

线性代数辅导讲义

一层次

作者: Zebray

目录

第一章	1. 行列式计算	1
1.1	直接计算	1
	1.1.1 初等变换	1
	1.1.2 可递推型	2
	1.1.3 Vandemonde	3
	1.1.4 秩一修正型	4
1.2	余子式与代数余子式之和类型	4
1.3	分块行列式计算	5
1.4	多项式行列式计算	5
第二章	· 矩阵基础性质、计算与初等变换	7
2.1	基本性质与计算型	7
2.2	初等变换计算型	9
2.3	矩阵分解型	10
第三章	。 矩阵的秩、向量线性相关性与线性方程组解的结构	12
3.1	秩的相关性质	12
3.2	线性方程组解的结构	12
3.3	秩与线性方程组解结构的相互转化	12
3.4	向量线性相关性与线性方程组解的相互转化	14

第一章 行列式计算

需要熟悉的知识点

- □ 2 阶、3 阶行列式手算
- □ 三角阵和反三角阵的行列式
- □ 分块三角阵和分块反三角阵的行列式
- □ 3 种初等变换及对应行列式变化

- □ 按某行或某列展开的 Laplace 公式
- Vandemonde 行列式
- □ 余子式 Mij 与代数余子式 Aij 定义及性质
- |AB| = |A||B|

1.1 直接计算

1.1.1 初等变换

务必多加练习!

- 一般步骤:
- 通过初等变换
- 得到某一行(列)全为1
 - ◆某一行(列)全相等亦可,只需提出即得到全1
- 再次初等变换得到某一行(列)只有一个1
- Laplace 公式

常见特征:

- 每行(列)和全相等
- 每行(列)与其相邻行(列)有明显规律
- 某行(列)只有个别项不是0
- ▲ 练习 1.1 (2015W-1-1) 设 $A = (a_{ij})_{n \times n}, a_{ij} = ij$,求 |A|.

练习 **1.2** (2017S-5) 计算行列式
$$D_n = \begin{bmatrix} b & b & \cdots & b & b & a \\ b & b & \cdots & b & a & b \\ b & b & \cdots & a & b & b \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ b & a & \cdots & b & b & b \\ a & b & \cdots & b & b & b \end{bmatrix}$$

练习 **1.3** (2018W-1-5) 计算行列式
$$D_n = \begin{bmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & n-1 \\ 3 & 4 & 5 & \cdots & n-2 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n-1 & n-2 & \cdots & 1 \end{bmatrix}$$

▲ 练习 **1.4** (2019S-4) 计算 $f(\pi)$ 与 $f'(\pi)$,此处

$$f(x) = \begin{vmatrix} a_1 & b_1 & a_1x^2 + b_1x + c_1 \\ a_2 & b_2 & a_2x^2 + b_2x + c_2 \\ a_3 & b_3 & a_3x^2 + b_3x + c_3 \end{vmatrix}.$$

1.1.2 可递推型

常见特征为使用 Laplace 公式将行列式降阶后变为所求行列式的低阶版本或一个局部。

- 三对角阵或反三对角阵
- 中心对称且边界稀疏

递推式通过 Laplace 公式得到。

例题 **1.1** (2016W-1-5) 计算行列式
$$D_n = \begin{vmatrix} 0 & 0 & \cdots & 0 & 1 & 2 \\ 0 & 0 & \cdots & 1 & 2 & 1 \\ 0 & 0 & \cdots & 2 & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 1 & 2 & \cdots & 0 & 0 & 0 \\ 2 & 1 & \cdots & 0 & 0 & 0 \end{vmatrix}$$

解

$$D_{n} = (-1)^{n+1} \times 2 \begin{vmatrix} 0 & 0 & \cdots & 1 & 2 \\ 0 & 0 & \cdots & 2 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 2 & \cdots & 0 & 0 \\ 2 & 1 & \cdots & 0 & 0 \end{vmatrix} + (-1)^{n+2} \begin{vmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 2 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 2 & \cdots & 0 & 0 \\ 2 & 1 & \cdots & 0 & 0 \end{vmatrix}$$
$$= (-1)^{n+1} \times 2D_{n-1} + (-1)^{n} \times (-1)^{n} \begin{vmatrix} 0 & 0 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ 1 & 2 & \cdots & 0 \\ 2 & 1 & \cdots & 0 \end{vmatrix}$$

$$= (-1)^{n+1} \times 2D_{n-1} + D_{n-2}$$

设

$$D_n + aD_{n-1} = b(D_{n-1} + aD_{n-2})$$

即

$$D_n = (b-a)D_{n-1} + abD_{n-2} = (-1)^{n+1} \times 2D_{n-1} + D_{n-2}$$

為 练习 1.9 计算行列式
$$D_{n+1} = \begin{vmatrix} -1 & x & 0 & \cdots & 0 & 0 \\ 0 & -1 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & x \end{vmatrix}$$
.

