班号	学号	姓名	成绩	
1 II H	, , 🗀	+4L /7		
+//+ → →		11/15.79	L(1, 7)	
ν	→ →	UT 2-1	110.41	
アノエー・1	.1 .1	^1.´□	13/21/21/21	

《离散数学(2)》期末考试卷

注意事项:

- 1、请大家仔细审题
- 2、千万不能违反考场纪律

题目:

一、判断题

(每小题 2 分, 共 20 分)

- (\checkmark) 1. 若A \oplus B=A \oplus C,则B=C。
- (√) 2. A×B = Ø 当且仅当 A = Ø 或 B = Ø。
- (√) 3. 若**ρ**(A)=**ρ**(B),则A=B。
- (\times) 4. 设 A 上的二元关系 R_1 、 R_2 是对称的,则 $R_1 \circ R_2$ 也是对称的。
- (\times) 5. 若 R 是集合 A 上的二元关系,则 st (R) = ts (R)。
- (√) 6. 有限集 A 上的满射 $\mathbf{f}: A \to A$ 必为双射。
- (x) 7. 任何集合不能与它的真子集等势。
- (√) 8. 函数 $\mathbf{f}: X \to Y$ 为右可逆的 当且仅当 \mathbf{f} 为满射。
- (×)9. 无向图 G 是欧拉图, 当且仅当 G 有欧拉闭路。
- (×) 10. n 阶二叉树有 (n+1)/2 个分支结点。
- 二、设 $A = \{1, 2, 3, 4\}$ 上的二元关系 R_1 和 R_2 定义如下:

(20分)

 $R_1 = \{<1, 1>, <1, 2>, <2, 1>, <2, 3>, <3, 4>, <4, 1>\}$

 $R_2 = \{<1, 1>, <1, 3>, <2, 2>, <2, 4>, <3, 3>, <4, 4>\}$

- 1) 试分别指出 R_1 和 R_2 所具有的性质(即是否具有自反性,反自反性,对称性,反对称性和传递性这五种性质)。
- 解: R_1 不具有这五种性质中的任何一种;

R2 具有自反性, 反对称性和传递性。

2) 试求出 $R_1 \circ R_2$ 和 R_1^+ 。

 \mathfrak{M} : $R_1 \circ R_2 = \{<1,1>,<1,2><1,3>,<1,4>,<2,1><2,3>,<3,4),<4,1>,<4,3>\}$

$$R_{1}^{+} = \begin{cases} <1,1>, <1,2>, <1,3>, <1,4>, <2,1>, <2,2>, \\ <2,3>, <2,4>, <3,1>, <3,2>, <3,3>, <3,4> \\ , <4,1>, <4,2>, <4,3>, <4,4> \end{cases}$$

全序 R 显然是自反的、反对称的、传递的。 **先证 RoR 是 A 上的偏序关系:**

1) RoR 的自反性: 因 R 是自反的, 所以 $\forall x \in A$ 都有 $\langle x, x \rangle \in R$,

由 $< x, x > \in R$, $< x, x > \in R$ 得到 $< x, x > \in R \circ R$ 因此 $R \circ R$ 有自反性

2) RoR 的反对称性: 假设有 $< x, y > \in R \circ R$ 且 $< y, x > \in R \circ R$

则 $\exists r$ 使得 $< x, r> \in R, < r, y> \in R$

 $\exists s$ 使得 $< y, s > \in R, < s, x > \in R$

因为 R 具有传递性,所以有 $< s,r > \in R, < r,s > \in R$ 而 R 为反对称的,则 r = s

 $\therefore \langle x, r \rangle, \langle r, y \rangle, \langle y, r \rangle, \langle r, x \rangle \in R$

又因为 R 是具有传递性,所以有 $< x, y > \in R, < y, x > \in R$ 又因为 R 是反对称的,所以 x = y $\therefore R \circ R$ 有反对称性

