Exercice 1 Calculer les intégrales :

12 $\int_{0}^{\frac{\pi}{4}} \tan^{2} x \, dx$

13 $\int_{-3}^{-2} \frac{x}{\sqrt{x^2-1}} dx$

14 $\int_0^{\pi} \frac{\sin x}{(2+\cos x)^2} dx$

16 $\int_{\pi}^{\frac{\pi}{4}} \frac{1 + \tan^2 x}{\tan x} dx$

17 $\int_{0}^{1} \frac{e^{x}+1}{e^{x}+x} dx$

 $\int_{e}^{e^2} \frac{\ln u}{u} du$

19 $\int_{0}^{\frac{\pi}{4}} \cos 2u \, du$

20 $\int_{-2}^{1} |2x-1| dx$

21 $\int_{0}^{\frac{\pi}{4}} \tan^{2} x \, dx$

 $\int_0^{\pi} \frac{dx}{\cos^2 x}$

$$\int_{1}^{2} 2t^2 dt$$

$$\int_{1}^{3} -t^4 dt$$

$$\int_{1}^{2} \frac{1}{s^4} \, ds$$

$$\int_0^2 \frac{x}{(x^2+2)^2} \, dx$$

6
$$\int_0^{\frac{\pi}{2}} (2-3\sin t) dt$$

$$7 \int_0^{\frac{\pi}{2}} \sin\left(x + \frac{\pi}{4}\right) dx$$

$$\int_0^2 \frac{e^x}{e^x + 3} \, dx$$

$$\int_0^2 e^x (e^x - 3) \, dx$$

$$\begin{array}{cc}
\mathbf{11} & \int_{e}^{e^3} \frac{dx}{x \ln x}
\end{array}$$

$$\int_0^1 \left(\sqrt{2t+1} + \frac{1}{\sqrt{t+5}}\right) dt \, , \int_0^2 (2t+3)\sqrt{t^2+3t} \, dt$$

Exercice 2

- 1 Sans chercher de primitives, calculer les intégrales : $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin 4t \, dt \quad ; \quad \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos 3x \, dx$ $\int_{-\frac{\pi}{4}}^{1} \ln \left(\frac{2-x}{2+x} \right) \, dx \quad ; \quad \int_{-\frac{\pi}{3}}^{\ln 2} \frac{1-e^x}{1+e^x} \, dx$
- 2 Calculer les intégrales suivantes :

$$\int_0^{\frac{\pi}{2}} \sin x \cos^2 x \, dx \quad ; \quad \int_0^{\frac{\pi}{3}} \sin^3 x \, dx$$
$$\int_0^{\frac{\pi}{4}} \cos^4 u \, du \quad ; \quad \int_0^{\frac{\pi}{3}} \sin^2 x \cos^3 x \, dx$$

Exercice 3

Vérifier que :
$$\forall x \in \mathbb{R} \setminus \left\{-1; -\frac{1}{2}\right\}, \frac{8x+5}{2x^2+3x+1} = \frac{3}{x+1} + \frac{2}{2x+1}.$$

b En déduire la valeur de : $\int_0^2 \frac{8x+5}{2x^2+3x+1} dx.$

2 Soit la fonction
$$f$$
 définie par :
$$f(x) = \frac{3x^3 - 5x^2 + 2x - 1}{(x - 2)^2}.$$

Déterminer les réels a, b, c et d tels que : $f(x) = ax + b + \frac{c}{x-2} + \frac{d}{(x-2)^2}.$

b En déduire une primitive de f sur [-1; 1] puis calculer : $\int_{-1}^{1} f(x) dx$.

Exercice 4 : Calcul au moins d'une intégration par parties

$$\int_0^{\frac{\pi}{2}} x \sin x \, dx$$

$$2 \int_1^e x \ln x \, dx$$

$$\int_0^{\frac{\pi}{2}} x \cos x \, dx$$

$$\int_{1}^{e} \ln x \, dx$$

$$\int_{1}^{e} (2-t)e^{t} dt$$

6
$$\int_0^{\frac{\pi}{2}} (x-1) \sin x \, dx$$

$$\int_{1}^{3} (2x+1) \ln x \, dx$$

$$\int_{0}^{\frac{\pi}{2}} (u-1)^2 \sin u \, du$$

$$9 \int_0^{\frac{\pi}{2}} e^x \sin x \, dx$$

$$\int_0^1 (x^2 - 1)e^{2x} \, dx$$

$$\int_0^\pi e^{-x} \cos x \, dx$$

$$12 \int_1^2 x\sqrt{3-x} \, dx$$

$$\int_{1}^{2} (3x^2 + 1)^2 e^x \, dx$$

$$\int_1^2 u(\ln u)^2 du$$

15
$$\int_0^1 (x+1)\sqrt{x+1} \, dx$$

Exercice 5 Soit f la fonction numérique de la variable réelle x définie par :

$$f(x) = \frac{x+1}{x} + \ln x - \ln(x+1).$$

f 1 Étudier les variations de f et tracer sa courbe.

