Chapitre 40

Arithmétique dans \mathbb{Z} .

Sommaire.

1	Divisibilité dans $\mathbb Z$	1
	1.1 Définition et propriétés élémentaires	1
	1.2 Division euclidienne	2
	1.3 PPCM de deux entiers	2
	1.4 PGCD de deux entiers	2
2	Entiers premiers entre eux.	4
	2.1 Couples d'entiers premiers entre eux	4
	2.2 Produit de diviseurs, diviseurs d'un produit	5
	2.3 Le cas des diviseurs premiers	
	2.4 Extension à un nombre fini de vecteurs	6
3	Théorème fondamental de l'arithmétique et applications.	7
	3.1 Le TFAr	7
	3.2 Valuations p-adiques	
4	Congruences.	9
	4.1 Une relation d'équivalence compatible avec la somme et le produit	g
	4.2 Inversibilité modulo n	
	4.3 Petit théorème de Fermat	
5	Exercices.	11

Les propositions marquées de \star sont au programme de colles.

Divisibilité dans \mathbb{Z}

Définition et propriétés élémentaires.

Définition 1

Soit $(a, b) \in \mathbb{Z}^2$. On dit que b divise a $(b \mid a)$ s'il existe $k \in \mathbb{Z}$ tel que a = kb.

On dit aussi que b est **diviseur** de a, ou que a est **multiple** de b.

Notations pour les ensembles de diviseurs et multiples de $a \in \mathbb{Z}$:

$$\mathcal{D}(a) = \{b \in \mathbb{Z} : b \mid a\} \qquad \text{et} \qquad a\mathbb{Z} = \{ak, k \in \mathbb{Z}\}.$$

Proposition 2: Faits immédiats.

Tous les entiers divisent 0 et 1 divise tous les entiers. Ajoutons que pour $(a, b, c) \in \mathbb{Z}^3$,

- 1. Si b est diviseur de a et si $a \neq 0$, alors $|b| \leq |a|$.
- 2. $b \mid a \iff a\mathbb{Z} \subset b\mathbb{Z}$. 3. Si $c \mid a$ et $c \mid b$, alors $c \mid au + bv$, pour tous u et v dans \mathbb{Z} .

Preuve:

1. Supposons que $b \mid a$ et $a \neq 0$, alors $\exists k \in \mathbb{Z} \mid a = bk$ et |a| = |b||k|.

De plus, $k \neq 0$ car $a \neq 0$, donc $|k| \geq 1$ et $|kb| \geq |b|$, on obtient bien $|a| \geq |b|$.

2. Supposons que $b \mid a$, alors $\exists k \in \mathbb{Z} \mid a = bk$, soit $m \in a\mathbb{Z} : \exists k' \in \mathbb{Z} \mid m = ak' \text{ donc } m = bkk' \text{ donc } m \in b\mathbb{Z}$. Supposons $a\mathbb{Z} \subset b\mathbb{Z}$, on a $a \in a\mathbb{Z}$ donc $a \in b\mathbb{Z}$ donc $b \mid a$.

3. Supposons que $c \mid a$ et $c \mid b : \exists k, k' \in \mathbb{Z} \mid a = kc, b = k'c$. Soient $u, v \in \mathbb{Z}$.

On a alors au + bv = kuc + k'vc = (ku + k'v)c avec $ku + k'v \in \mathbb{Z}$, donc $c \mid au + bv$.

Proposition 3: Plus une relation d'ordre!

Sur \mathbb{Z} , la relation divise est réflexive, transitive, mais pas antisymétrique. On a

$$\forall (a,b) \in \mathbb{Z}^2 \quad (a \mid b \text{ et } b \mid a) \iff (a = b \text{ ou } a = -b).$$

Dans le cas où $(a \mid b)$ et $(b \mid a)$, ont dit que a et b sont **associés**.

Preuve:

← Trivial.

 \implies Supposons que $a \mid b$ et $b \mid a$. Alors $\exists k, k' \in \mathbb{Z} \mid a = kb$ et b = k'a.

On a alors b = bkk'. Si b = 0, alors a = 0 donc a = b. Sinon, kk' = 1 donc $k = \pm 1$ et $a = \pm b$.

1.2 Division euclidienne.

Théorème 4

Soit $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$. Il existe un unique couple $(q,r) \in \mathbb{Z}^2$ tel que

$$a = bq + r$$
 et $0 \le r < b$.

Les entiers q et r sont appelés **quotient** et **reste** dans la division euclidienne de a par b.

Preuve:

Unicité:

Soit $(q,r) \in \mathbb{Z}^2$ et $(q',r') \in \mathbb{Z}^2$ avec $0 \le r,r' < b$ tels que a = bq + r et a = bq' + r'.

On a bq' + r' = bq + r donc b(q' - q) = r - r'. De plus, $0 \le r, r' < b$ donc $-b < -r' \le 0$.

Ainsi, $-b < r - r' < b \text{ donc } -b < b(q' - q) < b \text{ donc } -1 < q' - q < 1 \text{ donc } q' = q \text{ car } q - q' \in \mathbb{Z}.$

Donc $r - r' = b \cdot 0 = 0$ donc (q, r) = (q', r').

Existence:

On pose $q = \left| \frac{a}{b} \right|$ et r = a - bq. On a bien a = bq + r.

On a $\lfloor \frac{a}{b} \rfloor \leq \frac{a}{b} < \lfloor \frac{a}{b} \rfloor + 1$ donc $q \leq \frac{a}{b} < q + 1$ donc $qb \leq a < qb + b$ donc $0 \leq a - bq < b$ donc $0 \leq r < b$.

Proposition 5

Soient a et b deux entiers relatifs.

L'entier b divise a si et seulement si le reste de la division euclidienne de a par |b| est nul.

Preuve:

← Trivial.

⇒ Par unicité du reste.

1.3 PPCM de deux entiers.

Définition 6

Soient a, b deux entiers relatifs.

