ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

AEL-06 วงจรขยายที่ใช้ทรานซิสเตอร์ประเภท BJT

วัตถุประสงค์ของการทดลอง

- 1. ศึกษาการทำงานของวงจรขยายที่ใช้ทรานซิสเตอร์ประเภท BJT.
- 2. ศึกษาพารามิเตอร์ที่สำคัญของวงจรขยาย.

วงจรขยายสัญญาณเบื้องต้นที่ใช้ทรานซิสเตอร์แบบ BJT มีการต่อ 3 แบบ คือ common-emitter, common-collector, และ common-base. วงจรขยายแต่ละแบบจะมีพารามิเตอร์พื้นฐานซึ่งได้แก่ความ ต้านทานทางด้านอินพุท (Z_i),ความต้านทานทางด้านเอาท์พุท (Z_o), voltage gain (A_v), และ current gain (A_i) แตกต่างกันไปตามลักษณะการต่อวงจร. นอกจากพารามิเตอร์เหล่านี้ ยังมีการตอบสนองความถี่ของ วงจรขยาย และการตอบสนองต่อสัญญาณพัลซ์ ซึ่งเป็นสิ่งที่ผู้ใช้ควรพิจารณาประกอบการใช้งานอีกด้วย. ในการทดลองนี้ เราจะศึกษาวงจรขยายทั้ง 3 แบบ รวมทั้งพารามิเตอร์บางตัวของวงจรขยายดังกล่าวด้วย.

วงจรขยายแบบอื่นๆนอกเหนือจากทั้ง 3 แบบนี้ ยังมีวงจรอีกหลายชนิด เช่น cascode amplifiers, differential amplifiers, tuned amplifiers, ฯลฯ. บางวงจรจะขยายได้ทั้งไฟตรงและไฟสลับ. บางวงจรเหมาะ ที่จะขยายเฉพาะสัญญาณความถี่สูง เช่น สัญญาณวิทยุ เป็นต้น. วงจรขยายบางวงจรมีกำลังงานเอาท์พุท พอที่จะขับโหลดที่กินกำลังงานมาก เช่น ลำโพง หรือมอเตอร์ได้.

6.1. พารามิเตอร์ที่สำคัญของวงจรขยาย

แบบจำลองของวงจรขยายอย่างง่ายได้แสดงไว้ในรูปที่ 6.1. ทางด้านอินพุทของวงจรขยาย ประกอบด้วยอิมพีแดนซ์ Z_i เพียงตัวเดียว. ทางด้านเอาท์พุทประกอบด้วย voltage-controlled voltage source ซึ่งมีอัตราขยายแรงดันเท่ากับ A_{vNL} และต่ออนุกรมอยู่กับอิมพีแดนซ์ Z_o . ทางด้านซ้ายมือของวงจรขยายจะ ต่อกับแหล่งกำเนิดสัญญาณที่มีค่าแรงดันเท่ากับ v_s ซึ่งมีความต้านทานภายในแหล่งกำเนิดสัญญาณเท่ากับ R_s และสัญญาณเอาท์พุท v_o จะอยู่ทางด้านขวามือของวงจร ซึ่งให้มีโหลด R_L ต่ออยู่ด้วย.

รูปที่ 6.1 แบบจำลองของวงจรขยายอย่างง่าย.

เนื่องจากแบบจำลองนี้เป็นแบบจำลองอย่างง่าย จึงใช้ได้เฉพาะบางย่านความถี่เท่านั้น ซึ่งเราจะ เรียกว่าเป็น ย่านความถี่กลาง. ถ้าความถี่ของสัญญาณสูงหรือต่ำกว่าย่านดังกล่าว แบบจำลองนี้อาจจะให้ ผลต่างจากที่เกิดขึ้นจริงมากได้. ในการทดลองนี้ ในย่านความถี่กลางเราจะใช้ความด้านทาน R_i และ R_o แทนอิมพีแดนซ์ Z_i และ Z_o ตามลำดับ.

