DATA SCIENCE PROJECT 2022-2023

NARWADE SHRESHTA 1009-21-107-037 UNDER THE GUIDENCE OF

MR.TANVEER,

MRS. S. SRAVANTHI M.S.C., M.TECH (ASSISTANCE PROFESSOR)

CROP RECOMMENDATION USING ENSEMBLING TECHNIQUE

CONTENTS

- * ABSTRACT
- * INTRODUCTION
- * LITERATURE SURVEY
- ***** EXISTING SYSTEM
- * PROPOSED SYSTEM
- * METHODOLOGY
- * DATASET

- * FEATURES
- * ALGORITHMS/METRICS
- * RESULTS
- * FUTURE WORK
- * CONCLUSION
- * REFERENCES

ABSTRACT

The agriculture sector plays a crucial role in the development of the country's economy. The production of a particular farm depends upon soil characteristics, environmental characteristics, but major part goes to crop selection to get a better yield. Farmers sometimes lack the knowledge to choose the best crop for their land. Incorrect crop selection can lead to loss.

Applying modern technologies like machine learning algorithms assist in accurately predicting or recommending suitable crop to the farmer by considering the factors soil nutrients and some weather conditions like temperature ,rainfall ,humidity and pH.

Applied ensembling techniques like Gradient Boosting Classifier ,XGBClassifier ,AdaBoostClassifier and Random Forest Classifier in which Random Forest Classifier have achieved the highest accuracy.

INTRODUCTION

Agriculture, as we all know, is the foundation of the Indian economy. Agriculture is an important occupation in India. More than 60% of the country's land is used for agriculture, which feeds 1.3 billion people. One of the main domains in the precision agriculture is the recommendation of crops to increase crop yield.

The features given to the model are characteristics of soil, rainfall ,humidity and temperature of environment.Based on those features provided as input , the farmers get suggested the most suitable crop.Machine learning techniques have created new apportunities to farmers by providing rich recommadation through customized information.

LITERATURE REVIEW

Title

Author/

Year

	publication		features	Algorithm		
2022	Mohamed Bouni, Badr Hssina, Khadija Douzi, Samira Douzi. Elsevier	Towards an Efficient Recommender systems in Smart Agriculture:A deep reinforcement learning approch	Soil data set Crop yield data set	Naïve Bayes, KNN, Decision tree, Random forest	Accuracy score	Overfitting problem
2022	S.P Raja, Barbara Sawicka, Zoran Stamenhovic, G.Mariammal	Crop prediction Based on Characteristics of the Agricultural environment using various feature	felin dataset soil ,rainfall, Temperature, humidity	Naïve Bayes, KNN, Decision tree, Random forest, Bagging	Accuracy, Recall, Precision, F1 score Accuracy 87.43%	The result depict that an ensemble technique offer better prediction accuracy than the existing classification

Dataset/

Method/

Metrics

Challenge

2021	Priyadarshini, Swapneel Chakraborty, Aayushkumar, Omen Rajendra pooniwala	Intelligent crop recommendation system using Machine learning	Crop yield data set Soil nutrients, Yield, model price of crops,rainfall, Temperature	Linear Regression, Neural Network	Accuracy score Accuracy 84.42%	They have taken less features and attained less accuaracy
2020	Amaury Dubois, Fabien Teytand, Sebastien Verel Elsevier	Short term soil moisture forecast for potato crop farming: a machine learning approach	Potato crop dataset Water pressure, Men temperature, Rainfall, Age, dry	Support vector machine, Random Forest, Neural Network	Root mean square error(RMSE), Mean absolute error(MAE), R squared (R^2) Accuracy 70%	With large dataset we will able to improve the performance of algorithms

2019	Neha Rale, Raxithumar Solanki,Doina bein, James andro vasko, Wolfgang	Prediction of crop cultivation	Winter wheat dataset, Windspeed dataset. Temperature, Average wind speed, precipitaion	Random Forest Regressor, Nearest neighbor regression, Support vecror machine, Gradient boosting trees	Root mean square error(RMSE) Accuracy 83%	overfitting
2018	Sk Al Zaminur Rahman, Kaushik Chandra Mitra, S.M Mohidul Islam IEEE	Soil Classifiaction using machine learning methods and crop suggestion based on soil series	Soil dataset Class label, Map unit , Upazilla code, Crop list	Weighted k-nearest neighbor (KNN), Bagged trees, Support vector machine (SVM)	Accuracy score Accuracy 92.93%	Small dataset Collected for only one district

EXISTING SYSTEM

- □ Farmers predict crops based on their own experience and observed weather condition. The climate is changing and the shifts from normal weather pattern are more frequent than before.
- □ Sometimes farmers were failed to choose the right crops based on the soil conditions, sowing season, and geographical location. This results in suicide, quitting the agriculture field, moving towards urban areas for livelihood.
- □ Farmers must make use of new innovative technologies to make use of existing soil, water and air conditions to obtain larger crops.

