

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
10/626,475	07/23/2003	Bow-Yaw Wang	CA7038392001	1298	
23639 75	590 11/13/2006		EXAM	INER	
BINGHAM, MCCUTCHEN LLP			ROSSOSHEK, YELENA		
THREE EMBA	RCADERO CENTER		ART UNIT	PAPER NUMBER	
SAN FRANCISCO, CA 94111-4067			2825		
			DATE MAILED: 11/13/200	DATE MAILED: 11/13/2006	

Please find below and/or attached an Office communication concerning this application or proceeding.

•	Application No.	Applicant(s)		
	10/626,475	WANG, BOW-YAW		
Office Action Summary	Examiner	Art Unit		
	Helen Rossoshek	2825		
The MAILING DATE of this communication ap Period for Reply	pears on the cover sheet with the c	orrespondence address		
A SHORTENED STATUTORY PERIOD FOR REPL WHICHEVER IS LONGER, FROM THE MAILING D - Extensions of time may be available under the provisions of 37 CFR 1. after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period - Failure to reply within the set or extended period for reply will, by statute Any reply received by the Office later than three months after the mailin earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 136(a). In no event, however, may a reply be tim will apply and will expire SIX (6) MONTHS from e, cause the application to become ABANDONE	L. nely filed the mailing date of this communication. C (35 U.S.C. § 133).		
Status				
 Responsive to communication(s) filed on <u>09 S</u> This action is FINAL. 2b) This Since this application is in condition for alloware closed in accordance with the practice under the 	s action is non-final. Ince except for formal matters, pro			
Disposition of Claims				
4) ☐ Claim(s) 1-30 is/are pending in the application 4a) Of the above claim(s) is/are withdra 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-30 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or are subject to restriction and/or are subject to by the Examine 10) ☐ The drawing(s) filed on is/are: a) ☐ accomposition and policant may not request that any objection to the	wn from consideration. or election requirement. er. cepted or b) \(\sum \) objected to by the E			
Replacement drawing sheet(s) including the correct 11) The oath or declaration is objected to by the Ex				
Priority under 35 U.S.C. § 119				
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 				
Attachment(s)				
1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal Pa	te		

1. This office action is in response to the Application 10/626,475 filed 07/23/2003 and amendment filed 09/09/2006.

- 2. Claims 1-30 remain pending in the Application.
- 3. Applicant's arguments have been fully considered but they are not persuasive.

. Claim Rejections - 35 USC § 102

4. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.
- 5. Claims 1-30 are rejected under 35 U.S.C. 102(a) as being anticipated by Sheeran et al. ("Checking safety properties using induction and a SAT-Solver", November 2000, In Proc. Conference on Formal Methods in Computer-Aided Design).

With respect to claim 1 Sheeran et al. teaches a method of circuit verification (Introduction, Page 108), comprising: (a) performing bounded verification on a circuit design for a number of transitions, the bounded verification corresponding to a predetermined limit for a number of transitions within FPGA verification (Abstract) using bounded model checking (Page 112) using finite state machine M with initial states I and state transition T (Pages 108, 111), wherein T is a transition relation on the set of states S assuming that the domain of T is the entire set of states S; (b) performing induction proof of a first property for the number of transitions, wherein the induction proof is performed by a process within the inductive shape of proof the property P for

each state S (Page 115) within applying the transition relation T a number of times leading to the state S satisfying property P (Page 111), comprising the acts of: including, in an inductive set of one or more states, a plurality of states of a circuit design, wherein the inductive set of one or more states includes at least states passing a first property of the circuit design (Page 108); transitioning by at least one step, in a forward direction, states of the inductive set passing at least the first property of the circuit design, resulting in transitioned states as shown on the Fig. 2, which depicts a state transition diagram for a circuit shown on the Fig. 1(Page 109); determining if the transitioned states of the inductive set pass at least the first property of the circuit design by considering the reachable states, which are held by property P (states, which passed or satisfied property P) (Page 109); repeating at least the transitioning and determining, until at least, the determining results in the transitioned states of the inductive set passing at least the first property of the circuit design by starting in an initial state and repeatedly applying the transition relation always leads to a state satisfying (passing) property P (Page 111); (c) if the at least one property is not verified, then increasing the limit for the bounded verification and repeating from (a) by performing the induction-based method of checking the property P by applying the induction depth to prove a property, wherein the number of transitions is limited to T, but can be extended by strengthened induction with depth i (Page 116), wherein i might be greater than 0 and is a number of copies of T (Page 110), i.e. in order to verify all properties (reachable and unreachable) (Page 108) a strengthened induction with depth i is used (Pages 115, 116), wherein T might be copied i times (Page 110) and i is a

