

X Bit Labs IN - Software Training Institute

code.xbitlabs.in - Free Coding Tutorials

Training sessions

Master Tomorrow's skill with Hands-On Learning - with www.xbitlabs.in

1

Date :	Oct 19 2024	Board :	CBSE
Class:	12	Session # :	9
Subject :	Mathematics	Assignment # :	DeA2
Topic :	Differential Equations	Subtopic(s):	Homogeneous Differential Equations (First-order)
Lecture #:	2		

Homogeneous Differential Equations

A homogeneous differential equation is a type of differential equation where the relationship between the variables can be expressed in a form where each term has the same degree when considered as a function of the independent variable and its derivatives.

There are two major contexts where "homogeneous" is used for differential equations:

- 1. First-order homogeneous differential equations (referring to functions of one variable).
- 2. Higher-order homogeneous linear differential equations (with constant or variable coefficients).

1. First-Order Homogeneous Differential Equations

A first-order homogeneous differential equation is typically of the form:

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

In this case, the function $f\left(\frac{y}{x}\right)$ is a homogeneous function of degree 0, meaning it can be expressed entirely in terms of the ratio $\frac{y}{x}$. These types of differential equations are solvable using a substitution technique that simplifies the equation into a separable form.

Substitution to Solve:

- 1. Set $v=rac{y}{x}$, so that y=vx.
- 2. Differentiate y=vx with respect to x to get $\frac{dy}{dx}=v+x\frac{dv}{dx}.$
- 3. Substitute v and $\frac{dy}{dx}$ into the original equation, which reduces it to a separable form in terms of v and x.
- 4. Solve the resulting equation using standard techniques for separable differential equations.

Example:

$$\frac{dy}{dx} = \frac{y}{x}$$

Here, the right-hand side is a homogeneous function of degree 0, since $\frac{y}{x}$ depends only on the ratio of y and x.

Solution:

- 1. Set $v=rac{y}{x}$, so that y=vx.
- 2. Differentiate to get $rac{dy}{dx}=v+xrac{dv}{dx}.$
- 3. Substitute: $v+x\frac{dv}{dx}=v$, and simplify to $x\frac{dv}{dx}=0$.
- 4. This implies $rac{dv}{dx}=0$, so v is constant, meaning v=C.
- 5. Therefore, y = Cx, which is the general solution.

Session Board:

Homogeneous diffequation
$$\frac{dy}{du} = \frac{x+2y}{x-y}$$

$$\frac{dy}{du} = \frac{k(x)+2k(y)}{k(x)-k(y)}$$

$$= \frac{k(x)+2k(y)}{k(x-y)}$$

$$= \frac{1}{k^{2}} \left(\frac{x+2y}{x-y} \right)$$

$$= \frac{1}{k^{2}} \left(\frac{x}{x-y} \right)$$

$$= \kappa^{\gamma} f(x_1 y)$$

$$\frac{dy}{dx} = \frac{x^2 + y}{1 + y}$$

$$f(x_1 y) = \frac{x^2 + y}{1 + y}$$

$$f(\lambda x_1 \lambda y) = \frac{\lambda^2 x^2 + \lambda y}{1 + \lambda y}$$

$$= \lambda \left(\lambda x_1^2 + y\right)$$

$$\frac{1 + \lambda y}{(1 + \lambda y)}$$

$$\frac{\partial y}{\partial x} = \frac{3x - 2y}{5x + 5y}$$

$$F(x,y) = \frac{3x - 2y}{5x + 5y}$$

$$x = 2x$$

$$y = 2y$$

$$F(x,y) = \frac{3(2x) - 2(2y)}{9(2x) + 9(2y)}$$

$$F(x_1, x_2) = \frac{\lambda(3x - 2y)}{\lambda(9x + 5y)}$$

$$F(x_1, x_2) = \lambda^0(3x - 2y)$$

$$= \frac{\lambda^0}{2x + 5y}$$

$$= \frac{\lambda^0}{2x + 5y}$$

$$= \frac{\lambda^0}{2x + 5y}$$
(Itomogeneous).

