Matrixgruppen

Jan Hurt Betreuer: Cap Andreas

Datum: 27.11.2015

Gruppen von Matrizen

Folgende Teilmengen der Matrizen $M_n(\mathbb{K})$ (\mathbb{K} ist \mathbb{R} oder \mathbb{C}) bilden mit der Operation $(A,B)\mapsto AB$ eine Gruppe.

Gruppen von Matrizen

Folgende Teilmengen der Matrizen $M_n(\mathbb{K})$ (\mathbb{K} ist \mathbb{R} oder \mathbb{C}) bilden mit der Operation $(A, B) \mapsto AB$ eine Gruppe.

(i) $GL_n(\mathbb{K}) := \{ A \in M_n(\mathbb{K}) : \det(A) \neq 0 \}$

Gruppen von Matrizen

Folgende Teilmengen der Matrizen $M_n(\mathbb{K})$ (\mathbb{K} ist \mathbb{R} oder \mathbb{C}) bilden mit der Operation $(A,B)\mapsto AB$ eine Gruppe.

(i)
$$GL_n(\mathbb{K}) := \{ A \in M_n(\mathbb{K}) : \det(A) \neq 0 \}$$

(ii)
$$SL_n(\mathbb{K}) := \{ A \in M_n(\mathbb{K}) : \det(A) = 1 \}$$

$$(iii) O(n) := \{ A \in M_n(\mathbb{R}) : AA^T = \mathbb{I} \}$$

$$(iv) \ U(n) := \{ A \in M_n(\mathbb{C}) : AA^T = \mathbb{I} \}$$

$$(v) SO(n) := \{ A \in M_n(\mathbb{R}) : AA^T = \mathbb{I} \wedge \det(A) = 1 \}$$

$$(vi) SU(n) := \{ A \in M_n(\mathbb{C}) : AA^* = \mathbb{I} \wedge \det(A) = 1 \}$$

Die $GL_n(\mathbb{K})$ sind offen in $M_n(\mathbb{K})$.

Die $GL_n(\mathbb{K})$ sind offen in $M_n(\mathbb{K})$.

Die folgenden Operationen:

$$(i) \ GL_n(\mathbb{K}) \times GL_n(\mathbb{K}) \to GL(\mathbb{K}) \ \text{definiert durch} \ (A,B) \mapsto A \cdot B$$

Die $GL_n(\mathbb{K})$ sind offen in $M_n(\mathbb{K})$.

Die folgenden Operationen:

 $(i) \ GL_n(\mathbb{K}) \times GL_n(\mathbb{K}) \to GL(\mathbb{K}) \ \text{definiert durch} \ (A,B) \mapsto A \cdot B$

 $(ii)^{-1}:GL_n(\mathbb{K})\to GL_n(\mathbb{K})$ defininiert durch: $A\mapsto A^{-1}$ glatt.

Die $GL_n(\mathbb{K})$ sind offen in $M_n(\mathbb{K})$.

Die folgenden Operationen:

(i)
$$GL_n(\mathbb{K}) \times GL_n(\mathbb{K}) \to GL(\mathbb{K})$$
 definiert durch $(A, B) \mapsto A \cdot B$

$$(ii)^{-1}:GL_n(\mathbb{K}) \to GL_n(\mathbb{K})$$
 defininiert durch: $A \mapsto A^{-1}$

glatt. Denn in den Einträgen der neuen Matrix stehen nur Polynome der ursprünglichen.

Die $GL_n(\mathbb{K})$ sind offen in $M_n(\mathbb{K})$.

Die folgenden Operationen:

- $(i) \ GL_n(\mathbb{K}) \times GL_n(\mathbb{K}) \to GL(\mathbb{K}) \ \text{definiert durch} \ (A,B) \mapsto A \cdot B$
- $(ii)^{-1}:GL_n(\mathbb{K}) o GL_n(\mathbb{K})$ defininiert durch: $A\mapsto A^{-1}$

glatt. Denn in den Einträgen der neuen Matrix stehen nur Polynome der ursprünglichen.

