Debjyoti Paul, Jie Cao, Feifei Li, Vivek Srikumar deb, jcao, lifeifei, svivek @cs.utah.edu

OF UTAH

THE UNIVERSITY OF UTAH

INITIALDLAR SCHOOL OF INITIALDLAB, SCHOOL OF COMPUTING

### Introduction

Each database running a different workload, demands different resources and database configuration settings to achieve optimal performance, which prompts us to study workload features in detail.

We define a database workload as

$$W = \Big\{ (p_1, \theta_1), (p_2, \theta_2), \dots, (p_m, \theta_m) \Big\},$$

where  $p_i$  is the database query-plan, and  $\theta_i$  is a normalized weight of importance of  $p_i$  in workload w. For understanding workloads comprehensively it is necessary to perform feature engineering on query plans.

# **Key Contributions**

- → We propose query plan encoder models capturing structure and computational performance resource requisites as distributed feature representations.
- → We keep structure, and computational performance representation separate that enables downstream tasks to weigh each representation independently in their model.
- → We propose a taxonomy for operator types for learning diverse structure of query plans with self-attentive transformers.
- → We find performance of query plans are best characterized by encoders when plan task nodes are classified under scan, join, sort and aggregate; each having an encoder of its type.
- → Latency prediction and query classification downstream tasks performing well with our pretrained encoders suggests efficacy of our modeling strategy.
- → In depth domain adaptation evaluation and ablation studies on various datasets signifies pretrained encoders adapts to new domain quickly, whereas encoders trained from scratch overfits.
- → In this work, we open-sourced an automated workload execution tool for cloud, a crowd-sourced plan dataset and revised two spatial benchmarks.



Fig 1. An example of query plan tree with different types of task/operators nodes. It is to note that many properties are associated with each task node. This query plan is from TPC-H Query Template 5.

Time": 0.019, "Actual Total Time": ...

Name": "lineitem", "Index Name":

## Plan Encoders



Fig 2. Structure Plan Encoder Modeling.

Fig 3. Computational Performance Encoder Modeling.

# Downstream Task Modeling



Fig 4. A bird-view architecture diagram, showing the role of plan encoders for downstream tasks. For example, latency prediction and query classification tasks.

# Results



Fig 5. Blue bars are median query latency, Orange lines are 5th-95th percentile range variations, and mean abs. error marked with black bar for spatial queries. A smaller black bar on a larger orange-line bar means better results.



Fig 6. Results of structure encoder domain adaptation analysis on TPC-H, TPC-DS, and SPATIAL datasets. Notations: Scratch is Untrained encoder weights initialized; Fixed is Pretrained encoder weights freeze. Fine is Pretrained+Finetuned Encoder.

predicted(q)  $R(q) = \max$ 

| Models       | <i>R</i> ≤ 1.5 | $1.5 < R \le 2.0$ | R > 2.0 |  |
|--------------|----------------|-------------------|---------|--|
| TAM [4]      | 51%            | 22%               | 27%     |  |
| SVF [5]      | 68%            | 15%               | 17%     |  |
| RBF [6]      | 85%            | 6%                | 9%      |  |
| OPPNet [7]   | 89%            | 7%                | 4%      |  |
| Plan Encoder | 91%            | 7%                | 2%      |  |

Table 1. Percentage of queries from TPC-DS SF-100 testset binned based on R-factor for all the models in evaluations. Pretrained Plan Encoder performed well with 91% queries within 1.5R and only 2% queries above 2.0R.

| Models                 | Development |         | Test     |         |
|------------------------|-------------|---------|----------|---------|
| Wiodelb                | template    | cluster | template | cluster |
| Structure only         | 0.2452      | 0.4670  | 0.1946   | 0.3847  |
| Performance only       | 0.1645      | 0.2973  | 0.0977   | 0.1769  |
| Both encoders          | 0.2783      | 0.5573  | 0.2518   | 0.4647  |
| Both encoders 10% data | 0.2000      | 0.4927  | 0.151    | 0.334   |
| Both encoders 30% data | 0.2555      | 0.5228  | 0.1843   | 0.3855  |

Table 2. F1-scores of models for template and cluster query classification task on development and test dataset.



Fig 7. Comparison of mean abs. errors for scratch vs pretrained encoders with only 30% finetuning data.