# Estimating Posterior Model Probabilities via Bayesian Model Based Sampling

Merlise Clyde

2021-10-15

## Outline

- Canonical Regression Model & Bayesian Model Averaging
- Estimation via MCMC Monte Carlo Frequencies
- Probability Proportional to Size Sampling in Finite Populations
- Adaptive Independent Metropolis/Adaptive Importance Sampling

## Canonical Regression Model

- Observe response vector **Y** with predictor variables  $X_1 \dots X_p$ .
- Model for data under a specific model  $M_{\gamma}$ :

$$\mathbf{Y} \mid \alpha, \beta_{\gamma}, \phi, M_{\gamma} \sim \mathsf{N}(\mathbf{1}_{n}\alpha + \mathbf{X}_{\gamma}\beta_{\gamma}, \mathbf{I}_{n}/\phi)$$

• Models  $M_{\gamma}$  encoded by  $\gamma=(\gamma_1,\dots\gamma_p)^T$  binary vector with  $\gamma_j=1$  indicating that  $X_j$  is included in model  $M_{\gamma}$  where

$$\gamma_j = 0 \Leftrightarrow \beta_j = 0$$
$$\gamma_j = 1 \Leftrightarrow \beta_j \neq 0$$

- $\mathbf{X}_{\gamma}$ : the  $n \times p_{\gamma}$  design matrix for model  $M_{\gamma}$
- $\beta_{\gamma}$ : the  $p_{\gamma}$  vector of non-zero regression coefficients under  $M_{\gamma}$
- intercept  $\alpha$ , precision  $\phi$  common to all models

# Bayesian Model Averaging (BMA)

- prior distributions on all unknowns  $(M_\gamma, M_\gamma, \alpha_{M_\gamma}, \phi_{M_\gamma})$  and turn the Bayesian crank to get posterior distributions!
- for nice priors, we can integrate out the parameters  $\theta_\gamma=(\beta_\gamma,\alpha_{M_\gamma},\phi_{M_\gamma})$  to obtain the marginal likelihood of  $M_\gamma$

$$\begin{split} p(\mathbf{Y} \mid M_{\gamma}) &= \int p(\mathbf{Y} \mid \theta_{\gamma}, M_{\gamma}) p(\theta_{\gamma} \mid M_{\gamma}) d\theta_{\gamma} \\ p(M_{\gamma} \mid \ Y) &= \frac{p(\mathbf{Y} \mid M_{\gamma}) p(M_{\gamma})}{\sum_{\gamma \in \Gamma} p(\mathbf{Y} \mid M_{\gamma}) p(M_{\gamma})} \end{split}$$

• posterior distribution of quantities  $\Delta$  of interest under BMA

$$\sum_{\gamma \in \Gamma} p(M_{\gamma} \mid \mathbf{Y}) p(\Delta \mid \mathbf{Y}, M_{\gamma})$$

• estimation E[ $\mu$  | Y], p(Y\* | Y), marginal inclusion probabilities  $P(\gamma_j = 1 \mid \mathbf{Y})$ 

# MCMC Sampling from Posterior Distribution

Use a sample of models from  $\Gamma$  to approximate the posterior distribution of models

• design a Markov Chain to transition through  $\Gamma$  with stationary distribution  $p(M_{\gamma} \mid \mathbf{Y})$ 

$$p(M_{\gamma} \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid M_{\gamma}) p(M_{\gamma})$$

- propose a new model from  $q(\gamma^* \mid \gamma)$
- accept moving to  $\gamma^*$  with probability

$$\mathsf{MH} = \max(1, \frac{p(M_{\gamma^*} \mid \mathbf{Y}) p(M_{\gamma^*}^*) / q(\gamma^* \mid \gamma)}{p(M_{\gamma} \mid \mathbf{Y}) p(M_{\gamma}) / q(\gamma)})$$

- otherwise stay at model  $M_{\gamma}$
- models are sampled proportional to their posterior probabilities as  $T \to \infty$

#### Estimation in BMA

Estimate the probabilities of models via Monte Carlo frequencies of models or ergodic averages

$$\begin{split} p(\widehat{M_{\gamma} \mid \mathbf{Y}}) &= \frac{\sum_{t=1}^{T} I(M_t = M_{\gamma})}{T} \\ &= \frac{\sum_{\gamma \in S} n_{\gamma} I(M_{\gamma} \in S)}{\sum n_{\gamma}} \end{split}$$

