基于卷积神经网络的糖尿病视网膜病变分类网络

梅骏逸 2111876

网络空间安全学院 信息安全、法学

2022年11月

内容

① 数据集

② 模型架构

③ 实验

数据集

数据集

- DDR 数据集 [5]
- 样本不均衡的问题。
- 预训练模型
- Label Smoothing
- 尝试减少样本不均衡问题带来的对模型的影响,并且取得了较好的效果。

数据集的增强

在前期的尝试中发现对数据增强能够显著提高模型的性能,实验中使用 PyTorch 内置工具对图片进行了变换:

- 随机翻转(纵向、横向)
- ❷ 随机旋转一定角度
- TrivialAugment (随机选择增强操作和增强幅度)
- 随机改变图像的色调
- ◎ 随机抹除部分像素的内容

模型架构

基本架构

- 使用预训练模型及 Patch Embedding 作为 Backbone 提取特征;
- CBAM 注意力机制模块 [11]

$$\begin{split} w_1 &= \sigma(\mathsf{MLP}(\mathsf{AvgPool}(x_0)) + \mathsf{MLP}(\mathsf{MaxPool}(x_0))) \\ x_1 &= w_1 \otimes x_0 \\ w_2 &= \sigma(\mathsf{Conv}_{2 \to 1}([\mathsf{AvgPool}(x_1); \mathsf{MaxPool}(x_1)]_{\mathsf{concat}})) \\ x_2 &= w_2 \otimes x_1 \end{split}$$

- ConvMixer Block[10] 组成后续网络
- Global Average Pooling + Flatten + 全连接层
- 实现 CABNet GAB+CAB 注意力机制并进行了实验

Depthwise 及 Pointwise 卷积

- 将一次卷积运算拆分成两次独立的操作:
- Depthwise 卷积对每个通道使用不同的卷积核;
- Pointwise 卷积在每一个点上对通道进行卷积:

Depthwise Convolution

Pointwise Convolution

Backbones

- Patch Embedding
 - ConvMixer 原网络
 - 将输入进行分块卷积(步长与卷积核大小均为 p)
- ConvNeXt
 - 综合了过去各种网络中的优点
 - 具有良好的性能 [7]
 - 实验中使用冻结参数连接 CBAM 和 ConvMixer、不冻结参数连接 CBAM 和 ConvMixer、不冻结参数 更换全连接层这三种方式进行训练并进行了对比。
- EfficientNet
 - 较少的参数量和较快的速度 [9]
- DenseNet
 - 将每一层的处理结果连接(Concatenate)[3]

GAB+CAB

Global Attention 过程可以表示如下

$$w_1 = \sigma(\mathsf{Conv}(\mathsf{AvgPool}(x_0)))$$

 $x_1 = w_1 \otimes x_0$
 $w_2 = \sigma(\mathsf{AvgPool}_{\mathsf{channel}}(x_1))$
 $x_2 = w_2 \otimes x_1$

Category Attention 模块过程大致如下

- 将通道数通过卷积增广到 $k \times L$,其中 L 表示类别数量,通过池化得到每一类的权重;
- ② 在改变维数后对 k 所在维度池化
- 将两种操作结果对应元素相乘并在通道维数上 池化得到权重
- 权重与 Global Attention 结果相乘得到 CAB 的处理结果。

最后通过池化、Flatten 和全连接层得到分类结果。 实验中根据 CABNet 论文中的实验结果,取 k=5。

实验

训练设置

- AdamW 优化器
- Label Smoothing + CrossEntropy 作为损失函数
- 学习率下降

评估指标

- Accuracy
- Kappa[1]
 - 令 f_{ij} 表示混淆矩阵中第 i 行第 j 列,Kappa 系数的定义如下:

Kappa =
$$\frac{p_o - p_e}{1 - p_e}$$

$$p_o = \frac{1}{n} \sum_{i}^{k} f_{ii}$$

$$p_e = \frac{1}{n^2} \sum_{i}^{k} f_{ii} \times f_{\cdot i}$$

- 在样本不均衡的情况下考虑小样本的分类情况
- 更好地评估分类精度

实验结果I

Backbone	Parameters	Classification Net	Depth	Accuracy	Карра	Image	Batch Size
Patch-Embedding	not pretrained	CBAM + ConvMixer	8	0.6911	0.4618	480×480	128
ConvNeXt	unfreezed	FC	8	0.8399	0.7227	480×480	32
ConvNeXt	unfreezed	CBAM + ConvMixer	4	0.8399	0.7218	480×480	32
ConvNeXt	unfreezed	GAB + CAB	-	0.8284	0.7001	480×480	32
ConvNeXt	freezed	CBAM + ConvMixer	8	0.7526	0.5599	480×480	128
ConvNeXt	freezed	GAB + CAB	-	0.7023	0.4717	480×480	128
EfficientNet	unfreezed	CBAM + ConvMixer	8	0.7571	0.5725	480×480	32
DenseNet	unfreezed	CBAM + ConvMixer	8	0.7840	0.6190	480×480	32

实验结果Ⅱ

- 从零开始训练的使用 Patch Embedding 的网络效果较差
- 冻结了参数的 ConvNeXt 加上后续网络和未冻结参数的 EfficientNet 和 DenseNet 加上后续网络结果相差不大
- 未冻结参数的 ConvNeXt 后接 CBAM+ConvMixer 训练时比纯全连接层略好,但测试结果相差并不大。
- 从 Kappa 结果根据 Landis 和 Koch 等人提出的标准 [4] 来看, ConvNeXt 不冻结参数训练得到的 分类结果具有高度的一致性(Substantial)
- ConvNeXt 作为特征提取器后使用 FC, CBAM+ConvMixer 以及 CABNet 都能够取得较好的结果。

CBAM 与 CABNet 注意力机制对比

图为以 ConvNeXt 为 Backbone 的 网络下使用 CBAM + ConvMixer 和 CABNet 中注意力机制得到的结果。可 以直观地发现 GAB+CAB 对原始图片中特征的刻画的确是更加准确的。

参考文献 I

- [1] Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and Psychological Measurement*, 20(1):37–46, 1960.
- [2] Along He, Tao Li, Ning Li, Kai Wang, and Huazhu Fu. Cabnet: Category attention block for imbalanced diabetic retinopathy grading. *IEEE Transactions on Medical Imaging*, 40(1):143–153, 2021.
- [3] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional networks, 2016.
- [4] J. Richard Landis and Gary G. Koch. The measurement of observer agreement for categorical data. Biometrics, 33(1):159–174, 1977.
- [5] Tao Li, Yingqi Gao, Kai Wang, Song Guo, Hanruo Liu, and Hong Kang. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. *Information Sciences*, 501:511 522, 2019.
- [6] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network, 2013.
- [7] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s, 2022.
- [8] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017.
- [9] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. 2019.
- [10] Asher Trockman and J. Zico Kolter. Patches are all you need?, 2022.
- [11] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention module, 2018.

谢谢!

实验报告及演示文稿使用 Overleaf 及 LATEX 编写报告及演示文稿中的示意图使用 LATEX, TikZ 以及 draw.io 完成