MTH 102A - Linear Algebra - 2015-16-II Semester

Arbind Kumar Lal *

P. Field

- A field F is a set from which we choose our coefficients and scalars.
- Expected properties are
 - 1) a + b and $a \times b$ should be defined in it.
 - 2) a + b and $a \times b$ must be inside the field.
 - 3) Both operations are commutative: a + b = b + a; $a \times b = b \times a$.
 - 4) There should be identity elements for both operations. Identity element for + is called 0 and that for \times is called 1.
 - 5) Inverse for "a w.r.t. +: $\forall a \in F, \exists b \in F \text{ s.t. } a+b=0$ "

"
$$a \neq 0$$
 w.r.t. ×: $\forall a \in F \setminus \{0\}, \exists b \in F \text{ s.t. } a \times b = 1.$ "

6) Value of (a + b) + c and a + (b + c) are 'equal'.

Value of $(a \times b) \times c$ and $a \times (b \times c)$ are 'equal'.

7) \times distributes itself over +: $a \times (b+c) = (a \times b) + (a \times c)$.

Examples: \mathbb{R} , \mathbb{C} , \mathbb{Q} .

Also
$$\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$$
 with

 $a + b := (a + b) \pmod{5}$ and $a \times b := (a \times b) \pmod{5}$. Here, 3 + 4 = 2, $4 \times 2 = 3$ and $4 \times 4 = 1$.

$$\mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$$

$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2}$$

$$(a + b\sqrt{2}) \cdot (c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$$

Also, whenever $(a+b\sqrt{2}) \neq 0$, we have $(a+b\sqrt{2})^{-1} = \frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2}$ as $\sqrt{2}$ is irrational.

• A linear equation (over some field \mathbb{F}) is an expression of the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b_1$$

^{*}Indian Institute of Technology Kanpur

• Example: $2x_1 + 3x_2 + 7x_3 = 6$ is a linear equation. Over what? Over any field. What does 2 mean in \mathbb{F} ? 1 + 1!

Anyway we never mention that!! Come on, isn't it obvious?

 \bullet A system of linear equations is a collection of m linear equations in the 'same' n variables. It has the form:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

- $\begin{cases} x+y+z=1\\ 2y+3z=7 \end{cases}$ is a system of 2 linear equations in 3 variables.
- Matrix form of a system (of linear equations):

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \vdots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}.$$

• The product AB corresponds to operating on the *columns of the matrix* A, using entries of B. Thus,

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \vdots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}.$$

is same as

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} x_1 + \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} x_2 + \dots + \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} x_n = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

(Similar to 'does there exist integers x, y such that 13x + 5y = 1???")

P. The old story: A new way

Q Solve
$$2x + y = 1$$
$$x + 2y = -1 .$$

A
$$2x + y = 1$$
 $2x + y = 1$ $3y = -3$. So...

• Write the Augmented coefficient matrix of the system with a matrix: $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}$

2

• Above solution procedure is nothing but

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix} \xrightarrow{2(2)} \begin{bmatrix} 2 & 1 & 1 \\ 2 & 4 & -2 \end{bmatrix} \xrightarrow{(2) - (1)} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & -3 \end{bmatrix}. \text{ Continue?}$$

$$\xrightarrow{\frac{1}{3}(2)} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{(1) - (2)} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{\frac{1}{2}(1)} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

- System: $\frac{x+y+z=1}{2y+3z=7}$. That is, $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$.
- Augmented Coefficient Matrix: $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 7 \end{vmatrix}$. Apply elimination.

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 7 \end{bmatrix} \xrightarrow{\frac{1}{2}(2)} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & \frac{3}{2} & \frac{7}{2} \end{bmatrix} \xrightarrow{(1)-(2)} \begin{bmatrix} 1 & 0 & -\frac{1}{2} & -\frac{5}{2} \\ 0 & 1 & \frac{3}{2} & \frac{7}{2} \end{bmatrix}$$

- Highlighted positions are called pivots/leading terms. Corresponding variables are basic variables. Others are free variables.
 - Here z is free. For solution: put z = t; then $\begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} -\frac{3}{2} + \frac{1}{2}t \\ \frac{7}{2} \frac{3}{2}t \end{vmatrix}$.
 - For example, t = 0 gives $\begin{bmatrix} -\frac{5}{2} \\ \frac{7}{2} \\ 0 \end{bmatrix}$ and t = 1 gives $\begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$.