number of **repeated** transitions: i=0, i=1, i=2 (Page 112), wherein if the property is **violated/not verified**, the value of i will be increased to the value, when the property is **eventually verified** (Page 112).

With respect to claim 12 Sheeran et al. teaches: a method of circuit verification (Introduction, Page 108), comprising: (a) performing bounded verification on a circuit design for a number of transition within FPGA verification (Abstract) using bounded model checking (Page 112) using finite state machine M with initial states I and state transition T (Pages 108, 111), wherein T is a transition relation on the set of states S assuming that the domain of T is the entire set of states S wherein T is a limited number of transitions; (b) performing induction proof of a first property for the number of transitions, wherein the induction proof is performed by a process within the inductive shape of proof the property P for each state S (Page 115) within applying the transition relation T a number of times leading to the state S satisfying property P (Page 111), comprising the acts of: transitioning by at least one step, in a backward direction, states of an inductive set of at least one or more states of a circuit design passing at least a first property of the circuit design, resulting in transitioned states by working backwards through T when starting in a state violating property P as described in the section (2.2) Formulating the Problem on the Page 111; determining if the transitioned states of the inductive set fail at least the first property of the circuit design (Page 111); repeating the transitioning and the determining, until at least, the determining results in the transitioned states of the inductive set failing at least the first property of the circuit design by assuming that every state has a successor through T, so there are always

loops (iteration) (Page 112); (c) if the at least one property is not verified, then increasing a limit for the bounded verification and repeating from (a) by performing the **induction-based** method of checking the property P by applying the **induction depth** to prove a property, wherein the number of transitions is limited to T, but can be extended by strengthened induction with depth i (Page 116), wherein i might be greater than 0 and is a number of copies of T (Page 110), i.e. in order to verify all properties (reachable and unreachable) (Page 108) a strengthened induction with depth i is used (Pages 115, 116)), wherein T might be copied i times (Page 110) and i is a number of **repeated** transitions: i=0, i=1, i=2 etc. (Page 112), wherein if the property is **violated/not verified**, the value of i will be increased to the value, when the property is **eventually verified** (Page 112).

With respect to claims 2-11 Sheeran et al. teaches:

Claim 2: if all the transitioned states of the inductive set are determined to pass at least the first property of the circuit design, all the transitioned states of the inductive set determined to pass at least the first property of the circuit design were transitioned by a first total of transitions within determining a P-safe system wherein P-safe system is the system where all reachable states are P-states, which means that all states satisfy (pass) P (property) (Page 108);

Claim 3: transitioning, in forward direction, initial states of the circuit design by at least the first total of transitions, resulting in a forward transitioned set of states as shown on the Fig. 2 (top row), wherein property holds for all of the reachable states and wherein transitions are in forward direction as shown by arrows (Page 109);

Claim 4: if the forward transitioned set of states passes the first property of the circuit design, determining the circuit design to be formally verified for at least the first property of the circuit design within the method of the verification real FPGA by using the induction-based methods of safety property checking (Page 108);

Claim 5: the determining does not consider transitioned states resulting from transitioning of states of the inductive set failing at least the first property of the circuit design by checking systems for P-safety and generating a trace when the system turns out not to be P-safe assuming that the domain of T is the entire set of states S, so every state has a successor through T (Page 111);

Claim 6: the determining considers only transitioned states resulting from transitioning of states of the inductive set passing at least the first property of the circuit design as described in the Formulating the Problem (2.2) on the Page 111);