1.1.3 Vandemonde

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

- j < i 而非 $j \le i$
- $x_i x_j \overline{m} \ddagger x_j x_i$

例题 1.2 (2015W-2-(1))

(1) 计算
$$D_{n+1} = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & \cdots & x_n & x \\ x_1^2 & x_2^2 & \cdots & x_n^2 & x^2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} & x^{n-2} \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} & x^{n-1} \\ x_1^n & x_2^n & \cdots & x_n^n & x^n \end{bmatrix}$$

瓵

(1)
$$D_{n+1} = \prod_{1 \le j < i \le n} (x_i - x_j) \prod_{i=1}^n (x - x_i)$$

1.1.4 秩一修正型

对于可逆的方阵 A,

$$|A + \alpha \beta^{\mathrm{T}}| = (1 + \beta^{\mathrm{T}} A^{-1} \alpha) |A|$$

证明 注意到

$$\begin{vmatrix} A + \alpha \beta^{\mathrm{T}} & 0 \\ -\beta^{\mathrm{T}} & 1 \end{vmatrix} = \begin{vmatrix} I & -\alpha \\ 0 & 1 \end{vmatrix} \begin{vmatrix} A & \alpha \\ -\beta^{\mathrm{T}} & 1 \end{vmatrix} = \begin{vmatrix} I & \alpha \\ \beta^{\mathrm{T}} A^{-1} & 1 \end{vmatrix} \begin{vmatrix} A & \alpha \\ -\beta^{\mathrm{T}} & 1 \end{vmatrix} = \begin{vmatrix} A & \alpha \\ 0 & 1 + \beta^{\mathrm{T}} A^{-1} \alpha \end{vmatrix}$$

▲ 练习 1.10 计算 n 阶行列式

$$D_n = \begin{vmatrix} a_1 + x_1 & a_2 & \cdots & a_n \\ a_1 & a_2 + x_2 & \cdots & a_n \\ \vdots & \vdots & & \vdots \\ a_1 & a_2 & \cdots & a_n + x_n \end{vmatrix},$$

其中 $x_i \neq 0, i = 1, 2, ..., n$.

1.2 余子式与代数余子式之和类型

$$\bullet \ M_{ij} = (-1)^{i+j} A_{ij}$$

$$D = \sum_{i=1}^{n} a_{ij} A_{ij}, \forall j = 1, 2, \dots, n$$
$$= \sum_{i=1}^{n} a_{ij} A_{ij}, \forall i = 1, 2, \dots, n$$

•

$$0 = \sum_{i=1}^{n} a_{ij_0} A_{ij}, \forall j = 1, 2, \dots, n, j \neq j_0$$
$$= \sum_{j=1}^{n} a_{i_0j} A_{ij}, \forall i = 1, 2, \dots, n, i \neq i_0$$

$$A_{11} + A_{12} + A_{13} + A_{14} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 \\ 2 & -2 & 0 & 0 \\ 0 & 3 & -3 & 0 \end{vmatrix}$$

第3 **1.11** (2021S-1-1) 计算
$$A_{11} + M_{12} - M_{13}$$
, 其中 $D = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix}$, A_{ij} 是元素 a_{ij} 的代数余子式, M_{ij} 是元素 a_{ij} 的代数余子式, M_{ij} 是元素 a_{ij} 的代数余子式, A_{ij} 是元素 A_{ij} 的代数余子式, A_{ij} 是元素 A_{ij} 是元素 A_{ij} 的代数余子式, A_{ij} 是元素 A_{ij} 是元素 A_{ij} 的代数余子式, A_{ij} 是元素 A_{ij} 的代数余子式。

元素 a_{ij} 的余子式。

练习 **1.12** 设行列式
$$D = \begin{bmatrix} 2 & 0 & -1 & 1 \\ 3 & 1 & 0 & 1 \\ 4 & 1 & 1 & 0 \\ 5 & -1 & 0 & a \end{bmatrix}$$
, A_{ij} 表示元素 $a_{ij}(i, j = 1, 2, 3, 4)$ 的代数余子式。若 $A_{11} - A_{21} + A_{41} = 4$, 求 a_{\circ}

1.3 分块行列式计算

$$\bullet \left| \begin{array}{cc} A & O \\ C & D \end{array} \right| = \left| \begin{array}{cc} A & B \\ O & D \end{array} \right| = |A| \, |D|$$

练习 1.13 设
$$A$$
 是 m 阶矩阵, B 是 n 阶矩阵, 且 $|A|=a$, $|B|=b$, 求 $\begin{vmatrix} O & A \\ B & O \end{vmatrix}$.

