Analyzing Clinical and Genomic Oncological Data with {genieBPC} and {gnomeR}

R\Medicine Demo
June 7, 2023
Sammi Brown
Hannah Fuchs
Jessica Lavery
Karissa Whiting

Agenda

Projects GENIE & GENIE BPC

Clinico-Genomic Data Processing Pipeline

Case study

Clinical data processing with {genieBPC}

Genomic data processing with {gnomeR}

Conclusion

Projects GENIE & GENIE BPC

The goal of **Project GENIE Biopharma Collaborative (BPC)** is to augment the existing registry genomic data from AACR Project GENIE with enhanced clinical (phenomic) data to support clinical-genomics analyses.

Phenomic data are curated using the PRISSMM curation model to capture detailed information on cancer diagnosis, drug regimens, disease status from radiology reports, pathology reports and medical oncologist assessments, structured in several datasets with over 700 feature variables.

Analyses using linked clinicogenomic databases – including GENIE BPC – will help to drive advancements in precision oncology in identifying the genomic alterations and drug therapies that optimize clinical outcomes.

Genomic data included in GENIE

Researchers receive genomic data in different formats and types

The AACR Project GENIE data repository is comprised of one type of genomic data called **tumor DNA sequencing assays**

- Collected from tumor samples via biopsy/resection
- Compare DNA sequence in cancer cells with that in normal cells

Sequencing assays can be broad or targeted

- Broad regions: whole genome/whole exome sequencing
- Targeted regions: gene panels
 - GENIE data consists of data from targeted gene panels from high-throughput (huge amounts of data) sequencing assays, also referred to as next-generation sequencing (NGS)

GENIE BPC Data

- Data are publicly released by cancer cohort: non-small cell lung (NSCLC), colorectal (CRC), breast, pancreas, prostate, bladder
- New versions of data are released periodically to include additional patients and variables and to incorporate data corrections
- .csv and .txt data files are available for download from Sage Bionetworks' Synapse data sharing platform
- Downloading each file individually poses challenges for efficient and reproducible workflows

{genieBPC} & {gnomeR} R Packages

The {genieBPC} package
is a pipeline to
programmatically access
the data corresponding to
each release from
Synapse to support
reproducibility, and to
create datasets linking
clinical and genomic data
for analysis.

Created and developed by

Samantha Brown

Michael Curry

Hannah Fuchs

Jessica Lavery

Axel Martin

Dan Sjoberg

Karissa Whiting

The {gnomeR}
package provides a
consistent framework
for genetic data
wrangling, processing,
visualization and
analysis.

Created and developed by

Arshi Arora

Michael Curry

Hannah Fuchs

Axel Martin

Karissa Whiting

Register for Synapse Account

Instructions:

- Register for a <u>'Synapse' account</u>. Be sure to create a username and password. **Do NOT** connect via your Google account.
 - a) https://www.synapse.org/#
- 2. Accept the Synapse account terms of use.
- Navigate to GENIE Biopharma Collaborative Public page
 - a) https://www.synapse.org/#!Synapse:syn27056172/wiki/616601
- In the Files folder, navigate to Data Releases → NSCLC → 2.0-public
- 5. Select *Request Access*, review the **terms of data use** and click *Accept*

Installation Instructions

Installing {genieBPC}:

```
# install.packages("devtools")
devtools::install_github("GENIE-BPC/genieBPC")
```

Installing {gnomeR}:

```
devtools::install github("MSKCC-Epi-Bio/gnomeR")
```

- These instructions are also included in the Demo.R script on our GitHub repository: https://github.com/GENIE-BPC/intro to genieBPC and gnomeR
- Further R package details are available on the {genieBPC} <u>GitHub repo</u> & <u>website</u> and the {gnomeR} <u>GitHub repo</u> & <u>website</u>
 - If previously installed, be sure to update {genieBPC} package
- Note: Both R packages require R version >=3.6

Clinico-Genomic Data Processing Pipeline

Data import

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

synapse_version()

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

Genomic Processing

{gnomeR}

create_gene_binary()

Processes data on mutation, CNA and fusions into analytic format

tbl_genomic()

Summarizes gene alterations across clinical variables of interest

Case Study

Create a cohort of patients who were diagnosed with Stage IV adenocarcinoma non-small cell lung cancer (NSCLC) and received Carboplatin and Pemetrexed +/- Bevacizumab or Cisplatin and Pemetrexed +/- Bevacizumab as their first cancer-directed drug regimen after diagnosis.

Follow along using the Demo.R script on our GitHub repository: https://github.com/GENIE-BPC/intro_to_genieBPC_and_gnomeR

Clinico-Genomic Data Processing Pipeline

Data import

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

synapse_version()

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

Genomic Processing

{gnomeR}

create_gene_binary()

Processes data on mutation, CNA and fusions into analytic format

tbl_genomic()

Summarizes gene alterations across clinical variables of interest

Set Synapse Credentials

To pull data from Synapse, users must create a Synapse account and store their Synapse credentials in the R environment. The **set_synapse_credentials()** function will store credentials during each R session:

synapse_version()

- Helper function that returns a table of GENIE BPC data releases that are currently available
- synapse_version() has one input: most_recent = TRUE/FALSE
 - Calling genieBPC::synapse_version(most_recent = TRUE) will return a table with each cancer cohort and its latest data release version
 - Calling genieBPC::synapse_version(most_recent = FALSE) will return a table with all cancer cohorts and data releases available

synapse_version()

