Matematica Discreta II -2021-Teórico del final febrero2022

Para aprobar el teórico hay que obtener 40% del puntaje EN CADA pregunta.

- (1) Probar que si, dados vértices x, z y flujo f definimos a la distancia entre x y z relativa a f como la longitud del menor f-camino aumentante entre x y z, si es que existe tal camino, o infinito si no existe o 0 si x=z, denotandola por $d_f(x,z)$, y definimos $b_k(x) = d_{f_k}(x,t)$, donde f_k es el k-ésimo flujo en una corrida de Edmonds-Karp, entonces $b_k(x) \leq b_{k+1}(x)$. (Prestar atención a lo que se pide. En el teórico se enuncio esta propiedad junto con la misma propiedad para unas distancias $d_k(x)$ y se demostró para esas d_k , sobreentendiendo que la prueba para las b_k es similar. Probar en este ejercicio la propiedad para las d_k tiene 0 puntos).
- (2) Sea G un grafo bipartito con partes X e Y tal que $d(x) = 15 \forall x \in X$ y $d(y) = U \forall y \in Y$, donde U es la cifra de las unidades de su DNI. (si la cifra de las unidades de su DNI es 0, entonces U = 10).

Probar que existe un matching completo de X a Y, adaptando la prueba del teorema del matrimonio de Kőnig.

(en el teorema del matrimonio se probaba que existia un matching completo de X a Y y que |X| = |Y| por lo tanto ese matching era perfecto. En nuestro caso es fácil ver que con las hipotesis dadas $|X| \neq |Y|$ (no es necesario probar esto) asi que sólo hay que probar la completitud).

(3) 40SAT es como 3SAT pero se pide que haya exactamente 40 literales en cada disjunción.

Reducir polinomialmente 40SAT a 40-COLOR probando que, dada una expresión booleana B en CNF con 40 literales por disjunción y variables $x_i, i = 1, 2, ..., n$, entonces existe $b \in \mathbb{Z}_2^n$ tal que B(b) = 1 si y solo si $\chi(G) = 40$, donde G es el grafo creado a partir de B de la siguiente forma:

Si $B = D_1 \wedge D_2 \wedge \wedge D_m$, con D_j iguale a las disjunciones: $D_j = \ell_{1,j} \vee \ell_{2,j} \vee \ell_{3,j} \vee \ell_{40,j}$ donde $\ell_{k,j}$ son literales, entonces G es:

Vértices de G:

 $\{s,t\}\cup\{v_{\ell}:\ell \text{ es un literal}\}\cup\{e_{k,j},a_{k,j}:k=1,...,40,j=1,...,m\}\cup\{r_{i}\}_{i=1}^{38}$

Lados de G:

la union de los siguientes conjuntos:

- (a) s, t y los r_i forman un K_{40}
- (b) Para cada j = 1, 2, ..., m, un $K_{40,j}$ que es el completo K_{40} formado por los $a_{k,j}$, k = 1, 2, ..., 40.
- (c) $\{e_{k,j}a_{k,j}: k=1,...,40, j=1,2,....,m\}$
- (d) $\{e_{k,j}s, e_{k,j}v_{\ell_{k,j}}: k=1,...,40, j=1,2,....,m\}$ (e) $\{e_{k,j}r_i: k=1,...,40, j=1,2,....,m, i=1,...,38\}$
- (f) Para cada literal ℓ , tv_{ℓ} es un lado asi como todos los $r_i v_{\ell}$ para cada uno de los r_i .

(la prueba es similar a la de 3COLOR es NP completo, pero se agrega unos vértices especial r_i , algunos lados y vértices mas y en vez de triangulos hay K_{40} 's).