Álgebra lineal II, Grado en Matemáticas

Septiembre 2016

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para estas definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Subespacio máximo asociado a un autovalor.
- (b) Endomorfismo diagonalizable y matriz diagonalizable.
- (c) Subespacio invariante reducible e irreducible.
- (d) Giro en \mathbb{R}^3 y rotación en \mathbb{R}^2 .

Ejercicio 1: (2 puntos)

Demuestre el siguiente resultado: Sea f un endomorfismo de un \mathbb{K} -espacio vectorial V, y $\lambda \in \mathbb{K}$ un autovalor de f. Entonces, se cumple que la multiplicidad algebraica de λ es mayor o igual que la multiplicidad geométrica.

Ejercicio 2: (3 puntos)

Sea Φ_a la siguiente forma cuadrática de \mathbb{R}^3

$$\Phi_a(x, y, z) = x^2 + 4y^2 + 2z^2 + 2xy + 2axz, \quad a \in \mathbb{R}$$

- (a) Para $a \neq 0$ determine los valores de λ y μ reales para que el conjunto $\{(1,0,0), (1,\lambda,0), (-4a,a,\mu)\}$ forme una base de vectores conjugados.
- (b) Clasifique la forma cuadrática Φ_a para todos los valores $a \in \mathbb{R}$.

Ejercicio 3: (3 puntos)

Determine los vectores $(x,y,z) \in \mathbb{R}^3$ tales que su proyección ortogonal sobre el plano de ecuación x-y=0 forme un ángulo de 180^0 con el vector (0,0,1).