• In that case we have to provide an algorithm. What is an algorithm?

A 'step by step' instruction to carry out the task.

- Actually, we do not have to!! Gauss-Jordan have already done it!!
- To describe that we need 3 elementary row operations.
- To describe that we need 3 elementary row operations.
 Given the Augmented Coefficient Matrix (ACM) of a system: $\begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{bmatrix}.$

3

1) $E_i(\alpha)$ Multiply ith row by $\alpha \neq 0$.

For example,
$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 3 & 1 \\ 1 & 0 & 2 & -3 \end{bmatrix} \xrightarrow{E_2(\frac{1}{2})} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & \frac{3}{2} & \frac{1}{2} \\ 1 & 0 & 2 & -3 \end{bmatrix}.$$

Result is the same as: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 3 & 1 \\ 1 & 0 & 2 & -3 \end{bmatrix}$ • Elementary Matrix $E_2(\frac{1}{2})$

P. Elementary row operations

 E_{ij} Interchange rows i and j.

For example,
$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 3 & 1 \\ 1 & 0 & 2 & -3 \\ 1 & 2 & 3 & 0 \\ 5 & 2 & -1 & 2 \end{bmatrix} \xrightarrow{E_{14}} \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & 1 \\ 1 & 0 & 2 & -3 \\ 0 & 1 & 1 & 1 \\ 5 & 2 & -1 & 2 \end{bmatrix}.$$

Result is the same as: $\begin{bmatrix} 0 & & 1 & \\ & 1 & & \\ & & 1 & \\ 1 & & & 0 \\ & & & & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 3 & 1 \\ 1 & 0 & 2 & -3 \\ 1 & 2 & 3 & 0 \\ 5 & 2 & -1 & 2 \end{bmatrix}$

• Elementary Matrix E_{14}

 $E_{ij}(\alpha)$ Replace ith row R_i by $R_i + \alpha R_j$

For example,
$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 3 & 1 \\ 1 & 0 & 2 & -3 \\ 1 & 2 & 3 & 0 \\ 5 & 2 & -1 & 2 \end{bmatrix} \xrightarrow{E_{35}(-\frac{1}{5})} \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & 1 \\ 0 & -\frac{2}{5} & \frac{11}{5} & -\frac{17}{5} \\ 0 & 1 & 1 & 1 \\ 5 & 2 & -1 & 2 \end{bmatrix}.$$

Result is the same as: $\begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & -\frac{1}{5} \\ & & & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 3 & 1 \\ 1 & 0 & 2 & -3 \\ 1 & 2 & 3 & 0 \\ 5 & 2 & -1 & 2 \end{bmatrix}$

- Elementary Matrix $E_{35}(-\frac{1}{\$})_{\text{Echelon-form}(\mathbf{EF})}$
- Let A be a matrix. A pivot/leading term is the first (from left) nonzero element of a nonzero row in A. We use a_{ij} to denote it.

4

- A matrix A is in echelon form (EF) (ladder like) if
 - 1) Pivot of the $i+1{\rm th}$ row comes to the right of the $i{\rm th}$.
 - 2) Entries below the pivot in a 'pivotal column' are 0.
 - 3) The zero rows are at the bottom.

• In EF:
$$\begin{bmatrix} 3 & 1 & 3 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 & 5 \\ 0 & 2 & 0 & 6 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
• Not in EF:
$$\begin{bmatrix} 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$
 (rule 1,2 fail);
$$\begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (rule 3 fails).

P. Row-reduced-echelon-form(RREF)

- A matrix A is in RREF if
 - 1) It is in EF.
- 2) Pivot of each nonzero row is 1.
- 3) Other entries in a 'pivotal column' are 0.

