Metody numeryczne

Wykład 1 - Wprowadzenie

Janusz Szwabiński

Plan wykładu

1. Sprawy administracyjne

2. Warsztat pracy

3. Arytmetyka komputerowa

4. Błędy w obliczeniach numerycznych

Sprawy administracyjne

- Kontakt: https://prac.im.pwr.edu.pl/~szwabin/
- Materialy do kursu: https://eportal.pwr.edu.pl/course/view.php?id=1820
- Zasady zaliczenia: https://eportal.pwr.edu.pl/course/view.php?id=1820

Plan kursu

- Układy równań liniowych
- Równania nieliniowe
- Interpolacja i aproksymacja
- Całkowanie numeryczne
- Różniczkowanie numeryczne
- Równania różniczkowe zwyczajne

Bibliografia

- 1. Jaan Kiusalaas, Numerical Methods in Engineering with Python
- 2. G. Dahlquist, A. Björk, Metody numeryczne
- 3. pozostałe pozycje jak w karcie przedmiotu

Warsztat pracy

Podstawowe narzędzia:

- Python 3.X
- biblioteki numeryczne: numpy, scipy
- inne biblioteki: matplotlib, sympy

Warto znać:

- pygsl
- Maxima, Yacas
- GNU Octave

Warsztat pracy

LIST STATISTICS R _{max} and R _{peak} values are in GFlops. For more details about other fields, check the TOP500 description.	LIST STATISTICS R _{max} and R _{max} values are in 0Flops. For more details about other fields, check the TOP500 description
TOP500 Release	TOP500 Release
June 2024 🗸	June 2024 ✓
Category Operating System	Category
Operating System	Operating system Family
Submit	Submit
Operating System System Share	Operating system Family System Share
0 certifs 0 HPE Cray US 0 Try Linux Environment 0 or ly Linux Environment 0 of the Enterprise Linux 0 thorsing SSA LLTS	1100%

https://top500.org/statistics/list/

Arytmetyka komputerowa (i jej ograniczenia)

Demo

Reprezentacja stałopozycyjna

Rozważmy liczby w formacie 5-cyfrowym, z dwoma cyframi w części ułamkowej

Liczba 256,78 ma w tym formacie naturalną reprezentację

Reprezentacja stałopozycyjna

Najmniejsza liczba

Największa liczba

Reprezentacja stałopozycyjna

Liczba 256,786 będzie miała tylko reprezentację przybliżoną

- w oby przypadkach błąd mniejszy od 0.01
- ogólnie przy zaokrągleniu błąd średnio dwukrotnie mniejszy niż przy obcięciu

Podstawowe błędy

Błąd bezwględny:

$$|X - X_{o}|$$

gdzie Xo to wartość dokładna.

Błąd względny:

$$\frac{|X-X_0|}{X_0}$$

Podstawowe błędy

Przykład

Liczby 256,786 i 3,546 mają takie same błędy bezwzględne w naszej reprezentacji z zaokrąglaniem:

$$|X^{(1)} - X_0^{(1)}| = |256.786 - 256.79| = 0,004$$

 $|X^{(2)} - X_0^{(2)}| = |3,546 - 3,55| = 0,004$

Podstawowe błędy

Przykład

Błędy względne są większe dla małych liczb:

$$\epsilon_1 = \frac{256.786 - 256.79}{256.786} * 100\% = 0,001558\%$$

$$\epsilon_2 = \frac{3,546 - 3,55}{3,546} * 100\% = 0,11280\%$$

Arytmetyka zmiennopozycyjna

 $ZNAK \times MANTYSA \times 10^{WYKLADNIK}$

Co zyskujemy?

- zwiększa się zakres liczb możliwych do przedstawienia
- błędy względne małych i dużych liczb są porównywalne

Arytmetyka zmiennopozycyjna

Przykład Liczba 576329,78 zapisana na 5 miejscach

$$|X - X_0| = 29,78$$

$$\epsilon_t = 0,0051672\%$$

Liczba 256,78 zapisana na 5 miejscach

$$|X - X_0| = 0,02$$

$$\epsilon_t = 0,0077888\%$$

Standard IEEE 754

Dla liczb 32-bitowych mamy:

$$(-1)^{b_{31}} \times 2^{(b_{30}b_{29}...b_{23})_2-127} \times (1.b_{22}...b_0)_2$$

Standard IEEE 754

$$(-1)^{ZNAK} \times 2^{E-127} \times \left(1 + \sum_{i=1}^{23} b_{23-i} 2^i\right)$$

Jednostka maszynowa

Definicja

Jednostka maszynowa to najmniejsza liczba ϵ taka, że spełniony jest dla niej na komputerze warunek

$$1 + \epsilon \neq 1$$

Demo

Niech X > o oraz

$$X = q \times 2^m, \quad 1 \leqslant q < 2$$

Wówczas

$$X = (1.a_1a_2...)_2 \times 2^m, \quad a_i \in \{0,1\}$$

Jeśli mantysa liczb maszynowych ma t bitów po kropce:

- \Rightarrow liczba maszynowa bliska X powstanie przez odrzucenie zbędnych bitów a_{t+1}, a_{t+1}, \dots
 - obcięcie:

$$X_{-} = (1.a_1a_2...a_t)_2 \times 2^m, X_{-} \leq X$$

 zaokrąglenie: odrzucamy zbędne bity i jednoczesnie dodajemy jedynkę na ostatniej pozycji

$$X_{+} = \left[(1.a_{1}a_{2} \dots a_{t})_{2} + 2^{-t} \right] \times 2^{m}, \quad X_{+} - X_{-} = 2^{m-t}$$

Definicja

Najbliższa względem X liczba maszynowa fl(X) to bliższa z liczb X_+ i X_- .

Jeśli $fl(X) = X_{-}$, wówczas

$$|X - fl(X)| \leq \frac{1}{2}|X_{+} - X_{-}| = 2^{m-t-1}$$

Podobnie, jeśli $fl(X) = X_+$, to

$$|X - fl(X)| \leq \frac{1}{2}|X_{+} - X_{-}| = 2^{m-t-1}$$

Błąd względny:

$$\frac{|X - fl(X)|}{|X|} \leqslant \frac{2^{m-t-1}}{q2^m} = \frac{1}{q}2^{-t-1} \leqslant 2^{-t-1}$$

Niech

$$\delta = \frac{fl(X) - X}{X}$$

Wówczas

$$fl(X) = X(1 + \delta), \quad |\delta| \leq \epsilon$$

Przykład

Niech $X = \frac{2}{3}$:

- Jaka jest postać dwójkowa X dla t=23?
- Ile wynoszą liczby X_ i X_?
- Która z tych liczb będzie fl(X)?
- Jaki będzie błąd przybliżenia?

$$\frac{2}{3} = (0.a_1a_2...)_2 / \cdot 2$$

$$\frac{4}{3} = (a_1.a_2a_3...)_2$$

Część całkowita obu stron jest równa 1 = a_1 . Po jej odjęciu mamy

$$\frac{1}{3}=(0.a_2a_3\dots)_2$$

Powtarzając obustronne mnożenie przez 2 i ewentualne odejmowanie części całkowitej otrzymamy

$$X = \frac{2}{3} = (0.101010...)_2 = (1.010101...)_2 \times 2^{-1}$$

Dwie bliskie liczby maszynowe:

$$X_{-} = (1. \underbrace{010101...010}_{t = 23 \text{ bitów}})_{2} \times 2^{-1}$$
 $X_{+} = (1. \underbrace{010101...011}_{t \text{ bitów}})_{2} \times 2^{-1}$

Obliczmy różnice

$$X - X_{-} = (0.101010...)_{2} \times 2^{-24} = \frac{2}{3} \times 2^{-24}$$

$$X_{+} - X = X_{+} - X_{-} - (X - X_{-}) = 2^{-24} - \frac{2}{3} \times 2^{-24} = \frac{1}{3} \times 2^{-24}$$

Czyli

$$fl(X) = X_+$$

Błąd bezwględny

$$|fl(X) - X| = \frac{1}{3} \times 2^{-24}$$

Błąd względny

$$\frac{|fl(X) - X|}{|X|} = \frac{\frac{1}{3} \times 2^{-24}}{\frac{2}{3}} = 2^{-23}$$

Chcemy obliczyć

gdzie ⊙ oznacza jedno z działań arytmetycznych

Niech:

- X i Y będą liczbami maszynowymi
- mantysa wyniku jest normalizowana i zaokrąglana, tzn. wynikiem działania jest $f(X \odot Y)$

Przykład

Komputer działający na liczbach z mantysą pięciocyfrową z przedziału [0.1, 1). Niech:

$$X = 0.31426_{10} 3$$

$$Y = 0.92577_{10} 5$$

Załóżmy, że surowe wyniki umieszczane są w akumulatorze podwójnej długości (typowe w nowoczesnych komputerach):

```
X + Y = 0.9289126000_{10} 5

X - Y = -0.9226274000_{10} 5

X \times Y = 0.2909324802_{10} 8

X/Y = 0.3394579647_{10} - 2
```

Po zaokrągleniu mantys:

W dobrze zaprojektowanym komputerze:

$$fl(X \odot Y) = (X \odot Y)(1 + \delta), \quad |\delta| \leqslant \epsilon \quad \forall \odot$$

Jeśli X i Y nie są liczbami maszynowymi:

$$fl(fl(X) \odot fl(Y)) = [X(1 + \delta_1) \odot Y(1 + \delta_2)] (1 + \delta_3), \quad |\delta_i| \leq \epsilon$$

Błąd względny wyrażeń arytmetycznych

Niech X, Y i Z będą liczbami maszynowymi:

$$fl(X(Y+Z)) = [X * fl(Y+Z)] (1 + \delta_1) = [X * (Y+Z)(1 + \delta_2)] (1 + \delta_1)$$

= $X(Y+Z)(1 + \delta_1 + \delta_2 + \delta_1\delta_2) \simeq X(Y+Z)(1 + \delta_1 + \delta_2)$
= $X(Y+Z)(1 + \delta_3)$

$$|\delta_1| \leqslant \epsilon, \quad |\delta_2| \leqslant \epsilon, \quad |\delta_3| \leqslant 2\epsilon$$

Błąd względny wyrażeń arytmetycznych

Twierdzenie

Jeśli $X_0, X_1, ..., X_n$ są dodatnimi liczbami maszynowymi, to błąd względny sumy $\sum_{i=0}^n X_i$ jest równy co najwyżej

$$(1+\epsilon)^n-1\simeq n\epsilon.$$

Utrata cyfr znaczących

Przykład Niech

$$X = 0.3721478693, \quad Y = 0.3720230772$$

 $X - Y = 0.0001248121$

Utrata cyfr znaczących

Przykład

W obliczeniach z 5-cyfrowymi mantysami:

$$fl(X) = 0.37215, \quad fl(Y) = 0.37202$$

 $fl(X) - fl(Y) = 0.00013$

Różnica ma mniej cyfr znaczących w porównaniu z odjemną i odjemnikiem \Rightarrow duży błąd względny!

$$\frac{|X - Y - [fl(X) - fl(Y)]|}{x - y} \simeq 0.04$$

Utrata cyfr znaczących

Twierdzenie

Jeśli liczby maszynowe X i Y są takie, że X > Y > o oraz

$$2^{-q} \leqslant 1 - \frac{\mathsf{Y}}{\mathsf{X}} \leqslant 2^{-p}$$

(p i q są całkowite), to liczba bitów znaczących straconych przy odejmowaniu X — Y jest równa co najmniej p i co najwyżej q.

- utraty cyfr znaczących można uniknąć odpowiednio planując obliczenia!
- w szczególności należy unikać odejmowania bliskich sobie liczb

Utrata cyfr znaczących

Demo

Definicja

Algorytm numeryczny jest niestabilny, jeżeli małe błędy popełnione na jakimś etapie obliczeń rosną w następnych etapach.

Przykład Rozważmy ciąg

$$X_0 = 1$$
, $X_1 = \frac{1}{3}$, $X_{n+1} = \frac{13}{3}X_n - \frac{4}{3}X_{n-1}$, $n > 1$

Jeśli będziemy liczyć wyrazy ciągu w arytmetyce z 24-bitowymi mantysami:

```
X_0 = 1.0000000
                         (7 cyfr znaczących)
 X_1 = 0.33333333
  X_2 = 0.1111112
                         (6 cyfr znaczących)
 X_3 = 0.0370373
                         (5 cvfr znaczacych)
 X_4 = 0.0123466
                        (4 cyfr znaczących)
 X_5 = 0.0041187
                         (3 cvfr znaczacych)
 X_6 = 0.0013857
                         (2 cvfr znaczacych)
                          (1 cyfra znacząca)
 X_7 = 0.0005131
                     (brak cyfr znaczących)
 X_{\circ} = 0.0003757
                        (bład wzgledny 108)
  X_{15} = 3.657493
```

Można pokazać, że rozważany ciąg równoważny jest ciągowi o wyrazach

$$X_n = \left(\frac{1}{3}\right)^n, \quad n \geqslant 0$$

Demo

Uwarunkowanie

Uwarunkowanie to wrażliwość rozwiązania zadania na małe zmiany danych początkowych:

$$a \rightarrow a + \delta a$$

 $W(a) \rightarrow W(a + \delta a)$

Niech w będzie wektorem wyników oraz

$$\delta W = \underbrace{WN(a, \epsilon)}_{\text{wynik numeryczny}} -W(a)$$

Uwarunkowanie

Wskaźnik uwarunkowania B(a):

$$\frac{\|\delta \mathbf{w}\|}{\|\mathbf{w}\|} \leqslant B(a) \frac{\|\delta a\|}{\|a\|}$$

Uwarunkowanie

Jeśli naszym zadaniem jest policzenie funkcji:

$$f(\underbrace{x+h}_{\text{zaburzenie}}) = \underbrace{f'(\xi)h}_{\text{tw. o wart. śr.}} \simeq f'(x)h$$

Wówczas

$$\frac{f(x+h)-f(x)}{f(x)} \simeq \frac{hf'(x)}{f(x)} = \underbrace{\frac{xf'(x)}{f(x)}}_{B(x)} \left(\frac{h}{x}\right)$$

Źródła błędów w obliczeniach numerycznych

- błędy wejściowe
- błędy obcięcia
- błędy zaokrągleń

Błędy wejściowe

- dane wejściowe są wynikiem pomiarów
- skończona długość słów binarnych
- wstępne zaokrąglanie liczb niewymiernych

$$\pi=$$
 3.14 \dots

Warto wiedzieć

$$\pi = 4 * arctg(1.0)$$

Błędy obcięcia

Spowodowane użyciem przybliżonej formuły zamiast pełnej operacji matematycznej

- przejścia graniczne (np. pochodne i całki oznaczone)
- sumy nieskończone szeregów

Błędy zaokrągleń

• skończona długość słów binarnych

Metody numeryczne

Janusz Szwabiński

Wykład 2/3 - Układy równań liniowych

Plan wykładu

- 1. Układy równań liniowych
- 2. Pojęcia podstawowe
- 3. Metody dokładne
- 4. Metody iteracyjne
- 5. Układy niedookreślone
- 6. Układy nadokreślone

Układy równań liniowych

$$\mathbf{A}\vec{\mathbf{x}}=\vec{\mathbf{b}}$$

- układ może mieć nieskończenie wiele rozwiązań, jedno rozwiązanie lub nie mieć ich wcale
- warunki istnienia rozwiązań układu są znane
- istnieją też gotowe wzory na wyliczenie \vec{x} w wielu przypadkach
- numeryczne rozwiązanie może się okazać dość trudnym zadaniem

Układy równań liniowych

- jedno z ważniejszych zagadnień w ramach tego kursu
- wiele problemów fizycznych sprowadza się do rozwiązania układów równań liniowych
- w analizie numerycznej wiele algorytmów opartych jest o takie układy

Numeryczne metody rozwiązań

metody dokładne przy braku błędów zaokrągleń dają dokładne rozwiązanie po skończonej liczbie przekształceń układu wyjściowego

metody iteracyjne pozwalają na wyznaczenie zbieżnego ciągu rozwiązań przybliżonych

Normy

Definicja

Normą w przestrzeni \mathbf{R}^n nazywamy funkcję

$$\|\cdot\|: \mathbf{R}^n \to \langle \mathbf{0}, +\infty \rangle$$

o następujących własnościach:

- 1. $\|\vec{x}\| \geqslant 0$ dla każdego $x \in \mathbf{R}^n$,
- 2. $\|\alpha \vec{x}\| = |\alpha| \|\vec{x}\|$ dla każdego $\alpha \in \mathbf{R}$ i każdego $\vec{x} \in \mathbf{R}^n$,
- 3. $\|\vec{x}_1 \vec{x}_2\| \le \|\vec{x}_1\| + \|\vec{x}_2\|$ dla każdej pary $\vec{x}_1, \vec{x}_2 \in \mathbf{R}^n$ (nierówność trójkąta),
- 4. $\|\vec{x}\| = 0 \Leftrightarrow \vec{x} = 0$.

Normy wektorowe w \mathbb{R}^n

- dla $\vec{x} = [x_1, x_2, \dots, x_n]^T \in \mathbf{R}^n$ można wprowadzić wiele norm
- najczęściej stosowane w obliczeniach numerycznych:

$$\begin{aligned} \|\vec{X}\|_1 &= |X_1| + |X_2| + \dots + |X_n| \\ \|\vec{X}\|_2 &= \sqrt{X_1^2 + X_2^2 + \dots + X_n^2} \\ \|\vec{X}\|_{\infty} &= \max\{|X_1|, |X_2|, \dots, |X_n|\} \end{aligned}$$

• równoważne w tym sensie, że jeśli ciąg wektorów $\vec{x}_1, \vec{x}_2, \vec{x}_3, \dots$ dąży do wektora zerowego w jednej normie, to zbieżność zachodzi również w dowolnej innej

Normy macierzowe

Definicja

Normą macierzy **A** nazywamy

$$\|\mathbf{A}\|_{pq} = \max_{ec{x} \in \mathbf{R}^n, ec{x}
eq 0} rac{\|\mathbf{A}ec{x}\|_q}{\|ec{x}\|_p}.$$

Przy tym, jeżeli p=q, będziemy pisać $\|\mathbf{A}\|_p$.

Normy macierzowe

$$\|\mathbf{A}\|_{1} = \max_{j=1,...,n} \sum_{i=1}^{n} |a_{ij}|$$
 $\|\mathbf{A}\|_{2} = \sqrt{\lambda_{max}}$
 $\|\mathbf{A}\|_{\infty} = \max_{i=1,...,n} \sum_{j=1}^{n} |a_{ij}|$

 λ_{max} - największa wartość własna macierzy $\mathbf{A}^{\mathrm{T}}\mathbf{A}$

Normy macierzowe

Definicja

Euklidesową normą macierzy (normą Schura, normą Frobeniusza) nazywamy

$$\|\mathbf{A}\|_{E} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2}}.$$

Norma Euklidesowa spełnia warunek zgodności z $\|\cdot\|_2$, tzn.:

$$\|\mathbf{A}\vec{x}\|_{2} \leqslant \|\mathbf{A}\|_{E}\|\vec{x}\|_{2}.$$

Wyznaczniki

Definicja

Wyznacznikiem macierzy kwadratowej A,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{21} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

nazywamy liczbę

$$\det \mathbf{A} = \sum_f (-1)^{l_f} a_{1\alpha_1} a_{2\alpha_2} \dots a_{n\alpha_n},$$

gdzie \sum_f oznacza sumowanie po wszystkich permutacjach liczb naturalnych 1, 2, ..., n, a I_f to liczba inwersji w permutacji f.

Wyznaczniki

- definicja ma niewielkie znaczenie praktyczne
- możemy próbować policzyć wyznacznik z rozwinięcia Laplace'a wzdłuż i-tego wiersza lub j-tej kolumny,

$$\det \mathbf{A} = \sum_{j=1}^{n} a_{ij} A_{ij}$$

$$\det \mathbf{A} = \sum_{i=1}^{n} a_{jk} A_{jk}$$

- A_{ij} dopełnienie algebraiczne elementu a_{ij} macierzy **A**
- rozwinięcie Laplace'a wymaga n! mnożeń
- można je stosować tylko dla bardzo małych n

Macierze trójkątne

$$\mathbf{L} = \begin{pmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{pmatrix}, \quad \mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{21} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{pmatrix}.$$

- sumy, iloczyny i odwrotności macierzy trójkątnych tego samego rodzaju są znowu macierzami trójkątnymi
- łatwo wyliczyć ich wyznacznik

$$\det \mathbf{L} = l_{11}l_{22}\dots l_{nn}, \quad \det \mathbf{R} = r_{11}r_{22}\dots r_{nn}$$

Układy równań liniowych

$$a_{11}X_1 + a_{12}X_2 + \cdots + a_{1n}X_n = b_1$$

$$a_{21}X_1 + a_{22}X_2 + \cdots + a_{2n}X_n = b_2$$

$$a_{31}X_1 + a_{32}X_2 + \cdots + a_{3n}X_n = b_3$$

$$a_{41}X_1 + a_{42}X_2 + \cdots + a_{4n}X_n = b_4$$

$$\vdots$$

$$a_{m1}X_1 + a_{m2}X_2 + \cdots + a_{mn}X_n = b_m$$

Układy równań liniowych - twierdzenie Capellego

Macierz rozszerzona układu

$$\mathbf{D} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{21} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Układy równań liniowych - twierdzenie Capellego

Twierdzenie

Warunkiem koniecznym i wystarczającym rozwiązywalności dowolnego układu równań liniowych jest, aby rząd r macierzy **A** układu był równy rzędowi macierzy rozszerzonej **D**

- jeśli warunek jest spełniony, układ ma rozwiązanie zależne od n-r parametrów
- dla n = r istnieje jednoznaczne rozwiązanie

Wzory Cramera

Macierz układu jest nieosobliwa i kwadratowa:

$$X_k = \frac{\det \mathbf{A_k}}{\det \mathbf{A}}, \quad k = 1, 2, \dots, n$$

- A_k powstaje z macierzy A przez zastąpienie k-tej kolumny przez wektor b
- metoda wymaga bardzo dużego nakładu obliczeń (wyznaczniki)
- może prowadzić do dużych błędów w rozwiązaniu
- nieprzydatna w obliczeniach numerycznych

Analiza zaburzeń

- obliczenia na komputerach nie są dokładne
- · rozwiązanie układu równań obarczone pewnym błędem
- wynik niedokładnego działania w arytmetyce zmiennopozycyjnej możemy przedstawić jako wynik działania nieobarczonego błędami wykonanego na zaburzonych argumentach (interpretacja Wilkinsona)

Analiza zaburzeń

- ullet zastępujemy macierz $oldsymbol{A}$ macierzą zaburzoną $oldsymbol{A}+\delta oldsymbol{A}$
- podobnie, $\vec{b} \rightarrow \vec{b} + \delta \vec{b}$
- zamiast rozwiązania \vec{x} układu $\mathbf{A}\vec{x}=\vec{b}$ szukamy rozwiązania $\vec{x}+\delta\vec{x}$ układu

$$(\mathbf{A} + \delta \mathbf{A})(\vec{x} + \delta \vec{x}) = \vec{b} + \delta \vec{b}$$

• błąd $\delta \vec{x}$ zależeć będzie od zaburzeń danych wejściowych $\delta \mathbf{A}$ i $\delta \vec{b}$ oraz od uwarunkowania układu

$\delta \mathbf{A} = \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} \neq \mathbf{0}$

Z równania

$$(\mathbf{A} + \delta \mathbf{A})(\vec{x} + \delta \vec{x}) = \vec{b} + \delta \vec{b}$$

otrzymamy

$$\mathbf{A}(\vec{x} + \delta \vec{x}) = \vec{b} + \delta \vec{b}$$

$$\mathbf{A}\vec{x} + \mathbf{A}\delta \vec{x} = \vec{b} + \delta \vec{b}$$

$$\mathbf{A}\delta \vec{x} = \delta \vec{b}$$

$$\delta \vec{x} = \mathbf{A}^{-1}\delta \vec{b}$$

$$\delta \mathbf{A} = \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} \neq \mathbf{0}$$

Dla dowolnych norm norm wektorów $\delta \vec{b}$ i $\delta \vec{x}$ oraz indukowanej przez nie normy macierzy \mathbf{A}^{-1} mamy

$$\|\delta \vec{\mathbf{x}}\|_{p} \leqslant \|\mathbf{A}^{-1}\|_{qp} \|\delta \vec{\mathbf{b}}\|_{q}.$$

Jeśli $\vec{x} \neq 0$, to

$$\frac{\|\delta\vec{x}\|_{p}}{\|\vec{x}\|_{p}} \leq \frac{\|\mathbf{A}^{-1}\|_{qp}}{\|\vec{x}\|_{p}} \|\delta\vec{b}\|_{q} = \frac{\|\mathbf{A}^{-1}\|_{qp}\|\vec{b}\|_{q}}{\|\vec{x}\|_{p}} \frac{\|\delta\vec{b}\|_{q}}{\|\vec{b}\|_{q}}$$

$$= \frac{\|\mathbf{A}^{-1}\|_{qp}\|\mathbf{A}\vec{x}\|_{q}}{\|\vec{x}\|_{p}} \frac{\|\delta\vec{b}\|_{q}}{\|\vec{b}\|_{q}} = \frac{\|\mathbf{A}^{-1}\|_{qp}\|\mathbf{A}\|_{pq}}{\|\vec{b}\|_{q}} \frac{\|\delta\vec{b}\|_{q}}{\|\vec{b}\|_{q}} = K_{pq} \frac{\|\delta\vec{b}\|_{q}}{\|\vec{b}\|_{q}}$$

$\delta \mathbf{A} = \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} \neq \mathbf{0}$

- wartość wskaźnika zależy od wyboru norm
- wskaźnik bliski jedności → zadanie dobrze uwarunkowane
- duży wskaźnik → zadanie źle uwarunkowane
 - nawet niewielkie zaburzenie w wektorze wyrazów wolnych jest wzmacniane i powoduje duży błąd w wyniku

$$\delta \mathbf{A} = \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} \neq \mathbf{0}$$

Przykład Rozważmy układ

$$\mathbf{A} = \begin{pmatrix} 1,2969 & 0,8648 \\ 0,2161 & 0,1441 \end{pmatrix}, \quad \mathbf{A}^{-1} = 10^8 \begin{pmatrix} 0,1441 & -0,8648 \\ -0,2161 & 1,2969 \end{pmatrix}$$

$\delta \mathbf{A} = \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} \neq \mathbf{0}$