- 1. Si a et b sont non nuls, on appelle **Plus Petit Commun Multiple** de a et b, note $a \lor b$, ou encore PPCM(a, b), le plus petit élément strictement positif de $a\mathbb{Z} \cap b\mathbb{Z}$.
- 2. Si a ou b vaut 0, on pose $a \lor b = 0$.

Proposition 7

Soit $(a,b) \in \mathbb{Z}^2$. Leur PPCM $a \vee b$ est l'unique entier positif m tel que

$$a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}.$$

Preuve:

Unicité:

Soient $m, m' \in \mathbb{N}$ tels que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$ et $a\mathbb{Z} \cap b\mathbb{Z} = m'\mathbb{Z}$.

Alors $m\mathbb{Z} = m'\mathbb{Z}$ donc m et m' sont associés (et positifs) donc m = m'.

Existence:

On a $a\mathbb{Z}$ sous-groupe de $(\mathbb{Z},+)$, $b\mathbb{Z}$ aussi, par intersection de groupes, $a\mathbb{Z} \cap b\mathbb{Z}$ l'est aussi.

Or les sous-groupes de \mathbb{Z} sont de la forme $m\mathbb{Z}$ avec $m \in \mathbb{N}$. Donc il existe un unique $m \in \mathbb{N}$ tel que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$.

Vérifions que m = PPCM(a, b). Clair: m est multiple commun de a et b.

De plus, $a\mathbb{Z} \cap b\mathbb{Z} \cap \mathbb{N} = m\mathbb{Z} \cap \mathbb{N} = \{0, m, 2m, ...\}.$

Donc si m = 0, PPCM(a, b) = 0, sinon PPCM(a, b) = m.

Théorème 8

Soient a et b deux entier relatifs. Leur PPCM $a \vee b$ est l'unique entier positif m tel que

le PPCM est un multiple commun.

2. $\forall \mu \in \mathbb{Z}, \ (\dot{a} \mid \mu \text{ et } b \mid \mu) \Longrightarrow m \mid \mu,$ tout multiple commun est multiple du PPCM.

Preuve:

Unicité: Soient m, m' satisfaisant 1. et 2.

On a $m \mid m'$ et $m' \mid m$, par antisymétrie sur \mathbb{N} , m = m'.

Existence: Posons m = PPCM(a, b).

Il satisfait 1. par définition. Soit $\mu \in \mathbb{Z}$ un multiple commun, alors $\mu \in a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, donc $m \mid \mu$.

PGCD de deux entiers. 1.4

Définition 9

Soient a, b deux entiers relatifs.

- 1. Si a et b sont non nuls, on appelle **Plus Grand Commun Diviseur** de a et b, note $a \wedge b$, ou encore PGCD(a, b), le plus grand élément positif de $\mathcal{D}(a) \cap \mathcal{D}(b)$. Si a = b = 0, on pose $a \wedge b = 0$.

$$\forall (a,b) \in \mathbb{Z}^2 \quad a \wedge b = |a| \wedge |b|$$

Preuve:

On a:

$$\mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(|a|) \cap \mathcal{D}(|b|).$$

On n'a plus qu'à passer au max.

Proposition 11: Lemme d'Euclide.

Soient a, b, c, d quatre entiers relatifs. Si a = bc + d, alors on a $a \wedge b = b \wedge d$.

Preuve:

Supposons que a = bc + d. Se convaincre que $\mathcal{D}(a, b) = \mathcal{D}(b, d)$ puis passer au max.

Méthode

Ce lemme est l'idée principale de l'algorithme d'Euclide, vu dans le "petit" cours d'arithmétique. Si $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$, on peut appliquer cet algorithme à |a| et |b| pour calculer $a \wedge b$.

Proposition 12: Le sous-groupe de \mathbb{Z} sous-jacent.

Soit $(a,b) \in \mathbb{Z}^2$. Notons $a\mathbb{Z} + b\mathbb{Z} = \{au + bv, \ (u,v) \in \mathbb{Z}^2\}$. C'est un sous-groupe de \mathbb{Z} .

Le PGCD $a \wedge b$ est l'unique entier positif d tel que

$$a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}.$$

En particulier, il existe un couple $(u, v) \in \mathbb{Z}^2$ tel que d = au + bv (relation de Bézout).

Preuve:

On a $a\mathbb{Z} + b\mathbb{Z} = \{au + bv \mid (u, v) \in \mathbb{Z}^2\}.$

C'est un sous-groupe de $\mathbb Z$ car $0=a\cdot 0+b\cdot 0\in a\mathbb Z+b\mathbb Z$ et,

Pour $(m, m') \in (a\mathbb{Z} + b\mathbb{Z})^2$, $\exists (u, v, u', v') \in \mathbb{Z} \mid m = au + bv \text{ et } m' = au' + bv'$

Donc $m - m' = a(u - u') + b(v - v') \in a\mathbb{Z} + b\mathbb{Z}$.

D'après le cours sur les structures algébriques, il existe $d \in \mathbb{N} \mid a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Unicité: Si d, d' conviennent, $d\mathbb{Z} = d'\mathbb{Z}$, ils sont associés et positits donc d = d'.

Montrons que d = PGCD(a, b).

On a $d \mid a$ et $d \mid b$ car $a\mathbb{Z} \subset a\mathbb{Z} + b\mathbb{Z} \subset d\mathbb{Z}$, pareil pour $b\mathbb{Z}$.

Soit $\delta \in \mathbb{N}$ diviseur de a et b, on a $\exists (u, v) \in \mathbb{Z}^2 \mid d = uv + bv$.

Puisque δ divise a et b, alors δ divise au + bv = d.

Si $d \neq 0$, $\delta \mid d \Longrightarrow \delta \leq d$, sinon, d = 0 donc a = b = 0 donc d = PGCD(a, b) = 0.

Méthode : Écriture effective d'une relation de Bézout.

En remontant les divisions euclidiennes écrites lors de l'exécution de l'algorithme d'Euclide.

