62 +3 V; -3 V
- 12.64 (c) 8Ω , 5 A, 50 W; (d) 6Ω , 5 A, 37.5 W; (e) 3Ω , 5A, 18.75 W
- 12.66 12.5°C/W; 8 W; 112.5°C
- 12.68 (a) 37.5°C/W; (b) 1.33 W; (c) 62.5°C
- 12.70 72°C; 1.5°C/W; 4 cm

- 13.1 -0.8 V to +1.2 V; -0.8 V to +0.8 V
- 13.3 0.15 V
- 13.5 0.45 μm; 2000 V/V
- 13.7 (a) 10,000 V/V; (b) 10^8 rad/s and 10^7 rad/s; (c) 10^9 rad/s, 4 pF, 25×10^3 rad/s, 5×10^8 rad/s
- 13.9 (a) 1.59 pF; (b) $f_{P1} = f_t/A_0$, $f_{P2} = 318$ MHz, $f_Z = 200$ MHz; (c) 46° ; (d) 500Ω , 72.5° ; (e) 722Ω
- 13.11 125.6 V/μs; 0.8 pF
- 13.13 (a) 2 pF; (b) 1.51 pF
- 13.15 (a) 0.16 V; (b) 2 pF; (c) 78.1
- 13.17 (b) 0.45 μm
- 13.19 250 μ A; 400 μ A; 200 μ A; 50 μ A
- 13.21 25, 25, 25, 25, 6.25, 6.25, 6.25, 6.25, 125, 125, 50
- 13.23 100 μA; 150 μA; 15.92 MHz; 54.7°; 6.58 MHz; $C_L = 24.2$ pF; 4.13 V/μs
- 13.25 0.12 V; $I_B = I = 150 \,\mu\text{A}$; 15 V/ μ s; W/L: 26, 26, 65, 65, 26, 26, 26, 26, 130, 130, 52
- 13.28 (a) -0.25 V to +1.3 V; (b) -1.3 V to +0.25 V; (c) -0.25 V to +0.25 V; (d) -1.3 V to +1.3 V
- 13.30 $C_p = 0.176 C_L$
- 13.33 V_{EB} = 625 mV; A device: 7.3 mA/V, 137 Ω, 6.85 kΩ, 278 kΩ; B device: 21.9 mA/V, 46 Ω, 2.28 kΩ, 90.9 kΩ

13.35
$$I_3 = I_1 \left\{ \left[\frac{1}{\sqrt{k_1}} + \frac{1}{\sqrt{k_2}} \right] / \left[\frac{1}{\sqrt{k_3}} + \frac{1}{\sqrt{k_4}} \right] \right\}^2$$
; 0.1 mA

- 13.37 603 mV; 518 mV; 8.5 kΩ
- 13.39 4.75 μ A; $R_4 = 1.94 \text{ k}\Omega$

- $13.41 14 \mu A$
- 13.43 53.3 nA; 20.1 nA
- 13.45 -3 V to +4.8 V
- 13.47 6.4 k Ω ; 270 μ A
- 13.49 1.68 mA; 50.4 mW
- 13.51 4.63 kΩ
- 13.53 10 mV
- 13.55 0.691 μA; 3.6 mV
- 13.57 $R = 18.2 \text{ k}\Omega$; 15.55 MΩ
- 13.60 3.1 M Ω , 9.38 mA/V
- 13.62 -3.6 V to +4.2 V
- 13.64 14.4 Ω
- 13.66 20.2 mA; double the value of R_7
- 13.68 5.67 MHz
- 13.70 180 Hz; 0.7 pF
- 13.73 159.2 kHz; 10⁸ rad/s or 15.9 MHz
- 13.75 (a) 0.05 mA, (c) 5×10^4 V/V or 94 dB; (d) 63.7 pF
- 13.77 $Q_5: Q_1 = 1; Q_6: Q_1 = 4; 3.47 \text{ k}\Omega; 3 \text{ M}\Omega \text{ and } 7 \text{ M}\Omega$
- 13.79 (a) 0.1 V to 2.2 V; (b) 0.8 V to 2.9 V
- 13.81 12.5 kΩ; 0.8 V to 3.35 V; 100 kΩ; 10 μ A, 50 kΩ
- 13.83 36.9/I; 1240 V/V; $1240(IR_L)/(IR_L + 36.9)$; 5.1 μ A, 11.8 μ A
- 13.85 (a) 0.1 V to 2.9 V; (b) $20 \text{ k}\Omega$; (c) 0.2 Ω ; (d) 12.3 mA, 0.3 mA, 1.6 k Ω ; (e) 0.3 mA, $12.3 \text{ mA}, 2.4 \text{ k}\Omega$
- 13.88 10.6 μA; 0.3 mA

