Joseph Dowling.

Exercise 1

- I) log(z-1): Has a branch cut of $[1, \infty)$.
- II) log(z+2): Has a branch cut of $[-2, \infty)$.
- III) log[(z-1)(z+2)]: Has one branch cut at [-2,1].

Exercise 2

- I) $D = \{z \in \mathbb{C} | Im(z) > 0\}$: Has an antiderivative of F := Log(z), differentiable in D, (as $D \subseteq \mathbb{C} \setminus [0, +\infty)$), as defined in the notes.
- II) $D = A_{r,R}(0)$: f has no antiderivative as we know $\int_{S_n^+(0)} 1/z = 2\pi i \neq 0, \forall p$.
- III) $D = \mathbb{C}\setminus[0, +\infty)$: Has an antiderivative of F := Log(z), differentiable in D as defined in the notes.

Exercise 3

I) Let $f(z) = 1, \forall z$, suppose |a| < r. Then we have by cauchys integral formula

$$\int_{S_{-}^{+}(0)} \frac{f(z)}{z - a} dz = f(z) 2\pi i = 2\pi i$$

For |a| = r, then we can find some R > r such that $S_r^+(0) \sim S_R^+(0)$, then by the deformation theorem and above

$$\int_{S_r^+(0)} \frac{1}{z - a} dz = \int_{S_R^+(0)} \frac{1}{z - a} dz = 2\pi i$$

For |a| > r Then $\int_{S_r^+(0)} \frac{1}{z-a} dz = 0$ by cauchys theorem. As $S_r^+(0)$ is simply connected and f is differentiable in $S_r^+(0)$.

II) Let $f(z) = \sin(z)/(z+2)$, f holomorphic for $\mathbb{C}\setminus\{-2\}$. So by cauchys integral formula

$$\int_{S_1^+(0)} \frac{f(z)}{z - 0} dz = 2\pi i f(0) = 0$$

Exercise 4

We know from the definition of the homotopy map, $\gamma_0 \sim \gamma_1 \sim \gamma_s \forall s \in [0,1]$. So for any $s \in [0,1]$, we have that, by the deformation theorem, $\int_{\gamma_s} f = \int_{\gamma_0} f = \int_{\gamma_1} f = c$ for some constant $c \in \mathbb{C}$. Then,

$$\frac{d}{ds}I(s) = \frac{d}{ds}c = 0$$