YAZ304

Sinir Ağları ve Makine Öğrenmesi Homework-1 Kaan İnce 210911216

Linear Regression

Verilen datasetini python veri dosyasında okundu. Nesne yönelimli programlama prosedürüne uymak açısından LinearR adında bir sınıf oluşturuldu. Bu sınıfa belirli methodlar eklendi.

Feature Engineering Methodu

Bu fonksiyon da mpg veriseti *0.43 ile çarpıldı. Bulunan değer mileage ile çarpıldı. Ardından 100'e bölünerek litre adında bir feature oluşturuldu.

```
ort numpy as np
    ort pandas as pd
    ort seaborn as sn
    ort matplotlib.pyplot as plt
    ort statsmodels.api <mark>as</mark> sm
  om sklearn.preprocessing import MinMaxScaler, scale om sklearn.model_selection import train_test_split om sklearn.feature_selection import RFE
    sklearn.linear_model import LinearRegression
    statsmodels.stats.outliers_influence import variance_inflation_factor
     sklearn.metrics import r2_score ,mean_squared_error
    sklearn.decomposition import PCA
From sklearn.metrics import confusion_matrix
import math
import warnings
warnings.simplefilter(action='ignore', category=Warning)
data = pd.read_csv('cars_dataset.csv')
cars=data.copy()
class LinearR():
    def __init__(self,data):
        self.data=data
        self.X_train_new = None
    def feature_engineering(self,data):
         self.litre = data.insert(2, 'litre', pd.Series(self.data["mileage"]*(self.data["mpg"]*0.43))/100)
         self.litre = data["litre"]
        return self.litre
```

Data Visualization Methodu

Bu fonksiyonda cols listesine atılan mileage,tax,mpg ve engineSize featureları, price'e göre regplot tarafından görsel olarak ekrana getirildi. Boxplot ile fuelType ve price ekrana getirildi.

```
def data_visualization(self):

    cols = ['mileage', 'tax', 'mpg', 'engineSize']
    plt.figure(figsize=(20,25))

for i in range(len(cols)):
    plt.subplot(5,3,i+1)
    plt.title(cols[i] + ' - Price')
    sn.regplot(x=eval('data' + '.' + cols[i]), y=self.data["price"])

plt.tight_layout()

self.data['Make'].str.strip()
    plt.figure(figsize=(10,8))
    sn.boxplot(x=self.data["fuelType"], y=self.data["price"])
    plt.show()
```

Dummy Methodu

Bu fonksiyonda, transmission, fuelType, model kategorik verileri get_dummies methodu ile dönüştürüldü ve dataset güncellendi.

```
def dummy(self):
    dummies_list=['transmission','fuelType','model']
    for i in dummies_list:
        temp_df = pd.get_dummies(eval('cars' + '.' + i), drop_first=True)
        self.data = pd.concat([self.data, temp_df], axis=1)
        self.data.drop([i], axis=1, inplace=True)
    return self.data
```

Feature Delete, Train test ve Min Max Scaler Methodları

Feature_delete methodunda datasette olan make feature'ı datayı etkilemeyeceği için çıkarıldı. Train_test methodunda dataset, eğitmek ve test etmek için ayrıldı. Min_max_scaler methodunda ise year,enginSize,litre,tax ve price feature değerlerinin baskınlığını azaltmak için MinMaxScaler yöntemi uygulandı.

```
def feature_delete(self):
    self.data.drop(['Make'],axis=1,inplace=True)

def train_test(self):
    np.random.seed(0)
    self.df_train, self.df_test = train_test_split(self.data, train_size = 0.7, test_size = 0.3, random_state = 100)

def min_max_scaler(self):
    self.scaler = MinMaxScaler()
    scale_cols = ['year', 'engineSize', 'litre', 'tax', 'price']
    self.df_train[scale_cols] = self.scaler.fit_transform(self.df_train[scale_cols])
    self.y_train = self.df_train.pop('price')
    self.X_train = self.df_train
```

Linear Regression Methodu

Bu fonksiyonda, model oluşturuldu ve fit edildi. RFE ise datasette hedef değişkeni tahmin etmede etkili olması için oluşturuld

```
def linear_regression(self):
    self.lm = LinearRegression()
    self.lm.fit(self.X_train,self.y_train)
    rfe = RFE(self.lm, n_features_to_select=10)
    rfe = rfe.fit(self.X_train, self.y_train)
    self.X_train_rfe = self.X_train[self.X_train.columns[rfe.support_]]
```

