Surface Integrals

Section 16.6, 16.7

Outline

- Parametric Surfaces
 - ▶ Tangent Planes
 - Surface Area
- Surface Integrals
 - Surface Integral of a Scalar Function
 - Oriented Surfaces
 - Surface Integrals of Vector Fields

Parametric Surfaces

- We can describe a surface by a vector function $\vec{r}(u,v)$ of two parameters u and v .
- We suppose that

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$
 is a vector-valued function defined on a region D in the uv -plane.

The set of the image of $\vec{r}(u,v)$ is called a parametric surface S and equations $\vec{r}(u,v)$ are called parametric equations of S.

Parametric Surfaces

There are two useful families of curves that lie on S, one family with u constant and the other with v constant. We call these curves \mathbf{grid} \mathbf{curves} .

Ex: Graphs of functions. Z=f(x,y), (x,y) & D.

sol:

Ex: Parametrize the surface
$$z = x^2 + 2y^2$$
 above the triangle
Ton the xy -plane with vertices $(0,0)$, $(1,2)$, $(0,2)$.

Ex: Parametrize the plane passing through $P = \vec{r}_0$ containing nonparallel vectors \vec{a} , \vec{b} .

sol:

Parametric Surfaces

- Example:
- Surfaces of revolution can be represented parametrically. For instance, let's consider the surface S obtained by rotating the curve $y=f(x), a \leq x \leq b$ about the x-axis, $f(x) \geq 0$ Let θ be the angle of rotation.
- If (x, y, z) is a point on S, then x = x $y = f(x) \cos \theta$ $z = f(x) \sin \theta$

Parametric Surfaces

Surfaces of Revolution

Ex: S is obtained by rotating the curve y=cosx, OSXE 2TT, about the x-axis. Parametrize S.

Sol:

(x cos x)

2π

2π

2π

Ex: Parametrize torus

Sol:

Ex:
$$\vec{r}(u,v) = 2\omega_0 u \vec{i} + v \vec{j} + 2\sin u \vec{k}$$
, $0 \le u \le \frac{\pi}{2}$, $0 \le v \le 2$.

Ex: Parametrize the come == 13/x2+y2, 0575/3.

Ex: Parametrize the surface $z=x^2$ in the first octant and under the paraboloid $z=1-8x^2-y^2$.

Ex: Parametrize the cylinder $x^2+y^2=1$ between z=0 and z=y+1. Parametrize the plane z=y+1 inside the cylinder $x^2+y^2=1$.

Ex: Parametrize the part of the cylinder $(x-1)^2 + y^2 = 1$ that is above the xy-plane and under $Z = [x^2 + y^2]$.

Soli

Tangent Planes

- We now find the tangent plane to a parametric surface S traced out by a vector function $\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$ at a point P_0 with position vector $\vec{r}(u_0,v_0)$.
- These are the tangent vectors of the grid curves at P_0 :

curves at
$$P_0$$
:
$$\vec{r}_u = \frac{\partial x}{\partial u}(u_0, v_0)\vec{i} + \frac{\partial y}{\partial u}(u_0, v_0)\vec{j} + \frac{\partial z}{\partial u}(u_0, v_0)\vec{k}$$

$$\vec{r}_v = \frac{\partial x}{\partial v}(u_0, v_0)\vec{i} + \frac{\partial y}{\partial v}(u_0, v_0)\vec{j} + \frac{\partial z}{\partial v}(u_0, v_0)\vec{k}$$

Tangent Planes

- If $\vec{r}_u \times \vec{r}_v$ is not $\vec{0}$, then the surface S is called **smooth** (it has no "corners").
- For a smooth surface, the **tangent plane** is the plane that contains the tangent vectors \vec{r}_u and \vec{r}_v , and the vector $\vec{r}_u \times \vec{r}_v$ is a normal vector to the tangent plane.

Ex: Find the tangent plane equation of the surface $F(r,0) = (r\cos\theta, r\sin\theta, r)$ at (1,0,1).

- ▶ To find the area of a parametric surface, we start by considering a surface whose parameter domain R is a rectangle, and we divide it into subrectangles R_{ij} . Let's choose (u_i^*, v_j^*) to be the lower left corner of R_{ij} .
- The part of S_{ij} the surface that corresponds to R_{ij} is called a *patch* and has the point P_{ij} with position vector $\vec{r}(u_i^*, v_j^*)$ as one of its corners.

Calculus 4

- Let $\vec{r^*}_u = \vec{r}_u(u_i^*, v_j^*)$ and $\vec{r^*}_v = \vec{r}_v(u_i^*, v_j^*)$ be the tangent vectors at P_{ij} .
- The two edges of the patch that meet at P_{ij} can be approximated by vectors $\Delta u \ \vec{r^*}_u$ and $\Delta v \ \vec{r^*}_v$.
- So we approximate S_{ij} by the parallelogram determined by the vectors $\Delta u \ \vec{r^*}_u$ and $\Delta v \ \vec{r^*}_v$.

i = 1, j = 1

- And the area of S_{ij} can be approximated by $|(\Delta u \ \vec{r^*}_u) \times (\Delta v \vec{r^*}_v)| = |\vec{r^*}_u \times \vec{r^*}_v| \Delta u \Delta v$
- So an approximation to the area of S is $\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} |\vec{r^*}_u \times \vec{r^*}_v| \Delta u \Delta v$
- After taking the limit as the partition becomes finer and finer, we have the area formula.

lacktriangleright Definition: If a smooth parametric surface S is given by the equation

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}, \quad (u,v) \in D$$
 and S is covered just once as (u,v) ranges throughout D , then the **surface area** of S is

$$A(S) = \iint_D |\vec{r}_u \times \vec{r}_v| \ dA$$

Ex: Find the area of the surface S: Z= f(x,y), (x,y) & D.

Sol:

For the special case of a surface S with equation z=f(x,y), where (x,y) lies in D and f has continuous partial derivatives, we take x and y as parameters. The parametric equations are x=x, y=y, and z=f(x,y). Then $|\vec{r}_x \times \vec{r}_y| = \sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}$

$$A(S) = \iint_D \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} dA$$

Ex: Find the area of the surface of revolution:

The curve y = f(x), $a \le x \le b$, $f(x) \ge 0$ is rotated about the x-axis. Sol: $r(x,0) = (x, f(x)\cos 0, f(x)\sin 0)$

Ex: Find the area of the torus where o<r<a.

sol:

Ex: Find the area of a sphere with radius a>o.

sol:

Ex: Find the area of the cylinder $(x-1)^2+y^2=1$ that is above the xy-plane and under $Z=[x^2+y^2]$.

508-