- 14.1 (a) 2.18 k Ω ; (b) 5.40 k Ω ; (c) 3.71
- 14.2 (a) 6; (b) 1.67 k Ω
- 14.16 0.6 V; 0.7 V
- 14.18 $NM_H = 0.2 V_{DD}$; $NM_L = 0.3 V_{DD}$; $0.2 V_{DD}$; 2 V
- 14.20 (a) 0.12 V, 2.5 V, 1.5 V, 0.68 V; (b) $V_{OH} = 2.5 0.4N$, $NM_H = 1.5 0.4N$, N = 2; (c) (i) 3 mW, (ii) 1 mW

- 14.22 $V_{II} = 0.776 \text{ V}, V_{IH} = 0.816 \text{ V}; NM_H = 1.184 \text{ V}; NM_L = 0.776 \text{ V}; -50 \text{ V/V}$
- 14.24 $V_{DD} = 1.2 \text{ V}, R_D = 38.3 \text{ k}\Omega, W/L = 1.5; 0 \text{ W}, 36 \text{ μW}$
- 14.26 $V_{DD} = 1.2 \text{ V}, R_D = 23 \text{ k}\Omega, W/L = 2.5; 0.435 \text{ V}, 0.6 \text{ V}, 0.7 \text{ V}, 0.385 \text{ V}, 0.5 \text{ V}$
- 14.29 6.84
- 14.31 (a) 244 nm, 22,181 nm²; (b) 1 V, 0 V, 0.5375 V, 0.4625 V, 0.4625 V, 0.4625 V (c) both equal; $2.18 \text{ k}\Omega$
- 14.33 1.82
- 14.35 40.1
- 14.37 (a) $0.78 \mu m$, $0.127 \mu m^2$; (b) 1.3 V, 0 V, 0.7125 V, 0.5875 V, 0.59 V, 0.59 V, 0.0625 V, 1.24 V, 0.53 V, 0.53 V; (c) $1.48 \text{ k}\Omega$, $1.48 \text{ k}\Omega$; (d) -5.8 V/V, 0.762 V, 0.538 V, 0.224 V; (e) 0.57 V, -0.08 V, 60%; (f) 0.61 V, -0.04 V, 40%
- 14.39 (a) $v_O(t) = 10 e^{-t/\tau}$; (b) 69 ns, 220 ns
- 14.41 69 ps, 35 ps, 52 ps
- 14.43 (a) 1.2 ns, 0.6 ns; (b) 1 pF; (c) $C_{\text{out}} = 0.6 \text{ pF}$, $C_{\text{load}} = 0.4 \text{ pF}$
- 14.45 30 ps, 60 ps, 45 ps
- 14.47 57.5 ps, 69 ps, 63.3 ps
- 14.49 $(W/L)_n \ge 1.725$, $(W/L)_n \ge 4.14$
- 14.51 34.4 ps, 42.6 ps, 38.5 ps; 13 GHz
- 14.53 36.3 ps, 36.3 ps, 36.3 ps; 9.35 fF
- 14.55 (c) $14.66 \times 10^3 (2C_n + C_w)$; (d) $8.625 \times 10^3 (3.4C_n + C_w)$ (e) (i) In both cases, $t_P = 29.32 \times 10^3 C_n$, thus when C is entirely intrinsic, scaling does not affect t_P ; (ii) For $W_p = W_n$, $t_P = 14.66 \times 10^3 C_w$, and for $W_p = 2.4 W_n$, $t_P = 8.625 \times 10^3 C_w$, thus using a matched design reduces t_P only when C is dominated by external capacitance.
- 14.60 (a) 2.65 V; (b) 2.24 V
- 14.63 32.4 fJ; 64.8 W; 36 A
- 14.65 0.36 pF
- 14.67 32 pJ
- 14.69 (a) t_P and the maximum operating frequency remain unchanged, PDP is reduced by a factor of 0.52; (b) t_P increases by a factor (1/0.72) and the maximum operating frequency is reduced by the factor of 0.72. The *PDP* decreases by a factor of 0.72.

