School of Electronic and Electrical Engineering

FACULTY OF ENGINEERING

ELEC3875

Project Report

DYNAMIC ECONOMIC AND ENVIRONMENTAL POWER SYSTEM DISPATCH CONSIDERING PLUG-IN ELECTRIC VEHICLES

Abdullah Essa

SID: 201256467	Project No. 48
Supervisor: Professor Kang Li	Assessor: Li Zhang

School of Electronic and Electrical Engineering

FACULTY OF ENGINEERING

ELEC3875 Individual Engineering project

Declaration of Academic Integrity

Plagiarism in University Assessments and the Presentation of Fraudulent or Fabricated Coursework

Plagiarism is defined as presenting someone else's work as your own. Work means any intellectual output, and typically includes text, data, images, sound or performance.

Fraudulent or fabricated coursework is defined as work, particularly reports of laboratory or practical work that is untrue and/or made up, submitted to satisfy the requirements of a University assessment, in whole or in part.

Declaration:

- I have read the University Regulations on Plagiarism [1] and state that the work covered by this declaration is my own and does not contain any unacknowledged work from other sources.
- I confirm my consent to the University copying and distributing any or all of my work in any form and using third parties (who may be based outside the EU/EEA) to monitor breaches of regulations, to verify whether my work contains plagiarised material, and for quality assurance purposes.
- I confirm that details of any mitigating circumstances or other matters which might have affected my performance and which I wish to bring to the attention of the examiners, have been submitted to the Student Support Office.

[1] Available on the School Student Intranet

Student Name:	Abdullah Essa	Project No.	.48
Signed:		Date:	.6/05/2021

Abstract

This report proposes particle swarm optimization method for solving the dynamic economic and environmental dispatch problem in power systems via MATLAB to formulate a dispatch plan on different charge scenarios considering plug-in electric vehicles. Nonlinear characteristics of generation units such as ramp up and down rate limits, and non-smooth cost and emission functions are considered. The proposed method is compared with genetic algorithm optimization method in regards with ability to find global minimum and solution quality. The comparison results confirmed that the proposed particle swarm optimization method was capable of getting global minimum and better-quality solutions in economic dispatch problems. The dispatch plans for 10 generation units have been formulated using the proposed optimization method with off-peak scenario showing the lowest cost and emissions.

Acknowledgements

I would like to thank University of Leeds and my sponsor Kuwait Cultural Office for giving me the opportunity and support to complete my studies. In addition, I thank my Individual Project supervisor Professor Kang Li and his third year PhD student Mingjia Yin each of whom provided continued patient advice and guidance throughout the research process. Finally, big thanks to my personal tutor Dr. Ahmed Lawey for his support and advice throughout my bachelor study years.

Table of Contents

Declaration of Academic Integrity	2
Abstract	3
Acknowledgments	3
List of Abbreviations	6
Chapter (1) Introduction, Aims and Objectives	
Chapter (2) Literature Review.	
2.1 Net-zero Emissions	
2.2 Transport Electrification	
2.3 Types of Plug-in Electric Vehicles and Choice of State of Charge	
••	
2.3.1 State of Charge	
2.4 Plug-in Electric Vehicles Charging Scenarios	
2.5 Plug-in Electric Vehicles Impact on Power Demand	
2.6 Static Economic Dispatch (SED)	
2.7 Dynamic Economic and Environmental Dispatch (DEED)	
2.8 Dispatch Solving Methods	
2.8.1 Quadratic Programming	
2.8.2 Genetic Algorithm (GA)	
2.8.3 Particle Swarm Optimization (PSO)	
Chapter (3) Binary Encoded Genetic Algorithm Optimization Method	
3.1 Population Creation and Fitness function	
3.2 Choosing Parents	
3.3 Crossover	
3.4 Mutation	
3.5 Choice of next generation	
Chapter (4) Particle Swarm Optimization Method	
4.1 Initialization	
4.2 Particle movement	
4.3 Choice of solution	
Chapter (5) Method Comparison	
5.1 Problem setup	
5.2 Quadratic Programming Analysis	
5.2.1 Reviewing results	
5.3 Binary Encoded Genetic Algorithm Analysis	
5.3.1 Testing different bit resolutions	
5.3.1.1 Reviewing results	
5.3.2 Applying optimization method on fixed load demand	
5.3.2.1 Reviewing results	
5.4 Particle Swarm Optimization Analysis	
5.4.1 Changing acceleration Constants	
5.4.1.1 Reviewing results	
5.4.2 Changing inertia weight maximum value	
5.4.2.1Reviewing results	
5.4.3 Applying optimization method on fixed load demand	
5.4.3.1 Reviewing results	
5.5 Conclusion	28
Chapter (6) Dynamic Feenamic and Environmental Dignatch Cancidening Fleetwic Validae	20
Chapter (6) Dynamic Economic and Environmental Dispatch Considering Electric Vehicles	
6.1 Problem setup	
6.2.1 Reviewing results	
6.3.1 Reviewing results	
O.7 Dispatch analysis with Off-peak charging scenario	

6.4.1 Reviewing results	38
6.5 Dispatch analysis with EPRI charging scenario	
6.5.1 Reviewing results	41
6.6 Dispatch analysis with Stochastic charging scenario	42
6.6.1 Reviewing results	44
6.7 Conclusion	
Conclusion	46
References	47
Appendices	49
Appendix A. Quadprog code	
Appendix B. Genetic Algorithm code	
Appendix C. Particle Swarm Optimization code	

List of Abbreviations

Definitions of acronyms used in text, listed in alphabetical order:

DE Differential Evolution

DEED Dynamic Economic and Environmental Dispatch

EP – SQP Evolutionary Programming with Sequential Quadratic Programming

GA Genetic Algorithm

HNN Hopfield neural network

PEV Plug-in Electric Vehicle

PSO Particle Swarm Optimization

PSO – SQP Particle Swarm Optimization with Sequential Quadratic Programming

SED Static Economic Dispatch

PSO Particle Swarm Optimization

EV Electric Vehicle

PEV Plug-in Electric Vehicle

BEV Battery Electric Vehicle

HEV Hybrid Electric Vehicle

Chapter 1

Introduction, Aim and Objectives

As awareness of environmental harmful pollutant emissions due to power plants is rising, it is becoming essential that emissions need to be taken into consideration in every operation that produces them. Thermal power plants that use fossil fuel as their primary supply of energy produce pollutants such as sulphur dioxide and nitrogen oxides [1, 3]. Knowingly, the use of electricity demand is ever-increasing, which also refers to an increase in means of supply, such as thermal power plants. This could breach the environmental emission regulations due to vast amounts of emissions that will create damaging environmental effects [14]. Now with the increasing number of plug-in electric vehicles due to raised environmental awareness that will impact the load demand with high penetration [1, 7], this is one candidate to look out for when creating a schedule for future load demands. Due to that fact, an increase in power generation dependent cost and pollutant emissions will occur. This is a problem that is usually solved by one of the main operational tasks, and that is to schedule the power output in accords with the load demand [1, 2, 4, 6, 8]. Dynamic economic and environmental power system dispatch can be used as a solution to a scheduling problem with motivation to minimize emissions and cost while meeting load demand [1, 4, 19, 21]. Thus, this project aims to decrease the cost and emissions of thermal power plant units when considering plug-in electric vehicles. This is to be done while managing system constraints (e.g., minimum & maximum power output, ramp rate constraints and optimization problems), balancing power production and load demand, as well as meeting plant operational requirements.

The objectives thus far:

- To understand the characteristics of thermal power plant generation operation, the economic and environment dispatch problem, and the impact of renewable generation. That is because we need to provide enough power to match the load with the aim of using less fuel consumption as possible (e.g., Principle of Equal Incremental Rate) without producing emissions that could badly affect the environment.
- Study the charging patterns as well as the charging/discharging scenarios of electric vehicles as it will be required to understand the all-out public usage of electric vehicles on the power systems.
- Start developing non-linear dynamic economic and environmental dispatch models. Study bio-inspired optimization algorithms to be applied on Matlab such as (Genetic algorithm).
- Choose a proper algorithm for the non-linear models that had been developed and propose a suitable dispatch plan for different charging/discharging scenarios.

Chapter 2

Literature Review

The content below is from multiple papers, thesis papers and books related to dynamic economic and environmental dispatch considering plug-in electric vehicles.

2.1 Net-zero Emissions

As industries and factories grew larger and more sophisticated, so did their greenhouse gas emissions proportionally. The UK government drafted a climate change act that is focused on at least a 100% reduction of greenhouse gas emissions by the year 2050 [23, 25, 26]. A 100% reduction of greenhouse gas emission is known as the net zero target.

2.2 Transport Electrification

Electrification is considered to be a great solution to avoid depending on oil to reduce the environmental impact [24]. Considering transport sector, it is by far responsible for about 16-25% of the global greenhouse gas emissions according to [24, 26]. Thus, transport electrification will offer a great alternative to the conventional fossil-fuel based transport technologies and reduces the greenhouse gas emissions.

Table (2.1), Some International EV target objectives from [28]:

Country	Targets
United Kingdom	No target figures but policy to support EVs
China	2011: 500000 annual production of EVs
USA	2015: 10000000 PHEV stock
Austria	2020: 100000 EVs deployed
Germany	2020: 10000000 EVs deployed
Canada	2018: 500000 EVs deployed
Ireland	2020: 10% EV market share
Spain	2014: 1000000 EVs deployed
Sweden	2020: 600000 EVs deployed

2.3 Types of Plug-in Electric Vehicles and Choice of State of Charge

Electric vehicles are known to be two groups, battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs) [30]. The (BEVs) have the stored energy in the batteries provide 100% of the energy needed by the vehicle. The (BEV) has no other energy source, thus battery should be selected according to the range of the (BEV) and other requirements [29]. (HEVs) on the other hand are further broken down into three distinct groups; series hybrids, parallel hybrids, and combined hybrids [29]. What they have in common is that they have a higher range when comparing them to (BEVs) and have both electric motors and an internal combustion engine to drive the vehicle [29].

Fig. 1 Structure of a single engine battery powered electric vehicle from [29].

According to figure (1), the drive system of (BEVs) consists of an electric motor, inverter, battery, gear box and a differential. Due to the fact that there is also 100% dependence on battery only, the batteries will be having a higher amplitude than (HEVs) [31].

Series (HEVs) have the combustion engine energy output provide power to the electric generator that drives the electric motor [29]. Any additional energy is fed and stored in the vehicle battery. Parallel (HEVs) have both the electric motor and the combustion engine connected to the transmission system [29]. The vehicle can move with electric motor alone, both electric motor and combustion engine or combustion engine alone [29]. The combustion engine can also charge the batteries during [29]. Combined (HEVs) can use both combustion engine and electric motors with different ratios, completely combustion mode or completely electric mode with separate transmission path [29].

Fig. 2 Structure of a series hybrid electric vehicle from [29].

Fig. 3 Structure of a parallel hybrid electric vehicle from [29].

Fig. 4 Structure of a combined hybrid electric vehicle from [29].

2.3.1 State of Charge

State of charge is the battery's current energy stored depending per its battery capacity (C) given by:

$$SOC = \left(\frac{E_C}{C} - 1\right) * 100 \tag{1}$$

Where (E_C) is the needed energy to charge the battery, (C) is the battery capacity in kWh [32]. The assumed SOC taken from [34] which explains how the mean daily energy remaining (i.e initial SoC) at the end of a day trip is 50% and 20% in winter and summer, respectively. For this reason, a pessimistic initial SoC of 20% is chosen. 80% SoC upon disconnection from charging will be considered as data from [34] shows that disconnection at around 80% has the highest probability.

2.3.2 Nissan Altra (BEV)

The energy needed to charge an electric vehicle will depend on what type of battery it is utilising. There are many types of batteries used to power EVs, those can be lithium ion, Lead-acid, and Nickel Metal Hydride (NiMH) [32]. For all the cases that will be explored in this project, Lithium-ion batteries will be used as it is more popular for driving PEVs compared to other battery types. For this report, the electric vehicle problem data will consider Nissan Altra as the test vehicle which has a capacity of 29.07kWh and a 5-hour charge time [32, 33]. Thus, it is required to examine different charging scenario percentages to see which are more economically and environmentally friendly to charge such battery.

Fig. 5 Plot of charge demand over a time period for Nissan Altra from [33].

The PEV charging profile shows how it charges for about 22.3% per hour for 4-hours and about 10.8% for the remaining hour until SOC is at 100%.

2.4 Plug-in Electric Vehicles Charging Scenarios

Many electric vehicles will be charging at the same time after their roll-out; each is consuming several (kW) or hundreds of (kW) power. This means that they are modelled as a single load with varied load demand behaviors. Such behaviors refer to the different charging scenarios taken from [1].

In this project the charging scenarios of plug-in electric vehicles that will be investigated are four. EPRI profile, off-peak profile, peak profile, and stochastic profile that takes into account the uncertain behavior of drivers when charging, random times during day and night.

Table (2.2), Showing the Peak charging probability distribution [1]:

Time	Probability dis	Probability distribution Percentage				
01:00-06:00	0%	0%	0%	0%	0%	0%
07:00-12:00	0%	0%	0%	0%	0%	0%
13:00-18:00	18.5%	18.5%	18.5%	18.5%	9%	9%
19:00-24:00	4%	4%	0%	0%	0%	0%

Table (2.3), Showing the Off-peak charging probability distribution [1]:

Time	Probability dis	Probability distribution Percentage				
01:00-06:00	18.5%	18.5%	9%	9%	4%	4%
07:00-12:00	0%	0%	0%	0%	0%	0%
13:00-18:00	0%	0%	0%	0%	0%	0%
19:00-24:00	0%	0%	0%	0%	18.5%	18.5%

Table (2.4), Showing the EPRI charging probability distribution [1]:

Time	Probability dis	Probability distribution Percentage				
01:00-06:00	10%	10%	9.5%	7%	5%	3%
07:00-12:00	1%	0.3%	0.3%	1.3%	2.1%	2.1%
13:00-18:00	2.1%	2.1%	2.1%	1%	0.5%	0.5%
19:00-24:00	1.6%	3.6%	5.4%	9.5%	10%	10%

Table (2.5), Showing the Stochastic charging probability distribution [1]:

Time	Probability dis	Probability distribution Percentage				
01:00-06:00	5.7%	4.9%	4.8%	2.4%	2.6%	9.7%
07:00-12:00	8.7%	4.8%	1.1%	3.2%	2.1%	5.7%
13:00-18:00	3.8%	2.2%	2.1%	6.1%	3.2%	2.2%
19:00-24:00	2.8%	2.2%	5.5%	2.5%	3.5%	8.2%

Fig. 6 Probability plot of power supplied at four different charging scenarios with PEV load distribution from [1]

2.5 Plug-In electric vehicles impact on power demand

Plug-in electric vehicles household simultaneous chargers are power rated 20kW, and superchargers are power rated at 120kW [1]. Such demand will produce huge ripples or spikes in load profile of demand. The spikes are dangerous as generating units have ramp constraints that may not satisfy large sudden demands [1]. This is avoided by good scheduling techniques which is best done via one of many dispatch optimization methods [1].

