

Effective Visualization

Presented by Hyebong Choi

Data Visualization

- Essential component of skill set as a data scientist
- With ever increasing volume of data, it is impossible to tell stories without visualizations.
- Data visualization is an art of how to turn "Big Data" into useful knowledge

Share of people vaccinated against COVID-19, Apr 22, 2021

This data is only available for countries which report the breakdown of doses administered by first and second doses.

■ Share of people fully vaccinated against COVID-19 ■ Share of people only partly vaccinated against COVID-19

Data Visualization

2 Different Main Purposes

- Exploratory Visualization
 - Help you see what is in the data
- Explanatory Visualization
 - Shows others what you've found in your data

00

2 Different Main Purposes

- Exploratory Visualization
 - Help you see what is in the data
 - Keep as much as detail as possible
 - Practical Limit: how much can you see and interpret
- Explanatory Visualization
 - Help us share our understanding with others
 - Shows others what you've found in your data
 - Requires editorial decisions:
 - <u>Highlight the key features</u> you want to emphasize
 - Eliminate extraneous details

Exploratory Visualization

Explanatory Visualization

Google Chart

First trial

Basic Setup

```
<!DOCTYPE html>
<html>
    <head>
         <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"> </script>
         <script type="text/javascript">
             google.charts.load('current', {'packages':['corechart']});
             google.charts.setOnLoadCallback(drawChart);
            function drawChart() {
            // Chart code will go here
        </script>
    </head>
    <body>
        <div id="chart_div"></div>
    </body>
</html>
```


unes Creating a Scatter Plot


```
<!DOCTYPE html>
<html>
       <head>
               <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
               <script type="text/javascript">
                      google.charts.load('current', {'packages':['corechart']});
                      google.charts.setOnLoadCallback(drawChart);
                      function drawChart() {
                             var data = google.visualization.arrayToDataTable([
                             ['X', 'Y'],
                             [8, 12],
                             [4, 5.5],
                             [11, 14],
                             [4, 5],
                             [3, 3.5],
                             [6.5, 7]
                     1);
                      var options = {
                             title: 'Scatter Plot Example',
                             hAxis: {title: 'X'},
                             vAxis: {title: 'Y'},
                             legend: 'none'
                      var chart = new google.visualization.ScatterChart(document.getElementByld('chart_div'));
                      chart.draw(data, options);
               </script>
       </head>
       <body>
               <div id="chart_div" style="width: 900px; height: 500px;"></div>
       </body>
```

Scatter Plot Example

Creating a Bar Chart


```
<!DOCTYPE html>
<html>
  <head>
    <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
    <script type="text/javascript">
      google.charts.load('current', {'packages':['corechart']});
      google.charts.setOnLoadCallback(drawChart);
      function drawChart() {
        var data = google.visualization.arrayToDataTable([
          ['City', '2010 Population', '2000 Population'],
          ['New York City, NY', 8175000, 8008000],
          ['Los Angeles, CA', 3792000, 3694000],
          ['Chicago, IL', 2695000, 2896000],
          ['Houston, TX', 2099000, 1953000],
          ['Philadelphia, PA', 1526000, 1517000]
        var options = {
          title: 'Population of Largest U.S. Cities',
          chartArea: {width: '50%'},
          hAxis: {
            title: 'Total Population',
            minValue: 0
            title: 'City'
        var chart = new google.visualization.BarChart(document.getElementById('chart_div'));
        chart.draw(data, options);
    </script>
  </head>
    <div id="chart_div" style="width: 900px; height: 500px;"></div>
  </body>
```


Population of Largest U.S. Cities

Total Population

Creating a Line plot


```
<!DOCTYPE html>
<html>
  <head>
    <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
    <script type="text/javascript">
      google.charts.load('current', {'packages':['corechart']});
      google.charts.setOnLoadCallback(drawChart);
      function drawChart() {
        var data = google.visualization.arrayToDataTable([
          ['Year', 'Sales', 'Expenses'],
          ['2004', 1000,
                               400],
          ['2005', 1170,
                               460],
          ['2006', 660,
                               1120],
          ['2007', 1030,
                               540]
        ]);
        var options = {
          title: 'Company Performance',
          curveType: 'function',
          legend: { position: 'bottom' }
        };
        var chart = new google.visualization.LineChart(document.getElementById('chart_div'));
        chart.draw(data, options);
    </script>
  </head>
  <body>
    <div id="chart_div" style="width: 900px; height: 500px;"></div>
  </body>
 </html>
```


