# DARPA Sub-T: Lidar-Lidar Calibration

Dakota Wenberg, Aaron Ray, Ryan Sander VNAV Final Project

#### **Problem Overview**

- Build a consistent global point cloud
- If individual scans do not share keypoints, must find lidar-lidar transform







Clouds for each lidar may be disjoint

#### Preview

- How do we calibrate the Lidars? Hand-Eye Calibration
- Solving the Hand-Eye Calibration problem
- Evaluating calibration quality
- Next steps

#### Bad calibration example

- What happens to the global point cloud if the calibration is off?
  - Not just a rigid transformation!



Robot thinks red lidar is at



Resulting point clouds don't match

# Our Hand-Eye Setup



## Hand-Eye Calibration



Given: Two arbitrary trajectories

$$T_{A_t}^{A_{t-1}} = \left(T_{A_{t-1}}^{w_A}\right)^{-1} T_{A_t}^{w_A}$$

Same for B

$$T_{B_t}^{B_{t-1}} = T_A^B T_{A_t}^{A_{t-1}} T_B^A$$
$$T_A^B = (T_B^A)^{-1}$$



#### **ICP For Motion Estimation**

- AX = XB assumes we have measurements of motion (A and B). In practice, how do we get this? → Iterative Closest Point (ICP)
- Two point clouds are "best matched"
  - Point to point
- Rotation and translation is estimated
  - Minimizing point to point RMSE
- From this we can compute covariance
- How do we use ICP? We use the variance (diagonal) elements of the 6 x 6
   ICP covariance matrix to eliminate certain data points whose variance exceeds a threshold amount.



#### Closed Form Solution-Based Methods

 Problem solved in closed form in two stages, as in Shiu and Ahmad [1] and Tsai and Lenz [2].

#### Advantages of these approaches:

- Does not require an iterative optimization procedure.
- Closed-form solution may be easier to interpret intuitively.

#### Disadvantages of this approach:

 Many of these approaches fix rotation to solve for translation. This leads to errors in rotation affecting errors in translation.



#### **Optimization-Based Solutions**

- Ransac- esque sample consensus to find initial guess
- Nonlinear optimization to refine estimate
  - o In our implementation, we focus on the local nonlinear optimization, because we have a good initial guess
- These optimization problems can be carried out using nonlinear techniques such as Gauss-Newton or Levenberg-Marquadt.

#### **Unweighted Pose Estimation**

 Idea: Minimize the unweighted sum of squared errors between our pose estimate and the "round-trip" (chained) pose estimate:

$$\hat{\mathbf{T}}_{A}^{B} = \arg \min_{\mathbf{T}_{A}^{B} \in \mathbf{SE}(3)} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{B}_{i} \mathbf{T}_{A}^{B} \mathbf{A}_{i}^{-1} - \mathbf{T}_{A}^{B}||_{F}^{2}$$

$$= \arg \min_{\mathbf{T}_{A}^{B} \in \mathbf{SE}(3)} \frac{1}{N} \sum_{i=1}^{N} \operatorname{tr}(\mathbf{M}_{i} \mathbf{M}_{i}^{T}), \ \mathbf{M}_{i} = \mathbf{B}_{i} \mathbf{T}_{A}^{B} \mathbf{A}_{i}^{-1} - \mathbf{T}_{A}^{B}$$

# Weighted Relative Pose Estimation (MLE Estimate)

• Idea: Some samples have more uncertainty than others in **rotation** and **translation**. To account for this uncertainty, we can assign less weight to our uncertain estimates using **rotation** and translation **variance estimates**.

$$\hat{\mathbf{T}}_{A}^{B} = \arg\min_{\mathbf{T}_{A}^{B} \in \mathbf{SE}(3)} \frac{1}{N} \sum_{i=1}^{N} r_{i} ||\mathbf{B}_{i} \mathbf{T}_{A}^{B} \mathbf{A}_{i}^{-1} - \mathbf{T}_{A}^{B}||_{\Omega_{i}}^{2}$$

$$= \arg\min_{\mathbf{T}_{A}^{B} \in \mathbf{SE}(3)} \frac{1}{N} \sum_{i=1}^{N} r_{i} \text{tr}(\mathbf{M}_{i} \mathbf{\Omega}_{i} \mathbf{M}_{i}^{T}),$$
Where  $\mathbf{M}_{i} = \mathbf{B}_{i} \mathbf{T}_{A}^{B} \mathbf{A}_{i}^{-1} - \mathbf{T}_{A}^{B}, \ \mathbf{\Omega}_{i} = \begin{bmatrix} \omega_{i} \mathbf{I}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3}^{T} & \rho_{i} \end{bmatrix}$ 
For some  $\omega_{i}, \rho_{i} \in \mathbb{R}, r_{i} \in \{0, 1\}$ 

#### **Dirty Details**

- Time aligning
- Covariance
- ICP Covariance
- One of the lidars has occlusion on robot (can we tell numerically that the covariance of these ICP measurements is higher?)

