SpaceX

Capstone Project

Professional Certificate IBM Python for Data Science

Outline

Executive Summary

Introduction

Methodology

Results

Conclusion

Executive Summary

Data Collection using API

Data Collection using Web Scraping

Data Wrangling

Exploratory Data Analysis using SQL Exploratory Data Analysis and Visualization

Methodologies Summary

Visual Analytics with Folium

Machine learning Prediction

Exploratory Data Analysis result

Dash in Screenshots

Predictive Analytic result

Introduction

Results Summary

Target

The goal of this project is to design a Machine learning pipeline to predict if the first stage will land successfully. SpaceX claims that Falcon 9 rocket launch cost 62 million; Other providers cost 165 million dollars. Much of the savings are because Space X can reuse the first stage. If we can determine if the first stage

will land, we can determine the cost of the launch.

Problems

Which factor can determine if the rocket will land successfully?

Which Interaction between various features can determine

the success rate of a successful landing?

What conditions need to be ensured for a successful landing?

Methodology

Data Collection using API

Data Collection using Web Scraping

Data Wrangling

Exploratory Data Analysis using SQL

Exploratory Data Analysis and Visualization

Visual Analytics with Folium

Machine learning Prediction

The data was collected using various methods

- Data collection was done using get request to the SpaceX API.
- Next, the response content as a Json using .json() function call was decoded and turned into a pandas data frame using .json_normalize().
- Data were cleaned and checked for missing values and fill in missing values where necessary.
- In addition, we performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
- The objective was to extract the launch records as an HTML table, parse the table and convert it to a pandas data frame for future analysis.

Data Collection – SpaceX API

```
1 Task 1: Request and perse the SpaceX launch data using the GET request

1 static_json_url='https://cf-courses-data.s3.us-cloud-object-storage.appdomain.cloud/IBM-DSe32IEN-Skillsf

| Use json_normalize method to convert the json result into a dataframe

1 data-pd.json_normalize(response.json())

1 The data have been cleaned:
```

- We used the get request to the SpaceX API to collect data:
- Clean the requested data and do some basic data wrangling and formatting.
- The link to the notebook is https://github.com/GioFis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/jupyter-labs-spacex-data-collection-api.ipynb

Data Collection Scraping

```
launch_dict- dict.fromkeys(column_names)

# Reserve on Erretwort column

del launch_dict['Oste and time ( )']

# Let's initial the launch_dict with each value to be an empty list

launch_dict[ Fiight No. '] = []

launch_dict[ Payload ] = []

launch_dict[ Payload mass'] = []

launch_dict[ Payload mass'] = []

launch_dict[ Cosit'] = []

launch_dict[ (Eustomer'] = []

launch_dict[ (Eustomer'] = []

launch_dict[ Version Booster']=[]

launch_dict[ Version Booster']=[]

launch_dict[ Soster landing']=[]

launch_dict[ Date']=[]

launch_dict[ Time']=[]
```

| NAME | The Process of the Communication of the Co

- We applied web scrapping to web scrap Falcon 9 launch records with BeautifulSoup
- We parsed the table and converted it into a pandas data frame.
- The link to the notebook is https://github.com/GioFis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/jupyter-labswebscraping.ipynb

Data Wrangling

We performed exploratory data analysis and determined the

- We calculated the number of launches at each site, and the number and occurrence of each orbit
- We created a landing outcome label from the outcome column and exported the results to CSV.
- The link to the notebook is https://github.com/GioFis/DataScience-and-Machine-Learning-Capstone-Project/blob/main/labsjupyter-spacex-Data%20wrangling.ipynb

CAPE CANAVERAL SPACE LAUNCH COMPLEX 40
KENNEDY SPACE CENTER LAUNCH COMPLEX 39A
VANDENBERG AIR FORCE BASE SPACE LAUNCH COMPLEX 4E

```
1 # Apply value_counts() on column LaunchSite
2 df["LaunchSite"].value_counts()

CCAFS SLC 40 55
KSC LC 39A 22
VAFB SLC 4E 13
Name: LaunchSite, dtype: int64
```

```
1 df['Class']=landing_class
2 df[['Class']].value_counts()

Class
1 60
0 30
dtype: int64
```

EDA with Data Visualization

• We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, the success rate of each orbit type, flight number and orbit type, and the launch success yearly trend.

