CN:

- 1. **Computer Network**: A computer network is a system that connects multiple computers or devices to share resources and communicate with each other.
- 2. **Types of Networks**: Common types of networks include LAN (Local Area Network), MAN (Metropolitan Area Network), WAN (Wide Area Network), PAN (Personal Area Network), and VPN (Virtual Private Network).
- 3. **LAN, MAN, and WAN**:
 - **LAN**: Covers a small geographical area, like a single building or campus.
 - **MAN**: Spans a city or large campus, linking multiple LANs.
 - **WAN**: Covers large geographical areas, connecting multiple LANs and MANs over long distances.
- 4. **Protocol**: A protocol is a set of rules and conventions that devices follow to communicate and transfer data over a network.
- 5. **Network Topology**: Network topology refers to the layout or arrangement of devices and cables in a network.
- 6. **Types of Topologies**: Common network topologies include star, bus, ring, mesh, and tree.
- 7. **Star Network Topology**:
 - **Advantages**: Easy to set up and manage; if one device fails, others remain unaffected.
 - **Disadvantages **: If the central hub fails, the whole network goes down.
- 8. **Bus Network Topology**:
 - **Advantages**: Easy to install and requires less cable.
- **Disadvantages**: Limited cable length and number of devices; difficult to troubleshoot if the main cable fails.

- 9. **Ring Network Topology**: In a ring topology, devices are connected in a circular fashion. Data travels in one direction, and each device has two neighbors, forming a continuous loop.
- 10. **Number of Cable Links for Six Devices**:
 - **Mesh**: Requires 15 cable links (each device connected to every other device).
 - **Ring**: Needs 6 cable links (each device connected to two neighbors in a loop).
 - **Bus**: Requires 1 main cable with 6 connections for each device.
 - **Star**: Needs 6 cable links (each device connected directly to a central hub).
- 11. **Types of Transmission Medium**: Transmission media can be classified into two main types: guided (wired) and unguided (wireless) media.
- 12. **Examples of Guided Transmission Media**: Examples include twisted pair cables, coaxial cables, and fiber optic cables.
- 13. **Examples of Unguided Transmission Media**: Examples include radio waves, microwaves, and infrared waves.
- 14. **Client-Server, Peer-to-Peer, and Hybrid Architecture**:
 - **Client-Server**: Centralized model where clients request resources from a dedicated server.
 - **Peer-to-Peer (P2P)**: Decentralized model where each device can act as both client and server.
 - **Hybrid**: Combines features of both client-server and peer-to-peer architectures.
- 15. **Different Network Devices**: Common network devices include routers, switches, bridges, hubs, access points, modems, and gateways.
- 16. **Router, Switch, Bridge, and Access Point**:
 - **Router**: Directs data packets between networks, connecting different IP networks.
- **Switch**: Connects devices within a LAN, using MAC addresses to forward data to the correct device.
 - **Bridge**: Connects two network segments, improving network efficiency.
 - **Access Point**: Provides wireless connectivity to devices within a network.

- 17. **Layers in OSI and TCP/IP Model**:
- **OSI Model**: Has 7 layers—Physical, Data Link, Network, Transport, Session, Presentation, and Application.
 - **TCP/IP Model**: Has 4 layers—Network Interface, Internet, Transport, and Application.
- 18. **Function of Each Layer**:
 - **Physical Layer**: Transmits raw bit streams over the physical medium.
 - **Data Link Layer**: Provides node-to-node data transfer, error detection, and correction.
 - **Network Layer**: Handles routing and forwarding of data across networks.
 - **Transport Layer**: Manages end-to-end data transfer and error recovery.
 - **Session Layer**: Establishes, manages, and terminates communication sessions.
 - **Presentation Layer**: Translates data formats and handles encryption/decryption.
 - **Application Layer**: Provides network services to end-users and applications.
- 19. **Unit of Communication at Each Layer**:
 - **Physical Layer**: Bits
 - **Data Link Layer**: Frames
 - **Network Layer**: Packets
 - **Transport Layer**: Segments (in TCP) or Datagrams (in UDP)
 - **Session, Presentation, and Application Layers**: Data
- 20. **Function of Data-Link Layer**: The Data Link Layer ensures reliable data transfer between adjacent network nodes, handling framing, MAC addressing, error detection, and flow control.
- 21. **Definitions**:
- **Flow Control**: A mechanism to regulate data transmission between sender and receiver, ensuring the receiver isn't overwhelmed with data.
- **Error Control**: A method to detect and correct errors in data transmission, ensuring data integrity.

