Ejercicio 3

Tabla H	0	1	2	3	4	5	6	7
А	0	3	4	6	8	9	10	10
В	1	5	6	8	10	10	10	10
C	0	4	4	5	6	7	9	10
Tabla H A B C D	0	2	4	7	7	8	8	9

Cada casilla es la suma de un conjunto de horas.

Tabla que relleva el algoritmo para obtener los mejores decisiones.

La tabla A se relleva como indica el paso siguiente, aplicado a los condiciones de cada casilla:

En {A,B} para [4] se analiza Cómo repartir 4h entre los asignaturas A y B, y al mimo tiempo, se suman los notas obtenidos de cada combinación, en lousca del valor máximo.

4 Horos A B		Notes (table H) A + B	(Tabla A) Voler		
O	4	0 + 10	Ξ	10	
1	3	3 + 8 5	Ξ	11	
2	Z	9+6	5	10	
3	1	6+54	Ξ	11	
4	0	8 + J " ↑ ↑°	Ξ	9	
		1 1			

Af-s, k $m_{f,c-k}$, $k \in [0,c]$

Finalmente, la ecuación de Bellman resulta:

$$A_{f,c} = \begin{cases} H_{f,c} & \text{si} \quad f = 0\\ MAX \\ 0 \le k \le c \\ H_{f,k} + A_{f-1,c-k} \end{cases} \text{ si} \quad \text{we then } case \Rightarrow$$

$$A_{1,2}$$

$$\max \begin{cases} A_{0,2} + H_{1,0} = 4 + 1 = 5 \\ A_{0,1} + H_{1,1} = 3 + 5 = 8 \\ A_{0,0} + H_{1,2} = 0 + 8 = 8 \end{cases}$$

Ejercicio 5

Ejercicio 11

1) Definir la ecuación de Bellman.

Tabla A	0	1	Z	3	_
0	2	10	13	17]
1	7	10	14	19	Coste de la
2	8 -	10 -	→ 1 2 -	→ 13	solución
3	11	10 -	18	18	J Age

E semplo								
	2	8	3	4				
	5	3	4	5				
mgr	1	2	2	1				
9.	3	4	6	5				
'	Cost	e =	18					
	sol	= {	1, 1, =	, - , -	1}			

- 1. Se coloca la primera fila y columna, atendiendo a la suma de los costes por cada desplazamiento.
- 2. Emperando en Ao,o se desplaza a la Afic adjuscente con menor coste.
- 3. Se completa el resto de la fila o columna, dependiendo de la posición de Af.c.
- 4. Se repite desde (2), mientros que Afic + Ann.