

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
- 4.实验报告文件以 PDF 格式提交。

院系	数据科学与计算机学院		班 级	16 级信.	息与计算科学		组长	回煜淼	
学号	16339021		<u>16343065</u>		16339049				
学生	<u>回煜淼</u>		桑娜		辛依繁				
实验分工									
回煜淼		学习实验内容,小组讨论,共同完成实			辛依繁	当	学习实验内容, 小组讨论, 共同完成		
		<u>验</u>			多	<u> </u>			
练启业		学习实验内容,小组讨论,共同完成实							
		<u> 36</u>							

【实验题目】OSPF 路由协议实验

【实验目的】

掌握 OSPF 协议单区域的配置和使用方法。

【实验内容】

- (1) 完成路由器配置实验实例 7-3 (P252) 的"OSPF 单区域配置", 回答步骤 1、步骤 9 问题。
- (2) 在(1)的基础上每台路由器上各加入一台电脑,画出新拓扑,然后:
 - (a) 检查任意两个 PC 之间是否可以 Ping 通,对一台主机 ping 其它主机的结果进行截屏。
 - (b) 采用#depug ip ospf 显示上面 OSPF 协议的运行情况,观察并保存 R1 发送和接收的 Update 分组(可以改变链路状态来触发),注意其中 LSA 类型;观察有无 224.0.0.5、224.0.0.6 IP 地址,如有说明这两地址的作用。
 - (c) 显示并记录路由器 R1 数据库的 Router LSA, Network LSA, LS 数据库信息汇总

show ip ospf database router

show ip ospf database network

show ip ospf database database

- ! 显示 router LSA
 - ! 显示 network LSA
- ! 显示 OSPF 链路状态数据库信息。

(d) 显示并记录邻居状态。

show ip ospf neighbor

(e) 显示并记录 R1 的所有接口信息 #show ip ospf interface [接口名]

【实验要求】

重要信息信息需给出截图,注意实验步骤的前后对比。

【实验记录】(如有实验拓扑请自行画出)

一. 实验 7-3 OSPF 单区域

二. 4台 PC 新拓扑实验

一. 实验 7-3 OSPF 单区域

【实验拓扑】

上图中 PC1 的 IP 地址和默认网关分别为 192.168.5.11 和 192.168.5.1, PC2 的 IP 地址和默认网关分别为 192.168.3.22 和 192.168.3.1, 子网掩码都是 255.255.255.0.

【实验步骤】

堋:

(1) 按照拓扑图配置 PC1 和 PC2 的 IP 地址, 子网掩码, 网关, 并测试他们的连通性。

```
© 管理员: C:\Windows\system32\cmd.exe

Microsoft Windows [版本 6.1.7601]
版权所有 (c) 2009 Microsoft Corporation。保留所有权利。

C:\Users\Administrator\ping 192.168.3.22

正在 Ping 192.168.3.22 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。

192.168.3.22 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4 (100% 丢失),

C:\Users\Administrator\
```

分析:由于PC1和PC2分属于不同的网络,且之间没有路由器连接,所以ping不通。

(2) 在路由器 R1(或 R2) 上执行 show ip route 命令,记录路由表信息。

13-RSR20-1#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

0 - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

分析:路由表是空的。

步骤 2: 三层交换机的基本配置

```
S5750(config)#interface gigabitethernet 0/5
S5750(config-if-GigabitEthernet 0/5)#switchport access vlan 50
S5750(config-if-GigabitEthernet 0/5)#exit
S5750(config)#interface vlan 10
S5750(config-if-VLAN 10)#*Jun 11 15:23:54: %LINEPROTO-5-UPDOWN: Line protocol on Int
S5750(config-if-VLAN 10)#ip address 192.168.1.2 255.255.255.0
S5750(config-if-VLAN 10)#no shutdown
S5750(config-if-VLAN 10)#exit
S5750(config)#interface vlan 50
S5750(config-if-VLAN 50)#*Jun 11 15:24:40: %LINEPROTO-5-UPDOWN: Line protocol on Int
S5750(config-if-VLAN 50)#ip address 192.168.5.1 255.255.255.0
S5750(config-if-VLAN 50)#no shutdown
S5750(config-if-VLAN 50)#exit
S5750(config)#show vlan
VLAN Name
                                        Status
                                                Ports
   1 VLAN0001
                                        STATIC Gi0/2, Gi0/3, Gi0/4, Gi0/6
                                                  {\tt Gi0/7,\ Gi0/8,\ Gi0/9,\ Gi0/10}
                                                  GiO/11, GiO/12, GiO/13, GiO/14
                                                  GiO/15, GiO/16, GiO/17, GiO/18
GiO/19, GiO/20, GiO/21, GiO/22
                                                   GiO/23, GiO/24, GiO/25, GiO/26
                                                  GiO/27, GiO/28
  10 VLAN0010
                                        STATIC
                                                  Gi0/1
  50 VLAN0050
                                        STATIC
                                                  Gi0/5
S5750(config)#
```

分析:交换机配置了 2 个 VLAN,并且设置了相应接口的 ip 地址,这里相当于把交换机当作路由器使用。

步骤1:路由器1的配置

13-RSR20-1#config

Enter configuration commands, one per line. End with CNTL/Z.

13-RSR20-1(config)#interface gigabitethernet 0/1

13-RSR20-1(config-if-GigabitEthernet 0/1)#\$2.168.1.1 255.255.255.0

13-RSR20-1(config-if-GigabitEthernet 0/1)#no shutdown

13-RSR20-1(config-if-GigabitEthernet 0/1)#exit

13-RSR20-1(config)#ingterface serial 2/0

% Unknown command.

