

Machine Learning is everywhere

Social Networks

Healthcare

Banking

Genomics

Weather predictions

Dogs and Cats

Product recommendation

Images from amazon.com

Autonomous vehicles

Creativity

Figure source: Gatys, Ecker and Bethge, Image style transfer using convolutional neural networks, CVPR 2016.

ML Basics

ML depends on

• Statistics: Probability theory, Sampling

• Mathematics: Linear Algebra, Multivariate Calculus,....

• Computer Science: Data structures, Programming

• Some domain knowledge.

Machine Learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure if its performance at tasks in T, as measured by improves with experience E"

Tom Mitchell

Machine Learning

SUPERVISED

UNSUPERVISED

Some key components

Data pre-processing

x_1	x_2	x_3	y
2.2	0.8	2.7	1
4.9	3.1	1.6	-1

- Data cleaning
- Training-test data splitting
- Feature engineering

Training

- Loss function
- Optimization algorithm
- Regularization

Features

Iris dataset

INPUTS

Sepal Length	Sepal Width	Petal Length	Petal Width
(cm)	(cm)	(cm)	(cm)
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5	3.6	1.4	0.2
5.4	3.9	1.7	0.4
4.6	3.4	1.4	0.3
5	3.4	1.5	0.2
4.4	2.9	1.4	0.2

OUTPUTS				
Species				
Iris Setosa	0			
Iris Virginica	1			
Iris Versicolor	2			

Training and Test data

- Training data: Used for training the ML algorithm.
- Test data: Used for assessing the performance of the ML algorithm.

Loss function

REGRESSION

Squared loss:

$$\mathcal{L}(\mathbf{y}^{(n)}, \mathbf{y}^{*(n)}) = \frac{1}{2} \sum_{j=1}^{J} (y_j^{(n)} - y_j^{*(n)})^2$$

BINARY CLASSIFICATION

Binary cross-entropy loss:

$$\mathcal{L}(y^{(n)}, y^{*(n)}) = -y^{(n)}\log(y^{*(n)}) - (1 - y^{(n)})\log(1 - y^{*(n)})$$

MULTI-CLASS CLASSIFICATION

Cross-entropy loss:

$$\mathcal{L}(\mathbf{y}^{(n)}, \mathbf{y}^{*(n)}) = -\sum_{j=1}^{J} y_j^{(n)} \log y_j^{*(n)}$$

Generalization

- Larger class of functions \to more complexity of the hypothesis class $\mathcal{C}(\mathbb{H})$.
- Objective: Good prediction at unobserved locations \rightarrow good **generalization**.

Generalization

Figures for illustration only.

Simple models

Figures for illustration only.

Complex models

Figures for illustration only.

Model selection

- Inductive bias of the ML algorithm.
- Hypothesis class (of functions) H.

- Very complex hypothesis could lead to overfitting.
- Model selection \rightarrow choosing the right \mathbb{H} .

ML Basics

Probabilistic modelling

• Many cases of supervised learning need estimation of the distribution $p(y|\mathbf{x})$ over possible outputs y for input \mathbf{x} .

- Expected value of the output is the mean of the distribution.
- Gives an estimate of the uncertainty of predictions.
- Two major types of probabilistic modelling approaches:
 - Discriminative modelling: The conditional distribution $p(y|\mathbf{x})$ is estimated directly. The distribution $p(\mathbf{x})$ is not modelled. For example, using $p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}^{\mathrm{T}}\mathbf{x}, \sigma^2)$ to model regression problem.
 - Generative modelling: The conditional distribution $p(y|\mathbf{x})$ is estimated using the joint distribution $p(y,\mathbf{x})$ and the distribution $p(\mathbf{x})$ as $p(y|\mathbf{x},\boldsymbol{\theta})$ = $p(y,\mathbf{x}|\boldsymbol{\theta})/p(\mathbf{x}|\boldsymbol{\theta})$. These type of approaches model both y and \mathbf{x} .

Training and Test datasets

- Dataset is split into two groups:
 - Training dataset is used to train the ML algorithm.
 - Test dataset is used to estimate the error rate of the trained model.

• Shortcomings:

- If the size of the dataset is small, then keeping aside a separate test dataset can lead to loss of some vital information in the model training stage.
- "Unfortunate" data split can result in misleading error estimates.

• Solution:

- K-fold cross-validation
- Leave-one-out cross-validation