Алгоритмы и структуры данных

Лекция 2 Двоичная куча. Сортировки.

Двоичная куча, пирамида, или **сортирующее дерево** — такое почти полное двоичное дерево, для которого выполнены три условия:

- 1) Значение в любой вершине не меньше, чем значения её потомков.
- 2) Глубина листьев (расстояние до корня) отличается не более чем на один.
- 3) Последний слой заполняется слева направо.


```
// Структура данных двоичная куча
class Heap {
public:
    Heap();
    explicit Heap( const Array& arr );
    ~Heap();
    // Добавить элемент в кучу за O(\log n)
    void Insert( int element );
    // Извлечь максимум из кучи за O(\log n)
    int ExtractMax();
    // Посмотреть значение максимума в куче за O(1)
    int PeekMax() const;
private:
    Array arr; // динамический массив для хранения элементов кучи
    void buildHeap();
    void siftDown( int i );
    void siftUp( int i );
};
```

Максимальное количество элементов в куче высоты h:

$$n_{max} = \sum_{k=0}^{h-1} 2^k = 2^h - 1$$

Минимальное количество элементов в куче высоты h:

$$n_{min} = 1 + \sum_{k=0}^{h-2} 2^k = 2^{h-1}$$

Высота кучи = $O(\log n)$.

Удобный способ хранения для двоичной кучи — массив.

Последовательно храним все элементы кучи «по слоям».

Корень — первый элемент массива, второй и третий элемент — дочерние элементы и так далее.

Такой способ хранения элементов в массиве позволяет быстро получать дочерние и родительские элементы.

Если индексация элементов массива начинается с 0.

- A[0] элемент в корне,
- потомки элемента A[i] элементы A[2i + 1] и A[2i + 2].
- предок элемента A[i] элемент A[(i-1)/2].

Восстановление свойств кучи

Если в куче изменяется один из элементов, то она может перестать удовлетворять свойству упорядоченности.

Для восстановления этого свойства служат две процедуры Sift Up и Sift Down.

Sift Down спускает элемент, который меньше дочерних.

Sift Up поднимает элемент, который больше родительского.

Восстановление свойств кучи

Sift Down (также используется название Heapify)

Если i-й элемент больше, чем его сыновья, всё поддерево уже является кучей, и делать ничего не надо. В противном случае меняем местами i-й элемент с наибольшим из его сыновей, после чего выполняем **Sift Down** для этого сына.

Функция выполняется за время $O(\log n)$.


```
// Проталкивание элемента вниз. Array - целочисленный массив.
void Heap::siftDown( int i )
    int left = 2 * i + 1;
    int right = 2 * i + 2;
    // Ищем большего сына, если такой есть.
    int largest = i;
    if( left < arr.Size() && arr[left] > arr[i] )
        largest = left;
    if( right < arr.Size() && arr[right] > arr[largest] )
        largest = right;
    // Если больший сын есть, то проталкиваем корень в него.
    if( largest != i ) {
        std::swap( arr[i], arr[largest] );
        siftDown( largest );
```

Задача. Создать кучу из неупорядоченного массива входных данных.

Если выполнить **Sift Down** для всех элементов массива A, начиная с последнего и кончая первым, он станет кучей.

SiftDown(A, i) не делает ничего, если $i \ge n/2$.

Достаточно вызвать SiftDown для всех элементов массива A с $(\lceil n/2 \rceil - 1)$ -го по 1-ый.

Функция выполняется за время O(n).


```
// Построение кучи.
void Heap::buildHeap()
{
    for(int i = arr.Size() / 2 - 1; i >= 0; --i) {
        siftDown(i);
    }
}
```

Утверждение. Время работы BuildHeap = O(n).

<u>Доказательство.</u> Время работы SiftDown для работы с узлом, который находится на высоте h (снизу), равно $C \cdot h$.

На уровне h, содержится не более $\left\lceil n/2^{h+1} \right\rceil$ узлов. Общее время работы:

$$T(n) = \sum_{h=0}^{\log n} \left\lceil \frac{n}{2^{h+1}} \right\rceil C \cdot h = O\left(n \sum_{h=0}^{\log n} \frac{h}{2^h}\right).$$

Воспользуемся формулой $\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$.

Таким образом,
$$T(n) = O\left(n\sum_{h=0}^{\infty}\frac{h}{2^h}\right) = O(n).$$

СД «Двоичная куча». SiftUp.

Восстанавливает свойство упорядоченности, проталкивая элемент наверх.