1.4 多项式行列式计算

关注各幂次前系数。

$$(1) \text{ 计算 } D_{n+1} = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & \cdots & x_n & x \\ x_1^2 & x_2^2 & \cdots & x_n^2 & x^2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} & x^{n-2} \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} & x^{n-1} \\ x_1^n & x_2^n & \cdots & x_n^n & x^n \end{vmatrix}$$

$$(2) \text{ th } (1) \text{ th } \hat{p} C_n = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-2} & x_2^{n-2} & \cdots & x_n^{n-2} \\ x_1^n & x_2^n & \cdots & x_n^{n-2} \end{vmatrix}.$$

解

(2) 注意到
$$-C_n$$
 为 D_{n+1} 的 x^{n-1} 项前系数,由 Vieta 定理, $C_n = \prod_{1 \leq j < i \leq n} (x_i - x_j) \sum_{i=1}^n x_i$

练习 1.14 (2019S-4 改) 计算 f'(π) 与 f''(π), 此处

$$f(x) = \begin{vmatrix} a_1 & b_1 & a_1x^2 + b_1x + c_1 \\ a_2 & b_2 & a_2x^2 + b_2x + c_2 \\ a_3 & b_3 & a_3x^2 + b_3x + c_3 \end{vmatrix}.$$

- 练习 1.16 设 $f(x) = \begin{vmatrix} x+1 & 2 & 3 & \cdots & n \\ 1 & x+2 & 3 & \cdots & n \\ 1 & 2 & x+3 & \cdots & n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 2 & 3 & \cdots & x+n \end{vmatrix}$, 求 $f^{(n-1)}(0)$ 。

第二章 矩阵基础性质、计算与初等变换

需要熟悉的知识点

方程组

- □ 手算矩阵乘法
- □ 矩阵的逆、伴随、转置定义及性质
- □ 手算求逆, 手算求伴随

□ 分块矩阵处理与矩阵分块. 简单矩阵分解

表示, 相抵关系, 计算具体矩阵的秩, 解线性

□ 矩阵的初等变换、初等矩阵, 初等变换的矩阵

2.1 基本性质与计算型

$$\bullet \ AB = \begin{bmatrix} \alpha_1^{\mathsf{T}} \\ \alpha_2^{\mathsf{T}} \\ \vdots \\ \alpha_s^{\mathsf{T}} \end{bmatrix}_{s \times n} [\beta_1, \beta_2, \cdots, \beta_m]_{n \times m} = \begin{bmatrix} \alpha_1^{\mathsf{T}} \beta_1 & \alpha_1^{\mathsf{T}} \beta_2 & \cdots & \alpha_1^{\mathsf{T}} \beta_m \\ \alpha_2^{\mathsf{T}} \beta_1 & \alpha_1^{\mathsf{T}} \beta_2 & \cdots & \alpha_1^{\mathsf{T}} \beta_m \\ \vdots & \vdots & & \vdots \\ \alpha_s^{\mathsf{T}} \beta_1 & \alpha_s^{\mathsf{T}} \beta_2 & \cdots & \alpha_s^{\mathsf{T}} \beta_m \end{bmatrix}_{s \times m}$$

- $AA^{-1} = A^{-1}A = I$,逆如果存在是唯一的
 - $(A^{-1})^{-1} = A$
 - $|A^{-1}| = |A|^{-1}$
 - ▲ 3 阶及以下矩阵算逆用伴随, 3 阶以上矩阵算逆用初等行变换
- $AA^* = A^*A = |A|I$,伴随是唯一的
 - 一般没有 (A*)* = A
 - $|A^*| = |A|^{n-1}$
 - A^* 的 (i,j) 元是 A_{ii} 而非 A_{ij}
- $A^{-1} = \frac{1}{|A|}A^*$
 - ▲ 看到逆和伴随, 优先考虑乘一个原矩阵化简
 - 最后不要忘记去除乘原矩阵的影响
- 转置是唯一的
 - $(A^{\mathrm{T}})^{\mathrm{T}} = A$
 - $|A^{\mathrm{T}}| = |A|$
- 初等行(列)变换等价于把对应的初等矩阵左(右)乘原矩阵
- 初等变换不改变秩,但可能改变行列式

例题 2.1 (2015W-5) 一个方阵 A 称为幂零的,如果存在正整数 N 使得 $A^N = 0$. 设 A 为幂零的,证明:

- (1) $B = a_1 A + a_2 A^2 + \cdots + a_m A^m$ 也是幂零的.
- (2) 若 $a_0 \neq 0$, 则 $C = a_0 E + a_1 A + a_2 A^2 + \cdots + a_m A^m$ 是可逆矩阵, 并利用 B 来表示 C^{-1} .

