Pin⁺ 4D Non-Orientable Dynamics (4D–NOD): A Core Hypothesis with Explicit Sub-Manifolds, Cobordism Gluing, and Gauge-Holonomy Gates

Version: 8 August 2025

Abstract

We formulate the 4D–NOD hypothesis on a Pin^+ baseline in four dimensions. Particles are modeled as compact non-orientable 4-manifolds with S^3 boundary ("quark blocks") that glue along a 4D Y–cobordism into closed objects (hadrons). We construct two explicit blocks: (A) $W_{RP} := \mathbb{RP}^4 \setminus \operatorname{int}(B^4)$ (non-orientable, Pin^+), and (B) a punctured mapping torus W_{rev} of an orientation-reversing S^3 -diffeomorphism (also Pin^+). With a Y–cobordism Y^4 , three blocks glue to a closed Pin^+ manifold P once two bundle gates hold: an SU(3) holonomy product $g_1g_2g_3 = 1$ (color neutrality) and a U(1) holonomy sum $e^{i(\theta_1+\theta_2+\theta_3)} = 1$ (EM neutrality at the glue). We show $[P] = 3[\mathbb{RP}^4]$ in $\Omega_4^{\operatorname{Pin}^+}$, aligning the "16 classes" ledger used in the categorical architecture and providing a precise geometric core for the program.¹

1 Core axioms and scope

We enforce the following non-negotiable requirements, taken as *model axioms*:

- **R1**. **GR** framework: spacetime is a Lorentzian 4-manifold; all dynamics respect Einstein geometry.
- **R2**. **Spacetime ontology**: spacetime is the sole fundamental entity; matter/forces are geometry.
- **R3**. **Particles as 4D topology**: particles are compact 4D topological structures embedded in spacetime.
- **R4**. Forces as connections: interactions are realized as topological connections (handles/cobordisms).
- **R5**. **SM** as effective theory: the Standard Model arises as an effective description of these geometric phenomena.

These axioms are documented in the SKB manuscript and earlier program notes.⁷

¹GR-first axioms (spacetime as sole entity; particles as 4D structures; forces as topological connections; SM as effective limit) originate from the SKB document. :contentReference[oaicite:0]index=0

²Phase-0/1 candidate analysis summary (Pin⁻ baseline) and tables. :contentReference[oaicite:1]index=1

 $^{^3}$ Research reports (Pin $^-$ emphasis, Phase-0/1 synthesis) to be superseded by the Pin $^+$ baseline adopted here. :contentReference[oaicite:2]index=2 and :contentReference[oaicite:3]index=3

⁴Mathematical Foundations note (Stiefel–Whitney formulas, including $w(T\mathbb{RP}^4) = (1+a)^5$). :contentReference[oaicite:4]index=4

⁵Phase-0/1 analysis script shows manual toggles of w_2 and simplified π_1 ; we replace these with class-level computations. :contentReference[oaicite:5]index=5

 $^{^6}$ Categorical architecture (pushouts/colimits, TQFT functor, "16 fermion classes" narrative) that we adopt and sharpen in the Pin $^+$ setting. :contentReference[oaicite:6]index=6

 $^{^7 \}rm See$ the SKB hypothesis and axioms (Sec. 1.1–1.2; Eqs. (6)–(11)) for the GR-first, geometry-only stance and the flux/holonomy view of charge. :contentReference[oaicite:7]index=7

2 Pin structures and the 4D baseline

Let M be a smooth 4-manifold; write $w_i(M) \in H^i(M; \mathbb{Z}/2)$ for Stiefel-Whitney classes. We use:

$$M$$
 admits a Pin⁺ structure \iff $w_2(M) = 0$, M admits a Pin⁻ structure \iff $w_2(M) + w_1(M)^2 = 0$.