Die SU(2) ist isomorph zu $S^3 := \{x \in \mathbb{R}^4 : ||x||_2 = 1\}.$

Die $GL_n(\mathbb{K})$ sind offen in $M_n(\mathbb{K})$.

Die folgenden Operationen:

(i)
$$GL_n(\mathbb{K}) \times GL_n(\mathbb{K}) \to GL(\mathbb{K})$$
 definiert durch $(A, B) \mapsto A \cdot B$

$$(ii)^{-1}:GL_n(\mathbb{K}) o GL_n(\mathbb{K})$$
 defininiert durch: $A\mapsto A^{-1}$

glatt. Denn in den Einträgen der neuen Matrix stehen nur Polynome der ursprünglichen.

Die
$$SU(2)$$
 ist isomorph zu $S^3:=\{x\in\mathbb{R}^4:\|x\|_2=1\}$. Denn, ist $A\in SU(2)$ so $\exists \alpha,\beta\in\mathbb{C}$ sodass $A=\begin{pmatrix} \alpha & -\bar{\beta} \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$ mit der

Bedingung

$$\det(A) = |\alpha|^2 + |\beta|^2 = Re(\alpha)^2 + Im(\alpha)^2 + Re(\beta)^2 + Im(\beta)^2 = 1.$$

Matrixgruppen

Definition: Eine Matrixgruppe ist eine abgeschlossene Untergruppe von $GL_n(\mathbb{K})$.

Matrixgruppen

Definition: Eine Matrixgruppe ist eine abgeschlossene Untergruppe von $GL_n(\mathbb{K})$.

Beispiele: Da $f:A\mapsto AA^*$ stetig ist, ist $O(n)=f^{-1}(\mathbb{I})$ abgeschlossen und daher eine Matrixgruppe. Genauso $SO(n),\,U(n),SU(n).$

Tangentialräume

Definition: Ist G eine Matrixgruppe, so ist

$$\begin{split} \mathfrak{g} := \{\alpha'(0): \ \alpha: (-\varepsilon, \varepsilon) \to M_n(\mathbb{K}) \ \text{glatt}, \\ & \text{mit } \alpha(0) = \mathbb{I}, \ \text{und } \alpha((-\varepsilon, \varepsilon)) \subseteq G\}(*) \end{split}$$

der Tangentialraum von G bei \mathbb{I} .

Einparameteruntergruppen

Definition: Eine Einparmeterunteruppe ist ein einer Gruppe G ist eine Abbildung: $\alpha:\mathbb{K}\to G$, sodass $\forall s,t\in\mathbb{K}$ gilt $\alpha(s+t)=\alpha(s)\cdot\alpha(t)$.

Einparameteruntergruppen

Definition: Eine Einparmeterunteruppe ist ein einer Gruppe G ist eine Abbildung: $\alpha:\mathbb{K}\to G$, sodass $\forall s,t\in\mathbb{K}$ gilt $\alpha(s+t)=\alpha(s)\cdot\alpha(t)$.

Definition: Für $A \in M_n(\mathbb{K})$ ist $\exp: M_n(\mathbb{K}) \to GL_n(\mathbb{K})$:

$$\exp(A) = e^A := \sum_{n=1}^{\infty} \frac{A}{n!}.$$

Einparameteruntergruppen

Definition: Eine Einparmeterunteruppe ist ein einer Gruppe G ist eine Abbildung: $\alpha:\mathbb{K}\to G$, sodass $\forall s,t\in\mathbb{K}$ gilt $\alpha(s+t)=\alpha(s)\cdot\alpha(t)$.

Definition: Für $A \in M_n(\mathbb{K})$ ist $\exp: M_n(\mathbb{K}) \to GL_n(\mathbb{K})$:

$$\exp(A) = e^A := \sum_{n=1}^{\infty} \frac{A}{n!}.$$

Bemerkung: Es gilt $\forall s,t\in\mathbb{K}: \exp((s+t)A)=\exp(sA)\exp(tA)$, Beweis wie im reellen/komplexen Fall über Binomischen Lehrsatz $((s+t)A=(t+s)A)\Rightarrow t\mapsto e^{tA}$ ist eine Einparameteruntergruppe.