The link to the notebook is https://github.com/GioFis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/jupyter-labs-eda-dataviz.ipynb

EDA with SQL

- We loaded the SpaceX dataset into a PostgreSQL database without leaving the jupyter notebook.
- We applied EDA with SQL to get insight from the data. We wrote queries to find out for instance:
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1 The total number of successful and failure mission outcomes
 - The failed landing outcomes in drone ship, their booster version and launch site names.
 - The link to the notebook https://github.com/GioFis/Data-Science-and-Machine-Learning-Capstone-Project/blob/main/eda-sql-edx.ipynb
 - We marked all launch sites and added map objects such as markers, circles, and lines to mark the success or failure of launches for each site on the folium map.
 - We assigned the feature launch outcomes (failure or success) to classes 0 and 1.
 - 0 for failure and 1 for success.

Build an Interactive Map with Folium

- Using the color-labeled marker clusters, we identified which launch sites have a relatively high success rate.
- We calculated the distances between a launch site to its proximities. We answered some questions, for instance:
- Are launch sites near railways, highways, and coastlines?
- Do launch sites keep a certain distance away from cities?
- https://github.com/GioFis/Data-Science-and-Machine-Learning-CapstoneProject/blob/main/lab jupyter launch site location.jpynb

Built a Dashboard with Plotly Dash

- An interactive dashboard with Plotly dash was built
- We plotted pie charts showing the total launches by specific sites
- We plotted a scatter graph showing the relationship between Outcome and Payload Mass (Kg) for the different booster versions.

• The link to the notebook is https://github.com/GioFis/Data-Science-and-Machine-LearningCapstone-Project/blob/main/spacex dash.ipynb

Predictive Analysis Classification

- Data have been loaded using NumPy and pandas, transformed, and split into training and testing.
- We built different machine learning models and tuned different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model and improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.
- The link to the notebook is https://github.com/GioFis/Data-Science-and-Machine- Learning-Capstone-Project/blob/main/SpaceX Machine%20Learning%20Prediction.ipynb

Results

- EDA results
- Interactive Analytics demo in screenshots
- Predictive analysis results

Insights from Exploratory data analysis

Flight Number vs. Launch Site

From this graph, we can deduce that CCAFS SLC 40 was the most used launch site, the progressively rare number of blue dots (failure) suggest a progressive improvement over time

Payload vs Launch Site

With a closer look at the graph, we can see that:

- payload mass >8k kg has a high success rate in all launch sites,
- 2k<Payload mass<8k Kg. We have a significant concentration of failure
- VAFB-SLC launch site, there are no rockets launched for heavy payload mass(greater than 10000)

Success Rate vs Orbit Type

ES-L1, GEO, HEO, SSO, and VLEO had the most success rate, as we can see on this graph

Flight Number vs Orbit Type

- We observe that 51% of the 27 GTO Flight numbers have been successful
- LEO 71.5%
- ISS 62%
- VLEO 86%
- ES-L1 and SSO performed well (100% successful) but a fewer number of launches were committed to reach those orbits

Payload vs Orbit Type

Successful landings of heavy payloads (more than 6000Kg) are more for LEO, ISS, and GTO orbits

A large part of the payload weight per launch was less than 6000Kg

Launch Success Yearly Trend

Since 2013, the success rate kept on increasing till 2020, as we can see from this plot

the key word DISTINCT to show only unique launch sites

All Launch Site Names

- 1 %sql SELECT DISTINCT(launch_site),COUNT(*) as count FROM SPACEXTBL GROUP BY launch_site;
- * ibm_db_sa://fbt48346:***@815fa4db-dc03-4c70-869a-a9cc13f33084.bs2io90l08kqb1od8lcg.databases. Done.

launch_site	COUNT
CCAFS LC-40	26
CCAFS SLC-40	34
KSC LC-39A	25
VAFB SLC-4E	16

Display 5 records where launch sites begin with the string 'KSC'

- 1 %sql SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE '%KSC%' LIMIT 5;
- * ibm_db_sa://fbt48346:***@815fa4db-dc03-4c70-869a-a9cc13f33084.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:30367/BLUDB Done.

landing_outcome	mission_outcome	customer	orbit	payload_masskg_	payload	launch_site	booster_version	timeutc_	DATE	column_0
Success (ground pad)	Success	NASA (CRS)	LEO (ISS)	2490	SpaceX CRS-10	KSC LC-39A	F9 FT B1031.1	14:39:00	2017-02-19	29
No attempt	Success	EchoStar	GTO	5600	EchoStar 23	KSC LC-39A	F9 FT B1030	06:00:00	2017-03-16	30
Success (drone ship)	Success	SES	GTO	5300	SES-10	KSC LC-39A	F9 FT B1021.2	22:27:00	2017-03-30	31
Success (ground pad)	Success	NRO	LEO	5300	NROL-76	KSC LC-39A	F9 FT B1032.1	11:15:00	2017-01-05	32
No attempt	Success	Inmarsat	GTO	6070	Inmarsat-5 F4	KSC LC-39A	F9 FT B1034	23:21:00	2017-05-15	33
										e l

We used the query above to see only 5 of all site 'KSC'

Total Payload carried by boosters for NASA (CRS) is 48213.