- Helper function that returns a table of GENIE BPC data releases that are currently available
- synapse_version() has one input: most_recent = TRUE/FALSE
 - Calling genieBPC::synapse_version(most_recent = TRUE) will return a table with each cancer cohort and its latest data release version
 - Calling genieBPC::synapse_version(most_recent = FALSE) will return a table with all cancer cohorts and data releases available

synapse_version(most_recent = TRUE)

cohort	version	release_date	all_versions
BrCa	v1.1-consortium	October 2021	Most recent versions
CRC	v1.2-consortium	August 2021	Most recent versions
NSCLC	v2.1-consortium	August 2021	Most recent versions
NSCLC	v2.0-public	May 2022	Most recent versions

pull_data_synapse()

- Pull GENIE BPC clinical and genomic data directly from Synapse into R
- Can specify cancer type (`cohort`) and version of data (`version`)
 - Version of the data is updated periodically on Synapse with re-releases (new variables available, additional QA, etc.)
- Returns a nested list of data frames for each cancer site for the accompanying version

Argument	Description	Acceptable Values
cohort	 GENIE BPC Project cancer Currently, NSCLC and CRC are the only two publicly available datasets 	 NSCLC CRC BrCa PANC Prostate BLADDER
version	Version of the data (e.g v1.1-consortium, v2.0-public)	Values can be found in synapse_version()

library(genieBPC)


```
library(genieBPC)
set_synapse_credentials()
```



```
library(genieBPC)
set_synapse_credentials()
nsclc_synapse_data <- pull_data_synapse(cohort = "NSCLC", version = "v2.0-public")</pre>
```



```
library(genieBPC)
set_synapse_credentials()
nsclc_synapse_data <- pull_data_synapse(cohort = "NSCLC", version = "v2.0-public")
Calling nsclc_synapse_data$NSCLC_v2.0 returns a list of datasets in nsclc_synapse_data:</pre>
```

- pt_char
- ca_dx_index
- ca_dx_non_index
- ca drugs
- prissmm_pathology
- prissmm_imaging
- prissmm md
- cpt

- mutations_extended
- cna
- fusions

Clinico-Genomic Data Processing Pipeline

Data import

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

synapse_version()

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

Genomic Processing

{gnomeR}

create_gene_binary()

Processes data on mutation, CNA and fusions into analytic format

tbl_genomic()

Summarizes gene alterations across clinical variables of interest

Create a cohort from the GENIE BPC data

Cancer diagnosis information such as cancer cohort, treating institution, histology, and stage at diagnosis Cancer-directed regimen information including regimen name and regimen order.

This function returns all clinical and genomic data for the selected patients

Argument	Description	Acceptable Values
data_synapse	List returned from pull_data_synapse(), or test data included in genieBPC package, nsclc_test_data	 Name of object in global environment that was returned from pull_data_synapse()

Argument	Description	Acceptable Values
data_synapse	List returned from pull_data_synapse(), or test data included in genieBPC package, nsclc_test_data	 Name of object in global environment that was returned from pull_data_synapse()
<pre>index_ca_seq</pre>	Index cancer sequence. Default is 1, indicating the patient's first index cancer. This is the cancer that met the eligibility criteria for the project and was selected at random for PRISSMM phenomic data curation.	Numeric (1+)

Argument	Description	Acceptable Values
data_synapse	List returned from pull_data_synapse(), or test data included in genieBPC package, nsclc_test_data	 Name of object in global environment that was returned from pull_data_synapse()
index_ca_seq	Index cancer sequence. Default is 1, indicating the patient's first index cancer. This is the cancer that met the eligibility criteria for the project and was selected at random for PRISSMM phenomic data curation.	• Numeric (1+)
institution	GENIE BPC participating institution. Default selection is all institutions. Note that not all institutions curated data for all cancer sites.	DFCIMSKUHNVICC

Argument	Description	Acceptable Values
stage_dx	Stage at diagnosis. Default selection is all stages.	 Stage I Stage III Stage I-III NOS Stage IV

Argument	Description	Acceptable Values
stage_dx	Stage at diagnosis. Default selection is all stages.	 Stage I Stage III Stage I-III NOS Stage IV
histology	Cancer histology. Default selection is all histologies.	 Adenocarcinoma Squamous cell Sarcoma Small cell carcinoma Other histologies/mixed tumor

Argument	Description	Acceptable Values
regimen_drugs	Vector with names of drugs in cancer-directed regimen, separated by a comma. For example, to specify a regimen consisting of Carboplatin and Pemetrexed Disodium, specify regimen_drugs = "Carboplatin, Pemetrexed Disodium".	Acceptable values are found in the drug_names_by_cohort dataset provided with this package.
regimen_type	Indicates whether the regimen(s) specified in regimen_drugs indicates the exact regimen to return, or if regimens containing the drugs listed in regimen_drugs should be returned.	ExactContaining

Example: regimen_drugs and regimen_type

regimen_drugs	regimen_type	Example regimens returned
Carboplatin	Exact	Carboplatin
Carboplatin	Containing	 Carboplatin Carboplatin, Cisplatin Carboplatin, Paclitaxel Carboplatin, Pemetrexed Disodium etc.

