(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 October 2002 (31.10.2002)

(10) International Publication Number WO 02/086443 A2

(51) International Patent Classification7:

G01N

- (21) International Application Number: PCT/US02/12476
- (22) International Filing Date: 18 April 2002 (18.04.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/284,770	18 April 2001 (18.04.2001)	US
60/290,492	10 May 2001 (10.05.2001)	US
60/339,245	9 November 2001 (09.11.2001)	US
60/350,666	13 November 2001 (13.11.2001)	US
60/334,370	29 November 2001 (29.11.2001)	US
60/372,246	12 April 2002 (12.04.2002)	US

(71) Applicant (for all designated States except US): EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): AZIZ, Natasha [US/US]; 411 California Avenue, Palo Alto, CA 94306 (US). MURRAY, Richard [US/US]; 22643 Woodbridge Court, Cupertino, CA 95014 (US).
- (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111-3834 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(57) Abstract: Described herein are methods and compositions that can be used for diagnosis and treatment of lung cancer and similar pathologies. Also described herein are methods that can be used to identify modulators of lung cancer and similar pathologies.

METHODS OF DIAGNOSIS OF LUNG CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF LUNG CANCER

5

10

15

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to USSN 60/284,770, filed April 18, 2001; USSN 60/290,492, filed May 10, 2001; USSN 60/334,370, filed November 29, 2001; USSN 60/339,245, filed November 9, 2001; USSN 60/350,666, filed November 13, 2001; and USSN 60/xxx,xxx, filed April 12, 2002 (Docket OMNI-002P); each of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in lung cancer; and to the use of such expression profiles and compositions in diagnosis and therapy of lung cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit lung cancer or related conditions.

20

25

30

BACKGROUND OF THE INVENTION

Lung cancer is the second most commonly occurring cancer in the United States and is the leading cause of cancer-related death. It is estimated that there are over 160,000 new cases of lung cancer in the United States every year. Of those who are diagnosed with lung cancer, 86 percent will die within five years. Lung cancer is the most common visceral cancer in men and accounts for nearly one third of all cancer deaths in both men and women. In fact, lung cancer accounts for 7% of all deaths, due to any cause, in both men and women.

Smoking is the primary cause of lung cancer, with more than 80% of lung cancers resulting from smoking. About 400 to 500 separate gaseous substances are present in the smoke of a non-filter cigarette. The most noteworthy substances include nitrogen oxides, hydrogen cyanide, formaldehyde, benzene, and toluene. The particles present in cigarette smoke contain at least 3,500 individual compounds such as nicotine, tobacco alkaloids (nornicotine, anatabine, anabasine), polycyclic aromatic hydrocarbons (e.g., benzo(a)pyrene, B(a)P), naphthalenes, aromatic amines, phenols, and tobacco-specific nitrosamines.

Tobacco-specific nitrosamines are formed during tobacco curing and processing, and are suspected of causing lung cancer in humans. In rodent studies, regardless of the where or how it is applied, the tobacco-specific nitrosamine known as NNK produces lung adenomas and lung adenocarcinomas. The tobacco-specific nitrosamine known as NNAL also produces lung adenocarcinomas in rodents.

5

10

15

20

25

30

Many of the chemicals found in cigarette smoke also affect the nonsmoker inhaling "secondhand" or sidestream smoke. Indeed, the smoke inhaled by non-smokers has a chemical composition similar to the smoke inhaled by smokers, but, importantly, the concentrations of the carcinogenic tobacco-specific nitrosamines are present in higher concentrations in second hand smoke. For this and other reasons, "passive smoking" is an important cause of lung cancer, causing as many as 3,000 lung cancer deaths in nonsmokers each year.

In addition to smoking, other factors thought to be causes of lung cancer include onthe-job exposure to carcinogens such as asbestos and uranium, exposure to chemical hazards such as radon, polycyclic aromatic hydrocarbons, chromium, nickel, and inorganic arsenic, genetic factors, and diet.

Histological classification of various lung cancers define the types of cancer that begin in the lung. See, e.g., Travis, et al. (1999) <u>Histological Typing of Lung and Pleural Tumours</u> (International Histological Classification of Tumours, No 1. Four major cell types make up more than 88% of all primary lung neoplasms. These are: squamous or epidermoid carcinoma, small cell (also called oat cell) carcinoma, adenocarcinoma, and large cell (also called large cell anaplastic) carcinoma. The remainder include undifferentiated carcinomas, carcinoids, bronchial gland tumors, and other rarer types. The various cell types have different natural histories and responses to therapy, and, thus, a correct histologic diagnosis is the first step of effective treatment.

Small cell lung cancer (SCLC) accounts for 18-25% of all lung cancers, and occurs less frequently than non-small cell lung cancers, and generally spread to distant organs more rapidly than non-small cell lung cancer. In general, at the time of presentation small cell lung cancers have already spread beyond the beyond the bounds where surgery and curative intent can be undertaken. Hoever, if identified early enough, these cancers are often responsive to chemotherapy and thoracic radiation treatment.

Non-small cell lung cancers (NSCLC) are the more frequently occurring form of lung cancer. They comprise squamous cell carcinoma, adenocarcinoma, and large cell carcinoma

and account for more than 75% of all lung cancers. Non-small cell tumors that are localized at the time of presentation can sometimes be cured with surgery and/or radiotherapy, but usually are not identified until significant metastasis has occurred, which are typically not very responsive to surgical, chemotherapy, or radiation treatment..

The screening of asymptomatic persons at high risk for lung cancer has often proven ineffective. In general, only 5 to 15 percent of lung cancer patients have their disease detected while they are asymptomatic. Of course, early detection and treatment are critical factors in the fight against lung cancer. The average survival rate is 49% for those whose cancer is detected early, before the cancer has spread from the lung. Lung cancer often spreads outside of the lung, and it may have spread to the bones or brain by the time it is diagnosed. While the prognosis may be better for lung cancers that are detected early, because of the lack of effective curative treatments, early detection does not necessarily alter the total death rate from lung cancer.

Thus, methods for diagnosis and prognosis of lung cancer and effective treatment of lung cancer would be desirable. Accordingly, provided herein are methods that can be used in diagnosis and prognosis of lung cancer. Further provided are methods that can be used to screen candidate therapeutic agents for the ability to modulate, e.g., treat, lung cancer. Additionally, provided herein are molecular targets and compositions for therapeutic intervention in lung disease and other metastatic cancers.

20

25

30

5

10

15

SUMMARY OF THE INVENTION

The present invention provides nucleotide sequences of genes that are up- and down-regulated in lung cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate lung cancer, such as antibodies. The methods of detecting nucleic acids of the invention or their encoded proteins can be used for a number of purposes. Examples include early detection of lung cancers, monitoring and early detection of relapse following treatment of lung cancers, monitoring response to therapy of lung cancers, determining prognosis of lung cancers, directing therapy of lung cancers, selecting patients for postoperative chemotherapy or radiation therapy, selecting therapy, determining tumor prognosis, treatment, or response to treatment, and early detection of precancerous lesions of the lung. Examples of benign or precancerous lesions include: atelectasis, emphysema, brochitis, chronic obstructive pulmonary disease, fibrosis, hypersensitivity pneumonitis (HP), interstitial pulmonary fibrosis (IPF), asthma, and

WO 02/086443

PCT/US02/12476
bronchiectasis. Other aspects of the invention will become apparent to the skilled artisan by
the following description of the invention.

In one aspect, the present invention provides a method of detecting a lung cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16. Alternatively, the sample may be contacted with a specific binding reagent, e.g., antibody.

5

10

15

20

25

30

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1A-16. In another embodiment, the polynucleotide comprises a sequence as shown in Tables 1A-16.

In one embodiment, the biological sample is a tissue sample, or a body fluid. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label. In one embodiment, the polynucleotide is immobilized on a solid surface. In one embodiment, the patient is undergoing a therapeutic regimen to treat lung cancer. In another embodiment, the patient is suspected of having lung cancer. In one embodiment, the patient is a primate, e.g., a human.

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby monitoring the efficacy of the therapy. Or the sample may be evaluated for protein, e.g., contacting the sample with an antibody.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated transcript to a level of the lung cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment. Or the sample may be evaluated for comparison of protein.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a

biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated antibody in the biological sample by contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, wherein the polypeptide specifically binds to the lung cancer-associated antibody, thereby monitoring the efficacy of the therapy.

5

10

15

20

25

30

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated antibody to a level of the lung cancer-associated antibody in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated polypeptide in the biological sample by contacting the biological sample with an antibody, wherein the antibody specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby monitoring the efficacy of the therapy.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated polypeptide to a level of the lung cancer-associated polypeptide in a biological sample from the patient prior to, or earlier in, the therapeutic treatment. In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1A-16. In one embodiment, an expression vector or cell comprises the isolated nucleic acid. In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-16.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-16. In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical. In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

In one aspect, the present invention provides a method of detecting lung cancer in a a patient, the method comprising contacting a biological sample from the patient with an antibody or protein as described herein.

In another aspect, the present invention provides a method of detecting antibodies specific to a lung cancer gene in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprises a sequence from Tables 1A-16.

5

10

15

20

25

30

In another aspect, the present invention provides a method for identifying a compound that modulates a lung cancer-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a lung cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect. In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant. In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation or another critical process of a lung cancer-associated cell to treat lung cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein. In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having lung cancer or a cell isolated therefrom; (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of lung cancer.

In one embodiment, the control is a mammal with lung cancer or a cell therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal, or a non-malignant lung disease.

In another aspect, the present invention provides a method for treating a mammal having lung cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having lung cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and treatment of lung disease or cancer, as well as methods for screening for compositions which modulate lung cancer. "Treatment, monitoring, detection or modulation of lung disease or cancer" includes treatment, monitoring, detection, or modulation of lung disease in those patients who have lung disease (whether malignant or non-malignant, e.g., emphysema, bronchitis, or fibrosis) as well as patients with lung cancers in which gene expression from a gene in Tables 1A-16 is increased or decreased, indicating that the subject is more likely to have disease. In particular, while these targets are identified primarily from lung cancer samples, these same targets are likely to be similarly found in analyses of other medical conditions. These other conditions may result from similar pathological processes which affect similar tissues, e.g., lung cancer, small cell lung carcinoma (oat cell carcinoma), non-small cell carcinomas (e.g., squamous cell carcinoma, adenocarcinoma, large cell lung carcinoma, carcinoid, granulomatous), fibrosis (idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), interstitial pneumonitis, nonspecific idiopathic pneumonitis (NSIP)), chronic obstructive pulmonary disease (COPD, e.g., emphysema, chronic bronchitis), asthma, bronchiectasis, and esophageal cancer. See, e.g., the NCI webpage and USSN 60/347,349 and USSN 60/xxx,xxx (docket LFBR-001-1P, filed March 29, 2002), each of which is incorporated herein by reference. The treatment may be of lung cancer or related condition itself, or treatment of metastasis.

In particular, identification of markers selectively expressed on these cancers allows for use of that expression in diagnostic, prognostic, or therapeutic methods. As such, the invention defines various compositions, e.g., nucleic acids, polypeptides, antibodies, and small molecule agonists/antagonists, which will be useful to selectively identify those markers. For example, therapeutic methods may take the form of protein therapeutics which use the marker expression for selective localization or modulation of function (for those markers which have a causative disease effect), for vaccines, identification of binding partners, or antagonism, e.g., using antisense or RNAi. The markers may be useful for molecular characterization of subsets of lung diseases, which subsets may actually require

very different treatments. Moreover, the markers may also be important in related diseases to the specific cancers, e.g., which affect similar tissues in non-malignant diseases, or have similar mechanisms of induction/maintenance. Metastatic processes or characteristics may also be targeted. Diagnostic and prognostic uses are made available, e.g., to subset related but distinct diseases, or to determine treatment strategy. The detection methods may be based upon nucleic acid, e.g., PCR or hybridization techniques, or protein, e.g., ELISA, imaging, IHC, etc. The diagnosis may be qualitative or quantitative, and may detect increases or decreases in expression levels.

Tables 1A-16 provide unigene cluster identification numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in lung cancer samples. The tables also provide an exemplar accession number that provides a nucleotide sequence that is part of the unigene cluster. In Table 1A, genes marked as "target 1" or "target 2" are particularly useful as therapeutic targets. Genes marked as "target 3" are particularly useful as diagnostic markers. Genes marked as "chron" are upregulated in chronically diseased lung (e.g., emphysema, bronchitis, fibrosis) relative to lung tumors and normal tissue. In certain analyses, the ratio for the "chron" category was determined using the 70th percentile of chronically diseases lung samples divided by the 90th percentile of lung tumor samples divided by the 90th percentile of lung tumor samples divided by the 90th percentile of lung tumor samples

20

25

30

5

10

15

Definitions

The term "lung cancer protein" or "lung cancer polynucleotide" or "lung cancer-associated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1A-16 and conservatively modified variants thereof; or (4)

have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "lung cancer polypeptide" and a "lung cancer polynucleotide," include both naturally occurring or recombinant forms.

5

10

15

20

25

30

A "full length" lung cancer protein or nucleic acid refers to a lung cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains the elements normally contained in one or more naturally occurring, wild type lung cancer polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translational processing or splicing, including alternative splicing.

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of a lung cancer protein, polynucleotide, or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, archival materials, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate, e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or other mammal; or a bird; reptile; fish. Livestock and domestic animals are of interest.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues or materials, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the

WO 02/086443 PCT/US02/12476 same or have a specified percentage of amino acid residues or nucleotides that are the same (e.g., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using, e.g., a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the complement of a test sequence. The definition also includes sequences that have deletions and/or insertions, substitutions, and naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

5

10

15

20

25

30

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer

WO 02/086443

PCT/US02/12476
Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Ausubel, et al. (eds. 1995 and supplements) <u>Current Protocols in Molecular Biology</u>.

5

10

15

20

.25

30

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul, et al. (1977) Nuc. Acids Res. 25:3389-3402 and Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) <u>Proc. Nat'l. Acad. Sci. USA</u> 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between

WO 02/086443
two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be negative large numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

An indication that two nucleic acid sequences are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least about 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant or component from the composition to be purified.

WO 02/086443 PCT/US02/12476 In this sense, purification does not require that the purified compound be homogeneous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.

5

10

15

20

25

30

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain some basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refer to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that function similarly to another amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG, and GCU each encode the amino acid alanine. Thus, at each position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of

conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. In certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally similar molecule. Accordingly, a silent variation of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not necessarily with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. Typically conservative substitutions include for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts, et al. (1994) Molecular Biology of the Cell (3^{rd} ed.) and Cantor and Schimmel (1980) Biophysical Chemistry Part I: The Conformation of Biological Macromolecules. "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, 5 etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or Omethylphophoroamidite linkages (see Eckstein (1992) Oligonucleotides and Analogues: A Practical Approach Oxford University Press); and peptide nucleic acid backbones and 10 linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, in Sanghui and Cook, eds. Carbohydrate Modifications in Antisense Research, ASC Symposium Series 580. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. 15 Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g., to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made. 20

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4° C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9° C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

25

30

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary

strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g., the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, physiological, chemical, or other physical means. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The labels may be incorporated into the cancer nucleic acids, proteins, and antibodies. Many methods known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter, et al. (1962) Nature 144:945; David, et al. (1974) Biochemistry 13:1014-1021; Pain, et al. (1981) J. Immunol. Meth., 40:219-230; and Nygren (1982) J. Histochem. and Cytochem. 30:407-412.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method

using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

5

10

15

20

25

30

As used herein a "nucleic acid probe or oligonucleotide" is a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, e.g., through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, preferably one that does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. Probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled, e.g., with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled, e.g., with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e., using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered

recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as depicted above.

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

5

10

15

20

25

30

A "promoter" is typically an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, e.g., wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed in operable linkage to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule selectively to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to essentially no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in . 5 "Overview of principles of hybridization and the strategy of nucleic acid assays" in Tijssen (1993) Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes (vol. 24) Elsevier. Generally, stringent conditions are selected to be about 5-10° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) 10 at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes (e.g., 15 10 to 50 nucleotides) and at least about 60° C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is typically at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions are often: 50% formamide, 5x SSC, and 1% 20 SDS, incubating at 42° C, or, 5x SSC, 1% SDS, incubating at 65° C, with wash in 0.2x SSC, and 0.1% SDS at 65° C. For PCR, a temperature of about 36° C is typical for low stringency amplification, although annealing temperatures may vary between about 32° C and 48° C depending on primer length. For high stringency PCR amplification, a temperature of about 25 62° C is typical, although high stringency annealing temperatures can range from about 50° C to about 65° C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C - 95° C for 0.5 - 2 min., an annealing phase lasting 0.5 - 2 min., and an extension phase of about 72° C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis, et al. (1990) PCR Protocols, A Guide to Methods and 30 Applications.

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This

occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C, and a wash in 1X SSC at 45° C. A positive hybridization is at least twice background. Alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., Ausubel, et al. (ed.) Current Protocols in

Molecular Biology Lippincott.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a lung cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the lung cancer protein or nucleic acid, e.g., a physiological, enzymatic, functional, physical, or chemical effect, such as the ability to decrease lung cancer. It includes ligand binding activity; cell viability, cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein expression in cells undergoing metastasis, and other characteristics of lung cancer cells. "Functional effects" include *in vitro*, *in vivo*, and *ex vivo* activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a lung cancer protein sequence, e.g., physiological, functional, enzymatic, physical, or chemical effects. Such functional effects can be measured by many means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the lung cancer protein; measuring binding activity or binding assays, e.g., binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on lung cancer can also be performed using lung cancer assays known to those of skill in the art such as an *in vitro* assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein

expression in cells undergoing metastasis, and other characteristics of lung cancer cells. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for lung cancer-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP, and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of lung cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of lung cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of lung cancer proteins, e.g., antagonists. Antisense or inhibitory nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate lung cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of lung cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the lung cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of lung cancer can also be identified by incubating lung cancer cells with the test compound and determining increases or decreases in the expression of 1 or more lung cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more lung cancer proteins, such as lung cancer proteins encoded by the sequences set out in Tables 1A-16.

Samples or assays comprising lung cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of a lung cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more

WO 02/086443 PCT/US02/12476 preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

The phrase "changes in cell growth" refers to any change in cell growth and proliferation characteristics *in vitro* or *in vivo*, such as cell viability, formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. See, e.g., Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> pp. 231-241 (3rd ed.).

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

10

15

20

25

30

"Cancer cells," "transformed" cells, or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy (see, Freshney (1994) Culture of Animal Cells a Manual of Basic Technique (3rd ed.)).

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD, and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul, Fundamental Immunology.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible

WO 02/086443 PCT/US02/12476 for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Paul (ed. 1999) Fundamental Immunology (4th ed.). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized *de novo* using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty, et al. (1990) Nature 348:552-554).

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler and Milstein (1975) Nature 256:495-497; Kozbor, et al. (1983) Immunology Today 4:72; Cole, et al. (1985), pp. 77-96 in Monoclonal Antibodies and Cancer Therapy; Coligan (1991 and supplements) Current Protocols in Immunology; Harlow and Lane (1988) Antibodies, A Laboratory Manual; and Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty, et al. (1990) Nature 348:552-554; Marks, et al. (1992) Biotechnology 10:779-783).

A "chimeric antibody" is an antibody molecule in which, e.g, (a) the constant region, or a portion thereof, is altered, replaced, or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function, and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the

WO 02/086443 PCT/US02/12476 variable region, or a portion thereof, is altered, replaced, or exchanged with a variable region

having a different or altered antigen specificity.

5

10

15

20

25

30

Identification of lung cancer-associated sequences

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue may be distinguished from cancerous or metastatic cancerous tissue, or metastatic cancerous tissue can be compared with tissue from surviving cancer patients. By comparing expression profiles of tissue in known different lung cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Molecular profiling may distinguish subtypes of a currently collective disease designation, e.g., different forms of lung cancer (chronic disease, adenocarcinoma, etc.)

The identification of sequences that are differentially expressed in lung cancer versus non-lung cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to downregulate lung cancer, and thus tumor growth or recurrence, in a particular patient. Alternatively, a treatment step may induce other markers which may be used as targets to destroy tumor cells. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Malignant diseasemay be compared to non-malignant conditions. Metastatic tissue can also be analyzed to determine the stage of lung cancer in the tissue, or origin of primary tumor, e.g., metastasis from a remote primary site. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the lung cancer expression profile. This may be done by making biochips comprising sets of the important lung cancer genes, which can then be used in these screens. PCR methods may be applied with selected primer pairs, and analysis may be of RNA or of genomic sequences. These methods can also be done on the protein basis; that is, protein expression levels of the lung cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the lung cancer

nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the lung cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs or as protein or DNA vaccines.

5

10

15

20

25

30

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in lung cancer relative to normal tissues and/or non-malignant lung disease, or in different types of lung disease, herein termed "lung cancer sequences." As outlined below, lung cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in lung cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the lung cancer sequences are from humans; however, as will be appreciated by those in the art, lung cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other lung cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets (dogs, cats, etc.). Lung cancer sequences from other organisms may be obtained using the techniques outlined below.

Lung cancer sequences can include both nucleic acid and amino acid sequences. As will be appreciated by those in the art and is more fully outlined below, lung cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the lung cancer sequences can be generated.

A lung cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the lung cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, e.g., using homology programs or hybridization conditions.

For identifying lung cancer-associated sequences, the lung cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, cancer and non-malignant conditions, non-malignant conditions and normal tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing lung cancer samples with metastatic cancer samples from other cancers, such as, breast, other gastrointestinal cancers, prostate, ovarian,

etc. Samples of, non metastatic disease tissue and tissue undergoing metastasis are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, e.g., from Affymetrix, Santa Clara, CA. Gene expression profiles as described herein are generated and the data analyzed.

5

10

15

20

25

30

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal lung, but also including, and not limited to colon, heart, brain, liver, breast, kidney, muscle, prostate, small intestine, large intestine, spleen, bone, and/or placenta. In a preferred embodiment, those genes identified during the lung cancer screen that are expressed in significant amounts in other tissues (e.g., essential organs) are removed from the profile, although in some embodiments, this is not necessary (e.g., where organs may be dispensible at a later stage of life). That is, when screening for drugs, it is usually preferable that the target expression be disease specific, to minimize possible side effects on other organs.

In a preferred embodiment, lung cancer sequences are those that are up-regulated in lung cancer; that is, the expression of these genes is higher in cancerous tissue than in normal lung or other tissue. "Up-regulation" as used herein means, when the ratio is presented as a number greater than one, that the ratio is greater than one, preferably 1.5 or greater, more preferably 2.0 or greater. Another embodiment is directed to sequences up-regulated in nonmalignant conditions relative to normal. Unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al (1998) Nucleic Acids Research 26:1-7 and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ). Another embodiment is directed to sequences up-regulated in non-malignant conditions relative to normal. In some situations, the sequences may be derived from assembly of available sequences or be predicted from genomic DNA using exon prediction algorithms, such as FGENESH (Salamov and Solovyev (2000) Genome Res. 10:516-522). In other situations, sequences have been derived from cloning and sequencing of isolated nucleic acids.

In another preferred embodiment, lung cancer sequences are those that are downregulated in the lung cancer; that is, the expression of these genes is lower in cancerous tissue

or normal lung or other tissue. "Down-regulation" as used herein means, when the ratio is presented as a number greater than one, that the ratio is greater than one, preferably 1.5 or greater, more preferably 2.0 or greater, or, when the ratio is presented as a number less than one, that the ratio is less than one, preferably 0.5 or less, more preferably 0.25 or less.

5

10

15

Informatics

The ability to identify genes that are over or under expressed in lung cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with lung cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson (1998) Pharmaceutical Proteomics: Targets,

Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

20

25

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in a form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for assay data acquired using an assay of the invention.

30

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample representing lung cancer, i.e., the identification of lung cancer-associated sequences described herein, provide an abundance of information, which can be correlated with

pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, genedisease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, data processing using high-speed computers is utilized.

5

10

15

20

25

30

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount, et al. (2001) Bioinformatics; Durbin, et al. (eds., 1999) Biological

Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (; Baxevanis and

Oeullette (eds., 1998) Bioinformatics: A Practical Guide to the Analysis of Genes and

Proteins); Rashidi and Buehler (1999) Bioinformatics: Basic Applications in Biological

Science and Medicine; Setubal, et al. (eds 1997) Introduction to Computational Molecular

Biology; Misener and Krawetz (eds, 2000) Bioinformatics: Methods and Protocols; Higgins and Taylor (eds., 2000) Bioinformatics: Sequence, Structure, and Databanks: A Practical

WO 02/086443

Approach; Brown (2001) Bioinformatics: A Biologist's Guide to Biocomputing and the

Internet; Han and Kamber (2000) Data Mining: Concepts and Techniques (2000); and

Waterman (1995) Introduction to Computational Biology: Maps, Sequences, and Genomes.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

5

10

15

20

25

30

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for lung cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may

be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

5

10

15

20

25

30

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC,

WO 02/086443
MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

Characteristics of lung cancer-associated proteins

10

15

20

25

30

Lung cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the lung cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Alberts (ed. 1994) Molecular Biology of the Cell (3d ed.). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more structural motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2

domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of amino acid sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman, et al (2000) Nuc. Acids Res. 28:263-266; Sonnhammer, et al. (1997) Proteins 28:405-420; Bateman, et al. (1999) Nuc. Acids Res. 27:260-262; and Sonnhammer, et al. (1998) Nuc. Acids Res. 26:320-322).

5

10

15

20

25

30

In another embodiment, the lung cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels, pumps, and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 17 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the

WO 02/086443

PCT/US02/12476
localization and number of transmembrane domains within the protein may be predicted (see, e.g., PSORT web site http://psort.nibb.ac.jp/).

5

10

15

20

25

30

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF, and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, hormones, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they may mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains may also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Lung cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for extracellular immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins in situ or in histological analysis. Alternatively, antibodies can also label intracellular proteins, in which case analytical samples are typically permeablized to provide access to intracellular proteins. In addition, some membrane proteins can be processed to release a soluble protein, or to expose a residual fragment. Released soluble proteins may be useful diagnostic markers, processed residual protein fragments may be useful lung markers of disease.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the lung cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins may have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; e.g., if circulating, they often serve to transmit

signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor), an endocrine manner (acting on cells at a distance, e.g., secretion into the blood stream), or exocrine (secretion, e.g., through a duct or to adjacent epithelial surface as sweat glands, sebaceous glands, pancreatic ducts, lacrimal glands, mammary glands, sax producing glands of the ear, etc.). Thus secreted molecules often find use in modulating or altering numerous aspects of physiology. Lung cancer proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests. Those which are enzymes may be antibody or small molecule targets. Others may be useful as vaccine targets, e.g., via CTL mechanisms.

Use of lung cancer nucleic acids

5

10

15

20

25

30

As described above, lung cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the lung cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The lung cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1A-16, can be fragments of larger genes, i.e., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the lung cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., *supra*. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

Once a lung cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire lung cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant lung cancer nucleic acid can be further-used as a probe to identify and isolate

other lung cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant lung cancer nucleic acids and proteins.

The lung cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the lung cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, RNAi, vaccine, and/or antisense applications. Alternatively, the lung cancer nucleic acids that include coding regions of lung cancer proteins can be put into expression vectors for the expression of lung cancer proteins, again for screening purposes or for administration to a patient.

5

10

15

20

25

30

In a preferred embodiment, nucleic acid probes to lung cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the lung cancer nucleic acids, i.e., the target sequence (either the target sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under appropriate reaction conditions, particularly high stringency conditions, as outlined herein.

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally complements of ORFs or whole genes are not used. In some embodiments, nucleic acids of lengths up to hundreds of bases can be used.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a

particular target. The probes can be overlapping (i.e., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

5

10

15

20

25

30

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is typically meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to a biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. Often the substrate may contain discrete individual sites appropriate for ndivitual partitioning and identification. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in US application entitled Reusable Low Fluorescent Plastic Biochip, U.S.

WO 02/086443 PCT/US02/12476 Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

5

10

15

20

25

30

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g., using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

In this embodiment, oligonucleotides are synthesized, and then attached to the surface of the solid support. Either the 5' or 3' terminus may be attached to the solid support, or attachment may be via linkage to an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized *in situ*, using known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of lung cancer-associated sequences. These assays are typically performed in conjunction with

reverse transcription. In such assays, a lung cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of lung cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for quantitative PCR are provided, e.g., in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications.

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4:560, Landegren, et al. (1988) Science 241:1077, and Barringer, et al. (1990) Gene 89:117), transcription amplification (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat. Acad. Sci. USA 87:1874), dot PCR, and linker adapter PCR, etc.

Expression of lung cancer proteins from nucleic acids

5

10

15

20

25

30

In a preferred embodiment, lung cancer nucleic acids, e.g., encoding lung cancer proteins, are used to make a variety of expression vectors to express lung cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, supra, and Fernandez and Hoeffler (eds 1999) Gene Expression Systems) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the lung cancer protein. The term "control sequences" refers to DNA

sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

5

10

15

20

25

30

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the lung cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences may be either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g., in mammalian or insect cells for expression and in a prokaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector often contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating

vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez and Hoeffler, *supra*).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

5

10

15

20

25

30

The lung cancer proteins of the present invention are usually produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a lung cancer protein, under the appropriate conditions to induce or cause expression of the lung cancer protein. Conditions appropriate for lung cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are *Saccharomyces cerevisiae* and other yeasts, *E. coli*, *Bacillus subtilis*, Sf9 cells, C129 cells, 293 cells, *Neurospora*, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the lung cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez and Hoeffler, *supra*). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenylation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

5

10

15

20

25

10

In a preferred embodiment, lung cancer proteins are expressed in bacterial systems. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the lung cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez and Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, lung cancer proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, lung cancer protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha,

Kluyveromyces fragilis and K. lactis, Pichia guillerimondii, and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The lung cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the lung cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the lung cancer protein may be made as a fusion protein to increase expression for affinity purification purposes, or for other reasons. For example, when the lung cancer protein is a lung cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the lung cancer protein is purified or isolated after expression. Lung cancer proteins may be isolated or purified in a variety of appropriate ways. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the lung cancer protein may be purified using a standard anti-lung cancer protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes (1982) Protein Purification. The degree of purification necessary will vary depending on the use of the lung cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the lung cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, therapeutic entities, for production of antibodies, as transcription or translation inhibitors, etc.

25 Variants of lung cancer proteins

5

10

15

20

30

In one embodiment, the lung cancer proteins are derivative or variant lung cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative lung cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at a particular residue within the lung cancer peptide.

Also included within one embodiment of lung cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three

WO 02/086443

classes: substitutional, insertional or deletional variants. These variants ordinarily are

prepared by site specific mutagenesis of nucleotides in the DNA encoding the lung cancer

protein, using cassette or PCR mutagenesis or other techniques, to produce DNA encoding
the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above.

However, variant lung cancer protein fragments having up to about 100-150 residues may be prepared by *in vitro* synthesis. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the lung cancer protein amino acid sequence. The variants typically exhibit a similar qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more

5

10

15

20

25

30

fully outlined below.

While the site or region for introducing an amino acid sequence variation is often predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed lung cancer variants screened for the optimal combination of desired activity. Techniques exist for making substitution mutations at predetermined sites in DNA having a known sequence, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of mutants is often done using assays of lung cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be occasionally tolerated. Deletions generally range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. Larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of a lung cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution chart provided in the definition section.

Variants typically exhibit essentially the same qualitative biological activity and will elicit the same immune response as a naturally-occurring analog, although variants also are selected to modify the characteristics of lung cancer proteins as needed. Alternatively, the

variant may be designed or reorganized such that a biological activity of the lung cancer protein is altered. For example, glycosylation sites may be added, altered, or removed.

5

10

15

20

25

30

Covalent modifications of lung cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a lung cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a lung cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking lung cancer polypeptides to a water-insoluble support matrix or surface for use in a method for purifying anti-lung cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of serinyl, threonyl or tyrosyl residues, methylation of the γ -amino groups of lysine, arginine, and histidine side chains (Creighton (1983) Proteins: Structure and Molecular Properties, pp. 79-86), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the lung cancer polypeptide encompassed by this invention is an altered native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended herein to mean adding to or deleting one or more carbohydrate moieties of a native sequence lung cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express lung cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to lung cancer polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence lung cancer polypeptide (for O-linked glycosylation sites). The lung cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the lung cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the lung cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330, and in Aplin and Wriston (1981) CRC Crit. Rev. Biochem., pp. 259-306.

5

10

15

20

25

30

Removal of carbohydrate moieties present on the lung cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al. (1987)

Arch. Biochem. Biophys., 259:52 and by Edge, et al. (1981) Anal. Biochem., 118:131.

Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura, et al. (1987) Meth.

Enzymol., 138:350.

Another type of covalent modification of lung cancer comprises linking the lung cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192, or 4,179,337.

Lung cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a lung cancer polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a lung cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the lung cancer polypeptide. The presence of such epitope-tagged forms of a lung cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the lung cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a lung cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known and examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field, et al. (1988) Mol. Cell. Biol. 8:2159-2165); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies

thereto (Evan, et al. (1985) Molecular and Cellular Biology 5:3610-3616); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky, et al. (1990) Protein Engineering 3(6):547-553). Other tag polypeptides include the Flag-peptide (Hopp, et al. (1988) BioTechnology 6:1204-1210); the KT3 epitope peptide (Martin, et al. (1992) Science 255:192-194); tubulin epitope peptide (Skinner, et al. (1991) J. Biol. Chem. 266:15163-15166); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:6393-6397).

Also included are other lung cancer proteins of the lung cancer family, and lung cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related lung cancer proteins from primates or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include unique areas of the lung cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. PCR reaction conditions are well known in the art (e.g., Innis, PCR Protocols, supra).

Antibodies to lung cancer proteins

5

10

15

20

25

30

In a preferred embodiment, when a lung cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the lung cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller lung cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are well known (e.g., Coligan, supra; and Harlow and Lane, supra). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of Tables 1A-16 or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal

being immunized. Immunogenic proteins include, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Adjuvants include, e.g., Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art.

5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein (1975) Nature 256:495. In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of the tables, or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if nonhuman mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding (1986) Monoclonal Antibodies: Principles and Practice, pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovin, or primate origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are typically monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid of the tables or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to lung cancer protein are capable of reducing or eliminating a biological function of a lung cancer protein, in a naked form or conjugated to an effector moiety. That is, the addition of anti-lung cancer protein antibodies (either polyclonal or preferably monoclonal) to lung cancer tissue (or cells containing lung cancer) may reduce or eliminate the lung cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

5

10

15

20

25

30

In a preferred embodiment the antibodies to the lung cancer proteins are humanized antibodies (e.g., Xenerex Biosciences, Medarex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of a human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. A humanized antibody optimally also will typically comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-329; and Presta (1992) Curr. Op. Struct. Biol. 2:593-596). Humanization can be performed following the method of Winter and co-workers (Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-327; Verhoeyen, et al. (1988) Science 239:1534-1536), by substituting rodent CDRs or CDR sequences for corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by corresponding sequence from a non-human species.

Human-like antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom and Winter (1991) J. Mol. Biol. 227:381; Marks, et al. (1991) J. Mol. Biol. 222:581). The techniques of Cole, et al. and Boerner, et al. are also available for the preparation of human monoclonal antibodies (Cole, et al. (1985) Monoclonal Antibodies and Cancer Therapy, p. 77 and Boerner, et al. (1991) J. Immunol. 147(1):86-95). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in nearly all respects, including gene rearrangement, assembly, and antibody repertoire. This 10 approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5.633,425; 5.661,016, and in the following scientific publications: Marks, et al. (1992) Bio/Technology 10:779-783; Lonberg, et al. (1994) Nature 368:856-859; Morrison (1994) Nature 368:812-13; Fishwild, et al. (1996) Nature Biotechnology 14:845-51; Neuberger (1996) Nature Biotechnology 14:826; and Lonberg and Huszar (1995) Intern. Rev. Immunol. 13:65-93.

5

15

20

25

30

By immunotherapy is meant treatment of lung cancer with an antibody raised against a lung cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. The antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the lung cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, may bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted lung cancer protein.

In another preferred embodiment, the lung cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment may bind the extracellular domain of the lung cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The

antibody may cause down-regulation of the transmembrane lung cancer protein. The antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the lung cancer protein. The antibody may be an antagonist of the lung cancer protein or may prevent activation of a transmembrane lung cancer protein, or may induce or suppress a particular cellular pathway. In some embodiments, when the antibody prevents the binding of other molecules to the lung cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF- α , TNF- β , IL-1, INF- γ , and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody may belong to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, lung cancer may be treated by administering to a patient antibodies directed against the transmembrane lung cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be various molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of a lung cancer protein. In another aspect the therapeutic moiety may modulate an activity of molecules associated with or in close proximity to a lung cancer protein. The therapeutic moiety may inhibit enzymatic or signaling activity such as protease or collagenase activity associated with lung cancer.

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to lung cancer tissue or cells results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with lung cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, saporin, auristatin, and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against lung cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane lung cancer proteins not only serves to increase the local concentration of therapeutic moiety in the lung cancer

WO 02/086443 PCT/US02/12476 afflicted area, but also serves to reduce deleterious side effects that may be associated with the untargeted therapeutic moiety.

In another preferred embodiment, the lung cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a proteinor other entity which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the lung cancer protein can be targeted within a cell, i.e., the nucleus, an antibody theretomay contain a signal for that target localization, i.e., a nuclear localization signal.

The lung cancer antibodies of the invention specifically bind to lung cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 µM, preferably at least about 0.1 µM or better, and most preferably, 0.01 µM or better. Selectivity of binding to the specific target and not to related other sequences is also important.

15

20

30

10

Detection of lung cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the lung cancer phenotype. Expression levels of genes in normal tissue (e.g., not undergoing lung cancer), in lung cancer tissue (and in some cases, for varying severities of lung cancer that relate to prognosis, as outlined below), or in non-malignant disease are evaluated to provide expression profiles. A gene expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state of the cell. While two states may have a particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state 25 of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g.,

WO 02/086443 PCT/US02/12476 normal versus lung cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart (1996) Nature Biotechnology 14:1675-1680, hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is typically at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

5

10

15

20

25

30

Evaluation may be at the gene transcript or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the RNA or DNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the lung cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to lung cancer genes, e.g., those identified as being important in a lung cancer or disease phenotype, can be evaluated in a lung cancer diagnostic test. In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes.

The lung cancer nucleic acid probes may be attached to biochips as outlined herein for the detection and quantification of lung cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In a preferred embodiment nucleic acids encoding the lung cancer protein are detected. Although DNA or RNA encoding the lung cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a lung cancer protein is detected.

Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed *in situ*. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a lung cancer protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

5

10

15

20

25

30

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, lung cancer proteins, including intracellular, transmembrane, or secreted proteins, find use as markers of lung cancer, e.g., for prognostic or diagnostic purposes. Detection of these proteins in putative lung cancer tissue allows for detection, prognosis, or diagnosis of lung cancer or similar disease, and perhaps for selection of therapeutic strategy. In one embodiment, antibodies are used to detect lung cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the lung cancer protein is detected, e.g., by immunoblotting with antibodies raised against the lung cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the lung cancer protein find use in *in situ* imaging techniques, e.g., in histology (e.g., Asai (ed. 1993) Methods in Cell Biology:

Antibodies in Cell Biology, volume 37. In this method cells are contacted with from one to many antibodies to the lung cancer protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label, e.g., multicolor fluorescence or confocal imaging. In another method the primary antibody to the lung cancer protein(s) contains a detectable label, e.g., an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of lung cancer proteins. Many other histological imaging techniques are also provided by the invention.

5

10

15

20

25

30

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing lung cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of lung cancer proteins. Antibodies can be used to detect a lung cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous lung cancer protein or vaccine.

In a preferred embodiment, in situ hybridization of labeled lung cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including lung cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to lung cancer, clinical, pathological, or other information, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. Single or multiple

genes may be useful in various combinations. As above, lung cancer probes may be attached to biochips for the detection and quantification of lung cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

5

10

15

20

25

30

Assays for therapeutic compounds

In a preferred embodiment, the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al. (1998) Science 279:84-8; Heid (1996) Genome Res. 6:986-94.

In a preferred embodiment, the lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified lung cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the lung cancer phenotype or an identified physiological function of a lung cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified differentially expressed genes herein, a variety of assays may be performed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene with altered regulation in lung cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the lung cancer protein. "Modulation" thus includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing lung cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in lung cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in lung

WO 02/086443 PCT/US02/12476 cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the lung cancer protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

5

10

15

20

25

30

In a preferred embodiment, gene or protein expression monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein.

In this embodiment, the lung cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of lung cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring can be performed to identify compounds that modify the expression of one or more lung cancer-associated sequences, e.g., a polynucleotide sequence set out in the tables. Generally, in a preferred embodiment, a test compound is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate lung cancer, modulate lung cancer proteins, bind to a lung cancer protein, or interfere with the binding of a lung cancer protein and an antibody, substrate, or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes a molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the lung cancer phenotype or the expression of a lung cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles of nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a lung cancer phenotype, e.g., to a normal or non-malignant tissue fingerprint. In another embodiment, a modulator induces a lung cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

In one aspect, a modulator will neutralize the effect of a lung cancer protein. By "neutralize" is meant that activity of a protein and the consequent effect on the cell is inhibited or blocked.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a lung cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

5

10

15

20

25

10

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop, et al. (1994) <u>J. Med. Chem.</u> 37(9):1233-1251).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka (1991) Pept. Prot. Res. 37:487-493, Houghton, et al. (1991) Nature, 354:84-88), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs, et al. (1993) Proc. Nat. Acad. Sci. USA 90:6909-6913), vinylogous polypeptides (Hagihara, et al. (1992) J. Amer. Chem. Soc. 114:6568), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann, et

al. (1992) J. Amer. Chem. Soc. 114:9217-9218), analogous organic syntheses of small compound libraries (Chen, et al. (1994) J. Amer. Chem. Soc. 116:2661), oligocarbamates (Cho, et al. (1993) Science 261:1303), and/or peptidyl phosphonates (Campbell, et al. (1994) J. Org. Chem. 59:658). See, generally, Gordon, et al. (1994) J. Med. Chem. 37:1385, nucleic acid libraries (see, e.g., Stratagene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn, et al. (1996) Nature Biotechnology 14(3):309-314, and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang, et al. (1996) Science 274:1520-1522, and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum (1993) C&EN, Jan 18, page 33; isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506.337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

15

20

25

30

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. The above devices, with appropriate modification, are suitable for use with the present invention. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

The assays to identify modulators are amenable to high throughput screening.

Preferred assays thus detect modulation of lung cancer gene transcription, polypeptide expression, and polypeptide activity.

High throughput assays for evaluating the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins,

U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

5

10

15

20

25

30

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate procedures, including sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that the nucleic acid or peptide consists of essentially random sequences of nucleotides and amino acids, respectively. Since these random peptides (or nucleic acids, discussed below) are often chemically synthesized, they may incorporate a nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. In a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc.

Modulators of lung cancer can also be nucleic acids, as defined above.

5

10

15

20

25

30

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. Digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

After a candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence is analyzed. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an *in vitro* transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

Nucleic acid assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos.

WO 02/086443
PCT/US02/12476
5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670,
5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

5

10

15

20

25

30

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration, pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the lung cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state,

screens are performed to identify agents that bind and/or modulate the biological activity of the gene product, or evaluate genetic polymorphisms.

5

10

15

20

25

30

Genes can be screened for those that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a lung cancer expression pattern leading to a normal expression pattern, or to modulate a single lung cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated lung cancer tissue reveals genes that are not expressed in normal tissue or lung cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for lung cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated lung cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of lung cancer cells, that have an associated lung cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once a test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., lung cancer or non-malignant tissue may be screened for agents that modulate, e.g., induce or suppress a lung cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on lung cancer activity. By defining such a signature for the lung cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

Measure of lung cancer polypeptide activity, or of lung cancer or the lung cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the metastatic polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of lung cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian lung cancer polypeptide is typically used, e.g., mouse, preferably human.

5

10

15

20

25

30

Assays to identify compounds with modulating activity can be performed *in vitro*. For example, a lung cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the lung cancer polypeptide levels are determined *in vitro* by measuring the level of protein or mRNA. The level of protein is typically measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the lung cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is typically detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using a lung cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene product itself can be done. The gene products of differentially expressed

genes are sometimes referred to herein as "lung cancer proteins." The lung cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

5

10

15

20

25

30

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the lung cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a lung cancer protein and a candidate compound, and determining the binding of the compound to the lung cancer protein. Preferred embodiments utilize the human lung cancer protein, although other mammalian proteins may also be used, e.g., for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative lung cancer proteins may be used.

Generally, in a preferred embodiment of the methods herein, the lung cancer protein or the candidate agent is non-diffusably bound to an insoluble support, preferably having isolated sample receiving areas (e.g., a microtiter plate, an array, etc.). The insoluble supports may be made of a composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of a convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is typically not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition, and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation

PCT/US02/12476 WO 02/086443

sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

5

10

15

20

25

In a preferred embodiment, the lung cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the lung cancer protein is added. Novel binding agents include specific antibodies, nonnatural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the lung cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the lung cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., 125I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor may be a binding moiety known to bind to the target molecule (i.e., a lung cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the 30 test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40° C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically

between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

5

10

15

20

25

30

In a preferred embodiment, the competitor is added first, followed by a test compound. Displacement of the competitor is an indication that the test compound is binding to the lung cancer protein and thus is capable of binding to, and potentially modulating, the activity of the lung cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the lung cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the lung cancer protein.

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the lung cancer proteins. In one embodiment, the methods comprise combining a lung cancer protein and a competitor in a first sample. A second sample comprises a test compound, a lung cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the lung cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the lung cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native lung cancer protein, but cannot bind to modified lung cancer proteins. The structure of the lung cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a lung cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results.

Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

5

10

20

25

30

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a lung cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising lung cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a lung cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g., hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (e.g., cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate lung cancer agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the lung cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting lung cancer cell division is provided. The method comprises administration of a lung cancer inhibitor. In another embodiment, a method of inhibiting lung cancer is provided. The method may comprise administration of a lung cancer inhibitor. In a further embodiment, methods of treating cells or individuals with lung cancer are provided, e.g., comprising administration of a lung cancer inhibitor.

In one embodiment, a lung cancer inhibitor is an antibody as discussed above. In another embodiment, the lung cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, viability, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

5

10

15

25

30

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of lung cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> (3rd ed.), herein incorporated by reference. See also, the methods section of Garkavtsev, et al. (1996), *supra*, herein incorporated by reference.

20 Contact inhibition and density limitation of growth

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), supra. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a lung cancer-associated sequence and are grown for 24 hours at saturation density in

WO 02/086443

PCT/US02/12476

non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. See, Freshney (1994), *supra*.

Growth factor or serum dependence

Transformed cells typically have a lower serum dependence than their normal counterparts (see, e.g., Temin (1966) <u>J. Natl. Cancer Insti.</u> 37:167-175; Eagle, et al. (1970) <u>J. Exp. Med.</u> 131:836-879); Freshney, *supra*. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

10

15

20

5

Tumor specific markers levels

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, pp. 178-184). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman (1992) "Angiogenesis and Cancer" in <u>Sem Cancer Biol.</u>).

Various techniques which measure the release of these factors are described in Freshney (1994), *supra*. Also, see, Unkeless, et al. (1974) <u>J. Biol. Chem.</u> 249:4295-4305; Strickland and Beers (1976) <u>J. Biol. Chem.</u> 251:5694-5702; Whur, et al. (1980) <u>Br. J. Cancer</u> 42:305-312; Gullino, "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, pp. 178-184; Freshney <u>Anticancer Res.</u> 5:111-130 (1985).

25

30

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate lung cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), *supra*, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), *supra*.

Tumor growth in vivo

5

10

15

20

25

30

Effects of lung cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the lung cancer gene is disrupted or in which a lung cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous lung cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous lung cancer gene with a mutated version of the lung cancer gene, or by mutating the endogenous lung cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi, et al. (1989) Science 244:1288). Chimeric targeted mice can be derived according to Hogan, et al. (1988) Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory and Robertson (ed. 1987) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, , IRL Press, Washington, D.C.

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella, et al. (1974) <u>J. Natl. Cancer Inst.</u> 52:921), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley, et al. (1978) <u>Br. J. Cancer</u> 38:263; Selby, et al. (1980) <u>Br. J. Cancer</u> 41:52) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a lung cancer-associated sequences are injected subcutaneously. After a suitable length of time,

preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

5 Polynucleotide modulators of lung cancer

Antisense and RNAi Polynucleotides

10

15

20

25

30

In certain embodiments, the activity of a lung cancer-associated protein is downregulated, or entirely inhibited, by the use of antisense or an inhibitory polynucleotide, i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a lung cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or intersugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the lung cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides.

Sense oligonucleotides can, e.g., be employed to block transcription by binding to the antisense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for lung cancer molecules. A preferred antisense molecule is for a lung cancer sequence in the tables, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein

WO 02/086443
PCT/US02/12476
is described in, e.g., Stein and Cohen (1988) Cancer Res. 48:2659 and van der Krol, et al.
(1988) BioTechniques 6:958).

RNA interference is a mechanism to suppress gene expression in a sequence specific manner. See, e.g., Brumelkamp, et al. (2002) Sciencexpress (21March2002); Sharp (1999) Genes Dev. 13:139-141; and Cathew (2001) Curr. Op. Cell Biol. 13:244-248. In mammalian cells, short, e.g., 21 nt, double stranded small interfering RNAs (siRNA) have been shown to be effective at inducing an RNAi response. See, e.g., Elbashir, et al. (2001) Nature 411:494-498. The mechanism may be used to downregulate expression levels of identified genes, e.g., treatment of or validation of relevance to disease.

10

15

20

25

30

5

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of lung cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto, et al. (1994) Adv. in Pharmacology 25: 289-317 for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel, et al. (1990) Nucl. Acids Res. 18:299-304; European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6340-6344; Yamada, et al. (1994) Human Gene Therapy 1:39-45; Leavitt, et al. (1995) Proc. Natl. Acad. Sci. USA 92:699-703; Leavitt, et al. (1994) Human Gene Therapy 5:1151-120; and Yamada, et al. (1994) Virology 205: 121-126).

Polynucleotide modulators of lung cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of lung cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by

formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

5

10

15

20

25

30

Thus, in one embodiment, methods of modulating lung cancer in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-lung cancer antibody that reduces or eliminates the biological activity of an endogenous lung cancer protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding a lung cancer protein. This may be accomplished in any number of ways. In a preferred embodiment, e.g., when the lung cancer sequence is down-regulated in lung cancer, such state may be reversed by increasing the amount of lung cancer gene product in the cell. This can be accomplished, e.g., by overexpressing the endogenous lung cancer gene or administering a gene encoding the lung cancer sequence, using known gene-therapy techniques. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), e.g., as described in PCT/US93/03868, hereby incorporated by reference in its entirety.

Alternatively, e.g., when the lung cancer sequence is up-regulated in lung cancer, the activity of the endogenous lung cancer gene is decreased, e.g., by the administration of a lung cancer antisense or RNAi nucleic acid.

In one embodiment, the lung cancer proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to lung cancer proteins. Similarly, the lung cancer proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify lung cancer antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a lung cancer protein; that is, the antibodies show little or no cross-reactivity to other proteins. The lung cancer antibodies may be coupled to standard affinity chromatography columns and used to purify lung cancer proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the lung cancer protein.

Methods of identifying variant lung cancer-associated sequences

Without being bound by theory, expression of various lung cancer sequences is correlated with lung cancer. Accordingly, disorders based on mutant or variant lung cancer genes may be determined. In one embodiment, the invention provides methods for

identifying cells containing variant lung cancer genes, e.g., determining all or part of the sequence of at least one endogenous lung cancer genes in a cell. In a preferred embodiment, the invention provides methods of identifying the lung cancer genotype of an individual, e.g., determining all or part of the sequence of at least one lung cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced lung cancer gene to a known lung cancer gene, i.e., a wild-type gene.

The sequence of all or part of the lung cancer gene can then be compared to the sequence of a known lung cancer gene to determine if any differences exist. This can be done using known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the lung cancer gene of the patient and the known lung cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the lung cancer genes are used as probes to determine the number of copies of the lung cancer gene in the genome.

In another preferred embodiment, the lung cancer genes are used as probes to determine the chromosomal localization of the lung cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the lung cancer gene locus.

Administration of pharmaceutical and vaccine compositions

5

10

15

20

25

30

In one embodiment, a therapeutically effective dose of a lung cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel, et al. (1992) Pharmaceutical Dosage Forms and Drug Delivery; Lieberman, Pharmaceutical Dosage Forms (vols. 1-3), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding; and Pickar (1999) Dosage Calculations). Adjustments for lung cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration,

drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

5

10

15

20

25

30

The administration of the lung cancer proteins and modulators thereof of the present invention can be done in a variety of ways, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the lung cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a lung cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose,

WO 02/086443 PCT/US02/12476 lactose, corn and other starches; binding agents; sweeteners and other flavoring agents;

coloring agents; and polyethylene glycol.

5

10

15

20

25

30

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that lung cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a lung cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Hardman, et al. (eds. 1996) Goodman and Gilman: The Pharmacologial Basis of Therapeutics).

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gilman, The Pharmacologial Basis of Therapeutics, supra.

The compositions containing modulators of lung cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer based, at least in part, upon gene expression profiles. Vaccine strategies may be used, in either a DNA vaccine form, or protein vaccine.

5

10

15

20

25

30

It will be appreciated that the present lung cancer protein-modulating compounds can be administered alone or in combination with additional lung cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in the tables, such as antisense or RNAi polynucleotides or ribozymes, will be introduced into cells, *in vitro* or *in vivo*. The present invention provides methods, reagents, vectors, and cells useful for expression of lung cancer-associated polypeptides and nucleic acids using *in vitro* (cell-free), *ex vivo*, or *in vivo* (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g.,

Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>, <u>Methods in Enzymology</u> volume 152 (Berger), Ausubel, et al. (eds. 1999) <u>Current Protocols</u> (supplemented through 1999), and Sambrook, et al. (1989) <u>Molecular Cloning - A Laboratory Manual</u> (2nd ed., Vol. 1-3).

In a preferred embodiment, lung cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, lung cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the lung cancer coding regions) can be administered in a gene therapy application. These lung cancer genes can include antisense or inhibitory applications, e.g., as inhibitory RNA or gene therapy (e.g., for incorporation into the genome) or as antisense compositions.

5

10

15

20

25

30

Lung cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL, and antibody responses.. Such vaccine compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, et al. (1995) J. Clin. Invest. 95:341), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al. (1991) Molec. Immunol. 28:287-294; Alonso, et al. (1994) Vaccine 12:299-306; Jones, et al. (1995) Vaccine 13:675-681), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi, et al. (1990) Nature 344:873-875; Hu, et al. (1998) Clin Exp Immunol. 113:235-243), multiple antigen peptide systems (MAPs) (see, e.g., Tam (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413; Tam (1996) J. Immunol. Methods 196:17-32), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., p. 379 In: Kaufmann (ed. 1996) Concepts in vaccine development; Chakrabarti, et al. (1986) Nature 320:535; Hu, et al. (1986) Nature 320:537; Kieny, et al. (1986) AIDS Bio/Technology 4:790; Top, et al. (1971) J. Infect. Dis. 124:148; Chanda, et al. (1990) Virology 175:535), particles of viral or synthetic origin (see, e.g., Kofler, et al. (1996) J. Immunol. Methods 192:25; Eldridge, et al. (1993) Sem. Hematol. 30:16; Falo, et al. (1995) Nature Med. 7:649), adjuvants (Warren, et al. (1986) Annu. Rev. Immunol. 4:369; Gupta, et al. (1993) Vaccine 11:293), liposomes (Reddy, et al. (1992) J. Immunol. 148:1585; Rock (1996) Immunol. Today 17:131), or, naked or particle absorbed cDNA (Ulmer, et al. (1993) Science 259:1745; Robinson, et al. (1993) Vaccine 11:957; Shiver, et al., p. 423 In: Kaufmann (ed. 1996) Concepts in vaccine development; Cease and Berzofsky (1994) Annu. Rev. Immunol. 12:923 and Eldridge, et al. (1993) Sem. Hematol. 30:16). Toxin-targeted

delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

5

10

15

20

25

30

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff, et. al. (1990) Science 247:1465 as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode lung cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover, et al. (1991) Nature 351:456-460. A wide variety of other vectors useful for therapeutic administration or immunization e.g., adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the

like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata, et al. (2000) Mol Med Today 6:66-71; Shedlock, et al. (2000) J. Leukoc. Biol. 68:793-806; Hipp, et al. (2000) In Vivo 14:571-85).

5

10

15

20

25

30

Methods for the use of genes as DNA vaccines are well known, and include placing a lung cancer gene or portion of a lung cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a lung cancer patient. The lung cancer gene used for DNA vaccines can encode full-length lung cancer proteins, but more preferably encodes portions of the lung cancer proteins including peptides derived from the lung cancer protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a lung cancer gene. For example, lung cancer-associated genes or sequence encoding subfragments of a lung cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the lung cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment lung cancer genes find use in generating animal models of lung cancer. When the lung cancer gene identified is repressed or diminished in metastatic tissue, gene therapy technology, e.g., wherein antisense or inhibitory RNA directed to the lung cancer gene will also diminish or repress expression of the gene. Animal models of lung cancer find use in screening for modulators of a lung cancer-associated sequence or modulators of lung cancer. Similarly, transgenic animal technology including gene knockout technology, e.g., as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the lung cancer protein. When desired, tissue-specific expression or knockout of the lung cancer protein may be necessary.

It is also possible that the lung cancer protein is overexpressed in lung cancer. As such, transgenic animals can be generated that overexpress the lung cancer protein.

Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene.

Animals generated by such methods will find use as animal models of lung cancer and are additionally useful in screening for modulators to treat lung cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

5

10

15

20

25

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In diagnostic and research applications such kits may include at least one of the following: assay reagents, buffers, lung cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, RNAi, dominant negative lung cancer polypeptides or polynucleotides, small molecule inhibitors of lung cancer-associated sequences, etc. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing instructions (e.g., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. A medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of lung cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a lung cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing lung cancer-associated activity. Optionally, the kit contains biologically active lung cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes typically will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

WO 02/086443 PCT/US02/12476 EXAMPLES

Example 1: Gene Chip Analysis

Molecular profiles of various normal and cancerous tissues were determined and analyzed using gene chips. RNA was isolated and gene chip analysis was performed as described (Glynne, et al. (2000) Nature 403:672-676; Zhao, et al. (2000) Genes Dev. 14:981-993).

Tables 1A and 1B were previously filed on April 18, 2001 in USSN 60/284,770 (18501-001500US) and on November 29, 2001 in USSN 60/334,370 (18501-001520US)

5	Table 1A					
9	Pkey	ExAcon	UnigenelD	Unigene Title	70% chron/90% NL	70% SQAD/90% NL
	100134	D13264	Hs.49	macrophage scavenger receptor 1	1.61	0.74
	100780 100971	HG3731-HT4001 J02874	Hs.83213	***Immunoglobulin Heavy Chain, Vdjrc Reg fatty acid binding protein 4; adipocyte	2.68 1.96	3.28 0.14
10	101088	L05568	Hs.553	solute carrier family 6 (neurotransmitte	0.79	0.07
	101102	L07594	Hs.79059	transforming growth factor; beta recepto	2.55	1
		L15388	Hs.211569	G protein-coupled receptor kinase 5	0.88 0.89	0.27 0.26
	101277 101330	L38486 L43821	Hs.118223 Hs.80261	microfibrillar-associated protein 4 enhancer of filamentation 1 (cas-like do	0.59	0.29
15	101336	L49169	Hs.75678	FBJ murine osteosarcoma viral oncogene h	1.15	0.41
	101345	L76380	Hs.152175	calcitonin receptor-like	0.81	0.31
	101678 101764	M62505 M80563	Hs.2161 Hs.81256	complement component 5 receptor 1 (C5a I S100 calcium-binding protein A4 (calcium	1.31 1.44	0.77 0.82
••	101771	M81750	Hs.153837	myeloid cell nuclear differentiation ant	0.96	0.45
20		M93221	Hs.75182	mannose receptor; C type 1	1.27	0.37
	102283 102363	U31384 U39447	Hs.83381 Hs.198241	guanine nucleotide binding protein 11 amine oxidase; copper containing 3 (vasc	1.04 0.96	0.3 0.26
	102507	U52154	Hs.193044	potassium inwardly-rectifying channel; s	2,81	3.45
25	102698	U75272	Hs.1867	DIOGRAFICALI (DEDALIONETI O)	0.95	0.23
25	103025	X54131	Hs.123641	protein tyrosine phosphatase; receptor t cadherin 5; VE-cadherin (vascular epithe	1.62 0.9	0.21 0.41
	103280 103496	X79981 . Y09267	Hs.76206 Hs.132821	flavin containing monooxygenase 2	1,27	0.49
	103541	Z11697 ,	Hs.79197	CD83 antigen (activated B lymphocytes; I	1.86	1
30			Hs.74034	caveolin 1; caveolae protein; 22kD	1.27	0.47
20	104212 104691	AB002298 AA011176	Hs.173035 Hs.37744	KIAA0300 protein ESTs	1.17 1.08	0.16 0.35
		AA035613	Hs.141883	ESTs	0.75	0.27
	104857	AA043219	Hs.19058	ESTs	2.6	3.3
35	104865 104989	AA045136 AA102098	Hs.22575 Hs.118615	ESTs ESTs	1.23 0.63	0.49 0.32
	105729	AA292694	Hs.3807	ESTs; Weakly similar to PHOSPHOLEMMAN PR	0.86	0.34
	105847	AA398608	Hs.32241	ESTs	1.32	0.4
	105894 106490	AA400979 AA451861	Hs.25691 Hs.115537	calcitonin receptor-like receptor activi ESTs; Weakly similar to dipeptidase prec	0.78 1.2	0.28 0.47
40	106536	AA453997	Hs.23804	ESTs	0.82	0.15
• •	106605	AA457718	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr	0.99	0.07
	106667	AA461086	Hs.16578	ESTS	1.17 1.46	0.4 0.43
	106773 106797	AA478109 AA478962	Hs.188833 Hs.169943	ESTs ESTs	1.40	0.43
45	106844	AA485055	Hs.158213	sperm associated antigen 6	0.98	0.51
	106870	AA487576	Hs.26530	serum deprivation response (phosphalidy)	1.05	0.14
	106954 107054	AA496980 AA600150	Hs.204038 Hs.14366	ESTs ESTs	1.25 1,11	0.33 0.4
~~	107292	T30407	Hs.4789	ESTs; Weakly similar to oxidative-stress	1.07	2.58
50	107994	AA036811	Hs.165030	ESTs	0.7	0.21
	107997 108041	AA037388 AA041552	Hs.82223 Hs.61957	Human DNA sequence from clone 141H5 on c ESTs	1.02 1.44	0.48 0.51
	108087	AA045709	Hs.40545	ESTs	1.98	1
55		AA074885	Hs.67726	macrophage receptor with collagenous str	1.52	0.72
33	108435 108480	AA078787 AA081093	Hs.194101 Hs.68055	ESTs .	2.53 1.56	1.53 0.48
		AA194830	Hs.85944	ESTs	2.69	3.18
	109550	F01534	Hs.26981	ESTs	1.19	0.65
60	109613 109837	F03031 H00656	Hs.27519 Hs.29792	ESTs ESTs	1.01 0.81	0.29 0.15
00	109893	H04768	Hs.30484	ESTs	1.44	0.32
	109984	H09594	Hs.10299	ESTs	0.62	0.14
	110099 110837	H16568 N30796	Hs.23748 Hs.17424	ESTs ESTs; Weakly similar to semaphorin F [H.	1.01 1.1	0.28 0.22
65	111247	N69825	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	1.26	0.26
	111341	N80935	Hs.22483	ESTs	1.57	0.52
		R07856	Hs.16355 Hs.9218	ESTs ESTs	3.96 0.97	1 0.24
	111737 113195	R25410 T57112	NS.3210	***yc20g11.s1 Strategene lung (#937210)	1.22	0.35
70	113238	T62979	Hs.189813	ESTs	2.27	0.45
	113540	T90496	Hs.16757	ESTs	1.06 1.16	0.22 0.42
	113552 113606	T90889 T93093	Hs.16026 Hs.17125	ESTs ESTs	1.48	0.42
7.5	113695	T96965	Hs.17948	ESTs	1.54	0.28
75	113945	W84753	Hs.37896	ESTs	1.79	0.72
	114251 114359	Z39898 Z41589	Hs.21948 Hs.153483	ESTs ESTs; Moderately similar to H1 chloride	1.95 1.42	0.25 0.13
	115230	AA278300	Hs.182980	ESTs	2.62	0.42
80	115279	AA279760	Hs.63671	ESTs	1.79	0.91 .
οU		AA398083 AA446661	Hs.43977 Hs.173233	ESTs ESTs	0.86 0.79	0.2 0.04
	116166	AA461556	Hs.202949	KIAA1102 protein	2.29	0.68
	116279	AA486073	Hs.57362	ESTs	2.27	0.78
	117023	H88157	Hs.41105	ESTs	1.36	0.16

	w	O 02/0864	43			
	117209	H99959	Hs.42768	ESTs	1.48	0.48
	118901	N90719	Hs.94445	ESTs	1.51	1
	118981	* N93839	Hs.39288	ESTs	1.34	0.48
5	119073	R32894	Hs.45514	v-ets avian erythroblastosis virus E26 o	1.14	0.27
3	119221	R98105	Un 104	""yr30g11.s1 Soares fetal liver spleen	1.32 1	0.53 0.19
	119824 119861	W74536 W80715	Hs.184	advanced glycosylation end product-sped ESTs; Moderately similar to !!!! ALU SUB	1.83	0.15
	120041	W92775	Hs.59368	ESTs	1.23	0.55
	120132	Z38839	Hs.125019	ESTs; Highly similar to KIAA0886 protein	0.91	0.37
10	120467	AA251579	Hs.187628	ESTs	1.87	1.91
	121314	AA402799	Hs.182538	ESTs	1.3	0.31
	121643	AA417078	Hs.193767	ESTs	2.31 1.47	0.68 0.51
	121690 122633	AA418074 AA454080	Hs.110286 Hs.34853	ESTs inhibitor of DNA binding 4; dominant neg	1.31	0.51
15	123978	C20653	Hs.170278	ESTs	1.52	0.32
	124214	H58608	Hs.151323	ESTs	0.93	0.35
	124357	N22401		"yw37g07.s1 Morton Fetal Cochlea Homo	1.29	1
	124438	N40188	Hs.102550	ESTs	1.36	0.7
20	125167	W45560	Hs.102541	ESTS	1.46 3.07	0.69 3.76
20	125174 125422	W51835 AA903229	Hs.231082 Hs.153717	EST ESTs	1.34	0.3
	125561	Al417667	Hs.22978	ESTs	1.89	0.63
	125831	D60988	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***HUM145B09B Clontech human fetal brain	0.94	0.36
0.5	127002	R35380	Hs.24979	ESTs	3.02	4.06
25	127307	AA369367	Hs.126712	ESTs; Weakly similar to plL2 hypothetica	1.01	0.69
	127609	AA622559	Hs.150318	ESTS	1.21	0.32 1
	127959 128458	Al302471 D52193	Hs.124292 Hs.56340	ESTs ESTs	2.5 1.13	0.33
	128624	AA479209	Hs.102647	ESTs	1.45	. 0.58
30	128789	AA486567	Hs.105695	ESTs	1.1	0.34
	128798	AF014958	Hs.105938	chemokine (C-C motif) receptor-like 2	1.16	0.55
	128952	R51076	Hs.107361	ESTs; Highly similar to Rap2 interacting	2.04	2.4
	129057	X62466	Hs.214742	CDW52 antigen (CAMPATH-1 antigen)	1.77	0.73
35	129210 129240	AA401654 W24360	Hs.202949 Hs.237868	KIAA1102 protein Interleukin 7 receptor	1.11 0.91	0.36 0.41
55	129402	T63781	115.257 000	"yc21g01.s1 Stratagene lung (#937210)	1.36	0.43
	129565	X77777	Hs.198726	vasoactive intestinal peptide receptor 1	0.67	0.08
	129593	AA487015	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f	1.3	0.42
40	129626	AA447410	Hs.11712	ESTs; Weakly similar to IIII ALU SUBFAMI	1.28	0.46
40	129699	AA458578	Hs.12017	KIAA0439 protein; homolog of yeast ubiqu	1.58	1 0.52
	129898 129958	N48595 L20591	Hs.13256 Hs.1378	ESTs annexin A3	1.13 0.81	0.53 0.31
	130273	U59914	Hs.153863	MAD (mothers against decapentaplegic; Dr	0.59	0.22
	130655	N92934	Hs.17409	cysteine-rich protein 1 (intestinal)	1.44	0.76
45	130657	T94452	Hs.201591	ESTs	0.96	0.42
	131061	N64328	Hs.22567	ESTs; Moderately similar to HYPOTHETICAL	1.51	0.45
	131066	F09006	Hs.22588	ESTs	0.97 2.34	0.37 2.82
	131263 131589	R38334 U52100	Hs.24950 Hs.29191	regulator of G-protein signalling 5 epithelial membrane protein 2	1.2	0.62
50	131686	AA157428	Hs.30687	Grb2-associated binder 2	0.95	0.38
	131751	H18335	Hs.31562	ESTs	1.47	0.52
	132430	T23630	Hs.258675	EST	1.86	2.09
	132476	N67192	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat regi	1.73	0.58
55	132836	F09557	Hs.57929	slit (Drosophila) homolog 3 tetranectin (plasminogen-binding protein	0.91 0.82	0.29 0.2
55	133120 133488	X64559 D45370	Hs.65424 Hs.74120	adipose specific 2	1.29	0.48
	133565	H57056	Hs.204831	ESTs	2.25	0.57
	133651	U97105	Hs.173381	dihydropyrimidinase-like 2	1.65	0.62
C O	133835	AA059489	Hs.76640	ESTs; Highly similar to RGC-32 [R.norveg	1.16	0.34
60	133978	W73859	Hs.78061	transcription factor 21	0.79	0.27
	133985 134299	L34657 AA487558	Hs.78146 Hs.8135	platelet/endothelial cell adhesion molec ESTs	0.99 1.02	0.28 0.46
	134300	U81984	Hs.166082	endothelial PAS domain protein 1	0.86	0.42
	134323	AA028976	Hs.8175	Homo sapiens mRNA; cDNA DKFZp564M0763 (f	1.19	0.27
65	134343	D50683	Hs.82028	transforming growth factor, beta recepto	1.21	0.67
	134417	D87969	Hs.82921	solute carrier family 35 (CMP-stalic aci	1.28	1
	134561	U76421	Hs.85302	adenosine deaminase; RNA-specific; B1 (h	2.12 2.35	0.55 2.74
	134624 134696	W67147 H88354	Hs.8700 Hs.8861	deleted in liver cancer 1 ESTs	1.35	2.74 0.33
70	134749	L10955	Hs.89485	carbonic anhydrase IV	0.89	0.2
. •	134786	L06139	Hs.89640	TEK tyrosine kinase; endothelial (venous	0.48	0.21
	134869	T3528B	Hs.90421	ESTs; Moderately similar to IIII ALU SUB	2.14	2.64
	135346	M21056	Hs.992	phospholipase A2; group IB (pancreas)	0.63	0.13
75	100113	D00591	Hs.84746	Chromosome condensation 1 Homo sapiens mRNA for osteoblast specifi	1 0.5	2.15 2
, 5	100147 100280	D13666 D42085	Hs.136348 Hs.155314	KIAA0095 gene product	1.02	1.39
	100200	D63391	Hs.6793	platelet-activating factor acetythydrola	1	5.58
	100360	D78335	Hs.75939	Uridine monophosphate kinase	0.91	2.04
00	100372	D79997	Hs.184339	KIAA0175 gene product	0.75	2.03
80	100486	HG1112-HT111		TIGR: ras-like protein TC4	1.09	1.93
	100559	HG2197-HT226		"collagen, type VII, alpha 1" "calcitonin/alpha-CGRP, alt. transcript	0.97 1	3.6 1
	100576 100668	HG2290-HT238 HG2981-HT393		"TIGR: CD44 (epican, alt. transcript 12	0.85	1.9
0.5	100906	HG4716-HT515		Guanosine 5'-Monophosphate Synthase	1.18	2.29
85	100930	HG721-HT4827		*TIGR: placental protein 14, endometrial	1	1.45

	W	O 02/080	443			
	100960	J00124	Hs.117729	keratin 14 (epidermolysis bullosa simple	0.84	26
	101031	J05070	Hs.151738	*Matrix metalloproteinase 9 (gelatinase	0.77	1.52
	101111	L08424	Hs.1619	Achaete-scute complex (Drosophila) homol	1	1
	101124	L10343	Hs.112341	"Protease inhibitor 3, skin-derived (SKA	0.62	2.67
5	101175	L18920	Hs.36980	"Melanoma antigen, family A, 2"	1	1
,				Ataxia-telangiectasia group D-associated	0.74	4.1
	101204	L24203	Hs.82237		0.85	2.51
	101431	M19888	Hs.1076	Small proline-rich protein 1B (comifin)		
	101448	M21389	Hs.195850	keratin 5 (epidermolysis bullosa simplex	. 0.61	8.83
• •	101511	M27826	Hs.267319	Endogenous retroviral protease	1.03	1.13
10	101526	M29540	Hs.220529	Carcinoembryonic antigen-related cell ad	1.07	4.61
	101548	M31328	Hs.71642	*Guanine nucleotide binding protein (G p	0.97	1.13
	101625	M57293		"Human parethyroid hormone-related pepti	1	1
	101649	M60047	Hs.1690	Heparin-binding growth factor binding pr	1	2.7
					i	8.98
15	101724	M69225	Hs.620	bullous pemphigoid anligen 1 (230/240kD)	i	2.78
15	101748	M76482	Hs.1925	Desmoglein 3 (pemphigus vulgaris antigen		
	101759	M80244	Hs.184601	"Solute carrier family 7 (cationic amino	1.07	2.45
	101804	M86699	Hs.169840	TTK protein kinase	1	1
	101806	M86757	Hs.112408	\$100 calcium-binding protein A7 (psorias	0.74	1.76
	101809	M86849		"Homo sapiens connexin 26 (GJB2) mRNA, c	1	7
20	101845	M93426	Hs.78867	*Protein tyrosine phosphatase, receptor-	1	1
20					1.13	2.6
	101851	M94250	Hs.82045	Midkine (neurite growth-promoting factor		
	102083	U10323	Hs.75117	"Interleukin enhancer binding factor 2,	1.03	1.61
	102154	U17760	Hs.75517	"Laminin, beta 3 (nicein (125kD), kalini	0.94	3.62
~ ~	102193	U20758	Hs.313	secreted phosphoprotein 1 (osteopontin;	0.34	4.59
25	102305	U33286	Hs.90073	chromosome segregation 1 (yeast homolog)	1.45	2.97
	102348	U37519	Hs.87539	Aldehyde dehydrogenase 8	0.52	2.25
	102581	U61145	Hs.77256	Enhancer of zeste (Drosophila) homolog 2	0.91	2.46
	102610	U65011	Hs.30743	Preferentially expressed antigen in mela	1	3.88
				"Melanoma antigen, family A, 9 (MAGE-9)"	i	1
20	102623	U66083	Hs.37110		1	i
30	102669	U71207	Hs.29279	Eyes absent (Drosophila) homolog 2		•
	102696	U74612	Hs.239	Forkhead box M1	1.06	2.77
	102829	U91618	Hs.80962	Neurotensin	1 .	1
	102888	X04741	Hs.76118	Ubiquitin carboxyl-terminal esterase L1	1.13	2.59
	102913	X07696	Hs.80342	keratin 15	0.7	4.72
35	102915	X07820	Hs.2258	Matrix Metalloproteinase 10 (Stromolysin	1.15	3.35
55			Hs.37058	"Calcitonin/calcitonin-related polypepti	1	1
	102963	X15943			1.38	2.34
	103021	X53587	Hs.85266	*Integrin, beta 4*		
	103036	X54925	Hs.83169	Matrix metalloprotease 1 (interstitial c	1	14.93
4.0	103058	X57348	Hs.184510	Stratifin	1.25	4.17
40	103060	X57766	Hs.155324	matrix metalloproteinase 11 (stromelysin	1	1.72
	103119	X63629	Hs.2877	"Cadherin 3, P-cadherin (placental)"	1.16	7.38
	103206	X72755	Hs.77367	monokine induced by gamma interferon	0.71	1.48
	103242	X76342	Hs.389	*Alcohol dehydrogenase 7 (class IV), mu	1	1
			Hs.3185	*Lymphocyte antigen 6 complex, locus D;	0.92	1.28
45	103312	X82693				5.81
43	103478	Y07755	Hs.38991	S100 calcium-binding protein A2	1.05	
	103558	Z19574	Hs.2785	keratin 17	0.65	6.68
	103576	Z26317	Hs.2631	Desmoglein 2	0.79	1.73
	103587	Z29083 .	Hs.82128	5T4 Oncofetal antigen	1	3.93
	103594	Z31560	Hs.816	"SRY (sex determining region Y)-box 2, p	0.71	7.23
50	103768	AA089997		"ESTs, Highly similar to integral membra	0.99	1.8
50	104158	AA454908	Hs.8127	KIAA0144 gene product	0.96	1.29
					1.23	7.23
	104558	R56678	Hs.88959	Human DNA sequence from clone 967N21 on		
	104689	AA010665		ESTs	0.96	2.11
	104733	AA019498	Hs.23071	ESTs	1.18	1.88
55	104906	AA055809	Hs.26802	Protein kinase domains containing protei	1.11	3.15
	104978	AA088458	Hs.19322	ESTs; Weakly similar to !!!! ALU SUBFAMI	1.64	2.89
	105012	AA116036	Hs.9329 ·	"Homo sapiens mRNA for fls353, complete	1.19	3.91
	105175	AA186804	Hs.25740	ESTs; Weakly similar to unknown [S.cerev	0.9	4.63
			Hs.6682	ESTs	0.95	2.87
60 -	105263	AA227926		ESTs	1	1.13
OO .	105298	AA233459	Hs.26369		•	
	105312	AA233854	Hs.23348	S-phase kinase-associated protein 2 (p45	1.32	3.01
	105719	AA291644 .	Hs.36793	Hypothetical protein FLJ23188	1.28	2.31
	105743	AA293300	Hs.9598	ESTs	1	1
		AA411621	Hs.8895	ESTs; same as BFH6?	0.94	2.04
65	106231	AA429571	Hs.38002	KIAA1355 protein	1.04	1.5
	106540	AA454607	Hs.38114	Hypothetical protein FLJ 11100	1.26	2.26
	106575	AA456039	Hs.105421	ESTs	1	2
					0.87	1.32
	106632	AA459897	Hs.11950	GPI-anchored metastasis-associated prote		1.52
70	106727	AA465342	Hs.34045	Hypothetical protein FLJ20764	0.87	
70	106906	AA490237	Hs.222024	Transcription factor BMAL2 (cycle-like f	0.61	1.6
	107059	AA608545	Hs.23044	RAD51 (S. cerevislae) homolog (E coli Re	0.48	2.67
	107104	AA609786	Hs.15243	Nucleolar protein 1 (120kD)	1.01	1.44
	107151	AA621169	Hs.8687	ESTs; procollagen I-N proteinase	0.97	2.89
	107284	S74039	Hs.291904	Accessory proteins BAP31/BAP29	1.15	3.65
75	107901	AA026418	Hs.91539	ESTs	0.72	3.44
		AA028028		lg superfamily receptor LNIR precursor	1	2.48
	107922		Hs.61460		-	1
	107932	AA029317	Hs.18878	Hypothetical protein FLJ21620	1	
	108695	AA121315	Hs.70823	KIAA1077 protein	0.91	3.53
0.0	108857	AA133250	Hs.62180	ESTs	1	1
80	108860	AA133334	Hs.129911	ESTs	0.73	7.3
_	108990	AA152296	Hs.72045	ESTs	1	1
	109166	AA179845	Hs.73625	"RAB6 interacting, kinesin-like (rabkine	i	4.55
	109424	AA227919	Hs.85962	Hyaluronan synthase 3	i	1.28
				Live the field entries DKE7a762H1211	1.42	2
85	109665	F05012	Hs.27027	Hypothetical protein DKFZp762H1311		
\sim 1	109970	H09281	Hs.13234	ESTs	1.13	2.16
05						

	w	O 02/086	443			
	110015	H10998	Hs.7164	A disintegrin and metalloproteinase doma	0.84	1.95
	110156	H18957	Hs.4213	ESTs	0.94	1.41
	110561	H59617	Hs.5199	HSPC150 protein similar to ubiquitin-con	0.91	3.18
5	111223	N68921	Hs.34806	ESTs; Weakly similar to neogenin (H.sapi	0.91 1	3.13 1.25
)	111345 111876	N89820 R38239	Hs.14559 Hs.293246	Hypothetical protein FLJ10540 *ESTs, Weakly similar to putative p150 [0.83	1.27
	111902	R39191	Hs.109445	KIAA1020 protein	0.91	0.91
	112244	R51309	Hs.70823	KIAA1077 protein	0.77	3.01
10	112973	T17271		*cDNA FLJ13308 fis, clone OVARC1001436,	1	1
10	112989	T23482 T25867	Hs.89981 Hs.7549	"Diacylglycerol kinase, zeta (104kD)" ESTs	0.55 0.87	1.03 2
	113047 113095	T40920	Hs.126733	ESTS	1	ī
	113531	T90345	Hs.16740	Hypothetical protein FLJ11036	0.42	1.44
	113970	W86748	Hs.8109	ESTs	1.17	1.73
15	114346	Z41450	Hs.130489	"ATPase, aminophospholipid transporter-I	0.86 0.8	0.82 1.88
	114407 114471	AA010188 AA028074	Hs.103305 Hs.104613	ESTs RP42 homolog	1.06	1.34
	114509	AA043551	Hs.101799	KIAA1350 protein	1.82	2.32
	115060	AA253214	Hs.198249	*Gap junction protein, beta 5 (connexin	0.79	1.49
20	115091	AA255900	Hs.184523	KIAA0965 protein	0.72	1.92 1.97
	115123	AA256642 AA279943	Hs.236894 Hs.122579	"ESTs, High sim to LRP1_hu low density I ESTs	0.59 1	1.25
	115291 115506	AA219943 AA292537	Hs.45207	Hypothetical protein KIAA1335	1.15	1.48
	115522	AA331393	Hs.47378	ESTs	0.5	3.29
25	115536	AA347193	Hs.62180	ESTs	1	1
	115697	AA411502	Hs.63325	Homo sapiens type II membrane serine pro ESTs	1	6.53 6.98
	115909 115978	AA436666 AA447522	Hs.59761 Hs.69517	Differentially expressed in Fanconi anem	i	2.31
	116028	AA452112	Hs.42644	thioredoxin-like	0.99	1.68
30	116107	AA456968	Hs.92030	ESTs	1.14	1.8
	116134	AA460246	Hs.50441	CGI-04 protein	1.11 0.99	1.86 1.9
	116157 116158	AA461063 AA461187	Hs.44298 Hs.61762	Hypothetical protein Hypoxia-inducible protein 2	0.44	0.86
	116335	AA495830	Hs.87013	"Homo sapiens cDNA FLJ10238 fis, clone H	0.62	3.89
35	116483	C14092	Hs.76118	Ublquitin carboxyl-terminal esterase L1	1.04	2.36
	117320	N23239	Hs.211092	LUNX protein; PLUNC(palate lung & nasal	0.51	0.64 2.63
	117557	N33920	Hs.44532 Hs.112110	Diubiquitin PTD007 protein	1.11 0.98	2.03 1.79
	117693 117881	N40939 N50073	Hs.260622	Butyrate-induced transcript 1	1	1.43
40	118368	N64339	Hs.48956	ESTs	0.67	2.86
	118566	N68558	Hs.42824	Hypothetical protein FLJ10718	1.21	0.83
	118695	N71781	Hs.50081	KIAA1199 see CVA7.doc	0.88 1	1.63 1
	119780 119845	W72967 W79920	Hs.191381 Hs.58561	ESTs; Weakly similar to hypothetical pro G protein-coupled receptor 87	i	į
45	120102	W95428	Hs.132927	"ESTs, Moderately similar to p53 regulat	1	1
	120104	W95477	Hs.180479	ESTs	0.69	3.07
	120486	AA253400	Hs.137569	Tumor protein 63 kDa with strong homolog Achaete-scute complex (Drosophila) homol	1.08 1	12.05 1
	120859	AA350158 AA360240	Hs.1619 Hs.97019	EST	i	i
50	120948	AA397822	Hs.104650	Hypothetical protein FLJ 10292	1.04	2.15
	120983	AA398209	Hs.97587	EST	. 1	1
	121362	AA405500	Hs.97932	Chondromodulin I precursor CGI-09 protein	1	1 1.8
	121369 121791	AA405657 AA423978	Hs.128791 Hs.293317	"ESTs, Weakly similar to JM27 [H.sapiens	i	1
55	123005	AA479726	Hs.105577	ESTs	1	1
	123044	AA481549	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	0.95	1.88
	123160	AA488687	Hs.284235	ESTS	1.59 1.19	4.98 1.64
	123479 123571	AA599469 AA608956	Hs.135056 Hs.112619	clone RP5-850E9 on chromosome 20 "ESTs, Weakly similar to PQ0109 Purkinje	1.03	1.14
60	123829	AA620697	Hs.112208	XAGE-1 protein-	1.39	2.2
	124006	D60302	Hs.108977	ESTs	1	4.85
	124059	F13673	Hs.99769	ESTs	1.49 0.76	8.62 0.77
	124960 125218	T15386 W73561	Hs.194766 Hs.110024	Seizure related gene 6 (mouse)-like NADH:ubiquinone oxidoreductase MLRQ subu	1.33	1.77
65	125453	R06041	Hs.18048	"Melanoma antigen, family A, 10"	0.8	1.42
	125759	AA425587	Hs.82226	Glycoprotein (transmembrane) nmb	1.52	2.26
	125972	AA434562	Hs.35406	"ESTs, Highly similar to unnamed protein	1.05 1	2.48 1.95
	125994 126395	H55782 N70192	Hs.270799 Hs.278956	EST Hypothetical protein FLJ12929 .	i	1.35
70	126645	Al167942	Hs.61635	STEAP1 (Homo sapiens BAC clone RG041D11	i	2.23
	127221	Al354332	Hs.72365	ESTs	0.73	3.27
	127479	AA513722	Hs.179729	collagen; type X; alpha 1 (Schmid metaph	0.51	1.94 3.16
	128192	AI204246	Hs.10247	KIAA1085 protein activated leucocyte cell adhesion molecu	1.8 0.89	0.97
75	128610 128777	L38608 V46006	Hs.10526	Cysteine and glycine-rich protein 2	1	1
	128924	AA234962	Hs.26557	Plakophilin 3	1.3	2.97
	129041	H58873	Hs.169902	"Solute carrier family 2 (facilitated gl	0.84	2.04
	129099	H50398	Hs.108660	*ATP-binding cassette, sub-family C (CFT	0.87 1	1.04 1
80	129404 129466	AA172056 L42583	Hs.111128	ESTs *Genbank Homo sapiens keratin 6 isoform	0.72	12.67
	129605	S72493	Hs.115947	Keratin 16 (focal non-epidermolytic palm	0.92	1.5
	129628	U26727	Hs.1174	"Cyclin-dependent kinase inhibitor 2A (m	0.85	1.93
	130023	X13461 X14850	Hs.239600	Calmodulin-like 3 "H2A histone family, member X"	0.84 0.98	1.22 1.96
85	130080 130385	AA126474	Hs.147097 Hs.155223	stanniocalcin 2	1	1
-						

	W	O 02/0864	43			
	130410	V01514	Hs.155421	Alpha-fetoprotein	0.63	0.63
	130441	U35835	Hs.301387	"Human DNA-PK mRNA, partial cds"	1.15	3.65
	130482	L32866	Hs.1578	Bacutoviral IAP repeat-containing 5 (sur	1	1.88
~	130553	AA430032	Hs.252587	Pituitary tumor-transforming 1	0.92	1.98
5	130577	M35410	Hs.162	Insulin-like growth factor binding prote	1.17	4.7
	130627	L23808	Hs.1695	Matrix metalloproteinase 12 (macrophage	0.69	4.05
	130800	AA223386	Hs.19574	ESTs; Weakly similar to katanin p80 subu	1.13 0.8	2.41 0.89
	130939	AA598689	Hs.21400	ESTS INTERFERON-GAMMA INDUCED PROTEIN PRECURS		1.15
10	131046 131244	X02530 D38076	Hs.2248 Hs.24763		1.13	1.85
10	131877	J04088	Hs.156346	RAN binding protein 1 Topoisomerase (DNA) II alpha (170kD)	1	1
		AA461549	Hs.34780	"Doublecortex; lissencephaly, X-linked (0.81	0.62
	131927 131965	W90146	Hs.35962	ESTs	0.74	3.27
	131978	D80008	Hs.36232	KIAA0186 gene product	1	1
15	132354	L05187	Hs.211913	Small proline-rich prolein 1A	0.69	1.43
13	132543	AA417152	Hs.5101	ESTs; Highly similar to protein regulati	0.79	4.27
	132632	N59764	Hs.5398	guanine-monophosphate synthetase	1	1.08
	132653	U31201	Hs.54451	"laminin gamma2 chain gene (LAMC2), exon	i	1
	132659	Z75190	Hs.54481	*Low density lipoprotein receptor-relate	0.89	0.89
20	132710	W93726	Hs.55279	"Serine (or cysteine) proteinase Inhibit	0.64	4.41
	132758	W52432	Hs.56105	*ESTs, Weakly similar to WDNM RAT WDNM1	1.55	2.08
	132767	L05188	Hs.231622	Small proline-rich protein 2B	0.83	1.66
	132816	M74542 ·	Hs.575	Aldehyde dehydrogenase 3	0.55	0.55
	132990	AA458761	Hs.18387	transcription factor AP-2 alpha (activat	1	3.53
25	133070	U69611	Hs.64311	"A disintegrin and metalloproteinase dom	1.16	2
	133282	U52960	Hs.286145	*SRB7 (suppressor of RNA polymerase B, y	1	2.7
	133317	AA215299	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	0.95	1.42
	133370	AA156897	Hs.72157	Homo saplens mRNA; cDNA DKFZp564l1922	1.12	2.55
20	133391	X57579	Hs.727	H.sapiens activin beta-A subunit (exon 2	1.65	1.76
30	133832	H03387	Hs.241305	estrogen-responsive B box protein (EBBP)	1.02	1.39
	134032	Z81326	Hs.78589		1	1
	134168	AA398908	Hs.181634		0.95	1.53
	134218	AA227480	Hs.80205		1,36	2.48
25	134405	R67275	Hs.82772		0.76	2.86
35	134453	X70683	Hs.83484		1.89	3.78
	134470	X54942	Hs.83758		1.82	4.11
	134645	U87459	Hs.167379		0.82	0.83
	134781	M17183	Hs.89626	Parathyroid hormone-like hormone	1	1
40	135002	U19147	Hs.272484	Gantigen 6	0.92	1.25
40	100040	M97935	110 2256		2.92	8.5
	101201	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin;	1	1
	101664	M60752	Hs.121017		0.8	1.61
	102025	U03911	Hs.78934		1	1
45	102031	U04898	Hs.2156		i	i
43	102221 102270	U24576 U30255	Hs.75888		1.08	1.43
	102370	U37022	Hs.95577		0.88	1.32
	102333	U41668	Hs.77494		1.07	1.58
	103000	X51956	Hs.146580		0.91	1.49
50	103395	X94754	Hs.119503		0.89	1.32
••	105638	AA281599	Hs.20418		0.91	1.25
	105726	AA292328	Hs.9754		0.94	1.48
	114841	AA234722	Hs.55408		0.78	1.56
	115206	AA262491	Hs.186572		1	1
55	115906	AA436616	Hs.82302		0.74	2.52
	119132	R49046	Hs.107911	ATP-binding cassette; sub-family 8 (MDR/	1.1	1.51
	124163	H30539	Hs.189838		1	1
	126487	AA482505	Hs.184601	solute carrier family 7 (cationic amino	1.01	1.46
	127141	AA307960	Hs.75478	KIAA0956 protein	0.85	1.4
60	128034	AA905754	Hs.75103	tyrosine 3-monooxygenase/tryptophan 5-mo	1	1.18
	128609	AA234365	Hs.102456	survival of motor neuron protein interac	1_	1.5
	128895	R37753	Hs.106985	ESTs	1.7	2
	130199	Z48579	Hs.172028	a disintegrin and metalloprotease domain	1	1
CE	130524	U89995	Hs.159234	forkhead box E1	1	1
65	133000	U24152	Hs.62402	p21/Cdc42/Rac1-activated kinase 1 (yeast	1	1
	133658	M25756	Hs.75426	secretogranin II (chromogranin C)	1	1
	135047	AA460466	Hs.93597	ESTS	1	1
	100053	M27830	11. 00000		0.88	1.53
70	100114	D00596	Hs.82962		0.68	1.86
70	100128	D11094	Hs.61153		1.29	2.03
	100154	D14657	Hs.81892		0.71	4.26 1.56
	100161	D14694	Hs.77329		1.02	
	100168	D14874	Hs.394 .		0.46 1	1.17 1
75	100187	D17793 D21063	Hs.78183	aldo-keto reductase family 1; member C3 minichromosome maintenance deficient (S.	0.97	1.4
, ,	100188 100217	D26600	Hs.57101 Hs.89545		1.13	1.9
	100217	D28364	113.03343		1.11	1.53
	100287	D43950	Hs.1600	chaperonin containing TCP1; subunit 5 (e	1.13	2.09
	100297	D43930 D49489	Hs.182429		0.92	1.78
80	100237	D55716	Hs.77152	minichromosome maintenance deficient (S.	1.07	1.61
-	100355	D78129	1.0.17 102		0.96	1.87
	100364	D78586	Hs.154868	carbamoyl-phosphate synthetase 2; aspart	1.49	2.46
	100368	D79987	Hs.153479	extra spindle poles; S. cerevislae; homo	0.59	1.32
	100398	D84557	Hs.155462	minichromosome maintenance deficient (m)	1.08	1.9
85	100438	D87448	Hs.91417	topoisomerase (DNA) II binding protein	1	2,15

	W	O 02/0864	43			
	100455	D87953	Hs.75789	N-myc downstream regulated	0.91	1.48
	100491	HG1153-HT115	3	Nucleoside Diphosphate Kinase Nm23-H2s	0.99	1.41
	100518	HG174-HT174		Desmoplakin I	1.28	3.17
_	100528	HG1828-HT185		***Nexin, Glia-Derived***	0.68	1.9
5	100661	HG2874-HT301		Ribosomal Protein L39 Homolog	1.1	5.44
	100667	HG2981-HT312		Epican, Alt. Splice 11***	0.8	1.97
	100830	HG4074-HT434		Rad2	1.01 0.91	2.12 1.79
	101061	K03515	Hs.944	glucose phosphate isomerase splicing factor, arginine/serine-rich 3	1,23	1.75
10	101131 101162	L10838 L14595	Hs.167460 Hs.174203	solute carrier family 1 (glutamate/neutr	1.35	2.73
10	101181	L19686	Hs.73798	macrophage migration inhibitory factor (1.03	1.78
	101183	L19779	Hs.795	H2A histone family; member O	0.57	1.3
	101216	L25876	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	0.7	2.2
	101228	L27706	Hs.82916	chaperonin containing TCP1; subunit 6A (0.99	1.99
15	101233	L29008	Hs.878	sorbital dehydrogenase	0.82	2.11
	101247	L33801	Hs.78802	glycogen synthase kinase 3 beta	1.2	1.91
	101332	L47276		***Homo sapiens (cell line HL-6) alpha t	0.69	2.78
	101342	L76191	Hs.182018	interleukin-1 receptor-associated kinase	1.04	1.84
20	101396	M15796	Hs.78996	proliferating cell nuclear antigen	0.95	3.55
20	101423	M18391	Hs.89839	EphA1	1	1.5
	101445	M21259	Hs.1066	small nuclear ribonucleoprotein polypept	1.21	1.96
	101505	M27396	Hs.75692	asparagine synthetase	0.93	1.6
	101525	M29536	Hs.12163	eukaryotic translation initiation factor casein kinase 2; beta polypeptide	1.19 0.96	1.93 1.42
25	101535 101607	M30448 M38690	Hs.251669 Hs.1244	CD9 antigen (p24)	1.11	1.25
23	101624	M55998	115,1244	""Human alpha-1 collagen type I gene, 3	1.17	1.98
	101758	M77836	Hs.79217	pyrroline-5-carboxylate reductase 1	1.77	3.45
	101839	M93036	Hs.692	membrane component; chromosomal 4; surfa	0.71	1.45
	101853	M94362	Hs.76084	lamin B2	0.84	1.19
30	101977	S83364		""putative Rab5-interacting protein (cl	0.89	1.9
	101992	U01038	Hs.77597	polo (Drosophia)-like kinase	0.66	1.46
	102009	U02680	Hs.82643	protein tyrosine kinase 9	1.23	3.35
	102012	U03057	Hs.118400	singed (Drosophila)-like (sea urchin fas	0.85	1.88
25	102039	U05861	Hs.201967	aldo-keto reductase family 1; member C1	0.93	2.32
35	102123	U14518	Hs.1594	centromere protein A (17kD)	1	4.28
	102130	U15009	Hs.1575	small nuclear ribonucleoprotein D3 polyp	0.89	1.42 2.95
	102148	U16954	Hs.75823	ALL1-fused gene from chromosome 1q	0.8 1.01	1.34
	102210 102220	U23028 U24389	Hs.2437 Hs.65436	eukaryotic translation initiation factor lysyl oxidase-like 1	1.15	2.34
40	102220	U28386	Hs.159557	karyopherin alpha 2 (RAG cohort 1; impor	1.14	2.69
40	102330	U35451	Hs.77254	chromobox homolog 1 (Drosophila HP1 beta	1.05	1.7
	102423	U44754	Hs.179312	small nuclear RNA activating complex; po	1,14	2.99
	102455	U48705	Hs.75562	discoldin domain receptor family; member	1.05	2.01
	102499	U51478	Hs.76941	ATPase; Na+/K+ transporting; beta 3 poly	1.27	1.92
45	102522	U53347	Hs.183556	solute carrier family 1 (neutral amino a	0.84	1.31
	102590	U62136		""Homo sapiens enterocyte differentiati	1.11	1.6
	102676	U72514	Hs.12045	putative protein	1.04	2.17
	102687	U73379	Hs.93002	ubiquitin carrier protein E2-C	0.86	2.28
50	102704	U76638	Hs.54089	BRCA1 associated RING domain 1	1.12 0.9	1.63 1.39
50	102781	U83843	Un 61706	****Human HIV-1 Nef interacting protein (0.98	2.16
	102784 102827	U85658 U91327	Hs.61796 Hs.6456	transcription factor AP-2 gamma (activat chaperonin containing TCP1; subunit 2 (b	0.96	1.62
	102935	X13482	Hs.80506	small nuclear ribonucleoprotein polypept	1.21	4.2
	102972	X16662	Hs.87268	annexin A8	1,25	2.32
55	102983	X17620	Hs.118638	non-metastatic cells 1; protein (NM23A)	1.03	1.83
	103023	X53793	Hs.117950	multifunctional polypeptide similar to S	1.58	5.44
	103038	X54941	Hs.77550	CDC28 protein kinase 1	1.32	3.79
	103075	X59543	Hs.2934	ribonucleofide reductase M1 polypeptide	1.11	2.58
~	103168	X68314	Hs.2704	glutathione peroxidase 2 (gastrointestin	0.75	3.05
60	103185	X69910	Hs.74368	transmembrane protein (63kD); endoplasmi	1.01	1.97
	103212	X73874	Hs.2393	phosphorylase kinase; alpha 1 (muscle)	0.95	1.72 1.77
	103223	X74801	Hs.1708	chaperonin containing TCP1; subunit 3 (g	0.97 1	1.77
	103260 103262	X78416 X78565	Hs.3155 Hs.204133	casein; alpha hexabrachion (tenascin C; cytotactin)	1.23	3.09
65	103330	X85373	Hs.77496	small nuclear ribonucleoprotein polypept	1.12	2.25
05	103364	X90872	Hs.75854	SULT1C sulfotransferase	2.85	4.62
	103375	X91868	Hs.54416	sine oculis homeobox (Drosophila) homolo	1	2.48
	103391	X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glut	1	1.53
	103404	X95586	Hs.78596	proteasome (prosome; macropain) subunit;	0.92	1.53
70	103437	X98260	Hs.82254	M-phase phosphoprotein 11	0.92	1.54
	103448	X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	0.55	0.96
	103605	Z35402	Hs.194657	cadherin 1; E-cadherin (epithelial)	1.32	2.51
	103646	Z68228	Hs.2340	junction plakoglobin	0.88	1.28
75	103658	Z74615	Hs.172928	collagen; type I; alpha 1	1.06	2.98 4.66
, 5	103774 104261	AA092898 AF008442	Hs.9291B	ESTs; Weakly similar to R07G3.8 [C.elega RNA polymerase I subunit	1.88 0.87	2.17
	104261	C02193	Hs.5409 Hs.85222	ESTs; Weakly similar to R27090_2 [H.sapi	1.4	2.17
	104270	C16281	Hs.75478	KIAA0956 protein	1.15	1.68
	104434	L02870	Hs.1640	collagen; type VII; alpha 1 (epidermolys	1.04	1.49
80	104453	M19169	Hs.123114	cystatin SN	0.38	0.76
	104611	R98280	Hs.125845	ributose-5-phosphate-3-epimerase	1.08	2.25
	104758	AA024661	Hs.7010	ESTs; Weakly similar to ACYL-COA DEHYDRO	1.14	1.65
	105114	AA156532	Hs.11801	adenosine A2b receptor pseudogene	0.91	1.38
05	105132	AA159501	Hs.247280	HBV associated factor	1.08	1.7
85	105174	AA186613	Hs.34744	ESTs	0.95	2.05

	W	O 02/086	5443			
	105280	AA232215	Hs.14600	ESTs	1	1.4
	105344	AA235303	Hs.8645	ESTs	0.72	2.02
	105516	AA257971	Hs.21214	ESTs	1.35	3.56
5	105621	AA280865	Hs.6375	Homo sapiens mRNA; cDNA DKFZp564K0222 (f	1.23 0.98	1.82 1.28
5	105698 105705	AA287393 AA290767	Hs.15202 Hs.101282	ESTs; Weakly similar to oligodendrocyte- Homo saptens mRNA; cDNA DKFZp434B102 (fr	0.92	1.32
	105705	AA292098	Hs.22934	ESTs; Weakly similar to ZINC FINGER PROT	0.99	1.41
	105782	AA350215	Hs.21580	ESTs	1	1
	105799	AA372018	Hs.24743	ESTs	1.08	1.78
10	105807	AA393803	Hs.16869	ESTs; Moderately similar to COLLAGEN ALP	0.95	1.34
	105891	AA400768	Hs.26662	ESTs; Weakly similar to tumor necrosis f	0.87	2.25
	105936	AA404338		ESTs	1.14	1.46
	106069	AA417741	Hs.29899	ESTs; Weakly similar to ZINC FINGER PROT	1	1,44
15	106103	AA421104	Hs.12094	ESTS	1.04 1.23	1.44 2.11
15	106140	AA424524	Hs.14912	KIAA0286 protein	0.83	1.48
	106149 106154	AA424881 AA425304	Hs.256301 Hs.6994	ESTs ESTs	0.77	2.05
	106182	AA426609	Hs.10862	ESTs	0.74	2.23
	106220	AA428582	Hs.32196	ESTs; Moderately similar to metargidin p	0.97	1.99
20	106228	AA429290	Hs.17719	ESTs	0.99	1.54
_ •	106318	AA436570	Hs.9605	pre-mRNA cleavage factor lm (25kD)	0.95	2.09
	106341	AA441798	Hs.5243	ESTs; Moderately similar to pll.2 hypothe	0.98	2.66
	106432	AA448850	Hs.17138	ESTs	0.95	1.93
25	106474	AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	1,	1
25	106483	AA451676	Hs.30299	IGF-II mRNA-binding protein 2	1.4	2.29 1.82
	106599	AA457235	Hs.12842	ESTs; Moderately similar to non-function	1 1.49	2.78
	106611 106654	AA458904 AA460449	Hs.26267 Hs.3784	ESTs; Weakly similar to torsinA [H.sapie ESTs; Highly similar to phosphoserine am	1	1.4
	107076	AA609145	Hs.21143	ESTs; Weakly similar to fos39554_1 [H.sa	1.11	1.49
30	107115	AA610108	Hs.27693	ESTs; Highly similar to CGI-124 protein	1	1.03
50	107129	AA620553	Hs.4756	flap structure-specific endonuclease 1	1.13	3.63
	107159	AA621340	Hs.10600	ESTs; Weakly similar to ORF YKR081c [S.c	1.05	2.09
	107444	W28391	Hs.5181	proliferation-associated 2G4; 38kD	1.18	1.9
~~	107481	W58247	Hs.27437	Homo sapiens kinesin superfamily motor K	0.99	2.74
35	107516	X56597	Hs.99853	fibrillarin	0.94	1.77
	107529	Y12065	Hs.5092	nucleolar protein (KKE/D repeat)	1.05	2.29
	107531	Y13936	Hs.17883	protein phosphatase 1G (formerly 2C); ma	1.06 1.03	1.62 1.4
	107801	AA019433	Hs.173100	ESTs	0.95	1.46
40	107957	AA031948	Hs.57548 Hs.1526	ESTs ATPase; Ca++ transporting; cardiac muscl	0.59	1.35
70	108565 108780	AA085342 AA128561	Hs.117938	collagen; type XVII; alpha 1	1	7.63
	108828	AA131584	Hs.71435	DKFZP564O0463 protein	1.33	2.56
	109060	AA160879	Hs.241551	chloride channel; calcium activated; fam	0.67	1.42
	109112	AA169379	Hs.72865	ESTs	1.03	2.31
45	109344	AA213696	Hs.86559	poly(A)-binding protein-like 1	0.97	1.55
	109412	AA227145	Hs.209473	ESTs; Weakly similar to REGULATOR OF MIT	0.76	1.87
	110780	N23174	Hs.22891	solute carrier family 7 (cationic amino	0.9	0.95
	110958	N50550	Hs.24587	signal transduction protein (SH3 contain	1.17	2.26
50	111018	N54067	Hs.3628	mitogen-activated protein kinase kinase	1.21	1.85
50	111337	N79612	Hs.16607	ESTs; Highly similar to Myosin heavy cha	1	1.45 1
	112305 112401	R54822	Hs.26244 Hs.237536	ESTs ESTs; Weakly similar to F25B5.3 [C.elega	1.24	1.64
	112853	R61279 T02843	Hs.4351	EST	1.56	1.96
	112869	T03313	Hs.4747	dyskeralosis congenita 1; dyskertn	1.03	1.57
55	112992	T23513	Hs.7147	ESTs	1	1
	113048	T25895	Hs.184008	ESTs; Weakly similar to RNA-binding prot	1.37	2.26
	113063	T32438	Hs.5027	ESTs	1	· 1_
	113179	T55182	Hs.152571	ESTs; Highly similar to IGF-II mRNA-bind	1.33	2.7
60	113573	T91166	Hs.15990	ESTs	0.76	1.47
60	113811	W44928	Hs.4878	ESTs	0.79 0.9	1.51 1.34
	114086 114587	Z38266	Hs.12770 Hs.180320	Homo sapiens PAC clone DJ0777O23 from 7p ESTs; Weakly similar to GOLGI 4-TRANSMEM	1.02	1.76
	114846	AA070827 AA234929	Hs.44343	ESTs	1.32	2.36
	114964	AA243873	Hs.82184	ring finger protein 3	1.1	1.84
65	115047	AA252627	Hs.22554	homeo box B5	1.01	2.36 -
••	115166	AA258409	Hs.198907	myelin protein zero-like 1	1.05	2.31
	115167	AA258421	Hs.43728	hypothetical protein	1.52	2.52
	115239	AA278650	Hs.73291	ESTs; Weakly similar to similar to the b	0.7	2.57
70	115278	AA279757	Hs.67466	ESTs; Weakly similar to BACN32G11.d [D.m	1.14	2.12
70	115652	AA405098	Hs.38178	ESTs	0.82	4.67
	115875	AA433943	Hs.43946	ESTs; Weakly similar to Weak similarity	1.2	1.98
	116004	AA449122	Hs.76086	ESTs; Highly similar to small zinc linge	0.96 0.97	1.31 1.55
	116121	AA459254	Hs.48855	ESTs ESTs; Highly similar to putative ribonuc	1.08	2.73
75	116129 116190	AA459956 AA464963	Hs.49163 Hs.67776	ESTs Rightly stimilar to putative ribolitic	0.8	1.57
	116312	AA490494	Hs.65403	ESTs	1.37	2.65
	116732	F13779	Hs.165909	ESTs	0.92	1.8
	117602	N35020	Hs.44685	ESTs; Weakly similar to GOLIATH PROTEIN	1.15	1.84
	117950	N51394	Hs.75478	KIAA0956 protein	1.04	2.36
80	117992	N52000	Hs.172089	Homo sapiens mRNA; cDNA DKFZp586B0222 (f	0.62	1.29
	118785	N75386	Hs.111867	GLI-Kruppel family member GLI2	1	1.
	119717	W69134	Hs.57987	ESTs	1	1.4
	119814	W74069	Hs.58350	ESTs	0.78	1.77
85	120128	Z38499	Hs.91448	MKP-1 like protein tyrosine phosphatase	0.86 0.83	1.46 2.01
UJ	120242	Z98443	Hs.86366	ESTs	U.UU	201

10483 AA259894 Hs.1578 1206 1207		w	O 02/086	443			
121056 A-3988061 Hs.97387 ESTe: Weakly similar to Similar to Sympto					apoptosis inhibitor 4 (survivin)	0.74	
121376 AA41448 1.2620985 EST-1 Modernally similar to SODIUM- AND							
121457 AAA11448							
127189	5						
121781 AA422120 https://doi.org/10.1001/j.mplenty-late-jack-jack-jack-jack-jack-jack-jack-jack	,						
12395 AAA43317						1.07	
122338 AAA43371 M. 18.98995 EST							
122354 AAA3772 th. 186825 ESTs Weakly similar to MRU [Flasphens] 2.28 2.	10						
12299 AA460156 Hs.95955 ESTs Weathy similar to MRJ [Flasphens] 2.28 2.93 12398 AA60156 Hs.195955 ESTs	10						
15 12398 AA20285 Ha.105314 ESTs 1 1.93 1.2373 AA209471 Ha.170313 ESTs 1 1.150 1.2375 AA209471 Ha.170313 ESTs 1 1.150 1.2375 AA209471 Ha.170313 ESTs 1 1.150 1.2457 N22006 Ha.959349 1.450 1.2457 N22006 Ha.959349 1.24575 N22006 Ha.959349 1.25756 V.25498 Ha.161634 National Processing Procesing Processing Processing Processing Processing Processing Proces							
15 12318 AAGRSS1 1 ks. 170313 ESTs 1 1.15 12377 AAG99471 ks. 17481 124600 D57317 ks. 17481 schwaled RNA polymerase II transcription 1 1.15 12467 R24006 ks. 189348 schwaled RNA polymerase II transcription 1 1.15 127678 ASS2377 ks. 189348 schwaled RNA polymerase II transcription 1 1.17 127678 ASS2377 ks. 1841634 from the transcription 1 1.19 1276 ASS2377 ks. 1841634 from the transcription 1 1.19 1277 ASS2378 ASS2377 ks. 1841634 from the transcription from the transcription 1 1.15 128024 AASS2349 ks. 1841635 from the transcription from the transcription 1 1.15 128024 AASS2349 ks. 1841635 from the transcription from the transcription 1 1.15 128024 AASS2349 ks. 1841635 from the transcription from the transcr							
126973 AA699471 Hs.18272 ESTs 124397 AVG006 Hs.93934 Hs.19394 Hs.93934 Ps.19395 Ps.1	15						
12000	13						
124377 M38000 Hs. 193948 disal-less homes box 5 0.67 1.1 1.19 1.7 1.7 1.25 1.2							
129758 W25498 Hs. 91595 Hs. 91595 Hs. 91595 Hs. 92758		124367	N24006				
128767 A328772 Hs. 82128 574 oncofetal torphoblast glycoprotein 1.65 6.76	20						
129852 109299	20						
125924 A356849 hb.82/19 syndecan 1 1.22 225							2.26
12914 N29455 N52741 N78770 N5274315 Sestinglaint (IPF) (IPH) 1.93 3.55		125924		Hs.82109	syndecan 1		
12614 N78770 hs.223439 ESTs 1.21 1.66	25						
126737 AAAB1322 Inc. 2741 ESTa 1 1 1 1 1 1 1 1 1	23						
126743							
127432		126743					
128218 H02682 Hs.99189 ESTs, Moderalely similar to recombination 1.24 2.09	20					2,53	
128527 M31923	3 0 .					1.37	
12858 X66673 Hs. 247588 aderylela kinasa 3 1.23 3.48							
128628		128568					
128691 W277939	25						
128714	33						
128733 AA228993 Hs.104589 ESTs small nuclear ribonucleoprolein polypept 0.9 1.34 1.94 1.2952 AA495297 Hs.182740 Hs.108233 Hs.10823 1.29655 Ms8458 Hs.108706 ESTs (Moderalely) elimitar to HN1 (M.muscu 0.95 1.61 1.62 1.2950 1.29655 Ms8458 Hs.118778 ESTs (Moderalely) elimitar to HN1 (M.muscu 0.95 1.61 1.62 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2950 1.2050 1.2950 1.2050 1							
129052							
129095 L12350	40						
129241	40						
125655 M88458 Hs.118778 KDEL (Lys-Asp-Glu-Leu) endoplasmic retic 1.28 2.63							
\$\frac{129720}{129850} \text{AA776582} \text{Hs.12152} \text{ESTs} \text{Moderately similar to SIGNAL RECOG} \text{1.09} \text{1.79} \text{1.49} \text{2.00} \qq\qq \qq \qq \qq\qq\qq\qq\qq\qq\qq\qq\qq\qq\qq\qq\q							
129850 N20593	15						
129996	43						
130069							
130541 X05608					collagen; type V; alpha 1		
130599	50						
130867 J04093 Hs.2056 Hs.22142 ESTs; Weakly sirullar to NADH-CYTOCHROME 0.93 1.05	30						
131008							
131083 U66661				Hs.22142	ESTs; Weakly similar to NADH-CYTOCHROME		
131091 T35341 Hs.22880 ES1s; Highty similar to dipeptudy pept 1.25 1.95	55					and the second second	
131144 C14412 Hs.23528 ESTs; Highly similar to HSPC038 protein 1.43 2.06 131148 C00038 Hs.23579 ESTs 0.88 3.38 131164 Y00503 Hs.182265 keratin 19 1.19 2.77 County 1.19 2.77 2.19 2.	25						
131148	•						
131185 M25753 Hs.23950 Cyclin B1 O.86 O		131148		Hs.23579	ESTs		
131219 C00476	60						
131454 AA455896 Hs.2699 glypican 1 0.99 1.54 131687 L11066 Hs.3069 heat shock 70kD protein 9B (mortalin-2) 1 1.18 131689 AA599653 Hs.30696 transcription factor-like 5 (basic helix 1 1.95 131692 D50914 Hs.30736 kIAA0124 protein 1.55 2.39 131786 AA135554 Hs.2125 ESTs 1 1.33 131843 AA195893 Hs.184062 ESTs; Moderately similar to putative Rab 0.83 1.63 131860 U02082 Hs.334 Oncogene TIM 1.08 2.2 131884 H90124 Hs.3463 ribosomal protein S23 1.23 1.24 131933 AA481723 Hs.3436 deleted in oral cancer (mouse; homolog) 0.91 1.18 131945 M87339 Hs.35120 replication factor C (activator 1) 4 (37 1 2.8 131958 AA093998 Hs.3566 ESTs; Highly similar to phosphorylation 0.87 1.36 131964 W42508 Hs.3593 ESTs 1 2.25 132001 J00277 Hs.37003 v-Ha-ras Harvey rat sarcoma viral oncoge 1.12 1.43 132040 AA146843 Hs.172894 BH3 Interacting domain death agonist 1 1.55 132040 AA146843 Hs.172894 BH3 Interacting domain death agonist 1 1.55 132112 AA150661 Hs.4098 ESTs 1 1 1.05 132112 AA450661 Hs.4098 ESTs 1 1 1.05 132120 AA469917 Hs.250705 ESTs 1.06 2.46 132180 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA235448 Hs.46677 ESTs 0.8 1.26 133618 AA253330 Hs.5344 adapto-related protein complex 1; gamma 0.5	OU						
131687 L11066 Hs.3069 heat shock 70kD protein 9B (mortalin-2) 1 1.18 131689 AA599653 Hs.30696 transcription factor-like 5 (basic helix 1 1.95 131692 D50914 Hs.30736 KIAA0124 protein 1.55 2.39 131786 AA135554 Hs.32125 ESTs 1 1.33 131843 AA195893 Hs.184062 ESTs; Moderately similar to putative Rab 0.83 1.63 131860 U02082 Hs.334 Oncogene TIM 1.08 2.2 131884 H90124 Hs.3463 riboscomal protein S23 1.23 1.24 131933 AA481723 Hs.3436 deleted in oral cancer (mouse; homolog) 0.91 1.18 131945 M87339 Hs.35120 replication factor C (activator 1) 4 (37 1 2.8 131958 AA093998 Hs.3566 ESTs; Highly similar to phosphorylation 0.87 1.36 131964 W42508 Hs.3593 ESTs 1 2.25 132001 J00277 Hs.37003 v-Ha-ras Harvey rat sarcoma viral oncoge 1.12 1.43 132065 D82226 Hs.211594 proteasome (prosome; macropain) 26S subu 0.89 1.27 132109 AA599801 Hs.4098 ESTs 1 1 1.55 132112 AA150661 Hs.40154 jumonji (mouse) homolog 0.99 1.44 132123 AA447123 Hs.250705 ESTs 1.06 2.46 132180 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA2254448 Hs.46677 ESTs 0.8 1.26 132618 AA253330 Hs.5344 adapto-related protein complex 1; gamma 0.5	,						1.54
131692 D50914 Hs.30736 KIAA0124 protein 1.55 2.39			L11066	Hs.3069		•	
131786 AA135554 Hs.32125 ESTs 1 1.33 131843 AA195993 Hs.184062 ESTs; Moderately similar to putative Rab 0.83 1.63 131860 U02082 Hs.334 Oncogene TIM 1.08 2.2 131894 H90124 Hs.3463 ribosomal protein S23 1.23 1.24 131903 AA481723 Hs.3436 deleted in oral cancer (mouse; homolog) 0.91 1.18 131945 M87339 Hs.35120 replication factor C (activator 1) 4 (37 1 2.8 131958 AA093998 Hs.3566 ESTs; Highly similar to phosphorylation 0.67 1.36 131964 W42508 Hs.3593 ESTs 1 1.25 132001 J00277 Hs.37003 v-Ha-ras Harvey rat sarcoma viral oncoge 1.12 1.43 132040 AA146843 Hs.172894 BH3 Interacting domain death agonist 1 1.55 132040 AA599801 Hs.40098 ESTs 1 1.55 132112 AA150661 Hs.40098 ESTs 1 1.05 132112 AA150661 Hs.40154 jumonji (mouse) homolog 0.99 1.44 132123 AA447123 Hs.250705 ESTs 1.06 2.46 132160 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA235448 Hs.46677 ESTs 0.8 1.26 132618 AA253330 Hs.5344 adapto-related protein complex 1; gamma 0.5 1.49	65					-	
131843	03						
131860 U02082 Hs.334 Oncogene TIM 1.08 2.2							1.63
70 131903 AA481723 Hs.3436 deleted In oral cancer (mouse; homolog) 0.91 1.18 131945 M87339 Hs.35120 replication factor C (activator 1) 4 (37 1 2.8 131958 AA033998 Hs.356120 FSTs; Highly similar to phosphorylation 0.87 1.36 131964 W42508 Hs.3593 ESTs 1 1 1.25 132001 J00277 Hs.37003 v-Ha-ras Harvey rat sarcoma viral oncoge 1.12 1.43 132065 D82226 Hs.211594 proteasome (prosome; macropain) 26S subu 0.89 1.27 132109 AA599801 Hs.40098 ESTs 1 1.05 132112 AA150661 Hs.40154 jumonji (mouse) homolog 0.99 1.44 132123 AA447123 Hs.250705 ESTs 1.06 2.46 132160 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 1.26 132618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49	1		U02082				
131945 M87339 Hs.35120 replication factor C (activator 1) 4 (37 1 2.8 131958 AA033998 Hs.3566 ESTs; Highly similar to phosphorylation 0.87 1.36 1.394 M42508 Hs.3593 ESTs 1 1.25 1.25 132001 J00277 Hs.37003 V-Ha-ras Harvey rat sarcoma viral oncoge 1.12 1.43 1.32065 D82226 Hs.211594 proteasome (prosome; macropain) 26S subu 0.89 1.27 132109 AA599801 Hs.40098 ESTs 1 1.05 132112 AA150661 Hs.40154 jumonji (mouse) homolog 0.99 1.44 132123 AA447123 Hs.250705 ESTs 1.06 2.46 132160 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 1.26 132618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49	70				ribosomal protein S23		
131958	70						
131964 W42508 Hs.3593 ESTs 1 1.25						0.87	
75 132040 AA146843 Hs.172894 Hs.211594 proteasome (prosome; macropain) 26S subu 0.89 1.27 132109 AA599801 Hs.40098 ESTs 1 0.09 1.44 132112 AA150661 Hs.40154 jumonji (mouse) homolog 0.99 1.44 132112 AA447123 Hs.250705 ESTs 1.06 2.46 132160 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA235448 Hs.46677 ESTs 0.8 1.26 132618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49		131964	W42508	Hs.3593	ESTs		
132065 D82226 Hs.211594 proteasome (prosome; macropain) 26S subu 0.89 1.27	75						
132109 AA599801 Hs.40098 ESTs 1 1.05 132112 AA150661 Hs.40154 jumonji (mouse) homolog 0.99 1.44 132123 AA447123 Hs.250705 ESTs 1.06 2.46 132162 H89551 Hs.41241 ESTs 1.08 2.46 132180 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA235448 Hs.46677 ESTs 0.8 1.26 133618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49	13						
132112 AA150661 Hs.40154 jumonji (mouse) homolog 0.99 1.44 132123 AA447123 Hs.250705 ESTs 1.06 2.46 132162 H89551 Hs.41241 ESTs 1.08 2.46 132180 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA235448 Hs.46677 ESTs 0.8 1.26 133618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49	,						1.05
132123 AA447123 Hs.250705 ESTs 1.06 2.46 132162 H89551 Hs.41241 ESTs 1.08 2.46 132180 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA235448 Hs.46677 ESTs 0.8 1.26 133618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49		132112	AA150661	Hs.40154	jumonji (mouse) homolog		1.44
132180 AA405569 Hs.418 fibroblast activation protein; alpha; se 1.02 4.56 132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA235448 Hs.46677 ESTs 0.8 1.26 137618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49	9Λ	132123					
132309 AA460917 Hs.2780 jun D proto-oncogene 1.16 1.8 132371 AA235448 Hs.46677 ESTs 0.8 1.26 132618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49	οU						
132371 AA235448 Hs.46677 ESTs 0.8 1.26 132618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49							1.8
132618 AA253330 Hs.5344 adaptor-related protein complex 1; gamma 0.5 1.49		132371	AA235448	Hs.46677	ESTs	0.8	
132130 Ubdu HS.211378 MAD (mothers against decapentaplegic; Lit 1.21	95	132618					
	0.5	132/36	000013	пз.2115/8	MAD (morrers against decaperrapiegic; Dr	1,41	1.01

	W	O 02/0864	143				PCT/US02/12476
	132771	AA488432	Hs.56407	phosphoserine phosphatase	1	1.3	
	132833	U78525	Hs,57783	eukaryotic translation initiation factor	0.91	1.43	
	132922		Hs.6066	KIAA1112 protein	1.16	1.53	
	132959		Hs.61472	ESTs; Wealdy similar to unknown [S.cerev	1.02	1.88	
5	132994	AA505133	Hs.7594	solute carrier family 2 (facilitated glu	0.72	2.97	
•	133005	C21400	Hs.103329	KIAA0970 protein	0.88	1.34	
	133065	X62535	Hs.172690	diacytgtycerol kinase; alpha (80kD)	0.93	1.23	
	133083	N70633	Hs.6456	chaperonin containing TCP1; subunit 2 (b	1.14	1.76	
	133086	L17131	Hs.139800	high-mobility group (nonhistone chromoso	0.97	1.43	
10	133134	T89703	Hs.65648	RNA binding motif protein 8	1.1	1.8	
	133195		Hs.181409	KIAA1007 protein	2.29	2.69 '	
	133313		Hs.70704	ESTs	1.07	1.68	
		T62039	Hs.158675	ribosomal protein L14	0.85	1.18	
	133438	D13370	Hs.73722	APEX nuclease (multifunctional DNA repai	0.91	1.45	
15	133445	T99303	Hs.73797	guanine nucleotide binding protein (G pr	0.94	1.68	
		X52426	Hs.74070	keratin 13	0.85	1.14	
		L40397	Hs.74137	transmembrane trafficking protein	1,1	1.69	
	133504	W95070	Hs.74316	desmoplakin (DPI; DPII)	0.7	6.21	
		X52947	Hs.74471	gap junction protein; alpha 1; 43kD (con	0.95	1.3	
20	133540	D78151	Hs.74619	proteasome (prosome; macropain) 26S subu	0.91	1.25	
		L07758	Hs.172589	nuclear phosphoprotein similar to S. car	0.84	1.29	
	133627	U09587	Hs.75280	glycyl-tRNA synthetase	1.09	1.99	
	133671	T25747	Hs.75471	zinc finger protein 146	1.02	1.5	
	133859	U86782	Hs.178761	26S proteasome-associated pad1 homolog	1.11	3.33	
25	133865		Hs.170290	discs; large (Drosophila) homolog 5	1.84	6.7	
		W84712	Hs.7753	calumenin	1.15	1.86	
		L34587	Hs.184693	transcription elongation factor B (SIII)	1.3	1.91	
		U47621	Hs.207251	nucleolar autoantigen (55kD) similar to	1.3	1.99	
		L07540	Hs.171075	replication factor C (activator 1) 5 (36	0.72	1.65	
30		U41060	Hs.79136	LIV-1 protein; estrogen regulated	1.04	1.62	•
		U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro	1	1.55	
		U97188	Hs.79440	IGF-II mRNA-binding protein 3	0.82	1.95	
		F09570	Hs.7980	ESTs	0.98	1.48	•
		X54199	Hs.82285	phosphoribosylglycinamide formyltransfer	1	2.8	
35		U25165	Hs.82712	fragile X mental retardation; autosomal	1.26	2	
	134457		Hs.174044	dishevelled 3 (homologous to Drosophila	1	1.47	
		X17567	Hs.83753	small nuclear ribonucleoprotein polypept	0.94	1.57	
	134498	M63180	Hs.84131	threonyl-tRNA synthetase	1.2	2.64	
		W84870	Hs.211568	eukaryotic translation initiation factor	0.84	1.36	
40		M63488	Hs.84318	replication protein A1 (70kD)	1.7	2.93	
	134548	U41515	Hs.85215	Deleted in split-hand/split-foot 1 regio	1.46	2.73	
	134599	X99226	Hs.86297	Fanconi anemia; complementation group A	1.36	2.22	
		R73567	Hs.8850	a disintegrin and metalloproteinase doma	0.77	1.64	
	134693	N70361	Hs.8854	ESTs	1.09	1.82	
45	134B06	Z49099	Hs.89718	spermine synthase	0.98	1.35	
	134821	Z34974	Hs.198382	płakophilin 1 (ectodermal dysplasia/skin	0.99	1.4	
	134864	Y08999	Hs.90370	actin related protein 2/3 complex; subun	0.95	1.42	
		U29615	Hs.91093	chitinase 1 (chitotriosidase)	1.16	1.29	
		L10678	Hs.91747	profilin 2	0.95	1.76	
50	134993	AA282343	Hs.9242	purine-rich element binding protein B	0.98	1.73	
	135051	C15324	Hs.93668	ESTs	1.35	2.11	
	135158	U51711		Human desmocollin-2 mRNA; 3' UTR	0.86	1.16	
							the section which the

Table 1B shows the accession numbers for those pkeys in Table 1A lacking unigenelD's. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the Accession column.

CAT number:	Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
AUG551011.	CENTRALLY DESCRIPTION HOLLINGIS
	CAT number:

	Pkey	CAT	Accessions
65	100661 100667	23182_1 26401_3	BE623001 L05096 AA383604 AW966416 N53295 AA460213 AW571519 AA603655 L05424 X56794 S66400 X55150 W60071 AW351820 X55938 M83326 BE005289 BE070059 M83324 BE005248 BE069717 BE181648 BE069700 AW606203 BE069721 AW382138 AW803776 BE463954 BE005334 BE005274 T27386 AA932714 AA972695 AW377728 A1632506 T29066 A1783934 AW377727 BE163715 AL047291 AA279047 AA523003 BE008048 BE440141 W23614 BE090519 BE092193 N29181 N20358 N44153
70			BE546944 T69231 AW377441 AA907406 H50799 AW051416 AI420712 BE620922 AI279161 AA992549 W47198 BE005241 AI342696 H50700 AI969974 AI863855 AA374490 AW130675 AI950633 AA146687 H99482 X55150 BE005414 BE005339 N28294 AI673068 AI887690 AW804171 AI675961 AW804172 AA778841 AL048050 AI127757 AI095568 AW204965 AW468978 W31898 AI052595 AI278771 BE464018 AI081503 AI824196 AA513211 AA411062 AW084376 N48752 AA703209 N35580 AW059918 AA054563 AI280942 T27619 BE621435 N66010 AW589527 AI160414 AA283090 AA962536 H82726 W52115 W45432 W60433 AA577548 AA146714 BE150994 AA054615 AW796025 AW382768 BE565671 C00444 AA054555
75	100668	26401_3	AW006203 BE069721 AW382138 AW803776 BE463954 BE005234 BE005289 BE070059 M83324 BE005248 BE069717 BE181648 BE069700 AW606203 BE069721 AW382138 AW803776 BE463954 BE005334 BE005274 T27386 AA932714 AA972695 AW377728 AI632506 T29066 AI783934 AW377727 BE163715 AL047291 AA279047 AA523003 BE008048 BE440141 W23614 BE090519 BE092193 N29181 N20358 N44153 BE546944 T69231 AW377441 AA907406 H50799 AW051416 AI420712 BE620922 AI279161 AA992549 W47198 BE005241 AI342696 H50700
80			A1969974 A1863855 AA374490 AW130675 A1950633 AA146687 H99482 X55150 BE005414 BE005339 N28294 A1673068 A1887890 AW804171 A1675961 AW804172 AA778841 AL048050 A1127757 A1095568 AW204985 AW468978 W31898 A1052595 A1278771 BE464018 A1081503 A1824196 AA513211 AA411062 AW084376 N48752 AA703209 N35580 AW059918 AA054563 A1280942 T27619 BE621435 N66010 AW589527 A1160414 AA283090 AA962536 H82726 W52115 W45432 W60433 AA577548 AA146714 BE150994 AA054615 AW796025 AW382768 BE565671 C00444 AA054555
85	101332	25130_1	J04088 NM_001067 AF071747 AJ011741 N85424 AL042407 AA218572 BE296748 BE083981 AL040877 AW499918 AW675045 H17813 BE081283 AA670403 AW504327 BE094229 AA104024 AI471482 AI970337 AA737616 AI827444 AW003286 AI742333 AI344044 AI765634

WO 02/086443 PCT/US02/12476
AIQ4RR38 AW235336 AW172827 AA095289 RF045383 AI734240 W16699 AI660329 AI289433 AA933778 AW469242 AA468838 AA806983

			A1948838 AW235336 AW172827 AA095289 BED46383 A1734240 W16699 A1660329 A1289433 AA933778 AW469242 AA468838 AA806983 AA625873 W78031 BE206307 AA550803 A1743147 A1990075 AA948274 AA129533 A1635399 AA605313 A1624669 AW594319 A1221834 A1337434 AA307706 BE550282 A1760467 A1630636 A1221521 AW674314 AW078889 A1933732 A1686969 A1186928 AW074595 A1127486 AL079644
5			AI910815 H17814 AA310903 AW137854 T19279 AA026682 AA306035 AW383390 AW383389 AW383422 AW383427 AW383395 H09977 AA306247 AA325501 AW403639 F05421 AA224473 AA305321 H93904 AA089612 AW391543 AW402915 AW173382 AW402701 AW403113 R94438 N73156 H93466 AA090928 AA095051 T29025 AW951071 L47277 L47276 AI375913 BE384156 W24652 AA746288 AA568223 BE090591 H390331 N57027 AA504348 AA327653 AW959913 N53767 AA843715 A453437 AW263710 AI076594 AA5683483 AW873194 AW575166 A1128799 AI803319 AL042776 AW074313 AI887722 AI032284 AA447521 AI123885 N29334 AI354911 AW090687 AA236763 AA435535 AA235910
10			AA047124 AA236734 AW514610 H93467 AA962007 Al446783 AA127259 Al613495 Al686720 Al587374 AA936731 AA702453 Al859757 AA216786 Al251819 Al469227 AA805022 Al092324 N71868 AA968782 AA236919 AA809450 AA227220 AA765284 Al192007 AA768810 AA805794 AA729280 AA806238 AW768817 N71879 Al050686 AA505822 AA668974 Al688160 BE045915 AW466315 AA731314 AA649568 AA834316 AW591901 AW063876 AW294770 Al300266 Al336094 Al580380 AA721755 H09978 D20305 D29155 AW821790 BE150864 F01675
1.5	100780	458_127	A1457474 AW466316 AA550969 AA630788 BE561958 BE561728 BE397612 BE514391 BE269037 BE514207 BE562381 BE514256 BE514403 BE514250 BE397832 BE269598 BE559865
15	100830	4002_1	BE396881 BE560031 BE514199 BE560037 BE560454 AC004770 W05005 AA356068 AA094281 H29358 T56781 AW875313 L37374 BE312466 BE311755 BE207106 BE293320 BE018115 AW239090 BE548830 AW247547 AA776062 BE397382 AA486713 T10111 T09340 AW498981 BE547280 AA356003 AW581520 AW875331 AA580720 AW875336 BE276873 BE408229 AW188148 BE255166 BE253761 AW793727 AW373141 AW581548 AA471223 AA305950 BE263976 AA626820 BE257409 AW360952 AA099055 C00312 BE312741 BE407213 AA209352 AW298199 AW248553 AW297794 AW731722 BE300586 AW731972
20			AW615446 BE301599 AW615520 AA486714 AW440257 AA196516 AA564630 AA618079 AW192592 AW474985 AA604580 Al627461 AA765440 Al680394 AL135548 Al683224 Al581126 AW245096 AW194154 H29274 N70363 AA629758 AA580602 AA862006 Al863841 Al097667 Al928583 Al358774 BE243487 AA620553 AA653297 AA292690 T10110 Z38906 AA908544 AA340930 Al185438 T03328 T28844 Al687010 Al864965 Al872575 BE388740 T56780 AW373138 BE258717 AA699671
25	100906	4312_1	AU076916 BE298110 AW239395 AW672700 NM_003875 U10860 AW651755 BE297958 C03806 AI795876 AA644165 T36030 AW392852 AA446421 AW881866 AI469428 BE548103 T96204 R94457 N78225 AI564549 AW004984 AW780423 AW675448 AW087890 AA971454 AA305698 AA879433 AA535069 AI394371 AA928053 AI378367 N59764 AI364000 AI431285 T81090 AW674657 AW674987 AA897396 AW673412 BE063175 AW674408 AI202011 R00723 AI753769 AI460161 AW079585 AW275744 AI873729 D25791 BE537646 T81139 R00722
30	100930	16865_1	J04129 NM_002571 AA293088 AA477016 AA404631 T28299 AA476904 AA433965 AA430486 AA495907 AI151391 AA291495 AA402723 W25651 AA706816 AI826712 AW296294 AA293479 AI276581 AW044154 AI080180 AI417985 AI274168 AI474212 AA495908 AA635664 AI092114 AI804952 AA479874 AI59761 AI42051 AA479738 AA421417 AA421247 AA436220 AI_047797 M34046 N42277 AA28076 W02698 AI420297 AA434011 AI389971 AA479731 AI865541 AI418020 AA421246 AA452764 AL436220 AI_047797 M34046 N42277 AA28076 W02698 AI420297 AA434011 AI389971 AA479731 AI865541 AI418020 AA421246 AA452764 AL436280 AI846487 AIM66287 AIM6
35	102221	3861_1	NM_006769 U24576 AW161961 AW160473 AW160465 AW160472 AW161059 AI824831 AW162635 AI990356 AW162477 AW162571 AI520836 AW162352 AW162351 AW162752 AI962216 AI537346 AA853902 H17667 BE045346 BE559802 BE255391 AA985217 AA235051 A1129757 AW366451 T34489 D56106 D56351 AI936579 AW023219 AW889335 AW889120 AW889332 AW889175 BE093702 AW889349 AA17546 AI952998 AA912579 AI143356 AW902211 R64717 AW157236 AI815242 D45274 AW263991 AA442920 AA129965 AU355713 AI942575 AI44980 A
40			A1142826 A1684160 A1701987 A1678954 A1827349 BE463635 AW628092 AW302281 AA493203 BE348856 BE536419 AW193969 AW673561 AW592609 A1224044 H43943 AA091912 R49632 R48353 A1568409 R48256 A1198046 H27986 H43899 A1678759 A1680310 A1624220 H17052 AA156410 N56062 A1699430 AA664529 T09406 T10459 AA627508 A1379584 N83831 N88633 AW022651 AA971281 AA248036 A1039197 A1914689 AA973825 AL047305 AA128966 A1798369 AW264348 A1445879 A1658759 N87924 A1933507 A1216121 A1333174 T10972 A1375028
40	101809	32963_1	A1186756 A1273778 AA610487 A1797946 AA853903 AA903939 A1338587 A1278494 AW627595 AA904019 M86849 AA315280 NM_004004 AA315269 BE142653 AA461400 AW802042 BE152893 AW383155 AA490688 AW117930 AW384563 AW384544 AW384566 AW378307 AW378323 AW839085 AA257102 AW378317 AW276060 AW271245 AW378394 AW384497 A1598114 AW264544 A1018136 AW021810 AA961504 AW086214 AW771489 AW192483 A1290266 AW192488 AW384490 AW007451 AW890895 AA554460 AA613715 AW020066 A1783695 A1589498 A1917637 AW264471 AW384491 A1816732 AW368530 AW368521 AW368463 AA461087 A1341438 A1970613
45	1025 9 0	15932_1	AV020056 A1763595 A159495 N1917637 AW264471 AV3544431 AIGHS72 AW356535 AW356521 AW36655 AW461657 A1541636 A1917615 A1917615 A161773 A1418400 AA947181 AA962716 A1286695 AW769275 AW023591 A1160977 AA055400 N71882 AA490466 AW243772 AW316636 A1076554 AW511702 N69323 H88912 AA257017 A1952506 H88913 A1912481 AA600714 BE465701 N64149 C00523 N64240 AA677120 R61573 BE056029 X88091 AA297307 BE537267 BE566138 BE566139 F11561 BE564795 BE568776 AW064005 BE566479 BE380035 BE567012 BE568634 BE565668 AA298060 BE566043 BE5668138 BE568618 AA283070 BE565414 BE566738 BE568585 BE565667 BE566116 BE566433
50			L62136 AF049140 BE567057 BE557297 BE567403 BE564316 BE567400 BE568454 BE566588 AA448772 AA071383 AW732642 BE5664996 AA297763 AA276550 AA421083 AA298184 AA091007 AA984577 AA205916 N28759 AL031291 C15757 C15761 H02728 BE566410 AA129335 AA419499 N87741 BE375689 BE004824 BE379611 D25874 AA148454 AA323654 AW950311 AA448795 AW749423 AA773386 AA773843 AW020327 BE348580 BE504258 BE549990 BE220200 A1673334 A1202679 AA975515 D61421 A1168688 AA102843 AW246621 A1276203 A1074054 A1633824 A1962927 A1148926 N50959 A1308911 AA410994 AW373025 AA148455 H02620 AA688293 A1246318 N22220 A1917777 A1050943 A1097286 AA663794 AW368662 AW627826 AW078734 A1250360 AA749154 AA832236 A1192358 AW024676 AA448676 AA764891
55			.BE433467 AA661534 AA258061 Al090546 AA995157 Al051011 AA584421 Al026032 AW591338 AW589563 AA776914 AW024684 AA421002 F09219 BE464500 Al383595 AA954244 AA601583 AA737304 AA195549 AA805778 Al055876 AA164942 AW013961 Al672608 AW514211 D59441 AW582574 AA160935 BE566501 BE564612 BE565353 BE566195 BE565447 BE568302 BE566097 BE565470 BE564249 AL036217 AW749424 BE567494 AA102842 AA314761 AV661237 C14211 AA651866 AW798997 AA470805
60	101977	29073_1	AF112213 AL050318 T24804 AW248136 BE366341 BE263177 W16677 BE250224 BE563669 BE267405 BE546577 AV651354 AV651292 AI346903 AI539128 AI189171 S83364 AW073849 AN816760 AW073309 AI422690 AA296692 AI860301 AI805446 NT7735 AI340328 BE092530 AW028742 BE088442 AA657742 AA742438 AW170086 AI038920 AI432379 N36073 AI936194 AA868655 AA983612 AI077505 BE080433 AI375014 AI126547 AI348244 AI346077 AI748952 N26915 AI753574 AI093341 AI278762 BE092517 N74204 H06158 T58149 AI129303 N58366 AA524456 BE122661 AA542925 AI246120 AI735203 AA706829 AA877544 AI082289 AA926687 N92840 AW249788 AA93763 AW998363 AI126632 N25202 AI240209 AW118892 N80744 R35655 AI342321 AI340141 AW878792 AI857321 H09610 W04601 AW006650 AA126006
65	٠		AA553675 AI052791 AW059835 AI041906 AA814658 AW002059 AA729483 AI609301 AA994633 AA903651 AI459183 T95072 AW088630 AA126112 AI800091 AI561215 H17502 AW475072 AI819003 AI683272 AI262701 AW793140 T81787 R99586 AI275160 AI310420 AI698929 AA159174 AI827968 F30305 F30309 AA806662 AI091923 AW878722 AA583430 AW571913 AI674584 AA292533 AI079471 AA642325 AA719050 AW793172 AA305476 AW103745 T23459 N79525 AI784438 AA534551 AW193751 AI074360 BE281214 T32229 W25066 W01205 T63086 AW795348 AI361287 AW795353 AW795349 AA594759 AI400295 D11489 AI370689 AA482366 AA485295 W40151 AA564661 AW300745
70	400704	00040.4	A1346938 A1374975 A1423782 AW193899 AA612604 A1183409 AA996156 AW366963 AW366977 A1284860 AA846503 A1985064 AA844576 AA737921 AA873274 BE241546 BE241540 AA484058 AW468970 AA127876 AA159120 AW001568 AW795213 AW795258 AW795330 BE250589 BE387572 AA910895 AA161217 BE250380 W31500 T95167 A1719306 A1359224
75	102781	20812_1	BE258778 BE281230 BE410044 T33723 AW672694 AW410439 NM_006429 AF026292 T35505 BE542333 T08940 AU076737 AW247471 BE393215 AW328640 BE542408 T32170 BE302544 T31955 BE206898 BE275738 T32570 BE386426 BE298746 BE398937 BE293991 BE315289 BE389578 R34739 R15312 BE279365 BE277756 AL036019 T33725 BE277779 BE302962 AL047294 BE276505 T09070 T33673 BE312580 AW387774 BE257175 AW574367 BE253331 BE270344 BE299831 BE273576 T32062 A1751831 BE618381 AA304899 BE252268 U46364 BE256790 BE207199 BE256209 BE251941 BE250791 BE313955 BE269806 BE543623 BE279212 BE252289 T31699 BE262220 T31669 AA315781 AA192212 N84547 BE292737 BE259631 AA232179 A1133144 T31292 AA315945 BE407301 BE251184 BE409006 Al880158 Al904003
80			AI904114 AW651768 AW651763 R58247 BE271897 U83843 C05298 BE261609 BE255973 AA351650 N84631 BE26337 AW452910 AA328465 AA324549 AW579525 BE252296 BE257551 AL048332 BE208630 AA359363 AW327897 AA151742 AA305816 BE076862 BE076796 BE263161 AA323785 AA676588 AA626565 AA078917 W87657 R09002 R94021 AA312032 BE276655 AA295608 AW407162 AA329374 AW877912 N27885 AA369256 AA360988 BE250476 N85427 BE265569 AI278639 AI816576 AI691037 AW328583 AL367949 AI983455 AI927732 AI811297 AI571508 AW073674 BE296039 BE467326 AI828796 AI816578 AW511604 AI921213 AW152427 AI795787 AI801618 AW168866 AI628144 AI890339
85			AW173690 AW511540 BE535620 AA383014 BE301164 Al866596 AW514909 AA658050 AW575243 AA074631 Al093488 AW575408 AW675443 AW615636 AW732207 AW377638 AA321784 AA641629 AA633105 AA527640 AW129146 AW615672 BE394607 AA483902 AW475032 BE378532

	***	/ 02/0004-	AA872808 AU469388 AW105268 BE047301 AW591843 AW410066 AW517153 AI950495 AA746641 AI914878 AA873185 AI696911 AA548625
5			AA911505 AA148762 AW674535 AI587329 BE328328 AW270348 AA158225 AW117705 AW474997 AW519193 AA614757 AW664383 AI082647 AW590973 AI476711 AA192213 N88741 BE464552 AW072679 AI453708 AA152166 AA805924 AI581078 AI125768 AW173484 AI961980 BE300766 AI199698 AI636792 AW247333 AW272861 AA078818 AA150012 AA551232 AA678821 AW873869 AW768266 AI650315 AA319210
3			AA814551 AA157994 AA318886 AI582952 AW089224 AI355098 AI343694 AW072598 N21054 AI301249 AA742924 H17917 AW328584 AW248898 AI751830 AA907816 R08898 AW087989 AI828300 AA148596 AI269577 T33426 AA213571 AI973201 AA666279 R49612 AI573183 AW799762 AW410068 AW769666 AI962097 AI475204 D57490 AW517531 BE245270 AW470008 T33427 AW005731 AI795795 T23753 AW272981 T15747 AA552875 T23644 AW361289 AI758558 BE207435 AA876958 T03361 AA883569 F37533 AA882321 AW082524 R42212 AA973847
10			T18900 AA086202 AI559867 AI302418 AA948667 AA745670 T08939 T33724 T33722 BE621568 D57489 D25906 BE621151 F16510 C05966 T35127 AA630427 AI933481 AA309426 AI918440 BE651854 BE618866 BE394875 BE296173 AW951687 BE383739 BE616141 BE312730 BE535351 AW080575 BE313330 BE61664A B354390 AA847315 BE544590 BE515212 BE297833 BE27808 BE544844 AW090178 AI890664 BE546708 AW189943 BE274412 BE382399 BE266392 BE254949 BE280696 BE383237 BE281756 BE257721 BE312683 BE275476 BE514880 BE545314 BE313587 BE384537 BE386691 BE264813 AW592575 AI338332 AI278641 AI795791 BE222662 AW249316 AA314361 AL036012
15			AW402923 BE266845 AA075945 AA314436 BE384640 AW731769 AW957077 AA552234 AA573560 AW367038 AA313399 AI983873 BE410159 BE263803 BE514339 BE409073 BE281296 BE543396 BE395387 BE088360 BE546946 BE546570 BE390626 AA074638 AA301821 AW845230 AW582379 AI949222 AW029572 AA515843 AW272394 BE250234
20	119221		C14322 W74050 A1074232 AA595624 BE048955 A1148417 A1583145 A1473460 A1801688 AW573593 A1950741 A1628140 AW467921 R98105 A1149258 A1247584 A1078378 A1139850 AA489411 W24744 R98104 A1033826 AA699589 A1033120 N55544 W88984 AW970771 AA703362 AA099138 AA706792 AA046150 H98981 A1916674 AA953018 A1972749 A1921343 AA909044 AA094751 A1203124 AA582143 A1446654
20			AW235415 R70377 AA099236 F20703 AA524436 R69484
	125831		H04043 D60988 D60337
	128192		A1204246 A1204250 A1194050
25	113195		H83265 T63524 AA304359 AW960551 Al672874 Al749427 AA227777 AW027055 AA971834 T49644 T54122 Al983239 Al808233 T91264 T96544 Al350945 Al709114 R72382 T48788 R48726 AW385418 Al095484 T49645 AA928653 AA570082 AW007545 T57178 AA516413 AA913118 T57112 AA564424 AA746674 AA74674 AA7467
23	440004	220200 4	AA564433 AA774503 AA367671 T59757 W78816 AI720806 AI633854 AI632086 AI668663 N70894 AW571809 AI383592 AI201348 W80715 N91880 AW963101 AA339011
30	119861 112973	4868_1	W78616 A1/20006 A163-3654 A163-2086 A1666065 17/094 AW57 1609 A168-3659 27/001 76 NS 1600 AV5955 17/0054 A168-3659 A168-2086 A
50			AW875926 AW875645 AW875647 AW938037 AL138042 AW892619 BE243018 AW995454 BE246381 BE009082 BE278921 AW967842 AA262454 H30121
	129402		W72062 AF088057 W76255 AI827219 AI631461 AW449295 AI354957 AI913803 T62772 AI222040 T62921 T63781
25	105936		AIG78765 H12175 R14G64 AI914049 AA995383 H08009 H19418 AW953728 AI358021 AA567361 AI269377 AA369905 AW957113 H27693
35			Al300474 H73776 W74397 AA579604 Al131018 W72331 Al719085 AA568348 Al859045 Al814819 Al888714 BE467470 AW131268 H19419 H27694 Al342165 Al914155 AA534872 BE018176 R60206 H11647 R45641 Al860466 BE301656 Al125453 Al498120 AA593735 AA879110 Al016404 T35018 AA588397 AW449767 AA470365 BE501139 AA588354 Al337500 AW078532 Z41279 Al125449 AA935725 AA404338
	129466	2094_50	L42583 NM_005554 L42601 BE183076 Al541221 BE140567 L42610 V01516 J00269 AW275792 AW383052 AW380143 Al541102 BE612846
40			AI541344 AW238368 BE613405 BE615705 BE615530 BE615301 AW379823 AW794706 AA194806 AA194992 AW384024 AW384000 AA641239 AI246504 AI540333 AW238681 AA640939 AI540863 AI608860 AW862564 AW366725 AW368983 AW366870 AA596020 AW794721 AW794511
40			AIS91181 BE182523 AW794644 AW794620 AI935234 AI608903 AI608623 AW797060 AW084935 BE182517 BE182319 AI890082 AW238346
			AW797012 BE182522 AW794838 AI608794 AW304289 AA147193 AA595995 AW381128 AW366720 AA583718 AI828416 BE122864 AW368343
			AA431080 AW082039 AW380976 AA587144 AA443636 AW872937 AW794448 AW378382 AW085761 AW794718 AW263895 AA583587 AA583991 AA583994 AA586886 AA586880 AW368365 Al814460 AA586991 Al282829 AW378406 AA586721 Al609242 AA431973 AA232959
45 .			AJ831095 AW263854 AW378391 AW378415 AW378381 AA036990 AW238395 AI285446 BE208219 BE049526 AA583605 AA583918 AW366711
			AI285580 AW082642 AI285712 AA582875 AW591216 AW368719 AW378408 BE122835 AA582976 BE350422 AA418328 AI541454 AI565930 AA583700 AA150575 AW238427 AI287474 AA912658 AA584223 AW238528 C17918 AW136169 AA159847 AI923797 AI609009 BE182479
			AI915198 AW378114 AA147179 AA584239 AA150532 AW168862 AW085999 AW082480 AA659742 AW079703 AI872793 AA583981 AI824571
50			BE182316 BE182507 AA233331 Al824572 Al540586 D29492 BE182931 AA036948 BE551821 D29401 AW378365 C00141 D29181 D29567 AW103359 W95238 Al991663 AA587298 BE184608 AA099833 W95121 W95150 D29584 Al934111 D29456 D29533 AW265380 D29290
	400000		AW238463 AA121041 D29204 AA595925 D29441 AW081840 AA587018 D29323 AA582891 BE182433 BE182437 BE158295 BE182434 AW015534 AA314369 AA290715 BE568683 AW629494 D28364 AW995678
	100220 100355		AVIO 15534 AAST4369 AA2507 15 BES00003 AVIO25454 D26364 AVI355076 AJ907114 AA580734 AL041945 AA101515 AA121344 D78130 NM_003129 AA341650 T84166 AF098865 AA130976 BE089553
55 .			6 T66122 AW175590 F05344 AI114790 R12900 AA194871 AA132298 D78129 AA132213 AW948930 AW948919 AA263053 AW946593 AW948840 AA278558 R50895 N26940 N40818 AW021255 AA054851 AA663379 AW948795 AW948893 AA400356 AW948911 N85024 W78844 AI341546
JJ.			AAZ65556 R50655 R26940 N40516 AW021255 AA054651 AA66575 AW346755 AW346515 AA05556 R50655 R26940 R30524 W765656 AA766182 AA286783 BE617763 BE617263 AW2636590 BE049454 BE617288 AW51538 AW950584 AA661009 A1079194 AA147204 AW083163 AA130881 AJ218369 AA604784 A1806257 A1559556 AA232318 AA258065 A1471982 AA687949 A143944 N30172 AA40016 A1769049 A1084342
			AJ221380 AA948469 AJ802469 H05720 AA113270 AA158138 AA076231 AJ521024 AJ810962 AJ133616 AA805106 AA101516 R40052 R50778 R43280 T65036 AW131924 AA114251 AA152331 F09650 AA580614 AA558927 C75491 Z38352 AA954595 C75606 W80742
60	100491	34803 1	D56165 M36981 X58965 NM 002512 BE379177 AA314836 BE256445 BE252016 AW248343 AI720933 AW085701 BE386050 BE619742
	BE277805	AA147951 AA60	I3113 BE253293 AI246588 AI183405 AI954174 AI126891 AI829101 AI123832 AW129670 AA471268 AW170242 AW873079 AA148011 AI608620 AA482861 AI003658 H43261 AA657978 AI735072 R83138 AA722002 AA626271 AW273877 BE464626 AA071483 AA429973 AA494342
			AA620436 AA775597 AA775601 AA826847 A1192585 AA826359 AA411159 A1193419 A1204013 AA705323 AA716255 A1784611 A1081144 A1128227 AA828464 A1148911 A1493446 A1626084 A1189180 A1721196 A1190618 AA284987 A1128543 AA632064 A1333073 A1278470 AA131688
65			Al491768 AA937581 AA630065 AA834257 AW249841 AA583742 Al309756 AA961676 Al760860 AA557818 AA954238 H43655 Al302564
			AA127545 Al609219 H20426 Al042292 Al056466 AA581836 W47002 AA422057 AA937673 F29757 AA829208 AW327462 AA372098 W02144 AA036805 AA487365 AA961037 Al139946 AA487250 AA737118 Al952504 Al242293 AA650552 Al708401 Al633133 AA630848 AA654317 F24128
			A1434165 W46252 AW043879 A1033763 F37228 AA687809 N49087 AA876981 AA506947 A1914572 A1833284 F22253 AA026222 R50166
70			Al219267 N27095 AA496512 Al784222 Al289904 AA513146 AA528547 AA418700 F36721 Al880700 Al601170 Al862851 Al708633 AA524499 AA642220 AA496628 Al718709 W80579 Al720547 F20718 AA649943 AA588229 N40503 H46029 BE262669 BE391069 BE537538 Al510751
			AI906968 AI318611 H46099 AI472604 T60667 AA373087 W32479 AA514034 BE619183 AA134672 AA127544 H26942 BE536689 AW327461. AA422139 AW262357 AW327348 F33510 AI630382 AW827126 F27133 AI335189 AW517599 W80471 AA885814 N89681 BE393173 AA617760
			AA584268 AA460537 AA446261 H20425 N64040 AW276801 AA316367 AA071232 BE545409 AA308292 BE274447 AA380861 AA340038
75			AA341806 AA865579 Al018634 Al766314 Al919302 AA872367 AA991404 Al906961 AA888375 BE621012 AA505388 AA935192 AA290828 R50220 H50814 H44721 AW951723 AA514796 AA418708 AW673377 AA379622 AA977995 AA708224 AA708216 Al318249 Al318233 AA411160
	100518	13165_1	AA026221 AA316774 AA486908 AI500094 AA095362 AW583742 BE536422 BE618653 R70203 AA131732 AA345048 BE562720 T28342 NM_004415 AL031058 M77830 BE149760 AW752599 AW848723 AW376697 AW376817 AW376699 AW848371 AW376782 AW848789
		_	AW361413 AW849074 AW997139 AW799304 AW799309 BE077020 BE077017 BE185187 AW997196 BE156621 BE179915 BE006561 BE143155 AW890985 BE002107 AW103521 AA857316 AW383133 BE011378 AW170253 BE185750 AW886475 BE160433 J05211 BE082576 BE082584
80			BE004047 AW607238 AW377700 AW377699 BE082526 BE082505 BE082507 BE082514 AW178000 AW177933 AI905935 AW747877 AW748114
			BE148516 AW265328 AW847678 AW847688 AW355151 AW365148 AW365153 AW365156 AW365175 AW365157 AW365154 AW068840 BE005272 AW365145 BE001925 BE182166 BE144243 BE001923 AI951766 AI434518 BE184920 BE184933 AI284090 BE184941 AW804674
			BE184924 C04715 W39488 AW995615 BE184948 BE159646 AW606653 AA099891 AA131128 AA337270 AA340777 AW384371 AA852212
85			R58704 AW366566 AW364859 AA025851 AA025852 AA455100 AA719958 AW352220 AW996245 BE165351 BE073467 AA377127 AW890264 AW609750 AW391912 AW849690 T87267 AW853812 AA852213 W74149 BE009090 AA056401 H91011 AW368529 AW390272 C18467
0.5			VIIDOS OF VIIO DE E VIIO DO DE LA LINGUISTE LA POSTE LO INTALIA DE CODOS AUGUSTA LI MISOCO VIIONOSES CITADAS

	W	O 02/086443	PC17US02/12	476
			AW574920 N57176 AA026480 AW576767 H93284 AA026853 AW177787 AA026654 AW177786 BE092134 BE092137 BE092136 AW1 Al022862 BE091653 AW376811 AW848592 AA040018 BE185331 BE182164 AA368564 AW951576 T29918 AA131077 W95048 W2544	i8
5			AW205789 H90899 N29754 W32490 R20904 BE167181 BE167165 NB4767 H27408 H30146 A1190590 C03378 A1554403 A1205263 AA A1392226 AF 139085 AW370813 AW370827 AW798417 AW798780 AW798883 AW798589 R33557 AA149190 C03029 AW177783 AA0 AW370829 AA247685 BE002273 A1760816 A1439101 AW879451 A1700963 AA451923 A1340326 A1590975 T48793 A1568098 A142882 A1470146 AA946938 BE067737 BE067786 W19287 AA644381 AA702424 A147612 A1306554 A1686869 A1568892 AW190555 A157107 AA056527 A1471874 A1304772 AW517828 A1915596 A1627383 A1270345 AW021347 AW166807 AW105614 A1346078 AA552300 W950	88856 AA039975 5 Al220573 070
10			N494069 AI911702 AA149191 AA026864 AI830049 AI887258 AW780435 AI910434 AI819984 AI858282 AI078449 AI025932 AI860584 NA026047 AA703232 D12062 AW192085 AA658154 AW514597 AW591892 T87181 AA782066 AW243815 AW150038 AW268383 AW NI927207 AA782199 AW473233 AI804485 AW169216 AI572669 AA602182 AW015480 AW771865 AI270027 AA961816 AA283207 AI0 NI498487 AI348053 AI783914 H44405 AW799118 AA128330 AA515500 AA918281 W02156 AI905927 AA022701 W38382 R20795 T77	104633 76962
15	100528	1	3E386801 AU077299 AA143755 BE302747 AA853375 U30162 BE274163 BE277479 BE408180 BE274874 C15000 AA047476 N27099 N638794 AI151283 AI863925 AW444977 AI207392 AA931263 AA443112 R40138 AW068538 AA351008 AA676972 R62503 AA916492 142334 H38280 AA121497 AA114137 AI750938 M17783 AA383786 BE274462 AI753182 C05975 AA347404 AW069298 AI754351 AI75 NA188808 AA186879 AA565243 AL040655 AA456177 AI750722 AA045756 AA213580 C16936 AW578747 AW753731 H41632 N44761 R61260 AA039902 N59721 AW992543 R68380 AA149686 T29017 H03739 BE383822 BE387105 BE408251 BE410425 H41560 AA2473 NE389677 AI752233 AI566195 AA858004 AI424523 AW753720 AA852159 BE386803	AW001865 54044 R58560
20	100559	2260_1	3E38977 A1732233 A1306193 AA06004 A424323 AW753720 AA052193 BE300003 NM_000094 L02870 D13694 S51236 M96984 AW946290 M65158 A1285422 D29523 AL119886 AW630655 L06862 A1884355 AW16873 NW797005 AW801340 A1355504 AW079048 AW801337 A1690455 A1972063 AW268565 W68588 AA587326 AA883498 A1033523 AW5 NW591998 H98463 AL043852 A1150055 A1566239 A1624803 AA844717 H40670 AA922334 A1864424 AW615094 AW451233 A1302203 NB72170 W68589 AA904478 A1917631 AW014208 AW450759 AA847625 A1284033 AA848176 AA598507	10356
25	100576 124357 101624 101625 135158	genbank_N2240 entrez_M559981 entrez_M572931 57963_1	<i>A</i> 55998	5

Tables 2A-8C were previously filed on November 9, 2001 in USSN 60/339,245 (18501-004100US)

5

85

Y16791

Hs.73082

103360

keratin; hair, acidic; 5

Table 2A shows 504 genes down-regulated in lung tumors relative to normal lung and chronically diseased lung. Chronically diseased lung samples represent chronic normalignant lung diseases such as fibrosis, emphysema, and bronchilis. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5	expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reliecting the relative level of micros expression.											
	Pkey:	Unione	Foe orohoeat	identifier number								
	ExAccn:	Exempl	ar Accession	number, Genbank accession number								
	Unigenel		a number									
10	Unigene 1	Fille: Unicone	nene fille									
	R1:	90th pe	rcentile of Al f	or normal lung samples divided by the 80th percent	ille of All for a	denocarcin	ioma and	squamous	cell carc	noma lun	g tumor	
		samples	3.					anii aarala	ama luna	himor on	malaa	
	R2:	median	of Al for norm	al lung samples divided by 90th percentile of Al for al lung samples minus the 15th percentile of Al for	agenocardini	oma ano si a chmaic	qualiibus casib viicas	ced lung a	oura mig	samnles d	livided by	
15	R3:	median the ont	mon for IA to	Al for adenocarcinoma and squamous cell carcino	ma luno tumo	r samoles	minus th	e 15th per	entile of	Al for all n	ormal	
13		hina ch	molcally dise:	ased lung and tumor samples.								
	R4:	average	of Al for nor	nal lung samples divided by average Al for squamo	us cell carcin	oma and a	denocar	inoma lun	g turnors.			
	R5:	modios	of Al for name	al luna complex divided by the QOth remontile of A	l for adenoca:	reinomas						. nort
00	R6:	median	of Al for norm	all lung samples minus the 15th percentile of Al for	all normal lur	ig, chronic	ally disea	sed lung a	na tumor :	samples o	irviged by tr	18 9001
20		percent	ile of Al for ad	enocarcinomas minus the 15th percentile of Al for a nal lung samples divided by the 90th percentile of A	al for cousmo	g, curonica	ny uisea: rinomae	ieu iuriy ar	in millor a	ampies.		
	R7: R8:	average	of Al for norm	hal lung samples divided by the sour parcental of A hal lung samples minus the 15th percentile of Al for	ali normal lur	o. chronic	ally disea	sed lung a	nd tumor	samples d	livided by th	he 90th
	No.	nercent	ile of A) for so	uamous cell carcinomas minus the 15th percentile	of Al for all no	ormal lung,	chronica	lly disease	d lung and	i tumor sa	amples.	
25	Pkey	ExAccn	UnigeneID	Unigene Title	R1	R2	R3	R4	R5	R6	R7	R8
	400000	707474	11- 70454	Western and a mark work industrial	40.20							
	100095 100115	Z97171 NM_002084	Hs.78454	myocilin; trabecular meshwork inducible glutethione peroxidase 3 (plasma)	40.20							3.46
	100113	U83508	Hs.2463	angiopoietin 1			2.30					
30	100299	D49493	Hs.2171	growth differentiation factor 10		11.00	•			_ :_		
	100305	U86749 .	Hs.80598	transcription elongation factor A (SII);						3.06		2.40
	100447	NM_014767		KIAA0275 gene product								3.16
	100458	S74019	Hs.247979	Vpre-B	42.40					4.13		٠.
35		AA005247 AA359129	Hs.285754 Hs.118127	Hepatocyte Growth Factor Receptor actin; alpha; cardiac muscle				125.60		7.10		
22	100959 101032	BE206854	Hs.46039	phosphoglycerate mutase 2 (muscle)	36.40					_		
		AF047347	Hs.4880	armyloid beta (A4) precursor protein-bind				34.60		·-		
		X70697	Hs.553	solute carrier family 6 (neurotransmitte				193.20				
4.0	101125	AJ250562	Hs.82749	transmembrane 4 superfamily member 2				£4.00		3.10		
40		U11874	Hs.846	interleukin 8 receptor; beta	33.20			54.86	• .			
	101308	L41390	N= 00004	"Homo sapiens core 2 beta-1,6-N-acetylgl enhancer of filamentation 1 (cas-like do	33.20			36.40				
	101330 101345	L43821 NM_005795	Hs.80261 Hs 152175	Calcitonin receptor-like	•		2.29	001.10	•			
	101346	A1738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N				70.55				
45	101397	M26380	Hs.180878	lipoprotein lipase								3.54
	101414	NM_000066		complement component 8; beta polypeptide	*			04.00	•		3.81	
	101435	NM_001100		actin; alpha 1; skeletal muscle				34.60 37.60	•			
	101507	X16896	Hs.82112 Hs.1360	interleukin 1 receptor; type I cytochrome P450; subfamily IIB (phenobar				37.00				4.25
50	101530 101537	M29874 Al469059	Hs.184915	zinc finger protein; Y-linked			2.54					
50	101542	NM_000102		cytochrome P450; subfamily XVII (steroid		5.50				٠		
•	101545	BE246154	Hs.154210	EDG1; endothelial differentiation, sphin	39.40						•	
	101554	BE207611	Hs.123078	thyrold stimulating hormone receptor		13.00						3.38
55	101560	AW958272	Hs.83733	Intercellular adhesion molecule 2, exon						4.37		5.55
22	101574 101605	M34182 M37984	Hs.158029 Hs.118845	protein kinase; cAMP-dependent; catalyti troponin C; slow								3.80
	101621	BE391804	Hs.62661	quanylate binding protein 1; interferon-	30.20							
	101680	AA299330	Hs.1042	Sjogren syndrome antigen A1 (52kD; ribon							2.75	
CO	101829	AW452398	Hs.129763	solute carrier family 8 (sodium/calcium				20.00	•	3.37		
60 .	101842	M93221	Hs.75182	mannose receptor, C type 1			2.32	38.20				
	101961 101994	AW004056 T92248	Hs.168357 Hs.2240	"Hs-TBX2=T-box gene {T-box region} [huma uteroglobin			2.02					6.85
	102020	AU077315	Hs.154970	transcription factor CP2			2.45					
	102020	BE280901	Hs.83155	aldehyde dehydrogenase 7								6.75
65	102112	AW025430	Hs.155591	forkhead box F1	. 54.60							2.00
	102190	AA723157	Hs.73769	folate receptor 1 (adult)								3.98 3.62
	102202	NM_000507		fructose-bisphosphatase 1			2.32					0.02
	102241 102310	U33839	Hs.268107	Multimerin Accession not listed in Genbank		7.00	LUL					
70		· U41898		"Human sodium cotransporter RKST1 mRNA,	29.40							
, 0	102571	U60115	Hs.239069	"Homo sapiens skeletal muscle LIM-protei								3.75
	102620	AA976427	Hs.121513	Human clone W2-6 mRNA from chromosome X			0.40			3.07		
	102636	U67092	1) 000-1	"Human ataxia-telanglectasia locus prote			2.40 3.15					
75	102667	U70867	Hs.83974	solute carrier family 21 (prostaglandin			3.10			3.56		
75	102675 102698	U72512 M18667	Hs.7771 Hs.1867	"Human B-cell receptor associated protei progastricsin (pepsinogen C)								4.51
	102030	U79251	Hs.99902	oploid-binding protein/cell adhesion mol				•	12.00			
	102852		Hs.75294	corticotropin releasing hormone	37.40							
00	103026	X54162	Hs.79386	thyroid and eye muscle autoantigen D1 (6	00.00				13.00			
80	103028	X54380	Hs.74094	pregnancy-zone protein	28.80				10.00			
	103098	M86361 X63578	Hs.295449	Human mRNA for T cell receptor, clone IG parvalbumin		6.00						
	103117 103241	X76223	16-20443	H.sapiens MAL gene exon 4			2.47					
	103280	U84722	Hs.76206	Cadherin 5, VE-cadherin (vascular epithe			2.69					
85		Y16791	Hs.73082	keratin; hair; acidic; 5							2.16	

		w	O 02/08	5443							PCT/	US02/1	12476
		103496	Y09267	Hs.132821	flavin containing monooxygenase 2								5.97
		103508	Y10141	Un 449494	*H.sapiens DAT1 gene, partial, VNTR*			2.40			3.27		
		103561 103569	NM_001843 NM_005512		contactin 1 glycoprotein A repetitions predominant			2.99					
	5	103575	Z26256	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"H.sapiens isoform 1 gene for L-type cal						4.18		
		103627	Z48513	U- 0004EE	H.saplens XG mRNA (clone PEP6)						3.44	2.25	
		103767 103850	BE244667 AA187101	Hs.296155 Hs.213194	CGI-100 protein Hypothetical protein MGC10895; sim to SR				46.55				
	4.0	104078	AA402801	Hs.303276	ESTs						3.05		
	10	104326		Hs.143067	ESTs						3.54 3.16		
		104352 104398	BE219898 Al423930	Hs.173135 Hs.36790	dual-specificity tyrosine-(Y)-phosphoryl ESTs; Weakly similar to putative p150 [H	64.80					0.10		
		104473	A1904823	Hs.31297	ESTs								3.38
	1.5	104493	AW960427	Hs.79059	ESTs; Moderately similar to TGF-BETA REC	20.50		2.47					
	15	104495 104595	AW975687 Al799603	Hs.292979 Hs.271568	ESTs ESTs	28.60					3.42		
		104597	Al364504	Hs.93967	ESTs; Weakly similar to Slit-1 protein [6.00						
		104659	AW969769	Hs.105201	ESTs	34.00	44.00						
	20	104686 104691	AA010539 U29690	Hs.18912 Hs.37744	ESTs ESTs; Beta-1-adrenergic receptor	56.80	11.00						
	20	104764	AI039243	Hs.278585	ESTs				60.40				
		104776	AA026349		ESTs	34.20		2.02					
		104825 104865	AA035613 T79340	Hs.141883 Hs.22575	ESTs Homo sapiens cDNA: FLJ21042 fis, clone C	41.20		3.03					
	25	.104942	NM_016348		ESTs								3.27
	•	104989	R65998	Hs.285243	ESTs				40.00				3.20
		105062 105101	AW954355 H63202	Hs.36529 Hs.38163	ESTs	34.20							0.20
		105173	U54617	Hs.8364	ESTs								4.17
	30	105194	R06780	Hs.19800	ESTs		16.00	0.24					
		105226 105256	R58958 AA430650	Hs.26608 Hs.16529	ESTs transmembrane 4 superfamily member (tetr			2.34 2.72					
	•	105394	BE245812	Hs.8941	ESTs Table 10 4 3 3 portion and 1 monitor (all			2.61					
	25	105647	Y09306	Hs.30148	homeodomain-interacting protein kinase 3	33.60							3.59
	35	105789 105817	AF106941 AA397825	Hs.18142	arrestin; beta 2 synaptopodin						4.46	•	0.00
		105847	AW964490	Hs.32241	ESTs				35.40				
		105894	A1904740	Hs.25691	calcitonin receptor-like receptor activi		7.00	3.43				•	
	40	105999 106075	BE268786 AA045290	Hs.21543 Hs.25930	ESTs ESTs		7.00		42.60				
	40	106178	AL049935	Hs.301763	KIAA0554 protein	34.80							
		106381	AB040916	Hs.24106	ESTs					12.00	3.69		
		106467 106536	AA450040 AA329648	Hs.154162 Hs.23804	ADP-ribosylation factor-like 2 ESTs				96.40		3.03		
	45	106569	R20909	Hs.300741	sordin				47.20		•		
		106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr			2 55	220.40				
		106842 106844	AF124251 AA485055	Hs.26054 Hs.158213	novel SH2-containing protein 3 sperm associated antigen 6	39.20		2.55					
		106870	A1983730	Hs.26530	serum deprivation response (phosphatidy)	V-1		2.28					
	50	106943	-AW888222	Hs.9973	ESTs								4.28 4.32
٠.		106954 107106	AF128847 AA862496	Hs.204038 Hs.28482	ESTs ESTs					10.45			4.02
		107163	AF233588	Hs.27018	ESTs			2.57				•	
	EE	107201	D20378	Hs.30731	EST		8.00		•		3.84		
	55	107238 107376	D59362 U90545	Hs.330777 Hs.327179	EST solute carrier family 17 (sodium phospha		10.67						
		107530	Y13622	Hs.85087	latent transforming growth factor beta b			2.32					
		107688	AW082221	Hs.60536	ESTs	28.40			34.60				
	60	107706 107723	AA015579 AA015967	Hs.29276	ESTs EST	20.40					3.29		
	- •	107727	AA149707	Hs.173091	DKFZP434K151 protein				80.80				
		107750	AA017291	Hs.60781 Hs.235390	ESTs ESTs				51.40		3.14		
		107751 107873	AA017301 AK000520	Hs.143811	ESTs		9.00						
	65	107899	BE019261	Hs.83869	ESTs; Weakly similar to !!!! ALU SUBFAMI				44.00		3.65		
		107994	AA036811 AL049176	Hs.48469 Hs.82223	ESTS Human DNA sequence from clone 141H5 on c				44.60 32.00				
		107997 108041	AW204712	Hs.61957	ESTs				30.80				
	70	108048	AI797341	Hs.165195	ESTs			2 22				4.75	
	70	108338 108434	AA070773 AA078899		"zm53g11.s1 Stratagene fibroblast (#9372 "zm94b1.s1 Stratagene colon HT29 (#93722			2.33				2.92	
		108447	AA079126		"zm92a11.s1 Stratagene ovarian cancer (#						3.06		
	•	108480	AL133092	Hs.68055	ESTS				34.00				3.36
	75	108499 108535	AA083103 R13949	Hs.226440	*zn1b12.s1 Stratagene hNT neuron (#93723 Homo sapiens clone 24881 mRNA sequence					19.00			0.00
		108550	AA084867		"zn11f6.s1 Stratagene hNT neuron (#93723					12.00			
		108604	AA934589	Hs.49696	ESTs _.			2.33					5.82
		108625 108629	AW972330 AA102425	Hs.283022	ESTs *zn24c6.s1 Stratagene neuroepithelium NT							3.42	U.UE
	80	108655	AA099960		"zm65c6.s1 Stratagene fibroblast (#93721		7.00						
		108756	AA127221	Hs.117037	Homo sapiens mRNA; cDNA DKFZp564N1164 (f	20 00	6.05						
		108864 108895	A1733852 AL138272	Hs.199957 Hs.62713	ESTs ESTs	28.80 32.80							
	0.5	108921	Al568801	Hs.71721	EST8			•	57.80				
	85	108967	AA142989	Hs.71730	ESTs	28.80							

	w	O 02/086	6443							PCT/	US02/:	12476
	109001	AI056548	Hs.72116	ESTs, Moderately similar to hedgehog-int			2.57				0.44	
	109003	AA147497	Hs.71825	ESTs		5.60					2.11	
	109004 109065	AA156235 AA161125	Hs.139077 Hs.252739	EST EST		5.00			10.00			
5	109250	H83784	Hs.62113	ESTs; Weakly similar to PHOSPHATIDYLETHA							3.44	
	109490	AA233416	Hs.139202	ESTs			2.40				2.92	
	109510 109578	A1798863 F02208	Hs.87191 Hs.27214	ESTs ESTs		10.00	2.40					
	109601	F02695	Hs.311662	EST				40.80				
10	109613	H47315	Hs.27519	ESTs	24.20			54.40				
	109650 109682	R31770 H18017	Hs.23540 Hs.22869	ESTs ESTs	31.20	8.40						
	109724	D59899	Hs.127842	ESTs				29.40				
1.5	109782	AB020644	Hs.14945	long fatty acyl-CoA synthetase 2 gene		10.00			8.00			
15	109833 109837	R79864 H00656	Hs.29889 Hs.29792	ESTs ESTs		10.00	6.49					
	109977	T64183	Hs.282982	ESTs							2.75	
	109984	Al796320	Hs.10299	ESTs				107.00			2.22	
20	110146 110271	H41324 H28985	Hs.315B1 Hs.31330	ESTs; Moderately similar to SYNTAXIN 1B ESTs						3.48	2.22	
20	110280	AW874263	Hs.32468	ESTs	44.20							
	110420	R93141	Hs.184261	ESTs	00.40			32.00				
	110578 110634	T62507 R98905	Hs.11038 Hs.35992	ESTs ESTs	28.40				20.00		•	
25	110726	AW961818	Hs.24379	potassium voltage-gated channel; shaker-								4.15
	110837	H03109	Hs.108920	ESTs; Weakly similar to semaphorin F [H.			2.42	56.80				
	110875 110894	N35070 R92356	Hs.26401 Hs.66881	tumor necrosis factor (ligand) superfami ESTs; Moderately similar to cytoplasmic		5.33	3.13		•			
	110971	AI760098	Hs.21411	ESTs		0.00		44.60				
30	111023	AV655386	Hs.7645	ESTs	32.40				47.44			
	111057	T79639 AW058350	Hs.14629 Hs.16762	ESTs Homo sapiens mRNA; cDNA DKFZp564B2062 (f					17.14		4.58	
	111247 111330	BE247767	Hs.18166	KIAA0870 protein						••		3.42
25	111374	BE250726	Hs.283724	ESTs; Moderately similar to HYA22 [H.sap				00.00				3.91
35	111442	AW449573	Hs.181003	ESTs ESTs				33.20 53.00				
	111737 111747	H04607 Al741471	Hs.9218 Hs.23666	ESTs	46.20			55.00				
	111807	R33508	Hs.18827	ESTs		16.00				0.04		
40	111862	R37472	Hs.21559	EST Titta gratain						3.91	2.74	
40	112045 112057	Al372588 R43713	Hs.8022 Hs.22945	TU3A protein EST							4.92	
	112214	AW148652	Hs.167398	ESTs					13.00	. *		
	112263	R52393	Hs.25917	ESTS		9.00	2.43					
45 ·	112314 112324	AW206093 R55965	Hs.748 Hs.26479	ESTs Imbic system-associated membrane protei		3.00			14.00			
	112362	AW300887	Hs.26638	ESTs; Weakly similar to CD20 receptor [H			2.49					
	112380	H63010 AA324998	Hs.5740	ESTs ESTs; Weakly similar to !!!! ALU SUBFAMI		8.00	2.34					
	112425 112473	R65993	Hs.321677 Hs.279798	pregnancy specific beta-1-glycoprotein 9		0.00				4.53		
50	112492	N51620	Hs.28694	ESTs				29.80		0.00		
	112541	AF038392	Hs.116674 Hs.29040	ESTs ESTs		•	2.37			3.62		
	112620 112623	R80552 AW373104	Hs.25094	ESTs			2.26					
<i></i>	112867	T03254	Hs.167393	ESTs .		0.50			12.00			
55	112894 112954	T08188 AA928953	Hs.3770 Hs.6655	ESTs		6.50 7.00						
	113029	AW081710	Hs.7369	ESTs; Weakly similar to IIII ALU SUBFAMI								4.39
Ī	113086	AA346839	Hs.209100	DKFZP434C171 protein				•	40.00			4.47
60	113140 113252	T50405 NM_004469	Hs.175967 Hs.11392	ESTs c-fos induced growth factor (vascular en	•	14.00			10.00			
. 00	113257	AI821378	Hs.159367	ESTs		. 1.00				3.72		
	113394	T81473	Hs.177894	ESTs	05.00					3.60		
	113437 113454	T85349 Al022166	Hs.15923 Hs.16188	EST ESTs	35.00	6.00						
65	113502	T89130	113.10100	ESTs	39.60	0.00						
	113552	Al654223	Hs.16026	ESTs							2.58	3.88
	113645 113691	T95358 T96935	Hs.333181 Hs.17932	ESTs EST				38.20			2.00	
	113706	AA004693	Hs.269192	ESTs				••••		3.09		
70	113883	U89281	Hs.11958	oxidative 3 alpha hydroxysteroid dehydro	20.40		2.31					
	113924 114035	BE178285 W92798	Hs.170056 Hs.269181	Homo sapiens mRNA; cDNA DKFZp586B0220 (f ESTs	30.40				13.00		•	
	114058	AK002016	Hs.114727	ESTs					•			5.00
75	114084	AA708035	Hs.12248	ESTs			2.31	40.60				
75	114121 114124	H05785 W57554	Hs.25425 Hs.125019	ESTs Human lymphoid nuclear protein (LAF-4)		7.00	231					
	114275	AW515443	Hs.306117	interleukin 13 receptor; alpha 1		6.00						
	114297	AA149707	Hs.173091	DKFZP434K151 protein				48.80		3.45		
80	114427 114449	AA017176 AA020736	Hs.33532	ESTs; Highly similar to Miz-1 protein [H *ze63b11.s1 Soares retina N2b4HR Homo sa					10.00	3,43		•
-50	114452	Al369275	Hs.243010	ESTs, Moderately similar to RTC0_HUMAN G		14.00			-			
	114609	AA079505		"zm97a5.s1 Stratagene colon HT29 (#93722				35.40		3.13		
	114648 114731	AA101056 BE094291	Hs.155651	"zn25b3.s1 Stratagene neuroepithelium NT Homo sapiens HNF-3beta mRNA for hepatocy				W.7U		•		3.42
85	114762	AA146979	Hs.288464	ESTs	33.00							

	w	O 02/086	5443							PCT/	US02/1	2476
	114776	AA151719	Hs.95834	ESTs	34.40							
	115009 115272	AA251561 AW015947	Hs.48689	ESTs ESTs; Wealty similar to hypothetical L1	30.20 32.60							
	115272	AW964897	Hs.290825		02.00	6.00						
5	115302	AL109719	Hs.47578	ESTs					12.00	0.00		
	115365	AW976252	Hs.268391	EST ₈				48.00		3.32		
	115559 115566	AL079707 Al142336	Hs.207443 Hs.43977	ESTs ESTs				56.20				
10	115683	AF255910	Hs.54650	ESTs, Weakly similar to (defline not ava	31.40							
10	115744	AA418538	Hs.43945	ESTs; Highly similar to dJ1178H5.3 [H.sa				33.60 74.40				
	115819 115949	AA486620 A1478427	Hs.41135 Hs.43125	Endomucin 2 ESTs			3.18	74.40				
	115965	AA001732	Hs.173233	ESTs				388.80				•
15	116035	AA621405	Hs.184664	ESTs .				33.20 45.80				
15	116049 116081	AA454033 AI190071	·Hs.41644 Hs.55278	ESTs ESTs				45.00		3.57		
	116082	AB029496	Hs.59729	ESTs			3.06					
	116213	AA292105	Hs.326740	leucine rich repeat (in FLII) interactin	50.60		3.85					
20	116228 116250	Al767947 N76712	Hs.50841 Hs.44829	ESTs; Weakly similar to tuftelin [M.musc ESTs		6.00	3.00					
20	116419	Al613480	Hs.47152	ESTs; Weakly similar to testicular tekti			. 1	30.00				
	116617	D80761	Hs.45220	EST	47.00	•	2.27					
•	116784 116835	AB007979 N39230	Hs.301281 Hs.38218	tenascin R (restrictin; janusin) ESTs	47.20			41.20				
25	116970	AB023179	Hs.9059	KIAA0962 protein		•			11.00			•
•	117023	AW070211	Hs.102415	ESTs	40.40			91.00				
	117027 117036	AW085208 H88908	Hs.130093 Hs.41192	ESTs EST	49.40			32.60				
	117110	AA160079	Hs.172932	ESTs .		8.67						
30	117209	W03011	Hs.306881	ESTs				30.60	0.20			
	117325 117454	N23599 N29569	Hs.43396 Hs.44055	ESTs ESTs					9.29	3.19		
	117475	N30205	Hs.93740	ESTs	44.00							
25	117543	BE219453	Hs.42722	ESTs		16.00			10.00			
35	117567	AW444761 N48649	Hs.44565	ESTs ESTs					12.00 11.00			
	117570 117600	N34963	Hs.44583 Hs.44676	EST						3.74		
	117730	N45513	Hs.46608	ESTs		6.00						
40	117791	N48325	Hs.93956	EST ESTs		9.00		29.20				
ŦU	117929 117990	N51075 AA446167	Hs.47191 Hs.47385	ESTs		8.00		20.20				
•	118224	N62275	Hs.48503	EST	31.40							
	118244	N62516	Hs.48556	ESTs Homo sapiens mRNA full length insert cDN	32.80		2.40			•	'	
45	118357 118446	AL109567 N66361	Hs.124154 Hs.269121	ESTs	•		2.28					
	118447	N66399	Hs.49193	EST	30.80					240		
	118530	N67900	Hs.118446	ESTs EST						3.10 3.41		
	118549 118823	N68163 W03754	Hs.322954 Hs.50813	ESTs; Weakly similar to long chain fatty	•		3.94					
50	118862	W17065	Hs.54522	ESTs				00.00		3.58		
•	118935 118944	Al979247 - Al734233	Hs.247043 Hs.226142	KIAA0525 protein ESTs; Weakly similar to !!!! ALU SUBFAMI				33.00	11.43		•	
	118995	N94591	Hs.323056	ESTs		14.00						
<i>F F</i>	119073	BE245360	Hs.279477	ERG-2/ERG-1; V-ets avian erythroblastosi	04.40			52.60				
55	119268 119514	T16335 W37937	Hs.65325	EST Accession not listed in Genbank	31.40					3.50		
	119824	W74536	Hs.184	advanced glycosylation end product-speci			2.75					
	119831	AL117664	Hs.58419	DKFZP586L2024 protein				33.80				3.21
60	119861 119889	W78816 W84346	Hs.49943 Hs.58671	ESTs; Moderately similar to IIII ALU SUB ESTs				30.03				
00 .	119921	W86192	Hs.58815	ESTs	29.00							
	120082	H80286	Hs.40111	ESTs .						3.80		
	120094 120132	AA811339 W57554	Hs.124049 Hs.125019	ESTs Human lymphoid nuclear protein (LAF-4)		6.00		36.60				
65	120132	AA223249	Hs.285728	ESTs		12.00		•				
	120404	AB023230-	Hs.96427	KIAA1013 protein	39.40				0.00			
	120504	AA256837 N55761	Un 10/719	ESTs ESTs	33.00				8.00			
	120512	AA287740	Hs.194718 Hs.78335	microtubule-associated protein; RP/EB fa	00.00							4.18
70	120777	AA287702	Hs.10031	KIAA0955 protein				46.60				
	121082 121191	AA398722 AA400205	Hs.104447	ESTs ESTs	41.60			39.00				
	121248	AA400914	Hs.97827	EST .							5.08	
75	121363	A1287280	Hs.97933	ESTs					12.00			
75	121366 121483	AI743515 AI660332	Hs.25274	ESTs ESTs; Moderately similar to putative sev					20.00	3.32		
	121518	AA412155	113.63614	ESTs				30.20				
	121545	AA412442	Hs.98132	ESTs		0.00	2.29					
80	121622	AA416931 AA416556	Hs.126065	ESTs ESTs		9.00		34.80				
UU	121665 121709	AJ338247	Hs.98234 Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f	34.80			J V				•
	121730	Al140683	Hs.98328	ESTs	38.80	7.00						
	121740 121772	AA421138 Al590770	Hs.98334 Hs.110347	EST Homo sapiens mRNA for alpha integrin bin	36.20	7.00						
85	121821	AL040235	Hs.3346	ESTs	44.EV							3.61

	W	O 02/086					2 24			PCT/US02/12476		
	121835	AB033030	Hs.300670	ESTs			2.34					
	121841	AA427794	Hs.104864	ESTs			2.61				2.25	
	121885 121888	AA934883 AA426429	Hs.98467 Hs.98463	ESTs							2.92	
5	121938	AA428659	Hs.98610	ESTs				46.80				
	121950	AA429515		EST				31.40				
	122030	AA431310	Hs.98724	ESTs	34.40						3.58	
	122054 122211	AA431725 AA300900	Hs.98746 Hs.98849	EST ESTs; Moderately similar to bithoraxoid-	49.40						3.30	
10	122233	AA436455	Hs.98872	EST .	29.80							
	122247	AA436676	Hs.98890	EST				39.80				
	122253	AA436703	Hs.104938	ESTs; Weakly similar to hypothetical pro		9.00				2.00		
	122266 122285	AA436840 AA436981	Hs.98907 Hs.121602	EST EST						3.60 3.14		
15	122409	AA446830	Hs.99081	ESTs	30.80					0.14		
	122485	AA524547	Hs.160318	phospholemman			2.65					
	122697	AA420683	Hs.98321	Homo saplens cDNA FLJ14103 fis, clone MA		15.00						
	122772	AW117452	Hs.99489	ESTs		6.67				3.37		
20	122831 122913	AI857570 AI638774	Hs.5120 Hs.105328	ESTs ESTs				32.20		0.01		
-0	123049	BE047680	Hs.211869	ESTs				41.80				
	123076	Al345569	Hs.190046	ESTs	35.80						0.50	
	123136	AW451999	Hs.194024	ESTS					19.00		2.58	
25	123309 123455	N52937 AA353113	Hs.102679 Hs.112497	ESTs ESTs				82.80	13.00			
23	123691	AA609579	Hs.112724	ESTs						3.95		
	123756	AA609971	Hs.112795	EST	35.40				•			
	123802	AA620448	11 440000	Homo sapiens clone 24760 mRNA sequence	58.00			32.40				
30	123837 123844	AI807243 AA938905	Hs.112893 Hs.120017	eSTs olfactory receptor, family 7; subfamily			2.63	32.40				
50	123936	NM_004673		ESTs	29.00		2.00					
	123987	C21171	Hs.95497 .	ESTs; Weakly similar to GLUCOSE TRANSPOR				70.60				
	124013	AI521936	Hs.107149	ESTs; Weakly similar to PTB-ASSOCIATED S	28.40				12.00			
35	124160	R40290	Hs.124685	ESTS					13.00	4.74		
33	124205 124226	H77570 AA618527	Hs.108135 Hs.190266	ESTs ESTs			2.35			14,7-7		•
	124246	H67680	Hs.270952	ESTs .				29.40				
	124348	AI796320	Hs.10299	EST ₈		17.00	- 07					
40	124358	AW070211	Hs.102415	"yw35g11.s1 Morton Fetal Cochlea Homo sa			3.07			3.14		
40	124409 124442	Al814166 AW663632	Hs.107197 Hs.285625	ESTs TATA box binding protein (TBP)-associate			2.48			0.14		
	124468	N51413	Hs.109284	ESTs				30.80				
	124479	AB011130	Hs.127436	calcium channel; voltage-dependent; alph								6.03
45	124519	Al670056	Hs.137274	ESTs; Weakly similar to SPLICEOSOME ASSO	ED 20		2.50					
43	124711 124866	NM_004657 AJ768289	Hs.304389	serum deprivation response (phosphatidy) ESTs	59.20	8.00						
	124874	BE550182	Hs.127826	ESTs				37.60				
	125097	AW576389	Hs.335774	ESTs					10.00	0.40		
50	125179	AW206468	Hs.103118	ESTs						3.12	2.79	
30	125200 125299	AW836591 T32982	Hs.103156 Hs.102720	ESTs ESTs				34.20			2.13	
	125400	AL110151	Hs.128797	DKFZP586D0824 protein	29.00			J 11.23				
	125810	H00083		aryl hydrocarbon receptor-interacting pr	32.20							
55	126176	BE242256	Hs.2441	KIAA0022 gene product		12.00		33.60				
33	126303 126403	D78841 AW629054	Hs.125976	HUM525A05B Human placenta polyA+ (TFuji ESTs; Weakly similar to metalloprotease/	35.80			33.00				
	126507	AL040137	Hs.23964	ESTs; Weakly similar to HC1 ORF [M.muscu	00.00			29.80				
	126773	AA648284	Hs.187584	ESTs	39.60							
60	127307	AW962712	Hs.126712	ESTs; Weakly similar to plL2 hypothetica	28.80			34.40				
60	127462 127486	AA760776 AW002846	Hs.293977 Hs.105468	aa59b04.s1 NCI_CGAP_GCB1 Homo saplens c ESTs	•	9.00		34.40				
	127572		Hs.191788	ESTs		0.00	2.36					
	127609	X80031	Hs.530	ESTS				29.40				•
65	127832		Hs.292396	ESTs				37.20			4.42	
65	127898 128073	AA774725 AW340720	Hs.128970 Hs.125983	ESTs ESTs				38.40			4,42	
	128101	AA905730	Hs.128254	ESTs		7.33		00.70				
	128149	·NM_012214	Hs.177576	mannosyl (alpha-1;3-)-glycoprotein beta-							2.58	
70	128212	W27411	Hs.336920	glutathione peroxidase 3 (plasma)			3.09	24.40				
70	128333 128364	W68800 N76462	Hs.12126 Hs.269152	ESTs; Weakly similar to LR8 (H.sapiens) ESTs; Weakly similar to ZINC FINGER PROT		10.00		34.40				
	128426	Al265784	Hs.145197	ESTs		10.00					4.31	
	128598	AA305407	Hs.102308	potassium inwardly-rectifying channel; s	31.20							
75	128634	AA464918		ESTs; Moderately similar to !!!! ALU SUB				41.60				
75	128687 128726	AW271273 Al311238	Hs.23767 Hs.104476	ESTs ESTs			•	87.00				4.02
	128773	NM_004131		granzyme B (granzyme 2; cytotoxic T-lymp					9.00			
	128833	W26667	Hs.184581	ESTs								3.76
90	128870	H39537	Hs.75309	eukaryotic translation elongation factor			2.66			2 10		
80	128878 128885	R25513 AF134803	Hs.10683	ESTs cofilin 2 (muscle)					11.00	3.10		
	128998	W04245	Hs.180141 Hs.107761	ESTs; Weakly similar to PUTATIVE RHO/RAC							3.21	
	129000	AA744902	Hs.107767	ESTs; Moderately similar to CaM-KII inhi						0.4-		3.68
85	129038	AW156903	Hs.108124	ribosomal protein L41	34.60		_			3.17		
S	129098	AW580945	Hs.330466	ESTs	34.0U		•					

	w	O 02/086	5443							PCT/	US02/:	12476
	129210	AL039940	Hs.202949	KIAA1102 protein								4.09
	129240 129262	AA361258 BE222198	Hs.237868 Hs.109843	interleukin 7 receptor ESTs			2.29			3.30		
_	129301	AF182277	Hs.330780	Human cytochrome P450-IIB (hIIB3) mRNA;						••••		4.05
5	129331	AW167668 AW245805	Hs.279772 Hs.110903	ESTs; Highly similar to CGI-38 protein (claudin 5 (transmembrane protein deleted			2.93					4.09
	129381 129565	X77777	Hs.198726	vasoactive intestinal peptide receptor 1			2.53	160.80				
	129595	U09550	Hs.1154	oviductal glycoprotein 1; 120kD					10.00	0.40		
10	129613 129782	AW978517 AW016932	Hs.172847 Hs.104105	ESTs; Weakly similar to collagen alpha 1 EST		9.00				3.40		
10	129950	F07783	Hs.1369	decay accelerating factor for complement		5.55		87.80				
	129958	R27496	Hs.1378	annexin A3			0.70	44.60				
	129959 130160	AL036554 AA305688	Hs.274463 Hs.267695	defensin; alpha 1; myeloid-related seque UDP-Gal:betaGlcNAc beta 1;3-galactosyltr			2.72	42.20				
15	130259	NM_000328	Hs.153614	retinitis pigmentosa GTPase regulator			2.54					
	130273 130312	AW972422 AF056195	Hs.153863 Hs.15430	MAD (mothers against decapentaplegic; Dr DKFZP586G1219 protein				51.60		3.16		
	130436	NM_001928		D component of complement (adipsin)								4.11
20	130523	AA999702	Hs.214507	ESTS		c 00				4.77		
20	130799 130885	AB028945 NM_005883	Hs.12696 Hs.20912	ESTs adenomatous polyposis coll like		6.00				3.54		
	131002	AL050295	Hs.22039	KIAA0758 protein								3.50
	131012 131031	AL039940 NM_001650	Hs.202949	KIAA1102 protein aquaporin 4	41.20	20.00						
25	131061	N64328	Hs.268744	ESTs; Moderately similar to KIAA0273 [H.	71.20			31.40				
	131066		Hs.22588	ESTS				29.60	9.00			
	131082 131087	AI091121 AF147709	Hs.246218 Hs.22824	ESTs; Weakly similar to zinc finger prot ESTs; Weakly similar to p160 myb-binding					5.00			3.86
20	131161	AF033382	Hs.23735	potassium voltage-gated channel; subfami						3.14		
30	131179	AA171388 Al824144	Hs.184482 Hs.23912	DKFZP586D0624 protein ESTs						3.80		3.67
	131182 131205	NM_003102		superoxide dismutase 3; extracellular			2.98					0.01
	131277	AA131466	Hs.23767	ESTs			3.15	32.20				
35	131281 131282	AA251716 X03350	Hs.25227 Hs.4	ESTs alcohol dehydrogenase 3 (class I); gamma				32.20				3.44
55	131285	A1567943	Hs.25274	ESTs; Moderately similar to putative sev						6.40		
	131355 131391	R52804 AW085781	Hs.25956 Hs.26270	DKFZP564D206 protein ESTs		8.00 10.00	•					
	131461	AA992841	Hs.27263	butyrate response factor 2 (EGF-response	28.80	10.00						
40	131487	F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp56401763 (f	20.00						4.03	
	131517 131545	AB037789 AL137432	Hs.263395 Hs.28564	ESTs; Highly similar to semaphorin VIa [39.00				11.00 ~			
	131583	AK000383	Hs.323092	ESTs; Weakly similar to dual specificity		-			10.00			
45	131647 131675	AA359615 H15205	Hs.30089 Hs.30509	ESTs ESTs			2.47			3.06		
73	131676	Al126821	Hs.30514	ESTs	45.80					4.55		
	131708	S60415	Hs.30941	calcium channel; voltage-dependent; beta			2.28					3.78
	131717 131756	X94630 AA443966	Hs.3107 Hs.31595	CD97 antigen ESTs				40.60				
50	131762	AA744902	Hs.107767	ESTs; Moderately similar to CaM-KII inhi			0.07	•	•			3.67
	131821 131839		Hs.164577 Hs.33010	ESTs KIAA0633 protein			2.87				3.48	
	131861	AL096858	Hs.184245	KIAA0929 protein Msx2 Interacting nuclea	54.00							
55	132015	Al418006 BE622641	Hs.3731 Hs.38489	ESTs .				49.20 34.80			•	
55	132070 132242	AA332697	Hs.42721	ESTS			2.68	04.00				
٠.	132334		Hs.45033	lacrimal proline rich protein	24.00		4.66					
	132476 132490	AL119844 NM_001290	Hs.49476 Hs.4980	Homo saplens clone TUA8 Cri-du-chat regi LIM binding domain 2	34.20		2.66					
60	132533	Al922988	Hs.172510	ESTs		13.00						
	132598 132619	X80031 H28855	Hs.530 Hs.53447	collagen; type IV; alpha 3 (Goodpasture ESTs; Moderately similar to kinesin ligh				30.60		4.02		
	132652	N41739	Hs.61260	ESTs				•		3.18		
65	132726	N52298	Hs.55608	ESTs; Weakly similar to cDNA EST yk484g1			0.27		11.43			
05	133028 133071	R51604 BE384932	Hs.300842 Hs.64313	ESTs .			2.37 2.27				•	
	133120	NM_003278	Hs.65424	-tetranectin (plasminogen-binding protein			2.63					c 40
•	133129 133147	AA428580 AA026533	Hs.65551 Hs.66	ESTs Interleukin 1 receptor-like 1			6.20					5.49
70	133151	NM_014051	Hs.94896	ESTs			0.40			3.69		
•	133213 133276		Hs.6786 Hs.69504	ESTs ESTs				31.40	9.00			
	133377	AW978439 AJ131245	Hs.7239	SEC24 (S. cerevisiae) related gene famil	41.20	•			5.00			
75	133407	AF017987	Hs.7306	secreted frizzled-related protein 1	50.20			•		2 70		
75	133535 133537	AL134030 U41518	Hs.284180 Hs.74602	protocadherin 2 (cadherin-like 2) aquaporin 1 (channel-forming integral pr						3.72		3.35
	133656	BE149455	Hs.75415	Accession not listed in Genbank			2.65					
	133689	NM_001872	Hs.75572	carboxypeptidase B2 (plasma)				90.80		3.05		
80	133779 133978	T58486 AF035718	Hs.222566 Hs.78061	ESTs transcription factor 21			2.92			J.UJ		
	133985	L34657	Hs.78146	platelet/endothelial cell adhesion molec			-					3.45
	134000 134111	AW175787 Al372588	Hs.334841 Hs.8022	selenium binding protein 1 TU3A protein			4.49					4.05
0.5	134185	AA285136	Hs.301914	Homo saplens mRNA; cDNA DKFZp586K1220 (f							3.27	
85	134204	AI873257	Hs.7994	ESTs; Weakly similar to CGI-69 protein (40.80				

	W	O 02/086	443							PCT/US02/12476		
	134641 134677	Al092634 AA251363	Hs.156114 Hs.177711	protein tyrosine phosphatase; non-recept ESTs				32.20	3.76			
	134745 134749	NM_000685 T28499	Hs.89472 Hs.89485	angiotensin receptor 1B carbonic anhydrase IV		15.00	3.05					
5	134786	T29618	Hs.89640	angiopoietin 1 receptor, TEK tyrosine ki				57.80		3.73		
	134825 134978	U33749 AI829008	Hs.197764 Hs.333383	thyroid transcription factor 1 ficolin (collagen/librinogen domain-cont			2.52			3.73		
	135010 135053	N50465 AW796190	Hs.92927 Hs.93678	ESTs ESTs				31.60	3.21			
10	135081	AF069517	Hs.173993	RNA binding motif protein 6	28.80				0.0.			
	135091 135135	AA493650 AA775910	Hs.94367 Hs.95011	ESTs syntrophin; beta 1 (dystrophin-associate		8.00				4.24		
	135203	C15737	Hs.269386	ESTs		0.00			4.31			
15	135236 135266	Al636208 R41179	Hs.96901 Hs.97393	ESTs Human mRNA for KIAA0328 gene; partial cd	43.00				(5.42		
	135346	NM_000928	Hs.992	phospholipase A2; group IB (pancreas)			3.82 4.15					
	135378 135387	AW961818 NM_001972	Hs.24379 Hs.99863	potassium voltage-gated channel; shaker- elastase 2; neutrophil	37.20		4.15					
20	135388 135402	W27965 L12398	Hs.99865 Hs.99922	EST dopamine receptor D4	38.80	:			4.21			

TABLE 2B shows the accession numbers for those primekeys lacking uniquenelD's for Table 2A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

30	Pkey: CAT numb Accession	Unique Eos probeset identifier number ber: Gene cluster number :: Genbank accession numbers
	Pkey	CAT number Accessions
35	108447 108550 108655 102397	434527 AA079126 120073_1 AA084867 AA084996 127522_1 AA099960 AA113013 443711 U41898
40	126303 125810 103627 121366 114609	1525933_1
45	115272 108338 108434 123802 102310	172113_1 AW015947 AA211890 AA279425 112186_1 AA070773 AA070774 114012_1 AA078899 AA078782 AA075788 genbank_AA620448 AA620448 NOT_FOUND_entrez_U33839 U33839
50	102636 104776 120504 113502 108499	entrez_U67092_U67092 genbank_AA026349
55	101308 108629 103098 103241 103508	entrez_L41390
60	103575 119514 121082 128634 105817	entrez_Z26256 Z26256 NOT_FOUND_entrez_W37937 W37937 genbank_AA398722 AA398722 AA464918_at AA464918 genbank_AA397825 AA397825
65	121518 114449 114648 121950 107723	genbank_AA412155 AA412155 genbank_AA020736 AA020736 genbank_AA101056 AA101056 genbank_AA429515 AA429515 genbank_AA015967 AA015967

Table 3A shows 452 genes up-regulated in chronically diseased lung relative to normal lung. Chronically diseased lung samples represent chronic non-matignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5 Unique Eos probeset identifier number Pkey: ExAcon: Exemplar Accession number, Genbank accession number UnigenelD: Unigene number Unigene Tille: Unigene gene title 80th percentile of AI for chronically diseased lung samples divided by the 90th percentile of AI for normal lung samples. R1: 80th percentile of AI for chronically diseased lung samples divided by the 90th percentile of normal lung samples, squamous cell carcinomas and 10 R2 70th percentile of Al for chronically diseased lung samples minus the 15th percentile of Al for all normal lung, chronically diseased lung and turnor samples R3: divided by the 90th percentile of normal lung samples, squamous cell carcinomas and adenocarcinomas minus the 15th percentile of AI for all normal lung, chronically diseased lung and tumor samples 15 Pkey R1 R2 R3 UnigenelD Unigene Title ExAccn U50531 Human BRCA2 region, mRNA sequence CG030 12.40 135423 Hs.138751 20 135378 AW961818 MUM2 protein 2.13 Hs.24379 Hs.992 135346 NM 000928 phospholipase A2, group IB (pancreas) 135235 AW298244 Hs.293507 **FSTs** 12.40 135057 Hs.93810 cerebral cavernous malformations 1 11.67 U90268 BE305081 8.00 Hs.169358 134951 hypothetical protein 25 8.20 134799 M36821 Hs.89690 GRO3 oncogene TEK tyrosine kinase, endothelial (venous Hs.89640 134786 T29618 Hs.163697 glutamate receptor, ionotrophic, AMPA 4 29.80 NM 000829 134772 1.93 BE246762 Hs.89499 arachidonate 5-lipoxygenase 134752 134749 Hs.89485 carbonic anhydrase IV 2.07 T28499 30 134696 BE326276 Hs.8861 **ESTs** lymphocyte antigen 64 (mouse) homolog, r 134636 NM 005582 Hs.87205 13.60 glyceronephosphate O-acyltransferase ESTs, Weakly similar to A55380 faciogeni 134627 AI018768 Hs.12482 1.92 134622 Hs.293097 1.92 AW975159 U66615 Hs.172280 SWI/SNF related, matrix associated, acti 13.20 134570 35 adenosine deaminase, RNA-specific, B1 (h 134561 Hs.85302 1.78 U76421 134468 NM 001772 Hs.83731 CD33 antigen (gp67) 6.20 NM_006416 solute carrier family 35 (CMP-sialic ad 134417 Hs.82921 134343 D50683 Hs.82028 transforming growth factor, beta recepto Hs.8700 deleted in liver cancer 1 134323 BE170651 40 134300 NM 001430 Hs.8136 endothetial PAS domain protein 1 134299 AW580939 Hs.97199 complement component C1q receptor X52075 Hs.80738 sialophorin (gpL115, leukosialin, CD43) 20.60 134253 134182 D52059 Hs.7972 KIAA0871 protein 12.20 platelet/endothelial cell adhesion motec 133985 L34657 Hs.78146 45 transcription factor 21 133978 AF035718 Hs.78061 133835 A1677897 Hs.76640 RGC32 protein dihydropyrimidinase-like 2 133651 A)301740 Hs.173381 nucleolar and coiled-body phosphprotein 15.20 133633 D21262 Hs.75337 ESTs, Moderately similar to ALU7_HUMAN A 133565 AW955776 Hs.313500 50 Hs.178112 1.77 133548 ĀW946384 DNA segment, single copy probe LNS-CAI/L 133488 AA335295 Hs.74120 adipose specific 2 133478 X83703 Hs.31432 cardiac ankyrin repeat protein 2.08 Hs.293676 9.60 133337 AF085983 Hs.183639 hypothetical protein FLJ10210 1.77 133200 AB037715 55 133153 Hs.66170 HSKM-B protein AF070592 22.60 133130 Al128606 Hs.6557 zinc finger protein 161 Hs.65424 tetranectin (plasminogen-binding protein 133120 NM_003278 AW168082 Hs.169449 13.80 132928 protein kinase C, alpha Hs.29900 KIAA0960 protein 132836 AB023177 60 132799 W73311 Hs.169407 SAC2 (suppressor of actin mutations 2, 41.60 132742 AA025480 Hs.292812 ESTs, Wealdy similar to T33468 hypotheti 40.40 X12830 Hs.193400 7.20 132548 interleukin 6 receptor 132476 AL119844 Hs.49476 Homo sapiens clone TUA8 Cri-du-chat regi 4.76 AK001942 Hs.4863 hypothetical protein DKFZp566A1524 1.88 132439 65 132240 AB018324 Hs.42676 KIAA0781 protein 21.20 132210 NM_007203 Hs.42322 A kinase (PRKA) anchor protein 2 1.99 132199 Hs.165084 AL041299 **ESTs** 15.20 1.76 131751 T96555 Hs.31562 ESTs, Moderately similar to A46010 X-li 131745 A1828559 Hs.31447 27.80 70 4.00 131694 NM_000246 Hs.3076 MHC class II transactivator 131686 NM_012296 Hs.30687 GRB2-associated binding protein 2 131676 Al126821 Hs.30514 6.20 **ESTs** Z45794 Hs.238809 **ESTs** 21.40 131629 131589 C18825 Hs.29191 epithelial membrane protein 2 75 131536 AA019201 Hs.269210 9.40 131517 AB037789 Hs.263395 sema domain, transmembrane domain (TM), 3.59 131355 R52804 Hs.25956 DKFZP564D206 protein 4.48 15.00 131253 R71802 Hs.24853 **ESTs**

131207

131156

131066

131061

131053 130895

130762

80

85

AF104266

A1472209

AW169287

AA348541

AA641767

D84371

N64328

Hs.24212

Hs.323117

Hs.22588

Hs.268744

Hs.296261

Hs.21015

Hs.1898

latrophilin

KIAA1796 protein

paraoxonase 1

guanine nucleotide binding protein (G pr hypothetical protein DKFZp564L0864 simil