- **Congestion Control**: A process to prevent network congestion by controlling the flow of data to maintain performance and avoid packet loss.
- 22. **Design Issues of Data-Link Layer**:
 - Framing: Dividing data into manageable frames for transmission.
 - Error Control: Detecting and correcting errors in frames.
 - Flow Control: Managing data rate to prevent the sender from overwhelming the receiver.
 - Link Management: Establishing, maintaining, and terminating links between nodes.
- 23. **Different Techniques to Framing**:
 - Character Count: Uses a field in the header to indicate frame length.
 - Byte Stuffing: Uses special characters to mark frame boundaries.
 - Bit Stuffing: Inserts extra bits to ensure unique bit patterns for frame boundaries.
 - Physical Layer Coding Violations: Uses specific signal patterns to indicate frame boundaries.
- 24. **CRC (Cyclic Redundancy Check)**: An error-detection technique that adds a calculated checksum to the frame. The receiver recalculates the checksum to check for errors.
- 25. **Hamming Code**: An error-correcting code that adds parity bits to data, allowing detection and correction of single-bit errors.
- 26. **Flow Control Protocols**: Flow control protocols manage the rate of data transmission between sender and receiver, ensuring the receiver has time to process data and preventing data overflow. Key flow control protocols include:
- **Simplex Protocol**: A basic protocol where data flows in only one direction, with no acknowledgment or flow control. It's suitable for simple applications where feedback isn't required.
- **Stop-and-Wait Protocol**: In this protocol, the sender transmits a frame and waits for an acknowledgment from the receiver before sending the next frame. It's simple but can be slow, as it waits for acknowledgment after each frame.

- **Sliding-Window Protocol**: This protocol allows multiple frames to be sent before requiring an acknowledgment. Both sender and receiver maintain a window that controls how many frames can be sent and received. This improves efficiency by allowing continuous data flow within the window limit.
- **Go-Back-N Protocol**: A type of sliding-window protocol where the sender can send multiple frames but must retransmit all frames from a lost or damaged frame onward. This ensures data integrity but can lead to retransmission of several frames.
- **Selective-Repeat Protocol**: Another sliding-window protocol where only the frames that were lost or corrupted are retransmitted. It's more efficient than Go-Back-N as it reduces redundant retransmissions and minimizes delays.
- 27. **Multiple Access Protocols**: These protocols allow multiple devices to share a single communication medium.
- **Pure ALOHA**: A simple protocol where devices transmit data whenever they want. Collisions occur, and any collided frames must be retransmitted, leading to potential inefficiency.
- **Slotted ALOHA**: An improvement over Pure ALOHA where time is divided into slots, and devices only transmit at the beginning of each slot. This reduces collisions and increases efficiency.
- **CSMA (Carrier Sense Multiple Access)**: Devices listen to the medium before transmitting to avoid collisions. If the medium is busy, they wait before attempting to send.
- **WDMA (Wavelength Division Multiple Access)**: Used in optical networks, this protocol assigns different wavelengths (or channels) to different devices for simultaneous data transmission.
- **CSMA/CD (Carrier Sense Multiple Access with Collision Detection)**: Used in wired networks, devices detect collisions while transmitting and stop if a collision is detected, waiting before retransmitting.
- **CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)**: Used in wireless networks, this protocol tries to avoid collisions by waiting and using mechanisms like acknowledgments to ensure data is successfully received.
- 28. **Function of the Network Layer**: The Network Layer is responsible for routing, forwarding, and addressing. It determines the best path for data to travel from the source to the destination across multiple networks.

