## 1 Function Approximations

Consider learning the approximation of a function f in an interval [a,b]. One approach is data fitting or also called optimized regression. Here the values of the function  $f_i$  are given only at finitely many points  $x_i \in [a,b]$ , i=1,...,m. The input data pairs are  $(x_i,f_i)$ . For a best solution to the regression, one chooses a model or a parametric form of the corresponding approximation function F(a,x), with an unknown vector of parameters  $a=(a_1,a_2,\ldots,a_n)^T$ , and then sets up an objective criterion for the optimal quality of approximation, i.e. minimizing a distance function d(f(x),F(a,x)) in a metric space, or minimizing a norm ||F(a)-f|| in a normed linear space. First we shall consider various optimizing criteria, and then several methods for solving such optimized approximations.

### 1.1 Definition of Vector Spaces

**Definition.** Formally, a field is a set  $\mathbb{F}$  together with two operations called addition and multiplication,  $\mathbb{F}$  with addition forms an Abelian group with identity element "0" while  $\mathbb{F}$  with multiplication forms an Abelian group with identity element "1". An Abelian group is commutative and generalizes arithmetic on integers.

**Definition.** A vector space is defined as  $V = \{X, +, *, \mathbb{F}\}$ , where X is a set and  $\mathbb{F}$  is a Field. X and  $+: X \times X \to X$  forms an Abelian group and  $*: \mathbb{F} \times X \to X$  satisfying the following:

- $\alpha * (a + b) = \alpha * a + \alpha * b$
- $(\alpha + \beta) * a = \alpha * a + \beta * a$
- $\alpha * (\beta * a) = (\alpha \beta)a$
- 1 \* a = a
- 0\*a = 0

where  $\alpha, \beta \in \mathbb{F}$ ,  $a, b \in X$ 

**Definition.** Let V be a (linear) vector space over  $\mathbf{F}$ . A set of vectors  $v_1, ..., v_n \subset V$  is said to be **linearly** dependent if there are scalars  $a_1, ..., a_n \in F$ , not all zero, such that

$$\sum_{j=1}^{n} a_j v_j = 0$$

If there are no such scalars, the set  $v_1, ..., v_n$  is said to be linearly independent.

The set X of polynomials  $p(x) = a_n x^n + \dots + a_1 x + a_0$  of degree  $\leq n$  and having rational coefficients is a vector space over the field **Q** of rational numbers.

#### 1.2 Norms and Normed Spaces

A linear vector space V equipped with a norm  $\|.\|$  is called a normed linear space.

**Definition.** V is a vector space,  $N: V \to \mathbb{R}$  is a **norm** of V if:

- $N(v) \ge 0$ , and N(v) = 0 if and only if v = 0
- $N(\alpha v) = |\alpha| N(v)$
- $N(u+v) \leqslant N(u) + N(v)$

We always denote ||u|| := N(u).

remark. You can verify that ||u-v|| is a metric on V, thus every normed space is a metric space.

Here are some examples of norms.

- The  $L_q$   $(1 \le q < \infty)$  norm for a vector  $\mathbf{v} \in R^p$  is given by  $\|\mathbf{v}\| = (\sum_{i=1..p} |\mathbf{v}|^q)^{\frac{1}{q}}$ . In particular, we have the least absolute deviation  $L_1$  norm :  $\|x\|_1 := \sum_{i=1}^n |x_i|$ , and the least squares deviation  $L_2$  norm :  $\|x\|_2 := \sum_{i=1}^n |x_i|^2$
- The  $L_{\infty}$  norm can be defined as  $||x||_{\infty} := \max_{i} |x_{i}|$ ; Similarly  $||x||_{-\infty} := \min_{i} |x_{i}|$
- For metric spaces the norm of an element  $\mathbf{v}$  is just the distance of  $\mathbf{v}$  from the null vector 0.
- Define  $supp(x) := \{i \mid x_i \neq 0, x \in \mathbb{R}^n\}$ , an vector **x** is **s-sparse** if  $|supp(x)| \leq s$ . Denote  $||x||_0 = |supp(x)|$  as  $L_0$  norm.
- Balls with respect to norms/seminorm are defined as  $B_q(r) = \{ \mathbf{v} \in \mathbb{R}^p \mid ||\mathbf{v}||_q \leq r \}$ . Note,  $B_0(s) = \{ \text{set of } s\text{-sparse vectors } \}$ . See also figure below.



Figure 1:  $B_q$  with different value of q in 2D, note when  $q = 1/2, \|\cdot\|_q$  is not a norm (check by yourself!)