6.2. ประเภทของวงจรขยายที่ใช้ทรานซิสเตอร์แบบ BJT

การนำทรานซิสเตอร์แบบ BJT มาต่อเป็นวงจรขยายแบบต่างๆ ทั้ง 3 แบบนั้น ขึ้นอยู่กับการเลือกงาทรานซิสเตอร์ว่า งาใดเป็นอินพุทและงาใดเป็นเอาท์พุท ดังแสดง ไว้ในตารางที่ 6.1. วงจรขยายแต่ละแบบ จะให้คุณสมบัติของ Z_i, Z_o, A_v, A_i และ A_p ต่างกัน ดังสรุปไว้ในตารางที่ 6.2. เราต้องเลือกวงจรขยายให้ เหมาะสมกับสัญญาณอินพุทที่จะขยายและความต้านทานของ โหลดด้วย. ในการทดลองนี้ เราจะใช้ วงจรขยายแบบ common-emitter และ common-collector (หรือ emitter follower) ซึ่งทั้งคู่ใช้วงจรไบอัสแบบ voltage divider.

	CE Configuration	CB Configuration	CC Configuration
ขาอินพุท	base	emitter	base
ขาเอาท์พุท	collector	collector	emitter
ขาร่วมของอินพุท	emitter	base	collector
และเอาท์พุท			

ตารางที่ 6.1 การใช้ขาของทรานซิสเตอร์ในวงจรขยายแบบต่างๆ.

ตารางที่ 6.2 เปรียบเทียบคุณสมบัติของวงจรขยายแบบ CE, CC, และ CB.

ประเภท	A_{v}	A_i	$A_p = A_v A_i$	Z_i	Z_o
CE	100-1000	100-1000	> 1000	1kΩ-10kΩ	1k Ω -10k Ω
CC	< 1	100-1000	$\cong A_i$	> 10kΩ	< 1kΩ
СВ	100-1000	< 1	$\cong A_{v}$	< 1kΩ	> 10kΩ

6.3. ผลของตัวเก็บประจุในวงจรขยาย

ตัวเก็บประจุที่ต่อไว้ในวงจรจะมีหน้าที่ให้สัญญาณไฟสลับผ่าน แต่ไม่ยอมให้กระแสไฟตรงไหล ผ่าน. ดังนั้น วงจรขยายจะมีไฟเลี้ยงวงจรอยู่เมื่อป้อนสัญญาณไฟสลับ. ตัวเก็บประจุที่ใช้ในวงจรขยาย โดยทั่วไป จะมีหน้าที่สองประเภท คือ ให้สัญญาณไฟสลับไหลเข้าในวงจร หรือออกจากวงจรได้ ซึ่งเรียกว่า coupling capacitors และให้สัญญาณไฟสลับลัดจากจุดหนึ่งในวงจรไปยังอีกจุดหนึ่งในวงจร ซึ่งเรียกว่า bypass capacitors. บ่อยครั้งที่ bypass capacitors ถูกใช้เพื่อลัดสัญญาณไฟสลับลงกราวค์. ตัวเก็บประจุใน วงจรขยายในรูปที่ 6.2 มีทั้งที่ทำหน้าที่เป็น coupling capacitors ได้แก่ C_I และ C_2 และที่เป็น bypass capacitors ได้แก่ C_E และ C_F . โดยทั่วไป ตัวเก็บประจุเหล่านี้มีค่าใหญ่ จึงใช้ชนิด electrolytic capacitors ซึ่ง มีขั้วแรงดัน. ในการต่อวงจรต้องระวังไม่ให้ขั้วของตัวเก็บประจุเหล่านี้ต่อผิดทิสทาง. ถ้าต่อขั้วผิดทิสทาง ตัวเก็บประจุะกลายเป็นความต้านทาน และอาจร้อนขึ้นจนสารเคมีภายในเดือดและระเบิดได้ในที่สุด.

ตัวเก็บประจุมีอิมพีแดนซ์ขึ้นกับความถี่. ที่ความถี่ต่ำๆ ตัวเก็บประจุมีอิมพีแดนซ์สูง. คังนั้น สัญญาณไฟสลับที่ความถี่ต่ำจะผ่านได้น้อยลงเมื่อเทียบกับความถี่สูง เป็นผลทำให้อัตราการขยายสัญญาณไฟ สลับที่ความถี่ต่ำ ลดลงตามไปด้วย. ถ้าต้องการขยายสัญญาณไฟสลับที่มีความถี่ต่ำ ตัวเก็บประจุที่ใช้ต้องมี ค่าใหญ่เพียงพอที่จะให้อิมพีแดนซ์ที่ความถี่ต่ำไม่สูงจนเกินไป จึงจะได้อัตราขยายที่อยู่ในเกณฑ์ที่ด้องการ.