Argument	Description	Acceptable Values
regimen_order	Order of cancer-directed regimen. If multiple drugs are specified, regimen_order indicates the regimen order for all drugs; different values of regimen_order cannot be specified for different drug regimens.	Numeric (1+)
regimen_order_type	Specifies whether the 'regimen_order' parameter refers to the order of receipt of the drug regimen within the cancer diagnosis (across all other drug regimens; "within cancer") or the order of receipt of the drug regimen within the times that that drug regimen was administered (e.g. the first time carboplatin pemetrexed was received, out of all times that the patient received carboplatin pemetrexed; "within regimen").	Within cancerWithin regimen

Argument	Description	Acceptable Values
return_summary	Specifies whether summary tables are returned using {gtsummary}. Default is FALSE.	TRUEFALSE

nsclc_cohort <- create_analytic_cohort(</pre>


```
nsclc_cohort <- create_analytic_cohort(
  data_synapse = nsclc_synapse_data$NSCLC_v2.0,</pre>
```



```
nsclc_cohort <- create_analytic_cohort(
  data_synapse = nsclc_synapse_data$NSCLC_v2.0,
  stage_dx = c("Stage IV"),</pre>
```



```
nsclc_cohort <- create_analytic_cohort(
  data_synapse = nsclc_synapse_data$NSCLC_v2.0,
  stage_dx = c("Stage IV"),
  histology = "Adenocarcinoma",</pre>
```



```
nsclc_cohort <- create_analytic_cohort(
  data_synapse = nsclc_synapse_data$NSCLC_v2.0,
  stage_dx = c("Stage IV"),
  histology = "Adenocarcinoma",
  regimen_drugs = c("Carboplatin, Pemetrexed Disodium",</pre>
```



```
nsclc cohort <- create analytic cohort(</pre>
  data_synapse = nsclc_synapse_data$NSCLC_v2.0,
  stage dx = c("Stage IV"),
  histology = "Adenocarcinoma",
  regimen drugs = c("Carboplatin, Pemetrexed Disodium",
                    "Cisplatin, Pemetrexed Disodium",
                    "Bevacizumab, Carboplatin, Pemetrexed Disodium",
                    "Bevacizumab, Cisplatin, Pemetrexed Disodium"),
  regimen_type = "Exact",
  regimen order = 1,
  regimen order type = "within cancer",
```



```
nsclc cohort <- create analytic cohort(</pre>
  data_synapse = nsclc_synapse_data$NSCLC_v2.0,
  stage dx = c("Stage IV"),
  histology = "Adenocarcinoma",
  regimen drugs = c("Carboplatin, Pemetrexed Disodium",
                    "Cisplatin, Pemetrexed Disodium",
                    "Bevacizumab, Carboplatin, Pemetrexed Disodium",
                    "Bevacizumab, Cisplatin, Pemetrexed Disodium"),
  regimen_type = "Exact",
  regimen order = 1,
  regimen order type = "within cancer",
  return summary = TRUE
```



```
nsclc cohort <- create analytic cohort(</pre>
  data_synapse = nsclc_synapse_data$NSCLC_v2.0,
  stage dx = c("Stage IV"),
  histology = "Adenocarcinoma",
  regimen drugs = c("Carboplatin, Pemetrexed Disodium",
                    "Cisplatin, Pemetrexed Disodium",
                    "Bevacizumab, Carboplatin, Pemetrexed Disodium",
                    "Bevacizumab, Cisplatin, Pemetrexed Disodium"),
  regimen_type = "Exact",
  regimen order = 1,
  regimen order type = "within cancer",
  return summary = TRUE
```


nsclc_cohort \$tbl_overall_ summary

Characteristic	N = 241 patients
Number of diagnoses per patient in	cohort_ca_dx data frame
1	241 (100%)
Number of regimens per patient in	cohort_ca_drugs data frame
1	241 (100%)
Number of CPTs per patient in coho	ort_ngs data frame
1	222 (92%)
2	18 (7.5%)
4	1 (0.4%)
¹ n (%)	

nsclc_cohort \$tbl_cohort

Characteristic	N = 241 Diagnoses			
Cohort (cohort)				
NSCLC	241 (100%)			
Institution (institution)				
DFCI	92 (38%)			
MSK	118 (49%)			
VICC	31 (13%)			
Stage at diagnosis (stage_dx)				
Stage IV	241 (100%)			
Histology (ca_hist_adeno_squan	nous)			
Adenocarcinoma	241 (100%)			
¹ n (%)				

nsclc_cohort \$tbl_drugs

Characteristic	N = 241 Regimens
Cohort (cohort)	
NSCLC	241 (100%)
Institution (institution)	
DFCI	92 (38%)
MSK	118 (49%)
VICC	31 (13%)
Drugs in regimen (regimen_drugs)	
Bevacizumab, Carboplatin, Pemetrexed Disodium	52 (22%)
Bevacizumab, Cisplatin, Pemetrexed Disodium	27 (11%)
Carboplatin, Pemetrexed Disodium	124 (51%)
Cisplatin, Pemetrexed Disodium	38 (16%)
¹ n (%)	

nsclc_cohort \$tbl_ngs

Characteristic	N = 262 Cancer Panel Tests ¹
Cohort (cohort)	
NSCLC	262 (100%)
Institution (institution)	
DFCI	99 (38%)
MSK	126 (48%)
VICC	37 (14%)
OncoTree code (cpt_oncotree_code)	
LCLC	1 (0.4%)
LUAD	253 (97%)
LUAS	1 (0.4%)
LUSC	1 (0.4%)
NSCLC	4 (1.5%)
NSCLCPD	2 (0.8%)
Sequence assay ID (cpt_seq_assay_id)	
DFCI-ONCOPANEL-1	1 (0.4%)
DFCI-ONCOPANEL-2	57 (22%)
DFCI-ONCOPANEL-3	41 (16%)
MSK-IMPACT341	3 (1.1%)
MSK-IMPACT410	61 (23%)
MSK-IMPACT468	62 (24%)
VICC-01-SOLIDTUMOR	26 (9.9%)
VICC-01-T5A	1 (0.4%)
VICC-01-T7	10 (3.8%)
¹ n (%)	