## 1.3 Matrix Norms

Starting with an arbitrary but fixed norm  $\|.\|$  on vectors, we will define a related norm on matrices, so that the following property holds: whenever

$$b = Ax$$
, then  $||b|| \le ||A|| ||x||$  (1)

Here A is a matrix, ||A|| is its norm and b and a are arbitrary vectors related only by Ax = b. Let us think of ||A|| as some measure of the size of measure of the size of the matrix A. Consider the equation  $A^{-1}(b-b') = (x-x')$ . Apply (1), one obtain:

$$||x - x'|| \le ||A^{-1}|| ||b - b'|| \tag{2}$$

Consider the equation (1):

$$||b|| \le ||A|| ||x|| \tag{3}$$

or equivalently,

$$\frac{1}{\|x\|} \le \|A\| \frac{1}{\|b\|} \tag{4}$$

Multiply inequality (2) by inequality (4) to get:

$$\frac{\|x - x'\|}{\|x\|} \le \|A^{-1}\| \|A\| \frac{\|b - b'\|}{\|b\|}$$
 (5)

**Definition** The number

$$cond(A) = ||A^{-1}|| ||A||$$

is called the condition number of the matrix A (in the norm  $\|.\|$ )

The condition number plays a fundamental role in the analysis of algorithms for the solution of linear systems. If  $||A^{-1}|| ||A||$  is small then the solution Ax = b is considered to be stable under perturbations of the right side: that is, the content of (5).

**Lemma.** Let  $A \in \mathbb{R}^{n \times n}$ ,  $b \in \mathbb{R}^n$ . Let  $C \in \mathbb{R}^{n \times n}$  and  $d \in \mathbb{R}^n$  be small perturbations to A and b respectively. Then the error on the solution of the perturbed system

$$(A + \epsilon C)x(\epsilon) = (b + \epsilon d)$$

is given by

$$\frac{\|x(\epsilon) - x\|}{\|x\|} \le cond(A)(\frac{|\epsilon| \|C\|}{\|A\|} + \frac{|\epsilon| \|d\|}{\|x\|}) + O(\epsilon^2)$$

where x = x(0).

*Proof.* First differentiating the linear system:

$$Cx(\epsilon) + (A + \epsilon C)\frac{dx(\epsilon)}{d\epsilon} = d$$

This yields:

$$\left. \frac{dx(\epsilon)}{d\epsilon} \right|_{\epsilon \to 0} = A^{-1}(d - Cx)$$

Next, apply Taylor's expansion around  $\epsilon = 0$ .

$$x(\epsilon) = x + \epsilon \frac{dx(\epsilon)}{d\epsilon} \Big|_{\epsilon \to 0} + O(\epsilon^2) = x + \epsilon A^{-1}(d - Cx) + O(\epsilon^2)$$

Hence

$$\frac{\|x(\epsilon) - x\|}{\|x\|} \le |\epsilon| \|A^{-1}\| (\frac{\|d\|}{\|x\|} + \|C\|)$$

$$\frac{\|x(\epsilon)-x\|}{\|x\|} \leq cond(A)(\frac{|\epsilon|\|d\|}{\|b\|} + \frac{|\epsilon|\|C\|}{\|A\|})$$

If on the other hand,  $||A^{-1}|| ||A||$  is large (much bigger than 1), one should be prepared for the worst-case scenario. Except that the inequality in (5) is an equality for some choices of b, b': there maybe vectors b, b' with small relative difference ||b-b'||/||b|| for which the relative solution error ||x-x'||/||x|| will be large,

$$\frac{\|x - x'\|}{\|x\|} = cond(A) \times \frac{\|b - b'\|}{\|b\|}$$

We will see that  $||A^{-1}|| ||A||$  is always  $\leq 1$  "Small" therefore means: the condition number is not too much bigger than 1. How big can it be and still be small is a question left to numerical analysis.

The set of  $n \times n$  is a linear space of dimension  $n^2$  - the  $n^2$  coordinates are simply arranged in a square, rather than in the customary single column. One could therefore define a norm on matrices by taking one of the standard  $l^p$  norms on  $\mathbb{R}^n$  (or  $C^n$ ). For a matrix A, define

$$||A|| = \sup_{||x||=1} ||Ax||$$

(It is standard practice to use the same symbol,  $\|.\|$ , for the norms of A and x). The matrix norm  $\|.\|$  is called the **matrix norm induced by the vector norm**  $\|.\|$  on  $\mathbb{R}^n$ .

$$||A|| = \sup(\frac{||Ax||}{||x||})$$

Consider 
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$

The  $l^2$  norm of A is the square root of the largest eigenvalue of  $A^TA$ . Since eigenvalues are difficult to compute except for  $2 \times 2$  matrices - the norm  $||A||_2$  can in general not be found explicitly. The norms  $||A||_1$  and  $||A||_{\infty}$  however can be read off from the entries of A. Hence it is more convenient to use these norms, and  $||A||_2$  can be approximated from these if necessary.

