Daftar Isi

Daftar Isi	i
Daftar Tabel	ii
Daftar Gambar	ii
Bab I. Pendahuluan	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan	2
1.4 Luaran yang Diharapkan	2
1.5 Kegunaan	2
Bab 2. Tinjauan Pustaka	3
2.1 Pupuk	3
2.2 Teknologi <i>Haber Bosch</i> dalam Produksi Pupuk Nitrat	3
2.3 Teknologi CGD Electrolysis di Pembuatan Pupuk Nitrat	3
2.3.1 Jenis Larutan Elektrolit	4
2.3.2 Konsentrasi Larutan Elektrolit	4
2.3.3 Laju Alir Udara	4
2.3.4 Suhu	4
2.3.5 Penambahan Ion Fe ²⁺	5
2.3.6 Waktu Operasi	5
Bab 3. Tahap Pelaksanaan	5
3.1 Metode dan Model Pelaksanaan	5
3.1.1 Pengkajian Masalah	5
3.1.2 Studi Literatur	5
3.1.3 Perancangan Alat	5
3.1.4 Pengujian dan Analisis Alat	6
3.2 Diagram Alir Pelaksanaan Program	6
3.3 Rancangan Alat	7
3.4 Cara Kerja Alat	8
3.5 Keunggulan Inovasi	9
Bab 4. Biaya dan Jadwal Kegiatan	9
4.1 Anggaran Biaya	9
4.2 Jadwal Kegiatan	10
Daftar Pustaka	10
LAMPIRAN	. 11
Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping	. 11
Lampiran 2. Justifikasi Anggaran Kegiatan	17
Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	19
Lampiran 4. Surat Penyataan Ketua Peneliti	20
Lampiran 5. Gambaran Teknologi yang Akan Diterapkembangkan	21

Daftar Tabel

Tabel 3.1 Kondisi Operasi Alat Teknologi	7
Tabel 4.1 Anggaran Biaya	9
Tabel 4.2 Jadwal Kegiatan	10
Daftar Gambar	
Gambar 3.1 Diagram alir pelaksanaan program	6
Gambar 3.3 Skema proses alat teknologi berbasis CDG Electrolysis	<i></i> 8
Gambar 3.4 Prototype alat teknologi pembuatan pupuk nitrat	8

Bab I. Pendahuluan

1.1 Latar Belakang

Bakteri memainkan peran penting dalam pertumbuhan tanaman, yaitu sebagai faktor pembentuk senyawa nitrogen sederhana (NO_x) dari gas N₂ yang ada di udara dalam siklus alami fiksasi nitrogen. Namun, jumlah bakteri bukanlah variabel yang dapat dikontrol dengan mudah oleh manusia. Maka dari itu, pupuk dikembangkan untuk menggantikan bakteri pada tanah yang kurang subur. Pupuk dapat dibedakan menjadi pupuk organik dan pupuk kimia, adapun keduanya memiliki kelebihan dan kekurangannya masing-masing. Pupuk organik lebih ramah lingkungan, namun kandungan unsur haranya tidak mudah dikontrol. Di sisi lain, komposisi dan konsentrasi per satuan volume dalam pupuk kimia lebih mudah diatur sehingga lebih mudah disesuaikan dengan kebutuhan tanaman pertanian. Oleh karena itu, petani cenderung memilih untuk menggunakan pupuk kimia seperti pupuk urea dan NPK untuk memenuhi kebutuhan unsur hara pada tanaman.

Pandemi COVID-19 yang melanda seluruh negara berdampak pula pada kinerja industri pupuk dalam negeri. PT. Pupuk Indonesia (Persero) menyebutkan industri pupuk dalam negeri mengalami kenaikan biaya produksi, sementara permintaan pupuk dalam negeri serta ekspor menurun. Imam Apriyanto Putro selaku Wakil Direktur Utama PT. Pupuk Indonesia menyebutkan pandemi COVID-19 menimbulkan terjadinya kenaikan biaya bahan baku serta biaya produksi yang meningkat akibat adanya kelangkaan suplai bahan baku. (SINDONEWS.com, 2020). Imbas dari pandemi ini adalah adanya kenaikan harga pupuk dalam negeri.

Peningkatan harga pupuk akan menyebabkan harga produk pertanian juga ikut meningkat sehingga dapat berdampak pada inflasi ekonomi. Tidak hanya itu, peningkatan harga pupuk juga akan mengakibatkan petani Indonesia tidak lagi tertarik dengan sektor pertanian dan memberikan dampak negatif pada ketahanan pangan nasional (Asnawi, *et al.*, 2009). Oleh karena itu, diperlukan sebuah solusi baru yang dapat menyelesaikan permasalahan harga dan kelangkaan pupuk di berbagai daerah di Indonesia.

