

TD14: Arbres binaires

Nombres de Strahler

Le *nombre de Strahler* d'un arbre binaire strict est un entier associé à cet arbre qui sert à mesurer sa complexité. On le définit inductivement :

- le nombre de Strahler d'une feuille est 1,
- si *g* et *d* sont les nombres de Strahler respectifs des sous-arbres gauche et droit d'un arbre non réduit à une feuille, alors le nombre de Strahler de cet arbre est

$$\begin{cases} \max(g, d) & \text{si } g \neq d \\ g+1 & \text{sinon.} \end{cases}$$

Question 1 : Montrer que le nombre de Strahler d'un arbre de hauteur h est majoré par h+1, avec égalité si et seulement si l'arbre est parfait.

Question 2 : Montrer que le nombre de Strahler d'un arbre de hauteur $h \ge 1$ est minoré par 2.

Question 3 : À quoi ressemblent les arbres de hauteur h dont le nombre de Strahler vaut 2? Combien y en a-t-il pour une hauteur h donnée?

Arbres de Fibonacci

On définit la suite d'arbres de Fibonacci $(F_n)_{n\in\mathbb{N}}$ par :

- F_0 et F_1 sont des feuilles,
- si $n \ge 0$, F_{n+2} est l'arbre binaire possédant F_n comme sous-arbre gauche et F_{n+1} comme sous-arbre droit.

Question 4: Donner la hauteur de F_n .

Question 5 : Montrer que pour tout $n \ge 1$ et en tout nœud de F_n , les hauteurs des sous-arbres gauche et droit diffèrent d'au plus 1.

Question 6 : Déterminer le nombre de feuilles et de nœuds internes de F_n en fonction de la suite (numérique) de Fibonacci.

Question 7 : Quel est le nombre de Strahler (cf. exercice précédent) de l'arbre F_n ?

MP2I 1 TD