Universidade Estadual Paulista "Júlio de Mesquita Filho"

Notas de aula Sistemas p-fuzzy

Prof. Dr. Vinícius Francisco Wasques viniciuswasques@gmail.com

10 de fevereiro de 2022

Implicações Fuzzy

Da lógica clássica temos que uma implicação $(p \Rightarrow q)$ assume os seguintes valores:

- Se p é verdadeiro, ou seja, assume o valor 1, e q for verdadeiro, isto é, assume o valor 1, então a implicação é verdadeira.
- Se p é verdadeiro, ou seja, assume o valor 1, e q for falso, isto é, assume o valor 0, então a implicação é falsa.
- Se p é falso, ou seja, assume o valor 0, e q for falso, isto é, assume o valor 0, então a implicação é verdadeira.
- Se p é falso, ou seja, assume o valor 0, e q for verdadeiro, isto é, assume o valor 1, então a implicação é verdadeira.

Resumindo,

p	q	$(p \Rightarrow q)$
1	1	1
1	0	0
0	1	1
0	0	1

Tabela 1: Tabela verdade clássica

Definição: Uma implicação fuzzy é definido por um operador \Rightarrow : $[0,1] \times [0,1] \to [0,1]$ de tal forma que as seguintes condições são satisfeitas:

- 1. Ela deve reproduzir a tabela verdade clássica;
- 2. Decrescente em relação a primeira variável, isto é, se $u \le x$, então $x \Rightarrow y \le u \Rightarrow y$;
- 3. Crescente em relação a segunda variável, isto é, se $y \le v$, então $x \Rightarrow y \le x \Rightarrow v$.

Exemplo: O operador definido por

$$(x \Rightarrow_G y) = \begin{cases} 1, & \text{se } x \leq y \\ y, & \text{se } x > y \end{cases}$$

é chamado de implicação de Gödel.

- 1. Vamos checar que o operador \Rightarrow_G reproduz a tabela verdade.
 - (a) Se x = 0 e y = 0, então $(0 \Rightarrow_G 0) = 1$;
 - (b) Se x = 0 e y = 1, então $(0 \Rightarrow_G 1) = 1$;
 - (c) Se x=1 e y=0, então $(1\Rightarrow_G 0)=0$;
 - (d) Se x = 1 e y = 1, então $(1 \Rightarrow_G 1) = 1$.
- 2. Seja $u \leq x$. Vamos considerar os seguntes casos:

- (a) Se $x \leq y$ e $u \leq y$;
- (b) Se $x \leq y$ e u > y;
- (c) Se x > y e $u \le y$;
- (d) Se x > y e u > y.

Note que o caso (b) não pode ocorrer, uma vez que se $x \le y$ e u > y, teríamos que x < u, o que não ocorre por hipótese. Vejamos o caso (a):

$$x \Rightarrow_G y = 1$$

Por outro lado,

$$u \Rightarrow_G y = 1.$$

Assim, em particular segue que

$$(x \Rightarrow_G y) = 1 \le 1 = (u \Rightarrow_G y)$$

Vejamos o caso (c):

$$x \Rightarrow_G y = y$$

Por outro lado,

$$u \Rightarrow_G y = 1.$$

Assim, segue que

$$(x \Rightarrow_G y) = y \le 1 = (u \Rightarrow_G y)$$

Vejamos o caso (d):

$$x \Rightarrow_G y = y$$

Por outro lado,

$$u \Rightarrow_G y = y$$
.

Assim, em particular segue que

$$(x \Rightarrow_G y) = y \le y = (u \Rightarrow_G y)$$

- 3. Considere $y \le v$. Vamos considerar os seguntes casos:
 - (a) Se $x \le y$ e $x \le v$;
 - (b) Se $x \leq y$ e x > v;
 - (c) Se x > y e $x \le v$;
 - (d) Se x > y e x > v.

Note que o caso (b) não pode ocorrer, uma vez que se $x \le y$ e u > y, teríamos que x < u, o que não ocorre por hipótese. Vejamos o caso (a):

$$(x \Rightarrow_G y) = 1.$$

Por outro lado,

$$(x \Rightarrow_G v) = 1.$$

Assim, em particular segue que

$$(x \Rightarrow_G y) = 1 \le 1 = (x \Rightarrow_G v).$$

Vejamos o caso (c):

$$(x \Rightarrow_G y) = y.$$

Por outro lado,

$$(x \Rightarrow_G v) = 1.$$

Assim, em particular segue que

$$(x \Rightarrow_G y) = y \le 1 = (x \Rightarrow_G v).$$

Vejamos o caso (d):

$$(x \Rightarrow_G y) = y.$$

Por outro lado,

$$(x \Rightarrow_G v) = v.$$

Assim, por hipótese segue que

$$(x \Rightarrow_G y) = y \le v = (x \Rightarrow_G v).$$

Vamos definir agora uma relação fuzzy dada por:

$$\varphi_R(x,y) = (\varphi_A(x) \Rightarrow \varphi_B(y)).$$

Note que da teoria clássica, temos o seguinte:

$$\chi_R(x,y) = (\chi_A(x) \Rightarrow \chi_B(y)) = \begin{cases} 1 & \text{se } (x \notin A \text{ e } y \text{ qualquer}) \text{ ou } (x \in A \text{ e } y \in B) \\ 0 & \text{se } x \in A \text{ e } y \notin B \end{cases}$$

Da teoria clássica, temos que

$$\sup_{x \in U} \min(\chi_A(x), \chi_R(x, y)) = \chi_B(y) \tag{1}$$

Para verificar essa igualdade, vamos supor dois casos: (a) $y \in B$ (b) $y \notin B$.

