WSI LISTA 3

Bohdan Tkachenko 256630

1 Zadanie 1

1.1 Wstep

Zadanie polegało na stworzeniu i wytrenowaniu sieci neuronowej do rozpoznawania recznie pisanych cyfr z bazy danych MNIST za pomoca biblioteki Tensor-Flow.

1.2 Metodologia

Zastosowano prosta architekture sieci neuronowej, składajaca sie z trzech warstw:

- 1. Warstwa Flatten, która przekształca format obrazów z dwuwymiarowej tablicy (28 x 28 pikseli) do jednowymiarowej (784 piksele).
- 2. Warstwa Dense z 128 neuronami, używajaca funkcji aktywacji 'relu'.
- 3. Warstwa Dense z 10 neuronami (jeden dla każdej klasy cyfr od 0 do 9), używajaca funkcji aktywacji 'softmax', która zwraca prawdopodobieństwo przynależności do każdej klasy.

Model został skompilowany z optymalizatorem 'adam' i funkcja straty 'sparse_categorical_crossentropy'. Jako metryke wybrano 'accuracy'.

Model został wytrenowany na zbiorze treningowym przez 5 epok.

1.3 Wyniki

Po wytrenowaniu modelu, dokonano oceny na zbiorze testowym. Dokładność modelu na zbiorze testowym wyniosła 97.44%.

1.4 Wnioski

Model osiagnał wysoka dokładność na zbiorze testowym, co wskazuje, że jest w stanie skutecznie rozpoznawać recznie pisane cyfry. Prosta architektura sieci neuronowej okazała sie wystarczajaca dla tego zadania. W przyszłości można by rozważyć zastosowanie bardziej złożonych modeli, takich jak sieci konwolucyjne, które moga być w stanie wykryć bardziej skomplikowane wzorce w obrazach.

2 Zadanie 2

2.1 Wstep

Zadanie polegało na stworzeniu własnego zbioru testowego na podstawie własnych próbek pisma i sprawdzeniu, jak sieć neuronowa stworzona w poprzednim zadaniu radzi sobie z tym zbiorem.

2.2 Metodologia

Zbiór testowy został stworzony poprzez wczytanie obrazów z folderu 'images', przekształcenie ich do skali szarości, zmiane rozmiaru na 28x28 pikseli i normalizacje wartości pikseli do zakresu [0,1].

Architektura sieci neuronowej jest taka sama jak w poprzednim zadaniu, z dodatkowa warstwa Dropout po warstwie Dense z 128 neuronami, która pomaga zapobiegać przetrenowaniu sieci przez losowe wyłaczanie neuronów podczas treningu.

Model został wytrenowany na zbiorze treningowym MNIST przez 10 epok.

2.3 Wyniki

Dokładność modelu na standardowym zbiorze testowym MNIST wyniosła 98.12%. Jednakże, dokładność modelu na własnym zbiorze testowym wyniosła tylko 10%, co jest znacznie niższe.

2.4 Wnioski

Wyniki sugeruja, że model nie radzi sobie dobrze z rozpoznawaniem recznie pisanych cyfr z własnego zbioru testowego. Może to wynikać z różnic w stylu pisania cyfr w porównaniu do stylu używanego w zbiorze MNIST. Może to również wynikać z różnic w jakości obrazów.

3 Zadanie 3

3.1 Wstep

Zadanie polegało na implementacji sieci neuronowej z jedna warstwa ukryta, zawierajaca k neuronów. Sieć ta miała możliwość wyboru miedzy brakiem normalizacji, normalizacja L1 i L2, a także możliwość wyboru miedzy funkcjami aktywacji ReLU i sigmoid.

3.2 Metodologia

Zbiór danych został wygenerowany losowo, z wartościami wejściowymi z przedziału [-1,1]. Oczekiwana wartość wynosiła 0, jeśli iloczyn dwóch wartości wejściowych był dodatni, a 1 w przeciwnym przypadku.

Sieć neuronowa została zainicjalizowana z losowymi wagami. Wagi te były nastepnie aktualizowane za pomoca algorytmu propagacji wstecznej z gradientem stochastycznym. Sieć była trenowana przez 10 epok.

3.3 Wyniki

Dokładność modelu na zbiorze testowym wyniosła 88.1%.

3.4 Wnioski

Wyniki sugeruja, że sieć neuronowa jest w stanie nauczyć sie rozróżniać miedzy dwoma klasami na podstawie iloczynu dwóch wartości wejściowych. Jednakże, dokładność modelu może być zależna od wyboru funkcji aktywacji i metody normalizacji, a także od liczby neuronów w warstwie ukrytej.