Beweis: Sei α eine Einparameteruntergruppe, so definiere $X:=\alpha(0)'$,

Beweis: Sei α eine Einparameteruntergruppe, so definiere $X:=\alpha(0)'$, dann gilt $\alpha(t)'=\frac{d}{ds}\Big|_{s=0}\alpha(t+s)=\frac{d}{ds}\Big|_{s=0}\alpha(t)\alpha(s)=\alpha(t)\alpha'(0)=\alpha(t)X$,

Beweis: Sei α eine Einparameteruntergruppe, so definiere $X:=\alpha(0)'$, dann gilt $\alpha(t)'=\frac{d}{ds}\Big|_{s=0}\alpha(t+s)=\frac{d}{ds}\Big|_{s=0}\alpha(t)\alpha(s)=\alpha(t)\alpha'(0)=\alpha(t)X$, genauso $(e^{tX})'=e^{tX}X$

Beweis: Sei α eine Einparameteruntergruppe, so definiere $X:=\alpha(0)'$, dann gilt $\alpha(t)'=\frac{d}{ds}\Big|_{s=0}\alpha(t+s)=\frac{d}{ds}\Big|_{s=0}\alpha(t)\alpha(s)=\alpha(t)\alpha'(0)=\alpha(t)X$,genauso $(e^{tX})'=e^{tX}X$ außerdem gilt $\alpha(0)=\mathbb{I}=e^0\Rightarrow$ da die die Abbildungen die selbe Differentialgeichung erfüllen, sind sie ident: $e^{tX}=\alpha(t)$

Beweis: Sei α eine Einparameteruntergruppe, so definiere $X:=\alpha(0)'$, dann gilt $\alpha(t)'=\frac{d}{ds}\Big|_{s=0}\alpha(t+s)=\frac{d}{ds}\Big|_{s=0}\alpha(t)\alpha(s)=\alpha(t)\alpha'(0)=\alpha(t)X$,genauso $(e^{tX})'=e^{tX}X$ außerdem gilt $\alpha(0)=\mathbb{I}=e^0\Rightarrow$ da die die Abbildungen die selbe Differentialgeichung erfüllen, sind sie ident: $e^{tX}=\alpha(t)$

Satz: Es existieren offene Umgebungen von $0 \in V \subseteq M_n(\mathbb{K})$ und $\mathbb{I} \in U \subseteq M_n(\mathbb{K})$, sodass $X \mapsto e^X$ eine glatte Bijektion $V \to U$ ist und deren Inverse ebenfalls glatt ist.

Beweis: Sei α eine Einparameteruntergruppe, so definiere $X:=\alpha(0)'$, dann gilt $\alpha(t)'=\frac{d}{ds}\Big|_{s=0}\alpha(t+s)=\frac{d}{ds}\Big|_{s=0}\alpha(t)\alpha(s)=\alpha(t)\alpha'(0)=\alpha(t)X$,genauso $(e^{tX})'=e^{tX}X$ außerdem gilt $\alpha(0)=\mathbb{I}=e^0\Rightarrow$ da die die Abbildungen die selbe Differentialgeichung erfüllen, sind sie ident: $e^{tX}=\alpha(t)$

Satz: Es existieren offene Umgebungen von $0 \in V \subseteq M_n(\mathbb{K})$ und $\mathbb{I} \in U \subseteq M_n(\mathbb{K})$, sodass $X \mapsto e^X$ eine glatte Bijektion $V \to U$ ist und deren Inverse ebenfalls glatt ist.

Beweis: Folgt aus dem Inverse Funktionen Satz da $(e^X)'\big|_{X=0}=\mathbb{I}.$

(i) \mathfrak{g} ist ein Teilraum und $\mathfrak{g} = \{X \in M_n(\mathbb{K}) : \forall t : e^{tX} \in G\}$

- (i) \mathfrak{g} ist ein Teilraum und $\mathfrak{g} = \{X \in M_n(\mathbb{K}) : \forall t : e^{tX} \in G\}$
- (ii) \exists offene Umgebungen V von 0 in $M_n(\mathbb{K})$, U von \mathbb{I} in $GL_n(\mathbb{K})$, sodass \exp zusätzlich $V\cap \mathfrak{g}$ bijektiv auf $U\cap G$ abbildet.

