演算法與資料分析期末報告

基於 LSTM & BERT 機器學習 之網路輿情分析

國立金門大學資訊工程系

作者: 簡志融

指導教授:張珀銀 教授

目次

目	次							 	1
—	•	摘要	•		•••••			 	2
二		緒論	·					 	2
		2. 1	研究背景					 	2
			研究動機						
		2.3	研究問題					 	3
		2.4	研究目的			•••••	•••••	 	
三		文獻	探討與	回顧				 	3
四	•	研究	方法與	步驟				 	6
			系統分析情						
			目標						
			步驟						
			P蟲收集資						
		4.5 L	STM					 	8
		4.6 E	BERT					 	9
五		模型	成果					 ···· 1	. C
六	•	結論	·					 ···· 1:	2
セ	•	參考	`文獻					 1	3

一、摘要

在這幾年間,機器學習、深度學習相關的應用獲得了許多關注,其中LSTM (Long Short-Term Memory)是一種循環神經網絡(RNN)的變體,旨在解決 RNN在長序列上的梯度消失或梯度爆炸問題。LSTM是於1997年提出的,是一種有效、好用的模型,被廣泛應用於自然語言處理(NLP)和時間序列預測等領域。

BERT (Bidirectional Encoder Representations from Transformers)是一種自然語言處理技術,其基於Transformer網絡架構和預訓練方法,已經被廣泛應用於各種自然語言處理任務中。網路輿情是一個需要處理自然語言的任務,如:識別評論的主題、意見和情感等,而BERT可以幫助我們更加有效率的處理這些任務,因為它使用大量的無標籤數據進行預訓練,從而學習到有關於自然語言的通用表示。在網路輿情的分析中,BERT可以用來建立分類模型,該模型可以將評論分為正面、負面或中立等類別,這樣可以幫助用戶、店家與企業更好的理解其服務或產品在消費者中的聲譽及看法,並針對特定類別的評論進行快速回應,從而改進服務或產品的設計和銷售策略。

本計畫預期貢獻包含:(1)用Selenium動態抓取各種網路輿情;(2)運用 LSTM進行訓練並生成語言模型(3)運用BERT進行訓練並生成語言模型;(4)運用 語言模型對評論進行分類及分析,透過結果及各種指標對語言模型進行評估。

二、緒論

1. 研究背景

近年來,隨著網路蓬勃發展的影響,帶來許多便利的改變,人們可以在網上購物、娛樂、學習、分享、交換意見等.....,大大節省了時間和精力;同時,網路也成為了人們瞭解世界重要且主要的渠道,人們可以通過網路了解全球各地的新聞、時事和文化,此外,網路還為人們提供了更多的溝通和交流機會,人們可以通過社交網站、即時通訊軟體等,與世界各地的人進行交流,建立龐大的社交網絡,這使得人們更容易交流不同文化和觀點,豐富了人們的生活經驗,但也衍生了許多問題,因為網路的易於接觸,一些不懷好意的人藉著極佳的方便性,到處散布假消息,刻意的操弄輿論,重傷他人,因此在這世道下,有效的分辨言論真假是非是相當重要的議題。

2. 研究動機

自然語言評論分析是一個快速發展的領域,研究動機主要源於以下幾個方面:(1)電子商務的蓬勃發展,越來越多的產品和服務經由網際網路被推向市場,消費者可以通過網路上的平台對這些服務和產品進行評論;(2)社交媒體的普及,越來越多的人在社交媒體平台上發表自己的看法;(3)自然語言處理技術的進步,自然語言評論分析的準確度和效率得到了大幅提升,用來分析的價值也隨之提高,使得它成為一個被廣泛應用的工具。自然語言評論分析可以幫助用戶、店家與企業更好地理解大眾對產品和服務的看法,更好地分析現代消費者對產品和服務的真正需求及痛點,從而因應趨勢進行改進。

3. 研究問題

因此,本計畫所要探討【研究問題】包含:

- 1. 如何找到最合適的爬蟲來獲取不同的網路輿情?
- 2. 如何把獲取到的資料進行預處理並製作成資料集?
- 3. 如何將從模型獲取的資料進行客觀分析?
- 4. 如何將模型訓練得更加精確?
- 5. 對於政府或店家能夠有效地獲得民眾的反饋?