ESTs

EST8

16.60

12.00

1.75

1.84

1.93

3.54

	W	O 02/086	443				
	130657	AW337575	Hs.201591	EST8			
	130655	AI831962	Hs.17409	cysteine-rich protein 1 (intestinal)			2.09
	130589 130562	AL110226 D50402	Hs.16441 Hs.182611	DKFZP434H204 protein solute carrier family 11 (proton-coupled			2.08 1.91
5	130555	R69743	Hs.116774	Integrin, alpha 1		9.60	
	130365	W56119	Hs.155103	eukaryotic translation initiation factor	11.60	0.00	
	130273 130259	AW972422 NM_000328	Hs.153863 Hs.153614	MAD (mothers against decapentaplegic, Dr relinitis pigmentosa GTPase regulator		6.60	1.91
	130090	H97878	Hs.132390	zinc finger protein 36 (KOX 18)	21.20		1.01
10	129958	R27496	Hs.1378	annexin A3		5.05	
	129898 129875	AI672731	Hs.13256	ESTs	18.60		
	129699	AA181018 AB007899	Hs.13056 Hs.12017	hypothetical protein FLJ13920 homolog of yeast ubiquitin-protein ligas	10.00		
	129626	F13272	Hs.111334	ferritin, light polypeptide			
15	129598	N30436	Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	22.63		
	129593 129565	AI338247 X77777	Hs.98314 Hs.198726	Homo sapiens mRNA; cDNA DKFZp586L0120 (f vasoactive intestinal peptide receptor 1			2.53
	129527	AA769221	Hs.270847	delta-tubulin	39.20		2.00
00	129402	W72062	Hs.11112	ESTs			2.11
20	129385	AA172106	Hs.110950	Rag C protein	15.20		
	129315 129312	NM_014563 T97579	Hs.174038 Hs.110334	spondyloepiphyseal dysplasia, lale ESTs, Weakly similar to 178885 serine/th	12.40 20.83		
	129240	AA361258	Hs.237868	interleukin 7 receptor	20.00		1.95
25	129210	AL039940	Hs.202949	KIAA1102 protein			
25	129122 129057	AW958473 N90866	Hs.301957 Hs.276770	nudix (nucleoside diphosphate linked moi CDW52 antigen (CAMPATH-1 antigen)		4.20	
	128946	Y13153	Hs.107318	kynurenine 3-monooxygenase (kynurenine 3		5.20	
	128798	AF015525	Hs.302043	chemokine (C-C motif) receptor-like 2			
30	128789	AW368576	Hs.139851	caveolin 2	40.00		2.24
30	128778 128766	AA504776 AW160432	Hs.186709 Hs.296460	ESTs, Weakly similar to 138022 hypothet craniofacial development protein 1	12.20 26.40		
		R44238	Hs.155546	KIAA1080 protein; Golgi-associated, gamm	20.10		1.78
	128624	BE154765	Hs.102647	ESTs. Weakly similar to TRHY_HUMAN TRICH			2.51
35	128609	NM_003616	Hs.102456	survival of motor neuron protein interac	16.00		
33	128603 128598	NM_004915 AA305407	Hs.10237 Hs.102308	ATP-binding cassette, sub-family G (WHIT potassium inwardly-rectifying channel, s	12.80	4.00	
	128458	H55864	Hs.56340	ESTs			
	128061	AF150882	Hs.186877	sodium channel, voltage-gated, type XII,	17.20		
40	127968 127959	AA830201 Al302471	Hs.124347 Hs.124292	ESTs Horno saplens cDNA: FLJ23123 fis, clone L	21.30		
10	127944	Al557081	Hs.262476	S-adenosylmethionine decarboxylase 1	10.60		
	127925	AA805151	Hs.3628	mitogen-activated protein kinase kinase	13.40		
	127896	A1669586	Hs.222194	ESTs	44.00	7.00	
45	127859 127817	AA761802 AA836641	Hs.291559 Hs.163085	ESTs ESTs	14.00 14.00		•
	127742	AW293496	Hs.180138	ESTs	11.00		
	127628	AI240102	Hs.322430	NDRG family, member 4	11.10	•	
	127609 127582	X80031 AA908954	Hs.530 Hs.130844	collagen, type IV, alpha 3 (Goodpasture ESTs	19.60		
50	127543		Hs.157392	Homo saplens cDNA FLJ20780 fis, clone CO	15.40		
	127535	AA568424	Hs.164450	ESTs	17.50	•	
	127404 127396	AI379920 L31968	Hs.270224 Hs.187991	ESTs DKFZP564A122 protein	14.60 15.40 - "		
	127374	AA442797	Hs.312110	ESTs, Weakly similar to I38022 hypothet	14.60	•	
55	127346	AA203616	Hs.44896	DnaJ (Hsp40) homolog, subfamily B, membe	21.00	•	
	127340	BE047653	Hs.119183	ESTs, Weakly similar to ZN91_HUMAN ZINC	15.80		
	127307 127242	AW962712 AW390395	Hs.126712 Hs.181301	ESTs, Weakly similar to AF191020 1 E2IG5 cathepsin S	22.60		
~	127167	AA625690	Hs.190272	ESTs	21.40		
60	127046	AA321948	Hs.293968	ESTs	41.20		
	126928 126900	AA480902 AF137386	Hs.137401 Hs.12701	ESTs plasmolipin	11.00		1.78
	126852	AA399961	110.12101	gb:zu68c01.r1 Soares_testis_NHT Homo sap		5.60	
65	126816	AA248234	11	gb:csg2228.seq.F Human fetal heart, Lamb	12.20		
65	126812	AB037860	Hs.173933	nuclear factor I/A	17.19 13.57		
	126666 126645	AA648886 AA316181	Hs.151999 Hs.61635	ESTs six transmembrane epithelial antigen of	13.57 15.40		
	126592	AI611153	Hs.6093	Homo sapiens cDNA: FLJ22783 fis, clone K		4.67	
70	126556	AF255303	Hs.112227	membrane-associated nucleic acid binding	18.00		
70	126433 126299	AA325606 AW979155	Hs.298275	gb:EST28707 Cerebellum II Homo saplens c amino acid transporter 2	16.77 14.60		
	126218	AL049801	Hs.13649	Novel human gene mapping to chomosome 13	14.00	3.50	
	126182	AA721331	Hs.293771	ESTs	13.40		
75	126177 126142	AW752782 H86261	Hs.129750 Hs.40568	hypothetical protein FLJ10546	18.20 14.00		
	126077	M78772	Hs.210836	ESTs ESTs	16.59		
	125994	A1990529	Hs.270799	ESTs	17.40		
	125934	AA193325	Hs.32646	hypothetical protein FLJ21901	13.00		
80	125847 125831	AW161885 H04043	Hs.249034	ESTs gb:yj45c03.r1 Soares placenta Nb2HP Homo	49.57		
	125731	R61771	Hs.26912	ESTs	13.20		
	125676	BE612918	Hs.151973	hypothetical protein FLJ23511	11.20		
	125561 125552	F18572 H09701	Hs.22978 Hs.278366	ESTs, Weakly similar to ALU4_HUMAN ALU S ESTs, Weakly similar to 138022 hypotheti	12.60		•
85	125552	H49193	Hs.124984	ESTs, Moderately similar to ALU7_HUMAN A	33.40		
			•	•			

	W	O 02/086	443				
		AA903229	Hs.153717	ESTs			1.80
	125331	AJ422996	Hs.161378	ESTs	38.00		
	125309	T12411	Hs.183745	hypothetical protein FLJ13456	18.20		
_	125167	AL137540	Hs.102541	netrin 4			1.95
5	125139	AW194933	Hs.9788	hypothetical protein MGC10924 similar to	24 00		1.84
	125042	T78906	Hs.269432	ESTs, Moderately similar to ALU1_HUMAN serum deprivation response (phosphatidy)	21.80	10.60	
	124711 124631	NM_004657 NM_014053	Hs.26530 Hs.270594	FLVCR protein	23.20	10.00	
	124578	N68321	Hs.231500	EST	21.43		
10	124574	AL036596	Hs.42322	A kinase (PRKA) anchor protein 2			1.77
	124472	N52517	Hs.102670	EST	37.20		
	124438	BE178536	Hs.11090	membrane-spanning 4-domains, subfamily A	44.04		
	124357	N22401	11- 000000	gb:yw37g07.s1 Morton Fetal Cochlea Homo	14.64	4.00	
15	124306	AW973078	Hs.293039 Hs.151323	ESTs ESTs		4.00	
13	124214 124097	H58608 AW298235	Hs.101689	ESTs		27.20	
	123978	T89832	Hs.170278	ESTs			2.03
	123972	T46848	Hs.70337	immunoglobulin superfamily, member 4		6.00	
•	123961	AL050184	Hs.21610	DKFZP434B203 protein			1.79
20	123936	NM_004673	Hs.241519	angiopoletin-like 1		15.80	
	123802	AA620448	11: 040449	gb:ae58c09.s1 Stratagene lung carcinoma		4.23	
	123734	AA609861	Hs.312447	ESTs gb:no97c02.s1 NCI_CGAP_Pr2 Homo sapiens	33.60	4.20	
	123619 123596	AA602964 AA421130	Hs.112640	EST	10.93		
25	123336	AA384564	Hs.108829	ESTs	10.00		2.18
	123340	AA504264	Hs.182937	peptidylprolyl isomerase A (cyclophilin	11.20		
	123190	AA489212	Hs.105228	EST	14.20		
	123136	AW451999	Hs.194024	ESTs		7.00	
20	123073	AA485061	Hs.105652	ESTS	31.20	4.00	٠
30	123055	AA482005	Hs.105102	ESTs, Weakly similar to reverse transcri		4.80 5.00	
	122699 122679	AA456130 AA811286	Hs.301721 Hs.192837	KIAA1255 protein ESTs, Weakly similar to ALU5_HUMAN ALU S	14.40	5.00	
	122633	NM_001546	Hs.34853	Inhibitor of DNA binding 4, dominant neg			
	122553	AA451884	Hs.190121	ESTs	40,00		
35	122544	AW973253	Hs.292689	ESTs	15.40		
	122485	AA524547	Hs.160318	FXYD domain-containing ion transport reg		40.40	1.81
	122211	AA300900	Hs.98849	ESTs, Moderately similar to AF161511 1 H		12.10	1.95
	122127 122011	AW207175	Hs.106771	ESTs gb:zw78a10.s1 Soares_testis_NHT Homo sap			1.89
40	121992	AA431082 Al860775	Hs.98506	ESTs		3.60	******
70	121989	W56487	Hs.193784	Homo sapiens mRNA; cDNA DKFZp586K1922 (f		•	2.01
	121835	AB033030	Hs.300670	KIAA1204 protein			1.85
	121726	AF241254	Hs.178098	angiotensin I converting enzyme (peptidy	12.43		4
is	121690	AV660305	Hs.110286	ESTs			1.82
45	121643	AA640987	Hs.193767	ESTs EST	14.00		
	121633 121622	AA417011 AA416931	Hs.98175 Hs.126065	ESTs	14.00	16.40	
	121497	AA412031	Hs.97901	EST	11.20		
	121351	AW206227	Hs.287727	hypothetical protein FLJ23132	12.20		
50	121314	W07343	Hs.182538	phospholipid scramblase 4			1.83
	121242	AA400857	Hs.97509	ESTs	22.40		
	121059	AA393283		gb:zt74e03.r1 Soares_testis_NHT Homo sap	14.80 21.20		
	120934 120755	AA226198 AA312934	Hs.190745	gb:nc26a07.s1 NCI_CGAP_Pr1 Homo sapiens Homo sapiens cDNA: FLJ21326 fis, clone	21.20		1.79
55	120637	AA811804	113.130743	gb:ob39a05.s1 NCI_CGAP_GCB1 Homo sapiens	20.00		
	120484	AA253170	Hs.96473	EST	40.20		
	120336	N85785	Hs.181165	eukaryotic translation elongation factor		6.60	
	120266	AI807264	Hs.205442	ESTs, Weakly similar to T34036 hypotheti	16.80	4 ==0	
60	120132	W57554	Hs.125019	ESTs .		4.73	1 75
60	120041 119996	AA830882 W88996	Hs.59368 Hs.59134	ESTS EST		7.20	1.75
	119970	AA767718	Hs.93581	hypothetical protein FLJ10512	11.20	1.20	
	119861	W78816	Hs.49943	ESTs, Weakly similar to S65657 alpha-1C-	•	3.78	
	119824		Hs.184	advanced glycosylation end product-speci			
65	119740	AW021407	Hs.21068	hypothetical protein	20.20		
	119271	AI061118	Hs.65328	Fanconi anemia, complementation group F	15.20		
	119221	C14322	Hs.250700	tryptase beta 1	12.50		
	119126	R45175	Hs.117183	ESTs	12.60		
70	119073 118928	BE245360 AA312799	Hs.279477 Hs.283689	ESTs activator of CREM in testis		10.00	
70	118901	AW292577	Hs.94445	ESTs		3.96	
	118661	AL137554	Hs.49927	protein kinase NYD-SP15		9.60	
	118607	Al377444 ·	Hs.54245	ESTs, Weakly similar to \$65824 reverse t	10.40		
75	118449	Al813865	Hs.164478	hypothetical protein FLJ21939 similar to	40.00		1.90
75	118416	N66028	Hs.49105	FKBP-associated protein	16.20	4.00	
	118379	N64491	Hs.48990	ESTs gb:yy62f01.s1 Soares_multiple_sclerosis_		4.00 6.60	
	118329 118320	N63520 N63451	Hs.141600	gb:yyoziu1.51 Soares_muliple_scielosis_ ESTs, Weakly similar to alternatively s		3.80	
	118253	AA497044	Hs.20887	hypothetical protein FLJ10392	17.60	5.50	
80	118124	N56968	Hs.46707	chromosome 21 open reading frame 37	14.00		
	118056	AB037748	Hs.42768	hypothetical protein DKFZp76100113			1.86
	118032	N52802	Hs.47544	· EST		5.00	
	117840	T26379	Hs.48802	Homo saplens clone 23632 mRNA sequence		4.00	1.90
85	117404 117314	N39725 N32498	Hs.15220 Hs.42829	zinc finger protein 106 ESTs	14.20		1.50
55	. 11014	POPUSE	110,72023	v		•	

PCT/US02/12476

WO 02/086443							
	117209	W03011	Hs.306881	MSTP043 protein			
	117023	AW070211 H50834	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f	20.20		2.31
	116814 116784	AB007979	Hs.301281	gb:yp86a10.s1 Soares fetal liver spleen Homo sapiens mRNA, chromosome 1 specific	20.20	3.51	
5	116766	Al608657	Hs.95097	ESTs	16.20		
	116712	AW901618	Hs.61935	Homo sepiens mRNA; cDNA DKFZp7611071 (fr	19.60	6.80	
	116707 116351	H10344 AL133623	Hs.49050 Hs.82501	ESTs, Wealdy similar to A Chain A, Human similar to mouse Xm1 / Dhm2 protein	18.60 19.40		
10	116279	AW971248	Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU S			
10	116166	AL039940	Hs.202949	KIAA1102 protein			2.13
	116152 116117	AL040521 BE613410	Hs.15220 Hs.31575	zinc finger protein 106 SEC63, endoplasmic reliculum translocon	13.20		1.75
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	30.11		
1.5	115965	AA001732	Hs.173233	hypothetical protein FLJ10970			2.36
15	115955	AF263613	Hs.44198 Hs.332938	Intracellular membrane-associated calciu	18.20 18.57		
	115844 115683	Al373062 AF255910	Hs.54650	hypothetical protein MGC5370 junctional adhesion molecule 2	10.01	23.00	
•	115673	AA406341	Hs.269908	Homo saplens cDNA FLJ11991 fis, clone HE	11.82		
20	115672	Al889110	Hs.73251	ESTs	10.60		4.70
20	115566 115313	AI142336 AA808001	Hs.43977 Hs.184411	Human DNA sequence from clone RP11-196N1 albumin	25.20		1.76
	115279	AW964897	Hs.290825	ESTs	20.20	8.00	
	115230	AA278300	Hs.124292	Homo saplens cDNA: FLJ23123 fis, done L	44.00		1.80
25	115110 114999	AK001671 BE246481	Hs.11387 Hs.87856	KIAA1453 protein ESTs	14.20 19.20		
25 .	114930	AA237022	Hs.188717	ESTs	10.20	5.60	
	114922	AA235672	Hs.87491	ESTs		3.60	
	114837 114769	BE244930 AA149060	Hs.166895	ESTs ESTs	43.70 11.00		
30	114761	AA143781	Hs.296100 Hs.126280	hypothetical protein FLJ23393	14.00		
	114736	AI610347	Hs.103812	ESTs, Moderately similar to ALU1_HUMAN A		4.20	
	114596	AA310162	Hs.169248	cytochrome c	10.71		
	114518 114455	AW163267 H37908	Hs.106469 Hs.271616	suppressor of var1 (S.cerevisiae) 3-like ESTs, Weakly similar to ALU8_HUMAN ALU S	20.40 20.40		
35	114452	Al369275	Hs.243010	Homo saplens cDNA FLJ14445 fis, clone HE	20.10	17.20	
	114359	NM_016929	Hs.283021	chloride intracellular channel 5	40.40		2.09
	114357 114251	R41677 H15261	Hs.6107 Hs.21948	Homo sapiens cDNA FLJ14839 fis, clone OV ESTs	12.40		2.00
	114138	AW384793	Hs.15740	Homo sapiens mRNA; cDNA DKFZp434E033 (fr		11.40	2.00
40	114124	W57554	Hs.125019	ESTs		6.04	
	113946	AW083883	Hs.37896	Homo sapiens cDNA FLJ13510 fis, clone PL			1.82
	113695 113606	T96965 NM_013343	Hs.17948 Hs.278951	ESTs, Weakly similar to ALUB_HUMAN IIII NAG-7 protein			2.15
4.5	113590	R49642	Hs.142447	ESTs, Weakly similar to ALU1_HUMAN ALU S		3.60	
45	113560	T91015	Hs.268626	ESTs	32.00		
	113552 113540	Al654223 AW152618	Hs.16026 Hs.16757	hypothetical protein FLJ23191 ESTs			
	113502	T89130	1.5110101	gb:ye12d01.s1 Stratagene lung (937210) H		8.35	
50	113288	AJ076838	Hs.12967	ESTs	12.40	4.07	
50	113252 113238	NM_004469 R45467	Hs.11392 Hs.189813	c-fos induced growth factor (vascular en ESTs		4.27	
	113203	AA743563	Hs.10305	ESTs	21.20		. 4
	113195	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom			1.92
55	113089 113076	T40707 AF033199	Hs.270862 Hs.8198	ESTs	14.33	6.00	
33	113070	T23699	Hs.7246	zinc finger protein 204 ESTs		9.40	
	112937	AI694320	Hs.6295	ESTs, Weakly similar to T17248 hypotheti		12.20	
	112891	T03927	Hs.293147	ESTs, Moderately similar to A46010 X-li	10.57		
60	112794 112691	R97018 R88708	Hs.220647	gb:yq74b08.s1 Soares fetal liver spleen ESTs	26.60 15.33		
	112602	AW004045	Hs.203365	ESTs	15.60		
	112366	AF035318	Hs.12533	Homo sapiens clone 23705 mRNA sequence	15.40		
•	112210 112064	R49645 AL049390	Hs.7004 Hs.22689	ESTs Homo saplens mRNA; cDNA DKFZp586O1318 (f	14.00 13.00		
65	111998	R42379	Hs.138283	ESTs	11.00		
	111987	NM_015310	Hs.6763	KIAA0942 protein	22.40		4 77
	111803 111737	AA593731 H04607	Hs.325823 Hs.9218	ESTs, Moderately similar to ALU5_HUMAN A ESTs			1.77 1.86
	111605	T91061	Hs.194178	ESTs, Moderately similar to PC4259 ferri	23.00		
70	111510	R07856	Hs.16355	ESTs	11.02		4.00
	111341 111280	AL157484 AA373527	Hs.22483 Hs.19385	Homo sapiens mRNA; cDNA DKFZp762M127 (fr CGI-58 protein	18.40		1.88
	111247	AW058350	Hs.16762	Homo saplens mRNA; cDNA DKFZp564B2062 (f	10.40		
75	111232	Al247763	Hs.16928	ESTs	27.60		
75	110942 110924	R63503 AW058463	Hs.28419 Hs.12940	ESTs zinc-finners and homeoboxes 1	14.80 24.71		
	110837	H03109	Hs.108920	zinc-fingers and homeoboxes 1 HT018 protein	64.11		2.18
	110824	Al767183	Hs.26942	ESTs	12.20		
80	110776	AB032417 H60869	Hs.19545	frizzled (Drosophila) homolog 4	13.00		1.75
50	110576 110369	AK000768	Hs.37889 Hs.107872	ESTs hypothetical protein FLJ20761	13.00	5.60	
	110099	R44557	Hs.23748	ESTs			2.31
	109984	A)796320 AA001266	Hs.10299	Homo sapiens cDNA FLJ13545 fis, clone PL	11.25		
85	109958 109893	AA001266 AA884208	Hs.133521 Hs.30484	ESTs ESTs	11.20		2.68
_							

	109842	AW818436	Hs.23590	solute carrier family 16 (monocarboxylic	23.83		
	109837	H00656	Hs.29792	ESTs, Weakly similar to 138022 hypotheti		47.00	3.91
	109796	AI800515	Hs.12024	ESTS		17.20	
5	109688 109648	R41900 H17800	Hs.22245 Hs.7154	ESTs ESTs	22.80	9.60	
,	109613	H47315	Hs.27519	ESTs	22.00		
	109550	AW021488	Hs.26981	ESTs			
	109523	AW193342	Hs.24144	ESTs			1.89
10	109472	AK001989	Hs.91165	hypothetical protein	45.00	6.00	
10	109355 109260	AA524525 AW978515	Hs.48297 Hs.131915	DKFZP586C1620 protein KIAA0863 protein	15.00 25.60		
	109260	AA128654	H2, 131313	gb:zn98g07.s1 Stratagene fetal retina 93	14.20		
	108663	BE219231	Hs.292653	ESTs, Weakly similar to T26845 hypotheti	11.00		
	108573	AA086005		gb:zi84c04.s1 Stratagene colon (937204)	26.00		
15	108480	AL133092	Hs.68055	hypothetical protein DKFZp434l0428			4.02
	108382	NM_006770	Hs.67726	macrophage receptor with collagenous str	45.00		1.83
	108174 108138	AA055632 AL049990	Hs.303070 Hs.51515	ESTs Homo sapiens mRNA; cDNA DKFZp564G112 (fr	15.20	3.60	
	108087	AA045708	Hs.40545	ESTs	15.44	0.00	
20	108048	A1797341	Hs.165195	Homo sapiens cDNA FLJ14237 fis, clone NT		11.40	
	108041	AW204712	Hs.61957	ESTs			
	107997	AL049176	Hs.82223	chordin-like		4.76	
	107994	AA036811	Hs.48469	LIM domains containing 1	14.20		
25	107922 107681	BE153855 BE379594	Hs.61460 Hs.49136	lg superfamily receptor LNIR ESTs, Moderately similar to ALU7_HUMAN A	51.80		
23	107666	AA010611	Hs.60418	EST	29.20		
	107332	T87750	Hs.183297	DKFZP566F2124 protein	10.73		
	107292	BE166479	Hs.4789	Homo saplens serologically defined breas	32.00		
20	107230	AI034467	Hs.34650	ESTs	17.40		
30	107168	W57578	Hs.237955	RAB7, member RAS oncogene family	10.43		
	107160	AA314490	Hs.27669	KIAA1563 protein KIAA1272 protein	11.40		
	107054 107029	A1076459 AF264750	Hs.15978 Hs.288971	myeloid/lymphoid or mixed-lineage leukem	21.40		
	106999	H93281	Hs.10710	hypothetical protein FLJ20417	35.80		
35	106954	AF128847	Hs.204038	Indolethylamine N-methyltransferase			1.76
	106870	A1983730	Hs.26530	serum deprivation response (phosphatidyl			
	106865	AW192535	Hs.19479	ESTs	13.40	7 42	
	106844	AA485055	Hs.158213	sperm associated antigen 6		7.13 7.00	
40	106820 106818	NM_016831 AK002135	Hs.12592 Hs.3542	period (Drosophila) homolog 3 hypothetical protein FLJ11273	13.00	7.00	
40	106797	A1768801	Hs.169943	Homo sapiens cDNA FLJ13569 fis, clone PL			2.05
	106773	AA478109	Hs.188833	ESTs			
	106747	NM_007118	Hs.171957	triple functional domain (PTPRF interact	12.60		
45	106743	BE613328	Hs.21938	hypothetical protein FLJ12492	10.60		
45	106667	AW360847	Hs.16578	ESTs			2.40
	106605 106567	AW772298 AW450408	Hs.21103 Hs.86412	Homo sapiens mRNA; cDNA DKFZp564B076 (fr chromosome 9 open reading frame 5			1.78
	106562	AL031846	Hs.152151	plakophilin 4			1.76
	106536	AA329648	Hs.23804	ESTs, Weakly similar to PN0099 son3 prot			2.19
50	106533	AL134708	Hs.145998	ESTs	23.20		
	106507	AA259068	Hs.267819	protein phosphatase 1, regulatory (inhib	15.20		
	106490	AA404265	Hs.115537	putative dipeptidase	10.44		
	106474	BE383668	Hs.42484 Hs.126083	hypothetical protein FLJ10618 ESTs	10.44	29.80	
55	106211 105986	AA428240 AB037722	Hs.8707	KIAA1301 protein		3.70	
00	105894	Al904740	Hs.25691	receptor (calcitonin) activity modifying			1.94
	105847	AW964490	Hs.32241	ESTs, Weakly similar to \$65657 alpha-1C-			1.75
	105803		Hs.160999	ESTs, Moderately similar to A56194 throm			2.47
60	105731	AAB34664	Hs.29131	nuclear receptor coactivator 2	10.71		
60	105729	H46612	Hs.293815	Homo sapiens HSPC285 mRNA, partial cds	23.40		
	105688 105510	Al299139 Z42047	Hs.17517 Hs.283978	ESTs Homo sapiens PRO2751 mRNA, complete cds	37.20		
	105101	H63202	Hs.38163	ESTs		8.30	
	104989	R65998	Hs.285243	hypothetical protein FLJ22029		8.09	
65	104986	AW088826	Hs.117176	poly(A)-binding protein, nuclear 1	•	C 40	1.92
	104969	A1670947	Hs.78406	phosphatidylinositol-4-phosphate 5-kinas		5.40 7.60	
	104903 104896	AI436323 AW015318	Hs.31141 Hs.23165	Homo saplens mRNA for KIAA1568 protein, ESTs	13.80	7.00	
	104865	T79340	Hs.22575	Homo sapiens cDNA: FLJ21042 fis, clone C			
70	104825	AA035613	Hs.141883	ESTs	•		1.87
	104781	AA099904	Hs.21610	DKFZP434B203 protein			1.93
	104776	AA026349		gb:zj99f01.s1 Soares_pregnant_uterus_NbH		10.20	
	104691	U29690	Hs.37744	Homo sapiens beta-1 adrenergic receptor		5.69	
75	104667	Al239923	Hs.30098	eSTs gb:EST00057 HE6W Homo sapiens cDNA clone		3.82 4.20	
15	104404 104392	H58762 AA076049	Hs.274415	Homo sapiens cDNA FLJ10229 fis, clone HE	27.20	T	
	104332	AB002298	Hs.173035	KIAA0300 protein			1.91
	104074	AL162039	Hs.31422	Homo sapiens mRNA; cDNA DKFZp434M229 (fr	11.20		
00	103749	AL135301	Hs.8768	hypothetical protein FLJ10849	10.86		
80	103645	AW246253	Hs.7043	succinate-CoA ligase, GDP-forming, alpha	12.00		4 00
	103554	A1878826	Hs.323469	caveolin 1, caveolae protein, 22kD			· 1.80
	103541 103496	AI815601 Y09267	Hs.79197 Hs.132821	CD83 antigen (activated B lymphocytes, i flavin containing monooxygenase 2			
	103438	BE383507	Hs.78921	A kinase (PRKA) anchor protein 1	11.20		
85	103353	X89399	Hs.119274	RAS p21 protein activator (GTPase activa	19.80		

	W	O 02/086	143				
	103295	X81479	Hs.2375	egf-like module containing, mucin-like,		3.60	
	103280	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula			1.76
	103100	NM_005574	Hs.184585	LIM domain only 2 (rhombotin-like 1)			2.15
5	103025	NM_002837	Hs.123641	protein tyrosine phosphatase, receptor t			2.13
3	102698	M18667	Hs.1867	progastricsin (pepsinogen C) CUG triplet repeat, RNA-binding protein	11.00		
	102659 102580	BE245169	Hs.211610 Hs.152981	CDP-diacylglycerol synthase (phosphatida	25.40		
	102560	U60808 AA034127	Hs.152361	signal transducing adaptor molecule (SH3	14.00		
	102363	NM_003734	Hs.198241	amine oxidase, copper containing 3 (vasc			
10	102302		Hs.69171	protein kinase C-like 2	10.86		
	102283	AW161552	Hs.83381	quanine nucleotide binding protein 11			
	102188	U20350	Hs.78913	chemokine (C-X3-C) receptor 1		7.40	
	102151	T27013	Hs.3132	steroidogenic acute regulatory protein	16.40		
	101957	L28824	Hs.74101	spleen tyrosine kinase	15.40		
15	101842	M93221	Hs.75182	mannose receptor, C type 1			
	101771	NM_002432	Hs.153837	myeloid cell nuclear differentiation ant			4.70
	101764	Al198550	Hs.81256	S100 calcium-binding protein A4 (calcium			1.78
	101716	AF050658	Hs.2563	tachykinin, precursor 1 (substance K, su	18.80		0.00
00	101678	M62505	Hs.2161	complement component 5 receptor 1 (C5a I	504.00		2.22
20	101447	M21305		gb:Human alpha satellite and satellite 3	504.80	24.00	
	101383	NM_000132	Hs.79345	coagulation factor VIII, procoagulant co		31.00	1.75
	101346	AI738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N			1.75
	101345	NM_005795	Hs.152175	calcitonin receptor-like			2.24
25	101336	NM_006732	Hs.75678 Hs.80261	FBJ murine osteosarcoma viral oncogene h enhancer of filamentation 1 (cas-like do			2.24
23	101330	L43821	Hs.296049	microfibrillar-associated protein 4			
	101277 101262	BE297626 L35854	HS.250049	gb:Human dystrophin (dp140) mRNA, 5' end	19.00		
	101168	NM_005308	Hs.211569	G protein-coupled receptor kinase 5	10.00		2.01
	101102	NM_003243	Hs.79059	transforming growth factor, beta recepto			
30	101088	X70697	Hs.553	solute carrier family 6 (neurotransmitte		7.52	
50	101066	AW970254	Hs.889	Charot-Leyden crystal protein	19.38		
	100971	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte			1.91
	100893	BE245294	Hs.180789	S164 protein	15.40		
	100770	W25797.comp	Hs.177486	amyloid beta (A4) precursor protein (pro	11.20		
35	100716	X89887	Hs.172350	HIR (histone cell cycle regulation defec	14.80		
	100555	M69181		gb:Human nonmuscle myosin heavy chain-B	33.00		
	100425	NM_014747	Hs.78748	KIAA0237 gene product	16.20	4.00	
	100408	D86640	Hs.56045	src homology three (SH3) and cysteine ri		4.00 4.24	
40	100382	D83407	Hs.156007	Down syndrome critical region gene 1-lik		6.20	
40	100351	D64158	11- 0474			21.20	
	100299	D49493	Hs.2171	growth differentiation factor 10 macrophage scavenger receptor 1		21.20	
	100134	AA305746	Hs.49 Hs.76873	hyaluronoglucosaminidase 2			1.79
	100108 100095	U09577 Z97171	Hs.78454	myocilin, trabecular meshwork inducible		5.40	
45	100095	<i>L31</i> 1 <i>t</i> 1	1 10-7 0404	injoonin, caocodia meannon moodole	11.29	3	
70	100000			,	11120		

TABLE 3B shows the accession numbers for those primekeys lacking unigenelD's for Table 3A. For each probeset we have listed the gene cluster number from which the oilgonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

PCT/US02/12476

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

85

		•			
60	Pkey	CAT number	Accessions		
00	123619	371681_1	AA602964	AA609200 ·	
	126433		AA325606	AA099517 N89423	
	125831			0988 D60337	
	126816		AA248234		
65	126852		AA399961		
00	121059				
	120637	200885 1	AAB11804	AA809404 AA286907 AW977624	ļ
	122011				
	120934	177521_1	AA226198	AA226513 AA383773	
70	123802	genbank_AA626	0448	AA620448	
	116814	genbank_H5083		H50834	
	118329			N63520	
	104404		H58762		
	104776		6349	AA026349	
75	113502	genbank_T8913			
• -	101262				
	108573	genbank AA08		AA086005	
•	101447				
	124357	genbank_N224		N22401	
80	108781			AA128654	
	112794			R97018	
	100351				
	100555	tigr_HT2245		Ś1105 U51039	

PCT/US02/12476

Table 4A shows 202 genes up-regulated in samples from patients treated with chemotherapy or radiotherapy. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

29.40

23.50

35.56

43,40

21.80

193,60

38.40

49.00

19.67

48.17

59.20

28.60

22.80

21.00

31.60

24.20

21.40

20.40

19.60

24.00

28.40

36.00

61.20

24.60

27.20

48.00

37.80

26.80

63.80

26,40

47.64

22.00

65.00

42.00

55.40

5 Unique Eos probeset identifier number Pkey: ExAccn: Exemplar Accession number, Genbank accession number UnigenelD: Unigene number Unigene Title: Unigene gene title average of Al for samples from patients treated with chamotherapy or radiotherapy divided by the average of Al for normal lung samples. R1: 10 ExAccn UnigeneID Unigene Title Pkey chromosome condensation 1 27.20 100113 NM_001269 Hs.84746 20.60 aldo-keto reductase family 1, member C3 100187 D17793 Hs.78183 15 20.40 100210 D26361 Hs.3104 KIAA0042 gene product 20.60 Hs.167185 glutamate receptor, metabotropic 5 100225 D28539

Ig superfamily receptor LNIR

hypothetical protein FLJ10493

trinucleotide repeat containing 9

hypothetical protein MGC5487

zinc-fingers and homeoboxes 1

HMT1 (hnRNP methyltransferase, S. cerevi

LIS1-interacting protein NUDE1, rat homo

CDC14 (cell division cycle 14, S. cerevi

solute carrier family 6 (neurotransmitte

ESTs, Weakly similar to 155214 salivary

hypothetical protein FLJ 10201

microtubule-associated protein 1B

ESTs, Weakly similar to ALU1_HUMAN ALU

Homo saplens mRNA; cDNA DXFZp761J1324 (f

kinesin family member 13A

PDZ domain containing 1

hypothetical protein

KIAA0942 protein

RAB6 interacting, kinesin-like (rabkines

hypothetical protein collagen, type XVII, alpha 1

KIAA0863 protein

KIAA1702 protein

ESTs

ESTs

ESTs

ESTs

ESTs

E2F transcription factor 3

KIAA0874 protein

S164 protein

topoisomerase (DNA) Il binding protein

POU domain, class 3, transcription facto

gb:Human alpha satellite and satellite 3

heparin-binding growth factor binding pr

100269

100438

100877

100893

101273

101447

101649

20

NM_001949

AA013051

BE245294

AW959908

BE153855

BE409857

AU076442

AA219691

AW978515

AK001355

AW975746

AA219172

AA232103

AW967069

AW003785

A1989482

AA001266

AW058463

N47224

H44186

AB037807

AW389845

AA837396

AA383343

W39609

R87650

AL110216

AW206453

AB033023

AL157425

N39342

NM_015310

U80736

107922

108609

108780

109166

109260

109280

109292

109384

109415

109445

109502

109633

109786

109958

110920

110924

111084

111132

111229

111337

111987

112046

112268

112685

112871

112897

112973

112992

113073

60

65

70 ·

75

80

85

Hs.61460

Hs.69499

Hs.117938

Hs.73625

Hs.131915

Hs.279610

Hs.188662

Hs.86849

Hs.110826

Hs.189915

Hs.211556

Hs.170267

Hs.146286

Hs.133521

Hs.20521

Hs.12940

Hs.15456

Hs.83293

Hs.110855

Hs.263925

Hs.6763

Hs.22116

Hs.22003

Hs.33439

Hs.12285

Hs.3782

Hs.318127

Hs.133315

Hs.103042

X80821

Z11933

M21305

Hs.1189

Hs.91417

Hs.27973

Hs.180789

Hs.182505

Hs.1690

	M	O 02/086	443		
	113494	T91451	Hs.86538	EST ₅	22.80
	113560	T91015	Hs.268626	ESTs	22.80
	113849	AA457211	Hs.8858	bromodomain adjacent to zinc finger doma	51.80
5	113950	AI267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	28.20
5	114339 114365	AA782845 H42169	Hs.22790 Hs.18653	ESTs hypothetical protein FU14627	20.20 21.00
	114455	H37908	Hs.271616	ESTs. Weakly similar to ALU8_HUMAN ALU S	25.80
	114518	AW163267	Hs.106469	suppressor of var1 (S.cerevisiae) 3-like	23.60
	114824	AA960961	Hs.305953	zinc finger protein 83 (HPF1)	27.20
10	114837	BE244930	Hs.166895	ESTs	30.20
	114974	AW966931	Hs.179662	nucleosome assembly protein 1-like 1	20.80
	115075	AA814043	Hs.88045	ESTs	30.60
	115084	BE383668	Hs.42484	hypothelical protein FLJ10618	28.86
15	115291	BE545072	Hs.122579	hypothetical protein FLJ10461	38.00
13	115313	AA808001	Hs.184411	albumin	22.60
	115697 115909	D31382 AW872527	Hs.63325 Hs.59761	transmembrane protease, serine 4 ESTs, Weakly similar to DAP1_HUMAN DEATH	173.60 27.77
	116090	AI591147	Hs.61232	ESTS	20.80
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	164.20
20	116399	AA889120	Hs.110637	homeo box A10	38.00
	117099	H93699		gb:yv16a11.s1 Soares fetal liver spleen	21.60
	117881	AF161470	Hs.260622	butyrate-induced transcript 1	49.40
	118091	AW005054	Hs.47883	ESTs, Weakly similar to KCC1_HUMAN CALCI	22.40
25	118138	AA374756	Hs.93560	Homo sapiens mRNA for KIAA1771 protein,	22.00
25	118720	N73515	1 la 44037	gb:za49d07.s1 Soares fetal liver spleen	20.00
	118873 119126	AI824009 R45175	Hs.44577 Hs.117183	ESTs ESTs	19.40 111.20
	119717	AA918317	Hs.57987	B-cell CLL/lymphoma 11B (zinc finger pro	33.00
	119940	AL050097	Hs.272531	DKFZP586B0319 protein	31.00
30	120266	AI807264	Hs.205442	ESTs, Weakly similar to T34036 hypotheti	20.20
	120515	AA258356		gb:zr59c10.s1 Soares_NhHMPu_S1 Homo sapi	25.00
	120859	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol	95.40
	120983	AA398209	Hs.97587	EST	105.20
25	121054	AW976570	Hs.97387	ESTs	38.80
35	121369	AW450737	Hs.128791	CGI-09 protein	41.60
	122335	AA443258	Hs.241551	chloride channel, calcium activated, fam	30.80
	122612 123130	AA974832 AA487200	Hs.128708	ESTs gb:ab19f02.s1 Stratagene lung (937210) H	19.60 33.20
	123440	A1733692	Hs.112488	ESTs	23.17
40	123596	AA421130	Hs.112640	EST	23.00
	123619	AA602964		gb:no97c02.s1 NCI_CGAP_Pr2 Homo sapiens	28.80
	124006	Al147155	Hs.270016	ESTs .	77.60
	124169	BE079334	Hs.271630	ESTs	22.20
15	124281	Al333756	Hs.111801	arsenate resistance protein ARS2	42.20
45	124472	N52517	Hs.102670	EST	32.60
	124617	AW628168	Hs.152684	ESTs	21.80
	124631 124839	NM_014053 R55784	Hs.270594 Hs.140942	FLVCR protein ESTs	30.40 21.20
	125186	AA610620	Hs.181244	major histocompatibility complex, class	42.80
50	125321	T86652	Hs.178294	ESTs	27.00
	125535	NM_013243	Hs.22215	secretogranin III	23.80
	125646	AA628962	Hs.75209	protein kinase (cAMP-dependent, catalyti	23.20
	125684	AW589427	Hs.158849	Homo sapiens cDNA: FLJ21663 fis, clone C	21.20
<i>E E</i>	125724	AL360190	Hs.295978	Homo sapiens mRNA full length insert cDN	48.80
55	125847	AW161885	Hs.249034 *	ESTs	31.00
	125934	AA193325	Hs.32646	hypothetical protein FLJ21901	21.20
	126077 126299	M78772	Hs.210836	ESTs	49.80
	126395	AW979155 Al468004	Hs.298275 Hs.278956	amino acid transporter 2 hypothetical protein FLJ12929	21.80 71.00
60	126433	AA325606	113.214334	gb:EST28707 Cerebellum II Homo sapiens c	23.20
	126509	R47400	Hs.23850	ESTs	23.80
	126538	AB030656	Hs.17377	coronin, actin-binding protein, 1C	23.10
•	126666	AA648886	Hs.151999	ESTs	36.00
CE	126812	AB037860	Hs.173933	nuclear factor I/A	20.80
65	126872	AW450979		gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	46.29
	127046	AA321948	Hs.293968	ESTs	22.80
	127431	AW771958	Hs.175437	ESTs, Moderately similar to PC4259 ferri	30.00
	127489 127521	AA650250 AW297206	Hs.272076 Hs.164018	ESTs .	20.80 25.20
70	127742	AW293496	Hs.180138	ESTs ·	28.00
	127925	AA805151	Hs.3628	mitogen-activated protein kinase kinase	21.20
	127930	AA809672	Hs.123304	ESTs	20.54
	127968	AA830201	Hs.124347	ESTs	28.20
75	127987	AI022103	Hs.124511	ESTs	19.60
75	128116	H07103	Hs.286014	Homo sapiens, clone IMAGE:3867243, mRNA	20.40
	128609	NM_003616	Hs.102456	survival of motor neuron protein interac	34.40
	128777	A1878918	Hs.10526	cysteine and glycine-rich protein 2	53.80
	128949	AA009647	Hs.8850	a disintegrin and metalloproteinase doma	23.00
80	129168 129404	A1132988 A1267700	Hs.109052	chromosome 14 open reading frame 2	37.60
50	129527	AI267700 AA769221	Hs.317584 Hs.270847	ESTs delta-tubulin	28.60 40.80
	129574	AA026815	Hs.11463	UMP-CMP kinase	31.20
	129598	N30436	Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	29.60
95	129785	H19006	Hs.184780	ESTs	72.20
85	129970	AV655806	Hs.296198	chromosome 12 open reading frame 4	22.20

2/086443	PCT/US02/1
2/086443	PCT/US02

	**	0 02/000	7770		
	130149	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase	29.60
	130199	Z48579	Hs.172028	a disintegrin and metalloproteinase doma	27.60
	130441	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	28.36
	130466	W19744	Hs.180059	Homo sapiens cDNA FLJ20653 fis, clone KA	20.20
5	130482	AW409701	Hs.1578	bacutoviral IAP repeat-containing 5 (sur	22.40
•	130617	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	19.60
	130703	R77776	Hs.18103	ESTs ·	19.40
	130732	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)	21.40
	130867	NM_001072	Hs.284239	UDP glycosyltransferase 1 family, polype	110.00
10	131028	AI879165	Hs.2227	CCAAT/enhancer binding protein (C/EBP),	25.20
10	131086	AL035461	Hs.2281	chromogranin B (secretogranin 1)	40.60
	131284	NM_001429	Hs.25272	E1A binding protein p300	24.60
	131775	AB014548	Hs.31921	KIAA0648 protein	21.00
	131860	BE383676	Hs.334	Rho quanine nucleotide exchange factor (33.40
15			Hs.35120	replication factor C (activator 1) 4 (37	60.80
13	131945	NM_002916		Homo sapiens cDNA: FLJ22373 fis, clone H	. 20.40
	132040	NM_001196	Hs.315689		29.40
	132084	NM_002267	Hs.3886	karyopherin alpha 3 (Importin alpha 4)	32.40
	132389	AA310393	Hs.190044	ESTs	27.40
20	132437	AA152106	Hs.4859	cyclin L ania-6a	75.60
20	132550	AW969253	Hs.170195	bone morphogenetic protein 7 (osteogenic	31.36
	132617	AF037335	Hs.5338	carbonic anhydrase XII	32.40
	132632	AU076916	Hs.5398	guanine monphosphate synthetase	
	132672	W27721	Hs.54697	Cdc42 guanine exchange factor (GEF) 9	23.40
25	132742	AA025480	Hs.292812	ESTs, Weakly similar to T33468 hypotheti	61.20
25	132771	Y10275	Hs.56407	phosphoserine phosphatase	22.33
	133070	U92649	Hs.64311	a disintegrin and metalloproteinase doma	23.50
	133153	AF070592	Hs.66170	HSKM-B protein	30.00
	133181	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	23.80
20	133282	AA449015	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye	51.60
30	133350	Al499220	Hs.71573	hypothetical protein FLJ 10074	33.00
	133592	AV652066	Hs.75113	general transcription factor IIIA	82.00
	133658	AA319146	Hs.75426	secretogranin II (chromogranin C)	
	133865	AB011155	Hs.170290	discs, large (Drosophila) homolog 5	69.33
	134032	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	33.20
35	134125	NM_014781	Hs.50421	KIAA0203 gene product	31.60
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-Interacting pro	30.60
	134321	BE538082	Hs.8172	ESTs, Moderately similar to A46010 X-lin	23.40
	134367	AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	49.20
	134570	U66615	Hs.172280	SWI/SNF related, matrix associated, acti	20.20
40	134753	NM_006482	Hs.173135	dual-specificity tyrosine-(Y)-phosphoryl	20.80
	135002	AA448542	Hs.251677	Gantigen 7B	37.60
	135029	H58818	Hs.187579	hydroxysteroid (17-beta) dehydrogenase	53.40
	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	31.60
	135345	X53655	Hs.99171	neurotrophin 3	28.80
45	100040	,			
10					

TABLE 4B shows the accession numbers for those primekeys tacking uniquenelD's for Table 4A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number

Accession: Genbank accession numbers

50

55

	Pkey	CAT number	Accessions	
<i>c</i> o .	123619	371681_1	AA602964 AA609200	• .
60	126433	127143_1	AA325606 AA099517 N89423	
	126872	142696_1	AW450979 AA136653 AA136656 AW419381 AA984358 AA492073 BE168945 AA809054 AW23803	8 BE011212 BE011359
			BE011367 BE011368 BE011362 BE011215 BE011365 BE011363	
	106851	322947_1	AI458623 AA639708 AA485409 R22065 AA485570	
	118720	genbank_N735	515 N73515	
65	120515	genbank_AA25		
	117099	321871 1	H93699 H97976 H80036	
	101447	entrez M21305	5 M21305	
	123130	genbank AA48		
	0.00	9		

WO 02/086443 PCT/US02/12476

Table 5A shows 680 genes up-regulated in squamous cell carcinoma or adenocarcinoma lung tumors relative to normal lung and chronically diseased lung. These genes were selected from 59680 probesets on the Eos/Affrymetrix Hu03 Genechip erray. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

Unique Eos probesel identifier number Exemplar Accession number, Genbank accession number 5 Pkey: ExAcon: UnigenelD: Unigene number Unigene Title: Unigene gene title 70th percentile of Al for squamous cell carcinoma and adenocarcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically R1: Your percentile of Al adenocarcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically diseased lung samples.

80th percentile of Al adenocarcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically diseased lung samples.

80th percentile of Al adenocarcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically diseased lung samples.

80th percentile of Al adenocarcinoma lung tumor samples divided by the 80th percentile of Al for squamous cell carcinoma lung tumor samples. 10 R2: R3: R4: 70th percentile of Al for squamous cell carcinoma and adenocarcinoma lung tumor samples minus the 15th percentile of Al for all normal lung, chronically R5: 15 diseased lung and tumor samples divided by 90th percentile of AI for normal and chronically diseased lung samples minus the 15th percentile of AI for all normal lung, chronically diseased lung and tumor samples

				,					•
20	Pkey	ExAccn	UnigeneID	Unigene Title	R1	R2	R3	R4	R5
20	100035			AFFX control: GAPDH					6.76
	100036			AFFX control: GAPDH					5.77
	100037	•		AFFX control: GAPDH					5.75
	100071	A28102		Human GABAa receptor alpha-3 subunit		8.00			
25	100114	X02308	Hs.82962	thymidylate synthetase					5.71
	100154	H60720	Hs.81892	KIAA0101 gene product	3.84				
	100187	D17793	Hs.78183	aldo-keto reductase family 1, member C3	3.33				4 50
	100188	AW247090	Hs.57101	minichromosome maintenance deficient (S.					4.52
20	100202	BE294407	Hs.99910	phosphofructokinase, platelet					5.49
30	100216	AA489908	Hs.1390	proteasome (prosome, macropain) subunit,	0.00			•	5.67
	100269	NM_001949	Hs.1189	E2F transcription factor 3	2.55				5.66
	100287	AU076657	Hs.1600	chaperonin containing TCP1, subunit 5 (e					3.81
	100297	AU077258 AW410976	Hs.182429 Hs.77152	protein disulfide isomerase-related prot minichromosome maintenance deficient (S.					4.50
35	100330 100335	AW247529	Hs.6793	platelet-activating factor acetylhydrota	5.07				7.00
55	100355	W70171	Hs.75939	uridine monophosphate kinase	0.07				4.82
	100300	NM_014791	Hs.184339	KIAA0175 gene product					3.79
	100372	NM_000699	Hs.300280	amylase, alpha 2A; pancreatic			•	15.65	
	100486	T19006	Hs.10842	RAN, member RAS oncogene family					5.49
40	100491	D56165	Hs.275163	non-metastatic cells 2, protein (NM23B)					4.17
	100516	D90278	Hs.11	carcinoembryonic antigen-related cell ad		7.20			
	100522	X51501	Hs.99949	prolactin-induced protein				14.20	
	100559	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys	3.10				
4 ~	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid				9.30	
45	100629	AA015693	Hs.21291	mitogen-activated protein kinase kinase				20.60	
	100661	BE623001	Hs.132748	Homo sapiens ribosomal protein L39 mRNA,	3.85	0.00			
		- AA353686	Hs.57813	zinc ribbon domain containing, 1		8.60		10.00	
	100696	D14887	Hs.121686	general transcription factor IIA, 1 (37k			24.80	10.00	
50	100709	N26539	Hs.100469 Hs.295112	myeloid/lymphoid or mixed-lineage leukem KIAA0618 gene product		7.60	24.00		
50	100761 100830	BE208491 AC004770	Hs.4756	flep structure-specific endonuclease 1		7.00			7.99
	100867	U14622	165,4750	gb:Human transketolase-like protein gene		10.20			
	100007	M16029	Hs.287270	ret proto-oncogene (multiple endocrine n		8.00			
	100906	AU076916	Hs.5398	guanine monphosphate synthetase		0.00			5.16
55	100960	J00124	Hs.117729	keratin 14 (epidermolysis bullosa simple	2.57				
	101045	J05614		gb:Human proliferating cell nuclear anti					4.69
	101061	NM_000175	Hs.180532	glucose phosphate isomerase					4.19
	101071		Hs.84244	potassium voltage-gated channel, Shab-re		12.91			
CO	101124	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	3.12				
60	101175	U82671	Hs.36980	melanoma antigen, family A, 2	3.50				E CO
	101181	BE262621	Hs.73798	macrophage migration inhibitory factor (4.00				5.69
	101204	L24203	Hs.82237	ataxia-telangiectasia group D-associated	4.08		6.40		
	101210	L29301	Hs.2353	opioid receptor, mu 1	2.53		0.40		
65	101216	AA284166	Hs.84113	cyclin-dependent kinase Inhibitor 3 (CDK chaperonin containing TCP1, subunit 6A (2.00				7.90
05	101228 101233	AA333387 AL135173	Hs.82916 Hs.878	sorbitol dehydrogenase			•	•	4.45
	101273	Z11933	Hs.182505	POU domain, class 3, transcription facto	8.50				
	101342	U52112	Hs.182018	interleukin-1 receptor-associated kinase	• • • • • • • • • • • • • • • • • • • •				4.17
	101346	AI738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N				21.89	
70	101369	NM_000892	Hs.1901	kallikrein B, plasma (Fletcher factor) 1				12.80	
	101396	BE267931	Hs.78996	proliferating cell nuclear antigen	3.24				1
	101431	BE185289	Hs.1076	small proline-rich protein 1B (comifin)					7.90
	101448	NM_000424	Hs.195850	keratin 5 (epidermolysis bullosa simplex	8.31				
~~	101462	AL035668	Hs.73853	bone morphogenetic protein 2				38.80	
75	101466	BE262660	Hs.170197	glutamic-oxaloacetic transaminase 2, mit				40.00	4.01
	101484	AA053486	Hs.20315	interferon-induced protein with tetratri	40.50			12.00	
	101502	M26958	11. 25000	gb:Human parathyroid hormone-related pro	10.50				4.46
	101505	AA307680	Hs.75692	asparagine synthetase	4.02				4.40
80	101526	NM_002197	Hs.154721	aconilase 1, soluble fibrillarin	4.02				4.65
30	101535 101577	X57152 M34353	Hs.99853 Hs.1041	v-ros avian UR2 sarcoma virus oncogene h				9.09	
	101577	AW959908	Hs.1690	heparin-binding growth factor binding pr	54.00			J. 34	
	101663	NM_003528	Hs.2178	H2B histone family, member Q	5.59				
(2)	101664	AA436989	Hs.121017	H2A histone family, member A	7.00				
85	101669	L24498	Hs.80409	growth arrest and DNA-damage-inducible,		7.60			

	w	O 02/086	443						PCT/US02/12476
	101695	M69136	Hs.135626	chymase 1, mast cell	4.79				
	101724	L11690	Hs.620	bullous pemphigold entigen 1 (230/240kD)	15.21				
	101748	NM_001944	Hs.1925	desmogleln 3 (pemphigus vulgaris antigen	55.50				4.10
5	101759 101771	M80244 NM_002432	Hs.184601 Hs.153837	sotute carrier family 7 (cationic amino myeloid cell nuclear differentiation ant				18.57	4.10
	101804	M86699	Hs.169840	TTK protein klnase	4.50				
	101809	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	140.00				
	101833	AU076442	Hs.117938	collagen, type XVII, alpha 1	2.56			12.80	
10	101842 101851	M93221 BE260964	Hs.75182 Hs.82045	mannose receptor, C type 1 midkine (neurite growth-promoting factor				12.00	5.88
~~	102002		Hs.81469	nucleofide binding protein 1 (E.coli Min		7.80			
	102039	AL134223	Hs.306098	aldo-keto reductase family 1, member C1					4.35
	102072		Hs.78743	zinc finger protein 131 (clone pHZ-10)			7.40		5.12
15	102083 102111	T35901 L36196	Hs.75117 Hs.81884	interleukin enhancer binding factor 2, 4 sulfotransferase family, cytosolic, 2A,				12.00	5.12
	102123	NM_001809	Hs.1594	centromere protein A (17kD)	6.20				
	102154	U17760	Hs.75517	taminin, beta 3 (nicein (125kD), kalinin	2.62				
	102193 102217	AL036335 AA829978	Hs.313 Hs.301613	secreted phosphoprotein 1 (osteopontin, JTV1 gene	5.85				6.18
20	102217	NM_002810	Hs.148495	proteasome (prosome, macropain) 26S subu					4.49
	102234	AW163390	Hs.278554	heterochromatin-like protein 1					5.80
	102251	NM_004398	Hs.41706	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	4.50				E 4 E
	102305 102330	AL043202 BE298063	Hs.90073 Hs.77254	chromosome segregation 1 (yeast homolog) chromobox homolog 1 (Drosophila HP1 beta					5.15 4.17
25	102340	U37055	Hs.278657	macrophage stimulating 1 (hepatocyte gro				9.33	
_	102348	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member	8.87				
	102368	U39817	Hs.36820	Bloom syndrome	15.91		40.20		
	102394 102404	NM_003816 NM_005429	Hs.2442 Hs.79141	a disintegrin and metalloproteinase doma vascular endothelial growth factor C			19.20	14.00	
30	102537	U57094	Hs.50477	RAB27A, member RAS oncogene family				12.00	
	102581		Hs.77256	enhancer of zeste (Drosophila) homolog 2					4.57
		Al435128 U65011	Hs.181369	ubiquitin fusion degradation 1-like preferentially expressed antigen in mela	77.50				3.98
	102610 102623	AW249285	Hs.30743 Hs.37110	melanoma antigen, family A, 9	12.50				
35		AA205847	Hs.23016	G protein-coupled receptor			22.00		
		AV649989	Hs.24385	Human hbc647 mRNA sequence		12.00		40.00	
	.102659 102669	BE245169 U71207	Hs.211610 Hs.29279	CUG triplet repeat, RNA-binding protein eyes absent (Drosophila) homolog 2	6.50			12.80	
	102672		Hs.29287	retinoblastoma-binding protein 8	8.50				
40	102687	NM_007019	Hs.93002	ubiquitin carrier protein E2-C					9.24
	102696	BE540274	Hs.239	forkhead box M1		6.60			5.54
	102768 102781	U82321 BE258778	Hs.108809	gb:Homo sapiens clone 14.98 mRNA sequenc chaperonin containing TCP1, subunit 7 (e		0.00			3.78
	102784	U85658	Hs.61796	transcription factor AP-2 gamma (activat					4.26
45	102824	U90916	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H			14.40		
	102829 102888	NM_006183 Al346201	Hs.80962	neurotensin ubiquitin carboxyl-terminal esterase L1	8.00				5.50
		BE440042	Hs.76118 Hs.83326	matrix metalloproteinase 3 (stromelysin			6.70		5.50
~~	102913	NM_002275	Hs.80342	keratin 15	4.64				
50		BE561850	Hs.80506	small nuclear ribonucleoprotein polypept	2.93			11.10	
	102951 102983	X15218 BE387202	Hs.2969 Hs.118638	v-ski avian sarcoma viral oncogene homol non-metastatic cells 1, protein (NM23A)				11.40	7.26
	103023	AW500470	Hs.117950	multifunctional polypeptide similar to S	3.01				
F F	103036	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	27.90				
55 .		AA926960	Hs.334883	CDC28 protein kinase 1					8.79 4.27
	103060 103099	NM_005940 Al693251	Hs.155324 Hs.8248	matrix metalloproteinase 11 (stromelysin NADH dehydrogenase (ubiquinone) Fe-S pro		9.80			4.21
	103119	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	4.05	••			
60	103168	X53463	Hs.2704	glutathione peroxidase 2 (gastrointestin	3.07				c.00
60	103185	NM_006825	Hs.74368 Hs.170009	transmembrane protein (63kD), endoplasmi transforming growth factor, alpha		7.40			5.62
	103223	BE275607	Hs.1708	chaperonin containing TCP1, subunit 3 (g					4.70
	103242		Hs.389	alcohol dehydrogenase 7 (class IV), mu o			100.00		
65		X83301	Hs.324728	SMA5 sine oculis homeobox (Drosophila) homoto	9.71			9.80	
05	103375	NM_005982 AL036166	Hs.54416 Hs.323378	coated vesicle membrane protein	14.00				
	103385	NM_007069	Hs.37189	similar to rat HREV107				11.00	
			Hs.114366	pyrroline-5-carboxylate synthetase (glut	2.93				E 4E
70	103404	BE394784 BE564090	Hs.78596 Hs.20716	proteasome (prosome, macropain) subunit, translocase of inner mitochondrial membr					5.15 3.98
, 0	103446	X98834	Hs.79971	sal (Drosophila)-like 2				21.40	
	103476		Hs.293007	aminopeptidase puromycin sensitive		13.00			
	103477 103478	AJ011812 BE514982	Hs.119018 Hs.38991	transcription factor NRF S100 calcium-binding protein A2	5.02		6.40		
75	103515		Hs.56407	phosphoserine phosphatase	10.50				
-	103558	BE616547	Hs.2785	keratin 17	6.41				
	103580	AA328046	Hs.46405	polymerase (RNA) II (DNA directed) polyp	70.50				3.84
	103587 103594	BE270266 Al368680	Hs.82128 Hs.816	5T4 oncofetal trophoblast glycoprotein SRY (sex determining region Y)-box 2	78.50 6.51				
80	103534	NM_006235	Hs.2407	POU domain, class 2, associating factor	3.50				
	103768	AF086009	•	gb:Homo saplens full length insert cDNA		0.00			4.48
	103841 103847	AA314821 AF219946	Hs.38178 Hs.102237	hypothelical protein FLJ23468 tubby super-family protein		8.00 10.40			
	103913	AF219946 AW967500	Hs.133543	ESTs		.0.40		15.60	
85	104094	AA418187	Hs.330515	ESTs			6.60		

	w	O 02/086	443						PCT/US02/12476
	104150	AL122044	Hs.331633	hypothetical protein DKFZp566N034				26.00	1 C 1/ C 502/124/0
	104257 104261	BE560621 AW248364	Hs.9222 Hs.5409	estrogen receptor binding site associate RNA polymerase i subunit		6.80			3.98
_	104331		Hs.279862	odk inhibitor p21 binding protein		6.80			3.30
5	104415		Hs.258730	heme-regulated initiation factor 2-alpha	4.04	10.29			
	104558 104590	R56678 AW373062	Hs.88959 Hs.83623	hypothetical protein MGC4816 nuclear receptor subfamily 1, group 1, m	4.21			15.79	
	104658	AA360954	Hs.27268	Homo sapiens cDNA: FLJ21933 fis, clone H				17.40	
10	104660	BE298665	Hs.14846	Homo saplens mRNA; cDNA DKFZp564D016 (fr	6.40				0.55
10	104689 104754	AA420450 A1206234	Hs.292911 Hs.155924	ESTs, Highly similar to S60712 band-6-pr cAMP responsive element modulator				10.00	6.55
	104758	BE560269	Hs.7010	NPD002 protein					4.47
	104971	BE311926	Hs.15830	hypothetical protein FLJ12691	2.87				
15	105011 105012	BE091926 AF098158	Hs.16244 Hs.9329	mitotic spindle coiled-coil retated prot chromosome 20 open reading frame 1	3.83 2.86				
	105026	AA809485	Hs.124219	hypothetical protein FLJ12934		11.00			
	105076	A1598252	Hs.37810	hypothetical protein MGC14833					5.01
	105132 105143	AA148164 Al368836	Hs.247280 Hs.24808	HBV associated factor ESTs, Weakly similar to 138022 hypotheti			11.00		3.99
20	105158	AW976357	Hs.234545	hypothetical protein NUF2R		16.00			
	105175	AA305384	Hs.25740	ERO1 (S. cerevisiae)-like	4.32				•
	105200 105264	AA328102 AA227934	Hs.24641	cytoskeleton associated protein 2 gb:zr57e08.s1 Soares_NhHMPu_S1 Homo sapi	3.00			10.00	
0.5	105298	BE387790	Hs.26369	hypothetical protein FLJ20287	3.69				
25	105409	AW505076	Hs.301855	DiGeorge syndrome critical region gene 8			7 90	9.20	
	105460 105667	AW296078 AA767526	Hs.271721 Hs.22030	Homo sapiens, clone IMAGE:4179986, mRNA, paired box gene 5 (8-cell lineage specif	4.12		7.80		
	105743	BE246502	Hs.9598	sema domain, immunoglobulin domain (Ig),	3.82				
30	105782	H09748 AW954064	Hs.57987 ·	B-cell CLL/lymphoma 11B (zinc finger pro			27.00		
50	105848 105891	U55984	Hs.24951 Hs.289088	ESTs heat shock 90kD protein 1, alpha			7.60		4.14
	106019	^AF221993	Hs.46743	McKusick-Kaufman syndrome			16.80		
	106069 106073	BE566623 AL157441	Hs.29899 Hs.17834	ESTs, Weakly similar to G02075 transcrip	0.50		23.40		
35	106126	AA576953	Hs.22972	downstream neighbor of SON hypothetical protein FLJ13352	9.50 6.00				
	106159	AK001301	Hs.3487	hypothetical protein FLJ10439					3.95
	106220 106260	D61329 Al097144	Hs.32196 Hs.5250	mitochondrial ribosomal protein L36 ESTs, Weakly similar to ALU1_HUMAN ALU S			13.20		6.04
	106300	Y10043	Hs.19114	high-mobility group (nonhistone chromoso			13.20		5.02
40	106307	AA436174	Hs.37751	ESTs, Weakly similar to putative p150 [6.60			
	106318 106341	AA025610 AF191020	Hs.9605 Hs.5243	cleavage and polyadenylation specific fa hypothetical protein, estradiol-induced					5.04 7.25
	106440	AA449563	Hs.151393	glulamate-cysteine ligase, catalytic sub			13.80		1.20
45	106481	D61594	Hs.17279	tyrosylprotein sulfotransferase 1	4.75			40.04	
43	106586 106605	AA243837 AW772298	Hs.57787 Hs.21103	ESTs Homo sapiens mRNA; cDNA DXFZp564B076 (fr				10.84 45.60	
9.3	106654	AW075485	Hs.286049	phosphoserine aminotransferase	28.00				
	106785 106813	Y15227	Hs.20149	deleted in lymphocytic leukemia, 1 CGI-07 protein	3.00		11.40		
50	106895	C05766 AK001826	Hs.181022 Hs.25245	hypothetical protein FLJ11269			6.00		.*
	106913	Al219346	Hs.86178	M-phase phosphoprotein 9		6.56			
	106919 107054	AW043637 Al076459	Hs.21766 Hs.15978	ESTs, Weakly similar to ALU5_HUMAN ALU S KIAA1272 protein				34.80	4.27
	107059	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	4.71			34.00	
55	107098	Al823593	Hs.27688	ESTs				24.80	7.00
	107104 107129	AU076640 AC004770	Hs.15243 Hs.4756	nucleolar protein 1 (120kD) flap structure-specific endonuclease 1	2.60				7.05
	107198	AV657225	Hs.9846	KIAA1040 protein	2.00	19.20			
60	107203	D20426	Hs.41639	programmed cell death 2	0.50	7.60			
00	107217 107284	AL080235 NM_005629	Hs.35861 Hs.187958	DKFZP586E1621 protein solute carrier family 6 (neurotransmitte	9.50 2.71				
	107318	T74445	Hs.5957	Homo sapiens clone 24416 mRNA sequence			8.71		•
	107516 107529	X57152 BE515065	Hs.99853	fibrillarin					4.33 4.00
65	107728	AA019551	Hs.296585 Hs.294151	nucleolar protein (KKE/D repeat) Homo sapiens, clone IMAGE:3603836, mRNA,		10.80			4.00 \$
	107851	AA022953	Hs.61172	EST			8.00		
	107901 107922	L42612 BE153855	Hs.335952 Hs.61460	keratin 6B Ig superfamily receptor LNIR	3,40 2.88				
70	107932	AW392555	Hs.18878	hypothetical protein FLJ21620	7.50				
70	108015	AW298357	Hs.49927	protein kinase NYD-SP15				23.40	
	108056 -108075	AA043675 A1867370	Hs.62633 Hs.139709	ESTs hypothetical protein FLJ12572				12.80 12.80	
	108187	BE245374	Hs.27842	hypothetical protein FLJ11210		7.00			
75	108296	N31256	Hs.161623	ESTs		6.60		11 00	
, 5	108305 108393	AA071391 AA075211		gb:zm61e06.r1 Stratagene fibroblast (937 gb:zm86a08.r1 Stratagene ovarian cancer				11.80 11.80	
	108480	AL133092	Hs.68055	hypothetical protein DKFZp434I0428				20.80	
	108554 108573	AA084948 AA086005		gb:zn13b09.s1 Stratagene hNT neuron (937 gb:zl84c04.s1 Stratagene coton (937204)		6.40		25.40	
80	108584	AA088326	Hs.120905	Homo saplens cDNA FLJ11448 fis, clone HE		9.60		20.40	•
	108597	AK000292	Hs.278732	hypothetical protein FLJ20285				14.60	
	108695 108699	AB029000 AA121514	Hs.70823 Hs.70832	KIAA1077 protein ESTs	3.00			10.00	
0.5	108700	AA121518	Hs.193540	ESTs, Moderately similar to 2109260A B c			11.00	. 5.00	•
85	108780	AU076442	Hs.117938	collagen, type XVII, alpha 1	11.21				

	w	O 02/086	443						PCT	US02/12476
	108810		Hs.71331	hypothetical protein MGC5350	8.50					
	108816	AA130884	Hs.270501	ESTs, Moderately similar to ALU2_HUMAN		7.40				
	108857		Hs.62180	aniilin (Drosophila Scraps homolog), act	4.00					
5	108860 108937	AA133334 AL050107	Hs.129911 Hs.24341	ESTs transcriptional co-activator with PDZ-bi	6.09 3.00					
,	109010		Hs.44229	dual specificity phosphatase 12	2.69					
	109121	BE389387	Hs.49767	NADH dehydrogenase (ubiquinone) Fe-S pro					4.53	
	109166	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	10.58					
10	109227		Hs.85874	Human DNA sequence from clone RP11-16L21		9.00				
10	109415 109418	U80736 A1866946	Hs.110826 Hs.161707	trimucleolide repeat containing 9 ESTs		51.40		11.00		
	109454		Hs.295232	ESTs, Moderately similar to A46010 X-Ii			17.60	,,,,,,		
		AW967069	Hs.211556	hypothetical protein MGC5487			9.49			
1.5	109543		Hs.222851	ESTs ·		12.67		40.40		
15	109648	H17800	Hs.7154 Hs.4993	ESTS			33.20	10.40		
	109680 109700	AB037734 F09609	NS.4333	KIAA1313 protein gb:HSC33H092 normalized infant brain cDN			33.20	16.00		
	109704	AI743880	Hs.12876	ESTs			11.00			
20	109792			gb:yg61f03.s1 Soares infant brain 1NIB H				12.60		
20	109981	BE546208	Hs.26090	hypothetical protein FLJ20272	4.00	7.00				
	109998 110039	AL042201 H11938	Hs.21273 Hs.21907	transcription factor NYD-sp10 histone acetyltransferase		7.80 7.00				
	110156		Hs.4213	hypothetical protein MGC16207		1,00			4.24	
0.5	110500	AA907723	Hs.36962	ESTs	4.50					
25	110551	AW450381	Hs.14529	ESTs	0.00	8.60				
	110561	AA379597 BE612992	Hs.5199	HSPC150 protein similar to ubiquitin-con hypothetical protein FLJ10607 similar to	3.06	6.80				
	110854 110886		Hs.27931 Hs.72249	three-PDZ containing protein similar to		0.00	8.80			
	110916	BE178102	Hs.24349	ESTs		6.80				
30	111003	N52980	Hs.83765	dihydrofolate reductase				16.80		
	111337	AA837398	Hs.263925	LIS1-Interacting protein NUDE1, rat homo	2.54			0.00		٠.
	111434 111439	R01608 Al476429	Hs.142736 Hs.19238	ESTs ESTs		•		9.80 10.40		
	111540		Hs.9786	zinc finger protein 275			15.40	10.70		
35	111597		Hs.189716	ESTs				9.20		
	111895		Hs.12723	Homo sapiens clone 25153 mRNA sequence		6.80		44.07		
	111929	AF027208	Hs.112360	prominin (mouse)-like 1		10.80		14.67		
	112054 112210	R43590 R49645	Hs.7004	gb:yc85g02.s1 Soares infant brain 1NIB H ESTs		10.60		10.20		
40	112244	AB029000	Hs.70823	KIAA1077 protein	2.99			10.20		
	112382	R59904		gb:yh07g12.s1 Soares infant brain 1NIB H		6.60				
	112392	R60763	Hs.193274	ESTs, Moderately similar to I57588 HSrel			7.10			
	112442		Hs.285681	Williams-Beuren syndrome chromosome regl ESTs	3.00			37.20		
45	112539 112772	R70318 Al992283	Hs.339730 Hs.35437	ESTs, Moderately similar to 138026 MLN 6				14.60		
	112869	BE261750	Hs.4747	dyskeratosis congenita 1, dyskerin				*	4.83	
	112935		Hs.268760	ESTs	2.73					
	112970		Hs.6932	Homo sapiens clone 23809 mRNA sequence	14 50			12.00		
50	112973 112992	AB033023 AL157425	Hs.318127 Hs.133315	hypothetical protein FLJ10201 Homo sapiens mRNA; cDNA DKFZp761J1324 (f	11.50		10.89			
50	113063	W15573	Hs.5027	ESTs, Weakly similar to A47582 B-cell gr	15.00		10.00			
	113073	N39342	Hs.103042	microtubule-associated protein 1B			15.31			
	113078	T40444	Hs.118354	CAT56 protein		7.00				
55	113238	R45467	Hs.189813	ESTs				41.20		
55	113591 113702	T91881 T97307	Hs.200597	KIAA0563 gene product gb:ye53h05.s1 Soares fetal liver spleen	25.00			9.40		
	113844	Al369275	Hs.243010	Homo sapiens cDNA FLJ14445 fis, clone HE	20.00			13.91		
	113984	R96696	Hs.35598	ESTs		7.80				
60	114073	R44953	Hs.22908	Homo saplens mRNA; cDNA DKFZp434J1027 (f	0.40	7.20				
60	114162 114208	AF155661 AL049466	Hs.22265 Hs.7859	pyruvate dehydrogenase phosphatase ESTs	3.42		6.74			
	114251		Hs.21948	ESTs	•		0.74	33.20		
	114285		Hs.22974	ESTs .				13.20		
CE	114313		Hs.27946	ESTs				10.00		
65	114339	AA782845	Hs.22790	ESTS		7.80			4 4 4	
	114407 114560	BE539976 AI452469	Hs.103305 Hs.165221	Homo sapiens mRNA; cDNA DKFZp434B0425 (f ESTs				9.80	4.14	
	114699	AA127386	113.100221	gb:zn90d09.r1 Stratagene lung carcinoma		7.60		0.00		
70	114767	A1859865	Hs.154443	minichromosome maintenance deficient (S	3.21				•	
70	114793			gb:zo76c03.s1 Stratagene pancreas (93720			6.00	44.40		
		Al417215	Hs.87159 Hs.82916	hypothetical protein FLJ12577 chaperonin containing TCP1, subunit 6A (11.40	4.31	
	115047 115060	BE270930 AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3			•		4.03	
	115097		Hs.72010	ESTs				35.40		
75	115113	AA256460		gb:zr81a04.s1 Soares_NhHMPu_S1 Homo sapi				15.20		
	115123		Hs.236894	ESTs, Highly similar to S02392 alpha-2-m				10.40	4.19	
	115134 115291	AW968073	Hs.194331 Hs.122579	ESTs, Highly similar to A55713 inositol hypothetical protein FLJ10461	25.00			12.40		
		BE545072 AA356792	Hs.334824	hypothetical protein FLJ 14825	23.00	7.00				
80	115414		Hs.283099	AF15q14 protein	3.25					
	115522	BE614387	Hs.333893	c-Myc target JPO1	3.68					
	115538		Hs.62180	anillin (Orosophila Scraps homolog), act	10.50			24.40		
	115566 115645	A1142336 A1207410	Hs.43977 Hs.69280	Human DNA sequence from clone RP11-196N1 Homo seplens, clone IMAGE:3636299, mRNA,	4.17			24.40		
85	115648	AW016811	Hs.234478	Homo sapiens cDNA: FLJ22648 fis, clone H	7		6.00			

	W	O 02/086	443						PCT/L	IS02/12476
	115652	BE093589	Hs.38178	hypothetical protein FLJ23468	3.81	•				
	115697	D31382	Hs.63325	transmembrane protease, serine 4	62.14			11.80		
	115793 115816	AA424883 BE042915	Hs.70333 Hs.287588	hypothetical protein MGC10753 Homo sapiens cDNA FLJ13675 fis, clone PL				9.71		
5	115892	AA291377	Hs.50831	ESTs			27.40			
	115906	A1767756	Hs.82302	Homo sapiens cONA FLJ14814 fis, clone NT	2.53					
	115909 115965	AW872527 AA001732	Hs.59761 Hs.173233	ESTs, Weakly similar to DAP1_HUMAN DEATH hypothetical protein FLJ10970	11.82			34.29		
	115978	AL035864	Hs.69517	cDNA for differentially expressed CO16 g					8.23	
10	115985	AA447709	Hs.268115	ESTs, Weakly similar to T08599 probable	3.00					
	116090 116096	Al591147 AA682382	Hs.61232 Hs.59982	ESTs ESTs	5.17		8.20			
	116127	AF126743	Hs.279884	DNAJ domain-containing		10.60	0.25			
1.0	116157	BE439838	Hs.44298	mitochondrial ribosomal protein S17					5.82	
15	116190	AI949095	Hs.67776 Hs.47504	ESTs, Weakly similar to T22341 hypotheti exonuclease 1	9.50				4.08	
	116278 116335	NM_003686 AK001100	Hs.41690	desmocollin 3	3.67					
	116496	AW450694	Hs.21433	hypothetical protein DKFZp547J036		7.00		40.00		
20	116503	AI925316	Hs.212617	ESTs ESTs			32.00	12.60		
20	116674 116929	Al768015 AA586922	Hs.92127 Hs.80475	polymerase (RNA) II (DNA directed) polyp		7.60	32.00			
	116973	Al702054	Hs.166982	phosphatidylinositol glycan, class F		9.80				
	116993	AJ417023	Hs.40478	ESTS				10.20 15.20		
25	117079 117317	H92325 Al263517	Hs.43322	gb:ys85f05.s1 Soares retina N2b4HR Homo ESTs				13.40		
20	117326	N23629	Hs.241420	Homo sapiens mRNA for KIAA1756 protein,				20.60		
	117396	W20128	Hs.296039	ESTs				10.60 16.00		
	117412 117519	N32536 N32528	Hs.42645 Hs.146286	ESTs kinesin family member 13A				9.11		
30	117693	AW179019	Hs.112110	mitochondrial ribosomal protein L42				••••	4.01	
	117721	N46100	Hs.93939	EST	0.74			19.80		
	117881	AF161470	Hs.260622 Hs.47111	butyrate-induced transcript 1 ESTs	2.71			17.80		
	117903 117992		Hs.172089	Homo saplens mRNA; cDNA DKFZp586i2022 (f				17.00	4.17	
35	118013	AI674126	Hs.94031	ESTs				10.60	•	
	- 118017	AI813444	Hs.42197	ESTs		7.00	8.82	•		
	118186 118325	N22886 AI868065	Hs.42380 Hs.166184	ESTs intersectin 2		7.00		13.80		
4.0	118367	N64269	Hs.48946	EST			6.14			
40	118368	N64339	Hs.48956	gap junction protein, beta 6 (connexin 3	3.14		12.40			
	118472 118709	AL157545 AA232970	Hs.42179 Hs.293774	bromodomain and PHD finger containing, 3 ESTs			12.40	12.20		
	119025	BE003760	Hs.55209	Homo sapiens mRNA; cDNA DKFZp434K0514 (f	4.50					•
15	119027	AF086161	Hs.114611	hypothetical protein FLJ11808	3.22	0.60				
45	119052 119164	R10889 AF221993	Hs.46743	gb:yf38d02.s1 Soares fetal liver spleen McKusick-Kaufman syndrome		9.60	6.60		٠	
	119186	Al979147	Hs.101265	hypothetical protein FLJ22593				10.80		
	119243	T12603		gb:CHR90123 Chromosome 9 exon Il Homo sa				9.44		
50	119490 119499	AA195276 AI918906	Hs.263858 Hs.55080	ESTs, Moderately similar to B34087 hypot ESTs		•	14.80	11.80		
30	119599	W45552	(13.00000	gb:zc26d03.s1 Soares_senescent_fibroblas		12.60				
	119780	NM_016625	Hs.191381	hypothetical protein	17.00					
	119845 119941	W79123 AA699485	Hs.58561 Hs.58896	G protein-coupled receptor 87 ESTs	13.50	8.00				
55	119994		Hs.59142	ESTs	7.73	0.00				•
	120102	W67353	Hs.170218	KIAA0251 protein			39.60			
	120104 120294	AK000123 AK000059	Hs.180479 Hs.153881	hypothetical protein FLJ20116 Homo sapiens NY-REN-62 antigen mRNA, par	2.91		8.20			
	120294	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	8.73		0.20			•
60	120599	AA804448	Hs.104463	ESTS		7.00		40.00	, .	
	120699 120715	AI683243 AA292700	Hs.97258	ESTs, Moderately similar to S29539 ribos gb:zs59a06.s1 NCI_CGAP_GCB1 Homo sapiens		9.40		10.00	• '	•
	120821	Y19062	Hs.96870	staufen (Drosophita, RNA-binding protein		3.40		13.80		
<i>(5</i>	120859	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol		9.00	•			
65	120880		Hs.97019 Hs.97587	EST EST		15.60	27.66			•
	120983 121034		Hs.271623	nudeoporin 50kD			20.80			
	121121	AA399371	Hs.189095	similar to SALL1 (sal (Drosophila)-like		22.80		40.00		
70	121313		Hs.97872	ESTs CCI 00 acetain	25.71			10.00		
70	121369 121376		Hs.128791 Hs.187958	CGI-09 protein solute carrier family 6 (neurotransmitte	20.71				5.42	
	121476	AA412311	Hs.97903	ESTs		8.30				
	121509		Hs.97888	ESTs TATA box binding protein (TBP)-associat	18.50	8.59				
75	121553 121753	AA412488 AK000552	Hs.48820 Hs.323518	WD repeat domain 5	7.00					
. •	121838	AA425680	Hs.98441	ESTs				10.40		
	121857	BE387162	Hs.280858	ESTs, Highly similar to A35661 DNA excis	6.00			42.20		
	121991 122089		Hs.98649 Hs.98682	EST hypothetical protein FKSG32			8.60	12.20		•
80	122105		Hs.98699	ESTs			6.14			
	122163	AA435702	Hs.98829	EST				10.40		
	122318 122335		Hs.241551	gb:zv60b05.r1 Soares_testis_NHT Homo sap chloride channel, calcium activated, fam	13.50			18.20		
	122338	AA443311	Hs.98998	ESTs	4.80					
85		Al313473	Hs.99087	ESTs, Weakly similar to S47073 finger pr		8.00				

	w	O 02/086	443						PCT/US02/12476
	122512		Hs.98658	budding uninhibited by benzimidazoles 1			8.80		
	122516.	AA449352	Hs.99217	ESTs				9.40	
		A1220089	Hs.99439	EST ₆		9.20		10.40	
5	122852	AI580056 AW268962	Hs.98992 Hs.111335	ESTs ESTs		6.80		10.40	
,	123005	AW369771	Hs.52620	integrin, beta 8		0.00	12.60		
	123044	AK001035	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro					5.35
	123160	AA488687	Hs.284235	ESTs, Weakly similar to 138022 hypotheti			6.06		
10	123315 123329	AA495369 Z47542	Hs.179312	gb:zv37d10.s1 Soares ovary tumor NbHOT H small nuclear RNA activating complex, po			12.40 11.80		
10	123329	AA765256	Hs.135191	ESTs, Weakly similar to unnamed protein		12.00			
	123518		Hs.21068	hypothetical protein			13.00		
	123519	AW015887	Hs.112574	ESTs		12.20	7 00		
15	123614		Hs.98806	hypothetical protein Homo sapiens cDNA: FLJ23603 fis, clone L			7.80	10.60	
13	123673	AA680003 BE550112	Hs.109363 Hs.158549	ESTs, Weakly similar to T2D3_HUMAN TRANS	23.00			10.55	
	123727	AI083986	Hs.282977	hypothetical protein FLJ13490		7.00			
	123731	AA609839		gb:ae62f01.s1 Stratagene lung carcinoma			9.80		
20	123752	AA227714	Hs.179703	KIAA0129 gene product	3.50			12.80	
20	123900 124006	AA621223 Al147155	Hs.112953 Hs.270016	EST ESTs	97.00			12.00	
	124059	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	3.02 .				
	124069	AF134160	Hs.7327	claudin 1			27.80	. 25.00	
25	124191	T96509	Hs.248549	ESTs, Moderately similar to S65657 alpha bromodomain adjacent to zinc finger doma		7.20		35.80 _.	•
23	124273 124297	AA457211 AL080215	Hs.8858 Hs.102301	Homo sapiens mRNA; cDNA DKFZp586J0323 (f		1.20		11.00	
	124305		1.0.102001	gb:EST375294 MAGE resequences, MAGH Homo				16.00	Δ.
	124676	Al360119.com		phosphoglycerate mutase 1 (brain)				04.00	6.08
30	124874	BE550182	Hs.127826	RaiGEF-like protein 3, mouse homolog		9.40		21.00	
30	124904 124969	AK000483 Al650360	Hs.93872 Hs.100256	KIAA1682 protein ESTs		J.70		10:80	
	125000	T58615	Hs.110640	ESTs				9.80	
	125201	AA693960	Hs.103158	ESTs, Weakly similar to T33296 hypotheti		7.60			
25	125266	W90022	Hs.186809	ESTs, Highly similar to LCT2_HUMAN LEUKO		6.59		9.57	
35	125299 125356	T32982 Al057052	Hs.102720 Hs.133554	ESTs ESTs, Weakly similar to Z195_HUMAN ZINC				14.00	
	125370	AA256743	Hs.134158	Homo saplens, Similar to KIAA0092 gene p			8.20		
	125418	AA777690	Hs.188501	ESTs				13.20	•
40	125433	AL162066	Hs.54320	hypothetical protein DKFZp762D096		21.40 6.96			
40	125437 125446	A1609449 BE219987	Hs.140197 Hs.166982	ESTs phosphatidylinositol glycan, class F		8.80			
	125711	AA305800	Hs.5672	hypothetical protein AF140225				11.20	
	125756	BE174587	Hs.289721	growth arrest specific transcript 5				45.00	4.31
15	125757	A1274906	Hs.166835	ESTs, Highly similar to 1814460A p53-ass	3.20			15.60	
45	125769 125839	BE270266 AW836261	Hs.82128 Hs.337717	5T4 oncofetal trophoblast glycoprotein ESTs	3.20	8.20			
	125850	W85858	Hs.99804	ESTs	2.65				•
	125875	H14480		gb:ym18b09.r1 Soares infant brain 1NIB H		7.40			4.22
50	125924	BE272506	Hs.82109	syndecan 1					4.23 3.98
50	126972	AI927475 : H60340	Hs.35406	ESTs, Highly similar to unnamed protein gb:yr39b04.r1 Soares fetal liver spleen				10.60	0.00
	126327	AA432266	Hs.44648	ESTs		11.60			
	126345	N49713		gb:yv23f06.s1 Soares fetal liver spleen		6.67		40.00	•
55	126435	AW614529	Hs.285847 Hs.184601	CGI-19 protein				10.60	4.38
55	126487 126521	AA283809 AI475110	Hs.203933	solute carrier family 7 (cationic amino ESTs .		6.60		٠	
	126522	W31912	, 10.20000	gb:zc76d03.s1 Pancreatic Islet Homo sapi				14.80	•
	126543	AL035864	Hs.69517	cDNA for differentially expressed CO16 g			7.00		4.01
60	126567 126605	AA058394	Hs.57887	ESTs, Weakly similar to KIAA0758 protein gb:zj65h07.s1 Soares_fetal_liver_spleen_			7.80	11.60	
00	126627	AA676910 AA497044	Hs.20887	hypothetical protein FLJ10392				14.60	
	126628	N49776	Hs.170994	hypothetical protein MGC10946	8.00				
	126737	AW976516	Hs.283707	Homo sapiens cDNA: FLJ21354 fis, clone C	2.92				
65	126795 126802	AW975076 AW805510	Hs.172589 Hs.97056	nuclear phosphoprotein similar to S. cer hypothetical protein FLJ21634	7.50	11.60			
05	126892	AF121856	Hs.284291	sorting nexin 6	3.50				
	126928	AA480902	Hs.137401	ESTs				22.83	
	126979	AA210954		gb:zq89h10.r1 Stratagene hNT neuron (937				11.80 11.60	
70	126986 126992	A1279892 A1809521	Hs.46801	sorting nextn 14 gb:wf30e03.x1 Soares_NFL_T_GBC_S1 Homo s				20.80	
10	127066	R25066	•	gb:vg42c07.r1 Soares infant brain 1NIB H				27.60	
	127099	AA347668		gb:EST54026 Fetal heart II Homo sapiens				21.60	
•	127139	AA830233	Hs.293585	ESTs	2.40			11.20	
75	127209 127221	AA305023 BE062109	Hs.81964 Hs.241551	SEC24 (S. cerevisiae) related gene famil chloride channel, calcium activated, fam	3.10 2.76				
, 5	127225	AA315933	Hs.120879	ESTs				16.80	
	127313	AK002014	Hs.47546	Homo sapiens cDNA FLJ11458 fis, clone HE	14.00			40.00	
	127444	AW978474	Hs.7560	Homo sapiens mRNA for KIAA1729 protein,		11.20		13.60	
80	127500 127524	AW971353 AI243596	Hs.162115 Hs.94830	ESTs ESTs, Moderately similar to T03094 A-kin		11.29	7.80		
50	127540	N45572	Hs.105362	Homo saplens, clone MGC:18257, mRNA, com	3.53				
	127599	AA613204	Hs.150399	ESTs				13.80	
	127609	X80031 W/80755	Hs.530	collagen, type IV, alpha 3 (Goodpasture				28.00 19.80	
85	127662 127668	W80755 Al343257	Hs.8294 Hs.139993	KIAA0196 gene product ESTs				11.20	
			, 55550						

	w	O 02/086	443						PCT/L	IS02/12476
	127746	A1239495	Hs.120189	ESTs				14.18		
		AA741368	Hs.291434	ESTs	4.50			24.00		
	127817 127959	AA836641 AI302471	Hs.163085 Hs.124292	ESTs Homo sapiens cDNA: FLJ23123 fis, clone L				24.60 9.20		
5		Al613226	Hs.41569	phosphatidic acid phosphatase type 2A				16.83		
•	127969		Hs.93748	Homo sapiens cDNA FLJ14676 fis, clone NT		13.60				
	128015		Hs.334659	hypothetical protein MGC14139		7.00		37.40		
	128027 128077	AJ433721 AJ310330	Hs.164153 Hs.128720	ESTs ESTs				9.60		
10	128166		Hs.11801	interferon regulatory factor 6				9.24		
	128226	AI284940	Hs.289082	GM2 ganglloside activator protein	19.00					
		A1954968	Hs.279009	matrix Gla protein		9.00		10.40		
	128527	AA191420 AA504583	Hs.185030 Hs.101047	ESTs transcription factor 3 (E2A immunoglobul		5.00			4.30	
15	128539		Hs.258618	ESTs		12.60				
		H12912	Hs.274691	adenylate kinase 3				10.00	4.56	
	1285/2 128777	AA933022 AI878918	Hs.256583 Hs.10526	interleukin enhancer binding factor 3, 9 cysteine and glycine-rich protein 2			16.80	10.00		
	128781		Hs.105465	small nuclear ribonucleoprotein polypept			10.00		4.48	
20	128796	AJ000152	Hs.105924	defensin, beta 2		8.12				
	128920		Hs.166468	programmed cell death 5					4.62 4.04	
	128924 128971	BE279383 . H05132	Hs.26557 Hs.107510	plakophilin 3 ESTs		12.60			4.04	
		AL079648	Hs.301088	ESTs		8.80				
-25	129041	BE382756	Hs.169902	solute carrier family 2 (facilitated glu	0.50				6.05	
		BE250162 Al769160	Hs.83765 Hs.108681	dihydrofolate reductase Homo sapiens brain tumor associated prot	.2.59		6.67			
		AB023179	Hs.9059	KIAA0962 protein		8.00	0.0.			
20	129229	AF013758	Hs.109643	polyadenylate binding protein-interactin	4.00				4.00	
30	129241		Hs.109706	hematological and neurological expressed	2.55				4.06	
		W94197 Al267700	Hs.110165 Hs.317584	ribosomal protein L26 homolog ESTs	2.33 18.00					
	129457	X61959	Hs.207776	aspartylglucosaminidase	6.50					
25	129466		Hs.334309	keratin 6A	12.94 -			44.00		
35		AI148976 AF061812	Hs.112062 Hs.115947	ESTs keratin 16 (focal non-epidermolytic palm				11.00	4.46	
	129641		Hs.11805	ESTs				12.00		
	129665	AW163331	Hs.118778	KDEL (Lys-Asp-Glu-Leu) endoplasmic retic					4.70	
40	129703	BE388665 AA156214	Hs.179999 Hs.12152	Homo saplens, clone IMAGE:3457003, mRNA APMCF1 protein					4.02 5.71	
70	129748	M16707	Hs.123053	H4 histone, family 2	3.50				0	
•	129890	AI868872	Hs.282804	hypothetical protein FLJ22704					4.21	
	129896 129945	BE295568 BE514376	Hs.13225	UDP-Gal:betaGlcNAc beta 1,4- galactosylt PAI-1 mRNA-binding protein	2.56				4.03	
45	130010	AA301116	Hs.165998 Hs.142838	nucleolar phosphoprotein Nopp34			7.00		4.00	
	130026		Hs.332112	EST		6.40				
	130080 130149	X14850 AW067805	Hs.147097 Hs.172665	H2A histone family, member X methylenetetrahydrofolate dehydrogenase	2.74				4.65	
		AA063546	Hs.75981	ubiquitin specific protease 14 (tRNA-gua			7.40			
50	130441		Hs.155637	protein kinase, DNA-activated, catalytic	4.07				3.91	
	130482 130500	AW409701 AB007913	Hs.1578 Hs.158291	baculoviral IAP repeat-containing 5 (sur KIAA0444 protein	4.87			9.60		
	130524	U89995	Hs.159234	forkhead box E1 (thyroid transcription f			13.40	0.00		
~ ~	130541	X05608	Hs.211584	neurofilament, light polypeptide (68kD)			8.20		2.00	
55	130553	AF062649	Hs.252587 Hs.1608	pituitary tumor-transforming 1 replication protein A3 (14kD)			7.00		6.06	
	130567 130577	AA383092 M69241	Hs.162	insulin-like growth factor binding prote	3.04		1.00			
	130627	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	3.87					
60	130648	Al458165	Hs.17296	hypothetical protein MGC2376				16.20 17.80		
60	130697 130744	L29472 H59696	Hs.1802 Hs.18747	major histocompatibility complex, class POP7 (processing of precursor, S. cerevi				17.00	5.28	
	130800	Al187292	Hs.19574	hypothetical protein MGC5469				•	4.43	
	130867	NM_001072	Hs.284239	UDP glycosyltransferase 1 family, polype	16.84				4.92	
65	130869 130925	J03626 AF093419	Hs.2057 - Hs.169378	uridine monophosphate synthetase (orotat multiple PDZ domain protein				9.60	4.52	
05	130994		Hs.327337	ESTs		12.40		•		
	131028	Al879165	Hs.2227	CCAAT/enhancer binding protein (C/EBP),	10.21			0.00		
	131031 131041	NM_001650 T15767	Hs.288650 Hs.22452	aquaporin 4 Homo sapiens mRNA for KIAA1737 protein,				9.80 9.60		,
70		W28545	Hs.101514	hypothetical protein FLJ10342				17.00		
		A1143139	Hs.2288	visinin-like 1	2.74		0.00			
		H15302 AW953575	Hs.168950 Hs.303125	Homo sapiens mRNA; cDNA DKFZp566A1046 (f p53-Induced protein PIGPC1	3.12		8.80			
		BE280074	Hs.23960	cyclin B1	3.07					
75	131200	BE540516	Hs.293732	hypothetical protein MGC3195	3.07					
		W25005	Hs.24395	small inducible cytokine subfamily B (Cy	2.87			14.67		
	131257 131375	AW339037 AW293165	Hs.24908 Hs.143134	ESTs ESTs			19.20	17.07		
00		NM_003729	Hs.27076	RNA 3'-terminal phosphale cyclase	3.50		-			
80	131476	AI521663	Hs.334644	hypothetical protein FLJ14668	15.00		7 90			
	131510 131646		Hs.27842 Hs.30057	hypothetical protein FLJ11210 MRS2 (S. cerevisiae)-like, magnesium hom			7.80 7.00			
	131786		Hs.306083	Novel human gene mapping to chomosome 22	2.65					
85	131839	AB014533	Hs.33010	KIAA0633 protein				35.20	4.11	
0,5	131843	AA192315	Hs.184062	putative Rab5-interacting protein					7.11	

	w	O 02/086	443						PCT/US	12/12476
	131877	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	19.00				101/05	72/12470
	131885	BE502341	Hs.3402	ESTs	6.48					
	131921 131945	AA456093 NM_002916	Hs.34720 Hs.35120	ESTs replication factor C (activator 1) 4 (37	56.00		8.40			
5	131958	NM_014062	Hs.3566	ART-4 protein	50.00				3.82	
	131965	W79283	Hs.35962	ESTs	3.03					
	132000 132040	AW247017 NM_001196	Hs.36978 Hs.315689	melanoma antigen, family A, 3 Homo sapiens cDNA: FLJ22373 fis, clone H	3.30	9.60				
	132109	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	21.00					
10	132114	NM_006152	Hs.40202	lymphold-restricted membrane protein		8.40	•		40.05	
	132162 132164	AA315805 Al752235	Hs.94560 Hs.41270	desmoglein 2 procollagen-lysine, 2-oxoglutarate 5-dio	2.70				12.25	
	132180	NM_004460	Hs.418	fibroblast activation protein, alpha	2.71					
15	132181	AW961231	Hs.16773	Homo sapiens clone TCCCIA00427 mRNA sequ	3.83			42.00		
15	132182 132231	NM_014210 AA662910	Hs.70499 Hs.42635	ecotropic viral integration site 2A hypothetical protein DKFZp434K2435	9.50			13.20		
	132277	AK001745	Hs.184628	hypothetical protein FLJ 10883	4.50					
	132328	NM_014787	Hs.44896	DnaJ (Hsp40) homolog, subfamily B, membe				9.20		
20	132394 132424	AK001680 AA417878 -	Hs.30488 Hs.48401	DKFZP434F091 protein ESTs, Moderately similar to ALU8_HUMAN A			8.60	19.80		
20	132528	T78736	Hs.50758	SMC4 (structural maintenance of chromoso			27.40			•
	132543	BE568452	Hs.5101	protein regulator of cytokinesis 1	4.38	7.00				
	132544 132550	L19778 AW969253	Hs.51011 Hs.170195	H2A histone family, member P bone morphogenetic protein 7 (osteogenic	2.64	7.00			•	
25	132552	BE621985	Hs.296922	thiopurine S-methyltransferase				15.83		
	132581	AK000631	Hs.52256	hypothetical protein FLJ20624	4.00		6.60			
	132617 132638	AF037335 Al796870	Hs.5338 Hs.54277	carbonic anhydrase XII DNA segment on chromosome X (unique) 992	4.95	8.20				
20	132653	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	4.38					
30	132669	W38586	Hs.293981	guanine nucleotide binding protein (G pr	4.00				4.36	
	132710 132771	W74001 Y10275	Hs.55279 Hs.56407	serine (or cysteine) proteinase inhibito phosphoserine phosphatase	4.60 3.71					
	132799	W73311	Hs.169407	SAC2 (suppressor of actin mutations 2,				9.48		
35	132833	U78525	Hs.57783	eukaryotic translation initiation factor	•			12.00	5.83	
33	132892 132906	AW834050 BE613337	Hs.9973 Hs.234896	tensin geminin	3.09			12.00		
	132959	AW014195	Hs.61472	ESTs, Weakly similar to YAE6_YEAST HYPOT					3.87	
	132962	AA576635	Hs.6153	CGI-48 protein	3.50 6.18					
40	132990 132994	X77343 AA112748	Hs.334334 Hs.279905	transcription factor AP-2 alpha (activat clone HQ0310 PRO0310p1	3.19				•	
	133000	AL042444	Hs.62402	p21/Cdc42/Rac1-activated kinase 1 (yeast	2.96					
	133050 133083	X73424 BE244588	Hs.63788 Hs.6456	propionyl Coenzyme A carboxylase, beta p chaperonin containing TCP1, subunit 2 (b	2.55				4.00	
	133086	L17131	Hs.139800	high-mobility group (nonhistone chromoso					8.96	
45	133134	AF198620	Hs.65648	RNA binding motif protein 8A					4.28	
	133155 133181	M58583 X91662	Hs.662 Hs.66744	cerebellin 1 precursor twist (Drosophila) homolog (acrocephalos	3.00			10.80		
	133204	BE267696	Hs.254105	enolase 1, (alpha)	0.00				4.63	
50	133412	U41493	Hs.73112	guanine nucleotide binding protein (G pr		12.50				
50	133421 133451	AF134160 AW970026	Hs.7327 Hs.73818	claudin 1 ubiquinal-cytochrome c reductase hinge p	2.85				4.66	
	133453	A1659306	Hs.73826	protein tyrosine phosphatase, non-recept		6.80				
	133504	NM_004415	Hs.74316	desmoplakin (DPI, DPII)	6.14	•			A 55	
55	133506 133615	BE562958 M62843	Hs.74346 Hs.75236	hypothetical protein MGC14353 ELAV (embryonic lethal, abnormal vision,				17.80	4.55	
	133627	NM_002047	Hs.75280	glycyl-tRNA synthetase					4.85	
	133649	U25849	Hs.75393	acid phosphatase 1, soluble				44.00	6.34	
	133669 133749 -	NM_006925 L20852	Hs.166975 Hs.10018	splicing factor, arginine/serine-rich 5 solute carrier family 20 (phosphale tran			6.11	14.00		
60	133776	BE268649	Hs.177766	ADP-ribosyltransferase (NAD+; poly (ADP-					4.91	
	133865	AB011155	Hs.170290	discs, large (Drosophila) homolog 5	. 3.07				4.60	
	133946 133973	AJ001258 N55540	Hs.173878 Hs.78026	NIPSNAP, C. elegans, homolog 1 ESTs, Weakly similar to similar to ankyr				13.00	4.00	
CE	134047	BE262529	Hs.78771	phosphoglycerate kinase 1					3.85	
65	134098 134107	BE513171 NM_005629	Hs.79086 Hs.187958	mitochondrial ribosomal protein L3 solute carrier family 6 (neurotransmitte	2.56		8.20			
	134112	AW449809	Hs.79150	chaperonin containing TCP1, subunit 4 (d			0.20		4.08	
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro	31.00					
70	134160 134168	T98152 AA398908	Hs.79432 Hs.181634	fibrillin 2 (congenital contractural ara Homo sapiens cDNA: FLJ23602 fis, clone L			24.60		6.71	
70	134185	AA285136	Hs.301914	neuronal specific transcription factor D				14.74	0.11	
	134201	L35035	Hs.79886	ribose 5-phosphate isomerase A (ribose 5		8.40				
	134272 134276	X76040 BE083936	Hs.278614 Hs.80976	protease, serine, 15 antigen Identified by monoclonal antibod	4.50	9.00				
75	134353	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m		5.00		16.40		
	134367	AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	2.80					
	134380 134423	AU077143 H53497	Hs.179565 Hs.83006	minichromosome maintenance deficient (S. CGI-139 protein	4.68				3.84	
	134423	AA279661	Hs.83753	small nuclear ribonucleoprotein polypept					5.81	
80	134470	X54942	Hs.83758	CDC28 protein kinase 2					4.21	
	134498 134502	AW246273 BE148534	Hs.84131 Hs.84168	threonyHRNA synthetase UV-B repressed sequence, HUR 7		13.60		•	7.30	
	134510	NM_002757	Hs.250870	mitogen-activated protein kinase kinase		.0.00		9.70		
85	134548	N95406	Hs.333495	Deleted in split-hand/split-foot 1 regio	6.00		•		4.63	
05	134654	AK001741	Hs.8739	hypothetical protein FLJ 10879	0.00					

	WO 02/086443						PCT/US02/12476		
	134724	AF045239	Hs.321576	ring finger protein 22				12.00	
	134743	AA044163	Hs.89463	potassium large conductance calcium-acti	4.00				
	134781	AA374372	Hs.89626	parathyroid hormone-like hormone			25.20		
_	134806	AD001528	Hs.89718	spermine synthase					4.58
5	134853	BE268326	Hs.90280	5-aminoimidazole-4-carboxamide ribonucle					4.79
	134859	D26488	Hs.90315	KIAA0007 protein			6.20		
	134891	R51083	Hs.90787	ESTs			7.40		
	134960	BE246400	Hs.285176	acetyl-Coenzyme A transporter	4.00				
10	134993	BE409809	Hs.301005	purine-rich element binding protein B					4.48
10	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	9.50				
	135080	Al761180	Hs.94211	rcd1 (required for cell differentiation,	5.00				
	135103	NM_003428	Hs.9450	zinc finger protein 84 (HPF2)		11.00			
	135145	AW014729	Hs.95262	nuclear factor related to kappa 8 bindin					4.01
1.	135184	U13222	Hs.96028	forkhead box D1			7.00		
15	135242	Al583187	Hs.9700	cyclin E1	13.50				
	135286	AW023482	Hs.97849	ESTs	6.46				
	135289	AW372569	Hs.9788	hypothetical protein MGC10924 similar to		8.80			
	135355	AK001652	Hs.99423	ATP-dependent RNA helicase	10.00				
20	135371	NM_006025	Hs.997	protease, serine, 22	8.00			44.00	
20	135393	L11244	Hs.99886	complement component 4-binding protein,				14.60	

TABLE 5B shows the accession numbers for those primekeys lacking unigenelD's for Table 5A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (Double Twist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

25	similarity us "Accession"	sing Clustering and Alignment Tools (Double Twist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the column.	
30	Pkey: CAT numbe Accession:	Unique Eos probeset identifier number er: Gene cluster number Genbank accession numbers	
	Pkey	CAT number Accessions	
35	117079 124305 101502 109792	1621717_1 H92325 T97125 242183_1 AW963221 AA344870 AA344871 H93331 18202_6 M26958 754958_1 R49625 F10674	
40	126034 102768 126345 127066 127099	1598157_1 H60340 N91637 44641_1 U82321 H66077 1653833_1 N49713 N49819 W03810 1703458_1 R25066 R20144 R20145 Z43845 244301_1 AA347668 AW956810 Z44271 F07065 F07064 R13506	
45	119243 125875 112054 126979 126992	1774795_1 T12603 T12604 1566433_1 H14480 N98295 1538292_1 R43590 F10439 171411_1 AA210954 AA211007 880655_1 AI809521 H12174 Z42556	
50	122318 114699	292419_1	
55	100867 123731 109700 120715 113702	tigr_HT4586 U14622 genbank_AA609839 AA609839 genbank_F09609 F09609 Senbank_AA292700 AA292700 genbank_AA292700 T97307 T97307	
60	115113 101045 108554 108573 119052	genbank_AA256460	
65	126522 126605 103768	416020_1 439280_1 46922_1 469267 AI580740 AI690440 AI561350 AW467906 AW151450 AI825927 AL041716 AI885600 AI742213 AW248624 AI955498 AA033947 46922_1 4	
70		H44848 H20477 T91695 W47039 AA070055 AA024795 AA328855 AA379248 AA379330 AA385580 W25920 W03688 AA448359 AA093881 AW362477 AA089997 AI350265 W93479 N99688 AA932257 AW351469 H68590 AA663402 AA069771 AW087986 AI858420 AA660214 AI970774 AI857712 AI683081 AI885584 AW131150 AI567981 AW002714 AW189973 AW075495 AW168303 AA953714 AW516681 AI357375 AI566663 AW912676 AI570580 AI023690 AA448216 AI079853 AI422707 AA779516 AW026972 AW130082 AW162307 AW438646 AA709332 AW192394 AI167350 AI217879 AI129152 AA719509 AI350480 AA663418 AI003634 AW118546 AA180261 AA442833 AI268625 AA888881	
75		AID38759 AA846723 AI248770 AA993694 AI280335 AI885107 AW518649 AA641563 AA995835 AA582521 AI276744 AA436478 AI017350 AI620763 AI859887 N73926 AI076327 AI741615 AI160617 AW172819 AI492005 AA677429 AA996334 AI693771 AI950039 AI245629 AI288515 AI866186 T93293 AA173262 AA599779 AI680092 AW439316 AI084555 AI272672 AI583507 AW473219 AA7381312 AW473258 AI367492 AA995410 AI689624 AA206353 AI033095 AI040382 AA873630 AI221074 AI934840 AI418680 A844306 R94503 AA773520 AA843169 AA219425 AA629658 AI811719 AW411275 AI590981 W37907 AI591178 AI684051 AA983238 AA669347 AA976239 AA704570 AI628339	
80		A1884391 A1241580 A1003539 AW176687 AA009650 N34566 A1333493 A1186070 AA070827 AA411683 A1280884 AA872023 AA207255 AA021576 N71953 A1885888 AW076039 T16777 A1537673 AW248048 H09554 W93480 W47001 AW079114 AA063160 AA757453 R60788 A1859431 H20478 AA218882 AA757465 AA100995 A1864135 A1934209 AA070503 H47008 AA219546 W61039 W93907 AW385050 W37967 W78028 AA189007 AA479136 R93650 AA442312 T30287 AA847628 AA180262 AA009649 C03892 AW149464 AA310963 AA219693 AA069747 R29207 AA094784 AA293615 AA447848 A1984167 N90393 C05097 N56499 AW292351 AW149681 AW473258 AA629322 A1004409	
85		AW105577 AI954937 AI811070 AA902422 AW514437 AA535460 AA916877 AW517122 AA974657 AA975649 AW517130 AW517129 F31737 W07688 AA193645 AA378994 AA489273 F32267 W39303 AA021181 N86810 AA406524 AA062553 AA436801 H08985 H15979 N40310	

PCT/US02/12476

AA436789 AA232172 AW360778 W25862 R60282 AA436530 AA378894 AA187461 AI940535 AA604210 AA089514 AA360421 N88243 N84281

AA209340 N56174 N88374 AA191088 AW247691 AA249013 AA093111 AA972536 AW298594 AA375893 T12139 W28186 AW243849

AI288629 AA843996 W15260 AI188286 AW248079 R15836

W45552

119599 112382 105264 100071 genbank_W45552 W45552
genbank_R59904
genbank_AA227934
entrez_A28102
714071_1

AA227934
AA227934
AA227934
AA227934
AA227934
AA23569
AA496646 5 123315

10

10	Eos/Affyn	shows 99 gene netrix Hu03 Ger re level of mRN	iechip array. C	nonsmokers with lung cancer relative to smokers with lung Gene expression data for each probeset obtained from this	cancer. These generallysis was expres	es were selected from 5 sed as average intensit	i9580 probesets on t y (Al), a normalized	ihe value reflecti
15	Pkey: ExAccn: Unigenell Unigene 1 R1:	Exempla D: Unigene	r Accession nu number nene fille	entifier number mber, Genbank accession number es from non-smokers with adenocarcinoma divided by the S	Off hercentile of Al	for samples from smoke	ers with adenocarcin	oma
20	R2:	average carcinom	of Al for sampl	es from non-smokers with squamous cell carcinoma divided	by the 90th percen	tile of AI for samples fro	ım smokers with squ	amous cell
	Pkey	ExAcon	UnigenelD	Unigene Tille	R1	R2		
25	100971	BE379727	Hs.83213	, fatty acid binding protein 4, adipocyte		3.64	-	
	101174	L17330	Hs.280	pre-T/NK cell associated protein	15.00	· 2.46		
	101296 101304	Y12490 AA001021	Hs.85092 Hs.6685	thyroid hormone receptor interactor 11 thyroid hormone receptor interactor 8		12.00		
	101806	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias		2.68		
30	101972	S82472		gb:beta -pol=DNA polymerase beta (exon a		2.11		
	102274	U30930	Hs.158540	UDP glycosyltransferase 8 (UDP-galactose	7.50			
	102394	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	7.50			
	102832 103010	U92015 X52509	Hs.161640	gb:Human clone 143789 defective mariner tyrosine aminotransferase	13.50 9.50			
35	103439	X98266	115.101040	gb:H.sapiens mRNA for ligase like protei	•	2.50		
55	103563	L02911	Hs.150402	activin A receptor, type I	9.00			
	103857	Al076795 ·	Hs.45033	lacrimal proline rich protein	40.00	3.94		
	104239	AB002367	Hs.21355	doublecortin and CaM kinase-like 1	13.50	12.66		
40	104590 104907	AW373062 AA055829	Hs.83623 Hs.196701	nuclear receptor subfamily 1, group I, m ESTs, Weakly similar to ALU1_HUMAN ALU	16.50	12.00		
70	104507	BE514788	Hs.296244	SNARE protein	10.00	2.17		
	106672	H47233	Hs.30643	ESTs	7.00			
	106872	T56887	Hs.18282	KIAA1134 protein	11.50	0.00		
45	106960	AA156238	Hs.32501	ESTS	9.50	2.38		•
45	106971 107982	Z43846 AA035375	Hs.194478 Hs.57887	Homo saplens mRNA; cDNA DKFZp43401572 (f ESTs, Weakly similar to KIAA0758 protel	5.30	2.95		
	108562	AA100796	113.07001	gb:zm26c06.s1 Stratagene pancreas (93720	16.50			
	108599	AB018549	Hs.69328	MD-2 protein	13.00			
50	108663	BE219231	Hs.292653	ESTs, Weakly similar to T26845 hypotheti	7.00	2.40		•
50	109247	AA314907	Hs.85950	ESTs ESTs	7.00	5.00		
	109630 110193	R44607 A1004874	Hs.22672 Hs.310764	Homo saplens mRNA; cDNA DKFZp434M082 (fr	12.50	0.00		
	110234	H24458	Hs.32085	EST	16.50		•	
	110644	R94207	Hs.268989	ESTs, Highly similar to type II CALM/AF1	8.00			
55	110886	AW274992	Hs.72249	three-PDZ containing protein similar to	17.00			
	111057 111950	T79639 AF071594	Hs.14629 Hs.110457	ESTs Wolf-Hirschhorn syndrome candidate 1	16.50 11.00			
	112291	R53972	Hs.26026	ESTs	11.00	3.00		
	112956	Z43784	Hs.75893	ankyrin 3, node of Ranvier (ankyrin G)	·	2.79		:
60	113009	T23699	Hs.7246	ESTs		4.50		
	113060	BE564162	Hs.250820	hypothetical protein FLJ14827	9.79 32.50		•	
	113073 113074	N39342 AK001335	Hs.103042 Hs.31137	microtubula-associated protein 1B protein tyrosine phosphatase, receptor t	32.30	3.82		
	113121	T48011	Hs.8764	EST PROGRAM PROSPRINTED OF TOUR PROPERTY OF		2.21		
65	113125	AA968672 .	Hs.8929	hypothetical protein FLJ11362	19.50			
	113757	AA703095	Hs.18631	ESTs	6.00	2.65		
	113848	W52854	Hs.27099	hypothetical protein FLJ23293 similar to chromosome 12 open reading frame 2	6.00	6.00		
	113884 113936	AI333076 W17056	Hs.28529 Hs.83623	nuclear receptor subfamily 1, group I, m		4.63		
70	114875	AA235609	Hs.236443	Homo sapiens mRNA; cDNA DKFZp564N1063 (7.00		
	114987	AA251016	Hs.87808	EST		6.00		
	115460	AW958439	Hs.38613	ESTs		2.27 9.00		
	115722 116261	W91892 AA481788	Hs.59609 Hs.190150	ESTs .	9.50	9.00		
75	116830	H61037	Hs.70404	ESTs, Weakly similar to ALU2_HUMAN ALU	8.50			
. •	116970	AB023179	Hs.9059	KIAA0962 protein	7.50			
	117178	H98675	Hs.269034	ESTs	2 00	2.68		•
	117757	AF088019	Hs.46732	EST - Months similar to A46010 Y linked	7.50 16.50			
80	118283 118384	AA287747 AF217525	Hs.173012 Hs.49002	ESTs, Wealdy similar to A46010 X-linked Down syndrome cell adhasion molecule	10.50	2.50		
-00	118657	A1822106	Hs.49902	ESTs		2.39		
	120328	AA923278	Hs.290905	ESTs, Weakly similar to protease [H.sapt	1.4	3.50		
	120404	AB023230	Hs.96427	KIAA1013 protein	7.00			
85	120524	AA261852	Hs.192905	ESTS	6.00			
ره	120688	AW207555	Hs.97093	Homo sapiens cDNA: FLJ23004 fis, clone L	17.92			

	W	O 02/086	443				PCT/US02/12476
	121558	AA412497		gb:zt95g12.s1 Soares_testis_NHT Homo sap		2.95	
	121676	H56037	Hs.108146	ESTs	10.00		
	121936	AI024600	Hs.98612	ESTs	15.00		
	121938	AA428659	Hs.98610	ESTs	14.00		
5	122177	AA435789	Hs.98833	EST	8.93		
•	123442	AA299652	Hs.111496	Homo sapiens cDNA FLJ11643 fis, done HE	13.04		
	123551	AA608837	110.11.1100	gb:af03h12.s1 Soares_testis_NHT Homo sap	11.50		
	123756	AA609971	Hs.112795	EST	11.00		
	123861	AA620840	1131112100	gb:af89g01.s1 Soares_testis_NHT Homo sap		2.50	
10	124371	N24924	Hs.188601	ESTs	6.50		
10	127477	BE328720	Hs.280651	ESTs		4.33	
	127591	Al190540	Hs.131092	ESTs		3.02	
	128252	AA455924	Hs. 192228	ESTs	7.00		
	128426	AI265784	Hs.145197	ESTs		2.08	
15	128925	R67419	Hs.21851	Homo sapiens cDNA FLJ 12900 fis, clone NT		2.11	
13	128945	AI990506	Hs.8077	Homo sepiens mRNA; cDNA DKFZp547E184 (fr	10.00		
	129105	Al769160	Hs.108681	Homo sapiens brain tumor associated prot	15.50		
	129235	AW977238	Hs.126084	KIAA1055 protein		4.25	
	129506	AB020684	Hs.11217	KIAA0877 protein	6.50		
20	129595	U09550	Hs.1154	oviductal glycoprotein 1, 120kD (mucin 9		10.00	
~~	130160	AA305688	Hs.267695	UDP-Gal:betaGlcNAc beta 1,3-galactosyltr	20.00		
	130340	D82326	Hs.239106	solute carrier family 3 (cystine, dibasi	11.50		•
	131220	AB023194	Hs.300855	KIAA0977 protein	17.50		
	131430	Al879148	Hs.26770	fatty acid binding protein 7, brain	6.10		
25	132114	NM_006152		lymphoid-restricted membrane protein		6.15	
	132458	AA935315	Hs.48965	Homo sapiens cDNA: FLJ21693 fis, clone C		5.58	
	132647	NM_006927		sialyltransferase 4B (beta-galactosidase	7.50		
	132655	D49372	Hs.54460	small inducible cytokine subfamily A (Cy		2.53	
	132682	A1077500	Hs.54900	serologically defined colon cancer antig		2.50	
30	132747	AA345241	Hs.55950	ESTs, Weakly similar to KIAA1330 protein		2.83	
-	132812	R50333	Hs.92186	Leman coiled-coil protein		3.82	
	133337	AF085983	Hs.293676	ESTs		5.00	
	133876	AL134906	Hs.771	phosphorylase, glycogen; liver (Hers dis		3.00	
	134119	AW157837	Hs.79226	fasciculation and elongation protein zet		2.05	
35	134464	AA302983	Hs.239720	CCR4-NOT transcription complex, subunit	•	2.27	
23	134542	M14156	Hs.85112	insulin-like growth factor 1 (somatomedi		11.50	
	135002	AA448542	Hs.251677	G antigen 7B	87.00		
	135305	AA203555	Hs.98288	Homo sapiens cDNA FLJ14903 fis, clone PL		6.50	
ī	100000		310044				

TABLE 6B show the accession numbers for those primekeys lacking unigenelD's for Table 6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

40

45

50

Pkey CAT number Accessions AA100796 AF020589 AA074629 AA075946 AA100849 AA085347 AA126309 AA079311 AA079323 AA085274 X98266 N41124 36375_1 35330_1 108562 55 103439 123551 genbank_AA608837 AA608837 genbank_AA620840 entrez_U92015 AA620840 123861 102832 U92015 entrez_S82472 genbank_AA412497 101972 S82472 60 AA412497 121558

WO 02/086443

Table 7A shows 98 genes down-regulated in non-smokers with lung cancer relative to smokers with lung cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probesel obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5

Unique Eos probeset identifier number
Exemplar Accession number, Genbank accession number
Unigene number
Unigene gene title
90th percentile of Al for samples from smokers with adenocarcinoma divided by the average of Al for samples from non-smokers with adenocarcinoma.
90th percentile of Al for samples from smokers with squamous cell carcinoma divided by the average of Al for samples from non-smokers with squamous cell carcinoma. Pkey: ExAccn: UnigenelD: Unigene Title: R1: R2: 10

		carcinor	na.			
	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2
15	100187 100380	D17793 D82343	Hs.78183 Hs.18551	aldo-keto reductase family 1, member C3 neuroblastoma (nerve tissue) protein		164.10 77.40
	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid	102.40	
	100971	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	463.80	
20	101046 101066	K01160 AW970254	Hs.889	(NONE) Charot-Leyden crystal protein	672.00 66.00	
20	101175	U82671	Hs.36980	melanoma antigen, family A, 2	00.00	77,20
	101497	W05150	Hs.37034	homeo box A5	62.80	,
	101663	NM_003528	Hs.2178	H2B histone family, member Q	78.00	
25	101677	NM_000715	Hs.1012	complement component 4-binding protein,	185.20	
23	101745 101941	M88700 S77583	Hs.150403	dopa decarboxylase (aromalic L-amino acl gb:HERVK10/HUMMTV reverse transcriptase	80.08 99.20	
	102125	NM_006456	Hs.288215	sialyltransferase	33.20	103.10
	102242	U27185	Hs.82547	retinoic acid receptor responder (tazaro	67.00	
20	102340	U37055	Hs.278657	macrophage stimulating 1 (hepatocyte gro	71.60	
30	102369	U39840	Hs.299867	hepatocyte nuclear factor 3, alpha	452.00	69.70
	102457 102669	NM_001394	Hs.2359 Hs.29279	dual specificity phosphatase 4	153.00	65.70
	102009	U71207 AL079646	Hs.107019	eyes absent (Drosophila) homolog 2 symplekin; Huntingtin interacting protei		58.80
	102829	NM_006183	Hs.80962	neurotensin		268.80
35	103207	X72790		gb:Human endogenous retrovirus mRNA for	70.00	
	103242	X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o		212.10
	103260 103351	X78416 X89211	Hs.3155	casein, aipha gb:H.sapiens DNA for endogenous retrovir	64.60	130.70
	104212	AB002298	Hs.173035	KIAA0300 protein	66.80	
40	104252	AF002246	Hs.210863	cell adhesion molecule with homology to	63.80	
	104258	AF007216	Hs.5462	solute carrier family 4, sodium bicarbon	94.40	
	105024	AA126311	Hs.9879	ESTS	68.20	74.00
	106260 106440	A1097144 AA449563	Hs.5250 Hs.151393	ESTs, Weakly similar to ALU1_HUMAN ALU S glutamate-cystelne ligase, catalytic sub		74.60 71.10
45	106566	BE298210	113.101030	gb:601118016F1 NIH_MGC_17 Homo sapiens c	73.20	710
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr	83.80	
	106614	AA648459	Hs.335951	hypothetical protein AF301222		62.30
	106654	AW075485	Hs.286049	phosphoserine aminotransferase		202.40
50	105999 108700	H93281 AA121518	Hs.10710 Hs.193540	hypothetical protein FLJ20417 ESTs, Moderately similar to 2109260A B c		89.60 66.40
5,0	108810	AW295647	Hs.71331	hypothetical protein MGC5350		95.50
	108857	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act		63.40
	109597	AA989362	Hs.293780	ESTs	85.00	TO TO
55	109691 109704	T65568 A1743880	Hs.12860 Hs.12876	ESTs ESTs		58.70 60.60
55	110942	R63503	Hs.28419	ESTs	76.40	00.00
	111722	R23924	Hs.23596	EST	74.60	
	112891	T03927	Hs.293147	ESTs, Moderately similar to A46010 X-II	64.80	
60		AL157425	Hs.133315 Hs.103042	Homo sapiens mRNA; cDNA DKFZp761J1324 (f		76.70 120.20
00	113073 114251	N39342 H15261	Hs. 103042 Hs. 21948	microtubule-associated protein 1B ESTs	127.20	120.20
	115230	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	174.00	
	115291	BE545072	Hs.122579	hypothetical protein FLJ 10461		91.00
65	115815	AW905328	Hs.180842	ribosomal protein L13	66.40	000.00
05	115909 115965	AW872527 AA001732	Hs.59761 Hs.173233	ESTs, Weakly similar to DAP1_HUMAN DEATH hypothetical protein FLJ10970	82.80	226.60
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	02.00	361.60
	116552	D20508	Hs.164649	hypothetical protein DKFZp434H247	69.00	
70	116571	D45652		gb:HUMGS02848 Human adult lung 3' direct	64.20	
70	118466	N66741	Hs.96473	gb:yz33g08.s1 Morton Fetal Cochlea Homo EST	81.60	63,50
	120484 120983	AA253170 AA398209	Hs.97587	EST	01.00	81.10
	121034	AL389951	Hs.271623	nucleoporin 50kD		66.20
05	121423	AW973352	Hs.290585	ESTs	64,40	•
75	122553	AA451884	Hs.190121	ESTs		60.40
	122946	A1718702 AA487200	Hs.308026	major histocompatibility complex, class gb:ab19f02.s1 Stratagene lung (937210) H	188.60	80.20
	123130 124472	N52517	Hs.102670	gb:ab1902.s1 Stratagene lung (937210) H EST	71.00	00.20
	124526	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	11.00	104.90
80	125489	H49193	Hs.124984	ESTs, Moderately similar to ALU7_HUMAN A		72.00
	125731	R61771	Hs.26912	ESTs	00.00	69.90
	· 125747	NM_002884	Hs.865	RAP1A, member of RAS oncogene family ESTs	69.00	62.40
	126020 126547	H79863 U47732	Hs.114243 Hs.84072	transmembrane 4 superfamily member 3		62.80
85	126966	R38438	Hs.182575	solute carrier family 15 (H+/peptide tra		60.10
				- • •		

	W	O 02/086	443				PCT/US02/12476
	127472	AA761378	Hs.192013	ESTs	70.20		
	127610	AA960867	Hs.150271	ESTs, Highly similar to unnamed protein	64.00		
		AW293496	Hs.180138	ESTs	85.20		
	127987	AI022103	Hs.124511	ESTs	96.60		
5	128233	AW889132	Hs.11916	ribokinase		78.90	
•	128420	AA650274	Hs.41296	fibronectin leucine rich transmembrane p	•	106.90	
	128766	AW160432	Hs.296460	craniofacial development protein 1	66.80		
	129014	AW935187	Hs.170162	KIAA1357 protein		58.53	
	129215	AB040930	Hs.126085	KIAA1497 protein	64.20		
10	130090	H97878	Hs.132390	zinc finger protein 36 (KOX 18)	63.80		
10	130385	AW067800	Hs.155223	stanniocalcin 2	***************************************	139.60	
	130732	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)		64.60	
	131025	AB040900	Hs.6189	KIAA1467 protein	64.40	01.00	
					76.20		
15	131241	BE501914	Hs.24654	Homo sapiens cDNA FLJ11640 fis, clone HE			
15	131775	AB014548	Hs.31921	KIAA0548 protein	97.80	74.00	
	132240	AB018324	Hs.42676	KIAA0781 protein		71.00	
	132856	NM_001448	Hs.58367	glypican 4		88.40	
	132977	AA093322	Hs.301404	RNA blnding motif protein 3	133.20		
	133749	L20852	Hs.10018	solute carrier family 20 (phosphate tran		59.30	
20	133818	Al110684	Hs.7645	fibrinogen, B beta polypeptide	341.00		
	134264	AF149297	Hs.8087	NAG-5 protein		64.30	•
	134265	M83772	Hs.80876	flavin containing monooxygenase 3		232.53	
	134346	X84002	Hs.82037	TATA box binding protein (TBP)-associate	66.00		
	134395	AA456539	Hs.8262	lysosomal-associated membrane protein 2		75.80	
25	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su		108.30	• 8
	135056	N75765	Hs.93765	lipoma HMGIC fusion partner	71.40		
	135309	AI564123	Hs.42500	ADP-ribosylation factor-like 5	70.40		
	133303	71304123	113.72500	ADI HIDOSYIGUGI IGOGO-IRO O	10.10		
20					1). 71 5		
30	TABLE 7	B shows the acc	ession numbe	ers for those primekeys lacking unigenelD's for Ta	ble /A. For each p	ropeset we have listed the	gene cluster number nom which me
	oligonucli	ectides were de	signed. Gene	clusters were compiled using sequences derived	trom Genbank ES	s and micross. These se	quences were clustered based on sequer
			and Alignme	nt Tools (DoubleTwist, Oakland California). The C	sendank accession	numbers for sequences c	omprising each cluster are listed in the
	"Accessio	on" column.					
25							
35	Pkey:		s probeset ide	nlifier number .			
		ber. Gene clust					
	Accession	n: Genbank a	ocession num	bers			
				•			
	Pkey	CAT number	Accessions	3 ,			
40	•						
	103207	306354	X72790				
	106566	120358_1	BE298210	Al672315 AW086489 BE298417 AA455921 AA9	02537 BE327124 R	14963 AA085210 AW274	273 Al333584 Al369742 Al039658
	,,,,,,,,		A1885095	Al476470 Al287650 Al885299 Al985381 AW5926	24 AW340136 AI26	6556 AA456390 Al31081	5 AA484951
	116571	genbank_D4		D45652			
45	118466	genbank_N6		N66741			
75	101046	entrez_K011		TUUTTI	,		
	101941	entrez_\$775					
	103351	entrez_X892		1 4 407000			•
	123130	nenhank AA	AX/200	AA487200			

WO 02/086443 PCT/US02/12476

Table 8A shows 1720 genes either up or down-regulated in lung tumors or chronically diseased lung relative to a broad collection of over 40 distinct normal body tissues. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 39494 probesets on the Eos/Affymetrix Hu02 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5

Pkey: Unique Eos probeset identifier number

Exacon: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number

Unigene Title: Unigene gene title

R1: 70th percentile of Al for tung tumors divided by 90th percentile of Al for normal lung

R2: 70th percentile of Al for chronically diseased lung divided by 90th percentile of Al for the percentile of Al for chronically diseased lung divided by 90th percentile of Al for the p 10

	R2:	70th per	entile of Al for	chronically diseased lung divided by 90th percentile	of Al for norm	ial lung
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2
15	300097	Al916973	Hs.213603	ESTs	5.46	4.69
	300117	AW189787	Hs.147474	ESTs	0.58	0.56
	300197	Al686661	Hs.218286	ESTs	4.26	5.44
	300201	Al308300		gb:ta90c06.x1 NCI_CGAP_Bm20 Homo saplen	0.62	0.83
20	300225	Al989963	Hs.197505	ESTs	1.68	1.75 2.28
20	300247	AW274682	Hs.161394	ESTs	1.08 0.86	1.00
	300256	Al469095	Hs.298241	Transmembrane protease, serine 3 ESTs	5.80	9.09
	300337 300362	A1707881 Z42308	Hs.202090	gb:HSC0FB121 normalized infant brain cDN	4.18	12.78
	300374	Al859947	Hs.314158	ESTs	2.99	4.38
25	300387	AW270150	Hs.254516	ESTs	1.50	2.53
	300440	Al421541	Hs.146164	ESTs	3.98	5.25
	300441	R10367	Hs.307921	EST, Weakly similar to Z232_HUMAN ZINC F	3.18	6.80
	300449	Al362967	Hs.132221	hypothetical protein FLJ12401	0.43	0.62
20	300469	AW135830	Hs.233955	hypothetical protein FLJ20401	0.16	0.83
30	300552	X85711	Hs.21838	hypothetical protein FLJ11191	4.10	9.75
	300627	W27363	Us 4007C7	gb:ab37d01.r1 Stratagene HeLa cell s3 93	4.60 2.91	12.60 5.86
	300630	AW118822	Hs.128757	ESTs hypothetical protein FLJ23393	1.00	0.92
	300716 300738	Al216113 Al623332	Hs.126280 Hs.130541	KIAA1542 protein	1.82	1.71
-35	300777	AA235361	Hs.96840	KIAA1527 protein	4.48	8.22
55	300790	AI492471	Hs.188270	ESTs	1.29	1.18
	300832	AI688147	Hs.220615	ESTs, Weakly similar to T03829 transcrip	5.51	8.56
	300836	Z44942	Hs.22958	calcium channel alpha2-delta3 subunit	4.90	6.34
	300838	Al582897	Hs.192570	hypothetical protein FLJ22028	1.70	2.81
40	300878	AW449802	Hs.285901	Homo sapiens cDNA FLJ20428 fis, clone KA	4.56	7.91
	300897	A1890356	Hs.127804	ESTs, Weakly similar to T17233 hypotheti	2.23	1.58
	300926	AA504860		gb:ab03a10.s1 Stratagene fetal retina 93	2.13	3.50
	300960	Al041019	Hs.152454	ESTs	2.74	4.46
45	300961	AW204069	Hs.312716	ESTs, Weakly similar to unnamed protein	1.00 1.46	1.00 1.51
43	300962	AA593373	Hs.293744 Hs.269439	ESTs ESTs	0.39	1.30
	300967 300987	AA565209 AW450840	Hs.148590	ESTs, Weakly similar to AF208846 1 BM-00	1.49	1.08
	300988	Al927208	Hs.208952	ESTs	0.16	0.37
	301050	AW136973	Hs.288516	ESTs, Weakly similar to S69890 mitogen I	3.23	1.94
50	301098	AA677570	Hs.185918	ESTs	6.76	14.28
	301157	AA729905	Hs.231916	ESTs	3.16	8.85
•	301162	Al142118	Hs.129004	ESTs	1.68	7.18
	301170	AA737594	Hs.247606	ESTs	4.40	6.42
55	301192	A1808751	Hs.121188	ESTs	6.38	11.59
55	301193	AA758115	Hs.128350	ESTs, Weakly similar to JC5423 2-hydroxy	4.35 1.56	7.78 1.61
	301267	AW297762	Hs.255690	ESTs ESTs	2.19	1.78
	301281 301341	AA843986 Al819198	Hs.190586 Hs.208229	ESTs .	0.76	0.76
	301382	AA912839	Hs.163369	ESTs	1.00	1.81
60	301407	AW450466	Hs.126830	ESTs	1.48	1.51
• •	301452	AA975688	Hs.159955	ESTs	0.51	1.46
	301483	AW272467	Hs.254655	Untitled	2.40	5.02
	301494	A1678034	Hs.131099	ESTs	2.79	3.41
c =	301521	A1733621	Hs.133011	zinc finger protein 117 (HPF9)	0.67	0.67
65	301531	AI077462	Hs.134084	ESTs	2.52	3.76
	301580	Al878959	Hs.73737	splicing factor, arginine/serine-rich 1	7.41 8.31	11.92 10.70
	301676		Hs.27453	ESTs, Moderately similar to G01251 Rar p ubiquitin-conjugating enzyme E2E 2 (homo	2.70	4.22
	301690 301718	F05865 F07744	Hs.108323 Hs.7987	DKFZP434F162 protein	4.20	8.78
70	301719	AA384252	Hs.286132	D15F37 (pseudogene)	5.93	7.04
, 0	301804	AA581004	Hs.62180	anillin (Drosophila Scraps homolog), act	1.70	0.76
	301822	X17033	Hs.271986	integrin, alpha 2 (CD49B, alpha 2 subuni	1.58	1.36
	301846	R20002	Hs.6823	hypothetical protein FLJ10430	1.00	1.00
	301868	T71508	Hs.13861	ESTs, Weakly similar to pH sensitive max	2.88	5.49
75	301882	T78054		gb:yc97g09.r1 Soares infant brain 1NIB H	2.28	3.80
	301905	A1991127	Hs.117202	ESTs	1.00	1.00
	301948	AA344647	Hs.116724	aldo-keto reductase family 1, member B11	5.28	2.28
	301960	AW070252	Hs.27973	KIAA0874 protein	5.38	6.48 3.42
80	302011	T91418	Hs.125156	transcriptional adaptor 2 (ADA2, yeast,	3.03 1.00	3.42 1.25
30	302016 302041	N40834 NM_001501	Hs.23495 Hs.129715	hypothetical protein FLJ11252 gonadotropin-releasing hormone 2	0.71	0.99
	302041	AJ238381	Hs.132576	paired box gene 9	1.60	1.71
	302072	A1286176	Hs.6786	ESTs	0.52	1.20
	302095	AW044300	Hs.137506	Homo sapiens BAC clone RP11-120J2 from 7	2.75	4.93
85	302148	AW269618	Hs.23244	ESTs	3.04	3.87

	W	O 02/08	6443			
	302155	AI088485	Hs.144759	ESTs	0.45	1.15
	302201	AJ006276	Hs.159003	transient receptor potential channel 6	0.33	0.84
	302202	AF097159	Hs.159140	UDP-Gal:betaGlcNAc beta 1,4- galactosylt	0.52	0.94
5	302206 302209	AI937193	Hs.41143	phosphoinositide-specific phospholipase killer cell lectin-like receptor subfami	2.76 1.00	3.65 1.00
5	302235	AF047445 AL049987	Hs.159297 Hs.166361	Homo sapiens mRNA; cDNA DKFZp564F112 (tr	1.68	1.50
	302290	AL117607	Hs.175563	Homo sapiens mRNA; cDNA DKFZp564N0763 (f	1.00	2.11
	302328	AA354849	Hs.23240	Homo sapiens cDNA FLJ13496 fis, clone PL	9.38	13.08
10	302346	AL039101	Hs.194625	dynein, cytoplasmic, light intermediate	3.27	7.24
10	302360	AJ010901	Hs.198267	mucin 4, tracheobronchial	2.54	1.88
	302384 302406	Y08982 U86751	Hs.202676 Hs.211956	synaptonemal complex protein 2 CD3-epsilon-associated protein; antisens	1.00 2.63	0.91 2.67
	302409	AF155156	Hs.218028	adaptor-related protein complex 4, epsil	5.82	9.34
	302423	AB028977	Hs.225974	KIAA1054 protein	3.66	3.18
15	302432	AL080068	Hs.272534	Homo sapiens mRNA; cDNA DKFZp564J062 (fr	2.44	6.77
	302435	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo	0.44	0.84
	302437	AB024730	Hs.227473	UDP-N-acetylglucosamine:a-1,3-D-mannosid	4.18	5.64
	302455 302472	AA356923	Hs.240770 Hs.6335 ·	nuclear cap binding protein subunit 2, 2 SWI/SNF related, matrix associated, acti	1.85 2.04	0.92 2.13
20	302472	AA317451 AF182294	Hs.241578	U6 snRNA-associated Sm-like protein LSm8	1.44	1.89
20	302489	T80660	Hs.230424	Homo sapiens cDNA FLJ13540 fis, clone PL	0.51	1.10
	302490	AA885502	Hs.187032	ESTs	2.64	4.87
	302562	AJ005585	Hs.48956	gap junction protein, beta 6 (connexin 3	5.34	2.68
25	302566	AA085996	Hs.248572	hypothetical protein FLJ22965	1.00	1.21
25	302630 302634	AB029488 AB032953	Hs.272100 Hs.173560	SMS3 protein odd Oz/ten-m homolog 2 (Drosophila, mous	0.52 1.00	1.24 1.00
	302638	AA463798	Hs.102696	MCT-1 prolein	1.58	1.02
	302647	X57723	Hs.198273	NADH dehydrogenase (ubiquinone) 1 beta s	2.72	6.85
	302655	AJ227892	Hs.146274	ESTs	1.00	4.32
30	302656	AW293005	Hs.70704	Homo sapiens, clone IMAGE:2823731, mRNA,	2.97	0.93
	302668	AA580691	Hs.180789	S164 protein	0.80	0.95
	302679	H65022	Hs.38218	gb:yu66g11.r1 Weizmann Olfactory Epithel	1.68 2.70	5.04 7.98
	302680 302697	AW192334 AJ001408	HS.30210	ESTs gb:Homo saplens mRNA for immunoglobutin	4.25	8.13
35	302705	U09060		gb:Human Immunoglobulin heavy chain, V-r	3.91	8.68
	302711	L08442		gb:Human autonomously replicating sequen	2.20	2.73
	302719	W69724	Hs.288959	hypothetical protein FLJ20920	0.54	1.02
	302742	L12069	11- 440000	gb:Homo sapiens (clone WR4.10VH) anti-th	4.28	11.57
40	302755 302771	AW384815	Hs.149208 Hs.42522	KIAA1555 protein ESTs	1.57 2.94	2.38 4.68
40	302789	H98476 AJ245067	NS.42J22	gb:Homo sapiens mRNA for immunoglobulin	3.49	6.31
	302795	AJ245313	Hs.272838	hypothetical protein FLJ 10494	0.80	2.74
	302802	Y08250		gb:H.saplens mRNA for variable region of	1.13	0.77
4.5	302803	AA442824	Hs.293961	ESTs, Moderately similar to putative DNA	3.14	10.68
45	302812	N31301	Hs.152664	hypothetical protein FLJ20051	3.04	8.24
	302847 302885	X98940	Hs.132127	gb:H.sapiens rearranged Ig heavy chain (hypothetical protein LOC57822	1.80 1.00	1.92 1.00
	302943	AL137763 AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti	0.53	0.67
	302977	AW263124	Hs.315111	hypothetical protein FLJ 12894	2.45	2.62
50	303006	AF078950	Hs.24139	Homo sapiens cDNA: FLJ23137 fis, clone L	4.88	8.61
	303011	AF090405		gb:Homo sapiens clone 2A1 scFV anitbody	1.41	1.86
	303013	F07898	Hs.288968	RAB22A, member RAS oncogene family	1.51	1.19
	303061 303077	AF151882 AF163305	Hs.27693	peptidyiprolyl isomerase (cyclophilin)-l gb:H.sapiens T-cell receptor mRNA	0.72 1.17	0.76 3.90
55	303090	AA443259	Hs.146286	kinesin family member 13A	4.08	6.46
	303091	AF192913	Hs.130683	zinc finger protein 180 (HHZ168)	2.50	4.37
	303094	AF195513	Hs.278953	Pur-gamma	5.38	8.38
	303095	AF202051		NM23-H8	3.26	4.08
60	303131	AW081061	Hs.103180	DC2 protein myosin, light polypeptide, regulatory, n	2.02 1.32	1.83 3.95
00	303195 303196	AA082211 AA082298	Hs.233938 Hs.59710	ESTs	0.77	0.53
	303216	AA581439	Hs.152328	ESTs	0.24	0.63
	303222	AA333538	Hs.204501	hypothetical protein FLJ10534	3.56	6.22
CE .	303234	AA132255	Hs.143951	ESTs	2.28	3.17
65 ·	303251	AW340037	Hs.115897	protocadherin 12	0.38	1.02
	303295	AA205625	Hs.208067 Hs.13423	ESTs Homo sapiens clone 24468 mRNA sequence	2.30 1.86	1.00 4.48
	303297 303316	T80072 AF033122	Hs.14125	p53 regulated PA26 nuclear protein	0.10	0.80
	303467	AA398801	Hs.323397	ESTs	4.54	9.65
70	303506	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	0.09	0.04
	303552	AA359799	Hs.224662	ESTs, Weakly similar to unnamed protein	1.00	1.72
	303598	AA382814	11- 04070	gb:EST96097 Testis I Homo sapiens cDNA 5	4.96	9.14
	303637 303655	AF056083 AA504702	Hs.24879 Hs.258802	phosphatidic acid phosphatase type 2C ATPase, (Na+)/K+ transporting, beta 4 po	2.06 1.00	2.02 1.24
75	303756	AI738488	Hs.115838	ESTs	1.08	1.43
	303858	AA968589	Hs.180532	glucose phosphate isomerase	1.76	1.31
	303893	N88597	Hs.113503	karyopherin (importin) beta 3	2.30	2.57
	303907	AW467774	Hs.171880	polymerase (RNA) II (DNA directed) polyp	3.10	5.79
80	303946	AW474196	Hs.306637	Homo sapiens cDNA FLJ12363 fis, clone MA	5.06 5.14	11.86 7.31
ou	303978 303981	AW513315 AW513804	Hs.278834	gb:xo43c12.x1 NCI_CGAP_Ut1 Homo sapiens ESTs, Weakly similar to ALU1_HUMAN ALU S	5.14 2.83	4.06
	303990	AW515465	10.210004	gb:xu71a11.x1 NCI_CGAP_Kid8 Homo sapiens	1.15	2.35
	303998	AW516449		gb:xt68f05.x1 NCI_CGAP_Ut2 Homo sapiens	2.20	9.35
0.5	303999	AW516611		gb:xp70b11.x1 NCI_CGAP_Ov39 Homo sapiens	4.85	6.28
85	304006	AW517947		gb:xt66h02.x1 NCI_CGAP_Ut2 Homo sapiens	3.21	4.07

	w	O 02/08	6443			
	304008	AW518198	Hs.3297	ribosomal protein S27a	6.50	11.08
	304009	AW518206	Hs.181165	eukaryotic translation elongation factor	1.88	3.27
	304024	T03036		gb:FB21B7 Fetal brain, Stratagene Homo s	2.15	3.55
_	304026			gb:FB26F2 Fetal brain, Stratagene Homo s	5.88	11.80
5	304028	T03266		gb:FB7C1 Fetal brain, Stratagene Homo sa	5.59	13.46
	304036	T16855	Hs.244621	ribosomal protein S14	6.55	14.43
	304046	T54803		gb:yb42d06.s1 Stratagene fetal spleen (9	6.18 2.64	12.19 8.23
	304061 304063	T61521 T62536		gb:yb73g01.s1 Stratagene ovary (937217) gb:yc04c12.s1 Stratagene lung (937210) H	0.53	1.61
10	304097	R25376	Hs.177592	ribosomal protein, large, P1	6.49	11.67
	304114	R78946		gb:yi87g02.s1 Soares placenta Nb2HP Homo	2.90	4.18
	304122	H28966		gb:ym31a06.s1 Soares infant brain 1NIB H	1.00	2.76
	304155	H68696		gb:yr78b06.s1 Soares fetal liver spleen	0.79	1.18
1.5	304203	N56929		gb:yy82d08.s1 Soares_multiple_sclerosis_	4.28	11.34
15	304234	W81608	11- 22740	gb:zd88h06.s1 Soares_fetal_heart_NbHH19W	6.47 1.34	11.03 1.16
	304267 304270	AA064862 AA069711	Hs.73742 Hs.297753	ribosomal protein, large, P0 vimentin	3.40	5.40
	304270	AA079286	Hs.78466	proteasome (prosome, macropain) 26S sub	2.93	4.42
	304348	AA179868	115.70400	gb:zp38g12.s1 Stratagene muscle 937209 H	3.98	10.96
20	304415	AA290747	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	3.32	5.99
	304430	AA347682		gb:EST54044 Fetal heart II Homo saplens	1.00	1.00
	304456	AA411240		gb:zv26g05.s1 Soares_NhHMPu_S1 Homo sapi	1.42	3.33
	304521	AA464716		gb:zx82c11.s1 Soares ovary tumor NbHOT H	2.18	1.15
25	304526	AA476427	Un 400476	gb:zx02c05.s1 Soares_total_fetus_Nb2HF8_	5.38 4.16	14.11 8.23
23	304542 304546	AA482602 AA486074	Hs.169476 Hs.297681	glycerzidehyde-3-phosphate dahydrogenase serine (or cysteine) proteinase inhibito	0.55	1.20
	304607	AA513322	113.237001	gb:nh85e08.s1 NCI_CGAP_Br1.1 Homo saplen	1.95	2.10
	304640	AA524440	Hs.111334	ferritin, light polypeptide	2.10	2.83
	304650	AA527489	Hs.3463	ribosomal protein S23	3.33	12.62
30	304735	AA576453		gb:nm75h11.s1 NCI_CGAP_Co9 Homo sapiens	1.33	0.88
	304760	AA580401		gb:nn13g09.s1 NCI_CGAP_Co12 Homo saplens	3.68	8.14
	304849	AA588157	Hs.13801	KIAA1685 protein	2.77 7.16	3.70 11.01
	304917 304921	AA602685 AA603092	Hs.284136 Hs.297753	PRO2047 protein vimentin	2.47	4,24
35	304966	AA613893	Hs.282435	ESTs .	6.78	11.66
55	304987	AA618044	Hs.300697	Immunoglobulin heavy constant gamma 3 (G	0.90	1.23
	305016	AA626876	12.00000	gb:zu89h06.s1 Soares_testis_NHT Homo sap	6.46	10.17
	305034	AA630128		gb:ab99c04.s1 Stratagene lung (937210) H	1.00	1.00
40	305072	AA641012		gb:nr72a12.s1 NCI_CGAP_Pr24 Homo sapiens	5.68	11.59
40	305111	AA644187	Hs.303405	ESTS	1.48	1.37
	305148	AA654070	Hs.275668	gb:nt01g08.s1 NCI_CGAP_Lym3 Homo sapiens EST, Weakly similar to EF1D_HUMAN ELONG	1.76 1.00	4.61 2.15
	305159 305190	AA659166 AA665955	ΠS.275000	gb:ag57d12.s1 Gessler Wilms tumor Homo s	5.31	8.14
	305232	AA670052	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	0.78	1.18
45	305235	AA670480		gb:ag37e01.s1 Jia bone marrow stroma Hom	3.11	8.66
	305245	AA676695	Hs.81328	nuclear factor of kappa light polypeptid	4.38	7,53
	305312	AA700201		gb:zj44f07.s1 Soares_fetal_liver_spleen_	2.13	2.66
	305322	AA701597	Hs.163019	EST	1.20	1.40
50	305394	AA720942	Hs.300697	immunoglobulin heavy constant gamma 3 (G gb:ai10f08.s1 Soares_parathyroid_tumor_N	1.16 5.86	0.68 9.87
50	305413 305447	AA724659 AA737856		gb:nx10c08.s1 NCI_CGAP_GC3 Homo sapiens	2.21	2.86
	305476	AA745664	Hs.287445	hypothetical protein FLJ11726	3.36	6.54
	305483	AA748030	Hs.303512	EST	1.00	2.02
	305528	AA769156		. gb:nz12e05.s1 NCI_CGAP_GCB1 Homo sapiens	6.44	9.10
55	305612	AA782347	Hs.272572	hemoglobin, alpha 2	0.19	0.79
	305614	AA782866		gb:aj09h02.s1 Soares_parathyroid_tumor_N	1.00	1.00
	305616	AA782884	Hs.275865	ribosomal protein S18	7.57 ⁻ 4.78	10.20 12.42
	305637 305639	AA806124 AA806138		gb:oe29a12.s1 NCI_CGAP_Pr25 Homo saplens gb:oe29c12.s1 NCI_CGAP_Pr25 Homo saplens	0.89	0.70
60	305650	AA807709		gb:nw31e04.s1 NCI_CGAP_GCB0 Homo sapiens4.		8.71
00	305690	AA813477		gb:ai67a05.s1 Soares_testis_NHT Homo sap	4.91	9.40
•	305726	AA828156	Hs.73742	ribosomal protein, large, P0	0.19	0.81
	305728	AA828209		gb:of34a02.s1 NCI_CGAP_Kid6 Homo sapiens	5.12	9.29
65	305759	AA835353		gb:ak72b06.s1 Barstead spleen HPLRB2 Hom	1.66	4.11
65	305792	AA845256		gb:ak84a08.s1 Barstead spleen HPLRB2 Hom	2.34	4.25
	305864	AA864374	Hs.73742	ribosomal protein, large, P0 gb:oh63h08.s1 NCI_CGAP_Kid5 Horno sapiens	0.30 2.10	1.40 5.21
	305901 305910	AA872968 AA875981		gb:nx21h02.s1 NCI_CGAP_Rd3 Horio sapiens	0.32	1.01
	306015	AA897116		gb:am08b07.s1 Soares_NFL_T_GBC_S1 Homo s1.		1.12
70	306017	AA897221	Hs.109058	ribosomal protein S6 kinase, 90kD, polyp	5.21	7.90
• -	306020	AA897630	Hs.130027	EST	1.96	6.59
	306063	AA906316		gb:ok03g03.s1 Soares_NFL_T_GBC_S1 Homo s	7.38	20.69
	306065	AA906725		gb:ok78g02.s1 NCI_CGAP_GC4 Horno sapiens	7.19	13.48
75	306104	AA910956		gb:ok85h11.s1 NCI_CGAP_Kid3 Homo sapiens	6.50	9.13
75	306109 306148	AA911861 AA917409	אר שמעטב	gb:og21a07.s1 NCI_CGAP_PNS1 Homo sapiens tRNA isopentenylpyrophosphale transferas	4.21 2.20	5.25 2.70
	306148 306242	AA932805	Hs.288036	gb:oo60g04.s1 NCl_CGAP_Lu5 Homo sapiens	2.84	5.35
	306288	AA936900		gb:oi53h05.s1 NCI_CGAP_HN3 Homo sapiens	1.60	1.12
	306325	AA953072	Hs.210546	interleukin 21 receptor	1.65	2.26
80	306353	AA961382	Hs.275865	ribosomal protein \$18	3.78	6.32
	306375	AA968650	Hs.276018	EST, Moderately similar to JC4662 ribos	4.30	5.74
	306396	AA970223	11. 404000	gb:op09d05.s1 NCI_CGAP_Kid6 Homo saplens	0.95	2.45 4.10
	306428 306442	AA975110	Hs.191228	hypothetical protein FLJ20284 gb:oq35e09.s1 NCI_CGAP_GC4 Homo sapiens	3.19 4.67	4.10 7.44
85	306446	AA976899 AA977348		gb:oq72e12.s1 NCI_CGAP_Kid6 Homo saplens	3.92	6.27
55	350440			Smadi rollen i Holfoor a Trans i selle anhalit		

	W	/O 02/08	86443			
	306458	AA978186		gb:op33c06.s1 Soares_NFL_T_GBC_S1 Homo s	3.35	5.77
	306467	AA983508	Hs.163593	ribosomal protein L18a	3.72	5.37
	306510	AA988546	11- 070000	gb:or84d07.s1 NCL_CGAP_Lu5 Homo saplens	1.00 6.61	1.00 10.91
5	306555 306557	AA994304 AA994530	Hs.276083	EST, Wealty similar to RL23_HUMAN 60S R gb:ou57e08.s1 NO_CGAP_Br2 Homo sapians	16.20	31.83
,	306572	AA995686		gb:os25c12.s1 NCI_CGAP_Kid5 Homo sapiens	251	6.52
	306582	AA996248		gb:os18c10.s1 NCL_CGAP_Kld5 Homo sapiens	1.42	3.13
	306598	A1000320	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	4.91	8.68
10	306605	A1000497	Hs.119500	ribosomal protein, large P2	1.96	8.60
10	306656	A1004024	11- 204420	gb:ou11b07x1 Soares_NFL_T_GBC_S1 Homo s	0.11 9.56	0.45 17.28
	306676 306686	A1005503 A1015615	Hs.284136	PRO2047 protein gb:ov29f10.x1 Soares_testis_NHT Homo sap	1.86	3.60
	306702	AI022565	Hs.307670	EST	1.47	1.19
	306728	AI027359	Hs.272572	hemoglobin, alpha 2	1.28	2.83
15	306751	AI032589		gb:ow70h12.s1 Soares_fetal_liver_spleen_	3.91	5.21
	306767	AI038963	Hs.249118	ESTs	3.33	6.06
	306892	A1092465		gb:qa75h12.x1 Soares_fetal_heart_NbHH19W	3.77 2.12	7.46 2.85
	306897 306956	AI093967 AI125111		gb:qa33c06.s1 Soares_NhHMPu_S1 Homo sapi gb:am66f03.s1 Barstead spleen HPLRB2 Hom	6.10	10.52
20	306958	A)125152		gb:am55e09.x1 Johnston frontal cortex Ho	1.72	1.56
20	307035	A1142774	Hs.119122	ribosomal protein L13a	2.00	4.70
	307041	Al144243		gb:qb85b12.x1 Soares_fetal_heart_NbHH19W	9.12	12.56
	307091	AI167439		gb:ox70h06.s1 Soares_NhHMPu_S1 Homo sapi	4.88	8.52
25	307181	Al189251		gb:qc99g06.x1 Soares_pregnant_uterus_NbH	3.55	6.44
25	307297	AI205798	Hs.111334	ferritin, light polypeptide	2.46 5.64	4.65 10.13
	307317 307327	A1208303 A1214142	Hs.147333 Hs.246381	EST CD68 antigen	3.18	5.15
	307382	AJ223158	Hs.147885	ESTs	2.02	3.73
	307410	AJ241715	Hs.77039	ribosomal protein S3A	0.72	0.48
30	307415	AJ242118		gb:qh92b02.x1 Soares_NFL_T_GBC_S1 Homo s	2.38	3.51
	307423	Al243206	Hs.179573	collagen, type I, alpha 2	2.60	5.44
	307426	AI243364		gb:qh30g11.x1 Soares_NFL_T_GBC_S1 Homo s	3.18 1.00	7.67 1.00
	307517	A1275055		gb:ql72d03.x1 Soares_NhHMPu_S1 Homo sapi gb:qu52f11.x1 NCI_CGAP_Lym6 Homo sapiens	3.40	11.20
35	307551 307561	Al281556 Al282207		gb:qp65a12.x1 Soares_fetal_lung_NbHL19W	4.74	15.51
55	307608	Al290295		gb:gm01f02.x1 Soares_NhHMPu_S1 Homo sapi	3.50	7.19
	307657	Al306428	Hs.298262	ribosomal protein S19	1.76	2.44
	307691	Al318285		gb:tb17b01.x1 NCI_CGAP_Ov37 Homo sapiens	1.59	1.31
40	307701	AI318583	Hs.276672	EST, Weakly similar to RL6_HUMAN 60S RI	1.90	2.13
40	307718	Al333406	Hs.83753	small nuclear ribonucleoprotein polypept	0.45 1.51	0.99 0.99
	307730 307760	A1336092 A1342387		gb:qt43b07.x1 Soares_fetal_lung_NbHL19W gb:qt27f07.x1 Soares_pregnant_uterus_NbH	1.00	1.00
	307764	Al342731		gb:qo26a07.x1 NCI_CGAP_Lu5 Homo sapiens	4.52	12.58
	307783	AJ347274		gb:tc05d02.x1 NCl_CGAP_Co16 Homo sapiens	1.42	1.00
45	307798	A1350556		gb:qt18f09.x1 NCI_CGAP_GC4 Homo sapiens	6.57	9.61
	307807	AJ351799		gb:qt09d02.x1 NCI_CGAP_GC4 Homo sapiens	3.38	7.68
	307808	Al351826		gb:qt09g03.x1 NCI_CGAP_GC4 Homo saplens	0.33 7.94	0.86 21.57
	307820 307830	AJ355761 AJ358722	Hs.276737	gb:qt94a11.x1 NCI_CGAP_Co14 Homo saplens EST, Weakly similar to R5HU22 ribosomal	2.05	3.32
50	307852	Al365541	113.210707	gb:qz08g05.x1 NCI_CGAP_CLL1 Homo sapiens	3.18	5.21
-	307902	Al380462		gb:tg02h05.x1 NCI_CGAP_CLL1 Homo sapiens	3.13	4.99
	307997	AI434512	Hs.181165	eukaryotic translation elongation factor	1.00	3.01
	308002	AI435240	Hs.283442	ESTs	5.86	12.64
55	308011	A1439473	Hs.251577	gb:ti60a08.x1 NCI_CGAP_Lym12 Homo sapien	3.79 0.38	5.83 0.88
55	308023 308041	A1452/32 A1458824	Hs.169476	nemogloom, aipna 1 głyceraldehyde-3-phosphate dehydrogenase	4.36	6.06
	308059	AI468938	Hs.276877	EST, Weakly similar to RL10_HUMAN 60S R	1.80	1.98
	308085	AJ474135	Hs.181165	eukaryotic translation elongation factor	3.38	4.14
CO	308101	A1475950	Hs.181165	eukaryotic translation elongation factor	1.30	3.87
60	308106	A1476803		gb:tj77e12.x1 Soares_NSF_F8_9W_OT_PA_P_S2	2.38	8.72
	308122	A1480123	Hs.309411	est gb:tn93d08.x1 NCI_CGAP_Ut2 Homo sapiens	2.70 0.66	3.86 1.33
	308154 308171	Al500600 Al523632	Hs.298766	ESTs, Weakly similar to schlafen4 [M.mu	2.48	4.86
	308211	Al557029	Hs.278572	anaplastic lymphoma kinase (KI-1)	2.43	2.14
65	308213	AI557041		gb:PT2.1_12_E04.r tumor2 Homo sapiens cD	3.34	3.79
• .	308216	· Al557135	,	gb:PT2.1_13_H06.r tumor2 Homo sapiens cD	4.61	4.78
	308219	AI557246		gb:PT2.1_15_D07.r tumor2 Homo saptens cD	4.87	7.94
	308271	AI567844	Hs.252259	ribosomal protein S3	2.40 2.45	6.35 3.33
70	308319 308362	AI583983 AI613519	Hs.181165 Hs.105749	eukeryotic translation elongation factor KIAA0553 protein	1.24	1.41
70	308413	Al636253	Hs.196511	ESTs	3.16	4.82
	308450	A1660860	Hs.96840	KIAA1527 protein	1.79	2.68
	308464	A1672425	Hs.277117	EST, Moderately similar to 138055 myosi	4.87	8.27
75	308588	AJ718299		gb:as51g12.x1 Barstead aorta HPLRB6 Homo	3.90	5.64
75	308599	A1719893	Un 404==4	gb:as47d07.x1 Barstead aorta HPLRB6 Homo	3.32 3.11	5.12 2.36
	308615 308643	A1738593 A1745040	Hs.101774	hypothetical protein FLJ23045 gb:tr19a12x1 NCI_CGAP_Ov23 Homo sapiens	3.11	3.69
	308673	A1745040 A1760864		gb:wi09c10.x1 NCI_CGAP_CLL1 Homo sapiens	0.82	0.99
	308697	Al767143		gb:wi97a07.x1 NCI_CGAP_Kid12 Homo sapien	2.76	5.59
80	308762	A1807405	Hs.259408	ESTs	3.17	6.30
	308778	AI811109	11 44	gb:tr04c11.x1 NCI_CGAP_Ov23 Homo saplens	1.00	1.00
	308782	AI811767	Hs.2186	eukaryotic translation elongation factor	2.94 4.41	5.15 8.34
	308808 308823	AI818289 AI824118	Hs.217493	gb:wk52c01.x1 NCl_CGAP_Pr22 Homo saplens annexin A2	1.85	1.92
85	308875	AI832332		gb:at48g03.x1 Barstead colon HPLRB7 Homo	2.52	3.80
	2220.0					

	**/	A 02/08/	(112			
		O 02/086		ib-masis bata 4 V ahramasama	3.38	7.96
	308879	AI832763	Hs.75968	thymosin, beta 4, X chromosome gb:at76d10.x1 Barstead colon HPLRB7 Homo	3.06	2.65
	308886	AI833240		gb:w/32d10.x1 NCI_CGAP_Ut1 Homo saplens	2.45	3.44
	308898 308934	AI858845 AI865023	Hs.177	phosphaildylinositol glycan, class H	4.14	6.76
5	308966	A1870704	112.111	gb.wl47h01.x1 NCI_CGAP_Ut1 Homo saptens	1.00	1.00
,	308979	Al873111		gb:wi52h05.x1 NCI_CGAP_Bm25 Homo sapien	7.15	11.10
	309045	Al910902		gb:tq39f01.x1 NCI_CGAP_Ut1 Homo saplens	0.61	0.59
	309051	AJ911975		gb;wd78d01.x1 NCI_CGAP_Lu24 Homo sapiens	1.78	4.42
	309069	AI917366	Hs.78202	SWI/SNF related, matrix associated, act	3.27	5.88
10	309083	Al922426	Hs.119598	ribosomal protein L3	2.39	3.34
	309105	Al925503	Hs.265884	ESTs	5.54	17.78
	309122	AJ928178		gb:wo95a11.x1 NCI_CGAP_Kid11 Homo saplen	1.00	2.92
	309128	Al928816	Hs.180842	ribosomal protein L13	1.38	5.55
	309164	AI937761		gb:wp84b09.x1 NCI_CGAP_Bm25 Homo saplen	2.43	3.11
15	309177	A1951118		gb:wx63g05.x1 NCI_CGAP_Br18 Homo sapiens	0.81	0.97
	309288	Al991525	Hs.299426	ESTs	4.86	7.46
	309299	AW003478		gb:wq66c06.x1 NCI_CGAP_GC6 Homo saplens	4.36 2.88	9.43 7.54
	309303	AW004823		gb:ws93a08.x1 NCI_CGAP_Co3 Homo sapiens	4.30	7.14
20	309411	AW085201	Hs.244144	EST	2.49	3.11
20	309437	AW090702	Hs.278242	tubulin, alpha, ubiquitous	2.88	4.55
	309459	AW117645	Hs.65114	keratin 18 gb:xe14b05.x1 NCI_CGAP_Ut4 Homo sapiens	2.08	6.60
	309476 309499	AW129368	Hs.279771	Homo sapiens clone PP1596 unknown mRNA	2.82	3.55
	309529	AW136325 AW150807	Hs.181357	laminin receptor 1 (67kD, ribosomal pro	4.78	3.95
25	309532	AW151119	115.101001	gb:xg33e10.x1 NCI_CGAP_Ut1 Homo sapiens	1.18	4,40
23	309626	AW192004	Hs.297681	serine (or cysteine) proteinase inhibit	4.46	12.06
	309641	AW194230	Hs.253100	EST, Moderately similar to GHHU Ig gamm	1.47	1.39
	309675	AW205681	Hs.253506	EST, Moderately similar to ATPN_HUMAN A	5.68	15.20
	309693	AW237221	Hs.181357	laminin receptor 1 (67kD, ribosomal prot	1.00	1.00
30	309695	AW238011	Hs.295605	mannosidase, alpha, class 2A, member 2	5.45	9.61
	309700	AW241170	Hs.179661	tubulin, beta polypeptide	1.41	1.25
	309747	AW264889		gb:xq36h02x1 NCI_CGAP_Lu28 Homo saplens	5.00	8.35
	309769	AW272346		gb:xs13c10.x1 NCI_CGAP_Kid11 Homo sapien	5.76	11.90
	309782	AW275156	Hs.156110	Immunoglobulin kappa constant	0.42	0.69
35	309783	AW275401	Hs.254798	EST	1.00	4.11
	309799	AW276964		gb:xp58h01.x1 NCI_CGAP_Ov39 Homo sapiens	1.68	1.44
	309866	AW299916		gb:xs44c01.x1 NCI_CGAP_Kld11 Homo sapien	3.02	5.04
	309903	AW339071	Hs.300697	immunoglobulin heavy constant gamma 3 (G	1.05 2.30	1.18 3.67
40	309923	AW340684		gb:hd05g08.x1 Soares_NFL_T_GBC_S1 Homo s	7.41	13.71
40	309928	AW341418		gb:hd08c03.x1 Soares_NFL_T_GBC_S1 Homo s gb:hd13d01.x1 Soares_NFL_T_GBC_S1 Homo s	1.20	12.70
	309931	AW341683 AW341936		gb:hb73f10.x1 NCI_CGAP_Ut2 Homo sapiens	4.90	18.29
	309933 309964	AW449111	Hs.257111	hypothetical protein MGC3265	1.99	3.07
	310002	AJ439096	Hs.323079	Homo sapiens mRNA; cDNA DKFZp564P116 (fr	0.20	0.47
45	310096	AW136822	Hs.172824	ESTs, Weakly similar to B48013 proline-r	1.51	1.22
1.5	310098	Al685841	Hs.161354	ESTs	0.31	0.76
	310109	Al203094	Hs.148633	ESTs	2.06	5.83
	310112	AW197233	Hs.147253	ESTs	2.92	3.55
	310115	Al611317	Hs.223796	ESTs	1.25	0.84
50	310121	AW195642	Hs.148901	ESTs	1.00	2.71
	310146	AJ206614	Hs.197422	ESTs	9.50	15.31
	310193	AI627653	Hs.147562	ESTs	2.85	4.18
	310255	AW450439	Hs.153378	ESTs	4.26	10.63
55	310261	AJ240483	Hs.201217	ESTs	3.28 0.26	4.40 0.86
55	310264	A1915//1	Hs.74170	metallothionein 1E (functional)	5.43	8.19
	310275	AI242102	Hs.213636	ESTs	3.15	8.06
	310282	AI243332	Hs.156055	ESTs ESTs	2.19	3.12
	310290 310333	AW013815 AJ253200	Hs.149103 Hs.145402	ESTs	1,17	1.91
60	. 310346	AJ261340	Hs.145517	ESTs	4.81	9.95
O	310385	AI263392	Hs.156151	ESTs	5.96	7.79
	310443	AW119018	Hs.164231	ESTs	2.90	4.63
	310444	AW196632	Hs.252956	ESTs	0.85	1.01
	310446	AJ275715	Hs.145926	ESTs	2.18	3.85
65	310468	AJ984074	Hs.196398	ESTs	3.39	5.19
	310477	AI948801	Hs.171073	ESTs	1.00	1.00
	310512	AW275603		ÉSTs	3.87	8.12
	310514	AI681145	Hs.160724	ESTs	3.30	7.33
~ ^	310524	AW082270	Hs.12496	ESTs, Highly similar to AC004836 1 simil	0.72	1.44
70	. 310547	Al302654	Hs.208024	ESTs	. 3.26	3.46
	310584	AI653007	Hs.156304	ESTs	2.39	4.08
	310608	A1962234	Hs.196102	ESTs	5.60 4.91	6.49
	310624	AI341594	11- 404476	gb:Human endogenous retrovirus H proteas	1.85	9.09 1.71
75	310636	AI814373	Hs.164175	ESTs	0.17	. 0.69
75	310648	A1347853	Hs.156672	ESTs Homo sapiens mRNA full length insert cDN	5.40	13.2
	310694	AI654370	Hs.157752	ESTs	4.82	6.27
	310695	A1472124 A1418446	Hs.157757 Hs.157882	ESTS	1.76	3.51
	310714 310722	AI989803	Hs.157289	ESTS	1.14	6.85
80	310756	AI916560	Hs.158707	ESTs	8.46	13.0
-	310764	Al376769	Hs.167172	ESTs	4.76	7.37
	310848	Al459554	Hs.161286	ESTs	2.84	1.96
	310851	AW291714	Hs.221703	ESTs	1.00	2.32
o -	310854	AJ421677	Hs.161332	ESTs	6.37	7.94
85	310858	AI871000	Hs.161330	ESTs	6.07	9.84

	w	O 02/08	6443			
	310864	AJ924558	Hs.161399	ESTs	0.87	0.78
	310875	T47764	Hs.132917	ESTs	1.00	3.63
	310896	AW157731	Hs.270982	ESTs, Moderately similar to ALU7_HUMAN A	7.07	16.68
5	310922	AW195634	Hs.170401	ESTs	1.00 10.08	1.00 17.66
5	310955 310957	AI560210 AW190974	Hs.263912 Hs.196918	ESTs ESTs	2.18	3.18
	311000	AI521830	Hs.171050	ESTs	3.06	6.64
	311012	AW298070	Hs.241097	ESTs	1.23 .	3.77
10	311034	A1564023	Hs.311389	ESTs, Moderately similar to PT0375 natur	2.44 6.04	2.09 14.19
10	311074 311134	AW290922 AI990849	Hs.199848 Hs.196971	ESTs ESTs	3.54	6.96
	311174	AW450552	Hs.205457	periaxin	0.65	0.95
	311187	AI638374	Hs.224189	ESTs	2.46	2.78
1.5	311220	A1656040	Hs.196532	ESTs	1.10	2.52 1.75
15	311230 311236	A1989808 A1653378	Hs.197663 Hs.197674	ESTs ESTs	1.41 2,18	2.11
	311242	AW016812	Hs.200266	ESTs	0.63	5.11
	311258	Al671221	Hs.199887	ESTs	1.00	1.41
20	311277	AW072813	Hs.270868	ESTs, Moderately similar to ALU4_HUMAN A	2.56	1.94
20	311294 311308	AA826425 F12664	Hs.291829 Hs.49000	ESTS ESTS	1.04 1.96	2.69 6.70
	311351	A1682303	Hs.201274	ESTs	4.77	9.38
	311390	AW392997	Hs.202280	ESTs	2.80	6.06
25	311405	AW290961	Hs.201815	ESTs	3.80	11.66
25	311409	Al698839	U- 200857	gb:wd31f02.x1 Soares_NFL_T_GBC_S1 Homo s	3.84 5.30	6.94 12.56
	311420 311443	Al936291 Al791521	Hs.209867 Hs.192206	ESTS ESTS	4.39	6.09
	311467	Al934909	Hs.175377	ESTs	1.00	1.04
20	311479	AI933672	Hs.211399	ESTs	2.76	5.61
30	311488	R57390	Hs.301064	arfaptin 1	2.50 3.63	5.73 6.09
	311495 311511	AW300077 AW444568	Hs.221358 Hs.210303	ESTS . ESTS	2.00	2.87
	311534	AW130351	Hs.243549	ESTs	0.31	1.33
~ -	311537	A1805121	Hs.211828	ESTs	3.69	5.85
35	311543	AI681360	Hs.201259	ESTs	1.73	1.34
	311551 311557	AW449774 AIB19230	Hs.296380 Hs.211238	POM (POM121 rat homolog) and ZP3 fusion interleukin-1 homolog 1	3.31 1.00	6.12 1.00
	311558	Z44432	Hs.63128	KIAA1292 protein	2.25	3.41
4.0	311559	AW008271	Hs.265848	similar to rat myomegalin	2.68	5.90
40	311563	AI922143	Hs.211334	ESTs	2.39	3.32
	311586 311616	AI827834 AW450675	Hs.211227 Hs.212709	ESTS . ESTS .	2.47 1.00	3.85 1.00
	311621	A1924307	Hs.213464	ESTs	4.16	6.74
	311635	AJ928456	Hs.213081	ESTs	2.17	3.76
45	311668	AW193674	Hs.240044	ESTs	2.60	3.12
	311672 311683	R11807 AW18373B	Hs.20914 Hs.232644	hypothetical protein FLJ23056 ESTs	2.79 0.19	5.18 0.96
	311700	R49601	Hs.171495	relinoic acid receptor, beta	6.28	8.83
	311714	AW131785	Hs.246831	ESTs, Weakly similar to CIKG_HUMAN VOLTA	5.00	8.17
50	311735	AW294416	Hs.144687	Homo sapiens cDNA FLJ12981 fis, clone NT	0.96	0.72
	311743 311783	T99079 AJ682478	Hs.191194 Hs.13528	ESTs hypothetical protein FLJ14054	1.00 0.16	1.95 0.77
	311785	A1056769	Hs.133512	ESTs	1.34	3.97
	311799	AA780791	Hs.14014	ESTs, Weakly similar to KIAA0973 protein	8.52	13.32
55	311819	AW265275	Hs.254325	ESTs	3.58	3.91
	311823 311877	AI089422 AA349893	Hs.131297 Hs.85339	ESTs G protein-coupled receptor 39	1.40 0.95	1.72 0.91
	311886	AA522738	Hs.132554	ESTs .	0.88	0.87
	311896	AW206447		gb:UI-H-BI1-afg-g-02-0-UI.s1 NCI_CGAP_Su	1.66	1.13
60	311910	N28365	Hs.22579	Homo sapiens clone CDABP0036 mRNA sequen	1.66	2.30
	311923 311933	T60843 AI597963	Hs.189679 Hs.118726	ESTs ESTs	0.42 1.88	2.63 3.02
	311959	T67262	Hs.124733	ESTs	2.02	2.33
	311960	AW440133	Hs.189690	ESTs	3.87	6.62
65	311967	Al382726	Hs.182434	ESTs	5.80	8.14
٠, .	311975	AA804374	Hs.272203	Homo sapiens cDNA FLJ20843 fis, clone AD ESTs	0.98 0.12	3.26 1.39
	312005 312028	T78450 T78886	Hs.13941 Hs.284450	ESTs	3.78	4.92
	312046	AJ580018	Hs.268591	ESTs	4.11	7.32
70	312056	T83748	Hs.268594	ESTs .	2.36	3.08
	312064	AA676713	Hs.191155	ESTs ESTs	3.34 1.60	5.28 1.15
	312088 312093	AW303760 T91809	Hs.13685 Hs.121296	ESTs .	0.68	0.85
	312094	Z78390	,	gb:HSZ78390 Human fetal brain S. Meier-E	3.05	4.48
75	312097	Al352096	Hs.112180	zinc finger protein 148 (pHZ-52)	4.52	9.70
	312118	T85332	Hs.178294	ESTs Homo sapiens cDNA FLJ20118 fis, clone CO	2.40 2.39	2.60 3.53
	312128 312147	Al052609 T89855	Hs.17631 Hs.195648	ESTs	2.39 0.67	1.03
	312175	AA953383	Hs.127554	ESTs	5.85	10.60
80	312179	AI052572	Hs.269864	ESTs	2.41	3.32
	312201	Al928365	Hs.91139	solute carrier family 1 (neuronal/epithe	0.24 2.20	0.89 4.55
	312207 312220	H90213 N74613	Hs.191330	ESTs gb:za55a07.s1 Soares fetal liver spieen	4.28	11.13
0.5	312252	Al128388	Hs.143655	ESTs	1.64	1.57
85	312304	AA491949	Hs.269392	ESTs	0.12	2.47

	W	O 02/08	6443			
	312318	AW235092	Hs.143981	ESTs	3.46	5.69
	312319	AA216698	Hs.180780	TERA protein	5.78	4.46
	312321	R66210	Hs.186937	ESTs	0.44 3.73	1.74 5.96
5	312331 312339	AA825512 AA524394	Hs.289101 Hs.165544	glucose regulated protein, 58kD ESTs	3.73	0.95
•	312363	AI675558	Hs.181867	EST8	10.08	16.73
	312375	Al375096	Hs.172405	cell division cycle 27	2.78	3.71
	312376	R52089	Hs.172717	ESTs gb:tz43h12.x1 NCI_CGAP_Bm52 Homo sapien	1.00 2.37	1.00 3.98
10	312389 312437	A1863140 AA995028		gb:RC4-BT0629-120200-011-b10 BT0629 Homo	4.06	5.41
10	312440	AI051133	Hs.133315	Homo sapiens mRNA; cDNA DKFZp761J1324 (f	1.00	1.00
	312451	R59989	Hs.176539	ESTs	4.96	10.04
	312458	Al167637	Hs.146924	EST ₆	1.11 5.89	1.00 8.24
15	312507 312520	AI168177 AI742591	Hs.143653 Hs.205392	ESTs ESTs	3.30	8.92
13	312548	AI566228	Hs.159426	hypothetical protein PRO2121	1.38	1.65
	312564	H21520	Hs.35088	ESTs	0.40	0.77
	312583	Al193122	Hs.124141	ESTs ESTs	0.13 3.75	0.94 5.29
20	312599 312602	AI865073 AA046451	Hs.125720 Hs.165200	ESTs	6.78	12.93
_0	312645	H52121	Hs.193007	ESTs	0.38	1.13
	312666	AI240582	Hs.214678	ESTs	0.98	2.03
	312689	AW450461 H75459	Hs.203965 Hs.233425	ESTs ESTs	0.21 1.51	0.61 0.85
25	312817 312846	AW152104	Hs.200879	ESTs	8.93	13.78
	312873		Hs.283552	ESTs, Weakly similar to unnamed protein	4.20	6.23
	312893	Al016204	Hs.172922	ESTs	2.67	3.15
	312902 312925	AW292797	Hs.130316 Hs.271695	ESTs, Weakly similar to T2D3_HUMAN TRANS ESTs	1.19 2.50	0.71 4.25
30	312925	N90868 A1681581	Hs.121525	ESTs	1.00	1.17
-	312975	AI640506	Hs.293119	ESTs, Weakly similar to ALU7_HUMAN ALU S	2.30	4.80
	312978	N24887	Hs.292500	ESTs	0.80	1.05
	312980 312984	AA497043 N25871	Hs.115685 Hs.177337	ESTs ESTs	3.12 2.03	3.60 2.13
35 '	313000	Al147412	Hs.146657	ESTs	5.52	8.42
-	313029	AA731520	Hs.170504	ESTs	0.96	1.39
	313039	Al419290	Hs.149990	ESTs, Weakly similar to unnamed protein	6.48 6.44	13.20 10.73
	313049 313056	AW293055 Al651930	Hs.119357 Hs.135684	ESTs ESTs	1.51	2.04
40	313058	D81015	Hs.125382	ESTs	0.25	1.50
	313070	AI422023	Hs.161338	ESTs	8.56	11.60
	313097	A1676164	Hs.204339	ESTs	3.72 3.28	4.56 5.06
	313130 313136	AW449171 N59284	Hs.168677 Hs.288010	ESTs ESTs	0.49	1.36
45	313153	A1240838	Hs.132750	ESTs	5.36	5.52
	313210	N74077	Hs.197043	ESTs	0.30	0.66
	313236 313239	AW238169 W19632	Hs.83513 Hs.124170	ESTs, Weakly similar to ALU1_HUMAN ALU S ESTs	5.16 1.00	8.76 3.87
	313265	N93466	Hs.121764	ESTs, Weakly similar to testicular tekti	0.74	2.06
50	313267	A1770008	Hs.129583	ESTs	0.23	1.30
	313275	Al027604	Hs.159650	ESTs	6.68 1.34	9.57 1.07
	313290 313292	Al753247 Al362991	Hs.29643 Hs.202121	Homo sapiens cDNA FLJ13103 fis, clone NT ESTs, Weakly similar to env protein [H.s	2.00	4.32
722	313325	A1420611	Hs.127832	ESTs	1.20	2.27
55	313357	AW074848	Hs.201501	ESTs	4.02	5.33
	313393		Hs.200141	ESTs	1.36 2.58	2.84 5.26
	313399 313414	AW376889 Al241540	Hs.194097 Hs.132933	ESTs ESTs	6.57	15.07
	313417	AA741151	Hs.137323	ESTs	0.63	3.01
60	313457	AA576052	Hs.193223	Homo sapiens cDNA FLJ11646 fis, clone HE	2.78	4.70
	313499 313516	Al261390 . AA029058	Hs.146085 Hs.135145	KIAA1345 protein ESTs	0.91 3.41	2.37 7.08
	313556	AA628517	Hs.118502	ESTs	0.23	0.70
	313569	AJ273419	Hs.135146	hypothetical protein FLJ 13984	1.88	1.00
65	313570	AA041455	Hs.209312	ESTs	0.73	2.27
	313638 313662	AI753075 AA740151	Hs.104627 Hs.130425	Homo sapiens cDNA FLJ10158 fis, clone HE ESTs	1.00 0.20	1.72 1.42
	313671	W49823	Hs.104613	RP42 homolog	1.00	1.00
70	313672	AW468891	Hs.122948	ESTs	3.46	5.80
70	313690	AJ493591	Hs.78146	platelet/endothelial cell adhesion molec	0.51 0.18	0.97 1.01
	313723	AA398070 AA070412	Hs.133471	ESTs gb:zm68c10.s1 Stratagene neuroepithelium	1.08	1.03
	313726	AI744687	Hs.257806	ESTs	2.13	2.99
75	313774	AW136836	Hs.144583	ESTs	1.38	1.19
75	313784	AA910514	Hs.134905	ESTs	3.88 0.22	5.78 2.06
	313790 313832	AW078569 AW271022	Hs.177043 Hs.133294	ESTs ESTs	1.15	0.91
	313834	AW418779	Hs.114889	ESTs	0.68	3.14
00	313835	AI538438	Hs.159087	ESTs	5.74	8.88
80	313852	H18633	Hs.123641	protein tyrosine phosphatase, receptor t	0.16 2.09	1.14 4.06
	313854 313865	AW470806 AA731470	Hs.275002 Hs.163839	ESTs ESTs	3.41	4.09
	313871	AW471088	Hs.145950	ESTs	5.28	6.83
85	313883	AI949384	Un 400440	gb:nu76d01.s1 NCI_CGAP_Alv1 Homo sapiens Homo sapiens cDNA FLJ11576 fis, clone HE	2.90 1.00	10.91 1.00
0,5	313915	Al969390	Hs.163443	nono sapiens corra Pio Fisto ils, dione ric	1.00	1.00

	W	O 02/08	6443			
	313926	AW473830	Hs.171442	ESTs	3.40	4.11
	313948	AW452823	Hs.135268	ESTs	5.77	9.15
	313978	AI870175	Hs.13957	ESTs	0.46	0.75
5	313983 314035	AI829133 AA164199	Hs.226780 Hs.270152	ESTs ESTs	4.10 5.88	6.40 7.90
J	314037	AW300048	Hs.275272	ESTs	1.00	3.79
	314040	AA166970	Hs.118748	ESTs	7.60	11.33
	314067	AW293538	Hs.51743	KIAA1340 protein	1.86	1.21
10	314103 314107	Al028477 AA806113	Hs.132775 Hs.189025	ESTs ESTs	2.90 2.00	5.29 1.66
10	314113	AA218986	Hs.118854	ESTs	0.91	4.17
	314124	AW118745	Hs.9460	Homo sapiens mRNA; cDNA DKFZp547C244 (fr	2.53	3.32
	314126	AA226431	11- 404000	gb:nc18b12.s1 NCI_CGAP_Pr1 Homo sapiens	3.13	5.08
15	314128 314151	AA935633 AA236163	Hs.194628 Hs.202430	ESTs ESTs	2.90 4.15	6.35 6.45
13	314184	AW081795	Hs.233465	EST\$	3.44	4.65
	314192	AW290975	Hs.118923	ESTs	1.00	1.23
	314244	AL036450	Hs.103238	ESTs	2.88	3.67
20	314253 314262	AA278679 AW086215	Hs.189510 Hs.246096	ESTs ESTs	4.98 0.38	7.16 1.94
20	314320	AA811598	Hs.275809	ESTs	3.34	5.66
	314332	AL037551	Hs.95612	ESTs	2.85	2.09
	314335	AA287443	Hs.142570	Homo saplens clone 24629 mRNA sequence	4.35	4.78
25	314340 314351	AW304350 AA292275	Hs.130879 Hs.193746	ESTs, Moderately similar to putative p15 ESTs	0.77 3.07	0.86 3.77
23	314376	A1628633	Hs.324679	ESTs	4,10	6.11
	314443	AA827125	Hs.192043	ESTs	6.20	13.67
	314458	Al217440	Hs.143873	ESTs	0.58	2.49
30	314466		. Hs.122707	ESTs	2.53 3.94	2.62 5.65
30	314478 314482	AI521173 ·	Hs.125507 Hs.134182	DEAD-box protein ESTs	1.30	1.44
	314506	AA833655	Hs.206868	Homo sapiens cDNA FLJ14056 fis, clone HE	3.28	3.47
	314519	R42554	Hs.210862	T-box, brain, 1	3.12	6.16
35	314529	AL046412	Hs.202151	ESTs	3.43 1.38	6.87 1.00
55	314546 314562	AW007211 Al564127	Hs.16131 Hs.143493	hypothetical protein FLJ12876 ESTs	2.29	5.27
	314579	AW197442	Hs.116998	ESTs	3.87	5.75
	314580	AW451832	Hs.255938	ESTs, Moderately similar to KIAA1200 pro	0.10	0.71
40	314585 314589	AA918474 AW384790	Hs.216363 Hs.153408	ESTs Homo sapiens cDNA FLJ10570 fis, clone NT	1.08 1.00	1.40 1.00
40	314592	AA435761	Hs.192148	ESTs	0.90	2.60
	314603	AA418024	Hs.270670	ESTs	4.56	6.29
	314604	AA946582	Hs.8700	deleted in liver cancer 1	3.42	3.92
45	314606 314648	AA418241 AA878419	Hs.188767	ESTs gb:EST391378 MAGE resequences, MAGP Homo1	2.97 42	4.55 1.36
43	314699	Al038719	Hs.132801	ESTs	3.66	4.97
	314701	AI754634	Hs.131987	ESTs	0.03	0.90
	314710	AI669131	Hs.290989	EST	3.40	7.52 6.54
50	314750 314767	AI095005 AW135412	Hs.135174 Hs.164002	ESTs ESTs	2.80 3.20	4.26
50	314801	AA481027	Hs.109045	hypothetical protein FLJ10498	1.00	1.00
	314817	Al694139	Hs.192855	ESTs	0.91	0.99
	314835	AI281370	Hs.76064	ribosomal protein L27a	5.75	7.44 4.34
55	314852 314853	Al903735 AA729232	Hs.153279	gb:MR-BT035-200199-031 BT035 Homo saplen ESTs	1.68 0.60	1.85
55	314940	AW452768	Hs.162045	ESTs	10.10	16.20
	314941	AA515902	Hs.130650	ESTs	0.31	1.02
	314943	Al476797	Hs.184572	cell division cycle 2, G1 to S and G2 to	2.18	0.37
60 ·	314955	AA521382 AW273128	Hs.192534 Hs.300268	ESTS ESTS	2.59 1.05	3.90 1.25
00		AA527941	Hs.325351	EST	5.64	13.63
	315006	Al538613	Hs.298241	Transmembrane protease, serine 3	0.52	1.78
	315033	A1493046	Hs.146133	ESTS	2.46 0.34	1.00 1.33
65	315035 315056	A1569476 A1202703	Hs.177135 Hs.152414	ESTs ESTs	2.10	2.64
00	315069	AI821517	Hs.105866	ESTs	1.00	1.30
	.315071	AA552690	Hs.152423	Homo sapiens cDNA: FLJ21274 fis, clone C	1.78	1.00
		AW452948	Hs.257631	ESTS	1.17	1.52 3.79
70	315078 315080	AA568548 AA744550	Hs.190616 Hs.136345	ESTs -	3.00 1.00	1.00
, ,	315120	AA564991	Hs.269477	ESTs	0.64	1.44
	315175	AJ025842	Hs.152530	ESTs	0.61	1.91
	315193	AI241331	Hs.131765	ESTs Homo sapiens clone TCCCTA00151 mRNA sequ	1.06 0.48	0.97 1.96
75	315196 315200	AA972756 AI808235	Hs.44898 Hs.307686	EST	3.76	9.40
. •	315254	AI474433	Hs.179556	ESTs	5.37	9.36
	315353	AW452608	Hs.279610	hypothetical protein FLJ10493	1.00	1.30
	315397	AA218940	Hs.137516	fidgetin-like 1	3.38 2.04	2.24 5.23
80	315403 315431	AW362980 AA622104	Hs.163924 Hs.184838	ESTs ESTs	2.36	8.04
	315454	AJ239473		gb:qh36f02.x1 Soares_NFL_T_GBC_S1 Homo s	3.46	7.64
	315455	AW393391	Hs.156919	ĔSTs .	3.78	5.76
	315473 315483	AI681671 AW512763	Hs.312671	ESTs, Moderately similar to OVCA1 transcription factor BMAL2	0.89 2.32	2.15 1.96
85	315526	AV193048	Hs.222024 Hs.128685	ESTs	1.67	1.78

	w	O 02/08	6443			
	315530	Af200852	Hs.127780	ESTs	1.05	1.01
	315541	Al168233	Hs.123159	sperm associated antigen 4	0.85	0.56
	315552	AW445034	Hs.256578	ESTs .	1.00	2.22
_	315562	AA737415	Hs.152826	ESTs	2.66	2.48
5	315577	AW513545	Hs.17283	hypothetical protein FLJ 10890	2.20 1.00	2.25 1.04
	315587 315589	Al268399 AW072387	Hs.140489 Hs.158258	ESTs Homo saplens mRNA; cDNA DKFZp434B1272 (f	0.14	1.05
	315623	AA364078	Hs.258189	ESTs	7.44	12.56
	315634	AA837085	Hs.220585	ESTs	0.50	1.40
10	315668	AA912347	Hs.136585	ESTs	0.43	1.22
	315677	Al932662	Hs.164073	ESTs	0.60	1.39
	315706	AW440742	Hs.155556	hypothetical protein FLJ20202	2.18 2.88	3.77 2.63
	315707	Al418055	Hs.161160	ESTs ESTs	0.11	0.60
15	315730 315745	H25899 Al821759	Hs.201591 Hs.191856	ESTS	3.50	7.25
13	315791	AA678177	113.131000	gb:zi15a05.s1 Soares_fetal_liver_spleen_	1.78	2.63
	315801	AA827752	Hs.266134	ESTs	4.31	6.23
	315820	Al652022	Hs.258785	ESTs	2.35	3.01
20	315878	AA683336	Hs.189046	ESTs	2.12	2.64
20	315905	AI821911	Hs.209452	ESTs	1.03 2.63	1.97 5.06
	315923 315954	AI052789 AW276810	Hs.133263 Hs.254859	ESTs ESTs, Moderately similar to ALU5_HUMAN A	1,21	0.85
	315978	AA830893	Hs.119769	ESTs	3.09	3.41
	316001	AJ248584	Hs.190745	Homo sapiens cDNA: FLJ21326 fis, clone C	2.20	6.82
25	316011	AW516953	Hs.201372	ESTs	0.35	1.63
	316012	AA764950	Hs.119898	ESTs	6.56	8.13
	316040	AI983409	Hs.189226	ESTs	5.69 2.84	10.69 10.45
	316048	Al720759 AW297895	Hs.224971 Hs.116424	ESTs ESTs	0.30	1.05
30	316076 316124	Al308862	Hs.167028	ESTS	1.00	1.43
50	316151	Al806016	Hs.156520	ESTs	5.80	9.03
	316187	AW518299	Hs.192253	ESTs	1.20	3.96
	316204	AA731509	Hs.120257	ESTs	4.92	6.94
25	316232	AW297853	Hs.251203	ESTS	1.48	1.60 12.14
35	316275	Al671041	Hs.292611	ESTs, Moderately similar to ALU1_HUMAN A ESTs	5.86 2.73	2.69
	316291 316303	AW375974 AA740994	Hs.156704 Hs.209609	ESTS	1.53	1.26
	316344	AA744518	Hs.120610	ESTs	3.66	8.34
	316346	Al028478	Hs.157447	ESTs	3.51	6.69
40	316365	AI627845	Hs.210776	ESTs	2.50	4.33
	316380	Al393378	Hs.164496	ESTs	1.16	2.16 10.34
	316470	AA809902	Hs.243813	ESTs ESTs	5.40 2.46	2.89
	316509 316514	AA767310 AA768037	Hs.291766 Hs.291671	ESTS	4.70	6.04
45	316519	Al929097	113.231071	gb:od10c11.s1 NCI_CGAP_GCB1 Homo sapiens	4.41	9.70
	316609	AW292520	Hs.122082	ESTs	1.00	2.89
	316633	Al125586	Hs.127955	ESTs	2.61	3.72
	316700	AW172316	Hs.252961	ESTs, Weakly similar to ALU1_HUMAN ALU S	3.46	4.64 6.95
50	316711	AI743721	Hs.285316	ESTs, Moderately similar to ALU7_HUMAN A hypothetical protein FLJ12057	4.45 0.30	2.40
50	316713 316715	AI090671 AI440266	Hs.134807 Hs.170673	ESTs, Weakly similar to AF126780 1 retin	0.20	1.45
	316787	AW369770	Hs.130351	ESTs	4.05	5.53
	316809	AA825839	Hs.202238	ESTs	2.25	3.82
	.316811	AA922060	Hs.132471	ESTs	1.00	1.32
55	316812	AW135045	Hs.232001	ESIS	3.28 0.67	4.70 1.81-
	316818	AA827176 AA837416	Hs.124316 Hs.124299	ESTs ESTs	3.53	6.00
	316824 316827	Al380429	Hs.172445	ESTs	0.72	1.56
	316891	AW298119	Hs.202536	ESTs	1.64	2.97
60	316951	AA134365	Hs.57548	ESTs	1.45	1.08
	316970	AA860172	Hs.132406	ESTs	1.00	1.53
	316971	AA860212	Hs.170991	ESTS	1.08 5.44	1.96 10.04
	316990	AA861611 Al627917	Hs.130643 Hs.233694	ESTs hypothetical protein FLJ11350	3.56	4.37
65	317001 317008	AW051597	Hs.143707	ESTs	0.69	1.37
05	317051	AA873253	Hs.126233	FOT-	6.18	12.72
	317128	AA971374	Hs.125674	ESTs	1.87	2.66
	317129	H12523	Hs.78521	Homo sapiens cDNA: FLJ21193 fis, clone C	4.12	6.64
70	317137	AW341567	Hs.125710	ESTs	2.82	5.12 2.51
70	317196	A1348258	Hs.153412 Hs.148294	ESTs ESTs	1.98 1.86	2.83
	317212 317223	AI866468 AW297920	Hs.130054	ESTs	0.83	1.57
	317224	D56760	Hs.93029	sparc/osteonectin, cwcv and kazal-like d	2.74	0.86
	317266	AA906289	Hs:203614	ESTs	1.00	1.00
75	317282	A1807444	Hs.176101	ESTs	2.60	4.21
	317285	AW370882	Hs.222080	ESTs	1.96	3.49
	317302	AA908709	Hs.135564	ESTS	7.16 1.38	8.32 2.28
	317304 317320	AW449899 AA927151	Hs.130184 Hs.130452	ESTs ESTs	3.58	8.13
80	317413	AW341701	Hs.126622	ESTs	2.08	4.92
	317417	AA918420	Hs.145378	ESTs	3.06	4.79
	317452	AA972965	Hs.135568	ESTs	4.22	9.21
	317519	A1859695	Hs.126860	ESTs	1.88 3.12	4.15 4.55
8 5	317521 317529	A1824338 A1916517	Hs.126891 Hs.126865	ESTs ESTs	2.73	3.34
J.J	311323	U2 (02)1	. 10. 120000			

	W	O 02/08	6443			
	317570	AJ733361	Hs.127122	ESTs	1.00	2.43
	317571	AA938663	Hs.199828	ESTs .	5.20	11.95
	317598	AW206035	Hs.192123	ESTs	0.33	1.56
5	317627	AI346110	Hs.132553	ESTs	1.50 0.48	1.39
3	317650 317659	AI733310 AA961216	Hs.127346 Hs.127785	ESTs ESTs	4.18	1.46 7.14
		- AW294909	Hs.132208	ESTS	2.92	3.20
	317686	AA969051	Hs.187319	ESTs	1.00	1.01
4.0	317692	Al307659	Hs.174794	ESTs	5.33	9.59
10	317701	A1674774	Hs.128014	ESTs	1.00	1.00
	317711	AI733015	Hs.272189	ESTs	5.13	7.81 6.03
	317722 317756	A1733373 AA973667	Hs.128119 Hs.128320	ESTs ESTs	2.50 1.59	1.30
	317777	Al143525	Hs.47313	KIAA0258 gene product	1.00	2.48
15	317799	Al498273	Hs.128808	ESTs	1.78	2.11
	317803	AA983251	Hs.128899	ESTs	0.80	1.06
	317821	AJ368158	Hs.70983	PTPL1-associated RhoGAP 1	0.17	0.68
	317848	A1820575	Hs.129086	Homo sapiens cDNA FLJ12007 fis, clone HE	5.30	8.16
20	317850	N29974	Hs.152982	hypothetical protein FLJ13117	1.30 2.18	2.28 5.93
20	317861 317865	AW341064 Al298794	Hs.129119 Hs.129130	ESTs .	4.48	8.20
	317869	AW295184	Hs.129142	deoxyribonuclease II beta	0.44	0.99
	317881	AI827248	Hs.224398	Homo sapiens cDNA FLJ11469 fis, clone HE	4.06	2.23
~-	317890	Al915599	Hs.129225	ESTS	4.68	7.48
25	317899	A1952430	Hs.150614	ESTs, Weakly similar to ALU4_HUMAN ALU S	3.14	3.37
	317986	A1005163	Hs.201378	ESTs, Weakly similar to T12545 hypotheti	0.28 5.12	1.66 9.97
	318001 318016	AW235697 AI016694	Hs.130980 Hs.256921	ESTs ESTs	1.86	4.50
	318023	AW243058	Hs.131155	ESTs	2.92	5.22
30	318054	AW449270	Hs.232140	ESTs	3.92	6.37
	318068	A1024540	Hs.131574	ESTs	1.21	1.27
	318117	AI208304	Hs.250114	ESTs	0.86	1.17
	318187	A1792585	Hs.133272	ESTs, Weakly similar to ALUC_HUMAN IIII	5.90 1.05	6.98 0.90
35	318223 318240	A1077540 A1085377	Hs.134090 Hs.143610	ESTs ESTs	3.10	2.40
33	318255	Al082692	Hs.134662	ESTs	0.02	1.05
	318266	AI554341	Hs.271443	ESTs	6.12	10.55
	318330	A1093840	Hs.143758	ESTs	4.98	7.90
40	318369	Al493501	Hs.170974	ESTs	2.46	5.62
40	318428	A1949409	Hs.194591	ESTs	0.77 3.54	0.45 4.92
	318458 318467	Al149783 Al151395	Hs.158438 Hs.144834	ESTs ESTs	4.56	5.62
	318473	A1939339	Hs.146883	ESTs	2.08	4.05
•	318476	AI693927	Hs.265165	ESTs	4.22	8.07
45	318487	Al167877	Hs.143716	ESTs	1.47	1.05
	318488	Al217431	Hs.144709	ESTs	. 1.40	4.14
		· T26477	Hs.22883	ESTs, Weakly similar to ALU8_HUMAN ALU S	1.84 2.58	1.90 5.20
	318499 318537	T25451 AA377908	Hs.13254	gb:PTHI188 HTCDL1 Homo sapians cDNA 5/3 ESTs	3.26	4.18
50	318538	N28625	Hs.74034	Homo sapiens clone 24651 mRNA sequence	0.35	1.07
	318547	R20578	Hs.90431	ESTs	3.22	4.60
	318552	R18364	Hs.90363	ESTs	4.87	9.06
	318575	R55102	Hs.107761	ESTs, Weakly similar to unnamed protein	1.91	1.98
55	318580	T34571	Hs.49007	poly(A) polymerase alpha Homo saplens cDNA FLJ12136 fis, clone MA	2.74 0.85	6,22 2.46
55	318587 318596	AA779704 Al470235	Hs.168830 Hs.172698	EST	4.88	4.93
	318622	T48325	Hs.237658	apolipoprotein A-II	4.80	12.51
	318629	N25163	Hs.8861	ESTs	0.39	1.04
CO	318637	AA243539	Hs.9196	hypothetical protein	1.72	3.57
60	318648	T77141	Hs.184411	albumin	6.27	9.91
	318650	AA393302 AA188823	Hs.176626	hypothetical protein EDAG-1 Homo sapiens cDNA: FLJ23597 fis, clone L	3.96 1.53	8.84 0.81
	318671 318679	T58115	Hs.299254 Hs.10336	ESTs	1.00	2.19
	318711	Al936475	Hs.101282	Homo sapiens cDNA: FLJ21238 fis, clone C	3.05	3.18
65	318725	AI962487	Hs.242990	ESTs .	1.08	2.46
	318728	Z30201	Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU S	0.77	1.33
	318740	NM_002543		oxidised low density lipoprotein (lectin	0.25	1.49
•	318776	R24963	Hs.23766	ESTs	1.00 2.70	3.01 3.86
70	318784 318816	H00148 F07873	Hs.5181 Hs.21273	proliferation-associated 2G4, 38kD ESTs	3.90	7.13
, 0	318865	H10818	113.21210	gb:ym04f10.r1 Soares infant brain 1NIB H	2.25	3.56
	318879	R56332	Hs.18268	adenylale kinase 5	1.78	5.00
	318881	Z43224	Hs.124952	ESTs	4.79	14.13
75	318894	F08138	Hs.7387	DKFZP564B116 protein	5.31	7.00
75	318901	AW368520	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	1.03 2.23	0.91 3.80
	318925 318936	Z43577 Al219221	Hs.21470 Hs.308298	ESTs	2.23 1.86	7.16
	318982	Z44140	Hs.269622	ESTs	5.84	9.79
00	318986	Z44186	Hs.169161	ESTs, Highly similar to MAON_HUMAN NADP-	1.00	1.00
80	319041	Z44720	Hs.98365	ESTs, Wealdy similar to weak similarity	3.38	6.11
	319103	H05896	Hs.4993	KIAA1313 protein	1.00	1.07
	319170	R13678	Hs.285306	putative selenocysteine lyase putative G-protein coupled receptor	3.79 1.00	5.03 2.98
	319196 319199	F07953 F07361	Hs.16085 Hs.13306	ESTs	3.53	5.66
85	319242	F11472	Hs.12839	ESTs	5.87	7.26

WO 02/086443 PCT/US02/12476

	W	O 02/08	6443			
	319263	T65331	Hs.81360	Homo sapiens cDNA: FLJ21927 fis, clone H	1.81	1.57
	319267	F11802	Hs.6818	ESTs	1.10	4.72
	319270	R13474	Hs.290263	ESTs CCI 147 ambin	4.80 1.50	10.40
5	319279 319282	T65094 AA461358	Hs.12677 Hs.12876	CGI-147 protein ESTs	1.00	2.11 1.00
9	319289	W07304	Hs.79059	transforming growth factor, beta recepto	0.18	0.68
	319291	W86578	Hs.285243	hypothetical protein FLJ22029	0.26	0.62
	319293	F12119	Hs.12583	ESTs	3.13	4.50
	319312	Z45481		gb:HSC2QE041 normalized infant brain cDN	1.10	1.00
10	319370	H54254	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	0.16	0.73
	319391	R06304	Hs.13911	ESTs	1.26	2.43
	319396	H67130	Hs.301743	ESTs	0.70	0.76
	319398	AA359754	Hs.191196	ESTS	2.45 2.00	3.59
15	319407 319425	R05329 T82930		gb:ye91b04.r1 Soares fetal liver spleen gb:yd39f07.r1 Soares fetal liver spleen	4.28	3.54 8.81
13	319433	R06050	Hs.191198	ESTs	6.15	14.13
	319437	AA282420	Hs.111991	ESTs, Weakly similar to Y48A5A.1 [C.eleg	3.26	5.68
	319466	AI809937	Hs.116417	ESTs	1.76	5.65
	319471	R06546	Hs.19717	ESTs	4.29	4.84
20	319480	R06933	Hs.184221	ESTs	1.00	1.00
	319484	T91772		gb:yd52a10.s1 Soares fetal liver spleen	2.81	4.88
	319486	A1382429	Hs.250799	ESTs	2.08	2.82
	319508	T99898	Hs.270104	ESTs, Moderately similar to ALU8_HUMAN A	2.80	4.39
25	319523	T69499	Hs.191184	ESTs	1.55	3.25
23	319545	R83716	Hs.14355	Homo sapiens cDNA FLJ13207 fis, clone NT	1.65 5.11	1.19
	319546 319552	R09692 AA096106	Hs.20403	gb:yf23b12.r1 Soares fetal liver spleen ESTs	1.89	8.54 3.36
	319582	T82998	Hs.250154	hypothetical protein FLJ12973	3.48	4.82
	319586	D78808	Hs.283683	chromosome 8 open reading frame 4	0.26	0.82
30	319604	R11679	Hs.297753	vimentin	1.68	3.41
• •	319609	AW247514	Hs.12293	hypothetical protein FLJ21103	3.06	4.24
	319611	H14957	•	gb:ym19c10.r1 Soares infant brain 1NIB H	2.76	4.24
	319653	AA770183	Hs.173515	uncharacterized hypothalamus protein HTO	2.51	3.55
25	319657	R19897	Hs.106604	ESTs	5.32	7.68
35	319658	R13432	Hs.167481	syntrophin, gamma 1	3.35	5.00
	319661	H08035	Hs.21398	ESTs, Moderately similar to A Chain A, H	5.18	12.55
	319662	H06382	Hs.21400	ESTs ESTs	1.58 1.00	1.56 1.22
	319708 319742	R15372 T77668	Hs.22664 Hs.21162	ESTs	2.48	3,13
40	319748	R18178	Hs.295866	Homo sapiens mRNA; cDNA DKFZp434N1923 (f	3.02	4.85
	319772	R76633	Hs.22646	ESTs	4.36	11.61
	319788	AA321932	Hs.117414	KIAA1320 protein	2.56	3.68
	319805	R92857	Hs.271350	likely ortholog of mouse polydom	4.63	6.56
4.5	319812	N74880	Hs.264330	N-acylsphingosine amidohydrolase (acid c	0.63	1.32
45	319834	AA071267		gb:zm61g01.r1 Stratagene fibroblast (937	0.30	0.94
	319878	T78517	Hs.13941	ESTs	3.99	6.44
	319882	AA258981	Hs.291392	ESTS .	5.09 3.24	7.36 3.21
	319912 319935	T77559 H79460	Hs.94109 Hs.271722	Homo sapiens cDNA FLJ13634 fis, clone PL ESTs, Weakly similar to ALU1_HUMAN ALU S	3.24 4.40	9.42
50	319944	T79248	Hs.133510	ESTs	3.31	5.39
50	319947	AA160967	Hs.14479	Homo sapiens cDNA FLJ14199 fis, clone NT	2.90	4.95
	319962	H06350	Hs.135056	Human DNA sequence from clone RP5-850E9	1.81	1.57
	320007	AA336314		gb:EST40943 Endometrial tumor Homo saple	3.42	6.29
	320018	T83263		gb:yd40h09.r1 Soares fetal liver spleen	2.77	5.14
55	320030	H63789	Hs.296288	ESTs, Weakly similar to KIAA0638 protein	4.10	6.69
	320032	A1699772	Hs.292664	ESTs, Weakly similar to A46010 X-linked	3.27	3.27
	320040	AA233671	Hs.87164	hypothetical protein FLJ14001	1.81	1.64
	320047	T86564	Hs.302256	EST .	3.38	7.36
60	320063 320096	AA074108 H58138	Hs.120844 Hs.117915	FOXJ2 forkhead factor ESTs	5.90 2.08	16.73 4.47
UU	320099	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	1.00	1.00
	320112	T92107	Hs.188489	ESTs	2.27	2.06
	320140	H94179	Hs.119023	SMC2 (structural maintenance of chromoso	1.00	1.00
	320188	AW419200	Hs.172318	ESTs	1.26	1.00
65	320193	AA831259	Hs.17132	ESTs	2.58	6.23
	320195	R62203	Hs.24321	Homo sapiens cDNA FLJ12028 fis, clone HE	2.85	4.53
	320199	R78659	Hs.29792	ESTs	0.40	0.94
	320203	AL049227	Hs.124776	Homo sapiens mRNA; cDNA DKFZp564N1116 (f	0.84	1.18
70	. 320219	AA327564	Hs.127011	tubulointerstitial nephritis antigen	1.00	1.17
70	320220	AF054910	Hs.127111	tektin 2 (testicular)	0.18 5.26	1.09 13.75
	320225 320231	AF058989 H03139	Hs.128231 Hs.24683	G antigen, family B, 1 (prostate associa ESTs	1.59	1.93
•	320251	NM_003608		G protein-coupled receptor 65	1.38	4.56
_	320267	AL049337	Hs.132571	Homo saplens mRNA; cDNA DKFZp564P016 (fr	1.00	1.92
75	320268	H06019	Hs.151293	Homo sapiens cDNA FLJ10664 fis, clone NT	5.58	5.70
	320322	AF077374	Hs.139322	small proline-rich protein 3	1.41	1.01
	320325	AI167978	Hs.139851	caveolin 2	0.05	0.67
	320330	AF026004	Hs.141660	chloride channel 2	2.17	1.26
00	320339	H10807	Hs.281434	Homo sapiens cDNA FLJ14028 fis, clone HE	1.81	2.32
80	320388	H16065	· Hs.31286	ESTs	1.00	3.22
	320402	R22291	Hs.23368	Homo sapiens clone FLC0578 PRO2852 mRNA,	1.41	1.38
	320413	AA203711	Hs.173269	ESTs	2.31 11.25	3.61 20.78
	320432 320438	R62786 AA253352	Hs.124136 Hs.293663	ESTs ESTs	2.22	3.49
85	320438	W24548	Hs.5669	ESTs	3.53	8.14
-	100			•		

	W	O 02/08	6443			
	320448	AJ240233	Hs.80887	v-yes-1 Yamaguchi sarcoma viral related	1.42	3.46
	320451	R26944	Hs.180777	Homo saplens mRNA; cDNA DKFZp564M0264 (f	0.87	0.81
	320484	AA094436	Hs.296267	follistatin-like 1	0.65	1.18
_	320499	R32555	Hs.24321	Homo sapiens cDNA FLJ12028 fis, clone HE	3.44	7.15
5	320514	AB007978	Hs.158278	KIAA0509 protein	6.44	13.62
	320521	N31464	Hs.24743	hypothetical protein FLJ20171	1.48	1.04
	320526	AW374205	Hs.111314	ESTs	3.66	7.87
	320527	R34672	Hs.324522	ESTs	3.16	5.63
10	320536	AA331732	Hs.137224	ESTs	2.83	5.83
10	320556	AF054177	Hs.14570	hypothetical protein FLJ22530	1.28	1.00
	320564	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg	1.22	0.81
	320587	Z44524	Hs.167456	Homo saplens mRNA full length insert cDN	1.84	2.44
	320635	R54159	Hs.80506	small nuclear ribonucleoprotein polypept	1.00	6.25
1.5	320639	AA243258	Hs.7395	hypothetical protein FLJ23182	2.60	2.30
15	320648	N48521	Hs.26549	Homo sapiens mRNA for KIAA1708 protein,	1.00	1.53
	320651	AA489268	Hs.111334	ferritin, light polypeptide	0.14	0.79
	320664	Al904216	Hs.91251	hypothetical protein FLJ11198	5.02	8.84
	320676	AA132650	Hs.300511	ESTs	3.63	5.37
20	320683	R59291	Hs.26638	ESTs, Weakly similar to unnamed protein	0.37	1.31
20	320689	AA334609	Hs.171929	ESTs, Weakly similar to A54849 collagen	1.27	1.02
	320696	AW135016	Hs.172780	ESTs	3.53	4.60
	320714	Al445591	11 404405	gb:yq04a10.r1 Soares fetal liver spleen	1.06	0.85
	320727	U96044	Hs.181125	immunoglobulin lambda locus	1.35	1.49
25	320771	AI793266	Hs.117176	poly(A)-binding protein, nuclear 1	0.04 2.96	0.82
25	320794	AA281993	Hs.91226	ESTs		4.33 0.79
	320822	AF100780	Hs.194679	WNT1 inducible signaling pathway protein	0.10	
	320824	AF120274	Hs.194689	artemin	1.16	1.11
	320830	AJ132445	Hs.266416	claudin 14	1.06 1.36	1.75 1.47
20	320843	AA317372	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr		7.49
30 🕝	320849	D60031	Hs.34771	ESTS	5.30 1.00	1.00
	320853	A1473796	Hs.135904	ESTs	5.90	2.55
	320896	AB002155	Hs.271580	uroplakin 18	2.20	1.17
	320921	R94038 '	Hs.199538	inhibin, beta C	0.18	1.46
35	320927	Al205786 Al878933	Hs.213923 Hs.92023	ESTs core histone macroH2A2.2	1.67	2.18
33	320957		NS.32U23	gb:yn69f11.r1 Soares adult brain N2b5HB5	3.26	3.62
	320997 321045	H22544 W88483	Hs.293650	ESTs	2.25	4.55
	321045	H27794	Hs.269055	ESTS	2.69	4.25
	321052	AW372884	Hs.240770	nuclear cap binding protein subunit 2, 2	2.14	2.56
40	321052	A1092824	Hs.126465	ESTs	1.69	0.53
40	321062	R87955	Hs.241411	Homo sapiens mRNA full length insert cDN	2.76	5.20
	321067	AF131782	Hs.241438	Homo sapiens clone 24941 mRNA sequence	4.79	7.41
	321102	AA018306	113.241430	gb:ze40d08.r1 Soares retina N2b4HR Homo	1.79	4.27
	321130	H43750	Hs.125494	ESTs	1.00	3.14
45	321142	Al817933	Hs.298351	ASPL protein	8.73	15.36
	321155	AA336635	Hs.99598	hypothetical protein MGC5338	3.04	5.03
	321158	AA700289	, 10.0000	gb:yu76f11.r1 Soares fetal liver spleen	4.62	8.39
:	321170	N53742	Hs.172982	ESTs	2.21	4.46
	321199	AW385512		gb:yy56d10.s1 Soares_multiple_sclerosis_	5.69	8.01
50	321206	H54178	Hs.226469	Homo sapiens cDNA FLJ12417 fis, clone MA	4.00	7.32
	321225	AL080073	Hs.251414	Homo sapiens mRNA; cDNA DKFZp564B1462 (f	4.17	4.63
	321236	AW371941	Hs.18192	Ser/Arg-related nuclear matrix protein (1.00	1.00
	321244	AF068654		gb:Homo sapiens isolate AN.1 immunoglobu	2.18	9.13
	321270	R83560		gb:yv76c06.s1 Soares fetal liver spleen	3.80	5.26
55	321317	AI937060	Hs.6298	KIAA1151 protein	1.81	1.65
	321318	AB033041	Hs.137507	KIAA1215 protein	1.00	1.00
	321325	AB033100	Hs.300646	KIAA protein (similar to mouse paladin)	0.44	0.93
	321342	AA127984	Hs.222024	transcription factor BMAL2	4.94	4.93
	321356	R93443	Hs.271770	ESTs	3.10	4.66
60	321418	AJ739161	Hs.161075	ESTs	2.28	2.54
	321420	A1368667	Hs.132743	ESTs	1.13 ·	0.97
	321430	U05890 .		gb:H.sapiens (DIG3) mRNA for immunoglobu	2.42	3.35
	321453	N50080	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H	1.60	3.11
	321467	X13075	·	gb:Human 2a12 mRNA for kappa-immunoglobu	0.42	0.72
65	321468	AA514198	Hs.38540	ESTs	2.46	6.50
	321491	H70665	Hs.292549	ESTs	1.00	1.25
	321498	AW295517	Hs.255436	ESTs	3.19	6.24
	321504	W02356	Hs.268980	ESTs	2.28	3.86
70	321510	AA703650	Hs.255748	ESTs	2.14	3.94
70	321513	H84972	Hs.108551	ESTs	2.78	5.37
	321516	AI382803	Hs.159235	ESTs	3.06	7.19
	321565	AI525773	Hs.266514	hypothetical protein FLJ11342	4.89	7.82
	321577	H84260		gb:ys90g04.r1 Soares retina N2b5HR Homo	1.00	1.73
75	321581	AA019964	Hs.28803	ESTs	4.88	6.73
75	321582	AA143755	Hs.21858	trinucleotide repeat containing 3	1.00 2.26	2.08
	321587	H95531	11- 00000	gb:ys76e02.r1 Soares retina N2b4HR Homo		4.52
	321626	AA295430	Hs.96322	hypothetical protein FLJ23560	1.95	3.83
	321628	H87064	Hs.161051	ESTs, Moderately similar to ALU6_HUMAN A	0.47	1.02 1.38
80	321642	AW085917	Hs.247084	ESTS	1.52 2.17	2.45
ov	321669	H95404	Hs.294110	ESTs gb:af70c12.r1 Soares_NhHMPu_S1 Homo sapi	4.31	6.95
	321687	AA625149	He 193150	Homo sapiens cDNA FLJ12830 fis, clone NT	2.82	3.28
	321688	H97646	Hs.123158	ras-related C3 botulinum toxin substrate	0.51	1.08
	321693 321700	AA700017 N55160	Hs.173737 Hs.167260	ESTs	4.57	7.46
85	321700	AW390923	Hs.42568	ESTS	1.00	1.00
J.J	051101	7110000				

