Bài tập phản ứng cháy của ancol

A. Phương pháp giải

$$C_n H_{2n+2-2k} O_x + \frac{3n+1-k-x}{2} O_2 \xrightarrow{t^0} nCO_2 + (n+1-k)H_2O$$

Lưu ý: Phản ứng đốt cháy của ancol có đặc điểm tương tự phản ứng đốt cháy hiđrocacbon tương ứng:

+ Nếu $n_{H,O} > n_{CO_2} \rightarrow$ Ancol no, mạch hở có công thức chung là $C_n H_{2n+2} O_x$

$$C_n H_{2n+2} O_x + \frac{3n+1-x}{2} O_2 \xrightarrow{t^o} nCO_2 + (n+1)H_2 O$$

$$n_{ancol no} = n_{H_2O} - n_{CO_2}$$

+ Nếu đốt cháy ancol cho n_{H_2O} > 1,5. n_{CO_2} thì ancol là CH₃OH. Chỉ có CH₄ và CH₃OH có tính chất này (không kể amin):

$$CH_3OH + \frac{3}{2}O_2 \xrightarrow{t^0} CO_2 + 2H_2O$$

+ Nếu đốt cháy ancol cho $\,n_{{\rm CO}_2}^{}\!=\,n_{{\rm H}_2{\rm O}}^{}\,$ thì ancol đó có dạng $C_n H_{2n} O_x^{}$

$$C_nH_{2n}O_x + \frac{3n-x}{2}O_2 \xrightarrow{t^0} nCO_2 + nH_2O$$

- Phương pháp: Áp dụng định luật bảo toàn nguyên tố, bảo toàn khối lượng. Bảo toàn nguyên tố O: $x.n_{ancol} + 2n_{O_2} = 2n_{CO_2} + n_{H_2O}$

B. Ví dụ minh họa

Ví dụ 1: Đốt cháy hoàn toàn m gam hỗn hợp 3 ancol đơn chức, thuộc cùng dãy dồng đẳng thu được 3,808 lít khí CO₂ (đktc) và 5,4 gam H₂O. Giá trị của m là:

A. 5,42

B. 5,72

C. 4,72

D. 7,42

Hướng dẫn giải

$$n_{CO_2} = \frac{3,808}{22,4} = 0,17 \text{ (mol)}$$

$$n_{H_2O} = \frac{5,4}{18} = 0,3 \text{ (mol)}$$

Ta thấy: $n_{H,O} > n_{CO_2} \rightarrow 3$ ancol là no, đơn chức, mạch hở

$$\rightarrow n_{\text{ancol}} = n_{\text{H,O}} - n_{\text{CO}_2} = 0.3 - 0.17 = 0.13 \text{ mol}$$

Đặt công thức chung của 3 ancol là $C_nH_{2n+2}O$

Ta có:
$$n_{O(ancol)} = n_{ancol} = 0,13 \text{ mol}$$

$$n_{C(ancol)} = n_{CO_2} = 0,17 \text{ mol}$$

$$n_{H(ancol)} = 2.n_{H_2O} = 2.0,3 = 0,6 \text{ mol}$$

$$m_{ancol} = m_O + m_C + m_H = 0,13.16 + 0,17.12 + 0,6.1 = 4,72 \text{ gam}$$

Đáp án 🧲

Ví dụ 2: Đốt cháy hoàn toàn 7,8 gam hỗn hợp A gồm 2 ancol no, mạch hở, đơn chức liên tiếp thì thu được 6,72 lít CO₂ (đktc). Công thức phân tử và % thể tích của chất có khối lượng phân tử lớn hơn trong hỗn hợp A là:

A. CH₄O; 50%.

B. C₂H₆O; 50%.

C. C₂H₆; 50%.

D. C₃H₈O; 40%

Hướng dẫn giải

$$n_{CO_2} = \frac{6,72}{22,4} = 0,3 \text{ mol}$$

Gọi công thức chung cho 2 ancol là $C_nH_{2n+2}O$

Bảo toàn nguyên tố C: $n_{CO_2} = n.n_{ancol} \rightarrow n_{ancol} = \frac{0.3}{n} \text{ mol}$

$$\rightarrow \frac{7.8}{14n + 18} = \frac{0.3}{n} \rightarrow n = 1.5$$

 \rightarrow 2 ancol là CH₄O (a mol) và C₂H₆O (b mol)

$$\begin{cases} a+2b=0,3\\ 32a+46b=7,8 \end{cases} \Leftrightarrow \begin{cases} a=0,1\\ b=0,1 \end{cases}$$

