FCC RF Test Report

APPLICANT : SAFRAN Identity&Security

EQUIPMENT: MorphoTablet 2

BRAND NAME : SAFRAN MORPHO

MODEL NAME : MPH-MB001A

FCC ID : ZBW-MPHMB001A

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Apr. 06, 2016 and testing was completed on May 11, 2016. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Prepared by: James Huang / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC.

No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 1 of 41
Report Issued Date : Jun. 28, 2016

Report Version : Rev. 01

Report Template No.: BU5-FR15CWL Version 1.3

Testing Laboratory 2627

Report No.: FR640601C

TABLE OF CONTENTS

RE	VISIO	N HISTORY	
SU	MMA	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Applicable Standards	
2	TEST	T CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.12.22.32.42.5	Carrier Frequency Channel Pre-Scanned RF Power Test Mode Connection Diagram of Test System Support Unit used in test configuration and system	
	2.6	EUT Operation Test Setup	
_	2.7	Measurement Results Explanation Example	
3	TEST	T RESULT	
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	6dB Bandwidth Measurement Output Power Measurement Power Spectral Density Measurement Conducted Band Edges and Spurious Emission Measurement Radiated Band Edges and Spurious Emission Measurement AC Conducted Emission Measurement Antenna Requirements	15 19 29 33
4	LIST	OF MEASURING EQUIPMENT	40
ΑP	PEND PEND	ERTAINTY OF EVALUATION DIX A. CONDUCTED TEST RESULTS DIX B. RADIATED TEST RESULTS DIX C. DUTY CYCLE PLOTS	41
ΑP	PEND	DIX D. SETUP PHOTOGRAPHS	

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 2 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR640601C	Rev. 01	Initial issue of report	Jun. 28, 2016

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 3 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
		Conducted Band Edges	00.15	Pass	-
3.4	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
2.5	45 247(4)	Radiated Band Edges and	15.209(a) &	Dana	Under limit
3.5	15.247(0)	15.247(d) Radiated Spurious Emission		Pass	1.18 dB at 9849.000 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 6.91 dB at 0.690 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 4 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

1 General Description

1.1 Applicant

SAFRAN Identity&Security

11, boulevard Galliéni 92130 - Issy-les-Moulineaux France

1.2 Manufacturer

SAFRAN Identity&Security

11, boulevard Galliéni 92130 - Issy-les-Moulineaux France

1.3 Product Feature of Equipment Under Test

	Product Feature				
Equipment	MorphoTablet 2				
Brand Name	SAFRAN MORPHO				
Model Name	MPH-MB001A				
FCC ID	ZBW-MPHMB001A				
	GSM/GPRS/EGPRS(Downlink Only)/WCDMA/HSPA/				
EUT cumperte Badica application	HSPA+(16QAM uplink is not supported)/DC-HSDPA/LTE/NFC/				
EUT supports Radios application	WLAN2.4GHz 802.11b/g/n HT20/				
	Bluetooth v3.0+ EDR/Bluetooth v4.0 LE				
	Conducted: 357079070004380				
IMEI Code	Conduction: 123456789012345				
	Radiation: 357079070007821				
EUT Stage	Identical Prototype				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz			
Maximum (Peak) Output Power to	802.11b : 19.28 dBm (0.0847 W)			
Antenna	802.11g: 19.39 dBm (0.0869 W)			
Antenna	802.11n HT20 : 20.44 dBm (0.1107 W)			
Antenna Type / Gain	Dipole Antenna with gain -2.49 dBi			
Type of Madulation	802.11b: DSSS (DBPSK / DQPSK / CCK)			
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

SPORTON INTERNATIONAL (KUNSHAN) INC.
TEL: 86-0512-5790-0158

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 5 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

1.6 Testing Location

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.					
	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China					
Test Site Location	TEL: +86-0512-5790-0158					
	FAX: +86-0512-5790-0958					
Toot Site No	Sporton Site No. FCC Registration No.					
Test Site No.	TH01-KS	03CH03-KS	CO01-KS	306251		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 6 of 41
Report Issued Date : Jun. 28, 2016

Report No.: FR640601C

Report Version : Rev. 01

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X/Z plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2492 E MU-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 7 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	2.4GHz 802.11b RF Output Power (dBm)							
Pov	ver vs. Char	nnel		Power vs. Data Rate				
Channel	Frequency (MHz)	Data Rate 1Mbps	Channel 2Mbps 5.5Mbps 11M					
CH 01	2412	17.17						
CH 06	2437	18.08	CH 11	19.20	18.91	18.93		
CH 11	2462	<mark>19.28</mark>						