Teknologi *contact glow discharge electrolysis* memiliki metode yang lebih efektif dalam mengubah gas nitrogen menjadi pupuk nitrogen cair dibandingkan proses *Haber-Bosch*. Kekurangan dari proses *Haber-Bosch* adalah kondisi operasi suhu dan tekanannya yang tinggi. Proses ini mengkonsumsi 1-2% dari total produksi energi di dunia dan menggunakan 2-3% dari total gas alam yang dihasilkan, serta menghasilkan polutan berupa karbon dioksida sebesar 300 juta ton (Wang, B, S, *et al.*, 2017). Sementara itu, teknologi baru *contact glow discharge electrolysis* lebih ramah lingkungan, sederhana, dan murah.

Teknologi baru *contact glow discharge electrolysis* merupakan pengembangan dari teknologi plasma yang tidak menghasilkan residu dan mengkonsumsi energi 2,5 kali lebih rendah dibandingkan proses *Haber-Bosch* (Wang, B, S, *et al.*, 2017). Teknologi plasma yang menghasilkan produk berupa gas

dianggap memproduksi *yield* yang lebih rendah dibanding teknologi baru *contact glow discharge electrolysis* yang hasil akhirnya sudah berupa fase cair. Dalam proses pembentukan nitrat cair, *contact glow discharge electrolysis* menggunakan suplai gas nitrogen dan oksigen yang dapat diperoleh secara langsung dari udara. Selain itu, kebutuhan energi listrik yang digunakan oleh teknologi *contact glow discharge electrolysis* dapat diperoleh menggunakan sel surya yang juga merupakan teknologi ramah lingkungan. Jadi, teknologi *contact glow discharge electrolysis* juga dapat diaplikasikan di wilayah terpencil seperti pedesaan sehingga mengurangi biaya distribusi. Dengan penerapan teknologi *contact glow discharge electrolysis*, petani di berbagai daerah dapat secara mandiri memproduksi pupuk nitrogennya masing-masing sehingga biaya produksi pupuk akan lebih rendah dan dapat mengatasi masalah kenaikan harga pupuk di pasar.

Pada proposal ini, kami menawarkan sebuah alat berbasis teknologi *contact glow discharge electrolysis* sebagai teknologi terbarukan, murah, dan ramah lingkungan dalam pembuatan pupuk nitrat sebagai solusi atas kelangkaan pupuk di masa pandemi COVID-19 ini. Alih-alih pembuatan pupuk nitrat secara otomatis, prototipe dari teknologi ini sangat sederhana karena hanya menggunakan bahan baku udara serta elektrolit murah yaitu NaCl, serta berbahan bakar alternatif yaitu sel surya yang tersedia gratis melalui sinar matahari.

1.2 Rumusan Masalah

- a. Bagaimana merancang bangun alat dengan menggunakan teknologi *contact glow discharge electrolysis* sebagai teknologi sederhana pembuatan pupuk nitrat cair
- b. Bagaimana kinerja alat berbasis teknologi *contact glow discharge electrolysis* sebagai teknologi sederhana pembuatan pupuk nitrat cair

1.3 Tujuan

- a. Merancang bangun alat menggunakan teknologi *contact glow discharge electrolysis* sebagai teknologi sederhana pembuatan pupuk nitrat cair
- b. Menguji kinerja alat berbasis teknologi *contact glow discharge electrolysis* sebagai teknologi sederhana pembuatan pupuk nitrat cair

1.4 Luaran yang Diharapkan

Dari serangkaian kegiatan yang dilakukan dalam kegiatan ini, luaran yang ditargetkan mengacu pada luaran yang dipersyaratkan pada PKM-KC, yaitu (1) Laporan kemajuan, (2) laporan akhir, (3) artikel ilmiah yang dipublikasikan pada jurnal internasional, (4) alat berupa teknologi sederhana *contact glow discharge electrolysis* sebagai alat produksi pupuk nitrat cair berbahan baku udara.

1.5 Kegunaan

Manfaat dari rancang bangun ini untuk menghasilkan teknologi sederhana berbasis *contact glow discharge electrolysis* sebagai alat produksi pupuk nitrat cair yang ramah lingkungan, mudah digunakan, dan hemat biaya.

Bab 2. Tinjauan Pustaka

2.1 Pupuk

Pupuk menyediakan komponen penting yang dibutuhkan oleh tanaman seperti unsur hara nitrogen untuk keberlangsungan hidupnya. Pupuk terbagi atas pupuk organik dan anorganik. Pupuk organik berasal dari tumbuhan kering ataupun kotoran ternak, sedangkan pupuk anorganik berasal dari sintesis kimia yang diproduksi oleh pabrik kimia. Kelebihan pupuk organik adalah lebih ramah lingkungan dan memperbaiki sifat tanah, sedangkan kelemahannya adalah unsur hara lebih sedikit dan sulit untuk dikontrol. Adapun kelebihan pupuk anorganik adalah unsur hara mudah dikontrol, efisien dalam hal transportasi, tetapi energi dan emisi CO₂ sangat tinggi serta tidak dapat diproduksi dimanapun.

