VJEROJATNOST I STATISTIKA

Dodatni zadaci za 1. i 2. tjedan

01 Vjerojatnost

- 1. Imamo 10 crvenih i 10 plavih karata (karte iste boje međusobno ne razlikujemo). Prvo promiješamo karte i nakon toga na svaku napišemo njen redni broj u špilu: na prvu kartu broj 1, na drugu broj 2, itd. Izračunajte vjerojatnost da:
 - (a) sve crvene karte imaju na sebi napisane brojeve manje od 15,
 - (b) točno 8 crvenih karata ima na sebi napisane brojeve manje od 15,
 - (c) najviše 8 crvenih karata ima na sebi napisane brojeve manje od 15.

Rješenje.

1. način. Jedan mogući elementarni ishod dan je na slici.

Označimo ovaj elementarni događaj s ω_1 = CPCCPCCPPPCCPCPPPC i neka je Ω skup svih događaja ω_i ovog oblika. Broj elemenata skupa Ω odgovara broju načina na koji možemo rasporediti 10 crvenih i 10 plavih karata na 20 mjesta:

$$|\Omega| = \begin{pmatrix} 20\\10 \end{pmatrix} = \frac{20!}{10!10!} = 184756.$$

(a) Označimo s A događaj da sve crvene karte imaju brojeve manje od 15, odnosno

 $A = \{ \text{sve crvene karte su u prvih } 14 \}.$

Da bismo odredili vjerojatnost $\mathbf{P}(A)$ događaja A trebamo još odrediti broj elementarnih događaja od kojih se sastoji događaj A a taj broj je jednak broju načina na koji od 14 pozicija biramo njih 10 gdje su smještene crvene karte:

$$|A| = \begin{pmatrix} 14\\10 \end{pmatrix} = 1001.$$

Sada je

$$\mathbf{P}(A) = \frac{1001}{184756} = 0.0051.$$

(b) Označimo događaj

 $B = \{\text{točno } 8 \text{ crvenih karata je u prvih } 14\}.$

Ovdje je

$$|B| = \binom{14}{8} \binom{6}{2} = 45045$$

i

$$\mathbf{P}(B) = \frac{45045}{184756} = 0.2438.$$

(c) Neka je

 $C = \{\text{najviše } 8 \text{ crvenih karata je u prvih } 14\}.$

U ovom slučaju bolje je računati vjerojatnost suprotnog događaja

 \overline{C} = {barem 9 crvenih karata je u prvih 14}.

Događaj \overline{C} možemo rastaviti na uniju disjunktnih događaja C_1 i $C_2,$ gdje je

 $C_1 = \{ \text{točno 9 crvenih karata je u prvih 14} \},$

 $C_2 = \{\text{točno 10 crvenih karata je u prvih 14}\},$

čije je vjerojatnosti lako izračunati. Primjetimo i da je $C_2 = A$. Sada računamo

$$\mathbf{P}(C) = 1 - \mathbf{P}(\overline{C}) = 1 - \mathbf{P}(C_1 \cup C_2) = 1 - \frac{|C_1 \cup C_2|}{|\Omega|} = 1 - \frac{|C_1| + |C_2|}{|\Omega|}$$
$$= 1 - \frac{\binom{14}{9}\binom{6}{1} + \binom{14}{10}}{\binom{20}{10}} = 1 - \frac{12012 + 1001}{184756} \approx 0.92956.$$

2. način. Pretpostavimo sada da i prije miješanja i numeriranja svaku kartu možemo razlikovati. Broj načina na koji možemo razmjestiti takvih 20 karata je 20!. Označimo sA, B i C događaje kao u (a) dijelu zadatka.