**Example.** Start with the  $l^{\infty}$  norm on  $\mathbb{R}^2$ . By definition,

$$\begin{split} \|A\|_{\infty} &= \sup_{\|x\|_{\infty} = 1} \|Ax\|_{\infty} \\ \|x\|_{\infty} &= 1 \ means \ \max\{|x_1|, |x_2|\} = 1 \\ \|Ax\|_{\infty} &= \max\{|Ax_1|, |Ax_2|\} \\ &= \max\{|x_1 + 2x_2|, |x_1|\} \end{split}$$

Maximization of a function of two variables subject to constraints is a standard problem in the calculus of several variables: it is usually solved by the method of Lagrange Multipliers (Which will be introduced later).

The following exercises rely on the various properties of the appropriate matrix norm.

**Exercise.** Let A be an  $n \times n$  matrix. Show that

$$||A||_2 \le \sqrt{||A||_1 ||A||_\infty}$$

**Lemma.** The function  $x \to ||Ax||$  from  $\mathbb{R}^n$  to  $[0, \infty)$  is continuous.

**Lemma.** A continuous function on the set  $\{||x|| = 1\} \subset \mathbb{R}^n$  is bounded.

**Proposition.** Let I be the  $n \times n$  identity matrix, Let ||.|| be a vector norm on  $\mathbb{R}^n$  and denote the corresponding natural matrix norm by the same symbol. Then,

• 
$$||I|| = 1$$

- ||Ax|| < ||A|| ||x|| for all A and x
- if A and B are two  $n \times n$ matrices, then  $||AB|| \le ||A|| ||B||$

**Corollary.** The condition number  $cond(A) = ||A|| ||A^{-1}||$  of a matrix satisfies

$$||A|||A^{-1}|| \ge 1$$

*Proof.* Using the above Proposition 1.3,  $||A|| ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| = 1$ 

#### 1.3.1 Eigenvalues and Singular Values

As an application of matrix norm, we will now examine eigenvalues and singular values of a matrix. Let  $A \in \mathbb{R}^{n \times n}$ . An **eigenvalue** and an **eigenvector** of A is a pair  $(\lambda, \mathbf{x})$  so that  $A\mathbf{x} = \lambda \mathbf{x}$  and  $\mathbf{x} \neq \mathbf{0}$ .

$$A\mathbf{x} - \lambda \mathbf{x} = 0$$

$$\iff (A - \lambda I)\mathbf{x} = 0$$

$$\iff \det(A - \lambda I) = 0$$

The characteristic polynomial  $det(A - \lambda I)$  of A is a degree n polynomial in  $\lambda$ .

$$\det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = (a_{11} - \lambda) \begin{vmatrix} a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} + \dots$$

The Fundamental Theorem of Algebra guarantees that any real polynomial

$$p(\lambda) = \sum_{i=0}^{n} a_i \lambda^i \qquad (a_i \in \mathbb{R})$$

of degree n has exactly n (possibly complex) roots counting multiplicities.

Two matrices A and B are similar if  $A = PBP^{-1}$  for some invertible P. If A and B are similar, then A and B have the same eigenvalues (but not necessarily the same eigenvectors).

A square matrix A is diagonalizable if A is similar to a diagonal matrix D. In other words,  $A = PDP^{-1}$  for some P. A matrix  $A \in \mathbb{R}^{n \times n}$  is diagonalizable iff it has n linearly independent eigenvectors. Columns of P are the eigenvectors of A and diagonal elements of A are the corresponding eigenvalues.

A matrix P is orthogonal if it is invertible and  $P^{-1} = P^{T}$ .

A matrix A is orthogonally diagonalizable if there exists an orthogonal matrix P such that  $P^{-1}AP = D$  is diagonal.

**Theorem** (Real Spectral Theorem [BHK, Theorem 12.7]). Let A be a symmetric  $n \times n$  matrix with real entries. Then, A has real eigenvalues  $\lambda_1, \lambda_2, \ldots, \lambda_n$  with corresponding eigenvectors  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ . Furthermore, A is orthogonally diagonalizable

$$A = VDV^{\mathrm{T}} = \sum_{i=1}^{m} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathrm{T}},$$

where V is the matrix of column vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  and D is the diagonal matrix with  $\lambda_1, \lambda_2, \dots, \lambda_n$  as diagonal entries.