รูปที่ 6.2 ตัวอย่างวงจรขยายที่มีการต่อตัวเก็บประจุไว้ในวงจร.

ตัวเก็บประจุในวงจรในรูปที่ 6.2 ไม่ว่าทำหน้าที่เป็น coupling capacitors หรือ bypass capacitors จะ มีผลต่อความถี่ต่ำทั้งสิ้น. อัตราขยายของวงจรที่ความถี่ต่ำจะลดลง โดยเป็นผลมาจากตัวเก็บประจุเหล่านี้. ถ้าเพิ่มค่าของตัวเก็บประจุเหล่านี้ อัตราขยายของวงจรจะลดลงที่ความถี่ต่ำลงไปอีก ดังแสดงไว้ในรูปที่ 6.3.

รูปที่ 6.3 ผลตอบสนองความถี่ที่ความถี่ต่ำที่มีการเพิ่มค่าตัวเก็บประจุ.

ถ้าความถี่ของสัญญาณที่เข้าวงจรขยายมีค่าสูงเกินไป วงจรขยายจะมีอัตราขยายลดลงได้เช่นกัน. แต่ เราไม่สามารถจะพิจารณาได้จากแบบจำลองอย่างง่ายที่ผ่านมา เพราะยังละเอียดไม่พอเมื่อใช้กับความถี่สูง. แบบจำลองหนึ่งของทรานซิสเตอร์ที่มักนิยมใช้กับความถี่สูงคือ hybrid- π (หรือ Giacolletto model) จะมีการพิจารณา ตัวเก็บประจุที่เกิดขึ้นที่ junction ในตัวทรานซิสเตอร์เพิ่มเติมด้วย ดังแสดงในรูปที่ 6.4.

รูปที่ 6.4 แบบจำลองทรานซิสเตอร์ชนิด hybrid- π (หรือ Giacolletto model).

นอกจากนี้ base ของทรานซิสเตอร์ถูกแบ่งออกเป็นสองส่วน คือเป็นโหนด b และ b' เนื่องจาก ต้องการคิดความต้านทานที่เกิดขึ้นที่ base ให้ละเอียดขึ้น. ค่า r_{bb} เป็นค่าความต้านทานภายในส่วนที่เป็น base ของทรานซิสเตอร์. ตัวต้านทาน r_{bb} และตัวเก็บประจุ $C_{b'e}$ และ $C_{b'c}$ จะทำให้อัตราขยายแรงดันของ วงจรที่ความถี่สูงลดลง. ถึงแม้ว่าโดยทั่วไปค่าของ $C_{b'e}$ จะมากกว่า $C_{b'c}$ (เช่น $C_{b'e} = 36$ pF, $C_{b'c} = 4$ pF) แต่ ผลของ $C_{b'c}$ อาจมีมากกว่า เนื่องจากแรงดันที่ขา collector มีขนาดใหญ่และมีเฟสตรงกันข้าม ซึ่งทำให้ กระแสที่ใหลผ่าน $C_{b'c}$ มีมากกว่ากระแสของ $C_{b'e}$ ได้ จึงทำให้ค่าเสมือน (Miller-effect capacitance) ของ $C_{b'c}$ เมื่อมองเข้าที่อินพุทใหญ่ขึ้นกว่าเดิมประมาณ A_v เท่า ดังแสดงในรูปที่ 6.5. (ค่า A_v ในที่นี้จะมีค่าเป็น

ลบ ดังนั้น - A_{v} จึงมีค่าเป็นบวก). ค่าพารามิเตอร์ต่างๆของแบบจำลองชนิด hybrid- π นี้ ต้องหาจากผู้ผลิต ทรานซิสเตอร์.