2.6 Static Economic Dispatch (SED)

The need to schedule the generation units' output to meet the required load demand at minimum cost while satisfying system requirements is the primary goal of SED. Considering the problem formulation and objectives of economic dispatch SED part of DEED, the SED problem is non multi-objective problem that involves a fixed load demand at a chosen time stamp [1, 4, 6] given as:

$$\min F = \sum_{i=1}^{N} a_i + b_i P_{Gi} + c_i P_{Gi}^2$$
 (2)

such that

$$\sum_{i=1}^{N} P_{Gi} = P_D \tag{3}$$

Where N is the number of generation units a_i , b_i , c_i are cost curve coefficients of the ith generation unit while P_{Gi} represents the output power of the ith generation unit [1, 4, 6] with P_D being the power demand.

System requirement satisfaction as in constraints that we need to consider for ED with regards to the project expectations includes power output limits [1, 6] given as:

$$P_{Gimin} \le P_{Gi} \le P_{Gimax} \ (i = 1, 2, \dots, N) \tag{4}$$

2.7 Dynamic Economic Environmental Dispatch (DEED)

DEED is a form of optimization problems/decision-making processes. In our case, it is a constrained optimization problem where the objective is to find the most economical and environmental schedule of generating units while satisfying load demand and operation constraints. The term dynamic is used because we consider various loads at different times. This is considered as a multi-objective problem [1] given as:

$$\min F = wF_1 + (1 - w)F_2 \tag{5}$$

The w stands for the weighting factor as a constant value between 0 and 1 [1], helps choose which part of EED has a higher priority. F_1 and F_2 stand for the non-linear equations for dynamic economic dispatch and dynamic environmental dispatch respectively [1]. min F denotes the minimum overall cost [1, 4, 6].

 F_1 given as [1]:

$$F_1 = \sum_{t=1}^{T} \sum_{i=1}^{N} a_i + b_i P_{Gi,t} + c_i P_{Gi,t}^2 + |d_i \sin(e_i (P_{Gimin} - P_{Gi,t}))|$$
 (6)

Where N is the number of generation units. a_i , b_i , c_i are cost curve coefficients of the ith generation unit while P_{Gi} represents the output power of the ith generation unit [1, 4, 6]. Consideration of coefficients

 d_i and e_i are for valve point effects of thermal generation units which evaluate the ripples in the cost curve [1, 20]. T denotes the time intervals in a given load profile. The DEED system constraints to consider are power output limits and ramp constraints [1].

Power output constraints:

$$P_{Gimin} \le P_{Gi,t} \le P_{Gimax} (i = 1, 2, \dots, N) \tag{7}$$

The power output of each generator must be within constraints of the generator power output limits.

Ramp rate constraints:

$$P_{Gi,t} - P_{Gi,t-1} \le UR_i$$

$$P_{Gi,t-1} - P_{Gi,t} \ge DR_i$$
(8)

Consideration of ramp rate constraints because thermal power generation units cannot dramatically change within two adjacent intervals, as stated in [1, 4, 6]. UR_i stands for the ramp-up constraint of a thermal generator and DR_i stands for the ramp-down constraint of a thermal generator. Meaning that the power output of a given generator at interval t must consider what power it was outputting at interval t - 1 to be within the ramp-up and down constraints [1].

 F_2 given as [1]:

$$F_2 = \sum_{t=1}^{T} \sum_{i=1}^{N} \alpha_i + \beta_i P_{Gi,t} + \gamma_i P_{Gi,t}^2 + \eta_i \exp(\delta_i P_{Gi,t})$$
 (9)

Where α_i , β_i , γ_i , η_i and δ_i represent the ith thermal generation units' emission coefficients. The goal is to minimize the emitted pollutants that have Sulphur dioxide and nitrogen oxides [1, 20].

Thus, when including these requirements with economic dispatch, a more sophisticated optimization method to look through the different demands for different times on a given load profile is needed.

2.8 Dispatch solving methods

Dispatch solving methods are of many types used for many different sets of problems. These solving methods can be classed into three primary categories. Each category has its pros and cons. The solving methods can be heuristic, meta-heuristic or hybrid methods. Some advantages of heuristic methods are not needing to specify problem parameters [19] and are fast to compute. Disadvantages of heuristic methods, however, are that since they are fast to compute this means they will converge pretty fast creating a very sensitive dependence on initial values [19] Heuristic methods such as Lagrange relaxation [2, 19], gradient projection method [19] and lambda iterative method [2, 19] can be used to solve smooth convex cost functions. With the non-convex cost function of a DEED, they fail to achieve a global optimal solution [19]. In reality, dispatch models are much more complex and require the formulation of dispatch models for N amount of generation units each with their constraints. Meta-heuristic methods involve differential evolution (DE) [10, 19], Hopfield neural network (HNN) [19], particle swarm optimization (PSO) [2, 9, 16, 19] and genetic algorithm (GA) [2, 5, 6, 19]. These methods can seek for the global optimal solution with or without constraints that are applied to the cost function. The advantage is that they do not have a sensitive dependence on initial values but do suffer from long compute times as well as having to specify many problem parameters [5, 9, 11, 15, 19, 21]. Hybrid methods allow the combination of different solving methods to have the best of their features combined into one method. Hybrid methods have proven their effectiveness in problems related to DEED using particle swarm optimization combined with sequential

quadratic programming (PSO – SQP) [2, 16, 19] and evolutionary programming combined with sequential quadratic programming (EP - SQP) [19].

2.7.1 Quadratic Programming (Quadprog)

Quadprog is a heuristic quadratic programing function [18] on Matlab That finds the minimum cost of a given quadratic function and its problem parameters.

Equation given as [17]:

$$Cost_{min} = \frac{1}{2} * x^{T} * H * x + f^{T} * x$$
(10)

Considering equation (1), x represents committed generation unit output power P_i from cost curve function. H is a matrix of size (ixi) and the cost coefficient (c) of P_i is at H_{ii} [17]. The variable f is a matrix with size (1xi) and cost coefficient (b) of P_i is at f_{1i} [17].

The minimum cost is controlled by the matrices of inequality constraints, equality constraints, upper bound and lower bound of the operational characteristics of generation units [17].

When used in SED it returns the minimum of each generation unit cost from a given cost function while considering their output power constraints [17]. The output result of total minimum cost of this quadprog function does not consider the (a) constant of each generation unit cost curve function, meaning it will be added separately after performing the function.

Matlab function written as:

$$[X, J] = quadprog(H, f, A_{inequality}, B_{inequality}, A_{equality}, B_{equality}, UB, LB)$$

Where $A_{inequality}$ represents the matrix of coefficients of the provided inequalities and $B_{inequality}$ represents the objective matrix of inequalities. $A_{equality}$ represents the matrix of coefficients of the provided equality constraints and $B_{equality}$ represents the results of each equality constraint. The upper bound and lower bound of each generation unit is represented by the variables UB and LB respectively. X represents the final variable that is multiplied by the cost coefficients, meaning the power output of committed generation unit. J represents the minimum total cost without considering the addition of (a) constant of each generation unit cost curve function.

2.7.2 Genetic Algorithm

Genetic algorithm is a method that is part of the meta-heuristic methods [2, 5, 6, 19]. Meaning it has certain advantages that allow for the chance to achieve global optimal solution for a given DEED problem. The genetic algorithm that is being looked at is the binary encoded genetic algorithm. This optimization method uses bio-inspired steps to reach global optimal solution. These steps include random population initialization and repetitive use of finding fitness, crossover, and mutation [2, 5, 6, 19, 20]. Many methods are used to help choose the parents for crossover such as rank and tournament method [20, 22]. For a crossover, itself has many methods as well, but the single-point crossover is the method that is widely used [5, 20]. Then mutation is when randomly choosing an encoded binary bit and flipping it [20]. These are done iteratively, wherein which the new offspring will share some of the parents' characteristic [2, 5, 20]. Depending on whether minimum or maximum possible result is what is needed, the algorithm can be formulated accordingly, and through generations of populations, the global optimal solution is searched for and achieved when the fitness converges [2, 20].

2.7.2 Particle Swarm Optimization

Particle swarm optimization is part of the metaheuristic optimization methods, it is inspired by the natural behaviour of bird flocking and fish schooling [21]. The method contains particles with multiple dimensions if need be, to search through a search space via a computed velocity until a position is reached which represents the solution [12, 16, 21]. The position of the particles and their dimensions is updated on each iteration via the computed velocity until a global minimum is reached [12, 16, 21].

- There are (d) dimensions for each particle.
- For each dimension there is a velocity. Thus, a vector of velocities with size (dx1) is required.
- For each dimension there is a position. Thus, a vector of positions with size (dx1) is required.
- For each velocity and position we determine the particles' best dimension value and stored as (gbest).
- The velocities of the particles are tuned depending on the requirement (whether more exploration is needed or obtain better and better solutions in the neighbourhood of the present solution).
- The velocity is tuned via a linearly adaptable inertia weight (w).

The equation that defines the value of the velocity and position of each dimension depending on present and past iteration from is given by [21],

$$v_{id} = w * v_{id}^{k} + C_{1} * (Pbest_{id} - x_{id}^{k}) + C_{2}(gbest_{d} - x_{id}^{k})$$
(11)

$$x_{id}^{(k+1)} = x_{id}^{k} + v_{id}^{(k+1)}$$

$$i = 1, 2, ..., N_{p}$$

$$d = 1, 2, ..., N_{q}$$
(12)

- N_g stands for the total number of dimensions.
- N_p stands for the population size.
- $Pbest_{id}$ stands for the best position so far for particle (i) at dimension (d).
- $gbest_d$ stands for the best among all of the particle (i) dimensions.
- v_{id} stands for the velocity of particle (i) at dimension (d).
- x_{id} stands for the position of particle (i) at dimension (d).
- C_1 and C_2 are randomly chosen constants that provide relative stochastic weighting of the deviation from best self-performance of the particle itself.

The equation for linearly adaptable inertia weight that tunes the velocity is given by [21],

$$w = \frac{w_{max} - w_{min}}{iter_{max}} * iter$$
 (13)

- $iter_{max}$ stands for the maximum number of iterations.
- *iter* stands for the current iteration.
- w_{max} & w_{min} stand for maximum and minimum weight respectively which alter the velocity depending on the current iteration.

Chapter 3

Formulating Binary Encoded Genetic Algorithm Optimization Method

At this stage of the project, an attempt to formulate the genetic algorithm method is made as a static economic dispatch solving method. The upcoming steps are to help understand how the results in the next chapter came to be using genetic algorithm optimization method code in (Appendix B).

3.1 Population creation and fitness function

Each population member is of a different row, and the number of columns it utilizes is of the chosen bit resolution. The number of columns for a given amount of (i) generation units is given by:

$$N_{columns} = (i-1) * n \tag{14}$$

Where (n) represents the chosen bit resolution. The number of rows would represent the total population used for the algorithm. The genetic algorithm code would be able to decode any size matrix of random binary initial population solutions and give the real values for any (i) amount of generation units with their power output constraint. Uses this equation [2]:

$$DecodedValue \rightarrow (Binary \rightarrow Decimal) \ conversion$$

$$RealValue = \frac{P_{Gi \ max} - P_{Gi \ min}}{2^n - 1} * DecodedValue$$
 (15)

The fitness of each population individual is achieved using the real values inputted into the formulated fitness function. Fitness function used here depends on a fuel cost function which is the real output power values of the generating units inputted into their input-output characteristic equation multiplied by the cost per MW power output and the demand we are trying to match [2]. The total fuel cost function for each thermal generation unit is given by equation (2).

 P_{GN} is the reference unit given as:

$$P_{GN} = P_D - \sum_{i=1}^{N-1} P_{Gi} = P_D - P_{Gi} - P_{Gi+1} \dots - P_{N-1}$$
 (16)

Since the ith generation unit is considered as the reference unit [2], the operational system constraints are implemented via the penalty factor equation [2] given by:

$$h = h_1 (P_{GNmax} - (P_{GN}))^2 + h_2 ((P_{GN}) - P_{GNmin})^2$$
(17)

Here, adding penalty factors to the violation of slack unit power output. Different combinations of h_1 & h_2 values have been tested to see which are best fit for a given problem. P_{GNmax} & P_{GNmin} represent the upper and lower output power constraints of the reference unit. With numerous testing, the best choice of penalty factors is $h_1 = 10$ and $h_2 = 100$.

Then Fitness function is given by [2]:

$$F_{fitness} = F + h \tag{18}$$

Where F represents the outcomes from equation (1) per generation unit and h representing the outcomes of penalty factor equation from equation (17).

3.2 Choosing parents

Tournament method to choose the best possible parents for cross-over has been used. This tournament method focuses on choosing random population individuals' fitness and have it compete with other population individuals' fitness at least twice [22]. The winner is chosen on the basis of who has the lower fitness value.

The number of winners will equal the number of population individuals chosen at the start of the algorithm. We choose those winners to become parents in cross-over.

3.3 Crossover

We use the winners of the tournament to go through the cross-over code. Parents will have a probability of crossover set at the beginning of the GA code.

The cross-over technique used is (Single-Point Cross-Over), which means that we choose a binary position (point) within both parent solutions. Then swap the lower significant bits after the single point cross-over bit between the two parents [2, 5, 20].

Table (3.1) showing 4-bit resolution parents' example for cross-over with single point cross-over at bit 2:

	Bit 3	Bit 2	Bit 1	Bit 0
Parent 1	1	0	0	1
Parent 2	1	1	1	1
Offspring 1	1	0	1	1
Offspring 2	1	1	0	1

3.4 Mutation

We use the solutions of all offspring and mutate each bit depending on the probability of mutation. This is implemented by visiting each element of a matrix and flipping the bit [2, 20]. This is done in an attempt to help visit all possible solutions via a given population offspring.

