Name		
	Date	Pd

UBF Review Problems

1. An 80 kg water skier is being pulled by a boat with a force of 220 N causing the skier to accelerate at $1.8~\rm m/s^2$. Find the drag force on the skier.

2.	A 2000 kg car is slowed down uniformly from 20 m/s to 5 m/s in 4 seconds. Determine the average net force on the car during this time, and how far the car traveled while slowing down.

3.	Some baseball pitchers are capable of throwing a fastball at 100 mi/hr (44.7 m/s). The pitcher achieves this speed by moving his arm through a distance of 1.5 m. Determine the net force that must be exerted on the 0.15 kg ball during the pitch.	

4.	A 0.5 kg ball falls from rest from a height of 30 m. After the bounce, the ball reaches a height of 20 m.
a.	State the givens and unknowns for the ball before the bounce. What is the velocity of the ball right before it hits the ground?
b.	State the givens and unknowns for the ball after the bounce. What is the velocity of the ball right after it hits the ground?
c.	Use what you found in a and b to determine the acceleration and the net force the ground exerts on the ball. The contact between the ball and ground lasted 20 milliseconds. (1000 milliseconds is 1 second)

5. In the diagram below, the cord makes a 25° angle with the horizontal, the mass of the sled and occupants together is 100 kg. The tension in the cord is 120 N and the friction force is 15 N. Find the acceleration of the sled.

6. The 60 kg skier shown below is skiing down a 35° incline with a coefficient of friction is 0.08. Determine the acceleration of the skier.

