

Digitale Schaltungen

1. Moore'sches Gesetz

- alle 18-24 Monate verdoppelt sich die Anzahl der Transistoren auf gleicher Fläche
- Exponentielles Wachstum der Transistorzahl, exponentieller Rückgange des Preises pro Transi-
- Herstellungskosten (Fixkosten, Variable Kosten, Technologiefaktor), Entwicklerproduktivität, Verlustleistungsdichte

2. Einheiten

Potenz	Vorsatz	Potenz	Vorsatz	Hz N	s^{-1} $kgms^{-2}$	
10 ¹²	Т	10-1	d	J	Nm = VAs	
10 ⁹	G	10^{-2}	С	W	$VA = Js^{-1}$	
10^{6}	М	10^{-3}	m	C	A e	
10^{3}	k	10^{-6}	μ	V	JC^{-1}	
10^{2}	h	10^{-9}	n	F	CV^{-1}	
10^{1}	da	10^{-12}	р	Ω	VA^{-1}	
		10^{-15}	f	H	JC^{-1} CV^{-1} VA^{-1} VsA^{-1}	
Bit $\xrightarrow{\cdot 8}$ Byte $\xrightarrow{\cdot 1024}$ kByte $\xrightarrow{\cdot 1024}$ MByte						

3. Polyadische Zahlensysteme

2	Z	Zahl	p	#Ziffern vorne	d_i	Ziffer
	r	Basis	n	#Nachkommastellen		

$$Z = \sum_{i=-n}^{p-1} r^i \cdot d_i = d_{p-1}...d_1 d_0.d_{-1}...d_n$$

$$d_{i2} \in 0, 1$$
 $B = \sum_{i=-n}^{p-1} 2^i \cdot d_i \quad d_{-n} : LSB; \quad d_{p-1} : MSB$

 $d_{i8} \in 0, 1, 2, 3, 4, 5, 6, 7$ $d_{i16} \in 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F$

Benötigte Bits: N:n Bit M:2n Bit N+M=2n+1 Bit $N\cdot M=3n$ Bit

3.1. Umrechnung

	$Z \ge 1$	Z < 1
$r \rightarrow 10$	$ Z_{10} = \sum_{i=1}^{n} r^{i} \cdot d_{i} $ $ 101_{2} \to 1 \cdot 1 + 0 \cdot 2 + 1 \cdot 4 $	$Z_{10} = \sum r^{-i} \cdot d_{-i}$
	$101_2 \to 1 \cdot 1 + 0 \cdot 2 + 1 \cdot 4$	$0.11_2 \rightarrow 1 \cdot 0.5 + 1 \cdot 0.25$
$10 \rightarrow r$	$ d_i = Z_{10}\%r^i $ $58/8 = 7 \text{Rest } 2(LSB) $ $7/8 = 0 \text{ Rest } 7(MSB) $	
	58/8 = 7 Rest 2(LSB)	$0.4 \cdot 2 = 0.8 \; \text{Übertrag} \; 0(MSB)$
	7/8 = 0 Rest 7(MSB)	$0.8 \cdot 2 = 1.6$ Übertrag 1

Wertebereich: $-2^{n-1} \le Z \le 2^{n-1} - 1$ 3.2. Zweierkomplement

Wandle 2 in -2 um:

- 1. Invertieren aller Bits
- 2. Addition von 1

Bitverteilung(single/double):

3. Ignoriere Überträge beim MSB

 $0010 \implies 1101$ 1101 + 1 = 1110 \Rightarrow $-2_{10} = 1110_2$

3.3. Gleitkommadarstellung nach IEEE 754

Wert = $(-1)^s \cdot 2^{e-127} \cdot 1.f$ s: Vorzeichen, e: Exponent, f: Mantisse	$Bsp: -0.625 = -1 \cdot 2^{-1} \cdot 1.01_2$
s: Vorzeichen, e : Exponent, f : Mantisse	$\Rightarrow s = 1, e = 126, f = 01_2$
Spezialwerte: Wert $= 0 \Leftrightarrow e = 0$ Wer	$rt = \infty \Leftrightarrow e = 255$

e(8/11)

f(23/52)

4. Halbleiter

	Isolator	Metall	undotiert	N-Typ	Р-Тур
Ladungsträger	Keine	e^-	e^{-}/e^{+}	e^-	e^+
Leitfähigkeit	Keine	Sehr hoch	$\propto T$	Hoch	Mittel

5. MOS-FET's

Metal Oxide Semiconductor Field Effekt Transistor

5.1. Bauteilparameter

 $\beta = K' \frac{W}{L} \text{ mit } K' = \frac{\mu \epsilon_{0x} \epsilon_{0}}{t_{0}}$ Verstärkung: Kanalweite Kanallänge $\mu \quad \mu_n \approx 250 \cdot 10^{-4} \frac{m^2}{V_s}, \, \mu_p \approx 100 \cdot 10^{-4} \frac{m^2}{V_s}$ Elektronenbeweglichkeit rel. Dielektrizität des Gateoxyds $\epsilon_0 = 8.8541878 \cdot 10^{-12} \frac{\text{A s}}{\text{Y}}$ Dielektrizitätskonstante Gateoxyddicke Verstärkung Kapazität Verzögerungszeit große Kanalweite ⇒ große Drain-Störme

- \Rightarrow schnelle Schaltgeschwindigkeit (da $i_d \propto \beta \propto \frac{W}{L}$) Aber: große Fläche.
- · nMos schaltet schneller als pMOS

5.2. pMos und nMos

V_{GS} S V_{DD}	Transistor	Source liegt immer am	V_{GS}, V_{DS}, I_D	Substrat
G — C V_{DS}	pMos normally on	höheren Potential	< 0	$+(V_{DD})$
$\begin{array}{c c} & D & \\ \hline G & V_{DS} \\ \hline V_{GS} & S & GND \end{array}$	nMos normally off	niedrigeren Potential	> 0	-(GND)

nMos (p-dotiertes Substrat, n-dotierte Drain/Source), schlechter pull up (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \leq 0 & \text{(Sperrber.)} \\ \beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \leq U_{gs} - U_{th} \geq u_{ds} & \text{(linearer Ber.)} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} & \text{(S\"{attigungsber.)}} \end{cases}$$

pMos (n-dotiertes Substrat, p-dotierte Drain/Source), schlechter pull down (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \geq 0 & \text{(Sperrber.)} \\ -\beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \geq U_{gs} - U_{th} \leq u_{ds} & \text{(linearer Ber.)} \\ -\frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_{ds} & \text{(Săttigungsber.)} \end{cases}$$