Mamy

$$\|\mathbf{A}\|_{\infty} = 2,1617, \|\mathbf{A}^{-1}\|_{\infty} = 1,513 * 10^{8}$$

oraz

$$K = \|\mathbf{A}^{-1}\|_{\infty} \|\mathbf{A}\|_{\infty} \approx 3,3 * 10^{8}$$

- wskaźnik uwarunkowania ≫ 1
- przy rozwiązaniu układu w najgorszym wypadku możemy utracić 8 miejsc istotnych dokładności
- bardzo złe uwarunkowanie

Wskaźnik uwarunkowania w praktyce

- w przypadku dużych macierzy wyliczenie wskaźnika może być czasochłonne
- w praktyce często jako kryterium uwarunkowania stosuje się porównanie wartości wyznacznika macierzy A z jej elementami
- jeżeli jest on dużo mniejszy niż najmniejszy element macierzy, wówczas zadanie jest na ogół <u>źle uwarunkowane</u>

$\delta \mathbf{A} \neq \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} = \mathbf{0}$

Z równania macierzowego wynika

$$\delta \vec{\mathbf{x}} = -\mathbf{A}^{-1} \delta \mathbf{A} (\vec{\mathbf{x}} + \delta \vec{\mathbf{x}})$$

Wówczas

$$\|\delta \vec{\mathbf{x}}\| \leqslant \|\mathbf{A}^{-1}\| \|\delta \mathbf{A}\| \|\vec{\mathbf{x}} + \delta \vec{\mathbf{x}}\|$$

czyli

$$\frac{\|\delta\vec{\mathbf{x}}\|}{\|\vec{\mathbf{x}} + \delta\vec{\mathbf{x}}\|} \leqslant \|\mathbf{A}^{-1}\| \|\delta\mathbf{A}\| = K \frac{\|\delta\mathbf{A}\|}{\|\mathbf{A}\|}$$

$\delta \mathbf{A} \neq \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} \neq \mathbf{0}$

- nawet, jeżeli $\bf A$ i $\vec b$ są znane dokładnie, zwykle nie będą miały dokładnej reprezentacji maszynowej
- najczęściej będziemy mieli do czynienia z sytuacją $\delta {\bf A} \neq {\bf 0}$ i $\delta {\bf \vec{b}} \neq {\bf 0}$

$\delta \mathbf{A} \neq \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} \neq \mathbf{0}$

Załóżmy, że zaburzenie $\delta {\bf A}$ jest na tyle małe, że macierz ${\bf A} + \delta {\bf A}$ pozostaje nieosobliwa. Wówczas otrzymamy

$$\delta \vec{\mathbf{x}} = -\mathbf{A}^{-1} \left(\delta \vec{\mathbf{b}} - \delta \mathbf{A} \vec{\mathbf{x}} - \delta \mathbf{A} \delta \vec{\mathbf{x}} \right)$$

$$\|\delta \vec{\mathbf{x}}\| \le \|\mathbf{A}^{-1}\| \left(\|\delta \vec{\mathbf{b}}\| + \|\delta \mathbf{A}\| \|\vec{\mathbf{x}}\| + \|\delta \mathbf{A}\| \|\delta \vec{\mathbf{x}}\| \right)$$

czyli

$$\|\delta \vec{\mathbf{x}}\| \leqslant \frac{1}{1 - \|\mathbf{A}^{-1}\| \|\delta \mathbf{A}\|} \|\mathbf{A}^{-1}\| \left(\|\delta \vec{\mathbf{b}}\| + \|\delta \mathbf{A}\| \|\vec{\mathbf{x}}\| \right)$$

$\delta \mathbf{A} \neq \mathbf{0} \mathbf{i} \delta \vec{\mathbf{b}} \neq \mathbf{0}$

Z równości $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ wynika

$$\frac{\|\vec{b}\|}{\|\vec{x}\|\|\mathbf{A}\|} \leqslant 1$$

Ostatecznie

$$\frac{\|\delta\vec{x}\|}{\|\vec{x}\|} \leqslant \frac{1}{1 - \|\mathbf{A}^{-1}\| \|\delta\mathbf{A}\|} \|\mathbf{A}^{-1}\| \|\mathbf{A}\| \left(\frac{\|\delta\vec{b}\|}{\|\vec{b}\|} \frac{\|\vec{b}\|}{\|\vec{x}\| \|\mathbf{A}\|} + \frac{\|\delta\mathbf{A}\|}{\|\mathbf{A}\|} \right)
\leqslant \frac{K}{1 - \|\mathbf{A}^{-1}\| \|\delta\mathbf{A}\|} \left(\frac{\|\delta\vec{b}\|}{\|\vec{b}\|} + \frac{\|\delta\mathbf{A}\|}{\|\mathbf{A}\|} \right)$$

Układy z macierzami trójkątnymi

- szczególnie łatwe do rozwiązania
- aby istniało jednoznaczne rozwiązanie, macierz musi być nieosobliwa...
- ...czyli wszystkie elementy na głównej przekątnej muszą być różne od zera

$$a_{11}X_1 + a_{12}X_2 + \cdots + a_{1n}X_n = b_1$$

 $a_{22}X_2 + \cdots + a_{2n}X_n = b_2$
 \vdots
 $a_{nn}X_n = b_n$

Podstawianie w tył

- wstawiając x_n do przedostatniego równania obliczymy x_{n-1}
- procedurę kontynuujemy aż do wyliczenia x_1

$$x_n = \frac{b_n}{a_{nn}},$$

 $x_i = \frac{b_i - \sum_{k=i+1}^n a_{ik} x_k}{a_{ii}}, i = n-1, n-2, ..., 1$

koszt obliczeń:

$$M = \frac{1}{2}n^2 + \frac{1}{2}n$$
 mnożeń i dzieleń, $D = \frac{1}{2}n^2 - \frac{1}{2}n$ dodawań

• niewiele większy od kosztu mnożenia wektora przez macierz trójkątną

Podstawianie w przód

$$a_{11}X_1 = b_1$$

$$a_{21}X_1 + a_{22}X_2 = b_2$$

$$\vdots$$

$$a_{n1}X_1 + a_{n2}X_2 + \cdots + a_{nn}X_n = b_n$$

• wstawiając x_1 do drugiego równania obliczymy x_2 itd.

$$x_1 = \frac{b_1}{a_{11}}, \ \ x_i = \frac{b_i - \sum_{k=1}^{i-1} a_{ik} x_k}{a_{ii}}, \ i = 2, 3, \dots, n$$

• koszt obliczeń ten sam, co poprzednio

Jak rozwiązać dowolny układ?

- 1. Sprowadź układ wyjściowy do postaci trójkątnej
- 2. Zastosuj wzory na podstawianie w tył lub w przód

Eliminacja Gaussa

- jedna z metod sprowadzenia układu równań do postaci trójkątnej
- nazwana na cześć Carla Friedricha Gaussa
- po raz pierwszy zaprezentowana została dużo wcześniej, bo już około 150 roku p.n.e w słynnym chińskim podręczniku matematyki "Dziewięć rozdziałów sztuki matematycznej"

Eliminacja Gaussa - algorytm

$$a_{11}X_1 + a_{12}X_2 + a_{13}X_3 = b_1$$

 $a_{21}X_1 + a_{22}X_2 + a_{23}X_3 = b_2$
 $a_{31}X_1 + a_{32}X_2 + a_{33}X_3 = b_3$

Odejmujemy od drugiego wiersza pierwszy pomnożony przez a_{21}/a_{11} , a od trzeciego pierwszy pomnożony przez a_{31}/a_{11}

$$a_{11}^{(0)} X_1 + a_{12}^{(0)} X_2 + a_{13}^{(0)} X_3 = b_1^{(0)}$$
 $a_{22}^{(1)} X_2 + a_{23}^{(1)} X_3 = b_2^{(1)}$
 $a_{32}^{(1)} X_2 + a_{33}^{(1)} X_3 = b_3^{(1)}$

Eliminacja Gaussa - algorytm

Przy tym

$$a_{ii}^{(0)} = a_{ij}, \ b_i^{(0)} = b_i, \ i,j = 1,2,3$$

oraz

$$a_{ij}^{(1)} = a_{ij}^{(0)} - \frac{a_{i1}^{(0)}}{a_{11}^{(0)}} a_{1j}^{(0)}, \ b_i^{(1)} = b_i^{(0)} - \frac{a_{i1}^{(0)}}{a_{11}^{(0)}} b_1^{(0)}, \ i,j = 2,3$$

Eliminacja Gaussa - algorytm

Odejmujemy od trzeciego równania drugie pomnożone przez $a_{32}^{(1)}/a_{22}^{(1)}$

$$a_{11}^{(0)} x_1 + a_{12}^{(0)} x_2 + a_{13}^{(0)} x_3 = b_1^{(0)}$$
 $a_{22}^{(1)} x_2 + a_{23}^{(1)} x_3 = b_2^{(1)}$
 $a_{33}^{(2)} x_3 = b_3^{(2)}$

$$a_{ij}^{(2)} = a_{ij}^{(1)} - \frac{a_{i2}^{(1)}}{a_{2j}^{(1)}} a_{2j}^{(1)}, \ b_i^{(2)} = b_i^{(1)} - \frac{a_{i2}^{(1)}}{a_{22}^{(1)}} b_2^{(1)}, \ i,j = 3$$

Eliminacja Gaussa - przypadek ogólny

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} a_{kj}^{(k-1)}, \quad i, j = k+1, k+2, \ldots, n,$$

$$b_i^{(k)} = b_i^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} b_k^{(k-1)}, \quad i, j = k+1, k+2, \ldots, n.$$

- otrzymaliśmy układ trójkątny
- jego rozwiązanie ma postać

$$x_i = \frac{b_i^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} x_j}{a_{ii}^{(i-1)}}, i = n, n-1, \ldots, 1$$

Eliminacja Gaussa - przypadek ogólny

nakład obliczeń to

$$M=rac{1}{3}n^3+n^2-rac{1}{3}$$
 mnożeń i dzieleń $D=rac{1}{3}n^3+rac{1}{2}n^2-rac{5}{6}n$ dodawań

- większa część przypada na sprowadzenie układu do postaci trójkątnej
- liczba operacji bez porównania mniejsza niż w przypadku wzorów Cramera

Niezawodność eliminacji Gaussa

Przykład

$$\begin{pmatrix} 0 & 2 & 2 \\ 3 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

- macierz jest nieosobliwa, a zatem istnieje jednoznaczne rozwiązanie
- mimo to eliminacja Gaussa zawodzi już w pierwszym kroku
- ullet algorytm wymaga dzielenia przez a_{11} , które tutaj jest równe o
 - ⇒ eliminacja Gaussa w formie przedstawionej powyżej nie jest niezawodna

Definicja

Elementem podstawowym nazywamy ten element macierzy **A**, za pomocą którego dokonujemy eliminacji zmiennej z dalszych równań.

- rozwiązanie równania nie zmieni się, jeżeli zamienimy kolejność wierszy w układzie równań
- możemy to wykorzystać, aby uniknąć problemów związanych z dzieleniem przez zero

$$\begin{pmatrix} 0 & 2 & 2 \\ 3 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

Rozważmy macierz rozszerzoną (z położeniem wierszy):

$$\begin{pmatrix}
0 & 2 & 2 & 1 \\
3 & 3 & 0 & 3 \\
1 & 0 & 1 & 2
\end{pmatrix}
: W1
: W2
: W3$$

Zamieniamy wiersze w macierzy układu, tak aby nowy element diagonalny w jej pierwszym wierszu był różny od zera:

$$\begin{pmatrix}
3 & 3 & 0 & 3 \\
0 & 2 & 2 & 1 \\
1 & 0 & 1 & 2
\end{pmatrix}
: W1^{(1)}
: W2^{(1)}
: W3^{(1)}$$

Po zamianie wierszy możemy wykonać pierwszy krok eliminacji Gaussa

W kolejnym kroku nie musimy zamieniać wierszy ze sobą:

Końcowe rozwiązanie znajdziemy podstawiając w tył

$$x_3 = \frac{b_3^{(3)}}{a_{33}^{(3)}} = \frac{3}{4}, \quad x_2 = \frac{b_2^{(3)} - a_{23}^{(3)} x_3}{a_{22}^{(3)}} = -\frac{1}{4}, \quad x_1 = \frac{b_1^{(3)} - a_{12}^{(3)} x_2 - a_{13}^{(3)} x_3}{a_{11}^{(3)}} = \frac{5}{4}$$

- teoretycznie możemy dowolnie dobierać wiersze do zamiany
- ze względu na błędy zaokrągleń w *i*-tym kroku eliminacji powinniśmy wybierać wiersz, który ma największy element w *i*-tej kolumnie
- częściowy wybór elementu podstawowego zalecany jest również dla układów, których macierze nie mają zerowych elementów na głównej przekątnej, ponieważ w większości przypadków prowadzi do redukcji błędów zaokrągleń

Częściowy wybór elementu podstawowego - ograniczenia

- nie zawsze prowadzi do poprawy dokładności obliczeń
- odpowiedni wybór jest sprawą delikatną
- czasami warto przeprowadzić równoważenie układu
- ostatecznie można zmienić strategię wyboru z częściowego na całkowity
 - bierzemy pod uwagę wartości elementów w *i*-tej kolumnie i w *i*-tym wierszu
 - duży nakład obliczeń

$$\begin{pmatrix} 10^{-15} & 1 \\ 1 & 10^{11} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 1 + 10^{-15} \\ 10^{11} + 1 \end{pmatrix}$$

Przy dokładnych obliczeniach eliminacja Gaussa bez wyboru elementu podstawowego da poprawne rozwiązanie

$$\begin{pmatrix} 10^{-15} & 1 & 1 + 10^{-15} \\ 1 & 10^{11} & 10^{11} + 1 \end{pmatrix} \xrightarrow{el.} \begin{pmatrix} 1 & 10^{15} & 1 + 10^{15} \\ 0 & 10^{11} - 10^{15} & 10^{11} - 10^{15} \end{pmatrix}$$

$$\xrightarrow{podstawianie} \vec{X} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Błędy zaokrągleń spowodują, że wynik będzie znacznie odbiegał od idealnego:

Lepszy wynik uzyskamy, dokonując częściowego wyboru elementu podstawowego:

$$\begin{pmatrix} 10^{-15} & 1 & 1+10^{-15} \\ 1 & 10^{11} & 10^{11}+1 \end{pmatrix} \xrightarrow{zamiana \ wierszy} \begin{pmatrix} 1 & 10^{11} & 10^{11}+1 \\ 10^{-15} & 1 & 1+10^{-15} \end{pmatrix}$$

$$\xrightarrow{eliminacja} \begin{pmatrix} 1 & 1.000e+011 & 1.000000000010000e+011 \\ 0 & 9.999e-001 & 9.99900000000001e-001 \end{pmatrix}$$

$$\xrightarrow{podstawianie} \vec{X} = \begin{pmatrix} 9.999847412109375e-001 \\ 1.000000000000000000e+000 \end{pmatrix}$$

Rozważmy układ

$$\begin{pmatrix} 10^{-14.6} & 1 \\ 1 & 10^{15} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 1 + 10^{-14.6} \\ 10^{15} + 1 \end{pmatrix}$$

Jego dokładne rozwiązanie wynosi $\vec{x}=(1,1)^{\mathrm{T}}$. Eliminacja Gaussa da poprawny wynik

$$\frac{\text{eliminacja}}{\bigcirc} \begin{pmatrix} 1 & 3.981071705534969e + 014 \\ 0 & 6.018928294465030e + 014 \\ \end{pmatrix} 3.981071705534979e + 014 \\ 6.018928294465030e + 014 \\ \end{pmatrix}$$

$$\frac{\text{podstawianie}}{X} \vec{X} = \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix}$$

Częściowy wybór elementu podstawowego "zepsuje" wynik

$$\begin{pmatrix} 10^{-14.6} & 1 & 1+10^{-14.6} \\ 1 & 10^{15} & 10^{15} + 1 \end{pmatrix}$$

$$\xrightarrow{zamiana \ wierszy} \begin{pmatrix} 1 & 10^{15} & 10^{15} + 1 \\ 10^{-14.6} & 1 & 1+10^{-14.6} \end{pmatrix}$$

$$\xrightarrow{eliminacja} \begin{pmatrix} 1 & 1.000e + 015 & 1.0000000000001e + 015 \\ 0 & -1.5118864315095819 & -1.5118864315095821 \end{pmatrix}$$

$$\xrightarrow{podstawianie} \vec{x} = \begin{pmatrix} 0.75000000000000000 \\ 1.00000000000000000 \end{pmatrix}$$

Równoważenie układu - przykład

Rozważmy układ

$$\begin{pmatrix} 1 & 10000 \\ 1 & 0,0001 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 10000 \\ 1 \end{pmatrix}$$

Układ ten ma rozwiązanie $x_1 = x_2 = 0$, 9999, poprawnie zaokrąglone do czterech cyfr dziesiętnych.

Przyjmijmy a_{11} jako element podstawowy i poszukajmy rozwiązań układu w trzycyfrowej arytmetyce zmiennopozycyjnej. Otrzymamy następujące, złe rozwiązanie

$$X_1 = 0.00, X_2 = 1.00.$$

Równoważenie układu - przykład

Pomnóżmy teraz pierwsze równanie przez 10⁻⁴

$$\begin{pmatrix} 0,0001 & 1 \\ 1 & 0,0001 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Wybierając a_{21} jako element podstawowy, otrzymamy

$$X_1 = 1.00, X_2 = 1.00,$$

co w trzycyfrowej arytmetyce jest wynikiem dobrym

Eliminacja Gaussa i macierze osobliwe - przykład

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

Po kilku krokach dojdziemy do sytuacji (sprawdzić!):

$$\left(\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Eliminacja Gaussa i macierze osobliwe - przykład

- same zera w ostatnim wierszu sygnalizują, że wyjściowa macierz była osobliwa
- nie istnieje rozwiązanie jednoznaczne
- ponieważ ostatni element wektora wyrazów wolnych jest również równy zero, rozwiązań jest nieskończenie wiele

Macierze odwrotne

wiele układów różniących się tylko wyrazem wolnym

$$\mathbf{A} \vec{x}_1 = \vec{b}_1, \ \mathbf{A} \vec{x}_2 = \vec{b}_2, \ \dots, \mathbf{A} \vec{x}_N = \vec{b}_N$$

$$\mathbf{A} \begin{pmatrix} \vec{x}_1 \vec{x}_2 \dots \vec{x}_N \end{pmatrix} = \begin{pmatrix} \vec{b}_1 \vec{b}_2 \dots \vec{b}_N \end{pmatrix}$$

$$\mathbf{A} \mathbf{X} = \mathbf{B}$$

• formalne rozwiązanie ostatniego równania macierzowego ma postać

$$\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$$

 jeżeli B będzie macierzą jednostkową, znajdziemy w ten sposób macierz odwrotną do macierzy A

Eliminacja Jordana

$$a_{11}^{(1)}X_1 + a_{12}^{(1)}X_2 + \ldots + a_{1n}^{(1)}X_n = b_1^{(1)}$$

$$a_{21}^{(1)}X_1 + a_{22}^{(1)}X_2 + \ldots + a_{2n}^{(1)}X_n = b_2^{(1)}$$

$$\vdots$$

$$a_{n1}^{(1)}X_1 + a_{n2}^{(1)}X_2 + \ldots + a_{nn}^{(1)}X_n = b_n^{(1)}$$

Dzielimy pierwsze równanie obustronnie przez $a_{11}^{(1)}$, a następnie od *i*-tego wiersza (i = 2, 3, ..., n) odejmujemy pierwszy pomnożony przez $a_{i1}^{(1)}$,

$$x_1 + a_{12}^{(2)}x_2 + \dots + a_{1n}^{(2)}x_n = b_1^{(2)}$$
 $a_{22}^{(2)}x_2 + \dots + a_{2n}^{(2)}x_n = b_2^{(2)}$
 \vdots
 $a_{n2}^{(2)}x_2 + \dots + a_{nn}^{(2)}x_n = b_n^{(2)}$

W kolejnym kroku dzielimy drugie równanie obustronnie przez $a_{22}^{(2)}$ i odejmujemy od *i*–tego wiersza ($i=1,3,4,\ldots,n$) wiersz drugi pomnożony przez $a_{i2}^{(2)}$,

$$x_1$$
 + ... + $a_{1n}^{(3)}x_n$ = $b_1^{(3)}$
 x_2 + ... + $a_{2n}^{(3)}x_n$ = $b_2^{(3)}$
 \vdots
... + $a_{nn}^{(3)}x_n$ = $b_n^{(3)}$

Po (n-1) eliminacjach otrzymujemy układ

$$x_1 = b_1^{(n)}$$
 $x_2 = b_2^{(n)}$
 $x_n = b_n^{(n)}$

koszt obliczeń

$$M = \frac{1}{2}n^3 + \frac{1}{2}n^2, \ D = \frac{1}{2}n^3 - \frac{1}{2}$$

- potrzebujemy wyboru elementu podstawowego w celu zagwarantowania niezawodności
- zalety:
 - oszczędne gospodarowanie pamięcią
 - możliwość określenia rozwiązania "obciętego" układu równań
- wady:
 - duży nakład obliczeń (około 1,5 raza większy niż w eliminacji Gaussa)
 - brak odpowiednika rozkładu **LU** (o tym zaraz)

Rozkład LU

 przypuśćmy, że macierz A układu da się przedstawić w postaci iloczynu macierzy trójkątnej dolnej L i trójkątnej górnej U

$$\mathbf{A} = \mathbf{L}\mathbf{U}$$

• jeżeli macierz **A** jest nieosobliwa, zachodzi

$$\mathbf{A}^{-1} = (\mathbf{L}\mathbf{U})^{-1} = \mathbf{U}^{-1}\mathbf{L}^{-1}$$

rozwiązanie układu da się przedstawić w postaci

$$ec{x} = \mathbf{A}^{-1} ec{b} = \mathbf{U}^{-1} \left(\mathbf{L}^{-1} ec{b}
ight)$$

Rozkład LU

 \Rightarrow aby znaleźć rozwiązanie \vec{x} układu dysponując rozkładem **LU** jego macierzy, wystarczy rozwiązać dwa układy trójkątne

$$\mathbf{L}\vec{\mathbf{y}} = \vec{\mathbf{b}}$$

$$\mathbf{U}\vec{\mathbf{x}} = \vec{\mathbf{y}}$$

Przekształcenie

$$\mathbf{A}^{(1)} x = b^{(1)} \rightarrow \mathbf{A}^{(2)} x = b^{(2)}$$

jest równoważne pomnożeniu obu stron układu ${\bf A}^{(1)}x=b^{(1)}$ przez macierz

$$\mathbf{L}^{(1)} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -l_{21} & 1 & 0 & \dots & 0 \\ -l_{31} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -l_{n1} & 0 & 0 & \dots & 1 \end{pmatrix}, \quad l_{i1} = \frac{a_{i1}^{(1)}}{a_{11}^{(1)}}, \quad i = 2, 3, \dots, n$$

W ten sposób otrzymujemy dwa równania:

$$\mathbf{L}^{(1)}\mathbf{A}^{(1)} = \mathbf{A}^{(2)}, \ \mathbf{L}^{(1)}b^{(1)} = b^{(2)}$$

Podobnie

$$\mathbf{L}^{(2)}\mathbf{A}^{(2)}=\mathbf{A}^{(3)},\ \mathbf{L}^{(2)}b^{(2)}=b^{(3)}$$

$$\mathbf{L}^{(2)} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & -l_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -l_{n2} & 0 & \dots & 1 \end{pmatrix}, \quad l_{i2} = \frac{a_{i2}^{(2)}}{a_{22}^{(2)}}, \quad i = 3, \dots, n$$

Ostatecznie

$$\mathbf{L}^{(n-1)}\mathbf{L}^{(n-2)}\dots\mathbf{L}^{(1)}\mathbf{A}^{(1)}=\mathbf{A}^{(n)}$$

oraz

$$\mathbf{L}^{(n-1)}\mathbf{L}^{(n-2)}\dots\mathbf{L}^{(1)}b^{(1)}=b^{(n)}$$

Macierze $\mathbf{L}^{(i)}$, $i = 1, \dots, n-1$ są nieosobliwe, więc

$$\mathbf{A}^{(1)} = (\mathbf{L}^{(1)})^{-1}(\mathbf{L}^{(2)})^{-1}\dots(\mathbf{L}^{(n)})^{-1}\mathbf{A}^{(n)}$$

Ponadto

$$(\mathbf{L}^{(1)})^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & 0 & 0 & \dots & 1 \end{pmatrix}, \quad (\mathbf{L}^{(2)})^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & l_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & l_{n2} & 0 & \dots & 1 \end{pmatrix} \dots$$

Stąd

$$\mathbf{L} \equiv (\mathbf{L}^{(1)})^{-1}(\mathbf{L}^{(2)})^{-1} \dots (\mathbf{L}^{(n)})^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{pmatrix}.$$

Z drugiej strony wiemy, że $\mathbf{A}^{(n)} = \mathbf{U}$ jest macierzą trójkątną górną.