- (i) \mathfrak{g} ist ein Teilraum und $\mathfrak{g} = \{X \in M_n(\mathbb{K}) : \forall t : e^{tX} \in G\}$
- (ii) \exists offene Umgebungen V von 0 in $M_n(\mathbb{K})$, U von \mathbb{I} in $GL_n(\mathbb{K})$, sodass \exp zusätzlich $V\cap \mathfrak{g}$ bijektiv auf $U\cap G$ abbildet.

Beweis: (i) Sind α , β Kurven die (*) erfüllen und $\gamma(t):=\alpha(t)\beta(t)$. Dann gilt:

- (i) \mathfrak{g} ist ein Teilraum und $\mathfrak{g} = \{X \in M_n(\mathbb{K}) : \forall t : e^{tX} \in G\}$
- (ii) \exists offene Umgebungen V von 0 in $M_n(\mathbb{K})$, U von \mathbb{I} in $GL_n(\mathbb{K})$, sodass \exp zusätzlich $V\cap \mathfrak{g}$ bijektiv auf $U\cap G$ abbildet.

Beweis: (i) Sind α , β Kurven die (*) erfüllen und $\gamma(t) := \alpha(t)\beta(t)$. Dann gilt:

$$\gamma'(0) = \alpha'(0)\beta(0) + \alpha(0)\beta'(0) = \alpha'(0) + \beta'(0).$$

- (i) \mathfrak{g} ist ein Teilraum und $\mathfrak{g} = \{X \in M_n(\mathbb{K}) : \forall t : e^{tX} \in G\}$
- (ii) \exists offene Umgebungen V von 0 in $M_n(\mathbb{K})$, U von \mathbb{I} in $GL_n(\mathbb{K})$, sodass \exp zusätzlich $V\cap \mathfrak{g}$ bijektiv auf $U\cap G$ abbildet.

Beweis: (i) Sind α , β Kurven die (*) erfüllen und $\gamma(t) := \alpha(t)\beta(t)$. Dann gilt:

$$\gamma'(0) = \alpha'(0)\beta(0) + \alpha(0)\beta'(0) = \alpha'(0) + \beta'(0).$$

Ist $r\in\mathbb{K}$ und $\gamma(t):=\alpha(rt)$ dann ist $\gamma'(t)=r\alpha'(rt)$, also $\gamma'(0)=r\alpha'(0)\in\mathfrak{g}$.

Definition: Eine Funktion $f:G\to M_n(\mathbb{K})$ ist lokal um einen Punkt $g\in G$ glatt : \Leftrightarrow die Abbildung $X\mapsto f(ge^X)$ ist glatt auf der offenen Teilmenge $V\cap\mathfrak{g}\subseteq\mathfrak{g}=M_n(\mathbb{K})$.

Definition: Eine Funktion $f:G\to M_n(\mathbb{K})$ ist lokal um einen Punkt $g\in G$ glatt : \Leftrightarrow die Abbildung $X\mapsto f(ge^X)$ ist glatt auf der offenen Teilmenge $V\cap\mathfrak{g}\subseteq\mathfrak{g}=M_n(\mathbb{K})$.

Sind G, H Matrixgruppen, $G, H \subseteq M_n(\mathbb{K})$ so ist der Homomorphismus $\Phi: G \to H$ glatt $:\Leftrightarrow$ die Funktion $\Phi: G \to M_n(\mathbb{K})$ ist glatt.

Ist α eine Kurve die (*) erfüllt, und ist $\Phi:G\to H$ ein glatter Homomorphismus so ist die Kurve $\Phi\circ\alpha$ glatt in H und φ definiert über: $\varphi(\alpha'(0))=(\Phi\circ\alpha)'(0)$ ist wohldefiniert.

