On a role for competitions in computational neuroscience

```
Stephen J Eglen (1), Catherine Cutts (1), JJ Johannes Hjorth (1),
David C Sterratt (2), David J Willshaw (2)
(1) University of Cambridge
(2) University of Edinburgh
```

Proc. R. Soc. Lond. B. 190, 77-98 (1975)

Printed in Great Britain

On a role for competition in the formation of patterned neural connexions

BY M. C. PRESTIGE AND D. J. WILLSHAWT

Which model works best?

- Marker induction (Willshaw, 2006)
- Activity and gradients (Whitelaw and Cowan, 1981)
- Gradients and competition (Gierer, 1983)
- Activity and gradients (Triplett, Koulakov et al. 2011)

Rules of the game

- Model parameters optimised for one condition.
- Model evaluated on multiple experimental conditions.
- Where possible, experimental and simulated data analysed in same way (e.g. virtual anterograde injections).

Lattice analysis

Math5 KO

(Triplett et al. 2011)

ephrin-A2/3/5 TKO

Summary

Genotype	Gierer	Koulakov	Whitelaw	Willshaw
Wild type	✓	✓	✓	* /
Isl2-EphA3 ^{ki/ki}	Isl2 ⁺ misfit	Isl2 ⁺ misfit	* 🗸	Isl2 ⁺ misfit
Isl2-EphA3 ^{ki/+}	No collapse, Isl2 ⁺ misfit	* Isl2 ⁺ misfit	No collapse, Isl2 ⁺ misfit	No collapse, Isl2 ⁺ misfit
TKO (no gradient)	No patches	Patches but no global order	No patches	Global order but no polarity
TKO (weak gradient)	No patches	✓	No patches	Ordered map
$Math5^{-/-}$	* 🗸	✓	Normal map	Normal map

Asterisk (*) denotes which phenotype the model was optimized for.

Detecting correlations

Catherine Cutts (J Neurosci 2014)

Correlation index

400.0

$$c = \frac{N_{A,B[-\Delta t, +\Delta t]}T}{N_A N_B 2\Delta t}$$

Measuring correlation

	Distance measures and cost functions		Measures from shot-noise process
1	Victor and Purpura (1997)	20	Coherence (at zero) (Eggermont, 2010)
2	ISI-distance (Kreuz et al., 2007a)	21	Spike count correlation (Eggermont, 2010)
3	Hunter-Milton similarity (Hunter and Milton, 2003)	22	Smoothed spike count correlation (Kruskal et al., 2007)
4	Van Rossum (2001)	23	Spike count covariance (Eggermont, 2010)
5	SPIKE (Kreuz et al., 2013)	Measures assuming a marked point process	
	Cross-correlation based	24	Stoyan's K_{mm} function (Stoyan and Stoyan, 1994)
6	Coincidence index (Pasquale et al., 2008)	25	Isham's mark correlation function (Isham, 1985)
7	Altered Coincidence index*	26	Ripley's K_{mm} function (Ripley, 1976)
8	Cross correlation coefficient (Pasquale et al., 2008)	27	Simpson (1949) index
9	Schreiber et al. (2003) similarity coefficient	28	Simpson (1949) index no correction
10	Altered Schreiber et al. similarity coefficient*	29	Stoyan's mark covariance function (Stoyan, 1984)
11	Kerschensteiner and Wong (2008) cross-correlation	30	Mark variogram (Cressie, 1993)
12	Jimbo and Robinson index (Jimbo et al., 1999)	31	Mark covariance function (Cressie, 1993)
	Synchrony not from cross-correlation		Mark conditional expectation (E; Schlather et al., 2004)
13			Mark conditional variance (V; Schlather et al., 2004)
14	Activity pair (Eytan et al., 2004)	34	Mark conditional standard deviation (Schlather et al., 2004)
15	Unitary events analysis (Grün et al., 2002)		
16	Event synchronization (Kreuz et al., 2007b)*		
17	Joris et al. (2006) correlation index		
17	,		
10	Information theory		
18	Mutual information (Li, 1990)		

18

19

Mutual information with smoothing*

Which method is best?

- 34 measures in literature + 1 from us => 35.
- Phase 1: six necessary properties:
- 1. Symmetric
- 2. Robust to variations in firing rate
- 3. Robust to amount of data
- 4. Bounded [-1, +1]
- 5. Robust to variations in bin width (Δt)

Twenty-one measures rejected as they depend on firing rate.

(autocorrelation of Poisson trains)

Phase 2: Desirable properties

Desirable properties:

- D1: Ignore periods when both neurons are inactive.
- D2: minimal assumptions on structure.
- D3: aside from Δt, minimise number of parameters

Four methods:

- Kerschensteiner and Wong correlation (D1, D2)
- Tiling coefficient (D1, D2, D3)
- Spike count correlation (D2, D3)
- Kruskal et al. binless correlation measure (D1?, D2, D3)

Tiling coefficient - TC

 T_A : the proportion of total recording time which lies within $\pm \Delta t$ of any spike from A. T_B calculated similarly.

 T_A is given by the fraction of the total recording time (black) which is covered (tiled) by blue bars. Here T_A is 1/3.

 P_A : the proportion of spikes from A which lie within $\pm \Delta t$ of any spike from B. P_B calculated similarly.

 P_A is the number of green spikes in A (3) divided by the total number of spikes in A (5). Here P_A is 3/5.

$$TC = \frac{1}{2} \left(\frac{P_A - T_B}{1 - P_A T_B} + \frac{P_B - T_A}{1 - P_B T_A} \right)$$

(Blankenship et al. 2011)

Summary

- Competitions can help frame problems in interesting ways and remove a source of bias.
- No model can account for all experimental data on mouse retinocollicular map formation.
- We now have better ways to detect correlated activity (tiling coefficient) and bursts.

Acknowledgments

Funding: EPSRC, Wellcome Trust, USIAS, BBSRC

Map formation: JJJ Hjorth, CS Cutts, DC Sterratt, DJ Willshaw

Correlations: CS Cutts

Data/code: http://damtp.cam.ac.uk/user/eglen