- zapamiętując macierze L i U, możemy szybko rozwiązać wiele układów różniących się tylko kolumnami wyrazów wolnych
- w ramach oszczędności pamięci możemy zapisywać elementy tych macierzy w miejsce elementów macierzy A,

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix} \rightarrow \begin{pmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ l_{21} & u_{22} & u_{23} & \dots & u_{2n} \\ l_{31} & l_{32} & u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \dots & u_{nn} \end{pmatrix}$$

- nie każdą macierz nieosobliwą można przedstawić w postaci
- aby rozkład istniał, wszystkie minory główne macierzy muszą być różne od zera
- jeżeli eliminację Gaussa można przeprowadzić do końca, rozkład LU na pewno istnieje

Rozkład LU a wybór elementu podstawowego

Jeżeli eliminacja Gaussa wymaga zamiany wierszy, wówczas zamiast rozkładu LU macierzy **A** znajdziemy rozkład permutacji jej wierszy

$$PA = LU$$

Znaczenie macierzy permutacji **P** ilustruje następujący przykład:

$$\mathbf{PA} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{31} & a_{32} & a_{33} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

Rozkład LU a wybór elementu podstawowego

Macierz permutacji ma następującą własność:

$$\mathbf{P}^{\mathrm{T}}\mathbf{P} = \mathbf{I} \ \Rightarrow \ \mathbf{P}^{\mathrm{T}} = \mathbf{P}^{-1}$$

Stąd wynika

$$\mathbf{A} = \mathbf{P}^{\mathrm{T}}\mathbf{L}\mathbf{U}$$

Potraktujmy równość

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$$

jako układ n^2 równań dla n^2 niewiadomych l_{ij} i u_{ij}

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{pmatrix}$$

Stąd

$$u_{11} = a_{11}, \quad u_{12} = a_{12}, \qquad u_{13} = a_{13}$$
 $l_{21} = \frac{a_{21}}{u_{11}}, \quad u_{22} = a_{21} - l_{21}u_{12}, \quad u_{23} = a_{23} - l_{21}u_{13}$ $l_{31} = \frac{a_{31}}{u_{12}}, \quad l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{23}} \qquad u_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23}$

 w przypadku ogólnym elementy macierzy L i U obliczamy dla i = 1,2,...,n ze wzorów

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, \quad j = i, i+1, \dots, n$$

$$l_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki}}{u_{ii}}, \quad j = i+1, i+2, \dots, n$$

koszt obliczeń (łącznie z rozw. układów trójkątnych)

$$M = \frac{1}{3}n^3 + n^2 - \frac{1}{3}n, \ D = \frac{1}{3}n^3 + \frac{1}{3}n^2 - \frac{5}{6}n$$

- koszt taki sam, jak w eliminacji Gaussa
- niezawodna w połączeniu z wyborem elementu podstawowego
- ullet wiersze zamieniamy ze sobą miejscami tak, aby element u_{ii} był jak największy

Chcemy wyznaczyć rozkład LU macierzy

metodą Doolittle'a z częściowym wyborem elementu podstawowego. W tym celu wprowadzamy dodatkową kolumnę indeksującą wiersze

$$\begin{pmatrix}
20 & 31 & 23 \\
30 & 24 & 18 \\
15 & 32 & 21
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}$$

Element podstawowy wybieramy tak, aby element u_{ii} występujący we wzorach ogólnych miał jak największą wartość.

Dla i=1 w zależności od tego, czy na pierwszym miejscu ustawimy wiersz pierwszy, drugi czy trzeci, uzyskamy odpowiednio $u_{11}=20$, $u_{11}=30$ oraz $u_{11}=15$.

Zamieniamy miejscami wiersz pierwszy z drugim

$$\begin{pmatrix}
30 & 24 & 18 \\
20 & 31 & 23 \\
15 & 32 & 21
\end{pmatrix}
\begin{pmatrix}
2 \\
1 \\
3
\end{pmatrix}$$

Otrzymamy

$$u_{11}=30, \quad u_{12}=a_{21}=24, \quad u_{13}=a_{13}=18$$
 $l_{21}=\frac{2}{3}, \qquad l_{31}=\frac{1}{2}$

Wartości te wpisujemy do macierzy A

$$\begin{pmatrix}
30 & 24 & 18 \\
\frac{2}{3} & 31 & 23 \\
\frac{1}{2} & 32 & 21
\end{pmatrix}
\begin{pmatrix}
2 \\
1 \\
3
\end{pmatrix}$$

Dla i = 2 otrzymamy

$$u_{22} = a_{22} - a_{21}a_{12} = 31 - \frac{2}{3} * 24 = 15$$

lub

$$u_{22} = a_{32} - a_{31}a_{12} = 32 - \frac{1}{2} * 24 = 20$$

w zależności od tego, czy na drugim miejscu ustawimy wiersz drugi czy trzeci.

Zamieniamy wiersze miejscami

$$\begin{pmatrix}
30 & 24 & 18 \\
\frac{1}{2} & 32 & 21 \\
\frac{2}{3} & 31 & 23
\end{pmatrix}
\begin{pmatrix}
2 \\
3 \\
1
\end{pmatrix}$$

Znajdujemy

$$u_{22} = 20$$
, $u_{23} = a_{23} - a_{21}a_{13} = 12$, $u_{32} = \frac{15}{20}$

Uzyskane wartości wpisujemy do macierzy

$$\begin{pmatrix}
30 & 24 & 18 \\
\frac{1}{2} & 20 & 12 \\
\frac{2}{3} & \frac{3}{4} & 23
\end{pmatrix}
\begin{pmatrix}
2 \\
3 \\
1
\end{pmatrix}$$

Dla i = 3 obliczamy

$$u_{33} = 2.$$

Stąd

$$\begin{pmatrix}
30 & 24 & 18 \\
\frac{1}{2} & 20 & 12 \\
\frac{2}{3} & \frac{3}{4} & 2
\end{pmatrix}
\begin{pmatrix}
2 \\
3 \\
1
\end{pmatrix}$$

W ten sposób w miejsce macierzy **A** otrzymaliśmy rozkład **LU** macierzy, która składa się z wierszy 2, 3 i 1 macierzy wyjściowej **A**.

Rozkład LU i metoda Crouta

Przyjmujemy dla odmiany, że **U** ma na głównej przekątnej same jedynki

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{pmatrix}$$

i ponownie potraktujemy powyższe wyrażenie jak równanie na niewiadome elementy macierzy trójkątnych.

Rozkład LU i wyznaczniki

$$\det \mathbf{A} = \det(\mathbf{L}\mathbf{U}) = \det \mathbf{L} \det \mathbf{U} = \begin{cases} u_{11}u_{22}\dots u_{nn}, & l_{ii} = 1 \\ l_{11}l_{22}\dots l_{nn}, & u_{ii} = 1 \end{cases}$$

Macierze dominujące diagonalnie

Definicja

Macierz kwadratową A nazywamy diagonalnie dominującą, jeżeli

$$|a_{ii}| \geqslant \sum_{\substack{k=1 \ k \neq i}}^{n} |a_{ik}|, \quad i = 1, 2, \dots, n$$

Jeżeli nierówności są ostre, mówimy o macierzy silnie diagonalnie dominującej.

Macierze dominujące diagonalnie

Definicja

Macierz ${\bf A}$ jest diagonalnie dominująca kolumnowo, jeżeli ${\bf A}^{\rm T}$ jest diagonalnie dominująca, tzn.

$$|a_{ii}|\geqslant \sum_{\substack{k=1\k\neq i}}^n |a_{ki}|, \quad i=1,2,\ldots,n$$

Macierze dominujące diagonalnie

Twierdzenie

Jeżeli macierz **A** jest nieosobliwa i diagonalnie dominująca kolumnowo, to przy eliminacji metodą Gaussa nie ma potrzeby przestawiania wierszy.

Macierze trójdiagonalne

Rozkład LU macierzy trójdiagonalnej

$$\mathbf{L} = \begin{pmatrix} 1 & & & 0 \\ l_2 & \ddots & & \\ & \ddots & \ddots & \\ 0 & l_n & 1 \end{pmatrix}, \quad \mathbf{U} = \begin{pmatrix} u_1 & c_1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & c_{n-1} \\ 0 & & u_n \end{pmatrix}$$
$$u_1 = b_1, \quad l_i = \frac{a_i}{u_{i-1}}, \quad u_i = b_i - l_i c_{i-1}, \quad i = 2, 3, \dots, n$$

- rozkład wymaga O(n) operacji
- metoda niezawodna, jeśli **T** jest diagonalnie dominująca kolumnowo

Błędy zaokrągleń

• macierze **L** i **U** spełniają warunek

$$\mathbf{L}\mathbf{U} = \mathbf{A} + \mathbf{E}$$

E - błąd rozkładu

• \vec{y} i \vec{x} możemy potraktować jako dokładne rozwiązania układów

$$(\mathbf{L} + \delta \mathbf{L}) \vec{\mathbf{y}} = \vec{\mathbf{b}}$$

$$(\mathbf{U} + \delta \mathbf{U}) \vec{\mathbf{x}} = \vec{\mathbf{y}}$$

Błędy zaokrągleń

Stąd

$$(\mathbf{A} + \mathbf{E} + \mathbf{L}\delta\mathbf{U} + \delta\mathbf{L}\mathbf{U} + \delta\mathbf{L}\delta\mathbf{U})\vec{\mathbf{x}} = \vec{\mathbf{b}}$$

Można pokazać, że zaburzenie

$$\delta \mathbf{A} = \mathbf{E} + \mathbf{L}\delta \mathbf{U} + \delta \mathbf{L}\mathbf{U} + \delta \mathbf{L}\delta \mathbf{U}$$

ma oszacowanie

$$\frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} \leqslant \epsilon \left(\frac{9}{2}n^3 + \frac{61}{2}n^2 - 18n - 16\right) + O(\epsilon)$$

gdzie ϵ to dokładność maszynowa. Stąd wynika

$$\frac{\|\delta \vec{x}\|}{\|\vec{x}\|} \leqslant \frac{\alpha}{1-\alpha}, \quad \alpha = \epsilon KO(\frac{9}{2}n^3)$$

Inne rozkłady macierzy

- rozkład LU nie jest jedynym przydatnym rozkładem macierzy
- do innych często stosowanych rozkładów należą
 - rozkład Cholesky'ego (Banachiewicza)
 - rozkład SVD
 - rozkład QR

Rozkład Cholesky'ego (Banachiewicza)

Jeżeli macierz układu jest macierzą symetryczną, tzn.

$$a_{ij}=a_{ji}, i,j=1,\ldots,n$$

i dodatnio określoną

$$\vec{x}^{\mathrm{T}}\mathbf{A}\vec{x}>\mathsf{o}\;\;\mathsf{dla}\;\mathsf{każdego}\;\vec{x}$$

to istnieje dla niej bardziej wydajny od LU rozkład na macierze trójkątne

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$$

gdzie L to macierz trójkątna dolna

Rozkład Cholesky'ego (Banachiewicza)

Traktując ostatnie równanie jako układ równań ze względu na elementy macierzy **L**, znajdziemy:

$$l_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} l_{ik}^{2}\right)^{1/2}$$

$$l_{ji} = \frac{1}{l_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} l_{jk}\right), \quad j = i+1, i+2, \dots, n$$

- liczba operacji o połowę mniejsza od LU
- niezawodność (metoda nie wymaga wyboru elementu podstawowego)
- stabilność numeryczna

Rozkład SVD (ang. Singular Value Decomposition)

Twierdzenie

Każdą macierz $\mathbf{A} \in \mathbf{R}^{m \times n}$ rzędu r możemy przedstawić jako

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}, \ \ \mathbf{\Sigma} = \left(egin{array}{cc} \mathbf{\Sigma}_{1} & \mathbf{o} \\ \mathbf{o} & \mathbf{o} \end{array}
ight) \in \mathbf{R}^{m imes n}, \ \ \mathbf{\Sigma}_{1} = \mathrm{diag}\left(\sigma_{1}, \ldots, \sigma_{r}
ight),$$

gdzie $\mathbf{U} \in \mathbf{R}^{m \times m}$ i $\mathbf{V} \in \mathbf{R}^{n \times n}$ są macierzami ortogonalnymi, a $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$. Elementy σ_i macierzy Σ nazywane są wartościami osobliwymi macierzy \mathbf{A} .

Szkic algorytmu rozkładu SVD

Krok 1 przekształcamy A do postaci

$$\mathbf{A} = \mathbf{Q}\mathbf{C}\mathbf{H}^{\mathrm{T}}$$

gdzie **C** to macierz dwudiagonalna, a **Q** i **H** są iloczynami macierzy odpowiadających transformacji Householdera Krok 2 nadajemy macierzy **C** postać diagonalną.

$$\mathbf{C} = \mathbf{U}' \mathbf{\Sigma}' \mathbf{V}'^{\mathrm{T}}$$

gdzie **U**′ i **V**′ opisują transformację Givensa

Krok 3 porządkujemy elementy diagonalne macierzami ortogonalnymi **U**" i **V**", wyrażającymi się poprzez iloczyny macierzy permutacji

$$\boldsymbol{\Sigma} = \boldsymbol{U}''^{\mathrm{T}}\boldsymbol{\Sigma}'\boldsymbol{V}''$$

Szkic algorytmu rozkładu SVD

Macierze **U** i **V** rozkładu SVD to po prostu

$$U = QU'U'', V = HV'V''$$

Zastosowania

- do przybliżonych rozwiązań układów z macierzami osobliwymi albo prawie osobliwymi
- do układów niedookreślonych i nadokreślonych
- numeryczny rząd macierzy
- wskaźnik uwarunkowania macierzy

Rozkład QR

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

 $\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{1}, \;\; \mathbf{R} - \mathsf{macierz} \; \mathsf{tr\'ojkatna} \; \mathsf{g\'orna}$

Do wyznaczenia tego rozkładu stosuje się zmodyfikowaną metodę Grama-Schmidta. Polega ona na obliczeniu ciągu macierzy

$$\mathbf{A} = \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(n+1)} = \mathbf{Q},$$

gdzie $\mathbf{A}^{(k)}$ ma postać

$$\mathbf{A}^{(k)} = \left(ec{q}_1, \ldots, ec{q}_{k-1}, ec{a}_k^{(k)}, \ldots, ec{a}_n^{(k)}
ight).$$

Kolumny $\vec{q}_1, ..., \vec{q}_{k-1}$ są k-1 początkowymi kolumnami macierzy **Q**, a kolumny $\vec{a}_k^{(k)}, ..., \vec{a}_n^{(k)}$ powinny być ortogonalne do $\vec{q}_1, ..., \vec{q}_{k-1}$.

Rozkład QR

Ortogonalność w k-tym kroku kolumn od k+1 do n względem \vec{q}_k zapewnia się w następujący sposób:

$$\vec{q}_k = \vec{a}_k^{(k)}, \ d_k = \vec{q}_k^{\mathrm{T}} \vec{q}_k, \ r_{kk} = 1, \ \vec{a}_j^{k+1} = \vec{a}_j^{(k)} - r_{jk} \vec{q}_k$$
 $r_{jk} = \frac{\vec{q}_k^{\mathrm{T}} \vec{a}_j^{(k)}}{d_k}, \ j = k+1, \ldots, n$

Po n krokach ($k=1,\ldots,n$) otrzymamy macierze $\mathbf{Q}=\left(\vec{q}_1,\ldots,\vec{q}_n\right)$ i $\mathbf{R}=\left(r_{kj}\right)$ o pożądanych własnościach.

Iteracyjne poprawianie rozwiązań

- rozwiązanie układu równań $\mathbf{A}\vec{x} = \vec{b}$ dowolną metodą bezpośrednią będzie zwykle obarczone pewnym błędem
- błąd ten możemy wykryć, sprawdzając, jak bardzo tzw. wektor reszt

$$\vec{r} = \vec{b} - \mathbf{A}\vec{x}$$

różni się od zera

• powinniśmy przy tym liczyć \vec{r} z dokładnością większą niż dokładność uzyskanego rozwiązania

Układ

$$\left(\begin{array}{ccc} 0,99 & 0,70 \\ 0,70 & 0,50 \end{array} \right) \vec{x} = \left(\begin{array}{c} 0,54 \\ 0,36 \end{array} \right)$$

ma rozwiązanie dokładne

$$\vec{\mathsf{x}}_{dok} = \left(\begin{array}{c} \mathsf{o}, \mathsf{80} \\ -\mathsf{o}, \mathsf{36} \end{array} \right)$$

Obliczmy najpierw \vec{r} w arytmetyce zmiennopozycyjnej o dwóch miejscach dziesiętnych w mantysie, dokonując zaokrągleń

$$\vec{r}(\vec{x}_{dok}) = \begin{pmatrix} 0.54 \\ 0.36 \end{pmatrix} - \begin{pmatrix} 0.99 & 0.70 \\ 0.70 & 0.50 \end{pmatrix} \begin{pmatrix} 0.80 \\ -0.36 \end{pmatrix}$$
$$= \begin{pmatrix} 0.54 - 0.79 + 0.25 \\ 0.38 - 0.56 + 0.18 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Nie możemy jednak wnioskować stąd, że \vec{x}_{dok} jest dokładnym rozwiązaniem równania.

Dla

$$\vec{X}_1 = \left(\begin{array}{c} 0,02\\0,74 \end{array}\right)$$

mamy również

$$\vec{r}(\vec{x}_1) = \begin{pmatrix} 0.54 \\ 0.36 \end{pmatrix} - \begin{pmatrix} 0.99 & 0.70 \\ 0.70 & 0.50 \end{pmatrix} \begin{pmatrix} 0.02 \\ 0.74 \end{pmatrix}$$
$$= \begin{pmatrix} 0.54 - 0.02 - 0.52 \\ 0.38 - 0.01 - 0.37 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 \vec{x}_1 rozwiązaniem równania nie jest i różni się dość sporo od rozwiązania dokładnego,

$$\|\vec{X}_{dok} - \vec{X}_1\|_{\infty} = 1, 1$$

Policzmy teraz wektory reszt z większą liczbą miejsc dziesiętnych w mantysie. Otrzymamy

$$\vec{r}(\vec{x}_{dok}) = \begin{pmatrix} 0.54 \\ 0.36 \end{pmatrix} - \begin{pmatrix} 0.99 & 0.70 \\ 0.70 & 0.50 \end{pmatrix} \begin{pmatrix} 0.80 \\ -0.36 \end{pmatrix}$$
$$= \begin{pmatrix} 0.54 - 0.792 + 0.252 \\ 0.38 - 0.56 + 0.18 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

oraz

$$\vec{r}(\vec{x}_1) = \begin{pmatrix} 0.54 \\ 0.36 \end{pmatrix} - \begin{pmatrix} 0.99 & 0.70 \\ 0.70 & 0.50 \end{pmatrix} \begin{pmatrix} 0.02 \\ 0.74 \end{pmatrix}$$
$$= \begin{pmatrix} 0.54 - 0.0198 - 0.518 \\ 0.38 - 0.014 - 0.37 \end{pmatrix} = \begin{pmatrix} 0.0022 \\ -0.004 \end{pmatrix}$$

Dopiero teraz widać, że \vec{x}_{dok} jest rozwiązaniem naszego układu równań, natomiast \vec{x}_1 nim nie jest.

Pierwsza poprawka rozwiązania

Szukamy poprawki $\delta \vec{x}$ takiej, że

$$\vec{\mathbf{x}} + \delta \vec{\mathbf{x}} = \vec{\mathbf{x}}_{dok}$$

Ponieważ zachodzi

$$\vec{r} = \vec{b} - \mathbf{A}\vec{x} = \mathbf{A}\vec{x}_{dok} - \mathbf{A}\vec{x} = \mathbf{A}(\vec{x}_{dok} - \vec{x}) = \mathbf{A}\delta\vec{x}$$

wystarczy, że rozwiążemy układ

$$\vec{r} = \mathbf{A}\delta\vec{\mathbf{x}}$$

- łatwe, jeżeli dysponujemy już rozkładem LU macierzy A
- wymaga n² mnożeń i n² n dodawań

Dalsze poprawki

- w rzeczywistych obliczeniach numerycznych nie potrafimy liczyć dokładnie
- ullet zamiast poprawki $\delta ec{x}$ znajdziemy tylko poprawkę przybliżoną

$$\delta \vec{\mathbf{x}} + \delta (\delta \vec{\mathbf{x}})$$

• do ulepszonego rozwiązania $\vec{x} + \delta \vec{x}$ możemy znaleźć kolejną poprawkę

Przepis praktyczny

- 1. rozwiąż układ równań $\mathbf{A} \vec{\mathbf{x}}^{(1)} = \vec{b}$ stosując rozkład LU macierzy \mathbf{A}
- 2. oblicz wektor reszt $\vec{r}^{(1)} = \vec{b} \mathbf{A}\vec{x}^{(1)}$ (w podwójnej precyzji)
- 3. jeśli $\|\vec{r}^{(1)}\|_{\infty} \leq \|\mathbf{A}\vec{x}^{(1)}\|_{\infty} u$ (lub $\|\vec{r}^{(1)}\|_{\infty} \leq \|\vec{b}\|_{\infty} u$), gdzie u to jednostka maszynowa, przerwij obliczenia. Jeżeli nie , to ...
- 4. oblicz $\delta \vec{x}^{(1)}$ i wyznacz $\vec{x}^{(2)} = \vec{x}^{(1)} + \delta \vec{x}^{(1)}$,
- 5. oblicz $ec{r}^{(2)} = ec{b} \mathbf{A} ec{x}^{(2)}$ i przejdź ponownie do punktu 3

Przepis praktyczny

- jeżeli macierz układu jest źle uwarunkowana, może się zdarzyć, że metoda ta nie doprowadzi do rozwiązania bliższego dokładnemu
- wtedy należy jest spróbować liczyć wszystkie wielkości w podwójnej precyzji
- w pozostałych przypadkach metoda pozwala na wyznaczenie rozwiązania, którego wektor reszt jest rzędu $u\|\vec{b}\|_{\infty}$

Metody iteracyjne

- przybliżone metody rozwiązywania układów równań
- startują z pewnego przybliżenia początkowego, które jest stopniowo ulepszane aż do uzyskania dostatecznie dokładnego rozwiązania
- najczęściej stosowane do dużych układów rzadkich, tzn. takich, których macierze zawierają w większości zera

Pojęcia podstawowe

Definicja

Promieniem spektralnym $\rho(\mathbf{A})$ macierzy \mathbf{A} nazywamy liczbę

$$\rho(\mathbf{A}) = \max_{i=1,\dots,n} |\lambda_i|,$$

przy czym λ_i są wartościami własnymi macierzy **A**. Dla dowolnej normy macierzowej zgodnej z normą wektorów obowiązuje

$$|\lambda_i| \leq \|\mathbf{A}\|$$
, dla każdego $i = 1, \ldots, n$

Zatem

$$\rho(\mathbf{A}) \leqslant \|\mathbf{A}\|_{p}, \ \ p = 1, 2, \infty, E$$

Pojęcia podstawowe

Rozważmy ciąg wektorów $\vec{x}^{(0)}$, $\vec{x}^{(1)}$, ..., $\vec{x}^{(i)}$, określony dla dowolnego wektora $\vec{x}^{(0)}$ w następujący sposób:

$$\vec{x}^{(i+1)} = \mathbf{M}\vec{x}^{(i)} + \vec{w}, \ \ i = 0, 1, \dots,$$

gdzie ${\bf M}$ jest pewną macierzą kwadratową, a \vec{w} wektorem

Twierdzenie

Ciąg określony powyższym wzorem przy dowolnym wektorze $x^{(o)}$ jest zbieżny do jedynego punktu granicznego wtedy i tylko wtedy, gdy

$$\rho(\mathsf{M}) < \mathsf{1}$$

Jak konstruować metody iteracyjne?

Należy tak dobrać macierz M, aby

• ciąg

$$\vec{x}^{(i+1)} = \mathbf{M}\vec{x}^{(i)} + \vec{w}, \ \ i = 0, 1, \dots$$

był zbieżny, tzn. $\rho(\mathbf{M}) < 1$

• spełniony był warunek zgodności

$$\vec{x}_{dok} = \mathbf{M}\vec{x}_{dok} + \vec{w}$$

Jak konstruować metody iteracyjne?

Teoretycznie wystarczy wziąć dowolną macierz **M** o promieniu spektralnym mniejszym od 1, a następnie wyliczyć \vec{w} ze warunku zgodności

$$\vec{\mathbf{w}} = (\mathbf{I} - \mathbf{M})\mathbf{A}^{-1}\vec{b}$$

jednak wymagałoby to wyliczenia macierzy A-1

Jak konstruować metody iteracyjne? - inny sposób

Załóżmy, że

$$\vec{w} = N\vec{b}$$
, N - macierz kwadratowa

Z warunku zgodności mamy

$$\vec{X}_{dok} = \mathbf{M}\vec{X}_{dok} + \vec{W} \Rightarrow (\mathbf{A}^{-1} - \mathbf{N} - \mathbf{M}\mathbf{A}^{-1})\vec{b} = \mathbf{O} \Rightarrow \mathbf{M} = \mathbf{I} - \mathbf{N}\mathbf{A},$$

co prowadzi do

$$\vec{\mathbf{x}}^{(i+1)} = (\mathbf{I} - \mathbf{N}\mathbf{A})\vec{\mathbf{x}}^{(i)} + \mathbf{N}\vec{b}$$

Jak konstruować metody iteracyjne?

• rodzina iteracyjna zbieżna dla

$$ho(\mathbf{I}-\mathbf{NA})<\mathbf{1}$$

 przy pewnych szczególnych własnościach macierzy układu A stosunkowo proste metody wyboru macierzy N

Kryteria przydatności metody iteracyjnej

- liczba działań niezbędnych do wykonania
- potrzebna pamięć
- wielkość błędów zaokrągleń
- szybkość zmian wektora błędu

$$\vec{e}^{(i)} = \mathbf{x}^{(i)} - \vec{\mathbf{x}}_{dok}$$

Może się okazać, że mimo spełnionego warunku zbieżności zagadnienie jest na tyle źle uwarunkowane, że osiągnięcie zadowalającej dokładności w rozsądnym czasie jest niemożliwe.

$$\mathbf{M} = \begin{pmatrix} \frac{1}{2} & 1 & & & \\ & \frac{1}{2} & 1 & & \\ & & \frac{1}{2} & \ddots & \\ & & & \ddots & 1 \\ & & & \frac{1}{2} \end{pmatrix} , \vec{W} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ \vdots \\ -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

Mamy tutaj $\rho(\mathbf{M}) = \frac{1}{2}$, a więc dla dowolnego $\vec{x}^{(0)}$ rodzina iteracyjna dąży do $\vec{x}_{dok} = (1, \dots, 1)^{\mathrm{T}}$.

Przyjmijmy $\vec{x}^{(0)} = 0$:

$$\|\vec{e}^{(0)}\|_{\infty} = 1, \ \|\vec{e}^{(1)}\|_{\infty} = \frac{3}{2}, \ \|\vec{e}^{(2)}\|_{\infty} = \frac{9}{4}, \dots$$

Wzrost błędu w początkowych krokach iteracji może uniemożliwić numeryczne wyznaczenie rozwiązania.

Rola błędów zaokrągleń

w skrajnym przypadku mogą doprowadzić do uzyskania

$$\vec{X}^{(i+1)} = \vec{X}^{(O)}$$

- powstanie ciąg wektorów, który nie jest zbieżny do rozwiązania
- przed taką sytuacją trudno się ustrzec

Metoda Jacobiego

Zapiszmy macierz układu w postaci

$$\mathbf{A} = \mathbf{L} + \mathbf{D} + \mathbf{U}$$

gdzie macierze **L**, **D** i **U** to odpowiednio macierz poddiagonalna, diagonalna i naddiagonalna, np.

