

Matrices - combinatoire À rendre le 15 janvier 2016

On appelle *graphe G* la donnée :

- d'un entier $n \in \mathbb{N}^*$, et de l'ensemble $\mathbf{E}_n = \{1, \dots, n\}$. Les éléments de \mathbf{E}_n s'appellent alors dans ce contexte les *sommets* du graphe G.
- d'un sous-ensemble V de l'ensemble des 2-combinaisons de \mathbf{E}_n . Les éléments de V sont appelés les *arêtes* du graphe. Toute arête $\{i,j\} \in V$ est alors notée [i,j].

Soit $\ell \ge 1$ un entier et i et j deux sommets du graphe G. On appelle *chemin* de longueur ℓ allant de i à j dans G toute $\ell + 1$ -liste de sommets $c = (\alpha_1, \ldots, \alpha_{\ell+1})$ telle que :

- $-\alpha_1 = i$ et $\alpha_{\ell+1} = j$.
- Pour tout entier $k \in \{1 \dots \ell\}$, la paire $\{\alpha_k, \alpha_{k+1}\}$ est une arête de G.

Si $\ell \geq 2$, un chemin allant de i à i de longueur ℓ dans G s'appelle un ℓ -cycle de G, et on peut remarquer qu'un chemin de longeur 1 n'est rien d'autre qu'une arête de G.

Sur cet exemple, le graphe G possède 5 sommets. L'ensemble de ses arêtes est

 $V = \{[1,4],[1,3],[2,5],[2,4],[4,5]\}$. Il y en a donc 5. La suite (3,1,4,5,2) est un chemin dans G de longueur 4, et (4,5,2,4) est un 3-cycle de G.

Étant donné un graphe G à n sommets, d'ensemble des arêtes V, on appelle matrice d'adjacence de G la matrice notée $A_G = (a_{i,j}) \in \mathcal{M}_n(\mathbf{R})$ définie par : $a_{i,j} = 1$ si et seulement si [i,j] est une arête de G. Par exemple, la matrice d'adjacence du graphe ci-contre est la matrice (symétrique) suivante :

$$A_G = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

Le but du problème est d'établir de décompter les cycles de longueur donnée dans un graphe par deux approches différentes.

On pourra utiliser les propriétés suivantes (à démontrer dans $\ \ \blacksquare \ \ \)$:

- **[R1] 1.** (*Définition*) Pour toute matrice carrée M, on note Tr(M) la somme de ses coefficients diagonaux (ce nombre s'appelle la *trace* de M).
 - **2.** (*Invariance de la trace*). Si $(A, P) \in \mathcal{M}_n(\mathbf{R})^2$ et P est inversible alors : $\operatorname{Tr}(P^{-1}AP) = \operatorname{Tr}(A)$.

[R2] Si A_G est la matrice d'adjacence d'un graphe G, et $k \ge 1$ un entier, $Tr(A_G^k)$ vaut le nombre de k-cylces du graphe G.

Partie I : Un graphe très simple

Pour comprendre sur un exemple très simple, on se propose de compter les k-cycles du graphe élémentaire G à trois sommets représenté ci-contre en utilisant $\mathbf{R2}$.

Matrices - combinatoire À rendre le 15 janvier 2016

On notera I la matrice unité d'ordre $3:I=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}$.

- **1.** Donner la matrice d'adjacence A_G de ce graphe.
- **2.** On pose $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$.
 - **a)** Montrer que la matrice P est inversible et calculer son inverse P^{-1} .
 - **b)** Vérifier que $P^{-1}A_GP = \Delta$, où Δ est une matrice diagonale qu'on précisera.
 - **c)** Montrer que pour tout entier naturel k non nul : $\Delta^k = P^{-1}A_G^kP$.
 - **d)** Par ailleurs, donner l'expression de Δ^k pour tout entier k naturel non nul.
 - **e)** En déduire que : $Tr(A_G^k) = Tr(\Delta^k)$.
 - **f)** En déduire la valeur du nombre de *k*-cycles dans le graphe *G*.

Partie II: un calcul direct.

Dans cette partie on souhaite calculer directement le nombre de k-cycles dans le graphe G à trois sommets de la partie **II**. Pour cela on note pour tous sommets i,j du graphe G et pour tout entier k>0, $\omega_k^{i,j}$ le nombre de chemins de longeur k dans le graphe G allant de i à j. On souhaite donc calculer la valeur de $\omega_k^{1,1} + \omega_k^{2,2} + \omega_k^{3,3}$.