- T = # MCMC samples
- S is the collection of unique sampled models
- $n_{\gamma}$  is the frequency of model  $M_{\gamma}$  in S
- $n = \sum_{\gamma \in S} n_{\gamma}$  total number of unique models in the sample
- asymptotically unbiased as  $T \to \infty$

## Monte Carlo Frequencies

- fundamentally unsound to a Bayesian! (O'Hagan 1987, The Statistician)
- ignores observed information in the marginal likelihoods  $\times$  prior probabilities!
- Can view MH as a form of Probability Proportional to Size Sampling (PPS) With Replacement
- can we do better using ideas from Finite Population Sampling?
  - Let  $q(M_i)$  be the probability of selecting  $M_i$
  - Goal is to estimate  $C = \sum_{i=1}^{N} p(\mathbf{Y} \mid M_i) p(M_i)$ 
    - \* Hansen-Hurwitz (HH)
    - \* Horvitz-Thompson (HT)
    - \* Hájek
    - \* Basu/Bayes

## Hansen-Hurwitz (HH)

Hansen-Hurwitz (1943) may be viewed as an importance sampling estimate

$$\hat{C} = \frac{1}{n} \sum_{i}^{n} \frac{n_{i} p(\mathbf{Y} \mid M_{i}) p(M_{i})}{q(M_{i})}$$

- If we have "perfect" samples from the posterior then  $q(M_i)=\frac{p(\mathbf{Y}|M_i)p(M_i)}{C}$  and recover C!
- Since C is unknown, apply the ratio HH estimator (or self-normalized IS)

$$\hat{C} = \frac{\frac{1}{n} \sum_{i}^{n} \frac{n_{i} p(\mathbf{Y}|M_{i}) p(M_{i})}{q(M_{i})}}{\frac{1}{n} \sum_{i}^{n} \frac{1}{q(M_{i})}} = \left[\frac{1}{n} \sum_{i} \frac{n_{i}}{p(\mathbf{Y} \mid M_{i}) p(M_{i})}\right]^{-1}$$

. . .

But this recovers the "infamous" harmonic mean estimator of Newton & Raftery (1994) - while unbiased, it's is highly unstable!

# Horvitz-Thompson (HT)

- inclusion probability that  $\gamma_i \in S$  - under sampling with replacement  $\pi_i = 1 - (1 - q(M_i))^{\rm T}$ 

• HT estimate of normalizing constant:

$$\hat{C} = \frac{1}{n} \sum_{i \in n} \frac{p(\mathbf{Y} \mid M_i) p(M_i)}{\pi_i}$$

(dominates HH, unique hyper-admissible estimate of C)

• Hájek (1971) estimator uses an auxilary variable  $A_i>0$ , where we expect  $p(\mathbf{Y}\mid M_i)p(M_i)\propto A_i$ , with  $A\equiv\sum_{i=1}^N A_i$ 

$$\hat{C} = \frac{\sum_{i=1}^{n} \frac{p(\mathbf{Y}|M_i)p(M_i)}{\pi_i}}{\sum_{i=1}^{n} \frac{A_i/A}{\pi_i}}$$

may be preferable when  $p(\mathbf{Y}\mid M_i)p(M_i)$  are weakly correlated with  $\pi_i$  or when n is not fixed

### Basu and Bayes

Basu's (1971) famous circus example illustrated potential problems with the Horvitz-Thompson estimator (similar problem arises with IS)

- violates the likelihood principle
- once we have samples,  $p(\mathbf{Y} \mid M_i)p(M_i)$  are fixed and the sampling probabilities are not relevant
- only randomness is for the remaining units that were not sampled. (which is related to the sampling design)
- Basu's estimate (using  $\pi_i = A_i/A$ ),

$$C = \sum_{i \in S} p(\mathbf{Y} \mid M_i) p(M_i) + \frac{1}{n} \left( \sum_{i \in S} \frac{p(\mathbf{Y} \mid M_i) p(M_i)}{\pi_i} \right) \times \left( \sum_{i \notin S} \pi_i \right)$$