证明 (1) 直接验证 $B^N = O$, 从而幂零。

(2) 假设我们已经知道了 C 可逆, $C^{-1} = (a_0 E + B)^{-1}$, 完全形式化地处理矩阵的逆。

$$(a_0E + B)^{-1} = \frac{E}{a_0E + B}$$

$$= \frac{1}{a_0} \frac{E}{E + \frac{1}{a_0}B}$$

$$= \frac{1}{a_0} \sum_{k=0}^{\infty} \left(-\frac{1}{a_0}B\right)^k$$

$$= \frac{1}{a_0} \sum_{k=0}^{N-1} \left(-\frac{1}{a_0}B\right)^k$$

这表明如果 C 可逆,那么 $C^{-1} = \frac{1}{a_0} \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k$,那么只需验证 $C \frac{1}{a_0} \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k = E$:

$$C\frac{1}{a_0} \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k = \frac{1}{a_0} (a_0 E + B) \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k$$
$$= \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k - \sum_{k=1}^{N} \left(-\frac{1}{a_0} B \right)^k$$
$$= \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k - \sum_{k=1}^{N-1} \left(-\frac{1}{a_0} B \right)^k$$
$$= E$$

上面的过程请在草稿纸上完成。解题过程如下: 断言: C 可逆, 并且 $C^{-1} = \frac{1}{a_0} \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k$ 。事实上,

$$C\frac{1}{a_0} \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k = \frac{1}{a_0} (a_0 E + B) \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k$$
$$= \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k - \sum_{k=1}^{N} \left(-\frac{1}{a_0} B \right)^k$$
$$= \sum_{k=0}^{N-1} \left(-\frac{1}{a_0} B \right)^k - \sum_{k=1}^{N-1} \left(-\frac{1}{a_0} B \right)^k$$
$$= E.$$

练习 2.1 (2015W-1-3) 设 $A + B = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$, $A - B = \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix}$, 求 $A^2 - B^2$.

△ 练习 2.2 (2017S-1-1) 设 A 为 3 阶方阵, $|A| = \frac{1}{2}$,求 $|(3A)^{-1} - 2A^*|$.

练习 2.3 (2017S-1-4) 已知 $A = \begin{bmatrix} -5 & 2 \\ -12 & 5 \end{bmatrix}$, $P = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, 求 $P^{-1}AP$ 和 $A^{-3} - A$.

练习 2.4 (2017S-2) 若方阵满足 $X^2 = X$,则称 X 是幂等的。设 A 和 B 是同阶的幂等方阵,证明: A + B 是幂等的 当且仅当 AB = BA = O。

练习 2.5 (2018W-1-2) 设 $A = \begin{bmatrix} 0 & 1 \\ & 0 & 2 \\ & & \ddots & \ddots \\ & & & 0 & n-1 \\ n & & & & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}, C = \begin{bmatrix} A & O \\ O & B \end{bmatrix}, 其中 n \ge 2, 求 C^{-1}.$

▲ 练习 2.6 (2018W-1-3) 设 $A \in \mathbb{R}^{3\times 3}$, $|A| \neq 0$, 且 $A_{ij} = 2a_{ij}$, i, j = 1, 2, 3, 其中 A_{ij} 为 a_{ij} 的代数余子式,求 $|A^*|$.

练习 2.7 (2019S-1-3) 已知 4 阶方阵
$$A$$
 的伴随矩阵 $A^* = \begin{bmatrix} 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 3 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}$, 求 A .

练习 2.8 (2019W-1-3) 已知
$$A^{-1} = \begin{bmatrix} 2 & 1 & 4 \\ 1 & -2 & 3 \\ -2 & 1 & -6 \end{bmatrix}$$
, 求 $(E+A)^{-1}$.

练习 **2.10** (2021S-1-4) 计算
$$(A^*)^*$$
,其中 $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$.

练习 2.8 (2019W-1-3) 已知
$$A^{-1} = \begin{bmatrix} 2 & 1 & 4 \\ 1 & -2 & 3 \\ -2 & 1 & -6 \end{bmatrix}$$
, 求 $(E+A)^{-1}$.