• In RREF:
$$\begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
• Not in RREF:
$$\begin{bmatrix} 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

• A is row equivalent to B if B is the result of k elementary row operations on A. That is, if there exists some elementary matrices E_1, \ldots, E_k s.t.

$$E_k E_{k-1} \cdots E_1 A = B.$$

P. Gauss-Jordan elimination(GJE)

GJE An algorithm. Uses row operations only. Input: A.

Output: a matrix B in RREF s.t. B is row equivalent to A.

- 0) Put 'region' = A.
- 1) If all entries in the region are 0, STOP.

Else, in the region, find the leftmost nonzero column and find its topmost nonzero entry.

Suppose it is a_{ij} . Box it. This is a pivot.

Take it to the top row of the region. Make it 1.

Make other entries of the whole matrix in it's column 0.

2) Put region = the submatrix below and to the right of the current pivot. Go to step 1).

5

• The process will stop, as we can get at most $\min\{m, n\}$ pivots.

• Apply GJE:
$$\begin{bmatrix} 0 & 2 & 3 & 7 \\ \hline 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{12}} \begin{bmatrix} \boxed{1} & 1 & 1 & 1 \\ 0 & 2 & 3 & 7 \\ 1 & 3 & 4 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{31}(-1)} \begin{bmatrix} \boxed{1} & 1 & 1 & 1 \\ 0 & 2 & 3 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{2}(\frac{1}{2})} \xrightarrow{E_{2}(\frac{1}{2})} \xrightarrow{E_{31}(-1)} \begin{bmatrix} \boxed{1} & 1 & 1 & 1 \\ 0 & 2 & 3 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{2}(\frac{1}{2})} \xrightarrow{E_{2}(\frac{1}{2})} \xrightarrow{E_{31}(-1)} \xrightarrow{E_{31}(-1)$$

Th Each matrix $A_{m \times n}$ is row equivalent to some matrix in RREF.!!

P. Gauss elimination

GE It is the same as GJE except that

- 1) pivots need not be made 1 and
- 2) entries above the pivots need not be made 0.

$$\bullet \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} \xrightarrow{E_{21}(-1), E_{31}(-1)} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 8 \end{bmatrix} \xrightarrow{E_{32}(-3)} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}.$$

• GJE may be viewed as an extension of GE.

P. Inverses of elementary matrices

Sometimes it helps to imagine an elementary matrix as an elementary row operation.

Recall Invertibility: $A_{n\times n}$ is invertible if there is a B s.t. AB = BA = I.

What is the inverse of $E_i(\alpha)$? That is, 'if I have multiplied *i*th row by α , how do i get back the original'? Must be $E_i(\frac{1}{\alpha})$.

What is the inverse of E_{ij} ? That is, 'if I have interchanged R_i and R_j , how do i get back the original'? Must be $E_{ji} = E_{ij}$.

What is the inverse of $E_{ij}(\alpha)$? That is, 'if I have added αR_j to R_i , how do i get back the original'? Must be $E_{ij}(-\alpha)$.

Ex Inverse of an elementary matrix is an elementary matrix.

 $\mathbf{E}\mathbf{x}$ If A is invertible, then it has a unique inverse.

• Recall that for any invertible matrix $A(i,:) \neq \mathbf{0}$.

Th Let $A_{n\times n}$ be invertible. Then, the RREF of A is I.

Po. A RREF of A is nothing but $E_k \cdots E_1 A = EA$ (say), where E_i 's are elementary.

As EA is invertible, it has no zero row. How many pivots should it have? As EA is in RREF, it must be I.

P. RREF

Th If A is row equivalent to B then, the systems Ax = 0 and Bx = 0 have the same solution set. !!

Q Is
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 row equivalent to $B = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 0 \end{bmatrix}$?

No, $\begin{bmatrix} a \\ b \\ -1 \end{bmatrix}$ is a solution of Bx = 0, not of Ax = 0.

Th Let A and B be two row equivalent matrices in RREF. Then A = B.

P. Rank of a Matrix

Cor Each matrix A is row equivalent to a unique matrix in RREF.!!