When A is not a square matrix, the spectral theorem for A to be an  $n \times d$  matrix leads to the general singular value decomposition (SVD). Similar as Real Spectral Theorem, we will see that any matrix  $\mathbb{R}^{m \times n}$  (w.l.o.g.  $m \leq n$ ) can be written as:

$$A = \sum_{i=1}^{m} \sigma_i u_i v_i^T$$

where  $\sigma_i \geq 0$ ,  $\{u_i\}$ ,  $\{v_i\}$  are orthonormal basis of  $\mathbb{R}^m$ ,  $\mathbb{R}^n$ , respectively. How can we deduce the formula? Consider the matrix  $AA^T \in \mathbb{R}^{m \times m}$ . Let us set  $u_i$  to be the *i*-th eigenvector of  $AA^T$ . By definition of eigenvalue, we have  $AA^Tu_i = \lambda_i u_i$ . Since  $AA^T$  is positive semidefinite matrix we have  $\lambda_i \geq 0$ . Since  $AA^T$  is symmetric we have

$$u_i^T A A^T u_i = \lambda_i u_i^T u_i, \quad (u_i^T A A^T u_i)^T = u_i^T A A^T u_j = \lambda_j u_i^T u_j$$

This implies  $u_i^T u_j = \delta_{ij}$ . Let  $\sigma_i = \sqrt{\lambda_i}$  and  $v_i = \frac{1}{\sigma_i} A^T u_i$ . Now we can compute that

$$v_i^T v_j = \frac{1}{\sigma_i \sigma_j} u_i^T A A^T u_j = \frac{\lambda_j}{\sigma_i \sigma_j} u_i^T u_j = \delta_{ij}$$

We have constructed  $\sigma_i, u_i, v_i$ . We are only left to show that  $A = \sum_{i=1}^m \sigma_l u_i v_i^T$ . To achieve that we examine the norm of the difference induced by any test vector  $w = \sum_{i=1}^m \alpha_i u_i$ .

$$\|w^{T}(A - \sum_{i=1}^{m} \sigma_{i} u_{i} u_{i}^{T})\| = \|(\sum_{i=1}^{m} \alpha_{i} u_{i}^{T})(A - \sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{T})\|$$

$$= \|\sum_{i=1}^{m} \alpha_{i} u_{i}^{T} A - \sum_{i=1}^{m} \sum_{j=1}^{m} \delta_{ij} \alpha_{i} \sigma_{j} v_{j}^{T}\|$$

$$= \|\sum_{i=1}^{m} \alpha_{i} \sigma_{i} v_{i}^{T} - \sum_{i=1}^{m} \alpha_{i} \sigma_{i} v_{i}^{T}\|$$

$$= 0$$
(6)

Hence we have the definition of such the decomposition for arbitrary matrix.

**Definition.** The singular value decomposition (SVD) of an arbitrary matrix  $A \in \mathbb{R}^{m \times n}$  is denoted as:

$$A = U\Sigma V^T$$

Where U is a m x m orthogonal matrix , V is a n x n orthogonal matrix and  $\Sigma$  is a n x n matrix with  $\Sigma_{ii} := \sigma_i \geq 0, \Sigma_{ij} = 0$  if  $i \neq j$ .  $\sigma_i$  are called **singular value** of this matrix. Usually, without loss of generality, we assume that  $\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_n$ . Or, denote  $\sigma_i(A)$  to be the i-th largest singular value of matrix A.

[Note: The singular values of a real symmetric matrix are known as absolutie value of its eigenvalues.]

There are several applications of the Singular Value Decomposition (SVD).

- Determining range, null space and rank of matrices.
- Matrix approximation .
- Least Squares approximation, and Inverse, Psuedo-Inverse
- Denoising
- Data Compression

The SVD and the eigen-decompositions are related but also there are differences between them.



Figure 2: Singular Value Decomposition

- Not every (square) matrix has an eigen-decomposition, however any matrix has an SVD.
- In eigendecomposition the eigen-basis is not always orthogonal. The basis of singular vectors are always orthogonal.
- SVD has two singular spaces (defined by the left U and right singular vectors V).
- Computing the SVD is more numerically stable.

#### Relation with matrix norms

Let  $A \in \mathbb{R}^{m \times n}$ . For  $1 \le p \le \infty$ , the (induced) p-norm (also called the p-spectral norm) of A is defined as the solution of the optimization problem

$$||A||_p = \max_{\substack{\mathbf{x} \in \mathbb{R}^n \\ ||\mathbf{x}||_p = 1}} ||Ax||_p.$$

The Frobenius norm of a matrix

$$A = \begin{pmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \\ | & | & & | \end{pmatrix}.$$

is given by

$$\|A\|_{\mathrm{F}} = \sqrt{\mathbf{trace}(A^{\mathrm{T}}A)} = \sqrt{\mathbf{trace}(AA^{\mathrm{T}})} = \sqrt{\sum_{i=1}^{n} \mathbf{a}_{i}^{\mathrm{T}} \mathbf{a}_{i}} = \sqrt{\sum_{j=1}^{m} \mathbf{a}_{j}^{\mathrm{T}} \mathbf{a}_{j}},$$

where  $\mathbf{a}_i$  and  $\mathbf{a}_j$  denote the columns and rows of A respectively. (Note, a matrix is just a tensor of order 2.) Note we additionally allow A to have complex entries. There are several properties and inequalities between matrix norms. Some of them (as examples) are

**Lemma.**  $||AB||_2 \le ||A||_2 ||B||_2$ .

**Lemma.**  $||A||_2 \le ||A||_F \le \sqrt{min(m,n)} ||A||_2$ .

The Transpose of  $A \in \mathbb{R}^{m \times n}$  is given by  $A^{\mathrm{T}} \in \mathbb{R}^{n \times m}$  with  $A^{\mathrm{T}}(i,j) = A(j,i)$ . If A is a complex matrix then we use the adjoint which is the complex conjugate of the transpose, namely,  $A^* = \overline{A^{\mathrm{T}}}$ .