	2.4GHz 802.11g RF Output Power (dBm)									
Pov	Power vs. Channel Power vs. Data Rate									
Channel	Frequency (MHz)	Data Rate 6Mbps	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
CH 01	2412	17.72								
CH 06	2437	19.21	CH 11	19.32	19.37	19.35	19.38	19.34	19.30	19.31
CH 11	2462	<mark>19.39</mark>								

2.4GHz 802.11n HT20 RF Output Power (dBm)										
Pov	Power vs. MCS Index									
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
CH 01	2412	<mark>20.44</mark>								
CH 06	2437	19.88	CH 01	20.27	20.34	20.37	20.32	20.41	20.18	20.39
CH 11	2462	19.63								

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 8 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

<2.4GHz>

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0

Test Cases					
AC Conducted	Mode 1 : GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter) + Earphone				
Emission	iniode 1 . GSINIO30 fulle + Bidetootif Link + WEAN Link + OSB Cable (Charging Horr Adapter) + Larphone				
Remark: For radiated TCs, the tests were performed with adapter, earphone and USB cable.					

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 9 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 10 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	LINKSYS	WRT600N	Q87-WRT600NV11	N/A	Unshielded, 1.8 m
	Notebook	Lenovo	G480	N/A		AC I/P:
3.					N/A	Unshielded, 1.8 m
3.						DC O/P:
						Shielded, 1.8 m
4.	Bluetooth	Nokia	BH-106	QTLBH-106	Unabiolded 0.5 m	N/A
4.	Earphone	INUKIA	סטו-וטט	QILDH-100	Unshielded,0.5 m	IIV/A

2.6 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 11 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 5.5 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$

= 5.5 (dB)

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 12 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r05.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 13 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A of this test report.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A

Report Version : Rev. 01
Report Template No.: BU5-FR15CWL Version 1.3

Report Issued Date: Jun. 28, 2016

: 14 of 41

Page Number

Report No.: FR640601C

3.2 Output Power Measurement

Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.2.3 **Test Procedures**

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Measure the conducted output power and record the results in the test report. 4.

3.2.4 Test Setup

Report Issued Date: Jun. 28, 2016 Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15CWL Version 1.3

: 15 of 41

Report No.: FR640601C

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A of this test report.

3.2.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A of this test report.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 16 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 17 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A of this test report.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A

Report Version : Rev. 01
Report Template No.: BU5-FR15CWL Version 1.3

Report Issued Date: Jun. 28, 2016

: 18 of 41

Page Number

Report No.: FR640601C

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 19 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	2.4GHz Low	Relative Humidity :	49~51%
Test Channel :	01	Test Engineer :	Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 20 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

Page Number : 21 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	802.11b	Temperature :	24~25 ℃
Test Band :	2.4GHz High	Relative Humidity :	49~51%
Test Channel :	11	Test Engineer :	Issac Song

Page Number : 22 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

 Test Mode :
 802.11g
 Temperature :
 24~25℃

 Test Band :
 2.4GHz Low
 Relative Humidity :
 49~51%

 Test Channel :
 01
 Test Engineer :
 Issac Song

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 23 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	802.11g	Temperature :	24~25 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

Page Number : 24 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	802.11g	Temperature :	24~25 ℃
Test Band :	2.4GHz High	Relative Humidity :	49~51%
Test Channel :	11	Test Engineer :	Issac Song

Page Number : 25 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	802.11n HT20	Temperature :	24~25 ℃
Test Band :	2.4GHz Low	Relative Humidity :	49~51%
Test Channel :	01	Test Engineer :	Issac Song

Page Number : 26 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	802.11n HT20	Temperature :	24~25 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	49~51%
Test Channel :	06	Test Engineer :	Issac Song

Page Number : 27 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	802.11n HT20	Temperature :	24~25 ℃
Test Band :	2.4GHz High	Relative Humidity :	49~51%
Test Channel :	11	Test Engineer :	Issac Song

Page Number : 28 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 29 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 30 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 31 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Duty Cycle

Please refer to Appendix C.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 32 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)					
(MHz)	Quasi-Peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 **Test Procedures**

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

Page Number Report Issued Date: Jun. 28, 2016

: 33 of 41

Report No.: FR640601C

Report Version : Rev. 01

3.6.4 Test Setup

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 34 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