- We use RREF A to denote this matrix.
- The rank of a matrix A is the number of pivots in RREF A. Notation: rank A.
- Thus, rank $A_{m \times n} \leq m, n \text{ and } rank(\mathbf{0}) = 0.$

P. Gauss-Jordan say it

The Take a system Ax = b and an invertible matrix B. Then, y is a solution of Ax = b if and only if y is a solution of BAx = Bb.!!

Gauss-Jordan idea Take the ACM [A|b] of a system. Keep on applying elementary row operations. Solution space stays same!!!

STOP at the RREF[A'|b'].

If A'(i,:) = 0 and $b'_i \neq 0$, then conclude that the system has no solution (inconsistent). Note that, here, $\operatorname{rank}(A) < \operatorname{rank}([A|b])$.

Otherwise, a general solution is obtained by assigning the free-variables arbitrary values and by evaluating the values of the basic variables. Note that, here, rank(A) = rank(A|b|).

P. Very Important Ideas

Th Let A be a matrix of RANK r. Then, there exist(s)

- Invertible P s.t. $PA = \begin{bmatrix} B \\ \mathbf{0} \end{bmatrix}$.
- \bullet Invertible P and Q such that

$$P_{m \times m} A_{m \times n} Q_{n \times n} = PAQ == \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Ex[Rank Factorization] Let rank $A_{m\times n}=r$. Then there exist $B_{m\times r}, C_{r\times n}$ s.t. rank $B=\operatorname{rank} C=r$ and A=BC as

$$A = P^{-1} \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} Q^{-1} = \begin{bmatrix} P_1 & P_2 \end{bmatrix} \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} = P_1 Q_1.$$

Th Consider the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. Then,

- The zero vector, $\mathbf{0} = (0, \dots, 0)^t$, is always a solution, called the TRIVIAL solution.
- Suppose $\mathbf{x}_1, \mathbf{x}_2 \neq \mathbf{0}$ are two solutions of $A\mathbf{x} = \mathbf{0}$. Then, $k_1\mathbf{x}_1 + k_2\mathbf{x}_2$ is also a solution of $A\mathbf{x} = \mathbf{0}$ for any $k_1, k_2 \in \mathbb{R}$.

Th Consider the linear system $A\mathbf{x} = \mathbf{b}$, where A is an $m \times n$ matrix and $\mathbf{x}^t = (x_1, \dots, x_n)$. If $[C \mid \mathbf{d}] = \mathbf{rref}([A \mid \mathbf{b}])$ then,

• $A\mathbf{x} = \mathbf{b}$ is inconsistent (has no solution) if $[C \ \mathbf{d}]$ has a row of the form $[\mathbf{0}^t | 1]$, where $\mathbf{0}^t = (0, \dots, 0)$. That is,

$$\operatorname{Rank}(A) < \operatorname{Rank}([A \mid \mathbf{b}]) = \operatorname{Rank}([C \mid \mathbf{d}]).$$

• $A\mathbf{x} = \mathbf{b}$ is consistent (has a solution) if $[C \mid \mathbf{d}]$ has **NO** row of the form $[\mathbf{0}^t \mid 1]$. That is,

$$\operatorname{Rank}(A) = \operatorname{Rank}([A \mid \mathbf{b}]) = \operatorname{Rank}([C \mid \mathbf{d}]).$$

Furthermore, (recall n = Number of unknowns implies)

- if $\mathbf{Rank}(A) = n$ then, $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- if $\mathbf{Rank}(A) < n$ then, $A\mathbf{x} = \mathbf{b}$ has infinite number of solutions.

P. Example

• System x + y + z = 1 y + 3z = 2 -x + 2z = 2

• ACM:
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 2 \end{bmatrix}$$
 RREF $(A) = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ \rightarrow Matlab command rref(a)

- System is inconsistent (has no solution).
- ACM: $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 1 \end{bmatrix}$ RREF $(A) = \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- x, y are basic, z is free. General solution: $\left\{ \begin{bmatrix} -1 + 2t \\ 2 3t \\ t \end{bmatrix} : t \in \mathbb{R} \right\}$.
- Let $[C|\mathbf{d}] = \text{RREF}([A|\mathbf{b}])$. Assume $C(i,:) \neq \mathbf{0}$ and the system is consistent. Notice that in C(i,:) all entries are zero, except the pivot and entries corresponding to free variables. Thus, if we assign all free variables 0, then we get $x_i = d_i$.
- What happens if we put z = t = 0, in the above example?
- If $rank(A_{m \times n}) < n$, then $A\mathbf{x} = \mathbf{0}$ has a nonzero solution.!!

