ELEC 241: CA Session 4 Notes (Quiz I Review)

Onkur Sen

September 19, 2012

Complex Exponentials

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

$$\cos \theta = \text{Re}[e^{j\theta}] = \text{Im}[je^{j\theta}]$$

$$\sin \theta = \text{Im}[e^{j\theta}] = \text{Re}[-je^{j\theta}]$$

Trigonometry

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \cot^2 x = \csc^2 x$$

$$\tan^2 x + 1 = \sec^2 x$$

Impedances

 $Z_R = R$

$$Z_C = \frac{1}{j2\pi fC}$$

$$Z_L = j2\pi L$$
 Series: $Z_{eq} = Z_1 + Z_2$ Parallel: $Z_{eq} = Z_1 || Z_2 = \frac{Z_1 Z_2}{Z_1 + Z_2}$ Conductance: $G = \frac{1}{Z}$

Circuits

Ohm's Law:
$$v = iZ$$

Voltage divider: $V_1 = \frac{Z_1}{Z_1 + Z_2} V_{in}$

Current divider: $i_1 = \frac{Z_2}{Z_1 + Z_2} i_{in}$

Power: $P = iv = i^2 Z = \frac{v^2}{Z}$

KVL: $\sum_{loop} v_k = 0$

KCL: $i_{in} - i_{out} = 0$

LTI Systems

$$\sum \text{(scaled, time-shifted inputs)}$$

$$\stackrel{S}{\Longrightarrow} \sum \text{(scaled, time-shifted outputs)}$$

$$S\left[\sum_{k=1}^{\infty} c_k x(t-\tau_k)\right] = \sum_{k=1}^{\infty} c_k y(t-\tau_k)$$

Transfer Functions

$$H(f) = \frac{V_{out}}{V_{in}} \text{ OR } \frac{I_{out}}{V_{in}} \text{ OR } \frac{V_{out}}{I_{in}} \text{ OR } \frac{I_{out}}{I_{in}}$$
 Low-pass filter: $\lim_{f \to \infty} H(f) = 0, G = |H(0)|$ High-pass filter: $\lim_{f \to 0} H(f) = 0, G = |H(\infty)|$ Cutoff Frequency: $|H(f_c)| = \frac{1}{\sqrt{2}}G$