(a) Da bi se ostvario događaj A potrebno je da se na pozicijama 15-20 nađe 6 plavih karata. Odabrati i razmjestiti 6 palvih karata na 6 pozicija možemo napraviti na $\binom{10}{6}$ 6! načina, a preostalih 14 karata na pozicije 1-14 možemo razmjestiti na 14! načina. Prema tome, vjerojatnost događaja A je

 $\mathbf{P}(A) = \frac{\binom{10}{6}6! \cdot 14!}{20!}.$

(b) Da bi se ostvario događaj B potrebno je da se na pozicijama 1-14 nađe 8 crvenih i 6 plavih karata a na pozicijama 15-20 2 crvene i 4 plave karte. Odabiremo 8 crvenih karata koje se nalaze na mjestima 1-14 na $\binom{10}{8}$ načina. Time smo odabrali i dvije crvene karte koje se nalaze na mjestima 15-20. Slično vrijedi i za plave karte. Uzimajući u obzir i činjenicu da sve karte od početka razlikujemo, računamo vjerojatnost događaja B:

$$\mathbf{P}(B) = \frac{\binom{10}{8}\binom{10}{6}14!6!}{20!}.$$

(c) Vjerojatnost događaja C računamo na isti način kao u prvom pristupu rješavanja zadatka, preko vjerojatnosti suprotnog događaja kojeg zapišemo kao uniju dvaju disjunktnih događaja C_1 i C_2 . Ovi događaji se definiraju isto kao i u prvom načinu a njihove vjerojatnosti računamo po istom principu kao vjerojatnost događaja B u (b) dijelu zadataka. Konačni rezultat je

$$\mathbf{P}(C) = 1 - \left(\frac{\binom{10}{9} \binom{10}{5} 14!6!}{20!} + \frac{\binom{10}{10} \binom{10}{6} 14!6!}{20!} \right).$$

3. način. Uočimo da su zbog pitanja (a), (b) i (c) karte prirodno podijeljene u dvije skupine: 1-14 i 15-20. Na $\binom{20}{14} = \binom{20}{6}$ načina možemo podijeliti sve karte u te dvije skupine.

2

(a) Događaj A se realizira kada se u skupini 15-20 nađe 6 plavih karata. Zato je

$$\mathbf{P}(A) = \frac{\binom{10}{6}}{\binom{20}{6}}.$$

(b) Događaj B se realizira kada se u skupini 15-20 nađu 2 crvene i 6 plavih karata. Zato je

$$\mathbf{P}(B) = \frac{\binom{10}{2}\binom{10}{6}}{\binom{20}{6}}.$$

(c) Slično kao i ranije

$$\mathbf{P}(C) = 1 - \left(\frac{\binom{10}{1}\binom{10}{5}}{\binom{20}{6}} + \frac{\binom{10}{0}\binom{10}{6}}{\binom{20}{6}}\right).$$

Primijetimo da raspisivnjem izraza u sva tri načina dobivamo iste konačne rezultate.

2. Iz posude u kojoj se nalazi 6 crnih, 8 plavih i 10 bijelih kuglica izvlačimo redom kuglice.

- (a) Izračunajte vjerojatnost da, ako vraćamo kuglice u posudu, izvučemo prije plavu nego bijelu.
- (b) Izračunajte vjerojatnost da, ako ne vraćamo kuglice u posudu, izvučemo prije plavu nego bijelu.
- (c) Izračunajte vjerojatnost da među 3 izvučene kuglice (bez vraćanja) bude više plavih nego bijelih kuglica.
- (d) Izračunajte vjerojatnost da među 3 izvučene kuglice (uz vraćanje) bude više plavih nego bijelih kuglica.

Rješenje.