13-RSR20-1(config)#interface serial 2/0

13-RSR20-1(config-if-Serial 2/0)#ip address 192.168.2.1 255.255.255.0

13-RSR20-1(config-if-Serial 2/0)#no shutdown

分析:设置了路由器 R1 两个接口的 ip 地址,并且开启接口。

13-RSR20-2#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

13-RSR20-2(config)#interface gigabitethernet 0/1

13-RSR20-2(config-if-GigabitEthernet 0/1)#\$2.168.3.1 255.255.255.0

13-RSR20-2(config-if-GigabitEthernet 0/1)#no shutdown

13-RSR20-2(config-if-GigabitEthernet 0/1)#exit

13-RSR20-2(config)#interface serial 2/0

13-RSR20-2(config-if-Serial 2/0)#ip address 192.168.2.2 255.255.255.0

13-RSR20-2(config-if-Serial 2/0)#no shutdown

分析:同样是设置 2 个接口的 ip 地址,并且开启接口。

S5750#*Jun 11 15:28:03: %SYS-5-CONFIG_I: Configured from console by console

交换机的配置:

S5750(config)#router ospf 1
S5750(config-router)#network 192.168.5.0 0.0.0.255 area 0
S5750(config-router)#network 192.168.1.0 0.0.0.255 area 0
S5750(config-router)#end*Jun 11 15:28:03: %OSFF-5-ADJCHG: Process 1, Nbr 192.168.2.1-VLAN 10 from Down to Init, HelloReceived.
*Jun 11 15:28:03: %OSFF-5-ADJCHG: Process 1, Nbr 192.168.2.1-VLAN 10 from Loading Tomal Configuration of the Configu

分析: 启动 OSPF 进程, 进程号 1 被定义。申请直连网络, 直连的 2 个网络 ip 地址分别为 192.168.5.0,和 192.168.1.0,注意后面的掩码是反掩码,即真正的子网掩码按位取反。Area 后的数字表示区域号。

路由器1的配置:

13-RSR20-1(config-if-Serial 2/0)#router ospf 1
13-RSR20-1(config-router)#network 192.168.1.0 0.0.0.255 area 0
13-RSR20-1(config-router)#network 192.168.2.0 0.0.0.255 area 0

13-RSR20-1(config-router)#end

分析:同样是申请直连网络。

路由器 2 的配置:

13-RSR20-2(config-if-Serial 2/0)#router ospf 1
13-RSR20-2(config-router)#network 192.168.2.0 0.0.0.255 area 0
13-RSR20-2(config-router)#network *Jun 11 23:44:15: %OSPF-5-ADJCHG: Process 1, N br 192.168.2.1-Serial 2/0 from Down to Init, HelloReceived.
*Jun 11 23:44:16: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.2.1-Serial 2/0 from Loading to Full, LoadingDone.

% Incomplete command.

13-RSR20-2(config-router)#network 192.168.3.0 0.0.0.255 area 0 13-RSR20-2(config-router)#end

验证 S1:


```
Gateway of last resort is no set
C 192.168.1.0/24 is directly connected, VLAN 10
C 192.168.1.2/32 is local host.
O 192.168.2.0/24 [110/51] via 192.168.1.1, 00:01:31, VLAN 10
O 192.168.3.0/24 [110/52] via 192.168.1.1, 00:01:31, VLAN 10
C 192.168.5.0/24 is directly connected, VLAN 50
C 192.168.5.1/32 is local host.
S5750#
```

R1:

```
Gateway of last resort is no set
C 192.168.1.0/24 is directly connected, GigabitEthernet 0/1
C 192.168.1.1/32 is local host.
C 192.168.2.0/24 is directly connected, Serial 2/0
C 192.168.2.1/32 is local host.
O 192.168.3.0/24 [110/51] via 192.168.2.2, 00:03:19, Serial 2/0
O 192.168.5.0/24 [110/2] via 192.168.1.2, 00:00:00, GigabitEthernet 0/1
13-RSR20-1#
```

R2:

```
Gateway of last resort is no set

0    192.168.1.0/24 [110/51] via 192.168.2.1, 00:03:51, Serial 2/0

C    192.168.2.0/24 is directly connected, Serial 2/0

C    192.168.2.2/32 is local host.

C    192.168.3.0/24 is directly connected, GigabitEthernet 0/1

C    192.168.3.1/32 is local host.

O    192.168.5.0/24 [110/52] via 192.168.2.1, 00:00:09, Serial 2/0
```

分析交换机和路由器 R1, R2 的路由表,表中有 O 条目吗?如果有,是怎样产生的?答:三者均有 O 条目,说明我们启用的 OSPF 协议生效了,三者通过 OSPF 协议学习到了其他路由器上的路由信息。

测试连通性:

```
Microsoft Windows [版本 6.1.7601] 版权所有(c)2009 Microsoft Corporation。保留所有权利。

C: Wsers Administrator > ping 192.168.3.22

正在 Ping 192.168.3.22 具有 32 字节的数据:
来自 192.168.3.22 的回复: 字节=32 时间=34ms TTL=125
来自 192.168.3.22 的回复: 字节=32 时间=36ms TTL=125

192.168.3.22 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 34ms,最长 = 36ms,平均 = 35ms

C: Wsers Administrator>
```

分析:配置完路由器后,PC1和PC2可以连通了。

(1) 将此时的路由表与步骤 0 的路由表进行比较,有什么结论? 答:

步骤 0 时 R1 的路由表:

13-RSR20-1#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

0 - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

此时 R1 的路由表:

```
Gateway of last resort is no set
C 192.168.1.0/24 is directly connected, GigabitEthernet 0/1
C 192.168.1.1/32 is local host.
C 192.168.2.0/24 is directly connected, Serial 2/0
C 192.168.2.1/32 is local host.
O 192.168.3.0/24 [110/51] via 192.168.2.2, 00:03:19, Serial 2/0
O 192.168.5.0/24 [110/2] via 192.168.1.2, 00:00:00, GigabitEthernet 0/1
13-RSR20-1#
```