Proposition 13

$$\forall (a,b) \in \mathbb{Z}^2, \quad \forall k \in \mathbb{Z}, \quad \text{PGCD}(ka,kb) = |k| \cdot \text{PGCD}(a,b).$$

Preuve:

On a $a\mathbb{Z} + b\mathbb{Z} = (a \wedge b)\mathbb{Z}$ donc $ka\mathbb{Z} + kb\mathbb{Z} = |k|(a \wedge b)\mathbb{Z}$.

On a aussi $ka \wedge kb = |k|(a \wedge b)$.

Théorème 14: Une caractérisation du PGCD

Soient a et b deux entiers relatifs. Leur PGCD $a \wedge b$ est l'unique entier positif d tel que

 $\begin{array}{ll} 1. & d \in \mathcal{D}(a) \cap \mathcal{D}(b), & (le\ PGCD\ est\ un\ diviseur\ commun). \\ 2. & \forall \delta \in \mathcal{D}(a) \cap \mathcal{D}(b) & \delta \mid d \quad (tous\ les\ diviseurs\ communs\ divisent\ le\ PGCD). \end{array}$

Preuve:

Notons d = PGCD(a, b), montrons que d satisfait 1. et 2...

Il satisfait 1. par définition.

Soit $\delta \in \mathbb{Z} \mid \delta \mid a$ et $\delta \mid b$, $\exists (u, v) \in \mathbb{Z}^2 \mid d = au + bv$.

Il est clair que $\delta \mid au + bv$ donc $\delta \mid d$, d satisfait donc 2.

Soit $d \in \mathbb{N}$ un entier qui satisfait 1. et 2.

Si d = 0, alors a = b = 0 donc d = PGCD(a, b) = 0.

Si $d \neq 0$, alors $d \mid a$ et $d \mid b$, le plus grand d'après 2.

Corrolaire 15

 $\forall (a,b) \in \mathbb{Z}^2 \quad \mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(a \wedge b).$

Preuve:

- ⊃ claire par transitivité.
- Soit $\delta \in \mathcal{D}(a) \cap \mathcal{D}(b)$, on a établi qu'un diviseur commun divise le PGCD, donc $\delta \in \mathcal{D}(a \wedge b)$.

Proposition 16

 $\forall (a, b) \in \mathbb{Z}^2$, $PGCD(a, b) \cdot PPCM(a, b) = |ab|$.

Preuve:

On note $d = a \wedge b$ et $m = a \vee b$.

Puisque $d \mid a$ et $d \mid b$, $\exists (a', b') \in \mathbb{Z}^2 \mid a = da'$ et b = db'.

On a da'b' = ab' = a'b donc da'b' est multiple de a et b, donc $m \mid da'b'$.

Donc $md \mid (da')(db')$ donc $md \mid ab$.

On a $\exists (u,v) \in \mathbb{Z}^2 \mid d=au+bv \text{ et } \exists (k,k') \mid m=ak=bk', \text{ donc } md=amu+bmv=ab(k'u+kv) \text{ donc } md \mid ab.$

Alors ab et md sont associés, $ab = \pm md$ donc md = |ab|.

Entiers premiers entre eux. $\mathbf{2}$

2.1 Couples d'entiers premiers entre eux.

Définition 17

On dit que deux entiers sont **premiers entre eux** si leur PGCD vaut 1.

Proposition 18

Deux entiers naturels non nuls a et b sont premiers entre eux si et seulement si $a \lor b = |ab|$.

Proposition 19

Soit $(a, b) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ et $d = a \wedge b$.

Si a' et b' sont les deux entiers relatifs tels que a = da' et b = db', alors $a' \wedge b' = 1$.

Preuve:

On a PGCD(a,b) = d donc PGCD(da',db') = d donc dPGCD(a',b') = d or $d \neq 0$ car $(a,b) \neq (0,0)$.

On retrouve bien que PGCD(a', b') = 1.

Théorème 20: de Bézout.

$$\forall (a,b) \in \mathbb{Z}^2 \quad a \wedge b = 1 \iff \exists (u,v) \in \mathbb{Z}^2 \mid au + bv = 1.$$

Supposons qu'il existe $(u, v) \in \mathbb{Z}^2$ tels que au + bv = 1.

Notons $d := a \wedge b$, il divise a et b donc au + bv. Donc $d \mid 1$, c'est 1.

Supposons que $a \wedge b = 1$, alors $a\mathbb{Z} + b\mathbb{Z} = 1\mathbb{Z}$ donc $1 \in a\mathbb{Z} + b\mathbb{Z}$ donc $\exists (u, v) \in \mathbb{Z}^2 \mid au + bv = 1$.

Corrolaire 21

Soit $(a, b, c) \in \mathbb{Z}^3$.

- . Si $a \wedge b = 1$ et $a \wedge c = 1$, alors $a \wedge (bc) = 1$. Plus généralement, si a est premier avec chacun des m entiers $b_1, ..., b_m$ $(m \in \mathbb{N}^*)$, alors il est premier avec leur produit $b_1...b_m$. 3. Si $a \wedge b = 1$, alors pour tout $(n, p) \in \mathbb{N}^2$, $a^n \wedge b^p = 1$.

Preuve:

1. Supposons $a \wedge b = 1$ et $a \wedge c = 1$.

D'après le théorème de Bézout, $\exists (u, v) \in \mathbb{Z}^2 \mid au + bv = 1$ et $\exists (u', v') \in \mathbb{Z}^2 \mid au' + cv' = 1$.

Donc (au + bv)(au' + cv') = 1 donc a(auu' + ucv' + bu'v) + bc(vv') = 1 donc $a \wedge bc = 1$.

- 2. Tout pareil.
- 3. Supposons $a \wedge b = 1$ alors $a \wedge b^p = 1$ et $b^p \wedge a = 1$ donc $b^p \wedge a^n = 1$ (d'après 2, par récurrence).

Donc $a^n \wedge b^p = 1$.

