«Поволжская электротехническая компания»

МЕХАНИЗМ СИГНАЛИЗАЦИИ ПОЛОЖЕНИЯ

МСП

Руководство по эксплуатации ВЗИС.421321.052 РЭ

OOO «Поволжская электротехническая компания»

Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

Электронный адрес E-mail: info@piek.ru Caйт: www.piek.ru

Cc	одержание	тр
1.	Описание и работа механизмов	4
1.1	Назначение механизмов	4
1.2	Технические характеристики	4
1.3	Состав, устройство и работа механизма	5
1.4	Маркировка	5
1.5	Меры безопасности	5
2.	Использование механизмов	6
2.1	Подготовка механизмов к использованию	6
2.2	Порядок работы	. 7
3	Описание и работа блока сигнализации положения	. 7
3.1	Назначение блока	. 6
3.2	Технические характеристики блока	. 6
	Состав, устройство и работа блока	
3.4	Настройка микровыключателей БКВ	. 7
3.5	Настройка положения валика оси резистора	8
	Настройка НП	
4.	Техническое обслуживание	8
4.1	Возможные неисправности и способы их устранения	9
5.	Правила хранения и транспортирования	
6.	Утилизация	10

Приложения:

- А Общий вид, габаритные и присоединительные размеры механизма МСП
- Б Схемы электрические принципиальные механизмов МСП
- Г Общий вид блока сигнализации положения
- Д Схемы проверки механизма МСП

вниманию потребителей!

Предприятие непрерывно проводит работы по совершенствованию конструкции механизмов, поэтому некоторые конструктивные изменения в руководстве могут быть не отражены.

Руководство по эксплуатации (далее РЭ) предназначено для ознакомления потребителя с механизмом сигнализации положения МСП (далее механизм) и содержит описание устройства, принципе работы, а также технические характеристики и другие сведения, необходимые для правильного транспортирования, хранения и эксплуатации механизма.

Работы по монтажу, регулировке и пуску механизмов разрешается выполнять лицам, имеющим допуск к эксплуатации электроустановок напряжением до 1000 V.

Во избежание поражения электрическим током при эксплуатации механизма должны быть осуществлены меры безопасности, изложенные в разделе 1.5 «Меры безопасности».

1. ОПИСАНИЕ И РАБОТА МЕХАНИЗМОВ

1.1. Назначение механизмов

Механизмы сигнализации положения МСП предназначены для комплектации регулирующей арматуры со встроенным приводом.

Область применения: системы автоматического регулирования технологических процессов в энергетической и других отраслях промышленности.

Механизмы серийно изготавливаются в следующих климатических условиях по ГОСТ 15150-69. Климатическое исполнение «У», категория размешения «2»:

- температура окружающего воздуха от минус 40 до плюс 50^{0} C;
- относительная влажность окружающего воздуха до 95% при температуре 35^0 С и более низких температурах без конденсации влаги.

Климатическое исполнение «Т», категория размещения «2»:

- температура окружающего воздуха от минус 10 до плюс 50^{0} C;
- относительная влажность окружающего воздуха до 100% при температуре 35^{0} С и более низких температурах с конденсацией влаги.

Степень защиты механизмов IP54 по ГОСТ 14254-2015 обеспечивает работу механизма при наличии в окружающей среде пыли и брызг воды.

Механизмы не предназначены для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов, и во взрывоопасных средах.

1.2 .Технические характеристики

Механизм изготавливается в исполнениях, приведенных в таблице 1.

Электрическое питание механизма – однофазная сеть переменного тока с номинальным напряжением 220V частотой 50 Hz.

Допустимые отклонения напряжения питания от номинального в пределах от минус 15 до плюс 10%, частоты питания – от минус 2 до плюс 2%.

Таблица 1

Механизм Полный ход входного вала, обороты		Масса, не более, kg
МСП-1-1	35	
МСП-1-2; МСП-1-5	18,5	2,5
МСП-1-3; МСП-1-6	7,5	
МСП-1-4	0,63	3,8
МСП-94	44	
МСП-94-240	240	4,0
МСП-94-720	720	
МСП-94-180	180	
МСП-94-100	100	

По желанию заказчика изготавливаются МСП и с другим передаточным числом. Примечание.

