In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv(r"C:\Users\Admin\Downloads\15_Horse Racing Results.csv - 15_Hors
 df

Out[2]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Coun
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sver
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	Sver
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	Sver
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sver
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	Sver
27003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Austra
27004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Austra
27005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Austra
27006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	N Zeala
27007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	N Zeala
27008 rows × 21 columns										

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27008 entries, 0 to 27007
Data columns (total 21 columns):

#	Column	Non-N	ull Count	Dtype				
0	Dato	27008	non-null	object				
1	Track	27008	non-null	object				
2	Race Number	27008	non-null	int64				
3	Distance	27008	non-null	int64				
4	Surface	27008	non-null	object				
5	Prize money	27008	non-null	int64				
6	Starting position	27008	non-null	int64				
7	Jockey	27008	non-null	object				
8	Jockey weight	27008	non-null	int64				
9	Country	27008	non-null	object				
10	Horse age	27008	non-null	int64				
11	TrainerName	27008	non-null	object				
12	Race time	27008	non-null	object				
13	Path	27008	non-null	int64				
14	Final place	27008	non-null	int64				
15	FGrating	27008	non-null	int64				
16	Odds	27008	non-null	object				
17	RaceType	27008	non-null	object				
18	HorseId	27008	non-null	int64				
19	JockeyId	27008	non-null	int64				
20	TrainerID	27008	non-null	int64				
$\frac{1}{1}$								

dtypes: int64(12), object(9)

memory usage: 4.3+ MB

In [4]: df.describe()

Out[4]:

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age	
count	27008.000000	27008.000000	2.700800e+04	27008.000000	27008.000000	27008.000000	270
mean	5.268624	1401.666173	1.479445e+06	6.741447	55.867373	5.246408	
std	2.780088	276.065045	2.162109e+06	3.691071	2.737006	1.519880	
min	1.000000	1000.000000	6.600000e+05	1.000000	47.000000	2.000000	
25%	3.000000	1200.000000	9.200000e+05	4.000000	54.000000	4.000000	
50%	5.000000	1400.000000	9.670000e+05	7.000000	56.000000	5.000000	
75%	8.000000	1650.000000	1.450000e+06	10.000000	58.000000	6.000000	
max	11.000000	2400.000000	2.800000e+07	14.000000	63.000000	12.000000	
4				_			

```
In [5]: df.columns
```

In [6]: sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at 0x27373402be0>

In [7]: sns.distplot(df['FGrating'])

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x2737dc67fa0>

Out[8]:

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age	Path	Final place	FGrating
0	10	1400	1310000	6	52	7	2	9	110
1	10	1400	1310000	14	52	7	3	4	124
2	10	1400	1310000	8	52	7	1	6	118
3	9	1600	1310000	13	54	7	0	8	107
4	9	1600	1310000	9	52	7	0	3	123
27003	11	1200	1450000	6	59	3	1	9	104
27004	2	1200	967000	7	57	3	2	5	110
27005	4	1200	967000	6	57	3	0	3	114
27006	5	1200	967000	14	57	3	2	7	109
27007	11	1200	1450000	7	55	4	2	9	118

27008 rows × 9 columns

```
In [9]: sns.heatmap(df1.corr())
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x2737efa8790>

Out[12]: LinearRegression()

```
In [13]: print(lr.intercept_)
```

50.09380014414625

```
mdl.Horse - Jupyter Notebook
In [14]:
          prediction= lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[14]: <matplotlib.collections.PathCollection at 0x2737f8c7ee0>
           160
           140
           120
           100
            80
                      20
                                            100
                                                  120
                                                       140
                                                             160
In [15]: print(lr.score(x_test,y_test))
          0.6401059459858369
In [16]: |print(lr.score(x_train,y_train))
          0.6381165242610176
```

```
In [17]:
         from sklearn.linear_model import Ridge,Lasso
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[17]: Ridge(alpha=10)
In [18]: |rr.score(x_test,y_test)
Out[18]: 0.6401059479503618
In [19]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[19]: Lasso(alpha=10)
In [20]: la.score(x_test,y_test)
Out[20]: 0.4436731927286366
In [21]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
```

Out[21]: ElasticNet()

Evaluation