We adopt Pin^+ as the 4D baseline because the bordism classification used in the categorical layer matches a 16-class ledger in 4D under the program's conventions.⁸

Remark 1 (Programmatics). Pin⁺ in 4D aligns with the category-theoretic "16 classes" narrative and avoids ambiguities that arose under Pin⁻ in Phase-0/1 tables.¹⁰

3 Canonical non-orientable block W_{RP}

Let $a \in H^1(\mathbb{RP}^4; \mathbb{Z}/2)$ be the generator. Using $w(T\mathbb{RP}^4) = (1+a)^5 = 1+a+a^4 \pmod 2$, we have $w_1(\mathbb{RP}^4) = a \neq 0$, $w_2(\mathbb{RP}^4) = 0$.¹¹

Definition 2 (Punctured projective block). Set $W_{RP} := \mathbb{RP}^4 \setminus \operatorname{int}(B^4)$. Then $\partial W_{RP} \cong S^3$.

Proposition 3. W_{RP} is non-orientable, $\pi_1(W_{RP}) \cong \mathbb{Z}/2$, and Pin^+ .

Proof. Removing a 4-ball does not change w_i or π_1 . From $w_2(\mathbb{RP}^4) = 0$, we get $w_2(W_{RP}) = 0$. The boundary is S^3 with its unique spin structure.

4 A mapping-torus block W_{rev} with continuous U(1)

Definition 4 (Orientation-reversing mapping torus). Let $f: S^3 \to S^3$ be a smooth orientation-reverser. The mapping torus $M_f := (S^3 \times [0,1])/(x,0) \sim (f(x),1)$ is a non-orientable 4-manifold fibering over S^1 . Define $W_{\text{rev}} := M_f \setminus \text{int}(B^4)$.

Proposition 5. M_f (hence W_{rev}) is Pin^+ and $\pi_1(M_f) \cong \mathbb{Z}$.

Proof. Use the Serre spectral sequence for $S^3 \hookrightarrow M_f \to S^1$ with local coefficients from f. Since $H^1(S^3; \mathbb{Z}/2) = H^2(S^3; \mathbb{Z}/2) = 0$ and $H^2(S^1; \mathbb{Z}/2) = 0$, we get $H^2(M_f; \mathbb{Z}/2) = 0$, hence $w_2(M_f) = 0$. The long exact homotopy sequence gives $\pi_1(M_f) \cong \pi_1(S^1) = \mathbb{Z}$.

Remark 6 (U(1) dial). While $\text{Hom}(\mathbb{Z}/2, \text{U}(1)) = \{\pm 1\}$ for W_{RP} , the block W_{rev} yields $\text{Hom}(\mathbb{Z}, \text{U}(1)) \cong \text{U}(1)$, enabling a continuous EM holonomy twist in the glue experiment.

⁸Foundational Stiefel–Whitney formulas, including $w(T\mathbb{RP}^n) = (1+a)^{n+1}$, are summarized in the Mathematical Foundations note. :contentReference[oaicite:8]index=8

 $^{^9}$ The Phase-0/1 reports framed admissibility with Pin $^-$ and highlighted candidate families; our Pin $^+$ baseline supersedes that filter for the 4D classification role. :contentReference[oaicite:9]index=9 and :contentReference[oaicite:10]index=10

¹⁰See the categorical architecture memo for the 16-class census, pushouts/holonomy gates, and the TQFT functorial layer. :contentReference[oaicite:11]index=11

¹¹Detailed calculation in the Foundations note (Sec. 2.3); cf. the Phase-0/1 discussion of \mathbb{RP}^4 . :contentReference[oaicite:12]index=12 and :contentReference[oaicite:13]index=13

5 Y-cobordism glue and the proton manifold

Let $Y^4 := B^4 \setminus \bigcup_{i=1}^3 \operatorname{int}(B_i^4)$, a 4-ball with three disjoint 4-balls removed. Then

$$\partial Y^4 \cong S^3 \sqcup S^3 \sqcup S^3 \sqcup \overline{S^3}$$
,

and Y^4 is Pin⁺ (as an open subset of spin B^4).