通过对比,可以看到路由器 R1 上的路由信息多了 C 条目和 O 条目,其中 C 条目是我们为路由器接口申请的直连网络,而 O 条目是通过 OSPF 协议学习到的其他 2 台路由设备上的路由信息。

(2) 分析 tracert PC1(或 PC2)的执行结果。

```
C: Wsers Administrator>tracert 192.168.5.11
通过最多 30 个跃点跟踪
到 STU83 [192.168.5.11] 的路由:
      <1 毫秒
              <1 毫秒
                       <1 毫秒 192.168.3.1
      39 ms
              39 ms
                      39 ms 192.168.2.1
                      47 ms 192.168.1.2
      50 ms
              47 ms
      47 ms
              47 ms
                      47 ms STU83 [192.168.5.11]
限踪完成。
```

通过上图可以看出从 PC2 发报文到 PC1 的过程中, 经过的端口的 IP 依次为: 192.168.3.1->192.168.2.1->192.168.1.2->192.168.5.11。与拓扑图一致。

(3) 捕获数据包,分析 OSPF 头部分结构。OSPF 包在 PC1 或 PC2 上能捕获到吗?如果希望 2 台主机都能捕获到,请描述方法。

答:

PC1:

No.	Time Source	Destination Protocol Length Info
	18 4.8535790(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	39 14.853125(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	64 23.852718(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	91 34.852132(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	113 44.851796(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	133 53.851424(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	160 64.850922(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	186 74.850464(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	209 83.850072(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet
	245 94.849544(192.168.5.1	224.0.0.5 OSPF 78 Hello Packet

可以看到,捕获到源地址为 192.168.5.1,目的地址为 224.0.0.5 的 OSPF 数据包。PC2:

Filter:	ospf		Expression Clear	Apply Save	
No.	Time	Source	Destination	Protocol	Length Info
	10 3.4922760	(192.168.3.1	224.0.0.5	05PF	78 Hello Packet
	57 34.083851	(192.168.3.1	224.0.0.5	OSPF	78 Hello Packet
	202 44.081901	(192.168.3.1	224.0.0.5	OSPF	78 Hello Packet
	225 54.081888	3(192.168.3.1	224.0.0.5	OSPF	78 Hello Packet
	237 64.082121	(192.168.3.1	224.0.0.5	OSPF	78 Hello Packet
	239 74.081960	(192.168.3.1	224.0.0.5	OSPF	78 Hello Packet
	241 84.081931	(192.168.3.1	224.0.0.5	OSPF	78 Hello Packet

可以看到, 捕获到源地址为 192.168.3.1, 目的地址为 224.0.0.5 的 OSPF 数据包。

OSPF 头部分结构:

```
□ Open Shortest Path First
  ■ OSPF Header
      Version: 2
     Message Type: Hello Packet (1)
      Packet Length: 44
      Source OSPF Router: 192.168.5.1 (192.168.5.1)
      Area ID: 0.0.0.0 (0.0.0.0) (Backbone)
      Checksum: 0x714b [correct]
     Auth Type: Null (0)
     Auth Data (none): 0000000000000000
  ■ OSPF Hello Packet
     Network Mask: 255.255.255.0 (255.255.255.0)
      Hello Interval [sec]: 10

  □ Options: 0x02 (E)

        0... .... = DN: Not set
        .0.. .... = O: Not set
        ..... = DC: Demand Circuits are NOT supported
        ...0 .... = L: The packet does NOT contain LLS data block
        .... 0... = NP: NSSA is NOT supported
        .... .O.. = MC: NOT Multicast Capable
        .... ..1. = E: External Routing Capability
        .... 0 = MT: NO Multi-Topology Routing
      Router Priority: 1
      Router Dead Interval [sec]: 40
      Designated Router: 192.168.5.1 (192.168.5.1)
      Backup Designated Router: 0.0.0.0 (0.0.0.0)
```

通过上图可以看出, OSPF 的报头里有:

OSPF Version:OSPF 的版本信息

Message Type:信息的类型,我们当前捕获的是 Hello packet

Packet Length:包的大小,整个 OSPF 包的字节长度,包括标准的 OSPF 头部。

Source OSPF Router:发送这个 OSPF 报文的源主机的 IP

Area ID:区域号,一个 32 位数表示包所属于的区域。所有的 OSPF 包都关联到一个区域。大多数都只传输一跳。在虚拟通道中的传输关联到骨干区域 0.0.0.0。

Packet Checksum:包的校验和,从 OSPF 包头开始,除了 64 位的验证域外,整个包的标准 IP 校验和。该校验和作为 16 位 1 补足校验和而计算包中除验证域外的所有 16 位字。如果包的长度不满足 16 位字,就在校验和前加上一个字节的 0 来补足。校验和也被作为正确性验证的一部分,在某些 OSPF 验证类型下,校验和计算被忽略。

Auth Type:鉴定类型,说明所使用验证过程的类型。在这里的情况是空验证。

空验证:

使用该验证类型意味着在网络/子网上的路由交换没有被验证。OSPF 包头中的 64 位的验证域不包含任何内容;在接收到时也不做任何检查。在使用空验证时,OSPF 包中的所有内容(除了 64 位验证域)被计算校验和,以检查数据的正确性。

Auth Data: 由 Auth Type 字段指定的包的必须授权信息。

网络掩码/Network mask:

该接口所关联的网络掩码。

HelloInterval:

路由器发送 Hello 包的间隔秒数。

路由器优先级/Rtr Pri:

路由器的优先级。用于 DR、BDR 的选举。如果设为 0,路由器就不能成为 DR 或 BDR。

RouterDeadInterval

在 Router Dead Interval 时间间隔内没有收到邻居的 Hello 报文,则认为邻居 DOWN,删除邻居。 指定路由器/Designated Router:

以发送路由器的视角认为网络上的 DR。DR 以其网络上的接口 IP 地址作为标识。设定为 0.0.0.0 表示没有 DR。

备份指定路由器/Backup Designated Router:

以发送路由器的视角认为网络上的 BDR。BDR 以其网络上的接口 IP 地址作为标识。设定为 0.0.0.0 表示没有 BDR。

(4) 使用#debug ip ospf 命令显示上述 OSPF 协议的运行情况,观察并保存路由器 R1 发送和接收的 Update 分组(可以通过改变链路状态触发),注意其中 LSA 类型;观察有无 224.0.0.5,224.0.0.6 的 IP 地址,如有请说明这 2 个地址的作用。

```
NFSM[192.168.3.1-Serial 2/0]: Full (HelloReceived)
RECV[LS-Ack]: From 192.168.3.1 via Serial 2/0:192.168.2.1 (TwoWayMaintain)
OSFF[1]: LSA refresh timer expire
ospf[1]: LSA refresh timer expire
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Install router-LSA
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: LSA refresh scheduled at LS age 1777
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Flooding via interface[GigabitEthernet 0/1:192.168.1.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Flooding to neighbor[192.168.5.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Sending update to interface[GigabitEthernet 0/1:192.168.1.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Sending update to interface[GigabitEthernet 0/1:192.168.1.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Flooding via interface[GigabitEthernet 0/1:192.168.1.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Flooding to neighbor[192.168.3.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Flooding to neighbor[192.168.3.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Rodded to neighbor[192.168.3.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Sending update to interface[Serial 2/0:192.168.2.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Flooding to neighbor[192.168.3.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: Added to neighbor[192.168.3.1]
LSA[0.0.0.0:Typel:192.168.2.1:(self)]: router-LSA refreshed
LSA Header
LS age 0
Options 0x2
LS type 1 (router-LSA)
Link State ID 192.168.2.1
Advertising Router 192.168.2.1
LSA sequence number 0x8000000a
LS checksum 0x943d
length 60
ospf[1]: LSA refresh completed [0.000000 sec]. count: 1
SEND[LS-Upd]: 1 LSAs to destination 224.0.0.5
```

发送与接受:

<u>计算机网络实验报告</u>

```
*Jun 11 23:57:08: %7: SEND[LS-Ack]: To 224.0.0.5 via GigabitEthernet 0/1:192.168.1.1, length 84
*Jun 11 23:57:08: %7: ------
*Jun 11 23:57:08: %7: Header
*Jun 11 23:57:08: %7: Wers:
*Jun 11 23:57:08: %7: Type
*Jun 11 23:57:08: %7: Type
*Jun 11 23:57:08: %7: Rout
*Jun 11 23:57:08: %7: Area
*Jun 11 23:57:08: %7: Checl
                                                                                     Version 2
Type 5 (Link State Acknowledgment)
                                                                                     Packet Len 84
Router ID 192.168.2.1
Area ID 0.0.0.0
                                                               %7: Checksum 0x3d70
%7: AuType 0
%7: Link State Acknowledgment
%7: # LSA Headers 3
 *Jun 11 23:57:08:
*Jun 11 23:57:08:
*Jun 11 23:57:08:
*Jun 11 23:57:08:
                                                                                    # LbA Headers 3
LSA Header
LS age 6
Options 0x2
LS type 1 (router-LSA)
Link State ID 192.168.5.1
  *Jun 11 23:57:08: %7:
*Jun 11 23:57:08: %7:
*Jun 11 23:57:08: %7:
*Jun 11 23:57:08: W7:
                                                                                            Advertising Router 192.168.5.1
LS sequence number 0x80000008
LS checksum 0x7c06
                                                                                   LS checksum 0x7c06
length 48
LSA Header
LS age 3600
Options 0x2
LS type 2 (network-LSA)
Link State ID 192.168.1.1
Advertising Router 192.168.2.1
LS sequence number 0x80000001
LS checksum 0xc0e5
length 32
  *Jun 11 23:57:08:
                                                                %7:
                                                               %7:
%7:
                                                                                     length 32
LSA Header
LS age 1
                                                                 %7:
                                                                                           LS age 1
Options 0x2
LS type 2 (network-LSA)
Link State ID 192.168.1.2
Advertising Router 192.168.5.1
LS sequence number 0x80000001
LS checksum 0x950d
                                                               %7:
                                                               %7:
%7:
%7:
                                                               %7:
%7:
%7:
                                                                                             length 32
                                                               %7:
%7:
%7:
  *Jun 11 23:57:08:
                                                                             RECV[LS-Ack]: From 192.168.3.1 via Serial 2/0:192.168.2.1 (192.168.2.2 -> 224.0.0.5), len = 64, cksum = 0x11ef
```

如上图所示,LSA 的类型为: router-LSA;只发现了 224.0.0.5 这个 IP 地址,没有发现 224.0.0.6 这个 IP 地址。224.0.0.5 和 224.0.0.6 这 2 个地址是组播地址,对所有 DR/BDR 路由器的组播地址为 224.0.0.6,对所有的非 DR/BDR 路由器的组播地址为 224.0.0.5。224.0.0.6 指代一个多路访问网络中 DR 和 BDR 的组播接收地址.224.0.0.5 指代在任意网络中所有运行 OSPF 进程的接口都属于该组,于是接收所有 224.0.0.5 的组播数据包.比如 DR/BDR 属于组播地址为 224.0.0.6 的组(Group),因此它接收目的地址为 224.0.0.6 的组播数据包,也就可以理解为何多路访问通过设置 DR/BDR 可以防止信息过多处理(因为属于某组的接收者(指 OSPF 接口),只会剥离到二层,而不会进一步处理,也就省去了很多资源 浪费)。

