2. Попора Потали в МС	20 4055 20
2. Попова Наталья М8	O-405b-20
2 II	
2. Для задачи быстродействия	$\dot{x}_1(t) = x_2(t), \ x_1(0) = 0, \ x_1(T) = 17,$
	$\dot{x}_2(t) = u(t), x_2(0) = 0, x_2(T) = 0,$ $ u(t) \le 4/25, 0 \le t \le T, a > 0,$
	$I = \int dt \to \min$
найти оптимальное программии	$\frac{1}{0}$ от управление $u^*(\cdot)$, оптимальную траекторию $x^*(\cdot)$ и
время T^* .	Cympathetic II (y, Sittinated by the III (y II
Положить $b = n$, $a = \frac{n}{4}$. Указание: см. пример 9.9.	
$f_{i}(t,x,u)=$	
$f_2(t,x,u) =$	
$f^{\circ}(t,x,u) =$	7
F(x, u) = 0	
$\mathcal{X}_1 = T$	
$\Gamma_{1}(T,x(T))$	
$P_2(T,x(T))$	$T = \mathcal{X}_2$, $T = 0$
Гашиньтори	an.
H/t, Y, z, L	$1) = Y_1 x_2 + Y_2 u - 1$
Yandonni v	иаксинум голишьтониана по управинию.
1 * (1) 2 1 2 1	17
u·(z) = wign	$\max H(t, Y(t), x(t), u) = \frac{17}{4} \text{ sign } Y_2$
Transmireco	ue ypaluenus ppunzuna maxeunyua:
	$x_{1}(0) = 0$, $x_{1}(T) = 17$
$x_2(t) = u^*($	$(t) = 16,25 \text{ sign } Y_a(t); z_a(0) = 0, z_2(T) = 0$
$\dot{Y}_{1}(t) = -\frac{\partial t}{\partial x}$	
$\dot{\Psi}_{2}(t) = -\frac{2}{2}$	
ppourbourna	Задан, а $x_1(T)$ и $x_2(T)$ заданя, то вариация δt_1 , , а $\delta x_1 = 0$, $\delta x_2 = 0 \Rightarrow -H(t_1)\delta t_1 _{t_1 = T} = 0 \Rightarrow$
	$T, \Psi(T), x(T), u(T) = 0$
	Deyxmorernoi rpalloi zadaru
17	$const, Y_2(t) = -C_1 t + C_2$

$$\begin{aligned} & \forall_{1}(l) = \mathcal{C}_{1} = \text{const}, \ \forall_{2}(l) = -\mathcal{C}_{1} + \mathcal{C}_{2} \\ & u^{*}(l) = \frac{17}{4} \text{ rign}(-\mathcal{C}_{1} + \mathcal{C}_{2}) \\ & \exists u^{*}(l) = \frac{17}{4} \text{ rign}(-\mathcal{C}_{1} + \mathcal{C}_{2}) \\ & \exists x_{0} = (0, 0) \ \delta \quad (0) \ (17, 0), \ \mathcal{T}_{1} - \mathcal{G}_{1} \text{ peaks} \ \partial \mathcal{G}_{2} \text{ annexule} \ e \ \text{ ynpablement} \\ & u^{*}(l) = \frac{1}{4} \ \partial \quad (0) \ \text{ repeated varieties}, \ \mathcal{F}_{2} - \mathcal{G}_{2} \text{ peaks} \ \partial \mathcal{G}_{2} \text{ uniteries} \ e \ \text{ ynpablement} \ e \ \text{ ynpablement} \ e \ \text{ ynpablement} \ e \ \mathcal{F}_{1}(l) = \frac{17}{4} \ \mathcal{F}_{2}(l) = \frac{17}{4} \ \mathcal{F}_{3}(l) = \frac{17}{4} \ \mathcal{F}_{4}(l) = \frac{17}{4} \$$

Ha repleu yeacure: $x_1^*(t) = \frac{17}{8}t^2$, $x_2^*(t) = \frac{17}{4}t$ Ha bonopeur yeacoure: $x_1^*(t) = -\frac{17}{8}t^2 + 17t - 17$, $x_2^*(t) = -\frac{17}{4}t + 17$ T* = 4 Tocimpoun parobori nopmpem: $\dot{x}_1(t) = x_2(t)$ $\frac{dx_1}{dx_2} = \frac{x_2}{u} = dx_1 = \frac{x_2}{u} dx_2 \qquad x_1 = \frac{x_2^2}{au} + C$ $\dot{x}_{x}(t) = u(t) = const$ 1 ×2 $u/t) = \frac{17}{4}$ 22 $u/t) = -\frac{17}{4}$ 1 R2