Company Performance

Try some tutorials here

https://developers.google.com/chart/interactive/docs/quick_start

Loading Dataset from files

First, let's assume you have a CSV file named `data.csv` with the following content:

```
yaml

Year, Sales, Expenses
2004, 1000, 400
2005, 1170, 460
2006, 660, 1120
2007, 1030, 540
```



```
<html>
<head>
   <title>Google Chart with CSV Data</title>
   <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
   <script src="https://d3js.org/d3.v5.min.js"></script>
<body>
   <div id="chart_div" style="width: 900px; height: 500px;"></div>
   <script type="text/javascript">
       // Load Google Charts library
       google.charts.load('current', {'packages':['corechart']});
       google.charts.setOnLoadCallback(drawChart);
       // Function to draw the chart
       function drawChart() {
           d3.csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv').then(function(data) {
               const speciesMap = {
                   'setosa': 1,
                   'versicolor': 2,
                   'virginica': 3
               const dataArray = [['ID', 'Sepal Length', 'Sepal Width', 'Petal Length', 'Species (Numeric)']];
               data.forEach(function(row, index) {
                   dataArray.push([
                       row['species'] + ' ' + (index + 1),
                       parseFloat(row['sepal_length']),
                       parseFloat(row['sepal_width']),
                       parseFloat(row['petal_length']),
                       speciesMap[row['species']]
               const googleData = google.visualization.arrayToDataTable(dataArray);
                   title: 'Iris Dataset',
                   hAxis: {title: 'Sepal Length'},
                   vAxis: {title: 'Sepal Width'},
               const chart = new google.visualization.BubbleChart(document.getElementById('chart_div'));
               chart.draw(googleData, options);
               console.error('Error loading or parsing CSV:', error);
</body>
</html>
```

Species	SepalLeng	SepalWidt	PetalLeng	PetalWidt
setosa	5.1 cm	3.5 cm	1.4 cm	0.2 cm
setosa	4.9 cm	3. cm	1.4 cm	0.2 cm
setosa	4.7 cm	3.2 cm	1.3 cm	0.2 cm
setosa	4.6 cm	3.1 cm	1.5 cm	0.2 cm
setosa	5. cm	3.6 cm	1.4 cm	0.2 cm
setosa	5.4 cm	3.9 cm	1.7 cm	0.4 cm
setosa	4.6 cm	3.4 cm	1.4 cm	0.3 cm
setosa	5. cm	3.4 cm	1.5 cm	0.2 cm
setosa	4.4 cm	2.9 cm	1.4 cm	0.2 cm
setosa	4.9 cm	3.1 cm	1.5 cm	0.1 cm
setosa	5.4 cm	3.7 cm	1.5 cm	0.2 cm
setosa	4.8 cm	3.4 cm	1.6 cm	0.2 cm
setosa	4.8 cm	3. cm	1.4 cm	0.1 cm
setosa	4.3 cm	3. cm	1.1 cm	0.1 cm
setosa	5.8 cm	4. cm	1.2 cm	0.2 cm
setosa	5.7 cm	4.4 cm	1.5 cm	0.4 cm
setosa	5.4 cm	3.9 cm	1.3 cm	0.4 cm
setosa	5.1 cm	3.5 cm	1.4 cm	0.3 cm
setosa	5.7 cm	3.8 cm	1.7 cm	0.3 cm
setosa	5.1 cm	3.8 cm	1.5 cm	0.3 cm
	ws 1-20 of 150	V V	·	

Sepal Length

Tableau

First trial

Tableau Public

https://public.tableau.com/app/discover

Sample Dataset for trial

Restaurant Revenue Prediction Dataset

A dataset about restaurant

Data Card Code (0) Discussion (0) Suggestions (0)

About Dataset

This dataset contains information about various restaurants and aims to predict the revenue based on several features. Each row represents a unique restaurant with various attributes that may influence its revenue.

Columns

- . Name: The name of the restaurant.
- Location: The location of the restaurant (e.g., Rural, Downtown).
- Cuisine: The type of cuisine offered (e.g., Japanese, Mexican, Italian).
- . Rating: The average rating of the restaurant.
- Seating Capacity: The number of seats available in the restaurant.
- . Average Meal Price: The average price of a meal at the restaurant.
- . Marketing Budget: The marketing budget allocated for the restaurant.
- Social Media Followers: The number of social media followers.
- . Chef Experience Years: The number of years of experience of the head chef.
- Number of Reviews: The total number of reviews the restaurant has received.
- . Avg Review Length: The average length of reviews.
- . Ambience Score: A score representing the ambience of the restaurant.
- . Service Quality Score: A score representing the quality of service.
- Parking Availability: Indicates if parking is available (Yes/No).
- . Weekend Reservations: The number of reservations made on weekends.
- . Weekday Reservations: The number of reservations made on weekdays.
- . Revenue: The total revenue generated by the restaurant.

https://www.kaggle.com/datasets/anthonytherrien/restaurant-revenue-prediction-dataset

omicot to	o the data you need to visualize. <u>Learn more</u>		
Files	Connectors		
		Drag and drop a file	
		Drag and drop a me	
		or	
		Upload from computer	

⊖ restaurant_data

restaurant_data.csv

