Chapter 2: Error Detection and Correction Codes Lectures 7-8

Hamming weight
$$w(\mathbf{x}) = |\{i : x_i \neq 0\}|$$

minimum weight $w(C) = \min\{w(\mathbf{x}) : \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$
weight number $A_i(C) = |\{\mathbf{x} \in C : w(\mathbf{x}) = i\}|$

Example

	codewords	weights	weight numbers
	00000	0	$\begin{array}{ccc} A_0 &=& 1 \\ A_1 &=& 0 \end{array}$
	0 0 1 0 1	2	$A_2 = 1$
	1 1 0 0 1	3	$A_3 = 2$ $A_4 = 0$
	0 1 1 1 0	3	$A_5 = 0$

minimum weight w = w(C) = 2

Hamming weight $w(\mathbf{x}) = |\{i : x_i \neq 0\}|$ minimum weight $w(C) = \min\{w(\mathbf{x}) : \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$ weight number $A_i(C) = |\{\mathbf{x} \in C : w(\mathbf{x}) = i\}|$

Example

The 8-bit ASCII has minimum weight d=2.

The Hamming codes have minimum weight d=3 (we prove this later).

Hamming distance
$$d(\mathbf{x}, \mathbf{y}) = |\{i : x_i \neq y_i\}|$$

minimum distance $d(C) = \min\{d(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}$

Example

codewords distances
$$\begin{cases} 0\ 0\ 0\ 0\ 0 & 0\ 0 \\ 0\ 0\ 1\ 0\ 1 \\ 1\ 1\ 0\ 0\ 1 \\ 0\ 1\ 1\ 1\ 0 \end{cases} & d(00000,00101) = 2\\ d(00000,11001) = 3\\ d(00000,01110) = 3\\ d(00101,11001) = 3\\ d(00101,01110) = 3\\ d(11001,01110) = 4 \end{cases}$$
 minimum distance $d = d(C) = 2$

Hamming weight $w(\mathbf{x}) = |\{i: x_i \neq 0\}|$ Hamming distance $d(\mathbf{x}, \mathbf{y}) = |\{i: x_i \neq y_i\}|$ minimum weight $w(C) = \min\{w(\mathbf{x}): \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$

minimum distance $d(C) = \min\{d(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}$

Lemma

 $d(\cdot,\cdot)$ is a metric on \mathbb{Z}_2^n :

- $d(\mathbf{x}, \mathbf{y}) \geq 0$
- $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$
- $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
- $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$

Lemma

- $w(\mathbf{x}) = d(\mathbf{x}, \mathbf{0})$
- $d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} \mathbf{y})$ if \mathbf{x}, \mathbf{y} are over an Abelian group

Hamming weight $w(\mathbf{x}) = |\{i : x_i \neq 0\}|$ Hamming distance $d(\mathbf{x}, \mathbf{y}) = |\{i : x_i \neq y_i\}|$ minimum weight $w(C) = \min\{w(\mathbf{x}) : \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$ minimum distance $d(C) = \min\{d(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}$

Lemma

- $w(\mathbf{x}) = d(\mathbf{x}, \mathbf{0})$
- $d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} \mathbf{y})$ if \mathbf{x}, \mathbf{y} are over an Abelian group

Exercise

Show that if $0 \in C$, then $d(C) \leq w(C)$.

Note

If $\mathbf{x} \rightsquigarrow \mathbf{y}$, then $d(\mathbf{x}, \mathbf{y})$ is the number of errors in \mathbf{y} .

$$C = \{\mathsf{Hello}, \mathsf{Help!}\}$$

$$d(\mathsf{Hello}, \mathsf{Hell!}) = 1$$

 $d(\mathsf{Help!}, \mathsf{Hell!}) = 1$

DECODING STRATEGIES

minimum distance decoding standard strategy pure error detection many others...

Minimum distance decoding strategy

Given a received word y, decode to closest codeword x.

d(Hello, Halp!) = 3

 $d(\mathsf{Help!}, \mathsf{Halp!}) = 1$

Minimum distance decoding strategy

Given a received word y, decode to closest codeword x.

If d = 2t + 1, then C is a t-error correcting code.

Minimum distance decoding strategy

Given a received word y, decode to closest codeword x.

If d = 2t + 2, then C is a t-error correcting and t + 1-error detecting code.

Standard strategy

If received word y is distance at most t from a codeword x, then decode y to x; otherwise, flag an error.

Exercise

If such a codeword x exists, then it is unique. Why?

Pure error detection

If received word y is not a codeword x, then flag an error.

Theorem

If e + f = d - 1 and $f \ge e$,

then there is a strategy which is e-error correcting and f-error detecting.

Theorem

If d = 2t + 1, then C is t-error correcting.

If d = 2t + 2, then C is t-error correcting and t + 1-error detecting.

Example

The 8-bit ASCII has minimum weight d=2 and is thus 1-error detecting.

Hamming codes have minimum weight d=3 and are 1-error correcting.

Let $\mathbf{c} \in \mathbb{Z}_2^n$ be an n-bit word.

The sphere of radius r around c:

$$S_r(\mathbf{c}) = \{ \mathbf{x} \in \mathbb{Z}_2^n : d(\mathbf{x}, \mathbf{c}) \le r \}$$

The volume of this sphere is its size $|S_r(\mathbf{c})|$.

Example

LAdilipic			
For $c = 1100$,	1100	1100	1111
	1101	1101	1001
	1110	1110	0101
	1000	1000	1010
	0100	0100	0110
$ S_1(\mathbf{c}) = 5$			0000
$ S_2(\mathbf{c}) = 11$	$S_1(\mathbf{c})$	S_2	(\mathbf{c})

Let $\mathbf{c} \in \mathbb{Z}_2^n$ be an n-bit word.

The sphere of radius r around c:

$$S_r(\mathbf{c}) = \{ \mathbf{x} \in \mathbb{Z}_2^n : d(\mathbf{x}, \mathbf{c}) \le r \}$$

The volume of this sphere is its size $|S_r(\mathbf{c})|$.

Theorem

$$|S_r(\mathbf{c})| = 1 + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{r}$$

Example

Consider the code $C = \{000, 111\}$.

$$S_1(000) = \{000, 001, 010, 100\}$$

 $S_1(111) = \{111, 110, 101, 011\}$

Note that these spheres do not overlap. They therefore form a sphere packing.

Example

Consider the code $C = \{000, 111\}$.

$$S_2(000) = \{000,001,010,100,101,110,011\}$$

 $S_2(111) = \{111,110,101,001,010,100,011\}$

Note that these spheres do overlap.

They therefore do not form a sphere packing.

If the spheres of radius r around each codeword x do not overlap, then they form a sphere packing.

If d = 2t + 1, then C is a t-error correcting code.

If d = 2t + 2, then C is a t-error correcting and t + 1-error detecting code.

If the spheres of radius r around each codeword x do not overlap, then they form a sphere packing.

Sphere-Packing Condition Theorem (binary case) A t-error correcting binary code C of length n has minimum distance d=2t+1 or 2t+2, and

$$|C| \sum_{i=0}^{t} \binom{n}{i} \le 2^n.$$

Hamming weight $w(\mathbf{x}) = |\{i : x_i \neq 0\}|$ minimum weight $w(C) = \min\{w(\mathbf{x}) : \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$ weight number $A_i(C) = |\{\mathbf{x} \in C : w(\mathbf{x}) = i\}|$

Example

$$\begin{array}{c} \text{codewords} & \text{weights} \\ \hline \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 0 & 1 & 3 \\ \hline 0 & 1 & 1 & 1 & 0 & 3 \\ \hline \end{array}$$