3.6.5 Test Result of AC Conducted Emission

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 35 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	Mode 1	1			Temp	erature	:	22~24	1 ℃		
Test Engineer :	Amos 2	Zhang			Relati	ve Hur	nidity :	44~47	7%		
Test Voltage :	120Va	c / 60H	Z		Phase	Line					
Function Type :		GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter) - Earphone							apter)		
80 Level	(dBuV)										
70.0											
60.0									F	CC PART 15C	
50.0		4444	144 124 1 pil	25 127 Mg					FCC PA	ART 15C(AVG)	
40.0	8 1	0 1214 16	182 2 2 2	2 26 28 30	32		hapraky	hama Alamaha	*1\0^9\0^\delpa\p*\p*	ranti ^{nat} N	
30.0						, , , , , , , , , , , , , , , , , , ,				MM.	
10.0											
0.15	.2		5	1		2	5		10	20 30)
					Freque	ency (MHz))				
Site Condition		: CO01-K : FCC PAI	CS RT 15C LIS	N-L-2015	1024 LINI	E					
mode IMEI		: Mode 1 : 123456	578901234	5							
			0ver	Limit	Read	LISN	Cable				
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark			
_	MHz	dBuV	dB	dBuV	dBuV	dB	dB				
18	0.56	37.79	-8.21	46.00	27.40	0.23	10.16	Average			
19			-8.81	56.00			10.16				
20 21	0.62 0.65		-7.91 -9.31				10.16 10.15	_			
22	0.65		-8.21				10.15				
23			-9.81				10.15				
24	0.80		-8.71				10.15	_			
25	0.87		-9.71								
26 27	0.87 1 02		-8.41 -9.82				10.14 10.14				
28 *	1.02		-7.72				10.14				
29			-12.23				10.14				
30			-11.13				10.14				
31	1.64	42.44	-13.56		32.10		10.14	QP			

1.64 34.14 -11.86 46.00 23.80 0.20 10.14 Average

32

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 36 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

22~24°C Test Mode: Mode 1 Temperature: Test Engineer: Amos Zhang **Relative Humidity:** 44~47% 120Vac / 60Hz Test Voltage: Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter) **Function Type:** + Earphone 80 Level (dBuV) 70.0 FCC PART 15C 60.0 FCC PART 15C(AVG) 50.0 40.0 30.0 20.0 10.0 0.15 .2 5 20 2 30 Frequency (MHz) Condition : FCC PART 15C LISN-N-20151024 NEUTRAL mode : Mode 1 IMEI : 123456789012345 LISN Cable Over Limit Read Line Level Factor Loss Remark Freq Level Limit MHz dBuV dB dBuV dBuV dB dB 1 0.29 45.76 -14.70 60.46 35.30 0.31 10.15 QP 0.29 38.26 -12.20 50.46 27.80 0.31 10.15 Average 3 0.36 46.08 -12.66 58.74 35.60 0.32 10.16 QP 0.36 39.38 -9.36 48.74 28.90 0.32 10.16 Average 0.49 46.08 -10.15 56.23 35.60 0.32 10.16 QP 5 0.32 10.16 Average 0.49 38.98 -7.25 46.23 28.50 6 7 0.59 46.89 -9.11 56.00 36.40 0.33 10.16 QP 0.59 38.59 -7.41 46.00 28.10 0.33 10.16 Average 8 9 0.63 46.09 -9.91 56.00 35.60 0.33 10.16 QP 0.63 38.29 -7.71 46.00 27.80 0.33 10.16 Average 10 0.69 46.89 -9.11 56.00 36.40 0.34 10.15 OP 11 12 * 0.69 39.09 -6.91 46.00 28.60 0.34 10.15 Average 13 0.84 47.00 -9.00 56.00 36.50 0.36 10.14 QP 14 0.84 38.80 -7.20 46.00 28.30 0.36 10.14 Average 15 0.90 46.80 -9.20 56.00 36.30 0.36 10.14 QP 16 0.90 38.90 -7.10 46.00 28.40 0.36 10.14 Average 17 0.94 46.90 -9.10 56.00 36.40 0.36 10.14 QP

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 37 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Test Mode :	Mode ¹	1			Temp	erature	:	22~24	$^{\circ}\!\mathbb{C}$			
Test Engineer :	Amos	Zhang			Relati	ve Hun	umidity: 44~47%					
Test Voltage :	120Va	c / 60H	Z		Phase) :		Neutral				
Function Type :	GSM8: + Earp		+ Bluet	ooth Lii	nk + W	LAN Lir	nk + USE	3 Cable	(Char	ging from <i>F</i>	Adapte	
80 Level	(dBuV)											
70.0												
										FCC PART 15	С	
60.0												
50.0	M.MA	THE STATE OF THE S	1777511111	Para Mary	Maria.				FCC	PART 15C(AVG	<u>i)</u>	
40.0		4 6	8 ₁₀ 12	14168 20	A LIVE	M. arii.						
	71				41 1	MANA WATA	A PARKET AND A PARKET	Himbertalen		da		
30.0									PAPAN PAPA	MANUTE PROPERTY OF THE PARTY OF		
20.0									<u>'</u>	· · · · · · · · · · · · · · · · · · ·	ŀ o	
40.0												
10.0												
0.15	.2		5	1		2	5		10	20	30	
Site Condition		: CO01-K	S RT 15C LIS	N-N-2015		ncy (MHz)						
mode IMEI		: Mode 1										
	Frea	Level	Over limit	Limit	Kead	LISN Factor	Cable Loss R	emark				
_	MHz	dBuV	dB	dBuV	dBuV	dB	dB					
18	0.94		-7.00					wanaga				
19			-9.59					_				
20	1.08		-7.09				,	-				
21	1.44		-11.69	56.00			10.14	_				
22	1.44	36.81	-9.19	46.00	26.29	0.38	10.14 A	verage				