Ist α eine Kurve die (*) erfüllt, und ist $\Phi:G\to H$ ein glatter Homomorphismus so ist die Kurve $\Phi\circ\alpha$ glatt in H und φ definiert über: $\varphi(\alpha'(0))=(\Phi\circ\alpha)'(0)$ ist wohldefiniert.

Proposition: Ist Φ, φ wie oben definiert, so gilt $\Phi(e^X) = e^{\varphi(X)}$. Daraus folgt, dass Φ lokal um $\mathbb I$ eindeutig durch φ bestimmt.

Ist α eine Kurve die (*) erfüllt, und ist $\Phi:G\to H$ ein glatter Homomorphismus so ist die Kurve $\Phi\circ\alpha$ glatt in H und φ definiert über: $\varphi(\alpha'(0))=(\Phi\circ\alpha)'(0)$ ist wohldefiniert.

Proposition: Ist Φ, φ wie oben definiert, so gilt $\Phi(e^X) = e^{\varphi(X)}$. Daraus folgt, dass Φ lokal um $\mathbb I$ eindeutig durch φ bestimmt.

$$\begin{array}{l} \textbf{Beweis:} \ \Phi(e^{tX}) \ \text{ist eine Einparameteruntergruppe mit} \\ (\Phi(e^{tX}))'\big|_{t=0} = \varphi((e^{tX})'\big|_{t=0}) = \varphi(X(e^{tX})\big|_{t=0}) = \varphi(X). \end{array}$$

Propostion: Ist H zusammenängend so ist die von $exp(\mathfrak{h})$ erzeugte Untergruppe isomorph zu H.

Propostion: Ist H zusammenängend so ist die von $exp(\mathfrak{h})$ erzeugte Untergruppe isomorph zu H.

Beweis: Die Teilmenge $U\cap H$ vom obigen Satz liegt in $\exp(\mathfrak{h})$ und damit in der davon erzeugte Untergruppe $\tilde{H}\subset H$.

Beweis: Die Teilmenge $U\cap H$ vom obigen Satz liegt in $\exp(\mathfrak{h})$ und damit in der davon erzeugte Untergruppe $\tilde{H}\subset H$. Analog liegt für $h\in \tilde{H}$ die Menge $hU\cap H$ in \tilde{H} (wobei $hU=\{hg:g\in U\}$). Nun ist aber nach Definition jede dieser Teilmengen offen in H,

Beweis: Die Teilmenge $U\cap H$ vom obigen Satz liegt in $\exp(\mathfrak{h})$ und damit in der davon erzeugte Untergruppe $\tilde{H}\subset H$. Analog liegt für $h\in \tilde{H}$ die Menge $hU\cap H$ in \tilde{H} (wobei $hU=\{hg:g\in U\}$). Nun ist aber nach Definition jede dieser Teilmengen offen in H,also ist \tilde{H} eine offene Teilmenge von H. Das Komplement von \tilde{H} in H ist aber eine Vereinigung von Nebenklassen, die jeweils isomorph zu \tilde{H} , also ebenfalls offen.

Beweis: Die Teilmenge $U\cap H$ vom obigen Satz liegt in $\exp(\mathfrak{h})$ und damit in der davon erzeugte Untergruppe $\tilde{H}\subset H$. Analog liegt für $h\in \tilde{H}$ die Menge $hU\cap H$ in \tilde{H} (wobei $hU=\{hg:g\in U\}$). Nun ist aber nach Definition jede dieser Teilmengen offen in H,also ist \tilde{H} eine offene Teilmenge von H. Das Komplement von \tilde{H} in H ist aber eine Vereinigung von Nebenklassen, die jeweils isomorph zu \tilde{H} , also ebenfalls offen. Somit ist \tilde{H} auch abgeschlossen, und weil H zusammenhängend ist, folgt $\tilde{H}=H$.