练习 2.9 (2019W-3) 设 n 阶方阵满足 $(A^*)^* = O$, 证明 $|A| = 0$.

练习 2.10 (2021S-1-4) 计算 $(A^*)^*$, 其中 $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$.

练习 2.11 (2021S-5(1)) 设 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, $B = A^{-1} = \begin{bmatrix} \beta_1^T \\ \beta_2^T \\ \vdots \\ \beta_n^T \end{bmatrix}$, $C = \sum_{i=1}^k \alpha_i \beta_i^T$ $(k < n)$.

(1) 证明: $C^2 = C$.

2.2 初等变换计算型

- 计算具体矩阵的秩
- 求解线性方程组
- 求解矩阵方程: $AX = B \iff A[x_1, x_2, \dots, x_n] = [\beta_1, \beta_2, \dots, \beta_n] \iff Ax_k = \beta_k, k = 1, 2, \dots, n$ 解题方法相当统一且简单:对矩阵作初等行变换直至变为行阶梯型。多加练习!不要跳步!没有技巧! 例题 2.2 (2017S-4) 解带参数方程组

$$\begin{cases} x_1 + (\lambda^2 + 1)x_2 + 2x_3 = \lambda \\ \lambda x_1 + \lambda x_2 + (2\lambda + 1)x_3 = 0 \\ x_1 + (2\lambda + 1)x_2 + 2x_3 = 2 \end{cases}.$$

- 练习 **2.12** (2015W-1-2) 求 p 使得矩阵 $A = \begin{bmatrix} p & 4 & 10 & 1 \\ 1 & 7 & 15 & 3 \\ 2 & 2 & 0 & 3 \end{bmatrix}$ 的秩 r(A) 最小,并求 r(A).
- 练习 2.13 (2015W-4) 求过点 (-2,0), (-1,1), (1,-3), (t,1) 的三次多项式函数 $y = a_3x^3 + a_2x^2 + a_1x + a_0$,其中 t 为 参数。
- 练习 **2.14** (2016W-5) 设 $A = \begin{bmatrix} 5 & 2 & 4 \\ 2 & 5 & -11 \\ 2 & 3 & -5 \end{bmatrix}$.
 - (1) 解方程组 Ax = 0.
 - (2) 求满足 $A^2x = 0$ 但不满足 Ax = 0 的 x 的集合.
- ▲ 练习 2.15 (2017S-6) 设 A 和 X 为 n 阶方阵, 且满足 AX = A + 2X.

(2) 若
$$A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{bmatrix}$$
, 求解矩阵方程 $AX = A + 2X$.

练习 2.17 (2019S-1-2) 计算 3 阶方阵
$$X$$
 使其满足
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} X \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 2 & 2 \end{bmatrix}$$
 练习 2.18 (2019S-5) 给定矩阵 $A = \begin{bmatrix} 1 & -1 & -3 & -2 & -3 \\ 1 & 3 & 8 & -3 & 9 \\ 3 & 1 & 2 & -7 & 3 \end{bmatrix}$

练习 **2.18** (2019S-5) 给定矩阵
$$A = \begin{bmatrix} 1 & -1 & -3 & -2 & -3 \\ 1 & 3 & 8 & -3 & 9 \\ 3 & 1 & 2 & -7 & 3 \end{bmatrix}$$

- (1) 计算 r(A).
- (2) 计算线性方程组 Ax = 0 的基本解组.
- (3) 若 $\eta = (1, -1, 0, 0, 2)^{T}$ 是 Ax = b 的解,确定 b 并求 Ax = b 的通解.

练习 **2.19** (2019W-2) 设
$$A = \begin{bmatrix} 1 & -3 & 5 \\ -2 & 1 & -3 \\ -1 & -7 & 9 \end{bmatrix}, \beta = \begin{bmatrix} 4 \\ -3 \\ 6 \end{bmatrix}, \gamma = \begin{bmatrix} 3 \\ s \\ 2.4 \end{bmatrix}, 其中 s 为参数。$$

(1) 解方程组 Ax = β.

(2) 令
$$B = \begin{bmatrix} A & \beta \\ \gamma^{\mathrm{T}} & 3 \end{bmatrix}$$
,解方程组 $By = 0$.