	W	O 02/08	6443			
	321709	N25847	Hs.108923	RAB38, member RAS oncogene family	1.00	1.00
	321710	N35682	Hs.259743	ESTs	2.97	5.26
	321775	AI694875	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	1.00 1.68	1.00
5	321777	A1637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	0.90	0.45 0.90
,	321779 321829	N42729 D81993	Hs.163835 Hs.8966	ESTs turnor endothelial marker 8	2.69	3.89
	321846	AA281594	Hs.87902	ESTs	5.11	7.64
	321879	AL109670	Hs.302809	ESTs	6.49	9.58
	321883	AA426494	Hs.46901	KIAA1462 protein	0.28	0.95
10	321899	N55158	Hs.29468	ESTs	0.39	0.95
	321911	AF026944	Hs.293797	ESTs	6.20	10.76
	321949	R49202	Hs.181694	EST	4.62	10.51
	321955	A1651866	Hs.195689	ESTs	2.89 · 0.32	5.47 1.25
15	321956	AL110177	Hs.132882	ESTs	1.00	1.23
13	321987 321991	AL133612 AL133627	Hs.272759 Hs.158923	KIAA1457 protein Homo sapiens mRNA; cDNA DKFZp434K0722 (f	4.00	6.47
	322002	AA328801	Hs.84522	ESTs	2.10	3.48
	322035	AL137517	Hs.306201	hypothetical protein DKFZp564O1278	1.00	1.90
	322044	AW340926		gb:xy51b10.x1 NCI_CGAP_Lu34.1 Homo sapie	3.20	9.67
20	322057	N92197	Hs.154679	synaptotagmin 1	1.55	1.07
	322060	Al341937		gb:qt10e03.x1 NCI_CGAP_GC4 Homo saplens	4.59	7.68
	322070	U80769	Hs.210322	Homo sapiens mRNA for KIAA1766 protein,	2.78	4.52
	322083	AF074982	Hs.226031	ESTs, Highly similar to KIAA0535 protein	3.10	5.52
25	322091	AI819863	Hs.106243	ESTs	1.59	. 1.75 5.27
25	322125	R93901	11. 447707	gb:yq16c12.r1 Soares fetal liver spleen	2.06 10.12	16.49
	322130	R98978	Hs.117767	ESTs ESTs	0.94	0.64
	322147 322166	AF085919 AF085958	Hs.114176	gb:yr88b03.r1 Soares fetal liver spleen	4.09	6.67
	322173	H52567		gb:yt85d04.r1 Soares_pineal_gland_N3HPG	3.46	4.85
30	322178	H56535		gb:yt88g03.r1 Soares_pineal_gland_N3HPG	0.44	2.54
-	322179	H92891		gb:yt94c02.s1 Soares_pineal_gland_N3HPG	4.52	7.50
	322186	H67346	Hs.269187	ESTs	0.15	0.98
	322196	W87895	Hs.211516	ESTs	2.20	5.04
25	322212	AF087995	Hs.134877	ESTs	3.42	4.84
35	322221	A1890619	Hs.179662	nucleosome assembly protein 1-like 1	0.82	2.14 3.98
	322277	AI640193	Hs.226389	ESTS	3.62 1.00	1.00
	322278 322284	AF086283 Al792140	Hs.49265	gb:zd46f01.r1 Soares_fetal_heart_NbHH19W ESTs	0.66	2.76
	322288	AL037273	Hs.7886	pellino (Drosophila) homolog 1	0.71	0.70
40	322320	AF086419	113.7 000	gb:zd78d03.r1 Soares_fetal_heart_NbHH19W	2.02	2.76
	322336	AA308526	Hs.76152	decorin	2.92	4.44
	322339	W17348		gb:zb18c07.x5 Soares_fetal_lung_NbHL19W	8.50	11.56
	322366	AW404274	Hs.122492	hypothetical protein	0.61	1.34
4 ~	322372	W25624	Hs.153943	ESTs	7.37	12.07
45	322374	Al394663	Hs.122116	ESTs, Moderately similar to Osf2 [M.musc	4.78	10.50
	322378	AF064819	Hs.201877	DESC1 protein	1.00 7.09	1.00 8.49
	322388	A1815730	Hs.247474	hypothetical protein FLJ21032 adaptor-related protein complex 3, mu 1	3.20	5.80
	322416 322419	AA223183 AA248987	Hs.298442 Hs.14084	ring finger protein 7	1.64	1.57
50	322425	W37943	Hs.34892	KIAA1323 protein	0.83	1.00
50	322431	AA069222	Hs.141892	ESTs	3.96	5.22
	322450	AA040131	Hs.25144	ESTs .	5.18	12.67
	322465	AA137152	Hs.286049	phosphoserine aminotransferase	3.41	2.23
~ ~	322467	AF116826	Hs.180340	putative protein-tyrosine kinase	1.00	1.30
55	322473	AA744286	Hs.266935	tRNA selenocysteine associated protein	1.75	2.03
	322509	T52172	Hs.302213	ESTs	1.00	2.27
	322523	W80398	Hs.193197	ESTs	2.75	5.49 1.27
	322527	AF147359	Hs.270947	gb:Homo sapiens full length insert cDNA	1.25 4.57	8.81
60	322560 322566	AI916847 W87285	Hs.269587	ESTs ESTs	1.00	1.42
00	322585	AA837622	113.203007	gb:zh69c01.r1 Soares_fetal_liver_spleen_	4.18	6.94
	322635	AA679084		gb:zh90h08_r1 Soares_fetal_liver_spleen_	2.40	4.85
	322641	AA007352	Hs.256042	ESTs	2.94	4.64
	322653	AI828854	Hs.258538	striatin, calmodulin-binding protein	0.48	0.38
65	322664	AA011522		gb:zi03g07.r1 Soares_fetal_liver_spleen_	1.92	2.18
	322687	Al110759		gb:AF074666 Human fetal liver cDNA libra	4.14	6.75
	322692	AA018117	Hs.60843	potassium voltage-gated channel, shaker-	3.50	5.00
	322694	Al110872	Hs.279812	PRO0327 protein	1.80	1.72
70	322708	AF113674	Hs.283773	clone FLB1727 hypothetical protein FLJ11109	1.00 3.28	3.43 3.86
70	322712 322766	AA021328 AW068805	Hs.23607 Hs.288467	Homo sapiens cDNA FLJ12280 fis, clone MA	1.63	1.53
	322770	AA045796	Hs.122682	ESTs	1.53	1.06
	322794	Al608591	Hs.38991	S100 calcium-binding protein A2	12.06	1.94
	322810	Al962276	Hs.127444	ESTs	4.09	6.90
75	322818	AW043782	Hs.293616	ESTs	1.20	1.63
	322820	AI377755	Hs.120695	ESTs	0.21	1.93
	322872	AA827228	Hs.126943	ESTs	2.04	1.63
	322882	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	5.26	1.22
00	322887	Al986306	Hs.86149	phosphoinositol 3-phosphate-binding prot	2.80	2.24
80	322913	A1733737	Hs.68837	ESTs	2.38 4.02	6.61 5.79
	322926	AI825940	Hs.211192	ESTs ESTo	0.30	1.14
	322929 322968	A1365585 A1905228	Hs.146246 Hs.83484	ESTs SRY (sex determining region Y)-box 4	2.06	1.13
	322971	C15953	Hs.212760	hypothetical protein FLJ13649	1.18	2.00
85	322981	AA493252	Hs.159577	ESTs	2.28	2.61

	W	O 02/080	6443			
	322988	C18727	Hs.171941	ESTs	0.39	2.00
	323003	AI733859	Hs.149089	ESTs	3.28	1.00
	323013	AA134042	Hs.191451	ESTs	3.38	5.68
_	323025	AL157565	Hs.315369	Homo sapiens cDNA: FLJ23075 fis, clone L	0.06	1.10
5	323032	AW244073	Hs.145946	ESTs	10.18	21.27
	323052	R21124	Hs.85573	Homo sapiens DC29 mRNA, complete cds	1.46	1.90
	323064	AL119341	Hs.49359	Homo sapiens mRNA; cDNA DKFZp547E052 (fr	3.08	5.64
	323098	AI700025	Hs.270471	ESTs	2.31	4.49
10	323102	AL119913	Hs.163615	ESTs	5.38	11.64
10	323155	AL135041		gb:DKFZp762K2310_r1 762 (synonym: hmel2)	2.38	5.56
	323176	AW071648	Hs.82101	pleckstrin hornology-like domain, family	1.06	1.41
	323191	AA195600	Hs.301570	ESTs	0.73	1.24
	323225	AA205654	Hs.24790	KIAA1573 protein	5.25	11.95
	323232	AA148722	Hs.224680	ESTs	0.45	1.35
15	323266	AW003362	Hs.243886	nuclear autoanligenic sperm protein (his	1.71	1.83
	323281	A1697556	Hs.292659	ESTs	1.24	3.21
	323283	AA256014	Hs.86682	Homo sapiens cDNA: FLJ21578 fis, clone C	12.68	15.05
	323314	AA226310	Hs.191501	ESTs	4.42	9.61
~~	323316	AL134620	Hs.280175	ESTs	2.98	5.93
20	323334	Al336501	Hs.77273	ras homolog gene family, member A	1.98	3.30
	323338	R74219	Hs.23348	S-phase kinase-associated protein 2 (p45	1.62	1.00
	323348	AA233056	Hs.191518	ESTs	1.00	1.07
	323351	AA704103	Hs.24049	ESTs	1.43	1.68
~ -	323359	AA234172	Hs.137418	ESTs	0.34	1.18
25	323360	AA716061	Hs.161719	ESTs	3.01	3.71
	323405	AW139550	Hs.115173	ESTs	1.90	8.81
	323420	A1672386	Hs.263780	ESTs	0.29	1.01
	323434	AW081455	Hs.120219	ESTs	2.27	1.92
••	323445	AA253103	Hs.135569	ESTs, Weakly similar to NEUROD [H.sapien	0.43	0.80
30	323449	AA282865	Hs.284153	Fanconi anemia, complementation group A	3.19	3.85
	323492	H00978	Hs.20887	hypothetical protein FLJ10392	2.70	3.20
	323501	AA182461	Hs.84520	ESTs	2.04	3.31
	323505	AI652287		gb:EST382593 MAGE resequences, MAGK Homo2	.21	3.08
	323515	AA282274	Hs.256083	ESTs	2.69	3.40
35	323541	Al185116	Hs.104613	RP42 homolog	1.20	1.09
	323545	AI814405	Hs.224569	ESTs	1.25	1.55
	323635	R63117	Hs.9691	Homo sapiens cDNA: FLJ23249 fis, clone C	0.27	0.72
	323675	AA984759	Hs.272168	tumor differentially expressed 1	3.70	5.80
	323678	AL042121	Hs.20880	ESTs	3.33	5.10
40	323691	AA317561	Hs.145599	ESTs	1,00	1.00
	323693	AW297758	Hs.249721	ESTs	2.01	1.54
	323746	AW298611	Hs.12808	MARK	4.11	5.53
	323774	AA329806	Hs.321056	Homo sapiens mRNA; cDNA DKFZp586F1322 (f	2.06	3.70
	323856	AA355264	Hs.267604	hypothetical protein FLJ10450	3.42	8.13
45	323857	T18988	Hs.293668	ESTs	5.97	12.51
	323870	AA341774	Hs.129212	ESTs	3.17	4.52
	323876	AL042492	Hs.147313	ESTs	0.36	1.00
	323885	AA344308	Hs.128427	Homo saplens BAC clone RP11-335J18 from	2.31	3.33
	323911	AL043212	Hs.92550	ESTs	4.38	5.41
50	323919	AA862973	Hs.220704	ESTs	. 5.80	10.20
	323972	AIB69964	Hs.182906	ESTs .	3.10	5.14
	324005	AA610011	Hs.208021	ESTs	5.34	10.07
	324036	AI472078	Hs.303662	ESTs	1.00	5.03
	324055	AA528794	Hs.128644	ESTs	0.86	1.00
55	324063	AW292740	Hs.272813	dual oxidase 1	0.45	0.91
	324072	AA381829		gb:EST94855 Activated T-cells I Homo sap	2.82	5.12
	324092	AW269931	Hs.202473	Homo sapiens cDNA: FLJ22278 fis, clone H	2.40	2.52
	324095	AW377983	Hs.298140	Homo sapiens cDNA: FLJ22502 fis, clone H	1.32	4.30
	324129	Al381918	Hs.285833	Homo sapiens cDNA: FLJ22135 fis, clone H	1.40	1.77
60	324132	AW504860	Hs.288836	hypothetical protein FLJ12673	4.24	6.21
	324214	AA412395	Hs.225740	ESTs	6.96	10.69
	324227	AA295552	Hs.28631	Homo sapiens cDNA: FLJ22141 fis, clone H	0.81	0.53
	324266	AL047634	Hs.231913	ESTs	2.42	4.05
	324275	AA429088	Hs.98523	ESTs	3.62	5.38
65	324281	AL048026	Hs.124675	ESTs, Weakly similar to T14742 hypotheti	0.14	0.70
	324290	AA432032	Hs.304420	ESTs	3.71	4.34
	324303	AL118754		gb:DKFZp761P1910_r1 761 (synonym: hamy2)	0.95	0.91
	324312	Al198841	Hs.128173	ESTs	4.06	5.91
ح. خ	324325	AL138153	Hs.300410	ESTs	5.88	8.25
70	324338	AL138357	Hs.145078	regulator of differentiation (in S. pomb .	0.87	1.25
	324341	AW197734	Hs.99807	ESTs, Weakly similar to unnamed protein	1.28	1.00
	324343	AW452016	Hs.293232	ESTs ·	2.54	3.46
	324371	AA452305	Hs.270319	ESTs	5.85	8.36
75	324382	AW502749	Hs.24724	MFH-amplified sequences with leucine-ric	0.76	1.64
75	324384	AA453396	Hs.127656	KIAA1349 protein	2.88	5.69
	324385	F28212	Hs.284247	KIAA1491 protein	1.81	1.99
	324388	Al924963	Hs.306206	hypothetical protein FLJ 11215	1.00	1.00
	324432	AA464510	Hs.152812	ESTs	2.73	2.17
0.0	324497	AW152624	Hs.136340	ESTs, Weakly similar to unnamed protein	0.71	1.90
80	324510	AI148353	Hs.287425	Homo sapiens cDNA FU11569 fis, clone HE	1.00	1.00
	324580	AA492588		gb:ng99c08.s1 NCI_CGAP_Thy1 Homo sapiens	2.18	3.50
	324582	AA506935	Hs.132036	ESTs, Weakly similar to ALU1_HUMAN ALU S	5.96	11.36
	324633	AA572994	Hs.325489	ESTs	2.92	4.22
0.5	324640	AW295832	Hs.134798	ESTs, Moderately similar to TTL MOUSE TU	5.48	11.74
85	324675	AW014734	Hs.157969	ESTs	0.39	0.73

PCT/US02/12476
FL. I/U3U4/144/0

	w	O 02/08	6443			
	324699	AW504732	Hs.21275	hypothetical protein FLJ11011	0.93	0.93
	324747	AA603532	Hs.130807	ESTs	1.57 1.55	1.81 1.34
	324748	AA657457	Hs.292385	ESTs sterol O-acyltransferase (acyl-Coenzyme	1.00	6.56
5	324801 324804	AJ819924 AJ692552	Hs.14553	gb:wd73f12.x1 NCI_CGAP_Lu24 Homo sapiens	1.00	7.53
5	324828	AA843926	Hs.124434	ESTs	2.00	3.25
	324855	AW152305	Hs.122364	ESTs	2.74	3.43
	324866	Al541214	Hs.46320	Small proline-rich protein SPRK [human,	1.07	0.95
10	324871	AW297755	Hs.271923	Homo sapiens cDNA: FLJ22785 fis, clone K	1.68 2.56	1.21 5.61
10	324886 324889	AA806794	Hs.131511	ESTs gb:HUML12147 Human fetal lung Homo sapie	2.20	4.65
	324948	D31010 AW383618	Hs.265459	ESTs, Moderately similar to ALU2_HUMAN A	5.28	7.05
	324953	A)264628	Hs.125428	ESTs	3.37	5.51
	324958	AA625076	Hs.132892	protocadherin 20	5.12	9.81
15	324988	T06997	Hs.121028	hypothetical protein FLJ10549	2.52	1.08 10.22
	325024	F13254	Hs.78672	laminin, alpha 4	5.24 1.00	1.00
	325105 325108	H97109 AA401863	Hs.105421 Hs.22380	ESTs ESTs	1.99	2.14
	325114	D83901	Hs.315562	ESTs	2.73	3.17
20	325146	Al064690	Hs.171176	ESTs	1.86	3.41
	325149	D61117	Hs.187646	ESTs	0.42	0.93
	325187	AI653682	Hs.197812	ESTs	6.50 6.18	11.31 . 15.76
	325228				2.64	4.12
25	325235 325328				2.87	4.42
	325340				0.29	0.33
	325367				16.56	24.29
	325373	·			0.63 0.88	1.22 1.05
30	325389 325436				5.75	14.14
30	325436				8.46	17.82
	325498				3.32	6.42
	325557				5.51	8.28
25	325559				7.48	21.40
35	325560			,	4.08 4.20	6.25 5.24
	325569 325585				1.10	1.13
	325587			•	1.00	1.00
	325597				2.98	13.40
40	325639			•	0.78 0.46	0.78 0.66
	325685				0.45	1.55
	325686 325735				4.48	9.20
,	325739				0.59	0.88
45	325740			•	2.42	6.61
	325792				7.88	9.83
	325819				4.74 2.02	7.18 2.64
	325883 325895		•		7.78	15.98
50	325925				2.04	10.60
	325932				4.18	7.36
	325941				3.66	9.03 0.80
	325969		-		0.61 4.88	7.42
55	325971 326025				0.55	1.07
55	326046				7.21	14.72
	326099		-		3.60	5.98
	326108	•			1.27	1.06
60	326163 326165			·	3.27 0.45	5.70 1.11
00	326189				0.13	0.45
	326204				5.60	9.00
	326230				7.00	12.01
65	326274			• •	1.00 9.86	8.09 15.35
65	326360	•			0.52	0.77
• • •	326393 326505				1.00	1.42
	326515			·	1.24	5.84
70	326589				9.20	13.49
70	326592				2.77 2.01	4.01 2.53
	326605 326692				1.00	1.00
	326693			•	1.00	1.31
	326720				0.19	0.65
75	326742				2.34	7.20
,	326770				0.25 3.09	0.83 4.56
	326818 326936				2.08	4.50 3.45
	326936 326964				0.41	1.70
80	326983				2.02	3.80
	326991				1.09	1.20
	327036				1.00	8.04 4.22
	327040				3.05 3.55	4.22 6.31
85	327053 327075				1.59	1.40

	W	O 02/086443						
	327085						2.50	12.57
	327130						5.38	8.04
	327156						3.74	6.58
5	327220 327224						1.28 6.56	1.54 12.91
9	327288						2.61	5.40
	327321						2.42	3.11
	327332						6.62	10.5B
10	327361						2.69	4.41
10	327377 327396						2.04 2.61	6.72 4.50
	327414						1.00	8.01
	327442						5.91	9.65
1.5	327467						6.58	18.01
15	327473						3.79	7.48
	327483 327562						4.08 0.68	8.87 2.86
	327568						1.00	2.00
_	327606						2.06	3.61
20	327611						5.90	14.26
	327642						4.06	8.74
	327654						1.05	2.08
	327734 327775						1.00 1.46	1.00 11.79
25	327796						3.47	5.65
20	327840						3.26	6.64
	327940						5.84	15.58
	327984			•			0.36	1.50
30	328004						1.87	1.42
30	328021 328068						0.42 2.83	0.59 4.68
	328100	•					3.04	5.39
	328101						3.54	5.20
~ ~	328113						0.72	0.91
35	328157	•					5.58	5.16
	328196					٠.	.·5.76	11.13
	328197 328264						5.98 3.11	10.58 4.88
	328299						2.20	3.06
40	328342						1.49	1.94
	328365						1.00	1.00
	328369						4.40	7.36
	328381						1.86	4.93 7.56
45	328451 328481						5.51 0.13	0.72
	328500						2.71	3.97
	328530						5.41	7.62
	328600						3.14	10.68
50	328608						4.56	8.17
50	328616 328623						2.24 3.04	11.91 5.46
	328632						0.70	1.19
	328664						3.48	6.80
. ·	328666						10.42	26.47
55	328698						9.68	14.56
	328700				•		2.74	10.22
	328708 328 7 35		•				0.15 6.23	0.57 8.91
	328743	*					3.62	6.54
60	328806						0.22	0.78
	328861						3.68	10.54
	328908						5.42	16.36
	328933 328934		•				2.02 1.73	5.29 4.45
65	328949	•					3.34	5.41
•	329005			•			2.88	7.26
	329011		•				2.52 .	3.72
	329033						1.00	1.03
70	329037						5.07	8.16
70	329067 329134						1.98 2.24	2.41 3.25
	329157						2.30	11.04
	329178						2.64	5.02
75	329192						6.41	15.27
75	329194						0.31	0.79
	329204						1.60	3.75
	329224 329228						2.99 0.83	6.11 0.83
	329288						0.63	1.01
80	329337						1.00	1.00
	329541						0.76	1.68
	329560						1.34	2.02
	329588 329643						1.68 4.18	2.22 11.77
85	329543 329703						1.00	1.00

PCT/US02/12476

	**	0 02/00	0445			45.50
	329764				5.78	15.50
	329816				2.09	5.44
	329860				3.13	10.77
					7.83	14.21
~	329993					
5	330020				5.58	13.12
	330036				3.32	5.57
	330052				4.31	7.97
					1.34	1.76
	330085					
	330088				4.70	12.46
10	330093				0.44	1.06
10					3.47	4.83
	330100					
	330108				2.14	3.61
	330107				3.17	6.87
					5.61	11.89
1.5	330120					
15	330123			•	4.50	12.74
	330208				1.55	7.62
					13.10	23.38
	330263					4.98
	330300				2.81	
	330313			•	3.00	4.41
20	330366				0.67	0.76
20					4.76	11.82
	330372					
	330385	AA449749	Hs.182971	karyopherin alpha 5 (Importin alpha 6)	2.14	2.15
	330397	D14659	Hs.154387	KIAA0103 gene product	0.40	1.15
				nucleans inhibites 2 akin doriged (CKA)	1.11	0.94
0.5	330468	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL		
25	330472	L24203	Hs.82237	ataxia-telangiectasia group D-associated	1.67	1.17
	330478	L38486	Hs.296049	microfibrillar-associated protein 4	0.46	1.07
					1.07	0.95
	330493	M27826	Hs.267319	endogenous retroviral protease		
	330495	M31328	Hs.71642	guanine nucleotide binding protein (G pr	0.97	0.96
	330506	M61906	Hs.6241	phospholnositide-3-kinase, regulatory su	0.17	3.66
30					0.60	1.06
30	330512	M80563	Hs.81256	S100 calcium-binding protein A4 (calcium		
	330537	U19765	Hs.2110	zinc finger protein 9 (a cellular retrov	2.81	2.07
	330547	U32989	Hs.183671	tryptophan 2,3-dioxygenase	3.91	1.49
				hepatocyte nuclear factor 3, alpha	1.15	1.03
	330551	U39840	Hs.299867			
	330568	U56244		(NONE)	2.83	4.79
35	330599	U90437		gb:Human RP1 homolog mRNA, 3'UTR region	2.08	1.54
50		U90916	Hs.82845	Homo saplens cDNA: FLJ21930 fis, clone H	0.89	1.35
	330601					1.55
	330605	X02419	Hs.77274	plasminogen activator, urokinase	1.87	
	330609	X04741	Hs.76118	ubiquitin carboxyl-terminal esterase L1	1.83	1.30
	330617	X53587	Hs.85266	integrin, beta 4	1.54	1.15
40					1.39	1,19
40	330630	X78669	Hs.79088	reticulocalbin 2, EF-hand calcium bindin		
	330644	Y07755	Hs.38991	S100 calcium-binding protein A2	3.83	1.13
	330650	Z68228	Hs.2340	junction plakoglobin	1.25	0.95
				ESTs, Weakly similar to ALU7_HUMAN ALU S	15.50	29.07
	330660	AA347858	Hs.139293			
	330692	AA017045	Hs.6702	ESTs	1.00	1.00
45	330707	AA133891	Hs.293690	ESTs	0.20	1.35
75				Homo sapiens cDNA FLJ11570 fis, clone HE	0.12	1.40
	330715	AA233707	Hs.11571			
	330717	AA233926	Hs.52620	Integrin, beta 8	6.62	5.42
	330722	AA243560	Hs.34382	ESTs	1.40	1.65
				Homo sapiens voltage-gated sodium channe	0.27	2.04
50	330740	AA297746	Hs.22654			
50	330742	AA400979	Hs.25691	receptor (calcitonin) activity modifying	0.44	0.90
	330744	AA406142	Hs.12393	dTDP-D-glucose 4,6-dehydratase	0.71	3.23
	330751	AA428286	Hs.29643	Homo saplens cDNA FLJ13103 fis, clone NT	1.66	1.52
					0.52	0.90
	330760	AA448663	Hs.30469	ESTs		
	330763	AA450200	Hs.274337	hypothetical protein FLJ20666	0.37	0.97
55	330786	D60374	Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	0.78	0.84
55					0.23	3.17
	330790	T48536	Hs.105807	ESTs		
	330814	AA015730	Hs.265398	ESTs, Weakly similar to transformation-r	0.37	2.07
	330827	AA040332	Hs.12744	ESTs	1.60	1.00
		AA063037		ESTs	0.93	1.16
60	330844		Hs.66803			
60	330901	AA157818	Hs.267319	endogenous retroviral protease	1.02	1.03
	330931	F01443	Hs.284256	hypothetical protein FLJ14033 similar to	0.24	0.88
	330952	H02855	Hs.29567	ESTs	0.08	1.31
					1.29	1.26
	330961	H10998	Hs.7164	a disintegrin and metalloproteinase doma		
	330968	H16568	Hs.23748	ESTs	0.48	0.96
65	331014	H98597	Hs.30340	hypothetical protein KIAA1165	0.29	0.74
UJ				,,	0.99	8.56
	331046	N66563	Hs.191358	ESTs		
	331060	N75081	Hs.157148	Homo sapiens cDNA FLJ11883 fis, clone HE	1.24	1.00
	331099	R36671	Hs.83937	hypothetical protein	0.75	1.03
					1.00	2.75
70	331108	R41408	Hs.21983	ESTs		
70	331131	R54797		gb:yg87b07.s1 Soares infant brain 1NIB H	6.04	10.68
	331135	R61398	Hs.4197	ESTs	0.80	0.96
					2.63	4.29
		T23461	Hs.159293	ESTs		
	331180	T32446	Hs.6640	Human DNA sequence from PAC 75N13 on chr	1.78	2.71
	331183	T40769	Hs.8469	ESTs	1.00	3.01
75					1.70	3.80
13	331203	T82310		(NONE)		
	331271	AA059347	Hs.82226	glycoprotein (transmembrane) nmb	1.20	3.19
	331306	AA252079	Hs.63931	dachshund (Drosophila) homolog	0.31	1.30
					2.09	2.41
	331327	AA281076	Hs.109221	ESTs		
	331341	AA303125	Hs.23240	Homo sapiens cDNA FLJ13496 fis, clone PL	0.72	2.43
80	331359	AA416979	Hs.46901	KIAA1462 protein	0.09	0.91
J				entering predicat 2 (Venenus lesses have	1.02	
	331363	AA421562	Hs.91011	anterior gradient 2 (Xenepus laevis) hom		0.87
	331378	AA448881	Hs.49282	hypothetical protein FLJ11088	1.03	1.23
	331384	AA456001	Hs.93847	NADPH oxidase 4	1.40	1.00
					1.80	3.93
O.F	331402	AA505135	Hs.44037	ESTs		
85	331422	F10802	Hs.163628	ESTs, Moderately similar to ALU7_HUMAN	1.65	1.89

	w	O 02/08	6443			
	331490	N32912	Hs.26813	CDA14	2.48	1.73
	331531	N51343		gb:yz15g04.s1 Soares_multiple_sclerosis_	0.98	1.68
	331547	N54811		gb:od74f04.s1 NCI_CGAP_Ov2 Homo saplens	3.80	5.75
_	331578	N67960	Hs.249989	ÉSTs .	0.11	0.67
5	331589	N71027	Hs.152618	ESTs	1.09	1.38
	331608	N89861	Hs.112110	PTD007 protein	0.93 0.17	0.76 1.34
	331614	N92293 W69707	Hs.240272 Hs.58030	EST EST	2.24	3.82
	331668 331671	W72033	Hs.194695	ras homolog gene family, member I	1.00	1.24
10	331676	W79834	Hs.58559	ESTs, Weakly similar to rhotekin [M.musc	0.08	1.07
	331681	W85712	Hs.119571	collagen, type III, alpha 1 (Ehlers-Dani	8.72	4.27
	331692	W93592	Hs.152213	wingless-type MMTV Integration site fami	0.94	0.54
	331717	AA190888	Hs.153881	Homo sapiens NY-REN-62 antigen mRNA, par	1.57	1.34
1.5	331718	AA191404	Hs.104072	ESTs	6.80	11.77
15	331811	AA404500	Hs.301570	ESTs	1.10 0.73	1.00 0.59
	331820	AA405970	Hs.97996 Hs.97901	transcription termination factor, mitoc EST	2.77	4.08
	331831 331852	AA412031 AA418988	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f	0.23	0.93
	331943	AA453418	Hs.21275	hypothetical protein FLJ11011	0.36	1.88
20	331969	AA460702	Hs.82772	collagen, type XI, alpha 1	1.00	1.00
	331990	AA478102	Hs.139631	ESTs	3.04	3.87
	332002	AA482009	Hs.105104	ESTs	1.19	0.78
	332027	AA489671	Hs.65641	hypothetical protein FLJ20073	1.27	1.03
25	332029	AA489697	Hs.145053	ESTs	0.30 2.30	1.62 3.70
25	332033	AA489840	Hs.251014	EST ESTs	0.17	0.52
	332048 332071	AA496019 AA598594	Hs.201591 Hs.205293	KIAA1211 protein	1.35	1.23
	332074	AA599012	113.200200	gb:ae41e11.s1 Gessler Wilms tumor Homo s	0.19	2.00
	332083	AA600200	Hs.155546	KIAA1080 protein; Golgi-associated, gamm	0.31	1.18
30	332085	AA600353	Hs.173933	nuclear factor I/A	0.30	1.50
	332125	AA609861	Hs.312447	ESTs	0.22	0.62
	332177	F10812	Hs.101433	ESTs	8.21	18.03
	332180	H03348	Hs.7327	claudin 1	2.27	1.57
35	332185	H10356	Hs.101689	ESTs EST	0.09 8.05	1.18 5.02
33	332203 332232	H49388 N48891	Hs.317769 Hs.101915	Stargardt disease 3 (autosomal dominant)	0.78	0.85
	332240	N54803	Hs.324267	ESTs, Weakly similar to putative p150 [0.96	1.23
	332261	N70294	Hs.269137	ESTs	2.40	3.74
	332275	R08838	Hs.26530	serum deprivation response (phosphatidyl	0.27	0.75
40	332280	R38100	Hs.146381	RNA binding motif protein, X chromosome	0.39	1.88
	332299	R69250	Hs.21201	nectin 3; DKFZP56680846 protein	5.24	12.76
	332304	R74041	Hs.101539	ESTs	1.44	3.18
	332314	T25862	Hs.101774	hypothetical protein FLJ23045	0.68 1.71	1.32 0.88
45	332384	M11433	Hs.101850	retinol-binding protein 1, cellular	0.43	0.86
43	332434 332445	N75542 T63781	Hs.289068 Hs.11112	Homo sapiens cDNA FLJ11918 fis, clone HE ESTs	0.48	1.00
	332453	100205	Hs.111758	keratin 6A	31.54	1.00
	332458	M33493	Hs.250700	tryptase beta 1	0.51	1.00
	332504	AA053917	Hs.15106	chromosome 14 open reading frame 1	0.79	1.24
50	332525	M17252	Hs.278430	cytochrome P450, subfamily XXIA (steroid	0.98	1.70
	332530	M31682	Hs.1735	inhibin, beta B (activin AB beta polypep	0.88	0.66
	332535	N20284	Hs.19280	cysteine-rich motor neuron 1	0.22	1.46 1.49
	332539	AA412528	Hs.20183	ESTs, Weakly similar to AF164793 1 prote cytokeratin 2	0.93 0.35	1.13
55	332559	M13955 N92924	Hs.166189 . Hs.274407	protease, serine, 16 (thymus)	1.00	1.00
22	332563 332565	AA234896	Hs.25272	E1A binding protein p300	0.36	1.05
	332594	AA279313	Hs.3239	methyl CpG binding protein 2 (Rett syndr	0.53	0.59
	332634	S38953	Hs.283750	tenascin XA	0.38	1.16
in	332638	AA283034	Hs.50640	JAK binding protein	1.00	1.70
60	332640	AA417152	Hs.5101	protein regulator of cytokinesis 1	6.15	1.16
	332654	AA001296	Hs.288217	hypothetical protein MGC2941	1.50 1.20	2.73 0.91
•	332665	AA223335	Hs.63788	propionyl Coenzyme A carboxylase, beta p	0.17	1.12
	332692 332716	AA496035 L00058	Hs.247926 Hs.79070	gap junction protein, alpha 5, 40kD (con v-myc avian myelocytomatosis viral oncog	1.00	1.44
65	332736	L13773	Hs.114765	myeloid/lymphold or mixed-lineage leukem	1.00	1.81
05	332758	X93921	Hs.296938	dual specificity phosphatase 7	0.53	0.78
	332781	AA233258	Hs.247112	hypothetical protein FLJ10902	1.44	1.56
	332792			••	1.70	1.19
70	332816				1.85	2.47
70	332858				1.04	1.57
	332906				3.48	8.04 1.00
	332911				1.00 1.06	4.40
	332912 332922				1.00	1.00
75	332956				0.42	0.88
, ,	222050				1.96	6.34
	332982	-: '			0.56	0.99
	332984				0.30	0.78
0.0	332998				1.47	2.01
80	333058				0.47	1.38
	333097				2.14 2.76	3.19 3.70
	333121				1.92	1.21
	333122 333123				1.85	1.39
85	333138				0.47	0.52
	200100					-

	WO 02/086443				PCT/US02/12476
	333139 333140		1.88 0.21	0.84 0.64	
	333221		1.51 0.75	1.11 1.01	
5	333260 333380		6.68	15.75	
	333387 333512		4.56 5.05	12.61 8.01	
	333524 333585		2.28 2.31	3.98 1.53	
10	333603		2.23 2.51	1.17 1.58	
	333604 333618		0.52	0.98	
	333627 333628		1.44 1.90	1.36 1.90	
15	333650 333678		1.85 1.85	2.10 2.35	
	333750		2.18 1.99	5.67 2.60	
•	333763 333767		1.02	0.96	
20	333768 333769		1.78 2.15	1.65 2.13	
	333772		1.46 1.00	2.53 1.42	
25	333777 333846		2. 99	4.50	
25	333884 333887		0.47 0.50	0.94 1.00	
	333891	•	0.43 0.51	0.89 0.91	
30	333892 333904		0.26 0.55	1.13 0.98	•
30	333906 333948	•	- 1.70	2.15	
	333954 333966	•	0.37 8.10	1.09 14.30	
35	333968 334061		0.63 4.24	1.38 12.30	
50	· 334094		1.30 4.55	12.03 8.63	
	334113 334161		0.82	1.59	
40	334183 · 334187		0.47 1.36	0.76 3.70	
	334219 334222		0.69 1.88	1.04 1.70	
	334223	•	4.72 0.79	3.14 0.62	
45 .	334239 334255		0.45	1.10	
	334333 334378		1.00 3.98	3.56 5.76	
	334382 334492		1.50 3.59	1.31 4.75	
50	334562 334588		5.94 <u>.</u> 8.14	15.40 19.53	
•	334616		1.55 5.16	1.56 8.07	
	334633 334648	•	0.59	2.13	
55	334787 334866		3.70 8.13	7.15 10.60	
	334891 334933		0.32 1.00	1.14 3.84	
60	334934		4.01 1.04	7.43 2.96	
oo	334945 334967		0.29	1.14	
	334990 335015		1.50 5.88	1.39 18.65	
65	335093 335120		0.55 4.31	1.75 8.01	
05	335125	•	0.38 1.24	1.97 1.98	
	335179 335188		0.46	1.47	•
70	335211 335288		1.61 0.73 0.20	1.42 0.97 0.26	
	335289		0.20 2.18	0.26 1.58	
	335361 335379		2.18 0.50 3.64	0.71 14.94	
75	335414 335416		2.93	3.98	
	335496 335497		0.96 1.71	0.91 1.92	
	335548 335551		1.15 3.22	2.40 10.54	
80	335558		3.42 5.50	4.89 12.75	
	335586 335619		2.99 ·	3.07	
_	335620 335621		3.80 0.28	8.29 0.57	
85	335682		0.46	0.57 1.17	

	WO 02/086443	3		
	335686		2.55	3.81
	335755		2.24	1.07
	335784		0.20	0.97
	335814		1.13	1.48
5	335815		2.45	3.51
-	335823		1.00	4.16
	335835		0.49	1.70
	335851		1.66	1.39
	335868		2.98	6.43
10	335898		0.98	0.99
10			12.10	21.93
	335936		1.00	1.64
	335948		1.00	4.21
	335983		0.37	1.17
1.5	335995		1.04	0.84
15	336021		11.40	23.54
	336034	•		
	33603B		1.19	1.21
	336066		0.54	1.63
	336107		0.95	0.70
20	336205		3.13	6.29
	336275		3.20	10.10
	336292		2.34	3.09
	336331	182. 3	1.00	1.00
	336419		0.65	0.79
25	336632		2.33	2.16
	336633		2.55	2.23
	336634		2.19	2.03
	336635		2.69	2.48
	336636		2.13	1.83
30	336637		2.43	2.24
20			2.31	2.03
	336638		0.60	1.31
	336659	•	0.31	1.18
	336675		1.50	1.14
26	336684		1.50 4.74	
35	336694		4.74	7.10
	336716		4.43	6.37
	336721		2.20	0.74
	336798	· ·	1.64	2.14
	336900		6.14	12.73
40	336948		1.00 1.30	1.00
. •	337028		1.30	2.09
	337043		4.01	11.53
	337046		1.67	1.84
	337054		2.78	7.35
45	337.128		7.20	16.14
73			3.45	5.34
	337162	•	5.72	11.41
	337183		3.72	5.90
	337184		1.27	1.06
50	337192		1.88	
50	337194		0.00	1.68
	337229		0.22	1.03
	337268		1.00	3.31
	337299		3.23	5.14
	337325		2.76	3.72
55	337389		5.80	10.42
-	337493		2.06	6.30
	337497		7.88	20.29
	337500			
			3.80	4.48
60			1.66	2.31
OO	337549		1.66	2.31 8.54
60	337549 337603		1.66 1.27	2.31 8.54
OU	337549 337603 337605		1.66 1.27 5.76	2.31 8.54 7.16
OU	337549 337603 337605 337671		1.66 1.27 5.76 0.73	2.31 8.54 7.16 0.97
OU	337549 337603 337605 337671 337755	ety et j	1.66 1.27 5.76 0.73	2.31 8.54 7.16 0.97 0.92
	337549 337603 337605 337671 337755 337786	ere er	1.66 1.27 5.76 0.73 1.54 5.07	2.31 8.54 7.16 0.97 0.92 9.73
65	337549 337603 337605 337671 337755 337786 337809		1.66 1.27 5.76 0.73 1.54 5.07 6.18	2.31 8.54 7.16 0.97 0.92 9.73 12.87
	337549 337603 337605 337671 337755 337786 337809	·***.	1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97
	337549 337603 337605 337671 337755 337786 337809 337862 337871	e de de la companya	1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16
	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958	eterni.	1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16
65	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16
	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033	.****.	1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59
65	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008	.****.	1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16
65	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338008 338033 338083		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16
65	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338033 338033		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25
65 70	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338083 338110 338110		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25
65 70	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338083 338110 338112 338145		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16
65	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338110 338112 338112 338145		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19
65 70	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338033 338110 338112 338112		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.87 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55
65 70	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338033 338110 338112 338145 338145 338148 338148		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07 1.30 2.58	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.87 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57
65 70	337549 337603 337605 337671 337755 337786 337809 337862 337862 337858 338008 338038 338110 338112 338145 338148 338145 338149		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07 1.30 2.58 1.00	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57
65 70 75	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338083 338110 338112 338145 338148 338158 338158 338158 338159 338179		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07 1.30 2.58 1.00 3.32	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57 1.00 4.63
65 70	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338033 338110 338112 338145 338145 338145 338145 338148 338158 338161 338179 338189		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.85 1.00 5.86 1.70 8.07 1.30 2.58 1.00 3.32 1.00	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.87 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57 1.00 4.63 3.34
65 70 75	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338083 338110 338112 338145 338145 338145 338145 338148 338158 338159 338159		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07 1.30 2.58 1.00 3.32 1.00 0.99	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.87 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57 1.00 4.63 3.34 1.69
65 70 75	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338033 338110 338112 338145 338145 338145 338145 338148 338148 338158 338161 338179 338182 338189		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07 1.30 2.58 1.00 3.32 1.00 0.99 4.58	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57 1.00 4.63 3.34 1.69 7.62
65 70 75	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338110 338112 338145 338145 338145 338158 338158 338159 338199 338197 338199		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07 1.30 2.58 1.00 3.32 1.00 0.99 4.58 6.01	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57 1.00 4.63 3.34 1.69 7.62 15.85
65 70 75 80	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338033 338110 338112 338145 338145 338145 338145 338149 338159 338189 338197 338189		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07 1.30 2.58 1.00 0.99 4.58 6.01 0.53	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57 1.00 4.63 3.34 1.69 7.62 15.85
65 70 75	337549 337603 337605 337671 337755 337786 337809 337862 337871 337958 338008 338033 338110 338112 338145 338145 338145 338158 338158 338159 338199 338197 338199		1.66 1.27 5.76 0.73 1.54 5.07 6.18 3.78 2.66 0.26 1.48 2.38 0.65 1.00 5.86 1.70 8.07 1.30 2.58 1.00 3.32 1.00 0.99 4.58 6.01	2.31 8.54 7.16 0.97 0.92 9.73 12.87 12.97 8.16 1.34 1.12 14.59 2.16 1.61 8.25 1.97 18.19 4.55 3.57 1.00 4.63 3.34 1.69 7.62

	WO 02/086443			
	338322		3.23	7.39
	338357		4.10	11.39
	338359		10.12	21.59
	338366		0.69	1.02
5	338374	•	0.40	1.18
_	338414		0.47	1.06
	338418		6.12	13.86
	338469		3.09	5.11
	338501		6.28	10.32
10°	338506		6.97	12.41
	338523		3.10	5.84
	338549		1.70	2.70
	338561		0.79	0.81
	338662		1.72	1.46
15	338671		0.17	0.91
	338676		210	15.86
	338726		1.20	1.09
	338779		0.12	0.57
	338804		0.99	1.67
20	338836		1.00	1.00
	338871		4.30	9.81
	338872		5.02	12.81
	338879	•	0.23	1.12
	338937		6.55	12.26
25	338966	•	1.76	5.42
	338993		1.00	2.40
	339047	•	5.26	10.81
	339100	•	5.10	6.88
	339114		1.00	1.70
30	339121		1.00	3.75
• •	339170		10.36	19.67
	339229		4.08	13.48
	339264		2.64	3.83
	339293		1.73	1.94
35				-

TABLE 8B shows the accession numbers for those Pkeys in Table 8A lacking unigenelD's. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

PCT/US02/12476

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers 45 Pkey CAT number Accessions AW340926 AA249063 N86075 322044 187363_1 44320_1 42705_1 Al341937 AW003063 U34725 AA904742 322060 50 X57414 X57415 321430 43034_1 321467 X13075 X13076 322125 46779_1 R93901 AF075073 R93902 46861_1 46873_1 322166 H69434 AF085958 H69846 H52567 H52557 AF085970 H52164 322173 55 46882_1 46885_1 H56535 AF085980 H56712 322178 H92891 AF085982 H92777 322179 1615102_1 H84849 H84252 H84260 H86664 H85320 321577 H95531 H95521 H84529 321587 1615333_1 AA070412 AA102346 AA081885 313723 111953_1 60 627492_1 H22544 H46842 AJ204929 320997 47271_1 218439_1 322278 W69304 AF086283 W69200 AA625149 AA313030 AA313052 H97463 321687 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 313883 47422_1 W79150 AF086419 322320 65 322339 814584_1 AI668646 AI734214 W17348 293660_1 AW979268 AA878419 AA431342 AA431628 314648 682222_1 Al308300 Al308296 300201 306897 25196_-2 A1093967 AL120701 AL135041 AL121524 AF147359 T58511 T58560 323155 979809_1 70 38927_1 322527 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 82296_1 AA005129 AA679084 AA694399 322635 AA011522 AA702841 AA011691 AA330797 322664 85042_1 75 315454 380580_1 Al239464 Al239473 AA625812 Al208703 322687 37372_1 AF074666 AJ110759 AF090902 AI903735 AA491283 AI694953 AW976903 AA761362 314852 327472_1 307783 697809_1 AI347274 AW844024 AA381722 AA381829 AW963906 AW963902 AA381242 324072 269032_1 AA488472 W27363 AA317053 BE082689 AW967036 BE079872 AW970512 AA280251 Al652287 BE466438 Al650725 AA551854 AA281574 AW571481 80 300527 221345_1 323505 196389_1 315791 403558_1 AA678177 AA677034 AL118754 AA333202 H38001 324303 233842_1 316519 442885_1 AA847835 AA768376 85 300926 333127_1 AA504860 AA504911

321244

29327_1

AF068654 AF068656 AF068655

302802

304114

304155

304203

304234

304348

304430

304456

304521

304526

304607

304735

304760

306015

306063

306065

306104

306109

306242

306288

306396

330568

330599

331131

331203

331531

331547

332074

60

65

70

75

80

85

T62536 34487_1

R78946

H68696

N56929

W81608

AA179868

AA347682

AA411240

AA464716

AA476427

AA513322

AA576453

AA580401

AA897116

AA906316

AA906725

AA910956

AA911861

AA932805

AA936900

AA970223 NOT_FOUND_entrez

15323_-12 U90437 genbank_R54797

NOT_FOUND_entrez

467396_1 AA828597 N54811 genbank_AA599012 AA59

genbank_N51343

Y08250 Y08245

U56244

R54797

T82310

N51343

AA599012

WO 02/086443 PCT/US02/12476

TABLE 8C shows the genomic position for those Pkeys in Table 8A lacking unigene ID's and accession numbers. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5	Pkey: Ref:												
10	Strand: Nt_position:	Indicates	s DNA strand (from which exons were predicted. ositions of predicted exons.									
	Pkey	Ref	Strand	Nt_position									

10	5 1	0-4		M br	
	Pkey	Ref	Strand	Nt_position	
	332792	Dunham, t	. et.al.	Plus	73381-73768
1.5	332816	Dunham, I	. et.al.	Plus	359844-360030
15	332906	Dunham, I		Plus	1923101-1923205
	332911 332912	Dunham, I Dunham, 1		Plus Plus	1961767-1961858 1962120-1962246
	332922	Dunham, I		Plus	2009620-2009738
00	332956	Dunham, I		Plus	2510528-2510658
20	332959	Dunham, I		Plus	2518145-2518213
	333138 333139	Dunham, I. Dunham, I.		Plus Plus	3369205-3369323 3369495-3369571
	333221	Dunham, I		Plus	3978070-3978187
0.5	333380	Dunham, I.		Plus	4904775-4904846
25	333387	Dunham, I		Plus	4910935-4910997
	333512 333524	Dunham, I. Dunham, I.		Plus Plus	5560510-5560564 5612620-5612780
	333585	Dunham, I.		.Plus	6234778-6234894
••	333618	Dunham, I.		Plus	6562391-6562566
30	333627	Dunham, I.		Plus	6620584-6620903
	333628 333650	Dunham, I.		Plus Plus	6629004-6629233 6796852-67971 <i>2</i> 8
	333678	Dunham, I. Dunham, I.		Plus	7068223-7068288
	333750	Dunham, I.		Plus	7608165-7608234
35	333763	Dunham, I.		Plus	7692491-7692630
	333767	Dunham, i.		Plus	7694407-7694623
	333768 333769	Dunham, I. Dunham, I.		Plus Plus	7695440-7695697 7696625-7696707
	333772	Dunham, I.		Plus	7706773-7706902
40 .	333777	Dunham, I.		Plus	7746805-7746916
	333846	Dunham, I.		Plus	8008623-8008757
	333884 333887	Dunham, I. Dunham, I.		Plus Plus	8153960-8154161 8154882-8155025
	333891	Dunham, I.		Plus	8156437-8156709
45	333892	Dunham, I.	et.al.	Plus	8156825-8157001
	333948	Dunham, I.		Plus	8583497-8583627 6563186-6563335
	333954 333966	Dunham, I. Dunham, I.		Plus Plus	8655643-8655826
	333968	Dunham, I.		Plus	8681004-8681241
50	334061	Dunham, I.		Plus	9586941-9687077
	334094	Dunham, I.		Plus Plus	9889953-9890105 10282459-10282597
	334113 334161	Dunham, I. Dunham, I.		Plus	10599033-10599180
	334219	Dunham, I.	et.al.	Plus	12716160-12716384
55	334239	Dunham, I.		Plus	13056569-13056693
	334333 334378 .	Dunham, I.		Plus Plus	13603544-13603657 13907239-13907370
	334382	Dunham, I. Dunham, I.		Plus	13915866-13916036
	334562	Dunham, I.		Plus	14987847-14987940
60	334588	Dunham, I.		Plus	15032740-15032817
	334616 334633	Dunham, I.		Plus Plus	15176123-15176470 15333206-15333305
	334866	Dunham, I. Ounham, I.		Plus	18872214-18872317
	334891	Dunham, I.		Plus ·	19299770-19299944
65 .	334934	Dunham, I.		Plus	20103970-20104058
	335015 335120	Dunham, I. Dunham, I.		. Plus Plus	20682792-20682945 21436286-21436384
	335125	Dunham, 1.		Plus	21441390-21441471
7 0	335179	Dunham, 1.		Plus	21634405-21634526
70	335188	Dunham, i.		Plus	21669118-21669328
	335211 335361	Dunham, I. Dunham, I.		Plus Plus	21774611-21774680 22807292-22807445
	335379	Dunham, I.		Pius	22899306-22899420
- -	335414	Dunham, I.	et.al.	Plus	23235546-23235684
75	335416	Dunham, I.		Plus	23237354-23237465
	335496 335497	Dunham, I. Dunham, I.		Plus Plus	24164386-24164545 24167666-24167869
	335558	Dunham, I.		Plus	24740167-24740347
00	335586	Dunham, I.	et.al.	Plus	24990333-24990497
80	335686	Dunham, I.		Plus	25439839-25439920
	335784 335823	Ounham, I. Ounham, I.		Plus Plus	25942710-25942792 26365925-26366004
	335983	Dunham, I.		Plus	27938968-27939070
0.5	335995	Dunham, I.		Phus	28009044-28009184
85	336021	Dunham, I.	et.al.	Plus	28686482-28686559

147

	wo	02/086443		
	336034	Dunham, I. et.al.	Plus	29014404-29014590
	336038	Dunham, Letal.	Plus	29022953-29023165
	336107 336632	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	29987731-29987869 983890-985529
5	336633	Dunham, I. et.al.	Plus	985591-986221
	336634 336635	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	986296-986670 987908-988364
	336636 .	Dunham, I. et.al.	Plus	988418-989185
1Λ	336637	Dunham, I. et.al.	Plus	989276-990813
10	336638 336659	Ounham, I. et.al. Dunham, I. et.al.	<i>Pl</i> us Plus	991906-993240 1896402-1896478
	336694	Ounham, I. et.al.	Plus	2420546-2420616
	336721	Dunham, I. et.al.	Plus	3371522-3371586
15	336900 336948	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	10236423-10236523 12692290-12692381
	337028	Dunham, I. et.al.	Plus	16644817-16644942
	337054	Dunham, I. et.al.	Plus Plus	17821742-17821922 23478943-23479145
	337162 337183	Dunham, I. et.al. Ounham, I. et.al.	Plus	23943605-23943696
20	337184	Dunham, I. et.al.	Phus	23973949-23974016
	337268 337299	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	28011979-28012034 29022656-29022775
	337389	Dunham, I. et.al.	Plus	31401509-31401579
25	337493	Dunham, I. et.al.	Plus	33330760-33330981
25	337549 337755	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	34474472-34474531 3971764-3971900
	337809	Dunham, I. et.al.	Plus	4449069-4449193
	337871	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	5443027-5443101 6969162-6969270
30	337958 338008	Dunham, I. et.al.	. Plus	7697068-7697236
	338033	Dunham, I. et.al.	Plus	8092128-8092271
	338110 338112	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	10384481-10384621 10391398-10391600
	338145	Dunham, I. et.al.	Plus	11386629-11386692
35	338148	Dunham, I. et.al.	Plus	11448985-11449085
	338179 338197	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	12808775-12808833 13638107-13638181
	338279	Dunham, I. et.al.	Plus	16168944-16169091
40	338316 338322	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	17089711-17089988 17132477-17132547
70	338357	Dunham, I. et.al.	Plus	18062184-18062402
	338359	Dunham, I. et.al.	Pius	18074402-18074501 18252026-18252189
	338366 338374	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	18371200-18371282
45	338414	Dunham, I. et.al.	Plus	19345573-19345660
	338418 338501	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	19435506-19435596 21244713-21244828
	338506	Dunham, I. et.al.	Plus	21221871-21221953
50	338523	Dunham, I. et.al.	Plus Plus	21509763-21509864 24404720-24404899
30	338662 338804	Dunham, I. et.al. Dunham, I. et.al.	Plus .	27236005-27236108
	338836	Dunham, I. et.al.	Plus	27792166-27792272
	338879 338937	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	28410653-28410734 29160655-29160725
55	338993	Dunham, I. et.al.	Plus	30077787-30078184
	339047	Dunham, I. et.al.	Plus	30760793-30760968 31141580-31141765
	339100 339114	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	31456454-31456519
<i>6</i> 0	339121	Dunham, I. et.al.	Plus	31583467-31583536
60	339170 339293	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	32216399-32216527 33223671-33223819
	332858	Dunham, I. et.al.	Minus	1339607-1339397
	332982	Dunham, I. et.al.	Minus	2628296-2628109 2632606-2632457
65	332984 332998	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus .	27.11704-2711565
	333058	Dunham, I. et.al.	Minus	3028925-3028811
	333097 333121	Dunham, I. et.al. Dunham, I. et.al.	Minus (*). Minus	3204124-3204036 3308446-3308358
	333122	Dunham, I. et.al.	Minus	3309596-3309531
7 0 ·	333123	Dunham, I. et.al.	Minus	3310817-3310749
	333140 333260	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	3377220-3376309 4308400-4308304
	333603	Dunham, I. et.al.	Minus	6466335-6465727
75	333604 333904	Ounham, I. et.al. Dunham, I. et.al.	Minus Minus	6467090-6466768 8217374-8217261
. 5	333906	Dunham, I. et.al.	Minus	8218238-8218063
	334183	Dunham, I. et.al.	Minus	11832582-11832508
	334187 334222	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	11921456-11921205 12732417-12732289
80	334223	Dunham, I. et.al.	Minus	12734365-12734269
	334255 334492	Dunham, I. et.al.	Minus Minus	13200776-13200692 14478333-14478172
	334648	Dunham, I. et.al. Dunham, I. et.al.	Minus	15363301-15363222
85	334787	Dunham, I. et.al.	Minus	16299093-16298937
OJ	334933	Dunham, I. et.al.	Minus	20078117-20077991

	***	O 03/00/			
	334945	O 02/086 Dunham,		Minus	20138885-20138637
	334967	Dunham, I	l. et.al.	Minus	20173311-20173218
	334990 335093	Dunham, I		Minus	20341159-20341087
5	335288	Dunham, I Dunham, I		Minus Minus	21297367-21297214 22304275-22303770
	335289	Dunham, I	. etal	Minus	22305950-22305708
	335548 335551	Dunham, I		Minus	24662773-24662673
	335619	Dunham, I Dunham, I		Minus Minus	24679828-24678961 25082677-25082498
10	335620	Dunham, I	. et.al.	Minus	25092561-25092434
	335621	Dunham, I		Minus	25098878-25098767
	335682 335755	Dunham, i Dunham, i		Minus Minus	25421215-25421093 25763806-25763747
1.0	335814	Dunham, i		Minus	26320043-26319845
15	335815	Dunham, I		Minus	26320518-26320421
	335835 335851	Dunham, I. Dunham, I.		Minus Minus	26393311-26393245 26604863-26604742
	335868	Dunham, I.		Minus	26711437-26711300
20	335896	Dunham, I.		Minus	26977639-26977558
20	335936 335948	Dunham, I. Dunham, I.		Minus Minus	27360474-27360400 27555924-27555788
	336066	Dunham, I.		Minus	29241080-29240842
	336205	Dunham, I.	et.al.	Minus	30477456-30477311
25	336275 336292	Ounham, I. Dunham, I.		Minus	32086675-32086536
25	336331	Dunham, I.		Minus Minus	32818035-32817927 33594527-33594371
	336419	Dunham, I.		Minus	34052568-34052445
	336675	Dunham, I.		Minus	2020758-2020664
30	336684 336716	Dunham, I. Dunham, I.		Minus Minus	2158060-2157993 3259952-3259862
-	336798	Dunham, I.		Minus	5888954-5888757
	337043	Dunham, I.		Minus	17407330-17407251
	337046 337128	Dunham, I. Dunham, I.		Minus Minus	17610892-17610821 22215251-22215034
35	337192	Dunham, I.		Minus	24591853-24591771
	337194	Dunham, I.	et.al.	Minus	24610510-24610359
	337229 337325	Dunham, 1.		Minus	26716579-26716481
	337497	Dunham, I. Dunham, I.		Minus Minus	30015948-30015800 33371317-33371258
40	337500	Dunham, I.	et.al.	Minus	33376212-33376158
	337603	Dunham, I.		Minus	1299296-1299194
	337605 337671	Dunham, i. Dunham, i.		Minus Minus	1346555-1346397 3260634-3260547
4.5	337786	Dunham, I.		Minus	4133203-4133081
45	337862	Dunham, I.		Minus	5347658-5347550
	338083 338158	Dunham, I. Dunham, I.		Minus Minus	9318438-9318301 11794465-11794343
	338161	Dunham, I.		Minus	12124716-12124658
50	338182	Dunham, I.		Minus	12824919-12824827
50	338189 338199	Dunham, I. Dunham, I.		Minus Minus	12878594-12878478 13760865-13760780
	338215	Dunham, I.		Minus	14055447-14055355
	338469	Dunham, I.		Minus	20520387-20520242
55	338549 338561	Dunham, I. Dunham, I.		Minus Minus	22049171-22049081 22311966-22311856
	338671	Dunham, I.	et.al.	Minus	24508421-24508346
	338676	Dunham, I.	et.al.	Minus	24637427-24637369
	338726 338779	Dunham, I. Dunham, I.		Minus · Minus	25926206-25925618 27030151-27029795
50	338871	Dunham, I.		Minus	28301708-28301611
	338872	Dunham, I.		Minus	28300921-28300790
	338966 339229	Dunham, I. o Dunham, I. o		Minus Minus	29614876-29614749 32722330-32722199
	339264	Dunham, I.		Minus	32975145-32975053
55	325228	6381940	Plus	2630-2694	
	325235 329588	. 6381943 3962484	Minus Plus	162154-162	264
	329560	3962491	Plus	1169-1619 2095-2990	
70	329541	3983503	Minus	2765-3059	
70	325328	5866875	Plus	86780-86854	
	325340 325373	6017033 5866920	Minus Minus	166656-1668 1136686-113	
	325367	5866920	Minus	922881-922	
7.5	325389	5866921	Plus	239672-2397	
75	325436 325498	5866939 5866967	Minus Plus	29778-29907 173372-1739	
	325496 325471	6017034	Minus	289268-2893	
	325557	6056302	Plus	50921-51050)
30	325559	6249595	Minus	118590-119	
5U	325560 325569	6249595 6249599	Minus Plus	133794-1339 79927-80217	
	325587	6682462	Plus	126724-1269	
	325585	6682462	Plus	73476-73574	. .
35	325597 325639	5866992 5867002	Plus Plus	1065020-106 253525-2536	
	*******	000.002	1143	20022-2001	

	WO 325739	02/0864 5867038	143 Minus	205138-205269
	325740	5867038	Minus	207533-207690
	325792	6469828	Minus	1018-1176 269122-269190
5	325735 325685	6552447 6682468	Minus Plus	117397-117483
_	325686	6682468	Plus	118337-118439
	325819 329764	6682490 6048195	Minus Minus	130314-130370 109733-109958
	329704	6065793	Minus	139994-140138
10	329643	6448539	Plus	53403-53537
	329816 329860	6624888 6687260	Minus Minus	70296-70423 163474-163605
	325883	5867087	Pius	22498-22663
1.5	325895	5867097	Plus	358317-358476
15	325925 325932	5867124 5867127	Plus Plus	115749-115962 7369-7441
	325941	5867133	Minus	64228-64402
	325969	5867153	Plus	101911-102081
20	325971 329993	5867153 4567166	Plus Minus	105841-106035 101307-101434
	330020	6671887	Plus	172397-172491
	326163	5867168 5867171	Minus	7831-8035
	326274 326025	5867176	Minus Plus	410289-410404 70854-70915
25	326046	5867182	Minus	62668-62825
	326099 326108	5867186 5867187	Minus Minus	661381-661510 23784-23903
	326165	5867208	Minus	62787-62929
20	326189	5867212	Plus	69288-69413
30	326204 326230	5867218 5867230	Minus Minus	148088-148200 301868-301972
	330052	4567182	Plus	352560-352963
	330036	6042048	Plus	117120-117216
35	326360 326589	5867293 5867320	Plus Plus	13627-13844 22760-22919
	326393	5867341	Plus	41702-41841
	326505 326515	5867435 5867439	Minus Ptus	8818-8949 36683-36809
	326592	6138928	Plus	23689-23828
40	330107	6015249	Minus	100091-100282
	330106 330100	6015249 6015253	Minus Plus	99443-99778 21166-21301
	330093	6015278	Plus	1043-1199
45	330088 330085	6015293 6015302	Plus Minus	37517-37638 59613-59770
-1 J ·	330120	6671864	Minus	127553-127656
	330123	6671869	Minus	35311-35406
	326742 326605	5867611 5867637	Minus Plus	95187-95248 24656-24749
50	326818	6117831	Minus	15199-15309
	326720	6552456	Plus	84525-84677
	326770 326692	6598307 6682502	Minus Plus	513603-513668 117697-117899
	326693	6682502	Minus	335002-335095
55	326983 326991	5867657 5867660	Minus Plus	16023-16581 18147-18339
	326936	6004446	Minus	10217-10357
	326964	6469836	Plus	75340-75456
60	327040 327053	6531965 6531965	Plus Plus	783670-783817 2247267-2247437
•	327075	6531965	Plus	4041318-4041431
	327085	6531965	Plus	4734947-4735069
	327036 327130	6531965 6531976	Plus Plus	319951-320040 20247-22343
65	327156	5866841	Minus	2462-2620
	327288 327332	5867481 · 5867516	Plus Minus	48583-48773 56361-56532
	327220	5867525	Minus	65701-65781
70	327224	5867534	Plus	188468-188544
70	327321 327361	6249562 6552412	Minus Minus	99745-99836 61013-62130
	327396	5867743	Plus	8702-8820
	327414	5867750	Plus	102461-102586
75	327442 327467	5867759 5867772	Plus Plus	111483-111618 88030-88151
	327473	5867775	Plus	75101-75181
	327483	5867783	Plus	181573-181662
_	327377 327562	5867793 5867804	Minus Minus	37610-37676 343989-344474
80	327568	5867811	Minus	46152-46287
	327608 327611	6004463 5867868	Plus Minus	200262-200495 175063-175392
	327642	5867891	Minus	2513-2743
85	327654	5867910	Minus	97564-97710
ره	327734	5867940	Minus	31003-31583

WU 02/080443								
	327775	5867964	Minus	130791-130871				
	327796	5867982	Plus	85267-85405				
	327840	6249578	Minus	73065-73206				
	330208	6013599	Pius	66517-66931				
5	330263	6671884	Minus	101503-101634				
_	328004	5867993	Minus	157407-157887				
	328101	5868020	Plus	289920-290014				
	328100	5868020	Minus	263545-263635				
	328113	5868024	Minus	80378-80491				
10	328157	5868064	Plus	73326-73615				
	328196	5868080	Minus	16551-16729				
•	328197		. Minus	42133-42438				
	327940	5868197	Minus	95240-95428				
	327984	5868216	Plus	66611-66677				
15	328021	5902482	Plus	713478-714590				
	328068	6117819	Plus	253903-254022				
	328264	6381912	Plus	55086-55404				
	330300	2905862	Minus	3246-3302				
	328608	5868222	Minus	87770-87953				
20	328600	5868229	Minus	38889-40010				
	328616	5868239	Plus	293920-294224				
	328623	5868246	Minus	120020-120126				
	328632	5868247	Plus	76734-76853				
	328666	5868254	Minus	778-901				
25	328698	5868264	Minus	625555-625633				
	328700	5868264	Plus	764089-764203				
	328708	5868271	Minus	68114-68854				
	328735	5868289	Plus	89389-89455				
	328743	5868289	Plus	274638-274726				
30	328806	5868324	Plus	29408-29684				
	328299	5868366	Minus	149708-149889				
	328342	5868383	Plus	59955-60094				
	328365	5868387	Minus	270724-270798				
	328369	5868388	Plus	75371-75583				
35	328381	5868392	Plus	662758-662848				
	328451	5868425	Minus	217275-217336				
	328481	5868449	Minus	8987-9180				
	328500	5868464	Plus	59098-59481				
40	328530	5868482	Plus	334973-335406				
40	328664	6004473	Plus	1193739-1193866				
	328861	6381928	Minus	108317-108403				
	328908	5868493	Plus	117002-117059				
•	328933	5868500	Plus	771755-771889				
15	328934	5868500	Plus	846342-846448				
45	328949	6456765	Minus	43552-43619				
	330313	6042030	Minus	33642-33775				
	329005	5868542	Plus	85470-85673				
	330366	2944106	Plus '	151837-151914				
50	330372	6580495	Minus	317461-317688				
3 0	329033	5868561	Minus	5390-5479				
	329037	5868562	Minus	32466-32562				
	329067	5868591	Minus	146417-147652				
	329134	5868679	Plus	29959-30018				
55	329157	5868687	Minus	145940-146155				
))	329178	5868704	Pius	179177-179463				
	329192	5868716	Plus .	166936-167020				
	329194	5868716	Minus	304450-304559				
	329204	5868720	Minus	3050-3190				
60	329224	5868728	Plus	27422-27664				
00	329228	5868728	Minus Plus	50118-50287 25554-26299				
	329288	5868771		467155-467222				
	329337 329011	5868806 6682532	Minus Plus	48658-48741				
	323011	UUOZJJZ	1-102	TUUUU-40/41				

TABLE 9A: Potential Therapeutic, Diagnostic and Prognostic targets for Therapy of Lung Cancer

Table 9A shows about 1312 genes up-regulated in lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granufomatious and carcinoid tumors) relative to normal body tissues. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 9B show the accession numbers for those Pkey's lacking UnigenelD's for table 9A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 9C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 9A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15 Pkey:

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number ExAcon:

UnigenelD: Unigene number Unigene Title: Unigene gene title

5

10

Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the R1:

20 average of normal lung samples

(including bronchitis, emphysema, fibrosis, atelectasis, asihma) divided by the average of normal lung samples

	R2:	Averag	ge of non-malig	mant lung disease samples (including bronchitis, emphysem	a, fibrosis, ate	electasis, asthr
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2
	400195		•	NM_007057*:Homo sapiens ZW10 interactor	1.00	1.00
25	400205			NM_006265*:Homo sapiens RAD21 (S. pombe)	15.80	396.00
	400220	•		Eos Control .	2.28	2.84
	400277			Eos Control	7.68	9.72
	400285			Eos Control	1.00	1.00
20	400288	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor,	1.04	2.24
30	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	132.45	4.00
	400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.86	74.00
	400301	X03635	Hs.1657	estrogen receptor 1	1.00	1.00
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	1.75	1.65
25	400328	X87344	Hs.180062	transporter 2, ATP-binding cassette, sub	0.87	1.80
35	400419	AF084545		Target	156.55	253.00 2.00
	400512	AT040000		NM_030878*:Homo sapiens cytochrome P450,	1.00	87.00
	400517	AF242388		lengsin	3.67 1.00	1.00
	400560			NM_030878*:Homo sapiens cytochrome P450,	20.26	45.00
40	400664			NM_002425:Homo sapiens matrix metallopro	1.36	1.07
40	400665			NM_002425:Homo sapiens matrix metallopro	3.26	3.22
	400666			NM_002425:Homo sapiens matrix metallopro	1.00	91.00
	400749			NM_003105*:Homo sapiens sortilin-related	7.63	24.00
	400763			Target Exon Target Exon	1.00	1.00
45	401027			C12000586*:gi]6330167 dbj BAA86477.1 (A	1.00	155.00
73	401093 401203			Target Exon	1.00	86.00
	401203			C12000457*:gi 7512178 pir [T30337 polypr	1.00	400.00
	401411			ENSP00000247172*:HYPOTHETICAL 126.2 kDa	1.00	72.00
	401435			C14000397*:gij7499898 pid [T33295 hypoth	1.00	64.00
50	401464	AF039241		histone deacetylase 5	3.82	49.00
50	401714	A 003241		ENSP00000241802*:CDNA FLJ11007 FIS, CLON	2.02	40.00
	401747			Homo saplens keratin 17 (KRT17)	128.43	68.00
	401760			Target Exon	1.74	35.00
	401780			NM_005557*:Homo sapiens keratin 16 (foca	26.47	10.50
55	401781			Target Exon	10.33	4.61
	401785			NM_002275*:Homo sapiens keratin 15 (KRT1	4.13	2.70
	401797			Target Exon	1.44	2.10
	401961			NM_021626:Homo sapiens serine carboxypep	1.41	1.86
	401985	AF053004		class I cytokine receptor	1.00	177.00
60	401994			Target Exon	61.84	47.00
	402075			ENSP00000251056*:Plasma membrane calcium	1.00	1.00
	402260			NM_001436*:Homo sapiens fibrillarin (FBL	1.58	1.39
	402265			Target Exon	2.09	35.00
	402297	•		Target Exon	1.00	92.00
65	402408			NM_030920*:Homo sapiens hypothetical pro	28.87	13.00
	402420			C1000823*:gi]10432400[emb]CAC10290.1] (A	1.00	1.44
	402674			Target Exon	7.44	243.00
	402802			NM_001397:Homo sapiens endothelin conver	1.00	70.00
70	402994			NM_002463*:Homo sapiens myxovirus (influ	1.37	1.43
70	403137			NM_005381*:Homo saplens nucleolin (NCL),	1.00	19.00
	403306	NM_006825		transmembrane protein (63kD), endoplasmi	1.00	43.00
	403329			Target Exon	1.00	61.00
	403381			ENSP00000231844*:Ecotropic virus integra	1.00	119.00
75	403478			NM_022342:Homo sapiens kinesin protein 9	28.13	136.00
75	403485			C3001813*:gi 12737279 ref XP_012163.1 k	20.23	76.00
	403627			Target Exon	6.30	29.33
	403715			Target Exon	1.30	35.00
	404044			ENSP00000237855*:DJ398G3.2 (NOVEL PROTEI	1.00	54.00
80	404076			NM_016020*:Homo sapiens CGI-75 protein (14.29	91.00
90	404101			C8000950:gi[423560[pir]]A47318 RNA-bindi	1.00 1.42	1.00 1.44
	404140			NM_006510:Homo saplens ret finger protei	1.42	54.00
	404165			ENSP00000244562:NRH dehydrogenase (quino Target Exon	1.00	117.00
	404185 404210			NM_005936:Homo sapiens myeloid/lymphoid	5.93	13.77
85				NM_021058*:Homo sapiens H2B histone fami	1.00	1.00
33	404253			ווונהו פונשבוו בדרו פושקפה רוטווס ביווים ביידי	1.00	1.50

	w	O 02/086	443			
	404287	• •=	•	C6001909:gij704441 dbjjBAA18909.1] (D298	29.71	42.00
	404298			C6001238*:gij121715 sp P26697 GTA3_CHICK	1.30	1.00
	404347 404440			Target Exon NM_021048:Homo sapiens melanoma entigen,	1.00 1.00	1.00 15.00
5	404721			NM_005596*:Homo sapiens nuclear factor I	1.00	60.00
	404794	NM_000078		cholesteryl ester transfer protein, plas	1.07	1.38
	404854 404877			Target Exon NM_005365:Homo sapiens melanoma antigen,	1.61 1.00	2.01 1.00
	404927			Target Exon	1.00	1.00
10	404996			Target Exon	1.00	1.00
	405449 405568			CY000047*:gi]11427234 ref XP_009399.1 z NM_031413*:Homo sagians cat eye syndrome	1.00 1.00	1.00 78.00
	405572			Target Exon	0.76	1.14
	405646			C12000200:gi[4557225[ref]NP_000005.1] al	1.01	1.28
15	405676	BE336714		cytochrome c-1 NM_002362:Homo saplens melanoma antigen,	1.13 45.52	2.89 37.00
	405770 405932			C15000305:gi/3806122/gb/AAC69198.1) (AF0	1.99	1.99
	406137			NM_000179*:Homo sapiens mutS (E. coli) h	2.77	2.38
20	406360			Target Exon	1.00 1.00	35.00 39.00
20	406399 406467			NM_003122*:Homo sapiens serine protease Target Exon	1.00	1.00
	406621	X57809	Hs.181125	immunoglobulin lambda locus	1.41	1.74
	406642	AJ245210	11. 000444	gb:Homo sapiens mRNA for immunoglobulin	2.16	3.91
25	406663 406671	U24683 AA129547	Hs.293441 Hs.285754	immunoglobulin heavy constant mu met proto-oncogene (hepatocyte growth fa	2.07 15.00	2.93 51.00
23	406673	M34996	Hs.198253	major histocompatibility complex, class	0.98	3.09
	406676	X58399	Hs.81221	Human L2-9 transcript of unrearranged im.	1.30	1.53
	406678 406685	U77534 M18728		gb:Human clone 1A11 immunoglobulin varia gb:Human nonspecific crossreacting antig	1.33 1.46	1.45 2.85
30	406687	M31126	Hs.272822	pregnancy specific beta-1-glycoprotein 9	8.61	8.50
	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad	226.37	350.00
	406698 406815	X03058 AA833930	Hs.73931 Hs.288036	major histocompatibility complex, class tRNA isopentenylpyrophosphate transferas	1.01 20.25	2.52 32.00
	406851	AA609784	115.200000	major histocompatibility complex, class	0.75	1.91
35	406984	M21305		gb:Human alpha satellite and satellite 3	38.15	1114.00
	406967 406974	M24349 M57293		gb:Human parathyroid hormone-like protei gb:Human parathyroid hormone-related pep	1.00 1.00	1.00 1.00
	407103	AA4248B1	Hs.256301	hypothetical protein MGC13170	1.77	1.10
40	407128	R83312	Hs.237260	EST	1.00	1.00
40	407137	T97307	Un 447402	gb:ye53h05.s1 Soares fetal liver spleen ESTs	142.70 2.16	135.00 18.00
	407168 407239	R45175 AA076350	Hs.117183 Hs.67846	leukocyte immunoglobulin-like receptor,	1.10	1.57
	407242	M18728		gb:Human nonspecific crossreacting antig	1.12	2.85
45	407244	M10014	Hs.75431	fibrinogen, gamma polypeplide	3.24 3.53	15.38 3.68
43	407289 407300	AA135159 AA102616	Hs.203349 Hs.120769	Homo sapiens cDNA FLJ12149 fis, clone MA gb:zn43e07.s1 Stratagene HeLa cell s3 93	19.74	73.00
	407366	AF026942	Hs.271530	gb:Homo sapiens cig33 mRNA, partial sequ	0.06	8.25
	407378	AA299264	Hs.57776	ESTs, Moderately similar to I38022 hypot	1.00 1.00	26.00 25.00
50	407430 407453	AF169351 AJ132087		gb:Homo sapiens protein tyrosine phospha gb:Homo sapiens mRNA for axonemal dynein	1.00	75.00
	407577	AW131324	Hs.246759	hypothetical protein MGC12538	1.00	1.00
	407634	AW016569	Hs.136414	UDP-GlcNAc;betaGat beta-1,3-N-acetylgluc	· 111.20 1.00	228.00 28.00
	407710 407720	AW022727 AB037776	Hs.23616 Hs.38002	ESTs KIAA1355 protein	1.89	1.31
55	407746	AK001962		hypothetical protein FLJ11100	1.00	1.00
	407756	AA116021	Hs.38260	ubiquitin specific protease 18	4.51 1.00	5.00 28.00
	407758 407782	D50915 AA608956	Hs.38365 Hs.112619	KIAA0125 gene product ESTs, Moderately similar to PURKINJE CEL	0.97	1.14
	407788	BE514982	Hs.38991	S100 calcium-binding protein A2	7.88	3.83
60	407790	A1027274	Hs.288941	Homo sapiens cDNA FLJ14866 fis, clone PL	3.63 89.96	42.00 109.00
	407811 407839	AW190902 AA045144	Hs.40098 Hs.161566	cysteine knot superfamily 1, BMP antagon ESTs	173.91	108.00
	407944	R34008	Hs.239727	desmocollin 2	111.30	70.00
65	408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	151.17 9.91	8.00 93.00
05	408031 408063	AA081395 BE086548	Hs.42173 Hs.42346	Homo sapiens cDNA FLJ10366 fis, clone NT calcineurin-binding protein calsarcin-1	195.78	231.00
	408070	AW148852		gb:xf05d05.x1 NCI_CGAP_Bm35 Homo sapien	1.00	1.00
	408101	AW968504	Hs.123073	CDC2-related protein kinase 7	37.84	61.00
70	408122 408212	AI432652 AA297567	Hs.42824 Hs.43728	hypothetical protein FLJ10718 hypothetical protein	0.85 5.88	1.71 7.91
, ,	408243	Y00787	Hs.624	interleukin 8	4.27	9.98
	408349	BE546947	Hs.44276	homeo box C10	3.79	3.46
	408353 408354	BE439838 Al382803	Hs.44298 Hs.159235	mitochondrial ribosomal protein S17 ESTs	1.88 1.00	1.65 73.00
75	408369	R38438	Hs.182575	solute carrier family 15 (H??? transport	1.41	16.50
	408380	AF123050	Hs.44532	diubiquitin	15.19	37.22
	408482 408522	NM_000676 Al541214	Hs.45743 Hs.46320	adenosine A2b receptor Small proline-rich protein SPRK (human,	1.65 1.98	1.19 1.24
	408536	AW381532	Hs.135188	ESTs	1.55	1.50
80	408545	AW235405	Hs.253690	ESTs	1.00	1.00
	408572 408633	AA055611 AW963372	Hs.226568 Hs.46677	ESTs, Moderately similar to ALU4_HUMAN A PRO2000 protein	1.00 107.16	44.00 56.00
	408660	AA525775	1 1004.61 1	ESTs, Moderately similar to PC4259 ferri	1.00	1.00
05	408761	AA057264	Hs.238936	ESTs, Weakly similar to (defline not ava	52.24	141.00
85	408771	AW732573	Hs.47584	potassium voltage-galed channel, delayed	3.05	109.00

•	w	O 02/086	443			
	408783	AF192522	Hs.47701	NPC1 (Niemann-Pick disease, type C1, gen	1.02	1.07
	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,	41.19	61.00
	408805	H69912	Hs.48269	vaccinia related kinase 1	24.67	45.00
5	408841 408873	AW438865 AL046017	Hs.256862 Hs.182278	ESTs calmodulin 2 (phosphorylase kinase, delt	1.00 1.00	58.00 89.00
,	408908	BE296227	Hs.250822	serine/ihreonine kinase 15	7.76	1.00
	408992	AA059325	Hs.71642	guanine nucleotide binding protein (G pr	1.00	1.00
	408996	Al979168	Hs.344096	glycoprotein (transmembrane) nmb	3.71	5.50 1.24
10	409015 409038	BE389387 T97490	Hs.49767 Hs.50002	NM_004553:Homo sapiens NADH dehydrogenas small inducible cytokine subfamily A (Cy	1.44 4.28	5.32
10	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	112.42	195.00
	409077	AA401369	Hs.190721	ESTs	1.00	17.00
	409093	BE243834	Hs.50441	CGI-04 protein	2.02	1.93
15	409103 409142	AF251237 AL136877	Hs.112208 Hs.50758	XAGE-1 protein SMC4 (structural maintenance of chromoso	80.44 14.87	40.00 6.00
13	409187	AF154830	Hs.50966	carbamoyl-phosphate synthetase 1, mitoch	1.00	1.00
	409228	AI654298	Hs.271695	ESTs, Weakly similar to 2109260A B cell	1.22	1.00
	409234	Al879419	Hs.27206	ESTs	1.00	1.00
20	409268	AA625304	Hs.187579	ESTs	11.90 1.00	23.00 1.00
20	409269 409361	AA576953 NM_005982	Hs.22972 Hs.54416	hypothetical protein FW13352 sine oculis homeobox (Drosophila) homolo	168.91	35.00
•	409404	BE220053	Hs.129056	ESTs	1.00	1.00
	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	79.74	96.00
25	409430	R21945	Hs.346735	splicing factor, arginine/serine-rich 5 ESTs	1.45 1.00	2.10 4.00
25	409446 409506	AI561173 NM_006153	Hs.67688 Hs.54589	NCK adaptor protein 1	3.97	28.00
	409522	AA075382	1,010 1000	gb:zm87b03.s1 Stratagene ovarian cancer	15.98	141.00
	409582	AA401369	Hs.190721	ESTs	1.00	17.00
30	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	292.12 1.00	79.00 82.00
30	409705 409719	M37762 A1769160	Hs.56023 Hs.108681	brain-derived neurotrophic factor Homo sapiens brain turnor associated prot	1.00	1.00
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	0.12	18.12
	409744	AW675258	Hs.56265	Homo sapiens mRNA; cDNA DKFZp586P2321 (f	20.75	51.00
35	409757	NM_001898	Hs.123114	cystatin SN	22.46 1.00	15.80 1.00
33	409866 409893	AW502152 AW247090	Hs.57101	gb:UI-HF-BR0p-air-F-11-0-UI.r1 NIH_MGC_5 minichromosome maintenance deficient (S.	1.50	1.09
	409902	Al337658	Hs.156351	ESTs	25.92	50.00
	409935	AW511413	Hs.278025	ESTs	2.63	2.11
40	409956	AW103364	Hs.727 Hs.57697	inhibin, beta A (activin A, activin AB a	2.17 0.91	4.01 2.07
40	409958 410001	NM_001523 AB041036	Hs.57771	hyaluronan synthase 1 - kaliikrein 11	1.04	2.28
	410032	BE065985	1,0,0,771	gb:RC3-BT0319-120200-014-a09 BT0319 Homo	1.00	58.00
	410037	AB020725	Hs.58009	KIAA0918 protein	1.00	34.00
45	· 410044	BE566742	Hs.58169 Hs.58218	highly expressed in cancer, rich in teuc	1.00 1.03	1.00 1.44
73	410048 410076	W76467 T05387	Hs.7991	proline oxidase homolog ESTs	1.12	1.50
	410102	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	9.89	1.00
	410153	BE311926	Hs.15830	hypothetical protein FLJ12691	1.00	1.00
50	410166 410193	AK001376 AJ132592	Hs.59346 Hs.59757	hypothetical protein FLJ10514 zinc finger protein 281	1.00 42.01	1.00 51.00
50	410193	AJ 132392 AA381807	Hs.61762	hypoxia-inducible protein 2	1.72	1.32
	410309	BE043077	Hs.278153	ESTs	1.00	2.00
	410340	AW182833	Hs.112188	hypothetical protein FLJ13149	32.08	75.00
55	410348	AW182663	Hs.95469	ESTs carbonic anhydrase IX	1.00 1.40	1.00 1.11
90	410407 410418	D31382	Hs.63287 Hs.63325	transmembrane protease, serine 4	4.30	2.03
	410438	AB037756	Hs.45207	hypothetical protein KIAA1335	1.00	18.00
	410553	AW016824	Hs.255527	hypothetical protein MGC14128	1.34	1.04
60	410555	W27235	Hs.64311 Hs.6994	a disintegrin and metalloproteinase doma	23.99 10.04	1.41 1.00
00	410561 410681	BE540255 AW246890	Hs.65425	Homo sapians cDNA: FLJ22044 fis, clone H calbindin 1, (28kD)	10.88	18.92
	410781	Al375672	Hs.165028	ESTs	1.00	57.00
	411027	AF072099	Hs.67846	leukocyte immunoglobulin-like receptor,	1.62	3.78
65	411074	X60435 AA456454	Hs.68137	adenylate cyclase activating polypeptide cell division cycle 2-like 1 (PITSLRE pr	1.00 1.56	1.15 1.58
03	411089 411152	BE069199		gb:QV3-BT0379-010300-105-g03 BT0379 Homo	1.00	84.00
	411248	AA551538	Hs.334605	Homo sapiens cDNA FLJ14408 fis, clone HE	1.82	1.45
	411252	AB018549	Hs.69328	MD-2 protein	7.32	12.74
70	411263 411365	BE297802 M76477	Hs.69360 Hs.289082	kinesin-like 6 (mitotic centromere-assoc GM2 ganglioside activator protein	3.44 1.35	2.55 2.02
70	411402	BE297855	Hs.69855	NRAS-related gene	1.00	46.00
	411573	AB029000	Hs.70823	KIAA1077 protein	11.40	11.35
	411579	AC005258	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	1.08	1.90
75	411617	AA247994	Hs.90063	neurocalcin delta guanine nucleotide binding protein (G pr	1.74 1.02	2.57 1.00
, ,	411732 411773	AA059325 NM_006799	Hs.71642 Hs.72026	protease, serine, 21 (testisin)	1.34	2.19
	411789	AF245505	Hs.72157	Adlican	2.19	2.79
	411800	N39342	Hs.103042	microtubule-associated protein 18	23.34	34.00
80	411945	AL033527 AK001763	Hs.92137 Hs.73239	v-myc avian myelocytomatosis viral oncog hypothetical protein FLJ10901	1.00 2.07	8.00 1.64
50	412115 412140	AK001763 AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	118.48	92.00
	412276	BE262621	Hs.73798	macrophage migration inhibitory factor (1.98	1.49
	412464	T78141	Hs.22826	ESTs, Weakly similar to I55214 salivary	1.16	1.34
85	412530 412537	AA766268 AL031778	Hs.266273	hypothetical protein FLJ13346 nuclear transcription factor Y, alpha	41.52 17.90	84.00 55.00
55	+14001	UM) (1/0		mental amagnitude come is white		

	w	O 02/086	443			
	412659	AW753865	Hs.74376	olfactomedin related ER localized protel	14.65	47.00
	412719	AW016610	Hs.816	ESTs	382.46	128.00
	412723	AA648459	Hs.335951	hypothetical protein AF301222	54.90 1.00	1.00 11.00
5	412811 412817	H06382 AL037159	Hs.74619	ESTs proteasome (prosome, macropain) 26S subu	1.63	1.42
	412863	AA121673	Hs.59757	zinc finger protein 281	17.63	56.00
	412924	BE018422	Hs.75258	H2A histone family, member Y	1.00	22.00
	413004	T35901	Hs.75117	interleukin enhancer binding factor 2, 4	2.19 1.22	2.05 1.88
10	413011 413048	AW068115 M93221	Hs.821 Hs.75182	biglycan mannose receptor, C type 1	0.30	6.23
10	413063	AL035737	Hs.75184	chilinase 3-like 1 (cartilage glycoprote	3.43	8.71
	413129	AF292100	Hs.104613	RP42 homolog	4.67	4.77
	413142	M81740	Hs.75212	omithine decarboxylase 1	1.92	2.59 27.00
15	413223 413248	AI732182 · T64858	Hs.191866 Hs.21433	ESTs hypothetical protein DKFZp547J038	5.73 0.99	1.06
13	413273	U75679	Hs.75257	stem-loop (histone) binding protein	1.00	18.00
	413278	BE563085	Hs.833	interferon-stimulated protein, 15 kDa	1.10	1.09
	413281	AA861271	Hs.222024	transcription factor BMAL2	95.94	69.00
20	413364	BE536218	Hs.137516	fidgetin-like 1 indoleamine-pyrrole 2,3 dioxygenase	1.00 0.95	1.00 2.09
20	413385 413409	M34455 Al638418	Hs.840 Hs.1440	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	1.00	1.00
	413453	AA129640	Hs.128065	ESTs	1.00	31.00
	413527	BE250788	Hs.179882	hypothetical protein FLJ12443	1.08	1.46
25	413554	AA319146	Hs.75426	secretogranin II (chromogranin C)	79.15 1.00	114.00 1.00
23	413573 413582	AI733859 AW295647	Hs.149089 Hs.71331	ESTs hypothetical protein MGC5350	8.80	10.00
	413597	AW302885	Hs.117183	ESTs	1.00	1.00
	413690	BE157489		gb:RC1-HT0375-120200-011-e06 HT0375 Homo	1.00	1.00
20	413691	AB023173	Hs.75478	ATPase, Class VI, type 11B	3.16	2.32 9.52
30	413719 413753	BE439580 U17760	Hs.75498 Hs.75517	small inducible cytokine subfamily A (Cy laminin, beta 3 (nicein (125kD), kalinin	2.88 144.10	108.00
	413753	M62246	Hs.35406	ESTs, Highly similar to unnamed protein	1.00	17.00
	413833	Z15005	Hs.75573	centromere protein E (312kD)	1.00	1.00
25	413882	AA132973	Hs.184492	ESTs	64.24	148.00
35	413926 413943	AA133338 AW294416	Hs.54310 Hs.144687	ESTs Homo sapiens cDNA FLJ12981 fis, clone NT	1.00 43.42	67.00 42.00
	413995	BE048146	Hs.75671	syntaxin 1A (brain)	1.23	1.11
	414035	Y00630	Hs.75716	serine (or cysteine) proteinase inhibito	2.02	2.51
40	414142	AW368397	Hs.334485	Homo sapiens cDNA FLJ14438 fis, clone HE	1.00	102.00
40	414180	AIB63304 BE148072	Hs.120905 Hs.75850	Homo saplens cDNA FLJ11448 fis, clone HE WAS protein family, member 1	6.92 1.00	77.00 1.00
	414245 414275	AW970254	Hs.889	Charot-Leyden crystal protein	1.00	59.00
	414317	BE263280	Hs.75888	phosphogluconate dehydrogenase	1.52	1.73
A.E	414334	AA824298	Hs.21331	hypothetical protein FLJ10036	1.78	1.72
45	414341 414368	D80004 W70171	Hs.75909 Hs.75939	KIAA0182 protein uridine monophosphate kinase	33.90 171.60	151.00 97.00
	414416	AW409985	Hs.76084	hypothetical protein MGC2721	2.32	1.85
	414430	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1	226.15	66.00
50	414570	Y00285	Hs.76473	insulin-like growth factor 2 receptor	1.64 1.87	1.98 72.00
30	414618 414675	A1204600 R79015	Hs.96978 Hs.296281	hypothetical protein MGC10764 interleukin enhancer binding factor 1	1.51	1.39
	414683	S78296	Hs.76888	hypothetical protein MGC12702	43.61	64.00
	414696	AF002020	Hs.76918	Niemann-Pick disease, type C1	28.63	71.00
55	414711	Al310440	Hs.288735	Homo sapiens cDNA FLJ13522 fis, clone PL	14.86	42.00
23	414718 414732	H95348 AW410976	Hs.107987 Hs.77152	ESTs minichromosome maintenance deficient (S.	1.00 1.64	5.00 1.44
	414747	U30872	Hs.77204	centromere protein F (350/400kD, mitosin	65.01	74.00
	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2	130.35	121.00
60	414774	X02419	Hs.77274	plasminogen activator, urokinase	2.24 1.63	2.19 1.53
UU	414806 414809	D14694 Al434699	Hs.77329 Hs.77356	phosphatidylserine synthase 1 transferrin receptor (p90, CD71)	1.97	2.60
	414812	X72755	Hs.77367	monokine induced by gamma interferon	3.48	10.60
	414825	X06370	Hs.77432	epidermal growth factor receptor (avian	103.22	143.00
65	414839	X63692	Hs.77462	DNA (cytosine-5-)-methyltransferase 1	1.80 14.29	1.69 10.06
65	414883 414907	AA926960 X90725	Hs.77597	CDC28 protein kinase 1 poto (Drosophia)-like kinase	1.95	2.20
	414914	U49844	Hs.77613	ataxia telangiectasia and Rad3 related	3.00	2.90
	414945	BE076358	Hs.77667	lymphocyte antigen 6 complex, locus E	1.02	1.21
70	414972	BE263782	Hs.77695	KIAA0008 gene product	1.00 1.42	1.00 2.84
70	415014 415091	AW954064 AL044872	Hs.24951 Hs.77910	ESTs 3-hydroxy-3-methylglutaryl-Coenzyme A sy	1.00	30.00
	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	34.72	107.00
	415227	AW821113	Hs.72402	ESTs	1.87	49.00
75	415238	R37780	Hs.21422	ESTs	1.00 1.00	1.00 1.00
13	415263 415295	AA948033 R41450	Hs.130853 Hs.6546	ESTs ESTs	1.00	1.00
	415339	NM_015156	Hs.78398	KIAA0071 protein	51.18	166.00
	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	30.84	63.00
90	415674	BE394784	Hs.78596	proteasome (prosome, macropain) subunit,	1.48	1.39 1.00
80	415709 415735	AA649850 AA704162	Hs.278558 Hs.120811	ESTs ESTs, Wealdy similar to 138022 hypotheti	1.00 1.00	72.00
	415799	AA653718	Hs.225841	DKFZP434D193 protein	6.23	31.00
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	24.30	1.00
85	415857	AA886115	Hs.127797	Homo sapiens cDNA FLJ 11381 fis, clone HE	32.51 78.89	35.00
0)	415989	A1267700		ESTs	78.89	1.00

	w	O 02/086	443			
	416018	AW138239	Hs.78977	proprotein convertase subtilisin/kexin t	1.00	1.00
	416065	BE267931	Hs.78996	proliferating cell nuclear antigen	3.35	2.32
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (39.03	3.00
5	416177 416178	AA174069 AI808527	Hs.187607	ESTS	1.00 3.83	9.00 3.76
,	416208	AW291168	Hs.192822 Hs.41295	serologically defined breast cancer anti ESTs, Wealdy similar to MUC2_HUMAN MUCIN	3.67	1.00
	416209	AA236776	Hs.79078	MAD2 (mitotic arrest deficient, yeast, h	9.70	1.00
	416239	AL038450	Hs.48948	ESTs	83.87	129.00
10	416250	AA581386	Hs.73452	hypothetical protein MGC10791	1.96 2.08	2.12 1.73
10	416322 416423	BE019494 H54375	Hs.79217 Hs.268921	рупоline-5-carboxytate reductase 1 ESTs	1.00	89.00
	416448	L13210	Hs.79339	lectin, galactoside-binding, soluble, 3	1.28	1.54
	416498	U33632	Hs.79351	potassium channel, subfamily K, member 1	27.29	67.00
15	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	53.29 9.96	51.00 5.00
13	416661 416722	AA634543 AA354604	Hs.79440 Hs.122546	IGF-II mRNA-binding protein 3 - hypothetical protein FLJ23017	3.68	33.00
	416819	U77735	Hs.80205	pim-2 oncogene	1.59	1.84
	416936	N21352	Hs.42987	ESTs, Weakly similar to S21348 probable	1.00	1.00
20	417034	NM_006183	Hs.80962	neurotensin	1.00 32.95	1.00 156.00
20	417061 417079	AI675944 U65590	Hs.188691 Hs.81134	Homo saplens cDNA FLJ12033 fis, clone HE intarteukin 1 receptor antagonist	3,91	4.93
	417218	AA129547	Hs.285754	met proto-oncogene (hepatocyte growth fa	1.00	51.00
	417233	W25005	Hs.24395	small inducible cytokine subfamily B (Cy	3.38	2.05
25	417308	H60720	Hs.81892	KIAA0101 gene product	82.94 106.61	25,36 121.00
23	417315 417324	A1080042 AW265494	Hs.180450	ribosomal protein S24 ESTs	1.20	1.28
	417366	BE185289	Hs.1076	small proline-rich protein 1B (cornifin)	8.97	3.27
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	2.59	1.82
20	417428	N87579	Hs.278871	gb:LL2030F Human fetal heart, Lambda ZAP	1.00	52.00
30	417433 417466	BE270266 Al681547	Hs.82128 Hs.59457	5T4 oncofetal trophobiast glycoprotein hypothetical protein FLJ22127	304.75 1.24	173.00 1.34
	417512	A1979168	Hs.344096	glycoprotein (transmembrane) nmb	2.14	5.50
	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated	2.66	1.68
25	417542	J04129	Hs.82269	progestagen-associated endometrial prote	1.28	1.35
35	417576 417715	AA339449 AW969587	Hs.82285 Hs.86366	phosphoribosylglycinamide formyltransfer ESTs	42.76 6.35	51.00 2.75
	417720	AA205625	Hs.208067	ESTs	113.31	56.00
	417791	AW965339	Hs.111471	ESTs	39.98	16.00
40	417830	AW504786	Hs.122579	hypothetical protein FLJ 10461	2.61	31.00
40	417866 417900	AW067903 BE250127	Hs.82772 Hs.82906	collagen, type XI, alpha 1 CDC20 (cell division cycle 20, S. cerevi	2.35 1.52	2.44 1.11
	417933	X02308	Hs.82962	thymidylate synthetase	4.74	2.55
	417944	AU077196	Hs.82985	collagen, type V, alpha 2	3.61	5.21
45	417975	AA641836	Hs.30085	hypothetical protein FLJ23186	12.49	38.00
43	417991 418004	AA731452 U37519	Hs.190008 Hs.87539	ESTs aldehyde dehydrogenase 3 family, member	1.00 3.02	26.00 2.12
-	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	187.59	1.00
	418054	NM_002318	Hs.83354	lysyl oxidase-like 2	2.85	2.63
50	418057	NM_012151	Hs.83363	coagulation factor VIII-associated (intr	1.54 6.82	1.69 5.22
20	418113 418140	Al272141 BE613836 .	Hs.83484 Hs.83551	SRY (sex determining region Y)-box 4 microfibrillar-associated protein 2	. 0.02 - 1.26	1.46
	418203	X54942	Hs.83758	CDC28 protein kinase 2	134.19	144.00
	418207	C14685	Hs.34772	ESTs	1.00	1.00
55	418216	AA662240	Hs.283099	AF15q14 protein	64.66 18.53	61.00 147.00
55	418236 418249	AW994005 H89226	Hs.337534 Hs.34892	ESTs KIAA1323 protein	30.53	106.00
	418281	U09550	Hs.1154	oviductal glycoprotein 1, 120kD (mucin 9	1.00	3.00
	418283	S79895 .	Hs.83942	calhepsin K (pycnodysostosis)	3.96	5.16
. 60	418300 418322	A1433074 AA284166	Hs.86682 Hs.84113	Homo sapiens cDNA: FLJ21578 fis, clone C cyclin-dependent kinase inhibitor 3 (CDK	3.18 11.96	2.91 6.68
. 00	418327	U70370	Hs.84136	paired-like homeodomain transcription fa	9.23	2.22
	418345	AJ001696	Hs.241407	serine (or cysteine) proteinase inhibito	1.00	1.00
	418379	AA218940	Hs.137516	fidgetin-like 1	21.68	44.00
65	418397 418403	NM_001269 D86978	Hs.84746 Hs.84790	chromosome condensation 1 KIAA0225 protein	1.00 . 16.91	8,00 18.98
05	418462	BE001596	Hs.85266	integrin, beta 4	1.56	1.16
	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	3.22	2.38
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	2.66	2.22
70	418526 418538	BE019020 BE244323	Hs.85838 Hs.85951	sclute carrier family 16 (monocarboxylic exportin, tRNA (nuclear export receptor	2.04 1.33	2.21 37.00
, 0	418543	NM_005329	Hs.85962	hyaluronan synthase 3	1.04	1.23
	418574	N28754		M-phase phosphoprotein 9	48.60	85.00
	418592	X99226	Hs.284153	Fanconi anemia, complementation group A	18.24	26.00
75	418641 418661	BE243136 NM_001949	Hs.86947 Hs.1189	a disintegrin and metalloproteinase doma E2F transcription factor 3	1.19 29.05	1.41 43.00
,,	418663	AK001100	Hs.41690	desmocollin 3	112.17	19.00
	418678	NM_001327	Hs.87225	cancer/testis antigen	1.18	1.10
	418686	Z36830	Hs.87268	ennexin A8	1.54	1.98
80	418689 418712	Al360883 Z42183	Hs.274448	hypothetical protein FLJ11029 gb:HSC0BF041 normalized infant brein cDN	1.19 1.00	1.04 12.00
00	418727	AA227609	Hs.94834	ESTs	1.00	49.00
	418738	AW388633	Hs.6682	solute carrier family 7, (cationic amino	49.85	1.00
	418819	AA228776	Hs.191721	ESTs	1.00	140.00
85	418830 418882	BE513731 NM_004996	Hs.88959 He 80/33	hypothetical protein MGC4816 ATP-binding cassette, sub-family C (CFTR	20.97 57.09	23.00 35.00
05	410002	1414_004330	Hs.89433	VII Amonth coseans' servicinity of OL 11/	31.03	55.00

	W	O 02/086	443			
	418971	AA360392	Hs.87113	ESTs .	1.00	12.00
	418973	AA233056	Hs.191518	ESTs	4.89	28.00
	419078	M93119	Hs.89584	insulinoma-associated 1	1.00	10.00
_	419079	AW014836	Hs.18844	ESTs	1.09	1.98
5	419080	AW150835	Hs.18878	hypothetical protein FLJ21620	2.06	1.68
	419088	AI538323	Hs.52620	integrin, beta 8	15.60	51.00
	419092	J05581	Hs.89603	mucin 1, transmembrane	1.11	1.83
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	1.00	1.00
10	419171	NM_002846	Hs.89655 _	protein tyrosine phosphatase, receptor t	1.10	1.14
10	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	1.00	1.00 2.43
	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy	3.18	2.43 34.00
	419288	AA256106	Hs.87507	ESTs	1.00 1.00	8.00
	419335	AW960146	Hs.284137	hypothetical protein FLJ 12888	22.63	54.00
15	419354	M62839	Hs.1252	apolipoprotein H (beta-2-glycoprotein i) chromosome segregation 1 (yeast homolog)	2.50	1.98
13	419359	AL043202 D26488	Hs.90073 Hs.90315	KIAA0007 protein	1.00	7.00
	419423 419443	D62703	NS.50313	gb:HUM316G10B Clontech human aorta polyA	1.00	12.00
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	1.64	1.84
	419474	AW968619	Hs.155849	ESTs	13.63	62.00
20	419485	AA489023	Hs.99807	ESTs, Weakly similar to unnamed protein	4.27	2.26
20	419488	AA316241	Hs.90691	nucleophosmin/nucleoplasmin 3	3.66	3.63
	419502	AU076704		fibrinogen, A alpha polypeptide	13.05	115.00
	419539	AF070590	Hs.90869	Homo sapiens clones 24622 and 24623 mRNA	74.60	117.00
	419556	U29615	Hs.91093	chitinase 1 (chitotriosidase)	1.47	4.98
25	419569	A1971651	Hs.91143	jagged 1 (Alagille syndrome)	1.00	4.00
•	419594	AA013051	Hs.91417	topolsomerase (DNA) II binding protein	94.30	94.00
	419703	Al793257	Hs.128151	ESTs ·	15.26	50.00
	419721	NM_001650	Hs.288650	aquaporin 4	1.00	191.00
20	419729	AA586442	Hs.21411	gb:no53a03.s1 NCI_CGAP_SS1 Homo sapiens	1.00	59.00
30	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	2.02	1.08
	419745	AF042001	Hs.93005	slug (chicken homolog), zinc finger prot	1.00	1.00
	419752	AA249573	Hs.152618	ESTs, Moderately similar to ZN91_HUMAN Z	29.87	77.00
	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	50.99	214.00 1.00
35	419936	AJ792788	11- 00000	gb:ol91d05.y5 NCI_CGAP_Kid5 Homo sapiens	1.00 1.64	2.47
22	419937	AB040959	Hs.93836	DKFZP434N014 protein	15.72	94.00
	419983	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f	3.15	1.43
	420005	AW271106	Hs.133294 Hs.94631	ESTs brefeldin A-inhibited guanine nucleotide	12.45	39.00
•	420047 420058	Al478658 AK001423	Hs.94694	Homo sapiens cDNA FLJ10561 fis, clone NT	1.00	117.00
40	420162	BE378432	Hs.95577	cyclin-dependent kinase 4	1.43	1.21
70	420102	AW374968	Hs.348112	Human DNA sequence from clone RP5-1103G7	2.35	3.23
	420259	AF004884	Hs.96253	calcium channel, voltage-dependent, P/Q	0.77	1.15
	420281	AI623693	Hs.323494	ESTs	45.04	54.00
	420309	AW043637	Hs.21766	ESTs, Weakly similar to ALU5_HUMAN ALU S	49.22	31.00
45	420332	NM_001756	Hs.1305	serine (or cystelne) proteinase inhibito	0.05	2.82
	420380	AA640891	Hs.102406	ESTs	0.99	2.74
	420462	AF050147	Hs.97932	chondromodulin I precursor	1.00	1.00
	420520	AK001978	Hs.98510	similar to rab11-binding protein	49.74	133.00
	420552	AK000492	Hs.98806	hypothetical protein	94.65	88.00
50	420560	AW207748	Hs.59115	ESTs	1.00	17.00
•	420610	A1683183	Hs.99348	distal-less homeo box 5	1.00	13.00
	420689	H79979	Hs.88678	ESTs	50.09	95.00
	420721	AA927802	Hs.159471	ZAP3 protein	1.00	31.00
55	420759	T11832	Hs.127797	Homo sapiens cDNA FLJ11381 fis, clone HE	1.00	48.00
55	420783	Al659838	Hs.99923	lectin, galactoside-binding, soluble, 7	3.04 2.24	1.25 7.00
	420900	AL045633	Hs.44269	ESTs	1.00	8.00
	420931	AF044197	Hs.100431	small inducible cytokine B subfamily (Cy	1.00	27.00
	421002 421027	AF116030 AA761198	Hs.100932 Hs.55254	transcription factor 17 ESTs	2.87	38.00
60	421027	AI684808	Hs.197653	ESTs	1.00	46.00
00	421041	N36914	Hs.14691	ESTs, Moderately similar to 138022 hypot	1.00	98.00
	421073	NM_004689	Hs.101448	metastasis associated 1	1.34	1.46
	421110	AJ250717	Hs.1355	cathepsin E	119.47	427.00
	421133	AA401369	Hs.190721	ESTs	1.10	17.00
65	421150	AI913562	Hs.189902	ESTs	1.45	1.63
	421155	H87879	Hs.102267	lysyl oxidase	1.00	15.00
	421307	BE539976	Hs.103305	Homo saplens mRNA; cDNA DKFZp434B0425 (f		1.10
	421316	AA287203	Hs.324728	SMA5	1.00	21.00
70	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy	1.92	3.94
70	421451	AA291377	Hs.50831	ESTs	5.89	14.00
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	1.46	1.76
	421506	BE302796	Hs.105097	thymidine kinase 1, soluble	1.56	1.08
	421508	NM_004833	Hs.105115	absent in melanoma 2	5.11	5.23
75	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, I	1.00 2.63	3.00 10.58
13	421524	AA312082	Hs.105445	GDNF family receptor alpha 1	2.63 1.46	1.88
	421526	AL080121 AE026602	Hs.105460	DKFZP56400823 protein secreted frizzled-related protein 4	30.21	50.32
	421552 421574	AF026692 AJ000152	Hs.105700	defensin, bela 2	1.67	1.74
	421574 421582	AJ000152 AJ910275	Hs.105924	trefoil factor 1 (breast cancer, estroge	1.23	1.00
80	421633	AF121860	Hs.106260	sorting nexin 10	1.00	116.00
55	421659	NM_014459	Hs.106511	protocadherin 17	0.05	6.33
	421677	H64092	Hs.38282	ESTs	1.31	1.42
	421753	BE314828	Hs.107911	ATP-binding cassette, sub-family B (MDR/	1.41	1.20
	421773	W69233	Hs.112457	ESTs	1.12	1.14
85	421777	BE562088	Hs.108196	HSPC037 protein	1.97	1.29
				•		

	W	O 02/086	443			
	421800	AA298151	Hs.222969	ESTs	1.03	1.30
	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	1.88 11.84	1.59 22.80
	421896 421928	N62293 AF013758	Hs.45107 Hs.109643	ESTs polyadenylate binding protein-interactin	45.89	90.00
5	421931	NM_000814	Hs.1440	gamma-aminobutyric acid (GABA) A recepto	1.13	1.49
•	421948	L42583	Hs.334309	keratin 6A	51.83	20.25
	421975	AW961017	Hs.6459	hypothetical protein FLJ11856	1.17	1.15
	422026	U80736	Hs.110826	trinucleotide repeat containing 9	1.00 67.61	52.00 62.00
10	422094 422095	AF129535 AI868872	Hs.272027 Hs.282804	F-box only protein 5 hypothetical protein FLJ22704	4.37	2.34
10	422109	S73265	Hs.1473	gastrin-releasing peptide	4.18	95.50
	422128	AW881145		gb:QV0-OT0033-010400-182-a07 OT0033 Homo	40.89	71.00
	422129	AU076635	Hs.1478	serine (or cysteine) proteinase inhibito	1.13	1.38
15	422134	AW179019	Hs.112110	mitochondrial ribosomal protein L42 protease inhibitor 3, skin-derived (SKAL	41.59 2.37	96.00 1.10
13	422158 422168	L10343 AA586894	Hs.112341 Hs.112408	S100 calcium-binding protein A7 (psorias	3.29	1.68
	422278	AF072873	Hs.114218	frizzled (Drosophila) homolog 6	4.93	5.73
	422282	AF019225	Hs.114309	apolipoprotein L	1.49	1.71
20	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.carevis	25.99	10.91
20	422310	AA316622	Hs.98370	cytochrome P450, subfamily IIS, polypept	1.54 1.15	1.41 1.78
	422311 422330	AF073515 D30783	Hs.114948 Hs.115263	cytokine receptor-like factor 1 epiregulin	1.00	112.00
	422364	AF067800	Hs.115515	C-type (calcium dependent, carbohydrate-	9.39	60.00
	422406	AF025441	Hs.116206	Opa-interacting protein 5	18.33	53.00
25	422424	AI186431	Hs.296638	prostate differentiation factor	1.71	3.21
	422440	NM_004812	Hs.116724	aldo-keto reductase family 1, member B10	47.53 72.69	32.00
	422487	AJ010901 AU076442	Hs.198267 Hs.117938	mucin 4, tracheobronchial collagen, type XVII, alpha 1	73.68 173.97	35.54 26.00
	422515	AW500470	Hs.117950	multifunctional polypeptide similar to S	4.68	2.92
30	422656	AI870435	Hs.1569	LIM homeobox protein 2	1.00	1.00
	422737	M26939	Hs.119571	collagen, type III, alpha 1 (Ehlers-Dani	3.89	4.55
•	422756	AA441787	Hs.119689	glycoprotein hormones, alpha polypeptide	1.05	1.46
	422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	3.88 99.56	1.53 53.00
35	422809 422867	AK001379 L32137	Hs.121028 Hs.1584	hypothetical protein FLJ10549 cartilage oligomeric matrix protein (pse	1.69	3.17
55	422938	NM_001809	Hs.1594	centromere protein A (17kD)	70.46	61.00
	422956	BE545072	Hs.122579	ECT2 protein (Epithelial cell transformi	77.74	3.00
	422960	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)	5.88	8.55
40	422963	AA401369	Hs.190721	ESTs	171.41 2.12	17.00 1.62
40	422976 422981	AU076657 AF026445	Hs.1600 Hs.122752	chaperonin containing TCP1, subunit 5 (e TATA box binding protein (TBP)-associate	10.49	35.00
•	422986	AA319777	Hs.221974	ESTs	12.40	32.47
	423034	AL119930		gb:DKFZp761A092_r1 761 (synonym: hamy2)	16.41	60.00
45	423049	X59373	Hs.188023	ESTs, Moderately similar to HXDA_HUMAN H	1.00	1.00
45	423081	AF262992	Hs.123159	sperm associated antigen 4	1.82 1.14	2.96 1.53
	423184 423217	NM_004428 NM_000094	Hs.1624 Hs.1640	ephrin-A1 collagen, type VII, alpha 1 (epidermolys	2.14	1.69
	423248	AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	7.18	14.00
	423309	BE006775	Hs.126782	sushi-repeat protein	21.90	64.00
50	423361	AW170055	Hs.47628	ESTs	1.00	1.00
	423453	AW450737	Hs.128791	CGI-09 protein	55.52 0.88	66.00 1.17
	423511 423516	AF036329 AB007933	Hs.129715 Hs.129729	gonadotropin-releasing hormone 2 ligand of neuronal nitric oxide synthase	1.76	5.40
	423551	AA327598	Hs.233785	ESTs	3.54	4.33
55	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	1.00	50.00
	423575	C18863	Hs.163443	Homo sapiens cDNA FLJ11576 fis, clone HE	38.88	70.00
	423624	AI807408	Hs.166368	ESTs .	1.00	67.00
	423634 423642	AW959908 AW452650	Hs.1690 Hs.157148	heparin-binding growth factor binding pr hypothetical protein MGC13204	76.02 19.14	1.00 58.00
60	423662	AA642452	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	3.61	13.57
•	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	240.73	40.00
	423698	AA329796	Hs.1098	DKFZp434J1813 protein	1.00	59.00
	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	4.20	1.00
65	423761	NM_006194	Hs.132576 Hs.236204	paired box gene 9 nuclear pore complex protein	1.00 7.18	1.00 6.64
05	423787 423816	AJ295745 AF151064	NS.230204	hypothetical protein	1.00	44.00
	423826	U20325	Hs.1707	cocaine- and amphetamine-regulated trans	1.00	1.00
	423849	AL157425	Hs.133315	Homo saplens mRNA; cDNA DKFZp761J1324 (f	1.00	1.00
70	423887	AL080207	Hs.134585	DKFZP434G232 protein	1.00	1.00
70	423934	U89995	Hs.159234	forkhead box E1 (thyroid transcription f	31.33 5.81	31.00 10.87
	423954 423961	AW753164 D13666	Hs.288604 Hs.136348	KIAA1632 protein osteoblast specific factor 2 (fasciclin	3.55	3.30
	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	233.42	68.00
	424016	AW163729	Hs.6140	hypothetical protein MGC15730	0.93	1.01
75	424028	AF055084	Hs.153692	Homo sapiens cDNA FLJ14354 fis, clone Y7	21.30	52.00
	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	1.00 21.91	1.00 70.00
	424086 424098	Al351010 AF077374	Hs.102267 Hs.139322	lysyl oxidase small proline-rich protein 3	137.82	54.00
	424120	T80579	Hs.290270	ESTs	1.00	1.00
80	424165	AW582904	Hs.142255	islet amyloid polypeptide	1.00	34.00
	424200	AA337221		gb:EST41944 Endometrial tumor Homo saple	13.06	48.00
	424279	L29306	Hs.171814	tryptophan hydroxylase (tryptophan 5-mon	1.00 164 FR	1.00
	424308 424326	AW975531 NM_014479	Hs.154443 Hs.145296	minichromosome maintenance deficient (S. distintegrin protease	164.58 53.72	87.00 302.00
85	424340	AA339036	Hs.7033	ESTs	0.88	1.15
				•		

	W	O 02/086	443			
	424351	BE622117	Hs.145567	hypothetical protein	0.93	1.03
	424364 424381	AW383226 AA285249	Hs.201189 Hs.146329	ESTs, Wealthy similar to G01763 atrophin- protein kinase Chk2	7.02 95.55	3.24 92.00
	424361	NM_005209	Hs.146549	crystallin, beta A2	1.63	3.25
5	424420	BE614743	Hs.146588	prostaglandin E synthase	1.63	1.33
	424441	X14850	Hs.147097	H2A histone family, member X	1.82	1.29
	424502	AF242388	Hs.149585	lengsin	1.00 1.02	1.00 2.24
	424503 424513	X06256 BE385864	Hs.149609 Hs.149894	Integrin, alpha 5 (fibronectin receptor, mitochondrial translational initiation f	1.02	17.00
10	424539	L02911	Hs.150402	Activin A receptor, type I (ACVR1) (ALK	32.46	108.00
- •	424568	AF005418	Hs.150595	cytochrome P450, subfamily XXVIA, polype	3.40	2.58
	424602	AK002055	Hs.151046	hypothetical protein FLJ11193	31.87 3.58	25.00 2.37
	424629 424645	M90656 NM_014682	Hs.151393 Hs.151449	glutamate-cysteine ligase, catalytic sub KIAA0535 gene product	1.00	1.00
15	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	2.12	2.23
	424717	AW992292	Hs.152213	wingless-type MMTV Integration site fami	1.00	1.00
	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	56.19	12.00
	424840	D79987	Hs.153479	extra spindle poles, S. cerevisiae, homo	2.65 1.23	1.30 1.05
20	424867 424905	AI024860 NM_002497	Hs.153591 Hs.153704	No!56 (D. melanogaster)-like protein NIMA (never in mitosis gene a)-related k	21.35	1.00
20	424979	D87989	Hs.154073	UDP-galactose transporter related	1.36	1.35
	424999	AW953120		gb:EST365190 MAGE resequences, MAGB Homo	1.24	1.41
	425048	H05468	Hs.164502	ESTs	1.00 7.46	11.00 87.00
25	425057 425081	AA826434 X74794	Hs.1619 Hs.154443	achaete-scute complex (Drosophila) homol minichromosome maintenance deficient (S.	2.52	3.82
25	425118	AU076611	Hs.154672	methylene tetrahydrofolate dehydrogenase	4.84	4.03
•	425159	NM_004341	Hs.154868	carbamoyl-phosphate synthetase 2, aspart	3.62	2.73
	425202	AW962282	Hs.152049	ESTs, Weakly similar to 138022 hypotheti	1.00	53.00
30	425234 425236	AW152225 AW067800	Hs.165909 Hs.155223	ESTs, Weakly similar to 138022 hypotheti stanniocalcin 2	100.77 3.30	44.00 2.90
50	425245	Al751768	Hs.155314	KIAA0095 gene product	1.91	2.32
	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysln	1.41	1.49
	425266	J00077	Hs.155421	alpha-fetoprotein	1.00	68.00
35	425274	BE281191	Hs.155462	minichromosome maintenance deficient (mi protein kinase, DNA-activated, catalytic	1.97 141.49	1.63 123.00
22	425322 425349	U63630 AA425234	Hs.155637 Hs.79886	ribose 5-phosphate isomerase A (ribose 5	1.00	84.00
	425371	D49441	Hs.155981	mesothelin	0.87	1.59
	425397	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	14.90	5.76
40	425420	BE536911	Hs.234545	hypothetical protein NUF2R	1.00 10.58	1.00 9.74
40	425424 425483	NM_004954 AF231022	Hs.157199 Hs.158159	ELKL motif kinase FAT turnor suppressor (Drosophila) homolo	1.74	1.40
		AW162943	Hs.250618	UL16 binding protein 2	1.49	1.14
	425580	L11144	Hs.1907	galanin	53.29	233.00
45	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	33.45 1.00	1.00 55.00
43	425692 425695	D90041 NM_005401	Hs.155956 Hs.159238	N-acetyltransferase 1 (arylamine N-acety protein tyrosine phosphatase, non-recept	1.00	10.00
	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg	1.00	41.00
•	425776	U25128	Hs.159499	parathyroid hormone receptor 2	1.00	48.00
50	425810	A1923627	Hs.31903	ESTS	27.39 1.99	98.00 1.58
50	425811 425849	AL039104 Al077288	Hs.159557 Hs.296323	karyopherin alpha 2 (RAG cohort 1, impor serum/glucocorticoid regulated kinase	71.16	3.42
	425852	AK001504	Hs. 159651	death receptor 6, TNF superfamily member	1.35	1.34
	426067	AA401369	Hs.190721	ESTs	1.01	17.00
55	426088	AF038007	Hs.166196	ATPase, Class I, type 8B, member 1	26.26	47.00 2.90
33	426215	AW067800	Hs.155223 Hs.154299	stanniocalcin 2 Human proteinase activated receptor-2 mR	1.91 22.40	25.00
	426227 426269	U67058 H15302	Hs.168950	Homo sapiens mRNA; cDNA DKFZp566A1046 (f	1.00	1.00
	426283	NM_003937	Hs.169139	kynureninase (L-kynurenine hydrolase)	91.39	229.00
60	426329	AL389951	Hs.271623	nucleoporin 50kD	4.34	4.08 1.00
60	426427 426432	M86699 AF001601	Hs.169840 Hs.169857	TTK protein kinase paraoxonase 2	7.02 1.16	1.68
	426440	BE382756	Hs.169902	solute carrier femily 2 (facilitated glu	2.59	1.71
	426459	AF151812	Hs.169992	hypothetical 43.2 Kd protein	1.56	1.66
65	426471	M22440	Hs.170009	transforming growth factor, alpha	20.60	26.00
65	426496	D31765 AA401369	Hs.170114 Hs.190721	KIAA0061 protein ESTs	. 9.81 19.23	22.00 17.00
	426501 426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	103.74	41.00
	426536	Al949749	Hs.44441	ESTs	4.65	23.00
70	426572	AB037783	Hs.170623	hypothetical protein FLJ11183	1.00	43.00
70	426682	AV650038	Hs.2056	UDP glycosyltransferase 1 family, polype PCTAIRE protein kinase 1	160.06 1.51	8.00 1.35
	426691 426746	NM_006201 J03626	Hs.171834 Hs.2057	uridine monophosphate synthetase (crotat	2.13	1.68
	426752	X69490	Hs.172004	tian	0.02	5.14
75	426784	U03749	Hs.172216	chromogranin A (parathyroid secretory pr	1.72	1.71
<i>75</i>	426807	AA385315	Hs.156682	ESTs solute carrier family 12 (potassium/chlo	1.30 1.47	1.64 1.53
	426812 426814	AF105365 AF036943	Hs.172613 Hs.172619	myelin transcription factor 1-like	1.00	1.00
	426831	BE296216	Hs,172673	S-adenosylhomocysteine hydrotase	1.51	1.25
00	426897	AA401369	Hs.190721	EST8	141.56	17.00
80	426925	NM_001196	Hs.315689	Homo saplens cDNA: FLJ22373 fis, clone H	32.61 2.65	38.00 3.16
	426935 426964	NM_000088 AA393739	Hs.172928 Hs.287416	collagen, type I, alpha 1 Homo sapiens cDNA FLJ11439 fis, clone HE	1.97	3.49
	426966	Al493134	. 10.201710	scleroslin	1.00	1.00
0.5	426991	AK001536		Homo sapiens cDNA FLJ10674 fis, clone NT	3.39	2.28
85	427099	AB032953	Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	4.24	17.00

	**/	A 02/09/	442			
	427239	O 02/086 BE270447	44.3 Hs.174070	ubiquitin carrier protein	1.58	1.05
	427260	AA663848	15.11 10.0	gb:ae70b06.s1 Stratagene schizo brain S1	1.34	1.60
	427281	AA906147	Hs.102869	ESTs	1.00	66.00
5	427335	AA448542	Hs.251677	G antigen 7B	51.83 1.17	4.00 1.95
5	427354 427356	T57896 AWD23482	Hs.191095 Hs.97849	ESTs ESTs	7.31	41.00
	427376	AA401533	Hs.19440	ESTs	1.00	57.00
	427383	NM_005411	Hs.177582	surfactant, pulmonary-associated protein	0.42	1.32
10	427427	AF077345	Hs.177936	lectin, superfamily member 1 (cartilage- SPANX family, member C	1.00 1.00	20.00 1.00
10	427441 427445	AA412605 X80818	Hs.343879 Hs.178078	glutamate receptor, metabotropic 4	0.97	1.03
	427505	AA361562	Hs.178761	26S proteasome-associated pad1 homolog	4.60	4.04
	427510	Z47542	Hs.179312	small nuclear RNA activating complex, po	22.00	45.00
15	427528	AU077143	Hs.179565	minichromosome maintenance deficient (S.	97.45 1.50	92.00 3.24
13	427546 427562	AA188763 R56424	Hs.36793 Hs.26534	hypothetical protein FLJ23188 ESTs	6.81	40.00
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	69.91	62.00
	427660	Al741320	Hs.114121	Homo sapiens cDNA: FLJ23228 fis, clone C	2.70	49.00
20	427666 427668	Al791495 AA298760	Hs.180142 Hs.180191	caimodulin-like skin protein hypothetical protein FLJ14904	1.37 29,55	1.88 67.00
20	427677	NM_007045	Hs.180296	FGFR1 oncogene partner	3.52	2.63
	427701	AA411101	Hs.243886	nuclear autoantigenic sperm protein (his	7.41	34.00
	427711	M31659	Hs.180408	solute carrier family 25 (mitochondrial	15.84	70.00 4.52
25	427719 427722	Al393122 AK000123	Hs.134726 Hs.180479	ESTs hypothetical protein FLJ20116	7.03 2.92	1.74
23	427747	AW411425	Hs.180655	serine/threonine kinase 12	1.76	1.26
	427912	AL022310	Hs.181097	tumor necrosis factor (ligand) superfami	9.63	59.00
	427961	AW293165	Hs.143134	ESTS	41.97 23.82	118.00 1.00
30	428004 428023	AA449563 AL038843	Hs.151393	glutamate-cysteine ligase, catalylic sub Homo sapiens cDNA: FLJ23602 fis, clone L	1.40	1.33
50	428046	AW812795	Hs.337534	ESTs, Moderately similar to 138022 hypot	96.28	167.00
	428093	AW594506	Hs.104830	ESTs	1.25	1.29
	428098	AU077258	Hs.182429 Hs.26912	protein disulfide isomerase-related prot	1.86 1.00	1.60 42.00
· 35	428129 428169	Al244311 Al928984	Hs.182793	ESTs golgi phosphoprotein 2	2.76	2.11
	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	1.00	1.00
	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	85.59 8.57	181.00 21.64
	428242 428330	H55709 L22524	Hs.2250 Hs.2256	leukemia inhibitory factor (cholinergic matrix metalloproteinase 7 (matrilysin,	8.57 7.77	15.90
40	428434	A1909935	Hs.65551	Homo saplens, Similar to DNA segment, Ch	0.58	1.43
	428450	NM_014791	Hs.184339	KIAA0175 gene product	237.53	204.00
	428471	X57348	Hs.184510	stratifin	6.00 56.54	4.60 16.00
•	428479 428484	Y00272 AF104032	Hs.334562 Hs.184601	cell division cycle 2, G1 to S and G2 to solute carrier family 7 (cationic amino	3.53	2.15
45	428505	AL035461	Hs.2281	chromogranin B (secretogranin 1)	1.00	1.00
	428532	AF157326	Hs.184786	TBP-Interacting protein	1.00	58.00
	428645 428664	AA431400 AK001666	Hs.98729 Hs.189095	ESTs, Weakly similar to 2017205A dihydro similar to SALL1 (sal (Drosophila)-like	1.00 1.00	16.00 1.00
	428698	AA852773	Hs.334838	KIAA1866 protein	187.37	255.00
50	428728	NM_016625	Hs.191381	hypothetical protein	47.24	80.00
	428748	AW593206	Hs.98785	Ksp37 protein	1.00 1.06	87.00 1.13
	428758 428771	AA433988 AB028992	Hs.98502 Hs.193143	hypothetical protein FLJ14303 KIAA1069 protein	1.98	92.00
	428801	AW277121	Hs.254881	ESTs	1.67	6.15
55	428810	AF068236	Hs.193788	nitric oxide synthase 2A (inducible, hep	1.03	1.27
	428839 428845	. A1767756 AL157579	Hs.82302 Hs.153610	Homo sapiens cDNA FLJ14814 fis, clone NT KIAA0751 gene product	124.17 1.00	43.00 1.00
	428959	AF100779	Hs.194680	WNT1 inducible signaling pathway protein	15.16	27.00
	428969	AF120274	Hs.194689	artemin	1.36	1.24
60	429038	AL023513	Hs.194766	seizure related gene 6 (mouse)-like	0.97 6.82	3.31 16.47
	429065 429164	AI753247 AI688663	Hs.29643 Hs.116586	Homo sapiens cDNA FLJ13103 fis, clone NT ESTs	19.08	67.00
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	16.18	105.00
65	429183	AB014604	Hs.197955	KIAA0704 protein	79.72	104.00
65	429201 429211	X03178	Hs.198246 Hs.198249	group-specific component (vitamin D bind gap junction protein, beta 5 (connexin 3	1.00 1.33	1.00 1.09
	429220	AF052693 AW207206	113.130243	ESTs	1.00	7.00
	429228	AI553633	Hs.326447	ESTs	39.47	29.25
70	429259	AA420450	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	2.01	1.18 1.00
70	429263 429276	AA019004 AF056085	Hs.198396 Hs.198612	ATP-binding cassette, sub-family A (ABC1 G protein-coupled receptor 51	1.07 3.70	142.00
	429359	W00482	Hs.2399	matrix metalloproteinase 14 (membrane-in	1.30	1.94
	429412	NM_006235	Hs.2407	POU domain, class 2, associating factor	94.09	86.00
75	429413	NM_014058	Hs.201877	DESC1 protein	41.91 12.19	10.00 1.00
15	429486 429504	AF155827 X99133	Hs.203963 Hs.204238	hypothetical protein FLJ10339 lipocalin 2 (oncogene 24p3)	1.61	1.08
	429538	BE182592	Hs.11261	small proline-rich protein 2A	4.43	2.90
	429547	AA401369	Hs.190721	ESTs	1.06	17.00
80	429551 429563	AW450624 BE619413	Hs.220931 Hs.2437	ESTs eukaryotic translation initiation factor	2.89 1.49	65.00 1.37
50	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	61.86	100.00
	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas	1.59	1.69
	429612	AF062649	Hs.252587	pituitary tumor-transforming 1	2.78 1.00	1.74 1.00
85	429616 429656	A1982722 X05608	Hs.120845 Hs.211584	ESTs neurofilament, light polypeptide (68kD)	1.00	4.00
55						

	•					
		O 02/086			CO.05	404.00
	429663	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic, tumor necrosis factor receptor superfami	69.95 1.25	104.00 1.21
	429736 429782	AF125304 NM_005754	Hs.212680 Hs.220689	Ras-GTPase-activating protein SH3-domain	1.00	7.00
	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	44.00	1.00
5	429918	AW873986	Hs.119383	ESTs	1.00	78.00
	429978	AA249027		ribosomal protein S6	1.98	3.09 48.00
	429986	AF092047	Hs.227277 Hs.152812	sine oculis homeobox (Drosophila) homolo ESTs	1.00 69.27	59.00
	430044 430114	AA464510 AA847744	Hs.99640	ESTs	1.00	1.00
10	430134	BE380149	Hs.105223	ESTs, Weakly similar to T33188 hypotheti	1.00	51.00
	430147	R60704	Hs.234434	hairy/enhancer-of-split related with YRP	1.10	2.22
	430287	AW182459	Hs.125759	ESTs, Weakly similar to LEU5_HUMAN LEUKE	1.00	127.00
	430294	AI538226	Hs.32976	guanine nucleotide binding protein 4	3.80 1.00	1.47 35.00
15	430300 430315	U60805 NM_004293	Hs.238648 Hs.239147	oncostatin M receptor guanine deaminase	92,31	28.00
13	430337	M36707	Hs.239600	calmodulin-like 3	1.18	1.08
	430378	Z29572	Hs.2556	tumor necrosis factor receptor superfami	5.28	66.00
	430388	AA356923	Hs.240770	nuclear cap binding protein subunit 2, 2	16.76	38.00
20	430393	BE185030	Hs.241305	estrogen-responsive B box protein	1.63	1.50 1.00
20	430439	AL133561	U- 207020	DKFZP434B061 protein	1.00 1.64	2.12
	430451 430454	AA836472 AW469011	Hs.297939 Hs.105635	cathepsin B ESTs	63.35	44.00
	430466	AF052573	Hs.241517	polymerase (DNA directed), theta	2.47	1.91
	430481	AA479678	Hs.203269	ESTs, Moderately similar to ALU8_HUMAN A	1.00	31.00
25	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	12.28	41.00
	430508	Al015435	Hs.104637	ESTs	4.75	7.27
	430533	AA480895	Hs.57749	ESTs, Weakly similar to T17288 hypotheti	1.00 1.00	1.00 1.59
	430563 430677	AF146074 Z26317	Hs.108660 Hs.94560	ATP-binding cassette, sub-family C (CFTR desmoglein 2	1.72	1.30
30	430678	AA401369	Hs.190721	ESTs	0.90	17.00
•	430686	NM_001942	Hs.2633	desmoglein 1	1.00	1.00
	430788	Al742925	Hs.7179	ESTs, Weakly similar to 2004399A chromos	1.62	1.84
•	430890	X54232	Hs.2699	glypican 1	1.58 90.28	1.40 132.00
35	430935 430985	AW072916 AA490232	Hs.27323	zinc finger protein 131 (clone pHZ-10) ESTs, Weakly similar to I78885 serine/th	0.94	1.28
33	431009	BE149762	Hs.48956	gap Junction protein, beta 6 (connexin 3	60.25	28.00
•	431089	BE041395	110110000	ESTs, Weakly similar to unknown protein	23.32	941.00
	431092	Al332764	Hs.125757	ESTs	13.46	63.00
40	431124	AF284221	Hs.59506	doublesex and mab-3 related transcriptio	49.43	62.00
40	431164	AA493650	Hs.94367	Homo sapiens cDNA: FLJ23494 fis, clone L	0.44 182.26	2.20 101.00
	431211 431221	M86849 AW207837	Hs.323733 Hs.286145	gap junction protein, beta 2, 26kD (conn SRB7 (suppressor of RNA polymerase B, ye	4.15	13,97
	431277	AA501806	Hs.345824	ESTs	1.00	86.00
	431322	AW970622	. 1010 1004 1	gb:EST382704 MAGE resequences, MAGK Homo	40.55	200.00
45	431342	AW971018	Hs.21659	ESTs	1.00	53.00
	431384	BE158000	Hs.285026	gb:MR2-HT0377-150200-202-e03 HT0377 Homo	0.94	1.14
	431462	AW583672	Hs.256311 Hs.298312	granin-like neuroendocrine peptide precu hypothetical protein DKFZp434A1315	1.30 3.90	1.25 26.00
	431494 431515	AA991355 NM_012152	Hs.258583	endolhelial differentiation, lysophospha	1.41	1.87
50	431548	AIB34273	Hs.9711	novel protein	5.66	15.00
	431630	NM_002204	Hs.265829	integrin, alpha 3 (antigen CD49C, alpha	0.99	1.44
	431745	AW972448	Hs.163425	ESTs	0.99	3.51
	431770	BE221880	Hs.268555 Hs.271387	5'-3' exoribonuclease 2	67.12 3.36	91.00 4,71
55	431830 431846	Y16645 BE019924	Hs.271580	small inducible cytokine subfamily A (Cy uroplakin 1B	4.49	2.51
55	431890	X17033	Hs.271986	integrin, alpha 2 (CD49B, alpha 2 subuni	2.20	3.32
	431934	AB031481	Hs.272214	STG protein	1.01	1.04
	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	51.17	46.35
60 .	432006	AL137382	Hs.272320	Homo sapiens mRNA; cDNA DKFZp434L1226 (f	0.94 0.94	1.65 47.00
00 .	432023 432201	R43020 Al538613	Hs.236223 Hs.298241	EST Transmembrane protease, serine 3	1.10	2.24
	432210	Al567421	Hs.273330	Homo sapiens, clone IMAGE:3544662, mRNA,	1.42	1.45
	432226	AW182766	Hs.273558	phosphate cytidylyltransferase 1, cholin	1.00	1.00
, e	432239	X81334	Hs.2936	matrix metalloproteinase 13 (collagenase	18.67	1.00
65	432265	BE382679	Hs.285753	SCG10-like-protein	- 1.09 40.98	1.21 58.00
	432281	AK001239 AK001106	Hs.274263 Hs.274419	hypothetical protein FLJ10377 hypothetical protein FLJ10244	1.00	214.00
	432365 432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PL	157.34	37.00
	432375	BE536069	Hs.2962	S100 calcium-binding protein P	1.65	1.06
70	432407	AA221036		gb:zr03f12.r1 Stratagene NT2 neuronal pr	73.71	75.00
	432441	AW292425	Hs.163484	ESTs	56.35	72.00
	432489	A1804855	Hs.207530	ESTs Homo sapiens cDNA: FLJ21274 fis, clone C	1.00 137.72	24.00 98.00
	432543 432552	AA552690 Al537170	Hs.152423 Hs.173725	ESTS, Weakly similar to ALU8_HUMAN ALU S	1.00	31.00
75	432583	AW023624	Hs.162282	potassium channel TASK-4; potassium chan	0.27	35.18
	432606	NM_002104	Hs.3066	granzyme K (serine protease, granzyme 3;	2.87	6.22
	432625	A1243596	Hs.94830	ESTs, Moderately similar to T03094 A-kin	26.63	56.00
	432653	N62096	Hs.293185	ESTs, Wealdy similar to JC7328 amino aci	1.92 1.00	5.29 48.00
80	432677 432715	NM_004482	Hs.278611 Hs.200483	UDP-N-acetyl-alpha-D-galactosamine:polyp ESTs, Wealdy similar to KIAA1074 protein	45.13	31.00
30	432713	AA247152 NM_014075	Hs.336938	Homo saplens PR00593 mRNA, complete cds	1.00	68.00
	432788	AA521091	Hs.178499	Homo saplens cDNA: FLJ23117 fis, clone L	2.69	3.67
	432842	AW674093	Hs.334822	hypothetical protein MGC4485	1.22	1.34
85	432867	AW016936	Hs.233364	ESTs DBO0327 protein	1.00 10.25	1.00 6.62
OJ.	432917	NM_014125	Hs.241517	PRO0327 protein	10.20	0.02

		O 02/086				
	432920	U37689	Hs.3128	polymerase (RNA) II (DNA directed) polyp	1.44 154.79	1.30 85.64
	433001 433023	AF217513 AW864793	Hs.279905 Hs.87409	clone HQ0310 PR00310p1 thrombospondin 1	20.96	100.00
_	433042	AW193534	Hs.281895	Homo sapiens cDNA FLJ11660 fis, clone HE	1.00	10.00
5	433091	Y12642	Hs.3185	lymphocyte antigen 6 complex, locus D	1.20	1.09
	433159	AB035898	Hs.150587	kinesin-like protein 2	13.82 1.00	39.00 69.00
	433183 433258	AF231338 AA622788	Hs.222024 Hs.203613	transcription factor BMAL2 ESTs, Weakly similar to ALUB_HUMAN !!!!	1.00	1.25
	433409	AI278802	Hs.25661	ESTs	44.81	117.00
10	433437	U20536	Hs.3280	caspase 6, apoptosis-related cysteine pr	70.39	105.00
	433485	Al493076	Hs.201967	aldo-keto reductase family 1, member C2	11.55 8.66	2.00 55.00
	433537 433547	A1733692 W04978	Hs.112488 Hs.303023	ESTs beta tubulin 1, class VI	25.16	83.00
	433556	W56321	Hs.111460	calcium/calmodulin-dependent protein kin	1.00	19.00
15	433647	AA603367	Hs.222294	ESTs	20.30	49.00
	433658	L03678	Hs.156110	invnunoglobulin kappa constant	5.92	10.03
	433800 433819	AI094221 AW511097	Hs.135150 Hs.112765	lung type-I cell membrane-associated gly ESTs	2.29 3.71	2.22 8.00
	433862	D86960	Hs.3610	KIAA0205 gene product	62.08	104.00
20	433980	AA137152	Hs.286049	phosphoserine aminotransferase	108.91	47.00
	434088	AF116677	Hs.249270	hypothetical protein PRO1966	1.00	1.00
	434094 434105	AA305599 AW952124	Hs.238205 Hs.13094	hypothetical protein PRO2013 presentlins associated rhomboid-like pro	121.27 1.22	87.00 1.23
	434217	AW014795	Hs.23349	ESTs	14.11	57.00
25	434340	Al193043	Hs.128685	ESTs, Weakly similar to T17226 hypotheti	2.10	2.56
	434360	AA401369	Hs.190721	ESTs	40.98	17.00
	434414 434424	Al798376 Al811202	Hs.325335	gb:tr34b07.x1 NCI_CGAP_Ov23 Homo sapiens Homo sapiens cDNA: FLJ23523 fis, clone L	1.48 1.00	1.56 64.00
	434467	BE552368	Hs.231853	Homo sapiens cDNA FLJ 13445 fis, clone PL	54.91	85.00
30	434551	BE387162	Hs.280858	ESTs, Highly similar to A35661 DNA excis	2.46	2.00
	434627	Al221894	Hs.39311	ESTs	1.00	1.00 23.00
	434699 434769	AA643687 AA648884	Hs.149425 Hs.134278	Homo sapiens cDNA FLJ1980 fis, clone HE Homo sapiens cDNA FLJ12676 fis, clone NT	1.00 7.08	56.00
	434792	AA649253	Hs.132458	ESTs	8.52	44.00
35	434808	AF155108	Hs.256150	Homo sapiens, Similar to RIKEN cDNA 2810	11.33	1.00
	434828	D90070	Hs.96	phorbol-12-myristate-13-acetate-induced	1.00 1.25	1.00 1.29
	434876 434891	AF160477 AA814309	Hs.61460 Hs.123583	lg superfamily receptor LNIR ESTs	1.00	6.00
	434928	AW015595	Hs.4267	Homo sapiens clones 24714 and 24715 mRNA	1.00	1.00
40	435013	H91923	Hs.110024	Target CAT	1.26	1.10
	435066	BE261750	Hs.4747	dyskeratosis congenita 1, dyskerin	1.69 1.00	1.37 1.00
	435087 435099	AW975241 AC004770	Hs.23567 Hs.4756	ESTs flap structure-specific endonuclease 1	2.90	1.93
	435159	AA668879	Hs.116649	ESTs	1.00	1.00
45	435205	X54136	Hs.181125	Immunoglobulin tambda locus	1.02	1.46
	435232	NM_001262	Hs.4854	cyclin-dependent kinase inhibitor 2C (p1	2.04 27.58	2.70 139.00
	435304 435313	H10709 A!769400	Hs.269524 Hs.189729	ESTs ESTs	1.00	14.00
	435505	AF200492	Hs.211238	interleukin-1 homolog 1	1.00	38.00
50	435509	Al458679	Hs.181915	ESTs	1.00	1.00
•	435525 435532	Al831297 AW291488	Hs.123310 Hs.117305	ESTs Homo sapiens, clone IMAGE:3682908, mRNA	1.00 1.00	56.00 2.00
	435550	A1224456	Hs.324507	H.sapiens polyA site DNA	3.42	3.92
~-	435602	AF217515	Hs.283532	uncharacterized bone marrow protein BM03	3.95	1.80
55	435766	R11673	Hs.186498	ESTs	1.00 23.68	28.00 42.00
	435793 436069	AB037734 Al056879	Hs.4993 Hs.263209	KIAA1313 protein - ESTs	1.00	58.00
	436170	AW450381	Hs.14529	ESTs	1.00	18.00
60	436211	AK001581	Hs.334828	hypothetical protein FLJ10719; KIAA1794	5.84	22.00
60	436213 436217	AA325512 T53925	Hs.71472 Hs.107	hypothetical protein FLJ10774; KIAA1709 fibrinogen-like 1	1.42 57.97	1.27 31.00
	436238	AK002163	Hs.301724	hypothetical protein FLJ11301	2.51	1.71
	436251	BE515065	Hs.296585	nucleolar protein (KKE/D repeat)	2.33	1.64
65	436291	BE568452	Hs.344037	protein regulator of cytokinesis 1	108.99	52.00 2.81
05	436302 436396	AL355841 AW992292	Hs.99330 Hs.152213	hypothetical protein FLJ23588 wingless-type MMTV integration site fami	0.75 60.01	1.00
	436414	BE264633	Hs.143638	WD repeat domain 4	2.50	2.19
	436419	Al948626	Hs.171356	ESTs	0.95	1.33
70	436443	AW138211	Hs.128746	ESTs ESTs	1.12 1.00	9.26 1.00
70	436474 436481	AJ270693 AA379597	Hs.199887 Hs.5199	HSPC150 protein similar to ubiquitin-con	3.28	1.56
	- 436486	AA742221	Hs.120633	ESTs	1.00	19.00
	436511	AA721252	Hs.291502	ESTs	16.76	14.00
75	436553	X57809 W15573	Hs.181125 Hs.5027	irnmunoglobulin lambda locus ESTs, Weakly similar to A47582 B-cell gr	1.08 19.20	1.74 9.75
, 5	436557 436608	AA628980		down syndrome critical region protein DS	33.92	25.00
	436667	AW025183	Hs.127680	ESTs	0.89	1.19
	436771	AW975687	Hs.292979	ESTS	1.00	10.00
80	436839 436887	AA401369 AW953157	Hs.190721 Hs.193235	ESTs hypothetical protein DKFZp547D155	1.00 1.06	17.00 1.15
50	436944	AW268614	Hs.5840	ESTs	1.00	1.00
	436961	AW375974	Hs.156704	ESTs	25.13	25.00
	436972	AA284679	Hs.25640	claudin 3	1.59 2.35	1.46 1.78
85	437016 437044	AU076916 AL035864	Hs.5398 Hs.69517	guanine monphosphate synthelase cDNA for differentially expressed CO16 g	1.34	1.13
	977					

	w	O 02/086	443			
	437181	Al305615	Hs.125343	ESTs, Weakly similar to KIAA0758 protein	1.00	17.00
	437204	AL110216	Hs.22826	ESTs, Weakly similar to 155214 salivery	40.55	82.00
	437205	AL110232	Hs.279243	Homo sapiens mRNA; cDNA DKFZp564D2071 (f	1.00	112.00
_	437259	Al377755	Hs.120695	ESTs	1.00	205.00
5	437270	R18087	Hs.323769	cisplatin resistance related protein CRR	1.56 113.25	1.54
	437271	AL137445 AL359567	Hs.28846 Hs.161962	Homo sapiens mRNA; cDNA DKFZp5660134 (fr	1.82	125.00 4.57
	437370 437390	AL359367 Al125859	Hs.112607	Homo sapiens mRNA; cDNA DKFZp547D023 (fr ESTs	1.35	1.75
	437412	BE069288	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr	3.58	3.20
10	437435	Al306152	Hs.27027	hypothetical protein DKFZp762H1311	3.03	1.08
	437444	H46008	Hs.31518	ESTs	1.00	39.00
	437568	AJ954795	Hs.156135	ESTs	1.00	19.00
	437623	O63880	Hs.5719 Hs.127812	chromosome condensation-related SMC-asso ESTs, Weakly similar to T17330 hypotheti	1.95 1.00	1.57 3.00
15	437789 437814	Al581344 Al088192	Hs.135474	ESTs, Weakly similar to DDX9_HUMAN ATP-D	1.00	45.00
1.0	437840	AA884836	Hs.292014	ESTs	1.07	1.78
	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa	1.68	3.26
	437879	BE262082	Hs.5894	hypothetical protein FLJ10305	1.87	2.52
20	437915	Al637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	74.05	35.00
20	437916	BE566249	Hs.20999	hypothetical protein FLJ23142	23.15 1.00	89.00 1.00
	437937 437942	Al917222 Al888256	Hs.121655 Hs.307526	ESTs ESTs	12.28	31.00
	438091	AW373062	113.30/320	nuclear receptor subfamily 1, group 1, m	1.53	10.85
	438113	AJ467908	Hs.8882	ESTs	1.80	2.39
25	438119	AW963217	Hs.203961	ESTs, Moderately similar to AF116721 89	22.67	36.90
	438274	Al918906	Hs.55080	ESTs	1.00	1.00
	438378	AW970529	Hs.86434	hypothetical protein FLJ21816	38.92	38.00
	438403	AA806607	Hs.292206	ESTs	1.00 2.05	1.00 80.00
30	438494 438546	AA908678 AW297204	Hs.130183 Hs.125811	ESTs ·	1.00	131.00
50	438552	AJ245820	Hs.6314	type I transmembrane receptor (seizure-r	1.43	1.45
	438702	AI879064	Hs.54618	ESTs	1.00	34.00
	438724	AW612553	Hs.114670	Human DNA sequence from clone RP11-16L21	1.33	1.10
25	438746	Al885815	Hs.184727	Human melanoma-associated antigen p97 (m	2.42	1.59
35	438779	NM_003787	Hs.6414	nucleolar protein 4	1.00	18.00 2.57
	438821	AA826425	Hs.192375	ESTs ESTs	2.03 6.42	88.00
	438885 438898	Al886558 AA401369	Hs.184987 Hs.190721	ESTs	22.41	17.00
	438915	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	1.00	1.00
40	438956	W00847	Hs.135056	Human DNA sequence from clone RP5-850E9	2.20	1.88
	439000	AW979121		gb:EST391231 MAGE resequences, MAGP Homo	2.78	4.81
	439023	AA745978	Hs.28273	ESTs	1.17	1.31
	439024	R96696	Hs.35598	ESTS	1.00 1.00	28.00 67.00
45	439128 439146	Al949371 AW138909	Hs.153089 Hs.156110	ESTs immunoglobulin kappa constant	1.38	1.41
43	439223	AW238299	Hs.250618	UL16 binding protein 2	1.93	1.64
	439285	AL133916		hypothetical protein FLJ20093	46.23	139.00
	439318	AW837046	Hs.6527	G protein-coupled receptor 56	2.00	2.20
50	439343	AF086161	Hs.114611	hypothetical protein FLJ11808	6.10	7.37
50	439394	AA401369	Hs.190721	ESTS	3.39 1.83	17.00 3.07
	439410 439451	AA632012 AF086270	Hs.188746 Hs.278554	ESTs heterochromatin-like protein 1	23.28	52.00
	439452	AA918317	Hs.57987	B-cell CLL/lymphoma 11B (zinc finger pro	18.76	122.00
	439453	BE264974	Hs.6566	thyroid hormone receptor interactor 13	2.78	1.58
55	439477	W69813	Hs.58042	ESTs, Moderately similar to GFR3_HUMAN G	1.22	1.44
	439492	AF086310	Hs.103159	ESTs .	7.46	39.00
	439523	W72348	Hs.185029	ESTs	1.00 1.00	1.19
	439592 439606	AF086413	Hs.58399 Hs.58561	ESTs G protein-coupled receptor 87	33.61	1.00 1.00
60	439670	W79123 AF088076	Hs.59507	ESTs, Weakly similar to AC004858 3 U1 sm	1.00	1.00
00	439702	AW085525	Hs.134182	ESTs	4.30	10.00
	439706	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	86.55	11.00
	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	2.36	1.88
65	439750	AL359053	Hs.57664	Homo sapiens mRNA full length Insert cDN	2.02	6.08
65	439759	AL359055	Hs.67709	Homo sapiens mRNA full length insert cDN gb:Homo sapiens mRNA full length insert	1.00 7. 27	21,00 25.00
	439780 439840	AL109688 AW449211	Hs.105445	GDNF family receptor alpha 1	1.00	1.00
	439926	AW014875	Hs.137007	ESTs -	32.58	71.00
	439963	AW247529	Hs.6793	platelet-activating factor acetylhydrola	21.28	9.55
70	439979	AW600291	Hs.6823	hypothetical protein FLJ 10430	68.83	61.00
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	1.83	4.02
	440028	AW473675	Hs.125843	ESTs, Weakly similar to T17227 hypotheti	1.42	2.54 54.00
	440106 440138	AA864968 AB033023	Hs.127699 Hs.318127	KIAA1603 protein hypothetical protein FLJ10201	1.00 24.18	52.00
75	440273	AI805392	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	3.21	4.72
	440289	AW450991	Hs.192071	ESTs	38.63	113.00
	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma	62.88	147.00
	440492	R39127	Hs.21433	hypothetical protein DKFZp547J036	2.35	3.62
80	440527	AV657117	Hs.184164	ESTs, Moderately similar to S65657 alpha	10.84	57.00 2.37
ov	440659 440704	AF134160 M69241	Hs.7327 Hs.162	claudin 1 Insulin-like growth factor binding prote	3.18 2.89	2.09
	440943	AW082298	Hs.146161	hypothelical protein MGC2408	2.02	1,41
	440994	Al160011	Hs.272068	ESTs	1.29	1.14
0.5	441020	AA401369	Hs.190721	ESTs	142.99	17.00
85	441031	Al110684	Hs.7645	fibrinogen, B beta polypeplide	1.41	99.00

		O 02/086	443		440	2.00
	441128	AA570256		ESTs, Weakly similar to T23273 hypotheti	4.13 1.00	. 3.50 1.00
	441290	W27501	Hs.89605 Hs.23044	cholinergic receptor, nicotinic, alpha p RAD51 (S. cerevisiae) homotog (E coli Re	130.23	43.00
	441362 441377	BE614410 BE218239	Hs.202656	EST8	22.03	1.00
5	441390	AI692560	Hs.131175	ESTs	3.65	7.70
_	441497	R51064	Hs.23172	ESTs	1.00	1.00
	441525	AW241867	Hs.127728	ESTs	1.53	1.42
J	441553	AA281219	Hs.121298	ESTs	1.89	1.57
10	441607	NM_005010	Hs.7912	neuronal cell adhesion molecule	1.47 216.22	2.11 363.00
10	441633	AW958544	Hs.112242	normal mucosa of esophagus specific 1 Homo sapiens mRNA; cDNA DKFZp566E183 (fr	2.31	2.05
	441636 441737	AA081846 X79449	Hs.7921 Hs.7957	adenosine deaminase, RNA-specific	1.30	1.49
	441790	AA401369	Hs.190721	ESTs	44.15	17.00
	441801	AW242799	Hs.86366	ESTs	1.00	1.00
15	441919	Al553802	Hs.128121	ESTs	1.00	122.00
	441937	R41782	Hs.22279	ESTs	0.86	1.37
	441954	AJ744935	Hs.8047	Fanconi anemia, complementation group G	1.48	1.39
	442025	AW887434	Hs.11810	CDA11 protein	1.00	46.00 45.00
20	442029	AW956698	Hs.14456	neural precursor cell expressed, develop	9.92 25.05	77.00
20	442072	A)740832	Hs.12311 Hs.166314	Homo sapiens clone 23570 mRNA sequence ESTs	3.61	3.14
•	442108 442117	AW452649 AW664964	Hs.128899	ESTs	3.00	5.49
	442137	AA977235	Hs.128830	ESTs, Weakly similar to Z192_HUMAN ZINC	1.00	1.00
	442159	AW163390	Hs.278554	heterochromatin-like protein 1	1.92	1.66
25	442179	AA983842	Hs.333555	chromosome 2 open reading frame 2	27.22	50.00
	442328	A1952430	Hs.150614	ESTs, Weakly similar to ALU4_HUMAN ALU S	5.00	3.42
	442432	BE093589	Hs.38178	hypothetical protein FLJ23468	181.59	76.00 144.00
	442530	A1580830	Hs.176508	Home sapiens cDNA FLJ14712 fis, clone NT	10.59 109.23	98.00
30	442547 442556	AA305997 AL137761	Hs.217484 Hs.8379	ESTs, Weakly similar to ALU1_HUMAN ALU S Homo sapiens mRNA; cDNA DKFZp586L2424 (f	1.00	53.00
50	442619	AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 prote	29.02	50.00
	442710	AI015631	Hs.23210	ESTs	1.00	19.00
	442717	R88362	Hs.180591	ESTs, Weakly similar to T23976 hypotheti	1.00	5.00
	442875	BE623003	Hs.23625	Homo sapiens clone TCCCTA00142 mRNA sequ	22.85	50.00
35	442914	AW188551	Hs.99519	hypothetical protein FLJ14007	25.33	82.00
	442932	AA457211	Hs.8858	bromodomain adjacent to zinc finger doma	3.18	4.41
	442942	AW167087	Hs.131562	ESTS	8.45 1.00	64.00 27.00
	443068	Al188710	Hs.29643	ESTs Homo sapiens cDNA FLJ13103 fis, clone NT	1.00	24.00
40	443204 443211	AW205878 Al128388	Hs.143655	ESTs	12.42	2.00
40	443247	BE614387	Hs.333893	c-Myc target JPO1	128.84	96.00
	443324	R44013	Hs.164225	ESTs	0.02	4.59
	443383	A)792453	Hs.166507	ESTs	1.00	47.00
4.5	443400	R28424	Hs.250648	ESTs	18.52	61.00
45	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	4.02	1.75
	443572	AA025610	Hs.9605	cleavage and polyadenylation specific fa	2.98 1.00	2.57 29.00
	443575	A1078022	Hs.269636	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.00	16.00
	443614	AV655386 AL031290	Hs.7645 Hs.9654	fibrinogen, B beta polypeptide similar to pregnancy-associated plasma p	1.00	39.00
50	443633 443648	A1085377	Hs.143610	ESTs	39.81	70.00
50,		AI583187	Hs.9700	cyclin E1	48.74	7.00
	443723	A)144442	Hs.157144	syntaxin 6	1.29	1.30
	443802	AW504924	Hs.9805 -	KIAA1291 protein	1.75	1.61
~ ~	443859	NM_013409	Hs.9914	follistatin	1.35	1.13 17.00
55	443892	AA401369	Hs.190721	ESTs	1.00	1.64
	443947	W24187		gb:zb47f09.r1 Soares_fetal_lung_NbHL19W	1.33 5.71	6.87
	443991 444006	NM_002250 BE395085	Hs.10082 Hs.10086	potassium intermediate/small conductance type I transmembrane protein Fn14	1.47	1.92
•	444009	Al380792	Hs.135104	ESTs	1.00	77.00
60	444017	U04840	Hs.214	neuro-oncological ventral antigen 1	1.00	1.00
••	444127	N63620	Hs.13281	ESTs	1.00	29.00
.,	. 444129 -		Hs.256212	ESTs	1.00	1.00
• • •	444279	U62432	Hs.89605	cholinergic receptor, nicotinic, alpha p	0.60	7.80
CE	444371	BE540274	Hs.239	forkhead box M1	2.91	1.14
65	444378	R41339	Hs.12569	ESTs	1.00 469.00	1.00 556.00
	444381	BE387335	Hs.283713	ESTs, Weakly similar to \$64054 hypotheti ESTs, Weakly similar to 2109260A B cell	12.88	105.00
	444461 444471	R53734 AB020684	Hs.25978 Hs.11217	KIAA0877 protein	24.91	90.00
	444489	AI151010	Hs.157774	ESTs	1.00	111.00
70	444619	BE538082	Hs.8172	ESTs, Moderately similar to A46010 X-lin	1.00	70.00
	444665	BE613126	Hs.47783	B aggressive lymphoma gene	30.56	139.00
	444707	Al188613	Hs.41690	desmocollin 3	1.00	1.00
	444735	BE019923	Hs.243122	hypothetical protein FLJ 13057 similar to	77.02	90.00
75	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	1.57 77.55	1.31 2.00
75	444783	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act	1.00	27.00
	445236 445258	AK001676	Hs.12457	hypothetical protein FLJ 10814 ESTs	1.00	73.00
	445413	A1635931 AA151342	Hs.147613 Hs.12677	CGI-147 protein	28.14	50.00
	445417	AK001058	Hs.12680	Homo sapiens cDNA FLJ10196 fis, done HE	1.81	2.62
80	445443	AV653838	Hs.322971	ESTs	1.00	1.00
. •	445462	AA378776	Hs.288649	hypothetical protein MGC3077	2.09	1.70
	445517	AF208855	Hs.12830	hypothetical protein	1.87	70.00
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	1.71	2.72
85	445580	AF167572	Hs.12912	skb1 (S. pombe) homolog	1.52 1.51	1.34 1.52
OJ.	445654	X91247	Hs.13046	thioredoxin reductase 1	1.01	

	w	O 02/086	443			
	445669	A1570830	Hs.174870	ESTs	10.95	11.45
	445818	BE045321	Hs.136017	ESTs	1.00	1.00
	445873	AA250970	Hs.251946	poly(A)-binding protein, cytoplasmic 1-1	49.42	54.00
5	445885 445898	AI734009 AF070623	Hs.127699 Hs.13423	KIAA1603 protein Homo saplens clone 24468 mRNA sequence	1.00 1.00	132.00 1.00
,	445903	A1347487	Hs.132781	class I cytokine receptor	1.00	36.00
	445932	BE046441	Hs.333555	Homo sapiens clone 24859 mRNA sequence	2.41	2.88
	445982	BE410233	Hs.13501	pescadillo (zebrafish) homolog 1, contai	1.60	1.35
10	446078 446102	AI339982 AW168067	Hs.156061 Hs.317694	ESTs ·	1.00 1.00	42.00 1.00
10	446157	BE270828	Hs.131740	Homo saplens cDNA: FLJ22562 fis, clone H	1.70	1.53
	446269	AW263155	Hs.14559	hypothetical protein FLJ 10540	73.01	48.00
	446292	AF081497	Hs.279682	Rh typa C glycoprotein	1.55	1.26
15	446293 446423	Al420213 AW139655	Hs.149722 Hs.150120	ESTs ESTs	1.00 1.10	2.00 4.19
15	446428	AW082270	Hs.12496	ESTs, Weakly similar to ALU4_HUMAN ALU S	0.53	3.26
	446432	Al377320	Hs.150058	ESTs	1.00	5.00
	446528	AU076640	Hs.15243	nucleolar protein 1 (120kD)	1.36	1.31
20	446574 446619	A)310135 AU076643	Hs.335933 Hs.313	ESTs secreted phosphoprotein 1 (osteopontin,	3.89 32.03	72.00 20.23
20	446536	AC002563	Hs.15767	citron (rho-interacting, serine/threonin	4.19	5.07
	446783	AW138343	Hs.141867	ESTs	2.82	9.47
	446839	BE091926	Hs.16244	mitotic spindle colled-coil related prot	110.28	28.00 2.94
25	446849 446856	AU076617 AJ814373	Hs.16251 Hs.164175	cleavage and polyadenylation specific fa ESTs	3.26 6.38	11.30
23	446872	X97058	Hs. 16362	pyrimidinergic receptor P2Y, G-protein c	1.98	2.03
	446880	Al811807	Hs.108646	Homo sapiens cDNA FLJ14934 fis, clone PL	94.90	113.00
	446921	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	1.67	3.90
30	446989 447022	AK001898 AW291223	Hs.16740 Hs.157573	hypothetical protein FLJ11036 ESTs	2.82 1.00	3.12 170.00
50	447033	Al357412	Hs.157601	ESTs	7.15	107.00
	447078	AW885727	Hs.9914	ESTs	47.24	24.00
	447081	Y13896	Hs.17287	potassium inwardly-rectifying channel, s	0.12 0.97	17.88 1.48
35	447131 447149	NM_004585 BE299857	Hs.17466 Hs.326	retinolc acid receptor responder (lazaro TAR (HIV) RNA-binding protein 2	1.24	1.26
55	447153	AA805202	Hs.315562	ESTs	1.00	54.00
	447164	AF026941	Hs.17518	Homo sapiens cig5 mRNA, partial sequence	1.00	67.00
	447178	AW594641	Hs.192417	ESTs	3.42 1.60	50.00 1.52
40	447250 447289	A1878909 AW247017	Hs.17883 Hs.36978	protein phosphatase 1G (formerly 2C), ma melanoma antigen, family A, 3	1.00	1.00
-10	447342	Al199268	Hs.19322	Homo sapiens, Similar to RIKEN cDNA 2010	28.63	1.00
	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m	146.62	51.00
	447350	AJ375572	Hs.172634	ESTs	1.00 2.55	12.00 63.00
45	447377 447415	N27687 AW937335	Hs.334334 Hs.28149	transcription factor AP-2 alpha (activat ESTs, Weakly similar to KF3B_HUMAN KINES	0.91	1.13
.5	447425	Al963747	Hs.18573	acylphosphatase 1, erythrocyte (common)	1.00	35.00
	447519	U46258	Hs.339665	ESTS	59.89	49.00
	447532 447534	AK000614 AA401369	Hs.18791 Hs.190721	hypothetical protein FLJ20607 ESTs	1.23 1.00	1.63 17.00
50	447636	Y10043	FIS. 150/21	high-mobility group (nonhistone chromoso	1.41	1.11
	447688	N87079	Hs.19236	Target CAT	1.00	39.00
	447733	AF157482	Hs.19400	MAD2 (mitotic arrest deficient, yeast, h	1.17	1.12
	447769 447802	AW873704 AW593432	Hs.320831 Hs.161455	Homo sapiens cDNA FLJ14597 fis, clone NT ESTs	6.47 0.73	5.95 2.34
55	447850	AB018298	Hs.19822	SEC24 (S. cerevisiae) related gene famil	86.45	116.00
	447924	AI817226	Hs.313413	ESTs, Weakly similar to T23110 hypotheti	1.00	1.00
	447973	AB011169	Hs.20141	similar to S. cerevislae SSM4	3.50 4.13	4.27 142.00
	448030 448105	N30714 Al538613	Hs.325960 Hs.298241	membrane-spanning 4-domains, subfamily A Transmembrane protease, serine 3	1.15	2.24
60	448243	AW369771	Hs.52620	integrin, beta 8	15.84	1.00
	448278	WQ7369	Hs.11782	ESTs	0.97	1.90
	448290	AK002107 BE622756	Hs.20843	Homo sapiens cDNA FLJ11245 fis, clone PL Homo sapiens cDNA FLJ14162 fis, clone NT	1.00 2.42	1.00 2.17
	448296 448357	BE274396	Hs.10949 Hs.108923	RAB38, member RAS oncogene family	1.44	1.08
65	448390	AL035414	Hs.21068	hypothetical protein	1.00	43.00
	448469	AW504732	Hs.21275	hypothetical protein FLJ11011	2.63	2.49 2.53
	448569 448663	BE382657 BE614599	Hs.21486 Hs.106823	signal transducer and activator of trans hypothetical protein MGC14797	1.84 3.29	46.00
	448672	Al955511	Hs.225106	ESTs .	1.00	21.00
70	448733	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte	1.82	1.08
	448741	BE614567	Hs.19574	hypothetical protein MGC5469	2.48 23.53	1.92 20.00
	448757 448775	Al366784 AB025237	Hs.48820 Hs.388	TATA box binding protein (TBP)-associate nudix (nucleoside diphosphate linked mol	2.34	1.97
	448826	AI580252	Hs.293246	ESTs, Weakly similar to putative p150 [H	74.07	62.67
75	448830	AL031658	Hs.22181	hypothetical protein dJ310013.3	1.37	1.31
. •	448844	Al581519	Hs.177164	ESTs	1.00	31.00
	448988 448993	Y09763 Al471630	Hs.22785	gamma-aminobutyric acid (GABA) A recepto KIAA0144 gene product	1.84 1.63	1,95 1,49
	449003	X76342	Hs.389	alcohol dehydrogenase 7 (dass IV), mu o	1.00	1.00
80	449029	N28989	Hs.22891	solute carrier family 7 (calionic amino	1.97	2.26
	449040	AF040704	Hs.149443	putative turnor suppressor	0.97 27.13	1.56 90.00
	449048 449053	Z45051 Al625777	Hs.22920 Hs.344766	similar to S68401 (cattle) glucose induc ESTs	27.13 8.33	44.00
	449054	AF148848	Hs.22934	myoneurin	73.85	104.00
85	449101	AA205847	Hs.23016	G protein-coupled receptor	2.58	27.00

	w	O 02/086	443			
	449167	T05095	Hs.19597	KIAA1694 protein	1.61	2.36
	449207	AL044222	Hs.23255	nucleoporin 155kD	2.36	1.56
	· 449228	AJ403107	Hs.148590	protein related with psoriasts	1.15	1.15
5	449230	BE613348	Hs.211579	melanoma cell adhesion molecule	208.65	151.00 45.00
3	449305 449318	AI638293 AW236021	Hs.78531	gb:ti09b07.x1 NCL_CGAP_GC6 Homo sapiens Homo sapiens, Similar to RIKEN cDNA 5730	17.28 26.39	35.00
	449448	D60730	Hs.57471	ESTs	1.00	1.00
	449467	AW205006	Hs.197042	ESTs	1.00	1.00
10	449523	NM_000579	Hs.54443	chemokine (C-C motif) receptor 5	56.80	216.86
10	449722	BE280074	Hs.23960	cyclin B1	150.03	1.00
	449976	H06350	Hs.135056 Hs.406	Human DNA sequence from clone RP5-850E9 solute carrier family 6 (neurotransmitte	2.16 1.17	2.85 1.45
	450001 450098	NM_001044 W27249	Hs.8109	hypothetical protein FLJ21080	1.79	2.38
	450101	AV649989	Hs.24385	Human hbc647 mRNA sequence	1.00	69.00
15	450149	AW969781	Hs.132863	Zic family member 2 (odd-paired Drosophi	1.00	1.00
	450193	AI916071	Hs.15607	Homo sapiens Fanconi anemia complementat	29.85	34.00
	450221	AA328102	Hs.24641	cytoskeleton associated protein 2	1.00	1.00
	450372	BE218107	Hs.202436	ESTs	1.00 51.26	1.00 93.00
20	450375 450447	AA009647 AF212223	Hs.8850 Hs.25010	a disintegrin and metalloproteinase doma hypothetical protein P15-2	123.20	181.00
20	450568	AL050078	Hs.25159	Homo sapiens cDNA FLJ10784 fis, clone NT	1.00	19.00
	450589	AJ701505	Hs.202526	ESTs	1.00	23.00
	450684	AA872605	Hs.25333	interleukin 1 receptor, type II	1.00	100.00
25	450701	H39960	Hs.288467	Homo sapiens cDNA FLJ12280 fis, clone MA	1.89	1.55
25	450705	U90304	Hs.25351	iroquois homeobox protein 2A (IRX-2A) (1.00 25.17	45.00 17.00
	450832 450937	AA401369 R49131	Hs.190721 Hs.26267	ESTs ATP-dependant interferon response protei	90.92	90.00
٠.	450983	AA305384	Hs.25740	ERO1 (S. cerevisiae)-like	3.33	1.70
	451105	Al761324	110.201.10	gb:wi60b11.x1 NCI_CGAP_Co16 Homo saplens	15.02	124.00
30	451110	A1955040	Hs.265398	ESTs, Weakly similar to transformation-r	1.00	143.00
	451253	H48299	Hs.26126	claudin 10	3.02	2.29
	451291	R39288	Hs.6702	ESTs	1.00	1.00
	451320	AW498974	Un 12224	dlacylglycerol kinase, zeta (104kD)	2.92 6.90	18.00 6.67
35	451380 451386	H09280 AB029006	Hs.13234 Hs.26334	ESTs spastic paraplegia 4 (autosomal dominant	35.75	72.00
55	451437	H24143	Hs.31945	hypothetical protein FLJ11071	1.00	69.00
	451462	AK000367	Hs.26434	hypothetical protein FLJ20360	1.83	2.10
	451524	AK001466	Hs.26516	hypothetical protein FLJ10604	1.13	1.07
40	451541	BE279383	Hs.26557	plakophilin 3	1.88	1.33
40	451592	AI805416	Hs.213897	ESTs	1.00 1.52	1.00 1.92
	451635 451743	AA018899 AA401369	Hs.127179 Hs.190721	cryptic gene ESTs	4.95	17.00
	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	13.55	31.00
	451807	W52854		hypothetical protein FLJ23293 similar to	1.55	35.00
45	451871	AI821005	Hs.118599	ESTs	1.81	2.53
	451952	AL120173	Hs.301663	ESTs	1.00	22.00
	452012 452046	AA307703 AB018345	Hs.279766 Hs.27657	kinesin family member 4A KIAA0802 protein	3.43 56.59	2.26 19.00
	452194	AI694413	Hs.332649	olfactory receptor, family 2, subfamily	1.67	4.09
50	452206	AW340281	Hs.33074	Homo sapiens, clone IMAGE:3606519, mRNA,	9,31	53.00
y	452240	AA401369	Hs.190721	ESTs	13.42	17.00
٠.	452256	AK000933	Hs.28661	Homo sapiens cDNA FLJ10071 fis, clone HE	39.03	94.00
	452281	T93500	Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	153.01 1.95	340.00 23,00
55	452291 452295	AF015592 BE379936	Hs.28853 Hs.28666	CDC7 (cell division cycle 7, S. cerevisi programmed cell death 10	42.33	61.00
55	452304	AA025386	Hs.61311	ESTs, Weakly similar to S10590 cysteine	1.17	2.14
	452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	1.00	13.00
	452349	AB028944	Hs.29189	ATPase, Class VI, type 11A	1.09	1.42
60	452367	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	54.49	53.00
60 .	452401	NM_007115 AL133619	Hs.29352	tumor necrosis factor, alpha-induced pro Homo sapiens mRNA; cDNA DKFZp434E2321 (f	1.00 1.26	32.00 1.99
	452410 452461	N78223	Hs.108106	transcription factor	24,47	35.00
	452571	W31518	Hs.34665	ESTs	54.61	102.00
	452613	AA461599	Hs.23459	ESTs	1.39	1.32
65	452699	AW295390	Hs.213062	ESTs	1.00	26.00
	452705	H49805	Hs.246005	ESTs	1.00	1.00
	452747 452787	AF160477	Hs.61460 Hs.222707	lg superfamily receptor LNIR KIAA1718 protein	112.87 1.00	1.29 1.00
	452795	AW294022 AW392555	Hs.18878	hypothetical protein FLJ21620	1.00	1.00
70	452823	AB012124	Hs.30696	transcription factor-like 5 (basic helix	7.91	75.00
	452833	BE559681	Hs.30736	KIAA0124 protein	3.16	1.92
	452838	U65011	Hs.30743	preferentially expressed antigen in mela	174.35	1.00
	452862	AA401369	Hs.190721	ESTS	98.26	17.00
75	452865	AW173720	Hs.345805	ESTs, Weakly similar to A47582 B-cell gr	1.55 1.73	1.00 1.19
, ,	452934 452946	AA581322 X95425	Hs.4213 Hs.31092	hypothetical protein MGC16207 EphA5	1.00	1.00
	452976	R44214	Hs.101189	ESTs	1.58	1.98
	453028	AB006532	Hs.31442	RecQ protein-like 4	1.80	1.60
00	453095	AW295660	Hs.252756	ESTs	0.77	1.50
80	453102	NM_007197	Hs.31664	frizzled (Drosophila) homolog 10	1.00	1.00
	453103	AI301052	Hs.153444	ESTS	1.00 1.23	1.00 1.20
	453120 453153	AA292891 N53893	Hs.31773 Hs.24360	pregnancy-induced growth inhibitor ESTs	1.00	83.00
	453160	AJ263307	Hs.239884	H2B histone family, member L	1.00	30.00
85	453197	Al916269	Hs.109057	ESTs, Weakly similar to ALU5_HUMAN ALU 6	1.00	134.00

	w	O 02/086	443				PCT/US	02/12476
	453210	AL133161	Hs.32360	hypothetical protein FLJ10867	1.69	1.93		
	453240	AI969564	Hs.166254	hypothetical protein DKFZp566I133	1.00 1.19	1.00 1.27		
	453317 453323	NM_002277 AF034102	Hs.41696 Hs.32951	keratin, hair, acidic,1 solute carrier family 29 (nucleoside tra	4.90	4.11		
5	453331	AJ240665	Hs.8850	ESTs	199.42	340.00		
	453392	U23752	Hs.32964	SRY (sex determining region Y)-box 11	1.00	16.00		
	453431 453439	AF094754 Al572438	Hs.32973 Hs.32976	glycine receptor, beta guanine nucleotide binding protein 4	1.00 3.44	1.00 5.17		
	453459	BE047032	Hs.257789	ESTs	2.84	5.58		
10	453563	AW608906.co	шÞ	Hs.181163		tical protein MGC5629	4.58 9	0.00
	453633	AA357001 NM_002916	Hs.34045 Hs.35120	hypothetical protein FLJ20764	1.74 19.49	1.60 1.00		
•	453775 453830	AA534296	Hs.20953	replication factor C (activator 1) 4 (37 ESTs	24.92	25.00		
	453857	AL080235	Hs.35861	DKFZP586E1621 protein	167.59	66.00		
15	453867	A1929383	Hs.33032	hypothetical protein DKFZp434N185	1.00	39.00		
	453883 453884	Al638516 AA355925	Hs.347524 Hs.36232	cofactor required for Sp1 transcriptiona KIAA0186 gene product	1.97 63.89	1.58 20.00		
	453900	AW003582	Hs.226414	ESTs, Weakly similar to ALU8_HUMAN ALU S	20.41	16.00		
20	453922		Hs.36708	budding uninhibited by benzimidazoles 1	7.09	22.00		
20	453941	U39817	Hs.36820	Bloom syndrome	29.75 1.00	19.00 1.00		
	453964 453968	Al961486 AA847843	Hs.12744 Hs.62711	ESTs Homo saplens, clone IMAGE:3351295, mRNA	2.05	1.81		
	453976	BE463830	Hs.163714	ESTs	3.02	131.00		
25	454024	AA993527	Hs.293907	hypothetical protein FLJ23403	1.00	131.00		
25	454034 454042	NM_000691 T19228	Hs.575 Hs.172572	aldehyde dehydrogenase 3 family, member hypothetical protein FLJ20093	1.23 30.63	1.02 171.00		
	454059	NM_003154	Hs.37048	statherin	1.00	1.00		
	454066	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid	1.01	1.45	•	
30	454098	W27953	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	1.26 6.33	1.11 5.04		
30	454241 454417	BE144666 Al244459	Hs.110826	gb:CM2-HT0176-041099-017-c02 HT0176 Homo trinucleotide repeat containing 9	4.30	7.82		
	454439		Hs.154320	DKFZP56601646 protein	1.00	1.00		
		AW993247		gb:RC2-BN0033-180200-014-h09 BN0033 Homo	13.75	103.00	•	
35	455601		Hs.816	SRY (sex determining region Y)-box 2 gb:zx52e07.r1 Soares_fetal_liver_spleen_	206.11 1.00	1.00 1.00		
55	456237 456321		Hs.87225	cancer/testis antigen	1.14	1.10		
	456475	NM_000144	Hs.95998	Friedreich ataxia	1.00	48.00		
	456508	AA502764	Hs.123469	ESTs, Weakly similar to AF208855 1 BM-01	162.25	189.00		
40	456534 456736	X91195 AW248217	Hs.100623 Hs.1619	phospholipase C, beta 3, neighbor pseudo achaete-scute complex (Drosophila) homol	2.12 1.15	1.80 1.94		
70	456759	BE259150	Hs.127792	delta (Drosophila)-like 3	1.00	1.00		
	456990	NM_004504	Hs.171545	HIV-1 Rev binding protein	16.42	84.00		
	457200	U33749	Hs.197764	thyroid transcription factor 1	0.57 2.71	1.76 4.15		,
45	457234 457465	AW968360 AW301344	Hs.14355 Hs.122908	Homo sapiens cDNA FLJ13207 fls, clone NT DNA replication factor	46.37	47.00		
		Al693815	Hs.127179	cryptic gene	1.12	1.35		
		AA725650	Hs.112948	ESTs	1.55	2.51		
		AW974812 AA057484	Hs.291971 Hs.35406	ESTs ESTs, Highly similar to unnamed protein	1.00 4.36	55.00 3.18		
50		BE545684	Hs.343566	KIAA0251 protein	1.00	1.32		
	458098	BE550224		metallothionein 1E (functional)	1.00	22.00		
		T28472	Hs.7655	U2 small nuclear ribonucleoprolein auxil	2.06 1.00	1.88 1.00		
	458242 458247	BE299588 R14439	Hs.28465 Hs.209194	Homo sapiens cDNA: FLJ21869 fis, clone H ESTs	7.00	9.85		
55	458679	AW975460	Hs.142913	ESTs	1.00	3.00		
		AW451034	Hs.326525	arylsulfatase 0	1.31	2.01		
	458933	Al638429 AW810383	Hs.24763 Hs.206828	RAN binding protein 1 ESTs	1.98 12.60	1.71 63.00		
	459670		Hs.172004	tiin	1.00	1.00		
60	459702	Al204995	•	gb:an03c03.x1 Stratagene schizo brain S1	1.00	237.00		
	•							
	TABLE 98	3		•				
65	Pkey:			ntifier number	•	•		
	CAT num Accession	ber: Gene cluste	er number ccession num	ham				
•	nucossiui	i. Gentalik a	oocssion num	0010		,		
70	Pkey	CAT Number		ion				
70	407746	10125_1	AK001	962 R69415 BE464605 AA418699 AA053293 AA1490 982 AA730033 AA576507 AA991217 AA782067 AI98	175 AA058396 A	.W338226 AW272659 AA45	14607 AH 139535 AW 4	59852 AI275461 01647 N63320
				982 AA730033 AA376307 AA981217 AA762067 AI96 1 T27343 AA306950 AA360989 R58778	PODEDOMA 1 COC	CON TEOCOPPYM DECENCEM I	1340 AA30021 3 ATTO	01047 (105020
	408070	1036688_1		1852 BE350895				
75	408660	107294_1	AA525	775 AA056342 Al538978 AW975281 AA664986				
<i>7</i> 5	409522	113735_1		382 AA075431				
	409866 410032	1156522_1 1170435_1	AW502	2152 H41202 H29772 985 BE065944 BE066008 BE066083 BE066093				
	411089	123172_1	AA456	454 AA71373D AA091294 AA584921 N86077 AW836	781 AA601031 A	AA579876 AA551106 AA633	3188 AW905577 AI9	55808 AI679386
00		_	A16798	95 AA514764 AA454562 A1082382 AA595822 AA551	351 AA586369	AA666384 AA188934 AA66	6398 AA551297 AA5	65188
80	411152	1234028_1	BE069	199 AW936012 AW877466 AW819782 AW935798 AV 019 AW935937 BE160180 AW935946 BE069101 BE	V835546 AW93	5042 BE069121 AW835625	AVV87 (536 AVV9358	65 BEU69202 1 AW935784
	412537	1304_1	AW820	1019 AW935937 BE160180 AW935946 BE069101 BE 1778 X59711 NM_002505 M59079 A1870439 A1494259	AW664010 AA	405063 AA436132 BE17451	16 AA412691 AI4003	14 AA436024
			T2940	3 RE079412 RE079428 N90322 Al631202 Al141758 A	J016793 Al1679	668 A1862075 A1375230 A12	08445 AW235763 AI	.044113 AA382556
			AW953	1918 AA927051 AA889823 BE003094 AW390155 AW	360805 AW360	823 AW360810 AA425472 A	A1694282 AL044114	A1684577 A1809865

WO 02/086443 PCT/US02/12476

	W	U U2/U80443	PC1/US02/124/6
			AI478773 AI160445 AI674630 N69088 AW665529 N49278 AI129239 AI457890 AI621264 AW297152 AI268215 AA907787 AI286170 AI017982 AI963541 AI469807 AI969353 BE552356 N66509 AA736741 AA382555 AW075811 AW292026
	412811	132943_1	H06382 AW95773D AA352014 R13591 AA121201 D60420 BE263253 BE047862 Z41952 AV424991 Al693507 Al863108 AA599060 Al091148
_	,,,,		AA598689 R39887 AA813482 AW016452 H06383 R41807 AJ364268 AA620528 AJ241940 AW089149 AW090733 AW088875 Z38240
5			AA121202 R17734
	413690	1383256_1	BE157489 BE157560
	414883	15024_1	AA926960 AA926959 W76521 W24270 W21526 AA037172 BE267636 H83186 AA469909 N86396 AA001348 BE535736 AA081745 BE566245 AA082436 H72525 H77575 N49786 W80565 H78746 BE569085 W04339 R98127 T55938 BE279271 AW960304 T29812 AA476873 BE297387
			AA292753 AA177048 NM_001826 X54941 BE314366 AA908783 AI719075 BE270172 BE269819 AA889955 AI204630 W25243 AI935150
10	•		AA872039 W72395 T99530 A1422691 H98460 N31428 BE255916 H03265 A1857576 AA776920 AA910644 AA459522 AA293140 AW514667
			R75953 AW662395 AA662522 Al865147 Al423153 AW262230 AA584410 AA583187 AW024595 AW069734 Al828996 AA282997 AA876046
			AW613002 AA527373 AW972459 Al831360 AA621337 AA100926 AA772418 AA594628 Al033892 W95096 Al034317 AA398727 Al085031
			N95210 AI459432 AI041437 AA932124 AA627684 AA935829 AI004827 AI423513 AI094597 H42079 R54703 AI630359 AA617681 AA978045
15			AA643280 W44561 AI991988 AI537692 AI090262 AA740817 AI312104 AI911822 AA416871 AI185409 AA129784 AA701623 AI075239 AI139549 AA633648 AI339996 AI336880 AA399239 AI078708 AI085351 AI362835 AI346618 AI146955 AI989380 AI348243 N92892 AA765850
13			A1494230 A1278887 AA962596 A1492600 W80435 AA001979 R97424 A1129015 N24127 AA157451 AA235549 AA459292 AA037114 AA129785
			Al494211 AW059601 AW886710 R92790 N59755 Al361128 AW589407 H47725 H97534 H48076 H48450 T99631 AW300758 H03431 R76789
			AA954344 H77576 R96823 Al457100 N92845 N49682 H42038 BE220698 BE220715 H99552 AA701624 N74173 R54704 H79520 H72923
20			H03266 BE261919 AA769633 AA480310 AA507454 AA910586 Al203723 AW104725 W25611 W25071 T88980 H03513 T77589 R99156
20	445000	1564541	W95095 R97470 AA702275 T77551 AA911952 H82956 N83673 AA283672
	415989 417324	166714_1	Al267700 Al720344 AA191424 Al023543 Al469633 AA172056 AW958465 AA172236 AW953397 AA355086 AW265494 AA455904 AA195677 AW265432 AW991605 AA456370
	418574	17690_1	N28754 N28747 Al568146 Al979339 AA322671 AA322672 AW955043 Al990326 AA776406 Al016250 AA843678 AW451882 N23137 N23129
	110071	11.000_1	W70051 Al03874B AA831327 Al925845 AW945895
25	418712	1784125_1	Z42183 T31621 T97478
	419443	184788_1	D62703 AA242966 D79798
	419502	18535_1	AU076704 T74854 T74860 T72098 T73265 T73873 T69180 T74658 T58786 T60385 T73410 T68781 T67845 T67593 T73952 T67864 T60630
			T68367 T68401 T53959 T72360 T72099 T60377 T58961 T71712 T72821 T64738 T74645 T72037 T68688 T72063 T73258 T72826 T64242
30			T68220 T74673 T71800 T68355 T61227 T62738 T69317 T53850 T64692 T73768 T73962 T73382 T68914 T70975 T73400 T60631 T73277 T73203 T70498 T61409 T58925 NM_000508 M64982 T68301 T73729 T69445 T60424 T67922 T67736 T68716 T67755 T74765 T73819 T58719
50			T74756 T60477 T74863 T61109 T68329 T58850 T71857 T73425 T53736 T68607 T58898 T64309 T72031 T72079 T64305 T71908 T68107
			T71916 T73787 T56035 T64425 T71870 T60476 T61376 T67820 T71895 T41006 T69441 T68170 T74617 T71958 T69440 T61875 R06796
			H48353 T71914 T53939 T64121 AA693996 T72525 T67779 T68078 AA011465 AA345378 AV654847 AV654272 AV656001 Al064740 T82897
25			N33594 AA344542 AW805054 Al207457 T61743 AA026737 H94389 AA382695 AA918409 T68044 S82092 T39959 Al017721 AA312395
35			AA312919 T40156 H66239 AV652989 H38728 R98521 AV655200 R95790 W03250 W00913 AA344136 AV660126 R97923 AA343596
			AW470774 AV651256 N54417 AA812862 AW182929 Al111192 H61463 H72060 AA344503 H38639 Al277511 AV661108 Al207625 T47810 AA235252 T27853 T47778 R95746 H70620 AA701463 AW827166 R98475 C20925 AV657287 T71959 T71313 T73920 T73333 T61618 T69293
			T69283 T73931 T72178 T72456 AV645639 AV653476 T72957 T72300 T58906 T71457 T70494 T72956 T70495 T68267 T74407 T85778
			AA344726 T27854 T74485 T74101 T73868 T71518 T72304 AA343853 T73999 T68070 T72065 H72149 T73493 T73495 AV645993 R02293
40			T70475 T64751 AA344441 AA343657 AA345732 AA344328 A1110639 AA344603 AF063513 T64696 T68516 T72223 T60507 T67633 R29500
	•		T72517 R02292 T60599 T69206 T70452 T74677 R29366 T61277 T74914 T60352 R29675 T74843 AV645792 AA344408 T69197 T72057
			T69368 T69358 T68258 AV650429 T73341 T61702 T74598 T40095 K02272 T40106 AA343045 AA341908 AA341907 AA342807 AA341964
			T53747 T72042 T62764 AI064899 AA343060 T67832 T72440 T71770 T68091 T69108 T72449 T69167 T71289 T68251 AV654844 T64375
45			AA345234 T67598 AA011414 T68036 H48262 Al207557 T68219 W86031 T69081 T64232 R93196 T62136 AV650539 H67459 T72978
73			AA344583 T60362 H58121 T95711 T72803 T68055 T71715 R29036 T72793 T69122 T64595 T62888 T69139 T68291 T64652 T67971 T46862 AA693592 Al248502 R29454 T64764 T57001 T73052 T71429 T51176 T58866 AV655414 H90426 AA342489 T73666 T67848 T72512 T53835
			T67837 T73317 T74273 T69420 T68245 T74380 T67862 T74474 T56068
	419936	189181_1	Al792788 BE142230 AA252019
50 `	421582	2041_1	AI910275 X00474 X52003 X05030 NM_003225 AA314326 AA308400 AA506787 AA314825 AI571948 AA507595 AA614579 AA587613 R83818
30	•.		AA568312 AA614409 AA307578 A1925552 AW950155 A1910083 M12075 BED74052 AW004668 AA578674 AA582084 BE074053 BE074126
			BE074140 AA514776 AA588034 BE074051 BE074068 AW009769 AW050690 AA858276 R55389 Al001051 AW050700 AW750216 AA614539 BE074045 Al307407 AW602303 BE073575 Al202532 AA524242 Al970839 Al909751 BE076078 Al909749 R55292
	422128	211994_1	AW881145 AA490718 M85637 AA304575 T05067 AA331991
	423034	224122_1	AL119930 AA320696 AW752565
55	423816	23234_1	AL031985 AL137241 Al792386 Al733664 Al857654 Al049911
	424200	236595_1	AA337221 AA336756 AW966198
	424999	245835_1	AW953120 R56325 AA349562
	.426966	273896_1	Al493134 Al498691 AW771508 Al498457 Al768408 Al783524 Al383985 Al580267 D79813 AA393768
60	426991 427260	27415_1 276598_1	AK001535 AA191092 AW510354 Al554256 AL353968 AA134266 AA663848 AA400100 AA401424
00	428023	28589_2	AL038843 AA161338 BE268213 AA425597 N87306 AA092969 BE566038 AA247451 N47392 AJ928802 AW182584 AW027872 AJB19831
			Al936994 W56258 Al653448 Al278611 Al283557 Al824306 AW338658 AW150899 AA687514 N47393 N29885 AA973469 Al038904 Al292064
			A/034339 AW674593 N72156 A/079733 A/038683 A/291616 AA491599 AA993675 AA837380 BE006554 BE006473 A/087090 T33044
65			AA652043 Al203503 AA583959 W35283 Al129926 Z41844 AW020925 AW575848 Al684603 AA493297 Al140689 Al277175 AA425444
.65	400000		AI932767 W02632 BE396786 R37261
	429220 429978	301384_1	AW207206 AW341473 AA448195 AI951341 AA249027 AL038984 AK001993 AL080066 AV652725 BE566226 AA345557 AA315222 AA090585 AA375688 AA301092 AA298454 W05762
	423370	31150_1	AW49027 AL000904 AND 1999 AL000000 AV002723 BES00220 AW393937 AA319222 AW901780 AI354442 AW701092 AW290439 W00702 AW607939 H51658 D83880 N84323 BE296821 AW947007 D61461 AW079261 AA329482 AW901780 AI354442 AA772275 R31663 AI354441
			A767525 H92431 AI916735 H93575 AI394255 AW014741 AI573090 C06195 AW612857 AW26195 AI339558 AI377532 AI308821 AI919424
70			Al589705 AW055215 Al336532 Al338051 AA806547 C75509 C00618 AW071172 AW769904 AA630381 Al678018 Al863985 D79862 BE221049
			AW265018 AI589700 AW196655 N76573 AI370908 BEO42393 N75017 AI698870 AW960115
	430439	31808_1	AL133561 AL041090 AL117481 AL122069 AW439292 A1968826
	430935	325772_1	AW072916 A1184913 AA489195 AW466994 AW469044 N59350 Al819642 Al280239 Al220572 AA789302 Al473611 AW841126 D60937
75	431089	327825_1	BE041395 AA491826 AA621946 AA715980 AA666102
15	431322 432407	331543_1 34624_1	AW970622 AA503009 AA502998 AA502989 AA502805 T92188 AA221036 R87170 BE537068 BE544757 C18935 AW812058 T92565 AA227415 AA233942 AA223237 AA668403 AA601627 AW869639
	TURAUI	Q 1041_1	BE061833 BE000620 AW961170 AW847519 AA308542 AW821833 AW945688 C04699 AA205504 AA377241 AW821667 AA055720
			AW817981 AW856468 AA155719 AA179928 T03007 AW754298 AA227407 AA113928 AA307904 C16859
00	434414	38585_1	Al798376 S46400 AW811617 AW811616 W00557 BE142245 AW858232 AW861851 AW858362 AA232351 AA218567 AA055556 AW858231
80			AW857541 AW814172 H66214 AW814398 AF134164 AA243093 AA173345 AA199942 AA223384 AA227092 AA227080 T12379 AA092174
			T61139 AA149776 AA699829 AW879188 AW813567 AW813538 AI267168 AA157718 AA157719 AA100472 AA100774 AA130756 AA157705
			AA157730 AA157715 AA053524 AW849581 AW854566 C05254 AW882836 T92637 AW812621 AA206583 AA209204 BE156909 AA226824 AI829309 AW991957 N66951 AA527374 H66215 AA045564 AI694265 H60808 AA149726 AW195620 BE081333 BE073424 AW817662
			A0243U3 AW341703 AW817659 BE081531 H59570
85	436608	42361_3	AA628980 A1126603 BE504035

	3374	3.03/00		DCT/IS02/12/2/
	W	O 02/080		PCT/US02/12476
	438091	44964_1		AW373062 T55662 Al299190 BE174210 AW579001 H01811 W40186 R67100 Al923886 AW952164 AA628440 AW898607 AW898616 AA709126 AW898628 AW898544 AA947932 AW898625 AW898622 Al276125 Al185720 AW510698 AA987230 T52522 BE467708 AW243400 AW043642 Al288245 Al186932 D52654 D55017 D52715 D52477 D53933 D54679 Al298739 Al146984 Al922204 N98343 BE174213 AA84557
5				AIB13854 AI214518 AI635262 AI139455 AI707807 AI698085 AW884528 AI024768 AI004723 AW087420 AI565133 N94964 AI268939 AW513280 AI061126 AI435818 AI859106 AI360506 AI024767 AA513019 AA757598 X56196 AA902959 AI334784 AI860794 AA010207 AW890091 AW513771 AI951391 AI337671 T52499 AA890205 AI640908 H75966 AA463487 AA358688 AI961767 AI866295 AA780994 AI985913 BE174196 AA029094 AW592159 T55581 N79072 AI611201 AA910812 AI220713 AW149306 AI758412 AA045713 R79750 N76096
10	439000 439285	467716_1 47065_1		AW979121 AA847986 AA829098 AL133916 N79113 AF086101 N76721 AW950828 AA364013 AW955684 AL346341 AL867454 N54784 AL655270 AL421279 AW014882 AA775552 N62351 N59253 AA626243 AL341407 BE175639 AA456968 AL358918 AA457077
	439780	47673_1		AL109688 R23665 R26578
	441128 443068	51021_2 558874_1		AA570256 AW014761 AA573721 AI473237 AI022165 AA554071 AA127551 N90525 AW973623 AA447991 AA243852 BE328850 AI148171 AI359627 AI005068 AI356567 AA232991 AW016855 AA906902 AA233101 AA127550 BE512923 AI188710 AI032142 AW078833 N30308 AW675632 AI219028 AI341201 N22181 H95390
15	443947	586160_1		W24187 W24194 R17789
	447636	7301_1		Y10043 NM_005342 L05085 AL034450 BE614226 AW749053 AA379173 AA248230 BE514634 AA334622 R70656 AA367593 AA214649 AA369318 AW957081 R05760 AA039903 Al886597 AW630122 AA906264 AA041527 R01145 Al088688 BE463637 AA398795 Al354883 Al768938 Al569996 Al452952 Al168582 Al189869 Al086670 AW262560 AW613854 AA862839 AA435840 AA670197 Al024032 Al990659 Al990089 N81095 AA847919 AW960150 AA211075 AA044704 AA367594 AW582587 AW858854 AW818630 AW818281 AW818433 AW58255
20				AA096002 N83992
	448993	79225_1		A1471630 BE540637 BE265481 AW407710 BE513882 BE546739 AA053597 BE140503 BE218514 AW956702 A1656234 A1636283 A1567265 AW340858 BE207794 AA053085 R69173 AA292343 AA454908 AA293504 A1659741 A1927478 AA399460 A1760441 AA346416 BE047245 AA730380 AA394063 AA454833 A1982791 A1567270 A1813332 A1767858 AA427705 D20284 A1221458 BE048537 A1263048 AA346417 AA911497 BE537702
25	449305	804424_1		AI638293 AW813561
	449305 451105	859083_1		AI561324 AW880941 AW880937 .
	451320	86576_1		AW118072 Al631982 T15734 AA224195 Al701458 W20198 F26326 AA890570 N90552 AW071907 Al671352 Al375892 T03517 R88265 Al124088 AA224388 Al084316 Al354686 T33652 Al140719 Al720211 T03490 Al372637 T15415 AW205836 AA630384 T03515 T33230 AA017131 AA443303 T33623 Al222556 T33511 T33785 Al419606 D55612
30	451807 .	8865_1	1	W52854 AL117600 BE208116 BE208432 BE206239 BE082291 AW953423 AA351619 BE180648 BE140560 W60080 AA865478 N90291
	452410	9163_1		AW450652 AW449519 AA993634 A1806539 AA351618 AW449522 A1827626 AA904788 AA380381 AA886045 AA774409 BE003229 Z41756 AL133619 AA468118 AA383064 A1476447 T09430 A1673758 AA524895 A1581345 A1300820 AW498812 AA256162 A1559724 A1685732 AA602400 AA905453 A1204595 AW166541 AA157456 AA156269 AA383652 AA431072 AW592707 A1435410 AW272464 A1215594 AA622747 R74039 N35031 A1804128 AW513621 AA668351 A1026826 A1493388 AA614641 W81604 A1567080 A1214351 AA730140 A1125754 A1200813
35				A1269603 A1565082 A1807095 A1476629 AA505909 A1368449 A1686077 A1582930 AW085038 AA757863 AA730154 A1767072 AA468316
33	454241 455175	1067807_1 1257335_1	i	AI734130 AI734138 AA426284 AA433997 AI741241 AW043563 AI732741 AI732734 AA437369 AA425820 AA664048 R74130 BE144666 BE184942 AW238414 BE184946 AW993247 AW861464
40	456237 458098	168730_1 47395_1	j	AA203682 R11958 BE550224 AA832519 N45402 AW885857 N29245 BE465409 W07677 AW970089 Al299731 AA482971 BE503548 H18151 W79223 AF086393 AA461301 W74510 R34182 Al090689 N46003 BE071550 R28075 AW134982 Al240204 Al138906 AW026179 Al572316 BE466182 Al206395 Al276154 Al273269 Al422817 Al371014 Al421274 Al188525 AA939164 BE549810 AW137865 Al694996 BE503841 AA459718 BE327407 BE467534 BE218421 BE467767 AA989054 BE467063 Al797130 BE327781
				DE401334 DE210421 DE401101 PA30304 DE401000 ATTA 100 DE021101
45				
73	TABLE 9C			·
	INDLE 30			
50	Pkey: Ref: Strand:	Sequence sequence Indicates I	source. of huma ONA stra	orresponding to an Eos probeset The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA an chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. and from which exons were predicted. the oscillator of predicted exons.
	NCposition:	indicates	iucieoui	de positions of predicted exons.
	Diene	Ref	Strand	Nt_position
55	Pkey			1439-1615
55	400512 400517		Minus Minus	49996-50346
	400560		Plus	94182-94323,97056-97243,101095-101236,102824-103005
	400664		Plus	13558-13721,13942-14090,14554-14679
	400665		Plus	16879-17023
60	400666		Plus	17982-18115,20297-20456
	400749		Minus	9162-9293
	400763		Minus	35537-35784
	401027		Minus	70407-70554,71060-71160
	401093		Minus	22335-23166
65	401203		Minus	172961-173056,173868-173928
	401212		Plus	87839-88028
	401411	7799787	Minus	144144-144329
	401435		Minus	54508-55233
	401464		Minus	170688-170834
70	401714		Plus	96484-96681
	401747		Minus	118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097-131258,131866-
				131932, 132451-132575,133580-134011
	401760	9929699	Ptus	83126-83250,85320-85540,94719-95287
	401780		Minus	20207_20647_20020_20045_20135_20206_20411_20567_20705_20787_30224_30573
75	401781		Minus	83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814
	401785		Minus	165776-165936, 166189-166314, 166408-166569, 167112-167268, 167387-167469, 168634-168942
	401797		Plus	6973-7118
	401961		Minus	124054-124209
	401985	2580474	Plus	61542-61750
80	401994	4153858	Minus	42904-43124,43211-43336,44607-44763,45199-45281,46337-46732
50	402075	8117407	Plus	121907-122035,122804-122921,124019-124161,124455-124610,125572-126076
	402075	3399665	Minus	113765-113910,115653-115765,116808-116940
				21059-21168
	402265	3287673	Plus	
25	402297	6598824	Plus	35279-35405,35573-35659
85	402408	9796239	Minus	110326-110491

	W	O 02/08	6443	
	402420	9796339	Plus	129750-129919
	402674	8077108	Minus	39290-39502
	402802	3287156	Minus	53242-53432
	402994	2996643	Minus	4727-4969
5	403137	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337
	403306	8099945	Plus	127100-127251
	403329	8516120	Plus	96450-96598
	403381	9438267	Minus	26009-26178
	403478	9958258	Plus	116458-116564
10	403485	9966528	Plus	2888-3001,3198-3532,3655-4117
	403627	8569879	Minus	23868-24342
	403715	7239669	Plus	85128-85292
	404044	9558573	Minus	225757-225939
	404076	9931752	Minus	3848-3967
15	404101	8076925	Minus	125742-125997
	404140	9843520	Plus	37761-38147
	404165	9926489	Minus	69025-69128
	404185	4572584	Minus	129171-129327
••	404210	5006246	Plus	169926-170121
20	404253	9367202	Minus	55675-56055
	404287	2326514	Plus	53134-53281
	404298	9944263	Minus	73591-73723
	404347	9838195	Plus	74493-74829
~ -	404440	7528051	Plus	80430-81581
25	404721	9856648	Minus	173763-174294
	404794	4826439	Plus	101619-101898
	404854	7143420	Plus	14260-14537
	404877	1519284	Plus	1095-2107
20	404927	7342002	Plus	68690-69563
30	404996	6007890	Plus	37999-38145,38652-38998,39727-39872,40557-40674,42351-42450
	405449	7622497	Plus	42236-42570
	405568	6006906	Plus	35912-36065
	405572	3800891	Plus	85230-85938
25	405646	4914350	Plus	741-969
35	405676	4557087	Plus	73195-73917
	405770	2735037	Plus	61057-62075
	405932	7767812	Minus	123525-123713
	406137	9166422	Minus	30487-31058
40	406360	9256107	Minus	7513-7673
40	406399	9256288	Minus	63448-63554
	406467	9795551	Plus	182212-182958

TABLE 10A: Potential Therapeutic, Diagnostic and Prognostic targets for Therapy of Lung Cancer and Non-malignant Lung Disease
Table 2A shows about 307 genes up-regulated in non-malignant lung disease relative to lung tumors and normal body tissues and/or down-regulated in lung tumors relative to
normal lung and non-malignant lung disease. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. 45

Table 108 show the accession numbers for those Pkey's lacking UnigeneiD's for table 10A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the 50 "Accession" column.

