אלגברה ב' – טענה בנוגע לדרך מציאת בסיס ז'ורדן

טענה. יהי V מרחב וקטורי ממימד סופי n ומעל שדה \mathbb{T} , יהי C אופרטור נילפוטנטי עם אינדקס $v\in V$ יהי $v\in V$ יהי ולכל $\operatorname{ker}\left(T^{i}\right)\setminus\operatorname{ker}\left(T^{i-1}\right)$ בסיס עבור $B_{i}:=(v_{i,1},\ldots,v_{i,n_{i}})$ יהי $i\in [k]$ לכל $C_{v}:=(v_{i,1},\ldots,v_{i,n_{i}})$ וכן $\operatorname{ker}\left(T^{i}\right)\setminus\operatorname{ker}\left(T^{\ell-1}\right)$ אז ניתן לקבל בסיס ז'ורדן עבור $C_{v}:=(T^{\ell-1}\left(v\right),\ldots,T\left(v\right),v\right)$ אז ניתן לקבל בסיס ז'ורדן עבור $C_{v}:=(T^{\ell-1}\left(v\right),\ldots,T^{\ell-1}\right)$

$$.i=k$$
 וניקח ו $B=\biguplus_{j\in n_k} C_{v_{k,j}}$.1.

2. נקטין את i באחת. נבחר תת־קבוצה סדורה מקסימלית $ilde{B}_i$ של $ilde{B}_i$ שהינה בלתי־תלויה לינארית בוקטורים ע $v\in ilde{B}_i$, ולבל וקטור $2\dim\ker\left(T^i\right)-\dim\ker\left(T^{i+1}\right)-\dim\ker\left(T^{i-1}\right)$, ולבל וקטור B ב-B נשרשר ל-B את B. בלומר נעדבן

$$.B_{\text{new}} = B_{\text{old}} \uplus C_v$$

. אם B באורך n, נסיים. אחרת נחזור לשלב הקודם.

לשם הוכחת הטענה. נוכיח תחילה שתי למות לגבי סכומים ישרים.

וקטורים. אז $\ell \coloneqq \dim_\mathbb{F}(V_1)$ בסיס של $\ell \coloneqq \dim_\mathbb{F}(V_1)$ קבוצה סדורה של $C = (w_1,\dots,w_\ell)$ וקטורים. אז $B = (u_1,\dots,u_k)$ יהי בסיס של $P \in \operatorname{End}_\mathbb{F}(V)$ אם ורק אם ורק אם ורק אם $P(C) \coloneqq (P(w_1),\dots,P(w_\ell))$ ההטלה על $P(v_1,v_2 \in V_1,v_2 \in V_2)$ במקביל ל $P(v_1+v_2) = v_1$ ההעתקה המקיימת עובר אוריים.

עבורם $lpha_i \in \mathbb{F}$ יהיו V_1 בסיס של $P\left(C
ight)$ בסיס של בסיס של בסיס של בסיס של הובחה. $B \uplus C$

$$\sum_{i \in [\ell]} \alpha_i P(w_i) = 0$$

 $i \in [\ell]$ נראה כי $lpha_i = 0$ לכל

מתקיים

$$\sum_{i \in [\ell]} \alpha_i w_i = \sum_{i \in [\ell]} \alpha_i (w_i - P(w_i)) + \sum_{i \in [\ell]} \alpha_i P(w_i)$$
$$= \sum_{i \in [\ell]} \alpha_i (w_i - P(w_i))$$

, $\operatorname{Span}\left(B\right)$ כאשר Cב ששווה לוקטור בירוף לינארי על פיבות $i\in [\ell]$ לכל $w_i-P\left(w_i\right)\in V_2$ באשר ארית הנ"ל שווה אפס. לכן, מכך שהקבוצה C בלתי תלויה לינארית שווה אפס. לכן, מכך שהקבוצה C בלתי תלויה לינארית (כי $B\uplus C$ בסיס) בסיס) נקבל כי $\alpha_i=0$ לכל לכל $\alpha_i=0$

.V בסיס של $.V_1$ הינו בסיס של $P\left(C
ight)$ בסיס של .

.V בסיס של $B \uplus P\left(C
ight)$,לכן אבן $V_1 \oplus V_2$ באשר בסיס של V_1 ו־B בסיס של בסיס של אבן אינים בי

יהיו $lpha_i,eta_j\in\mathbb{F}$ עבורם

$$\sum_{i \in [\ell]} \alpha_i w_i + \sum_{j \in [k]} \beta_j u_j = 0$$

נראה בי $eta_i=eta_j=0$ לבל i,j אבן, מתקיים

$$0 = \sum_{i \in [\ell]} \alpha_i w_i + \sum_{j \in [k]} \beta_j u_j$$

=
$$\sum_{i \in [\ell]} \alpha_i P(w_i) + \sum_{i \in [\ell]} \alpha_i (w_i - P(w_i)) + \sum_{j \in [k]} \beta_j u_j$$