• conditions on the observed data sum and estimates remaining

#### Model Based Methods

Basu (1971)'s estimate of the total can be justified as a "super-population" Model Based approach (Meeden and Ghosh, 1983)

• Let  $m_i = p(\mathbf{Y} \mid M_i)p(M_i)$ 

$$m_i \mid \pi_i \stackrel{\text{ind}}{\sim} N(\pi_i \beta, \sigma^2 \pi_i^2)$$
 (1)

$$p(\beta, \sigma^2) \propto 1/\sigma^2 \tag{2}$$

- posterior mean of  $\beta$  is  $\hat{\beta} = \frac{1}{n} \sum_{i \in S} \frac{m_i}{\pi_i}$  (the HT of the total)
- using the posterior predictive for  $m_i \notin S, \, \mathsf{E}[m_i \mid m_j \in S] = \pi_i \hat{\beta}$

$$C = \sum_{i \in \Gamma} m_i = \sum_{i \in S} m_i + \sum_{i \not \in S} m_i$$

$$\hat{C} = \sum_{i \in S} m_i + \sum_{i \notin S} \hat{\beta} \pi_i = \sum_{i \in S} m_i + \left[ \frac{1}{n} \sum_{i \in S} \frac{m_i}{\pi_i} \right] \sum_{i \notin S} \pi_i$$

### Final Posterior Estimates

• estimate of posterior probability  $M_{\gamma}$  for  $M_{\gamma} \in S$ 

$$\frac{p(\mathbf{Y} \mid M_{\gamma})p(M_{\gamma})}{\sum_{i \in S} p(\mathbf{Y} \mid M_{i})p(M_{i}) + \frac{1}{n}\sum_{i \in S} \frac{p(\mathbf{Y} \mid M_{i})p(M_{i})}{\pi_{i}}\sum_{i \in S} (1 - \pi_{i})}$$

- estimate of all models in  $\Gamma-S$  from the predictive distribution

$$\frac{\frac{1}{n}\sum_{i \in S}\frac{p(\mathbf{Y}|M_i)p(M_i)}{\pi_i}\sum_{i \in S}(1-\pi_i)}{\sum_{i \in S}p(\mathbf{Y}\mid M_i)p(M_i) + \frac{1}{n}\sum_{i \in S}\frac{p(\mathbf{Y}|M_i)p(M_i)}{\pi_i}\sum_{i \in S}(1-\pi_i)}$$

- Uses renormalized marginal likelihoods of sampled models
- easy to compute marginal inclusion probabilities
- Other mean/variance assumptions for the super-population model lead to other estimates for C,  $p(M_{\gamma} \mid \mathbf{Y})$ , etc
- What about  $E[|\mathbf{Y}|, E[\mathbf{X} \mid \mathbf{Y}], E[\mathbf{Y}^* \mid \mathbf{Y}] \text{ or } p(\Delta \mid \mathbf{Y})$ ?

# Choice for $q(M_{\gamma})$ or $\mathbf{A}_{M_{\gamma}}$ ?

• The joint posterior distribution of  $\gamma$  (dropping Y) may be factored:

$$p(M_{\gamma} \mid \mathbf{Y}) \equiv p(\gamma \mid \mathbf{Y}) = \prod_{j=1}^p p(\gamma_j \mid \gamma_{< j})$$

where  $\gamma_{< j} \equiv \{ \gamma_k \}$  for k < j and  $p(\gamma_1 \mid \gamma_{< 1}) \equiv p(\gamma_1)$ .

• As  $\gamma_j$  are binary, re-express as

$$p(\boldsymbol{\gamma} \mid \mathbf{Y}) = \prod_{i=1}^p (\rho_{j|< j})^{\gamma_j} (1 - \rho_{j|< j})^{1 - \gamma_j}$$

where  $\rho_{j|< j} \equiv \Pr(\gamma_j = 1 \mid \gamma_{< j})$  and  $\rho_{1|< 1} = \rho_1$ , the marginal probability.

