Aula 5: Análise de Circuitos RC e RLC

Objetivos

- Verificar o funcionamento de circuitos RC e RLC
- Observar os fenômenos de carga e descarga de capacitores e indutores
- Aprender a medir a constante de tempo de circuitos RC
- Identificar os tipos de resposta de circuitos RLC
- Aprender a utilizar o osciloscópio em modo CURSOR

Lista de material

- Osciloscópio, fonte de bancada, gerador de sinais, multímetro
- Resistores R1 = 1 k Ω , R1 = 100 Ω , R2 = 470 Ω , R3 = 1 k Ω , R4 = 220 Ω
- Capacitores C1 = 1 μ F, C2 = 470 nF, C1 = 2,2 nF, C2 = 1 nF
- Indutor L1 = 150 μ H.
- Potenciômetro de 1 kΩ.

Roteiro da experiência

- 1) Utilizando o gerador de sinais, produza um sinal de onda quadrada com f=25 Hz, $V_{min}=0$ V e $V_{max}=10$ V. Mostre o sinal no canal CH1 do osciloscópio. Certifique-se que o acoplamento está configurado para CC. Para uma melhor visualização, ajuste a escala de tensão para 2 V por divisão, a escala de tempo para 5 ms por divisão e a posição vertical para -3 div (-6 V). Se necessário, ajuste também a posição horizontal de forma que o instante de subida do sinal esteja exatamente centralizado na tela. Caso o sinal não esteja estável na tela do osciloscópio, ajuste o TRIGGER LEVEL para 4 V.
 - a) Esboce o sinal observado, indicando as referências de tensão e tempo e as escalas utilizadas.

b) Ajuste o canal CH2 para acoplamento CC e para a mesma escala de tensão e posição vertical do canal CH1. Mantenha estas configurações para o restante do experimento.

O modo CURSOR do osciloscópio mostra na tela duas barras horizontais ou verticais que auxiliam a fazer medidas precisas de tensão ou tempo. Quando este modo está ativo, a posição do cursor 1 é ajustada por meio do botão CURSOR 1 (o mesmo que VERTICAL POSITION CH1), enquanto a posição do cursor 2 é ajustada por meio do botão CURSOR 2 (o mesmo que VERTICAL POSITION CH2). (Fora do modo cursor, estes botões voltam a suas funções originais.)

- Na configuração "Tipo = Tensão", a posição de ambos os cursores é indicada na tela, bem como (o módulo da) diferença entre elas ("Delta"). A posição (em Volts) indicada para os cursores será sempre relativa à escala (em Volts/div) do canal selecionado como "Origem".
- Na configuração "Tipo = Tempo", além das posições dos cursores e sua diferença, é mostrado também na tela o inverso dessa diferença (em Hz).
- 2) Siga os procedimentos abaixo para verificar seu domínio do modo CURSOR.
 - a) Configure o CURSOR MENU para Tipo = Amplitude.
 - b) Ajuste os cursores de forma que o Cursor 1 esteja em V_{max} e o Cursor 2 esteja em V_{min} . Nesse caso, o que representa o valor "Delta"? Preencha a Tabela 1.
 - c) Configure o CURSOR MENU para Tipo = Tempo.
 - d) Ajuste os cursores de forma que o Cursor 1 esteja no primeiro instante de descida e o Cursor 2 esteja no segundo instante de descida. Nesse caso, o que representa o valor "Delta" (e o inverso desse valor)? Preencha a Tabela 1.

Tabela 1

V_{max}	V_{\min}	V_{pp}	Т	f		

3) No circuito abaixo, a fonte de tensão $v_f(t)$ representa a saída do gerador de sinais (em que a seguinte convenção para as ponteiras é adotada: vermelho = "+", preto = "-"). O terminal CH1 representa a ponteira vermelha do Canal 1 do osciloscópio, o terminal CH2 representa a ponteira vermelha do Canal 2 do osciloscópio, enquanto o terminal REF representa a ponteira preta de um dos dois canais (por exemplo, do Canal 1). Use R1 = 1 k Ω .

- a) Monte o circuito acima. Confirme que todas as ponteiras estão ligadas corretamente, e que apenas **uma** ponteira preta do osciloscópio está conectada no circuito.
- b) Complete o esboço da Questão 1, incluindo agora o sinal observado no CH2. (OBS: Certifiquese mais uma vez que o CH2 está perfeitamente alinhado com o CH1, tanto em termos de escala quanto de posição vertical.)
- Quando um capacitor de capacitância C é descarregado sobre um resistor de resistência R, a tensão nos terminais do capacitor decai de acordo com a equação

$$v_c(t) = V_0 \cdot e^{-t/RC}$$

onde V_0 representa a tensão inicial no capacitor (no instante t = 0).