(a) Budući da nas u ovom pokusu interesira samo hoćemo li prije izvući plavu ili bijelu kuglicu, izvlačenje možemo zaustaviti nakon što dobijemo kuglicu plave ili bijele boje. Definiramo skup elementarnih događaja na sljedeći način

$$\Omega = \{P,B,CP,CB,CCP,CCB,CCCP,\ldots\}$$

Skup Ω je beskonačan ali prebrojiv zato za algebru događaja uzimamo čitav partitivni skup

$$\mathcal{F} = \mathcal{P}(\Omega).$$

Računamo vjerojatnosti elementarnih događaja:

$$\mathbf{P}(\underbrace{\mathbf{C}\cdots\mathbf{C}}_{k}\mathbf{P}) = \left(\frac{1}{4}\right)^{k}\frac{1}{3}, \ k = 0, 1, \dots$$

$$\mathbf{P}(\underbrace{\mathbf{C}\cdots\mathbf{C}}_{k}\mathbf{B}) = \left(\frac{1}{4}\right)^{k} \frac{5}{12}, \ k = 0, 1, \dots$$

Označimo

 $A = \{izvukli \text{ smo plavu prije bijele}\} = \{P,CP,CCP,\ldots\}.$

Vrijedi

$$\mathbf{P}(A) = \mathbf{P}(\{P\} \cup \{CP\} \cup \{CCP\} \cup \dots)$$

$$= \sum_{k=0}^{\infty} \mathbf{P}(\underbrace{C \cdots C}_{k} P) = \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^{k} \frac{1}{3} = \frac{1}{1 - \frac{1}{4}} \cdot \frac{1}{3} = \frac{4}{9}.$$

(b) Za razliku od (a) dijela zadatka, ovdje imamo konačan skup elementarnih događaja

$$\Omega = \{P,B,CP,CB,CCP,CCB,CCCP,\dots CCCCCCP,CCCCCCB\}.$$

Ponovo je

$$\mathcal{F} = \mathcal{P}(\Omega)$$
.

Računamo vjerojatnosti elementarnih događaja

$$\mathbf{P}(\underbrace{\mathbf{C}\cdots\mathbf{C}}_{k}\mathbf{P}) = \frac{(6)_{k}}{(24)_{k}} \cdot \frac{8}{24-k}, \ k = 0, 1, \dots 6,$$

$$P(\underbrace{C \cdots C}_{k} B) = \frac{(6)_{k}}{(24)_{k}} \cdot \frac{10}{24 - k}, \ k = 0, 1, \dots, 6.$$

Za događaj

 $A = \{izvukli \text{ smo plavu prije bijele}\} = \{P,CP,CCP,\dots CCCCCCP\}$

računamo vjerojatnost

$$\mathbf{P}(A) = \mathbf{P}(\{P\} \cup \{CP\} \cup \{CCP\} \cup \dots \cup \{CCCCCP\}) = \sum_{k=0}^{6} \mathbf{P}(\underbrace{C \dots C}_{k} P)$$

$$= \sum_{k=0}^{6} \frac{(6)_{k}}{(24)_{k}} \cdot \frac{8}{24 - k} = \frac{8}{24} + \frac{6}{24} \frac{8}{23} + \frac{6}{24} \frac{5}{23} \frac{8}{22} + \dots + \frac{6}{24} \frac{5}{23} \frac{4}{22} \frac{3}{21} \frac{2}{20} \frac{1}{19} \frac{8}{18} = \frac{4}{9}.$$

(c) 1. način. Numeriramo kuglice i pazimo na redoslijed izvlačenja. U posudi se nalaze kuglice označene s $C_1, \ldots, C_6, P_1, \ldots, P_8, B_1, \ldots, B_{10}$. Skup elementarnih događaja čine sve kombinacije od po 3 kuglice:

$$\Omega_1 = \{C_1C_2C_3, C_1C_3C_2, \dots, C_1P_1B_{10}, \dots, B_8B_9B_{10}\} = \{\omega_1, \dots, \omega_{N_1}\},$$

gdje je

$$N_1 = |\Omega_1| = 24 \cdot 23 \cdot 22.$$

Također vrijedi

$$P(\omega_i) = \frac{1}{N_1}, i = 1, ..., N_1.$$

Neka je

 $A = \{\text{Među 3 izvučene kuglice ima više plavih nego bijelih kuglica}\}.$

Događaj kada se pojavi više plavih nego bijelih možemo razdijeliti na sljedeće disjunktne podskupove:

- i. 1P, 0B, 2C $\rightarrow 3 \cdot 8 \cdot 6 \cdot 5$ načina,
- ii. 2P, 1B, 0C $\rightarrow 3 \cdot 8 \cdot 7 \cdot 10$ načina,
- iii. 2P, 0B, 1C $\rightarrow 3 \cdot 8 \cdot 7 \cdot 6$ načina,
- iv. 3P, 0B, 0C \rightarrow 6 · 5 · 4 načina.

Vjerojatnost događaja A računamo kao broj povoljnih ishoda podijeljen brojem svih ishoda:

$$\mathbf{P}(A) = \frac{3 \cdot 8 \cdot 6 \cdot 5 + 3 \cdot 8 \cdot 7 \cdot 10 + 3 \cdot 8 \cdot 7 \cdot 6 + 6 \cdot 5 \cdot 4}{24 \cdot 23 \cdot 22} = \frac{78}{253}$$

2. način. Numeriramo kuglice i ne pazimo na redoslijed izvlačenja. Definirajmo skup Ω_2 :

$$\Omega_2 = \{\{C_1, C_2, C_3\}, \dots, \{C_1, P_1, B_{10}\}, \dots, \{B_8, B_9, B_{10}\}\} = \{w_1, \dots, w_{N_2}\},\$$

Ovdje je

$$N_2 = |\Omega_2| = {24 \choose 3} = {N_1 \over 6}.$$

Računamo vjerojatnost događaja A:

$$\mathbf{P}(A) = \frac{\binom{8}{1}\binom{10}{0}\binom{6}{2} + \binom{8}{2}\binom{10}{1}\binom{6}{0} + \binom{8}{2}\binom{10}{0}\binom{6}{0} + \binom{8}{2}\binom{10}{0}\binom{6}{1} + \binom{8}{3}\binom{10}{0}\binom{6}{0}}{\binom{6}{0}}}{\binom{24}{3}} = \frac{78}{253}.$$

3. način. Kuglice iste boje međusobno ne razlikujemo i ne pazimo na redoslijed izvlačenja.

$$\Omega_3 = \{3 \times C, 2 \times C + 1 \times B, 2 \times C + 1 \times P, \dots, 3 \times P\} = \{W_1, \dots, W_{N_3}\}.$$

Vrijedi

$$N_3 = |\Omega_2| = \begin{pmatrix} 5\\2 \end{pmatrix} = 10,$$

i ovaj broj je jednak za sve količine kuglica gdje od svake vrste imamo barem 3 komada. Pogledajmo od kojih se elementarnih događaj sastoji događaj A:

$$A = \{\underbrace{1 \times P + 2 \times C}_{A_1}, \underbrace{2 \times P + 1 \times B}_{A_2}, \underbrace{2 \times P + 1 \times C}_{A_3}, \underbrace{3 \times P}_{A_4}\}.$$

Elementarni događaji A_i odgovaraju događajima **2**. (c)i, **2**. (c)ii, **2**. (c)iii i **2**. (c)iv koji su se pojavili u prvom načinu rješavanja. Ovdje se radi o konačnom ali ne i klasičnom vjerojatnosnom prostoru. Općenito ne vrijedi $\mathbf{P}(W_i) = \mathbf{P}(W_j)$ za $i \neq j$ i zato ne vrijedi $\mathbf{P}(A) = |A|/|\Omega_3|$. Sada je

$$\mathbf{P}(A) = \sum_{i=1}^{4} \mathbf{P}(A_i) = \frac{\binom{8}{1}\binom{10}{0}\binom{6}{2}}{\binom{24}{3}} + \frac{\binom{8}{2}\binom{10}{1}\binom{6}{0}}{\binom{24}{3}} + \frac{\binom{8}{2}\binom{10}{0}\binom{6}{1}}{\binom{24}{3}} + \frac{\binom{8}{3}\binom{10}{0}\binom{6}{0}}{\binom{24}{3}} + \frac{\binom{8}{3}\binom{10}{0}\binom{6}{0}}{\binom{24}{3}} = \frac{78}{253}.$$

