COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF CARDIOVASCULAR DISEASE

	1. INTRODUCTION1 -
10	2. BACKGROUND OF THE INVENTION -1-
	3. SUMMARY OF THE INVENTION
15	4. DESCRIPTION OF THE FIGURES
	5. DETAILED DESCRIPTION OF THE INVENTION
	5.1. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES 13 -
20	5.1.1. PARADIGMS FOR THE IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES - 14 -
25	5.1.1.1. FOAM CELL PARADIGM - 1 15 -
	5.1.1.2. FOAM CELL PARADIGM - 2
	5.1.1.3. FOAM CELL PARADIGM - 3 16
30	5.1.1.4. IN VIVO MONOCYTE PARADIGM 16
	5.1.1.5. ENDOTHELIAL CELL - IL-1 PARADIGM 16
	5.1.1.6. ENDOTHELIAL CELL - SHEAR STRESS PARADIGM
35	5.1.2. ANALYSIS OF PARADIGM MATERIAL 18

	5.2. IDENTIFICATION OF PATHWAY GENES21
	5.3. CHARACTERIZATION OF DIFFERENTIALLY EXPRESSED AND
	PATHWAY GENES -23
5	5.4. DIFFERENTIALLY EXPRESSED AND PATHWAY GENES 26
	5.4.1. DIFFERENTIALLY EXPRESSED AND PATHWAY GENE SEQUENCES - 26
10	5.4.2. DIFFERENTIALLY EXPRESSED AND PATHWAY GENE PRODUCTS - 32
1.5	5.4.3. DIFFERENTIALLY EXPRESSED OR PATHWAY GENE PRODUCT ANTIBODIES38 -
15	5.4.4. CELL- AND ANIMAL-BASED MODEL SYSTEMS 40 -
	5.4.4.1. ANIMAL-BASED SYSTEMS
20	5.4.4.2. CELL-BASED ASSAYS44
	5.5. SCREENING ASSAYS FOR COMPOUNDS THAT INTERACT WITH THE TARGET GENE PRODUCT AND/OR MODULATE TARGET GENE EXPRESSION 46 -
25	5.5.1. IN VITRO SCREENING ASSAYS FOR COMPOUNDS THAT BIND TO THE TARGET GENE PRODUCT47
30	5.5.2. ASSAYS FOR CELLULAR OR EXTRACELLULAR PROTEINS THAT INTERACT WITH THE TARGET GENE PRODUCT49 -
35	5.5.3. ASSAYS FOR COMPOUNDS THAT INTERFERE WITH INTERACTION BETWEEN TARGET GENE PRODUCT AND OTHER COMPOUNDS

	5.5.4. ASSAYS FOR AMELIORATION OF CARDIOVASCULAR DISEASE SYMPTOMS
_	5.5.5. MONITORING OF EFFECTS DURING CLINICAL TRIALS -57 -
5	5.5.6. ASSAYS FOR COMPOUNDS THAT MODULATE EXPRESSION OF TARGET GENES - 58 -
10	5.6. COMPOUNDS AND METHODS FOR TREATMENT OF CARDIOVASCULAR AND FIBROPROLIFERATIVE DISEASE 59 -
	5.6.1. COMPOUNDS THAT INHIBIT EXPRESSION, SYNTHESIS OR ACTIVITY OF MUTANT
15	TARGET GENE ACTIVITY
15	5.6.1.1. INHIBITORY ANTISENSE, RIBOZYME, TRIPLE HELIX, AND GENE INACTIVATION APPROACHES
20	5.6.1.2. ANTIBODIES FOR TARGET GENE PRODUCTS
	5.6.2. METHODS FOR RESTORING OR ENHANCING TARGET GENE ACTIVITY
25	5.7. PHARMACEUTICAL PREPARATIONS AND METHODS OF ADMINISTRATION - 69 -
	5.7.1. EFFECTIVE DOSE
30	5.7.2. FORMULATIONS AND USE 70 -
	5.8. DIAGNOSIS OF CARDIOVASCULAR DISEASE ABNORMALITIES 71 -
35	5.8.1. DETECTION OF FINGERPRINT GENE NUCLEIC ACIDS $ \ldots $ - 72 -