Table 10C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 10A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

55

Unique Eos probeset identifier number Pkey: ExAccn: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number 60 Unigene Title: Unigene gene title

Average of lung tumors (including squarnous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinold tumors) divided by the R1:

average of normal lung samples

Average of non-malignant lung disease samples (including bronchilds, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples R2:

65	Pkey	ExAcon	UnigenelD	Unigene Title · ENSP00000241075:TRRAP PROTEIN.	R1 0.79	R2 3,10
	404394 404916		•	Target Exon	1.00	159.00
	404916			Target Exon	1.00	422.00
	407228	M25079	Hs.155376	hemoglobin, bela	0.47	2.33
70		M23079 AA740964		ESTs	1.00	123.00
70	407568		Hs.62699	Homo sapiens mRNA for KIAA1568 protein,	1.00	230.00
	408562	A1436323	Hs.31141			
	409031	AA376836	Hs.76728	ESTs	1.00	128.00
	410434	AF051152	Hs.63668	toll-like receptor 2	39.65	149.00
	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	1.00	109.00
75	410808	T40326	Hs.167793	ESTs	1.14	13.14
	412351	AL135960	Hs.73828	T-cell acute lymphocytic leukemia 1	0.37	2.27
	412372	R65998	Hs.285243	hypothetical protein FLJ22029	1.00	173.00
	413795	AL040178	Hs.142003	ESTs	0.10	11.90
	414154	AW205314	Hs.323060	ESTs	0.62	2.09
80	414214	D49958	Hs.75819	glycoprotein M6A	0.03	4.55
••	414998	NM_002543	Hs.77729	oxidised low density lipoprotein (lectin	0.64	2.97
	415122	D60708	Hs.22245	ESTs	0.07	8.97
	415765	NM_005424	Hs.78824	tyrosine kinase with immunoglobutin and	0.67	1.65
	415775	H00747	Hs.29792	ESTs, Weakly similar to 138022 hypotheti	0.29	2.64
85					1.00	145.00
02	415910	U20350	Hs.78913	chemokine (C-X3-C) receptor 1	1.00	145.00

	W	O 02/086	443			
	416319	AI815601	Hs.79197	CD83 antigen (activated 8 lymphocytes, I	15.32	237.00
	416402	NM_000715	Hs.1012	complement component 4-binding protein,	0.64	4.00
	417355	D13168	Hs.82002	endothelin receptor type B	0.01	3.90
5	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	36.30 1.00	357.00 179.00
,	417511 418489	AL049176 U76421	Hs.82223 Hs.85302	chordin-like adenosine deaminase, RNA-specific, B1 (h	0.02	6.00
	418726	BE241812	Hs.87860	protein tyrosine phosphatase, non-recept	1.00	113.00
	418741	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom	0.44	1.90
10	418883	BE387036	Hs.1211	acid phosphatase 5, tartrate resistant	0.96 0.62	2.04 2.74
10	419086 419150	NM_000216 T29618	Hs.89591 Hs.89640	Kallmann syndrome 1 sequence TEK tyrosine kinase, endothelial (venous	0.02	6.90
	419235	AW470411	Hs.288433	neurotrimin	1.48	5.13
	419407	AW410377	Hs.41502	hypothetical protein FLJ21276	37.55	336.00
15	420556	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 ffs, clone L	0.80	3.65
15	420656 420729	AA279098 AW964897	Hs.187636 Hs.290825	ESTS ESTS	1.65 2.99	8.07 25.82
	421177	AW070211	Hs.102415	Homo saplens mRNA; cDNA DKFZp586N0121 (f	0.46	1.95
	422060	R20893	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	1.00	156.00
20	422426	W79117	Hs.58559	ESTs	0.03	7.44
20	422652 423099	AW967969	Hs.118958	syntaxin 11 protein tyrosine phosphatase, receptor t	0.14 0.01	3.62 3.16
	423099	NM_002837 H04607	Hs.123641 Hs.9218	ESTs .	0.75	141.75
	424585	AA464840	Hs.131987	ESTs	1.00	167.00
0.5	424711	NM_005795	Hs.152175	calcitonin receptor-like	0.43	3.01
25	424973	X92521	Hs.154057	matrix metalloproteinase 19	0.37 0.14	19.45 3.35
	425023 425664	AW956889 AJ006276	Hs.154210 Hs.159003	endothelial differentiation, sphingolipl transient receptor potential channel 6	1.00	94.00
	425998	AU076629	Hs.165950	fibroblast growth factor receptor 4	0.68	1.42
	426657	NM_015865	Hs.171731	solute carrier family 14 (urea transport	0.03	3.74
30	426753	T89832	Hs.170278	ESTs	1.00	141.00
	427558	D49493	Hs.2171	growth differentiation factor 10	1.00 0.75	117.00 2.20
	427983 428467	M17706 - AK002121	Hs.2233 Hs.184465	colony stimulating factor 3 (granulocyte hypothetical protein FLJ11259	0.76	2.25
	428927	AA441837	Hs.90250	ESTs	0.01	3.62
35	429496	AA453800	Hs.192793	ESTs	1.00	138.00
	430468	NM_004673	Hs.241519	angiopoietin-like 1	1.00	132.00 157.00
	431385 431728	BE178536 NM_007351	Hs.11090 Hs.268107	membrane-spanning 4-domains, subfamily A multimerin	1.00 1.00	157.00
	431848	Al378857	Hs.126758	ESTs, Highly similar to AF175283 1 zinc	0.34	2.24
40	432128	AA127221	Hs.117037	ESTs	0.00	1.15
	432519	AJ221311	Hs.130704	ESTs, Weakly similar to BCHUIA S-100 pro	0.01 1.00	2.06 267.00
	433043 433803	W57554 AI823593	Hs.125019 Hs.27688	lymphoid nuclear protein (LAF-4) mRNA ESTs	1.00	105.00
	434730	AA644669	Hs.193042	ESTs	1.05	3.15
45	435472	AW972330	Hs.283022	triggering receptor expressed on myelold	0.83	1.94
	436532	AA721522		gb:nv54h12.r1 NCI_CGAP_Ew1 Homo sapiens	1.00 .	218.00
	437119 437140	Al379921 AA312799	Hs.177043 Hs.283689	ESTs activator of CREM in testis	1.00 0.67	133.00 122.67
	437211	AA382207	Hs.5509	ecotropic viral integration site 2B	1.00	142.00
50	437960	AI669586	Hs.222194	ESTs	1.00	147.00
	438202	AW169287	Hs.22588	ESTs	1.00	141.00
	438873	Al302471	Hs.124292	Homo saplens cDNA: FLJ23123 fis, clone L ESTs	0.71 23.32	3.66 370.00
	438875 441048	AA827640 AA913488	Hs.189059 Hs.192102	ESTs	0.77	8.50
55	441188	AW292830	Hs.255609	ESTs	3.43	16.36
	441499	AW298235	Hs.101689	ESTs	1.00	167.00
	444513	AL120214	Hs.7117	glutamate receptor, ionotropic, AMPA 1	1.00 46.47	151.00 153.00
	444527 444561	NM_005408 NM_004469	Hs.11383 Hs.11392	small inducible cytokine subfamily A (Cy c-fos induced growth factor (vascular en	0.01	3.08
60	445279	R41900	Hs.22245	ESTs	0.60	141.00
	446017	N98238	Hs.55185	ESTs	0.18	2.39
	446984	AB020722	Hs.16714	Rho guanine exchange factor (GEF) 15	0.10	2.16
	446998 447357	N99013 Al375922	Hs.16762 Hs.159367	Homo sapiens mRNA; cDNA DKFZp564B2062 (f ESTs	0.01 0.46	2.53 2.64
65	448106	A1800470	Hs.171941	ESTs	18.05	296.00
	448253	H25899	Hs.201591	ESTs	1.00	141.00
•	449275	AW450848	Hs.205457	periaxin	0.56	1.38
	450400	AI694722	Hs.279744 Hs.16026	ESTs hypothetical protein FLJ23191	0.88 0.52	4.33 2.08
70	450696 450726	AI654223 AW204600	Hs.250505	retinoic acid receptor, alpha	0.79	2.01
. •	451497	H83294	Hs.284122	Wnt inhibitory factor-1	0.35	2.03
	451533	NM_004657	Hs.26530	serum deprivation response (phosphatidyl	0.13	2.25
	453636	R67837	Hs.169872	ESTS	1.00 1.00	116.00 192.00
75	458332 459580	AI000341 AA022888	Hs.220491 Hs.176065	ESTs ESTs	0.20	2.98
. 5	400269			Eos Control	0.40	2.40
	403421			NM_016369*:Homo sapiens claudin 18 (CLDN	0.53	1.77
	407570	Z19002	Hs.37096	zinc finger protein 145 (Kruppel-like, e	0.01 0.56	3.18
80	412295 414517	AW088826 M24461	Hs.117176 Hs.76305	poly(A)-binding protein, nuclear 1 surfactant, pulmonary-associated protein	0.64	1.74 1.50
-	417204	N81037	Hs.1074	surfactant, pulmonary-associated protein	0.33	1.16
	418307	U70867	Hs.83974	solute carrier family 21 (prostaglandin	0.53	1.55
	418935	T28499	Hs.89485	carbonic anhydrase IV	0.20	1.28
85	421502 421798	AF111856 N74880	Hs.105039 Hs.29877	solute carrier family 34 (sodium phospha N-acylsphingosine amidohydrolase (acid c	0.78 0.59	1.90 1.54
				mal abinit Bannia minnant language facility		

	**	/O 02/086	143			
	423354	AB011130	Hs.127436	calcium channel, voltage-dependent, alph	0.59	1.55
	423738	AB002134	Hs.132195	airway typsin-like protease	10.14	51.00
	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	0.35	1.62
~	425438	T62216	Hs.270840	ESTs	0.23	9.45
5	426828	NM_000020	Hs.172670	activin A receptor type II-like 1	0.03	1.71
	427019 428043	AA001732 T92248	Hs.173233 Hs.2240	hypothetical protein FLJ10970 uteroglobin	0.01 0.42	1.49 1.26
	430280	AA361258	Hs.237868	Interleukin 7 receptor	0.46	2.43
	431433	X65018	Hs.253495	surfactant, pulmonary-associated protein	0.57	1.59
10	431723	AW058350	Hs.16762	Homo saplens mRNA; cDNA DXFZp564B2062 (f	0.29	1.80
	432985	T92363	Hs.178703	ESTs	0.32	2.27
	441835	AB036432	Hs.184	advanced glycosylation end product-speci	0.31 0.55	1.51 1.78
	442275 443709	AW449467 A1082692	Hs.54795 Hs.134662	ESTs ESTs	0.00	3.02
15	444325	AW152618	Hs.16757	ESTs	0.32	2.49
15	450954	AJ904740	Hs.25691	receptor (calcitonin) activity modifying	0.46	1.74
	451558	NM_001089	Hs.26630	ATP-binding cassette, sub-family A (ABC1	0.52	1.87
	453310	X70697	Hs.553	solute carrier family 6 (neurotransmitte	0.00	3.30
20	456855	AF035528	. Hs.153863	MAD (mothers against decapentaplegic, Dr	0.01	2.31 2.20
20	444342 400754	NM_014398	Hs.10887	similar to lysosome-associated membrane Target Exon	0.66 1.00	297.00
	400754			C11001883*:gi[6753278]ref[NP_033938.1] c	1.00	109.00
	401083			NM_016582*:Homo sapiens peptide transpor	0.89	1.39
~ -	402474			NM_004079:Homo sapiens cathepsin S (CTSS	1.45	4.47
25	402808			ENSP00000235229:SEMB.	1.00	1.87
	403021			C21000030:gi 9955960 ref NP_063957.1 AT	1.00	149.00
	403438			NM_031419*:Homo sapiens molecule possess NM_007037*:Homo sapiens a disintegrin-li	1.06 0.04	2.96 4.89
	403687 403764			NM_005463:Homo sapiens heterogeneous nuc	1.00	225.00
30	404277			NM_019111*:Homo sapiens major histocompa	0.97	1.93
	404288			NM_002944*:Homo sapiens v-ros avian UR2	1.00	68.00
	404518	Al815601		CD83 antigen (activated B lymphocytes, i	0.02	1.83
	405106			C11001637*:gi 5032241 ref NP_005732.1 z	1.00	235.00
35	405381			Target Exon	1.00 1.37	93.00 6.02
33	406387 406646	M33600		Target Exon major histocompatibility complex, class	0.86	2.46
	406714	Al219304	Hs.266959	hemoglobin, gamma G	0.01	3.19
	406753	AA505665	Hs.217493	annexin A2	1.00	147.00
40	406973	M34996	Hs.198253	major histocompatibility complex, class	1.03	2.04
40	407248	U82275	Hs.94498	leukocyte immunoglobulin-like receptor,	1.00	64.00
	407510	U96191	LI- 00000	gb:Human trophoblast hypoxia-regulated f	1.00 1.00	90.00 67.00
	407731 407830	NM_000066 NM_001086	Hs.38069 Hs.587	complement component 8, beta polypeptide arylacetamide deacetylase (esterase)	1.00	102.00
	408045	AW138959	Hs.245123	ESTs	1.00	70.00
45	408074	R20723		ESTs	1.00	112.00
	408374	AW025430	Hs.155591	forkhead box F1	0.07	10.17
	409064	AA062954	Hs.141883	ESTs	0.39	2.31
	409083	AF050083	Hs.673	interleukin 12A (natural killer cell sti	1.00 0.01	95.00 4.55
50	409153 409203	W03754 AA780473	Hs.50813 Hs.687	hypothetical protein FLJ20022 cytochrome P450, subfamily IVB, polypept	0.01	3.72
50	409238	AL049990	Hs.51515	Homo sapiens mRNA; cDNA DKFZp564G112 (fr	1.00	79.00
	409389	AB007979	Hs.301281	Homo saplens mRNA, chromosome 1 specific	0.14	27.35
•	409718	D86640	Hs.56045	src homology three (SH3) and cysteine ri	1.00	113.00
55	410798	BE178622	Hs.16291	gb:PM3-HT0605-270200-001-a02 HT0605 Homo	0.64 0.55	2.47 2.40
22	411020 411667	NM_006770 BE160198	Hs.67726	macrophage receptor with collagenous str gb:QV1-HT0413-010200-059-h03 HT0413 Homo	1.00	111.00
	412000	AW576555	Hs.15780	ATP-binding cassette, sub-family A (ABC1	1.00	95.00
	412358	BE047490	Hs.24172	ESTs	1.00	87.00
	412420	AL035668	Hs.73853	bone morphogenetic protein 2	1.43	8.07
60	412564	X83703	Hs.31432	cardiac ankyrin repeat protein	0.02	3.07
	412869	AA290712	Hs.82407 Hs.82407	CXC chemokine ligand 16	0.93 0.97	1.72 1.51
	412870 413529	N22788 U11874	Hs.846	CXC chemokine ligand 16 interteukin 8 receptor, beta	0.02	2.42
	413533	BE146973	113.040	gb:QV4-HT0222-011199-019-e05 HT0222 Homo	0.65	1.50
65 ·	413689	BE157286	Hs.20631	zinc finger protein, subfamily 1A, 5 (Pe	20.87	232.00
	413724	AA131466	Hs.23767	hypothetical protein FLJ 12666	1.00	80.00
	413800	Al129238	Hs.192235	ESTs	1.00	85.00
	413802	AW964490	Hs.32241	ESTs, Weakly similar to S65657 alpha-1C-	1.00 0.02	213.00 3.93
70	413829 414376	NM_001872 BE393856	Hs.75572 Hs.66915	carboxypeptidase B2 (plasma) ESTs, Weakly similar to 16.7Kd protein [1.00	115.00
70	414577	AI056548	Hs.72116	hypothetical protein FLJ20992 similar to	0.49	1.94
	414700	H63202	Hs.38163	ESTs	0.03	3.75
	415078	AA311223	Hs.283091	found in inflammatory zone 3	0.86	1.95
75	415120	N64464	Hs.34950	ESTs	1.00	120.00
75	415323	BE269352	Hs.949	neutrophil cytosolic factor 2 (65kD, chr	0.60 1.00	2.48 95.00
	415335 415582	AA847758 W92445	Hs.111030 Hs.165195	ESTs Homo sapiens cDNA FLJ14237 fis, clone NT	1.00	136.00
	416030	H15261	Hs.21948	ESTs	0.02	8.07
	416427	BE244050	Hs.79307	Rac/Cdc42 guanine exchange factor (GEF)	1.00	73.00
80	416464	NM_000132	Hs.79345	coagulation factor VIII, procoagulant co	0.70	3.36
	416585	X54162	Hs.79386	leiomodin 1 (smooth muscle)	0.06	6.56
	416847	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do	0.70 1.00	3.66 114.00
	417148 417370	AA359896 T28651	Hs.293885 Hs.82030	hypothetical protein FLJ14902 tryptophanyl-IRNA synthetase	0.85	1.30
85	417673	T87281	Hs.16355	ESTs	0.15	15.54
17						

	w	O 02/086	443			
	418067	Al127958	Hs.83393	cystatin E/M	0.81	1.74
	418296	C01566	Hs.86671	ESTa	1.00	99.00
	418643	J03798	Hs.86948	small nuclear ribonucleoprotein D1 polyp	1.00	60.00
5	418832	X04011	Hs.88974	cytochrome b-245, beta polypeptide (chro	2.40 0.67	14.74 · 3.16
J	418945 419261	BE246762 X07876	Hs.89499 Hs.89791	arachidonate 5-lipoxygenase wingless-type MMTV integration site fami	1.00	73.00
	419564	U08989	Hs.91139	solute carrier family 1 (neuronal/epithe	1.00	192.00
	419574	AK001989	Hs.91165	hypothetical protein	1.00	94.00
10	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	61.16	500.00
10	420256 420285	U84722 AA258124	Hs.76206 Hs.293878	cadherin 5, type 2, VE-cadherin (vascula ESTs, Moderately similar to ZN91_HUMAN Z	0.52 1.00	1.70 172.00
.•	420265	AA278436	Hs.186649	ESTs	1.00	97.00
-	421262	AA286746	Hs.9343	Homo sapiens cDNA FLJ14265 fis, clone PL	1.00	64.00
1.5	421445	AA913059	Hs.104433	Homo sapiens, clone IMAGE:4054868, mRNA	0.88	1.51
15	421470	R27496	Hs.1378	annexin A3	0.05 1.00	11.26 73.00
	421478 421563	AI683243 NM_006433	Hs.97258 Hs.105806	ESTs, Moderately similar to S29539 ribos granutysin	0.82	2.42
	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	5.50	31.57
	421855	F06504	Hs.27384	ESTs, Moderately similar to ALU4_HUMAN A	1.00	129.00
20	421913	A1934365	Hs.109439	osteogtycin (osteoinductive factor, mime	1.00	101.00
	421952	AA300900	Hs.98849	ESTs, Moderately similar to AF161511 1 H	0.60 1.00	63.60 148.00
	422232 422386	D43945 AF105374	Hs.113274 Hs.115830	transcription factor EC heparan sulfate (glucosamine) 3-O-sulfot	1.40	3.98
	423168	R34385	Hs.124940	GTP-binding protein	0.34	3.59
25	423196	AK001866	Hs.125139	hypothetical protein FLJ11004	0.55	2.00
	423387	AJ012074	11- 400 400	vasoactive intestinal peptide receptor 1	0.09	2.13
	423424 423456	AF150241 AL110151	Hs.128433 Hs.128797	prostaglandin D2 synthase, hematopoletic DKFZP586D0824 protein	1.00 1.00	141.00 66.00
	423436	Z92546	NS. 120131	Sushi domain (SCR repeat) containing	0.73	1.27
30	424027	AW337575	Hs.201591	ESTs	0.54	2.58
	424212	NM_005814	Hs.143131	glycoprotein A33 (transmembrane)	0.77 1.00	2.47
	425087	R62424	Hs.126059		1.00 0.85	74.00 1.96
	425175 425771	AF020202 BE561776	Hs.155001 Hs.159494	UNC13 (C. elegans)-like Bruton agammaglobulinemia tyrosine kinas	1.18	2.56
35	426486	BE178285	Hs.170056	Homo sapiens mRNA; cDNA DKFZp586B0220 (f	1.00	76.00
	427507	AF240467	Hs.179152	toll-like receptor 7	1.00	63.00
	427618	NM_000760	Hs.2175	colony stimulating factor 3 receptor (gr	0.60	2.19
	427732	NM_002980	Hs.2199	secretin receptor ESTs, Moderately similar to A53959 throm	0.97 1.00	1,42 105.00
40	427952 428709	AA765368 BE268717	Hs.293941 Hs.104916	hypothetical protein FLJ21940	1.00	80.00
-10	428769	AW207175	Hs.106771	ESTs	0.09	2.55
	428780	A1478578	Hs.50636	ESTs	1.00	98.00
	428833	AI928355	Hs.185805	ESTs	1.00	113.00
45	429657	D13626	Hs.2465	KIAA0001 gene product; putative G-protei	1.00 1.00	52.00 132.00
43	430212 430226	AA469153 BE245562	Hs.2551	gb:nc67f04.s1 NCI_CGAP_Pr1 Homo sapiens adrenergic, beta-2-, receptor, surface	0.11	15.60
	430376	AW292053	Hs.12532	chromosome 1 open reading frame 21	1.00	103.00
	430414	AW365665	Hs.120388	ESTs	0.50	6.96
50	430656	AA482900	Hs.162080	ESTs	1.00	70.00 90.00
50	430843 430998	Al734149 AF128847	Hs.119514 Hs.204038	ESTs indolethylamine N-methyltransferase	1.00 0.29	1.84
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	1.00	79.00
	431921	N46466	Hs.58879	ESTs	0.91	1.67
<i></i>	432176	AW090386	Hs.112278	arrestin, beta 1	0.66	2.63
55	432203	AA305746	Hs.49	macrophage scavenger receptor 1	1.00 0.46	76.00 1.46
	432231 432485	AA339977 N90866	Hs.274127 Hs.276770	CLST 11240 protein CDW52 antigen (CAMPATH-1 antigen)	0.46	2.25
	432522	D11466	Hs.51	phosphatidylinositol glycan, class A (pa	1.93	4.83
	432596	AJ224741	Hs.278461	matrilin 3	0.04	5.79
60	432850	X87723	Hs,3110	angiotensin receptor 2	1.00	167.00
	433138	AB029496	Hs.59729	semaphorin sem2	0.04 1.00	9.16 91.00
	433563 433588	A1732637 A1056872	Hs.277901 Hs.133386	ESTS ESTS	120.16	315.00
	434445	Al349306	Hs.11782		0.60	1.84
65	435496	AW840171	Hs.265398	ESTs, Weakly similar to transformation-r	1.00	128.00
	435974	U29690	Hs.37744	Homo sapiens beta-1 adrenergic receptor	1.00	108.00
	436061	A1248584	Hs.190745 Hs.120655	Homo sapiens cDNA: FLJ21326 fis, clone C ESTs	1.00 1.00	91.00 87.00
	437157 437207	BE048860 T27503	Hs.15929	hypothetical protein FLJ12910	1.00	105.00
70	437311	AA370041	Hs.9456	SWI/SNF related, matrix associated, acti	1.00	71.00
	437439	H29796	Hs.269622	ESTs	1.00	115.00
	438199	AW016531	Hs.122147	ESTs	1.00	80.00 3.10
	439551	W72062	Hs.11112 Hs.7239	ESTs SEC24 (S. cerevisiae) related gene famil	0.30 1.00	77.00
.75	440515 440887	AJ131245 AI799488	Hs.135905	ESTs	1.00	85.00
	441025	AA913880	Hs.176379	ESTs	1.00	82.00
	441384	AA447849	Hs.288660	Homo sapiens cDNA: FLJ22182 fis, clone H	0.79	1.89
	441735	AI738675	Hs.127346	ESTs	1.00	75.00 5.83
80	442200 442832	AW590572 AW206560	Hs.235768 Hs.253569	ESTs ESTs	0.78 0.03	5.83 10.88
00	442957	A1949952	Hs.49397	ESTs	1.00	70.00
	443282	T47764	Hs.132917	ESTs	1.00	197.00
	443547	AW271273	Hs.23767	hypothetical protein FLJ12666	1.00	253.00
85	443951	F13272	Hs.111334	familin, light polypeptide	0.55 1.00	2.09 90.00
رن	444330	Al597655	Hs.49265	ESTs	1.00	30.00

405381

85

7329310

6006920

Plus

Minus

73121-73273

7636-8054

10

Table 11A shows about 84 genes upregulated in lung adenocarcinomas relative to other lung tumors, non-malignant lung disease, and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymatrix Hu03 Genechlp array.

Table 11B show the accession numbers for those Pkey's lacking UnigenelD's for table 11A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 11C show the genomic positioning for those Pkey's tacking Unigene ID's and accession numbers in table 11A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: 15

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number ExAccn:

UnigenelD: Unigene Title:

Unigene gene title
Whigene gene title
Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

R1: average of normal lung samples

20 oles finatuding bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

20	R2:	Average of non-malignant lung disease samples (including bronchilis, emphysema, fibrosis, atelectasis,								
	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2				
	403329		•	Target Exon	1.00	61.00				
	406399			NM_003122*:Homo sapiens serine protease	1.00	39.00				
25	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad	226.37	350.00				
	407869	AJ827976	Hs.24391	hypothetical protein FLJ13612	0.77	1.18				
	407881	AW072003	Hs.40968	heparan sulfate (glucosamine) 3-0-sulfot	1.00	10.00				
	408908	BE296227	Hs.250822	serine/threonine kinase 15	7.76	1.00				
20.	409103	AF251237	Hs.112208	XAGE-1 protein	80.44	40.00				
30	409187	AF154830	Hs.50966	carbamoyl-phosphate synthetase 1, mitoch	1.00	1.00				
	409269	AA576953	Hs.22972	hypothetical protein FLJ13352	1.00	1.00				
	410076	T05387	Hs.7991	ESTs	1.12	1.50				
	410102	AW248508	Hs.279727	Homo sapiens cONA FLJ14035 fis, clone HE	9.89	1.00				
25	410399	BE068889	11. 70004	synuclein, gamma (breast cancer-specific	0.92 1.00	1.06 1.00				
35	411908	L27943	Hs.72924	cytidine deaminase		1.03				
	412612	NM_000047	Hs.74131	arylsulfatase E (chondrodysplasia puncta	1.02 0.84	1.03				
	414075	U11862	Hs.75741	amiloride binding protein 1 (amine oxida	3.67	1.00				
		· AW291168	Hs.41295	ESTs, Weakly similar to MUC2_HUMAN MUCIN	1.28	1.35				
40	417542 419183	J04129 U60669	Hs.82269 Hs.89663	progestagen-associated endometrial prote cytochrome P450, subfamily XXIV (vitamin	1.00	1.00				
- U	419502	AU076704	H2.03003	fibrinogen, A alpha polypeptide	13.05	115.00				
	419631	AW188117	Hs.303154	popeye protein 3	1.00	13.00				
	420931	AF044197	Hs.100431	small inducible cytokine B subfamily (Cy	1.00	8.00				
	421155	H87879	Hs.102267	lysyl oxidase	1.00	15.00				
45	421190	U95031	Hs.102482	mucin 5, subtype B, tracheobronchial	1.17	1.55				
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	1.46	1.76				
	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, I	1.00	3.00				
	421582	Al910275		trefoli factor 1 (breast cancer, estroge	1.23	1.00				
	422026	U80736	Hs.110826	trinucleotide repeat containing 9	1.00	52.00				
50	422095	AI868872	Hs.282804	hypothetical protein FLJ22704	4.37	2.34				
	422311	AF073515	Hs.114948	cytokine receptor-like factor 1	1.15	1.78				
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	1.69	3.17				
	423472	AF041260	Hs.129057	breast carcinoma amplified sequence 1	48.13	72.00				
~ ~	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	1.00	50.00				
55	424502	AF242388	Hs.149585	lengsin	1.00	1.00				
	424544	M88700	Hs.150403	dopa decarboxylase (aromatic L-amino aci	1.00	59.00				
	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k	21.35	1.00				
	424960	BE245380	Hs.153952	5' nucleotidase (CD73)	1.00	1.00				
60	425523	AB007948	Hs.158244	KIAA0479 protein	1.00	35.00				
60	426230	AA367019	Hs.241395	protease, serine, 1 (trypsin 1)	1.00	83.00 34.00				
	427701	AA411101	Hs.243886	nuclear autoantigenic sperm protein (his	7.41 1.00	6.00				
	428585	AB007863	Hs.185140	KIAA0403 protein	1.06	1.13				
•	428758	AA433988	Hs.98502	hypothetical protein FLJ14303	16.18	105.00				
65	429170	NM_001394 AA019004	Hs.2359 Hs.198396	dual specificity phosphatase 4 ATP-binding cassette, sub-family A (ABC1	1.07	1.00				
05	429263 429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas	1.59	1.69				
	430508	AI015435	Hs.104637	ESTs	4.75	7.27				
-	430985	AA490232	Hs.27323	ESTs, Weakly similar to 178885 serine/th	0.94	1.28				
	431548	AI834273	Hs.9711	novel protein	5.66	15.00				
70	431566	AF176012	Hs.260720	J domain containing protein 1	49.76	37.00				
. •	431986	AA536130	Hs.149018	Novel human gene mapping to chomosome 20	1.19	1.47				
	432375	BE536069	Hs.2962	S100 calcium-binding protein P	1.65	1.06				
	432677	NM_004482	Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:polyp	1.00	48.00				
	433556	W56321	Hs.111460	calcium/calmodulin-dependent protein kin	1.00	19.00				
75	433819	AW511097	Hs.112765	ESTs	3.71	8.00				
	434001	AW950905	Hs.3697	serine (or cysteine) proteinase inhibito	29.31	72.00				
	434424	A1811202	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	1.00	64.00				
	434792	AA649253	Hs.132458	ESTs	8.52	44.00				
00	436217	T53925	Hs.107	fibrinogen-like 1	57.97	31.00				
80	436749	AA584890	Hs.5302	lectin, galactoside-binding, soluble, 4	1.10	1.41				
	436972	AA284679	Hs.25640	claudin 3	1.59	1.46				
	437866	AA156781		metallothioneln 1E (functional)	3.62	101.00				
	437935	AW939591	Hs.5940	mucin 13, epithelial transmembrane	1.60	1.39				
85	438915	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	1.00	1.00				
0)	439451	AF086270	Hs.278554	heterochromatin-like protein 1	23.28	52.00				

	w	O 02/086	443				PCT/US02/12476				
	439759 441031	AL359055 Al110684	Hs.67709 Hs.7645	Homo sapiens mRNA full length insert cDN fibrinogen, B beta polypeptide	1.00 1.41	21.00 99.00					
	441377 443614	BE218239 AV655386	Hs.202656 Hs.7645	ESTs librinogen, B beta polypeptide	22.03 1.00	1.00 16.00					
5	443813	AA876372	Hs.93961	Homo sapiens mRNA; cDNA DKFZp667D095 (fr	1.20	1.99					
	443991 444670	NM_002250 H58373	Hs.10082 Hs.332938	potassium intermediate/small conductance hypothetical protein MGC5370	5.71 1.98	6.87 38.00					
	444931	AV652056	Hs.75113	general transcription factor IIIA	1.00	54.00					
10	446102	AW168067	Hs.317694	ESTs	1.00	1.00					
10	446163 446469	AA026880 BE094848	Hs.25252 Hs.15113	Homo sapiens cDNA FLJ13603 fis, clone PL homogentisate 1,2-dioxygenase (homogenti	1.00 1.00	36.00 11.00					
	447388	AW630534	Hs.76277	Homo saplens, clone MGC:9381, mRNA, comp	1.24	1.16	·				
	447532 448243	AK000614 AW369771	Hs.18791 Hs.52620	hypothetical protein FLJ20607	1.23 15.84	1.63 1.00					
15	448243	AJ581519	Hs.177164	integrin, beta 8 ESTs	1.00	31.00					
	449444	AW818436	Hs.23590	solute carrier family 16 (monocarboxylic	1.00	83.00					
	451807 452689	W52854 F33868	Hs.284176	hypothetical protein FLJ23293 similar to transferrin	1.55 · 1.54	35.00 1.44					
	453392	U23752	Hs.32964	SRY (sex determining region Y)-box 11	. 1.00	16.00					
20	453464	AI884911	Hs.32989	receptor (calcitonin) activity modifying	1.55	2.45	\$				
	453735	A1065629	Hs.125073	ESTs	1.01	1.30					
	TABLE 1	1B									
25	Pkey: CAT num Accession	ber: Gene clus		nüfier number bers							
30	Pkey 410399	CAT Numbe 11995_1	BE068 Al9365	1071 1889 BE068882 AF044311 AF017256 NM_003087 AF 27 AA804675 AA394097 A1139933 AA946606 BE17 737 H49348 AA486472 AA411094 AA235594 AA402	1313 AA722407	7 AA293803 A14684	180 AA056035 AA055968 AW796957 A1637713				
35	419502	18535_1	AU076 T68367 T68220 T73203	704 T74854 T74860 T72098 T73265 T73873 T6918(T68401 T53359 T72360 T72099 T60377 T58961 T T74673 T71800 T68355 T61227 T62738 T69317 T T70498 T61409 T58925 NM 000508 M64982 T683) T74658 T5878 71712 T72821 T 53850 T64692 T 01 T73729 T69	86 T60385 T73410 T 164738 T74645 T72 173768 T73962 T73 445 T60424 T6792	T68781 T67845 T67593 T73952 T67864 T60630 2037 T68688 T72063 T73258 T72826 T64242 3382 T68914 T70975 T73400 T60631 T73277 2 T67736 T68716 T67755 T74765 T73819 T58719				
40			T74755 T60477 T74863 T61109 T68329 T58850 T71857 T73425 T53736 T68607 T58898 T64309 T72031 T72079 T64305 T71908 T68107 T71916 T73787 T56035 T64425 T71870 T60476 T61376 T67820 T71895 T41006 T69441 T68170 T74617 T71958 T69440 T61875 R06796 H48353 T71914 T53939 T64121 AA693996 T72525 T67779 T68078 AA011465 AA345378 AVG54877 AVG54272 AVG56001 A1064740 T82897 N33594 AA344542 AW805054 A1207457 T61743 AA026737 H94389 AA382695 AA918409 T68044 S82092 T39959 AI017721 AA312395 AA312919 T40156 H66239 AV652989 H38728 R98521 AV655200 R95790 W003250 W00913 AA344150 AV660126 R97923 AA343596 AW470774 AV651256 N54417 AA812862 AW182929 AI111192 H61463 H72060 AA344503 H38639 AI277511 AV66108 AI207625 T47810 AA235252 T27853 T47778 R95746 H70620 AA701463 AW827166 R98475 C20925 AV657287 T71959 T71313 T73920 T73333 T61618 T69293								
45	T69283 T73931 T72178 T72456 AV645639 AV653476 T72957 T72300 T58906 T71457 T70494 T72956 T70495 T68267 T74407 T65778 AA344726 T27854 T74495 T74101 T73868 T71518 T72304 AA343853 T73909 T68070 T72065 T72149 T73493 T73495 AV645993 R02293 T70475 T64751 AA344441 AA343657 AA345732 AA344328 A1110639 AA344603 AF063513 T64696 T68516 T72223 T60507 T67633 R29500 T72517 R02292 T60599 T69206 T70452 T74677 R29366 T61277 T74914 T60352 R29675 T74843 AV645792 AA344408 T69197 T72057 T69368 T69358 T69258 AV650429 T73341 T61702 T74598 T40095 K02272 T40106 AA343045 AA341908 AA341907 AA342807 AA341964										
50	T53747 T72042 T62764 Al064899 AA343060 T67832 T72440 T71770 T68091 T69108 T72449 T69167 T71289 T68251 AV654844 T64375 AA345234 T67598 AA011414 T68036 H48262 Al207557 T68219 W86031 T69081 T64232 R93196 T62136 AV650539 H67459 T72978 AA344583 T60362 H58121 T95711 T72803 T68055 T71715 R29036 T72793 T69122 T64595 T62888 T69139 T68291 T64652 T67971 T46862 AA693592 Al245502 R29454 T64764 T57001 T73052 T71429 T51176 T58866 AV655414 H90426 AA342489 T73666 T67848 T72512 T53835										
55	421582	2041_1	T67837 T73317 T74273 T69420 T68245 T74380 T67862 T74474 T56068								
v. 1	437866	44433_2	AA156	045 A1307407 AW602303 BE073575 A1202532 AA52 781 AW293839 U52054 AA024963 AA778446 BE07	3977 AW444904	4 AW602574 BE16	4040 BE164012 BE163972 BE163974 BE163992				
60				181 AW468444 BE185091 AW468002 AA687333 AA	811830 AA581	806 Al866686 Al57.	2124 AA043777 AA040926 D20160 AI536733				
00	451807	8865_1	W5285	189 AW874142 A1471883 W84421 AA156850 4 AL117600 BE208116 BE208432 BE206239 BE082 652 AW449519 AA993634 A1806539 AA351618 AW							
65	TABLE 1	1C ·									

70

Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.

Strand: Indicates DNA strand from which exons were predicted.

Nt_position: Indicates nucleotide positions of predicted exons.

Pkey 403329 406399 Ref 8516120 9256288 Strand Plus Minus Nt_position 96450-96598 63448-63554 75

WO 02/086443 PCT/US02/12476

TABLE 12A: Genes Distinguishing Squamous Cell Cardinoma from Other Lung Diseases and Normal Lung

Table 12A shows about 72 genes upregulated in squamous cell carcinomas of the lung relative to other lung turnors, non-mailgnant lung disease, and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. 5

Table 12B show the accession numbers for those Pkey's lacking UnigenelD's for table 12A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 12C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 12A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

10

Pkey: ExAcon: Unique Eos probeset identifier number

Exemplar Accession number, Genbank accession number

UnigenelD:

Unigene number

Unigene Tille: 20

Unigene gene title
Average of lung lumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the R1: average of normal lung samples

ise samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

	R2:	Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis							
	Pkey	ExAcon	UnigenelD	Unigene Tille	R1	R2			
25	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	132.45	4.00			
	400666			NM_002425:Homo sapiens matrix metallopro	3.26	3.22			
	401780			NM_005557*:Homo saplens keratin 16 (foca	26.47	10.50			
	401781			Target Exon	10.33	4.61			
	401785			NM_002275*:Homo sapiens keratin 15 (KRT1	4.13	2.70			
30	401994	٠.		Target Exon	61.84	47.00			
	402075			ENSP00000251056*:Plasma membrane calcium	1.00	1.00			
	404996			Target Exon	1.00	1.00			
	407839	AA045144	Hs.161566	ESTs	173.91	108.00			
	408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	151.17	8.00			
35	408522	A1541214	Hs.46320	Small proline-rich protein SPRK [human,	1.98	1.24			
	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	10.04	1.00			
	415091	AL044872	Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A sy	1.00	30.00			
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	24.30	1.00			
40	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	53.29	51.00			
40	417034	NM_006183	Hs.80962	neurotensin	1.00	1.00			
	417366	BE185289	Hs.1076	small proline-rich protein 1B (comilin)	8.97	3.27			
	418663	AK001100	Hs.41690	desmocollin 3	112.17	19.00			
	418678	NM_001327	Hs.87225	cancer/testis antigen	1.18	1.10 1.00			
45	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	1.00	1.25			
43	420783	AI659838	Hs.99923	lectin, galactoside-binding, soluble, 7	3.04 1.12	1.14			
	421773	W69233	Hs.112457	ESTs	51.83	20,25			
	421948	L42583	Hs.334309	keratin 6A , NICE-1 protein	1.01	0.91			
	421978	AJ243662	Hs.110196 Hs.112341	protease inhibitor 3, skin-derived (SKAL	2.37	1.10			
50	422158 422440	L10343	Hs.116724	aldo-kelo reductase family 1, member B10	47.53	32.00			
J U	. 423634	NM_004812 AW959908	Hs.1690	heparin-binding growth factor binding pr	76.02	1.00			
	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	4.20	1.00			
	423738	AB002134	Hs.132195	airway trypsin-like protease	10.14	51.00			
	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	233.42	68.00			
55	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	1.00	1.00			
<i></i>	424098	AF077374	Hs.139322	small proline-rich protein 3	137.82	54.00			
	424834	AK001432	Hs.153408	Homo saplens cDNA FLJ10570 fis, clone NT	56.19	12.00			
	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	33.45	1.00			
	427099	AB032953	Hs.173560	odd Oz/ten-m homolog 2 (Drosophlia, mous	4.24	17.00			
60	427335	AA448542	Hs.251677	G antigen 7B	51.83	4.00			
	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	1.00	1.00			
	428645	AA431400	Hs.98729	ESTs, Weakly similar to 2017205A dihydro	1.00	16.00			
	428748	AW593206	Hs.98785	Ksp37 protein	1.00	87.00			
	429259	AA420450	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	2.01	1.18			
65	429538	BE182592	Hs.11261	small proline-rich protein 2A	4.43	2.90			
	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	11.80	1.00			
	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	12.28	41.00			
	430890	X54232	Hs.2699	glypican 1	1.58	1.40			
70	431009	BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3	60.25	28.00			
70	431846	BE019924	Hs.271580	uroplakin 1B	4.49	2.51			
	433091	Y12642	Hs.3185	lymphocyte antigen 6 complex, locus D	1.20	1.09			
	434360	AW015415	Hs.127780	ESTS	40.98	27.00			
	434880	U02388	Hs.101	cytochrome P450, subfamily IVF, polypept	1.00	1.00			
75	435505	AF200492	Hs.211238	interleukin-1 homolog 1	1.00	38.00			
<i>7</i> 5	435793	AB037734	Hs.4993	KIAA1313 protein	23.68 16.76	42.00 14.00			
	436511	AA721252	Hs.291502	ESTs	1.00	1.00			
	438403	AA806607	Hs.292206	ESTs	46.23	139.00			
	439285	AL133916	Un EGEG1	hypothetical protein FLJ20093	33.61	1.00			
80	439606	W79123	Hs.58561	G protein-coupled receptor 87 ESTs, Weakly similar to AC004858 3 U1 sm	1.00	1.00			
30	439670	AF088076	Hs.59507 Hs.59761	ESTS, Weakly similar to DAP1_HUMAN DEATH	86.55	11.00			
	439706 440325	AW872527	Hs.7164	a disintegrin and metalloproteinase doma	62.88	147.00			
	440325	NM_003812 AW241867	Hs.127728	ESTs	1.53	1.42			
	441525	T49951	Hs.9029	DKFZP434G032 protein	31.11	38.00			
85	444378	R41339	Hs.12569	ESTs	1.00	1.00			
	771010	1171000	110.12000						

	446292	02/0864 AF081497	Hs.279682	Rh type C glycoprotein	1.55	1.26	PCT/US02/12476			
5	447342 449003 449101 450832 452240 453317 453830 454098	AW885727 AI199268 X76342 AA205847 AW970602 AI591147 NM_002277 AA534296 W27953	Hs.9914 Hs.19322 Hs.389 Hs.23016 Hs.105421 Hs.61232 Hs.41696 Hs.20953 Hs.292911	ESTs Homo saptens, Similar to RIKEN cDNA 2010 elcohol dehydrogenase 7 (class IV), mu o G protein-coupled receptor ESTs ESTs keratin, hair, acidic, 1 ESTs ESTs, Highly similar to \$60712 band-6-pr	47.24 28.63 1.00 2.58 25.17 13.42 1.19 24.92 1.26	24.00 1.00 1.00 27.00 36.00 1.00 1.27 25.00 1.11 1.00				
	455601 TABLE 12B	AI368680	Hs.816	SRY (sex determining region Y)-box 2	206.11	1.00				
15	Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers									
20		CAT Number 47065_1	Accession AL13391 AA77555	in 6 N79113 AF088101 N76721 AW950828 AA364013 52 N62351 N59253 AA626243 Al341407 BE175639	I AW955684 A1346 AA456968 A13589	5341 A1867454 N54784 AI 18 AA457077	655270 Al421279 AW014882			
25	TABLE 12C .									
23	Pkey: Ref:	Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "the UNA								
30	sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Strand: Indicates DNA strand from which exons were predicted. Nt_position: Indicates nucleotide positions of predicted exons.									
35	401785 7249190 Minus 165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942 401994 4153858 Minus 42904-43124,43211-43336,44607-44763,45199-45281,46337-46732									
40	402075 404996	8117407 6007890	Plus Plus	121907-122035,122804-122921,124019-124161,1 37999-38145,38652-38998,39727-39872,40557-4						

PCT/US02/12476 WO 02/086443

TABLE 13A: Genes Distinguishing Non-Malignant Lung Disease from Lung Tumors and Normal lung

Table 13A shows about 23 genes upregulated in non-malignant lung disease relative to lung tumors and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 13B show the accession numbers for those Pkey's tacking UnigenelD's for table 13A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 13C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 13A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

	Sequenc	e source	U36U	ioi preuloson.	Muscould locations of each premotes over all as	0 10 a. u.			
15	Pkey: Unique Eos probeset identifier number ExAccn: Exemplar Accession number, Genbank accession number UnigenelD: Unigene number								
Unigene Title: Unigene gene title R1: Average of lung tumors (including squamous cell cardnomas, adenocardinomas, small cell cardnomas, adenocardinomas, ad									
	R2: Average of non-mallgnant lung disease samples (including bronchitis, emphysen						atelectasis, a	astrima) divided by the average of normal rung sa	npies
	Pkey	ExAcc	n	UnigenelD	Unigene Title	R1	R2		
	408562	Al4363		Hs.31141	Homo sapiens mRNA for KIAA1568 protein,	1.00	230.0	0	
25	409031	AA376		Hs.76728	ESTs	1.00	128.0	0	
	412372	R6599		Hs.285243	hypothetical protein FLJ22029	1.00	173.0	0	
	415910	U2035	Ó	Hs.78913	chemokine (C-X3-C) receptor 1	1.00	145.0		
	417511	AL049	176	Hs.82223	chordin-like	1.00	179.0		
	418819	AA228	776	Hs.191721	ESTs	1.00	140.0		
30	422060	R2089	3	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	1.00	156.0		
	424585	AA464	840	Hs.131987	ESTs	1.00	167.0		
	426753	T8983		Hs.170278	ESTs	1.00	141.0		
	429496	AA453		Hs.192793	ESTs	1.00	138.0		
~ -	430719	AA488		Hs.293796	ESTs	1.00	133.0		
35	431089	BE041			ESTs, Weakly similar to unknown protein	23.32	941.0		
	431385	BE178		Hs.11090	membrane-spanning 4-domains, subfamily A	1.00	157.0		
	431728	NM_00		Hs.268107	multimerin	1.00	157.0		
		AA721			gb:nv54h12.r1 NCI_CGAP_Ew1 Homo sapiens	1.00	. 218.0		
40	437960	Al6695		Hs.222194	ESTs	1.00	147.0		
40	438202	AW169		Hs.22588	ESTs	1.00	141.0		
	441499	AW298		Hs.101689	ESTs	1.00	167.0 151.0		
	444513	AL120		Hs.7117	glutamate receptor, ionotropic, AMPA 1	1.00 1.00	141.0		
	448253	H2589		Hs.201591	ESTs	1.00	116.0		
45	453636 458332	R6783		Hs.169872	ESTs ESTs	1.00	192.0	n	
40	458532 459587	Al0003 AA031		Hs.220491	gb:zk15e04.s1 Soares_pregnant_uterus_NbH	1.00	154.0		
	TABLE 1	3B .						•	
50									
50	Pkey:			os probeset ic	lenlifier number				

CAT number: Gene cluster number

Accession: Genbank accession numbers

CAT Number Accession Pkey 55 BE041395 AA491826 AA621946 AA715980 AA666102 431089 327825_1

436532 421802_1 AA721522 AW975443 T93070

TABLE 13C 60

Ref:

5

10

Pkey: Unique number corresponding to an Eos probeset

Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.

Indicates DNA strand from which exons were predicted. 65 Nt_position: Indicates nucleotide positions of predicted exons.

> Pkey Ref Strand . Nt_position

121907-122035,122804-122921,124019-124161,124455-124610,125672-126076 402075 8117407 70

Table 14A shows the subcellular localization and preferred utility for the genes appearing in Tables 9A and 10A. mAb symbolizes monoclonal antibody, diag symbolizes diagnostic, s.m. symbolizes small molecule, and CTL symbolizes cytotoxic lymphocytic ligand. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. 5

Table 14B show the accession numbers for those Pkey's tacking UnigenelD's for table 14A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 14C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 14A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

20

10

Pkey: ExAcon:

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number

Example Accession Interior, Ger Unigenel Dungene Title: Unigene gene title Pref. Utility: Preferred Utility Pred.Loc: Predicted subcellular localization

	Pred.Loc	: Predicted	subcellular local	lization		
	Pkey	ExAcon	UnigenelD	Unigene Title	Pref Utility	Pred. Loc
	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	mAb & diag & s.m.	extracellular
25	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	mAb	plasma membrane
	402075			ENSP00000251056*:Plasma membrane calcium		secreted
	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	diaq	secreted
	408243	Y00787	Hs.624	interleukin 8	diag	secreted
	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,	mAb & s.m.	plasma membrane
30	408908	BE296227	Hs.250822	serine/threonine kinase 15	s.m.	cytoplasm
	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	CTL & diag	secreted
	409103	AF251237	Hs.112208	XAGE-1 protein	CTL	nuclear
	409420	Z15008	Hs.54451	taminin, gamma 2 (nicein (100kD), kalini	diag	secreted
	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	diag	secreted
35	409757	NM_001898	Hs.123114	cystatin SN	diag	extracellular
	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.	CTL	nuclear
	409956	AW103364	Hs.727	Inhibin, beta A (activin A, activin AB a	diag	extracellular
	410001	AB041036	Hs.57771	kallikrein 11	diag	extracellular
	410407	X66839	Hs.63287	carbonic anhydrase IX	mAb & s.m.	plasma membrane
40	410418	D31382	Hs.63325	transmembrane protease, serine 4	mAb & diag & s.m.	plasma membrane
	412140	AA219691	Hs.73625	RAB6 Interacting, kinesin-like (rabkines	s.m.	•
	412719	AW016610	Hs.816	ESTs	s.m.	nuclear
	414774	X02419	Hs.77274	plasminogen activator, urokinase	diag	extracellular
	414883	AA926960		CDC28 protein kinase 1	s.m.	
45	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	CTL & diag	extracellular
	415669	NM_005025	Hs.78589	serine (or cystelne) proteinase inhibito	mAb & diag & s.m.	secreted
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	mAb & s.m.	plasma membrane
	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	diag	extracellular
	417034	NM_006183	Hs.80962	neurotensin	diag	extracellular
50 ·	417079	U65590	Hs.81134	interleukin 1 receptor antagonist	diag	extracellular
	417308	H60720	Hs.81892	KIAA0101 gene product	s.m.	mitochondrial
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	mAb & diag	secreted
	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	mAb	plasma membrane
~ ~	417933	X02308 ·	Hs.82962	thymidylate synthetase	s.m.	endoplasmic reticulum
55	418478	U38945	Hs.1174	cyclin-dependent kinase Inhibitor 2A (me	s.m.	cytoplasm
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	mAb & s.m.	plasma membrane
	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)	CTL	cytoplasmic
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	diag	secreted
C O	419171	NM_002846	Hs.89655	protein tyrosine phosphatase, receptor t	mAb & s.m.	plasma membrane
60	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	CTL & s.m.	mitochondrial
	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy	diag	secreted
	419235	AW470411	Hs.288433	neurotrimin	mAb & diag	plasma membrane
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	mAb & s.m.	plasma membrane
45	419556	U29615	Hs.91093	chitinase 1 (chitotriosidase)	mAb & diag	extracellular*
65 .	420610	A1683183	Hs.99348	distal-less homeo box 5	CTL	nuclear
	421110	AJ250717	Hs.1355	cathepsin E	sm & diag	extracellular secreted
	421379	Y15221	Hs.103932	small Inducible cytokine subfamily B (Cy	diag mAb & s.m.	plasma membrane
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans		secreted
70	421552 421753	AF026692	Hs.105700	secreted frizzled-related protein 4	diag mAb & s.m.	plasma membrane
70	421753	BE314828 AF146074	Hs.107911 Hs.108660	ATP-binding cassette, sub-family B (MDR/ ATP-binding cassette, sub-family C (CFTR	mAb & s.m.	plasma membrane
	422109	S73265	Hs.1473	gastrin-releasing peptide	diag	secreted
٠	422109	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	diag	secreted
	422282	AF019225	Hs.114309	apolipoprotein L	diag	secreted
75	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	S.M.	nuclear
15	422424	Al186431	Hs.296638	prostate differentiation factor	diag	extracellular
	422765		Hs.1578	baculoviral IAP repeat-containing 5 (sur	s.m.	cyloplasm
	422809	AK001379	Hs.121028	hypothetical protein FLJ 10549	s.m.	nuclear
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	diag	extracellular
80	422956	BE545072	Hs.122579	ECT2 protein (Epithelial cell transformi	CTL & s.m.	
50	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	diag	
	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	mAb & diag & s.m.	secreted
	423961	D13666	Hs.136348	periostin (OSF-20s)	mAb & diag	extracellular
	424046	AF027866	Hs.138202	serine (or cystelne) proteinase inhibito	diag	secreted
85	424381	AA285249	Hs.146329	protein kinase Chk2	s.m.	nuclear
				F		

	W	O 02/086	443			
	424502	AF242388	Hs.149585	lengsin	s.m.	cytoplasmic
	424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,	mAb & s.m.	plasma membrane
	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	diag	extracellular
5	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	mAb & diag & s.m.	secreted cytoplasmic
5	425322 425650	U63630 NM_001944	Hs.155637 Hs.1925	protein kinase, DNA-activated, catalytic desmoglein 3 (pemphigus vulgaris antigen	s.m. mAb	plasma membrane
	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg	s.m.	piconia monara
	425776	U25128	Hs.159499	parathyroid hormone receptor 2	mAb & diag	plasma membrane
• •	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member	mAb & s.m.	plasma membrane
10	426215	AW963419	Hs.155223	stanniocalcin 2	mAb & diag	secreted
	426427	M86699	Hs.169840	TTK protein kinase	CTL & s.m. mAb & diag	nuclear secreted
	426514 427335	BE616633 AA448542	Hs.170195 Hs.251677	bone morphogenatic protein 7 (ostaogenic G antigen 7B	CTL	cytoplasmic
	427747	AW411425	Hs.180655	serine/threonine kinase 12	s.m.	cytoplasmic
15	428242	H55709	Hs.2250	leukemia inhibitory factor (cholinergic	diag	
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	mAb & diag & s.m.	extracellular
	428450	NM_014791	Hs.184339	KIAA0175 gene product	s.m.	nuclear
	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to	s.m. mAb & s.m.	nuclear plasma membrane
20	428484 428664	AF104032 AK001666	Hs.184601 Hs.189095	solute carrier family 7 (cationic amino similar to SALL1 (sal (Drosophila)-like	CTL & s.m.	nuclear
20	428698	AA852773	Hs.334838	KIAA1866 protein	mAb	11001041
	428748	AW593206	Hs.98785	Ksp37 protein	diag	extracellutar
	428758	AA433988	Hs.98502	CA125 antigen; mucin 16	diag	mitochodria*
25	428969	AF120274	Hs.194689	artemin	diag	extracellular
25	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3	mAb & s.m.	plasma membrane
	429263 429547	AA019004	Hs.198396	ATP-binding cassette, sub-family A (ABC1	mAb & s.m. diag	plasma membrane secreted
	429547	AW009166 AB024937	Hs.99376 Hs.211092	ESTs LUNX protein; PLUNC (palate lung and nas	mAb & diag	secreted
	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	s.m.	000,000
30	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	mAb & s.m.	plasma membrane
	431462	AW583672	Hs.256311	granin-like neuroendocrine peptide precu	diag	extracellular
	431515	NM_012152	Hs.258583	endothelial differentiation, lysophospha	mAb & s.m.	plasma membrane
	431846	BE019924	Hs.271580	uroplakin 1B	mAb & diag	plasma membrane
35	431958 432201	X63629 AI538613	Hs.2877 Hs.298241	cadherin 3, type 1, P-cadherin (placenta Transmembrane protease, serine 3	mAb & diag mAb & diag & s.m.	plasma membrane plasma membrane
55	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1	s.m.	nuclear
	435505	AF200492	Hs.211238	interleukin-1 homolog 1	diag	secreted
	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	s.m.	
40	437016	AU076916	Hs.5398	guanine monphosphate synthetase	s.m.	cytoplasm
40	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an	CTL	ER nuclear
	437789 437852	AI581344 BE001836	Hs.127812 Hs.256897	ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa	CTL mAb & s.m.	plasma membrane
	437032	AW238299	Hs.250618	UL16 binding protein 2	mAb	plasma membrane
	439477	W69813	Hs.58042	ESTs, Moderately similar to GFR3_HUMAN G	mAb & s.m.	
45	439606		Hs.58561	G protein-coupled receptor 87	mAb & s.m.	plasma membrane
•	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	mAb & s.m.	plasma membrane
	440006	AK000517	Hs.6844	NALP2 protein; PYRIN-Containing APAF1-II	s.m.	nuclear
	441362 442117	BE614410 AW664964	Hs.23044 Hs.128899	RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447	s.m. mAb & s.m.	plasma membrane
50	443247	BE614387	Hs.333893	c-Myc target JPO1	CTL	extracellular*
• •	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	CTL	
	443859	NM_013409	Hs.9914	follistatin	diag	extracellular
	444006	BE395085	Hs.10086	type I transmembrane protein Fn14	mAb	plasma membrane
55	444371	BE540274	Hs.239	forkhead box M1 ESTs, Weakly similar to S64054 hypotheti	s.m. diag	nuclear secreted
55	444381 444781	BE387335 NM_014400	Hs.283713 Hs.11950	GPI-anchored metastasis-associated prote	mAb & diag	plasma membrane
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	mAb & diag	secreted
	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	diag	secreted
60	446921		Hs.16530	small inducible cytokine subfamily A (Cy	diag	extracellular
60	447033	Al357412	Hs.157601	ESTs	CTL & diag	secreted
	447342	Al199268	Hs.19322	Homo saplens, Similar to RIKEN cDNA 2010	CTL mAb & s.m	plasma membrane
	448243 448844	AW359771 . Al581519	Hs.52620 Hs.177164	integrin, beta 8 ESTs	mAb & s.m.	piasitia titettibrane
	449048	Z45051	Hs.22920	similar to S68401 (cattle) glucose induc	mAb	plasma membrane
65	449722	BE280074	Hs.23960	cyclin B1	s.m.	cytoplasm
	450001	NM_001044	Hs.406	solute carrier family 6 (neurotransmitte	mAb & s.m.	plasma membrane
	450375	AA009647		a disintegrin and metalloproteinase doma	mAb & diag & s.m.	plasma membrane
	450701	H39960	Hs.288467	hypothetical protein XP_098151 (leucine-	mAb & diag	plasma membrane
70	450983	AA305384	Hs.25740	ERO1 (S. cerevislae)-like	diag mAb & diag	secreted plasma membrane
70	451668 452281	Z43948 T93500	Hs.326444 Hs.28792	cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL	diag	hiering memoring
	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro	diag	extracellular
	452747	BE153855	Hs.61460	Ig superfamily receptor LNIR	mAb	plasma membrane
75	452838	U65011	Hs.30743	preferentially expressed antigen in mela	CTL	nuclear
75	453968	AA847843	Hs.62711	High mobility group (nonhistone chromoso	CTL & s.m.	nuclear
	457489	Al693815	Hs.127179	cryptic gene	diag	secreted
	TARLE 1	4R				

TABLE 14B

80 Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

Accession: Genbank accession numbers
Pkey CAT Number Accession

	wo	02/08644	3	·	PCT/US02/12476					
5	414883	15024_1	AA08243 AA29275 AA87203 R75953 A AW61300 N95210 A	0 AA926959 W76521 W24270 W21526 AA037172 BE267636 H83186 AA469909 N86396 AA001344 6 H72525 H77575 N49786 W80565 H78746 BE569085 W04339 R98127 T55938 BE279271 AW960 3 AA177048 NM_001826 X54941 BE314366 AA908783 AI719075 BE270172 BE269819 AA889955 9 W72395 T99630 A1422691 H98460 N31428 BE255916 H03265 A1857576 AA776920 AA910644 A NW662396 AA662522 A1865147 A1423153 AW262230 AA584410 AA583187 AW024595 AW069734 12 AA527373 AW972459 A1831360 AA621337 AA100926 AA772418 AA594628 A1033892 W95096 A N459432 A1041437 AA932124 AA627684 AA935829 A1004827 A1423513 A1094597 H42079 R54703	1304 T29812 AA476873 BE297387 A1204630 W25243 A1935150 A459522 AA293140 AW514667 A1828996 AA282997 AA876046 A1034317 AA398727 A1085031 I A1630359 AA617681 AA978045					
10			Al139549 Al494230 Al494211 AA95434	0 W44561 AI99198B AI537692 AI090262 AA740817 AI312104 AI911822 AA416871 AI185409 AA12 I AA633648 AI339996 AI336880 AA399239 AI078708 AI085351 AI362835 AI346618 AI146955 AI981 I AI278887 AA962596 AI492600 W80435 AA001979 R97424 AI129015 N24127 AA157451 AA23554 AW059501 AW886710 R92790 N59755 AI361128 AW589407 H47725 H97534 H48076 H48450 T9 4 H77576 R96823 AI457100 N92845 N49682 H42038 BE220698 BE220715 H99552 AA701624 N74 SE261919 AA769633 AA480310 AA507454 AA910586 AI203723 AW104725 W25611 W25071 T889	9380 Al348243 N92892 AA765850 19 AA459292 AA037114 AA129785 9631 AW300758 H03431 R76789 1173 R54704 H79520 H72923					
15	450375	83327_1	W95095 I AA00964	R97470 AA702275 T77551 AA911952 H82956 N83673 AA283672 7 AA131254 AA374293 AW954405 H04410 AW606284 AA151166 BE157467 BE157601 H04384 W 3 H03231 H59605 H01642 AA852876 AA113758 AA626915 AA746952 AI161014 AA099554 R6906	46291 AW663674 H04021 H01532					
20	TABLE 14C									
20	Pkey: Ref:	Sequence sou	rce. The 7 di	ing to an Eos probeset igit numbers in this column are Genbank Identifier (GI) numbers. "Dunharn I. et al." refers to the publ	ication entitled "The DNA					
25	Strand: Nt_position:	Indicates DNA	sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.							
	Pkey	Ref :	Strand	Nt_position .						
20	402075	8117407	Plus	121907-122035,122804-122921,124019-124161,124455-124610,125672-126076						

Table 15A shows the Seq ID No, Pkey, ExAcon, UnigeneID, and Unigene Title for all of the sequences in Table 16.

- Table 15B show the accession numbers for those Pkey's tacking UnigenelD's for table 15A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarly using Clustering and Alignment Tools (DoubleTwist, Oakland Catifornia). The Genbank accession numbers for sequences comprising each cluster are listed in the 5 "Accession" column.
- Table 15C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 15A. For each predicted exon, we have listed the genomic 10 sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Seq ID No: Sequence ID number

15 Pkey:

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number ExAccn:

UnigenelD: Unigene number Unigene Title: Unigene gene title

	Offidetie unerounderie A	cite une			
20	Seq ID No:	Pkey	ExAcon	UnigenelD	Unigene Title
	Seq ID No: 1 & 2	410407	X66839	Hs.63287	carbonic anhydrase IX
	Seq ID No: 3 & 4	412719	AW016610	Hs.816	ESTs
	Seq ID No: 5 & 6	417034	NM_006183	Hs.80962	neurotensin
25	Seq ID No: 7 & 8	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam
	Seq ID No: 9 & 10	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 11 & 12	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 13 & 14	407788	BE514982	Hs.38991	\$100 calcium-binding protein A2
20	Seq ID No: 15 & 16	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
30	Seq ID No: 17 & 18	439285	AL133916	Hs.75517	hypothetical protein FLJ20093 Iaminin, beta 3 (nicein (125kD), kalinin
	Seq ID No: 19 & 20 Seq ID No: 21 & 22	413753 120486	U17760 AW368377	Hs.137569	tumor protein 63 kDa with strong homolog
	Seq ID No: 23 & 24		NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen
	Seq ID No: 25 & 26	412140	- AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines
35	Seq ID No: 27 & 28	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage
	Seq ID No: 29 & 30	452838	U65011	Hs.30743	preferentially expressed antigen in mela
	Seq ID No: 31 & 32	418663	AK001100	Hs.41690	desmocollin 3
	Seq ID No: 33 & 34	418663	AK001100	Hs.41690	desmocollin 3
40	Seq ID No: 35 & 36	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito
40	Seq ID No: 37 & 38	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas
	Seq ID No: 39 & 40	406690	M29540	Hs.220529 Hs.271580	carcinoembryonic antigen-related cell ad uroplakin 1B
	Seq ID No: 41 & 42 Seq ID No: 43 & 44	431846 418830	BE019924 BE513731	Hs.88959	hypothetical protein MGC4816
	Seq ID No: 45 & 46	424098	AF077374	Hs.139322	smail proline-rich protein 3
45	Seq ID No: 47 & 48	443648	Al085377	Hs.143610	ESTs
	Seq ID No: 49	311034	BE567130	Hs.311389	ESTs, Highly similar to NKGD_HUMAN NKG2-
	Seq ID No: 50 & 51	408522	Al541214	Hs.46320	Small proline-rich protein SPRK [human,
	Seq ID No: 52 & 53	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
50	Seq ID No: 54 & 55	435505	AF200492	Hs.211238	interleukin-1 homolog 1
50	Seq ID No: 56 & 57	417366	BE185289	Hs.1076	small proline-rich protein 1B (comifin)
	Seq ID No: 58 & 59	431958	X63629	Hs.2877 Hs.35962	cadherin 3, type 1, P-cadherin (placenta ESTs
	Seq ID No: 60 & 61 Seq ID No: 62 & 63	441020 423217	W79283 NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys
	Seq ID No: 64 & 65	429538	BE182592	Hs.11261	small proline-rich protein 2A
55	Seq ID No: 66 & 67	448733	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte
	Seq ID No: 68 & 69	444371	BE540274	Hs.239	forkhead box M1
	Seq ID No: 70 & 71	444371	BE540274	Hs.239	forkhead box M1
•	Seq ID No: 72 & 73	444371	BE540274	Hs:239	forkhead box M1
60	Seq ID No: 74 & 75	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias
60	Seq ID No: 76 & 77	422168	AA586894	Hs.112408	. \$100 calcium-binding protein A7 (psorias Piakophilin
	Seq ID No: 78 & 79	429259	AA420450 BE382756	Hs.292911 Hs.169902	solute carrier family 2 (facilitated glu
	Seq ID No: 80 & 81 Seq ID No: 82 & 83	426440 437044	AL035864	Hs.69517	differentially expressed in Fanconi's an
	Seq ID No: 84 & 85	423662	AK001035	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro
65	Seq ID No: 86 & 87	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino
	Seq ID No: 88 & 89	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3
	Seq ID No: 90 & 91	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor
	Seq ID No: 92 & 93	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr
70	Seq ID No: 94 & 95	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated
70	Seq ID No: 96 & 97	441362	BE614410	Hs.23044 Hs.155637	RAD51 (S. cerevislae) homolog (E coli Re protein kinase, DNA-activated, catalytic
	Seq ID No: 98 & 99 Seq ID No: 100 & 101	425322 449003	U63630 X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o
	Seq ID No: 102 & 103	431009	BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3
	Seq ID No: 104 & 105	409103	AF251237	Hs.112208	XAGE-1 protein
75	Seg ID No: 106 & 107	417542	J04129	Hs.82269	progestagen-associated endometrial prote
	Seq ID No: 108 & 109	428471	X57348	Hs.184510	stratifin
	Seq ID No: 110 & 111	418004	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member
	Seq ID No: 112 & 113	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2
00	Seq ID No: 114 & 115	418203	X54942	Hs.83758	CDC28 protein kinase 2
80	Seq ID No: 116	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m guanine monphosphate synthetase
	Seq ID No: 117 & 118	437016	AU076916 BE613348	Hs.5398 Hs.211579	melanoma cell adhesion molecule
	Seq ID No: 119 & 120 Seq ID No: 121 & 122	449230 446989	AK001898	Hs.16740	hypothetical protein FLJ11036
	Seq ID No: 123 & 124	457819	AA057484	Hs.35406	ESTs, Highly similar to unnamed protein
85	Seq ID No: 125 & 126	424687	J05070	Hs.151738	matrix metalioproteinase 9 (gelatinase B
			·		

	WO 02/086	443			
	Seq ID No: 127 & 128	414430	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1
	Seq ID No: 129 & 130	418462	BE001596	Hs.85266	integrin, beta 4
	Seq ID No: 131 & 132	100668	L05424	Hs.169610	CD44 antigen (homing function and Indian
_	Seq ID No: 133 & 134	458933	AI638429	Hs.24763	RAN binding protein 1
5	Seq ID No: 135 & 136	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
_	Seq ID No: 137 & 138	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
	Seq ID No: 139 & 140	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
	Seq ID No: 141 & 142	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
	Seq ID No: 143 & 144	446269	AW263155	Hs.14559	hypothetical protein FLJ 10540
10				Hs.1578	bacutoviral IAP repeat-containing 5 (sur
10	Seq ID No: 145 & 146	422765	AW409701		HSPC150 protein similar to ubiquitin-con
	Seq ID No: 147 & 148	436481	AA379597	Hs.5199	
	Seq ID No: 149 & 150	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma
	Seq ID No: 151 & 152	439606	W79123	Hs.58561	G protein-coupled receptor 87
4 =	Seq ID No: 153 & 154	453884	AA355925	Hs.36232	KIAA0186 gene product
15	Seq ID No: 155 & 156	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 157 & 158	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 159 & 160	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 161 & 162	404877			NM_005365:Homo sapiens melanoma antigen,
	Seq ID No: 163 & 164	413129	AF292100	Hs.104613	RP42 homolog
20	Seq ID No: 165 & 166	413281	AA851271	Hs.222024	transcription factor BMAL2
20		444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote
	Seq ID No: 167 & 168		U77735	Hs.80205	pim-2 oncogene
	Seq ID No: 169 & 170	416819		113.00200	diacylglycerol kinase, zeta (104kD)
	Seq ID No: 171 & 172	451320	AW118072	Un OFFICE	
25	Seq ID No: 173 & 174	418543	NM_005329	Hs.85962	hyaluronan synthase 3
25	Seq ID No: 175 & 176	454034	NM_000691	Hs.575	aldehyde dehydrogenase 3 family, member
	Seq ID No: 177 & 178	425397	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)
	Seq ID No: 179 & 180	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 181 & 182	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 183 & 184	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
30	Seq ID No: 185 & 186	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
- •	Seq ID No: 187 & 188	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
٩	Seq ID No: 189 & 190	419121	AA374372	Hs.89626	parathyroid hormone-like hormone
	Seq ID No: 191 & 192	448993	AI471630	Hs.8127	KIAA0144 gene product
	Seq ID No: 193 & 194	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR
35		430393	BE185030	Hs.241305	estrogen-responsive B box protein
75	Seq ID No: 195 & 195			Hs.1619	achaete-scute complex (Drosophila) homol
	Seq ID No: 197 & 198	425057	AA826434		
	Seq ID No: 199 & 200	420462	AF050147	Hs.97932	chondromodulin I precursor
	Seq ID No: 201 & 202	102963	X02404	Hs.274534	calcitonin-related polypeptide, beta
40	Seq ID No: 203 & 204	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid
40	Seq ID No: 205 & 206	101175	U82671	Hs.36980	melanoma antigen, family A, 2
	Seq ID No: 207 & 208	429038	AL023513	Hs.194766	setzure related gene 6 (mouse)-like
	Seq ID No: 209 & 210	418678	NM_001327	Hs.167379	cancer/testls antigen (NY-ESO-1)
	Seq ID No: 211 & 212	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 213 & 214	131927	AJ003112	Hs.34780 .	doublecortex; lissencephaly, X-linked (d
45	Seq ID No: 215 & 216	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT
-	Seq ID No: 217 & 218	427335	AA448542	Hs.251677	G antigen 7B
	Seq ID No: 219 & 220	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini
	Seq ID No: 221 & 222	114346	AL137256	Hs.130489	ATPase, aminophospholipid transporter-li
		438956	W00847	Hs.135056	Human DNA sequence from clone RP5-850E9
	Sec ID No: 223 & 224				NM_021048:Homo sapiens melanoma antigen,
50	Seq ID No: 223 & 224 Seq ID No: 225 & 226				
50	Seq ID No: 225 & 226	404440	NM 005025 .	Hs.78589	
50	Seq ID No: 225 & 226 Seq ID No: 227 & 228	404440 415669	NM_005025		serine (or cysteine) proteinase inhibito
50	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230	404440 415669 103312	Y12642	Hs.3185	serine (or cysteine) proteinase inhibito
50	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232	404440 415669 103312 320843	Y12642 BE069288	Hs.3185 Hs.34744	serine (or cysteine) proteinase inhibito lysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr
	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 233	404440 415669 103312 320843 429065	Y12642 BE069288 Al753247	Hs.3185 Hs.34744 Hs.29643	serine (or cysteine) proteinase inhibito lysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT
50 55	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235	404440 415669 103312 320843 429065 446102	Y12642 BE069288 AI753247 AW168067	Hs.3185 Hs.34744 Hs.29643 Hs.317694	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs
	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 236 & 237	404440 415669 103312 320843 429065 446102 330495	Y12642 BE069288 AI753247 AW168067 U47924	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642	serine (or cysteine) proteinase inhibito lysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr
	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 236 & 237 Seq ID No: 238	404440 415669 103312 320843 429065 446102 330495 413573	Y12642 BE069288 Al753247 AW168067 U47924 Al733859	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs
	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 239 & 240	404440 415669 103312 320843 429065 446102 330495 413573 428479	Y12642 BE069288 Al753247 AW168067 U47924 Al733859 Y00272	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to
55	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 236 & 237 Seq ID No: 238	404440 415669 103312 320843 429065 446102 330495 413573 428479 428479	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to
	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 239 & 240	404440 415669 103312 320843 429065 446102 330495 413573 428479	Y12642 BE069288 Al753247 AW168067 U47924 Al733859 Y00272	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to claudin 1
55	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 239 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242	404440 415669 103312 320843 429065 446102 330495 413573 428479 428479	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to
55	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 238 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 243 & 244	404440 415669 103312 320843 429065 446102 330495 413573 428479 428479 332180 437915	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to claudin 1
55	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 245	404440 415669 103312 320843 429065 446102 330495 413573 428479 32180 437915 441553	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca
55 60	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 245 & 244 Seq ID No: 245 & 244 Seq ID No: 246 & 247 Seq ID No: 248 & 249	404440 415669 103312 320843 429065 446102 330495 413573 428479 428479 332180 437915 441553 331692	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2; G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs
55 60	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 227 & 232 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 245 Seq ID No: 245 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 250 & 251	404440 415669 103312 320843 429065 446102 330495 413573 428479 32180 437915 441553 331692 429413	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2; G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein
55	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 245 Seq ID No: 245 Seq ID No: 245 Seq ID No: 245 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 250 & 251 Seq ID No: 252 & 253	404440 415669 103312 320843 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 422283	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis
55 60	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 228 & 230 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 245 & 244 Seq ID No: 246 & 247 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 254 & 255	404440 415659 103312 320843 429055 446102 330495 413573 428479 428479 437915 441553 331692 429413 422283 4428357	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.152213 Hs.201877 Hs.201877 Hs.108923	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family
55 60	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 229 & 230 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 254 & 255 Seq ID No: 254 & 255 Seq ID No: 254 & 255	404440 415659 103312 320843 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 422283 422413 44253 446292	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682	serine (or cysteine) proteinase inhibito hysosomal Hamo sapiens mRNA; cDNA DKFZp547C136 (fr Hamo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein
55 60	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 243 & 244 Seq ID No: 248 & 247 Seq ID No: 248 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 255	404440 415669 103312 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 42223 448357 446292 416209	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guantne nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2; G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h
55 60 65	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 258 & 259	404440 415669 103312 320843 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 422283 448357 446209 453922	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.36708	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unlnhibited by benzimidazoles 1
55 60	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 228 & 230 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 238 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 244 & 242 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 258 & 259 Seq ID No: 258 & 259 Seq ID No: 250 & 251 Seq ID No: 258 & 259 Seq ID No: 258 & 259 Seq ID No: 260 & 261 Seq ID No: 262 & 263	404440 415659 103312 320843 429055 446102 330495 413573 428479 428479 437915 441553 331692 42943 42923 448357 446292 416292 42646	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.108923 Hs.179078 Hs.279662 Hs.36708 Hs.36708 Hs.36708	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2; G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unlnhibited by benzimidazoles 1 serine (or cysteine) proteinase Inhibito
55 60 65	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 228 & 230 Seq ID No: 231 & 232 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 238 Seq ID No: 238 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 246 & 247 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 261 Seq ID No: 260 & 261 Seq ID No: 260 & 261 Seq ID No: 262 & 263 Seq ID No: 264 & 265	404440 415659 103312 320843 429065 446102 330495 413573 428479 437915 441553 331692 429413 42223 446292 416209 453922 4539223	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.36708 Hs.36708	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unInhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2
55 60 65	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 & 237 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 243 & 244 Seq ID No: 245 & 257 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 259 Seq ID No: 256 & 253 Seq ID No: 256 & 253 Seq ID No: 256 & 255 Seq ID No: 266 & 265 Seq ID No: 266 & 265	404440 415659 103312 429065 446102 330495 413573 428479 428479 332180 437915 441553 331692 429413 42223 446292 416209 453922 42404 439223 429228	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.382002 Hs.250618 Hs.326447	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase Inhibito Ut.16 binding protein 2 ESTs
55 60 65	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 236 & 237 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 258 & 259 Seq ID No: 266 & 261 Seq ID No: 264 & 265 Seq ID No: 266 & 267 Seq ID No: 266 & 266	404440 415669 103312 320843 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 422283 44837 446292 446292 446292 446292 424046 439222 424046 439223 429228 409757	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.36708 Hs.138202 Hs.250618 Hs.250618 Hs.123144	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guantne nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2; G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN
55606570	Seq ID No: 225 & 226 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 & 237 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 243 & 244 Seq ID No: 245 & 257 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 259 Seq ID No: 256 & 253 Seq ID No: 256 & 253 Seq ID No: 256 & 255 Seq ID No: 266 & 265 Seq ID No: 266 & 265	404440 415659 103312 429055 446102 330495 413573 428479 428479 332180 437915 441553 331692 42943 448357 446292 416292 424046 439223 429243 429273	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.214291	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB3B, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unlnhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito U116 binding protein 2 ESTs cystefin SN cell division cycle 2-like 1 (PITSLRE pr
55 60 65	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 236 & 237 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 258 & 259 Seq ID No: 266 & 261 Seq ID No: 264 & 265 Seq ID No: 266 & 267 Seq ID No: 266 & 266	404440 415669 103312 320843 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 422283 44837 446292 446292 446292 446292 424046 439222 424046 439223 429228 409757	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.36708 Hs.138202 Hs.250618 Hs.250618 Hs.123144	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unInhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs
55606570	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 221 & 228 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 248 & 247 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 258 & 259 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 260 & 261 Seq ID No: 266 & 265 Seq ID No: 266 & 267 Seq ID No: 268 & 269 Seq ID No: 269 & 271 Seq ID No: 270 & 271 Seq ID No: 272 & 273	404440 415659 103312 429055 446102 330495 413573 428479 428479 332180 437915 441553 331692 42943 448357 446292 416292 424046 439223 429243 429273	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.214291	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB3B, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unlnhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito U116 binding protein 2 ESTs cystefin SN cell division cycle 2-like 1 (PITSLRE pr
55606570	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 221 & 228 Seq ID No: 231 & 232 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 246 & 247 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 266 & 265 Seq ID No: 266 & 265 Seq ID No: 266 & 267 Seq ID No: 268 & 269 Seq ID No: 269 & 261 Seq ID No: 270 & 271 Seq ID No: 272 & 273 Seq ID No: 274 & 275	404440 415659 103312 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 42223 429413 446292 416209 4539223 429228 409757 411089 436511 428969	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274	Hs.3185 Hs.34744 Hs.29643 Hs.317694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138200 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.214291 Hs.291500 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unInhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs
55606570	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 231 & 232 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 & 237 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 250 & 251 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 266 & 265 Seq ID No: 266 & 265 Seq ID No: 268 & 269 Seq ID No: 270 & 271 Seq ID No: 272 & 273 Seq ID No: 274 & 275 Seq ID No: 274 & 275 Seq ID No: 274 & 275 Seq ID No: 276 & 277	404440 415669 103312 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 422283 448357 446292 416209 453922 424043 439223 409757 411089 436969 428969	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274	Hs.3185 Hs.34744 Hs.29643 Hs.347694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.36708 Hs.36708 Hs.136202 Hs.250618 Hs.250618 Hs.214291 Hs.214291 Hs.291502 Hs.291502 Hs.194689 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase Inhibito U1.16 binding protein 2 ESTs cystetin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin
5560657075	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 221 & 230 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 236 & 237 Seq ID No: 238 Seq ID No: 238 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 248 & 247 Seq ID No: 248 & 247 Seq ID No: 248 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 266 & 267 Seq ID No: 266 & 265 Seq ID No: 266 & 265 Seq ID No: 268 & 269 Seq ID No: 274 & 275 Seq ID No: 276 & 277	404440 415659 103312 429055 446102 330495 413573 428479 428479 332180 437915 441553 331692 42943 448357 446292 416292 424046 439223 429243 42927 42927 429283 429283 429283 429283 429283 429283 429283 429283 429283 429283 429283 429283 429283 429283 4292869	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274	Hs.3185 Hs.34744 Hs.29643 Hs.347694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79678 Hs.36708 Hs.138202 Hs.250618 Hs.36708 Hs.123114 Hs.214291 Hs.291502 Hs.194689 Hs.194689 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2; G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB3B, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin
5560657075	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 221 & 228 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 248 & 244 Seq ID No: 248 & 247 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 266 & 267 Seq ID No: 266 & 267 Seq ID No: 268 & 269 Seq ID No: 268 & 269 Seq ID No: 268 & 269 Seq ID No: 269 & 263 Seq ID No: 270 & 271 Seq ID No: 274 & 275 Seq ID No: 276 & 279 Seq ID No: 278 & 279	404440 415659 103312 320843 429065 446102 330495 413573 428479 437915 441553 331692 429413 422283 448357 446292 416209 453922 446292 416209 453922 44927 4109 436511 428969 428969 428969 428969 428969	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF083306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274	Hs.3185 Hs.34744 Hs.29643 Hs.347694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.36708 Hs.36708 Hs.136202 Hs.250618 Hs.250618 Hs.214291 Hs.214291 Hs.291502 Hs.291502 Hs.194689 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unlnhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin art
55606570	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 231 & 232 Seq ID No: 231 & 232 Seq ID No: 231 & 232 Seq ID No: 231 & 235 Seq ID No: 234 & 235 Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 248 & 247 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 258 & 259 Seq ID No: 258 & 257 Seq ID No: 256 & 257 Seq ID No: 260 & 261 Seq ID No: 268 & 263 Seq ID No: 268 & 265 Seq ID No: 268 & 265 Seq ID No: 267 & 273 Seq ID No: 270 & 271 Seq ID No: 274 & 275 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 282	404440 415659 103312 220843 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 42223 42924 453922 416209 4539223 429228 409757 411089 428969 428969 428969 428969 407137	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 T97307	Hs.3185 Hs.34744 Hs.29643 Hs.347694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138200 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unlnhibited by benzimidazoles 1 serine (or cysteine) proteinase Inhibito UL16 binding protein 2 ESTs cystefin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin gbrye53h05.s1 Soares fetal liver spleen
5560657075	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 221 & 228 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 266 & 261 Seq ID No: 268 & 269 Seq ID No: 268 & 269 Seq ID No: 270 & 271 Seq ID No: 274 & 273 Seq ID No: 276 & 277 Seq ID No: 278 & 277 Seq ID No: 282	404440 415659 103312 429065 446102 330495 413573 428479 428479 332180 437915 441553 331692 429413 42228 446292 416209 453922 42404 46292 416209 453922 429413 42928 409757 411089 428969	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274	Hs.3185 Hs.34744 Hs.29643 Hs.347694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.214291 Hs.291502 Hs.291502 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guantne nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2; G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito U116 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin arternin arternin arternin arternin gbyeS3N05.s1 Soares fetal liver spleen hysothetical protein AF301222
5560657075	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 223 & 230 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 238 Seq ID No: 238 Seq ID No: 238 Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 248 & 247 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 268 & 259 Seq ID No: 268 & 259 Seq ID No: 268 & 269 Seq ID No: 274 & 275 Seq ID No: 274 & 275 Seq ID No: 274 & 275 Seq ID No: 278 & 279 Seq ID No: 278 & 277 Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 283 & 284 Seq ID No: 283 & 284 Seq ID No: 283 & 288	404440 415659 103312 429055 446102 330083 428479 428479 437915 441553 331692 42943 448357 446292 416292 416292 424046 439223 42923 42923 42923 42923 42929 428969 428969 428969 428969 407137 4172723 450701	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 T97307	Hs.3185 Hs.34744 Hs.29643 Hs.347694 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138200 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2; G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito U116 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin arternin arternin arternin arternin arternin dryep53h05.s1 Soares fetal liver spleen hypothetical protein XP_098151 (leucine-
5560657075	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 223 & 230 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 245 & 247 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 258 & 259 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 260 & 261 Seq ID No: 260 & 261 Seq ID No: 262 & 263 Seq ID No: 264 & 265 Seq ID No: 264 & 265 Seq ID No: 276 & 271 Seq ID No: 276 & 271 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 282 Seq ID No: 282 Seq ID No: 282 Seq ID No: 282 Seq ID No: 285 & 286 Seq ID No: 287 & 288	404440 415659 103312 320843 429055 446102 330495 413573 428479 428479 437915 441553 331692 429213 429228 448357 446292 416292 416292 416292 424046 439223 429228 40975 411089 428969	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF19307 AA648459 H39960	Hs.3185 Hs.34744 Hs.29643 Hs.34764 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79678 Hs.36708 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.291502 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unInhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin artemin artemin artemin gbye53n05.s1 Soares fetal liver spleen hypothetical protein XP_098151 (leucine-NM_002362-Homo sapiens metanoma antigen,
556065707580	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 221 & 228 Seq ID No: 231 & 232 Seq ID No: 233 & 232 Seq ID No: 233 & 233 Seq ID No: 236 & 237 Seq ID No: 236 & 237 Seq ID No: 238 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 266 & 267 Seq ID No: 268 & 269 Seq ID No: 272 & 273 Seq ID No: 274 & 275 Seq ID No: 274 & 275 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 283 & 284 Seq ID No: 287 & 288 Seq ID No: 289 & 290	404440 415659 103312 320843 429065 446102 330495 413573 428479 332180 437915 441553 331692 429413 42223 429228 40975 416209 4253923 429228 40975 411089 428969 428969 428969 428969 428969 407137 412723 450770 439453	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF19307 AA648459 H39960 BE264974	Hs.3185 Hs.34744 Hs.29643 Hs.347694 Hs.71642 Hs.149089 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202 Hs.291602 Hs.29447 Hs.123114 Hs.214291 Hs.214291 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.335951 Hs.288467 Hs.6566	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unlnhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystafin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin artemin gbrye53h05.s1 Soares fetal liver spleen hypothetical protein AF301222 hypothetical protein AF301222 hypothetical protein XF_098151 (leucine-NM_002362-Hormo sapiens metanoma antigen, thyroid hormone receptor interactor 13
5560657075	Seq ID No: 227 & 228 Seq ID No: 227 & 228 Seq ID No: 223 & 230 Seq ID No: 231 & 232 Seq ID No: 233 Seq ID No: 234 & 235 Seq ID No: 234 & 235 Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 245 & 247 Seq ID No: 252 & 253 Seq ID No: 252 & 253 Seq ID No: 258 & 259 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 260 & 261 Seq ID No: 260 & 261 Seq ID No: 262 & 263 Seq ID No: 264 & 265 Seq ID No: 264 & 265 Seq ID No: 276 & 271 Seq ID No: 276 & 271 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 282 Seq ID No: 282 Seq ID No: 282 Seq ID No: 282 Seq ID No: 285 & 286 Seq ID No: 287 & 288	404440 415659 103312 320843 429055 446102 330495 413573 428479 428479 437915 441553 331692 429213 429228 448357 446292 416292 416292 416292 424046 439223 429228 40975 411089 428969	Y12642 BE069288 AI753247 AW168067 U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF19307 AA648459 H39960	Hs.3185 Hs.34744 Hs.29643 Hs.34764 Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79678 Hs.36708 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.291502 Hs.194689	serine (or cysteine) proteinase inhibito hysosomal Homo sapiens mRNA; cDNA DKFZp547C136 (fr Homo sapiens cDNA FLJ13103 fis, clone NT ESTs guanine nucleolide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unInhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin artemin artemin artemin gbye53n05.s1 Soares fetal liver spleen hypothetical protein XP_098151 (leucine-NM_002362-Homo sapiens metanoma antigen,

	W U 02/080			484000	take to such the fluore and the sub-
	Seq ID No: 293 & 294	424629	M90656	Hs.151393	glutamate-cysteine ligase, catalytic sub
	Seq ID No: 295 & 296	437789	Al581344	Hs.127812	ESTs, Wealty similar to T17330 hypotheti
	Seq ID No: 297 & 298	437789	AJ581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
_	Seq ID No: 299 & 300	437789	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
5	Seq ID No: 301 & 302	437789	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 303 & 304	437789	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 305 & 306	453968	AA847843	Hs.62711	High mobility group (nonhistone chromoso
	Seq ID No: 307 & 308	403478			NM_022342:Homo sapiens kinesin protein 9
10	Seq ID No: 309	441525	AW241867	Hs.127728	ESTs
10	Seq ID No: 310 & 311	434105	AW952124	Hs.13094	presentlins associated rhomboid-like pro
	Seq ID No: 312 & 313	428810	AF068236	Hs.193788	nitric oxide synthase 2A (inducible, hep
	Seq ID No: 314 & 315	413691	AB023173	Hs.75478	ATPase, Class VI, type 11B
	Seq ID No: 316 & 317	423934	U89995	Hs.159234	forkhead box E1 (thyroid transcription f
	Seq ID No: 318 & 319	409228	R16811	Hs.22010	ESTs, Weakly similar to 2109260A B cell
15	Seq ID No: 320 & 321	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg
•	Seq ID No: 322 & 323	413582	AW295647	Hs.71331	hypothetical protein MGC5350
	Seq ID No: 324 & 325	438403	AA806607	Hs.292206	ESTs
	Seq ID No: 326 & 327	403329			unnamed protein product [Homo sapiens]
	Seq ID No: 328 & 329	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.
20	Seq ID No: 330 & 331	119073	BE245360	Hs.279477	v-ets erythroblastosis virus E26 ancogen
	Seq ID No: 332 & 333	113195	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom
	Seq ID No: 334 & 335	102283	AW161552	Hs.83381	guanine nucleotide binding protein 11
	Seq ID No: 336 & 337	101345	NM_005795	Hs.152175	calcitonin receptor-like
	Seq ID No: 338 & 339	103280	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula
25	Seq ID No: 340 & 341	102012	BE259035	Hs.118400	singed (Drosophila)-like (sea urchin fas
	Seq ID No: 342 & 343	105729	H46612	Hs.293815	Homo sapiens HSPC285 mRNA, partial cds
	Seq ID No: 344 & 345	134299	AW580939	Hs.97199	complement component C1q receptor
	Seq ID No: 346 & 347	412719	AW016610	Hs.816	ESTs
	Seq ID No: 348 & 349	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
30	Seq ID No: 350 & 351	128924	BE279383	Hs.26557	plakophilin 3
	Seq ID No: 352 & 353	100486	T19006	Hs.10842	RAN, member RAS oncogene family
	Seq ID No: 354 & 355	419121	AA374372	Hs.89626 -	parathyroid hormone-like hormone
	Seq ID No: 356 & 357	409459	D86407	Hs.54481	low density lipoprotein receptor-related
	Seq ID No: 358 & 359	330493	M27826		endogenous retroviral protease
35	Seq ID No: 360 & 361	417866	AW067903	Hs.82772	collagen, type XI, alpha 1
	Seq ID No: 362 & 363	418113	Al272141	Hs.83484	SRY (sex determining region Y)-box 4
	Seq ID No: 364 & 365	437016	AU076916	Hs.5398	guanine monphosphate synthetase
	Seq ID No: 366 & 367	429612	AF062649	Hs.252587	pituitary tumor-transforming 1
	Seq ID No: 368 & 369	440704	M69241	Hs.162	insulin-like growth factor binding prote
40	Seq ID No: 370 & 371	431221	AA449015	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye
	Seq ID No: 372 & 373	431565	AF161470	Hs.260622	butyrate-induced transcript 1
	Seq ID No: 374 & 375	431565	AF161470	Hs.260622	butyrate-induced transcript 1
	Seq ID No: 376 & 377	132354	BE185289	Hs.1076	small proline-rich protein 1B (comifin)
	Seq ID No: 378 & 379	424441	X14850	Hs.147097	H2A histone family, member X
45	Seq ID No: 380 & 381	103768	AF086009	Hs.296398	gb:Homo sapiens full length insert cDNA
	Seq ID No: 382 & 383	417512	X76534	Hs.82226	glycoprotein (transmembrane) nmb
•	Seq ID No: 384 & 385	425266	J00077	Hs.155421	alpha-fetoprotein
	Seq ID No: 386 & 387	424503	NM_002205	Hs.149609	Integrin, alpha 5 (fibronectin receptor,
0.2	Seq ID No: 388 & 389	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin
50	Seq ID No: 390 & 391	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
	Seq ID No: 392 & 393	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
	Seq ID No: 394 & 395	418738	AW388633	Hs.6682	solute carrier family 7, (cationic amino
	Seq ID No: 396 & 397	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2
	Seq ID No: 398 & 399	418506	AA084248	Hs.85339	G protein-coupled receptor 39
55	Seq ID No: 400 & 401	423961	D13666	Hs.136348	periostin (OSF-2os)
	Seq ID No: 402 & 403	414812	X72755	Hs.77367	monokine induced by gamma interferon
	Seq ID No: 404 & 405	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein ·
	Seq ID No: 406 & 407	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein
	Seq ID No: 408 & 409	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse
60	Seq ID No: 410 & 411	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy
	Seq ID No: 412 & 413	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti
	Seq ID No: 414 & 415	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated
	Seq ID No: 416 & 417	411789	AF245505	Hs.72157	Adlican
	Seq ID No: 418 & 419	428698	AA852773	Hs.334838	KIAA1866 protein
65 ·	Seq ID No: 420 & 421	450098	W27249	Hs.8109	hypothetical protein FLJ21080
	Seq ID No: 422 & 423	421552 -	AF026692	Hs.105700	secreted frizzled-related protein 4
	Seq ID No: 424 & 425	452747	BE153855	Hs.61460	lg superfamily receptor LNIR
	Seq ID No: 426 & 427	450375	AA009647		a disintegrin and metalloproteinase doma
	Seq ID No: 428 & 429	426215	AW963419	Hs.155223	stanniocalcin 2
70	Seq ID No: 430 & 431	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin
	Seq ID No: 432 & 433	432201	AI538613	Hs.298241	Transmembrane protease, serine 3
	Seq ID No: 434 & 435	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph
	Seq ID No: 436 & 437	442117	AW664964	Hs.128899	ESTs; hypothetical protein for IMAGE:447
	Seq ID No: 438 & 439	431211	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn
75	Seq ID No: 440 & 441	447033	A1357412	Hs.157601	ESTs
	Seq ID No: 442 & 443	447033	Al357412	Hs.157601	EST ₈
	Seq ID No: 444 & 445	447033	Al357412	Hs.157601	EST ₈
	Seq ID No: 446 & 447	115522	BE614387	Hs.333893	c-Myc target JPO1
	Seq ID No: 448 & 449	410418	D31382	Hs.63325	transmembrane protease, serine 4
80	Seq ID No: 450 & 451	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119
	Seq ID No: 452 & 453	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119
	Seq ID No: 454 & 455	452461	N78223	Hs.108106	transcription factor
	Seq ID No: 456 & 457	412420	AL035668	Hs.73853	bone morphogenetic protein 2
0.5	Seq ID No: 458 & 459	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara
V 4		407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon
85	Seq ID No: 460 & 461	401011	711120202	110110000	-in-gaine intercopportunity of annu -in-gain

WO 02/086443

	WO 02/086443									
	Seq ID No: 462 & 463	437852	BE001838	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa					
	Seq ID No: 464 & 465	402075		11. 4055	ENSP00000251056*:Plasma membrane calcium					
	Seq ID No: 466 & 467	421110	AJ250717	Hs.1355 Hs.326444	cathepsin E cartilage acidic protein 1					
5	Seq ID No: 468 & 469	451668 451668	Z43948 Z43948	Hs.326444	cartilage acidic protein 1					
,	Seq ID No: 470 & 471 Seq ID No: 472 & 473	451668	Z43948	Hs.326444	cartilage acidic protein 1					
	Seq ID No: 474 & 475	422282	AF019225	Hs.114309	apolipoprotein L					
	Seq ID No: 476 & 477	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member					
10	Seq ID No: 478 & 479	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (Ig),					
10	Seq ID No: 480 & 481	427747	AW411425	Hs.180655 Hs.323494	serine/threonine kinase 12 Predicted cation efflux pump					
	Seq ID No: 482 & 483 Seq ID No: 484 & 485	420281 405932	AI623693	П3.323434	C15000305:gij3806122 gb AAC69198.1 (AF0					
	Seq ID No: 486 & 487	405932			C15000305:gij3806122[gb[AAC69198.1] (AF0					
	Seq ID No: 488 & 489	444342	NM_014398	Hs.10887	similar to tysosome-associated membrane					
15	Seq ID No: 490 & 491	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy					
	Seq ID No: 492 & 493	417079	U65590	Hs.81134	Interleukin 1 receptor antagonist					
	Seq ID No: 494 & 495	430890	X54232	Hs.2699	glypican 1 aquaporin 4					
	Seq ID No: 496 & 497 Seq ID No: 498 & 499	419721 444471	NM_001650 AB020684	Hs.288650 Hs.11217	KIAA0877 protein					
20	Seq ID No: 500 & 501	413063	AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprote					
20	Seq ID No: 502 & 503	433800	AI034361	Hs.135150	lung type-I cell membrane-associated gly					
	Seq ID No: 504 & 505	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro					
	Seq ID No: 506 & 507	452401	NM_007115	Hs.29352	turnor necrosis factor, alpha-induced pro					
25	Seq ID No: 508 & 509	450001	NM_001044	Hs.406	solute carrier family 6 (neurotransmitte carbonic anhydrase IX					
25	Seq ID No: 510 & 511 Seq ID No: 512 & 513	410407 309931	X66839 AW341683	Hs.63287	gb:hd13d01.x1 Soares_NFL_T_GBC_S1 Homo s					
	Seq ID No: 514 & 515	412719	AW016610	Hs.816	ESTs					
	Seq ID No: 516 & 517	417034	NM_006183	Hs.80962	neurotensin					
	Seg ID No: 518 & 519	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam					
30	Seq ID No: 520 & 521	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin					
	Seq ID No: 522 & 523	425650	NM_001944	Hs.1925 Hs.1695	desmoglein 3 (pemphigus vulgaris antigen matrix metalloproteinase 12 (macrophage					
	Seq ID No: 524 & 525 Seq ID No: 526 & 527	423673 418663	BE003054 AK001100	Hs.41690	desmocollin 3					
	Seq ID No: 528 & 529	418663	AK001100	Hs.41690	desmocollin 3					
35	Seq ID No: 530 & 531	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas					
	Seq ID No: 532 & 533	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad					
	Seq ID No: 534 & 535	431846	BE019924	Hs.271580	uroptakin 1B protease inhibitor 3, skin-derived (SKAL					
	Seq ID No: 536 & 537 Seq ID No: 538 & 539	422158 431958	L10343 X63629	Hs.112341 Hs.2877	cadherin 3, type 1, P-cadherin (placenta					
40	Seq ID No: 540 & 541	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an					
	Seq ID No: 542 & 543	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino					
	Seq ID No: 544 & 545	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3					
	Seq ID No: 546 & 547	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor gap junction protein, bela 6 (connexin 3					
45	Seq ID No: 548 & 549	431009 417542	BE149762 J04129	Hs.48956 Hs.82269	progestagen-associated endometrial prote					
40	Seq ID No: 550 & 551 Seq ID No: 552 & 553	449230	BE613348	Hs.211579	melanoma cell adhesion molecule					
	Seq ID No: 554 & 555	410555	U92649	Hs.64311	a disintegrin and metalloproteinase doma					
	Seq ID No: 556 & 557	410555	U92649	Hs.64311	a disintegrin and metalloproteinase doma					
50	Seq ID No: 558 & 559	424687	J05070	Hs.151738	mairix metalloproteinase 9 (gelatinase B integrin, beta 4					
50	Seq ID No: 560 & 561	418462 410274	BE001596 AA381807	Hs.85266 Hs.61762	hypoxia-inducible protein 2 ·					
	Seq ID No: 562 & 563 Seq ID No: 564 & 565	439606	W79123	Hs.58561	G protein-coupled receptor 87					
	Seq ID No: 566 & 567	404877	***************************************		NM_005365:Homo sapiens melanoma antigen,					
	Seq ID No: 568 & 569	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote					
55	Seq ID No: 570 & 571	418543	NM_005329	Hs.85962	hyaluronan synthase 3 protein lyrosine phosphatase, receptor-t					
	Seq ID No: 572 & 573	415817	U88967 U88967	Hs.78867 Hs.78867	protein tyrosine phosphalase, receptor-t					
	Seq ID No: 574 & 575 Seq ID No: 576 & 577	415817 415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t					
	Seq ID No: 578 & 579	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t					
60	Seq ID No: 580 & 581	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t					
	Seq ID No: 582 & 583	415817	U88967	Hs.78867	protein tyrosine phosphalase, receptor-t					
	Seq ID No: 584 & 585	421817	AF146074 ` NM_001327	Hs.108660 Hs.167379	ATP-binding cassette, sub-family C (CFTR cancer/testis antigen (NY-ESO-1)					
	- Seq ID No: 586 & 587 Seq ID No: 588 & 589	418678 418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)					
65	Seq ID No: 590 & 591	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini					
••	Seq ID No: 592 & 593	332180	AF134160	Hs.7327	claudin 1					
	Seq ID No: 594 & 595	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,					
	Seq ID No: 596 & 597	408790	AW580227	Hs.47860 Hs.250618	neurotrophic tyrosine kinase, receptor, UL16 binding protein 2					
70	Seq ID No: 598 & 599 Seq ID No: 600 & 601	439223 409757	AW238299 NM_001898	Hs.123114	cystatin SN					
, 0	Seq ID No: 602 & 603	428969	AF120274	Hs.194689	artemin					
	Seq ID No: 604 & 605	428969	AF120274	Hs.194689	artemin					
	Seq ID No: 606 & 607	428969	AF120274	Hs.194689	artemin					
75	Seq ID No: 608 & 609	428969	AF120274	Hs.194689	artemin hypothetical protein XP_098151 (leucine-					
13	Seq ID No: 610 & 611 Seq ID No: 612 & 613	450701 450701	H39960 H39960	Hs.288467 Hs.288467	hypothetical protein XP_098151 (leucine-					
	Seq 1D No: 614 & 615	414774	X02419	Hs.77274	plasminogen activator, urokinase					
	Seq ID No: 616 & 617	407944	R34008	Hs.239727	desmocollin 2					
00	Seq ID No: 618 & 619	407944	R34008	Hs.239727	desmocollin 2					
80	Seq ID No: 620 & 621	457489	A1693815	Hs.127179	cryptic gene					
	Seq ID No: 622 & 623	429547	AW009166 M18728	Hs.99376	ESTs gb:Human nonspecific crossreacting entig					
	Seq ID No: 624 & 625 Seq ID No: 626 & 627	407242 407242	M18728		gb:Human nonspecific crossreacting antig					
	Seq ID No: 628 & 629	407242	M18728		gb:Human nonspecific crossreacting antig					
85	Seq ID No: 630 & 631	444006	BE395085	Hs.10086	type I transmembrane protein Fn14					

WO 02/086443 PCT/US02/12476 Seq ID No: 632 & 633 NM_003816 Hs.2442 a disintegrin and metalloproteinase doma Seq ID No: 634 & 635 gastrin-releasing peptide 422109 S73265 Hs.1473 Seq ID No: 636 & 637 AW470411 Hs.288433 neurotrimin 419235 similar to S68401 (cattle) glucose induc Seq ID No: 638 & 639 Z45051 Hs.22920 449048 5 Seq ID No: 640 & 641 Hs.164021 small inducible cytokine subfamily B (Cy 419216 AU076718 Seq ID No: 642 & 643 Hs.256311 granin-like neuroendocrine peptide precu 431462 AW583672 Seq ID No: 644 & 645 448243 Hs.52620 integrin, beta 8 AW369771 Seg ID No: 646 & 647 426427 M86699 Hs.169840 TTK protein kinase Seq ID No: 648 & 649 445537 AJ245671 Hs.12844 EGF-like-domain, multiple 6 10 Seq ID No: 650 & 651 422278 AF072873 Hs.114218 frizzled (Drosophila) homolog 6 Seq ID No: 652 & 653 428450 NM_014791 Hs.184339 KIAA0175 gene product Seq ID No: 654 & 655 446619 AU076643 Hs.313 secreted phosphoprotein 1 (osteoponlin, Seq ID No: 656 & 657 453392 U23752 Hs.32964 SRY (sex determining region Y)-box 11 Seq ID No: 658 & 659 426514 BE616633 Hs.170195 bone morphogenetic protein 7 (osteogenic 15 Seq ID No: 660 & 661 425776 U25128 Hs.159499 parathyroid hormone receptor 2 Seq ID No: 662 & 663 425776 U25128 Hs.159499 parathyroid hormone receptor 2 Seq ID No: 664 & 665 431515 NM_012152 Hs.258583 endothelial differentiation, lysophospha Seq ID No: 666 & 667 419452 U33635 Hs.90572 PTK7 protein tyrosine kinase 7 Seq ID No: 668 & 669 432653 N62096 Hs.293185 ESTs, Weakly similar to JC7328 amino aci 20 Seq ID No: 670 & 671 432653 N62096 Hs.293185 ESTs, Weakly similar to JC7328 amino aci Seq ID No: 672 & 673 432653 N62096 Hs.293185 ESTs, Weakly similar to JC7328 amino aci Seq ID No: 674 & 675 432653 N62096 Hs.293185 ESTs, Weakly similar to JC7328 amino aci Seq ID No: 676 & 677 410001 AB041036 Hs.57771 kallikrein 11 Seq ID No: 678 & 679 426501 AW043782 Hs.293616 **ESTs** 25 solute carrier family 15 (H??? transport Seq ID No: 680 & 681 408369 R38438 Hs.182575 Seq ID No: 682 & 683 445413 AA151342 Hs.12677 CGI-147 protein prostate differentiation factor Seq ID No: 684 & 685 422424 AI186431 Hs.296638 Seq ID No: 686 & 687 428330 L22524 Hs.2256 matrix metalloproteinase 7 (matrilysin, Seq ID No: 688 & 689 420610 AI683183 Hs.99348 distal-less homeo box 5 30 TABLE 15B Unique Eos probeset identifier number CAT number: Gene cluster number 35 Accession: Genbank accession numbers **CAT Number** Accession Pkey 309931 AW341683 M27826 R78416 AA307645 AW957879 AW957800 AA633529 H03662 330493 33264_5 M2/826 K78416 AA3/7645 AW95/679 AW95/600 AA353529 H05062 AL133916 N79113 AF086101 N76721 AW950828 AA364013 AW955684 Al346341 Al867454 N54784 Al655270 Al421279 AW014882 AA775552 N62351 N59253 AA626243 Al341407 BE175639 AA456968 Al358918 AA457077 AA009647 AA131254 AA374293 AW954405 H04410 AW606284 AA151166 BE157467 BE157601 H04384 W46291 AW663674 H04021 H01532 AA190993 H03231 H59605 H01642 AA852876 AA113758 AA626915 AA746952 Al161014 AA099554 R69067 AW118072 Al631982 T15734 AA224195 Al701458 W20198 F26326 AA890570 N90552 AW071907 Al671352 Al375892 T03517 R88265 40 439285 47065_1 450375 83327_1 451320 86576_1 Al124088 AA224388 Al084316 Al354686 T33652 Al140719 Al720211 T03490 Al372637 T15415 AW205836 AA630384 T03515 T33230 45 AA017131 AA443303 T33623 AI222556 T33511 T33785 AI419606 D55612 TABLE 15C 50 Pkey: Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Ref: Indicates DNA strand from which exons were predicted. Strand: 55 Indicates nucleotide positions of predicted exons. Nt_position: Pkey 402075 Strand Nt position 8117407 121907-122035, 122804-122921, 124019-124161, 124455-124610, 125672-126076 Plus 403329 8516120 96450-96598 Plus 60 403478 116458-116564 9958258 Plus 404440 7528051 80430-81581 Plus 404877 1519284 1095-2107 Plus 405770 2735037 Plus 61057-62075

7767812

Minus

405932

65

123525-123713

WO 02/086443

Table 16

5

Seq ID NO: 1 DNA sequence Nucleic Acid Accession #: NM_001216 Coding sequence: 43..1422

```
GCCCGTACAC ACCGTGTGCT GGGACACCCC ACAGTCAGCC GCATGGCTCC CCTGTGCCCC
                                                                                    60
 10
         AGCCCCTGGC TCCCTCTGTT GATCCCGGCC CCTGCTCCAG GCCTCACTGT GCAACTGCTG
                                                                                   120
         CTGTCACTGC TGCTTCTGAT GCCTGTCCAT CCCCAGAGGT TGCCCCGGAT GCAGGAGGAT
                                                                                   180
         TCCCCCTTGG GAGGAGGCTC TTCTGGGGAA GATGACCCAC TGGGCGAGGA GGATCTGCCC
                                                                                   240
         AGTGAAGAG ATTCACCCAG AGAGGAGGAT CCACCCGGAG AGGAGGATCT ACCTGGAGAG
                                                                                   300
         GAGGATCTAC CTGGAGAGGA GGATCTACCT GAAGTTAAGC CTAAATCAGA AGAAGAGGGC
                                                                                   360
 15
         TCCCTGAAGT TAGAGGATCT ACCTACTGTT GAGGCTCCTG GAGATCCTCA AGAACCCCAG
                                                                                   420
         AATAATGCCC ACAGGGACAA AGAAGGGGAT GACCAGAGTC ATTGGCGCTA TGGAGGCGAC
                                                                                   480
         CCGCCCTGGC CCCGGGTGTC CCCAGCCTGC GCGGGCCGCT TCCAGTCCCC GGTGGATATC CGCCCCAGC TCGCCCGCCT CTGCCCGGCC CTGCGCCCCC TGGAACTCCT GGGCTTCCAG
                                                                                   540
                                                                                   600
         CTCCCGCCGC TCCCAGAACT GCGCCTGCGC AACAATGGCC ACAGTGTGCA ACTGACCCTG
CCTCCTGGGC TAGAGATGGC TCTGGGTCCC GGGCGGGAGT ACCGGGCTCT GCAGCTGCAT
                                                                                   660
 20
                                                                                   720
         CTGCACTGGG GGGCTGCAGG TCGTCCGGGC TCGGAGCACA CTGTGGAAGG CCACCGTTTC
CCTGCCGAGA TCCACGTGGT TCACCTCAGC ACCGCCTTTG CCAGAGTTGA CGAGGCCTTG
                                                                                   780
                                                                                   840
         GGGCGCCCGG GAGGCCTGGC CGTGTTGGCC GCCTTTCTGG AGGAGGGCCC GGAAGAAAAC
                                                                                   900
         AGTGCCTATG AGCAGTTGCT GTCTCGCTTG GAAGAAATCG CTGAGGAAGG CTCAGAGACT
 25
         CAGGTCCCAG GACTGGACAT ATCTGCACTC CTGCCCTCTG ACTTCAGCCG CTACTTCCAA
                                                                                  1020
         TATGAGGGGT CTCTGACTAC ACCGCCCTGT GCCCAGGGTG TCATCTGGAC TGTGTTTAAC
                                                                                  1080
         CAGACAGTGA TGCTGAGTGC TAAGCAGCTC CACACCCTCT CTGACACCCT GTGGGGACCT
                                                                                  1140
         GGTGACTCTC GGCTACAGCT GAACTTCCGA GCGACGCAGC CTTTGAATGG GCGAGTGATT
                                                                                  1200
         GAGGCCTCCT TCCCTGCTGG AGTGGACAGC AGTCCTCGGG CTGCTGAGCC AGTCCAGCTG
                                                                                  1260
 30
                                                                                  1320
         AATTCCTGCC TGGCTGCTGG TGACATCCTA GCCCTGGTTT TTGGCCTCCT TTTTGCTGTC
         ACCAGCGTCG CGTTCCTTGT GCAGATGAGA AGGCAGCACA GAAGGGGAAC CAAAGGGGGT
                                                                                  1380
         GTGAGCTACC GCCCAGCAGA GGTAGCCGAG ACTGGAGCCT AGAGGCTGGA TCTTGGAGAA
                                                                                  1440
         TGTGAGAAGC CAGCCAGAGG CATCTGAGGG GGAGCCGGTA ACTGTCCTGT CCTGCTCATT
                                                                                 1500
         ATGCCACTTC CTTTTAACTG CCAAGAAATT TTTTAAAATA AATATTTATA AT
 35
         Seq ID NO: 2 Protein sequence:
         Protein Accession #: NP_001207
                                                                     51
                    11
                                             31
 40
         MAPLCPSPWL PLLIPAPAPG LTVOLLLSLL LLMPVHPQRL PRMQEDSPLG GGSSGEDDPL
         GEEDLPSEED SPREEDPPGE EDLPGEEDLP GEEDLPEVKP KSEEEGSLKL EDLPTVEAPG
         DPQEPONNAH RDKEGDDQSH WRYGGDPPWP RVSPACAGRF QSPVDIRPQL AAFCPALRPL
         ELLGPQLPPL PELRLRNNGH SVQLTLPPGL EMALGPGREY RALQLHLHWG AAGRPGSEHT
 45
         VEGHRFPAEI HVVHLSTAFA RVDEALGRPG GLAVLAAFLE EGPEENSAYE QLLSRLEEIA
         EEGSETQVPG LDISALLPSD FSRYFQYEGS LTTPPCAQGV IWTVFNQTVM LSAKQLHTLS
                                                                                   360
         DTLWGPGDSR LQLNFRATQP LNGRVIEASF PAGVDSSPRA AEPVQLNSCL AAGDILALVF
         GLLFAVTSVA FLVQMRRQHR RGTKGGVSYR PAEVAETGA
 50
         Seq ID NO: 3 DNA sequence
         Nucleic Acid Accession #: BC013923
        Coding sequence: 438-1391
                                 21
                                             31
 55
         60
         GTGTTTGCAA AAGGGGGAAA GTAGTTTGCT GCCTCTTTAA GACTAGGACT GAGAGAAAGA
                                                                                   120
         AGAGGAGAGA GAAAGAAAGG GAGAGAAGTT TGAGCCCCAG GCTTAAGCCT TTCCAAAAAA
                                                                                   180
        TAATAATAAC AATCATCGGC GGCGGCAGGA TCGGCCAGAG GAGGAGGGAA GCGCTTTTTT TGATCCTGAT TCCAGTTTGC CTCTCTTT TTTTCCCCCA AATTATTCTT CGCCTGATTT
                                                                                   240
 60
                                                                                   300
         TCCTCGCGGA GCCCTGCGCT CCCGACACCC CCGCCCGCCT CCCCTCCTCC TCTCCCCCCG CCCGCGGCC CCCCAAAGTC CCGCCGGGC CGAGGGTCGG CGGCCCGG CGGCCCGGC
                                                                                   360
                                                                                   420
         CCGCGCACAG CGCCCGCATG TACAACATGA TGGAGACGGA GCTGAAGCCG CCGGGCCCGC
                                                                                   480
        AGCAAACTTC GGGGGGCGGC GGCGGCAACT CCACCGCGGC GGCGGCCGGC GGCAACCAGA
 65
         AAAACAGCCC GGACCGCGTC AAGCGGCCCA TGAATGCCTT CATGGTGTGG TCCCGCGGGC
                                                                                   600
         AGCGGCGCAA GATGGCCCAG GAGAACCCCA AGATGCACAA CTCGGAGATC AGCAAGCGCC
                                                                                   660
         TGGGCGCCGA GTGGAAACTT TTGTCGGAGA CGGAGAAGCG GCCGTTCATC GACGAGGCTA
                                                                                   720
         AGCGGCTGCG AGCGCTGCAC ATGAAGGAGC ACCCGGATTA TAAATACCGG CCCCGGCGGA
                                                                                   780
         AAACCAAGAC GCTCATGAAG AAGGATAAGT ACACGCTGCC CGGCGGGCTG CTGGCCCCCG
                                                                                   840
. 70
         GCGGCAATAG CATGGCGAGC GGGGTCGGGG TGGGCGCCGG CCTGGGCGCG GGCGTGAACC
                                                                                   900
         AGCGCATGGA CAGTTACGCG CACATGAACG GCTGGAGCAA CGGCAGCTAC AGCATGATGC
                                                                                   960
         AGGACCAGCT GGGCTACCCG CAGCACCCGG GCCTCAATGC GCACGGCGCA GCGCAGATGC
                                                                                  1020
         AGCCCATGCA CCGCTACGAC GTGAGCGCCC TGCAGTACAA CTCCATGACC AGCTCGCAGA
                                                                                  1080
         CCTACATGAA CGGCTCGCCC ACCTACAGCA TGTCCTACTC GCAGCAGGGC ACCCCTGGCA
                                                                                  1140
 75
         TGGCTCTTGG CTCCATGGGT TCGGTGGTCA AGTCCGAGGC CAGCTCCAGC CCCCCTGTGG
                                                                                  1200
         TTACCTCTTC CTCCCACTCC AGGGCGCCCT GCCAGGCCGG GGACCTCCGG GACATGATCA
                                                                                  1260
         GCATGTATCT CCCCGGCGCC GAGGTGCCGG AACCCGCCGC CCCCAGCAGA CTTCACATGT
                                                                                  1320
         CCCAGCACTA CCAGAGCGGC CCGGTGCCCG GCACGGCCAT TAACGGCACA CTGCCCCTCT
                                                                                  1380
         CACACATGTG AGGGCCGGAC AGCGAACTGG AGGGGGGGAGA AATTTTCAAA GAAAAACGAG
                                                                                  1440
. 80
         GGAAATGGGA GGGGTGCAAA AGAGGAGAGT AAGAAACAGC ATGGAGAAAA CCCGGTACGC
                                                                                  1500
         TCAAAAAAA AAAAAAAAA AAAATCCCAT CACCCACAGC AAATGACAGC TGCAAAAGAG
                                                                                  1560
         AACACCAATC CCATCCACAC TCACGCAAAA ACCGCGATGC CGACAAGAAA ACTTTTATGA
GAGAGATCCT GGACTTCTTT TKGGGGGACT ATTTTTGTAC AGAGAAAACC TGGGGAGGGT
         GGGGAGGGCG GGGGAATGGA CCTTGTATAG ATCTGGAGGA AAGAAAGCTA CGAAAAACTT
                                                                                  1740
 85
         TTTAAAAGTT CTAGTGGTAC GGTAGGAGCT TTGCAGGAAG TTTGCAAAAG TCTTTACCAA
                                                                                  1800
         TAATATTTAG AGCTAGTCTC CAAGCGACGA AAAAAATGTT TTAATATTTG CAAGCAACTT
                                                                                  1860
         TTGTACAGTA TTTATCGAGA TAAACATGGC AATCAAAATG TCCATTGTTT ATAAGCTGAG
```

```
AATTTGCCAA TATTTTCAA GGAGAGGCTT CTTGCTGAAT TTTGATTCTG CAGCTGAAAT
       TTAGGACAGT TGCAAACGTG AAAAGAAGAA AATTATTCAA ATTTGGACAT TTTAATTGTT
                                                                               2040
       TAAAAATTGT ACAAAAGGAA AAAATTAGAA TAAGTACTGG CGAACCATCT CTGTGGTCTT
                                                                               2100
       GTTTAAAAAG GGCAAAAGTT TTAGACTGTA CTAAATTTTA TAACTTACTG TTAAAAAGCAA
                                                                               2160
       AAATGGCCAT GCAGGTTGAC ACCGTTGGTA ATTTATAATA GCTTTTGTTC GATCCCAACT
                                                                               2220
                                                                               2280
        TTCCATTTTG TTCAGATAAA AAAAACCATG AAATTACTGT GTTTGAAATA TTTTCTTATG
       GTTTGTAATA TTTCTGTAAA TTTATTGTGA TATTTTAAGG TTTTCCCCCC TTTATTTTCC
                                                                               2340
       GTAGTTGTAT TTTAAAAGAT TCGGCTCTGT ATTATTTGAA TCAGTCTGCC GAGAATCCAT
                                                                               2400
       GTATATATTT GAACTAATAT CATCCTTATA ACAGGTACAT TITCAACITA AGTTTTTACT
                                                                               2460
10
        2520
       АЛЛАЛАСТА АЛСАЛАЛАЛА САЛАЛАЛСТА АЛАСТВАЛАЛ АЛСАЛАЛАЛА АЛАСТАЛАЛС
                                                                               2580
        2640
       CCACAACACA AACAACAACA CACAGAGGG
15
       Seq ID NO: 4 Protein sequence:
       Protein Accession #: CAA83435.1
20
       MYNMMETELK PPGPQQTSGG GGGNSTAAAA GGNQKNSPDR VKRPMNAFMV WSRGQRRKMA
       QENPKMHNSE ISKRIGAEWK LISETEKRPF IDEAKRIRAL HMKEHPDYKY RPRRKTKTIM
KKKKYTIPGG LIAPGGNSMA SGVGVGAGIG AGVNORMDSY AHMNGWSNGS YSMMQDQIGY
                                                                                120
       POHPGLNAHG AAQMQPMHRY DVSALQYNSM TSSQTYMNGS PTYSMSYSQQ GTPGMALGSM
       GSVVKSEASS SPPVVTSSSH SRAPCQAGDL RDMISMYLPG AEVPEPAAPS RLHMSQHYQS
25
       GPVPGTAING TLPLSHM
       Seq ID NO: 5 DNA sequence
       Nucleic Acid Accession #: U91618
       Coding sequence: 29-541
30
                                           31
                                                                  51
       CGGACTTGGC TTGTTAGAAG GCTGAAAGAT GATGGCAGGA ATGAAAATCC AGCTTGTATG
                                                                                 60
       CATGCTACTC CTGGCTTTCA GCTCCTGGAG TCTGTGCTCA GATTCAGAAG AGGAAATGAA
                                                                                120
35
       AGCATTAGAA GCAGATTTCT TGACCAATAT GCATACATCA AAGATTAGTA AAGCACATGT
                                                                                180
       TCCCTCTTGG AAGATGACTC TGCTAAATGT TTGCAGTCTT GTAAATAATT TGAACAGCCC
                                                                                240
       AGCTGAGGAA ACAGGAGAAG TTCATGAAGA GGAGCTTGTT GCAAGAAGGA AACTTCCTAC
                                                                                300
       TGCTTTAGAT GGCTTTAGCT TGGAAGCAAT GTTGACAATA TACCAGCTCC ACAAAATCTG
                                                                                360
       TCACAGCAGG GCTTTTCAAC ACTGGGAGTT AATCCAGGAA GATATTCTTG ATACTGGAAA
                                                                                420
       TGACAAAAAT GGAAAGGAAG AAGTCATAAA GAGAAAAATT CCTTATATTC TGAAACGGCA
GCTGTATGAG AATAAACCCA GAAGACCCTA CATACTCAAA AGAGATTCTT ACTATTACTG
40
                                                                                4BO
                                                                                540
       AGAGAATAAA TCATTTATTT ACATGGGATT GTGATTCATC ATCCCTTAAT TAAATATCAA ATTATATTTG TGTGAAAATG TGACAAACAC ACTTATCTGT CTCTTCTACA ATTGTGGTTT
                                                                                600
       ATTGAATGTG TTTTTCTGCA CTAATAGAAA TTAGACTAAG TGTTTTCAAA TAAATCTAAA
45
       TCTTCAAAAA AAAAAAAAAA AAATGGGGCC GCAATT
       Seg ID NO: 6 Protein sequence:
50
       Protein Accession #: AAB50564
       MMAGMKIQLV CMLLLAPSSW SLCSDSEEEM KALEADFLTN MHTSKISKAH VPSWKMTLLN
                                                                                 60
55
        VCSLVNNLNS PAEETGEVHE EELVARRKLP TALDGFSLEA MLTIYQLHKI CHSRAFQHWE
                                                                                120
       LIQEDILDTG NDKNGKEEVI KRKIPYILKR QLYENKPRRP YILKRDSYYY
       Seq ID NO: 7 DNA sequence
       Nucleic Acid Accession #: NM_006536.2
60
       Coding sequence: 109-2940
                               21
                                           31
       ACCTAAAACC TTGCAAGTTC AGGAAGAAAC CATCTGCATC CATATTGAAA ACCTGACACA
65
       ATGTATGCAG CAGGCTCAGT GTGAGTGAAC TGGAGGCTTC TCTACAACAT GACCCAAAGG
                                                                                120
       AGCATTGCAG GTCCTATTTG CAACCTGAAG TTTGTGACTC TCCTGGTTGC CTTAAGTTCA
                                                                                180
       GAACTCCCAT TCCTGGGAGC TGGAGTACAG CTTCAAGACA ATGGGTATAA TGGATTGCTC
                                                                                240
       ATTGCAATTA ATCCTCAGGT ACCTGAGAAT CAGAACCTCA TCTCAAACAT TAAGGAAATG
                                                                                300
       ATAACTGAAG CTTCATTTTA CCTATTTAAT GCTACCAAGA GAAGAGTATT TTTCAGAAAT
                                                                                360
70
       ATAAAGATTT TAATACCTGC CACATGGAAA GCTAATAATA ACAGCAAAAT AAAACAAGAA
                                                                                420
        TCATATGAAA AGGCAAATGT CATAGTGACT GACTGGTATG GGGCACATGG AGATGATCCA
                                                                                480
       TACACCCTAC AATACAGAGG GTGTGGAAAA GAGGGAAAAT ACATTCATTT CACACCTAAT
                                                                                540
        TTCCTACTGA ATGATAACTT AACAGCTGGC TACGGATCAC GAGGCCGAGT GTTTGTCCAT
                                                                                600
       GAATGGGCCC ACCTCCGTTG GGGTGTGTTC GATGAGTATA ACAATGACAA ACCTTTCTAC
                                                                                660
75
                                                                                720
        ATAAATGGGC AAAATCAAAT TAAAGTGACA AGGTGTTCAT CTGACATCAC AGGCATTTTT
        GTGTGTGAAA AAGGTCCTTG CCCCCAAGAA AACTGTATTA TTAGTAAGCT TTTTAAAGAA
                                                                                780
       GGATGCACCT TTATCTACAA TAGCACCCAA AATGCAACTG CATCAATAAT GTTCATGCAA
                                                                                840
       AGTITATCIT CIGIGGITGA ATTITGIAAT GCAAGTACCC ACAACCAAGA AGCACCAAAC CIACAGAACC AGAIGIGCAG CCICAGAAGT GCAIGGGAIG TAATCACAGA CICIGCIGAC
                                                                                900
                                                                                960
80
        TTTCACCACA GCTTTCCCAT GAATGGGACT GAGCTTCCAC CTCCTCCCAC ATTCTCGCTT
                                                                               1020
       GTACAGGCTG GTGACAAAGT GGTCTGTTTA GTGCTGGATG TGTCCAGCAA GATGGCAGAG
       GCTGACAGAC TCCTTCAACT ACAACAGCC GCAGAATTTT ATTTGATGCA GATTGTTGAA
ATTCATACCT TCGTGGGCAT TGCCAGTTTC GACAGCAAAG GAGAGATCAG AGCCCAGCTA
                                                                               1140
        CACCAAATTA ACAGCAATGA TGATCGAAAG TTGCTGGTTT CATATCTGCC CACCACTGTA
85
        TCAGCTAAAA CAGACATCAG CATTTGTTCA GGGCTTAAGA AAGGATTTGA GGTGGTTGAA
        AAACTGAATG GAAAAGCTTA TGGCTCTGTG ATGATATTAG TGACCAGCGG AGATGATAAG
        CTTCTTGGCA ATTGCTTACC CACTGTGCTC AGCAGTGGTT CAACAATTCA CTCCATTGCC
```

```
CTGGGTTCAT CTGCAGCCCC AAATCTGGAG GAATTATCAC GTCTTACAGG AGGTTTAAAG
                                                                              1500
       TTCTTTGTTC CAGATATATC AAACTCCAAT AGCATGATTG ATGCTTTCAG TAGAATTTCC
                                                                               1560
       TCTGGAACTG GAGACATTTT CCAGCAACAT ATTCAGCTTG AAAGTACAGG TGAAAATGTC
                                                                               1620
       AAACCTCACC ATCAATTGAA AAACACAGTG ACTGTGGATA ATACTGTGGG CAACGACACT
                                                                               1680
       ATGTTTCTAG TTACGTGGCA GGCCAGTGGT CCTCCTGAGA TTATATTATT TGATCCTGAT
                                                                               1740
                                                                               1800
       GGACGAAAAT ACTACACAAA TAATITTATC ACCAATCTAA CTTTTCGGAC AGCTAGTCTT
       TGGATTCCAG GAACAGCTAA GCCTGGGCAC TGGACTTACA CCCTGAACAA TACCCATCAT
                                                                               1860
       TCTCTGCAAG CCCTGAAAGT GACAGTGACC TCTCGCGCCT CCAACTCAGC TGTGCCCCCA
                                                                               1920
       GCCACTGTGG AAGCCTTTGT GGAAAGAGAC AGCCTCCATT TTCCTCATCC TGTGATGATT
                                                                               1980
       TATGCCAATG TGAAACAGGG ATTTTATCCC ATTCTTAATG CCACTGTCAC TGCCACAGTT
10
                                                                               2040
       GAGCCAGAGA CTGGAGATCC TGTTACGCTG AGACTCCTTG ATGATGGAGC AGGTGCTGAT
                                                                               2100
       GTTATAAAAA ATGATGGAAT TTACTCGAGG TATTTTTTCT CCTTTGCTGC AAATGGTAGA
       TATAGCTTGA AAGTGCATGT CAATCACTCT CCCAGCATAA GCACCCCAAC CCACTCTATT CCAGGGAGTC ATGCTATGTA TGTACCAGGT TACACAGCAA ACGGTAATAT TCAGATGAAT
                                                                               2220
15
       GCTCCAAGGA AATCAGTAGG CAGAAATGAG GAGGAGCGAA AGTGGGGCTT TAGCCGAGTC
       AGCTCAGGAG GCTCCTTTTC AGTGCTGGGA GTTCCAGCTG GCCCCACCC TGATGTGTTT
                                                                               2400
       CCACCATGCA AAATTATTGA CCTGGAAGCT GTAAAAGTAG AAGAGGAATT GACCCTATCT
                                                                               2460
       TGGACAGCAC CTGGAGAAGA CTTTGATCAG GGCCAGGCTA CAAGCTATGA AATAAGAATG
                                                                               2520
       AGTAAAAGTC TACAGAATAT CCAAGATGAC TTTAACAATG CTATTTTAGT AAATACATCA
                                                                               2580
20
       AAGCGAAATC CTCAGCAAGC TGGCATCAGG GAGATATTTA CGTTCTCACC CCAGATTTCC
                                                                               2640
       ACGAATGGAC CTGAACATCA GCCAAATGGA GAAACACATG AAAGCCACAG AATTTATGTT
                                                                               2700
       GCAATACGAG CAATGGATAG GAACTCCTTA CAGTCTGCTG TATCTAACAT TGCCCAGGCG
                                                                               2760
       CCTCTGTTTA TTCCCCCCAA TTCTGATCCT GTACCTGCCA GAGATTATCT TATATTGAAA
                                                                               2820
       GGAGTTTTAA CAGCAATGGG TTTGATAGGA ATCATTTGCC TTATTATAGT TGTGACACAT
                                                                               2880
25
       CATACTTTAA GCAGGAAAAA GAGAGCAGAC AAGAAAGAGA ATGGAACAAA ATTATTATAA
                                                                               2940
       ATAAATATCC AAAGTGTCTT CCTTCTTAGA TATAAGACCC ATGGCCTTCG ACTACAAAAA
                                                                               3000
                                                                               3060
       CATACTAACA AAGTCAAATT AACATCAAAA CTGTATTAAA ATGCATTGAG TTTTTGTACA
       ATACAGATAA GATTTTTACA TGGTAGATCA ACAATTCTTT TTGGGGGTAG ATTAGAAAAC
                                                                               3120
       CCTTACACTT TGGCTATGAA CARATAATAA AAATTATTCT TTAAAGTAAT GTCTTTAAAG
                                                                               3180
30
       GCAAAGGGAA GGGTAAAGTC GGACCAGTGT CAAGGAAAGT TTGTTTTATT GAGGTGGAAA
                                                                               3240
       AATAGCCCCA AGCAGAGAAA AGGAGGGTAG GTCTGCATTA TAACTGTCTG TGTGAAGCAA
                                                                               3300
       TCATTTAGTT ACTTTGATTA ATTTTTCTTT TCTCCTTATC TGTGCAGTAC AGGTTGCTTG
                                                                               3360
       TTTACATGAA GATCATGCTA TATTTTATAT ATGTAGCCCC TAATGCAAAG CTCTTTACCT
                                                                               3420
       CTTGCTATTT TGTTATATAT ATTTCAGATG ACATCTCCCT GCTAATGCTC AGAGATCTTT
                                                                               3480
35
       TTTCACTGTA AGAGGTAACC TTTAACAATA TGGGTATTAC CTTTGTCTCT TCATACCGGT
                                                                               3540
       TTTATGACAA AGGTCTATTG AATTTATTTG TNTGTAAGTT TCTACTCCCA TCAAAGCAGC
       TTTCTAAGTT TATTGCCTTG GGTTATTATG GAATGATAGT TATAGCCCCN TATAATGCCT
       TACCTAGGAA A
40
       Seg ID NO: 8 Protein seguence:
       Protein Accession #: NP_006527.1
45
       MTORSIAGPI CNLKFVTLLV ALSSELPFLG AGVOLODNGY NGLLIAINPO VPENONLISN
                                                                                 60
       IKEMITEASF YLFNATKRRV FFRNIKILIP ATWKANNNSK IKQESYEKAN VIVTDWYGAH
                                                                                120
       GDDPYTLQYR GCGKEGKYIH FTPNFLLNDN LTAGYGSRGR VFVHEWAHLR WGVFDEYNND
                                                                                180
       KPFYINGONO IKVTRCSSDI TGIFVCEKGP CPQENCIISK LFKEGCTFIY NSTQNATASI
                                                                                240
       MFMQSLSSVV EFCNASTHNQ EAPNLQNQMC SLRSAWDVIT DSADFHHSFP MNGTELPPPP
                                                                                300
50
       TFSLVQAGDK VVCLVLDVSS KMAEADRLLQ LQQAAEFYLM QIVEIHTFVG IASFDSKGEI
                                                                                360
       RAQLHQINSN DDRKLLVSYL PTTVSAKTDI SICSGLKKGF EVVEKLNGKA YGŞVMILVTS
                                                                                420
       GDDKLLGNCL PTVLSSGSTI HSIALGSSAA PNLEELSRLT GGLKFFVPDI SNSNSMIDAF
                                                                                480
       SRISSGTGDI FQQHIQLEST GENVKPHHQL KNTVTVDNTV GNDTMFLVTW QASGPPEIIL
FDPDGRKYYT NNFITNLTFR TASLWIPGTA KPGHWTYTLN NTHHSLQALK VTVTSRASNS
                                                                                540
                                                                                600
       AVPPATVEAF VERDSLHPPH PVMIYANVKQ GFYPILNATV TATVEPETGD PVTLRLLDDG
AGADVIKNDG IYSRYFFSFA ANGRYSLKVH VNHSPSISTP AHSIPGSHAM YVPGYTANGN
55
                                                                                660
       IOMNAPRKSV GRNEEERKWG FSRVSSGGSF SVLGVPAGPH PDVFPPCKII DLEAVKVEEE
       LTLSWTAPGE DFDQGQATSY EIRMSKSLQN IQDDFNNAIL VNTSKRNPQQ AGIREIFTFS
       POISTNGPEH OPNGETHESH RIYVAIRAMD RNSLQSAVSN IAQAPLFIPP NSDPVPARDY
60
       LILKGVLTAM GLIGIICLII VVTHHTLSRK KRADKKENGT KLL
       Seq ID NO: 9 DNA sequence
       Nucleic Acid Accession #: Eos sequence
65
       Coding sequence: 336-632
                                          31
       CTCCCCTCAC CCCGGTCCAG GATGCCCAGT CCCCACGACA CCTCCCACTT CCCACTGTGG
                                                                                 60
70
       CCTGGGTGGG CTCAGGGGCT GCCCTTGACC TGGCCTAGAG CCCTCCCCCA GCTGGTGGTG
                                                                                120
       GAGCTGGCAC TCTCTGGGAG GGAGGGGCT GGGAGGGAAT GAGTGGGAAT GGCAAGAGGC
                                                                                180
       CAGGGTTTGG TGGGATCAGG TTGAGGCAGG TTTGGTTTCC TTAAAATGCC AAGTTGGGGG
                                                                                240
       CCAGTGGGGC CCACATATAA ATCCTCACCC TGGGAGCCTG GCTGCCTTGC TCTCCTTCCT
                                                                                300
       GGGTCTGTCT CTGCCACCTG GTCTGCCACA GATCCATGAT GTGCAGTTCT CTGGAGCAGG
                                                                                360
75
       CGCTGGCTGT GCTGGTCACT ACCTTCCACA AGTACTCCTG CCAAGAGGGC GACAAGTTCA
                                                                                420
       AGCTGAGTAA GGGGGAAATG AAGGAACTTC TGCACAAGGA GCTGCCCAGC TTTGTGGGGG
AGAAAGTGGA TGAGGAGGG CTGAAGAAGC TGATGGGCAG CCTGGATGAG AACAGTGACC
                                                                                480
                                                                                540
       AGCAGGTGGA CTTCCAGGAG TATGCTGTTT TCCTGGCACT CATCACTGTC ATGTGCAATG
                                                                                600
       ACTICITCCA GGGCTGCCCA GACCGACCCT GAAGCAGAAC TCTTGACTTC CTGCCATGGA
                                                                                660
80
       TCTCTTGGGC CCAGGACTGT TGATGCCTTT GAGTTTTGTA TTCAATAAAC TTTTTTTGTC
                                                                                720
       TGTTGATAAT ATTTTAATTG CTCAGTGATG TTCCATAACC CGGCTGGCTC AGCTGGAGTG
                                                                                780
       CTGGGAGATG AGGGCCTCCT GGATCCTGCT CCCTTCTGGG CTCTGACTCT CCTGGAAATC
                                                                                840
       TCTCCAAGGC CAGAGCTATG CTTTAGGTCT CAATTTTGGA ATTTCAAACA CCAGCAAAAA
                                                                                900
       ATTGGAAATC GAGATAGGTT GCTGACTTTT ATTTTGTCAA ATAAAGATAT TAAAAAAGGC
                                                                                960
85
```

Seg ID NO: 10 Protein sequence:

AAATACCA

60

WO 02/086443 Protein Accession #: NP_005969.1 31 MMCSSLEQAL AVLVTTPHKY SCOEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP Seg ID NO: 11 DNA seguence 10 Nucleic Acid Accession #: Eos sequence Coding sequence: 336-626 15 CTCCCCTCAC CCCGGTCCAG GATGCCCAGT CCCCACGACA CCTCCCACTT CCCACTGTGG CCTGGGTGGG CTCAGGGGCT GCCCTTGACC TGGCCTAGAG CCCTCCCCCA GCTGGTGGTG 120 180 GAGCTGGCAC TCTCTGGGAG GGAGGGGGCT GGGAGGGAAT GAGTGGGAAT GGCAAGAGGC CAGGGTTTGG TGGGATCAGG TTGAGGCAGG TTTGGTTTCC TTAAAATGCC AAGTTGGGGG 240 CCAGTGGGGC CCACATATAA ATCCTCACCC TGGGAGCCTG GCTGCCTTGC TCTCCTTCCT 300 20 GGGTCTGTCT CTGCCACCTG GTCTGCCACA GATCCATGAT GTGCAGTTCT CTGGAGCAGG 360 CGCTGGCTGT GCTGGTCACT ACCTTCCACA AGTACTCCTG CCAAGAGGGC GACAAGTTCA 420 AGCTGAGTAA GGGGGAAATG AAGGAACTTC TGCACAAGGA GCTGCCCAGC TTTGTGGGGC 480 ATTCCAGAGA ACCATGTGCT GTGAGGGCCT TCCGAGTCCA TCTGTTTAAT CCTGTCATTG 540 GAGACTTGAG AAACCAGAGC CCAGAAGGGA AAAGTGATTG TCCCAAGATC ACACAGCACT 600 25 660 GGAGAAAGTG GATGAGGAGG GGCTGAAGAA GCTGATGGGC AGCCTGGATG AGAACAGTGA CCAGCAGGTG GACTTCCAGG AGTATGCTGT TTTCCTGGCA CTCATCACTG TCATGTGCAA 720 780 TGACTTCTTC CAGGGCTGCC CAGACCGACC CTGAAGCAGA ACTCTTGACT TCCTGCCATG GATCTCTTGG GCCCAGGACT GTTGATGCCT TTGAGTTTTG TATTCAATAA ACTTTTTTTG 840 900 TCTGTTGATA ATATTTTAAT TGCTCAGTGA TGTTCCATAA CCCGGCTGGC TCAGCTGGAG 30 TGCTGGGAGA TGAGGGCCTC CTGGATCCTG CTCCCTTCTG GGCTCTGACT CTCCTGGAAA 960 TCTCTCCAAG GCCAGAGCTA TGCTTTAGGT CTCAATTTTG GAATTTCAAA CACCAGCAAA AAATTGGAAA TCGAGATAGG TTGCTGACTT TTATTTTGTC AAATAAAGAT ATTAAAAAAG 1020 **GCAAATACCA** 35 Seq ID NO: 12 Protein sequence: Protein Accession #: Eos sequence 51 40 MMCSSLEQAL AVLVTTFHKY SCQEGDKFKL SKGEMKELLH KELPSFVGHS REPCAVRAFR VHLFNPVIGD LRNQSPEGKS DCPKITQHWR KWMRRG Seq ID NO: 13 DNA sequence 45 Nucleic Acid Accession #: Eos sequence Coding sequence: 58-354

50 GTGAGCTCAC CATGTGGGGG TGAGGCTGAG AGAAAACAAG TACACAGCCA CAGATCCATG 60 ATGTGCAGTT CTCTGGAGCA GGCGCTGGCT GTGCTGGTCA CTACCTTCCA CAAGTACTCC 120 TGCCAAGAGG GCGACAAGTT CAAGCTGAGT AAGGGGGAAA TGAAGGAACT TCTGCACAAG 180 GAGCTGCCCA GCTTTGTGGG GGAGAAAGTG GATGAGGAGG GGCTGAAGAA GCTGATGGGC AGCCTGGATG AGAACAGTGA CCAGCAGGTG GACTTCCAGG AGTATGCTGT TTTCCTGGCA 55 CTCATCACTG TCATGTGCAA TGACTTCTTC CAGGGCTGCC CAGACCGACC CTGAAGCAGA 360 ACTOTIGACT TOOTGCCATG GATOTOTIGG GCCCAGGACT GTTGATGCCT TTGAGTTTTG TATTCAATAA ACTTTTTTTG TCTGTTGATA ATATTTTAAT TGCTCAGTGA TGTTCCATAA 480 CCCGGCTGGC TCAGCTGGAG TGCTGGGAGA TGAGGGCCTC CTGGATCCTG CTCCCTTCTG 540 GGCTCTGACT CTCCTGGAAA TCTCTCCAAG GCCAGAGCTA TGCTTTAGGT CTCAATTTTG 60 GAATTTCAAA CACCAGCAAA AAATTGGAAA TCGAGATAGG TTGCTGACTT TTATTTTGTC AAATAAAGAT ATTAAAAAAG GCAAATACCA

Seq ID NO: 14 Protein sequence: Protein Accession #: NP_005969.1 65 21 MMCSSLEQAL AVLVTTFHKY SCOEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP

Seg ID NO: 15 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 62-358

70

75 GGAGGGTGTG CCGCTGAGTC ACTGCCTGGG CATCTGGGCC TGGAACCTCG GCCACAGATC CATGATGTGC AGTTCTCTGG AGCAGGCGCT GGCTGTGCTG GTCACTACCT TCCACAAGTA 120 CTCCTGCCAA GAGGGCGACA AGTTCAAGCT GAGTAAGGG GAAATGAAGG AACTTCTGCA 180 80 CAAGGAGCTG CCCAGCTTTG TGGGGGAGAA AGTGGATGAG GAGGGGCTGA AGAAGCTGAT 240 GGGCAGCCTG GATGAGAACA GTGACCAGCA GGTGGACTTC CAGGAGTATG CTGTTTTCCT 300 GGCACTCATC ACTGTCATGT GCAATGACTT CTTCCAGGGC TGCCCAGACC GACCCTGAAG 360 CAGAACTCTT GACTTCCTGC CATGGATCTC TTGGGCCCAG GACTGTTGAT GCCTTTGAGT 420 TTTGTATTCA ATAAACTTTT TTTGTCTGTT GATAATATTT TAATTGCTCA GTGATGTTCC 480 85 ATAACCCGGC TGGCTCAGCT GGAGTGCTGG GAGATGAGGG CCTCCTGGAT CCTGCTCCCT 540 TCTGGGCTCT GACTCTCCTG GAAATCTCTC CAAGGCCAGA GCTATGCTTT AGGTCTCAAT 600 TITGGAATTT CAAACACCAG CAAAAAATTG GAAATCGAGA TAGGTTGCTG ACTITTATTT 660 Seq ID NO: 16 Protein sequence:

```
Protein Accession #: NP_005969.1
 5
                                        31
                                                   41
                                                               51
       MMCSSLEQAL AVLVTTPHKY SCOEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM
       GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP
10
       Seg ID NO: 17 DNA sequence
       Nucleic Acid Accession #: Eos sequence
15
       Coding sequence: 939-2372
                                                               51
       AAGACGGATT CTCAGACAAG GCTTGCAAAT GCCCCGCAGC CATCATTTAA CTGCACCCGC
                                                                             60
20
       AGAATAGTTA CGGTTTGTCA CCCGACCCTC CCGGATCGCC TAATTTGTCC CTAGTGAGAC
                                                                            120
       CCCGAGGCTC TGCCCGCGCC TGGCTTCTTC GTAGCTGGAT GCATATCGTG CTCCGGGCAG
                                                                            180
       CGCGGGCGCA GGGCACGCGT TCGCGCACAC CCTAGCACAC ATGAACACGC GCAAGAGCTG
                                                                            240
       AACCAAGCAC GGTTTCCATT TCAAAAAGGG AGACAGCCTC TACCGCGATT GTAGAAGAGA
                                                                            300
       CTGTGGTGTG AATTAGGGAC CGGGAGGCGT CGAACGGAGG AACGGTTCAT CTTAGAGACT
                                                                            360
25
       AATTTTCTGG AGTTTCTGCC CCTGCTCTGC GTCAGCCCTC ACGTCACTTC GCCAGCAGTA
                                                                            420
       GCAGAGGCGG CGGCGGCGC TCCCGGAATT GGGTTGGAGC AGGAGCCTCG CTGGCTGCTT
                                                                            480
       CGCTCGCGCT CTACGCGCTC AGTCCCCGGC GGTAGCAGGA GCCTGGACCC AGGCGCCGCC
                                                                            540
       GGCGGGCGTG AGGCGCCGGA GCCCGGCCTC GAGGTGCATA CCGGACCCCC ATTCGCATCT
                                                                            600
       AACAAGGAAT CTGCGCCCCA GAGAGTCCCG GGAGCGCCGC CGGTCGGTGC CCGGCGCGCC
                                                                            660
       GGGCCATGCA GCGACGGCCG CCGCGGAGCT CCGAGCAGCG GTAGCGCCCC CCTGTAAAGC
30
                                                                            720
       GGTTCGCTAT GCCGGGGCCA CTGTGAACCC TGCCGCCTGC CGGAACACTC TTCGCTCCGG
                                                                            780
       ACCAGCTCAG CCTCTGATAA GCTGGACTCG GCACGCCCGC AACAAGCACC GAGGAGTTAA
                                                                            840
       GAGAGCCGCA AGCCCAGGGA AGGCCTCCCC GCACGGGTGG GGGAAAGCGG CCGGTGCAGC
GCGGGGACAG GCACTCGGC TGGCACTGGC TGCTAGGGAT GTCGTCCTGG ATAAGGTGGC
                                                                            900
                                                                            960
35
       ATGGACCCGC CATGGCGCG CTCTGGGGCT TCTGCTGGCT GGTTGTGGGC TTCTGGAGGG
                                                                           1020
       CCGCTTTCGC CTGTCCCACG TCCTGCAAAT GCAGTGCCTC TCGGATCTGG TGCAGCGACC
                                                                           1080
       CTTCTCCTGG CATCGTGGCA TTTCCGAGAT TGGAGCCTAA CAGTGTAGAT CCTGAGAACA
                                                                           1140
       TCACCGAAAT TTTCATCGCA AACCAGAAAA GGTTAGAAAT CATCAACGAA GATGATGTTG
                                                                           1200
       AAGCTTATGT GGGACTGAGA AATCTGACAA TTGTGGATTC TGGATTAAAA TTTGTGGCTC
                                                                           1260
40
       ATAAAGCATT TCTGAAAAAC AGCAACCTGC AGCACATCAA TTTTACCCGA AACAAACTGA
                                                                           1320
       CGAGTTTGTC TAGGAAACAT TTCCGTCACC TTGACTTGTC TGAACTGATC CTGGTGGGCA
                                                                           1380
       ATCCATTTAC ATGCTCCTGT GACATTATGT GGATCAAGAC TCTCCAAGAG GCTAAATCCA
                                                                           1440
       GTCCAGACAC TCAGGATTTG TACTGCCTGA ATGAAAGCAG CAAGAATATT CCCCTGGCAA
                                                                           1500
       ACCTGCAGAT ACCCAATTGT GGTTTGCCAT CTGCAAATCT GGCCGCACCT AACCTCACTG
                                                                           1560
45
       TGGAGGAAGG AAAGTCTATC ACATTATCCT GTAGTGTGGC AGGTGATCCG GTTCCTAATA
                                                                           1620
       TGTATTGGGA TGTTGGTAAC CTGGTTTCCA AACATATGAA TGAAACAAGC CACACACAGG
                                                                           1680
       GCTCCTTAAG GATAACTAAC ATTTCATCCG ATGACAGTGG GAAGCAGATC TCTTGTGTGG
                                                                           1740
       CGGAAAATCT TGTAGGAGAA GATCAAGATT CTGTCAACCT CACTGTGCAT TTTGCACCAA
                                                                           1800
       CTATCACATT TCTCGAATCT CCAACCTCAG ACCACCACTG GTGCATTCCA TTCACTGTGA
                                                                           1860
50
       AAGGCAACCC CAAACCAGCG CTTCAGTGGT TCTATAACGG GGCAATATTG AATGAGTCCA
                                                                           1920
       AATACATCTG TACTAAAATA CATGTTACCA ATCACACGGA GTACCACGGC TGCCTCCAGC
                                                                           1980
       TGGATAATCC CACTCACATG AACAATGGGG ACTACACTCT AATAGCCAAG AATGAGTATG
                                                                           2040
       GGAAGGATGA GAAACAGATT TCTGCTCACT TCATGGGCTG GCCTGGAATT GACGATGGTG
                                                                           2100
       CARACCCARA TTATCCTGAT GTAATTTATG AAGATTATGG AACTGCAGCG AATGACATCG
       GGGACACCAC GAACAGAAGT AATGAAATCC CTTCCACAGA CGTCACTGAT AAAACCGGTC
55
                                                                           2220
       GGGAACATCT CTCGGTCTAT GCTGTGGTGG TGATTGCGTC TGTGGTGGGA TTTTGCCTTT
                                                                           2280
       TGGTAATGCT GTTTCTGCTT AAGTTGGCAA GACACTCCAA GTTTGGCATG AAAGGTTTTG
                                                                           2340
       TTTTGTTTCA TAAGATCCCA CTGGATGGGT AGCTGAAATA AAGGAAAAGA CAGAGAAAGG
                                                                           2400
       GGCTGTGGTG CTTGTTGGTT GATGCTGCCA TGTAAGCTGG ACTCCTGGGA CTGCTGTTGG
                                                                           2460
60
       CTTATCCCGG GAAGTGCTGC TTATCTGGGG TTTTCTGGTA GATGTGGGCG GTGTTTGGAG
                                                                           2520
       GCTGTACTAT ATGAAGCCTG CATATACTGT GAGCTGTGAT TGGGGAACAC CAATGCAGAG
                                                                           2580
       GTAACTCTCA GGCAGCTAAG CAGCACCTCA AGAAAACATG TTAAATTAAT GCTTCTCTTC
                                                                           2640
       TTACAGTAGT TCAAATACAA AACTGAAATG AAATCCCATT GGATTGTACT TCTCTTCTGA
                                                                           2700
       AAAGTGTGCT TTTTGACCCT ACTGGACATT TATTGACTTA ATTGCTTCTG TTTATTAAAA
                                                                           2760
65
       TTGACCTGCA AAGTTAAAAA AAAATTAAAG TTGAGAACAG GTATAAGTGC ACACTGAATA
                                                                           2820
       GTCTAATCTA CATGTAACAC ATATTTTAGT GTGATTTTCT ATACTCTAAT CAGCACTGAA
                                                                           2880
       TTCAGAGGGT TTGACTTTTT CATCTATAAC ACAGTGACTA AAAGAGTTAA GGGTATATAT
                                                                           2940
       ACCATCACTT TGGGACTTGG TAGTATTATT AAAAGGTTAT TTCCTTCACT GTCAATAAAA
                                                                           3000
       GTCCAAATGT TTAGCTTAGG TCTGAGAGTC AAACAATGTT AAGGATTGTC TTAAAGTTCC
                                                                           3060
70
       TTAGCCAGCA AAACAAAACA AAACAAAACA AACAAATGAA AAACGTTTAA AAAGAAGAAG
                                                                           3120
       AAGAAAAAA ACAAGAACAA GCAGCAACAG CTGTTTTGTT GGGGCTATAG ATTTAAGTTA
                                                                           3180
       GGCATAGTCA ATTTCAGAAT AACTAAGAGT GGAATATATG CATATGGTGA AATTATAACC
                                                                           3240
       TTGCCCTTTT TTATTTGCCC TCTGCGATCC ACCTGCTTTT TAGAAGTCTG CCGAGTGAGA
                                                                           3300
       AGGCCACAGT ATCTCATGCT GTTTGCATTA CAGAACTGCA GCTTTTCTAC TCTGAAAAGG
                                                                           3360
75
       CCTGGGAGCA GAATGGCTGG CCTGCTGTGA GCAGGAGAGG AGATTCTAAG AAGGATAGTC
                                                                           3420
       CCCCCTACAA CATACTGTCA TACTGCTGGG TTTTCATGGG TAGGAAAGCT TGTCCTGACC
                                                                           3480
       CCAGCAGCAA AGAGGTGGCA GGTCGCTAAT GAATATATGC TTTATAATGT CCTTCTTCAT
                                                                           3540
       TGCTGAGAGG GCAGCCTTAG AGCTGTGGAT TTCTGCATCC CCCCTGAGTC TGACCCATGG
                                                                           3600
       ACACCTGTTT CATTCACTTT AGCATCACAG TGACCTTTGT ATGCTCTGTT CAGTCTGTGT
                                                                           3660
80
       3720
       TGTTCCTTTT TTATCAGGAG GACTTCAGAG CCAGGCCTGC AGCATTTTGT TTGAAAACAC
                                                                           3780
       AATCAGCTCT GACAGTTAGA CATGCACACA GACGCCATAG CTGGATTGGA AACATTGATG
                                                                           3840
       TTTTAAAAAT TTATTTTTT TGGAAATAGT TGCACAAATG CTGCAATTTA GCTTTAAGGT
                                                                           3900
       TCTATAGATT TTTAACTAGT CCAACACAGT CAGAAACATT GTTTTGAATC CTCTGTAAAC
                                                                           3960
85
       CAAGGCATTA ATCTTAATAA ACCAGGATCC ATTTAGGTAC CACTTGATAT AAAAAGGATA
                                                                           4020
                                                                           4080
       TCCATAATGA ATATTTTATA CTGCATCCTT TACATTAGCC ACTAAATACG TTATTGCTTG
       ATGAAGACCT TTCACAGAAT CCTATGGATT GCAGCATTTC ACTTGGCTAC TTCATACCCA
                                                                           4140
```

```
4200
       TGCCTTAAAG AGGGGCAGTT TCTCAAAAGC AGAAACATGC CGCCAGTTCT CAAGTTTTCC
                                                                            4260
       TCCTAACTCC ATTTGAATGT AAGGGCAGCT GGCCCCCAAT GTGGGGAGGT CCGAACATTT
       TCTGAATTCC CATTTTCTTG TTCGCGGCTA AATGACAGTT TCTGTCATTA CTTAGATTCC
                                                                            4320
       GATCITTCCC AAAGGTGTTG ATTTACAAAG AGGCCAGCTA ATAGCAGAAA TCATGACCCT
                                                                            4380
       GAAAGAGAGA TGAAATTCAA GCTGTGAGCC AGGCAGGAGC TCAGTATGGC AAAGGTTCTT
                                                                            4440
       GAGAATCAGC CATTTGGTAC AAAAAAGATT TTTAAAGCTT TTATGTTATA CCATGGAGCC
                                                                            4500
       ATAGAAAGGC TATGGATTGT TTAAGAACTA TTTTAAAGTG TTCCAGACCC AAAAAGGAAA
                                                                            4560
       AATAAAAAA AAGGAATATT TGTACCCAAC AGCTAGAAGG ATTGCAAGGT AGATTTTTGT
                                                                            4620
       TTTAAAATGG AGAGAAGTGG ACAGATAAGG CCATTTAATA TATCAAAGAT CAGTTGACAT
                                                                            4680
10
       CTCCTAGGGA ATGATGAAAA CAGCAGGCTA T
       Seq ID-NO: 18 Protein sequence:
       Protein Accession #: CAA53571
15
                                         31
                                                                51
       MSSWIRWHGP AMARLWGFCW LVVGFWRAAF ACPTSCKCSA SRIWCSDPSP GIVAFPRLEP
                                                                              60
       NSVDPENITE IFIANQKRLE IINEDDVEAY VGLRNLTIVD SGLKFVAHKA FLKNSNLQHI.
                                                                             120
       NFTRNKLTSL SRKHFRHLDL SELILVGNPP TCSCDIMWIK TLQEAKSSPD TQDLYCLNES
                                                                             180
       SKNIPLANLQ IPNCGLPSAN LAAPNLTVEE GKSITLSCSV AGDPVPNMYW DVGNLVSKHM
20
       NETSHTQGSL RITNISSDDS GKQISCVAEN LVGEDQDSVN LTVHFAPTIT FLESPTSDHH
       WCIPTVKGN PKPALOWFYN GAILNESKYI CTKIHVTNHT EYHGCLQLDN PTHMNNGDYT
       LIAKNEYGKD EKOISAHFMG WPGIDDGANP NYPDVIYEDY GTAANDIGDT TNRSNEIPST
       DVTDKTGREH LSVYAVVVIA SVVGFCLLVM LFLLKLARHS KFGMKGFVLF HKIPLDG
25
       Seg ID NO: 19 DNA seguence
       Nucleic Acid Accession #: NM 000228
       Coding sequence: 82-3600
30
                 11
                                                                51
       GCTTTCAGGC GATCTGGAGA AAGAACGGCA GAACACACAG CAAGGAAAGG TCCTTTCTGG
                                                                              60
       GGATCACCCC ATTGGCTGAA GATGAGACCA TTCTTCCTCT TGTGTTTTGC CCTGCCTGGC
                                                                             120
       CTCCTGCATG CCCAACAAGC CTGCTCCCGT GGGGCCTGCT ATCCACCTGT TGGGGACCTG
                                                                             180
35
       CTTGTTGGGA GGACCCGGTT TCTCCGAGCT TCATCTACCT GTGGACTGAC CAAGCCTGAG
                                                                             240
       ACCTACTGCA CCCAGTATGG CGAGTGGCAG ATGAAATGCT GCAAGTGTGA CTCCAGGCAG
                                                                             300
       CCTCACAACT ACTACAGTCA CCGAGTAGAG AATGTGGCTT CATCCTCCGG CCCCATGCGC
                                                                             360
       TGGTGGCAGT CCCAGAATGA TGTGAACCCT GTCTCTCTGC AGCTGGACCT GGACAGGAGA
                                                                             420
       TTCCAGCTTC AAGAAGTCAT GATGGAGTTC CAGGGGCCCA TGCCCGCCGG CATGCTGATT
                                                                             480
40
       GAGCGCTCCT CAGACTTCGG TAAGACCTGG CGAGTGTACC AGTACCTGGC TGCCGACTGC
                                                                             540
       ACCTCCACCT TCCCTCGGGT CCGCCAGGGT CGGCCTCAGA GCTGGCAGGA TGTTCGGTGC
                                                                             600
       CAGTCCCTGC CTCAGAGGCC TAATGCACGC CTAAATGGGG GGAAGGTCCA ACTTAACCTT
                                                                             660
       ATGGATTTAG TGTCTGGGAT TCCAGCAACT CAAAGTCAAA AAATTCAAGA GGTGGGGGAG
                                                                             720
       ATCACAAACT TGAGAGTCAA TTTCACCAGG CTGGCCCCTG TGCCCCAAAG GGGCTACCAC
CCTCCCAGGG CCTACTATGC TGTGTCCCAG CTCCGTCTGC AGGGGAGCTG CTTCTGTCAC
                                                                             780
45
       GGCCATGCTG ATCGCTGCGC ACCCAAGCCT GGGGCCTCTG CAGGCCCCTC CACCGCTGTG
                                                                             900
       CAGGTCCACG ATGTCTGTGT CTGCCAGCAC AACACTGCCG GCCCAAATTG TGAGCGCTGT
       GCACCCTTCT ACAACAACCG GCCCTGGAGA CCGGCGGAGG GCCAGGACGC CCATGAATGC
                                                                            1020
       CAAAGGTGCG ACTGCAATGG GCACTCAGAG ACATGTCACT TTGACCCCGC TGTGTTTGCC
                                                                            1080
50
       GCCAGCCAGG GGGCATATGG AGGTGTGTGT GACAATTGCC GGGACCACAC CGAAGGCAAG
                                                                            1140
       AACTGTGAGC GGTGTCAGCT GCACTATTTC CGGAACCGGC GCCCGGGAGC TTCCATTCAG
                                                                            1200
       GAGACCTGCA TCTCCTGCGA GTGTGATCCG GATGGGGCAG TGCCAGGGGC TCCCTGTGAC
                                                                            1260
       CCAGTGACCG GGCAGTGTGT GTGCAAGGAG CATGTGCAGG GAGAGCGCTG TGACCTATGC
                                                                            1320
       AAGCCGGGCT TCACTGGACT CACCTACGCC AACCCGCAGG GCTGCCACCG CTGTGACTGC
                                                                            1380
55
       AACATCCTGG GGTCCCGGAG GGACATGCCG TGTGACGAGG AGAGTGGGCG CTGCCTTTGT
                                                                            1440
       CTGCCCAACG TGGTGGGTCC CAAATGTGAC CAGTGTGCTC CCTACCACTG GAAGCTGGCC
                                                                            1500
       AGTGGCCAGG GCTGTGAACC GTGTGCCTGC GACCCGCACA ACTCCCCTCA GCCCACAGTG
                                                                            1560
       CAACCAGTTC ACAGGGCAGT GCCCTGTCGG GAAGGCTTTG GTGGCCTGAT GTGCAGCGCT
                                                                            1620
       GCAGCCATCC GCCAGTGTCC AGACCGGACC TATGGAGACG TGGCCACAGG ATGCCGAGCC
                                                                            1680
60
       TGTGACTGTG ATTTCCGGGG AACAGAGGGC CCGGGCTGCG ACAAGGCATC AGGCCGCTGC
                                                                            1740
       CTCTGCCGCC CTGGCTTGAC CGGGCCCCGC TGTGACCAGT GCCAGCGAGG CTACTGCAAT
                                                                            1800
       CGCTACCCGG TGTGCGTGGC CTGCCACCCT TGCTTCCAGA CCTATGATGC GGACCTCCGG
                                                                            1860
       GAGCAGGCCC TGGCTTTGG TAGACTCCGC AATGCCACCG CCAGCCTGTG GTCAGGGCCT
GGGCTGGAGG ACCGTGGCCT GGCCTCCCGG ATCCTAGATG CAAAGAGTAA GATTGAGCAG
                                                                            1920
65
       ATCCGAGCAG TTCTCAGCAG CCCCGCAGTC ACAGAGCAGG AGGTGGCTCA GGTGGCCAGT
       GCCATCCTCT CCCTCAGGCG AACTCTCCAG GGCCTGCAGC TGGATCTGCC CCTGGAGGAG
                                                                            2100
       GAGACGTTGT CCCTTCCGAG AGACCTGGAG AGTCTTGACA GAAGCTTCAA TGGTCTCCTT
                                                                            2160
       ACTATGTATC AGAGGAAGAG GGAGCAGTTT GAAAAAATAA GCAGTGCTGA TCCTTCAGGA
                                                                            2220
       GCCTTCCGGA TGCTGAGCAC AGCCTACGAG CAGTCAGCCC AGGCTGCTCA GCAGGTCTCC
                                                                            2280
70
       GACAGCTCGC GCCTTTTGGA CCAGCTCAGG GACAGCCGGA GAGAGGCAGA GAGGCTGGTG
                                                                            2340
       CGGCAGGCGG GAGGAGGAGG AGGCACCGGC AGCCCCAAGC TTGTGGCCCT GAGGCTGGAG
                                                                            2400
       ATGTCTTCGT TGCCTGACCT GACACCCACC TTCAACAAGC TCTGTGGCAA CTCCAGGCAG
                                                                            2460
       ATGGCTTGCA CCCCAATATC ATGCCCTGGT GAGCTATGTC CCCAAGACAA TGGCACAGCC
                                                                            2520
       TGTGGCTCCC GCTGCAGGGG TGTCCTTCCC AGGGCCGGTG GGGCCTTCTT GATGGCGGGG
                                                                            2580
75
       CAGGTGGCTG AGCAGCTGCG GGGCTTCAAT GCCCAGCTCC AGCGGACCAG GCAGATGATT
                                                                            2640
       AGGGCAGCCG AGGAATCTGC CTCACAGATT CAATCCAGTG CCCAGCGCTT GGAGACCCAG
                                                                            2700
                                                                            2760
       GTGAGCGCCA GCCGCTCCCA GATGGAGGAA GATGTCAGAC GCACACGGCT CCTAATCCAG
       CAGGTCCGGG ACTTCCTAAC AGACCCCGAC ACTGATGCAG CCACTATCCA GGAGGTCAGC
                                                                            2820
       GAGGCCGTGC TGGCCCTGTG GCTGCCCACA GACTCAGCTA CTGTTCTGCA GAAGATGAAT
                                                                            2880
80
       GAGATCCAGG CCATTGCAGC CAGGCTCCCC AACGTGGACT TGGTGCTGTC CCAGACCAAG
                                                                            2940
       3000
        CATGCAGTGG AGGGCCAGGT GGAAGATGTG GTTGGGAACC TGCGGCAGGG GACAGTGGCA
                                                                            3060
       CTGCAGGAAG CTCAGGACAC CATGCAAGGC ACCAGCCGCT CCCTTCGGCT TATCCAGGAC
                                                                            3120
       AGGGTTGCTG AGGTTCAGCA GGTACTGCGG CCAGCAGAAA AGCTGGTGAC AAGCATGACC
                                                                            3180
85
       AAGCAGCTGG GTGACTTCTG GACACGGATG GAGGAGCTCC GCCACCAAGC CCGGCAGCAG
                                                                            3240
        GGGCAGAGG CAGTCCAGGC CCAGCAGCTT GCGGAAGGTG CCAGCGAGCA GGCATTGAGT
        GCCCAAGAGG GATTTGAGAG AATAAAACAA AAGTATGCTG AGTTGAAGGA CCGGTTGGGT
```

```
CAGAGTTCCA TGCTGGGTGA GCAGGGTGCC CGGATCCAGA GTGTGAAGAC AGAGGCAGAG 3420
       GAGCTGTTTG GGGAGACCAT GGAGATGATG GACAGGATGA AAGACATGGA GTTGGAGCTG
                                                                             3480
       CTGCGGGGCA GCCAGGCCAT CATGCTGCGC TCGGCGGACC TGACAGGACT GGAGAAGCGT
       GTGGAGCAGA TCCGTGACCA CATCAATGGG CGCGTGCTCT ACTATGCCAC CTGCAAGTGA
TGCTACAGCT TCCAGCCCGT TGCCCCACTC ATCTGCCGCC TTTGCTTTTG GTTGGGGGCA
       GATTGGGTTG GAATGCTTTC CATCTCCAGG AGACTTTCAT GCAGCCTAAA GTACAGCCTG
                                                                             3720
       GACCACCCCT GGTGTGTAGC TAGTAAGATT ACCCTGAGCT GCAGCTGAGC CTGAGCCAAT
                                                                             3780
       GGGACAGTTA CACTTGACAG ACAAAGATGG TGGAGATTGG CATGCCATTG AAACTAAGAG
                                                                             3840
       CTCTCAAGTC AAGGAAGCTG GGCTGGGCAG TATCCCCCGC CTTTAGTTCT CCACTGGGGA
                                                                             3900
10
       GGAATCCTGG ACCAAGCACA AAAACTTAAC AAAAGTGATG TAAAAATGAA AAGCCAAATA
                                                                             3960
       AAAATCTTTG G
       Seq ID NO: 20 Protein sequence:
       Protein Accession #: NP_000219
15
                              21
                                          31
                                                     41
                                                                 51
       MRPFFLLCPA LPGLLHAQQA CSRGACYPPV GDLLVGRTRF LRASSTCGLT KPETYCTQYG
                                                                               60
       EWQMKCCKCD SRQPHNYYSH RVENVASSSG PMRWWQSQND VNPVSLQLDL DRRFQLQEVM
                                                                              120
20
       MEFQGPMPAG MLIERSSDFG KTWRVYQYLA ADCTSTFPRV RQGRPQSWQD VRCQSLPQRP
                                                                               180
       NARLNGGKVQ LNIMDLVSGI PATQSQKIQE VGEITNLRVN FTRLAPVPQR GYHPPSAYYA
                                                                               240
       VSQLRLQGSC FCHGHADRCA PKPGASAGPS TAVQVHDVCV CQHNTAGPNC ERCAPFYNNR
                                                                               300
       PWRPAEGQDA HECQRCDCNG HSETCHPDPA VFAASQGAYG GVCDNCRDHT EGKNCERCQL
                                                                               360
       HYFRNRRPGA SIQETCISCE CDPDGAVPGA PCDPVTGQCV CKEHVQGERC DLCKPGFTGL
                                                                               420
       TYANPOGCHR CDCNILGERR DMPCDEESGR CLCLPNVVGP KCDQCAPYHW KLASGQGCEP
CACDPHNSPQ PTVQPVHRAV PCREGFGGLM CSAAAIRQCP DRTYGDVATG CRACDCDFRG
25
                                                                               480
       TEGPGCDKAS GRCLCRPGLT GPRCDQCQRG YCNRYPVCVA CHPCFQTYDA DLREQALRFG
       RLENATASLW SGPGLEDRGL ASRILDAKSK IEQIRAVLSS PAVTEQEVAQ VASAILSLRR
       TLOGLOLDLP LEEETLSLPR DLESLDRSFN GLLTMYQRKR EQFEKISSAD PSGAPRMLST
                                                                               720
       AYEQSAQAAQ QVSDSSRLLD QLRDSRREAE RLVRQAGGGG GTGSPKLVAL RLEMSSLPDL
30
                                                                               780
       TPTFNKLCGN SROMACTPIS CPGELCPODN GTACGSRCRG VLPRAGGAFL MAGQVAEQLR
                                                                               840
       GFNAOLORTR OMIRAAEESA SQIQSSAQRL ETQVSASRSQ MEEDVRRTRL LIQQVRDFLT
                                                                               900
       DPDTDAATIQ EVSEAVLALW LPTDSATVLQ KMNEIQAIAA RLPNVDLVLS QTKQDIARAR
                                                                              960
       RLQAEAEEAR SRAHAVEGQV EDVVGNLRQG TVALQEAQDT MQGTSRSLRL IQDRVAEVQQ
                                                                             1020
35
       VLRPAEKLVT SMTKQLGDFW TRMEELRHQA RQQGAEAVQA QQLAEGASEQ ALSAQEGFER
                                                                             1080
       IKQKYAELKO RLGQSSMLGE QGARIQSVKT EAEBLFGETM EMMORMKOME LELLRGSQAI
       MLRSADLTGL EKRVEQIRDH INGRVLYYAT CK
       Seq ID NO: 21 DNA sequence
40
       Nucleic Acid Accession #: NM_003722
       Coding sequence: 145-1491
                                                                 51
                              21
                                         31
45
       TCGTTGATAT CAAAGACAGT TGAAGGAAAT GAATTTTGAA ACTTCACGGT GTGCCACCCT
       ACAGTACTGC CCTGACCCTT ACATCCAGCG TTTCGTAGAA ACCCAGCTCA TTTCTCTTGG
       AAAGAAAGTT ATTACCGATC CACCATGTCC CAGAGCACAC AGACAAATGA ATTCCTCAGT
       CCAGAGGTTT TCCAGCATAT CTGGGATTTT CTGGAACAGC CTATATGTTC AGTTCAGCCC
       ATTGACTTGA ACTTTGTGGA TGAACCATCA GAAGATGGTG CGACAAACAA GATTGAGATT
50
       AGCATGGACT GTATCCGCAT GCAGGACTCG GACCTGAGTG ACCCCATGTG GCCACAGTAC
                                                                               360
       ACGAACCTGG GGCTCCTGAA CAGCATGGAC CAGCAGATTC AGAACGGCTC CTCGTCCACC
                                                                               420
       AGTCCCTATA ACACAGACCA CGCGCAGAAC AGCGTCACGG CGCCCTCGCC CTACGCACAG
                                                                               480
       CCCAGCTCCA CCTTCGATGC TCTCTCTCCA TCACCCGCCA TCCCCTCCAA CACCGACTAC
                                                                               540
       CCAGGCCCGC ACAGTTTCGA CGTGTCCTTC CAGCAGTCGA GCACCGCCAA GTCGGCCACC
                                                                               600
55
       TGGACGTATT CCACTGAACT GAAGAAACTC TACTGCCAAA TTGCAAAGAC ATGCCCCATC
                                                                               660
       CAGATCAAGG TGATGACCCC ACCTCCTCAG GGAGCTGTTA TCCGCGCCAT GCCTGTCTAC
                                                                               720
       AAAAAAGCTG AGCACGTCAC GGAGGTGGTG AAGCGGTGCC CCAACCATGA GCTGAGCCGT
                                                                               780
       GAATTCAACG AGGGACAGAT TGCCCCTCCT AGTCATTTGA TTCGAGTAGA GGGGAACAGC
                                                                               840
       CATGCCCAGT ATGTAGAAGA TCCCATCACA GGAAGACAGA GTGTGCTGGT ACCTTATGAG
                                                                               900
60
                                                                               960
       CCACCCCAGG TTGGCACTGA ATTCACGACA GTCTTGTACA ATTTCATGTG TAACAGCAGT
       TGTGTTGGAG GGATGAACCG CCGTCCAATT TTAATCATTG TTACTCTGGA AACCAGAGAT
                                                                             1020
       GGGCAAGTCC TGGGCCGACG CTGCTTTGAG GCCCGGATCT GTGCTTGCCC AGGAAGAGAC
                                                                             1080
       AGGAAGGCGG ATGAAGATAG CATCAGAAAG CAGCAAGTTT CGGACAGTAC AAAGAACGGT
                                                                             1140
       GATGGTACGA AGCGCCCGTT TCGTCAGAAC ACACATGGTA TCCAGATGAC ATCCATCAAG
                                                                             1200
       AAACGAAGAT CCCCAGATGA TGAACTGTTA TACTTACCAG TGAGGGGCCG TGAGACTTAT GAAATGCTGT TGAAGATCAA AGAGTCCCTG GAACTCATGC AGTACCTTCC TCAGCACACA
65
                                                                             1260
                                                                             1320
       ATTGAAACGT ACAGGCAACA GCAACAGCAG CAGCACCAGC ACTTACTTCA GAAACATCTC
                                                                             1380
       CTTTCAGCCT GCTTCAGGAA TGAGCTTGTG GAGCCCCGGA GAGAAACTCC AAAACAATCT
       GACGTCTTCT TTAGACATTC CAAGCCCCCA AACCGATCAG TGTACCCATA GAGCCCTATC
                                                                             1500
       TCTATATTTT AAGTGTGTGT GTTGTATTTC CATGTGTATA TGTGAGTGTG TGTGTGTGTA
       TGTGTGTGCG TGTGTATCTA GCCCTCATAA ACAGGACTTG AAGACACTTT GGCTCAGAGA
                                                                             1620
       CCCAACTGCT CAAAGGCACA AAGCCACTAG TGAGAGAATC TTTTGAAGGG ACTCAAACCT
                                                                             1680
       TTACAAGAAA GGATGTTTTC TGCAGATTTT GTATCCTTAG ACCGGCCATT GGTGGGTGAG
                                                                             1740
       GAACCACTGT GTTTGTCTGT GAGCTTTCTG TTGTTTCCTG GGAGGGAGGG GTCAGGTGGG
                                                                             1800
       GAAAGGGGCA TTAAGATGTT TATTGGAACC CTTTTCTGTC TTCTTCTGTT GTTTTTCTAA
                                                                             1860
       AATTCACAGG GAAGCTTTTG AGCAGGTCTC AAACTTAAGA TGTCTTTTTA AGAAAAGGAG
                                                                             1920
       AAAAAAGTTG TTATTGTCTG TGCATAAGTA AGTTGTAGGT GACTGAGAGA CTCAGTCAGA
                                                                             1980
       CCCTTTTAAT GCTGGTCATG TAATAATATT GCAAGTAGTA AGAAACGAAG GTGTCAAGTG
                                                                             2040
                                                                             2100
       TACTGCTGGG CAGCGAGGTG ATCATTACCA AAAGTAATCA ACTTTGTGGG TGGAGAGTTC
80
       TTTGTGAGAA CTTGCATTAT TTGTGTCCTC CCCTCATGTG TAGGTAGAAC ATTTCTTAAT
                                                                             2160
       GCTGTGTACC TGCCTCTGCC ACTGTATGTT GGCATCTGTT ATGCTAAAGT TTTTCTTGTA
                                                                             2220
       CATGAAACCC TGGAAGACCT ACTACAAAAA AACTGTTGTT TGGCCCCCAT AGCAGGTGAA
                                                                              2280
       CTCATTITGT GCTTTTAATA GAAAGACAAA TCCACCCCAG TAATATTGCC CTTACGTAGT
                                                                              2340
       TGTTTACCAT TATTCAAAGC TCAAAATAGA ATTTGAAGCC CTCTCACAAA ATCTGTGATT
                                                                              2400
85
       AATTTGCTTA ATTAGAGCTT CTATCCCTCA AGCCTACCTA CCATAAAACC AGCCATATTA
                                                                              2460
       CTGATACTGT TCAGTGCATT TAGCCAGGAG ACTTACGTTT TGAGTAAGTG AGATCCAAGC
                                                                              2520
       AGACGTGTTA AAATCAGCAC TCCTGGACTG GAAATTAAAG ATTGAAAGGG TAGACTACTT
```

```
TTCTTTTTT TACTCAAAAG TTTAGAGAAT CTCTGTTTCT TTCCATTTTA AAAACATATT 2640
        TTAAGATAAT AGCATAAAGA CTTTAAAAAT GTTCCTCCCC TCCATCTTCC CACACCCAGT 2700
        CACCAGCACT GTATTTTCTG TCACCAAGAC AATGATTTCT TGTTATTGAG GCTGTTGCTT 2760
        TTGTGGATGT GTGATTTTAA TTTTCAATAA ACTTTTGCAT CTTGGTTTAA AAGAAA
 5
        Seq ID NO: 22 Protein sequence:
        Protein Accession #: NP_003713
                                                                 51
10
        MSQSTQTNEF LSPEVFQHIW DFLEQPICSV QPIDLNFVDE PSEDGATNKI EISMDCIRMQ
                                                                                60
       DSDLSDPMWP QYTNLGLLNS MDQQIQNGSS STSPYNTDHA QNSVTAPSPY AQPSSTFDAL
                                                                               120
       SPSPAIPSNT DYPGPHSFDV SFQQSSTAKS ATWTYSTELK KLYCQIAKTC PIQIKVMTPP
                                                                               180
       PQGAVIRAMP VYKKAEHVTE VVKRCPNHEL SREFNEGQIA PPSHLIRVEG NSHAQYVEDP
                                                                               240
        ITGRQSVLVP YEPPQVGTEF TTVLYNFMCN SSCVGGMNRR PILIIVTLET RDGQVLGRRC
15
                                                                               300
        FEARICACPG RDRKADEDSI RKQQVSDSTK NGDGTKRPPR QNTHGIQMTS IKKRRSPDDE
                                                                               360
       LLYLPVRGRE TYPMLLKIKE SLELMQYLPQ HTIETYRQQQ QQQHQHLLQK HLLSACFRNE
                                                                               420
       LVEPRRETPK QSDVFFRHSK PPNRSVYP
20
       Seg ID NO: 23 DNA sequence
       Nucleic Acid Accession #: NM_001944.1
       Coding sequence: 84-3083
25
                                          31 '
                                                                 51
                               21
        TTTTCTTAGA CATTAACTGC AGACGGCTGG CAGGATAGAA GCAGCGGCTC ACTTGGACTT
                                                                                60
       TTTCACCAGG GAAATCAGAG ACAATGATGG GGCTCTTCCC CAGAACTACA GGGGCTCTGG
                                                                               120
       CCATCTTCGT GGTGGTCATA TTGGTTCATG GAGAATTGCG AATAGAGACT AAAGGTCAAT
                                                                               180
30
       ATGATGAAGA AGAGATGACT ATGCAACAAG CTAAAAGAAG GCAAAAACGT GAATGGGTGA
                                                                               240
       AATTTGCCAA ACCCTGCAGA GAAGGAGAAG ATAACTCAAA AAGAAACCCA ATTGCCAAGA
                                                                               300
       TTACTTCAGA TTACCAAGCA ACCCAGAAAA TCACCTACCG AATCTCTGGA GTGGGAATCG
                                                                               360
       ATCAGCCGCC TTTTGGAATC TTTGTTGTTG ACAAAAACAC TGGAGATATT AACATAACAG
                                                                               420
       CTATAGTCGA CCGGGAGGAA ACTCCAAGCT TCCTGATCAC ATGTCGGGCT CTAAATGCCC
                                                                               480
35
       AAGGACTAGA TGTAGAGAAA CCACTTATAC TAACGGTTAA AATTTTGGAT ATTAATGATA
                                                                               540
       ATCCTCCAGT ATTTTCACAA CAAATTTTCA TGGGTGAAAT TGAAGAAAAT AGTGCCTCAA
                                                                               600
       ACTCACTGGT GATGATACTA AATGCCACAG ATGCAGATGA ACCAAACCAC TTGAATTCTA
                                                                               660
       AAATTGCCTT CAAAATTGTC TCTCAGGAAC CAGCAGGCAC ACCCATGTTC CTCCTAAGCA
                                                                               720
       GAAACACTGG GGAAGTCCGT ACTTTGACCA ATTCTCTTGA CCGAGAGCAA GCTAGCAGCT
                                                                               780
40
       ATCGTCTGGT TGTGAGTGGT GCAGACAAAG ATGGAGAAGG ACTATCAACT CAATGTGAAT
                                                                               840
       GTAATATTAA AGTGAAAGAT GTCAACGATA ACTTCCCAAT GTTTAGAGAC TCTCAGTATT
                                                                               900
       CAGCACGTAT TGAAGAAAAT ATTTTAAGTT CTGAATTACT TCGATTTCAA GTAACAGATT
                                                                               960
       TGGATGAAGA GTACACAGAT AATTGGCTTG CAGTATATTT CTTTACCTCT GGGAATGAAG
                                                                              1020
       GAAATTGGTT TGAAATACAA ACTGATCCTA GAACTAATGA AGGCATCCTG AAAGTGGTGA
AGGCTCTAGA TTATGAACAA CTACAAAGCG TGAAACTTAG TATTGCTGTC AAAAACAAAG
                                                                              1080
45
                                                                              1140
       CTGAATTTCA CCAATCAGTT ATCTCTCGAT ACCGAGTTCA GTCAACCCCA GTCACAATTC
       AGGTAATAAA TGTAAGAGAA GGAATTGCAT TCCGTCCTGC TTCCAAGACA TTTACTGTGC
       AAAAAGGCAT AAGTAGCAAA AAATTGGTGG ATTATATCCT GGGAACATAT CAAGCCATCG
                                                                              1320
       ATGAGGACAC TAACAAAGCT GCCTCAAATG TCAAATATGT CATGGGACGT AACGATGGTG
                                                                              1380
50
       GATACCTAAT GATTGATTCA AAAACTGCTG AAATCAAATT TGTCAAAAAT ATGAACCGAG
                                                                              1440
                                                                              1500
       ATTCTACTTT CATAGTTAAC AAAACAATCA CAGCTGAGGT TCTGGCCATA GATGAATACA
       CGGGTAAAAC TTCTACAGGC ACGGTATATG TTAGAGTACC CGATTTCAAT GACAATTGTC
                                                                              1560
       CAACAGCTGT CCTCGAAAAA GATGCAGTTT GCAGTTCTTC ACCTTCCGTG GTTGTCTCCG
                                                                              1620
       CTAGAACACT GAATAATAGA TACACTGGCC CCTATACATT TGCACTGGAA GATCAACCTG
                                                                              1680
55
       TAAAGTTGCC TGCCGTATGG AGTATCACAA CCCTCAATGC TACCTCGGCC CTCCTCAGAG
                                                                              1740
       CCCAGGAACA GATACCTCCT GGAGTATACC ACATCTCCCT GGTACTTACA GACAGTCAGA
                                                                              1800
       ACAATCGGTG TGAGATGCCA CGCAGCTTGA CACTGGAAGT CTGTCAGTGT GACAACAGGG
GCATCTGTGG AACTTCTTAC CCAACCACAA GCCCTGGGAC CAGGTATGGC AGGCCGCACT
                                                                              1860
                                                                              1920
       CAGGGAGGCT GGGGCCTGCC GCCATCGGCC TGCTGCTCCT TGGTCTCCTG CTGCTGCTGT
                                                                              1980
60
       TGGCCCCCCT TCTGCTGTTG ACCTGTGACT GTGGGGCAGG TTCTACTGGG GGAGTGACAG
                                                                              2040
       GTGGTTTTAT CCCAGTTCCT GATGGCTCAG AAGGAACAAT TCATCAGTGG GGAATTGAAG
                                                                              2100
       GAGCCCATCC TGAAGACAAG GAAATCACAA ATATTTGTGT GCCTCCTGTA ACAGCCAATG
                                                                              2160
       GAGCCGATTT CATGGAAAGT TCTGAAGTTT GTACAAATAC GTATGCCAGA GGCACAGCGG
                                                                              2220
       TGGAAGGCAC TTCAGGAATG GAAATGACCA CTAAGCTTGG AGCAGCCACT GAATCTGGAG
                                                                              2280
65
       GTGCTGCAGG CTTTGCAACA GGGACAGTGT CAGGAGCTGC TTCAGGATTC GGAGCAGCCA
                                                                              2340
       CTGGAGTTGG CATCTGTTCC TCAGGGCAGT CTGGAACCAT GAGAACAAGG CATTCCACTG
                                                                              2400
       GAGGAACCAA TAAGGACTAC GCTGATGGGG CGATAAGCAT GAATTTTCTG GACTCCTACT
                                                                              2460
       TTTCTCAGAA AGCATTTGCC TGTGCGGAGG AAGACGATGG CCAGGAAGCA AATGACTGCT
                                                                              2520
       TGTTGATCTA TGATAATGAA GGCGCAGATG CCACTGGTTC TCCTGTGGGC TCCGTGGGTT GTTGCAGTTT TATTGCTGAT GACCTGGATG ACAGCTTCTT GGACTCACTT GGACCCAAAT
                                                                              2580
70
                                                                              2640
       TTAAAAAACT TGCAGAGATA AGCCTTGGTG TTGATGGTGA AGGCAAAGAA GTTCAGCCAC
                                                                              2700
       CCTCTAAAGA CAGCGGTTAT GGGATTGAAT CCTGTGGCCA TCCCATAGAA GTCCAGCAGA
                                                                              2760
        CAGGATTTGT TAAGTGCCAG ACTTTGTCAG GAAGTCAAGG AGCTTCTGCT TTGTCCGCCT
                                                                              2820
       CTGGGTCTGT CCAGCCAGCT GTTTCCATCC CTGACCCTCT GCAGCATGGT AACTATTTAG
                                                                              2880
75
        TAACGGAGAC TTACTCGGCT TCTGGTTCCC TCGTGCAACC TTCCACTGCA GGCTTTGATC
                                                                              2940
        CACTTCTCAC ACAAATGTG ATAGTGACAG AAAGGGTGAT CTGTCCCATT TCCAGTGTTC
                                                                              3000
        CTGGCAACCT AGCTGGCCCA ACGCAGCTAC GAGGGTCACA TACTATGCTC TGTACAGAGG
                                                                              3060
       ATCCTTGCTC CCGTCTAATA TGACCAGAAT GAGCTGGAAT ACCACACTGA CCAAATCTGG
                                                                              3120
       ATCTTTGGAC TAAAGTATTC AAAATAGCAT AGCAAAGCTC ACTGTATTGG GCTAATAATT
                                                                              3180
80
        TGGCACTTAT TAGCTTCTCT CATAAACTGA TCACGATTAT AAATTAAATG TTTGGGTTCA
                                                                              3240
        TACCCCAAAA GCAATATGTT GTCACTCCTA ATTCTCAAGT ACTATTCAAA TTGTAGTAAA
                                                                              3300
        TCTTAAAGTT TTTCAAAACC CTAAAATCAT ATTCGC
        Seg ID NO: 24 Protein seguence:
85
       Protein Accession #: NP_001935.1
                                          31
                   11
                              21
```

```
MMGLPPRTTG ALAIFVVVIL VHGELRIETK GQYDEEEMTM QQAKRRQKRE WVKFAKPCRE
                                                                               60
       GEDNSKRNPI AKITSDYQAT QKITYRISGV GIDQPPFGIF VVDKNTGDIN ITAIVDREET
                                                                              120
       PSFLITCRAL NAQGLDVEKP LILTVKILDI NDNPPVFSQQ IFMGEIEENS ASNSLVMILN
                                                                              180
 5
       ATDADEPNHL NSKIAFKIVS QEPAGTPMFL LSRNTGEVRT LTNSLDREQA SSYRLVVSGA
                                                                              240
       DRDGEGLSTQ CECNIKVKDV NDNFPMFRDS QYSARIEENI LSSELLRFQV TDLDEEYTDN
                                                                              300
       WLAVYPPTSG NEGNWFEIQT DPRINEGILK VVKALDYEQL QSVKLSIAVK NKAEFHQSVI
                                                                              360
       SRYRVQSTPV TIQVINVREG IAFRPASKTF TVQKGISSKK LVDYILGTYQ AIDEDTNKAA
                                                                              420
       SNVKYVMGRN DGGYLMIDSK TAEIKFVKNM NRDSTFIVNK TITAEVLAID EYTGKTSTGT
VYVRVPDPND NCPTAVLEKD AVCSSSPSVV VSARTLNNRY TGPYTFALED QPVKLPAVWS
                                                                              480
10
                                                                              540
       ITTLNATSAL LRAQEQIPPG VYHISLVLTD SQNNRCEMPR SLTLEVCQCD NRGICGTSYP
                                                                              600
       TTSPGTRYGR PHSGRLGPAA IGLLLLGLLL LLLAPLLLLT CDCGAGSTGG VTGGFIPVPD
                                                                              660
       GSEGTIHOWG IEGAHPEDKE ITNICVPPVT ANGADPMESS EVCTNTYARG TAVEGTSGME
                                                                              720
       MTTKLGAATE SGGAAGFATG TVSGAASGFG AATGVGICSS GQSGTMRTRH STGGTNKDYA
15
       DGAISMNFLD SYFSOKAFAC AEEDDGQEAN DCLLIYDNEG ADATGSPVGS VGCCSFIADD
                                                                              840
       LDDSFLDSLG PKFKKLAEIS LGVDGEGKEV OPPSKDSGYG IESCGHPIEV QQTGFVKCQT
                                                                              900
       LSGSQGASAL SASGSVQPAV SIPDPLQHGN YLVTETYSAS GSLVQPSTAG FDPLLTQNVI
       VTERVICPIS SVPGNLAGPT QLRGSHTMLC TEDPCSRLI
20
       Seg ID NO: 25 DNA seguence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 56-1642
                  11 .
25
       AGTATCCCAG GAGGAGCAAG TGGCACGTCT TCGGACCTAG GCTGCCCCTG CCGTCATGTC
                                                                               60
       GCAAGGGATC CTTTCTCCGC CAGCGGGCTT GCTGTCCGAT GACGATGTCG TAGTTTCTCC
                                                                              120
       CATGTTTGAG TCCACAGCTG CAGATTTGGG GTCTGTGGTA CGCAAGAACC TGCTATCAGA
                                                                              180
       CTGCTCTGTC GTCTCTACCT CCCTAGAGGA CAAGCAGCAG GTTCCATCTG AGGACAGTAT
                                                                              240
30
       GGAGAAGGTG AAAGTATACT TGAGGGTTAG GCCCTTGTTA CCTTCAGAGT TGGAACGACA
                                                                              300
       GGAAGATCAG GGTTGTGTCC GTATTGAGAA TGTGGAGACC CTTGTTCTAC AAGCACCCAA
                                                                              360
       GGACTCTTTT GCCCTGAAGA GCAATGAACG GGGAATTGGC CAAGCCACAC ACAGGTTCAC
CTTTTCCCAG ATCTTTGGGC CAGAAGTGGG ACAGGCATCC TTCTTCAACC TAACTGTGAA
                                                                              420
                                                                              480
       GGAGATGGTA AAGGATGTAC TCAAAGGGCA GAACTGGCTC ATCTATACAT ATGGAGTCAC
                                                                              540
35
       TAACTCAGGG AAAACCCACA CGATTCAAGG TACCATCAAG GATGGAGGGA TTCTCCCCCG
                                                                              600
       GTCCCTGGCG CTGATCTTCA ATAGCCTCCA AGGCCAACTT CATCCAACAC CTGATCTGAA
                                                                              660
       GCCCTTGCTC TCCAATGAGG TAATCTGGCT AGACAGCAAG CAGATCCGAC AGGAGGAAAT
       GAAGAAGCTG TCCCTGCTAA ATGGAGGCCT CCAAGAGGAG GAGCTGTCCA CTTCCTTGAA
       GAGGAGTGTC TACATCGAAA GTCGGATAGG TACCAGCACC AGCTTCGACA GTGGCATTGC
40
       TGGGCTCTCT TCTATCAGTC AGTGTACCAG CAGTAGCCAG CTGGATGAAA CAAGTCATCG
                                                                              900
       ATGGGCACAG CCAGACACTG CCCCACTACC TGTCCCGGCA AACATTCGCT TCTCCATCTG
       GATCTCATTC TTTGAGATCT ACAACGAACT GCTTTATGAC CTATTAGAAC CGCCTAGCCA
                                                                             1020
       ACAGCGCAAG AGGCAGACTT TGCGGCTATG CGAGGATCAA AATGGCAATC CCTATGTGAA
                                                                             1080
       AGATOTCAAC TGGATTCATG TGCAAGATGC TGAGGAGGCC TGGAAGCTCC TAAAAGTGGG
                                                                             1140
45
       TCGTAAGAAC CAGAGCTTTG CCAGCACCCA CCTCAACCAG AACTCCAGCC GCAGTCACAG
                                                                             1200
       CATCTTCTCA ATCAGGATCC TACACCTTCA GGGGGAAGGA GATATAGTCC CCAAGATCAG
                                                                             1260
       CGAGCTGTCA CTCTGTGATC TGGCTGGCTC AGAGCGCTGC AAAGATCAGA AGAGTGGTGA
                                                                             1320
       ACGGTTGAAG GAAGCAGGAA ACATTAACAC CTCTCTACAC ACCCTGGGCC GCTGTATTGC
                                                                            1380
       TGCCCTTCGT CAAAACCAGC AGAACCGGTC AAAGCAGAAC CTGGTTCCCT TCCGTGACAG
                                                                             1440
50
       CAAGTTGACT CGAGTGTTCC AAGGTTTCTT CACAGGCCGA GGCCGTTCCT GCATGATTGT
                                                                             1500
       CAATGTGAAT CCCTGTGCAT CTACCTATGA TGAAACTCTT CATGTGGCCA AGTTCTCAGC
                                                                             1560
       CATTGCTAGC CAGGTGACTT GTGCATGCCC CACCTATGCA ACTGGGATTC CCATCCCTGC
                                                                             1620
       ACTOGITCAT CAAGGAACAT AGTOTICAGG TATCCCCCAG CITAGAGAAA GGGGCTAAGG
                                                                             1680
       CAGACACAGG CCTTGATGAT GATATTGAAA ATGAAGCTGA CATCTCCATG TATGGCAAAG
                                                                             1740
55
       AGGAGCTCCT ACAAGTTGTG GAAGCCATGA AGACACTGCT TTTGAAGGAA CGACAGGAAA
                                                                             1800
       AGCTACAGCT GGAGATGCAT CTCCGAGATG AAATTTGCAA TGAGATGGTA GAACAGATGC
                                                                             1860
       AACAGCGGGA ACAGTGGTGC AGTGAACATT TGGACACCCA AAAGGAACTA TTGGAGGAAA
                                                                             1920
       TGTATGAAGA AAAACTAAAT ATCCTCAAGG AGTCACTGAC AAGTTTTTAC CAAGAAGAGA
                                                                             1980
       TTCAGGAGCG GGATGAAAAG ATTGAAGAGC TAGAAGCTCT CTTGCAGGAA GCCAGACAAC
                                                                             2040
60
       AGTCAGTGGC CCATCAGCAA TCAGGGTCTG AATTGGCCCT ACGGCGGTCA CAAAGGTTGG
                                                                             2100
       CAGCTTCTGC CTCCACCCAG CAGCTTCAGG AGGTTAAAGC TAAATTACAG CAGTGCAAAG
                                                                             2160
       CAGAGCTAAA CTCTACCACT GAAGAGTTGC ATAAGTATCA GAAAATGTTA GAACCACCAC
       CCTCAGCCAA GCCCTTCACC ATTGATGTGG ACAAGAAGTT AGAAGAGGGC CAGAAGAATA
       TAAGGCTGTT GCGGACAGAG CTTCAGAAAC TTGGTGAGTC TCTCCAATCA GCAGAGAGAG
65
       CTTGTTGCCA CAGCACTGGG GCAGGAAAAC TTCGTCAAGC CTTGACCACT TGTGATGACA
                                                                             2400
       TCTTAATCAA ACAGGACCAG ACTCTGGCTG AACTGCAGAA CAACATGGTG CTAGTGAAAC
                                                                             2460
       TGGACCTTCG GAAGAAGGCA GCATGTATTG CTGAGCAGTA TCATACTGTG TTGAAACTCC
                                                                            2520
       AAGGCCAGGT TTCTGCCAAA AAGCGCCTTG GTACCAACCA GGAAAATCAG CAACCAAACC
                                                                            2580
       AACAACCACC AGGGAAGAAA CCATTCCTTC GAAATTTACT TCCCCGAACA CCAACCTGCC
                                                                            2640
70
       AAAGCTCAAC AGACTGCAGC CCTTATGCCC GGATCCTACG CTCACGGCGT TCCCCTTTAC
                                                                            2700
       TCAAATCTGG GCCTTTTGGC AAAAAGTACT AAGGCTGTGG GGAAAGAGAA GAGCAGTCAT
                                                                             2760
       GGCCCTGAGG TGGGTCAGCT ACTCTCCTGA AGAAATAGGT CTCTTTTATG CTTTACCATA
                                                                             2820
       TATCAGGAAT TATATCCAGG ATGCAATACT CAGACACTAG CTTTTTTCTC ACTTTTGTAT
                                                                             2880
       TATAACCACC TATGTAATCT CATGTTGTTG TTTTTTTTTA TTTACTTATA TGATTTCTAT
                                                                             2940
75
       GCACACAAAA ACAGTTATAT TAAAGATATT ATTGTTCACA TTTTTTATTG AATTCCAAAT
                                                                             3000
       GTAGCAAAAT CATTAAAACA AATTATAAAA GGGACAGAAA AA
       Seg ID NO: 26 Protein seguence:
       Protein Accession #: Eos sequence
80
                                                                51
                   11
                              21
                                          31
       MSOGILSPPA GLLSDDDVVV SPMFESTAAD LGSVVRKNLL SDCSVVSTSL EDKQQVPSED
       SMEKVKVYLR VRPLLPSELE RQEDQGCVRI ENVETLVLQA PKDSFALKSN ERGIGQATHR
                                                                              120
85
       PTFSQIFGPE VGQASPFNLT VKEMVKDVLK GQNWLIYTYG VTNSGKTHTI QGTIKDGGIL
       PRSLALIFNS LOGOLHPTPD LKPLLSNEVI WLDSKQIRQE EMKKLSLLNG GLQEEELSTS
       LKRSVYIESR IGTSTSFDSG IAGLSSISQC TSSSQLDETS HRWAQPDTAP LPVPANIRFS
```

