

# Maria Gabriely da Silva Freitas

# Packet Tracer - Criação de sub-redes no cenário

### Tabela de Endereçamento

| Dispositivo | Interface | Endereço IP     | Máscara de<br>sub-rede | Gateway padrão |
|-------------|-----------|-----------------|------------------------|----------------|
| R1          | G0/0      | 192.168.100.1   | 255.255.255.224        | N/A            |
|             | G0/1      | 192.168.100.33  | 255.255.255.224        | N/A            |
|             | S0/0/0    | 192.168.100.129 | 255.255.255.224        | N/A            |
| R2          | G0/0      | 192.168.100.65  | 255.255.255.224        | N/A            |
|             | G0/1      | 192.168.100.97  | 255.255.255.224        | N/A            |
|             | S0/0/0    | 192.168.100.158 | 255.255.255.224        | N/A            |
| S1          | VLAN 1    | 192.168.100.2   | 255.255.255.224        | 192.168.100.1  |
| S2          | VLAN 1    | 192.168.100.34  | 255.255.255.224        | 192.168.100.33 |
| S3          | VLAN 1    | 192.168.100.66  | 255.255.255.224        | 192.168.100.65 |
| S4          | VLAN 1    | 192.168.100.98  | 255.255.255.224        | 192.168.100.97 |
| PC1         | NIC       | 192.168.100.30  | 255.255.255.224        | 192.168.100.1  |
| PC2         | NIC       | 192.168.100.62  | 255.255.255.224        | 192.168.100.33 |
| PC3         | NIC       | 192.168.100.94  | 255.255.255.224        | 192.168.100.65 |
| PC4         | NIC       | 192.168.100.126 | 255.255.255.224        | 192.168.100.97 |

## **Objetivos**

Parte 1: Projetar um Esquema de Endereçamento IP

Parte 2: Atribuir Endereços IP a Dispositivos e Verificar a Conectividade

### Cenário

Nesta atividade, você recebe o endereço de rede 192.168.100.0/24 para sub-rede e fornece o endereço IP para a rede Packet Tracer. Cada rede local requer um espaço suficiente para, no mínimo, 25 endereços para dispositivos finais, o comutador e o roteador. A conexão entre R1 e R2 exigirá um endereço IP para cada extremidade do link.

## Instruções

Parte 1: Projetar um Esquema de Endereçamento IP

Etapa 1: Divida a rede 192.168.100.0/24 no número apropriado de sub-redes.

a. Com base na topologia, quantas sub-redes são necessárias?

### R- 5 sub-redes.

- b. Quantos bits devem ser emprestados para comportar o número de sub-redes na tabela de topologia?
   R- 3 bits.
- c. Quantas sub-redes são criadas?

R-8 sub-redes.

d. Quantos hosts utilizáveis são criados por sub-rede?

R-30 hosts.

**Observação:** se a resposta for menos que os 25 hosts necessários, significa que você pegou emprestado bits demais.

e. Calcule o valor binário das cinco primeiras sub-redes. As duas primeiras sub-redes foram feitas para você.

| Sub-re<br>de | Endereço de<br>rede | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0            | 192.168.100.        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1            | 192.168.100.        | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     |
| 2            | 192.168.100.        | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     |
| 3            | 192.168.100.        | 0     | 1     | 1     | 0     | 0     | 0     | 0     | 0     |
| 4            | 192.168.100.        | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

f. Calcule o valor binário e o valor decimal da nova máscara de sub-rede.

