BSJE JOINT EXAMINATION

- 2024 -

Kenya Certificate of Secondary Education

233/1	CHEMISTRY	PAPER 1
	June, 2024	TIME: 2½ Hrs
Name:		Admission No:
School:		
Stream:	Signature:	····

Instructions to Candidates

- a) Write your name and Admission number in the spaces provided above.
- b) Sign and write the date of examination in the spaces provided above
- c) Answer ALL the questions in the spaces provided below each question.
- d) Mathematical tables and silent electronic calculators may be used.
- e) All working MUST be clearly shown where necessary.
- f) This paper consists of 13 printed pages

For Examiner's Use Only

Questions	Max. Score	Candidate's Score
1 – 27	80	

1.	The elec	etronic configuration of two particles $_{a}^{27}X$ and $_{b}^{32}Y$ are 2.8 and 2.8.8 res	spectively.
	a)	Write the values of	
		a	(½ mark)
		b	(½ mark)
	b)	Identify the period and group of the periodic table to which element Y l	belong.
		Period	(½ mark)
		Group	(½ mark)
2.	You are	provided with the following; thermometer, boiling tube, beaker, Bunse	n burner, pure
	solid X	, whose boiling point is about 80°C, water and any other apparatus	that may be
	required	. Draw a labeled diagram for an experiment that would be used to	determine the
	melting	point of X.	(3marks)
			•••••
•			•••••
3.	(a) Othe	er than sulphur, name an element that shows allotropy.	(1mark)
(1	o) Draw t	he structure of the allotrope of sulphur that is stable below 96°C.	(1mark)
(0	c) State ar	ny one use of sulphur apart from manufacture of sulphuric (VI) acid.	(1mark)
4.	Study th	ne organic compounds below and answer the questions that follow.	
	I.	C_3H_8O	
	II.	CH ₃ CHCH ₂	
	III.	CH ₃ CH ₂ CH ₂ COOH	
	IV.	CH ₃ (CH ₂) ₂ CH ₃	
	V.	CH ₂ CH ₂	
		Select,	

	(a)	One compound which is	a saturated hydrocarbon.	(1mark)
	(b)	Two compounds which ε	are members of the same homologous series.	(1mark)
	(c)		will react together to produce a pleasa	
		compound.		(1mark)
5.	Explain the	following observations.		
	(a) When a	air is bubbled into distille	d water, the p ^H of the water drops from 7.0 to	6.0. (1mark)
				• • • • • • • • • • • • • • • • • • • •
	(b) A bee l	keeper stung by a bee app	lies baking powder onto the stung surface for	r relief.
				(1mark)
6.	(a) Explain v	why calcium oxide is not	used to dry hydrogen chloride gas.	(2marks)
 (ł		suitable drying agent for h	ydrogen chloride.	(1mark)
7.	The table be	low gives the boiling poir	nts of three liquids.	
	Liquid		Boiling point(°C)	
	Hexane		69.0	

Butan-1-ol	99.5
water	100

(Describe how the following mixtures can be separated.	(11/ montrs)
	(i) Hexane and Butan -1 – ol	(1½ marks)
	(ii) Hexane and Water	(1½ mks)
	n experiment, 2.4g of sulphur was ontained by reacting hydrogen sulphid	le and chlorine as
	$H_2S(g) + Cl_2(g)$ \longrightarrow $S(s) + 2 HCl(g)$	
(State the chemical property of chlorine shown in the reaction above.	(1mark)
() Given that the yield of sulphur in the above reaction is 75%, calcula	te the volume of
	hydrogen sulphide gas used. (molar gas volume = 24dm³, H=1, S= 32).	(2marks)
(Write the equation for the reaction when a piece of graphite is completely but	rnt in air.
		(1mark)
) Give one use of graphite and diamond and relate the use to properties of	Each (Oments)

	I.	Graphite: Use
		Property
	II.	Diamond: Use
		Property
9.	The diag	gram below shows a section of a dry cell. Study it and answer the questions that
	follow.	
		Brass terminal

(a)	Name the part labeled B.	(1mark)
(b)	The part labeled A is a paste. Give a reason why it is not used in dry form.	(1mark)
		• • • • • • • • • • • • • • • • • • • •
(c)	(i) What is the purpose of zinc container.	(1mark)
		• • • • • • • • • • • • • • • • • • • •
	(ii)Apart from the use in c(i) above, state any other use of zinc.	(1mark)
		•••••

10. (a) A student electropiated a spoon with copper metal. Write the	equation for the reaction of
the surface of the spoon.	(1mark)
(b)Calculate the amount of steady current that was passed for 30 mir	nutes if 1.184g of copper was
deposited. (1 Faraday = 96500C,Cu = 63.5)	(2marks)
11. (a) State Gay Lussac's Law.	(1mark)
(b) 60cm^3 of methane was mixed with 200cm^3 of oxygen.	The mixture was sparked to
complete reaction. If the final volumes were measured at room	_
	_
volume of the resultant gaseous mixture.	(2marks)
12. (a) State Le Chatelier's principle.	(1mark)
(b)State and explain the observation made when drops of 2M sodi	um hydroxide solution were
added to the system in equilibrium shown below.	(2marks)
$2CrO_4$ ²⁻ $(aq) + 2H^+(aq)$ \longrightarrow Cr_2	$O_7^{2-}(aq) + H_2O(1)$