Đáp án B

Ví dụ 3: Đốt cháy hoàn toàn 0,2 mol một ancol X no, mạch hở cần vừa đủ 17,92 lít khí O_2 (ở đktc). Mặt khác, nếu cho 0,1 mol X tác dụng vừa đủ với m gam $Cu(OH)_2$ thì tạo thành dung dịch có màu xanh lam. Giá trị của m và tên gọi của X tương ứng là

A. 9,8 và propan-1,2-điol.

B. 4,9 và propan-1,2-điol.

C. 4,9 và propan-1,3-điol.

D. 4,9 và glixerol.

Hướng dẫn giải

Gọi công thức phân tử của ancol: $C_nH_{2n+2}O_a$ ($a \ge 2$ vì ancol hòa tan $Cu(OH)_2$)

$$C_n H_{2n+2} O_a + \frac{3n+1-a}{2} O_2 \xrightarrow{t^o} nCO_2 + (n+1)H_2O$$

$$n_{O_2} = \frac{3n+1-a}{2}.n_{ancol}$$

$$\Leftrightarrow$$
 0,8 = $\frac{3n+1-a}{2}$.0,2

$$\Leftrightarrow$$
 3n - a = 7

$$\rightarrow$$
 n = 3; a = 2

→ Ancol là CH₂OHCHOHCH₃

$$\rightarrow$$
 m = 98. $\frac{0,1}{2}$ = 4,9(g)

Đáp án B

C. Bài tập tự luyện

Câu 1: Đốt cháy hoàn toàn m gam ancol đơn chức A được 6,6 gam CO₂ và 3,6 gam H₂O. Giá trị m là

A. 3 gam.

B. 2,0 gam.

C. 2,8 gam.

D. 10,2 gam

Hướng dẫn giải

$$n_{CO_2} = \frac{6.6}{44} = 0.15 \text{ (mol)}$$

$$n_{H_2O} = \frac{3,6}{18} = 0,2 \text{ (mol)}$$

$$\rightarrow$$
 $n_{_{\text{H}_2\text{O}}} > n_{_{\text{CO}_2}} \rightarrow \text{ Ancol no}$

$$\rightarrow$$
 n_{ancol} = 0,2-0,15 = 0,05 mol

Vì ancol đơn chức nên ta có: $n_{O \text{ (ancol)}} = n_{ancol} = 0, 2 - 0, 15 = 0, 05 \text{ mol}$

$$m = m_C + m_H + m_O$$

 $\Leftrightarrow m = 0.15.12 + 0.2.2 + 0.05.16 = 3g$

Đáp án A

Câu 2: Có một hợp chất hữu cơ đơn chức Y, khi đốt cháy Y ta chỉ thu được CO₂ và H₂O với số mol như nhau và số mol oxi tiêu <mark>tốn</mark> gấp 4 lần số mol của Y. Biết rằng: Y làm mất màu dung dịch brom và khi Y cộng hợp hiđro thì được rượu no, đơn chức. Công thức cấu tạo mạch hở của Y là:

A.
$$CH_3 - CH_2 - OH$$

B.
$$CH_2 = CH - CH_2 - CH_2 - OH$$

C.
$$CH_3 - CH = CH - CH_2 - OH$$

D.
$$CH_2 = CH - CH_2 - OH$$
.

Hướng dẫn giải

Vì đốt Y tạo $n_{CO_2} = n_{H_2O}$, Y phản ứng với H_2 tạo ancol đơn chức \rightarrow Y có dạng