$$C_{b'c}$$

$$A_{v}$$

$$(1-A_{v})C_{b'c}$$

$$(1-A_{v})C_{b'c}$$

$$(1-A_{v})C_{b'c}$$

$$(1-A_{v})C_{b'c}$$

$$(1-A_{v})C_{b'c}$$

6.4. การวัดการตอบสนองความถี่ของวงจรขยาย

ในการทดลองนี้จะมีการวัด bandwidth ของวงจรขยายแต่ละแบบ เพื่อเปรียบเทียบกัน. การ ตอบสนองความถี่ของวงจรขยายโดยทั่วไปจะมีลักษณะดังแสดงในรูปที่ 6.6. การวัด เริ่มจากการปรับ ความถี่ของสัญญาณอินพุท เพื่อให้ได้อัตราขยายแรงดันสูงสุดก่อน ซึ่งเรียกว่า mid-band A_v (A_v mid) และ ความถี่ที่ให้อัตราขยายแรงดันสูงสุด เรียกว่า mid-band frequency ($f_{\rm mid}$). โดยทั่วไปความถี่นี้จะมีเฟส ระหว่างแรงดันอินพุทกับแรงดันเอาท์พุทตรงกัน (0 องสา) หรือตรงข้ามกัน (± 180 องสา). จากนั้น ให้ปรับ ความถี่ต่ำลง จนกระทั่งวัดอัตราขยายแรงดันลดลงจาก A_v mid 3 dB (หรือเหลือเพียง 0.707 เท่าของ A_v mid). ความถี่นี้เรียกว่า lower cut-off frequency (f_{L3dB}). แล้วให้ปรับความถี่สูงขึ้นเรื่อยๆ จนอัตราขยายแรงดัน ลดลงเหลือเพียง 0.707 เท่าของ A_v mid (ลดลง 3 dB) อีก. ความถี่นี้เรียกว่า upper cut-off frequency (f_{H3dB}). ค่า bandwidth สามารถคำนวนใค้จากผลต่างของ f_{H3dB} และ f_{L3dB} .

รูปที่ 6.6 ลักษณะการตอบสนองความถี่ของวงจรขยายโดยทั่วไป.

6.5. เทคนิคการวัดค่าความต้านทานขาเข้า

ในส่วนนี้จะแสดงวิธีหนึ่งในการวัดค่าความต้านทานทางด้านอินพุท (R_i) ของวงจรขยาย โดยการ ต่อ อิมพีแคนซ์ ภายนอกอนุกรมกับสิ่งที่ต้องการวัด แล้วป้อนสัญญาณเข้าไป. ในการวัด R_i ของวงจรขยาย เราอาจต่อวงจรตามรูปที่ 6.7 และตั้งความถี่ของแหล่งกำเนิดสัญญาณให้อยู่ในช่วง mid-band ของวงจรขยาย. R_X เป็นตัวต้านทานที่ต่อเพิ่มเข้าไปในวงจร เพื่อทำให้ v_1 ต่างจาก v_2 เพียงพอที่จะวัดได้สะดวก และไม่ ต่างกันมากหรือน้อยเกินไป เช่น ถ้าเลือก R_X ประมาณเท่ากับ R_i จะทำให้ได้ v_2 ประมาณครึ่งหนึ่งของ v_1 .

ถ้า R_X เป็นค่าอื่น เราสามารถคำนวณ R_i ได้จาก

รูปที่ 6.7 วงจรที่ใช้วัดความต้านทานทางด้านอินพุท.

$$R_i = \frac{v_2}{v_1 - v_2} R_X$$

โดยต้องใช้ v_s ที่เหมาะสม เพื่อไม่ให้สัญญาณเอาท์พุท v_o ถูกขลิบด้านใดด้านหนึ่ง.

ในทางปฏิบัติเราควรจะประมาณค่า R_i ให้ได้ก่อน จึงจะเลือกค่า R_X ที่เหมาะสมได้. ถ้าไม่ทราบค่า R_i เลย เราอาจจะเลือกค่า R_X ให้สูงไว้ก่อน เพื่อไม่ให้กระแสไหลเข้าขาอินพุทของวงจรขยายมากเกินไป. ถ้า v_2 มีค่าน้อยเกินไป ให้ลดค่า R_X ลง.

การวัค R_i ของวงจร จำเป็นต้องต่อความต้านทานทางค้านเอาท์พุท (R_L) ไว้ค้วย เนื่องจากวงจรขยาย บางวงจรมี R_i ขึ้นอยู่กับ R_L .