Proposed System

- > The project aims to tackle the difficulties faced by the farmers in selecting the crops and recommendation of the best suitable crops in the area so that the farmer does not incur any loss.
- > The proposed model recommend the crop to be selected by the farmer for growing, by considering some soil nutrients and whether conditions like temperature, rainfall, humidity,PH.
- The crop is recommended based on the features by using the machine learning ensembling techniques. In this we applied Random Forest, Gradient Boosting Classifier, AdaBoost Classifier, XGB Classifier.
- The ensembling techniques is used to build a model that combines the predictions of multiple machine learning models together to recommend the right crop based on characteristics with high accuracy.

METHODOLOGY

- 1. Collection of the dataset
- 2.Preprocessing of the data
- 3. Splitting the data in to training and testing set
- 4. Applying the machine learning algorithms on the dataset
- 5.Predicting the accuracy
- 6.Evaluating the results and recommending the crop

soil nutrients

Data preprocessing

Machine learning algorithms

Training models

weather condition

Crop recommendation

DATASET

Crop recommended dataset Soil nutrients dataset

	A	1	3	C	D	E	F	G	Н	1	J	K	L	M	N	0	Р
1 N		P	K		EC	oc s	Z	n Fe	C	u I	Mn B	tem	perature h	umidity	ph	rainfall	label
2	9	0	42	43	0.62	0.7	5.9	0.24	0.31	0.77	8.71	0.11 20.8	3797437 8	32,002744	2 6.502985	29 202.9355	36 rice
3	8	5	58	41	0.75	1.06	25.4	0.3	0.86	1.54	2.89	2.29 21.7	7704617 8	30.319644	1 7.038096	36 226.6555	37 rice
4	6	0	55	44	0.51	1.11	14.3	0.3	0.86	1.57	2.7	2.03 23.0	0044591 8	32.320762	9 7.840207	14 263.9642	48 rice
5	7	4	35	40	0.58	0.94	26	0.34	0.54	1.53	2.65	1.82 26.4	4910963 8	30.158362	6 6.98040	09 242.8640	34 rice
6	7	8	42	42	0.4	0.86	11.8	0.25	0.76	1.69	2.43	2.26 20.1	1301748 8	31.604872	9 7.628472	89 262,717	34 rice
7	6	9	37	42	0.65	0.72	11.7	0.37	0.66	0.9	2.19	1.82 23.0	0580487 8	33.370117	7 7.07345	35 251.0	55 rice
8	6	9	55	38	0.43	0.81	7.4	0.34	0.69	1.05	2	1.88 22	.708838 8	32.639413	9 5.700805	68 271.324	186 rice
9	9	4	53	40	0.59	0.69	7.6	0.32	0.68	0.62	2.43	1.68 20.2	2777436 8	32.894086	2 5.718627	18 241.9741	95 rice
10	8	9	54	38	0.44	0.67	7.3	0.63	0.66	0.94	2.43	1.79 24.5	5158807 8	33.535216	3 6.685346	42 230.4462	36 rice
11	6	8	58	38	0.33	0.78	9	0.69	0.41	1.15	2.75	2 23.2	2239739 8	33.033226	9 6.336253	53 221.2091	96 rice
12	9	1	53	40	0.45	0.97	9.6	0.71	0.38	1.33	2.79	2.41 26.5	5272351 8	31.417538	5 5.386167	79 264.614	187 rice
13	9	0	46	42	0.73	0.89	9.2	0.63	0.47	1.03	2.79	2.38 23.9	9789822	81.45061	6 7.502833	96 250.0832	34 rice
14	7	8	58	44	0.6	0.78	9.7	0.73	0.36	1.32	3.32	2.12 26	.800796 8	30.886848	2 5.108681	79 284.4364	57 rice
15	9:	3	56	36	0.53	0.81	10.2	0.51	0.56	1.26	2.9	2.29 24.0	0149762 8	32.056871	8 6.984353	66 185.2773	39 rice
16	9	4	50	37	0.77	0.72	9.7	0.58	0.47	1.02	3.77	2.56 25.6	6658521 8	30.663850	4 6.948019	83 209.5869	71 rice
17	6	0	48	39	0.34	0.67	10.6	0.77	0.41	1.28	3.04	2.79 24.2	2820941 8	30.300255	9 7.042299	07 231.0863	35 rice
18	8	5	38	41	0.88	0.75	11	0.46	0.38	1.16	2.96	1.32 21.5	5871178 8	32.788370	8 6.249050	66 276.6552	46 rice
19	9	1	35	39	0.55	0.67	10.2	0.28	0.44	1.26	7.75	2.56 23.7	7939196 8	30.418179	6 6.970859	75 206.2611	86 rice
20	7	7	38	36	0.78	0.61	10.5	0.3	0.49	0.66	7.74	1.85 21.8	8652524 8	30.192300	8 5.953933	28 224.5550	17 rice
21	8	8	35	40	0.63	0.78	11.6	0.29	0.43	0.57	7.73	0.74 23.5	5794363 8	33.587603	2 5.853932	08 291.2986	62 rice
22	8	9	45	36	0.62	0.75	11	0.32	0.5	0.81	4.99	2.65 21.3	3250416	80.47476	4 6.442475	37 185.4974	73 rice
23	7	6	40	43	0.51	0.69	23.6	0.28	0.93	1.04	2.17	1.97 25.1	1574553 8	33.117134	8 5.070175	67 231.3843	16 rice