$$C_nH_{2n}O$$

Giả sử đốt 1 mol Y

$$C_{n}H_{2n}O + \frac{3n-1}{2}O_{2} \xrightarrow{t^{o}} nCO_{2} + nH_{2}O$$

$$1 \longrightarrow \frac{3n-1}{2}$$

$$\rightarrow$$
 n_{O₂} = 4 mol $\rightarrow \frac{3n-1}{2}$ = 4

$$\rightarrow$$
 n = 3

$$\rightarrow$$
 Y là $CH_2 = CHCH_2OH$

Đáp án D

Câu 3: Một ancol X tác dụng với Na dư thu được thể tích H_2 bằng thể tích hơi ancol X đã phản ứng. Đốt cháy hoàn toàn một thể tích hơi ancol X thu được không đến ba thể tích CO_2 (các thể tích đo ở cùng điều kiện). Vậy X là:

A. Ancol etylic

- B. Etylen glicol
- C. Ancol propylic
- D. Propan điol

Hướng dẫn giải

Một ancol X tác dụng với Na dư thu được thể tích H_2 bằng thể tích hơi ancol X đã phản ứng. Suy ra X có 2 nhóm OH trong phân tử.

Đốt cháy hoàn toàn một thể tích hơi ancol X thu được không đến ba thể tích CO₂ suy ra số C trong X không quá 3.

Mà X lại có 2 nhóm OH nên X chỉ có thể là CH₂OH-CH₂OH (etylen glicol) Đáp án B

Câu 4: Đốt cháy hoàn toàn hỗn hợp M gồm hai ancol X và Y là đồng đẳng kế tiếp của nhau, thu được 0,3 mol CO₂ và 0,425 mol H₂O. Mặt khác, cho 0,25 mol hỗn hợp M tác dụng với Na (dư), thu được chưa đến 0,15 mol H₂. Công thức phân tử của X, Y là:

A. $C_2H_6O_2$, $C_3H_8O_2$.

B. C_2H_6O , CH_4O .

 $C. C_3H_6O, C_4H_8O.$

D. C_2H_6O , C_3H_8O .

Hướng dẫn giải

Vì $n_{H_2O} > n_{CO_2} \rightarrow X$ và Y là hai ancol no, mạch hở.

Đặt công thức chung của hai 2 ancol là $C_nH_{2n+2}O_a$

$$C_nH_{2n+2}O_a + \frac{3n+1-a}{2}O_2 \xrightarrow{t^o} nCO_2 + (n+1)H_2O$$

Ta có:
$$\frac{n_{CO_2}}{n_{H_2O}} = \frac{n}{n+1} = \frac{0.3}{0.425} \Rightarrow n = 2.4$$

 \rightarrow Hai ancol đó là $C_2H_6O_a$ và $C_3H_8O_a$

Khi cho 0,25 mol M + Na dư thu được chưa đến 0,15 mol H₂

- → Hai ancol cần tìm là ancol đơn chức
- \rightarrow Hai ancol là C₂H₆O và C₃H₈O

Đáp án D

Câu 5: Đốt cháy một ancol đơn chức, mạch hở X thu được CO_2 và hơi nước theo tỉ lệ thể tích $V_{CO_2}:V_{H_2O}=4:5$. Công thức phân tử của X là

A. $C_4H_{10}O$

B. C_3H_6O .

 $C. C_3H_6O.$

D. C_2H_6O .

Hướng dẫn giải

Giả sử $n_{CO_2} = 4 \text{ mol}, n_{H_2O} = 5 \text{ mol}.$

Nhận thấy $n_{_{\mathrm{H}_{2}\mathrm{O}}} > n_{_{\mathrm{CO}_{2}}} \! \to \! \mathrm{Ancol}$ là ancol no, mạch hở

$$\rightarrow n_{ancol} = n_{H_2O} - n_{CO_2} = 5 - 4 = 1 \text{ mol}$$

$$ightarrow$$
 Số nguyên tử C của ancol là: số C = $\frac{n_{CO_2}}{n_{ancol}}$ = 4

ightarrow Công thức phân tử của ancol là $C_4H_{10}O$

Đáp án A

Câu 6: Cho hỗn hợp A gồm 1 rượu no, đơn chức và 1 rượu no 2 chức tác dụng với Na dư thu được 0,616 lít H_2 (đktc). Nếu đốt cháy hoàn toàn 1 lượng gấp đôi hỗn hợp A thì thu được 7,92 gam CO_2 và 4,5 gam H_2O . Công thức phân tử của mỗi rượu là A. C_2H_5OH và $C_3H_6(OH)_2$.

