MAT – 112: Calculus I and Modeling Solution 1

Thomas R. Cameron

1/26/2018

Other Problems

Problem 1. By definition, two lines \mathcal{L}_1 and \mathcal{L}_2 are perpendicular if \mathcal{L}_1 is horizontal and \mathcal{L}_2 is vertical, or the slope of \mathcal{L}_1 is $m \neq 0$, and the slope of \mathcal{L}_2 is $-\frac{1}{m}$. The horizontal and vertical case is shown below. The angle intersecting

the two lines \mathcal{L}_1 and \mathcal{L}_2 is equal to 90 degrees if and only if the above triangle is a right triangle and therefore satisfies Pythagorean's theorem. The length of the blue dashed line is equal to the distance between the points (x-a,y) and (x,y+b) which is equal to $\sqrt{a^2+b^2}$. Since the legs of the triangle are of length a and b, it follows that Pythagorean's theorem holds.

The case where \mathcal{L}_1 has a slope of $m \neq 0$ and \mathcal{L}_2 has a slope of $-\frac{1}{m}$ is shown below. Again, we must show that Pythagorean's theorem holds. The length of

$$(x-a,y+\frac{a}{m}) \xrightarrow{\mathcal{L}_2} (x+b,y+b\cdot m)$$

$$(x,y)$$

the blue dashed line is equal to

$$\sqrt{(a+b)^2 + (\frac{a}{m} - b \cdot m)^2} = \sqrt{a^2 + \frac{a^2}{m^2} + b^2 + b^2 m^2}.$$

Since the legs of the triangle are of length $\sqrt{a^2 + \frac{a^2}{m^2}}$ and $\sqrt{b^2 + b^2 m^2}$, it follows that Pythagorean's theorem holds.

Problem 2. To show that $h = g \circ f$ is a function from A to C, we must show that h takes each element of A to exactly one element of C. To this end, let α be an element of A. Then, $f(\alpha)$ is a unique element in B, which is the domain of the function g. It follows that g takes $f(\alpha)$ to exactly one element of C. Therefore, $h(\alpha) = g(f(\alpha))$ is a unique element in C.

Problem 3. Using the method of completing the square, we can transfer the quadratic $ax^2 + bx + c$, where $a \neq 0$, into vertex form as follows

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}}\right) + c - \frac{b^{2}}{4a}$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$$

Once in vertex form, we can identify the vertex, axis of symmetry, x-intercept, and y-intercept.

Vertex: $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$

Axis of Symmetry: $x = -\frac{b}{2a}$

y-intercept: (0,c)

x-intercept: The x-intercepts occur when the quadratic equals zero. Thus, we can solve for x as follows

$$a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a} = 0$$

$$a\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Note that we have derived the quadratic formula.