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 38 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Report Version : Rev. 01
Report Template No.: BU5-FR15CWL Version 1.3

Report Issued Date: Jun. 28, 2016

: 39 of 41

Page Number

Report No.: FR640601C

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Sep. 10, 2015	May 05, 2016~ May 10, 2016	Sep. 09, 2016	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~ 40GHz	Jan. 20, 2016	May 05, 2016~ May 10, 2016	Jan. 19, 2017	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 20, 2016	May 05, 2016~ May 10, 2016	Jan. 19, 2017	Conducted (TH01-KS)
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz; Max 30dBm	Sep. 10, 2015	Apr. 13, 2016~ May 04, 2016	Sep. 09, 2016	Radiation (03CH03-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55150244	10Hz~44GHz	Jun. 05, 2015	Apr. 13, 2016~ May 04, 2016	Jun. 04, 2016	Radiation (03CH03-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 07, 2015	Apr. 13, 2016~ May 04, 2016	Nov. 06, 2016	Radiation (03CH03-KS)
Bilog Antenna	TeseQ	CBL6112D	23182	25MHz~2GHz	Mar. 12, 2016	Apr. 13, 2016~ May 04, 2016	Mar. 11, 2017	Radiation (03CH03-KS)
Horn Antenna	Schwarzbeck	BBHA9120 D	9120D-1356	1GHz~18GHz	Jun. 25, 2015	Apr. 13, 2016~ May 04, 2016	Jun. 24, 2016	Radiation (03CH03-KS)
SHF-EHF Horn	com-power	AH-840	101070	18GHz~40GHz	Oct. 10, 2015	Apr. 13, 2016~ May 04, 2016	Oct. 09, 2016	Radiation (03CH03-KS)
Amplifier	Burgeon	BPA-530	102212	0.01MHz~3000 MHz	Aug. 10, 2015	Apr. 13, 2016~ May 04, 2016	Aug. 09, 2016	Radiation (03CH03-KS)
Amplifier	Agilent	8449B	3008A02370	1GHz~26.5GHz	Aug. 10, 2015	Apr. 13, 2016~ May 04, 2016	Aug. 09, 2016	Radiation (03CH03-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Apr. 13, 2016~ May 04, 2016	NCR	Radiation (03CH03-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Apr. 13, 2016~ May 04, 2016	NCR	Radiation (03CH03-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Apr. 13, 2016~ May 04, 2016	NCR	Radiation (03CH03-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 29, 2016	May 11, 2016	Apr. 28, 2017	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 24, 2015	May 11, 2016	Oct. 23, 2016	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Oct. 24, 2015	May 11, 2016	Oct. 23, 2016	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP0000008 11	AC 0V~300V, 45Hz~1000Hz	Oct. 24, 2015	May 11, 2016	Oct. 23, 2016	Conduction (CO01-KS)

NCR: No Calibration Required

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 40 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.3 dB
Confidence of 95% (U = 2Uc(y))	2.3 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	4.5 dB
Confidence of 95% (U = 2Uc(y))	4.5 UB

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : 41 of 41
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : A1 of A1
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

A1 - DTS Part

Test Engineer:	Issac Song	Temperature:	24~25	°C
Test Date:	2016/5/5~2016/5/10	Relative Humidity:	49~51	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

				;	2.4GHz Band	d		
Mod.	Data Rate	NTX CH.		Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
11b	1Mbps			2412	12.04	7.09	0.50	Pass
11b	1Mbps	1	6	2437	11.99	7.09	0.50	Pass
11b	1Mbps	1	11	2462	162 15.63		0.50	Pass
11g	6Mbps	1	1	2412	18.33	16.34	0.50	Pass
11g	6Mbps	1	6	2437	18.28	16.34	0.50	Pass
11g	6Mbps	1	11	2462	18.58	16.30	0.50	Pass
HT20	MCS0	1	1	2412	19.18	17.56	0.50	Pass
HT20	MCS0	1	6	2437	18.93	17.56	0.50	Pass
HT20	MCS0	1	11	2462	19.18	17.30	0.50	Pass

