MTH 231 LECTORE 6

Commutation

Statement	Twhen	Fwhen
Tx Yy P(x, y)	P(x,y) =T	p (xuy) has a false case
= =	on all	a false case
ty tx Pcx, y)	x, y	
7×3y PCXiy)	If there is some x,y that makes	IF P(X,Y) = F
=		
By 3x PCX, Y)	pcx,y)True	x.y
3 x dy P(x,y)	And a single	It for every x
13 10 ())	x for which	there is some y
	all y are T	that makes P(xiy)
Yy 3x PLX, Y)	If for every	There is some
	1 y there is	y for which
	an x that makes P(xiy)=T	P(x,y) fails for

NOTE: ∃x Ay P(x,y) ⇒ Yy ∃x P(x,y) but ty Jx P(x,y) ⇒ ∃x YY P(x,y)

Negation of Qualifiers

I]
$$60A \rightarrow \forall x \forall y \ P(x,y) \equiv \exists x \exists y \rightarrow P(x,y)$$
 $2 \Rightarrow \forall x \exists y \ P(x,y) \equiv \exists x \forall y \rightarrow P(x,y)$
 $3 \Rightarrow \exists x \forall y \ P(x,y) \equiv \forall x \exists y \rightarrow P(x,y)$
 $4 \Rightarrow \exists x \rightarrow P(x) \Leftrightarrow \exists x \rightarrow P(x)$
 $4 \Rightarrow \exists x \rightarrow P(x) \Leftrightarrow \exists x \rightarrow P(x)$
 $4 \Rightarrow \exists x \rightarrow P(x) \Leftrightarrow \forall x \rightarrow P(x)$
 $4 \Rightarrow \exists x \rightarrow P(x) \Leftrightarrow \forall x \rightarrow P(x)$
 $4 \Rightarrow \exists x \rightarrow P(x) \Leftrightarrow \forall x \rightarrow P(x)$