3.5 Choice of next generation candidates

To get next generation candidates it is required to combine solutions of both offspring and parent, sort their fitness and choose the best candidates to become the new population for the next generation [2, 5, 6, 20]. This is done depending on the chosen iterations for the algorithm. Once chosen iterations are met, the final result will be the minimum fitness out of all the population members.

Fig. 7 Implementation stages of the binary encoded genetic algorithm optimization method used for this project.

Chapter 4

Particle Swarm Optimization Method

This metaheuristic method contains particles with multiple dimensions if need be, to search through a search space via a computed velocity until a position is reached which represents the solution [12, 16, 21]. Below explains the steps taken to formulate the PSO code in appendix (C).

4.1 Initialization

During initialization, positions of each particle and particle dimension is generated randomly formulating a matrix size of (P, D) where (P) is the number of particles and (D) is the number of dimensions for each particle. They are generated while abiding the rules laid out by the constraints. This is performed before the first iteration for each hour power demand.

As shown on figure (8), the randomly generated initial positions for the power demand hour (1) are only constrained by maximum and minimum output power as shown in equation (7). For the hours greater than one, it is shown on figure (8) that ramp up and down constraints shown in equation (8) are applied to further constrain the initial positions.

To allow reference generation unit to function properly, the initial positions for both cases above are constrained further by:

The positions are then recorded in an array to compute the fitness of each particle using equation (5). The best fitness is recorded as both personal best and global best. Initial velocities are generated randomly for each particle and its dimensions according to their limitations.

4.2 Particle Movement

Upon entering the first iteration for the PSO computations, the stored positions are updated via equation (12) and the velocity changes are done via equation (11). The values for constants (C1), (C2) and (w) are chosen accordingly after testing to achieve best global minimum. Where the ratio between dependence of particles' best record (C1) and the best record between all particles (C2) according to equation (11).

The fitness of each particle is calculated to find and store both personal best and global best. This is repeated multiple times depending on the set chosen number of iterations while abiding by the set constraint rules.

4.3 Choice of solution

The choice of solution is determined by the global best fitness after the last iteration. The global best fitness is used as reference to find the stored global best particle position. Then solution is used to compute both cost and emission.

Chapter 5

Method Comparison

5.1 Problem setup

The comparison analysis will use 5-units with operational characteristics taken from [21] and load demand of 500 MW.

Table (5.1), Table of Problem data for the 5-unit base problem from [21].

Unit	P _{max} (MW)	P _{min} (MW)	UR (MW/h)	DR (MW/h)	a (\$/h)	b (\$/MWh)	c (\$/MW ² h)
1	75	10	30	30	25	2.0	0.0080
2	125	20	30	30	60	1.8	0.0030
3	175	30	40	40	100	2.1	0.0012
4	250	40	50	50	120	2.0	0.0010
5	300	50	50	50	40	1.8	0.0015

Table (5.2), Table of population and iterations for each optimization method used.

Method	Population
Quadratic Programming	N/A
Genetic Algorithm	10000
Particle Swarm Optimisation	10000

5.2 Quadratic Programming Analysis

Table (5.3), Table of results using the data from table (4.1) inputted in quadprog function on Matlab:

	Average Power Output (MW)	Cost (\$/h)
Generator 1	18.66197	65.11009529
Generator 2	83.09859	230.2936
Generator 3	82.74648	281.984
Generator 4	149.29577	501.9054
Generator 5	166.19718	380.58718

Total cost per hour = 1459.880202 \$/h

5.2.1 Reviewing results

The results from quadratic programming show the power output for each generation unit and total cost considering the last unit as the reference unit. The average total cost per hour was found to be 1459.880202 \$/h. The power output assignment of each committed unit via quadprog program being done without considering the ith generation unit as reference generation unit. Quadprog computes all the functions using H matrix without having the ability to manipulate what type of data gets to be fed into the last element of H matrix which represents the ith generation unit.

5.3 Genetic Algorithm Analysis

Table (5.4), containing genetic algorithm code parameters:

Iterations	100
Population members	10000
Bit resolution	N/A
Generation units	5
Penalty factor h_1	1
Penalty factor h_2	100
Cross-over probability	90%
Mutation probability	10%
Power demand (MW)	500

5.3.1 Testing different bit resolutions

Experimenting the effect of resolution bits on the fitness plot using data and parameters from table (1) and (3).

Fig. 9 Plot of fitness against iteration number for a 4-bit resolution.

Fig. 10 Plot of fitness against iteration number for an 8-bit

Fig. 11 Plot of fitness against iteration number for a 16-bit

5.3.1.1 Reviewing results

Looking at the effect of bit resolution on fitness, it shows how only discrete values are assigned as the fitness over several iterations regardless of real-life value. It is a compromise between accuracy and computation time. Thus, due to results from case (1), case (2) and the experiment, it is deduced that a 16-bit resolution from case (3) is best to use for 10000 population members. Also, it shows that fitness function converges at different iterations depending on the problem parameters and initial random population values.

Fig. 12 Plot of fitness against iteration number for one of the five algorithm runs for 500 MW demand. Using data and parameters from table (1) with 16-bit resolution.

Table (5.5), power output per generation unit and total cost using data of 5 algorithm runs:

Run Number	Generator 1	Generator 2	Generator 3	Generator 4	Generator 5	Total Cost
	MW	MW	MW	MW	MW	\$/h
1	26.4536	98.5397	112.6966	209.8169	52.4932	1488.1
2	26.2493	98.7544	112.6744	209.8169	52.5050	1488.5
3	26.2304	98.7512	112.7010	209.8169	52.5005	1488.5
4	26.2413	98.7512	112.6966	209.8169	52.494	1488.6
5	25.6621	98.5397	112.6744	210.6276	52.4961	1490.7

Average total cost per hour = 1488.88 \$/h

5.3.2.1 Reviewing results

The plots reach convergence at around 50 iterations for a population of 10000. The results from the binary encoded genetic algorithm show the power output for each committed generation unit with their cost considering the last generation unit as the reference unit. From five runs, the average total cost per hour was found to be 1488.88 \$/h.

5.4 Particle Swarm Optimization Analysis

Table (5.6), containing Particle Swarm Optimisation code parameters:

Iterations	3000
Particles	10000
C1 coefficient	N/A
C2 coefficient	N/A
w – inertia weight maximum	N/A
Power demand (MW)	500

5.4.1 Changing acceleration constants

Experimenting the effect of different (C1) and (C2) coefficients on the fitness plot using data and parameters from table (1 & 6) and with inertia maximum set to (1) while iterations are set high to explore iterations needed to reach convergence.

Fig. 13 Plot of fitness against iteration number for (C1 = 1) and (C2 = 1).

Fig. 15 Plot of fitness against iteration number for (C1 = 1.5) and (C2 = 1).

Fig. 14 Plot of fitness against iteration number for (C1 = 1) and (C2 = 1.5).

Fig. 16 Plot of fitness against iteration number for (C1 = 0) and (C2 = 0).

Fig. 17 Plot of fitness against iteration number for (C1 = 0) and (C2 = 1).

Fig. 18 Plot of fitness against iteration number for (C1 = 1) and (C2 = 0).

5.4.1.1 Reviewing results

The (C1) constant represent the preference of search rather than communication between other particles, and the opposite meaning goes to the (C2) constant. Figure (16) shows that the fitness is at a stand-still since there is no search and communication between particles. Figures (14) and (15) show how with high number of particles it seems to be too exaggerated for (C1) searching, rather best fit for (C2) communicating with each other as search space occupied from the start is large reducing the number of iterations from over 3000 down to about 1600 iterations. Having them both set at the same priority which is seen on figure (1) reduces the iterations needed down to about 1500 iterations. Figures (17) and (18) show that when the priority of one of the coefficients is set to be unweighted (set to zero), the global minimum is found much faster. The iterations needed for convergence reduce to about 35 iterations for figure (17) and 45 iterations for figure (18). The fitness plots for figure (17) and (18) are better shown on figure (19) and (20) respectively.

Fig. 19 Plot of fitness against iteration number for (C1 = 0) and (C2 = 1).

Fig. 20 Plot of fitness against iteration number for (C1 = 1) and (C2 = 0).

5.4.2 Changing inertia weight

Experimenting the effect of different inertia weight maximum (w) on the fitness plot using data and parameters from table (1 & 6) and with (C1 = 0) and (C2 = 1) with iterations set to (300).

Plot of Fitness Per Iteration

1399.15

1399.05

1398.95

1398.85

1398.85

1398.85

1398.85

1398.85

1398.85

Fig. 21 Plot of fitness against iteration number for (w = 0.1).

Fig. 22 Plot of fitness against iteration number for (w = 0.5).

Fig. 23 Plot of fitness against iteration number for (w = 1).

Fig. 24 Plot of fitness against iteration number for (w = 0.8).

Inertia weight (w) aids the particles for searching, having a greater maximum would persuade the particles to slightly prioritize search over communication which would increase the iterations needed for convergence. All inertia weight values produce about the same result of number of iterations needed to reach convergence. This is because coefficient (C1) was set to be (0) meaning velocity to change particle position is almost negligible.

5.4.3 Applying optimization method on fixed load demand

Fig. 25 Plot of fitness against iteration number for data in table (1 & 6) with (w = 0.5), (C1 = 0), (C2 = 1), and 300 iterations.

Table (5.7), power output per generation unit and total cost using data of 5 algorithm runs:

Run Number	Generator 1	Generator 2	Generator 3	Generator 4	Generator 5	Total Cost
	MW	MW	MW	MW	MW	\$/h
1	18.6589	83.0505	82.7581	149.2187	166.3037	1398.8
2	18.6917	83.0199	82.4116	149.5448	166.3219	1398.8
3	18.6619	83.1271	82.9899	149.1822	166.0289	1398.8
4	18.6338	83.0449	83.0301	149.0642	166.217	1398.8
5	18.7697	83.1684	82.7448	149.289	166.0181	1398.8

Average total cost per hour = 1398.8 \$/h

5.4.3.1 Reviewing results

The plots for PSO reach convergence at around 25 iterations for a population of 10000. The results from particle swarm optimization show the power output for each generation unit and total cost considering the last unit as the reference unit. From five runs, the average total cost per hour was found to be 1398.8 \$/h.

5.5 Conclusion

Comparing results, total cost from GA is remarkably close to the total cost from the quadprog function. The slight differences were due to power output assignment of each committed unit via quadprog program being done without considering the ith generation unit as reference generation unit. Another thing to point out is that the GA was binary encoded which means it deals with and outputs discrete values compared to values with higher order of decimal points as like the quadprog function. This limits the ability of GA to visit all possible solutions. All in all, it seems that the formulated binary encoded genetic algorithm is working as intended. Advantage of genetic algorithm optimization method is having the ability to expand into more large-scale problems and having the ability to formulate the algorithm in a way to best fit a given optimization problem. In the other hand the particle swarm optimization method was able to achieve a greater global minimum compared to both genetic algorithm and quadratic programming, while also utilizing iterations less than the amount used by genetic algorithm and each iteration was computed at a much faster speed compared to genetic algorithm. Binary genetic algorithm optimization method is a methodology that does not guarantee global minimum, the results of minimum cost are consistent for a given needed iterations on the amount of population but reaches a dead end of minimum result due to the limitation caused by discrete values from the set number of bits. Increasing the number of bits of GA to represent output power for each generating unit would increase computation time even further than it is currently at. This is not an ideal case and could take a long time for the many runs to achieve a more accurate average minimum cost. A better choice of an optimization method would need to have more consistent minimum cost on each run and have the fitness converge at a smaller number of iterations to save time. From the results above, particle swarm optimization meets those requirements which would help develop a better non-linear dynamic economic and environmental dispatch model considering PEVs that would also help propose a suitable dispatch plan for different charging/discharging scenarios.

Chapter 6

Dynamic Economic and Environmental Dispatch Considering Electric Vehicles

6.1 Problem setup

The problem setup for PSO DEED Analysis in report will use 10-unit thermal system with operational cost and emission characteristics inspired from [35] and [21] respectively with load demand from [35, 36]. The emission problem data taken from [21] represents 5 units only, thus it will be assumed that the other 5 units of total 10 units will have the same characteristics. Only nitrogen oxides (NO_x) are considered in this analysis.

Table (6.1), Table of cost Problem data for the 10-unit system.

Unit	P _{max}	P _{min}	UR	DR	a	b	С
	(MW)	(MW)	(MW/h)	(MW/h)	(\$/h)	(\$/MWh)	$(\$/MW^2h)$
1	450	150	91	91	670	27.79	0.00173
2	455	150	91	91	970	17.26	0.00031
3	130	20	40	40	700	16.60	0.002
4	130	20	50	50	680	16.50	0.00211
5	162	25	50	50	450	19.70	0.00211
6	80	20	20	20	370	22.26	0.00712
7	85	25	20	20	480	27.74	0.00079
8	55	10	11	11	660	25.92	0.00413
9	55	10	11	11	685	27.27	0.00222
10	55	10	11	11	1000	16.19	0.00048

Table (6.2), Table of emission Problem data for the 10-unit system.

Unit	α	β	γ	η	δ
	(\$/h)	(lb/MWh)	(lb/MW^2h)	(lb/h)	(1/MW)
1	80	-0.805	0.0180	0.6550	0.02846
2	50	-0.555	0.0150	0.5773	0.02446
3	60	-1.355	0.0105	0.4968	0.02270
4	45	-0.600	0.0080	0.4860	0.01948
5	30	-0.555	0.0120	0.5035	0.02075
6	80	-0.805	0.0180	0.6550	0.02846
7	50	-0.555	0.0150	0.5773	0.02446
8	60	-1.355	0.0105	0.4968	0.02270
9	45	-0.600	0.0080	0.4860	0.01948
10	30	-0.555	0.0120	0.5035	0.02075

Table (6.3), containing Particle Swarm Optimization code parameters:

Iterations	300
Particles	20000
C1 coefficient	0
C2 coefficient	1
w – inertia weight maximum	1

Table (6.4), PEVs problem data:

Type of PEV	Nissan Altra
Number of PEVs	50000
Capacity	29.07kWh
SoC upon arrival	20%
SoC upon disconnection	80%

Calculating total PEV power demand assuming each PEVs charges once a day from [1]:

$$P_{L,ev} = 50000 * 29070 * (80\% - 20\%) = 872.1MW$$
 (19)

Charging scenarios of plug-in electric vehicles that will be investigated will be five. EPRI profile, off-peak profile, peak profile, stochastic profile that considers the uncertain behavior of drivers when charging, random times during day and night.