(5)本实验有没有 DR/BDR (指派路由器/备份指派路由器)?如果有请指出 DR 与 BDR 分别是哪个设备,讨论 DR/BDR 的选举规则和更新方法(通过拔线改变拓扑结构,观察 DR/BDR 的变化情况);如果没有,请说明理由。

答:

链路变化前 PC2 上抓包:


```
Ethernet II, Src: FujianRu_27:bf:0a (58:69:6c:27:bf:0a), Dst: IPv4mcast_05 (01:00:5e:00:00:05)

⊕ Internet Protocol Version 4, Src: 192.168.3.1 (192.168.3.1), Dst: 224.0.0.5 (224.0.0.5)

Open Shortest Path First
  □ OSPF Header
     Version: 2
      Message Type: Hello Packet (1)
      Packet Length: 44
      Source OSPF Router: 192.168.3.1 (192.168.3.1)
      Area ID: 0.0.0.0 (0.0.0.0) (Backbone)
      Checksum: 0x754b [correct]
      Auth Type: Null (0)
      Auth Data (none): 0000000000000000
  ■ OSPF Hello Packet
      Network Mask: 255.255.255.0 (255.255.255.0)
      Hello Interval [sec]: 10

  □ Options: 0x02 (E)

        0... = DN: Not set
        .0.. .... = 0: Not set
        ..... = DC: Demand Circuits are NOT supported
        ...0 .... = L: The packet does NOT contain LLS data block
        \dots 0... = NP: NSSA is NOT supported
        .... .0.. = MC: NOT Multicast Capable
        .... ..1. = E: External Routing Capability
        .... ... 0 = MT: NO Multi-Topology Routing
      Router Priority: 1
      Router Dead Interval [sec] 40
     Designated Router: 192.168.3.1 (192.168.3.1)
      Backup Designated Router: 0.0.0.0 (0.0.0.0)
```

链路变化后 PC2 上抓包:

```
Ethernet II, Src: FujianRu_27:bf:0a (58:69:6c:27:bf:0a), Dst: IPv4mcast_05 (01:00:5e:00:00:05)

⊕ Internet Protocol Version 4, Src: 192.168.3.1 (192.168.3.1), Dst: 224.0.0.5 (224.0.0.5)

□ Open Shortest Path First
  ■ OSPF Header
     Version: 2
     Message Type: Hello Packet (1)
     Packet Length: 44
     Source OSPF Router: 192.168.3.1 (192.168.3.1)
     Area ID: 0.0.0.0 (0.0.0.0) (Backbone)
     Checksum: 0x38f5 [correct]
     Auth Type: Null (0)
     Auth Data (none): 0000000000000000
  □ OSPF Hello Packet
     Network Mask: 255.255.255.0 (255.255.255.0)
      Hello Interval [sec]: 10

  □ Options: 0x02 (E)

       0... .... = DN: Not set
       .0.. .... = 0: Not set
        ..... = DC: Demand Circuits are NOT supported
        ...0 .... = L: The packet does NOT contain LLS data block
       .... 0... = NP: NSSA is NOT supported
        .... .O.. = MC: NOT Multicast Capable
        .... ..1. = E: External Routing Capability
        .... 0 = MT: NO Multi-Topology Routing
      Router Priority: 1
      Router Dead Interval [sec] 40
      Designated Router: 0.0.0.0 (0.0.0.0)
      Backup Designated Router: 0.0.0.0 (0.0.0.0)
```

我们通过把拔掉与电脑直连路由器的线改变链路状况。如上图所示,链路变化前后都没有 BDR。链路变化前的 DR 是 R2,链路变化后没有 DR。没有备份路由是因为 PC2 只直连了一台路由器 R2,没有别的路径可以走。由于我们拔掉了与 PC2 直连的唯一的路由器所以,链路变化后也没有 DR。DR/BDR 选举规则及更新方法:

OSPF priority 最高者为 DR。如果 priority 相同,则具有最高的 Router-ID 的路由器被选举为 DR。Router-Id 为最大的接口 IP 地址,如果配置了 loopback 地址,则使用 loopback 地址作为 Router-ID,如果配置有多个 loopback 地址,则以最高的 loopback 地址为 Router ID。也可是通过 router-id <address>路由器配置命令强制某个 IP 地址作为路由器的 Router ID。

优先级仅次于 DR 的路由器,选举为 BDR。

假设在一个 OSPF 多路访问网络中已存在一台 DR 路由器和一台 BDR 路由器,如果 DR 死掉(重起),则 BDR 自动升级为 DR,同时选举该多路访问网络中的另一台 OSPF 路由器作为 BDR. 当原 DR 启动以后,虽然检测到目前运行的 BDR 的 Router ID 没有自己高,但是仍只能作为 BDR 或 DR Other 路由器运行(如果已经选举了另一台 BDR).(这样也在一定的程度上就确保了链路状态的稳定性)实验中在申明直连网段时,注意要写该网段的反掩码,并且必须指明所属的区域。

【实验思考】

(1) 如何查看 OSPF 发布的网段?

网段是 0SPF 的重要参数之一。如何查看 0SPF 发布的网段呢? 我们可以使用带有网段参数的 show ip ospf 命令,来查看相应的网段。这其中包括了网段的详细信息,有由什么协议获取、度量值、路由源及更新时间等信息。

(2) 请问: 192.168.2.0/28 的反掩码是多少?