#### Unweighted vs Weighted Calibration



Unweighted



Weighted

#### **Evaluating Calibration Quality**

Can look at transform loop consistency over all data:

$$\hat{\mathbf{T}}_A^B = \arg\min_{\mathbf{T}_A^B \in \mathbf{SE}(3)} \frac{1}{N} \sum_{i=1}^N ||\mathbf{B}_i \mathbf{T}_A^B \mathbf{A}_i^{-1} - \mathbf{T}_A^B||_{\Omega_i}^2 \qquad T_{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^N ||\mathbf{B}_i \hat{\mathbf{T}}_A^B \mathbf{A}_i^{-1} - \hat{\mathbf{T}}_A^B||_{\Omega_i}^2}$$

| Estimate                        | RMSE <b>R</b> ,<br>Weighted | RMSE <b>t</b> ,<br>Weighted | RMSE <b>R</b> ,<br>Unweighted | RMSE <b>t</b> ,<br>Unweighted |
|---------------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------------|
| Initial (T <sub>0</sub> )       | 2.7793e-02                  | 3.6588e-01                  | 2.2885e-02                    | 2.8327e-02                    |
| Final ( <b>T</b> <sub>F</sub> ) | 2.7779e-02                  | 3.6278e-01                  | 2.2873e-02                    | 2.8087e-02                    |

Want an "external" method with separate assumptions from how we optimize

Evaluate resulting point cloud



#### **Building Point Clouds**





**Fig. 2** Example of an octree storing free (shaded white) and occupied (black) cells. The volumetric model is shown on the left and the corresponding tree representation on the right.



**Fig. 3** By limiting the depth of a query, multiple resolutions of the same map can be obtained at any time. Occupied voxels are displayed in resolutions  $0.08 \, \text{m}$ , 0.64, and  $1.28 \, \text{m}$ .

(A. Hornung et al, "OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees" [4])

#### Improving Accuracy

- The manual calibration performed better on our point cloud metric
- Improve solution quality by jointly estimating calibration and robot motion
  - Evaluation of Combined Time-Offset Estimation and Hand-Eye Calibration on Robotic Datasets, Furrer, Fehr, Novkovic, Sommer,
     Gilitschenski, and Siegwart. 2017 [3].



#### Point Cloud Accuracy Analysis



#### Future Work / Finishing Up

- 1. Rolling average pose estimation to see if transformation changes over time
- 2. Accuracy improvement through joint estimation of rotation and translation



#### Acknowledgements

#### Thank you to:

- 1. **Professor Luca Carlone and the VNAV staff** for their meaningful support and mentorship on this project and throughout the semester.
- 2. **Ben and Fadhil** for their insightful support with understanding our data from the DARPA Sub-T challenge.
- 3. **Mike and Phil** for collaborating with us on this project, enabling us to build a framework that complements their findings.

#### References

- [1] Y. Shiu, S. Ahmad. "Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX = XB." In IEEE Transactions on Robotics and Automation, 5(1):16–29, 1989.
- [2] R. Tsai, R. Lenz. "A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration." In IEEE Transactions on Robotics and Automation, 5(3):345-358, 1989.
- [3] Furrer, Fadri, et al. "Evaluation of combined time-offset estimation and hand-eye calibration on robotic datasets." Field and Service Robotics. Springer, Cham, 2018.
- [4] Hornung, Armin, et al. "OctoMap: An efficient probabilistic 3D mapping framework based on octrees." Autonomous robots 34.3 (2013): 189-206.

# Questions?

# Appendix

## Computing Weights in Weighted Estimates

- Weights for translation  $\rho_i$  computed using the translation inverse variance of the odometry data.
- Weights for rotation  $\omega_i$  computed using the rotation inverse variance of the odometry data.
- Rejection weights  $\mathbf{r}_i \in \{0, 1\}$  indicate whether a sample should be rejected due to high uncertainty in the particularly sample, based off of whether:  $\max(\operatorname{diag}(\Sigma_{ICP})) > \operatorname{rejection\_threshold}$ .

## Point Cloud Consistency

- Larger point clouds give more accurate validation
- Over long periods, drift in the map obscures alignment information



#### **Accumulating Points**

 How do we accumulate multiple scans into a single point cloud?

#### Use an Octree!

- Occupancy grid with multiple levels of resolution
- Very efficient data structure
- ROS integration with Octomap



Fig. 2 Example of an octree storing free (shaded white) and occupied (black) cells. The volumetric model is shown on the left and the corresponding tree representation on the right.



**Fig. 3** By limiting the depth of a query, multiple resolutions of the same map can be obtained at any time. Occupied voxels are displayed in resolutions  $0.08 \, \text{m}$ , 0.64, and  $1.28 \, \text{m}$ .

#### SD Version of Movie