2.2 Produit de diviseurs, diviseurs d'un produit.

Proposition 22: Produit de diviseurs premiers entre eux.

$$\forall (a_1, a_2, b) \in \mathbb{Z}^3 \quad \begin{cases} a_1 \mid b \text{ et } a_2 \mid b \\ a_1 \wedge a_2 = 1 \end{cases} \implies a_1 a_2 \mid b.$$

Preuve:

Supposons que $a_1 \mid b$ et $a_2 \mid b$ et $a_1 \wedge a_2 = 1$.

Alors $|a_1a_2| = a_1 \vee a_2$, or le PPCM divise tous les multiples communs, en particulier, $a_1a_2 \mid b$.

Théorème 23: Lemme de Gauss.

$$\forall (a, b, c) \in \mathbb{Z}^3, \quad \begin{cases} a \mid bc \\ a \land b = 1 \end{cases} \implies a \mid c.$$

Preuve:

Supposons que $a \mid bc$ et $a \land b = 1$ donc $\exists k \in \mathbb{Z} \mid bc = ak$.

D'après le théorème de Bézout, $\exists (u, v) \in \mathbb{Z}^2 \mid au + bv = 1$.

On a c = acu + bcv = a(cu + kv) donc $a \mid c$.

Exemple 24

1. Soit $P = a_n X^n + ... + a_0 \in \mathbb{Z}[X]$.

Montrer que si $\frac{p}{q}$ est racine de P avec $p \wedge q = 1$, alors $p \mid a_0$ et $q \mid a_n$.

2. Factoriser $X^3 + 2X^2 - 4X - 3$ dans $\mathbb{R}[X]$.

Solution:

1. On a $P(\frac{p}{q}) = 0$ donc $a_n \left(\frac{p}{q}\right)^n + ... + a_0 = 0$ donc $a_n p^n + ... + a_0 q^n = 0$.

Ainsi, $p(a_n^{n-1} + ... + a_1 q^{n-1}) = -a_0 q^n$ donc $p \mid a_0 q^n$ or $p \land q^n = 1$ donc $p \mid a_0$.

En factorisant par q, on obtient aussi que $q \mid a_n$.

2. D'après 1, $p \mid 3$ et $q \mid 1$ donc les seuls candidats : $\frac{p}{q} \in \{-3, -1, 1, 3\}$.

On a alos $P = (X+3)(X^2 - X - 1) = (X+3)(X-\varphi)(X-\psi)$ où $\varphi = \frac{1+\sqrt{5}}{2}$ et $\psi = \frac{1-\sqrt{5}}{2}$.

2.3 Le cas des diviseurs premiers.

Définition 25

On appelle **nombre premier** tout entier p supérieur à 2 dont les diviseurs sont 1, p, -1 et -p.

Proposition 26

Tout entier naturel supérieur ou égal à 2 possède un diviseur premier.

Preuve:

On l'avait fait par récurrence forte au premier semestre.

Proposition 27

Deux entiers relatifs sont premiers entre eux si et seulement si ils n'admettent aucun nombre premier comme diviseur commun.

Preuve:

 \implies Par contraposée, supposons qu'il existe p premier tel que $p\mid a$ et $p\mid b.$

Puisque p divise les deux, il divise le PGCD, or $p \ge 2$ donc le PGCD est différent de 1.

Par contraposée, supposons que a et b ne sont pas premiers entre-eux, alors $a \wedge b \geq 2$.

D'après la proposition précédente, le PGCD a un diviseur premier p, donc $p \mid a$ et $p \mid b$.

Proposition 28

Si a est un entier et p un nombre premier, alors $p \mid a$ ou p est premier avec a.

Preuve:

Notons $d = p \wedge a$, il divise p, alors d = p ou d = 1.

Mais si d = p, alors $p \mid a$, sinon si d = 1, $a \land p = 1$.

Soit $(a, b) \in \mathbb{Z}^2$ et p un nombre premier.

1. Si $p\mid ab,$ alors $p\mid a$ ou $p\mid b.$ 2. Si p divise un produit d'entiers, alors il divise l'un des facteurs.

Preuve:

1. Supposons que $p \mid ab$.

Si $p \mid a$, on a fini. Sinon, $p \wedge a = 1$ d'après 28, donc $p \mid b$ d'après 23.

2. Récurrence, trivial.

Extension à un nombre fini de vecteurs.

Définition 30

Soit $n \in \mathbb{N}^*$ et $(a_1, ..., a_n) \in \mathbb{Z}^n \setminus \{(0, ..., 0)\}.$

Le plus grand diviseur positif commun à $a_1, ..., a_n$ est appelé leur **PGCD** et noté:

$$a_1 \wedge ... \wedge a_n$$
.

On convient que le PGCD de n entiers nuls vaut 0.

Proposition 31

Soit $n \in \mathbb{N}^*$, $(a_1, ..., a_n) \in \mathbb{Z}^n$. Leur PGCD est l'unique entier positif d tel que

$$a_1\mathbb{Z} + \dots + a_n\mathbb{Z} = d\mathbb{Z}$$

En particulier,

$$\exists (u_1, ..., u_n) \in \mathbb{Z}^n \quad d = a_1 u_1 + ... + a_n u_n.$$

Proposition 32

$$\forall (a_1, ..., a_n) \in \mathbb{Z}^n, \quad \forall k \in \mathbb{Z}, \quad PGCD(ka_1, ..., ka_n) = |k| \cdot PGCD(a_1, ..., a_n).$$

Proposition 33

Soit $n \in \mathbb{N}^*$ et $a_1, ..., a_{n+1}$ des entiers relatifs. Alors,

$$a_1 \wedge ... \wedge a_n \wedge a_{n+1} = (a_1 \wedge ... \wedge a_n) \wedge a_{n+1}$$

Preuve:

Notons $d_n = a_1 \wedge ... \wedge a_n$, $d_{n+1} = a_1 \wedge ... \wedge a_n \wedge a_{n+1}$ et $d'_{n+1} = d_n \wedge a_{n+1}$. D'une part, d'après la proposition précédente:

$$a_1\mathbb{Z} + \dots + a_n\mathbb{Z} + a_{n+1}\mathbb{Z} = d_{n+1}\mathbb{Z}.$$

D'autre part,

$$a_1 \mathbb{Z} + \dots + a_n \mathbb{Z} + a_{n+1} \mathbb{Z} = (a_1 \mathbb{Z} + \dots + a_n \mathbb{Z}) + a_{n+1} \mathbb{Z}$$
$$= d_n \mathbb{Z} + a_{n+1} \mathbb{Z}$$
$$= (d_n \wedge a_{n+1}) \mathbb{Z}$$
$$= d'_{n+1} \mathbb{Z}.$$

Ceci amène que d_{n+1} et d'_{n+1} sont associés et donc égaux par positivité.