5.3. Disjunktive Normalform (DNF/SOP)

Eins-Zeilen der Wertetabelle ODER verknüpfen: $Z = \overline{A} \cdot \overline{B} + \overline{C} \cdot D$

5.4. Konjunktive Normalform (KNF/POS)

Null-Zeilen der Wertetabelle negieren und UND verknüpfen: $Z = (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{D}) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

5.5. Umwandlung in jeweils andere Form

Vorgehen

- \bullet Doppeltes Negieren der Funktion: $Z = \overline{\overline{\overline{A} \cdot \overline{B} + \overline{C} \cdot D}}$
- Umformung "untere" Negation (DeMorgan) : $Z = \overline{\overline{\overline{A} \cdot \overline{B}} \cdot \overline{\overline{C} \cdot D}} = \overline{(A+B) \cdot (C+\overline{D})}$
- Ausmultiplizieren: $Z = \overline{(A+B)\cdot(C+\overline{D})} = \overline{A\cdot C + A\cdot \overline{D} + B\cdot C + B\cdot \overline{D}}$
- Umformung "obere" Negation (DeMorgan) : $Z = \overline{AC} \cdot \overline{AD} \cdot \overline{BC} \cdot \overline{BD} = (\overline{A} + \overline{C}) \cdot (\overline{A} + D) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$
- · Analog von KNF nach DNF.

6. CMOS - Logik

Komplementäre Logik liefert grundsätzlich negierte Ausgänge. ⇒ NAND einfacher als AND. Drei Grundgatter der CMOS-Technologie:

Falls GND und V_{DD} vertauscht würden, dann $NAND \rightarrow AND$ und $NOR \rightarrow OR$ Allerdings schlechte Pegelgenerierung.

6.1. Gatterdesign

Vorteil: (Fast) nur bei Schaltvorgängen Verlustleistung - wenig statische Verluste

Netzwerk	Pull-Dow n	Pull-U p
Transistoren	nMos	pMos
AND	Serienschaltung	Parallelschaltung
OR	Parallelschaltung	Serienschaltung

- 1. Möglichkeit: Direkt; ggf. Inverter vor die Eingänge und Ausgänge schalten.
- 2. Möglichkeit: Mit bullshit Algebra die Funktion nur mit NAND und NOR darstellen.

s(1)

6.2. CMOS Verlustleistung

Inverterschaltvorgang $V_A:0\to 1$:

Dynamische Verlustleistung

 $P_{\mathsf{dyn}} = P_{\mathsf{cap}} + P_{\mathsf{short}}$

Kapazitive Verluste

 $P_{\mathsf{cap}} = \alpha_{01} f C_L V_{DD}^2$ $P_{\mathsf{short}} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_{tn})^3$

Kurzschlussstrom

Schalthäufigkeit

 $\alpha_{0 \to 1} = \frac{\text{Schaltvorgänge(pos. Flanke)}}{\# \text{Betrachtete Takte}}$

Abhängig von den Signalflanken, mit Schaltfunktionen verknüpft $\approx~V_{DD}1/\propto$ Schaltzeit: $\frac{V_{DD2}}{V_{DD1}}=\frac{t_{D1}}{t_{D2}}$ (bei Schaltnetzen $t_{log})$

Verzögerungszeit $\propto \frac{1}{V_{DD} - V_{th}}$

 $\textbf{Statische Verlustleistung} \ P_{\textbf{Stat}} \colon \textbf{Sub-Schwellströme}, \ \textbf{Leckströme}, \ \textbf{Gate-Ströme}$ Abhängigkeit: V_{DD} \uparrow : P_{stat} \uparrow V_{th} \uparrow : P_{stat} \downarrow (aber nicht proportional)

7. Sequentielle Logik

... Logik mit Gedächtnis.

7.1. Bedingungen

t_{Setup}	Stabilitätszeit vor der aktiven Taktflanke
t_{hold}	Stabilitätszeit nach der aktiven Taktflanke
t_{c2q}	Eingang wird spätestens nach $t_{ m c2q}$ am Ausgang verfügba
Max. Taktperiode	$t_{clk} \geq t_{1,c2q} + t_{logic,max} + t_{2,setup}$
Max. Taktfrequenz	$f_{max} = \left\lfloor \frac{1}{t_{clk}} \right floor$ (Nicht aufrunden)
Holdzeitbedingung	$t_{hold} \leq t_{c2q} + t_{logic,min} o Dummy$ Gatter einbauen
Durchsatz	$\frac{1 \text{Sample}}{t_{\text{clk,pipe}}} = f$
Latenz	t_{clk} · #Pipelinestufen (das zwischen den FFs)

7.2. Pipelining

Nur bei synchronen(taktgesteuerten) Schaltungen möglich!

- Aufteilen langer kombinatorischer Pfade durch Einfügen zusätzlicher Registerstufen → Möglichst Halbierung des längsten Pfades
- Zeitverhalten beachten (evtl. Dummy-Gatter einfügen)
- Durchsatz erhöht sich entsprechend der Steigerung der Taktfrequenz
- Gesamtlatenz wird eher größer
- Taktfrequenz erhöht sich

7.3. Parallel Processing

$$\mathsf{Durchsatz} = \frac{\#\mathsf{Modul}}{t_{\mathsf{clk}}, \mathsf{Modul}} = f \qquad \qquad \mathsf{Latenz} = t_{\mathsf{clk}}$$

- Paralleles, gleichzeitiges Verwenden mehrere identischer Schaltnetze
- Zusätzliche Kontrolllogik nötig (Multiplexer)
- Taktfrequenz und Latenz bleiben konstant
- Durchsatz steigt mit der Zahl der Verarbeitungseinheiten ABER: deutlich höherer Ressourcenverbrauch

8. Volladdierer (VA) / Ripple-C(u)arry-Adder

9. Speicherelemente

9.1. Definitionen

Flüchtig Speicherinhalt gehen verloren, wenn Versorgungsspannung $V_{D\,D}$ wegfällt - Bsp: *RAM Nicht Flüchtig Speicherinhalt bleibt auch ohne V_{DD} erhalten - Bsp: Flash

Asynchron Daten werden sofort geschrieben/gelesen.