6.6. เทคนิกการวัดค่าความต้านทานขาออก (R_o)

ในการวัดความต้านทานทางด้านเอาท์พุท (R_o) เราจะแทนเอาท์พุทของวงจรขยายด้วยวงจร Thevenin ซึ่งประกอบด้วยแรงคัน $v_o=A_{vNL}v_i$ ต่ออนุกรมกับ R_o ดังแสดงในรูปที่ 6.8. วิธีหนึ่งที่จะวัด R_o เราจะให้ v_i เท่ากับ 0 V โดยการลัดขาอินพุทลงกราวด์ แล้วป้อนแรงคัน v_s ผ่านตัวต้านทาน R_X ดังแสดงในรูปที่ 6.9. ค่า R_o สามารถคำนวณได้จาก

$$R_o = \frac{v_2}{v_1 - v_2} R_X$$

โดยต้องใช้ v_s ที่เหมาะสม เพื่อไม่ให้กระแสไหลจากแหล่งจ่ายสัญญาณมากเกินไป.

รูปที่ 6.8 การแทนส่วนเอาท์พุทของวงจรขยายด้วยวงจร Thevenin.

ในทางปฏิบัติเช่นเดียวกับการคำนวณหา R_i เราควรจะประมาณค่า R_o ให้ได้ก่อน จึงจะเลือกค่า R_X ที่เหมาะสมได้. ถ้าไม่ทราบค่า R_o เลย เราอาจจะเลือกค่า R_X ให้สูงไว้ก่อน เพื่อไม่ให้กระแสไหลเข้าขา เอาท์พุทของวงจรขยายมากเกินไป. ถ้า v_2 มีค่าน้อยเกินไป ให้ลดค่า R_X ลง.

รูปที่ 6.9 การหา R_o ต้องลัดขาอินพุทลงกราวด์.

6.7. วงจรขยายที่มีความต้านทานขาเข้าและขาออกขึ้นแก่กันและกัน

วงจรขยายบางวงจรได้แก่ วงจรขยายแบบ common-collector ดังแสดงในรูปที่ 6.10 ซึ่งมีอัตราขยาย แรงดันน้อยกว่า 1 เท่า มีค่าความต้านทานขาเข้าและขาออกขึ้นแก่กันและกัน. ถ้าความต้านทาน R_E หรือ R_L มาก ความต้านทานขาเข้า R_i จะมีค่ามากตามด้วย. ในทำนองเดียวกัน ถ้าความต้านทาน R_S หรือความ ต้านทานของวงจรทางด้านเบสมีค่ามาก ความต้านทานขาออก R_o จะมีค่ามากตามด้วย.

รูปที่ 6.10 วงจรขยายแบบ CC ซึ่งมีความต้านทานขาเข้าและขาออกขึ้นแก่กัน.

6.8. อุปกรณ์ที่ใช้ในการทดลอง

ทรานซัสเตอร์เบอร์ 2N3904	1	ตัว
R 1/4W 5% 18k Ω , 22k Ω , 91k Ω , 100k Ω , 120k Ω , 150k Ω ค่าละ	1	ตัว
R 1/4W 5% 8.2k Ω , 10k Ω	2	ตัว
R 1/4W 5% 10 Ω , 300 Ω , 620 Ω , 1.8k Ω , 1k Ω ค่าละ	1	ตัว
C 22 µF, 100nF	1	ตัว
C 330 nF	2	ตัว
แหล่งจ่ายแรงคัน	1	เครื่อง
Digital Multimeters	2	ตัว
Oscilloscope	1	เครื่อง
เครื่องกำเนิดสัญญาณ	1	เครื่อง

6.9. การทดลอง

6.9.1. การทดลองวงจรขยายแบบ Common Emitter ที่ไม่มี C_E

วิเคราะห์ไฟตรง

ต่อวงจรขยายแบบ common emitter ตามรูปที่ 6.11. ใช้ multimeter วัดค่า V_{CE} แล้วบันทึกลงใน ช่องว่างข้างล่างนี้. (วงจรในรูปที่ 6.11 นี้ มีการต่อ $R_3=1$ k Ω อยู่ด้วย. R_3 นี้มีวัตถุประสงค์เพื่อจำกัด f_{H3dB} ลงมา ให้อยู่ในช่วงที่เครื่องมือที่มีอยู่ทำงานได้. ในการต่อวงจรใช้งานจริง จึงไม่จำเป็นที่ต้องมีการต่อ R_3 .)

$$V_{CE} =$$
 ______ V.

$$I_E = \underline{\qquad} \text{mA. (ค้านวณจาก } I_E = \frac{V_E}{R_E}.)$$
 ค่า $r_e' = \frac{25\text{mV}}{I_E} = \frac{25\times10^{-3}}{I_E} = \underline{\qquad} \Omega.$

รูปที่ 6.11 วงจร common-emitter (ไม่มี C_E).