- 29. **Different Network Layer Protocols**: Common network layer protocols include IP (Internet Protocol), ICMP (Internet Control Message Protocol), ARP (Address Resolution Protocol), RIP (Routing Information Protocol), and OSPF (Open Shortest Path First).
- 30. **IP Protocol**: The Internet Protocol (IP) is the primary protocol in the Network Layer for sending data packets between devices across networks, using IP addresses for routing.
- 31. **IP Address**: An IP address is a unique numerical identifier assigned to each device on a network, allowing it to be located and communicate with other devices.
- 32. **Length of IP Address**: IPv4 addresses are 32 bits long, while IPv6 addresses are 128 bits long.
- 33. **Address Space of IPv4**: The IPv4 address space is 2^32, providing approximately 4.3 billion unique addresses.
- 34. **Classes of IP Addresses**: IPv4 addresses are divided into five classes based on network and host portions—Class A, B, C, D, and E.
- 35. **IP Address Classes**:
 - **Class A**: 0.0.0.0 to 127.255.255, used for large networks.
 - **Class B**: 128.0.0.0 to 191.255.255.255, used for medium-sized networks.
 - **Class C**: 192.0.0.0 to 223.255.255, used for small networks.
 - **Class D**: 224.0.0.0 to 239.255.255, reserved for multicast.
 - **Class E**: 240.0.0.0 to 255.255.255, reserved for experimental purposes.
- 36. **NAT (Network Address Translation)**: NAT is a technique that allows multiple devices on a local network to share a single public IP address, helping to conserve IP addresses and improve security.
- 37. **Subnetting and Supernetting**:
- **Subnetting**: The process of dividing a large network into smaller subnetworks to improve management and efficiency.

- **Supernetting**: Combines multiple smaller networks into a larger one, usually to simplify routing and conserve address space.

38. **ARP, RARP, and ICMP**:

- **ARP (Address Resolution Protocol)**: Resolves an IP address to a MAC (physical) address, allowing data to be sent to the correct device on a local network.
- **RARP (Reverse Address Resolution Protocol)**: Converts a device's MAC address to an IP address, mainly used by devices that don't know their IP addresses when they boot up.
- **ICMP (Internet Control Message Protocol)**: Used for error reporting and diagnostics in network communication, such as sending error messages when packets cannot reach their destination.
- 39. **Routing**: Routing is the process of selecting the best path for data to travel from the source to the destination across a network.
- 40. **Routing Algorithms and Protocols**: Common routing algorithms include distance-vector, link-state, and path-vector. Protocols using these algorithms include RIP (Routing Information Protocol), OSPF (Open Shortest Path First), and BGP (Border Gateway Protocol).
- 41. **Distance-Vector Routing**: A routing method where each router shares its routing table with its neighbors, and routes are chosen based on the distance (hop count) to each destination.
- 42. **Link-State Routing**: Each router independently maps the entire network by sharing information about directly connected links with other routers, creating a global view for optimal routing paths.
- 43. **Path-Vector Routing**: A routing method that includes the path (sequence of routers) in the route advertisements, allowing the protocol to prevent loops and control path selection.

44. **Routing Protocols**:

- **RIP (Routing Information Protocol)**: A distance-vector protocol that uses hop count as the routing metric, with a maximum hop limit of 15.
- **OSPF (Open Shortest Path First)**: A link-state protocol that calculates the shortest path based on cost, commonly used in large enterprise networks.
- **BGP (Border Gateway Protocol)**: A path-vector protocol used for routing between autonomous systems on the internet, providing control over the path selection.

- 45. **Function of the Transport Layer**: The Transport Layer provides reliable process-to-process communication, data segmentation, error detection, and flow control, ensuring data is sent accurately and efficiently between applications.
- 46. **Process-to-Process Communication**: This is a direct communication between two applications (or processes) running on different devices, using unique identifiers like port numbers to facilitate the exchange.
- 47. **Port Number**: A port number is a unique identifier assigned to each process or service on a device, helping the Transport Layer distinguish between multiple applications.
- 48. **Categories of Port Numbers**:
- **Well-Known Ports**: Ranging from 0 to 1023, reserved for standard services like HTTP (80) and FTP (21).
 - **Registered Ports**: Ranging from 1024 to 49151, used by applications registered with the IANA.
- **Dynamic/Private Ports**: Ranging from 49152 to 65535, available for temporary use by client applications.
- 49. **Well-Known Port Numbers**: Port numbers from 0 to 1023, reserved for widely used services and protocols such as HTTP (80), HTTPS (443), FTP (21), and SMTP (25).
- 50. **Private/Ephemeral/Dynamic Port Numbers**: Port numbers from 49152 to 65535, assigned temporarily to client applications for short-term connections, often used by operating systems for automatic assignments.
- 51. **Registered Ports**: Port numbers from 1024 to 49151, used by specific applications and assigned by IANA for less common but recognized services and software.
- 52. **Different Transport Layer Protocols**: Common transport layer protocols include TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).
- 53. **UDP (User Datagram Protocol)**: UDP is a connectionless transport layer protocol that sends data without establishing a connection or guaranteeing delivery, suitable for applications needing fast, efficient data transfer.

