(my) -1/4 (, 1-1/4 (, mac, 1) -1/4 (, で 1-13/5/10 () で 1-11/5/10 () で 1-'E VTIO / STID VID / VID ((-1))(-1) a d) d ((2) IT > [2/ 1/1/0] (2) $\beta = \frac{1}{\sqrt{10} - \sqrt{20} + \sqrt{9} - \sqrt{10}} = \frac{1}{\sqrt{8}(\sqrt{7} - 1) + \sqrt{10}(\sqrt{7} - 1)} = \frac{1}{(\sqrt{7} + 1)(\sqrt{8} - \sqrt{7})} = \frac{1}{(\sqrt{7} + 1)(\sqrt{8} - \sqrt{8})} = \frac{1}{(\sqrt{7}$ عبارت مرابه روش دلخواه به ماده ترین فرم بنولسد $A = \sqrt{\frac{\pi - 7\sqrt{7}}{1\sqrt{-17\sqrt{7}}}} - \sqrt{\frac{\pi + 7\sqrt{7}}{1\sqrt{+17\sqrt{7}}}} = \sqrt{\frac{(\sqrt{7} - 1)^{T}}{(\pi - 7\sqrt{7})^{T}}} - \sqrt{\frac{(\sqrt{7} + 1)^{T}}{(\pi + 7\sqrt{7})^{T}}}$ $\frac{\sqrt{7}-1}{4-1} - \frac{\sqrt{1}+1}{4+1} = \frac{(\sqrt{1}-1)(4+1/1) - (\sqrt{1}+1)(4-1/1)}{4-1}$ (+ V + + - + + - + V -) - (+ V - + + - + V -) = 1

1/5		حاصل هر عبارت را به ساده ترین صورت ممکن بنویسید.	160
	$\frac{\left(\sqrt[2]{TV}\right)^{\frac{1}{p}} + \sqrt[2]{\sqrt[q]{TV}}}{\left(\sqrt[q]{T}\right)^{\frac{r}{p}}} =$		
	ب $\left(\sqrt[7]{\Delta\sqrt{r}+v}\right)$ (ب		0
1		مخرج کسر مقابل را گویا کنید.	17 _A
	$\frac{1}{\sqrt[r]{1-r\sqrt[r]{r}}}$	•	
			1

با ضابطه داده شده را رسم کرده و برد آن را به دست آورید.
$$f(x) = \begin{cases} x^{\gamma} & x > 1 \\ -\gamma & -1 \leq x \leq 1 \\ -x + 1 & x < -1 \end{cases}$$

$$R_{\beta} = (1 + \infty) \cup \{-\gamma\}$$

ر ایدا کنید.
$$A = (\sqrt{7} - \sqrt{5})^{\frac{1}{\sqrt{7}-\sqrt{7}}} \sqrt{7} + \sqrt{5}$$
 اگر $A = (\sqrt{7} - \sqrt{5})^{\frac{1}{\sqrt{7}-\sqrt{7}}} \sqrt{7}$ اگر $A = (\sqrt{7} - \sqrt{5})^{\frac{1}{\sqrt{7}-\sqrt{7}}} \sqrt{7}$ اگر $A = (\sqrt{7} - \sqrt{5})^{\frac{1}{\sqrt{7}-\sqrt{7}}} \sqrt{7}$

الف) عبارت گویایی بیابید که اگر با
$$\frac{x}{x+1}$$
 جمع شود، حاصل آن برابر $\frac{3x-1}{x-1}$ شود.

ب) حاصل عبارت
$$\frac{x^r + 7x - 7}{7x} \times \frac{x+1}{x^r - 1}$$
 را تعیین کنید.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$\frac{\mathcal{N}-1}{2^{2}x+6x-1-6x+6x} = \frac{\mathcal{N}-1}{2^{2}x+6x-1}$$

$$A = \frac{(2n-1)(n+1)}{7n} \cdot \frac{2n+1}{(2n-1)(n+1)} = \frac{n+1}{7n}$$

(۱ نمره)
$$x^{\mu} + x^{-\mu}$$
 را بیابید. (۱ نمره) $x^{\mu} + x^{-\mu}$

$$3x^{2} + \frac{1}{2} = (x + \frac{1}{2})^{4} - \frac{1}{2}(x + \frac{1}{2}) = 1$$

اگر $\frac{1}{x} = x$ باشد. حاصل $x + \frac{1}{x} = x$ را بیابید. (۱ نعره) $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2$

١	نامعادله داده شده را حل کنید.	٩
	$\frac{ x-y (x^{\tau}-x-s)}{s} \leq 0$	0
	$\frac{1}{x-r} \leq 0$	
'-	اگر رابطه زیر بیانگر یک تابع باشد مقدار m را بیابید .	d
	$f = \{ (r, m^{r} - 1), (1, -r), (r, r), (r, r), (m, r), (-r, 1) \}$	

۵ – الف: با عدد مناسب کامل کنید.