עבורן $\gamma_{i}\in\mathbb{F}$ עבורן ולכן לכל $w_{i}-P\left(w_{i}
ight)\in V_{2}$ אבל

$$\sum_{i \in [\ell]} \alpha_i \left(w_i - P \left(w_i \right) \right) = \sum_{j \in [k]} \gamma_j u_j$$

ונקבל כי

$$0 = \sum_{i \in [\ell]} \alpha_i P(w_i) + \sum_{j \in [k]} (\beta_j + \gamma_j) u_j$$

, γ_j הגדרת הגדרת ביי $\gamma_j=0$ לבל $\alpha_i=0$ לבל הגדרת ניוון ש־ $\alpha_i=0$ לבל הגדרת לבל מאופן הגדרת הגדרת הבל נקבל בי גם $\beta_j=0$, בנדרש.

n הובחה. נוכיח את הטענה באינדוקציה על

k=1 אז אופרטור האפס. ולכן אופרטור מקלרי האפס. אז אופרטור מתקיים כי n=1 מתקיים מתקיים מיז האינדוקציה: עבור ולכן

$$B = (v_{1.1})$$

. בסיס של V וכן $\operatorname{Span}\left(B
ight)=V$ בסיס של אוכן אוכן

צעד האינדוקציה: נניח כעת שהטענה נכונה עבור כל מרחב־וקטורי ממימד קטן מn, ונוכיח את הטענה עבור צעד האינדוקציה: נניח כעת שהטענה נכונה עבור כל מרחב־וקטורי שהינו ממימד V

ובך $V=igoplus_{i\in [\ell]}V_i$ עבורם $V_1,\dots,V_\ell\leq V$ לפי משפט תת־מרחבים תת־מרחבים ההרצאה, קיימים ת $i\in [\ell]$ הינו אי־פריד לכל וכל $T|_{V_i}$

מספר האיברים ב־ B_k הוא מספר הבלוקים מגודל בצורת ז'ורדן של T, שזהו מספר הערכים עבורם חספר האיברים ב־ $D:=\biguplus_{i\in[\ell]}D_i$ ועבור עבור בסיסים ל־ U_i ועבור עבור ביסיסים ל־ U_i

$$. [T]_D = \begin{pmatrix} [T|_{V_1}]_{D_1} & 0 & \cdots & \cdots & 0 \\ 0 & [T|_{V_2}]_{D_2} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & [T|_{V_{\ell-1}}]_{D_{\ell-1}} & 0 \\ 0 & \cdots & \cdots & 0 & [T|_{V_{\ell}}]_{D_{\ell}} \end{pmatrix}$$

לכל $d \in [k]$ לכל

$$N_d := \{i \in [k] \mid \dim_{\mathbb{F}} V_i = d\}$$

כיוון שלכל $T|_{V_i}$ יש צורת ז'ורדן, וכיוון שאלו אופרטורים אי־פרידים, קיימים וקטורים u_1,\ldots,u_{n_k} כך ע $i=u_1,\ldots,u_{n_k}$ מתקיים $i\in N_k$ מתקיים $i=u_1,\ldots,u_{n_k}$ של בסיסי ז'ורדן של המרחבים $i=u_1,\ldots,u_{n_k}$ מרחבים בסיסי ז'ורדן של המרחבים $i=u_1,\ldots,u_{n_k}$ ישר. לכן $i=u_1,\ldots,u_{n_k}$ של כן $i=u_1,\ldots,u_{n_k}$ אז $i=u_1,\ldots,u_{n_k}$ אז $i=u_1,\ldots,u_{n_k}$ אז $i=u_1,\ldots,u_{n_k}$ אז

$$\mathrm{Span}\left(B_{k}\right)=\mathrm{Span}\left(u_{1},\ldots,u_{n_{k}}\right)$$

ולכן

$$.\operatorname{Span}\left(\biguplus_{j\in[n_k]}C_{v_{k,j}}\right)=\operatorname{Span}\left(\biguplus_{j\in[n_k]}C_{u_j}\right)=\bigoplus_{i\in N_k}V_i$$

בעת, עבור כל i < k נגדיר

$$\tilde{B}_i \coloneqq P(B_i)$$

 $P\left(v_1,\ldots,v_m
ight)=(P\left(v_1
ight),\ldots,P\left(v_k
ight))$ באשר ק $\bigoplus_{i\in[\ell]}V_i$ במקביל ל־ $\bigoplus_{i\notin[\ell]}V_i$ במקביל ההטלה על ה $\tilde{B}_i=P\left(B_i
ight)$ בור כל קבוצה סדורה (v_1,\ldots,v_k). לפי למה 0.1 לפי

$$\ker(T^i) \setminus \ker(T^{i-1})$$

בהתאמה. אז לפי הנחת האינדוקציה

$$\biguplus_{i \in [k-1]} \tilde{B}_i = P\left(\biguplus_{i \in [k-1]} B_i\right)$$

,o.ו לפי למה אין, $T|_{igoplus_{i
otin N_k} V_i}$ בסיס ז'ורדן עבור

$$B = \biguplus_{i \in [k]} B_i$$

.Tעבור ז'ורדן עבור הינו בסיס איורדן עבור ,V