$$\frac{dy}{dx} = \frac{x+2y}{x-y}$$

$$F(x,y) = \frac{x}{x} + \frac{2y}{x}$$

$$\frac{-x}{x} - \frac{x}{x}$$

$$= \frac{1+2(x)}{1-(x)} = g(x)$$

$$\frac{(n-y)}{dn} = \frac{(n+2y)}{dn}$$

$$\frac{dy}{dn} = \frac{n+2y}{n-y} \qquad (Momogeness)$$

$$df = \frac{\sqrt{x}}{\sqrt{x}} \qquad (\sqrt{x})$$

$$df = \frac{\sqrt{x}}{\sqrt{x}} + \sqrt{x}$$

$$\frac{dy}{dv} = \sqrt{+x} \frac{dv}{dn}$$

$$\sqrt{+x} \frac{dv}{dn} = \frac{x + 2vx}{n - vx}$$

$$\sqrt{+x} \frac{dv}{dn} = \frac{x}{n} \frac{(1+2v)}{1-v}$$

$$\sqrt{+x} \frac{dv}{dn} = \frac{1+2v}{1-v} - v$$

$$\frac{2}{dv} = \frac{1+2v - v + v^2}{1-v}$$

$$\frac{2}{dv} = \frac{1+v + v^2}{1-v}$$

$$\frac{(1-v)}{1+v + v^2} dv = \frac{1}{v} dv$$

$$\frac{(1-v)}{1+v + v^2} dv = \frac{1}{v} dv$$

$$\frac{(1-v)}{1+v + v^2} dv = \frac{1}{v} dv$$

$$\frac{(1-v)}{1-v} dv$$

$$\frac{(1-v)}{1$$

$$-\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ -\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} & dv \\ -\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} & dv \\ -\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} & dv \\ -\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} & dv \\ -\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} & dv \\ -\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} & dv \\ -\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} & dv \\ -\frac{3}{2}\left(\begin{array}{c} \frac{1}{\sqrt{2+v+1}} & dv \\ \frac{1}{\sqrt{2+v+1}} &$$

$$\frac{dy}{dn} = \frac{y\cos(\frac{y}{2}) + x}{x\cos(\frac{y}{2})}$$

$$F(x,y) = \frac{y\cos(\frac{y}{2}) + x}{x\cos(\frac{y}{2})}$$

$$F(\lambda x, \lambda y) = \frac{\lambda y \times \cos(\frac{xy}{2}) + \lambda x}{\lambda x}$$

$$= \frac{\lambda \left[y\cos(\frac{y}{2}) + x\right]}{\lambda x\cos(\frac{xy}{2})}$$

$$= \frac{\lambda \left[y\cos(\frac{y}{2}) + x\right]}{\lambda x\cos(\frac{y}{2})}$$

$$= x^{3} F(x, y)$$

$$= y^{3} \cos(\frac{y}{x}) + x$$

$$= x^{3} F(x, y)$$

Now complete this assignment #DeA2:

#DeA2:

Example 10 Show that the differential equation $(x-y)\frac{dy}{dx} = x + 2y$ is homogeneous and solve it.

Example 11 Show that the differential equation $x\cos\left(\frac{y}{x}\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) + x$ is homogeneous and solve it.

Example 12 Show that the differential equation $2y e^{\frac{x}{y}} dx + \left(y - 2x e^{\frac{x}{y}}\right) dy = 0$ is homogeneous and find its particular solution, given that, x = 0 when y = 1.

Example 13 Show that the family of curves for which the slope of the tangent at any point (x, y) on it is $\frac{x^2 + y^2}{2xy}$, is given by $x^2 - y^2 = cx$.

In each of the Exercises 1 to 10, show that the given differential equation is homogeneous and solve each of them.

1.
$$(x^2 + xy) dy = (x^2 + y^2) dx$$
 2. $y' = \frac{x + y}{x}$

$$2. \quad y' = \frac{x+y}{x}$$

3.
$$(x - y) dy - (x + y) dx = 0$$

3.
$$(x - y) dy - (x + y) dx = 0$$
 4. $(x^2 - y^2) dx + 2xy dy = 0$

5.
$$x^2 \frac{dy}{dx} = x^2 - 2y^2 + xy$$

6.
$$x dy - y dx = \sqrt{x^2 + y^2} dx$$

7.
$$\left\{x\cos\left(\frac{y}{x}\right) + y\sin\left(\frac{y}{x}\right)\right\}y \, dx = \left\{y\sin\left(\frac{y}{x}\right) - x\cos\left(\frac{y}{x}\right)\right\}x \, dy$$

$$8. \quad x\frac{dy}{dx} - y + x\sin\left(\frac{y}{x}\right) = 0$$

8.
$$x \frac{dy}{dx} - y + x \sin\left(\frac{y}{x}\right) = 0$$
 9. $y dx + x \log\left(\frac{y}{x}\right) dy - 2x dy = 0$

10.
$$\left(1+e^{\frac{x}{y}}\right)dx+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy=0$$

For each of the differential equations in Exercises from 11 to 15, find the particular solution satisfying the given condition:

11.
$$(x + y) dy + (x - y) dx = 0$$
; $y = 1$ when $x = 1$

12.
$$x^2 dy + (xy + y^2) dx = 0$$
; $y = 1$ when $x = 1$

13.
$$\left[x \sin^2 \left(\frac{y}{x} \right) - y \right] dx + x dy = 0; \ y = \frac{\pi}{4}$$
 when $x = 1$

14.
$$\frac{dy}{dx} - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0$$
; $y = 0$ when $x = 1$

15.
$$2xy + y^2 - 2x^2 \frac{dy}{dx} = 0$$
; $y = 2$ when $x = 1$

16. A homogeneous differential equation of the from $\frac{dx}{dy} = h\left(\frac{x}{y}\right)$ can be solved by making the substitution.

(A)
$$y = vx$$

(B)
$$v = yx$$

(C)
$$x = vy$$
 (D) $x = v$

(D)
$$x = v$$

17. Which of the following is a homogeneous differential equation?

(A)
$$(4x + 6y + 5) dy - (3y + 2x + 4) dx = 0$$

(B)
$$(xy) dx - (x^3 + y^3) dy = 0$$

(C)
$$(x^3 + 2y^2) dx + 2xy dy = 0$$

(D)
$$y^2 dx + (x^2 - xy - y^2) dy = 0$$

End