**Example.** These matrix norms relates with the matrix's singular values:

• The  $L_2$  norm of a matrix has a strong relationship with singular values. A matrix's  $L_2$  norm equals to the maximum singular value of the matrix. In fact:

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2} = \sup_{||x||_2 = 1} \sqrt{x^T A^T A x} = \sqrt{\lambda_{max}(A^T A)} = \sigma_{max}(A)$$

• The **Frobenius** form is defined as:

$$||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2}$$

And you can verify that:

$$||A||_F = \sqrt{tr(A^T A)} = \sqrt{\sum_{i=1}^n \sigma_i^2(A)}$$

by using the SVD decomposition of A.

• Nuclear norm is defined as:

$$||A||_* = \sum_i \sigma_i(A)$$

The singular value decomposition (SVD) of a matrix yields valuable geometric information about the matrix. For example, note

**Lemma.** A square matrix A is invertible  $\iff$  all of A's singular (eigen) values are non-zero.

*Proof.* From the SVD of A we have  $A = U\Sigma V^T$ . If  $\Sigma$  has no zeros on the diagonal, then  $B = V\Sigma^{-1}U^T$  exists, and  $AB = U\Sigma V^T\Sigma V\Sigma^{-1}U^T = I$ , and similarly BA = I. Thus A is invertible. If A is invertible, then we can construct  $\Sigma^{-1}$ , which is sufficient to show that all the singular values of A are

If A is invertible, then we can construct  $\Sigma^{-1}$ , which is sufficient to show that all the singular values of A a all non-zero:

$$\begin{aligned} \mathbf{A} &= \mathbf{U} \ \boldsymbol{\Sigma} \ \boldsymbol{V}^T \\ \boldsymbol{\Sigma} &= \boldsymbol{U}^T \mathbf{A} \mathbf{V} \\ \boldsymbol{\Sigma}^{-1} &= \boldsymbol{V}^T \ \boldsymbol{A}^{-1} \ \mathbf{U} \end{aligned}$$

**Exercise.** Let A be an invertible symmetric  $n \times n$  matrix. Let  $|\lambda|_{max}$  be the maximum of the absolute values of its eigenvalues, and let  $|\lambda|_{min}$  be the minimum of the absolute values of its eigenvalues. Show that

 $cond(A) = |\lambda|_{max}/|\lambda|_{min}$ 

#### Computing the SVD: Power Iteration

We give out a simple algorithm for computing the SVD of a matrix  $A \in \mathbb{R}^{m \times n}$ . We start by computing the first singular value  $\sigma_1$  and left and right singular vectors  $u_1$ ,  $v_1$  of A, for which  $\min_{i < j} \log(\frac{\sigma_i}{\sigma_j}) \ge \lambda$  ( $\lambda$  is a threshold value):

1. Generate  $x_0$  such that  $x_0(i) \sim \mathcal{N}(0,1)$ .

2. 
$$s \leftarrow \log(\frac{4\log(\frac{2n}{\delta})}{\epsilon\delta}/2\lambda$$
.

3. for i in [1, 2, ..., s]:

4. 
$$x_i \leftarrow A^T A x_{i-1}$$
.

$$5. \ v_1 \longleftarrow \frac{x_i}{\|x_i\|}$$

6. 
$$\sigma_1 \longleftarrow ||Av_1||_2$$

7. 
$$u_1 \longleftarrow \frac{1}{\sigma_1} A v_1$$

8. return  $(\sigma_1, u_1, v_1)$ 

## 2 Normed, Metric and Inner Products Spaces

In this section we will introduce normed, metric and inner products Spaces. Vector spaces show us to speak linear transformations, summation, subspace and duality.

### 2.1 Topological Space

**Definition.** X is an nonempty set,  $\mathcal{X}$  is the class of subsets of X such that:

- $X \in \mathcal{X}$
- $\bullet \ \emptyset \in \mathcal{X}$
- $X_1, X_2, \dots, X_n \in \mathcal{X} \implies \bigcap_{i=1}^n X_i \in \mathcal{X}$  (finite intersection)
- $\bigcup_{i \in \mathcal{T}} X_i \in \mathcal{X} \ (any \ union)$

Then  $\mathcal{X}$  defines the topology on X,  $\forall x \in \mathcal{X}$  is called an open set in X, and  $\mathcal{V} = (X, \mathcal{X})$  forms a **topological** space.