	5.8.2. DETECTION OF FINGERPRINT GENE PEPTIDES 74 -
	5.8.3. IMAGING CARDIOVASCULAR DISEASE CONDITIONS 77 -
	6. EXAMPLE: IDENTIFICATION OF GENES DIFFERENTIALLY EXPRESSED IN RESPONSE TO PARADIGM A: IN VITRO FOAM CELL PARADIGM
	6.1. MATERIALS AND METHODS80 -
10	6.1.1. CELL ISOLATION AND CULTURING 80 -
	6.1.2. ANALYSIS OF PARADIGM MATERIAL
15	6.1.3. CHROMOSOMAL LOCALIZATION OF TARGET GENES - 87 -
	6.2. RESULTS 87 -
	7. EXAMPLE: IDENTIFICATION OF GENES DIFFERENTIALLY EXPRESSED IN RESPONSE TO PARADIGM D: ENDOTHELIAL CELL SHEAR STRESS
	7.1. MATERIALS AND METHODS89 -
25	7.2. RESULTS90 -
	8. EXAMPLE: USE OF GENES UNDER PARADIGM A AS SURROGATE MARKERS IN CLINICAL TRIALS -91 -
30	8.1. TREATMENT OF PATIENTS AND CELL ISOLATION91 -
	8.2. ANALYSIS OF SAMPLES 92 -
35	9. EXAMPLE: IMAGING OF A CARDIOVASCULAR DISEASE CONDITION 92 -

	9.1. MONOCLONAL CONJUGATED ANTIBODIES 92 -
	9.2. ADMINISTRATION AND DETECTION OF IMAGING AGENTS 92 -
5	10. POLYCLONAL ANTIBODIES TO TARGET GENE PEPTIDE SEQUENCES $$ 93 -
	11. EXAMPLE: THE RCHD534 AND FCHD540 GENE PRODUCTS INTERACT - 93 -
	11.1. MATERIALS AND METHODS
10	11.1.1. YEAST STRAINS, MEDIA, AND MICROBIOLOGICAL TECHNIQUES 94 -
15	11.1.2. PLASMID AND YEAST STRAIN CONSTRUCTION -94 -
	11.1.4. PAPER FILTER BETA-GALACTOSIDASE ASSAYS95 -
20	11.2. RESULTS 96 -
	11.2.1. STRONG PHYSICAL INTERACTION OF RCHD534 AND FCHD540 MEASURED BY TWO-HYBRID ASSAY - 96 -
25	11.2.2. IDENTIFICATION OF PROTEINS THAT PHYSICALLY INTERACT WITH FCHD540
	11.2.3. RETRANSFORMATION AND SPECIFICITY TESTING OF TCHV03A AND TCHVR4A
30	11.3. FURTHER ANALYSIS OF RCHD534 AND FCHD540 FUNCTION -99 -
	11.3.1. CHROMOSOMAL LOCALIZATION99 -
35	11.3.2. TISSUE EXPRESSION PATTERNS 99 -

	11.3.3. CELLULAR LOCALIZATION 100 -
	11.3.4. PROTEIN INTERACTIONS IN HUMAN CELLS 100 -
-	11.3.5. EFFECT OF EXPRESSION ON TGF-B SIGNALLING 101 -
5 12.	EXAMPLE: ANTISENSE AND RIBOZYME MOLECULES FOR INHIBITION OF RCHD534 AND FCHD540EXPRESSION - 102 -
10	3. EXAMPLE: GENERATION OF TRANSGENIC KNOCKOUT RCHD534 MUTANT MICE - 105 -
	13.1. MATERIALS AND METHODS
15	13.1.1. RCHD534 GENE TARGETING
13	13.1.2. GENERATION OF TRANSGENIC KNOCKOUT RCHD534 MUTANT MICE - 106 -
20	13.1.3. NORTHERN ANALYSIS 106
20	13.1.4. LACZ STAINING 106 -
	13.1.5. HISTOLOGY
25	13.1.6. VASCULAR CONTRACTILITY STUDY 106 -
	13.1.7. BLOOD PRESSURE MEASUREMENT 107 -
30	3.2. RESULTS -107
30	13.2.1. GENERATION OF TRANSGENIC KNOCKOUT RCHD534 MUTANT MICE - 107
25	13.2.2. LACZ STAINING OF RCHD534 MUTANT MICE 107
35	13.2.3. GENOTYPING OF PROGENY 108

	13.2.4.	PHENOTYPIC CHARACTERISTICS OF RCHD534
		MUTANT MICE109 -
	13.2.5.	THE ROLE OF RCHD534 IN VASCULAR
5		PHYSIOLOGY 110 -
	13.2.6.	THE INTERRELATIONSHIP BETWEEN THE
		PHENOTYPIC CONSEQUENCES OF THE RCHD534
		MUTANT MICE AND TGF-β SUPERFAMILY
10		SIGNALING - 110 -
	14. EXAMPLE: THE RO	CHD534-LONG PROTEIN - 111 -
	14.1	IDENTIFICATION AND CHARACTERIZATION OF
15		THE RCHD534-LONG SPLICEOFORM AND
		PROTEIN -112 -
	14.2.	TGF-β SIGNALLING INHIBITORY
		ACTIVITY OF THE RCHD534-LONG
20		PROTEIN
	15. DEPOSIT OF MICR	OORGANISMS 114 -

35

30

25