- 15.1 4.88×10^8 or 488 million transistors
- 15.3 260 cm²/Vs, 144.4 cm²/Vs; $E_{cr}(NMOS) = 3.85 \times 10^4$ V/cm; $E_{cr}(PMOS) =$ $6.92 \times 10^4 \text{ V/cm}$

- 15.5 (b) 0.62
- 15.7 (b) 2.75
- 15.9 (a) 207 pA; (b) 207 mA, 207 mW
- 15.11 (a) 270 Ω ; (b) 0.1 pF; (c) 93.2 ps
- 15.13 1.3 V; 0.095 V; 40.5 μA; 52.7 μW
- 15.15 167 ps; 36.9 ps; 102 ps
- 15.17 2.1; 0.5 V; 0.5 V, 0.47 V, 0.44 V
- 15.19 1.69; 0.58 V; 152 μW
- 15.23 1.26
- 15.26 0.834 V
- 15.28 25.8 ps
- 15.30 2.07 V, 0 V; 10.4 μA; 0.9 ns; 0.5 ns
- 15.34 13.5 μ A; 351.6 μ A; 182.6 μ A; 0.18 ns
- 15.36 (a) 1.2 V, 0 V; (b) 240 μ A, 60 μ A, 7.8 μ A, 56.25 μ A, 49.4 ps; (c) 240 μ A, 60 μ A, $225 \,\mu\text{A}, 1.9 \,\mu\text{A}, 34.2 \,\text{ps}, 0.466 \,\text{V}; 41.8 \,\text{ps}$
- 15.39 8.3 kΩ; 83 ps
- 15.45 0.188 ns
- 15.47 0.188 ns; 0.077 ns
- 15.49 (d) 0.35 V, 0.6 V
- 15.51 2 GHz
- 15.53 -1.453 V, -1.205 V, -1.73 V, -0.88 V; 0.230 V, 0.325 V, 0.345 V
- 15.55 22.45 mW
- 15.57 1 V; +5 V; (A+B).(C+D)
- 15.59 2.6 V; 8.18 mA

- 16.1 A(0 V, 0 V), B(2.5 V, 2.5 V), C(5 V, 5 V); 25 V/V; 0.2 V
- 16.4 $(W/L)_{1,3} = 0.13 \ \mu \text{m}/0.13 \ \mu \text{m}, \ (W/L)_{2,4} = 0.52 \ \mu \text{m}/0.13 \ \mu \text{m}, \ (W/L)_{5.8} =$ $0.26 \,\mu m/0.13 \,\mu m$
- 16.6 $(W/L)_{5.6} = 3.83$, higher than the values without velocity saturation to compensate for the current reduction resulting from velocity saturation.
- $16.7 \quad 0.4 \,\mu\text{m}/0.13 \,\mu\text{m}$; 65 ps
- 16.11 4,294,967,296

L-22 Appendix L Answers to Selected Problems

- 16.13 16
- 16.15 57%
- $16.17 \quad (W/L)_a \leq 4.5$
- 16.19 4.5; (i) 0.23 V, 121.8 μA; (ii) 0.34 V, 158.7 μA; (iii) 0.4 V, 180 μA
- 16.22 1.75, greater than the value without velocity saturation because of the current reduction due to velocity saturation.
- 16.24 (a) 3; (b) 4.93 ns; (c) 3.33 ns
- 16.26 3
- 16.29 $L = 0.13 \,\mu\text{m}, (W/L)_n = (W/L)_p = (W/L)_a = 1$
- 16.31 128 Mbits
- 16.33 0.5 pA
- 16.35 0.4 mA/V; 353 mV; 130 mV; 100% (doubling); 4 ns
- 16.37 $(W/L)_n = 3.33, (W/L)_n = 13.32; 1.44 \text{ ns}; 2 \text{ ns}$
- 16.39 (a) 0.4 V; (b) 0.1 V, 0.3 V; (c) 132 μ A; (d) $(W/L)_{1,2} = 26.4$, $(W/L)_{3,4} = 6.6$, $(W/L)_5 = 52.8$
- 16.41 10; 1024; 10,240; 1024; 12,288
- 16.43 40 MHz, 48%
- 16.45 4
- 16.48 (a) 2.4 ns; (b) 22 ns, 3.16 V; (c) 1.9 ns