Если элемент больше отца, меняет местами его с отцом.

Если после этого отец больше деда, меняет местами отца с дедом, и так далее.

Время работы – $O(\log n)$.

СД «Двоичная куча». SiftUp.

```
// Проталкивание элемента наверх.
void Heap::siftUp( int index )
{
    while( index > 0 ) {
        int parent = ( index - 1 ) / 2;
        if( arr[index] <= arr[parent] )
            return;
        std::swap( arr[index], arr[parent] );
        index = parent;
    }
}</pre>
```

СД «Двоичная куча». Добавление элемента.

- 1. Добавим элемент в конец кучи.
- 2. Восстановим свойство упорядоченности, проталкивая элемент наверх с помощью SiftUp.

Время работы – $O(\log n)$, если буфер для кучи позволяет добавить элемент без переаллокации.

```
// Добавление элемента.
void Heap::Insert( int element )
{
    arr.Add( element );
    siftUp( arr.Size() - 1 );
}
```

СД «Двоичная куча». Добавление элемента.

СД «Двоичная куча». Извлечение максимума.

Максимальный элемент располагается в корне. Для его извлечения:

- 1. Сохраним значение корневого элемента для возврата.
- 2. Скопируем последний элемент в корень, удалим последний элемент.
- 3. Вызовем SiftDown для корня.
- 4. Возвратим сохраненный корневой элемент.

Время работы – $O(\log n)$.

СД «Двоичная куча». Извлечение максимума.

СД «Двоичная куча». Извлечение максимума.

```
// Извлечение максимального элемента.
int Heap::ExtractMax()
   assert( !arr.IsEmpty() );
    // Запоминаем значение корня.
    int result = arr[0];
    // Переносим последний элемент в корень.
    arr[0] = arr.Last();
    arr.DeleteLast();
    // Вызываем SiftDown для корня.
    if( !arr.IsEmpty() ) {
        siftDown( 0 );
   return result;
```

АТД «Очередь с приоритетом»

Очередь с приоритетом — абстрактный тип данных, поддерживающий три операции:

- 1. InsertWithPriority (push) добавить в очередь элемент с назначенным приоритетом.
- 2. ExtractMax (рор) извлечь из очереди и вернуть элемент с наивысшим приоритетом.
- 3. ReadMax (top) просмотреть элемент с наивысшим приоритетом без извлечения.

Сортировка сравнением

Сортировка – процесс упорядочивания элементов массива.

Пример. Сортировка трех.

```
void Sort3( int* a ) {
    if( a[0] < a[1] ) {</pre>
        if( a[1] < a[2] ) {</pre>
             // 0 1 2
        } else {
             if(a[0] < a[2])
                 // 0 2 1
             else
                 // 2 0 1
    } else {
        if( a[1] < a[2] ) {</pre>
             if(a[0] < a[2])
                 // 1 0 2
             else
                 // 1 2 0
        } else {
             // 2 1 0
```


Типы сортировок

Стабильная сортировка – та, которая сохраняет порядок следования равных элементов.

Пример. Сортировка чисел по старшему разряду.

10	25	30	31	24	21	36	32	11
10	11	25	24	21	30	31	36	32

Типы сортировок

Локальная сортировка – та, которая не требует дополнительной памяти.

Примеры.

HeapSort – локальная.

MergeSort – нелокальная.

Квадратичные сортировки

- Сортировка выбором
- Сортировка вставками
- Пузырьковая сортировка (не рассматриваем)

Сортировка выбором

Во время работы алгоритма массив разделен на 2 части:

левая – готова, правая – нет.

На одном шаге:

- 1. ищем минимум в правой части
- 2. меняем его с первым элементом правой части
- 3. сдвигаем границу разделения на 1 вправо.

Свойства:

- Локальная.
- Нестабильная.

Визуализация: https://www.youtube.com/watch?v=Gnp8G1_kO3I&t=0s

Сортировка выбором

```
void SelectionSort( int* a, int n ) {
    for ( int i = 0; i < n - 1; ++i ) {
        // і - индекс начала правой части.
        int minIndex = i;
        for ( int j = i + 1; j < n; ++j ) {
            if(a[j] < a[minIndex])
                minIndex = j;
        swap( a[i], a[minIndex] );
```

$$rac{n(n-1)}{2}$$
 сравнений $3(n-1)$ перемещений $T(n)=\Theta(n^2).$

Сортировка вставками

Простой алгоритм, часто применяемый на малых объемах.