Proposition 34

Soit $n \in \mathbb{N}^*$, $(a_1, ..., a_n) \in \mathbb{Z}^n$ et d leur PGCD, on a

$$\bigcap_{k=1}^{n} \mathcal{D}(a_k) = \mathcal{D}(d).$$

Définition 35

Des entiers relatifs $a_1, ..., a_n$ sont dits **premiers entre eux dans leur ensemble** si leur PGCD est égal à 1, ou de manière équivalente si 1 et -1 sont les seuls diviseurs communs.

Ils sont deux à deux premiers entre eux si

$$\forall (i,j) \in [1,n]^2, \ i \neq j \Longrightarrow a_i \land a_j = 1.$$

Exemple 36

Justifier que si n entiers $(n \ge 2)$ sont premiers entre eux deux-à-deux, ils le sont dans leur ensemble.

Les entiers 6, 10 et 15 sont premiers entre-eux dans leur ensemble, mais pas deux-à-deux.

Solution:

Soit $a_1, ..., a_n \in \mathbb{Z}^n$ premiers entre-eux deux-à-deux.

Soit $d = a_1 \wedge ... \wedge a_n$, alors $d \mid a_1$ et $d \mid a_2$: il divise $a_1 \wedge a_2 = 1$ donc d = 1.

Théorème 37

Soit $n \in \mathbb{N}^*$ et $(a_1, ..., a_n) \in \mathbb{Z}^n$.

 $a_1,...,a_n$ sont premiers entre eux dans leur ensemble $\iff \exists (u_1,...,u_n) \in \mathbb{Z}^n \quad \sum_{i=1}^n a_i u_i = 1.$

Proposition 38

Soit $n \in \mathbb{N}^*$ et $(a_1, ..., a_n) \in \mathbb{Z}^n$ et $b \in \mathbb{Z}$.

Si tous les a_i divisent b, et si les a_i sont deux-à-deux premiers entre eux, alors $a_1...a_n$ divise b.

Preuve:

Supposons que $a_1, ..., a_n$ divisent b et sont deux-à-deux premiers entre eux.

Alors, $a_1 | b$, $a_2 | b$, et $a_1 \wedge a_2 = 1$ donc $a_1 a_2 | b$.

De plus, $a_1a_2 \mid b$ et $a_3 \mid b$ et $a_1a_2 \wedge a_3 = 1$ donc $a_1a_2a_3 \mid b$.

En itérant, on obtient le résultat.

3 Théorème fondamental de l'arithmétique et applications.

3.1 Le TFAr.

Théorème 39: Théorème fondamental de l'arithmétique.

Soit n un entier supérieur à 2. Il existe un entier naturel r non nul et r nombres premiers $p_1 < ... < p_r$, ainsi que des entiers naturels non nuls $\alpha_1, ..., \alpha_r$ tels que

$$n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}.$$

Cette décomposition de n en facteurs premiers est unique.

Preuve:

Existence:

Si n est premier c'est bon. Sinon, $\exists n_1, n_2 \in [2, n] \mid n = n_1 n_2$.

Il faut raisonner sur n_1 et n_2 et les décomposer par récurrence forte.

Unicité: On considère deux décompositions $n=p_1^{\alpha_1}...p_r^{\alpha_r}=q_1^{\beta_1}...q_s^{\beta_s}$ où $r,s\in\mathbb{N}^*$ et les p_i,q_i sont premiers. On suppose les p_i et q_i distincts deux-à-deux.

Montrons que $\{p_1,...,p_r\} = \{q_1,...,q_s\}$. Pour $i \in [1,r]$, on a que p_i divise $q_1^{\beta_1}...q_s^{\beta_s}$.

D'après le lemme d'euclide, $\exists j \in [1, s] \mid p_i \mid q_j$ donc $p_j = q_j$ car ils sont tous les deux premiers.

On a donc $\{p_1,...,p_r\}\subset\{q_1,...,q_s\}$. On a l'autre inclusion de la même manière.

Finalement, $\{p_1, ..., p_r\} = \{q_1, ..., q_s\}$, donc r = s par égalité de cardinaux.

On a $n=p_1^{\alpha_1}...p_r^{\alpha_r}=p_1^{\beta_1}...p_r^{\beta_r}$. Montrons que pour $i\in [1,r]$, on a $\alpha_i=\beta_i$.

Supposons que $\alpha_i < \beta_i$ SPDG. Alors:

$$p_i^{\alpha_i} \prod_{j \neq i} p_j^{\alpha_j} = p_i^{\beta_i} \prod_{j \neq i} p_j^{\beta_j}.$$

Puisque \mathbb{Z} est intègre et que $p_i^{\alpha_i} \neq 0$, on a:

$$\prod_{i \neq j} p_j^{\alpha_j} = p_i^{\beta_i - \alpha_i} \prod_{i \neq j} p_j^{\beta_j}.$$

Donc $p_i \mid \prod_{j \neq i} p_j^{\alpha_j}$, donc p_i divise l'un des p_j pour $j \neq i$, ce qui est absurde. On a donc $\alpha_i = \beta_i$.

3.2 Valuations p-adiques.

Définition 40

Soit p un nombre premier et n un entier naturel non nul.

