МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Лабораторная работа № 3.4.2

"ЗАКОН КЮРИ-ВЕЙССА"

Выполнила студентка Б04-906 Прохорова Юлия

Долгопрудный, 2020 г.

1. Цель работы:

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

2. Оборудование:

Катушка самоиндукции с образцом из гадолиния термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

3. Теоретическая часть

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, торые в отсутствие поля располагались в пространстве хаотичным образом. При повышении температуры T возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле) по закону Кюри:

$$\chi = \frac{C}{T},\tag{1}$$

где C - постоянная Кюри. Для парамагнитных веществ, которые при понижениитемпературы становятся ферромагнитными, формула (1) должна быть видоизменена. Эта формула показывает, что температура T=0 является особой точной температурной кривой, в которой χ неограниченно возрастает. При $T\to 0$ тепловое движение всеменьше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках - под влиянием обменных сил - это происходит при понижении температуры до неабсолюного нуля, а до температу ры Кюри Θ .

Рис. 1: Зависимость обратной величины магнитной восприимчивости от температуры

Оказывается, что у ферромагнетиков закон Кюри заменияется законом Кюри-Вейсса:

$$\chi \sim \frac{1}{T - \Theta_p},\tag{2}$$

где Θ_p - температура близкая к температуре Кюри. Эта формула хорошо описывает поведение ферромагнитных веществ после их перехода в парамагнитную фазу при заметном удалении температуры от Θ , но недостаточно точна при $T \approx \Theta$. Иногда для уточнения формулы 2 вводят вместо одной две температуры Кюри, одна из которых описывает точку фазового перехода - ферромагнитная точка Кюри Θ , а другая является параметром в формуле 2 - парамагнитная точка Кюри - Θ_p (рис.1).

4. Экспериментальная установка

Схема установки для проверки Кюри-Вейсса изображена на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонтированв виде отдельного блока.

Рис. 2: Схема экспериментальной установки

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (~ 50 кГц), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером около 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохранняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Также он улучшает тепловой контакт контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. Температура образца регулируется с помощью термостата. Магнитная восприимчивость образца χ определяется по изменению самоиндукции катушки собразцом и через L_0 -её самоиндукцию в отсутствие образца, получим:

$$(L - L_0) \sim \chi, \tag{3}$$

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},\tag{4}$$

где C - ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C},\tag{5}$$

Из (4) и (5) имеем:

$$(L - L_0) \sim (\tau^2 - \tau_0^2).$$
 (6)

Таким образом,

$$\chi \sim (\tau^2 - \tau_0^2). \tag{7}$$

Из формул (2) и (7) следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)}.$$
 (8)

Для охлаждения образца используется холодная водопроводная вода, циркулирующая вокруг сосуда с рабочей жидкостью (дистиллированной водой): рабочая жидкость постоянно перемешивается. Величина стабилизируемой температуры задается на дисплее 5 термостата. При примближении к заданной температуре, непрерывный режим работы нагревателя автоматически переходит в импульсный - процесс стабилизации температуры. При этом температура исследуемого образца несколько отличается от рабочей жидкости. Псоде того как вода достигла нужной темпертуры, идет медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медноконстантановой термопары 6 и цифрового вольтметра. Один из контактов термопары находится в тепловом контакте с образцом, а другой погружен в воду.

5. Ход работы

- 1) Оценим допустимую ЭДС термопары, учитывая что постаянная темопары k=24град/мВ, а допустимая разница температур $\Delta T=0,5^{\circ}C$ $\varepsilon=0,02$ мВ.
- 2) Снимаем зависимость периода колебаний LC-генератора оттемпературы образца, отмечая период колебаний τ по частотомеру, а температуру T по показаниям дисплея и цифровому вольтметру.

$N_{ar{o}}$	$T^{\circ}C$	au, MKC	$1/(\tau^2 - \tau_0)$
1	13.18	10.756	0.030
2	14.41	10.676	0.031
3	17.64	10.565	0.034
4	19.67	10.329	0.040
5	21.66	9.996	0.055
6	23.69	9.607	0.095
7	25.62	9.442	0.136
8	27.62	9.349	0.179
9	29.57	9.289	0.224
10	31.66	9.257	0.258
11	33.64	9.231	0.294
12	35.63	9.210	0.332
13	37.62	9.195	0.365
14	39.63	9.182	0.400

Таблица 1: Получение данных

3) Построим график зависимости $\frac{1}{\tau^2-\tau_0^2}=f(T)$. Экстраполируя полученную прямую к оси абсцисс, определяем парамагнитную точку Кюри Θ_p для гадолиния.

Рис. 3: График зависимость f(T)

Рис. 4: Экстраполяция полученной линейной зависимости

Плучили $\Theta_p=18.9\pm0.9^{\circ}C.$ Табличное значение: $\Theta_p=20.2^{\circ}C$

6. Вывод

В ходе лабораторной работы:

- 1) Изучили температурную зависимость магнитной восприимчивостью гадолиния выше точки Кюри.
- 2) Рассчитали значение температуры в точке Кюри $\Theta_p=18.9.$ Относительная огрешность составила $\varepsilon=6\%.$