B. C₂H₄(OH)₂ và C₃H₇OH.

C. C_3H_5OH và $C_2H_4(OH)_2$.

D. CH_3OH và $C_3H_6(OH)_2$.

Hướng dẫn giải

Gọi <mark>công thức phân tử</mark> của rượu no đơn chức là $C_nH_{2n+2}O$ (x mol) và rượu no, 2 chức là $C_mH_{2m+2}O_2$ (y mol)

Ta có:
$$n_{H_2} = 0.5.n_{C_nH_{2n+2}O} + n_{C_mH_{2m+2}O_2} \Rightarrow 0.5x + y = 0.0275$$
 (1)

Đốt 1 lượng gấp đôi A thu được 0,18 mol CO₂ và 0,25 mol H₂O

Bảo toàn nguyên tố C:
$$n_{CO_2} = 2xn + 2ym = 0.18$$
 (2)

Bảo toàn nguyên tố H:
$$n_{H,O} = 2x(n+1) + 2y(m+1) = 0.25$$
 (3)

$$T\dot{u}(1), (2) v\dot{a}(3) \Rightarrow x = 0.015; y = 0.02 v\dot{a}(3) + 4m = 18$$

n	1	2	3	4	5
m	$\frac{15}{4}$ (loại)	3 (TM)	$\frac{9}{4}$ (loại)	$\frac{6}{4}$ (loại)	$\frac{3}{4}$ (loại)

 \rightarrow 2 ancol là C₂H₅OH và C₃H₆(OH)₂

Đáp án A

Câu 7: Cho biết X mạch hở. Đốt cháy a mol X thu được 4a mol CO₂ và 4a mol H₂O. Nếu cho a mol X tác dụng hết với Na thu được a mol H₂. Số công thức cấu tạo thỏa mãn của X là

- A. 5
- B. 3
- C. 2
- D. 4

Hướng dẫn giải

Ta có: Số C =
$$\frac{n_{CO_2}}{n_X} = \frac{4a}{a} = 4$$

Số H = $\frac{2n_{H_2O}}{n_X} = \frac{2.4a}{a} = 8$

 $\rightarrow X$ có công thức $C_4H_8O_x$

Cứ a mol X phản ứng với Na sinh ra $\frac{1}{a}$ mol $H_2 \rightarrow \frac{1}{a} = \frac{2n_{H_2}}{n_x} = \frac{2a}{a} = 2$

 \rightarrow X có công thức $C_4H_8O_2$ có số liên kết π + vòng = 1 Các đồng phân cấu tạo ancol đa chức, mạch hở của X là:

$$HO-CH_2-CH(OH)-CH=CH_2$$

$$CH_2OH - CH = CH - CH_2OH$$

$$CH_2 = C(CH_2OH) - CH_2OH$$

 \rightarrow X có 3 công thức cấu tạo thỏa mãn.

Đáp án B

Câu 8: Cho m gam hỗn hợp X gồm các ancol no, mạch hở, đồng đẳng của nhau cháy hoàn toàn trong O_2 thì thu được 0,5 mol CO_2 và 0,7 mol H_2O . Cùng m gam X tác dụng với Na dư thì thu được a gam muối. Giá trị của a có thể đạt được đến giá trị lớn nhất là:

- A. 10,6
- B. 13,8
- C. 15
- D. 22,6

Hướng dẫn giải

Ta có:
$$n_x = 0.7 - 0.5 = 0.2 \text{ mol}$$

Số nguyên tử $\overline{C} = \frac{0.5}{0.2} = 2.5 \rightarrow X$ gồm các ancol có tối đa 2 chức