TEST RESULTS DATA Peak Power Table

					:	2.4GHz Band	l			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
11b	1Mbps	1	1	2412	17.17	30.00	-2.49	14.68	36.00	Pass
11b	1Mbps	1	6	2437	18.08	30.00	-2.49	15.59	36.00	Pass
11b	1Mbps	1	11	2462	19.28	30.00	-2.49	16.79	36.00	Pass
11g	6Mbps	1	1	2412	17.72	30.00	-2.49	15.23	36.00	Pass
11g	6Mbps	1	6	2437	19.21	30.00	-2.49	16.72	36.00	Pass
11g	6Mbps	1	11	2462	19.39	30.00	-2.49	16.90	36.00	Pass
HT20	MCS0	1	1	2412	20.44	30.00	-2.49	17.95	36.00	Pass
HT20	MCS0	1	6	2437	19.88	30.00	-2.49	17.39	36.00	Pass
HT20	MCS0	1	11	2462	19.63	30.00	-2.49	17.14	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

			:	2.4GHz I	Band	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
11b	1Mbps	1	1	2412	0.11	13.57
11b	1Mbps	1	6	2437	0.11	14.87
11b	1Mbps	1	11	2462	0.11	16.04
11g	6Mbps	1	1	2412	0.60	7.95
11g	6Mbps	1	6	2437	0.60	9.58
11g	6Mbps	1	11	2462	0.60	12.09
HT20	MCS0	1	1	2412	0.65	11.16
HT20	MCS0	1	6	2437	0.65	10.90
HT20	MCS0	1	11	2462	0.65	11.08

TEST RESULTS DATA Peak Power Density

				;	2.4GHz Band	d		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
11b	1Mbps	1	1	2412	-8.49	-2.49	8.00	Pass
11b	1Mbps	1	6	2437	-6.49	-2.49	8.00	Pass
11b	1Mbps	1	11	2462	-5.89	-2.49	8.00	Pass
11g	6Mbps	1	1	2412	-16.53	-2.49	8.00	Pass
11g	6Mbps	1	6	2437	-14.90	-2.49	8.00	Pass
11g	6Mbps	1	11	2462	-12.31	-2.49	8.00	Pass
HT20	MCS0	1	1	2412	-14.35	-2.49	8.00	Pass
HT20	MCS0	1	6	2437	-13.85	-2.49	8.00	Pass
HT20	MCS0	1	11	2462	-13.70	-2.49	8.00	Pass

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2382.45	50.67	-23.33	74	55.17	26.95	5.57	37.02	100	139	Р	Н
		2390	39.86	-14.14	54	44.29	27	5.59	37.02	100	139	Α	Н
	*	2412.024	100.5	-	-	104.76	27.13	5.61	37	100	139	Р	Н
802.11b	*	2413.11	98	-	-	102.26	27.13	5.61	37	100	139	Α	Н
CH 01 2412MHz		2329.26	50.73	-23.27	74	55.42	26.82	5.5	37.01	100	182	Р	V
24 12WITIZ		2386.77	39.74	-14.26	54	44.17	27	5.59	37.02	100	182	Α	V
	*	2412.024	95.71	-	-	99.97	27.13	5.61	37	100	182	Р	V
	*	2411.105	93.19	-	-	97.45	27.13	5.61	37	100	182	Α	٧
	*	2435.738	100.57	-	-	104.67	27.26	5.63	36.99	100	135	Р	Н
802.11b	*	2435.905	98.07	-	-	102.17	27.26	5.63	36.99	100	135	Α	Н
CH 06 2437MHz	*	2435.905	95.71	-	-	99.81	27.26	5.63	36.99	100	192	Р	V
243 / IVIF1Z	*	2435.905	93.28	-	-	97.38	27.26	5.63	36.99	100	192	Α	V

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B1 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

	*	2462.041	104.67	-	-	108.45	27.51	5.67	36.96	123	139	Р	Н
	*	2461.122	102.16	-	-	105.94	27.51	5.67	36.96	123	139	Α	Н
		2483.8	54.7	-19.3	74	58.31	27.64	5.69	36.94	123	139	Р	Н
802.11b		2483.52	45.76	-8.24	54	49.37	27.64	5.69	36.94	123	139	Α	Н
CH 11	*	2462.041	101.32	-	-	105.1	27.51	5.67	36.96	238	113	Р	V
2462MHz	*	2461.039	98.82	-	-	102.6	27.51	5.67	36.96	238	113	Α	V
		2483.84	52.54	-21.46	74	56.15	27.64	5.69	36.94	238	113	Р	V
		2483.52	43.31	-10.69	54	46.92	27.64	5.69	36.94	238	113	Α	٧
Remark		o other spurious for		k and Aver	age limit line).		·		,	1	·	

