MA302 Functional Analysis, Midterm Exam

Instructor: Yannan QIU

Date: Spring 2024

- Probelm 1. [25 pts] Let C[0,1] be the space of real-valued continuous functions on the unit interval [0,1]
 - (i) For $f, g \in C[0,1]$, put $d(f,g) = \max_{x \in [0,1]} |f(x) g(x)|$. Show that $d(\cdot, \cdot)$ is a metric on C[0,1];
 - (ii) Show that C[0,1] is complete with respect to d.
- Problem 2. [25pts] Let \mathcal{X}, \mathcal{Y} be two Banach spaces and $\mathcal{L} \subseteq \mathcal{L}(\mathcal{X}, \mathcal{Y})$ be a family of bounded linear operators from \mathcal{X} to \mathcal{Y} . Suppose that there exists a subset $E \subseteq \mathcal{X}$ of the second category in \mathcal{X} such that

$$\sup_{T \in \mathcal{L}} ||Tx||_{\mathcal{Y}} < \infty, \ \forall x \in E$$

Show that

$$\sup_{T\in\mathcal{L}}\|T\|<\infty.$$

Problem 3. [30pts] Consider the space l^1 and l^{∞} over \mathbb{R} ,

$$l^1 := \{x = (\xi_i) : \sum_{i=1}^{\infty} |\xi_i| < \infty, \, \xi_i \in \mathbb{R}\}, \ \|x\|_1 = \sum_i |\xi_i|$$

$$l^{\infty} := \{ x = (\xi_i) : \sup_{1 \le i < \infty} |\xi_i| < \infty, \, \xi_i \in \mathbb{R} \}, \ \|x\|_{\infty} = \sup_i |\xi_i|$$

(i) For each $y = (\eta_i) \in l^1$, one can associate a bounded linear functional

$$l_y: l^{\infty} \to \mathbb{R},$$

$$x = (\xi_i) \to \sum_{i=1}^{\infty} \xi_i \eta_i.$$

Show that the map $y \to l_y$ is an isometry from l^1 into $(l^{\infty})^*$.

(ii) Show that the above map $l^1 \to (l^\infty)^*$ is not surjective.

- Problem 4. [20pts] Set X=[0,1]. For each $p\in(1,\infty]$, one can regard $L^p(X)$ as a subspace of $L^1(X)$ via the natural embedding $L^p(X)\hookrightarrow L^1(X), f\to f$.
 - (i) Is $\bigcup_{p \in (1,\infty]} L^p(X)$ a subset of first category in $L^1(X)$?
 - (ii) Construct an infinite dimensional closed subspace of $L^1(X)$ that is contained in $L^p(X)$, for all $p \in [1, \infty)$.