On appelle valuation p-adique de n, notée $v_p(n)$ l'exposant de p dans la décomposition de n en facteurs premiers (cet exposant valant 0 si p ne figure pas dans la décomposition).

Soit $n \in \mathbb{N}^*$, p premier et $k \in \mathbb{N}$.

$$v_p(n) = k \iff \exists q \in \mathbb{N} \quad n = p^k q \text{ et } p \land q = 1$$

Preuve:

On distingue un entier p_0 .

 \Longrightarrow Supposons $v_{p_0}(n) = k$, on écrit la décomposition de n: $\prod_{p \in \mathcal{P}} p^{v_p(n)}$ Notons $q = \prod_{p \neq p_0} p^{v_p(n)}$, alors n = 1

De plus, $p \wedge q = 1$ par produit.

On a $q = \prod_{p \in \mathcal{P}} p^{v_p(q)}$, alors $n = p_0^k \prod_{p \in \mathcal{P}} p^{v_p(q)}$.

Or $p_0 \wedge q = 1$ donc $v_{p_0}(q) = 0$ (car sinon $p_0 \mid q$).

On peut donc écrire $n = p_0^k \prod_{p \neq p_0} p^{v_p(q)}$.

Par unicité, $v_{p_0}(n) = k$.

Proposition 42

Soit p un nombre premier.

1. $\forall (m,n) \in (\mathbb{N}^*)^2$, $v_p(mn) = v_p(m) + v_p(n)$. 2. $\forall n \in \mathbb{N}^* \ \forall k \in \mathbb{N}$ $v_p(n^k) = kv_p(n)$.

Preuve:

|1.| On écrit les décomposition de m et n.

$$m = \prod_{p \in \mathcal{P}} p^{v_p(m)}$$
 et $n = \prod_{p \in \mathcal{P}} p^{v_p(n)}$.

Donc:

$$mn = \left(\prod_{p \in \mathcal{P}} p^{v_p(m)}\right) \left(\prod_{p \in \mathcal{P}} p^{v_p(n)}\right) = \prod_{p \in \mathcal{P}} p^{v_p(m) + v_p(n)}.$$

Par unicité de la décomposition, pour $p_0 \in \mathcal{P}$, $v_{p_0}(mn) = v_{p_0}(m) + v_{p_0}(n)$.

2. Récurrence facile.

Exemple 43

Soit n entier supérieur à 2. Montrer que $\sqrt{n} \in \mathbb{Q} \iff \exists k \in \mathbb{Z} \mid n = k^2$.

Solution:

Supposons $n = m^2$ où $m \in \mathbb{Q}$ alors $\sqrt{n} = \sqrt{m^2} = m \in \mathbb{Q}$.

Supposons $\sqrt{n} \in \mathbb{Q}$, alors $\exists a, b \in \mathbb{N} \times \mathbb{N}^*$ tels que $\sqrt{n} = \frac{a}{b}$, alors $b^2 n = a^2$.

Soit $p \in \mathcal{P}$, on a $v_p(b^2n) = v_p(a^2)$ donc $2v_p(b) + v_p(n) = 2v_p(a)$ donc $v_p(n)$ est pair :

$$n = \prod_{p \in \mathcal{P}} p^{v_p(n)} = \prod_{p \in \mathcal{P}} p^{2v_p(n)/2} = \left(\prod_{p \in \mathcal{P}} p^{\frac{v_p(n)}{2}}\right)^2$$

Donc n est bien un carré d'entiers.

Théorème 44: Description des diviseurs d'un entier.

Soit n un entier naturel supérieur ou égal à 2, s'écrivant

$$n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_r^{\alpha_r}.$$

Ses diviseurs positifs sont exactement les entiers de la forme

$$p_1^{\beta_1}p_2^{\beta_2}...p_r^{\beta_r}, \quad \text{avec} \quad \forall i \in \llbracket 1,r \rrbracket \ 0 \leq \beta_i \leq \alpha_i.$$

Preuve:

Découle du corrolaire 45.

Corrolaire 45

Soient $m, n \in \mathbb{N}^*$.

$$m \mid n \iff \forall p \in \mathcal{P} \quad v_p(m) \leq v_p(n).$$

Preuve:

 \implies Supposons $m \mid n$, alors $\exists k \in \mathbb{N}^* \ n = mk$.

Alors pour $p \in \mathcal{P}$, $v_p(n) = v_p(m) + v_p(k)$ donc $v_p(m) \le v_p(n)$.

 $\sqsubseteq \text{Supposons } \forall p \in \mathcal{P} \quad v_p(m) \leq v_p(n).$

$$n = \prod_{p \in \mathcal{P}} p^{v_p(n)} = \prod_{p \in \mathcal{P}} p^{v_p(m) + v_p(n) - v_p(m)} = \prod_{p \in \mathcal{P}} p^{v_p(m)} \prod_{p \in \mathcal{P}} p^{v_p(n) - v_p(m)}.$$

Donc $m \mid n$.

Exemple 46: Un cas particulier important.

Soit p un nombre premier et α un entier naturel non nul. Quels sont les diviseurs de p^{α} ?

Solution:

On a $\mathcal{D}(p^{\alpha}) = \{p^{\beta} \mid 0 \le \beta \le \alpha\}.$

Exemple 47

Combien de diviseurs possède le nombre trente-six-milliards?

Solution:

Notons $N = 36 \times 10^9$, alors $N = (2 \times 3)^2 (2 \times 5)^9 = 2^{11} 3^2 5^9$.

Ainsi, $\mathcal{D}(N) = \{2^{\alpha}3^{\beta}5^{\gamma} \mid (\alpha, \beta, \gamma) \in [0, 11] \times [0, 2] \times [0, 9] \}$ et $|\mathcal{D}(N)| = 12 \times 3 \times 10 = 360$.

Proposition 48: Décomposition primaire du PGCD, du PPCM.