P. Invertibility and Gauss-Jordan

Let A be a square matrix of order n. Then the following statements are equivalent.

- A is invertible.
- The homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- The (rref) row-reduced echelon form of A is I_n .
- A is a product of elementary matrices.
- If A is invertible then rref(A) = I. Thus, $E_k E_{k-1} \cdots E_2 E_1 A = I$ for some elementary matrices. Hence, $A^{-1} = E_k E_{k-1} \cdots E_2 E_1$.

matrices. Hence, $A^{-1} = E_k E_{k-1} \cdots E_2 E_1$.

Implication. Given a matrix $A_{n \times n}$, apply GJE to $[A|I_n]$. Then, we get elementary matrices E_1, E_2, \ldots, E_k such that

$$E_k E_{k-1} \cdots E_1 [A|I] = [E_k E_{k-1} \cdots E_1 A|E_k E_{k-1} \cdots E_1 I] = [I|A^{-1}].$$

P. Inverse - Example

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \underbrace{E_{21}(-2)}_{0} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -3 & -2 & 1 \end{bmatrix} \underbrace{E_{2}(-1/3)}_{0} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{2}{3} & \frac{-1}{3} \end{bmatrix}$$

$$\underbrace{E_{12}(-2)}_{0} \begin{bmatrix} 1 & 0 & \frac{-1}{3} & \frac{2}{3} \\ 0 & 1 & \frac{2}{3} & \frac{-1}{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 4 & 7 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \underbrace{E_{21}(-2)}_{E_{31}(-1)} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & -1 & -2 & -1 & 0 & 1 \end{bmatrix}$$

$$[2,4,7,0,1,0] - 2[1,2,3,1,0,0] = [0,0,1,-2,1,0]$$

$$[1,1,1,0,0,1] - [1,2,3,1,0,0] = [0,-1,-2,-1,0,1].$$

$$\xrightarrow{E_{32}} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 1 & 0 \end{bmatrix} \xrightarrow{E_2(-1)} \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 2 \\ 0 & 1 & 2 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 0 \end{bmatrix}$$

$$\xrightarrow{E_{23}(-2)} \begin{bmatrix} 1 & 0 & 0 & -3 & 1 & 2 \\ 0 & 1 & 0 & 5 & -2 & -1 \\ 0 & 0 & 1 & -2 & 1 & 0 \end{bmatrix}$$

Thus, we have solved three linear systems simultaneously, namely

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, A \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \text{ and } A \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ where } A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 1 & 1 & 1 \end{bmatrix}.$$
$$(x, y, z) = (-3, 5, -2), (\alpha, \beta, \gamma) = (1, -2, 1) \text{ and } (u, v, w) = (2, -1, 0).$$

P. Determinant

Notation:- Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 2 & 4 & 7 \end{bmatrix}$$
.
Then, $A(1|2) = \begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 2 & 4 & 7 \end{bmatrix}$,

$$A(1|3) = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 2 & 4 & 7 \end{bmatrix}$$
,
and $A(1, 2|1, 3) = [4]$.

Determinant: Determinant of a square matrix $A = [a_{ij}]$, denoted det(A) (or |A|) is defined by

$$\det(A) = \begin{cases} a, & \text{if } A = [a] \ (n = 1), \\ \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A(1|j)), & \text{otherwise.} \end{cases}$$

• Let A = [-2]. Then det(A) = |A| = -2.

• Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then, $\det(A) = |A| = a |A(1|1)| - b |A(1|2)| = ad - bc$.
For $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$, $\det(A) = \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} = 1 \cdot 5 - 2 \cdot 3 = -1$.

Singular, Non-Singular: A matrix A is said to be a SINGULAR if $\det(A) = 0$. It is called NON-SINGULAR if $\det(A) \neq 0$.