4. 研究目的

- \

二、

- 1. 多方參考資料文獻尋找方法。
- 2. 應用爬蟲套件,將不同的資料存入資料集。
- 3. 提出一種基於機器學習的自動化比對技術。
- 4. 透過真人反饋對比模型分析分數調整。
- 5. 論述說明本計畫研究成果對於訊息過濾貢獻及未來發展。

三、文獻探討與回顧

網路輿情評論是大部分民眾對特定實體的第一印象,幾乎所有特定實體都 會有屬於自己的評論,透過手機在網路上就能夠看到其他人對特定實體的大致 評價,同時自己也能夠流下自己的意見,而主要的評論大可分為以下三種:

評論與表達內容大致相符合

評論與表達內容相差其遠

3

三、

評論與表達內容毫不相干

第一種表達與評論內容一致,這類型的評論是占最主要的,但有介於每個人標準不一,即使服務水準再高,或許仍有人感到不滿;相反地,即使是一些路邊攤,有人則滿足於此,給與高度評價,而且就算是同樣的地點,每個人當下的心情及感受都會不一樣,有可能給出低於或高於真正水準的評價,以致評論蒐集的分數事實上並不客觀。

第二及第三種表達和評論內容大相逕庭的,因為網路過於發達,常常有人當現代范仲淹,即使沒去過岳陽樓,還能隔空寫出岳陽樓記,這件事對古人來說或許很強,但對現代人來說,卻是絕佳的攻擊工具。常常有新聞報導,某某店家對於弱勢族群顧客惡言相向,或者是某某店家對於顧客的不耐煩及不適當行為都被媒體報導,以至於各種網路正義評論家就紛紛湧入店家頁面,一窩蜂湧入店家頁面不負責任地流下情緒性字眼,導致店家身心受創,害人家生意做不下去;亦或是一些以評論嘲諷店家的人,故意以一些似是而非的言論嘲諷店家,導致評論機制失衡。

由於各種複雜因素導致的不足,進而藉機開發撰寫一支程式,運用不同的 Python爬蟲套件,因應不同資料需求,在網路上多方汲取評價,並整理資料, 再由程式處理遺漏值,抽掉空白值,將數據處理至最佳後,拆分訓練集合測試 集,運用BERT預訓練模型,後以測試集測試模型的完成度,並找出問題,反覆 修正,直到訓練出理想中的模型,再來就可將模型的應用擴大,不只用來分析 評論,也能衍生至分析任何文本,如:新聞中立與否、假訊息、文章邏輯矛盾 等,廣泛應用於生活當中。

Kaggle

Kaggle是一個數據建模和數據分析競賽平台。企業和研究者可在其上發布數據,統計學者和數據挖掘專家可在其上進行競賽以產生最好的模型。眾多策略可以用於解決幾乎所有預測建模的問題,Kaggle的目標則是試圖通過眾包的形式來解決這一難題,進而使數據科學成為一場運動。而在本報告當中,模型最初的訓練資料便是來自Kaggle的一自然語言處理競賽。

LSTM

長短期記憶模型(Long short-term memory)為一特殊的RNN模型(遞歸神經網絡),目的是要解決「長序列」訓練過程中的梯度消失和梯度爆炸問題,相比RNN,LSTM能夠在更長的序列中有較好的表現,因此本報告中使用LSTM做為第一種模型。

圖3.1、LSTM基礎架構圖

BERT

BERT (Bidirectional Encoder Representations from Transformers) 由Google於2018年提出,是一種基於Transformer架構的語言模型。它是一種預訓練模型,在使用大量無標籤文本上進行預訓練,學習到了豐富的語言表示。BERT的特點在於它能夠雙向理解上下文信息,並且在各種自然語言處理任務中取得了顯著的成果,因此本報告中使用LSTM做為第一種模型。

圖3.2、BERT架構圖

四、研究方法與步驟

1. 理想系統分析情境圖

圖4.1、系統情境圖

2. 目標:

- 抓取網路輿情
- 用抓取的資料訓練模型
- 準確客觀分析出評論的好壞
- 判斷是否為優良店家
- 讓語言模型進行評分並評估

3. 步驟:

- a. 使用網路上的資料集對不同的模型進行訓練
- b. 依結果進行評估、調整
- c. 使用爬蟲的資料對模型進行測試

4. 網路爬蟲收集資料:

使用Python的selenium模組撰寫自動化爬蟲程式抓取網站評論。在程式中,只需簡單設定關鍵字、範圍及一些爬蟲相關參數即可自動化的爬取資料。

keyword = '充電器' page = 1

圖4.2、關鍵字及範圍設定

圖4.3、程式輸出的檔案

商品ID	賣家ID	商品名稱	商品連結	價格	品牌	存貨數	商品文第	上架時間	折數	可否搭配	可否大量	選項
3118427050	8776550	【Gooday	https://sho	254		186	≯ 推出	1.57E+09	6	FALSE	FALSE	[{'name': '
21869801069	8908342	宏晉 直拍	https://sho	499		8045	⑥ 宏晉	1.67E+09	6.2	FALSE	FALSE	[{'name': '
2124483919	5910055	【現貨含	https://sho	229		152	100 在地	1.56E+09	4.5	FALSE	FALSE	[{'name': '

	歷史銷售	可否分期	是否官方	是否可獲	喜愛數:	商家地點	SKU	評價數量	五星	四星	三星	二星	一星
1,	6816	TRUE	FALSE	FALSE	874	嘉義縣水	[雙槽充電	3266	3157	98	б	3	2
	1927	TRUE	TRUE	FALSE	1373	臺中市霧	[太平洋]	743	708	18	8	5	4
1	17582	TRUE	FALSE	FALSE	1967	新北市三	['四槽充實	5910	5646	203	37	5	19

圖4.4-4.5、商品資料檔案內容

商品ID	賣家ID	商品名稱	價格	使用者ID	是否匿名	留言時間	是否隱藏	訂單編號	給星	留言内容
2.38E+10	8291388	【綠聯】10	1999	13761978	TRUE	1.67E+09	FALSE	1.235E+14	5	品質:良好^nCP值:ok^n^n蠻需
2.38E+10	8291388	【綠聯】10	1999	2463024	TRUE	1.671E+09	FALSE	1.238E+14	5	品質:質感很好·手感類似Ar
2.38E+10	8291388	【綠聯】10	1999	22277867	TRUE	1.671E+09	FALSE	1.246E+14	5	品質:待確認^nCP值:便宜^n^n
2.38E+10	8291388	【綠聯】10	1999	2.87E+08	TRUE	1.677E+09	FALSE	1.304E+14	5	品質:好^n^n加購的線剛剛好!
2.38E+10	8291388	【綠聯】10	1999	1916292	FALSE	1.681E+09	FALSE	1.334E+14	5	超讚的出貨速度^n超讚的商品
2.38E+10	8291388	【綠聯】10	1999	5626158	TRUE	1.671E+09	FALSE	1.241E+14	5	品質: @ ^nCP值: @ ^n^n比想(
2.38E+10	8291388	【綠聯】10	1999	18266799	TRUE	1.678E+09	FALSE	1.295E+14	2	品質:差^nCP值:理想與現實差

圖4.6、留言資料檔案內容

5. LSTM:

使用Kaggle假新聞資料集進行訓練,進行以下步驟:

- 文本分詞 (Text Segmentation)、建立字典
- 序列的 Zero Padding
- 將 Label 做 One-hot Encoding
- 拆分資料集、訓練(Data permitting)
- Prediction

	tid1	tid2	title1_zh	title2_zh
id				
0	0	1	2017养老保险又新增两项,农村老人人 人可申领,你领到了吗	警方辟谣"鸟巢大会每人领5万" 仍 有老人坚持进京
3	2	3	"你不来深圳,早晚你儿子也要来",不出 10年深圳人均GDP将超香港	深圳GDP首超香港?深圳统计局 辟谣:只是差距在缩小
1	2	4	"你不来深圳,早晚你儿子也要来",不出 10年深圳人均GDP将超香港	GDP首超香港?深圳澄清:还差 一点点

圖4.7、資料集內容

['2017', '养老保险', '又', '新增', '两项', '农村', '老人', '人人', '可', '申领', '你', '领到', '了', '吗']

圖4.8、使用Jieba將文字有意義的切割

```
array([ 0, 0, 0, 0, 0, 0, 217, 1268, 32, 1178, 5967, 25, 489, 2877, 116, 5559, 4, 1850, 2, 13], dtype=int32)
```

圖4.9、Zero Padding

圖4.10、One-hot Encoding

圖4.11、孿生神經網路模型

6. BERT:

使用Kaggle假新聞資料集進行訓練,進行以下步驟:

- 將原文本轉換成BERT相容的輸入格式
- 在BERT之上加入新laver成下游任務模型
- 訓練該下游任務模型
- 對新樣本做推論

tokens_tensor : tensor([101, 5722, 3300, 3301, 6206, 5310, 2042, 749, 8024, 852, 5381, 1351, 6230, 2533, 800, 6820, 3221, 1469, 3360, 2552, 1963, 3683, 6772, 1394, 6844, 102, 1962, 7318, 6057, 5310, 2042, 5314, 679, 2042, 3184, 4638, 4912, 2269, 2803, 5709, 4413, 8024, 948, 7450, 4638, 4912, 2269, 2957, 3717, 7027, 5010, 1526, 5722, 3300, 3301, 8013, 102])

label_tensor : 2

[還原 tokens_tensors]