Soient a et b deux entiers naturels non nuls, dont une décomposition sur une même famille de nombres premiers $p_1 < \dots < p_r$ est

$$a = p_1^{\alpha_1} ... p_r^{\alpha_r}$$
 et $b = p_1^{\beta_1} ... p_r^{\beta_r}$.

où les α_i et β_i sont des entiers naturels éventuellement nuls, on a alors

$$a \wedge b = \prod_{i=1}^{r} p_i^{\min(\alpha_i, \beta_i)}, \quad \text{et} \quad a \vee b = \prod_{i=1}^{r} p_i^{\max(\alpha_i, \beta_i)}.$$

De manière équivalente, pour tout nombre premier p,

$$v_p(a \wedge b) = \min(v_p(a), v_p(b))$$
 et $v_p(a \vee b) = \max(v_p(a), v_p(b))$.

Preuve:

C'est clair.

Congruences.

Une relation d'équivalence compatible avec la somme et le produit.

Définition 49

Soit $n \in \mathbb{Z}$. On dit que deux entiers relatifs sont congrus modulo n, ce que l'on note $a \equiv b[n]$ s'il existe un entier relatif k tel que a = b + kn.

Proposition 50

Soit $n \in \mathbb{Z}$.

- 1. La relation de congruence modulo n est une relation d'équivalence sur \mathbb{Z} . 2. $\forall a \in \mathbb{Z} \quad n \mid a \iff a \equiv 0[n]$. En particulier $n \equiv 0[n]$. 3. Compatible avec la somme et le produit:

$$\forall (a,b,a',b') \in \mathbb{Z}^4 \quad \begin{cases} a \equiv b & [n] \\ a' \equiv b & [n] \end{cases} \Longrightarrow \begin{cases} a+a' \equiv b+b' & [n] \\ aa' \equiv bb' & [n] \end{cases}$$

Preuve:

1. et 2. Trivial.

3. Supposons $a \equiv b[n]$ et $a' \equiv b'[n]$, $\exists k, k' \in \mathbb{Z} \mid b-a=nk$ et b'-a'=nk'.

Alors (b+b')-(a+a')=n(k+k'), il est clair que $n\mid (b+b')-(a+a')$ donc $a+a'\equiv b+b'[n]$.

De même, bb' = (a + nk)(a' + nk') = aa' + n(ak' + ak + nkk') donc aa' = bb'[n].

Soit $n \in \mathbb{N}^*$.

- 1. $\forall a \in \mathbb{Z}, \ \exists ! r \in \llbracket 0, n-1 \rrbracket \mid a \equiv r[n].$ 2. Il y a exactement n classes d'équivalence pour la relation de congruence module n.

Preuve:

1. Soit $a \in \mathbb{Z}$, $\exists ! (q, r) \in \mathbb{Z} \times N \mid a = nq + r \text{ et } 0 \le r \le n - 1$.

On a bien $n \mid a - r \text{ donc } a \equiv r[n]$.

2. Tout entier appartient à une unique classe d'équivalence modulo n: celle de son reste dans sa division euclidienne avec n.

Exemple 52

Démontrer qu'un entier naturel est un multiple de 3 si et seulement si la somme de ses chiffres est un multiple de 3, idem avec 9.

Solution:

Soit $n \in \mathbb{N}$, notons $N = \sum_{k=0}^{p} c_k 10^k$ avec $p \in \mathbb{N}$ et $\forall k \in [0, p], c_k \in [0, 9]$ le $k^{\text{ème}}$ chiffre de n.

Remarque: 10 = 1[3] donc $\forall k \in \mathbb{N}$ $10^k = 1[3]$.

Par somme et produit modulo 3, on obtient:

$$\sum_{k=0}^{p} c_k 10^k \equiv \sum_{k=0}^{p} c_k \cdot 1[3]$$

$$3 \mid n \iff n \equiv 0[3] \iff \sum_{k=0}^{p} c_k \equiv 0[3] \iff 3 \mid \sum_{k=0}^{p} c_k.$$

Inversibilité modulo n. 4.2

Proposition 53

Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{Z}$.

Si $a \wedge n = 1$, alors $\exists b \in \mathbb{Z} \mid ab \equiv 1[n]$ (la réciproque est vraie).

Dans le cas $a \wedge n = 1$, si x et y sont deux entiers, on a

$$ax \equiv y[n] \iff x \equiv by[n]$$

Supposons que a et n sont premiers entre eux. Le théorème de Bézout donne alors l'existence d'un couple (u, v)d'entiers relatifs tels que au + nv = 1. Posons b = u et passons modulo n:

$$ab + 0v \equiv 1[n]$$

ce qui montre que b est un inverse de a modulo n. Pour x et y dans \mathbb{Z} , on a

$$ax \equiv y[n] \iff abx \equiv by[n]$$

(on multiplie par b dans le sens direct, par a dans le sens indirect en utilisant $ab \equiv 1[n]$). On a bien

$$ax \equiv y[n] \iff x \equiv by[n].$$

Exemple 54

Résoudre l'équation $7x \equiv 11[31]$.

Solution:

On remonte l'algorithme d'Euclide:

On a 31 = 7 + 3, $7 = 3 \times 2 + 1$.

Alors $1 = 7 - 3 \times 2 = 7 - (31 - 7 \times 4) \times 2 = 7 \times 9 - 2 \times 31$.

Soit $x \in \mathbb{Z}$, $7x \equiv 11[31] \iff 9 \times 7x \equiv 99[31] \iff x \equiv 99[31] \iff x \equiv 6[31]$.

L'ensemble des solutions : $\{31k + 6 \mid k \in \mathbb{Z}\}.$

Corrolaire 55

Soit $n \in \mathbb{N}^*$, ainsi que deux entiers relatifs a et y.

L'équation $ax \equiv y[n]$ possède une solution dans \mathbb{Z} si et suelement si $a \wedge n$ divise y.

Dans le cas où une solution existe, elle est unique modulo $\frac{n}{a \wedge n}$.

Preuve:

 \odot Supposons qu'il existe $x \in \mathbb{Z}$ tel que $ax \equiv y[n]$. Alors, il existe $k \in \mathbb{Z}$ tel que y = ax + kn.

