R documentation

of all in '.'

December 24, 2014

R topics documented:

	BN_Data_Generator-package	
	big_letters	
	BN_Data_Generator	
	check_cardinalities	
	C_M_WO_WC	
	fromto_to_mat	
	gen_asia	
	is_acyclic	
	is_DAG	
	make_topology	
	mat_to_fromto	
	real_alarm	,
	real_asia	,
	real_hailfinder	,
	real_insurance	
	real_lizards	
	toss_value	
Index		10

BN_Data_Generator-package

Data Generator based on Bayesian Network Model

Details

Package: BN_Data_Generator

Type: Package Version: 1.0

Date: 2014-12-24 License: GPL (>=2) 2 big_letters

Author(s)

References

Jae-seong Yoo, (2014), "A Study on Comparison of Bayesian Network Structure Learning Algorithms for Selecting Appropriate Models", M.S. thesis, Department of Statistics, Korea University, Seoul.

See Also

```
~~ Optional links to other man pages, e.g. ~~ ~~ <pkg> ~~
```

Examples

```
\sim simple examples of the most important functions \sim
```

```
big_letters
```

Description

the 26 lower-case letters of the Roman alphabet;

Usage

```
big_letters(len)
```

Arguments

len

BN_Data_Generator 3

BN_Data_Generator	Data Generator based on Bayesian Network Model
-------------------	--

Description

Data Generator based on Bayesian Network Model

Usage

```
BN_Data_Generator(arcs_mat, input_Probs, n, node_names = NULL, cardinalities = NULL)
```

Arguments

arcs_mat A matrix that determines the arcs. input_Probs The conditional probabilities.

n Data size.

node_names The names of each nodes.

cardinalities The cardinalities of each nodes.

References

Jae-seong Yoo, (2014), "A Study on Comparison of Bayesian Network Structure Learning Algorithms for Selecting Appropriate Models", M.S. thesis, Department of Statistics, Korea University, Seoul.

```
check_cardinalities
```

Usage

```
check_cardinalities(arcs_mat, node_names = NULL, cardinalities = NULL)
```

Arguments

arcs_mat A matrix that determines the arcs.

node_names The names of each nodes.

cardinalities The cardinalities of each nodes.

 $C_M_WO_WC$

 $C_M_WO_WC$

Description

The existence of the known network structures allows us to define three important terms which indicate the performance of the algorithm (in terms of the number of graphical errors in the learnt structure).

Usage

```
C_M_WO_WC(target_arcs_mat, learnt_arcs_mat)
```

Arguments

target_arcs_mat

A matrix of known network structure.

learnt_arcs_mat

A matrix of learnt network structure.

Value

C (Correct Arcs)

Edges present in the original network and in the learnt network structure.

M (Missing Arcs)

Edges present in the original network but not in the learnt network structure.

WO (Wrongly Oriented Arcs)

Edges present in the learnt network structure, but having opposite orientation when compared with the corresponding edge in the original network structure.

WC (Wrongly Corrected Arcs)

Edges not present in the original network but included in the learnt network structure.

References

X.-w. Chen, G. Anantha, and X. Wang, (2006), An effective structure learning method for constructing gene networks, Bioinformatics, Vol. 22, 1367-1374.

fromto_to_mat 5

```
fromto_to_mat
```

Usage

```
fromto_to_mat(fromto, node_names)
```

Arguments

fromto aa

node_names The names of each nodes.

gen_asia

Usage

```
gen_asia()
```

is_acyclic

Description

This function checks for each node in a DAG whether backtracing arcs leading to it results in an "infinite recursion" error indicating that there actually is a cyclic part in the DAG (which then obviously seems not to be a DAG).

Usage

```
is_acyclic(arcs_mat)
```

Arguments

arcs_mat

A matrix that determines the arcs.

Value

A list with two elements. acyclic is a boolean indicating whether the DAG is acyclic (=TRUE) or contains a cyclic component (=FALSE). nodewise is a vector containing 1 boolean per node in the DAG, TRUE indicating that backtracing from this node does not lead to a cyclic component, FALSE indicating that backtracing from this node leads to a cyclic component.

See Also

is_DAG

6 make_topology

is_DAG

Description

This function tests whether the given graph is a DAG, a directed acyclic graph.