(d) Kao u (c) dijelu zadatka i vjerojatnosni se prostor može modelirati na više načina. Ovdje ćemo pokazati samo jedan od njih a čitatelju ostavljamo da pokuša rješiti ovaj dio na druge načine.

$$\mathbf{P}(A) = \sum_{i=1}^{4} \mathbf{P}(A_i) = \binom{3}{1} \left(\frac{8}{24}\right) \left(\frac{6}{24}\right)^2 + \binom{3}{2} \left(\frac{8}{24}\right)^2 \left(\frac{10}{24}\right) + \binom{3}{2} \left(\frac{8}{24}\right)^2 \left(\frac{6}{24}\right) + \left(\frac{8}{24}\right)^3 = 0.3215$$

- **3**. U bubnju se nalazi 15 kuglica označenih brojevima 1 do 15. Izvlačimo na sreću 5 kuglica. Izračunajte vjerojatnosti sljedećih događaja:
 - (a) A = izvukli smo točno dva parna broja,
 - (b) B = izvukli smo barem dva parna broja,
 - (c) C = zbroj svih brojeva je paran,
 - (d) D = zbroj najveća dva broja je veći od 26.

Rješenje.

(a) Broj načina na koji možemo izvući 5 kuglica iz bubnja sa 15 kuglica je $\binom{15}{5}$. Među svim kuglicama ima 7 označenih parnim brojem i 8 onih na kojima je napisan neparan broj. Traženu vjerojatnost računamo kao kvocijent broja povoljnih ishoda sa brojem ukupnih ishoda:

$$\mathbf{P}(A) = \frac{\binom{7}{2}\binom{8}{3}}{\binom{15}{5}} = 0.39.$$

(b) Događaj B možemo rastaviti na uniju disjunktnih događaja koji odgovaraju točnom broju izvučenih parnih brojeva, 2, 3, 4 ili 5. Suprotan događaj \overline{B} događaja B znači da smo izvukli 0 ili 1 paran broj. Vrijedi

$$\mathbf{P}(B) = 1 - \frac{\binom{7}{0}\binom{8}{5} + \binom{7}{1}\binom{8}{4}}{\binom{15}{5}}.$$

(c) Događaj C se ostvaruje točno onda kada izvučemo paran broj neparnih brojeva, odnosno njih $0,\,2$ ili 4.

$$\mathbf{P}(C) = \frac{\binom{7}{5}\binom{8}{0} + \binom{7}{3}\binom{8}{2} + \binom{7}{1}\binom{8}{4}}{\binom{15}{5}} = 0.4965.$$

- (d) Da bi zbroj dva najveća broja bio veći od 26, ta dva broja moraju biti iz skupa {12, 13, 14, 15}. Promotrimo sljedeće mogućnosti:
 - 15 i 14 $\rightarrow \binom{13}{3} \cdot 1 \cdot 1$ načina
 - 15 i 13 ili 14 i 13 $\rightarrow 2 \cdot {12 \choose 3}$ načina
 - 15 i 12 $\rightarrow \binom{11}{3}$ načina

Zato je

$$\mathbf{P}(D) = \frac{\binom{13}{3} + 2 \cdot \binom{12}{3} + \binom{11}{3}}{\binom{15}{5}} = 0.2967.$$

