SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai - 600089

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEE

QUESTION BANK

DEGREE / BRANCH: B.TECH-CSE & CSE WITH SPECIALIZATION

VI SEMESTER

18CSC304JT - COMPILER DESIGN

2018 Regulation

Academic Year 2022-2023 EVEN SEMESTER

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai-600089

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

OUESTION BANK

SUBJECT: 18CSC304J – COMPILER DESIGN

SEM/ YEAR: III/V

Course Outcomes

CO-1 : Acquire the knowledge of mathematics and engineering principles for the Design of Compilers

CO-2 : Acquire the ability to identify specification of a language's lexical rules of Lexical Analyzer

CO-3: Apply the knowledge of Syntax Analyzer for parsing the sentences in a compiler grammar

CO-4: Understand the concepts of translation of various intermediate codes.

CO-5 : Apply the knowledge to implement Code Generator for compilers

CO-6: Analyze and Design the methods of developing a Code Optimizer

UNIT V

Code optimization Introduction—Principal Sources of Optimization-Function Preserving Transformation-Loop Optimization-Optimization of basic Blocks- Building Expression of DAG-Peephole Optimization-Basic Blocks, Flow Graphs-Next -Use Information- Introduction to Global Data Flow Analysis-Computation of gen and kill- Computation of in and out-Parameter Passing.- Runtime Environments-Source Language issues- Storage Organization-Activation Records- Storage Allocation strategies.

	PART-A (Multiple Choice Questions)			
Q. No	Questions	Course Outcome	Competence BT Level	
1	The optimization which avoids test at every iteration is a)Loopunrolling b)Loopjamming c)Constant folding d) Dead code elimination	CO6	BT 2	
2	The identification of common sub-expression and replacement time computations by compile time computation is a) Local optimization b) Loop optimization c) Constant folding d) Data flow analysis	CO6	BT 2	
3	The transformation of replacing an expensive operation, such as multiplication by a cheaper one such as addition is known as a) Strength reduction b) Code motion c) Dead code elimination d) Common sub-expression elimination	CO6	BT 1	

ed in the following code.
CO6 BT 3
e live procedure activations
been completed.
CO6 BT 1
ed in the following code.
CO6 BT 3

7	In which of the following parameter passing techniques, the procedure pass the r-value of the actual parameters and the coputs that into called procedure's activation record. a) Call by value b) Call by reference c) Call by copy restore d) Call by name	CO6	BT 2
8	Some code optimizations are carried out on the intermediate because a) They enhance the portability of the compiler to other processors b) Program analysis is more accurate on intermediate code than on necode c) The information from dataflow analysis cannot otherwise be us optimization d) The information from the front end cannot otherwise be us optimization	CO6	BT 2
9	The code optimization is carried out on the intermediate code a) Because for optimization information from the front end cannot be a b) Because program is more accurately analyzed on intermediate than on machine code. c) Because for optimization information from data flow analysis car used d) Because they enhance the portability of the compiler to the other tar processor.		BT 3
10	Running time of a program depends on a) The way the registers and addressing modes are used b) The order in which computations are performed c) The usage of machine idioms d) All of these	CO6	BT 2
11	A language L allows declaration of arrays whose sizes are not know during compilation. It is required to make efficient use of memory. Which one of the following is true? a) A compiler using static memory allocation can be written for L b) A compiler cannot be written for L; an interpreter must be used c) A compiler using dynamic memory allocation can be written for d) None of these	CO6	BT 2
12	Local and loop optimization in turn provide motivation for a) Data flow analysis b) constant folding	CO6	BT 2