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 7 & 8 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{pmatrix} + \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{pmatrix}$$

Jako macierz **N** wybierzemy

$$\mathbf{N} = \mathbf{D}^{-1}$$

Metoda Jacobiego

Wówczas

$$egin{array}{lll} M_J &=& I - NA = I - D^{-1}A \ &=& I - D^{-1}(L + D + U) = -D^{-1}(L + U) \end{array}$$

Wzór Jacobiego na rodzinę iteracyjną wektorów będzie miał postać

$$\mathbf{D}\vec{x}^{(i+1)} = -(\mathbf{L} + \mathbf{U})\vec{x}^{(i)} + \vec{b}, \ \ i = 0, 1, 2, \dots$$

Metoda Jacobiego

Aby wzór Jacobiego był niezawodny, należy wcześniej (w razie konieczności) tak pozmieniać kolejność równań w układzie $\mathbf{A}\vec{x} = \vec{b}$, aby na diagonali macierzy układu były tylko elementy niezerowe:

- spośród kolumn z elementem zerowym na diagonali wybieramy tę, w której jest największa liczba zer
- 2. w kolumnie tej wybieramy element o największym module i tak przestawiamy wiersze, aby znalazł się on na głównej przekątnej; wiersz ustalamy i pomijamy go w dalszych rozważaniach
- 3. spośród pozostałych kolumn z elementem zerowym na diagonali wybieramy tę o największej liczbie zer i wracamy do punktu 2 aż do usunięcia wszystkich zer z głównej przekątnej

Rozważmy macierz

Najwięcej zer znajduje się w kolumnie trzeciej, a element o największym module w tej kolumnie to element a_{13} .

Zamieniamy miejscami wiersze 1 i 3, tak, aby element ten znalazł się na diagonali,

```
\left(\begin{array}{ccccc}
7 & 3 & 0 & 1 \\
2 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 5 & 0 & 0
\end{array}\right)
```

Zero na diagonali znajduje się jeszcze w kolumnie czwartej, a element o największym module w niej to a_{24} . Zamieniamy więc miejscami wiersze 2 i 4,

W ten sposób otrzymaliśmy macierz, dla której można zastosować metodę Jacobiego.

Metoda Jacobiego - niezawodności ciąg dalszy

- zamiana wierszy w macierzy gwarantuje jedynie, że będzie istniała macierz odwrotna do macierzy D
- spełnienie warunku zbieżności metody Jacobiego, tzn.

$$ho(-\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U}))<1$$

nie jest gwarantowane w każdym przypadku

 można jedynie pokazać, że jest tak zawsze, jeżeli macierz A jest silnie diagonalnie dominująca lub silnie diagonalnie dominująca kolumnowo

Metoda Gaussa-Seidla

Rozkładamy macierz układu na sumę macierzy poddiagonalnej, diagonalnej i naddiagonalnej (w razie konieczności odpowiednio przestawiając wiersze)

$$\mathbf{A} = \mathbf{L} + \mathbf{D} + \mathbf{U}$$

Przyjmujemy

$$\mathbf{N} = (\mathbf{D} + \mathbf{L})^{-1}$$

co prowadzi do

$$\mathbf{M}_{GS} = -(\mathbf{D} + \mathbf{L})^{-1}\mathbf{U}$$

Metoda Gaussa-Seidla

Stąd

$$\mathbf{D}\vec{x}^{(i+1)} = -\mathbf{L}\vec{x}^{(i+1)} - \mathbf{U}\vec{x}^{(i)} + b, \quad i = 0, 1, 2, \dots$$

- na pierwszy rzut oka powyższe równanie wygląda tak, jakby niewiadome występowały po obu stronach jednocześnie
- jednak przy obliczaniu pierwszej współrzędnej szukanego wektora po prawej stronie równania nie wystąpi żadna współrzędna wektora $\vec{x}^{(i+1)}$
- przy obliczaniu $x_2^{(i+1)}$ prawa strona równości będzie zależała tylko od $x_2^{(i+1)}$
- ogólnie, przy obliczaniu kolejnej składowej szukanego wektora będziemy korzystali z wyznaczonych już poprzednio składowych

Niezawodność metody Gaussa-Seidla

• odpowiednie przestawienie wierszy nie gwarantuje w ogólnym przypadku spełnienia warunku zbieżności

$$ho(\mathbf{M}_{\mathsf{GS}}) =
ho(-(\mathbf{D} + \mathbf{L})^{-1}\mathbf{U}) < 1$$

- jeżeli potrafimy uzasadnić, że dla danej macierzy A metoda Jacobiego jest zbieżna oraz macierz M_J ma nieujemne elementy, to zbieżna jest również metoda Gaussa–Seidla
- zachodzi przy tym

$$ho(\mathbf{M}_{\mathsf{GS}}) <
ho(\mathbf{M}_{\mathsf{J}}) < 1$$

Niezawodność metody Gaussa-Seidla

- zbieżność metody jest gwarantowana, jeśli macierz A układu równań jest:
 - symetryczna, dodatnio określona
 - silnie diagonalnie dominująca
 - silnie diagonalnie dominująca kolumnowo

Analiza błędów zaokrągleń

Jeżeli w każdej iteracji zamiast wartości $\mathbf{M}\vec{\mathbf{x}}^{(i)} + \vec{\mathbf{w}}$ obliczamy

$$\mathbf{M}\vec{\mathbf{x}}^{(i)} + \vec{\mathbf{w}} + \vec{\delta}^{(i)}, \ \delta^{(i)}$$
 - błąd zaokrągleń

to

$$ec{\mathbf{X}}^{(i+1)} = \mathbf{M}^{i+1} ec{\mathbf{X}}^{(\mathbf{o})} + \mathbf{M}^i ec{\mathbf{W}} + \ldots + ec{\mathbf{W}} + ec{\delta}^{(i)} + \mathbf{M} ec{\delta}(i-1) + \ldots + \mathbf{M}^i ec{\delta}^{(\mathbf{o})}$$

Łączny błąd zaokrągleń wynosi

$$ec{\mathbf{X}}_{dok}^{(i+1)} - ec{\mathbf{X}}^{(i+1)} = ec{\delta}^{(i)} + \mathbf{M} ec{\delta}^{(i-1)} + \ldots + \mathbf{M}^i ec{\delta}^{(o)}.$$

Jeżeli algorytm iteracyjny jest zbieżny i indeks iteracji jest dostatecznie duży, możemy przyjąć

$$\frac{1}{2}\|\vec{X}_{dok}\| < \|\vec{X}^{(j)}\| < 2\|\vec{X}_{dok}\|$$

Analiza błedów zaokragleń

Stąd wynika, że jeżeli $\vec{x}_{dok} \neq 0$, to

$$\frac{\|\vec{x}_{dok}^{(i+1)} - \vec{x}^{(i+1)}\|}{\|\vec{x}^{(i+1)}\|} \leqslant \frac{2}{\|\vec{x}_{dok}\|} (\|\vec{\delta}^{(i)}\| + \|\mathbf{M}\| \cdot \|\vec{\delta}^{(i-1)}\| + \ldots + \|\mathbf{M}\|^i \cdot \|\vec{\delta}^{(0)}\|)$$

czyli

$$\frac{\|\vec{X}_{dok}^{(i+1)} - \vec{X}^{(i+1)}\|}{\|\vec{X}^{(i+1)}\|} \leqslant \frac{2\kappa}{\|\vec{X}_{dok}\|} (1 + \|\mathbf{M}\| + \ldots + \|\mathbf{M}\|^{i})$$

gdzie κ to wspólne oszacowanie błędów $\vec{\delta}^{(j)}$, tzn.

$$\|\vec{\delta}^{(j)}\| < \kappa, \quad j = 0, 1, 2, \dots, j$$

Analiza błędów zaokrągleń

Jeśli $\|\mathbf{M}\|$ < 1, to

$$\frac{\|\vec{X}_{dok}^{(i+1)} - \vec{X}^{(i+1)}\|}{\|\vec{X}^{(i+1)}\|} < \frac{1}{1 - \|\mathbf{M}\|} \frac{2\kappa}{\|\vec{X}_{dok}\|}$$

Analiza błędów zaokrągleń

Gdy macierz układu jest macierzą silnie diagonalnie dominującą, można pokazać, że

$$\frac{\|\vec{\boldsymbol{X}}_{dok}^{(i+1)} - \vec{\boldsymbol{X}}^{(i+1)}\|_{\infty}}{\|\vec{\boldsymbol{X}}^{(i+1)}\|_{\infty}} \leqslant \frac{1}{1 - \|\boldsymbol{M}_{\text{GS}}\|_{\infty}} \frac{12\alpha}{1 - \alpha}$$

gdzie

$$\alpha = \epsilon O(2n^2) \|\mathbf{D}\|_{\infty} \|\mathbf{D}^{-1}\|_{\infty}$$

 \Rightarrow z porównania powyższego oszacowania z błędem eliminacji Gaussa wynika, że stosując metodę Gaussa–Seidla można zyskać na dokładności, jeżeli tylko wskaźnik $\|\mathbf{D}\|_{\infty}\|\mathbf{D}^{-1}\|_{\infty}$ jest mały w porównaniu ze wskaźnikiem uwarunkowania K_{∞}

Nakłady obliczeń

- w każdej iteracji wykonujemy około n² mnożeń (jeżeli macierz układu nie jest rzadka)
- dla porównania, metody dokładne wymagają około $\frac{1}{3}n^3$ mnożeń do uzyskania rozwiązania
- aby metody dokładne i iteracyjne były porównywalne pod względem nakładu obliczeń, powinniśmy wykonać tylko około *n* iteracji
- proste przykłady pokazują, że liczba iteracji musi być dużo większa niż n, aby dokładność była zadowalająca

Metody iteracyjne w przypadku ogólnym są nieefektywne!

Przykład

Układ

$$\left(\begin{array}{cc}
1 & \frac{3}{4} \\
\frac{3}{4} & 1
\end{array}\right) \vec{x} = \left(\begin{array}{c}
448 \\
448
\end{array}\right)$$

ma rozwiązanie $x=(256,256)^{\mathrm{T}}$. Stosując np. eliminację Gaussa, musimy wykonać 6 mnożeń, aby otrzymać wynik dokładny. Jeżeli zastosujemy metodę Gaussa–Seidla, po ośmiu iteracjach (32 mnożenia) mamy

$$||\mathbf{X}^{(8)} - \vec{\mathbf{X}}_{dok}|| > 0, 1$$

Warunki przerwania obliczeń

- niezbędną do uzyskania zaplanowanej dokładności liczbę iteracji trudno jest przewidzieć
- w praktyce nie zakłada się konkretnej liczby iteracji z góry
- zamiast tego stosuje się testy na przerwanie obliczeń (tzw. testy stopu):

$$egin{align} &\|ec{x}^{(i+1)}-ec{x}^{(i)}\|<\Delta\ &rac{1}{\|ec{b}\|}\|\mathbf{A}ec{x}^{(i+1)}-ec{b}\|<\Delta & \end{aligned}$$

gdzie △ to żądana dokładność

"Niedoskonałości" testów stopu

jeżeli norma macierzy A jest mała, to wartość reszty

$$\|\mathbf{A}\vec{\mathbf{x}}^{(i+1)} - \vec{b}\| = \|\mathbf{A}(\vec{\mathbf{x}}^{(i+1)} - \vec{\mathbf{x}}_{dok})\| \leqslant \|\mathbf{A}\| \cdot \|\vec{\mathbf{x}}^{(i+1)} - \vec{\mathbf{x}}_{dok}\|$$

może być mała, mimo dużego odchylenia wektora $\vec{x}^{(i+1)}$ od rozwiązania dokładnego \vec{x}_{dok}

ponieważ

$$\|\vec{x}^{(i+1)} - \vec{x}^{(i)}\| = \|\vec{e}^{(i+1)} - \vec{e}^{(i)}\| = \|\mathbf{M}\vec{e}^{(i)} - \vec{e}^{(i)}\| = \|(\mathbf{M} - \mathbf{I})\vec{e}^{(i)}\|$$

gdy norma macierzy $\mathbf{M} - \mathbf{I}$ jest mała, wektory $\vec{x}^{(i+1)}$ i $\vec{x}^{(i)}$ mogą się mało różnić, mimo że błąd $\vec{e}^{(i)}$ jest duży

 testy mogą się okazać mało przydatne z powodu błędów zaokrągleń (wektory reszt należy zawsze liczyć z dużą dokładnością)

Niedookreślone układy równań (m < n)

- liczba równań *m* jest mniejsza od liczby niewiadomych *n*
- dość często spotykane w praktyce (np. w zagadnieniach optymalizacji)
- nie są one często dyskutowane w literaturze poświęconej metodom numerycznym
- nigdy nie są rozwiązywalne jednoznacznie
 - jeżeli wektor wyrazów wolnych \vec{b} należy do przestrzeni rozpinanej przez kolumny macierzy $\bf A$, wówczas układ

$$\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$$

będzie miał nieskończenie wiele rozwiązań

• w przeciwnym wypadku rozwiązań nie będzie wcale

Niedookreślone układy równań (m < n)

- jeżeli rząd macierzy **A** jest równy liczbie równań, wówczas \vec{b} zawsze będzie należał do przestrzeni rozpinanej przez **A** (układ będzie rozwiązywalny)
- ogólne rozwiązanie takiego układu zapisze się w postaci:

$$\vec{x} = \vec{x}_p + \vec{x}_N$$

gdzie \vec{x}_p jest specjalnym rozwiązaniem równania, a \vec{x}_N należy do jądra przekształcenia liniowego **A**

$$\mathbf{A}\vec{\mathbf{x}}_{N}=\mathbf{0}$$

Graficzna interpretacja rozwiązania dla m = 1 i n = 2

Rozwiązanie szczególne \vec{x}_p

Twierdzenie

Jeżeli macierz ${\bf A}\in {\bf R}^{m\times n}$ ma rząd m, układ ${\bf A}\vec{x}=\vec{b}$ jest zawsze rozwiązywalny. Dla każdego \vec{b} istnieje wówczas nieskończenie wiele rozwiązań, z których

$$ec{\mathbf{x}}_p = \mathbf{A}^{\mathrm{T}} \left(\mathbf{A} \mathbf{A}^{\mathrm{T}}
ight)^{-1} ec{b}$$

jest tym o najmniejszej normie. Macierz $\mathbf{A}^{\mathrm{T}}\left(\mathbf{A}\mathbf{A}^{\mathrm{T}}\right)^{-1}$ nazywana jest przy tym macierzą pseudoodwrotną macierzy \mathbf{A} .

Rozwiązanie szczególne \vec{x}_p

Dowód.

Dla każdego \vec{x} zachodzi

$$ec{x}^{\mathrm{T}}\mathbf{A}\mathbf{A}^{\mathrm{T}}ec{x} = \left(\mathbf{A}^{\mathrm{T}}ec{x}\right)^{\mathrm{T}}\left(\mathbf{A}^{\mathrm{T}}ec{x}\right) = \|\mathbf{A}^{\mathrm{T}}ec{x}\|^{2} \geqslant \mathrm{o}.$$

Ponadto, jeśli $\operatorname{rank} \mathbf{A} = m$, to $\|\mathbf{A}^T \vec{\mathbf{x}}\| = \mathbf{0}$ wtedy i tylko wtedy, gdy $\vec{\mathbf{x}} = \mathbf{0}$. Czyli macierz $\mathbf{A}\mathbf{A}^T$ jest dodatnio określona i nieosobliwa. Ponieważ

$$\mathbf{A} \vec{\mathbf{x}}_p = \mathbf{A} \mathbf{A}^{\mathrm{T}} \left(\mathbf{A} \mathbf{A}^{\mathrm{T}}
ight)^{-1} \vec{b} = \vec{b},$$

więc x_p rzeczywiście jest rozwiązaniem równania $\mathbf{A}\vec{x} = \vec{b}$. Pozostaje nam pokazać, że każde inne rozwiązanie ma normę większą od $||\vec{x}_p||$.

Rozwiązanie szczególne \vec{x}_p

Niech \vec{x} będzie innym rozwiązaniem naszego układu. Wówczas

$$\|\vec{X}\|^2 = \|\vec{X}_p + (\vec{X} - \vec{X}_p)\|^2 = \|\vec{X}_p\|^2 + \|\vec{X} - \vec{X}_p\|^2 + 2\vec{X}_p^{\mathrm{T}}(\vec{X} - \vec{X}_p).$$

Ponieważ z założenia $\mathbf{A}\vec{\mathbf{x}}_p = \mathbf{A}\vec{\mathbf{x}}$, trzeci wyraz w powyższym równaniu jest równy zero:

$$ec{x}_p^{\mathrm{T}}(ec{x}-ec{x}_p) = \left[\mathbf{A}^{\mathrm{T}}(\mathbf{A}\mathbf{A}^{\mathrm{T}})^{-1}ec{b}
ight]^{\mathrm{T}}(ec{x}-ec{x}_p) = ec{b}^{\mathrm{T}}(\mathbf{A}\mathbf{A}^{\mathrm{T}})^{-1}\mathbf{A}(ec{x}-ec{x}_p) = 0.$$

Stąd

$$\|\vec{X}\|^2 = \|\vec{X}_p\|^2 + \|\vec{X} - \vec{X}_p\|^2 \geqslant \|\vec{X}_p\|^2,$$

przy czym równość zachodzi tylko dla $\vec{x} = \vec{x}_p$.

Układy niedookreślone - przykład

Rozważmy układ

$$\left(\begin{array}{cc} 1 & 2 \end{array}\right) \left(\begin{array}{c} X_1 \\ X_2 \end{array}\right) = 3$$

czyli

$$x_1 + 2x_2 = 3$$
, $x_2 = -\frac{1}{2}x_1 + \frac{3}{2}$

Dowolne z tych dwóch wyrażeń jest rozwiązaniem układu. Rozwiązaniem o najmniejszej normie będzie

$$ec{x}_p = \mathbf{A}^{\mathrm{T}} \left(\mathbf{A} \mathbf{A}^{\mathrm{T}} \right)^{-1} ec{b} = \left(egin{array}{c} \mathsf{0,6} \\ \mathsf{1,2} \end{array}
ight)$$

Układy niedookreślone - przykład

Wektory należące do jądra przekształcenia A będą miały postać

$$\mathbf{A}\vec{x}_N = O \rightarrow x_{N2} = -\frac{1}{2}x_{N1}$$

więc ogólne rozwiązanie jest następujące:

$$\vec{\mathbf{x}} = \left(\begin{array}{c} \mathbf{0}, \mathbf{6} \\ \mathbf{1}, \mathbf{2} \end{array} \right) + \alpha \left(\begin{array}{c} \mathbf{1} \\ -\mathbf{0}, \mathbf{5} \end{array} \right)$$

gdzie α jest dowolną liczbą rzeczywistą.

Macierz pseudoodwrotna i rozkład Cholesky'ego

Ponieważ $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ jest macierzą symetryczną i dodatnio określoną, możemy rozłożyć ją na iloczyn dwóch macierzy trójkątnych

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$$

Teraz wystarczy rozwiązać układy równań

$$\mathbf{L}\vec{w} = \vec{b}$$
$$\mathbf{L}^{\mathrm{T}}\vec{z} = \vec{w}$$

i na tej podstawie wyliczyć \vec{x}_p

$$\vec{x}_p = \mathbf{A}^{\mathrm{T}} \vec{z}$$

Macierz pseudoodwrotna i rozkład SVD

Z równości

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$$

wynika

$$\vec{X}_{p} = \mathbf{A}^{\mathrm{T}} \left(\mathbf{A} \mathbf{A}^{\mathrm{T}} \right)^{-1} \vec{b} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathrm{T}} \left(\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathrm{T}} \right)^{-1} \vec{b}$$

$$= \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathrm{T}} \left(\mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma} \mathbf{U}^{\mathrm{T}} \right)^{-1} \vec{b} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathrm{T}} \left(\mathbf{U}^{\mathrm{T}} \right)^{-1} \mathbf{\Sigma}^{-1} \mathbf{\Sigma}^{-1} \mathbf{U}^{-1} \vec{b}$$

$$= \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathrm{T}} \vec{b}$$

Macierz pseudoodwrotna i rozkład SVD

Zapisując rozkład SVD w postaci

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_{i} \vec{\mathbf{u}}_{i} \vec{\mathbf{V}}_{i}^{\mathrm{T}}, \quad \mathbf{r} = \mathrm{rank} \mathbf{A},$$

gdzie \vec{u}_i i \vec{v}_i to kolumny macierzy **U** i **V**, otrzymamy

$$\vec{\mathbf{x}}_p = \sum_{i=1}^r \frac{\vec{\mathbf{u}}_i^{\mathrm{T}} \vec{\mathbf{b}}}{\sigma_i} \vec{\mathbf{v}}_i.$$

Macierz pseudoodwrotna i rozkład QR

Jeżeli dysponujemy rozkładem QR macierzy **A**^T

$$\mathbf{A}^{\mathrm{T}} = \mathbf{Q}\mathbf{R},$$

wówczas

$$\vec{X}_p = \mathbf{A}^{\mathrm{T}} \left(\mathbf{A} \mathbf{A}^{\mathrm{T}} \right)^{-1} \vec{b} = \mathbf{Q} \mathbf{R} \left(\mathbf{R}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}} \mathbf{Q} \mathbf{R} \right)^{-1} \vec{b}$$

$$= \mathbf{Q} \mathbf{R} \left(\mathbf{R}^{\mathrm{T}} \mathbf{R} \right)^{-1} \vec{b} = \mathbf{Q} \mathbf{R} \mathbf{R}^{-1} \left(\mathbf{R}^{\mathrm{T}} \right)^{-1} \vec{b}$$

$$= \mathbf{Q} \left(\mathbf{R}^{\mathrm{T}} \right)^{-1} \vec{b}$$

Aby wyliczyć \vec{x}_p , musimy wyznaczyć $\left(\mathbf{R}^{\mathrm{T}}\right)^{-1}\vec{b}$. Ale to nic innego, jak rozwiązanie równania trójkątnego

$$\mathbf{R}^{\mathrm{T}}\vec{z} = \vec{b}$$

Nadokreślone układy równań (m > n)

- równań (m) jest więcej niż niewiadomych (n)
- w zależności od wektora wyrazów wolnych nie ma rozwiązań, jest ich nieskończona liczba lub tylko jedno rozwiązanie jednoznaczne
- w praktyce najczęściej dokładne rozwiązanie układu nie istnieje, ale możliwe jest na ogół znalezienie rozwiązania przybliżonego (np. regresja liniowa)

Nadokreślone układy równań (m > n)

- równania $\mathbf{A}\vec{x} = \vec{b}$ dla macierzy $\mathbf{A} \in \mathbf{R}^{m \times n}$ przy m > n nie można rozwiązać uniwersalnie, ponieważ rząd tej macierzy jest mniejszy od m
- rozwiązanie dokładne nie istnieje w ogóle, gdy wektor \vec{b} nie należy do przestrzeni rozpinanej przez kolumny macierzy układu
- w tym przypadku zadany układ można potraktować jak zadanie aproksymacyjne i poszukać takiego \vec{x} , który zminimalizuje kwadrat normy wektora błędu

$$ec{e} = \mathbf{A} ec{x} - ec{b}$$
.

- takie przybliżone rozwiązanie może okazać się bardzo użyteczne w wielu praktycznych zagadnieniach
- to nic innego jak metoda najmniejszych kwadratów

Rozwiązanie układu nadokreślonego

Szukamy minimum wyrażenia

$$J = rac{1}{2} \| ec{e} \|_2^2 = rac{1}{2} \| \mathbf{A} ec{x} - ec{b} \|_2^2 = rac{1}{2} \left(\mathbf{A} ec{x} - ec{b}
ight)^{\mathrm{T}} \left(\mathbf{A} ec{x} - ec{b}
ight)$$

Z warunku na istnienie minimum,

$$\frac{\partial}{\partial \vec{\mathbf{x}}} \mathbf{J} = \mathbf{A}^{\mathrm{T}} \left(\mathbf{A} \vec{\mathbf{x}} - \vec{b} \right) = \mathbf{0}$$

znajdziemy

$$ec{\mathbf{x}}_p = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}
ight)^{-1}\mathbf{A}^{\mathrm{T}}ec{b}$$

 do obliczenia macierzy pseudoodwrotnej do macierzy A możemy znowu wykorzystać rozkłady SVD lub QR macierzy A

Układ nadokreślony - przykład

Rozważmy układ

```
x + y = 1,98

2,05 * x - y = 0,95

3,06 * x + y = 3,98

-1,02 * x + 2 * y = 0,92

4,08 * x - y = 2,90
```

Układ nadokreślony - przykład

Układ nadokreślony - przykład

- rozwiązanie ma prostą interpretację geometryczną to punkt przecięcia prostych zdefiniowanych poszczególnymi równaniami
- dokładne rozwiązanie układu nie istnieje
- rozwiązanie przybliżone wynosi

$$\vec{X}_p = \begin{pmatrix} 0,963101 \\ 0,988543 \end{pmatrix}$$

• błąd przybliżenia

$$\|\mathbf{A}\vec{x}_p - \vec{b}\|_2 = 0,10636$$

Metody numeryczne

Wykład 4 - Równania nieliniowe

Janusz Szwabiński

Plan wykładu

1. Równania z jedną niewiadomą

2. Równania algebraiczne

3. Układy równań nieliniowych

Równania nieliniowe

• szukamy x, dla którego

$$f(x) = 0$$

- trudniejsze niż rozwiązanie układu równań liniowych
- rozwiązanie analityczne albo nie istnieje (równania przestępne, równania algebraiczne rzędu wyższego niż 4), albo jest tak skomplikowane, że zupełnie nie nadaje się do użycia w praktycznych obliczeniach
- iteracyjne poprawianie początkowego przybliżenia szukanego pierwiastka
- przybliżone rozwiązania wystarczają w większości przypadków

Twierdzenie o punkcie stałym

Twierdzenie

Niech g(x) i jej pochodna g'(x) będą funkcjami ciągłymi na pewnym przedziale $I=[\tilde{x}-r,\tilde{x}+r]$ wokół punktu \tilde{x} takiego, że

$$g(\tilde{x}) = \tilde{x}$$
.

Wówczas, jeżeli

$$|g'(x)| \leqslant \alpha < 1$$

gdzie α to pewna liczba dodatnia, to iteracja

$$x_{k+1} = g(x_k)$$

startująca z dowolnego $x_0 \in I$ dąży do punktu stałego \tilde{x} przekształcenia q.