- **4.** Špil sadrži 52 karte od kojih svaka ima neku od 13 jačina: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A i neku od 4 boje ♠, ♠, ♥. Na sreću izvlačimo 5 karata iz špila. Kolika je vjerojatnost da dobijemo:
 - (a) FULL HOUSE (tri karte iste jačine i još dvije karte neke druge jačine),
 - (b) TWO PAIR (dvije karte jedne jačine, još dvije druge jačine i posljednja karta treće jačine),
 - (c) ONE PAIR (točno dvije karte jedne jačine, preostale tri različitih jačina).
 - (d) STRAIGHT (skala od pet karata A, 2, 3, 4, 5 ili 2, 3, 4, 5, 6 ... ili 10, J, Q, K, A koje nisu sve iste boje),
 - (e) FLUSH (pet karata iste boje)
 - (f) ROYAL FLUSH (skala od pet karata iste boje od desetke do asa),
 - (g) barem jednog asa,
 - (h) 5 karata različitih jačina,
 - (i) 5 karata među kojima nisu zastupljene sve boje?

Rješenje.

$$(a) \ \frac{13 \cdot \binom{14}{3} \cdot 12 \binom{4}{2}}{\binom{52}{5}}$$

(d)
$$\frac{10(4^5-4)}{\binom{52}{5}}$$

(g)
$$1 - \frac{\binom{48}{5}}{\frac{52}{5}}$$

(b)
$$\frac{\binom{13}{2}\binom{4}{2}\binom{4}{2}\cdot 11\cdot 4}{\binom{52}{5}}$$

(e)
$$\frac{4 \cdot \binom{13}{5}}{\binom{52}{5}}$$

$$(h) \quad \frac{\binom{13}{5} \cdot 4^{5}}{\binom{52}{5}}$$

$$(c) \quad \frac{\binom{13}{1}\binom{4}{2}\binom{12}{3}\cdot 4}{\binom{52}{3}}$$

$$(f)$$
 $\frac{4}{\binom{52}{5}}$

(i)
$$1 - \frac{4\binom{13}{2}13^3}{\binom{52}{5}}$$

5. Na jednoj stranici kvadrata stranice duljine 10cm biramo nasreću dvije točke A i B, a na njoj nasuprotnoj stranici biramo na sreću točku C. Izračunajte vjerojatnost da površine trokuta ABC bude manja od $25\mathrm{cm}^2$.

Rješenje.

Označimo |AD| = x i |BD| = y. Tada je

$$P_{\triangle ABC} = \frac{|AB| \cdot v_c}{2} = 5 \cdot |x - y| < 25 \iff |x - y| < 5,$$

$$\Omega = \{(x, y) \in \mathbb{R}^2 : 0 \le x, y \le 10\},$$

$$S = \{(x, y) \in \Omega : |x - y| < 5\}.$$

Zbog apsolutne vrijednosti moramo promatrati dva slučaja:

- $y \ge x$: $|x y| < 5 \Leftrightarrow x y < 5 \Leftrightarrow y < x + 5$,
- y < x: $|x y| < 5 \Leftrightarrow y x < 5 \Leftrightarrow y > x + 5$.

Sada je

$$\mathbf{P}(S) = \frac{m(S)}{m(\Omega)} = \frac{75}{100} = 0.75.$$

6. Unutar dužine duljine 5cm izabrane su na sreću dvije točke. Izračunajte vjerojatnost da su sve tri tako dobivene dužine dulje od 1cm.

Rješenje.

Označimo redom odabrane točke sAi B,te neka xi yoznačavaju duljine prvog, odnosno drugog segmenta kao što je prikazano na slici.

Tada je

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 0 < x < 5, 0 < y < 5, 0 < 5 - (x+y) < 5\} = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0, x+y < 5\},\$$

$$S = \{(x,y) \in \Omega : x > 1, y > 1, 5 - (x+y) > 1\} = \{(x,y) \in \Omega : x > 1, y > 1, x+y < 4\}.$$

7

$$P(S) = \frac{m(S)}{m(\Omega)} = \frac{4}{25} = 0.16.$$

7. Odredite vjerojatnost da su korijeni kvadratne jednadžbe

$$x^2 + 2ax + b = 0$$

realni ako je poznato da se koeficijenti s jednakom vjerojatnošću nalaze bilo gdje unutar pravokutnika $|a| \le n$, $|b| \le m$. Izračunajte vjerojatnost da korijeni dane kvadratne jednadžbe budu pozitivni.