Значению полного хода входного вала, указанному в таблице 1, соответствует поворот профильного кулачка токового датчика механизма на 225⁰ (работа на профиле 0-225⁰).

Предусмотрена возможность уменьшения полного хода входного вала в 2,5 раза (работа на профиле 0-90°).

Дифференциальный ход микровыключателей не более 4% от полного хода механизма.

Разрывная мощность контактов микровыключателей 30 VA при переменном напряжении до 220V частоты 50 Hz.

Мощность, потребляемая механизмом, не более 9 VA.

Средний срок службы 15 лет.

1.3 Состав, устройство и работа механизма

Механизм состоит (приложение A): редуктора, блока сигнализации положения, блока питания БП-20 (при заказе с блоком БСПТ-10AK).

Редуктор предназначен для приведения полного хода входного вала к полному ходу блока датчика. Редуктор размещен в корпусе из алюминиевого сплава. Набор цилиндрических шестерен размещен под основанием блока сигнализации положения.

Механизмы изготавливаются с одним из следующих блоков сигнализации положения:

- блок концевых выключателей БКВ;
- токовым БСПТ-10АК с унифицированными сигналами 4-20 mA;
- реостатным БСПР-10АК.

Подвод цепей питания и выходных сигналов осуществляется через кабельный ввод, расположенный на корпусе редуктора. Кабельный ввод имеет два сальникового ввода.

Для заземления корпуса механизма предусмотрен наружный зажим заземления с требованиями по ГОСТ 21130-75.

1.4 Маркировка механизма

- **1.4.1** Маркировка механизма соответствует ТР ТС 010-2011, ГОСТ 18620-86.
- 1.4.2 Механизм имеет табличку, на которой нанесены следующие данные:
- товарный знак предприятия изготовителя;
 - условное обозначение механизма:
 - номинальное напряжение питания, V;
 - частота напряжения питания, Нz;
 - надпись «Сделано в России» на русском языке;
 - номер механизма по системе нумерации предприятия изготовителя;
 - год изготовления;
- изображение единого знака обращения продукции на рынке государств членов Таможенного союза.
- **1.4.3** На корпусе механизма рядом с заземляющем зажимом нанесен знак заземления. Рельеф знака заземления покрыт эмалью красного цвета.

1.5. Меры безопасности

- 1.5.1. В процессе технического обслуживания должны выполняться следующие меры безопасности:
- монтаж, настройку и регулировку механизма разрешается проводить лицам, имеющим специальную подготовку и допуск к эксплуатации электроустановок напряжением до 1000 V и ознакомленным с настоящим руководством по эксплуатации.
- корпус механизма должен быть заземлен, а место подсоединения проводника должно быть защищено от коррозии нанесением слоя консистентной смазки.
- монтаж механизма проводить при отключенном напряжении питания. На щите управления необходимо укрепить табличку с надписью «Не включать работают люди!».
 - работы с механизмом производить только исправным инструментом.
- если при проверке на какие-либо цепи механизма подается напряжение, то не следует касаться токоведущих частей
- 1.5.2. Соблюдение мероприятий по технике безопасности и ремонт механизмов должны производиться в полном соответствии с требованиями «Правил технической эксплуатации электроустановок потребителей» (ПТЭ).
- 1.5.3. При эксплуатации механизмов должно поддерживаться их работоспособное состояние.

Эксплуатация механизмов с поврежденными деталями и другими неисправностями категорически запрещается: детали заменить или все изделие отправить на ремонт

2 ИСПОЛЬЗОВАНИЕ МЕХАНИЗМОВ

2.1 Подготовка механизмов к использованию

При получении механизмов следует убедиться в полной сохранности тары. Распаковать тару, осмотреть механизм и убедиться в отсутствии внешних повреждений. Наружные поверхности механизма, а также его частей не должны иметь дефектов, ухудшающих эксплуатационные свойства или внешних вид механизма.

