IZVJEŠĆE LV4 - SINTEZA REGULATORA POMOĆU KMK MISLAV ŠTIGLEC - PARAMETRI 9

Prijenosna funkcija procesa sa prethodnih vježbi:

$$G_s(s) = \frac{0.0005246}{9.52s^3 + 3.072s^2 + 0.1476s + 0.001536}$$

Ovakav oblik prijenosne funckije dobije se naredbom zpk(Gs). Ovaj oblik je pogodan jer se direktno mogu iščitati nule i polovi.

$$G_s(s) = \frac{5.5106 * 10^{(-5)}}{(s + 0.2668)(s + 0.04112)(s + 0.01471)}$$

Proces je upravljan PID regulatorom kojeg tek trebamo napisati.KMK se crta na temelju prijenosne funkcije otvorenog kruga.Prijenosna funkcija otvorenog kruga dobije se kao:

$$G_o(s) = G_{pid}(s) * G_s(s)$$
 , gdje je

 $G_{pid}(s) - prijenosna funkcija regulatora$

a) Koliko iznose polovi i nule PID regulatora dobivenog pod a) pripreme na vježbi?

Prijenosna funkcija regulatora zadana je kao niz pravila u zadatku a).

Za moj proces ona glasi:

$$G_{pid}(s) = \frac{s^2 + 0.1618s + 0.002164}{s^2 + 2.942s}$$

U drugom obliku:

$$G_{pid}(s) = \frac{(s+0.1471)(s+0.01471)}{s(s+2.942)}$$
, gdje je

Prva nula najdominantniji pol procesa i iznosi S_{n1} = 0.01471.

Druga nula na mjestu 10 puta većem od prve nule regulatora i iznosi S_{n2} = 0.1471.

Prvi pol u ishodištu i iznosi $S_{p1} = 0$.

Drugi pol na udaljenosti 20 puta većoj od druge nule regulatora i iznosi S_{p1} = -2.942.

Sada imamo prijenosne funkcije regulatora te procesa. Prijenosna funkcija otvorenog kruga glasi:

$$G_0(s) = G_{pid}(s) * G_s(s) =$$

$$= \frac{0.0005246s^2 + 8.489e - 05s + 1.135e - 06}{9.52s^5 + 31.08s^4 + 9.185s^3 + 0.4357s^2 + 0.00452s} =$$

$$= \frac{5.5106 * 10^{(-5)} (s + 0.1471)(s + 0.01471)}{s(s + 2.942)(s + 0.2668)(s + 0.04112)(s + 0.01471)}$$

gdje je pojačanje regulatora još uvijek Kr=1 tj. nema ga. Pomoću ove prijenosne tražimo KMK iz koje iščitavamo Kr pa će krajnja vrijednost prijenosne funkcije otvorenog kruga iznositi:

$$G_0(s) = K_r * G_{pid(s)}(s) * G_s(s)$$

b) Prikazati KMK dobiven u b) pripreme za vježbu

Pomoću naredbe rlocus(G0) prikazujemo KMK.

c) Koliko iznosi pojačanje regulatora dobivenog u b) pripreme za vježbu?

Iz KMK je potrebno iščitati vrijednost za prigušenje od 0.7.Za prigušenje(damping) od 0.7 pojačanje(gain) iznosi 96.2.

d) Koliko iznosi prirodna frekvencija, ωn , za dominanti par polova zatvorenog regulacijskog kruga?

Iz točke možemo osim pojačanja iščitati i W_n -prirodnu frekvenciju koja iznosi 0.0317 rad/s.

RAD NA LABOSU

1) Za točku a) rad na vježbi,

Prvo je potrebno prikazati vladanje zatvorenog kruga prijenosne funkcije procesa na step pobudu. Proces je reguliran PID regulatorom kojeg smo potpuno odredili u pripremi za vježbu.

Prijenosna funkcija otvorenog kruga nakon potpunog određivanja regualtora glasi:

$$G_0(s) = K_r * G_r(s) * G_s(s) =$$

$$= \frac{4.83 * 10^{(-3)} * (s + 0.1471)(s + 0.01471)}{s(s + 2.942)(s + 0.2668)(s + 0.04112)(s + 0.01471)}$$

Odziv Gx(s) od procesa dobije se pomoću naredbi stepinfo() i feedback().

```
figure(2);
hold on;
Gpid=(96.2*(s+0.01471)*(s+0.1471))/(s*(s+2.942));
G0=Gpid*Gs;
stepinfo(feedback(G0,1))
step(feedback(G0,1))
title('Odziv izlazne veličine na step');
xlabel('t [s]');
ylabel('h2 [m]');
```

e) prikazati dobiveni odziv izlazne veličine.

f) Koliko iznosi maksimalno nadvišenje o_m ?

Iz dobijenih vrijednosti pomoću funkcije stepinfo možemo iščitati maksimalno nadvišenje(overshoot) koje iznosi 4.6874%.

ans =

struct with fields:

RiseTime: 65.8673
SettlingTime: 185.8914
SettlingMin: 0.9069
SettlingMax: 1.0469
Overshoot: 4.6874
Undershoot: 0
Peak: 1.0469

PeakTime: 134.8701

g) koliko iznosi vrijeme prvog maksimuma t_{m} ?

Pomoću grafa očitavamo vrijeme prvog maksimuma koje u ovom slučaju iznosi 133 s. Formulom se dobije vrijednost 137.8 što je približno točna vrijednost zbog pogreške u očitavanju na plotu. Maksimalna vrijednost odziva je postignuta u intervalu <132 s,138 s>.

2) Za točku b) rad na vježbi,

h) prikazati dobiveni odziv izlazne veličine.

i) koliko iznosi regulacijsko odstupanje?

Regulacijsko odstupanje iznosi 0 tj. nema ga. Nakon poremećaja u određenom vremenu odziv poprima vrijednost referentne veličine(poremećaj ne utječe na izlaz jer ga regulator ispravi).

j) koliko iznosi maksimalno nadvišenje σ_m ?

Maksimalno nadvišenje iznosi $o_m = \frac{2.433-2.42}{2.42-2.2}*100\% = 5.9\%$

k) koliko iznosi vrijeme prvog maksimuma t_m ?

Vrijeme prvog maksimuma iznosi 233.6-101.1=132.5 s. Rješenje se dobije tako da se vrijeme u kojem odziv postiže prvi maksimum oduzme od vremena u kojem se dogodila pobuda.