the design criteria established in the foundation investigation report.

12.13.5.2 Foundation Ties

Individual pile caps, drilled piers, or caissons shall be interconnected by ties. All ties shall have a design strength in tension or compression at least equal to a force equal to 10 percent of S_{DS} times the larger pile cap or column factored dead plus factored live load unless it is demonstrated that equivalent restraint will be provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade or confinement by competent rock, hard cohesive soils, very dense granular soils, or other approved means.

12.13.5.3 Pile Anchorage Requirements

In addition to the requirements of Section 14.2.3.1, anchorage of piles shall comply with this section. Where required for resistance to uplift forces, anchorage of steel pipe (round HSS sections), concrete-filled steel pipe or H piles to the pile cap shall be made by means other than concrete bond to the bare steel section.

EXCEPTION: Anchorage of concrete-filled steel pipe piles is permitted to be accomplished using deformed bars developed into the concrete portion of the pile.

12.13.6 Requirements for Structures Assigned to Seismic Design Categories D through F

In addition to the requirements of Sections 11.8.2, 11.8.3, 14.1.8, and 14.2.3.2, the following foundation design requirements shall apply to structures assigned to Seismic Design Category D, E, or F. Design and construction of concrete foundation elements shall conform to the requirements of ACI 318, Section 21.8, except as modified by the requirements of this section.

EXCEPTION: Detached one- and two-family dwellings of light-frame construction not exceeding two stories above grade plane need only comply with the requirements for Sections 11.8.2, 11.8.3 (Items 2 through 4), 12.13.2, and 12.13.5.

12.13.6.1 Pole-Type Structures

Where construction employing posts or poles as columns embedded in earth or embedded in concrete footings in the earth is used to resist lateral loads, the depth of embedment required for posts or poles to resist seismic forces shall be determined by means of the design criteria established in the foundation investigation report.

12.13.6.2 Foundation Ties

Individual pile caps, drilled piers, or caissons shall be interconnected by ties. In addition, individual spread footings founded on soil defined in Chapter 20 as Site Class E or F shall be interconnected by ties. All ties shall have a design strength in tension or compression at least equal to a force equal to 10 percent of S_{DS} times the larger pile cap or column factored dead plus factored live load unless it is demonstrated that equivalent restraint will be provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade or confinement by competent rock, hard cohesive soils, very dense granular soils, or other approved means.

12.13.6.3 General Pile Design Requirement

Piling shall be designed and constructed to withstand deformations from earthquake ground motions and structure response. Deformations shall include both free-field soil strains (without the structure) and deformations induced by lateral pile resistance to structure seismic forces, all as modified by soil—pile interaction.

12.13.6.4 Batter Piles

Batter piles and their connections shall be capable of resisting forces and moments from the load combinations with overstrength factor of Section 12.4.3.2 or 12.14.3.2.2. Where vertical and batter piles act jointly to resist foundation forces as a group, these forces shall be distributed to the individual piles in accordance with their relative horizontal and vertical rigidities and the geometric distribution of the piles within the group.

12.13.6.5 Pile Anchorage Requirements

In addition to the requirements of Section 12.13.5.3, anchorage of piles shall comply with this section. Design of anchorage of piles into the pile cap shall consider the combined effect of axial forces due to uplift and bending moments due to fixity to the pile cap. For piles required to resist uplift forces or provide rotational restraint, anchorage into the pile cap shall comply with the following:

1. In the case of uplift, the anchorage shall be capable of developing the least of the nominal tensile strength of the longitudinal reinforcement in a concrete pile, the nominal tensile strength of a steel pile, and 1.3 times the pile pullout resistance, or shall be designed to resist the axial tension force resulting from the seismic load effects including overstrength factor of Section 12.4.3 or 12.14.3.2.