Synchron Daten werden erst mit $clk_{0 o 1}$ geschrieben.

Dynamisch Ohne Refreshzyklen gehen auch bei angelegter $V_{D,D}$ Daten verloren - Bsp: DRAM Statisch Behält den Zustand bei solange V_{DD} anliegt (keine Refreshzyklen nötig) - Bsp: SRAM Bandbreite: Bitanzahl, die gleichzeitig gelesen/geschrieben werden kann.

Latenz: Zeitverzögerung zwischen Anforderung und Ausgabe von Daten.

Zykluszeit: Minimale Zeitdifferenz zweier Schreib/Lesezugriffe.

Speicherkapazität = Wortbreite · 2^{Adressbreite}

9.2. Flip-Flop

2 besteht aus zwei enable-Latches	clk	Q	\overline{Q}
Flip-Flop: andert Zustand bei steigender / (fallender) Taktflanke.	$0 \rightarrow 1$	D	\overline{D}
riip-riop: andert Zustand bei steigender / (tallender) Taktilanke.	sonst	Q	\overline{Q}

9.3. Register

Ring aus zwei Invertern.

9.4. Latch

Set-Reset Latch:

Zwei gegenseitig rückgekoppelte NAND-Gatter. 0 an R/S schaltet. **Enable-Latch:** andert Speicherzustand auf D nur wenn e=1:

е	Q
0	Q
1	D

9.5. DRAM Zelle (dynamisch)

lange Bitlines $\rightarrow C_{BL} \uparrow$, Laufzeit \uparrow quadratisch: $\frac{\text{Bit}}{\text{Zeile}} \stackrel{!}{=} \frac{\text{Bit}}{\text{Spalte}} = \frac{\text{Wort}}{\text{Zeile}} \cdot \frac{\text{Bit}}{\text{Wort}}$

- ullet Wortleitung wird aktiviert, d.h. auf $V_{D\,D}$ gelegt
- ullet Bitleitung wird auf den gewünschten Wert (V_{DD} für 1, GND für 0) gelegt ⇒ Kondensator wird auf entsprechendes Potential aufgela
 - den oder entladen, je nach vorherigem Wert

- ullet Wortleitung wird aktiviert, d.h. auf V_{DD} gelegt.
- Bitleitung wird auf $V_{DD}/2$ vorgeladen.
- · Adresstransistor wird geöffnet
- ightarrow Ladungsaustausch zwischen C_S und C_{BL}
- \rightarrow Potential der BL wird um ΔV erhöht (1 lesen) oder erniedrigt (0 lesen)
- → Leseverstärker nötig!

9.6. SRAM Zelle (statisch)

9.8. Flash (nicht flüchtig)

nMos Transistor mit zusätzlichem floating Gate in der Oxidschicht. Floating Gate

,0' speichern: $V_{GS} = V_{DS} = 4 \cdot V_{DD}$, S an GND ,0' löschen: S von GND trennen, G an GND und D an 4mal VDD

9.9. Organisation von Speichern

- 1 Byte besteht aus 8 Bit
- Ziel: möglichst quadratische Anordnung der Speicherzellen
- · Wortbreite W berücksichtigen!

Aufteilung:

Speicherkapazität = $2^M \cdot 2^N$ Bester Fall für M=N

Reihen = N $2^M = W \cdot 2^K$

 $\# \operatorname{Spalten} = K$

10. Automaten

I	Eingabealphabet
O	Ausgabealphabet
S	Menge von Zuständen
$R \subseteq S$	Menge der Anfangszustände
$f: S \times I \rightarrow S$	Übergangsrelation
g	Ausgaberelation

10.1. Vorgehensweise

- I, O bestimmen S festlegen
- R bestimmen
- $\bullet \ \ f,\, g \ {\rm bestimmen}$

Entwurfsverfahren

1. Boolsche Algebra

	Mengenalgebra	Boolesche Algebra
	$(P(G); \cap, \cup, \overline{A}; G, \emptyset)$	$(0,1;\cdot,+,\overline{x})$
Kommutativ	$A \cap B = B \cap A$	$x \cdot y = y \cdot x$
	$A \cup B = B \cup A$	x + y = y + x
Assoziativ	$(A \cap B) \cap C = A \cap (B \cap C)$	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$
	$(A \cup B) \cup C = A \cap (B \cup C)$	x + (y+z) = (x+y) + z
Distributiv	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$x \cdot (y+z) = x \cdot y + x \cdot z$
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$x + (y \cdot z) = (x + y) \cdot (x + z)$
Indempotenz	$A \cap A = A$	$x \cdot x = x$
	$A \cup A = A$	x + x = x
Absorbtion	$A \cap (A \cup B) = A$	$x \cdot (x+y) = x$
	$A \cup (A \cap B) = A$	$x + (x \cdot y) = x$
Neutral	$A \cap G = A$	$x \cdot 1 = x$
	$A \cup \emptyset = A$	x + 0 = x
Dominant	$A \cap \emptyset = \emptyset$	$x \cdot 0 = 0$
	$A \cup G = G$	x + 1 = 1
Komplement	$A \cap \overline{A} = \emptyset$	$x \cdot \overline{x} = 0$
	$\underline{A} \cup \overline{A} = G$	$x + \overline{x} = 1$
	$\overline{\overline{A}} = A$	$\overline{x} = x$
De Morgan	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	$\overline{x \cdot y} = \overline{x} + \overline{y}$
	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{x+y} = \overline{x} \cdot \overline{y}$