练习 **2.20** (2020S-1-2) 设
$$A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} -6 & 8 \\ 4 & 5 \\ 2 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{bmatrix}, 求解矩阵方程 $A(X - B) = C$.$$

练习 **2.21** (2020S-2) 解方程组
$$\begin{cases} 2x_1 + 3x_2 - 5x_3 + 4x_4 = -11 \\ x_1 + ax_2 + 2x_3 - 7x_4 = 7 \\ 3x_1 - x_2 - 2x_3 - 5x_4 = 0 \end{cases}$$

练习 2.22 (2021S-1-5) 计算矩阵
$$X$$
 使得
$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} X \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix}.$$

练习 2.23 (2021S-5(2)) 说
$$A = (\alpha_1, \alpha_2, \dots, \alpha_n), B = A^{-1} = \begin{bmatrix} \beta_1^T \\ \beta_2^T \\ \vdots \\ \beta_n^T \end{bmatrix}, C = \sum_{i=1}^k \alpha_i \beta_i^T \quad (k < n).$$

(2) 写出 Cx = 0 的一个基础解系。

2.3 矩阵分解型

- 求 A^n
 - ■低秩矩阵将其分解为低维矩阵(向量)之积后利用结合律

• 矩阵的每一列被写为向量组线性表出形式

例题 **2.3** (2016W-1-1) 已知矩阵
$$A = \begin{bmatrix} 3 & 6 & -3 \\ -1 & -2 & 1 \\ 2 & 4 & -2 \end{bmatrix}$$
, 求 A^n .

解
$$A = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix} = \alpha \beta^{T}$, 当 $n \ge 2$ 时, $A^{n} = \alpha (\beta^{T} \alpha)^{n-1} \beta^{T} = \alpha (-1)^{n-1} \beta^{T} = (-1)^{n-1} A$,数 $A^{n} = (-1)^{n-1} A$, $n \ge 1$.

$$A^{n} = (-1)^{n-1}A, n \ge 1.$$

练习 2.24 (2021S-1-2) 计算 A^{2021} , 其中 $A = \begin{bmatrix} -1 & 1 & -2 & -1 \\ 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & -2 & 4 & 2 \end{bmatrix}$.

例题 2.4 (2016W-1-2) 已知矩阵 $A = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^{3\times 3}$, |A| = 3, 矩阵 $B = (2\alpha_1 - \alpha_2 + 2\alpha_3, \alpha_1 - 3\alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 - \alpha_3)$, 计算 |B|.

$$|\mathbf{A}| |B| = |A| \begin{vmatrix} 2 & 1 & 1 \\ -1 & -3 & 2 \\ 2 & 1 & -1 \end{vmatrix} = 30$$

练习 2.25 (2019W-1-4) 设 $A = (\alpha_1, \alpha_2, \alpha_3), B = (-3\alpha_2 + \alpha_3, \alpha_1 - \alpha_2 + 2\alpha_3, -2\alpha_1 + \alpha_2 - \alpha_3), |B| = 16$, 求|A + B|.

第三章 矩阵的秩、向量线性相关性与线性方程组解的结构

需要熟悉的知识点

- □ 线性相关,线性无关,线性表出,向量组等价, 向量组的秩
- □ 矩阵行秩、列秩, 秩的行秩列秩定义, 秩的子 式定义
- Sylvester 秩不等式

- □ 矩阵加法、乘法、组合对秩的影响
- □ 线性方程组解的结构
- □ 线性方程组无解、有解、有唯一解、有无穷多 解条件
- □ 维数定理

3.1 秩的相关性质

- Sylvester 秩不等式: $r(A) + r(B) n \le r(AB) \le \min(r(A), r(B))$
 - 当 AB = O 时, $r(A) + r(B) \le n$
 - 如果 A 为可逆方阵,r(AB) = r(B), B 为可逆方阵时同理
- $r(A+B) \le r(A) + r(B)$
- $r(A, B) \le r(A) + r(B), r\left(\begin{vmatrix} A \\ B \end{vmatrix}\right) \le r(A) + r(B)$

$$r \begin{pmatrix} A & O \\ O & B \end{pmatrix} = r(A) + r(B)$$

例题 3.1 (2015W-6) 若 n 阶方阵 A 满足 $A^2 = A$,则称 A 为幂等矩阵。设 A 为幂等矩阵,证明:

- (1) E A 也为幂等矩阵。
- (2) r(A) + r(E A) = n.

证明 (1) $(E-A)^2 = E-2A+A^2 = E-2A+A = E-A$.