عدد a دارای دارای a عدد a دارای است.(دو ایک)

عدد a دارای دارای a عدد a دارای است.(دو ایک)

 \mathbf{v} : اگر \mathbf{x} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} باشد، مقدار \mathbf{v} چند است؟

١	$(x^{r}-t)(x+r)^{t}$ را مشخص کنید. $(x^{r}-t)(x+r)^{t}$ کارمت کنید) امجموعه جواب نامعادله $x^{r}-x+t$ را مشخص کنید. $(x^{r}-x+t)$
1	اگر رابطهی $\{(+m, 9)\}$ و $(m, 9)$ تابع باشد، $(m, 9)$
1	۱۱- دامنه و برد تابع زیر را مشخص کنید.
	
١	را ۸ واحد در راستای محور عرض ها به سمت بالا، ۲ واحد در راستای محور عرض ها به سمت بالا، ۲ واحد در راستای $g(x)$ محور طول ها به سمت راست سپس نسبت به محور عرض ها قرینه کنیم تا تابع $g(x)$ بدست آید، ضابطه تابع
	را بنویسید.

	بارم	صفحه ۳		نام و نام خانوادگی:
	١		$f(x) = \begin{cases} x+1 \\ -x^{7}-1 \end{cases}$ شبیه کدام است؟	X < -1
			(-x'-1)	$x \ge -1$
			et et	\ \ \ \
		(3	ب) ﴿ حَالَ اللَّهُ اللَّاللَّا الللَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الللَّهُ اللَّا	الف) حال
				•
I	I			1

$$f = \{(2, a - 3), (3, 1), (2, 2a - 7), (a + 1, b^2), (5, 1)\}$$

$$A = \sqrt{r} = \sqrt{a} - \sqrt{r} \quad a = 6$$

$$b^{r} = (= > b = \pm 1)$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad b = 1$$

$$A = \sqrt{r} - 1 \quad$$

الف) مذج كسرزير راكوبا كنيد $A = \frac{1}{\sqrt{444} + \sqrt{412} + \sqrt{11} + \sqrt{400}}$ $A = \frac{1}{\sqrt{44} (\sqrt{11} + \sqrt{12}) + \sqrt{16} (\sqrt{12} + \sqrt{11})} = \frac{1}{(\sqrt{11} + \sqrt{12})(\sqrt{12} + \sqrt{16})} = \frac{1}{(\sqrt{11} + \sqrt{12})(\sqrt{12} + \sqrt{16})}$ $B = (\sqrt{V} - \sqrt{4})^{\frac{1}{VV} + \sqrt{V}} \cdot (\frac{1}{\sqrt{V} - \sqrt{4}})^{\frac{1}{VV} - \sqrt{V}} - \sqrt{V}$ $B = (\sqrt{V} - \sqrt{4})^{\frac{1}{VV} - \sqrt{V}} \cdot (\frac{1}{\sqrt{V} - \sqrt{4}})^{\frac{1}{VV} - \sqrt{V}} = 1$ = 1داصل عبارات زیر رام کمک اتمادها بدست آورین الف) A = (a+4)(a+4)(a+4) - (a+4)(-44) $A = \left(\frac{\alpha^{r} + 9\alpha + (\Lambda)(\alpha^{r} + 9\alpha + r)}{\alpha^{r} + 9\alpha}\right) - \left(\alpha^{r} + 9\alpha\right)^{r} - r_{9}$ A = (a+9a) + +1 (a+9a)++40 - (a+9a) - +40. A= 4/ (a+ 9a) (n-y)=7 ×y=10, xy=10, xy=0 => B=x"+y"=? (, a 10 (2+4) = 2x + yx + xny = (2-4) + 621 y = 6+40 = 46 => 2+ y=1 $B = (x+y)^{\mu} - \forall xy(x+y) = \sqrt{-6a(\Lambda)} = \Lambda[46-6a] = \Lambda \times 19$