Puisque $a \wedge n$ divise a et n, il divise y.

 \odot Supposons réciproquement que $a \wedge n$ divise y. Notons alors $d = a \wedge n$; il existe a' et n' premiers entre eux tels que a = da', n = dn' et y = dy'. Pour $x \in \mathbb{Z}$, on a $ax \equiv y[n] \iff da'x \equiv dy'[dn'] \iff a'x \equiv y'[n]$.

On a pu simplifier par d par intégrité de \mathbb{Z} . Alors a' et n' sont premiers entre eux: il existe b' tel que $a'b' \equiv 1[n']$ et l'équation $a'x \equiv y'[n']$ possède by' comme unique solution modulo n' c'est à dire modulo $\frac{n}{a \wedge n}$.

4.3 Petit théorème de Fermat.

Proposition 56

Soit p un nombre premier.

$$\begin{array}{ll} 1. & \forall k \in \llbracket 1, p-1 \rrbracket, \ p \mid \binom{p}{k}. \\ 2. & \forall (a,b) \in \mathbb{Z}^2 \ (a+b)^p \stackrel{=}{\equiv} a^p + b^p[p]. \end{array}$$

Preuve:

1. Soit $k \in [1, p-1]$. On a:

$$k\binom{p}{k} = p\binom{p-1}{k-1}$$

Alors $p \mid k\binom{p}{k}$ et $p \wedge k = 1$ donc d'après le Lemme de Gauss, $p \mid \binom{p}{k}$.

 $\boxed{2}$. Soient $a, b \in \mathbb{Z}$, on a:

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^k b^{p-k} = a^p + b^p + \sum_{k=1}^{p-1} \binom{p}{k} a^k b^{p-k} \equiv a^p + b^p [p].$$

Théorème 57: Petit théorème de Fermat.

Soit n un entier relatif et p un nombre premier. On a $n^p \equiv n[p]$

Si de surcroît n n'est pas un multiple de p, on a $n^{p-1} \equiv 1[p]$.

Preuve :

Fixons p premier. Par récurrence sur n:

Initialisation: $0^p = 0[p]$.

Hérédité: Supposons pour $n \in \mathbb{N}$ que $n^p \equiv n[p]$. Alors:

$$(n+1)^p \equiv n^p + 1^p[p] \equiv n + 1[p]$$

On conclut par récurrence.

Si n n'est pas multiple de p, alors $n \wedge p = 1$, alors n est inversible modulo p et on a bien que $n^{p-1} \equiv 1[p]$.

Exemple 58: Plus petit nombre de Carmichael.

1. Vérifier que

$$561 \equiv 1[2], \qquad 561 \equiv 1[10], \qquad 561 \equiv 1[16].$$

2. Démontrer que pour tout entier n,

$$n^{561} \equiv n[3], \qquad n^{561} \equiv n[11], \qquad n^{561} \equiv n[17].$$

- 3. Démontrer que pour tout $n \in \mathbb{Z}$, on a $n^{561} \equiv n[561]$.
- 4. Le petit théorème de Fermat n'est pas un critère de primalité. Expliquer.

Solution:

1. Clair pour les deux premiers, et $561 = 35 \times 16 + 1$ donc $561 \equiv 1[16]$.

 $\boxed{2.}$ On a $n^{561} \equiv n^{2 \times 280 + 1} [3] \equiv n(n^2)^{280} [3].$

Si n n'est pas multiple de 3, alors $n^2 \equiv 1[3]$ d'après le petit théorème de Fermat. Alors $n^{561} \equiv n[3]$.

Si n est multiple de 3, alors $n' \equiv 1[3]$ d'a Si n est multiple de 3, alors $n^{561} \equiv 0[3] \equiv n[3]$.

De même, $n^{561} \equiv n[11]$ et $n^{561} \equiv n[17]$.

3. Soit $n \in \mathbb{Z}$, on a $561 = 17 \times 11 \times 3$, alors $3 \mid n^{561} - n$ et $11 \mid n^{561} - n$ et $17 \mid n^{561} - n$.

Ainsi, $3 \times 11 \times 17 \mid n^{561}$ car 3, 11 et 17 sont premiers entre-eux.

4. Le petit théorème de Fermat ne caractérise pas les nombre premiers. En effet, 561 n'est pas premier mais vérifie le petit théorème de Fermat.

5 Exercices.

Exercice 1

Soit $n \in \mathbb{N}$, que vaut le PGCD de 3n+1 et de 2n ?

Solution:

On applique l'algorithme d'Euclide:

$$3n + 1 = 2n \times 1 + (n + 1)$$

 $2n = (n + 1) \times 1 + (n - 1)$
 $n + 1 = (n - 1) \times 1 + 2$

Par transitivité, PGCD(3n + 1, 2n) = PGCD(n - 1, 2).

Le PGCD est donc 1 si \boldsymbol{n} est impair, et 2 si \boldsymbol{n} est pair.

Exercice 2

Soient deux entiers relatifs a et b tels que $a^2 \mid b^2$. Montrer que $a \mid b$.

Soit $d=a\wedge b$, alors $\exists (a',b')\in\mathbb{Z}^2\mid a=da',\ b=db',\ a'\wedge b'=1.$ Par hypothèse, $\exists k\in\mathbb{Z}\mid b^2=a^2k$ donc $d^2b'^2=d^2a'^2k.$

- \odot Si d = 0, alors a = b = 0 et $a \mid b$.
- © Si $d \neq 0$, alors $(b')^2 = (a')^2 k$ donc $a' \mid (b')^2$ et $a' \wedge b' = 1$.

D'après le Lemme de Gauss, $a' \mid b'$ donc $da' \mid db'$ donc $a \mid b$.

Solution:

Soit p un nombre premier, $a^2 \mid b^2$ donc $v_p(a^2) \leq v_p(b^2)$ donc $2v_p(a) \leq 2v_p(b)$ donc $v_p(a) \leq v_p(b)$. Et ce pour tout p, donc $a \mid b$.