**Definition.**  $x_1 \in X$ ,  $B_{x_1}$  is defined as neighborhood of  $x_1$  if  $B_{x_1}$  is a subset at X and there exists an open set  $U \in \mathcal{X}$  containing  $x_1$  s.t.  $U \subset B_{x_1}$ 

**Definition.**  $V = (X, \mathcal{X})$  is **Hausdorff** if and only if,  $\forall$  pair of points  $x_1, x_2 \in X$ ,  $\exists$  neighborhood  $B_{x_1}, B_{x_2}$  such that:

$$B_{x_1} \cap B_{x_2} = \emptyset$$

(Point) Topological spaces allow us to speak of open sets, closed sets, compactness, convergence of sequences, continuity of functions, etc.

**Example.** Let  $\{X, \mathcal{X}\}, \{Y, \mathcal{Y}\}$  be two topological spaces.  $F: X \to Y$  is a continuous mapping at  $x_0 \in X$  if and only if:  $\forall$  open set  $Y_0 \in \mathcal{Y}$  containing  $F(x_0)$  contains an open set B that is the image of an open set containing  $x_0$ . (An open set's original image is an open set)

## 2.2 Metric Space

**Definition.** A metric space is an ordered pair (X,d) where X is the set and d is a function defined on  $X \times X$ :

$$d: X \times X \to R$$

such that for  $\forall x, y, z \in X$ , the following holds:

- $d(x,y) \geqslant 0$
- $d(x,y) = 0 \implies x = y$
- $\bullet \ d(x,y) = d(y,x)$
- $d(x,z) \leq d(x,y) + d(y,z)$

**Example.** Every metric space (denoted as (X,d)) is a topological space. Since we can define open sets

$$B_r(x_0) = \{ y \in X : d(x_0, y) = r \}$$

like the balls on metric space. In this case:

- $x_n \to x_0 \iff \forall \epsilon > 0, \exists n \in \mathbb{N} \text{ such that } d(x_0, x_n) < \epsilon \text{ for all } m > n$
- F is continuous  $\iff \forall \epsilon > 0, \exists \delta > 0$  such that  $d(F(x), F(x_0)) < \epsilon$  whenever  $d(x, x_0) < \delta$

### 2.3 Topological Vector Space

**Definition.** V is called a topological vector space if and only if:

- V is a vector space
- ullet The underlying set V of vectors in  $\mathcal V$  is endowed with a topology  $\mathcal U$  such that:
  - $-(V,\mathcal{U})$  is a Hausdorff topological space
  - vector addition is continuous:  $u + v \in V$  if  $u, v \in V$
  - scalar multiplication is continuous:  $\alpha u \in V$  if  $\alpha \in F, u \in V$

## 2.4 Normed Space

**Definition.** V is a vector space,  $N: V \to \mathbb{R}$  is a **norm** of V if:

- $N(v) \ge 0$ , and N(v) = 0 if and only if v = 0
- $N(\alpha v) = |\alpha| N(v)$
- $N(u+v) \leqslant N(u) + N(v)$

We always denote ||u|| := N(u).

remark. You can verify that ||u-v|| is a metric on V, thus every normed space is a metric space. remark. You can also verify that every normed space is a Topological Vector Space:

• let we assume there are two convergent sequence  $\{u_n\}, \{v_n\} \subset V$ :

$$u_n \to u, v_n \to v$$

where  $u, v \in V$ , then we can verify that:

$$\|(u_n + v_n) - (u + v)\| \le \|u - u_n\| + \|v - v_n\| \to 0 \text{ as } n \to 0$$

• Suppose  $\alpha_n \to \alpha$  in  $\mathbb{F}$ , then:

$$\|\alpha_n u_n - \alpha u\| \le |\alpha - \alpha_n| \|u_n\| + |\alpha| \|u - u_n\| \to 0 \text{ as } n \to \infty$$

Therefore, in normed spaces, we have the concept that adapted both from linear spaces and topological spaces. Next is the definition for a Banach Space.

**Definition.** A complete normed space is a **Banach** space, or a B space. Here complete means: every Cauchy sequence in a metric space converges in that metric space.

