

第三讲 逻辑函数的化简方法

本讲内容:

- 一、逻辑函数的标准与或式和最简式
- 二、逻辑函数的公式化简法
- 三、逻辑函数的图形化简法

四、具有无关项的逻辑函数化简

1 1 1

1.2 逻辑函数的化简方法

- 1.2.1 逻辑函数的标准与或式和最简式
- 一、标准与或表达式

$$Y = F(A,B,C) = AB + \overline{AC}$$

$$= AB(C + \overline{C}) + \overline{AC}(B + \overline{B})$$

$$= ABC + ABC + \overline{ABC} + \overline{ABC}$$
最小项

标准与或式就是最小项之和的形式

1.2 逻辑函数的化简方法

- 1.2.1 逻辑函数的标准与或式和最简式
- 一、标准与或表达式
- 1. 最小项的概念:

在n变量逻辑函数中,若m为包含n个因子的乘积项, 而且这n个变量都以原变量或反变量的形式在m 中出现, 且仅出现一次,则这个乘积项m称为该函数的一个标准 积项,通常称为最小项。

- 一、标准与或表达式
- 1. 最小项的概念:

$$Y = F(A,B)$$
 (2变量共有 4 个最小项)
 \overline{AB} \overline{ABC} \overline{ABCD} \overline{ABCD}

2. 最小项的性质:

ABC	ABC	ABC	ABC	ABC	\overline{ABC}	ABC	ABC	<i>ABC</i>
0 0 0	1	0	0	0	0	0	0	0
0 0 1	0	1	0	0	0	0	0	0
0 1 0	0	0	1	0	0	0	0	0
0 1 1	0	0	0	1	0	0	0	0
1 0 0	0	0	0	0	1	0	0	0
1 0 1	0	0	0	0	0	1	0	0
1 1 0	0	0	0	0	0	0	1	0
1 1 1	0	0	0	0	0	0	0	1

- (1) 任一最小项,只有一组对应变量取值使其值为1;
- (2) 任意两个最小项的乘积为 0;
- (3)全体最小项之和为1。

3. 最小项的编号:

把与最小项对应的变量取值当成二进制数,与之 相应的十进制数,就是该最小项的编号,用 m_i 表示。

对应规律: 原变量 \Leftrightarrow 1 反变量 \Leftrightarrow 0

ABC	ABC	-AB-C	-ABC	$A\overline{BC}$	ABC	ABC	ABC
000	001	010	011	100	101	110	111
0	1	2	3	4	5	6	7
m_0	m_1	m_2	m_3	m_4	m_5	m ₆	m_7

4. 逻辑函数标准与或表达式

任何逻辑函数都是由其变量的若干个最小项构成, 都可以表示成为最小项之和的形式。

标准与或式就是最小项之和的形式。

$$Y = F(A,B,C) = AB + AC$$

$$= AB(C+C) + AC(B+B)$$

= ABC + ABC + ABC + ABC

标准与 或式

最小项

[例] 写出下列函数的标准与或式:

$$Y = \overline{AB + AD + BC} = (\overline{A} + \overline{B}) (\overline{A} + \overline{D}) (B + \overline{C})$$

$$= (\overline{A} + \overline{B} \overline{D}) (B + \overline{C}) = \overline{AB} + \overline{AC} + \overline{BCD}$$

$$= \overline{AB} (C + \overline{C}) + \overline{AC} (B + \overline{B}) + \overline{BCD} (A + \overline{A})$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{M_7} \qquad \overline{M_6} \qquad \overline{M_5} \qquad \overline{M_4}$$

$$+ \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{M_7} \qquad \overline{M_6} \qquad \overline{M_8}$$

$$= \overline{M_7} + \overline{M_6} + \overline{M_5} + \overline{M_4} + \overline{M_1} + \overline{M_0} + \overline{M_8}$$

$$= \sum_{m_7} (0, 1, 4, 5, 6, 7, 8)$$

与前面m₀ 相重 最简

二、逻辑函数的最简表达式及相互转换

最简或与式

1.2.2 逻辑函数的公式化简法

一、并项法:
$$AB + AB = A$$

[例 1. 2. 7]
$$Y = ABC + ABC + \overline{ABC} + \overline{AB}$$

$$= AB + \overline{AB} = B$$

[例]
$$Y = ABC + A\overline{BC} + AB\overline{C} + A\overline{BC}$$

 $= A (BC + \overline{BC}) + A (B\overline{C} + \overline{BC})$
 $= A \cdot \overline{B} \oplus \overline{C} + A(B \oplus C)$
 $= A$

$$A + AB = A$$

[例 1. 2. 10]
$$Y = \overline{AB} + \overline{AD} + \overline{BE}$$

$$= \overline{A} + \overline{B} + \overline{AD} + \overline{BE} = \overline{A} + \overline{B}$$

[例 1. 2. 11]
$$Y = AB + ACD + BCD$$

$$= \overline{AB} + (\overline{A} + \overline{B}) CD$$

$$= \overline{AB} + \overline{AB} CD = \overline{AB} = \overline{A} + \overline{B}$$