1.1. Multiplexer

 $f = x \cdot a + \overline{x} \cdot b$ (2 Eingänge a, b und 1 Steuereingang x) $f = \overline{x}_1 \overline{x}_2 a + \overline{x}_1 x_2 b + x_1 \overline{x}_2 c + x_1 x_2 d$ (Eingänge: a, b, c, d Steuerung: x_1, x_2)

1.2. Wichtige Begriffe

Wichtige Begriffe:	Definition	Bemerkung
Signalvariable	x	$\hat{x} \in \{0, 1\}$
Literal	$l_i = x_i$ oder $\overline{x_i}$	$i \in I_0 = \{1,, n\}$
Minterme,0-Kuben	$MOC\ni m_j=\prod_{i\in I_0}l_i$	$ MOC = 2^n$
d-Kuben	$MC\ni c_j=\prod_{i\in I_j\subseteq I_0}l_i$	$ MC = 3^n$
Distanz	$\delta(c_i, c_j) = \left \left\{ l \mid l \in c_i \land \bar{l} \in c_j \right\} \right $	$\delta_{ij} = \delta(c_i, c_j)$
Implikanten	$MI = \{c \in MC \mid c \subseteq f\}$	
Primimplikanten	$MPI = \{ p \in MI \mid p \not\subset c \ \forall c \in MI \}$	$MPI \subseteq MI \subseteq MC$

SOP (DNF)	eine Summe von Produkttermen	Terme sind ODER-verknüpft
POS (KNF)	ein Produkt von Summentermen	Terme sind UND-verknüpft
CSOP (nur 1)	Menge aller Minterme	analog CPOS
VollSOP (nur 1)	Menge aller Primimplikanten	Bestimmung siehe Quine Methode
		oder Schichtenalgorithmus
MinSOP (min. 1)	Minimale Summe v. Primimplikanten	durch Überdeckungstabelle

FPGA: Field Programmable Gate Array LUT: Look Up Table

1.3. Boolesche Operatoren (Wahrheitstabelle WT)

×	у	AND	OR	XOR	NAND	ŃOR	EQV
		$x \cdot y$	x + y	$x \oplus y$	$\overline{x \cdot y}$	$\overline{x+y}$	$\overline{x \oplus y}$
0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	0
1	0	0	1	1	1	0	0
1	1	1	1	0	0	0	1

2. Beschreibungsformen

2.1. Sum of products (SOP/DNF)

Eins-Zeilen der Wertetabelle ODER verknüpfen:

 $f = \overline{x} \cdot \overline{y} + \overline{z} \cdot w$

2.2. Product of sums (POS/KNF)

Null-Zeilen der Wertetabelle negieren und UND verknüpfen:

 $f = (\overline{x} + \overline{z}) \cdot (\overline{x} + \overline{w}) \cdot (\overline{y} + \overline{z}) \cdot (\overline{y} + w)$

2.3. Shannon Entwicklung
$$f = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i} = (x_i + f_{\overline{x}_i}) \cdot (\overline{x}_i + f_{x_i}) = (f_{x_i} \oplus f_{\overline{x}_i}) \cdot x_i \oplus f_{\overline{x}_i}$$

$$---\overline{f} = x_i \cdot \overline{f}_{x_i} + \overline{x}_i \cdot \overline{f}_{\overline{x}_i}$$

2.4. Umwandlung in jeweils andere Form

- 1. Doppeltes Negieren der Funktion: $f = \overline{\overline{x} \cdot \overline{y} + \overline{z} \cdot w}$
- 2. Umformung "untere" Negation (DeMorgan) : $f = \overline{\overline{\overline{x} \cdot \overline{y}} \cdot \overline{\overline{z} \cdot w}} = \overline{(x+y) \cdot (z+\overline{w})}$ 3. Ausmultiplizieren: $f = \overline{(x+y)\cdot(z+\overline{w})} = \overline{x\cdot z + x\cdot \overline{w} + y\cdot z + y\cdot \overline{w}}$
- 4. Umformung "obere" Negation (DeMorgan) :

 $f = \overline{xz} \cdot \overline{x\overline{w}} \cdot \overline{yz} \cdot \overline{y\overline{w}} = (\overline{x} + \overline{z}) \cdot (\overline{x} + w) \cdot (\overline{y} + \overline{z}) \cdot (\overline{y} + w)$

Analog von POS nach SOP.

2.5. Quine Methode

geg.: SOP oder Wertetabelle

ges.: alle Primimplikanten (VolISOP)

spezielles Resoltuionsgesetz: $x \cdot a + \overline{x} \cdot a = a$

Absorptionsgesetz: $a + a \cdot b = a$

- ullet CSOP bestimmen (z.B. $f(x,y,z,w)=xy\overline{z}+x\overline{y}z+xyz)$
- alle Minterme in Tabelle eintragen (Index von m ist (binär)Wert des Minterms)
- ullet Wenn Kubenabstand = 1 (ein "don't care") in 1-Kubus aufnehmen und A abhaken. Wenn nicht ist dieser Minterm bereits ein Primimplikant.
- der 1-Kubus muss zusammenhängend sein! (d.h. alle 1-Kubus Minterme müssen zusammenhängen)
- Wenn möglich 2-Kubus bilden.
- Wenn keine Kubenbildung mehr möglich → VollSOP

Beispiel (Quine Methode):

m_0	0-Kubus	Α	1-Kubus	R	Α	2-Kubus	A	
m_1	$\overline{x}_1\overline{x}_2x_3$	$ \vee $	\overline{x}_2x_3	$m_1 \& m_5$	p_1			
m_4	$x_1\overline{x}_2\overline{x}_3$	√	$x_1\overline{x}_2$	$m_4 \& m_5$	√	x_1	p_2	
m_5	$x_1\overline{x}_2x_3$	√	$x_1\overline{x}_3$	$m_4 \& m_6$	√			
m_6	$x_1x_2\overline{x}_3$	√	$x_{1}x_{3}$	$m_5 \& m_7$	√			
m_7	$x_1 x_2 x_3$	√	$x_{1}x_{2}$	$m_6 \& m_7$	√			

2.6. Quine's und McCluskey's Bestimmung der MinSOP Geg: CSOP $(\sum m_i)$ und VollSOP $(\sum p_i)$ Ges: MinSOP

$$\begin{array}{lll} \text{Überdeckung:} & C = & (m_0 \subseteq p_1) & \cdot (m_2 \subseteq p_1 + m_2 \subseteq p_2) & \stackrel{!}{=} 1 \\ C = & \tau_1 & \cdot (\tau_1 + \tau_2) & = \tau_1 + \tau_1 \tau_2 = \tau_1 \end{array}$$

Alternativ: Mit Überdeckungstabelle bestimmen.