يناكب ممتح آسورس غيراسقائ از عبت نام تعداده دادش آسورسودى عادل ك ٩ ماصل - تانندا تر بعادله سودانی مجتمع بصورت ۱۵ - ۲۵ = (۵) کا باسکد الف) بعادلہ سورہ تعرف مه تابعی است ب) مِند دانش آسور ماید رست مام كىندتا سورى سعادل 11 مليون عايد اين مجتمع سود جى) منودار سورايون الميم درمة نعظماى هوريا هاقطع كالنكداس يقتطم معوف جيست S(a)=4a-4a الف) تابعر خعلى

110 = ra - 60 $\alpha = \Delta \Delta$

0=40-(D => 0 = 10

(こ)から(いか)(ハッシ)・(コロ)・(ファン)・(コン

الف) مندکد کرشره وقت (دوالف را ۲ مث المکیال رفظر الف را ۲ مث المکیال رفظر الف را ۲ مث المکیال رفظر الف را ۲ مث المث را ۲ مث الف را ۲ مث الف المث رفظ الفوق الفوق

O

	سک استواره به شعاع تاعزه محوارتفاع ۱۰ سه و رادرکودای به شعاع ۱۰ ماطکرده ایم محم کرد را در مورد این به شعاع ۱۲ ماطکرده ایم محم کرد را در مورد تایمی از در ماع تاعده استوانه بدورد سید	6
1,0	·	
	ا + (۱-۱) عابی مطی است بقسیلم ۱ + (۱۰) ع = (۱-۱) ع و ۲ = (۳) عابیح المست بقسیلم لندن بسی ساعت مثلی کماز برخورد خطبا بحورهای مفتصات بدید می آوردین	BC
۲		
		A
*	داست وبرد تانج ۱۲۵-۱۷ - ۷ = (۱۸) مراساسید	7

$$| 2 \times 10^{-1} | 2 \times 10^{-1}$$

$$A = \frac{1}{\sqrt{9} + \sqrt{10} + \sqrt{10}}$$

$$B = \frac{1}{\sqrt{1 \cdot - \sqrt{\Delta} + \sqrt{\varepsilon} - \sqrt{\tau}}}$$

$$A = \sqrt{\frac{r - r\sqrt{r}}{1 \vee - 1 \wedge r\sqrt{r}}} - \sqrt{\frac{r + r\sqrt{r}}{1 \vee + 1 \wedge r\sqrt{r}}}$$

 $A = \sqrt{\frac{r - r\sqrt{r}}{1V - 17\sqrt{r}}} - \sqrt{\frac{r + r\sqrt{r}}{1V + 17\sqrt{r}}}$

 $\frac{1}{\sqrt{x}-\sqrt{y}}$

- (٠/٧۵	(y ابیابید. x یا y را بیابید. x یا فقط y یا فقط y	10	X
	·	$x = \sqrt{1}\sqrt{1} + \sqrt{1}\sqrt{1} + \sqrt{1}\sqrt{1}\sqrt{1} + \sqrt{1}\sqrt{1}\sqrt{1}\sqrt{1}\sqrt{1}\sqrt{1}\sqrt{1}\sqrt{1}\sqrt{1}\sqrt{1}$		
		$y = \left(\sqrt{7} - \sqrt{7} + \sqrt{7} + \sqrt{7}\right) \left(\sqrt[7]{7}\sqrt{7}\right)$		
				Ì
		(1~)		

(10) A = (a-r)(a+r)(a'+ra+6)(a'-ra+9) $(11) A = (Jr-r)^{1}(11+4\sqrt{r})^{a}$ $(11) A = (Jr-r)^{1}(11+4\sqrt{r})^{a}$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{VTS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$B = (\sqrt{V} - \sqrt{F})^{\frac{1}{VP} + \sqrt{T}} \cdot (\frac{1}{\sqrt{VV} - \sqrt{F}})^{\sqrt{VP} - \sqrt{T}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{VTS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{VTS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{VTS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{VTS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{VTS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TI} + \sqrt{\Delta \Delta}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TS} + \sqrt{TS} + \sqrt{TS}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TS} + \sqrt{TS}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TS} + \sqrt{TS}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TS} + \sqrt{TS}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS} + \sqrt{TS} + \sqrt{TS}}$$

$$A = \frac{1}{\sqrt{VPP} + \sqrt{TS}}}$$

$$A = \frac{1}{\sqrt{$$

| درون دایره ای به شعاع r، مستطیلی به طول x و عرض y محاط کرده ایم. مساحت مستطیل را بصورت تابعی از X | ۱.۵ 5=24

نوشته و دامنه این تابع را حساب کنید.