Total Payload Mass

```
Display average payload mass carried by booster version F9 v1.1

1 %sql SELECT AVG(PAYLOAD_MASS__KG_) as AVG_MASS_F9_V1_1 FROM SPACEXTBL WHERE BOOSTER_VERSION LIKE '%F9%v1.1%';

* ibm_db_sa://fbt48346:***@815fa4db-dc03-4c70-869a-a9cc13f33084.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:303Done.

avg_mass_f9_v1_1
2534
```

Calculated the average payload mass carried by booster F9 v1.1 as 2534

Average Payload Mass by F9 v1.1

List the date where the succesful landing outcome in drone ship was acheived.

Hint:Use min function

```
1 %sql SELECT MIN(DATE) as First_Succesful_landing FROM SPACEXTBL WHERE LANDING_OUTCOME LIKE '%Success (drone ship)%';
```

* ibm_db_sa://fbt48346:***@815fa4db-dc03-4c70-869a-a9cc13f33084.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:30367/BLUDDone.

first_succesful_landing

2016-05-27

We observed that the date of the first successful landing outcome in the drone ship was 27th May 2016

First Successful Ground Landing Date

Using WHERE clause to filter successfully landed booster on ship pad and applied AND condition

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

List the total number of successful and failure mission outcomes

- %sql SELECT mission_outcome,COUNT(mission_outcome) as count FROM SPACEXTBL GROUP BY mission_outcome;
- * ibm_db_sa://fbt48346:***@815fa4db-dc03-4c70-869a-a9cc13f33084.bs2io90l08kqb1od8lcg.databases.appdomain.c

mission_outcome	COUNT
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

```
1 %sql SELECT DISTINCT(BOOSTER_VERSION) from SPACEXTBL
 2 WHERE PAYLOAD_MASS__KG_ = (select MAX(PAYLOAD_MASS__KG_) from SPACEXTBL);
* ibm_db_sa://fbt48346:***@815fa4db-dc03-4c70-869a-a9cc13f33084.bs2io90108kqb1od8lcg.databases.appdomain.cloud:30367/BLUDB
Done.
booster_version
  F9 B5 B1048.4
  F9 B5 B1048.5
  F9 B5 B1049.4
  F9 B5 B1049.5
  F9 B5 B1049.7
  F9 B5 B1051.3
  F9 B5 B1051.4
  F9 B5 B1051.6
  F9 B5 B1056.4
  F9 B5 B1058.3
  F9 B5 B1060.2
  F9 B5 B1060.3
```

 Determined the booster that has carried the maximum payload using a subquery in the WHERE clause and the MAX() function

Boosters Carried Maximum Payload

Using WHERE clause with LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ships, their booster versions, and launch site names for the year 2015

2015 Launch Records

We selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.

We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.

Rank Landing Outcomes Between 2010 and 2017

Launch Sites with Folium

All Launch sites in the global map

As we can see Space X launch sites are in USA, Florida and California

Markers showing launch sites with color labels

California Launch Site

Florida Launch Sites

Launch Site Distance to Landmarks

- Are launch sites near railways? 1.28km
- Are launch sites near highways? 30km
- Are launch sites near the coastline? 0.86km
- Do launch sites keep a certain distance away from cities? 51 km

Build a Dashboard with Plotly Dash

KSC LC-39A had the most successful of all the sites

Total Success Launches By all sites

KSC LC-39A was the most successful of all the sites it achieved a 76.9% success rate while getting a 23.1% failure rate

Launch Site with the highest launch success ratio

Scatter plot

Payload vs. Launch Outcome for all sites

Heavy Weighted Payload 4000 -10000 Kg

Low Weighted Payload 0-4000 Kg

Predictive Analysis Classification

	Method	Accuracy	Best score
0	Logistic regression	0.833333	0.846429
1	Support vector machine	0.833333	0.848214
2	Decision Tree classifier	0.833333	0.875000
3	K nearest neighbors	0.833333	0.848214

Classification Accuracy

The decision tree classifier is the model with the highest classification accuracy

Confusion Matrix

The confusion matrix shows that the classifier can distinguish between the different classes.

The major problem is the false positives, in this project, the unsuccessful landing is marked as a successful landing by the classifier

Conclusions

Seen these data, we can conclude that

- Launch success rate started to increase in 2013 till 2020
- Orbits ES-L1, GEO, HEO, SSO, and VLEO had the most success rate
- KSC LC-39A had the most successful launches of any sites
- The Decision tree classifier is the best machine learning algorithm for this task

Thank you