Clinico-Genomic Data Processing Pipeline

Data import

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

synapse_version()

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

Genomic Processing

{gnomeR}

create_gene_binary()

Processes data on mutation, CNA and fusions into analytic format

tbl_genomic()

Summarizes gene alterations across clinical variables of interest

drug_regimen_sunburst()

- Visualize the complete treatment course for selected cancer diagnoses
- Each ring corresponds to a regimen (i.e., innermost ring is first regimen, second innermost ring is second regimen, etc.)
- Interactive figure: Can hover to see regimen names and percent of patients receiving that regimen

drug_regimen_sunburst()

Argument	Description	Acceptable Values
data_synapse	List returned from pull_data_synapse()	 Name of object in global environment that was returned from pull_data_synapse()
data_cohort	The list returned from the create_analytic_cohort() function call	 Name of object in global environment that was returned from create_analytic_cohort()
max_n_regimens	The maximum number of regimens displayed in the sunburst plot	• Integer >0

Demo: drug_regimen_sunburst() for case study using NSCLC 2.0-public data

nsclc_sunburst\$ sunburst_plot

Genomic Data Processing With {gnomeR}

Clinico-Genomic Data Processing Pipeline

Data import

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

synapse_version()

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst ()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

Genomic Processing

{gnomeR}

create_gene_binary()

Processes data on mutation, CNA and fusions into analytic format

tbl genomic()

Summarizes gene alterations across clinical variables of interest

Case Study

Using the cohort of patients who were diagnosed with Stage IV adenocarcinoma NSCLC, we will:

- 1. Process data into a analysis-ready matrix of gene alteration events
- 2. Summarize genomic alteration frequencies and analyze differences between males and females

```
nsclc cohort <- create analytic cohort(</pre>
     data synapse =
       nsclc synapse data$NSCLC v2.0,
     stage dx = c("Stage IV"),
     histology = "Adenocarcinoma",
     regimen drugs =
       c("Carboplatin, Pemetrexed Disodium",
          "Cisplatin, Pemetrexed Disodium",
          "Bevacizumab, Carboplatin, Pemetrexed Disodium",
          "Bevacizumab, Cisplatin, Pemetrexed Disodium"),
10
     regimen type = "Exact",
11
     regimen order = 1,
12
     regimen order type = "within cancer",
13
     return summary = TRUE
14
15
```

Characteristic	$N = 241^{^{1}}$
naaccr_sex_cod	е
Female	145 (60%)
Male	96 (40%)
¹ n (%)	

Overview of Genomic Data

We will be processing and analyzing data on:

1) Mutations

```
1 mutations <- nsclc_synapse_data$NSCLC_v2.0$mutations_extended
```

2) Discrete Copy Number Alterations

```
1 cna <- nsclc_synapse_data$NSCLC_v2.0$cna
```

3) Fusions

```
1 fusions <- nsclc_synapse_data$NSCLC_v2.0$fusions
```

Processing Data

i			
i			
i			
i			

i 1. Multiple Samples Per Patient		
i		
i		
\overline{i}		

- 1. Multiple Samples Per Patient
 - We often need to select a single sample per patient for analyses
- 2. Cohort Inclusion
 - Samples with no alterations may be dropped when pulling data
- 3. Data Formats & Gene Standards Often Inconsistent

 \overline{i}

- 1. Multiple Samples Per Patient
 - We often need to select a single sample per patient for analyses
- 2. Cohort Inclusion
 - Samples with no alterations may be dropped when pulling data
- 3. Data Formats & Gene Standards Often Inconsistent
 - Column names, data formats and gene names may differ between studies or even within studies

- 1. Multiple Samples Per Patient
 - We often need to select a single sample per patient for analyses
- 2. Cohort Inclusion
 - Samples with no alterations may be dropped when pulling data
- 3. Data Formats & Gene Standards Often Inconsistent
 - Column names, data formats and gene names may differ between studies or even within studies
- (i) 4. Multi-Institutional Studies Use Several Gene Panels

- 1. Multiple Samples Per Patient
 - We often need to select a single sample per patient for analyses
- 2. Cohort Inclusion
 - Samples with no alterations may be dropped when pulling data
- 3. Data Formats & Gene Standards Often Inconsistent
 - Column names, data formats and gene names may differ between studies or even within studies
- 4. Multi-Institutional Studies Use Several Gene Panels
 - Samples may be sequenced using different panels, therefore the non-overlapping genes have to be annotated as missing

1. Multiple Samples Per Patient

• We often need to select a single sample per patient for analyses

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

(i)

1. Multiple Samples Per Patient

- We often need to select a single sample per patient for analyses
- Patients can have many NGS reports

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

(i)

1. Multiple Samples Per Patient

- We often need to select a single sample per patient for analyses
- Patients can have many NGS reports
- We can use select_unique_ngs() to select 1 sample per patient

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

(i)