Twierdzenie o punkcie stałym

 praktyczny przepis na znalezienie przybliżonego rozwiązania równania, o ile tylko da się ono zapisać w postaci

$$x = g(x)$$

- trudność polega na tym, że istnieje zwykle kilka różnych możliwości przekształcenia równania
- w myśl twierdzenia należy wybrać postać, dla której

$$|g'(x)| < 1, x \in I$$

 bez znajomości zgrubnego oszacowania rozwiązania określenie przedziału I może okazać się niemożliwe

Twierdzenie o punkcie stałym - przykład

Rozważmy równanie

$$f(x)=x^2-2=0$$

"Zgadujemy", że rozwiązanie powinno leżeć w przedziale I = (1; 1, 5) i przekształcamy równanie do postaci

$$x=\frac{2}{x} \Rightarrow g(x)=2/x$$

Po wyliczeniu pochodnej funkcji g(x) okaże się, że warunek

$$|g'(x)| = \frac{2}{x^2} < 1$$

nie jest spełniony dla wszystkich $x \in I$.

W tej sytuacji procedura iteracyjna

$$X_{k+1}=\frac{2}{X}$$

raczej nie zadziała.

I rzeczywiście, już po kilku iteracjach widać, że otrzymaliśmy naprzemienny ciąg wartości

$$X_0 = 1, \ X_1 = 2, \ X_2 = 1, \ X_3 = 2, \dots$$

który nigdy nie osiągnie poszukiwanego rozwiązania.

Równanie

$$f(x) = x^2 - 2 = 0$$

możemy również zapisać w postaci

$$X = -\frac{1}{2} \left\{ (X - 1)^2 - 3 \right\}$$

W tym wypadku funkcja g(x) spełnia warunek zbieżności

$$|g'(x)| = |x-1| \leqslant 0.5 < 1, \ \forall x \in I$$

Można więc użyć iteracji

$$X_{k+1} = -\frac{1}{2} \{ (X_k - 1)^2 - 3 \}$$

do znalezienia rozwiązania.

Szereg iteracyjny

$$X_0=1; \ X_1=1,5; \ X_2=1,375; \ X_3=1,4297; \ X_4=1,4077,\dots$$

rzeczywiście dąży do rozwiązania $\sqrt{2}=1,414\ldots$

Przekształćmy równanie

$$f(x) = x^2 - 2 = 0$$

do postaci

$$X=\frac{1}{2}\left(X+\frac{2}{X}\right)$$

Pochodna funkcji g(x) spełnia warunek zbieżności

$$|g'(x)| = \frac{1}{2}|1 - \frac{2}{x^2}| \leqslant \frac{1}{2} < 1, \ \forall x \in I$$

Dodatkowo g'(x) = 0 dla $x^2 = 2$ stanowiącego rozwiązanie równania. W tym przypadku szereg iteracyjny zbiega szczególnie szybko do punktu stałego:

$$X_0 = 1$$
; $X_1 = 1,5$; $X_2 = 1,4167$; $X_3 = 1,4142$; $X_4 = 1,4142$; ...

```
import numpy as np
def fixedpoint(g, xo, tol=1e-6, maxit=100):
    xx = np.zeros(maxit)
    ox = [o]xx
    for k in range(1, maxit):
        xx[k] = g(xx[k - 1])
        err = abs(xx[k] - xx[k - 1])
        if err < tol:</pre>
            break
    x = xx[k]
    if k == maxit - 1:
        print("No real convergence!") #
    return x, err, xx[:k+1]
```

```
def fun(x):
    return 0.5*(x+2/x)

result, error, values = fixedpoint(fun, 0.5)
print("Result:", result)
print("Error:", error)
print("Values:", values)

Result: 1.414213562373095
Error: 1.5183720947220536e-10
Values: [0.5 2.25 1.56944444 1.42189036 1.41423429 1.41421356 1.41421356]
```

Lokalizacja miejsc zerowych

- wybór wartości startowej (lub przedziału) odgrywa dużą rolę w rozwiązywaniu równań
- źle wybrany punkt startowy może spowodować, że metoda iteracyjna w ogóle nie będzie zbieżna lub znajdzie "złe" rozwiązanie
- nawet niezbyt dokładny wykres pozwala wybrać rozsądne przybliżenie początkowe
- jeżeli metoda wymaga od nas przedziału, w którym znajduje się rozwiązanie, a nie tylko wartości początkowej, powinniśmy wybrać tzw. przedział izolacji pierwiastka
- wiele metod zawodzi, kiedy podaje im się na starcie przedział zawierający więcej pierwiastków

Lokalizacja miejsc zerowych

Lokalizacja miejsc zerowych

- wykres funkcji jako metoda lokalizacji rozwiązań sprawdza się znakomicie przy rozwiązaniu jednego (lub kilku równań), o ile tylko stanowi to cel sam w sobie
- czasochłonne, gdy mamy wiele różnych równań do rozwiązania
- niepraktyczne, gdy rozwiązanie równania nieliniowego stanowi tylko krok pośredni obliczeń komputerowych

Automatyczne oddzielanie pierwiastków (ang. incremental search)

- jeżeli f(a)f(b) < 0, to ciągła funkcja f(x) musi mieć w przedziale (a,b) przynajmniej jeden pierwiastek
- jeżeli dodatkowo przedział (a, b) będzie mały, istnieje duże prawdopodobieństwo, że będzie on przedziałem izolacji danego pierwiastka
- wystarczy zbadać zmiany znaku w ciągu wartości funkcji wyliczonych dla dyskretnego zbioru punktów

$$x_i = x_0 + i\Delta x, \quad n = 0, 1, 2, 3, \dots$$

odległych od siebie o pewien niewielki krok Δ

Automatyczne oddzielanie pierwiastków - przykład

$$X^2 - 2 = 0$$

х	f(x)		
0.00000	-2.000000		
0.20000	-1.960000		
0.40000	-1.840000		
0.60000	-1.640000		
0.80000	-1.360000		
1.00000	-1.000000		
1.20000	-0.560000		
1.40000	-0.040000		
1.60000	0.560000		
1.80000	1.240000		
2.00000	2.000000		

Automatyczne oddzielanie pierwiastków - implementacja

```
from numpy import sign
def rootsearch(f,a,b,dx):
    x1 = a; f1 = f(a)
    x2 = a + dx; f2 = f(x2)
    while sign(f1) == sign(f2):
        if x1 >= b: return None,None
        x1 = x2; f1 = f2
        x2 = x1 + dx; f2 = f(x2)
    else:
        return x1,x2
```

Automatyczne oddzielanie pierwiastków

- implementacja

Szukamy pierwiastka funkcji

$$f(x) = x^3 - 10x^2 + 5$$

z dokładnością do 4 cyfr dziesiętnych

- w podejściu naiwnym $dx = 0.0001 \rightarrow 10000$ wyliczeń funkcji
- możemy lokalizować pierwiastek w 4 etapach, poprawiając za każdym razem dokładność → 40 wyliczeń funkcji

Automatyczne oddzielanie pierwiastków - implementacja

```
def f(x): return x**3 - 10.0*x**2 + 5.0

x1 = 0.0; x2 = 1.0
for i in range(4):
    dx = (x2 - x1)/10.0
    x1,x2 = rootsearch(f,x1,x2,dx)

x = (x1 + x2)/2.0
print('x =', '{:6.4f}'.format(x))

x = 0.7346
```

Automatyczne oddzielanie pierwiastków - ograniczenia

- jeśli krok \(\Delta x \) jest większy, niż odległość między dwoma sąsiednimi pierwiastkami, możemy je przeoczyć
- pierwiastek o parzystej krotności nie zostanie znaleziony
- niektóre osobliwości mogą zostać potraktowane jako pierwiastki

Automatyczne oddzielanie pierwiastków - ograniczenia

Automatyczne oddzielanie pierwiastków - ograniczenia

Metoda połowienia przedziału (bisekcji)

Metoda połowienia przedziału

- jeżeli w przedziale (a, b) znajduje się miejsce zerowe ciągłej funkcji f(x), to f(a)f(b) < 0
- dla pierwiastka $\alpha \in (a_1, b_1)$ generujemy ciąg przedziałów

$$(a_1,b_1)\supset (a_2,b_2)\supset (a_3,b_3)\supset \ldots, \quad \forall i \quad \alpha\in (a_i,b_i)$$

- dla $I_{k-1} = (a_{k-1}, b_{k-1})$ kolejny przedział wyznaczamy według przepisu:
 - 1. obliczamy środek m_k przedziału I_{k-1}

$$m_k = \frac{1}{2} (a_{k-1} + b_{k-1})$$

2. jeśli $f(m_k) = 0$, znaleźliśmy pierwiastek; w przeciwnym razie

$$(a_k, b_k) = \begin{cases} (m_k, b_{k-1}), & \text{jeśli } f(m_k) f(b_{k-1}) < 0 \\ (a_{k-1}, m_k), & \text{jeśli } f(a_{k-1}) f(m_k) < 0 \end{cases}$$

Metoda połowienia przedziału - błędy zaokrągleń

Używamy arytmetyki z sześcioma liczbami dziesiętnymi. Niech

$$a_{k-1} = 0,742531, b_{k-1} = 0,742533$$

Stąd (po zaokrągleniu)

$$a_{k-1} + b_{k-1} = 1.48506, \quad \frac{1}{2}(a_{k-1} + b_{k-1}) = 0,742530$$

$$\Rightarrow \quad \frac{1}{2}(a_{k-1} + b_{k-1}) < a_{k-1}$$

Metoda połowienia przedziału - błędy zaokrągleń

 w obliczeniach ze skończoną dokładnością w arytmetyce dziesiętnej nierówności

$$a_{k-1} \leqslant \frac{1}{2} (a_{k-1} + b_{k-1}) \leqslant b_{k-1}$$

mogą nie być spełnione dla wszystkich liczb zmiennoprzecinkowych a_{k-1} i b_{k-1} !

 aby zagwarantować spełnienie nierówności w arytmetyce o dowolnej podstawie, wystarczy wzór

$$m_k = a_{k-1} + \frac{1}{2} (b_{k-1} - a_{k-1})$$

Metoda połowienia przedziału

• po n krokach otrzymamy przedział o długości

$$\frac{1}{2^n}(b-a)$$

jako wartość przybliżoną pierwiastka przyjmujemy

$$\alpha = m_{n+1} \pm d_n, \ d_n = \frac{1}{2^{n+1}}(b-a)$$

- wadą jest wolna zbieżność
- w każdym kroku iteracji zyskujemy jedną dokładną cyfrę dwójkową
- ponieważ 10 $^{-1} \simeq 2^{-3,3}$, jedną cyfrę dziesiętną uzyskamy średnio co 3,3 kroków

Metoda połowienia przedziału - przykład

$$x^2 - 2 = 0, I_0 = (1; 1, 5)$$

n	a_{n-1}	b_{n-1}	m_n	$f(m_n)$
1	1,0000	1,5000	1,2500	-0,43750000
2	1,2500	1,5000	1,3750	-0,10938000
3	1,3750	1,5000	1,4375	0,06640600
4	1,3750	1,4375	1,4062	-0,02260200
5	1,4062	1,4375	1,4219	0,02180000
6	1,4062	1,4219	1,4141	-0,00032119
7	1,4141	1,4219	1,4180	0,01072400
8	1,4141	1,4180	1,4160	0,00505600
9	1,4141	1,4160	1,4150	0,00222500
10	1,4141	1,4150	1,4146	0,00109320
11	1,1441	1,4146	1,4143	0,00024449
12	1,4141	1,4143	1,4142	0,00003836

```
import math, sys
from numpy import sign
def bisection(f,x1,x2,switch=1,tol=1.0e-9):
    f_1 = f(x_1)
    if f1 == 0.0: return x1
    f_2 = f(x_2)
    if f_2 == 0.0: return x2
    if sign(f1) == sign(f2):
         print('Wrong interval!')
         svs.exit(1)
    n = int(math.ceil(math.log(abs(x2 - x1)/tol)/math.log(2.0)))
    for i in range(n):
         x3 = 0.5*(x1 + x2); f3 = f(x3)
         if (switch == 1) and (abs(f<sub>3</sub>) > abs(f<sub>1</sub>)) and (abs(f<sub>3</sub>) > abs(f<sub>2</sub>)):
             return None
         if f3 == 0.0: return x3
         if sign(f_2)! = sign(f_3): x_1 = x_3; f_1 = f_3
         else: x2 = x3: f2 = f3
    return (x1 + x2)/2.0
```

```
def f(x): return x**3 - 10.0*x**2 + 5.0
x = bisection(f, 0.0, 1.0, tol = 1.0e-4)
print('x =', '{:6.4f}'.format(x))
```

x = 0.7346

Metoda wielopodziału przedziału izolacji

- uogólnienie metody bisekcji
- ullet w jednym kroku dzielimy przedział na k podprzedziałów $I_i = [x_i, x_{i+1}]$

$$x_i = a + i\left(\frac{b-a}{k}\right), i = 0, 1, 2, ..., k$$

- wybór nowego przedziału izolacji odbywa się jak poprzednio
- ullet aby znaleźć pierwiastek z dokładnością ϵ musimy wykonać

$$n_k = \frac{\log_2\left(\frac{b-a}{2\epsilon}\right)}{\log_2 k}$$
 podziałów

 przydatna, gdy w przedziale początkowym jest kilka pierwiastków i mamy możliwość równoległego operowania na większej liczbie podprzedziałów

Metoda Brenta

- łączy w sobie niezawodność bisekcji z odwrotną interpolacją kwadratową
- dzielimy wyjściowy przedział (a, b) izolacji pierwiastka na połowę
- określamy, w którym z przedziałów $\left(a,c=\frac{a+b}{2}\right)$ i (c,b) leży poszukiwany pierwiastek
- przez punkty (a, f(a)), (c, f(c)) i (b, f(b)) prowadzimy parabolę i szukamy punktu przecięcia z osią X

Metoda Brenta

Metoda Brenta

wzór paraboli przechodzącej przez trzy punkty

$$x = \frac{[y - f(b)][y - f(c)]}{[f(a) - f(b)][f(a) - f(c)]}a + \frac{[y - f(a)][y - f(c)]}{[f(b) - f(a)][f(b) - f(c)}b + \frac{[y - f(a)][y - f(b)]}{[f(c) - f(a)][f(c) - f(b)]}c$$

 kładąc y = o znajdziemy nowe przybliżenie poszukiwanego pierwiastka

$$x = -\frac{af(b)f(c)[f(b) - f(c)] + bf(c)f(a)[f(c) - f(a)] + cf(a)f(b)[f(a) - f(b)]}{[f(a) - f(b)][f(b) - f(c)][f(c) - f(a)]}$$

- przybliżenie przyjmujemy, jeśli leży ono w nowym przedziale izolacji
- w przeciwnym razie wynik interpolacji porzucamy i przeprowadzamy następny krok bisekcji
- procedurę powtarzamy do uzyskania żądanej dokładności

Metoda Brenta - przykład

Szukamy pierwiastka funkcji

$$f(x) = x^3 - 10x^2 + 5$$

znajdującego się początkowo w przedziale (0, 6; 0, 8). W punktach startowych mamy

$$a = 0, 6, f(a) = 1,616$$

 $b = 0, 8, f(b) = -0,888$

Połowimy przedział izolacji pierwiastka:

$$c = 0,7, f(c) = 0,443$$

Stąd wynika, że nowym przedziałem izolacji pierwiastka jest (c,b) = (0,7;0,8).

Metoda Brenta - przykład

Przez punkty (a, f(a)), (c, f(c)) i (b, f(b)) prowadzimy parabolę. Znajdujemy punkt przecięcia z osią X:

$$x = 0,73487$$

Ponieważ leży on w nowym przedziale izolacji pierwiastka, akceptujemy wynik. W ten sposób pierwszy krok metody Brenta został ukończony. W drugim kroku wartości c, x i b będziemy traktować jako nowe wartości a, c i b

$$c = 0,7 \rightarrow a$$

 $x = 0,73487 \rightarrow c$
 $b = 0,8 \rightarrow b$

Nowym przedziałem izolacji będzie (a, c) = (0, 7; 0, 73487).

Metoda Brenta - przykład

Interpolacja kwadratowa prowadzi do

$$x = 0,73460$$

Ponownie akceptujemy wynik, ponieważ leży on w przedziale izolacji. W ten sposób, po dwóch krokach, otrzymaliśmy rozwiązanie z pięcioma poprawnymi cyframi dziesiętnymi.

Regula falsi

- zakładamy, że równanie f(x) = 0 ma w przedziale (a, b) pojedynczy pierwiastek α
- funkcja f(x) jest klasy C^2 na przedziale $\langle a,b\rangle$
- jej pierwsza i druga pochodna mają stały znak na tym przedziale
- dla ustalenia uwagi rozważymy przypadek f'(x) > 0 i f''(x) > 0 dla $x \in \langle a, b \rangle$ (wybór stałego punktu iteracji)

Regula falsi

• przez punkty A = (a, f(a)) i B = (b, f(b)) prowadzimy cięciwę

$$y-f(a)=\frac{f(b)-f(a)}{b-a}(x-a)$$

• punkt przecięcia cięciwy z osią X to pierwsze przybliżenie pierwiastka:

$$-f(a) = \frac{f(b) - f(a)}{b - a}(x_1 - a) \Rightarrow x_1 = a - \frac{f(a)}{f(b) - f(a)}(b - a)$$

• jeśli przybliżenie nie jest wystarczające, przez punkt $C = (x_1, f(x_1))$ oraz jeden z punktów A i B (wybieramy ten, w którym funkcja jest przeciwnego znaku niż w C) prowadzimy następną cięciwę itd.

• w ten sposób otrzymamy ciąg kolejnych przybliżeń

$$x_0 = a$$

 $x_{k+1} = x_k - \frac{f(x_k)}{f(b) - f(x_k)} (b - x_k), k = 1, 2, ...$

- powyższy ciąg jest rosnący i ograniczony z góry ⇒ jest zbieżny
- można przejść w powyższym równaniu do granicy $k o \infty$

$$egin{aligned} g &= g - rac{f(g)}{f(b) - f(g)} (b - g) \ g &= \lim_{k o \infty} \mathsf{x}_k, \;\; a < g < b \ &\Rightarrow \; f(g) = \mathsf{o} \end{aligned}$$

Korzystając z twierdzenia Lagrange'a o przyrostach,

$$f(\mathbf{x}_n) - f(\alpha) = f'(\mathbf{c})(\mathbf{x}_n - \alpha), \ \mathbf{x}_n < \mathbf{c} < \alpha$$

możemy oszacować błąd n-tego przybliżenia ($f(\alpha) = o$)

$$|\mathbf{x}_n - \alpha| \leqslant \frac{f(\mathbf{x}_n)}{m}, \ \ m = \inf_{\mathbf{x} \in \langle a, b \rangle} |f'(\mathbf{x})|$$

Błąd możemy ocenić również znając dwa kolejne przybliżenia:

$$-f(x_k) = \frac{f(x_k) - f(b)}{x_k - b}(x_{k+1} - x_k).$$

Ponieważ $f(\alpha) = 0$, więc

$$f(\alpha) - f(x_k) = \frac{f(x_k) - f(b)}{x_k - b} (x_{k+1} - x_k)$$

Z twierdzenia Lagrange'a otrzymujemy

$$(\alpha - X_k)f'(\xi_k) = (X_{k+1} - X_k)f'(\bar{X}_k), \ \xi_k \in (X_k, \alpha), \ \bar{X}_k \in (X_k, b)$$

Dodajemy obustronnie $-x_{k+1}f'(\xi_k)$

$$|\alpha - \mathbf{x}_{k+1}| = \frac{|\mathbf{x}_k - \mathbf{x}_{k+1}| \cdot |f'(\xi_k) - f'(\bar{\mathbf{x}}_k)|}{|f'(\xi_k)|} \leqslant \frac{\mathsf{M} - \mathsf{m}}{\mathsf{m}} |\mathbf{x}_{k+1} - \mathbf{x}_k|,$$

gdzie

$$m = \inf_{\mathbf{x} \in \langle a, b \rangle} |f'(\mathbf{x})|, \ \ M = \sup_{\mathbf{x} \in \langle a, b \rangle} |f'(\mathbf{x})|$$

- oszacowanie pesymistyczne
- wymaga znajomości m i M
- dla przybliżeń w niewielkim otoczeniu α :

$$|\alpha - x_{k+1}| \sim \left| \frac{f(x_{k+1})}{f'(x_{k+1})} \right| \sim \left| \frac{x_{k+1} - x_k}{f(x_{k+1}) - f(x_k)} \right| \cdot |f(x_{k+1})|$$

- metoda zbieżna dla dowolnej funkcji ciągłej na przedziale $\langle a,b\rangle$, o ile tylko spełniony jest warunek f(a)f(b)< o i pierwsza pochodna tej funkcji jest ograniczona i różna od zera w otoczeniu pierwiastka
- jeżeli druga pochodna nie zmienia znaku w rozpatrywanym przedziale, to punktem stałym iteracji jest punkt, w którym

stosunkowo wolno zbieżna

Regula falsi - przykład

Szukamy pierwiastka równania

$$x^3 + x^2 - 3x - 3 = 0$$

Z wykresu funkcji $f(x) = x^3 + x^2 - 3x - 3$ wynika, że pierwiastek dodatni leży w przedziale (1, 2). Ponadto,

$$f'(x) = 3x^2 + 2x - 3$$

 $f''(x) = 6x + 2$

zatem obie pochodne są dodatnie w tym przedziale.

Regula falsi - przykład

Х	f(x)	
a = 1	-4	
b=2	3	
$X_1 = 1,57142$	-1,36449	
$X_2 = 1,70540$	1,70540 -0,24784	
$x_3 = 1,72788$	-0,03936	
$X_4 = 1,73140$	-0,00615	

```
def regula(func, a, b, delta, epsilon, maxit):
    fa = func(a); fb = func(b)
    if fa * fb > 0: raise ValueError("Wrong interval!")
    for k in range(maxit):
        dx = fb*(b-a)/(fb-fa)
        x = b-dx: ac = x-a: fx = func(x)
        if fx == 0: break
        elif fb * fx > 0:
            b = x: fb = fx
        else:
            a = x: fa = fx
        dx = min(abs(dx), abs(ac))
        if abs(dx) < delta: break</pre>
        if abs(fx) < epsilon: break</pre>
    err = abs(b - a) / 2
    return x, err, fx
```

```
def fun(x):
    return x**3 + x**2 -3*x-3
regula(fun,1,2,10e-6, 10e-6,100)
(1.7320504374844243, 0.13397478125778783, -3.5025160194379623e-06)
```

Metoda siecznych

- metodę regula falsi możemy ulepszyć rezygnując z założenia, aby funkcja miała w punktach wytyczających następną cięciwę różne znaki
- kolejne przybliżenie pierwiastka wyznaczamy z poprzednich:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

- na ogół szybsza niż regula falsi
- zdarzają się przypadki, dla których nie jest ona zbieżna (np. gdy początkowe przybliżenia nie leżą dostatecznie blisko pierwiastka)
- gdy różnica $(x_k x_{k-1})$ jest rzędu oszacowania błędu, następne przybliżenie nie do przyjęcia

Metoda siecznych - przykład

$x^3 + x^2 - 3x - 3 = 0$		
Х	f(x)	
a = 1	-4	
b=2	3	
$X_1 = 1,57142$	-1,36449	
$X_2 = 1,70540$	-0,24784	
$X_3 = 1,73513$	0,02920	
$X_4 = 1,73199$	0,000576	

Metoda siecznych

Uwaga!

W pierwszym kroku warunek f(a)f(b) < o ciągle jest potrzebny!

Metoda Newtona (stycznych)

- f(x) jest ciągła na przedziale $\langle a, b \rangle$
- f(a)f(b) < 0
- f'(x) i f''(x) mają stały znak w rozpatrywanym przedziale
- dzięki wykorzystaniu dodatkowej informacji zawartej w pochodnych funkcji zbieżność na ogół lepsza niż omówionych już algorytmów

- od końca przedziału, w którym funkcja f(x) ma ten sam znak co jej druga pochodna, prowadzimy styczną do wykresu funkcji
- punkt x₁ przecięcia stycznej z osią X pierwszym przybliżeniem pierwiastka
- z punktu $(x_1, f(x_1))$ prowadzimy następną styczną i określamy kolejne przybliżenie
- powtarzamy aż do uzyskania żądanej dokładności

Z równania stycznej

$$f(x_n) + (x_{n+1} - x_n)f'(x_n) = 0$$

Stąd łatwo otrzymać iteracyjny wzór Newtona na kolejne przybliżenie pierwiastka równania f(x) = 0:

$$x_{n+1} = x_n + h_n, \ h_n = -\frac{f(x_n)}{f'(x_n)}$$

Niech f'(x) > o i f''(x) > o dla $\forall x \in \langle a, b \rangle$.