Массив разделен на 2 части: левая — упорядочена, правая — нет.

На одном шаге

- 1. берем первый элемент правой части
- 2. вставляем его на подходящее место в левой части.

Свойства:

- Локальная.
- Стабильная.

Визуализация: https://www.youtube.com/watch?v=Gnp8G1_kO3I&t=10s

Сортировка вставками

```
void InsertionSort( int* a, int n ) {
    for( int i = 1; i < n; ++i ) {</pre>
        int tmp = a[i]; // Запомним, т.к. может
перезаписаться.
        int j = i - 1;
        for(; j \ge 0 \&\& tmp < a[j]; --j) {
            a[j + 1] = a[j];
        a[j + 1] = tmp;
```

Лучший случай $oldsymbol{O}(oldsymbol{n})$

- Массив упорядочен по возрастанию
- $2 \cdot (n-1)$ копирований
- (n-1) сравнений.

Худший случай $oldsymbol{\mathit{O}}(n^2)$

- Массив упорядочен по убыванию
- $2 \cdot (n-1) + \frac{n(n-1)}{2}$ копирований
- $\frac{n(n-1)}{2}$ сравнений

В среднем $oldsymbol{\mathit{O}}(n^2)$

Сортировка вставками. Оптимизации.

Используем бинарный поиск места вставки в левой части,

Используем memmove, чтобы эффективно сдвинуть часть элементов левой части вправо на 1 позицию.

 $O(n \log n)$ сравнений,

 $O(n^2)$ для копирования элементов (с маленькой константой).

Оценка сложности снизу

В процессе работы алгоритма сравниваются элементы исходного массива.

Ветвление = дерево.

Окончание работы алгоритма – лист.

Лист = перестановка.

Оценка сложности снизу

<u>Утверждение.</u> Время работы любого алгоритма сортировки, использующего сравнение, $\Omega(N \log N)$.

Доказательство.

Всего листьев в дереве решения не меньше N!

Высота дерева не меньше

$$\log(N!) \cong CN \log N.$$

Следовательно, существует перестановка, на которой алгоритм делает не менее $CN \log N$ сравнений.

"Хорошие" сортировки

- Пирамидальная сортировка Heap Sort.
- Сортировка слиянием Merge Sort.
- Быстрая сортировка (сортировка Хоара) Quick Sort.
- Сортировка Тима Петерса TimSort.

Пирамидальная сортировка

- 1. Строим кучу на исходном массиве
- 2. N 1 раз достаем максимальный элемент, кладем его на освободившееся место в правой части.

По сути берем максимум из левой части, кладем в конец левой части.

Свойства

- Локальная.
- Нестабильная.

Визуализация: https://www.youtube.com/watch?v=Gnp8G1 kO3I&t=89s

Пирамидальная сортировка

```
void HeapSort( int* a, int n ) {
  int heapSize = n;
  BuildHeap( a, heapSize );
  while( heapSize > 1 ) {
    // Немного переписанный ExtractMax.
    swap( a[0], a[heapSize - 1] );
    --heapSize;
    SiftDown( a, heapSize, 0 );
}
```

$$T(n) = O(n \log n).$$

Сортировка слиянием

Алгоритм

- 1. Разбить массив на два.
- 2. Отсортировать каждый (рекурсивно).
- 3. Слить отсортированные в один.

Вариант без рекурсии

- 1. Разбить на 2^k подмассива, $2^k < n$.
- 2. Отсортировать каждый.
- 3. Слить 1 и 2, 3 и 4, 5 и 6,..., $2^k 1$ и 2^k ,
 - Слить 12 и 34, 56 и 78,...,

...

– Слить $123 \dots 2^{k-1}$ и $2^{k-1} + 1 \dots 2^k$.

Слияние двух отсортированных массивов

Слияние двух отсортированных массивов

- 1. Выберем массив, крайний элемент которого меньше
- 2. Извлечем этот элемент в массив-результат
- 3. Продолжим, пока один из массивов не опустеет
- 4. Копируем остаток второго массива в конец массиварезультата.

- Количество сравнений:
 - В лучшем случае min(n, m).
 - В худшем случае n + m 1.

Сортировка слиянием

```
void MergeSort( int* a, int aLen ) {
    if( aLen <= 1 ) {</pre>
        return;
    int firstLen = aLen / 2;
    int secondLen = aLen - firstLen;
    MergeSort( a, firstLen );
    MergeSort( a + firstLen, secondLen );
    int* c = new int[aLen];
    Merge( a, firstLen, a + firstLen, secondLen, c );
    memcpy( a, c, sizeof( int ) * aLen );
    delete[] c;
```

Свойства:

- Нелокальная.
- Стабильная.

