INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

Department of Mathematics SI 427 (Probability Theory)

Tutorial Sheet-XI

- 1. Let $\{X_n|n\geq 1\}$ be a sequence of random variables and $a\in\mathbb{R}$. Then $X_n\to a$ in distribution iff $X_n\to a$ in probability.
- 2. Let $X_n \to X$ in probability. Show that $|X_n| \to |X|$ in probability.
- 3. Let X_n be a sequence of random variables and taking values in [0, 1] and X is a random variable taking values in [0, 1] such that $X_n \to X$ a.s.. Then show that

$$f(X_n) \to f(X)$$
 a.s

for each continuous function $f:[0, 1] \to \mathbb{R}$.

- 4. Let $X_n \to X$ in probability and $X_n \to Y$ in probability. Show that X = Y a.s.
- 5. Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables with mean zero, variance σ^2 and with finite third moment. Show that

$$\lim_{n \to \infty} E \left(\frac{S_n}{\sigma \sqrt{n}} \right)^3 = 0.$$

6. Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables with mean zero, variance σ^2 and with finite fourth moment. Show that

$$\lim_{n \to \infty} E\left(\frac{S_n^4}{n^2}\right) = 3\sigma^4.$$

7. Let $\{X_n|n\geq 1\}$ be a sequence of independent random variables such that

$$P(X_n = 3^n) = P(X_n = -3^n) = \frac{1}{2}.$$

Show that $\frac{X_1+\cdots+X_n}{n}$ doesn't converge to 0 a.s.

8. Let $X_1, X_2, ...$ be independent and identically distributed Poisson (λ) random variables. Find

$$\lim_{n\to\infty} P(X_1 + \dots + X_n \le n\lambda + \sqrt{n\lambda}).$$

9. (Normal approximation)Show that

$$\lim_{n \to \infty} \left| P(S_{2n} = n) - \frac{1}{\sqrt{n\pi}} \right| = 0$$

where $S_n \sim \text{Binomial } (n, \frac{1}{2}).$

10. Using Central Limit Theorem prove that following.

$$\lim_{n \to \infty} e^{-n} \sum_{k=1}^n \frac{n^k}{k!} = \frac{1}{2}.$$