Emanuele Rosi

Two particles decay useful formulae

Suppose we have the decay process $B \to K + \pi$ with given masses. If, in the lab, we have the following four-momenta:

$$p_{\pi}^{\mu} = (E_{\pi}, \vec{p}_{\pi}) \qquad p_{K}^{\mu} = (E_{K}, \vec{p}_{K})$$

then the invariant mass is:

$$s = \eta_{\mu\nu} p_{tot}^{\mu} p_{tot}^{\nu} = m_{\pi}^2 + m_K^2 + 2\left(\sqrt{m_{\pi}^2 + p_{\pi}^2} \sqrt{m_K^2 + p_K^2} - p_{\pi} p_K \cos(\theta)\right)$$

If we apply a gaussian distribution (e.g., due to the resolution of the detector) to p_{π} and another one to p_{K} we have to consider these changes

$$p_{\pi} \rightarrow p_{\pi} + \delta p_{\pi}$$
 $p_{K} \rightarrow p_{K} + \delta p_{K}$

First, the two factor squared under the square roots: they bring only positive contributions to invariant mass of the system. Second, the other two factors multiplying $\cos(\theta)$: they bring both positive and negative factors. At the end, the mean of invariant mass under a sample of 10^4 events is switched to higher mass than m_B . For this reason this effect is called "smearing".