Ze wzoru Newtona mamy

$$x_1 = b - \frac{f(b)}{f'(b)}$$

Z rozwinięcia w szereg Taylora otrzymujemy

$$f(\alpha) = f(b) + f'(b)(\alpha - b) + \frac{1}{2}f''(c)(\alpha - b)^2$$

gdzie $c \in \langle a, b \rangle$

Jeśli α ma być pierwiastkiem równania, to

$$\alpha = b - \frac{f(b)}{f'(b)} - \frac{1}{2} \frac{f''(c)}{f'(b)} (\alpha - b)^2$$

czyli

$$\alpha - X_1 = -\frac{1}{2} \frac{f''(c)}{f'(b)} (\alpha - b)^2 < 0$$

(bo pochodne są dodatnie)

Stąd wynika

$$X_1 > \alpha$$

Ponieważ zachodzi również $x_1 - b < o$, więc

$$x_1 < b$$

- x_1 leży bliżej szukanego pierwiastka, niż punkt startowy b
- kontynuując, można pokazać, że ciąg przybliżeń jest malejącym ciągiem ograniczonym z dołu poprzez $\alpha \to \mathrm{jest}$ ciągiem zbieżnym (do pewnej liczby q)
- przechodząc obustronnie do granicy $n \to \infty$, mamy

$$g = g - rac{f(g)}{f'(g)} \; \Rightarrow \; f(g) = \mathsf{o} \; \Rightarrow \; g = lpha$$

Błąd *n*–tego przybliżenia szacujemy z twierdzenia Lagrange'a o przyrostach

$$|x_n - \alpha| \le \left| \frac{f(x_n)}{m} \right|, \quad m = \inf_{x \in \langle a, b \rangle} |f'(x)|$$

Ze wzoru Taylora wynika

$$f(x_n) \equiv f(x_{n-1} + (x_n - x_{n-1}))$$

= $f(x_{n-1}) + f'(x_{n-1})(x_n - x_{n-1}) + \frac{1}{2}f''(\xi_{n-1})(x_n - x_{n-1})^2$

co po uwzględnieniu wzoru Newtona prowadzi do

$$f(x_{n-1}) + f'(x_{n-1})(x_n - x_{n-1}) = 0$$

Stad wynika

$$|f(x_n)| \leqslant \frac{1}{2}M(x_n - x_{n-1})^2, M = \sup_{x \in \langle a,b \rangle} |f''(x)|$$

czyli również

$$|\alpha - \mathbf{x}_n| \leqslant \frac{1}{2} \frac{M}{m} (\mathbf{x}_n - \mathbf{x}_{n-1})^2 = \frac{M}{2m} \left[\frac{f(\mathbf{x}_n)}{f'(\mathbf{x}_n)} \right]^2$$

Podobnie, jak w przypadku metody regula falsi, dla x_n dostatecznie bliskich α możemy korzystać z oszacowania

$$|\alpha - \mathbf{x}_n| \approx \left| \frac{f(\mathbf{x}_{n-1})}{f'(\mathbf{x}_{n-1})} \right|$$

Metoda Newtona - przykład

X	f(x)	х	f(x)
$X_0 = 2$	3	$x_0 = 1$	-4
$x_1 = 1,76923$	0,36048	$x_1 = 3$	24
$X_2 = 1,73292$	0,00823	$X_2=2,2$	5,88800
$X_3 = 1,73205$	-0,000008	$x_3 = 1,83015$	0,98899
		$x_4 = 1,7578$	0,24782
		$X_5 = 1,73195$	-0,00095

Twierdzenie

Jeżeli mamy przedział $\langle a, b \rangle$ taki, że:

- i. f(a) i f(b) mają przeciwne znaki,
- ii. f'' jest ciągła i nie zmienia znaku na $\langle a, b \rangle$,
- iii. styczne do krzywej y = f(x) poprowadzone w punktach o odciętych a i b przecinają oś OX wewnątrz przedziału $\langle a, b \rangle$,

wówczas równanie f(x) = o ma dokładnie jeden pierwiastek α w przedziale $\langle a,b \rangle$ i metoda Newtona jest zbieżna do α dla dowolnego punktu startowego $x_o \in \langle a,b \rangle$.

Metoda Newtona - przykład

Metodę Newtona można zastosować np. do obliczania pierwiastka kwadratowego z liczby dodatniej c. Jest on bowiem rozwiązaniem równania

$$X^2-C=0$$

Na podstawie wzoru Newtona otrzymujemy (dla $x_n \neq 0$):

$$X_{n+1} = X_n - \frac{X_n^2 - c}{2X_n} = \frac{1}{2} \left(X_n + \frac{c}{X_n} \right)$$

Warunki twierdzenia są spełnione na przedziale $\langle a,b \rangle$ takim, że

$$0 < a < c^{1/2}, \ b > \frac{1}{2} \left(a + \frac{c}{a} \right)$$

Metoda Newtona - implementacja

```
def newton(f,Df,xo,epsilon,maxit):
    xn = x0
    for n in range(o,maxit):
        fxn = f(xn)
        if abs(fxn) < epsilon:</pre>
            print('Found solution after',n,'iterations.')
            return xn
        Dfxn = Df(xn)
        if Dfxn == 0:
            print('Zero derivative. No solution found.')
            return None
        xn = xn - fxn/Dfxn
    print('Exceeded maximum iterations. No solution found.')
    return None
```

Metoda iteracyjna Eulera

Niech x_n będzie aktualnym przybliżeniem poszukiwanego pierwiastka

$$f(x_n + h) = 0$$

gdzie h jest pewną małą liczbą. Rozwijając funkcję f(x) w szereg Taylora wokół punktu x_n i pomijając wyrazy rzędu wyższego niż drugi otrzymamy

$$f(x_n) + hf'(x_n) + \frac{h^2}{2}f''(x_n) = 0, h = x - x_n$$

Jeśli $[f'(x_n)]^2 \ge 2f(x_n)f''(x_n)$, to powyższy trójmian kwadratowy ma pierwiastki rzeczywiste

$$h_n=-rac{f'(x_n)}{f''(x_n)}\left(1\pm\sqrt{1-2rac{f(x_n)f''(x_n)}{[f'(x_n)]^2}}
ight)$$

Metoda iteracyjna Eulera

Biorąc mniejszy z nich, znajdziemy

$$x_{n+1} = x_n - u(x_n) \frac{2}{1 + \sqrt{1 - 2t(x_n)}}$$
$$u(x) = \frac{f(x)}{f'(x)}, \quad t(x) = \frac{f(x)f''(x)}{[f'(x)]^2}$$

Metoda iteracyjna Eulera

W przypadku $|t|\ll$ 1 możemy jeszcze skorzystać z przybliżenia

$$\frac{2}{1-\sqrt{2t(x_n)}}\simeq 1+\frac{1}{2}t(x_n)$$

Wówczas

$$X_{n+1} = X_n - u(X_n) \left(1 + \frac{1}{2}t(X_n)\right)$$

Rząd metod

Definicja

Mówimy, że metoda jest rzędu p, jeżeli istnieje stała K taka, że dla dwu kolejnych przybliżeń x_k i x_{k+1} zachodzi nierówność

$$|\mathbf{x}_{k+1} - \alpha| \leq K|\mathbf{x}_k - \alpha|^p$$
.

Rząd metod

Rząd
1
1
$\frac{1}{2}(1+\sqrt{5})\simeq 1,62$
\simeq 1, 8
2
3

Definicja

Liczbę α nazywamy r-krotnym pierwiastkiem równania f(x) = 0, jeżeli

$$0 < |g(\alpha)| < \infty, \ g(x) = \frac{f(x)}{(x - \alpha)^r}$$

- metoda bisekcji, regula falsi i metoda siecznych mogą być stosowane do pierwiastków o krotności nieparzystej (f(a)f(b) < 0)
- rząd metody siecznych obniża się
- metoda Newtona może być stosowana do wszystkich krotności, jeśli tylko istnieje odpowiednie lewo- lub prawostronne sąsiedztwo szukanego pierwiastka, w którym znak f'(x) i f''(x) pozostaje stały
- rząd metody Newtona obniża się

Jeżeli krotność pierwiastka r jest znana, to metodę Newtona można zmodyfikować w sposób następujący:

$$x_{n+1} = x_n + rh_n, \ h_n = -\frac{f(x_n)}{f'(x_n)}$$

Jeżeli krotność nie jest znana, postępujemy inaczej. Zakładamy, że f(x) ma r-tą pochodną ciągłą w otoczeniu pierwiastka α o krotności r. Wówczas

$$f^{(i)}(\alpha) = 0, i < r$$

i ze wzoru Taylora wynika

$$f(x) = \frac{1}{r!}(x - \alpha)^r f^{(r)}(\xi)$$

$$f'(x) = \frac{1}{(r-1)!}(x - \alpha)^{r-1} f^{(r)}(\xi')$$

przy czym ξ i ξ' leżą w przedziale między x i α .

Pierwiastki wielokrotne

Niech

$$u(x) = \frac{f(x)}{f'(x)}$$

Zachodzi

$$\lim_{\mathsf{x}\to\alpha}\frac{\mathsf{u}(\mathsf{x})}{\mathsf{x}-\alpha}=\frac{\mathsf{1}}{\mathsf{r}},$$

czyli równanie u(x) = o ma pierwiastek pojedynczy α . Równanie u(x) = o można już rozwiązać wszystkimi omówionymi metodami.

Pierwiastki wielokrotne

Metoda Newtona daje w tym przypadku

$$x_{n+1} = x_n - \frac{u(x_n)}{u'(x_n)}, \quad u'(x_n) = 1 - \frac{f''(x_n)}{f'(x_n)}u(x_n)$$

natomiast wzór siecznych prowadzi do

$$X_{n+1} = X_n - u(X_n) \frac{X_n - X_{n-1}}{u(X_n) - u(X_{n-1})}$$

Definicja

Dla ciągu $\{x_n\}_{n=0}^{\infty}$ różnicą skończoną w przód nazywamy

$$\Delta x_n = x_{n+1} - x_n, \quad n \geqslant 0.$$

Różnice wyższego rzędu określone są wzorem rekurencyjnym:

$$\Delta^k X_n = \Delta^{k-1}(\Delta X_n), \ k \geqslant 2.$$

Twierdzenie

Niech ciąg $\{x_n\}_{n=0}^{\infty}$ zbiega liniowo do granicy α i niech $\alpha-x_n\neq 0$ dla wszystkich $n\geqslant 0$. Jeśli istnieje liczba rzeczywista A taka, że |A|<1 i

$$\lim_{n\to\infty}\frac{\alpha-X_{n+1}}{\alpha-X_n}=A,$$

wówczas ciąg $\{y_n\}_{n=0}^{\infty}$ zdefiniowany jako

$$y_n = x_n - \frac{(\Delta x_n)^2}{\Delta^2 x_n} = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}$$

zbiega do α szybciej niż $\{x_n\}_{n=0}^{\infty}$, tzn.

Twierdzenie (c.d.)

$$\lim_{n\to\infty}\frac{\alpha-y_n}{\alpha-x_n}=0.$$

- technika ta nazywana jest procesem Δ^2 Aitkena
- w połączeniu z metodą Newtona otrzymujemy algorytm Steffensena
- stosuje się go do poprawienia zbieżności metody Newtona w przypadku pierwiastków wielokrotnych

Równania algebraiczne

$$w(z) \equiv a_0 z^n + a_1 z^{n-1} + \ldots + a_{n-1} z + a_n = 0$$

- dokładnie n pierwiastków
- pierwiastki mogą być rzeczywiste lub zespolone
- jeśli współczynniki a_0 , a_1 , ..., a_n są rzeczywiste, to ewentualne pierwiastki zespolone występują w parach sprzężonych
- pierwiastków rzeczywistych wielomianów z rzeczywistymi współczynnikami możemy szukać opisanymi wcześniej metodami
- jeśli zależy nam na znalezieniu pierwiastków zespolonych, lepiej używać metod dedykowanych wielomianom

- bardzo popularna
- pozwala wyliczyć pierwiastki rzeczywiste i zespolone, pojedyncze i wielokrotne
- wymaga arytmetyki zespolonej

Aby znaleźć pierwiastek wielomianu $w_n(z)$ stopnia n, przybliżamy go wielomianem

$$r(z) = a(z - p_1)(z - p_2)^{n-1}$$

Parametry a, p_1 i p_2 dobieramy tak, aby

$$W_n(z_k) = r(z_k), \ W'_n(z_k) = r'(z_k), \ W''_n(z_k) = r''(z_k)$$

Jeśli z_k jest pewnym przybliżeniem pojedynczego pierwiastka α , wówczas parametr p_1 będzie jego następnym oszacowaniem.

Zauważmy, że dla

$$\mathbf{w}(\mathbf{z}) = (\mathbf{z} - \alpha_1)(\mathbf{z} - \alpha_2) \dots (\mathbf{z} - \alpha_n)$$

zachodzi

$$S_1 \equiv \frac{W'(z)}{W(z)} = \sum_{i=1}^n \frac{1}{z - \alpha_i}$$

Różniczkując obustronnie otrzymamy

$$-\frac{\mathrm{d}S_1(z)}{\mathrm{d}z} \equiv S_2(z) = \left(\frac{w'(z)}{w(z)}\right)^2 - \frac{w''(z)}{w(z)} = \sum_{i=1}^n \frac{1}{(z-\alpha_i)^2}$$

Stąd

$$S_1(z_k) = \frac{1}{z_k - p_1} + \frac{(n-1)}{z_k - p_2}$$

$$S_2(z_k) = \frac{1}{(z_k - p_1)^2} + \frac{(n-1)}{(z_k - p_2)^2}$$

czyli (
$$p_1 = z_{k+1}$$
)

$$z_{k+1} = z_k - \frac{nw(z_k)}{w'(z_k) \pm \sqrt{H(z_k)}}$$

$$H(z_k) = (n-1)^2 [w'(z_k)]^2 - n(n-1)w(z_k)w''(z_k)$$

- znak we wzorze iteracyjnym wybieramy tak, aby poprawka $|z_{k+1} z_k|$ była jak najmniejsza
- dla wielomianów, które mają tylko pierwiastki rzeczywiste, metoda Laguerre'a jest globalnie zbieżna
- w przypadku wielomianów z pierwiastkami zespolonymi zbieżności dla dowolnego punktu startowego nie można zagwarantować, ale w praktyce w większości przypadków metoda działa dobrze
- w szczególności dla punktu startowego $z_0 = o$ metoda pozwoli zazwyczaj znaleźć pierwiastek o najmniejszym module
- rząd metody Laguerre'a wynosi 3 dla pierwiastków pojedynczych i 1 dla wielokrotnych

Macierz towarzysząca (ang. companion matrix)

 wartości własne macierzy A to pierwiastki wielomianu charakterystycznego

$$w(x) = \det[\mathbf{A} - x\mathbf{I}]$$

- są lepsze sposoby na numeryczne wyznaczenie wartości własnych
- problem można jednak odwrócić i poszukać takiej macierzy, której wartości własne byłyby pierwiastkami interesującego nas wielomianu

Macierz towarzysząca

Wystarczy, że weźmiemy

Macierz towarzysząca

Łatwo sprawdzić, że wielomian charakterystyczny macierzy A ma postać

$$x^{n} + \frac{a_{n-1}}{a_{n}}x^{n-1} + \frac{a_{n-2}}{a_{n}}x^{n-2} + \cdots + \frac{a_{1}}{a_{n}}x + \frac{a_{0}}{a_{n}} = 0$$

a więc rzeczywiście jest równoważny interesującemu nas wielomianowi.

Liczba pierwiastków rzeczywistych

Aby oszacować liczbę pierwiastków rzeczywistych wielomianu w(x) stopnia n, tworzymy ciąg

$$W(x), W'(x), W''(x), \dots, W^{(n)}(x)$$

Oznaczmy przez $M(x_0)$ liczbę zmian znaku w ciągu w punkcie x_0 .

Twierdzenie

(Fouriera) Jeżeli w(x) jest wielomianem stopnia n określonym w przedziale (a,b) oraz $w(a)w(b) \neq 0$, to liczba zer wielomianu w tym przedziale wynosi

$$M(a) - M(b)$$
,

lub jest od tej liczby mniejsza o liczbę parzystą.

Liczba pierwiastków rzeczywistych - przykład

Niech

$$W(X) = X^3 - 2X^2 - 5X + 5$$

Tworzymy ciąg pochodnych:

$$W'(x) = 3x^2 - 4x - 5$$

 $W''(x) = 6x - 4$
 $W'''(x) = 6$

Liczba pierwiastków rzeczywistych - przykład

Х	$-\infty$	∞	0	1	3
W	_	+	+	_	+
w′	+	+	_	_	+
w"	_	+	_	+	+
w'''	+	+	+	+	+
M(x)	3	0	2	1	0

Liczba pierwiastków rzeczywistych - przykład

Ponieważ

$$M(-\infty) - M(\infty) = 3$$

z twierdzenia Fouriera wynika, że równanie w(x) = o ma jeden lub trzy pierwiastki rzeczywiste. Ponadto

$$M(-\infty) - M(0) = 1$$

 $M(0) - M(1) = 1$
 $M(1) - M(3) = 1$

czyli wielomian ma trzy pierwiastki, po jednym w każdym z przedziałów $(-\infty, 0)$, (0, 1) i (1, 3).

Układy równań nieliniowych

Poszukujemy rozwiązania $\vec{\alpha} \in \mathbb{R}^n$ równania

$$F(\vec{x}) = 0$$

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

- gdy odwzorowanie F jest afiniczne, np. $F(\vec{x}) = \mathbf{A}\vec{x} + \vec{b}$, uzyskujemy układ równań liniowych
- jeżeli F jest odwzorowaniem nieliniowym, rozwiązanie układu $F(\vec{x}) = 0$ komplikuje się
- brak ogólnego kryterium istnienia rozwiązania
- będziemy a priori zakładać, że rozwiązanie takie istnieje

Konstruujemy ciąg punktów

$$\vec{X}^{(0)}, \ \vec{X}^{(1)}, \ \vec{X}^{(2)}, \ \dots$$

zbieżny do rozwiązania $\vec{\alpha}$ układu $F(\vec{x})=$ 0. Jeżeli można wskazać odwzorowanie G takie, że

$$\vec{X}^{(i)} = G(\vec{X}^{(i-1)}, \dots, \vec{X}^{(i-p)})$$

to metodę iteracyjną nazywamy metodą stacjonarną *p*–punktową. Jeżeli natomiast *G* ulega modyfikacjom podczas iteracji, to mówimy o metodzie niestacjonarnej (zmiennego operatora).

Definicja

Niech $G: D \subset \mathbb{R}^n \times \ldots \times \mathbb{R}^n \to \mathbb{R}^n$. Punkt $\vec{\alpha}$ nazywamy punktem przyciągania metody iteracyjnej, jeżeli istnieje takie otoczenie $U_{\vec{\alpha}}$ tego punktu, że obierając punkty $\vec{x}^{(-p+1)}, \ldots, \vec{x}^{(0)}$ z tego otoczenia uzyskamy ciąg punktów $\vec{x}^{(1)}, \vec{x}^{(2)}, \ldots \in D$, zbieżny do $\vec{\alpha}$.

Definicja

Odwzorowanie $G: \mathbb{R}^n \to \mathbb{R}^n$ nazywamy różniczkowalnym w sensie Frécheta w punkcie \vec{x} , jeżeli istnieje taka macierz $A: \mathbb{R}^n \to \mathbb{R}^n$, że

$$\lim_{\vec{h}\to 0}\frac{\|G(\vec{x}+\vec{h})-G(\vec{x})-A\vec{h}\|}{\|\vec{h}\|}=0$$

przy dowolnym sposobie wyboru wektorów $\vec{h} \to 0$. Macierz A nazywamy pochodną Frécheta odwzorowania G w punkcie \vec{x} i oznaczamy ją przez $G'(\vec{x})$.

Twierdzenie

Jeżeli pochodna Frécheta odwzorowania $G: \mathbb{R}^n \to \mathbb{R}^n$ w punkcie $\vec{\alpha}$ ma promień spektralny $\varphi(G'(\vec{\alpha})) = \beta < 1$ oraz $G(\vec{\alpha}) = \vec{\alpha}$, to $\vec{\alpha}$ jest punktem przyciągania metody iteracyjnej $\vec{x}^{(i+1)} = G(\vec{x}^{(i)})$.

• pozwala uzasadnić lokalną zbieżność wielu metod iteracyjnych

Metoda Newtona

Twierdzenie

Niech funkcja $F(\vec{x})$ będzie różniczkowalna w sensie Frécheta w pewnym otoczeniu $K(\vec{\alpha},r)$ punktu $\vec{\alpha}$, w którym $F(\vec{\alpha})=0$. Załóżmy, że $F'(\vec{x})$ jest ciągła w punkcie $\vec{\alpha}$, a $F'(\vec{\alpha})$ jest nieosobliwa. Wówczas $\vec{\alpha}$ jest punktem przyciągania metody Newtona

$$\vec{x}^{(i+1)} = \vec{x}^{(i)} - [F'(\vec{x}^{(i)})]^{-1}F(\vec{x}^{(i)})$$

Metoda Newtona

Twierdzenie

(c.d.) Ponadto, jeżeli ciągłość pochodnej w punkcie \vec{lpha} jest typu Höldera

$$||F'(\vec{x}) - F'(\vec{\alpha})|| \le H||\vec{x} - \vec{\alpha}||^p, \quad \vec{x} \in K(\vec{\alpha}, r), \quad p \in (0, 1)$$

to

$$\|\vec{\mathbf{x}}^{(i+1)} - \vec{\alpha}\| \leqslant C \|\vec{\mathbf{x}}^{(i)} - \vec{\alpha}\|^{1+p},$$

gdzie
$$C = 4H||[F'(\vec{\alpha})]^{-1}||.$$

Przybliżamy F odwzorowaniem afinicznym w taki sposób, aby

$$F(\vec{y}^{(j)}) \simeq \mathbf{A} \vec{y}^{(j)} + \vec{b}, \;\; j = 0, 1, \ldots, n$$

a następnie przyjmujemy rozwiązanie liniowego układu równań

$$\mathbf{A}\vec{\mathbf{x}} + \vec{\mathbf{b}} = \mathbf{0}$$

jako przybliżenie poszukiwanego pierwiastka.

Rozwiązaniem tego układu będzie

$$\vec{x} = -\mathbf{A}^{-1}\vec{b} = -\mathbf{A}^{-1}(F(\vec{y}) - \mathbf{A}\vec{y}) = \vec{y} - \mathbf{A}^{-1}F(\vec{y})$$

Niech $\Delta \mathbf{Y}$ będzie macierzą o kolumnach $\vec{y}^{(1)} - \vec{y}^{(0)}$, $\vec{y}^{(2)} - \vec{y}^{(2)}$, ..., $\vec{y}^{(n)} - \vec{y}^{(n-1)}$, a $\Delta \mathbf{F}$ macierzą o kolumnach $F(\vec{y}^{(1)}) - F(\vec{y}^{(0)})$, $F(\vec{y}^{(2)}) - F(\vec{y}^{(2)})$, ..., $F(\vec{y}^{(n)}) - F(\vec{y}^{(n-1)})$. Wówczas

$$\Delta \mathbf{F} = \mathbf{A} \Delta \mathbf{Y}$$

- 1. wybieramy punkty $\vec{x}^{(-n)}$, $\vec{x}^{(-n+1)}$, ..., $\vec{x}^{(0)}$ i przyjmujemy i = 0
- 2. obliczamy $\Delta \mathbf{F}^{(i)}$ oraz $\Delta \mathbf{Y}^{(i)}$ przyjmując

$$\vec{y}^{(0)} = \vec{x}^{(i-n)}, \ \vec{y}^{(1)} = \vec{x}^{(i-n+1)}, \ \dots, \ \vec{y}^{(n)} = \vec{x}^{(i)}$$

3. wyznaczamy $\vec{x}^{(i+1)}$ ze wzoru

$$\vec{\mathbf{x}}^{(i+1)} = \vec{\mathbf{x}}^{(i)} - \Delta \mathbf{Y}^{(i)} [\Delta \mathbf{F}^{(i)}]^{-1} F(\vec{\mathbf{x}}^{(i)})$$

4. zwiększamy i o jeden i wracamy do kroku 2

- metodę można stosować, o ile tylko macierz $\Delta \mathbf{F}^{(i)}$ nie jest osobliwa
- w przeciwnym razie musimy inaczej wybierać punkty $\vec{y}^{(j)}$, np.

$$\vec{y}^{(n)} = \vec{x}^{(i)}$$

 $\vec{y}^{(n-j)} = \vec{x}^{(i)} + h\vec{e}^{(j)}, j = 1, 2, ..., n$

gdzie h jest pewną stałą, a $\vec{e}^{(j)}$ to wektory przestrzeni \mathbb{R}^n

• w niektórych przypadkach niemożliwe takie dobranie punktów $\vec{y}^{(j)}$, aby macierz była nieosobliwa

Metody numeryczne

Wykład 5 - Interpolacja

Janusz Szwabiński

Plan wykładu

1. Zagadnienie interpolacyjne

2. Interpolacja wielomianowa

3. Interpolacja wymierna

Zagadnienie interpolacyjne

$$F(x_i) = y_i, i = 0, 1, ..., n$$

- x_i węzły interpolacji
- $y_i \equiv f(x_i)$ wartości funkcji interpolowanej
- F(x) funkcja interpolująca

Interpolacja wielomianowa

 Π_n – zbiór wielomianów stopnia $\leq n$

Twierdzenie

Dla dowolnych n+1 punktów węzłowych $(x_i,y_i),\ i=0,1,\ldots,n,\ x_i\neq x_k$ dla $i\neq k$, istnieje dokładnie jeden wielomian $W_n\in\Pi_n$ taki, że

$$W_n(x_i) = y_i, i = 0, 1, ..., n.$$

⇒ interpolacja wielomianowa jest zagadnieniem jednoznacznym!

Interpolacja wielomianowa

Dowód.

Mamy n+1 punktów węzłowych (x_i,y_i) . Szukamy wielomianu interpolującego w postaci

$$W_n(x) = a_0 + a_1 x + \ldots + a_n x^n, \ W_n(x_i) = y_i, \ i = 0, \ldots, n$$

Stąd

$$a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0$$

$$\vdots$$

$$a_0 + a_1 x_n + \dots + a_n x_n^n = y_n$$

Interpolacja wielomianowa

Dowód.

Macierz układu (niewiadomymi są współczynniki a_i !)

$$A = \begin{pmatrix} 1 & X_{0} & X_{0}^{2} & \dots & X_{0}^{n} \\ 1 & X_{1} & X_{1}^{2} & \dots & X_{1}^{n} \\ & \vdots & & & \\ 1 & X_{n} & X_{n}^{2} & \dots & X_{n}^{n} \end{pmatrix}$$

- \Rightarrow det $A \neq 0$ (wyznacznik Vandermonde'a z $x_i \neq x_k$ dla $i \neq k$)
- ⇒ układ równań jest układem Cramera

Interpolacja wielomianowa

Dowód.

