Week 2

Table of Contents

- ▼ <u>Day 2</u>
 - Counting Techniques
 - <u>Permutation</u>
 - Combination
 - Probability
 - Conditional Probability
- <u>▼ Day 3</u>
 - Probability Distribution
 - blueProbability Distribution Function (pdf)
 - <u>blueProbability Distribution Table</u>
 - Cumulative Distribution
 - Mean or Expected Value
 - Standard Deviation and Variance
 - (*) <u>Binomial Distribution</u>
 - <u>blueProbability Distribution Function</u>

Day 2

Counting Techniques

(The Rule [Fundamental Counting Principle])

- First stage = & Second stage =
- ways to accomplish an experiment

(Extended Rule)

 stages with ways for the first stage, ways for the second stage, and ways to for the stage

Permutation

Arrangement of Objects

(Distinct Permutation)

Permutation of objects is

•	ermutation of objects at a time	
	ote that	
•	ote that	
(Re	eating Permutation)	
•	ermutation of objects with types	
(Ci	cular Permutation)	
•	ermutation in a circle with one fixed object is	
Coı	bination	
•	ounting without arrangement	
Pr	bability	
(Un	form Probability Model)	
		
•	n cases where out comes are <u>not equally likely to occur</u> :	:
	ote that:	
•	nion and Intersection	

- Note the Addition Rule
- Compliment →

Conditional Probability

(Dependent Events)

- An event occurring affects the probability of the following event
- Probability of given event has occurred

• Note the Multiplication Rule

(Independent Events)

- Probability of one does not affect the other
- Independent if

- Mutual Independence
 - Events are mutually independent if each pair of events and are independent.

Probability Distribution

 A formula, table, or graph that gives all the possible values of the discrete random variable , and the probability associated with each value

•

.

(Example)

Toss two fair coins and let be the number of heads observed. Find the probability distribution for .

Simple Event	Coin 1	Coin 2	Probability of Simple Event	Number of Heads Observed
	Н	Н		2
	Н	Т		1
	Т	Н		1
	Т	Т		0

Probability Distribution Function (pdf)

_

_

Probability Distribution Table

0	
1	
2	

Cumulative Distribution

formula, table or graph that gives all the possible values and
, the probability that is at most

0	

1	
2	

Mean or Expected Value

• The average value of in the population

Standard Deviation and Variance

(Standard Deviation)

• Measures the spread or variability of the random variable

(Variance)

Binomial Distribution

- Experiment consists of identical trials
- Each trial results in one of two outcomes
- The probability of success on a single trial is equal to and remains from trial to trial. Failure,
- Trials are independent
- Each trial is called a Bernoulli Trial

(Example)

3 distinguishable biased coins \longrightarrow 0.60 heads.

Coin 1	Coin 2	Coin 3	Number of Heads	Probability
Н	Н	Н	3	
Н	Н	Т	2	
Н	Т	Н	2	

Coin 1	Coin 2	Coin 3	Number of Heads	Probability
Н	Т	Т	1	
Т	Н	Н	2	
T	Н	Т	1	
Т	Т	Н	1	
Т	Т	Т	0	

Probability Distribution Function

• If is the probability of success in Bernoulli Trials, then the probability of successes: