Tutorial 7 STAT 150

Exercise 1:

For a continuous time Markov chain $(X_t)_{t\geq 0}$ with transition matrix $(p_t(i,j))$, we let for every two states i,j, $q(i,j)=\lim_{h\to 0}\frac{p_h(i,j)}{h}$. If we let $\lambda_i=\sum_{j\neq i}q(i,j)$, we define the generator G of $(X_t)_{t\geq 0}$ as the matrix that has the following entries:

$$G(i, j) = q(i, j)$$
 if $i \neq j$ and $G(i, i) = -\lambda_i$.

Hence, we have the transition matrix has the following form : $p_h(i,j) = G(i,j)h + o(h)$ if $i \neq j$ and $p_h(i,i) = 1 + G(i,i)h + o(h)$.

 π is said to be a stationary distribution of $(X_t)_{t\geq 0}$ if $\pi p_t = \pi$ for every $t\geq 0$.

- (a)- Find the forward equations in function of $p_t(i,j)$ and G.
- (b)- Prove that π verifies $\pi G = 0$

Exercise 2:

Let X(t) be a continuous time Markov chain with states $\{1,2\}$ and :

$$P_{i,j}(t) = \frac{1}{2} - \frac{1}{2}e^{-t}$$
 if $i \neq j$ and $P_{i,i}(t) = \frac{1}{2} + \frac{1}{2}e^{-t}$.

- (a) What is the generator of X(t).
- (b) What is its stationary distribution.

Exercise 3: Let X be a Markov chain with states $\{1,2\}$ with generator

$$G = \begin{bmatrix} -2 & 2 \\ 1 & -1 \end{bmatrix}$$

- (a) Write down the forward equations for the transition probabilities $P_{i,j}(t)$.
- (b) Using the forward equations or otherwise find $P_{1,1}(t)$.
- (c) Find the stationary distribution.
- (d) Compute $\mathbb{P}[X(1) = 2|X(0) = 1, X(2) = 1]$

Exercise 4:

Red cars arrive according to a rate α Poisson process and blue cars according to an independent rate β Poisson process. We are told that exactly one blue car has arrived by time 1.

- (a) Conditional on this event find the distribution of the time of the first blue car.
 - (b) Find the conditional distribution of the first car of either colour.