2.7. Kubengraph

Kubenabstand $\delta(c_1,c_2)$: Kleinste Anzahl an Kanten, die nötig sind, um c_i und c_j zu verbinden bzw. Anzahl an Literalen die in c_1 negiert und in c_2 nicht negiert vorkommen.

#Literale = $#$ Raumdimensionen - $#$ Kubusdimensionen									
Max.	Kubenabstand:	#Dimensionen	-	#Kubusdimens	si				
nen(gr	rößter Kubus)								

überdeckte Minterme: $2^{\mathsf{Kubendimension}}$

2.8. (R)OBDD

(Reduced) Ordered Binary Decision Diagram

ROBDD → SOP: Alle Pfade zur 1 verodern: $f = x + \overline{x}y$

ROBDD -> POS: Alle Pfade zu 0 verodern, kompletten Term negieren, DeMorgan anwenden

3. Funktionale Dekomposition

Bei einer Funktion $f(\underline{\boldsymbol{v}})$ mit n Eingängen und einer möglichen Aufteilung von \underline{v} in $\underline{v}=\underline{x}$ und y (wobei die Aufteilung disjunkt ist), kann $f(\underline{\boldsymbol{v}}) = f(\underline{\boldsymbol{x}}, \boldsymbol{y})$ in $g(h(\underline{\boldsymbol{x}}), \boldsymbol{y})$ zerlegt werden.

Zerlegung sinnvol, wenn $|\underline{z}| \leq |\underline{x}| - 1$ oder $|Z| \leq \frac{1}{2}|X|$ Kompositionsfunktion: $w = g(\underline{z}, y)$ Dekompositionsfunktion: $z = h(\bar{x})$

→ Meist kann man eine günstige Aufteilung per BDD finfreie Variablen

Variablen Verfahren:

- Auswerten von $f(\hat{x}, y)$ und Bilder der Dekompositionsmatrix:
- $f = \overline{x}_1 \overline{x}_2 y_1 + \overline{x}_1 \overline{x}_2 x_3 y_1 + \overline{x}_1 x_2 \overline{x}_3 \overline{y}_1 \dots$
- Trage die Funktionswerte in die Matrix ein
- ullet Suche Spalten, die die selben Werte je $oldsymbol{y}$ haben
- Codiere gleiche Spalten mit gleichem z

 a Maniablan		Vaniables (-	 _

rrele variablen		g	ebunden	e variab	nen (x_1)	$, x_2, x_3$)	
(y_1,y_2)	000	001	010	011	100	101	110	111
00	0	0	1	0	1	1	1	1
01	0	0	1	0	1	1	1	1
10	1	1	0	1	0	0	0	0
11	1	1	0	1	1	1	1	0
$\underline{z} = h(x)$	00	00	01	00	10	10	10	01

• Konstruiere die Dekompositionsfunktion

 $|\underline{\boldsymbol{z}}| \leq |\underline{\boldsymbol{x}}| - 1$ bzw. $|Z| \leq \frac{1}{2} |X|$

• Stelle Zuordnungstabelle auf:

$\hat{oldsymbol{x_i}}$	$\frac{\hat{z}_i}{}$	$\underline{\boldsymbol{z}} = h(x)$	$g(\underline{\boldsymbol{z}}_i,\underline{\boldsymbol{y}})$
000, 001, 011	00	$\overline{z}_1\overline{z}_2 = \overline{x}_1\overline{x}_2 + \overline{x}_1x_2x_3$	y_1
010, 111	01	$\overline{z}_1 z_2 = \overline{x}_1 x_2 \overline{x}_3 + x_1 x_2 x_3$	\overline{y}_1
100, 101, 110	10	$z_1\overline{z}_2 = x_1\overline{x}_2 + x_1x_2\overline{x}_3$	$\overline{y}_1 + y_2$
	11		0

- Konstruktion der Kompositionsfunktion
 - → via Dekompositionsmatrix (1) / Zuordnungstabelle (2)
 - (1) alle eingetragenen 1en $\hat{=}$ 1 am Ausgang
 - → müssen in der Kompositionsfunktion auftreten
 - (2) $\hat{m{z}}_{m{i}} \cdot g(z,y)$ stellen die Komposistionsfunktion dar

$$g(\underline{\pmb{z}},\underline{\pmb{y}})=\overline{z}_1\overline{z}_2y_1+\overline{z}_1z_2\overline{y}_1+z_1\overline{z}_2\overline{y}_1+z_1\overline{z}_2y_1y_2=\mathsf{Kompositionsfunktion}$$

• Notationen: |x| = Zahl der Eingangsvariablen (gebunden)

 $|\underline{z}| = \mathsf{Zahl}$ der Dekompositionsvariablen

 $|X| = 2^{|\underline{x}|} = \mathsf{Zahl}$ der möglichen Zustände aller gebundenen Variablen

 $|Z|=2^{\left|\underline{\mathbf{z}}\right|}=\mathsf{Zahl}$ aller Dekompositionsvariablen

3.1. Funktionale Dekomposition mit ROBDD

Dekompositionsbedingung $|\underline{z}| \leq |\underline{x}| - 1$ bzw. $|Z| \leq \frac{1}{2}|X|$

· Nehme immer eine Ebene an: Oberhalb = gebundene Variablen Unterhalt = freie Variablen