Để lượng muối là tối đa thì lượng chức ancol cũng là tối đa \rightarrow Công thức chung của X là $C_{2,5}H_5(OH)_2$

$$C_{2,5}H_5(OH)_2 + 2Na \rightarrow C_{2,5}H_5(ONa)_2 + H_2$$

0,2 \rightarrow 0,2 (mol)

$$\rightarrow$$
 m _{muối} = 0,2.113 = 22,6 gam

Đáp án D

Câu 9: Cho 1 bình kín dung tích 16 lít chứa hỗn hợp X gồm 3 ancol đơn chức A, B, C và 13,44 gam O₂ (ở 109,2°C; 0,98 atm). Đốt cháy hết rượu rồi đưa nhiệt độ bình về 136,5°C thì áp suất trong bình lúc này là P. Cho tất cả sản phẩm lần lượt qua bình 1 đựng H₂SO₄ đặc, bình 2 đựng NaOH dư. Sau thí nghiệm thấy khối lượng bình 1 tăng 3,78 gam, bình 2 tăng 6,16 gam. Giá trị của P là

A. 1,512.

B. 1,186.

C. 1,322.

D. 2,016.

Hướng dẫn giải

Gọi <mark>công thức phân tử chung</mark> của A, B, C là C_nH_mO

$$n_{X} = \frac{PV}{RT} = 0.5 \text{ mol}$$

$$\rightarrow$$
n_{A,B,C} = 0,5 - $\frac{13,44}{32}$ = 0,08 (mol)

$$n_{H_2O} = \frac{3.78}{18} = 0.21 \text{mol}; n_{CO_2} = \frac{6.16}{44} = 0.14 \text{mol}$$

Ta có:
$$n_{O_2 pu} = n_{CO_2} + \frac{1}{2}n_{H_2O} - \frac{1}{2}n_{ancol} = 0,205 (mol)$$

$$\rightarrow$$
 n_{O₂ (du)} = 0,42 - 0,205 = 0,215 mol

 \rightarrow Tổng số mol khí sau phản ứng là: n = 0,215 + 0,14 + 0,21 = 0,565 mol

$$\rightarrow P = \frac{\text{nRT}}{\text{V}} = \frac{0,565.0,082.(136,5+273)}{16} = 1,186 \text{ atm}$$

Đáp án B

Câu 10: Cho hỗn hợp X gồm 6,4 gam ancol metylic và b (mol) 2 ancol A và B no, đơn chức liên tiếp. Chia X thành 2 phần bằng nhau.

Phần 1: Tác dụng hết với Na thu được 4,48 lít H₂ (đktc).

Phần2: Đốt cháy hoàn toàn rồi cho sản phẩm cháy lần lượt qua bình 1 đựng P_2O_5 , bình 2 đựng $Ba(OH)_2$ dư thấy khối lượng bình 1 tăng a gam, bình 2 tăng (a + 22,7) gam. Công thức phân tử của 2 ancol A và B là

A. C₂H₅OH và C₃H₇OH.

B. C₂H₅OH và C₄H₉OH.

C. C₃H₇OH và C₄H₉OH.

D. C₃H₅OH và C₄H₈OH.

Hướng dẫn giải

 \mathring{O} mỗi phần: $n_{CH_{3}OH} = 0.1 \text{ mol}$

Gọi công thức phân tử trung bình của 2 ancol A và B là $C_nH_{2n+2}O$

Tác dụng với Na: $n_{H_2} = 0.5.n_{CH_2OH} + 0.5.n_{2ancol} = 0.2 \text{ mol}$

$$\rightarrow$$
 n_{2 ancol} = 2.0, 2 - 0, 1 = 0,3 mol

Bảo toàn nguyên tố C: $n_{CO_2} = 0.1 + 0.3n$

Bảo toàn nguyên tố H: $n_{H,O} = 2.0,1 + (n+1).0,3$

Khối lượng bình 1 tăng là khối lượng H₂O, khối lượng bình 2 tăng là khối lượng CO₂

$$m_{binh 2} - m_{binh 1} = m_{CO_2} - m_{H_2O} = 22,7$$

$$\Leftrightarrow$$
 44.(0,1+0,3.n)+18.[2.0,1+(n+1).0,3]=22,7

$$\Leftrightarrow$$
 n = 3,5

 \rightarrow Công thức phân tử của 2 ancol là C₃H₇OH và C₄H₉OH

Đáp án C