Final Project - Analyzing Sales Data

Date: 8 December 2022

Author: Wichuorn Phimjam

Course: Pandas Foundation

```
# import data
import pandas as pd
import numpy as np
df = pd.read_csv("sample-store.csv")
```

```
# preview top 5 rows
df.head()
```

	Row	Order ID	Order Date	Ship Date	Ship Mode	Customer	Customer Name	Segment	Country/Region	City
0	1	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
1	2	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
2	3	CA- 2019- 138688	6/12/2019	6/16/2019	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles
3	4	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdal
4	5	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdal

5 rows × 21 columns

shape of dataframe df.shape

(9994, 21)

see data frame information using .info()
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Row ID	9994 non-null	int64
1	Order ID	9994 non-null	object
2	Order Date	9994 non-null	object
3	Ship Date	9994 non-null	object
4	Ship Mode	9994 non-null	object
5	Customer ID	9994 non-null	object

```
Customer Name
                    9994 non-null
                                    object
6
7
   Segment
                    9994 non-null
                                   object
   Country/Region 9994 non-null
                                   object
8
                                   object
9
   City
                   9994 non-null
10 State
                   9994 non-null
                                   object
                                   float64
11 Postal Code
                   9983 non-null
12 Region
                   9994 non-null
                                   object
                                   object
13 Product ID
                   9994 non-null
                                   ohiect
1/ Catenony
                   000/ non-null
```

We can use pd.to_datetime() function to convert columns 'Order Date' and 'Ship Date' to datetime.

```
# example of pd.to_datetime() function
pd.to_datetime(df['Order Date'].head(), format='%m/%d/%Y')
```

- 0 2019-11-08
- 1 2019-11-08
- 2 2019-06-12
- 3 2018-10-11
- 4 2018-10-11

Name: Order Date, dtype: datetime64[ns]

```
# TODO - convert order date and ship date to datetime in the original dataframe
df[['Order Date', 'Ship Date']] = df[['Order Date','Ship Date']].apply(pd.to_date
df.head(5)
```

	Row	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City	 P C
0	1	CA- 2019- 152156		2019- 11-11	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	 4
1	2	CA- 2019- 152156		2019- 11-11	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	 4
2	3	CA- 2019- 138688	2019- 06-12		Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles	 9
3	4	US- 2018- 108966	2018- 10-11		Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	 3
4	5	US- 2018- 108966	2018- 10-11	2018- 10-18	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	 3

5 rows × 21 columns

```
# TODO – count nan in postal code column
df['Postal Code'].isna().sum()
```

11

```
# TODO - filter rows with missing values
df[df['Postal Code'].isna()]
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country/Region	City	
2234	2235	CA- 2020- 104066	2020- 12-05	2020- 12-10	Standard Class	QJ-19255	Quincy Jones	Corporate	United States	Burlington	
5274	5275	CA- 2018- 162887	2018- 11-07	2018- 11-09	Second Class	SV-20785	Stewart Visinsky	Consumer	United States	Burlington	
8798	8799	US- 2019- 150140		2019- 04-10	Standard Class	VM- 21685	Valerie Mitchum	Home Office	United States	Burlington	
9146	9147	US- 2019- 165505		2019- 01-27	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlington	
9147	9148	US- 2019- 165505	2019- 01-23	2019- 01-27	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlington	
9148	9149	US- 2019- 165505		2019- 01-27	Standard Class	CB- 12535	Claudia Bergmann	Corporate	United States	Burlington	
9386	9387	US- 2020- 127292	2020- 01-19	2020- 01-23	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlington	
9387	9388	US- 2020- 127292		2020- 01-23		RM- 19375	Raymond Messe	Consumer	United States	Burlington	
9388	9389	US- 2020- 127292		2020- 01-23		RM- 19375	Raymond Messe	Consumer	United States	Burlington	
9389	9390	US- 2020- 127292		2020- 01-23	Standard Class	RM- 19375	Raymond Messe	Consumer	United States	Burlington	
9741	9742	CA- 2018- 117086		2018- 11-12	Standard Class	QJ-19255	Quincy Jones	Corporate	United States	Burlington	

¹¹ rows × 21 columns

Data Analysis Part

Answer 10 below questions to get credit from this course. Write pandas code to find answers.

```
# TODO 01 - how many columns, rows in this dataset
df.shape

(9994, 21)

# TODO 02 - is there any missing values?, if there is, which column? how many nan
df.isna().sum()
Row ID 0
Order ID 0
Order Date 0
Order Date 0
```

Ship Date Ship Mode 0 Customer ID Customer Name 0 Segment Country/Region 0 0 City State 0 Postal Code 11 Region 0 Product ID 0 Category Sub-Category 0 Product Name 0 Sales 0 Quantity Discount 0 Profit dtype: int64

```
# TODO 03 - your friend ask for `California` data, filter it and export csv for h
df_California = df.query('State == "California"')
df_California.to_csv('df_California.csv')
```