⇒ istnieje dokładnie jedno rozwiązanie

$$a_i = \frac{\det A_i}{\det A} = \frac{1}{\det A} \sum_{j=0}^n y_j A_{ij}$$

gdzie A_{ij} są kolejnymi dopełnieniami algebraicznymi elementów *i*–tej kolumny macierzy A

$$W_n(x) = a_0 + \ldots + a_n x^n$$
 $\begin{cases} W_n(x) = y_0 \Phi_0(x) + \ldots + y_n \Phi_n(x) \end{cases}$ $A_i = \frac{1}{\det A} \sum_{j=0}^n y_j A_{ij}$ $A_i = \frac{1}{\det A} \sum_{j=0}^n y_j A_{ij}$

Ponieważ

$$W_n(x_i) = y_0 \Phi_0(x_i) + y_1 \Phi_1(x_i) + \ldots + y_n \Phi_n(x_i) \equiv y_i$$

$$\Rightarrow \Phi_i(x_j) = \begin{cases} o, & \text{gdy } i \neq j \\ 1, & \text{gdy } i = j \end{cases}$$

Niech

$$\Phi_i(x) = \lambda(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)$$

Z warunku $\Phi_i(x_i) = 1$ otrzymujemy

$$\Phi_i(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}$$

Stąd

$$W_n(x) = \sum_{j=0}^n y_j \frac{\omega_n(x)}{(x - x_j) \frac{\omega_n(x)}{x - x_j}} \Big|_{x = x_j} = \sum_{j=0}^n y_j \frac{\omega_n(x)}{(x - x_j)\omega'_n(x_j)}$$
$$\omega_n(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

Z twierdzenia o jednoznaczności

 \Rightarrow wielomian Lagrange'a jest jedynym wielomianem interpolacyjnym stopnia $\leq n$

Przykład

Szukamy wielomianu interpolacyjnego, który przechodzi przez następujące punkty wezłowe:

$$W_3(x) = \frac{3(x-1)(x-2)(x-4)}{(-2-1)(-2-2)(-2-4)} + \frac{(x+2)(x-2)(x-4)}{(1+2)(1-2)(1-4)}$$
$$-\frac{-3(x+2)(x-1)(x-4)}{(2+2)(2-1)(2-4)} + \frac{8(x+2)(x-1)(x-4)}{(4+2)(4-1)(4-2)}$$
$$= \frac{2}{3}x^3 - \frac{3}{2}x^2 - \frac{25}{6}x + 6$$

```
def lagrange(x.xData.vData):
    n = len(xData)
    for i in range(n):
        W = 1.0
        for j in range(n):
            if i != j:
                w = w*(x-xData[j])/(xData[i]-xData[j])
        y = y + w*yData[i]
    return v
```

$$W_{i_0,i_1,\ldots,i_k}(x)$$
 - wielomian stopnia k przechodzący przez (x_{i_j},y_{i_j}) , $j=0,1,\ldots,k$

Twierdzenie

Wielomian W_{io.in....in} daje się przedstawić wzorem rekurencyjnym

$$W_{i_0,i_1,...,i_k}(x) = \frac{(x-x_{i_0})W_{i_1,...,i_k}(x) - (x-x_{i_k})W_{i_0,...,i_{k-1}}(x)}{x_{i_k}-x_{i_0}}$$

Dowód.

Niech P(x) będzie prawą stroną powyższego równania. Stopień P(x) jest $\leq k$. Ponadto, zgodnie z definicją wielomianów $W_{i_1,\dots,i_k}(x)$ i $W_{i_0,\dots,i_{k-1}}(x)$ mamy

$$P(x_{i_0}) = W_{i_0,...,i_{k-1}}(x_{i_0}) = y_{i_0}, \ P(x_{i_k}) = W_{i_1,...,i_k}(x_{i_k}) = y_{i_k}$$
 (1)

a dla i = 1, 2, ..., k - 1

$$P(x_{i_j}) = \frac{(x_{i_j} - x_{i_0})y_{i_j} - (x_{i_j} - x_{i_k})y_{i_j}}{x_{i_k} - x_{i_0}} = y_{i_j}$$

$$P(x)$$
 ma zatem cechy $W_{i_0,i_1,...,i_n}(x)$

Przykład

Xi	0	1	3
Уi	1	3	2

Schemat Neville'a dla $W_{0,1,2}(2)$ ma postać:

O 1
$$W_{0,1}(2) = \frac{(2-0)*3-(2-1)*1}{1-0} = 5$$
1 3
$$W_{1,2}(2) = \frac{(2-1)*2-(2-3)*3}{3-1} = \frac{5}{2}$$

Twierdzenie (Rolle'a)

Niech:

- 1. funkcja będzie określona na przedziale domkniętym < a, b >;
- 2. istnieje pochodna skończona f'(x) przynajmniej w przedziale otwartym (a,b);
- 3. na końcach przedziału funkcja przyjmuje wartości f(a) = f(b). Wówczas między a i b można znaleźć taki punkt c (a < c < b), że

$$f'(c) = 0.$$

Niech f(x) będzie funkcją n+1 razy różniczkowalną oraz $\epsilon(x)=W_n(x)-f(x)$:

Twierdzenie

$$|\epsilon(\mathbf{x})| \leqslant \frac{M_{n+1}}{(n+1)!} |\omega_n(\mathbf{x})|$$

gdzie

$$M_{n+1} = \sup_{x \in \langle a,b \rangle} |f^{(n+1)}(x)|$$

Dowód.

Wprowadźmy funkcję pomocniczą (K - pewna stała)

$$\phi(u) = W_n(u) - f(u) + K(u - x_0)(u - x_1) \dots (u - x_n)$$

$$\phi(\mathbf{x}_i) = \mathbf{0}, \quad i = \mathbf{0}, 1, \dots, n$$

Współczynnik K dobieramy tak, aby pierwiastkiem funkcji $\phi(u)$ był również punkt \tilde{x} , różny od węzłów interpolacji:

$$K = rac{f(ilde{x}) - W_n(ilde{x})}{\omega_n(ilde{x})} \ (\omega_n(ilde{x})
eq o dla ilde{x}
eq x_i)$$

Dowód.

 $\phi(u)$ ma w sumie n+2 miejsc zerowych $x_0, x_1, \ldots, x_n, \tilde{x}$. Twierdzenia Rolle'a:

- $\Rightarrow \phi'(u)$ ma w każdym z podprzedziałów położonych między pierwiastkami co najmniej jedno miejsce zerowe
- \Rightarrow w przedziale (min(x, x_0), max(x, x_n)) jest co najmniej n + 1 miejsc zerowych $\phi'(u)$
- \Rightarrow co najmniej *n* miejsc zerowych drugiej pochodnej $\phi''(u)$

:

Dowód.

 \Rightarrow istnieje co najmniej jeden punkt ξ w przedziale (min(x, x_0), max(x, x_n)) taki, że $\phi^{(n+1)}(\xi) = 0$

Ponieważ

$$W_n^{(n+1)}(x) = 0$$

 $\omega_n^{(n+1)}(x) = (n+1)!$

więc

$$\phi^{(n+1)}(u) = -f^{(n+1)}(u) + K(n+1)! \Rightarrow K = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

Dowód. Stąd wynika

$$f(x) - W_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_n(x),$$

zatem

$$|\epsilon(\mathbf{x})| \leqslant \frac{M_{n+1}}{(n+1)!} |\omega_n(\mathbf{x})|,$$

gdzie

$$M_{n+1} = \sup_{x \in \langle a,b \rangle} |f^{(n+1)}(x)|$$

Wzór interpolacyjny Newtona

 wzór Lagrange'a i metoda Neville'a pozwalają wyznaczyć wartość wielomianu w punkcie

• niepraktyczne, jeśli punktów jest dużo

Definicja

Ilorazami różnicowymi pierwszego rzędu nazywamy wyrażenia

$$f[x_{0}; x_{1}] = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$f[x_{1}; x_{2}] = \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}}$$

$$\vdots$$

$$f[x_{n-1}; x_{n}] = \frac{f(x_{n}) - f(x_{n-1})}{x_{n} - x_{n-1}}$$

Definicja

Ilorazami różnicowymi drugiego rzędu nazywamy wyrażenia

$$f[x_0; x_1; x_2] = \frac{f[x_1; x_2] - f[x_0; x_1]}{x_2 - x_0}$$

$$\vdots$$

$$f[x_{n-2}; x_{n-1}; x_n] = \frac{f[x_{n-1}; x_n] - f[x_{n-2}; x_{n-1}]}{x_n - x_{n-2}}$$

Definicja

Ilorazem różnicowym rzędu n nazywamy

$$f[x_i; x_{i+1}; \ldots; x_{i+n}] = \frac{f[x_{i+1}; \ldots; x_{i+n}] - f[x_i; x_{i+1}; \ldots; x_{i+n-1}]}{x_{i+n} - x_i}$$

dla
$$n = 1, 2, ...$$
 oraz $i = 0, 1, 2, ...$

Xi	$f(x_i)$	Ilorazy różnicowe				
		rzędu 1	rzędu 2	rzędu 3	rzędu 4	
Xo	$f(x_0)$	$f[x_0 \cdot x_1]$				
<i>X</i> ₁	$f(x_1)$) [NO, N1]	$f[x_0;x_1;x_2]$	Cr. 1		
X ₂	$f(x_2)$	$\int [X_1; X_2]$	$f[x_1; x_2; x_3]$	$\int [X_0; X_1; X_2; X_3]$	$f[x_0; x_1; x_2; x_3; x_4]$	
<i>X</i> ₃	$f(x_3)$	$f[x_2;x_3]$	$f[x_2; x_3; x_4]$	$f[x_0; x_1; x_2; x_3]$ $f[x_1; x_2; x_3; x_4]$		
X,	$f(x_{i})$	$f[x_3;x_4]$	- · · · ·			

Twierdzenie

$$W_n(x) = f(x_0) + f[x_0; x_1]\omega_0(x) + \ldots + f[x_0; \ldots; x_n]\omega_{n-1}(x),$$

przy czym
$$\omega_i(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_0) \dots (\mathbf{x} - \mathbf{x}_i)$$
.

Dowód.

Dla n = o twierdzenie jest prawdziwe, ponieważ

$$W_{o}(x) \equiv f(x_{o}).$$

Załóżmy, że jest ono prawdziwe dla pewnego k-1> o. Różnica $W_k(x)-W_{k-1}(x)$ jest wielomianem, który można przedstawić w postaci

$$W_k(x) - W_{k-1}(x) = A(x - x_0) \dots (x - x_{k-1}),$$

gdzie A jest współczynnikiem przy najwyższej potędze x wielomianu $W_k(x)$.

Dowód.

Według założenia indukcyjnego, najwyższymi współczynnikami wielomianów $W_{0,1,\ldots,k-1}$ oraz $W_{1,\ldots,k}$ są odpowiednio $f[x_0,\ldots,x_{k-1}]$ i $f[x_1,\ldots,x_k]$. Ze wzoru Neville'a wynika

$$W_k(x) = \frac{(x-x_0)W_{1,\dots,k}(x) - (x-x_k)W_{0,\dots,k-1}(x)}{x_k - x_0},$$

zatem

$$A = \frac{f[x_1, \ldots, x_k] - f[x_0, \ldots, x_{k-1}]}{x_k - x_0} = f[x_0, \ldots, x_k].$$

Przykład

Xi	0	2	3	4	6
Уi	1	3	2	5	7

Xi	$f(x_i)$	$f[x_i; x_{i+1}]$	$f[x_i; x_{i+1}; x_{i+2}]$	$f[x_i;\ldots;x_{i+3}]$	$f[x_i;\ldots;x_{i+4}]$
0	1				
		1	2		
2	3	-1	$-\frac{2}{3}$	2	
3	2	-1	2	3	- <u>2</u>
		3		$-\frac{2}{3}$	9
4	5		$-\frac{2}{3}$	3	
		1	,		
6	7				

$$W_4(x) = 1 + 1(x - 0) - \frac{2}{3}(x - 0)(x - 2)$$

$$+ \frac{2}{3}(x - 0)(x - 2)(x - 3)$$

$$- \frac{2}{9}(x - 0)(x - 2)(x - 3)(x - 4)$$

$$= -\frac{2}{9}x^4 + \frac{8}{3}x^3 - \frac{88}{9}x^2 + \frac{35}{3}x + 1$$

Wzór Newtona - implementacja

```
n = len(x)-1
W = np.copv(v)
for i in range(1.n+1):
     for i in range(n.i-1.-1):
         W[i]=(W[i]-W[i-1])/(x[i]-x[i-i])
\Rightarrow W zawiera potrzebne ilorazy różnicowe w kolejności W[o] = f(x_0),
    W[1] = f[x_0, x_1], \dots, W[n] = f[x_0, \dots, x_n]
Sprawdzenie (n = 2):
```

```
 \begin{split} i &= 1, \quad j = 2, \quad W[2] = \frac{y_2 - y_1}{x_2 - x_1} = f[x_1, x_2] \\ j &= 1, \quad W[1] = \frac{y_1 - y_0}{x_1 - x_0} = f[x_0, x_1] \\ i &= 2, \quad j = 2, \quad W[2] = \frac{f[x_1, x_2] - W[1]}{x_2 - x_0} = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = f[x_0, x_1, x_2] \end{split}
```

Wzór Newtona - współczynniki wielomianu

Chcemy zapisać wielomian interpolacyjny w postaci

$$W_n(x) = a_0 + a_1 x + \ldots + a_n x^n$$

Przykład (n = 2):

$$W(x) = f[x_0, x_1, x_2]x^2 + \{f[x_0, x_1] - f[x_0, x_1, x_2](x_1 + x_2)\}x + \{f(x_0) - f(x_0, x_1)x_0 + f[x_0, x_1, x_2]x_0x_1\}$$

Wzór Newtona - współczynniki wielomianu

```
a = np.copv(W)
for i in range(n):
     for i in range(n-1.i-1.-1):
          a[i]=a[i]-x[i-i]*a[i+1]
Sprawdzenie (n = 2):
 i = 0 j = 1 a[1] = f[x_0, x_1] - x_1 f[x_0, x_1, x_2]
    j = 0 a[0] = f(x_0) - x_0 \{f[x_0, x_1] - f[x_0, x_1, x_2]\}
 i = 1 j = 1 a[1] = f[x_0, x_1] - (x_0 + x_1)f[x_0, x_1, x_2]
 i = 2 a[2] = f[x_0, x_1, x_2]
```

Zbieżność procesów interpolacyjnych

Interpolacja wymierna

Mamy (n + 1) punktów węzłowych

$$(x_i, y_i = f(x_i)), i = 0, 1, ..., n$$

Wartość funkcji f(x) przybliżamy funkcją wymierną

$$\phi^{\mu,\nu}(x) \equiv \frac{P^{\mu}(x)}{Q^{\nu}(x)} = \frac{a_{0} + a_{1}x_{1} + \ldots + a_{\mu}x^{\mu}}{b_{0} + b_{1}x_{1} + \ldots + b_{\nu}x^{\nu}}$$

spełniającą warunek

$$\phi^{\mu,\nu}(x_i) = y_i, \ \ i = 0, 1, 2, \dots, n$$

Pułapka!

Na podstawie

$$\phi^{\mu,\nu}(x_i) = y_i, i = 0, 1, 2, ..., n$$

można wnioskować, że

$$P^{\mu}(x_i) - y_i Q^{\nu}(x_i) = 0, \quad i = 0, 1, \dots, \mu + \nu$$

określa współczynniki a_i, b_i

Pułapka!

Przykład Niech $\mu = \nu = 1$ oraz

$$a_{0} - b_{0} = 0$$
 $a_{0} + a_{1} - 2 * (b_{0} + b_{1}) = 0$
 $a_{0} + 2a_{1} - 2 * (b_{0} + 2b_{1}) = 0$

Pułapka!

Zakładając, że $b_1 = 1$, otrzymamy

$$b_0 = 0, a_0 = 0, a_1 = 2$$

czyli

$$\phi^{1,1}(x)=\frac{2x}{x}$$

 \Rightarrow funkcja $\phi^{1,1}(x)$ nie rozwiązuje zadania interpolacji

Odwrotności ilorazów różnicowych

Definicja

Odwrotnościami ilorazów różnicowych nazywamy wielkości

$$\varphi[\mathbf{x}_{i}; \mathbf{x}_{j}] = \frac{\mathbf{x}_{i} - \mathbf{x}_{j}}{\mathbf{y}_{i} - \mathbf{y}_{j}}$$

$$\varphi[\mathbf{x}_{i}; \mathbf{x}_{j}; \mathbf{x}_{k}] = \frac{\mathbf{x}_{j} - \mathbf{x}_{k}}{\varphi[\mathbf{x}_{i}; \mathbf{x}_{j}] - \varphi[\mathbf{x}_{i}; \mathbf{x}_{k}]}$$

$$\varphi[\mathbf{x}_{i}; \dots; \mathbf{x}_{l}; \mathbf{x}_{m}; \mathbf{x}_{n}] = \frac{\mathbf{x}_{m} - \mathbf{x}_{n}}{\varphi[\mathbf{x}_{i}; \dots; \mathbf{x}_{l}; \mathbf{x}_{m}] - \varphi[\mathbf{x}_{i}; \dots; \mathbf{x}_{l}; \mathbf{x}_{n}]}$$

przy czym niektóre z nich mogą być nieskończone ze względu na zerowanie się mianowników.

Interpolacja wymierna

Spełniona jest następująca własność:

$$\frac{P^{n}(x)}{Q^{n}(x)} = y_{o} + \frac{P^{n}(x)}{Q^{n}(x)} - y_{o} = y_{o} + \frac{P^{n}(x)}{Q^{n}(x)} - \frac{P^{n}(x_{o})}{Q^{n}(x_{o})}$$

$$= y_{o} + (x - x_{o}) \frac{P^{n-1}(x)}{Q^{n}(x)} = y_{o} + \frac{x_{i} - x_{o}}{\frac{Q^{n}(x)}{P^{n-1}(x)}}$$

Stąd wynika

$$\frac{Q^{n}(x_{i})}{P^{n-1}(x_{i})} = \frac{x_{i} - x_{o}}{y_{i} - y_{o}} = \varphi[x_{o}; x_{i}], \quad i = 1, 2, \dots, 2n$$

czyli

$$\frac{Q^{n}(x)}{P^{n-1}(x)} = \varphi[x_{0}; x_{1}] + \frac{Q^{n}(x)}{P^{n-1}(x)} - \frac{Q^{n}(x_{1})}{P^{n-1}(x_{1})}$$

$$= \varphi[x_{0}; x_{1}] + (x - x_{1}) \frac{Q^{n-1}(x)}{P^{n-1}(x)}$$

$$= \varphi[x_{0}; x_{1}] + \frac{x - x_{1}}{\frac{P^{n-1}(x)}{Q^{n-1}(x)}},$$

co prowadzi do

$$\frac{P^{n-1}(x_i)}{Q^{n-1}(x_i)} = \varphi[x_0; x_1; x_i], \quad i = 2, 3, \dots, 2n$$

Ostatecznie

$$\phi^{n,n}(x) = \frac{P^{n}(x)}{Q^{n}(x)} = y_{0} + \frac{x - x_{0}}{\frac{Q^{n}(x)}{P^{n-1}(x)}}$$

$$= y_{0} + \frac{x - x_{0}}{\varphi[x_{0}; x_{1}] + \frac{x - x_{1}}{\frac{P^{n} - 1(x)}{Q^{n-1}(x)}}}$$

$$= \cdots$$

 $\phi^{n,n}(x)$ można więc przedstawić w postaci następującego ułamka łańcuchowego:

$$\phi^{n,n}(x) = y_0 + \underline{x - x_0} / \overline{\varphi[x_0; x_1]} + \underline{x - x_1} / \overline{\varphi[x_0; x_1; x_2]} + \underline{x - x_2} / \overline{\varphi[x_0; x_1; x_2; x_3]} + \cdots + \underline{x - x_{2n-1}} / \overline{\varphi[x_0; x_1; \dots; x_{2n}]}$$

Przykład Mamy daną tabelę odwrotności ilorazów różnicowych:

Xi	Уi	$\varphi[x_0;x_i]$	$\varphi[\mathbf{x}_0; \mathbf{x}_1; \mathbf{x}_i]$	$\varphi[\mathbf{X}_0; \mathbf{X}_1; \mathbf{X}_2; \mathbf{X}_i]$
0	0			
1	-1	-1		
2	$-\frac{2}{3}$	-3	$-\frac{1}{2}$	
3	9	$\frac{1}{3}$	<u>3</u> 2	1/2

$$\phi^{2,1}(x) = 0 + \underline{x}/\overline{-1} + \underline{x-1}/\overline{-\frac{1}{2}} + \underline{x-2}/\overline{\frac{1}{2}} = \frac{x}{-1 + \frac{x-1}{-\frac{1}{2} + \frac{x-2}{2}}} = \frac{4x^2 - 9x}{-2x + 7}$$

Metody numeryczne

Wykład 6 - Interpolacja, część II

Janusz Szwabiński

Plan wykładu

1. Interpolacja trygonometryczna

- 2. Interpolacja funkcjami sklejanymi
 - 2.1 Interpolacja przedziałami liniowa
 - 2.2 Interpolacja funkcjami sklejanymi

Funkcje okresowe

Definicja

Funkcję $f:\mathbb{R} \to \mathbb{R}$ nazywamy okresową z okresem h> o, jeśli

$$f(x+h)=f(x)$$

dla każdego $x \in \mathbb{R}$

- \Rightarrow funkcja f jest określona jednoznacznie przez jej wartości dla $x \in <0, h)$
- \Rightarrow funkcja $\tilde{f} := f\left(\frac{hx}{2\pi}\right)$ ma okres 2π

Wielomiany trygonometryczne

Definicja

(Rzeczywistymi) Wielomianami trygonometrycznymi stopnia co najwyżej *n* nazywamy elementy zbioru

$$T_n^{\mathbb{R}} := \{ T(x) : T(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx), \ a_k, b_k \in \mathbb{R} \}$$

 $T_n^\mathbb{R}$ jest (2n+ 1) wymiarową przestrzenią wektorową nad \mathbb{R}

Wielomiany trygonometryczne

$$e^{ix} = \cos x + i \sin x \Rightarrow \begin{cases} \cos x = \frac{1}{2}(e^{ix} + e^{-ix}) \\ \sin x = -\frac{i}{2}(e^{ix} - e^{-ix}) \end{cases}$$

Stąd wynika

$$T(x) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$
$$= e^{-inx} \sum_{k=0}^{2n} c_k e^{ikx} = e^{-inx} P(x)$$

$$c_{n-k} = \frac{a_k + Ib_k}{2}, \quad c_{n+k} = \frac{a_k - Ib_k}{2}, \quad 1 \leqslant k \leqslant n, \quad c_n = \frac{a_0}{2}$$

Wielomiany trygonometryczne

Definicja

Elementy zbioru

$$P_{n-1}^{\mathbb{C}} := \{ P(x) : P(x) = \sum_{k=0}^{n-1} c_k e^{ikx}, c_k \in \mathbb{C} \}$$

nazywamy (zespolonymi) wielomianami trygonometrycznymi stopnia co najwyżej (n-1).

Interpolacja trygonometryczna

Twierdzenie

Dla dowolnych liczb zespolonych $y_k = f(x_k)$, k = 0, 1, ..., n-1, oraz parami różnych $x_k \in [0, 2\pi)$ istnieje dokładnie jeden wielomian trygonometryczny

$$P(x) = c_0 + c_1 e^{ix} + c_2 e^{2ix} + \ldots + c_{n-1} e^{(n-1)ix}$$

taki, że

$$P(x_k) = y_k$$

dla k = 0, 1, ..., n - 1.

Interpolacja trygonometryczna

Dowód.

Niech

$$\omega = e^{ix}$$
 $\omega_k = e^{ix_k} \ (\Rightarrow \omega_j \neq \omega_k \text{ dla } j \neq k, o \leqslant j, k \leqslant n-1)$
 $P(\omega) = c_0 + c_1\omega + \dots + c_{n-1}\omega^{n-1}$

Zagadnienie interpolacji tryg. jest więc równoważne znalezieniu wielomianu stopnia $\leqslant (n-1)$ takiego, że

$$P(\omega_k) = y_k, \ k = 0, 1, ..., n-1$$

Z twierdzenia o jednoznaczności interpolacji wielomianowej wynika, że istnieje jeden taki wielomian.

Interpolacja trygonometryczna - węzły równoodległe

Niech

$$\zeta_n = e^{\frac{2\pi i}{n}}, \ \ X_k = \frac{2\pi k}{n}, \ \ k = 0, \dots, n-1$$

Twierdzenie

Dla danych punktów węzłowych (x_k, y_k) , k = 0, ..., n - 1, współczynniki wielomianu trygonometrycznego

$$P(x) = \sum_{k=0}^{n-1} c_k e^{ikx}, \ \ x \in [0, 2\pi)$$

mają postać

$$c_k = \frac{1}{n} \sum_{l=1}^{n-1} y_l \zeta_n^{-kl}, \ l = 0, \dots, n-1$$

Interpolacja trygonometryczna - węzły równoodległe

Dowód.

Wystarczy pokazać, że powyższy wielomian rzeczywiście interpoluje dane. Mamy:

$$P(x_m) = \sum_{k=0}^{n-1} \frac{1}{n} \sum_{l=0}^{n-1} y_l \zeta_n^{-kl} e^{ikx_m} = \sum_{l=0}^{n-1} y_l \frac{1}{n} \sum_{k=0}^{n-1} \zeta^{k(m-l)}$$
$$= \sum_{l=0}^{n-1} y_l \delta_{ml} = y_m$$

dla
$$m = 0, \ldots, n-1$$

Interpolacja trygonometryczna - węzły równoodległe

Wnioski:

- \Rightarrow O(n) operacji potrzebnych do wyliczenia c_k
- \Rightarrow $O(n^2)$ operacji potrzebnych do wyznaczenia wielomianu trygonometrycznego

$$(x_i, y_i = f(x_i)), i = 0, 1, \dots, n$$
 - punkty węzłowe

W przedziale $[x_j, x_{j+1}]$, $0 \le j \le n-1$ przybliżamy f(x) funkcją liniową:

$$f(x) = y_j + \frac{y_{j+1} - y_j}{x_{j+1} - x_j} (y_{j+1} - y_j) + \Delta f(x)$$

gdzie

$$\Delta f(x) = \frac{\gamma}{2}(x - x_j)(x - x_{j+1})$$

Jeśli np. f(x) jest funkcją gładką w $[x_i, x_{i+1}]$, to

$$\gamma = f''(a), \quad a \in [x_j, x_{j+1}]$$

Zachodzi

$$|\Delta f(x)| \leqslant \frac{\gamma_1}{8} (x_{j+1} - x_j)^2$$

gdzie

$$\gamma_1 = \max_{\mathbf{x} \in [\mathbf{x}_i, \mathbf{x}_{i+1}]} |\mathbf{f}''(\mathbf{x})|$$

 \Rightarrow dokładność można zwiększyć, zmniejszając długość przedziału $h = x_{i+1} - x_i$ (zwiększając liczbę węzłów)

```
def linint(XX, fxx, X):
    N = len(XX)
    JL = 0: JU = N
    while JU - JL > 1:
        JM = (JU + JL) // 2
        if (XX[-1] > XX[1]) == (X > XX[JM]):
            JL = JM
        else:
            JU = JM
    J = JL
    dx = XX[J + 1] - XX[J]
    df = fxx[J + 1] - fxx[J]
    fx = df / dx * (X - XX[J]) + fxx[J]
    return fx
```


Funkcje sklejane

$$x_i$$
, $i = 0, 1, ..., n$ - punkty węzłowe w przedziale $[a, b]$

$$a = X_0 < X_1 < \ldots < X_{n-1} < X_n = b$$

 Δ_n - podział przedziału [a, b]

Definicja

Funkcję $S(x) = S(x, \Delta_n)$ określoną na przedziale [a, b] nazywamy funkcją sklejaną stopnia m ($m \ge 1$), jeżeli

- a. S(x) jest wielomianem stopnia co najwyżej m na każdym podprzedziale (x_j, x_{j+1}) , $j = 0, 1, \ldots, n-1$
- b. $S(x) \in C^{m-1}([a,b])$

Funkcje sklejane

$$S_m(\Delta_n)$$
 - zbiór wszystkich funkcji sklejanych stopnia m

$$S(x) \in S_m(\Delta_n)$$

 $\Rightarrow S(x) = c_{io} + c_{i1}x + ... + c_{im}x^m, \ x \in (x_i, x_{i+1})$
 $\Rightarrow n(m+1)$ dowolnych stałych c_{ii}

Żądanie ciągłości pochodnych rzędu $0, \ldots, m-1$ w każdym węźle wewnętrznym $x_i, i=1,\ldots,n-1$

- $\Rightarrow (n-1)m$ warunków na stałe c_{ij}
- \Rightarrow S(x) zależy od n(m+1)-m(n-1)=n+m parametrów

Niech $f(x) \in C([a,b])$

Definicja

Funkcję $S(x) \in S_3(\Delta_n)$ nazywamy interpolacyjną funkcją sklejaną stopnia trzeciego dla funkcji f(x), jeżeli

$$S(x_i) = f(x_i) = y_i, i = 0, 1, ..., n, n \ge 2$$

S(x) stopnia trzeciego zależy od (n + 3) parametrów

 \Rightarrow potrzebujemy dodatkowych warunków na S(x)

Najczęściej zakłada się

$$S'(a + o) = \alpha_1, S'(b - o) = \beta_1$$

lub

$$S''(a + o) = \alpha_2, S''(b - o) = \beta_2$$

gdzie α_1 , β_1 , α_2 i β_2 - ustalone liczby rzeczywiste

Jeżeli f(x) jest funkcją okresową o okresie (b-a), wówczas:

$$S^{(i)}(a+o) = S^{(i)}(b-o), i=1,2$$

Pytania:

- czy zagadnienie interpolacji za pomocą funkcji sklejanych stopnia trzeciego z jednym z dodatkowych warunków jest rozwiązywalne?
- czy rozwiązanie jest jednoznaczne?
- jaki jest błąd interpolacji na przedziale [a, b]?