[CLS]苏有朋要结婚了,但网友觉得他还是和林心如比较合适[SEP]好闺蜜结婚给不婚族的素岚扔花球,倒霉的素岚掉水里笑哭苏有朋![SEP]

圖4.11、換成相容的輸入格式

```
[epoch 1] loss: 32.120, acc: 0.803
[epoch 2] loss: 19.275, acc: 0.845
[epoch 3] loss: 14.135, acc: 0.903
[epoch 4] loss: 10.738, acc: 0.868
[epoch 5] loss: 8.326, acc: 0.905
[epoch 6] loss: 8.947, acc: 0.930
CPU times: user 1min 41s, sys: 46 s, total: 2min 27s
Wall time: 2min 27s
```

圖4.12、訓練下游任務模型

	text_a	text_b	label	predicted
603	海口飞机撒药治白蛾	3月谣言盘点:飞机撒药治白蛾、驾考新规,你中"谣"了吗?	disagreed	disagreed
803	烟王褚时健去世	辟谣:一代烟王褚时健安好!	disagreed	disagreed
952	李宇春跟老外结婚	李宇春被传嫁给78岁老外?春爸被逼亲自辟谣:假的!	disagreed	disagreed
1752	海口飞机撒药治白蛾	紧急辟谣 飞机又来撒药治白蛾了?别再传了,是假的!	disagreed	disagreed
2646	12306数据泄漏	铁路12306 辟谣,称网站未发生用户信息泄漏!	disagreed	disagreed

圖4.13、對新樣本做推論

五、模型成果

經多次調整及實驗後,將結果上傳Kaggle後,LSTM模型得到0.7118分, 而BERT模型得到0.8544分,由上述訓練之後歸納出以下幾點:

- 多種類分類問題對LSTM較不適用
- BERT在自然語言處理較卓越

在訓練LSTM時,透過Data permitting發現有過適問題,驗證集遺失值上升,查閱資料後,進行 Batch size 和 Epoch 的調整,發現在Epoch不變,調整BS只能起到些微作用;BS不變,調整Epoch對遺失值幫助雖不大,但準確率卻有所提升。

圖5.1-5.2、LSTM模型初始資料(BS:500; Epoch:50)

圖5.3、初次調整的結果,Loss一度下降(BS:250;Epoch:10)

圖5.4-5.5、BS值上升可讓遺失值平緩但不收斂(左:500;右3000)

圖5.6、Epoch值上升可小幅提升準確率(BS:250; Epoch:100)

有鑑於BERT對自然語言的處理能力,將商品留言分類資料集交給BERT訓練調整並預測,爾後得出以下結果:

圖5.7、BERT評估表

相較三種分類問題,二分類問題對BERT來說相當容易,不僅在原資料集的測試 集得到高分,更在其他沒見過的資料集取得0.995的F1-score,令人相當驚豔。

引用Google科學家的話:「有關BERT在上述自然語言理解任務中為何可以達到先進水平,目前還未找到明確的原因。目前BERT的可解釋性研究主要集中在研究精心選擇的輸入序列對BERT的輸出的影響關係,通過探測分類器分析內部向量表示,以及注意力權重表示的關係。」

六、結論

AI科技發展快速,其無非是世界一道不可阻攔的洪流,人們應保持開放樂見的心態面對,「縱浪大化中,不喜亦不懼。應盡便須盡 無復獨多慮。」在一波波的浪潮中,尋等機會,一舉站上AI的浪頭上,盡享AI帶來的便利及紅利。

資料集	模型	評估指標	其他
假新聞、評論	LSTM · BERT	Accuracy Loss Precision Recall F1-score	爬蟲

表6.1、統整表

七、參考文獻

BERT wiki

BERT?如何BERT?BERT的基礎介紹

BERT 自然語意演算法如何提升關鍵字理解能力

動態 爬蟲:動態加載問題及在不同視窗間跳轉、滑動

Get text from span tag in BeautifulSoup

Finding web elements

進擊的 BERT: NLP 界的巨人之力與遷移學習

以神經網絡進行時間序列預測 - LSTM

Evaluation Metrics: 分類模型