	c) peep hole optimization d) DFA and constant folding		
13	In a compiler, the data structure responsible for the managen information about variables and their attributes is a) Semantic stack b) Parser table c) Symbol table d) Abstract syntax-tree	CO6	BT 1
14	Consider the following C code segment. for (i = 0, i < n; i++) { for (j=0; j < n; j++) { if (i%2) { x += (4*j + 5*i); y += (7 + 4*j); } } } Which one of the following is false? a) The code contains loop invariant computation b) There is scope of common sub-expression elimination in this code c) There is scope of strength reduction in this code d) There is scope of dead code elimination in this code	CO6	BT 3
15	In compiler terminology reduction in strength means a) Replacing run time computation by compile time computation b) Removing loop invariant computation c) Removing common sub-expressions d) Replacing a costly operation by a relatively cheaper one	CO6	BT 2
16	Advantage of panic mode of error recovery is that a) It is simple to implement b) It never gets into an infinite loop c) Both (a) and (b) d) It helps in finding logical errors	CO6	BT 2
17	 The languages that need heap allocation in the runtime environme a) Those that use global variables b) Those that use dynamic scoping c) Those that support recursion 	CO6	BT 2

	d) Those that allow dynamic data structure.		
18	Specify the optimization technique used in the following code.		
	a = 200; while(a>0)		
	b = x + y; if (a % b == 0} printf("%d", a);		
	//This code can be optimized as		
	a = 200; b = x + y; while(a>0)	CO6	BT 3
	if (a % b == 0} printf("%d", a);		
	a)Strength reduction b)Code motion c)Dead code elimination d)Common sub-expression elimination		
19	Memory allocation and deallocation can be done at any time and place depending on the requirement of the user. This staten applicable to		
	a) Stack b) heap c) static d) All of the above	CO6	BT 1
20	Specify the optimization technique used in the following code.		
	i = 1;		
	while (i<10)		
	{	CO6	BT 3
	y = i * 4; }		
	//After Reduction i = 1 t = 4		
	{		

	while(t<40) y = t; t = t + 4;		
	}		
	a)Strength reduction b)Code motion c)Dead code elimination d)Common sub-expression elimination		
	PART-B		
1	Explain the concept of code optimization?	CO6	BT 1
2	Name the properties of optimizing compilers?	CO6	BT 2
3	Give any two examples of strength reduction.	CO6	BT 2
4	Explain the technique used in loop optimization.	CO6	BT 1
5	What is peephole optimization technique?	CO6	BT 2
6	Write short notes on global data flow analysis	CO6	BT 1
7	What is code motion? Give example	CO6	BT 1
8	What are structure preserving transformations on basic block?	CO6	BT 1
9	What is the use of algebraic identification in optimization of basic blocks?	CO6	BT 2
10	When does dangling reference occur?	CO6	BT 1
11	What are the patterns used for code optimization?	CO6	BT 1
12	Give the block diagram of organization of code optimizer	CO6	BT 2
13	Write short notes on activation tree.	CO6	BT 1
14	How the run-time memory is sub-divided?	CO6	BT 2
15	Give the structure of general activation record	CO6	BT 2
16	What is access link?	CO6	BT 2
17	What is known as environment and state?	CO6	BT 2
18	What is meant by Dead Code?	CO6	BT 1
19	What are the 3 areas of code optimization?	CO6	BT 2
20	List out the properties of reducible flow graph.	CO6	BT 2
	PART-C		
1	Explain the transformation of basic blocks and Write in detail	CO6	
	function-preserving transformation		BT 1
2	Optimize the following code using various optimization techniques: L3	CO6	BT 3
	i=1,s=0;		

	for(i=1;i,=3;i++) for(j=1;j<=3;j++) c[i][j]-c[i][j]+a[i]a[j]+b[i][j]		
3	Write global common sub expresion elimination algorithm with example	CO6	BT 3
4	Explain in detail about stack based allocation of space. Justify use of activation trees and activation records in stack based allocation.	CO6	BT 1
5	Write a simple program to implement a sort procedure. Draw the activation tree when the numbers 9.8.7.6.5.4.3.2.1 are sorted.	CO6	BT 2
6	Explain about various parameter passing methods in procedure call.	CO6	BT 1
7	Describe in detail about the stack allocation in memory management	CO6	BT 2
8	What are different storage allocation strategies? Explain.	CO6	BT 1
9	Explain the data flow analysis concept with suitable example.	CO6	BT 1

Note:

1. BT Level – Blooms Taxonomy Level

2. CO – Course Outcomes

 $BT1-Remember \quad BT2-Understand \quad BT3-Apply \quad BT4-Analyze \quad BT5-Evaluate \quad BT6-Create$