2.2 Teknologi Haber Bosch dalam Produksi Pupuk Nitrat

Haber Bosch merupakan fiksasi nitrogen secara buatan dengan mereaksikan gas nitrogen dari udara dengan gas hidrogen dari gas alam seperti reaksi:

$$N_2 + 3H_2 \leftrightarrow 2NH_3 \tag{1}$$

Proses ini berlangsung di tekanan tinggi sekitar 150-200 atm dengan temperatur tinggi sekitar 500°C, dimana reaksi berlangsung secara eksotermik dengan $\Delta H = -92.4$ kJ/mol (Modak, 2002). Hidrogen yang beperan secara reaktan diperoleh dari gas alam (CH₄) melalui proses *steam reforming* sebagai berikut:

$$CH_4 + H_2O \leftrightarrow CO + H_2$$
 (2)

Selanjutnya melalui proses water gas shift reaction berikut ini.

$$CO + H_2O \leftrightarrow CO + H_2$$
 (3)

Proses tersebut mengonsumsi 1-2% dari total produksi energi di dunia dan menggunakan 2-3% dari total gas alam yang dihasilkan, serta menghasilkan polutan berupa karbon dioksida sebesar 300 juta ton (Wang, *et al.*, 2018). Terlebih, senyawa amonia diketahui sebagai salah satu dari 18 senyawa kimia yang berkontribusi terhadap 75% emisi *greenhouse gas* (GHG) (Yang, *et al.*, 2016).

2.3 Teknologi CGD Electrolysis di Pembuatan Pupuk Nitrat

Contact Glow Discharge Electrolysis merupakan teknologi terbaru yang merupakan pengembangan dari Air Plasma dimana plasma terbentuk di fasa cair larutan elektrolit dengan bantuan energi listrik, sehingga senyawa nitrat yang dituju dapat langsung dalam bentuk cair. Metode ini memberikan yield yang jauh lebih tinggi dibandingkan Faraday Electrolysis dikarenakan kehadiran senyawa radikal yang berperan luar biasa pada reaksi kimia dalam larutan. Metode ini sangat efektif untuk mendorong pembentukan senyawa radikal yang membantu gas O₂ dan N₂ sebagai komponen penyusun udara untuk bereaksi dengan plasma membentuk senyawa nitrat dalam fasa cair. Prinsip kerja pembuatan pupuk cair nitrat dengan contact glow discharge electrolysis ialah udara dinjeksikan ke dalam larutan elektrolit dimana plasma terbentuk. Pada tahap ini O₂ dan N₂ dari udara akan bereaksi dengan plasma membentuk senyawa nitrat

Injeksi udara (O₂ dan N₂) pada proses *contact glow discharge electrolysis* dapat memicu terbentuknya gas NO dan NO₂ akibat adanya elektron energetik (e-) dalam larutan dengan mekanisme reaksi sebagai berikut (Burlica *et al.*, 2006).

$$N_2 + e^- \rightarrow 2N + e^- \tag{4}$$

$$O_2 + e^- \rightarrow 2O^{\bullet} + e^- \tag{5}$$

$$N + O \rightarrow NO$$
 (6)

$$NO + O \bullet \rightarrow NO_2$$
 (7)

Selanjutnya akan terbentuk ion NO₃ sebagai hasil pelarutan gas NO dan NO₂ dalam fasa liquid dengan reaksi sebagai berikut.

$$NO_2 + H_2O \rightarrow 2H^+ + 2NO_3^- + NO$$
 (8)

$$2NO_{2(g)} \rightarrow 2N_2O_4 + H_2O_{(l)} \rightarrow HNO_3 + HNO_{2(l)}$$
 (9)

$$NO_{2(g)} + NO_{(g)} \rightarrow 2N_2O_{3(g)} + H_2O \rightarrow 2HNO_{2(l)}$$
 (10)

$$3HNO_{2(1)} \rightarrow HNO_3 + 2NO_{(g)} + H_2O_{(1)}$$
 (11)

Ion amonium dapat bereaksi kembali dengan OH untuk membentuk amonia.

$$NH_4^+ + OH^- \rightarrow NH_3 \tag{12}$$

Sedangkan, radikal •OH yang bersumber dari pemutusan ikatan H₂O dapat bereaksi dengan NO₂ sehingga dapat memproduksi ion nitrat dan amonia untuk membentuk spesi intermediet sehingga berakhir di pembentukan ion nitrat. Parameter yang Mempengaruhi pada *CGD Electrolysis*

2.3.1 Jenis Larutan Elektrolit

Semakin tinggi konduktivitas suatu larutan elektrolit, maka cahaya plasma yang terbentuk semakin besar sehingga akan meningkatkan konsentrasi spesi aktif, seperti •OH, •H, dan H₂O₂. Pada alat ini akan digunakan senyawa elektrolit NaCl sebagai larutan elektrolit berbahan baku murah dan diharapkan dapat meningkatkan konduktivitas larutan sehingga produksi nitrat yang dihasilkan semakin besar.

