

DEPARTMENT OF PHYSICS

TFY4335 - BIONANOSCIENCE

Determination of diffusion constant and size of micro- and nanoparticles

 $\begin{tabular}{ll} Author: \\ Martin Kollstrand, Knut Hellestveit \\ \end{tabular}$

Contents

1	Introduction
2	Method2.1 Apparatus2.2 Softwares2.3 Experimental Procedure
3	2.4 Processing of data
4	Discussion
5	Conclusion

1 Introduction

2 Method

2.1 Apparatus

- **2.1.1 Apparatus** Apparatus used in the ISO7 section in NanoLab at NTNU. The apparatus used in the experiment are listed below:
 - Optical microscope with camera by Zeiss Primo Star
 - Dark field ring filter
 - 10 micrometre micropipette
 - C-Chip Hemocytometer
 - White paint samples, for sample A and sample B
 - Erioglaucine (food dye)
 - Microfluidic chip, custom made using soft lithography
 - Deionized water
 - Syringe pump
 - Syringes
 - Microtubes

2.2 Softwares

- **2.1.2 Softwares** Softwares used in data capture and data processing:
 - Zen software
 - ImageJ
 - TrackPy

2.3 Experimental Procedure

2.2 Experimental Procedure

2.2.1 Optical microscope calibration

- 1. Adjust the optical microscope using Köhler illumination principle for optimal contrast and clarity.
- 2. Calibrate the microscope according to the Zeiss Primo Star user guidelines.

2.2.2 Tracking particles to estimate Brownian motion and diffusion constant:

- Prepare a small sample of white paint containing microparticles (latex and nanoparticles) by spreading a thin layer on a glass slide.
- Place the sample under the optical microscope.

2.4 Processing of data

- 3 Results
- 4 Discussion
- 5 Conclusion

[1]

References

 $[1]\ \mbox{First Author}.$ $\it Title\ of\ the\ Book.$ Publisher Name, Publisher Address, 2020.