••	• •	• •	• •	• •	 	• •	• •		• •	 • •	•	 • •	 •	• •	• •	• •	•	 	•	• •	• •	•	 	• •	 • •	• •	• •		 ••	 • •	 	 	••	 • •	••	 • •	• •	 	• •	••	 	 	
	٠.	• •	• •	• •	 			٠.		 	•	 	 •			٠.	•	 				•	 		 • •		٠.	٠.	 	 	 	 		 		 		 			 	 	. .

13. Study the structures given in the diagrams below to answer the questions that follow.

(a) Identify the structure with:

	(i)	Simple molecular structure.	(1mark)
	(ii)	Giant atomic structure	(1mark)
(b)	Whi	ch structure conducts electric current both in solid and molten state.	(1mark)

14. The set up below was used to demonstrate the effect of heat on hard water.

(a) Name substance A.	(1mark)
(b) Explain why heating of hard water produced substance A.	(2marks)
15. (a) Distinguish between deliquescent and efflorescent salts.	(2marks)
(b)You are provided with the following; Potassium carbonate, Lead (II)	sulphate, Sodium
hydroxide, nitric (V) acid and Copper (II) carbonate. Select any:	(1mark)
(i) Two that would produce neutralization reaction.	
(ii) One that would decompose on heating to produce carbon (IV) oxid	le,
16. The scheme below was used to prepare a cleansing agent. Study it and an	swer the questions
that follow.	
Fat NaOH _{aq} Boil Solution of cleansing agent and alcohol	Solid cleaning agent
Name;	
(a) The cleansing agent.	(1mark)

(b)) Process in step I.	(1mark)
		•••••
(c)	Chemical substance added in step II.	(1mark)

17. The curves below represent the change in mass when equal amounts of powdered zinc and zinc granules were reacted with excess 2M hydrochloric acid. Use the graph to answer the questions that follow.

(b)	Other than the factor demonstrated above, state one factor that may	be varied to affect
	the rate of the above reaction.	(1mark)
		,

18. A white solid Q was heated. It produced a brown gas Y and a colourless gas Z that relights a glowing splint. The residue left was yellow after cooling.

(a) Identify the curve for zinc granules. Explain.

(2marks)

(a) Ider	ntify:	(1mark)
(i)	Gas Y	•••••
(ii)	The residue.	•••••
(b) Wri	ite the equation for the decomposition of solid Q.	(1mark)
••••		
••••		
19. A crystal	lline sample of sodium carbonate, Na ₂ CO ₃ . XH ₂ O was heated until the	ere was no
further ch	hange. The mass of the residue reduced by 14.5%. Determine the value	of X in the
formula.		(3marks)

20. In an experiment to identify the compound in an aqueous solution, three properties of the solution in test tubes were tested and the results obtained were recorded in the table below.
Study it to answer the questions that follow.

Portion	Test	Observation
1	Add a few drops of dilute nitric (V) acid.	Effervescence. Forms a
		white precipitate with lime
		water.
2	Add aqueous sodium hydroxide drop wise until	A white precipitate soluble
	excess.	in excess.
3	Add aqueous ammonia drop wise until excess.	A white precipitate soluble
		in excess.

(a) Identify the:

Page 11 of

(i)	Cation in the compound.	(1mark)
(ii)	Anion in the compound.	(1mark)
(b) Writ	te the formula of the colorless solution formed in portion 3.	(1mark)
	nc powder was added to 50cm ³ of 2M copper (II) sulphate solution and t	
allowed to	o complete. The highest temperature change was 15°C.	
(a) State	e the observations made in the above reaction.	(1mark)
••••		• • • • • • • • • • • • • • • • • • • •
(b) If th	ne molar enthalpy of displacement is -63kJmol ⁻ . Calculate the concentration	on in moles
per l	liter of the copper (II) sulphate solution.	(3marks)
22. Draw a w	rell labeled diagram of a set up that can be used to prepare and collect dry	y sample of
	gas using manganese (IV) oxide and concentrated hydrochloric acid.	(3marks)

23. An oxide of K has the formula K ₂ O ₅ .	
(a) Determine the oxidation number of element K.	(1mark)
(b) Which group of the periodic table does element K belong.	(1mark)
	•••••
24. An experiment was set up as shown in the diagram below.	
To Pump	
U-tube Ice cold water Substance D	
(a) Suggest the aim of the experiment.	(1mark)
(b) Identify substance D.	(1mark)
(c) Describe how the other product of the burning candle could be prevented	from getting
into the environment.	(1mark)
25. Calculate the values x and y in the following nuclear equation.	•••••
239 92 U $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	(2marks)

			(2mar	
Acidic	Basic	Neutral		
В	Ballery managements	Acidified water		
(a) Name the electro	de B.		(1ma	