- 54. **Services Provided by UDP**: UDP provides basic data transfer without error checking, flow control, or congestion control. It's used for real-time applications like video streaming, online gaming, and VoIP, where speed is more critical than reliability.
- 55. **TCP (Transmission Control Protocol)**: TCP is a connection-oriented protocol that ensures reliable data transfer, error checking, and in-sequence data delivery between sender and receiver.
- 56. **Services Provided by TCP**: TCP offers reliable communication through error detection, flow control, congestion control, ordered data transfer, and retransmission of lost packets.
- 57. **Flow Control, Error Control, and Congestion Control**:
- **Flow Control**: Manages data transmission rate between sender and receiver, preventing the receiver from being overwhelmed.
 - **Error Control**: Detects and corrects errors in data transmission, ensuring accurate delivery.
- **Congestion Control**: Prevents network congestion by managing the data flow rate, adapting to current network conditions.
- 58. **Connection in TCP**: TCP establishes a reliable connection between sender and receiver before data transfer, using a handshake process to set up the connection.
- 59. **Three-Way Handshaking Connection Establishment**: The three-way handshake is used to establish a TCP connection, consisting of three steps:
 - **SYN**: The client sends a SYN (synchronize) packet to initiate a connection.
- **SYN-ACK**: The server responds with a SYN-ACK (synchronize-acknowledgment) packet to acknowledge the request.
- **ACK**: The client sends an ACK (acknowledgment) packet to confirm the connection, completing the handshake.
- 60. **Three-Way Handshaking Connection Termination**: In TCP, the connection termination process also involves a handshake, with four steps:
 - **FIN**: The client sends a FIN (finish) packet to indicate it wants to terminate the connection.
 - **ACK**: The server acknowledges the FIN packet with an ACK.
 - **FIN**: The server then sends its own FIN packet to the client.

- **ACK**: The client sends a final ACK to confirm, after which the connection is fully closed.
- 61. **SCTP (Stream Control Transmission Protocol)**: SCTP is a transport layer protocol similar to TCP and UDP, providing reliable, ordered data delivery but supporting multiple streams within a single connection. It's often used in telecommunication applications due to its ability to prevent message blocking in multi-stream scenarios.
- 62. **Function of the Application Layer**: The application layer provides end-user services and enables applications to communicate over a network. It interfaces directly with software applications, facilitating functions like file transfers, email, remote login, and web browsing.
- 63. **Different Application Layer Protocols**: Common application layer protocols include HTTP (Hypertext Transfer Protocol), FTP (File Transfer Protocol), SMTP (Simple Mail Transfer Protocol), DNS (Domain Name System), and DHCP (Dynamic Host Configuration Protocol).
- 64. **Role of Protocol DHCP (Dynamic Host Configuration Protocol)**: DHCP assigns IP addresses and other network configuration parameters automatically to devices on a network, allowing them to communicate without manual configuration. It streamlines IP management and avoids address conflicts.
- 65. **Role of Protocol DNS (Domain Name System)**: DNS translates human-readable domain names (like www.example.com) into IP addresses. This allows users to access websites by name rather than remembering numerical IP addresses, serving as the "phone book" of the internet.
- 66. **Role of Protocol TELNET*: TELNET is a protocol used to provide remote access to a device over a network. It allows users to log in to a remote system and execute commands, but it transmits data (including passwords) in plaintext, making it insecure for modern use.
- 67. **Role of Protocol FTP**: FTP (File Transfer Protocol) is used for transferring files between a client and a server over a network. It supports both uploading and downloading files, and can be used for managing files on remote systems. However, it is not encrypted by default, making it insecure.
- 68. **Role of Protocol HTTP**: HTTP (Hypertext Transfer Protocol) is used for transmitting web pages on the internet. It is a request-response protocol where clients (browsers) request web pages from servers and receive responses in the form of HTML content.
- 69. **Role of Protocol SMTP, POP3, IMAP4, and MIME**:

- **SMTP (Simple Mail Transfer Protocol)**: Used for sending email messages between mail servers.
- **POP3 (Post Office Protocol version 3)**: Used to retrieve emails from a mail server and download them to a client. It deletes messages from the server after download.
- **IMAP4 (Internet Message Access Protocol version 4)**: Similar to POP3, but allows messages to be stored on the server and accessed from multiple devices without being deleted.
- **MIME (Multipurpose Internet Mail Extensions)**: Extends email protocols (like SMTP) to support multimedia content (images, audio, video) and attachments.
- 70. **Role of Protocol SNMP (Simple Network Management Protocol)**: SNMP is used for managing and monitoring network devices like routers, switches, and servers. It allows administrators to collect performance data, configure devices, and get alerts on network issues.
- 71. **Security Goals**: The primary security goals in a network are:
 - **Confidentiality**: Ensuring that information is only accessible to authorized users.
 - **Integrity**: Ensuring that information is not altered or tampered with during transmission.
 - **Availability**: Ensuring that information and resources are accessible when needed.
- 72. **Confidentiality, Integrity, and Availability**:
 - **Confidentiality**: Protecting data from unauthorized access (e.g., encryption).
 - **Integrity**: Ensuring that data is not tampered with during transmission (e.g., hashing).
- **Availability**: Ensuring that systems and data are accessible when needed, typically through redundancy and failover mechanisms.
- 73. **Different Security Attacks**: Common security attacks include:
 - **Denial of Service (DoS)**: Overloading a system to make it unavailable.
 - **Man-in-the-Middle (MitM)**: Intercepting and altering communication between two parties.
 - **Phishing**: Tricking individuals into providing sensitive information.
 - **SQL Injection**: Inserting malicious SQL code into a web application's database.
 - **Malware**: Malicious software that damages or disrupts systems.

- 74. **Symmetric-Key Cryptography**: Symmetric-key cryptography uses the same secret key for both encryption and decryption. It is fast but requires secure key distribution, as both parties must have the same key.
- 75. **Asymmetric-Key Cryptography**: Asymmetric-key cryptography uses a pair of keys—one public key for encryption and a corresponding private key for decryption. This eliminates the need for key sharing, but it is slower than symmetric-key cryptography.
- 76. **Difference Between Symmetric-Key and Asymmetric-Key Cryptography**:
- **Symmetric-Key Cryptography**: Uses a single key for both encryption and decryption; faster but requires secure key distribution.
- **Asymmetric-Key Cryptography**: Uses a pair of keys (public and private); slower but more secure for key exchange and does not require sharing the private key.
- 77. **How IPSec Provides Security at the Network Layer**: IPSec (Internet Protocol Security) secures IP communications by encrypting and authenticating each IP packet in a communication session. It provides confidentiality, integrity, and authentication, operating at the network layer to protect data traveling between devices on a network.
- 78. **Purpose of a Firewall and How It Protects a Network**: A firewall is a network security system that monitors and controls incoming and outgoing network traffic based on predefined security rules. It protects a network by blocking unauthorized access while allowing legitimate communication.

79. **SSL and HTTPS**:

- **SSL (Secure Sockets Layer)**: A protocol that provides encryption and authentication for secure communication over a network.
- **HTTPS (Hypertext Transfer Protocol Secure)**: An extension of HTTP that uses SSL/TLS encryption to secure web traffic, ensuring privacy and data integrity between web servers and browsers.
- 80. **Security in Network, Transport, and Application**:
- **Network Security**: Focuses on protecting the integrity, confidentiality, and availability of data and resources as they are transmitted across or accessed from networks. Includes techniques like encryption, firewalls, and VPNs.

- **Transport Security**: Ensures secure communication between end systems on a network, such as using SSL/TLS for encrypting data over TCP connections (HTTPS).
- **Application Security**: Involves securing the software and services running on systems to prevent attacks like SQL injection, cross-site scripting (XSS), and ensuring that sensitive data is protected within the application itself.