2.3.2 Konsentrasi Larutan Elektrolit

Meningkatnya konsentrasi elektrolit akan meningkatkan konduktivitas larutan sehingga plasma akan lebih cepat terbentuk serta mendorong produksi radikal OH semakin meningkat sehingga produksi nitrat menjadi semakin tinggi. Pada rancangan alat ini akan digunakan konsentrasi elektrolit NaCl 0,04 M sebagai konsentrasi optimum yang telah dibuktikan dalam beberapa penelitian sebelumnya.

2.3.3 Laju Alir Udara

Laju alir yang semakin tinggi dapat menurunkan konsumsi energi sehingga proses pembentukan plasma akan semakin mudah, sehingga tidak dibutuhkan waktu operasi yang lama untuk menghasilkan plasma. Pada alat teknologi ini, udara akan diinjeksikan langsung ke anoda karena senyawa yang ingin diproduksi adalah radikal OH sebagai oksidator terkuat dalam proses produksi nitrat.

2.3.4 Suhu

Suhu berpengaruh terhadap kebutuhan *breakdown voltage* (Vn), dimana semakin tinggi suhu maka kebutuhan voltage menurun karena semakin mudah terbentuknya selubung gas pada anoda, sehingga konsumsi energi menurun. Suhu

yang tinggi membuat kinerja plasma meningkat. Pada perancangan alat ini akan digunakan suhu larutan berkisar $50 - 55^{\circ}$ C dan dijaga oleh sensor temperatur otomatis.

2.3.5 Penambahan Ion Fe²⁺

Penambahan ion Fe²⁺ yang merupakan komponen penting dalam proses dikarenakan kemampuan Fe²⁺ mengubah H₂O₂ yang terbentuk akibat rekombinasi sesama •OH kembali menjadi •OH (reaksi fenton) akan meningkatkan jumlah •OH di larutan sehingga produk nitrat yang dihasilkan akan semakin besar. Pada perancangan alat teknologi ini, konsentrasi Fe²⁺ yang digunakan adalah 30 ppm karena merupakan konsentrasi Fe²⁺ optimum dalam produksi nitrat dan telah dibuktikan dalam penelitian pendahuluan penulis.

2.3.6 Waktu Operasi

Terdapat waktu optimum untuk memperoleh hasil yang maksimal, dimana terdapat waktu ketika reaksi harus dihentikan karena jika reaksi diteruskan, radikal yang diproduksi selama proses elektrolisis plasma dapat merusak produk reaksi. Pada alat teknologi ini, waktu proses yang digunakan adalah sekitar 15 – 20 menit karena waktu tersebut adalah waktu optimum dalam produksi nitrat melalui proses *contact glow discharge electrolysis* yang telah dibuktikan dalam beberapa penelitian sebelumnya.

Bab 3. Tahap Pelaksanaan

3.1 Metode dan Model Pelaksanaan

Metode penelitian yang digunakan dalam penelitian ini adalah metode eksperimental. Penelitian ini bertujuan untuk membuktikan kemampuan alat teknologi berbasis CDG *Electrolysis* dalam memproduksi pupuk nitrat cair.

3.1.1 Pengkajian Masalah

Tahapan identifikasi masalah ini bertujuan untuk mengetahui kelemahan proses komersil secara industri tentang pembuatan pupuk kimia. Permasalahan tersebut diformulasikan menjadi masalah yang hendak diselesaikan dengan cara menetapkan tujuan pada kegiatan PKM KC ini.

3.1.2 Studi Literatur

Kegiatan ini dilakukan dengan mencari materi penunjang dari buku dan berbagai literatur terpercaya dari internet. Adapun bahan studi yang dicari adalah meliputi teknologi komersil pembuatan pupuk kimia yang memiliki emisi gas CO₂ tinggi, membutuhkan proses yang kompleks serta biaya distribusi yang mahal.

3.1.3 Perancangan Alat

Perancangan desain alat teknologi sederhana pembuatan pupuk nitrat yang akan digunakan adalah desain sederhana yang dapat didistribusikan dengan murah, mudah digunakan sehingga membangun kemandirian petani untuk memproduksi

pupuk nitrat sendiri, serta memiliki biaya produksi yang murah karena berbahan baku udara dan garam dapur.

