Lecture 2.2: Bayesian Phylogenetics

Phylogenetic methods

	Algorithm- based	Optimality criterion	Other
No explicit evolutionary model		Maximum parsimony	
Explicit evolutionary model	Distance- based methods	Maximum likelihood	Bayesian inference

Maximum parsimony

 Identifies the tree that requires fewest evolutionary steps to explain the data set

Advantages

- Readily used for morphological and molecular data
- Relatively quick
- Does not require a lot of assumptions

Disadvantages

- Susceptible to long-branch attraction
- Unable to estimate evolutionary rates and timescales

Distance-based methods

Uses a matrix of pairwise distances to infer the phylogeny

Advantages

- Can use various types of distance data
- Extremely quick
- Uses model to account for multiple changes

Disadvantages

- Information is lost in pairwise comparisons
- Unable to implement complex evolutionary models

Maximum likelihood

 Identifies the tree and model parameters that yield the highest likelihood score

Advantages

- Statistically rigorous
- Uses model to account for multiple changes

Disadvantages

- Relatively slow (although new methods can be very quick)
- Unable to implement complex, parameter-rich models
- Bootstrapping can be slow

Bayesian phylogenetic analysis

- Bayesian phylogenetic analysis was developed in the mid 1990s
- Now one of the most widely used methods
- Software:
 - MrBayes
 - BEAST

Bayesian *versus* likelihood

Maximum likelihood

Probability of?

Brown bear Cave bear Black bear

CGTTAGTACACT CGATAGTTCACT CGTTAGTTTACC

Giant panda CATTGGTTTACT

Probability of?

Bayesian inference

Given

CGTTAGTACACT Brown bear CGATAGTTCACT Cave bear CGTTAGTTTACC Black bear

Giant panda CATTGGTTTACT

brown bear cave bear black bear giant panda

The Bayesian paradigm

- Parameters have distributions
- Before the data are observed, each parameter has a prior distribution
- The likelihood of the data is computed
- The prior distribution is combined with the likelihood to yield the posterior distribution

Bayesian inference

Specified by user, Independent of data

Coin toss example

Coin toss example

Coin toss example

Priors

- Reflect our prior expectations (and uncertainty) about values of parameters (without knowledge of the data)
 - Past observations
 - Personal beliefs
 - 3. Use of a biologically realistic model

Priors

- Priors are chosen in the form of probability distributions
 - Example: substitution rate Probably around $3.2x10^{-8} \rightarrow Normal(3.2x10^{-8}, \sigma)$
- If unsure, use uninformative/flat prior

Prior for the tree

- 1. Use a flat prior for tree topology (MrBayes)
 - All trees have equal probability
 - Also need a prior for branch lengths or node times
- Use a biological model to generate prior distribution (BEAST)
 - Among species: speciation model
 - Within species: coalescent model

Among species

- Tree shape described by a stochastic branching process, such as:
- Yule process:
 - The root lineage splits into two
 - Lineages split at a constant rate
 - Simulates speciation process
- Birth-death process

Within species

- Coalescent model used to put a prior on the tree
- Time between coalescent events depends on population size
- Different demographic models:
 - Constant population
 - Exponential growth
 - Logistic growth

Markov Chain Monte Carlo Sampling

Estimating the posterior

- Impossible to obtain the posterior directly
- Instead, the posterior can be estimated using Markov chain Monte Carlo simulation
- This is usually done using the Metropolis-Hastings algorithm

Nicholas Metropolis Los Alamos, 1953

Estimating the posterior

$$f(\tau_i|X) = \frac{f(X|\tau_i)f(\tau_i)}{\sum_{j=1}^{B(s)} f(X|\tau_i)f(\tau_i)}$$

$$f(X|\tau_i) = \int_{v_i} \int_{\theta} f(X|\tau_i, v_i, \theta) f(v_i) f(\theta) dv_i d\theta$$

Estimating the posterior

$$R = \frac{Pr(\mathsf{Point}_2|\mathsf{Data})}{Pr(\mathsf{Point}_1|\mathsf{Data})}$$

$$R = \frac{\frac{Pr(\mathsf{Point}_2)L(\mathsf{Point}_2)}{Pr(\mathsf{Data})}}{\frac{Pr(\mathsf{Point}_1)L(\mathsf{Point}_1)}{Pr(\mathsf{Data})}}$$

$$R = \frac{Pr(\mathsf{Point}_2) L(\mathsf{Point}_2)}{Pr(\mathsf{Point}_1) L(\mathsf{Point}_1)}$$