OLS Build ve OLS Error Methodları

Ols_build methodunda ols tablosu çizildi. Modeli etkileyen featurelar bastırıldı ve P değerlerinin 0.05 ten küçük olmasına dikkat edildi. Ols_error methodunda ise hata terimlerinin grafiği çizildi.

```
def ols_build(self,X,y):
    X = sm.add_constant(X)
    self.lm = sm.OLS(y,X).fit()
    print(self.lm.summary())
    return X

def ols_error(self):
    self.lm = sm.OLS(self.y_train,self.X_train_new).fit()
    y_train_price = self.lm.predict(self.X_train_new)
    fig = plt.figure()
    sn.distplot((self.y_train - y_train_price), bins = 20)
    fig.suptitle('Error Terms', fontsize = 20)
    plt.xlabel('Errors', fontsize = 18)
    plt.show()
```

Regression Pred Test, R2 Score ve Coefficients Methodları

Regression_pred_test methodunda, belirli featurelar listeye atıldı. Bu featurelar ile pred ve testler ayarlandı. R2_score methodunda, y_test ve y_pred'e göre r-squared bulundu. Coefficients methodunda ise, OLS tablosunda bulunan değişkenlerin katsayıları ekrana getirildi.

```
regression_pred_test(self)
     num_vars = ['year','engineSize','litre','tax','price']
     self.df\_test[num\_vars] = self.scaler.fit\_transform(self.df\_test[num\_vars])
    self.y_test = self.df_test.pop('price')
self.y_test = self.y_test.values.reshape(-1, 1)
self.X_test = self.df_test
    self.X_train_new = self.X_train_new.drop('const',axis=1)
self.X_test_new = self.X_test[self.X_train_new.columns]
self.X_test_new = sm.add_constant(self.X_test_new)
    self.y_pred = self.lm.predict(self.X_test_new)
self.y_pred = self.y_pred.values.reshape(-1, 1)
            n self.y_test,self.y_pred
def r2_score(self):
             r2_score(self.y_test, self.y_pred)
def coefficients(self)
     self.X_train_final =self. X_train_new[['year', 'engineSize', 'litre',' 8 Series',' California', ' R8',' X7',' i3',' i8']]
    self.X train final.columns
     self.lr_final = LinearRegression(
    self.lr_final.fit(self.X_train_final, self.y_train)
     self.coefficient = pd.DataFrame(self.lr_final.coef_, index = ['year', 'engineSize', 'litre',' 8 Series',' California', ' R8',' X7',' i3',' i8'],
                'Coefficient']
       turn self.coefficient.sort values(by=['Coefficient'], ascending=False)
```

Rmse ve Pca Methodiari

Rmse methodunda, y_test ve y_pred'in mean squared error'u bulundu. Ardından rmse hesaplandı. Bu şekilde hata payı öğrenildi. Pca methodunda , belirli değişkenler listeye atıldı. PCA'yı etkileyecek değer girildi ve model tekrardan oluşturulup fit edildi. Yeni PCA r-squared hesaplandı.

```
def rmse(self):
   self.mse = mean\_squared\_error(self.y\_test, self.y\_pred)
   self.rmse = math.sqrt(self.mse)
     eturn self.rmse
def pca(self):
   scale_cols = ['year','engineSize','litre','tax','mileage','mpg',' 8 Series',' California', ' R8',' X7',' i3',' i8']
   self.data_pca=self.data.copy()
   self.y = self.data_pca.pop('price')
   self.\mathsf{data\_pca}[\mathsf{scale\_cols}] = self.\mathsf{scaler.fit\_transform}(self.\mathsf{data\_pca}[\mathsf{scale\_cols}])
   self.pca=PCA(n_com
   self.X_pca=self.pca.fit_transform(self.data_pca)
   \label{eq:np.cumsum} \verb|np.cumsum| (\verb|np.round| (self.pca.explained_variance_ratio_, \textit{decimals} = 4)*100)[0:10] \\
   self.X_train_pca,self.X_test_pca,self.y_train,self.y_test=train_test_split(self.X_pca,self.y,test_size=0.2,random_state=2)
   model=LinearRegression()
   {\bf model.fit}({\it self.X\_train\_pca}, {\it self.y\_train})
   self.y_pred_pca = model.predict(self.X_test_pca)
    return r2_score(self.y_test,self.y_pred_pca)
```