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B2 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

2.4GHz 2400~2483.5MHz WIFI 802.11b (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4824	48.2	-25.8	74	69.66	31.51	9.13	62.1	100	33	Р	Н
		4824	45.09	-8.91	54	66.55	31.51	9.13	62.1	100	33	Α	Н
802.11b		9648	52.89	-21.11	74	65.06	37.66	12.99	62.82	123	29	Р	Н
CH 01 2412MHz	!	9648	51.21	-2.79	54	63.38	37.66	12.99	62.82	123	29	Α	Н
24 12 WITH		4824	45.61	-28.39	74	67.07	31.51	9.13	62.1	100	0	Р	V
		9648	45.76	-28.24	74	57.93	37.66	12.99	62.82	100	0	Р	٧
		4875	43.98	-30.02	74	65.22	31.59	9.2	62.03	100	25	Р	Н
		4875	42.78	-11.22	54	64.02	31.59	9.2	62.03	100	25	Α	Н
802.11b		7311	40.7	-33.3	74	54.53	34.03	11.3	59.16	100	0	Р	Н
CH 06		9747	49.58	-24.42	74	61.28	37.7	13.19	62.59	100	360	Р	Н
2437MHz		4875	45.06	-28.94	74	66.3	31.59	9.2	62.03	100	0	Р	V
		7311	38.86	-35.14	74	52.69	34.03	11.3	59.16	100	360	Р	V
		9747	46.29	-27.71	74	57.99	37.7	13.19	62.59	100	0	Р	V
		4923	47.74	-26.26	74	68.77	31.67	9.27	61.97	100	360	Р	Н
802.11b		7386	38.18	-35.82	74	51.72	34.29	11.29	59.12	100	0	Р	Н
CH 11		4923	51.08	-22.92	74	72.11	31.67	9.27	61.97	142	226	Р	V
2462MHz	!	4923	48.42	-5.58	54	69.45	31.67	9.27	61.97	142	226	Α	V
		7386	41.51	-32.49	74	55.05	34.29	11.29	59.12	100	360	Р	V

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B3 of B12
Report Issued Date : Jun. 28, 2016

Report No.: FR640601C

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	(H/V)
		2378.13	50.89	-23.11	74	55.39	26.95	5.57	37.02	112	136	P	Н
		2390	40.66	-13.34	54	45.09	27	5.59	37.02	112	136	Α	Н
	*	2418.119	99.09	-	-	103.35	27.13	5.61	37	112	136	Р	Н
802.11g	*	2418.955	90.8	-	-	95.06	27.13	5.61	37	112	136	Α	Н
CH 01 2412MHz		2328.45	51.04	-22.96	74	55.73	26.82	5.5	37.01	124	193	Р	٧
2412111112		2386.77	40.21	-13.79	54	44.64	27	5.59	37.02	124	193	Α	٧
	*	2419.122	93.95	-	-	98.21	27.13	5.61	37	124	193	Р	٧
	*	2419.205	85.94	-	-	90.2	27.13	5.61	37	124	193	Α	٧
200.44	*	2430.645	99.68	-	-	103.78	27.26	5.63	36.99	100	136	Р	Н
802.11g CH 06	*	2430.227	91.6	-	-	95.7	27.26	5.63	36.99	100	136	Α	Н
2437MHz	*	2430.561	94.87	-	-	98.97	27.26	5.63	36.99	100	177	Р	٧
245/141112	*	2430.227	86.28	-	-	90.38	27.26	5.63	36.99	100	177	Α	٧

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B4 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

	*	2465.046	102.93	-	-	106.71	27.51	5.67	36.96	100	140	Р	Н
	*	2460.454	94.65	-	-	98.43	27.51	5.67	36.96	100	140	Α	Н
		2483.6	63.67	-10.33	74	67.28	27.64	5.69	36.94	100	140	Р	Н
802.11g	!	2483.56	48.48	-5.52	54	52.09	27.64	5.69	36.94	100	140	Α	Н
CH 11 2462MHz	*	2462.291	97.86	-	-	101.64	27.51	5.67	36.96	400	82	Р	V
2402141712	*	2460.204	89.85	-	-	93.63	27.51	5.67	36.96	400	82	Α	V
		2483.52	58.52	-15.48	74	62.13	27.64	5.69	36.94	400	82	Р	٧
		2483.52	44.76	-9.24	54	48.37	27.64	5.69	36.94	400	82	Α	٧
Remark		o other spurious f		k and Ave	rage limit line.								