Point 1

Point 2

- 1. Choose a starting tree and parameter values
- 2. Calculate prior x likelihood
- Propose a change to a parameter or to the tree

Tree

Continuous parameters

- 1. Choose a starting tree and parameter values
- 2. Calculate prior x likelihood
- Propose a change to a parameter or to the tree
- Two situations:
 - 2. If proposed location is better, move to the new location
 - 3. If proposed location is worse, move to the new location with probability equal to ratio of new to old location ("Hastings ratio")
- 5. Record the tree and parameter values at each step

Slightly detrimental steps are usually accepted

Drastically detrimental steps are usually rejected

Improvements are always accepted

Start with a set of parameters and tree

Metropolis coupling

- Sometimes the Metropolis-Hastings algorithm is unable to traverse parameter space efficiently
- This can be addressed by Metropolis-coupled Markov chain Monte Carlo (MCMCMC)
- Heated chains are added to the original cold chain
- The heated chains have a higher probability of accepting downhill steps
- Heated chains act as 'scouts' for the cold chain

Metropolis coupling

Posterior distribution

Posterior distribution

Summarising the posterior

- Output from a Bayesian phylogenetic analysis:
 - A list of the parameter values visited by the Markov chain (.p file in MrBayes, .log file in BEAST)
 - A list of the trees visited by the Markov chain (.t file in MrBayes, .trees file in BEAST)
- Take the mean of the sampled values
 Mean posterior estimate
- Take the central 95% of the sampled values
 95% credibility interval

Summarising the trees

Summarising the trees

- For each observed node, calculate the proportion of sampled trees in which the node is present
- For each node, this proportion is the 'posterior probability' of that node
- Finding a single representative tree
 - Maximum a posteriori (MAP) tree
 Sampled tree with highest posterior probability
 - Maximum clade credibility (MCC) tree
 Sampled tree with highest product of posterior node probabilities

Diagnostics

1. Convergence Has the MCMC reached the stationary distribution?

2. Mixing

Are the samples from the stationary distribution reasonably independent of each other?

Diagnostics

- Effective sample size (ESS)
 Have we drawn enough independent samples to produce a reliable estimate of the posterior distribution?
- ESS is preferably >200 for each parameter
- ESS can be increased by:
 - Increasing the length of the MCMC
 - Decreasing the frequency of sampling from the MCMC

Advantages and Disadvantages

Advantages

- Able to implement highly parameterised models
- Estimating tree uncertainty is straightforward
 - Can only do this indirectly in likelihood (via bootstrapping)
- Posterior probabilities have an intuitive interpretation
- Can incorporate independent information (in the prior)
- Can easily integrate over 'nuisance' parameters (i.e., those that are not of immediate interest)

Advantages: Nuisance parameters

- Marginal likelihood of a parameter of interest
- Integrate over 'nuisance' parameters
- Example
 - Interested in evolutionary rate but not in the phylogenetic tree

Problems: Influence of priors

- Sensitivity of the posterior to the prior
 - This problem can arise if the data are uninformative

Posterior & Prior x Likelihood

Problems: Overparameterisation

Parameter(s) are non-identifiable

This problem is not always obvious in the analysis

Bayesian methods are often robust to moderate overparameterisation

Problems: Inflated support values?

Symphalangus syndactylus
Nomascus concolor
Nomascus gabriellae
Nomascus leucogenys
Hoolock hoolock
Hylobates pileatus
Hylobates agilis
Hylobates moloch
Hylobates muelleri
Hylobates lar

Symphalangus syndactylus Nomascus concolor Nomascus gabriellae Nomascus leucogenys Hoolock hoolock Hylobates pileatus Hylobates agilis Hylobates moloch Hylobates klossii Hylobates lar

Methods in practice

- Maximum parsimony commonly used for morphological data, but rarely used otherwise
- Distance-based methods rarely used
- Maximum likelihood and Bayesian inference most commonly used for past 15 years or so
- Fast ML methods