3.1.4 Pengujian dan Analisis Alat

Pengujian ini dilakukan untuk mendapatkan data kinerja dari alat teknologi sederhana berbasis CDG *Electrolysis*. Prosedur pembuatan model alat yaitu:

- 1. Persiapan alat dan bahan
- 2. Karakterisasi arus dan tegangan
- 3. Produksi nitrat menggunakan proses CDG *Electrolysis*
- 4. Uji kandungan nitrat
- 5. Uji konsumsi energi spesifik

Setelah didapatkan data dari pengujian, maka langkah strategis berikutnya agar alat teknologi berbasis CDG *Electrolysis* untuk produksi pupuk nitrat cair bisa dikomersialkan kepada masyarakat, yaitu:

- 1. Membuat *prototype* dari alat teknologi berbasis CDG *Electrolysis* yang sudah diuji coba
- 2. Mengusulkan alat teknologi berbasis CDG *Electrolysis* melalui presentasi dan proposal kepada pihak-pihak terkait.
- 3. Membuat scale up dari prototype yang diajukan
- 4. Menginformasikan fungsi dan pemakaian pada masyarakat sekitar

3.2 Diagram Alir Pelaksanaan Program

Gambar 3.1 Diagram alir pelaksanaan program

3.3 Rancangan Alat

Alat teknologi sederhana pembuatan pupuk nitrat cair berbasis CDG Electrolysis ini terdiri dari dua tangki yaitu tangki utama berkapasitas 15 liter dan tangki reaksi berkapasitas 1 liter. Tangki utama berisi elektrolit NaCl (garam dapur) yang akan disirkulasikan ke tangki reaksi selama 3 jam. Sedangkan pada tangki reaksi akan dilengkapi dengan katoda (terbuat dari stainless steel grade 304, berbentuk silinder pejal dengan diameter 3 mm dan panjang 25 cm), anoda (terbuat dari tungsten dengan diameter 1,2 mm dan panjang 20 cm), temperature controller untuk menjaga suhu reaksi sekitar 50 – 60°C (suhu ini merupakan suhu optimum pada proses CDG *Electrolysis* untuk pembuatan pupuk nitrat cair, dan injeksi *port* udara bebas sebagai bahan baku proses. Di bagian bawah tangki reaksi akan disediakan tampilan untuk melihat kuat arus, tegangan proses dan temperatur larutan. Alat ini menggunakan sel surya sebagai bahan bakar alternatif yang bertegangan 12 VDC dan akan dinaikkan tegangannya menjadi 600 VDC menggunakan trafo DC. Pada proses ini diharapkan nitrat yang akan dihasilkan adalah sekitar 2500 ppm (tanpa penambahan ion Fe²⁺) dan jika ditambahkan dengan ion Fe²⁺ sekitar 4000 ppm Berikut adalah kondisi operasi pada alat teknologi sederhana berbasis CDG *Electrolysis* untuk pembuatan pupuk nitrat cair ini.

Tabel 3.1 Kondisi Operasi Alat Teknologi

No	Parameter	Kondisi operasi
1.	Jenis Elektrolit	NaCl (garam dapur)
2.	Konsentrasi Elektrolit	0,04 M
3.	Konsentrasi Penambahan Ion Fe ²⁺	30 ppm
4.	Tegangan	600 VDC
5.	Daya	300 W
6.	Anoda	Tungsten selubung kaca (D: 1,2 mm)
8.	Katoda	Stainless steel (D: 3 mm)
9.	Waktu proses	180 menit
10.	Laju alir udara	0,4 lpm
11.	Suhu reaktor	50°C
12.	Volume reaktor reaksi	1 L
13.	Volume tangki utama	15 L

Berikut adalah gambar skema alat teknologi sederhana dalam pembuatan pupuk nitrat cair berbasis CDG *Electrolysis* yaitu sebagai berikut:

Gambar 3.2 Skema proses alat teknologi berbasis CDG Electrolysis

Gambar 3.3 Prototype alat teknologi pembuatan pupuk nitrat

3.4 Cara Kerja Alat

Prinsip kerja dari alat teknologi sederhana untuk pembuatan pupuk cair nitrat berbasis *Contact Glow Discharge Electrolysis* ialah udara dinjeksikan ke dalam larutan elektrolit dimana plasma terbentuk. Pada tahap ini O₂ dan N₂ dari udara akan bereaksi dengan plasma membentuk senyawa nitrat. Berikut ini adalah cara kerja alat teknologi sederhana pembuatan pupuk nitrat cair:

1. Persiapan alat dan bahan. Bahan terdiri atas elektrolit garam dapur (NaCl) sebagai peningkat konduktivitas larutan sehingga plasma mudah terbentuk dan penambahan ion Fe²⁺ sebagai oksidator peningkat konsentrasi nitrat.

- 2. Elektrolit NaCl dimasukkan ke dalam tangki utama berkapasitas 15 L dan tangki reaksi berkapasitas 1 L. Setelah elektrolit dimasukkan, udara sebagai sumber nitrogen juga diinjeksikan dengan menggunakan *air pump*
- 3. Bahan bakar alternatif berupa sel surya dimasukkan ke dalam catu daya 12 VDC yang akan dinaikkan tegangannya hingga 600 VDC menggunakan trafo DC *automatic*.
- 4. Waktu proses selama 3 jam dengan adanya sirkulasi elektrolit dari tangki utama ke tangki reaksi.
- 5. Alat ini dilengkapi dengan *temperature sensor* dan *controller* yang terhubung dengan *display* dan *air pump* yang menginjeksikan udara ke kontainer untuk pendinginan sehingga suhu larutan akan terjaga