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B5 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

2.4GHz 2400~2483.5MHz WIFI 802.11g (Harmonic @ 3m)

				-	-		-		-				
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4824	37.37	-36.63	74	58.83	31.51	9.13	62.1	100	360	Р	Н
802.11g		9648	53.73	-20.27	74	65.9	37.66	12.99	62.82	132	15	Р	Н
CH 01	!	9648	51.27	-2.73	54	63.44	37.66	12.99	62.82	132	15	Α	Н
2412MHz		4824	37.31	-36.69	74	58.77	31.51	9.13	62.1	100	0	Р	٧
		9648	47.55	-26.45	74	59.72	37.66	12.99	62.82	100	0	Р	V
		4875	37.41	-36.59	74	58.65	31.59	9.2	62.03	100	360	Р	Н
		7311	39.15	-34.85	74	52.98	34.03	11.3	59.16	100	0	Р	Н
802.11g		9747	53.97	-20.03	74	65.67	37.7	13.19	62.59	100	28	Р	Н
CH 06	!	9747	52.06	-1.94	54	63.76	37.7	13.19	62.59	100	28	Α	Н
2437MHz		4875	36.38	-37.62	74	57.62	31.59	9.2	62.03	100	0	Р	V
		7311	38.63	-35.37	74	52.46	34.03	11.3	59.16	100	360	Р	V
		9747	46.05	-27.95	74	57.75	37.7	13.19	62.59	100	0	Р	V
		4923	37.48	-36.52	74	58.51	31.67	9.27	61.97	100	360	Р	Н
		7386	38.96	-35.04	74	52.5	34.29	11.29	59.12	100	0	Р	Н
802.11g		9849	54.96	-19.04	74	66.07	37.74	13.3	62.15	100	29	Р	Н
CH 11 2462MHz	!	9849	52.82	-1.18	54	63.93	37.74	13.3	62.15	100	29	Α	Н
∠ 4 0∠IVI⊓Z		4923	37.57	-36.43	74	58.6	31.67	9.27	61.97	100	360	Р	٧
		7686	40.23	-33.77	74	54.1	34.89	11.47	60.23	100	83	Р	V

Remark

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B6 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		(B#11-)	(dD:\//aa \	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(110.0
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.2	55.29	-18.71	74	59.72	27	5.59	37.02	300	183	Р	Н
		2389.92	41.69	-12.31	54	46.12	27	5.59	37.02	300	183	Α	Н
802.11n	*	2418.621	98.07			102.33	27.13	5.61	37	300	183	Р	Н
HT20	*	2419.456	89.95			94.21	27.13	5.61	37	300	183	Α	Н
CH 01		2390	59.22	-14.78	74	63.65	27	5.59	37.02	121	234	Р	٧
2412MHz		2390	41.95	-12.05	54	46.38	27	5.59	37.02	121	234	Α	٧
	*	2419.372	96.51			100.77	27.13	5.61	37	121	234	Р	٧
	*	2419.539	88.9			93	27.26	5.63	36.99	121	234	Α	V
802.11n	*	2430.227	97.7			101.8	27.26	5.63	36.99	111	146	Р	Н
HT20	*	2429.81	89.8			93.9	27.26	5.63	36.99	111	146	Α	Н
CH 06	*	2431.73	98.96			103.06	27.26	5.63	36.99	113	218	Р	٧
2437MHz	*	2429.893	90.27			94.37	27.26	5.63	36.99	113	218	Α	٧

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B7 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

	*	0.450.050	00.00			400.04	07.54	5.07	00.00	400	450	_	
		2459.953	99.06			102.84	27.51	5.67	36.96	108	152	Р	Н
	*	2459.201	90.81			94.59	27.51	5.67	36.96	108	152	Α	Н
802.11n		2483.72	60.37	-13.63	74	63.98	27.64	5.69	36.94	108	152	Р	Н
HT20		2483.52	45.26	-8.74	54	48.87	27.64	5.69	36.94	108	152	Α	Н
CH 11	*	2457.698	96.9			100.68	27.51	5.67	36.96	118	219	Р	V
2462MHz	*	2463.209	88.3			92.08	27.51	5.67	36.96	118	219	Α	٧
		2483.8	58.88	-15.12	74	62.49	27.64	5.69	36.94	118	219	Р	٧
		2483.52	43.67	-10.33	54	47.28	27.64	5.69	36.94	118	219	Α	٧
Remark		o other spurious fo											
	2. Al	I results are PASS	against Pea	ak and Aver	age limit line) .							