Сортировка слиянием

<u>Утверждение.</u> Время работы сортировки слиянием = $O(n \log n)$.

Доказательство.

Рекуррентное соотношение

$$T(n) \le 2T\left(\frac{n}{2}\right) + c \cdot n,$$

разложим дальше

$$T(n) \le 2T\left(\frac{n}{2}\right) + c \cdot n \le 4T\left(\frac{n}{4}\right) + 2c \cdot n \le \dots \le 2^k T(1) + k \cdot c \cdot n.$$

 $k = \log n$, следовательно,

$$T(n) = O(n \log n).$$

Используется доп. память M(n) = O(n).

Быстрая сортировка = сортировка Xoapa = QuickSort

- 2. Применим эту процедуру рекурсивно к левой части и к правой части.

Быстрая сортировка. Partition.

Разделим массив А. Выберем разделяющий элемент – пивот. Пусть пивот лежит в конце массива.

- Установим 2 указателя:
 і в начало массива, ј в конце перед пивотом.
- 2. Двигаем і вправо, пока не встретим элемент больше (или =) пивота.
- 3. Двигаем ј влево, пока не встретим элемент меньше пивота.
- 4. Меняем A[i] и A[j], если i < j.
- 5. Повторяем 2, 3, 4, пока i < j.
- 6. Меняем A[i] и A[n-1] (пивот).

Левая часть – левее пивота, правая – правее. Пивот не входит в них.

Быстрая сортировка

```
// Возвращает индекс, на который встанет пивот после разделения.
int Partition( int* a, int n ) {
    if( n <= 1 ) {
        return 0;
    const int& pivot = a[n - 1];
    int i = 0; j = n - 2;
    while( i <= j ) {
        // Не проверяем, что i < n - 1, т.к. a[n - 1] == pivot.
        for( ; a[i] < pivot; ++i ) {}</pre>
        for( ; j >= 0 && !(a[j] < pivot ); --j ) {}</pre>
        if( i < i ) {</pre>
            swap( a[i++], a[j--] );
    swap(a[i], a[n-1]);
    return i;
void QuickSort( int* a, int n ) {
    int part = Partition(a, n);
    if( part > 0 ) QuickSort( a, part );
    if( part + 1 < n ) QuickSort( a + part + 1, n - ( part + 1 ) );</pre>
```

Свойства

- Локальная.
- Нестабильная. Partition может менять местами равные элементы.

Быстрая сортировка. Анализ.

Если Partition всегда пополам, то

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$
, следовательно, $T(n) = O(n\log n)$.

Утверждение. (без док.)

B среднем $T(n) = O(n \log n)$.

Если массив упорядочен, пивот = ${\rm A}[n-1]$, то массив делится в соотношении n-1:0.

$$T(n) \le T(n-1) + cn \le T(n-2) + c(n+n-1),$$

 $T(n) = O(n^2).$

Ε

Быстрая сортировка. Выбор пивота.

Последний,

Первый,

Серединный,

Случайный,

Медиана из первого, последнего и серединного,

Медиана случайных трех,

Медиана, вычисленная за O(n),

. . .

Быстрая сортировка. Killer sequence.

Killer-последовательность – последовательность, приводящая к времени $T(n) = O(n^2)$.

Для многих предопределенных порядков выбора пивота существует killer-последовательность.

Последний, первый. 1, 2, 3, 4, 5, 6, 7.

Серединный. x, x, x, 1, x, x, x.

Медиана трех (первого, последнего и серединного). Массив будем делить в отношении 1: n-2.

Порядковые статистики

К-ой порядковой статистикой называется элемент, который окажется на К-ой позиции после сортировки массива.

Частный случай - Медиана – серединный элемент после сортировки массива.

Порядковые статистики

Поиск К-ой порядковой статистики методом «Разделяй и властвуй». KStatDC(A, n, K).

- 1. Выбираем пивот, вызываем Partition.
- 2. Пусть позиция пивота после разделения равна Р.
 - а) Если Р == К, то пивот является К-ой порядковой статистикой.
 - б) Если P > K, то K-ая порядковая статистика находится слева, вызываем KStatDC(A, P, K).
 - в) Если P < K, то K-ая порядковая статистика находится справа, вызываем KStatDC(A + (P + 1), n (P + 1), K (P + 1)).