3.5 Keunggulan Inovasi

- 1. Memiliki emisi gas karbondioksida yang sangat rendah karena berasal dari bahan bakar alternatif seperti sel surya sinar matahari sehingga lebih ramah lingkungan dan mendukung program Protokol Kyoto dan Program Implementasi Konservasi Energi dan Pengurangan Emisi CO₂ di Sektor Industri dari Kementrian Perindustrian.
- 2. Memiliki harga dan biaya produksi lebih murah karena berbahan baku udara dengan larutan elektrolit berupa garam dapur sehingga beban biaya produksi yang ditanggung petani dalam hal penggunaan pupuk dapat dikurangi.
- 3. Mempunyai teknologi yang sangat sederhana dan dapat diaplikasikan dimanapun sehingga dapat membangun kemandirian para petani dalam hal produksi pupuk nitrat cair sehingga diharapkan ketahanan pangan pasca pandemi COVID-19 dapat terjaga.
- 4. Pupuk yang dihasilkan memiliki konsentrasi dan kualitas yang lebih tinggi dibandingkan proses komersial.

Bab 4. Biaya dan Jadwal Kegiatan

4.1 Anggaran Biaya

Tabel 4.1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Sewa dan jasa serta peralatan penunjang	3.740.000
2	Bahan habis pakai	3.260.000
3	Transportasi lokal	1.000.000
4	Lain-lain	1.000.000
	Jumlah (Rp)	9.000.000

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan		Bu	lan		Person Penanggung Jawab
110	Jenis Regiatan	1	2	3	4	
1	Studi Literatur					Muhammad Fadhillah Ansyari
2	Pembuatan Prototype					Luqman Hakim
3	Evaluasi Produk dari Protoype					Tiffany Liuvinia
4	Perancangan Alat dari Hasil Evaluasi					Muhammad Fadhillah Ansyari
5	Pembuatan Laporan Akhir					Tiffany Liuvinia

Daftar Pustaka

- Ardiansyah. (2019). Sintesis Pupuk Cair Nitrat dengan Bahan Baku Udara Menggunakan Metode Elektrolisis Plasma. Depok: (Skripsi), Universitas Indonesia, Depok.
- Asnawi, R., Arief, R. W., & Rohayana, D. (2009). *Analisis Kelangkaan Pupuk dan Pengaruhnya terhadap Produktivitas Padi Swah Inbrida dan Hibrida di Lampung*. Lampung: Balai Pengkajian Teknologi Pertanian Lampung.
- Firdaus, F. (2019, September 06). *Pupuk Subsidi Dikurangi pada 2020, Kementan Cari Solusi Terbaik*. Diambil kembali dari Okezone: https://news.okezone.com/read/2021/01/20/1/2101356/pupuk-subsidi-dikurangi-pada-2020-kementan-cari-solusi-terbaik
- Lindsay, A., Byrns, B., King, W., Andhvarapou, A., Fields, J., Knappe, D., Shannon, S. (2014). Fertilization of Radishes, Tomatoes, and Marigolds Using a Large-Volume Atmospheric Glow Discharge. *Plasma CHemistry and Plasma Processing*, 1271-1290.
- Liu, Y., D. Wang, B. Sun and X. Zhu. (2010). Aqueous 4-Nitrophenol Decomposition and Hydrogen Peroxide Formation Induced by Contact Glow Discharge Electrolysis. *J. Hazardous Mater*, 1010-1015.
- Salsabila, P. (2019). Sintesis Nitrat Menggunakan Metode Elektrolisis Plasma dengan Elektrolit Na2SO4 untuk Pembuatan Pupuk Cair. (Skripsi), Universitas Indonesia, Depok.
- Suryana, A., Agustian, A., & Yofa, R. D. (2016). Alternatif Kebijakan Penyaluran Subsidi Pupuk bagi Petani Pangan. *Analisis Kebijakan Pertanian*, 35-54.
- Syarfina. 2020. *Metode Elektrolisis Plasma untuk Sintesis Pupuk Nitrat Cair dengan Elektrolit K*₂*HPO*₄ *dan K*₂*SO*₄. (Skripsi), Universitas Indonesia, Depok.
- Tanabe, Y., & Nishibayashi, Y. (2013). Developing More Sustainable Processes for Ammonia Synthesis. *Coordination Chemistry Reviews*, 2551–2564.
- Topan, N., Yetti, H., & Ali, M. (2017). Pengaruh Limbah Cair Biogas Ternak terhadap Pertumbuhan dan Hasil Tanaman Cabai (Capsicum annuum L.) di Tanah Podzolik Merah Kuning. *JOM Faperta*, 1-12.
- Wang, W., B, P., S, H., & H. V. (2017). Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. *ChemSusChem*, 2145-2157.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping

A. Biodata Ketua

A. Identitas Diri

mmad Fadhillah Ansyari laki
laki
idki
k Kimia
985786
ta, 22 Mei 1999
hillahansyari@gmail.com
11341455

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan	Tempat
1	PGD UI	Staff Event CPDC	2018, Indonesia	Universitas
2	SALAM UI	Fungsionaris Bidang Kajian dan Aksi Strategis	2019, Indonesia	Universitas
3	CHEM E-CAR	Ketua Bidang Riset dan Penelitian	2020, Indonesia	Universitas

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	The Most Outstanding	Departemen Teknik Kimia,	2018
	ODD 2018-2019	Universitas Indonesia	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu

persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 14 Februari 2021

Ketua,

(Muhammad Fadhillah Ansyari)

B. Biodata Anggota ke-1

A. Identitas Diri

1	Nama Lengkap	Luqman Hakim
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Kimia
4	NIM	1906380524
5	Tempat dan Tanggal Lahir	Jakarta, 13 Agustus 2001
6	E-mail	luqman.hakim92@ui.ac.id
7	Nomer Telepon/HP	081288137275

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1			

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun	
1				

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 14 Februari 2021

Anggota

(Luqman Hakim)

C. Biodata Anggota ke-2

A. Identitas Diri

1	Nama Lengkap	Tiffany Liuvinia
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIM	2006575650
5	Tempat dan Tanggal Lahir	Sidikalang, 13 Desember 2002
5	E-mail	tiffanyliuvinia123@gmail.com
7	Nomer Telepon/HP	085262862890

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu Tempat	dan
1				

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 14 Februari 2021 Anggota,

(Tiffany Liuvinia)

D. Biodata Dosen Pendamping

A. Identitas diri

1.	Nama Lengkap (dengan gelar)	Prof. Dr. Ir. Nelson Saksono, M.T.
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Kimia
4.	NIP/NIDN .	0008116702
5.	Tempat dan Tanggal Lahir	Jakarta, 8 November 1967
6.	Alamat E-mail	nelson@che.ui.ac.id
7.	No. Telepon/HP	085218464708

B. Riwayat Pendidikan

	S1	S2	S3
Nama Institusi	Universitas Indonesia	Universitas Indonesia	Universitas Indonesia
Jurusan / Prodi	Teknik Gas & Petrokimia	Teknologi Gas	Teknik Kimia
Tahun masuk- lulus	1987-1992	1993-1995	2005-2008

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No	Nama Mata Kuliah	Wajib / Pilihan	SKS
1.	MPKT-A	Wajib	6
2.	Chemical Engineering Modeling	Wajib	3
3.	Pengolahan Minyak Bumi	Pilihan	3
4.	Mekanika Fluida	Wajib	3
5.	Kimia Dasar	Wajib	2
6.	MPKT-B	Wajib	6
7.	Teknologi Kriogenik	Pilihan ·	3
8.	Teknologi Plasma & Ozon	Pilihan	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1.	The Chlor-Alkali Production by Electrolysis Plasma Process in NaCl Electrolyte Solution	Osaka Gas Foundation	2011-2012
2.	Rancang Bangun Reaktor Elektrolisis Plasma untuk Pengolahan Limbah Air yang Mengandung Amonia	Riset Unggulan UI Utama, Peneliti Utama	2012-2013
3.	Peningkatan Efisiensi Produksi	Riset Unggulan UI	2013-2015

	Klor-Alkali dengan Kombinasi	Utama, Peneliti	
	Teknologi Elektrolisis Plasma dan	Utama	
	Membran Penukar Ion		
	Hydrogen Generation by Plasma	Ocaka Gas Panaliti	
4.	Electrolysis Methad in Methanol-		2015-2016
	NaOH Elctrolyte Solution	Osaka Gas, Peneliti Utama Hibah Strategis Nasional, DIKTI, Peneliti Utama	
	Rancang Bangun Generator	Uibah Stratogis	
5.	Hidrogen dengan Metode	_	2014-2015
٥.	Elektrolisis Plasma Menggunakan		2014-2013
	Larutan KOH-etanol	Penenu Otama	
	Degredasi Limbah Air yang		
6. Mengandung Linear Alkylbenzene Hibah Ko Sulfonate dengan Teknologi DIF	Mengandung Linear Alkylbenzene	Hibah Kompetensi	2015-2016
	DIKTI	2013-2010	
	Elektrolisis Plasma		
	Sintensi Biodiesel dari Minyak		
7.	Kelapa Sawit dengan Metode	Hibah PITTA UI	2017-2018
	Elektrolisis Plasma	Hibah Strategis Nasional, DIKTI, Peneliti Utama Hibah Kompetensi DIKTI Hibah PITTA UI Hibah PITTA UI Hibah Kompetensi Kemenristek Dikti	
	Pengolahan Limbah Fenol dan		
8.	Chrom dengan Metode Elektrolisis	Hibah PITTA UI	2017
	Plasma		
	Pengolahan Limbah Pewarna	Hibah Vampatanai	
9.	Tekstil Dengan Teknologi	-	2017-2019
	Elektrolisis Plasma	Kemenristek Dikti	
10.	Sintesis Lateks Hibrida Dengan	Liboh DITTA III	2017-2019
10.	Metode Elektrolisis Plasma	THUAH FILLA UI	2017-2019