- 17.2 (a) 0.995 V, -5.7° ; (b) 0.707 V, -45° ; (c) 0.1 V, -84.3° ; (d) 0.01 V, -89.4°
- 17.4 1 V/V; 0.977 V/V; 0.001 V/V
- 17.6 0.97 dB: 14.15 dB
- 17.10 (a) LP: $T(s) = 10^{20}/(s+10^4)(s^2+0.618\times 10^4 s+10^8)(s^2+1.618\times 10^4 s+10^8)$ (b) HP: $T(s) = s^5/(s+10^4)(s^2+0.618\times 10^4 s+10^8)(s^2+1.618\times 10^4 s+10^8)$;
- 17.12 $T(s) = 0.2656 (s^2 + 4)/(s^2 + 0.5s + 1.0625); 0.2656$
- 17.14 $1/(s^3 + 2s^2 + 3s + 2)$; -1, -0.5 $\pm i1.323$
- 17.17 35.7 dB
- 17.19 N=4; $2\pi \times 10^4 (-0.383 \pm j0.924)$, $2\pi \times 10^4 (-0.924 \pm j0.383)$; $\omega_0^4/(s^2 + 0.765 \omega_0 s + \omega_0^2) \times (s^2 + 1.848 \omega_0 s + \omega_0^2)$ where $\omega_0 = 2\pi \times 10^4$ rad/s; 38.2 dB
- 17.22 0.975 rad/s, 0.782 rad/s, 0.434 rad/s, 0 rad/s; 1 rad/s, 0.901 rad/s, 0.623 rad/s, 0.223 rad/s; -64.9 dB; 42 dB/octave

- 17.24 (a) N = 10, 4 dB; (b) Normalized to $\omega_p = 2\pi \times 3.4 \times 10^4$ rad/s, the poles are: $-0.0224 \pm j0.9978; -0.0651 \pm j0.9001; -0.1013 \pm j0.7143; -0.1277 \pm j0.9001; -0.1013 \pm j0.7143; -0.1277 \pm j0.9001; -0.1013 \pm j$ $j0.4586; -0.1415 \pm j0.1580, T(s) = 7.60 \times 10^4/(s^2 + s \cdot 0.0448 \omega_p + 0.9961 \omega_p^2)$ $(s^2 + 0.1302 \ \omega_p + 0.8144 \ \omega_p^2) \ (s^2 + s \ 0.2026 \ \omega_p + 0.5205 \ \omega_p^2) (s^2 + 0.2554 \ \omega_p + 0.5205 \ \omega_p^2)$ $0.2266 \omega_n^2$ $(s^2 + s \ 0.2830 \omega_n + 0.0450 \omega_n^2)$
- 17.26 $R_1 = 120 \text{ k}\Omega$; C = 6.63 nF; $R_2 = 120 \text{ k}\Omega$
- 17.28 $R_1 = 10$ kΩ, $R_2 = 10$ kΩ, $C_1 = 0.16$ μF, $C_2 = 1.6$ nF; High-frequency gain= 40 dB
- 17.30 $T(s) = -(s \omega_0)/(s + \omega_0)$ where $\omega_0 = 1/CR$; $T(j\omega) = \left(1 j\frac{\omega}{\omega_0}\right) / \left(1 + j\frac{\omega}{\omega_0}\right)$; $-2 \tan^{-1}(\omega/\omega_0)$; 5.36 k Ω , 11.55 k Ω , 20 k Ω , 34.60 k Ω , 74.63 k Ω
- 17.33 $T(s) = 10^8/(s^2 + 5000 s + 10^8)$; 9.354 krad/s, 2.066
- 17.35 $T(s) = s^2/(s^2 + \sqrt{2}s + 1)$; Zeros: two at s = 0; Poles: $-0.707 \pm i0.707$