S(W)= DEVERT-QUY

~b · x < +r -> - 1 / 9x < +r , or> 0

$$\rightarrow D_{R} = (0)$$

		ساده کنید:	*X
10000	$(4) \int \frac{\Upsilon \sqrt{4} \sqrt{4}}{\sqrt{4}} = \frac{1}{\sqrt{4} \sqrt{4}}$		
	$\frac{1}{\sqrt[4]{\sqrt{4\sqrt{5}}}} = \frac{1}{\sqrt[4]{\sqrt{4\sqrt{5}}}} = \frac{1}{\sqrt[4]{\sqrt{4\sqrt{5}}}}$		
	(·/۲۵)·/a =		

1	اگر $x + \frac{1}{x} = x$ باشد حاصل عبارت $x^{+} + x^{-+} + x^{-+} + x^{-+}$ را بدست آورید.	54
1/۵	نامعادله زیر را حل کنید. $\frac{(r-x)(x^r-rx-\lambda)(-x^r+rx-\lambda)}{r-x^r} \geq \cdot$	*

	تابع بودن یا نبودن روابط زیر را بررسی کنید: $ y +x^{r}+x=1$ (الف	&
1/0	ب) $y^{r} + ty = -1 - x^{r}$	
1/۵	تابع زیر را رسم کنید. دامنه و برد این تابع را بنویسید. $x \le -1$ $y = \begin{cases} -0 & x \le -1 \\ x^r - 1 & -1 \le x \le 1 \\ \sqrt{x-1} + 1 & x \ge 1 \end{cases}$	1.

1/۵	یکی از دو نامعادله زیر را (به دلخواه) حل کنید.	54
	الف) $ x-1 -2 <3$	
	$\downarrow \left \frac{2-x}{2x-3} \right > 1$	
	12x - 31	
1		
	مقادیر a و b را چنان بیابید که f یک تابع باشد.	v ~/
	$f = \{(2, a-3), (3,1), (2,2a-7), (a+1,b^2), (5,1)\}$	"
		. ~
1	حاصل عبارت $A = \frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{2}+\sqrt{3}} + \dots + \frac{1}{10+\sqrt{99}}$ را بیابید.	^ ^
۱/۵	اگر f تابعی خطی باشد به گونه ای که برای هر x داشته باشیم.	9 X
	f(x+4) - 2f(x-2) = 3x + 7	
	آنگاه ضابطه تابع f(x) را بیابید.	
1/۵	به انتخاب خود به یکی از دو سوال زیر پاسخ دهید.	1.0
	$f(x) = \sqrt{\frac{x^4 - 13x^2 + 36}{10x - x^2 + 24}}$ الف) دامنه تابع f را به فرم بازه بنویسید.)
	را رسم کنید. $y = x^2 - 2x $ با نمودار تابع $y = x^2 - 2x $	

n(ANB) - (A)+n(B)= (n(ANB) , n(AUB)=10)) (a) 11) \$ 10-519 x \$ 10+519 A = \ - KA \ - KA + 1

mly 9(- 5

X = 17 x 17+17 x 17+17 x 17-17+27

X= 151 + 15+ (PT)

 $\frac{\partial}{\partial x-1|-x|} = \begin{cases} (\sqrt{\alpha}-1), (\sqrt{$

A - JF + 1 + JF + JF - - - + 10 + J99

(مسكنه نامعادلات زيرا على ننيه و سجري جواب را تعن كنيد 2-1 + Tx+ 5 / 2 r(x-r)-r(1x+1)> rx+8 x(b), f(a), f(a) / (a≠0) f(n) = an-b, (10) جملات متوالی یک زیاله حمای ایند ، تقدار (۲) ۴ رابرد آورید. ال) (رون (ایره ای به شعای ۲ ه سسطیلی به طول ۱۸ وی فی ایساط الرده ایم رساحت مستمل را به صورت تابعی از مر نوشته و داسته این تابع را ١١) مخرج كسي الويانيد. TO (11+ TV) 4 TO (V+ TV)

1) 1 V - FTF x 1 Y+ VF 1) (VA + VY) (VA - VF) × 4 ٣ - معزج كسرهاى داده مشده را كوياكند ار طه ۲ - اگر طه ۲ م با شدی تعاریوری Sn(ANB) اگر Cn(A) +h(B) = fn(AnB)n(AUB)=10 مقار JOK + 4 JY - OTKE + FVY - TTP + VPY

-(n)=cong binity by converge const $\int_{-\alpha}^{-\alpha} (x + y) = (x + y) =$ صابطہ (۲) کے رایاس