Beweis: Die Teilmenge $U\cap H$ vom obigen Satz liegt in $\exp(\mathfrak{h})$ und damit in der davon erzeugte Untergruppe $\tilde{H}\subset H$. Analog liegt für $h\in \tilde{H}$ die Menge $hU\cap H$ in \tilde{H} (wobei $hU=\{hg:g\in U\}$). Nun ist aber nach Definition jede dieser Teilmengen offen in H,also ist \tilde{H} eine offene Teilmenge von H. Das Komplement von \tilde{H} in H ist aber eine Vereinigung von Nebenklassen, die jeweils isomorph zu \tilde{H} , also ebenfalls offen. Somit ist \tilde{H} auch abgeschlossen, und weil H zusammenhängend ist, folgt $\tilde{H}=H$.

Korrolar: Ist $\Phi:G\to H$ ein glatter Homomorphismus, φ surjektiv und H zusammenängend dann ist Φ surjektiv.

$$\mathfrak{su}(\mathbf{2}) = \left\{ \begin{pmatrix} a & -b+ic \\ b+ic & -ia \end{pmatrix} : a,b,c \in \mathbb{R} \right\} \cong \mathbb{R}^3 \text{ ist}$$

$$\mathfrak{su}(2) = \left\{ \begin{pmatrix} a & -b+ic \\ b+ic & -ia \end{pmatrix} : a,b,c \in \mathbb{R} \right\} \cong \mathbb{R}^3 \text{ ist und}$$

$$\langle X,Y \rangle := -spur(XY) \text{ ein positiv definites Skalarprodukt auf } \mathfrak{su}(2)$$

$$\mathfrak{su}(\mathbf{2}) = \left\{ \begin{pmatrix} a & -b+ic \\ b+ic & -ia \end{pmatrix} : a,b,c \in \mathbb{R} \right\} \cong \mathbb{R}^3 \text{ ist und}$$

$$\langle X,Y \rangle := -spur(XY) \text{ ein positiv definites Skalarprodukt auf } \mathfrak{su}(\mathbf{2}) \text{definiert. Weiters gilt für } A \in SU(2), \ X \in \mathfrak{su}(\mathbf{2}), \ \mathrm{dass}$$

$$AXA^{-1} \in \mathfrak{su}(\mathbf{2}),$$

$$\mathfrak{su}(\mathbf{2}) = \left\{ \begin{pmatrix} a & -b+ic \\ b+ic & -ia \end{pmatrix} : a,b,c \in \mathbb{R} \right\} \cong \mathbb{R}^3 \text{ ist und} \\ \langle X,Y \rangle := -spur(XY) \text{ ein positiv definites Skalarprodukt auf } \\ \mathfrak{su}(\mathbf{2}) \text{definiert. Weiters gilt für } A \in SU(2), \ X \in \mathfrak{su}(\mathbf{2}), \ \text{dass} \\ AXA^{-1} \in \mathfrak{su}(\mathbf{2}), \text{und } Ad_A : \mathfrak{su}(\mathbf{2}) \to \mathfrak{su}(\mathbf{2}) \ \text{definiert durch} \\ Ad_A(X) := AXA^{-1} \text{ erhält das Skalarprodukt und ist deshalb} \\ \text{orthogonal bzgl. } \langle \ , \ \rangle \Rightarrow Ad_A \in SO(3) \text{ ist.}$$

$$\mathfrak{su}(\mathbf{2}) = \left\{ \begin{pmatrix} a & -b+ic \\ b+ic & -ia \end{pmatrix} : a,b,c \in \mathbb{R} \right\} \cong \mathbb{R}^3 \text{ ist und}$$

$$\langle X,Y \rangle := -spur(XY) \text{ ein positiv definites Skalarprodukt auf } \mathfrak{su}(\mathbf{2}) \text{definiert. Weiters gilt für } A \in SU(2), \ X \in \mathfrak{su}(\mathbf{2}), \text{ dass } AXA^{-1} \in \mathfrak{su}(\mathbf{2}), \text{und } Ad_A : \mathfrak{su}(\mathbf{2}) \to \mathfrak{su}(\mathbf{2}) \text{ definiert durch } Ad_A(X) := AXA^{-1} \text{ erhält das Skalarprodukt und ist deshalb orthogonal bzgl. } \langle \ , \ \rangle \Rightarrow Ad_A \in SO(3) \text{ ist.}$$

$$\Phi : SU(2) \to SO(3), \ \Phi(A) := Ad_A \text{ ist glatt und surjektiv, da die}$$

zugehörige Abbildung φ bijektiv ist.