C.1. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
	Pelatihan Intensifikasi Pembuatan		
	Abon Ikan Patin Berkualitas Tinggi		
1.	untuk Pemenuhan Gizi dan	Hibah Pengabdian	2010
1.	Peningkatan Perekonomian	Masyarakat UI	2010
	Masyarakat di Kecamatan Pancoran		
	Mas Kota Depok		
	Peningkatan Pendapatan Kelompok		
2.	Usaha Abon Ikan dengan Upaya	Program CEG'S UI	2013
۷.	Diversifikasi Produk Olahan Ikan dan	Flogram CEG 5 01	2013
	Perbaikan Metode Pemasaran		
		Pengabdian Masyarakat	
3.	IbiKK Biofarming Lebah Trigona	program IbiKK	2016
		Kemenristek-dikti	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 14 Februari 2021 Dosen Pembimbing,

(Prof. Dr. Ir. Nelson Saksono, M.T.)

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Sewa dan jasa serta peralatan penunjang	Volume	Harga Satuan (Rp)	Jumlah Biaya (Rp)
House Filter Acrylic	4	195.000	780.000
Diode bridge 1.000 V; 25 A	10	98.000	980.000
Selang Silikon 1/4 in 1 meter	4	25.000	100.000
Kabel Jepit Buaya	12	10.000	120.000
Lem Araldite	5	50.000	250.000
Nepple Selang 1/4 in	6	20.000	120.000
Water Mur Drat Dalam 1/2 in	4	15.000	60.000
Double Nepple 1/2 in	4	17.500	700.000
SDL 1/2 in	8	12.500	100.000
Sambungan kuning 1/2 in	4	15.000	60.000
Elektroda SS 316	2	200.000	400.000
Elektroda Tungsten	2	200.000	400.000
Termometer	4	50.000	200.000
Syringe	1	100.000	100.000
	SUBTOTAL (Rp)		3.740.000
2. Barang Habis Pakai	Volume	Harga Satuan (Rp)	Jumlah Biaya (Rp)
Aquadest	6 drum	75.000	450.000
Garam dapur (NaCl)	500 g	20	10.000
FeSO ₄ .7H ₂ O	168 g	2.310	390.000
Larutan Standar KNO3	50 g	5.000	250.000
Reagen	20 buah	108.000	2.160.000
	SUBTO	TAL (Rp)	3.260.000
3. Transportasi Lokal	Volume	Harga Satuan (Rp)	Jumlah Biaya (Rp)
Perjalanan Pembelian alat ke Glodok, Jakarta	3 kali perjalanan	100.000	300.000
Biaya Transportasi ke Laboratorium DTK selama penelitian	20 kali perjalanan	20.000	400.000

Biaya pengiriman bahan kimia	3 kali perjalanan	100.000	300.000	
	SUBTO	TAL (Rp)	1.000.000	
4. Lain-lain	Kuantitas	Harga Satuan (Rp)	Jumlah Biaya (Rp)	
Administrasi	1 kali	100.000	100.000	
Publikasi	2 publikasi	300.000	600.000	
Laporan	3 Laporan	100.000	300.000	
	SUBTO	ΓAL (Rp)	1.000.000	
TOTAL (Rp)			9.000.000	
Sembilan Juta Rupiah				

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Muhammad Fadhillah Ansyari/ 1606830606	Teknik Kimia	Teknik Kimia	20	 Melakukan koordinasi antar anggota Melakukan pembelian alat dan bahan Merancang temperature controller sistem, kontainer penyimpanan.
2	Luqman Hakim/ 1906380524	Teknik Kimia	Teknik Kimia	20	 Mencatat seluruh hasil uji kinerja reaktor CDG Electrolysis Analisis kualitatif kandungan nitrat Analisis kuantitatif nitrat
3	Tiffany Liuvinia/ 2006575650	Teknik Kimia	Teknik Kimia	20	 Membuat larutan elektrolisis Mengukur konsumsi energi

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Muhammad Fadhillah Ansyari

NIM : 1706985786 Program Studi : Teknik Kimia

Fakultas : Teknik

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul Rancang Bangun Alat Teknologi Tepat Guna Pembuatan Pupuk Nitrat Cair Sebagai Solusi Penguatan Ketahanan Pangan Pasca Pandemi COVID-19 yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

> Depok, 14 Februari 2021 Yang menyatakan,

(Muhammad Fadhillah Ansyari) NIM. 1706985786

Lampiran 5. Gambaran Teknologi yang Akan Diterapkembangkan Gambaran 3D Alat Teknologi Sederhana

Gambaran Komponen Alat Teknologi Sederhana