Порядковые статистики

Поиск K-ой порядковой статистики методом «Разделяй и властвуй». KStatDC(A, n, K).

Время работы

$$T(n) = O(n)$$
 в лучшем,

$$T(n) = O(n)$$
 в среднем (без доказательства),

$$T(n) = O(n^2)$$
 в худшем.

Как сортировать без сравнений?

<u>Задача.</u> Отсортировать массив A[0..n-1], содержащий неотрицательные целые числа меньшие k.

Решение 1.

Заведем массив C[0..k-1], посчитаем в C[i] количество вхождений элемента і в массиве A.

Выведем все элементы С по С[і] раз.


```
void CountingSort1( int* a, int n ) {
   int* c = new int[k];
   for( int i = 0; i < k; ++i )
        c[i] = 0;
   for( int i = 0; i < n; ++i )
        ++c[a[i]];
   int pos = 0;
   for( int i = 0; i < k; ++i ) {
        for( int j = 0; j < c[i]; ++j ) {
            a[pos++] = i;
        }
   }
   delete[] c;
}</pre>
```

<u>Решение 2.</u> Не создает элементы A, а использует копирование. Полезно при сортировке структур по некоторому полю.

Заведем массив C[0,...,k-1], посчитаем в C[i] количество вхождений элемента i в массиве A.

Вычислим границы групп элементов для каждого $i \in [0,..,k-1]$ (начальные позиции каждой группы).

Создадим массив для результата В.

Переберем массив А. Очередной элемент A[i] разместим в В в позиции группы C[A[i]]. Сдвинем текущую позицию группы.

Скопируем В в А.


```
void CountingSort2( int* a, int n ) {
    int* c = new int[k];
    for ( int i = 0; i < k; ++i )
        c[i] = 0;
    for( int i = 0; i < n; ++i )</pre>
        ++c[a[i]];
    for ( int i = 1; i < k; ++i ) {
        c[i] += c[i - 1]; // Концы групп.
    int* b = new int[n];
    for ( int i = n - 1; i >= 0; --i ) {// Проход с конца.
        b[--c[a[i]]] = a[i];
    delete[] c;
   memcpy( a, b, n * sizeof( int ) );
```

```
void CountingSort2( int* a, int n ) {
    int* c = new int[k];
    for( int i = 0; i < k; ++i )</pre>
        c[i] = 0;
    for( int i = 0; i < n; ++i )</pre>
        ++c[a[i]];
    int sum = 0;
    for( int i = 0; i < k; ++i ) {</pre>
        int tmp = c[i];
        c[i] = sum; // Начала групп.
        sum += tmp;
    int* b = new int[n];
    for( int i = 0; i < n; ++i ) {</pre>
        b[c[a[i]]++] = a[i];
    delete[] c;
    memcpy( a, b, n * sizeof( int ) );
    delete[] b;
```

Сортировка подсчетом – стабильная, но не локальная.

Время работы T(n,k) = O(n+k).

Доп. память M(n,k) = O(n+k).

Поразрядная сортировка = Radix sort

Если диапазон значений велик – сортировка подсчетом не годится.

Строки, целые числа можно разложить на разряды. Диапазон значений разряда не велик.

Можно выполнять сортировку массива по одному разряду, используя сортировку подсчетом.

С какого разряда начать сортировку?

LSD – least significant digit.

MSD – most significant digit.

Поразрядная сортировка. LSD.

Least Significant Digit

Сначала сортируем подсчетом по младшим разрядам, затем по старшим.

Ключи с различными младшими разрядами, но одинаковыми старшими не будут перемешаны при сортировки старших разрядов благодаря стабильности поразрядной сортировки.

 3
 5
 9
 3
 4
 7
 3
 4
 7

 3
 4
 7
 4
 5
 7
 3
 5
 9

 4
 5
 7
 3
 5
 9
 4
 5
 7

Время работы
$$T(n,k,r)=Oig(r\cdot(n+k)ig),$$
 Доп. память $M(n,k,r)=O(n+k),$ где n — размер массива, k — размер алфавита, r — количество разрядов.

Визуализация: https://www.youtube.com/watch?v=Gnp8G1_kO3I&t=115s

Поразрядная сортировка. MSD.

Most Significant Digit

Сначала сортируем подсчетом по старшим разрядам, затем по младшим.

Чтобы не перемешать отсортированные старшие разряды, сортируем по младшим только группы чисел с одинаковыми старшими разрядами <u>отдельно друг от друга</u>.