二. 4 台 PC 新拓扑实验

二. 在 (一) 的基础上每台路由器上各加入一台电脑, 画出新拓扑, 然后我们设定 PC3 的 ip 为 192.168.4.2, 子网为 192.168.4.1, PC4 的 ip 为 192.168.6.2, 子网为 192.168.6.1:

配置:

Show ip route:交换机:

```
|13-S5750-2(config)#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
        0 - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
     192.168.1.0/24 is directly connected, VLAN 10
     192.168.1.2/32 is local host.
     192.168.2.0/24 [110/51] via 192.168.1.1, 00:06:38, VLAN 10
     192.168.3.0/24 [110/52] via 192.168.1.1, 00:04:03, VLAN 10
0
0
     192.168.4.0/24 [110/2] via 192.168.1.1, 00:06:38, VLAN 10
С
     192.168.5.0/24 is directly connected, VLAN 50
     192.168.5.1/32 is local host.
     192.168.6.0/24 [110/52] via 192.168.1.1, 00:04:15, VLAN 10
13-S5750-2(config)#
```


13-RSR20-2(config-router)#end

<u>计算机网络实验报告</u>

R1 新增配置命令:

```
13-RSR20-1(config)#interface gigabitethernet 0/0
13-RSR20-1(config-if-GigabitEthernet 0/0)#$2.168.4.1 255.255.255.0
13-RSR20-1(config-if-GigabitEthernet 0/0)#no shutdown
13-RSR20-1(config-if-GigabitEthernet 0/0)#exit
13-RSR20-1(config)#router ospf 1
13-RSR20-1(config-router)#network 192.168.4.0 0.0.0.255 area 0
13-RSR20-1(config-router)#end
```

R1 路由表:

```
C 192.168.1.0/24 is directly connected, GigabitEthernet 0/1
C 192.168.2.0/24 is local host.
C 192.168.2.1/32 is local host.
C 192.168.2.1/32 is local host.
O 192.168.3.0/24 [110/51] via 192.168.2.2, 00:00:03, Serial 2/0
C 192.168.4.0/24 is directly connected, GigabitEthernet 0/0
C 192.168.4.1/32 is local host.
O 192.168.5.0/24 [110/2] via 192.168.1.2, 00:02:42, GigabitEthernet 0/1
O 192.168.6.0/24 [110/51] via 192.168.2.2, 00:00:15, Serial 2/0
13-RSR20-1#show ip route
```

```
R2:
13-RSR20-2#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
13-RSR20-2(config)#interface gigabitethernet 0/1
13-RSR20-2(config-if-GigabitEthernet 0/1)#$2.168.3.1 255.255.255.0
13-RSR20-2(config-if-GigabitEthernet 0/1)#no shutdown
13-RSR20-2(config-if-GigabitEthernet 0/1)#exit
13-RSR20-2(config)#interface serial 2/0
13-RSR20-2(config-if-Serial 2/0)#ip address 192.168.2.2 255.255.255.0
13-RSR20-2(config-if-Serial 2/0)#no shutdown
13-RSR20-2(config-if-Serial 2/0)#interface gigabitethernet 0/0
13-RSR20-2(config-if-GigabitEthernet 0/0)#$2.168.6.1 255.255.255.0
13-RSR20-2(config-if-GigabitEthernet 0/0)#no shutdown
13-RSR20-2(config-if-GigabitEthernet 0/0)#exit
13-RSR20-2(config)#router ospf 1
13-RSR20-2(config-router)#network 192.168.2.0 0.0.0.255 area 0
13-RSR20-2(config-router)#network 192.168.6.0 0.*Jun 15 04:18:17: %OSPF-5-ADJCHG
: Process 1, Nbr 192.168.2.1-Serial 2/0 from Down to Init, HelloReceived.
0*Jun 15 04:18:17: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.2.1-Serial 2/0 from Lo
ading to Full, LoadingDone.
% Invalid input detected at '" marker.
13-RSR20-2(config-router)#network 192.168.6.0 0.0.0.255 area 0
13-RSR20-2(config-router)#network 192.168.3.0 0.0.0.255 area 0
```


R2 路由表

13-RSR20-2#show ip route

```
Codes: C - connected, S - static, R - RIP, B - BGP
        0 - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
     192.168.1.0/24 [110/51] via 192.168.2.1, 00:00:38, Serial 2/0
     192.168.2.0/24 is directly connected, Serial 2/0
     192.168.2.2/32 is local host.
С
    192.168.3.0/24 is directly connected, GigabitEthernet 0/1
С
     192.168.3.1/32 is local host.
     192.168.4.0/24 [110/51] via 192.168.2.1, 00:00:38, Serial 2/0
0
     192.168.5.0/24 [110/52] via 192.168.2.1, 00:00:38, Serial 2/0
0
С
     192.168.6.0/24 is directly connected, GigabitEthernet 0/0
     192.168.6.1/32 is local host.
```

(a) 检查任意两个 PC 之间是否可以 Ping 通,对一台主机 ping 其它主机的结果进行截屏。

配完相应的路由器端口的用 PC3 Ping 其他主机的结果: (192.168.4.2)

```
C:\Users\Administrator\ping 192.168.6.2

正在 Ping 192.168.6.2 月有 32 字节的数据:
来自 192.168.6.2 的回复: 字节-32 时间=38ms TTL=62
来自 192.168.6.2 的回复: 字节-32 时间=39ms ITL=62
来自 192.168.6.2 的回复: 字节-32 时间=39ms ITL=62
来自 192.168.6.2 的回复: 字节-32 时间=37ms ITL=62

192.168.6.2 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 8 (8% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 37ms, 最长 = 39ms, 平均 = 37ms

C:\Users\Administrator\ping 192.168.3.22

正在 Ping 192.168.3.22 的回复: 字节-32 时间=38ms ITL=126
来自 192.168.3.22 的回复: 字节-32 时间=38ms ITL=126
来自 192.168.3.22 的回复: 字节-32 时间=38ms ITL=126
来自 192.168.3.22 的回复: 字节=32 时间=38ms ITL=126
来自 192.168.3.22 的回复: 字节=32 时间=40ms ITL=126
来自 192.168.3.22 的回复: 字节=32 时间=40ms ITL=126
来自 192.168.3.22 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 8 (8% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 38ms,最长 = 40ms,平均 = 39ms

C:\Users\Administrator\ping 192.168.5.11

正在 Ping 192.168.5.11 的回复: 字节=32 时间(ims ITL=126
来自 192.168.5.11 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 8 (8% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

分析:可以发现与其他三台主机均可以 ping 通。

(b)采用#depug ip ospf 显示上面 OSPF 协议的运行情况,观察并保存 R1 发送和接收的 Update 分组 (可以改变链路状态来触发),注意其中 LSA 类型,观察有无 224.0.0.5、224.0.0.6 IP 地址,如有说明这

两地址的作用。

答:

如下图所示, LSA 的类型为: router-LSA;只发现了 224.0.0.5 这个 IP 地址,没有发现 224.0.0.6 这个 IP 地址。224.0.0.5 和 224.0.0.6 这 2 个地址是组播地址,对所有 DR/BDR 路由器的组播地址为 224.0.0.6,对所有的非 DR/BDR 路由器的组播地址为 224.0.0.5。

