CLAIMS:

What is claimed is:

### 1. A compound of formula:

wherein E is selected from the group consisting of:

 $X = O, S, NR^2;$ 

 $Y = CH_2$ , O, S,  $NR^2$ ;

Q = O, NH;

 $F = ortho, meta, para substituents such as halogen, CN, OR^2, OC(O)R^3, NO_2, OSO_2R^3, NR^2R^2, \\ NR^2C(O)R^3, NR^2SO_2R^3, R^3;$ 

 $R^1 = H, Me;$ 

 $R^2 = R^1$ , straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl,  $CH_2$ heteroaryl,  $CH_2$ heterocycle,  $CHR^1CHR^1$ aryl,  $CHR^1CHR^1$ heteroaryl,  $CHR^1CHR^1$ heterocycle;  $R^3 = R^2$  or  $CR^1 = CR^1$ aryl,  $CR^1 = CR^1$ heteroaryl,  $CR^1 = CR^1$ heterocycle, C = Caryl, C = Cheteroaryl, C = Cheterocycle; and

Z is a contiguous linker whose presence completes an 11 to 15 membered ring.

#### 2. The compound of Claim 1 wherein E is selected from the group consisting of:

$$R^{1} \xrightarrow{R^{3}} R^{3} \xrightarrow{R^{3}} Q$$

$$R^{1} \xrightarrow{R^{1}} Q$$

$$R^{1} \xrightarrow{R^{1}}$$

 $X = O, S, NR^2;$ 

 $Y = CH_2, O, S, NR^2;$ 

F = ortho, meta, para substituents such as halogen, CN,  $OR^2$ ,  $OC(O)R^3$ ,  $NO_2$ ,  $OSO_2R^3$ ,  $NR^2R^2$ ,  $NR^2C(O)R^3$ ,  $NR^2SO_2R^3$ ,  $R^3$ ;

 $R^1 = H$ , Me;

 $R^2 = R^1$ , straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl,  $CH_2$ heterocycle,  $CHR^1$ CHR $^1$ aryl,  $CHR^1$ CHR $^1$ heterocycle;

 $R^3 = R^2$  or  $CR^1 = CR^1$  aryl,  $CR^1 = CR^1$  heteroaryl,  $CR^1 = CR^1$  heterocycle, C = C aryl, C = C heteroaryl, C = C aryl, C = C heteroaryl, C = C aryl, C = C heteroaryl, C = C heteroa

Z is a contiguous linker whose presence completes an 11 to 15 membered ring.

# 3. A compound of formula:

wherein E is selected from the group consisting of:

 $X = O, S, NR^2;$ 

 $Y = CH_2$ , O, S,  $NR^2$ ;

Q = O, NH;

# 11. A compound of formula:

### 12. A compound of formula:

wherein E is selected from the group consisting of:

 $X = O, S, NR^2;$ 

$$Y = CH_2, O, S, NR^2;$$

Q = O, NH;

F = ortho, meta, para substituents such as halogen, CN,  $OR^2$ ,  $OC(O)R^3$ ,  $NO_2$ ,  $OSO_2R^3$ ,  $NR^2R^2$ ,  $NR^2C(O)R^3$ ,  $NR^2SO_2R^3$ ,  $R^3$ ;

 $R^1 = H$ , Me;

 $R^2 = R^1$ , straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl,  $CH_2$ heteroaryl,  $CH_2$ heterocycle,  $CHR^1$ CHR $^1$ aryl,  $CHR^1$ CHR $^1$ heteroaryl,  $CHR^1$ CHR $^1$ heterocycle;  $R^3 = R^2$  or  $CR^1$ = $CR^1$ aryl,  $CR^1$ = $CR^1$ heteroaryl,  $CR^1$ = $CR^1$ heteroaryl,  $CR^1$ = $CR^1$ heterocycle; and

$$R^4 = R^1$$
, C(O) $R^3$ , SO<sub>2</sub> $R^3$ ,  $R^2$ .