1. Multiple Samples Per Patient

- We often need to select a single sample per patient for analyses
- Patients can have many NGS reports
- We can use select_unique_ngs() to select 1 sample per patient
- This function prioritizes characteristics of interest and breath of genes sequenced

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

Select One Sample Per Patient

(i)

1. Multiple Samples Per Patient

- We often need to select a single sample per patient for analyses
- Patients can have many NGS reports
- We can use select_unique_ngs() to select 1 sample per patient
- This function prioritizes characteristics of interest and breath of genes sequenced
- If patient only has one report, it will be returned regardless of criteria

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

Select One Sample Per Patient

1. Multiple Samples Per Patient

• We often need to select a single sample per patient for analyses

```
1 nrow(nsclc_cohort$cohort_ngs)
```

[1] 262

```
1  nsclc_samp <- select_unique_ngs(
2   data_cohort = nsclc_cohort$cohort_ngs,
3   oncotree_code = "LUAD",
4   sample_type = "Metastasis",
5   min_max_time = "max"
6  )
7
8  nrow(nsclc_samp)</pre>
```

[1] 241

sample_id	CREBBP	GLI2	KRAS	MAP3K1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

• Next we want to get our genomic data in an analysis-friendly format.

sample_id	CREBBP	GLI2	KRAS	MAP3K1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

- Next we want to get our genomic data in an analysis-friendly format.
- create_gene_binary() from {gnomeR} will give us a data frame of *n* patients x *p* alterations.

sample_id	CREBBP	GLI2	KRAS	MAP3K1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

- Next we want to get our genomic data in an analysis-friendly format.
- create_gene_binary() from {gnomeR} will give us a data frame of n patients x p alterations.
- Alteration columns are denoted by the **gene name** if mutation (e.g. TP53) or **gene name** + .Amp, .fus, .Del (TP53 Del) for other alterations types.

sample_id	CREBBP	GLI2	KRAS	MAP3K1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

- Next we want to get our genomic data in an analysis-friendly format.
- create_gene_binary() from {gnomeR} will give us a data frame of *n* patients x *p* alterations.
- Alteration columns are denoted by the **gene name** if mutation (e.g. TP53) or **gene name** + .Amp, .fus, .Del (TP53. Del) for other alterations types.
- Each cell will have 0 if no alteration, 1 if altered, or NA if that gene was not tested in that patient.

sample_id	CREBBP	GLI2	KRAS	МАРЗК1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

2. Data Formats & Gene Standards Often Inconsistent

• Column names, data formats and gene names may differ between studies or even within studies!

{gnomeR} functions are designed to work with standard alteration data formats used in common platforms like cBioPortal.

GENIE CNA and fusion data is slightly different than this standard, therefore we need to reformat it using:

- gnomeR::reformat_fusions()
- gnomeR::pivot_cna_longer()

Format fusions to follow the cBioPortal standard:

Before:

1 fusions		
Hugo_Symbol	Tumor_Sample_Barcode	Fusion
TP53	GENIE-MSK-P-0004827-T01-IM5	TP53-intragenic
XPO1	GENIE-MSK-P-0004827-T01-IM5	XPO1-USP34 fusion
USP34	GENIE-MSK-P-0004827-T01-IM5	XPO1-USP34 fusion

After:

1 reformat_fusion(fusions)							
sample_id	site_1_hugo_symbol	site_2_hugo_symbol	fusion				
GENIE-MSK-P- 0004827-T01-IM5	TP53	NA	TP53				
GENIE-MSK-P- 0004827-T01-IM5	USP34	XPO1	USP34- XPO1				

Format CNA to follow the cBioPortal standard:

Before:

1 cn	a[1:5, 1:3]		
	Hugo_Symbol (GENIE.DFCI.003908.234520	GENIE.DFCI.002183.6917
	ABCB11	0	0
	ABL1	0	0
	ABL2	NA	NA
	ACTB	NA	NA
	ACTG1	NA	NA

After:

<pre>1 gnomeR::pivot_cna_longer(cna)</pre>						
hugo_symbol	sample_id	alteration				
APC	GENIE-DFCI-003908-234520	gain				
ARID1B	GENIE-DFCI-003908-234520	loss				
BCL2	GENIE-DFCI-003908-234520	loss				
BCL6	GENIE-DFCI-002183-6917	gain				
CARD11	GENIE-DFCI-002183-6917	gain				

```
1 mutations <- nsclc_synapse_data$NSCLC_v2.0$mutations_extended
2 cna <- nsclc_synapse_data$NSCLC_v2.0$cna
3 fusions <- nsclc_synapse_data$NSCLC_v2.0$fusions</pre>
```

```
1 reformat_fusions <- gnomeR::reformat_fusion(fusions)
2
3 nrow(reformat_fusions)</pre>
```

[1] 538

```
1 reformat_cna <- gnomeR::pivot_cna_longer(cna)
2
3 nrow(reformat_cna)</pre>
```

[1] 38163

Basic code:

```
1 gnomeR::create_gene_binary(
2 mutation = mutations,
3 cna = reformat_cna,
4 fusion = reformat_fusions)
```

Data is now in standardized format and can be processed using {gnomeR}
 create_gene_binary()

Basic code:

```
gnomeR::create_gene_binary(
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions)
```

- Data is now in standardized format and can be processed using {gnomeR}
 create_gene_binary()
- We will add additional arguments to create_gene_binary() to help address remaining data processing issues