6.2 Dispatch analysis without PEVs

Table (6.5), Table of load demand without PEVs.

<u>Hour</u>	Demand (MW)	<u>Hour</u>	Demand (MW)
1	700	13	1400
2	750	13	1300
3	850	15	1200
4	950	16	1050
5	1000	17	1000
6	1100	18	1100
7	1150	19	1200
8	1200	20	1400
9	1300	21	1300
10	1400	22	1100
11	1450	23	900
12	1500	24	800

Fig. 26 Plot of load demand in MW.

Table (6.6), Dynamic Economic Dispatch Analysis Without PEVs:

	Total load demand (MW)	Total cost (\$)
Without PEV	27100	682160

Table (6.7), Dynamic Environmental Dispatch Analysis Without PEVs:

	Total load demand (MW)	Total emission (lb)
Without PEV	27100	53210

Table (6.8), Dynamic Economic and Environmental Dispatch Analysis Without PEVs:

	Total load demand (MW)	Total cost (\$)	Total emission (lb)
Without PEV	27100	702140	62984

Fig. 27 Plot of cost over 24 hours for without PEVs.

Fig. 28 Plot of emission over 24 hours for without PEVs.

GEN 1 (MW)	GEN 2 (MW)	GEN 3 (MW)	GEN 4 (MW)	GEN 5 (MW)	GEN 6 (MW)	GEN 7 (MW)	GEN 8 (MW)	GEN 9 (MW)	GEN 10	Total (MW)
									(MW)	
152.256	150.431	124.576	72.321	45.651	20.376	32.350	19.835	10.130	72.074	700
150.085	154.120	114.487	118.674	39.857	23.257	26.885	18.003	17.369	87.263	750
152.069	171.450	125.030	117.550	66.905	22.931	32.181	18.151	10.044	133.690	850
151.892	160.367	125.737	127.171	115.064	24.415	29.069	18.797	19.181	178.306	950
151.970	161.998	127.701	122.321	126.206	23.465	27.115	20.792	17.809	220.624	1000
153.935	175.744	129.345	126.313	157.673	30.134	33.716	23.861	11.819	257.461	1100
157.775	208.134	129.352	129.909	157.489	38.931	29.705	24.502	20.559	253.643	1150
153.762	231.345	129.593	125.985	147.180	54.032	32.765	22.719	12.278	290.340	1200
183.762	231.415	129.191	129.048	159.782	66.625	48.456	33.209	21.367	297.145	1300
200.938	283.605	126.306	129.440	159.202	72.974	63.002	43.991	32.179	288.363	1400
221.624	284.105	127.055	128.864	160.931	75.482	67.101	51.016	38.759	295.063	1450
255.641	284.965	123.189	128.915	161.435	76.896	81.399	43.296	48.506	295.758	1500
178.019	272.143	127.544	127.064	147.667	79.036	83.247	53.907	39.505	291.866	1400
150.403	214.506	129.607	126.546	161.080	72.868	67.986	52.377	45.573	279.053	1300
153.881	170.516	126.447	126.509	159.902	70.699	54.629	43.331	34.704	259.382	1200
153.166	154.674	121.090	129.760	126.385	52.343	39.661	34.198	28.401	210.322	1050
151.043	159.163	126.919	115.193	104.089	35.798	26.375	29.821	23.222	228.375	1000
150.882	177.830	129.968	118.960	138.071	41.169	28.411	38.174	16.813	259.721	1100
153.400	207.554	128.520	126.602	155.450	58.970	34.653	42.177	12.345	280.330	1200
194.712	286.120	128.257	124.309	159.943	78.433	53.333	52.628	22.311	299.955	1400
153.697	233.817	128.346	127.766	159.694	67.906	59.767	53.947	31.912	283.148	1300
152.539	161.956	129.454	126.525	117.168	52.191	43.007	51.676	21.419	244.064	1100
150.375	150.974	101.093	118.039	72.399	32.310	25.265	44.296	10.474	194.775	900
152.892	152.328	104.453	119.982	29.719	20.641	27.311	37.314	10.270	145.090	800

Table (6.9), Dynamic Economic and Environmental Dispatch plan without PEVs:

6.2.1 Reviewing results

In order to show the effect of different charging profiles on the load demand, minimum cost of \$682160 and a minimum emission of 53210 lb has been obtained via economic dispatch and environmental dispatch as shown in tables (6.6, 6.7), respectively. Considering attaining minimum of both when not excluding the other dispatch using Dynamic economic and environmental dispatch, the total cost and emission becomes \$700870 and 64477 lb, respectively as shown in table (6.8). These results will be used to benchmark the cost and emission resulting from different charge profiles.

Table (6.10), Showing the Peak charging probability distribution [1]:

Time	Probability distribution Percentage						
01:00-06:00	0%	0%	0%	0%	0%	0%	
07:00-12:00	0%	0%	0%	0%	0%	0%	
13:00-18:00	18.5%	18.5%	18.5%	18.5%	9%	9%	
19:00-24:00	4%	4%	0%	0%	0%	0%	

Table (6.11), Showing the Peak charging probability distribution power demand for data in Table (4):

Time	PEVs Power Demand (MW)						
01:00-06:00	0	0	0	0	0	0	
07:00-12:00	0	0	0	0	0	0	
13:00-18:00	161.340	161.340	161.340	161.34	78.489	78.489	
19:00-24:00	34.884	34.884	0	0	0	0	

Table (6.12), Table of load demand with PEVs (Peak charge profile).

<u>Hour</u>	Demand (MW)	<u>Hour</u>	Demand (MW)
1	700	13	1561.340
2	750	13	1461.340
3	850	15	1361.340
4	950	16	1211.340
5	1000	17	1078.489
6	1100	18	1178.489
7	1150	19	1234.884
8	1200	20	1434.884
9	1300	21	1300
10	1400	22	1100
11	1450	23	900
12	1500	24	800

The plug-in electric vehicles' charging total daily load demand (872.1MW) is met through percentages from the total inside hours between (13:00) and (20:00) as shown in table (6.10).

Fig. 29 Plot of load profile considering Peak charging.

Table (6.13), Dynamic Economic Dispatch Analysis with PEVs:

	Total load demand (MW)	Total cost (\$)
Peak Charging	27972	699850

Table (6.14), Dynamic Environmental Dispatch Analysis with PEVs:

	Total load demand (MW)	Total emission (lb)
Peak Charging	27972	62427

Table (6.15), Dynamic Economic and Environmental Dispatch Analysis with PEVs:

	Total load demand (MW)	Total cost (\$)	Total emission (lb)
Peak Charging	27972	720980	71903

Fig. 30 Plot of cost over 24 hours for Peak charging PEVs.

Fig. 31 Plot of emission over 24 hours for Peak charging PEVs.

Table (6.16), Dynamic Economic and Environmental Dispatch plan with Peak scenario:

GEN 1	GEN 2	GEN 3	GEN 4	GEN 5	GEN 6	GEN 7	GEN 8	GEN 9	GEN 10	Total
(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
152.256	150.431	124.576	72.321	45.651	20.376	32.350	19.835	10.130	72.074	700
150.085	154.120	114.487	118.674	39.857	23.257	26.885	18.003	17.369	87.263	750
152.069	171.450	125.030	117.550	66.905	22.931	32.181	18.151	10.044	133.690	850
151.892	160.367	125.737	127.171	115.064	24.415	29.069	18.797	19.181	178.306	950
151.970	161.998	127.701	122.321	126.206	23.465	27.115	20.792	17.809	220.624	1000
153.935	175.744	129.345	126.313	157.673	30.134	33.716	23.861	11.819	257.461	1100
157.775	208.134	129.352	129.909	157.489	38.931	29.705	24.502	20.559	253.643	1150
153.762	231.345	129.593	125.985	147.180	54.032	32.765	22.719	12.278	290.340	1200
183.762	231.415	129.191	129.048	159.782	66.625	48.456	33.209	21.367	297.145	1300
200.938	283.605	126.306	129.440	159.202	72.974	63.002	43.991	32.179	288.363	1400
221.624	284.105	127.055	128.864	160.931	75.482	67.101	51.016	38.759	295.063	1450
255.641	284.965	123.189	128.915	161.435	76.896	81.399	43.296	48.506	295.758	1500
267.215	329.673	124.012	128.262	155.988	78.284	83.228	51.261	48.028	295.391	1561.34
216.828	287.774	120.291	129.889	151.817	79.995	79.792	50.025	50.865	294.063	1461.34
155.502	255.488	129.693	122.779	160.431	77.871	79.375	43.259	54.692	282.249	1361.34
150.938	188.277	126.656	126.441	154.349	69.018	61.146	32.666	46.161	255.689	1211.34
152.137	160.410	117.584	122.511	129.413	50.677	42.537	25.476	36.880	240.865	1078.489
151.731	198.035	124.315	128.773	136.576	55.538	37.012	30.613	29.268	286.628	1178.489
152.351	232.892	129.680	125.200	153.569	63.666	27.589	37.532	29.635	282.771	1234.884
216.870	299.289	128.891	129.828	161.432	77.325	39.356	47.024	39.304	295.566	1434.884
155.399	234.702	128.280	128.969	159.669	63.536	50.509	52.326	33.968	292.642	1300
151.398	176.756	126.163	126.917	112.191	44.168	34.786	50.565	28.118	248.938	1100
150.371	151.114	98.747	118.126	67.696	24.288	25.208	43.465	17.173	203.812	900
150.007	152.376	128.714	80.954	25.242	29.149	26.700	36.968	11.725	158.164	800

6.3.1 Reviewing results

The results considering the peak charging profile over a 24-hour period, show a minimum cost of \$699850 and a minimum emission of 62427 lb has been obtained via economic dispatch and environmental dispatch as shown in tables (6.13, 6.14), respectively. Considering attaining minimum of both when not excluding the other dispatch using Dynamic economic and environmental dispatch, the total cost and emission becomes \$720980 and 71903 lb, respectively as shown in table (6.15).

Table (6.17), Showing the Off-peak charging probability distribution [1]:

Time	Probability distribution Percentage							
01:00-06:00	18.5%	18.5%	9%	9%	4%	4%		
07:00-12:00	0%	0%	0%	0%	0%	0%		
13:00-18:00	0%	0%	0%	0%	0%	0%		
19:00-24:00	0%	0%	0%	0%	18.5%	18.5%		

Table (6.18), Showing the Off-Peak charging probability distribution power demand for data in Table (4):

Time	PEVs Power Demand (MW)							
01:00-06:00	161.340	161.340	78.489	78.489	34.884	34.884		
07:00-12:00	0	0	0	0	0	0		
13:00-18:00	0	0	0	0	0	0		
19:00-24:00	0	0	0	0	161.340	161.340		

Table (6.19), Table of load demand with PEVs (Off-Peak charge profile).

<u>Hour</u>	Demand (MW)	Hour	Demand (MW)
1	861.340	13	1400
2	911.340	13	1300
3	928.489	15	1200
4	1028.489	16	1050
5	1034.884	17	1000
6	1134.884	18	1100
7	1150	19	1200
8	1200	20	1400
9	1300	21	1300
10	1400	22	1100
11	1450	23	1061.340
12	1500	24	961.340

The plug-in electric vehicles' charging total daily load demand (872.1*MW*) is met through percentages from the total inside hours between (23:00) and (06:00) according to table (6.17).

Fig. 32 Plot of load profile considering Off-Peak

Table (6.20), Dynamic Economic Dispatch Analysis with PEVs:

	Total load demand (MW)	Total cost (\$)
Off Peak Charging	27972	696710

Table (6.21), Dynamic Environmental Dispatch Analysis with PEVs:

	Total load demand (MW)	Total emission (lb)
Off Peak Charging	27972	55146

Table (6.22), Dynamic Economic and Environmental Dispatch Analysis with PEVs:

	Total load demand (MW)	Total cost (\$)	Total emission (lb)
Off Peak Charging	27972	716560	67922

Fig. 33 Plot of cost over 24 hours for off-Peak charging PEVs.

Fig. 34 Plot of emission over 24 hours for off-Peak charging PEVs.

Table (6.23), Dynamic Economic and Environmental Dispatch plan with Off-Peak scenario:

GEN 1	GEN 2	GEN 3	GEN 4	GEN 5	GEN 6	GEN 7	GEN 8	GEN 9	GEN 10	Total
(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
161.182	170.652	125.142	119.758	54.400	27.316	25.281	13.895	17.663	146.051	861.34
151.481	165.374	128.232	117.695	76.244	33.426	28.445	19.848	10.562	180.032	911.34
150.849	163.610	121.454	116.648	87.944	50.730	25.129	14.153	12.670	185.302	928.489
150.439	179.924	129.655	126.183	84.205	63.193	25.089	16.874	18.797	234.128	1028.489
151.668	165.217	128.860	126.068	124.585	59.659	31.141	18.394	13.979	215.314	1034.884
154.014	226.017	127.415	129.330	141.934	51.349	25.913	18.570	13.835	246.506	1134.884
151.839	220.454	129.623	128.710	138.864	56.657	33.808	17.143	19.158	253.744	1150
154.574	215.315	119.676	129.179	155.880	72.259	37.929	18.309	15.619	281.260	1200
152.242	263.283	115.762	128.380	160.484	79.183	50.690	26.615	26.370	296.991	1300
192.038	293.630	125.933	128.069	160.359	75.407	68.661	33.977	24.748	297.177	1400
228.019	296.050	129.465	126.495	157.033	73.154	82.685	31.420	30.286	295.392	1450
257.676	303.564	128.800	128.565	159.204	70.131	81.630	34.589	38.523	297.319	1500
170.626	289.270	117.808	129.849	161.488	73.317	75.370	44.070	42.279	295.924	1400
151.052	224.220	125.518	129.364	154.260	75.664	60.893	48.021	46.760	284.246	1300
151.177	207.266	128.639	127.150	139.314	56.677	45.264	39.765	48.428	256.319	1200
150.439	151.754	113.853	124.737	141.444	48.001	27.316	29.258	37.960	225.238	1050
150.605	170.067	127.777	123.291	134.115	41.201	25.177	21.001	28.341	178.425	1000
151.650	195.020	121.984	126.712	143.103	51.066	26.829	27.961	31.269	224.406	1100
150.365	227.474	122.399	125.054	159.624	57.616	30.800	21.096	32.243	273.328	1200
210.185	284.345	125.692	129.842	158.386	76.331	46.582	29.869	42.346	296.420	1400
150.737	249.894	128.606	129.069	152.713	64.539	49.518	32.177	44.702	298.044	1300
153.002	173.933	119.166	126.929	135.970	47.047	29.621	21.672	37.518	255.143	1100
151.500	150.653	125.630	129.102	161.560	30.643	28.759	19.337	30.949	233.207	1061.34
151.725	154.524	129.794	112.294	115.805	31.609	27.640	14.092	20.571	203.285	961.34

6.4.1 Reviewing results

The results considering the off-peak charging profile over a 24-hour period, show a minimum cost of \$696710 and a minimum emission of 55146 lb has been obtained via economic dispatch and environmental dispatch as shown in tables (6.20, 6.21), respectively. Considering attaining minimum of both when not excluding the other dispatch using Dynamic economic and environmental dispatch, the total cost and emission becomes \$716560 and 67922 lb, respectively as shown in table (22).