2 Soit λ un réel supérieur à 1 et $D_{\lambda} = \{M(x,y), \ 1 \leq x \leq \lambda \text{ et } 1 \leq y \leq f(x)\}.$ Calculer l'aire $A(D_{\lambda})$ de D_{λ} . Étudier la limite de $A(D_{\lambda})$ quand λ tend vers $+\infty$.

Exercice 6

On pose $I = \int_0^{\frac{\pi}{4}} \left(\int_0^x \sin^5 t \cos t \, dt \right) dx$.

- 1 Liénéariser $\sin^6 x$.
- **2** Démontrer que $I = \frac{15\pi 44}{1152}$.

Exercice 7

Soit f la fonction définie sur $]0; +\infty[$ par :

 $f(x) = \frac{2 \ln x}{x^2 + x}$. On se propose de trouver un encadrement de l'aire A de l'ensemble des points M(x;y) tels que $1 \le x \le \frac{3}{2}$ et $0 \le y \le f(x)$.

- 1 Étudier et tracer (C_f) .
- Montrer que pour tout $x \ge 1$, $\frac{\ln x}{x^2} \le f(x) \le \frac{\ln x}{x}.$
- 3 Calculer $I = \int_1^{\frac{3}{2}} \frac{\ln x}{x} dx$ et $\int_1^{\frac{3}{2}} \frac{\ln x}{x^2} dx$.
- 4 En déduire un encadrement de $\int_1^{\frac{3}{2}} f(x) dx$ puis un encadrement de A.

Exercice 8 On se propose de calculer l'intégrale $J = \int_0^1 \frac{xe^x}{(1+e^x)^3} dx$.

- 1 Calculer les deux intégrales suivantes : $A = \int_0^1 \frac{e^x}{e^x + 1} dx$ et $\int_0^1 \frac{e^x}{(e^x + 1)^2} dx$.
- 2 Déterminer les réels a, b et c tels que pour $x \ge 0$,

$$\frac{1}{(1+t)^2} = a + \frac{bt}{t+1} + \frac{ct}{(1+t)^2}.$$
 (1)

- 3 En posant $t = e^x$ dans l'égalité (1), calculer l'intégrale $I = \int_0^1 \frac{dx}{(1+e^x)^2}$.
- 4 Établir une relation entre I et J et en déduire J.

Exercice 9 On pose, pour tout nombre entier naturel non nul : $I_n = \int_1^0 x^n (\ln x)^n dx$, où ln désigne la fonction logarithme népérien, et $I_0 = \int_1^e x^2 dx$.

- 1 Calculer I_0 et I_1 .
- 2 En utilisant une intégration par parties, démontrer que pour tout entier naturel n non nul :

$$3I_{n+1} + (n+1)I_n = e^3. (1)$$

En déduire I_2 .

- 3 a Démontrer que pour tout entier naturel n, I_n est positif.
 - b Déduire de l'égalité (1) pour tout entier naturel non nul, $I_n \leq \frac{e^3}{n+1}$.

Exercice 10 Soient f, g, h et k les fonctions de \mathbb{R} vers \mathbb{R} telles que :

$$f(x) = \sqrt{x^2 + 1}, \quad g(x) = x + \sqrt{x^2 + 1}, \quad h(x) = \ln(x + \sqrt{x^2 + 1})$$

Soit α un réel, on pose $\forall n \in \mathbb{N}, I_n = \int_0^\alpha \frac{x^n}{\sqrt{x^2 + 1}} dx$

 $F = \int_0^\alpha \sqrt{x^2 + 1} \, dx, \quad G = \int_0^\alpha (x + \sqrt{x^2 + 1}) \, dx, \quad H = \int_0^\alpha (x + \sqrt{x^2 + 1}) \, dx$

- 1 Démontrer que les fonctions f, g, h et k sont dérivables sur \mathbb{R} , et déterminer leurs applications dérivées f', g', h' et k'.
- 2 Justifier l'existence de I_n pour tout entier naturel n. Calculer I_0 et I_1 .
- 3 Justifier l'existence de F. Calculer $F + I_2$ et $F I_2$. En déduire I_2 . Justifier l'existence de G, calculer G.
- 4 Justifier l'existence de H. Par une intégration par parties, calculer H.

Exercice 11 Pour tout entier naturel n, on considère les intégrales :

$$I_n = \int_0^{\frac{\pi}{2}} e^{-nx} \sin x \, dx$$
 et $J_n = \int_0^{\frac{\pi}{2}} e^{-nx} \cos x \, dx$.

- 1 Calculer I_0 et J_0 .
- 2 Soit *n* un entier naturel non nul.
 - a En intégrant par parties I_n puis J_n , montrer que :

$$\begin{cases} I_n + nJ_n = 1 \\ -nI_n + J_n = e^{-n\frac{\pi}{2}}. \end{cases}$$

- b En déduire les expressions de I_n et J_n en fonction de n.
- 3 Déterminer $\lim_{n\to+\infty} I_n$ et $\lim_{n\to+\infty} J_n$.