WO 02/086443 PCT/US02/12476
IWISFFEIYN ELLYDLLEPP SQQRKRQTLR LCEDQNGNPY VKDLNWIHVQ DAEEAWKLLK 360

	IWISFFEIYN	ELLYDLLEPP	SQQRKRQTLR	LCEDQNGNPY	AKDIWA HAO	DAEEAWKLLK	360
	VGRKNQSFAS GERLKEAGNI	THINONSSRS	HSIFSIRILH IAALRONOON	RSKONLVPFR	DSKLTRVFOG	FFTGRGRSCM	420 480
_			SAIASQVTCA				
5							
		27 DNA sequ	ience i #: Eos sec	mionce			
		ence: 13-14		quence			
10							
10	1	11	21	31	41	51 I	
	I TAGAAGTTTA	CAATGAAGTT	TCTTCTAATA	CTGCTCCTGC	AGGCCACTGC	TTCTGGAGCT	60
	CTTCCCCTGA	ACAGCTCTAC	AAGCCTGGAA	AAAAATAATG	TGCTATTTGG	TGAAAGATAC	120
15	TTAGAAAAAT	TTTATGGCCT	TGAGATAAAC	AAACTTCCAG	TGACAAAAAT	GAAATATAGT	180 240
13			AATCCAAGAA CCTGGAGATG				300
	GTCCATCATT	TCAGGGAAAT	GCCAGGGGG	CCCGTATGGA	GGAAACATTA	TATCACCTAC	360
	AGAATCAATA	ATTACACACC	TGACATGAAC	CGTGAGGATG	TTGACTACGC	AATCCGGAAA	420
20	GCTTTCCAAG	TATGGAGTAA	TGTTACCCCC	TTGAAATTCA	GCAAGATTAA	CACAGGCATG	480 540
20	GCTGACATTT	TCCTACCCCA	TGCCCGTGGA TGCTTTTGGA	COTGGATOTG	GCATTGGAGG	GGATGCACAT	600
	TTCGATGAGG	ACGAATTCTG	GACTACACAT	TCAGGAGGCA	CAAACTTGTT	CCTCACTGCT	660
	GTTCACGAGA	TTGGCCATTC	CTTAGGTCTT	GGCCATTCTA	GTGATCCAAA	GGCCGTAATG	720
25	TTCCCCACCT	ACAAATATGT	TGACATCAAC	ACATTTCGCC	TCTCTGCTGA	TGACATACGT	780
25	GGCATTCAGT	CCCTGTATGG	AGACCCAAAA CCCCAATTTG	BAGAACCAAC	CTCTCACTAC	CGTGGGAAAT	84 <i>0</i> 900
	AAGATCTTTT	TCTTCAAAGA	CAGGTTCTTC	TGGCTGAAGG	TTTCTGAGAG	ACCAAAGACC	960
	AGTGTTAATT	TAATTTCTTC	CTTATGGCCA	ACCTTGCCAT	CTGGCATTGA	AGCTGCTTAT	1020
·20	GAAATTGAAG	CCAGAAATCA	AGTTTTTCTT	TTTAAAGATG	ACAAATACTG	GTTAATTAGC	1080
30	AATTTAAGAC	CAGAGCCAAA	TTATCCCAAG TGTTTTTAAC	AGCATACATT	OTTTTGGTTT	CTTCTTAACTTT	1140 1200
			TGATGAAAGG				1260
	CTGATTACCA	AGAACTTCCA	AGGAATCGGG	CCTAAAATTG	ATGCAGTCTT	CTACTCTAAA	1320
25	AACAAATACT	ACTATTTCTT	CCAAGGATCT	AACCAATTTG	AATATGACTT	CCTACTCCAA	1380
35	CGTATCACCA	AAACACTGAA	AAGCAATÁGC	TGGTTTGGTT	GTTGAAAATG	GTGTAATTAA	1440 1500
			CAGCTTAATA ATGTATCATA				1560
	TTATATAAAA	TACATAATAT	TTTTCAATTT	TGAAAACTCT	AATTGTCCAT	TCTTGCTTGA	1620
40	CTCTACTATT	AAGTTTGAAA	ATAGTTACCT	TCAAAGCAAG	ATAATTCTAT	TTGAAGCATG	1680
40			CATCCTTGGA		ATACTTACTT	CTGGCATAAC	1740
	TAAAATTAAG	TATATATATT	TTGGCTCAAA	TAAAATTG			
	Seq ID NO:	28 Protein	sequence:	•			
	Dunbada Bas			_			
15	Protein Acc	ession #: E	cos seguence	3			
45					43	51	
45	1	:ession #: : 11 	os sequence 21 1	31 	41 I	51 	
45	1 MKFLLILLLQ	11 ATASGALPLN	21 SSTSLEKNNV	31 LFGERYLEKF	YGLEINKLPV	 TKMKYSGNLM	60
	1 MKFLLILLLQ KEKIOEMOHF	11 ATASGALPLN LGLKVTGOLD	21 SSTSLEKNNV TSTLEMMHAP	31 LFGERYLEKF RCGVPDVHHF	YGLEINKLPV REMPGGPVWR	 TKMKYSGNLM KHYITYRINN	120
45 50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS	31 LFGERYLEKF RCGVPDVHHP KINTGMADIL	YGLEINKLPV REMPGGPVWR VVFARGAHGD	TKMKYSGNLM KHYITYRINN FHAFDGKGGI	120 180
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTTHSGGT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY	120
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTTHSGGT LYGDPKENQR ISSLWPTLPS	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP	120 180 240
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI	21 STSLEKNNV TSTLEMMHAP WSNVTPLKPS EFWTTHSGGT LYGDPKENQR LYGDPKENQR ISSLWPTLPS DAAVFNPRFY	31 	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTTHSGGT LYGDPKENQR ISSLWPTLPS	31 	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID	11	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTTHSGGT LYGDPKENQR LYGDPKENQR 	31 	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO:	11	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTTHSGGT LYGDPKENQR LYGDPKENQR 	31 	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac:	11	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE Lence	31 	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236.	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRPY YFFQGSNQFE LECCE 1#: NM_0061	31 	 YGLEINKLPV YEMPGGPVWR VVPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRPFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Aci Coding sequ	11	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE Lence	31 	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTPRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EFWTTHSGGT LYGDPKENQR LSSLWPTLPS DAAVFNPRFY YFFQGSNQFE DENCE #: NM_0061 1765 21 CGCAGCCAGA	31 	 YGLEINKLPV YEMPGGPVWR VVPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360 420
50 55 60	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC	11	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EPWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE LICCE LICCE LICCE 21 CGCAGCCAGA CCAGGCGTGA	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYPFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA	 YGLEINKLPV REMPGGPVWR VVPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360 420
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LIGGDAHPDED SADDIRGIQS SERPKTSVNL FGPPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE HENCE 1 #: NM_0061 1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT	31 	YGLEINKLPV REMPGGPVWR VYPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT	120 180 240 300 360 420
50 55 60	I MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ I GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGAG	11	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE ence #: NM_0061 1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCCAGAC TGAGGCCAGC	YGLEINKLPV REMPGGPVWR VVPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGGCA CTAAGTCGCT	TKMKYSGNLM KHYITYRINN PHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA TCAAAATGGA	120 180 240 300 360 420
50 55 60	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRPFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Aci Coding sequ 1 GCTTCAGGGT GGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT CCCACGGAGA	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGGGTC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTHISGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1: NM_0061 1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG CTGCAGGCGCAC CTGCAGGCGCAC TTGCAGGCCAC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TCAGGCCAGC CGGGTACATC CAGCCTGCTG	YGLEINKLPV REMPGGPVWR VYFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGCA AGCATGAGT AAGGATGAGGT AAGGATGAGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCAT	120 180 240 360 420 60 120 180 240 360
50556065	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACTTAGA ACCAAGGGGT CCCACGGAGA ACCACGGAGA ACCACGGAGA ACCACGGAGA ACCACGGAGA ACCACGGAGA ACCACGGAGA ACCACGGAGA ACCACGGAGA	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGPPNFVKKI AVFYSKNKYY 29 DNA sequid Accession ence: 236 11 ACAGCTCCCC CACCGGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGAGG GAGTTGCTGC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE HENCE 1 #: NM_0061 1765 21 GCAGGCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGCAG TCGCAGGCAGC TGGCAGGCAGC CCAGGGAGC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CGAGACATC GAGCCTGCTG CAGCCTGCTG CTTCCCGCCA	YGLEINKLPV REMPGGPVWR VYPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGGTGGCA CTAAGTCGCT AGCATGAGTG AGGATGAGG CTCTTCATGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGACT TCAGCCATC CAGCCTTTGA	120 180 240 300 360 420 60 120 180 240 300 420
50 55 60	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT CCCACGGAGA TGCCGCCCTG CGGGAGACAC	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGPPNFVKKI AVFYSKNKYY 29 DNA sequid Accession ence: 236 11 ACAGCTCCCC CACCAGCTCTC CACAGACCAGACCAGAC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE : NM_0061 1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATGATTATT TTGGAGGTCC CCATTCAGAG TGSCAGGCAT CCAGGGGGTAT CCAGGGGGTCC CCATCAGAG TGSCAGGCAC TGAAGGCAAT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC GAGCCTGCTC GTTCCCGCCA GGTGCAGGCC GGTGCAGGCC CTTCCCGCCA	YGLEINKLPV REMPGGPVWR VVPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA CTAAGTCGCT AGCATGAGTG AAGGATGAGG TGGCCCTTCA	TKMKYSGNLM KHYITYRINN PHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCAT CAGCCTTTCA	120 180 240 300 360 420 420 120 180 240 300 360 420 480
50556065	I MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequit CGGGACACCC ACGGACACCC ACGAGGGT CCCACGGAGA TGCCGCCTG CGGGACACC TCTGGGAGTC TCTGGGAGTC TCTGGGAGT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGPPNFVKKI AVFYSKNKYY 29 DNA sequid Accession ence: 236 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT ATCCAAGCG TTGTGGGGT CTTGTGGAGC AGCCAGACCC CTGATGAAGC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE IENCE #: NM_0061 1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGATTATT TTGGATGTC CCATTCAGAG TGGCAGGCAT GACAACATCT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCAGC CCGATACATC GAGCCTGCTG GTTCCCGCCA GGTGCAGGC TCACCTGGAG TCACCTGGAG	YGLEINKLPV REMPGGPVWR VYPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGCA GCATCGCGTGCCTCCAACTCGCA ACTAGGTCGCT AGCATGAGTG AAGGATGAGG TGGCCCTTCAACG ACCTTCAACA ACCTTCAACA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGAA TGTGGACAAG CCCTGGCCAT CAGCCTTTGA CCTGCCTCCC CTGTGCTTGA	120 180 240 300 360 420 60 120 180 240 300 420
50556065	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRPFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACTCTGAG ACGAAGGCGT CCCACGGAGA TGCCGCCTG CGGGAGACAC TCTGGGAGT TGCACTGTGAT TGGGACTTGAT GGATTTACGG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LIGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession ence: 236 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGAGC AGCTGCTGC AGCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !! NM_0061 1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGCAT CCAGGGGGT TGAAGGCAT TGAAGGCAT TGAAGGCAT TCAGAGGGT TCAGAGGGT TCAGAGGGT TCAGAGGGT TCAGAGGGT TCAGAGGGCAT TCAGAGGGT TCAGAGGGT TCAGAGGGT TCAGAGGGT TCAGAGGGT TCCAGGAGGT TCCAGGAGGT TCCAGGAGGT TCAGGGACTT	31 LFGERYLEKF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC GAGCCTGCT GAGCCTGCT CACCTGGAG CTTCCCGCCA GTGCAGGCC TCACCTGGAG TCGCCCAGG TCGCCCAGG TCGCCCAGG TCGCCCAGG TCGCCAGG	YGLEINKLPV REMPGGPVWR VYBARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA CTAAGTCGCT AAGGATGAGG CTCTTCATGG TGGCCCTTCA ACCTTCAAAAC ACGTTCAAAC TGGTCTGAAAC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNIRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCAT CAGCCTTTGA CCTGCCTCCC CTGTGCTTCA TTCAAGTGCT ACAGGGCCAG	120 180 240 360 420 420 180 240 360 420 480 540 660 660
5055606570	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACTTAGA ACCACGGAGA ACCACGGAGA ACCACGGAGT TCGGGAGTG TCGGGACTTGCGGAGTG TGGACTTGACTCA	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGPPNFVKKI AVFYSKNKYY 29 DNA sequid Accession ence: 236 11 ACAGCTCCCC CACCGGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGAGC AGCTAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTC TTTCCAGAGC TTTCCAGAGCG TTTCCAGAGCG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !! NM_0061 1765 21 GCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGCAAT GACAACATCT CCCAGGAGGT ATCAGGACTT ATCAGGACTT ATCAGGACTT ATCAGGACTT CAGAAGCAGCT CAGAAGCAGCT CAGAAGCAGCT CAGAAGCAGCT CAGAAGCAGCC CAGAAGCAGCT CAGAAGCAGCC CAGAAGCAGCC CAGAAGCAGCC CAGAAGCAGCC CAGAAGCAGCC CAGAAGCAGCC CAGAAGCAGCC CAGAAGCAGCC CAGAAGCAGC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CGAGCCTGCTG GAGCCTGCTG GTTCAGGCC GTTCAGGCC TCACCTGGAC TCACCTGGAC TCACCTGGAC TCACCTGGAC TCACCTGGAC TCACCTGGAC TCACCTGGAC TCACCTGAG TCGCCCCAGG CTGGACTGTA TCAGCCCATG	YGLEINKLPV REMPGGPVWR VVPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTCCGC GTGCGTGGCA CTAAGTCGCT AGCATGAGTG TGGCCCTTCA ACCTTCAAAG ACGTTGAAAG ACGTTGAAAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCTCC CTGTGCTTGA TCTAAGTGCT TCAAAGTGCT TCAAAGTGCT TCAAAGTGCA TACAGGGCCAG GAAAAGTAGA	120 180 240 360 420 420 60 120 180 240 360 420 480 540 660 720
50556065	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS Seq ID NO: Nucleic Aci Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT CCCACGGAGA TCCCGCCCTG CCGGGAGACAC TCTGGGGTG CGGGACACC TCTGGGGTG TCGGTTTACGG TCGTACTCA TCGTTTTACGG TCGTACTCA TCGTTTTGAGC	11 ATASGALPLN LGLKVTGQLD DYAIRKAFGV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGPPNFVKI AVFYSKNKYY 29 DNA sequid Accession lence: 236 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGAGCT CTGTGGAGC AGCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTC TTTCCAGAGC ACAGAGCCA CTGTTCAGAGC ACAGAGGCAG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRPY YFFQGSNQFE 1.765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGAGGTCC CCATTCAGAGC TGAAGCAGT TGAAGGCAT TGAAGGCAT TGAAGGCAT TCAGAGACT CCCAGGAGGT ATCAGGAGT ATCAGGACT CAGAACACC CAGGAGCCTT CAGAAGCAGC AGCAGCAGC	31 LFGERYLEKF RCGYPDVHHF KINTGMADHI LFDRDNSEPA GIEAAYEIEA RTYFFVDNGY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TCAGGCCAGC CCGATACATC GAGCCTGCTG CTTCCCGCCA GCTGCAGGC TCACCTGGAC TCACCTGGAC TCACCTGGAC TCACCCATG CATCCCATG CATCCCATG	YGLEINKLPV REMPGGPVWR VYFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGCA CTAGGTCGCA CTCATCAAG AGGATGAGT AGCATGAGT ACCTTCAAAG AGGTGGAAAC TGGTCTGGAA ACCAAAGAAGC GAGGTGCTCG GAGGTCTCGAA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGAA TGTGGACAAG CCCTGGCCAT CAGCCTTTGA CTGCCTCCC CTGTGCTTGA TTCAAGTGCT ACAGGGCCAG ACAAGTGACT ACAGGACAG TTCAAGTGCT TCAAGTGCT ACAGGGCCAG TCAGGGCCAG TCAAGTGCT ACAGGGCCAG TACAAGTAGA TACAACTGCT TACAAGTAGA TAGACCTGTT	120 180 240 300 360 420 420 120 180 240 300 360 420 480 540 660 660 720 780
5055606570	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Aci Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT TCCACGGAGA TCCCCCTG CGGGAGACAC TCTGGGAGT TGGACTTGAT GGATTTACGG TTGTACTCA TGGTTTTGAGC CCTCAAGGAA	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGT CTTGTGGGGT CTTGTGGGGT CTGTGGAGC CAGCTAGAAG GGTGCTCTTC AAGAACTCTC TTCCAGAGC AGCAGACCA AGAACTCTC TTCCAGAGC AGGAGCCA AGGAGCCA AGGAGCCA AGGGCCTGTG AGGAGCCTAGAGGGCA AGGAGCCAG AGGGCCTGTG AGGAGCCAGACCC CTGATGAAGG AGGAGCCAG AGGGCCAGACCC CTGATGAAGG AGGAGCCAG AGGGCCAGACCC CTGATGAAGG AGGAGCCAG AGGGCCCTGTG AGGAGCCCAG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTHISGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE DENCE INM_0061 1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG CCAGGCAGCA TTAGAGCAGC ATCAGGACTT CAGGACACT ATCAGGACTT ATGAATTGTT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGGCCT CCTGTCAACA ACTCTCAGAC TCAGGCCAGC CTGTCAACT GAGCCTGCTG CTTCCCGCCA GTTGCAGGCC TCACCTGGAC TCACCTGGAC TCACCTGAGC CTGACCTGAGC CTGACCTGAGC CTGACCTGAGC CTGACCTGAGC CTGACCTGAGC CTGACCTGAGC CTGACCATG CATTCCAGTA CTCCTACCTC	YGLEINKLPV REMPGGPVWR VYGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA ACGATGAGTG AGCATGAGTG AGCATGAGT AGCATGAGAA AGGTGGAAA CTACAAAAAAAAA CAGGTGCTCG AAGGTGCTCG AAGAAGAAGC GAGGTGCTCG ATTGAGAAAAAAAAAA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA CCTGGCTCCC CTGTGCTTCGA TTCAAGTGCTTGA TCAAGTGCTTGA TCAAGTGCTTAA TCAAGTGCTTAA TCAAGTGCTTAA TCAAGTGCTTAA TCAAGTGCTTAA TCAAGTGCTTAACAGGGCCAG GAAAAGTTAGA TTGAAGCGAAA	120 180 240 360 420 420 60 120 180 240 360 420 480 540 660 720
5055606570	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Aci Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACCACGAGGT CCCACGAGGA TCCCGCCCTG CCGGAGACAC TCTGGGAGTG TGGACTTGAT GGATTTACTG TCTTACTCA TGGTTTACTCA TGGTTTACTCA TGGTTTGAGG AAAAAATGTA TATCAAGATG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGPPNFVKKI AVFYSKNKYY 29 DNA sequid Accession ence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TGTGGGGTT CTTGTGGAGC AGCTGGCCCC CTGATGAGG GTGCTCCTG AAGACTCTC TTTCCAGAGC CTACGCGTGC CTACGCGGTG CTACGCCTGT CTACGCCTGT CTACGCCTGT ATCCTGAAAA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !! NM_0061 1765 21 GCAGCCAGA CCAGGCGTGA TTTGATATT TTGGAGGTCC CCATTCAGAG CCAGGAGGTT TGAAGGCATT ATCAGAGTT ATCAGAGTT ATCAGAGTT CAGAAGCATT CAGAAGCAGC AGCAGCCTT ATGAATTGTT CTGTAAGAAT GCTGTAAGAA TGGTGCAGCT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CTGCCCAGG CTGCACTG CATTCCAGTA CTCCTACTT GCTTAAGATT	YGLEINKLPV REMPGGPVWR VYPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA CTTAGATGAGT AGGATGAGG CTCTTCAAGG AGGTGCAGC TGGCCCTTCA ACCTTCAAG AGGTGGAAAC ACAAGAAGA CAAAGAAGA GTTGGCATGC GTGCTCGC ACCATTCAAG AGGTGCAAC ACTTCAAAG AGGTGCAAC ACAAGAAC ACAAGAAC GAGGTCTCG ATTGGAAAG ATTGGAAATGC GAAGATTTGG	TKMKYSGNLM KHYITYRINN PHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA CAAGTGACT TCAAAATGAC TGGCCATC CGGCCTTGC CTGGCCTCC CTGTGCTTGA TTCAAGTGCT TCAAGGGCCAG GAAAGTAGA TGAGCCTTGA TTCAAGGGCCAG AAAGTGACT AGACCTGTT TGAAGCCAAG AAAGTAGA TAGACCTGTT TGAAGCCAAG AAAGTAGAA AGTAGACTAGA	120 180 240 300 360 420 420 120 180 240 300 360 420 480 540 660 720 780 840 900 900
505560657075	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAG TCCCACGGAGAC TCCGCGCCTG CCGGGAGACA TCTCTGGGAGTA TCTGGAGT TGGACTTGAT GGATTTACGG TCTGTACTCA TGGTTTGAGC CCTCAAGGAA GAAAAATGTA TATCAAGATG TACCTGGAGT TACCTGGAGT TACCTGGAGT TACCTCATGGAGT TGTACTCA TGTTTTACGA TATCAAGATA TATCAAGATA TATCAAGATA TACCTGGAAGT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT CTGTGGAGC TGTGGGGGTT CTGTGGAGC GGCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTTC TTTCCAGAGG ACAGAGCCAGACC ACAGAGGCAG CTACTGTGTGAGC GTGCTCCTTG AAGAACTCTTC TTTCCAGAGC ACAGAGCCAGACC ACAGAGCAGC ACAGAGCCAGAC CTACTCCTGAAAA CTACCCACCTTTC CTACCCCCCTTTC CTACCCCCCCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPFFY YFFQGSNQFE LICE LICE LICE LICE LICE LICE LICE LIC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYFFVDNGY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CTGCAGAC TGAGCCAGC CTGCAGAC TCACCTGCAGC CTGCCCAGG CTGCCCAGG CTGCCCCAGG CTGACTGT CACCTGAGC CTGGACTGT CATCCAGTA CATCCAGTA CTCTCAGTA TCAGCCCATG CATTCCAGTA CTCTACCTC GCTGAAGATT TCTCCTTACT TTCTCCTTAC	YGLEINKLPV REMPGGPVWR VYPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA ACTAAGTCGCT AAGATGAGTG AAGGATGAGG TGGCCCTTCAAGG AGGTGCAAAC ACTTCAAAG AGGTGGAAAC TGGTCTGAAA ACAAAGAAGC GAGGTGCTCG ATTGAGAAGC GAGGTGCTCG ATTGAGAAAG CGAGGTTTGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGAC CCTGCCTCCC CTGTGCTTGA TCAGGCCAT ACAGGCCAT ACAGGCCAT ACAGGCCAT ACAGGCCAG TCAAGTGCTT TCAAGTGCT TGAAGTGCT TGAAGCCAGA ACATGCAGGA ACATGCAGGA TCATGCAGGA TCATGCAGGA TGATTAATCT	120 180 240 300 360 420 60 120 180 240 300 360 420 660 660 660 660 660 660 660 660 660 6
5055606570	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRPFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Aci Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA TCCACGGAGA TCCACGGAGA TCCACGGAGA TCCACGGAGA TCTTGGAGT TGGACTTGAT TGGATTTACGG TCTGTACTCA TGGTTTTAGGC TCGTAGCAG GAAAAATGTA TATCAAGATG TACCTGGAAG GAAAAATGTA TATCAAGATG GCCTAGAGAA GCCTAGAAG GCCTAGACTC	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LIGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGT CTTGTGGGGT CTGTGGAGC GTGTCCTG AAGACTCTC TTTCCAGAGC CCCGTTC TTCCAGAGC CCTAGAGAGCAC CTACCCCTTTC CACCCGTTC CTACCACCTCTC CTACCACCTCTC CTACCACCTCTC CTACCACCTCTC CTACCACCTCTCTCCCC CTCCTCTCCCC CTCCTCTCCCC CTCTCTCCCC CTGTAAAA CTACCCACCT CTCCTCTCCCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE DENCE ISSLWPTLPS COCAGCCAGA CCAGGCCAGA CCAGGCCAGA TTTGATTATT TTGGAGGTCA CCAGGCGTGA TTGATCATT GCAGCACAT CACAGCAT ACAACATT CAGAACATT CAGAACACT ACAGACACT ACCAGACACT ACCAGACACT TGCAGACACAT TGCAGACACT TGCAGACACAT TCCCAGGACT TAGAATCAT TGCTTAAGAA TGGTGCAACAT TGCCGCAAAT TGCTGCAACAT TGCCGCAAAT TGCTGCAACAT TGCCGCAAAT TGCCGCAAAT TGCCGCAAAT TGCCGCAAAT TACATCCATGC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TCAGGCCAGC CCGGTCAGCC GAGCCTGCTG CTCCCCCCA GCTGCAGCC TCACCTGGAG CTGACCTGGAG CTGACCTGTA CATCCCTCAGTA CATCCAGTA CTCCTACCTC GCTGAAGATT TCAGCCTTACTT TCTCCTTAC ATCTTCCTTAC ATCTTCCTTAC ATCTTCCTTAC ATCTTCCTTAC	YGLEINKLPV REMPGGPVWR VYGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGGTGGCA ACGATGAGTG AGCATGAGTG AGCATGAGT AGCATGAAAG AGGTGGAAA CTACAAAG ACGTCTCAAAG ACGTCTGAA ACGTCTGAAA ACGTCTGAAA ACGTCTGAAA ACGTCTGAA ACGTCTGAAA ACATTCAAG ACGTGGAAA CTTTCAAGG ATTTGCAATGC GAAGATTTGG CAAGATTTTG CAAGATTTGG AATTTCCCCGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA CCTGGCTCCC CTGTGCCTCCC CTGTGCTTGA TCAGAGTGAT TCAAGTGCTT ACAGGGCCAG GAAAAGTAGA TTCAAGTGCT TCAAGTGCT ACAGGGCCAG GAAAAGTAGA CCTGTGCTTGA TCAAGTGCTT ACAGGGCCAG AAAAGTAGA CCTGTTAACTGT TGAAGCGAAA CCATGCAGGA AAGTGACTTG AGAAGGAAGA AGGTACATTCT AGAAGGAAGA	120 180 240 360 420 420 180 240 360 420 480 540 660 720 780 960 960 960
505560657075	I MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ I GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACTTAGA ACCAAGGAGT TCTGGGAGTG TCTGGGAGTG TCTGGGACTTGAT GGATTTACTC TCTGGGAGTG TCTGTACTCA TGGTTTGACT TCTGAGGAT TCTGAGGAT TCTGGAGTAT TATCAAGATG TACCTGGAAG GCCTAGATT TACCTGGAAG GCCTAGATT TCTGGGACTC TCTGGGACT TCTGGAACT TCTGGAACT TCTGGAACT TCTGGAACT TCTGGAACT TCTGGAACT TCTGGACTCT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGPPNFVKKI AVFYSKNKYY 29 DNA sequid Accession ence: 236 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGAGC AGCTAGACCC CTGATGAAGG GTGCTCCTG AAGAACTCTC TTTCCAGAGC ACAGACCCC CTCATCAGCCG CTACCCGCTGT ATCCTGAGACC CTCCTGTCACCCC CTCCTGAAAA CTACCCACCT CTCCTCCCC CCCCAGTTCA CTCCCCCCC CCCCAGTTCA CTCCCTCCCC CCCCAGTTCA TTATTTTCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !! NM_0061 1765 21 GCAGCCAGA CCAGGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGSCAGGCAT GACACATCT CCCAGGAGGT ATCAGAGT ATCAGAGT ATCAGAGT ATCAGAGT TGCAGAGT TGCAGAGCAT ATCAGAGT TGCAGAGT TGCAGAGT TGCAGAGT TGCAGAGT TGCAGAATT TTGGAGTCT TTGAGAGT TCTCAGAGT TTGCAGACT TCTCAGAT TTTGCAGGCC CCTCTCAGTT TTAGAGGCCG TTTAGAGGCCG	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CTGACACAT GAGCCTGCTG CTTCCCGCCA GCTGCAGC TCACCTC GAGCCTGTA TCACCTC CATCCTACTC CATCCTACTT CATTCCTACTC GCTGAAGATT TCACCTC GCTGAAGATT TTCTCCTAC CCTCAGTCT CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTG CCTGGATCAG	YGLEINKLPV REMPGGPVWR VYPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA CTTAGATGGC CTTCCATGG TGGCCCTTCA ACCTTCAAG AGGTGGAACA ACAAGAAGA CGAGGTCTCG ATTGGAAGA TTTGCAATGC GAAGATTTGC CTGGCCAGA ATTTCCCCGG CAGTGCCTGC TTGCTCAGGC TTGCTCAGGC TTGCTCAGGC	TKMKYSGNLM KHYITYRINN PHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAGTGACT TCAAAATGGA TGTGGACAAG CCTTGCCAT CAGCCTTTGA TTCAAGTGCT TCAAGTGCTT ACAGGGCCAG GAAAAGTAGA TTCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTCCT TCAAGTCCT ACAGGCCAG AAAAGTAGA TAGACCTGTT TGAAGCCTAA CCTTGCATAATCT AGAAGGAAGA AAGTGACTTG TGATTAATCT AGAAGGAAGA AGGCTCTCTA ACGTGATGAA	120 180 240 300 360 420 420 180 240 360 420 480 540 660 720 780 840 960 1020 1020 1140 1200
505560657075	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequence 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA TGCCGCCTG CGGGAGACA TCTCTGGGAGTA TCTGGAGT TGGACTTGAT GGATTTACGA TGGATTACGA GAAAAATGTA TATCAAGATA TATCAAGATA GCGTAGACT TACCTGGAAG GCGTAGACT TACCTGGAAG CCTCAGGAAG CCTCAAGGAA GAAAAATGTA TATCAAGATA TATCAAGATA TCTCTGGACT TCTGGACTC TCTGGACTC TCTGGACTC TCTTGGACTC TCTTGGACTC TCTTTGGACTCT TCCCCTTTGGAA	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT CATGGGGGT CTTGTGGAGC GAGCTAGACC CTGATGAAGC GTGCTCCTT TTCCAGAGC GTGCTCCTT TTCCAGAGC CTACCGCTTC TTTCCAGAGC CTACCCCTTC TTCCTGAGC GTGCTCTTC TTCCAGACC TACTCTCTCCC GCCCAGTTCA TACTCTTCCC GCCCAGTTCA TACTTTTTCC TTTCCTCACACT TTCTCTCACACT TTATTTTTCC TTCCTCTCACACT TTATTTTTCC TACCCTCTCAA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPFFY YFFQGSNQFE 181.00 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTC CCATTCAGGAG CCAGGAGCAT ATGAAGCAAT ATCAGGACT ATGAAGCAT ATGAGGCCT ATGAAGCAT TGAGAGCAG TGGCAGACAT CCCAGGAGGT ATCAGGACT TGAGAACAT TGGTAAGAA TGGTGCAGCT TGGCGAAAT TTGGTGAAGT TTGGAGACT TTGGAGACT TTGAGAGCCC TTAATTGTT TTAGAGGCC TTAATTGTT TTAGAGGCC TTAATTGATGTC TTAGAGGCCT TTAGAGCCT TTAGAGGCCT TTAGAGGCC TTAGAGCC TTAGAGC TTAGAGCC T	31 LFGERYLEKF RCGVPDVHHF KINTGMADHI LPNPDNSEPA GIEAAYEIEA RTYPFVDNQY YDFLLQRITK 15.1 31 LAGCCGGGCCT CCTGTCAACA ACTCTCAGAC CCGATACATC GAGCCTGCTG CTGCCCCAGG CTGCCCCAGG CTGCCCCAGG CTGCCCCAGG CTGCCCCATG CATCCCAGC CTGCCCATG CATCCAGTA CATCCAGTA CTCCTACCTC GCTGAAGATT CAGCCCATG CATCCAGTA CTCCTACCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTGGATCAG CCCGGCTTTCC CCTGGATCAG CCCGGCTTTCC	YGLEINKLPV REMPGGPVWR VYGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA ACTAGGTGGCA ACTATCATGG TGGCCCTTCAAGG AGGTGCAAAC ACGTTCAAAG ACGTTCAAAG ACGTGCAAAC ACTTCAAAG ACGTGCAAAC ACTTCAAAG ACGTGCCTCC ATTGAAAGAAC CGAGTTCCCGG ATTGACAATGC CGAGATTTGC CAAGTCCTCC CAAGTCCTCC CTGCCTCAAGC CAGAGTTCCCGG CAAGGCCAGA ATTTCCCCGG CAAGGCCATGC CTGCTCAAGC CAAGGCCATGC CTGCTCAAGC CAAGGCCATGC CAAGGCCATGC CAAGGCGATGC CAAGAGCGATGC CAAGGCGATGC CAAGAGCGATGC CAAGAGCATGC CAAGAGCGATGC CAAGAGCATGC CAAGAGCATGC CAAGAGCATGC CAAGAGCATGC CAAGAGCATGC CAAGAGCATGC CAAGAGCACAC CAAGACC CAAGAGCACAC CAAGAGCACAC CAAGAGCACAC CAAGAGCACAC CAAGAGCACAC CAAGAGCAC CAAGAC CAAGAGCAC CAAGAGCAC CAAGAGCAC CAAGAGCAC CAAGAGCAC CAAGAC CAAGAC CAAGAGCAC CAAGAC CAAGACC CAAGACC CAAGAC CAAGACC CAA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGAA TCTGGACCAG CCTGGCCTCC CTGTGCTTGA TCAAGTGCT ACAGGGCCAG GAAAAGTGACT TCAAGTGCT TCAAGTGCT TCAAGTGCT ACAGGGCCAG GAAAAGTAGA TGAGCCTTTA ACAGGGCCAG GAAAAGTAGA TGAGCCTTT ACAGGGCCAG AAGTGCTT TGAAGTGCT TCAAGTGCT ACAGGGCCAG AAGTGCTT TGAAGTGCTT TGAAGTGCTT TGAAGTGCTT TGAAGCGAAA CCATGCAGGA AGGTCTCTA AGGAGGAAGA AGGTGCTTCTA AGGAGGAAGA TGATGAATGAA TGATGCATCT	120 180 240 300 360 420 60 120 180 240 300 360 420 540 660 660 660 660 660 660 660 660 610 720 720 780 840 960 1020 1080 1140
50556065707580	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRPFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Aci Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT TCCACGGAGA TCCCGCCTG CGGAGACACT TGGACTTGAT GGATTTACGG TCTGTACTCA GGATTTACGG TCTGTACTCA GGATTTACGG GAAAAATGTA TATCAAGATG TACCTGGAAGT TACCTGGAAGT TACCTGGAAGT CCCTCTAGGCAT CCCCTTGGGACTC CCCCTTGGGACTC CCCCTTGGGACTC CCCCTTGGGACTC CCCCCTTGGACTC CCCCCTTGGACTC CCCCCTTGGACTC CCCCCTTGGACTC CCCCCTTGGACTC CCCCCTTGGACTC CCCCCTTGGACTC CCCCTTGGACTC CCCCCTGGGAGT GCCCCAGAGT GTCCCAGAGT GTCCCAGAGT GTCCCAGAGT GTCCCAGAGT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LIGGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG GAGTTGCGGGT CTGTGGGGTC CTGTGGAGC CTGATGAAGA GTGCTCCTC TTCCAGAGC CTGATGAAGC CTGCTGTGAAAA CTACCCACCT CTACCCCCTTC CTACCCCCTTC ACCCTCTCCC GCCCAGTTCA CTCCTCTCCC GCCCAGTTCA CTCCTCTCCC CCCCCTCTCCC CCCCCTCTCCC CCCCCTCTCCC CCCCCTCTCA CCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCCCTCTCA CCCCCTCTCA CCCCCCTCTCA CCCCCCTCTCA CCCCCCTCTCA CCCCCCTCTCA CCCCCCTCTCA CCCCCCTCTCA CCCCCCCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKPS EPWTHISGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE SSLWPTLPS DAAVFNPRFY 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCA CCAGGGGGGAGCT TGAAGGCATT CAGAAGCACT CCCAGGAGGT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT TGCAGACCC CTCCAGT TGGCGAACT TGGCGAACT TGGCGAACT TGGTAAGAA TGGTGCAGC CCTCTCAGTT TTAGAGGCCG TAACTAACT CCTCTCAGTT TTAGAGGCCG TAACTAACTA	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGGCCT CCTGTCAACA ACTCTCAGAC TCAGGCCAGC CTGACATC GAGCCTGCTG CTTCCCGCCA GTTGCAGGCC TCACCTGGAG CTGACCTGAG CTTCCCTCAGT CATCCAGTA TCAGCCCATG CATCCAGTA CTCCTCACTC CCTGAAGATT GCACTCACTC CCTGAAGATT TCTCCTTACCTC CCTGAGTCT TCTCCTTACCTC CCTGGATCAG CCTGGATCAG CCTGGATCAG CCTCAGTCT CCTGGATCAG CCTCAGTCT CCTCAGTCTT CCTCCTGAGT CCTCCTCT CCTCCTCT CCTCCTCCT CCTCCTCT CCTCCT	YGLEINKLPV REMPGGPVWR VYGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGGTGGCA AGGATGAGG CTCTTCATGG AGGATGAGG CTCTTCATGG AGGTGCAAA ACGATCAGG CAGGCCCTC GAAGAGAGC GAGGTGCTG AAGGATGAGG CTGGCAAA ACATTCGC GAGGTCCTC AGGTCTCAAG AGGTGCTCG AAGGATTTGG CAGGGCAGA ATTTCCCCGG CAGGCCAGA ATTTCCCCGG CAGGGCCAGC CTGCTCAGGC CAGGGCCAGC CTGCTCAGGC CAAGGGGATG CTTAGTGCGG CTTAGTGCGG CTTAGTGCGG CTTAGTGCGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA CCTGGCTCCC CTGTGCCTCCC CTGTGCTTGA TTCAAGTGCTT ACAGGGCCAG GAAAAGTAGA TTCAAGTGCTT ACAGGGCCAG GAAAAGTAGA TGAGCCAT TGAAGCGAAA CCATGCAGGA AAGTGACTT AGAAGGAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCAGGA AAGTGACTT TGAAGCATCT TCATGGTGAC TCATGCTGAC	120 180 240 360 420 420 180 240 360 420 480 540 960 960 1020 1080 1140 1260 1320
505560657075	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Aci Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACTTGAG GAGACTTGAG TCCCACGGAGA TCCCGCGGGAGT CCCACGGAGT TCTGGAGT TGGACTTGAT TACTGGAGT TCTTAAGGAT TATCAAGAT TATCAAGAT TATCAAGAT TATCAAGAT TACCTGGAAG GCGTAGACT TGCGATTATC TGCGAGTTATACT TCTGGAAGT CCCCTTGGAAG CCTTAAGGAT TACCTGGAAG CCTTAAGGAT TACCTGGAAG CCCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCATGTAATC TCCCCTTGGAAG CCATGTAATC TCCCCCTTGGAAG CCATGTAATC TCCCCAGAGT CCATGTAAGT CCATGTAAGT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LIGDAHPDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGGGTC AGCCAGACCC CTGATGAAGG GTGCTCTTC TTTCCAGAGC ACAGAGGCAG GGTGCTTCT TTCCAGAGC TTGTCTGT ATCCTGTAAAA CTACCCACTT CTCCTCTCCC GCCCAGTTCA ACCCAGTTCA ACCCAGTTCA ACCCAGTTCA CCCAGGCTCA CCCAGGCCCC ACCCTCCAA CCCAGGCCCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !! NM_0061 1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGACAGACTCT CCCAGGAGCT TGAGGAGCT TCAGGAGCT TCAGGAGCT TCAGGACT CCCAGGAGCT TCAGGACT TCAGGACT TCAGGACT TCAGGACT TCTTAAGAA TGGTGCAGCT TGGCGAAATT TTGGTGAATCATC TTGGCGAAATT TTAGAGGCCG TTAACTGC CCTCTCAGTT TTAGAGGCCG TTAACTAG TCCAAGCTCT TCAGAGCCT TTAGAGGCCG TTACTAACTG TCCAAGCTCT TCAGAGCTCT TCAGAGCTCT TTAGAGGCCG TCAACTACT TCAGAGCTCT TCAGAGCTCT TCAGCTAG	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CTGACTGGACTG	YGLEINKLPV REMPGGPVWR VYGLRGHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGGTGGCA AGGATGAGG CTCTTCATGG TGGCCTTCATGG AGGTGCTGCA AGGTGGCAA ACTTCAAA ACTTCATGG TGGCCTTCA AGGTGCTCG AAGGATTCGC GAAAGAAGC GAGGTGCTCG ATTGCAATG CTGGCCAGA ATTTCCCCGG CAGTGCCTGC TTGCTCAGGC CAGTGCCTGC TTGCTCAGGC CAGTGCCTGC CTAAGTGGGG CAAGGGGATG CTGCTCAGC GAAGGGGATG CTTACTCAGGC CAGTGCCTGC CTAAGTGGGG CAGTGCCTGC CTAAGTGGGG CTAAGTGGGG CTCTCTCCCA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA CCTGGCCTCC CTGTGCTTCA CAGGCCAT CAGGCCAT CAGGCCAT CAGGCCAT CAGGCCAT CAGGCCTCCC CTGTGCTTCA CCTGCTTCA CCTGCTTCA CAGGGCCAG GAAAAGTAGA TCAAGTGCT TCAAGGGCAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCAGGA AAGTGACTTCT TGAAGGAGAA AGGCTCTCTA ACGTGATGAA TGATGATGAT TCATGCTGAC CCCTCCAGGA	120 180 240 360 420 60 120 180 240 360 420 480 540 660 720 780 960 1020 1140 1140 11200 11320 11380
50556065707580	I MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding Bequit Coding Beduit	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV UGGDAHPDED SADDIRGIQS SERPKTSVNL FGPPNFVKKI AVFYSKNKYY 29 DNA sequid Accession ence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTTT CTTGTGGAGC AGCCAGACCC CTGATGAAGG GTGCTCCTT TTTCCAGAGC ACAGAGCCCC CTCAGTGAAGA CTACCCCTCTCCC CCCCAGTTCA ATCCTGAAAA CTACCCACTT TTTCCTAGACC ACCCGGTTCA TTATTTTTCC ACCCAGGTCCA CCCAGGGTCCA CCCAGGGCCCC GCCCAGGTCCA CCCGGGCCCCC GATGAGGTGG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !! NM_0061 1765 21 GCCAGCCAGA CCAGGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGCTC CCAGGAGGTC TGAAGGCAAT GACAACATCT CCCAGGAGGT ATCAGAGG ATCAGGAG TCCAGGAGCT TGGCGAAATT ACATCCATGC CCTCTCAGTT TTAGAGGCCG TAACTAACTG GTCAAGCTCT GCAAGCCTT GCAGCAGCC TTAGAGGCCGT TAGAGGCCGT TAGAGGCCGT TAGAGGCCGT TAGAGGCCGT TAGAGGCCGT TAGAGGCCGT TAGAGGCCGT TAGAGGCCGGAACTCT GCCAAGCTCT GGCAAGCTCT GGCACAGCGA	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CTACCTGGAG TCGCCCAGG TCGCCCAGG TCGCCCAGG TCGCCCAGG TCGCCCAGG TCGCCCAGG CTGCCCAGG CCTCGAGT CTCCTGCG CCTGGATCAG CCGCCTTCG CTGGAGAGA TCGCCGGAGAG TCGCCGGAGAGA TCGCCGGAGAGA TCGCCGGAGAGA TCGCCGGAGAGA TCGCCAGCT CTCCGGAGCAG TCGCGGAGAGA TCGCCAGCT CTCCAGCT CCTCGGAGCAG TCGCCCAGC CCTCGGAGCAG TCGCCGGAGCA TCGCCCAGC TCTCCTGCACC CCTCGGAGCAG TCGCCCCAGC TCTCCTCGCCC CCTCGCACC CCTCGCACC CCTCGACC CCTCGCACC CCTCGCACC CCTCCACC CCCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC	YGLEINKLPV REMPGGPVWR VYPARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA CTTAGATGGG CTCTTCAAGG AGGTGCTGCA ACCTTCAAGG AGGTGCTGCA ACCAAGAACT AGCATGAGTC GCAGCCCTTC ACCTTCAAGG CTGCCTTCA ACCATCAGGC CTGCCTCCCCCGC CAGAGGTGCTGC CTGGCCAGG CTTGCTCAGGC GAAGGTGCTGC CTTGCTCAGGC GAAGGGGGATG CTTAGTCAGGC GAAGGGGGATG CTTAGTCAGGC GAAGGGGGATG CTTAGTCCCCCC CTTGCCCCCC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMPPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA CCTGGCTCCC CTGTGCCTCCC CTGTGCTTGA TTCAAGTGCTT ACAGGGCCAG GAAAAGTAGA TTCAAGTGCTT ACAGGGCCAG GAAAAGTAGA TGAGCCAT TGAAGCGAAA CCATGCAGGA AAGTGACTT AGAAGGAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCAGGA AAGTGACTT TGAAGCATCT TCATGGTGAC TCATGCTGAC	120 180 240 300 360 420 60 120 180 240 300 420 480 540 660 720 780 840 960 1020 1020 1140 1200 1260 1380 1380 1440

```
CTTGCAGAGT CTCCTGCAGC ACCTCATCGG GCTGAGCAAT CTGACCCACG TGCTGTATCC 1560
       TGTCCCCTG GAGAGTTATG AGGACATCCA TGGTACCCTC CACCTGGAGA GGCTTGCCTA
                                                                              1620
       TCTGCATGCC AGGCTCAGGG AGTTGCTGTG TGAGTTGGGG CGGCCCAGCA TGGTCTGGCT
                                                                              1680
       TAGTGCCAAC CCCTGTCCTC ACTGTGGGGA CAGAACCTTC TATGACCCGG AGCCCATCCT
                                                                              1740
 5
       GTGCCCCTGT TTCATGCCTA ACTAGCTGGG TGCACATATC AAATGCTTCA TTCTGCATAC
                                                                              1800
                                                                              1860
       TTGGACACTA AAGCCAGGAT GTGCATGCAT CTTGAAGCAA CAAAGCAGCC ACAGTTTCAG
                                                                              1920
       ACAAATGTTC AGTGTGAGTG AGGAAAACAT GTTCAGTGAG GAAAAAACAT TCAGACAAAT
       GTTCAGTGAG GAAAAAAGG GGAAGTTGGG GATAGGCAGA TGTTGACTTG AGGAGTTAAT
                                                                              1980
       GTGATCTTTG GGGAGATACA TCTTATAGAG TTAGAAATAG AATCTGAATT TCTAAAGGGA
                                                                              2040
10
       GATTCTGGCT TGGGAAGTAC ATGTAGGAGT TAATCCCTGT GTAGACTGTT GTAAAGAAAC
                                                                              2100
       TGTTGAAAAT AAAGAGAAGC AATGTGAAGC AAAAAAAAA AAAAAAAA
       Seg ID NO: 30 Protein sequence:
       Protein Accession #: NP_006106.1
15
                                                                 51
                  11
                              21
                                          31
       GCTTCAGGGT ACAGCTCCCC CGCAGCCAGA AGCCGGGCCT GCAGCGCCTC AGCACCGCTC
       CGGGACACCC CACCOGCTTC CCAGGOGTGA CCTGTCAACA GCAACTTCGC GGTGTGGTGA
                                                                               120
20
       ACTCTCTGAG GAAAAACCAT TTTGATTATT ACTCTCAGAC GTGCGTGGCA ACAAGTGACT
                                                                               180
       GAGACCTAGA AATCCAAGCG TTGGAGGTCC TGAGGCCAGC CTAAGTCGCT TCAAAATGGA
                                                                               240
       ACGAAGGCGT TTGTGGGGTT CCATTCAGAG CCGATACATC AGCATGAGTG TGTGGACAAG
                                                                               300
       CCCACGGAGA CTTGTGGAGC TGGCAGGGCA GAGCCTGCTG AAGGATGAGG CCCTGGCCAT
                                                                               360
       TGCCGCCCTG GAGTTGCTGC CCAGGGAGCT CTTCCCGCCA CTCTTCATGG CAGCCTTTGA
                                                                               420
25
       CGGGAGACAC AGCCAGACCC TGAAGGCAAT GGTGCAGGCC TGGCCCTTCA CCTGCCTCCC
                                                                               480
       TCTGGGAGTG CTGATGAAGG GACAACATCT TCACCTGGAG ACCTTCAAAG CTGTGCTTGA
                                                                               540
       TEGACTTEAT GTECTCCTTE CCCAGGAGGT TCGCCCCAGG AGGTGGAAAC TTCAAGTGCT
                                                                               600
       GGATTTACGG AAGAACTCTC ATCAGGACTT CTGGACTGTA TGGTCTGGAA ACAGGGCCAG
                                                                               660
       TCTGTACTCA TTTCCAGAGC CAGAAGCAGC TCAGCCCATG ACAAAGAAGC GAAAAGTAGA
                                                                               720
30
       TGGTTTGAGC ACAGAGGCAG AGCAGCCCTT CATTCCAGTA GAGGTGCTCG TAGACCTGTT
                                                                               780
       CCTCAAGGAA GGTGCCTGTG ATGAATTGTT CTCCTACCTC ATTGAGAAAG TGAAGCGAAA
                                                                               840
       GAAAAATGTA CTACGCCTGT GCTGTAAGAA GCTGAAGATT TTTGCAATGC CCATGCAGGA
                                                                               900
       TATCAAGATG ATCCTGAAAA TGGTGCAGCT GGACTCTATT GAAGATTTGG AAGTGACTTG
                                                                               960
       TACCTGGAGG CTACCCACCT TGGCGAAATT TTCTCCTTAC CTGGGCCAGA TGATTAATCT GCGTAGACTC CTCCTCTCC ACATCCATGC ATCTTCCTAC ATTTCCCCGG AGAAGGAAGA
                                                                              1020
35
                                                                              1080
       GCAGTATATC GCCCAGTTCA CCTCTAGTT CCTCAGTCTG CAGTGCCTGC AGGCTCTCTA
TGTGGACTCT TTATTTTTCC TTAGAGGCCG CCTGGATCAG TTGCTCAGGC ACGTGATGAA
                                                                              1140
                                                                              1200
       CCCCTTGGAA ACCCTCTCAA TAACTAACTG CCGGCTTTCG GAAGGGGATG TGATGCATCT GTCCCAGAGT CCCAGCGTCA GTCAGCTAAG TGTCCTGAGT CTAAGTGGGG TCATGCTGAC
                                                                              1260
40
       CGATGTAAGT CCCGAGCCCC TCCAAGCTCT GCTGGAGAGA GCCTCTGCCA CCCTCCAGGA
                                                                              1380
       CCTGGTCTTT GATGAGTGTG GGATCACGGA TGATCAGCTC CTTGCCCTCC TGCCTTCCCT
       GAGCCACTGC TCCCAGCTTA CAACCTTAAG CTTCTACGGG AATTCCATCT CCATATCTGC
                                                                              1500
       CTTGCAGAGT CTCCTGCAGC ACCTCATCGG GCTGAGCAAT CTGACCCACG TGCTGTATCC
                                                                              1560
       TGTCCCCCTG GAGAGTTATG AGGACATCCA TGGTACCCTC CACCTGGAGA GGCTTGCCTA
                                                                              1620
45
       TCTGCATGCC AGGCTCAGGG AGTTGCTGTG TGAGTTGGGG CGGCCCAGCA TGGTCTGGCT
                                                                              1680
       TAGTGCCAAC CCCTGTCCTC ACTGTGGGGA CAGAACCTTC TATGACCCGG AGCCCATCCT
                                                                              1740
       GTGCCCCTGT TTCATGCCTA ACTAGCTGGG TGCACATATC AAATGCTTCA TTCTGCATAC
                                                                              1800
       TTGGACACTA AAGCCAGGAT GTGCATGCAT CTTGAAGCAA CAAAGCAGCC ACAGTTTCAG
                                                                              1860
       ACAAATGTTC AGTGTGAGTG AGGAAAACAT GTTCAGTGAG GAAAAAACAT TCAGACAAAT
                                                                              1920
50
       GTTCAGTGAG GAAAAAAAGG GGAAGTTGGG GATAGGCAGA TGTTGACTTG AGGAGTTAAT
                                                                              1980
       GTGATCTTTG GGGAGATACA TCTTATAGAG TTAGAAATAG AATCTGAATT TCTAAAGGGA
                                                                              2040
       GATTCTGGCT TGGGAAGTAC ATGTAGGAGT TAATCCCTGT GTAGACTGTT GTAAAGAAAC
                                                                              2100
       TGTTGAAAAT AAAGAGAAGC AATGTGAAGC AAAAAAAAA AAAAAAAA
55
       Seq ID NO: 31 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 64-2754
60
                                                                 51
       GGCAGGTCTC GCTCTCGGCA CCCTCCCGGC GCCCGCGTTC TCCTGGCCCT GCCCGGCATC
       CCGATGGCCG CCGCTGGGCC CCGGCGCTCC GTGCGCGGAG CCGTCTGCCT GCATCTGCTG
                                                                               120
       CTGACCCTCG TGATCTTCAG TCGTGATGGT GAAGCCTGCA AAAAGGTGAT ACTTAATGTA
                                                                               180
65
       CCTTCTAAAC TAGAGGCAGA CAAAATAATT GGCAGAGTTA ATTTGGAAGA GTGCTTCAGG
                                                                               240
       TCTGCAGACC TCATCCGGTC AAGTGATCCT GATTTCAGAG TTCTAAATGA TGGGTCAGTG
                                                                               300
       TACACAGCCA GGGCTGTTGC GCTGTCTGAT AAGAAAAGAT CATTTACCAT ATGGCTTTCT
                                                                               360
       GACAAAAGGA AACAGACACA GAAAGAGGTT ACTGTGCTGC TAGAACATCA GAAGAAGGTA
                                                                               420
       TOGAAGACAA GACACATAG AGAAACTGTT CTCAGGCGTG CCAAGAGGAG ATGGGCACCT
                                                                               480
70
       ATTCCTTGCT CTATGCAAGA GAATTCCTTG GGCCCTTTCC CATTGTTTCT TCAACAAGTT
                                                                               540
       GAATCTGATG CAGCACAGAA CTATACTGTC TTCTACTCAA TAAGTGGACG TGGAGTTGAT
                                                                               600
       AAAGAACCTT TAAATTTGTT TTATATAGAA AGAGACACTG GAAATCTATT TTGCACTCGG
                                                                               660
       CCTGTGGATC GTGAAGAATA TGATGTTTTT GATTTGATTG CTTATGCGTC AACTGCAGAT
                                                                               720
       GGATATTCAG CAGATCTGCC CCTCCCACTA CCCATCAGGG TAGAGGATGA AAATGACAAC
                                                                               780
75
       CACCCTGTTT TCACAGAAGC AATTTATAAT TTTGAAGTTT TGGAAAGTAG TAGACCTGGT
                                                                               840
       ACTACAGTGG GGGTGGTTTG TGCCACAGAC AGAGATGAAC CGGACACAAT GCATACGCGC
                                                                               900
       CTGAAATACA GCATTTTGCA GCAGACACCA AGGTCACCTG GGCTCTTTTC TGTGCATCCC
                                                                               960
       AGCACAGGCO TAATCACCAC AGTCTCTCAT TATTTGGACA GAGAGGTTGT AGACAAGTAC TCATTGATAA TGAAAGTACA AGACATGGAT GGCCAGTTTT TTGGATTGAT AGGCACATCA
                                                                              1020
                                                                              1080
80
       ACTIGIATCA TAACAGTAAC AGATTCAAAT GATAATGCAC CCACTTTCAG ACAAAATGCT
                                                                              1140
       TATGAAGCAT TTGTAGAGGA AAATGCATTC AATGTGGAAA TCTTACGAAT ACCTATAGAA
                                                                              1200
       GATAAGGATT TAATTAACAC TGCCAATTGG AGAGTCAATT TTACCATTTT AAAGGGAAAT
                                                                              1260
       GAAAATGGAC ATTTCAAAAT CAGCACAGAC AAAGAAACTA ATGAAGGTGT TCTTTCTGTT
                                                                              1320
       GTANAGCCAC TGANTTATGA AGAAAACCGT CAAGTGAACC TGGAAATTGG AGTANACAAT
                                                                              1380
85
       GAAGCGCCAT TTGCTAGAGA TATTCCCAGA GTGACAGCCT TGAACAGAGC CTTGGTTACA
                                                                              1440
       GTTCATGTGA GGGATCTGGA TGAGGGGCCT GAATGCACTC CTGCAGCCCA ATATGTGCGG
                                                                              1500
       ATTAAAGAAA ACTTAGCAGT GGGGTCAAAG ATCAACGGCT ATAAGGCATA TGACCCCGAA
                                                                              1560
```

	WO 02	/086443					
	AATAGAAATG	GCAATGGTTT	AAGGTACAAA	AAATTGCATG	ATCCTAAAGG	TTGGATCACC	1620
	ATTGATGAAA	TTTCAGGGTC	AATCATAACT	TCCAAAATCC	TGGATAGGGA	GGTTGAAACT	1680
	CCCAAAAATG	AGTTGTATAA	TATTACAGTC CATTGAAGAT	CTGGCAATAG	ACAAAGATGA	AATACTTCAA	1740 1800
5	CARTATOTAG	TIGUIGIGAA	ACCAAAAATG	CCCTATACCC	ACATTTTAGC	TGTTGATCCT	1860
~	GATGAACCTG	TCCATGGAGC	TCCATTTTAT	TTCAGTTTGC	CCAATACTTC	TCCAGAAATC	1920
	AGTAGACTGT	GGAGCCTCAC	CAAAGTTAAT	GATACAGCTG	CCCGTCTTTC	ATATCAGAAA	1980
	AATGCTGGAT	TTCAAGAATA	TACCATTCCT	ATTACTGTAA	AAGACAGGGC	CGGCCAAGCT	2040
10	GCAACAAAAT	TATTGAGAGT	TAATCTGTGT	GAATGTACTC	ATCCAACTCA	GTGTCGTGCG	2100 2160
10	ACTTCAAGGA	GTACAGGAGT	AATACTTGGA ATTGCTAACT	TTACTATCTC	CAGTTTTTGG	TGCAACTAAA	2220
	CCCDADCTT	TTCTCAAGA	TTTAGCACAG	CAAAACTTAA	TTATATCAAA	CACAGAAGCA	2280
	CCTGGAGACG	ATAGAGTGTG	CTCTGCCAAT	GGATTTATGA	CCCAAACTAC	CAACAACTCT	2340
	AGCCAAGGTT	TTTGTGGTAC	TATGGGATCA	GGAATGAAAA	ATGGAGGGCA	GGAAACCATT	2400
15	GAAATGATGA	AAGGAGGAAA	CCAGACCTTG	GAATCCTGCC	GGGGGGCTGG	GCATCATCAT	2460
	ACCCTGGACT	CCTGCAGGGG	AGGACACACG ACCCCGTCTC	GAGGTGGACA	ACTGCAGATA	TARTCAGART	2520 2580
	CAACACCCCA	TOCONTOCON	ACCCCGTCTC	CTCACTTATA	ACTATGAGGG	AAGAGGATCT	2640
	CCAGCTGGTT	CTGTGGGCTG	CTGCAGTGAA	AAGCAGGAAG	AAGATGGCCT	TGACTTTTTA	2700
20	AATAATTTGG	AACCCAAATT	TATTACATTA	GCAGAAGCAT	GCACAAAGAG	ATAATGTCAC	2760
	AGTGCTACAA	TTAGGTCTTT	GTCAGACATT	CTGGAGGTTT	CCAAAAATAA	TATTGTAAAG	2820
	TTCAATTTCA	ACATGTATGT	ATATGATGAT	TTTTTTCTCA	ATTTTGAATT	ATGCTACTCA	2880
	CCAATTTATA	TTTTTAAAGC	CAGTTGTTGC CAAACTCCAG	CACTCCAATT	CAAAAAGTGA	AAAATGITAA	2940 3000
25			ATTTTAGTAA				3060
20	ATAGCTAAGT	TATGCTAATA	TCACATTATT	ATGTATTCAC	TTTAAGTGAT	AGTTTAAAAA	3120
	ATAAACAAGA	AATATTGAGT	ATCACTATGT	GAAGAAAGTT	TTGGAAAAGA	AACAATGAAG	3180
	ACTGAATTAA	ATTAAAAATG	TTGCAGCTCA	TAAAGAATTG	GGACTCACCC	CTACTGCACT	3240
30			GAGGCAAAAT AATAAATGTG				3300 3360
50	ATTTALAGGAA	TATAGITGGA	AAAGAGGAAA	ATGCTAAAAA	CTTGAAATGA	GGCTGGGGTA	3420
	TAGTTTGTCC	TACAATAGAA	AAAAGAGAGA	GCTTCCTAGG	CCTGGGCTCT	TAAATGCTGC	3480
	ATTATAACTG	AGTCTATGAG	GAAATAGTTC	CTGTCCAATT	TGTGTAATTT	GTTTAAAATT	3540
25	GTAAATAAAT	TAAACTTTTC	TGGTTTCTGT	GGGAAGGAAA	TAGGGAATCC	AATGGAACAG	3600
35	TAGCTTTGCT	TTGCAGTCTG	TTTCAAGATT GTTCCCTGCT	TCTGCATCCA	CAAGTTAGTA	GCAAACTGGG	3660 3720
	GAATACTCGC	TGCAGCTGGG	ACAAAAACAT	TTTTGGTAGC	AAGGGICCAG	AGATGAGGIG	3780
	CTCTATTGCT	GTTTCTATTC	TCTCTTATAG	TGACCAACAT	CTTTTTAATT	TAGATCCAAA	3840
	TAACCATGTC	CTCCTAGAGT	TTAGAGGCTA	GAGGGAGCTG	AGGGGAGGAT	CTTACTGAAA	3900
40	GCACCCTGGG	GAGATTGATT	GTCCTTAAAC	CTAAGCCCCA	CAAACTTGAC	ACCTGATCAG	3960
	GTCTGGGAGC	TACAAAATTT	CATTTTTCTC	CTCACTGCCC	TTCTTCTGAG	TGGCATTGGC	4020
	CTGAATCAAG	GAAAGCCAGG	CCTTGTGGGC TAAGTGACTC	CACCUTCTT	ACCATCCTTC	AGCGTGAATT	4080 4140
	ACCICCAGCA	CAGTTTGCTT	TCTCCAGAGA	AATTTTAAAA	TAATAGAAGA	AATAGAAATT	4200
45	TTGAATGTAT	AAAAGAAAAA	GATCAAGTTG	TCATTTTAGA	ACAGAGGGAA	CTTTGGGAGA	4260
	AAGCAGCCCA	AGTAGGTTAT	TTGTACAGTC	AGAGGGCAAC	AGGAAGATGC	AGGCCTTCAA.	4320
	GGGCAAGGAG	AGGCCACAAG	GAATATGGGT	GGGAGTAAAA	GCAACATCGT	CTGCTTCATA	4380
	CTTTTTCCTA	GGCTTGGCAC	TGCCTTTTCC ACCTCTTCTC	TATCCCAGGC	CAATGGCAAC	GTGAGAAATC	4440 4500
50			ATGATGAGTC				4560
	GTTGTGCAGA	ACAAACAAGG	CATTCATGGG	AATTGTTGTA	TTCCTTCTGC	AGCCCTCCTT	4620
	CTGGGCACTA	AGAAGGTCTA	TGAATTAAAT	GCCTATCTAA	AATTCTGATT	TATTCCTACA	4680
	TTTTCTGTTT	TCTAATTTGA	CCCTAAAATC	TATGTGTTTT	AGACTTAGAC	TTTTTTTTTC	4740
55			AGACGGAGTC AAAGCTCCGC				4800 4860
55	GCTCCGATCT	TAGCTGGGAC	TACAGGCGCC	CACCACCACG	CCCGGCTAAT	TTTTTGTATT	4920
	TTTAATAGAG	ACGGGGTTTC	ACTGTGTTAG	CCAGGATGGT	CTCGATCTCC	TGACCTCGTG	4980
	ATCCGCCTGC	CTCGGCCTCC	CAAAGTGCTG	GGATTACAGG	CATGACCCAC	CGCTCCCGGC	5040
60			GTCTTCTTTT				5100
60 ·	TGATCATACG.	AATTGGATCA	ATCTTGAAAT CAAAATATTG	ACTCAACCAA	AAGACAGTCG	AGAAGCCAGG	5160 5220
	TTCCTCAAAT	TTCCTCCTCT	AACCAGAAGC	CAGTTTTATC	TAACGGCTAC	TGAAACACCC	5280
	ACTGTGTTTT	GCTCACTCCC	TCACTCACCG	ATCAAAACCT	GCTACCTCCC	CAAGACTTTA	5340
<i>(</i> -	CTAGTGCCGA	TAAACTTTCT	CAAAGAGCAA	CCAGTATCAC	TTCCCTGTTT	ATAAAACCTC	5400
65	TAACCATCTC	TTTGTTCTTT	GAACATGCTG	AAAACCACCT	GGTCTGCATG	TATGCCCGAA	5460
	TTTGTAATTC	TTTTCTCTCA	CCTTATATGT	TAATTTTAGG	ATTCATTTC	TATATTTTCA	5520 5580
. 1	CATATGTAGT	ATTATTATTT	GCTTTCATTT	TTCCCCCAGT	GAATGATTTA	GAATTTTTTA	5640
	TGTAAATATA	CAGAATGTTT	TTTCTTACTT	TTATAAGGAA	GCAGCTGTCT	AAAATGCAGT	5700
70	GGGGTTTGTT	TTGCAATGTT	TTAAACAGAG	TTTTAGTATT	GCTATTAAAA	GAAGTTACTT	5760
	TGCTTTTAAA	GAAACTTGGC	TGCTTAAAAT	AAGCAAAAAT	TGGATGCATA	AAGTAATATT	5820
	TACAGATGTG	GGGAGATGTA	ATAAAACAAT GATGATCACT	ATTAACTTGG	ATCCTTGTTT	CTCCCATCCA	5880 5940
	AATAGAAATA	CTCAATTATG	TCTTTGTTGT	ATTAATGGGG	AATATTTTGG	ACAATGTTTC	6000
75	ATTATCAAAT	TGTCGACATC	ATTAATATAT	ATTGTAATGT	TGGGAAGAGA	TCACTATTTT	6060
	GAAGCACAGC	TTTACAGATG	AGTATCTATG	ATACATATGT	ATAATAAATT	TTGATCGGGT	6120
	ATTAAAAGTA	TTAGAAGGTG	GTTATAATTG	CAGAGTATTC	CATGAATAGT	ACACTGACAC	6180
	AGGGGTTTTA	CTTTGAGGAC	CAGTGTAGTC	AAGGGAAAAC	ATGAGTTAAA	AAGAAAAGCA	6240 6300
80	CARCATCATC	CAGTCTTGAT	GGTGCTCTCT	GCTTCACAGT	GAATCTTTC	ACTTTAATGA CCCATGCAGG	
	AGTGTGCTCC	CCTACAAACG	TTAAGACTGA	TCATTTCAAA	AATCTATTAG	CTATATCAAA	6420
	AGCCTTACAT	TTTAATATAG	GTTGAACCAA	AATTTCAATT	CCAGTAACTT	CTATTGTAAC	6480
	CATTATTTTT	GTGTATGTCT	TCAAGAATGT	TCATTGGATT	TTTGTTTGTA	ATAGTAAAAT	6540
85	ACCGGATACA	TTTCACGTGT	CCTTCAGTAT	TGATTTGGTT	GAATATTGGG	TCATAATGGT	6600 6660
S	TTCTCTCTCT	GGACACTAGA	GCCAGAATGC	TIGGATATGA	GCTTTCTCAT	TGTCACTTAC TAAAATCAAT	6720
	GAACAATGCC	AGCCTCATGG	GGTTGTTGAA	TGATTAAATT	AGTTAATATA	CCTAAAGTAC	6780

```
ATAGAACACT GCCTGCACAT AGTAAAAGAA TTATAAGTGT GAGGTAGTTG GTAAAATTAT 6840
        GTAGTTGGAT ATACTACCGA ACAATATCTA ATCTCTTTTT AGGGAAATAA AGTTTGTGCA 6900
        TATATATAAT CCCGAAACAT G
  5
        Seq ID NO: 32 Protein sequence:
        Protein Accession #: NP_001932.1
                                                                 51
                               21
                                          31
        MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS
ADLIRSSDPD FRVLNDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS
 10
        KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK
                                                                               180
        EPLNLFYIER DTGNLFCTRP VDREEYDVFD LIAYASTADG YSADLPLPLP IRVEDENDNH
                                                                               240
        PVFTEAIYNF EVLESSRPGT TVGVVCATDR DEPDTMHTRL KYSILQQTPR SPGLPSVHPS
                                                                               300
 15
        TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY
                                                                               360
        EAFVEENAFN VEILRIPIED KOLINTANWR VNFTILKGNE NGHFKISTDK ETNEGVLSVV
                                                                               420
        KPLNYEENRQ VNLEIGVNNE APFARDIPRV TALNRALVTV HVRDLDEGPE CTPAAQYVRI
                                                                               480
        KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP
                                                                               540
        KNELYNITVL AIDKDDRSCT GTLAVNIEDV NDNPPEILQE YVVICKPKMG YTDILAVDPD
                                                                               600
        EPVHGAPFYF SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA
 20
                                                                               660
        TKLLRVNLCE CTHPTQCRAT SRSTGVILGK WAILAILLGI ALLFSVLLTL VCGVFGATKG
                                                                               720
        KRFPEDLAGO NLIISNTEAP GDDRVCSANG FMTQTTNNSS QGFCGTMGSG MKNGGQETIE
                                                                               780
        MMKGGNQTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTQPRLG EKLHRCNQNE
                                                                               840
        DRMPSQDYVL TYNYEGRGSP AGSVGCCSEK QEEDGLDFLN NLEPKFITLA EACTKR
 25
        Seq ID NO: 33 DNA sequence
        Nucleic Acid Accession #: Eos sequence.
        Coding sequence: 64-2583
 30
                   11
                               21
                                          31
        GGCAGGTCTC GCTCTCGGCA CCCTCCCGGC GCCCGCGTTC TCCTGGCCCT GCCCGGCATC
        CCGATGGCCG CCGCTGGGCC CCGGCGCTCC GTGCGCGGAG CCGTCTGCCT GCATCTGCTG
                                                                               120
 35
        CTGACCCTCG TGATCTTCAG TCGTGATGGT GAAGCCTGCA AAAAGGTGAT ACTTAATGTA
                                                                               180
        CCTTCTAAAC TAGAGGCAGA CAAAATAATT GGCAGAGTTA ATTTGGAAGA GTGCTTCAGG
                                                                               240
        TCTGCAGACC TCATCCGGTC AAGTGATCCT GATTTCAGAG TTCTAAATGA TGGGTCAGTG
                                                                               300
        TACACAGCCA GGGCTGTTGC GCTGTCTGAT AAGAAAAGAT CATTTACCAT ATGGCTTTCT
                                                                               360
        GACAAAAGGA AACAGACACA GAAAGAGGTT ACTGTGCTGC TAGAACATCA GAAGAAGGTA
                                                                               420
 40
        TCGAAGACAA GACACACTAG AGAAACTGTT CTCAGGCGTG CCAAGAGGAG ATGGGCACCT
                                                                               480
        ATTCCTTGCT CTATGCAAGA GAATTCCTTG GGCCCTTTCC CATTGTTTCT TCAACAAGTT
                                                                               540
        GAATCTGATG CAGCACAGAA CTATACTGTC TTCTACTCAA TAAGTGGACG TGGAGTTGAT
                                                                               600
        AAAGAACCTT TAAATTTGTT TTATATAGAA AGAGACACTG GAAATCTATT TTGCACTCGG
                                                                               660
        CCTGTGGATC GTGAAGAATA TGATGTTTTT GATTTGATTG CTTATGCGTC AACTGCAGAT
                                                                               720
 45
        GGATATTCAG CAGATCTGCC CCTCCCACTA CCCATCAGGG TAGAGGATGA AAATGACAAC
                                                                               780
        CACCCTGTTT TCACAGAAGC AATTTATAAT TTTGAAGTTT TGGAAAGTAG TAGACCTGGT
                                                                               840
        ACTACAGTGG GGGTGGTTTG TGCCACAGAC AGAGATGAAC CGGACACAAT GCATACGCGC
                                                                               900
        CTGAAATACA GCATTTTGCA GCAGACACCA AGGTCACCTG GGCTCTTTTC TGTGCATCCC
                                                                               960
        AGCACAGGCG TAATCACCAC AGTCTCTCAT TATTTGGACA GAGAGGTTGT AGACAAGTAC
                                                                              1020
        TCATTGATAA TGAAAGTACA AGACATGGAT GGCCAGTTTT TTGGATTGAT AGGCACATCA
 50
                                                                              1080
        ACTTGTATCA TAACAGTAAC AGATTCAAAT GATAATGCAC CCACTTTCAG ACAAAATGCT
                                                                              1140
        TATGAAGCAT TIGTAGAGGA AAATGCATTC AATGTGGAAA TCTTACGAAT ACCTATAGAA GATAAGGAT TAATTAACAC TGCCAATTGG AGAGTCAATT TTACCATTTT AAAGGGAAAT
                                                                              1260
        GAAAATGGAC ATTTCAAAAT CAGCACAGAC AAAGAAACTA ATGAAGGTGT TCTTTCTGTT
                                                                              1320
 55
        GTAAAGCCAC TGAATTATGA AGAAAACCGT CAAGTGAACC TGGAAATTGG AGTAAACAAT
        GAAGCGCCAT TTGCTAGAGA TATTCCCAGA GTGACAGCCT TGAACAGAGC CTTGGTTACA
                                                                              1440
        GTTCATGTGA GGGATCTGGA TGAGGGGCCT GAATGCACTC CTGCAGCCCA ATATGTGCGG
                                                                              1500
        ATTAAAGAAA ACTTAGCAGT GGGGTCAAAG ATCAACGGCT ATAAGGCATA TGACCCCGAA
                                                                              1560
        AATAGAAATG GCAATGGTTT AAGGTACAAA AAATTGCATG ATCCTAAAGG TTGGATCACC
                                                                              1620
 60
        ATTGATGAAA TTTCAGGGTC AATCATAACT TCCAAAATCC TGGATAGGGA GGTTGAAACT
                                                                              1680
        CCCAAAAATG AGTTGTATAA TATTACAGTC CTGGCAATAG ACAAAGATGA TAGATCATGT
                                                                              1740
        ACTGGAACAC TTGCTGTGAA CATTGAAGAT GTAAATGATA ATCCACCAGA AATACTTCAA
                                                                              1800
        GAATATGTAG TCATTTGCAA ACCAAAAATG GGGTATACCG ACATTTTAGC TGTTGATCCT
                                                                              1860
         GATGAACCTG TCCATGGAGC TCCATTTTAT TTCAGTTTGC CCAATACTTC TCCAGAAATC
                                                                              1920
· 65
        AGTAGACTGT GGAGCCTCAC CAAAGTTAAT GATACAGCTG CCCGTCTTTC ATATCAGAAA
                                                                              1980
        AATGCTGGAT TTCAAGAATA TACCATTCCT ATTACTGTAA AAGACAGGGC CGGCCAAGCT
                                                                              2040
         GCAACAAAAT TATTGAGAGT TAATCTGTGT GAATGTACTC ATCCAACTCA GTGTCGTGCG
                                                                              2100
        ACTICAAGGA GTACAGGAGT AATACTIGGA AAATGGGCAA TCCTTGCAAT ATTACTGGGT
                                                                              2160
         ATAGCACTGC TCTTTTCTGT ATTGCTAACT TTAGTATGTG GAGTTTTTGG TGCAACTAAA
                                                                              2220
 70
         GGGAAACGTT TTCCTGAAGA TTTAGCACAG CAAAACTTAA TTATATCAAA CACAGAAGCA
                                                                              2280
         CCTGGAGACG ATAGAGTGTG CTCTGCCAAT GGATTTATGA CCCAAACTAC CAACAACTCT
                                                                              2340
         AGCCAAGGTT TTTGTGGTAC TATGGGATCA GGAATGAAAA ATGGAGGGCA GGAAACCATT
         GARATGATGA AAGGAGGAAA CCAGACCTTG GAATCCTGCC GGGGGGCTGG GCATCATCAT
                                                                              2460
         ACCCTGGACT CCTGCAGGGG AGGACACACG GAGGTGGACA ACTGCAGATA CACTTACTCG
 75
         GAGTGGCACA GTTTTACTCA ACCCCGTCTC GGTGAAGAAT CCATTAGAGG ACACACTGGT
         TAAAAATTAA ACATAAAAGA AATTGCATCG ATGTAATCAG AATGAAGACC GCATGCCATC
                                                                              2640
         CCAAGATTAT GTCCTCACTT ATAACTATGA GGGAAGAGGA TCTCCAGCTG GTTCTGTGGG
                                                                              2700
         CTGCTGCAGT GAAAAGCAGG AAGAAGATGG CCTTGACTTT TTAAATAATT TGGAACCCAA
                                                                              2760
         ATTTATTACA TTAGCAGAAG CATGCACAAA GAGATAATGT CACAGTGCTA CAATTAGGTC
                                                                              2820
 80
         TTTGTCAGAC ATTCTGGAGG TTTCCAAAAA TAATATTGTA AAGTTCAATT TCAACATGTA
                                                                              2880
         TGTATATGAT GATTTTTTC TCAATTTTGA ATTATGCTAC TCACCAATTT ATATTTTTAA
                                                                              2940
         AGCCAGTTGT TGCTTATCTT TTCCAAAAAG TGAAAAATGT TAAAACAGAC AACTGGTAAA
                                                                              3000
         TCTCAAACTC CAGCACTGGA ATTAAGGTCT CTAAAGCATC TGCTCTTTTT TTTTTTTACG
                                                                              3060
                                                                              3120
         GATATTTTAG TAATAAATAT GCTGGATAAA TATTAGTCCA ACAATAGCTA AGTTATGCTA
 85
         ATATCACATT ATTATGTATT CACTTTAAGT GATAGTTTAA AAAATAAACA AGAAATATTG
                                                                              3180
                                                                              3240
         AGTATCACTA TGTGAAGAAA GTTTTGGAAA AGAAACAATG AAGACTGAAT TAAATTAAAA
         ATGTTGCAGC TCATAAAGAA TTGGGACTCA CCCCTACTGC ACTACCAAAT TCATTTGACT
                                                                              3300
```

```
TTGGAGGCAA AATGTGTTGA AGTGCCCTAT GAAGTAGCAA TTTTCTATAG GAATATAGTT
                                                                                3360
        GGAAATAAAT GTGTGTGTGT ATATTATTAT TAATCAATGC AATATTTAAA ATGAAATGAG
                                                                                3420
       AACAAAGAGG AAAATGGTAA AAACTTGAAA TGAGGCTGGG GTATAGTTTG TCCTACAATA
                                                                                3480
       GAAAAAAGAG AGAGCTTCCT AGGCCTGGGC TCTTAAATGC TGCATTATAA CTGAGTCTAT
                                                                                3540
 5
       GAGGAAATAG TTCCTGTCCA ATTTGTGTAA TTTGTTTAAA ATTGTAAATA AATTAAACTT
                                                                                3600
                                                                                3660
       TTCTGGTTTC TGTGGGAAGG AAATAGGGAA TCCAATGGAA CAGTAGCTTT GCTTTGCAGT
       CTGTTTCAAG ATTTCTGCAT CCACAAGTTA GTAGCAAACT GGGGAATACT CGCTGCAGCT
                                                                                3720
       GGGGTTCCCT GCTTTTTGGT AGCAAGGGTC CAGAGATGAG GTGTTTTTTT CGGGGAGCTA
                                                                                3780
       ATAACAAAAA CATTITAAAA CTTACCTTTA CTGAAGTTAA ATCCTCTATT GCTGTTTCTA
                                                                                3840
       TTCTCTCTTA TAGTGACCAA CATCTTTTTA ATTTAGATCC AAATAACCAT GTCCTCCTAG
10
                                                                                3900
       AGTTTAGAGG CTAGAGGGAG CTGAGGGGAG GATCTTACTG AAAGCACCCT GGGGAGATTG
                                                                                3960
       ATTGTCCTTA AACCTAAGCC CCACAAACTT GACACCTGAT CAGGTCTGGG AGCTACAAAA
       TTTCATTTT CTCCTCACTG CCCTTCTTCT GAGTGGCATT GGCCTGAATC AAGGAAAGCC AGGCCTTGTG GGCCCCCTTC TTTCGGCTTT CTGCTAAAGC AACACCTCCA GCAGAGATTC
                                                                                4080
15
       CCTTAAGTGA CTCCAGGTTT TCCACCATCC TTCAGGGTGA ATTAATTTTT AATCAGTTTG
       CTTTCTCCAG AGAAATTTTA AAATAATAGA AGAAATAGAA ATTTTGAATG TATAAAAGAA
                                                                                4260
       AAAGATCAAG TTGTCATTTT AGAACAGAGG GAACTTTGGG AGAAAGCAGC CCAAGTAGGT
                                                                                4320
       TATTTGTACA GTCAGAGGGC AACAGGAAGA TGCAGGCCTT CAAGGGCAAG GAGAGGCCAC
                                                                                4380
       AAGGAATATG GGTGGGAGTA AAAGCAACAT CGTCTGCTTC ATACTTTTTC CTAGGCTTGG
                                                                                4440
20
       CACTGCCTTT TCCTTTCTCA GGCCAATGGC AACTGCCATT TGAGTCCGGT GAGGGATCAG
                                                                                4500
       CCAACCTCTT CTCTATGGCT CACCTTATTT GGAGTGAGAA ATCAAGGAGA CAGAGCTGAC
                                                                                4560
       TGCATGATGA GTCTGAAGGC ATTTGCAGGA TGAGCCTGAA CTGGTTGTGC AGAACAAACA
                                                                                4620
       AGGCATTCAT GGGAATTGTT GTATTCCTTC TGCAGCCCTC CTTCTGGGCA CTAAGAAGGT
                                                                                4680
       CTATGAATTA AATGCCTATC TAAAATTCTG ATTTATTCCT ACATTTTCTG TTTTCTAATT
                                                                                4740
25
       TGACCCTAAA ATCTATGTGT TTTAGACTTA GACTTTTTAT TGCCCCCCCC CCCTTTTTTT
                                                                                4800
       TTGAGACGGA GTCTCGCTCT GACGCACAGG CTGGAGTGCA GTGGCTCCGA TCTCTGCTCA
                                                                                4860
       CTGAAAGCTC CGCCTCCCGG GTTCATGCCA TTCTCCTGCC TCAGCCTCCT GAGTAGCTGG
                                                                                4920
       GACTACAGGC GCCCACCACC ACGCCCGGCT AATTTTTTGT ATTTTTAATA GAGACGGGGT
                                                                                49B0
       TTCACTGTGT TAGCCAGGAT GGTCTCGATC TCCTGACCTC GTGATCCGCC TGCCTCGGCC
                                                                                5040
30
       TCCCAAAGTG CTGGGATTAC AGGCATGACC CACCGCTCCC GGCCTTGTTT TCCGTTTAAA
                                                                                5100
       GTCGTCTTCT TTTAATGTAA TCATTTTGAA CATGTGTGAA AGTTGATCAT ACGAATTGGA
                                                                                5160
       TCAATCTTGA AATACTCAAC CAAAAGACAG TCGAGAAGCC AGGGGGAGAA AGAACTCAGG
GCACAAAATA TTGGTCTGAG AÁTGGAATTC TCTGTAAGCC TAGTTGCTGA AATTTCCTGC
                                                                                5220
                                                                                5280
       TGTAACCAGA AGCAGTTTT ATCTAACGGC TACTGAAACA CCCACTGTGT TTTGCTCACT CCCACTCACC GATCAAAACC TGCTACCTCC CCAAGACTTT ACTAGTGCCG ATAAACTTTC
                                                                                5340
35
                                                                                5400
       TCAAAGAGCA ACCAGTATCA CTTCCCTGTT TATAAAACCT CTAACCATCT CTTTGTTCTT
TGAACATGCT GAAAACCACC TGGTCTGCAT GTATGCCCGA ATTTGTAATT CTTTTCTCTC
                                                                                5460
       AMATGAAMAT TIMATTTTAG GGATTCATTT CTATATTTTC ACATATGTAG TATTATTATT
       TCCTTATATG TGTAAGGTGA AATTTATGGT ATTTGAGTGT GCAAGAAAAT ATATTTTTAA
40
       AGCTITICATT TITICCCCCAG TGAATGATTT AGAATTTTTT ATGTAAATAT ACAGAATGTT
TTTTCTTACT TTTATAAGGA AGCAGCTGTC TAAAATGCAG TGGGGTTTGT TTTGCAATGT
                                                                                5700
                                                                                5760
       TTTAAACAGA GTTTTAGTAT TGCTATTAAA AGAAGTTACT TTGCTTTTAA AGAAACTTGG
                                                                                5820
       CTGCTTAAAA TAAGCAAAAA TTGGATGCAT AAAGTAATAT TTACAGATGT GGGGAGATGT
                                                                                5880
       AATAAAACAA TATTAACTTG GCTGCTTAAA ATAAGCAAAA ATTGGATGCA TAAAGTAATA
                                                                                5940
45
       TTTACAGATG TGGGGAGATG TAATAAAACA ATATTAACTT GGTTTCTTGT TTTTGCTGTA
                                                                                6000
       TTTAGAGATT AAATAATTCT AAGATGATCA CTTTGCAAAA TTATGCTTAT GGCTGGCATG
                                                                                6060
       GAAATAGAAA TACTCAATTA TGTCTTTGTT GTATTAATGG GGAATATTTT GGACAATGTT
                                                                                6120
       TCATTATCAA ATTGTCGACA TCATTAATAT ATATTGTAAT GTTGGGAAGA GATCACTATT
                                                                                6180
       TTGAAGCACA GCTTTACAGA TGAGTATCTA TGATACATAT GTATAATAAA TTTTGATCGG
                                                                                6240
50
       GTATTAAAAG TATTAGAAGG TGGTTATAAT TGCAGAGTAT TCCATGAATA GTACACTGAC
                                                                                6300
       6360
       CAGGCAATAT TGCAGTCTTG ATTCTGCCAC TTACAGGATA GATAATGCCT GAACTTTAAT
                                                                                6420
       GACAAGATGA TCCAACCATA AAGGTGCTCT GTGCTTCACA GTGAATCTTT TCCCCATGCA
                                                                                6480
       GGAGTGTGCT CCCCTACAAA CGTTAAGACT GATCATTTCA AAAATCTATT AGCTATATCA
                                                                                6540
       AAAGCCTTAC ATTTTAATAT AGGTTGAACC AAAATTTCAA TTCCAGTAAC TTCTATTGTA ACCATTATTT TTGTGTATGT CTTCAAGAAT GTTCATTGGA TTTTTGTTTG TAATAGTAAA
55
                                                                                6600
                                                                                6660
       ATACCGGATA CATTTCACGT GTCCTTCAGT ATTGATTTGG TTGAATATTG GGTCATAATG
                                                                                6720
       GTTGAGAAGC ATGGACACTA GAGCCAGAAT GCTTGGATAT GAATCCTGGA TCTGTCACTT
                                                                                6780
       ACTTCTGTGT GACCTTGAA AGGCTACTTA TTTCCTCTCT TAGCTTTCTC ATTAAAATCA
                                                                                6840
60
       ATGAACAATG CCAGCCTCAT GGGGTTGTTG AATGATTAAA TTAGTTAATA TACCTAAAGT
       ACATAGAACA CTGCCTGCAC ATAGTAAAAG AATTATAAGT GTGAGGTAGT TGGTAAAATT
                                                                                6960
       ATGTAGTTGG ATATACTACC GAACAATATC TAATCTCTTT TTAGGGAAAT AAAGTTTGTG
                                                                                7020
       CATATATATA ATCCCGAAAC ATG
65
       Seq ID NO: 34 Protein sequence:
       Protein Accession #: NP 077741.1
                                                       41
                                                                   51
                                           31
70
       MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS
                                                                                  60
       ADLIRSSDPD FRVLNDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS
                                                                                 120
       KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK
                                                                                  180
       EPLNLFYIER DTGNLFCTRP VDREEYDVFD LIAYASTADG YSADLPLPLP IRVEDENDNH
                                                                                  240
       PVFTEAIYNP EVLESSRPGT TVGVVCATDR DEPDTMHTRL KYSILQQTPR SPGLFSVHPS
                                                                                  300
       TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY
75
                                                                                  360
       EAPVEENAPN VEILRIPIED KOLINTANWR VNFTILKGNE NGHFRISTOK ETNEGVLSVV
KPLNYEENRO VNLEIGVNNE APFARDIPRV TALNRALVTV HVROLDEGPE CTPAAQYVRI
                                                                                  420
                                                                                  480
       KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP
                                                                                  540
       KNELYNITYL AIDKDDRSCT GTLAVNIEDV NDNPPEILQE YVVICKPKMG YTDILAVDPD
                                                                                  600
80
       EPVHGAPPYF SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA
                                                                                  660
       TKLLRVNLCE CTHPTOCRAT SRSTGVILGK WAILAILLGI ALLFSVLLTL VCGVFGATKG
                                                                                  720
       KRFPEDLAQQ NLIISNTEAP GDDRVCSANG FMTQTTNNSS QGFCGTMGSG MKNGGQETIE
       MMKGGNOTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTQPRLG EESIRGHTG
85
       Seq ID NO: 35 DNA sequence
       Nucleic Acid Accession #: Eos sequence
```

Coding sequence: 146-1273.

```
31
       GGGAGTGGGC GTGGCGGTGC TGCCCAGGTG AGCCACCGCT GCTTCTGCCC AGACACGGTC
 5
       GCCTCCACAT CCAGGTCTTT GTGCTCCTCG CTTGCCTGTT CCTTTTCCAC GCATTTTCCA
                                                                             120
       GGATAACTGT GACTCCAGGC CCGCAATGGA TGCCCTGCAA CTAGCAAATT CGGCTTTTGC
                                                                             180
       CGTTGATCTG TTCAAACAAC TATGTGAAAA GGAGCCACTG GGCAATGTCC TCTTCTCTCC
                                                                             240
       AATCTGTCTC TCCACCTCTC TGTCACTTGC TCAAGTGGGT GCTAAAGGTG ACACTGCAAA
                                                                             300
       TGAAATTGGA CAGGTTCTTC ATTITGAAAA TGTCAAAGAT ATACCCTTTG GATTTCAAAC
                                                                             360
10
                                                                             420
       AGTAACATCG GATGTAAACA AACTTAGTTC CTTTTACTCA CTGAAACTAA TCAAGCGGCT
       CTACGTAGAC AAATCTCTGA ATCTTTCTAC AGAGTTCATC AGCTCTACGA AGAGACCCTA
                                                                             480
       TGCAAAGGAA TTGGAAACTG TTGACTTCAA AGATAAATTG GAAGAAACGA AAGGTCAGAT
                                                                             540
       CAACAACTCA ATTAAGGATC TCACAGATGG CCACTTTGAG AACATTTTAG CTGACAACAG
                                                                             600
       TGTGAACGAC CAGACCAAAA TCCTTGTGGT TAATGCTGCC TACTTTGTTG GCAAGTGGAT
                                                                             660
       GAAGAAATTT CCTGAATCAG AAACAAAAGA ATGTCCTTTC AGACTCAACA AGACAGACAC
15
       CAAACCAGTG CAGATGATGA ACATGGAGGC CACGTTCTGT ATGGGAAACA TTGACAGTAT
       CAATTGTAAG ATCATAGAGC TTCCTTTTCA AAATAAGCAT CTCAGCATGT TCATCCTACT
       AGAGTCACTG TCACAGTGGA CTAATCCCAG CACCATGGCC AATGCCAAGG TCAAACTCTC
20
       CATTCCAAAA TTTAAGGTGG AAAAGATGAT TGATCCCAAG GCTTGTCTGG AAAATCTAGG
       GCTGAAACAT ATCTTCAGTG AAGACACATC TGATTTCTCT GGAATGTCAG AGACCAAGGG
       AGTGGCCCTA TCAAATGTTA TCCACAAAGT GTGCTTAGAA ATAACTGAAG ATGGTGGGGA
       TTCCATAGAG GTGCCAGGAG CACGGATCCT GCAGCACAAG GATGAATTGA ATGCTGACCA
                                                                            1200
       TCCCTTTATT TACATCATCA GGCACAACAA AACTCGAAAC ATCATTTCT TTGGCAAATT
25
       CTGTTCTCCT TAAGTGGCAT AGCCCATGTT AAGTCCTCCC TGACTTTTCT GTGGATGCCG
                                                                            1320
       ATTTCTGTAA ACTCTGCATC CAGAGATTCA TTTTCTAGAT ACAATAAATT GCTAATGTTG
                                                                            1380
       CTGGATCAGG AAGCCGCCAG TACTTGTCAT ATGTAGCCTT CACACAGATA GACCTTTTTT
                                                                            1440
       TTTTTCCAAT TCTATCTTTT GTTTCCTTTT TTCCCATAAG ACAATGACAT ACGCTTTTAA
                                                                            1500
       TGAAAAGGAA TCACGTTAGA GGAAAAATAT TTATTCATTA TTTGTCAAAT TGTCCGGGGT
                                                                            1560
30
       AGTTGGCAGA AATACAGTCT TCCACAAAGA AAATTCCTAT AAGGAAGATT TGGAAGCTCT
                                                                            1620
       TCTTCCCAGC ACTATGCTTT CCTTCTTTGG GATAGAGAAT GTTCCAGACA TTCTCGCTTC
                                                                            1680
       CCTGAAAGAC TGAAGAAAGT GTAGTGCATG GGACCCACGA AACTGCCCTG GCTCCAGTGA
                                                                            1740
       AACTTGGGCA CATGCTCAGG CTACTATAGG TCCAGAAGTC CTTATGTTAA GCCCTGGCAG
                                                                            1800
       GCAGGTGTTT ATTAAAATTC TGAATTTTGG GGATTTTCAA AAGATAATAT TTTACATACA
                                                                            1860
      CTGTATGTTA TAGAACTTCA TGGATCAGAT CTGGGGCAGC AACCTATAAA TCAACACCTT
35
                                                                            1920
       AATATGCTGC AACAAAATGT AGAATATTCA GACAAAATGG ATACATAAAG ACTAAGTAGC
                                                                            1980
       CCATAAGGGG TCAAAATTTG CTGCCAAATG CGTATGCCAC CAACTTACAA AAACACTTCG
                                                                            2040
                                                                            2100
       TTCGCAGAGC TTTTCAGATT GTGGAATGTT GGATAAGGAA TTATAGACCT CTAGTAGCTG
       AAATGCAAGA CCCCAAGAGG AAGTTCAGAT CTTAATATAA ATTCACTTTC ATTTTTGATA
                                                                            2160
40
       GCTGTCCCAT CTGGTCATGT GGTTGGCACT AGACTGGTGG CAGGGGCTTC TAGCTGACTC
                                                                            2220
       GCACAGGGAT TCTCACAATA GCCGATATCA GAATTTGTGT TGAAGGAACT TGTCTCTTCA
                                                                            2280
      TCTAATATGA TAGCGGGAAA AGGAGAGGAA ACTACTGCCT TTAGAAAATA TAAGTAAAGT
GATTAAAGTG CTCACGTTAC CTTGACACAT AGTTTTTCAG TCTATGGGTT TAGTTACTTT
       AGATGGCAAG CATGTAACTT ATATTAATAG TAATTTGTAA AGTTGGGTGG ATAAGCTATC
45
       CCTGTTGCCG GTTCATGGAT TACTTCTCTA TAAAAAATAT ATATTTACCA AAAAATTTTG
       TGACATTCCT TCTCCCATCT CTTCCTTGAC ATGCATTGTA AATAGGTTCT TCTTGTTCTG
       AGATTCAATA TTGAATTTCT CCTATGCTAT TGACAATAAA ATATTATTGA ACTACC
       Seg ID NO: 36 Protein seguence:
50
       Protein Accession #: NP_002630.1
       MDALQLANSA FAVDLFKQLC EKEPLGNVLF SPICLSTSLS LAQVGAKGDT ANEIGQVLHF
55
       ENVKDIPFGF QTVTSDVNKL SSFYSLKLIK RLYVDKSLNL STEFISSTKR PYAKELETVD
                                                                             120
       FKDKLEETKG QINNSIKDLT DGHFENILAD NSVNDQTKIL VVNAAYFVGK WMKKFPESET
                                                                             180
       KECPFRLNKT DTKPVQMMNM EATFCMGNID SINCKIIELP FQNKHLSMFI LLPKDVEDES
                                                                             240
       TGLEKIEKQL NSESLSQWTN PSTMANAKVK LSIPKFKVEK MIDPKACLEN LGLKHIFSED
                                                                             300
       TSDFSGMSET KGVALSNVIH KVCLEITEDG GDSIEVPGAR ILQHKDELNA DHPFIYIIRH
                                                                             360
60
       NKTRNIIFFG KFCSP
     . Seq ID NO: 37 DNA sequence
       Nucleic Acid Accession #: NM_0168583
65
       Coding sequence: 72-842
                              21
       GGAGTGGGGG AGAGAGAGGA GACCAGGACA GCTGCTGAGA CCTCTAAGAA GTCCAGATAC
       TAAGAGCAAA GATGTTTCAA ACTGGGGGCC TCATTGTCTT CTACGGGCTG TTAGCCCAGA
                                                                             120
       CCATGGCCCA GTTTGGAGGC CTGCCCGTGC CCCTGGACCA GACCCTGCCC TTGAATGTGA
                                                                             180
       ATCCAGCCCT GCCCTTGAGT CCCACAGGTC TTGCAGGAAG CTTGACAAAT GCCCTCAGCA
                                                                             240
       ATGGCCTGCT GTCTGGGGGC CTGTTGGGCA TTCTGGAAAA CCTTCCGCTC CTGGACATCC
                                                                             300
       TGAAGCCTGG AGGAGGTACT TCTGGTGGCC TCCTTGGGGG ACTGCTTGGA AAAGTGACGT
                                                                             360
75
       CAGTGATTCC TGGCCTGAAC AACATCATTG ACATAAAGGT CACTGACCCC CAGCTGCTGG
                                                                              420
       AACTTGGCCT TGTGCAGAGC CCTGATGGCC ACCGTCTCTA TGTCACCATC CCTCTCGGCA
                                                                              480
       TAAAGCTCCA AGTGAATACG CCCCTGGTCG GTGCAAGTCT GTTGAGGCTG GCTGTGAAGC
                                                                              540
       TEGRICATICAL TECREARANTE TTAGETETER GAGATARGER GERGAGGATE CACCTGGTCC
TTEGTGACTE CACCCATTCC CCTEGRAGEC TECRAATTTC TCTGCTTGAT GERCTTGGCC
CCCTCCCCAT TCARGGTCTT CTGGACAGCC TCACAGGGAT CTTGAATAAA GTCCTGCCTG
                                                                              600
                                                                              660
80
       AGTTGGTTCA GGGCAACGTG TGCCCTCTGG TCAATGAGGT TCTCAGAGGC TTGGACATCA
       CCCTGGTGCA TGACATTGTT AACATGCTGA TCCACGGACT ACAGTTTGTC ATCAAGGTCT
                                                                              840
       AAGCCTTCCA GGAAGGGGCT GGCCTCTGCT GAGCTGCTTC CCAGTGCTCA CAGATGGCTG
       GCCCATGTGC TGGAAGATGA CACAGTTGCC TTCTCTCCGA GGAACCTGCC CCCTCTCCTT
85
       TCCCACCAGG CGTGTGTAAC ATCCCATGTG CCTCACCTAA TAAAATGGCT CTTCTTCTGC 1020
       AAAAAAAA AAAAAAAAA AAAAAAAAA
```

WO 02/086443

Seq ID NO: 38 Protein sequence: Protein Accession #: NP_057667

```
5
       MFQTGGLIVF YGLLAQTMAQ FGGLPVPLDQ TLPLNVNPAL PLSPTGLAGS LTNALSNGLL
                                                                            60
       SEGLIGILEN LPLLDILKPG GETSEGLIGG LLEKVTSVIP GLANIIDIKV TDPQLLELGL
                                                                           120
       VQSPDGHRLY VTIPLGIKLQ VNTPLVGASL LRLAVKLDIT AEILAVRDKQ ERIHLVLGDC
                                                                           180
       THSPGSLQIS LLDGLGPLPI QGLLDSLTGI LNKVLPELVQ GNVCPLVNEV LRGLDITLVH
                                                                           240
10
       DIVNMLIHGL OFVIKV
       Seq ID NO: 39 DNA sequence
       Nucleic Acid Accession #: NM_004363.1
.15
       Coding sequence: 115-2223
                                                              51
                             21
                                        31
       CTCAGGGCAG AGGGAGGAAG GACAGCAGAC CAGACAGTCA CAGCAGCCTT GACAAAACGT
       TCCTGGAACT CAAGCTCTTC TCCACAGAGG AGGACAGAGC AGACAGCAGA GACCATGGAG
20
                                                                           120
       TCTCCCTCGG CCCCTCCCCA CAGATGGTGC ATCCCCTGGC AGAGGCTCCT GCTCACAGCC
                                                                           180
       TCACTTCTAA CCTTCTGGAA CCCGCCCACC ACTGCCAAGC TCACTATTGA ATCCACGCCG
                                                                           240
       TTCAATGTCG CAGAGGGGAA GGAGGTGCTT CTACTTGTCC ACAATCTGCC CCAGCATCTT
                                                                           300
       TTTGGCTACA GCTGGTACAA AGGTGAAAGA GTGGATGGCA ACCGTCAAAT TATAGGATAT
                                                                           360
25
       GTAATAGGAA CTCAACAAGC TACCCCAGGG CCCGCATACA GTGGTCGAGA GATAATATAC
                                                                           420
       CCCAATGCAT CCCTGCTGAT CCAGAACATC ATCCAGAATG ACACAGGATT CTACACCCTA
                                                                           480
       CACGTCATAA AGTCAGATCT TGTGAATGAA GAAGCAACTG GCCAGTTCCG GGTATACCCG
                                                                           540
       GAGCTGCCCA AGCCCTCCAT CTCCAGCAAC AACTCCAAAC CCGTGGAGGA CAAGGATGCT
                                                                           600
       GTGGCCTTCA CCTGTGAACC TGAGACTCAG GACGCAACCT ACCTGTGGTG GGTAAACAAT
                                                                           660
30
                                                                           720
       CAGAGCCTCC CGGTCAGTCC CAGGCTGCAG CTGTCCAATG GCAACAGGAC CCTCACTCTA
       TTCAATGTCA CAAGAAATGA CACAGCAAGC TACAAATGTG AAACCCAGAA CCCAGTGAGT
                                                                           780
       GCCAGGCGCA GTGATTCAGT CATCCTGAAT GTCCTCTATG GCCCGGATGC CCCCACCATT
                                                                           840
       TCCCCTCTAA ACACATCTTA CAGATCAGGG GAAAATCTGA ACCTCTCCTG CCACGCAGCC
                                                                           900
       TCTAACCCAC CTGCACAGTA CTCTTGGTTT GTCAATGGGA CTTTCCAGCA ATCCACCCAA
                                                                           960
35
       GAGCTCTTTA TCCCCAACAT CACTGTGAAT AATAGTGGAT CCTATACGTG CCAAGCCCAT
                                                                          1020
       AACTCAGACA CTGGCCTCAA TAGGACCACA GTCACGACGA TCACAGTCTA TGCAGAGCCA
                                                                          1080
       CCCAAACCCT TCATCACCAG CAACAACTCC AACCCCGTGG AGGATGAGGA TGCTGTAGCC
                                                                          1140
       TTAACCTGTG AACCTGAGAT TCAGAACACA ACCTACCTGT GGTGGGTAAA TAATCAGAGC
                                                                          1200
       CTCCCGGTCA GTCCCAGGCT GCAGCTGTCC AATGACAACA GGACCCTCAC TCTACTCAGT
                                                                          1260
40
       GTCACAAGGA ATGATGTAGG ACCCTATGAG TGTGGAATCC AGAACGAATT AAGTGTTGAC
                                                                          1320
       CACAGCGACC CAGTCATCCT GAATGTCCTC TATGGCCCAG ACGACCCCAC CATTTCCCCC
                                                                          1380
       TCATACACCT ATTACCGTCC AGGGGTGAAC CTCAGCCTCT CCTGCCATGC AGCCTCTAAC
                                                                          1440
       CCACCTGCAC AGTATTCTTG GCTGATTGAT GGGAACATCC AGCAACACAC ACAAGAGCTC
                                                                          1500
       TTTATCTCCA ACATCACTGA GAAGAACAGC GGACTCTATA CCTGCCAGGC CAATAACTCA
                                                                          1560
45
       GCCAGTGGCC ACAGCAGGAC TACAGTCAAG ACAATCACAG TCTCTGCGGA GCTGCCCAAG
                                                                          1620
       CCCTCCATCT CCAGCAACAA CTCCAAACCC GTGGAGGACA AGGATGCTGT GGCCTTCACC
                                                                          1680
                                                                          1740
       TGTGAACCTG AGGCTCAGAA CACAACCTAC CTGTGGTGGG TAAATGGTCA GAGCCTCCCA
       GTCAGTCCCA GGCTGCAGCT GTCCAATGGC AACAGGACCC TCACTCTATT CAATGTCACA
                                                                          1800
       AGAAATGACG CAAGAGCCTA TGTATGTGGA ATCCAGAACT CAGTGAGTGC AAACCGCAGT
                                                                          1860
50
       GACCCAGTCA CCCTGGATGT CCTCTATGGG CCGGACACCC CCATCATTTC CCCCCCAGAC
                                                                          1920
       TOGTOTTACC TITOGGGAGO GAACCICAAC CICTCCTGCC ACTCGGCCTC TAACCCATCC
                                                                          1980
       CCGCAGTATT CTTGGCGTAT CAATGGGATA CCGCAGCAAC ACACACAAGT TCTCTTTATC
                                                                          2040
       GCCAAAATCA CGCCAAATAA TAACGGGACC TATGCCTGTT TTGTCTCTAA CTTGGCTACT
                                                                          2100
       GGCCGCAATA ATTCCATAGT CAAGAGCATC ACAGTCTCTG CATCTGGAAC TTCTCCTGGT
                                                                          2160
55
       CTCTCAGCTG GGGCCACTGT CGGCATCATG ATTGGAGTGC TGGTTGGGGT TGCTCTGATA
                                                                          2220
       TAGCAGCCCT GGTGTAGTTT CTTCATTTCA GGAAGACTGA CAGTTGTTTT GCTTCTTCCT
                                                                          2280
       TAAAGCATTT GCAACAGCTA CAGTCTAAAA TTGCTTCTTT ACCAAGGATA TTTACAGAAA
                                                                          2340
       AGACTCTGAC CAGAGATCGA GACCATCCTA GCCAACATCG TGAAACCCCA TCTCTACTAA
                                                                          2400
       AAATACAAAA ATGAGCTGGG CTTGGTGGCG CGCACCTGTA GTCCCAGTTA CTCGGGAGGC
                                                                           2460
60
       TGAGGCAGGA GAATCGCTTG AACCCGGGAG GTGGAGATTG CAGTGAGCCC AGATCGCACC
       2580
       TCTGACCTGT ACTCTTGAAT ACAAGTTTCT GATACCACTG CACTGTCTGA GAATTTCCAA
                                                                           2640
       AACTTTAATG AACTAACTGA CAGCTTCATG AAACTGTCCA CCAAGATCAA GCAGAGAAAA
                                                                          2700
       TAATTAATTT CATGGGACTA AATGAACTAA TGAGGATTGC TGATTCTTTA AATGTCTTGT
                                                                          2760
       TTCCCAGATT TCAGGAAACT TTTTTTCTTT TAAGCTATCC ACTCTTACAG CAATTTGATA
65
                                                                           2820
       AAATATACTT TTGTGAACAA AAATTGAGAC ATTTACATTT TCTCCCTATG TGGTCGCTCC
                                                                          2880
       AGACTTGGGA AACTATTCAT GAATATTTAT ATTGTATGGT AATATAGTTA TTGCACAAGT
                                                                          2940
       TCAATAAAAA TCTGCTCTTT GTATAACAGA AAAA
70
       Seq ID NO: 40 Protein sequence:
       Protein Accession #: NP_004354.1
                                                               51
                                         31
                                                    41
       MESPSAPPHR WCIPWORLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE VLLLVHNLPQ
75
                                                                             60
       HLFGYSWYKG ERVDGNRQII GYVIGTQQAT PGPAYSGREI IYPNASLLIQ NIIQNDTGFY
                                                                            120
        TLHVIKSDLV NEEATGOFRV YPELPKPSIS SNNSKPVEDK DAVAFTCEPE TQDATYLWWV
                                                                            180
       NNQSLPVSPR LQLSNGNRTL TLFNVTRNDT ASYKCETQNP VSARRSDSVI LNVLYGPDAP
                                                                            240
       TISPLNTSYR SGENLNLSCH AASNPPAQYS WPVNGTFQQS TQELFIPNIT VNNSGSYTCQ
                                                                            300
80
       AHNSDTGLNR TTVTTITVYA EPPKPPITSN NSNPVEDEDA VALTCEPEIQ NTTYLWWVNN
                                                                            360
        QSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIQNELS VDHSDPVILN VLYGPDDPTI
                                                                            420
        SPSYTYYRPG VNLSLSCHAA SNPPAQYSWL IDGNIQQHTQ ELFISNITEK NSGLYTCQAN
                                                                            480
       NSASGHSRTT VKTITVSAEL PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS
                                                                            540
        LPVSPRLQLS NGNRTLTLFN VTRNDARAYV CGIQNSVSAN RSDPVTLDVL YGPDTPIISP
                                                                            600
85
        PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN GTYACFVSNL
                                                                            660
        ATGRNNSIVK SITVSASGTS PGLSAGATVG IMIGVLVGVA LI
```

```
Nucleic Acid Accession #: NM_006952.1
       Coding sequence: 11-793
 5
                                          31 .
                                                                 51
       AATCCCGACA ATGGCGAAAG ACAACTCAAC TGTTCGTTGC TTCCAGGGCC TGCTGATTTT
                                                                               60
       TGGAAATGTG ATTATTGGTT GTTGCGGCAT TGCCCTGACT GCGGAGTGCA TCTTCTTTGT
                                                                              120
10
       ATCTGACCAA CACAGCCTCT ACCCACTGCT TGAAGCCACC GACAACGATG ACATCTATGG
                                                                              180
       GGCTGCCTGG ATCGGCATAT TTGTGGGCAT CTGCCTCTTC TGCCTGTCTG TTCTAGGCAT
                                                                              240
       TGTAGGCATC ATGAAGTCCA GCAGGAAAAT TCTTCTGGCG TATTTCATTC TGATGTTTAT
                                                                              300
       AGTATATGCC TTTGAAGTGG CATCTTGTAT CACAGCAGCA ACACAACGAG ACTTTTTCAC
                                                                              360
       ACCEAACCTC TTCCTGAAGC AGATGCTAGA GAGGTACCAA AACAACAGCC CTCCAAACAA TGATGACCAG TGGAAAAACA ATGGAGTCAC CAAAACCTGG GACAGGCTCA TGCTCCAGGA
                                                                              420
15
                                                                              480
       CANTIGCTOT GGCSTAAATG GTCCATCAGA CTGGCAAAAA TACACATCTG CCTTCCGGAC TGAGAATAAT GATGCTGACT ATCCCTGGCC TCGTCAATGC TGTGTTATGA ACAATCTTAA
                                                                              540
                                                                              600
       AGAACCTCTC AACCTGGAGG CTTGTAAACT AGGCGTGCCT GGTTTTTATC ACAATCAGGG
                                                                              660
       CTGCTATGAA CTGATCTCTG GTCCAATGAA CCGACACGCC TGGGGGGTTG CCTGGTTTGG
                                                                              720
20
       ATTTGCCATT CTCTGCTGGA CTTTTTGGGT TCTCCTGGGT ACCATGTTCT ACTGGAGCAG
       AATTGAATAT TAAGAA
       Seg ID NO: 42 Protein seguence:
       Protein Accession #: NP 008883.1
25
       MAKDNSTVRC FQGLLIFGNV IIGCCGIALT AECIFFVSDQ HSLYPLLEAT DNDDIYGAAW
                                                                               60
       IGIFVGICLF CLSVLGIVGI MKSSRKILLA YFILMFIVYA FEVASCITAA TQRDFFTPNL
                                                                              120
30
       FLKQMLERYQ NNSPPNNDDQ WKNNGVTKTW DRLMLQDNCC GVNGPSDWQK YTSAFRTENN
                                                                              180
       DADYPWPROC CVMNNLKEPL NLEACKLGVP GFYHNQGCYE LISGPMNRHA WGVAWFGFAI
                                                                              240
       LCWTFWVLLG TMFYWSRIEY
35
       Seq ID NO: 43 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 83-2605
                                                                51
                              21
                                          31
                                                     41
40
       GCCGGACAGA TCTGCGCGTA TCCTGGAGCC GGCCCAGTTG TGAACTAGGA GAGCTTTGGG
                                                                               60
       ACCTCTGTCC CAAGCAAGAG AGATGAATGG AGAGTATAGA GGCAGAGGAT TTGGACGAGG
                                                                              120
       AAGATTTCAA AGCTGGAAAA GGGGAAGAGG TGGTGGGAAC TTCTCAGGAA AATGGAGAGA
                                                                              180
       AAGAGAACAC AGACCTGATC TGAGTAAAAC CACAGGAAAA CGTACTTCTG AACAAACCCC
                                                                              240
45
       ACAGTTTTTG CTTTCAACAA AGACCCCACA GTCAATGCAG TCAACATTGG ATCGATTCAT
                                                                              300
       ACCATATAAA GGCTGGAAGC TTTATTTCTC TGAAGTTTAC AGCGATAGCT CTCCTTTGAT
                                                                              360
       TGAGAAGATT CAAGCATTTG AAAAATTTTT CACAAGGCAT ATTGATTTGT ATGACAAGGA
                                                                              420
       TGAAATAGAA AGAAAGGGAA GTATTTTGGT AGATTTTAAA GAACTGACAG AAGGTGGTGA
                                                                              480
       AGTAACTAAC TTGATACCAG ATATAGCAAC TGAACTAAGA GATGCACCTG AGAAAACCTT
                                                                              540
50
       GGCTTGCATG GGTTTGGCAA TACATCAGGT GTTAACTAAG GACCTTGAAA GGCATGCAGC
                                                                              600
       TGAGTTACAA GCCCAGGAAG GATTGTCTAA TGATGGAGAA ACAATGGTAA ATGTGCCACA
                                                                              660
       TATTCATGCA AGGGTGTACA ACTATGAGCC TTTGACACAG CTCAAGAATG TCAGAGCAAA
                                                                              720
       TTACTATGGA AAATACATTG CTCTAAGAGG GACAGTGGTT CGTGTCAGTA ATATAAAGCC
                                                                              780
       TCTTTGCACC AAGATGGCTT TTCTTTGTGC TGCATGTGGA GAAATTCAGA GCTTTCCTCT
                                                                              840
55
       TCCAGATGGA AAATACAGTC TTCCCACAAA GTGTCCTGTG CCTGTGTGTC GAGGCAGGTC
                                                                              900
       ATTTACTGCT CTCCGCAGCT CTCCTCTCAC AGTTACGATG GACTGGCAGT CAATCAAAAT
                                                                              960
       CCAGGAATTG ATGTCTGATG ATCAGAGAGA AGCAGGTCGG ATTCCACGAA CAATAGAATG
                                                                             1020
       TGAGCTTGTT CATGATCTTG TGGATAGCTG TGTCCCGGGA GACACAGTGA CTATTACTGG
                                                                             1080
       AATTOTCAAA GTCTCAAATG CGGAAGAAGG TTCTCGAAAT AAGAATGACA AGTGTATGTT
                                                                             1140
60
       CCTTTTGTAT ATTGAAGCAA ATTCTATTAG TAATAGCAAA GGACAGAAAA CAAAGAGTTC
                                                                             1200
       TGAGGATGGG TGTAAGCATG GAATGTTGAT GGAGTTCTCA CTTAAAGACC TTTATGCCAT
                                                                             1260
       CCAAGAGATT CAAGCTGAAG AAAACCTGTT TAAACTCATT GTCAACTCGC TTTGCCCTGT
       CATTTTTGGT CATGAACTTG TTAAAGCAGG TTTGGCATTA GCACTCTTTG GAGGAAGCCA
                                                                             1380
       GAAATACGCA GATGACAAAA ACAGAATTCC AATTCGGGGA GACCCCCACA TCCTTGTTGT
                                                                             1440
65
       TGGAGATCCA GGCCTAGGAA AAAGTCAAAT GCTACAGGCA GCGTGCAATG TTGCCCCACG
                                                                             1500
       TEGCETETAT GTTTETEGTA ACACCACGAC CACCTCTEGT CTGACGGTAA CTCTTTCAAA
                                                                             1560
       AGATAGTTCC TCTGGAGATT TTGCTTTGGA AGCTGGTGCC CTGGTACTTG GTGATCAAGG
                                                                             1620
       TATTTGTGGA ATCGATGAAT TTGATAAGAT GGGGAATCAA CATCAAGCCT TGTTGGAAGC
                                                                             1680
       CATGGAGCAG CAAAGTATTA GTCTTGCTAA GGCTGGTGTG GTTTGTAGCC TTCCTGCAAG
                                                                             1740
70
       AACTICCATT ATTGCTGCTG CAAATCCAGT TGGAGGACAT TACAATAAAG CCAAAACAGT
                                                                             1800
       TTCTGAGAAT TTAAAAATGG GGAGTGCACT ACTATCCAGA TTTGATTTGG TCTTTATCCT
                                                                             1860
       GTTAGATACT CCAAATGAGC ATCATGATCA CTTACTCTCT GAACATGTGA TTGCAATAAG
                                                                             1920
       AGCTGGAAAG CAGAGAACCA TTAGCAGTGC CACAGTAGCT CGTATGAATA GTCAAGATTC
                                                                             1980
       AAATACTTCC GTACTTGAAG TAGTTTCTGA GAAGCCATTA TCAGAAAGAC TAAAGGTGGT
                                                                             2040
75
       TCCTGGAGAA ACAATAGATC CCATTCCCCA CCAGCTATTG AGAAAGTACA TTGGCTATGC
                                                                             2100
       TCGGCAGTAT GTGTACCCAA GGCTATCCAC AGAAGCTGCT CGAGTTCTTC AAGATTTTTA
                                                                             2160
       CCTTGAGCTC CGGAAACAGA GCCAGAGGTT AAATAGCTCA CCAATCACTA CCAGGCAGCT
                                                                             2220
       GGAATCTTTG ATTCGTCTGA CAGAGGCACG AGCAAGGTTG GAATTGAGAG AGGAAGCAAC
                                                                             2280
       CAAAGAAGAC GCTGAGGATA TAGTGGAAAT TATGAAATAT AGCATGCTAG GAACTTACTC
                                                                             2340
80
       TGATGAATTT GGGAACCTAG ATTTTGAGCG ATCCCAGCAT GGTTCTGGAA TGAGCAACAG
                                                                             2400
       GTCAACAGCG AAAAGATTTA TTTCTGCTCT CAACAACGTT GCTGAAAGAA CTTATAATAA
                                                                             2460
       TATATTTCAA TTTCATCAAC TTCGGCAGAT TGCCAAAGAA CTAAACATTC AGGTTGCTGA
                                                                             2520
       TTTTGAAAAT TTTATTGGAT CACTAAATGA CCAGGGTTAC CTCTTGAAAA AAGGCCCAAA
                                                                             2580
       AGTTTACCAG CITCAAACTA TGTAAAAGGA CTTCACCAAG TTAGGGCCTC CTGGGTTTAT
85
       TGCAGATTAA AGCCATCTCA GTGAAGATAT GCGTGCACGC ACAGACAGAC AGACACACAC
                                                                             2700
       ACACACACA ACACACACA ACACACACA ACACACAGTC AAATACTGTT CTCTGAAAAA
                                                                             2760
```

TGATGTCCCA AAAGTATTAT AATAGGAAAA AAGCATTAAA TATAATAAAC TAATTTAAGA

Seq ID NO: 41 DNA sequence

2820

```
AGTGATAAAG TCTCCAGATG CAGTAGCTCA CACTGTAATC ACAGTGACTC AGGAGGCTGA 2880
        GGTGAGAGGA TTCCTTGAGG CCAGGGTTCG AGACCAACCT TGGGCAACAT AGCAAGACCC
                                                                               2940
        CATTTCTTAA AAAAAAAAA AAAAAATTTA AACTTAGCTG GGTATGGTGG CACATGCCTA
        TAGTCTCAGC TACTTGTGAG GCTGAGGCAG GAGGATTCTT TGAGCCCAGG AGTTTGAGGT
        TACAGTGAGC CACAATCACA CCAATCACTG CACTCCAGCC TGGGCAATAA AGTAACTCTT
        GACTCAAAAA AATAAAAAAA ATTGTAGTGG TAGCCATGTG TTAATTGTTA AATAAATTCT
                                                                               3180
        CCAAAGGGCT AAAAGTAAAT TACTTATAAA TTTTTTATAG TTGTATTTTT GACCTGCCTT
                                                                               3240
        TTATATGTAT GAATATTTCA TAGTTTTGCA TATCAGATGT AGGCATACAG ACAAATACAT
                                                                               3300
        AAACCAATGA ATATATTACA TATTCTGTGT TCCAATAAAA CTTTATTTAT GGACACTAAA
                                                                               3360
10
        ATTTGAATTT CATAAAATTT TCCCATGTCA AGAATACAAA ATACTTGAGT TTTGTTTTTA
                                                                               3420
        GCTATTTAAT AATAGGTCTC ATTTATTCCA CAGGCTGTAG TTTGTAGTCT TGCTTGAAAC
                                                                               3480
        AATAGAAACA GACTGATTAA GCAGGAGAAG TTTTTTGAAA GAATTTTGTT TGGCTCACGG
                                                                               3540
        AATTATTAGA AGGCAGGTGA ACCAGGAGGG TAAGCTTCCA GCAGCAATTT GTAAAACCAT
                                                                               3600
        GCCTTAGAAT TGGACTAAGG AAGAAGCTGC TGACACTCCA CTGCCACACA GGGCACTGGA
                                                                               3660
15
        AGAAAGTGCT GCTGCCTCCC TGCCCCACCT TTGCCACTTC TGCAGCAGGA ATAGGTAGAA
                                                                               3720
        GAATGCCCCC ACCCGCACCG GAACAGCAAC AAAAGGATTC TGCATGAGAT GCCTCCCTAA
                                                                               3780
        ATTGCTGAAT TCAAAAAAGA AGTTGCATAC AAAGACATCT GATTGAAAAA GGGTATGTTA
                                                                               3840
        TATGCCCCTT TCATAGGCTG CTAGGGAGTT TTCCTGGTTC TACTTTCAGG TGGTGGGATC
                                                                               3900
        AATAAGACCA GAATTTCTCA TATGTTGTGA GAGGATTCAA ATGTTACAGG GTTGCCAGCC
                                                                               3960
20
        AAACTATCAA TCATGTATAA ATCCAACAAA CACTTTGTAA CATACAAGAA CTCAGGAAAT
                                                                               4020
       GTGAACCATT GTTGGAGAAT CTACTAAAAT ACGGCTTCCC GCAAACGAAG ATGAATGGAA
AATGTAAATA AAAAGAACTG GCAGTGTATA TCAGATGTTT AACTATAGGA CCAGAACTAA
                                                                               4080
                                                                               4140
        GATGTGGAGA CTATTGCCAT AGACCACAAT GTAAATTTTT AAGTGAGGAA GGAAAAATCA
                                                                               4200
       GGAATCAAAA GGGGCCAGGT GCAGTGGCTC ACATCTATAA TCCCAGAGCT TTGGGAGTTC
                                                                               4260
        GAGGCAGGAG GATCACTTGA AGCCAGTTTT GAGACCAGCC TATGCAACAC ATTGAGACCC
25
                                                                               4320
       TATCTCTACA AAAAATAGAT TAGCTGGGCA CGGTGGTGCA TGCCTATTGT CCTACCTACT
        GTGGAGGCTG AAGTAGGAAA TCACTTGAGC CCGAGAGTTT GAGGTTACAG TGAGCTATGA
       TTATACCACT GCACTCCAGC CTGGGCAAGA GAGCAAGACC TTGTCTCTT
30
       Seg ID NO: 44 Protein sequence:
        Protein Accession #: CAB55276.2
                                                                  51
35 -
       MNGEYRGRGF GRGRFQSWKR GRGGGNFSGK WREREHRPDL SKTTGKRTSE QTPQFLLSTK
        TPQSMQSTLD RFIPYKGWKL YFSEVYSDSS PLIEKIQAFE KFFTRHIDLY DKDEIERKGS
                                                                                120
       ILVDFKELTE GGEVTNLIPD IATELRDAPE KTLACMGLAI HQVLTKDLER HAAELQAQEG
                                                                                180
       LSNDGETMVN VPHIHARVYN YEPLTQLKNV RANYYGKYIA LRGTVVRVSN IKPLCTKMAF
                                                                                240
       LCAACGEIQS FPLPDGKYSL PTKCPVPVCR GRSFTALRSS PLTVTMDWQS IKIQELMSDD
                                                                                300
40
       QREAGRIPRT IECELVHDLV DSCVPGDTVT ITGIVKVSNA EEGSRNKNDK CMFLLYIEAN
                                                                                360
       SISNSKGQKT KSSEDGCKHG MLMEFSLKDL YAIQEIQAEE NLFKLIVNSL CPVIFGHELV
                                                                                420
       KAGLALALFG GSQKYADDKN RIPIRGDPHI LVVGDPGLGK SQMLQAACNV APRGVYVCGN
                                                                                480
       TTTTSGLTVT LSKDSSSGDF ALEAGALVLG DQGICGIDEF DKMGNQHQAL LEAMEQQSIS
                                                                                540
       LAKAGVVCSL PARTSIIAAA NPVGGHYNKA KTVSENLKMG SALLSRFDLV FILLDTPNEH
                                                                                600
45
       HDHLLSEHVI AIRAGKORTI SSATVARMNS QDSNTSVLEV VSEKPLSERL KVVPGETIDP
                                                                                660
       IPHQLLRKYI GYARQYVYPR LSTEAARVLQ DFYLELRKQS QRLNSSPITT RQLESLIRLT
       EARARLELRE EATKEDAEDI VEIMKYSMLG TYSDEFGNLD FERSQHGSGM SNRSTAKRFI
        SALNNVAERT YNNIFQFHQL RQIAKELNIQ VADFENPIGS LNDQGYLLKK GPKVYQLQTM
50
       Seq ID NO: 45 DNA sequence
       Nucleic Acid Accession #: NM_005416.1
       Coding sequence: 149..658
55
                                           31
                                                                  51
       ACCAGATCCC AGAGGCTGAA CACCTCGACC TTCTCTGCAC AGCAGATGAT CCCTGAGCAG
                                                                                 60
        CTGAAGACCA GAAAAGCCAC TAAGACTTTC TGCTTAATTC AGGAGCTTAG AGGATTCTTC
                                                                                120
       AAAGAGTGTG TCCACGATCC TTTGAAGCAT GAGTTCTTAC CAGCAGAAGC AGACCTTTAC
                                                                                180
60
        CCCACCACCT CAGCTTCAAC AGCAGCAGGT GAAACAACCC AGCCAGCCTC CACCTCAGGA
                                                                                240
       AATATTTGTT CCCACAACCA AGGAGCCATG CCACTCAAAG GTTCCACAAC CTGGAAACAC
                                                                                300
       AAAGATTCCA GAGCCAGGCT GTACCAAGGT CCCTGAGCCA GGCTGTACCA AGGTCCCTGA
                                                                                360
       GCCAGGCTGT ACCAAGGTCC CTGAGCCAGG TTGTACCAAG GTCCCTGAGC CAGGCTGTAC
CAAGGTCCCT GAGCCAGGTT GTACCAAGGT CCCTGAGCCA GGCTACACCA AGGTCCCTGA
                                                                                420
                                                                                480
65
       ACCAGGCAGC ATCAAGGTCC CTGACCAAGG CTTCATCAAG TTTCCTGAGC CAGGTGCCAT
                                                                                540
       CAMAGTTCCT GAGCAAGGAT ACACCAAAGT TCCTGTGCCA GGCTACACAA AGCTACCAGA
       GCCATGTCCT TCAACGGTCA CTCCAGGCCC AGCTCAGCAG AAGACCAAGC AGAAGTAATT
       TGGTGCACAG ACAAGCCCTT GAGAAGCCAA CCACCAGATG CTGGACACCC TCTTCCCATC
                                                                                720
        TGTTTCTGTG TCTTAATTGT CTGTAGACCT TGTAATCAGC ACATTGTCAC CCCAAGCCAT
                                                                                780
70
       AGTOTOTOTO TTATTTGTAT COTAAAAATA CGTACTATAA AGCTTTTGTT CACACACACT
                                                                                840
        CTGAAGAATC CTGTAAGCCC CTGAATTAAG CAGAAAGTCT TCATGGCTTT TCTGGTCTTC
                                                                                900
       GGCTGCTCAG GGTTCATCTG AAGATTCGAA TGAAAAGAAA TGCATGTTTC CTGCTCTTCC
       CTCATTAAAT TGCTTTTAAT TCCA
75
       Seq ID NO: 46 Protein sequence:
       Protein Accession #: NP_005407.1
                                                                  51
                                           31
80
       MSSYQQKQTF TPPPQLQQQQ VKQPSQPPPQ EIFVPTTKEP CHSKVPQPGN TKIPEPGCTK VPEPGCTKVPEP GCTKVPEPGC TKVPEPGCTK VPEPGYTKVP EPGSIKVPDQ GFIKFPEPGA IKVPEQGYTK VPVPGYTKLP EPCPSTVTPG PAQQKTKQK
85
        Seq ID NO: 47 DNA sequence
        Nucleic Acid Accession #: Eos sequence
```

```
WO 02/086443
       GOSTOSTGTG CAGGOSTCCC CGGGCTGTGG ATAATTAGAC ACGTTCTTCC CTCATTGCCC
       AAGGCTOGTT AGAATTCGCC CTAGAGCTGT ATCATGTATT TTCTTTCAAA TTAACTTTGC
                                                                             120
 5
       TTGCAATTAA GCTTAGGGAA CCAGCAACAA AAGCAAACTT GGCCCGAGGT CGTTCACCGC
                                                                             180
       GAAAATGGAT TAGAGAAACT TCTTCCCCGA TTTAAGGGGA AAGATTCCTG CGGCCAGCGC
                                                                             240
       TTTGGGGAAA GTGCCCCGAC CGCAGAGGCG ACGACAGGGG AGCAGGAAGC TGCTCACGGT
                                                                             300
       AGTCGGCGTT GGCGGCAGCG GTGGCCTTCC TCATCTGGGC GATGTGGGCT CCTAGAAGAG
                                                                             360
       TAAGGATAAC ATCCTGGAAA TGACTTCTGT ACGGTTTGAG CCCAACTGCA CACTCATGAC
                                                                             420
10
       TTGGAGCTGC CCTGTGGAGT TACAGTTTAC CAAACACATT CATGAACATA ATCTCATTTA
                                                                             480
       CTARARACTT TGTGAGAATT TTCTTTTACT ARABITTTTT CTTATTACAR A
       Seg ID NO: 48 DNA seguence:
       Nucleic Acid Accession #: CAT cluster
15
                             21
                                         31
       TTCCAAATTT TTTTTTTGT AATAAGAAAA AATTTTAGTA AAAGAAAATT CTCACAAAGT
                                                                              60
20
       TTTTAGTAAA TGAGATTATG TTCATGAATG TGTTTGGTAA ACTGTAACTC CACAGGGCAG
                                                                             120
       CTCCAAGTCA TGAGTGTGCA GTTGGGCTCA AACCGTACAG AAGTCATTTC CAGGATGTTA
                                                                             180
       TCCTTACTCT TCTCGGAGCC CACATCGCCC AGATGAGGAA GGCCACCGCT GCCGCCAACG
       CCGACTACCG TGAGCAGCTT CCTGCTCCCC TGTCGTCGCC TCTGCGGTCG GGGCACTTTC
                                                                             300
       CCCAAAGCGC TGGCCGCAGG AATCTTTCCC CTTAAATCGG GGAAGAAGTT TCTCTAATCC
25
       ATTTTCGCGG TGAACGACCT CGGGCCAAGT TTGCTTTTGT TGCTGGTTCC CTAAGCTTAA
                                                                             420
       TTGCAAGCAA AGTTAATTTG AAAGAAAATA CATGATACAG CTCTAGGGCG AATTCTAACG
       AGCCTTGGGC AATGAGGGAA GAACGTGTCT AGTTATCCAC AGCCCGGGGA CGCCTGCACA
                                                                             540
30
       Seq ID NO: 49 DNA sequence
       Nucleic Acid Accession #: CAT cluster
                                                               51
35
       60
       CCTGCCGACC TCTGTTGTCT CTTCTCTGAT GGCGGGGGGC GGGAGAAGCT GACCGGTGAG
                                                                            120
       ACCGTAGACC CGAAACCATT GGGTGTCACA AGCCGGTCGC CGGCTTTTTT GGGAGAACCC
                                                                            180
       GACACATGCA GACCAGTTTT CCTGGAACNG CATGACCATG TTATTACTAT GGGCCGCCTC
                                                                            240
       CCCAACCAAA GTGTTTAAAA CTTTTTAGGG CACCCCCAAA ATTTTTTTT TTTTTTTTT
                                                                             300
40
       TTCATTTAAA AAACTCTAAT ATTTATATTA AATACAAAGA TACCCAAACC CTTTATGCTT
CTTTCTCTGA TCTGTGTCTT TTTTCTTTGA CAGCATCTCC ATTTTTTTTC TGCTGCTTCA
                                                                             360
                                                                             420
       TCGCTGTAGC CATGGGAATC CGTTTCATTA TTATGGTAGC AATATGGAGT GCTGTATTCC
                                                                             480
       TAAAGAAACT GACACAGGAG AATCACTTGA ACTTGGGAGG CAGAGTTTGC AGTGAGCCGA
                                                                            540
       GATTGAACCA GTGCACTCCA GCCTTGGCAG CGGAGCAAGA TTCTGTCACA GTTCCTGAAG
                                                                             600
45
       TGCTGGTATC GTCCTGCAGC CCCATCCTCG GTTCCATTGC GCTGCCAGGC AGGGTGCTGG
       GACGTGGGGA GAGCTGGTCT ATATATCCGG GTGAAGCTCA GCTGTGGCAC ACCTTGGATG
                                                                             720
       CCGGGTCTCT CCTGGCCCCG GGGACCTAGT ATTTTTGCCA CGAGTGTACA CCAAACAAAG
       GAGACAGCAT CATTTATGAG CCTGCAGCAT CCACCCTACT GCTGTATCCA GTTTCCATTG
                                                                             840
50
       Seq ID NO: 50 DNA sequence
      Nucleic Acid Accession #: L05187
       Coding sequence: 1991..2260
55
                                         31
                                                               51
       CTGCAGGGAG GCAGGTAGAA AAGGCTTTTG GGTTTTCAGG TGGGGGGCAG TCTAGCCTGA
                                                                             60
       TCAGAAAGGA GGAAAAGGCC AGGGCAGATG TCTGGGTGGA GTGAAGGGAA AAAGTGATCC
                                                                            120
       CAGAAGAAGA ATTAGCCCCT GAAAGTCCCT GAAGTAGGAG AAGGGTAAAG GTGTGGTTGG
                                                                            180
60
       TGAAGGAAAG CAGGTTTTCC CAGATTAGCA ACCAGTCAGG GGGAGGAAGG TGAGAGTGGG
                                                                            240
       AGAGTCATAA GTAAATTATT CTGAATGTGT GTAGTTTAAT GGAATTGGGA AAAAGATGGG
                                                                            300
       GGAAATGGAT GGAAGGTCTT GGACTCTGAG ACAAGGGGTC TATAATCAGT CCATTTCATT
                                                                            360
       ATTTCTAGCT TCCACCTTCA CCAAGGCAGA CAAGGAGGGC CCACCTCAGC TCCTCTGCTC
       CCCCTCCCTT TCCCACCTAT TCATGTGTGC AAGAGTGCCC TGTCCCACAG AACACGGGGA
65
       ACAACCATCT CAATGACAAG GACAGCAGGT GGCAAGGCTC AACAGGACTC AGATGTCCCC
                                                                            540
       CCAGGGTTAA CTCATGAAAC CCTCCATGAA GCCTGCTGCT CACCCCTCCC TCAAGGCAAG
                                                                             600
       CCCTGCACCT GGGTCTGAGG ATGAGGGTGG CAGTGAAAAT TAGGCCAGTG ACATCATTTT
                                                                            660
       CAGCCAGCTA GTGCCAAAAA ATATCAGGTG GTGTTCATCA AATAAGCCGA GCCAACCGGT
                                                                             720
       GATGAGGATG GTAGTGTGAG TCATGTGTGA CAGGTGAGGA ATGAAAACAG AGTGCCCGAG
                                                                            780
70
       AGCTTCTATT TCCTTGAGGC AGGGCTCATT CATCTTATAA AAGCCAGCTG GCCATTGCCT
                                                                            840
       TCACACCAAA CCCAAGGGAC CACACAGCCC ATTCTGCTCC GTATACCAGG TAAGTCTCTG
                                                                            900
      ATTGCAACAA ACTGGCAATT CTAGTGTACT TTTTCATTAT TAGAAATTAG CTAAAGGCAA ATATGTGTAA GCAGGTTAAT CCAGGGTTTC AATGGGAGAT AGAGAATAGT GGAATATCTT
                                                                            960
                                                                           1020
      TATTTTAAGT TAAATTACAG TCTGGATTTG AAAGGACCTT AGAGATGGTT AGGGCTCCCA CCTCAGTAGA TAGTCATTGA ACTGGGAGTC CTGGAGAAGA TTGTTCAAAT GCCCATGGGA
                                                                           1080
                                                                           1140
       AGTTCATAGC AGAACTAGAA CTCAGGCCAG AGCACTCTCA GTAACACTGC AATTTCCCCC
                                                                           1200
       TGACAAGATA TTTATAGAAA TTTTAATTTA TTAGATGGAT CTCTACTGAG CATTTATTCC
                                                                           1260
       ATTTAAGGCA GTATGCTAGG CACTTTGGAC AAATCAATGC CCTAACGTAC TTACTTAACA
                                                                           1320
       1380
80
       AGTAATTGGC ATGACGGAGA TGGGCAGAGA AGGGCTGTGC ACTTTTGGGA GACTTGCTCA
                                                                           1440
       AGGAGACCTC TAGGGTGTCA AGTGATGTGA GCTATGATGG AGGGGTATTT GGACAAGCAG
                                                                           1500
       AGATGGGAAG AAAAGCATTT GGAAGGGACT GTGTAAGCAC AGACCAGAAG CAAAACCATA
                                                                           1560
       GAGGCTTAGA TGAATATAAA GCCATCCTAT AAGTCACAGG CTTTCTACAT GGTACTAGGA
                                                                           1620
       GAGGAAAGTG GTCTGATGCC ATTTTCCAAA AGACCTAATA TGCGGACCTC ATGTCCCTCA
                                                                           1680
85
       GAAGCCAGCT TTAGTAGGGC ATTTTTCCAG AACAGATATA AGGTGCCTTG GGTAGGAAGG
       GAGCCAAGAA GAGAACTCCA ATAAAATGGA GCAGAAGAAA TTGCCTTTTA GCTCCTCCTC
       TTCAAAGGGC CTGAAAATTA TCCAAGCTTA TTTCATTTTT AAATGTAATG GGGGAGCTAA
```

```
GGGAGATGAA AGGCTTTCTC TTCTAAAGGG TCCTGAAATA AAATCTGTTT GGCATTGAAT 1920
       TTGTATCCAT CTTTCTTTAA TTGAATCACT GTGTCAGCTT TCTGTCTCTA GAAAAAAACA
                                                                            1980
       GCAGCAGCAG GTGAAACAAC CTTGCCAGCC TCCACCCCAG GAACCATGCA TCCCCAAAAC
                                                                            2100
       CAAGGAGCCC TGCCAACCCA AGGTGCCTGA GCCCTGCCAC CCCAAAGTGC CTGAGCCCTG
                                                                            2160
       CCAGCCCAAG ATTCCAGAGC CCTGCCAGCC CAAGGTGCCT GAGCCCTGCC CTTCAACGGT
                                                                            2220
       CACTCCAGCA CCAGCCCAGC AGAAGACCAA GCAGAAGTAA TGTGGTCCAC AGCCATGCCC
                                                                            2280
       TTGAGGAGCT GGCCACTGGA TACTGAACAC CCTACTCCAT TCTGCTTATG AATCCCATTT
                                                                            2340
       GCCTATTGAC CCTGCAGTTA GCATGCTGTC ACCCTGAATC ATAATCGCTC CTTTGCACCT
                                                                            2400
10
       CTAAAAAGAT GTCCCTTACC CTCATTCTGG AGGCTCCTGA GCCTCTGCGT AAGGCTGAAC
                                                                            2460
       GTCTCACTGA CTGAGCTAGT CTTCTTGTTG CTCGGGTGCA TTTGAGGATG GATTTGGGGA
                                                                           2520
       AGGTCAAGTG ACCATCCCTA G
       Seq ID NO: 51 Protein sequence:
15
       Protein Accession #:AAC26838
                  11
                                         31
       MNSQQQKQPC TPPPQPQQQQ VKQPCQPPPQ EPCIPKTKEP CQPKVPEPCH PKVPEPCQPK
20
       IPEPCOPKVP EPCPSTVTPA PAQQKTKQK
       Seg ID NO: 52 DNA sequence
       Nucleic Acid Accession #: NM_002638.1
25
       Coding sequence: 120-473
                             21
                                         31
       CAATACAGCT AAGGAATTAT CCCTTGTAAA TACCACAGAC CCGCCCTGGA GCCAGGCCAA
30
       GCTGGACTGC ATAAAGATTG GTATGGCCTT AGCTCTTAGC CAAACACCTT CCTGACACCA
                                                                             120
                                                                             180
       TGAGGGCCAG CAGCTTCTTG ATCGTGGTGG TGTTCCTCAT CGCTGGGACG CTGGTTCTAG
       AGGCAGCTGT CACGGGAGTT CCTGTTAAAG GTCAAGACAC TGTCAAAGGC CGTGTTCCAT
                                                                             240
       TCAATGGACA AGATCCCGTT AAAGGACAAG TTTCAGTTAA AGGTCAAGAT AAAGTCAAAG
                                                                             300
       CGCAAGAGCC AGTCAAAGGT CCAGTCTCCA CTAAGCCTGG CTCCTGCCCC ATTATCTTGA
                                                                             360
35
       TCCGGTGCGC CATGTTGAAT CCCCCTAACC GCTGCTTGAA AGATACTGAC TGCCCAGGAA
                                                                             420
       TCAAGAAGTG CTGTGAAGGC TCTTGCGGGA TGGCCTGTTT CGTTCCCCAG TGAAGGGAGC
                                                                             480
       CGGTCCTTGC TGCACCTGTG CCGTCCCCAG AGCTACAGGC CCCATCTGGT CCTAAGTCCC
                                                                             540
       TGCTGCCCTT CCCCTTCCCA CACTGTCCAT TCTTCCTCCC ATTCAGGATG CCCACGGCTG
                                                                             600
       GAGCTGCCTC TCTCATCCAC TTTCCAATAA A
40
       Seq ID NO: 53 Protein sequence:
       Protein Accession #: NF_002629.1
                                         31
45
       MRASSPLIVV VPLIAGTLVL EAAVTGVPVK GQDTVKGRVP FNGQDPVKGQ VSVKGQDKVK
       AQEPVKGPVS TKPGSCPIIL IRCAMLNPPN RCLKDTDCPG IKKCCEGSCG MACFVPQ
       Seg ID NO: 54 DNA sequence
50
       Nucleic Acid Accession #: NM_019618
       Coding sequence: 75-584
                                                                51
55
       GGCACGAGCC ACGATTCAGT CCCCTGGACT GTAGATAAAG ACCCTTTCTT GCCAGGTGCT
                                                                              60
       GAGACAACCA CACTATGAGA GGCACTCCAG GAGACGCTGA TGGTGGAGGA AGGGCCGTCT
                                                                             120
       ATCAATCAAT GTGTAAACCT ATTACTGGGA CTATTAATGA TTTGAATCAG CAAGTGTGGA
                                                                             180
       CCCTTCAGGG TCAGAACCTT GTGGCAGTTC CACGAAGTGA CAGTGTGACC CCAGTCACTG
                                                                             240
       TTGCTGTTAT CACATGCAAG TATCCAGAGG CTCTTGAGCA AGGCAGAGGG GATCCCATTT
ATTTGGGAAT CCAGAATCCA GAAATGTGTT TGTATTGTGA GAAGGTTGGA GAACAGCCCA
                                                                             300
60
                                                                             360
       CATTGCAGCT AAAAGACCAG AAGATCATGG ATCTGTATGG CCAACCCCAG CCCGTGAAAC
CCTTCCTTTT CTACCGTGCC AAGACTGGTA GGACCTCCAC CCTTGAGTCT GTGGCCTTCC
                                                                             420
                                                                             480
       CGGACTGGTT CATTGCCTCC TCCAAGAGAG ACCAGCCCAT CATTCTGACT TCAGAACTTG
GGAAGTCATA CAACACTGCC TTTGAATTAA ATATAAATGA CTGAACTCAG CCTAGAGGTG
                                                                             540
       GCAGCTIGGT CTTTGTCTTA AAGTTTCTGG TTCCCAATGT GTTTTCGTCT ACATTTTCTT
65
       AGTGTCATTT TCACGCTGGT GCTGAGACAG GGGCAAGGCT GCTGTTATCA TCTCATTTTA
                                                                             720
       TAATGAAGAA GAAGCAATTA CTTCATAGCA ACTGAAGAAC AGGATGTGGC CTCAGAAGCA
                                                                             780
       GGAGAGCTGG GTGGTATAAG GCTGTCCTCT CAAGCTGGTG CTGTGTAGGC CACAAGGCAT
                                                                             840
       CTGCATGAGT GACTTTAAGA CTCAAAGACC AAACACTGAG CTTTCTTCTA GGGGTGGGTA
                                                                             900
70
       TGAAGATGCT TCAGAGCTCA TGCGCGTTAC CCACGATGGC ATGACTAGCA CAGAGCTGAT
                                                                             960
       CTCTGTTTCT GTTTTGCTTT ATTCCCTCTT GGGATGATAT CATCCAGTCT TTATATGTTG
                                                                            1020
       CCAATATACC TCATTGTGTG TAATAGAACC TTCTTAGCAT TAAGACCTTG TAAACAAAAA
                                                                            1080
       TRATTCTTGT GTTAAGTTAA ATCATTTTTG TCCTAATTGT AATGTGTAAT CTTAAAGTTA
       75
       Seq ID NO: 55 Protein sequence:
       Protein Accession #: NP_062564
                                         31.
80
       MRGTPGDADG GGRAVYQSMC KPITGTINDL NQQVWTLQGQ NLVAVPRSDS VTPVTVAVIT
       CKYPEALEQG RGDPIYLGIQ NPEMCLYCEK VGEQPTLQLK EQKIMDLYGQ PEPVKPFLFY
       RAKTGRTSTL ESVAFPDWFI ASSKRDQPII LTSELGKSYN TAFELNIND
85
       Seq ID NO: 56 DNA sequence
       Nucleic Acid Accession #: NM_003125
       Coding sequence: 65-334
```

	*****	,,,,,,,,,					
•	1	11	21	31 .	41	51	
	ī	ī	ī	i	ī	1	
	AGCAGTTCTA	AGGGACCATA	CAGAGTATTC	CTCTCTTCAC	ACCAGGACCA	GCCACTGTTG	60
5		TCCCAGCAGC					120
_		CAGCCTTGCC					180
	GCCCTGCCAC	CCCAAGGTGC	CTGAGCCCTG	CCACCCCAAA	GTGCCTGAGC	CCTGCCAGCC ·	240
	CAAGCTTCCA	GAGCCATGCC	ACCCCAAGGT	GCCTGAGCCC	TGCCCTTCAA	TAGTCACTCC	300
	AGCACCAGCC	CAGCAGAAGA	CCAAGCAGAA	GTAATGTGGT	CCACAGCCAT	GCCCTTGAGG	360
10	AGCCGGCCAC	CAGATGCTGA	ATCCCCTATC	CCATTCTGTG	TATGAGTCCC	ATTTGCCTTG	420
	CAATTAGCAT	TCTGTCTCCC	CCAAAAAAGA	ATGTGCTATG	AAGCTTTCTT	TCCTACACAC	480
	TCTGAGTCTC	TGAATGAAGC	TGAAGGTCTT	AGTACCAGAG	CTAGTTTTCA	GCTGCTCAGA	540
	ATTCATCTGA	AGAGAGACTT	AAGATGAAAG	CAAATGATTC	AGCTCCCTTA	TACCCCCATT	600
	AAATTCACTT						
15							
		57 Protein					
20	Protein Acc	cession #: N	P_003116				
20							
	ļ	11	21	31	41	51	
		1	1	1			60
		IPPPQLQQQQ		EPCIPKTKEP	CHPKVPEPCH	PRVPBPCQPR	80
25	PEECHEKAE	EPCPSIVTPA	PAQQKTKQK				
23		50 DW					
		58 DNA sequ ld Accession		702 2			
			_	73.2			
	cournd sedi	ence: 71-25					
30	1	11	21	31	41	51	
50	ī	ī	ī	ĭ	ī	ī	
	AAAGGGGCAA	GAGCTGAGCG	GAACACCGGC	CCGCCGTCGC	GGCAGCTGCT	TCACCCCTCT	60
	CTCTGCAGCC	ATGGGGCTCC	CTCGTGGACC	TCTCGCGTCT	CTCCTCCTTC	TCCAGGTTTG	120
	CTGGCTGCAG	TGCGCGGCCT	CCGAGCCGTG	CCGGGCGGTC	TTCAGGGAGG	CTGAAGTGAC	180
35	CTTGGAGGCG	GGAGGCGCGG	AGCAGGAGCC	CGGCCAGGCG	CTGGGGAAAG	TATTCATGGG	240
	CTGCCCTGGG	CAAGAGCCAG	CTCTGTTTAG	CACTGATAAT	GATGACTTCA	CTGTGCGGAA	300
	TGGCGAGACA	GTCCAGGAAA	GAAGGTCACT	GAAGGAAAGG	AATCCATTGA	AGATCTTCCC	360
	ATCCAAACGT	ATCTTACGAA	GACACAAGAG	AGATTGGGTG	GTTGCTCCAA	TATCTGTCCC	420
	TGAAAATGGC	AAGGGTCCCT	TCCCCCAGAG	ACTGAATCAG	CTCAAGTCTA	ATAAAGATAG	480
40	AGACACCAAG	ATTTTCTACA	GCATCACGGG	GCCGGGGGCA	GACAGCCCCC	CTGAGGGTGT	540
	CTTCGCTGTA	GAGAAGGAGA	CAGGCTGGTT	GTTGTTGAAT	AAGCCACTGG	ACCGGGAGGA	600
	GATTGCCAAG	TATGAGCTCT	TTGGCCACGC	TGTGTCAGAG	AATGGTGCCT	CAGTGGAGGA	660
	CCCCATGAAC	ATCTCCATCA	TCGTGACCGA	CCAGAATGAC	CACAAGCCCA	AGTTTACCCA	720
15	GGACACCTTC	CGAGGGAGTG	TCTTAGAGGG	AGTCCTACCA	GGTACTTCTG	TGATGCAGGT	780 840
45	GACAGCCACG	GATGAGGATG	ATGCCATCTA	CACCTACAAT	ACCATTO	CCAGCACAGG	900
	CCATAGCCAA	GAACCAAAGG	ACCCACACGA	CCTCATGTTC	CECCCECACE	ACACACAGG ACACACAGG	960
	CACCATCAGC	GTCATCTCCA ACAGACATGG	AMCCCCA CCC	CCGGGAAAAA	ACCCCIGAGI	CACTACTCCA	1020
	CATCCAGGCC	GCCAATGACA	ATGCTCCCAT	CTCCACCACC	CAGAAGTACG	AGGCCCATGT	1080
50 ·	CCCTCAGAAT	GCAGTGGGCC	ATGAGGTGCA	GAGGCTGACG	GTCACTGATC	TGGACGCCCC	1140
JU .	CAACTCACCA	GCGTGGCGTG	CCACCTACCT	TATCATGGGC	GGTGACGACG	GGGACCATTT	1200
	TACCATCACC	ACCCACCCTG	AGAGCAACCA	GGGCATCCTG	ACAACCAGGA	AGGGTTTGGA	1260
	TTTTGAGGCC	AAAAACCAGC	ACACCCTGTA	CGTTGAAGTG	ACCAACGAGG	CCCCTTTTGT	1320
	GCTGAAGCTC	CCAACCTCCA	CAGCCACCAT	AGTGGTCCAC	GTGGAGGATG	TGAATGAGGC	1380
55	ACCTGTGTTT	GTCCCACCCT	CCAAAGTCGT	TGAGGTCCAG	GAGGGCATCC	CCACTGGGGA	1440
•	CCTCTCTCTCT	GTCTACACTG	CAGAAGACCC	TGACAAGGAG	AATCAAAAGA	TCAGCTACCG	1500
	CATCCTGAGA	GACCCAGCAG	GGTGGCTAGC	CATGGACCCA	GACAGTGGGC	AGGTCACAGC	1560
	TGTGGGCACC	CTCGACCGTG	AGGATGAGCA	GTTTGTGAGG	AACAACATCT	ATGAAGTCAT	1620
	· GGTCTTGGCC	ATGGACAATG	GAAGCCCTCC	CACCACTGGC	ACGGGAACCC	TTCTGCTAAC	1680
60	ACTGATTGAT	GTCAATGACC	ATGGCCCAGT	CCCTGAGCCC	CGTCAGATCA	CCATCTGCAA	1740
	CCAAAGCCCT	GTGCGCCAGG	TGCTGAACAT	CACGGACAAG	GACCTGTCTC	CCCACACCTC	1800
	CCCTTTCCAG	GCCCAGCTCA	CAGATGACTC	AGACATCTAC	TGGACGGCAG	AGGTCAACGA	1860
	GGAAGGTGAC	ACAGTGGTCT	TGTCCCTGAA	GAAGTTCCTG	AAGCAGGATA	CATATGACGT	1920 1980
65	GCACCTTTCT	CTGTCTGACC	ATGGCAACAA	AGAGCAGCTG	ACGGIGATCA	GGGCCACTGT	2040
03	GTGCGACTGC	CATGGCCATG	TCGAAACCTG	CCCTGGACCC	TGGAAGGGAG	GTTTCATCCT TTTTGTTGGT	2100
	CCCTGTGCTG	GGGGCTGTCC	regerereer	COMPONE	CIGGIGCIGC	CCCGTGACAA	2160
	GAGAAAGAAG	CGGAAGATCA	AGGAGCCCCCI	CCIACICCCA	CAGGACTATG	ACATCACCCA	2220
	COTCTTCTAC	COTOTOGCOARG	CCVCCCCCCV	CCARGOTTOTO	CCCAATGACG	TGGCACCAAC	
70	CATCATCCC	ACACCCATGT	ACCGTCCTCG	GCCAGCCAAC	CCAGATGAAA	TCGGCAACTT	2340
70	TATAATTCAG	AACCCAIGI	CCCCTAACAC	AGACCCCACA	GCCCGCCCT	ACGACACCCT	2400
	CTTGGTGTTC	GACTATGAGG	GCAGCGGCTC	CGACGCCGCG	TCCCTGAGCT	CCCTCACCTC	
	CTCCGCCTCC	GACCAAGACC	AAGATTACGA	TTATCTGAAC	GAGTGGGGCA	GCCGCTTCAA	2520
	GAAGCTGGCA	GACATGTACG	GTGGCGGGGA	GGACGACTAG	GCGGCCTGCC	TGCAGGGCTG	2580
75	GGGACCAAAC	GTCAGGCCAC	AGAGCATCTC	CAAGGGGTCT	CAGTTCCCCC	TTCAGCTGAG	2640
	GACTTCGGAG	CTTGTCAGGA	AGTGGCCGTA	GCAACTTGGC	GGAGACAGGC	TATGAGTCTG	2700
	ACGTTAGAGT	GGTTGCTTCC	TTAGCCTTTC	AGGATGGAGG	AATGTGGGCA	GTTTGACTTC	2760
	AGCACTGAAA	ACCTCTCCAC	CTGGGCCAGG	GTTGCCTCAG	AGGCCAAGTT	TCCAGAAGCC	2820
00	TCTTACCTGC	CGTAAAATGC	TCAACCCTGT	GTCCTGGGCC	TGGGCCTGCT	GTGACTGACC	2880
80	TACAGTGGAC	TTTCTCTCTG	GAATGGAACC	TTCTTAGGCC	TCCTGGTGCA	ACTTAATTTT	2940
	TTTTTTTAAT	GCTATCTTCA	AAACGTTAGA	GAAAGTTCTT	CAAAAGTGCA	GCCCAGAGCT	3000
	GCTGGGCCCA	CTGGCCGTCC	TGCATTTCTG	GTTTCCAGAC	CCCAATGCCT	CCCATTCGGA	3060
	TGGATCTCTG	CGTTTTTATA	CTGAGTGTGC	CTAGGTTGCC	CCTTATTTTT	TATTTTCCCT	3120
0.5				AATCGTGTAT	ATGTACTAGA	ACTITITAT	3180
85	TAAAGAAACT	TTTCCCAGAA	AAAAA			•	

Seq ID NO: 59 Protein sequence:

WO 02/086443
Protein Accession #: NP_001784.2

```
51
 5
       MGLPRGPLAS LLLLQVCWLQ CAASEPCRAV FREAEVILEA GGAEQEPGQA LGKVFMGCPG
       QEPALFSTDN DDFTVRNGET VQERRSLKER NPLKIFPSKR ILRRHKRDWV VAPISVPENG
                                                                                 120
       kgpfpqrlnq lksnkdrdtk ifysitgpga dsppegvfav eketgwllln kpldreeiak
                                                                                180
       YELFGHAVSE NGASVEDPMN ISIIVTDQND HKPKFTQDTF RGSVLEGVLP GTSVMQVTAT
                                                                                 240
       DEDDAIYTYN GVVAYSIHSQ EPKDPHDLMF TIHRSTGTIS VISSGLDREK VPEYTLTIQA
TDMDGDGSTT TAVAVVEILD ANDNAPMFDP QKYEAHVPEN AVGHEVQRLT VTDLDAPNSP
                                                                                 300
10
                                                                                 360
       AWRATYLIMG GDDGDHFTIT THPESNQGIL TTRKGLDFEA KNOHTLYVEV TNEAPFVLKL
                                                                                 420
       PTSTATIVVH VEDVNEAPVF VPPSKVVEVQ EGIPTGEPVC VYTAEDPDKE NQKISYRILR
                                                                                 480
       DPAGWLAMDP DSGQVTAVGT LDREDEQFVR NNIYEVMVLA MDNGSPPTTG TGTLLLTLID
                                                                                 540
       VNDHGPVPEP RQITICNQSP VRQVLNITDK DLSPHTSPFQ AQLTDDSDIY WTAEVNEEGD
                                                                                 600
       WOODGEVER REGISTRACES VALUE LIGHTEN AND ASSETS A GENERAL REGISTRAL STANDARD WASGETLEVE GAVLALLELL LULLLLVRKK RKIKEFLILP EDDTRDNVFY YGEEGGGEED QDYDITQLHR
15
                                                                                 660
       GLEARPEVVL RIDVAPTIIP TPMYRPRPAN PDEIGMFIIE NLKAANTDPT APPYDTLLVF
DYEGSGSDAA SLSSLTSSAS DODQDYDYLN EWGSRPKKLA DMYGGGEDD
20
       Seq ID NO: 60 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 162-428
                                                                  51
25
       GCGTTCCGTT GGCGCGGAT TCGAACGTTC GGACTGAGGT TTTTCTGCCT GAAGAAGCGT
                                                                                 60
       CATACGGACC GGATTGTTTT CGCTGGCCCA GTGTCCCCGG AGCTTGTGTG CGATACAGAG
                                                                                120
       AGCACCTCGG AAGCTGAGGC AGCTGGTACT TGACAGAGAG GATGGCGCTG TCGACCATAG
                                                                                180
       TCTCCCAGAG GAAGCAGATA AAGCGGAAGG CTCCCCGTGG CTTTCTAAAG CGAGTCTTCA
                                                                                240
30
       AGCGAAAGAA GCCTCAACTT CGTCTGGAGA AAAGTGGTGA CTTATTGGTC CATCTGAACT
                                                                                300
       GTTTACTGTT TGTTCATCGA TTAGCAGAAG AGTCCAGGAC AAACGCTTGT GCGAGTAAAT
                                                                                360
       GTAGAGTCAT TAACAAGGAG CATGTACTGG CCGCAGCAAA GGTAATTCTA AAGAAGAGCA
                                                                                420
       GAGGTTAGAA GTCAAAGAAC ATATTCTTGA AAGTTATGAT GCATTCTTTT GGGTGGTAAC
                                                                                480
       AGATCATAAA GACATTTTTT ACACATCAGT TAATATGGGA TTATTAAATA TTGG
35
       Seg ID NO: 61 Protein sequence:
       Protein Accession #: Eos sequence
40
       MALSTIVSOR KOIKRKAPRG FLKRVFKRKK POLRLEKSGD LLVHLNCLLF VHRLAEESRT
       NACASKCRVI NKEHVLAAAK VILKKSRG
       Seg ID NO: 62 DNA sequence
45
       Nucleic Acid Accession #: NM_000094.2
       Coding sequence: 99-8933
50
       GGGCTGGAGG GGCGCTGGGC TCGGACCTGC CAAGGCCACC GCAGGGGGGA GCAAGGGACA
                                                                                 60
       GAGGOGGGG TCCTAGCTGA CGGCTTTTAC TGCCTAGGAT GACGCTGCGG CTTCTGGTGG
                                                                                120
       CCGCGCTCTG CGCCGGGATC CTGGCAGAGG CGCCCCGAGT GCGAGCCCAG CACAGGGAGA
                                                                                180
       GAGTGACCTG CACGCGCCTT TACGCCGCTG ACATTGTGTT CTTACTGGAT GGCTCCTCAT
                                                                                240
       CCATTGGCCG CAGCAATTTC CGCGAGGTCC GCAGCTTTCT CGAAGGGCTG GTGCTGCCTT
                                                                                300
       TCTCTGGAGC AGCCAGTGCA CAGGGTGTGC GCTTTGCCAC AGTGCAGTAC AGCGATGACC
55
                                                                                360
       CACGGACAGA GTTCGGCCTG GATGCACTTG GCTCTGGGGG TGATGTGATC CGCGCCATCC
                                                                                420
       GTGAGCTTAG CTACAAGGGG GGCAACACTC GCACAGGGGC TGCAATTCTC CATGTGGCTG
                                                                                480
       ACCATGTCTT CCTGCCCCAG CTGGCCCGAC CTGGTGTCCC CAAGGTCTGC ATCCTGATCA
       CAGACGGGAA GTCCCAGGAC CTGGTGGACA CAGCTGCCCA AAGGCTGAAG GGGCAGGGGG
TCAAGCTATT TGCTGTGGGG ATCAAGAATG CTGACCCTGA GGAGCTGAAG CGAGTTGCCT
60
       CACAGCCAAC CTCCGACTTC TTCTTCTTCG TCAATGACTT CAGCATCTTG AGGACACTAC
                                                                                720
       TGCCCCTCGT TTCCCGGAGA GTGTGCACGA CTGCTGGTGG CGTGCCTGTG ACCCGACCTC
                                                                                780
       CGGATGACTC GACCTCTGCT CCACGAGACC TGGTGCTGTC TGAGCCAAGC AGCCAATCCT
                                                                                840
       TGAGAGTACA GTGGACAGCG GCCAGTGGCC CTGTGACTGG CTACAAGGTC CAGTACACTC
                                                                                900
65
       CTCTGACGGG GCTGGGACAG CCACTGCCGA GTGAGCGGCA GGAGGTGAAC GTCCCAGCTG
                                                                                960
       GTGAGACCAG TGTGCGGCTG CGGGGTCTCC GGCCACTGAC CGAGTACCAA GTGACTGTGA
                                                                               1020
       TTGCCCTCTA CGCCAACAGC ATCGGGGAGG CTGTGAGCGG GACAGCTCGG ACCACTGCCC
                                                                               1080
       TAGAAGGGCC GGAACTGACC ATCCAGAATA CCACAGCCCA CAGCCTCCTG GTGGCCTGGC
                                                                               1140
       GGAGTGTGCC AGGTGCCACT GGCTACCGTG TGACATGGCG GGTCCTCAGT GGTGGGCCCA
                                                                               1200
70
       CACAGCAGCA GGAGCTGGGC CCTGGGCAGG GTTCAGTGTT GCTGCGTGAC TTGGAGCCTG
                                                                               1260
       GCACGGACTA TGAGGTGACC GTGAGCACCC TATTTGGCCG CAGTGTGGGG CCCGCCACTT
                                                                               1320
       CCCTGATGGC TCGCACTGAC GCTTCTGTTG AGCAGACCCT GCGCCCGGTC ATCCTGGGCC
                                                                               1380
       CCACATCCAT CCTCCTTTCC TGGAACTTGG TGCCTGAGGC CCGTGGCTAC CGGTTGGAAT
                                                                               1440
       GGCGGCGTGA GACTGGCTTG GAGCCACCGC AGAAGGTGGT ACTGCCCTCT GATGTGACCC
                                                                               1500
75
       GCTACCAGTT GGATGGGCTG CAGCCGGGCA CTGAGTACCG CCTCACACTC TACACTCTGC
                                                                               1560
       TGGAGGGCCA CGAGGTGGCC ACCCCTGCAA CCGTGGTTCC CACTGGACCA GAGCTGCCTG
                                                                               1620
       TGAGCCCTGT AACAGACCTG CAAGCCACCG AGCTGCCCGG GCAGCGGGTG CGAGTGTCCT
                                                                               1680
       GGAGCCCAGT CCCTGGTGCC ACCCAGTACC GCATCATTGT GCGCAGCACC CAGGGGGTTG
                                                                               1740
       AGCGGACCCT GGTGCTTCCT GGGAGTCAGA CAGCATTCGA CTTGGATGAC GTTCAGGCTG
80
       GGCTTAGCTA CACTGTGCGG GTGTCTGCTC GAGTGGGTCC CCGTGAGGGC AGTGCCAGTG
       TCCTCACTGT CCGCCGGGAG CCGGAAACTC CACTTGCTGT TCCAGGGCTG CGGGTTGTGG
       TGTCAGATGC AACGCGAGTG AGGGTGGCCT GGGGACCCGT CCCTGGAGCC AGTGGATTTC
       GGATTAGCTG GAGCACAGGC AGTGGTCCGG AGTCCAGCCA GACACTGCCC CCAGACTCTA
       CTGCCACAGA CATCACAGGG CTGCAGCCTG GAACCACCTA CCAGGTGGCT GTGTCGGTAC
                                                                               2100
85
       TGCGAGGCAG AGAGGAGGGC CCTGCTGCAG TCATCGTGGC TCGAACGGAC CCACTGGGCC
                                                                               2160
       CAGTGAGGAC GGTCCATGTG ACTCAGGCCA GCAGCTCATC TGTCACCATT ACCTGGACCA
                                                                               2220
       GGGTTCCTGG CGCCACAGGA TACAGGGTTT CCTGGCACTC AGCCCACGGC CCAGAGAAAT
```

		TTCTCCCAC	GCCACGGTGG	COURT CONTRACT	TOCACTOCAG	ССВСВТВСТС	2340
			GCCACGGTGG				2400
			CCTGTGGGTC				2460
							2520
5			ACCTGGGTAG				
2			GCCCCATGA				2580
			GAAGGTGGAG				2640
			CCTGTCTCCA				2700
	CAGCCCTGGG	GACGCTTCAC	GTGGTGCAGC	GCGGGGAGCA	CTCGCTGAGG	CTGCGCTGGG	2760
10			GGCTTCCTTC				2820
10	AGTCCCGGGT	CCTGGGGCCC	GAGCTCAGCA	GCTATCACCT	GGACGGGCTG	GAGCCAGCGA	2880
	CACAGTACCG	CGTGAGGCTG	AGTGTCCTAG	GCCCGCTGG	AGAAGGCCC	TCTGCAGAGG	2940
			CCTCGTGTTC				3000
			GCCTGGACTC				3060
			CCTGGCCAGG				3120
15			GTGACAGGGC				3180
			GTGCGGGGTC				3240
	GCCCCCGTGG	CCTGGCGGAT	GTGGTGTTCC	TACCACATGC	CACTCAAGAC	AATGCTCACC	3300
	GTGCGGAGGC	TACGAGGAGG	GTCCTGGAGC	GTCTGGTGTT	GGCACTTGGG	CCTCTTGGGC	3360
	CACAGGCAGT	TCAGGTTGGC	CTGCTGTCTT	ACAGTCATCG	GCCCTCCCCA	CTGTTCCCAC	3420
20			GGCATTATCT				3480
20	ACCCAACTGG	GAACAACCTG	GGCACAGCCG	TGGTCACAGC	TCACAGATAC	ATGTTGGCAC	3540
			CAGCACGTAC				3600
	CAGAIGCICC	TCACATATTC	AGCCCCATCC	CTCACCCCCA	CCCTTCTCCC	CTTAATGTGG	3660
	CCTTGAGAGG	AATCCCTCCA	GCGGACCCAG	ACCAGCTCCC	TOGOTTOGOG	CCCCCTATCC	3720
25	TGATGTTGGG	AAIGGCIGGA	GCGGACCCAG	AGCAGCIGCG	CCTCGACCAG	CCAGTCAGTG	3780
23	ACTCTGTCCA	GACCITCTC	GCCGTGGATG	ATGGGCCAAG	CCIGGACCAG	CACCOCOCCC	
			CAGGCATCCT				3840
			CAGAAGGGGG				3900
	TTGGGCCTCC	TGGCGACCCT	GCCTCCCGG	GCAGGACCGG	TGCTCCCGGC	CCCCAGGGGC	3960
20	CCCCTGGAAG	TGCCACTGCC	AAGGCCGAGA	GGGGCTTCCC	TGGAGCAGAT	GGGCGTCCAG	4020
30	GCAGCCCTGG	CCGCGCCGGG	AATCCTGGGA	CCCCTGGAGC	CCCTGGCCTA	AAGGGCTCTC	4080
			GGGGACCCGG				4140
			GTCATCGGAG				4200
	GGGACCCTGG	ACCATCGGGC	CCCCCTGGAC	CTCGTGGACC	ACTGGGGGAC	CCAGGACCCC	4260
	GTGGCCCCCC	AGGGCTTCCT	GGAACAGCCA	TGAAGGGTGA	CAAAGGCGAT	CGTGGGGAGC	4320
35	GGGGTCCCCC	TGGACCAGGT	GAAGGTGGCA	TTGCTCCTGG	GGAGCCTGGG	CTGCCGGGTC	4380
	TTCCCGGAAG	CCCTGGACCC	CAAGGCCCCG	TTGGCCCCCC	TGGAAAGAAA	GGAGAAAAAG	4440
	GTGACTCTGA	GGATGGAGCT	CCAGGCCTCC	CAGGACAACC	TGGGTCTCCG	GGTGAGCAGG	4500
			GCTATTGGCC				4560
	TGGGTGAGGC	TGGAGAGAAG	GGCGAACGTG	GACCCCCAGG	CCCAGCGGGA	TCCCGGGGGC	4620
40	TGCCAGGGGT	TGCTGGACGT	CCTGGAGCCA	AGGGTCCTGA	AGGGCCACCA	GGACCCACTG	4680
10	CCCCCCVVCC	AGAGAAGGGG	GAGCCTGGTC	GCCCTGGGGA	CCCTGCAGTG	GTGGGACCTG	4740
			GAAAAGGGAG				4800
	CIGIIGCIGG	ACCCAMAGGA	GGCCCACCCG	COTTCCTTCT	TCCTGGAGAC	CCTGGCCCCCA	4860
	CCGGAGICCA	MOGGGAACGG	GGTCCCATTG	COCTENT	CACACCACCA	CCCCCAGGTG	4920
45			AAGGGAGACC				4980
43			GAAGTTGGAG				5040
			GGCGAGCGTG				5100
	CGGGTTTGCC	TGGAAAAGCA	GGCGAGCGIG	GCCTTCGGGG	MCCACCIGGA	CCCACCCCCC	
	CTGTGGGTGA	AAAGGGAGAC	CAGGGAGATC	CTGGAGAGGA	TGGACGAAAT	GGCAGCCC1G	5160
50	GATCATCTGG	ACCCAAGGGT	GACCGTGGGG	AGCCGGGTCC	CCCAGGACCC	CCGGGACGGC	5220
50	TGGTAGACAC	AGGACCTGGA	GCCAGAGAGA	AGGGAGAGCC	TGGGGACCGC	GGACAAGAGG	5280
	GTCCTCGAGG	GCCCAAGGGT	GATCCTGGCC	TCCCTGGAGC	CCCTGGGGAA	AGGGGCATTG	5340
	AAGGGTTTCG	GGGACCCCCA	GGCCCACAGG	GGGACCCAGG	TGTCCGAGGC	CCAGCAGGAG	5400
	AAAAGGGTGA	CCGGGGTCCC	CCTGGGCTGG	ATGGCCGGAG	CGGACTGGAT	GGGAAACCAG	5460
	GAGCCGCTGG	GCCCTCTGGG	CCGAATGGTG	CTGCAGGCAA	AGCTGGGGAC	CCAGGGAGAG	5520
55	ACGGGCTTCC	AGGCCTCCGT	GGAGAACAAG	GCCTCCCTGG	CCCCTCTGGT	CCCCCTGGAT	5580
	TACCGGGAAA	GCCAGGCGAG	GATGGGAAAC	CTGGCCTGAA	TGGAAAAAAC	GGAGAACCTG	5640
	GGGACCCTGG	AGAAGACGGG	AGGAAGGGAG	AGAAAGGAGA	TTCAGGCGCC	TCTGGGAGAG	5700
	AAGGTCGTGA	TGGCCCCAAG	GGTGAGCGTG	GAGCTCCTGG	TATCCTTGGA	CCCCAGGGGC	5760
	CTCCAGGCCT	CCCAGGGCCA	GTGGGCCCTC	CTGGCCAGGG	TTTTCCTGGT	GTCCCAGGAG	5820
60	GCACGGGCCC	CAAGGGTGAC	CGTGGGGAGA	CTGGATCCAA	AGGGGAGCAG	GGCCTCCCTG	5880
			GAGCCTGGAA				5940
						GAGAGCTCTG	6000
	GTAGCTTCCT	GCCTGTGCCC	GAACGGCGTC	GAGGCCCCAA	GGGGGACTCA	GGCGAACAGG	6060
	GCCCCCAGG	CANGGAGGGC	CCCATCGGCT	TTCCTGGAGA	ACGCGGGCTG	AAGGGCGACC	6120
65	CTCCACACC	TEGECTOTO	CCCTCACCTC	GTCTGGCCCT	TGGGGAGAGG	GGCCCCCCG	6180
05	CCCCABCCCC	COMMECCECAG	CACCCTCCAA	ACCOTCCTAT	TCCCGGGCTC	CCAGGCAGGG	6240
						GAGAAAGGAG	6300
	CIGGGGTGT	GGGAGAGGCA	GGAAGGCCAG	GAGAGAGGGG	MORACOGGA	GROAMAGGAG	
	AACGTGGAGA	ACAGGGCAGA	GATGGCCCTC	CIGGACICCC	TGGAACCCCT	GGGCCCCCCG	6360
70	GACCCCCTGG	CCCCAAGGTG	TCTGTGGATG	AGCCAGGTCC	TGGACTCTCT	GGAGAACAGG	6420
70	GACCCCCTGG	ACTCAAGGGT	GCTAAGGGGG	AGCCGGGCAG	CAATGGTGAC	CAAGGTCCCA	6480
	AAGGAGACAG	GGGTGTGCCA	GGCATCAAAG	GAGACCGGGG	AGAGCCTGGA	CCGAGGGGTC	6540
	AGGACGGCAA	CCCGGGTCTA	CCAGGAGAGC	GTGGTATGGC	TGGGCCTGAA	GGGAAGCCGG	6600
	GTCTGCAGGG	TCCAAGAGGC	CCCCCTGGCC	CAGTGGGTGG	TCATGGAGAC	CCTGGACCAC	6660
	CTGGTGCCCC	GGGTCTTGCT	GGCCCTGCAG	GACCCCAAGG	ACCTTCTGGC	CTGAAGGGGG	6720
75	AGCCTGGAGA	GACAGGACCT	CCAGGACGGG	GCCTGACTGG	ACCTACTGGA	GCTGTGGGAC	6780
	TTCCTGGACC	CCCCGGCCCT	TCAGGCCTTG	TGGGTCCACA	GGGGTCTCCA	GGTTTGCCTG	6840
	GACAAGTGGG	GGAGACAGGG	AAGCCGGGAG	CCCCAGGTCG	AGATGGTGCC	AGTGGAAAAG	6900
	ATGGAGACAG	AGGGAGCCCT	GGTGTGCCAG	GGTCACCAGG	TCTGCCTGGC	CCTGTCGGAC	6960
	CTARAGGAGA	ACCTGGCCCC	ACGGGGGCCC	CTGGACAGGC	TGTGGTCGGG	CTCCCTGGAG	7020
80	CAAAGGGAGA	GAAGGGAGCC	CCTGGAGGCC	TTGCTGGAGA	CCTGGTGGGT	GAGCCGGGAG	7080
- 0	CCADAGGAGA	CCGAGGAGGG	CCAGGGCCC	GAGGCGAGAA	GGGTGAAGCT	GGCCGTGCAG	7140
	CCCFCCCCC	PCFCCCCCCC	GAAGATGGTC	AGAAAGGGGG	TCCAGGACCC	AAAGGTTTCA	7200
	ACCOUNTY CCC	ACCACHCCIGG	GTCCCGGGCT	CCCCACCCCC	TOURGEOUGH	CCAGGTGTGA	7260
	AGGGTGACCC	MUGAGTCGGG	GTCCCGGGCT	CCCCIGGCC	1001000000	TOUGGIGIGH	7320
85	AGGGAGATCT	GGGCCTCCCT	GGCCTGCCCG	GIGCICCIGG	TOTAL COST	TICCOGGIC	
02	AGACAGGCCC	TCGAGGAGAG	ATGGGTCAGC	CAGGCCCTAG	1 GGAGAGCGG	GGTCTGGCAG	7380
	GCCCCCAGG	GAGAGAAGGA	ATCCCAGGAC	CCCTGGGGCC	ACCIGGACCA	CCGGGGTCAG	7440
	TGGGACCACC	TGGGGCCTCT	GGACTCAAAG	GAGACAAGGG	AGACCCTGGA	GTAGGGCTGC	7500

```
CTGGGCCCCG AGGCGAGCGT GGGGAGCCAG GCATCCGGGG TGAAGATGGC CGCCCCGGCC 7560
        AGGAGGGACC CCGAGGACTC ACGGGGCCCC CTGGCAGCAG GGGAGAGCGT GGGGAGAAGG
        GTGATGTTGG GAGTGCAGGA CTAAAGGGTG ACAAGGGAGA CTCAGCTGTG ATCCTGGGGC
                                                                                7680
        CTCCAGGCCC ACGGGGTGCC AAGGGGGACA TGGGTGAACG AGGGCCTCGG GGCTTGGATG
                                                                                7740
 5
        GTGACAAAGG ACCTCGGGGA GACAATGGGG ACCCTGGTGA CAAGGGCAGC AAGGGAGAGC
                                                                                7800
        CTGGTGACAA GGGCTCAGCC GGGTTGCCAG GACTGCGTGG ACTCCTGGGA CCCCAGGGTC
                                                                                7860
        AACCTGGTGC AGCAGGGATC CCTGGTGACC CGGGATCCCC AGGAAAGGAT GGAGTGCCTG
                                                                                7920
        GTATCCGAGG AGAAAAAGGA GATGTTGGCT TCATGGGTCC CCGGGGCCTC AAGGGTGAAC
                                                                                7980
        GGGGAGTGAA GGGAGCCTGT GGCCTTGATG GAGAGAAGGG AGACAAGGGA GAAGCTGGTC
                                                                                8040
10
        CCCCAGGCCG CCCCGGGCTG GCAGGACACA AAGGAGAGAT GGGGGAGCCT GGTGTGCCGG
                                                                                8100
        GCCAGTCGGG GGCCCCTGGC AAGGAGGGCC TGATCGGTCC CAAGGGTGAC CGAGGCTTTG
                                                                                8160
        ACGGGCAGCC AGGCCCCAAG GGTGACCAGG GCGAGAAAGG GGAGCGGGGA ACCCCAGGAA
                                                                                8220
        TTGGGGGCTT CCCAGGCCCC AGTGGAAATG ATGGCTCTGC TGGTCCCCCA GGGCCACCTG
                                                                                8280
       GCAGTGTTGG TCCCAGAGGC CCCGAAGGAC TTCAGGGCCA GAAGGGTGAG CGAGGTCCCC
                                                                                8340
15
        CCGGAGAGAG AGTGGTGGGG GCTCCTGGGGG TCCCTGGAGC TCCTGGCGAG AGAGGGGAGC
                                                                                8400
        AGGGGCGGCC AGGGCCTGCC GGTCCTCGAG GCGAGAAGGG AGAAGCTGCA CTGACGGAGG
                                                                                8460
        ATGACATCCG GGGCTTTGTG CGCCAAGAGA TGAGTCAGCA CTGTGCCTGC CAGGGCCAGT
                                                                                8520
       TCATCGCATC TGGATCACGA CCCCTCCCTA GTTATGCTGC AGACACTGCC GGCTCCCAGC
                                                                                8580
       TCCATGCTGT GCCTGTGCTC CGCGTCTCTC ATGCAGAGGA GGAAGAGCGG GTACCCCCTG
                                                                                8640
20
       AGGATGATGA GTACTCTGAA TACTCCGAGT ATTCTGTGGA GGAGTACCAG GACCCTGAAG
                                                                                8700
       CTCCTTGGGA TAGTGATGAC CCCTGTTCCC TGCCACTGGA TGAGGGCTCC TGCACTGCCT ACACCCTGCG CTGGTACCAT CGGGCTGTGA CAGGCAGCAC AGAGGCCTGT CACCCTTTTG
                                                                                8760
       TCTATGGTGG CTGTGGAGGG AATGCCAACC GTTTTGGGAC CCGTGAGGCC TGCGAGCGCC
       GCTGCCCACC CCGGGTGGTC CAGAGCCAGG GGACAGGTAC TGCCCAGGAC TGAGGCCCAG
25
       ATAATGAGCT GAGATTCAGC ATCCCCTGGA GGAGTCGGGG TCTCAGCAGA ACCCCACTGT
       CCCTCCCCTT GGTGCTAGAG GCTTGTGTGC ACGTGAGCGT GCGAGTGCAC GTCCGTTATT
                                                                                9060
        TCAGTGACTT GGTCCCGTGG GTCTAGCCTT CCCCCCTGTG GACAAACCCC CATTGTGGCT
                                                                                9120
       CCTGCCACCC TGGCAGATGA CTCACTGTGG GGGGGTGGCT GTGGGCAGTG AGCGGATGTG
                                                                                9180
       ACTGGCGTCT GACCCGCCCC TTGACCCAAG CCTGTGATGA CATGGTGCTG ATTCTGGGGG
                                                                                9240
30
        GCATTAAAGC TGCTGTTTTA AAAGGCAAAA AA
       Seq ID NO: 63 Protein sequence:
       Protein Accession #: NP_000085.1
35
                               21
                                           31
                                                       41
                                                                   51
       MTLRLLVAAL CAGILAEAPR VRAQHRERVT CTRLYAADIV FLLDGSSSIG RSNFREVRSF
                                                                                  60
       LEGLVLPPSG AASAQGVRFA TVQYSDDPRT EFGLDALGSG GDVIRAIREL SYKGGNTRTG
                                                                                 120
       AAILHVADHV FLPQLARPGV PKVCILITDG KSQDLVDTAA QRLKGQGVKL FAVGIKNADP
                                                                                 180
       EELKRVASQP TSDFFFFVND FSILRTLIPL VSRRVCTTAG GVPVTRPPDD STSAPRDLVL
SEPSSQSLRV QWTAASGPVT GYKVQYTPLT GLGQPLPSER QEVNVPAGET SVRLRGLRPL
40
                                                                                 240
                                                                                 300
       TEYQVTVIAL YANSIGEAVS GTARTTALEG PELTIONTTA HSLLVAWRSV PGATGYRVTW
RVLSGGPTQQ QELGPGQGSV LLRDLEPGTD YEVTVSTLFG RSVGPATSLM ARTDASVEQT
                                                                                 360
                                                                                 420
       LRPVILGPTS ILLSWNLVPE ARGYRLEWRR ETGLEPPOKV VLPSDVTRYQ LDGLQPGTEY
                                                                                 480
45
       RLTLYTLLEG HEVATPATVV PTGPELPVSP VTDLQATELP GQRVRVSWSP VPGATQYRII
                                                                                 540
        VRSTQGVERT LVLPGSQTAF DLDDVQAGLS YTVRVSARVG PREGSASVLT VRREPETPLA
       VPGLRVVVSD ATRVRVAWGP VPGASGFRIS WSTGSGPESS QTLPPDSTAT DITGLQPGTT
       YQVAVSVLRG REEGPAAVIV ARTDPLGPVR TVHVTQASSS SVTITWTRVP GATGYRVSWH
                                                                                 720
       SAHGPEKSQL VSGEATVAEL DGLEPDTEYT VHVRAHVAGV DGPPASVVVR TAPEPVGRVS
                                                                                 780
50
       RLQILNASSD VLRITWVGVT GATAYRLAWG RSEGGPMRHQ ILPGNTDSAE IRGLEGGVSY
                                                                                 840
       SVRVTALVGD REGTPVSIVV TTPPEAPPAL GTLHVVQRGE HSLRLRWEPV PRAQGFLLHW
                                                                                 900
       QPEGGQEQSR VLGPELSSYH LDGLEPATQY RVRLSVLGPA GEGPSAEVTA RTESPRVPSI
                                                                                960
       ELRVVDTSID SVTLAWTPVS RASSYILSWR PLRGPGQEVP GSPQTLPGIS SSQRVTGLEP
                                                                                1020
       GVSYIFSLTP VLDGVRGPEA SVTQTPVCPR GLADVVFLPH ATQDNAHRAE ATRRVLERLV
                                                                                1080
55
       LALGPLGPQA VQVGLLSYSH RPSPLFPLNG SHDLGIILQR IRDMPYMDPS GNNLGTAVVT
                                                                                1140
       AHRYMLAPDA PGRRQHVPGV MVLLVDEPLR GDIFSPIREA QASGLNVVML GMAGADPEQL
                                                                                1200
       RRLAPGMDSV OTFFAVDDGP SLDQAVSGLA TALCQASFTT QPRPEPCPVY CPKGQKGEPG EMGLRGQVGP PGDPGLPGRT GAPGPQGPPG SATAKGERGF PGADGRPGSP GRAGNPGTPG
                                                                                1260
                                                                                1320
       APGLKGSPGL PGPRGDPGER GPRGPKGEPG APGQVIGGEG PGLPGRKGDP GPSGPPGPRG
                                                                                1380
60
       PLGDPGPRGP PGLPGTAMKG DKGDRGERGP PGPGEGGIAP GEPGLPGLPG SPGPQGPVGP
                                                                                1440
       PGKKGEKGDS EDGAPGLPGQ PGSPGEQGPR GPPGAIGPKG DRGFPGPLGE AGEKGERGPP
                                                                                1500
       GPAGSRGLPG VAGRPGAKGP EGPPGPTGRQ GEKGEPGRPG DPAVVGPAVA GPKGEKGDVG
                                                                                1560
       PAGPRGATGV QGERGPPGLV LPGDPGPKGD PGDRGPIGLT GRAGPPGDSG PPGEKGDPGR
       PGPPGPVGPR GRDGEVGEKG DEGPPGDPGL PGKAGERGLR GAPGVRGPVG EKGDQGDPGE
65
       DGRNGSPGSS GPKGDRGEPG PPGPPGRLVD TGPGAREKGE PGDRGQEGPR GPKGDPGLPG
                                                                                1740
       APGERGIEGF RGPPGPQGDP GVRGPAGEKG DRGPPGLDGR SGLDGKPGAA GPSGPNGAAG
                                                                                1800
        KAGDPGRDGL PGLRGEQGLP GPSGPPGLPG KPGEDGKPGL NGKNGEPGDP GEDGRKGEKG
                                                                                1860
       DSGASGREGR DGPKGERGAP GILGPQGPPG LPGPVGPPGQ GFPGVPGGTG PKGDRGETGS
                                                                                1920
```

KGEQGLPGER GLRGEPGSVP NVDRLLETAG IKASALREIV ETWDESSGSP LPVPERRRGP

KGDSGEQGPP GKEGPIGFPG ERGLKGDRGD PGPQGPPGLA LGERGPPGPS GLAGEPGKPG

IPGLPGRAGG VGEAGRPGER GERGEKGERG EQGRDGPPGL PGTPGPPGPP GPKVSVDEPG

PGLSGEQGPP GLKGAKGEPG SNGDQGPKGD RGVPGIKGDR GEPGPRGQDG NPGLPGERGM

AGPEGKPGLQ GPRGPPGPVG GHGDPGPPGA PGLAGPAGPQ GPSGLKGEPG ETGPPGRGLT

GPTGAVGLPG PPGPSGLVGP QGSPGLPGQV GETGKPGAPG RDGASGKDGD RGSPGVPGSP

GLPGPVGPKG EPGPTGAPGQ AVVGLPGAKG EKGAPGGLAG DLVGEPGAKG DRGLPGPRGE

KGEAGRAGEP GDPGEDGQKG APGPKGFKGD PGVGVPGSPG PPGPPGVKGD LGLPGLPGAP

GVVGFPGQTG PRGEMGQPGP SGERGLAGPP GREGIPGPLG PPGPPGSVGP PGASGLKGDK

GDPGVGLPGP RGERGEPGIR GEDGRPGQEG PRGLTGPPGS RGERGEKGDV GSAGLKGDKG

DSAVILGPPG PRGAKGDMGE RGPRGLDGDK GPRGDNGDPG DKGSKGEPGD KGSAGLPGLR

GLLGPQGQPG AAGIPGDPGS PGKDGVPGIR GEKGDVGFMG PRGLKGERGV KGACGLDGEK

GDKGEAGPPG RPGLAGHKGE MGEPGVPGOS GAPGKEGLIG PKGDRGFDGQ PGPKGDQGEK

GERGTPGIGG FPGPSGNDGS AGPPGPPGSV GPRGPEGLQG QKGERGPPGE RVVGAPGVPG

APGERGEOGR PGPAGPRGEK GEAALTEDDI RGFVRQEMSQ HCACQGQFIA SGSRPLPSYA

ADTAGSQLHA VPVLRVSHAE EEERVPPEDD EYSEYSEYSV EEYQDPEAPW DSDDPCSLPL

DEGSCTAYTL RWYHRAVTGS TEACHPFVYG GCGGNANRFG TREACERRCP PRVVQSQGTG

70

75

80

85

1980

2040

2100

2160

2220

2280

2340

2400

2460

2520

2580

2640

2700

2760

2820

Seq ID NO: 64 DNA sequence Nucleic Acid Accession #: NM_006945 Coding sequence: 1-219

	Coding sequence: 1-219									
5	1	11	21	31	41	51				
	Ī	1	1	1	1	1				
	ATGTCTTATC	AACAGCAGCA	GTGCAAGCAG TCCACCCCCG	CCCTGCCAGC	CACCTCCTGT	ACCACCAAAG	60 120			
10	TGTCCACAGC	CCTGCCCACC	TCAGCAGTGC	CAGCAGAAAT			180			
10			TCCACCGAAG							
	Seg ID NO:	65 Protein	sequence:							
	_	cession #: 1								
15	1	11	21	31	41	51				
]	1	1	1	1	1				
			PKCPEPCPPP	KCPEPCPPPK	CPQPCPPQQC	QQKYPPVTPS	60			
	PPCQPKYPPK	SK								
20	Seq ID NO: 66 DNA sequence									
	Nucleic Acid Accession #: NM_005629.1 Coding sequence: 639-2546									
25	1	11	21 	31 	41 	51 .				
			GTCGCTGAGC				60			
	CCGCCGCCGG	GAAGGAGAGG	GCGAGGCGCG	CCCGAGCCGC	CGCCGCCGCC	GCCACCGCCG	120 180			
	CCGCCGCCAC	CACCGCCACC	GGAGTCGCGG ACAGGCCCCT	GCCAGCCGGG	TOCTTTGCAG	ACCGCGGGCG	240			
30 -	CCGATGTCGC	CCGCGCCCCCG	TTAGGATGAG	TCTCGGGTCG	GGCGAGGAGC	CGCCGCAGCC	300			
	GCCGCCGCCC	GAGCCGCGGG	CAGGAGCCTC	GGGAGCCGCC	GCCGCCGCCG	CCGCCGCCCG	360			
	GCCGGGCCCC	GACGCCGCCC	GCGCGCCCC	GGGCCCCCGA	CACACATGAG	ATTCTTCAGG	420			
			GGACTGCTTC				480 540			
35			CCCCGGTGC				600			
			GTGCGGCCCG				660			
			GGCGACGAGA				720			
	ACGGGGCCCC	GGCCAAGGGC	GACGGCCCCG TGGACGCGCC	TGGGCCTGGG	GACACCCGGC	TECCTECCE	780 840			
40	TCGCCGTGGG	CTTGGGCAAC	GTGTGGCGCT	TCCCCTACCT	GTGCTACAAG	AACGGCGGAG	900			
	GTGTGTTCCT	TATTCCCTAC	GTCCTGATCG	CCCTGGTTGG	AGGAATCCCC	ATTTTCTTCT	960			
			TTCATGAAGG				1020			
			TACGCCTCCA GGCTTCTATT				1080 1140			
45	CCTGGGCCAC	ATGTGGCCAC	ACCTGGAACA	CTCCCGACTG	CGTGGAGATC	TTCCGCCATG	1200			
			CTGGCCAACC				1260			
			GAGAACAAAG				1320			
			GTGACCCTTT AAATCCACGG				1380 1440			
50			CTGCTGGTGC				1500			
			CCTGACTGGT				1560			
			TTTTCTTACG AACAACTGCT				1620 1680			
			GCTGGCTTCG				1740			
55	CAGAGCAGGG	CGTGCACATC	TCCAAGGTGG	CAGAGTCAGG	GCCGGGCCTG	GCCTTCATCG	1800			
			CTGATGCCAG				1860 1920			
			GCCTCCTACT				1980			
CO			TTTGTCATCG				2040			
60						TGGCAGGCCT	2100 2160			
			GCCTGGGTGT			TTCTTCACCC				
	CGCTGGTCTG	CATGGGCATC	TTCATCTTCA	ACGTTGTGTA	CTACGAGCCG	CTGGTCTACA	2280			
65	ACAACACCTA	CGTGTACCCG	TGGTGGGGTG	AGGCCATGGG	CTGGGCCTTC	GCCCTGTCCT	2340			
ردن	CTGAGCGCTG	CCTCCCCCTC	CACCTCCTGG ACCCAGCCCA	TCTGGGGCCT	CCACCACTTG	GAGTACCGAG	2400 2460			
	CTCAGGACGC	AGATGTCAGG	GGCCTGACCA	CCCTGACCCC	AGTGTCCGAG	AGCAGCAAGG	2520			
			ATGTGACAAC				2580			
70			AGCCCCACCG GGGAGGAGGG			CTTTCCCTGA	2640 2700			
70	ACTITITICA	TTTTTAATAA	AACGCCAAAA	ATATCACAAC	CCACCAAAAA	TAGATGCCTC	2760			
	TCCCCCTCCA	GCCCTAGCCG	AGCTGGTCCT	AGGCCCCGCC	TAGTGCCCCA	CCCCCACCCA	2820			
	CAGTGCTGCA	CTCCTCCTGC	CCCTGCCACG	CCCACCCCCT	GCCCACCTCT	CCAGGCTCTG	2880			
75			TGACCCCTCA AGAGACGGGA				2940 3000			
15	GAGGGGCAGC	AGAACCAAGG	CAAATATTTC	AGCTGGGCTA	TACCCCTCTC	CCCATCCCTG				
	TTATAGAAGC	TTAGAGAGCC	AGCCAGCAAT	GGAACCTTCT	GGTTCCTGCG	CCAATCGCCA	3120			
			TTGGGTGCGA				3180			
80			CAAAGGTGAA TTTTATAAAA				3240 3300			
55	TTTCTAAAAA	GAGGAAGGAG	CCCAAACCAT	CCTCTCCTTA	CCACTCCCAT	CCCTGTGAGC	3360			
	CCTACCTTAC	CCCTCTGCCC	CTAGCCAAGG	AGTGTGAATT	TATAGATCTA	ACTTTCATÁG	3420			
	GCAAAACAAA	AGCTTCGAGC	TGTTGCGTGT	GTGAGTCTGT	TGTGTGGATG	TGCGTGTGTG	3480			
85	GTCCCCAGCC	CCAGACTGGA	TTGGAAAAGT	GCATGGTGGG AGAGGCTGCA	ATATTCCCTC	CTGTCCCCAC CTGGGTGTCT	3540 3600			
J.J	GGGCTGCTAA	CCTGGCCTGC	TCAGGCTTCC	CACCCTGTGC	GGGGCACACC	CCCAGGAAGG	3660			
	GACCCTGGAC	ACGGCTCCCA	CGTCCAGGCT	TAAGGTGGAT	GCACTTCCCG	CACCTCCAGT	3720			

```
CTTCTGTGTA GCAGCTTTAA CCCACGTTTG TCTGTCACGT CCAGTCCCGA GACGGCTGAG 3780
       TGACCCCAAG AAAGGCTTCC CCGACACCCA GACAGAGGCT GCAGGGCTGG GGCTGGGTGA 3840
       GGGTGGCGGG CCTGCGGGGA CATTCTACTG TGCTAAAAAG CCACTGCAGA CATAGCAATA
       AAAACATGTC ATTTTCC
 5
       Seg ID NO: 67 Protein sequence:
       Protein Accession #: NP_005620.1
                                                                51
10
       MAKKSAENGI YSVSGDEKKG PLIAPGPDGA PAKGDGPVGL GTPGGRLAVP PRETWTROMD
                                                                              60
       FIMSCVGFAV GLGNVWRPPY LCYKNGGGVF LIPYVLIALV GGIPIFFLEI SLGQFMKAGS
                                                                             120
       INVWNICPLF KGLGYASMVI VFYCNTYYIM VLAWGFYYLV KSFTTTLFWA TCGHTWNTPD
                                                                             180
       CVEIFRHEDC ANASLANLTC DQLADRRSPV IEFWENKVLR LSGGLEVPGA LNWEVTLCLL
                                                                             240
15
       ACWVLVYFCV WKGVKSTGKI VYFTATFPYV VLVVLLVRGV LLPGALDGII YYLKPDWSKL
                                                                             300
       GSPQVWIDAG TQIFFSYAIG LGALTALGSY NRFMNNCYKD AIILALINSG TSFFAGFVVF
                                                                             360
       SILGFMAAEQ GVHISKVAES GPGLAFIAYP RAVTLMPVAP LWAALFFFML LLLGLDSQFV
                                                                             420
       GVEGFITGLL DLLPASYYFR FQREISVALC CALCFVIDLS MVTDGGMYVF QLFDYYSASG
                                                                             480
       TTLLWQAFWE CVVVAWVYGA DRFMDDIACM IGYRPCPWMK WCWSFFTPLV CMGIFIFNVV
                                                                             540
20
       YYEPLVYNNT YVYPWWGEAM GWAFALSSML CVPLHLLGCL LRAKGTMAER WQHLTQPIWG
                                                                             600
       LHHLEYRAOD ADVRGLTTLT PVSESSKVVV VESVM
       Seg ID NO: 68 DNA seguence
25
       Nucleic Acid Accession #: NM_021953.1
       Coding sequence: 178-2469
30
       GGCACGAGGG GGACCCGGCC GGTCCGGCGC GAGCCCCCGT CCGGGGCCCT GGCTCGGCCC
                                                                              60
       CCAGGTTGGA GGAGCCCGGA GCCCGCCTTC GGAGCTACGG CCTAACGGCG GCGGCGACTG
                                                                             120
       CAGTCTGGAG GGTCCACACT TGTGATTCTC AATGGAGAGT GAAAACGCAG ATTCATAATG
                                                                             180
       AAAGCTAGCC CCCGTCGGCC ACTGATTCTC AAAAGACGGA GGCTGCCCCT TCCTGTTCAA
                                                                             240
       AATGCCCCAA GTGAAACATC AGAGGAGGAA CCTAAGAGAT CCCCTGCCCA ACAGGAGTCT
                                                                             300
35
       AATCAAGCAG AGGCCTCCAA GGAAGTGGCG GAGTCCAACT CTTGCAAGTT TCCAGCTGGG
                                                                             360
       ATCAAGATTA TTAACCACCC CACCATGCCC AACACGCAAG TAGTGGCCAT CCCCAACAAT
                                                                             420
       GCTAATATTC ACAGCATCAT CACAGCACTG ACTGCCAAGG GAAAAGAGAG TGGCAGTAGT
                                                                             480
       GGGCCCAACA AATTCATCCT CATCAGCTGT GGGGGAGCCC CAACTCAGCC TCCAGGACTC
                                                                             540
       CGGCCTCAAA CCCAAACCAG CTATGATGCC AAAAGGACAG AAGTGACCCT GGAGACCTTG
                                                                             600
40
       GGACCAAAAC CTGCAGCTAG GGATGTGAAT CTTCCTAGAC CACCTGGAGC CCTTTGCGAG
                                                                             660
       CAGAAACGGG AGACCTGTGC AGATGGTGAG GCAGCAGGCT GCACTATCAA CAATAGCCTA
                                                                             720
       TCCAACATCC AGTGGCTTCG AAAGATGAGT TCTGATGGAC TGGGCTCCCG CAGCATCAAG
                                                                             780
       CAAGAGATGG AGGAAAAGGA GAATTGTCAC CTGGAGCAGC GACAGGTTAA GGTTGAGGAG
                                                                             840
      CCTTCGAGAC CATCAGCGTC CTGGCAGAAC TCTGTGTCTG AGCGGCCACC CTACTCTTAC ATGGCCATGA TACAATTCGC CATCAACAGC ACTGAGAGGA AGCGCATGAC TTTGAAAGAC
                                                                             900
45
       ATCTATACGT GGATTGAGGA CCACTTTCCC TACTTTAAGC ACATTGCCAA GCCAGGCTGG
       AAGAACTCCA TCCGCCACAA CCTTTCCCTG CACGACATGT TTGTCCGGGA GACGTCTGCC
                                                                            1080
       AATGGCAAGG TCTCCTTCTG GACCATTCAC CCCAGTGCCA ACCGCTACTT GACATTGGAC
                                                                            1140
       CAGGIGITTA AGCCACIGGA CCCAGGGICI CCACAATIGC CCGAGCACII GGAATCACAG
                                                                            1200
       CAGAAACGAC CGAATCCAGA GCTCCGCCGG AACATGACCA TCAAAACCGA ACTCCCCCTG
50
                                                                            1260
       GGCGCACGGC GGAAGATGAA GCCACTGCTA CCACGGGTCA GCTCATACCT GGTACCTATC
                                                                            1320
       CAGTTCCCGG TGAACCAGTC ACTGGTGTTG CAGCCCTCGG TGAAGGTGCC ATTGCCCCTG
                                                                            1380
       GCGGCTTCCC TCATGAGCTC AGAGCTTGCC CGCCATAGCA AGCGAGTCCG CATTGCCCCC
                                                                            1440
       AAGGTGCTGC TAGCTGAGGA GGGGATAGCT CCTCTTTCTT CTGCAGGACC AGGGAAAGAG
                                                                            1500
55
       GAGAAACTCC TGTTTGGAGA AGGGTTTTCT CCTTTGCTTC CAGTTCAGAC TATCAAGGAG
                                                                            1560
       GAAGAAATCC AGCCTGGGGA GGAAATGCCA CACTTAGCGA GACCCATCAA AGTGGAGAGC
                                                                            1620
       CCTCCCTTGG AAGAGTGGCC CTCCCCGGCC CCATCTTTCA AAGAGGAATC ATCTCACTCC
                                                                            1680
       TGGGAGGATT CGTCCCAATC TCCCACCCCA AGACCCAAGA AGTCCTACAG TGGGCTTAGG
                                                                            1740
       TCCCCAACCC GGTGTGTCTC GGAAATGCTT GTGATTCAAC ACAGGGAGAG GAGGGAGAGG
                                                                            1800
60
       AGCCGGTCTC GGAGGAAACA GCATCTACTG CCTCCCTGTG TGGATGAGCC GGAGCTGCTC
                                                                            1860
       TTCTCAGAGG GGCCCAGTAC TTCCCGCTGG GCCGCAGAGC TCCCGTTCCC AGCAGACTCC
                                                                            1920
       TCTGACCCTG CCTCCCAGCT CAGCTACTCC CAGGAAGTGG GAGGACCTTT TAAGACACCC
                                                                            1980
       ATTAAGGAAA CGCTGCCCAT CTCCTCCACC CCGAGCAAAT CTGTCCTCCC CAGAACCCCT
                                                                            2040
       GAATCCTGGA GGCTCACGCC CCCAGCCAAA GTAGGGGGAC TGGATTTCAG CCCAGTACAA
                                                                            2100
       ACCTCCCAGG GTGCCTCTGA CCCCTTGCT GACCCCCTGG GGCTGATGGA TCTCAGCACC ACTCCCTTGC AAAGTGCTCC CCCCCTTGAA TCACCGCAAA GGCTCCTCAG TTCAGAACCC
65
                                                                            2160
                                                                            2220
       TTAGACCTCA TCTCCGTCCC CTTTGGCAAC TCTTCTCCCT CAGATATAGA CGTCCCCAAG
                                                                            2280
       CCAGGCTCCC CGGAGCCACA GGTTTCTGGC CTTGCAGCCA ATCGTTCTCT GACAGAAGGC
                                                                            2340
       CTGGTCCTGG ACACAATGAA TGACAGCCTC AGCAAGATCC TGCTGGACAT CAGCTTTCCT
                                                                            2400
70
       GGCCTGGACG AGGACCCACT GGGCCCTGAC AACATCAACT GGTCCCAGTT TATTCCTGAG
                                                                            2460
       CTACAGTAGA GCCCTGCCCT TGCCCCTGTG CTCAAGCTGT CCACCATCCC GGGCACTCCA
                                                                            2520
       AGGCTCAGTG CACCCCAAGC CTCTGAGTGA GGACAGCAGG CAGGGACTGT TCTGCTCCTC
                                                                            2580
       ATAGCTCCCT GCTGCCTGAT TATGCAAAAG TAGCAGTCAC ACCCTAGCCA CTGCTGGGAC
                                                                            2640
       CTTGTGTTCC CCAAGAGTAT CTGATTCCTC TGCTGTCCCT GCCAGGAGCT GAAGGGTGGG
                                                                            2700
75
       AACAACAAAG GCAATGGTGA AAAGAGATTA GGAACCCCCC AGCCTGTTTC CATTCTCTGC
                                                                            2760
       CCAGCAGTCT CTTACCTTCC CTGATCTTTG CAGGGTGGTC CGTGTAAATA GTATAAATTC
                                                                            2820
       TCCAAATTAT CCTCTAATTA TAAATGTAAG CTTATTTCCT TAGATCATTA TCCAGAGACT
                                                                            2880
       GCCAGAAGGT GGGTAGGATG ACCTGGGGTT TCAATTGACT TCTGTTCCTT GCTTTTAGTT
                                                                            2940
       TTGATAGAAG GGAAGACCTG CAGTGCACGG TTTCTTCCAG GCTGAGGTAC CTGGATCTTG
                                                                            3000
80
       GGTTCTTCAC TGCAGGGACC CAGACAAGTG GATCTGCTTG CCAGAGTCCT TTTTGCCCCT
                                                                            3060
       CCCTGCCACC TCCCCGTGTT TCCAAGTCAG CTTTCCTGCA AGAAGAAATC CTGGTTAAAA
                                                                            3120
       AAGTCTTTTG TATTGGGTCA GGAGTTGAAT TTGGGGTGGG AGGATGGATG CAACTGAAGC
                                                                            3180
       AGAGTGTGGG TGCCCAGATG TGCGCTATTA GATGTTTCTC TGATAATGTC CCCAATCATA
                                                                            3240
       CCAGGGAGAC TGGCATTGAC GAGAACTCAG GTGGAGGCTT GAGAAGGCCG AAAGGGCCCC
                                                                            3300
85
       TGACCTGCCT GGCTTCCTTA GCTTGCCCCT CAGCTTTGCA AAGAGCCACC CTAGGCCCCA
                                                                            3360
       GCTGACCGCA TGGGTGTGAG CCAGCTTGAG AACACTAACT ACTCAATAAA AGCGAAGGTG
```

GACCNAAAAA AAAAAAAAAA AAAA

Seq ID NO: 69 Protein sequence: Protein Accession #: NP_068772.1

	Protein Accession #: NP_068772.1												
5	1	11	21	31	41	51							
	 MKASPRRPLI GIKIINHPTM	 LKRRRLPLPV PNTQVVAIPN	 QNAPSETSEE NANIHSIITA	 EPKRSPAQQE LTAKGKESGS	 SNQAEASKEV SGPNKFILIS	CGGAPTQPPG	60 120						
10	LSNIQWLRKM YMAMIQFAIN ANGKVSFWTI	SSDGLGSRSI STERKRMTLK HPSANRYLTL	LGPKPAARDV KQEMEEKENC DIYTWIEDHP DQVFKPLDPG IQFPVNQSLV	HLEQRQVKVE PYFKHIAKPG SPQLPEHLES	EPSRPSASWQ WKNSIRHNLS QQKRPNPELR	NSVSERPPYS LHDMFVRETS RNMTIKTELP	180 240 300 360 420						
15	PKVLLAEEGI SPPLEEWPSP RSRSRRKOHL	APLSSAGPGK APSFKEESSH LPPCVDEPEL	EEKLLFGEGP SWEDSSQSPT LFSEGPSTSR PESWRLTPPA	SPLLPVQTIK PRPKKSYSGL WAAELPFPAD	EEEIQPGEEM RSPTRCVSEM SSDPASQLSY	PHLARPIKVE LVIQHRERRE SQEVGGPFKT	480 540 600 660						
20	TTPLQSAPPL	ESPORLLSSE	PLDLISVPFG PGLDEDPLGP	NSSPSDIDVP	KPGSPEPQVS	GLAANRSLTE	720						
		70 DNA sequ		99 1	•								
	Nucleic Acid Accession #: BC006529.1 Coding sequence: 178-2424												
25													
	1	11	21	31	41	51							
	GGCACGAGGG	GGACCCGGCC	GGTCCGGCGC	GAGCCCCCGT	CCGGGGCCCT	GGCTCGGCCC	60						
			GCCCGCCTTC				120						
30	CAGTCTGGAG	GGTCCACACT	TGTGATTCTC	AATGGAGAGT	GAAAACGCAG	ATTCATAATG	180						
	AAAACTAGCC	CCCGTCGGCC	ACTGATTCTC	AAAAGACGGA	GGCTGCCCCT	TCCTGTTCAA	240 300						
	AATGCCCCAA	AGGCCTCCAA	AGAGGAGGAA GGAAGTGGCA	GAGTCCAACT	CTTGCAAGTT	TCCAGCTGGG	360						
			CACCATGCCC				420						
35			CACAGCACTG				480						
			CATCAGCTGT				540 600						
			CTATGATGCC GGATGTGAAT				660						
			AGATGGTGAG				720						
40	TCCAACATCC	AGTGGCTTCG	AAAGATGAGT	TCTGATGGAC	TGGGCTCCCG	CAGCATCAAG	780						
			GAATTGTCAC				840						
	CCTTCGAGAC	CATCAGCGTC	CTGGCAGAAC CATCAACAGC	TCTGTGTCTG	AGCGCCACC	TTTGAAAGAC	900 960						
			CCACTTTCCC				1020						
45	AAGAACTCCA	TCCGCCACAA	CCTTTCCCTG	CACGACATGT	TTGTCCGGGA	GACGTCTGCC	1080						
	AATGGCAAGG	TCTCCTTCTG	GACCATTCAC	CCCAGTGCCA	ACCGCTACTT	GACATTGGAC	1140						
			ACGACCGAAT ACGGCGGAAG				1200 1260						
			CCCGGTGAAC				1320						
50	GTGCCATTGC	CCCTGGCGGC	TTCCCTCATG	AGCTCAGAGC	TTGCCCGCCA	TAGCAAGCGA	1380						
			GCTGCTAGCT				1440						
			ACTCCTGTTT AATCCAGCCT				1500 1560						
			CTTGGAAGAG				1620						
55	GAATCATCTC	ACTCCTGGGA	GGATTCGTCC	CAATCTCCCA	CCCCAAGACC	CAAGAAGTCC	1680						
	TACAGTGGGC	TTAGGTCCCC	AACCCGGTGT	GTCTCGGAAA	TGCTTGTGAT	TCAACACAGG	1740						
·	GAGAGGAGGG	TGCTCTTCTC	GTCTCGGAGG AGAGGGGCCC	AGTACTTCCC	GCTGGGCCGC	AGAGCTCCCG	1800 1860						
	TTCCCAGCAG	ACTCCTCTGA	CCCTGCCTCC	CAGCTCAGCT	ACTCCCAGGA	AGTGGGAGGA	1920						
60	CCTTTTAAGA	CACCCATTAA	GGAAACGCTG	CCCATCTCCT	CCACCCCGAG	CAAATCTGTC	1980						
	CTCCCCAGAA	CCCCTGAATC	CTGGAGGCTC	ACGCCCCCAG	CCAAAGTAGG	GGGACTGGAT	2040 2100						
	ATGGATCTCA	GCACCACTCC	CTTGCAAAGT	GCTCCCCCC	TTGAATCACC	CCTGGGGCTG GCAAAGGCTC	2160						
	CTCAGTTCAG	AACCCTTAGA	CCTCATCTCC	GTCCCCTTTG	GCAACTCTTC	TCCCTCAGAT	2220						
65						AGCCAATCGT							
	TCTCTGACAG	AAGGCCTGGT	CCTGGACACA GGACGAGGAC	ATGAATGACA	CTCACCAC	CAACTCCTGCTCC	2340 2400						
	CAGTTTATTC	CTGAGCTACA	GTAGAGCCCT	GCCCTTGCCC	CTGTGCTCAA	GCTGTCCACC	2460						
	ATCCCGGGCA	CTCCAAGGCT	CAGTGCACCC	CAAGCCTCTG	AGTGAGGACA	GCAGGCAGGG	2520						
70	ACTGTTCTGC	TCCTCATAGC	TCCCTGCTGC	CTGATTATGC	AAAAGTAGCA	GTCACACCCT	2580						
	AGCCACTGCT	GGGACCTTGT	GTTCCCCAAG CAAAGGCAAT	AGTATCTGAT	CATTACCAAC	TCCCTGCCAG	2640 2700						
	GAGCIGAAGG	TCTGCCCAGC	AGTCTCTTAC	CTTCCCTGAT	CTTTGCAGGG	TGGTCCGTGT	2760						
			ATTATCCTCT				2820						
75	CATTATCCAG	AGACTGCCAG	AAGGTGGGTA	GGATGACCTG	GGGTTTCAAT	TGACTTCTGT	2880						
	TCCTTGCTTT	TAGTTTTGAT	AGAAGGGAAG	ACCTGCAGTG	CACGGTTTCT	TCCAGGCTGA	2940						
	GTACCTGGA	TCTTGGGTTC	TTCACTGCAG	GGACCCAGAC	AAGTGGATCT GTCACCTTTC	GCTTGCCAGA CTGCAAGAAG	3000 3060						
						GTGGGAGGAT	3120						
80	GGATGCAACT	GAAGCAGAGT	GTGGGTGCCC	AGATGTGCGC	TATTAGATGT	TTCTCTGATA	3180						
	ATGTCCCCAA	TCATACCAGG	GAGACTGGCA	TTGACGAGAA	CTCAGGTGGA	GGCTTGAGAA	3240						
	GGCCGAAAGG	GCCCCTGACC	TGCCTGGCTT	CCTTAGCTTG	TTGAGAAGA	TTGCAAAGAG TAACTACTCA	3300 3360						
			AAAAAAAAAA		- LUNGMACAC	AND AND A COLUMN	2200						
85													
	SOC ID NO.	71 Protoin	comience:										

Seq ID NO: 71 Protein sequence: Protein Accession #: AAH06529.1

```
MKTSPRRPLI LKRRLPLPV QNAPSETSEE EPKRSPAQQE SNQAEASKEV AESNSCKFPA
                                                                                 60
       GIKIINHPTM PNTQVVAIPN NANIHSIITA LTAKGKESGS SGPMKFILLS CGGAPTOPPG
LRPQTQTSYD AKRTEVTLET LGPKPAARDV NLPRPPGALC EQKRETCADG EAAGCTINNS
                                                                                120
                                                                                180
       LSNIQWLRKM SSDGLGSRSI KQEMEEKENC HLEQRQVKVE EPSRPSASWQ NSVSERPPYS
                                                                                240
       YMAMIOFAIN STERKRMTLK DIYTWIEDHF PYPKHIAKPG WKNSIRHNLS LHDMFVRETS
                                                                                300
       ANGKVSFWTI HPSANRYLTL DQVFKQQKRP NPELRRNMTI KTELPLGARR KMKPLLPRVS
                                                                                360
10
       SYLVPIQFPV NQSLVLQPSV KVPLPLAASL MSSELARHSK RVRIAPKVLL AEEGIAPLSS
       AGPGKEEKLL FGEGFSPLLP VQTIKEEEIQ PGEEMPHLAR PIKVESPPLE EWPSPAPSFK
                                                                                480
       EESSHSWEDS SQSPTPRPKK SYSGLRSPTR CVSEMLVIQH RERRERSRSR RKQHLLPPCV
       DEPELLFSEG PSTSRWAAEL PFPADSSDPA SQLSYSQEVG GPFKTPIKET LPISSTPSKS
                                                                                600
       VLPRTPESWR LTPPAKVGGL DFSPVQTPQG ASDPLPDPLG LMDLSTTPLQ SAPPLESPQR
                                                                                660
15
       LLSSEPLDLI SVPPGNSSPS DIDVPKPGSP EPQVSGLAAN RSLTEGLVLD TMNDSLSKIL
                                                                                720
       LDISPPGLDE DPLGPDNINW SQFIPELQ
       Seq ID NO: 72 DNA sequence
20
       Nucleic Acid Accession #: U74612.1
       Coding sequence: 178-2583
                                                                  51
                                           31
25
       GGCACGAGGG GGACCCGGCC GGTCCGGCGC GAGCCCCCGT CCGGGGCCCT GGCTCGGCCC
                                                                                 60
       CCAGGTTGGA GGAGCCCGGA GCCCGCCTTC GGAGCTACGG CCTAACGGCG GCGGCGACTG
                                                                                120
       CAGTCTGGAG GGTCCACACT TGTGATTCTC AATGGAGAGT GAAAACGCAG ATTCATAATG
                                                                                180
       AAAACTAGCC CCCGTCGGCC ACTGATTCTC AAAAGACGGA GGCTGCCCCT TCCTGTTCAA
                                                                                240
       AATGCCCCAA GTGAAACATC AGAGGAGGAA CCTAAGAGAT CCCCTGCCCA ACAGGAGTCT
                                                                                300
       AATCAAGCAG AGGCCTCCAA GGAAGTGGCA GAGTCCAACT CTTGCAAGTT TCCAGCTGGG
ATCAAGATTA TTAACCACCC CACCATGCCC AACACGCAAG TAGTGGCCAT CCCCCAACAAT
30
                                                                                360
                                                                                420
       GCTAATATTC ACAGCATCAT CACAGCACTG ACTGCCAAGG GAAAAGAGAG TGGCAGTAGT
GGGCCCAACA AATTCATCCT CATCAGCTGT GGGGAGCCC CAACTCAGCC TCCAGGACTC
                                                                                480
                                                                                540
       CGGCCTCAAA CCCAAACCAG CTATGATGCC AAAAGGACAG AAGTGACCCT GGAGACCTTG
                                                                                600
35
       GGACCAAAAC CTGCAGCTAG GGATGTGAAT CTTCCTAGAC CACCTGGAGC CCTTTGCGAG
                                                                                660
       CAGAAACGGG AGACCTGTGC AGATGGTGAG GCAGCAGGCT GCACTATCAA CAATAGCCTA
       TCCAACATCC AGTGGCTTCG AAAGATGAGT TCTGATGGAC TGGGCTCCCG CAGCATCAAG
       CAAGAGATGG AGGAAAAGGA GAATTGTCAC CTGGAGCAGC GACAGGTTAA GGTTGAGGAG
                                                                                840
       CCTTCGAGAC CATCAGCGTC CTGGCAGAAC TCTGTGTCTG AGCGGCCACC CTACTCTTAC
                                                                                900
40
       ATGGCCATGA TACAATTCGC CATCAACAGC ACTGAGAGGA AGCGCATGAC TTTGAAAGAC
                                                                                960
       ATCTATACGT GGATTGAGGA CCACTTTCCC TACTTTAAGC ACATTGCCAA GCCAGGCTGG
                                                                               1020
       AAGAACTCCA TCCGCCACAA CCTTTCCCTG CACGACATGT TTGTCCGGGA GACGTCTGCC
                                                                               1080
       AATGGCAAGG TCTCCTTCTG GACCATTCAC CCCAGTGCCA ACCGCTACTT GACATTGGAC
                                                                               1140
       CAGGTGTTTA AGCCACTGGA CCCAGGGTCT CCACAATTGC CCGAGCACTT GGAATCACAG
                                                                               1200
45
       CAGAAACGAC CGAATCCAGA GCTCCGCCGG AACATGACCA TCAAAACCGA ACTCCCCCTG
                                                                               1260
       GGCGCACGGC GGAAGATGAA GCCACTGCTA CCACGGGTCA GCTCATACCT GGTACCTATC
                                                                               1320
       CAGTTCCCGG TGAACCAGTC ACTGGTGTTG CAGCCCTCGG TGAAGGTGCC ATTGCCCCTG
                                                                               1380
       GCGGCTTCCC TCATGAGCTC AGAGCTTGCC CGCCATAGCA AGCGAGTCCG CATTGCCCCC
                                                                               1440
       AAGGTTTTTG GGGAACAGGT GGTGTTTGGT TACATGAGTA AGTTCTTTAG TGGCGATCTG
                                                                               1500
50
       CGAGATTTTG GTACACCCAT CACCAGCTTG TTTAATTTTA TCTTTCTTTG TTTATCAGTG
                                                                               1560
       CTGCTAGCTG AGGAGGGGAT AGCTCCTCTT TCTTCTGCAG GACCAGGGAA AGAGGAGAAA
                                                                               1620
       CTCCTGTTTG GAGAAGGGTT TTCTCCTTTG CTTCCAGTTC AGACTATCAA GGAGGAAGAA
                                                                               1680
       ATCCAGCCTG GGGAGGAAAT GCCACACTTA GCGAGACCCA TCAAAGTGGA GAGCCCTCCC
TTGGAAGAGT GGCCCTCCCC GGCCCCATCT TTCAAAGAGG AATCATCTCA CTCCTGGGAG
                                                                               1740
                                                                               1800
55
                                                                               1860
       GATTCGTCCC AATCTCCCAC CCCAAGACCC AAGAAGTCCT ACAGTGGGCT TAGGTCCCCA
       ACCCGGTGTG TCTCGGAAAT GCTTGTGATT CAACACAGGG AGAGGAGGGG GAGGAGCCGG
                                                                               1920
       TCTCGGAGGA AACAGCATCT ACTGCCTCCC TGTGTGGATG AGCCGGAGCT GCTCTTCTCA
                                                                               1980
       GAGGGGCCCA GTACTTCCCG CTGGGCCGCA GAGCTCCCGT TCCCAGCAGA CTCCTCTGAC
       CCTGCCTCCC AGCTCAGCTA CTCCCAGGAA GTGGGAGGAC CTTTTAAGAC ACCCATTAAG
60
       GAAACGCTGC CCATCTCCTC CACCCCGAGC AAATCTGTCC TCCCCAGAAC CCCTGAATCC
                                                                               2160
       TGGAGGCTCA CGCCCCCAGC CAAAGTAGGG GGACTGGATT TCAGCCCAGT ACAAACCTCC
                                                                               2220
       CAGGGTGCCT CTGACCCCTT GCCTGACCCC CTGGGGCTGA TGGATCTCAG CACCACTCCC
                                                                               2280
       TTGCAAAGTG CTCCCCCCT TGAATCACCG CAAAGGCTCC TCAGTTCAGA ACCCTTAGAC
                                                                               2340
       CTCATCTCCG TCCCCTTTGG CAACTCTTCT CCCTCAGATA TAGACGTCCC CAAGCCAGGC
                                                                               2400
65
       TCCCCGGAGC CACAGGTTTC TGGCCTTGCA GCCAATCGTT CTCTGACAGA AGGCCTGGTC
                                                                               2460
       CTGGACACAA TGAATGACAG CCTCAGCAAG ATCCTGCTGG ACATCAGCTT TCCTGGCCTG
                                                                               2520
       GACGAGGACC CACTGGGCCC TGACAACATC AACTGGTCCC AGTTTATTCC TGAGCTACAG
                                                                               2580
       TAGAGCCCTG CCCTTGCCCC TGTGCTCAAG CTGTCCACCA TCCCGGGCAC TCCAAGGCTC
                                                                               2640
                                                                               2700
       AGTGCACCCC AAGCCTCTGA GTGAGGACAG CAGGCAGGGA CTGTTCTGCT CCTCATAGCT
70
       CCCTGCTGCC TGATTATGCA AAAGTAGCAG TCACACCCTA GCCACTGCTG GGACCTTGTG
                                                                               2760
       TTCCCCAAGA GTATCTGATT CCTCTGCTGT CCCTGCCAGG AGCTGAAGGG TGGGAACAAC
                                                                               2820
       AAAGGCAATG GTGAAAAGAG ATTAGGAACC CCCCAGCCTG TTTCCATTCT CTGCCCAGCA
                                                                               2880
       GTCTCTTACC TTCCCTGATC TTTGCAGGGT GGTCCGTGTA AATAGTATAA ATTCTCCAAA
                                                                               2940
       TTATCCTCTA ATTATAAATG TAAGCTTATT TCCTTAGATC ATTATCCAGA GACTGCCAGA
                                                                               3000
75
       AGGTGGGTAG GATGACCTGG GGTTTCAATT GACTTCTGTT CCTTGCTTTT AGTTTTGATA
                                                                               3060
       GAAGGGAAGA CCTGCAGTGC ACGGTTTCTT CCAGGCTGAG GTACCTGGAT CTTGGGTTCT
       TCACTGCAGG GACCCAGACA AGTGGATCTG CTTGCCAGAG TCCTTTTTGC CCCTCCCTGC
                                                                               3180
       CACCTCCCCG TGTTTCCAAG TCAGCTTTCC TGCAAGAAGA AATCCTGGTT AAAAAAGTCT
       TTTGTATTGG GTCAGGAGTT GAATTTGGGG TGGGAGGATG GATGCAACTG AAGCAGAGTG
                                                                               3300
80
       TGGGTGCCCA GATGTGCGCT ATTAGATGTT TCTCTGATAA TGTCCCCAAT CATACCAGGG
                                                                               3360
       AGACTGGCAT TGACGAGAAC TCAGGTGGAG GCTTGAGAAG GCCGAAAGGG CCCCTGACCT
                                                                               3420
       GCCTGGCTTC CTTAGCTTGC CCCTCAGCTT TGCAAAGAGC CACCCTAGGC CCCAGCTGAC
                                                                               3480
       CGCATGGGTG TGAGCCAGCT TGAGAACACT AACTACTCAA TAAAAGCGAA GGTGGACAAA
       ААААА АААААААА
85
```