หาอัตราขยายแรงดันและ bandwidth ($R_L = \infty \Omega$)

ป้อนสัญญาณ sinusoidal waveform ที่ขาอินพุทของวงจร โคยใช้ความถี่ประมาณ 1 kHz และปรับขนาดของสัญญาณอินพุท v_i ให้ได้ขนาดประมาณ 1 $V_{\rm pp}$. ปรับความถี่เพื่อให้เฟสระหว่าง v_o และ v_i ต่างกัน ± 180 องสา. ความถี่นี้จะเป็น mid-band frequency (f_{mid}) . บันทึกความถี่นี้, v_o และ v_i เพื่อคำนวณหา อัตราขยายแรงดันที่ความถี่นี้.

ผลของ R_L ที่มีต่ออัตราขยายแรงคัน ($R_L=18\mathrm{k}\Omega$)

ต่อ R_L ขนาด $18~{
m k}\Omega$ เข้าที่เอาท์พุท. ป้อนสัญญาณ sinusoidal waveform ที่ขาอินพุทของวงจร โดย ใช้ความถี่ f_{mid} และปรับขนาดของสัญญาณอินพุท v_i ให้ได้ขนาดประมาณ $1~{
m V_{pp}}$. วัดอัตราขยายแรงดันเมื่อมี R_L ขนาด $18~{
m k}\Omega$ ต่ออยู่.

$$A_{v \text{ mid}} = \frac{v_o}{v_i} = - - =$$

ในรายงานให้อภิปรายเปรียบเทียบอัตราขยายเมื่อต่อโหลด กับเมื่อไม่มีโหลดต่ออยู่ว่า ผลที่เกิดขึ้น เป็นไปตามทฤษฎีหรือไม่ อย่างไร.

หา R_i

ต่อวงจรตามรูปที่ 6.12 เพื่อวัด R_i . ปรับความถี่ของเครื่องกำเนิดสัญญาณไปที่ f_{mid} . คำนวณหา R_i จากวงจร โดยสมมุติให้ h_{fe} มีค่าเท่ากับ $\sqrt{h_{fe\,{
m max}} imes h_{fe\,{
m min}}} = \sqrt{400 imes 100} = 200$ เท่า

เลือก R_X ประมาณเท่ากับ R_i เพื่อให้ได้ v_2 ประมาณครึ่งหนึ่งของ v_1 และปรับขนาดสัญญาณจาก เครื่องกำเนิดสัญญาณ เพื่อให้ได้ v_2 ประมาณ 1 V_{pp} .

$$R_X \, \vec{\mathfrak{N}} \, \vec{\mathfrak{N}} = \underline{\qquad} \Omega.$$

$$v_1 = \underline{\qquad} V, \, v_2 = \underline{\qquad} V.$$

$$R_i = \frac{v_2}{v_1 - v_2} \, R_X = \underline{\qquad} \Omega.$$

รูปที่ 6.12 วงจรที่ใช้หา R_i (วงจรไม่มี C_E).

<u>หา R</u>o

ต่อวงจรตามรูปที่ 6.13 เพื่อวัด R_o . ปรับความถี่ของเครื่องกำเนิดสัญญาณ ไปที่ f_{mid} . คำนวณหา R_o จากวงจร. (อย่าลืมลัดวงจรทางด้านอินพุทด้วย.)

 R_o ที่คำนวนได้ = _______ Ω . (แสคงวิธีคำนวนในรายงานด้วย.) เลือก R_X ประมาณเท่ากับ R_o เพื่อให้ได้ v_2 ประมาณครึ่งหนึ่งของ v_1 .

$$R_X \, \dot{\tilde{\mathsf{n}}} \, \dot{\tilde{\mathsf{n}}} \, \dot{\tilde{\mathsf{n}}} \, = \underline{\hspace{1cm}} \, \Omega$$

$$v_1 = _{_{_{_{_{_{_{1}}}}}}} V, v_2 = _{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}} V.$$

$$R_o = \frac{v_2}{v_1 - v_2} R_X = \underline{\qquad} \Omega$$

รูปที่ 6.13 วงจรที่ใช้หา R_o (วงจรไม่มี C_E).