Перед установкой на объект механизм должен быть проверен в лаборатории по схеме приложения Д (Рисунок Д.2)

Включить напряжение питания. Перемещать входной вал. Убедиться в том, что выходной сигнал изменяется от начального до максимального значения.

Схемы электрические принципиальные механизма приведены в приложении Б.

Подключая поочередно омметр к контактам микровыключателей убедиться в том, что при перемещении входного вала микровыключатели четко срабатывают.

При размещении и монтаже механизма на регулирующей арматуре линии подключения механизма должны быть пространственно удалены от проводов питания электродвигателей привода и других силовых линий. Подключение к выходным цепям токового датчика должно быть выполнено отдельным кабелем.

Провести монтаж механизма на арматуре.

Соединить зажим заземления механизма с заземляющим устройством медным проводом сечением не менее 4 mm². Место присоединения заземляющего проводника должно быть тщательно зачищено. Для предохранения от коррозии нанести слой консистентной смазки.

Подключение внешних электрических цепей к механизму осуществляется через сальниковый ввод многожильным круглым гибким кабелем диаметром от 4 до 8 mm и сечением проводников каждой жилы должно быть в пределах от 0,35 до 0,5 mm². При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.

Для этого необходимо открутить гайку сальникового ввода, пропустить провод через цанговый зажим. Подсоединить провод к клеммному блоку. Закрутить гайку сальникового ввода.

Провода, идущие к датчику блока сигнализации положения должны быть пространственно разделены от силовых сетей и экранированы. Сопротивление каждого провода линии связи между механизмом и блоком питания должны быть не более $12~\Omega$. Проверить мегаомметром сопротивление изоляции электрических цепей, значение которого должно быть не менее $20~M\Omega$, и сопротивление заземляющего устройства, к которому подсоединен механизм, значении должно быть не более $10~\Omega$.

2.2 Порядок работы

Регулирование и настройку механизма, установленного на регулирующем органе производить следующим образом:

- для ввода механизма в действие на месте эксплуатации необходимо произвести его настройку и регулировку в следующей последовательности:
 - снять крышку 4 (приложение А);
- установить регулирующий орган в начальное положение (положение регулирующего органа «ЗАКРЫТО»);
 - произвести настройку блока сигнализации положения (см. раздел 3 руководства). На блоке БСП совместить указатель положения 2 (Приложение Г) со смотровым стеклом на крышке в положение «ЗАКРЫТО» (в прозрачных частях крышки на плоской поверхности надпись «ЗАКРЫТО» расположена в секторе красного цвета);
- произвести настройку в конечном положении регулирующего органа «ОТКРЫТО». На блоке БСП указатель положения соответственно установиться в положение «ОТКРЫТО» (в прозрачных частях крышки на плоской поверхности надпись «ОТКРЫТО» расположена в секторе зеленого цвета) и закрепить винтом 1.
 - аналогично настроить два кулачка для срабатывания выключателей в промежуточных положениях;
- пробным включением проверить работоспособность механизма и правильность настройки блока сигнализации положения.

3 ОПИСАНИЕ И РАБОТА БЛОКА СИГНАЛИЗАЦИИ ПОЛОЖЕНИЯ

3.1 Назначение блока

В механизмах может быть установлен один из блоков согласно таблице 2. Таблица 2

Наименование блока	Состав
Блок концевых выключателей БКВ	Четыре микровыключателя
Блок сигнализации положения реостатный БСПР-10АК	Четыре микровыключателя и реостатный датчик.
Блок сигнализации положения токовый БСПТ-10AK1	Четыре микровыключателя и токовый датчик. Блок питания БП-20 установлен в корпусе механизма

3.2 Технические характеристики блока

Блоки БСПТ-10АК1 или БКВ содержат четыре микровыключателя SA1...SA4: SA1, SA3 – промежуточные микровыключатели соответственно закрытия и открытия; SA2, SA4 конечные микровыключатели соответственно закрытия и открытия.