- O decaimento da tensão no capacitor independe dos valores específicos de R e C, mas apenas do seu produto, conhecido como **constante de tempo** τ = RC.
- O valor da tensão no capacitor após 1 constante de tempo $(t = \tau)$ é dado por

$$v_c(\tau) = V_0 \cdot e^{-1} = 0.368 \cdot V_0.$$

- Assim, é possível determinar o valor de τ medindo o tempo que a tensão leva até atingir $v_c(\tau)$.
- 4) Nesta questão, considere a curva do capacitor **descarregando** mostrada no osciloscópio.
 - a) Calcule o valor da tensão esperada no capacitor em descarga após 1 constante de tempo.
 - b) Utilizando cursores, estime o valor da constante de tempo τ. Proceda da seguinte forma:
 - i) Marque com um cursor de tensão o valor obtido no item anterior.
 - ii) Olhando na tela, meça o tempo que leva até a tensão no capacitor atingir esse valor.
 - c) Estime também o valor da capacitância (com o valor de τ medido) e preencha a Tabela 2. Compare com o valor teórico de τ obtido usando o valor nominal de capacitância.

Tabela 2

	τ = RC (teórico)	τ (medido)	C = τ/R (estimada)
C1			

ullet Quando um capacitor de capacitância C, inicialmente descarregado, é carregado por uma fonte de tensão contínua V_{max} através de um resistor de resistência R, a tensão nos terminais do capacitor cresce de acordo com a equação

$$v_c(t) = V_{\text{max}} \cdot (1 - e^{-t/RC}).$$

- A curva da tensão no capacitor independe dos valores específicos de R e C, mas apenas do seu produto, conhecido como constante de tempo τ = RC.
- O valor da tensão no capacitor após 1 constante de tempo $(t = \tau)$ é dado por

$$v_c(\tau) = V_{\text{max}} \cdot (1 - e^{-1}) = 0.632 \cdot V_{\text{max}}.$$

- 5) Nesta questão, considere a curva do capacitor **carregando** mostrada no osciloscópio.
 - a) Calcule o valor da tensão esperada no capacitor em carga após 1 constante de tempo.
 - b) Utilizando cursores, estime o valor da constante de tempo τ . Proceda da seguinte forma:
 - i) Marque com um cursor de tensão o valor obtido no item anterior.
 - ii) Olhando na tela, meça o tempo que leva até a tensão no capacitor atingir esse valor.
 - c) Estime também o valor da capacitância (com o valor de τ medido) e preencha a Tabela 3. Compare com o valor teórico de τ obtido usando o valor nominal de capacitância.

6) Repita a questão anterior para o capacitor C2 e preencha a Tabela 4.

Tabela 3

	τ = RC (teórico)	τ (medido)	C = τ/R (estimada)
C2			

Tabela 4

	τ = RC (teórico)	τ (medido)	C = τ/R (estimada)
C2			

7)	Agora,	aumente	a	frequência	do	gerador	de	sinais	até	a	escala	de	2	kHz	(e	ajuste
	apropr	iadamente	а	escala de tem	ipo).	. O que vo	cê o	bserva?	Expl	liqı	ıe.					

- 8) Circuito RLC paralelo
 - a) Configure o gerador de sinais para gerar uma onda quadrada com frequência de 25 kHz, valor máximo de 3 V e valor mínimo de 0 V.
 - b) Monte o circuito conforme a figura abaixo utilizando R1 = 100Ω , L1 = 150μ H, C1 = 2,2 nF.

c)	Observe a tensão no indutor. Classifique o circuito em superamortecido, subamortecido ou
	criticamente amortecido e compare com o <u>valor teórico</u> .

d) Meça a frequência de oscilação do sinal e compare com o valor teórico (se houver).	

- e) Troque o resistor R1 pelo resistor R2 = 470 Ω .
- f) Observe a tensão no indutor. Classifique o circuito em superamortecido, subamortecido ou criticamente amortecido e compare com o <u>valor teórico</u>.

- g) Meça a frequência de oscilação do sinal e compare com o <u>valor teórico</u> (se houver).
- 9) Circuito RLC série
 - a) Configure o gerador de sinais para gerar uma onda quadrada com frequência de 50 kHz, valor máximo de 5 V e valor mínimo de 0 V.
 - b) Monte o circuito conforme a figura abaixo utilizando R3 = 1000Ω , L1 = 150μ H, C2 = 1 nF.

c) Observe a tensão no indutor. Classifique o circuito em superamortecido, subamortecido ou criticamente amortecido e compare com o <u>valor teórico</u>.

criticalmente amorteceta e compare com o <u>rator correc</u>.

d) Meça a frequência de oscilação do sinal e compare com o <u>valor teórico</u> (se houver).

e) Troque o resistor R3 pelo resistor R4 = 220 Ω .

f)	Observe a tensão no indutor. Classifique o circuito em superamortecido, subamortecido ou criticamente amortecido e compare com o <u>valor teórico</u> .
g)	Meça a frequência de oscilação do sinal e compare com o valor teórico (se houver).
h)	Troque o resistor R4 pelo potenciômetro de 1 k Ω .
i)	Ajuste o potenciômetro até obter uma resposta criticamente amortecida. Desligue o circuito
_	e meça a resistência do potenciômetro.