ในรายงานให้เขียนอภิปรายผลการทดลองว่า ค่าอัตราขยายแรงดัน, ความต้านทานขาเข้า, และความ ต้านทานขาออกของวงจรขยายที่ความถี่ f_{mid} มีความสอดคล้องกับค่าตามทฤษฎีมากน้อยเพียงใด และอะไร เป็นสาเหตุของความคลาดเคลื่อนได้บ้าง.

6.9.2. การทดลองวงจร Common-Emitter ที่มี C_E

หาอัตราขยายแรงคันและ bandwidth

ต่อวงจรรูปที่ 6.14. ป้อนสัญญาณ sinusoidal waveform ความถี่ประมาณ 1 kHz เข้าที่ขาอินพุทของ วงจร. เนื่องจากวงจรนี้มีอัตราขยายแรงดันมากกว่า 150 เท่า การป้อนสัญญาณอินพุท จะต้องผ่านวงจรแบ่ง แรงดันที่ประกอบด้วย ตัวต้านทาน R_{A1} และ R_{A2} เพื่อลดแรงดันที่เข้าวงจรขยายลงในระดับหนึ่งก่อน. ปรับ ขนาดของสัญญาณจากเครื่องกำเนิดสัญญาณ เพื่อทำให้เกิดสัญญาณเอาท์พุท v_i ที่มีขนาดประมาณ 50 mV $_{\rm pp}$. ปรับความถี่เพื่อให้เฟสระหว่าง v_o และ v_i ต่างกัน ± 180 องสา. ความถี่นี้จะเป็น mid-band frequency (f_{mid}). บันทึกความถี่นี้และวัดแรงดัน v_o และ v_i เพื่อคำนวณหาอัตราขยายแรงดันที่ความถี่นี้.

รูปที่ 6.14 วงจร common-emitter (วงจรมี C_E).

$$f_{mid} =$$
_______ Hz.
$$A_{v \text{ mid}} = \frac{v_o}{v_i} = - - - - =$$

<u>หา*R*</u>i

ต่อวงจรตามรูปที่ 6.15 (ในหน้าถัดไป) เพื่อวัด R_i . ปรับความถี่ของเครื่องกำเนิดสัญญาณไปที่ f_{mid} . คำนวณหา R_i จากวงจร โดยสมมุติให้ h_{fe} มีค่าเท่ากับ 141 เท่า เพื่อเปรียบเทียบกับค่าที่วัดได้ต่อไป.

$$R_i$$
 ที่คำนวณได้ = _______ Ω . (แสดงวิธีคำนวณในรายงานด้วย.) ปรับขนาดสัญญาณจากเครื่องกำเนิดสัญญาณ เพื่อให้ได้ v_2 ประมาณ $50~{
m mV}_{
m pp}$. R_X ที่ใช้ = _______ Ω .

<u>หา R</u>o

ต่อวงจรตามรูปที่ 6.16 เพื่อวัด R_o . ปรับความถี่ของเครื่องกำเนิดสัญญาณไปที่ f_{mid} . คำนวณหา R_o จากวงจร. (อย่าลืมลัดวงจรทางด้านอินพุทด้วย.)

$$R_X \, \dot{\tilde{\mathfrak{N}}} \, \dot{\tilde{\mathfrak{N}}} \, = \underline{\hspace{1cm}} \, \Omega.$$

$$v_1 = _{___} V, v_2 = _{___} V$$

$$R_o = \frac{v_2}{v_1 - v_2} R_X = \underline{\qquad} \Omega.$$

รูปที่ 6.16 วงจรที่ใช้หา R_o (วงจรมี C_E).

ในรายงานให้เขียนอภิปรายผลการทดลองว่า ค่าอัตราขยายแรงดัน, ความต้านทานขาเข้า, และความ ต้านทานขาออกของวงจรขยายที่ความถี่ f_{mid} มีความสอดคล้องกับค่าตามทฤษฎีมากน้อยเพียงใด และอะไร เป็นสาเหตุของความคลาดเคลื่อนได้บ้าง.