# 13. The compound of Claim 12 wherein E is selected from the group consisting of:

 $X = O, S, NR^2;$ 

 $Y = CH_2$ , O, S,  $NR^2$ ;

 $F = ortho, meta, para substituents such as halogen, CN, OR^2, OC(O)R^3, NO_2, OSO_2R^3, NR^2R^2, \\ NR^2C(O)R^3, NR^2SO_2R^3, R^3;$ 

F = ortho, meta, para substituents such as halogen, CN,  $OR^2$ ,  $OC(O)R^3$ ,  $NO_2$ ,  $OSO_2R^3$ ,  $NR^2R^2$ ,  $NR^2C(O)R^3$ ,  $NR^2SO_2R^3$ ,  $R^3$ ;

 $R^1 = H$ , Me;

 $R^2 = R^1$ , straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl,  $CH_2$ heteroaryl,  $CH_2$ heterocycle,  $CHR^1$ CHR $^1$ aryl,  $CHR^1$ CHR $^1$ heteroaryl,  $CHR^1$ CHR $^1$ heterocycle;  $R^3 = R^2$  or  $CR^1 = CR^1$ aryl,  $CR^1 = CR^1$ heteroaryl,  $CR^1 = CR^1$ heterocycle, C = Caryl, C = Cheteroaryl, C = Cheterocycle; and

 $R^4 = R^1$ ,  $C(O)R^3$ ,  $SO_2R^3$ ,  $R^2$ .

### 4. The compound of Claim 3 wherein E is selected from the group consisting of:

 $X = O, S, NR^2;$ 

 $Y = CH_2$ , O, S,  $NR^2$ ;

F = ortho, meta, para substituents such as halogen, CN,  $OR^2$ ,  $OC(O)R^3$ ,  $NO_2$ ,  $OSO_2R^3$ ,  $NR^2R^2$ ,  $NR^2C(O)R^3$ ,  $NR^2SO_2R^3$ ,  $R^3$ ;

 $R^1 = H$ , Me;

 $R^2 = R^1$ , straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl,  $CH_2$ heterocycle,  $CH_2$ heterocycle,  $CHR^1$ CHR $^1$ aryl,  $CHR^1$ CHR $^1$ heteroaryl,  $CHR^1$ CHR $^1$ heterocycle;  $R^3 = R^2$  or  $CR^1$ = $CR^1$ aryl,  $CR^1$ = $CR^1$ heteroaryl,  $CR^1$ = $CR^1$ heterocycle, C=Caryl, C=Cheteroaryl, C=CCheterocycle; and

$$R^4 = R^1$$
,  $C(O)R^3$ ,  $SO_2R^3$ ,  $R^2$ .

#### 5. A compound of formula:

wherein  $R^1 = H$ , Me, Ac; and

R<sup>2</sup> = straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle, CH<sub>2</sub>aryl.

#### 6. A compound of formula:

wherein  $R^1 = H$ , Me, Ac; and

 $R^2$  = straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl.

# 7. A compound of formula:

# 8. A compound of formula:

# 9. A compound of formula:

wherein  $R^1 = H$ , Me, Ac; and

 $R^2$  = straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl.

### 10. A compound of formula:

 $R^1 = H$ , Me;

 $R^2=R^1$ , straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl,  $CH_2$ heteroaryl,  $CH_2$ heterocycle,  $CHR^1CHR^1$ aryl,  $CHR^1CHR^1$ heteroaryl,  $CHR^1CHR^1$ heterocycle;  $R^3=R^2$  or  $CR^1$ = $CR^1$ aryl,  $CR^1$ = $CR^1$ heteroaryl,  $CR^1$ = $CR^1$ heterocycle, C=Caryl, C=Cheteroaryl, C=CCheterocycle; and

$$R^4 = R^1$$
,  $C(O)R^3$ ,  $SO_2R^3$ ,  $R^2$ .

#### 14. A compound of formula:

wherein  $R^1 = H$ , Me, Ac; and

 $R^2$  = straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl.

#### 15. A compound of formula:

wherein  $R^1 = H$ , Me, Ac; and

 $R^2$  = straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl.

### 16. A compound of formula:

wherein  $R^1 = H$ , Me, Ac; and

 $R^2$  = straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl.

#### 17. A compound of formula:

wherein  $R^1 = H$ , Me, Ac, and

 $R^2$  = straight chain saturated alkyl, straight chain unsaturated alkyl, branched chain alkyl, branched chain unsaturated alkyl, cycloalkyl, aryl, heteroaryl, heterocycle,  $CH_2$ aryl.