Rješenje.

Korijeni dane kvadratne jednadžbe računaju se po formuli

$$x_{1,2} = \frac{-2a \pm \sqrt{4a^2 - 4b}}{2} = -a \pm \sqrt{a^2 - b}.$$

Oni su realni ako i samo ako je diskriminanta veća ili jednaka nuli:

$$x_1, x_2 \in \mathbb{R} \iff a^2 - b \ge 0.$$

Skicirajmo skup svih točaka u ravnini s koordinatama (a,b) za koje vrijedi $|a| \le n, |b| \le m$ i $a^2 - b \ge 0$. Razlikujemo dva slučaja.

(a)

$$m < n^2$$

i vrijedi:
$$m < n^{2}$$

$$m < n^{2}$$

$$m < n^{2}$$

$$m(S) = (n - \sqrt{m}) \cdot 2m \cdot 2 + \int_{-\sqrt{m}}^{\sqrt{m}} x^{2} dx + 2m\sqrt{m}$$

$$= 4m(n - \frac{1}{3}\sqrt{m}).$$

(b)

Stoga je

$$\mathbf{P}(S) = \frac{m(S)}{m(\Omega)} = \begin{cases} 1 - \frac{\sqrt{m}}{3n}, & m < n^2, \\ \frac{1}{2} + \frac{n}{6m}, & m \ge n^2. \end{cases}$$

Da bismo uopće razmatrali jesu li korijeni pozitivni ili nisu, oni moraju biti realni. Nadalje, vrijedi

$$x_{1,2} \ge 0 \iff (a^2 - b \ge 0, -a \pm \sqrt{a^2 - b} \ge 0) \iff (a^2 - b \ge 0, a \le 0, b \ge 0).$$

Isto kao u prethodnom dijelu zadatka, imamo dva slučaja.

(a)

$$m(G) = (n - \sqrt{m}) \cdot m + \int_{-\sqrt{m}}^{0} x^{2} dx = mn - \frac{2}{3}m\sqrt{m}.$$

(b)

Za
$$m \geq n^2$$
vrijedi
$$m(G) = \int_{-n}^0 x^2 \, \mathrm{d}x = \frac{1}{3} n^3.$$

Konačno je

$$\mathbf{P}(G) = \frac{m(G)}{m(\Omega)} = \begin{cases} \frac{1}{4} - \frac{\sqrt{m}}{6n}, & m < n^2, \\ \frac{n^2}{12m}, & m \ge n^2. \end{cases}$$

8. Na duljini dužine 10 na sreću se biraju dvije točke čime se dužina dijeli na 3 dijela. Izračunajte vjerojatnost da se pomoću dobivenih dijelova može konstruirati trokut.

Rješenje.

Promotrimo skicu:

Uz oznake kao na slici definirajmo skup Ω :

$$\begin{split} \Omega &= \{(x,y) \in \mathbb{R} \colon 0 \le x \le 10, 0 \le y \le 10, 0 \le 10 - x - y \le 10\} \\ &= \{(x,y) \in \mathbb{R} \colon 0 \le x \le 10, 0 \le y \le 10, -x \le y \le 10 - x\}. \end{split}$$

Da bi se od triju dužina mogao konstruirati trokut, svaka od pripadajućih duljina mora biti manja od zbroja preostale dvije. Dakle, sljedeća tri uvjeta moraju biti ispunjena:

(b)
$$y < x + z$$
,

(c)
$$z < x + y$$
,

što je ekvivalentno s

$$x < 5, y < 5, x + y > 5.$$

Sada se lako vidi da je

$$\mathbf{P}(S) = \frac{1}{4}.$$

