Step-1

Given, A and B have same reduced row echelon form R.

We have to explain that how to change A to B by elementary row operations. So B equals an ——— matrix times of A.

Step-2

Let rank of A = ranks of B and A, B have same reduced row echelon form.

Therefore after finite elementary row operations A reduces to R.

Similarly, after finite elementary row operations B recues to R.

$$R = EA$$

And $R = E^*B$

Step-3

$$B = (E^*)^{-1} R$$

$$= (E *)^{-1} EA$$

$$B = \left(\left(E * \right)^{-1} E \right) A$$

Hence E, E^* are invertible matrix, they $(E^*)^{-1}E$ is invertible.

Hence B is an invertible matrix times A.