Plot Methodu

Bu fonksiyonda y_test ve y_pred'e göre scatter grafiği oluşturuldu.

```
def plot(self):
    plt.subplots(figsize=(12,8))
    plt.scatter(range(len(self.y_test)), self.y_test, color='blue')
    plt.scatter(range(len(self.y_pred)), self.y_pred, color='red')
    plt.show()
```

Main fonksiyonunda LinearR sınıfından bir nesne oluşturuldu ve ekrana çıkan sonuçlar bastırıldı.

```
prediction_price = LinearR(cars)
  prediction price.feature engineering(cars)
  prediction_price.data_visualization()
  prediction price.dummy()
  prediction_price.feature_delete()
  prediction_price.train_test()
 prediction_price.min_max_scaler()
 prediction_price.linear_regression()
 prediction_price.X_train_new=prediction_price.ols_build(prediction_price.X_train_rfe,prediction_price.y_train)
 prediction_price.ols_error()
 prediction_price.regression_pred_test()
  \label{eq:print}  \texttt{print}(f\texttt{"R'2:}\{\texttt{prediction\_price.r2\_score}()\}\texttt{"}) \\
 print(f"Katsayılar:{prediction_price.coefficients()}")
  print(f"RMSE:{prediction_price.rmse()}")
  print(f"PCA R'2:{prediction_price.pca()}")
ain()
```

Logistic Regression

Verilen datasetini python veri dosyasında okundu. Nesne yönelimli programlama prosedürüne uymak açısından LogisticR adında bir sınıf oluşturuldu. Bu sınıfa belirli methodlar eklendi.

Feature_Engineering Methodu

Bu fonksiyon da mpg veriseti *0.43 ile çarpıldı. Bulunan değer mileage ile çarpıldı. Ardından 100'e bölünerek litre adında bir feature oluşturuldu.

```
mport numpy as np
import pandas as pd
  port seaborn as sn
cars = pd read_csv('cars_dataset.csv')
import matplotlib.pyplot as plt
import statsmodels.api as sm
rom sklearn.neighbors import LocalOutlierFactor
From sklearn.preprocessing import MinMaxScaler
From sklearn.linear_model import LogisticRegression
rom sklearn.model_selection import train_test_split
From sklearn.metrics import confusion_matrix
From sklearn.metrics import accuracy_score
From sklearn.metrics import r2_score
From sklearn.metrics import confusion_matrix
From sklearn.decomposition import PCA
     t warnings
warnings.simplefilter(action='ignore', category=Warning)
class LogisticR():
    def __init__(self,data):
        self.data = cars[cars["Make"] == data]
    def feature_engineering(self):
         self.litre = self.data.insert(2, 'litre', pd.Series(self.data["mileage"]*(self.data["mpg"]*0.43))/100)
         self.litre = self.data["litre"]
        return self.litre
```

Dummy, Data Visualization ve Outlier Methodlari

Dummy methodunda, transmission, fuelType kategorik verileri get_dummies methodu ile dönüştürüldü ve dataset güncellendi. Data_visualization methodunda, fuelType ve year'in price için grafikleri oluşturuldu. Outlier methodunda ise standart sapma ve ortalamaya göre aykırı değerler hesaplandı. Datasetten çıkartıldı.

```
self. {\tt data = pd.get\_dummies}(self. {\tt data, columns=['transmission', 'fuelType']}, {\tt drop\_first=True})
def data_visualization(self):
    self.data['Make'].str.strip()
    plt.figure(figsize=(10,8))
    sn.boxplot(x=self.data["fuelType"], y=self.data["price"])
    sn.regplot(x=self.data["year"], y=self.data["price"])
def outlier(self):
     for column in self.data.columns[1:-8]:
        for spec in self.data["Make"].unique():
            selected_spec = self.data[self.data["Make"]==spec]
            selected_column = selected_spec[column]
            std = selected_column.std()
            avg = selected_column.mean()
            three_sigma_plus=avg + (3*std)
            three_sigma_minus=( (3*std)-avg)
            outliers=selected_column[((selected_spec[column] > three_sigma_plus) | (selected_spec[column] < three_sigma_minus))].index</pre>
            self.data.drop(index=outliers, inplace=True)
      eturn self data
```