3.2.1 Технические характеристики входных и выходных сигналов БСП приведены в таблице 3. Таблица 3

Условное	Дифферен-	Входной	Выходной	Нелинейность	Гистерезис
обозначение	циальный	сигнал-угол	сигнал, тА	выходного	(вариация)
блока	ход,.°(%),	поворота вала		сигнала, %*	выходного
	не более	(ход вала),0(R)			сигнала,
					%, не более*
БСПТ-10АК		0-90° (0-0,25)	0-5; 0-20; 4-20	1,5	1,5
БСПР-10АК	3	0-225° (0-0,63)	0-3.3 k Ω		
БКВ			-	-	-
* Параметры «нелинейность» и «гистерезис» даны от максимального значения выходного сигнала.					

- 3.2.2~ Выходной сигнал блока БСПТ-10АК 4-20~mA при нагрузке до $500~\Omega$ с учетом сопротивления каждого провода линии связи. Длина линии связи для токового сигнала и цепи питания до 1000~m.
- 3.2.3 Мощность, потребляемая блоком БСПТ-10АК от питающей сети не более 2,5 W, питание платы НП осуществляется постоянным напряжением 24 V.

Для питания блока БСПТ-10АК от сети переменного тока напряжением 220 V частотой 50 Hz используется блок питания БП-20 (далее – блок БП-20).

- 3.2.4 Тип и параметры реостатного элемента:
- для блока БСПТ-10AK1 резистор R12P -3 kΩ.
- для блока БСПР-10АК резистор R12P 3 k Ω . Напряжение питания не должно превышать 22 V постоянного или переменного тока.

Величина тока, проходящего через подвижный контакт резистора не должна превышать 1mA.

- 3.2.5 Микровыключатели допускают коммутацию:
- при постоянном напряжении 24 или 48 V от 5 mA до 1 A;
- при переменном напряжении 220 V частоты 50 Hz от 20 mA до 0,5 A.

ВНИМАНИЕ! Согласно нормативному документу «Микровыключатели. Правила выбора, установки и эксплуатации» не допускается в процессе работы микровыключателя изменение нагрузки с большей на меньшую.

3.3 Состав, устройство и работа блока

Блок состоит из следующих основных узлов (приложение Г): платы, на которой размещены клеммные разъемы X2, X3, предназначенные для подключения внешнего кабеля питания и кабеля сигнализации, указателя положения выходного вала, и нормирующего преобразователя (НП) для преобразования положения выходного органа в пропорциональный электрический сигнал.

Разъемы X2, X3 состоят из двух частей – колодки припаянной к плате и винтового клеммника позволяющего производить подключение кабелей отдельно от механизма. К клеммной колодке на плате, припаяны вывода контактов микровыключателей, нормирующего преобразователя и резистора.

Указатель положения 2 крепится к прижимному винту 13 винтом 1.

На плате 14 закреплены четыре микровыключателя (SA1, SA2, SA3, SA4) с контактами 12. Микровыключатели предназначены для сигнализации перемещения выходного вала исполнительного механизма в крайних и промежуточных положений выходного органа.

На выходном валу 11 при помощи прижимного винта 13, прижима 3, пружины 4 закреплены кулачки 5-1; 5-2; 6-1; 6-2. Кулачки при повороте вала 11 нажимают на контакты микровыключателей 12, вызывая их срабатывание. Кулачки могут быть установлены на заданный поворот вала.

Для преобразования углового перемещения выходного вала в пропорциональный электрический сигнал предназначен резистор R1, закрепленный на плате 14.

Валик резистора кинематически связан с валом 11 через зубчатое колесо 9 и шестерню 10.

Зубчатое колесо 9 и кулачки закреплены на валу 11 через промежуточные шайбы позволяющие производить настройку положений независимо друг от друга.

НП преобразует омический сигнал резистора в токовый 4-20mA.

На плате установлен переключатель S1, с помощью которого можно переключать направление изменения выходного сигнала.

С помощью подстроечных резисторов R2 (100%) и R3(0%) устанавливается величина диапазона выходного сигнала 4-20 mA.

3.4 Настройка микровыключателей БКВ.