Basic code:

```
gnomeR::create_gene_binary(
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions)
```

Cohort Inclusion

2. Cohort Inclusion

• Samples with no alterations may be dropped when pulling raw genomic data

```
gnomeR::create_gene_binary(
mutation = mutations,

cna = reformat_cna,
fusion = reformat_fusions

samples = nsclc_samp$cpt_genie_sample_id)
```

The samples argument will ensure all study IDs have a row in resulting analysis data, even if they are not present in genomic files

Not All Patients Tested on Same Panel

(i)

4. Multi-Institutional Studies Use Several Gene Panels

• Samples may be sequenced using different panels therefore the non overlapping genes have to be annotated as missing

```
gnomeR::create_gene_binary(
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions,
samples = nsclc_samp$cpt_genie_sample_id,
specify_panel = nsclc_panels)
```

The specify_panels argument can insert NAs when we know that gene was not tested for a specific set of patients.

Not All Patients Tested on Same Panel

To use specify_panels, we first need to create a data frame indicating which patient IDs were sequenced on which panels.

sample_id	panel_id
GENIE-DFCI-000013-8840	DFCI-ONCOPANEL-2
GENIE-DFCI-000136-6004	DFCI-ONCOPANEL-2
GENIE-DFCI-000215-8010	DFCI-ONCOPANEL-2
GENIE-DFCI-000381-9526	DFCI-ONCOPANEL-2
GENIE-DFCI-000410-10003	DFCI-ONCOPANEL-2
GENIE-DFCI-000583-11175	DFCI-ONCOPANEL-2

Not All Patients Tested on Same Panel

Without Panel Annotation

```
binmat1 <- gnomeR::create_gene_binary(
  mutation = mutations,
  cna = reformat_cna,
  fusion = reformat_fusions,
  samples = nsclc_samp$cpt_genie_sample_id,
  specify_panel = "no")</pre>
```

sample_id	panel_id	GLI2	KRAS	PIK3C2B	PBRM1
GENIE-DFCI-004022- 1313	DFCI- ONCOPANEL-1	0	0	0	0
GENIE-DFCI-000013- 8840	DFCI- ONCOPANEL-2	0	1	0	0
GENIE-MSK-P-0002725- T01-IM3	MSK-IMPACT341	0	1	0	0
GENIE-MSK-P-0017722- T02-IM6	MSK-IMPACT468	0	0	0	0

With Panel Annotation

```
binmat2 <- gnomeR::create_gene_binary(
mutation = mutations,

cna = reformat_cna,
fusion = reformat_fusions,
samples = nsclc_samp$cpt_genie_sample_id,
specify_panel = nsclc_panels)</pre>
```

sample_id	panel_id	GLI2	KRAS	PIK3C2B	PBRM1
GENIE-DFCI-004022- 1313	DFCI- ONCOPANEL-1	0	0	0	NA
GENIE-DFCI-000013- 8840	DFCI- ONCOPANEL-2	0	1	0	0
GENIE-MSK-P-0002725- T01-IM3	MSK-IMPACT341	NA	1	NA	0
GENIE-MSK-P-0017722- T02-IM6	MSK-IMPACT468	NA	0	NA	0

Ensure Gene Names Are Consistent Across Studies

(i) 2. Data Formats & Gene Standards Often Inconsistent

• Column names, data formats and gene names may differ between studies or even within studies.

```
1 no_recode <- gnomeR::create_gene_binary(
2    samples = nsclc_samp$cpt_genie_sample_id,
3    mutation = mutations,
4    cna = reformat_cna,
5    fusion = reformat_fusions,
6    specify_panel = nsclc_panels,
7    recode_aliases = "no")</pre>
```

```
recode <- gnomeR::create_gene_binary(
samples = nsclc_samp$cpt_genie_sample_id,
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions,
specify_panel = nsclc_panels,
recode_aliases = "impact")</pre>
```

```
1 setdiff(names(no_recode), names(recode)) %>% head()
```

[1] "MRE11A" "RFWD2" "H3F3A" "FAM46C" "HIST1H3D" "WHSC1L1"

Process Data: Final Dataset

Let's run create_gene_binary() with the samples, specify_panel and recode_aliases arguments.

First we create nsclc_panels:

```
1 nsclc_panels <- data.frame(
2 sample_id = nsclc_samp$cpt_genie_sample_id,
3 panel_id = nsclc_samp$cpt_seq_assay_id) %>%
4 mutate(panel_id = ifelse(!is.na(panel_id),
5 panel_id, "no"))
```

Then run create_gene_binary():

```
gene_binary <- gnomeR::create_gene_binary(
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions,
samples = nsclc_samp$cpt_genie_sample_id,
specify_panel = nsclc_panels,
recode_aliases = "impact")</pre>
```


Analyzing Data

1. Multiple Testing and False Positives

• Many hypothesis tests done simultaneously can lead to high rate of false positive findings.

1. Multiple Testing and False Positives

- Many hypothesis tests done simultaneously can lead to high rate of false positive findings.
- Very low prevalence genes are often not very informative.

1. Multiple Testing and False Positives

- Many hypothesis tests done simultaneously can lead to high rate of false positive findings.
- Very low prevalence genes are often not very informative.
- Choose a threshold (e.g. 1% or 5 %) *a prior* to limit number of hypothesis tests and consider reporting a q-value (adjusted for multiple testing).