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B8 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	Ì
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		4824	38.57	-35.43	74	60.03	31.51	9.13	62.1	100	360	Р	Н
		7236	38.36	-35.64	74	52.42	33.82	11.31	59.19	100	0	Р	Н
802.11n		9648	51.34	-22.66	74	63.51	37.66	12.99	62.82	100	360	Р	Н
HT20		9648	50.82	-3.18	54	62.99	37.66	12.99	62.82	100	25	Α	Н
CH 01		4824	41.13	-32.87	74	62.59	31.51	9.13	62.1	100	0	Р	V
2412MHz		7236	37.56	-36.44	74	51.62	33.82	11.31	59.19	100	360	Р	V
		9648	53.15	-20.85	74	65.32	37.66	12.99	62.82	100	327	Р	V
		9648	50.9	-3.1	54	63.07	37.66	12.99	62.82	100	327	Α	V
		4875	36.23	-37.77	74	57.47	31.59	9.2	62.03	100	360	Р	Н
802.11n		7311	38.75	-35.25	74	52.58	34.03	11.3	59.16	100	0	Р	Н
HT20		9747	52.62	-21.38	74	64.32	37.7	13.19	62.59	100	26	Р	Н
CH 06		9747	51.52	-2.48	54	63.22	37.7	13.19	62.59	100	26	Α	Н
2437MHz		4875	37.03	-36.97	74	58.27	31.59	9.2	62.03	100	0	Р	V
		7311	37.97	-36.03	74	51.8	34.03	11.3	59.16	100	360	Р	V
		4923	35.39	-38.61	74	56.42	31.67	9.27	61.97	100	360	Р	Н
		7386	38.87	-35.13	74	52.41	34.29	11.29	59.12	100	0	Р	Н
802.11n		9849	53.11	-20.89	74	64.22	37.74	13.3	62.15	100	29	Р	Н
HT20		9849	51.21	-2.79	54	62.32	37.74	13.3	62.15	100	29	Α	Н
CH 11		4923	36.05	-37.95	74	57.08	31.67	9.27	61.97	100	0	Р	V
2462MHz		7386	38.18	-35.82	74	51.72	34.29	11.29	59.12	100	360	Р	V
		9849	52.04	-21.96	74	63.15	37.74	13.3	62.15	100	345	Р	V
		9849	50.42	-3.58	54	61.53	37.74	13.3	62.15	100	345	Α	V

^{2.} All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B9 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

Emission below 1GHz

2.4GHz WIFI 802.11g (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	19.43	-20.57	40	32.79	18.6	0.65	32.61			Р	Н
		288.02	20.58	-25.42	46	36.24	14.5	2.04	32.2			Р	Н
		323.91	23.97	-22.03	46	38.67	15.33	2.21	32.24			Р	Н
		480.08	23.95	-22.05	46	35.5	17.94	2.74	32.23			Р	Н
0.4011		786.6	26.64	-19.36	46	33.3	21.46	3.55	31.67			Р	Н
2.4GHz		960.23	34.91	-19.09	54	38.67	23.64	4	31.4	164	70	Р	Н
802.11g LF		44.55	22.25	-17.75	40	41.22	12.8	0.83	32.6			Р	>
_1		118.27	18.01	-25.49	43.5	35.7	13.36	1.31	32.36			Р	٧
		288.02	24.15	-21.85	46	39.81	14.5	2.04	32.2			Р	٧
		323.91	26.53	-19.47	46	41.23	15.33	2.21	32.24			Р	٧
		480.08	32.66	-13.34	46	44.21	17.94	2.74	32.23	102	351	Р	٧
		960.23	34.67	-19.33	54	38.43	23.64	4	31.4			Р	٧
	1. No	other spurious f	ound.										
Remark		results are PAS		line.									

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B10 of B12
Report Issued Date : Jun. 28, 2016

Report No. : FR640601C

Report Version : Rev. 01

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : B11 of B12
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No. : FR640601C

A calculation example for radiated spurious emission is shown as below:

Report No.: FR640601C

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 SPORTON INTERNATIONAL (KUNSHAN) INC.
 Page Number
 : B12 of B12

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Jun. 28, 2016

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID : ZBW-MPHMB001A Report Template No.: BU5-FR15CWL Version 1.3

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	97.594	8.232	0.121	300Hz
802.11g	87.037	1.362	0.734	1kHz
2.4GHz 802.11n HT20	86.092	1.274	0.785	1kHz

802.11b

Date: 13.APR.2016 02:12:42

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : C1 of C2
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01

Report No.: FR640601C

802.11g

Date: 13.APR.2016 02:15:12

2.4GHz 802.11n HT20

Date: 13.APR.2016 02:20:35

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: ZBW-MPHMB001A Page Number : C2 of C2
Report Issued Date : Jun. 28, 2016
Report Version : Rev. 01