Vehicle Loan Prediction

GROUP 3

Mrunalini Devineni

Sara Sanchez

Aihan Liu

GITHUB LINK

Introduction

- Financial institutions incur significant losses due to the default of Vehicle Loans. This has led to the constricting of vehicle loan underwriting and increased vehicle loan rejection rates
- > A Credit Score: good or bad.
- > Forecasted probability of default

Want to get a car??

Want to get a car??

Score

Allows forecasting the probability of default based on the client's profile information.

Goal: Distinguish between good and bad profiles.

Dataset

<u>L&T company data set</u> (kaggle)

- Loanee Information
 - (Demographic data like age, Identity proof etc.)
- Loan Information
 - (Disbursal details, loan to value ratio etc.)
- Bureau data & history
 - ► (Bureau score, number of active accounts, the status of other loans, credit history etc.)
- 40 variables
- 233 154 observations

SMART Question: What are the features that influence loan default based on customer's profile information?

Roadmap

Exploratory Data Analysis (EDA)

Clearly the graph proves the problem statement that the number of "No's" to loan default is much higher than the "Yes", the data is unbalance in this case.

Apply SMOTE method to balance dataset.

Disbursed Amount

Loan default considered to be "yes"

Loan default considered to be "No"

Aadhar and Voter ID

The count of people having Aadhar Card as address proof and not having it.

The count of people having Voter ID as address proof and not having it

Relationship between variables

Correlated features:

- Asset cost<->Disbursed amount
- Sanctioned Amount<->Disbursed amount
- Credit history length<-> avg account age

Weight of Evidence

These two variables can distinguish between profiles because, as we can see from the default rate, this is different for those who have or do not have a voter ID and those who have different disbursed amounts.

Data Preprocessing

- Dropped the missing values
- Formatted date
- Calculated Age and Disbursal months from the existing features
- Feature elimination
- Feature Engineering
- Created buckets to reduce the number of categories
- Balanced the data with hyperparameter of each model

AVERAGE.ACCT.AGE	CREDIT.HISTORY.LENG
Oyrs Omon	Oyrs Omon
1yrs 11mon	1yrs 11mon
Oyrs Omon	Oyrs Omon
Oyrs 8mon	1yrs 3mon
Oyrs Omon	Oyrs Omon
1yrs 9mon	2yrs 0mon
Oyrs Omon	Oyrs Omon
Oyrs 2mon	Oyrs 2mon
	AVERAGE.ACCT.AGE Oyrs Omon 1yrs 11mon Oyrs Omon Oyrs 8mon Oyrs 0mon 1yrs 9mon Oyrs 0mon Oyrs 0mon Oyrs 2mon

Date.of.Birth	Employment.Type	DisbursalDate
1/1/1984	Salaried	3/8/2018
31-07-85	Self employed	26-09-18
24-08-85	Self employed	1/8/2018
30-12-93	Self employed	26-10-18
9/12/1977	Self employed	26-09-18
8/9/1990	Self employed	19-09-18
1/6/1988	Salaried	23-09-18
4/10/1989	Salaried	16-09-18
15-11-91	Self employed	5/9/2018

Decision Tree

fleasurements:		Other Models Accuracy:	Other Models Accuracy:		
Accuracy:	68.56187922504627	Logistic:	66.60277956116167		
Precision:	71.8997977283336	Random Forest:	71.56425846897541		
Recall:	61.02862102145161	Gradient Boosting:	76.82408701234941		
F1 Score:	66.01967507551636				

Random Forest

Logistic Regression

asurements:		Other Models Accuracy:	Other Models Accuracy:	
Accuracy:	66.60277956116167	Decision Tree:	68.56187922504627	
Precision:	68.16252524003791	Gradient Boosting:	76.82408701234941	
Recall:	62.415334981038804	Random Forest:	71.56425846897541	
F1 Score:	65.16245309591578			

Gradient Boosting

and table to compare Models

<u>Metrics</u>	Random Forest	<u>Logistic</u> <u>Regression</u>	Gradient Boosting	Decision Tree
Accuracy	71.56%	66.60%	76.82%	68.56%
<u>Precision</u>	74.54%	68.16%	83.44%	71.89%
Recall	65.56%	62.41%	66.97%	61.02%
F-1 score	69.76%	65.16%	74.30%	66.01%

Conclusion:

The features that most affect the loan default are: Adahar_flag, voterID_flag, perform_cns.score, driving_flag, ltv, employer type and state_id.

The model we trained that have highest accuracy is Gradient boosting, however it has a lowest recall.

Other work that may improve the accuracy of this dataset is to apply PCA or other feature selection techniques. We can also use other ensemble method to get a better results. .

THANKS!

Any questions????