1. Multiple Testing and False Positives

- Many hypothesis tests done simultaneously can lead to high rate of false positive findings.
- Very low prevalence genes are often not very informative.
- Choose a threshold (e.g. 1% or 5 %) *a prior* to limit number of hypothesis tests and consider reporting a q-value (adjusted for multiple testing).

2. Limited Power To Detect Clinical Associations When Sparse Alterations

- (i)
- 1. Multiple Testing and False Positives
- Many hypothesis tests done simultaneously can lead to high rate of false positive findings.
- Very low prevalence genes are often not very informative.
- Choose a threshold (e.g. 1% or 5 %) *a prior* to limit number of hypothesis tests and consider reporting a q-value (adjusted for multiple testing).
- 2. Limited Power To Detect Clinical Associations When Sparse Alterations
 - If biologically meaningful, you may want to summarize on alteration, gene or pathway Level

Case Study

Case Study

• We will use the processed binary data frame data (gene_binary) to summarize genomic alterations overall in the cohort, and by sex.

Case Study

• We will use the processed binary data frame data (gene_binary) to summarize genomic alterations overall in the cohort, and by sex.

• First, we need to join clinical data on sex to genomic data

Add Clinical Variable To Data

```
# get patient IDs and sample IDs
 2 patient index <- nsclc cohort$cohort ngs %>%
      select(record id, cpt genie sample id)
   # Join sex data to patient ID index
 6 select clinical <- nsclc cohort$cohort pt char %>%
     select(record id, naaccr sex code) %>%
     left join(patient index)
 9
10 # Join all to gene binary data
   gene binary <- gene binary %>%
12
     left join(select clinical,
               by = c("sample id"= "cpt genie sample id")) %>%
13
14
     select(-record id)
15
   gene binary <- gene binary %>%
16
17
     select(sample id, naaccr sex code, everything())
18
19
   gene binary %>%
     select(naaccr sex code) %>%
20
21
     tbl summary()
```


Characteristic	N = 241 ¹
naaccr_sex_code	
Female	145 (60%)
Male	96 (40%)
¹ n (%)	

Subset By a Prevalence Threshold

```
1. Multiple Testing and False Positives
```

- Use subset_by_frequency(t) to subset genes above a given threshold
- t indicates a prevalence threshold between 0 (t = 0) and 100% (t = 1)
- other_vars retains the clinical variable of interest in the resulting data set

Subset By 40% Threshold

```
1 ncol(gene_binary)
```

[1] 1403

```
1 nsclc_subset <- gene_binary %>%
2 subset_by_frequency(t = .4, other_vars = naaccr_sex_code)
3
4 ncol(nsclc_subset)
```

[1] 6

Subset by a Panel

Use subset_by_panel() to subset genes in a given targeted panel.

```
1 ncol(gene_binary)

[1] 1403

1 nsclc_subset_panel <- gene_binary %>%
2 subset_by_panel(panel_id = 'IMPACT300', other_vars = naaccr_sex_code)
3
4 ncol(nsclc_subset_panel)
```

[1] 220

Summarize Alterations with tbl_genomic()

- tbl_genomic() is a wrapper function for gtsummary::tbl_summary() specifically designed for presenting genomic data
- You can use any {gtsummary} function on top of tbl_genomic() to customize the table (e.g. bold_labels())

Summarize Alterations with tbl_genomic

Create a simple tbl_genomic object, then bold the labels.

```
1 nsclc_subset %>%
2 select(-naaccr_sex_code) %>%
3 tbl_genomic() %>%
4 bold_labels()
```

Characteristic	N = 241 ¹
TP53	124 (51%)
GBA.Amp	17 (46%)
Unknown	204
KRAS	98 (41%)
JAZF1.Amp	15 (41%)
Unknown	204
¹ n (%)	

Summarize Genes with tbl_genomic()

You may want to analyze on the gene level instead of the alteration level.

Use summarize_by_gene() first, then pass to tbl_genomic():

```
\triangle
```

Note: summarize_by_gene() should come before passing to subset_by_frequency()

```
1 tbl gene <- gene binary %>%
    select(-naaccr sex code) %>%
    summarize by gene() %>%
    subset by frequency(t = .4) %>%
   tbl genomic()
  tbl gene
```

Characteristic	N = 241 ¹
TP53	135 (56%)
GBA	17 (46%)
Unknown	204
PTK2B	17 (46%)
Unknown	204
KRAS	107 (44%)
WRN	38 (41%)
Unknown	149
JAZF1	15 (41%)
Unknown	204
¹ n (%)	

Summarize Oncogenic Pathways

- (i)
- 2. Limited Power To Detect Clinical Associations When Sparse Alterations
- If biologically meaningful, you may want to summarize on Alteration, Gene or Pathway Level

Often we want to analyze alterations on the pathway level.