```
# TODO 04 - your friend ask for all order data in `California` and `Texas` in 201
df_cali_Tex_2017 = df[((df['State']=='California') | (df['State']=='Texas')) & (d
df_cali_Tex_2017.to_csv('df_cali_Tex_2017.csv')
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer	Customer Name	Segment	Country/Region	City	
5	6	CA- 2017- 115812	2017- 06-09	2017- 06-14	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles	
6	7	CA- 2017- 115812	2017- 06-09	2017- 06-14	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles	
7	8	CA- 2017- 115812	2017- 06-09	2017- 06-14	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles	
8	9	CA- 2017- 115812	2017- 06-09	2017- 06-14	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles	
9	10	CA- 2017- 115812	2017- 06-09	2017- 06-14	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles	
9885	9886	CA- 2017- 112291	2017- 04-03	2017- 04-08	Standard Class	KE-16420	Katrina Edelman	Corporate	United States	Los Angeles	
9903	9904	CA- 2017- 122609		2017- 11-18	Standard Class	DP- 13000	Darren Powers	Consumer	United States	Carrollton	
9904	9905	CA- 2017- 122609		2017- 11-18	Standard Class	DP- 13000	Darren Powers	Consumer	United States	Carrollton	
9942	9943	CA- 2017- 143371		2018- 01-03	Standard Class	MD- 17350	Maribeth Dona	Consumer	United States	Anaheim	
9943	9944	CA- 2017- 143371		2018- 01-03	Standard Class	MD- 17350	Maribeth Dona	Consumer	United States	Anaheim	

632 rows × 21 columns

```
# TODO 05 - how much total sales, average sales, and standard deviation of sales
df_year_2017 = df[df['Order Date'].dt.year == 2017]
df_year_2017['Sales'].agg(['sum', 'mean', 'std']).reset_index()
```

	index	Sales
0	sum	484247.498100
1	mean	242.974159
2	std	754.053357

```
# TODO 06 - which Segment has the highest profit in 2018
df_2018 = df[df['Order Date'].dt.year == 2018]
df_2018.groupby('Segment')['Profit'].sum().reset_index()
```

	Segment	Profit
0	Consumer	28460.1665
1	Corporate	20688.3248
2	Home Office	12470.1124

```
# TODO 07 - which top 5 States have the least total sales between 15 April 2019 - sale_state = df[(df['Order Date'] >= '2019-04-15') & (df['Order Date'] <= '2019-1 sale_state.sort_values(['Sales'], ascending=False).head()
```

	State	Sales
3	California	105632.9565
29	New York	56873.9340
38	Texas	31114.3390
34	Pennsylvania	28207.2940
20	Michigan	26675.8110

```
# TODO 08 - what is the proportion of total sales (%) in West + Central in 2019 e
df_2019 = df[df['Order Date'].dt.year == 2019]
df_2019_West = df_2019[df_2019['Region'] == 'West'].groupby('Region')['Sales'].su
df_2019_Central = df_2019[df_2019['Region'] == 'Central'].groupby('Region')['Sale
df_2019_total = df_2019['Sales'].sum()
df_west_central = df_2019_Central['Sales']+df_2019_West['Sales']
(df_west_central*100)/df_2019_total
```

0 54.974799

Name: Sales, dtype: float64

```
# TODO 09 - find top 10 popular products in terms of number of orders vs. total s
df_2019_2020 = df[(df['Order Date'].dt.year == 2019) | (df['Order Date'].dt.year
df_count = df_2019_2020['Product Name'].value_counts().reset_index().head(10)
df_sales = df_2019_2020.groupby('Product Name')['Sales'].sum()
df_sales = df_sales.sort_values(ascending=False).reset_index().head(10)
print(f'{df_count}\n {df_sales}')
```

	index P	roduct Name
0	Easy-staple paper	27
1	Staples	24
2	Staple envelope	22
3	Staples in misc. colors	13
4	Chromcraft Round Conference Tables	12
5	Storex Dura Pro Binders	12
6	Staple remover	12
7	Global Wood Trimmed Manager's Task Chair, Khaki	11
8	Avery Non-Stick Binders	11
9	Sterilite Officeware Hinged File Box	10
	Product Name	Sales
0	Canon imageCLASS 2200 Advanced Copier	61599.824
1	Hewlett Packard LaserJet 3310 Copier	16079.732
2	3D Systems Cube Printer, 2nd Generation, Magenta	14299.890
3	GBC Ibimaster 500 Manual ProClick Binding System	13621.542
4	GBC DocuBind TL300 Electric Binding System	12737.258
5	GBC DocuBind P400 Electric Binding System	12521.108
6	Samsung Galaxy Mega 6.3	12263.708
7	HON 5400 Series Task Chairs for Big and Tall	11846.562

<AxesSubplot:title={'center':'Sales divided by Ship Mode in 2019'}, ylabel='Sal</pre>

■ Download

Sales divided by Ship Mode in 2019


```
df_2020 = df[df['Order Date'].dt.year == 2020]
df_2020['Ship Mode'].value_counts().plot(kind = 'bar', color = ['salmon', 'orange
print("What is the most popular ship mode in 2020?")
```

What is the most popular ship mode in 2020?

♣ Download


```
# TODO Bonus - use np.where() to create new column in dataframe to help you answe
mean_sale = np.mean(df['Sales'])
df['new_column'] = np.where(df['Sales'] > mean_sale, "Good customer", "Normal cus
df.head(10)
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer	Customer Name	Segment	Country/Region	City
0	1	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
1	2	CA- 2019- 152156	11/8/2019	11/11/2019	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
2	3	CA- 2019- 138688	6/12/2019	6/16/2019	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles
3	4	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdal
4	5	US- 2018- 108966	10/11/2018	10/18/2018	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fort Lauderdal
5	6	CA- 2017- 115812	6/9/2017	6/14/2017	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles
6	7	CA- 2017- 115812	6/9/2017	6/14/2017	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles
7	8	CA- 2017- 115812	6/9/2017	6/14/2017	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles
8	9	CA- 2017- 115812	6/9/2017	6/14/2017	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles
9	10	CA- 2017- 115812	6/9/2017	6/14/2017	Standard Class	BH- 11710	Brosina Hoffman	Consumer	United States	Los Angeles

10 rows × 23 columns