Caso (a): O lado direito é igual a $\chi_B(y)=1$. Por outro lado, temos que $\chi_R(x,y)=1$, pois $y\in B$. Assim,

$$\sup_{x\in U} \min(\chi_A(x),\chi_R(x,y)) = \sup_{x\in U} \min(\chi_A(x),1) = \sup_{x\in U} \chi_A(x) = 1 = \chi_B(y).$$

Caso (b): O lado direito é igual a $\chi_B(y)=0$. Primeiro note que se $y\notin B$ e $x\in A$, então $\chi_R(x,y)=0$. Assim,

$$\sup_{x \in U} \min(\chi_A(x), \chi_R(x, y)) = \sup_{x \in U} \min(\chi_A(x), 0) = \sup_{x \in U} 0 = 0 = \chi_B(y).$$

Por outro lado, se $y \notin B$ e $x \notin A$, então $\chi_R(x,y) = 1$. Assim,

$$\sup_{x \in U} \min(\chi_A(x), \chi_R(x, y)) = \sup_{x \in U} \min(0, 1) = \sup_{x \in U} 0 = 0 = \chi_B(y).$$

Baseado na Equação (1) generalizamos essa relação para

$$\sup_{x \in U} t(\varphi_A(x), \varphi_R(x, y)) = \varphi_B(y),$$

em que t representa uma t-norma.

Exercício (para entregar):

 Mostre que o operador abaixo, chamado de implicação de Lukasiewicz, é de fato uma implicação fuzzy:

$$(x \Rightarrow_L y) = \min(1 - x + y, 1).$$

A implicação de Lukasiewicz é descrescente na primeira variável. Isto é, se $x \le u$, então devemos conlcuir que $(x \Rightarrow_L y) \ge (u \Rightarrow_L y)$. Se $x \le u$, então $-x \ge -u$. Portanto, $1-x+y \ge 1-u+y$. (Guarde essa informação!) Agora, vamos analisar o mínimo entre 1-x+y e 1. Se $1-x+y \le 1$, então $y \le x$. De modo análogo, temos que se $1-u+y \le 1$, então $y \le u$. Sendo assim, temos os seguintes casos a serem analisados:

- a) $y \le x e y \le u$;
- b) $y \le x$ e y > u; (Esse caso não ocorre por hipótese)
- c) y > x e $y \le u$;
- d) y > x e y > u.
- 2. Mostre que o operador abaixo, chamado de implicação de Wu, é de fato uma implicação fuzzy:

$$(x \Rightarrow_W y) = \begin{cases} 1, & \text{se } x \leq y \\ \min(1 - x, y), & \text{se } x > y \end{cases}$$

3. Uma implicação fuzzy é chamada de S-implicação se puder ser escrita na forma

$$(x \Rightarrow y) = s(\eta(x), y),$$

em que s é uma s-norma e η é uma negação.

Uma implicação fuzzy é chamada de R-implicação se puder ser escrita na seguinte forma

$$(x \Rightarrow y) = \sup\{z \in [0,1] : t(x,z) \le y\},\$$

em que t é uma t-norma.

Mostre que a implicação de Gödel é uma R-implicação (com a t-norma do mínimo) e que a implicação de Lukasiewicz é uma S-implicação.

Observação:

$$(x \Rightarrow_G y) = \begin{cases} 1, & \text{se } x \leq y \\ y, & \text{se } x > y \end{cases}$$

Considere $x \le y$. Nesse caso, temos por definição que $(x \Rightarrow_G y) = 1$. Por outro lado, analisemos a seguinte expressão:

$$\sup\{z \in [0,1] : \min(x,z) \le y\}$$

Suponha que $x \le z$. Logo, a expressão acima fica:

$$\sup\{z \in [0,1] : x \le y\} = 1,$$

uma vez que $x \leq y$ por hipótese e portanto a condição é satisfeita para qualquer $z \in [0,1]$.

Por outro lado, suponha que x > z. Logo, temos:

$$\sup\{z \in [0,1] : z \le y\}.$$

Note que, se z < x e por hipótese $x \le y$, então z < y. Portanto, como a condição é sempre satisfeita, segue que

$$\sup\{z \in [0,1] : z \le y\} = 1.$$

Tentem reproduzir o caso em que x > y.