- 17.37 $T(s) = \pi \times 10^4 s / [s^2 + \pi \times 10^3 s + (2\pi \times 10^4)^2];$ Zeros: s = 0 and $s = \infty$: Poles: $1.57 \times 10^3 \times (-1 \pm i39.988)$
- 17.39 $[s^2 + (2\pi \times 60)^2]/[s^2 + s(2\pi \times 60) + (2\pi \times 60)^2]$
- 17.42 $T(s) = (1/LC)/[s^2 + s/CR + (1/LC)]$
- 17.44 (a) -0.5%; (b) -0.5%; (c) no change
- $17.46 \ s^2 / \left(s^2 + \frac{1}{CR} + \frac{1}{LC} \right)$
- 17.49 $V_o = \left[s^2 V_y + s \left(\frac{\omega_0}{Q} \right) V_z + \omega_0^2 V_x \right] / \left[s^2 + s \left(\frac{\omega_0}{Q} \right) + \omega_0^2 \right]$
- 17.51 $R_1 = R_2 = R_3 = 10 \text{ k}\Omega$; (a) $C_4 = 0.15 \mu\text{F}$; (b) $C_4 = 15 \text{ nF}$; (c) $C_4 = 1.5 \text{ nF}$
- 17.55 First-order section (Fig. 17.13a): $R_1 = R_2 = 100 \,\mathrm{k}\Omega$, $C = 10 \,\mathrm{nF}$; Second-order section (Fig. 17.22a): $C_4 = C_6 = 10 \text{ nF}, R_1 = R_2 = R_3 = R_5 = 100 \text{ k}\Omega, R_6 = 161.8 \text{ k}\Omega, K = 1;$ Second-order section (Fig. 17.22a): $C_4 = C_6 = 10 \text{ nF}, R_1 = R_2 = R_3 = R_5 = 100 \text{ k}\Omega$, $R_6 = 61.8 \text{ k}\Omega, K = 1$
- 17.57 $C_4 = C_6 = 1 \text{ nF}, R_1 = R_2 = R_3 = R_5 = 79.6 \text{ k}\Omega, R_6 = 159.2 \text{ k}\Omega, r_1 = r_2 = 10 \text{ k}\Omega$
- 17.60 (b) First-order section: C = 1 nF, $R_1 = R_2 = 13.71$ k Ω , Second-order LPN section: $R_1 = R_2 = R_3 = R_5 = 9.76 \text{ k}\Omega$, $C_{61} = 618 \text{ pF}$, $C_{62} = 382 \text{ pF}$, $R_6 = 35.9 \text{ k}\Omega$, K = 1
- 17.62 (b) C = 1 nF, R = 10 kΩ, $R_1 = 10$ kΩ, $R_f = 10$ kΩ, $R_2 = 10$ kΩ, $R_3 = 70$ kΩ, $R_L = R_H = 10 \text{ k}\Omega, R_B = 40 \text{ k}\Omega, R_F = 57.1 \text{ k}\Omega$
- 17.64 1%
- 17.67 (b) First-order section: C = 1 nF, $R_1 = R_2 = 13.71$ k Ω , Second-order LPN section: $C = 1 \text{ nF}, R = 9.76 \text{ k}\Omega, R_d = 35.9 \text{ k}\Omega, r = 10 \text{ k}\Omega, C_1 = 618 \text{ pF}, R_1 = R_3 = \infty,$ $R_2 = 9.76 \,\mathrm{k}\Omega$
- 17.71 $\omega_0 = 6/CR$, Q = 3, Center-frequency gain = -18 V/V.
- 17.73 (a) Q^2 ; (b) $2Q^2$