Lemma 7 (Pin⁺ compatibility under gluing). If three Pin⁺ blocks with $\partial \cong S^3$ are glued to the three incoming S^3 components of ∂Y^4 using the compatible spin structure, and the outgoing $\overline{S^3}$ is capped by B^4 , the resulting closed 4-manifold P is Pin⁺.

Proof. By naturality of characteristic classes and $H^2(S^3; \mathbb{Z}/2) = 0$, the unique class w_2 on the union restricts to zero on each piece, hence $w_2(P) = 0$.

Theorem 8 (Bordism class of the proton). If the three blocks are W_{RP} (or each caps to \mathbb{RP}^4), then in $\Omega_4^{Pin^+}$ one has

$$[P] = 3 \left[\mathbb{RP}^4 \right].$$

Proof sketch. Form a Pin⁺ cobordism whose boundary is $\bigsqcup_{i=1}^{3} \mathbb{RP}^4 \sqcup \overline{P}$ by capping each block with B^4 and adding Y^4 . This realizes the stated relation.

Remark 9 ("16 classes"). Assign $[\mathbb{RP}^4] = 1$ in the program's 16-class ledger; then the minimal proton composite lands in class 3. ¹²

6 Bundle gates: SU(3) color and U(1) electromagnetism

Let $\rho_q: \pi_1(W_q) \to \mathrm{SU}(3)$ be color holonomies and $\chi_q: \pi_1(W_q) \to \mathrm{U}(1)$ EM holonomies for the three blocks $q \in \{1,2,3\}$.

Definition 10 (Glue gates). The Y-merge admits extensions of SU(3) and U(1) bundles iff

$$g_1g_2g_3 = \mathbf{1} \in SU(3), \qquad e^{i(\theta_1 + \theta_2 + \theta_3)} = 1 \in U(1),$$

where $g_q = \rho_q(\gamma_q)$ and $e^{i\theta_q} = \chi_q(\gamma_q)$ for boundary loops γ_q .

Remark 11 (Physics interpretation). Color neutrality and the EM phase-closure are enforced as *existence* of pushouts/colimits in the categorical architecture—no "force" added beyond topology.¹³

7 Computational pipeline (replacing boolean shortcuts)

To avoid Phase-0/1 pitfalls, all invariants are computed at the *class* level:

- (a) $H^*(\cdot; \mathbb{Z}/2)$ via Serre spectral sequences (bundles/mapping tori) or Borel methods (quotients).
- (b) w_1, w_2 via Wu classes with Sq(v) = w, not by toggles.
- (c) π_1 from exact sequences of fibrations, not hard-coded.

Remark 12 (Engineering note). Earlier code set w_2 by fiat to satisfy Pin⁻ filters and simplified π_1 (e.g. Klein-bottle bases). These patterns must be removed; the new engine exposes cohomology rings and Steenrod action explicitly.¹⁴

¹²This matches the categorical "fermion class" wheel used for UI and bookkeeping. :contentReference[oaicite:14]index=14

 $^{^{13}}$ Confinement and interaction admissibility are expressed as colimit existence in the categorical memo. :contentReference[oaicite:15]index=15

 $^{^{14}}$ See the Phase-0/1 analysis script for the toggle patterns and summary. :contentReference[oaicite:16]index=16 and the Candidate Analysis report for the resulting tables. :contentReference[oaicite:17]index=17

8 Relation to GR metrics and the SKB ansatz (context)

The topological construction above is compatible with GR metric models used for single-particle SKB worldtubes and handle-mediated interactions:

$$ds^{2} = -f(r) dt^{2} + g(r) dr^{2} + r^{2} (d\theta^{2} + \sin^{2}\theta d\varphi^{2}) + h(r) (dt - \alpha d\varphi)^{2},$$
$$\int p_{\mu} dx^{\mu} = 2\pi n \,\hbar, \qquad Q = \frac{1}{2\pi} \int_{\partial K} F,$$

which encode periodic mass relations and flux-based charge quantization at the metric/field level. 15

Remark 13 (Deliberate boundary between layers). The present paper fixes the *topology/cobordism* layer (Pin⁺, Y–glue, holonomy gates). Metric choices and stress-energy models live above this layer and can be tuned without changing the gates.