- **1. a)** Expliquer rapidement pourquoi $\omega_k^{1,1} = \omega_k^{2,2} = \omega_k^{3,3}$ et $\omega_k^{1,2} = \omega_k^{1,3} = \omega_k^{2,3} = \omega_k^{2,1} = \omega_k^{3,1} = \omega_k^{3,2}$
 - **b)** En déduire que le nombre total de cycles de longeur k dans G vaut $3\omega_k^{1,1}$.
 - **c)** Calculer $\omega_1^{1,2}$ et $\omega_2^{1,2}$.
- **2. a)** Soit $k \ge 1$ un entier. Par un raisonnement combinatoire, en considérant les valeurs possibles de l'avant-dernier sommet d'un k-cycle de G allant de 1 à 1, trouver une relation entre $\omega_{k+1}^{1,1}, \omega_k^{1,2}, \omega_k^{1,3}$ et en déduire que $\omega_{k+1}^{1,1} = 2\omega_k^{1,2}$
 - **b)** De même, établir une relation entre $\omega_k^{1,2},\omega_{k-1}^{1,3},\omega_{k-1}^{1,1}$ valable pour $k\geq 2$.
 - **c)** En déduire que la suite de terme général $\omega_k^{1,2}$ vérifie la relation de récurrence suivante

$$\forall k \in \mathbf{N}^{\star} \quad \omega_{k+2}^{1,2} - \omega_{k+1}^{1,2} - 2\omega_{k}^{1,2} = 0$$

3. Donner la forme explciite de $\omega_k^{1,2}$ et retrouver le résultat de **I.2.f)**

Matrices - combinatoire À rendre le 15 janvier 2016

Partie III : preuve des résultats matriciels

- **1.** Soit G un graphe à n sommets de matrice d'adjacence A_G . Soit $\ell \in \mathbb{N}^*$ et notons $A_G^{\ell} = \left(a_{i,j}^{(\ell)}\right)$. On veut montrer par récurrence sur ℓ que :
 - $\forall i, j \in \mathbf{E}_n^2$ $a_{i,j}^{(\ell)}$ donne le nombre de chemins de longueur ℓ dans G reliant i à j.

On fixe donc un entier ℓ et on suppose que $a_{i,j}^{(\ell)}$ compte le nombre de chemins de longueur ℓ allant de i à j, et ce, pour i, j quelconques dans \mathbf{E}_n .

- **a)** Soit i, j deux sommets du graphe, et un chemin dans G de longueur $\ell + 1$ allant de i à j. Quelles valeurs peut prendre le sommet visité juste avant j sur ce chemin?
- **b)** On note ici $E^{(1)}[i,j]$ le nombre de chemins dans le graphe G de longueur $\ell+1$ allant de i à j mais dont l'avant dernier sommet visité est 1. En distinguant deux cas, trouver une relation simple entre $\#E^{(1)}[i,j]$, $a_{i,1}^{(\ell)}$ et $a_{1,i}$.
- **c)** En déduire la valeur de $\#E^{(k)}[i,j]$ pour $1 \le k \le n$.
- **d)** Si on note $\mathscr{C}^{l+1}[i,j]$ l'ensemble des chemins de longueur $\ell+1$ dans G allant de i à j, utiliser ce qui précède pour donner la valeur de $\#\mathscr{C}^{l+1}[i,j]$.
- e) Conclure.
- **2.** Soit $M = (m_{i,j}) \in \mathcal{M}_n(\mathbf{R})$, et $N = (n_{i,j}) \in \mathcal{M}_n(\mathbf{R})$,
 - **a)** Calculer avec la formule du produit matriciel la valeur du coefficient diagonal général des matrices *MN* et *NM*.
 - **b)** En déduire que Tr(MN) = Tr(NM).
 - **c)** En déduire que si $(A, P) \in \mathcal{M}_n(\mathbf{R})^2$ et P est inversible alors : $\text{Tr}(P^{-1}AP) = \text{Tr}(A)$.
- **3.** Interpréter en termes de chemins la valeur du nombre $Tr(A_G^k)$.