17.75 (b) Second-order section [Fig. 17.34(c)]: $R_1 = R_2 = 10 \text{ k}\Omega$, $C_3 = 492 \text{ pF}$, $C_4 = 5.15 \text{ nF}$; Second-order section [Fig. 17.34(c)]: $R_1 = R_2 = 10 \text{ k}\Omega$, $C_3 = 1.29 \text{ nF}$, $C_4 = 1.97 \text{ nF}$; First-order section (Fig. 17.13a): $R_1 = R_2 = 10 \text{ k}\Omega$, C = 1.59 nF

17.77
$$S_L^{\omega_0} = -\frac{1}{2}, S_C^{\omega_0} = -\frac{1}{2}, S_R^{\omega_0} = 0; S_L^{\mathcal{Q}} = -\frac{1}{2}, S_C^{\mathcal{Q}} = \frac{1}{2}, S_R^{\mathcal{Q}} = 1$$

- 17.79 $S_A^{\omega_0} = 0, S_A^Q = 2Q^2/A$
- 17.81 $S_{C_4}^{\omega_0} = S_{C_6}^{\omega_0} = S_{R_1}^{\omega_0} = S_{R_3}^{\omega_0} = S_{R_5}^{\omega_0} = -\frac{1}{2}, S_{R_2}^{\omega_0} = +\frac{1}{2}, S_{R_6}^{\mathcal{Q}} = +1, S_{C_6}^{\mathcal{Q}} = S_{R_2}^{\mathcal{Q}} = +\frac{1}{2}, S_{C_4}^{\mathcal{Q}} = S_{R_1, R_2, R_3}^{\mathcal{Q}} = -\frac{1}{2},$
- 17.83 1 mA/V: 0.99 kΩ
- 17.85 0.314 mA/V
- 17.87 $G_{m1} = 2.51 \text{ mA/V}; G_{m2} = 0.251 \text{ mA/V}$
- 17.90 $C_1 = Q^2 C; G_m = \omega_0 QC$
- 17.92 $G_m = 0.785 \text{ mA/V}; G_{m2} = 0.785 \text{ mA/V}; G_{m3} = 0.157 \text{ mA/V}; G_{m4} = 0.785 \text{ mA/V}$
- 17.94 1 pC; 0.1 μA; 0.1 V; 100 cycles; 10⁴ V/s
- 17.96 $C_3 = C_4 = 6.283 \text{ pF}$; $C_5 = 0.126 \text{ pF}$; $C_6 = 0.126 \text{ pF}$
- 17.98 80.3 rad/s; 83; 967 kHz; 66.7 V/V
- 17.100 838.8 kHz: 47.4
- 17.103 A (dB): 7, 8.5, 9.3, 9.8, 10.1; W/B: 31.6, 8.6, 5.9, 4.9, 4.5

- 18.1 ω_0 ; AK = 1
- 18.3 (a) 1; (b) 2
- 18.5 0.6 mA/V; 15.92 MHz
- 18.7 120° ; $\omega_0 = \sqrt{3}/CR$; 2/R
- 18.11 $\omega_0 = 1/CR$; Q = 1/3; Gain= 1/3
- 18.13 $\omega_0 = 1/CR$; $Q = 1/(2 \frac{R_2}{R_1})$
- 18.15 $\omega_0 = 1/CR$; $R_2/R_1 \ge 2$
- 18.17 7.88 V
- 18.19 $f_0 = 406 \text{ Hz}; R_f = 290 \text{ k}\Omega$
- 18.22 9.95 k Ω ; 3.6 V; add a diode in series with each of the limiter diodes.
- 18.24 $\omega_0 = 1 / \sqrt{L\left(\frac{C_1 C_2}{C_1 + C_2}\right)}$; simplified condition: $g_m R_L > \frac{C_2}{C_1}$

18.26
$$\omega_0 = 1 / \sqrt{L\left(\frac{C_1 C_2}{C_1 + C_2}\right)}; g_m R'_L > \frac{C_1}{C_2}$$

- 18.28 (b) $\omega_0 = 1/\sqrt{LC}$; $IR_C > 0.1 \text{ V}$, (c) $(4/\pi) \text{ V}$
- 18.30 2.0165 MHz to 2.0173 MHz, a range of 800 Hz.

$$\begin{array}{ll} \textbf{18.32} & \textbf{(a)} \ V_{TH} = \left(\frac{L_{+}}{R_{2}} + \frac{V}{R_{3}}\right) (R_{1} \| R_{2} \| R_{3}); \ V_{TL} = \left(\frac{L_{-}}{R_{2}} + \frac{V}{R_{3}}\right) (R_{1} \| R_{2} \| R_{3}); \\ \textbf{(b)} \ R_{2} = 656.7 \ \text{k}\Omega, \ R_{3} = 19.7 \ \text{k}\Omega \end{array}$$

- 18.36 (a) Output will be either +12 V or -12 V; (b) The output is a symmetric square wave $(\pm 12 \text{ V})$ of frequency f and it lags the sine wave by an angle of 65.4°; 0.1 V.
- 18.38 1989 Hz
- 18.40 $V_z = 3.6 \text{ V}; R_1 = R = 25 \text{ k}\Omega; R_3 = 5.83 \text{ k}\Omega; C = 0.01 \text{ }\mu\text{F}; R = 25 \text{ k}\Omega$
- 18.42 96 μs
- 18.44 $C_1 = 1$ nF, $C_2 = 0.1$ nF, $R_1 = R_2 = 100$ kΩ, $R_3 = 134.1$ kΩ, $R_4 = 470$ kΩ; 5.8 V;
- 18.46 (a) $18.2 \text{ k}\Omega$; (b) 10.67 V
- 18.48 (b) 100.6 kHz, 75%; (c) 15.6 μs, 55.2 kHz, 86.2%; 3.90 μs, 156 kHz, 61%
- 18.50 1.85 V