Automated Poetry Generation

Ryan Moreno

Research Proposal November 5, 2019

This talk presents past research on poetry generation and lays out future steps

Poetry generation techniques

This talk presents past research on poetry generation and lays out future steps

Poetry generation techniques

Deep learning techniques

This talk presents past research on poetry generation and lays out future steps

(1)	TI.				Particola 📭 Proce	•
(1)	The	curfew	tolls the	knell of	parting	day
(2)	The	day	tolls the	curfew of	parting	knell
(3)	The	curfew	tolls the	knell		
(4)	There	once was a	man from Bra-	zil		
(5)	A	metre	pattern	holds a	bunch of	beats

Poetry generation techniques

Deep learning techniques

Project proposal

Rule-based approaches to poetry generation fall short: ASPERA

Rule-based approaches to poetry generation fall short: ASPERA

Sabed que en mi perfecta edad y armado con mis ojos abiertos me he rendido al niño que sabéis ciego y desnudo.

Ladrará la verdad el viento airado en tal corazón por una planta dulce al arbusto que volais mudo o helado.

The angry wind will bark the truth in such a heart for a sweet plant to the bush that you are silent or frozen.

Rule-based approaches to poetry generation fall short: Racter

Evolutionary approaches to poetry generation fall short: McGonagall

Evolutionary approaches to poetry generation fall short: McGonagall

Evolutionary approaches to poetry generation fall short: McGonagall

The African lion, he dwells in the waste, he has a big head and a very small waist; but his shoulders are stark, and his jaws they are grim, and a good little child will not play with him.

haiku form

In a waste, a lion, who has a very small waist, dwells in a big head.

Deep learning is effective because it learns abstract concepts

Latent space holds abstract representations of objects

Pixel Space

Latent space holds abstract representations of objects

Pixel Space

Latent Space

Variational autoencoders learn to encode and decode objects to and from latent space

Variational autoencoders learn to encode and decode objects to and from latent space

Walking through latent space

Generative adversarial networks train two neural networks against each other to improve both

Generative adversarial networks train two neural networks against each other to improve both

Generative adversarial networks train two neural networks against each other to improve both

Variational autoencoders and generational adversarial networks can be combined

VAE's decoder provides GAN with a generator

Variational autoencoders and generational adversarial networks can be combined

VAE's decoder provides GAN with a generator

GAN's discriminator provides VAE with a similarity metric

Variational autoencoders and generational adversarial networks can be combined

VAE's decoder provides GAN with a generator

GAN's discriminator provides VAE with a similarity metric

VAE

GAN

VAE/GAN

VAE/GAN framework

VAE/GAN framework

Condition stanzas with previous stanzas

VAE/GAN framework

Condition stanzas with previous stanzas

Hardcode grammar in generator

VAE/GAN framework

Condition stanzas with previous stanzas

Hardcode grammar in generator

Deep learning handles abstract ideas

VAE/GAN framework

Condition stanzas with previous stanzas

Hardcode grammar in generator

Deep learning handles abstract ideas

Grammar is rule-based

VAE/GAN framework

Condition stanzas with previous stanzas

Hardcode grammar in generator

Deep learning handles abstract ideas

Grammar is rule-based

References

- [1] J. Ledbetter, "RACTER, the poetic computer." The New Republic, vol. 195, no. 6, Aug 1986.
- [2] W. Chamberlain and J. Hall, The Policeman's Beard is Half Constructed, New York City, Country: Warner Books, Inc., 1984.
- [3] P. Gervas. "An Expert System for the Composition of Formal Spanish Poetry." Knowledge Based Systems, vol. 14, no. 3, pp. 181-188, 2001.
- [4] H. Manurung, "An evolutionary algorithm approach to poetry generation." *University of Edinburgh, College of Science and Engineering, School of Informatics*, Jul, 2007.
- [5] A. Nguyen et al, "Innovation Engines: Automated Creativity and Improved Stochastic Optimization via Deep Learning" in *Proceedings of the Genetic and Evolutionary Computation Conference*, 2015.
- [6] J. Despois, Latent space visualization deep learning bits #2, Feb, 2017.
- [7] J. Wu et al, "Learning a probabilistic latent space of object shapes via 3D generative- adversarial modeling." Oct 2016.
- [8] C. Doersch, "Tutorial on Variational Autoencoders." Carnegie Mellon/UC Berkeley, Aug 2016.
- [9] C. Nash and C. K. I. Williams, "The shape variational autoencoder: A deep generative model of part-segmented 3D objects," in *Eurographics Symposium on Geometry Processing*, vol. 36, no. 5, 2017.
- [10] I. J. Goodfellow et al, "Generative Adversarial Nets." Department d'informatique et de recherche operationnelle, Montreal, Canada, Jun 2014.
- [11] L. Yang et al, "MidiNet: A Convolutional Generative Adversarial Network for Symbolic domain Music Generation." *Research Center for IT innovation*, Taipei, Taiwan, July 2017.
- [12] J. Gauthier, "Conditional generative adversarial nets for convolutional face generation." Symbolic Systems Program, Natural Language Processing Group, Stanford University, 2015.
- [13] A. Larsen et al. "Autoencoding beyond pixels using a learned similarity metric." Feb 2016.
- [14] A. Nguyen, J. Yosinki, and J. Clune, "Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned by Each Neuron in Deep Neural Networks." Feb 2016.