Discrete Mathematics for Computing

Ch 9.1 Relations and Their Properties

Motivation

Relationships between set elements occur in many contexts

What are some of the relationships?

Any business and its telephone number

An employee and his or her salary

Computer Science

Program and a variable

Computer Language and a valid statement in the language

- Ordered Pairs of two elements
- Most direct way to express a relationship between elements of two sets
- Set of ordered pairs binary relations
- Let A and B be sets, binary relation from A to B is a subset of a cartesian product A x B

- Binary relation from A to B set R of ordered pairs
- first element of each ordered pair comes from A
- second element comes from B

```
Example: Let A = \{a,b,c\} and B = \{1,2,3\}.
R = \{(a,1),(b,2),(c,2)\}
example of a relation from A to B
```

Binary Relation Notation:

a R b
$$\Leftrightarrow$$
 (a, b) \in R
a \nearrow b \Leftrightarrow (a, b) \notin R

(a, b) belongs to R => a is related to b by R

- Example: Let A be the set of all cities, and let B be the set of the 50 states in the United States of America. Define the relation R by specifying (a, b) belongs to R if city a is in state b.
- A = set of all cities
 B = set of the 50 states in the USA
 Relation R (a, b) belongs to R if city a is in state b

```
(Boulder, Colorado)
(Bangor, Maine)
(Ann Arbor, Michigan)
(Cupertino, California)
Red Bank, New Jersey)
```


- Example: Let A = {0, 1, 2}, B = {a, b}
- Relation $R = \{ (0, a), (0, b), (1, a), (2, b) \}$
- $R \subseteq A \times B$, Graphical representation arrows represent ordered pairs, table showing (marking) the ordered pairs of R

- Example: Let A = {1, 2, 3, 4}, B = {1, 2}
- Relation R = {(a, b) | a divides b}
- $\blacksquare R = \{(1,1), (1,2), (2,2)\}$

R	1	2
1	X	Χ
2		Χ
3		
4		

- Functions as Relations
- Function f from a set A to a set B -> assigns exactly one element of B to each element of A
- Graph of f set of ordered pairs (a, b) such that b= f(a)
- Subset of A x B \Rightarrow it is a relation from A to B

- Relations on a Set
- Relations from a set 'A' to itself
- A relation on a set 'A' is a relation from 'A' to 'A'

Example: Let $A = set \{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Since (a, b) is in R - if and only if a and b are positive integers not exceeding 4 such that a divides b

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

- Example: How many relations are there on a set with 'n' elements?
- A relation on a set A is a subset of A x A
- A x A = n^2 elements, if A has n elements
- Set with m elements = 2^m subsets
- A x A = 2^{n^2} subsets, n elements for each set A
- 2^{3^2} = 2^9 = 512 relations on the set with 3 elements {a, b, c}

- Properties of Relations
- Several properties classify relations on a set
- Reflexive
- A relation R on a set A is called reflexive
 - if (a, a) € R for every element a € A
- Relation R on the set A is reflexive if

$$\forall a((a,a) \in R)$$

domain is set of all elements in A

Example a): Consider the following relations on {1, 2, 3, 4}

$$\begin{split} &R_1 = \{(1,1),\,(1,2),\,(2,1),\,(2,2),\,(3,4),\,(4,1),\,(4,4)\} \\ &R_2 = \{(1,1),\,(1,2),\,(2,1)\} \\ &R_3 = \{(1,1),\,(1,2),\,(1,4),\,(2,1),\,(2,2),\,(3,3),\,(3,4),\,(4,1),\,(4,4)\} \\ &R_4 = \{(2,1),\,(3,1),\,(3,2),\,(4,1),\,(4,2),\,(4,3)\} \\ &R_5 = \{(1,1),\,(1,2),\,(1,3),\,(1,4),\,(2,2),\,(2,3),\,(2,4),\,(3,3),\,(3,4),\,(4,4)\} \\ &R_6 = \{(3,4)\} \end{split}$$

Which of these relations are reflexive?

- R_3 and R_5 : reflexive \leftarrow both contain all pairs of the form (a, a): (1,1), (2,2), (3,3) & (4,4)
- R_1 , R_2 , R_4 and R_6 : not reflexive \leftarrow does not contain all of these ordered pairs. (3,3) is not in any of these relations.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

- Symmetric and Antisymmetric
- A relation R on a set is called symmetric
- if (b, a) € R
- whenever (a, b) € R, for all a, b € A

$$\forall a \forall b ((a,b) \in R) \rightarrow (b,a) \in R)$$

- A relation R on a set A such that for all a, b € A
- if (a, b) € R and (b, a) € R
- then a = b is called antisymmetric

$$\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b))$$

Example: Which of the relations from example (a) are symmetric and which are antisymmetric?