| Primeiro<br>Octeto            | Segundo<br>octeto            | Terceiro<br>octeto            | Bit de<br>Máscar<br>a 7 | Bit<br>de<br>Más<br>cara<br>6 | Bit<br>de<br>Más<br>cara<br>5 | Bit<br>Más<br>cara<br>4 | Bit<br>Más<br>cara<br>3 | Bit<br>de<br>Más<br>cara<br>2 | Bit<br>Más<br>cara<br>1 | Bit<br>de<br>Más<br>cara<br>0 |
|-------------------------------|------------------------------|-------------------------------|-------------------------|-------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------------|-------------------------|-------------------------------|
| 11111111                      | 11111111                     | 11111111                      | 1                       | 1                             | 1                             | 0                       | 0                       | 0                             | 0                       | 0                             |
| Primeiro<br>octeto<br>decimal | Segundo<br>octeto<br>decimal | Terceiro<br>octeto<br>decimal | Quarto octeto decimal   |                               |                               |                         |                         |                               |                         |                               |
| 255.                          | 255.                         | 255.                          | 224                     |                               |                               |                         |                         |                               |                         |                               |

g. Preencha a **Tabela de Sub-Redes**,listando o valor decimal de todas as sub-redes disponíveis, o primeiro e o último host utilizáveis e o endereço de broadcast. Repita até que todos os endereços estejam listados.

Observação: não é necessário usar todas as linhas.

### Tabela de Sub-Redes

| Número<br>da<br>Sub-Red<br>e | Endereço da<br>Sub-Rede | Primeiro<br>Endereço de Host<br>Utilizável | Último Endereço<br>de Host Utilizável | Endereço de<br>Broadcast |
|------------------------------|-------------------------|--------------------------------------------|---------------------------------------|--------------------------|
| 0                            | 192.168.100.0           | 192.168.100.1                              | 192.168.100.30                        | 192.168.100.31           |
| 1                            | 192.168.100.32          | 192.168.100.33                             | 192.168.100.62                        | 192.168.100.63           |
| 2                            | 192.168.100.64          | 192.168.100.65                             | 192.168.100.94                        | 192.168.100.95           |
| 3                            | 192.168.100.96          | 192.168.100.97                             | 192.168.100.126                       | 192.168.100.127          |
| 4                            | 192.168.100.128         | 192.168.100.129                            | 192.168.100.158                       | 192.168.100.159          |
| 5                            | 192.168.100.160         | 192.168.100.161                            | 192.168.100.190                       | 192.168.100.191          |
| 6                            | 192.168.100.192         | 192.168.100.193                            | 192.168.100.222                       | 192.168.100.223          |
| 7                            | 192.168.100.224         | 192.168.100.225                            | 192.168.100.254                       | 192.168.100.255          |
| 8                            |                         |                                            |                                       |                          |
| 9                            |                         |                                            |                                       |                          |
| 10                           |                         |                                            |                                       |                          |

### Etapa 2: Atribua as sub-redes à rede mostrada na topologia.

- a. Atribua a sub-Rede 0 à LAN conectada à interface GigabitEthernet 0/0 de R1: 192.168.100.0 /27
- b. Atribua a Sub-Rede 1 à LAN conectada à interface GigabitEthernet 0/1 de R1: 192.168.100.32 /27
- c. Atribua a Sub-Rede 2 à LAN conectada à interface GigabitEthernet 0/0 de R2: 192.168.100.64 /27
- d. Atribua a Sub-Rede 3 à LAN conectada à interface GigabitEthernet 0/1 de R2: 192.168.100.96 /27
- e. Atribua a Sub-Rede 4 ao link WAN entre R1 e R2: 192.168.100.128 /27

### Etapa 3: Documente o esquema de endereçamento.

Preencha a Addressing Table utilizando as seguintes diretrizes:

- a. Atribua os primeiros endereços IP utilizáveis em cada sub-rede a R1 para os dois links de LAN e WAN.
- Atribua os primeiros endereços IP utilizáveis a R2 para os links LAN. Atribua o último endereço IP utilizável para o link WAN.
- c. Atribua o segundo endereço IP utilizável nas sub-redes anexadas aos comutadores.
- d. Atribua os últimos endereços IP utilizáveis aos PCs em cada sub-rede.

# Parte 2: Parte 2: Atribuir Endereços IP a Dispositivos e Verificar a Conectividade

A maior parte do endereçamento IP já está configurada nesta rede. Implemente as etapas a seguir para concluir a configuração do endereçamento. O roteamento dinâmico EIGRP já está configurado entre R1 e R2.

