Практическое занятие 5-6

Законы распределения дискретных с.в.

Литература

- 1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистики. М.: Издательство «Юрайт», 2016.
- 2. Вентцель Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения. М.: Высш. шк., 2000.
- 3. Решетов С.В., Суслина И.А. Задачи для самостоятельного решения по теории вероятностей и математической статистике СПб: НИУ ИТМО, 2014.

Вырожденное распределение

С.в. X имеет вырожденное распределение, если $\exists x_0 \in \mathbb{R}$ такое, что

$$P(X = x_0) = 1$$

Ряд распределения c.в. X:

 $\begin{array}{c|c} x & x_0 \\ \hline p & 1 \end{array}$

Функция распределения с.в. X:

$$F(x) = \begin{cases} 0, & x \le x_0 \\ 1, & x > x_0 \end{cases}$$

Обозначение: $X \sim I_{x_0}$

Распределение Бернулли

С.в. X имеет распределение Бернулли, если $X = \{0,1\}$, причем P(X = 1) = p, P(X = 0) = 1 - p = q.

Ряд распределения c.в. X:

 $egin{array}{c|ccc} x_i & 0 & 1 \\ \hline p_i & q & p \\ \hline \end{array}$

Функция распределения с.в. *X*:

$$F(x) = \begin{cases} 0, & x \le 0 \\ 1 - p, & 0 < x \le 1 \\ 1, & x > 1 \end{cases}$$

Обозначение: $X \sim B(p)$

Биномиальное распределение

- 1. Производится n независимых экспериментов;
- 2. Каждый эксперимент имеет два исхода: A или \overline{A} ;
- 3. Вероятность появления события A постоянна и равна p.
 - С.в. X число появлений события A.

$$X = \{0, 1, 2, ..., n\}$$

с вероятностями

$$P(X=m) = C_n^m p^m q^{n-m},$$

где $m \in \{0, 1, 2, ..., n\}$

$$\sum_{m=0}^{n} C_n^m p^m q^{n-m} = q^n + C_n^1 p q^{n-1} + \dots + C_n^{n-1} p^{n-1} q + p^n = (p+q)^n = 1$$

C.в. X имеет биномиальное распределение.

Обозначение: $X \sim Bin (n,p), p \in (0, 1), n \in \mathbb{N}.$

Многоугольники биномиального распределения:

$$X \sim Bin (5,p),$$

 $p \in \{0,2; 0,3; 0,5; 0,7; 0,8\}$

Производящая функция случайной величины

Пусть
$$X=\{0,1,2,...,m,...\}, p_m=P(X=m)$$

Определение

Производящей функцией для с.в. X называется функция вида:

$$f_{X}(z) = \sum_{m=0}^{\infty} p_{m} z^{m}$$
, где $0 < z \le 1$

Свойства производящей функции

1.
$$z_2 > z_1 \Rightarrow f_X(z_2) > f_X(z_1)$$

2.
$$f'_{X}(1) = m_{x}$$

3.
$$f_X''(1) + f_X'(1) - (f_X'(1))^2 = D_x$$

4.
$$\frac{f_X^{(k)}(0)}{k!} = p_k$$

5.
$$X,Y$$
 – независимые $\Rightarrow f_{X+Y}(z) = f_X(z) \cdot f_Y(z)$

Числовые характеристики биномиального распределения

- математическое ожидание $m_{\chi} = np$
- дисперсия $D_x = npq$
- среднее квадратическое отклонение

$$\sigma_{x} = \sqrt{npq}$$

Геометрическое распределение

С.в. X — число экспериментов, которое нужно провести, прежде чем впервые появится событие A.

$$X = \{0, 1, 2, ..., m, ...\}$$

с вероятностями

$$P(X = m) = q^m p, m \in \{0, 1, 2, ...\}$$

$$\sum_{m=0}^{\infty} q^m p = p \sum_{m=0}^{\infty} q^m = p \frac{1}{1-q} = 1$$

С.в. X имеет геометрическое распределение.

Обозначение: $X \sim G(p), p \in (0, 1).$

Многоугольники геометрического распределения:

$$X \sim G(p)$$
, $p \in \{0,2; 0,5; 0,8\}$

Числовые характеристики геометрического распределения

- математическое ожидание $m_x = \frac{q}{p}$
- дисперсия $D_x = \frac{q}{p^2}$
- среднее квадратическое отклонение

$$\sigma_{x} = \sqrt{\frac{q}{p^{2}}}$$

Гипергеометрическое распределение

Пусть в партии из N изделий имеется n стандартных, n < N.