Claim 7: the transitioning is not performed on states of the inductive set failing at least the first property of the circuit design assuming that the domain of T is the entire set of states S, so every state has a successor through T (Page 111);

Claim 8: the transitioning is performed only on states of the inductive set passing at least the first property of the circuit design as shown on the Fig. 2 (Page 109);

Claim 9: each time the transitioning and the determining are repeated prior to transitioning, the inductive set includes transitioned states within the ability of the system to find the condition when the property is satisfied by going in loop (iteratively) (Page 112);

Claim 10: each time the transitioning and the determining are repeated, prior to transitioning, the inductive set includes transitioned states passing at least the first property of the circuit design (Page 112);

Page 7

Claim 11: each time the transitioning and the determining are repeated, prior to transitioning, the inductive set excludes transitioned states failing at least the first property of the circuit design as shown in Algorithm 1 for checking if system is P-safe, wherein the programming code (function) returns only "True" condition in the end, wherein "True" condition is only satisfaction of the property P excluding failed states (Page 112).

With respect to claims 13-28 Sheeran et al. teaches:

Claim 13: a first iteration of transitioning by at least one step, in the backward direction, states of a first iteration of an inductive set of at least one or more states failing at least the first property of the circuit design, resulting in a first iteration of transitioned states (Page 112);

Claim 14: performing a first iteration of determining if the first iteration of transitioned states of the inductive set produce at least one state failing at least the first property of the circuit design (Page 112);

Claim 15: after the first iteration of transitioning, prior to the transitioning, the inductive set includes the first iteration of transitioned states within the Algorithm 1 to show an example of programming function to program the circuit design verification Bounded Model Checking using iteration and satisfiability check (Page 112);

Claim 16: after the first iteration of transitioning, prior to the transitioning, the inductive set includes the first iteration of transitioned states passing at least the first property of the circuit design (Page 112);

Claim 17: after the first iteration of transitioning, prior to the transitioning, the inductive set excludes the first iteration of transitioned states failing at least the first property of the circuit design by creating the programming function (code) within returning "True" if the system is P-safe and an "error trace" if not (Page 113);

Claim 18: at least after a first iteration of transitioning, the determining does not consider transitioned states resulting from transitioning of states of the inductive set failing at least the first property of the circuit design by using algorithm 2 shown on the Page 114 wherein states which failed to satisfy property P are excluded;

Claim 19: at least after a first iteration of transitioning, the determining considers only transitioned states resulting from transitioning of states of the inductive set passing at least the first property of the circuit design (Page 114);

Claim 20: at least after a first iteration of transitioning, the transitioning is not performed on states of the inductive set failing at least the first property of the circuit design (Page 114);

Claim 21: at least after a first iteration of transitioning, the transitioning is performed only on states of the inductive set passing at least the first property of the circuit design within the Algorithm 2 shown on the Page 114, wherein the text of the programming code of the verification of the circuit design shows the returning of the

value of the transitioning performed only on states after the satisfaction of the property by states has been confirmed;

Page 9

Claim 22: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set includes transitioned states as shown in the Algorithm 2 on the Page 114;

Claim 23: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set includes transitioned states passing at least the first property of the circuit design as shown in the Algorithm 2 on the Page 114;

Claim 24: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set excludes transitioned states failing at least the first property of the circuit design as shown in the Algorithm 2 shown on the Page 114, wherein the state which is not satisfied property P is not considered in the further consideration;

Claim 25: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set excludes transitioned states able to reach, in one forward transition, any state of the circuit design failing at least the first property within forward and backward directions excluding the states which are not satisfied property P (Page 114);

Claim 26: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set includes transitioned states except for transitioned states to reach, in one forward transition, any state of the circuit

design failing at least the first property within forward and backward directions excluding the states which are not satisfied property P (Page 114);

Claim 27: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set includes transitioned states passing at least the first property of the circuit design except for transitioned states able to reach, in one forward transitioned, any state of the circuit design failing at least the first property within forward and backward directions excluding the states which are not satisfied property P (Page 114);

Claim 28: at least after a first iteration of transitioning, each time the transitioning is repeated, prior to the transitioning, the inductive set excludes transitioned states failing at least the first property of the circuit design and transitioned states able to reach, in one forward transition, any state of the circuit design failing at least the first property as shown in the Algorithm 4 on the Page 115 by removing the dependence between iterations.