- Zähle die Knoten, die durch die kreuzenden Äste erreicht werden (hier mit Δ bezeichnet)
- Auch wenn ein Knoten durch zwei oder mehrere Äste erreicht wird, darf er nur einmal gezählt werden (im Beispiel: $\Delta = 4$)
- ullet Wenn $|\underline{m{z}}| = \lceil \log_2 \Delta \rceil \leq |\underline{m{x}}| 1 o \mathsf{DK} ext{-Bed.}$ erfüllt
- Pfade zur 1 ergeben Dekompositionsfunktion (gebundene Variablen →freie Variablen →1)

Zuordnungstabelle:

geb. Variablen	z_1	z_2	freie Variablen
111	0	0	x4x5
110, 010, 011	0	1	$x_4x_5 + \overline{x}_4\overline{x}_5$
101, 100	1	0	1
	1	1	

3.2. Heuristische Minimierung Kofaktorbildung: Setze alle $x_i=1$ und alle $\overline{x}_i=0$

z.B. $f = x\overline{y} + \overline{x}yw + xw \Rightarrow f_x = \overline{y} + w$

3.2.1 Kubenentfernung (remove) • $h = f \setminus c$ (f ohne den zu entfernenden Kubus)

z.B. $f = \overline{x}yz + xyz + \overline{x}yz \Rightarrow \text{ für } c = \overline{x}yz \Rightarrow h = xyz + \overline{x}yz$ $h_{\overline{x}yz} = 1 + 0 = 1 \Rightarrow \mathsf{entfernbar}$

- ullet Bildung des Kofaktors h_c
- Wenn $h_c = 1 \Rightarrow c$ ist entfernbar
- 2 Kuben gemeinsam entfernen: teste 2. Kubus nachdem der 1. entfernt wurde.

3.2.2 Literalentfernung (expand)

• Aufstellen von $h = \{f \setminus c_l \cdot l\}$ z.B. $f = \overline{x}y + xyz + \overline{x} \cdot \overline{y} \cdot \overline{z}$ (entferne x: d.h. l = x und $c_l = yz$) $h = \overline{x}y + \overline{x} \cdot \overline{y} \cdot \overline{z}$

 $\bullet \ \mbox{Wenn} \ h_{c_I \cdot \overline{l}} = 1 \ \mbox{ist das Literal entfernbar}$

z.B. $h_{c_I \cdot \overline{l}} = (\overline{x}y + \overline{x} \cdot \overline{y} \cdot \overline{z})_{\overline{x}yz} = 1$

3.2.3 Literal hinzufügen (reduce) Kann man l zu c hinzufügen ohne f zu verändern?

 $f = c + h \stackrel{?}{=} c \cdot l + h$ Zulässigkeitsbedingung: $c \cdot \overline{l} \subseteq h$ z.B. $f = xy + \overline{x}yz + xz$ (füge $l = \overline{z}$ hinzu) $\mathsf{Ist}\ xyz \subseteq \overline{x}yz + xz?$ $Ja \Rightarrow f^* = xy\overline{z} + \overline{x}yz + xz$

Gemeinsame Literalentfernung: Prüfe 2. Literal nachdem 1. Literal entfernt wurde.

3.3. Strukturanalyse

Tautologie: $f_{x_i} = 1$

Monoton steigend in x_i : $f_{\overline{x}_i} \subseteq f_{x_i}$ dann gilt auch $f_{\overline{x}_i} = 1 \implies f = 1$

Monoton fallend in x_i : $f_{x_i} \subseteq f_{\overline{x}_i}$ dann gilt auch $f_{x_i} = 1 \implies f = 1$

 $f = yz + xz + \overline{y}z + \overline{y}\overline{z} + y\overline{z} \Rightarrow$ monoton steigend in x $f(x, y, z) = x \varphi(z) + h(y, z) \Rightarrow \text{Prüfe } h \text{ auf Tautologie}$

4. Nützliches Wissen

4.1. Mehrfachimplikanten

Sind gleiche Implikanten in mehreren verschiedenen Funktionen vorhanden?

Prüfe $f_1 \cap f_2$ auf Mehrfachimplikanten: $f_1 \cdot f_2 = ?$

Nutzung von Mehrfachimplikanten ist sinnvoll wenn die Gesamtliteralzahl beider SOPs kleiner ist als ohne Verwendung von Mehrfachimplikanten.

4.2. VolISOP erstellen

Benutze die Resolventenmethode um alle Resolventen zu erzeugen und so aus der MinSOP eine VolISOP zu erstellen.

5. Automaten

sind abstrakte Maschinen mit r Zuständen $S_i \in S$, die auf sequentielle Eingangssignale $X_i \in I = \mathbb{B}^n$ mit Ausgangssignalen $Y_l \in O = \mathbb{B}^m$ und Zustandsänderungen reagiern.

Startzustand $S^0 \in S$

Zustandsfkt. $\delta: S \times I \to S, S_k \mapsto \delta(S_i, X_i)$ Ausgangsfkt. $\lambda: S \times I \to O, Y_l \mapsto \lambda(S_i, X_i)$ 7A-fkt $\mu: S \times I \to S \times O, (S_k, Y_l) \mapsto \mu(S_i, X_i)$

k-Äquivalenz $S_i \stackrel{k}{\sim} S_i$ Für eine Eingangssequenz der Länge k sind bei S_i und S_i die Ausgaben

Totale Äquivalenz $S_i \sim S_i$ falls für alle Einganssequenzen die Ausgaben und die Zustandsübergänge äquivalent sind.

→ Zeige: es lassen sich keine weiteren Äquivalenzklassen bilden

gleich und die Zustandsübergänge gleich bzw. k-1 Äquivalent.

6. Karnaugh- Diagramm

Zy	$ \textit{Zyklische Gray-Codierung: } 2 \\ \textit{dim:} 00, 01, 11, 10 \\ \textit{3dim:} 000, 001, 011, 010, 110, 111, 101, 100 \\$											
	z^{xy}											
	0	1	0	0	0	Gleiche Zellen zusammenfassen: z.B. $\overline{xy} + y \cdot z$						
	1	X	1	1	lο							

Don't Care Werte ausnutzen!

