Exploratory Data Analysis

September 19, 2022

```
[4]: import numpy as np
     import pandas as pd
     # matplotlib = Basic Plots made easy
     import matplotlib.pyplot as plt
     # Descriptive Plots made easy
     import seaborn as sns
[5]: auto_price = pd.read_csv('https://raw.githubusercontent.com/ammishra08/
      →MachineLearning/master/Datasets/Automobile_price_data__Raw_.csv', sep = ',')
     display(auto_price)
          symboling normalized-losses
                                                 make fuel-type aspiration
    0
                                         alfa-romero
                                                             gas
                                                                         std
                   3
    1
                                         alfa-romero
                                                                         std
                                                             gas
    2
                   1
                                      ?
                                         alfa-romero
                                                             gas
                                                                         std
                   2
    3
                                    164
                                                 audi
                                                                         std
                                                             gas
    4
                   2
                                    164
                                                 audi
                                                                         std
                                                             gas
                                    . . .
                                                              . . .
                                                                          . . .
    200
                 -1
                                     95
                                                volvo
                                                             gas
                                                                         std
    201
                                     95
                  -1
                                                volvo
                                                                       turbo
                                                             gas
    202
                 -1
                                     95
                                                volvo
                                                             gas
                                                                         std
    203
                  -1
                                     95
                                                volvo
                                                          diesel
                                                                       turbo
    204
                  -1
                                     95
                                                volvo
                                                                       turbo
                                                             gas
         num-of-doors
                         body-style drive-wheels engine-location
                                                                      wheel-base
    0
                  two
                        convertible
                                               rwd
                                                              front
                                                                             88.6
                                                                             88.6
    1
                        convertible
                                                              front
                  two
                                               rwd
    2
                                                                             94.5
                  two
                          hatchback
                                               rwd
                                                              front
    3
                 four
                               sedan
                                               fwd
                                                              front
                                                                             99.8
    4
                                               4wd
                                                                             99.4
                 four
                               sedan
                                                              front
                                               . . .
    200
                                                                            109.1
                 four
                               sedan
                                                              front
                                               rwd
    201
                 four
                                                                            109.1
                               sedan
                                               rwd
                                                              front
    202
                 four
                               sedan
                                               rwd
                                                              front
                                                                            109.1
                                                                            109.1
    203
                 four
                               sedan
                                               rwd
                                                              front
    204
                 four
                               sedan
                                               rwd
                                                              front
                                                                            109.1
```

engine-size

fuel-system bore stroke compression-ratio horsepower \

0	130	mpfi	3.47	2.68	9.0	111
1	130	mpfi	3.47	2.68	9.0	111
2	152	mpfi	2.68	3.47	9.0	154
3	109	mpfi	3.19	3.40	10.0	102
4	136	mpfi	3.19	3.40	8.0	115
200	141	mpfi	3.78	3.15	9.5	114
201	141	mpfi	3.78	3.15	8.7	160
202	173	mpfi	3.58	2.87	8.8	134
203	145	idi	3.01	3.40	23.0	106
204	141	mpfi	3.78	3.15	9.5	114

	peak-rpm	city-mpg	highway-mpg	price
0	5000	21	27	13495
1	5000	21	27	16500
2	5000	19	26	16500
3	5500	24	30	13950
4	5500	18	22	17450
200	5400	23	28	16845
201	5300	19	25	19045
202	5500	18	23	21485
203	4800	26	27	22470
204	5400	19	25	22625

[205 rows x 26 columns]

[6]: auto_price.dtypes

[6]: symboling int64normalized-losses object makeobject fuel-type object aspiration object num-of-doors object body-style object drive-wheels object engine-location object wheel-base float64 length float64 width float64 height float64 curb-weight int64engine-type object num-of-cylinders object engine-size int64fuel-system object

```
bore
                            object
                            object
     stroke
     compression-ratio
                           float64
     horsepower
                            object
     peak-rpm
                            object
                             int64
     city-mpg
    highway-mpg
                             int64
     price
                            object
     dtype: object
[7]: # convert object columns to numerical columns
     cols = ['bore','stroke','horsepower','peak-rpm','price']
     auto_price[cols] = auto_price[cols].apply(pd.to_numeric, args = ('coerce',))
[8]: auto_price.isnull().sum()
[8]: symboling
                           0
    normalized-losses
                           0
    make
                           0
     fuel-type
                           0
     aspiration
                           0
     num-of-doors
                           0
     body-style
                           0
     drive-wheels
                           0
     engine-location
                           0
     wheel-base
                           0
     length
                           0
     width
                           0
    height
                           0
     curb-weight
                           0
     engine-type
                           0
    num-of-cylinders
                           0
     engine-size
                           0
     fuel-system
                           0
                           4
     bore
     stroke
                           4
     compression-ratio
                           0
                           2
    horsepower
                           2
     peak-rpm
                           0
     city-mpg
     highway-mpg
                           0
                           4
     price
     dtype: int64
[9]: # Remove/Drop the Missing Value Rows
     auto_price.dropna(inplace = True)
```