With respect to claims 29 and 30 Sheeran et al. teaches:

Claim 29: a method of circuit verification (Introduction, Page 18), comprising: attempting bounded verification of one or more properties of a circuit design for at least a first predetermined number of transitions within Bounded Model Checking (Page 112) using finite state machine M with initial states I and state **transition T** (Pages 108, 111), wherein T is a transition relation on the set of states S assuming that the domain of T is the entire set of states S wherein T is limited to a number of transitions, which is equal to a number (set) of states S (Page 111); attempting induction proof of the one or more

properties of the circuit design for at least the first number of transitions (Introduction, Page 108); and determining if the one or more properties of the circuit design are verified, based at least on the bounded verification and the induction proof (Page 112); and if the bounded verification and the induction proof are insufficient to determine the one or more properties of the circuit design to be verified, increasing the first predetermined number of transitions by performing the induction-based method of checking the property P additionally to the **bounded model checking** by applying the transition relation T **the number of times** leading to the state S satisfying property P (Page 111), i.e. in order to verify all properties (reachable and unreachable) (Page 108) a strengthened induction with depth i is used (Pages 115, 116), wherein T might be copied i times (Page 110) and i is a number of **repeated** transitions: i=0, i=1, i=2 (Page 112), wherein if the property is **violated/not verified**, the value of i will be increased to the value, when the property is **eventually verified** (Page 112);

Claim 30: repeating at least of attempting bounded verification and attempting induction proof by dividing the problem into sub-problems and working as loop-free states, but putting this loop-free states together and getting eventually loop (Page 112); and determining if the one or more properties of the circuit design are verified, based at least on repeating, with the increased first number of transitions, at least one of bounded verification and the induction proof by performing the induction-based method of checking the property P additionally to the **bounded model checking** by applying the transition relation T **the number of times** leading to the state S satisfying property

P (Page 111), i.e. in order to verify all properties (reachable and unreachable) (Page 108) a strengthened induction with depth i is used (Pages 115, 116, 112).

Remarks

6. In the remarks of the Applicant's amendment applicant argues in substance:

A: The Sheeran does not disclose that, if induction proof of a property fails, then a limit for the bounded verification is increased, and the bounded verification and induction proof are repeated, in a manner as required by claim 1.

B: There is no disclosure in Sheeran that I is a limit of a bounded verificatrion, mucj less that such a limit can be increased if there is a failure to verify a property.

7. Examiner respectfully disagrees for the following reasons:

As to A: Sheeran discloses FPGA verification (Abstract) within bounded model checking (Page 112) using finite state machine M with initial states I and state transition T (Pages 108, 111), wherein T is a transition relation on the set of states S assuming that the domain of T is the entire set of states S, wherein T is limited to a number of transitions, which is equal to a number (set) of states S (Page 111), wherein bounded verification is determined by bound on the number of iterations needed (page 115) as required by claim 1.

As to B: Sheeran discloses performing the **induction-based** method of checking the property P by applying the **induction depth** to prove a property, wherein the number of transitions is limited to T, but can be extended by strengthened induction with depth i (Page 116), wherein i might be greater than 0 and is a number of copies of T (Page 110), i.e. in order to verify all properties (reachable and unreachable) (Page 108)

a strengthened induction with depth i is used (Pages 115, 116), wherein T might be copied i times (Page 110) and i is a number of repeated transitions/copies T: i=0, i=1, i=2 etc. (Page 112), wherein if the property is **violated/not verified**, the value of i will be increased to the value, when the property is **eventually verified** (Page 112).

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Helen Rossoshek whose telephone number is 571-272-1905. The examiner can normally be reached on 7:30-4:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jack Chiang can be reached on 571-272-7483. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/626,475

Art Unit: 2825

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Examiner Helen Rossoshek AU 2825 Page 14

JACK CHIANG

PATENT EXAMINER