Niech

$$M_j = S''(x_j), j = 0, 1, ..., n$$

 $h_j = x_j - x_{j-1}$

S''(x) jest funkcją ciągłą na przedziale [a,b] i liniową na każdym podprzedziale $[x_{j-1},x_{j}]$

$$\Rightarrow S''(x) = M_{j-1} \frac{x_j - x}{h_i} + M_j \frac{x - x_{j-1}}{h_i}, x \in [x_{j-1}, x_j]$$

Całkując stronami otrzymujemy ($x \in [x_{i-1}, x_i]$):

$$S'(x) = -M_{j-1} \frac{(x_j - x)^2}{2h_j} + M_j \frac{(x - x_{j-1})^2}{2h_j} + A_j$$

$$S(x) = M_{j-1} \frac{(x_j - x)^3}{6h_j} + M_j \frac{(x - x_{j-1})^3}{6h_j} + A_j (x - x_{j-1}) + B_j$$

gdzie A_i i B_j - pewne stałe. Z warunku interpolacji wynika:

$$B_{j} = y_{j-1} - M_{j} \frac{h_{j}^{2}}{6}$$

$$A_{j} = \frac{y_{j} - y_{j-1}}{h_{i}} - \frac{h_{j}}{6} (M_{j} - M_{j-1})$$

S'(x) ma być funkcją ciągłą na [a, b]:

$$S'(x_i - 0) = S'(x_i + 0), j = 1, ..., n - 1$$

Otrzymujemy układ (n-1) równań $(j=1,\ldots,n-1)$

$$\mu_{j}M_{j-1} + 2M_{j} + \lambda_{j}M_{j+1} = d_{j}, \quad j = 1, \dots, n-1$$

$$\lambda_{j} = \frac{h_{j+1}}{h_{j} + h_{j+1}}, \quad \mu_{j} = 1 - \lambda_{j}$$

$$d_{j} = \frac{6}{h_{i} + h_{i+1}} \left(\frac{y_{j+1} - y_{j}}{h_{i+1}} - \frac{y_{j} - y_{j-1}}{h_{i}} \right) = 6f[x_{j-1}, x_{j}, x_{j+1}]$$

Dodatkowy warunek dla pierwszych pochodnych

$$\Rightarrow 2M_0 + M_1 = d_0$$

$$M_{n-1} + 2M_n = d_n$$

gdzie

$$d_{o} = \frac{6}{h_{1}} \left(\frac{y_{1} - y_{o}}{h_{1}} - \alpha_{1} \right)$$

$$d_{n} = \frac{6}{h_{n}} \left(\beta_{1} - \frac{y_{n} - y_{n-1}}{h_{n}} \right)$$

Stad

$$\begin{pmatrix} 2 & 1 & 0 & 0 & \cdots & 0 \\ \mu_1 & 2 & \lambda_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & 2 & \lambda_2 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & 2 & \lambda_{n-1} \\ 0 & \cdots & \cdots & \cdots & 1 & 2 \end{pmatrix} \begin{pmatrix} M_0 \\ M_1 \\ M_2 \\ \vdots \\ M_{n-1} \\ M_n \end{pmatrix} = \begin{pmatrix} d_0 \\ d_1 \\ d_2 \\ \vdots \\ d_{n-1} \\ d_n \end{pmatrix}$$

Twierdzenie Macierz

jest nieosobliwa dla każdego podziału Δ_n przedziału [a,b]

Dowód.

Pokażemy najpierw, że dla każdej pary wektorów $x,y\in\mathbb{R}$ zachodzi

$$Ax = y \Rightarrow \max_{i} |x_{i}| \leqslant \max_{i} |y_{i}|$$

Niech $|x_r| = \max_i |x_i|$. Ponieważ Ax = y, więc

$$\mu_r \mathbf{X}_{r-1} + 2\mathbf{X}_r + \lambda_r \mathbf{X}_{r+1} = \mathbf{y}_r$$

Dowód.

Z definicji r oraz z tego, że $\mu_r + \lambda_r \leq 1$ wynika

$$\begin{aligned} \max_{i} |\mathbf{y}_{i}| &\geqslant |\mathbf{y}_{r}| \geqslant \mathbf{2}|\mathbf{x}_{r}| - \mu_{r}|\mathbf{x}_{r-1}| - \lambda_{r}|\mathbf{x}_{r+1}| \\ &\geqslant \mathbf{2}|\mathbf{x}_{r}| - \mu_{r}|\mathbf{x}_{r}| - \lambda_{r}|\mathbf{x}_{r}| \\ &= (\mathbf{2} - \mu_{r} - \lambda_{r})|\mathbf{x}_{r}| \geqslant |\mathbf{x}_{r}| = \max_{i} |\mathbf{x}_{i}| \end{aligned}$$

Dowód.

Jeśli macierz byłaby osobliwa, to istniałoby rozwiązanie $x \neq 0$ układu Ax = 0. Ale wówczas musiałoby być

$$0 < \max_{i} |x_i| \leqslant 0$$

co prowadzi do sprzeczności.

Funkcje sklejane trzeciego stopnia

Definicja

Średnicą $||\Delta_m||$ podziału Δ_m nazywamy liczbę

$$||\Delta_m|| = \max_i (X_{i+1} - X_i)$$

Funkcje sklejane trzeciego stopnia

Twierdzenie

Niech $f \in C^4([a,b])$, $|f^{(4)}(x)| \le L$ dla $x \in [a,b]$. Niech $\Delta_m = \{a = x_0^{(m)} < x_1^{(m)} < \ldots < x_{n_m}^{(m)} = b\}$ będzie ciągiem podziałów przedziału [a,b] takim, że

$$\sup_{m,j} \frac{||\Delta_m||}{X_{j+1}^{(m)} - X_j^{(m)}} \leqslant K < +\infty$$

Istnieją wtedy stałe C_i (\leq 2) niezależne od Δ_m takie, że dla $x \in [a,b]$ zachodzi

$$|f^{(i)}(\mathbf{x}) - S^{(i)}(\mathbf{x}, \Delta_m)| \leqslant C_i L K ||\Delta_m||^{4-i}$$

dla i = 0, 1, 2, 3.

Funkcje sklejane Lagrange'a trzeciego stopnia

```
\lambda_{o}(x) - wielomian interpolujący dla funkcji f(x) z węzłami x_{o}, x_{1}, x_{2}, x_{3} \lambda_{n}(x) - z węzłami x_{n-3}, x_{n-2}, x_{n-1}, x_{n}
```

Definicja

Funkcję $S_L(x) \in S_3(\Delta_n)$ spełniającą dodatkowe warunki

$$S'_L(a + o) = \alpha_1 = \lambda'_o(a),$$

 $S'_L(b - o) = \beta_1 = \lambda'_n(b)$

nazywamy funkcją sklejaną Lagrange'a stopnia trzeciego

Niech

$$x_i = x_0 + ih$$
, $h = \frac{b-a}{n}$, $i = 0, 1, ..., n$.

Dodatkowo

$$x_{-3} = x_0 - 3h$$
 $x_{-2} = x_0 - 2h$ $x_{-1} = x_0 - h$
 $x_{n+1} = x_n + h$ $x_{n+2} = x_n + 2h$ $x_{n+3} = x_n + 3h$

Definicja

$$\phi_i^3(x) = \frac{1}{h^3} \begin{cases} (x-x_{i-2})^3 & \text{dla} \quad x \in [x_{i-2},x_{i-1}] \\ h^3 + 3h^2(x-x_{i-1}) & \text{dla} \quad x \in [x_{i-1},x_i] \\ +3h(x-x_{i-1})^2 - 3(x-x_{i-1})^3 & \text{dla} \quad x \in [x_{i-1},x_i] \\ h^3 + 3h^2(x_{i+1}-x) & \text{dla} \quad x \in [x_i,x_{i+1}] \\ +3h(x_{i+1}-x)^2 - 3(x_{i+1}-x)^3 & \text{dla} \quad x \in [x_i,x_{i+1}] \\ (x_{i+2}-x)^3 & \text{dla} \quad x \in [x_{i+1},x_{i+2}] \\ 0 & \text{dla} \quad \text{pozostałych } x \in \mathbb{R} \end{cases}$$

Twierdzenie

Funkcje $\overline{\phi}_i(x)$, $i=-1,\ldots,n+1$ określone na przedziale [a,b] w następujący sposób:

$$\overline{\phi}_i(x) = \phi_i^3(x), \ \ a \leqslant x \leqslant b$$

stanowią bazę funkcji sklejanych trzeciego stopnia $S_3(\Delta_n)$.

 \Rightarrow każdą funkcję $S(x) \in S_3(\Delta_n)$ można przedstawić w postaci

$$S(x) = \sum_{i=1}^{n+1} c_i \phi_i^3(x), \quad a \leqslant x \leqslant b, \quad c_i \in \mathbb{R}$$

Z warunku interpolacji otrzymujemy

$$c_{i-1} + 4c_i + c_{i+1} = y_i, i = 0, ..., n.$$

Założenie dodatkowe

$$S'(a + o) = \alpha_1, S'(b - o) = \beta_1$$

$$\Rightarrow$$

$$-c_{-1} + c_{1} = \frac{h}{3}\alpha_{1}$$
$$-c_{n-1} + c_{n+1} = \frac{h}{3}\beta_{1}$$

$$-c_{n-1}+c_{n+1} = \frac{h}{2}\beta$$

Stąd

$$\begin{pmatrix} 4 & 2 & & & & \\ 1 & 4 & 1 & & O & & \\ & 1 & 4 & \ddots & & & \\ & & \ddots & \ddots & \ddots & & \\ O & & 1 & 4 & 1 & \\ & & & 2 & 4 & \end{pmatrix} \begin{pmatrix} c_{O} & & & \\ c_{1} & & & & \\ c_{2} & & \vdots & & \\ c_{n-1} & & & & \\ c_{n} & & & \\ c_{n$$

Metody numeryczne

Wykład 7 - Aproksymacja funkcji

Janusz Szwabiński

Plan wykładu

- 1. Pojęcia podstawowe
 - 1.1 Zagadnienie aproksymacji
 - 1.2 Funkcje bazowe
 - 1.3 Typowe normy
 - 1.4 Rodzaje aproksymacji
- 2. Aproksymacja średniokwadratowa
 - 2.1 Aproksymacja wielomianowa
 - 2.2 Aproksymacja trygonometryczna
 - 2.3 Aproksymacja za pomocą funkcji sklejanych
 - 2.4 Aproksymacja funkcji ciągłych

Zagadnienie aproksymacji

```
\mathcal{X} - pewna przestrzeń liniowa \mathcal{X}_m - m-wymiarowa podprzestrzeń przestrzeni \mathcal{X} f(x) - funkcja, którą chcemy aproksymować
```

Zagadnienie aproksymacji

Definicja

Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu takich współczynników $a_0, a_1, ..., a_m$ funkcji

$$F(x) = a_0\phi_0(x) + a_1\phi_1(x) + \ldots + a_m\phi_m(x)$$

gdzie $\phi_0(x),\ldots,\phi_m(x)$ są funkcjami bazowymi podprzestrzeni \mathcal{X}_{m+1} , aby funkcja F(x) spełniała pewne warunki, np. minimalizowała normę różnicy $\|f(x)-F(x)\|$

Zagadnienie aproksymacji

Definicja

Aproksymacja wymierna funkcji f(x) polega na znalezieniu takich współczynników $a_0, \ldots, a_n, b_0, \ldots, b_m$ funkcji

$$F(x) = \frac{a_{\mathsf{o}}\phi_{\mathsf{o}}(x) + a_{\mathsf{1}}\phi_{\mathsf{1}}(x) + \ldots + a_{\mathsf{n}}\phi_{\mathsf{n}}(x)}{b_{\mathsf{o}}\psi_{\mathsf{o}}(x) + b_{\mathsf{1}}\psi_{\mathsf{1}}(x) + \ldots + b_{\mathsf{m}}\psi_{\mathsf{m}}(x)}$$

gdzie $\phi_i(x)$ i $\psi_j(x)$ ($i=0,\ldots,n,j=0,\ldots,m$) są elementami tej samej bazy k wymiarowej podprzestrzeni liniowej ($k=\max(m,n)$), aby funkcja F(x) spełniała pewne warunki, np. minimalizowała normę różnicy ||f(x)-F(x)||

Przykłady funkcji bazowych

- funkcje trygonometryczne
 1, sin x, cos x, sin 2x, cos 2x, ..., sin kx, cos kx
- jednomiany 1, *x*, *x*², ..., *x*^m
- wielomiany 1, $(x x_0)$, $(x x_0)(x x_1)$, ..., $(x x_0) \cdots (x x_m)$
- wielomiany Czebyszewa, Legendre'a

Wybór bazy wpływa na dokładność i koszt obliczeń!!!

Typowe normy

• Czebyszewa

$$||f|| = \sup_{\langle a,b\rangle} |f(x)|$$

• L₂

$$||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$$

• L₂ z wagą

$$||f||_{2,w} = \left(\int_a^b w(x)|f(x)|^2 dx\right)^{1/2}$$

Typowe normy

• "dyskretna"

$$||f|| = \left(\sum_{i=0}^{n} [f(x_i)]^2\right)^{1/2}$$

• średniokwadratowa, kiedy szukamy funkcji F(x) minimalizującej całkę

$$||f(x) - F(x)|| = \int_a^b w(x) [F(x) - f(x)]^2 dx$$

lub sumę

$$||f(x) - F(x)|| = \sum_{i=0}^{n} w(x_i)[F(x_i) - f(x_i)]^2$$

 $w(x_i) \geqslant 0, \quad i = 0, 1, ..., n$

• jednostajna, kiedy szukamy funkcji F(x) minimalizującej normę

$$||F(x)-f(x)|| = \sup_{x \in \langle a,b \rangle} |F(x)-f(x)|$$

Twierdzenie

Jeżeli funkcja f(x) jest ciągła na skończonym przedziale $\langle a,b\rangle$, to dla każdego ϵ dodatniego można dobrać takie n, że jest możliwe utworzenie wielomianu $P_n(x)$ stopnia n ($n=n(\epsilon)$), który spełnia nierówność

$$|f(x) - P_n(x)| < \epsilon$$

na całym przedziale $\langle a, b \rangle$.

Twierdzenie

Jeżeli funkcja f(x) jest ciągła na **R** i okresowa o okresie 2π , to dla każdego ϵ dodatniego istnieje wielomian trygonometryczny

$$S_n(x) = a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx), \quad n = n(\epsilon)$$

spełniający dla wszystkich x nierówność

$$|f(x)-S_n(x)|<\epsilon.$$

Aproksymacja średniokwadratowa

Aproksymacja średniokwadratowa

Szukamy wielomianu uogólnionego

$$F(x) = \sum_{i=0}^{m} a_i \phi_i(x)$$

takiego, że suma

$$||F(x) - f(x)|| = \sum_{i=0}^{n} w(x_i) [F(x_i) - f(x_i)]^2$$

osiaga minimum.

Aproksymacja średniokwadratowa

$$H(a_0,\ldots,a_m) = \sum_{j=0}^n w(x_j) \left[f(x_j) - \sum_{j=0}^m a_j \phi_j(x_j) \right]^2 = \sum_{j=0}^n w(x_j) R_j^n$$

Układ normalny (k = 0, 1, ..., m)

$$\frac{\partial H}{\partial a_k} = -2\sum_{j=0}^n w(x_j) \left[f(x_j) - \sum_{j=0}^m a_j \phi_j(x_j) \right] \phi_k(x_j) = 0$$

- $\phi_i(x)$ tworzą bazę
- \Rightarrow wyznacznik różny od zera
- \Rightarrow rozwiązanie układu minimalizuje sumę ||F(x) f(x)||

Aproksymacja wielomianowa

Niech $\phi_i(x) = x^i$, i = 0, 1, ..., m oraz $w(x) \equiv 1$

⇒ układ normalny ma postać

$$\sum_{i=0}^{n} \left[f(x_j) - \sum_{i=0}^{m} a_i x_j^i \right] x_j^k = 0, \quad k = 0, 1, \dots, m$$

Stąd

$$\sum_{i=0}^m a_i g_{ik} = \rho_k, \quad k = 0, 1, \dots, m$$

$$g_{ik} = \sum_{i=0}^n x_j^{i+k}, \quad \rho_k = \sum_{i=0}^n f(x_i) x_j^k$$

Aproksymacja wielomianowa

Jeśli punkty $x_0, ..., x_n$ są różne oraz

- *m* ≤ *n*
 - ⇒ wyznacznik układu jest różny od zera
 - \Rightarrow układ ma jednoznaczne rozwiązanie
- m = n
 - \Rightarrow F(x) pokrywa się z wielomianem interpolacyjnym
 - $\Rightarrow H = 0$

Aproksymacja wielomianowa

Uwaga!

Dla $m \geqslant 6$ układ normalny aproksymacji wielomianowej jest źle uwarunkowany

- ⇒ aproksymację z jednomianami jako funkcjami bazowymi stosujemy tylko dla małych m
- \Rightarrow dla dużych m lepiej stosować jako bazę wielomiany ortogonalne

f(x) jest określona na dyskretnym zbiorze punktów

$$x_i = \frac{\pi i}{L}, \quad i = 0, 1, \dots, 2L-1$$

Mamy

$$\sum_{i=0}^{2L-1} \sin mx_i \sin kx_i = \begin{cases} 0, & m \neq k \\ L, & m = k \neq 0 \\ 0, & m = k = 0 \end{cases}$$

$$\sum_{i=0}^{2L-1} \cos mx_i \cos kx_i = \begin{cases} 0, & m \neq k \\ L, & m = k \neq 0 \\ 2L, & m = k = 0 \end{cases}$$

$$\sum_{i=0}^{2L-1} \cos mx_i \sin kx_i = 0$$

Szukamy funkcji aproksymującej postaci

$$y_n(x) = \frac{1}{2} + \sum_{j=1}^n \left(a_j \cos jx + b_j \sin jx \right), \quad n < L$$

Żądanie minimalizacji sumy

$$\sum_{i=0}^{2L-1} [f(x_i) - y_n(x_i)]^2$$

prowadzi do

$$a_{j} = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_{i}) \cos jx_{i} = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_{i}) \cos \frac{\pi i j}{L}$$

$$b_{j} = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_{i}) \sin jx_{i} = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_{i}) \sin \frac{\pi i j}{L}$$

$$(j = 1, 2, ..., n)$$

Aproksymacja za pomocą funkcji sklejanych

Funkcja jest określona na dyskretnym zbiorze punktów

$$x_i, i = 0, 1, \ldots, n_1, n_1 > n + 3$$

Funkcji aproksymacyjnej szukamy w postaci

$$S(x) = \sum_{i=-1}^{n+1} c_i \phi_i^3(x), \quad a \leq x \leq b$$

Aproksymacja za pomocą funkcji sklejanych

$$\phi_i^3(x) = \frac{1}{h^3} \begin{cases} \begin{array}{l} (x - x_{i-2})^3 & \text{dla} & x \in [x_{i-2}, x_{i-1}] \\ h^3 + 3h^2(x - x_{i-1}) & \\ +3h(x - x_{i-1})^2 - 3(x - x_{i-1})^3 & \text{dla} & x \in [x_{i-1}, x_i] \\ h^3 + 3h^2(x_{i+1} - x) & \\ +3h(x_{i+1} - x)^2 - 3(x_{i+1} - x)^3 & \text{dla} & x \in [x_i, x_{i+1}] \\ (x_{i+2} - x)^3 & \text{dla} & x \in [x_{i+1}, x_{i+2}] \\ 0 & \text{dla} & \text{pozostałych } x \in \mathbb{R} \end{cases}$$

Aproksymacja za pomocą funkcji sklejanych

Niech

$$I = \sum_{k=0}^{n_1} \left[f(x_k) - \sum_{i=-1}^{n+1} c_i \phi_i^3(x_k) \right]^2$$

Warunek

$$\frac{\partial I}{\partial c} = 0, \quad i = -1, 0, 1, \dots, n+1$$

prowadzi do

$$\sum_{i=-1}^{n+1} b_{ij} c_i = \sum_{k=0}^{n_1} f(x_k) \phi_j^3(x_k), \quad j = -1, 0, \dots, n+1$$

$$b_{ij} = \sum_{k=0}^{n_1} \phi_i^3(x_k) \phi_j^3(x_k)$$

Szukamy funkcji aproksymującej postaci

$$P(x) = a_{o}\phi_{o}(x) + \dots a_{n}\phi_{n}(x)$$

gdzie $\phi_j(x)$ to elementy bazy pewnej podprzestrzeni funkcji całkowalnych z kwadratem

Niech

$$H_n = \int_a^b \mathrm{d}x \left[P(x) - f(x) \right]^2 = \int_a^b \mathrm{d}x \left[\sum_{i=0}^n a_i \phi_i(x) - f(x) \right]^2$$

Minimum H_n będzie minimalizowało normę

$$||P(x)-f(x)||$$

W tym celu rozwiązujemy układ

$$\frac{\partial H_n}{\partial a_i} = 0, \quad i = 0, 1, \dots, n$$

względem współczynników ai

Przykład

Funkcję $f(x) = \sin x$ na przedziale $\langle 0, \pi/2 \rangle$ aproksymujemy wielomianem

$$P(x) = a_0 + a_1 x + a_2 x^2$$

Układ równań ma postać

$$a_{0} \int_{0}^{\pi/2} dx + a_{1} \int_{0}^{\pi/2} x dx + a_{2} \int_{0}^{\pi/2} x^{2} dx = \int_{0}^{\pi/2} \sin x dx$$

$$a_{0} \int_{0}^{\pi/2} x dx + a_{1} \int_{0}^{\pi/2} x^{2} dx + a_{2} \int_{0}^{\pi/2} x^{3} dx = \int_{0}^{\pi/2} x \sin x dx$$

$$a_{0} \int_{0}^{\pi/2} x^{2} dx + a_{1} \int_{0}^{\pi/2} x^{3} dx + a_{2} \int_{0}^{\pi/2} x^{4} dx = \int_{0}^{\pi/2} x^{2} \sin x dx$$

czyli

$$\frac{\pi}{2}a_0 + \frac{\pi^2}{8}a_1 + \frac{\pi^3}{24}a_2 = 1$$

$$\frac{\pi^2}{8}a_0 + \frac{\pi^3}{24}a_1 + \frac{\pi^4}{64}a_2 = 1$$

$$\frac{\pi^3}{24}a_0 + \frac{\pi^4}{64}a_1 + \frac{\pi^5}{160}a_2 = -2$$

Stąd

$$P(x) \simeq 0.134 + 0.59x + 0.05x^2$$

Średni błąd aproksymacji

$$M^2 = (b-a)^{-1}H_n(a_0, a_1, a_2) \simeq 0,00797$$

Przykład

Funkcję $f(x)=\sin x$ na przedziale $\langle {\tt O},\pi/{\tt 2}\rangle$ aproksymujemy posługując się wielomianami Legendre'a

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n, \quad n = 0, 1, 2, ...$$

Wprowadzamy zmienną

$$t=\frac{4}{\pi}x-1$$

Aproksymować będziemy funkcję

$$\hat{f}(t) = \sin \frac{\pi(t+1)}{4}$$

wielomianem

$$W(t) = a_0 P_0(t) + a_1 P_1(t) + a_2 P_2(t)$$

Współczynniki wynoszą

$$a_0 = \frac{1}{2} \int_{-1}^1 dt \sin \frac{\pi}{4} (t+1) = \frac{2}{\pi}$$

$$a_1 = \frac{3}{2} \int_{-1}^1 dt t \sin \frac{\pi}{4} (t+1) = \frac{24}{\pi^2} - \frac{6}{\pi}$$

$$a_2 = \frac{5}{2} \int_{-1}^1 dt \left(\frac{3}{2} t^2 - \frac{1}{2} \right) \sin \frac{\pi}{4} (t+1) = -\frac{480}{\pi^3} + \frac{120}{\pi^2} + \frac{10}{\pi}$$

Stąd

$$W(t) \simeq 0,6366197 + 0,5218492x - 0,1390961x^2$$

$$M^2 \simeq 0,0000704$$