Seq ID NO: 73 Protein sequence: Protein Accession #: AAC51128.1

```
MKTSPRRPLI LKRRRLPLPV QNAPSETSEE EPKRSPAQQE SNQAEASKEV ABSNSCKFPA
 5
       GIKIINHPTM PNTQVVAIPN NANIHSIITA LTAKGKESGS SGPNKFILIS CGGAPTQPPG
                                                                             120
       LRPQTQTSYD AKRTEVTLET LGPKPAARDV NLPRPPGALC EQKRETCADG EAAGCTINNS
                                                                             180
       LSNIQWLRKM SSDGLGSRSI KQEMEEKENC HLEQRQVKVE EPSRPSASWQ NSVSERPPYS
                                                                             240
       YMAMIQFAIN STERKRMTLK DIYTWIEDHF PYFKHIAKPG WKNSIRHNLS LHDMFVRETS
                                                                             300
       ANGKVSFWTI HPSANRYLTL DQVFKPLDPG SPQLPEHLES QQKRPNPELR RNMTIKTELP
                                                                             360
10
       LGARRKMKPL LPRVSSYLVP IQFPVNQSLV LQPSVKVPLP LAASLMSSEL ARHSKRVRIA
                                                                             420
       PKVFGEOVVF GYMSKFFSGD LRDFGTPITS LFNFIFLCLS VLLAEEGIAP LSSAGPGKEE
                                                                             480
       KLLFGEGFSP LLPVQTIKEE EIQPGEEMPH LARPIKVESP PLEEWPSPAP SFKEESSHSW
                                                                             540
       EDSSOSPTPR PKKSYSGLRS PTRCVSEMLV IQHRERRERS RSRRKQHLLP PCVDEPELLF
                                                                             600
       SEGPSTSRWA AELPPPADSS DPASOLSYSO EVGGPFKTPI KETLPISSTP SKSVLPRTPE
                                                                             660
15
       SWRLTPPAKV GGLDFSPVQT SQGASDPLPD PLGLMDLSTT PLQSAPPLES PQRLLSSEPL
                                                                             720
       DLISVPFGNS SPSDIDVPKP GSPEPQVSGL AANRSLTEGL VLDTMNDSLS KILLDISFPG
       LDEDPLGPDN INWSQFIPEL Q
       Seq ID NO: 74 DNA sequence
20
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 111-416
                                                                51
25
       GGGAAGAGCC AGGCTGAGCC TTATAAAGGA CTGCTCTTTG TCCAAACACA CACATCTCAC
                                                                              60
       TCATCCTTCT ACTCGTGACG CTTCCCAGCT CTGGCTTTTT GAAAGCAAAG ATGAGCAACA
                                                                             120
       CTCAAGCTGA GAGGTCCATA ATAGGCATGA TCGACATGTT TCACAAATAC ACCAGACGTG
                                                                             180
       ATGACAAGAT TGAGAAGCCA AGCCTGCTGA CGATGATGAA GGAGAACTTC CCCAACTTCC
                                                                             240
       TTAGTGCCTG TGACAAAAG GGCACAAATT ACCTCGCCGA TGTCTTTGAG AAAAAGGACA
                                                                             300
30
       AGAATGAGGA TAAGAAGATT GATTTTCTG AGTTTCTGTC CTTGCTGGGA GACATAGCCA
                                                                             360
       CAGACTACCA CAAGCAGAGC CATGGAGCAG CGCCCTGTTC CGGGGGCAGC CAGTGACCCA
                                                                             420
       GCCCCACCAA TGGGCCTCCA GAGACCCCAG GAACAATAAA ATGTCTTCTC CCACCAGA
       Seq ID NO: 75 Protein sequence:
35
       Protein Accession #: Eos sequence
       MSNTQAERSI IGMIDMFHKY TRRDDKIEKP SLLTMMKENF PNFLSACDKK GTNYLADVFE
40
       KKDKNEDKKI DFSEFLSLLG DIATDYHKQS HGAAPCSGGS Q
       Seq ID NO: 76 DNA sequence
       Nucleic Acid Accession #: Eos sequence
45
       Coding sequence: 111-416
                                                               51
       GGGAAGAGCC AGGCTGAGCC TTATAAAGGA CTGCTCTTTG TCCAAACACA CACATCTCAC
50
       TCATCCTTCT ACTCGTGACA CTTCCCAGTT CTGGCTTTTT GAAAGCAAAG ATGAGCAACA
                                                                             120
       CTCAAGCTGA GAGGTCCATA ATAGGCATGA TCGACATGTT TCACAAATAC ACCGGACGTG
                                                                             180
       ATGGCAAGAT TGAGAAGCCA AGCCTGCTGA CGATGATGAA GGAGAACTTC CCCAATTTCC
                                                                             240
      TCAGTGCCTG TGACAAAAAG GGCATACATT ACCTCGCCAC TGTCTTTGAG AAAAAGGACA
AGAATGAGGA TAAGAAGATT GATTTTCTG AGTTTCTGTC CTTGCTGGGA GACATAGCCG
                                                                             300
                                                                             360
       CAGACTACCA CAAGCAGAGC CATGGAGCGG CGCCCTGTTC TGGGGGAAGC CAGTGATCCA
55
                                                                             420
       GCCCCACCAA GGGGCCTCCA GAGACCCCAG GAACAATAAG TGTCTCCTCC CACCAGA
       Seg ID NO: 77 Protein seguence:
       Protein Accession #: XP_048124.1
60
                                                    41
                                         31
       MSNTQAERSI IGMIDMFHKY TGRDGKIERP SLLTMMKENF PNFLSACDKK GIHYLATVFE
       KKDKNEDKKI DFSEFLSLLG DIAADYHKQS HGAAPCSGGS Q
65
       Seq ID NO: 78 DNA sequence
       Nucleic Acid Accession #: 273678.1
       Coding sequence: 253-2433
70
       GGGGTGGTGC AGGGCAGGGG TGGTATATCC TGTCTGACGG AGGGCGGGCC TCGCCAGTGC
                                                                              60
       CAGAGAGGGA CGAACCAGGG TGGAAGCGCC AGGAGCAGCT GCAGGGAGCC CTCACGCGGA
                                                                             120
75
       CCTCGCACTC TATGGCCGTA GGGAGCCGCT GAGAGCGAGA AGAGCACGCT CCTGCCCGCC
                                                                             180
       CGCTGCACCG CACCTCGCCT CGCCTCTCTG CTCTCCTAGG CCCCGGCCGC GCGCCACCCG
                                                                             240
       CCTCCCGCCA CCATGAACCA CTCGCCGCTC AAGACCGCCT TGGCGTACGA ATGCTTCCAG
                                                                             300
       GACCAGGACA ACTCCACGTT GGCTTTGCCG TCGGACCAAA AGATGAAAAC AGGCACGTCT
                                                                             360
       GGCAGGCAGC GCGTGCAGGA GCAGGTGATG ATGACCGTCA AGCGGCAGAA GTCCAAGTCT
80
       TCCCAGTCGT CCACCCTGAG CCACTCCAAT CGAGGTTCCA TGTATGATGG CTTGGCTGAC
                                                                             480
       AATTACAACT ATGGGACCAC CAGCAGGAGC AGCTACTACT CCAAGTTCCA GGCAGGGAAT
       GGCTCATGGG GATATCCGAT CTACAATGGA ACCCTCAAGC GGGAGCCTGA CAACAGGCGC
                                                                             600
       TTCAGCTCCT ACAGCCAGAT GGAGAACTGG AGCCGGCACT ACCCCCGGGG CAGCTGTAAC
       ACCACCGGCG CAGGCAGCGA CATCTGCTTC ATGCAGAAAA TCAAGGCGAG CCGCAGTGAG
                                                                             720
85
       CCCGACCTCT ACTGTGACCC ACGGGGCACC CTGCGCAAGG GCACGCTGGG CAGCAAGGGC
                                                                             780
       CAGAAGACCA CCCAGAACCG CTACAGCTTT TACAGCACCT GCAGTGGTCA GAAGGCCATA
                                                                             840
       AAGAAGTGCC CTGTGCGCCC GCCCTCTTGT GCCTCCAAGC AGGACCCTGT GTATATCCCG
                                                                             900
```

```
CCCATCTCCT GCAACAAGGA CCTGTCCTTT GGCCACTCTA GGGCCAGCTC CAAGATCTGC
       AGTGAGGACA TCGAGTGCAG TGGGCTGACC ATCCCCAAGG CTGTGCAGTA CCTGAGCTCC
                                                                           1020
       CAGGATGAGA AGTACCAGGC CATTGGGGCC TATTACATCC AGCATACCTG CTTCCAGGAT
       GAATCTGCCA AGCAACAGGT CTATCAGCTG GGAGGCATCT GCAAGCTGGT GGACCTCCTC
                                                                           1140
       CGCAGCCCCA ACCAGAACGT CCAGCAGGCC GCGGCAGGGG CCCTGCGCAA CCTGGTGTTC
                                                                           1200
       AGGAGCACCA CCAACAAGCT GGAGACCCGG AGGCAGAATG GGATCCGCGA GGCAGTCAGC
                                                                           1260
                                                                           1320
       CTCCTGAGGA GAACCGGGAA CGCCGAGATC CAGAAGCAGC TGACTGGGCT GCTCTGGAAC
       CTGTCTTCCA CTGACGAGCT GAAGGAGGAA CTCATTGCCG ACGCCCTGCC TGTTCTGGCC
                                                                           1380
       GACCGCGTCA TCATTCCCTT CTCTGGCTGG TGCGATGGCA ATAGCAACAT GTCCCGGGAA
                                                                           1440
10
       GTGGTGGACC CTGAGGTCTT CTTCAATGCC ACAGGCTGCT TGAGGAACCT GAGCTCGGCC
                                                                           1500
       GATGCAGGCC GCCAGACCAT GCGTAACTAC TCAGGGCTCA TTGATTCCCT CATGGCCTAT
                                                                           1560
       GTCCAGAACT GTGTAGCGGC CAGCCGCTGT GACGACAAGT CTGTGGAAAA CTGCATGTGT
                                                                           1620
       GTTCTGCACA ACCTCTCCTA CCGCCTGGAC GCCGAGGTGC CCACCCGCTA CCGCCAGCTG
                                                                           1680
       GAGTATAACG CCCGCAACGC CTACACCGAG AAGTCCTCCA CTGGCTGCTT CAGCAACAAG
                                                                           1740
15
       AGCGACAAGA TGATGAACAA CAACTATGAC TGCCCCCTGC CTGAGGAAGA GACCAACCCC
                                                                           1800
       AAGGGCAGCG GCTGGTTGTA CCATTCAGAT GCCATCCGCA CCTACCTGAA CCTCATGGGC
                                                                           1860
       AAGAGCAAGA AAGATGCTAC CCTGGAGGCC TGTGCTGGTG CCCTGCAGAA CCTGACAGCC
                                                                           1920
       AGCAAGGGGC TGATGTCCAG TGGCATGAGC CAGTTGATTG GGCTGAAGGA AAAGGGCCTG
                                                                           1980
       CCACAAATTG CCCGCCTCCT GCAATCTGGC AACTCTGATG TGGTGCGGTC CGGAGCCTCC
                                                                           2040
20
       CTCCTGAGCA ACATGTCCCG CCACCCTCTG CTGCACAGAG TGATGGGGAA CCAGGTGTTC
                                                                           2100
       CCGGAGGTGA CCAGGCTCCT CACCAGCCAC ACTGGCAATA CCAGCAACTC CGAAGACATC
                                                                           2160
       TTGTCCTCGG CCTGCTACAC TGTGAGGAAC CTGATGGCCT CGCAGCCACA ACTGGCCAAG
                                                                           2220
       CAGTACTTCT CCAGCAGCAT GCTCAACAAC ATCATCAACC TGTGCCGAAG CAGTGCCTCA
                                                                           2280
       CCCAAGGCCG CAGAAGCTGC CCGGCTTCTC CTGTCTGACA TGTGGTCCAG CAAGGAACTG
                                                                           2340
25
       CAGGGTGTCC TCAGACAGCA AGGTTTCGAT AGGAACATGC TGGGAACCTT AGCTGGGGCC
                                                                           2400
       AACAGCCTCA GGAACTTCAC CTCCCGATTC TAAGAAGAGA CTGTCCAAGC AAGTTAGGCT
       TGCAGGAAGA TATGACCCAG CTGAGAAGCC CTCAGGCCTC GCTGGATGGG GTTTTCTGTC
                                                                           2520
       CATCCTGTGC AGTATTTGGG AAAGTTCACA AGAAACTGAG AAGAAACCTA AAAACTGTGG
       ATAGTGGAAA GATTTTTAGA TTTTTTTTT CCTTGGGGAA ACTGGCAGGC AATGGGGGTT
                                                                           2640
30
       AGGGAGGTTG GGGCGGGGG GGCTTTCTTG AGTTAAAGGG GCTTATATGT GATGTCAATA
                                                                           2700
       TTTCTTCCTC TGAGAAATGG TATATATATG TGTCTAATGT AAGTGTGTGC ATGCATGTGC
                                                                           2760
       GCGTGCATGT GTGTGTGTGT GAGTGTCTTA AAGCATAACC ACAAACTGCA AAAAGCTAGG
                                                                           2820
       TAAGCTATTT TGTTGCAGCT CATAAGGTGG TGAAAAGGAC TCTCCTGTGT TTCTTACTCA
                                                                           2880
                                                                           2940
       TAGGCAAGGA CAACATGTGC TTTTTGGTGA GCTGCTCATA ATTCCTGAAA TGTGTGGTGC
35
       CAGGCAAGG GGCCATCAC TGCAGTCAGG CCCTCAGAGG AGTCCTGCAG GCTTCCTACC
                                                                           3000
       AGTGGTCTCC AAGGGTGCAG GAGTAACTGG GGCTGGGCCA GCCTCCCCCC TTACAAGGCT
                                                                           3060
       GCTTTCCACG AAGGGAGGTC TGGTGTATCT CATGGGAGAA TCTGGGGTGT CTGTAGTGTC
                                                                           3120
       ACCCCTCCAG CAGCGCCACA AGGACTGAGG TTGGGTAGGT GTGAGGTTCC AGAGGACAGC
                                                                           3180
       AGGACACTCT CGCATACTTT GCCAAATGAG GCCTGCTCAG AGGAGTAGGA GCTGAAAGAT
                                                                           3240
40
       GGTGCCTTCC ACCCTCTTGG GCTGTGTGCC CATCAGAGCA GGCTCAGCCT GCAAAGGCCC
                                                                           3300
       TGCATTCAGA GGTCTTGTAA TCTACTTGTT GCAGGAGAAA GAAGGTAAAA AATGATTTTT
                                                                           3360
       TTAAGAAAG CTATTTATT GCAGCTCTTT CCCAAGAGCT GTTCTGGGAA TGGCTGGTCT
                                                                           3420
       TCATATTCCC AGTGGAGAGG GGAACAAGTG GGGCTGGGCA TATACCTATT CCGGCTTCTA
                                                                           3480
       GTGGGATGGA GTTGGGGTAT AGAAATTAAC CAGGAAGATG TTTCCACCAA GCCTGCTGTG
                                                                           3540
       AGTCAATTGA GGGAGTGTTT GGGTCCCAGG AGACTTGGAC GGGGGGAGTT TGGGTAGACT
45
                                                                           3600
       AGGAAAGGAA AGTGCCATAT CAGGGTACCG GTACCGGCAA GCTCACATCT CAGCCAGGGG
                                                                           3660
       CCATGCCCCA CTTCCCCTGA CCCCAGCTGT CTTGTCTCCA CTCTGTGAAA CCCACAGGGG
       ATGTGATAAA CAGGGCTATT AGGGGTATCA GCCACGTCGA GCCCCCAGAC TCTGTGCACT
TCAGACCAGC AGCAGCAGGA GGGCTCCCGA GGGCCTTATG AGAAAACCTG TGTGGACATC
                                                                           3780
50
       CCTTGGTGTA CACTAAGACA GAGCAGAGCC CAGCGCTCCC AAGCCTTCCT CCTTCCAGCT
                                                                           3900
       TCTACCTCCA TGCTAGCATT GCTGGTGTTA GAGAGGAATT AACTTCCTGG TCTGTGCCCT
       TCTCTAGAAG AATATAAGAT GCTCCTCCTC CTCACCCCTT CTCAGCCTCC TCCCAAGTCT
                                                                           4020
       TCCTCTTCTG CACCACCCCC GAGTCCAAAC CCACCTCTTG CCCCAGCATT CAGGCTGGAA
                                                                           4080
       AACACTGATG TGGACTCAGT ATGACAACTG AGATGGGGGA AGCCAGACAT GTGAGGACGC
                                                                           4140
55
       TGTCCTCCGA GAGGTGTCCC CGGCTGTTAG CCAGCTGTGC TGTGGTGCTG TGGGTCTGTC
                                                                           4200
       ATACCCTCCC TTGCTTCTGT TCACACTGGG AGGCCCACTC CTGGCTCACC TCTCCCTCTC
                                                                           4260
       AGGGACCCAC GTGGGAGCCT GGATCCCTGG ACTGTCCTGG GCATAGGTTT CAGGGGCCTC
                                                                           4320
       CTTTGTTGTC ATCAGAACCC AGAGGAATTC TTCTCCTAAA AAATACGTAT GGCATACCAA
                                                                           4380
       TCTGTGCGGG GCAGTGTCCT AAGCACTTAG ACTACATCAG GGAAGAACAC AGACCACATC
                                                                           4440
60
       CCCGTCCTCA TGCGGCTTAT GTTTTCTGGA GGAAAGTGGA GACACAAGTC CTTGGCTTTA
                                                                           4500
       GGGCTCCCCC GGCTGGGGGC TGTGCAGTCC GGTCAGGGCG GGAGGGGAAA TGCACCGCTG
                                                                           4560
       CATGTGAACC TTACCAGCCC AGGCGGATGC CCCTTCCCCT TAGCACTACC CTGGCCTCCT
                                                                           4620
       GCATCCCCTC GCCTCATGTT CCTCCCACCT TCAAAGAATG AAGAGCCCCA TGGGCCCAGC
                                                                           4680
       CCCTGCCCTG GGAACCAGGC AGCCTTCCAG ACCTCAGGGG CTGAGGCAGA CTATTAGGGC
                                                                           4740
65
       AGGGCTGACT TTGGTGACAC TGCCCATTCC CTCTCAGGCC AGCTCAGGTC ACCCGGGCCT
                                                                           4800
       CTGACCCAGG CCTGTCACTT TGAGAGGGGC AAAACTGAGA GGGGCTTTTC CTAGAGAAAG
                                                                           4860
       AGAACAAGGA GCTTGCCAGG CTTCATGTAG CCGACACACG TCTCAGGATT TTAAGTCCAC
                                                                           4920
       ATTGGCCTCA CACTAGCCTA GGCCAATGCC CAAAATAAGG AGTTCCAATT TGGGGCCAAA
       TGAGGAAGGA CACAGACTCT GCCCTGGGAT CTCCTGTGCT AGCGGCCAAT GACAAATCCA
                                                                           5040
70
       GTCATTGGCC ACCAGCCACC TCTGCAGTGG GGACCACACT AGCAGCCCTG ACTCCACACT
                                                                           5100
       CCTCCTGGGG ACCCAAGAGG CAGTGTTGCT GTCTGCGTGT CCACCTTGGA ATCTGGCTGA
                                                                           5160
       ACTGGCTGGG AGGACCAAGA CTGCGGCTGG GGTGGGCAGG GAAGGGAAGC CGGGGGCTGC
                                                                           5220
      TGTGAGGGAT CTTGGAGCTT CCCTGTAGCC CACCTTCCCC TTGCTTCATG TTTGTAGAGG
                                                                           5280
       AACCTTGTGC CGGCCAGGCC CAGTTTCCTT GTGTGATACA CTAATGTATT TGCTTTTTTT
                                                                           5340
75
       GGAAATAGAG AAAATCAATA AATTGCTAGT GTTTCTTTGA AAAAAAAAA
       Seq ID NO: 79 Protein sequence:
       Protein Accession #: CAA98022.1
80
                                         31
                                                    41
                                                               51
       MNHSPLKTAL AYECFODODN STLALPSDOK MKTGTSGROR VQEQVMMTVK RQKSKSSQSS
                                                                             60
       TLSHSNRGSM YDGLADNYNY GTTSRSSYYS KPQAGNGSWG YPIYNGTLKR EPDNRRFSSY
                                                                            120
       SQMENWSRHY PRGSCNTTGA GSDICFMQKI KASRSEPDLY CDPRGTLRKG TLGSKGQKTT
                                                                            180
       QNRYSFYSTC SGQKAIKKCP VRPPSCASKQ DPVYIPPISC NKDLSFGHSR ASSKICSEDI
85
                                                                            240
       ECSGLTIPKA VQYLSSQDEK YQAIGAYYIQ HTCFQDESAK QQVYQLGGIC KLVDLLRSPN
                                                                             300
       QNVQQAAAGA LRNLVFRSTT NKLETRRQNG IREAVSLLRR TGNAEIQKQL TGLLWNLSST
                                                                            360
```

WO 02/086443 PCT/US02/12476
DELKEELIAD ALPVLADRVI IPFSGWCDGN SNMSREVVDP EVFFNATGCL RNLSSADAGR 420

5	QTMRNYSGLI RNAYTEKSST DATLEACAGA MSRHPLLHRV	DSLMAYVONC GCFSNKSDKM LQNLTASKGL MGNQVFPEVT	IPFSGWCDGN VAASRCDDKS MNNNYDCPLP MSSGMSQLIG RLLTSHTGNT EAARLLLSDM	VENCMCVLHN EBETNPKGSG LKEKGLPQIA SNSEDILSSA	LSYRLDAEVP WLYHSDAIRT RLLQSGNSDV CYTVRNLMAS	TRYRQLEYNA YLNLMGKSKK VRSGASLLSN QPQLAKQYFS	480 540 600 660 720
	NFTSRF	G.00-01-14-1					
10	Nucleic Ac	80 DNA sequid Accession lence: 180-	a #: NM_006	516.1			
15	1	11	21	31 	41	51	
10			AGCACGCCAG				60
	CGCACGCCCG	TCGCCACCCG	CCCCGGACCG CGTACCCGGC	GCAGCCAGAG	CCACCAGCGC	AGCGCTGCCA	120 180
20	TGGAGCCCAG	CAGCAAGAAG	CTGACGGGTC TACAACACTG	GCCTCATGCT	GGCTGTGGGA TGCCCCCCAG	GGAGCAGTGC	240 300
	AGGAGTTCTA	CAACCAGACA	TGGGTCCACC	GCTATGGGGA	GAGCATCCTG	CCCACCACGC	360
	TCTCTGTGGG	CCTTTTCGTT	TCAGTGGCCA AACCGCTTTG	GCCGGCGGAA	TTCAATGCTG	ATGATGAACC	420 480
25			GTGCTCATGG ATCATCGGTG				540 600
23	CCATGTATGT	GGGTGAAGTG	TCACCCACAG	CCTTTCGTGG	GGCCCTGGGC	ACCCTGCACC	660
			ATCCTCATCG CTGCTGCTGA				720 780
30	GCATCGTGCT	GCCCTTCTGC	CCCGAGAGTC	CCCGCTTCCT	GCTCATCAAC	CGCAACGAGG	840
30	AGAACCGGGC TGCAGGAGAT	GAAGGAAGAG	CTAAAGAAGC AGTCGGCAGA	TGCGCGGGAC	GAAGAAGGTC	ACCCATGACC	900 960
			TACCGCCAGC AACGCTGTCT				1020 1080
25	CGGGGGTGCA	GCAGCCTGTG	TATGCCACCA	TTGGCTCCGG	TATCGTCAAC	ACGGCCTTCA	1140
35			GTGGAGCGAG GCCATACTCA				1200 1260
	TACCCTGGAT	GTCCTATCTG	AGCATCGTGG	CCATCTTTGG	CTTTGTGGCC	TTCTTTGAAG	1320
			TGGTTCATCG GGCTTCTCCA				1380 1440
40	GCTTCCAGTA	TGTGGAGCAA	CTGTGTGGTC	CCTACGTCTT	CATCATCTTC	ACTGTGCTCC	1500 1560
			ACCTACTTCA CGGCAGGGGG				1620
			GCTGATTCCC AGGATCTCTC				1680 1740
45	AACCTGACAG	ATGTCAGCCG	AGCCGGGCCT	GGGGCTCCTT	TCTCCAGCCA	GCAATGATGT	1800
			TAACGGCTCC CAGGTTTTAT				1860 1920
	ATATCAGCCT	GAGTCTCCTG	TGCCCACATC	CCAGGCTTCA	CCCTGAATGG	TTCCATGCCT	1980
50 .	CTGGACCTAT	GTCCTAAGGA	GTCGAGACAC CACACTAATC	GAACTATGAA	CTACAAAGCT	TCTATCCCAG	2040 2100
			TTCTGCTGGC CATCTCTTCC				2160 2220
	CCTGAGACCA	GTTGGGAGCA	CTGGAGTGCA	GGGAGGAGAG	GGGAAGGGCC	AGTCTGGGCT	2280
55	GCCGGGTTCT		GCACTGAGGG CTCAAGAAGA				2340 2400
	TGCAAGATAT	TTATATATAT	TTTTGGTTGT	CAATATTAAA	TACAGACACT	AAGTTATAGT	2460
			GTAAATACAC AAACATGGTT				2520 2580
60	TTTGGATGGG	AGTGAGACAG	AAGTAAGTGG ACACGTACCT	GGTTGCAACC	ACTGCAACGG	CTTAGACTTC	2640
00	TTTGATCCCT	GTTACCCAGA	GAATATATAC	ATTCTTTATC	TTGACATTCA	AGGCATTTCT	2760
			TGTTCAAAAA TTGAATGTGA		TTGTGCCAGC	CGTGATGCTC	2820
65		81 Protein cession #: 1			•		
•	1 '	11	21	31	41	51	
70	LTTLWSLSVA	IFSVGGMIGS	LGSLQFGYNT FSVGLFVNRF PMYVGEVSPT	GRRNSMLMMN	LLAFVSAVLM	GPSKLGKSFE	60 120 180
	GNKDLWPLLL	SIIPIPALLQ	CIVLPFCPES	PRFLLINRNE	ENRAKSVLKK	LRGTADVTHD	240 300
75	AGVQQPVYAT LPWMSYLSIV	IGSGIVNTAP AIFGFVAFFE PYVFIIFTVL	ELFRSPAYRQ TVVSLFVVER VGPGPIPWFI LVLFFIFTYF	AGRRTLHLIG VAELFSQGPR	LAGMAGCAIL PAAIAVAGFS	MTIALALLEQ NWTSNFIVGM	360 420 480
80	Nucleic Act	82 DNA sequid Accession Lence: 44-54	n #: BC00129)1		٠	
05	1	11	21	31	41	51	
85	 GGGGGCGCCG	CGCGCTGACC	CTCCCTGGGC	 ACCGCTGGGG	ACGATGGCGC	 TGCTCGCCTT	60
	GCTGCTGGTC	GTGGCCCTAC	CGCGGGTGTG	GACAGACGCC	AACCTGACTG	CGAGACAACG	120

```
AGATCCAGAG GACTCCCAGC GAACGGACGA GGGTGACAAT AGAGTGTGGT GTCATGTTTG
                                                                              180
        TGAGAGAGAA AACACTTTCG AGTGCCAGAA CCCAAGGAGG TGCAAATGGA CAGAGCCATA
                                                                              240
        CTGCGTTATA GCGGCCGTGA AAATATTTCC ACGTTTTTTC ATGGTTGCGA AGCAGTGCTC
                                                                              300
        CGCTGGTTGT GCAGCGATGG AGAGACCCAA GCCAGAGGAG AAGCGGTTTC TCCTGGAAGA
                                                                              360
 5
       GCCCATGCCC TTCTTTTACC TCAAGTGTTG TAAAATTCGC TACTGCAATT TAGAGGGGCC
                                                                              420
       ACCTATCAAC TCATCAGTGT TCAAAGAATA TGCTGGGAGC ATGGGTGAGA GCTGTGGTGG
                                                                              480
       GCTGTGGCTG GCCATCCTCC TGCTGCTGGC CTCCATTGCA GCCGGCCTCA GCCTGTCTTG
                                                                              540
       AGCCACGGGA CTGCCACAGA CTGAGCCTTC CGGAGCATGG ACTCGCTCCA GACCGTTGTC
                                                                              600
       ACCTGTTGCA TTAAACTTGT TTTCTGTTGA TTACCTCTTG GTTTGACTTC CCAGGGTCTT
                                                                              660
10
       GGGATGGGAG AGTGGGGATC AGGTGCAGTT GGCTCTTAAC CCTCAAGGGT TCTTTAACTC
                                                                              720
       ACATTCAGAG GAAGTCCAGA TCTCCTGAGT AGTGATTTTG GTGACAAGTT TTTCTCTTTG
                                                                              780
       AAATCAAACC TTGTAACTCA TTTATTGCTG ATGGCCACTC TTTTCCTTGA CTCCCCTCTG
                                                                              840
       CCTCTGAGGG CTTCAGTATT GATGGGGAGG GAGGCCTAAG TACCACTCAT GGAGAGTATG
                                                                              900
       TGCTGAGATG CTTCCGACCT TTCAGGTGAC GCAGGAACAC TGGGGGAGTC TGAATGATTG
                                                                              960
15
       GGGTGAAGAC ATCCCTGGAG TGAAGGACTC CTCAGCATGG GGGCACGTG GGCACACGTT
AGGGCTGCCC CCATTCCAGT GGTGGAGGCG CTGTGGATGG CTGCTTTTCC TCAACCTTTC
       CTACCAGATT CCAGGAGGCA GAAGATAACT AATTGTGTTG AAGAAACTTA GACTTCACCC
                                                                             1140
       ACCAGCTGGC ACAGGTGCAC AGATTCATAA ATTCCCACAC GTGTGTGTTC AACATCTGAA
                                                                             1200
       ACTTAGGCCA AGTAGAGAGC ATCAGGGTAA ATGGCGTTCA TTTCTCTGTT AAGATGCAGC
                                                                             1260
20
       CATCCATGGG GAGCTGAGAA ATCAGACTCA AAGTTCCACC AAAAACAAAT ACAAGGGGAC
       Seq ID NO: 83 Protein sequence:
       Protein Accession #: AAH01291
25
       MALLALLLVV ALPRVWTDAN LTARORDPED SORTDEGDNR VWCHVCEREN TFECONPRRC
                                                                               60
       KWTEPYCVIA AVKIFPRFFM VAKQCSAGCA AMERPKPEEK RFLLEEPMPF FYLKCCKIRY
                                                                              120
30
       CNLEGPPINS SVFKEYAGSM GESCGGLWLA ILLLLASIAA GLSLS
       Seq ID NO: 84 DNA sequence
       Nucleic Acid Accession #: NM_022893.1
       Coding sequence: 229-2726
35
                              21
                                         31
                                                                 51
       TTTTTTTTT TTTTTTGCTT AAAAAAAAGC CATGACGGCT CTCCCACAAT TCATCTTCCC
                                                                               60
       TGCGCCATCT TTGTATTATT TCTAATTTAT TTTGGATGTC AAAAGGCACT GATGAAGATA
                                                                              120
40
       TTTTCTCTGG AGTCTCCTTC TTTCTAACCC GGCTCTCCCG ATGTGAACCG AGCCGTCGTC
                                                                              180
       CGCCCGCCGC CGCCGCCGCC GCCGCCGCCG CCCGCCCCGC AGCCCACCAT GTCTCGCCGC
       AAGCAAGGCA AACCCCAGCA CTTAAGCAAA CGGGAATTCT CGCCCGAGCC TCTTGAAGCC
                                                                              300
       ATTCTTACAG ATGATGAACC AGACCACGGC CCGTTGGGAG CTCCAGAAGG GGATCATGAC
       CTCCTCACCT GTGGGCAGTG CCAGATGAAC TTCCCATTGG GGGACATTCT TATTTTTATC
                                                                              420
45
       GAGCACAAAC GGAAACAATG CAATGGCAGC CTCTGCTTAG AAAAAGCTGT GGATAAGCCA
                                                                              480
       CCTTCCCCTT CACCAATCGA GATGAAAAAA GCATCCAATC CCGTGGAGGT TGGCATCCAG
                                                                              540
       GTCACGCCAG AAGATGACGA TTGTTTATCA ACGTCATCTA GAAGAATTTG CCCCAAACAG
                                                                              600
       GAACACATAG CAGATAAACT TCTGCACTGG AGGGGCCTCT CCTCCCCTCG TTCTGCACAT
                                                                              660
       GGAGCTCTAA TCCCCACGCC TGGGATGAGT GCAGAATATG CCCCGCAGGG TATTTGTAAA
                                                                              720
50
       GATGAGCCCA GCAGCTACAC ATGTACAACT TGCAAACAGC CATTCACCAG TGCATGGTTT
                                                                              780
       CTCTTGCAAC ACGCACAGAA CACTCATGGA TTAAGAATCT ACTTAGAAAG CGAACACGGA
                                                                              840
       AGTCCCCTGA CCCCGCGGGT TGGTATCCCT TCAGGACTAG GTGCAGAATG TCCTTCCCAG
                                                                              900
       CCACCTCTCC ATGGGATTCA TATTGCAGAC AATAACCCCT TTAACCTGCT AAGAATACCA
                                                                              960
       GGATCAGTAT CGAGAGAGGC TTCCGGCCTG GCAGAAGGGC GCTTTCCACC CACTCCCCC
                                                                             1020
       CTGTTTAGTC CACCACCGAG ACATCACTTG GACCCCCACC GCATAGAGCG CCTGGGGGCG
55
                                                                             1080
       GAAGAAATGG CCCTGGCCAC CCATCACCCG AGTGCCTTTG ACAGGGTGCT GCGGTTGAAT
                                                                             1140
       CCAATGGCTA TGGAGCCTCC CGCCATGGAT TTCTCTAGGA GACTTAGAGA GCTGGCAGGG AACACGTCTA GCCCACCGCT GTCCCCAGGC CGGCCCAGCC CTATGCAAAG GTTACTGCAA
                                                                             1200
                                                                             1260
       CCATTCCAGC CAGGTAGCAA GCCGCCCTTC CTGGCGACGC CCCCCCTCCC TCCTCTGCAA
TCCGCCCCTC CTCCCTCCCA GCCCCCGGTC AAGTCCAAGT CATGCGAGTT CTGCGGCAAG
                                                                             1320
60
                                                                             1380
       ACGTTCAAAT TTCAGAGCAA CCTGGTGGTG CACCGGCGCA GCCACACGGG CGAGAAGCCC
                                                                             1440
       TACAAGTGCA ACCTGTGCGA CCACGCGTGC ACCCAGGCCA GCAAGCTGAA GCGCCACATG
                                                                             1500
       AAGACGCACA TGCACAAATC GTCCCCCATG ACGGTCAAGT CCGACGACGG TCTCTCCACC
                                                                             1560
       GCCAGCTCCC CGGAACCCGG CACCAGCGAC TTGGTGGGCA GCGCCAGCAG CGCGCTCAAG
65
       TCCGTGGTGG CCAAGTTCAA GAGCGAGAAC GACCCCAACC TGATCCCGGA GAACGGGGAC
                                                                             1680
       1740
       CTGACGGAGA GCGAGAGGGT GGACTACGGC TTCGGGCTGA GCCTGGAGGC GGCGCGCCAC
                                                                             1800
       CACGAGAACA GCTCGCGGGG CGCGGTCGTG GGCGTGGGCG ACGAGAGCCG CGCCCTGCCC
                                                                             1860
       GACGTCATGC AGGGCATGGT GCTCAGCTCC ATGCAGCACT TCAGCGAGGC CTTCCACCAG
                                                                             1920
70
       GTCCTGGGCG AGAAGCATAA GCGCGGCCAC CTGGCCGAGG CCGAGGGCCA CAGGGACACT
                                                                             1980
       TGCGACGAAG ACTCGGTGGC CGGCGAGTCG GACCGCATAG ACGATGGCAC TGTTAATGGC
                                                                             2040
       CGCGGCTGCT CCCCGGGCGA GTCGGCCTCG GGGGGCCTGT CCAAAAAGCT GCTGCTGGGC
                                                                             2100
       AGCCCCAGCT CGCTGAGCCC CTTCTCTAAG CGCATCAAGC TCGAGAAGGA GTTCGACCTG
                                                                             2160
       CCCCOGGCCA CGATGCCCAA CACGGAGAAC GTGTACTCGC AGTGGCTCGC CGGCTACGCG
                                                                             2220
75
       GCCTCCAGGC AGCTCAAAGA TCCCTTCCTT AGCTTCGGAG ACTCCAGACA ATCGCCTTTT
                                                                             2280
       GCCTCCTCGT CGGAGCACTC CTCGGAGAAC GGGAGCTTGC GCTTCTCCAC ACCGCCCGGG
                                                                             2340
       GAGCTGGACG GAGGGATCTC GGGGCGCAGC GGCACGGGAA GTGGAGGGAG CACGCCCCAT
ATTAGTGGTC CGGGCACGGG CAGGCCCAGC TCAAAAGAGG GCAGACGCAG CGACACTTGT
                                                                             2400
                                                                             2460
       GAGTACTGTG GGAAAGTCTT CAAGAACTGT AGCAATCTCA CTGTCCACAG GAGAAGCCAC
                                                                             2520
80
       ACGGGCGAAA GGCCTTATAA ATGCGAGCTG TGCAACTATG CCTGTGCCCA GAGTAGCAAG
                                                                             2580
       CTCACCAGGC ACATGAAAAC GCATGGCCAG GTGGGGAAGG ACGTTTACAA ATGTGAAATT
                                                                             2640
       TGTAAGATGC CTTTTAGGGT GTACAGTACC CTGGAGAAAC ACATGAAAAA ATGGCACAGT
GATCGAGTGT TGAATAATGA TATAAAAACT GAATAGAGGT ATATTAATAC CCCTCCCTCA
                                                                             2700
                                                                             2760
       CTCCCACCTG ACACCCCCTT TTTCACCACT CCCTTTCCCC ATCGCCCTCC AGCCCCACTC
                                                                             2820
85
       CCTGTAGGAT TTTTTCTAG TCCCATGTGA TTTAAACAAA CAAACAAACA AACAGAAGTA
```

```
ATCTGTATGG GGCAATACTA TTGCATTTTA CGCAAACTTT GAGCCTTTCT CTTGTGCAAT
                                                                             3060
       AATTTACATG TTGTGTATGT TTTTTTTTAA ACTTAGACAG CATGTATGGT ATGTTATGGC
                                                                             3120
       TATTITAAAT TGTCCCTAAT TCGTTGCTGA GCAAACATGT TGCTGTTTCC AGTTCCGTTC
                                                                             3180
       TGAGAGAAAA AGAGAGAGAG AGAGAAAAAG ACCATGCTGC ATACATTCTG TAATACATAT
                                                                             3240
                                                                             3300
       CATGTACAGT TTTATTTAT AACGTGAGGA GGAAAAACAG TCTTTGGATT AACCCTCTAT
       AGACAGAATA GATAGCACTG AAAAAAAATC TCTATGAGCT AAATGTCTGT CTCTAAAGGG
                                                                             3360
       TTAAATGTAT CAATTGGAAA GGAAGAAAAA AGGCCTTGAA TTGACAAATT AACAGAAAAA
                                                                             3420
       CAGAACAAGT TTATTCTATC ATTTGGTTTT AAAATATGAG TGCCTTGGAT CTATTAAAAC
                                                                             3480
       CACATCGATG GITCITTCTA CITGITATAA ACTIGIAGCI TAATTCAGCA TIGGGIGAGG
                                                                             3540
10
       TAATAAACCT TAGGAACTAG CATATAATTC TATATTGTAT TTCTCACAAC AATGGCTACC
                                                                             3600
       TAAAAAGATG ACCCATTATG TCCTAGTTAA TCATCATTTT TCCTTTAGTT TAATTTTATA
                                                                             3660
                                                                             3720
       AACAAAACTG ATTATACCAG TATAAAAGCT ACTTTGCTCC TGGTGAGAGC TTAAAAGAAA
       TGGGCTGTTT TGCCCAAAGT TTTATTTTTT TTAAACAATG ATTAAATTGA ATGTGTAATG
                                                                             3780
       TGCAAAAGCC CTGGAACGCA ATTAAATACA CTAGTAAGGA GTTCATTTTA TGAAGATATT
                                                                             3840
15
                                                                             3900
       TGCTTTAATA ATGTCTTTTT AAAAATACTG GCACCAAAAG AAATAGATCC AGATCTACTT
       GGTTGTCAAG TGGACAATCA AATGATAAAC TTTAAGACCT TGTATACCAT ATTGAAAGGA
                                                                             3960
       AGAGGCTGAC AATAAGGTTT GACAGAGGGG AACAGAAGAA AATAATATGA TTTATTAGCA
                                                                             4020
       CAACGTGGTA CTATTTGCCA TTTAAAACTA GAACAGGTAT ATAAGCTAAT ATTGATACAA
                                                                             4080
       TGATGATTAA CTATGAATTC TTAAGACTTG CATTTAAATG TGACATTCTT AAAAAAAGAA
                                                                             4140
       GAGAAAGAAT TITTAAGAGTA GCAGTATATA TGTCTGTGCT CCCTAAAAGT TGTACTTCAT
TTCTTTTCCA TACACTGTGT GCTATTTGTG TTAACATGGA AGAGGATTCA TTGTTTTTAT
20
                                                                             4200
                                                                             4260
       TTTTATTTTT TTAATTTTTT CTTTTTTATT AAGCTAGCAT CTGCCCCAGT TGGTGTTCAA
                                                                             4320
       ATAGCACTTG ACTCTGCCTG TGATATCTGT ATCTTTTCTC TAATCAGAGA TACAGAGGTT
       GAGTATAAAA TAAACCTGCT CAGATAGGAC AATTAAGTGC ACTGTACAAT TTTCCCAGTT
25
       TACAGGTCTA TACTTAAGGG AAAAGTTGCA AGAATGCTGA AAAAAAATTG AACACAATCT
       CATTGAGGAG CATTTTTTAA AAACTAAAAA AAAAAAAACT TTGCCAGCCA TTTACTTGAC
                                                                             4560
       TATTGAGCTT ACTTACTTGG ACGCAACATT GCAAGCGCTG TGAATGGAAA CAGAATACAC
                                                                             4620
       TTAACATAGA AATGAATGAT TGCTTTCGCT TCTACAGTGC AAGGATTTTT TTGTACAAAA
                                                                             4680
       CTTTTTTAAA TATAAATGTT AAGAAAAATT TTTTTTAAAA AACACTTCAT TATGTTTAGG
                                                                             4740
30
       GGGGAACTGC ATTTTAGGGT TCCATTGTCT TGGTGGTGTT ACAAGACTTG TTATCCATTT
                                                                             4800
       AAAAATGGTA GTGGAAATTC TATGCCTTGG ATACACACCG CTCTTCAGGT TGTAAAAAAA
                                                                             4860
       AAAAACATAC ATTGGGGAAA GGTTTAAGAT TATATAGTAC TTAAATATAG GAAAATGCAC
                                                                             4920
       ACTCATGTTG ATTCCTATGC TAAAATACAT TTATGGTCTT TTTTCTGTAT TTCTAGAATG
                                                                             4980
       GTATTTGAAT TAAATGTTCA TCTAGTGTTA GGCACTATAG TATTTATATT GAAGCTTGTA
                                                                             5040
35
       TTTTTAACTG TTGCTTGTTC TCTTAAAAGG TATCAATGTA CCTTTTTTGG TAGTGGAAAA
                                                                             5100
       AAAAAAGACA GGCTGCCACA GTATATTTTT TTAATTTGGC AGGATAATAT AGTGCAAATT
                                                                             5160
       ATTTGTATGC TTCAAAAAAA AAAAAAAGAG AGAAACAAAA AAGTGTGACA TTACAGATGA
                                                                             5220
       GAAGCCATAT AATGGCGGTT TGGGGGAGCC TGCTAGAATG TCACATGGAT GGCTGTCATA
                                                                             5280
       GGGGTTGTAC ATATCCTTTT TTGTTCCTTT TTCCTGCTGC CATACTGTAT GCAGTACTGC
                                                                             5340
40
       AAGCTAATAA CGTTGGTTTG TTATGTAGTG TGCTTTTTGT CCCTTTCCTT CTATCACCCT
                                                                             5400
       5460
       TTAGATTGGA AAGAATTTCA TATGCAAAGC ATATTAAAGA GAAAGCCCGC TTTAGTCAAT
       ACTITITIGE AAATGCCAAT GCAGAATATT TIGITATIGG CCTTTTCTAT TCCTGTAATG
45
       AAAGCTGTTT GTCGTAACTT GAAATTTTAT CTTTTACTAT GGGAGTCACT ATTTATTATT
       GCTTATGTGC CCTGTTCAAA ACAGAGGCAC TTAATTTGAT CTTTTATTTT TCTTTGTTTT
       TATTTTTTT TTTATTTAGA TGACCAAAGG TCATTACAAC CTGGCTTTTT ATTGTATTTG
                                                                             5820
       TITCTGGTCT TTGTTAAGTT CTATTGGAAA AACCACTGTC TGTGTTTTTT TGGCAGTTGT
       CTGCATTAAC CTGTTCATAC ACCCATTTTG TCCCTTTATT GAAAAAATAA AAAAAATTAA .5940
50
       Seq ID NO: 85 Protein sequence:
       Protein Accession #: NP_075044.1
55
                              21
                                        . 31
                                                     41
                                                                 51
       MSRRKQGKPQ HLSKREFSPE PLEAILTDDE PDHGPLGAPE GDHDLLTCGQ CQMNFPLGDI
                                                                               60
       LIFIEHKRKQ CNGSLCLEKA VDKPPSPSPI EMKKASNPVE VGIQVTPEDD DCLSTSSRRI
                                                                              120
       CPKQEHIADK LLHWRGLSSP RSAHGALIPT PGMSAEYAPQ GICKDEPSSY TCTTCKQPFT
                                                                              180
       SAWFILOHAO NTHGLRIYLE SEHGSPLTPR VGIPSGLGAE CPSQPPLHGI HIADNNPFNL
LRIPGSVSRE ASGLAEGRFP PTPPLFSPPP RHHLDPHRIE RLGAEEMALA THHPSAFDRV
60
                                                                              240
                                                                              300
       LRLNPMAMEP PAMDFSRRLR ELAGNTSSPP LSPGRPSPMQ RLLQPFQPGS KPPFLATPPL
                                                                              360
       PPLOSAPPPS OPPVKSKSCE FCGKTFKFOS NLVVHRRSHT GEKPYKCNLC DHACTQASKL
       KRHMKTHMHK SSPMTVKSDD GLSTASSPEP GTSDLVGSAS SALKSVVAKF KSENDPNLIP
                                                                              480
65
       ENGDEEEEED DEEEEEEEE EEEELTESER VDYGFGLSLE AARHHENSSR GAVVGVGDES
       RALPDVMQGM VLSSMQHFSE APHQVLGEKH KRGHLABAEG HRDTCDEDSV AGESDRIDDG
                                                                              600
       TVNGRGCSPG ESASGLSKK LLLGSPSSLS PFSKRIKLEK EFDLPPATMP NTENVYSQWL
                                                                              660
       AGYAASROLK DPFL9FGDSR QSPFASSSEH SSENGSLRFS TPPGELDGGI SGRSGTGSGG
                                                                              720
       STPHISGPGT GRPSSKEGRR SDTCEYCGKV FKNCSNLTVH RRSHTGERPY KCELCNYACA
                                                                              780
70
       OSSKLTRHMK THGOVGKDVY KCEICKMPFS VYSTLEKHMK KWHSDRVLNN DIKTE
       Seq ID NO: 86 DNA sequence
       Nucleic Acid Accession #: XM_035292.2
75
       Coding sequence: 53-1576
                              21
                                          31
                                                     41
                                                                 51
       GCTCGCTGGG CCGCGGCTCC CGGGTGTCCC AGGCCCGGCC GGTGCGCAGA GCATGGCGGG
                                                                               60
80
       TGCGGGCCCG AAGCGGCGCG CGCTAGCGGC GCCGGCGGCC GAGGAGAAGG AAGAGGCGCG
                                                                              120
       GGAGAAGATG CTGGCCGCCA AGAGCGCGGA CGGCTCGGCG CCGGCAGGCG AGGGCGAGGG
CGTGACCCTG CAGCGGAACA TCACGCTGCT CAACGGCGTG GCCATCATCG TGGGGACCAT
                                                                               180
                                                                               240
       TATCGGCTCG GGCATCTTCG TGACGCCCAC GGGCGTGCTC AAGGAGGCAG GCTCGCCGGG
                                                                               300
       GCTGGCGCTG GTGGTGTGGG CCGCGTGCGG CGTCTTCTCC ATCGTGGGCG CGCTCTGCTA
                                                                               360
       CGCGGAGCTC GGCACCACCA TCTCCAAATC GGGCGGGGAC TACGCCTACA TGCTGGAGGT
CTACGGCTCG CTGCCCGCCT TCCTCAAGCT CTGGATCGAG CTGCTCATCA TCCGGCCTTC
85
                                                                               420
       ATCGCAGTAC ATCGTGGCCC TGGTCTTCGC CACCTACCTG CTCAAGCCGC TCTTCCCCAC
```

```
CTGCCCGGTG CCCGAGGAGG CAGCCAAGCT CGTGGCCTGC CTCTGCGTGC TGCTGCTCAC
                                                                             600
       GGCCGTGAAC TGCTACAGCG TGAAGGCCGC CACCCGGGTC CAGGATGCCT TTGCCGCCGC
                                                                             660
       CAAGCTCCTG GCCCTGGCCC TGATCATCCT GCTGGGCTTC GTCCAGATCG GGAAGGGTGA
                                                                             720
       TGTGTCCAAT CTAGATCCCA ACTTCTCATT TGAAGGCACC AAACTGGATG TGGGGAACAT
                                                                             780
       TGTGCTGGCA TTATACAGCG GCCTCTTTGC CTATGGAGGA TGGAATTACT TGAATTTCGT
                                                                             840
       CACAGAGGAA ATGATCAACC CCTACAGAAA CCTGCCCCTG GCCATCATCA TCTCCCTGCC
                                                                             900
       CATCGTGACG CTGGTGTACG TGCTGACCAA CCTGGCCTAC TTCACCACCC TGTCCACCGA
                                                                             960
       GCAGATGCTG TCGTCCGAGG CCGTGGCCGT GGACTTCGGG AACTATCACC TGGGCGTCAT
                                                                            1020
       GTCCTGGATC ATCCCCGTCT TCGTGGGCCT GTCCTGCTTC GGCTCCGTCA ATGGGTCCCT
                                                                            1080
10
       GTTCACATCC TCCAGGCTCT TCTTCGTGGG GTCCCGGGAA GGCCACCTGC CCTCCATCCT
                                                                           1140
       CTCCATGATC CACCCACAGC TCCTCACCCC CGTGCCGTCC CTCGTGTTCA CGTGTGTGAT
                                                                           1200
       GACGCTGCTC TACGCCTTCT CCAAGGACAT CTTCTCCGTC ATCAACTTCT TCAGCTTCTT
                                                                           1260
       CAACTGGCTC TGCGTGGCCC TGGCCATCAT CGGCATGATC TGGCTGCGCC ACAGAAAGCC
                                                                           1320
       TGAGCTTGAG CGGCCCATCA AGGTGAACCT GGCCCTGCCT GTGTTCTTCA TCCTGGCCTG
                                                                            1380
15
       CCTCTTCCTG ATCGCCGTCT CCTTCTGGAA GACACCCGTG GAGTGTGGCA TCGGCTTCAC
                                                                           1440
       CATCATCCTC AGCGGGCTGC CCGTCTACTT CTTCGGGGTC TGGTGGAAAA ACAAGCCCAA
                                                                           1500
       GTGGCTCCTC CAGGGCATCT TCTCCACGAC CGTCCTGTGT CAGAAGCTCA TGCAGGTGGT
                                                                           1560
       CCCCCAGGAG ACATAGCCAG GAGGCCGAGT GGCTGCCGGA GGAGCATGC
20
       Seq ID NO: 87 Protein sequence:
       Protein Accession #: XP_035292.2
25
       MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLORNI TLLNGVAIIV
       GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVFSIVGA LCYAELGTTI SKSGGDYAYM
                                                                             120
       LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL FPTCPVPEEA AKLVACLCVL
                                                                             180
       LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSFEGTKLDV
                                                                             240
      GNIVLALYSG LFAYGGWNYL NFVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL
                                                                             300
30
       STEQMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLP
                                                                             360
       SILSMIHPOL LTPVPSLVPT CVMTLLYAFS KDIFSVINFF SFFNWLCVAL AIIGMIWLRH
                                                                             420
       RKPELERPIK VNLALPVFFI LACLFLIAVS, FWKTPVECGI GFTIILSGLP VYFFGVWWKN
                                                                             480
       KPKWLLQGIF STTVLCQKLM QVVPQET
35
       Seq ID NO: 88 DNA sequence
       Nucleic Acid Accession #: NM_005268.1
       Coding sequence: 168-989
40
                             21
                                         31
                  11
       TAAAAAGCAA AAGAATTCGC GGCCGCGTCG ACACGGGCTT CCCCGAAAAC CTTCCCCGCT
                                                                              60
      TCTGGATATG AAATTCAAGC TGCTTGCTGA GTCCTATTGC CGGCTGCTGG GAGCCAGGAG AGCCCTGAGG AGTAGTCACT CAGTAGCAGC TGACGCGTGG GTCCACCATG AACTGGAGTA
                                                                             120
                                                                             180
45
       TCTTTGAGGG ACTCCTGAGT GGGGTCAACA AGTACTCCAC AGCCTTTGGG CGCATCTGGC
                                                                             240
       TGTCTCTGGT CTTCATCTTC CGCGTGCTGG TGTACCTGGT GACGGCCGAG CGTGTGTGGA
                                                                             300
       GTGATGACCA CAAGGACTTC GACTGCAATA CTCGCCAGCC CGGCTGCTCC AACGTCTGCT
                                                                             360
       TTGATGAGTT CTTCCCTGTG TCCCATGTGC GCCTCTGGGC CCTGCAGCTT ATCCTGGTGA
                                                                             420
       CATGCCCCTC ACTGCTCGTG GTCATGCACG TGGCCTACCG GGAGGTTCAG GAGAAGAGGC
                                                                             480
50
       ACCGAGAAGC CCATGGGGAG AACAGTGGGC GCCTCTACCT GAACCCCGGC AAGAAGCGGG
                                                                             540
       GTGGGCTCTG GTGGACATAT GTCTGCAGCC TAGTGTTCAA GGCGAGCGTG GACATCGCCT
                                                                             600
       TTCTCTATGT GTTCCACTCA TTCTACCCCA AATATATCCT CCCTCCTGTG GTCAAGTGCC
                                                                             660
       ACGCAGATCC ATGTCCCAAT ATAGTGGACT GCTTCATCTC CAAGCCCTCA GAGAAGAACA
                                                                             720
       TTTTCACCCT CTTCATGGTG GCCACAGCTG CCATCTGCAT CCTGCTCAAC CTCGTGGAGC
                                                                             780
55
       TCATCTACCT GGTGAGCAAG AGATGCCACG AGTGCCTGGC AGCAAGGAAA GCTCAAGCCA
                                                                             840
       TGTGCACAGG TCATCACCCC CACGGTACCA CCTCTTCCTG CAAACAAGAC GACCTCCTTT
                                                                             900
       CGGGTGACCT CATCTTTCTG GGCTCAGACA GTCATCCTCC TCTCTTACCA GACCGCCCCC
                                                                             960
       GAGACCATGT GAAGAAACC ATCTTGTGAG GGGCTGCCTG GACTGGTCTG GCAGGTTGGG
                                                                            1020
       CCTGGATGGG GAGGCTCTAG CATCTCTCAT AGGTGCAACC TGAGAGTGGG GGAGCTAAGC
                                                                            1080
60
       CATGAGGTAG GGGCAGGCAA GAGAGAGGAT TCAGACGCTC TGGGAGCCÂG TTCCTAGTCC
                                                                            1140
       TCAACTCCAG CCACCTGCCC CAGCTCGACG GCACTGGGCC AGTTCCCCCT CTGCTCTGCA
       GCTCGGTTTC CTTTTCTAGA ATGGÁAATAG TGAGGGCCAA TGC
       Seq ID NO: 89 Protein sequence:
65
       Protein Accession #: NP_005259.1
                             21
                                         31
                  11
                                                                              60
       MNWSIFEGLL SGVNKYSTAF GRIWLSLVFI FRVLVYLVTA ERVWSDDHKD FDCNTRQPGC
70
       SNVCFDEFFP VSHVRLWALQ LILVTCPSLL VVMHVAYREV QEKRHREAHG ENSGRLYLNP
                                                                             120
       GKKRGGLWWT YVCSLVFKAS VDIAFLYVFH SFYPKYILPP VVKCHADPCP NIVDCFISKP
                                                                             180
       SEKNIFTLEM VATAAICILL NLVELIYLVS KRCHECLAAR KAQAMCTGHH PHGTTSSCKQ
                                                                             240
       DDLLSGDLIF LGSDSHPPLL PDRPRDHVKK TIL
75
       Seq ID NO: 90 DNA sequence
       Nucleic Acid Accession #: NM_002391.1
       Coding sequence: 26-457
80
                                         31
       CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
       CGCCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
       CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG
85
       CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT
                                                                             240
       GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
                                                                             300
       TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
                                                                             360
```

PCT/US02/12476 WO 02/086443 420 CAATGCTCAG TGCCAGGAGA CCATCCGCGT CACCAAGCCC TGCACCCCCA AGACCAAAGC AAAGGCCAAA GCCAAGAAAG GGAAGGGAAA GGACTAGACG CCAAGCCTGG ATGCCAAGGA 480 GCCCCTGGTG TCACATGGGG CCTGGCCACG CCCTCCCTCT CCCAGGCCCG AGATGTGACC CACCAGTGCC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC 600 ACTCCCCAGC CCCACCCCTA AGTGCCCAAA GTGGGGAGGG ACAAGGGATT CTGGGAAGCT 660 TGAGCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCGCTT TTGTTCTTCC CCACAATTCC 720 ATTACTAAGA AACACATCAA ATAAACTGAC TTTTTCCCCC CAATAAAAGC TCTTCTTTTT 10 Seq ID NO: 91 Protein sequence: Protein Accession #: NP_002382.1 51 15 MOHRGFLLLT LLALLALTSA VAKKKOKVKK GGPGSECAEW AWGPCTPSSK DCGVGFREGT 60 CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAQCQETI 120 RVTKPCTPKT KAKAKAKKGK GKD 20 Seq ID NO: 92 DNA sequence Nucleic Acid Accession #: NM_005130.1 Coding sequence: 98-802 31 21 25 CTCTACCTGA CACAGCTGCA GCCTGCAATT CACTCCCACT GCCTGGGATT GCACTGGATC 60 CGTGTGCTCA GAACAAGGTG AACGCCCAGC TGCAGCCATG AAGATCTGTA GCCTCACCCT 120 GCTCTCCTTC CTCCTACTGG CTGCTCAGGT GCTCCTGGTG GAGGGGAAAA AAAAAGTGAA 180 GAATGGACTT CACAGCAAAG TGGTCTCAGA ACAAAAGGAC ACTCTGGGCA ACACCCAGAT 240 30 TAAGCAGAAA AGCAGGCCCG GGAACAAAGG CAAGTTTGTC ACCAAAGACC AAGCCAACTG 300 CAGATGGGCT GCTACTGAGC AGGAGGAGGG CATCTCTCTC AAGGTTGAGT GCACTCAATT 360 GGACCATGAA TTTTCCTGTG TCTTTGCTGG CAATCCAACC TCATGCCTAA AGCTCAAGGA 420 TGAGAGAGTC TATTGGAAAC AAGTTGCCCG GAATCTGCGC TCACAGAAAG ACATCTGTAG 480 ATATTCCAAG ACAGCTGTGA AAACCAGAGT GTGCAGAAAG GATTTTCCAG AATCCAGTCT 540 35 TAAGCTAGTC AGCTCCACTC TATTTGGGAA CACAAAGCCC AGGAAGGAGA AAACAGAGAT 600 GTCCCCCAGG GAGCACATCA AGGGCAAAGA GACCACCCCC TCTAGCCTAG CAGTGACCCA 660 GACCATGGCC ACCAAAGCTC CCGAGTGTGT GGAGGACCCA GATATGGCAA ACCAGAGGAA 720 GACTGCCCTG GAGTTCTGTG GAGAGACTTG GAGCTCTCTC TGCACATTCT TCCTCAGCAT 780 AGTGCAGGAC ACGTCATGCT AATGAGGTCA AAAGAGAACG GGTTCCTTTA AGAGATGTCA 840 40 TGTCGTAAGT CCCTCTGTAT ACTTTAAAGC TCTCTACAGT CCCCCCAAAA TATGAACTTT 900 TGTGCTTAGT GAGTGCAACG AAATATTTAA ACAAGTTTTG TATTTTTTGC TTTTGTGTTT 960 TGGAATTTGC CTTATTTTC TTGGATGCGA TGTTCAGAGG CTGTTTCCTG CAGCATGTAT TTCCATGGCC CACACAGCTA TGTGTTTGAG CAGCGAAGAG TCTTTGAGCT GAATGAGCCA 1020 1080 GAGTGATAAT TTCAGTGCAA CGAACTTTCT GCTGAATTAA TGGTAATAAA ACTCTGGGTG 45 TTTTCAAAA AAAAAAAAAA AAA Seg ID NO: 93 Protein seguence: Protein Accession #: NP_005121.1 50 31 MKICSLTLLS FLLLAAQVLL VEGKKKVKNG LHSKVVSEQK DTLGNTQIKQ KSRPGNKGKP 60 VTKDQANCRW AATEQEEGIS LKVECTQLDH EFSCVFAGNP TSCLKLKDER VYWKQVARNL 120 RSQKDICRYS KTAVKTRVCR KDFPESSLKL VSSTLFGNTK PRKEKTEMSP REHIKGKETT 180 55 PSSLAVTOTM ATKAPECVED PDMANQRKTA LEFCGETWSS LCTFFLSIVQ DTSC Seq ID NO: 94 DNA sequence Nucleic Acid Accession #: NM_012101 Coding sequence: 125-1891 60

51 21 31 41 CTCCTCACAG GTGTGTCTCT AGTCCTCGTG GTTGCCTGCC CCACTCCCTG CCGAGACGCC TGCCAGAAAG GTCACCTATC CTGAACCCCA GCAAGCCTGA AACAGCTCAG CCAAGCACCC 120 65 TGCGATGGAA GCTGCAGATG CCTCCAGGAG CAACGGGTCG AGCCCAGAAG CCAGGGATGC 180 CCGGAGCCCG TCGGGCCCCA GTGGCAGCCT GGAGAATGGC ACCAAGGCTG ACGGCAAGGA 240 TGCCAAGACC ACCAACGGGC ACGGCGGGGA GGCAGCTGAG GGCAAGAGCC TGGGCAGCGC 300 CCTGAAGCCA GGGGAAGGTA GGAGCGCCCT GTTCGCGGGC AATGAGTGGC GGCGACCCAT 360 CATCCAGTTT GTCGAGTCCG GGGACGACAA GAACTCCAAC TACTTCAGCA TGGACTCTAT 420 70 GGAAGGCAAG AGGTCGCCGT ACGCAGGGCT CCAGCTGGGG GCTGCCAAGA AGCCACCCGT 480 TACCTTTGCC GAAAAGGGCG ACGTGCGCAA GTCCATTTTC TCGGAGTCCC GGAAGCCCAC 540 GGTGTCCATC ATGGAGCCCG GGGAGACCCG GCGGAACAGC TACCCCCGGG CCGACACGGG 600 CCTTTTTCA CGGTCCAAGT CCGGCTCCGA GGAGGTGCTG TGCGACTCCT GCATCGGCAA 660 CAAGCAGAAG GCGGTCAAGT CCTGCCTGGT GTGCCAGGCC TCCTTCTGCG AGCTGCATCT 720 75 CAAGCCCCAC CTGGAGGGCG CCGCCTTCCG AGACCACCAG CTGCTCGAGC CCATCCGGGA 780 CTTTGAGGCC CGCAAGTGTC CCGTGCATGG CAAGACGATG GAGCTCTTCT GCCAGACCGA **B40** CCAGACCTGC ATCTGCTACC TTTGCATGTT CCAGGAGCAC AAGAATCATA GCACCGTGAC 900 AGTGGAGGAG GCCAAGGCCG AGAAGGAGAC GGAGCTGTCA CTGCAAAAGG AGCAGCTGCA 960 GCTCAAGATC ATTGAGATTG AGGATGAAGC TGAGAAGTGG CAGAAGGAGA AGGACCGCAT 1020 80 CAAGAGCTTC ACCACCAATG AGAAGGCCAT CCTGGAGCAG AACTTCCGGG ACCTGGTGCG 1080 GGACCTGGAG AAGCAAAAGG AGGAAGTGAG GGCTGCGCTG GAGCAGCGGG AGCAGGATGC
TGTGGACCAA GTGAAGGTGA TCATGGATGC TCTGGATGAA AGAGCCAAGG TGCTGCATGA
GGACAAGCAG ACCCGGGAGC AGCTGCATAG CATCAGCGAC TCTGTGTTGT TTCTGCAGGA 1140 1200 1260 ATTTGGTGCA TTGATGAGCA ATTACTCTCT CCCCCCACCC CTGCCCACCT ATCATGTCCT 1320 85 GCTGGAGGG GAGGGCCTGG GACAGTCACT AGGCAACTTC AAGGACGACC TGCTCAATGT ATGCATGCGC CACGTTGAGA AGATGTGCAA GGCGGACCTG AGCCGTAACT TCATTGAGAG 1440 GAACCACATG GAGAACGGTG GTGACCATCG CTATGTGAAC AACTACACGA ACAGCTTCGG

```
GGGTGAGTGG AGTGCACCGG ACACCATGAA GAGATACTCC ATGTACCTGA CACCCAAAGG 1560
       TGGGGTCCGG ACATCATACC AGCCCTCGTC TCCTGGCCGC TTCACCAAGG AGACCACCCA
GAAGAATTTC AACAATCTCT ATGGCACCAA AGGTAACTAC ACCTCCCGGG TCTGGGAGTA
                                                                             1620
                                                                             1680
       CTCCTCCAGC ATTCAGAACT CTGACAATGA CCTGCCCGTC GTCCAAGGCA GCTCCTCCTT
                                                                             1740
       CTCCCTGAAA GGCTATCCCT CCCTCATGCG GAGCCAAAGC CCCAAGGCCC AGCCCCAGAC
                                                                             1800
       TTGGAAATCT GGCAAGCAGA CTATGCTGTC TCACTACCGG CCATTCTACG TCAACAAAGG
                                                                             1860
       CAACGGGATT GGGTCCAACG AAGCCCCATG AGCTCCTGGC GGAAGGAACG AGGCGCCACA
                                                                             1920
       CCCCTGCTCT TCCTCCTGAC CCTGCTGCTC TTGCCTTCTA AGCTACTGTG CTTGTCTGGG
TGGGAGGGAG CCTGGTCCTG CACCTGCCCT CTGCAGCCT CTTGGGGGGCA
                                                                             1980
                                                                             2040
       GTTCCGGCCT CTCCGACTTC CCCACTGGCC ACACTCCATT CAGACTCCTT TCCTGCCTTG
                                                                             2100
10
       TGACCTCAGA TGGTCACCAT CATTCCTGTG CTCAGAGGCC AACCCATCAC AGGGGTGAGA
                                                                             2160
       TAGGTTGGGG CCTGCCCTAA CCCGCCAGCC TCCTCCTCTC GGGCTGGATC TGGGGGCTAG
                                                                             2220
       CAGTGAGTAC CCGCATGGTA TCAGCCTGCC TCTCCCGCCC ACGCCCTGCT GTCTCCAGGC
                                                                             2280
       CTATAGACGT TTCTCTCCAA GGCCCTATCC CCCAATGTTG TCAGCAGATG CCTGGACAGC
                                                                             2340
       ACAGCCACCC ATCTCCCATT CACATGCCCC ACCTCCTGCT TCCCAGAGGA CTGGCCCTAC
                                                                             2400
15
       GTGCTCTCTC TCGTCCTACC TATCAATGCC CAGCATGGCA GAACCTGCAG TGGCCAAGGG
                                                                             2460
       CTGCAGATGG AAACCTCTCA GTGTCTTGAC ATCACCCTAC CCAGGCGGTG GGTCTCCACC
                                                                             2520
       ACAGCCACTT TGAGTCTGTG GTCCCTGGAG GGTGGCTTCT CCTGACTGGC AGGATGACCT
                                                                             2580
       TAGCCAAGAT ATTCCTCTGT TCCCTCTGCT GAGATAAAGA ATTCCCTTAA CATGATATAA
                                                                             2640
       TCCACCCATG CAAATAGCTA CTGGCCCAGC TACCATTTAC CATTTGCCTA CAGAATTTCA
20
       GTGCCTTACA CACTGCCCCC ACCCTCAGCC GTTGCCCCAT CAGAGGCTGC CTCCTCCTTC
       2880
       AGCAGCACAG TGGGGACATC TCCCGTCTCA ACAGCCCCAG GCCTATGGGG GCTCTGGAAG
       GATGGGCCAG CTTGCAGGGG TTGGGGAGGG AGACATCCAG CTTGGGCTTT CCCCTTTGGA
                                                                             3000
25
       ATAAACCATT GGTCTGTC
       Seq ID NO: 95 Protein sequence:
       Protein Accession #: NP_036233.1
30
                                          31
                  11
                              21
       MEAADASRSN GSSPEARDAR SPSGPSGSLE NGTKADGKDA KTTNGHGGEA AEGKSLGSAL
                                                                               60
       KPGEGRSALF AGNEWRRPII QFVESGDDKN SNYFSMDSME GKRSPYAGLQ LGAAKKPPVT
                                                                               120
35
       FAEKGDVRKS IFSESRKPTV SIMEPGETRR NSYPRADTGL FSRSKSGSEE VLCDSCIGNK
                                                                               180
       QKAVKSCLVC QASFCELHLK PHLEGAAFRD HQLLEPIRDF EARKCPVHGK TMELFCQTDQ
                                                                               240
       TCICYLCMFQ EHKNHSTVTV EEAKAEKETE LSLQKEQLQL KIIEIEDEAE KWQKEKDRIK
                                                                               300
       SFTTNEKAIL EQNFRDLVRD LEKQKEEVRA ALEQREQDAV DQVKVIMDAL DERAKVLHED
       KQTREQLHSI SDSVLFLQEF GALMSNYSLP PPLPTYHVLL EGEGLGQSLG NFKDDLLNVC
                                                                               420
40
       MRHVEKMCKA DLSRNFIERN HMENGGDHRY VNNYTNSFGG EWSAPDTMKR YSMYLTPKGG
                                                                               480
       VRTSYQPSSP GRFTKETTQK NFNNLYGTKG NYTSRVWEYS SSIQNSDNDL PVVQGSSSFS
                                                                               540
       LKGYPSLMRS QSPKAQPQTW KSGKQTMLSH YRPFYVNKGN GIGSNEAP
45
       Seq ID NO: 96 DNA sequence
       Nucleic Acid Accession #: NM_080668.1
       Coding sequence: 83-841
                                                                 51
                                          31
50
       GGCACGAGGG CAGCGAGTGG CCTTCCCGGT TGGCGCGCGC CCGGGGCGGC GGCGCTGGAG
                                                                                60
       GAGCTCGAGA CGGAGCCTAG TTATGTCTGG GAGGCGAACG CGGTCCGGAG GAGCCGCTCA
                                                                               120
                                                                               180
       GCGCTCCGGG CCAAGGGCCC CATCTCCTAC TAAGCCTCTG CGGAGGTCCC AGCGGAAATC
       AGGCTCTGAA CTCCCGAGCA TCCTCCCTGA AATCTGGCCG AAGACACCCA GTGCGGCTGC AGTCAGAAAG CCCATCGTCT TAAAGAGGAT CGTGGCCCAT GCTGTAGAGG TCCCAGCTGT
                                                                               240
                                                                               300
55
        CCAATCACCT CGCAGGAGCC CTAGGATTTC CTTTTCTTG GAGAAAGAAA ACGAGCCCCC
                                                                               360
        TGGCAGGGAG CTTACTAAGG AGGACCTTTT CAAGACACAC AGCGTCCCTG CCACCCCCAC
                                                                               420
        CAGCACTCCT GTGCCGAACC CTGAGGCCGA GTCCAGCTCC AAGGAAGGAG AGCTGGACGC
                                                                               480
        CAGAGACTTG GAAATGTCTA AGAAAGTCAG GCGTTCCTAC AGCCGGCTGG AGACCCTGGG
        CTCTGCCTCT ACCTCCACCC CAGGCCGCCG GTCCTGCTTT GGCTTCGAGG GGCTGCTGGG
60
        GGCAGAAGAC TTGTCCGGAG TCTCGCCAGT GGTGTGCTCC AAACTCACCG AGGTCCCCAG
                                                                               660
        GGTTTGTGCA AAGCCCTGGG CCCCAGACAT GACTCTCCCT GGAATCTCCC CACCACCCGA
                                                                               720
        GAAACAGAAA CGTAAGAAGA AGAAAATGCC AGAGATCTTG AAAACGGAGC TGGATGAGTG
GGCTGCGGCC ATGAATGCCG AGTTTGAAGC TGCTGAGCAG TTTGATCTCC TGGTTGAATG
                                                                               780
                                                                               840
        AGATGCAGTG GGGGGTGCAC CTGGCCAGAC TCTCCCTCCT GTCCTGTACA TAGCCACCTC
                                                                               900
65
        CCTGTGGAGA GGACACTTAG GGTCCCCTCC CCTGGTCTTG TTACCTGTGT GTGTGCTGGT
                                                                               960
        GCTGCGCATG AGGACTGTCT GCCTTTGAGG GCTTGGGCAG CAGCGGCAGC CATCTTGGTT
                                                                              1020
        TTAGGAAATG GGGCCGCCTG GCCCAGCCAC TCACTGGTGT CCTGTCTCTT GTCGTCCTGT
                                                                              1080
        CCTTCCTATC TCCCCAAAGT ACCATAGCCA GTTTCCAGAT GGGCCACAGA CTGGGGAGGA
                                                                              1140
        GAATCAGTGG CCCAGCCAGA AGTTAAAGGG CTGAGGGTTG AGGTGAGAGG CACCTCTGCT
                                                                              1200
70
        CTTGTTGGGA GGGGTGGCTG CTTGGAAATA GGCCCAGGGG CTCTGCCAGC CTCGGCCTCT
                                                                              1260
        CCCTCCTGAG TTGCCTTCTG TTGGTGGCTT TCTTCTTGAA CCCACCTGTG TAAAGAGGTT
                                                                              1320
        TTCAGTTCCG TGGGTTTCCC CTTTGATTCT GTAAATAGTC CCAGAGAGAA TTCGTGGGCT
                                                                              1380
        GAGGGCAATT CTGTCTTGGA GGAAGAAGCT GGACATTCAG CCTGTGGAGT CTGAGTTTTG
                                                                              1440
        AAGGATGTAG GGAGCCTTAG TTGGGTCTCA GACCATAAGT GTGTACTACA CAGAAGCTGT
                                                                              1500
75
        GTTTTCTAGT TCTGGTCTGC TGTTGAGATG TTTGGTAAAT GCCAGGTTGA TAGGGCGCTG
                                                                              1560
        GCTGCTTGGA GCAAAGGGTG CATTTCAGGG TGTGGCCACC AGGTGCTGTG AGTTTCTGTG
        GCTCATGGCC TCTGGGCTGG TCCCTTGCAC AGGGCCCACG CTGGAGTCTT ACCACTCTGC
                                                                              1680
        TGCAGGGGTG GAAGGTGGCC CCTCTTGTCA CCCATACCCA TTTCTTACAA AATAAGTTAC
                                                                              1740
        ACCGAGTCTA CTTGGCCCTA GAAGAGAAAG TTGAAGAGTC CCAGACCTAC TAGCATTTTG
CAACTATGCT TGTAAAGTCC TCGGAAAGTT TCCTCGCGTA CCAGACAGCG GCGGGGGCTG
                                                                              1800
80
                                                                              1860
        ATAGCAATTT TAGTTTTTGG CCTCCCTATC CTCTCACATG AGAACACTGC CTGGATGCAT
                                                                              1920
        CTCATGATCT CTGGAGAATT TCCCCATCTT TCTCTTCTTT CCATCGTGTG GATTCAATAG
                                                                              1980
        TTTGGATTTG AAGGCTGCCC TGCCCCCGAC TCTCCTGCCG CACCCCTGGC CATTGTACCT
                                                                              2040
        TTTGATGTTT AGAAGTTCGT GGAAGTAGAC GCTGAGGTGT GCAGAGGAGC TGGTGGATAA
 85
                                                                              2100
        CAGAGAATGC CAGGGAAGAT GAGTGCTGGG TCAGGGTACT TGGATGAAAC GGTGCAGGCC
                                                                              2160
        AGGCGGGCCC TAATAAAACC CTCTGCCAGG TCTGGGAGTC CCAGGCCATC TGCTCAACGC
                                                                              2220
```

	WO 02	/086443					
5	CTGAACCGCA GTCTTAGTCC AGTTCTCTGT	CTGAAGAACT TGCAGAATCA TCCTGAGGAA	CAAGCAAGCC CTTGTCCTCA GGAGTCACCA CTAAATTTAA GTTTCTGCCT	CTGGCTGATG GATGATGCAG GGAAAAAATG	CAGCAGAACT AGTTGAGATC GGATTTTGTT	CTTGGGAAAT ATCATTGCAA TTAGAGTTGG	2280 2340 2400 2460
		97 Protein cession #: 1	-		٠		
10	1 MSGRRTRSGG	11 AAQRSGPRAP	21 SPTKPLRRSQ	31 RKSGSELPSI	41 LPEIWPKTPS	51 AAAVRKPIVL	60
15	EABSSSKEGE	LDARDLEMSK VPRVCAKPWA	RISPFLEKEN KVRRSYSRLE PDMTLPGISP	TLGSASTSTP	GRRSCFGFEG	LLGAEDLSGV	120 180 240
20	Nucleic Act	98 DNA sequid Accession sence: 58-12	ı#: Eos sed	Ineuce			
	1	11	21	31	41	51	
25	GCGGGCTCCG GCGGACCGCT TGCGTCCTGA	GAGCCGGTGT GCGGTGCTGC GCAGCAGCCC	CCGAGCGGGC GCGTTGCTCC CCTGGCCGGT CGCGGTGCTG TGTCCGGAAG	CTGCTGCGGC CATCAACTGA GCATTACAGA	TGCAGGAGAC TCCGCGGCCT CATCTTTAGT	CTTGTCCGCT GGGGCAGGAA TTTTTCCAGA	60 120 180 240 300
30	AGAGAAGAAA	TCCTAAAGTT	TTTATGTATT	TTCTTAGAAA	AAATGGGCCA	GAAGATCGCA	360
30			GAACACTTGT GGACCTTCTT				420 480
	AGACTCATGG	ATGAATTTAA	AATTGGAGAA	TTATTTAGTA	AATTCTATGG	AGAACTTGCA	540
			TACAGTTTTA GATGATAAAT				600 660
35	GGTGAACTTA	AGACCCAGAT	GACATCAGCA	GTAAGAGAGC	CCAAACTACC	TGTTCTGGCA	720
			CTCACTTCTG TTTTAATTTT				780 840
			CTCAGCTGGC				900
40			CAACTACGTG GAAAAAAGCT				960 1020
40			GAAAAAAGCT				1020
			CATCAGAAAT				1140
			TTTTGCAGGA CATTCAGCGC				1200 1260
45			TCAGATGCCA				1320
			TGAGGTGTAT GTACAGTCCA				1380 1440
			GGCAGCAAAA				1500
50			CAGAATATGT				1560
50			CCGTGCTTCA GGATCTCTTC				1620 1680
	GATTCTATTT	TAGCAGATGA	AGCATTTTTC	TCTGTGAATT	CCTCCAGTGA	AAGTCTGAAT	1740
			TGTAAAATCC TGGGGAACAA				1800 1860
55			AGCGGCTAAC				1920
			ATTTTGCAGA				1980 2040
			ATTTTCATAT			GAAAATAAAA	
60	TATTTCGAGG	GAGTTAGTCC	AAAGAGTCTG	AAACACTCTC	CTGAAGACCC	AGAAAAGTAT	2160
60			GAAATTTGGC			GAAGCAGTAC CAACATCATT	2220 2280
			CGTTCCTGCA				2340
	TATACCCCCT	TGGCAGAAGT	AGGCCTGAAT	GCTCTAGAAG	AATGGTCAAT	TTATATTGAC ATACCTGAAG	2400 2460
65						TTCTCGGGCT	2520
	GCCCAGAAAG	GATTTAATAA	AGTGGTGTTA	AAGCATCTGA	AGAAGACAAA	GAACCTTTCA	2580
			AGAAGAAATA AAATCTTCTG			GCTTGGATCT GATGATGAAG	2640 2700
	AGCTATGTGG	CCTGGGACAG	AGAGAAGCGG	CTGAGCTTTG	CAGTGCCCTT	TAGAGAGATG	2760
70			TGTGTTCCTG			GCTCACAGCC TATGTTTATG	2820 2880
			GCCAGAAGGG				2940
			GCTGCTTCGA				3000
75			TATGCAGCTG CTTACTAGAA				3060 3120
	GACAGTACTT	TAAGAGATTT	TTGTGGTCGG	TGTATTCGAG	AATTCCTTAA	ATGGTCCATT	3180
			GCAGGAGAAG TCACCCCAAT				3240 3300
00	TTTAATAATA	TCTACAGGGA	ATTCAGGGAA	GAAGAGTCTC	TGGTGGAACA	GTTTGTGTTT	3360
80	GAAGCCTTGG	TGATATACAT	GGAGAGTCTG	GCCTTAGCAC	ATGCAGATGA	GAAGTCCTTA	3420
			TGATGCCATT AAAGAAACGA				3480 3540
	TCATTGTGTT	TATTGGATCT	GGTCAAGTGG	CTTTTAGCTC	ATTGTGGGAG	GCCCCAGACA	3600
85			TGAACTCTTT				3660
05	AACACCTTTG	AGGGGGGGTGG	CTGTGGCCAG	CCCTCGGGCA	TCCTGGCCCA	TTTTCTCATC	3720 3780
	TTGTACCTTC	GGGGGCCATT	CAGCCTGCAG	GCCACGCTAT	GCTGGCTGGA	CCTGCTCCTG	3840

	VV O UZ						
			CACGTTCATT				3900
	CTAGGTACTG	AAGCCCAGTC	TTCACTTTTG	AAAGCAGTGG	CTTTCTTCTT	AGAAAGCATT	3960
			AGCAGAAAAG				4020
			AAGGTACAAC				4080
_							
5	ATGGAGTTTA	CCACGACTCT	GCTAAACACC	TCCCCGGAAG	GATGGAAGCT	CCTGAAGAAG	4140
	GACTTGTGTA	ATACACACCT	GATGAGAGTC	CTGGTGCAGA	CGCTGTGTGA	GCCCGCAAGC	4200
	ATAGGTTTCA	ACATCGGAGA	CGTCCAGGTT	ATGGCTCATC	TTCCTGATGT	TTGTGTGAAT	4260
			GTCCCCATAC				4320
10			TGAGGAGCTT				4380
10	CAAGTGGACA	GGAGCAGGCT	GGCTGCTGTT	GTGTCTGCCT	GTAAACAGCT	TCACAGAGCT	4440
	GGGCTTCTGC	TTATATATT	ACCGTCTCAG	TCCACAGATT	TGCATCATTC	TGTTGGCACA	4500
	CARCITATION	CCCCCCCTTTLA	TAAAGGCATT	GCCCCTGGAG	ATGAGAGACA	GTGTCTGCCT	4560
			GCAGCTGGCC				4620
	TCTCTAGACC	TCAGTTGTAA	GCAGCIGGCC	AGCGGACTIC	IGGAGITAGC	CITIOCITII	
			TGTGAGTCTT				4680
15	TCCTTGGGCA	GCTCACAGGG	CAGCGTCATC	CACTTCTCCC	ATGGGGAGTA	TTTCTATAGC	4740
	THE THE PARTY OF T	AAACGATCAA	CACGGAATTA	TTGAAAAATC	TGGATCTTGC	TGTATTGGAG	4800
	OTTO TO TO TO	COTTON CTCCN	TAATACCAAA	ATCCTCACTC	CCCTTTTCAA	CCCATCTTA	4860
	GACCAGAGCT	TCAGGGAGCG	AGCAAACCAG	AAACACCAAG	GACTGAAACT	TGCGACTACA	4920
	ATTCTGCAAC	ACTGGAAGAA	GTGTGATTCA	TGGTGGGCCA	AAGATTCCCC	TCTCGAAACT	4980
20	AAAATGGCAG	TGCTGGCCTT	ACTGGCAAAA	ATTTTACAGA	TTGATTCATC	TGTATCTTTT	5040
	NAME OF A COLO	A TOCOTO CA TO	CCCTGAAGTC	TOTACAACAT	ATATTACTOT	ACTTGCTGAC	5100
	AAIACAAGIC	AIGGIICAII	CCCIGNAGIC	111ACAACA1	WWW.WW.C.	CTTCACCACC	5160
			AAAGGGCCAA				
	CTCACTGGAG	GCAGTCTGGA	GGAACTTAGA	CGTGTTCTGG	AGCAGCTCAT	CGTTGCTCAC	5220
	TTCCCCATGC	AGTCCAGGGA	ATTTCCTCCA	GGAACTCCGC	GGTTCAATAA	TTATGTGGAC	5280
25	TOCATONANA	ACTITIONAGA	TGCATTGGAA	TTATCTCAAA	GCCCTATGTT	GTTGGAATTG	5340
25	TOCKTOAAAA	AGIIICIAGA	7004110044	CAMOMOR MOC	AACAAMTATT	TO ATOCACT	5400
	ATGACAGAAG	TTCTTTGTCG	GGAACAGCAG	CAIGICAIGG	TIMITANOAN	CONTROCTO	
	TTCAGGAGGA	TTGCCAGAAG	GGGTTCATGT	GTCACACAAG	TAGGCCTTCT	GGAAAGCGTG	5460
	TATGAAATGT	TCAGGAAGGA	TGACCCCCGC	CTAAGTTTCA	CACGCCAGTC	CTTTGTGGAC	5520
	CCCTCCCTCC	TCACTCTGCT	GTGGCACTGT	AGCCTGGATG	CTTTGAGAGA	ATTCTTCAGC	5580
30			TGATGTGTTG				5640
50	ACAATIGIGG	IGGAIGCCAI	TGAIGIGIIG	AAGICCAGGI	IIACAAAGCI	WALL OWNER.	
	ACCTTTGATA	CTCAAATCAC	CAAGAAGATG	GGCTACTATA	AGATTCTAGA	CGTGATGTAT	5700
	TCTCGCCTTC	CCAAAGATGA	TGTTCATGCT	AAGGAATCAA	AAATTAATCA	AGTTTTCCAT	5760
	GGCTCGTGTA	TTACAGAAGG	AAATGAACTT	ACAAAGACAT	TGATTAAATT	GTGCTACGAT	5820
	CCDTTTACAG	AGAACATGGC	AGGAGAGAAT	CAGCTGCTGG	AGAGGAGAAG	ACTTTACCAT	5880
35	CATTIACAG	AGAACA TOUC	CATATCTGTC	* momoorous	TOTAL STATE	CTTABBBBTT	5940
33	TGTGCAGCAT	ACAACTGCGC	CATATCIGIC	ATCIGCIGIG	TCTTCAATGA	GIIMMAIII	
	TACCAAGGTT	TTCTGTTTAG	TGAAAAACCA	GAAAAGAACT	TGCTTATTTT	TGAAAATCTG	6000
	ATCGACCTGA	AGCGCCGCTA	TAATTTTCCT	GTAGAAGTTG	AGGTTCCTAT	GGAAAGAAAG	6060
	ABBABGTACA	TTGAAATTAG	GAAAGAAGCC	AGAGAAGCAG	CAAATGGGGA	TTCAGATGGT	6120
	COMMONTANTA	かなかくかかくくくでか	GTCATATTTG	CCACACACTA	CCCTGAGTGA	GGAAATGAGT	6180
40	CCITCCIAIA	TOTALICACI	GICAIAIIIG	MA MMCA MA CA	CCCTCGGTGT	CCCTACACCT	6240
40	CAATTTGATT	TCTCAACCGG	AGTTCAGAGC	TATTCATACA	GCTCCCAAGA	CCCIAGACCI	
	GCCACTGGTC	GTTTTCGGAG	ACGGGAGCAG	CGGGACCCCA	CGGTGCATGA	TGATGTGCTG	6300
	GAGCTGGAGA	TGGACGAGCT	CAATCGGCAT	GAGTGCATGG	CGCCCCTGAC	GGCCCTGGTC	6360
			GGGCCCGCCT				6420
	ANGUNCATOC	ACAGAAGCCI	CCTCCATGGC	NANGECCCA A	ATTCCA ATTACT	ACCATTAAAT	6480
15	CFTCCTTCTT	GGATGAAATT	CCTCCATGGC	MANCIGOGAA	VICCAVIVOI	ACCULTANTI	
45	ATCCGTCTCT	TCTTAGCCAA	GCTTGTTATT	AATACAGAAG	AGGTCTTTCG	CCCTTACGCG	6540
	AAGCACTGGC	TTAGCCCCTT	GCTGCAGCTG	GCTGCTTCTG	AAAACAATGG	AGGAGAAGGA	6600
	ATTCACTACA	TGGTGGTTGA	GATAGTGGCC	ACTATTCTTT	CATGGACAGG	CTTGGCCACT	6660
	CONNENCCO	TOCTOOLIGA	TGAAGTGTTA	CCANATCGAT	ጥርር ተመተለ አጥጥ	ССТАВТСАВА	6720
	CCAACAGGGG	ICCCIAAAGA	IGAAGIGIIA	CAMARCONI	TOCIIAAIII	2 2 2 C 2 C C C C C C C C C C C C C C C	
60	CATGTCTTTC	ATCCAAAAAG	AGCTGTGTTT	AGACACAACC	TIGAAATTAT	AAAGACCCTT	6780
50.	GTCGAGTGCT	GGAAGGATTG	TTTATCCATC	CCTTATAGGT	TAATATTTGA	AAAGTTTTCC	6840
	GGTAAAGATC	CTAATTCTAA	AGACAACTCA	GTAGGGATTC	AATTGCTAGG	CATCGTGATG	6900
	CCCNATCACC	TOCOTOCOTA	TGACCCACAG	TOTOGONATOO	ACACTACCGA	ATACTTCCAG	6960
	GCCAATGACC	IGCCICCCIA	CONCCUNCAC	70700007700	TOTAL TROOOT	TCCACCACAA	7020
	GCTTTGGTGA	ATAATATGTC	CTTTGTAAGA	TATAAAGAAG	TGTATGCCGC	TOCAGCAGAA	
	GTTCTAGGAC	TTATACTTCG	ATATGTTATG	GAGAGAAAA	ACATACTGGA	GGAGTCTCTG	7080
55	TGTGAACTGG	TTGCGAAACA	ATTGAAGCAA	CATCAGAATA	CTATGGAGGA	CAAGTTTATT	7140
	CTCTCCTTCA	ACAAAGTGAC	CAAGAGCTTC	CCTCCTCTTG	CAGACAGGTT	CATGAATGCT	7200
	ORGONOMING	MCCMCCC0 A A A	ATTTCATGGA	CTCTTCAAAA	CVCACACACA	GGAGGTGGTA	7260
	GIGITCITIC	IGCIGCCAAA	ATTICATOGA	GIGIIGAAAA	CACICIGICI	CONCOUNT	
•			GACAGAGCTG				7320
	CAAGTCATGA	GACATAGAGA	TGATGAAAGA	CAAAAAGTAT	GTTTGGACAT	AATTTATAAG	7380
60	ATGATGCCAA	AGTTAAAACC	AGTAGAACTC	CGAGAACTTC	TGAACCCCGT	TGTGGAATTC	7440
	GTTTCCCATC	CTTCTACAAC	ATGTAGGGAA	CAAATGTATA	ATATTCTCAT	GTGGATTCAT	7500
	CYMP FWW-C-	CHENTOCHE	VICTOROGOUS.	CATANTONO	CCCAGGAAAT	ATTTAAGTTG	7560
	GALAATTACA	GAGAL CCAGA	AND LUMUNCA	OWNERSTOR	COCHOGUNITI	DIAMER A TOPO	
	GCAAAAGATG	TGCTGATTCA	AGGATTGATC	GATGAGAACC	CIGGACTICA	ATTAATTATT	7020
	CGAAATTTCT	GGAGCCATGA	AACTAGGTTA	CCTTCAAATA	CCTTGGACCG	GTTGCTGGCA	7680
65 .	CTAAATTCCT	TATATTCTCC	TAAGATAGAA	GTGCACTTTT	TAAGTTTAGC	AACAAATTTT	7740
	CTCCTCCAAA	TCACCACCAT	CACCCCACAT	TATCCABACC	CCATGTTCGA	GCATCCTCTG	7800
	TOTAL	10ACCAGCAI	A MA MA COLUMN	CAMMONCACAMM	CCCCMMTCCC	AAGTACTGTT	
	TCAGAATGCG	AATTTCAGGA	ATATACCATT	GATICIGATI	GGCGTTTCCG	ANGINCIGII	7000
	CTCACTCCGA	TGTTTGTGGA	GACCCAGGCC	TCCCAGGGCA	CTCTCCAGAC	CCGTACCCAG	7920
	GAAGGGTCCC	TCTCAGCTCG	CTGGCCAGTG	GCAGGGCAGA	TAAGGGCCAC		7980
70	CATGACTTCA	CACTGACACA	GACTGCAGAT	GGAAGAAGCT	CATTTGATTG	GCTGACCGGG	8040
, 0	AGGLOGICA	* COCCOMO	CAN CONTRACTOR	ACTOCOTONT	CALCA CALCALA	GCTGTTTGCC	8100
	AGCAGCACTG	ACCCGCTGGT	CUACCACACC	AGICCCICAI	CIGACICCII	GC1G111GCC	0100
	CACAAGAGGA	GTGAAAGGTT	ACAGAGAGCA	CCCTTGAAGT	CAGTGGGGCC	TGATTTTGGG	8160
	AAAAAAAGGC	TGGGCCTTCC	AGGGGACGAG	GTGGATAACA	AAGTGAAAGG	TGCGGCCGGC	8220
	CGGACGGACC	TACTACGACT	GCGCAGACGG	TTTATGAGGG	ACCAGGAGAA	GCTCAGTTTG	8280
75	A TOWN MOORE	CAAAACCCC	TOTALO	AAACCACACA	AGGAAATCAA	GAGTGAGTTA	8340
15	AIGIATGCCA	TUJUUNAAA	TOCTOMOCHA	TARCONORUA	TOOLOG CO	20200000000000000000000000000000000000	0400
	AAAATGAAGC	AGGATGCCCA	GGTCGTTCTG	TACAGAAGCT	ACCGGCACGG	AGACCTTCCT	0400
	GACATTCAGA	TCAAGCACAG	CAGCCTCATC	ACCCCGTTAC	AGGCCGTGGC	CCAGAGGGAC	8460
	CCAATAATTG	CAAAACAGCT	CTTTAGCAGC	TTGTTTTCTG	GAATTTTGAA	AGAGATGGAT	8520
	מאמת משקים ממ	CACTCTCTCT	סמממממממ	ATCACTCAAA	AGTTGCTTCA	AGACTTCAAT	8580
80	WORT TANGE	ADDICTOR	· · · · · · · · · · · · · · · · · · ·	ACT COCOMMO	dictioname w	TCAGGACATT	BEAD
OU	CGTTTTCTTA	ATACCACCTT	CTCTTTCTT	CCACCUTTIG	-CICITGIAT	TCAGGACATT	0040
	AGCTGTCAGC	ACGCAGCCCT	GCTGAGCCTC	GACCCAGCGG	CIGITAGCGC	TGGTTGCCTG	8700
	GCCAGCCTAC	AGCAGCCCGT	GGGCATCCGC	CTGCTAGAGG	AGGCTCTGCT	CCGCCTGCTG	8760
	CCACCACTO	TELETICAN	GCGAGTCCGT	GGGAAGGCCC	GCCTCCCTCC	TGATGTCCTC	8820
	ACAMOCOMOC		COMO COST	TO VATORO	AATACACT	CCTCCGTGGG	8880
0.5	AGATGGGTGG	AGCTTGCTAA	GCTGTATAGA	TCANTIGGAG	WILLIAM TOTAL	2001031000	0000
85	ATTTTTACCA	GTGAGATAGG	AACAAAGCAA	ATCACTCAGA	GTGCATTATT	AGCAGAAGCC	B940
	AGAAGTGATT	ATTCTGAAGC	TGCTAAGCAG	TATGATGAGG	CTCTCAATAA	ACAAGACTGG	9000
	GTAGATCCTC	AGCCCACAGA	AGCCGAGAAG	GATTTTTGGG	AACTTGCATC	CCTTGACTGT	9060

```
TACAACCACC TTGCTGAGTG GAAATCACTT GAATACTGTT CTACAGCCAG TATAGACAGT 9120
       GAGAACCCCC CAGACCTAAA TAAAATCTGG AGTGAACCAT TTTATCAGGA AACATATCTA
                                                                               9180
       CCTTACATGA TCCGCAGCAA GCTGAAGCTG CTGCTCCAGG GAGAGGCTGA CCAGTCCCTG
                                                                               9240
       CTGACATTTA TTGACAAAGC TATGCACGGG GAGCTCCAGA AGGCGATTCT AGAGCTTCAT
                                                                               9300
       TACAGTCAAG AGCTGAGTCT GCTTTACCTC CTGCAAGATG ATGTTGACAG AGCCAAATAT
                                                                               9360
                                                                               9420
       TACATTCAAA ATGGCATTCA GAGTTTTATG CAGAATTATT CTAGTATTGA TGTCCTCTTA
       CACCAAAGTA GACTCACCAA ATTGCAGTCT GTACAGGCTT TAACAGAAAT TCAGGAGTTC
                                                                               9480
       ATCAGCTTTA TAAGCAAACA AGGCAATTTA TCATCTCAAG TTCCCCTTAA GAGACTTCTG
                                                                               9540
       AACACCTGGA CAAACAGATA TCCAGATGCT AAAATGGACC CAATGAACAT CTGGGATGAC
ATCATCACAA ATCGATGTTT CTTTCTCAGC AAAATAGAGG AGAAGCTTAC CCCTCTTCCA
                                                                               9600
10
       GAAGATAATA GTATGAATGT GGATCAAGAT GGAGACCCCA GTGACAGGAT GGAAGTGCAA
       GAGCAGGAAG AAGATATCAG CTCCCTGATC AGGAGTTGCA AGTTTTCCAT GAAAATGAAG
       ATGATAGACA GTGCCCGGAA GCAGAACAAT TTCTCACTTG CTATGAAACT ACTGAAGGAG
CTGCATAAAG AGTCAAAAAC CAGAGACGAT TGGCTGGTGA GCTGGGTGCA GAGCTACTGC
                                                                               9840
                                                                               9900
15
       CGCCTGAGCC ACTGCCGGAG CCGGTCCCAG GGCTGCTCTG AGCAGGTGCT CACTGTGCTG
                                                                               9960
       AAAACAGTCT CTTTGTTGGA TGAGAACAAC GTGTCAAGCT ACTTAAGCAA AAATATTCTG 10020
       GCTTTCCGTG ACCAGAACAT TCTCTTGGGT ACAACTTACA GGATCATAGC GAATGCTCTC 10080
AGCAGTGAGC CAGCCTGCCT TGCTGAAATC GAGGAGGACA AGGCTAGAAG AATCTTAGAG 10140
       CTTTCTGGAT CCAGTTCAGA GGATTCAGAG AAGGTGATCG CGGGTCTGTA CCAGAGAGCA 10200
20
       TTCCAGCACC TCTCTGAGGC TGTGCAGGCG GCTGAGGAGG AGGCCCAGCC TCCCTCCTGG 10260
       AGCTGTGGGC CTGCAGCTGG GGTGATTGAT GCTTACATGA CGCTGGCAGA TTTCTGTGAC 10320
       CAACAGCTGC GCAAGGAGGA AGAGAATGCA TCAGTTATTG ATTCTGCAGA ACTGCAGGCG 10380
       TATCCAGCAC TTGTGGTGGA GAAAATGTTG AAAGCTTTAA AATTAAATTC CAATGAAGCC 10440
       AGATTGAAGT TTCCTAGATT ACTTCAGATT ATAGAACGGT ATCCAGAGGA GACTTTGAGC 10500
25
       CTCATGACAA AAGAGATCTC TTCCGTTCCC TGCTGGCAGT TCATCAGCTG GATCAGCCAC 10560
       ATGGTGGCCT TACTGGACAA AGACCAAGCC GTTGCTGTTC AGCACTCTGT GGAAGAAATC 10620
       ACTGATAACT ACCCGCAGGC TATTGTTTAT CCCTTCATCA TAAGCAGCGA AAGCTATTCC 10680
       TTCAAGGATA CTTCTACTGG TCATAAGAAT AAGGAGTTTG TGGCAAGGAT TAAAAGTAAG 10740
       TTGGATCAAG GAGGAGTGAT TCAAGATTTT ATTAATGCCT TAGATCAGCT CTCTAATCCT 10800
30
       GAACTGCTCT TTAAGGATTG GAGCAATGAT GTAAGAGCTG AACTAGCAAA AACCCCTGTA 10860
       AATAAAAAA ACATTGAAAA AATGTATGAA AGAATGTATG CAGCCTTGGG TGACCCAAAG 10920
       GCTCCAGGCC TGGGGGCCTT TAGAAGGAAG TTTATTCAGA CTTTTGGAAA AGAATTTGAT 10980
       AAACATTTTG GGAAAGGAGG TTCTAAACTA CTGAGAATGA AGCTCAGTGA CTTCAACGAC 11040
       ATTACCAACA TGCTACTTTT AAAAATGAAC AAAGACTCAA AGCCCCCTGG GAATCTGAAA 11100
       GAATGTTCAC CCTGGATGAG CGACTTCAAA GTGGAGTTCC TGAGAAATGA GCTGGAGATT 11160
35
       CCCGGTCAGT ATGACGGTAG GGGAAAGCCA TTGCCAGAGT ACCACGTGG AATCGCCGGG 11220
TTTGATGAGC GGGTGACAGT CATGGCGTCT CTGCGAAGGC CCAAGCGCAT CATCATCCGT 11280
       GGCCATGACG AGAGGGAACA CCCTTTCCTG GTGAAGGGTG GCGAGGACCT GCGGCAGGAC 11340
CAGCGCGTGG AGCAGCTCTT CCAGGTCATG AATGGGATCC TGGCCCAAGA CTCCGCCTGC 11400
       AGCCAGAGGG CCCTGCAGCT GAGGACCTAT AGCGTTGTGC CCATGACCTC CAGGTTAGGA 11460
40
       TTAATTGAGT GGCTTGAAAA TACTGTTACC TTGAAGGACC TTCTTTTGAA CACCATGTCC 11520
       CAAGAGGAGA AGGCGGCTTA CCTGAGTGAT CCCAGGGCAC CGCCGTGTGA ATATAAAGAT 11580
       TGGCTGACAA AAATGTCAGG AAAACATGAT GTTGGAGCTT ACATGCTAAT GTATAAGGGC 11640
       45
       CTCTTAAAGC GGGCCTTCGT GAGGATGAGT ACAAGCCCTG AGGCTTTCCT GGCGCTCCGC 11760
       TCCCACTTCG CCAGCTCTCA CGCTCTGATA TGCATCAGCC ACTGGATCCT CGGGATTGGA 11820
       GACAGACATC TGAACAACTT TATGGTGGCC ATGGAGACTG GCGGCGTGAT CGGGATCGAC 11880
       TTTGGGCATG CGTTTGGATC CGCTACACAG TTTCTGCCAG TCCCTGAGTT GATGCCTTTT 11940
       CGGCTAACTC GCCAGTTTAT CAATCTGATG TTACCAATGA AAGAAACGGG CCTTATGTAC 12000
       AGCATCATGG TACACGCACT CCGGGCCTTC CGCTCAGACC CTGGCCTGCT CACCAACACC 12060
50
       ATGGATGTGT TTGTCAAGGA GCCCTCCTTT GATTGGAAAA ATTTTGAACA GAAAATGCTG 12120
       AAAAAAGGAG GGTCATGGAT TCAAGAAATA AATGTTGCTG AAAAAAATTG GTACCCCCGA 12180
       CAGAAAATAT GTTACGCTAA GAGAAAGTTA GCAGGTGCCA ATCCAGCAGT CATTACTTGT 12240
       GATGAGCTAC TCCTGGGTCA TGAGAAGGCC CCTGCCTTCA GAGACTATGT GGCTGTGGCA 12300
       CGAGGAAGCA AAGATCACAA CATTCGTGCC CAAGAACCAG AGAGTGGGCT TTCAGAAGAG 12360
55
       ACTCAAGTGA AGTGCCTGAT GGACCAGGCA ACAGACCCCA ACATCCTTGG CAGAACCTGG 12420
       GAAGGATGGG AGCCCTGGAT GTGAGGTCTG TGGGAGTCTG CAGATAGAAA GCATTACATT 12480
       GTTTAAAGAA TCTACTATAC TTTGGTTGGC AGCATTCCAT GAGCTGATTT TCCTGAAACA 12540
       CTAAAGAGAA ATGTCTTTTG TGCTACAGTT TCGTAGCATG AGTTTAAATC AAGATTATGA 12600
60
       TGAGTAAATG TGTATGGGTT AAATCAAAGA TAAGGTTATA GTAACATCAA AGATTAGGTG 12660
       AGGITTATAG AAAGATAGAT ATCCAGGCTT ACCAAAGTAT TAAGTCAAGA ATATAATATG 12720
TGATCAGCTT TCAAAGCATT TACAAGTGCT GCAAGTTAGT GAAACAGCTG TCTCCGTAAA 12780
       TGGAGGAAAT GTGGGGAAGC CTTGGAATGC CCTTCTGGTT CTGGCACATT GGAAAGCACA 12840
       CTCAGAAGGC TTCATCACCA AGATTTTGGG AGAGTAAAGC TAAGTATAGT TGATGTAACA 12900
65
       TTGTAGAAGC AGCATAGGAA CAATAAGAAC AATAGGTAAA GCTATAATTA TGGCTTATAT 12960
       TTAGAAATGA CTGCATTTGA TATTTTAGGA TATTTTTCTA GGTTTTTTCC TTTCATTTTA 13020
       TTCTCTTCTA GTTTTGACAT TTTATGATAG ATTTGCTCTC TAGAAGGAAA CGTCTTTATT 13080
       TAGGAGGGCA AAAATTTTGG TCATAGCATT CACTTTTGCT ATTCCAATCT ACAACTGGAA 13140
       GATACATAAA AGTGCTTTGC ATTGAATTTG GGATAACTTC AAAAATCCCA TGGTTGTTGT 13200
70
       TAGGGATAGT ACTAAGCATT TCAGTTCCAG GAGAATAAAA GAAATTCCTA TTTGAAATGA 13260
       ATTCCTCATT TGGAGGAAAA AAAGCATGCA TTCTAGCACA ACAAGATGAA ATTATGGAAT 13320
       ACAAAAGTGG CTCCTTCCCA TGTGCAGTCC CTGTCCCCCC CCGCCAGTCC TCCACACCCA 13380
       AACTGTTTCT GATTGGCTTT TAGCTTTTTG TTGTTTTTTT TTTTCCTTCT AACACTTGTA 13440
       TTTGGAGGCT CTTCTGTGAT TTTGAGAAGT ATACTCTTGA GTGTTTAATA AAGTTTTTTT 13500
75
       CCAAAAGTA
       Seq ID NO: 99 Protein sequence:
       Protein Accession #: NP_008835.5
80
                                           31
                               21
       MAGSGAGVRC SLLRLQETLS AADRCGAALA GHQLIRGLGQ ECVLSSSPAV LALQTSLVFS
       RDFGLLVFVR KSLNSIEFRE CREEILKFLC IFLEKMGQKI APYSVEIKNT CTSVYTKDRA
                                                                                120
        AKCKIPALDL LIKLLQTFRS SRLMDBFKIG ELPSKFYGEL ALKKKIPDTV LEKVYELLGL
                                                                                180
85
        LGEVHPSEMI NNAENLFRAF LGELKTOMTS AVREPKLPVL AGCLKGLSSL LCNFTKSMEE
                                                                                240
        DPQTSREIFN FVLKAIRPQI DLKRYAVPSA GLRLFALHAS QFSTCLLDNY VSLFEVLLKW
                                                                                300
        CAHTNVELKK AALSALESPL KQVSNMVAKN AEMHKNKLQY FMEQFYGIIR NVDSNNKELS
                                                                                360
```

```
IAIRGYGLFA GPCKVINAKD VDFMYVELIQ RCKQMFLTQT DTGDDRVYQM PSFLQSVASV
                                                                               420
       LLYLDTVPEV YTPVLEHLVV MQIDSFPQYS PKMQLVCCRA IVKVFLALAA KGPVLRNCIS
                                                                               480
       TVVHOGLIRI CSKPVVLPKG PESESEDHRA SGEVRTGKWK VPTYKDYVDL FRHLLSSDQM
       MDSILADEAF FSVNSSSESL NHLLYDEFVK SVLKIVEKLD LTLBIQTVGE QENGDEAPGV
       WMIPTSDPAA NLHPAKPKDF SAPINLVEFC REILPEKQAE FFEPWVYSPS YELILQSTRL
       PLISGFYKLL SITVRNAKKI KYPEGVSPKS LKHSPEDPEK YSCFALFVKF GKEVAVKMKQ
                                                                               720
       YKDELLASCL TFLLSLPHNI IELDVRAYVP ALQMAFKLGL SYTPLAEVGL NALEEWSIYI
                                                                               780
       DRHVMOPYYK DILPCLDGYL KTSALSDETK NNWEVSALSR AAQKGFNKVV LKHLKKTKNL
                                                                               840
       SSNEAISLEE IRIRVVOMLG SLGGQINKNL LTVTSSDEMM KSYVAWDREK RLSFAVPFRE
                                                                               900
10
       MKPVIFLDVF LPRVTELALT ASDRQTKVAA CELLHSMVMF MLGKATQMPE GGQGAPPMYQ
                                                                               960
       LYKRTPPVLL RLACDVDQVT RQLYEPLVMQ LIHWFTNNKK FESQDTVALL EAILDGIVDP
                                                                             1020
       VDSTLRDFCG RCIREFLKWS IKQITPQQQE KSPVNTKSLF KRLYSLALHP NAFKRLGASL
                                                                             1080
       AFNNIYREFR EEESLVEQFV FEALVIYMES LALAHADEKS LGTIQQCCDA IDHLCRIIEK
                                                                             1140
       KHVSLNKAKK RRLPRGFPPS ASLCLLDLVK WLLAHCGRPQ TECRHKSIEL FYKFVPLLPG
                                                                             1200
15
       NRSPNLWLKD VLKEEGVSPL INTFEGGGCG QPSGILAQPT LLYLRGPPSL QATLCWLDLL
                                                                             1260
       LAALECYNTF IGERTVGALQ VLGTEAQSSL LKAVAFFLES IAMHDIIAAE KCFGTGAAGN
                                                                             1320
       RTSPQEGERY NYSKCTVVVR IMEFTTTLLN TSPEGWKLLK KDLCNTHLMR VLVQTLCEPA
                                                                             1380
       SIGFNIGDVQ VMAHLPDVCV NLMKALKMSP YKDILETHLR EKITAQSIEE LCAVNLYGPD
                                                                             1440
       AQVDRSRLAA VVSACKQLHR AGLLHNILPS QSTDLHHSVG TELLSLVYKG IAPGDERQCL
                                                                             1500
20
       PSLDLSCKQL ASGLLELAFA FGGLCERLVS LLLNPAVLST ASLGSSQGSV IHFSHGEYFY
                                                                             1560
       SLFSETINTE LLKNLDLAVL ELMQSSVDNT KMVSAVLNGM LDQSFRERAN QKHQGLKLAT
                                                                             1620
       TILQHWKKCD SWWAKDSPLE TKMAVLALLA KILQIDSSVS FNTSHGSFPE VFTTYISLLA
                                                                             1680
       DTKLDLHLKG QAVTLLPFFT SLTGGSLEEL RRVLEQLIVA HFPMQSREFP PGTPRFNNYV
                                                                             1740
       DCMKKFLDAL ELSQSPMLLE LMTEVLCREQ QHVMEELFQS SFRRIARRGS CVTQVGLLES
                                                                             1800
       VYEMFRKDDP RLSFTRQSFV DRSLLTLLWH CSLDALREFF STIVVDAIDV LKSRFTKLNE
25
                                                                             1860
       STFDTQITKK MGYYKILDVM YSRLPKDDVH AKESKINQVF HGSCITEGNE LTKTLIKLCY
       DAFTENMAGE NOLLERRRLY HCAAYNCAIS VICCVFNELK FYQGFLFSEK PEKNLLIFEN
       LIDLKRRYNF PVEVEVPMER KKKYIEIRKE AREAANGDSD GPSYMSSLSY LADSTLSEEM
       SQFDFSTGVQ SYSYSSQDPR PATGRFRRRE QRDPTVHDDV LELEMDELNR HECMAPLTAL
                                                                             2100
30
       VKHMHRSLGP POGEEDSVPR DLPSWMKFLH GKLGNPIVPL NIRLFLAKLV INTEEVFRPY
                                                                             2160
       AKHWLSPLLO LAASENNGGE GIHYMVVEIV ATILSWTGLA TPTGVPKDEV LANRLLNFLM
                                                                             2220
       KHYFHPKRAV FRHNLEIIKT LVECWKDCLS IPYRLIFEKF SGKDPNSKDN SVGIQLLGIV
                                                                             2280
       MANDLPPYDP QCGIQSSEYF QALVNNMSFV RYKEVYAAAA EVLGLILRYV MERKNILEES
LCELVAKQLK QHQNTMEDKF IVCLNKVTKS FPPLADRFMN AVFFLLPKFH GVLKTLCLEV
                                                                             2340
                                                                             2400
35
       VLCRVEGMTE LYFQLKSKDF VQVMRHRDDE RQKVCLDIIY KMMPKLKPVE LRELLNPVVE
                                                                             2460
       FVSHPSTTCR EQMYNILMWI HDNYRDPESE TDNDSQEIFK LAKDVLIQGL IDENPGLQLI
                                                                             2520
       IRNFWSHETR LPSNTLORLL ALNSLYSPKI EVHFLSLATN FLLEMTSMSP DYPNPMFEHP
                                                                             2580
       LSECEFQEYT IDSDWRFRST VLTPMFVETQ ASQGTLQTRT QEGSLSARWP VAGQIRATQQ
                                                                             2640
       OHDFTLTOTA DGRSSFDWLT GSSTDPLVDH TSPSSDSLLF AHKRSERLQR APLKSVGPDF
                                                                             2700
40
       GKKRLGLPGD EVDNKVKGAA GRTDLLRLRR RFMRDQEKLS LMYARKGVAE QKREKEIKSE
                                                                             2760
       LKMKQDAQVV LYRSYRHGDL PDIQIKHSSL ITPLQAVAQR DPIIAKQLF8 SLFSGILKEM
                                                                             2820
       DKFKTLSEKN NITQKLLQDF NRFLWTTFSF FPPFVSCIQD ISCQHAALLS LDPAAVSAGC
LASLQQPVGI RLLEEALLRL LPAELPAKRV RGKARLPPDV LRWVELAKLY RSIGEYDVLR
                                                                             2880
                                                                             2940
       GIFTSEIGTK QITQSALLAE ARSDYSEAAK QYDEALNKQD WVDGEPTEAE KDFWELASLD
                                                                             3000
45
       CYNHLAEWKS LEYCSTASID SENPPDLNKI WSEPFYQETY LPYMIRSKLK LLLQGEADQS
                                                                             3060
       LLTFIDKAMH GELQKAILEL HYSQELSLLY LLQDDVDRAK YYIQNGIQSF MQNYSSIDVL
                                                                             3120
       LHQSRLTKLQ SVQALTEIQE FISFISKQGN LSSQVPLKRL LNTWTNRYPD AKMDPMNIWD
                                                                             3180
       DIITNRCFFL SKIEEKLTPL PEDNSMVDQ DGDPSDRMEV QEQEEDISSL IRSCKFSMKM
KMIDSARKON NFSLAMKLLK ELHKESKTRD DWLVSWVQSY CRLSHCRSRS QGCSEQVLTV
                                                                             3240
                                                                             3300
50
       LKTVSLLDEN NVSSYLSKNI LAFRDONILL GTTYRIIANA LSSEPACLAR IEEDKARRIL
       ELSGSSSEDS EKVIAGLYOR AFOHLSEAVO AAEEEAOPPS WSCGPAAGVI DAYMTLADFC
                                                                             3420
       DQQLRKEEEN ASVIDSAELQ AYPALVVEKM LKALKLNSNE ARLKFPRLLQ IIERYPEETL
                                                                             3480
       SLMTKEISSV PCWQFISWIS HMVALLDKDQ AVAVQHSVEE ITDNYPQAIV YPFIISSESY
                                                                             3540
       SPKDTSTGHK NKEFVARIKS KLDQGGVIQD FINALDQLSN PELLFKDWSN DVRAELAKTP
                                                                             3600
55
       VNKKNIEKMY ERMYAALGDP KAPGLGAFRR KFIQTFGKEF DKHFGKGGSK LLRMKLSDFN
                                                                             3660
       DITNMLLKM NKDSKPPGNL KECSPWMSDF KVEFLRNELE IPGQYDGRGK PLPEYHVRIA
                                                                             3720
       GFDERVTVMA SLRRPKRIII RGHDEREHPF LVKGGEDLRQ DQRVEQLFQV MNGILAQDSA
                                                                             3780
       CSQRALQLRT YSVVPMTSRL GLIEWLENTV TLKDLLLNTM SQEEKAAYLS DPRAPPCEYK
                                                                             3840
       DWLTKMSGKH DVGAYMLMYK GANRTETVTS FRKRESKVPA DLLKRAFVRM STSPEAFLAL
                                                                             3900
60
                                                                             3960
       RSHFASSHAL ICISHWILGI GDRHLNNFMV AMETGGVIGI DFGHAFGSAT QFLPVPELMP
       FRLTRQFINL MLPMKETGLM YSIMVHALRA FRSDPGLLTN TMDVFVKEPS FDWKNFEQKM
                                                                              4020
       LKKGGSWIQE INVAEKNWYP RQKICYAKRK LAGANPAVIT CDELLLGHEK APAFRDYVAV
                                                                              4080
       ARGSKOHNIR AQEPESGLSE ETQVKCLMDQ ATDPNILGRT WEGWEPWM
65
       Seq ID NO: 100 DNA sequence
       Nucleic Acid Accession #: NM_000673
       Coding sequence: 101-1225
                                          31
                                                     41
                              21
70
       ATGTGAAGGC ACAAGCTGCT GTTATATACA ACAGAGTGAA CTGAGCATCA GTCAGAAAAA
       GTCTATGTTT GCAGAAATAC AGATCCAAGA CAAAGACAGG ATGGGCACTG CTGGAAAAGT
       TATTAAATGC AAAGCAGCTG TGCTTTGGGA GCAGAAGCAA CCCTTCTCCA TTGAGGAAAT
                                                                               180
       AGAAGTTGCC CCACCAAAGA CTAAAGAAGT TCGCATTAAG ATTTTGGCCA CAGGAATCTG
                                                                               240
75
       TCGCACAGAT GACCATGTGA TAAAAGGAAC AATGGTGTCC AAGTTTCCAG TGATTGTGGG
                                                                               300
       ACATGAGGCA ACTGGGATTG TAGAGAGCAT TGGAGAAGGA GTGACTACAG TGAAACCAGG
                                                                               360
       TGACAAAGTC ATCCCTCTCT TTCTGCCACA ATGTAGAGAA TGCAATGCTT GTCGCAACCC
                                                                               420
       AGATGGCAAC CTTTGCATTA GGAGCGATAT TACTGGTCGT GGAGTACTGG CTGATGGCAC
                                                                               480
       CACCAGATTT ACATGCAAGG GCAAACCAGT ACACCACTTC ATGAACACCA GTACATTTAC
                                                                               540
80
       CGAGTACACA GTGGTGGATG AATCITCTGT TGCTAAGATT GATGATGCAG CTCCTCCTGA
                                                                               600
       GAAAGTCTGT TTAATTGGCT GTGGGTTTTC CACTGGATAT GGCGCTGCTG TTAAAACTGG
                                                                               660
        CAAGGTCAAA CCTGGTTCCA CTTGCGTCGT CTTTGGCCTG GGAGGAGTTG GCCTGTCAGT
                                                                               720
        CATCATGGGC TGTAAGTCAG CTGGTGCATC TAGGATCATT GGGATTGACC TCAACAAAGA
                                                                               780
        CAAATTTGAG AAGGCCATGG CTGTAGGTGC CACTGAGTGT ATCAGTCCCA AGGACTCTAC
                                                                               840
85
        CAAACCCATC AGTGAGGTGC TGTCAGAAAT GACAGGCAAC AACGTGGGAT ACACCTTTGA
                                                                               900
       AGTTATTGGG CATCTTGAAA CCATGATTGA TGCCCTGGCA TCCTGCCACA TGAACTATGG
                                                                               960
       GACCAGCGTG GTTGTAGGAG TTCCTCCATC AGCCAAGATG CTCACCTATG ACCCGATGTT
```

```
GCTCTTCACT GGACGCACAT GGAAGGGATG TGTCTTTGGA GGTTTGAAAA GCAGAGATGA
                                                                           1080
       TGTCCCAAAA CTAGTGACTG AGTTCCTGGC AAAGAAATTT GACCTGGACC AGTTGATAAC
                                                                           1140
       TCATGTTTTA CCATTTAAAA AAATCAGTGA AGGATTTGAG CTGCTCAATT CAGGACAAAG
                                                                           1200
       CATTCGAACG GTCCTGACGT TTTGAGATCC AAAGTGGCAG GAGGTCTGTG TTGTCATGGT
                                                                           1260
       GAACTGGAGT TTCTCTTGTG AGAGTTCCCT CATCTGAAAT CATGTATCTG TCTCACAAAT
                                                                            1320
       ACAAGCATAA GTAGAAGATT TGTTGAAGAC ATAGAACCCT TATAAAGAAT TATTAACCTT
                                                                            1380
       TATAAACATT TAAAGTCTTG TGAGCACCTG GGAATTAGTA TAATAACAAT GTTAATATTT
                                                                            1440
                                                                            1500
       TTGATTTACA TTTTGTAAGG CTATAATTGT ATCTTTTAAG AAAACATACA CTTGGATTTC
       TATGTTGAAA TGGAGATTTT TAAGAGTTTT AACCAGCTGC TGCAGATATA TAACTCAAAA
                                                                            1560
10
       CAGATATAGC GTATAAAGAT ATAGTAAATG CATCTCCCAG AGTAATATTC ACTTAACACA
                                                                            1620
       TTGAAACTAT TATTTTTTAG ATTTGAATAT AAATGTATTT TTTAAACACT TGTTATGAGT
                                                                            1680
       1740
       AGAAAGACAG AAAAGATTAA GGGACGGGCA CATTTTTCAA CGATTAAGAA TCATCATTAC
                                                                            1800
       ATAACTTGGT GAAACTGAAA AAGTATATCA TATGGGTACA CAAGGCTATT TGCCAGCATA
       TATTAATATT TTAGAAAATA TTCCTTTTGT AATACTGAAT ATAAACATAG AGCTAGAGTC
15
                                                                            1920
       ATATTATCAT ACTTATCATA ATGTTCAATT TGATACAGTA GAATTGCAAG TCCCTAAGTC
       CCTATTCACT GTGCTTAGTA GTGACTCCAT TTAATAAAAA GTGTTTTTAG TTTTTAACAA
                                                                            2040
       CTAAACCG
20
       Seq ID NO: 101 Protein sequence:
       Protein Accession #: NP_000664
                                         31
                                                     41
25
       MCTAGKVIKC KAAVLWEOKO PFSIEEIEVA PPKTKEVRIK ILATGICRTD DHVIKGTMVS
       KFPVIVGHEA TGIVESIGEG VTTVKPGDKV IPLFLPQCRE CNACRNPDGN LCIRSDITGR
                                                                             120
       GVLADGTTRF TCKGKPVHHF MNTSTFTEYT VVDESSVAKI DDAAPPEKVC LIGCGFSTGY
                                                                             180
       GAAVKTGKVK PGSTCVVFGL GGVGLSVIMG CKSAGASRII GIDLNKDKFE KAMAVGATEC
                                                                             240
                                                                             300
       ISPKDSTKPI SEVLSEMTGN NVGYTFEVIG HLETMIDALA SCHMNYGTSV VVGVPPSAKM
30
       LTYDPMLLFT GRTWKGCVFG GLKSRDDVPK LVTEFLAKKF DLDQLITHVL PFKKISEGFE
                                                                             360
       LLNSGQSIRT VLTF
       Seq ID NO: 102 DNA sequence
       Nucleic Acid Accession #: NM_006783.1
35
       Coding sequence: 1..786
       ATGGATTGGG GGACGCTGCA CACTTTCATC GGGGGTGTCA ACAAACACTC CACCAGCATC
       GGGAAGGTGT GGATCACAGT CATCTTTATT TTCCGAGTCA TGATCCTAGT GGTGGCTGCC CAGGAAGTGT GGGGTGACGA GCAAGAGGAC TTCGTCTGCA ACACACTGCA ACCGGGATGC
40
                                                                             120
                                                                             180
       AAAAATGTGT GCTATGACCA CTTTTTCCCG GTGTCCCACA TCCGGCTGTG GGCCCTCCAG
CTGATCTTCG TCTCCACCCC AGCGCTGCTG GTGGCCATGC ATGTGGCCTA CTACAGGCAC
                                                                             240
                                                                             300
       GAAACCACTC GCAAGTTCAG GCGAGGAGAG AAGAGGAATG ATTTCAAAGA CATAGAGGAC
                                                                             360
45
       ATTAAAAAGC ACAAGGTTCG GATAGAGGGG TCGCTGTGGT GGACGTACAC CAGCAGCATC
                                                                             420
       TTTTTCCGAA TCATCTTGA AGCAGCCTTT ATGTATGTGT TTTACTTCCT TTACAATGGG
                                                                             480
       TACCACCTGC CCTGGGTGTT GAAATGTGGG ATTGACCCCT GCCCCAACCT TGTTGACTGC
                                                                             540
       TTTATTTCTA GGCCAACAGA GAAGACCGTG TTTACCATTT TTATGATTTC TGCGTCTGTG
                                                                             600
       ATTTGCATGC TGCTTAACGT GGCAGAGTTG TGCTACCTGC TGCTGAAAGT GTGTTTTAGG
                                                                             660
50
       AGATCAAAGA GAGCACAGAC GCAAAAAAAT CACCCCAATC ATGCCCTAAA GGAGAGTAAG
                                                                             720
       CAGAATGAAA TGAATGAGCT GATTTCAGAT AGTGGTCAAA ATGCAATCAC AGGTTTCCCA
                                                                             780
       Seq ID NO: 103 Protein sequence:
55
       Protein Accession #: NP_006774.1
                  11
                                         31
                                                     41
                                                                51
       MDWGTLHTFI GGVNKHSTSI GKVWITVIFI FRVMILVVAA QEVWGDEQED FVCNTLQPGC
       KNVCYDHFFP VSHIRLWALQ LIFVSTPALL VAMHVAYYRH ETTRKFRRGE KRNDFKDIED
60
       IKKHKVRIEG SLWWTYTSSI FFRIIFEAAF MYVFYFLYNG YHLPWVLKCG IDPCPNLVDC
       FISRPTEKTV FTIFMISASV ICMLLNVAEL CYLLLKVCFR RSKRAQTQKN HPNHALKESK
       QNEMNELISD SGQNAITGFP S
65
       Seq ID NO: 104 DNA sequence
       Nucleic Acid Accession #: NM 020411
       Coding sequence: 86-526
                                                                51
70
       GGACCTGGGA AGGAGCATAG GACAGGGCAA GGCGGGATAA GGAGGGGCAC CACAGCCCTT
                                                                              60
       AAGGCACGAG GGAACCTCAC TGCGCATGCT CCTTTGGTGC CCACCTCAGT GCGCATGTTC
                                                                             120
       ACTGGGCGTC TTCCCATCGG CCCCTTCGCC AGTGTGGGGA ACGCGGCGGA GCTGTGAGCC
                                                                             180
       GGCGACTCGG GTCCCTGAGG TCTGGATTCT TTCTCCGCTA CTGAGACACG GCGGACACAC
                                                                             240
        ACAAACACAG AACCACACAG CCAGTCCCAG GAGCCCAGTA ATGGAGAGCC CCAAAAAGAA
75
                                                                             300
        GAACCAGCAG CTGAAAGTCG GGATCCTACA CCTGGGCAGC AGACAGAAGA AGATCAGGAT
       ACAGCTGAGA TCCCAGTGCG CGACATGGAA GGTGATCTGC AAGAGCTGCA TCAGTCAAAC
                                                                             420
        ACCEGEGATA AATCTEGATT TEGETTCCEE CETCAAGGTE AAGATAATAC CTAAAGAGGA
                                                                              480
       ACACTGTAAA ATGCCAGAAG CAGGTGAAGA GCAACCACAA GTTTAAATGA AGACAAGCTG
                                                                             540
        AAACAACGCA AGCTGGTTTT ATATTAGATA TTTGACTTAA ACTATCTCAA TAAAGTTTTG
80
                                                                             600
        CAGCTTTCAC CAAAAAAAA AAAAAA
        Sed ID NO: 105 Protein sequence:
85
        Protein Accession #: NP_065144.1
                                         31
                                                     41
                                                                51
                   11
```

```
MLLWCPPQCA CSLGVFPSAP SPVWGTRRSC EPATRVPEVW ILSPLLRHGG HTQTQNHTAS
        PRSPVMESPK KKNQQLKVGI LHLGSRQKKI RIQLRSQCAT WKVICKSCIS QTPGINLDLG
        SGVKVKIIPK EEHCKMPEAG EEQPQV
  5
        Seq ID NO: 106 DNA sequence
        Nucleic Acid Accession #: J04129
        Coding sequence: 99-587
 10
        CATCCCTCTG GCTCCAGAGC TCAGAGCCAC CCACAGCCGC AGCCATGCTG TGCCTCCTGC
        TCACCCTGGG CGTGGCCCTG GTCTGTGGTG TCCCGGCCAT GGACATCCCC CAGACCAAGC
                                                                               120
        AGGACCTGGA GCTCCCAAAG TTGGCAGGGA CCTGGCACTC CATGGCCATG GCGACCAACA
                                                                               180
15
        ACATCTCCCT CATGGCGACA CTGAAGGCCC CTCTGAGGGT CCACATCACC TCACTGTTGC
CCACCCCCGA GGACAACCTG GAGATCGTTC TGCACAGATG GGAGAACAAC AGCTGTGTTG
                                                                               240
                                                                               300
        AGAAGAAGGT CCTTGGAGAG AAGACTGGGA ATCCAAAGAA GTTCAAGATC AACTATACGG
                                                                               360
        TGGCGAACGA GGCCACGCTG CTCGATACTG ACTACGACAA TTTCCTGTTT CTCTGCCTAC
        AGGACACCAC CACCCCATC CAGAGCATGA TGTGCCAGTA CCTGGCCAGA GTCCTGGTGG
                                                                               480
20
        AGGACGATGA GATCATGCAG GGATTCATCA GGGCTTTCAG GCCCCTGCCC AGGCACCTAT
        GGTACTTGCT GGACTTGAAA CAGATGGAAG AGCCGTGCCG TTTCTAGCTC ACCTCCGCCT
        CCAGGAAGAC CAGACTCCCA CCCTTCCACA CCTCCAGAGC AGTGGGACTT CCTCCTGCCC
                                                                               660
        TTTCAAAGAA TAACCACAGC TCAGAAGACG ATGACGTGGT CATCTGTGTC GCCATCCCCT
                                                                               720
        TCCTGCTGCA CACCTGCACC ATTGCCATGG GGAGGCTGCT CCCTGGGGGC AGAGTCTCTG
25
        GCAGAGGTTA TTAATAAACC CTTGGAGCAT G
        Seq ID NO: 107 Protein sequence:
        Protein Accession #: AAA60147
30
                                          31
        MDIPQTKQDL ELPKLAGTWH SMAMATNNIS LMATLKAPLR VHITSLLPTP EDNLEIVLHR
                                                                                60
        WENNSCYEKK VLGEKTGNPK KFKINYTVAN EATLLDTDYD NFLFLCLQDT TTPIQSMMCQ
                                                                              120
35
        YLARVLVEDD EIMQGFIRAF RPLPRHLWYL LDLKQMEEPC RF
        Seg ID NO: 108 DNA sequence
        Nucleic Acid Accession #: Eos sequence
        Coding sequence: 48-794
40
        TCCCAGGCAG CAGTTAGCCC GCCGCCCGCC TGTGTGTCCC CAGAGCCATG GAGAGAGCCA
        GTCTGATCCA GAAGGCCAAG CTGGCAGAGC AGGCCGAACG CTATGAGGAC ATGGCAGCCT
                                                                              120
45
        TCATGAAAGG CGCCGTGGAG AAGGGCGAGG AGCTCTCCTG CGAAGAGCGA AACCTGCTCT
                                                                              180
        CAGTAGCCTA TAAGAACGTG GTGGGCGGCC AGAGGGCTGC CTGGAGGGTG CTGTCCAGTA
                                                                              240
        TTGAGCAGAA AAGCAACGAG GAGGGCTCGG AGGAGAAGGG GCCCGAGGTG CGTGAGTACC
                                                                              300
        GGGAGAAGGT GGAGACTGAG CTCCAGGGCG TGTGCGACAC CGTGCTGGGC CTGCTGGACA
                                                                              360
        GCCACCTCAT CAAGGAGGCC GGGGACGCCG AGAGCCGGGT CTTCTACCTG AAGATGAAGG
                                                                              420
50
        GTGACTACTA CCGCTACCTG GCCGAGGTGG CCACCGGTGA CGACAAGAAG CGCATCATTG
                                                                              480
       ACTCAGCCCG GTCAGCCTAC CAGGAGGCCA TGGACATCAG CAAGAAGGAG ATGCCGCCCA
CCAACCCCAT CCGCCTGGGC CTGGCCCTGA ACTTTTCCGT CTTCCACTAC GAGATCGCCA
                                                                              540
                                                                              600
        ACAGCCCCGA GGAGGCCATC TCTCTGGCCA AGACCACTTT CGACGAGGCC ATGGCTGATC
                                                                              660
        TGCACACCCT CAGCGAGGAC TCCTACAAAG ACAGCACCCT CATCATGCAG CTGCTGCGAG
                                                                              720
55
        ACAACCTGAC ACTGTGGACG GCCGACAACG CCGGGGAAGA GGGGGGCGAG GCTCCCCAGG
                                                                               780
        AGCCCCAGAG CTGAGTGTTG CCCGCCACCG CCCCGCCCTG CCCCCTCCAG TCCCCCACCC
                                                                              840
        TGCCGAGAGG ACTAGTATGG GGTGGGAGGC CCCACCCTTC TCCCCTAGGC GCTGTTCTTG
        CTCCAAAGGG CTCCGTGGAG AGGGACTGGC AGAGCTGAGG CCACCTGGGG CTGGGGATCC
                                                                              960
        CACTCTTCTT GCAGCTGTTG AGCGCACCTA ACCACTGGTC ATGCCCCCAC CCCTGCTCTC
                                                                              1020
60
        CGCACCCGCT TCCTCCCGAC CCCAGGACCA GGCTACTTCT CCCCTCCTCT TGCCTCCCTC
                                                                              1080
        CTGCCCCTGC TGCCTCTGAT CGTAGGAATT GAGGAGTGTC CCGCCTTGTG GCTGAGAACT
                                                                             1140
        GGACAGTGGC AGGGGCTGGA GATGGGTGTG TGTGTGTGTG TGTGTGTGTG
                                                                             1200
        CGCGCGCGC AGTGCAAGAC CGAGATTGAG GGAAAGCATG TCTGCTGGGT GTGACCATGT
                                                                             1260
        TTCCTCTCAA TAAAGTTCCC CTGTGACACT C
65
        Seq ID NO: 109 Protein sequence:
        Protein Accession #: NP_006133.1
                                          31
                                                                 51
70
        MERASLIQKA KLAEQAERYE DMAAFMKGAV EKGEELSCEE RNLLSVAYKN VVGGQRAAWR
                                                                               60
        VLSSIEQKSN EEGSEEKGPE VREYREKVET ELQGVCDTVL GLLDSHLIKE AGDAESRVFY
                                                                              120
        LKMKGDYYRY LAEVATGDDK KRIIDSARSA YQEAMDISKK EMPPTNPIRL GLALNFSVFH
                                                                              180
        YEIANSPEEA ISLAKTIFDE AMADLHTLSE DSYKDSTLIM OLLRDNLTLW TADNAGEEGG
75
        EAPOEPOS
        Seq ID NO: 110 DNA sequence
        Nucleic Acid Accession #: NM_000695
        Coding sequence: 407-1564
· 80
                               21
        CACGAGTTGG TTTGGGAGCT GCCAGTCTCC TGGGAGGATC GCAGTCAGCA GAGCAGGGCT
        GAGGCCTGGG GGTAGGAGCA GAGCCTGCGC ATCTGGAGGC AGCATGTCCA AGAAAGGGAG
                                                                              120
85
        TGGAGGTGCA GCGAAGGACC CAGGGGCAGA GCCCACGCTG GGGATGGACC CCTTCGAGGA
                                                                              180
        CACACTGCGG CGGCTGCGTG AGGCCTTCAA CTGAGGGCGC ACGCGGCCGG CCGAGTTCCG
                                                                              240
        GGCTGCGCAG CTCCAGGGCC TGGGCCACTT CCTTCAAGAA AACAAGCAGC TTCTGCGCGA
                                                                              300
```

```
CGTGCTGGCC CAGGACCTGC ATAAGCCAGC TTTCGAGGCA GACATATCTG AGCTCATCCT
       TTGCCAGAAC GAGGTTGACT ACGCTCTCAA GAACCTTCAG GCCTGGATGA AGGATGAACC
                                                                              420
       ACGGTCCACG AACCTGTTCA TGAAGCTGGA CTCGGTCTTC ATCTGGAAGG AACCCTTTGG
                                                                              480
                                                                             540
       CCTGGTCCTC ATCATCGCAC CCTGGAACTA CCCATTGAAC CTGACCCTGG TGCTCCTGGT
 5
       GGGCACCCTC CCCGCAGGGA ATTGCGTGGT GCTGAAGCCG TCAGAAATCA GCCAGGGCAC
                                                                              600
       AGAGAAGGTC CTGGCTGAGG TGCTGCCCCA GTACCTGGAC CAGAGCTGCT TTGCCGTGGT
                                                                              660
       GCTGGGCGGA CCCCAGGAGA CAGGGCAGCT GCTAGAGCAC AAGTTGGACT ACATCTTCTT
                                                                             720
       CACAGGGAGC CCTCGTGTGG GCAAGATTGT CATGACTGCT GCCACCAAGC ACCTGACGCC
                                                                             780
       TGTCACCCTG GAGCTGGGGG GCAAGAACCC CTGCTACGTG GACGACAACT GCGACCCCCA
                                                                             840
10
       GACCGTGGCC AACCGCGTGG CCTGGTTCTG CTACTTCAAT GCCGGCCAGA CCTGCGTGGC
                                                                             900
       CCCTGACTAC GTCCTGTGCA GCCCCGAGAT GCAGGAGAGG CTGCTGCCCG CCCTGCAGAG
                                                                             960
       CACCATCACC CGTTTCTATG GCGACGACCC CCAGAGCTCC CCAAACCTGG GCCGCATCAT
                                                                            1020
       CAACCAGAAA CAGTTCCAGC GGCTGCGGGC ATTGCTGGGC TGCGGCCGCG TGGCCATTGG
                                                                            1080
       GGGCCAGAGC AACGAGAGCG ATCGCTACAT CGCCCCCACG GTGCTGGTGG ACGTGCAGGA
                                                                            1140
15
       GACGGAGCCT GTGATGCAGG AGGAGATCTT CGGGCCCATC CTGCCCATCG TGAACGTGCA
                                                                            1200
       GAGCGTGGAC GAGGCCATCA AGTTCATCAA CCGGCAGGAG AAGCCCCTGG CCCTGTACGC
                                                                            1260
       CTTCTCCAAC AGCAGACAGG TTGTGAACCA GATGCTGGAG CGGACCAGCA GCGGCAGCTT
                                                                            1320
       TGGAGGCAAT GAGGGCTTCA CCTACATATC TCTGCTGTCC GTGCCATTCG GGGGAGTCGG
                                                                            1380
       CCACAGTGGG ATGGGCCGGT ACCACGGCAA GTTCACCTTC GACACCTTCT CCCACCACCG
                                                                            1440
       CACCTGCCTG CTCGCCCCCT CCGGCCTGGA GAAATTAAAG GAGATCCGCT ACCCACCCTA
20
                                                                            1500
       TACCBACTGG AACCAGCAGC TGTTACGCTG GGGCATGGGC TCCCAGAGCT GCACCCTCCT GTGAGCGTCC CACCGCCTC CAACGGGTCA CACAGAGAAA CCTGAGTCTA GCCATGAGGG
                                                                            1560
                                                                            1620
       GCTTATGCTC CCAACTCACA TIGTTCCTCC AGACCACAGG CTCCCCCAGC CTCAGGTTGC TGGAGCTGTC ACATGACTGC ATCCTGCCTG CCAGGGCTGC AAAGCAAGGT CTTGCTTCTA
                                                                            1680
25
       TCTGGGGGAC GCTGCTCGAG AGAGGCCGAG AGGCCGCAGA ACATGCCAGG TGTCCTCACT
                                                                            1800
       CACCCCACCC TCCCCAATTC CAGCCCTTTG CCCTCTCGGT CAGGGTTGGC CAGGCCCAGT
       CACAGGGGCA GTGTCACCCT GGAAAATACA GTGCCCTGCC TTCTTAGGGG CATCAGCCCT
                                                                            1920
       GAACGGTTGA GAGCGTGGAG CCCTCCAGGC CTTTGCTCTC CCCTCTAGGC ACACGCGCAC
                                                                            1980
       TTCCACCTCT GCCCCATCCC AACTGCACCA GCACTGCCTC CCCCAGGGAT CCTCTCACAT
                                                                            2040
30
       CCCACACTGG TCTCTGCACC ACCCCTCTGG TTCACACCGC ACCCTGCACT CACCCACAGC
                                                                            2100
       AGCTCCATCC ACTGGGAAAA CTGGGGTTTG CATCACTCCA CTGCACAGTG TTAGTGGGAC
                                                                            2160
       CTGGGGGCAA GTCCCTTGAC TTCTCTGAGC CTCAGTTTCC TTATGTGAAA GTTGCTGGAA
                                                                            2220
       CCAAAATGGA GTCACTTATG CCAAACTCTA ATAAAATGGA GTCGGGGGGG CACATAGAAG
                                                                            2280
       CCCTCACACA CACATGCCCG TAACAGGATT TATCACCAAG ACACGCCTGC ATGTAAGACC
                                                                            2340
35
       AGACACAGGG CGTATGGAAA AGCACGTCCT CAAAGACTGT AGTATTCCAG ATGAGCTGCA
                                                                            2400
       GATGCTTACC TACCACGGCC GTCTCCACCA GAAAACCATC GCCAACTCCT GCGATCAGCT
                                                                            2460
       TGTGACTTAC AAACCTTGTT TAAAAGCTGC TTACATGGAC TTCTGTCCTT TAAAACGTTC
                                                                            2520
       CCCTTGGCTG TGGCCCTCTG TGTATGCCTG GGATCCTTCC AAGCACTCAT AGCCCAGATA
                                                                            2580
       GGAATCCTCT GCTCCTCCCA AATAAATTCA TCTGTTC
40
       Seg ID NO: 111 Protein sequence:
       Protein Accession #: NP_000686
45
       MKDEPRSTNL FMKLDSVFIW KEPFGLVLII APWNYPLNLT LVLLVGTLPA GNCVVLKPSE
                                                                               60
       ISQGTEKVLA EVLPQYLDQS CFAVVLGGPQ ETGQLLEHKL DYIFFTGSPR VGKIVMTAAT
                                                                             120
       KHLTPVTLEL GGKNPCYVDD NCDPOTVANR VAWFCYFNAG QTCVAPDYVL CSPEMQERLL
                                                                             180
50
       PALQSTITRF YGDDPQSSPN LGRIINQKQF QRLRALLGCG RVAIGGQSNE SDRYIAPTVL
                                                                             240
       VDVOETEPVM QEEIFGPILP IVNVQSVDEA IKFINRQEKP LALYAFSNSR QVVNQMLERT
                                                                             300
       SSGSFGGNEG FTYISLLSVP FGGVGHSGMG RYHGKFTFDT FSHHRTCLLA PSGLEKLKEI
                                                                             360
       RYPPYTDWNQ QLLRWGMGSQ SCTLL
55
       Seq ID NO: 112 DNA sequence
       Nucleic Acid Accession #: NM_004456
       Coding sequence: 58-2298
                                         31
                                                     41 .
                                                                51
                  11
                              21
60
       GAATTCCGGG CGACGCGCG GAACAACGCG AGTCGGCGCG CGGGACGAAG AATAATCATG
                                                                               60
       GGCCAGACTG GGAAGAAATC TGAGAAGGGA CCAGTTTGTT GGCGGAAGCG TGTAAAATCA
                                                                             120
       GAGTACATGC GACTGAGACA GCTCAAGAGG TTCAGACGAG CTGATGAAGT AAAGAGTATG
                                                                             180
       TTTAGTTCCA ATCGTCAGAA AATTTTGGAA AGAACGGAAA TCTTAAACCA AGAATGGAAA
65
       CAGCGAAGGA TACAGCCTGT GCACATCCTG ACTTCTGTGA GCTCATTGCG CGGGACTAGG
                                                                              300
       GAGTGTTCGG TGACCAGTGA CTTGGATTTT CCAACACAAG TCATCCCATT AAAGACTCTG
                                                                              360
       AATGCAGTTG CTTCAGTACC CATAATGTAT TCTTGGTCTC CCCTACAGCA GAATTTTATG
                                                                              420
       GTGGAAGATG AAACTGTTTT ACATAACATT CCTTATATGG GAGATGAAGT TTTAGATCAG
                                                                              480
       GATGGTACTT TCATTGAAGA ACTAATAAAA AATTATGATG GGAAAGTACA CGGGGATAGA
                                                                              540
70
       GAATGTGGGT TTATAAATGA TGAAATTTTT GTGGAGTTGG TGAATGCCCT TGGTCAATAT
                                                                              600
       AATGATGATG ACGATGATGA TGATGGAGAC GATCCTGAAG AAAGAGAAGA AAAGCAGAAA
                                                                              660
       GATCTGGAGG ATCACCGAGA TGATAAAGAA AGCCGCCCAC CTCGGAAATT TCCTTCTGAT
                                                                              720
       AAAATTTTGG AGGCCATTTC CTCAATGTTT CCAGATAAGG GCACAGCAGA AGAACTAAAG
                                                                              780
       GAAAAATATA AAGAACTCAC CGAACAGCAG CTCCCAGGCG CACTTCCTCC TGAATGTACC
                                                                              840
75
       CCCAACATAG ATGGACCAAA TGCTAAATCT GTTCAGAGAG AGCAAAGCTT ACACTCCTTT
                                                                              900
       CATACGCTTT TCTGTAGGCG ATGTTTTAAA TATGACTGCT TCCTACATCC TTTTCATGCA
                                                                              960
       ACACCCAACA CTTATAAGCG GAAGAACACA GAAACAGCTC TAGACAACAA ACCTTGTGGA
                                                                            1020
       CCACAGTGTT ACCAGCATTT GGAGGGAGCA AAGGAGTTTG CTGCTGCTCT CACCGCTGAG
                                                                            1080
       CGGATAAAGA CCCCACCAAA ACGTCCAGGA GGCCGCAGAA GAGGACGGCT TCCCAATAAC
                                                                            1140
       AGTAGCAGGC CCAGCACCCC CACCATTAAT GTGCTGGAAT CAAAGGATAC AGACAGTGAT
80
                                                                            1200
       AGGGAAGCAG GGACTGAAAC GGGGGGAGAG AACAATGATA AAGAAGAAGA AGAGAAGAAA
                                                                            1260
       GATGAAACTT CGAGCTCCTC TGAAGCAAAT TCTCGGTGTC AAACACCAAT AAAGATGAAG
                                                                            1320
       CCAAATATTG AACCTCCTGA GAATGTGGAG TGGAGTGGTG CTGAAGCCTC AATGTTTAGA
                                                                             1380
       GTCCTCATTG GCACTTACTA TGACAATTTC TGTGCCATTG CTAGGTTAAT TGGGACCAAA
                                                                             1440
85
       ACATGTAGAC AGGTGTATGA GTTTAGAGTC AAAGAATCTA GCATCATAGC TCCAGCTCCC
                                                                             1500
       GCTGAGGATG TGGATACTCC TCCAAGGAAA AAGAAGAGGA AACACCGGTT GTGGGCTGCA
                                                                             1560
       CACTGCAGAA AGATACAGCT GAAAAAGGAC GGCTCCTCTA ACCATGTTTA CAACTATCAA
```

```
CCCTGTGATC ATCCACGGCA GCCTTGTGAC AGTTCGTGCC CTTGTGTGAT AGCACAAAAT
                                                                            1680
       TTTTGTGAAA AGTTTTGTCA ATGTAGTTCA GAGTGTCAAA ACCGCTTTCC GGGATGCCGC
                                                                            1740
       TGCAAAGCAC AGTGCAACAC CAAGCAGTGC CCGTGCTACC TGGCTGTCCG AGAGTGTGAC
                                                                            1800
       CCTGACCTCT GTCTTACTTG TGGAGCCGCT GACCATTGGG ACAGTAAAAA TGTGTCCTGC
                                                                            1860
 5
       AAGAACTGCA GTATTCAGCG GGGCTCCAAA AAGCATCTAT TGCTGGCACC ATCTGACGTG
                                                                            1920
       GCAGGCTGGG GGATTTTTAT CAAAGATCCT GTGCAGAAAA ATGAATTCAT CTCAGAATAC
                                                                            1980
       TGTGGAGAGA TTATTTCTCA AGATGAAGCT GACAGAAGAG GGAAAGTGTA TGATAAATAC
                                                                            2040
       ATGTGCAGCT TTCTGTTCAA CTTGAACAAT GATTTTGTGG TGGATGCAAC CCGCAAGGGT
                                                                            2100
       AACAAAATTC GTTTTGCAAA TCATTCGGTA AATCCAAACT GCTATGCAAA AGTTATGATG
                                                                            2160
10
       GTTAACGGTG ATCACAGGAT AGGTATTTTT GCCAAGAGAG CCATCCAGAC TGGCGAAGAG
                                                                            2220
       CTGTTTGTTG ATTACAGATA CAGCCAGGCT GATGCCCTGA AGTATGTCGG CATCGAAAGA
                                                                            2280
       GARATGGARA TCCCTTGACA TCTGCTACCT CCTCCCCCTC CTCTGARACA GCTGCCTTAG
                                                                            2340
       CTTCAGGAAC CTCGAGTACT GTGGGCAATT TAGAAAAAGA ACATGCAGTT TGAAATTCTG
                                                                            2400
       AATTTGCAAA GTACTGTAAG AATAATTTAT AGTAATGAGT TTAAAAATCA ACTTTTTATT
                                                                            2460
15
       GCCTTCTCAC CAGCTGCAAA GTGTTTTGTA CCAGTGAATT TTTGCAATAA TGCAGTATGG
                                                                            2520
       TACATTTTTC AACTTTGAAT AAAGAATACT TGAACTTGAA AAAAAAAAA AAAAAA
       Seg ID NO: 113 Protein seguence:
20
       Protein Accession #: NP_004447
                                                                51
       MGQTGKKSEK GPVCWRKRVK SEYMRLRQLK RFRRADEVKS MFSSNRQKIL ERTEILNQEW
                                                                              60
25
       KORRIOPVHI LTSVSSLRGT RECSVTSDLD FPTQVIPLKT LNAVASVPIM YSWSPLQQNF
                                                                             120
       MVEDETVLHN IPYMGDEVLD QDGTFIEELI KNYDGKVHGD RECGFINDEI FVELVNALGQ
                                                                             180
       YNDDDDDDDG DDPEEREEKQ KDLEDHRDDK ESRPPRKFPS DKILEAISSM FPDKGTAEEL
                                                                             240
       KEKYKELTEQ QLPGALPPEC TPNIDGPNAK SVQREQSLHS FHTLFCRRCF KYDCFLHPFH
                                                                             300
       ATPNTYKRKN TETALDNKPC GPQCYQHLEG AKEFAAALTA ERIKTPPKRP GGRRRGRLPN
                                                                             360
30
       NSSRPSTPTI NVLESKOTOS DREAGTETGG ENNOKEBEEK KDETSSSSEA NSRCQTPIKM
                                                                             420
       KPNIEPPENV EWSGAEASMF RVLIGTYYDN FCAIARLIGT KTCRQVYEFR VKESSIIAPA
                                                                             480
       PAEDVDTPPR KKKRKHRLWA AHCRKIQLKK DGSSNHVYNY QPCDHPRQPC DSSCPCVIAQ
                                                                             540
       NFCEKFCQCS SECONRFPGC RCKAQCNTKQ CPCYLAVREC DPDLCLTCGA ADHWDSKNVS
                                                                             600
       CKNCSIQRGS KKHLLLAPSD VAGWGIFIKD PVQKNEFISE YCGEIISQDE ADRRGKVYDK
                                                                             660
35
       YMCSFLFNLN NDFVVDATRK GNKIRFANHS VNPNCYAKVM MVNGDHRIGI FAKRAIQTGE
       ELFVDYRYSQ ADALKYVGIE REMEIP
       Seg ID NO: 114 DNA sequence
       Nucleic Acid Accession #: NM_001827
40
       Coding sequence: 96-335
                                         31
       AGTCTCCGGC GAGTTGTTGC CTGGGCTGGA CGTGGTTTTG TCTGCTGCGC CCGCTCTTCG
                                                                              60
45
       CGCTCTCGTT TCATTTTCTG CAGCGCGCCA CGAGGATGGC CCACAAGCAG ATCTACTACT
                                                                             120
       CGGACAAGTA CTTCGACGAA CACTACGAGT ACCGGCATGT TATGTTACCC AGAGAACTTT
                                                                             180
       CCAAACAAGT ACCTAAAACT CATCTGATGT CTGAAGAGGA GTGGAGGAGA CTTGGTGTCC
                                                                             240
       AACAGAGTCT AGGCTGGGTT CATTACATGA TTCATGAGCC AGAACCACAT ATTCTTCTCT
                                                                             300
       TTAGACGACC TCTTCCAAAA GATCAACAAA AATGAAGTTT ATCTGGGGAT CGTCAAATCT
                                                                             360
50
       TTTTCAAATT TAATGTATAT GTGTATATAA GGTAGTATTC AGTGAATACT TGAGAAATGT
                                                                             420
       ACAAATCTTT CATCCATACC TGTGCATGAG CTGTATTCTT CACAGCAACA GAGCTCAGTT
                                                                             480
       AAATGCAACT GCAAGTAGGT TACTGTAAGA TGTTTAAGAT AAAAGTTCTT CCAGTCAGTT
                                                                             540
       TTTCTCTTAA GTGCCTGTTT GAGTTTACTG AAACAGTTTA CTTTTGTTCA ATAAAGTTTG
                                                                             600
       TATGTTGCAT TTAAAAAAA AAAAAAA
55
       Seq ID NO: 115 Protein sequence:
       Protein Accession #: NP_001818
                                         31
60
       MAHKQIYYSD KYFDEHYEYR HVMLPRELSK QVPKTHLMSE EEWRRLGVQQ SLGWVHYMIH
       EPEPHILLPR RPLPKDQQK
       Seg ID NO: 116 DNA sequence
65
       Nucleic Acid Accession #: CAT cluster
       TCAGACCTCA TGAGTCACTT GGACTCTTGA GCCACCTCTG GGGGTGGAGT CTCTCTCTG
                                                                              60
70
       GCATCTGGAC CCTTGGTGCT ATCGACGAAG CTTGGGTGGG GCTCTTAGCT GCTATGTGCA
                                                                             120
       AGAGGTGTGT TCCAGGGAAA GCCCCTATCT CTCTGCAGAG GTCAAGTGAA AGCGACGGCC
                                                                             180
       GCAGCCAACA GAGTTCAAAA TGCAGGCTTG GAAAGTACAG GGGGCTCTGT GGAGGATGGG
                                                                             240
       AAGGACTGAT CCACATTCCC ACCAGGAAGT TTAGCAGAAC CCCCGCGTGC CAACTGGACC
                                                                             300
       CCTTGGAAGG ACCTGGCTCA GGCTGGACCA CCTCTTGAGA GGGAGGAGCT CTGGATTTGA
                                                                             360
75
       TCAAGAATTC TTTGCTGAGC ATGGTGCCTC ATGCCTATAA TACCAACACT TTGGGAGGCC
                                                                             420
       AGTGTGGGAG GATCTCTTGA GCCCAGGAGT TCAAGACTAG CCTGGGCAAC ACAGAGAGAA
                                                                             480
       CCCATCTCTA AAATAATAAT AATAATAAAA TAAAAAATTA GCAGGGCATG GTGGCATGTG
                                                                             540
       CCTGTAGTTC CAGCTACCCA GGAGGCTGAG GCAAGAGGAT GGCTGGAGCC TGGGATGTTG
AGGCTGCAAT GAACTGTGAT TACCCCACTG CACTCCAGCC TGGGCAAAAG AGCGAGAGAA
                                                                             600
                                                                             660
80
       CCTGTCTCAA ATAATAATAA TAATAATAAT CTTATTTTGG AGAATAAAGA GACCTCTGGA
       TTTGAGGTGC CATTTGGGTA GAAAGAAAAG ACGTTTACAC CGAGAAATAG TCTGTGTTGC
       CCTGAAGGAG CAGAGGGATG CATCGCTGGA GGTGACCTAC AGTTGAAGAA GACTCATTAT
                                                                             840
       GACAGACCTT GTCCTTCTTC CTTGTGGAAA GTGTTTCCTC TGCTGCTACT GCTCATGAGA
                                                                             900
       CTCTTCCCCC TCCCTGTCCC AGGGAACCAA AGGGCTTTCT ACCACACCCT TTCTTGCCCC
                                                                             960
85
       CCGCCTCCCA TGTCTGCTGT GCCTTTGTAC TCAGCAATTC TTGTTTGCTC CATTATCTTC
                                                                            1020
       CAGCCGGATA CAGAGTGAAT AGTTAACCAC ACTTAGGTCA AATAGGATCT AAATTTTTGT
                                                                            1080
       TCCTGCTCCG TGTAAAGAGG CCAGTGTTTG TGTGTTGCAA GCAGCCTTGG AATAGTAACT
```

```
CTTCTCATTT GTTTGGGATC TGGCCACCAA GTTCCAGAAT GATACACGGA TCAGTGCAGA 1200
       AGTTCATCAG GCTCTCGGAC CTTAGGGCTG TTGGAGAAGG CTTCAGCAGC AGAACTGATG 1260
       GTGAAGGCTC GTGTTCTCCA TCCTCAACTT TCTTTGCTTC GATCATACAC AAGAATACAT
                                                                             1320
       TTGGAAGGGC AAAAAATGAA CACTGTCGTT CATTGCAGCC GTGTTTTGTG ACACAGATGC
                                                                             1380
 5
       ACAGTCTGCT GTGAAGACCT TCTCTCAAGT GGCATTTGGG AGTCCATGCC AGATCATGGT
                                                                             1440
       GCTTCATGAG AGACTGACAG CTATCAGGGG TTGTGGCACT TAGTGAGGAC TCTCCTCCCC CAGTGTGTGC TGATGACACA TACACACCTG ACAATAGCTT GAGTCTTCTC TGTTCCTTTT
                                                                             1500
                                                                             1560
       ACTCTGTAGC CAACATACAC ATGATTTAAA ACCCTTTCTA AATATCTATC ATGGTTCATC
                                                                             1620
       CTTGTCCAAA TGCAGAGTCA GAGCTATTTG TACTTCATTA TTATTTCCAA GGCGAATAGT
                                                                             1680
       TGGCTTTCTT TTTGCAAAAA TAATTAAAGT TTTTGTATGT TGCAAAAAAA AAAAAAAAA 1740
10
       AAACAAAAA
       Sea ID NO: 117 DNA sequence
       Nucleic Acid Accession #: BC012178.1
15
       Coding sequence: 204-2285
       CTTCTCTCCC GCGGCGCTGG GGCCCGCGCT CCGCTGCTGT TGCTCCATTC GGCGCTTTTC
20
       TGGCGGCTGG CTCCTCTCCG CTGCCGGCTG CTCCTCGACC AGGCCTCCTT CTCAACCTCA
                                                                              120
       GCCCGCGGCG CCGACCCTTC CGGCACCCTC CCGCCCCGTC TCGTACTGTC GCCGTCACCG
                                                                              180
       CCGCGGCTCC GGCCCTGGCC CCGATGGCTC TGTGCAACGG AGACTCCAAG CTGGAGAATG
                                                                              240
       CTGGAGGAGA CCTTAAGGAT GGCCACCACC ACTATGAAGG AGCTGTTGTC ATTCTGGATG
                                                                              300
       CTGGTGCTCA GTACGGGAAA GTCATAGACC GAAGAGTGAG GGAACTGTTC GTGCAGTCTG
                                                                              360
25
       AAATTTTCCC CTTGGAAACA CCAGCATTTG CTATAAAGGA ACAAGGATTC CGTGCTATTA
                                                                              420
       TCATCTCTGG AGGACCTAAT TCTGTGTATG CTGAAGATGC TCCCTGGTTT GATCCAGCAA
                                                                              480
       TATTCACTAT TGGCAAGCCT GTTCTTGGAA TTTGCTATGG TATGCAGATG ATGAATAAGG
                                                                              540
                                                                              600
       TATTTGGAGG TACTGTGCAC AAAAAAAGTG TCAGAGAAGA TGGAGTTTTC AACATTAGTG
       TGGATAATAC ATGTTCATTA TTCAGGGGCC TTCAGAAGGA AGAAGTTGTT TTGCTTACAC
                                                                              660
30
       ATGGAGATAG TGTAGACAAA GTAGCTGATG GATTCAAGGT TGTGGCACGT TCTGGAAACA
                                                                              720
       TAGTAGCAGG CATAGCAAAT GAATCTAAAA AGTTATATGG AGCACAGTTC CACCCTGAAG
                                                                              780
       TTGGCCTTAC AGAAAATGGA AAAGTAATAC TGAAGAATTT CCTTTATGAT ATAGCTGGAT
                                                                              840
       GCAGTGGAAC CTTCACCGTG CAGAACAGAG AACTTGAGTG TATTCGAGAG ATCAAAGAGA
                                                                              900
       GAGTAGGCAC GTCAAAAGTT TTGGTTTTAC TCAGTGGTGG AGTAGACTCA ACAGTTTGTA
                                                                              960
35
       CAGCTTTGCT AAATCGTGCT TTGAACCAAG AACAAGTCAT TGCTGTGCAC ATTGATAATG
                                                                             1020
       GCTTTATGAG AAAACGAGAA AGCCAGTCTG TTGAAGAGGC CCTCAAAAAG CTTGGAATTC
                                                                             1080
       AGGTCAAAGT GATAAATGCT GCTCATTCTT TCTACAATGG AACAACAACC CTACCAATAT
                                                                             1140
       CAGATGAAGA TAGAACCCCA CGGAAAAGAA TTAGCAAAAC GTTAAATATG ACCACAAGTC
       CTGAAGAGA AAGAAAAATC ATTGGGGATA CTTTTGTTAA GATTGCCAAT GAAGTAATTG
40
       GAGAAATGAA CTTGAAACCA GAGGAGGTTT TCCTTGCCCA AGGTACTTTA CGGCCTGATC 1320
       TAATTGAAAG TGCATCCCTT GTTGCAAGTG GCAAAGCTGA ACTCATCAAA ACCCATCACA
                                                                             1380
       ATGACACAGA GCTCATCAGA AAGTTGAGAG AGGAGGGAAA AGTAATAGAA CCTCTGAAAG
       ATTTTCATAA AGATGAAGTG AGAATTTTGG GCAGAGAACT TGGACTTCCA GAAGAGTTAG
                                                                             1500
       TTTCCAGGCA TCCATTTCCA GGTCCTGGCC TGGCAATCAG AGTAATATGT GCTGAAGAAC
                                                                             1560
45
       CTTATATTTG TAAGGACTTT CCTGAAACCA ACAATATTTT GAAAATAGTA GCTGATTTTT
                                                                             1620
       CTGCAAGTGT TAAAAAGCCA CATACCCTAT TACAGAGAGT CAAAGCCTGC ACAACAGAAG
                                                                             1680
       AGGATCAGGA GAAGCTGATG CAAATTACCA GTCTGCATTC ACTGAATGCC TTCTTGCTGC
                                                                             1740
       CAATTAAAAC TGTAGGTGTG CAGGGTGACT GTCGTTCCTA CAGTTACGTG TGTGGAATCT
                                                                             1800
       CCAGTAAAGA TGAACCTGAC TGGGAATCAC TTATTTTTCT GGCTAGGCTT ATACCTCGCA
                                                                             1860
50
       TGTGTCACAA CGTTAACAGA GTTGTTTATA TATTTGGCCC ACCAGTTAAA GAACCTCCTA CAGATGTTAC TCCCACTTC TTGACAACAG GGGTGCTCAG TACTTTACGC CAAGCTGATT
                                                                             1920
                                                                             1980
       TTGAGGCCCA TAACATTCTC AGGGAGTCTG GGTATGCTGG GAAAATCAGC CAGATGCCGG
                                                                             2040
       TGATTTTGAC ACCATTACAT TTTGATCGGG ACCCACTTCA AAAGCAGCCT TCATGCCAGA
                                                                             2100
       GATCTGTGGT TATTCGAACC TTTATTACTA GTGACTTCAT GACTGGTATA CCTGCAACAC
                                                                             2160
55
       CTGGCAATGA GATCCCTGTA GAGGTGGTAT TAAAGATGGT CACTGAGATT AAGAAGATTC
                                                                             2220
       CTGGTATTTC TCGAATTATG TATGACTTAA CATCAAAGCC CCCAGGAACT ACTGAGTGGG 2280
       AGTAATAAAC TTCTTGTTCT ATTAAAA
60
       Seg ID NO: 118 Protein seguence:
       Protein Accession #: AAR12178.1
                                          31
65
       MALCNGDSKL ENAGGDLKDG HHHYEGAVVI LDAGAQYGKV IDRRVRELFV QSEIFPLETP
       AFAIKEQGFR AIIISGGPNS VYAEDAPWFD PAIFTIGKPV LGICYGMQMM NKVFGGTVHK
                                                                              120
       KSVREDGVFN ISVDNTCSLF RGLQKEBVVL LTHGDSVDKV ADGFKVVARS GNIVAGIANE
                                                                              180
       SKKLYGAQFH PEVGLTENGK VILKNFLYDI AGCSGTFTVQ NRELECIREI KERVGTSKVL
                                                                              240
       VLLSGGVDST VCTALLNRAL NQEQVIAVHI DNGFMRKRES QSVEEALKKL GIQVKVINAA
                                                                              300
70
       HSFYNGTTTL PISDEDRTPR KRISKTLNMT TSPEEKRKII GDTFVKIANE VIGEMNLKPE
                                                                              360
       EVFLAQGTLR PDLIESASLV ASGKAELIKT HHNDTELIRK LREEGKVIEP LKDFHKDEVR
                                                                              420
       ILGRELGLPE ELVSRHPFPG PGLAIRVICA EEPYICKDFP ETNNILKIVA DFSASVKKPH
                                                                              480
       TLLQRVKACT TEEDQEKLMQ ITSLHSLNAF LLPIKTVGVQ GDCRSYSYVC GISSKDEPDW
                                                                              540
       ESLIFLARLI PRMCHNYNRY VYIFGPPVKE PPTDVTPTFL TTGVLSTLRQ ADFEAINILR
ESGYAGKISQ MPVILTPLHF DRDPLQKQPS CQRSVVIRTF ITSDFMTGIP ATPGNEIPVE
                                                                              600
75
                                                                              660
       VVLKMVTEIK KIPGISRIMY DLTSKPPGTT EWE
       Sea ID NO: 119 DNA sequence
       Nucleic Acid Accession #: NM_006500.1
80
       Coding sequence: 27..1967
       ACTTGCGTCT CGCCCTCCGG CCAAGCATGG GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC
85
       TOGCOGCOTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG
                                                                               120
       CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC
                                                                              180
       AGTCCCAAGG CAACCTCAGC CATGTCGACT GGTTTTCTGT CCACAAGGAG AAGCGGACGC
                                                                              240
```

PCT/US02/12476

```
TCATCTTCCG TGTGCGCCAG GGCCAGGGCC AGAGCGAACC TGGGGAGTAC GAGCAGCGGC
                                                                              300
       TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC
                                                                             360
       GCATCTTCTT GTGCCAGGGC AAGCGCCCTC GGTCCCAGGA GTACCGCATC CAGCTCCGCG
                                                                              420
       TCTACAAAGC TCCGGAGGAG CCAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA
                                                                              480
       GTAAGGAGCC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCCTCAAG
                                                                              540
       TCATCTGGTA CAAGAATGGC CGGCCTCTGA AGGAGGAGAA GAACCGGGTC CACATTCAGT
                                                                              600
       CGTCCCAGAC TGTGGAGTCG AGTGGTTTGT ACACCTTGCA GAGTATTCTG AAGGCACAGC
                                                                              660
       TGGTTAAAGA AGACAAAGAT GCCCAGTTTT ACTGTGAGCT CAACTACCGG CTGCCCAGTG
                                                                              720
       GGAACCACAT GAAGGAGTCC AGGGAAGTCA COGTCCCTGT TTTCTACCCG ACAGAAAAAG
                                                                             780
10
       TGTGGCTGGA AGTGGAGCCC GTGGGAATGC TGAAGGAAGG GGACCGCGTG GAAATCAGGT
                                                                              840
       GTTTGGCTGA TGGCAACCCT CCACCACACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA
                                                                             900
                                                                             960
       GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGTCCT GGTGCTGGAG CCTGCCCGGA
       AGGAACACAG TGGGCGCTAT GAATGTCAGG CCTGGAACTT GGACACCATG ATATCGCTGC
                                                                            1020
       TGAGTGAACC ACAGGAACTA CTGGTGAACT ATGTGTCTGA CGTCCGAGTG AGTCCCGCAG
                                                                            1080
15
       CCCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGCAGAG AGTAGCCAGG
                                                                            1140
       ACCTCGAGTT CCAGTGGCTG AGAGAAGAGA CAGACCAGGT GCTGGAAAGG GGGCCTGTGC
                                                                            1200
       TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGGCTA TCGCTGCGTG GCGTCTGTGC
                                                                            1260
       CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCCATTTTT GGCCCCCCTT
                                                                            1320
       GGATGGCATT CAAGGAGAGG AAGGTGTGGG TGAAAGAGAA TATGGTGTTG AATCTGTCTT
                                                                            1380
20
       GTGAAGCGTC AGGGCACCCC CGGCCCACCA TCTCCTGGAA CGTCAACGGC ACGGCAAGTG
                                                                            1440
       AACAAGACCA AGATCCACAG CGAGTCCTGA GCACCCTGAA TGTCCTCGTG ACCCCGGAGC
                                                                            1500
       TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAAC ACCAGCATCC TCTTCCTGGA GCTGGTCAAT TTAACCACCC TCACACCAGA CTCCAACACA ACCACTGGCC
                                                                            1560
       TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC TGCCGGAGCC GGAGAGCCGG GGCGTGGTCA TCGTGGCTGT GATTGTGTC ATCCTGGTCC
                                                                            1680
25
                                                                            1740
       TEGGCGGTGCT GGGCGCTGTC CTCTATTACAA GGGCAAGCTG CCGTGCAGGC
GCTCAGGGA GCAGGAGATC ACGCTGCCCC CGTCTCGTAA GACCGAACTT GTAGTTGAAG
                                                                            1800
                                                                            1860
       TTAAGTCAGA TAAGCTCCCA GAAGAGATGG GCCTCCTGCA GGGCAGCAGC GGTGACAAGA
                                                                            1920
       GGGCTCCGGG AGACCAGGGA GAGAAATACA TCGATCTGAG GCATTAGCCC CGAATCACTT
                                                                            1980
30
       CAGCTCCCTT CCCTGCCTGG ACCATTCCCA GCTCCCTGCT CACTCTTCTC TCAGCCAAAG
                                                                            2040
                                                                            2100
       CCTCCAAAGG GACTAGAGAG AAGCCTCCTG CTCCCCTCAC CTGCACACCC CCTTTCAGAG
       GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTTT TCAGGGACCA
                                                                            2160
       GTCCACCACC ATCTCCTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC
                                                                            2220
       CCGAGCGGGT AGGAGAGTTT CTTGCAGAAC GTGTTTTTTC TTTACACACA TTATGGCTGT
                                                                            2280
35
       AAATACCTGG CTCCTGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTGG TTTCCTGCCC
                                                                            2340
                                                                            2400
       CAMAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC
       GCCTGCTCAT GTTGAAGTGC GCTGTTCACA CCCGCTCCGG AGAGCACCCC AGCGGCATCC
                                                                            2460
                                                                            2520
       AGAAGCAGCT GCAGTGTTGC TGCCACCACC CTCCTGCTCG CCTCTTCAAA GTCTCCTGTG
       ACATTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTCATT CCTTAAAAGA TACGTGCCGG
                                                                            2580
40
       GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGCCGA GGCGGGCGGA
                                                                            2640
       TCACAAAGTC AGGACGAGAC CATCCTGGCT AACACGGTGA AACCCTGTCT CTACTAAAAA
                                                                            2700
       TACAAAAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG
       CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC
                                                                            2820
       ACGCGTACCT GCGGTGAGGA AGCTGGGCGC TGTTTTCGAG TTCAGGTGAA TTAGCCTCAA
45
                                                                             2940
       TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAACT GAAAGGCAGC
       GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA
                                                                            3060
       TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG
                                                                            3120
       AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTCGGGTGT GTGTGTCTGT
                                                                            3180
50
       CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTTGT CAGGTGTGTA AATTTGCAAA
                                                                            3240
       3300
                                                                            3360
       AAAGCTTAAT TGTCCCAGAA AATCATACAT TGCTTTTTTA TTCTACATGG GTACCACAGG
       AACCTGGGGG CCTGTGAAAC TACAACCAAA AGGCACACAA AACCGTTTCC AGTTGGCAGC
                                                                            3420
       AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG
                                                                            3480
55
       CTACCCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC
                                                                            3540
       TGTTAGCAGG AGCTATGTCC CTTCCTATCG TTTCCGTCCA CTT
       Seq ID NO: 120 Protein sequence:
60
       Protein Accession #: NP_006491.1
                  11
                                         31
       MGLPRLVCAF LLAACCCCPR VAGVPGEAEQ PAPELVEVEV GSTALLKCGL SQSQGNLSHV
65
       DWFSVHKERR TLIFRVRQGQ GQSEPGEYEQ RLSLQDRGAT LALTQVTFQD ERIFLCQGKR
PRSQEYRIQL RVYKAPEEPN IQVNPLGIPV NSKEPBEVAT CVGRNGYPIP QVIWYKNGRP
                                                                              120
                                                                              180
       LKEEKNRVHI QSSQTVESSG LYTLQSILKA QLVKEDKDAQ FYCELNYRLP SGNHMKESRE
                                                                              240
       VTVPVPYPTE KVWLEVEPVG MLKEGDRVEI RCLADGNPPP HFSISKQNPS TREAEEETTN
                                                                              300
70
       DNGVLVLEPA RKEHSGRYEC QAWNLDTMIS LLSEPQELLV NYVSDVRVSP AAPERQEGSS
                                                                              360
       LTLTCEAESS QDLEFQWLRE ETDQVLERGP VLQLHDLKRE AGGGYRCVAS VPSIPGLNRT
                                                                              420
       QLVKLAIFGP PWMAFKERKV WVKENMVLNL SCEASGHPRP TISWNVNGTA SEQDQDPQRV
                                                                              480
       LSTLNVLVTP ELLETGVECT ASNDLGKNTS ILFLELVNLT TLTPDSNTTT GLSTSTASPH
                                                                              540
       TRANSTSTER KLPEPESRGV VIVAVIVCIL VLAVLGAVLY FLYKKGKLPC RRSGKQEITL
                                                                              600
75
        PPSRKTELVV EVKSDKLPEE MGLLQGSSGD KRAPGDQGEK YIDLRH
        Seq ID NO: 121 DNA sequence
       Nucleic Acid Accession #: NM_018306
       Coding sequence: 60-671
80
                              21
                                          31
        ATAGTCTACA CAGAGCTCCC CTTGCTGCCC AGACAAGCTG AAGGACCACA GGAAAAGCCA
        TGGAGACTTC AGCATCCTCC TCCCAGCCTC AGGACAACAG TCAAGTCCAC AGAGAAACAG
85
        AAGATGTAGA CTATGGAGAG ACAGATTTCC ACAAGCAAGA CGGGAAGGCT GGACTCTTTT
                                                                              180
        CCCAAGAACA ATATGAGAGA AACAAGTCTT CTTCCTCCTC CTTCTCTTCC TCCTCATCCT
        CCTCATCTTC TTCATCCTCC TCCTCCTCAG GTCCTGGGCA TGGGGAGCCT GACGTTTTGA
                                                                              300
```

```
WO 02/086443
       AGGATGAGCT TCAACTCTAT GGAGATGCTC CTGGAGAGGT GGTACCCTCT GGGGAATCAG
                                                                               360
       GACTCCGAAG GAGAGGCTCT GACCCAGCAA GTGGAGAAGT GGAGGCCTCT CAGTTAAGAA
                                                                                420
       GACTGAATAT AAAGAAAGAT GATGAGTTTT TCCATTTCGT CCTCCTGTGC TTTGCCATCG
                                                                                480
       GGGCCTTGCT GGTGTGTTAT CACTATTACG CAGACTGGTT CATGTCTCTT GGGGTCGGCC
                                                                                540
 5
       TGCTCACCTT CGCCTCCCTG GAAACCGTTG GCATCTACTT CGGACTAGTG TACCGTATCC
                                                                                600
       ACAGCGTCCT CCAAGGCTTC ATCCCCCTCT TCCAGAAGTT TAGGCTGACA GGGTTCAGGA
                                                                                660
                                                                                720
       AGACTGACTG AGGCCACTTC CAGGTGGGCA GCAGAGGCAG GCCCCAGTGT GACCACCACT
       GCGACCCCTG AGCCCACAAG GGCAGAGCAG CATTCTGAGA GACGCACAGG AGACCAAGCC
                                                                                780
       AGACCAATAA ACAGAACACT TTTCCTTCCA TGTGGTCTGA ATGTTGGCAC CAGCCCGGGC
                                                                                840
10
       AGGGGCATCT CATTTGGGCA GTACTGCTGT GCAACCCAGC TGCAAGGATG GAAGGCAGAG
                                                                                900
       GGTGGGTGTG GGGCCTGAGG CTTCACAGTA CCTGGACCAG CAGGAAGATT CTGGGAGGTC
                                                                                960
       ACTGCTCTCA GAGGACAGCA AGGGACCCTG AGCTCTGCAA GCTGTGATCT GTCTGGGTTC
ATGGTTTTTC TCAAATCCCA GGCTATCTGC ATGCGCTCTC AGGTGCTACC GAGCCATCCT
GGGAGAGATG GATGGTCCAC TGCTTTGAGG CAGGGAGCCA TCGGGCTGGG GCCCCTTGGT
GAACCTGATG CAGGTAAGAT GCTGAGGACT AAAACCATTT TTTTTGCACC CAAAAAAAAA
                                                                               1020
                                                                               1080
                                                                               1140
15
       GGCAGGAAAA TGATCATCAG AAACTAAATG GCAGCCAGGC ATGGGGGCTC ACGACTGTAA
                                                                              1260
       TCCTCGCACT TTGGGAGGCT CAGGCTAAGG GTCGCTTGAA GCTGAGAGTT CAAGACCAAC
       CTGGGCAACA TAGTGAGACC CCCATCTCTA CAATTTTTT TTAATGACCA AATGTGGCGG
                                                                              1380
       TACATACCTG TACATACCTG CGGTTCCAGC TACTCAAGAG GCTGAGGCAG GAGGACTGCT
20
       TGAGCCCAGG AGTTCAGGGC TGCAGTGAGG TACGATCAAG CCACTGCACT CCAGCCTGGG
CGACAGAGCA AGATCGTTTC TCTAAAATT
       Seg ID NO: 122 Protein sequence:
25
       Protein Accession #: NP_060776
                  11
                                          31
       METSASSSOP ODNSOVHRET EDVDYGETDF HKODGKAGLF SQEQYERNKS SSSSFSSSSS
                                                                                60
30
       SSSSSSSS GPGHGEPDVL KDELQLYGDA PGEVVPSGES GLRRRGSDPA SGEVEASQLR
                                                                                120
       RLNIKKDDEF FHFVLLCFAI GALLVCYHYY ADWFMSLGVG LLTFASLETV GIYFGLVYRI
                                                                               180
       HSVLOGFIPL FOKFRLTGFR KTD
       Seq ID NO: 123 DNA sequence
35
       Nucleic Acid Accession #: BC022542
       Coding sequence: 243..896
                  11
                              21
                                          31
                                                      41
                                                                  51
40
       ACTTGGTCCC AGCCGATAAA TCTGGGGCAG CGCGCGGTAG GAGCTGCGGG CGGCCAGGCC
       CCTTCCTGCG TCCGCACCTG GCCCCGCGCG CCCCTCTCGG GCGTCCGGCT TCCGGCGTCC
       TGGCGGCTCG GGTGGCGGCG GTTCGGGCGG CCGCCTGGCT GCTCCTCGGG GCGGCGACGG
       GGCTCACGCG CGGGCCCGCC ACGGCCTTCA CCGCCGCGCG CTCTGACGCC GGCATAAGGG
                                                                                240
       CCATGTGTTC TGAAATTATT TTGAGGCAAG AAGTTTTGAA AGATGGTTTC CACAGAGACC
45
       TTTTAATCAA AGTGAAGTTT GGGGAAAGCA TTGAGGACTT GCACACGTGC CGTCTCTTAA
                                                                                360
       TTARACAGGA CATTCCTGCA GGACTTTATG TGGATCCGTA TGAGTTGGCT TCATTACGAG
                                                                                420
       AGAGAAACAT AACAGAGGCA GTGATGGTTT CAGAAAATTT TGATATAGAG GCCCCTAACT
                                                                                480
       ATTTGTCCAA GGAGTCTGAA GTTCTCATTT ATGCCAGACG AGATTCACAG TGCATTGACT
                                                                                540
       GTTTTCAAGC CTTTTTGCCT GTGCACTGCC GCTATCATCG GCCGCACAGT GAAGATGGAG
                                                                                600
50
       AAGCCTCGAT TGTGGTCAAT AACCCAGATT TGTTGATGTT TTGTGACCAA GAGTTCCCGA
                                                                                660
       TTTTGAAATG CTGGGCTCAC TCAGAAGTGG CAGCCCCTTG TGCTTTGGAT AATGAGGATA
                                                                                720
                                                                                780
       TATGCCAATG GAACAAGATG AAGTATAAAT CAGTATATAA GAATGTGATT CTACAAGTTC
       CAGTGGGACT GACTGTACAT ACCTCTCTAG TATGTTCTGT GACTCTGCTC ATTACAATCC
                                                                                840
       TGTGCTCTAC ATTGATCCTT GTAGCAGTTT TCAAATATGG CCATTTTTCC CTATAAGTTT
                                                                                900
55
       TATGTAGTTA AATGCTTCCT AGAAACCTAA ATAAGATCTA TTAATTTCTG ACGAGAGGTG
                                                                                960
       TTCTTCTAGA ATTAATTACT TTTATCTTTT GTCTTCATTT GTGGCCAAAA TTATGTTTAC
                                                                               1020
       TAGAGGAAAT TTGGGATCAT TCTCAGCTAA TTCCAAAATG TAGTGCTCTA TTGCATGGAT
                                                                               1080
       CCTTGGTAAT CCTCAAGCAT CAGATGCCAT AAGGGGAAAC TTAATTCTGC TAAATTAATG
                                                                               1140
       TTTATTTTGT GAGAAGTGAC TTTATCTTCA TTTGGGGTAG AAAAATTATT TCTTTATGTA
GTAGAGACAA ATTATTCTCA TTTTGCAAGT ACTTTCAATT TAAGCTACAA ATTGAGAAAA
                                                                               1200
60
                                                                               1260
       CCGTTATAAA TAAGAATAAA ATAGGCCAGG CACAGTGGCT CACACCTGTA ATCCCAGCAC
       TTTGGGAGGC CGAGGTGGGC GGATCACCAG AGGTCAAGAG TTTGAGACCA GCTTGGTGAA
                                                                               1380
       ACCCTGTCTC TACTAAAAAT ACAAAAGTTA GCTGGGGCTG GTGGTGGGCA TCTGTAGTCC
       CAGCTAATTG GAAGGGTGAG GCGGGAGGAT CGCTTGAACC TGGGAGGCGG AGGTTCCAGA
                                                                               1500
65
       GAGCCAAGAT CGCACCACTG CACTACAGCC TGGGCGACAG AACGAGACCC TGTCTCCAAA
                                                                               1560
       GGAAAACAA AAAAGAAGAA TAAAATAATT TGGATGAAAA TCATGTTTAT TTAAATAGTA
                                                                               1620
       ATGTCATGAG ACTATTAAAG ATGTGCCAGA GTTTCAATGA AAATCATTAA AGTAGGACAG
                                                                              1680
       CTAAGAAATT AATATTAATA TAAAAATTAT TGATAATCTT AAATTATTGA TTATTCCTTA
                                                                              1740
                                                                               1800
        ACGCACTCCA TTCTCCTTTT ACATTTTATC ATGTTTCTTT TGAATATATG AATTGGCAAA
70
        GGACTTGATG AAACTGAGTA CTAAGATTTG GTACAGAGTA TGTCAGGAAG ACAACTCAGA
                                                                               1860
        Seq ID NO: 124 Protein sequence:
75
       Protein Accession #: AAH22542
                                                                  51
       MCSEIILRQE VLKDGFHRDL LIKVKFGESI EDLHTCRLLI KQDIPAGLYV DPYELASLRE
                                                                                 60
       RNITEAVMVS ENFOIEAPNY LSKESEVLIY ARRDSQCIDC FQAFLPVHCR YHRPHSEDGE
80
                                                                                120
       ASIVVNNPDL LMFCDQAGSR RMIRFRFDSF DKTIEFPILK CWAHSEVAAP CALENEDICQ
       WNKMKYKSVY KNVILQVPVG LTVHTSLVCS VTLLITILCS KKKKK
       Seg ID NO: 125 DNA sequence
85
       Nucleic Acid Accession #: NM_004994.1
       Coding sequence: 20..2143
```

```
11
       AGACACCTCT GCCCTCACCA TGAGCCTCTG GCAGCCCCTG GTCCTGGTGC TCCTGGTGCT
                                                                                 60
       GGGCTGCTGC TTTGCTGCCC CCAGACAGCG CCAGTCCACC CTTGTGCTCT TCCCTGGAGA
                                                                                120
 5
       CCTGAGAACC AATCTCACCG ACAGGCAGCT GGCAGAGGAA TACCTGTACC GCTATGGTTA
                                                                                180
       CACTCGGGTG GCAGAGATGC GTGGAGAGTC GAAATCTCTG GGGCCTGCGC TGCTGCTTCT
                                                                                240
       CCAGAAGCAA CTGTCCCTGC CCGAGACCGG TGAGCTGGAT AGCGCCACGC TGAAGGCCAT
                                                                                300
       GCGAACCCCA CGGTGCGGGG TCCCAGACCT GGGCAGATTC CAAACCTTTG AGGGCGACCT
                                                                                360
       CAAGTGGCAC CACCACAACA TCACCTATTG GATCCAAAAC TACTCGGAAG ACTTGCCGCG
                                                                                420
10
       GGCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT
                                                                                480
       CACCTTCACT CGCGTGTACA GCCGGGACGC AGACATCGTC ATCCAGTTTG GTGTCGCGGA
                                                                                540
       GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
                                                                                600
       TGGCCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA
                                                                                660
       GGGCGTCGTG GTTCCAACTC GGTTTGGAAA CGCAGATGGC GCGGCCTGCC ACTTCCCCTT CATCTTCGAG GGCCGCTCCT ACTCTGCCTG CACCACCGAC GGTCGCTCCG ACGGCTTGCC
                                                                                720
15
                                                                                780
       CTGGTGCAGT ACCACGGCCA ACTACGACAC CGACGACCGG TTTGGCTTCT GCCCCAGCGA
                                                                                840
       GAGACTCTAC ACCCGGGACG GCAATGCTGA TGGGAAACCC TGCCAGTTTC CATTCATCTT
                                                                                900
       CCAAGGCAA TCCTACTCG CCTGCACCAC GGACGGTCGC TCCGACGGCT ACCGCTGGTG
CGCCACCACC GCCAACTACG ACCGGGACAA GCTCTTCGGC TTCTGCCCGA CCCGAGCTGA
                                                                                960
                                                                              1020
20
       CTCGACGGTG ATGGGGGGCA ACTCGGCGGG GGAGCTGTGC GTCTTCCCCT TCACTTTCCT
                                                                              1080
       GGGTAAGGAG TACTCGACCT GTACCAGCGA GGGCCGCGGA GATGGGCGCC TCTGGTGCGC
       TACCACCTCG AACTTTGACA GCGACAAGAA GTGGGGCTTC TGCCCGGACC AAGGATACAG
       TTTGTTCCTC GTGGCGGCGC ATGAGTTCGG CCACGCGCTG GGCTTAGATC ATTCCTCAGT
       GCCGGAGGCG CTCATGTACC CTATGTACCG CTTCACTGAG GGGCCCCCCT TGCATAAGGA
                                                                              1320
25
       CGACGTGAAT GGCATCCGGC ACCTCTATGG TCCTCGCCCT GAACCTGAGC CACGGCCTCC
                                                                              1380
       AACCACCACC ACACCGCAGC CCACGGCTCC CCCGACGGTC TGCCCCACCG GACCCCCCAC
                                                                              1440
       TGTCCACCCC TCAGAGCGCC CCACAGCTGG CCCCACAGGT CCCCCCTCAG CTGGCCCCAC
                                                                              1500
       AGGTCCCCCC ACTGCTGGCC CTTCTACGGC CACTACTGTG CCTTTGAGTC CGGTGGACGA
                                                                              1560
       TGCCTGCAAC GTGAACATCT TCGACGCCAT CGCGGAGATT GGGAACCAGC TGTATTTGTT
                                                                              1620
30
       CAAGGATGGG AAGTACTGGC GATTCTCTGA GGGCAGGGGG AGCCGGCCGC AGGGCCCCTT
                                                                              1680
                                                                              1740
       CCTTATCGCC GACAAGTGGC CCGCGCTGCC CCGCAAGCTG GACTCGGTCT TTGAGGAGCC
       GCTCTCCAAG AAGCTTTTCT TCTTCTCTGG GCGCCAGGTG TGGGTGTACA CAGGCGCGTC
                                                                              1800
       GGTGCTGGGC CCGAGGCGTC TGGACAAGCT GGGCCTGGGA GCCGACGTGG CCCAGGTGAC
                                                                              1860
       CGGGGCCCTC CGGAGTGGCA GGGGGAAGAT GCTGCTGTTC AGCGGGCGGC GCCTCTGGAG
                                                                              1920
35
       GTTCGACGTG AAGGCGCAGA TGGTGGATCC CCGGAGCGCC AGCGAGGTGG ACCGGATGTT
                                                                              1980
       CCCCGGGGTG CCTTTGGACA CGCACGACGT CTTCCAGTAC CGAGAGAAAG CCTATTTCTG
                                                                              2040
       CCAGGACCGC TTCTACTGGC GCGTGAGTTC CCGGAGTGAG TTGAACCAGG TGGACCAAGT
                                                                              2100
       GGGCTACGTG ACCTATGACA TCCTGCAGTG CCCTGAGGAC TAGGGCTCCC GTCCTGCTTT
                                                                              2160
       GCAGTGCCAT GTAAATCCCC ACTGGGACCA ACCCTGGGGA AGGAGCCAGT TTGCCGGATA
                                                                              2220
40
       CAAACTGGTA TTCTGTTCTG GAGGAAAGGG AGGAGTGGAG GTGGGCTGGG CCCTCTCTTC
                                                                              2280
       TCACCTTTGT TTTTTGTTGG AGTGTTTCTA ATAAACTTGG ATTCTCTAAC CTTT
       Seq ID NO: 126 Protein sequence:
       Protein Accession #: NP_004985.1
45
                              21
                                          31
                                                                  51
       MSLWOPLVLV LLVLGCCFAA PROROSTLVL FPGDLRTNLT DRQLAEEYLY RYGYTRVAEM
                                                                                60
       RGESKSLGPA LLLLQKQLSL PETGELDSAT LKAMRTPRCG VPDLGRFQTF EGDLKWHHHN
                                                                               120
50
       ITYWIQNYSE DLPRAVIDDA FARAFALWSA VTPLTFTRVY SRDADIVIQF GVAEHGDGYP
                                                                               180
       FDGKDGLLAH AFPPGPGIQG DAHFDDDELW SLGKGVVVPT RFGNADGAAC HFPFIFEGRS
                                                                               240
       YSACTTDGRS DGLPWCSTTA NYDTDDRFGF CPSERLYTRD GNADGKPCQF PFIFQGQSYS
                                                                               300
       ACTTDGRSDG YRWCATTANY DRDKLFGFCP TRADSTVMGG NSAGELCVFP FTFLGKEYST
                                                                               360
       CTSEGRGDGR LWCATTSNFD SDKKWGFCPD QGYSLFLVAA HEFGHALGLD HSSVPEALMY
                                                                               420
55
       PMYRFTEGPP LHKDDVNGIR HLYGPRPEPE PRPPTTTTPQ PTAPPTVCPT GPPTVHPSER
                                                                               480
       PTAGPTGPPS AGPTGPPTAG PSTATTVPLS PVDDACNVNI FDAIAEIGNQ LYLFKDGKYW
                                                                               540
       RFSEGRGSRP QGPFLIADKW PALPRKLDSV FEEPLSKKLF PFSGRQVWVY TGASVLGPRR
                                                                               600
       LDKLGLGADV AQVTGALRSG RGKMLLFSGR RLWRFDVKAQ MVDPRSASEV DRMFPGVPLD THDVFQYREK AYPCQDRFYW RVSSRSELNQ VDQVGYVTYD ILQCPED
                                                                               660
60
       Seq ID NO: 127 DNA sequence
       Nucleic Acid Accession #: NM_004181
       Coding sequence: 32-670
65
                              21
                                          31
       GCAGAAATAG CCTAGGGAGA TCAACCCCGA GATGCTGAAC AAAGTGCTGT CCCGGCTGGG
                                                                                60
       GGTCGCCGGC CAGTGGCGCT TCGTGGACGT GCTGGGGCTG GAAGAGGAGT CTCTGGGCTC
                                                                               120
       GGTGCCAGCG CCTGCCTGCG CGCTGCTGCT GCTGTTTCCC CTCACGGCCC AGCATGAGAA
                                                                               180
70
       CTTCAGGAAA AAGCAGATTG AAGAGCTGAA GGGACAAGAA GTTAGTCCTA AAGTGTACTT
                                                                               240
       CATGAAGCAG ACCATTGGGA ATTCCTGTGG CACAATCGGA CTTATTCACG CAGTGGCCAA
                                                                                300
       TAATCAAGAC AAACTGGGAT TTGAGGATGG ATCAGTTCTG AAACAGTTTC TTTCTGAAAC
                                                                               360
       AGAGAAAATG TCCCCTGAAG ACAGAGCAAA ATGCTTTGAA AAGAATGAGG CCATACAGGC
                                                                                420
       AGCCCATGAT GCCGTGGCAC AGGAAGGCCA ATGTCGGGTA GATGACAAGG TGAATTTCCA
                                                                                480
75
       TTTTATTCTG TTTAACAACG TGGATGGCCA CCTCTATGAA CTTGATGGAC GAATGCCTTT
                                                                                540
       TCCGGTGAAC CATGGCGCCA GTTCAGAGGA CACCCTGCTG AAGGACGCTG CCAAGGTGTG
                                                                                600
       CAGAGAATTC ACCGAGCGTG AGCAAGGAGA AGTCCGCTTC TCTGCCGTGG CTCTCTGCAA
                                                                                660
       GGCAGCCTAA TGCTCTGTGG GAGGGACTTT GCTGATTTCC CCTCTTCCCT TCAACATGAA
                                                                                720
       AATATATACC CCCCATGCAG TCTAAAATGC TTCAGTACTT GTGAAACACA GCTGTTCTTC
                                                                                780
80
       TGTTCTGCAG ACACGCCTTC CCCTCAGCCA CACCCAGGCA CTTAAGCACA AGCAGAGTGC
                                                                                840
       ACAGCTGTCC ACTGGGCCAT TGTGGTGTGA GCTTCAGATG GTGAAGCATT CTCCCCAGTG
TATGTCTTGT ATCCGATATC TAACGCTTTA AATGGCTACT TTGGTTTCTG TCTGTAAGTT
                                                                                900
                                                                                960
       AAGACCTTGG ATGTGGTTAT GTTGTCCTAA AGAATAAATT TTGCTGATAG TAGC
85
       Sea ID NO: 128 Protein sequence:
       Protein Accession #: NP_004172
```

	WA 03	1007.142					
	1 WO 02	/086443	21	31	41	51	
	MINKVLSRIG	VAGOWREVDV	LGLEEESLGS	VPAPACALLL	 LFPLTAQHEN	FRKKQIEELK	60
5	GOEVSPKVYP	MKOTIGNSCG	TIGLIHAVAN	NODKLGFEDG	SVLKQFLSET	EKMSPEDRAK	120
3			CRVDDKVNFH VRFSAVALCK		PARTDGKWIA	PVNHGASSED	180
	Seg ID NO:	129 DNA sec	ruence				
10	Nucleic Aci	d Accession	#: NM_0002	13			
	Coaing sequ	ence: 127-5	383				
	1	11	21	31	41	51 1	
15			ATCTCCTAGC				60
			GGGCGCACAG CCCCAGCCCA				120 180
	AGCGTCAGCC	TCTCTGGGAC	CTTGGCAAAC	CGCTGCAAGA	AGGCCCCAGT	GAAGAGCTGC	240
20			TAAGGACTGC GGAGCTGCTG				300 360
20	GTCATGGAGA	GCAGCTTCCA	AATCACAGAG	GAGACCCAGA	TTGACACCAC	CCTGCGGCGC	420
	AGCCAGATGT	CCCCCAAGG	CCTGCGGGTC	CGTCTGCGGC	CCGGTGAGGA	GCGGCATTTT	480 540
	TCCAACTCCA	TGTCCGATGA	ACTGGAGAGC TCTGGACAAC	CTCAAGAAGA	TGGGGCAGAA	CCTGGCTCGG	600
25	GTCCTGAGCC	AGCTCACCAG	CGACTACACT	ATTGGATTTG	GCAAGTTTGT	GGACAAAGTC	660
			GAGGCCTGAG CGTCATCAGC				720 780
	AAACTGCAGG	GAGAGCGGAT	CTCAGGCAAC	CTGGATGCTC	CTGAGGGCGG	CTTCGATGCC	840
30			CACGAGGGAC AGCCTTCCAC				900 960
50	GGCATCATGA	GCCGCAACGA	TGAACGGTGC	CACCTGGACA	CCACGGGCAC	CTACACCCAG	1020
	TACAGGACAC	AGGACTACCC	GTCGGTGCCC CACCAACTAC	ACCCTGGTGC	GCCTGCTCGC	CAAGCACAAC	1080 1140
	TATTTCCCTG	TCTCCTCACT	GGGGGTGCTG	CAGGAGGACT	CGTCCAACAT	CGTGGAGCTG	1200
35	CTGGAGGAGG	CCTTCAATCG	GÁTCCGCTCC	AACCTGGACA	TCCGGGCCCT	AGACAGCCCC	1260 1320
	CACATCCGGC	GGACAGAGGT GGGGGGAAGT	CACCTCCAAG GGGTATATAC	CAGGTGCAGC	TGCGGGCCCT	TGAGCACGTG	1380
	GATGGGACGC	ACGTGTGCCA	GCTGCCGGAG	GACCAGAAGG	GCAACATCCA	TCTGAAACCT	1440
40	TCCTTCTCCG	ACGGCCTCAA	GATGGACGCG AGCTCGCTGC	AGCTTCAACG	GAGACTTCGT	GTGCGGACAG	1500 1560
	TGTGTGTGCA	GCGAGGGCTG	GAGTGGCCAG	ACCTGCAACT	GCTCCACCGG	CTCTCTGAGT	1620
	GACATTCAGC	CCTGCCTGCG	GGAGGGCGAG CTACGGCGAA	GACAAGCCGT	AGGGTCAGTT	TGGGGAGTGC	1680 1740
4.5	GACAACTTCC	AGTGTCCCCG	CACTTCCGGG	TTCCTCTGCA	ATGACCGAGG	ACGCTGCTCC	1800
45	ATGGGCCAGT	GTGTGTGA	GCCTGGTTGG CAATGGGGGC	ACAGGCCCAA	GCTGTGACTG	TCCCCTCAGC	1860 1920
	GGCCGCTGCC	ACTGCCACCA	GCAGTCGCTC	TACACGGACA	CCATCTGCGA	GATCAACTAC	1980
	TCGGCGATCC	ACCCGGGCCT	CTGCGAGGAC GCGCACGTGT	CTACGCTCCT	GCGTGCAGTG	CCAGGCGTGG	2040 2100
50	GACGAGCTTA	AGAGAGCCGA	GGAGGTGGTG	GTGCGCTGCT	CCTTCCGGGA	CGAGGATGAC	2160
	GACTGCACCT	ACAGCTACAC	CATGGAAGGT	GACGGCGCCC	CTGGGCCCAA	CAGCACTGTC	2220 2280
	CTCCTCCTCC	AGAAGAAGGA TGCCGCTCCT	CTGCCCTCCG GGCCCTGCTA	CTGCTGCTAT	GCTGGAAGTA	CTGTGCCTGC	2340
<i>E E</i>	TGCAAGGCCT	GCCTGGCACT	TCTCCCGTGC	TGCAACCGAG	GTCACATGGT	GGGCTTTAAG	2400
55	GAAGACCACT	ACATGCTGCG GGAACCTCAA	GGAGAACCTG GGGCCGTGAC	GTGGTCCGCT	GGAAGGTCAC	CACGCCCATG	2460 2520
	CAGCGGCCTG	GCTTTGCCAC	TCATGCCGCC	AGCATCAACC	CCACAGAGCT	GGTGCCCTAC	2580
	GGGCTGTCCT	TGCGCCTGGC	CCGCCTTTGC	ACCGAGAACC	TGCTGAAGCC	TGACACTCGG CAGGCAGATC	2640 2700
60	TCCGGTGTAC	ACAAGCTCCA	GCAGACCAAG	TTCCGGCAGC	AGCCCAATGC	CGGGAAAAAG	2760
	CAAGACCACA	COATTGTGGA	CACAGTGCTG	ATGGCGCCCC	GCTCGGCCAA ACGACCTCAA	GCCGGCCCTG GGTGGCCCCC	2820 2880
	GGCTACTACA	CCCTCACTGC	AGACCAGGAC	GCCCGGGGCA	TGGTGGAGTT	CCAGGAGGGC	2940
65	GTGGAGCTGG	TGGACGTACG	GGTGCCCCTC	TTTATCCGGC	CTGAGGATGA	CGACGAGAAG CCGCCGCCTG	3000 3060
03	GTAAACATCA	CCATCATCAA	GGAGCAAGCC	AGAGACGTGG	TGTCCTTTGA	GCAGCCTGAG	3120
	TTCTCGGTCA	GCCGCGGGGA	CCAGGTGGCC	CGCATCCCTG	TCATCCGGCG	TGTCCTGGAC CAACCGGGAC	3180 3240
	TACATCCCCG	TGGAGGGTGA	GCTGCTGTTC	CAGCCTGGGG	AGGCCTGGAA	AGAGCTGCAG	3300
70	GTGAAGCTCC	TGGAGCTGCA	AGAAGTTGAC	TCCCTCCTGC	GGGGCCGCCA	GGTCCGCCGT	3360 3420
	ACCATCATCA	TCAGGGACCC	AGATGAACTG	GACCGGAGCT	TCACGAGTCA	CCACTCCACC GATGTTGTCA	3480
	TCACAGCCAC	CCCCTCACGG	CGACCTGGGC	GCCCCGCAGA	ACCCCAATGC	TAAGGCCGCT	3540
75	GGGTCCAGGA	AGATCCATTT	TGACTCCGAA	TCCGAAGCCC	ACCTGCTCGA	GGGGTACAGG CAGCAAGGTG	3600 3660
. 5	CCCTCAGTGG	AGCTCACCAA	CCTGTACCCG	TATTGCGACT	ATGAGATGAA	GGTGTGCGCC	3720
	TACGGGGCTC	AGGGCGAGGG	ACCCTACAGC	TCCCTGGTGT AATGTCGTCT	CCTCCACGGT	CCACCAGGAA GACCCAGCTG	3780 3840
00	AGCTGGGCTG	AGCCGGCTGA	GACCAACGGT	GAGATCACAG	CCTACGAGGT	CTGCTATGGC	3900
80	CTGGTCAACG	ATGACAACCG	ACCTATTGGG	CCCATGAAGA	AAGTGCTGGT	TGACAACCCT CTACACGGTG	3960 4020
	AAGGCGCGCA	ACGGGGCCGG	CTGGGGGCCT	GAGCGGGAGG	CCATCATCAA	CCTGGCCACC	4080
	CAGCCCAAGA	GGCCCATGTC	CATCCCCATC	ATCCCTGACA	TCCCTATCGT	GGACGCCCAG	4140 4200
85	GGCAGCCAGA	GGCCCAGCGT	CTTCCTTATG CTCCGATGAC	ACTGAGCACC	TGGTGAATGG	CCGGATGGAC	4260
	TTTGCCTTCC	CGGGCAGCAC	CAACTCCCTG	CACAGGATGA	CCACGACCAG	TGCTGCTGCC	4320
	TATGGCACCC	ACCTGAGCCC	ACACGTGCCC	CACCGCGTGC	TAAGCACATC	CTCCACCCTC	4380

```
ACACGGGACT ACAACTCACT GACCCGCTCA GAACACTCAC ACTCGACCAC ACTGCCGAGG
                                                                               4440
       GACTACTOCA COCTCACCTC CGTCTCCTCC CACGACTCTC GCCTGACTGC TGGTGTGCCC
                                                                               4500
       GACACGCCCA CCCGCCTGGT GTTCTCTGCC CTGGGGCCCA CATCTCTCAG AGTGAGCTGG
                                                                               4560
       CAGGAGCCGC GGTGCGAGCG GCCGCTGCAG GGCTACAGTG TGGAGTACCA GCTGCTGAAC
                                                                               4620
       GGCGGTGAGC TGCATCGGCT CAACATCCCC AACCCTGCCC AGACCTCGGT GGTGGTGGAA
                                                                               4680
       GACCTCCTGC CCAACCACTC CTACGTGTTC CGCGTGCGGG CCCAGAGCCA GGAAGGCTGG
                                                                               4740
       GGCCGAGAGC GTGAGGGTGT CATCACCATT GAATCCCAGG TGCACCCGCA GAGCCCACTG
                                                                               4800
       TGTCCCCTGC CAGGCTCCGC CTTCACTTTG AGCACTCCCA GTGCCCCAGG CCCGCTGGTG
                                                                               4860
       TTCACTGCCC TGAGCCCAGA CTCGCTGCAG CTGAGCTGGG AGCGGCCACG GAGGCCCAAT
                                                                               4920
10
       GGGGATATCG TCGCTACCT GGTGACCTGT GAGATGGCCC AAGGAGGAGG GCCAGCCACC
                                                                               4980
       GCATTCCGGG TGGATGGAGA CAGCCCCGAG AGCCGGCTGA CCGTGCCGGG CCTCAGCGAG
                                                                               5040
       AACGTGCCCT ACAAGTTCAA GGTGCAGGCC AGGACCACTG AGGGCTTCGG GCCAGAGCGC
                                                                               5100
       GAGGGCATCA TCACCATAGA GTCCCAGGAT GGAGGACCCT TCCCGCAGCT GGGCAGCCGT
                                                                               5160
       GCCGGGCTCT TCCAGCACCC GCTGCAAAGC GAGTACAGCA GCATCACCAC CACCCACACC
                                                                               5220
15
       AGCGCCACCG AGCCCTTCCT AGTGGATGGG CCGACCCTGG GGGCCCAGCA CCTGGAGGCA
                                                                               5280
       GGCGGCTCCC TCACCCGGCA TGTGACCCAG GAGTTTGTGA GCCGGACACT GACCACCAGC
                                                                               5340
       GGAACCCTTA GCACCCACAT GGACCAACAG TTCTTCCAAA CTTGACCGCA CCCTGCCCCA
                                                                               5400
       CCCCCGCCAT GTCCCACTAG GCGTCCTCCC GACTCCTCTC CCGGAGCCTC CTCAGCTACT
                                                                               5460
       CCATCCTTGC ACCCTGGGG GCCCAGCCCA CCCGCATGCA CAGAGCAGGG GCTAGGTGTC
                                                                               5520
20
       TCCTGGGAGG CATGAAGGGG GCAAGGTCCG TCCTCTGTGG GCCCAAACCT ATTTGTAACC
                                                                               5580
       AAAGAGCTGG GAGCAGCACA AGGACCCAGC CTTTGTTCTG CACTTAATAA ATGGTTTTGC
25
       Seg ID NO: 130 Protein seguence:
       Protein Accession #: NP_000204
                                                      41
                                          31
30
       MAGPRPSPWA RLLLAALISV SLSGTLANRC KKAPVKSCTE CVRVDKDCAY CTDEMFRDRR
                                                                                 60
       CNTQAELLAA GCQRESIVVM ESSFQITEET QIDTTLRRSQ MSPQGLRVRL RPGEERHFEL
                                                                               120
       EVPEPLESPV DLYILMDFSN SMSDDLDNLK KMGQNLARVL SQLTSDYTIG FGKFVDKVSV
                                                                                180
       PQTDMRPEKL KEPWPNSDPP FSFKNVISLT EDVDEFRNKL QGERISGNLD APEGGFDAIL
                                                                                240
       QTAVCTRDIG WRPDSTHLLV FSTESAFHYE ADGANVLAGI MSRNDERCHL DTTGTYTQYR
                                                                                300
35
       TODYPSVPTL VRLLAKHNII PIFAVTNYSY SYYEKLHTYF PVSSLGVLQE DSSNIVELLE
                                                                               360
       EAFNRIRSNL DIRALDSPRG LRTEVTSKMF QKTRTGSFHI RRGEVGIYQV QLRALEHVDG
                                                                                420
       THVCQLPEDQ KGNIHLKPSF SDGLKMDAGI ICDVCTCELQ KEVRSARCSF NGDFVCGQCV
                                                                                480
       CSEGWSGQTC NCSTGSLSDI QPCLREGEDK PCSGRGECQC GHCVCYGEGR YEGQFCEYDN
                                                                                540
       FQCPRTSGFL CNDRGRCSMG QCVCEPGWTG PSCDCPLSNA TCIDSNGGIC NGRGHCECGR
                                                                                600
40
       CHCHQQSLYT DTICEINYSA IHPGLCEDLR SCVQCQAWGT GEKKGRTCEB CNFKVKMVDE
                                                                               660
       LKRAEEVVVR CSFRDEDDDC TYSYTMEGDG APGPNSTVLV HKKKDCPPGS FWWLIPLLLL
                                                                                720
       LLPLLALLL LCWKYCACCK ACLALLPCCN RGHMVGFKED HYMLRENLMA SDHLDTPMLR
                                                                                780
       SGNLKGRDVV RWKVTNNMQR PGFATHAASI NPTELVPYGL SLRLARLCTE NLLKPDTREC
                                                                                B40
       AQLRQEVEEN LNEVYRQISG VHKLQQTKFR QQPNAGKKQD HTIVDTVLMA PRSAKPALLK
LTEKQVEQRA FHDLKVAPGY YTLTADQDAR GMVEFQEGVE LVDVRVPLFI RPEDDDEKQL
LVEAIDVPAG TATLGRRLVN ITIIKEQARD VVSFEQPEFS VSRGDQVARI PVIRRVLDGG
                                                                                900
45
                                                                                960
       KSQVSYRTQD GTAQGNRDYI PVEGELLFQP GEAWKELQVK LLELQEVDSL LRGRQVRRFH
       VOLSNPKPGA HLGOPHSTTI IIRDPDELDR SFTSOMLSSQ PPPHGDLGAP ONPNAKAAGS
       RKIHFNWLPP SGKPMGYRVK YWIQGDSESE AHLLDSKVPS VELTNLYPYC DYEMKVCAYG
                                                                              1200
50
       AQGEGPYSSL VSCRTHQEVP SEPGRLAFNV VSSTVTQLSW AEPAETNGEI TAYEVCYGLV
                                                                              1260
       NDDNRPIGPM KKVLVDNPKN RMLLIENLRE SQPYRYTVKA RNGAGWGPER EAIINLATQP
                                                                              1320
       KRPMSIPIIP DIPIVDAQSG EDYDSFLMYS DDVLRSPSGS QRPSVSDDTE HLVNGRMDFA
                                                                              1380
       FPGSTNSLHR MTTTSAAAYG THLSPHVPHR VLSTSSTLTR DYNSLTRSEH SHSTTLPRDY
                                                                              1440
                                                                              1500
       STLTSVSSHD SRLTAGVPDT PTRLVFSALG PTSLRVSWQE PRCERPLQGY SVEYQLLNGG
55
                                                                              1560
       ELHRLNIPNP AQTSVVVEDL LPNHSYVFRV RAQSQEGWGR EREGVITIES QVHPQSPLCP
       LPGSAFTLST PSAPGPLVFT ALSPDSLQLS WERPRRPNGD IVGYLVTCEM AQGGGPATAF
                                                                              1620
       RVDGDSPESR LTVPGLSENV PYKFKVQART TEGFGPEREG IITIESQDGG PFPQLGSRAG
                                                                              1680
       LFOHPLOSEY SSITTTHTSA TEPFLVDGPT LGAQHLEAGG SLTRHVTQEF VSRTLTTSGT
                                                                              1740
       LSTHMDQQFF QT
60
       Seq ID NO: 131 DNA sequence
       Nucleic Acid Accession #: BC004372
       Coding sequence: 132..2231
65
                   11 .
                                          31 . .
                                                      41
                                                                  51
                              21
       CCTCGTGCCG CGGACCCCAG CCTCTGCCAG GTTCGGTCCG CCATCCTCGT CCCGTCCTCC
       GCCGGCCCCT GCCCCGCGCC CAGGGATCCT CCAGCTCCTT TCGCCCGCGC CCTCCGTTCG
       CTCCGGACAC CATGGACAAG TTTTGGTGGC ACGCAGCCTG GGGACTCTGC CTCGTGCCGC
70
       TGAGCCTGGC GCAGATCGAT TTGAATATAA CCTGCCGCTT TGCAGGTGTA TTCCACGTGG
       AGAAAAATGG TCGCTACAGC ATCTCTCGGA CGGAGGCCGC TGACCTCTGC AAGGCTTTCA
       ATAGCACCTT GCCCACAATG GCCCAGATGG AGAAAGCTCT GAGCATCGGA TTTGAGACCT
                                                                                360
       GCAGGTATGG GTTCATAGAA GGGCATGTGG TGATTCCCCG GATCCACCCC AACTCCATCT
                                                                                420
       GTGCAGCAAA CAACACAGGG GTGTACATCC TCACATCCAA CACCTCCCAG TATGACACAT
                                                                                480
75
       ATTGCTTCAA TGCTTCAGCT CCACCTGAAG AAGATTGTAC ATCAGTCACA GACCTGCCCA
                                                                                540
       ATGCCTTTGA TGGACCAATT ACCATAACTA TTGTTAACCG TGATGGCACC CGCTATGTCC
                                                                                600
       AGAAAGGAGA ATACAGAACG AATCCTGAAG ACATCTACCC CAGCAACCCT ACTGATGATG
                                                                                660
       ACGTGAGCAG CGGCTCCTCC AGTGAAAGGA GCAGCACTTC AGGAGGTTAC ATCTTTTACA
                                                                                720
       CCTTTTCTAC TGTACACCCC ATCCCAGACG AAGACAGTCC CTGGATCACC GACAGCACAG
                                                                                780
80
       ACAGAATCCC TGCTACCAGT ACGTCTTCAA ATACCATCTC AGCAGGCTGG GAGCCAAATG
                                                                                840
       AAGAAAATGA AGATGAAAGA GACAGACACC TCAGTTTTTC TGGATCAGGC ATTGATGATG
                                                                                900
       ATGAAGATTT TATCTCCAGC ACCATTTCAA CCACACCACG GGCTTTTGAC CACACAAAAC
                                                                                960
       AGAACCAGGA CTGGACCCAG TGGAACCCAA GCCATTCAAA TCCGGAAGTG CTACTTCAGA CAACCACAAG GATGACTGAT GTAGACAGAA ATGGCACCAC TGCTTATGAA GGAAACTGGA
                                                                               1020
                                                                               1080
85
       ACCCAGARGO ACACCCTCCC CTCATTCACC ATGAGCATCA TGAGGAAGAA GAGACCCAC ATTCTACAAG CACAATCCAG GCAACTCCTA GTAGTACAAC GGAAGAAACA GCTACCCAGA
                                                                               1140
                                                                               1200
       AGGAACAGTG GTTTGGCAAC AGATGGCATG AGGGATATCG CCAAACACCC AGAGAAGACT
```

