Bachelor Thesis Decoding the Color Code

Clemens Schumann, Advised by Peter-Jan Derks

November 23, 2022

Contents

1	Introduction to the Algebra			
	1.1	Schroedinger and Heisenberg picture		
		1.1.1	Schroedinger picture	
		1.1.2	Heisenberg Picture	4
2	2 Conclusion			Ę
	Appendix			
	3.1 Calculation 1			

1 Introduction to the Algebra

1.1 Schroedinger and Heisenberg picture

1.1.1 Schroedinger picture

In the Schroedinger picture, we focus on the time evolution of states:

$$|\psi\rangle = |\psi\rangle(t) \tag{1}$$

In this picture we can introduce quantum circuit diagram notation, whereby:

- States progress in time along horizontal parallel lines
- Time goes from left to right
- \bullet Gates denoted X,Y,Z are the pauli matrices $\sigma_x,\sigma_y,\sigma_z$
- Gates can act on one or multiple qubits, whereby an X gate on qubit 1 in a 3-qubit system should be interpreted as: $(X \otimes \mathbb{I} \otimes \mathbb{I})(|\psi_1\rangle \otimes |\psi_2\rangle \otimes |\psi_3\rangle)$

Figure 1: A Quantum Circuit, where $|0\rangle$ is the +1 eigenstate in σ_z -basis

As can be seen explicitly calculated in the familiar Schroedinger picture in Appendix 3.1, the circuit from figure 1 implements a CNOT-gate from the control qubit to the target qubit.

We will now analyze this circuit in the Heisenberg picture, finding that it results in an equal output.

1.1.2 Heisenberg Picture

In this picture, we focus on the time evolution of operators instead of states:

$$A = A(t) \tag{2}$$

By considering specifically the operators to which the input state space is part of those operators eigenstatespace, we can compute the output of any circuit:

$$Circuit(|\phi\rangle) = Circuit(A)|\phi\rangle$$
 (3)

if $|\phi\rangle$ is an eigenstate of A.

We call an operator/gate, to which an input state is an eigenvector the "Stabilizer" of that input state.

The "Stabilizer group" is a group of such operators, comprising the Stabilizers that stabilize all allowed input states

So e.g. the input state in figure 1 is only stabilized by $\mathbb{I} \otimes Z \otimes \mathbb{I}$ (and trivially $\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I}$).

2 Conclusion

3 Appendix

3.1 Calculation 1

In the quantum circuit depicted in figure 1 the input state can be written as $|\psi_{control}\rangle \otimes |0\rangle \otimes |\psi_{target}\rangle$ and the measurement in the first timestep can be expressed as $\mathbb{I} \otimes X \otimes X$.

The initial state $|\phi_{t=0}\rangle = |\psi_{control}\rangle \otimes |\psi_{ancilla}\rangle \otimes |\psi_{target}\rangle$ where

$$|\psi_{control}\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\psi_{ancilla}\rangle = |0\rangle$$

$$|\psi_{target}\rangle = \gamma|0\rangle + \delta|1\rangle$$

therefore:

$$|\phi_{t=0}\rangle = \alpha \left(\gamma |000\rangle + \delta |001\rangle\right) + \beta \left(\gamma |100\rangle + \delta |101\rangle\right) \tag{4}$$

If the first measurement result is +1, the state becomes:

$$|\phi_{t=1}^{+}\rangle = \frac{1}{2} (\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \mathbb{I} \otimes X \otimes X) |\phi_{t=0}\rangle$$
$$= \alpha (\gamma (|000\rangle + |011\rangle) + \delta (|001\rangle + |010\rangle))$$
$$+ \beta (\gamma (|100\rangle + |111\rangle) + \delta (|101\rangle + |110\rangle))$$

if the result is -1, it becomes:

$$|\phi_{t=1}^{-}\rangle = \frac{1}{2} (\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} - \mathbb{I} \otimes X \otimes X) |\phi_{t=0}\rangle$$
$$= \alpha (\gamma (|000\rangle - |011\rangle) + \delta (|001\rangle - |010\rangle))$$
$$+ \beta (\gamma (|100\rangle - |111\rangle) + \delta (|101\rangle - |110\rangle))$$

