University of California, Los Angeles Department of Statistics

Statistics C183/C283

Instructor: Nicolas Christou

Homework 10

Exercise 1:

Suppose the return of the underlying stock of a European call is equal to the risk-free interest rate. Show that the probability that a European call option will be exercised at time T is equal to $\Phi(d_2)$. Assume lognormal property of stock prices. Also, time now is 0, therefore $\Delta t = T$.

ST> Esince call is exercised

=> log
$$C_T$$
 > log E

[log S_T ~ N (log S_0 + $C_c - \frac{\sigma^2}{2}$) T , r $\int T$)

P(log S_T > log E) \Rightarrow P(T > log E - log T > T $\int T$

= P(T < - log E + log T > T $\int T$

= P(T < log T > log E + log T > T $\int T$

= P(T < log T > T $\int T$ $\int T$ $\int T$

Exercise 2:

Consider a 6 month put option on a stock with exercise price E = \$32. The current stock price is \$30 and over the next 6 months it is expected to rise to \$36 or fall to \$27. The risk-free continuous interest rate s 6%. What is the risk-neutral probability of the stock rising to \$36?

Exercise 3:

Consider an American call option on a stock. The following is given: $S_0 = \$50$, the time to expiration is 15 months, the risk-free interest rate is $r_f = 8\%$ per year, E = \$55, and $\sigma = 25\%$ per year. In addition, we know that the stock will pay dividends of \$1.50 in 4 months from now and another \$1.50 in 10 months from now. Show that it will never be optimal to exercise early on either of the two dividend dates. Calculate the price of the option.

$$D_{1} < E(1-e^{-r(T-t_{1})}) = 55(1-e^{-a_{0}y} \frac{5}{2}) = 2150D_{2}$$

$$D_{1} < E(1-e^{-r(t_{1}-t_{1})}) = 55(1-e^{-a_{0}y} \frac{5}{2}) = 2150D_{2}$$

~

it is not aphinal to exercise early on either of the hood divided dates

Exercise 4:

Answer the following questions:

- a. Let $c = S^{-\frac{2c}{\sigma^2}}$. Does c satisfy the Black-Scholes-Merton differential equation?
- b. Suppose the volatility for a stock goes to zero, i.e. $\sigma \to 0$. It means the stock is riskless and must earn the risk free interest rate. Therefore, at expiration time of a call option, $S_T = S_0 e^{\tau t}$. What is the value of the call option at time zero (now)?
- c. What is the result obtained by the Black-Scholes-Merton model for the situation in (b)?

a)
$$C = 5^{-\frac{2r}{r^2}}$$
, $B \rightarrow -M \rightarrow A_1$ feq =)

$$\frac{\partial^{c}}{\partial x^{2}} + \frac{1}{7} \frac{x^{2}}{\partial x^{2}} + r \frac{x^{2}}{\partial x^{2}} + r \frac{x^{2}}{\partial x^{2}} - r L = 0$$

$$\frac{\partial^{c}}{\partial x^{2}} + \frac{1}{7} \frac{x^{2}}{\partial x^{2}} + r \frac{x^{2}}{\partial x^{2}} - r L = 0$$

$$\frac{\partial^{c}}{\partial x^{2}} + \frac{1}{7} \frac{x^{2}}{\partial x^{2}} + r \frac{x^{2}}{\partial x^{2}} - \frac{2r}{r^{2}} - \frac{2r}{r^{2}} + r \frac{x^{2}}{\partial x^{2}} - \frac{2r}{r^{2}} - \frac{2$$

Exercise 5:

Determine the value of the following call using the Black-Scholes-Merton model. The stock's current price is \$95 with $\sigma = 0.6$. The call's exercise price is \$105, and it expires in 8 months from now. Assume that the continuously compounded riskless rate of interest is 0.08.

$$C = 50 + (d_1) - Ee^{-rt} \Phi(d_1)$$

$$d_1 = 0.141521$$

$$d_2 = -0.340377$$

$$\Phi(d_1) = 0.559428$$

$$\Phi(d_1) = 0.36648$$

$$C = 16.6334$$