1320

```
CCCATTCGAC AACAGGGACA GCTGCAGCCT CAGCTCATAC CAGCCATCCA ATGCAAGGAA
       GGACAACACC AAGCCCAGAG GACAGTTCCT GGACTGATTT CTTCAACCCA ATCTCACACC
                                                                           1380
       CCATGGGACG AGGTCATCAA GCAGGAAGAA GGATGGATAT GGACTCCAGT CATAGTACAA
                                                                           1440
       1500
 5
       CTCTTTCAAT GACAACGCAG CAGAGTAATT CTCAGAGCTT CTCTACATCA CATGAAGGCT
                                                                           1560
       TGGAAGAAGA TAAAGACCAT CCAACAACTT CTACTCTGAC ATCAAGCAAT AGGAATGATG
                                                                           1620
       TCACAGGTGG AAGAAGAGC CCAAATCATT CTGAAGGCTC AACTACTTTA CTGGAAGGTT
                                                                           1680
       ATACCTCTCA TTACCCACAC ACGAAGGAAA GCAGGACCTT CATCCCAGTG ACCTCAGCTA
                                                                           1740
       AGACTGGGTC CTTTGGAGTT ACTGCAGTTA CTGTTGGAGA TTCCAACTCT AATGTCAATC
                                                                           1800
10
       GTTCCTTATC AGGAGACCAA GACACATTCC ACCCCAGTGG GGGGTCCCAT ACCACTCATG
                                                                           1860
       GATCTGAATC AGATGGACAC TCACATGGGA GTCAAGAAGG TGGAGCAAAC ACAACCTCTG
                                                                           1920
       GTCCTATAAG GACACCCCAA ATTCCAGAAT GGCTGATCAT CTTGGCATCC CTCTTGGCCT
                                                                           1980
       TGGCTTTGAT TCTTGCAGTT TGCATTGCAG TCAACAGTCG AAGAAGGTGT GGGCAGAAGA
                                                                           2040
       AAAAGCTAGT GATCAACAGT GGCAATGGAG CTGTGGAGGA CAGAAAGCCA AGTGGACTCA
       ACGGAGAGGC CAGCAAGTCT CAGGAAATGG TGCATTTGGT GAACAAGGAG TCGTCAGAAA
15
       CTCCAGACCA GTTTATGACA GCTGATGAGA CAAGGAACCT GCAGAATGTG GACATGAAGA
                                                                           2220
       TTGGGGTGTA ACACCTACAC CATTATCTTG GAAAGAAACA ACCGTTGGAA ACATAACCAT
                                                                           2280
       TACAGGGAGC TGGGACACTT AACAGATGCA ATGTGCTACT GATTGTTTCA TTGCGAATCT
                                                                           2340
       TTTTTAGCAT AAAATTTTCT ACTCTTAAAA AAAAAAAAA AAAAAAA
20
       Seq ID NO: 132 Protein sequence:
       Protein Accession #: AAH04372
25
                                                               51
                                         31
       MDKFWWHAAW GLCLVPLSLA QIDLNITCRF AGVFHVEKNG RYSISRTEAA DLCKAFNSTL
                                                                             60
       PTMAQMEKAL SIGFETCRYG FIEGHVVIPR IHPNSICAAN NTGVYILTSN TSQYDTYCFN
                                                                            120
30
       ASAPPEEDCT SYTOLPNAPD GPITITIVNR DGTRYVQKGE YRTNPEDIYP SNPTDDDVSS
                                                                            180
       GSSSERSSTS GGYIFYTFST VHPIPDEDSP WITDSTDRIP ATSTSSNTIS AGWEPNEENE
                                                                            240
       DERDRHLSFS GSGIDDDEDF ISSTISTTPR AFDHTKQNQD WTQWNPSHSN PEVLLQTTTR
                                                                            300
       MTDVDRNGTT AYEGNWNPEA HPPLIHHEHH EEEETPHSTS TIQATPSSTT EETATQKEQW
                                                                            360
       FGNRWHEGYR QTPREDSHST TGTAAASAHT SHPMQGRTTP SPEDSSWTDF FNPISHPMGR
                                                                            420
       GHQAGRRMDM DSSHSTTLQP TANPNTGLVE DLDRTGPLSM TTQQSNSQSF STSHEGLEED
35
                                                                            480
       KDHPTTSTLT SSNRNDVTGG RRDPNHSEGS TTLLEGYTSH YPHTKESRTF IPVTSAKTGS
                                                                            540
       FGVTAVTVGD SNSNVNRSLS GDQDTFHPSG GSHTTHGSES DGHSHGSQEG GANTTSGPIR
       TPQIPEWLII LASLLALALI LAVCIAVNSR RRCGQKKKLV INSGNGAVED RKPSGLNGEA
       SKSQEMVHLV NKESSETPDQ FMTADETRNL QNVDMKIGV
40
       Seq ID NO: 133 DNA sequence
       Nucleic Acid Accession #: NM_002882
       Coding sequence: 150-755
45
                             21
                                         31
       CGAGGTTCGG GTCGTGGGGC GGAGGGAAGA GCGGCGGGC GGGAGGCGCC GGCGCCAGAC
                                                                             60
       120
50
       AGCCGAGCCG CCGCCGCCGC CGCGCCCCCA TGGCGGCCGC CAAGGACACT CATGAGGACC
                                                                            180
       ATGATACTTC CACTGAGAAT ACAGACGAGT CCAACCATGA CCCTCAGTTT GAGCCAATAG
                                                                            240
       TTTCTCTTCC TGAGCAAGAA ATTAAAACAC TGGAAGAAGA TGAAGAGGAA CTTTTTAAAA
                                                                            300
       TGCGGGCAAA ACTGTTCCGA TTTGCCTCTG AGAACGATCT CCCAGAATGG AAGGAGCGAG
                                                                            360
       GCACTGGTGA CGTCAAGCTC CTGAAGCACA AGGAGAAAGG GGCCATCCGC CTCCTCATGC
                                                                            420
       GGAGGGACAA GACCCTGAAG ATCTGTGCCA ACCACTACAT CACGCCGATG ATGGAGCTGA
55
                                                                            480
       AGCCCAACGC AGGTAGCGAC CGTGCCTGGG TCTGGAACAC CCACGCTGAC TTCGCCGACG
                                                                            540
       AGTGCCCCAA GCCAGAGCTG CTGGCCATCC GCTTCCTGAA TGCTGAGAAT GCACAGAAAT
       TCAAAACAAA GTTTGAAGAA TGCAGGAAAG AGATCGAAGA GAGAGAAAAG AAAGCAGGAT
CAGGCAAAAA TGATCATGCC GAAAAAGTGG CGGAAAAGCT AGAAGCTCTC TCGGTGAAGG
                                                                            660
                                                                            720
       AGGAGACCAA GGAGGATGCT GAGGAGAAGC AATAAATCGT CTTATTTTAT TTTCTTTTCC TCCTTTTCCT TTCCTTTTTT TAAAAAATTT TACCCTGCCC CTCTTTTTCG GTTTGTTTTT
60
                                                                            780
       ATTCTTCAT TTTTACAAGG GACGTTATAT AAAGAACTGA ACTC
       Seq ID NO: 134 Protein sequence:
65
       Protein Accession #: NP 002873
       MAAAKDTHED HDTSTENTDE SNHDPQFEPI VSLPEQEIKT LEEDEEELFK MRAKLFRFAS
                                                                             60
70
       ENDLPEWKER GTGDVKLLKH KEKGAIRLLM RRDKTLKICA NHYITPMMEL KPNAGSDRAW
                                                                            120
                                                                            180
       VWNTHADPAD ECPKPELLAI RFLNAENAQK FKTKFEECRK EIEEREKKAG SGKNDHAEKV
       AEKLEALSVK EETKEDAEEK Q
       Seq ID NO: 135 DNA sequence
75
       Nucleic Acid Accession #: NM_000077.2
       Coding sequence: 277-742
       CCCAACCTGG GGCGACTTCA GGTGTGCCAC ATTCGCTAAG TGCTCGGAGT TAATAGCACC
80
       TCCTCCGAGC ACTCGCTCAC GGCGTCCCCT TGCCTGGAAA GATACCGCGG TCCCTCCAGA
                                                                            120
       GGATTTGAGG GACAGGGTCG GAGGGGGCTC TTCCGCCAGC ACCGGAGGAA GAAAGAGGAG
       GGGCTGGCTG GTCACCAGAG GGTGGGGCGG ACCGCGTGCG CTCGGCGGCT GCGGAGAGGG
                                                                            240
       GGAGAGCAGG CAGCGGGCGG CGGGGAGCAG CATGGAGCCG GCGGCGGGA GCAGCATGGA
                                                                            300
85
       GCCTTCGGCT GACTGGCTGG CCACGGCCGC GGCCCGGGGT CGGGTAGAGG AGGTGCGGGC
                                                                            360
       GCTGCTGGAG GCGGGGGCGC TGCCCAACGC ACCGAATAGT TACGGTCGGA GGCCGATCCA
                                                                            420
       GGTCATGATG ATGGGCAGCG CCCGAGTGGC GGAGCTGCTG CTGCTCCACG GCGCGGAGCC
                                                                            480
```

```
CAACTGCGCC GACCCCGCCA CTCTCACCCG ACCCGTGCAC GACGCTGCCC GGGAGGGCTT
                                                                           540
       CCTGGACACG CTGGTGGTGC TGCACCGGGC CGGGGCGCGG CTGGACGTGC GCGATGCCTG
                                                                           600
       GGGCCGTCTG CCCGTGGACC TGGCTGAGGA GCTGGGCCAT CGCGATGTCG CACGGTACCT
                                                                           660
       GCGCGCGGCT GCGGGGGGCA CCAGAGGCAG TAACCATGCC CGCATAGATG CCGCGGAAGG
                                                                           720
       TCCCTCAGAC ATCCCCGATT GAAAGAACCA GAGAGGCTCT GAGAAACCTC GGGAAACTTA
                                                                           780
       GATCATCAGT CACCGAAGGT CCTACAGGGC CACAACTGCC CCCGCCACAA CCCACCCCGC
                                                                           840
       TTTCGTAGTT TTCATTTAGA AAATAGAGCT TTTAAAAATG TCCTGCCTTT TAACGTAGAT
                                                                           900
       ATATGCCTTC CCCCACTACC GTAAATGTCC ATTTATATCA TITTTTATAT ATTCTTATAA
                                                                           960
       AAATGTAAAA AAGAAAAACA CCGCTTCTGC CTTTTCACTG TGTTGGAGTT TTCTGGAGTG
                                                                         1020
10
       AGCACTCACG CCCTAAGCGC ACATTCATGT GGGCATTTCT TGCGAGCCTC GCAGCCTCCG
                                                                          1080
       GAAGCTGTCG ACTTCATGAC AAGCATTTTG TGAACTAGGG AAGCTCAGGG GGGTTACTGG
                                                                          1140
       1200
       ATTTCATTC ATTCACTC
15
       Seq ID NO: 136 Protein sequence:
       Protein Accession #: NP_000068.1
                                        31
20
       MEPAAGSSME PSADWLATAA ARGRVEEVRA LLEAGALPNA PNSYGRRPIQ VMMMGSARVA
                                                                           60
       ELLLLHGAEP NCADPATLTR PVHDAAREGF LDTLVVLHRA GARLDVRDAW GRLPVDLAEE
                                                                          120
       LGHRDVARYL RAAAGGTRGS NHARIDAAEG PSDIPD
25
       Seq ID NO: 137 DNA sequence
       Nucleic Acid Accession #: NM_058196.1
       Coding sequence: 104-421
30
                             21
                                                              51
                 11
       TGTGTGGGGG TCTGCTTGGC GGTGAGGGGG CTCTACACAA GCTTCCTTTC CGTCATGCCG
                                                                           60
       GCCCCCACCC TGGCTCTGAC CATTCTGTTC TCTCTGGCAG GTCATGATGA TGGGCAGCGC
                                                                           120
       CCGAGTGGCG GAGCTGCTGC TGCTCCACGG CGCGGAGCCC AACTGCGCCG ACCCCGCCAC
                                                                          180
35
       TCTCACCCGA CCCGTGCACG ACGCTGCCCG GGAGGGCTTC CTGGACACGC TGGTGGTGCT
                                                                           240
       GCACCGGGCC GGGGCGCGGC TGGACGTGCG CGATGCCTGG GGCCGTCTGC CCGTGGACCT
                                                                           300
       GGCTGAGGAG CTGGGCCATC GCGATGTCGC ACGGTACCTG CGCGCGGCTG CGGGGGGCAC
                                                                           360
       CAGAGGCAGT AACCATGCCC GCATAGATGC CGCGGAAGGT CCCTCAGACA TCCCCGATTG
                                                                           420
       AAAGAACCAG AGAGGCTCTG AGAAACCTCG GGAAACTTAG ATCATCAGTC ACCGAAGGTC
                                                                           480
40
       CTACAGGGCC ACAACTGCCC CCGCCACAAC CCACCCCGCT TTCGTAGTTT TCATTTAGAA
                                                                           540
       AATAGAGCTT TTAAAAATGT CCTGCCTTTT AACGTAGATA TAAGCCTTCC CCCACTACCG
                                                                           600
       TAAATGTCCA TTTATATCAT TTTTTATATA TTCTTATAAA AATGTAAAAA AGAAAAACAC
                                                                           660
       CGCTTCTGCC TTTTCACTGT GTTGGAGTTT TCTGGAGTGA GCACTCACGC CCTAAGCGCA
                                                                           720
       CATTCATGTG GGCATTTCTT GCGAGCCTCG CAGCCTCCGG AAGCTGTCGA CTTCATGACA
                                                                           780
       AGCATTTTGT GAACTAGGGA AGCTCAGGGG GGTTACTGGC TTCTCTTGAG TCACACTGCT
45
       Seg ID NO: 138 Protein sequence:
50
       Protein Accession #: NP_478103.1
                                                              51
       MMMGSARVAE LLLLHGAEPN CADPATLTRP VHDAAREGFL DTLVVLHRAG ARLDVRDAWG
                                                                            60
55
       RLPVDLAEEL GHRDVARYLR AAAGGTRGSN HARIDAAEGP SDIPD
       Seq ID NO: 139 DNA sequence
       Nucleic Acid Accession #: NM_058197.1
       Coding sequence: 272-684
60
                                        31
                                                              51
       CCCAACCTGG GGCGACTTCA GGTGTGCCAC ATTCGCTAAG TGCTCGGAGT TAATAGCACC
                                                                           60
       TCCTCCGAGC ACTCGCTCAC GGCGTCCCCT TGCCTGGAAA GATACCGCGG TCCCTCCAGA
GGATTTGAGG GACAGGGTCG GAGGGGGCTC TTCCGCCAGC ACCGGAGGAA GAAAGAGGAG
                                                                           120
65
                                                                           180
       GGGCTGGCTG GTCACCAGAG GGTGGGGCGG ACCGCGTGCG CTCGGCGGCT GCGGAGAGGG
                                                                           240
       GGAGAGCAGG CAGCGGGCGG CGGGGAGCAG CATGGAGCCG GCGGCGGGGA GCAGCATGGA
       GCCGGCGGCG GGGAGCAGCA TGGAGCCTTC GGCTGACTGG CTGGCCACGG CCGCGGCCCG
                                                                           360
       GGGTCGGGTA GAGGAGGTGC GGGCGCTGCT GGAGGCGGGG GCGCTGCCCA ACGCACCGAA
                                                                           420
70
       TAGTTACGGT CGGAGGCCGA TCCAGGTGGG TAGAAGGTCT GCAGCGGGAG CAGGGGATGG
                                                                           480
       CGGGCGACTC TGGAGGACGA AGTTTGCAGG GGAATTGGAA TCAGGTAGCG CTTCGATTCT
                                                                           540
       CCGGAAAAAG GGGAGGCTTC CTGGGGAGTT TTCAGAAGGG GTTTGTAATC ACAGACCTCC
                                                                           600
       TCCTGGCGAC GCCCTGGGGG CTTGGGAAAC CAAGGAAGAG GAATGAGGAG CCACGCGCGT
                                                                           660
       ACAGATCTCT CGAATGCTGA GAAGATCTGA AGGGGGGAAC ATATTTGTAT TAGATGGAAG
                                                                           720
75
       TCATGATGAT GGGCAGCGCC CGAGTGGCGG AGCTGCTGCT GCTCCACGGC GCGGAGCCCA
                                                                           780
       ACTGCGCCGA CCCCGCCACT CTCACCOGAC CCGTGCACGA CGCTGCCCGG GAGGGCTTCC
                                                                           840
       TGGACACGCT GGTGGTGCTG CACCGGGCCG GGGCGCGCT GGACGTGCGC GATGCCTGGG
                                                                           900
       GCCGTCTGCC CGTGGACCTG GCTGAGGAGC TGGGCCATCG CGATGTCGCA CGGTACCTGC
                                                                           960
       GCGCGGCTGC GGGGGGCACC AGAGGCAGTA ACCATGCCCG CATAGATGCC GCGGAAGGTC
                                                                          1020
80
       CCTCAGACAT CCCCGATTGA AAGAACCAGA GAGGCTCTGA GAAACCTCGG GAACTTAGAT
                                                                          1080
       CATCAGTCAC CGAAGGTCCT ACAGGGCCAC AACTGCCCCC GCCACAACCC ACCCCGCTTT
                                                                          1140
       CGTAGTTTTC ATTTAGAAAA TAGAGCTTTT AAAAATGTCC TGCCTTTTAA CGTAGATATA
                                                                          1200
       TGCCTTCCCC CACTACCGTA AATGTCCATT TATATCATTT TTTATATATT CTTATAAAAA
                                                                          1260
       TGTAAAAAG AAAAACACCG CTTCTGCCTT TTCACTGTGT TGGAGTTTTC TGGAGTGAGC
                                                                          1320
85
       ACTCACGCCC TAAGCGCACA TTCATGTGGG CATTTCTTGC GAGCCTCGCA GCCTCCGGAA
                                                                          1380
       GCTGTCGACT TCATGACAAG CATTTTGTGA ACTAGGGAAG CTCAGGGGGG TTACTGGCTT
       CTCTTGAGTC ACACTGCTAG CAAATGGCAG AACCAAAGCT CAAATAAAAA TAAAATAATT
```

Seg ID NO: 140 Protein sequence:

```
Protein Accession #: NP_478104.1
 5
      MEPAAGSSME PAAGSSMEPS ADWLATAAAR GRVEEVRALL EAGALPNAPN SYGRRPIOVG
                                                                            60
       RRSAAGAGDG GRLWRTKFAG ELESGSASIL RKKGRLPGEP SEGVONHRPP PGDALGAWET
                                                                           120
10
       Seq ID NO: 141 DNA sequence
       Nucleic Acid Accession #: NM_058195.1
      Coding sequence: 163-684
15.
                             21
                                        31
       CCTCCCTACG GGCGCCTCCG GCAGCCCTTC CCGCGTGCGC AGGGCTCAGA GCCGTTCCGA
                                                                            60
      GATCTTGGAG GTCCGGGTGG GAGTGGGGGT GGGGTGGGGG TGGGGGTGAA GGTGGGGGGC
                                                                           120
20
      GGGCGCGCTC AGGGAAGGCG GGTGCGCGCC TGCGGGGCGG AGATGGGCAG GGGGCGGTGC
      GTGGGTCCCA GTCTGCAGTT AAGGGGGCAG GAGTGGCGCT GCTCACCTCT GGTGCCAAAG
      GGCGGCGCAG CGGCTGCCGA GCTCGGCCCT GGAGGCGGCG AGAACATGGT GCGCAGGTTC
      TTGGTGACCC TCCGGATTCG GCGCGCGTGC GGCCCGCCGC GAGTGAGGGT TTTCGTGGTT
       CACATCCCGC GGCTCACGGG GGAGTGGGCA GCGCCAGGGG CGCCCGCCGC TGTGGCCCTC
                                                                           420
25
      GTGCTGATGC TACTGAGGAG CCAGCGTCTA GGGCAGCAGC CGCTTCCTAG AAGACCAGGT
                                                                           480
      CATGATGATG GGCAGCGCCC GAGTGGCGGA GCTGCTGCTG CTCCACGGCG CGGAGCCCAA
                                                                           540
      CTGCGCCGAC CCCGCCACTC TCACCCGACC CGTGCACGAC GCTGCCCGGG AGGGCTTCCT
                                                                           600
      GGACACGCTG GTGGTGCTGC ACCGGGCCGG GGCGCGGCTG GACGTGCGCG ATGCCTGGGG
                                                                           660
      CCGTCTGCCC GTGGACCTGG CTGAGGAGCT GGGCCATCGC GATGTCGCAC GGTACCTGCG
                                                                           720
30
      CGCGGCTGCG GGGGGCACCA GAGGCAGTAA CCATGCCCGC ATAGATGCCG CGGAAGGTCC
                                                                           780
       CTCAGACATC CCCGATTGAA AGAACCAGAG AGGCTCTGAG AAACCTCGGG AAACTTAGAT
                                                                           840
       CATCAGTCAC CGAAGGTCCT ACAGGGCCAC AACTGCCCCC GCCACAACCC ACCCCGCTTT
                                                                           900
      CGTAGTTTTC ATTTAGAAAA TAGAGCTTTT AAAAATGTCC TGCCTTTTAA CGTAGATATA
                                                                           960
      TGCCTTCCCC CACTACCGTA AATGTCCATT TATATCATTT TTTATATATT CTTATAAAAA
                                                                          1020
35
       TGTAAAAAG AAAAACACCG CTTCTGCCTT TTCACTGTGT TGGAGTTTTC TGGAGTGAGC
                                                                          1080
       ACTCACGCCC TAAGCGCACA TTCATGTGGG CATTTCTTGC GAGCCTCGCA GCCTCCGGAA
                                                                          1140
       GCTGTCGACT TCATGACAAG CATTTTGTGA ACTAGGGAAG CTCAGGGGGG TTACTGGCTT
                                                                          1200
      CTCTTGAGTC ACACTGCTAG CAAATGGCAG AACCAAAGCT CAAATAAAAA TAAAATAATT
                                                                          1260
      TTCATTCATT CACTC
40
      Seq ID NO: 142 Protein sequence:
      Protein Accession #: NP_478102.1
45
                                        31
                                                   41
                  11
                             21
      MGRGRCVGPS LQLRGQEWRC SPLVPKGGAA AAELGPGGGE NMVRRFLVTL RIRRACGPPR
      VRVFVVHIPR LTGEWAAPGA PAAVALVLML LRSQRLGQQP LPRRPGHDDG QRPSGGAAAA
       PRRGAQUERP RHSHPTRARR CPGGLPGHAG GAAPGRGAAG RARCLGPSAR GPG
50
       Seq ID NO: 143 DNA sequence
      Nucleic Acid Accession #: NM_018131
       Coding sequence: 412..1107
55
                                        31
                                                              51
                             21
       GAAATTGCAC ACTTAAAGAC ATCAGTGGAT GAAATCACAA GTGGGAAAGG AAAGCTGACT
                                                                            60
      GATAAAGAGA GACAGAGACT TTTGGAGAAA ATTCGAGTCC TTGAGGCTGA GAAGGAGAAG
                                                                           120
      AATGCTTATC AACTCACAGA GAAGGACAAA GAAATACAGC GACTGAGAGA CCAACTGAAG
60
                                                                           180
      GCCAGATATA GTACTACCGC ATTGCTTGAA CAGCTGGAAG AGACAACGAG AGAAGGAGAA
                                                                           240
      AGGAGGGAGC AGGTGTTGAA AGCCTTATCT GAAGAGAAAG ACGTATTGAA ACAACAGTTG
                                                                           300
       TCTGCTGCAA CCTCACGAAT TGCTGAACTT GAAAGCAAAA CCAATACACT CCGTTTATCA
                                                                           360
       CAGACTGTGG CTCCAAACTG CTTCAACTCA TCAATAAATA ATATTCATGA AATGGAAATA
65
       CAGCTGAAAG ATGCTCTGGA GAAAAATCAG CAGTGGCTCG TGTATGATCA GCAGCGGGAA
       GTCTATGTAA AAGGACTTTT AGCAAAGATC TTTGAGTTGG AAAAGAAAAC GGAAACAGCT
                                                                           540
       GCTCATTCAC TCCCACAGCA GACAAAAAAG CCTGAATCAG AAGGTTATCT TCAAGAAGAG
                                                                           600
       AAGCAGAAAT GTTACAACGA TCTCTTGGCA AGTGCAAAAA AAGATCTTGA GGTTGAACGA
                                                                           660
       CAAACCATAA CTCAGCTGAG TTTTGAACTG AGTGAATTTC GAAGAAAATA TGAAGAAACC
                                                                           720
70
       CAAAAAGAAG TTCACAATTT AAATCAGCTG TTGTATTCAC AAAGAAGGGC AGATGTGCAA
                                                                           780
       CATCTGGAAG ATGATAGGCA TAAAACAGAG AAGATACAAA AACTCAGGGA AGAGAATGAT
                                                                           840
       ATTGCTAGGG GAAAACTTGA AGAAGAGAAG AAGAGATCCG AAGAGCTCTT ATCTCAGGTC
                                                                           900
       CAGTCTCTTT ACACATCTCT GCTAAAGCAG CAAGAAGAAC AAACAAGGGT AGCTCTGTTG
                                                                           960
       GAACAACAGA TGCAGGCATG TACTTTAGAC TTTGAAAATG AAAAACTCGA CCGTCAACAT
                                                                          1020
75
       GTGCAGCATC AATTGCATGT AATTCTTAAG GAGCTCCGAA AAGCAAGAAA AAATAACACA
                                                                          1080
       GTTGGAATCC TTGAAACAGC TTCATGAGTT TGCCATCACA GAGCCATTAG TCACTTTCCA
                                                                          1140
       AGGAGAGACT GAAAACAGAG AAAAAGTTGC CGCCTCACCA AAAAGTCCCA CTGCTGCACT
                                                                          1200
       CAATGGAAGC CTGGTGGAAT GTCCCAAGTG CAATATACAG TATCCAGCCA CTGAGCATCG
                                                                          1260
       CGATCTGCTT GTCCATGTGG AATACTGTTC AAAGTAGCAA AATAAGTATT TGTTTTGATA
                                                                          1320
       TTAAAAGATT CAATACTGTA TTTTCTGTTA GCTTGTGGGC ATTTTGAATT ATATATTTCA
80
                                                                          1380
       CATTITGCAT AAAACTGCCT ATCTACCTTT GACACTCCAG CATGCTAGTG AATCATGTAT
                                                                          1440
       CTTTTAGGCT GCTGTGCATT TCTCTTGGCA GTGATACCTC CCTGACATGG TTCATCATCA
                                                                          1500
       GGCTGCAATG ACAGAATGTG GTGAGCAGCG TCTACTGAGA TACTAACATT TTGCACTGTC
                                                                          1560
       AAAATACTTG GTGAGGAAAA GATAGCTCAG GTTATTGCTA ATGGGTTAAT GCACCAGCAA
                                                                          1620
85
       GCAAAATATT TTATGTTTCG GGGGTTTTGA AAAATCAAAG ATAATTAACC AAGGATCTTA
                                                                          1680
       ACTGTGTTCG CATTTTTTAT CCAAGCACTT AGAAAACCTA CAATCCTAAT TTTGATGTCC
                                                                          1740
       ATTGTTAAGA GGTGGTGATA GATACTATTT TTTTTTCATA TTGTATAGCG GTTATTAGAA
                                                                          1800
```

```
AAGTTGGGGA TTTTCTTGAT CTTTATTGCT GCTTACCATT GAAACTTAAC CCAGCTGTGT
                                                                                1860
       TCCCCAACTC TGTTCTGCGC ACGAAACAGT ATCTGTTTGA GGCATAATCT TAAGTGGCCA
                                                                                 1920
       CACACAATGT TTTCTCTTAT GTTATCTGGC AGTAACTGTA ACTTGAATTA CATTAGCACA
                                                                                1980
       TTCTGCTTAG CTAAAATTGT TAAAATAAAC TTTAATAAAC CCATGTAGCC CTCTCATTTG
                                                                                 2040
 5
       ATTGACAGTA TITTAGTTAT TITTGGCATT CTTAAAGCTG GGCAATGTAA TGATCAGATC
                                                                                2100
       TITGITTGTC TGAACAGGTA TITTTATACA TGCTTTTGT AAACCAAAAA CTTTTAAATT
                                                                                2160
       TCTTCAGGTT TTCTAACATG CTTACCACTG GGCTACTGTA AATGAGAAAA GAATAAAATT
                                                                                2220
10
       Seq ID NO: 144 Protein sequence:
       Protein Accession #: NP 060601
15
                               21
                                           31
                                                                   51
       MEIQLKDALE KNOOWLVYDO QREVYVKGLL AKIFELEKKT ETAAHSLPOO TKKPESEGYL
       QEEKOKCYND LLASAKKDLE VEROTITOLS FELSEFRRKY EETOKEVHNL NOLLYSQRRA
                                                                                  120
       DVOHLEDDRH KTEKIOKLRE ENDIARGKLE EEKKRSEELL SQVQSLYTSL LKQQEEQTRV
20
       ALLEQOMQAC TLDFENEKLD ROHVOHOLHV ILKELRKARK NNTVGILETA S
       Seq ID NO: 145 DNA sequence
       Nucleic Acid Accession #: NM_001168
       Coding sequence: 50..478
25
                   11
                                           31
                                                                   51
       CCGCCAGATT TGAATCGCGG GACCCGTTGG CAGAGGTGGC GGCGGCGGCA TGGGTGCCCC
                                                                                   60
30
       GACGTTGCCC CCTGCCTGGC AGCCCTTTCT CAAGGACCAC CGCATCTCTA CATTCAAGAA
                                                                                 120
       CTGGCCCTTC TTGGAGGGCT GCGCCTGCAC CCCGGAGCGG ATGGCCGAGG CTGGCTTCAT
                                                                                  180
       CCACTGCCCC ACTGAGAACG AGCCAGACTT GGCCCAGTGT TTCTTCTGCT TCAAGGAGCT
                                                                                  240
       GGAAGGCTGG GAGCCAGATG ACGACCCCAT AGAGGAACAT AAAAAGCATT CGTCCGGTTG
CGCTTTCCTT TCTGTCAAGA AGCAGTTTGA AGAATTAACC CTTGGTGAAT TTTTGAAACT
GGACAGAGAA AGAGCCAAGA ACAAAATTGC AAAGGAAACC AACAATAAGA AGAAGAATT
                                                                                  300
                                                                                 360
35
                                                                                  420
       TGAGGAAACT GCGAAGAAAG TGCGCCGTGC CATCGAGCAG CTGGCTGCCA TGGATTGAGG
                                                                                  480
       CCTCTGGCCG GAGCTGCCTG GTCCCAGAGT GGCTGCACCA CTTCCAGGGT TTATTCCCTG
                                                                                  540
       GTGCCACCAG CCTTCCTGTG GGCCCCTTAG CAATGTCTTA GGAAAGGAGA TCAACATTTT
       CAAATTAGAT GTTTCAACTG TGCTCCTGTT TTGTCTTGAA AGTGGCACCA GAGGTGCTTC
40
       TGCCTGTGCA GCGGGTGCTG CTGGTAACAG TGGCTGCTTC TCTCTCTC TCTCTTTTTT
       GGGGGCTCAT TTTTGCTGTT TTGATTCCCG GGCTTACCAG GTGAGAAGTG AGGGAGGAAG
                                                                                  780
       AAGGCAGTGT CCCTTTTGCT AGAGCTGACA GCTTTGTTCG CGTGGGCAGA GCCTTCCACA
                                                                                  840
       GTGAATGTGT CTGGACCTCA TGTTGTTGAG GCTGTCACAG TCCTGAGTGT GGACTTGGCA
                                                                                  900
       GGTGCCTGTT GAATCTGAGC TGCAGGTTCC TTATCTGTCA CACCTGTGCC TCCTCAGAGG
                                                                                  960
45
       ACAGTTTTT TGTTGTTGTG TTTTTTTGTT TTTTTTTTT GGTAGATGCA TGACTTGTGT
                                                                                 1020
       GTGATGAGAG AATGGAGACA GAGTCCCTGG CTCCTCTACT GTTTAACAAC ATGGCTTTCT
                                                                                 1080
       TATTTGTTT GAATTGTTAA TTCACAGAAT AGCACAAACT ACAATTAAAA CTAAGCACAA
                                                                                1140
       AGCCATTCTA AGTCATTGGG GAAACGGGGT GAACTTCAGG TGGATGAGGA GACAGAATAG
                                                                                1200
       AGTGATAGGA AGCGTCTGGC AGATACTCCT TTTGCCACTG CTGTGTGATT AGACAGGCCC
                                                                                1260
50
       AGTGAGCCGC GGGGCACATG CTGGCCGCTC CTCCCTCAGA AAAAGGCAGT GGCCTAAATC
                                                                                1320
       CTTTTTAAAT GACTTGGCTC GATGCTGTGG GGGACTGGCT GGGCTGCTGC AGGCCGTGTG
                                                                                1380
       TCTGTCAGCC CAACCTTCAC ATCTGTCACG TTCTCCACAC GGGGGAGAGA CGCAGTCCGC
                                                                                1440
       CCAGGTCCCC GCTTTCTTTG GAGGCAGCAG CTCCCGCAGG GCTGAAGTCT GGCGTAAGAT
                                                                                1500
       GATGGATTTG ATTCGCCCTC CTCCCTGTCA TAGAGCTGCA GGGTGGATTG TTACAGCTTC
                                                                                1560
55
       GCTGGAAACC TCTGGAGGTC ATCTCGGCTG TTCCTGAGAA ATAAAAAGCC TGTCATTTC
       Seq ID NO: 146 Protein sequence:
       Protein Accession #: NP_001159
60
                                                        41
                                           31
                   11
       MGAPTLPPAW OPPLKDHRIS TFKNWPPLEG CACTPERMAE AGFIHCPTEN EPDLAQCFFC
       PKELEGWEPD DDPIEEHKKH SSGCAPLSVK KQFEELTLGE FLKLDRERAK NKIAKETNNK
                                                                                  120
65
       KKEFEETAKK VRRAIEQLAA MD
       Seq ID NO: 147 DNA sequence
       Nucleic Acid Accession #: NM_014176.1
       Coding sequence: 127-720
70
                                                                    51
                                           31
                                                        41
                               21
       GCGCGCAGCG CTGGTACCCC GTTGGTCCGC GCGTTGCTGC GTTGTGAGGG GTGTCAGCTC
                                                                                   60
       AGTGCATCCC AGGCAGCTCT TAGTGTGGAG CAGTGAACTG TGTGTGGTTC CTTCTACTTG
                                                                                  120
75
       GGGATCATGC AGAGAGCTTC ACGTCTGAAG AGAGAGCTGC ACATGTTAGC CACAGAGCCA
                                                                                  180
       CCCCCAGGCA TCACATGTTG GCAAGATAAA GACCAAATGG ATGACCTGCG AGCTCAAATA
                                                                                  240
       TTAGGTGAG CCAACACC TTATGAGAAA GGTGTTTTTA AGCTAGAAGT TATCATTCCT
GAGAGGTACC CATTTGAACC TCCTCAGATC CGATTTCTCA CTCCAATTTA TCATCCAAAC
ATTGATTCTG CTGGAAGGAT TTGTCTGGAT GTTCTCAAAT TGCCACCAAA AGGTGCTTGG
AGACCATCCC TCAACATCGC AACTGTGTTG ACCTCTATTC AGCTGCTCAT GTCAGAACCC
                                                                                  300
                                                                                  420
80
                                                                                  480
       AACCCTGATG ACCCGCTCAT GGCTGACATA TCCTCAGAAT TTAAATATAA TAAGCCAGCC
                                                                                  540
       TTCCTCAAGA ATGCCAGACA GTGGACAGAG AAGCATGCAA GACAGAAACA AAAGGCTGAT
                                                                                  600
        GAGGAAGAGA TGCTTGATAA TCTACCAGAG GCTGGTGACT CCAGAGTACA CAACTCAACA
                                                                                  660
       CAGAAAAGGA AGGCCAGTCA GCTAGTAGGC ATAGAAAAGA AATTTCATCC TGATGTTTAG
                                                                                  720
85
        GGGACTIGIC CIGGITCATC TIAGITAATG TGTTCTTTGC CAAGGIGATC TAAGITGCCT
                                                                                  780
                                                                                  840
        ACCTTGAATT TTTTTTTAAA TATATTTGAT GACATAATTT TTGTGTAGTT TATTTATCTT
        GTACATATGT ATTITGAAAT CTTTTAAACC TGAAAAATAA ATAGTCATTT AATGTTGAAA
                                                                                  900
```

WO 02/086443 AAAAAAA AAAAAAAAA AAAAAAAA

```
Seg ID NO: 148 Protein sequence:
       Protein Accession #: NP_054895.1
       MORASRLKRE LHMLATEPPP GITCWODKDO MDDLRAQILG GANTPYEKGV FKLEVIIPER
       YPPEPPQIRF LTPIYHPNID SAGRICLDVL KLPPKGAWRP SLNIATVLTS IQLLMSEPNP
                                                                            120
10
       DDPLMADISS EFKYNKPAFL KNAROWTEKH AROKOKADEE EMLDNLPEAG DSRVENSTQK
       RKASQLVGIE KKFHPDV
       Seq ID NO: 149 DNA sequence
       Nucleic Acid Accession #: NM 003812
15
       Coding sequence: 224-2722
                                                               51
       TCCTCTGCGT CCCGCCCGG GAGTGGCTGC GAGGCTAGGC GAGCCGGGAA AGGGGGCGCC
                                                                             60
20.
       GCCCAGCCCC GAGCCCCGCG CCCCGTGCCC CGAGCCCGGA GCCCCCTGCC CGCGGCGGCA
                                                                            120
       CCATGCGCGC CGAGCCGGCG TGACCGGCTC CGCCCGCGCC CGCCCGCAG CTAGCCCGGC
                                                                            180
       GCTCTCGCCG GCCACACGGA GCGGCGCCCG GGAGCTATGA GCCATGAAGC CGCCCGGCAG
                                                                            240
       CAGCTCGCGG CAGCCGCCCC TGGCGGGCTG CAGCCTTGCC GGCGCTTCCT GCGGCCCCCA
                                                                            300
       ACGCGGCCCC GCCGGCTCGG TGCCTGCCAG CGCCCCGGCC CGCACGCCGC CCTGCCGCCT
                                                                            360
25
       GCTTCTCGTC CTTCTCCTGC TGCCTCCGCT CGCCGCCTCG TCCCGGCCCC GCGCCTGGGG
                                                                            420
       GGCTGCTGCG CCCAGCGCTC CGCATTGGAA TGAAACTGCA GAAAAAAATT TGGGAGTCCT
                                                                            480
       GGCAGATGAA GACAATACAT TGCAACAGAA TAGCAGCAGT AATATCAGTT ACAGCAATGC
                                                                            540
       AATGCAGAAA GAAATCACAC TGCCTTCAAG ACTCATATAT TACATCAACC AAGACTCGGA
                                                                            600
       AAGCCCTTAT CACGTTCTTG ACACAAAGGC AAGACACCAG CAAAAACATA ATAAGGCTGT
                                                                            660
30
       CCATCTGGCC CAGGCAAGCT TCCAGATTGA AGCCTTCGGC TCCAAATTCA TTCTTGACCT
                                                                            720
       CATACTGAAC AATGGTTTGT TGTCTTCTGA TTATGTGGAG ATTCACTACG AAAATGGGAA
                                                                            780
       ACCACAGTAC TCTAAGGGTG GAGAGCACTG TTACTACCAT GGAAGCATCA GAGGCGTCAA
                                                                            840
       AGACTCCAAG GTGGCTCTGT CAACCTGCAA TGGACTTCAT GGCATGTTTG AAGATGATAC
                                                                            900
       CTTCGTGTAT ATGATAGAGC CACTAGAGCT GGTTCATGAT GAGAAAAGCA CAGGTCGACC
35
       ACATATAATC CAGAAAACCT TGGCAGGACA GTATTCTAAG CAAATGAAGA ATCTCACTAT
       GGAAAGAGGT GACCAGTGGC CCTTTCTCTC TGAATTACAG TGGTTGAAAA GAAGGAAGAG
                                                                           1080
       AGCAGTGAAT CCATCACGTG GTATATTTGA AGAAATGAAA TATTTGGAAC TTATGATTGT
                                                                           1140
       TAATGATCAC AAAACGTATA AGAAGCATCG CTCTTCTCAT GCACATACCA ACAACTTTGC
                                                                           1200
       AAAGTCCGTG GTCAACCTTG TGGATTCTAT TTACAAGGAG CAGCTCAACA CCAGGGTTGT
                                                                           1260
40
       CCTGGTGGCT GTAGAGACCT GGACTGAGAA GGATCAGATT GACATCACCA CCAACCCTGT
                                                                          1320
       GCAGATGCTC CATGAGTTCT CAAAATACCG GCAGCGCATT AAGCAGCATG CTGATGCTGT
                                                                           1380
       GCACCTCATC TCGCGGGTGA CATTTCACTA TAAGAGAAGC AGTCTGAGTT ACTTTGGAGG
                                                                           1440
       TGTCTGTTCT CGCACAAGAG GAGTTGGTGT GAATGAGTAT GGTCTTCCAA TGGCAGTGGC
                                                                           1500
       ACAAGTATTA TCGCAGAGCC TGGCTCAAAA CCTTGGAATC CAATGGGAAC CTTCTAGCAG
                                                                           1560
45
       AAAGCCAAAA TGTGACTGCA CAGAATCCTG GGGTGGCTGC ATCATGGAGG AAACAGGGGT
                                                                           1620
       GTCCCATTCT CGAAAATTTT CAAAGTGCAG CATTTTGGAG TATAGAGACT TTTTACAGAG
                                                                           1680
       AGGAGGTGGA GCCTGCCTTT TCAACAGGCC AACAAAGCTA TTTGAGCCCA CGGAATGTGG
                                                                           1740
       AAATGGATAC GTGGAAGCTG GGGAGGAGTG TGATTGTGGT TTTCATGTGG AATGCTATGG
                                                                           1800
       ATTATECTET AAGAAATETT CCCTCTCCAA CGGGGCTCAC TGCAGCGACG GGCCCTGCTG
                                                                           1860
50
       TAACAATACC TCATGTCTTT TTCAGCCACG AGGGTATGAA TGCCGGGATG CTGTGAACGA
                                                                           1920
       GTGTGATATT ACTGAATATT GTACTGGAGA CTCTGGTCAG TGCCCACCAA ATCTTCATAA
                                                                           1980
       GCAAGACGGA TATGCATGCA ATCAAAATCA GGGCCGCTGC TACAATGGCG AGTGCAAGAC
                                                                           2040
       CAGAGACAAC CAGTGTCAGT ACATCTGGGG AACAAAGGCT GCAGGGTCTG ACAAGTTCTG
                                                                           2100
       CTATGAAAAG CTGAATACAG AAGGCACTGA GAAGGGAAAC TGCGGGAAGG ATGGAGACCG
                                                                           2160
55
       GTGGATTCAG TGCAGCAAAC ATGATGTGTT CTGTGGATTC TTACTCTGTA CCAATCTTAC
       TOGAGOTOCA CGTATTGGTC AACTTCAGGG TGAGATCATT CCAACTTCCT TCTACCATCA
       AGGCCGGTG ATTGACTGCA GTGGTGCCCA TGTAGTTTTA GATGATGATA CGGATGTGGG
                                                                           2340
       CTATGTAGAA GATGGAACGC CATGTGGCCC GTCTATGATG TGTTTAGATC GGAAGTGCCT
       ACAAATTCAA GCCCTAAATA TGAGCAGCTG TCCACTCGAT TCCAAGGGTA AAGTCTGTTC
                                                                           2460
60
       GGGCCATGGG GTGTGTAGTA ATGAAGCCAC CTGCATTTGT GATTTCACCT GGGCAGGGAC
                                                                           2520
       AGATTGCAGT ATCCGGGATC CAGTTAGGAA CCTTCACCCC CCCAAGGATG AAGGACCCAA
                                                                           2580
       GGGTCCTAGT GCCACCAATC TCATAATAGG CTCCATCGCT GGTGCCATCC TGGTAGCAGC
                                                                           2640
       TATTGTCCTT GGGGGCACAG GCTGGGGATT TAAAAATGTC AAGAAGAGAA GGTTCGATCC
                                                                           2700
       TACTCAGCAA GGCCCCATCT GAATCAGCTG CGCTGGATGG ACACCGCCTT GCACTGTTGG
                                                                           2760
65
       ATTCTGGGTA TGACATACTC GCAGCAGTGT TACTGGAACT ATTAAGTTTG TAAACAAAAC
                                                                           2820
       CTTTGGGTGG TAATGACTAC GGAGCTAAAG TTGGGGTGAC AAGGATGGGG TAAAAGAAAA
                                                                           2880
       CTGTCTCTTT TGGAAATAAT GTCAAAGAAC ACCTTTCACC ACCTGTCAGT AAACGGGGGA
                                                                           2940
       GGGGGCAAAA GACCATGCTA TAAAAAGAAC TGTTCCAGAA TCTTTTTTT TCCCTAATGG
                                                                           3000
       ACGAAGGAAC AACACACACA CAAAAATTAA ATGCAATAAA GGAATCATTA AAAA
70
       Seq ID NO: 150 Protein sequence:
       Protein Accession #: NP_003803
75
                                        31
       MKPPGSSSRQ PPLAGCSLAG ASCGPQRGPA GSVPASAPAR TPPCRLLLVL LLLPPLAASS
       RPRAWGAAAP SAPHWNETAE KNLGVLADED NTLQQNSSSN ISYSNAMQKE ITLPSRLIYY
                                                                            120
                                                                            180
       INQDSESPYH VLDTKARHQQ KHNKAVHLAQ ASFQIEAFGS KFILDLILNN GLLSSDYVEI
80
       HYENGKPOYS KGGEHCYYHG SIRGVKDSKV ALSTCNGLHG MFEDDTFVYM IEPLELVHDE
                                                                            240
       KSTGRPHIIQ KTLAGOYSKO MKNLTMERGD QWPFLSELQW LKRRKRAVNP SRGIFEEMKY
                                                                            300
       LELMIVNDHK TYKKHRSHA HTNNFAKSVV NLVDSIYKEQ LNTRVVLVAV ETWTEKDQID
                                                                            360
       ITTNPVQMLH EFSKYRQRIK QHADAVHLIS RVTFHYKRSS LSYFGGVCSR TRGVGVNEYG
                                                                            420
       LPMAVAQVLS QSLAQNLGIQ WEPSSRKPKC DCTESWGGCI MEETGVSHSR KFSKCSILEY
                                                                            480
85
       RDFLQRGGGA CLFNRPTKLF EPTECGNGYV EAGEECDCGF HVECYGLCCK KCSLSNGAHC
                                                                            540
       SDGPCCNNTS CLFQPRGYEC RDAVNECDIT EYCTGDSGQC PPNLHKQDGY ACNQNQGRCY
                                                                            600
       NGECKTRONQ CQYIWGTKAA GSDKFCYEKL NTEGTEKONC GKOGDRWIQC SKHOVFCGFL
```

660

	LCTNLTRAPR LDRKCLQIQA	LNMSSCPLDS	TSFYHQGRVI KGKVCSGHGV	CSNEATCICD	PTWAGTDCSI	RDPVRNLHPP	720 780
5	Seq ID NO:	151 DNA sec	AILVAAIVLG Tuence 1 #: NM_0239		KRRFDPTQQG	PI	
		ience: 250-1					
10	1 GGCACGAGGG	11 TTTCGTTTTC	21 ATGCTTTACC GAGACAAGAA	31 AGAAAATCCA ACCTGTTTCA	41 CTTCCCTGCC	51 GACCTTAGTT ACCGTATGAG	60 120
15	GTGAATGGAC CCCACGCCTC AACTGAAGAA	AGCCAGCCAC AATCGTCCCC TGGGGTTCAA	CACAATGAAA AAGTGTTTCC CTTGACGCTT	GAAATCAAAC TGACACGCAT GCAAAATTAC	CAGGAATAAC CTTTGCTTAC CAAATAACGA	AGTGCATCAC GCTGCACGGC	180 240 300
	CAAGAGAGTC AATGAATTTG	ACAATTCAGG ACACAATTGT GTTTAGCAGT	CAACAGGAGC CTTGCCGGTG GTGGATCTTC	GACGGGCCAG CTTTATCTCA TTCCACATTA	GAAAGAACAC TTATATTTGT GGAATAAAAC	GGCAAGCATC CAGCTTCATA	360 420 480
20	ATAGTCCATG TCAGTTTTGT	ATGCAGGATT	GGTTGCAGAC TGGACCTTGG CATGTATACT CAAGCCATTT	TACTTCAAGT	TTATTCTCTG	CAGATACACT GATAAGCATT	540 600 660 720
25	ACGAAGGTTT ATCCTGACAA CCTTTGGGGG	TATCTGTTTG ATGGTCAGCC TCAAATGGCA	TGTTTGGGTG AACAGAGGAC TACGGCAGTC	ATCATGGCTG AATATCCATG ACCTATGTGA	TTTTGTCTTT ACTGCTCAAA ACAGCTGCTT	GCCAAACATC ACTTAAAAGT GTTTGTGGCC	780 840 900
••	AGGCAATTCA	TAAGTCAGTC	ATGTTACATA AAGCCGAAAG CTTTCTACCA AGATGAATCT	CGAAAACATA	ACCAGAGCAT GCAGAATTCC	CAGGGTTGTT	960 1020 1080 1140
30	ATTACACTTT TGTAGGTCAT ATCAGATCAC	TCTTGTCTGC TTTCAAGAAG TGCAAAGTGT	GTGTAATGTT GCTGTTCAAA GAGAAGATCG	TGCCTGGATC AAATCAAATA GAAGTTCGCA	CAATAATTTA TCAGAACCAG TATATTATGA	GAGTGAAAGC TTACACTGAT	1200 1260 1320
35		TTTATTGTTT	GTTGGAATCG AA	ATATGTACAA	AGTGTAAATA	AATGTTTCTT	1380
		152 Protein cession #: 1					
40	1	11	21	31	41	51 	
	GLAVWIFFHI FYANMYTSIV	RNKTSFIFYL FLGLISIDRY	HNSGNRSDGP KNIVVADLIM LKVVKPFGDS	TLTFPFRIVH RMYSITFTKV	DAGFGPWYFK LSVCVWVIMA	FILCRYTSVL VLSLPNIILT	60 120 180
45	ISQSSRKRKH	NQSIRVVVAV	VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN	CRIPFTFSHL	DRLLDESAQK	ILYYCKEITL	240 300
50	Nucleic Ac:	153 DNA sec id Accession Lence: 149-	1 #: D80008	.1			
	1	11	21	31 1	41	51	
55	CGAAAGGAGT	GAGGCGCCGA GAGTGGGAAG	CGTCCGCCAT	ACCATTTTGG GTTCTGCGAA	CGTGAGAGCT AAAGCCATGG	AGGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACA	60 120 180 240
60	AGTTCTGGAG	GAGATGAAAG	CTTTGTATGA	ACAAAACCAG	TCTGATGTGA	ATGAAGCAAA CTCTGTTAAG	300
	AAATCGACGC ATGGGAATAT GGAGTGGTTT	TGCACTGTAG GGTAGCGTCT AATAATTATA	CATACCTGTA TGCCAAATGC AAAGATCTCT	TGACCGCTTG ATTACGATTT TGCTACTTAT	CTTCGGATCA CACATGGCTG ATGAGGTCAC	GAGCACTCAG CTGAAGAAAT TGGGAGGAGA	420 480 540
65	man a commo					かかい かいかいしい	
	GTGTCTAAAA	GACTATGGAG	AGGATATGAA AATTTGAAGT CTCGATGGAA	TGATGATGGC	ACTTCAGTCC CTGATCAGAC	TATTAAAAAA AAGGAGTCCT	660 720
	GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA	GACTATGGAG CACTTTTTAC CTGTCATGAC CTCACTCTCT	AGGATATGAA AATTTGAAGT CTCGATGGAA CATGCGCCGA CCACCACTCC	TGATGATGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC	ACTTCAGTCC CTGATCAGAC GGCTTCACTC CTCTTTGATT	TATTAAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA	660 720 780 840
70	GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AGGACTTTCT GTTTTGTAGA	GACTATGGAG CACTTTTTAC CTGTCATGAC CTCACTCTCT TTAAGATAAC TTTTTTAATG GACTGTCTCA	AGGATATGAA AATTTGAAGT CTCGATGGAA CATGCGCCGA CCACCACTCC TAAGAATACT TTGTACACTA CTATGTTGCC	TGATGATGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC TGGCTAAGAA TTCTTCCTAC CAAGCTGGTC	ACTTCAGTCC CTGATCAGAC GGCTTCACTC CTCTTTGATT GTATAATTTG TCTTTTTTGG TCAAACTCCT	TATTAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA CTAACTATTA TTTTGGTTTT GGCCTCAAGC	660 720 780 840 900 960 1020
70	GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AGGACTTTCT GTTTTGTAGA AGTCCTCCCA CCCCTACTCC	GACTATGGAG CACTTTTTAC CTGTCATGAC CTCACTCTCT TTAAGATAAC TTTTTTAATG GACTGTCTCA CCTTAGCTTC TTTTTCTAAT	AGGATATGAA AATTTGAAGT CTCGATGGAC CAGCACTCC TAAGAATACT TTGTACACTA CTATGTTGCC TCAAAGTGTT AAGCTGTAT	TGATGATGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC TGCCTAAGAA TTCTTCCTAC CAAGCTGGTC GAGATCACAG TGTAATCACA	ACTTCAGTCC CTGATCAGAC GGCTTCACTC CTCTTTGATT GTATAATTTG TCATATTTTGG TCAAACTCCT GCGTGAGCCA GCATTCCTAC	TATTAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA CTAACTATTA TTTTGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA	660 720 780 840 900 960 1020 1080
70 75	GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AGGACTTCT GTTTTGTAGA AGTCCTCCCA CCCCTACTCC GTGTGTTTTT TTGGCTGGAC CAAGCTAGAG TGGTCTGTAGAG TGGTCTGTAGAG	GACTATGAG CACTTTTAC CTGATCATGAC CTCACTCTCT TTAAGATAAC TTTTTTAATG GACTGTCTCA CCTTAGCTTC TTTTTCTAAT TAAATGAAAG AGGAGAAGAAGA AGCTGAATTT AAATTTTCAG	AGGATATGAA AATTTGAAGT CTCGATGGAG CCACCACTCC TAAGAATACT TTGTACACTA CTATGTTGCC TCAAAGTGTT AAGCTGTATC TAAACATGGT TAGATCCTGT TAGATCCTGT TAGATCCTGT TAGATCCTGT TAGATCACA TATATATAAT	TGATGATGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC TGGCTAAGAA TTCTTCCTAC CAAGCTGGTC GAGATCACAG TGTAATCACA TACATTTGAA GTGTCTTGTA CATTTTCAAA CATTTTTCAAA CATTTTAATGAC	ACTTCAGTCC CTGATCAGAC GGCTTCACTC GTATAATTG GTATAATTTG TCAAACTCCT GCGTGAGCCA GCATTCCTAC TCTCTTAAAT TTCTGGTCAT TCACATGCAA ATACTAATTT	TATTAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA CTAACTATTA TTTTGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAC GTGTATTGTA GTGTATTGTA ATCATCTGGC	660 720 780 840 900 960 1020 1140 1200 1260 1320 1380
75 _.	GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AGGACTTTCT GTTTTGTAGA AGTCCTCCCA CCCTACTCC GTGTGTTTTT TTGGCTGGAC CAAGCTAGAG TGGTCTGTAGA TATTTGGGAA CTTGTGGGAA CTTGTGGGTA	GACTATGAG CACTTTTTAC CTGTCATGAC CTCACTCTCT TTAAGATAAC TTTTTTTAATG GACTGTCTCA CCTTAGCTTC TTTTTCTAAT TAAATGAAAG AGGAAGAAGA AGCTGAATTT AAATTTTCAG GGAAGGACC GGGAAGACG TGGGGTGATC	AGGATATGAA AATTTGAAGT CTCGATGGAA CATCGCCGA CCACCACTCC TAAGAATACT TTGTACACTA CTATGTTGCC TCAAAGTGTT AAGCTGATC TAAACATGGT TAGATCCTGT CTGAGATACA TATATATATA ACATGGATTCA	TGATGATGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC TGGCTAAGAA TTCTTCCTAC CAAGCTGGTC GAGATCACAG TGTAATCACA TACATTTGAA GTGTCTTGTT CATTTCAAA GTTTAATGAC TGCACATTTC TGCACATTTC CACTTTGGA	ACTTCAGTCC CTGATCAGAC GGCTTCACTC CTCTTTGATT GTATAATTTG TCTATTTTTGG TCATACTCCT GCGTGAGCCA GCATTCCTAC TCTCTTAAAT TTCTGGTCAT TCACATGCAA ATACTAATTTACACATGGTC AGGGGACAGT	TATTAAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA TTATGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAC GTGTATTGTA GTGAAGATCAC GTGAAGTGA ATCATCTGGC GCTGGTGTGG GAAATTGGGG GAAATTGGGG	720 780 840 900 960 1020 1140 1200 1380 1340 1500
	GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AGGACTTTGTAGA AGTCCTCCCA CCCCTACTCC GTGTGTTTTT TTGGCTGGAC CAGCTAGAG TGTCTTGTAGAC AGTCTTGTAGAC AGTCTTGTAGAC AGTTTGTAGAC AGTTTGAGAAGG AGTTGAGAG CTTGTGGCTA CTAGAGAAGG AGAGTTGATT	GACTATGAG CACTTTTTAC CTGATGAC CTGATGAC CTTAAGATAAC TTTTTTAATG ACCTTAGCTTC TTTTTCTAAT TAAATGAAAG AGGAAGAAGAG AGCTGATTT AAATTTTCAG GGAAGGACAC TGGGGTGATC ACTTTGTAC CTCTTTTAAT CTGATGATAC CTGGGTGATC CACTTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTTAAT CTCTTTTAAT CTTTTTAAT CTCTTTTAAT CTCTTTTTAAT CTCTTTTAAT CTCTTTTTAAT CTCTTTTAAT CTCTTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTAAT CTCTTTTTAAT CTCTTTTAAT CTCTTTTTAAT CTCTTTTTAAT CTCTTTTTAAT CTCTTTTTAAT CTCTTTTAAT CTCTTTTTAAT CTCTTTTTAAT CTCTTTTTAAT CTCTTTTTAAT CTCTTTTTAAT CTCTTTTTAAT CTCTTTTTTAAT CTCTTTTTAAT CTCTTTTTTAAT CTCTTTTTTAAT CTCTTTTTTTT	AGGATATGAA AATTTGAAGT CTCGATGGAA CATGCGCCGA CCACCACTCC TAAGAATACT TTGTACACTT CTCAAGTGTT AAGCTGTATC TAAACATGGT TAGAATCTGT TAGAATCTGT TAGAATCTGT TAGAATCTGT TAGAATCTGT ACATGGATACA TATATATATA ACATGGATTT ACCAGTATCC GGTATGTTTT	TGATGATGGC ATGTGAGCAG CTTCACCTCC TGGCTAAGAA TTCTTCCTAC CAGCTGGTC GAGATCACAG TGTAATCACA TGCATTTGAA GTGTTCTTTCATAC GTTTTTCAAA GTGTTTTCAAA GTTTAATGAC TGCACATTTGA GAGATTCAGA AAACAGCTGA AAACAGCTGA	ACTTCAGTCC CTGATCAGAC GGCTTCACTC CTCTTTGATT GTATAATTG TCATTTTTGG GCATTCCTAC GCATTCCTAC TCTCTTAAAT TCTCGTCAA TCACATGCAA ATACTAATTT CACCATGGTG AGGGGACAGT TTGACTGAAA ATACTAATTT	TATTAAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA CTAACTATTA CTTAGATTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAC GTGTATTGTA GTGAAGATGA ATCATCTGGC GCAATTGGGC GAAATTGGGC AGTCACTGA ATTTGATGAAAA	720 780 840 900 960 1020 1140 1260 1320 1380 1440 1560 1620
75 _.	GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AGGACTTCT GTTTTGTAGA AGTCCTCCCA CCCTACTCC GTGTGTTTTT TTGGCTGGAC CAAGCTAGAG TGGTCTGTAG TATTTGGGAA CTTGTGGCTA CTAGAGAAGG AGAGTTGATT TCCAGTTTAT TCCCABTTAT	GACTATGAG CACTTTTTAC CTGATGAC CTCACTCT TTAAGATAAC TTTTTTAATG GACTGTCTC TTATGCTTC TTTTTCTAAT TAAATGAAAG AGCAGAAGAACA AGGAAGAACA CGGAGGAC ACTTGTCT CGCTTTTTCA CGCTTGTTC CGCTTTTTAAT CGCTTTGTT CACTTTGTT CACTTTGTT CACTTTGTT CACTTTGTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTTT CACATTTTT CACATTTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTTT CACATTTT CACATTTT CACATTTT CACATTTT CACATTTT CACATTT CACATT CACATTT CACATTT CACATT CA	AGGATATGAA AATTTGAAGT CTCGATGGAA CATCGCCGA CCACCACTCC TAAGAATACT TTGTACACTA CTATGTTGCC TCAAAGTGTT AAGCTGATC TAGATCCTGT CTGAGATACA TATATATATA ACATGGATT ACCAGTATCC AGGTATCCT GGTATGTTT TTTTATGCTT TTTCTTTT	TGATGATGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC TGGCTAAGAA TTCTTCCTAC CAAGCTGGTC GAGATCACAG TGTAATCACA TACATTTGAA GTGTCTTGTT CATTTCAAA GTTTAATAGAC TGCACATTTC CCACTTTGGA GAGATTCAGA AAACAGCTGA AAACAGCTGA TGGGTGTTGC CTTCTAGAAG	ACTTCAGTCC CTGATCAGAC GGCTTCACTC CTCTTTGATT GTATAATTTG TCTATTTTTGGT TCAAACTCCT GCGTGAGCCA GCATTCCTAC TCTCTTAAAT TCTGGTCAT TCACATGCAA ATACTAATTT CACCATGGTG AGGGGACAGT TTGACTGAAA CATTTTAAAT ATCCAGAAAA CATTTTAAAT TCTCGAGAAA TGTTATAATT	TATTAAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA TTTTGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAC GTGAATGTA ATCATCTGG GTGAAGTGA ATCATCTGG GCTGGTGTGG GAAATTGGGG AGTCACATGA TTTGATGAAA TCTTTTTCCCA TTAGGCTTTA	720 780 840 900 1020 1080 1140 1260 1380 1380 1560 1620 1620 1740
75 _.	GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AGGACTTCT GTTTTGTAGA AGTCCTCCCA CCCCTACTCC GTGTGTTTTT TTGGCTGGAC CAAGCTAGAG TATTTGGGAA CTTGTGGCTA CTAGAGAAGG AGAGTTGAT TCCAGTTAT TCCCAAGATC TACTTTGGT TACTTTGGGTT TACTTTGGGTT	GACTATGAG CACTTTTTAC CTGATGAC CTGATGAC CTTAAGATAAC TTTTTTAATG GACTGTCTC TTTTTCTAAT TAAATGAAAG AGGAGAAGAG AGCTGAATTT AAATTTTCAG GGAAGGACAC TGGGGTGATC ACTTTGTAC ACTTTGTAC TGTTTGTAC TGTTTTTTAAT TGTTTGTAC GGAATTTTTT TATGACCCGT	AGGATATGAA AATTTGAAGT CTCGATGGAA CATGCGCCGA CCACCACTCC TAAGAATACT TTGTACACTI AGGTGTAC TCAAAGTGTT AAGCTGTATC TAGAATACT TAGAATCT TAGAATCTGT TCTGAGATACA TATATATATA ACATGGATTA ACATGGATTT ACCAGTATCA AGGTTTTCCCT TTTTATGCTT TTTTATGCTT TTTTTTTTTT	TGATGATGGC ATGTGAGCAG CTTCACCTCC TGGCTAAGAA TTCTTCCTAC CAGCTGGTC GAGATCACAG TGTAATCACA TGCATTTGAA GTGTTTTTCAAA GTGTTTTTCAAA GTGTCTTGTT CATTTTCAAA GAGATTCAGA AAACAGCTGA TGGGTGTTGC CTTTTAGAA GGGTGTTGC CTTTTAGAAG TGGGTGTTTC CATTTTTTTAAA	ACTTCAGTCC CTGATCAGAC GGCTTCACTC GTATAATTG GTATAATTG TCATTTTTGG GCATTCCTAC GCATTCCTAC GCATTCCTAC TCTCTTAAAT TTCTGGTCAA ATACTAATTT CACCATGCAA ATACTAATTT CACCATGCAA AGGGACAGT TTGACGAAA CATTTTAAAT ATCCGAGAAA TGTTTATAATT GTTTTTTCGT GCAGTGGCGT	TATTAAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA CTAACTATTA TTTTGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAC GTGTATTGTA GTGAAGATGA ATCATCTGGC GCTGGTGTGG GAAATTGGGG AGTCACATGA TTTGATGAAAA TCTTTCCCA	780 780 900 960 1080 1140 1200 1320 1380 1440 1560 1680 1740 1860

```
TTTTACCATG TEGGCAGGC TEGTTTCAAA CTCCTGACCT CAAGTGACCC ACCTTGGCCT CCCAAAGTTT TEGGATTACA AGTGTGGGCC ACCGCGGCCA GCCTATGATC CATTTTGAAT 2100
       GAATTTTTTA TATGGTGCAA GGTGTCAATC CACCTTCACT TTTTCTTGGG AATATAGATA
                                                                                2160
       TCCAGCTGTT TCACTACCAT TTTTTGAAAG GACTGCCCTT TGCTCTATCA CCTTTGCATT
                                                                                 2220
       TTTGTTAAAA AGTAGTTGTC AATGTATATG TGGGTTTATT TCAGGACTCT GTTTTGTTCC
                                                                                2280
       ATTGACCTGT TTTTCTCTCC TGAATGCCAA TACCATATTT GTATGTAGTG TATGTAATTT
                                                                                2340
                                                                                2400
       TCTAATAATT CTTGAAACAG ATAGTATTAA TGTGTCATAT TTTTGCTGTT GTTTGTATTT
       TTTGTAGAGA TGGGGTTTCA CCGTGTTGGC CAGGCTGTGT TGAACTCCTG AGCTAAAGCA
                                                                                 2460
       ATACACTTGC CTCGTCCTCC CCATGTGCTG GGATTACAGG CGTGAGCCTT GGTGCTGGCC
                                                                                2520
10
       CAGTGTACCA CATTTCTTTT TGAGATTTGT TTTGGCTATG TTAAGTCCTT TGCTTTTGAT
                                                                                2580
       GTGAAATTTG GGAACAGGCA GGGTGTGGTG GCTTATGCCT GTAATCCTAG AACTTTGGGA
                                                                                2640
       GGCCTAGATG GGTGGATCAC TTGAGCTCAG GAGTTCCAGA CCAGCCCGGG CCTATGGCAA
                                                                                 2700
       AACTCCGTCT CTACAAAAA TAGAAAAAT TAGCCAGGTG TGGTGGTGCA TGCCTGTAGT
                                                                                2760
       CACAGTTACA CGGCAGGCTG AGGTGGGAGG ATCACTTGAA CCCCAGAGGT CAAGACTGCA GTGAGCTGAG ATCACACCAC TGTACTCCAG CCTGGGTGAC AAAGTGAGAC TCTATCTCAA
15
       AAAGAAATTA GGATCAATTT GTCAATTTCT ACAACAACAA CAACAAAAAA CCCTGTTGGG
CACCTTGATT GAGATTGCAT TGAATTTATA TAAAACTGTT GGGAGAATTG ACATCTTAAT
                                                                                2940
                                                                                3000
       AATATTGAGT CTTCTGGCCT ATAAACAAGG TCTGTCTTCC TAGGTATTAA TGTTTTGTCT
                                                                                3060
       TCTATTTCTC TTAATAATCT TTTGTAGTTT TCAGTGTACA GGTCTACCAT GTCAGCATTT
                                                                                3120
20
       CATAGTTTTG ATGCTAAATG GTATTTTAAA ATTTCAAATT CTAACCACTT GTTGCTAGTA
                                                                                3180
       AATAGAAATA CAATTGATGT TGAACTTGTA TCCTTCAGCC TTGCTAAACT GTGAGTTCTC
                                                                                3240
       ATGGTGTTTT TGTAAATTAC ATCAACAGTC ATGTGTTCTA TGAATAAAGA GTTTTACTCC
                                                                                3300
25
       Seq ID NO: 154 Protein sequence:
       Protein Accession #: BAA11503.1
                                                        41
                                                                   51
30
       MFCEKAMELI RELHRAPEGO LPAFNEDGLR QVLEEMKALY EQNOSDVNEA KSGGRSDLIP
                                                                                   60
       TIKFRHOSLL RNRRCTVAYL YDRLLRIRAL RWEYGSVLPN ALRFHMAAEE MEWFNNYKRS
                                                                                  120
       LATYMRSLGG DEGLDITQDM KPPKSLYIEV RCLKDYGEFE VDDGTSVLLK KNSQHFLPRW
       KCEQLIRQGV LEHILS
35
       Seq ID NO: 155 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 149-709
                                                        41
                                                                    51
                                            31
40
       GTTCGGCGCC AAAGCGCGGA GCGGAGGCCG AGGCGAGAGC CTGGCGCTGT AGGACTAGAA
                                                                                   60
                                                                                  120
       CGAAAGGAGT GAGGCGCCGA GAGCCCAGAT ACCATTTTGG CGTGAGAGCT GGTGGTTGGC
       AAGGCCGCGG GAGTGGGAAG CGTCCGCCAT GTTCTGCGAA AAAGCCATGG AACTGATCCG
                                                                                  180
       CGAGCTGCAT CGCGCGCCCG AAGGGCAACT. GCCTGCCTTC AACGAGGATG GACTCAGACA
                                                                                  240
45
       AGTTCTGGAG GAGATGAAAG CTTTGTATGA ACAAAACCAG TCTGATGTGA ATGAAGCAAA
                                                                                  300
       GTCAGGTGGA CGAAGTGATT TGATACCAAC TATCAAATTT CGACACTGTT CTCTGTTAAG
                                                                                  360
       AAATCGACGC TGCACTGTAG CATACCTGTA TGACCGCTTG CTTCGGATCA GAGCACTCAG
                                                                                  420
       ATGGGAATAT GGTAGCGTCT TGCCAAATGC ATTACGATTT CACATGGCTG CTGAAGAAAT
                                                                                  480
       GGAGTGGTTT AATAATTATA AAAGATCTCT TGCTACTTAT ATGAGGTCAC TGGGAGGAGA
                                                                                  540
50
       TGAAGGTTTG GACATTACAC AGGATATGAA ACCACCAAAA AGCCTATATA TTGAAGCTGG
                                                                                  600
       ATGCAGTGGC GCGATCTCGG CTCAACCTGC AACCTCCACC TCCCAGGTTC ACCTCAACTG
                                                                                  660
        CAACCTCCAC CTCCCAGGTC CGGTGTCTAA AAGACTATGG AGAATTTGAA GTTGATGATG
                                                                                  720
       GCACTTCAGT CCTATTAAAA AAAAATAGCC AGCACTTTTT ACCTCGATGG AAATGTGAGC
                                                                                  780
       AGCTGATCAG ACAAGGAGTC CTGGAGCACA TCCTGTCATG ACCATGCGCC GAGGCACTTC
                                                                                  840
       CAGGCTTCAC TCAACTCATG GACTCCTCTG TACTCACTCT CTCCACCACT CCCTTCACCT
55
        CCCTCTTGA TTTTAGAAGC TATAGACATT GTTTAAGATA ACTAAGAATA CTTGGCTAAG
                                                                                  960
       AAGTATAATT TGCTAACTAT TAAGGACTTT CTTTTTTTAA TGTTGTACAC TATTCTTCCT
       ACTOTITITE GETTITGGTT TEGTTITGTA GAGACTGTCT CACTATGTTG CCCAAGCTGG
TCTCAAACTC CTGGCCTCAA GCAGTCCTCC CACCTTAGCT TCTCAAAGTG TTGAGATCAC
                                                                                 1080
60
       AGGCGTGAGC CACTGCACCC GGCCCCTACT CCTTTTCTA ATAAGCTGTA TCTGTAATCA
                                                                                 1200
       CAGCATTCCT ACAGTTGTTA CAGTGTGTTT TTTAAATGAA AGTAAACATG GTTACATTTG
                                                                                 1260
       AATCTCTTAA ATAAGCAGTC ACTTGGCTGG ACAGGAAGAA GGTAGATCCT GTGTGTCTTG
                                                                                 1320
       TTTTCTGGTC ATGTGTATTG TACAAGCTAG AGAGCTGAAT TTCTGAGATA CACATTTTCA
                                                                                 1380
       AATCACATGC AAGTGAAGAT GATGGTCTGT AGAAATTTTC AGTATATATA ATGTTTAATG
                                                                                 1440
65
       ACATACTAAT TTATCATCTG GCTATTTGGG AAGGAAGGAC ACACATGGAT TTTGCACATT
                                                                                 1500
       TCCACCATGG TGGCTGTGT GGCTTGTGGC TATGGGGTGA TCACCAGTAT CACCACTTTG
                                                                                 1560
       GAAGGGGACA GTGAAATTGG GGCTAGAGAA GGAACTTTGT ACAGTTTTCC CTGAGATTCA
                                                                                 1620
        GATTGACTGA AAAGTCACAT GAAGAGTTGA TTGTCTTTTA ATGGTATGTT TTAAACAGCT
                                                                                 1680
        GACATTITAA ATTITGATGA AATCCAGTIT ATTCGTTTGT TCTTTTATGC TTTGGGTGTT
                                                                                 1740
70
        GCATCCGAGA AATCTTTTCC CATCCCAAGA TCACAATTTT TTTTCCTTTT TACTTCTAGA
                                                                                 1800
        1860
        TTGTTTTTC GTTTGTTTCT TTGTTTTGAG ATGGAGTCTT GTTCTGTCAC CCAGGCTGGG
                                                                                 1920
       GTGCAGTGGC GTGATCTTGG CTCACTGCAA TCTCTATCCC CTGGGTTCAA GTGATTCTCT TGTCTCAGCC TCCCAAGTAG CTGGGATTAC AGGCACAGGC CGCCACGCCT GGCTAATTTT
                                                                                 1980
                                                                                 2040
       TGTATTTTTA GTAGAGACAG AGTTTTACCA TGTTGGCCAG GCTGGTTTCA AACTCCTGAC CTCAAGTGAC CCACCTTGGC CTCCCAAAGT TTTGGGATTA CAAGTGTGGG CCACCGCGGC
75
                                                                                 2100
        CAGCCTATGA TCCATTTTGA ATGAATTTTT TATATGGTGC AAGGTGTCAA TCCACCTTCA
                                                                                 2220
        CTTTTTCTTG GGAATATAGA TATCCAGCTG TTTCACTACC ATTTTTTGAA AGGACTGCCC
                                                                                 2280
        TTTGCTCTAT CACCTTTGCA TTTTTGTTAA AAAGTAGTTG TCAATGTATA TGTGGGTTTA
                                                                                 2340
                                                                                 2400
80
        TTTCAGGACT CTGTTTTGTT CCATTGACCT GTTTTTCTCT CCTGAATGCC AATACCATAT
       TTGTATGTAG TGTATGTAAT TTTCTAATAA TTCTTGAAAC AGATAGTATT AATGTGTCAT ATTTTTGCTG TTGTTTGTAT TTTTTGTAGA GATGGGGTTT CACCGTGTTG GCCAGGCTGT
                                                                                 2460
                                                                                 2520
        GTTGAACTCC TGAGCTAAAG CAATACACTT GCCTCGTCCT CCCCATGTGC TGGGATTACA
                                                                                 2580
        GGCGTGAGCC TTGGTGCTGG CCCAGTGTAC CACATTTCTT TTTGAGATTT GTTTTGGCTA
                                                                                 2640
85
        TGTTAAGTCC TTTGCTTTTG ATGTGAAATT TGGGAACAGG CAGGGTGTGG TGGCTTATGC
                                                                                 2700
        CTGTAATCCT AGAACTTTGG GAGGCCTAGA TGGGTGGATC ACTTGAGCTC AGGAGTTCCA
                                                                                 2760
        GACCAGCCCG GGCCTATGGC AAAACTCCGT CTCTACAAAA AATAGAAAAA ATTAGCCAGG
                                                                                2820
```

```
WO 02/086443
                                                                            2880
       TGTGGTGGTG CATGCCTGTA GTCACAGTTA CACGGCAGGC TGAGGTGGGA GGATCACTTG
       AACCCCAGAG GTCAAGACTG CAGTGAGCTG AGATCACACC ACTGTACTCC AGCCTGGGTG
                                                                             2940
       ACAAAGTGAG ACTCTATCTC AAAAAGAAAT TAGGATCAAT TTGTCAATTT CTACAACAAC
                                                                             3000
       AACAACAAAA ACCCCTGTTG GGCACCTTGA TTGAGATTGC ATTGAATTTA TATAAAACTG
                                                                             3060
       TTGGGAGAAT TGACATCTTA ATAATATTGA GTCTTCTGGC CTATAAACAA GGTCTGTCTT
                                                                            3120
       CCTAGGTATT AATGTTTTGT CTTCTATTTC TCTTAATAAT CTTTTGTAGT TTTCAGTGTA
                                                                            3180
       CAGGTCTACC ATGTCAGCAT TTCATAGTTT TGATGCTAAA TGGTATTTTA AAATTTCAAA
                                                                            3240
       TTCTAACCAC TTGTTGCTAG TAAATAGAAA TACAATTGAT GTTGAACTTG TATCCTTCAG
                                                                             3300
       CCTTGCTAAA CTGTGAGTTC TCATGGTGTT TTTGTAAATT ACATCAACAG TCATGTGTTC
                                                                            3360
10
       TATGAATAAA GAGTTTTACT CCTTC
       Seq ID NO: 156 Protein sequence:
       Protein Accession #: Eos sequence
15
                                         31
                                                                51
       MFCEKAMELI RELHRAPEGO LPAFNEDGLR QVLEEMKALY EQNOSDVNEA KSGGRSDLIP
       TIKFRHOSLL RNRRCTVAYL YDRLLRIRAL RWEYGSVLPN ALRFHMAAEE MEWFNNYKRS
       LATYMRSLGG DEGLDITQDM KPPKSLYIEA GCSGAISAQP ATSTSQVHLN CNLHLPGPVS
20
       Seg ID NO: 157 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-621
25
                                         31
       TTCGCCCCA AAGCCCCGAG CGGAGGCCGA GGCGAGAGCC TGGCGCTGTA GGACTAGAAC
                                                                              60
       GAAAGGAGTG AGGCGCCGAG AGCCCAGATA CCATTTTGGC GTGAGAGCTG GTGGTTGGCA
                                                                             120
30
       AGGCCGCGG AGTGGGAAGC GTCCGCCATG TTCTGCGAAA AAGCCATGGA ACTGATCCGC
                                                                             180
       GAGCTGCATC GCGCGCCCGA AGGGCAACTG CCTGCCTTCA ACGAGGATGG ACTCAGACAA
                                                                             240
       GTTCTGGAGG AGATGAAAGC TTTGTATGAA CAAAACCAGT CTGATGTGAA TGAAGCAAAG
                                                                             300
       TCAGGTGGAC GAAGTGATTT GATACCAACT ATCAAATTTC GACACTGTTC TCTGTTAAGA
AATCGACGCT GCACTGTAGC ATACCTGTAT GACCGCTTGC TTCGGATCAG AGCACTCAGA
                                                                             360
                                                                              420
35
       TGGGAATATG GTAGCGTCTT GCCAAATGCA TTACGATTTC ACATGCTGC TGAAGAAGTC
                                                                              480
       CGGTGTCTAA AAGACTATGG AGAATTTGAA GTTGATGATG GCACTTCAGT CCTATTAAAA
                                                                             540
       AAAAATAGCC AGCACTTTTT ACCTCGATGG AAATGTGAGC AGCTGATCAG ACAAGGAGTC
                                                                              600
       CTGGAGCACA TCCTGTCATG ACCATGCGCC GAGGCACTTC CAGGCTTCAC TCAACTCATG
                                                                              660
       GACTCCTCTG TACTCACTCT CTCCACCACT CCCTTCACCT CCCTCTTGA TTTTAGAAGC
                                                                              720
40
       TATAGACATT GTTTAAGATA ACTAAGAATA CTTGGCTAAG AAGTATAATT TGCTAACTAT
       TAAGGACTIT CITITITITAA TGTTGTACAC TAITCTTCCT ACTCTTTTT GGTTTTGGTT
TTGTTTTGTA GAGACTGTCT CACTATGTTG CCCAAGCTGG TCTCAAACTC CTGGCCTCAA
                                                                              900
       GCAGTCCTCC CACCTTAGCT TCTCAAAGTG TTGAGATCAC AGGCGTGAGC CACTGCACCC
                                                                             960
       GGCCCCTACT CCTTTTCTA ATAAGCTGTA TCTGTAATCA CAGCATTCCT ACAGTTGTTA
                                                                             1020
45
       CAGTGTGTTT TTTAAATGAA AGTAAACATG GTTACATTTG AATCTCTTAA ATAAGCAGTC
                                                                             1080
       ACTTGGCTGG ACAGGAAGAA GGTAGATCCT GTGTGTCTTG TTTTCTGGTC ATGTGTATTG
                                                                             1140
       TACAAGCTAG AGAGCTGAAT TTCTGAGATA CACATTTTCA AATCACATGC AAGTGAAGAT
                                                                            1200
       GATGGTCTGT AGAAATTTTC AGTATATATA ATGTTTAATG ACATACTAAT TTATCATCTG
                                                                            1260
       GCTATTTGGG AAGGAAGGAC ACACATGGAT TTTGCACATT TCCACCATGG TGGCTGGTGT
                                                                            1320
50
       GGCTTGTGGC TATGGGGTGA TCACCAGTAT CACCACTTTG GAAGGGGACA GTGAAATTGG
                                                                             1380
       GGCTAGAGAA GGAACTTTGT ACAGTTTTCC CTGAGATTCA GATTGACTGA AAAGTCACAT
                                                                            1440
       GAAGAGTTGA TTGTCTTTTA ATGGTATGTT TTAAACAGCT GACATTTTAA ATTTTGATGA
                                                                             1500
       AATCCAGTTT ATTCGTTTGT TCTTTTATGC TTTGGGTGTT GCATCCGAGA AATCTTTTCC
                                                                             1560
       CATCCCAAGA TCACAATTTT TTTTCCTTTT TACTTCTAGA AGTGTTATAA TTTTAAGCTT
                                                                             1620
       55
                                                                             1680
       TTGTTTTGAG ATGGAGTCTT GTTCTGTCAC CCAGGCTGGG GTGCAGTGGC GTGATCTTGG
                                                                             1740
       CTCACTGCAA TCTCTATCCC CTGGGTTCAA GTGATTCTCT TGTCTCAGCC TCCCAAGTAG
                                                                             1800
       CTGGGATTAC AGGCACAGGC CGCCACGCCT GGCTAATTTT TGTATTTTTA GTAGAGACAG
                                                                             1860
       AGTTTTACCA TGTTGGCCAG GCTGGTTTCA AACTCCTGAC CTCAAGTGAC CCACCTTGGC
60
       CTCCCAAAGT TTTGGGATTA CAAGTGTGGG CCACCGCGGC CAGCCTATGA TCCATTTTGA ATGAATTTTT TATATGGTGC AAGGTGTCAA TCCACCTTCA CTTTTTCTTG GGAATATAGA
                                                                             2040
       TATCCAGCTG TTTCACTACC ATTTTTTGAA AGGACTGCCC TTTGCTCTAT CACCTTTGCA
                                                                             2100
       TTTTTGTTAA AAAGTAGTTG TCAATGTATA TGTGGGTTTA TTTCAGGACT CTGTTTTGTT
                                                                             2160
       CCATTGACCT GTTTTCTCT CCTGAATGCC AATACCATAT TTGTATGTAG TGTATGTAAT
                                                                             2220
65
       TTTCTAATAA TTCTTGAAAC AGATAGTATT AATGTGTCAT ATTTTTGCTG TTGTTTGTAT
                                                                             2280
       TTTTTGTAGA GATGGGGTTT CACCGTGTTG GCCAGGCTGT GTTGAACTCC TGAGCTAAAG
                                                                             2340
       CAATACACTT GCCTCGTCCT CCCCATGTGC TGGGATTACA GGCGTGAGCC TTGGTGCTGG
                                                                             2400
       CCCAGTGTAC CACATTTCTT TTTGAGATTT GTTTTGGCTA TGTTAAGTCC TTTGCTTTTG
                                                                             2460
       ATGTGAAATT TGGGAACAGG CAGGGTGTGG TGGCTTATGC CTGTAATCCT AGAACTTTGG
                                                                             2520
70
       GAGGCCTAGA TGGGTGGATC ACTTGAGCTC AGGAGTTCCA GACCAGCCCG GGCCTATGGC
                                                                             2580
       AAAACTCCGT CTCTACAAAA AATAGAAAAA ATTAGCCAGG TGTGGTGGTG CATGCCTGTA
                                                                             2640
                                                                             2700
       GTCACAGTTA CACGGCAGGC TGAGGTGGGA GGATCACTTG AACCCCAGAG GTCAAGACTG
       CAGTGAGCTG AGATCACACC ACTGTACTCC AGCCTGGGTG ACAAAGTGAG ACTCTATCTC
                                                                             2760
       AAAAAGAAAT TAGGATCAAT TTGTCAATTT CTACAACAAC AACAACAAAA ACCCCTGTTG
                                                                             2820
75
       GGCACCTTGA TTGAGATTGC ATTGAATTTA TATAAAACTG TTGGGAGAAT TGACATCTTA
                                                                             2880
       ATAATATTGA GTCTTCTGGC CTATAAACAA GGTCTGTCTT CCTAGGTATT AATGTTTTGT
                                                                             2940
       CTTCTATTTC TCTTAATAAT CTTTTGTAGT TTTCAGTGTA CAGGTCTACC ATGTCAGCAT
                                                                             3000
       TTCATAGTTT TGATGCTAAA TGGTATTTTA AAATTTCAAA TTCTAACCAC TTGTTGCTAG
                                                                             3060
       TAAATAGAAA TACAATTGAT GTTGAACTTG TATCCTTCAG CCTTGCTAAA CTGTGAGTTC
                                                                             3120
80
       TCATGGTGTT TTTGTAAATT ACATCAACAG TCATGTGTTC TATGAATAAA GAGTTTTACT
       Seq ID NO: 158 Protein sequence:
       Protein Accession #: Eos sequence
85
```

	WO 02/						
	TIKPRHCSLL	RELHRAPEGQ RNRRCTVAYL KKNSQHPLPR	YDRLLRIRAL	QVLEEMKALY RWEYGSVLPN VLEHILS	eqnqsdvnea Alrphmaaee	KSGGRSDLIP VRCLKDYGEP	60 120
5	Nucleic Ac	159 DNA sec id Accession lence: 149-2	а #: Еов ве	equence			
	1	11	21	31	41	51	
10	CGAAAGGAGT	GAGGCGCCGA	GAGCCCAGAT	AGGCGAGAGC ACCATTTTGG GTTCTGCGAA	CGTGAGAGCT	GGTGGTTGGC	60 120 180
15	CGAGCTGCAT GGCACACACC GGAAGTTGAA	CGCGCGCCCG TGTAGTCCCA ACTGCAGTGA	AAGGGCAACT GCAACTTAGG ACTGTGGTCA	GCCTGCCTTC AGGCTGAAGT CGCTATTACA ATGGACTCAG	AACAATTAGC GAGAGGATTG CTCCAGCCTG	TGGGTGTGGT CATGGCTCCA GGTGACAGAC	240 300 360 420
20	AAGCTTTGTA	TGAACAAAAC	CAGTCTGATG	TGTTCTCTGT ATCAGAGCAC	TAAGAAATCG	ACGCTGCACT	480
		160 Proteir ession #: F		•			
25	1	11	21	31	41	51 1	
23		AAAAAGCCAT TCAACAATTA		CGCGAGCTGC	ATCGCGCGCC	CGAAGGGCAA	60
30	Nucleic Act	161 DNA sec id Accession lence: 1333-	#: U10694				
	1	11	21	31	41	51	
35		001 7070100		CTTTGTTCTC) AGAGGGTGTG	TCTCCACAAA	60
33	ACAGGGAGGC	CCTGTGTTCG	ACAGACACAG	TGGTCCCAGG	ATTGGAGAGC	AGTCCAGGTG	120
	AGGAACCTAA	GGGAGGATCG	AGGGTACCTC	CAGGCCAGAG	AAACTCTCAG	ATCAAGAGAG	180
	TTTGCCCTGC	CCCTACTGTC	ACCCCAGAGA	GCCCGGGCAG GGGCTGGCCT	GGCTGTCTGC	TGAGGTCCCT	240 300
40	CACGTCAGCA	GAGGGAGGGT	CCCAGGCCCT	GCCAGGAGTC	CAGGTGCAGA	CTGAGGGGAC	360
•••	CCCACTCACC	AAACACAGAG	GACCTAGCCC	CACCCTGCCC	CTTGTGTCAG	CTGAGGGAAG	420
	CCGCTGGGTG	GATGGACTCC	CCTCACTTCC	TCTTCAGGTG	TCTCCTGGAG	ATAGGGCCTC	480 540
	AGGTCAACAG	AGGGAGGGTT	CCCCATTGAA	CAGGCATCAA TTTAGACATC	TCTTACTGTA	CTTCCGAGGA	600
45	AACCCTGGGC	AGGTGTGGGC	AGATGTTGGT	TGGGGCATGT	CCTTCTGTTC	CATATCAGGG	660
•	ATGTGAGCTC	CTGATCTGAG	AGACTCTCAG	GCAAGTAGAG	GAGTAGAGTC	CAGTCCCTGC	720
	CAGGAGAAAG	GTCAGGGCCC	TGAGTGAGCG	CAGAGGGGAC GACAGCACTG	CATCCACCCC	AAAAGTGTGT	780 840
	CAGTCTGCAG	CCTAAGGGCC	CCTCGATTCC	TCTTCCAGGA	GCTCCAGGAA	GCAGGCAGGC	900
50	CTTGGTCTGA	GACAGTGTCC	TCAGGTCGCA	GAGCAGAGGA	GACCCAGGCA	GTGTCAGCAG	960
	TGAAGGTGAA	GTGTTCACCC	TGAATGTGCA	CCAAGGGCCC TACTGTCACT	CACCTGCCCC	AGCACACATG	1020 1080
	AGGCTAGCTG	CACGCTGAGT	AGCCCTCTCA	CTTCCTCCCT	CAGGTTCTCG	GGACAGGCTA	1140
	ACCAGGAGGA	CAGGAGCCCC	AAGAGGCCCC	AGAGCAGCAC	TGACGAAGAC	CTGTAAGTCA	1200
55	GCCTTTGTTA	GAACCTCCAA	GGTTCGGTTC	TCAGCTGAAG	TCTCTCACAC	ACTCCCTCTC	1260 1320
	TCCCCAGGCC	TCTGGGTCTCT	CATCGCCCAG	CTCCTGCCCA AGTCCGCACT	GCAAGCCTGA	TGAAGACCTT	1380
•	GAAGCCCAAG	GAGAGGACTT	GGGCCTGATG	GGTGCACAGG	AACCCACAGG	CGAGGAGGAG	1440
40	GAGACTACCT	CCTCCTCTGA	CAGCAAGGAG	GAGGAGGTGT	CTGCTGCTGG	GTCATCAAGT	1500 1560
60	CCTCCCCAGA	GTCCTCAGGG	CAGCAGTCAA	GAAGAGGAAG	AGCCAAGCTC	CACTTTATGG CTCGGTCGAC	1620
	CCAGCTCAGC	TGGAGTTCAT	GTTCCAAGAA	GCACTGAAAT	TGAAGGTGGC	TGAGTTGGTT	1680
	CATTTCCTGC	TCCACAAATA	TCGAGTCAAG	GAGCCGGTCA	CAAAGGCAGA	AATGCTGGAG	1740
65	AGCGTCATCA	AAAATTACAA	GCGCTACTTT	CCTGTGATCT	TCGGCAAAGC	CTCCGAGTTC	1800 1860
03	CTTGTCACTG	CTCTTGGCCT	CTCGTGCGAT	AGCATGCTGG	GTGATGGTCA	TAGCATGCCC	1920
	AAGGCCGCCC	TCCTGATCAT	TGTCCTGGGT	GTGATCCTAA	CCAAAGACAA	CTGCGCCCCT	1980
	GAAGAGGTTA	TCTGGGAAGC	GTTGAGTGTG	ATGGGGGTGT	TGCAGGAAA	GGAGCACATG CTACCTGGAG	2040 2100
70	TACCGGCAGG	TGCCCGGCAG	TGATCCTGCG	CACTACGAGT	TCCTGTGGGG	TTCCAAGGCC	2160
, •	CACGCTGAAA	CCAGCTATGA	GAAGGTCATA	AATTATTTGG	TCATGCTCAA	TGCAAGAGAG	2220
	CCCATCTGCT	ACCCATCCCT	TTATGAAGAG	GTTTTGGGAG	AGGAGCAAGA	GGGAGTCTGA	2280 2340
•	GCACCAGCCG	CAGCCGGGGC	CAAAGTTTGT	TCTGTGTTTG	AAGAGAGCAA	CAGCTGCCCT	2400
75	CAGTGGCAGT	GGGTGGAAGT	GAGCACACTG	TATGTCATCT	CTGGGTTCCT	TGTCTATTGG	2460
	GTGATTTGGA	GATTTATCCT	TGCTCCCTTT	TGGAATTGTT	CAAATGTTCT	TTTAATGGTC	2520
	AGTTTAATGA	ACTTCACCAT	CGAAGTTAAT	GAGTCACAGT	GGGAAATCCC	ATTGCTGTTT TGTTATTTTG	2580 2640
	TGAATTGGGA	CAAGATAACA	TAGCAGAGGA	ATTAATAATT	TTTTTGAAAC	TTGAACTTAG	2700
80	CAGCAAAATA	GAGCTCATAA	AGAAATAGTG	AAATGAAAAT	GTAGTTAATT	CTTGCCTTAT	2760
	ACCTCTTTCT	CTCTCCTGTA	AAATTAAAAC	ATATACATGT	ATACCTGGAT	TTGCTTGGCT	2820
	TCTTTGAGCA	1GTAAGAGAA AGACACCAC	ATAAAAATTG TGAACATCTG	TTATTCGGAA	CACCCTGGGT	CACTGGCTCA	2880
0.5				,		•	
85	Seq ID NO:	162 Protei	n sequence:				

Seq ID NO: 162 Protein sequence: Protein Accession #: AAA68877.1

```
MSLEORSPHC KPDEDLEAGG EDLGLMGAGE PTGEERETTS SSDSKEEEVS AAGSSSPPQS
 5
                                                                           120
       POGGASSSIS VYYTLWSQFD EGSSSQEEEE PSSSVDPAQL EFMFQEALKL KVAELVHFLL
       HKYRVKEPVT KAEMLESVIK NYKRYFPVIF GKASEFMQVI FGTDVKEVDP AGHSYILVTA
                                                                           180
       LGLSCDSMLG DGHSMPKAAL LIIVLGVILT KDNCAPEEVI WEALSVMGVY VGKEHMFYGE
                                                                           240
       PRKLLTODWV OENYLEYRQV PGSDPAHYEF LWGSKAHAET SYEKVINYLV MLNAREPICY
                                                                           300
       PSLYEEVLGE EQEGV
10
       Seg ID NO: 163 DNA sequence
       Nucleic Acid Accession #: AF292100
       Coding sequence: 30-809
15
                                        31
       GGGGGGGGAG AGGCCTGGAG GACACCAACA TGAACAAGTT GAAATCATCG CAGAAGGATA
                                                                            60
       AAGTTCGTCA GTTTATGATC TTCACACAAT CTAGTGAAAA AACAGCAGTA AGTTGTCTTT
                                                                           120
       CTCAAAATGA CTGGAAGTTA GATGTTGCAA CAGATAATTT TTTCCAAAAT CCTGAACTTT
                                                                           180
       ATATACGAGA GAGTGTAAAA GGATCATTGG ACAGGAAGAA GTTAGAACAG CTGTACAATA
20
       GATACAAAGA CCCTCAAGAT GAGAATAAAA TTGGAATAGA TGGCATACAG CAGTTCTGTG
ATGACCTGGC ACTCGATCCA GCCAGCATTA GTGTGTTGAT TATTGCGTGG AAGTTCAGAG
                                                                           300
       CAGCAACACA GTGCGAGTTC TCCAAACAGG AGTTCATGGA TGGCATGACA GAATTAGGAT
       GTGACAGCAT AGAACAACTA AAGGCCCAGA TACCCAAGAT GGAACAAGAA TTGAAAGAAC
25
       CAGGACGATT TAAGGATTTT TACCAGTTTA CTTTTAATTT TGCAAAGAAT CCAGGACAAA
                                                                           540
       AAGGATTAGA TCTAGAAATG GCCATTGCCT ACTGGAACTT AGTGCTTAAT GGAAGATTTA
                                                                           600
       AATTCTTAGA CTTATGGAAT AAATTTTTGT TGGAACATCA TAAACGATCA ATACCAAAAG
                                                                           660
       ACACTTGGAA TCTTCTTTTA GACTTCAGTA CGATGATTGC AGATGACATG TCTAATTATG
                                                                           720
       ATGAAGAAGG AGCATGGCCT GTTCTTATTG ATGACTTTGT GGAATTTGCA CGCCCTCAAA
                                                                           780
30
       TTGCTGGGAC AAAAAGTACA ACAGTGTAGC ACTAAAGGAA CCTTTTAGAA TGTACATAGT
                                                                           840
       900
       AGATCAATCC TCACAATTCA GACTGAGGGT TGAGACAAAA CTTTAAGGAT ACATCTTGGA
                                                                           960
       CCATATCGTA TITCATTCTT CTAATGGTGG TTTGGGCTTG TCTTCTAGTC TGGGCCGCTC
                                                                          1020
       TAAACATTTA TAATTCCAAC ATTGTGGATT TCATCTTATA TCTGTGGACC ATCCTAGTTT
                                                                          1080
35
       ATTCTCCCAT AAGTCTTAGA AGCTTTATGG TGATTATTTT GAGGTTTTCA TTCTCGCATA
                                                                          1140
       AAGCACAATG CTGTCTTCAT CAGAAAACAG TTGGCATAAG AATTAAACAT ATGAACATCA
                                                                          1200
       CAAAACAATT TATAAAAACT TCTTAAATAT ACGCTTTGGG CTAGTTGCAA AGACTATGCT
                                                                          1260
       AATAGCACTT CCAGTGAGAG TGATATATTT AAGTGTACTG GATCTGGAAT GGTGTTTTGG
                                                                          1320
       TTTGGGGGGA ATTTTTTTT TTTCCTGGCA AATCACATAT GTTGTTGATG TGAGTATCTG
                                                                          1380
       ATGAAAAAC AATGTCAGAA TAACCGACAT GAAAATTTTT TAGGATAACT TGGTGCCTAC
40
                                                                          1440
       CTGAAAATG TATTGTGTTT TAGACTCTTG ATTTCAAAAG GTTCCACAGA ACTAGTCTGC
      GCTTACCTTA CCCATGTTTA TATATAGCTG TCCTACAGGG AGCTTTTATT TAGAAAATGT CTGCATAATG TTAGATTCTT CTCCTGTCTA CATTATGCAC TACATAATTG GACTTCATTA
       TGCTTTTGAA ATGCTTATCT GCCTGTCACA TAAGTTAAAC TATTTAATTT GTTTTGAATG
45
       TTTTGGATTG CTACACAATA CAATATTCTA AATTTAGGCA TGAGGGTTTT TTTGTTTTAT
       TTTTACTTTT TTTTTGTCAT TGCACTATGG AACACAAATG AAATTCTCTT AATTTATAAG
                                                                          1800
       AAGATAGTAG GAGTTAAATT TTGAAAATGG TTGTGATGAG CCACGAAATT CAATCTTTAT
                                                                          1860
       AATATAGGTA CTGCTCTTTC AGACAAACAG TCCATTTTTA ATGACTTCTT ATTTTGTTGA
                                                                          1920
       AATTACTTTA ACTGCTAATC ACTGTGGTTG CCAAATATTT ACTTCAGAAG CAAAGATTTT
                                                                          1980
50
       CAAACAAGCA TACACGATGC AAAATACCAG TCTGGCTTCT AGTCTATTTA CTGTTTTGTT
                                                                          2040
       TCACTCAGAT TAGCTCAGTT TTCTCATCAA AGCAGAATGC TATCTTGCGT GTGTGTGTGT
                                                                          2100
       2160
       TTTTTTTTT TTTTTTTAA ATTACAAAAG CCATGAGCTG CTTTTATGCT GAAAATGGTC
                                                                          2220
       ATTTCCCTGT TCACTTACTG ACATGTGAAG AAGGGTTTCT TGCTTTCTTA AACATTTCCG
                                                                          2280
55
       TAAGGCAGGC TAGAAATGTA ATACTTCAAA TGTTTGATGA TTATGGTCTT TTGATAGGAA
                                                                          2340
       TAGATTCTGC TTGGGATATA TATCCAGGCA CTCTCTAAGG TCTAGGGTTG ATATTAACAA
                                                                          2400
       AGGAATGTAC TTAGAATAGC AGTACATTTT ATGCAAATAT GGAAATTATT TTAAGAAACA
                                                                          2460
       ATGACATATC AAAACTGCTT TTTACATGAT TTTGAAATAG ACTAGAAAGC TTTCCCTATA
                                                                          2520
       GACATATTAA TATTCCAATC ATAACTTTAA TTCAAGAATG CAGTTTTACC AAAAGAAAAA
                                                                          2580
       TTTGAAAATT TCTATTCAGG CTACTGGAAT TGGTTATTAA AAGAAAAAGG AAAAAGAAGA
60
       ATCTTGCTGC TTTCAGTATT TCCTGATTTT TTTGTAAATA TAAAGAGGAA CTTCAATTAT
       GAAAAATTTT TAAAAGATAT ATATATCTAT ATATCTATAT ATATGTACTG TTTTGTTTCC
       TGTCTTGAAG ATTTTGAGTT ATGGTTATTG GTTTCAGATT GATTAATTCA CATATGCTGT
                                                                          2820
       GTTTTCTTTA AAAGTCATAT GGGTTCGTGG CCTAATGCCT TGGATTTTAC ATATTTTCT.
                                                                          2880
65
       TTTTAAATGC AAAACCTTTT CAACAAAATA GTGTTTGTCA TCAGGTTGGT ACTAAACATT
                                                                          2940
                                                                          3000
       TATAATTACT GTGTAATTAT AAACAAAAAT ACATAAAGCT TTGAATATAA TTATGTAGCA
      TAAAAGTTAA GGTTGTTCAC TATGATGGCA TCTTAGAATT AAACAAAACT TTTACTAGGG
                                                                          3060
       CTGAAAAGAG AAGACTGATT TAATGTGGTG TGATTATTCT GAAGATAAAT GTCTGGCTAC
                                                                          3120
       AGGGAATATT TTGTACTAAA AAATGATTAC ACATATGGCT GTGTGTGTT GAGTCTGTGT
                                                                          3180
70
       CTGTGAGAGA GCCAGAGAGA GTGAGAGAGA TTGACAGAGA AAGGGAGAGA CACACACAC
                                                                          3240
       CCCCTTGAAT TGCTTTAACT CCTAAGTGTT TCAGTCCTCA TTCCGGTAAA CTCCCCATGC
                                                                          3300
       TGATTCTTTG TTTTAAACTG AACCATAGGT ACAGTTTCCT TTTTGCCAAA TGTCAAAACA
                                                                          3360
       GGTACAAATT TTAAAATGTA ATGCTTTTTA AATAGAAAAA TGTATAAAAT TAGAAGTGCC
                                                                          3420
       CACATATAAA AAATACTTGA GATGAAGATT ATCTTTAGTG AATATCATCT GCATATCTCT
                                                                          3480
75
       GTAAGTTCAA TTGTGTTTCT TACAGTCCCT GTCATATTAC CAACAGAGGC AATAAAAGCT
       GCAGTGAAAT TG
       Seg ID NO: 164 Protein sequence:
       Protein Accession #: AAG00606
80
                                        31
                  11
                             21
       MNKLKSSOKD KVROFMIFTO SSEKTAVSCL SQNDWKLDVA TDNFFQNPEL YIRESVKGSL
                                                                            60
       DRKKLEOLYN RYKDPODENK IGIDGIQQFC DDLALDPASI SVLIIAWKFR AATQCEFSKQ
                                                                           120
85
       EFMDGMTELG CDSIEQLKAQ IPKMEQELKE PGRFKDFYQF TFNFAKNPGQ KGLDLEMAIA
                                                                           180
       YWNLVLNGRF KFLDLWNKFL LEHHKRSIPK DTWNLLLDFS TMIADDMSNY DEEGAWPVLI
                                                                           240
       DDFVEFARPO IAGTKSTTV
```

Seq ID NO: 165 DNA sequence Nucleic Acid Accession #: AF256215 Coding sequence: 220-2028

5	Coding sequ	ience: 220-2	2028				
•	1	11	21	31	41	51	
	1	F	1	1	1	1	
	CTCCAGTCCG	CATGCTCAGT	AGCTGCTGCC	GGCCGGGCTG	CGGGGCGCG	TCCGCTGCGC	60
10	GCCTACGGGC	TGCGGTGGCG	GCCGCCGCGG	CACCCGGCAG	GGCCCGCCAG	TCCCCGCTTC	120 180
10	CAGCICCAG	GCTGCGGAGC	COCCOGG	CAGGGCGGGC GCTCCTGCGA	TGGCGGCGGA	AGAGGAGGCT	240
	GCGGCGGGAG	GTAAAGTGTT	GAGAGAGGAG	AACCAGTGCA	TTGCTCCTGT	GGTTTCCAGC	300
	CGCGTGAGTC	CAGGGACAAG	ACCAACAGCT	ATGGGGTCTT	TCAGCTCACA	CATGACAGAG	360
1.5	TTTCCACGAA	AACGCAAAGG	AAGTGATTCA	GACCCATCCC	AAGTGGAAGA	TGGTGAACAC	420
15	CAAGTTAAAA	TGAAGGCCTT	CAGAGAAGCT	CATAGCCAAA GCAATGATCC	CTCAGTGCAA	CCCCATGGCG	480 540
				ATGGCTGTTC			600
	GGCTTGACAA	ATTCTTATGT	GGGAAGTAAT	TATAGACCAT	CATTTCTTCA	GGATAATGAG	660
00	CTCAGACATT	TAATCCTTAA	GACTGCAGAA	GGCTTCTTAT	TTGTGGTTGG	atgtgaaaga	720
20	GGAAAAATTC	TCTTCGTTTC	TAAGTCAGTC	TCCAAAATAC	TTAATTATGA	TCAGGCTAGT	780 840
	CAACTTTCTT	CTTTTGATAT	TTCDCCADGA	CATCCAAAAG GAAAAGCTAA	TAGATGCCAA	AACTGGTTTG	900
				ACACGTGTGT			960
06				TCTGTCAAAG			1020
25				TATACTATCC			1080
				GAAGAAAGGA TTACAGCCAT			1140 1200
				ATAACCCGGT			1260
20	GTCTATGTAG	ATCAAAGGGC	AACAGCGATT	TTAGGATATC	TGCCTCAGGA	ACTTTTGGGA	1320
30				GACCACAATA			1380
				ACAGATTCCT TTTAGTTTCA			1440 1500
				GTTTTGGGAC			1560
	TCATTTTTAC	CITGTAGCTC	TCAATCATCA	GAAGAATCCT	CTAGACAGTC	CTGTATGAGT	1620
35				GGTGCTGGTA			1680
				TCTTCTTCAT AACTGCAGGA			1740 1800
				CTAGAGGCTA			1860
40 .	GTTGCTGTCC	ACAGCCATGA	GCCACTCCTC	AGTGATGGTG	CACAGTTGGA	TTTCGATGCC	1920
40				GCATTTATGA			1980
				ATCCAGTGGA TTATTTACGA			2040 2100
				TTTATTAATG			2160
	TTGCATCTTC	CTGTCACAGG	GATGTGGGGA	AATACGTTTT	CCTCCCAAGA	GAACCAAGTT	2220
45				CTTATAATCC			2280 2340
				CATATTGTTT			2400
				AACATTTTCC			2460
50				AACAGTGAGT			2520
50	AGTGCAATTT	ATAGTCATAA	TCACATTGAA	TACTGTATTT GAGCACTTTA	GATCTTTGGA	TAAGTGAGAT	2580 2640
				AGAGTTTCAG			2700
	GGATCTTGGG	CCCTAGATCT	TGGGGATTAA	CCTCTGCATA	TAAGATTTAC	TCTTAATAGG	2760
55				GTACTTTGGG			2820 2880
<i>J J</i>				CCAATATGGT CTTGAGGTAA			2940
	TGACAGTCCA	TTCATGAGCG	CAAAGGCCTC	ATGACCTAAT	GGCACACACC	TGTAATCCCA	3000
				CTTGAACCTG			3060
60				GGCAACAGAG AAGATCTCTA			3120 3180
00	TGACATTGGA	AAGATTTAAT	GGGATAGATT	TGTCCTAAAG	GAAAAAAGTA	GGCCCGGGCA	3240
	GATTAAATGT	CTTGTGTAAA	GTCACACATT	AAATTCAGTC	ACACATTAAA	TTCATAGAGT	3300
	TTTAAATGTT	TAATGTATAT	AAACCAGTTT	CTTTATACAC	ATTTGGGAAA	ACATTGGTCT	3360
65						AAGTAATTAG	3420 3480
05	GCAATTACAG	CCAATGAGAA	ATAACCAAAGG	AACCAATTTT	CTAGTTATAA	TACATGTTTA TTTAAAATTT	
						AAGAATTAAG	
	ATTATTTAAA	ATACTGCATG	TCTACCTTCT	CGGGGATCAT	ACTTTATAAC	ACTTTCTGCT	3660
70	TCAGTAGCTC	TTCATAGCTT	GCCAAGTATG	CTCCCATATT	TTCTCTCTCG	TGCCTCGCAA	3720
70						GTGGGCTTCA TCAGAGCCCC	
	TCGCCAAAAC	AAAGCATTAT	TTTGACCCTG	CATGCTATTT	CTTTAGCTGT	AGGTGATAGA	3900
	TTAGAACTTC	TGTCAGACAT	GTTAATGACA	AACATACCAA	CAGACAATAA	CCAAAGCAAA	3960
75	TGTTTCCTTC	AAGTGTGAAA	TGTGCAGGGG	CTCGTGGGCA	AGGATGTATT	GGCACACTGT	4020
<i>7</i> 5						GGTCCGACAC AGATGGGGAG	
	AATTGGTGTG	CAGCAGCCTA	AGTGTTATAG	TTAAGTCTAA	AGAAGTATGA	AAGATCCCCT	4200
	GTGTTCTCTA	AATTGAGCAG	AGGGGCCTGC	CTACCAATAT	CACTTTTTAG	GGGACTGAAC	4260
80						CAGGGTAGGC	
80						GATGCCAGGA CAGTTTTTTC	
	TCTTTGCAAG	AGGAGGGGCT	GTTCAATTCC	ATAGACCAGT	GGGCAGATAG	CCAGTTGAAT	4500
	ACTCTGTGCA	TGGTTTGATC	CTTTATTAGT	TOGCTCTAAT	ATTTTTCTGT	AGATCCTTTT	4560
95						TAAGGTTTGT	
85						TTAGAAGTGA TTTTGAATTT	
						TACTCTAGAG	

```
CAGCGCTGTC CRATAGAAAT ATAATCTGAG CCACATGTAT AATTITATTT TCTTCTAGCC
                                                                           4860
       ACATTAAAGA AGTAAAAAGA TACAAGTAGA ACTAATTTTA ATGTTTTAAT TCAGTATATC
                                                                           4920
       CAAAATATCA TITGAACATG TAATTAATAT AAAATTATTA ATGTGATATT TTACATTCTT
                                                                           4980
       TTGGTAATAC TAGTCTTCAA AATCTGGTAT GTATCTTACA TTGATAGCAC ATCTCACTTT
                                                                           5040
       GTACTAGCCA CATTGCAAGT GCTCAGTAGC CACATGTGGC TAGTGGCTAC TGCACTGGAC
                                                                           5100
                                                                           5160
       AGCACAGTTC TAGGTTCCAC CCTAACACCC AAGTCCTGTG GATTAGAATC CCAGAATCAG
       AGCTGGAAGT AAACATAGAG ATCAAACCTC CTTTTAAAAA TGAGGACGCT GAGGCACAGA
                                                                           5220
       GTTTAAATGG CTTGCATGAG GTCATACAGC TAAATTCAGC CTCAACAGGG TCTTCTGATT
                                                                           5280
       CCAGGCACTC TTCCCACTCC ACTACATTAC TGTAGTGGTA ATTCTTAGGG TTAAAAAAAG
                                                                           5340
10
       TGTAGAGTAG GCCGGGCGCA GTGGCTCATG CCTGTAATCC CAGCACTTTG GGAGGCCGAA
                                                                           5400
       GTGGGCGGAT CACGAGGTCA GGAGATCGAG ACCATCCTGG CCAACATGGT GAAACCCCGT
                                                                           5460
       CTCTACTGAA AATACAAAGC AAAATTAGCC AGGTGTGGTG GCGGGCGCCT GTGGTCCCAG
                                                                           5520
       CTGCTCTGGA GGCTGAGGCA GAATGGCGTG AACCCAGGAG GCAGAGATGG CAGTGAGCCA
                                                                           5580
       AGATOGOGOC ACTGCACCOC AGCOTGGGOG ACAGAGOGAG ACTCCATOTO AAAAAAAAAA
       AAAAAAAAA AAGAAAAGAA AAGAAAAGTC TAGAGAACAT TATATTAAGT GGTTATTATT
15
                                                                           5700
       GAAGTAGACC AAAGTTTATA CCATAAGGAT ATTTTTCCTT AAATACCATG TTTGAAGAAC
                                                                           5760
       AATTATTTAT TGATCCTTGA ATCTGTAAGA TCAAATAACA AGTCTCTATC CATGTTACCA
                                                                           5820
       AATTTAACCT TTTGAAAATA ATAAACTTTA AAATATCAGA TGTGTTATTA CAGGATGATA
       CTTGGAATCA AGTGAAATGA GTTATATGGT CATCACTAAA TTTAGAAATC TATTGTGAAA
                                                                           5940
20
       CAAAGACAAA CAGGAAAGTA CAGAATAGAG ACTTTTAGTA AATAAATGGA ATTTAAAAGA
                                                                           6000
       AAGTGTTTAT TTACAGTGTC ACGACAGAAA AGGATGTCTT TGTTGTCATA GTCTTTGAGG
                                                                           6060
       GATCTCCGTA AAATCTGGGG CACAGGTACA AGAAATAGCC AATATTTAGT TCCCAGACCA
                                                                           6120
       TGTTTAGTAG TGTCCAGTTT CAGATCATGC TGCCAAGAGG TATCTCCCCC TCAGGTGGGT
                                                                           6180
       CATCACTGAG CCCTGGAATT GGAGACTCAT ACTTGCCCAG CACAATGTTA CGGGCAGACA
                                                                           6240
25
       GGCCGACATC TATGATTAGC TAGAAGCCAT AAAGAAAAGC TGCTAAGTGG CCACTAGGTG
                                                                           6300
       CCACTTTCT GTTTTGTAA TGCTTTCATT AGCAGATCTT TTTTTTCCAA GCTCCATGGG
                                                                           6360
       GCCTATGAGA GGCATTTATG ATTTTTGTGC CTACAATAAG TCAGCCTGTC TGGTGTGAGT
                                                                           6420
                                                                           6480
       TGTTTTATGA GAAATGCTTT CCAAGGGAGG TCTAGGAAGA TCCTGACACA TAAGAACTTT
       GGCTTAGAGA GCTTTCCAGG TGTAGTGCCA ATAAAAACTG ACCTGGAAAG AAAACCTGCC
                                                                           6540
30
       CAGCACGGAA CATGCTTTCT GAACTCACTT GAGAGTGTAT GGTGTATGTC ACTTCTCATA
                                                                           6600
                                                                           6660
       TATTCTTGAG TTTAGATTTG TCTTTTATAC AATTTTTAGC TCTTTTCCAG TTCACTTGTG
                                                                           6720
       CTCGTCTGTA TATTGGTATT TTTAAATTTT TGTGGTAAAT AATGAAAAGA GTGAAATTAT
       ATTTTATAAT TACTCATTTG TAGTTTTTTT.TTTTAATTTA ATAAACTTCC TCCAAAAAGT
                                                                           6780
       GCTCCCTTAA AA
35
       Seq ID NO: 166 Protein sequence:
       Protein Accession #: AAG34652
40
                             21
                                         31
       MAAEERAAAG GKYLREENOC IAPVVSSRVS PGTRPTAMGS FSSHMTEFPR KRKGSDSDPS
       OVEDGEHOVK MKAFREAHSO TEKRRRDKMN NLIEELSAMI POCNPMARKL DKLTVLRMAV
                                                                            120
       QHLRSLKGLT NSYVGSNYRP SFLQDNELRH LILKTAEGFL FVVGCERGKI LFVSKSVSKI
                                                                            180
45
       LNYDOASLTG QSLFDFLHPK DVAKVKEQLS SFDISPREKL IDAKTGLQVH SNLHAGRTRV
                                                                            240
       YSGSRRSPFC RIKSCKISVK EEHGCLPNSK KKEHRKFYTI HCTGYLRSWP PNIVGMEEER
                                                                            300
       NSKKDNSNFT CLVAIGRLQP YIVPQNSGEI NVKPTEFITR FAVNGKFVYV DQRATAILGY
                                                                            360
       LPQELLGTSC YEYFHODDHN NLTDKHKAVL QSKEKILTDS YKFRAKDGSF VTLKSQWFSF
                                                                            420
       TNPWTKELEY IVSVNTLVLG HSEPGEASPL PCSSQSSEES SRQSCMSVPG MSTGTVLGAG
                                                                            480
50
       SIGTDIANEI LDLQRLQSSS YLDDSSPTGL MKDTHTVNCR SMSNKELFPP SPSEMGELEA
                                                                            540
       TRONOSTVAV HSHEPLLSDG AQLDFDALCD NDDTAMAAFM NYLEAEGGLG DPGDFSDIQW
                                                                            600
       Seg ID NO: 167 DNA sequence
55
       Nucleic Acid Accession #: NM_014400
       Coding sequence: 86-1126
                             21
                                         31
60
       GGTTACTCAT CCTGGGCTCA GGTAAGAGGG CCCGAGCTCG GAGGCGGCAC ACCCAGGGGG
       GACGCCAAGG GAGCAGGACG GAGCCATGGA CCCCGCCAGG AAAGCAGGTG CCCAGGCCAT
                                                                            120
       GATCTGGACT GCAGGCTGGC TGCTGCTGCT GCTGCTTCGC GGAGGAGCGC AGGCCCTGGA
                                                                            180
       GTGCTACAGC TGCGTGCAGA AAGCAGATGA CGGATGCTCC CCGAACAAGA TGAAGACAGT
                                                                            240
       GAAGTGCGCG CCGGGCGTGG ACGTCTGCAC CGAGGCCGTG GGGGCGGTGG AGACCATCCA
                                                                            300
65
       CGGACAATTC TCGCTGGCAG TGCSGGGTTG CGGTTCGGGA CTCCCCGGCA AGAATGACCG
                                                                            360
       CGGCCTGGAT CTTCACGGGC TTCTGGCGTT CATCCAGCTG CAGCAATGCG CTCAGGATCG
                                                                            42D
       CTGCAACGCC AAGCTCAACC TCACCTCGCG GGCGCTCGAC CCGGCAGGTA ATGAGAGTGC
                                                                            480
       ATACCCGCCC AACGGCGTGG AGTGCTACAG CTGTGTGGGC CTGAGCCGGG AGGCGTGCCA
                                                                            540
       GGGTACATCG CCGCCGGTCG TGAGCTGCTA CAACGCCAGC GATCATGTCT ACAAGGGCTG
                                                                            600
70
       CTTCGACGGC AACGTCACCT TGACGGCAGC TAATGTGACT GTGTCCTTGC CTGTCCGGGG
                                                                            660
       CTGTGTCCAG GATGAATTCT GCACTCGGGA TGGAGTAACA GGCCCAGGGT TCACGCTCAG
                                                                            720
       TEGCTCCTET TECCAGEGET CCCECTETAA CTCTGACCTC CECAACAAGA CCTACTTCTC
                                                                             780
       CCCTCGAATC CCACCCCTTG TCCGGCTGCC CCCTCCAGAG CCCACGACTG TGGCCTCAAC
                                                                             840
       CACATCTGTC ACCACTTCTA CCTCGGCCCC AGTGAGACCC ACATCCACCA CCAAACCCAT
                                                                             900
75
       GCCAGCGCCA ACCAGTCAGA CTCCGAGACA GGGAGTAGAA CACGAGGCCT CCCGGGATGA
       GGAGCCCAGG TTGACTGGAG GCGCCGCTGG CCACCAGGAC CGCAGCAATT CAGGGCAGTA
                                                                           1020
       TCCTGCAAAA GGGGGGCCCC AGCAGCCCCA TAATAAAGGC TGTGTGGCTC CCACAGCTGG
       ATTGGCAGCC CITCTGTTGG CCGTGGCTGC TGGTGTCCTA CTGTGAGCTT CTCCACCTGG
AAATTTCCCT CTCACCTACT TCTCTGGCCC TGGGTACCCC TCTTCTCATC ACTTCCTGTT
                                                                           1140
                                                                           1200
80
                                                                           1260
       CCCACCACTG GACTGGGCTG GCCCAGCCCC TGTTTTTCCA ACATTCCCCA GTATCCCCAG
       CTTCTGCTGC GCTGGTTTGC GGCTTTGGGA AATAAAATAC CGTTGTATAT ATTCTGGCAG
                                                                           1320
       GGGTGTTCTA GCTTTTTGAG GACAGCTCCT GTATCCTTCT CATCCTTGTC TCTCCGCTTG
                                                                           1380
       TCCTCTTGTG ATGTTAGGAC AGAGTGAGAG AAGTCAGCTG TCACGGGGAA GGTGAGAGAG
                                                                            1440
       AGGATGCTAA GCTTCCTACT CACTTTCTCC TAGCCAGCCT GGACTTTGGA GCGTGGGGTG
                                                                           1500
85
       GGTGGGACAA TGGCTCCCCA CTCTAAGCAC TGCCTCCCCT ACTCCCCGCA TCTTTGGGGA
                                                                            1560
       ATCGGTTCCC CATATGTCTT CCTTACTAGA CTGTGAGGTC CTCGAGGGCA GGGACCGTGC
                                                                           1620
       CTTATGTCTG TGTGTGATCA GTTTCTGGCA CATAAATGCC TCAATAAAGA TTTAATTACT 1680
```

WO 02/086443 TTGTATAGTG AAAAAAAA

Seq ID NO: 168 Protein sequence:

Protein Accession #: NP_055215 5 MDPARKAGAQ AMIWTAGWLL LLLLRGGAQA LECYSCVQKA DDGCSPNKMK TVKCAPGVDV CTEAVGAVET IHGQFSLAVX GCGSGLPGKN DRGLDLHGLL AFIQLQQCAQ DRCNAKLNLT SRALDPAGNE SAYPPNGVEC YSCVGLSREA COGTSPPVVS CYNASDHVYK GCFDGNVTLT 10 AANVTYSLPV RGCVODEFCT RDGVTGPGFT LSGSCCQGSR CNSDLRNKTY FSPRIPPLVR 240 LPPPEPTTVA STTSVTTSTS APVRPTSTTK PMPAPTSQTP RQGVEHEASR DEEPRLTGGA AGHODRSNSG OYPAKGGPOO PHNKGCVAPT AGLAALLLAV AAGVLL 15 Seg ID NO: 169 DNA sequence Nucleic Acid Accession #: NM 006875 Coding sequence: 186-1190 21 . 31 41 51 20 GAATTOGGCA CGAGCGCGCG GCGAATCTCA ACGCTGCGCC GTCTGCGGGC GCTTCCGGGC 60 120 CCCGGGCGTC CACGCCCTGC GGGCTTAGCG GGTTCAGTGG GCTCAATCTG CGCAGCGCCA 180 CCTCCATGTT GACCAAGCCT CTACAGGGGC CTCCCGCGCC CCCCGGGACC CCCACGCCGC 240 25 CGCCAGGAGG CAAGGATCGG GAAGCGTTCG AGGCCGAGTA TCGACTCGGC CCCCTCCTGG 300 GTAAGGGGGG CTTTGGCACC GTCTTCGCAG GACACCGCCT CACAGATCGA CTCCAGGTGG 360 CCATCAAAGT GATTCCCCGG AATCGTGTGC TGGGCTGGTC CCCCTTGTCA GACTCAGTCA 420 CATGCCCACT CGAAGTCGCA CTGCTATGGA AAGTGGGTGC AGGTGGTGGG CACCCTGGCG TGATCCGCCT GCTTGACTGG TTTGAGACAC AGGAAGGCTT CATGCTGGTC CTCGAGCGGC 480 540 30 CTTTGCCCGC CCAGGATCTC TTTGACTATA TCACAGAGAA GGGCCCACTG GGTGAAGGCC 600 CAAGCCGCTG CITCTTTGGC CAAGTAGTGG CAGCCATCCA GCACTGCCAT TCCCGTGGAG 660 TTGTCCATCS TGACATCAAG GATGAGAACA TCCTGATAGA CCTACGCCGT GGCTGTGCCA
AACTCATTGA TTTTGGTTCT GGTGCCCTGC TTCATGATGA ACCCTACACT GACTTTGATG 720 GGACAAGGGT GTACAGCCCC CCAGAGTGGA TCTCTCGACA CCAGTACCAT GCACTCCCGG CCACTGTCTG GTCACTGGGC ATCCTCCTCT ATGACATGGT GTGTGGGGAC ATTCCCTTTG 840 35 AGAGGGACCA GGAGATTCTG GAAGCTGAGC TCCACTTCCC AGCCCATGTC TCCCCAGACT GCTGTGCCCT AATCCGCCGG TGCCTGGCCC CCAAACCTTC TTCCCGACCC TCACTGGAAG 960 1020 AGATCCTGCT GGACCCCTGG ATGCAAACAC CAGCCGAGGA TGTTACCCCT CAACCCCTCC 1080 1140 40 TGGCCCCCAA TGGTCAGAAG AGCCATCCCA TGGCCATGTC ACAGGGATAG ATGGACATTT 1200 GTTGACTTGG TTTTACAGGT CATTACCAGT CATTAAAGTC CAGTATTACT AAGGTAAGGG 1260 ATTGAGGATC AGGGGTTAGA AGACATAAAC CAAGTTTGCC CAGTTCCCTT CCCAATCCTA 1320 CAAAGGAGCC TTCCTCCCAG AACCTGTGGT CCCTGATTTT GGAGGGGGAA CTTCTTGCTT 1380 CTCATTTTGC TAAGGAAGTT TATTTTGGTG AAGTTGTTCC CATTTTGAGC CCCGGGACTC 1440 45 TTATTTTGAT GATGTGTCAC CCCACATTGG CACCTCCTAC TACCACCACA CAAACTTAGT 1500 TCATATGCTT TTACTTGGGC AAGGGTGCTT TCCTTCCAAT ACCCCAGTAG CTTTTATTTT 1560 AGTAAAGGGA CCCTTTCCCC TAGCCTAGGG TCCCATATTG GGTCAAGCTG CTTACCTGCC 1620 TCAGCCCAGG ATTTTTATT TTGGGGGAGG TAATGCCCTG TTGTTACCCC AAGGCTTCTT
TTTTTTTTTT TTTTTTTTTG GGTGAGGGGA CCCTACTTTG TTATCCCAAG TGCTCTTATT
CTGGTGAGAA GAACCTTAAT TCCATAATTT GGGAAGGAAT GGAAGATGGA CACCACCGGA 1680 1740 50 1800 CACCACCAGA CAATAGGATG GGATGGATGG TTTTTTGGGG GATGGGCTAG GGGAAATAAG GCTTGCTGTT TGTTTTCCTG GGGCGCTCCC TCCAATTTTG CAGATTTTTG CAACCTCCTC 1860 1920 CTGAGCCGGG ATTGTCCAAT TACTAAAATG TAAATAATCA CGTATTGTGG GGAGGGGAGT 1980 TCCAAGTGTG CCCTCCTTTT TTTTCCTGCC TGGATTATTT AAAAAGCCAT GTGTGGAAAC 55 CCACTATTTA ATAAAAGTAA TAGAATCAGA AAAAAAAAA AAAAAAAA Seg ID NO: 170 Protein seguence: Protein Accession #: NP_006866 60 41 31 MLTKPLOGPP APPGTPTPPP GGKDREAFEA EYRLGPLLGK GGFGTVFAGH RLTDRLQVAI KVIPRNRVLG WSPLSDSVTC PLEVALLWKV GAGGGHPGVI RLLDWFETQE GFMLVLERPL 120 65 PAQDLFDYIT EKGPLGEGPS RCFFGQVVAA IQHCHSRGVV HRDIKDENIL IDLRRGCAKL 180 IDFGSGALLH DEPYTDFDGT RVYSPPEWIS RHQYHALPAT VWSLGILLYD MVCGDIPFER 240 DQEILEAELH FPAHVSPDCC ALIRRCLAPK PSSRPSLEEI LLDPWMQTPA EDVTPQPLQR 300 RPCPFGLVLA TLSLAWPGLA PNGQKSHPMA MSQG 70 Seq ID NO: 171 DNA sequence Nucleic Acid Accession #: NM_003646 Coding sequence: 89..2875 31 75 GCGGCGCGA GCGGCCTGC TGAGCCCCGG CCGCCGGCCC GGCATGGGCG TCTCCCGCGG GCCCTCCGCC GGCCGGGGCT AGGGCCGGGAT GGAGCCGCGG GACGGTAGCC CCGAGGCCCG GAGCAGCGAC TCCGAGTCGG CTTCCGCCTC GTCCAGCGGC TCCGAGCGCG ACGCCGGTCC 180 CGAGCCGGAC AAGGCGCCGC GGCGACTCAA CAAGCGGCGC TTCCCGGGGC TGCGGCTCTT 240 80 CGGGCACAGG AAAGCCATCA CCAAGTCGGG CCTCCAGCAC CTGGCCCCCC CTCCGCCCAC 300 CCCTGGGGCC CCGTGCAGCG AGTCAGAGCG GCAGATCCGG AGTACAGTGG ACTGGAGCGA 360 GTCAGCGACA TATGGGGAGC ACATCTGGTT CGAGACCAAC GTGTCCGGGG ACTTCTGCTA 420 CGTTGGGGAG CAGTACTGTG TAGCCAGGAT GCTGAAGTCA GTGTCTCGAA GAAAGTGCGC 480 AGCCTGCAAG ATTGTGGTGC ACACGCCCTG CATCGAGCAG CTGGAGAAGA TAAATTTCCG 540 85 CTGTAAGCCG TCCTTCCGTG AATCAGGCTC CAGGAATGTC CGCGAGCCAA CCTTTGTACG 600 GCACCACTGG GTACACAGAC GACGCCAGGA CGGCAAGTGT CGGCACTGTG GGAAGGGATT 660 CCAGCAGAAG TTCACCTTCC ACAGCAAGGA GATTGTGGCC ATCAGCTGCT CGTGGTGCAA 720

```
780
       GCAGGCATAC CACAGCAAGG TGTCCTGCTT CATGCTGCAG CAGATCGAGG AGCCGTGCTC
       GCTGGGGGTC CACGCAGCCG TGGTCATCCC GCCCACCTGG ATCCTCCGCG CCCGGAGGCC
                                                                            840
       CCAGAATACT CTGAAAGCAA GCAAGAAGAA GAAGAGGGCA TCCTTCAAGA GGAAGTCCAG
                                                                             900
       CAAGAAAGGG CCTGAGGAGG GCCGCTGGAG ACCCTTCATC ATCAGGCCCA CCCCCTCCCC
                                                                            960
       GCTCATGAAG CCCCTGCTGG TGTTTGTGAA CCCCAAGAGT GGGGGCAACC AGGGTGCAAA
                                                                           1020
       GATCATCCAG TCTTTCCTCT GGTATCTCAA TCCCCGACAA GTCTTCGACC TGAGCCAGGG
                                                                           1080
       AGGGCCCAAG GAGGCGCTGG AGATGTACCG CAAAGTGCAC AACCTGCGGA TCCTGGCGTG
                                                                           1140
       CGGGGGCGAC GGCACGGTGG GCTGGATCCT CTCCACCCTG GACCAGCTAC GCCTGAAGCC
                                                                           1200
       GCCACCCCT GTTGCCATCC TGCCCCTGGG TACTGGCAAC GACTTGGCCC GAACCCTCAA
                                                                           1260
10
       CTGGGGTGGG GGCTACACAG ATGAGCCTGT GTCCAAGATC CTCTCCCACG TGGAGGAGGG
                                                                           1320
       GAACGTGGTA CAGCTGGACC GCTGGGACCT CCACGCTGAG CCCAACCCCG AGGCAGGGCC
                                                                           1380
       TGAGGACCGA GATGAAGGCG CCACCGACCG GTTGCCCCTG GATGTCTTCA ACAACTACTT
                                                                           1440
       CAGCCTGGGC TTTGACGCCC ACGTCACCCT GGAGTTCCAC GAGTCTCGAG AGGCCAACCC
                                                                           1500
       AGAGARATTC AACAGCCGCT TTCGGAATAA GATGTTCTAC GCCGGGACAG CTTTCTCTGA
                                                                           1560
15
       CTTCCTGATG GGCAGCTCCA AGGACCTGGC CAAGCACATC CGAGTGGTGT GTGATGGAAT
                                                                           1620
       GGACTTGACT CCCAAGATCC AGGACCTGAA ACCCCAGTGT GTTGTTTTCC TGAACATCCC
                                                                           1680
       CAGGTACTGT GCGGGCACCA TGCCCTGGGG CCACCCTGGG GAGCACCACG ACTTTGAGCC
                                                                           1740
       CCAGCGGCAT GACGACGGCT ACCTCGAGGT CATTGGCTTC ACCATGACGT CGTTGGCCGC
                                                                           1800
       GCTGCAGGTG GGCGGACACG GCGAGCGGCT GACGCAGTGT CGCGAGGTGG TGCTCACCAC
                                                                           1860
       ATCCAAGGCC ATCCCGGTGC AGGTGGATGG CGAGCCCTGC AAGCTTGCAG CCTCACGCAT
20
       CCGCATCGCC CTGCGCAACC AGGCCACCAT GGTGCAGAAG GCCAAGCGGC GGAGCGCCGC
                                                                           1980
       CCCCCTGCAC AGCGACCAGC AGCCGGTGCC AGAGCAGTTG CGCATCCAGG TGAGTCGCGT
                                                                           2040
       CAGCATGCAC GACTATGAGG CCCTGCACTA CGACAAGGAG CAGCTCAAGG AGGCCTCTGT
                                                                           2100
       GCCGCTGGGC ACTGTGGTGG TCCCAGGAGA CAGTGACCTA GAGCTCTGCC GTGCCCACAT
                                                                           2160
25
       TGAGAGACTC CAGCAGGAGC CCGATGGTGC TGGAGCCAAG TCCCCGACAT GCCAGAAACT
                                                                           2220
       GTCCCCCAAG TGGTGCTTCC TGGACGCCAC CACTGCCAGC CGCTTCTACA GGATCGACCG
                                                                           2280
       AGCCCAGGAG CACCTCAACT ATGTGACTGA GATCGCACAG GATGAGATTT ATATCCTGGA
                                                                           2340
       CCCTGAGCTG CTGGGGGCAT CGGCCCGGCC TGACCTCCCA ACCCCCACTT CCCCTCTCCC
                                                                           2400
       CACCTCACCC TGCTCACCCA CGCCCCGGTC ACTGCAAGGG GATGCTGCAC CCCCTCAAGG
                                                                           2460
30
       TGAAGAGCTG ATTGAGGCTG CCAAGAGGAA CGACTTCTGT AAGCTCCAGG AGCTGCACCG
                                                                           2520
       AGCTGGGGGC GACCTCATGC ACCGAGACGA GCAGAGTCGC ACGCTCCTGC ACCACGCAGT
                                                                           2580
       CAGCACTGGC AGCAAGGATG TGGTCCGCTA CCTGCTGGAC CACGCCCCCC CAGAGATCCT
                                                                           2640
       TGATGCGGTG GAGGAAAACG GGGAGACCTG TTTGCACCAA GCAGCGGCCC TGGGCCAGCG
                                                                           2700
       CACCATCTGC CACTACATCG TGGAGGCCGG GGCCTCGCTC ATGAAGACAG ACCAGCAGGG
                                                                           2760
35
       CGACACTCCC CGGCAGCGGG CTGAGAAGGC TCAGGACACC GAGCTGGCCG CCTACCTGGA
                                                                           2820
       GAACCGGCAG CACTACCAGA TGATCCAGCG GGAGGACCAG GAGACGGCTG TGTAGCGGGC
                                                                           2880
       Seg ID NO: 172 Protein sequence:
       Protein Accession #: NP_003637
40
                                         31
       MEPRDGSPEA RSSDSESASA SSSGSERDAG PEPDKAPRRL NKRRFPGLRL FGHRKAITKS
       GLQHLAPPPP TPGAPCSESE RQIRSTVDWS ESATYGEHIW FETNVSGDFC YVGEQYCVAR
                                                                            120
45
       MLKSVSRRKC AACKIVVHTP CIEQLEKINF RCKPSFRESG SRNVREPTFV RHHWVHRRRQ
       DGKCRHCGKG FQQKFTFHSK EIVAISCSWC KQAYHSKVSC FMLQQIEEPC SLGVHAAVVI
                                                                            240
       PPTWILRARR PONTLKASKK KKRASPKRKS SKKGPEEGRW RPFIIRPTPS PLMKPLLVFV
                                                                            300
       NPKSGGNQGA KIIQSPLWYL NPRQVFDLSQ GGPKEALEMY RKVHNLRILA CGGDGTVGWI
                                                                            360
       LSTLDQLRLK PPPPVAILPL GTGNDLARTL NWGGGYTDEP VSKILSHVEE GNVVQLDRWD
                                                                            420
50
       LHAEPNPEAG PEDRDEGATD RLPLDVFNNY FSLGFDAHVT LEFHESREAN PEKFNSRFRN
                                                                            480
       KMFYAGTAFS DFLMGSSKDL AKHIRVVCDG MDLTPKIQDL KPQCVVFLNI PRYCAGTMPW
                                                                            540
       GHPGEHHDFE PQRHDDGYLE VIGFTMTSLA ALQVGGHGER LTQCREVVLT TSKAIPVQVD
                                                                            600
       GEPCKLAASR IRIALRNQAT MVQKAKRRSA APLHSDQQPV PEQLRIQVSR VSMHDYEALH
                                                                            660
       YDKEQLKEAS VPLGTVVVPG DSDLELCRAH IERLQQEPDG AGAKSPTCQK LSPKWCFLDA
                                                                            720
       TTASRFYRID RAQEHLNYVT EIAQDEIYIL DPELLGASAR PDLPTPTSPL PTSPCSPTPR
55
                                                                            780
       SLQGDAAPPQ GEELIEAAKR NDFCKLQELH RAGGDLMHRD EQSRTLLHHA VSTGSKDVVR
                                                                            840
       YLLDHAPPEI LDAVEENGET CLHQAAALGQ RTICHYIVEA GASLMKTDQQ GDTPRQRAEK
       AODTELAAYL ENROHYOMIO REDOETAV
60
       Seq ID NO: 173 DNA sequence
       Nucleic Acid Accession #: AF232772
       Coding sequence: 1-1662
65
       ATGCCGGTGC AGCTGACGAC AGCCCTGCGT GTGGTGGGCA CCAGCCTGTT TGCCCTGGCA
                                                                             60
       GTGCTGGGTG GCATCCTGGC AGCCTATGTG ACGGGCTACC AGTTCATCCA CACGGAAAAG
                                                                            120
       CACTACCTGT CCTTCGGCCT GTACGGCGCC ATCCTGGGCC TGCACCTGCT CATTCAGAGC
                                                                            180
       CTTTTTGCCT TCCTGGAGCA CCGGCGCATG CGACGTGCCG GCCAGGCCCT GAAGCTGCCC
                                                                            240
70
       TCCCCGCGGC GGGGCTCGGT GGCACTGTGC ATTGCCGCAT ACCAGGAGGA CCCTGACTAC
                                                                            300
       TTGCGCAAGT GCCTGCGCTC GGCCCAGCGC ATCTCCTTCC CTGACCTCAA GGTGGTCATG
                                                                            360
       GTGGTGGATG GCAACCGCCA GGAGGACGCC TACATGCTGG ACATCTTCCA CGAGGTGCTG
                                                                            420
       GGCGGCACCG AGCAGGCCGG CTTCTTTGTG TGGCGCAGCA ACTTCCATGA GGCAGGCGAG
                                                                            480
       GGTGAGACGG AGGCCAGCCT GCAGGAGGGC ATGGACCGTG TGCGGGATGT GGTGCGGGCC
                                                                            540
       AGCACCTTCT CGTGCATCAT GCAGAAGTGG GGAGGCAAGC GCGAGGTCAT GTACACGGCC
75
                                                                            600
       TTCAAGGCCC TCGGCGATTC GGTGGACTAC ATCCAGGTGT GCGACTCTGA CACTGTGCTG
                                                                            660
       GATCCAGCCT GCACCATCGA GATGCTTCGA GTCCTGGAGG AGGATCCCCA AGTAGGGGGA
                                                                            720
       GTCGGGGGAG ATGTCCAGAT CCTCAACAAG TACGACTCAT GGATTTCCTT CCTGAGCAGC
       GTGCGGTACT GGATGGCCTT CAACGTGGAG CGGGCCTGCC AGTCCTACTT TGGCTGTGTG
80
       CAGTGTATTA GTGGGCCCTT GGGCATGTAC CGCAACAGCC TCCTCCAGCA GTTCCTGGAG
       GACTGGTACC ATCAGAAGTT CCTAGGCAGC AAGTGCAGCT TCGGGGATGA CCGGCACCTC
       ACCAACCGAG TCCTGAGCCT TGGCTACCGA ACTAAGTATA CCGCGCGCTC CAAGTGCCTC
                                                                            1020
       ACAGAGACCC CCACTAAGTA CCTCCGGTGG CTCAACCAGC AAACCCGCTG GAGCAAGTCT
                                                                            1080
       TACTTCCGGG AGTGGCTCTA CAACTCTCTG TGGTTCCATA AGCACCACCT CTGGATGACC
TACGAGTCAG TGGTCACGGG TTTCTTCCCC TTCTTCCTCA TTGCCACGGT TATACAGCTT
                                                                            1140
85
                                                                            1200
       TTCTACCGGG GCCGCATCTG GAACATTCTC CTCTTCCTGC TGACGGTGCA GCTGGTGGGC
                                                                            1260
       ATTATCAAGG CCACCTACGC CTGCTTCCTT CGGGGCAATG CAGAGATGAT CTTCATGTCC 1320
```

```
CTCTACTCCC TCCTCTATAT GTCCAGCCTT CTGCCGGCCA AGATCTTTGC CATTGCTACC 1380
       ATCAACAAAT CTGGCTGGGG CACCTCTGGC CGAAAAACCA TTGTGGTGAA CTTCATTGGC
                                                                             1440
       CTCATTCCTG TGTCCATCTG GGTGGCAGTT CTCCTGGAGG GGCTGGCCTA CACAGCTTAT
                                                                             1500
       TGCCAGGACC TGTTCAGTGA GACAGAGCTA GCCTTCCTTG TCTCTGGGGC TATACTGTAT
                                                                             1560
 5
       GGCTGCTACT GGGTGGCCCT CCTCATGCTA TATCTGGCCA TCATCGCCCG GCGATGTGGG
                                                                             1620
       AAGAAGCCGG AGCAGTACAG CTTGGCTTTT GCTGAGGTGT GACATGGCCC CCAAGCAGAG
                                                                             1680
       CGGGTAAAGT GCAATGGGTA AGGGAGGGAA GGGGAATGGA AGAGAAAAGA CAGGGTGGGA
                                                                             1740
       GGGAGGAGGA AGTGCTGTGT TTTAGTCTCT TAATGGTCCA AAGGACAAAT CTAAAATGCA
                                                                             1800
       AAGAACGGTG ATGTAGTATG GCCTGACAGC TCTGTTTAGA GGAGGCAACA CTGATCCCCC
                                                                             1860
10
       AGATGCAGGG CTGCAGGGGA TTCTGTGTTT TCAGACTGCC TGTCTGCTTG CATCTGCACA
                                                                             1920
       TAGGCAGTAG CCTCCTCCTG GGCTCCAGAG GGCACTCAGA AGTTGTGCTA AACCAAGTTA
                                                                             1980
       AGTCCCATTC AGTGGCAACT TGTGATAGGT ACCTGAGTGA CGGCAACCTG CGGAAGGAGG
                                                                             2040
       TTCTCCCAGC CCATCTGAAC ACAACCAGAG GTGGCAGGAG AATTTCTACT GAGCGAGGTG
                                                                             2100
       GGCCGGTTAG TGTATGTCAC CCCCACCCCA CCCATAAGTA GTCATCAATG CAATAAGATT
                                                                             2160
       GCGCGTGAGA TACAAGGCCC AGAAGCCTGA TCTTTGGGCA TCAGAAAACA GGGTCCAGGA
ATGGTGCTTT ATGTGAGATA CCCCACTCCA CATCAACATT CCAGGGATGA GCCAAACCAG
15
       CAGGGAGTTA GCACTGAACT GCTTTTAAAA GTGCACATTA AAAAGGAAAG TTTGCCAGGA
                                                                             2340
       GGAACAAAGA GATTGTGGTG GTGCTAAAGG AGGCCATAAG CTACACAGAG GCCTTGGGTG
                                                                             2400
       TTCCACCTGG AAACTGCTCA GACGTCTAGA TGGGTTCTTA GCTTGTCTGT GATCTCTGCT
                                                                             2460
       GGGGAGATAA AAAGATTAAG CCCCAACATG TTCAGAAAAG AAGTGAAGTC TTGGGTATTT
20
       TAACCIGTAT ACTOTTGAAT TOCTOTCAAA TTCAGCTOTG ATCTGAGGCT AAGACACACT CCCCACTTCA CTTTCTTCAA AGCCACATTT TTTGAGGTAT CACTGCAGTC ACCTCTTCTA
                                                                             2580
       CCCTCATCAT CATAGGTAAG GTTTTCAAGG TGGCAATTGG GGCGGAGCCC CGGCTTCTTA
                                                                             2700
       TAGAAGCTTC AGCAGGAGGC AAGCGTGTTC TCAGCACATA TGGGAACTAT GAGGAGCCTC
                                                                             2760
25
       TGATCAAATT GGCTACAATC TTGGAGCTGC TTGGACGGAT TCCTTGGCAG CCGGGTTAGC
                                                                             2820
       ATGTGTGACT TTCAGGCTAC TGTTCTTGAC AATCATCTCC AATGGAAAGC TTTTCAGTGT
                                                                             2880
       TCCCAAAGTG AACTCTCAAA TCCAAAATGG TTATCTTTGA GACCATCCAT TCTCCTCAGT
                                                                             2940
       GGCTTCTCCA GGGAATTCTT ACAGCCAAGT TGTGACAGTC ACTGCATTTG CCTGCTTCTT
                                                                             3000
       TCCAGAAACC AAACTAGGAG ATGAAACTGG TTCCTACATC CTAAGGTTCT TGCTTTCTCT
                                                                             3060
30
       CTCATGCCTC CTGAGGCTGT TTTTGGCTGT TTTCCCTCTG CTGCTTTTGG GGAATGAGGG
                                                                             3120
       GAAGCCATTT TCCAAGTGAC TTGCAATCCA GGCTGTTCTC AGCGTTTTGA GTTTAAAACC
                                                                             3180
       TGGGATCCTG ACTAAGCCTT TGACTTAAGG GTTGCTTGCT TGCCCTCCAA ATGTCCTTTC
                                                                             3240
       TCAAAGGGGC CAACTAACCC GTGCAGAACC AGCACTAAGG TGGACAGCAG ACAAGAGGGC
                                                                             3300
       AAGCCTCTAA TGTACCAAGT GCTTCCTACA AAGACGCAAG GTGTGCTCCG AACCACAGAT
                                                                             3360
       GGGCAAACCC TGGTGCTTTC CTTCATCTCC CACGAACTCA AGGGTTTTCC AAGTGTAGCT
35
                                                                             3420
       AACAGTTGCC ACATCACACA GACCTCCAGT TTCTGGTAAG ACTGCTGGTT GACATCAGAC
                                                                             3480
       CCAACCCATT GAAGGCTGGA AGGCAGCAGG CATTTGCTAA GGCAGCTGAT CCAGGCAATC
                                                                             3540
       GTTCTGCTGG CCAAGAAGTT AAACTATTTT GAGCATTAGA ATGGAGGAAA TCCGGTCAGC
                                                                             3600
       CAAGTGCAGA GTTCAGACTT CGCTAAGGGC TTGTTTTTCT TCAGCATTTA CTTGAAGATT
40
       AATGTAGGAT GACAGGCTCT CCTGGCTGTC CTACCATCAG CTCTGCCTTG CACTGTGGTC
                                                                             3720
       GTCAACTTTC CTCAAATCAA AAACAGGCAG GTACAGGTAG TGGGCTCACA ACGTTTGACC
                                                                             3780
       TCGACTGGTT TTTCTAAGTT ATTTTGTACA TTTTTCAGCA GCAAAACCAA ACTGGGTCTT
                                                                             3840
       CAGCTTTATC CCCGTTTCTT GCAAGGGAAG AGCCTTTATA CAATTGGACG CATTTTGGTT
                                                                             3900
       TTTCCTCATT GAGAATTCAA ATCCTCTTTT GTATTGTTTC TACAATAATT TGTAAACATA
                                                                             3960
45
       TTTATTTTTA CCTGCTTTTT TTTTTTTTT TAATTTTCAG GTCAAGTTTT TTATACTGCA
                                                                             4020
       CTTATTTGTC AAAATAAAGA TTCTCACAT
       Seq ID NO: 174 Protein sequence:
       Protein Accession #: AAF36984
50
                                                                 51
                                          31
       MPVQLTTALR VVGTSLPALA VLGGILAAYV TGYQFIHTEK HYLSFGLYGA ILGLHLLIQS
                                                                                60
       LFAFLEHRRM RRAGOALKLP SPRRGSVALC IAAYQEDPDY LRKCLRSAQR ISFPDLKVVM
                                                                              120
       VVDGNRQEDA YMLDIFHEVL GGTEQAGFFV WRSNFHEAGE GETEASLQEG MDRVRDVVRA
55
                                                                              180
       STFSCIMQKW GGKREVMYTA FKALGDSVDY IQVCDSDTVL DPACTIEMLR VLEEDPQVGG
                                                                              240
       VGGDVQILNK YDSWISFLSS VRYWMAFNVE RACQSYFGCV QCISGPLGMY RNSLLQQFLE
                                                                               300
       DWYHQKFLGS KCSFGDDRHL TNRVLSLGYR TKYTARSKCL TETPTKYLRW LNQQTRWSKS
                                                                               360
       YFREWLYNSL WFHKHHLWMT YESVVTGFFP FFLIATVIQL FYRGRIWNIL LFLLTVQLVG
                                                                               420
       IIKATYACFL RGNAEMIFMS LYSLLYMSSL LPAKIFAIAT INKSGWGTSG RKTIVVNFIG
60
                                                                               480
       LIPVSIWVAV LLEGLAYTAY CQDLFSETEL AFLVSGAILY GCYWVALLML YLAIIARRCG
                                                                              540
       KKPEOVSLAF ARV
       Seg ID NO: 175 DNA seguence
65
       Nucleic Acid Accession #: NM_000691
       Coding sequence: 43..1404
                                          31
                                                      41
                                                                 51
70
        CCAGGAGCCC CAGTTACCGG GAGAGGCTGT GTCAAAGGCG CCATGAGCAA GATCAGCGAG
                                                                                60
        GCCGTGAAGC GCGCCCGCGC CGCCTTCAGC TCGGGCAGGA CCCGTCCGCT GCAGTTCCGA
                                                                               120
        TTCCAGCAGC TGGAGGCGCT GCAGCGCCTG ATCCAGGAGC AGGAGCAGGA GCTGGTGGGC
                                                                               180
        GCGCTGGCCG CAGACCTGCA CAAGAATGAA TGGAACGCCT ACTATGAGGA GGTGGTGTAC
                                                                               240
75 .
       GTCCTAGAGG AGATCGAGTA CATGATCCAG AAGCTCCCTG AGTGGGCCGC GGATGAGCCC
                                                                               300
        GTGGAGAAGA CGCCCCAGAC TCAGCAGGAC GAGCTCTACA TCCACTCGGA GCCACTGGGC
                                                                               360
        GTGGTCCTCG TCATTGGCAC CTGGAACTAC CCCTTCAACC TCACCATCCA GCCCATGGTG
       GGCGCCATCS CTGCAGGGAA CGCAGTGGTC CTCAAGCCCT CGGAGCTGAG TGAGAACATG
GCGAGCCTGC TGGCTACCAT CATCCCCAG TACCTGGACA AGGATCTGTA CCCAGTAATC
                                                                               540
80
        AATGGGGGTG TCCCTGAGAC CACGGAGCTG CTCAAGGAGA GGTTCGACCA TATCCTGTAC
                                                                               600
        ACGGGCAGCA CGGGGGTGGG GAAGATCATC ATGACGGCTG CTGCCAAGCA CCTGACCCCT
                                                                               660
        GTCACGCTGG AGCTGGGAGG GAAGAGTCCC TGCTACGTGG ACAAGAACTG TGACCTGGAC
                                                                               720
        GTGGCCTGCC GACGCATCGC CTGGGGGAAA TTCATGAACA GTGGCCAGAC CTGCGTGGCC
                                                                               780
        CCAGACTACA TCCTCTGTGA CCCCTCGATC CAGAACCAAA TTGTGGAGAA GCTCAAGAAG
                                                                               840
85
        TCACTGAAAG AGTTCTACGG GGAAGATGCT AAGAAATCCC GGGACTATGG AAGAATCATT
                                                                               900
        AGTGCCCGGC ACTTCCAGAG GGTGATGGGC CTGATTGAGG GCCAGAAGGT GGCTTATGGG
                                                                               960
        GGCACCGGGG ATGCCGCCAC TCGCTACATA GCCCCCACCA TCCTCACGGA CGTGGACCCC 1020
```

```
CAGTCCCCGG TGATGCAAGA GGAGATCTTC GGGCCTGTGC TGCCCATCGT GTGCGTGCGC 1080
       AGCCTGGAGG AGGCCATCCA GTTCATCAAC CAGCCTGAGA AGCCCCTGGC CCTCTACATG
TTCTCCAGCA ACGACAAGGT GATTAAGAAG ATGATTGCAG AGACATCCAG TGGTGGGGTG
                                                                              1140
                                                                              1200
                                                                              1260
       GCGGCCAACG ATGTCATCGT CCACATCACC TTGCACTCTC TGCCCTTCGG GGGCGTGGGG
 5
       AACAGCGGCA TGGGATCCTA CCATGGCAAG AAGAGCTTCG AGACTTTCTC TCACCGCCGC
                                                                              1320
       TCTTGCCTGG TGAGGCCTCT GATGAATGAT GAAGGCCTGA AGGTCAGATA CCCCCCGAGC
                                                                              1380
       1440
       CCCATCGGAG TGCGGACCAC CCTCACTGGC TCTCCTGGCC CTGGAGAATC GCTCCTGCAG
                                                                              1500
       CCCCAGCCCA GCCCCACTCC TCTGCTGACC TGCTGACCTG TGCACACCCC ACTCCCACAT
                                                                              1560
10
       GGGCCCAGGC CTCACCATTC CAAGTCTCCA CCCCTTTCTA GACCAATAAA GAGACAAATA 1620
       CAATTTTCTA ACTOGG
       Seq ID NO: 176 Protein sequence:
       Protein Accession #: NP_000682
15
                                          31
                                                      41
                                                                  51
       MSKISEAVKR ARAAPSSGRT RPLOFRFQQL EALQRLIQEQ EQELVGALAA DLHKNEWNAY
       YEEVVYVLEE IBYMIQKLPE WAADEPVEKT PQTQQDELYI HSEPLGVVLV IGTWNYPFNL
                                                                                120
       TIQPMVGAIA AGNAVVLKPS ELSENMASLL ATIIPQYLDK DLYPVINGGV PETTELLKER
20
       FDHILYTGST GVGKIIMTAA AKHLTPVTLE LGGKSPCYVD KNCDLDVACR RIAWGKFMNS
       GQTCVAPDYI LCDPSIQNQI VEKLKKSLKE FYGEDAKKSR DYGRIISARH FQRVMGLIEG
                                                                                300
       QKVAYGGTGD AATRYIAPTI LTDVDPQSPV MQEEIFGPVL PIVCVRSLEE AIQFINQREK
       PLALYMFSSN DKVIKKMIAE TSSGGVAAND VIVHITLHSL PFGGVGNSGM GSYHGKKSFE
25
       TESHRESCLV RELMNDEGLK VRYPPSPAKM TOH
       Seq ID NO: 177 DNA sequence
       Nucleic Acid Accession #: NM_001067.1
       Coding sequence: 108-4703
30
       CTAACCGACG CGCGTCTGTG GAGAAGCGGC TTGGTCGGGG GTGGTCTCGT GGGGTCCTGC
                                                                                 60
       CTGTTTAGTC GCTTTCAGGG TTCTTGAGCC CCTTCACGAC CGTCACCATG GAAGTGTCAC
                                                                                120
35
       CATTGCAGCC TGTAAATGAA AATATGCAAG TCAACAAAAT AAAGAAAAAT GAAGATGCTA
                                                                                180
       AGAAAAGACT GTCTGTTGAA AGAATCTATC AAAAGAAAAC ACAATTGGAA CATATTTTGC
                                                                                240
       TCCGCCCAGA CACCTACATT GGTTCTGTGG AATTAGTGAC CCAGCAAATG TGGGTTTACG
                                                                                30Ò
       ATGAAGATGT TGGCATTAAC TATAGGGAAG TCACTTTTGT TCCTGGTTTG TACAAAATCT
                                                                                360
       TTGATGAGAT TCTAGTTAAT GCTGCGGACA ACAAACAAAG GGACCCAAAA ATGTCTTGTA
                                                                                420
40
       TTAGAGTCAC AATTGATCCG GAAAACAATT TAATTAGTAT ATGGAATAAT GGAAAAGGTA
                                                                                480
       TTCCTGTTGT TGAACACAAA GTTGAAAAGA TGTATGTCCC AGCTCTCATA TTTGGACAGC
                                                                                540
       TCCTAACTTC TAGTAACTAT GATGATGATG AAAAGAAAGT GACAGGTGGT CGAAATGGCT
                                                                                600
       ATGGAGCCAA ATTGTGTAAC ATATTCAGTA CCAAATTTAC TGTGGAAACA GCCAGTAGAG
                                                                                660
       AATACAAGAA AATGTTCAAA CAGACATGGA TGGATAATAT GGGAAGAGCT GGTGAGATGG
AACTCAAGCC CTTCAATGGA GAAGATTATA CATGTATCAC CTTTCAGCCT GATTTGTCTA
                                                                                720
45
                                                                                780
       AGTTTAAAAT GCAAAGCCTG GACAAAGATA TTGTTGCACT AATGGTCAGA AGAGCATATG
ATATTGCTGG ATCCACCAAA GATGTCAAAG TCTTTCTTAA TGGAAATAAA CTGCCAGTAA
                                                                                840
                                                                                900
       AAGGATTTCG TAGTTATGTG GACATGTATT TGAAGGACAA GTTGGATGAA ACTGGTAACT
                                                                                960
       CCTTGAAAGT AATACATGAA CAAGTAAACC ACAGGTGGGA AGTGTGTTTA ACTATGAGTG
                                                                              1020
50
       AAAAAGGCTT TCAGCAAATT AGCTTTGTCA ACAGCATTGC TACATCCAAG GGTGGCAGAC
                                                                              1080
       ATGTTGATTA TGTAGCTGAT CAGATTGTGA CTAAACTTGT TGATGTTGTG AAGAAGAAGA
                                                                              1140
       ACAAGGGTGG TGTTGCAGTA AAAGCACATC AGGTGAAAAA TCACATGTGG ATTTTTGTAA
                                                                              1200
       ATGCCTTAAT TGAAAACCCA ACCTTTGACT CTCAGACAAA AGAAAACATG ACTTTACAAC
                                                                               1260
       CCAAGAGCTT TGGATCAACA TGCCAATTGA GTGAAAAATT TATCAAAGCT GCCATTGGCT
                                                                               1320
55
       GTGGTATTGT AGAAAGCATA CTAAACTGGG TGAAGTTTAA GGCCCAAGTC CAGTTAAACA
                                                                              1380
       AGAAGTGTTC AGCTGTAAAA CATAATAGAA TCAAGGGAAT TCCCAAACTC GATGATGCCA
                                                                               1440
       ATGATGCAGG GGGCCGAAAC TCCACTGAGT GTACGCTTAT CCTGACTGAG GGAGATTCAG
                                                                               1500
       CCAAAACTTT GGCTGTTTCA GGCCTTGGTG TGGTTGGGAG AGACAAATAT GGGGTTTTCC
                                                                               1560
       CTCTTAGAGG AAAAATACTC AATGTTCGAG AAGCTTCTCA TAAGCAGATC ATGGAAAATG
                                                                               1620
60
       CTGAGATTAA CAATATCATC AAGATTGTGG GTCTTCAGTA CAAGAAAAAC TATGAAGATG
                                                                               1680
       AAGATTCATT GAAGACGCTT CGTTATGGGA AGATAATGAT TATGACAGAT CAGGACCAAG
                                                                               1740
       ATGGTTCCCA CATCAAAGGC TTGCTGATTA ATTTTATCCA TCACAACTGG CCCTCTCTTC
                                                                               1800
       TGCGACATCG TTTTCTGGAG GAATTTATCA CTCCCATTGT AAAGGTATCT AAAAACAAGC
                                                                               1860
       AAGAAATGGC ATTTTACAGC CTTCCTGAAT TTGAAGAGTG GAAGAGTTCT ACTCCAAATC
                                                                               1920
       ATAAAAAATG GAAAGTCAAA TATTACAAAG GTTTGGGCAC CAGCACATCA AAGGAAGCTA
AAGAATACTT TGCAGATATG AAAAGACATC GTATCCAGTT CAAATATTCT GGTCCTGAAG
65
                                                                               2040
       ATGATGCTGC TATCAGCCTG GCCTTTAGCA AAAAACAGAT AGATGATCGA AAGGAATGGT
                                                                               2100
       TAACTAATTT CATGGAGGAT AGAAGACAAC GAAAGTTACT TGGGCTTCCT GAGGATTACT
                                                                               2160
       TGTATGGACA AACTACCACA TATCTGACAT ATAATGACTT CATCAACAAG GAACTTATCT
TGTTCTCAAA TTCTGATAAC GAGAGATCTA TCCCTTCTAT GGTGGATGGT TTGAAACCAG
                                                                               2220
70
                                                                               2280
       GTCAGAGAAA GGTTTTGTTT ACTTGCTTCA AACGGAATGA CAAGCGAGAA GTAAAGGTTG
                                                                              2340
       CCCAATTAGC TGGATCAGTG GCTGAAATGT CTTCTTATCA TCATGGTGAG ATGTCACTAA
                                                                               2400
       TGATGACCAT TATCAATTTG GCTCAGAATT TTGTGGGTAG CAATAATCTA AACCTCTTGC
                                                                              2460
       AGCCCATTGG TCAGTTTGGT ACCAGGCTAC ATGGTGGCAA GGATTCTGCT AGTCCACGAT
                                                                               2520
75
       ACATCTTTAC AATGCTCAGC TCTTTGGCTC GATTGTTATT TCCACCAAAA GATGATCACA
                                                                               2580
       CGTTGAAGTT TTTATATGAT GACAACCAGC GTGTTGAGCC TGAATGGTAC ATTCCTATTA
                                                                               2640
                                                                               2700
       TTCCCATGGT GCTGATAAAT GGTGCTGAAG GAATCGGTAC TGGGTGGTCC TGCAAAATCC
       CCAACTTTGA TGTGCGTGAA ATTGTAAATA ACATCAGGCG TTTGATGGAT GGAGAAGAAC
                                                                               2760
       CTTTGCCAAT GCTTCCAAGT TACAAGAACT TCAAGGGTAC TATTGAAGAA CTGGCTCCAA
                                                                               2820
       ATCAATATGT GATTAGTGGT GAAGTAGCTA TTCTTAATTC TACAACCATT GAAATCTCAG
80
                                                                               2880
       AGCTTCCCGT CAGAACATGG ACCCAGACAT ACAAAGAACA AGTTCTAGAA CCCATGTTGA
                                                                               2940
       ATGGCACCGA GAAGACACCT CCTCTCATAA CAGACTATAG GGAATACCAT ACAGATACCA
                                                                               3000
       CTGTGAAATT TGTTGTGAAG ATGACTGAAG AAAAACTGGC AGAGGCAGAG AGAGTTGGAC
       TACACAAAGT CITCAAACTC CAAACTAGTC TCACATGCAA CTCTATGGTG CTTTTTGACC ACGTAGGCTG TTTAAAGAAA TATGACACGG TGTTGGATAT TCTAAGAGAC TTTTTTGAAC
85
       TCAGACTTAA ATATTATGGA TTAAGAAAAG AATGGCTCCT AGGAATGCTT GGTGCTGAAT
       CTGCTAAACT GAATAATCAG GCTCGCTTTA TCTTAGAGAA AATAGATGGC AAAATAATCA 3300
```

```
TTGAAAATAA GCCTAAGAAA GAATTAATTA AAGTTCTGAT TCAGAGGGGA TATGATTCGG 3360
       ATCCTGTGAA GGCCTGGAAA GAAGCCCAGC AAAAGGTTCC AGATGAAGAA GAAAATGAAG
                                                                            3420
       AGAGTGACAA CGAAAAGGAA ACTGAAAAGA GTGACTCCGT AACAGATTCT GGACCAACCT
                                                                            3480
       TCAACTATCT TCTTGATATG CCCCTTTGGT ATTTAACCAA GGAAAAGAAA GATGAACTCT
                                                                            3540
       GCAGGCTAAG AAATGAAAAA GAACAAGAGC TGGACACATT AAAAAGAAAG AGTCCATCAG
                                                                            3600
       ATTTGTGGAA AGAAGACTTG GCTACATTTA TTGAAGAATT GGAGGCTGTT GAAGCCAAGG
                                                                            3660
       AAAAACAAGA TGAACAAGTC GGACTTCCTG GGAAAGGGGG GAAGGCCAAG GGGAAAAAAA
                                                                            3720
       CACAAATGGC TGAAGTTTTG CCTTCTCCGC GTGGTCAAAG AGTCATTCCA CGAATAACCA
                                                                            3780
       TAGAAATGAA AGCAGAGGCA GAAAAGAAAA ATAAAAAGAA AATTAAGAAT GAAAATACTG
AAGGAAGCCC TCAAGAAGAT GGTGTGGAAC TAGAAGGCCT AAAACAAAGA TTAGAAAAGA
                                                                            3840
10
                                                                            3900
       AACAGAAAAG AGAACCAGGT ACAAAGACAA AGAAACAAAC TACATTGGCA TTTAAGCCAA
                                                                            3960
       TCAAAAAAGG AAAGAAGAGA AATCCCTGGC CTGATTCAGA ATCAGATAGG AGCAGTGACG
                                                                            4020
       AAAGTAATTT TGATGTCCCT CCACGAGAAA CAGAGCCACG GAGAGCAGCA ACAAAAACAA
                                                                            4080
       AATTCACAAT GGATTTGGAT TCAGATGAAG ATTTCTCAGA TTTTGATGAA AAAACTGATG
                                                                            4140
15
       ATGAAGATTT TGTCCCATCA GATGCTAGTC CACCTAAGAC CAAAACTTCC CCAAAACTTA
       GTAACAAAGA ACTGAAACCA CAGAAAAGTG TCGTGTCAGA CCTTGAAGCT GATGATGTTA
                                                                            4260
       AGGGCAGTGT ACCACTGTCT TCAAGCCCTC CTGCTACACA TTTCCCAGAT GAAACTGAAA
                                                                            4320
       TTACAAACCC AGTTCCTAAA AAGAATGTGA CAGTGAAGAA GACAGCAGCA AAAAGTCAGT
       CTTCCACCTC CACTACCGGT GCCAAAAAAA GGGCTGCCCC AAAAGGAACT AAAAGGGATC
                                                                            4440
20
       CAGCTTTGAA TTCTGGTGTC TCTCAAAAGC CTGATCCTGC CAAAACCAAG AATCGCCGCA
                                                                            4500
       AAAGGAAGCC ATCCACTTCT GATGATTCTG ACTCTAATTT TGAGAAAATT GTTTCGAAAG
                                                                            4560
       CAGTCACAAG CAAGAAATCC AAGGGGGAGA GTGATGACTT CCATATGGAC TTTGACTCAG
                                                                            4620
       CTGTGGCTCC TCGGGCAAAA TCTGTACGGG CAAAGAAACC TATAAAGTAC CTGGAAGAGT
                                                                            4680
       CAGATGAAGA TGATCTGTTT TAAAATGTGA GGCGATTATT TTAAGTAATT ATCTTACCAA
                                                                            4740
25
       GCCCAAGACT GGTTTTAAAG TTACCTGAAG CTCTTAACTT CCTCCCCTCT GAATTTAGTT
                                                                            4800
       TGGGGAAGGT GTTTTTAGTA CAAGACATCA AAGTGAAGTA AAGCCCAAGT GTTCTTTAGC
                                                                            4860
       TTTTTATAAT ACTGTCTAAA TAGTGACCAT CTCATGGGCA TTGTTTTCTT CTCTGCTTTG
                                                                            4920
       TCTGTGTTTT GAGTCTGCTT TCTTTTGTCT TTAAAACCTG ATTTTTAAGT TCTTCTGAAC
                                                                            4980
       TGTAGAAATA GCTATCTGAT CACTTCAGCG TAAAGCAGTG TGTTTATTAA CCATCCACTA
                                                                            5040
30
       AGCTAAAACT AGAGCAGTTT GATTTAAAAG TGTCACTCTT CCTCCTTTTC TACTTTCAGT
                                                                            5100
       AGATATGAGA TAGAGCATAA TTATCTGTTT TATCTTAGTT TTATACATAA TTTACCATCA
                                                                            5160
       GATAGAACTT TATGGTTCTA GTACAGATAC TCTACTACAC TCAGCCTCTT ATGTGCCAAG
                                                                            5220
       TTTTTCTTTA AGCAATGAGA AATTGCTCAT GTTCTTCATC TTCTCAAATC ATCAGAGGCC
                                                                            5280
       AAAGAAAAC ACTTTGGCTG TGTCTATAAC TTGACACAGT CAATAGAATG AAGAAAATTA
                                                                            5340
35
       GAGTAGTTAT GTGATTATTT CAGCTCTTGA CCTGTCCCCT CTGGCTGCCT CTGAGTCTGA
                                                                            5400
       ATCTCCCAAA GAGAGAAACC AATTTCTAAG AGGACTGGAT TGCAGAAGAC TCGGGGACAA
                                                                            5460
       CATTTGATCC AAGATCTTAA ATGTTATATT GATAACCATG CTCAGCAATG AGCTATTAGA
                                                                            5520
       TTCATTTTGG GAAATCTCCA TAATTTCAAT TTGTAAACTT TGTTAAGACC TGTCTACATT
                                                                            5580
       GTTATATGTG TGTGACTTGA GTAATGTTAT CAACGTTTTT GTAAATATTT ACTATGTTTT
40
       TCTATTAGCT AAATTCCAAC AATTTTGTAC TTTAATAAAA TGTTCTAAAC ATTGC
       Seq ID NO: 178 Protein sequence:
       Protein Accession #: NP 001058.1
45
       MEVSPLQPVN ENMQVNKIKK NEDAKKRLSV ERIYQKKTQL EHILLRPDTY IGSVELVTQQ
                                                                              60
       MWVYDEDVGI NYREVTFVPG LYKIFDEILV NAADNKQRDP KMSCIRVTID PENNLISIWN
                                                                             120
       NGKGIPVVEH KVEKMYVPAL IFGQLLTSSN YDDDEKKVTG GRNGYGAKLC NIFSTKFTVE
                                                                             180
50
       TASREYKKMF KQTWMDNMGR AGEMELKPFN GEDYTCITFQ PDLSKFKMQS LDKDIVALMV
                                                                             240
       RRAYDIAGST KDVKVFLNGN KLPVKGFRSY VDMYLKDKLD ETGNSLKVIH EQVNHRWEVC
                                                                             300
       LTMSEKGFQQ ISPVNSIATS KGGRHVDYVA DQIVTKLVDV VKKKNKGGVA VKAHQVKNHM
                                                                             360
       WIFVMALIEN PTEDSOTKEN MTLOPKSFGS TCQLSEKFIK AAIGCGIVES ILNWVKFKAQ
VQLNKKCSAV KHNRIKGIPK LDDANDAGGR NSTECTLILT EGDSAKTLAV SGLGVVGRDK
                                                                             420
                                                                             480
55
       YGVFPLRGKI LNVREASHKQ IMENAEINNI IKIVGLQYKK NYEDEDSLKT LRYGKIMIMT
                                                                             540
       DODODGSHIK GLLINFIHHN WPSLLRHRFL EEFITPIVKV SKNKQEMAFY SLPEFEEWKS
                                                                             600
       STPNHKKWKV KYYKGLGTST SKEAKEYFAD MKRHRIQFKY SGPEDDAAIS LAFSKKQIDD
                                                                             660
       RKEWLTNFME DRRQRKLLGL PEDYLYGQTT TYLTYNDFIN KELILFSNSD NERSIPSMVD
       GLKPGORKVL FTCFKRNDKR EVKVAQLAGS VAEMSSYHHG EMSLMMTIIN LAQNFVGSNN
                                                                             780
60
       LNLLQPIGQF GTRLHGGKDS ASPRYIFTML SSLARLLFPP KDDHTLKFLY DDNQRVEPEW
                                                                             840
       YIPIIPMVLI NGAEGIGTGW SCKIPNFDVR EIVNNIRRLM DGEEPLPMLP SYKNFKGTIE
                                                                             900
       ELAPNOYVIS GEVAILNSTT IEISELPVRT WTQTYKEQVL EPMLNGTEKT PPLITDYREY
                                                                             960
       HTDTTVKFVV KMTEEKLAEA ERVGLHKVFK LQTSLTCNSM VLFDHVGCLK KYDTVLDILR
                                                                            1020
       DFFELRLKYY GLRKEWLLGM LGAESAKLNN QARFILEKID GKIIIENKPK KELIKVLIQR
                                                                            1080
65
       GYDSDPVKAW KEAQQKVPDE EENEESDNEK ETEKSDSVTD SGPTFNYLLD MPLWYLTKEK
                                                                            1140
       KDELCRLRNE KEQELDTLKR KSPSDLWKED LATFIEELEA VEAKEKQDEQ VGLPGKGGKA
                                                                            1200
       KGKKTQMAEV LPSPRGQRVI PRITIEMKAE AEKKNKKKIK NENTEGSPQE DGVELEGLKQ
                                                                            1260
       RLEKKOKREP GTKTKKOTTL AFKPIKKGKK RNPWPDSESD RSSDESNFDV PPRETEPRRA
                                                                            1320
       ATKTKFTMDL DSDEDFSDFD EKTDDEDFVP SDASPPKTKT SPKLSNKELK PQKSVVSDLE
                                                                            1380
70
       ADDVKGSVPL SSSPPATHFP DETEITNPVP KKNVTVKKTA AKSQSSTSTT GAKKRAAPKG
                                                                            1440
       TKRDPALNSG VSQKPDPAKT KNRRKRKPST SDDSDSNFEK IVSKAVTSKK SKGESDDFHM
                                                                            1500
       DFDSAVAPRA KSVRAKKPIK YLEESDEDDL P
75
       Seg ID NO: 179 DNA seguence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-7095
                                         31
80
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
       CAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                             120
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                             180
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
                                                                             240
85 .
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAA TTGGGGAAAG
                                                                             300
       AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA
                                                                             360
       CARGTARATG TGRATCTTAR GRARCTTARA TTTCAGGGTT GGGATARARC ATCATTGGRA
                                                                             420
```

		/086443					
			TGGGAAAACA				480
			AATGGTGTTT				540
			TGGATCAGAG				600
~			TGATGCGGAC				660
5			TTTATCCATT				720
			TGGAGTCGAA				780
			GAACCTTCTG				840
	AATGGCTCAT	TGACATCTCC	TCCCTGCACA	GACACAGTTG	ACTGGATTGT	TTTTAAAGAT	900
10			CCAGTTGGCT				950
10			GGACTACTTA				1020
			CTCATACACT				1080
	AGTTCAGAAC	CAGAAAATGT	TCAGGCTGAC	CCAGAGAATT	ATACCAGCCT	TCTTGTTACA	1140
	TGGGAAAGAC	CTCGAGTCGT	TTATGATACC	ATGATTGAGA	AGTTTGCAGT	TTTGTACCAG	1200
4 "	CAGTTGGATG	GAGAGGACCA	AACCAAGCAT	GAATTTTTGA	CAGATGGCTA	TCAAGACTTG	1260
15			GCTACCCAAT				1320
			AAAATACAGC				1380
	AATCCTGAAC	TTGATCTTTT	CCCTGAATTA	ATTGGAACTG	AAGAAATAAT	CAAGGAGGAG	1440
	GAAGAGGGAA	AAGACATTGA	AGAAGGCGCT	ATTGTGAATC	CTGGTAGAGA	CAGTGCTACA	1500
	AACCAAATCA	GGAAAAAGGA	ACCCCAGATT	TCTACCACAA	CACACTACAA	TCGCATAGGG	1560
20	ACGAAATACA	ATGAAGCCAA	GACTAACCGA	TCCCCAACAA	GAGGAAGTGA	ATTCTCTGGA	1620
	AAGGGTGATG	TTCCCAATAC	ATCTTTAAAT	TCCACTTCCC	AACCAGTCAC	TAAATTAGCC	1680
	ACAGAAAAAG	ATATTTCCTT	GACTTCTCAG	ACTGTGACTG	AACTGCCACC	TCACACTGTG	1740
	GAAGGTACTT	CAGCCTCTTT	AAATGATGGC	TCTAAAACTG	TTCTTAGATC	TCCACATATG	1800
			ATCCTTAAAT				1860
25	AGTTTATTGA	CCAGTTTCAA	GCTTGATACT	GGAGCTGAAG	ATTCTTCAGG	CTCCAGTCCC	1920
	GCAACTTCTG	CTATCCCATT	CATCTCTGAG	AACATATCCC	AAGGGTATAT	ATTTTCCTCC	1980
	GAAAACCCAG	AGACAATAAC	ATATGATGTC	CTTATACCAG	AATCTGCTAG	AAATGCTTCC	2040
			TTCAGAAGAA				2100
			AGACATAACA				2160
30			CACTGAGATA				2220
			GATGTCACAG				2280
			CTTCCCAACT				2340
			CTCCACGGTC				2400
			TCTTCAACCT				2460
35			TCAGATCCTC				2520
-			TGTATTTCCC				2580
			TTTGCTTCCA				2640
-			TTCTCAAATC				2700
			TTCTCTGCCA				2760
40			TGTGCTGTCC				2820
			TCTTTATAAA				- 2880
			TGCACGTTCT				2940
			CATCTTCACT				3000
			TCAGGGTTCC				3060
45			CCCAACTGCA				3120
			AGCCTCTTCT				3180
			TTCTTCACCT				3240
			TAAGGCGCTT				3300
			TTTCAATGAG				3360
50			AAATAAGTTG				3420
-			GTTTCCAGGG				3480
			TCCAGAAAAT				3540
			TTCGCTTAAA				3600
			TGAAATGTTA				3660
55			TGAAGTATTG				3720
55			TCTTCCAGCT				3780
			TTCTACAATG				3840
						TACTTCTCAT	
						ATATGAACCA	
60						TAATGATGAG	
. ·						AAGGCATGTA	
						TAAGCTTATA	
	CVALICATION	DAATTIMIC	CACCACCAVA	VCALL CALCALLY	CTGGTAACGT	ATTTGCTGGT	4200
	ATTCCAACAG	THECHHOTES	TACATTTCTA	TOTACTGATO	ATTOTATOO	TATAGGAAAT	4260
65						CTCAACAAAG	
00						TGATGCCGGT	
						TGATGATGAC	
						TAGAGAATCA	
						TCAGAATAAT	
70						AAGTGTATCC	
70						AAATGGGCTA	
						TGCTCTGCTT	
						AAGTGGATCA	
						CAGTTTTGCA	
75						AATAACTCCT	
, 5						GTTCCACGTT	
	GGAT TCCCAC	AGICCCCAAC	MACHACOCAM	WCTWGCGWGW	THECHETAGE	TGAGGGGTTG	5040
	CANACCCACA	AGNACCONCE	TAGTAGCCAT	GUGICICOIA	TIGGICINGC	TTTTATCTGT	5100
	CALY CALCUSAGE	TURNOCAST	TATACCCCTT	TCCDCCDAAA	COTTOCACAC	TGCACACTTT	5160
80	CIMOTOGITC	ACACTACTAC	TOTOMICIAC	TAGAGGAMAI	CALLCOUNC	TATCTTTCCA	5220
-	TUCT TUCKNIC	ATCTCCCACC	CCCIMONOI1	A DECA CHARC	CANAGCATCT	TGCAGATTTA	5220
	HITICHGAIG	ATGTCGGAGC	MALICUAATA	CACACITIC	PVCVCMICI	CCAGGAAGTG	5240
	CVIRCHARIA	GIGGGTTTAC	ACCURAGES C	GUNCHCIGA	WITTITE WORK	AGACAACAAG	5400
	CACAGCIGIA	CATACATT	MANGGERATIACA	TATCATCATA	CCARCCACCC	GCTAGCACAG	5450
85	CACAAGAATC	AAATAJATA	ACCONTRACT	THIGHTCHIA	CCV V durancu	TGATGGCTAC	5530
55	ANCRONCE	AGGATGGCAA	ACTGACTGAT	THINICAMIG	PARCONCACO	TOWIGOCIAC	5500
	MACAGACCAA	AAGCITATAT	TGCTGCCCAA	COUNTRACTICA	MATCUACAGO	TGAAGATTTC CCTCGTGGAG	338U
	IGGAGAATGA	TATGGGAACA	TAATGTGGAA	GITATTGTCA	IGATAACAAA	CCICGIGGAG	2040

```
WO 02/086443
       AAAGGAAGGA GAAAATGTGA TCAGTACTGG CCTGCCGATG GGAGTGAGGA GTACGGGAAC
                                                                            5700
                                                                            5760
       TTTCTGGTCA CTCAGAAGAG TGTGCAAGTG CTTGCCTATT ATACTGTGAG GAATTTTACT
       CTAAGAAACA CAAAAATAAA AAAGGGCTCC CAGAAAGGAA GACCCAGTGG ACGTGTGGTC
                                                                            5820
       ACACAGTATC ACTACACGCA GTGGCCTGAC ATGGGAGTAC CAGAGTACTC CCTGCCAGTG
                                                                            5880
 5
       CTGACCTTTG TGAGAAAGGC AGCCTATGCC AAGCGCCATG CAGTGGGGCC TGTTGTCGTC
                                                                            5940
       CACTGCAGTG CTGGAGTTGG AAGAACAGGC ACATATATTG TGCTAGACAG TATGTTGCAG
                                                                            6000
       CAGATTCAAC ACGAAGGAAC TGTCAACATA TTTGGCTTCT TAAAACACAT CCGTTCACAA
                                                                            6060
       AGAAATTATT TGGTACAAAC TGAGGAGCAA TATGTCTTCA TTCATGATAC ACTGGTTGAG
                                                                            6120
       GCCATACTTA GTAAAGAAAC TGAGGTGCTG GACAGTCATA TTCATGCCTA TGTTAATGCA
10
       CTCCTCATTC CTGGACCAGC AGGCAAAACA AAGCTAGAGA AACAATTCCA GCTCCTGAGC
                                                                            6240
       CAGTCAAATA TACAGCAGAG TGACTATTCT GCAGCCCTAA AGCAATGCAA CAGGGAAAAG
       AATCGAACTT CTTCTATCAT CCCTGTGGAA AGATCAAGGG TTGGCATTTC ATCCCTGAGT
                                                                            6360
       GGAGAAGGCA CAGACTACAT CAATGCCTCC TATATCATGG GCTATTACCA GAGCAATGAA
                                                                            6420
       TTCATCATTA CCCAGCACCC TCTCCTTCAT ACCATCAAGG ATTTCTGGAG GATGATATGG
                                                                            6480
15
       GACCATAATG CCCAACTGGT GGTTATGATT CCTGATGGCC AAAACATGGC AGAAGATGAA
                                                                            6540
       TTTGTTTACT GGCCAAATAA AGATGAGCCT ATAAATTGTG AGAGCTTTAA GGTCACTCTT
                                                                            6600
       ATGGCTGAAG AACACAAATG TCTATCTAAT GAGGAAAAAC TTATAATTCA GGACTTTATC
                                                                            6660
       TTAGAAGCTA CACAGGATGA TTATGTACTT GAAGTGAGGC ACTTTCAGTG TCCTAAATGG
                                                                            6720
       CCAAATCCAG ATAGCCCCAT TAGTAAAACT TTTGAACTTA TAAGTGTTAT AAAAGAAGAA
                                                                            6780
       GCTGCCAATA GGGATGGGCC TATGATTGTT CATGATGAGC ATGGAGGAGT GACGGCAGGA
20
                                                                            6840
       ACTITCTGTG CTCTGACAAC CCTTATGCAC CAACTAGAAA AAGAAAATTC CGTGGATGTT
                                                                            6900
       TACCAGGTAG CCAAGATGAT CAATCTGATG AGGCCAGGAG TCTTTGCTGA CATTGAGCAG
                                                                            6960
       TATCAGTTTC TCTACAAAGT GATCCTCAGC CTTGTGAGCA CAAGGCAGGA AGAGAATCCA
                                                                            7020
       TCCACCTCTC TGGACAGTAA TGGTGCAGCA TTGCCTGATG GAAATATAGC TGAGAGCTTA
                                                                            7080
25
       GAGTCTTTAG TTTAACACAG AAAGGGGTGG GGGGACTCAC ATCTGAGCAT TGTTTTCCTC
                                                                            7140
                                                                            7200
       TTCCTAAAAT TAGGCAGGAA AATCAGTCTA GTTCTGTTAT CTGTTGATTT CCCATCACCT
       GACAGTAACT TTCATGACAT AGGATTCTGC CGCCAAATTT ATATCATTAA CAATGTGTGC
                                                                            7260
       CTTTTTGCAA GACTTGTAAT TTACTTATTA TGTTTGAACT AAAATGATTG AATTTTACAG
                                                                            7320
       TATTTCTAAG AATGGAATTG TGGTATTTT TTCTGTATTG ATTTTAACAG AAAATTTCAA
                                                                            7380
       TTTATAGAGG TTAGGAATTC CAAACTACAG AAAATGTTTG TTTTTAGTGT CAAATTTTTA
30
                                                                            7440
       GCTGTATTTG TAGCAATTAT CAGGTTTGCT AGAAATATAA CTTTTAATAC AGTAGCCTGT
                                                                            7500
       AAATAAAACA CTCTTCCATA TGATATTCAA CATTTTACAA CTGCAGTATT CACCTAAAGT
AGAAATAATC TGTTACTTAT TGTAAATACT GCCCTAGTGT CTCCATGGAC CAAATTTATA
                                                                            7560
                                                                            7620
       TTTATAATTG TAGATTTTTA TATTTTACTA CTGAGTCAAG TTTTCTAGTT CTGTGTAATT
                                                                            7680
35
       GTTTAGTTTA ATGACGTAGT TCATTAGCTG GTCTTACTCT ACCAGTTTTC TGACATTGTA
                                                                            7740
       TTGTGTTACC TAAGTCATTA ACTTTGTTTC AGCATGTAAT TTTAACTTTT GTGGAAAATA
                                                                            7800
       GAAATACCTT CATTTTGAAA GAAGTTTTTA TGAGAATAAC ACCTTACCAA ACATTGTTCA
                                                                            7860
       АЛАА АЛАЛАЛАЛА АЛАЛАЛАД
40
       Seg ID NO: 180 Protein sequence:
       Protein Accession #: Eos sequence
                                                               51
45
       MRILKRFLAC IQLLCVCRLD WANGYYROOR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK
                                                                              60
       QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                             120
       FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                             180
       ILFEVGTEEN LDFKAIIDGV ESVSRPGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
                                                                             240
50
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
                                                                             300
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                             360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                             420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNOIRKKEPO ISTTTHYNRI GTKYNEAKTN
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
55
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
       ENISQGYIPS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                             660
       TAOPDVGSGR ESFLOTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                             720
       TEVTPHAFTP SSROODLVST VNVVYSOTTO PVYNGETPLO PSYSSEVFPL VTPLLLDNQI
                                                                             780
       LNTTPAASSS DSALHATPVF PSVDVSFESI LSSYDGAPLL PFSSASFSSE LFRHLHTVSQ
                                                                             840
60
                                                                             900
       ILPOVISATE SDKVPLHASL PVAGGDLLLE PSLAQYSDVL STTHAASETL EFGSESGVLY
       KTLMFSOVEP PSSDAMMHAR SSGPEPSYAL SDNEGSQHIF TVSYSSAIPV HDSVGVTYQG
                                                                             960
       SLFSGPSHIP IPKSSLITPT ASLLQPTHAL SGDGEWSGAS SDSEPLLPDT DGLTALNISS
                                                                            1020
       PVSVAEFTYT TSVFGDDNKA LSKSEIIYGN ETELQIPSFN EMVYPSESTV MPNMYDNVNK
                                                                            1080
       LNASLQETSV SISSTKGMFP GSLAHTTTKV FDHEISQVPE NNFSVQPTHT VSQASGDTSL
                                                                            1140
65
       KPVLSANSEP ASSDPASSEM LSPSTQLLFY ETSASFSTEV LLQPSFQASD VDTLLKTVLP
                                                                            1200
       AVPSDPILVE TPKVDKISST MLHLIVSNSA SSENMLHSTS VPVFDVSPTS HMHSASLQGL
                                                                            1260
       TISYASEKYE PVLLKSESSH QVVPSLYSND ELFQTANLEI NQAHPPKGRH VFATPVLSID
                                                                            1320
       EPLNTLINKL IHSDEILTST KSSVTGKVFA GIPTVASDTF VSTDHSVPIG NGHVAITAVS
                                                                            1380
       PHRDGSVTST KLLFPSKATS ELSHSAKSDA GLVGGGEDGD TDDDGDDDDD DRGSDGLSIH
                                                                            1440
70
       KCMSCSSYRE SQEKVMNDSD THENSLMDQN NPISYSLSEN SEEDNRVTSV SSDSQTGMDR
                                                                            1500
       SPGKSPSANG LSQKHNDGKE ENDIQTGSAL LPLSPESKAW AVLTSDEESG SGQGTSDSLN
                                                                            1560
       ENETSTOPSP ADTNEKDADG ILAAGDSEIT PGFPQSPTSS VTSENSEVPH VSEAEASNSS
                                                                            1620
       HESRIGLAEG LESEKKAVIP LVIVSALTPI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR
                                                                            1680
       VISTPPTPIP PISDDVGAIP IKHFPKHVAD LHASSGFTEE FETLKEFYQE VQSCTVDLGI
                                                                            1740
       TADSSNHPDN KHKNRYINIV AYDHSRVKLA QLAEKDGKLT DYINANYVDG YNRPKAYIAA
QGPLKSTAED FWRMIWEHNV EVIVMITNLV EKGRRKCDQY WPADGSEEYG NPLVTQKSVQ
75
                                                                            1800
                                                                            1860
       VLAYYTVRNF TLRNTKIKKG SQKGRPSGRV VTQYHYTQWP DMGVPEYSLP VLTFVRKAAY
                                                                            1920
       AKRHAVGPVV VHCSAGVGRT GTYIVLDSML QQIQHEGTVN IFGFLKHIRS QRNYLVQTEE
       OYVFIHDTLV EAILSKETEV LDSHIHAYVN ALLIPGPAGK TKLEKQPQLL SQSNIQQSDY
                                                                            2040
80
       SAALKQCNRE KNRTSSIIPV ERSRVGISSL SGEGTDYINA SYIMGYYQSN EFIITQHPLL
                                                                            2100
       HTIKDFWRMI WDHNAQLVVM IPDGQNMAED EFVYWPNKDE PINCESFKVT LMAEEHKCLS
                                                                            2160
       NEEKLIIQDP ILEATQDDYV LEVRHPQCPK WPNPDSPISK TFELISVIKE EAANRDGPMI
                                                                            2220
       VHDEHGGVTA GTPCALTTLM HQLEKENSVD VYQVAKMINL MRPGVFADIE QYQFLYKVIL
                                                                            2280
       SLVSTROEEN PSTSLDSNGA ALPDGNIAES LESLV
85
```

Seq ID NO: 181 DNA sequence Nucleic Acid Accession #: Eos sequence

	1	11	21	31	41	51	
5	() () () () () () () () () () () () () (1	60
5		CACGCACGAT					120
		CCGCAGACCG					180
	CAGCTCCTCT	GTGTTTGCCG	CCTGGATTGG	GCTAATGGAT	ACTAÇAGACA	ACAGAGAAAA	240
10		AGATTGGCTG					300
10		CATGTAATAG TGAATCTTAA					360 420
		TTCATAACAC					480
		GAGTTTCAGA					540
15		TGTCATCTGA					600
15		TCTACTGCTT AGTTAAGAGC					660 720
		CGATTATTGA					780
		TCATACTGTT					840
20		TGACATCTCC					900
20		TCTCTGAAAG					960
		TCATGCTGAT AGGTGTTTTC					1020 1080
		CAGAAAATGT					1140
0.5	TGGGAAAGAC	CTCGAGTCGT	TTATGATACC	ATGATTGAGA	AGTTTGCAGT	TTTGTACCAG	1200
25		GAGAGGACCA					1260
		TCAATAATTT GCTTATATGG					1320 1380
		TTGATCTTTT					1440
20	GAAGAGGGAA	AAGACATTGA	AGAAGGCGCT	ATTGTGAATC	CTGGTAGAGA	CAGTGCTACA	1500
30		GGAAAAAGGA					1560
		ATGAAGCCAA TTCCCAATAC					1620 1680
		ATATTTCCTT					1740
2.5	GAAGGTACTT	CAGCCTCTTT	AAATGATGGC	TCTAAAACTG	TTCTTAGATC	TCCACATATG	1800
35		GGACTGCAGA					1860
		CCAGTTTCAA					1920 1980
		AGACAATAAC					2040
40		CTTCATCAGG					2100
40		CTAGCTCTAC					2160
		AGACTAATTA CAGGCCCAGT					2220 2280
		CCTTTGCCTA					2340
4.5		AGGATTTGGT					2400
45		CAGAGGCCAG					2460
		AGAAGAAGGC TTCTTGTGGG					2520 2580
		AGGACAGTAC					2640
50		ATGATGTCGG					2700
50		GTAGTGGGTT					2760
		GTACTGTTGA ATCGATACAT					2820 2880
		AAAAGGATGG					2940
		CAAAAGCTTA					3000
55		TGATATGGGA					3060
		GGAGAAAATG TCACTCAGAA					3120 3180
•		ACACAAAAAT					3240
CO	GTCACACAGT	ATCACTACAC	GCAGTGGCCT	GACATGGGAG	TACCAGAGTA	CTCCCTGCCA	3300
60						GCCTGTTGTC	
		AACACGAAGG				CAGTATGTTG	3420 3480
		ATTTGGTACA					3540
65		TTAGTAAAGA					3600
65		TTCCTGGACC					3660
		ATATACAGCA CTTCTTCTAT					3720 3780
•		GCACAGACTA					3840
70	GAATTCATCA	TTACCCAGCA	CCCTCTCCTT	CATACCATCA	AGGATTTCTG	GAGGAŤGATA	3900
70		ATGCCCAACT					3960
		ACTGGCCAAA AAGAACACAA					4020 4080
		CTACACAGGA					4140
76	TGGCCAAATC	CAGATAGCCC	CATTAGTAAA	ACTTTTGAAC	TTATAAGTGT	TATAAAAGAA	4200
75		ATAGGGATGG					4260
		GTGCTCTGAC TAGCCAAGAT					4320 4380
	CAGTATCAGT	TTCTCTACAA	AGTGATCCTC	AGCCTTGTGA	GCACAAGGCA	GGAAGAGAAT	4440
80		CTCTGGACAG					4500
OU		TAGTTTAACA				CATTGTTTTC	4560
		ACTITICATGA					4680
		CAAGACTTGT					4740
85		AAGAATGGAA					4800
٥٦		AGGTTAGGAA TTGTAGCAAT					4860 4920
•						ATTCACCTAA	