Here are some properties pertinent to normed spaces:

- $A: U \to V, U, V$  are underlying sets of normed spaces with norms  $\|\cdot\|_U, \|\cdot\|_V$ , respectively.
- A is linear if and only if

$$A(\alpha u_1 + \beta u_2) = \alpha A(u_1) + \beta A(u_2) \forall u_1, u_2 \in U$$

• A is bounded if and only if A maps a bounded sets in U into bounded sets in V:

$$||u||_U \leqslant C_1 \implies \exists C_2 \text{ such that } ||Au||_V \leqslant C_2$$

• A is continuous if and only if  $\forall \epsilon > 0, \exists \delta > 0$  such that:

$$||u - v||_U < \delta \implies ||Au - Av||_V < \epsilon$$

or if and only if , whenever  $u_n \to u$  ( $||u - u_n||_V \to 0$  as  $n \to \infty$ ), we have:

$$||Au - Av||_V \to 0 \text{ as } n \to \infty$$

**Theorem.** Let  $(U, \|\cdot\|_U), (V, \|\cdot\|)_V$  be normed spaces over the same field. Let  $A: U \to V$  be a linear function. Then the following are equivalent:

- 1) A is continuous
- 2) A is continuous at u = 0
- 3) A is bounded
- 4)  $\exists C > 0$  such that:

$$||Au||_V \leqslant C||u||_U \quad \forall u \in U$$

Proof.

- 1)  $\Rightarrow$  2) is obvious.
- $2) \Rightarrow 3)$ :

Let  $||u||_U < r$ . Since A is continuous at  $0, \forall \epsilon > 0, \exists \delta > 0$  such that

$$||Au||_V < \epsilon \implies ||u||_U < \delta$$

Pick  $\epsilon = 1$ , then  $\exists \delta$  such that  $||u||_U < \delta \Rightarrow ||Au||_V < 1$ .

If  $||u||_U < r$ ,

$$\|\frac{\delta}{r}u\|_U = \frac{\delta}{r}\|u\|_U \leqslant \delta$$

Thus

$$||A(\frac{\delta}{r}u)||_V \leqslant 1 \implies ||Au||_V \leqslant \frac{r}{\delta} = \text{constant}$$

Hence, A is bounded.

 $3) \Rightarrow 4)$ :

Since A is bounde,  $\exists C > 0$  such that  $||Au||_V \leqslant C$  whenever  $||u||_U \leqslant 1$ . Thus,  $\forall u \neq 0$ ,

$$||A(\frac{u}{||u||_U})||_V \leqslant C$$

and therefore:

$$||Au||_V \leqslant C||u||_U$$

 $4) \Rightarrow 1)$ :

If  $u_n \to u$ , then:

$$||Au - Au_n||_V \leqslant C||u - u_n||_V \to 0 \text{ as } n \to \infty$$

#### 2.5 Inner Product Space

**Definition.** Let V be a vector space, and define  $p: V \times V \to \mathbb{F}(\mathbb{C} \text{ or } \mathbb{R})$ . Then p is an **inner product** on V if it satisfies the following:

•  $\forall u \in V, p(u, u) \geqslant 0; p(u, u) = 0 \iff u = 0$ 

- $\forall u, v \in V, p(u, v) = \overline{p(v, u)}$  (Conjugate Symmetry)
- $\forall u_1, u_2, v \in V, \forall \alpha_1, \alpha_2 \in \mathbb{F}, p(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 p(u_1, v) + \alpha_2 p(u_2, v)$

Denote as (u,v)=p(u,v). A vector space on which an inner product has been defined is called an **inner** product space. Denote the inner product space as  $(V,(\cdot,\cdot))$ 

remark. You can verify that an inner product also satisfies the following:

$$p(u, \beta_1 v_1 + \beta_2 v_2) = \bar{\beta_1} p(u, v_1) + \bar{\beta_2} p(u, v_2)$$

where  $u, v_1, v_2 \in V, \beta_1, \beta_2 \in \mathbb{F}$ 

**Definition.** Let  $(V, (\cdot, \cdot))$  be an inner product space. Pick  $u, v \in V$ , we claim that u and v are **orthogonal** if

$$(u, v) = 0$$

One important property for the inner product is that it satisfies the Cauthy-Schwarz Inequality.

**Theorem** (Cauthy-Schwarz Inequality). Let  $(V, (\cdot, \cdot))$  be an inner product space. If  $u, v \in V$ , then:

$$|(u,v)| \leqslant \sqrt{(u,u)(v,v)}$$

*Proof.* Suppose  $\mathbb{F} = \mathbb{C}$ , pick  $\alpha = \frac{\overline{(v,u)}}{\overline{(v,v)}} \in \mathbb{C}$ , then:

$$\begin{split} 0 &\leqslant (u - \alpha v, u - \alpha v) \\ &= (u, u) - \alpha(v, u) - \bar{\alpha}(u, v) + \alpha \bar{\alpha}(v, v) \\ &= (u, u) - \frac{\overline{(v, u)}}{\overline{(v, v)}}(v, u) - \frac{\overline{(u, v)}}{\overline{(v, v)}}(u, v) + \frac{\overline{(v, u)(u, v)}}{\overline{(v, v)^2}}(v, v) \\ &= \frac{1}{\overline{(v, v)}} \left[ (u, u)(v, v) - 2|(u, v)|^2 + |(u, v)|^2 \right] \end{split}$$

Therefore  $|(u, v)|^2 \leq (u, u)(v, v)$ .