Время работы в лучшем случае $T(n,k,r) = O(n \cdot \log_k n)$,

Время работы в худшем случае $T(n,k,r) = O(r \cdot n \cdot k)$,

доп. память $M(n, k, r) = O(n + r \cdot k)$,

где n – размер массива, k – размер алфавита, r – количество разрядов.

237	2 37	216	211
318	<mark>2</mark> 16	211	216
216	<mark>2</mark> 11	2 <mark>3</mark> 7	237
462	<mark>2</mark> 68	2 <mark>6</mark> 8	268
211	<mark>3</mark> 18	318	318
268	<mark>4</mark> 62	4 <mark>6</mark> 2	460
460	4 60	4 <mark>6</mark> 0	462

Визуализация: https://www.youtube.com/watch?v=Gnp8G1 kO3I&t=131s

Поразрядная сортировка. Ключи разной длины.

Расширим алфавит пустым символом "\0".

+ MSD можно не вызывать для группы с текущим разрядом = "\0".

Для массива строк различной длины такой MSD будет эффективнее.

– LSD будет обрабатывать все разряды в каждом ключе.

Время работы пропорционально длине r:

$$T(n) = O(nr)$$

Binary QuickSort

Похожа на MSD по битам.

- 1. Сортируем по старшему биту. Это Partition с фиктивным пивотом 10000..0.
- 2. Рекурсивно вызываем от левой части = 0ххххххх, от правой части = 1хххххххх.

Время работы T(n,r)=O(rn), доп. память M(n,r)=O(1), где n – размер массива, r – количество разрядов.

Нестабильна!

Зато локальна.

TimSort

Гибридная сортировка Тима Петерса – TimSort (2002г)

Реальные данные часто бывают частично отсортированы.

Используется в Java 7, Python как стандартный алгоритм.

- 1. Вычисление minRun.
- 2. Сортировка вставками каждого run.
- 3. Слияние соседних run (отсортированных).

```
// Вычисление длины стандартного (минимального)
run'a.
// Это число от 32 до 64, которым хорошо
укладывается n.
// n / minRun ~ степень двойки.
// Например, при n = 96, minRun = 48.
int GetMinrun( int n )
    // Станет 1, если среди сдвинутых битов будет
хотя бы 1 ненулевой.
    int r = 0;
    while (n >= 64)
        r = n \& 1;
        n >>= 1;
    return n + r;
```

TimSort. Вычисление run'ов, их сортировка.

Собираем run

- 1. Ищем максимально отсортированный подмассив, начиная с текущей позиции.
- 2. Разворачиваем его, если он отсортирован по убыванию.
- 3. Дополняем отсортированный подмассив до minRun элементов.
- 4. Сортируем вставками каждый run.
- 5. Отсортированную часть run'а заново не сортируем, только новые элементы вставляем на свои места.

TimSort. Вычисление run'ов, их сортировка.

Выполняем слияние соседних run'ов.

Создается пустой стек пар <индекс начала подмассива>-<размер подмассива>. Берётся первый упорядоченный подмассив. В стек добавляется пара данных <индекс начала>-<размер> для текущего подмассива.

Определяется, нужно ли выполнять процедуру слияния текущего подмассива с предыдущими. Для этого проверяется выполнение двух правил (пусть X, Y и Z — размеры трёх верхних в стеке подмассивов):

Если одно из правил нарушается — массив Y сливается с меньшим из массивов X и Z. Повторяется до выполнения обоих правил или полного упорядочивания данных.

Слияние оптимизировано галопом.

Визуализация: https://www.youtube.com/watch?v=NVIjHj-lrT4

Сравнение сортировок. Итог.

Алгоритм	В лучшем	В среднем	В худшем	Память	Стабильность	Метод
Quicksort	$n \log n$	$n \log n$	n^2	1	No	Partitioning
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes	Merging
In-place merge sort	_	_	$n \log^2 n$	1	Yes	Merging
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No	Selection
Insertion sort	n	n^2	n^2	1	Yes	Insertion
Selection sort	n^2	n^2	n^2	1	Yes	Selection
Timsort	n	$n \log n$	$n \log n$	n	Yes	Insertion & Merging
LSD	r(k+n)	r(k+n)	r(k+n)	k + n	Yes	Radix
MSD	$n \log n$	$n \log n$	rnk	rk + n	Yes	Radix
Binary QuickSort	$n \log n$	$n \log n$	rn	1	No	Radix