Случайный эксперимент: из партии выбирают *m* изделий:

- каждое изделие может быть извлечено с одинаковой вероятностью
- отобранное изделие в партию не возвращается.

С.в. X – число k стандартных изделий среди отобранных.

$$X = \{0, 1, 2, ..., min\{n, m\}\}$$

с вероятностями

$$P(X=k) = \frac{C_n^k C_{N-n}^{m-k}}{C_N^m}$$

С.в. X имеет гипергеометрическое распределение.

Обозначение:

$$X \sim GG(N,n,m)$$

или $X \sim GG(N,m,p)$,

где $p = \frac{n}{N}$ — вероятность того, что первое извлеченное изделие — стандартное.

Замечание:

если m < 0,1N, то вероятности близки вероятностям, вычисленным по биномиальному закону.

Распределение Пуассона

Пусть $X = \{0, 1, 2, ..., m, ...\}$ с вероятностями

$$P(X=m) = \frac{a^m}{m!}e^{-a}, m \in \{0,1,2,...\}$$

$$\sum_{m=0}^{\infty} \frac{a^m}{m!} e^{-a} = e^{-a} \sum_{m=0}^{\infty} \frac{a^m}{m!} = e^{-a} e^a = 1$$

C.в. X имеет распределение Пуассона.

Обозначение: $X \sim \Pi(a)$, a > 0.

Многоугольники распределения Пуассона:

$$X \sim \Pi(a),$$

 $a \in \{0,5; 1; 2; 3,5; 5\}$

Числовые характеристики распределения Пуассона

- математическое ожидание $m_x = a$
- дисперсия $D_x = a$
- среднее квадратическое отклонение

$$\sigma_{x} = \sqrt{a}$$

ПРИЛОЖЕНИЕ

Таблица П.1

Значения функции
$$P(m;\lambda) = \frac{\lambda^m}{m!}e^{-\lambda}$$

m	λ									
	. 0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0 1 2 3 4 5 6 7 8	0,90484 09048 00452 00015	81873 16375 01637 00109 00005	74082 22225 03334 00333 00025 00002	00715	60653 30327 07582 01264 00158 00016 00001	54881 32929 09879 01976 00296 00036 00004	49659 34761 12166 02839 00497 00070 00008 00001	44933 35946 14379 03834 00767 00123 00016 00002	40657 36591 16466 04940 01111 00200 00030 00004	36788 36788 18394 06131 01533 00307 000051 00007 00001

m	λ									
716	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	0,22313 33470 25102 12551 04707 01412 00353 00076 00014 00002	13534 27067 27067 18045 09022 03609 01203 00344 00086 00019 00004 00001	08208 20521 25652 21376 13360 06680 02783 00994 00311 00086 00022 00005 00001	04979 14936 22404 16803 10082 05041 02160 00810 00270 00081 00022 00006 00001	03020 10569 18496 21579 18881 13217 07710 03855 01687 00656 00230 00073 00021 00006 00001	01832 07326 14653 19537 19537 15629 10420 05954 02977 01323 00529 00192 00064 00020 00006	01111 04999 11248 16872 18981 17083 12812 08236 04633 02316 01042 00426 00160 00055 00018	00674 03369 08422 14037 17547 17547 14622 10444 06528 03627 01813 00824 00343 00132 00047 00016 00005 00001	00409 02248 06181 11332 15582 17140 15712 12345 08487 05187 02853 01426 00654 00277 00109 00040 00014 00004	00248 01487 04462 08924 13385 16062 13768 10326 06884 04130 02253 01120 00520 00023 00031 00000 0000

Расчетно-графическая работа №1

Исследование дискретной случайной величины

Выполняем на сайте https://itmoprob.web.app

Инструкция для регистрации

https://drive.google.com/file/d/1cpjbGfPEvKLJPSUpE02ciJrcaj8 _rMsy/view?usp=sharing

https://docs.google.com/document/d/1qVVfuavyvfddIebHgM6z Nmm0jASr6sJIkS37dVam1Po/edit?usp=sharing