$$\mathfrak{su}(\mathbf{2}) = \left\{ \begin{pmatrix} a & -b+ic \\ b+ic & -ia \end{pmatrix} : a,b,c \in \mathbb{R} \right\} \cong \mathbb{R}^3 \text{ ist und}$$

$$\langle X,Y \rangle := -spur(XY) \text{ ein positiv definites Skalarprodukt auf } \mathfrak{su}(\mathbf{2}) \text{definiert. Weiters gilt für } A \in SU(2), \ X \in \mathfrak{su}(\mathbf{2}), \text{ dass } AXA^{-1} \in \mathfrak{su}(\mathbf{2}), \text{und } Ad_A : \mathfrak{su}(\mathbf{2}) \to \mathfrak{su}(\mathbf{2}) \text{ definiert durch } Ad_A(X) := AXA^{-1} \text{ erhält das Skalarprodukt und ist deshalb orthogonal bzgl. } \langle \ , \ \rangle \Rightarrow Ad_A \in SO(3) \text{ ist.}$$

$$\Phi : SU(2) \to SO(3), \ \Phi(A) := Ad_A \text{ ist glatt und surjektiv, da die zugehörige Abbildung } \varphi \text{ bijektiv ist. Da } Ker(\Phi) = \pm \mathbb{I} \text{ ist, folgt dass } SO(3) \text{ isomorph zu } SU(2)/\{\pm \mathbb{I}\} \text{ ist.}$$

Definition: Die bilineare Abbildung [X, Y] := XY - YX wird Kommutator oder Lie-Klammer bezeichnet.

Definition: Die bilineare Abbildung [X, Y] := XY - YX wird Kommutator oder Lie-Klammer bezeichnet.

Definition: Die bilineare Abbildung [X, Y] := XY - YX wird Kommutator oder Lie-Klammer bezeichnet.

$$(i) \ A \in G, X \in \mathfrak{g} \Rightarrow AXA^{-1} \in \mathfrak{g}$$

Definition: Die bilineare Abbildung [X, Y] := XY - YX wird Kommutator oder Lie-Klammer bezeichnet.

- $(i) \ A \in G, X \in \mathfrak{g} \Rightarrow AXA^{-1} \in \mathfrak{g}$
- $(ii)\ X,\,Y\in\mathfrak{g}\Rightarrow[X,\,Y]\in\mathfrak{g}$

Definition: Die bilineare Abbildung [X, Y] := XY - YX wird Kommutator oder Lie-Klammer bezeichnet.

$$(i) \ A \in G, X \in \mathfrak{g} \Rightarrow AXA^{-1} \in \mathfrak{g}$$

$$(ii)\ X,\,Y\in\mathfrak{g}\Rightarrow [X,\,Y]\in\mathfrak{g}$$

$$(iii) \ \forall X \in \mathfrak{g}, g \in G \ \mathrm{gilt} \ \varphi(gXg^{-1}) = \Phi(g)\varphi(X)\Phi(g)^{-1}$$

Definition: Die bilineare Abbildung [X, Y] := XY - YX wird Kommutator oder Lie-Klammer bezeichnet.

- (i) $A \in G, X \in \mathfrak{g} \Rightarrow AXA^{-1} \in \mathfrak{g}$
- $(ii)\ X,\,Y\in\mathfrak{g}\Rightarrow [X,\,Y]\in\mathfrak{g}$
- $(iii) \ \forall X \in \mathfrak{g}, g \in G \ \mathrm{gilt} \ \varphi(gXg^{-1}) = \Phi(g)\varphi(X)\Phi(g)^{-1}$
- $(iv) \ \forall X,\, Y \in \mathfrak{g} \ \mathrm{gilt} \ \varphi([X,\,Y]) = [\varphi(X),\varphi(\,Y)]$

Definition: Die bilineare Abbildung [X, Y] := XY - YX wird Kommutator oder Lie-Klammer bezeichnet.