- (2) 注意到 A(E-A)=O, 由 Sylvester 秩不等式, $n=r(A+E-A)\leq r(A)+r(E-A)\leq n$ 即得 r(A)+r(E-A)=n.
- ▲ 练习 3.1 (2017S-1-2) 设 A 为 n 阶方阵且满足 $A^2 = -A$,证明: r(A) + r(E + A) = n.
- **△** 练习 3.2 (2018W-1-4) 设 $A = MN^{T}$,其中 $M, N \in \mathbb{R}^{n \times r} (r \leq n)$, $|N^{T}M| \neq 0$ 。证明: $r(A^{2}) = r(A)$ 。
- ▲ 练习 3.3 (2019S-1-4 改) 对于 $A = \{\alpha_1, \alpha_2, \dots, \alpha_{100}\}, B = \{\beta_1, \beta_2, \dots, \beta_{20}\}, 若 r(A) = 7, 给出 r(A \cup B)$ 的取值范围。
- ▲ 练习 3.4 (2019W-3) 设 n 阶方阵满足 $(A^*)^* = O$,证明 |A| = 0.
- ▲ 练习 3.5 (2020S-6) 设 A 为 n 阶方阵,r(A) = n 1,证明: $A^* = \alpha \beta^T$,其中 α, β 为 n 维列向量,且有 $A\alpha = A^T \beta = 0$ 。

3.2 线性方程组解的结构

- 抓住 r(A) 与 r(A|b)
- 练习 3.6 (2019S-5) 设矩阵 $A = \begin{bmatrix} 1 & -1 & -3 & -2 & -3 \\ 1 & 3 & 8 & -3 & 9 \\ 3 & 1 & 2 & -7 & 3 \end{bmatrix}$.
 - (1) 计算 r(A)。
 - (2) 计算线性方程组 Ax = 0 的基本解组。
 - (3) 假定 $\eta = (1, -1, 0, 0, 2)^{T}$ 是 Ax = b 的解,确定 b 并计算 Ax = b 的通解。

3.3 秩与线性方程组解结构的相互转化

• 维数定理: 对于齐次线性方程组 Ax = 0, $x \in \mathbb{R}^n$, 若 r(A) = r, 方程的一个基础解系中有 n - r 个向量。

例题 3.2 (2016W-3) 设 $A_1x = b_1$ 和 $A_2x = b_2$ 是两个非齐次线性方程组,其中 $A_1 \in \mathbb{R}^{m \times n}$, $A_2 \in \mathbb{R}^{k \times n}$. 如果这两个方程组同解,证明 A_1 和 A_2 的行向量组等价。

证明
$$A_1x = b_1, A_2x = b_2, \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
 均同解,这表明 $r(A_1) = r(A_2) = r\left(\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}\right)$,得证。

例题 3.3 (2019S-7 改, 2021S-4 改) 设 A 为 m×n 阶实矩阵, b 为 m 维实向量。证明:

- $(1) A^{T}Ax = 0$ 和 Ax = 0 同解。
- (2) $r(A) = r(A^{T}A) = r(AA^{T})$.
- (3) $A^{T}Ax = A^{T}b$ 恒有解。
- (4) 如果 Ax = b 有解,那么 $A^{T}Ax = A^{T}b$ 和 Ax = b 同解。

证明 (1) 显然当 x 是 Ax = 0 的解时,x 是 $A^TAx = 0$ 的解。反之,设 x 是 $A^TAx = 0$ 的解,那么 $(Ax)^TAx = 0$,这 表明 Ax = 0,得证。

- (2) \pm (1), $r(A) = r(A^{T}A)$, $\chi(A) = r(A^{T})$, $\gamma(A^{T}A) = \gamma(A) = \gamma(A^{T}) = \gamma(A^{T})$
- (3) $r(A^{T}A|A^{T}b) = r(A^{T}) = r(A^{T}A)$
- (4) 显然当 x 是 Ax = b 的解时,x 是 $A^TAx = A^Tb$ 的解。反之,设 x 是 $A^TAx = A^Tb$ 的解, x_0 是 Ax = b 的解,由上, x_0 是 $A^TAx = A^Tb$ 的解。下验证 Ax = b 成立,只需证明 Ax b = 0 即可。

 $A^{T}(Ax - b) = A^{T}A(x - x_{0}) = 0$,那么 $(A(x - x_{0}))^{T}A(x - x_{0}) = 0$,这表明 $A(x - x_{0}) = 0$,从而 $x \in Ax = b$ 的解,得证。