Table (6.24), Showing the EPRI charging probability distribution [1]:

Time	Probability distribution Percentage						
01:00-06:00	10%	10%	9.5%	7%	5%	3%	
07:00-12:00	1%	0.3%	0.3%	1.3%	2.1%	2.1%	
13:00-18:00	2.1%	2.1%	2.1%	1%	0.5%	0.5%	
19:00-24:00	1.6%	3.6%	5.4%	9.5%	10%	10%	

Table (6.25), Showing the EPRI charging probability distribution power demand for data in Table (4):

Time	PEVs Power I	PEVs Power Demand (MW)					
01:00-06:00	87.21	87.21	82.85	61.05	43.61	26.16	
07:00-12:00	8.72	2.62	2.62	11.34	18.31	18.31	
13:00-18:00	18.31	18.31	18.31	8.72	4.36	4.36	
19:00-24:00	13.95	31.4	47.09	82.85	87.21	87.21	

Table (6.26), Table of load demand with PEVs (EPRI charge profile).

Hour	Demand (MW)	Hour Hour	Demand (MW)
1	787.21	13	1418.31
2	837.21	13	1318.31
3	932.85	15	1218.31
4	1011.05	16	1058.72
5	1043.61	17	1004.36
6	1126.16	18	1104.36
7	1158.72	19	1213.95
8	1202.62	20	1431.4
9	1302.62	21	1347.09
10	1411.34	22	1182.85
11	1468.31	23	987.21
12	1518.31	24	887.21

The plug-in electric vehicles' charging total daily load demand (872.1MW) is met through random different percentages from the total which is taking up the whole day (24 - hours) according to table (6.24).

Fig. 35 Plot of load profile considering EPRI

Table (6.27), Dynamic Economic Dispatch Analysis with PEVs:

	Total load demand (MW)	Total cost (\$)
EPRI Charging	27972	697810

Table (6.28), Dynamic Environmental Dispatch Analysis with PEVs:

	Total load demand (MW)	Total emission (lb)
EPRI Charging	27972	57169

Table (6.29), Dynamic Economic and Environmental Dispatch Analysis with PEVs:

	Total load demand (MW)	Total cost (\$)	Total emission (lb)
EPRI Charging	27972	717020	70177

Fig. 36 Plot of cost over 24 hours for EPRI charging PEVs.

Fig. 37 Plot of emission over 24 hours for EPRI charging PEVs.

Table (6.30), Dynamic Economic and Environmental Dispatch plan with EPRI scenario:

GEN 1	GEN 2	GEN 3	GEN 4	GEN 5	GEN 6	GEN 7	GEN 8	GEN 9	GEN 10	Total
(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
155.546	151.614	83.429	126.655	35.874	21.274	47.458	11.782	13.878	139.699	787.21
150.485	152.468	116.087	125.333	25.777	38.047	32.381	20.262	10.287	166.084	837.21
150.684	178.769	126.309	125.851	75.651	29.600	27.991	15.892	13.021	189.083	932.85
152.482	186.580	128.550	127.395	119.150	35.144	27.179	14.662	11.585	208.322	1011.05
151.161	180.720	128.592	120.276	139.883	23.572	26.426	24.259	11.629	237.092	1043.61
150.745	202.480	123.875	127.612	154.196	26.671	26.649	19.362	17.568	277.002	1126.16
154.575	214.015	127.996	128.277	154.680	43.842	26.539	13.664	21.220	273.910	1158.72
151.329	212.751	125.730	126.335	149.059	62.576	39.998	14.194	27.782	292.866	1202.62
162.891	250.669	129.061	124.352	157.367	77.500	58.229	13.456	35.064	294.030	1302.62
195.934	292.563	129.357	129.811	158.521	68.285	75.691	20.404	41.855	298.920	1411.34
225.403	300.734	128.844	129.866	160.128	77.774	82.723	17.508	47.632	297.697	1468.31
251.438	327.739	121.355	127.862	157.520	77.881	83.272	19.401	52.859	298.983	1518.31
184.064	281.643	122.396	129.694	160.592	78.446	81.353	29.046	54.772	296.306	1418.31
154.655	227.475	126.616	128.812	156.909	70.824	84.383	32.557	49.384	286.696	1318.31
151.876	206.543	126.790	122.147	154.650	59.736	68.198	35.925	38.453	253.992	1218.31
150.238	167.995	124.209	122.941	127.790	49.880	50.645	25.106	29.747	210.168	1058.72
150.331	211.823	126.098	126.475	92.863	36.321	32.869	17.659	19.001	190.921	1004.36
150.156	213.932	116.935	127.657	142.829	47.131	26.548	26.904	13.460	238.807	1104.36
151.497	226.011	129.666	129.605	149.035	54.992	32.565	35.514	23.109	281.957	1213.95
223.989	291.589	129.631	128.975	157.915	73.878	47.577	46.470	31.931	299.444	1431.4
174.589	254.205	129.819	126.113	155.071	68.682	62.171	47.624	29.857	298.962	1347.09
150.368	210.821	128.936	127.226	146.668	52.366	47.065	37.714	21.601	260.086	1182.85
152.867	152.366	127.573	123.637	101.949	41.503	31.225	33.569	11.394	211.127	987.21
150.477	165.878	119.510	120.712	54.155	27.541	27.440	28.737	10.661	182.098	887.21

6.5.1 Reviewing results

The results considering the EPRI charging profile over a 24-hour period, show a minimum cost of \$697810 and a minimum emission of 57169 lb has been obtained via economic dispatch and environmental dispatch as shown in tables (6.27, 6.28), respectively. Considering attaining minimum of both when not excluding the other dispatch using Dynamic economic and environmental dispatch, the total cost and emission becomes \$717020 and 70177 lb, respectively as shown in table (6.29).

Table (6.31), Showing the Stochastic charging probability distribution [1]:

Time	Probability dis	Probability distribution Percentage						
01:00-06:00	5.7%	4.9%	4.8%	2.4%	2.6%	9.7%		
07:00-12:00	8.7%	4.8%	1.1%	3.2%	2.1%	5.7%		
13:00-18:00	3.8%	2.2%	2.1%	6.1%	3.2%	2.2%		
19:00-24:00	2.8%	2.2%	5.5%	2.5%	3.5%	8.2%		

Table (6.32), Showing the Stochastic charging probability distribution power demand for data in Table (4):

Time	PEVs Power Demand (MW)						
01:00-06:00	49.71	42.73	41.86	20.93	22.67	84.59	
07:00-12:00	75.87	41.86	9.59	27.91	18.31	49.71	
13:00-18:00	33.14	19.19	18.31	53.2	27.91	19.19	
19:00-24:00	24.42	19.19	47.97	21.8	30.52	71.51	

Table (6.33), Table of load demand with PEVs (Stochastic charge profile).

<u>Hour</u>	Demand (MW)	<u>Hour</u>	Demand (MW)	
1	749.71	13	1433.14	
2	792.73	13	1319.19	
3	891.86	15	1218.31	
4	970.93	16	1103.2	
5	1022.67	17	1027.91	
6	1184.59	18	1119.19	
7	1225.87	19	1224.42	
8	1241.86	20	1419.19	
9	1309.59	21	1347.97	
10	1427.91	22	1121.8	
11	1468.31	23	930.52	
12	1549.71	24	871.51	

The plug-in electric vehicles' charging total daily load demand (872.1*MW*) is met through different percentages from the total which is taking up the whole day (24 – hours) according to table (6.31).

Fig. 38 Plot of load profile considering stochastic

Table (6.34), Dynamic Economic Dispatch Analysis with PEVs:

	Total load demand (MW)	Total cost (\$)
Stochastic Charging	27972	699290

Table (6.35), Dynamic Environmental Dispatch Analysis with PEVs:

	Total load demand (MW)	Total emission (lb)
Stochastic Charging	27972	58782

Table (6.36), Dynamic Economic and Environmental Dispatch Analysis with PEVs:

	Total load demand (MW)	Total cost (\$)	Total emission (lb)
Stochastic Charging	27972	717390	71495

Fig. 39 Plot of cost over 24 hours for Stochastic charging PEVs.

Fig. 40 Plot of emission over 24 hours for Stochastic charging PEVs.

Table (6.37), Dynamic Economic and Environmental Dispatch plan with Stochastic scenario:

GEN 1	GEN 2	GEN 3	GEN 4	GEN 5	GEN 6	GEN 7	GEN 8	GEN 9	GEN 10	Total
(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
152.256	150.431	124.576	72.321	45.651	20.376	32.350	19.835	10.130	121.784	749.71
151.524	154.495	117.446	112.968	33.156	33.692	28.869	11.418	10.097	139.065	792.73
152.012	168.752	128.071	123.706	61.450	33.756	30.604	10.322	12.988	170.199	891.86
152.357	189.710	124.087	128.835	68.887	48.793	26.052	18.724	11.136	202.349	970.93
150.874	182.229	124.730	126.849	110.948	44.453	28.181	10.854	13.260	230.292	1022.67
152.279	210.097	127.411	129.525	153.063	64.182	38.579	18.908	12.785	277.762	1184.59
152.126	240.047	125.189	129.203	158.881	77.808	41.202	28.837	12.022	260.556	1225.87
151.947	226.828	129.582	127.438	150.080	77.190	34.764	25.575	18.715	299.740	1241.86
169.688	253.508	125.389	122.491	161.737	71.928	52.131	32.760	24.216	295.744	1309.59
205.965	290.001	125.753	126.965	156.298	76.886	70.308	42.819	33.592	299.322	1427.91
219.894	304.068	128.837	126.098	161.356	74.398	77.601	53.431	29.368	293.259	1468.31
262.004	338.259	129.779	126.995	160.256	78.130	83.424	53.833	36.733	280.297	1549.71
188.652	294.873	127.705	128.856	153.171	79.625	69.452	53.912	39.616	297.277	1433.14
150.516	260.971	129.990	126.322	153.835	78.540	55.697	51.762	30.790	280.766	1319.19
152.947	218.178	127.600	129.238	147.709	65.985	45.430	46.936	29.684	254.602	1218.31
151.761	160.764	116.609	129.618	158.786	50.598	25.657	36.066	19.872	253.468	1103.2
152.226	164.879	126.192	123.735	146.904	32.067	27.351	25.698	15.179	213.681	1027.91
155.032	177.197	127.675	128.155	159.235	42.610	32.368	26.660	11.485	258.774	1119.19
157.471	212.393	127.436	128.421	158.815	61.124	37.502	34.889	11.612	294.757	1224.42
204.518	299.498	128.642	127.969	158.110	79.788	55.183	45.285	21.119	299.078	1419.19
161.553	267.131	124.900	126.299	159.792	68.147	73.080	54.762	19.648	292.658	1347.97
151.060	182.266	125.457	127.214	122.671	50.424	55.696	51.187	10.021	245.804	1121.8
150.342	150.711	120.690	100.182	82.319	31.706	35.937	42.507	11.317	204.809	930.52
150.413	173.470	122.175	121.618	38.026	26.560	28.186	35.258	14.945	160.857	871.51

6.6.1 Reviewing results

The results considering the stochastic charging profile over a 24-hour period, show a minimum cost of \$699290 and a minimum emission of 58782 lb has been obtained via economic dispatch and environmental dispatch as shown in tables (6.34, 6.35), respectively. Considering attaining minimum of both when not excluding the other dispatch using Dynamic economic and environmental dispatch, the total cost and emission becomes \$717390 and 71495 lb, respectively as shown in table (6.36).

6.7 Conclusion

Fig. 41 Plot of load profiles considering PEVs.

Fig. 42 Plot of cost over 24 hours considering PEVs.

Fig. 43 Plot of emission over 24 hours considering PEVs.

Considering the four charging scenarios above and data from figures (41, 42, 43), the off-peak charging scenario outperforms the other scenarios in terms of cost and emission being \$716560 and 67922 lb, respectively which shows how it has the advantage in reducing cost and pollutant emissions.

Conclusion

This report presents and compares two main techniques (PSO & GA) on MATLAB to find a global minimum for a given search space. According to the analysis performed, (PSO) outperformed the other method in terms of high-quality solution, less computations per iteration, consistency, and accuracy. Where (PSO) method was able to achieve a greater global minimum compared to genetic algorithm, while also utilizing iterations less than the amount used by genetic algorithm and each iteration was computed at a much faster speed compared to genetic algorithm. Thus, the proposed global minimum finding approach was used to find the best solution for cost and emission minimization over different charge scenarios to control the charging of a large community fleet of PEVs. Using the formulated (PSO) technique to perform the DEED on a 10-unit test system, the results provided a dispatch plan as shown on tables (6.9, 6.16, 6.23, 6.30, 6.37). The dispatch plans showed that the impact of PEVs on the load demand considering costs and emissions as shown in figures (41, 42, 43) was at minimum during off-peak charging scenario. Thus, charging time of electric vehicles would be best suited over hours from 23:00 to 6:00.