• Product of **Dependent** Bernoullis

# Global Adaptive MCMC Proposal

Factor proposal

$$q(\gamma) = \prod_{j=1}^p q(\gamma_j \mid \gamma_{< j}) = \prod_j \mathrm{Ber}(\hat{\rho}_{j|< j})$$

- • Note:  $\Pr(\gamma_j = 1 \mid \gamma_{< j}) = \mathsf{E}[\gamma_j = 1 \mid \gamma_{< j}]$
- Fit a sequence of p regressions  $\gamma_j$  on  $\gamma_{< j}$

$$\begin{split} \gamma_1 &= \mu_1 + \epsilon_1 \\ \gamma_2 &= \mu_2 + \beta_{21}(\gamma_1 - \mu_1) + \epsilon_2 \\ \gamma_3 &= \mu_3 + \beta_{31}(\gamma_1 - \mu_1) + \beta_{32}(\gamma_2 - \mu_2) + \epsilon_3 \\ &\vdots \\ \gamma_p &= \mu_p + \beta_{p1}(\gamma_1 - \mu_1) \ldots + \beta_{p-1} \, p-1}(\gamma_{p-1} - \mu_{p-1}) + \epsilon_p \end{split}$$



# Compositional Regression

Approximate model

$$\gamma \sim \mathsf{N}(\mu, \Sigma_{\gamma})$$

• Wermouth (1980) compositional regression

$$\mathbf{G} = \mathbf{1}_T \mu^T + (\Gamma - \mathbf{1}_T \mu^T) \mathbf{B} + \epsilon$$

- **G** is  $T \times p$  matrix where row t is  $\gamma_t$
- $\mu$  is the p dimensional vector of  $\mathsf{E}[\gamma]$
- $\Sigma_{\gamma} = \mathbf{U}^T \mathbf{U}$  where  $\mathbf{U}$  is upper triangular Cholesky decomposition of covariance matrix of  $\gamma$   $(p \times p)$
- **B** is a  $p \times p$  upper triangular matrix with zeros on the diagonal and regression coefficients for jth regression in row j

## Estimators of B and $\mu$

- OLS is BLUE and consistent, but G may not be full rank
- apply Bayesian Shrinkage with "priors" on  $\mu$  (non-informative or Normal) and  $\Sigma$  (inverse-Wishart)
- pseudo-posterior mean  $\mu$  is the current estimate of the marginal inclusion probabilities  $\bar{\gamma}=\hat{\mu}$
- use pseudo-posterior mean for  $\Sigma$
- one Cholesky decomposition provides all coefficients for the p predictions for proposing  $\gamma^*$
- constrain predicted values  $\hat{\rho}_{j|< j} \in (\delta, 1 \delta)$
- generate  $\gamma_j^* \mid \gamma_{< j}^* \sim \mathsf{Ber}(\hat{\rho}_{j|< j})$
- use as proposal for Adaptive Independent Metropolis-Hastings or Importance Sampling (Accept all) -or- Samping Without Replacement (todo)

### Simulation

- tecator data (Griffin et al (2021))
- a sample of p = 20 variables
- compare
  - enumeration to

- MCMC with add, delete, and swap moves with q Adaptive Independent MCMC Importance Sampling with HT

- same settings burnin.it, MCMC.it, thin

```
load("sim_code/tecator-time.dat")
boxplot(time, main="CPU time", ylab = "Time")
```



# **MSE** Comparision

# **Marginal Inclusion Probabilities**



## **Posterior Model Probabilities**



# Continued Adaptation?

• can update Cholesky with rank 1 updates with new models

- how to combine IS with MH samples (weighting)?
- HT/Hajek computational complexity involved if we need to compute inclusion probability for all models based on updates (previous models and future models)
- Basu (1971) approach works with PPS-WOR take  $\pi_i \propto A_i \equiv q(\gamma_i)$  (adaptation?)

### Refinements

- Want to avoid MCMC for
  - pseudo Bayesian posteriors used to learn proposal distribution in sample design for models
  - estimation of posterior model probabilities in model-based approaches (ie learning  $\beta$ , sampling from predictive distribution)
  - estimation of general quantities under BMA?
- avoid infinite regret
- more general models?

# Summary

- Adaptive Independent Metropolis proposal for models (use in more complex IS)
- Use observed values of unique marginal likelihoods of models for estimating posterior distribution
- Bayes estimates from MC output (solution to O'Hagan '73?)

::: ::::