### Etapa 1: Configure interfaces LAN R1.

a. Configure as duas interfaces de rede local com os endereços da tabela de endereçamento.

```
R1*configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config) #interface gigabitEthernet 00

* Invalid input detected at '^' marker.

R1(config) #interface gigabitEthernet 0/0
R1(config-if) #ip address 192.168.100.1

* Incomplete command.
R1(config-if) #ip address 192.168.100.1 255.255.255.224
R1(config-if) #no shutdown

R1(config-if) # *LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up

*LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up
```

### interface GigabitEthernet 0/0 de R1

```
R1(config-if) #exit
R1(config) #interface gigabitEthernet 0/1
R1(config-if) #ip address 192.168.100.33 255.255.255.224
R1(config-if) #no shutdown
R1(config-if) #
%LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up
```

### interface GigabitEthernet 0/1 de R1

b. Configure as interfaces para que os hosts nas LANs tenham conectividade com o gateway padrão.

Gateway padrão N/A.

### Etapa 2: Configure o endereçamento IP no S3.

a. Configure a interface VLAN1 do switch com endereçamento.

```
S3>enable
S3#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
S3(config)#interface vlan 1
S3(config-if)#ip address 192.168.100.66 255.255.255.224
S3(config-if)#no shutdown

S3(config-if)#
%LINK-5-CHANGED: Interface Vlan1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up
```

b. Configure o switch com o endereço de gateway padrão.

```
S3(config)#
S3(config)#ip default-gateway 192.168.100.65
S3(config)#
```

### Etapa 3: Configure PC4.

Configure o PC4 com endereços de host e gateway padrão .



### Etapa 4: Verifique a conectividade.

Você só pode verificar a conectividade de R1, S3 e PC4. Entretanto, deve conseguir fazer ping em cada endereço IP listado na **Tabela de Endereçamento**.



Ping PC1

```
C:\>ping 192.168.100.62

Pinging 192.168.100.62 with 32 bytes of data:

Request timed out.

Reply from 192.168.100.62: bytes=32 time=27ms TTL=126
Reply from 192.168.100.62: bytes=32 time=16ms TTL=126
Reply from 192.168.100.62: bytes=32 time=9ms TTL=126

Ping statistics for 192.168.100.62:

    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 9ms, Maximum = 27ms, Average = 17ms
```

### **Ping PC2**

```
C:\>ping 192.168.100.94

Pinging 192.168.100.94 with 32 bytes of data:

Request timed out.
Reply from 192.168.100.94: bytes=32 time=14ms TTL=127
Reply from 192.168.100.94: bytes=32 time=14ms TTL=127
Reply from 192.168.100.94: bytes=32 time=15ms TTL=127

Ping statistics for 192.168.100.94:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 14ms, Maximum = 15ms, Average = 14ms
```

### **Ping PC3**

```
C:\>ping 192.168.100.66

Pinging 192.168.100.66 with 32 bytes of data:

Request timed out.

Request timed out.

Reply from 192.168.100.66: bytes=32 time=10ms TTL=254

Reply from 192.168.100.66: bytes=32 time=58ms TTL=254

Ping statistics for 192.168.100.66:

Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),

Approximate round trip times in milli-seconds:

Minimum = 10ms, Maximum = 58ms, Average = 34ms
```

Ping S3

```
C:\>ping 192.168.100.1

Pinging 192.168.100.1 with 32 bytes of data:

Reply from 192.168.100.1: bytes=32 time=3ms TTL=254
Reply from 192.168.100.1: bytes=32 time=13ms TTL=254
Reply from 192.168.100.1: bytes=32 time=6ms TTL=254
Reply from 192.168.100.1: bytes=32 time=10ms TTL=254
Ping statistics for 192.168.100.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 3ms, Maximum = 13ms, Average = 8ms
```

**Ping R1 G0/0** 