Line Plot

- * Relationship Plot (Bivariate)
- * Trends/Values Univariate

```
[10]: # Using Pandas for Visualization
auto_price['price'].plot(figsize = (15,8))
```

[10]: <AxesSubplot:>


```
[11]: sns.set_style('whitegrid')
  plt.figure(figsize = (15,8))
  plt.plot(auto_price['price'])
  plt.title('Price of Vehicle Line Plot', fontsize = 12)
  plt.xlabel('Row Indexes')
  plt.ylabel('Price')
  plt.show()
```


0.0.1 Bar Plot

- Bivariate Chart
- Bar chart used by categorical, nominal, Categorical Vs Numerical/Continous
- Bar plots are used to display counts of unique value of categorical data types, height of the bar represents count for each category

```
[12]: sns.set_style('whitegrid')
auto_price[['price']][10:70].plot.bar(figsize = (15,7))
```

[12]: <AxesSubplot:>


```
[13]: counts = auto_price['make'].value_counts()
      counts
[13]: toyota
                       32
      nissan
                       18
      mitsubishi
                       13
      honda
                       13
      mazda
                       13
                       12
      subaru
      volkswagen
                       12
      volvo
                       11
      peugot
                       11
      dodge
                        9
      mercedes-benz
                        8
      bmw
                        8
      plymouth
                        7
      audi
                        6
      saab
                        6
      porsche
                        4
                        3
      jaguar
                        3
      alfa-romero
                        3
      chevrolet
      isuzu
                        2
                        1
      mercury
      Name: make, dtype: int64
[14]: fig = plt.figure(figsize = (7,6))
      auto_price['make'].value_counts().plot.bar(figsize = (15,7))
      plt.show()
```


[15]: <AxesSubplot:>

0.0.2 Histogram

- Continuous samples study the spread/distribution of data
- Univariate Analysis

```
[16]: fig = plt.figure(figsize = (10,6))
# bins = intervals
plt.hist(auto_price['price'], color = 'lightgreen', bins = 15)
plt.title('Histogram Plot - Auto Price')
plt.xlabel('Price')
plt.ylabel('Frequency')
plt.show()
```



```
[17]: # Subplots = (1, 2, 1) => 1st Row, 2nd Column, 1st Index
plt.figure(figsize = (18,6))
plt.subplot(1, 2, 1)
plt.hist(auto_price['engine-size'], color = 'deepskyblue', bins = 20)
plt.title('Histogram Plot - Enhine Size')
plt.xlabel('Engine Size')
plt.ylabel('Number of Vehicle')
plt.subplot(1, 2, 2)
plt.hist(auto_price['price'], color = 'lightgreen', bins = 15)
plt.title('Histogram Plot - Auto Price')
plt.xlabel('Price')
plt.ylabel('Number of Vehicle')
plt.show()
```



```
[19]: plt.figure(figsize = (10,7))
# marker = changing the scatter plots style o,x,X,s,d,>,<,*,.,^
```


Scatter Plot

- * Scatter Plot is plotted between numerical values.
- * Shows relationship b/w x & y plots

0.0.3 Box Plot

- ullet Distribution of sample data
- Five point summary min, max, Q1, Q2, median
- Outliers

```
[20]: plt.figure(figsize = (10,5))
sns.boxplot(x = 'price', data = auto_price)
```

[20]: <AxesSubplot:xlabel='price'>


```
[21]: plt.figure(figsize = (12,8))
sns.boxplot(x = 'drive-wheels', y = 'price', data = auto_price, palette =

→'Dark2')
```

[21]: <AxesSubplot:xlabel='drive-wheels', ylabel='price'>

0.0.4 Distribution Plot

- Histogram + Density
- Probability Density Function Continuous

```
[22]: plt.figure(figsize = (10,6))
# hist = False : Disable Histogram
sns.distplot(auto_price['price'], color = 'crimson', hist = False)
plt.show()
```

/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

0.0.5 Pie Chart

```
[24]: plt.figure(figsize = (10,10))
# Shows distribution % in upto 2 decimal Places
plt.pie(auto_price['make'].value_counts(), autopct = '%0.2f%%')
plt.show()
```



```
[25]: plt.figure(figsize = (2,9))
sns.heatmap(auto_price.corr()[['price']], annot = True, cmap = 'magma')
plt.show()
```


	1	if b/w two numerical values corr is $+ve$ it means both are directly proprtional, $-ve$ means both are inversly proprtional.
[]:		
[]:		