

QUÍMICA NIVEL MEDIO PRUEBA 1

Lunes 7 de noviembre de 2005 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

8805-6128 12 páginas

2 Tabla perió	Tabla p	Tabla p	Tabla p	<u>a</u> E	eriód tómico	dica						က	4	w	9	۲	0 (
	г			Elemento	ento						_						He 4,00
4 Be 9,01				Masa atómica	tómica							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
12 Mg 24,31												13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
20 Ca 40,08		21 S c 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
38 Sr 87,62		39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
56 Ba 137,34		57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 TI 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
88 Ra (226)		89 ‡ Ac (227)															
		÷-	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
		**	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 N p (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

1. La oxidación completa del propano origina dióxido de carbono y agua como se muestra a continuación.

$$C_3H_8 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_2O$$

¿Cuál es el total de los coeficientes para los **productos** cuando se ajusta la ecuación para 1 mol de propano?

- A. 6
- B. 7
- C. 12
- D. 13
- 2. La masa molecular relativa $(M_{\rm r})$ de un compuesto es 60. ¿Cuáles son las fórmulas posibles de ese compuesto?
 - I. CH₃CH₂CH₂NH₂
 - II. CH₃CH₂CH₂OH
 - III. CH₃CH(OH)CH₃
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- 3. ¿Qué muestra tiene menor número de átomos?
 - A. 1 mol de H₂SO₄
 - B. 1 mol de CH₃COOH
 - C. 2 moles de H_2O_2
 - D. 2 moles de NH₃

- 4. La constante de Avogadro tiene el mismo valor que el número de
 - A. moléculas presentes en 1 mol de yodo sólido.
 - B. átomos presentes en 1 mol de cloro gaseoso.
 - C. iones presentes en 1 mol de bromuro de potasio sólido.
 - D. protones presentes en 1 mol de helio gaseoso.
- **5.** La siguiente información se refiere a cuatro átomos diferentes:

átomo	neutrones	protones
W	22	18
X	18	20
Y	22	16
Z	20	18

¿Qué dos átomos son isótopos?

- A. WeY
- B. WyZ
- C. XyZ
- D. X e Y
- **6.** ¿Qué enunciado sobre un espectro de emisión de líneas es correcto?
 - A. Los electrones absorben energía a medida que se mueven desde niveles energéticos bajos a niveles energéticos altos.
 - B. Los electrones absorben energía a medida que se mueven desde niveles energéticos altos a niveles energéticos bajos.
 - C. Los electrones liberan energía a medida que se mueven desde niveles energéticos bajos a niveles energéticos altos.
 - D. Los electrones liberan energía a medida que se mueven desde niveles energéticos altos a niveles energéticos bajos.

7.	¿Qu	é prop	piedades son típicas de la mayoría de los no metales del período 3 (Na al Ar)?
		I.	Forman iones ganando uno o más electrones.
		II.	Son pobres conductores del calor y la electricidad.
		III.	Tienen elevados puntos de fusión.
	A.	Sólo	o I y II
	B.	Sólo	o I y III
	C.	Sólo	o II y III
	D.	I, II	y III
8.			o de potasio tiene mayor radio atómico que un átomo de sodio. ¿Cuál de los siguientes es sobre el potasio explica correctamente esta diferencia?
	A.	Tien	ne mayor carga nuclear.
	B.	Tien	ne menor electronegatividad.
	C.	Tien	ne más niveles energéticos ocupados por electrones.
	D.	Tien	ne menor energía de ionización.
9.	Cuar	ndo lo te prin	os siguientes tipos de enlaces se disponen de forma decreciente respecto de su fuerza (el más nero), ¿cuál es el orden correcto?
	A.	cova	alente > hidrógeno > van der Waals'
	B.	cova	alente > van der Waals' > hidrógeno
	C.	hidr	ógeno > covalente > van der Waals'
	D.	van	der Waals' > hidrógeno > covalente

8805-6128 Véase al dorso

10. ¿Qué enunciado es verdadero para la mayoría de los compuestos iónicos?

	A.	Contienen elementos de electronegatividad semejante.
	B.	Conducen la electricidad en estado sólido.
	C.	Son coloreados.
	D.	Tienen elevados puntos de fusión y ebullición.
11.	¿ La	teoría de la repulsión del par electrónico de valencia (TRPEV) se usa para predecir?
	A.	los niveles energéticos de un átomo
	B.	las formas de las moléculas y los iones
	C.	la electronegatividad de los elementos
	D.	el tipo de enlace presente en los compuestos
12.	¿Qu	é fluoruro es el más iónico?
	A.	NaF
	B.	CsF
	C.	MgF_2
	D.	BaF_2
13.	¿Por	qué los gases se comprimen con facilidad?
	A.	Tienen fuerzas intermoleculares débiles.
	B.	Las partículas tienen movimiento rápido y aleatorio.
		Las partículas están muy distanciadas.

D.

No tienen volumen fijo.

- **14.** ¿Por qué la temperatura de ebullición del agua permanece constante aún cuando se le suministre calor a velocidad constante?
 - A. El calor se pierde al ambiente.
 - B. El calor se usa para romper los enlaces covalentes de las moléculas de agua.
 - C. El recipiente también absorbe calor.
 - D. El calor se usa para superar las fuerzas de atracción intermoleculares entre las moléculas de agua.
- 15. La siguiente ecuación representa la formación de óxido de magnesio a partir de magnesio metálico.

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$
 $\Delta H^{\ominus} = -1204 \text{ kJ}$

¿Qué enunciado es correcto para esta reacción?