FEATURES

- Nitrogen (N) Nitrogen is largely responsible for the growth of leaves on the plant.
- Phosphorus (P) Phosphorus is largely responsible for root growth and flower and fruit development.
- Potassium (K) Potassium is a nutrient that helps the overall functions of the plant perform correctly.
- Temperature temperature in degree Celsius
- humidity relative humidity in %
- Potential of hydrogen(ph) ph value of the soil
- rainfall rainfall in mm

ALGORITHMS/METRICS

- Random forest: Random Forest models combines the output of multiple decision tree to reach a single output. Decide where to split based on a random selection of features and how to make the decisions.
- Gradiant Boosting Classifier: It gives a prediction model in the form of an ensemble of weak prediction models, which are typically decision trees. Gradient boosting is one of the boosting algorithms it is used to minimize bias error of the model.
- AdaBoost Classifier: Aaptive boosting, these algorithm improve the prediction power by converting a number of weak learners to strong learners. Adadaptive boosting has immunity from overfitting of data as it runs each model in a sequence and has a weight associated with them.
- XGB Classifier: XGBoost stands for "Extreme Gradient Boosting" has the ability to train large datasets and One of the key features of XGBoost is its efficient in handling of missing values in the dataset.
- Metrics : Accuracy score

RESULTS

Random Forest(RF):99.77%

Gradient Boosting(GB):99.09%

AdaBoost(AB):17.27%

XGBoost(XGB):99.32%

FUTURE WORK

We can use deep learning techniques like Convolutional neural networks ,Recurrent neural network to make this model more reliable and accurate.

We can develop this model for fertilizer recommendation ,Pest control by adding some more features.

Conclusion

This system would assist farmers in making an informed decision about which crop to grow depending on a variety of environmental and geographical factors.

The proposed ensemble recommendation system helps the farmers to choose right crop and thereby decreasing the chance of crop failure and increase the productivity.

Among all ensembling techniques RandomForest got highest accuracy of 99.77%

REFERENCES

- [1] Mohamed Bouni et.al.," Towards an Efficient Recommender systems in Smart Agriculture: A deep reinforcement learning approach", Elsevier,pp.826-830,2022.
- [2] Sk Al Zaminur Rahman et.al.," Crop prediction Based on Characteristics of the Agricultural environment using various feature selection Techniques and classifiers", IEEE, vol 10, pp. 23625-23641, 2022.
- [3] Priyadarshin et.al.," Intelligent crop recommendation system using Machine learning", IEEE,pp.843-848,2021.
- [4] Amaury Dubois et.al.," Short term soil moisture forecast for potato crop farming: a machine learning approach", Elsevier, pp.1-40,2020.
- [5] Neha Rale et.al.," Prediction of crop cultivation",IEEE,pp.0227-0232,2019.

[6] Sk Al Zaminur Rahman et.al.," Soil Classifiaction using machine learning methods and crop suggestion based on soil series",IEEE,2018. [7] Vaishnavi et.al.," Agricultural Crop Recommendations based on Productivity and season",IEEE,pp.883-886,2021.

[8] Apoorva Chaudhari et.al.,"Crop Recommendation and its Optimal pricing using ShopBot",IEEE,pp.36-41,2020.

[9] Avinash Kumar et.al., "Recommendation System for crop Identification and Pest control Technique in Agriculture", IEEE, pp.0185-0189, 2019.

[10]Sonal Jain et.al.,"Machine Learning convergence for weather based crop selection",IEEE,2020

THANK YOU