Next, we want to connect the inner product space with normed space.

**Theorem.** Every inner product space is a normed space with norm:

$$\sqrt{(u,u)} = \|u\|$$

*Proof.* Recall the definition of the norm, all you need is to verify that

- $||u|| \geqslant 0$  and  $||u|| = 0 \iff u = 0$
- $||u + v|| \le ||u|| + ||v||$
- $\forall \alpha \in \mathbb{F}, \|\alpha u\| = |\alpha| \|u\|$

remark. It is understood that the inner product space V is induced with the topology induced by the norm  $(u,u)^{\frac{1}{2}}$ 

Now, we introduce an important type of space:

**Definition.** An inner product space is a **Hilbert Space** if and only if it is complete (with respect to the norm induced by the inner product)

A typical example of a Hilbert Space will be the Euclidean Space  $\mathbb{R}^d$  with an inner product defined as:

$$(x,y) = \sum_{i=1}^{d} x_i y_i$$

**Theorem.** Suppose an inner product space  $(V, (\cdot, \cdot))$  has two convergence sequence in norm:

$$v_m \to v \text{ and } u_m \to u$$

Then

$$(v_m, u_m) \to (v, u)$$

*Proof.* In fact, we have:

$$|(v_{m}, u_{m}) - (v, u)| = |(v_{m}, u_{m}) + (v_{m}, u) - (v_{m}, u) - (v, u)|$$

$$= |(v_{m}, u_{m} - u) + (v_{m} - v, u)|$$

$$\leq ||v_{m}|| ||u_{m} - u|| + ||v_{m} - v|| ||u||$$

$$\to 0 \text{ as } m \to \infty$$
(7)

remark. Similar as Euclidean Space, inner product shares some geometric properties in general vector space:

- $\cos \theta \stackrel{def}{=} \frac{(u,v)}{\|u\|\|v\|} \quad (\mathbb{F} = \mathbb{R})$
- Pythagoras:  $(u, v) = 0 \Rightarrow ||u + v||^2 = ||u||^2 + ||v||^2$
- Sphere:  $(u u_0, u u_0) = a^2$
- Hyperplane: (u a, n) = 0
- Parallelogram Law:  $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$

# 3 $l_p$ Function norm and approximation

We consider the choice of norm in the approximations of functions. First we define what is the  $l_p$  norm of a function:

**Definition.** The  $l_p$  norm of the function f given at some finite data points set  $X = \{x_i : i = 1, ..., m\}$ , is defined by

$$l_p(f) = ||f||_p := \left(\sum_{i=1}^m |f(x_i)|^p\right)^{1/p}, \quad 1 \le p < \infty.$$

For  $p = \infty$ , the  $l_{\infty}$  norm is defined by  $||f||_{\infty} = \max_{i \in \{1,...,m\}} |f(x_i)|$ .

Next, we define what is the best approximation under  $l_p$  norm:

**Definition.** The function  $F(a^*, x)$ , is said to be the best approximation of the function  $f : \mathbb{R}^n \to \mathbb{R}$  in the norm  $\|\cdot\|_p$ , if

$$||F(a^*) - f||_p \le ||F(a) - f||_p, \quad \forall a \in \mathbb{R}^n$$

In that way, the approximation problem is reduced to the problem of minimization of the functional  $||F(a) - f||_p$ ). In general, the best approximation in the lp norm is different from the best approximation in the  $l_q$  norm  $(p \neq q)$ . The lp norms can be generalized by introducing the weights  $(w(x_i), i = 1, ..., m)$ .

If the approximating function F(a,x) is linear in parameters  $a_j$ ,  $j=1,\ldots,n$ , i.e. if  $F(a,x)=x^Ta$ , then

$$1 \le p < q \le \infty \Longrightarrow \min_{a \in \mathbb{D}^n} \|\mathbf{X}a - f\|_q \le \min_{a \in \mathbb{D}^n} \|\mathbf{X}a - f\|_p$$

(where  $\mathbf{X}$  is a corresponding data matrix, and f is a vector of values of the dependent variable).

# References

- [BHK] Avrim Blum, John Hopcroft and Ravindran Kannan. Foundations of Data Science.
- [EL] Edo Liberty. Online Lectures by Edo Liberty (source)
- [F1] Hermann Flaschka. Principles of Analysis, 1995
- [S] Philip Sabes. Online Lectures by Philip Sabes, UCSF
- [SE] Stefan Evert. Online Lectures by Stefan Evert, Osnabruck, Germany
- [TM] Tomislav Marosevic. Online lecture presented at the Mathematical Colloquium in Osijek organized by Croatian Mathematical Society