

Functions and mappings

- Constructing a mapping diagram from a function machine
- **Identifying a linear function**

Keywords

You should know

explanation 1a

explanation 1b

- 1 Look at this pair of numbers. 5 and -2Work these out.

- **2** Add, subtract, multiply and divide each of these pairs of numbers.
 - -2
- -3c
- -10+4

output

- **3** Copy and complete these function machines.
 - a

input

b

input

c

input

d

input output

- 4 Find the output of each function when the input is -8.
 - $\mathbf{a} \quad x \to 3x$
- **b** y = 15 2x **c** $x \to \frac{x}{2} 1$ **d** y = 5x + 4

explanation 2a

explanation 2b

5 Look at this table of values for the function $x \rightarrow 4x + 1$.

Input (x)	-1	0	1	2	3
Output (y)					13

- Copy and complete the table.
- Explain why this is a linear function.
- **6** Look at this mapping diagram for y = x + 2.

- Copy and complete the mapping diagram.
- Describe how the output changes as the inputs increase by 1.
- Explain why this is a linear function.
- 7 $x \rightarrow 2x 2$ is a mapping.
 - Write the mapping as a function machine.
 - **b** Copy and complete the table and the mapping diagram.

-4	-3	$-\frac{2}{1}$	-1	0	1	2	3	4	5	6	7
											X
						. ↓					у
_4	-3	-2	-1	0	1	2	3	4	5	6	7

Input (x)	Output (y)
-1	
0	
1	
2	2
3	
4	

Is the function a linear function? Explain your answer.

8 a Copy and complete the table for the function $x \to \frac{x}{2} + 3$.

Input (x)	0	1	2	3	4
Output (y)		3.5			

- **b** Describe how the output is changing.
- Is this a linear function? Explain your answer.
- 9 y = 4 2x is a mapping.
 - a Copy and complete the mapping diagram.
 - **b** Describe how the output changes.
 - Explain why y = 4 2x is a linear function.

10 A linear function maps $2 \rightarrow 5$, as shown in the table.

Input (x)	-2	-1	0	1	2	3	4
Output (y)					5		

Write the linear function that also does the following mappings. Copy and complete the table for each function.

- $\mathbf{a} \quad 1 \rightarrow 4$

- **b** $1 \rightarrow 2$ **c** $3 \rightarrow 3$ **d** $0 \rightarrow 11$

explanation 3a

explanation 3b

- Which of these functions are linear? Explain how you know.
 - i $x \rightarrow x(1+x)$
- ii y = 3(x 2)
- **iii** $y = (x + 3)^3$
- iv $x \rightarrow \frac{x+1}{3}$
- i Write three different linear functions that map $1 \rightarrow 1$.
 - ii For each function, write down the outputs when the input is 2, 3 and 4. Explain how the output pattern shows that the function is linear.
- i Write three different non-linear functions that map $1 \rightarrow 1$.
 - ii For each function, write down the outputs when the input is 2, 3 and 4. Explain how the output pattern shows that the function is non-linear.