Для обеспечения срабатывания микровыключателей на заданном угле поворота вала установить рабочий орган механизма в положение «ЗАКРЫТО» (приложение Γ), ослабить прижим 3 кулачков с помощью прижимного винта 13 (открутив на 1-2 оборота). Переместить кулачок 5-2 воздействующего на контакт микровыключателя SA1 по часовой стрелке до нажатия на наклонную часть плеча контакта 12, вызывая срабатывание микровыключателя SA1.

Аналогично в положение «ЗАКРЫТО» или промежуточное положение настраиваем микровыключатель SA2 с помощью кулачка 5-1. Затянуть прижим 3 с помощью прижимного винта 1.

При вращении вала по часовой стрелке взаимодействуют пары:

- микровыключатель SA1 кулачок 5-2 (промежуточный);
- микровыключатель SA2 кулачок 5-1 (конечный).

Установить рабочий орган механизма в положение «ОТКРЫТО» (приложение Γ) ослабить прижим 3 кулачков с помощью прижимного винта 1 (открутив на 1-2 оборота). Переместить кулачок 6-2 воздействующего на контакт микровылючателя SA3 против часовой стрелки до нажатия на наклонную часть плеча контакта 12, вызывая срабатывание микровыключателя SA3.

Аналогично в положение «ОТКРЫТО» или промежуточное положение настраиваем микровыключатель SA4 с помощью кулачка 6-1. Затянуть прижим 3 с помощью прижимного винта 1.

При вращении вала против часовой стрелке взаимодействуют пары:

- микровыключатель SA3 кулачок 6-1 (промежуточный);
- микровыключатель SA4 кулачок 6-2 (конечный).

По окончании настройки:

- убедиться, что прижимной винт 1 затянут;
- проверить правильность настройки микровыключателей и выходного сигнала, переместив рабочий орган из положения «ОТКРЫТО» в положение «ЗАКРЫТО».

Микровыключатели SA2 и SA4 предназначены для блокирования в крайних положениях вала 11, а микровыключатели SA1 и SA3 предназначены для сигнализации промежуточных положений вала. Рекомендуется конечные выключатели настраивать не доходя рабочим органом механизма или арматуры 3-5 % до механического упора.

3.5. Настройка положения валика оси резистора.

В блоке БСПТ-10АК произвести подключение по схеме (приложение Д). К разъему X1 контактам 1 и 2 подать питание ~ 220 V, а к разъему X3 контактам 1 и 2 подключить прибор для измерения тока.

Выставить рабочий орган в положение «ЗАКРЫТО». Включить напряжение питания. Отвернуть прижимной винт 1 на 1 -2 оборота (приложение Г). Поворачивая зубчатое колесо 9 вращаем шестерню резистора 10, устанавливаем минимальное значение тока, но не менее 3 mA. Закрутив прижимной винт 1, переводим рабочий орган в положение «ОТКРЫТО». При этом значение тока измеряемого по прибору должно увеличиваться. Если при движении рабочего органа до положения «ОТКРЫТО», ток резко увеличивается ориентировочно в пределах (16-20) mA, то контакт резистора сходит с «дорожки».

Необходимо:

- установить рабочий орган в положение «ЗАКРЫТО»;
- поворачивая колесо 9 устанавливаем в этом положении максимальное значение тока (16-20) mA;

- переключаем тумблер SA в противоположное положение, при этом значение выходного тока уменьшиться до (2-4) mA;

- проверяем значение выходного тока переводя рабочий орган в положение «ОТКРЫТО».

3.6 Настройка НП

Для настройки выходного сигнала в диапазоне (4-20) mA установить рабочий орган в положение «ЗАКРЫТО». Резистором R3 (0%) установить выходной сигнал равным (4 \pm 0,2) mA. Переместить рабочий орган в положение «ОТКРЫТО» и установить резистором R5 (100%) выходной сигнал равным (20 \pm 0,2) mA. Вернувшись в положение «ЗАКРЫТО» убедиться, что сигнал находится в пределах (4 \pm 0,3) mA, при необходимости повторить настройку диапазона.

