LC26 : Conversion réciproque d'énergie chimique en énergie

Louis Heitz et Vincent Brémaud Jeudi 26 septembre 2020

Sommaire

Rapport du jury		3
Bi	Bibliographie	
In	ographie 3 duction 4 a pile 4 Rappels, cadre de l'étude 4 Etude thermodynamique 4 électrolyse 5 1 Aspects thermodynamiques 5 2 Aspects cinétiques 6 accumulateur 6 1.1 Dipositif 6 1.2 Rendement 6 busion 6 orrection 7 ommentaires 7 fatériels 7	
Ι		4
II	L'électrolyse II.1 Aspects thermodynamiques	5
II	I L'accumulateur III.1 Dipositif	6
Co	Conclusion	
\mathbf{A}	Correction	7
В	Commentaires	7
\mathbf{C}	Manipulation	7
D	Matériels	7
${f E}$	Tableau présenté	7

Le code couleur utilisé dans ce document est le suivant :

- \bullet \to Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- \triangle Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables
- * Pour les manipulations

Rapports du jury

Bibliographie

Pour l'accu au plomb, assez détaillé

Introduction

Les batteries c'est utile, comment faire ? Quelles conditions remplir pour avoir une batterie ? Comment ça fonctionne ? On a déjà vu le formalisme nécessaire : thermodynamique/cinétique des réactions rédox, on va appliquer ici, en regardant plus précisemment les aspects énergétiques.

I La pile

I.1 Rappels, cadre de l'étude

Exemple de la pile Daniell. Deux demi-équations électroniques :

$$Cu^{2+} + 2e^- = Cu(s)$$

$$Zn^{2+} + 2e^- = Zn(s)$$

On a séparé les deux pôles pour pouvoir récupérer le courant qui circule donc de l'énergie.

On s'est donné les outils de thermo pour une électrode, comment adapter pour 2 électrodes dans le cas dune pile ?

I.2 Etude thermodynamique

\triangle Diapo second principe

On connaît déjà la relation entre la tension d'une électrode et $\Delta_r G$, en considérant que l'électrode en question est associée à une ESH :

$$Ox + n e^- = Red$$

$$H_3O^+(aq) + e^- = 1/2H_2(g) + H_2O(l)$$

 $Ox + nH_2O + n/2H_2(g) = Red + nH_3O^+(aq)$

On a alors d'une part :

$$\Delta_r G = \Delta_r G^{\circ} + RT \ln Q$$

Or pour une ESH, on a $a(H_2(g) = 1 \text{ et } a(H_3O^+(aq)) = 1, \text{ donc}$

$$\Delta_r G = \Delta_r G^{\circ} + RT \ln \frac{a_{Red}}{a_{Ox}}$$

En identifiant avec la loi de Nernst, sachant que le potentiel de l'ESH est nul, on a alors :

$$\Delta_r G = -n\mathcal{F}E(Ox/Red)$$

Pour une réaction entre deux couples, on utilise généralisation de la loi de Hess: $Ox_1 + ne^- = Red_1(1)Ox_2 + ne^- = Red_2(2)Ox_1 + Red_2 = Red_1 + Ox_2(R)$

Donc $\Delta_r G = -n\mathcal{F}(E_1 - E_2) = -n\mathcal{F}e$. Si $E_1 > E_2$ réaction spontanée.

On fait alors le lien avec l'énergie électrique délivrée

$$\delta W_{el} = -n\mathcal{F}ed\xi + T\delta S_c$$

Donc le travail maximal récupérable dans le cas d'une transformation réversible est

$$\delta W_{el} \le -n\mathcal{F}ed\xi$$

Prenons le cas de la pile Daniell:

$$Cu^{2+} + Zn = Zn^{2+} + Cu$$

$$e = \Delta E^{\circ} - 0.06/2 \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$$

Si ils ont la même concentration alors $e = \Delta E^{\circ} > 0$: la pile fournit de l'énergie!

<u>Transition</u>: Donc de l'énergie chimique peut être convertie en énergie électrique. Mais l'inverse serait-il possible? Ça pourrait être utile pour recharger une pile, à tout hasard. Avant ça étudions une réaction forcée plus simple :celle de l'eau.

II L'électrolyse

II.1 Aspects thermodynamiques

Si on cherche à faire évoluer le système dans le sens opposé à son évolution spontanée, il faut nécessairement lui apporter de l'énergie. Dans le cas d'une réaction d'oxydoréduction, il s'agit de lui apporter de l'énergie électrique : on parle d'électrolyse. Prenons l'exemple de l'eau

$$2H+ + 2e = H_2(g) \rightarrow E_1$$

 $2H2O = O2(g) + 4H + +4e \rightarrow E_2$

A pH = 0 on a $E_1^\circ = 0$ et $E_2^\circ = 1.23V$. Donc la réaction spontanée est $O_2(g) + 2H_2(g) = 2H_2O(l)$ dans le sens direct. Quelle est le travail électrique à fournir pour forcer la réaction dans le sens inverse ? Le critère d'évolution est ici :

$$\Delta_r Gd\xi \leq \delta W_{el}$$

Hprépa chimie des matériaux inorganiques pour la démonstration thermo de l'électrolyse

Or $\delta W_{el} = (U_1 - U_2)n\mathcal{F} = Un\mathcal{F}d\xi$ où U est la tension appliquée et $\Delta_r G = -n\mathcal{F}(E_1 - E_2)$ avec E_1 et E_2 les potentiels de Nernst de chacune des électrodes. Il faut donc que :

$$U > E_2 - E_1$$

Plus précisément : il faut que V_A soit supérieur au potentiel d'équilibre du couple au plus bas potentiel standard. De même, V_C inférieur au potentiel d'équilibre du couple au plus au potentiel.

Toutefois, ça peut être infirmé expérimentalement, on a l'habitude avec les réactions électrochimiques, il faut se préoccuper des aspects cinétiques.

II.2 Aspects cinétiques

En réalité, il faut prendre en compte les chutes de tension ohmiques (un courant circule) et les surtensions cinétiques :

- Chute de tension ohmique RI
- Surtension anodique/cathodique : $\eta_a \eta_c$
- La thermo $E_2 E_1$

Soit finalement:

$$U = (E_2 - E_1) + (\eta_a - \eta_c) + RI$$

En pratique, il faut donc appliquer une tension au moins supérieure à la tension déterminer à l'aide de la thermodynamique pour pouvoir faire fonctionner l'électrolyse.

Transition: Si on combine les deux on aboutit à l'accumulateur: une pile rechargeable.

△ Diapo sur condition pour avoir un accumulateur.

Miomandre Electrochimie, accumulateur

III L'accumulateur

III.1 Dipositif

 \boxtimes Le mettre à charger / à décharger

On étudie l'accumulateur au plomb. \rightarrow Équations en charge et en décharge.

III.2 Rendement

Une donnée pertinente pour un accumulateur est son rendement faradique : sur toute charge qu'on lui a fourni avec un générateur, quelle est la proportion qui a servi à être convertie en énergie électrique en mode décharge ?

☆ Mesure d'un rendement en charge

Conclusion

Discuter des différents paramètres pertinents pour un accumulateur, cf Miomandre.

- A Correction
- **B** Commentaires
- C Manipulation
- $\upolesymbol{\footnotemark}$ Manips :
- D Matériels
- E Tableau présenté