```
*Jun 15 04:45:26: %7: LSA Header

*Jun 15 04:45:26: %7: LS age 0

*Jun 15 04:45:26: %7: Options 0x2

*Jun 15 04:45:26: %7: LS type 1 (router-LSA)

*Jun 15 04:45:26: %7: Link State ID 192.168.2.1

*Jun 15 04:45:26: %7: Advertising Router 192.168.2.1

*Jun 15 04:45:26: %7: LS sequence number 0x8000000b

*Jun 15 04:45:26: %7: LS checksum 0xf640

*Jun 15 04:45:26: %7: length 60

*Tun 15 04:45:26: %7: ospf[1]: LSA refresh completed [0.000000 sec]. count: 1

*Jun 15 04:45:26: %7: SEND[LS-Upd]: 1 LSAs to destination 224.0.0.5

*Jun 15 04:45:26: %7: SEND[LS-Upd]: To 224.0.0.5 via Serial 2/0:192.168.2.1, length 60
```

(c)显示并记录路由器 R1 数据库的 Router LSA, Network LSA, LS 数据库信息汇总

show ip ospf database router

! 显示 router LSA

```
13-RSR20-1#show ip ospf database router
            OSPF Router with ID (192.168.2.1) (Process ID 1)
                Router Link States (Area 0.0.0.0)
 LS age: 661
 Options: 0x2 (-|-|-|-|-|E|-)
 Flags: 0x0
 LS Type: router-LSA
 Link State ID: 192.168.2.1
 Advertising Router: 192.168.2.1
 LS Seq Number: 8000000a
 Checksum: 0xc987
 Length: 72
  Number of Links: 4
   Link connected to: a Transit Network
     (Link ID) Designated Router address: 192.168.1.1
     (Link Data) Router Interface address: 192.168.1.1
      Number of TOS metrics: 0
       TOS 0 Metric: 1
   Link connected to: another Router (point-to-point)
     (Link ID) Neighboring Router ID: 192.168.6.1
     (Link Data) Router Interface address: 192.168.2.1
      Number of TOS metrics: 0
       TOS 0 Metric: 50
   Link connected to: Stub Network
     (Link ID) Network/subnet number: 192.168.2.0
     (Link Data) Network Mask: 255.255.255.0
     Number of TOS metrics: 0
       TOS 0 Metric: 50
   Link connected to: Stub Network
     (Link ID) Network/subnet number: 192.168.4.0
     (Link Data) Network Mask: 255.255.255.0
     Number of TOS metrics: 0
       TOS 0 Metric: 1
```


Options: 0x2 (-|-|-|-|-|E|-)

LS age: 789

计算机网络实验报告

Flags: 0x0 LS Type: router-LSA Link State ID: 192.168.5.1 Advertising Router: 192.168.5.1 LS Seq Number: 80000005 Checksum: 0xeb2d Length: 48 Number of Links: 2 Link connected to: Stub Network (Link ID) Network/subnet number: 192.168.5.0 (Link Data) Network Mask: 255.255.255.0 Number of TOS metrics: 0 TOS 0 Metric: 1 Link connected to: a Transit Network (Link ID) Designated Router address: 192.168.1.1 (Link Data) Router Interface address: 192.168.1.2 Number of TOS metrics: 0 TOS 0 Metric: 1 LS age: 590 Options: 0x2 (-|-|-|-|-|E|-) Flags: 0x0 LS Type: router-LSA Link State ID: 192.168.6.1 Advertising Router: 192.168.6.1 LS Seq Number: 80000007 Checksum: 0xb501 Length: 72 Number of Links: 4 Link connected to: another Router (point-to-point) (Link ID) Neighboring Router ID: 192.168.2.1 (Link Data) Router Interface address: 192.168.2.2 Number of TOS metrics: 0 TOS 0 Metric: 50 Link connected to: Stub Network (Link ID) Network/subnet number: 192.168.2.0 (Link Data) Network Mask: 255.255.255.0 Number of TOS metrics: 0 TOS 0 Metric: 50 Link connected to: Stub Network (Link ID) Network/subnet number: 192.168.6.0 (Link Data) Network Mask: 255.255.255.0 Number of TOS metrics: 0 TOS 0 Metric: 1 Link connected to: Stub Network (Link ID) Network/subnet number: 192.168.3.0 (Link Data) Network Mask: 255.255.255.0 Number of TOS metrics: 0 TOS 0 Metric: 1

<u>计算机网络实验报告</u>

分析:

LS age 表示 LSA 产生后经过的时间,单位为秒;

Options 中的 E 表示允许洪泛 AS-External-LSA;

LS type 表明 LSA 的类型为 Router LSA;

Advertising Router 表示产生此 LSA 的路由器的 Router ID, 从图上我们可以看到有 192.168.6.1、192.168.5.1、192.168.2.1:

LS sequence number 是 LSA 的序列号, 其他路由器根据这个值可以判断哪个 LSA 是最新的; 据此, 我们分析 Adertising Router 为 192.168.2.1 的 LSA, 它是由路由器 R1 产生的。

Link connected to 后面的类型含义如下:

Туре	Description	Link ID	Link Data
1	点到点的另一台Router (P2P Numbered P2P Unnumbered)	邻居的Router ID	路由器接口的IP地址 接口索引值
2	连接到传输网络 (Transnet)	DR接口的IP地址	路由器接口的IP地址
3	连接到STUB网络 (Stubnet)	网段/子网号	子网掩码

show ip ospf database network

! 显示 network LSA

13-RSR20-1#show ip ospf database network

OSPF Router with ID (192.168.2.1) (Process ID 1)

Network Link States (Area 0.0.0.0)

LS age: 1070

Options: 0x2 (-|-|-|-|-|E|-)

LS Type: network-LSA

Link State ID: 192.168.1.1 (address of Designated Router)

Advertising Router: 192.168.2.1

LS Seq Number: 80000001

Checksum: 0xc0e5

Length: 32

Network Mask: /24

Attached Router: 192.168.2.1 Attached Router: 192.168.5.1

13-RSR20-1#

network LSA 只有在需要选举 DR/BDR 的网络类型中才会产生,并且只有 DR 有权利产生,BDR 没有权利产生。 根据上图我们可以看到 DR 的接口 ip 为 192.168.1.1。Attached Router 中的信息表示与 DR 形成邻接关系的路由器的 router ID 以及 DR 本身的 router ID。注意这里的 DR router ID 不一定和接口 ip 一样,可以看到 DR 的 ID 为 192.168.2.1,接口为 192.168.1.1。

show ip ospf database database

! 显示 OSPF 链路状态数据库信息。

13-RSR20-1#show ip ospf database database OSPF process 1: Area 0.0.0.0 database summary: Router Link States Network Link States : 1 Summary Link States ASBR-Summary Link States : 0 NSSA-external Link States: 0 : 0 Link-Local Opaque-LSA : 0 Area-Local Opaque-LSA Total LSA : 4 Process 1 database summary: Router Link States Network Link States Summary Link States ASBR-Summary Link States : 0 AS External Link States : 0 NSSA-external Link States: 0 Link-Local Opaque-LSA

这是统计信息,表示Router LSA有3个,Network LSA有1个,共有4个LSA。

: 0

: 4

(d)显示并记录邻居状态。

Area-Local Opaque-LSA

AS-Global Opaque-LSA

Total LSA

show ip ospf neighbor

交换机:

交换机的邻居只有路由器 R2, R2 的 ID 为 192.168.2.1。

R1

路由器 R1 的的邻居有交换机, ID 为 192.168.5.1; 还有路由器 R2, ID 为 192.168.6.1。

R2:

```
13-RSR20-2#show ip ospf neighbor
```

```
OSPF process 1, 1 Neighbors, 1 is Full:
Neighbor ID Pri State BFD State Dead Time Address Interface
192.168.2.1 1 Full/- - 00:00:38 192.168.2.1 Serial 2/0
```

路由器 R2 的邻居只有路由器 R1, ID 为 192.168.2.1。

(e)显示并记录 R1 的所有接口信息

#show ip ospf interface [接口名]

```
13-RSR20-1#show ip ospf interface
Serial 2/0 is up, line protocol is up
  Internet Address 192.168.2.1/24, Ifindex 2, Area 0.0.0.0, MTU 1500
 Matching network config: 192.168.2.0/24
 Process ID 1, Router ID 192.168.2.1, Network Type POINTOPOINT, Cost: 50
 Transmit Delay is 1 sec, State Point-To-Point
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:00
 Neighbor Count is 1, Adjacent neighbor count is 1
 Crypt Sequence Number is 0
 Hello received 109 sent 228, DD received 3 sent 4
 LS-Req received 1 sent 1, LS-Upd received 16 sent 3
 LS-Ack received 2 sent 16, Discarded 0
GigabitEthernet O/O is up, line protocol is up
  Internet Address 192.168.4.1/24, Ifindex 4, Area 0.0.0.0, MTU 1500
 Matching network config: 192.168.4.0/24
 Process ID 1, Router ID 192.168.2.1, Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 192.168.2.1, Interface Address 192.168.4.1
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:08
 Neighbor Count is 0, Adjacent neighbor count is 0
 Crypt Sequence Number is 0
 Hello received 0 sent 223, DD received 0 sent 0
 LS-Req received 0 sent 0, LS-Upd received 0 sent 0
 LS-Ack received 0 sent 0, Discarded 0
GigabitEthernet O/1 is up, line protocol is up
 Internet Address 192.168.1.1/24, Ifindex 5, Area 0.0.0.0, MTU 1500
 Matching network config: 192.168.1.0/24
 Process ID 1, Router ID 192.168.2.1, Network Type BROADCAST, Cost: 1
  Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 192.168.2.1, Interface Address 192.168.1.1
 Backup Designated Router (ID) 192.168.5.1, Interface Address 192.168.1.2
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:07
 Neighbor Count is 1, Adjacent neighbor count is 1
 Crypt Sequence Number is 0
 Hello received 122 sent 244, DD received 3 sent 4
 LS-Req received 1 sent 1, LS-Upd received 2 sent 21
 LS-Ack received 18 sent 2, Discarded 0
```

本次实验完成后,请根据组员在实验中的贡献,请实事求是,自评在实验中应得的分数。(按百分制)

〇 中山大學 计算机网络实验报告

学号	学生	自评分
16339021	回煜淼	100
16343065	桑娜	100
16339049	辛依繁	100