Th Let A be an $n \times n$ matrix. If

- $B = E_{ij}A$ then, det(B) = -det(A),
- $B = E_i(c), c \neq 0$ then, det(B) = c det(A),
- $B = E_{ij}(c), c \neq 0$ then, det(B) = det(A),
- all the elements of one row of A are 0 then, det(A) = 0,
- two rows of A are equal then det(A) = 0.
- A is a triangular matrix then det(A) is product of diagonal entries.

Th As $\det(I_n) = 1$, $\det(E_{ij}) = -1$ $\det(E_i(c)) = c$ whenever $c \neq 0$ $\det(E_{ij}(c)) = 1$, whenever $c \neq 0$

• Let $A_{n \times n} = [a_{ij}]$. Then, for any $k, 1 \le k \le n$

$$\det(A) = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det(A(k|j)).$$

• Let $A_{n\times n}$ matrix. Then, $|\det(A)|$ equals the volume of the *n*-dimensional parallelepiped formed by the rows of A.

Figure 3: Parallelepiped with vertices P, Q, R and S as base

• Let
$$\mathbf{u}^t = (u_1, u_2, u_3), \mathbf{v}^t = (v_1, v_2, v_3)$$
 and $\mathbf{w}^t = (w_1, w_2, w_3)$.
Then, $\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$ and

volume
$$(P) = \text{Area}(PQRS) \cdot \text{height} = |\mathbf{w} \bullet (\mathbf{u} \times \mathbf{v})| = \pm \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$$

(i, j)th minor of A Denoted A_{ij} equals $\det (A(i|j))$.

(i,j)th cofactor of A: Denoted C_{ij} equals $(-1)^{i+j}A_{ij}$.

Adjoint of a Matrix: Denoted $Adj(A) = [C_{ji}]$

• Example
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$
. Then, $Adj(A) = \begin{bmatrix} 4 & 2 & -7 \\ -2 & -4 & 5 \\ -2 & 2 & -1 \end{bmatrix}$ as

$$C_{11} = (-1)^{1+1}A_{11} = 4, C_{21} = (-1)^{2+1}A_{21} = 2, \dots, C_{33} = (-1)^{3+3}A_{33} = -1.$$

$$A \cdot Adj(A) = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 4 & 2 & -7 \\ -2 & -4 & 5 \\ -2 & 2 & -1 \end{bmatrix}$$
$$= -6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Adj(A) \cdot A.$$

Note that det(A) = -6. So, Important Observation:

$$A \cdot Adj(A) = Adj(A) \cdot A = \det(A)I.$$

Is it always TRUE?

P. Determinant-cofactor

Th Let A be an $n \times n$ matrix. Then,

• for
$$1 \le i \le n$$
, $\sum_{i=1}^{n} a_{ij} C_{ij} = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} A_{ij} = \det(A)$,

• for
$$i \neq \ell$$
, $\sum_{j=1}^{n} a_{ij} C_{\ell j} = \sum_{j=1}^{n} a_{ij} (-1)^{\ell+j} A_{\ell j} = 0$,

• $A(Adj(A)) = \det(A)I_n$. Thus,

whenever
$$det(A) \neq 0$$
 one has $A^{-1} = \frac{1}{det(A)} Adj(A)$.

Th A square matrix A is non-singular if and only if A is invertible.

Th Let A and B be square matrices of order n. Then

$$\det(AB) = \det(A)\det(B) = \det(BA).$$

Th Let A be a square matrix. Then $det(A) = det(A^t)$.

P. Cramer's Rule

Th The following statements are equivalent for a square matrix A:

- \bullet A is invertible.
- The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} .
- $\det(A) \neq 0$.

Cramer's Rule Let A be an $n \times n$ matrix. If $det(A) \neq 0$ then, the unique solution of the linear system $A\mathbf{x} = \mathbf{b}$ is

$$x_j = \frac{\det(A_j)}{\det(A)}, \text{ for } j = 1, 2, \dots, n,$$

where A_j is the matrix obtained from A by replacing the jth column of A by the column vector **b**.