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,3), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

 $R_2 \& R_3$: symmetric \Leftarrow each case (b, a) belongs to the relation whenever (a, b) does.

For R_2 : check that both (1,2) & (2,1) belong to the relation For R_3 : it is necessary to check that both (1,2) & (2,1) belong to the relation.

- None of the other relations is symmetric: find a pair (a, b) so that it is in the relation but (b, a) is not.
- R_4 , R_5 and R_6 : antisymmetric \leftarrow for each of these relations there is no pair of elements a and b with $a \neq b$ such that both (a, b) and (b, a) belong to the relation
- None of the other relations is antisymmetric.: find a pair (a, b) with $a \neq b$ so that (a, b) and (b, a) are both in the relation.

- Transitive
- A relation R on a set A is called transitive
- if whenever $(a, b) \in R$ and $(b, c) \in R$
- then $(a, c) \in R$, for all $a, b, c \in R$

$$\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R)$$

- Example: Which of the relations in example (a) are transitive?
- R_4 , R_5 & R_6 : transitive \leftarrow verify that if (a, b) and (b, c) belong to this relation then (a, c) belongs also to the relation, R_4 transitive since (3,2) and (2,1), (4,2) and (2,1), (4,3) and (3,1), and (4,3) and (3,2) are the only such sets of pairs, and (3,1), (4,1) and (4,2) belong to R_4 . Same reasoning for R_5 and R_6
- R_1 : not transitive \Leftarrow (3,4) and (4,1) belong to R_1 , but (3,1) does not
- R_2 : not transitive \leftarrow (2,1) and (1,2) belong to R_2 , but (2,2) does not
- R_3 : not transitive \Leftarrow (4,1) and (1,2) belong to R_3 , but (4,2) does not

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

- Combining Relations
- Example: Let A = {1, 2, 3} and B = {1, 2, 3, 4, }.
- The relations $R_1 = \{(1,1), (2,2), (3,3)\}$ and $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$ can be combined to obtain:
- \blacksquare R₁ \cup R₂ = {(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)}
- $R_1 \cap R_2 = \{(1,1)\}$
- $\blacksquare R_1 R_2 = \{(2,2), (3,3)\}$
- $\blacksquare R_2 R_1 = \{(1,2), (1,3), (1,4)\}$

- Composite
- Let R be a relation from a set A to a set B
- S a relation from B to a set C
- The composite of R and S is the relation
- consisting of ordered pairs (a, c), where $a \in A$, $c \in C$
- and for which there exists an element $b \in B$
- such that $(a, b) \in R$ and $(b, c) \in S$
- Denote the composite of R and S by S ° R

- Example: What is the composite of the relations R and S where R is the relation from {1,2,3} to {1,2,3,4} with R = {(1,1), (1,4), (2,3), (3,1), (3,4)} and S is the relation from {1,2,3,4} to {0,1,2} with S = {(1,0), (2,0), (3,1), (3,2), (4,1)}?
- S ° R => construct using all ordered pairs in R and ordered pairs in S, where the second element of the ordered pair in R agrees with the first element of the ordered pair in S
- For example => the ordered pairs (2,3) in R and (3,1) in S produce the ordered pair (2,1) in S R
- Computing all the ordered pairs in the composite $S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$

The Powers of a Relation

- The powers of a relation R are recursively defined from the definition of a composite of two relations.
- Let R be a relation on the set A. The powers R^n , for n = 1, 2, 3, ... are defined recursively by:

$$R^{1} = R$$
$$R^{n+1} = R^{n} \circ R$$

So:

$$R^2 = R \circ R$$

 $R^3 = R^2 \circ R = (R \circ R) \circ R)$ etc.

The Powers of a Relation

- Let $R = \{(1,1), (2,1), (3,2), (4,3)\}$
- Find the powers R^n , where n = 1, 2, 3, 4, ...

$$R^{I} = R = \{(1,1), (2,1), (3,2), (4,3)\}$$

 $R^{2} = R \circ R = \{(1,1), (2,1), (3,1), (4,2)\}$
 $R^{3} = R^{2} \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$
 $R^{4} = R^{3} \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$
 $R^{5} = R^{4} \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$