- A. Por cada mol de magnesio que reacciona, se liberan 1204 kJ de energía.
- B. Por cada mol de óxido de magnesio que se forma, se absorben 602 kJ de energía.
- C. Por cada mol de oxígeno gaseoso que reacciona, se liberan 602 kJ de energía.
- D. Por cada dos moles de óxido de magnesio que se forman, se liberan 1204 kJ de energía.
- **16.** Las siguientes ecuaciones muestran la oxidación del carbono y del monóxido de carbono a dióxido de carbono.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\ominus} = -x \text{ kJ mol}^{-1}$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\ominus} = -y \text{ kJ mol}^{-1}$

¿Cuál es la variación de entalpía, expresada en kJ mol⁻¹, para la oxidación del carbono a monóxido de carbono?

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A. x + y
- B. -x-y
- C. y-x
- D. x-y

- 17. Se utilizó un calorímetro sencillo para determinar la entalpía de combustión del etanol. El valor experimental obtenido fue -920 kJ mol⁻¹. El valor que hallamos en el cuadernillo de datos es -1371 kJ mol⁻¹. ¿Qué enunciado explica mejor la diferencia entre estos dos valores?
 - A. La combustión incompleta del combustible.
 - B. La pérdida de calor al ambiente.
 - C. La escasa ventilación del laboratorio.
 - D. La medición incorrecta de la temperatura.
- **18.** ¿Cuál es el orden correcto decreciente de entropía para una sustancia pura?
 - A. gas > líquido > sólido
 - B. sólido > líquido > gas
 - C. sólido > gas > líquido
 - D. líquido > sólido > gas
- 19. ¿Qué enunciado es correcto para la colisión entre las partículas de reactivos que conduce a una reacción?
 - A. Las partículas que chocan deben tener diferente energía.
 - B. Todas las partículas reaccionantes deben tener la misma energía.
 - C. Las partículas que chocan deben tener energía cinética mayor que la energía de activación.
 - D. Las partículas que chocan deben tener la misma velocidad.
- **20.** ¿Qué cambio de condición disminuirá la velocidad de la reacción entre un exceso de zinc granulado y ácido clorhídrico diluido?
 - A. el aumento de la cantidad de zinc
 - B. el aumento de la concentración de ácido
 - C. la pulverización de los gránulos de zinc
 - D. la disminución de la temperatura

21. ¿Qué cambios desplazarán la posición de equilibrio hacia la derecha en la siguiente reacción?

$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$

- I. el agregado de un catalizador
- II. la disminución de la concentración de oxígeno
- III. el aumento del volumen del recipiente
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III
- 22. ¿Qué enunciado es siempre verdadero para una reacción química que ha alcanzado el equilibrio?
 - A. El rendimiento del/los producto/s es mayor del 50 %.
 - B. La velocidad de la reacción directa es mayor que la de la reacción inversa.
 - C. Las cantidades de reactivos y productos no cambian.
 - D. Ambas reacciones, la directa y la inversa, se detienen.
- **23.** Se agregó cal a una muestra de suelo y el pH varió de 4 a 6. ¿Cuál fue la correspondiente variación de concentración de ion hidrógeno?
 - A. aumentó por un factor igual a 2
 - B. aumentó por un factor igual a 100
 - C. disminuyó por un factor igual a 2
 - D. disminuyó por un factor igual a 100

- 24. Cuando se disponen las siguientes soluciones de concentración 1,0 mol dm⁻³ de forma creciente respecto de su pH (el menor primero), ¿cuál es el orden correcto?
 - A. $HNO_3 < H_2CO_3 < NH_3 < Ba(OH)_2$
 - B. $NH_3 < Ba(OH)_2 < H_2CO_3 < HNO_3$
 - C. $Ba(OH)_2 < H_2CO_3 < NH_3 < HNO_3$
 - D. $HNO_3 < H_2CO_3 < Ba(OH)_2 < NH_3$
- **25.** ¿Qué ecuaciones representan reacciones que se producen a temperatura ambiente?
 - I. $2 Br^{-}(aq) + Cl_{2}(aq) \rightarrow 2 Cl^{-}(aq) + Br_{2}(aq)$
 - II. $2 Br^{-}(aq) + I_{2}(aq) \rightarrow 2 I^{-}(aq) + Br_{2}(aq)$
 - III. $2I^{-}(aq) + Cl_{2}(aq) \rightarrow 2Cl^{-}(aq) + I_{2}(aq)$
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **26.** ¿Qué ecuación representa una reacción redox?
 - A. $KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H_2O(l)$
 - B. $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
 - C. $CuO(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(l)$
 - D. $ZnCO_3(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + CO_2(g) + H_2O(l)$

27. La siguiente información se relaciona con reacciones que implican los metales X, Y y Z y soluciones de sus sulfatos.

$$X(s) + YSO_4(aq) \rightarrow no hay reacción$$

$$Z(s) + YSO_4(aq) \rightarrow Y(s) + ZSO_4(aq)$$

Cuando los metales se disponen de forma decreciente respecto de su reactividad (el más reactivo primero), ¿cuál es el orden correcto?

- A. Z > Y > X
- B. X > Y > Z
- C. Y > X > Z
- $D. \quad Y > Z > X$
- **28.** ¿Cuántos isómeros estructurales de fórmula molecular C_6H_{14} son posibles?
 - A. 4
 - B. 5
 - C. 6
 - D. 7
- **29.** Las proteínas se pueden producir por medio de la polimerización por condensación de monómeros. ¿Qué monómeros se usan en esta reacción?
 - A. ésteres
 - B. ácidos carboxílicos
 - C. aminoácidos
 - D. alquenos

- **30.** ¿Qué compuesto es miembro de la serie homóloga de los aldehídos?
 - A. CH₃COCH₃
 - B. CH₃CH₂CH₂OH
 - C. CH₃CH₂COOH
 - D. CH₃CH₂CHO