7. Resolventenmethode

Ziel: alle Primimplikanten

Wende folgende Gesetze an:

Absorptionsgesetz: a + ab = aallgemeines Resolutionsgesetz: $x \cdot a + \overline{x} \cdot b = x \cdot a + \overline{x} \cdot b + ab$

Anwendung mit Schichtenalgorithmus

- 1. schreibe die Funktion f in die 0. Schicht
- 2. bilde alle möglichen Resolventen aus der 0. Schicht und schreibe sie in die nächste Schicht als ODER Verknüpfungen (Resolventen zu f "hinzufügen")
- 3. überprüfe ob Resolventen aus der 1. Schicht Kuben aus Schicht 0 überdecken(Absorbtion) und streiche diese Kuben aus Schicht O
- 4. Schicht i besteht aus den möglichen Resolventen von Schicht 0 bis (i-1). Abgestrichene Kuben aus vorherigen Schichten brauchen nicht mehr beachtet werden.
- 5. Sobald in der i-ten Schicht +1 steht oder keine weiteren Resolventen gebildet werden können, ist man fertig. ⇒ alle nicht ausgestrichenen Terme bilden die VollSOP

$f(x_1,\ldots,x_n)$	Schicht
$x\cdot w + \overline{x}\cdot w + x\cdot y\cdot w\cdot \overline{z} + \overline{x}\cdot y\cdot w\cdot \overline{z} + \overline{y}\cdot w\cdot \overline{z}$	0
$+w+y\cdot w\cdot \overline{z}$	1
$+w\cdot \overline{z}$	2
+w	3

8. Laufzeit

8.1. Laufzeitabhängige Effekte

- Race, "Wettlauf" zweier Signalwertänderungen vor einem gemeinsamen Gatter
- Hazard / Spike / Glitch, Stelle des Signalwertverlaufes, die wegen der Laufzeitverzögrung nicht den Erwartungen entspricht

8.2. Simulation

b.2.1 Similarion:
$$y au_{OR} = 2$$
 und $\tau_{NOT} = 1$ Eingangsbelegung $a = 0, b = 0$ Auswertung erfolgt durch eine Tabelle:

t	a	b	z	у	ausgewertete Elemente	neue Ereignisse
0	'0'	'0'	'1'	'0'	init	(b,'1',0, 2)
2		'1'			OR	(b,'1',0, 2) (z,'1',2,4) (y,'0',4,5)
4			'1'		NOT	(y,'0',4,5)
5				'0'		

Ereignis: (betroffenes Signal, neuer Signalwert, $t, t + \tau$)

8.3. Delay

- ullet transport delay: Verzögerung um au_{nd}
- ullet inertial delay: Verzögerung um au_{nd} und Impulse die kleiner als au_{nd} sind werden ignoriert

8.4. VHDL- VHSIC Hardware Description Language

```
ENTITY Bausteinname IS
                                                  //Definiert die Schnittstelle einer Logik
PORT (Schnittstellenliste)
                                                 //Definiert Ein- und Ausgänge
ARCHITECTURE Rumpfname OF Bausteinname IS
                                                 //Beschreibt den internen Aufbau
PROCESS (Signalliste)
                                                  // Alle Processes laufen nebeneinander ab
COMPONENT Gattername
                                                 // Beschreibt eine interne Komponente
```

9. Testverfahren

Mit wenig Fragen viel Information erhalten. Signal muss beobachtbar und einstellbar sein!

Fehlergruppe $F_{\nu}=\{f_{\mu}\in F\mid t_{\nu}Rf_{\mu}\}$: Menge aller Fehler die vom Test t_{ν} erkannt werden. Fehleranzahl = 2 · Signalanzahl = 2(Eingänge + Interne Signale + Ausgänge) Testgruppe $T_{\mu} = \{t_{\nu} \in T \mid t_{\nu}Rf_{\mu}\}$ ist die Menge aller Tests die den Fehler f_{μ} erkennen.

Zwei einzelne Fehler sind nicht unterscheidbar, wenn sie immer gemeinsam von einem Test entdeckt

9.2. Bullshit-Differenz y_z Ziel: schnelles finden von Testbedingungen für f = y(z(x))

$$y_z = y(z, \underline{\boldsymbol{x}}) \oplus y(\overline{z}, \underline{\boldsymbol{x}})$$
 $\hat{=} y(z=1) \oplus y(z=0)$

9.2.1 Rechenregeln

$$\begin{array}{lll} y_x = 0 & \text{falls } y \neq f(x) & (z \cdot w)_x = z \cdot w_x \oplus z_x \cdot w \oplus z_x \cdot w_x \\ y_y = 1 & (z + w)_x = \overline{z} \cdot w_x \oplus z_x \cdot \overline{w} \oplus z_x \cdot w_x \\ (\overline{y})_x = y_x & y_x = y_z \cdot z_x & \text{falls } y = y(z(x)) \\ (z \oplus w)_x = z_x \oplus w_x & (y_z)_w = (y_w)_y \\ \mathbf{9.2.2 \ AND } \to \mathbf{XOR} \ (+, \overline{x}) \end{array}$$

- 1. Negation über konjunkte Terme entfernen: DeMorgan $\overline{xy} = \overline{x} + \overline{y}$)
- 2. Negation über disjunkte Terme entfernen: $\overline{x} = x \oplus 1$)
- 3. "+" entfernen $x + y = x \oplus y \oplus xy$

$$\operatorname{Test \ für} \begin{cases} a/0: a \cdot y_a \stackrel{!}{=} 1 \\ a/1: \overline{a} \cdot y_a \stackrel{!}{=} 1 \end{cases} \Rightarrow \operatorname{Testmuster \ finden}.$$

9.2.3 XOR-Regeln

$x \oplus y = \overline{x} \cdot y + x \cdot \overline{y}$	$x + y = x \cdot y \oplus x \oplus y$
$x \oplus y = (x+y) \cdot (\overline{x} + \overline{y})$	$x\cdot y=x\oplus y\oplus (x+y)$
$x\cdot (y\oplus z)=x\cdot y\oplus x\cdot z$	$\overline{x} = x \oplus 1$
$x \oplus x = 0$	$x \oplus 0 = x$
$(x + y) \oplus y = x \cdot \overline{y}$	$x\overline{y} + yz = x\overline{y} \oplus yz$