При необходимости настройки выходного сигнала по убывающей характеристике 20-4mA или 5-0 mA необходимо переключатель SA установить в противоположное положение. Настройку НП производить начиная с положения «ОТКРЫТО». Резистором R3 (0%) установить выходной сигнал равным ($20\pm0,2$) mA. Переместить рабочий орган в положение «ЗАКРЫТО» и установить резистором R2 (100%) выходной сигнал равным ($4\pm0,1$) mA. Вернувшись в положение «ОТКРЫТО» убедиться, что сигнал находится в пределах ($4\pm0,3$) mA, при необходимости повторить настройку диапазона.

Рекомендации по настройке:

- для удобства настройки в начале выставляют кулачки 5-1 и 5-2 воздействующие на контакты микровыключателей SA1 и SA2.
- входной сигнал 90° . Для удобства настройки конструкция выполнена так, что подвижный контакт резистора находится на «дорожке» при повороте вала блока не менее чем на 105° , т.е имеется запас хода резистора.

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Периодичность профилактических осмотров механизмов устанавливается в зависимости от производственных условий, но не реже чем через год, а блока сигнализации положения через каждые 6 месяцев. При профилактическом осмотре необходимо производить следующие работы:

- после отключения механизма от источника питания очистить наружные поверхности механизма от грязи и пыли;
 - проверить затяжку всех крепежных болтов, болты должны быть равномерно затянуты;
- проверить состояние заземляющего устройства, в случае необходимости (при наличии ржавчины), заземляющие элементы должны быть очищены и после затяжки болта заземления вновь покрыты консистентной смазкой;
- проверить уплотнение сальникового ввода. При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.
- проверить настройку блока сигнализации положения, в случае необходимости произвести его подрегулировку.

Через пять лет эксплуатации необходимо произвести разборку, осмотр и замену старой смазки. Для этого механизм необходимо отсоединить от источника питания, снять с места установки и последующие работы производить в мастерской.

Разобрать редуктор механизма и удалить старую смазку с его деталей.

Собрать редуктор, предварительно смазав подшипники и поверхности трения подвижных частей смазкой ЦИАТИМ -203.

4.1 Возможные неисправности и способы их устранения

Перечень возможных неисправностей, вероятные причины их возникновения, способы устранения приведены в таблице 4

Таблица 4

Неисправность	Вероятная причина	Способ устранения
Выходной сигнал при повороте вала:		
- не изменяется и равен нулю;	Неисправен блок питания	Заменить плату блока питания
- не изменяется;	Неисправен датчик, не настроен блок датчика	Заменить датчик или настроить блок датчика
Не срабатывает микровыключатель.	Неисправность микровыключателя.	Заменить микровыключатель.

5 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- **5.1** Механизмы должны транспортироваться в упаковке предприятия изготовителя в крытых вагонах, универсальных контейнерах, крытых машинах, в трюмах речных судов и авиационным транспортом (в герметизированных отапливаемых отсеках) при условии хранения «5» климатического исполнения «УХЛ1» или «6» климатического исполнения «Т2» по ГОСТ 15150-69, но при атмосферном давлении не ниже 36,6 кПа и температуре не ниже минус 50°С, или условия хранения 3 при морских перевозках в трюмах. Время транспортирования не более 45 суток. Механизмы транспортируются в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта.
- **5.2** Во время погрузочно-разгрузочных работ и транспортирования, упакованные механизмы не должны подвергаться резким ударам и воздействию атмосферных осадков. Способ укладки механизмов на транспортное средство должен исключить их самопроизвольное перемещение.
- **5.3** Срок хранения механизма в неповрежденной упаковке предприятия- изготовителя не более 12 месяцев с момента изготовления.
 - 5.4 Условия хранения механизмов в упаковке по группе 3 или 5 по ГОСТ 15150-69.

6. УТИЛИЗАЦИЯ

Механизм не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем механизм.