Usage

```
is_DAG(arcs_mat)
```

Arguments

arcs_mat

A matrix that determines the arcs.

Details

is_dag checks whether there is a directed cycle in the graph. If not, the graph is a DAG.

Value

A logical vector of length one.

See Also

```
is_acyclic
```

```
make_topology
```

Description

Bayesian Networks with varying topologies (DAGs) with number of nodes.

Usage

```
make_topology(nodes, topology = "Collapse", input_Probs = NULL, node_names = NULL, cardinalities = NUL
```

Arguments

nodes The number of nodes.

topology Geometric characteristic.

input_Probs The conditional probabilities.

node_names The names of each nodes.

cardinalities The cardinalities of each nodes.

mat_to_fromto 7

Details

The volume of the manifold is a geometric characteristic associated with the BN<e2><80><99>s topology. Each BN produces a different magnitude of the volume based on the BN<e2><80><99>s DAG. <e2><80><9c>Collapse<e2><80><9d>, <e2><80><9d>, <e2><80><9d , <e

References

Eitel J. M. L., (2008), An Information-geometric approach to learning Bayesian network topologies from data, Innovations in Bayesian Networks Studies in Computational Intelligence, Vol. 156, 187-217.

mat_to_fromto

Usage

```
mat_to_fromto(arcs_mat)
```

Arguments

arcs_mat

A matrix that determines the arcs.

real_alarm

Usage

```
real_alarm(n, rep = T)
```

Arguments

n

Data size.

rep

Should sampling be with replacement?

real_asia

Usage

```
real_asia(n, rep = T)
```

Arguments

n Data size.

rep Should sampling be with replacement?

8 real_lizards

real_hailfinder

Usage

```
real_hailfinder(n, rep = T)
```

Arguments

n Data size.

rep Should sampling be with replacement?

real_insurance

Usage

```
real_insurance(n, rep = T)
```

Arguments

n Data size.

rep Should sampling be with replacement?

real_lizards

Usage

```
real_lizards(n, rep = T)
```

Arguments

n Data size.

rep Should sampling be with replacement?

toss_value 9

toss_value

Description

Sets up a sample space for the experiment of tossing a coin repeatedly with the outcomes "H" or "T".

Usage

```
toss_value(times, num_of_cases, makespace = FALSE)
```

Arguments

Value

A data frame, with an equally likely probs column if makespace is TRUE.

Examples

```
toss_value(1, 3)
toss_value(2, 3)
toss_value(3, 4, makespace = TRUE)
```

Index

*Topic Bayesian Network	BN_Data_Generator
BN_Data_Generator-package, 1	(BN_Data_Generator-package), 1
*Topic \textasciitildekwd1	BN_Data_Generator-package, 1
<pre>big_letters, 2</pre>	
BN_Data_Generator, 3	C_M_WO_WC, 4
C_M_WO_WC, 4	<pre>check_cardinalities, 3</pre>
<pre>check_cardinalities, 3</pre>	
<pre>fromto_to_mat, 5</pre>	fromto_to_mat, 5
gen_asia, 5	
is_acyclic, 5	gen_asia,5
is_DAG, 6	in annalia E C
make_topology, 6	is_acyclic, 5, 6
mat_to_fromto, 7	is_DAG, 5, 6
real_alarm, 7	make tanalogy 6
real_asia,7	make_topology, 6
real_hailfinder, 8	mat_to_fromto, 7
real_insurance, 8	real_alarm, 7
	real_asia, 7
real_lizards, 8	
toss_value, 9	real_hailfinder, 8
*Topic \textasciitildekwd2	real_insurance, 8
big_letters, 2	real_lizards, 8
BN_Data_Generator, 3	toos value 0
C_M_WO_WC, 4	toss_value, 9
<pre>check_cardinalities, 3</pre>	
fromto_to_mat, 5	
gen_asia,5	
is_acyclic,5	
is_DAG, 6	
<pre>make_topology, 6</pre>	
<pre>mat_to_fromto, 7</pre>	
real_alarm,7	
real_asia,7	
real_hailfinder,8	
real_insurance, 8	
real_lizards, 8	
toss_value, 9	
<pkg>, 2</pkg>	
big_letters, 2	
BN_Data_Generator, 3	