6.9.3. การทดลองวงจร Common-Collector (Emitter Follower)

หาอัตราขยายแรงดัน

ต่อวงจรตามรูปที่ 6.17. ป้อนสัญญาณ sinusoidal waveform ที่ขาอินพุทของวงจร โดยใช้ความถึ่ ประมาณ 100 kHz. เนื่องจากวงจรนี้มี bandwidth กว้างเกินกว่า function generator จะสร้างได้ ความถี่ 100 kHz นี้จะถูกสมมุติให้เป็น mid-band frequency (f_{mid}) . เลือกความต้านทานขาออกของ function generator เป็น 600 โอห์ม และปรับขนาดของสัญญาณอินพุท v_i ให้ได้ขนาดประมาณ 1 V_{pp} . บันทึกความถี่นี้และ v_o และ v_i เพื่อคำนวณหาอัตราขยายแรงดันที่ความถี่นี้.

$$A_{v \; \mathrm{mid}} = \frac{v_o}{v_i} = ------= = ------$$
 (ควรมีค่า < 1 เท่า)

ลดความถื่องเพื่อหา f_{L3dB} ได้ f_{L3dB} = _______ Hz.

เนื่องจาก f_{H3dB} ของวงจรนี้ มีค่ามากกว่า 2 MHz ซึ่งสูงเกินความสามารถของเครื่องกำเนิดสัญญาณ จึงไม่สามารถทดลองได้.

รูปที่ 6.17 วงจร common-collector.

<u>หา R</u>i

ต่อวงจรตามรูปที่ 6.18 (ในหน้าถัดไป) เพื่อวัด R_i . ปรับความถี่ของเครื่องกำเนิดสัญญาณไปที่ 100 kHz. คำนวณหา R_i จากวงจร โดยสมมุติให้ h_{fe} มีค่าเท่ากับ 141 เท่า.

เลือก R_X ประมาณเท่ากับ R_i เพื่อให้ได้ v_2 ประมาณครึ่งหนึ่งของ v_1 และปรับขนาดสัญญาณจาก เครื่องกำเนิดสัญญาณ เพื่อให้ได้ v_2 ประมาณ 1 V_{pp} .

$$R_i = \frac{v_2}{v_1 - v_2} R_X = \underline{\qquad} \Omega.$$

ให้ถอด C_2 และ R_L ออกจากวงจรในรูปที่ 6.18. วัดค่า v_1 และ v_2 อีกครั้ง เพื่อหาค่า R_i ที่เปลี่ยนไป.

$$v_1 = _{_{_{_{_{_{_{_{1}}}}}}}} V, v_2 = _{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}} V.$$

$$R_i = \frac{v_2}{v_1 - v_2} R_X = \underline{\hspace{1cm}} \Omega$$
. (ควรมีค่ามากกว่าเดิม)

<u>หา R</u>o

ต่อวงจรตามรูปที่ 6.19 เพื่อวัด R_o . ปรับความถี่ของเครื่องกำเนิดสัญญาณไปที่ $100~{
m kHz}$. คำนวณหา R_o จากวงจร.

ป้อนแรงคันของเครื่องกำเนิดสัญญาณ เพื่อให้ v_2 มีค่าประมาณ $50~{
m mV}_{
m pp}$. บันทึกค่า v_1 และ v_2 .

$$v_1 = _{_{_{_{_{_{_{1}}}}}}} V, v_2 = _{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}} V.$$

$$R_o = \frac{v_2}{v_1 - v_2} R_X = \underline{\qquad} \Omega.$$

รูปที่ 6.19 วงจรที่ใช้หา R_o .

ให้ถอด C_1 และ R_S ออกจากวงจรในรูปที่ 6.19. วัดค่า v_1 และ v_2 อีกครั้ง เพื่อหาค่า R_o ที่เปลี่ยนไป.

$$v_1 = _{_{_{_{_{_{1}}}}}} V, v_2 = _{_{_{_{_{_{_{1}}}}}}} V.$$

$$R_o = \frac{v_2}{v_1 - v_2} R_X = \underline{\qquad} \Omega$$
. (ควรมีค่ามากกว่าเดิม)

ในรายงานให้เขียนอภิปรายผลการทดลองว่า ค่าอัตราขยายแรงดัน, ความด้านทานขาเข้า, และความ ต้านทานขาออกของวงจรขยายที่ความถี่ f_{mid} มีความสอดคล้องกับค่าตามทฤษฎีมากน้อยเพียงใด และอะไร เป็นสาเหตุของความคลาดเคลื่อนได้บ้าง.

6.10. สรุปสิ่งที่ได้เรียนรู้

ให้สรุปสิ่งที่เรียนรู้ทั้งหมดจากการทดลองแยกเป็นอีกหัวข้อหนึ่งในท้ายรายงาน โดยสรุปเรียง ตามลำดับเรื่องที่ทดลอง.