Приложение А (обязательное)

Общий вид, габаритные и присоединительные размеры механизма МСП

1– редуктор, 2– блок сигнализации положения, 3–крышка, 4– фланец, 5– сальниковый ввод, 6– болт заземления

Диаметр кабеля сальникового ввода (D) должен быть в пределах (4 – 10)тт

ПРИЛОЖЕНИЕ Б (обязательное) Схемы электрические принципиальные МСП

Рисунок Б.1 Схема блока БКВ

Таблица Б.1 Диаграмма работы микровыключателей

cparina passinisi nanpossininis lamenea					
микро	контакт	Положение арматуры			
выклю- чатель	соедини- теля X1	открыто	промежуточное	закрыто	
C 1 1	1–3				
SA1	2–3				
SA2	4-6				
SAZ	5–6				
SA3	7–9				
SA3	8–9				
CAI	10-12				
SA4	11–12				

SA1 – промежуточный микровыключатель закрытия

SA2 – конечный микровыключатель закрытия

SA3 – промежуточный микровыключатель открытия

SA4 – конечный микровыключатель открытия

_____ – контакт замкнут _____ – контакт разомкнут

Ταδλυμα Б.2

0боз–	Наименование	Примечание
начение	riddrichoddride	i ipui ic iuriuc
БП-20	блок питания БП–20	=24 V
SA1 SA4	Микровыключатели	
R1	Датчик реостатный	3,3кОм
A/D	Преобразователь токовый	
X1	Разъем питания 220V	
X2	Разъем блока БКВ	
X3	Разъем выходного сигнала (4–20 мА)	

Рисунок Б.2 Схема блока БСПТ–10АК Остальное см. рисунок Б.1

Рисунок Б.3 Схема блока БСПР–10АК Остальное см. рисунок Б.1

Рисунок Б.4 Схема подключения блока БСПТ–10АК к сети 220В в составе механизма МСП

Приложение Г (обязательное) Общий вид блока сигнализации положения

1-прижимной винт, 2-плата, 3-прижим, 4-пружина, 5-1; 5-2-кулачки для настройки положения "ЗАКРЫТО", 6-1;6-2-кулачки для настройки положения "ОТКРЫТО", 7-микровыключатели SA1,SA2, 8-микровыключатели SA3,SA4,

9-зубчатое колесо выходного вала, 10-шестерня резистора,

11-выходной вал, 12-контакты микровыключателей.

SA-переключатель изменения направления выходного сигнала,

R2, R3-резисторы подстроечные датчика БСПТ-10AK1,

X1- разъем подключения питания 220V,

Х2-разъём подключения цепей концевых микровыключателей,

ХЗ-разъём подключения блока БСПТ-10АК1

ПРИЛОЖЕНИЕ Д (рекомендуемое) Схемы проверки механизма МСП

Схема проверки МСП с блоком БСПТ-10АК

Схема проверки МСП с блоком БСПР-10АК

Х1, Х2,Х3 -разъемы питания блока датчика БСПТ-10АК

G - блок питания (~ 187- 245B)

PA - миллиамперметр M4200 30 mA PV - вольтметр Э545

Rнг - сопротивление нагрузки не более 500 Ом.

Примечание:

- Настройка выходного сигнала диапазон 4-20 mA регулируется резисторами R3 и R5 находящихся на плате датчика.
 - резистор R3 (0%) для установки сигнала равным 4 mA резистор R2 (100%) для установки сигнала равным 20 mA резистор R3 (0%)
- Если при перемещении выходного органа к конечному положению выходной сигнал блока не увеличивается, а уменьшается, то необходимо переключить переключатель SA1.

ПРИЛОЖЕНИЕ Д (рекомендуемое)

Схема проверки МСП с блоком БСПТ-10АК1

Х1, Х2,Х3 -разъемы питания блока датчика БСПТ-10АК1

G - блок питания (~ 187- 245B)

РА - миллиамперметр М4200 30 mA

PV - вольтметр 9545

Rнг - сопротивление нагрузки не более 500 Ом.

Примечание:

- Настройка выходного сигнала диапазон 4-20 mA регулируется резисторами R3 и R5 находящихся на плате датчика.
 резистор R3 (0%) для установки сигнала равным 4 mA
 резистор R2 (100%) для установки сигнала равным 20 mA
- Если при перемещении выходного органа к конечному положению выходной сигнал блока не увеличивается, а уменьшается, то необходимо переключить переключатель **SA**.