Sets

N = {0,1,2,...} natural numbers

 $\mathbb{Z} = \{.., -2, -1, 0, 1, 2, ...\}$ integers

 $Q = \{k, n \in \mathbb{N}, n \neq 0\}$ rationals

R = real numbers

 $C = \{a+ib \mid a,b \in \mathbb{R} \} = complex$ i = "imaghang unit" $characterized by i^2 = -1.$

TR = { (a,...ad) | ai eR} d-dimensional space

R° = { (a, a, az...) | a; ER } space of infinite squences of reals A, B sets. Operations;

AUB = {c| ceA or ceB} union

ANB = {c| ceA and ceB}

intersection

AUB

ANB

AIB = {CEA | C & B 3: "différence"

AIB

AAB = ABUBLA:

= (AUB) \ AnB etc.

a symmetric différence

Let (Ax)xeI be an indexed family of sets (index set I). EX O I = N, $A \propto := \{ \alpha, \alpha + 1 \}$ definition $T = R^{+} = \{ \times \in R \mid \times \geq 0 \}$ $A_{\kappa} := [\kappa, \infty)$ A A infinte interel U Az := {a | à E Az for some x e I}

x e I

= \$ a | 1 T T 1111 1 . = { a |] x e I such that a e A} Az = {a | a ∈ Az fore every a ∈ I} YxeI.

Mays in general.

Map = function = mapping (= transformation)

Let A, B be sets (+0). A map f

f: A -> B

"" +> f(a)

is an assignment: to tack fassign a unique of eB which is called the value of fat a and is denoted by f(a).

Note: fassigns to <u>Hack</u> a value, but there may exists beB st f(a) fb Hack.

A is called the domain (of definition) of f

B is -11- the target space of f

If
$$A' \subseteq A$$
, then the map f' (0)5

 $f' : A' \longrightarrow B$
 $a \longmapsto f'(a) := f(a)$

is called the testriction of f to A'

(denoted by $f' = f_{A'}$)

$$EX: O f: R \rightarrow R$$
 $\longrightarrow f = sin fcf.$

$$\begin{array}{ccc}
\text{(2)} & \text{(2)} & \text{(2)} & \text{(2)} & \text{(2)} \\
\text{(2)} & \text{(2)} & \text{(2)} & \text{(2)} & \text{(2)} & \text{(2)} \\
\text{(2)} & \text{(2)} \\
\text{(2)} & \text{$$

4:
$$V \longrightarrow set of subspaces of $V = S$
 $V \longrightarrow span(\vec{v})$$$

(5) D:
$$\mathcal{P}(R) \rightarrow \mathcal{P}(R)$$

$$p(x) \longmapsto \frac{d}{dx} p(x) = p'$$
denivative

A f here is NOT the invese map.

EX
$$f: \mathbb{R} \to \mathbb{R}$$
 $\times \mapsto X^2$
 $A' = [-2, -1]$
 $f(A') = [1, 4]$
 $f'(B') = \{ \times \in \mathbb{R} \mid \times^* \in [1, 4] \}$
 $= [-2, -1] \cup [1, 2]$
 $(-) \text{ it general}$
 $f'(f(A')) \supseteq A'$

etc

Lemma: $(B_{x})_{x \in I}$, $B_{x} \subseteq B$.

then

1) f (UB) = U f Ba

2) $f''(\Omega B_{\alpha}) = \Omega f'B_{\alpha}$

 $(B^{c}) = (f^{\dagger}B)^{c}$

T HW,

Special case: $I = \{1, 2\}$

1) $f'(B_1 \cup B_2) = f'B_1 \cup f'B_2$

Let a \(\int \(\bar{B}_n \cup B_2 \) <=>

 $f(a) \in B_1 \cup B_2 \iff f(a) \in B_1 \text{ or } f(a) \in B_2$ $\iff a \in f^{-1}B_1 \qquad a \in f^{-1}B_2$

By By

(=) a e f'B, U f'B2

etc.

- (1) injective if f(a) = f(a') => a = a'(one to one) (distinct elemts have distint value)
- (2) surjective: if f(A) = B, (=>) (onto) f(a) = b.
- (3) Dijective if injective + surjective

 In this case each a \in A corresponds

 to exactly one $b \in B$ (and view resa)

 and we can define the inverse f^{-1} $f^{-1}: B \longrightarrow A$ $b \longmapsto the unique a <math>\in$ A

 with f(a) = b

Then f'(t) = a $\forall a \in A$. f(t) = b $\forall b \in B$ EX

Of
$$R \rightarrow R$$
 is not injective
(since $f(-1) = f(1) = 1$ and $-1 \neq 1$)
is not subjective since
 $\exists x \in R$ of $f(x) = x^2 = -1$,
(and $-1 \in R$).

3) D:
$$P(R) \rightarrow P(R) \leftarrow polynomials$$

$$p(x) \longmapsto p'(x) \quad is \quad surjective$$

if $p = \sum_{k=0.11}^{\infty} a_k x^k$ and we set $q = \sum_{k=1}^{\infty} \frac{a_{k-1}}{k} x^k$

 $=) \quad \mathcal{D}_{q} = \sum_{k=1, n+1} q_{k-1} x^{k-1} = \sum_{k=0, n} q_{k} x^{k} = p \quad q = d$

D is not injective since

$$\mathcal{D}(p_1) = 0 = \mathcal{D}(p_2)$$

where $p_1(x) \equiv 1$, $p_2(x) \equiv 2$ (contate polywords

but pitpe.

Composition of mays

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$h = g \cdot f$$

A,B,C sets, fig maps. Then

 $h: A \rightarrow C$ $a \mapsto g(f(a)) =: h(a)$

is called the composition of fig and is denoted by [gef.]

Size (cardinality) ef sets

IA := "number of eleants of A"

- well-defined for finite sets

if A infinite, |A| = ∞.

If we can enumerate all its elements i.e. if I $\varphi: \mathbb{N} \to A$ bijective.

 $A = \frac{1}{3} \frac{10^{16}}{2}$ etc.

Def IAI = 1BI (A, B have the some size)

Fig. A -> B hijective. A is countably infinite (=) has the conducating of IN. is |N| = 1Z| ? A: yes -1 -2 0 -1 1 -2 2 -3 3 - - -

and the corresponding to jection (called the "enumeration") G: IN etc explicite founda: ah $\varphi(k) = (-1)^{k} \left[\frac{k+1}{2} \right]$ integer point of k+1

EX. |Q| = ?

Clavi (Q) = |N|.

 $q \in \mathbb{Q}$ \Rightarrow $q = \frac{k}{n} \in \text{telative pinner}$ (fraction is simplified

> 12345 (X) means 4 4 2 4 not rel. prime.

How to enumerate them?

So the enmeration is:

every infite set countable? Q: Is This (Cantor) Let A be a set and define the power set P(A) as P(A) := {B|B = A } the set of all subsets of A. then $|\mathcal{P}(A)| > |A|$ (eary...). 10(IN) > IN/ partialar "un countable"

Fact: R is un courtable.

A topids

if IAI = n c N il. A is fute $|P(A)| = 2^n$ α_1 , α_2 α_3 \ldots α_n 0 1 this requerce convergend > to the subset { a2, a3, a; , an } Indeed there are as many sulsets 0-1 seguences of length h