3) RoR 的传递性: 假设有 $< x, y > \in R \circ R$ 且 $< y, z > \in R \circ R$

则 $\exists r$ 使得 $< x, r > \in R, < r, y > \in R$

 $\exists s$ 使得 $< y, s > \in R, < s, z > \in R$

因为 R 具有传递性,所以有 $< x, y > \in R$, $< y, z > \in R$

所以有 $< x, z > \in R \circ R$

∴ R ∘ R 有传递性 所以,RoR 是 A 上的偏序关系。 再证明对任意的两个元素 $x \in A, y \in A$,都有 xR^2y 或者 yR^2x

证明: $\forall x, y \in A$, 由于 R 为全序,则< $x, y > \in R$ 或< $y, x > \in R$

若 $< x, y > \in R$,则由 $< y, y > \in R$ 可得到 $< x, y > \in R \circ R$

若 $<y,x>\in R$,则由 $<x,x>\in R$ 可得到 $<y,x>\in R\circ R$

所以对任意的两个元素 $x \in A$, $y \in A$, 都有 xR^2y 或者 yR^2x 综上所述: $R \circ R$ 为 A 上的全序关系。

四、设 f: $X \rightarrow Y$ 和 g: $Y \rightarrow Z$

(16分)

- 1) 若 f 和 g 都是单射,则 g o f 也是单射;
- 2) 若gof是单射,则f是单射。
- 1)证明: 若 x_1 , $x_2 \in X$ 且 $x_1 \neq x_2$ ↓ f 单射 $f(x_1) \neq f(x_2)$ ↓ g 单射 $g(f(x_1)) \neq g(f(x_2))$ 即 $(g \circ f)(x_1) \neq (g \circ f)(x_2)$ 故 $g \circ f$ 为单射
- 2) 证明: 反证法:

假设 f 不是单射,则有 x_1 , $x_2 \in X$ 且 $x_1 \neq x_2$ 使 $f(x_1) = f(x_2)$,

因此 $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$,这与 $g \circ f$ 为单射矛盾。所以假设不成立,即 f 为单射。

五、试求叶的权分别为 3, 7, 13, 19, 28, 47, 55 的最优叶加权二叉树及其叶加权路径长度。 (12 分)

解: 1) 最优叶加权二叉树为

2) 其叶加权路径长度 L=10+23+42+70+102+172 = 419

六、设 n 阶连通无向图 G 恰有 n-1 条边,直接用**归纳法**证明: G 是非循环的。 (10分)

证明: 施归纳于 n:

当 n=1 时,由 G 有 n-1 条边可知: G 有 0 条边,即 G 没有自圈,G 是非循 环的, 因此命题为真。

假设对任意 k≥1. 当 n =k 时命题为真。

当 n = k+1 时:因 G 为**连通的**,有 k 条边,故任意结点 v 的度数 $d_G(v) ≥ 1$ 。

若 G 中任意结点 v 的度数 $d_G(v) \ge 2$,则 G 的度≥ 2(k+1),则 G 中边的个数≥ 2k+1; 这与 G 有 k 条边的条件矛盾! 因此, G 中必有结点 v_1 的度数 $d_G(v_1)=1$ 。

显然,k 阶无向图 $G-v_1$ 连通且有 k-1 条边,由归纳假设 G 是非循环的。 设与 v_1 相邻的结点为 v_2 , v_1 与 v_2 的连接边为e, G可由 $G-v_1$ 添加结点 v_1 与连接 边 e 得到, 所以 G 也是是非循环的, 即 n =k+1 时命题亦为真。

综上所述, 命题为真。

七、设 n 阶简单有向图 $G = \langle V, E, \psi \rangle$ 的基础图为简单完全无向图,证明:

$$\sum_{v \in V} (d_G^+(v))^2 = \sum_{v \in V} (d_G^-(v))^2 \, . \tag{8 \(\frac{1}{12} \)}$$

证明:对n阶简单有向图G有:

$$\sum_{v \in V} d_G^+(v) = \sum_{v \in V} d_G^-(v)$$

$$\mathbb{P}: \sum_{v \in V} (d_G^+(v) - d_G^-(v)) = 0$$

即:
$$\sum_{v \in V} (d_G^+(v) - d_G^-(v)) = 0$$

又因为 G 的基础图为简单完全无向图,则

$$d_G^+(v) + d_G^-(v) = \mathbf{n} - 1$$

故:
$$\sum_{v \in V} (d_G^+(v) - d_G^-(v))(d_G^+(v) + d_G^-(v)) = \sum_{v \in V} (d_G^+(v) - d_G^-(v))(n-1) = 0$$

因此:
$$\sum_{v \in V} (d_G^+(v))^2 = \sum_{v \in V} (d_G^-(v))^2$$