Local Outlier ve Min Max Scaler Methodları

Local outlier methodunda, komşulara göre aykırı değerler tespit edilmektedir. Ardından eşik değer ve aykırı değerler bulundu. Dataset güncellenmiş oldu. Min_max_scaler methodunda ise, datasetteki sütun değerlerinin baskınlığını azaltmak için MinMaxScaler yöntemi uygulandı.

```
def local outlier(self):
    self.y = self.data['model']
    self.data.drop(['model'],axis=1,inplace=True)
    self.data.drop(['Make'],axis=1,inplace=True)
self.clf=LocalOutlierFactor(n_neighbors=20,contamination=0.1)
    self.clf.fit_predict(self.data)
    self.car_new_scores= self.clf.negative_outlier_factor
    np.sort(self.car_new_scores)[0:3]
    self. {\tt esik\_deger=np.sort}(self. {\tt car\_new\_scores}) \hbox{\tt [2]}
    self.aykiri_tf = self.car_new_scores > self.esik_deger
    self.baski_degeri = self.data[self.car_new_scores == self.esik_deger]
    self.aykirilar = self.data[~self.aykiri_tf]
    self.res=self.aykirilar.to_records(index=False)
    self.res[:]=self.baski_degeri.to_records(index=False)
    self.\mathsf{data}[\_self.\mathsf{aykiri\_tf}] = \mathsf{pd.DataFrame}(self.\mathsf{res}, \underbrace{index} = self.\mathsf{data}[\_self.\mathsf{aykiri\_tf}].\mathsf{index})
          rn self.data[~self.aykiri_tf]
def min_max_scaler(self):
    self.scaler = MinMaxScaler()
    self.cols=self.data.columns
    self.data = self.scaler.fit_transform(self.data)
self.data = pd.DataFrame(self.data, columns=[self.cols])
         urn self.data
```

Train Test, Logistic Regression, Accuracy Score ve PCA Methodları

Train_test methodunda dataset, pca için eğitmek ve test etmek için ayrıldı. Logistic_regression methodunda, model oluşturuldu. Fit edilip tahmin yapıldı. Accuracy_score methodunda, y_test ve y_pred'e bağlı accuracy score ekrana getirildi. Pca methodunda ise, PCA'yı etkileyecek değer girildi ve model tekrardan oluşturulup fit edildi. Dataset train-test için ayrıldı.

```
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.data, self.y, test_size=0.2, random_state=2)
def logistic_regression(self);
    self.logreg =
                   - LogisticRegression(random_state=0,max_iter=120,multi_class='multinomial', solver='lbfgs')
    self.logreg.fit(self.X_train, self.y_train)
    self.y_pred = self.logreg.predict(self.X_test)
def accuracy_score(self):
    return accuracy_score(self.y_test, self.y_pred)
def pca(self):
    self.pca=PCA(n_components=7)
    self.data_pca=self.data.copy()
    self.X_pca=self.pca.fit\_transform(self.data_pca)
    np.cumsum(np.round(\textit{self}.pca.explained\_variance\_ratio\_, \textit{decimals} = 4)*100) [0:10]
    self. \textbf{X\_train\_pca}, self. \textbf{X\_test\_pca}, self. \textbf{y\_train}, self. \textbf{y\_test=train\_test\_split} (self. \textbf{X\_pca}, self. \textbf{y\_test\_size=0.2}, \\ random\_state=2)
    self.model=LogisticRegression(max_iter=1000)
    self.model.fit(self.X_train_pca,self.y_train)
```

Confusion Matrix ve Pca Score Methodları

Confusion_matrix methodunda, y_test ve y_pred değişkenlerine göre confusion matrix'i oluşturulup ekrana basıldı. Pca_score methodunda ise X_Test_pca ve y_test'e göre pca score'u hesaplandı.

```
def confusion_matrix(self):
    self.cm=confusion_matrix(self.y_test,self.y_pred)
    plt.figure(figsize=(20,10))
    sn.heatmap(self.cm,annot=True)
    plt.show()

def pca_score(self):
    return self.model.score(self.X_test_pca,self.y_test)
```

Car fonksiyonu tanımlandı. Burada sınıf oluşturuldu ve methodlar çağırıldı. Main fonksiyonunda ise tüm arabalar isimlerine göre tahminlerin oluşması sağlandı.

```
car=LogisticR(car_name)
   car.feature_engineering()
   car.data visualization()
   car.dummy()
   car.outlier()
   print(car.local outlier())
   car.min max scaler()
   car.train test()
   car.logistic_regression()
   car confusion matrix()
   print("Modelin Accuracy Score'u: {0:0.4f}".format(car.accuracy_score()))
   print("Modelin PCA Score'u: {0:0.4f}".format(car.pca_score()))
def main():
   Car("audi")
   Car("BMW")
   Car("Ford")
   Car("vw")
   Car("toyota")
   Car("skoda"
   Car("Hyundai")
```