Proposition: Ist φ wie in der obigen Propositon, und sind $X,\,Y\in\mathfrak{g}$ so gilt:

$$(i) \ A \in G, X \in \mathfrak{g} \Rightarrow AXA^{-1} \in \mathfrak{g}$$

$$(ii) \ X, Y \in \mathfrak{g} \Rightarrow [X, Y] \in \mathfrak{g}$$

$$(iii) \ \forall X \in \mathfrak{g}, g \in G \ \mathrm{gilt} \ \varphi(gXg^{-1}) = \Phi(g)\varphi(X)\Phi(g)^{-1}$$

$$(iv) \ \forall X,\, Y \in \mathfrak{g} \ \mathrm{gilt} \ \varphi([X,\,Y]) = [\varphi(X),\varphi(\,Y)]$$

Beweis: (i) $X \in \mathfrak{g} \Rightarrow e^{tX} \in G \ \forall t \Rightarrow Ae^{tX}A^{-1} \in G \ \text{ist}$ Einparameteruntergruppe, mit Ableitung $AXA^{-1} \Rightarrow AXA^{-1} \in \mathfrak{g}$

Definition: Die bilineare Abbildung [X, Y] := XY - YX wird Kommutator oder Lie-Klammer bezeichnet.

Proposition: Ist φ wie in der obigen Propositon, und sind $X,\,Y\in\mathfrak{g}$ so gilt:

$$(i) \ A \in G, X \in \mathfrak{g} \Rightarrow AXA^{-1} \in \mathfrak{g}$$

$$(ii)\ X,\,Y\in\mathfrak{g}\Rightarrow [X,\,Y]\in\mathfrak{g}$$

$$(iii) \ \forall X \in \mathfrak{g}, g \in G \ \mathrm{gilt} \ \varphi(gXg^{-1}) = \Phi(g)\varphi(X)\Phi(g)^{-1}$$

$$(iv) \ \forall X,\, Y \in \mathfrak{g} \ \mathrm{gilt} \ \varphi([X,\,Y]) = [\varphi(X),\varphi(\,Y)]$$

Beweis: (i) $X \in \mathfrak{g} \Rightarrow e^{tX} \in G \ \forall t \Rightarrow Ae^{tX}A^{-1} \in G \ \text{ist}$ Einparameteruntergruppe, mit Ableitung $AXA^{-1} \Rightarrow AXA^{-1} \in \mathfrak{g}$

$$(ii) \text{ Aus } (i) \text{ folgt: } e^{tX} Y e^{-tX} \in \mathfrak{g} \ \forall t \Rightarrow [X,Y] \in \mathfrak{g}$$

Beweis: (iii) Ist $g \in G$ und $X \in \mathfrak{g}$ so gilt $e^{t\varphi(gXg^{-1})} = e^{\varphi(tgXg^{-1})} = \Phi(g)\Phi(e^{tX})\Phi(g)^{-1} = \Phi(g)e^{t\varphi(X)}\Phi(g)^{-1}$. Die Aussage folgt aus Ableiten und Auswertung an t=0.

$$(iv) \ \forall X, Y \in \mathfrak{g} \ \text{gilt} \ [X, Y] = \frac{d}{dt} \Big|_{t=0} e^{tX} Y e^{-tX}. \ \text{Aus} \ (i) \ \text{folgt}$$

$$\begin{split} \varphi([X,\,Y]) = & \varphi\left(\frac{d}{dt}\Big|_{t=0}e^{tX}\,Ye^{-tX}\right) = \frac{d}{dt}\Big|_{t=0}\varphi(e^{tX}\,Ye^{-tX}) = \\ = & \frac{d}{dt}\Big|_{t=0}\Phi(e^{tX})\varphi(Y)\Phi(e^{-tX}) = \frac{d}{dt}\Big|_{t=0}e^{t\varphi(X)}\varphi(Y)e^{-t\varphi(X)} = \\ = & [\varphi(X),\,\varphi(Y)] \end{split}$$