References

- [1] Yang, Z., Li, K., Niu, Q., Xue, Y., & Foley, A. (2014). A self-learning TLBO based dynamic economic/environmental dispatch considering multiple plug-in electric vehicle loads. Modern power systems, 2(4), 298-307. Retrieved 11 6, 2020, from https://link.springer.com/article/10.1007/s40565-014-0087-6
- [2] Zhu, J. (n.d.). Optimization of Power System Operation. Wiley-IEEE Press. Retrieved 11 6, 2020
- [3] S. Batmunkh and Z. Battogtokh, "The exhausting pollutants from coal combustion of Fourth Thermal Power Plant of Ulaanbaatar," 2007 International Forum on Strategic Technology, Ulaanbaatar, 2007, pp. 158-161, doi: 10.1109/IFOST.2007.4798548.
- [4] F. N. Al Farsi, M. H. Albadi, N. Hosseinzadeh and A. H. Al Badi, "Economic Dispatch in power systems," 2015 IEEE 8th GCC Conference & Exhibition, Muscat, 2015, pp. 1-6, doi: 10.1109/IEEEGCC.2015.7060068.
- [5] A. Lambora, K. Gupta and K. Chopra, "Genetic Algorithm- A Literature Review," 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019, pp. 380-384, doi: 10.1109/COMITCon.2019.8862255.
- [6] K. B. Sahay, A. Sonkar and A. Kumar, "Economic Load Dispatch Using Genetic Algorithm Optimization Technique," 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 2018, pp. 1-5, doi: 10.23919/ICUE-GESD.2018.8635729.
- [7] Y. Xiaoyan, G. Chunlin, X. Xuan, H. Dequan and M. Zhou, "Research on large scale electric vehicles participating in the economic dispatch of wind and thermal power system," 2017 China International Electrical and Energy Conference (CIEEC), Beijing, 2017, pp. 223-228, doi: 10.1109/CIEEC.2017.8388450.
- [8] Han, X. & Gooi, H.B. & Kirschen, D.s. (2001). Dynamic Economic Dispatch: Feasible and Optimal Solutions. Power Engineering Review, IEEE. 21. 56-56. 10.1109/MPER.2001.4311288.
- [9] Mohammadi-Ivatloo B, Rabiee A, Soroudi A et al (2012) Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems. Int J Electr Power Energy Syst 42(1):508–516
- [10] Yuan XH, Wang L, Zhang YC et al (2009) A hybrid differential evolution method for dynamic economic dispatch with valvepoint effects. Expert Syst Appl 36(2–2):4042–4048
- [11] Niu Q, Zhang HY, Wang XH et al (2014) A hybrid harmony search with arithmetic crossover operation for economic dispatch. Int J Electr Power Energy Syst 62:237–257
- [12] Wang LF, Singh C (2007) Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm. Electr Power Syst Res 77(12):1654–1664
- [13] EPRI executive summary: environmental assessment of plug-in hybrid electric vehicles, Volume 2: United States air quality analysis based on AEO-2006 assumptions for 2030 (2007). Electric Power Research Institute, Palo Alto
- [14] Foley A, Tyther B, Calnan P et al (2013) Impacts of electric vehicle charging under electricity market operations. Appl Energy 101:93–102
- [15] Niu Q, Zhang HY, Li K et al (2014) An efficient harmony search with new pitch adjustment for dynamic economic dispatch. Energy 65:25–43
- [16] Zhang Y, Yao F, Lu HHC et al (2013) Sequential quadratic programming particle swarm optimization for wind power system operations considering emissions. J Mod Power Syst Clean Energy 1(3):231–240
- [17] Souag, Slimane & Benhamida, Farid & Belhachem, R.. (2013). Dynamic Economic Dispatch using an Improved Quadratic Programming Method.
- [18] Beasley, John. (1999). Heuristic Algorithms for the Unconstrained Binary Quadratic Programming Problem. London, England.
- [19] Xia, Xiaohua & Elaiw, A.. (2010). Optimal dynamic economic dispatch of generation: A review. Electric Power Systems Research. 80. 975-986. 10.1016/j.epsr.2009.12.012.
- [20] X. Tang (2013). Economic scheduling for power systems with significant wind generation. Belfast, Northern Ireland.
- [21] M. Basu (2006) Particle Swarm Optimization Based Goal-Attainment Method for Dynamic Economic Emission Dispatch, Electric Power Components and Systems, 34:9, 1015-1025, DOI: 10.1080/15325000600596759
- [22] Razali, Noraini & Geraghty, John. (2011). Genetic Algorithm Performance with Different Selection Strategies in Solving TSP. 2.

- [23] P. Sara, H. David, B. Paul. (2019, December). "Net zero in the UK". House of Commons Library [Online]. Briefing Paper CBP8590. Available: https://commonslibrary.parliament.uk/research-briefings/cbp-8590/
- [24] Z. Runsen, F. Shinichiro. (2020). "The role of transport electrification in global climate change mitigation scenarios". Environ. Res. Lett. 15 034019 [online]. Available: https://iopscience.iop.org/article/10.1088/1748-9326/ab6658
- [25] "Adoption of the Paris Agreement," United Nations, New York, 2015.
- [26] "Climate Change and CO2," Int. Organization of Motor Vehicle Manufacturers, Paris, 2008.
- [27] "Technology Road Map: Electric and Plug in Hybrid Electric Vehicles," International Energy Agency Report, 2009; updated 2011.
- [28] FOLEY, A., & Ó GALLACHÓIR, B. (2015). Analysis of electric vehicle charging using the traditional generation expansion planning analysis tool WASP-IV. J. Mod. Power Syst. Clean Energy, 3 (2). doi: 10.1007/s40565-015-0126-y
- [29] S. Negarestani, A. R. Ghahnavieh and A. S. Mobarakeh, "A study of the reliability of various types of the electric vehicles," 2012 IEEE International Electric Vehicle Conference, 2012, pp. 1-6, doi: 10.1109/IEVC.2012.6183250.
- [30] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
- [31] I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350
- [32] M. Nour, H. Ramadan, A. Ali and C. Farkas, "Impacts of plug-in electric vehicles charging on low voltage distribution network," 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), 2018, pp. 357-362, doi: 10.1109/ITCE.2018.8316650.
- [33] C. Madrid, J. Argueta, and J. Smith, "Performance characterization—1999 Nissan Altra-EV with lithium-ion battery," 1999. Retrieved 3 11, 2020 from http://74.121.199.247/sites/default/files/pdf/fsev/altra_report.pdf
- [34] N. B. Mohd Shariff, M. Al Essa and L. Cipcigan, "Probabilistic analysis of electric vehicles charging load impact on residential Distributions Networks," 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 2016, pp. 1-6, doi: 10.1109/ENERGYCON.2016.7513943.
- [35] S. A. Kazarlis, A. G. Bakirtzis and V. Petridis, "A genetic algorithm solution to the unit commitment problem," in *IEEE Transactions on Power Systems*, vol. 11, no. 1, pp. 83-92, Feb. 1996, doi: 10.1109/59.485989.
- [36] A. Kumar, M. Bhadu and H. Kumawat, "Unit commitment in thermal power generation dispatching with integration of PHEVs," 2018 8th IEEE India International Conference on Power Electronics (IICPE), Jaipur, India, 2018, pp. 1-6, doi: 10.1109/IICPE.2018.8709614.

Appendix A. Quadprog code

```
% ELEC3875 Individual Project
% School of Electronic & Electrical Engineering
% University of Leeds
% 2020/21
% Name: Abdullah Essa
% Username: el18ae
% Student ID Number: 201256467
% Date: 10/12/2020
% Using Quadprog Function for 5 Generation Units and 500MW Demand Supervised by
Professor Kang Li & Mingjia Yin
clear; clc;
% SED Cost Function given as:
% F = 0.008P1^2 + 2P1 + 0.003P2^2 + 1.8P2 + 0.0012P3^2 + 2.1P3 + 0.001P4^2 + 2P4 +
0.0015P5^2 + 1.8P5 + 245
% where size of matrix H is (ixi) and cost coefficient (c) of Pi is at H(i,i)
H = 2*[0.008\ 0\ 0\ 0;\ 0\ 0.003\ 0\ 0;\ 0\ 0\ 0.0012\ 0\ 0;\ 0\ 0\ 0\ 0.001\ 0;\ 0\ 0\ 0\ 0.0015];
% where size of matrix f is (1xi) and cost coefficient (b) of Pi is at f(1,i)
f = [2; 1.8; 2.1; 2; 1.8];
% equality constraint being P1 + P2 + P3 + P4 + P5 = 500 MW
A = [1 \ 1 \ 1 \ 1];
                               % coefficient of each Pi at A eq(i,1)
B eq = [500];
                               % result of each equality constraint
ub = [75; 125; 175; 250; 300]; % upper bound of each Pi unit
1b = [10; 20; 30; 40; 50];
                               % lower bound of each Pi unit
[X,J] = quadprog(H,f,[],[],A_eq,B_eq,lb,ub);
% quadprog function does not consider constant (a) of each Pi generation
% unit, thus needs to be added to final total cost.
min total cost = J + 245
```

```
% School of Electronic & Electrical Engineering
% University of Leeds
% 2020/21
% Name: Abdullah Essa
% Username: el18ae
% Student ID Number: 201256467
% Date: 19/11/2020
% Genetic Algorithm Code Supervised by Professor Kang Li & Mingjia Yin
% code starts here:
clear; clc;
%rng(100, 'twister');
generations = 100;
                                                                                             % number of generations
Np = 300;
                                                                                              % population number (# of solutions)
bits = 16;
                                                                                                 % number of resolution bits
                                                                                                % number of generation units
gen units = 4;
population = randi([0 1], Np, (bits*gen units));
                                                                                              % random binary generation of
population solutions
lowerLimit = [10 20 30 40];
                                                                                                       % place lower limits of
gen _units(1),...,gen_units(N-1)
upperLimit = [75 125 175 250];
                                                                                                             % place lower limits of
gen units(1),...,gen units(N-1)
lowerLimit N = 50;
                                                                                             % lower limit for final slack
generator
                                                                                                % upper limit for final slack
upperLimit N = 300;
generator
                                                                                            % penalty factors for final generator
h = [1 100];
DV = zeros(Np, gen_units);
                                                                                               % decoded value
                                                                                                % real value
RV = zeros(Np, gen units);
                                                                                               % fitness value vector
PF = zeros(Np, 1);
Pc = 0.9;
                                                                                              % cross-over probability
offspring = zeros(Np, (bits * gen units));
                                                                                               % setting up the matrix that will
hold the new offspring solutions
Pm = 0.1;
                                                                                               % mutation probability
OF = zeros(Np, 1);
                                                                                                % offspring fitness vector
a = [0.0080 \ 0.0030 \ 0.0012 \ 0.0010 \ 0.0015];
                                                                                                                          % coefficient (an) of
in-out characteristic equation
                                                                                                       % coefficient (bn) of in-out
b = [2 1.8 2.1 2 1.8];
characteristic equation
c = [25 60 100 120 40];
                                                                                                                    % coefficient (cn) of
in-out characteristic equation
P demand = 500;
                                                                                                % power demand
%=============
COUNTER = 0;
for T = 1:generations
% I want to be able to decode any amount of generation units
for i1 = 1:gen units
       for j1 = 1:Np
               % dynamic row and column allocations to determine DV and RV
               DV(j1,i1) = bi2de(population(j1, ((1 + bits * (i1 - 1)):(bits * i1))));
              RV(j1,i1) = lowerLimit(i1) + (((upperLimit(i1) - lowerLimit(i1))) / ((2^bits) - lowerLimit(i1))) / ((2^bits)) - lowerLimit(i1)) / ((2^bits)) 
1)) * DV(j1,i1));
       end
```

```
% getting the fitness
            for k1 = 1:Np
                         F1 = (a(1)*(RV(k1,1))^2 + b(1)*(RV(k1,1)) + c(1));
% generator 1 in-out characteristics
                       F2 = (a(2)*(RV(k1,2))^2 + b(2)*(RV(k1,2)) + c(2));
% generator 2 in-out characteristics
                       F3 = (a(3) * (RV(k1,3))^2 + b(3) * (RV(k1,3)) + c(3));
% generator 3 in-out characteristics
                       F4 = (a(4) * (RV(k1,4))^2 + b(4) * (RV(k1,4)) + c(4));
% generator 4 in-out characteristics
                        F5 = (a(5))*(P demand-RV(k1,1)-RV(k1,2)-RV(k1,3)-RV(k1,4))^2 + b(5)*(P demand-RV(k1,1)-RV(k1,2)-RV(k1,4))^2 + b(5)*(P demand-RV(k1,4)-RV(k1,4))^2 + b(5)*(P demand-RV(k1,4)-RV(k1,4)-RV(k1,4))^2 + b(5)*(P demand-RV(k1,4)-RV(k1,4)-RV(k1,4))^2 + b(5)*(P demand-RV(k1,4)-RV(k1,4)-RV(k1,4))^2 + b(5)*(P demand-RV(k1,4)-RV(k1,4)-RV(k1,4))^2 + b(5)*(P demand-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4))^2 + b(5)*(P demand-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1,4)-RV(k1
RV(k1,1)-RV(k1,2)-RV(k1,3)-RV(k1,4)) + c(5)); % generator 5 in-out characteristics
                        penalty1 = h(1) * (upperLimit N-(P demand-RV(k1,1)-RV(k1,2)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k1,3)-RV(k
RV(k1,4))^2;
                                                                                                                                                                                     % penalty for generator N max
constraint
                         penalty2 = h(2) * ((P demand-RV(k1,1)-RV(k1,2)-RV(k1,3)-RV(k1,4))-RV(k1,4))
lowerLimit N)^2;
                                                                                                                                                                                              % penalty for generator N
min constraint
                        PF(k1) = (F1 + F2 + F3 + F4 + F5 + penalty1 + penalty2);
% fitness function
            end
% tournament method for the fitness values to choose parents for cross-over
% procedure.
participant_selects = zeros(Np,1);
                                                                                                                             % matrix for selected winners
participant index = randperm(Np);
                                                                                                                             % shuffling the participants positions
% ensure each participant to fight atleast twice
for z = 1:Np-1
             % assign and store their fitness
            CF = [PF(participant index(z), 1) PF(participant index(z+1), 1)];
            % determine winner
            winner = min(CF);
            % retrieve and store the index of the winner
            for search1 = 1:Np
                         if winner == PF(search1)
                                      participant selects (z,1) = search1;
                         end
            end
end
% the last two participants fight
CF = [PF(participant index(Np),1) PF(participant index(1),1)]; % assign and store
their fitness
winner = min(CF);
                                                                                                                                                                                                                     % determine winner
% retrieve and store the index of the winner
            for search2 = 1:Np
```

```
if winner == PF(search2)
         participant selects(Np,1) = search2;
      end
   end
% we need to get the population solutions using the winner indexes
for q = 1:2:Np-1
   if randsrc(1,1,[1,2;Pc,(1-Pc)]) == 1
                                                        % Pc*100%
chance for (1); cross-over
      % random cross-over point generation
      positions from chosen element location
      % offspring (1)
      offspring(q,1:(crossPoint-1)) =
population(participant selects(q,1),1:(crossPoint-1));
      offspring(q,crossPoint:(bits*gen units)) =
population(participant selects(q+1,1),crossPoint:(bits*gen units));
      % offspring (2)
      offspring(q+1,1:(crossPoint-1)) =
population(participant selects(q+1,1),1:(crossPoint-1));
      offspring(q+1,crossPoint:(bits*gen units)) =
population(participant selects(q,1),crossPoint:(bits*gen_units));
                                                        % (1-Pc) *100%
   elseif randsrc(1,1,[1,2;Pc,(1-Pc)]) == 2
chance for (2); no cross-over
      offspring (q,:) = population (participant selects (q,1),:);
      offspring(q+1,:) = population(participant selects(q+1,1),:); % second
offspring
   end
end
for m1 = 1:Np % loops rows
   for m2 = 1:(bits*gen units) % loops columns
      if randsrc(1,1,[1,2;Pm,(1-Pm)]) == 1
         offspring(m1, m2) = not(offspring(m1, m2));
                                                  % bit flip
      else
         offspring(m1, m2) = offspring(m1, m2);
                                                   % keep the same
```

```
end
```