[例]
$$Y = A + A \cdot BC (A + B C + D) + BC$$

$$= (A + BC) + (A + BC) (A + BC + D)$$

$$= A + BC$$

$$A + \overline{AB} = A + B$$

[例]
$$Y = AB + \overline{AC} + \overline{BC}$$

 $= AB + (\overline{A} + \overline{B})C$
 $= AB + \overline{AB} C = AB + C$

[例 1. 2. 13]
$$Y = \overline{AB} + \overline{ABC} + \overline{ABC}$$

$$= \overline{A} (B + \overline{B} C) + \overline{A} (\overline{B} + \overline{B} C)$$

$$= \overline{A} (B + C) + \overline{A} (\overline{B} + C)$$

$$= \overline{AB} + \overline{AB} + \overline{AC} + \overline{AC}$$

$$= \overline{AB} + \overline{AB} + \overline{C}$$

四、配项消项法:

$$AB + AC + BC = AB + AC$$

[例 1. 2. 15]
$$Y = \overline{AB} + AC + \overline{BC} + \overline{AB} + \overline{AC} + \underline{BC}$$

$$= \overline{AB} + AC + \overline{BC}$$

$$= \overline{AB} + \overline{AC} + \overline{BC} + \overline{AB} + \overline{AC} + \overline{BC}$$

$$= \overline{AB} + \overline{AC} + \overline{BC} + \overline{AB} + \overline{AC} + \overline{BC}$$

$$Y = ACE + \overline{ABE} + \overline{BCD} + BE\overline{C} + DE\overline{C} + \overline{AE}$$

$$= E \left(AC + \overline{AB} + B\overline{C} + D\overline{C} + \overline{A} \right) + \overline{BCD}$$

$$= E (C + B + D + A) + BCD$$

$$= CE + BE + DE + AE + BCD$$

$$= E (B+C+D) + AE + BCD$$

$$= E \overline{BCD} + \overline{AE} + \overline{BCD}$$

$$=E + \overline{AE} + \overline{BCD}$$

$$=E + BCD$$

1.2.3 逻辑函数的图形化简法

一、逻辑变量的卡诺图(Karnaugh maps)

卡诺图的定义:

将n变量的全部最小项各用一个小方块表示, 并使具有逻辑相邻性的最小项在几何位置上相邻 排列,得到的图形叫做n变量最小项的卡诺图。

逻辑相邻项: 仅有一个变量不同其余变量均相同的两个最小项, 称为逻辑相邻项。

一、逻辑变量的卡诺图(Karnaugh maps)

1、一变量全部最小项的卡诺图

卡诺图:

$$Y \stackrel{A}{\longrightarrow} 0 \quad 1$$
 $m_0 \quad m_1$

2、二变量全部最小项的卡诺图

$$Y=F(A, B)$$

$Y \stackrel{Al}{\swarrow}$	3 00	01	11	10
	m_0	m_1	m_3	m_2

一、逻辑变量的卡诺图(Karnaugh maps)

3、三变量全部最小项的卡诺图

$$Y=F(A, B, C)$$

Y B	C ₀₀	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

Y C	0	1
00	m_0	m_1
01	m_2	m_3
11	m_6	m_7
10	m_4	m_5

一、逻辑变量的卡诺图(Karnaugh maps)

4、四变量全部最小项的卡诺图

$$Y=F(A, B, C, D)$$

注意: 在卡诺 图中,

左右、上下; 每一行的首尾; 每一列的首尾;

的最小项都 是逻辑相邻的。

Y	0	1
ABC \ 000	m_0	m_1
001	m_2	m_3
011	m_6	m_7
010	m_4	m_5
110	m_{12}	m_{13}
111	m_{14}	m ₁₅
101	m_{10}	m_{11}
100	m_8	m_9

二、用卡诺图表示逻辑函数

1、把已知逻辑函数式化为最小项之和形式。 方法一:

> 2、将函数式中包含的最小项在卡诺图对应 的方格中填 1,其余方格中填 0。

例:

$$Y = AC' + A'C + BC' + B'C$$
 用卡诺图表示之。

$$= \sum (m_1, m_2, m_3, m_4, m_5, m_6)$$

卡诺图:

方法二:

根据函数式直接填卡诺图

对于AC'有: 对于A'C有:

对于BC'有: 对于B'C有:

Y B	C 00	01	11	10
0	0	1	1	1
1	1	1	0	1

Y B	C 00	01	11	10
0	0	1	1	1
1	1	1	0	1

二、用卡诺图表示逻辑函数

例 用-	卡诺图	表示说	逻辑函		CD	0.0	Λ1	11	1.0
				-	$AB \setminus$	00	01	11	10
Y	Y = A'A	B'C'D -	+ A'BI	D' + A	00		1		
AB	00	01	11	10)1	1			1
00		1			1			1	
01	1			1				2	4
11			1		0	1	1	1	1
10	1	1	1	1	$\left] D - \right]$	+ <i>AB</i> ′	C'D'		

$$=m_1+m_4+m_6+m_8+m_9+m_{10}+m_{11}+m_{15}$$

三、用卡诺图化简逻辑函数

化简依据:逻辑相邻性的最小项可以合并,并消去因子。

化简规则:能够合并在一起的最小项是2 n 个(画矩形圈)。

如何最简: 圈的数目越少越简; 圈内的最小项越多越简。

特别注意:卡诺图中所有的1都必须圈到,

不能合并的1必须单独画圈。

例: 将Y1=AC'+A'C+BC'+B'C 化简为最简与或式。

$$Y_1 = AC' + BC + AB$$

上两式的内容不相同,但函数值一定相同。

此例说明,一逻辑函数的化简结果可能不唯一。

三、用卡诺图化简逻辑函数

(1)任何两个(2¹个)相邻最小项,可以合并为一项,并消去一个变量。

(2) 任何4个(2²个)相邻的最小项,可以合 并为一项,并消去2个变量。

合并最小项的原则

0

(3)任何8个(2³个)相邻最小项,可以合并为一项, 并消去3个变量。


```
利用 AB+AB'=A
```

2个最小项合并,消去1个变量;

4个最小项合并,消去2个变量;

8个最小项合并,消去3个变量;

...

2n个最小项合并,消去n个变量;

卡诺图化简法的步骤

- ★ 画出变量的卡诺图;
- ★ 作出函数的卡诺图;
- ★ 画圏;
- ★ 写出最简与或表达式。

画圈的原则

- ◆ 合并个数为2ⁿ;
- ◆ 圈尽可能大---乘积项中含因子数最少;
- ◆ 圈尽可能少---乘积项个数最少;
- ◆ 每个圈中至少有一个最小项仅被圈过一次, 以免出现多余项。

例: 用卡诺图将下式化简为最简与一或函数式

例: 用卡诺图将下式化简为最简与一或函数式

$$Y = ABC + ABD + AC'D + C'D' + AB'C + A'CD'$$

$$Y = A + D'$$

逻辑代数基础

(Y) CD				
AB	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	1	1	1
10	1	1	1	1

$$Y' = A'D$$

$$Y = (Y')' = (A'D)' = A + D'$$

1.2.4 具有无关项的逻辑函数化简

约束项、任意项和逻辑函数式中的无关项

无关项

约束项: 当限制某些输入变量的取值不能出现时,用它们对应的最小项恒等于**0**来表示。

任意项:在输入变量的某些取值下函数值是 1还是0皆可,并不影响电路的功能。在这 些变量的取值下,其值等于1的那些最小项 称为任意项。

在卡诺图中用符号"φ"、"×"或"d"表示无关项。 在化简函数时即可以认为它是1,也可以认为它是0。 例: 化简逻辑函数 Y = A'B'C'D + A'BCD + AB'C'D' 己知约束条件为

A'B'CD + A'BC'D + ABC'D' + AB'C'D + ABCD + ABCD' + AB'CD' = 0

AB CD	0 0	0 1	11	1 0
0 0	0	1	X	0
0 1	0	X	1	0
1 1	X	0	X	X
10	1	X	0	X

$$Y = A'D + AD'$$

第一章

逻辑代数基础

例: 判断一位十进制数是否为偶数。

ABCD	Y	ABCD	Y	说明
0000	1	1000	1	
0001	0	1001	0	
0010	1	1010	×	不会出现
0011	0	1011	×	不会出现
0100	1	1 1 0 0	×	不会出现
0101	0	1 1 0 1	×	不会出现
0110	1	1 1 1 0	×	不会出现
0111	0	1 1 1 1	×	不会出现

CD	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	×	×	×	×
10	1	0	×	×

输入变量A,B,C,D取值为0000~1001时,逻辑函数Y有确定的值,根据题意,偶数时为1,奇数时为0。

$$Y(A,B,C,D) = \Sigma m(0,2,4,6,8)$$

无关项:

 $\Sigma d(10,11,12,13,14,15) = 0$

CD AB	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	×
10	1	0	×	×

 $Y(A, B, C, D) = \sum m(0, 2, 4, 6, 8) + \sum d(10, 11, 12, 13, 14, 15)$

不利用无关项的 化简结果为:

$$Y = A'D' + B'C'D'$$

利用无关项的 化简结果为:

$$Y = D'$$

逻辑代数基础 🔵

逻辑函数化简小结

逻辑函数的化简有公式法和图形法 等。公式法是利用逻辑代数的公式、 定理和规则来对逻辑函数化简, 这种 方法适用于各种复杂的逻辑函数,但 需要熟练地运用公式和定理,且具有 一定的运算技巧。图形法就是利用函 数的卡诺图来对逻辑函数化简, 这种 方法简单直观,容易掌握,但变量太 多时卡诺图太复杂, 图形法已不适用。 在对逻辑函数化简时,充分利用无关 项可以得到十分简单的结果。