Summarize Oncogenic Pathways

- (i) 2. Limited Power To Detect Clinical Associations When Sparse Alterations
 - If biologically meaningful, you may want to summarize on Alteration, Gene or Pathway Level

{gnomeR} offers several default pathways that can be added with add_pathways()

```
1 paths <- gnomeR::pathways %>% names()
2 paths
```

- [1] "RTK/RAS" "Nrf2" "PI3K" "TGFB" "p53"
- [6] "Wnt" "Myc" "Cell cycle" "Hippo" "Notch"

Summarize Oncogenic Pathways

You can also add a custom pathway:

```
path_df <- gene_binary %>%
add_pathways(custom_pathways = c("SPOP.mut", "FOXA1.mut"))

path_df %>% select("pathway_custom") %>%
tbl_summary()
```

```
Characteristic N = 241^{\circ}
pathway_custom 2 (0.8%)
```

Note: You must specify .mut, .Amp, .Del for alterations custom_pathways

Summarize Alteration Pathways

```
path df <- gene binary %>%
  select(-naaccr_sex_code) %>%
  add_pathways()
path df %>%
  select(contains("pathway")) %>%
  tbl summary() %>%
  bold labels()
```


Summarize Alteration Pathways

```
path df <- gene binary %>%
  select(-naaccr_sex_code) %>%
  add_pathways()
path df %>%
  select(contains("pathway")) %>%
  tbl summary() %>%
  bold labels()
```

Characteristic	N = 241 ¹
pathway_RTK/RAS	217 (90%)
pathway_Nrf2	48 (20%)
pathway_PI3K	114 (47%)
pathway_TGFB	34 (14%)
pathway_p53	181 (75%)
pathway_Wnt	51 (21%)
pathway_Myc	70 (29%)
pathway_Cell cycle	90 (37%)
pathway_Hippo	31 (13%)
pathway_Notch	72 (30%)
¹ n (%)	

We can easily compare frequencies by sex using the by argument:

```
1 tbl_gene <- gene_binary %>%
2    subset_by_frequency(
3    t = .4,
4    other_vars = naaccr_sex_code) %>%
5    tbl_genomic(by = naaccr_sex_code) %>%
6    bold_labels()
7
8 tbl_gene
```

We can easily compare frequencies by sex using the by argument:

```
1 tbl_gene <- gene_binary %>%
2    subset_by_frequency(
3         t = .4,
4         other_vars = naaccr_sex_code) %>%
5         tbl_genomic(by = naaccr_sex_code) %>%
6         bold_labels()
7
8 tbl_gene
```

Characteristic	Overall , $N = 241^{1}$	Female , N = 145^{1}	Male , $N = 96^{1}$
TP53	124 (51%)	72 (50%)	52 (54%)
GBA.Amp	17 (46%)	8 (36%)	9 (60%)
Unknown	204	123	81
KRAS	98 (41%)	66 (46%)	32 (33%)
JAZF1.Amp	15 (41%)	9 (41%)	6 (40%)
Unknown	204	123	81
¹ n (%)			

(i)

1. Multiple Testing and False Positives

We can use {gtsummary}'s add_p() and add_q() for hypothesis testing

```
1 tbl_gene <- gene_binary %>%
2    subset_by_frequency(
3         t = .4,
4         other_vars = naaccr_sex_code) %>%
5         tbl_genomic(
6         by = naaccr_sex_code) %>%
7         bold_labels() %>%
8         add_p() %>%
9         add_q()
10
11 tbl_gene
```

Characteristic	Overall, $N = 241^{1}$	Female, $N = 145^{\circ}$	Male , $N = 96^{1}$	p-value ²	q-value ³
TP53	124 (51%)	72 (50%)	52 (54%)	0.5	0.7
GBA.Amp	17 (46%)	8 (36%)	9 (60%)	0.2	0.3
Unknown	204	123	81		
KRAS	98 (41%)	66 (46%)	32 (33%)	0.059	0.2
JAZF1.Amp	15 (41%)	9 (41%)	6 (40%)	>0.9	>0.9
Unknown	204	123	81		

¹ n (%)

² Pearson's Chi-squared test

³ False discovery rate correction for multiple testing

```
1 tbl_gene <- gene_binary %>%
2    subset_by_frequency(
3         t = .4,
4         other_vars = naaccr_sex_code) %>%
5         tbl_genomic(by = naaccr_sex_code) %>%
6         bold_labels() %>%
7         add_p() %>%
8         add_q()
9
10 tbl_gene
```

Characteristic	Overall, $N = 241^{7}$	Female, $N = 145^{1}$	Male , N = 96 ¹	p-value ²	q-value ³
TP53	124 (51%)	72 (50%)	52 (54%)	0.5	0.7
GBA.Amp	17 (46%)	8 (36%)	9 (60%)	0.2	0.3
Unknown	204	123	81		
KRAS	98 (41%)	66 (46%)	32 (33%)	0.059	0.2
JAZF1.Amp	15 (41%)	9 (41%)	6 (40%)	>0.9	>0.9
Unknown	204	123	81		

¹ n (%)

² Pearson's Chi-squared test

³ False discovery rate correction for multiple testing

Visualize Data

1 gnomeR::ggcomut(nsclc_cohort\$cohort_mutations_extended)

Visualize Data

1 gnomeR::ggtopgenes(nsclc_cohort\$cohort_mutations_extended)

Additional Items & Next Steps

- Additional visualizations and color palettes useful for genomic data are available in {gnomeR} package
- Some data may require additional data checks. See {gnomeR vignette} for helpful tips on data QA.
- It may be appropriate to **oncoKB annotate** your data and only analyze oncogenic mutations (see oncoKB.org for more information)
- Some projects may utilize CNA Segmentation data. See {gnomeR documentation} for more information on available tools.

Conclusion

- The {genieBPC} & {gnomeR} R packages offer a reproducible pipeline to create cohorts for clinico-genomics analyses
- {genieBPC} streamlines data access and clinical data processing from multiple clinical data files of varying structure to create analytic cohorts
- {gnomeR} facilitates annotation and analysis of complicated genomic data.

Thank You!