end

```
end
% I want to be able to decode any amount of generation units
for i2 = 1:gen_units
                for j2 = 1:Np
                                 % dynamic row and column allocations to determine DV and RV
                                 DV(j2,i2) = bi2de(offspring(j2, ((1 + bits * (i2 - 1)):(bits * i2))));
                                 RV(j2,i2) = lowerLimit(i2) + (((upperLimit(i2) - lowerLimit(i2)) / ((2^bits) - lowerLimit(i2))) / ((2^bits) - lowerLimit(i2))) / ((2^bits) - lowerLimit(i2)) / ((2^bits) - lowerLimit(i2))) / ((2^bits) - lowerLimit(i2)) / ((2^bits) - lowerLimit(i2))) / ((2^bits) - lowerLimit(i2)) / ((2^bits) - lowerLi
1)) * DV(j2,i2));
                end
end
% getting the fitness
                for k2 = 1:Np
                                 FF1 = (a(1) * (RV(k2,1))^2 + b(1) * (RV(k2,1)) + c(1));
% generator 1 in-out characteristics
                                 FF2 = (a(2)*(RV(k2,2))^2 + b(2)*(RV(k2,2)) + c(2));
% generator 2 in-out characteristics
                                 FF3 = (a(3)*(RV(k2,3))^2 + b(3)*(RV(k2,3)) + c(3));
% generator 3 in-out characteristics
                                FF4 = (a(4)*(RV(k2,4))^2 + b(4)*(RV(k2,4)) + c(4));
% generator 4 in-out characteristics
                                 FF5 = (a(5))*(P demand-RV(k2,1)-RV(k2,2)-RV(k2,3)-RV(k2,4))^2 + b(5)*(P demand-RV(k2,1)-RV(k2,2)-RV(k2,3))^2 + b(5)*(P demand-RV(k2,1)-RV(k2,3)-RV(k2,3))^2 + b(5)*(P demand-RV(k2,1)-RV(k2,3))^2 + b(5)*(P demand-RV(k2,1)-RV(k2,1)-RV(k2,1))^2 + b(5)*(P demand-RV(k2,1)-RV(k2,1)-RV(k2,1)^2 + b(5)*(P demand-RV(k2,1)-RV(k2,1)^2 + b(5)*(P demand-RV(
RV(k2,1)-RV(k2,2)-RV(k2,3)-RV(k2,4)) + c(5)); % generator 5 in-out characteristics
                                 Ppenalty1 = h(1) * (upperLimit N-(P demand-RV(k2,1)-RV(k2,2)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(k2,3)-RV(
RV(k2,4)))^2;
                                                                                                                                                                                                                                               % penalty for generator N max
constraint
                                 Ppenalty2 = h(2)*((P demand-RV(k2,1)-RV(k2,2)-RV(k2,3)-RV(k2,4))-RV(k2,4))
lowerLimit N)^2;
                                                                                                                                                                                                                                                           % penalty for generator N
min constraint
                                 OF(k2) = (FF1 + FF2 + FF3 + FF4 + FF5 + Ppenalty1 + Ppenalty2);
% fitness function
                end
%===============
combinedFitness = zeros(2*Np,1);
combinedSolution = zeros(2*Np, (bits * gen units));
for p1 = 1:2*Np
                if p1 < Np+1
                                 % inserting parent fitness
                                 combinedFitness(p1,1) = PF(participant_selects(p1),1);
                                  % inserting parent solutions
                                 combinedSolution(p1,1:(bits * gen units)) =
population(participant selects(p1),1:(bits * gen units));
                elseif p1 > Np
```

```
% inserting offspring fitness
      combinedFitness(p1,1) = OF(p1-Np,1);
      % inserting offspring solutions
      combinedSolution(p1,1:(bits * gen units)) = offspring(p1-Np,1:(bits *
gen units));
   end
end
sortCombinedFitness = sort(combinedFitness);
                                                % sort the fitness
(smallest first)
chosenFitness = zeros(Np,1);
                                                % store chosen fitness
chosenCombinedSolution = zeros(Np, (bits * gen units));
                                               % store chosen solution
for p2 = 1:Np
                % take only the first Np best solutions
   chosenFitness(p2,1) = sortCombinedFitness(p2,1);
   for search3 = 1:Np*2
      if search3 < Np+1</pre>
         if chosenFitness(p2,1) == PF(search3,1) % check through population
fitness
             chosenCombinedSolution(p2,1:(bits*gen units)) =
population(search3,1:(bits*gen units));
         end
      else
         if chosenFitness(p2,1) == OF(search3-Np,1)
             chosenCombinedSolution(p2,1:(bits*gen units)) = offspring(search3-
Np,1:(bits*gen units));
         end
      end
   end
end
for o = 1:Np
   population(o,1:(bits*gen units)) = 0;
   population(o,1:(bits*gen units)) = chosenCombinedSolution(o,1:(bits*gen units));
end
```

```
i1 = 1;
j1 = 1;
k1 = 1;
z = 1;
search1 = 1;
search2 = 1;
search3 = 1;
q = 1;
m1 = 1;
m2 = 1;
i2 = 1;
i2 = 1;
k2 = 1;
p1 = 1;
p2 = 1;
\circ = 1;
%===============CONVERGENCE PLOT=============================
          % plotting
          x axis(T,1) = T;
                                                                                           % counts and stores the number of generations
          y axis(T,1) = chosenFitness(1,1);
                                                                                             % minimum fitness of each generation
          % plot(x axis, y axis, '.')
          % hold on
$_____$
%==================%
          clc;
          COUNTER = COUNTER +1;
                                                                                                                              % counts loop number
          GA_PERCENT_DONE = (COUNTER / generations) *100 % percentage done from code
         population;
end
% end of generations for loop
$_____$
% real final values gen1 until genN-1
for i1 = 1:gen units
          for j1 = 1:Np
                   % dynamic row and column allocations to determine DV and RV
                   DV(j1,i1) = bi2de(population(j1, ((1 + bits * (i1 - 1)):(bits * i1))));
                   RV(j1,i1) = lowerLimit(i1) + (((upperLimit(i1) - lowerLimit(i1)) / ((2^bits) - lowerLimit(i1))) / ((2^bits) - lowerLimit(i1))) / ((2^bits) - lowerLimit(i1)) / ((2^bits) - lowerLimit(i1))) / ((2^bits) - lowerLimit(i1)) / ((2^bits) - lowerLimit(i1))) / ((2^bits) - lowerLimit(i1)) / ((2^bits) - lowerLi
1)) * DV(j1,i1));
          end
end
plot(x_axis,y_axis,'.')
title('Plot of Fitness Per Iteration')
xlabel('Iterations')
ylabel('Fitness')
            % showing results of last generation of real values to check
```

```
result(1,1:5) = [RV(1,1), RV(1,2), RV(1,3), RV(1,4), (P_demand - RV(1,1) - RV(1,2) - RV(1,3) - RV(1,4))]
```