Exercice 12 Dans cet exercice n est un entier naturel non nul. On considère la suite (U_n) par : $U_n = \int_0^2 \left(\frac{2t+3}{t+2}\right) e^{\frac{7}{n}} dt$.

1 Soit f la fonction définie sur [0; 2] par : $f(t) = \frac{2t+3}{t+2}$.

Étudier les variations de f sur [0; 2].

- 2 En déduire que pour tout réel t de [0;2] : $\frac{3}{2} \le f(t) \le \frac{7}{4}$.
- 3 Montrer que pour tout réel t de [0;2] : $\frac{3}{2}e^{\frac{1}{n}} \le f(t)e^{\frac{1}{n}} \le \frac{7}{4}e^{\frac{1}{n}}$.
- 4 Par une intégration par parties, déduire que : $\frac{3}{2}n\left(e^{\frac{2}{n}}-1\right) \leq U_n \leq \frac{7}{4}n\left(e^{\frac{2}{n}}-1\right). \text{ On rappelle que } \lim_{h\to 0}\frac{e^h-1}{h}=1. \text{ Montrer que si } (U_n)$ possède une limite L, alors $3\leq L\leq \frac{7}{2}$.
- Vérifier que, pour tout réel t dans [0;2] on a : $\frac{2t+3}{t+2} = 2 \frac{1}{t+2}.$
 - a En déduire l'intégrale $I = \int_0^2 \frac{2t+3}{t+2} dt$.
 - b Montrer que pour tout t de [0; 2] on a : $1 < e^{\frac{t}{n}} < e^{\frac{2}{n}}$.
 - c En déduire que : $I \leq U_n \leq e^{\frac{2}{n}} \times I$.
 - d Montrer que (U_n) est convergente et déterminer sa limite L.

Exercice 13 PARTIE A

- 1 Étudier sur \mathbb{R} le signe de $4e^{2x} 5e^x + 1$.
- **2** Soit φ la fonction définie par :

$$\varphi(x) = \ln x - 2\sqrt{x} + 2.$$

a Déterminer son domaine de définition D_{φ} et calculer ses limites aux bornes de D_{φ} .

- **b** Étudier ses variations et dresser son tableau de variations.
- c En déduire son signe.

PARTIE B

Soit f la fonction définie par :

$$f(x) = \begin{cases} x + \frac{e^x}{2e^x - 1} & \text{si } x \le 0, \\ 1 - x + \sqrt{x} \ln x & \text{si } x > 0. \end{cases}$$

On désigne par (τ) la courbe représentative de f dans un repère orthonormé d'unité 2 cm.

- 1 a Déterminer D_f le domaine de définition de f.
 - b Calculer les limites de f aux bornes de D_f et étudier les branches infinies de (τ) .
 - Étudier la position de (τ) par rapport à l'asymptote non parallèle aux axes dans $]-\infty;0].$
- 2 a Étudier la continuité de f en 0.
 - b Étudier la dérivabilité de f en 0 et interpréter graphiquement les résultats.
- 3 Déterminer la dérivée de f et dresser le tableau de variations de f.
- 4 Construire (τ) , les asymptotes et les demitangentes. On remarquera que f(1) = 0 et f'(1) = 0.
- 5 Calculer en cm² l'aire du domaine limité par (τ) , la droite d'équation y = x et les droites d'équations $x = -\ln 8$ et $x = -\ln 4$.

Exercice 14

Partie A :BAC 1999 Remplacement Soit f la fonction définie sur \mathbb{R} par :

$$\begin{cases} f(x) = e^{-\frac{1}{x^2}}, & x \in]-\infty; 0[\\ f(x) = \ln \left| \frac{x-1}{x+1} \right|, & x \in [0;1] \cup]1; +\infty[\end{cases}$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$ d'unité 2 cm.

- 1 Étudier la continuité de f en 0.
- 2 a Montrer que pour tout $x \in [0; 1]$, $f(x) = \frac{\ln(1-x)}{x} \frac{\ln(1+x)}{x}.$
 - **b** Étudier la dérivabilité de f en 0.
 - En déduire que (C_f) admet au point d'abscisse 0 deux demi-tangentes dont on donnera les équations.

3 Étudier les variations de f.

4 Tracer (C_f) .

Partie B: Soit g la restriction de f à $]1; +\infty[$.

1 Montrer que g est une bijection de $]1; +\infty[$ vers un intervalle J à préciser. On notera g^{-1} la bijection réciproque de g.

2 Montrer que l'équation g(x) = -e admet une unique solution α sur l'intervalle]1; $+\infty$ [. (On ne demande pas de calculer α).

3 Montrer que $\forall x \in J, \ g^{-1}(x) = 1 - \frac{e^x}{e^x - 1}$.

4 Construire $(C_{g^{-1}})$. (On indiquera la nature et l'équation de chacune des asymptotes à (C_g) et $(C_{g^{-1}})$.

5 Calculer en cm² l'aire A de l'ensemble des points M(x; y) défini par :

$$\begin{cases} -\ln 7 \le x \le -1, \\ 0 \le y \le g^{-1}(x). \end{cases}$$