9.2.4 Schaltnetze

$$\begin{bmatrix} y_x = y_z z_x \overline{w}_x + y_w w_x \overline{z}_x + z_x w_x \cdot [\overline{z} \circ \overline{w} \oplus z \circ w] \\ \circ = \mathsf{XOR}/\mathsf{XNOR} \Rightarrow [\overline{z} \circ \overline{w} \oplus z \circ w] = 0 \\ \circ = \mathsf{AND}/\mathsf{NAND}/\mathsf{OR}/\mathsf{NOR} \Rightarrow [\overline{z} \circ \overline{w} \oplus z \circ w] = \overline{z} \oplus w \end{bmatrix}$$

Schaltnetz mit Rekonvergenzmasche (4 Fälle):

- 1. $y_z z_x \overline{w}_x = 1$ \Rightarrow Einfachpfadsensibilisierung: x-z-y $y_w w_x \overline{z}_x = 1$ \Rightarrow Einfachpfadsensibilisierung: x-w-y⇒ Mehrfachpfadsensibilisierung
- $z_x w_x \cdot [\overline{z} \circ \overline{w} \oplus z \circ w] = 1$
- $z_x w_x \cdot \overline{[\overline{z} \circ \overline{w} \oplus z \circ w]} = 1$ ⇒ Selbstmaskierung

Schaltnetz mit Baumstruktur:

keine Mehrfachpfadsensibilisierung oder Selbstmaskierung! $y_x = y_z \cdot z_x$ (Kettenregel für x-u-z-y)

9.3. Fehlersimulation

Gegeben: Testmuster Gesucht: getestete Fehler.

Achtung Teste immer nur für eine spezielle Belegung

Begriffe Fanout-Stamm: Verzweigungspunkt Vereinigungspunkt: Rekonvergenzpunkt

- **9.3.1 Fehlerbaumkonstruktion für gegebenes Testmuster**1. Alle Signalwerte der Schaltung für gegebenes Testmuster bestimmen
- 2. Durch die Simmulation die Beobachtbarkeit der Fanout-Stämme bestimmen.
- 3. Schaltung an Fanout-Stämmen gedanklich auftrennen. (In Fanout-Freie Zonen zerlegen)
- 4. Fehlerbaumkonstruktion in den Bäumen(FF-Zonen) vom Ausgang in Richtung Eingänge auf Basis der lokalen Sensitivitäten (mit • markieren).
- 5. Aus Fehlerbaum Menge der beobachtbaren Signale S^0 (sensitiver Pfad zum Ausgang) und Menge der getesteten Fehler F_t durch Einstellbarkeit (sensitiver Pfad zum Eingang) angeben. z.B. $S^{\circ} = \{a, b, b_2, y\}$ $F_t = \{a/1, b/0, b_2/0y/1\}$

9.4. Deterministische Testmustergenerierung. D-Algorithmus

Zahl aller Fehlerpfade: $2^n - 1$ für n = Zahl der Einfachfehlerpfade

Findet für jeden stuck-at Fehler einen Test, falls möglich. 5-wertige Logik:

- Boolsche 0 0
- Boolsche 1
- Xundefined
- D1 falls fehlerfrei, 0 falls fehlerhaft (teste stuck-at 0)
- \overline{D} 0 falls fehlerfrei, 1 falls fehlerhaft (teste stuck-at 1)

Vorwärtsimlikation Rückwärtsimlikation

Lokale Implikation

globale Implikation: mehr als 1 Gatter zwischen Testsignal und implizierten Signal:

$$A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow \overline{A}$$

Lernkriterium (für y = z(x)): $y_{z_1} \cdot y_{z_2} \stackrel{!}{=} 1$

Vorgehen (z.B für Test $x_1/0$):

- F: Fehlertestsignal $(x_1 = D)$
- S: Sensibilisierung ($x_2 = 1$)
- $I: Impliaktion (y = \overline{\overline{D}})$
- O: Optionale Pfade (z.B bei XOR)

Ist Ausgang 0 bzw. $1 \Rightarrow$ Fehler nicht testbar. Ist Ausgang D bzw. $\overline{D} \Rightarrow$ Fehler testbar.

9.5. Einstellbarkeit

 C_0 : Nulleinstellbarkeit $0 \le C_0 \le 1$ Wahrscheinlichkeit das ein Testvektor zur $C_0 + C_1 = 1$

 C_1 : Einseinstellbarkeit $0 \le C_1 \le 1$

ohne Vorgabe für Eingangsvariable x: $C_0(x) = 0, 5$ und $C_1(x) = 0, 5$ Beachte: Je nach Gatter sind besimmte Einstellbarkeiten schneller zu berechnen! (siehe Tabelle) Catter | Finstellharkeit (Ausgang) | Berechnung

Gatter	Einsteilbarkeit (Ausgang)	Berechnung
AND	C_1	$C_1(x_1) \cdot C_1(x_2)$
NAND	C_0	$C_1(x_1) \cdot C_1(x_2)$
OR	C_0	$C_0(x_1) \cdot C_0(x_2)$
NOR	C_1	$C_0(x_1) \cdot C_0(x_2)$
XOR	C_1	$C_0(x_1) \cdot C_1(x_2) + C_1(x_1) \cdot C_0(x_2)$
NOT	C_1	$C_0(x)$

Wichtig: Nur bei Baumstruktur exakt.

9.6. Schaltwerke

Eingangsvariable X Testpunkte Y nächste Schaltwerkszustände \boldsymbol{z} Schaltwerkszustände S

Es gilt: ${m s}^t = {m z}^{t-1}$ t: t-te Taktperiode.

Verbesserung der Einstellbarkeit und Beobachtbarkeit durch Zusatzlogik: Zusätzlicher Testeingang: Mehr Platzbedarf, mehr Leistungsaufnahmen. Zusätzlicher Ausgang: Zusätzlicher Pin, langsameres Signal.

10. Auch wichtig

Schrödingers Katze