注 上题结论请掌握,并熟悉证明过程。

- **练习 3.7** (2015W-1-5) 若 5 元方程组 $Ax = b, b \neq 0$ 有解 $\xi_1 = (1, 1, 1, 1, 1)^T, \xi_2 = (1, 2, 3, 4, 5)^T, \xi_3 = (1, 0, -3, -2, -3)^T,$ 且 r(A) = 3,求方程组的通解。
- 练习 3.8 (2016W-1-4) 设 $A \in \mathbb{R}^{m \times n} (m > n)$, r(A) = n, 证明: 存在矩阵 $P \in \mathbb{R}^{n \times m}$ 使得 $PA = E_n$.
- **练习 3.9** (2016W-3 改) 设 $A_1x = b_1$ 和 $A_2x = b_2$ 是两个非齐次线性方程组,其中 $A_1 \in \mathbb{R}^{m \times n}, A_2 \in \mathbb{R}^{k \times n}$. 如果这两个方程组同解,证明 $[A_1|b_1]$ 和 $[A_2|b_2]$ 的行向量组等价。
- △ 练习 3.10 (2017S-1-5) 设 n 阶方阵 A 的秩为 r < n, 证明存在秩为 n r 的 n 阶方阵 B 使得 AB = O.
- ▲ 练习 3.11 (2017S-3) 证明方程组

$$\begin{cases} x_1 - x_2 &= a_1 \\ x_2 - x_3 &= a_2 \\ &\vdots \\ x_{n-1} - x_n &= a_{n-1} \\ x_n - x_1 &= a_n \end{cases}$$

有解当且仅当 $\sum_{i=1}^{n} a_i = 0$,并在有解的情况下,求方程组的解集。

- 练习 3.12 (2019S-1-5) 已知线性方程组 Ax = b 的三个特解为 $\alpha_1 = (1, -2, 3)^T$, $\alpha_2 = (0, -1, -2)^T$, $\alpha_3 = (-4, 2, 1)^T$, r(A) = 1, 写出 Ax = b 的通解。
- ▲ 练习 3.13 (2019W-1-5) 设 A, B 为 $m \times n$ 阶矩阵,证明 $r(AA^T + BB^T) = r(A, B)$.
- 练习 3.14 (2021S-1-6) 设 A 为 3 阶方阵,r(A) = 1, $\alpha_1, \alpha_2, \alpha_3$ 是 Ax = b 的三个解向量, $\alpha_1 + \alpha_2 = (1, -1, 3)^T$, $\alpha_2 + \alpha_3 = (0, -2, 1)^T$, $\alpha_3 + \alpha_1 = (3, 0, 4)^T$,求 Ax = b 的通解。

3.4 向量线性相关性与线性方程组解的相互转化

练习 3.16 (2016W-2) 设
$$\alpha_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ -1 \\ 4 \\ 2 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 7 \\ 5 \\ -2 \\ -7 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} 5 \\ -1 \\ 10 \\ 3 \end{bmatrix}$, $\alpha_5 = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$.

- (1) 求 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的一个极大线性无关组,并用该极大线性无关组表出其他向量。
- (2) 若有向量 $\beta = (1,0,-1,-1)^{\mathrm{T}}$,向量组 α_3,α_4,β 是否与 $\alpha_1,\alpha_3,\alpha_3,\alpha_4,\alpha_5$ 等价?
- ▲ 练习 3.17 (2018W-2) 设有向量组

$$\alpha_{1} = \begin{bmatrix} 2 \\ -2 \\ -1 \\ 4 \end{bmatrix}, \alpha_{2} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \alpha_{3} = \begin{bmatrix} 1 \\ -4 \\ 1 \\ -1 \end{bmatrix}, \alpha_{4} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}, \alpha_{5} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 7 \end{bmatrix}$$

- (1) 求一个极大线性无关组,并用其表示其余向量。
- (2) 找出在 e_1, e_2, e_3, e_4 中所有不能被向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 线性表出的向量。

- (1) 分别求向量组 A 和 B 的一个极大线性无关组
- (2) 求向量 γ 使得向量组 $\alpha_1, \alpha_2, \alpha_3, \gamma$ 和 $\beta_1, \beta_2, \beta_3, \gamma$ 等价。
- ▲ 练习 3.19 (2020S-4) 设有向量组

$$\alpha_{1} = \begin{bmatrix} 1 \\ 8 \\ -1 \\ 4 \end{bmatrix}, \alpha_{2} = \begin{bmatrix} 3 \\ 0 \\ -5 \\ 4 \end{bmatrix}, \alpha_{3} = \begin{bmatrix} 0 \\ 12 \\ 1 \\ 4 \end{bmatrix}, \alpha_{4} = \begin{bmatrix} 2 \\ 6 \\ -2 \\ 4 \end{bmatrix}, \alpha_{5} = \begin{bmatrix} -2 \\ -4 \\ 3 \\ -4 \end{bmatrix}$$

- (1) 求一个极大线性无关组,并用其表示其余向量。
- (2) 在 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 中去除一个向量,使得去除后向量组的秩减小。