Appendix C. Particle Swarm Optimization code

```
%% initializing parameters
population = 20000;
                            % number of iterations and/or particles
iter = 300;
                            % number of iterations
D = 10;
                             % number of generation units
lb = [150 150 20 20 25 20 25 10 10];
                                             % lower bound of the generation units
range of operation
ub = [450 \ 455 \ 130 \ 130 \ 162 \ 80 \ 85 \ 55 \ 55];
                                             % upper bound of the generation units
range of operation
lb_lastgen = 50;
                           % lower bound of the reference generation unit range of
operation
```

```
% upper bound of the reference generation unit range of
ub lastgen = 300;
operation
lb1 = [150 150 20 20 25 20 25 10 10 50];
                                           % lower bound of the generation units
range of operation (all)
ub1 = [450 455 130 130 162 80 85 55 55 300]; % upper bound of the generation units
range of operation (all)
UR = [91 \ 91 \ 40 \ 50 \ 50 \ 20 \ 20 \ 11 \ 11 \ 50];
                                            % ramp up limits
DR = [91 \ 91 \ 40 \ 50 \ 50 \ 20 \ 20 \ 11 \ 11 \ 50];
                                            % ramp down limits
PD day = [861.34 911.34 928.489 1028.489 1034.884 1134.884 1150 1200 1300 1400 1450
1500 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 1061.34 961.34]; % power demand
% coefficients used for cost equation
a = [0.00173 \ 0.00031 \ 0.002 \ 0.00211 \ 0.00211 \ 0.00712 \ 0.00079 \ 0.00413 \ 0.00222 \ 0.00048];
b = [27.79 \ 17.26 \ 16.6 \ 16.5 \ 19.7 \ 22.26 \ 27.74 \ 25.92 \ 27.27 \ 16.19];
c = [670 970 700 680 450 370 480 660 685 1000];
% coefficients used for emission equation
gamma = [0.0180 0.0150 0.0105 0.0080 0.0120 0.0180 0.0150 0.0105 0.0080 0.0120];
beta = [-0.805 -0.555 -1.355 -0.6 -0.555 -0.805 -0.555 -1.355 -0.6 -0.555];
alpha = [80 50 60 45 30 80 50 60 45 30];
eta=[0.655 0.5773 0.4968 0.486 0.5035 0.655 0.5773 0.4968 0.486 0.5035];
delta=[0.02846 0.02446 0.02270 0.01948 0.02075 0.02846 0.02446 0.02270 0.01948
0.020751;
c1=0; %acceleration coefficients
c2=1; %acceleration coefficients
w=1; %intertia weight maximum
wee = 0.5;
             % weighting factor
% fitness vector
fit vector = zeros(24,1);
% solution matrix
sol matrix = zeros(24, D);
% cost matrix (for each generator)
cost = zeros(24, D);
% cost matrix (for each generator)
emission = zeros(24,D);
% hour counter initializer
mm = 1;
% matrix to store positions of each generation unit with regards to their final fitness
final position = zeros(24,1);
% matrix to store cost of each generation unit with regards to their final fitness
final cost = zeros(24,1);
% matrix to store emission of each generation unit with regards to their final fitness
final emission = zeros(24,1);
%% for loop to iterate through every hour (24 hours), taking the value of PD
for k = 1:24
w=0.8; %intertia weight maximum reset
clc;
percent done = k/24 * 100
PD = PD \, day(k); % taking the power demand for the specific hour
%% initializing matrix of position
    if mm == 1
        X = repmat(lb,population,1) + repmat((ub-lb),population,1).*rand(population,D-
1); % create random positions (power) for non-reference units
        % check each particle if it meets the condition for the while loop
        for p = 1:population
```

```
while ((PD - sum(X(p,1:9))) > ub lastgen) || ((PD - sum(X(p,1:9))) <
lb lastgen)
                             % create random position again
                             X(p,:) = repmat(lb,1,1) + repmat((ub-lb),1,1).*rand(1,D-1);
              end
       elseif mm > 1
               % make sure random positions within ramp up and down limits
              LB constrained = sol matrix(mm-1,:) - DR;
              UB constrained = sol matrix(mm-1,:) + UR;
              % make sure new constraint due to ramp limits are within generator constraints
              LB constrained = max(LB constrained, lb1);
              UB constrained = min(UB constrained, ub1);
              X = \text{repmat}(LB \text{ constrained}(:,1:9), \text{population},1) + \text{repmat}((UB \text{ constrained}(:,1:9)-
LB constrained(:,1:9)),population,1).*rand(population,D-1);
              %X = repmat(lb,population,1) + repmat((ub-lb),population,1).*rand(population,D-
       % create random positions (power) for non-reference units
              % check each particle if it meets the condition for the while loop
              for pp = 1:population
                      while ((PD - sum(X(pp, 1:9))) > UB constrained(1,D)) \mid | ((PD - sum(X(pp, 1:9))) > UB constrained(1,D)) \mid | ((PD - sum(X(pp, 1:9)))) > UB constrained(1,D)) | | ((PD - sum(X(pp, 1:9)))) > UB constrained(1,D)) | | ((PD - sum(X(pp, 1:9)))) > UB constrained(1,D)) | | ((PD - sum(X(pp, 1:9)))) | ((PD - sum(X(pp, 1:9))) | ((PD - sum(X(pp, 1:9)))) | ((PD - sum(X(pp, 1:9))) | ((PD - sum(X(pp, 1:9)))) | ((PD - sum(X(pp, 1:9))) | ((PD - sum(X(pp, 1:9))) | ((PD - sum(X(pp, 1:9)))) | ((PD - sum(X(pp, 1:9))) 
sum(X(pp,1:9))) < LB constrained(1,D))
                             % create random position again
                             X(pp,:) = repmat(LB constrained(:,1:9),1,1) +
repmat((UB constrained(:,1:9)-LB constrained(:,1:9)),1,1).*rand(1,D-1);
                      end
              end
       end
       % getting the reference unit
       for i = 1:population
              X(i,D) = PD - (X(i,1) + X(i,2) + X(i,3) + X(i,4) + X(i,5) + X(i,6) + X(i,7) +
X(i,8) + X(i,9); % reference unit position
              if mm == 1 % for the first hour no ramp constraints
                      X(i,D) = max(X(i,D),lb lastgen);
                     X(i,D) = min(X(i,D),ub lastgen);
              elseif mm > 1 % vary the limitation to match with the ramp constraints
                      X(i,D) = max(X(i,D),LB\_constrained(1,D));
                      X(i,D) = min(X(i,D),UB constrained(1,D));
              end
       end
%% initializing matrix of velocities
if mm == 1 % for the first hour no ramp constraints
       V = repmat(lb1,population,1) + repmat((ub1-lb1),population,1).*rand(population,D);
% create random velocities
elseif mm > 1
       V = repmat(LB constrained(1,1:10), population, 1) + repmat((UB_constrained(1,1:10) - Constrained(1,1:10)))
LB constrained(1,1:10)),population,1).*rand(population,D);
end
%% evaluating initial fitness
F cost = zeros(population,1);
                                                          % the cost fitness storage
   emission = zeros(population,1); % emission fitness storage
F = zeros(population,1);
                                                               % combined fitness storage
for i = 1:population
       % economic fitness
       F1 cost = (a(1)*(X(i,1))^2 + b(1)*(X(i,1)) + c(1)); % gen1 fitness
       F2 cost = (a(2)*(X(i,2))^2 + b(2)*(X(i,2)) + c(2));
                                                                                                       % gen2 fitness
       F3 cost = (a(3)*(X(i,3))^2 + b(3)*(X(i,3)) + c(3));
                                                                                                        % gen3 fitness
       F4 cost = (a(4)*(X(i,4))^2 + b(4)*(X(i,4)) + c(4));
                                                                                                        % gen4 fitness
       F5_{cost} = (a(5)*(X(i,5))^2 + b(5)*(X(i,5)) + c(5));
                                                                                                        % gen5 fitness
```

```
F6 cost = (a(6)*(X(i,6))^2 + b(6)*(X(i,6)) + c(6)); % gen6 fitness
       F7 cost = (a(7)*(X(i,7))^2 + b(7)*(X(i,7)) + c(7)); % gen7 fitness
       F8 cost = (a(8)*(X(i,8))^2 + b(8)*(X(i,8)) + c(8)); % gen8 fitness
       F9 cost = (a(9)*(X(i,9))^2 + b(9)*(X(i,9)) + c(9)); % gen9 fitness
       F10 cost = (a(D)*(X(i,D))^2 + b(D)*(X(i,D)) + c(D)); % reference unit fitness
       F_{cost}(i,1) = F_{cost} + F_{c
F8 cost + F9 cost + F10 cost; % cost fitness
       % emission fitness
       F1 = mission = (gamma(1) * (X(i,1))^2 + beta(1) * (X(i,1)) + alpha(1)) +
eta(1)*exp(delta(1)*X(i,1)); % gen1 fitness
       F2_{emission} = (gamma(2)*(X(i,2))^2 + beta(2)*(X(i,2)) + alpha(2)) +
eta(2)*exp(delta(2)*X(i,2)); % gen2 fitness
       F3_{emission} = (gamma(3)*(X(i,3))^2 + beta(3)*(X(i,3)) + alpha(3)) +
eta(3)*exp(delta(3)*X(i,3)); % gen3 fitness
       F4 = mission = (gamma(4)*(X(i,4))^2 + beta(4)*(X(i,4)) + alpha(4)) +
eta(4)*exp(delta(4)*X(i,4)); % gen4 fitness
       F5 emission = (gamma(5)*(X(i,5))^2 + beta(5)*(X(i,5)) + alpha(5)) +
eta(5)\overline{*}exp(delta(5)*X(i,5)); % gen5 fitness
       F6 emission = (gamma(6)*(X(i,6))^2 + beta(6)*(X(i,6)) + alpha(6)) +
eta(6)*exp(delta(6)*X(i,6)); % gen6 fitness
       F7 = mission = (gamma(7) * (X(i,7))^2 + beta(7) * (X(i,7)) + alpha(7)) +
eta(7)*exp(delta(7)*X(i,7)); % gen7 fitness
       F8 emission = (gamma(8)*(X(i,8))^2 + beta(8)*(X(i,8)) + alpha(8)) +
eta(8)*exp(delta(8)*X(i,8)); % gen8 fitness
       F9 emission = (gamma(9)*(X(i,9))^2 + beta(9)*(X(i,9)) + alpha(9)) +
eta(9)*exp(delta(9)*X(i,9)); % gen9 fitness
       F10 emission = (gamma(D)*(X(i,D))^2 + beta(D)*(X(i,D)) + alpha(D)) +
eta(D)*exp(delta(D)*X(i,D)); % reference unit fitness
       F emission(i,1) = F1 emission + F2 emission + F3 emission + F4 emission +
F5 emission + F6 emission + F7 emission + F8 emission + F9 emission + F10 emission;
emission fitness
       % combined fitness
        F(i,1) = (wee) *F cost(i,1) + (1 - wee) *F emission(i,1); % combined fitness
end
                                                               % initializing the personal best solutions
pbest = X;
fit pbest = F;
                                                               % storing the fitness of the personal best
solutions
[F gbest, index] = min(fit pbest); % determining the global best fitness
                                                              % storing the global best fitness power positions
gbest = X(index,:);
%% PSO
for i = 1:iter
      w = w - (w/iter) * i; % new weight
     for j = 1:population
          % velocity/position determination
          V(j,:) = w*V(j,:) + c1*rand(1,D).*(pbest(j,:)-X(j,:))+c2*rand(1,D).*(gbest-
X(j,:)); % new velocity
          X(j,:) = X(j,:) + V(j,:); % new position
          if mm == 1 % for the first hour no ramp constraints
              X(j,:) = max(X(j,:),lb1);
              X(j,:) = min(X(j,:),ub1);
          elseif mm > 1 % vary the limitation to match with the ramp constraints
              X(j,:) = max(X(j,:), LB constrained);
             X(j,:) = min(X(j,:), UB constrained);
          end
```

```
% economic fitness
             F1 cost = (a(1)*(X(j,1))^2 + b(1)*(X(j,1)) + c(1)); % gen1 fitness
             F2 cost = (a(2)*(X(j,2))^2 + b(2)*(X(j,2)) + c(2)); % gen2 fitness
             F3 cost = (a(3)*(X(j,3))^2 + b(3)*(X(j,3)) + c(3)); % gen3 fitness
             F4 cost = (a(4)*(X(j,4))^2 + b(4)*(X(j,4)) + c(4)); % gen4 fitness
             F5 cost = (a(5)*(X(j,5))^2 + b(5)*(X(j,5)) + c(5)); % gen5 fitness
             F6 cost = (a(6)*(X(j,6))^2 + b(6)*(X(j,6)) + c(6)); % gen6 fitness
             F7 = (a(7)*(X(j,7))^2 + b(7)*(X(j,7)) + c(7)); % gen7 fitness
             F8 cost = (a(8)*(X(j,8))^2 + b(8)*(X(j,8)) + c(8)); % gen8 fitness
             F9 cost = (a(9)*(X(j,9))^2 + b(9)*(X(j,9)) + c(9)); % gen9 fitness
             F10 cost = (a(D)*(X(i,D))^2 + b(D)*(X(i,D)) + c(D)); % reference unit fitness
             F \cot(j,1) = F1 \cot + F2 \cot + F3 \cot + F4 \cot + F5 \cot + F6 \cot +
F7_cost + F8_cost + F9_cost + F10_cost; % cost fitness
             % emission fitness
             F1 = mission = (gamma(1) * (X(j,1))^2 + beta(1) * (X(j,1)) + alpha(1)) +
eta(1)*exp(delta(1)*X(j,1)); % gen1 fitness
             F2 = mission = (gamma(2)*(X(j,2))^2 + beta(2)*(X(j,2)) + alpha(2)) +
eta(2)*exp(delta(2)*X(j,2)); % gen2 fitness
             F3 emission = (gamma(3)*(X(j,3))^2 + beta(3)*(X(j,3)) + alpha(3)) +
eta(3)*exp(delta(3)*X(j,3)); % gen3 fitness
             F4 = mission = (gamma(4)*(X(j,4))^2 + beta(4)*(X(j,4)) + alpha(4)) +
eta(4)*exp(delta(4)*X(j,4)); % gen4 fitness
             F5 emission = (gamma(5)*(X(j,5))^2 + beta(5)*(X(j,5)) + alpha(5)) +
eta(5)*exp(delta(5)*X(j,5)); % gen5 fitness
             F6 emission = (gamma(6)*(X(j,6))^2 + beta(6)*(X(j,6)) + alpha(6)) +
eta(6)*exp(delta(6)*X(j,6)); % gen6 fitness
             F7 = mission = (gamma(7)*(X(j,7))^2 + beta(7)*(X(j,7)) + alpha(7)) +
eta(7)*exp(delta(7)*X(j,7)); % gen7 fitness
             F8 emission = (gamma(8)*(X(j,8))^2 + beta(8)*(X(j,8)) + alpha(8)) +
eta(8)*exp(delta(8)*X(j,8)); % gen8 fitness
             F9 emission = (gamma(9)*(X(j,9))^2 + beta(9)*(X(j,9)) + alpha(9)) +
eta(9)*exp(delta(9)*X(j,9)); % gen9 fitness
             F10 emission = (gamma(D)*(X(j,D))^2 + beta(D)*(X(j,D)) + alpha(D)) +
eta(D)*exp(delta(D)*X(j,D)); % reference unit fitness
             F = mission(j,1) = F1 = mission + F2 = mission + F3 = mission + F4 = mission + 
F5 emission + F6 emission + F7 emission + F8 emission + F9 emission + F10 emission; %
emission fitness
             % combined fitness
             F(j,1) = (wee) *F cost(j,1) + (1 - wee) *F emission(j,1); % combined fitness
          % check if there is a better personal best values
          if (F(j) < fit pbest(j)) && (sum(X(j,:)) > 499.99) && (sum(X(j,:)) <= 500)
                 fit pbest(j) = F(j);
                 pbest(j,:) = X(j,:);
          % check if there is a better global best solution
          if (fit_pbest(j) < F_gbest) && (sum(gbest) > 499.99) && (sum(gbest) <= 500)
                 F gbest = fit pbest(j);
                 gbest = pbest(j,:);
          end
     end
end
%% finale
fit vector(mm) = F gbest; % storing the last fitness for the hour
sol matrix(mm,:) = gbest; % storing the last solution for the hour
mm = mm + 1;
end
```

```
%% get total demand for 24 hours
 total cost = 0;
 total emission = 0;
 for i = 1:24
       % cost fitness
       cost(i,1) = (a(1)*(sol matrix(i,1))^2 + b(1)*(sol matrix(i,1)) + c(1));
                                                                                                                                         % gen1
       cost(i,2) = (a(2)*(sol matrix(i,2))^2 + b(2)*(sol matrix(i,2)) + c(2));
                                                                                                                                         % gen2
cost
       cost(i,3) = (a(3)*(sol matrix(i,3))^2 + b(3)*(sol matrix(i,3)) + c(3));
                                                                                                                                         % gen3
cost
       cost(i,4) = (a(4)*(sol matrix(i,4))^2 + b(4)*(sol matrix(i,4)) + c(4));
                                                                                                                                         % gen4
       cost(i,5) = (a(5)*(sol matrix(i,5))^2 + b(5)*(sol matrix(i,5)) + c(5));
                                                                                                                                         % gen5
       cost(i,6) = (a(6)*(sol matrix(i,6))^2 + b(6)*(sol matrix(i,6)) + c(6));
                                                                                                                                         % gen6
       cost(i,7) = (a(7)*(sol matrix(i,7))^2 + b(7)*(sol matrix(i,7)) + c(7));
                                                                                                                                         % gen7
cost
       cost(i,8) = (a(8)*(sol matrix(i,8))^2 + b(8)*(sol matrix(i,8)) + c(8));
                                                                                                                                         % gen8
cost
       cost(i,9) = (a(9)*(sol matrix(i,9))^2 + b(9)*(sol matrix(i,9)) + c(9));
                                                                                                                                         % gen9
cost
       cost(i,D) = (a(D)*(sol matrix(i,D))^2 + b(D)*(sol matrix(i,D)) + c(D));
reference unit cost
       % emission fitness
       emission(i,1) = (gamma(1)*(sol matrix(i,1))^2 + beta(1)*(sol matrix(i,1)) +
alpha(1)) + eta(1)*exp(delta(1)*sol_matrix(i,1)); % gen1 fitness
       emission(i,2) = (gamma(2)*(sol matrix(i,2))^2 + beta(2)*(sol matrix(i,2)) +
alpha(2)) + eta(2)*exp(delta(2)*sol matrix(i,2)); % gen2 fitness
       emission(i,3) = (gamma(3)*(sol matrix(i,3))^2 + beta(3)*(sol matrix(i,3)) +
alpha(3)) + eta(3)*exp(delta(3)*sol matrix(i,3)); % gen3 fitness
       emission(i,4) = (gamma(4)*(sol matrix(i,4))^2 + beta(4)*(sol matrix(i,4)) +
alpha(4)) + eta(4)*exp(delta(4)*sol matrix(i,4)); % gen4 fitness
       emission(i,5) = (gamma(5)*(sol matrix(i,5))^2 + beta(5)*(sol matrix(i,5)) +
alpha(5)) + eta(5) *exp(delta(5) *sol_matrix(i,5));
                                                                                          % gen5 fitness
       emission(i,6) = (gamma(6)*(sol matrix(i,6))^2 + beta(6)*(sol matrix(i,6)) +
alpha(6)) + eta(6)*exp(delta(6)*sol matrix(i,6));
                                                                                         % gen6 fitness
       emission(i,7) = (gamma(7)*(sol_matrix(i,7))^2 + beta(7)*(sol_matrix(i,7)) + beta(7)*(sol_matrix(i,7)) + beta(7)*(sol_matrix(i,7))^2 + beta(7)*(sol_matrix(i,7)) + beta(7)*(sol_matrix(i,7))^2 + beta(7)*(sol_matrix(i,
alpha(7)) + eta(7)*exp(delta(7)*sol matrix(i,7)); % gen7 fitness
       emission(i,8) = (gamma(8)*(sol matrix(i,8))^2 + beta(8)*(sol matrix(i,8)) +
alpha(8)) + eta(8)*exp(delta(8)*sol matrix(i,8));
                                                                                         % gen8 fitness
       emission(i,9) = (gamma(9)*(sol matrix(i,9))^2 + beta(9)*(sol matrix(i,9)) +
alpha(9)) + eta(9)*exp(delta(9)*sol matrix(i,9)); % gen9 fitness
       emission(i,D) = (gamma(D)*(sol matrix(i,D))^2 + beta(D)*(sol matrix(i,D)) +
alpha(D)) + eta(D)*exp(delta(D)*sol_matrix(i,D)); % reference unit fitness
       total cost = total_cost + sum(cost(i,:));
       total emission = total emission + sum(emission(i,:));
       final position(i) = sum(sol matrix(i,:));
       final cost(i) = sum(cost(i,:));
       final emission(i) = sum(emission(i,:));
 end
```