9 Corrections and superseded claims

- Pin baseline: replace Pin⁻ admissibility as the primary 4D classifier by Pin^+ in this program. ¹⁶
- Quotient identifications: $S^4/\{\pm 1\} = \mathbb{RP}^4$ should not be double-counted; claims about \mathbb{CP}^2 /conjugation being both non-orientable and suitable require re-audit under true class-level computations.¹⁷

10 Conclusions and next steps

We supplied a Pin⁺ core with explicit blocks $W_{\rm RP}$ and $W_{\rm rev}$, a rigorous Y-cobordism glue, and SU(3)/U(1) holonomy gates. The minimal proton manifold obeys $[P] = 3[\mathbb{RP}^4]$ in $\Omega_4^{\rm Pin^+}$, aligning with the categorical 16-class ledger. Immediate tasks:

- 1. Extend the block library (mapping tori, twisted bundles) and compute $w_2 = 0$ cases via Serre/Wu/Steenrod.
- 2. Implement the class-level invariant engine and refactor Phase-0/1 code accordingly.
- 3. Couple the topological gates to GR metric models for quantitative overlays (keeping topology fixed).

A Stiefel–Whitney classes on \mathbb{RP}^4

Let $a \in H^1(\mathbb{RP}^4; \mathbb{Z}/2)$ be the generator. Using $T\mathbb{RP}^n \oplus \varepsilon^1 \cong (\gamma^1)^{\oplus (n+1)}$ and $w(\gamma^1) = 1 + a$,

$$w(T\mathbb{RP}^4) = (1+a)^5 \equiv 1 + a + a^4 \pmod{2},$$

so
$$w_1 = a$$
, $w_2 = 0$, $w_3 = 0$, $w_4 = a^4$. 18

¹⁵Metric ansatz, quantization and flux formulas appear in the SKB manuscript (Eqs. (1), (6)–(11), etc.). :contentReference[oaicite:18]index=18

¹⁶Research reports that center Pin⁻ are retained for audit but superseded for the 4D classification role by this paper. :contentReference[oaicite:19]index=19 and :contentReference[oaicite:20]index=20

¹⁷See Phase-0/1 Candidate Analysis; re-audit with the new engine. :contentReference[oaicite:21]index=21

 $^{^{18}}$ As compiled in the Mathematical Foundations note, with cautionary remarks about literature discrepancies. :contentReference[oaicite:22]index=22

B Mapping torus M_f of S^3

For $S^3 \hookrightarrow M_f \xrightarrow{\pi} S^1$ with orientation-reversing monodromy, $E_2^{p,q} = H^p(S^1; H^q(S^3; \mathbb{Z}/2))$ gives $H^2(M_f; \mathbb{Z}/2) = 0$. Since $TM_f \cong V \oplus \pi^*TS^1$ and $w_2(TS^1) = 0$, we obtain $w_2(M_f) = w_2(V) = 0$.

Acknowledgments

This document supersedes parts of the Phase-0/1 packet that relied on Pin⁻ admissibility and boolean shortcuts, and formalizes the categorical gates in the Pin⁺ baseline.¹⁹

 $^{^{19}} Candidate tables and script: :content Reference [oaicite:23] index=23 and :content Reference [oaicite:24] index=24; Foundations and Research Reports: :content Reference [oaicite:25] index=25, :content Reference [oaicite:26] index=26, :content Reference [oaicite:27] index=27; Categorical architecture: :content Reference [oaicite:28] index=28.$