In the case of the +1 Measurement \rightarrow a=0:

$$|\phi_{t=2}^{++}\rangle = \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + Z \otimes Z \otimes \mathbb{I} \right) |\phi_{t=1}^{+}\rangle$$

$$= (|000\rangle\langle 000| + |001\rangle\langle 001| + |110\rangle\langle 110| + |111\rangle\langle 111|) |\phi_{t=1}^{+}\rangle$$

$$= \alpha \left(\gamma |000\rangle + \delta |001\rangle\right) + \beta \left(\gamma |111\rangle + \delta |110\rangle\right)$$

$$\begin{aligned} |\phi_{t=2}^{+-}\rangle &= \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} - Z \otimes Z \otimes \mathbb{I} \right) |\phi_{t=1}^{+}\rangle \\ &= \left(|010\rangle\langle 010| + |011\rangle\langle 011| + |100\rangle\langle 100| + |101\rangle\langle 101| \right) |\phi_{t=1}^{+}\rangle \\ &= \alpha \left(\gamma |011\rangle + \delta |010\rangle \right) + \beta \left(\gamma |100\rangle + \delta |101\rangle \right) \end{aligned}$$

In the case of the -1 Measurement \rightarrow a=1:

$$|\phi_{t=2}^{-+}\rangle = \frac{1}{2} (\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + Z \otimes Z \otimes \mathbb{I}) |\phi_{t=1}^{-}\rangle$$
$$= \alpha (\gamma |000\rangle + \delta |001\rangle) - \beta (\gamma |111\rangle + \delta |110\rangle)$$

$$\begin{aligned} |\phi_{t=2}^{--}\rangle &= \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} - Z \otimes Z \otimes \mathbb{I} \right) |\phi_{t=1}^{-}\rangle \\ &= -\alpha \left(\gamma |011\rangle + \delta |010\rangle \right) + \beta \left(\gamma |100\rangle + \delta |101\rangle \right) \end{aligned}$$

Now the applied measurement is $\mathbb{I} \otimes X \otimes \mathbb{I}$, which means:

$$\begin{split} |\phi_{t=3}^{++++}\rangle &= \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \mathbb{I} \otimes X \otimes \mathbb{I} \right) |\phi_{t=2}^{+++}\rangle \\ &= \frac{1}{2} ((|010\rangle + |000\rangle) \langle 000| + (|011\rangle + |001\rangle) \langle 001| \\ &+ (|000\rangle + |010\rangle) \langle 010| + (|001\rangle + |011\rangle) \langle 011| \\ &+ (|110\rangle + |100\rangle) \langle 100| + (|111\rangle + |101\rangle) \langle 101| \\ &+ (|100\rangle + |110\rangle) \langle 110| + (|101\rangle + |111\rangle) \langle 111|) |\phi_{t=2}^{++}\rangle \\ &= \frac{1}{2} (\alpha \left(\gamma(|000\rangle + |010\rangle) + \delta(|011\rangle + |001\rangle)) \\ &+ \beta \left(\gamma(|101\rangle + |111\rangle) + \delta(|100\rangle + |110\rangle))) \end{split}$$

In this case, a,b and c would each be zero, therefore no further gate would be applied.

As intended, this state is equivalent to $CNOT_{|\psi_{Control}\rangle \to |\psi_{Target}\rangle} |\phi_{t=0}\rangle$. If the last measurement result is -1:

$$\begin{split} |\phi_{t=3}^{++-}\rangle &= \frac{1}{2} \left(\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} - \mathbb{I} \otimes X \otimes \mathbb{I} \right) |\phi_{t=2}^{++}\rangle \\ &= \frac{1}{2} ((|010\rangle + |000\rangle) \langle 000| + (|001\rangle - |011\rangle) \langle 001| \\ &+ (|010\rangle - |000\rangle) \langle 010| + (|011\rangle - |001\rangle) \langle 011| \\ &+ (|100\rangle - |110\rangle) \langle 100| + (|101\rangle - |111\rangle) \langle 101| \\ &+ (|110\rangle - |100\rangle) \langle 110| + (|111\rangle - |101\rangle) \langle 111|) |\phi_{t=2}^{++}\rangle \\ &= \frac{1}{2} (\alpha \left(TODOTODOTODOTODOTODO\gamma (|000\rangle + |010\rangle) + \delta (|011\rangle + |001\rangle)) \\ &+ \beta \left(\gamma (|101\rangle + |111\rangle) + \delta (|100\rangle + |110\rangle))) \end{split}$$

Notably, each measurement sequence has a differing resulting ancilla state, however we do not care since ancillas are meant to be discarded. For now, the other 7 final computation steps are left as an exercise to the reader, however I probably will still finish that.