		/086443				a. aa	5040
			TATTGTAAAT TTATATTTTA				5040 5100
			AGTTCATTAG				5160
			TTAACTTTGT				5220
5	ATAGAAATAC	CTTCATTTTG	AAAGAAGTTT	TTATGAGAAT	AACACCTTAC	CAAACATTGT	5280
	TCAAATGGTT	TTTATCCAAG	GAATTGCAAA	AATAAATATA	AATATTGCCA	AAAAAAATT	5340
	AAAAAAAAA	AAAAAAAAA	АААААА				
10							
10			a sequence:	_	•		
	Protein Acc	cession #: 1	Soa sequence	3			
	1	11	21	31	41	51	
		1		1			
15			WANGYYRQQR				60
			KFQGWDKTSL				120
			EHSLEGQKFP				180
			ESVSRFGKQA				240
20	TDTVDWIVFK	DTVSISESQL	AVFCEVLTMQ	QSGYVMLMDY	LQNNFREQQY	KFSRQVFSSY	300
20			DPENYTSLLV				360 420
			NMSYVLQIVA AIVNPGRDSA				480
			NSTSQPVTKL				540
			NTVSITEYEE				600
25			VLIPESARNA				660
			IRVDESEKTT				720
			VNVVYSQTTQ				780
	PLVIVSALTF	ICLVVLVGIL	IYWRKCFQTA	HFYLEDSTSP	RVISTPPTPI	FPISDDVĢAI	840
• •			EFETLKEFYQ				900
30			TDYINANYVD				960
			YWPADGSEEY				1020
	GSQKGRPSGR	VVTQYHYTQW	PDMGVPEYSL	PVLTFVRKAA	YAKRHAVGPV	VVHCSAGVGR	1080
	TGTYIVLDSM	LQQIQHEGTV	NIFGFLKHIR	SQRNYLVQTE	EQYVPIHDTL	VEAILSKETS	1140 1200
35			KTKLEKQFQL ASYIMGYYQS				1260
55			EPINCESFKV				1320
	MI PUGUNNAS	RMDNDUGDIG	KTFELISVIK	EEAANROGEM	IVEDENCEVT	AGTFCALTTL	1380
			LMRFGVFADI				1440
	AALPDGNIAE	-					
40							
- ,-	Seq ID NO:	183 DNA sec	quence				
	Nucleic Aci	d Accession	#: EOS sec	quence			
	Coding sequ	ence: 148-4	1494				
15					41	61	
45	1	11	21	31 1	41 I	51 I	
45	.1	1	21		1	1	60
45	CACACATACG	 CACGCACGAT	21 CTCACTTCGA	 TCTATACACT	 GGAGGATTAA	AACAAACAAA	60 120
	CACACATACG	CACGCACGAT ATTTCCTTCG	21 CTCACTTCGA CTCCCCCTCC	 TCTATACACT CTCTCCACTC	 GGAGGATTAA TGAGAAGCAG	AACAAACAAA AGGAGCCGCA	60 120 180
45 50	CACACATACG CAAAAAAAAC CGGCGAGGGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG	21 CTCACTTCGA CTCCCCCTCC TCTGGAAATG	TCTATACACT CTCTCCACTC CGAATCCTAA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT	AACAAACAAA AGGAGCCGCA CGCTTGCATT	120
	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG	21 CTCACTTCGA CTCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG	120 180
	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG	21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA	120 180 240 300 360
	CACACATACG CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAAAC	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA	120 180 240 300 360 420
50	CACACATACG CAAAAAAAC CGGCGAGGGG CAGCTCCTGT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAACTTAAA TGGGAAAACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA	AACAAACAAA AGGAGCCCCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT	120 180 240 300 360 420 480
	CACACATACG CAAAAAAAA CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA	21 CTCACTTCGA CTCCCCTCC TCTGGAATGG CTCGATTGG GTCCTATACA CCCAAAACAA CGAAACTTAAA TGGGAAAACA AATGGTGTTT	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT	ACCAACCAAA AGGAGCCGCA CGCTTGCATT ACCAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGAA	120 180 240 300 360 420 480 540
50	CACACATACG CAAAAAAAA CCGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TTCATAACAC GAGTTTCAGA TGTCATCTGA	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCCGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG	TCTATACACT TCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGGACAAAA	ACCAACCAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT	120 180 240 300 360 420 480 540
50	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAAATA GAGATGCAAAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGAT TCTACTGAT TCTACTGTT	21 CTCACTTCGA CTCCCCTCC TCTGGAATGG GTCCTATACA CCCAAACAA GAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA	AACAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA	120 180 240 300 360 420 480 540 600 660
50	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCCAATA GAGATGCAAAA GGGAAAAGGGA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT AGTTAAGAGC	21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGGA TGATGCAGAC TTTATCCATT	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTACA TGTTTCAAG TTGTTGAGG	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA	ACCARACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGAA ATTTCCACTT AGCAGTCAAA AGAAAATTTG	120 180 240 300 360 420 480 540 600 660 720
50	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAATA GAGATGCAAA GAGAAAAGGGA GAATTCAAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT TCTACTGCTT AGTTAAGAGC CGATTATTGA	21 CTCACTTCGA CTCCCCTCC TCTGGAATGG CTCGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA ATGGGAAACA AATGGTGTTT TGGATCAGAG TTTATCCATT TGGATCAGA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTTA AAAGCAAGCA CATAGTTTAG CGATTTTCAG TTTTCAGGT ATTGTTTGAGG AGTGTTAGTC	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA AGGATAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT	120 180 240 300 360 420 480 540 600 660 720 780
50 55	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GATTTCAAAG GTTAGATCAAT AATGGTCAT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGAT TCTACTGCTT AGTTAAGAC CGATTATGA TCATACTGT TCATACTGT TCATACTGT TCATACTGT TGACATCTCT TGACATCTCT TGACATCTCC	21 CTCACTTCGA CTCCCCTCC TCTGGAAATG GTCCTATACA CCCAAAACAA GAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TCTCGAGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA TTGTTTGAGG AGTGTTAGTCA CAAACTCAA CAAACTCAA CAAACTCAA CAAACTCAA CAAACTCAA CAAACTCAA CAAACTCAA CAAACTCAA CACAACTTG	GGAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA CTGACAAGTA ACTGACAAGTA ACTGGATTGT	AACAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT	120 180 240 300 360 420 480 540 660 720 720 780 840
50 55	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCCAATA GGAAAAGGGA GATTTCAAAG GTTAGATCCAT AATGGCTCAT AATGGCTCAT AACACTTAGCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTCATCAGA TCTACTGGTT AGTTAAGAGC CGATTATGA TCAATCGTT TGACATCTCC TCTCTGAAAG	21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA TGGGTCTT TGGATCAGAG TGATGCAGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TTGTTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTT	GGAGGATTAA TGAGAAGCA ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACC ATCTCACTAA AGATAACTTT AAGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA GTTTTGGGAA ACTGGATTGT AAGGTTTTAACAACTT AAGGACAAAT AACTGTTTAACAACTT AAGTTTTTAACAACTT AAGTTTTT	ACCAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGGAATTTG GCAGCTGCT TTACATTTAC TTTTAAAAAT AATGCAACAA	120 180 240 300 360 420 480 540 660 720 720 780 840 900 960
50 55	CACACATACG CAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAA GGAAAAGGGA GATTTCAAAG TTAGATCCAT AATGCTCAT ACAGTTACAT ACAGTTACAT ACAGTTAGCA TCTGGTTATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGATAACAC GAGTTTCAGA TCTATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGCTT TGACATCTCC TCATCTGAAG TCATCTGAAG TCATGCTGAT	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG GTCCTATACA CCCAAACAA CAAACTTAAA AATGGTGTTT TGGATCAGAG TGATGCAGAG TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTTA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTTA AAAGCAAGCA CGATTTTCAA CGATTTTCAA GGATTTTGAG GATTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTA GACACAGTTA GTTTTTTGTG CAAAACAATT	GGAGGATTAA TGAGAAGCA ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACC ATCTACATAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGAAA CTGACAAGTA ACTGACTGA ACTGGATTGT AAGTCTTTAC TTCGAGAGCA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TGACTGCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAAAGAT TATTAAAGAT AATGCAACAA ACAGTACAAG	120 180 240 300 360 420 600 660 720 780 840 900 960 1020
50 55 60	CACACATACG CAAAAAAAA CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAATA GAGATGCAATA GAAAAGGGA GATTTCAAAG TTAGATCCAT AATGGCTCAT AATGGCTCAT ACTGGTTATG TTTCTTAGAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAATAGT CGATTATAGT TCATACTGT TCATACTGT TGACATCTCC TCTCTGAAAG TCATGCTGAT TCATGCTGT TGACATCTCC TCTCTGAAAG TCATGCTGTT AGGTGTTTTC	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCCGATTGG GTCCTATACA CCCAAACAA GAACTTAAA GAACTTAAA GATGGATTT TGGATCAGAG TGATGCAGA TGATGCGAA GAACTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTTA	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GATTTTCAG AGTTTTCAG CATAGTTTAG CGATTTTCAG GATTTTCAG GACACGTTG GTTTTTTTTTT	GGAGGATTAA TGAGAAGCAG AGCATTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA AGGATAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAG ACTGACAAGTA ACTGACTAT ACTGACAAGTA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCATGA	ACAAACAAA AGGAGCACCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTCAT TTACATTTAC TTTTAAAGAT AATGCAACAA AATGCAACAA AATGCAACAA AAGGAACAAA AAGGAACAAA AGGAACTTTGT	120 180 240 300 360 480 540 660 720 780 900 900 1020 1080
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAAATGCAAAT GAGATGCAAAA GGAAAAGGGA TTAGATCCAT AATGCTCAT ACAGTTAGCA TCTGGTTATG ACTTCTAGAAC ACTTCAGAAC ACTTCAGAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATGA TCTACTGCTT TGACATCTTC TCTACTGTT TGACATCTTC TCTCTGAAAG TCATGCTGAT TCATGCTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT TCATGCTGAT TCATGCTGAT TCATGCTGAT TCATGCTGAT TCATGCTGAT TCATGCTGAT TCATGCTGAT TCATGAAAG TCATGCTGAT TCATGAAAG TCATGCTGAT TCATGAAAG TCATGCTGAT TCATGAAAG TCATGCTGAT CAGAAAATGT	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCCGGATTGG GTCCTATACA CCCAAACAA GAACTTAAA AATGGGAAACA TGGATCAGAG TGATGCAGAC TGTATCCATT TGGATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCCAGTTGGCT TCAGGCTGAC TCAACACT TCAGGCTGAC	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TCTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GATTTTCAG AGTTTTCAG CATAGTTTAG CGATTTTCAG GATTTTCAG GATTTTCAG GACACGTTG GTTTTTTTTTT	GGAGGATTAA TGAGAAGCAG ACTACAGACA ATCAAAAAA ATATTGATGA ACTACACATAA AGATAACTTT AAGGACAAAA TTTGAGGA TTGGGACAGA GTTTTGGGAA CTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGGACAAGTA ACTGGACAGA ACTGGACAGCA ACTCGACACCT AAGTTCTTAC	ACAAACAAA AGGAGCACAA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTCAT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA	120 180 240 300 420 480 540 600 720 780 900 900 900 1080 1140
50 55 60	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GATTTCAAAG GTTAGATCCAT AATGGCTCAT AATGGCTCAT ACAGTTAGAT TCTGGTTATG TCTCTTAGAC AGTTCAGAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATAACAC GAGTTCATAA TCTACTGCTT AGTTAATAG CCGATTATGA TCTACTGCTT TGACATCTCT TCATCACCTG TCATCTCC TCTCTGAAAG TCATCTCC TCTCTGAAAG TCATGCTGT AGGTGTTTTC CAGAAAATGT CTCAGATCGTT CAGAAAATGT CTCAGGTCGT	21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCCGAAACAA GAAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG TTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GCATTACT TCCAGTCTCT TCCAGTCACA CTATACACT TCAGCTCACA CTATACACT TCAGCCTCACA CTCATACACT TCAGCCTCAC TCAGCCTCACA TTATGATACC TTATGATACC	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TTGTTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTT	GGAGGATTAA TGAGAAGCA ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTTT AAGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA GTTTTGGGAA GTTTTGGGAT TTGGACAAGTT AAGTTCTTAC TTCGAGAGCA AGATTCTTAC AGGTTCTTAC AGGTTCTTAC AGGTTCTTAC AGGTTCTTAC AGGTTCTTAC AGGTTCTTAC AGGTTCTTAC AGATTCATGA AGATTCATGA AGATTCATGA AGATTCATGA AGATTCATGA AGATTCATGA AGATTCAGCCT AGTTTGCAGT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGGGA ATTTCCACTT AGCAGTCAAA AGGAGTCAAA AGAAATTTG TTACATTTA TTACATTTA ATTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTCTAC TCTTGTTACA TTTGTACCAG	120 180 240 300 360 420 480 540 660 720 780 960 1020 1080 1140 1200
50 55 60	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAA GGAAAAGGGA GATTTCAAAG TTAGATCCAT ACAGTTAGCT TCTGGTTATG TCTCTAGAC AGTTCAGAAC CGGAAAGAC CAGTTGGATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGATAACAC GAGTTTCAGA TCTAATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGCTT TGACATCTCC TCTCTGAAAG TCTCTCGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATTC CAGAAAATG CTCAGAGCCCA GAGAGGACCA	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG GTCCTATACA CCCAAACAA CAAACTTAAA AATGGTGTTT TGGATCAGAC TTATACAGAC TTATACATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC CAGGCTGAC CAGGCTGAC CAGGCTGAC CAGCTACTTA CTCATACACT CAGGCTGAC AACCAAGCAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TTGTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTGTG CAAAACAATT GGAAAGGAAG CCAGGAGAAT ATGATTGAG AGATTTTGAG AGATTGAG AGATTTTTGAG AAATTAGAG AAATTTTTGAG AAATTTTTGAG AAATTTTTGA	GGAGGATTAA TGAGAAGCA ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACC ATCTACACTAA AGATAACTTT AAGGACAAAC TTTGAGGA GTTTTGAGGA GTTTTGGGAA CTGACAAGTA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCATGA AGATTCATGA ATACCAGCCT AGATTGCAGT CAGATTGCAGT CAGATTGCAGT CAGATTGCAGT CAGATTGCAGT CAGATTGCAGT CAGATTGCAGT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTAAA AGAAAATTTG GCAGGCTGCT TTACATTTAA TTATAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTTTGTACAG TCTTGTTACAG TCTTGTTACAG TCTTGTTACAG TCTAGAGCTTG	120 180 240 360 420 480 540 660 720 780 960 1020 1080 1140 1200 1260
50 55 60	CACACATACG CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA GAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAATA AGAATACCAT AATGCTCAT AATGCTCAT AATGCTCAT AATGCTCAT ACAGTTAGAC TTCTCTAGAC TCTCTTAGAC AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC GGGAAAAGAC CGGGAAAGAC GGGTTGGATT GGGTTGTT GGGTTTTT	CACGCACGAT ATTTCCTTCG CAGGACCG GTGTTTGCCG AGATTGGCTG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT TGACATCTTG TCATACTGCTT TGACATCTCT TGACATCTCC TCTCTGAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGTCGT GAGAGGACCC GAGAGGACCC GAGAGGACCCA TCAATAATTTT	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CTCGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAAACA TGGGAAACA TGGATCAGAG TGATCAGAG TGATCAGAG CCAGTTGGCT TCCCTGCACA CCAGTTGGCT TCATACACT TCAGTACACT TCAGGCTGAC CAGTTGGCT CATACACT TCAGGCTGAC ACCAAGCAT GCTACCAACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GATTTTCAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTT	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTTT AAGGACAAACTT AAGGACAAACTT AAGGACAAAAC GTTTTGAGGA CTGACAAGTA ACTGGATTGT AAGTTCTTG AAGTTCTTG AAGTTCTTG AAGTTCTTGAGAA ATACCAGCCT AGTTTGAGCA ATACCAGCCT AGTTTGAGAT TTCAGATT TCAGATTGCAGAT TTCTTCAGAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTCAC TTTTAAAGAT TTTTAAAGAT ATTGCAACAA ACAGTACAAG ACAGTACAAG ACAGTTCACACAAG TCTTGTTACA TTTGTACCAG TCTAGACCTG AGTAGCCATA	120 180 240 360 420 480 540 660 720 840 900 900 1020 1140 1200 1320
50556065	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GATTTCAAAG TTAGATCAAT ACAGTTAGATCAT TCTGGTTATG TCTCTAGAC TTCTCTAGAC TTCTCTAGAC TCTCTAGAAC TGGGAAAAGC CAGTTGGATC TCGGTTATG TCTCTAGAAC TGGGAAAAGC CAGTTGGATG GGTGCTATTC GGTGCTATTC	CACGCACGAT ATTICCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATGA TCTACTGCTT TGACATCTGT TGACATCTCC TCTCTGAAAG TCATGCTGT TCACGGTTTT CAGAAAATGT CTGAGTGGT CAGAAAATGT CTGAGTACTGT TCAGATACTGT CAGAAAAATGT CTGAGTACT TCAGATACTGT GAGAGGACCA TCAATAATTT GGCTAATACTT	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCCGGATTGG GTCCTATACA CCCAAACAA GAACTTAAA GAACTTAAA TGGGAAACCA TGGATCAGAG TGATGCAGAC TGTATCCATT TGGATCAGAC TCCTGCACA CCAGTTGGCT GGACTACTTA TCCAGTCTGC TCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATGATACC TCAGACCAC TTATGATACC AACCAAGCAT GCTACCCAAT AAAATACAGC	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GGATTTCAA TTGTTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTT	GGAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGT ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA AGATTCATCA AGATTCATCA AGATTCATCA TCGAGAGCA AGATTCATCA TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT	ACAACAAA AGAGCACA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAC TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTACAAG TCTTGTTACA TTTGTACCAG TCAAGACTTG TCAAGACTTG AGTAGCATA GCCTACTGAT GCCTACTGAT	120 180 240 360 420 480 660 720 780 960 1020 1140 1200 1140 1230 1380
50 55 60	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAATA GGAAAAGGGA GATTTCAAAG GTTAGATCCAT AATGGCTCAT ACAGTTAGAT ACTTCATAGAT TTCTCTAGAC TCTCGTTATG TCTCTTAGAC TGGGAAAGGAC CAGTTCGAAC CGGTGCTATTC TGCACTATG TTCCTAATG ATCCTGAATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATAACAC GAGTTCATAA TCTAATAGAC TCTAATTGA TCTAATGGTT AGTTAATGG TCATCTGT TCATCATCTG TCATCTGCT TCATCTGCT TCATCTGCT TCATCTGCT TCATCATCTC TCATCAGAT AGGTGTTTTC CAGAAAATGT CTGAGAGCCA TCAATAATTT GCTTATATGG TCATTATTG TCAGATAATTT TCTTATATGG	21 CTCACTTCGA CTCCCCTCC TCTGGAATGG GTCCTATACA CCCAAAACAA GAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC TTATCCATT TGGAGTCGAC CCAGTTGGCT GGACTACTAC CCAGTTGGCT TCAGCCCAC TTATGATACC TCAGCCAC CTATGATACC CAGTTGCT TCAGCCACA CTATCACCACA CCAACACAC CCAGACTTACCCACA CCAGCATTACCCACAC CCAGCACT CCACCACAC CCAGCATTACCCCAC CCAGACTTA	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGTTTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTT	GGAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTTT AAGGACAAA GGTTTTGAGGA TTGGGACAGA GTTTTGAGGA ACTGTTTGAGAAA ACTGTTTTAAGGACAAGA ACTGTACAAAGTA ACTGTTTTAC TTCGAGAGCA AGATTCATGA AGATTCATGA AGATTCATGA ATACCAGCCT AGTTTGCAGT TTCTTCAGAT TTCTTCAGAT TTCTTCAGAT TTCTTCAGAT AAGAAATAAT	ACCAGCAGA ACAGACAAA AGGAGCACC CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGGGA ATTTCCACTT AGCAGTCAAA AGGAGTCAAA AGAAATTTG CAGGCTGCT TTACATTTAC ATTTACATTTAC ATTTACACTT TACATTACA TTACATTACA ACAGTACAAA ACAGTACAAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TCTTGTACCAG TCAAGACTTG AGTAGCCATTG AGTAGCCATTG AGTAGCCATTG AGTAGCCATTG AGTAGCCATTG AGTAGCCATTG AGTAGCAGAT CAAGAGAGGAG	120 180 240 300 360 420 480 540 660 720 780 960 1020 1140 1260 1140 1260 1320 1440
50556065	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA GTCAGCGGAG AAATGCAATA GAGATGCAATA GGAAAAGGGA GATTTCAAAG TTAGATCCAT ACAGTTAGAC TCTCGTTATG TCTCTTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAAC CAGTTGGATG GAGAAAGAC CAGTTGGATG GAGAAAGAC CAGTTGGATAC AATCCTGAAC GAAGAGGAA	CACGCACGAT ATTTCCTTCG CAGGACCG GTGTTTGCCG AGATTGGCTG AGATTGATAG TGAATCTTAA TTCATAACAC GAGTTCATGAT AGTCATCTGA AGTTAATGG TCATCATCTGT TGACATCTCC TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGAGCACCA TCAATACTTT GCTTATATTG TCAATACTTT AGACATCTCT TCAATACTTT TCAGATCGT TCAGTCGT TCAGTCGT TCAGTCGT TCAGTCGT TCAATACTTT TCAGATCTTT AAGACATTGA	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG GTCCTATACA CCCAAACAA CAAACTTAAA AATGGTGTTT TGGATCAGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC CAGTTGGCT TCAGGCTGAC CAGCTTACC CAGCTTAC CTATACACT TCATACACT CAGCTTAC CAACCAACCAT AAAATACAGC CCCTGAATTA AGAAGGCGCT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TTGTTTCAA TTGTTTCAA GCAACTCAA GACACTTAG GTTTTTTGTG CAAACCAATT GGAAAGAAT ATGATTGAG ACCAGTAG ATGATTTTGAG ACCACTTG GAAACCATT GAACCAGTAT TGAATTTTGAG ATGAGTATTTTGA ATGATTTTGA ATGATTAGAA ATGAGTATG ATTGGAACTG ATTGGAACTG ATTGTGAATT	GGAGGATTAA TGAGAAGCA ATCAAAAAA ATATTGATGA GGGATAAAC ATCTCACTAA AGATAACTT AAGGACAAAC ATCTCACTAA AGATAACTT AAGGACAAGTA ATTTGAGGA TTTGGGAAAGTA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCATAC AGATTCATCA AGATTCATCA AGATTCATCA TTCTCACAT TTCTCACAT TTCTCACAT TTCTCACAT TTCTCACAT TTCTCACAT AAGAAATAAT CTGGTAGAGA AACAAATAAT	ACAACAAA AGAGCACA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAC TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTACAAG TCTTGTTACA TTTGTACCAG TCAAGACTTG TCAAGACTTG AGTAGCATA GCCTACTGAT GCCTACTGAT	120 180 240 360 420 540 660 720 900 900 1020 1080 1140 1260 1320 1380 1380 1440 1500
50556065	CACACATACG CAAAAAAAAC CAGAGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GACATGCAATA GAGATGCAAAT ACACATTCAAGGGAA GATTCAAGG TTAGATCCAT ACAGTTAGCA TCTCGTTATG TCTCTAGAC TCTCTAGAC TCTCTAGAC CAGTTGGATG GGTGCTATTC GGTGCTATTC AATGCCTATAGC TCTCTAGAAC CAGTTGGATG GGTGCTATTC AATCCTGAAC AACCCAAATACA AACCAAATACA	CACGCACGAT ATTICCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATGA TCTACTGTT TGACATCTGT TGACATCTCT TCTCTGAAAG TCATGCTGT TCACATCTGT TCACATCTCC TCTCTGAAAG TCATGCTGAT CAGAAAATGT CTGAGTGGT TCACATACTTTT CAGAAAATGT CTGAGTCGT TCAATAATTT GCTTATATGG TTGATCTTTT AGAACATTGA GGAAAAAGGA AGAACAGAA	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCCGGATTGG GTCCTATACA CCCAAACAA GAACTTAAA GAACTTAAA GATGGATTT TGGATCAGAG TGATGCGAA GAACTTATCCATT TGGACTCAGA CCAGTTGGCT TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATACCTT TCAGGCTGAC TCAGGCTGAC TATGATACC TATGATACC AACCAAGT AAAATACAGC CCCTGAATTA AGAAGGCGCT GCCCCAGATT ACCCCAGTT GCCCCCAGTT GACTACCGAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GGATTTTCAG TTGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTT	GGAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGT ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ATACTACTTAC TCGAGAGCA AGATTCATGA AGATTCATGA TTGTCAGAT TTGTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT ACTGACAAGT ACTGACAAC TTGTCGACAT ACTGACAAC TTGTCGACAT ACGACACAC AGATAAATAAT CTGGTAGAGA CACACTACAA	ACAAACAAA AGGAGCAGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTGTT TCTTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCATA GCTACTGAT CAAGACTTG AGTAGCATA CAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGGAGGAG CAGTGCTACA TCGCATAGGG ATTCTCTGGA	120 180 240 360 420 480 540 660 720 780 960 1080 1140 1200 1320 1380 1440 1560 1560 1620
5055606570	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAATA GAGATGCAAAA GGAAAAGGGA TTAGATCCAT AATGGCTCAT AATGGCTCAT ACAGTTAGAC TCTCGTTATG TCTCTAGAC TCTGGTATG TCTCTTAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC AGGAAAGAC AACCAAATCA ACGAAATCA AAGGAGAGTAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCGATAATAG TCTATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGCT TCGATACTGCT TCATCTGCT TCATCTGCT TCATCTGCT TCATCTCC TCCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTCAGATCGT TCAATAATTT GCTTATATGG GGAAAAATGT TCGTTATATGG GGAAAAATGT TTGATCTTTT AAGACCTTGA AGGCGAAAAATGT TCATTTTAATGG TCAATACTGT TCAATACTGT TCAATACTGA TCAATACTTTT AAGACCTAA	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG GTCCTATACA CCCAAACAA GAAACTTAAA AATGGTGTTT TGGATCGAG TTTATCCATT TGGATCGAA GAACCTTCTG GCCTGCAC CCAGTCCAC GCACACAAC CCAGTCCAC GCACTCTCAC GCACTCCTCAC CCAGTTGCCAC CCAGTTGCCAC CCCTGCACT CCCTGCACT AAAATACACC AACCAAGCAT AAAATACACC CCCTGGATTA AGAAGGCGCT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT CACCCAGATT CACCCACACT CACCCACATT CACCCACACT CACCCACATT CACCCACACT CACCACACT CACCCACACT CACC	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGATTTTCAG GGATTTTCAG GGATTTTGAG AGTGTTAGTC CCAAACTCTAA GACACAGTTG GCAAACACATT GGAAAGGAAT ATGATTTTGAG ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATG ATTGGAACTG ATTGGAACTG ATTGTGAACT TCTACCACAA TCCCCAACACA	GGAGGATTAA TGAGAAGCA ACCAACAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAA GGTTTTCGAGA TTGGGACAGA TTGGGACAGA GTTTTGAGGA ACTGTTTTAAGGACAAGTT AAGATTCTTAC TTCGAGAGCA AGATTCTTAC TTCGAGAGCA AGATTCTTAC TTCGAGAGCA AGATTCTTAC TTCTCAGAT TTCTTCAGAT TTCTTCAGAT TTGTTCGACAT TTGTTCGACAT TTGTTCGACAT TTGTTCGACAT TTGTTCGACAT CAGATGGCTA TTGTTCGACAT CAGATGGAAAATAAT CTGGTAGAGA CACACTACAA AGAGAAGTGA AACCAGTCAC	ACCAACCAAA AGAGCACCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAC ATTTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTTTGTACCAG TCAAGACTTG AGTAGCCATAG AGCAGTACGAA ACAGTACCAAA ACAGTACCAAA ACAGTACCAAC ACTTGTACCAG TCAAGACTTG AGTAGCCATAG AGCATACGAA ACAGTACCAAC ACCGCATAGGC CAAGACTTG AGTAGCATACC AGCCTACTGAT CCACGCATAGGG ATTCTCTCGGA TAAATTAGCC	120 180 240 300 360 420 480 660 720 780 960 1020 1080 1260 1320 1440 1500 1500 1620 1680
50556065	CACACATACG CAAAAAAAAC CAGGAGGGG CAGCTCCTCT CTTGTTGAGG AAATATCCAA CAAGTACATCA GTCAGCGGAG AAATGCAATA GAGATGCAAAA GGAAAAGGGA AATTCAAAG TTAGATCCAT ACAGTTAGAC TCTGGTTATG TCTCTTAGAC TCTGGTTATG TCTCTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAAAAAAAAAG AACCAAATCA ACGAAAAAAAAAA	CACGCACGAT ATTTCCTTCG CAGGACCG GTGTTTGCCG AGATTGGCTG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTCATGAT AGTTAATAG TCTACTGCTT AGTTAATGAT TCATACTGCTT TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGTCGT GAGAGGACCA TCAATACTTT GCTTATATGG TCAATACTTT TCATTATATG TTGACTCTT AAGACATTTG AAGACATTGA GGAAAAAGGA ATGAAGCCAA ATGCCAATAC ATATTTCCTT	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG GTCCTATACA CCCAAACAA CAAACTTAAA AATGGTGTTT TGGATCAGAG TGATCAGAG TGATCAGAG TGATCAGAG GAACCTTCTG TCCATTTCATT TGGAGTCGAA CAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC CAGTTAGCT TCATACACT TCATACACT TCATACACT TCATACACT CAGGCTGAC AACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATT AGAAGGCGCT ACCCCAGATT GCCTACCCAGATT GCCTACCCAGATT GCCTACCCAGATT GCCTACCCAGATT GCCTACCCAGATT GCCTACCCAGATT GCCTACCCAGATT GCCTACCCAGATT GCCTACCCAGATT ACCCCAGATT GCCTACCCAGATT GCCTACCCACAC CCCCAGATT CACCCACAC CCCCACATT CACCCACAC CCCCACAT CACCCACAC CCCCACAT CCCCACAC	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CGATTTTCAA TTGTTTCAA TTGTTTCAA GCAACTCAA GCACACTTAG GCAAACTCAA GCACAGTTG GCAAACTATA GCACAGTTG GCAAACTAT GGAAAGAAT ATGATTTTGAG ACAGTAT GCACAACTGA ATGATTAGA ATGATTAGA ATGATTATGA ATGATTATGA ATGATTATGA CCCCACCAA ATTGCCCAACAA TCCACCTACCC ACTGTGACTG	GGAGGATTAA TGAGAAGCA ATCAAAAAA ATATTGATGA GGGATAAACC ATCTACTAA AGATAACTAT AAGGACAAA ATATTGATGA GGTTTTGAGGA TTGGGACAGA GTTTTGAGGA GTTTTGAGGA ACTGGATTGTA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCTTAC TTCGAGAGCA AGATTCTTAC TTCTCAGAT TTGTTGAGAT AAGAAATAAT CTGGTAGAGA CACACTACAA AAGGAAGTGA AACCAGTCAC AACTGCAC	ACCAACTGG ACCACCAC ACCACCAC ACCACCAC ACCACCAC ACCACC	120 180 240 360 420 540 660 720 900 900 1020 1140 1260 1320 1380 1560 1560 1680 1740
5055606570	CACACATACG CAAAAAAAAC CAGCAGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATGCAAAA GAAATGCAAAA GAAATGCAAAA GAAATGCAAAA CAGTTAGAC TTAGATCCAT AATGCTCAT AATGCTCAT ACAGTTAGAA CAGTTCAGAAC TGGGAAAGAC CAGTTGAAT TTCTTAGAC CAGTTGATC TGCACTAATG AATCCTGAAC AAGGAGGGAA AACCAAATCA AAGGAGGGAA AACGAAATACA AAGGAGAAAAG GAAGGTACTT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATGA TCTACTGCTT AGTTAAGAC TCATCTGT TGACATCTCC TCTCTGAAAG TCATACTGCT TCATGCTGT CAGAAAATGT CAGAGTCTT GAGAGGACCT TCAATAATTT GCTTATATGG TTGATCTTT AAGACATTTG AGGAAAATGT TCATCTTT AAGACATTTG AGGAAAATGT TCATTTTAATGG TTGATCTTTT AAGACATTTGA TCAATACTTTT AAGACATTTGA TCAATACCAATAC TCAATACCTTT CAGCCTCTTT CAGCCTCTTT	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG CTCGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACA TGGGAAACA TGGGACAC TTATCCATT TGGATCGGA GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCATACACT TCAGGCTGAC TTATGATTA CCTATACACT TCAGGCTGAC TATAGATACC ACCAAGCAT GCTACCCAAT AAAATACAGC CCTGAATTA AGAAGGCGT ACCCCAGATT GACTACCCA ACCAGCTT CCTGACAT ACAAGCAT CCCCCAGATT ACCCCAGATT GACTACCCAAT ACCCCAGATT GACTACCCAAT ACCCCAGATT GACTACCCAAT ACCCCAGATT GACTACCCAAT ACCCCAGATT GACTACCCAAT ACCCCAGATT GACTACCCAAT AAATACCGA ATCTTTAAAT GACTTCTCAG AAATGATGGC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTCAA GCATTTCAA GCATTTCAA GACACAGTTG GTTTTTTGTG CAAAACAATT GGAAAGGAAG ATGATTTGAA GAATTTTTGAA GAATTTTTGAA GAATTTTTGAACT ATGATTTTTGAACT ATGATTTTTGAACT GAAACTCAA ATTGGAACTGA ATTGGAACTG ATTGGAACT TCTACCACAA TCCACACTACA TCCACTTCCC ACTGTGACTG TCTAAAACTG	GGAGGATTAA TGAGAAGCA ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAC ATCACATAA GGATAACCATT AAGGACAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAAC GTTTTGAGGA GTTTTGAGAA CTGACTAGA ACTGACTAC ATCACAGTA ACTGATTTAC TTCGAGAGCA AGATTCATGA ATTCATGA TTCTTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TCTTCAGAT TCTTCAGAT TCTGTAGAGAC AGAATAAT CTGGTAGAGA CACACTACAA GAGGAAGTGA AACCAGTCAC TTCTTAGAT TTCTCACAC TTCTTAGAT CACACTACAA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TTGACTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTAC TTTTAAAGAT TATTGAACAA ACAGTACAAG AGCAGTTTGT TCACTTGTTACA TCTTGTTACA TCTTGTTACA CCAGGCCATA GCCTACTGAT CAAGGAGCAG CAGTGCTACA TCGCATAGGG ATTCTCTGGA TTAAATTAGCC TCACACTTGG TCACACTTGG TCACACTTGG TCACACTTGG TCACACTTGG TCACACTTGG TCACACTTGG TCCACATTAG	120 180 240 360 420 480 660 720 840 900 900 1020 1140 1260 1380 1440 1560 1680 1680 1680 1680
5055606570	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA AATTCAAAGGGAAA GGAAAAGGGA TTAGATCCAT ACAGTTAGCA TCTGGTTATG TTCTCAGAC TTCTAGAC TTCTAGAC TTCTAGAC TTCTAGAC TTCTAGAC TTCTAGAC TTCTAGAC TTCTAGATC TTCTAGATC TTCTCAGAAC TGGGAAAGAC TGGGAAAGAC AACCAAATAC AAGGGGGAA AACCAAATAC AAGGGTGATG ACGAAAAAAC AAGGGTGATG ACGAAAAAAC AAGGGTGATG AACGAAAAACT AACGAAAAAACT AACGAAAAACT AACTGTCGG	CACGCACGAT ATTICCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGTT AGTTAAGAGC CGATTATGA TCTACTGTT TGACATCTGT TGACATCTCC TCTCTGAAAG TCATCTGAT CAGAGACCA TCAGAGTGTTT CAGAAAATGT CTGAGTCGT TGACATCTTT AGAAAATGT CTGAGTCGT TGACATCTTT AGAAAATGT CTGAGTCGT TCACATACTTT AGAAAATGT CTCAATACTTT CAGAAAATTT CAGAAAAATTT CAGACATTCA AGAAAATGT TCAATACTTT AAGACATTGA AGAAAATGT TCAATACTTT CAGCCACTTT CAGCCTCTTT CAGCTCTTT CAGCCTCTTT CAGCCTCTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCT CAGCCTC CAGCCT CAGCC CAGCC CAGCCT CAGCC CAG	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCCGGATTGG GTCCTATACA CCCAAACAA GAACTTAAA TGGGAAACA GAGTGGAT TGGATCAGAG TGATGCAGAC TGATGCGAT TGGATCAGAG TGATGCAGAC TCCTGCACA CCAGTTGGCT TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TATAGATACACT TCAGGCTGAC ACCAAGCAT ACAACCAT ACAACCAT ACAACCAT ACAACCAT ACAACCAT ACAACCAT ACCAACCA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTGAG GGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GCACACGTTG GCAAACTCAA ATGATTTGAG AATGTTTGTG GCAAACTCAA ATGATTTGAG AATGATTTTGAG AAACAATT ATGATTGAG AATTTTGAG AATGATAG AATGAGAACT CCACAACTGA ATTGGAACTC ACTGTGAACT ACCACACA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCCTTGTGACTC ACTGTGACTC ACAGTTTCTA	GGAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA CTGACAAGTA ACTGCACAC AGATCACTAC AGATCACTAC AGATCACAC AGATCACAC AGATCACAC AGATCACAC AGATCACAC AGATCACAC AGATCACAC AGATCACAC ACACTACAA AGAAATAAT CTGGTAGGAT AAGAAATAAT CTGGTAGAGA CACACTACAA CACACTACAA CACACTACAA CACACTACAC CACTGCACC TTCTTAGATC TTAACAGAATA	ACAACAAA AGAGCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGAA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTGTAC TCTGTTACA TCTGTACCAG TCAAGACTTG TCAAGACTAG CAGTGCTACA CAGTACGAG ATTCTCTGGA TAAATTAGCC TCACACTTGT TCACACTTTG TCACACTTTCACACTTTG TCACACTTTCACACTTTTC TCACACTTTCACACTTTCACACTTTC TCACACTTTCACACTTTCACACTTCACACTTTCACACACTTCACACACTTCACACACTTCACACACTTCACACTTCACACACACTTCA	120 180 240 360 420 480 660 720 780 960 1020 1140 1260 1320 1380 1440 1560 1680 1740 1860
5055606570	CACACATACG CAAAAAAAAC CAGAGAGGG CAGCTCCTCT CTTGTTGAGG AAATATCCAA CAAGTAAATG AACACTTCA GTCAGCGGAG AAATGCAATA GAGATGCAAAA GGAAAAGGGA TTAGATCCAT ACAGTTAGAC TCTCGTTATG TCTCTAGAC TCTGGTATG TTCTCTAGAC TGGAAAAGGC AGTTCAAAG CAGTTCAGAAC CAGTTCAGAAC CAGTTCAGAAC ACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AAGGGGGAA AACCAAATCA AAGGGTGTT AACTTGTCGG AAAGGTACTT AACTTGTCGG ACAGAAAAAG GAAGGTACTT AACTTGTCGG ACTTTGTCGG ACTTTGTCGG ACTTTGTCGG ACTTTGTCGG ACTTTGTCGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCGATAATAG TCTATAACAC GAGTTTCAGA TCTACTGTA AGTTAAGAGC CGATTATGA TCTACTGCT TCATCACTGT TCATCACTGT TCATCACTGT TCATCACTGT TCATCACTCC TCTCTGAAAG TCATCTCC TCTCTGAAAG TCATGCTGT GAGAGAATGT CCTGAATAATTT GCTTATATGG GGAAAAATGT TCATATTGA TTGATCTTTT AAGACCTTTT AAGACCTATACTGT TCATCTGTATATGG TCATATATGG TCATATATGG TCATATATGG TCATATATGA TTATATGG TCATATATGA TTATATGT TCATATATGA ATGAAGCCAA ATTCCCAATAC ATATTTCCTT CAGCCTCTTT GGACTGCAGA CCAGTTTCAA	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG GTCCTATACA CCCAAACAA GAAACTTAAA AATGGTGTTT TGGATCGAG TTTATCCATT TGGATCGAA GAACCTTCTG GTCCTGCAC CCAGCAC GAACCTAC GAACCTAC GAACCTAC GAACCTCTG GGACTACTTA CTCATACACT TCAGGCTGAC TATGATACC AACCAAGCAT GCTACCCAAT AAATACAGC CCCTGGATTA AGAAGGCGCT ACCCCAGATT GACTAACCGA AATGATGCC AACTACCCAA AATGATACCGA AATGATACCGA AATGATACCGA AATGATACCGA AAATGATGCC AACTTCAACA CATCCTTAAAT GCTTGATACT GCTCAACTAC CTCCAACTAC CACCTAACTAC CACCTAACTAC CACCTAACTAC CACCTAACTAC CACCTAACTAC CACCTACACTAC CACCTACACTAC CACCTACACTAC CACCTACACTAC CACCTCACTACACTAC CACCTCACTACAC CACCTCACTACACTAC CACCTCACTACACTAC CACCTCACTACACTAC CACCTCACTACACTACACTAC CACCTCACTACACTAC CCTCAACTAC CCTCAA	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGTTTTGAGG AGTGTTAGAG AGTGTTAGTC CCAAACTCAA GCACACTTG GCAAACACATT GGAAACAATT GGAAACAATT GGAAACGAAC CCAGAGAAT ATGATTATGA ATGATTATGA ATGATTATGA ATGAGTTATGA ATGAGTTATGA ATTGACACAA ATTGACACACA ATTGCACACA ATCCCAACCACA TCCCCAACCAC ACTGTGACTG CTTAAAACTG CAGGTTTCTA GGAGCTGAAG CCGACTGACACA CCCACTCCC ACTGTGACTG CTAAAACTG CACAGTTCTCA GGAGCTGAAA	GGAGGATTAA TGAGAAGCA ATCAAAAAAA ATATTGATGA GGGATAAACA ATCTCACTAA AGGATAACTT AAGGACAAA AGGATAACTT AAGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGA ATCTCACTAA AGATACTTT AAGGACAAAA ATATTGATGA AGTTTTGAGGA ATTTGAGACAACT AAGATCATTA AGATCATCA AGATCACAA AGAAATAAT CTGGTAGGA AGACTACAA AGAGAATAAT CTGGTAGGA AACCACCAC AACTACAA AACCACCC TTCTTAGATC CACTTTAGATC CACTTCAGAT AACAGAATA AATCCTACAG	ACCAACTICG TCACACTICG TCACACTICG TCACACTICG TTACACTACACACACACACACACACACACACACACACAC	120 180 240 360 420 480 660 720 780 960 1020 1140 1260 1320 1440 1560 1680 1740 1860 1920
505560657075	CACACATACG CAAAAAAAAC CAGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GATTTCAAAG TTAGATCCAT ACAGTTCATAAG TTAGATCCAT ACAGTTAGAC TCTCGTTATG TCTCTTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AATCCTGAAC CAAATCA AAGGGTAATC AACGAAATCA AAGGGTAATC AACGAAAAAAG GAAGGTACTT AACTTGTCGG ACACTACTT ACACTTATCAC ACGAAAAAAG GAAGGTACTT AACTTGTCGG ACACTTCTGCAGC GAAGGGTACTT AACTTGTCGG AGTTTATTGA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTCATGAT ATCATCATACTGCTT AGTTAATAGAC CGATTATTGA TCATACTGCTT TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTAGATCGTT CAGACACTTC CAGAAAATGT CTATATTGA TCATACTGTT AAGACATTTG GCATATATTT AAGACATTTC CAGAAAATTT CCTTATATAG GGAAAATGT ATGATCTTT AAGACATTTC AAGACATTTC AAGACATTC AATATTTCCTT CAGCTCTTT GGACTCCATT CAGCTCTTT CACCTTTCAA CTATCCCATT	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA ATGGGAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC TTTATCCATT TGGAGTCGAA CCAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGACA AACAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCAGATT GCACCCAGATT GCACTCTCAGA ATCTTACACAT GCTTACACAT CCTTGATACC AACTACCCAAT ACAAGCAT GCTACCCAAT AGAAGGCGCT ACCCCAGATT GCACTCTCAGA ATCTTCAAA CCTTGATACC CTTGATACT CCTTGATACT CCTTGATACT CCTTGATACT CCTTGATACT CCTTCTCTGAG	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CGATTTTCAA TTGTTTCAA TTGTTTCAA GCAACTCAA GCACACTTAG GCAAACTCAA GACACAGTTG GCAAACTATA GAAACAATT GGAAAGGAAG ATGTTTTGAG ATGATTTTGAG ATGATTTTGAG AAACAATT CACACAACAA ATGAGAACTA ATGATTAGA ATGAGTATG CACACTACAA TCCCCACAA TCCCCACAA CCCCACTTCCC ACTGTGACTG CTCTAAAACTG ACAGTTTCTA ACAGTTTCTA CACGTTCCC ACTGTGACTA GCAGTTTCTA CACGTTCCC ACAGTTTCTA CACGTTCCCA CACGTTCCCAACAA CCCCACACAA CCCCACACAA CCCCACACAA CCCCACTTCCC ACTGTGACTG CTCTAAAACTG ACAGTTTCTA GCAGTTTCTA GCAGCTGAAG AACATATCCC	GGAGGATTAA TGAGAAGCA ATCAAAAAA ATATTGATGA GGGATAAACC ATCTACACTAA AGGATAACTT AAGGACAAC ATCTCACTAA AGATAACTT AAGGACAAGTA TTGAGGA TTGGGACAGA GTTTTGGGAA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCATTA AGTTCTTAC TTCGAGAGCA AGATTCATGA ATTCTTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAAC AGATTCCTACAC AGATGCACA CAGATGCAC AGATTCCAGA TTCTTCAGAT TTGTCGACAAC AAGAGAATAAC CTGGAGAGCA AACACTACAA AAGAGAATAA AACAGTCAC TTCTTAGATC TAACAGAATA ATTCTTCAGA ATTCTTCAGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TGACTACCGT TCACTGGGGA ATTTCCACTT TCACTGGGAA AGAAATTTG GCAGGCTGCT TTACATTTAA AGAAATTTG TTACATTTAA ACAGTACAA ACAGTACAAG CCAGTACAG TCACAGTACAG TCACAGTACAG ATTCTCTTGAA ATAAATTAGCC TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTCT TCACACTTCCC ATTTTCCTCC	120 180 240 360 420 480 540 660 720 900 900 900 1020 1140 1260 1320 1380 1440 1500 1500 1620 1620 1620 1860 1860 1980
5055606570	CACACATACG CAAAAAAAAC CAGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAATA GAGATGCAATA AATGCATAA ATGGCTCAT ACTGGTTATG TCTCTAGAC TCTGGTTATG TCTCTAGAC CAGTTGGATG GGTGCTATTC TGCACTAATG GATCCAAATCA AATCCTGAAC AACTCTGAAC AAGGGTAATC AACGAAATACA AAGGGTACTT AACTTGTCGG AGTTTTTTTAAC GAAGATACA AAGGGTACTT AACTTGTCGG AGTTTTTTTTAAC GAAGGTACTT AACTTGTCGG AGTTTTTTTTTT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCG AGATTGGCTG CATGTAATAG TCATAACAC GAGTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGCT TCATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTC CAGAAAATTT CCTGATCTTT AGACATCTC TCATTATAGG CTAATATTT CTGATCTTT AGACATTTC CAGAAAATTT CCTATATTGA TCATACTGTT TGACTCTTT AGACATTCC AGACATTCA TCATACTGT CAGACATTCA CAGATTTCAAGC CAGTTTCAA ATATTTCCTT CAGCTCTTT CAGCTCTTT AGACAATAA CTATCCCATT AGACAATAA CTATCCCATT	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA ATGGGAAACA ATGGTGTTT TGGATCAGAG TTTATCCATT TGGATCGAA CCAGTTGGT TCCCTGCACA CCAGTTGGCT TCATACACT TCAGGCTGAC ATCATACACT TCAGGCTGAC ACCAAGCAT GCTACCCAAT AAAATACAGC CCTGAATTA AGAAGGCGT ACCCAGATT GACTTACACT ACCCAGATT GACTTACACT CCTGAATTA AGAAGGCGT ACCCCAGATT GACTTACACG ATCTTTAAAT CACTTCTCAG AAATGATGGC ATCTTTAAAT CCTTGATACT CATCTCTGAG ATATGATACT CATCTCTGAG ATATGATGTC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA GCTGAAATTA AAAGCAAGCA CGAATTTCAA CGATTTTCAA CGATTTTCAA CGATTTTCAA CGATTTTGAG ACTGTTAGTC CCAAACTCAA GACACAGTTT GGAAAGCAAT GGAATTTTGAG ATGTTTGAG ATGTTTTTGTG CCAAACTCAA ATGATTGAACT ATGATTGAACT ATGATTGAACT ATGACCACAA TCCACACAA TCCACACAA TCCACACAA TCCACACAC TCTACACACA TCCACACAC TCTACACACA TCCACACAC TCTACACACA TCCACACAC TCTAAAACTG ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCCACACAT ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCCC CTTATACCAC	GGAGGATTAA TGAGAAGCA ATCAAAAAAA ATATTGATGA GGGATAAACC ATCACATAA AGGATAAACC ATCTCACTAA AGGATAAACC ATCTCACTAA AGGATAAACC ATCTCACTAA AGGATAAACC ATTTGAGGA GTTTTGAGGA GTTTTGGGAA CTGGATGTT AAGGTCATAA ACTGCATGC CAGATGCCT AGGTTGCAGAC TTCTTCAGAT TTCTCAGAT AGTTTGCACAT AGGAAGTAA AGATACAGCCT AGGAAGCAA AGATCACAC CTGGATGCCT AAGAATAAT CTGGTAGGAGA AACCAGTCAC AACTGCCACC TTCTTAGATC TAACAGATTA ATTCTTCAGA ATTCTTCAGA ATTCTTCAGA ATTCTTCAGA ATTCTTCAGA AATGCCACC AACTGCACC AACTGCACC AACTGCACAC AACTCACAC AACTGCACAC AACTGCACAC AACTCCACAC AACTCACAC AACT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TGACTTGGAT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGGAGTCAAA AGGAGTCAAA AGGAAAATTTG GCAGGCTGCT TTACATTTAA ATCATTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTTTAAAGAT ACAGTACAAG AGCAGTTTGT TCTTGTTACA TCTTGTTACA GCCTACTGAT CAAGACCTTG AGTAGCCATA GCCATAGGG TCAAGACTTG TCACAGTACAA TCACAGTACAA TCACAGTACAAG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCACATTCGC TCACACTTGT TCCACATTCT TGAAGGAGGAG CTCCAGTCCC AAATGCTTCC	120 180 240 360 420 480 540 660 720 840 900 900 1080 1140 1260 1380 1440 1560 1560 1620 1680 1780 1860 1980 1980 1980 1980 1980 1980 1980 198
505560657075	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GACATGCAATA GGAAAAGGGA TTAGATCCAT ACAGTTAGAC TTTCATAGC TTTCATAGC TTTCTAGAC TTTCTAGAC TTCTTAGA TTCTTAGAC TTCTTAGAC TTCTTAGAC TTCTTAGAC TTCTCAGAC AGTTTCAGAAC AGTTTGATC AATTCCTGAAC GAAGAGGGAAA AACCAAATAC AAGGGTGATG AACGGAAAAACC AAGGGTACT AACTTGTCGG AGTTTATTG AACTTGTCGG AGTTTATTGA GCAACTTCTG GAAAACCCAA	CACGCACGAT ATTICCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTAATTGA TCTACTGCTT AGTTAAGAC CGATTATGA TCTACTGCTT AGTTAAGAC TCATCTGT TGACATCTCC TCTCTGAAAG TCATGCTGAT TGACATCTTT CAGAAAATGT CTGAGTGGT TGATCTTTT AGACATTTT AGACATTTT AGACATTTT AGACATTTT AGACCATT CAGCTCTT CAGCCATT CACACAG CTTCATCAGG CTTCATCAGG CTTCATCAGG CTTCATCAGC CTTCATCACAC CTTCATCAC CTTCATC	21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCCGGATTGG GTCCTATACA CCCAAACAA GAACTTAAA GAACTTAAA GATGCAGAC TGTGCAGAC TGTGCAGAC TGTGCAGAC TGATCAGAC GACCTCTG GCACTACAC CCAGTTGGCT TCAGGCTGAC TCAGGCTGAC TATGATACC TATGATACC TATGATACC TATGATACC TAACCAGCT CCCTGAATTA AGAAGCGCT GCCCCAGATT GCCCCAGATT GACTACCGA ATCTTAAAC GACTTCTCAG CACTTCTCAG CACTTCTAACC AACTTCTCAG CATCTCTCAG CATCTCTCAG CATCTCTCAG CATCTCTCAGAC TTATGATACT CATCTCTGAG TATGATACT CATCTCTGAG TTATGATACT CTCAGAGAGAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATATTTCAG TTGTTTGAG AGTGTTAGT CCAAACTCAA GCACAGTTG GTTTTTTGTG CCAAACACTAA ATGATTTTGAG ATGATTTGAG ATGATTTGAG ATGATTTTGAG ATGATTTTGAG AAACAATT ATGATTAGG AATGATATG AATGATATG ATTGGAACTG ATTGGAACTG ATTGGAACTG ATTGGAACTG ATTGCACACAA TCCCCAACAA TCCCCAACAA TCCCCTAAAACTG ACAGTTTCTC CACTTAAACTG ACAGTTTCTA GGAGCTGAAG ACATTCCC CTTATACCACA ACAGTTCTAAACTG ACAGTTTCTAAACTG ACAGTTTCTAAACTG ACAGTTTCTAAACTG ACAGTTCCC CTTATACCCC CTTATACCAC TCCCTAAAACTG ACAGTTTCCC CTTATACCCC CTTATACCCC CTTATACCCC CTTATACCCC CTTATACCCC CTTATACCCC CTTATACCCC CTTATACCCC CTCACTAAAGG	GGAGGATTAA TGAGAAGCA ACCAACAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGGATAAACTT AAGGACAAAA AGTTTTGAGGA TTGGGACAGA GTTTTGGGACAGA TTGGACAAGT AACTGCTTAC TTGAGAGCA AGATTCATGA AGATCATTAC TTCGAGAGCA AGATCATGA ATCTTCAGAT TTGTCGACAT AACAGCT AGATGACAC ACTTCTAC AGATGCAC ACTTCTAC AGATGACAA ACCACTCCA ACACTACAA ACCACTACAA ATCCTCAGAT AATCTCTAGAT AATCTCTAGAT AATCTCTAGAAAATAAT ATTCTTCAGGAAAGGATAAATTCTTCAGGAAAGGATAAATAA	ACCAACATA AGAGCACA AGAGCACA AGGAGCACA AGGAGCACA AGGAGAAAA TTGGGGAAAG AGATCTTACA AGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTACATTTAC TTTACATTTAC TTTACATTTAC TTTTACATTAC AGTAGCACAA ACAGTACAAG AGCAGTTCGT AGCAGTACTAC AGCAGACTTGT AGCAGTACTAC AGCAGACTTGT AGCAGTACTAC AGCATACTGTAC AGCATACTCTGCATACCACATAC CAGACACTTCTG TCACACTTCTGCA TCACACTCTGC TCACACATATG TCAGAGAGGAG CTCCAGTCCC ATTTTCCTCC GAGGGGAAAT	120 180 240 360 420 480 660 720 780 960 1020 1140 1260 1380 1440 1560 1680 1740 1860 1920 1980 2040
505560657075	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GATTCAAAG GTTAGATCAT AATGCATCA TAGATCCAT ACAGTTAGAC TTTGATCAAC TTTGATCAT ACAGTTAGAC ACGTTAGAC ACGTTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AACCAAATCA AAGGGGAA AACCAAATCA AAGGGTAATC AACGTAAATCA AAGGGTGAT AACTTGTCGG AGTTTATTG GAAAAACCAA GGAAATCA AGGGTACTT AACTTGTCGG AGTTTATTG GAAAACCCAG GAAGATTCAA GGAACTTCTG GAAAACCCAG GAAGATTCAA GGTACTTCTCG GAAAACCCAG GAAGATTCAA GGTACTTCTCC	CACGCACGAT ATTTCCTTCG CAGGACCG GTGTTTGCCG AGATTGGCTG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTCATGAT AGTTAATAG TCTACTGCTT AGTTAATAG CGATTATTGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT TCATGCTGAT AGGAGAAATGT CTGATACTGT CAGAAAATGT TCAATACTTT AGACTCTTT AGAACATTTCA GGAAAATGT AGAACATTTCA TCATTTT AAGACCTTT AAGACTCTCT CAGCCTCTTT CAGCCTCTTT AGACTCCATT AGACTACAT ACTTCCATT AGACAATAC CTTCATCAGC CTAGCCTTACACG CTAGCCTTACACG CTAGCCATT AGACAATAAC CTTCATCAGC CTAGCCTTACACC CTAGCTCTACACC CTACTACTACT CAGCCTTACACC CTACTACTACT CAGCCTTACT CAGCCTTACACC CTACTACTACT CAGCCTTACT CAGCCTTACT CAGCCTTACT CAGCCTTACACC CTACTACTACT CAGCCTTACT CAGCCTACT CAGCCTTACT CAGCCTTACT CAGCCTTACT CAGCCTTACT CAGCCTTACT CAGCCTACT CAGCCTTACT CAGCCTTACT CAGCCTTACT CAGCCTTACT CAGCCTTACT CAGCCTCTACT CAGCCTTACT CAGCCT CAGCC CAGCT CAGCCT CAGCC CA	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG CTCGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA ATGGGAAACA AATGGTGTTT TGGATCAGAG TGATCAGAG TGATCAGAG GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCAGACTAC CCAGTTGCC TATACACT TCAGACCAT AAAATACAC CCCTGAATTA AGAAGCAT GCTACCCAAT AGAAGCAT GCTACCCAGATT GACTACCCAAT AGAAGCAT GCTACCCAAT AGAAGCAT CCCTGAATTA GCTACCCAGAT CCCTGAATTA CCTTAAAT CCTTGATACC ATCTTAAAT CCTTGATACC ATCTTGATAC ATCTTCTCAG ATTCTCTGAG ATTCTCTGAG ATATGATGC CTTCCTGAGATA AGAACATAACA CACTGAGATA	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATTCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTG GGAAACAATT GGAAAGAAT ATGATTTTGAG ATGATTTTGAG ACACAGTTG GAAACAATT GGAAACAATT GACCAACTGA ATTGTGAACTG ATTGTGAACTG ATTGTGAACTG ATTGTGAACTG ACTGACTCCC ACACTTCCC CCCAACCAA CCCCAACCAA TCCACCACAA TCCACCACAA TCCACCACAC ACTGTGACTG CTTAAAACTG ACAGTTTCTA GAGCTGAAG AACATATCCC CTTATACCAG CCACTACAG CCACTTGATTGAT CCACTACAG CCACTACAG CCACTTTGAT CCACTACAG CCACTTCAT CCACTACAG CCACTTTGAT CCACTACAG CCACTTCAT CCACTACAG CCACTTCAT CCACTACAG CCACTTCAT CCACTACAG CCACTTCAT CCACTACAG CCACTTCAT CCACTACAG CCACTACAT CCACTACAG CCACTACACTA	GGAGGATTAA TGAGAAGCA ATCAAAAAAA ATATTGATGA GGGATAAACC ATCTACTAA AGGATAACTA AGGATAACTT AAGGACAAA ATATTGATGA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCTTAC TTCGAGAGCA AGATTCTTAC TTCTCAGAT TTGTGACAT TTGTGACAT TTGTGACAT TTGTGACAC TTGTTGAGAT ACTGTAGAGT AAGATACAT AAGAATAA CTGGTAGAGA AACCAGTCAC AACTGCAC TTCTTAGATC TAACAGATTA AATCTTCAGA ATCCTTCAGA ATCCTTCAGAT AATCTTCAGA ATCCTTCAGA ATCCTTCAGAT AATCTTCAGA ATCCTTCAGAT AATCTTCAGA ATCCTTCAGAT AATCTTCAGAT AATCTTGAGAT AATCTTGAGAT AATCTTGAGAT AATCTTGAGAT AATCTGAGAAAT AATCTTGAGAT AATCTTGAGAT AATCTTGAGAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAA AGAAATTTG TTACATTTAA ACAGTACAAG CCTACTGAT CCAGAGACTTAC TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTACTAGT CAAGACCTTG AGTACCATTG TCACAGTTCC TCACACTTG TCACACTTG TCACACTTG TCACACTTG TCACACTTG TCACACTTG TCACACTTG TCACACTTG TCACACTTG TCACACTTCC CAATGCTTCC CAATGCTTCC CAATGCTTCC CAATGCTTCC CAATGCTTCC GGAGGAAAT AGGCAGAGG GACAACCAAG	120 180 240 360 420 480 540 660 720 900 900 900 1020 1140 1260 1320 1380 1440 1500 1500 1620 1620 1620 1860 1980 2040 2100 2100 2100 2220
50556065707580	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA AAACAATTCA GTCAGCGGAG GAAATGCAATA GAAATGCAATA GAAATGCAATA GAAATGCAATA GAAATGCAATA GAAATGCAATA ACAGTTAGCA TTAGATCCAT AATGCTCAT ACAGTTAGAC AGTTCAGAAC TGGGAAAGAC CAGTTGGATT TGCACTAATG AATCCTGAAC AAGGAGGGAA AACCAAATCA AAGGAGGGAA AACGAAATACA AAGGAGAAAAAG CAAGTTTATGA CAAGAAAAAG CAAGTTTATGA CAAGAAAAAG GAAGGTACTT AACTTGTCGG GAAACTCTCG GAAAACCCAG GAAGATTCAA GTTTGTTCAG GAAACTCTCTC GAAAACCCAG GAAGATTCAA GTTTGTTCTCC TCCTTTTCTCT	CACGCACGAT ATTICCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAC CGATTATGA TCTACTGCTT AGTTAAGAC CGATTATGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATACTGTT CAGAGACCT CAGAAAATGT CAGAGACCT TCATATTGA TCATATTGA TCATATTGA TCATATTTT AGAGAGACCT TCATATTG TCATATTG TCATATTG TCATATTG TCATATTT AGAACATTTT AGAACATTTG CAGCTCTTT CAGCTCTTC CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTAT CAGCCCAGT CAGCTCCAGT CAGCCCAGT C	21 CTCACTTCGA CTCCCCTCC TCTGGAATTG CTCGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA ATGGGAAACA ATGGTGTTT TGGATCAGAG TGATCAGAG TGATCAGAG GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATCATT TCAGTTACACT TCAGGCTGAC ACCAGCTAC CCAGTTGGCT GCACCAAT AAAATACAGC CCTGAATTA AGAAGGCGT ACCCCAGATT GACTTCTCAG ATCTTACAG ATCTTTAAAT GACTTCTCAG ATCTTTAAAT GACTTCTCAG ATCTTGATACT CTATCTCTGAG ATCTTGATACT CATCTCTGAG ATATGATGCC TTCAGAAGAA AGACATAACA AGACATAACA AGACATAACA CATTGATGTC TTCAGAAGAA AGACATAACA AGACATAACA CATTGAGAGAA CATTGAGAGAA CATTGACACA CATTCACAG CATTCA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAGCAAGCA CGTATTTCAA GTTTTCAA GTTTTCAA GTTTTCAA GTTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTT GGAAACAATT GGAAAGGAAG ATTTTTGAG ATGATTTTGAG ATGATTAGTC CAAACCACTTA ATGATTGAACT ATGATTGGAACT ATGATTGGAACT ATTGACCACAA TCCCCACAA TCCCCACAA TCCCCACACA TCCCCACACA TCCCCACACA TCCACATTCCC ACTGGACTG ACTGGACTG ACTGGACTG ACTGGACTG TCTAAAACTG ACAGTTTCTA GCAGCTGAC ACAGTTCCC CTTATACCAC TCACTAAACG GCACAGCCCC CGTGTTGATG GGTCCCTCAG	GGAGGATTAA TGAGAAGCA ATCAAAAAAA ATATTGATGA GGGATAAACC ATCACACTAA GGGATAAACC ATCTCACTAA AGATAACTT AAGGACAAAC GTTTTGAGAA GTTTTGAGAA GTTTTGAGAA CTGACAAGTA ACTGATTAT ACTGATTAC TTCGAGAGCA AGATTCATCA AGATTCATCA AGATTCATCA TTCTCAGAT TTCTCAGAT TTCTCAGAT ACTGCACAC TTCTTAGACAC AGATGCCA AGATGCCA AGATGCAC ACTGCACC CTCTTAGAT ATCTCACA ACTGCACC TTCTTAGAT ATCTCTCAGA ATCTCTCAC AACTGCACC ACTGCACC TTCTTAGATC TAACAGATTA ATTCTTCAGA ATCTGTCAG ATCTTCAGA ATCTTCAGA ATCTTCAGAA ATCTGTGACA TTGTTGGACA TTGTTGAGAA ATCTTCAGA ATCTTCAGA ATCTTCAGAA ATCTTCAGAA ATCTTCAGAAA TTACAGAATCT TAACAGAATCT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TGACTTGGAT TCACTGGGA ATTTCCACTT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGGAAATTTG GCAGGCTGCT TTACATTTAA AGAAATTTG TTACATTTAA ACAGTACAA ACAGTACAA ACAGTACAAG AGCAGTTTGT TCTTTTAAAGAT ACAGTACAAG AGCAGTACAAG ACAGTACAAG ACAGTACAAG ACAGTACAAG TCAAGACTTG TCAGAGACTTG TCAGAGACTTG AGTAGCCATA CCAGTACCAG TCACACTTGGA TCACACCAGTAGCG TCACACCAGCAGAGAGAGAGAACACAAG GGAAATGCCA GGACAACCAAG GGAAATGCCA	120 180 240 360 420 480 660 720 840 900 1020 1140 1260 1260 1560 1560 1620 1740 1860 1920 2040 2160 2280
505560657075	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCAA AACACATTCA GTCAGCGGAG AAATGCAATA GACATGCAATA GACATGCAATA GGAAAAGGGA TTAGATCCAT ACAGTTAGCA TCTGGTTATGC TTCTCTAGAC TTCTCAGAC TTCTAGAC TTCTCAGAC AGTTCAGAAC CAGTTGGATG GGTGCTATTC AACTCGAAC AAGGGAAAACCAAATC AAGGGGGAA AACCAAATC AAGGGTATTG AACTTGTCGG AGTTTATTCAGAAC CAGAAAAACC AAGGGTACT AACTTGTCGG AGTTTATTCAGAC GAAGATTCAG GCAACTTCTG GAAAACCCAG GAAGATTCAG GCAACTTCTCC CATATTCTCC CATTATTCTC	CACGCACGAT ATTICCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAG CCATTAATGG TCATCTGAT TGAACTCTC TCTCTGAAAG TCATCTGCT TCACATCTGT TGACATCTC TCTCTGAAAG TCATCTGT CAGAAAATGT CAGAAAATGT CAGAAAATGT CAGAAAATTT AGACATTTA AGACATTGA TCATCTTT AAGACATTGA CTATCTCTT CAGCCCCTTT CAGCCTCTT CAGCACATA CTATCCCATT CAGCCAGT CCTTCACAGG CCTACTAC AGACTAATAT AGACAATAAC CTTCATCAGG CTAGCTCTAC AGACTAATAT CAGGCCCAGT CCTTCTACAGG CTAGCTCTAC AGACTAATAT CAGGCCCAGT CCTTCACAGG CCTTCTAC AGACTAATTA CAGGCCCAGT	21 CTCACTTCGA CTCCCCTCC TCTGGAATGG CTCGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAAACA GAGTGCAGA TGATGCAGAC TGATGCAGAC TGATGCAGAC TGATGCAGAC TGATGCAGAC TCCTGCACA GAACCTCTG GGACTACTT TCAGGCTGAC TCAGTACACT TCAGGCTGAC TCAGACAACCAT AAAATACACC ACCAAGCAT ACCAAGCAT ACCAAGCAT ACCAAGCAT ACCAAGCAT ACCAAGCAT ACCAAGCAT CCTGAATTA AGAAGACCT CCTGAATTA CACTTCTCAGA CACTTCTCTGAG ATCTTTAAAT CCTTGATACT CATCTCTGAG ATCTTTAAAT CCTTGATACT TCAGAAGAA AGACATAACA CACTGAGATA AGACTAACAC CCTGAATTA CTCCTGAAG ATCTTCTGAG CTTCCCAACT TCAGAAGAA AGACATAACA CCTGAGAGAA AGACATAACA CCTTCACAG CTTCCCCAACT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATATTTCAG GGTTTTGAGG AGTGTTAGT GCAAACTCAA GCACAGTTG GCAAACTCAA ATGATTTGAG GAAACAATT GGAAAGAAT ATGATTTGAG AATGATATTGAG AATGATTTTGAG AATGATTTTGA AAGATATTGAAA TCACACCAA TCCCCAACCAA TCCCCAACCAA TCCCCAACCAA	GGAGGATTAA TGAGAAGCA ACCAACAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAA CTGCCACAA GTTTTGGGA CTGCACAAGA CTGACAAGT AACTGCTTAC TCGAGAGCA AGATCATCAC AGATCACTA AGATCACC AGATCACAC AGATCACAC AGATCACAC ACTCCACA AGATCACAC TTGTCGACAT AAGAATAAT CTGGTAGGAT ACCACCC TCTTCAGAT AACAGATA ATCTCACA ACTGCCAC TCTTAGAT AATCTCTAC AACTCTCAA ATCTTCAGAT AATCTCTAA ATCTCTAA ATCTCTAA ATCTGAGAT TTACAGATCT CTCATGCTTT AATCTGAGAT CTCATGATCT CTCATGCTTT CACAGATCT CTCATGCTTT CACAGATCT CTCATGCTTT CTCATGCTT CTCATGCTTT CTCATGCTTT CTCATGCTTT CTCATGCTTT CTCATGCTTT CTCATGCTT CTCATGCTTT CTCATGCTT CTCATGCTT CTCATGCTT CTCATGCTT CTCATGTT CTCATGT C	ACCACCATC CGGGGGAAG ACTACACAA AGGACCCCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTACAAG ACAGTACTAC TCTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGACTTG CAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTAC CAAGACTTCC CAAATTCCTCC GAAGACTCC GAATGCTCC GAAGACTCC GAATGCAAATGCTCC GGAGGGAAAT AGGCAGAGAG GACAACCAAG GACAACCAAC TACCCCATCC	120 180 240 360 420 480 660 720 960 1020 1140 1260 1380 1440 1560 1680 1740 1860 1860 1920 22100 2220 22340
50556065707580	CACACATACG CAAAAAAAAC CAGAGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAAA GGAAAAGGGA TTAGATCCAT AACACTTCAAG TTTCATAGAC TTTCATAGAC TCTCGTTATG TTCTCTAGAC AGTTCAGAAC TGGAAAAGAC CAGTTGGATG TTCCTGAAC AGGTGCTATTC TGCACTATC AACCAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA CGAAATCA AACGAAATCA CGAAATCA CGAAATCCTGCC CCTTTCTC CCTTTCTC TCCTTTCTC TCCTTTCTC TCCTTTCTC TCCTTTCTC TCCATTATTCTA TCCAGACAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTAATTGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGCT TCATCACTGT TGACATCTCC TCTCTGAAAG TCATGCTGAT TGACATCTCC TCAGAAAATGT CCAGAAAATGT CCTGAATACTTT GCTTATATGG GGAAAAATGT TCATATTGA TTGATCTTTT AAGACATTTA AGACATTTC AGCCCTCTT GGACTCAATACTTT CAGCCTCTT AGACAATAACT CTTCATCAG CTAGCTCAATAC CTTCATCAG CTTACTCAATAC CTTCATCAG CTAGCTCAT AGACAATAAT AGACAATAAC CTTCATCAG CTAGCTCAT AGACAATAAT AGACAATAAT CTTCATCAG CTAGCTCTTA AGACTCATA AGACTAATTA CAGCCCCATT AGACCAATTA AGACTAATTA CAGCCCCATT AGACTAATTA CAGCCCCATT AGACTAATTA CAGCCCCATT AGACTAATTA CAGCCCCATT AGACTATTACCATT AGACTATTAC AGACTAATTA CAGCCCCATT AGACTATTAC AGACTAATTA CAGCCCCATT AGACTATTAC AGACTATTGCTT AGGACTCTTGCCTA AGGATTTGGTT AGGATTTGGTT AGATTTGCTT AGACTTTGCTT AGACTATTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGACTTTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTT AGGATTTTT AGGATTTTT AGGATTTTT AGGATTTTT AGGATTTTT AGGATTTT AGGATTTT AGGA	21 CTCACTTCGA CTCCCCTCC TCTGGAATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAATGG GTCTGTTT TGGATCGAG TGATCGAG TGATCAGAG GAACCTATACA CCCAGACAA CAACCAACAA GAACCTTCTG TCAGTCGAAC GACCTTCTG GGACTACTTA CTCATACACT TCAGGCTGAC TATAGATAC CCCTGAATTA AGAATACAGC CCCTGAATTA AGAATACAGC TACCCAGATT GACTAACCGA ATCTTTAAAT GACTTCTCAG AAATGATGC TCCTAGAGATA CTTCTCAGAGATA CTTCAGAAGAA CACTGAGATA CACTGACCT CTCCCACGTC	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAACTCAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGTTTTGAG AGTGTTAGAC GCACACTTG GCAAACTCAA CCCAACACTAG GCACAGTTG GACACACTTG GAAACAATT GGAAACGAAT CCAGAGAAT ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATG ATTGTGAACT ATTGTGAACT CTTACCACAA TCCACCAACTAC ACTGTGACTC CTTAAAACTG ACAGTTCTC GCAGCTGAC ACAGTTCCC CTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAACTG CCTTAAAACTG CCTTAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTCACCACACACACACCACG CCTGTTGATG CACACTCCCCACACACACACACACACACACACACACACA	GGAGGATTAA TGAGAAGCA ATCAAAAAAA ATATTGATGA GGGATAAACT ATCTACTAA AGATAACTT AAGGACAAA AGATAACTT AAGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA GTTTTGAGGA ATCTTAC TTGGACAAGT AAGTTCTTAC TTCGAGAGCA AGATTCATGA AGATCATTA AGATACATT AAGATCATA ATCTGCACAT AAGAATAAT CTGGTAGAGA AACCACCAC ACATTCACAA AACAGCAC AACTTCACAA AACAGCAC AACTTCACAC AACTTCACAC AACTTCACAC AACTTCACAC AACTTCACAC AACTGCCAC TTCTTAGATC TTCACAGTCAC AATTCTTCAGG AAGGGTATAT AATCTTCAGA ATCCTTCTAT AATCTGCAGA TTACAGATCT CTCATAGATC CTCATAGATC TTACAGATCT CTCATAGATC CTCATAGATC CTCATAGATC CTCATAGATC CTCATAGATC CTCATAGATC CTCATAGATCT CTCATAGCTTC CTCATAGCTAC ACTCGCAGAC	ACCAACTAGA ACGAGGAGCCGA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGGGA ATTTCCACTT TCACTGGGA ATTTCCACTT TTACATTTAG AGAGATCTAA AGAAATTTG GCAGGCTGCT TTACATTTAC ATTTCACATT TTACATTTAC ATTTCACATT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACCAA ACAGTACCAAT CCAGAGACTTG TCTTGTTACA TCTTGTACCAG TCAAGACTTG AGCATAGC TCAAGACTTG AGCATAGG ATTTCTCTCGA TCACACTAGG TCACACCAACCAACA TCACCCAACCC AACCCAACCC	120 180 240 360 420 480 660 720 780 960 1020 1140 1260 1320 1320 1440 1560 1740 1800 1980 2040 2160 2220 2280 22400
50556065707580	CACACATACG CAAAAAAAAC CAGAGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAAA GGAAAAGGGA TTAGATCCAT AACACTTCAAG TTTCATAGAC TTTCATAGAC TCTCGTTATG TTCTCTAGAC AGTTCAGAAC TGGAAAAGAC CAGTTGGATG TTCCTGAAC AGGTGCTATTC TGCACTATC AACCAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA CGAAATCA AACGAAATCA CGAAATCA CGAAATCCTGCC CCTTTCTC CCTTTCTC TCCTTTCTC TCCTTTCTC TCCTTTCTC TCCTTTCTC TCCATTATTCTA TCCAGACAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTAATTGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGCT TCATCACTGT TGACATCTCC TCTCTGAAAG TCATGCTGAT TGACATCTCC TCAGAAAATGT CCAGAAAATGT CCTGAATACTTT GCTTATATGG GGAAAAATGT TCATATTGA TTGATCTTTT AAGACATTTA AGACATTTC AGCCCTCTT GGACTCAATACTTT CAGCCTCTT AGACAATAACT CTTCATCAG CTAGCTCAATAC CTTCATCAG CTTACTCAATAC CTTCATCAG CTAGCTCAT AGACAATAAT AGACAATAAC CTTCATCAG CTAGCTCAT AGACAATAAT AGACAATAAT CTTCATCAG CTAGCTCTTA AGACTCATA AGACTAATTA CAGCCCCATT AGACCAATTA AGACTAATTA CAGCCCCATT AGACTAATTA CAGCCCCATT AGACTAATTA CAGCCCCATT AGACTAATTA CAGCCCCATT AGACTATTACCATT AGACTATTAC AGACTAATTA CAGCCCCATT AGACTATTAC AGACTAATTA CAGCCCCATT AGACTATTAC AGACTATTGCTT AGGACTCTTGCCTA AGGATTTGGTT AGGATTTGGTT AGATTTGCTT AGACTTTGCTT AGACTATTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGACTTTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTGCTT AGGATTTTT AGGATTTTT AGGATTTTT AGGATTTTT AGGATTTTT AGGATTTTT AGGATTTT AGGATTTT AGGA	21 CTCACTTCGA CTCCCCTCC TCTGGAATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAATGG GTCTGTTT TGGATCGAG TGATCGAG TGATCAGAG GAACCTATACA CCCAGACAA CAACCAACAA GAACCTTCTG TCAGTCGAAC GACCTTCTG GGACTACTTA CTCATACACT TCAGGCTGAC TATAGATAC CCCTGAATTA AGAATACAGC CCCTGAATTA AGAATACAGC TACCCAGATT GACTAACCGA ATCTTTAAAT GACTTCTCAG AAATGATGC TCCTAGAGATA CTTCTCAGAGATA CTTCAGAAGAA CACTGAGATA CACTGACCT CTCCCACGTC	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAACTCAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGTTTTGAG AGTGTTAGAC GCACACTTG GCAAACTCAA CCCAACACTAG GCACAGTTG GACACACTTG GAAACAATT GGAAACGAAT CCAGAGAAT ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATGA ATGATTATG ATTGTGAACT ATTGTGAACT CTTACCACAA TCCACCAACTAC ACTGTGACTC CTTAAAACTG ACAGTTCTC GCAGCTGAC ACAGTTCCC CTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAACTG CCTTAAAACTG CCTTAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTAAAACTG CCTTCACCACACACACACCACG CCTGTTGATG CACACTCCCCACACACACACACACACACACACACACACA	GGAGGATTAA TGAGAAGCA ATCAAAAAAA ATATTGATGA GGGATAAACT ATCTACTAA AGATAACTT AAGGACAAA AGATAACTT AAGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA GTTTTGAGGA ATCTTAC TTGGACAAGT AAGTTCTTAC TTCGAGAGCA AGATTCATGA AGATCATTA AGATACATT AAGATCATA ATCTGCACAT AAGAATAAT CTGGTAGAGA AACCACCAC ACATTCACAA AACAGCAC AACTTCACAA AACAGCAC AACTTCACAC AACTTCACAC AACTTCACAC AACTTCACAC AACTTCACAC AACTGCCAC TTCTTAGATC TTCACAGTCAC AATTCTTCAGG AAGGGTATAT AATCTTCAGA ATCCTTCTAT AATCTGCAGA TTACAGATCT CTCATAGATC CTCATAGATC TTACAGATCT CTCATAGATC CTCATAGATC CTCATAGATC CTCATAGATC CTCATAGATC CTCATAGATC CTCATAGATCT CTCATAGCTTC CTCATAGCTAC ACTCGCAGAC	ACCACCATC CGGGGGAAG ACTACACAA AGGACCCCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTACAAG ACAGTACTAC TCTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGACTTG CAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTAC CAAGACTTCC CAAATTCCTCC GAAGACTCC GAATGCTCC GAAGACTCC GAATGCAAATGCTCC GGAGGGAAAT AGGCAGAGAG GACAACCAAG GACAACCAAC TACCCCATCC	120 180 240 360 420 480 660 720 780 960 1020 11200 11200 11320 1140 1560 1740 1560 1740 1980 2040 2160 2220 2280 22400

```
GAATCCGAGA AGAAGGCAGT TATACCCCTT GTGATCGTGT CAGCCCTGAC TTTTATCTGT 2520
       CTAGTGGTTC TTGTGGGTAT TCTCATCTAC TGGAGGAAAT GCTTCCAGAC TGCACACTTT
                                                                              2580
       TACTTAGAGG ACAGTACATC CCCTAGAGTT ATATCCACAC CTCCAACACC TATCTTTCCA
                                                                              2640
                                                                              2700
       ATTTCAGATG ATGTCGGAGC AATTCCAATA AAGCACTTTC CAAAGCATGT TGCAGATTTA
 5
       CATGCAAGTA GTGGGTTTAC TGAAGAATTT GAGGAAGTGC AGAGCTGTAC TGTTGACTTA
                                                                              2760
       GGTATTACAG CAGACAGCTC CAACCACCCA GACAACAAGC ACAAGAATCG ATACATAAAT
                                                                              2820
       ATCGTTGCCT ATGATCATAG CAGGGTTAAG CTAGCACAGC TTGCTGAAAA GGATGGCAAA
                                                                              2880
       CTGACTGATT ATATCAATGC CAATTATGTT GATGGCTACA ACAGACCAAA AGCTTATATT
                                                                              2940
       GCTGCCCAAG GCCCACTGAA ATCCACAGCT GAAGATTTCT GGAGAATGAT ATGGGAACAT
                                                                              3000
       AATGTGGAAG TTATTGTCAT GATAACAAAC CTCGTGGAGA AAGGAAGGAG AAAATGTGAT
10
                                                                              3060
       CAGTACTGGC CTGCCGATGG GAGTGAGGAG TACGGGAACT TTCTGGTCAC TCAGAAGAGT
                                                                              3120
       GTGCAAGTGC TTGCCTATTA TACTGTGAGG AATTTTACTC TAAGAAACAC AAAAATAAAA
                                                                              3180
       AAGGGCTCCC AGAAAGGAAG ACCCAGTGGA CGTGTGGTCA CACAGTATCA CTACACGCAG
TGGCCTGACA TGGGAGTACC AGAGTACTCC CTGCCAGTGC TGACCTTTGT GAGAAAGGCA
                                                                              3240
15
       GCCTATGCCA AGCGCCATGC AGTGGGGCCT GTTGTCGTCC ACTGCAGTGC TGGAGTTGGA
       AGAACAGGCA CATATATTGT GCTAGACAGT ATGTTGCAGC AGATTCAACA CGAAGGAACT
       GTCAACATAT TTGGCTTCTT AAAACACATC CGTTCACAAA GAAATTATTT GGTACAAACT
GAGGAGCAAT ATGTCTTCAT TCATGATACA CTGGTTGAGG CCATACTTAG TAAAGAAACT
                                                                              3480
                                                                              3540
       GAGGTGCTGG ACAGTCATAT TCATGCCTAT GTTAATGCAC TCCTCATTCC TGGACCAGCA
                                                                              3600
20
       GGCAAAACAA AGCTAGAGAA ACAATTCCAG CTCCTGAGCC AGTCAAATAT ACAGCAGAGT
                                                                              3660
       GACTATTCTG CAGCCCTAAA GCAATGCAAC AGGGAAAAGA ATCGAACTTC TTCTATCATC
                                                                              3720
       CCTGTGGAAA GATCAAGGGT TGGCATTTCA TCCCTGAGTG GAGAAGGCAC AGACTACATC
                                                                              3780
       AATGCCTCCT ATATCATGGG CTATTACCAG AGCAATGAAT TCATCATTAC CCAGCACCCT
                                                                              3840
       CTCCTTCATA CCATCAAGGA TTTCTGGAGG ATGATATGGG ACCATAATGC CCAACTGGTG
                                                                              3900
25
       GTTATGATTC CTGATGGCCA AAACATGGCA GAAGATGAAT TTGTTTACTG GCCAAATAAA
                                                                              3960
       GATGAGCCTA TAAATTGTGA GAGCTTTAAG GTCACTCTTA TGGCTGAAGA ACACAAATGT
                                                                              4020
       CTATCTAATG AGGAAAAACT TATAATTCAG GACTTTATCT TAGAAGCTAC ACAGGATGAT
                                                                              4080
       TATGTACTTG AAGTGAGGCA CTTTCAGTGT CCTAAATGGC CAAATCCAGA TAGCCCCATT
                                                                              4140
                                                                              4200
       AGTAAAACTT TTGAACTTAT AAGTGTTATA AAAGAAGAAG CTGCCAATAG GGATGGGCCT
30
       ATGATTGTTC ATGATGAGCA TGGAGGAGTG ACGGCAGGAA CTTTCTGTGC TCTGACAACC
                                                                              4260
       CTTATGCACC AACTAGAAAA AGAAAATTCC GTGGATGTTT ACCAGGTAGC CAAGATGATC
                                                                              4320
       AATCTGATGA GGCCAGGAGT CTTTGCTGAC ATTGAGCAGT ATCAGTTTCT CTACAAAGTG
                                                                              43B0
       ATCCTCAGCC TTGTGAGCAC AAGGCAGGAA GAGAATCCAT CCACCTCTCT GGACAGTAAT
                                                                              4440
       GGTGCAGCAT TGCCTGATGG AAATATAGCT GAGAGCTTAG AGTCTTTAGT TTAACACAGA
                                                                              4500
       AAGGGGTGGG GGGACTCACA TCTGAGCATT GTTTTCCTCT TCCTAAAATT AGGCAGGAAA
35
                                                                              4560
       ATCAGTCTAG TTCTGTTATC TGTTGATTTC CCATCACCTG ACAGTAACTT TCATGACATA
                                                                              4620
       GGATTCTGCC GCCAAATTTA TATCATTAAC AATGTGTGCC TTTTTGCAAG ACTTGTAATT
       TACTTATTAT GTTTGAACTA AAATGATTGA ATTTTACAGT ATTTCTAAGA ATGGAATTGT
                                                                              4740
       GGTATTTTT TCTGTATTGA TTTTAACAGA AAATTTCAAT TTATAGAGGT TAGGAATTCC
40
       AAACTACAGA AAATGTTTGT TTTTAGTGTC AAATTTTTAG CTGTATTTGT AGCAATTATC AGGTTTGCTA GAAATATAAC TTTTAATACA GTAGCCTGTA AATAAAACAC TCTTCCATAT
                                                                              4860
                                                                              4920
       GATATTCAAC ATTITACAAC TGCAGTATTC ACCTAAAGTA GAAATAATCT GTTACTTATT
                                                                              4980
                                                                              5040
       GTAAATACTG CCCTAGTGTC TCCATGGACC AAATTTATAT TTATAATTGT AGATTTTTAT
       ATTITACTAC TGAGTCAAGT TITCTAGTTC TGTGTAATTG TTTAGTTTAA TGACGTAGTT
                                                                              5100
45
       CATTAGCTGG TCTTACTCTA CCAGTTTTCT GACATTGTAT TGTGTTACCT AAGTCATTAA
                                                                              5160
       CTTTGTTTCA GCATGTAATT TTAACTTTTG TGGAAAATAG AAATACCTTC ATTTTGAAAG
                                                                              5220
       AAGTTTTTAT GAGAATAACA CCTTACCAAA CATTGTTCAA ATGGTTTTTA TCCAAGGAAT
                                                                              5280
       ТССААЛАТА АЛТАТАЛАТА ТТСССАТТАЛ АЛЛАЛАЛАЛ АЛЛАЛАЛАЛ АЛЛАЛАЛАЛ
                                                                             5340
50
       Seq ID NO: 184 Protein sequence:
       Protein Accession #: EOS sequence
                                                                 51
                   11
                              21
                                          31
55
       MRILKRFLAC IQLLCVCRLD WANGYYRQQR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK
       OSPINIDEDL TOVNVNLKKL KFQGWDKTSL ENTFIRNTGK TVEINLTNDY RVSGGVSEMV
       FKASKITFHW GKCNMSSDGS EHSLEGOKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
       TDTVDWIVYK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
60
                                                                               360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                               420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
                                                                               480
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTBLPPHT VEGTSASLND
                                                                               540
65
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
                                                                               600
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                               660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                               720
       TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNEASNSS HESRIGLAEG LESEKKAVIP
                                                                               780
       LVIVSALTFI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTPIF PISDDVGAIP
                                                                               840
70
       IKHPPKHVAD LHASSGFTEE FEEVQSCTVD LGITADSSNH PDNKHKNRYI NIVAYDHSRV
                                                                               900
       KLAQLAEKDG KLTDYINANY VDGYNRPKAY IAAQGPLKST AEDFWRMIWE HNVEVIVMIT
                                                                               960
       NLVEKGRRKC DQYWPADGSE EYGNFLVTQK SVQVLAYYTV RNFTLRNTKI KKGSQKGRPS
                                                                              1020
       GRVVTQYHYT QWPDMGVPEY SLPVLTFVRK AAYAKRHAVG PVVVHCSAGV GRTGTYIVLD
                                                                              1080
       SMLQQIQHEG TVNIFGFLKH IRSQRNYLVQ TEEQYVFIHD TLVEAILSKE TEVLDSHIHA
                                                                              1140
       YVNALLIPGP AGKTKLEKQF QLLSQSNIQQ SDYSAALKQC NREKNRTSSI IPVERSRVGI
75
                                                                              1200
       SSLSGEGTDY INASYIMGYY QSNEPIITQH PLLHTIKDFW RMIWDHNAQL VVMIPDGQNM
                                                                              1260
       AEDEFVYWPN KDEPINCESP KVTLMAEEHK CLSNEEKLII QDPILEATQD DYVLEVRHFQ
                                                                              1320
       CPKWPNPDSP ISKTFELISV IKEEAANRDG PMIVHDEHGG VTAGTFCALT TLMHQLEKEN
                                                                              1380
       SVDVYOVAKM INLMRPGVFA DIEQYQFLYK VILSLVSTRQ EENPSTSLDS NGAALPDGNI
80
       Seg ID NO: 185 DNA sequence
       Nucleic Acid Accession #: EOS sequence
85
       Coding sequence: 501-4514
```

1 11 21 31 41 51

	WO 02	/086443					
	1	1]	1	1	
	CACACATACG	CACGCACGAT	CTCACTTCGA	TCTATACACT	GGAGGATTAA	AACAAACAAA	60 120
	CAAAAAAAAC CGGCGAGGGG	ATTTCCTTCG	CTCCCCCTCC	CTCTCCACTC	AGCGTTTCCT	CGCTTGCATT	180
5	OF COMPANIES	CHARTERIA	CCLCCVLLCC	GCTAATGGAT	ACTACAGACA	ACAGAGAAAA	240
•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N C N TITLE COLC COLC	ፈጥርምልጥልሮል	GGAGCACTGA	ATCAAAAAAT	TGGGGAAAGA	300
	******	A MOTE A TRACE	ጥርልአልአሮልልጥ	CTCCTATCAA	TATTGATGAA	GATCTTACAC	360 420
	AAGTAAATGT ACACATTCAT	GAATCTTAAG	CCCAAACT	TEGALATTAA	TCTCACTAAT	GACTACCGTG	480
10	max cocca cc	ACTTTCAGAA	ATCCTCTTA	AAGCAAGCAA	GATAACTTTT	CACTGGGAA	540
10	A A DOCUMENTATION OF THE PARTY	つかいりかいからなか	CCATCAGAGC	ATAGTTTAGA	AGGACAAAAA	TITCCACITG	600
	AGATGCAAAT	CTACTGCTTT	GATGCGGACC	GATTTTCAAG	TTTTGAGGAA	GCAGTCAAAG	660 720
	GAAAAGGGAA ATTTCAAAGC	GTTAAGAGCT	CONCTCGARA	GTGTTAGTCG	TTTTGGGAAG	CAGGCTGCTT	780
15	MA CAMOCA TOT	CATA CACALACE	AACCTTCTGC	CAAACTCAAC	TGACAAGTAT	TACATTTACA	840
	A MOCOTOR TOP	CACATOTOCT	CCCTGCACAG	ACACAGTTGA	CTGGATTGTT	TTTAAAGATA	900
	CAGTTAGCAT	CTCTGAAAGC	CAGTTGGCTG	TTTTTTTTTGTGA	AGTTÇTTACA	CAGTACAAT	960 1020
	CTGGTTATGT	CATGCTGATG	GACTACTTAC TCATACACTG	GAAAGGAAGA	GATTCATGAA	GCAGTTTGTA	1080
20	GBBG3 G3 3 GG	ACAAAATCTT	CAGGCTGACC	CAGAGAATTA	TACCAGCCTT	CITGITACAT	1140
	0000000000	TOTACTOTT	TATCATACCA	TGATTGAGAA	GTTTGCAGTT	TTGTACCAGC	1200 1260
	AGTTGGATGG	AGAGGACCAA	ACCAAGCATG CTACCCAATA	AATTTTTGAC	AGATGGCTAT	CAAGACTIGG	1320
	GTGCTATTCT	CAATAATTTG	AAATACAGCG	ACCAACTGAT	TGTCGACATG	CCTACTGATA	1380
25	A TOTOL A COT	TO DAY COMPANY OF THE	CCTGAATTAA	TTGGAACTGA	AGAAATAATC	AAGGAGGAGG	1440
	*******	5 G 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C	CARCCCCCTA	TTGTGAATCC	TCCTAGAGAC	AGTGCTACAA	1500 1560
	ACCAAATCAG	GAAAAAGGAA	CCCCAGATTT ACTAACCGAT	CTACCACAAC	ACACTACAAT	TTCTCTGGAA	1620
	NOCOTICA TIOTE	ጥርርርስ አጥልሮል	TTTAAATT	CCACTTCCCA	ACCAGTCACT	AAATTAGCCA	1680
30	CACABBBBBCA	ም አ ጥጥጥ (/ ጥጥ ()	NOTITION CALL	CTGTGACTGA	ACTGCCACCI	CACACTGTGG	1740
50		NCCCTCTTTA	AATCATCCCT	CTABABACTGT	TCTTAGATCT	CCACATATGA	1800 1860
	ACTTGTCGGG	GACTGCAGAA	TCCTTAAATA	CAGTTTCTAT	AACAGAATAT	TOCAGTOCOG	1920
		のもでぐぐぐるででぐ	CTTGATACTG ATCTCTGAGA	ACATATCCCA	AGGGTATATA	TTTTCCTCCG	1980
35	*********	~~~~~~~~~~	TATCATCTCC	TTATACCAGA	ATCTGCTAGA	AATGCTTCCG	2040
55	3 3 G 3 C C C C C C C C C C C C C C C C	かかい かかい かんぱんか	TCAGAAGAAT	CACTAAAGGA	TCCTTCTATG	GAGGGAAATG	2100
	TGTGGTTTCC	TAGCTCTACA	GACATAACAG ACTGAGATAC	CACAGCCCGA	TGTTGGATCA	ACAACCAAGT	2160 2220
		ACCCCCAGTG	ATGTCACAGG	GTCCCTCAGT	TACAGATCTG	GAAATGCCAC	2280
40	A COMPANY CALL V.	つるからいいかんかん	TTCCCAACTG	AGGTAACACC	TCATGCTTTT	ACCCCATCCT	2340
	CONCRORNOR	CCATTTCCTC	TOCACGTOA	ACGTGGTATA	CTCGCAGACA	ACCCAACCGG	2400 2460
	TATACAATGA	GGCCAGTAAT	AGTAGCCATG ATACCCCTTG	AGTCTCGTAT	TGGTCTAGCT	TTTATCTGTC	2520
	THE CONCOUNT OF	ጥረማርርርጥልጥጥ	CTCATCTACT	GGAGGAAATG	CTTCCAGACT	GCACACTTTT	2580
45	A CHITTA CACCA	CAGTACATCC	CCTAGAGTTA	TATCCACACC	TCCAACACCT	ATCTTTCCAA	2640
	中央型ぐなぐな事なな	TOTOGGAGCA	ATTCCAATAA	AGCACTTTCC	AAAGCATGTT	GCAGATTTAC	2700 2760
	ATGCAAGTAG	TGGGTTTACT	GAAGAATTTG	AGACACTGAA	CAACCACCCA	CAGGAAGTGC GACAACAAGC	2820
	ACABCA ATCC	TAGATADATA	ATCGTTGCCT	ATGATCATAG	CAGGGTTAAG	CTAGCACAGC	2880
50	THE PROPERTY OF THE PARTY OF TH	CCATCCCAAA	CTGACTGATT	ATATCAATGC	CAATTATGTT	GATGGCTACA	2940
	NCACACCA BA	አርርጥጥልጥልጥ	CCTCCCCAAG	GCCCACTGAA	ATCCACAGCI	GAAGATTTCT	3000 3060
	GGAGAATGAT	ATGGGAACAT	AATGTGGAAG	CTGCCGATGG	GATAACAAAC	CTCGTGGAGA	3120
•	mm cmccmcs c	TOTALDACTOR	CTCCA ACTCC	TTGCCTATTA	TACTGTGAGG	AATTTTACTC	3180
55	M110111010	*********	AACCCCTCCC	AGAAAGGAAG	ACCCAGTGGA	CGTGTGGTCA	3240
	· OR OR CHRANCS	しんしゅんりんりんしゅう	тсссстваса	TGGGAGTACC	AGAGIACIC	CIGCCMGIGC	3300 3360
	TGACCTTTGT	GAGAAAGGCA	GCCTATGCCA	CATATATTCT	GCTAGACAGI	GTTGTCGTCC ATGTTGCAGC	3420
	NO STORES NO	CCAACCAACT	CTCAACATAT	TTGGCTTCTT	AAAACACATC	CGTTCACAAA	3480
60	ሶክአአጥጥአጥጥ	CCTACAAACT	CAGGAGCAAT	ATGTCTTCAT	TCATGATACA	CIGGIIGAGG	3540
	CONTROUPER C	TABACABACT	_ დგდლდლდ ნ	ACAGTCATAT	TCATGCCTAT	GTTAATGCAC	3600 3660
	TCCTCATTCC	TGGACCAGCA	GGCAAAACAA	AGCTAGAGAA	GCAATTCCAC	CTCCTGAGCC AGGGAAAAGA	3720
	NAME OF A COURT	ገጥ ፈግጥ ለጥንጥጥ		GATCAAGGGI	TGGCATTTC	TCCCTGAGIG	3780
65	CRCRRCCCAC	NO ACTACATO	AATGCCTCCT	' ATATCATGGG	CTATTACCAC	AGCAATGAAT	3840
	MCAMCAMMAC	CCACCACCC	מדמר הייר בייר בייר בייר בייר בייר בייר ביי	CCATCAAGGA	TTTCTGGAGG	ATGATATGGG	3900 3960
	ACCATAATGC	CCAACTGGTG	GTTATGATTC	TANATTGTGA	GAGCTTTAAC	GAAGATGAAT GTCACTCTTA	4020
	macaman nan	. ACACAAATG7	י רידא דרידא אדרי	: AGGAAAAACT	ADTTAATTCAC	GACTITATET	4080
70	TO A A A C COTA C	' እሮክሮርክጥር ል ባ	י ידים ארבידים מידיי	AAGTGAGGC	CTTTCAGTG	CCTMANIGGC	4140
	G	・ 中NCCCCCATT	וידי) מממחיבו אי	' TTGAACTTAI	AAGTGTTATA	UNAUAAUAAG	4200 4260
	CTGCCAATAG	GGATGGGCCT	ATGATTGTTC	AIGAIGAGCA	A AGAAAATTC	ACGGCAGGAA GTGGATGTTT	4320
	A CONCOUNT CO	* CARCATCATC	י אטירידינאדינג	\ GGCCAGGAG1	CTTTGCTGA	ATTGAGCAGI	4380
75	አጥር አር ምምጥር ግ	י האראאאנדני	ያ እጥሮሮሞሮ እ ናርር	TTGTGAGCAG	: AAGGCAGGA	A GAGAATCCAT	4440
	GG1 GGM GM GM		, <i>C</i> CTCCACCA1	TGCCTGATG(: AAATATAGC	r GAGAGCTTAG	4500 4560
	AGTCTTTAGT	TTAACACAG	AAGGGGTGG	GGGACTCAC	TGTTGAGCA1	C CCATCACCTG	4620
	3 C3 CW3 3 CW	P ም//አጥ//አ//አጥነ	᠘ᡗᢙᡑ᠇ᡏᡊ᠇ᠮᢙᡳ	T GCCAAATTT	A TATCATTAA	CAATGIGIGG	4000
80	THE PROPERTY CONTRACTOR AND ADDRESS AND AD	א האוייטישיטא א דיי	ימדידמידים מיה יו	r GTTTGAACT	A AAATGATIG	A ATTITIAÇAGI	4740
	3 mmm0m3 3 C1	A TOTAL A TOTAL	יידידיתיתית בעיבוי יו	r TCTGTATTG	a TITTAACAG	A AAATTICAAL	4800 4860
	TTATAGAGG	TAGGAATTC	AAACTACAG	A AAATGITIG	TITIAGIGI C TTTTAGIGI	C AAATTTTAG A GTAGCCTGTA	4920
	220222222	~ TOTOLOGNER	ተ ሪያቸውቸውቸው ተ	" ATTTTACAA	C TGCAGTATT	C ACCIMANGIA	4200
85	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ה על ערור אינויים אינו	ודיארמממיים יו	CCCTAGTGT	C TCCATGGAC	C MANITIMIAL	2040
		TO A TRANSPORTED A VIII	Tale Tale American American	r TGAGTCAAG	T TITCIAGIT	C IGIGIANTIG	2700
	TTTAGTTTA	A TGACGTAGT	r CATTAGCTG	G ICIIMCICI	n conditite	T GACATTGTAT	

	TGTGTTACCT		CTTTGTTTCA AAGTTTTTAT			TGGAAAATAG CATTGTTCAA	5220 5280
5	ATGGTTTTTA		TGCAAAAATA			AAAAAAAAA	5340
		186 Proteincession #:	n sequence:	B			
10	1	11	21 1	31	41	51	
10	LSILFEVGTE PCTDTVDWIV	ENLDPKAIID FKDTVSISES	GSEHSLEGQK GVESVSRFGK QLAVFCEVLT	QAALDPFILL MQQSGYVMLM	NLLPNSTDKY DYLQNNFREQ	YIYNGSLTSP QYKFSRQVFS	60 120 180
15			QADPENYTSL LPNMSYVLQI				240 300
15	PELIGTEEII	KEREEGKDIE	EGAIVNPGRD	SATNQIRKKE	PQISTTTHYN	RIGTKYNEAK	360
			SLNSTSQPVT SLNTVSITEY				420 480
20			YDVLIPESAR TEIRVDESEK				540 600
	FPTEVTPHAF	TPSSRQQDLV	STVNVVYSQT	TQPVYNEASN	SSHESRIGLA	EGLESEKKAV	660 720
	IPIKHFPKHV	ADLHASSGFT	LIYWRKCFQT EEFETLKEFY	QEVQSCTVDL	GITADSSNHP	DNKHKNRYIN	780
25	IVAYDHSRVK NVEVIVMITN	LAQLAEKDGK LVEKGRRKCD	LTDYINANYV QYWPADGSEE	DGYNRPKAY1 YGNFLVTOKS	AAQGPLKSTA VOVLAYYTVR	EDFWRMIWEH NFTLRNTKIK	840 900
	KGSQKGRPSG	RVVTQYHYTQ	WPDMGVPEYS	LPVLTFVRKA	AYAKRHAVGP	VVVHCSAGVG	960 1020
	EVLDSHIHAY	VNALLIPGPA	VNIFGFLKHI GKTKLEKQFQ	LLSQSNIQQS	DYSAALKQCN	REKNRTSSII	1080
30			NASYIMGYYQ DEPINCESFK				1140 1200
	YVLEVRHFQC	PKWPNPDSPI	SKTFELISVI NLMRPGVFAD	KEEAANRDGP	MIVHDEHGGV	TAGTFCALTT	1260 1320
	GAALPDGNIA		NLMRPGVFAD	TEQIQIBLE	THOUSTROE	ENFSISHUSN	1320
35		187 DNA sec	•				
	Coding sequ	ience: 148-4			41	51	
40	1	11	21 	31 	1	1	
			CTCACTTCGA				60 120
	CGGCGAGGGG	CCGCAGACCG	TCTGGAAATG CCTGGATTGG	CGAATCCTAA	AACGTTTCCT	CGCTTGCATT	180 240
45	CTTGTTGAAG	AGATTGGCTG	GTCCTATACA	GGAGCACTGA	ATCAAAAAAA	TTGGGGAAAG	300
			CCCAAAACAA GAAACTTAAA				360 420
	AACACATTCA	TTCATAACAC	TGGGAAAACA AATGGTGTTT	GTGGAAATTA	ATCTCACTAA	TGACTACCGT	480 540
50	AAATGCAATA	TGTCATCTGA	TGGATCAGAG	CATAGTTTAG	AAGGACAAAA	ATTTCCACTT	600
			TGATGCGGAC TTTATCCATT				660 720
			TGGAGTCGAA GAACCTTCTG				780 840
55	AATGGCTCAT	TGACATCTCC	TCCCTGCACA	GACACAGTTG	ACTGGATTGT	TTTTAAAGAT	900
	ACAGTTAGCA TCTGGTTATG	TCTCTGAAAG	CCAGTTGGCT	GTTTTTTGTG CAAAACAATT	AAGTTCTTAC	AATGCAACAA ACAGTACAAG	960 1020
	TTCTCTAGAC	AGGTGTTTTC	CTCATACACT	GGAAAGGAAG	AGATTCATGA	AGCAGTTTGT	1080
60 .	AGTTCAGAAC TGGGAAAGAC	CAGAAAATGT	TCAGGCTGAC	CCAGAGAATT	ATACCAGCCT	TCTTGTTACA TTTGTACCAG	1200
						TCAAGACTTG AGTAGCCATA	
	TGCACTAATG	GCTTATATGG	AAAATACAGC	GACCAACTGA	TTGTCGACAT	GCCTACTGAT	1380
. 65			CCCTGAATTA			CAAGGAGGAG CAGTGCTACA	1440 1500
	AACCAAATCA	GGAAAAAGGA	ACCCCAGATT	TCTACCACAA	CACACTACAA	TCGCATAGGG	1560
	AAGGGTGATG	TTCCCAATAC	ATCTTTAAAT	TCCACTTCCC	AACCAGTCAC		1680
70						TCACACTGTG TCCACATATG	
, ,	AACTTGTCGG	GGACTGCAGA	ATCCTTAAAT	ACAGTTTCTA	TAACAGAATA	TGAGGAGGAG	1860
			CATCTCTGAG			CTCCAGTCCC ATTTTCCTCC	1920
75	GAAAACCCAG	AGACAATAAC	ATATGATGTC	CTTATACCAG	AATCTGCTAG	AAATGCTTCC	
13	GTGTGGTTTC	CTAGCTCTAC	AGACATAACA	GCACAGCCCG	ATGTTGGATC	GGAGGGAAAT AGGCAGAGAG	2160
						GACAACCAAG GGAAATGCCA	
80	CATTATTCTA	CCTTTGCCTA	CTTCCCAACT	GAGGTAACAC	CTCATGCTTT	TACCCCATCC	2340
30						AACCCAACCG TGAGGGGTTG	
	GAATCCGAGA	AGAAGGCAGT	TATACCCCTT	GTGATCGTGT	CAGCCCTGAC	TTTTATCTGT TGCACACTTT	2520
05	TACTTAGAGG	ACAGTACATC	CCCTAGAGTT	ATATCCACAC	CTCCAACACC	TATCTTTCCA	2640
85						TGCAGATTTA CCAGGAAGTG	
						AGACAACAAG	

```
CACAAGAATC GATACATAAA TATCGTTGCC TATGATCATA GCAGGGTTAA GCTAGCACAG
                                                                             2940
       CTTGCTGAAA AGGATGGCAA ACTGACTGAT TATATCAATG CCAATTATGT TGATGGCTAC
       AACAGACCAA AAGCTTATAT TGCTGCCCAA GGCCCACTGA AATCCACAGC TGAAGATTTC
                                                                             3000
                                                                             3060
       TGGAGAATGA TATGGGAACA TAATGTGGAA GTTATTGTCA TGATAACAAA CCTCGTGGAG
 5
       AAAGGAAGGA GAAAATGTGA TCAGTACTGG CCTGCCGATG GGAGTGAGGA GTACGGGAAC
                                                                             3120
       TTTCTGGTCA CTCAGAAGAG TGTGCAAGTG CTTGCCTATT ATACTGTGAG GAATTTTACT
                                                                             3180
       CTAAGAAACA CAAAAATAAA AAAGGGCTCC CAGAAAGGAA GACCCAGTGG ACGTGTGGTC
                                                                             3240
       ACACAGTATC ACTACACGCA GTGGCCTGAC ATGGGAGTAC CAGAGTACTC CCTGCCAGTG
                                                                             3300
       CTGACCTTTG TGAGAAAGGC AGCCTATGCC AAGCGCCATG CAGTGGGGCC TGTTGTCGTC
                                                                             3360
10
       CACTGCAGTG CTGGAGTTGG AAGAACAGGC ACATATATTG TGCTAGACAG TATGTTGCAG
                                                                             3420
       CAGATTCAAC ACGAAGGAAC TGTCAACATA TTTGGCTTCT TAAAACACAT CCGTTCACAA
       AGAAATTATT TGGTACAAAC TGAGGAGCAA TATGTCTTCA TTCATGATAC ACTGGTTGAG
       GCCATACTTA GTAAAGAAAC TGAGGTGCTG GACAGTCATA TTCATGCCTA TGTTAATGCA
                                                                             3600
       CTCCTCATTC CTGGACCAGC AGGCAAAACA AAGCTAGAGA AACAATTCCA GGGTCTCACT
                                                                             3660
15
       CTGTCACCCA GGCTGGAGTG CAGAGGCACA ATCTCGGCTC ACTGCAACCT TCCTCTCCCT
                                                                             3720
       GGCTTAACTG ATCCTCCTAC CTCAGCCTCC CGAGTGGCTG GGACTATACT CCTGAGCCAG
                                                                             3780
       TCAAATATAC AGCAGAGTGA CTATTCTGCA GCCCTAAAGC AATGCAACAG GGAAAAGAAT CGAACTTCTT CTATCATCCC TGTGGAAAGA TCAAGGGTTG GCATTTCATC CCTGAGTGGA
                                                                             3840
                                                                             3900
       GAAGGCACAG ACTACATCAA TGCCTCCTAT ATCATGGGCT ATTACCAGAG CAATGAATTC
                                                                             3960
20
       ATCATTACCC AGCACCCTCT CCTTCATACC ATCAAGGATT TCTGGAGGAT GATATGGGAC
                                                                             4020
       CATAATGCCC AACTGGTGGT TATGATTCCT GATGGCCAAA ACATGGCAGA AGATGAATTT
                                                                             4080
       GTTTACTGGC CAAATAAAGA TGAGCCTATA AATTGTGAGA GCTTTAAGGT CACTCTTATG
                                                                             4140
       GCTGAAGAAC ACAAATGTCT ATCTAATGAG GAAAAACTTA TAATTCAGGA CTTTATCTTA
                                                                             4200
       GAAGCTACAC AGGATGATTA TGTACTTGAA GTGAGGCACT TTCAGTGTCC TAAATGGCCA
                                                                             4260
25
       AATCCAGATA GCCCCATTAG TAAAACTTTT GAACTTATAA GTGTTATAAA AGAAGAAGCT
                                                                             4320
       GCCAATAGGG ATGGGCCTAT GATTGTTCAT GATGAGCATG GAGGAGTGAC GGCAGGAACT
                                                                             4380
       TTCTGTGCTC TGACAACCCT TATGCACCAA CTAGAAAAAG AAAATTCCGT GGATGTTTAC
                                                                             4440
       CAGGTAGCCA AGATGATCAA TCTGATGAGG CCAGGAGTCT TTGCTGACAT TGAGCAGTAT
                                                                             4500
       CAGTTTCTCT ACAAAGTGAT CCTCAGCCTT GTGGGCACAA GGCAGGAAGA GAATCCATCC
                                                                             4560
30
       ACCTCTCTGG ACAGTAATGG TGCAGCATTG CCTGATGGAA ATATAGCTGA GAGCTTAGAG
                                                                             4620
       TCTTTAGTTT AACACAGAAA GGGGTGGGGG GACTCACATC TGAGCATTGT TTTCCTCTTC
                                                                             4680
       CTAAAATTAG GCAGGAAAAT CAGTCTAGTT CTGTTATCTG TTGATTTCCC ATCACCTGAC
                                                                             4740
       AGTAACTITC ATGACATAGG ATTCTGCCGC CAAATTTATA TCATTAACAA TGTGTGCCTT
       TTTGCAAGAC TTGTAATTTA CTTATTATGT TTGAACTAAA ATGATTGAAT TTTACAGTAT
                                                                             4860
       TTCTAAGAAT GGAATTGTGG TATTTTTTC TGTATTGATT TTAACAGAAA ATTTCAATTT
35
       ATAGAGGTTA GGAATTCCAA ACTACAGAAA ATGTTTGTTT TTAGTGTCAA ATTTTTAGCT
                                                                             4980
       GTATTTGTAG CAATTATCAG GTTTGCTAGA AATATAACTT TTAATACAGT AGCCTGTAAA
                                                                             5040
       TARARCACTC TICCATATGA TATTCAACAT TITACAACTG CAGIATTCAC CTARAGTAGA AATAATCTGT TACTTATTGT AAATACTGCC CTAGTGTCTC CATGGACCAA ATTTATATTT
                                                                             5100
                                                                             5160
40
       ATAATTGTAG ATTTTTATAT TTTACTACTG AGTCAAGTTT TCTAGTTCTG TGTAATTGTT
                                                                             5220
       TAGTTTAATG ACGTAGTTCA TTAGCTGGTC TTACTCTACC AGTTTTCTGA CATTGTATTG
                                                                             5280
       TGTTACCTAA GTCATTAACT TTGTTTCAGC ATGTAATTTT AACTTTTGTG GAAAATAGAA
                                                                             5340
       ATACCTTCAT TTTGAAAGAA GTTTTTATGA GAATAACACC TTACCAAACA TTGTTCAAAT
                                                                             5400
       5460
45
       Α ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ
       Seq ID NO: 188 Protein sequence:
       Protein Accession #: EOS sequence
50
                                          31
                                                     41
       MRILKRFLAC IQLLCVCRLD WANGYYRQQR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK
       QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                              120
       FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                              180
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
55 ·
                                                                              240
       TOTVOMIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
TGKEELHEAV CSSEPENVQA DPENTYSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                              300
                                                                              360
                                                                               420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNOIRKKEPO ISTTTHYNRI GTKYNEAKTN
                                                                               480
60
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                              540
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
                                                                              600
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                              660
       TAQPDVGSGR ESPLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                              720
       TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNEASNSS HESRIGLAEG LESEKKAVIP
                                                                              780
65
       LVIVSALTFI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTPIF PISDDVGAIP
                                                                              840
       IKHFPKHVAD LHASSGPTEE FETLKEPYQE VQSCTVDLGI TADSSNHPDN KHKNRYINIV
                                                                              900
       AYDHSRVKLA QLAEKDGKLT DYINANYVDG YNRPKAYIAA QGPLKSTAED FWRMIWEHNV
                                                                              960
       EVIVMITNLV EKGRRKCDQY WPADGSEEYG NFLVTQKSVQ VLAYYTVRNF TLRNTKIKKG
                                                                             1020
       SQKGRPSGRV VTQYHYTQWP DMGVPEYSLP VLTFVRKAAY AKRHAVGPVV VHCSAGVGRT
                                                                             1080
70
       GTYIVLDSML QQIQHEGTVN IFGFLKHIRS QRNYLVQTEE QYVFIHDTLV EAILSKETEV
                                                                             1140
       LDSHIHAYVN ALLIPGPAGK TKLEKQFQGL TLSPRLECRG TISAHCNLPL PGLTDPPTSA
                                                                             1200
       SRVAGTILLS QSNIQQSDYS AALKQCNREK NRTSSIIPVE RSRVGISSLS GEGTDYINAS
                                                                             1260
       YIMGYYQSNE FIITQHPLLH TIKDFWRMIW DHNAQLVVMI PDGQNMAEDE FVYWPNKDEP
                                                                             1320
       INCESPKVTL MAEEHKCLSN EEKLIIQDPI LEATQDDYVL EVRHFQCPKW PNPDSPISKT
                                                                             1380
75
       FELISVIKEE AANRDGPMIV HDEHGGVTAG TFCALTTLMH QLEKENSVDV YQVAKMINLM
       RPGVPADIEQ YQFLYKVILS LVGTRQEENP STSLDSNGAA LPDGNIAESL ESLV
       Seg ID NO: 189 DNA sequence
80
       Nucleic Acid Accession #: NM_002820
       Coding sequence: 304..831
85
       CCGGTTCGCA AAGAAGCTGA CTTCAGAGGG GGAAACTTTC TTCTTTTAGG AGGCGGTTAG
                                                                                60
       CCCTGTTCCA CGAACCCAGG AGAACTGCTG GCCAGATTAA TTAGACATTG CTATGGGAGA
                                                                               120
       CGTGTAAACA CACTACTTAT CATTGATGCA TATATAAAAC CATTTTATTT TCGCTATTAT
```

```
TTCAGAGGAA GCGCCTCTGA TTTGTTTCTT TTTTCCCTTT TTGCTCTTTC TGGCTGTGTG
       GTTTGGAGAA AGCACAGTTG GAGTAGCCGG TTGCTAAATA AGTCCCGAGC GCGAGCGGAG
                                                                             300
       ACGATGCAGC GGAGACTGGT TCAGCAGTGG AGCGTCGCGG TGTTCCTGCT GAGCTACGCG
                                                                             360
       GTGCCCTCCT GCGGGCGCTC GGTGGAGGGT CTCAGCCGCC GCCTCAAAAG AGCTGTGTCT
                                                                             420
 5
       GAACATCAGC TCCTCCATGA CAAGGGGAAG TCCATCCAAG ATTTACGGCG ACGATTCTTC
                                                                             480
       CTTCACCATC TGATCGCAGA AATCCACACA GCTGAAATCA GAGCTACCTC GGAGGTGTCC
                                                                             540
       CCTAACTCCA AGCCCTCTCC CAACACAAAG AACCACCCCG TCCGATTTGG GTCTGATGAT
                                                                             600
       GAGGGCAGAT ACCTAACTCA GGAAACTAAC AAGGTGGAGA CGTACAAAGA GCAGCCGCTC
                                                                             660
       AAGACACCTG GGAAGAAAA GAAAGGCAAG CCCGGGAAAC GCAAGGAGCA GGAAAAGAAA
                                                                             720
10
       AAACGGCGAA CTCGCTCTGC CTGGTTAGAC TCTGGAGTGA CTGGGAGTGG GCTAGAAGGG
                                                                             780
       GACCACCTGT CTGACACCTC CACAACGTCG CTGGAGCTCG ATTCACGGTA ACAGGCTTCT
                                                                             840
       CTGGCCCGTA GCCTCAGCGG GGTGCTCTCA GCTGGGTTTT GGAGCCTCCC TTCTGCCTTG
                                                                             900
       GCTTGGACAA ACCTAGAATT TTCTCCCTTT ATGTATCTCT ATGGATTGTG TAGCAATTGA
                                                                             960
       CAGAGAATAA CTCAGAATAT TGTCTGCCTT AAAGCAGTAC CCCCCTACCA CACACCCCC
                                                                            1020
15
       TGTCCTCCAG CACCATAGAG AGGCGCTAGA GCCCATTCCT CTTTCTCCAC CGTCACCCAA
                                                                            1080
       CATCAATCCT TTACCACTCT ACCAAATAAT TTCATATTCA AGCTTCAGAA GCTAGTGACC
                                                                            1140
       ATCTTCATAA TITGCTGGAG AAGTGTATTT CTTCCCCTTA CTCTCACACC TGGGCAAACT
                                                                            1200
       TTCTTCAGTG TTTTTCATTT CTTACGTTCT TTCACTTCAA GGGAGAATAT AGAAGCATTT
                                                                            1260
       GATATTATCT ACAAACACTG CAGAACAGCA TCATGTCATA AACGATTCTG AGCCATTCAC
                                                                            1320
       ACTITITATI TAATTAAATG TATTTAATTA AATCICAAAT TITATTTAAT GTAAAGAACT TAAATTATGT TITAAACACA TGCCTTAAAT TTGTTTAATT AAATTTAACT CTGGTTTCTA CCAGCTCATA CAAAATAAAT GGTTTCTGAA AATGTTTAAG TATTAACTTA CAAGGATATA
20
                                                                            1380
                                                                            1440
                                                                            1500
       GGTTTTTCTC ATGTATCTTT TTGTTCATTG GCAAGATGAA ATAATTTTTC TAGGGTAATG
       CCGTAGGAAA AATAAAACTT CACATTTAAA AAAAA
25
       Seq ID NO: 190 Protein sequence:
       Protein Accession #: NP 002811
30
                  11
                             21
                                                               51
       MORRLVOOWS VAVFLLSYAV PSCGRSVEGL SRRLKRAVSE HOLLHDKGKS IQDLRRRFFL
                                                                              60
       HHLIAEIHTA EIRATSEVSP NSKPSPNTKN HPVRFGSDDE GRYLTQETNK VETYKEQPLK
                                                                             120
35
       TPGKKKKGKP GKRKEQEKKK RRTRSAWLDS GVTGSGLEGD HLSDTSTTSL ELDSR
       Seq ID NO: 191 DNA sequence
       Nucleic Acid Accession #: XM_059328
       Coding sequence: 52..1023
40
                                                               51
       GGGCTGTCCG GCCCACTCCC CTGGGAGCGC GAGCGGTGGA CCCAGGCGGC CATGTCCCGC
      CCTCGCATGC GCCTGGTGGT CACCGCGGAC GACTTTGGTT ACTGCCCGCG ACGCGATGAG
                                                                             120
45
       GGTATCGTGG AGGCCTTTCT GGCCGGGGCT GTGACCAGCG TGTCCCTGCT GGTCAACGGT
       GCGGCCACGG AGAGCGCGGC GGAGCTGGCC CGCAGGCACA GCATCCCCAC GGGCCTCCAC
       GCCAACCTGT CCGAGGGCCG CCCCGTGGGT CCGGCCCGCC GTGGCGCCTC ATCGCTGCTC
       GGCCCGGAAG GCTTCTTCCT TGGCAAGATG GGATTCCGGG AGGCGGTGGC GGCCGGAGAC
                                                                             360
       GTGGATTTGC CTCAGGTGCG GGAGGAGCTC GAGGCCCAAC TAAGCTGCTT CCGGGAGCTG
                                                                             420
50
       CTGGGCAGGG CCCCCACGCA CGCGGACGGG CACCAGCACG TGCACGTGCT CCCAGGCGTG
                                                                             480
       TGCCAGGTGT TCGCCGAGGC GCTGCAGGCC TATGGGGTGC GCTTTACGCG ACTGCCGCTG
                                                                             540
       GAGCGCGGTG TGGGTGGCTG CACTTGGCTG GAGGCCCCCG CGCGTGCCTT CGCCTGCGCC
                                                                             600
       GTGGAGCGCG ACGCCCGGGC CGCCGTGGGC CCCTTCTCCC GCCACGGCCT GCGGTGGACA
                                                                             660
       GACGCCTTCG TGGGCCTGAG CACTTGCGGC CGGCACATGT CCGCTCACCG CGTGTCCGGG
                                                                             720
55
       GCCCTGGCGC GGGTCCTGGA AGGTACCCTA GCGGGCCACA CCCTGACAGC CGAGCTGATG
                                                                             780
       GCGCACCCCG GCTACCCCAG TGTGCCTCCC ACCGGCGGCT GCGGTGAAGG CCCCGACGCT
                                                                             840
       TTCTCTTGCT CTTGGGAGCG GCTGCATGAG CTGCGCGTCC TCACCGCGCC CACGCTGCGG
                                                                             900
       GCCCAGCTTG CCCAGGATGG CGTGCAGCTT TGCGCCCTCG ACGACCTGGA CTCCAAGAGG
                                                                             960
       CCAGGGGAGG AGGTCCCCTG TGAGCCCACT CTGGAACCCT TCCTGGAACC CTCCCTACTC
                                                                            1020
       60
                                                                            1080
                                                                            1140
                                                                            1200
       AGCCTTCTTG GCTGCAGGCA GGCCTAGCCT GTGGCAGCGG GCTAGGGCCC GCAGAGCATT
                                                                            1260
       TGGTGCCCCT CCATGTTGCA ATGCAAACAC CTTCACCACT GGGGCAGTGG GGAGAGATGG
65
       CTATATTAAT AAAATAACGT GTGTCTTTC
       Seq ID NO: 192 Protein sequence:
       Protein Accession #: XP_059328
70
                             21
       MSRPRMRLVV TADDFGYCPR RDEGIVEAFL AGAVTSVSLL VNGAATESAA ELARRHSIPT
       GLHANLSEGR PVGPARRGAS SLLGPEGFFL GKMGFREAVA AGDVDLPQVR EELEAQLSCF
                                                                             120
75
       RELLGRAPTH ADGHQHVHVL PGVCQVFAEA LQAYGVRPTR LPLERGVGGC TWLEAPARAF
                                                                             180
       ACAVERDARA AVGPFSRHGL RWTDAFVGLS TCGRHMSAHR VSGALARVLE GTLAGHTLTA
                                                                             240
       ELMAHPGYPS VPPTGGCGEG PDAFSCSWER LHELRVLTAP TLRAQLAQDG VQLCALDDLD
                                                                             300
       SKRPGEEVPC EPTLEPFLEP SLL
80
       Seq ID NO: 193 DNA sequence
       Nucleic Acid Accession #: NM_005688.1
       Coding sequence: 126..4439
                                         31
85
       CCGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC
       AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCGCTCAG
```

	WO 02/						
		GGATATCGAC					180
		GAGAACCAGC					240
		ACCGTTGGAA					300
-		TGCCTCCATG					360
5	GAAAGTACCA	TCATGGCTTG	AGTGCTCTGA	AGCCCATCCG	GACTACTTCC	AAACACCAGC	420
	ACCCAGTGGA	CAATGCTGGG	CTTTTTTCCT	GTATGACTTT	TTCGTGGCTT	TCTTCTCTGG	480
	CCCGTGTGGC	CCACAAGAAG	GGGGAGCTCT	CAATGGAAGA	CGTGTGGTCT	CTGTCCAAGC	540
	ACGAGTCTTC	TGACGTGAAC	TGCAGAAGAC	TAGAGAGACT	GTGGCAAGAA	GAGCTGAATG	600
	AAGTTGGGCC	AGACGCTGCT	TCCCTGCGAA	GGGTTGTGTG	GATCTTCTGC	CGCACCAGGC	660
10		CATCGTGTGC					720
- 0		ACACCTCTTG					780
		GCTGGGCCTC					840
		GAATTACCGA					900
							960
15		CCTTAAGTTA					
13		CGATGGGCAG					1020
		TGTTGCCATC					1080
		ATCAGCTGTT					1140
		TTTCAGGAGA					1200
••	ATGAAGTTCT	TACTTACATT	AAATTTATCA	AAATGTATGC	CTGGGTCAAA	GCATTTTCTC	1260
20	AGAGTGTTCA	AAAAATCCGC	GAGGAGGAGC	GTCGGATATT	GGAAAAAGCC	GGGTACTTCC	1320
	AGGGTATCAC	TGTGGGTGTG	GCTCCCATTG	TGGTGGTGAT	TGCCAGCGTG	GTGACCTTCT	1380
	CTGTTCATAT	GACCCTGGGC	TTCGATCTGA	CAGCAGCACA	GGCTTTCACA	GTGGTGACAG	1440
		CATGACTTTT					1500
		GGCTGTTGAC					1560
25 -	TAAAGAACAA						1620
		CCACTCCAGT					1680
		TTCCAGGGGC					1740
		GGCAGAGCAG					1800
		AGAAGGCAAG					1860
30							
30		TCTGGAGATC					1920
		CTCTCTCATT					1980
		TGGAACCTTC					2040
	TGAGAGACAA	CATCCTGTTT	GGGAAGGAAT	ATGATGAAGA	AAGATACAAC	TCTGTGCTGA	2100
~ ~		CCTGAGGCCT					2160
35	GAGAGCGAGG	AGCCAACCTG	AGCGGTGGGC	AGCGCCAGAG	GATCAGCCTT	GCCCGGGCCT	2220
	TGTATAGTGA	CAGGAGCATC	TACATCCTGG	ACGACCCCCT	CAGTGCCTTA	GATGCCCATG	2280
	TGGGCAACCA	CATCTTCAAT	AGTGCTATCC	GGAAACATCT	CAAGTCCAAG	ACAGTTCTGT	2340
		CCAGTTACAG					2400
		GGAAAGAGGC					2460
40		TAACCTGTTG					2520
70		TTCACAGAAG					2580
		AGTAAAGCCA					2640
							2700
		CTGGTCAGTA					
45		TATGGCCCTT					2760
43		CTGGATCAAG					2820
		TGACAGCATG					2880
		GGCAGTCATG					2940
	GCACGCTGCG	AGCTTCCTCC	CGGCTGCATG	ACGAGCTTTT	CCGAAGGATC	CTTCGAAGCC	3000
	CTATGAAGTT	TTTTGACACG	ACCCCCACAG	GGAGGATTCT	CAACAGGTTT	TCCAAAGACA	3060
50	TGGATGAAGT	TGACGTGCGG	CTGCCGTTCC	AGGCCGAGAT	GTTCATCCAG	AACGTTATCC	3120
	TGGTGTTCTT	CTGTGTGGGA	ATGATCGCAG	GAGTCTTCCC	GTGGTTCCTT	GTGGCAGTGG	3180
		CATCCTCTTT					3240
		GGACAATATC					3300
		CACCATCCAC					3360
55		TGACAACCAA					3420
55		GGACCTCATC					3480
		GCAGATTCCC					3540
							3600
		GTTCCAGTTT					
60		GATCAATCAC					3660
OU		TCCCTCCCCT					3720
						ACGATCAAAC*	
		GATTGGCATT					3840
		TCTGGTGGAG					,3900
	GTGATATTGG	CCTTGCCGAC	CTCCGAAGCA	AACTCTCTAT	CATTCCTCAA	GAGCCGGTGC	3960
65	TGTTCAGTGG	CACTGTCAGA	TCAAATTTGG	ACCCCTTCAA	CCAGTACACT	GAAGACCAGA	4020
	TTTGGGATGC	CCTGGAGAGG	ACACACATGA	AAGAATGTAT	TGCTCAGCTA	CCTCTGAAAC	4080
		AGTGATGGAG					4140
		AGCCCTGCTC					4200
		AGAGACAGAC					4260
70	CONTROCACAC	GACCATTGCC	CAMOCCOMCC	AUGUOUCCUT.	ACCOMMISSION	ACCATTATCC	4320
70							
		GGGACAGGTG					4380
						AAGGGCTGAC	
		TGACGAAGTC					4500
75		CGTCCTCCTA					4560
75		GGCTTGTGTG					4620
		CATGTAAACA					4680
		DTTAATATA					4740
		ATTCTGTACA					4800
00	TATTAAAAATA	AGCACTGTGC	TAATAACAGT	GCATATTCCT	TTCTATCATT	TTTGTACAGT	4860
80		AGAGATCTGG					4920
		TGGTTTCACG					4980
		CTCCGACAGC					5040
		GGCGGCTGGA					5100
		GTCACTTACT					5160
85		TCCATCAAGA					5220
-		TCCATCAAGA	WARRANGE TO A	CTADACARCIT	TOTOGRAPH TO	CCACAGAGAC	5280
		TCAGGTTCCT					5340
	-ccaciocc	-CAGGIICUT	~100C100CC	AUNDROOM	UCICI CUMUC		2240

```
GTTGGTTCCA AGCCCTGGAG CCAACTGCTG CTTTTTGAGG TGGCACTTTT TCATTTGCCT
                                                                          5400
      ATTCCCACAC CTCCACAGTT CAGTGGCAGG GCTCAGGATT TCGTGGGTCT GTTTTCCTTT
                                                                          5460
      CTCACCGCAG TCGTCGCACA GTCTCTCTCT CTCTCTCCCC TCAAAGTCTG CAACTTTAAG
                                                                          5520
      CAGCTCTTGC TAATCAGTGT CTCACACTGG CGTAGAAGTT TTTGTACTGT AAAGAGACCT
                                                                          5580
      ACCTCAGGTT GCTGGTTGCT GTGTGGTTTG GTGTGTTCCC GCAAACCCCC TTTGTGCTGT
                                                                          5640
 5
      GGGGCTGGTA GCTCAGGTGG GCGTGGTCAC TGCTGTCATC AGTTGAATGG TCAGCGTTGC
                                                                          5700
      ATGTCGTCAC CAACTAGACA TTCTGTCGCC TTAGCATGTT TGCTGAACAC CTTGTGGAAG
                                                                          5760
      5820
      ААААААА АААААААА
10
      Seq ID NO: 194 Protein sequence:
      Protein Accession #: NP_005679.1
15
                                                              51
                                        31
                                                                            60
      MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFRR TRPLECODAL ETAARAEGLS
      LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRTTSKHQHP VDNAGLFSCM TFSWLSSLAR
                                                                           120
      VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWQEELNEV GPDAASLRRV VWIFCRTRLI
                                                                           180
      LSIVCLMITQ LAGFSGPAFM VKHLLEYTQA TESNLQYSLL LVLGLLLTEI VRSWSLALTW
                                                                           240
20
      ALNYRTGVRL RGAILTMAFK KILKLKNIKE KSLGELINIC SNDGQRMFEA AAVGSLLAGG
                                                                           300
       PVVAILGMIY NVIILGPTGF LGSAVFILFY PAMMFASRLT AYFRRKCVAA TDERVQKMNE
                                                                           360
      VLTYIKFIKM YAWVKAFSQS VQKIREEERR ILEKAGYFQG ITVGVAPIVV VIASVVTFSV
      HMTLGFDLTA AQAFTVVTVF NSMTFALKVT PFSVKSLSEA SVAVDRFKSL FLMEEVHMIK
      NKPASPHIKI EMKNATLAWD SSHSSIQNSP KLTPKMKKDK RASRGKKEKV RQLQRTEHQA
                                                                            540
25
       VLAEQKGHLL LDSDERPSPE EEEGKHIHLG HLRLQRTLHS IDLEIQEGKL VGICGSVGSG
                                                                            600
       KTSLISAILG QMTLLEGSIA ISGTFAYVAQ QAWILNATLR DNILFGKEYD EERYNSVLNS
                                                                            660
       CCLRPDLAIL PSSDLTEIGE RGANLSGGQR QRISLARALY SDRSIYILDD PLSALDAHVG
                                                                            720
       NHIFNSAIRK HLKSKTVLFV THQLQYLVDC DEVIFMKEGC ITERGTHEEL MNLNGDYATI
                                                                            780
       FNNLLLGETP PVEINSKKET SGSQKKSQDK GPKTGSVKKE KAVKPEEGQL VQLEEKGQGS
                                                                            840
30
       VPWSVYGVYI QAAGGPLAFL VIMALFMLNV GSTAFSTWWL SYWIKQGSGN TTVTRGNETS
                                                                            900
       VSDSMKDNPH MQYYASIYAL SMAVMLILKA IRGVVFVKGT LRASSRLHDE LFRRILRSPM
                                                                            960
       KFFDTTPTGR ILNRFSKDMD EVDVRLPFQA EMFIQNVILV FFCVGMIAGV FPWFLVAVGP
                                                                          1020
       LVILFSVLHI VSRVLIRELK RLDNITQSPF LSHITSSIQG LATIHAYNKG QEFLHRYQEL
                                                                           1080
       LDDNQAPFFL FTCAMRWLAV RLDLISIALI TTTGLMIVLM HGQIPPAYAG LAISYAVQLT
                                                                           1140
35
       GLFQFTVRLA SETEARFTSV ERINHYIKTL SLEAPARIKN KAPSPDWPQE GEVTFENAEM
                                                                           1200
       RYRENLPLVL KKVSFTIKPK EKIGIVGRTG SGKSSLGMAL FRLVELSGGC IKIDGVRISD
                                                                          1260
       IGLADLRSKL SIIPQEPVLF SGTVRSNLDP FNQYTEDQIW DALERTHMKE CIAQLPLKLE
                                                                           1320
       SEVMENGDNF SVGERQLLCI ARALLRHCKI LILDEATAAM DTETDLLIQE TIREAFADCT
                                                                           1380
       MLTIAHRLHT VLGSDRIMVL AQGQVVEFDT PSVLLSNDSS RFYAMFAAAE NKVAVKG
40
       Seg ID NO: 195 DNA sequence
       Nucleic Acid Accession #: NM_006470
       Coding sequence: 228..1922
45
                                        31
                  11
                             21
       GCTGTCCTGA GCCTGAGTAC TCTAGCTGCC TTGTCGCCAT CGCATCTGGC TGCCATCCAG
       CGCCAGCACA CAGTAATGAG TGGCCGAGCT TCCTCTGGGA GGGAGGAAAC AGTTAAAATC
                                                                            120
50
       TTGCAGCAGC TGCAATCATC TAGGCGTGGT TCTCTTGTCT GACTTGGGCT GCACAGATCC
                                                                            1.80
       TGGGCCAAGG GACAGAAGAA AGACAGCCTA GGAGCAGAGC CTCCCAGATG GCTGAGTTGG
                                                                            240
       ATCTAATEGC TCCAGGGCCA CTGCCCAGGG CCACTGCTCA GCCCCCAGCC CCTCTCAGCC
                                                                            300
       CAGACTCTGG GTCACCCAGC CCAGATTCTG GGTCAGCCAG CCCAGTGGAA GAAGAGGACG
                                                                            360
       TGGGCTCCTC GGAGAAGCTT GGCAGGGAGA CGGAGGAACA GGACAGCGAC TCTGCAGAGC
                                                                            420
55
       AGGGGGATCC TGCTGGTGAG GGGAAAGAGG TCCTGTGTGA CTTCTGCCTT GATGACACCA
                                                                            480
       GAAGAGTGAA GGCAGTGAAG TCCTGTCTAA CCTGCATGGT GAATTACTGT GAAGAGCACT
                                                                            540
       TGCAGCCGCA TCAGGTGAAC ATCAAACTGC AAAGCCACCT GCTGACCGAG CCAGTGAAGG
                                                                            600
       ACCACAACTG GCGATACTGC CCTGCCCACC ACAGCCCACT GTCTGCTTTC TGCTGCCCTG
                                                                            660
                                                                            720
       ATCAGCAGTG CATCTGCCAG GACTGTTGCC AGGAGCACAG TGGCCACACC ATAGTCTCCC
60
       TGGATGCAGC CCGCAGGGAC AAGGAGGCTG AACTCCAGTG CACCCAGTTA GACTTGGAGC
                                                                            780
       GGAAACTCAA GTTGAATGAA AATGCCATCT CCAGGCTCCA GGCTAACCAA AAGTCTGTTC
       TGGTGTCGGT GTCAGAGGTC AAAGCGGTGG CTGAAATGCA GTTTGGGGAA CTCCTTGCTG
                                                                            900
       CTGTGAGGAA GGCCCAGGCC AATGTGATGC TCTTCTTAGA GGAGAAGGAG CAAGCTGCGC
                                                                            960
       TGAGCCAGGC CAACGGTATC AAGGCCCACC TGGAGTACAG GAGTGCCGAG ATGGAGAAGA
                                                                           1020
65
       GCAAGCAGGA GCTGGAGAGG ATGGCGGCCA TCAGCAACAC TGTCCAGTTC TTGGAGGAGT
                                                                           1080
       ACTGCAAGTT TAAGAACACT GAAGACATCA CCTTCCCTAG TGTTTACGTA GGGCTGAAGG
                                                                           1140
       ATAAACTCTC GGGCATCCGC AAAGTTATCA CGGAATCCAC TGTACACTTA ATCCAGTTGC
                                                                           1200
        TGGAGAACTA TAAGAAAAAG CTCCAGGAGT TTTCCAAGGA AGAGGAGTAT GACATCAGAA
                                                                           1260
        CTCAAGTGTC TGCCGTTGTT CAGCGCAAAT ATTGGACTTC CAAACCTGAG CCCAGCACCA
                                                                           1320
70
       GGGAACAGTT CCTCCAATAT GCGTATGACA TCACGTTTGA CCCGGACACA GCACACAAGT
ATCTCCGGCT GCAGGAGGAG AACCGCAAGG TCACCAACAC CACGCCCTGG GAGCATCCCT
                                                                           1380
                                                                           1440
        ACCCGGACCT CCCCAGCAGG TTCCTGCACT GGCGGCAGGT GCTGTCCCAG CAGAGTCTGT
                                                                           1500
        ACCTGCACAG GTACTATTTT GAGGTGGAGA TCTTCGGGGC AGGCACCTAT GTTGGCCTGA
                                                                           1560
        CCTGCAAAGG CATCGACCGG AAAGGGGAGG AGCGCAACAG TTGCATTTCC GGAAACAACT
                                                                           1620
75
        TCTCCTGGAG CCTCCAATGG AACGGGAAGG AGTTCACGGC CTGGTACAGT GACATGGAGA
                                                                           1680
                                                                           1740
        CCCCACTCAA AGCTGGCCCT TTCCGGAGGC TCGGGGTCTA TATCGACTTC CCGGGAGGGA
        TCCTTTCCTT CTATGGCGTA GAGTATGATA CCATGACTCT GGTTCACAAG TTTGCCTGCA
                                                                           1800
                                                                            1860
        AATTITCAGA ACCAGTCTAT GCTGCCTTCT GGCTTTCCAA GAAGGAAAAC GCCATCCGGA
        TTGTAGATCT GGGAGAGGAA CCCGAGAAGC CAGCACCGTC CTTGGGGGTG ACTGCTCCCT
                                                                            1920
 80
        AGACTCCAGG AGCCATATCC CAGACCTTTG CCAGCTACAG TGATGGGATT TGCATTTTAG
                                                                            1980
        GGTGATTTGT GGGCAGAAAT AACTGCTGAT GGTAGCTGGC TTTTGAAATC CTATGGGGTC
        TCTGAATGAA AACATTCTCC AGCTGCTCTC TTTTGCTCCA TATGGTGCTG TTCTCTATGT
        GTTTGCAGTA ATTCTTTTTT TTTTTTTTGA GACGGAGTCT CGCACTGTTG CCCAGGCTGG
        AGAGCAGTGG CGCGATCTTG GCTCACTGCA AGCTCCGCCT CCCGAGTTCA AGCAATTCTC
                                                                            2220
 85
        CTGCCTCAGC CTCCCGAGTA GCTGGGATTA CAGGTGCCTG CCACCACACC CAGCTAATGT
        TITGTATITI TAGTAGAGAT GGGGTTTCAC CATGTTGGCC AGGCAGATCT CAAACTCCTG
```

5	CGCCCTGCCT CTCCTCTCTG	GTTTGTAGTA TTCAGGTAAA	CGGCCTCCCA ATTTTTAGGC TGTCACACTG GAGTTATCAT	ACCAAATCTC TGCCCAGAAT	CCTCATCTTC GGATGACCAG	TAGTGCCATT	2400 2460 2520
		196 Protein cession #: 1					
10	1	11	21	31	41	51	
15	DSAEQGDPAG EPVKDHNWRY LDLERKLKLN EOAALSOANG	EGKEVLCDFC CPAHHSPLSA ENAISRLQAN IKAHLEYRSA	APLSPDSGSP LDDTRRVKAV FCCPDQQCIC QKSVLVSVSE EMEKSKQELE LIQLLENYKK	KSCLTCMVNY QDCCQEHSGH VKAVAEMQFG RMAAISNTVQ	CEEHLQPHQV TIVSLDAARR ELLAAVRKAQ FLEEYCKFKN	NIKLQSHLLT DKEAELQCTQ ANVMLFLEEK TEDITFPSVY	60 120 180 240 300 360
20	EPSTREQFLQ QQSLYLHRYY SDMETPLKAG	YAYDITFDPD FEVEIFGAGT	TAHKYLRLQE YVGLTCKGID FPGGILSFYG	ENRKVTNTTP RKGEERNSCI	WEHPYPDLPS SGNNFSWSLQ	RFLHWRQVLS WNGKEFTAWY	420 480 540
25	Nucleic Aci	197 DNA sec id Accession mence: 433-1	#: NM_0043	16			
	1	11 GCCGCAAGAG	21 AGCGCAGCCT	31 TRGTRGGAGA	41 GGAACGCGAG	51 ACGCGGCAGA	60
30	GCGCGTTCAG GCGCCAGCGG GGAGGAGGGG	CACTGACTTT CAGCCTCACA AGGGAGGAGG	TGCTGCTGCT CGCGAGCGCC AGGCGGCGTG CTCCCGGGGA	TCTGCTTTTT ACGCGAGGCT CAGGGAGGAG	TTTTTCTTAG CCCGAAGCCA AAAAAGCATT	AAACAAGAAG ACCCGCGAAG TTCACCTTTT	120 180 240 300
35	GCTCCCGCTT GTCCCCCTCG CCGCCGCTGC CAGCCGCAGC GCCGCGGCGG	CATATTTCCT CEGGCCCCGC GCATGGAAAG CCCAGCAGCC CCGCAGCCGC	TTTCTTTCCC ACCTCGCGTC CTCTGCCAAG CTTCCTGCCG CGCAGCGGCA	TCTCTGTTCC CCGGATCGCT ATGGAGAGCG CCCGCAGCCT GCGCAGAGCG	TGCACCCAAG CTGATTCCGC GCGCGCCCGG GTTTCTTTGC CGCAGCAGCA	TTCTCTCTGT GACTCCTTGG CCAGCAGCCC CACGGCCGCA GCAGCAGCAG	360 420 480 540 600
40	TCAGGGGGCG GAACTGATGC CAGCAGCCGG AACCTGGGCT	GTCACAAGTC GCTGCAAACG CCGCCGTGGC TTGCCACCCT	GCAGGCGCCG AGCGCCCAAG CCGGCTCAAC GCGCCGCAAC TCGGGAGCAC	CAAGTCAAGC TTCAGCGGCT GAGCGCGAGC GTCCCCAACG	GACAGCGCTC TTGGCTACAG GCAACCGCGT GCGCGGCCAA	GTCTTCGCCC CCTGCCGCAG CAAGTTGGTC CAAGAAGATG	660 720 780 840 900
45	GACGAGCATG CCCAACTACT GACGAGGGCT TGGTTCTGAG	ACGCGGTGAG CCAACGACTT CTTACGACCC GGGCTCGGCC	CTCGGCGGTC CGCCGCCTTC GAACTCCATG GCTCAGCCC TGGTCAGGCC	CAGGCAGGCG GCCGGCTCGC GAGGAGCAGG CTGGTGCGAA	TCCTGTCGCC CGGTCTCATC AGCTTCTCGA TGGACTTTGG	CACCATCTCC CTACTCGTCG CTTCACCAAC AAGCAGGGTG	960 1020 1080 1140 1200
50	AAAAGAAAA CCAACCCCAT AGCGCTCAGA ACCTGAGTCA	AAAAGAAGAA CGCCAACTAA ACAGTATCTT ATGCGCAAAA	AGTGCTTTCT GAAGAAGAAA GCGAGGCATG TGCACTCCAA TGCAGCTTGT	AGAGAAGAG CCTGAGAGAC TCATTCACGG GTGCAAAAGC	AAAAAACGA ATGGCTTTCA AGATATGAAG AGTGGGCTCC	AAACAGTCAA GAAAACGGGA AGCAACTGGG TGGCAGAAGG	1260 1320 1380 1440 1500
55		CTTCACCTCC	TAACTCCCAT CCGCCCTTTC				1620
60		198 Protein ession #: N					
	1 .	11	21 .	31	41	51	
65	QQQQAPQLRP AVARRNERER	AADGQPSGGG NRVKLVNLGF	QPFLPPAAC HKSAPKQVKR ATLREHVPNG NDLNSMAGSP	QRSSSPELMR AANKKMSKVE	CKRRLNFSGF TLRSAVEYIR	GYSLPQQQPA ALQQLLDEHD	60 120 180
70	Nucleic Aci	199 DNA sec d Accession Lence: 1-100	#: NM_0070	15			
	1	11	21	31	41	51	
75	TGCAGCCCCC AAGGTGGGAG	CGGCGTACGC	AGTTCCCATT TACGCTGACG CATTTCGGGA GAGCGACAGT	GTGAAGCCCT GCTGTGCTGC	CCAGCCCCGC TGCTCTTTGG	GCGGCTGCTC GGCCATCGGG	60 120 180 240
80	ATCAATGGGA TTTAAAATGG ACAGGAATTC	AACTACAAGA GAAGTGGAGC GTTTTGCTGG	TGGGTCAATG TGAAGAAGCA AGGAGAGAAG	GAAATAGACG ATTGCAGTTA TGCTACATTA	CTGGGAACAA ATGATTTCCA AAGCGCAAGT	CTTGGAGACC GAATGGCATC GAAGGCTCGT	300 360 420
85	ATGCCAGTCA GACAACAGCT CTTAAACCAA GTTCCAACTA	AATATGAAGA TCTTGAGTTC CCTATCCAAA CCACAAAAAG	GACCAAACAG AAATTCTCTT TAAGGTGTTA AGAAATCCAG ACCACACAGT CAGTGTTCAA	ATCTGGGTGG GAACTCTGCG AGGGAAAGAA GGACCACGGA	CTGTAGATCA GTGACCTTCC GAGAAGTGGT GCAACCCAGG	GCCTGTGAAG TATTTTCTGG AAGAAAAATT CGCTGGAAGA	480 540 600 660 720 780

```
CCTTATCATC AGCAGGAAGG GGAAAGCATG ACATTCGACC CTAGACTGGA TCACGAAGGA
                                                                                840
       ATCTGTTGTA TAGAATGTAG GCGGAGCTAC ACCCACTGCC AGAAGATCTG TGAACCCCTG
GGGGGCTATT ACCCATGGCC TTATAATTAT CAAGGCTGCC GTTCGGCCTG CAGAGTCATC
                                                                                900
                                                                                960
       ATGCCATGTA GCTGGTGGGT GGCCCGTATC TTGGGCATGG TGTGAAATCA CTTCATATAT
                                                                               1020
       CACGTGCTGT AAAATAAGAA CTAGCTGAAG AGACAACCAA AGAAGCATTA AGGCAGGTTG
                                                                               1080
 5
       ATGCTGATGG GACCATAAAA TATTTTTACA CGCAGCCTGA GCGGTTATTC TTGACACTCT
                                                                               1140
       TAACAGAATT TTTTTAATCG TTTTCCAGAA CTTTAGTATA TGCAAATGCA CTGAAAGGGT
                                                                               1200
       AGTTCAAGTC TAAAATGCCA TAACCCCGTT ATTTGTTATT TTTTATTTGC ATTGATTTGC
                                                                               1260
       CATAAGTCTT CCCTTGCTTG CATCTTCCAA AGCTATTTCG AAATAAACAC GAAAATTTAC
10
       AGTTTGCC
       Seg ID NO: 200 Protein sequence:
       Protein Accession #: NP_008946
15
                               21
                                           31
       MTENSDKVPI ALVGPDDVEF CSPPAYATLT VKPSSPARLL KVGAVVLISG AVLLLFGAIG
                                                                                 60
       APYFWKGSDS HIYNVHYTMS INGKLQDGSM EIDAGNNLET FKMGSGAEEA IAVNDFQNGI
                                                                                120
       TGIRFAGGEK CYIKAQVKAR IPEVGAVTKQ SISSKLEGKI MPVKYEENSL IWVAVDQPVK
                                                                                180
20
       DNSFLSSKVL ELCGDLPIFW LKPTYPKEIQ RERREVVRKI VPTTTKRPHS GPRSNPGAGR
                                                                                240
       LNNETRPSVQ EDSQAFNPDN PYHQQEGESM TFDPRLDHEG ICCIECRRSY THCQKICEPL
                                                                                300
       GGYYPWPYNY QGCRSACRVI MPCSWWVARI LGMV
25
       Seq ID NO: 201 DNA sequence
       Nucleic Acid Accession #: NM_000728.2
       Coding sequence: 112..495
                               21
                   11.
30
       GTAATAAGAG CGGGGTCTCC GCGGGGAAGG CGCCCACAGC AGGTGTGGTG TTCATCCCGG
       GTCGACCGGC CGCTCGCGCT GCCCTGAAAC TCTAGTCGCC AGAGAGGCGG CATGGGTTTC
                                                                                120
        CGGAAGTTCT CCCCCTTCCT GGCTCTCAGT ATCTTGGTCC TGTACCAGGC GGGCAGCCTC
        CAGGCGGCGC CATTCAGGTC TGCCCTGGAG AGCAGCCCAG ACCCGGCCAC ACTCAGTAAA
                                                                                 240
       GAGGACGCGC GCCTCCTGCT GGCTGCACTG GTGCAGGACT ATGTGCAGAT GAAGGCCAGT
35
       GAGCTGAAGC AGGAGCAGGA GACACAGGGC TCCAGCTCCG CTGCCCAGAA GAGAGCCTGC AACACTGCCA CCTGTGTGAC TCATCGGCTG GCAGGCTTGC TGAGCAGATC AGGGGGCATG
                                                                                 360
        GTGAAGAGCA ACTTCGTGCC CACCAATGTG GGTTCCAAAG CCTTTGGCAG GCGCCGCAGG
                                                                                 480
        GACCTTCAAG CCTGAGCAGA TGAATGACTC CAGGAAGAAG GTGTGTCCTA AATCCAATGA
                                                                                 540
        CATATCCTTA TAAGAGATTC ACTCAGAAGA CACATGTGGA GAAGGTGACA TGACAGAGGC
                                                                                 600
40
        AAGGAGGCAC AAGCCAAGGA AGTCTGTGTC TACCAGAAGC CAGAATCACA GAACAGTCTC
                                                                                 660
        TGGAAGAAGA GCAGCCCTGC TGACACCTAG AGTTTGGACT TCCAGCTTCC AGAACTGTGA
                                                                                 720
        GAGAATAATT TCTGTTGTTT TAAGCCACAA AGTTTGTGGT AATTTGTTAT GACAGCCCTA
                                                                                 780
        GGAAACTAAT ACAATACATT TTCATTTATT TTGGGTAAAT GCCTTGGAGT GGGATTGCTG
GGTTATTTGG AAAGTGTGTA TTTAACTCTG TAAGAAACTG CCAAACTATT TTCTGAAGTG
                                                                                 840
45
                                                                                 900
        ACTGTACCAC TTCGCCTTCT TGCCAGCCAC ATATGAGAGC TCTAGTATTT CCACAAATAG
                                                                                 960
        GTATGTAGCA GTATCTCATT GCTGTTTTAA TTTGTATTTC CCCAATGACT AATGACGTTG
                                                                                1020
        AGCATCTATT TTACCATATG TTTATCACCT TTATTGAAGG GTCTGTTTAA ATCTTCTGCT AAATTTTTGT TGGCTTGCTT GCTTTATTAG TGTTGAGTTT TTAGAGCTCT TTATATGTTG
                                                                                1080
                                                                                1140
        TGGATGCAAG ATTGTTTTCA GATATATAGT TTGGAAACTT CCTTCCCCTG AATCTGCGGA
                                                                                1200
50
        TTGCTTTTTC ATTTTCTTAG CAGTGTCTCT CACAGAGAAA AAGTTGTAAT TTGAATAAGA
                                                                                1260
        TCCAATTCAT CTTTTTTTT CTTTTATGTA TTGTGCTTTT AGTTCATGTC TAAGAACTCT
                                                                                1320
                                                                                1380
        TTGCCTAACT AAGGTCCCAA GGTCACAATA ACCTTATTCT ATACTTTCTT GTAAAAGTTT
        TATAGTTTTA TATTTTATAT GTAGATTAGT GATCTATTTT GAGTTAATTT TTGTATAAGG
                                                                                1440
        TGAGAGGTGT AGGTTGAAAT TCATACCTGT GAATATAGAT ACCCAATTGT TTCAGTGCCA
                                                                                1500
55
        TTTGTTAAAA AGACTGTTAT TTCACCATTT AATTGCCCCT GCACCTTTGT CAAAAAGCAA
        CTGATCATAT TTGTGTGGGT ATATTTCTGG GTTCTCAATT CTGTCTCATT GATTGATTTG
                                                                                1620
        ACCATTCTTT TGCCAATGTC ATACTGCCTT GATTAGTGTA GTGTTAAAGT GAATCTCAAA
                                                                                1680
        ACCAGATAAT GTGGGTCTAC CAACATTGTT CATTCTTGTT CAAAAAGATT TTAGCTACAT
                                                                                1740
        CTAAAATATT TTCTACATCT TTTATACATT TTAGAATCAG TGTGTTACTA TCTACAAAAT
                                                                                1800
60
        TTCTGATGAG ATTTTTAATG GGATTGTGTT AAATCAGTGG GTTAATTTTG GGAGAATTAG
                                                                                1860
        CATATTAATA ATATTAAGTC GTTCAATTCA TGAACACAAT ACATGTTTTC ACTTATTTAG
                                                                                1920
        GTTTTCTCTG TTTTTTTTT TTTAACAGTG TTCTCAGTTT TCAACAGAAA TATTCTACAC
                                                                                1980
        ATATCTTGTT AGATTTTTAA CTATTTTATT TTTTGGTGCT AATGTAAATG GTACTTAAAC
                                                                                2040
        ATTITIGITT TTAATIGITC ATTGCTAGTA GATAGAAATA CAATATITAA AATATTAGGA
                                                                                2100
65
        ААААААААА ААААААААА АААААААА
        Seq ID NO: 202 Protein sequence:
        Protein Accession #: NP_000719.1
 70
                                                         41
                                                                    51
                                 21
                                             31
         MGFRKFSPFL ALSILVLYQA GSLQAAPFRS ALESSPDPAT LSKEDARLLL AALVQDYVQM
         KASELKQEQE TQGSSSAAQK RACNTATCVT HRLAGLLSRS GGMVKSNFVP TNVGSKAFGR
 75
          RRRDLOA
        Seq ID NO: 203 DNA sequence
        Nucleic Acid Accession #: NM_001741
         Coding sequence: 71..496
 80
                                21
                                            31
         CTCTGGCTGG ACGCCGCCGC CGCCGCTGCC ACCGCCTCTG ATCCAAGCCA CCTCCCGCCA
                                                                                   60
         GAGAGGTGTC ATGGGCTTCC AAAAGTTCTC CCCCTTCCTG GCTCTCAGCA TCTTGGTCCT
                                                                                  120
         GTTGCAGGCA GGCAGCCTCC ATGCAGCACC ATTCAGGTCT GCCCTGGAGA GCAGCCCAGC
 85
                                                                                  180
         AGACCCGGCC ACGCTCAGTG AGGACGAAGC GCGCCTCCTG CTGGCTGCAC TGGTGCAGGA
                                                                                  240
         CTATGTGCAG ATGAAGGCCA GTGAGCTGGA GCAGGAGCAA GAGAGAGAG GCTCCAGCCT
                                                                                  300
```

```
360
       GGACAGCCCC AGATCTAAGC GGTGCGGTAA TCTGAGTACT TGCATGCTGG GCACATACAC
       GCAGGACTTC AACAAGTTTC ACACGTTCCC CCAAACTGCA ATTGGGGTTG GAGCACCTGG
                                                                                  420
       AAAGAAAAGG GATATGTCCA GCGACTTGGA GAGAGACCAT CGCCCTCATG TTAGCATGCC
                                                                                  480
       CCAGAATGCC AACTAAACTC CTCCCTTTCC TTCCTAATTT CCCTTCTTGC ATCCTTCCTA
                                                                                  540
 5
       TAACTTGATG CATGTGGTTT GGTTCCTCTC TGGTGGCTCT TTGGGCTGGT ATTGGTGGCT
                                                                                  600
       TTCCTTGTGG CAGAGGATGT CTCAAACTTC AGATGGGAGG AAAGAGAGCA GGACTCACAG
                                                                                  660
       GTTGGAAGAG AATCACCTGG GAAAATACCA GAAAATGAGG GCCGCTTTGA GTCCCCCAGA
                                                                                  720
       GATGTCATCA GAGCTCCTCT GTCCTGCTTC TGAATGTGCT GATCATTTGA GGAATAAAAT
                                                                                  780
       TATTTTTCCC C
10
       Seq ID NO: 204 Protein sequence:
       Protein Accession #: NP_001732
15
                                           31
       MGFOKFSPFL ALSILVLLOA GSLHAAPFRS ALESSPADPA TLSEDEARLL LAALVODYVO
       MKASELEQEQ EREGSSLDSP RSKRCGNLST CMLGTYTQDF NKPHTPPQTA IGVGAPGKKR
       DMSSDLERDH RPHVSMPQNA N
20
       Seq ID NO: 205 DNA sequence
       Nucleic Acid Accession #: NM_005361
       Coding sequence: 1-945
25
                                                                    51
       ATGCCTCTTG AGCAGAGGAG TCAGCACTGC AAGCCTGAAG AAGGCCTTGA GGCCCGAGGA
                                                                                   60
       GAGGCCTGG GCCTGGTGGG TGCGCAGGCT CCTGCTACTG AGGAGCAGCA GACCGCTTCT
                                                                                 120
       TCCTCTTCTA CTCTAGTGGA AGTTACCCTG GGGGAGGTGC CTGCTGCCGA CTCACCGAGT
                                                                                 180
30
       CCTCCCCACA GTCCTCAGGG AGCCTCCAGC TTCTCGACTA CCATCAACTA CACTCTTTGG
                                                                                  240
       AGACAATCCG ATGAGGGCTC CAGCAACCAA GAAGAGGAGG GGCCAAGAAT GTTTCCCGAC
                                                                                  300
       CTGGAGTCCG AGTTCCAAGC AGCAATCAGT AGGAAGATGG TTGAGTTGGT TCATTTTCTG
CTCCTCAAGT ATCGAGCCAG GGAGCCGGTC ACAAAGGCAG AAATGCTGGA GAGTGTCCTC
                                                                                  360
                                                                                  420
       AGAAATTGCC AGGACTTCTT TCCCGTGATC TTCAGCAAAG CCTCCGAGTA CTTGCAGCTG
GTCTTTGGCA TCGAGGTGGT GGAAGTGGTC CCCATCAGCC ACTTGTACAT CCTTGTCACC
                                                                                  480
35
                                                                                  540
       TGCCTGGGCC TCTCCTACGA TGGCCTGCTG GGCGACAATC AGGTCATGCC CAAGACAGGC
CTCCTGATAA TCGTCCTGGC CATAATCGCA ATAGAGGGCG ACTGTGCCCC TGAGGAGAAA
                                                                                  600
       ATCTGGGAGG AGCTGAGTAT GTTGGAGGTG TTTGAGGGGA GGGAGGACAG TGTCTTCGCA
                                                                                  720
       CATCCCAGGA AGCTGCTCAT GCAAGATCTG GTGCAGGAAA ACTACCTGGA GTACCGGCAG
40
       GTGCCCGGCA GTGATCCTGC ATGCTACGAG TTCCTGTGGG GTCCAAGGGC CCTCATTGAA
                                                                                  840
       ACCAGCTATG TGAAAGTCCT GCACCATACA CTAAAGATCG GTGGAGAACC TCACATTTCC
                                                                                  900
       TACCCACCCC TGCATGAACG GGCTTTGAGA GAGGGAGAAG AGTGA
       Seq ID NO: 206 Protein sequence:
45
       Protein Accession #: NP_005352
                                                                    51
                                           31
       MPLEORSOHC KPEEGLEARG EALGLVGAQA PATEEQQTAS SSSTLVEVTL GEVPAADSPS
                                                                                   60
50
       PPHSPQGASS FSTTINYTLW RQSDEGSSNQ EEEGPRMFPD LESEFQAAIS RKMVELVHFL
                                                                                 120
       LLKYRAREPV TKAEMLESVL RNCQDFFPVI FSKASEYLQL VFGIEVVEVV PISHLYILVT
                                                                                 180
       CLGLSYDGLL GDNQVMPKTG LLIIVLAIIA IEGDCAPEEK IWEELSMLEV FEGREDSVFA
                                                                                  240
       HPRKLLMQDL VQENYLEYRQ VPGSDPACYE FLWGPRALIE TSYVKVLHHT LKIGGEPHIS
                                                                                  300
       YPPLHERALR EGEE
55
       Seg ID NO: 207 DNA seguence
       Nucleic Acid Accession #: NM_021115
       Coding sequence: 743-2893
60
                                           31
                                                        41
                                                                    51
       AAAGGAAGGG AGGGAGGAG AAAGGAGAAG TTGGTTTAGA GGCCAGCCGG ACGAGCTTTG
       GGCACCGCCC TTAGGAGGGC CACCCTCAGA GTCTGACAGC AGGTGAAGGT CCTAAATCTC
                                                                                  120
       CCCAAACTAA CTGGTGTCTT TTCTCCTCTT CCAAGATGCT CTTCCCGAGG GAGATGCTAG
                                                                                 180
65
       CCCTTTGGGT CCTTACCTCC TGCCCTCAGG AGCCCCGGAG AGAGGCAGTC CTGGCAAAGA
                                                                                 240
       GCACCCTGAA GAGAGAGTGG TAACAGCGCC CCCCAGTTCC TCACAGTCGG CGGAAGTGCT
                                                                                  300
       GGGCGAGCTG GTGCTGGATG GGACCGCACC CTCTGCACAT CACGACATCC CAGCCCTGTC
                                                                                  360
       ACCECTECTT CCAGAGGAGG CCCGCCCCAA GCACGCCTTG CCCCCCAAGA AGAAACTGCC
                                                                                  420
       TTCGCTCAAG CAGGTGAACT CTGCCAGGAA GCAGCTGAGG CCCAAGGCCA CCTCCGCAGC
                                                                                  480
70
       CACTGTCCAA AGGGCAGGGT CCCAGCCAGC GTCCCAGGGC CTAGATCTCC TCTCCTCCTC CACGGAGAAG CCTGGCCCAC CGGGGGACCC GGACCCCATC GTGGCCTCCG AGGAGGCATC
                                                                                  540
                                                                                  600
       AGAAGTGCCC CTTTGGCTGG ACCGAAAGGA GAGTGCGGTC CCTACAACAC CCGCACCCCT
                                                                                  660
       GCAAATCTCC CCCTTCACTT CGCAGCCCTA TGTGGCCCAC ACACTCCCCC AGAGGCCAGA
                                                                                  720
       ACCCGGGGAG CCTGGGCCTG ACATGGCCCA GGAGGCCCCC CAGGAGGACA CCAGCCCCAT
                                                                                  780
       GGCCCTGATG GACAAAGGTG AGAATGAGCT GACTGGGTCA GCCTCAGAGG AGAGCCAGGA
75
                                                                                  840
       GACCACTACC TCCACCATTA TCACCACCAC GGTCATCACC ACCGAGCAGG CACCAGCTCT
                                                                                  900
       CTGCAGTGTG AGCTTCTCCA ATCCTGAGGG GTACATTGAC TCCAGCGACT ACCCACTGCT
                                                                                  960
       GCCCCTCAAC AACTITCTGG AGTGCACATA CAACGTGACA GTCTACACTG GCTATGGGGT
GGAGCTCCAG GTGAAGAGTG TGAACCTGTC CGATGGGGAA CTGCTCTCCA TCCGCGGGGT
                                                                                 1020
80
       GGACGGCCCT ACCCTGACCG TCCTGGCCAA CCAGACACTC CTGGTGGAGG GGCAGGTAAT
       CCGAAGCCCC ACCAACACCA TCTCCGTCTA CTTCCGGACC TTCCAGGACG ACGGCCTTGG
       GACCTTCCAG CTTCACTACC AGGCCTTCAT GCTGAGCTGC AACTTTCCCC GCCGGCCTGA
                                                                                 1260
       CTCTGGGGAT GTCACGGTGA TGGACCTGCA CTCAGGTGGG GTGGCCCACT TTCACTGCCA
                                                                                 1320
       CCTGGGCTAT GAGCTCCAGG GCGCTAAGAT GCTGACATGC ATCAATGCCT CCAAGCCGCA
                                                                                 1380
85
       CTGGAGCAGC CAGGAGCCCA TCTGCTCAGC TCCTTGTGGA GGGGCAGTGC ACAATGCCAC
                                                                                 1440
       CATCGGCCGC GTCCTCTCCC CAAGTTACCC TGAAAACACA AATGGGAGCC AATTCTGCAT
                                                                                 1500
        CTGGACGATT GAAGCTCCAG AGGGCCAGAA GCTGCACCTG CACTTTGAGA GGCTGTTGCT 1560
```

```
GCATGACAAG GACAGGATGA CGGTTCACAG CGGGCAGACC AACAAGTCAG CTCTTCTCTA 1620
       CGACTCCCTT CAAACCGAGA GTGTCCCTTT TGAGGGCCTG CTGAGCGAAG GCAACACCAT
                                                                          1680
       COGCATOGAG TTCAOGTCCG ACCAGGCCCG GGCGGCCTCC ACCTTCAACA TCCGATTTGA
                                                                          1740
       AGCGTTTGAG AAAGGCCACT GCTATGAGCC CTACATCCAG AATGGGAACT TCACTACATC
                                                                          1800
 5
       CEACCOGACC TATAACATTG GGACTATAGT GGAGTTCACC TGCGACCCCG GCCACTCCCT
                                                                          1860
       GGAGCAGGGC CCGGCCATCA TCGAATGCAT CAATGTGCGG GACCCATACT GGAATGACAC
                                                                          1920
                                                                          1980
       AGAGCCCCTG TGCAGAGCCA TGTGTGGTGG GGAGCTCTCT GCTGTGGCTG GGGTGGTATT
       GTCCCCAAAC TGGCCCGAGC CCTACGTGGA AGGTGAAGAT TGTATCTGGA AGATCCACGT
                                                                          2040
       GGGAGAAGAG AAACGGATCT TCTTAGATAT CCAGTTCCTG AATCTGAGCA ACAGTGACAT
                                                                          2100
10
       CTTGACCATC TACGATGGCG ACGAGGTCAT GCCCCACATC TTGGGGCAGT ACCTTGGGAA
                                                                          2160
       CAGTGGCCCC CAGAAACTGT ACTCCTCCAC GCCAGACTTA ACCATCCAGT TCCATTCGGA
                                                                          2220
       CCCTGCTGGC CTCATCTTTG GAAAGGGCCA GGGATTTATC ATGAACTACA TAGAGGTATC
                                                                          2280
       AAGGAATGAC TCCTGCTCGG ATTTACCCGA GATCCAGAAT GGCTGGAAAA CCACTTCTCA
       CACGGAGTTG GTGCGGGGAG CCAGAATCAC CTACCAGTGT GACCCCGGCT ATGACATCGT
                                                                          2400
       GGGGAGTGAC ACCCTCACCT GCCAGTGGGA CCTCAGCTGG AGCAGCGACC CCCCATTTTG
15
       TGAGAAAATT ATGTACTGCA CCGACCCCGG AGAGGTGGAT CACTCGACCC GCTTAATTTC
                                                                          2520
       GGATCCTGTG CTGCTGGTGG GGACCACCAT CCAATACACC TGCAACCCCG GTTTTGTGCT
                                                                          2580
                                                                          2640
       TGAAGGGAGT TCTCTTCTGA CCTGCTACAG CCGTGAAACA GGGACTCCCA TCTGGACGTC
       TCGCCTGCCC CACTGCGTTT CAGAAGCGGC AGCAGAGACG TCGCTGGAAG GGGGGAACAT
                                                                          2700
20
       GGCCCTGGCT ATCTTCATCC CGGTCCTCAT CATCTCCTTA CTGCTGGGAG GAGCCTACAT
                                                                          2760
       TTACATCACA AGATGTOGCT ACTATTCCAA CCTCCGCCTG CCTCTGATGT ACTCCCACCC
                                                                          2820
       CTACAGCCAG ATCACCGTGG AAACCGAGTT TGACAACCCC ATTTACGAGA CAGGGGGAAC
                                                                          2880
       CCAAAAGGTT TAGGGTTTCA TTTAAAAAGA GGTACCCTTT AAAAAGGGGC TTGTGAACTC
                                                                          2940
       AACCCCAATT TCCCCGAGAC ATTTATCCAA AGGCCCTGGG GGCCTTGATT TAAACCCCCA
                                                                          3000
25
       AAAGGCGGCT GTTTTTGGT TAAACTTTTT AACAAAGGGT TACGGGTTTT TTCCCCGGAT
                                                                          3060
       TTTATAAATT TTAAAAGTG
       Seg ID NO: 208 Protein sequence:
30
       Protein Accession #: NP_066938
       MAQEAPOEDT SPMALMDKGE NELTGSASEE SQETTTSTII TTTVITTEQA PALCSVSFSN
                                                                            60
      PEGYIDSSDY PLLPLNNFLE CTYNVTVYTG YGVELQVKSV NLSDGELLSI RGVDGPTLTV
35 ·
                                                                           120
       LANGTLLVEG QVIRSPINTI SVYFRTFQDD GLGTFQLHYQ AFMLSCNFPR RPDSGDVTVM
                                                                           180
       DLHSGGVAHF HCHLGYELQG AKMLTCINAS KPHWSSQEPI CSAPCGGAVH NATIGRVLSP
                                                                           240
       SYPENTINGSQ FCIWTIEAPE GOKLHLHFER LLLHDKDRMT VHSGQTNKSA LLYDSLQTES
                                                                           300
       VPFEGLLSEG NTIRIEFTSD OARAASTFNI RFEAFEKGHC YEPYIQNGNF TTSDPTYNIG
                                                                           360
40
       TIVEFTCDPG HSLEQGPAII ECINVRDPYW NDTEPLCRAM CGGELSAVAG VVLSPNWPEP
                                                                            420
       YVEGEDCIWK IHVGEEKRIF LDIQFLNLSN SDILTIYDGD EVMPHILGQY LGNSGPQKLY
                                                                            480
       SSTPDLTIQF HSDPAGLIFG KGQGFIMNYI EVSRNDSCSD LPEIQNGWKT TSHTELVRGA
                                                                           540
       RITYQCDPGY DIVGSDTLTC QWDLSWSSDP PFCEKIMYCT DPGEVDHSTR LISDPVLLVG
                                                                           600
       TTIQYTCNPG FVLEGSSLLT CYSRETGTPI WTSRLPHCVS EAAAETSLEG GNMALAIFIP
                                                                           660
45
       VLIISLLLGG AYIYITRCRY YSNLRLPLMY SHPYSQITVE TEFONPIYET GGTQKV
       Seq ID NO: 209 DNA sequence
       Nucleic Acid Accession #: NM_001327.1
       Coding sequence: 89-631
50
       AGCAGGGGC GCTGTGTGTA CCGAGAATAC GAGAATACCT CGTGGGCCCT GACCTTCTCT
       CTGAGAGCCG GGCAGAGGCT CCGGAGCCAT GCAGGCCGAA GGCCGGGGCA CAGGGGGTTC
                                                                           120
       GACGGGCGAT GCTGATGGCC CAGGAGGCCC TGGCATTCCT GATGGCCCAG GGGGCAATGC
55
                                                                           180
       TEGCEGCCCA GEAGAGECEG GTGCCACGGG CGGCAGAGGT CCCCGGGGCG CAGGGGCAGC
                                                                           240
       AAGGGCCTCG GGGCCGGGAG GAGGCGCCCC GCGGGGTCCG CATGGCGGCG CGGCTTCAGG
       GCTGAATGGA TGCTGCAGAT GCGGGGCCAG GGGGCCGGAG AGCCGCCTGC TTGAGTTCTA
                                                                           360
       CCTCGCCATG CCTTTCGCGA CACCCATGGA AGCAGAGCTG GCCCGCAGGA GCCTGGCCCA
                                                                            420
60
       GGATGCCCCA CCGCTTCCCG TGCCAGGGGT GCTTCTGAAG GAGTTCACTG TGTCCGGCAA
                                                                            480
       CATACTGACT ATCCGACTGA CTGCTGCAGA CCACCGCCAA CTGCAGCTCT CCATCAGCTC
                                                                           540
       CTGTCTCCAG CAGCTTTCCC TGTTGATGTG GATCACGCAG TGCTTTCTGC CCGTGTTTTT
                                                                            600
       GGCTCAGCCT CCCTCAGGGC AGAGGCGCTA AGCCCAGCCT GGCGCCCCTT CCTAGGTCAT
                                                                            660
       GCCTCCTCCC CTAGGGAATG GTCCCAGCAC GAGTGGCCAG TTCATTGTGG GGGCCTGATT
                                                                            720
65
       GTTTGTCGCT GGAGGAGGAC GGCTTACATG TTTGTTTCTG TAGAAAATAA AACTGAGCTA
       Seq ID NO: 210 Protein sequence:
       Protein Accession #: NP_001318.1
70
       MQAEGRGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT GGRGPRGAGA ARASGPGGGA
                                                                            60
       PRGPHGGAAS GLNGCCRCGA RGPESRLLEF YLAMPFATPM EAELARRSLA QDAPPLPVPG
                                                                            120
       VLLKEFTVSG NILTIRLTAA DHRQLQLSIS SCLQQLSLLM WITQCFLPVF LAQPPSGQRR
75
       Seg ID NO: 211 DNA seguence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 52-459
80
                             21
       CCTCGTGGGC CCTGACCTTC TCTCTGAGAG CCGGGCAGAG GCTCCGGAGC CATGCAGGCC
       GAAGGCCAGG GCACAGGGGG TTCGACGGGC GATGCTGATG GCCCAGGAGG CCCTGGCATT
                                                                            120
85
       CCTGATGGCC CAGGGGGCAA TGCTGGCGGC CCAGGAGAGG CGGGTGCCAC GGGCGGCAGA
                                                                            180
       GGTCCCCGGG GCGCAGGGGC AGCAAGGGCC TCGGGGCCGA GAGGAGGCGC CCCGCGGGGT
                                                                            240
       CCGCATGGCG GTGCCGCTTC TGCGCAGGAT GGAAGGTGCC CCTGCGGGGC CAGGAGGCCG
                                                                            300
```

WO 02/086443

		TGCTTCAGTT					360
		GTCTCCAGCA					420 480
		CTCAGGCTCC					540
5		TTGTCGCTGG					600
	CTGAGCTA						
	Sea ID NO.	212 Protein	semience:				
	- ·	cession #: 1	-	€		•	
10			-				
	1	11	21	31	41	51 I	
	MOAEGOGTGG	STGDADGPGG	PGT PDGPGGN	 AGGPGEAGAT	GGRGPRGAGA	I ARASGPRGGA	60
		AQDGRCPCGA					120
15	FLPVFLAQAP	SGQRR					
	Seg ID NO.	213 DNA sec	mence				
		d Accession		55			
20		ence: 416					
20		••	21	31	41	51	
	1	11	21 	1	1	1	
	CTTATTTTTT	ATGAATGTCG	GATAGCTGCA	CCAGCTTGGT	GGGGAAAGGG	TTTGATGAAT	60
25		CACTGGCTGT					120
23		GGGGATGCAC CATAGTCATT					180 240
		AGCTCCTTCT					300
	TACAACTGTT	AGTCATGTGG	GCATGTGTGA	GGAAACAGAT	GCCAGTTTTA	ATGTATTTAG	360
20		CAATTTGATA					420
30		GGACACTTTG TTGCCTAGCC					480 540
		CTGAGTAATG					600
		AAGGGGATTG					660
25		GACCTGACGC					720
35		ACCATTGATG GTCTGTTCCT					780 8 40
		TGGTCTGTCA					900
	GGCTAGCAGC	AACAGTGCAC	AGGCCAGGGA	GAACAAGGAC	TTTGTGCGCC	CCAAGCTGGT	960
40		CGCAGTGGGG					1020
40		TCTTTTGAGC AAAAAACTCT					1080 1140
		GATGATGTGT					1200
		CTGGATGAAA					1260
15		GCATCCCCAA					1320
45		TCTCCAGCTG CAGTCTCCCA					1380 1440
		CTGCCTCTGT					1500
	GAGGGGAGAG	TGCTCAGAGT	CCAGAGTACA	AATCCAAGCC	TATCATTGTA	GTAGGGTACT	1560
50		TGTCCAACAG					1620
30		AACACATTGT CAGTTACCAA					1680 1740
		CAAAATGTGC					1800
		CCGTTTAAAT					1860
55		TAAAAAGTTT					1920
JJ .		GTGCCCCTTT TCCCCAGCCT					1980 2040
		GGCTGTCAAT					2100
						AATACTGCAG	
60						ACTGAGGCAA ACCTGATTCC	
00						CATCTATCTC	
						TTTGTTTTCA	
						TATAAAAATT	
65						GTGATTTTTC CCGAAGAATA	
05						AAACAAGATG	
	AATAGCAGAG	GCCAATTCAA	TAGAATCAGT	TTTTTGATAG	CTTTTTAACA	GTTATGCTTG	2700
						ATGTTACAGC	
70						ACACAGAAAT TCATTTGAAA	
, 0						TGTAAACATA	
	GCCCATAATG	GCAAAAACAA	CTAATTTTAA	TTGAAGGTCT	TGCTTGCCAN	TCCTGTGTTG	3000
						TTTGGAAAGG	
75						TTCCTCCACT TGGTGCATGT	
, ,						AGACACCCCT	
•	GTAATGGATT	GGTGGCAACT	GGGTGGCACT	GCTGATGTGC	ACTGTGTAGG	GGGGAACCCA	3300
						GCTACCAAAA	
80						AAATTGAAAA CCATTCAAAA	
-						GGTTTNCTTA	
	GTGCCTCCCA	NAACATTTTG	TAGTTAATTG	GGAAAAAGTG	ATACTTGGAT	TAGGGGGTGT	3600
						CCAATGACTC	
85						GTTGAGGAAG CTTGGGCCTC	
						AATACCAAAT	
						TAGTACATCT	

WO 02/086443

	WO 02/						
			GTATAAGGAA				3960
			GTCCAAAATT				4020
			TTCAAGGCAA				4080
_	CCACCCCTGT	CATTCACTTC	CAATTTTACC	CAATCCAATT	TTAGCACTCA	AGTTCCATTG	4140
5	TGTTAATTTT	TGCACGGTCT	ACACACATCA	AGTCAGCAAG	CATTTGCCAC	CACTCCCTAT	4200
	ACTTCTCCCT	CTTTTTTACA	CACACACACA	CACACACACA	CACAATCCAT	CTCTTGCTTG	4260
			CTTCCCTACA				4320
			CTGAACAACT				4380
			TCTCTTCACT				4440
10			TTAGTATTAG				4500
10			TCATCTACTC				4560
							•
			TAAAGTAATT				4620
			TCTCCTGGCT				4680
1.5			CTGAGAGTTA				4740
15	ACATGCTGCT	GCCCTGATCT	CAGTGGGAAA	TNCACCCAGC	AACCTAATAC	AGCCCCTTTT	4800
	CCCTGCATTC	ACCTGGTTCC	CATCCACATG	GGTTGCAGAT	GTCCTTGAAG	AGAGTGAGGC	4860
	ATTGAGGGCC	AATAGGAGCA	ATGGGGTCCC	TGGCCTTGTC	CATCTGATTC	AGGAGATCAC	4920
	TGCTCCATCG	TGAGGAGCCC	TCTGAATAGC	CCCCCACTGA	ATGCTTGCCT	TGCCCAAATG	4980
	GAATGGAGGA	AGATTGATTT	TCTCCATCAG	TTCACCTTGT	GTCATCTCAT	AATGGTTGGT	5040
20			GTTTCTTGTT				5100
20			TTTCTGAGAT				5160
			TTTNTTTTAG				5220
			GCCCTCATCC				5280
25			AGCAAGGGGC				5340
23			TGCACCAAAA				5400
			TCCTGTGGCC				5460
	CAAACACATG	GTTTTCCTTG	CTGCAAGGCT	NTTCCTGGGA	ACTAAGGGGG	TATTTATTAG	5520
			TTCTGGGCTT				5580
	CCTCCTTCTC	CTCCACAGTC	ACAAGTAACC	AAGGAACCTG	AAAGTGGATG	TGTAGCTATT	5640
30			GAGATTCTTC				5700
			ACAAAATTTT				5760
			CCTGCACATT				5820
			NAACAGGATG				5880
			ATCACCCCAC				5940
35							
33			AGTGGTTTGA				6000
			TTTTTTAAAA				6060
			CCAGGCCTTA				6120
			CTCCCAAGTG				6180
40	TGAGGCATGA	GAATGTTGCC	CCATCTATCC	CTTCAGGAAA	AGGTGCCTTC	CCTCCCTTTC	6240
40	TCCTAAAGCC	TGGTCCCCAA	AAATTGTTTT	TGTCTCCAAA	AGTCTAGTAT	GGTCTTTATA	6300
	CACCCANACT	CTTAGTGTTG	CGTCCTGCCT	TGTTTCCTTG	TTAAGGATCT	ATGCANACCT	6360
	CCCGCTTTGG	CTTAGCTAGC	GTGACATTGG	CTATCATTTG	ACAAGACTAA	CTTTTTTTT	6420
	TTTTTTTTTG	ACTGAGTCTC	CCTCTGTCAC	CTAGGCTGGA	GTGCAGTGGC	ACAATCTTGG	6480
			TCACCTCCCA				6540
45			CGTGCGCCAC				6600
70			CACCATGTTG				6660
							6720
			TCCCAAAGTG				
			ATCCCTTGGT				6780
50			GATGCCTGAG				6840
50			TGATCAGAAG				6900
			GTAAGGCAAA				6960
	TTAGGTCAAT	AACCTTGAGG	GAATCAATGG	CTTTTTTGCC	GCTCTACCTC	TTTGTGTATC	7020
	TCTTTGACTT	TTCTTTCTCT	GTCTAGTTTC	CTCTGTTCTC	AGTTTATATT	CTATGTTATC	7080
	AGTCTCTCTT	TCCACAGTAC	AAACATCCAT	CCTTTCTCCT	GTGCAATTCT	GTCTCTCCCT	7140
55			TTTTTCCTTC				7200
			CTTGGGACTG				7260
			TCAGAAGTAT				7320
	THE CHARGE CALLS	TOCATTOTO	TTCCTAATCC	CCCTCAGCAG	ATCTTTACAA		7380
						CTTTGTGGTT	7440
60							7500
00							
						TTTGTTTGAT	
	GTGCCCATAA	ITITTAAAGC	IGCAATATAA	TATAATGAGG	GACCACAGGT	AATTTCTCCT	7020
•						ACCATTACAC	
						TTTTAACTAA	
65	ACTGGTAGGC	AATCGGAGTT	GATTTAAATG	AAAAGATAAT	TTAACAAATC	TATACTATAA	7800
	AAAGAGACAT	TTGCTTAATT	GACATGTATT	TTTTCCTTCT	GAGTCACCTA	AACATTTACT	7860
	CTTGACACCA	ACTGTTCATG	ATACTGAATA	GACAGTCCAT	ATAAGAGAAA	TTAGTGGACC	7920
	TAAAGAAGCC	AGATTGTAGG	TGTTAATTTA	TTAAACAGAA	TTGCAAAGCC	CTTGGAAATG	7980
						TTTATAAGTT	
70	ATCCAAAAGG	GATTTGAACA	AGTAAGAGGT	TATGCCAAAA	TGTCTCCAAT	GTATGGTCCT	8100
, ,	CTAATATATT	CONCOMMON	CCCNATCATC	CCTTATCACT	TCTATACAAC	TAATGCATGT	8160
	GIVUIUIVII	OCAGCI IGAA	GCCARIGATC	CCITATOACI		GATCACCTTT	8220
	TITATIGAAT	AAACOOCCATTTC	CONCOLUCIO	TANGICITIA	CONTRACTOR IN	GAGAAAGTTT	0220
75	AAAATGGAAA	CAGCCCACCC	TTTCTGCCCT	ATAGCTGTAG	TAGAATTGA	GTACCTGTAG	8340
75	CAAAACAGCT	GTAATTGGTG	GTTGTAGTGT	TAGAGGTGTT	AGCTTGCTAG	TGACTAGCTT	8400
	TGGAGAGTAA	ATGCATGGTA	TTGTACATCA	CATTTCTTAA	CTCGTTTTAA	CCTCTGAAAA	8460
						CTCCCTGCTC	
	CCAGTTGTCT	TACAGTTGTA	AATATCTGAT	TTGAGGCCCA	ATAACTCTTG	CCAAGTAAAG	8580
	TCAGCAAACA	ACAAACAAAC	CAAAATGTGG	GGAAAAGGCA	TTTCTCAACC	ATCTCTCAGC	8640
80	AGTTATTGAT	CATTTCTTAA	GGAACAGCAT	TGTGATCAAA	GACTCAACTT	TACGTAAAAA	8700
	TCAGTGGTAA	ATTGGGGTTY	TATTGGCCAT	TGATTACATT	CAGGATTGAA	TAGTTTTCAG	8760
						GCTGTTTTAA	
						AAAAAAAAA	
	BARRAGACC	CAGAAGACT	CIGCIIGACC	GWIGWCCWAI	CYCCMYMMM.	CARTACHMEN	9040
85	MAMAATGAGA	GAAATAAAAC	AGATATTTAA	GAACTTTAGC	CACCIATITA	GAATAGTTAT	0940
0)	AGCCAGAAAA	AAAAACAAGG	GCATGAGTTC	AAATGCATTA	CTATCAGTGT	CCTAGGCAAT	9000
	ACCTAACCTA	CTCTGAAATT	GTGATTCAAA	AGCAGTATTT	CAAGAGGCAT	TCTCCTTTTT	9060
	TGGTTTGCTG	ACCCCACTTG	GACTGGTAGG	TTTGGTGAGG	CCCCCATAAA	CCAGCTGGAG	9120

5	CAGACCCTTT AATGAGGGCT TAAGGTGCTG AGCTGCTCTT	TTCTTGGGTC TGAACTGTGA GCAATTATTT	GTGCTGAAGA	AAGGTTGTCT TTCGCAGCAT GCTCTGTTCT	AGAGAAGTTT TCAATACCAG TCATCGCATT	GCCATGTGTG GCAGCCAAAG CTCATTTCTG	9180 9240 9300 9360
10		214 Protein cession #: 1					
	1	11	21	31	41	51	
15	GDRYFKGIVY EGESYVCSSD LVTIIRSGVK DFFGDDDVFI	AVSSDRFRSF NFFKKVEYTK PRKAVRVLLN ACGPEKFRYA	SRMNGLPSPT DALLADLTRS NVNPNWSVNV KKTAHSFEQV QDDFSLDENE	LSDNINLPQG KTSANMKAPQ LTDITEAIKL CRVMKGNPSA	VRYIYTIDGS SLASSNSAQA ETGVVKKLYT TAGPKASPTP	RKIGSMDELE RENKDFVRPK LDGKQVTCLH QKTSAKSPGP	60 120 180 240 300
20	MRRSKSPADS	ANGTSSSQLS	TPKSKQSPIS	TPTSPGSLRK	HKDLYLPLSL	DDSDSLGDSM	
25	Nucleic Act	215 DNA sec id Accession lence: 312.	1 #: NM_1304	167			
	1	11	21	31	41	51	
30	CTTTCCAACA GTCTTCCTGG TCCTGTGGCA CCCAGGTCGT AAGTGAGAGA	TCTTCGTTCT TAATTTAGTT CAGTCCGTGG GATGCAGGCG TATGAGTGAG	AAGGAGAGGT TTCTCACTGA GTGAGTGAAT CTTTGAGGGA CCATGGGCCG CATGTAACAA	CCGAGACTCA GTGTGGAGGA AAAGGGCCTC GTAATCGTGG GATCCCAATC	GCCGGTAGGT GCCAGCGGGC GCGGTGGTCC CTGGGCTGGA CTCAGAAAGA	CTGCAGAGTG TTAGGACAGG TCCGCCTTCC ACGAGGGAGG GGAAATGACC	60 120 180 240 300 360
35			GGACCTGTGA GATAATCAGG				420 480
40	AAGGAGCACC TTAAGATAGA TTGATCCCAC ATGAAGACTG	TGCTGTTCAA GGATGCACCT TAAAGTGCTG AAACCAAGAA	GGGACTGATG GGAGATGGTC GAAGCAGGTG TATTGTTCTT CTGCAAAAAA	TGGAAGCTTT CTGATGTCAG AAGGGCAACT ATGCTGGAAA	TCAACAGGAA GGAGGGGACT ATAGGTTTAA TTTGACTGCT	CTGGCTCTGC CTGCCCACTT ACCAAGACAA	540 600 660 720
45		216 Proteir cession #: N					
	1	11	21	31	41	51	
50			QPVGPVIVQQ DAPGDGPDVR			SGEIKNEGAP	60
55	Nucleic Aci	217 DNA sec d Accession lence: 824	#: NM_0014	76.1		٠	
J J	1	11	21	31	41	51	
60	TGAGATTCAT CCAAGGCGCT GATGAAGTGG GCAGCTGCTC GCTGATAGCC	CTGTGTGAAA ATGTACAGCC AACCAGCAAC AGGAGGGAGA AGGAACAGGG	TGCTGTGTGG TATGAGTTGG TCCTGAAGTG ACCTGAAGGA GGATGAGGGA TCACCCACAG AAATCCAGAG	CGAGGAAGAT ATTGGGCCTA GGGGAACCAG GCATCTGCAG ACTGGGTGTG	CGACCTATTA TGCGGCCCGA CAACTCAACG GTCAAGGGCC AGTGTGAAGA	TTGGCCTAGA GCAGTTCAGT TCAGGATCCT GAAGCCTGAA TGGTCCTGAT	60 120 180 240 300 360 420
65	CAATÇACAGT	GTTAAAAGAA	GACACGTTGA AATAAAGCTT	AATGATGCAG	GCTGCTCCTA		480
70	_	218 Proteir cession #: N	-	31	41	51	
75	MSWRGRSTYY	 WPRPRRYVQP	PEVIGPMRPE HPQTGCECED	 QFSDEVEPAT	 PEEGEPATQR	QDPAAAQEGE	60
75	Nucleic Aci	219 DNA sec d Accession dence: 90-36	#: NM_0014	176			
80	1	11	21	31	41	51	
85	AGACAGAGAC GCTTCTCGCT ATGGGAAGTC TCCGCTGCCT	TGAGCGGCCC CCTCCTGCCC CAGGCAGTGT CAACTGCAAT	AACCACCAAC GGCACCGCCA GCAGCCCGGG ATCTTTGATC GACAACACTG AGGGACCGCT	TGCCTGCGCT CCACCTCCAG GGGAACTTCA ATGGCATTCA	CTGGCTGGGC GAGGGAAGTC CAGACAAACT CTGCGAGAAG	TGCTGCCTCT TGTGATTGCA GGTAATGGAT TGCAAGAATG	60 120 180 240 300 360

		7000775			m	CHANGE CHECKE	420
	CTCTTAGTGC	TCGATGTGAC	AACTCTGGAC CCAGGCTTCC	GGTGCAGCTG	TAAACCAGGI	TCCACCCAAG	480
	CCAGATGCGA	CCGATGTCTG	AAGTGTGACT	ACATGCTCAC	DCCC2 DCCC2	CCCCCCTGTG	540
	ACCAGAGACT	GCTAGACTCC	AAGCCAGCTG	TENCECCAGE	VCCCALCOCA	ACCTCTCGAT	600
5	ACGCGGGCCG	CIGIGICIGC	GGGGGGAACC	TTACTGGAGA	TACCCIGIGAL	THE CHECKEN TO	660
5	CAGGITACTA	TAATCIGGAI	AGCTCTGCAG	NATA CACTOT	CCATAAGATC	ACCTCTACCT	720
	GGCATTCAGC	CAGCIGCCGC	TGGAAGGCTG	TOCARCEARA	ACCULATONICAL.	GCAAAGCTCC	780
	TTCATCAAGA	TGTTGATGGC	GATGTGTTTA	CCTCACCCCA	ACCACTAGAC	CCTGTCTATT	840
	MATGGTCACA	CCCCA A ATTT	CTTGGGAATC	AACAGGTGAG	CTATGGGGGAA	AGCCTGTCCT	900
10	TTCACTACCC	TOTOGRAPA	GGAGGCAGAC	ACCCATCTGC	CCATGATGTG	ATTCTGGAAG	960
10	GTGCTGCTCT	ACCCATCACA	GCTCCCTTGA	TGCCACTTGG	CAAGACACTG	CCTTGTGGGC	1020
	TCACCAAGAC	TTACACATTC	AGGTTAAATG	AGCATCCAAG	CAATAATTGG	AGCCCCCAGC	1080
	TGAGTTACTT	TGAGTATCGA	AGGTTACTGC	GGAATCTCAC	AGCCCTCCGC	ATCCGAGCTA	1140
	CATATGGAGA	ATACAGTACT	GGGTACATTG	ACAATGTGAC	CCTGATTTCA	GCCCGCCCTG	1200
15	TCTCTGGAGC	CCCAGCACCC	TGGGTTGAAC	AGTGTATATG	TCCTGTTGGG	TACAAGGGGC	1260
	AATTCTGCCA	GGATTGTGCT	TCTGGCTACA	AGAGAGATTC	AGCGAGACTG	GGGCCTTTTG	1320
	GCACCTGTAT	TCCTTGTAAC	TGTCAAGGGG	GAGGGGCCTG	TGATCCAGAC	ACAGGAGATT	1380
	GTTATTCAGG	GGATGAGAAT	CCTGACATTG	AGTGTGCTGA	CTGCCCAATT	GGTTTCTACA	1440
	ACCATCCCCA	CGACCCCCGC	AGCTGCAAGC	CATGTCCCTG	TCATAACGGG	TTCAGCTGCT	1500
20	CAGTGATGCC	GGAGACGGAG	GAGGTGGTGT	GCAATAACTG	CCCTCCCGGG	GTCACCGGTG	1560
	CCCGCTGTGA	GCTCTGTGCT	CATGGCTACT	TTGGGGACCC	CTTTGGTGAA	CATGGCCCAG	1620
	TGAGGCCTTG	TCAGCCCTGT	CAATGCAACA	ACAATGTGGA	CCCCAGTGCC	TCTGGGAATT	1680
	GTGACCGGCT	GACAGGCAGG	TGTTTGAAGT	GTATCCACAA	CACAGCCGGC	ATCTACTGCG	1740
25	ACCAGTGCAA	AGCAGGCTAC	TTCGGGGACC	CATTGGCTCC	CAACCCAGCA	GACAAGTGTC	1800
25	GAGCTTGCAA	CTGTAACCCC	ATGGGCTCAG	AGCCTGTAGG	ATGTCGAAGT	GATGGCACCT	1860 1920
	GTGTTTGCAA	GCCAGGATTT	GGTGGCCCCA	ACTGTGAGCA	TGGAGCATTC	AGCTGTCCAG	1980
	CTTGCTATAA	TCAAGTGAAG	ATTCAGATGG	ATCAGTTTAT	GCAGCAGCTT	CAGAGAAIGG	2040
	AGGCCCTGAT	TTCAAAGGCT	CAGGGTGGTG CAGGCCCTTC	ATGGAGTAGT	CACACATACA	CAGCIGGAAG	2100
30	GCAGGATGCA	GCAGGCTGAG	GGTCTCCAGT	MCCCCA ACCT	CACCACCCAA	CAGAIIICAG	2160
30	AAGGTGCTAG	CAGATCCCTT	CTCAAGATGA	CTCTCCAAGGI	ACTTCCCCCT	CTCCCAACTC	2220
	ACCAGAGCCG	CCIGGATGAC	GATACTCACA	CCTCATCAC	TCAGATGCAG	CTGAGCCTGG	2280
	CACAAACTCA	ACCTTCCTTG	GGAAACACTA	ACATTCCTGC	CTCAGACCAC	TACGTGGGGC	2340
	CAGAMAGIGA	TABABACTOTG	GCTCAGGAGG	CCACAAGATT	AGCAGAAAGC	CACGTTGAGT	2400
35	CAGCCAGTAA	CATGGAGCAA	CTGACAAGGG	AAACTGAGGA	CTATTCCAAA	CAAGCCCTCT	2460
55	CACTGGTGCG	CAAGGCCCTG	CATGAAGGAG	TCGGAAGCGG	AAGCGGTAGC	CCGGACGGTG	2520
	CTGTGGTGCA	AGGGCTTGTG	GAAAAATTGG	AGAAAACCAA	GTCCCTGGCC	CAGCAGTTGA	2580
	CAAGGGAGGC	CACTCAAGCG	GAAATTGAAG	CAGATAGGTC	TTATCAGCAC	AGTCTCCGCC	2640
	TCCTGGATTC	AGTGTCTCGG	CTTCAGGGAG	TCAGTGATCA	GTCCTTTCAG	GTGGAAGAAG	2700
40	CAAAGAGGAT	CAAACAAAAA	GCGGATTCAC	TCTCAACGCT	GGTAACCAGG	CATATGGATG	2760
	AGTTCAAGCG	TACACAAAAG	AATCTGGGAA	ACTGGAAAGA	AGAAGCACAG	CAGCTCTTAC	2820
	AGAATGGAAA	AAGTGGGAGA	GAGAAATCAG	ATCAGCTGCT	TTCCCGTGCC	AATCTTGCTA	2880
	AAAGCAGAGC	ACAAGAAGCA	CTGAGTATGG	GCAATGCCAC	TTTTTATGAA	GTTGAGAGCA	2940
45	TCCTTAAAAA	CCTCAGAGAG	TTTGACCTGC	AGGTGGACAA	CAGAAAAGCA	GAAGCTGAAG	3000
45	AAGCCATGAA	GAGACTCTCC	TACATCAGCC	AGAAGGTTTC	AGATGCCAGT	GACAAGACCC	3060
	AGCAAGCAGA	AAGAGCCCTG	GGGAGCGCTG	CTGCTGATGC	ACAGAGGGCA	AAGAATGGGG	3120 3180
	CCGGGGAGGC	CCTGGAAATC	TCCAGTGAGA	TTGAACAGGA	GATTGGGAGT	TOTOTONAGA	3240
	AAGCCAATGT	GACAGCAGAT	GGAGCCTTGG GGAGAGCTGG	CCATGGAAAA	CONCORON	CACACCAAGA	3300
50	GTGAGATGAG	GGAAGTGGAA	ATTACAGAAG	AAAGGAAGGA	TCATACCACA	GCCAAGAACG	3360
50	TGGATGCAGT	ACAGATGGTG	ACACTCAACA	CCCAGAAGGI	CCTCCTCCAGA	CTGATGGACC	3420
	CTGGGGTTAC	MATCCAAGAC	GAGGGGCTGG	TOTTACTOR	GCAGAAGCTT	TCCCGAGCCA	3480
	AGCCTCTCAG	CARCACCCAA	CTGCGGCCCA	TCATCTCAGA	GCTGGAAGAG	AGGGCACGTC	3540
	AGACCCAGAI	CCACCTCCAT	TTGCTGGAGA	CAAGCATAGA	TGGGATTCTG	GCTGATGTGA	3600
55	AGLAGAGGGG	CARCATTAGG	GACAACCTGC	CCCCAGGCTG	CTACAATACC	CAGGCTCTTG	3660
55	AGAACTIGGA	AAGCTGCCAT	AAATATTTCT	CAACTGAGGT	TCTTGGGATA	CAGATCTCAG	3720
	GGCTCGGGAG	CCATGTCATG	TGAGTGGGTG	GGATGGGGAC	ATTTGAACAT	GTTTAATGGG	3780
	TATGCTCAGG	TCAACTGACC	TGACCCCATT	CCTGATCCCA	TGGCCAGGTG	GTTGTCTTAT	3840
	TRCACCATAC	TCCTTGCTTC	CTGATGCTGG	GCAATGAGGC	AGATAGCACT	GGGTGTGAGA	3900
60	ATGATCAAGG	ATCTGGACCC	CAAAGAATAG	ACTGGATGGA	AAGACAAACT	GCACAGGCAG	3960
	ATGTTTGCCT	CATAATAGTC	GTAAGTGGAG	TCCTGGAATT	TGGACAAGTG	CTGTTGGGAT	4020
	ATAGTCAACT	TATTCTTTGA	GTAATGTGAC	TAAAGGAAAA	AACTTTGACT	TTGCCCAGGC	4080
	ስጥር እ አ ስጥ ር ጥ	TOTALTETO	AGAACAGAGT	GCAACCCAGT	CACACTGTGG	CCAGTAAAAT	4140
	ACTATTGCCT	CATATTGTCC	TCTGCAAGCT	TCTTGCTGAT	CAGAGTTCCT	CCTACTTACA	4200
65	ACCCAGGGTG	TGAACATGTT	CTCCATTTTC	AAGCTGGAAG	AAGTGAGCAG	TGTTGGAGTG	4260
	AGGACCTGTA	AGGCAGGCCC	ATTCAGAGCT	ATGGTGCTTG	CTGGTGCCTG	CCACCTTCAA	4320
	GTTCTGGACC	TGGGCATGAC	ATCCTTTCTT	TTAATGATGC	CATGGCAACT	TAGAGATTGC	4380 4440
	ATTTTTATTA	AAGCATTTCC	TACCAGCAAA	GCAAATGTTG	GGAAAGTATT	TACTTTTTCG	4500
70	GTTTCAAAGT	GATAGAAAAG	TGTGGCTTGG	GCATTGAAAG	AGGTAAAATT	CTCTAGATTT	4560
70	ATTAGICCIA	ATTCAATCCT	ACTITICGAA	CACCAAAAAT	DATECCE	AATGTATTTT TGTTCCTACT	4620
	ATCTTATTTT	CTCAATCTCC	TCTCTCTTTC	CAUTCAUCCAI	TCCATCCATC	TTTCCATCCA	4680
	CACACITCAG	CIGGGI CACA	A CATACCTC	TATTCATCE	CTACTCTCTC	CCAGGGGCTG	4740
	TTACCTCCAT	CCATCCTTCC	MACAIAIAII	CATACACTAC	ATTGTGTGTG	GAGGAAGACA	4800
75	OTGGGVCAGI.	DAIADADADA	TTADACTTAC	AAACTTTGTT	TGTCACAAGT	GGTGTTTATT	4860
15	CCDATTACCC	WANTHITAN	A A COTOTOTO	CTCAACAGAA	CATATGTTGC	AAGACCCTCC	4920
	CVALCUCGGGGG	CIIGGIIIGC	GGCAAGGCTG	ACAGAGCTCT	GGGTTGTGCA	CATTTCTTTG	4980
	CATTCCAGCT	GTCACTCTGT	GCCTTTCTAC	AACTGATTGC	AACAGACTGT	TGAGTTATGA	5040
	TAACACCAGT	GGGAATTGCT	GGAGGAACCA	GAGGCACTTC	CACCTTGGCT	GGGAAGACTA	5100
80	TGGTGCTGCC	TTGCTTCTGT	ATTTCCTTGG	ATTTTCCTGA	AAGTGTTTTT	AAATAAAGAA	5160
	CAATTGTTAG						
	Seq ID NO:	220 Protei	n sequence:				
0.5		cession #:N					
85							
	1	11	21	31	41	51	
	1			I	í	1	

```
MPALWLGCCL CFSLLLPAAR ATSRREVCDC NGKSRQCIFD RELHRQTGNG FRCLNCNDNT
        DGIHCEKCKN GFYRHRERDR CLPCNCNSKG SLSARCDNSG RCSCKPGVTG ARCDRCLPGF
       HMLTDAGCTQ DQRLLDSKCD CDPAGIAGPC DAGRCVCKPA VTGERCDRCR SGYYNLDGGN
        PEGCTQCPCY GHSASCRSSA EYSVHKITST FHQDVDGWKA VQRNGSPAKL QWSQRHQDVP
 5
        SSAQRLDPVY FVAPAKFLGN QQVSYGQSLS FDYRVDRGGR HPSAHDVILE GAGLRITAPL
        MPLGKTLPCG LTKTYTFRLN EHPSNNWSPQ LSYFEYRRLL RNLTALRIRA TYGEYSTGYI
                                                                                 360
       DNVTLISARP VSGAPAPWVE QCICPVGYKG QFCQDCASGY KRDSARLGPF GTCIPCNCQG
       GGACDPDTGD CYSGDENPDI ECADCPIGFY NDPHDPRSCK PCPCHNGFSC SVMPETEEVV
CNNCPPGVTG ARCELCADGY FGDPFGEHGP VRPCQPCQCN NNVDPSASGN CDRLTGRCLK
                                                                                 480
                                                                                 540
10
       CIHNTAGIYC DQCKAGYFGD PLAPNPADKC RACNCNPMGS EPVGCRSDGT CVCKPGFGGP
                                                                                 600
        NCEHGAFSCP ACYNOVKIOM DOFMOOLORM EALISKAOGG DGVVPDTELE GRMQQAEQAL
                                                                                 660
        QDILRDAQIS EGASRSLGLQ LAKVRSQENS YQSRLDDLXM TVERVRALGS QYQNRVRDTH
                                                                                 720
        RLITOMOLSL AESEASLENT NIPASDHYVG PNGFKSLAQE ATRLAESHVE SASNMEQLTR
                                                                                 780
        ETEDYSKQAL SLVRKALHEG VGSGSGSPDG AVVQGLVEKL EKTKSLAQQL TREATQAEIE
                                                                                 840
15
        ADRSYOHSLR LLDSVSRLOG VSDQSFQVEE AKRIKQKADS LSTLVTRHMD EFKRTQKNLG
                                                                                 900
                                                                                 960
        NWKEEAQQLL QNGKSGREKS DQLLSRANLA KSRAQEALSM GNATFYEVES ILKNLREFDL
        QVDNRKAEAE EAMKRLSYIS QKVSDASDKT QQAERALGSA AADAQRAKNG AGEALEISSE
                                                                               1020
        IEQEIGSLNL BANVTADGAL AMEKGLASLK SEMREVEGEL ERKELEFDTN MDAVQMVITE
                                                                               1080
        AQKVDTRAKN AGVTIQDTLN TLDGLLHLMD QPLSVDEEGL VLLEQKLSRA KTQINSQLRP 1140
20
        MMSELEERAR QQRGHLHLLE TSIDGILADV KNLENIRDNL PPGCYNTQAL EQQ
        Seq ID NO: 221 DNA sequence
       Nucleic Acid Accession #: NM_016529
        Coding sequence: 13-1854
25
                                                                  51
                                           31
       GTCAAGAAAA GAATGTCTGT AATTGTTCGA ACTCCTTCAG GACGACTTCG GCTTTACTGT
       AAAGGGGCTG ATAATGTGAT TTTTGAGAGA CTTTCAAAAG ACTCAAAATA TATGGAGGAA
30
       ACATTATGCC ATCTGGAATA CTTTGCCACG GAAGGCTTGC GGACTCTCTG TGTGGCTTAT
       GCTGATCTCT CTGAGAATGA GTATGAGGAG TGGCTGAAAG TCTATCAGGA AGCCAGCACC
       ATATTGAAGG ACAGAGCTCA ACGGTTGGAA GAGTGTTACG AGATCATTGA GAAGAATTTG
        CTGCTACTTG GAGCCACAGC CATAGAAGAT CGCCTTCAAG CAGGAGTTCC AGAAACCATC
       GCAACACTGT TGAAGGCAGA AATTAAAATA TGGGTGTTGA CAGGAGACAA ACAAGAAACT
                                                                                 420
35
       GCGATTAATA TAGGGTATTC CTGCCGATTG GTATCGCAGA ATATGGCCCT TATCCTATTG
                                                                                 480
       AAGGAGGACT CTTTGGATGC CACAAGGGCA GCCATTACTC AGCACTGCAC TGACCTTGGG
                                                                                 540
       AATTTGCTGG GCAAGGAAAA TGACGTGGCC CTCATCATCG ATGGCCACAC CCTGAAGTAC
                                                                                 600
       GCGCTCTCCT TCGAAGTCCG GAGGAGTTTC CTGGATTTGG CACTCTCGTG CAAAGCGGTC
                                                                                 660
       ATATGCTGCA GAGTGTCTCC TCTGCAGAAG TCTGAGATAG TGGATGTGGT GAAGAAGCGG
                                                                                 720
40
        GTGAAGGCCA TCACCCTCGC CATCGGAGAC GGCGCCAACG ATGTCGGGAT GATCCAGACA
                                                                                 780
        GCCCACGTGG GTGTGGGAAT CAGTGGGAAT GAAGGCATGC AGGCCACCAA CAACTCGGAT
                                                                                 840
        TACGCCATCG CACAGTTTTC CTACTTAGAG AAGCTTCTGT TGGTTCATGG AGCCTGGAGC
                                                                                 900
       TACAACCGGG TGACCAAGTG CATCTTGTAC TGCTTCTATA AGAACGTGGT CCTGTATATT
                                                                                 960
       ATTGAGCTTT GGTTCGCCTT TGTTAATGGA TTTTCTGGGC AGATTTTATT TGAACGTTGG
                                                                               1020
45
       TGCATCGGCC TGTACAATGT GATTTTCACC GCTTTGCCGC CCTTCACTCT GGGAATCTTT
                                                                               1080
       GAGAGGTCTT GCACTCAGGA GAGCATGCTC AGGTTTCCCC AGCTCTACAA AATCACCCAG
AATGGCGAAG GCTTCAACAC AAAGGTTTTC TGGGGTCACT GCATCAACGC CTTGGTCCAC
                                                                               1140
                                                                               1200
        TCCCTCATCC TCTTCTGGTT TCCCATGAAA GCTCTGGAGC ATGATACTGT GTTTGACAGT
                                                                               1260
       GGTCATGCTA CCGACTATTT ATTTGTTGGA AATATTGTTT ACACATATGT TGTTGTTACT
                                                                               1320
       GTTTGTCTGA AAGCTGGTTT GGAGACCACA GCTTGGACTA AATTCAGTCA TCTGGCTGTC
TGGGGAAGCA TGCTGACCTG GCTGGTGTTT TTTGGCATCT ACTCGACCAT CTGGCCCACC
50
                                                                               1380
                                                                               1440
       ATTCCCATTG CTCCAGATAT GAGAGGACAG GCAACTATGG TCCTGAGCTC CGCACACTTC TGGTTGGGAT TATTTCTGGT TCCTACTGCC TGTTTGATTG AAGATGTGGC ATGGAGAGCA
                                                                               1500
                                                                                1560
       GCCAAGCACA CCTGCAAAAA GACATTGCTG GAGGAGGTGC AGGAGCTGGA AACCAAGTCT
                                                                               1620
55
       CGAGTCCTGG GAAAAGCGGT GCTGCGGGAT AGCAATGGAA AGAGGCTGAA CGAGCGCGAC
                                                                               1680
        CGCCTGATCA AGAGGCTGGG CCGGAAGACG CCCCCGACGC TGTTCCGGGG CAGCTCCCTG
                                                                               1740
                                                                               1800
       CAGCAGGGCG TCCCGCATGG GTATGCTTTT TCTCAAGAAG AACACGGAGC TGTTAGTCAG
        GAAGAAGTCA TCCGTGCTTA TGACACCACC AAAAAGAAAT CCAGGAAGAA ATAAGACATG 1860
        AATTITCCTG ACTGATCTTA GGAAAGAGAT TCAGTTTGTT GCACCCAGTG TTAACACATC 1920
60
        TTTGTCAGAG AAGACTGGCG TCCAAGGCCA AAACACCAGG AAACACATTT CTGTGGCCTT
                                                                               1980
        AGTTAAGCAG TTTGTTAGTT ACATATTCCC TCGCAAACCT GGAGTGCAGA CCACAGGGGA
                                                                               2040
        AGCTATCTTT GCCCTCCCAA CTCGTCTGCA GTGCTTAGCC TAACTTTTGT TTATGTCGTT
                                                                               2100
        ATGAAGCATT CAACTGTGCT CTGTGAGGTC TCAAATTAAA AACATTATGT TTCACCAATA 2160
       AGAAAAAAA AAAAAAA
65
        Seq ID NO: 222 Protein sequence:
       Protein Accession #: NP_057613
                                           31
70
       MSVIVRTPSG RLRLYCKGAD NVIFERLSKD SKYMEETLCH LEYFATEGLR TLCVAYADLS
       ENEYEEWLKV YQEASTILKD RAQRLEECYE IIEKNLLLLG ATAIEDRLQA GVPETIATLL
       KAEIKIWVLT GDKQETAINI GYSCRLVSQN MALILLKEDS LDATRAAITQ HCTDLGNLLG
KENDVALIID GHTLKYALSF EVRRSFLDLA LSCKAVICCR VSPLQKSEIV DVVKKRVKAI
                                                                                 180
                                                                                 240
75
        TLAIGDGAND VGMIQTAHVG VGISGNEGMQ ATNNSDYAIA QFSYLEKLLL VHGAWSYNRV
                                                                                 300
        TKCILYCFYK NVVLY11ELW FAFVNGFSGQ ILFERWCIGL YNVIPTALPP FTLGIFERSC
                                                                                 360
        TQESMLRFPQ LYKITQNGEG FNTKVFWGHC INALVHSLIL FWFPMKALEH DTVFDSGHAT
                                                                                 420
        DYLFVGNIVY TYVVVTVCLK AGLETTAWIK FSHLAVWGSM LTWLVFFGIY STIWPTIPIA
                                                                                 480 -
        PDMRGQATMV LSSAHFWLGL FLVPTACLIE DVAWRAAKHT CKKTLLEEVQ ELETKSRVLG
                                                                                 540
80
        KAVLRDSNGK RLNERDRLIK RLGRKTPPTL FRGSSLQQGV PHGYAFSQEE HGAVSQEEVI
                                                                                 600
        RAYDTTKKKS RKK
        Seq ID NO: 223 DNA sequence
        Nucleic Acid Accession #: BC017001
85
        Coding sequence: 1-394
                                                       41
                               21
                                           31
                                                                  51
                   11
```

WO 02/086443

```
AACGCTGGGC AGGGCCGGCG CGGGTCGGGG GGCGCCCGAG GGGCCCGGGC CGAGCGGCGG
                                                                            60
       CGCGCAGGGC GGCAGCATCC ACTCGGGCCG CATCGCCGCG GTGCACAACG TGCCGCTGAG
                                                                            120
       CGTGCTCATC CGGCCGCTGC CGTCCGTGTT GGACCCCGCC AAGGTGCAGA GCCTCGTGGA
                                                                            180
       CACGATCCGG GAGGACCCAG ACAGCGTGCC CCCCATCGAT GTCCTCTGGA TCAAAGGGGC
                                                                            240
       CCAGGGAGGT GACTACTTCT ACTCCTTTGG GGGCTGCCAC CGCTACGCGG CCTACCAGCA
                                                                            300
       ACTGCAGCGA GAGACCATCC CCGCCAAGCT TGTCCAGTCC ACTCTCTCAG ACCTAAGGGT
                                                                            360
       GTACCTGGGA GCATCCACAC CAGACTTGCA GTAGCAGCCT CCTTGGCACC TGCTGCCACC
                                                                            420
       TTCAAGAGCC CAGAAGACAC ACCTGGCCTC CAGCAGGCTG GGCCATGCAG AAGGGATAGC
                                                                            480
10
       AGGGGTGCAT TCTCTTTGCA CCTGGCGAGA GGGTCTGACT CTGGGCACCC CTCTCACCGG
                                                                            540
       CTACAAGGCC TTGGACTCAC TGTACAGTGT GGGAGCCCCA GTTCCCACCT CTGTGACAAT
                                                                            600
       AGGATCATGG CCTTACCCTT GAAGCATTAC CGAGAAGGAG AACAGAGATG GGCTTGAAGA
                                                                            660
       GCCACGTGCT GCCGGCTCCA AATTCCCAAG GACAAGGATC CCTCTGCATT TTTGTCTATG
                                                                            720
       780
       TAAACAAACA GAAGATTGTT TTTCCACATA GCATGGATTC TGGAGATGGG TGGCTAATGG
15
                                                                            840
       TATTGGTTCA ACAACTCCAC GGAGGTAGGG GTCACGTCTT GGATCCTTTT GCCTTAATCT
       CAGTGCTCGT TACTTCATGG TCCCAAGATG GCTGCTGTAT CCCCAAGAAT CATGTCTGCG
                                                                            960
       TTCAAGGAAG GAGGGGTGGA GGAAGAGGAA GGGCCAAACT AGCTGGACCC GTCACCTTCT
       ATCAGAAAGT AAAACCTCGT CAGAAGTCTG TTTCCTGCTC TCTCCCTCTG CATATCTTCA
CTTAGATGCC CTTGGCCCGA GCCAGCTACC ATTGCACCTC TAGCTGCAAA CAAAGCTAAG
                                                                          1080
20
                                                                          1140
       ACAGCAGGGA ACAGAATTGT CATGGCTGAA TAGACCAATC GTGTTCCATC TACTGAGACT
                                                                           1200
       GGCACACTGC CTCCTGCAAT AAAACTGGGA TCCCATTACC AAGAGAGAAA TGCAGAATTG
                                                                          1260
       TGTACCAGTT AGCTTTTGCT GTGTAACAAA CCATCCCCAA ACTTGGCAGC TAGAAACAAA
                                                                          1320
       CCCTGTATTT TCCCACAATC CTATGGGTTG GCAATTTGGG CTGGGCTCAA CAGGGCAGTT
                                                                          1380
       CTGCTGCTCA CACCTGGGAT CCCTCATGGA GCTAAGGTCA GCTGTTACCT CAGCTGGGCC
25
                                                                          1440
       TGGATGGTCT AGGATAGCCT TACTCACTTG CCTGGCAGGT GACAGGCTGT TGGCTGGAAT
                                                                          1500
       TGCTTGGTTC TCCTCCATGT GGCCTCTCCA GCAGGCTAGC TCAGGCTTAT TCACATGATG
                                                                          1560
       GCTTCAGGAT TCCAAAGAGA GTGAGAGTAG AAGCTGAAAG ACTTCTTGAG TTCTTGGCCT
                                                                          1620
       GGAACTGGGA CTAGGACAGT GTCACTTCTG CTAAGTTCTT TTGGTCAGAG CAAATCACAA
                                                                          1680
30
       GGCTTTACCC AGATTCAAGG GATGAGAAAC AGACTACATG TCTTGATGAG GGGAACCACA
                                                                          1740
       AAGAGCTTGT GGCCATTTTT CACCTATCAC AAATAATTTT GGATGGGTAT TTATTTGGAT
                                                                          1800
       AAAGGTATTT CCCTCTTCCC CCTTTCTCTC TGTCTCATGG GGCCTCACTC TGCCAAGTTG
                                                                           1860
       GAAGGCACTA AGACATTGTC CTGGCCCTCA GGGTCTAGGG GAAGAGGTGT TGGGGCAGGA
                                                                          1920
       AGTGAGTCTC TCCATGGGCT GGACCCACTG TAGTAGGAGT GCCTCCTTGT CTGCACTGCT
                                                                          1980
       GGTATGGGGT TAGGCCAGGT AGGACATTCC AGAGGGGCTT CTGAAAACCA AGAGTCCCTG
35
                                                                          2040
       GGGAAAGGGA ACAGAGTAAG GCAGGCCTTG TTCTCACTGC CCTCTAAGGG AACTTGGTCA
                                                                          2100
       CTCGGCACTT TTAAGCCTCA GTTTCTCCAG TTCAATAATA AGGACAAGAG CTTTTCCCAT
                                                                          2160
       GCATTCTCTT TCCCCGGGAA AGTTGACTGA GGTGACCAGT AATAGAATTG AAAAGGGAGA
                                                                          2220
       GTGTCTTCAG TGCAATGTGG CATCCTGGAT TGGGTCTTGG AACAAAAACA GGACATTAGT
                                                                           2280
       GGGAAAATTG GAAATCTGAA AAAAGTCTGA ATTTTAGTTA ATATACCAAT TTCAGTCTCT.
                                                                          2340
40
       TGGTTTTGAC AGATGTACCA TGGTGATGTA AGATGTTGAC CTTGGGGTAG GCTGGGTGAA
                                                                          2400
       GGGTATACAG GAACTCTTTG TACTATCTCT GCAACTTCTC TGTAAATCTA GTATCATTCC 2460
       45
       Seq ID NO: 224 Protein sequence:
       Protein Accession #: AAH17001.1
                                                               51
                                        31
50
       TLGRAGAGRG APEGPGPSGG AQGGSIHSGR IAAVHNVPLS VLIRPLPSVL DPAKVQSLVD
                                                                             60
       TIREDPDSVP PIDVLWIKGA QGGDYFYSFG GCHRYAAYQQ LQRETIPAKL VQSTLSDLRV
       YLGASTPDLO
55
       Seg ID NO: 225 DNA sequence
       Nucleic Acid Accession #: NM_021048
       Coding sequence: 1..1110
60
                                                    41
                                                               51
                             21
                                        31
       ATGCCTCGAG CTCCAAAGCG TCAGCGCTGC ATGCCTGAAG AAGATCTTCA ATCCCAAAGT
       GAGACACAGG GCCTCGAGGG TGCACAGGCT CCCCTGGCTG TGGAGGAGGA TGCTTCATCA
       TCCACTTCCA CCAGCTCCTC TTTTCCATCC TCTTTTCCCT CCTCCTCCTC TTCCTCCTCC
       TCCTCCTGCT ATCCTCTAAT ACCAAGCACC CCAGAGGAGG TTTCTGCTGA TGATGAGACA
CCAAATCCTC CCCAGAGTGC TCAGATAGCC TGCTCCTCC CCTCGGTCGT TGCTTCCCTT
65
                                                                            240
                                                                            300
       CCATTAGATC AATCTGATGA GGGCTCCAGC AGCCAAAAGG AGGAGAGTCC AAGCACCCTA
                                                                            360
       CAGGTCCTGC CAGACAGTGA GTCTTTACCC AGAAGTGAGA TAGATGAAAA GGTGACTGAT
                                                                            420
       TTGGTGCAGT TTCTGCTCTT CAAGTATCAA ATGAAGGAGC CGATCACAAA GGCAGAAATA
                                                                            480
70
       CTGGAGAGTG TCATAAAAAA TTATGAAGAC CACTTCCCTT TGTTGTTTAG TGAAGCCTCC
                                                                            540
       GAGTGCATGC TGCTGGTCTT TGGCATTGAT GTAAAGGAAG TGGATCCCAC TGGCCACTCC
                                                                            600
       TTTGTCCTTG TCACCTCCCT GGGCCTCACC TATGATGGGA TGCTGAGTGA TGTCCAGAGC
                                                                            660
       ATGCCCAAGA CTGGCATTCT CATACTTATC CTAAGCATAA TCTTCATAGA GGGCTACTGC
                                                                            720
       ACCCCTGAGG AGGTCATCTG GGAAGCACTG AATATGATGG GGCTGTATGA TGGGATGGAG
                                                                            780
75
       CACCTCATTT ATGGGGAGCC CAGGAAGCTG CTCACCCAAG ATTGGGTGCA GGAAAACTAC
                                                                            840
       CTGGAGTACC GGCAGGTGCC TGGCAGTGAT CCTGCACGGT ATGAGTTTCT GTGGGGTCCA
                                                                            900
       AGGGCTCATG CTGAAATTAG GAAGATGAGT CTCCTGAAAT TTTTGGCCAA GGTAAATGGG
                                                                            960
       AGTGATCCAA GATCCTTCCC ACTGTGGTAT GAGGAGGCTT TGAAAGATGA GGAAGAGAGA
                                                                           1020
       GCCCAGGACA GAATTGCCAC CACAGATGAT ACTACTGCCA TGGCCAGTGC AAGTTCTAGC
                                                                          1080
80
       GCTACAGGTA GCTTCTCCTA CCCTGAATAA
       Seg ID NO: 226 Protein sequence:
       Protein Accession #: NP_066386
85
                              21
                                         31
       MPRAPKRORC MPEEDLOSOS ETOGLEGAQA PLAVEEDASS STSTSSSFPS SFPSSSSSS
```

5	QVLPDSESLP ECMLLVFGID TPEEVIWEAL	RSEIDEKVTD VKEVDPTGHS NMMGLYDGME		MKEPITKABI YDGMLSDVQS LTQDWVQENY	LESVIKNYED MPKTGILILI LEYRQVPGSD	HPPLLPSEAS	120 180 240 300 360
10	Nucleic Ac	227 DNA sec id Accession Lence: 82-1	. #: NM_005	025.1			
	1	11	21	31 	41 	51 	
	GCGGAGCACA	GTCCGCCGAG	CACAAGCTCC	AGCATCCCGT	CAGGGGTTGC	AGGTGTGTGG	60
15			TATGGCTTTC				120
			TTTCCCTGAG TGGTGAAGAT				180 240
			GGAACTTGGG				300
00	CACTCAATGG	GATATGACAG	CCTAAAAAAT	GGTGAAGAAT	TTTCTTTCTT	GAAGGAGTTT	360
20			AGAGAGCCAA				420
			CAATGAGGAG CTTCAGTCAA				480 540
	TGGGTGGAGA	ATAACACAAA	CAATCTGGTG	AAAGATTTGG	TATCCCCAAG	GGATTTTGAT	600
0.5	GCTGCCACTT	ATCTGGCCCT	CATTAATGCT	GTCTATTTCA	AGGGGAACTG	GAAGTCGCAG	660
25			AACCTTTTCT				720
			AGGAGAATTT AGTCCTAGAA				780 840
	ATGCTGGTGC	TGTCCAGACA	GGAAGTTCCT	CTTGCTACTC	TGGAGCCATT	AGTCAAAGCA	900
20	CAGCTGGTTG	AAGAATGGGC	AAACTCTGTG	AAGAAGCAAA	AAGTAGAAGT	ATACCTGCCC	960
30	AGGTTCACAG	TGGAACAGGA	AATTGATTTA	AAAGATGTTT	TGAAGGCTCT	TGGAATAACT	1020
			AAATTTGACA CTTCCTAGAG				1080 1140
			TAGTAGGATG				1200
25	CATCCATTTT	TCTTTCTTAT	CAGAAACAGG	AGAACTGGTA	CAATTCTATT	CATGGGACGA	1260
35			GAACACAAGT				1320
			ACAGTAACTA ATATCTTAAG				1380 1440
			AACTTGTCAA				1500
40	TGTTATGTCA	TTGTGTTTGT	GTGCTGTTGT	AAATAAA	AGTACCTATT	GAACATGTG	
40	Com ID NO.	228 Protein					
		ession #: N					
	1	11	21	31	41	51	•
45	ī	ī	ī	ī	Ī	Ī	
			FPEEAIADLS				60
			LKNGEEFSFL FSQNVAVANY				120 180
			TESETKODES				240
50	VLEIPYEGDE	ISMMLVLSRQ	BVPLATLEPL	VKAQLVEEWA	NSVKKQKVEV	YLPRFTVEQE	300
			NLTGLSDNKE			AAAVSGMIAI	360
	SRMAVLYPQV	IVDHPFFFLI	RNRRTGTILF	MGRVMHPETM	NTSGHDFEEL		
55		229 DNA sec					
33		.d Accession lence: 12-39	1 #1 NM_0036 18			•	
	1	11	21	31	41	51	
60	CGACATCAGA	GATGAGGACA	GCATTGCTGC	TCCTTGCAGC	CCTGGCTGTG	GCTACAGGGC	60
	CAGCCCTTAC	CCTGCGCTGC	CACGTGTGCA	CCAGCTCCAG	CAACTGCAAG	CATTCTGTGG	120
			TTCTGCAAGA				180
			GCGGAGTCGT ACCCAGTGCT				240 300
65			MCCCMGIGCI				360
	ACAACGCTGC	ACCCACCCGC	ACCGCCCTCG	CCCACAGTGC	CCTCAGCCTG		
	TGAGCCTCCT	GGCCGTCATC	ACCGCCCTCG TTAGCCCCCA	GCCTGTGACC	TTCCCCCCAG	GGAAGGCCCC	420
	TGAGCCTCCT TCATGCCTTT	GGCCGTCATC CCTTCCCTTT	TTAGCCCCCA CTCTGGGGAT	GCCTGTGACC TCCACACCTC	TTCCCCCCAG TCTTCCCCAG	GGAAGGCCCC CCGGCAACGG	480
	TGAGCCTCCT TCATGCCTTT GGGTGCCAGG	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC	TTAGCCCCCA CTCTGGGGAT TGAGGGCTTC	GCCTGTGACC TCCACACCTC CCCGAAAGTC	TTCCCCCAG TCTTCCCCAG TGGGACCAGG	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG	480 540
70	TGAGCCTCCT TCATGCCTTT GGGTGCCAGG CATGGAATGC	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG	TTAGCCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC	TTCCCCCAG TCTTCCCCAG TGGGACCAGG ACAGAGGATG	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC	480 540 600
70	TGAGCCTCCT TCATGCCTTT GGGTGCCAGG CATGGAATGC ACAGAGGATG	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCCAG	TTAGCCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC	TTCCCCCAG TCTTCCCCAG TGGGACCAGG ACAGAGGATG AGAAGCCCTG	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG	480 540
70	TGAGCCTCCT TCATGCCTTT GGGTGCCAGG CATGGAATGC ACAGAGGATG	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCCAG TCCTTCTGTT	TTAGCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC CTGCATGGAA	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC	TTCCCCCAG TCTTCCCCAG TGGGACCAGG ACAGAGGATG AGAAGCCCTG	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG	480 540 600 660
	TGAGCCTCCT TCATGCCTTT GGGTGCCAGG CATGGAATGC ACAGAGGATG GATTTCACAC TAAATGATTT	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCCAG TCCTTCTGTT AAACC	TTAGCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC CTGCATGGAA TTGTTGCCGT	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC	TTCCCCCAG TCTTCCCCAG TGGGACCAGG ACAGAGGATG AGAAGCCCTG	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG	480 540 600 660
70 75	TGAGCCTCCT TCATGCCTTT GGGTGCCAGG CATGGAATGC ACAGAGGATG GATTTCACAC TAAATGATTT Seq ID NO:	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCCAG TCCTTCTGTT	TTAGCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC CTGCATGGAA TTGTTGCCGT	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC	TTCCCCCAG TCTTCCCCAG TGGGACCAGG ACAGAGGATG AGAAGCCCTG	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG	480 540 600 660
	TGAGCCTCCT TCATGCCTTT GGGTGCCAGG CATGGAATGC ACAGAGGATG GATTTCACAC TAAATGATTT Seq ID NO:	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCAG TCCTTCTGTT AAACC 230 Protein	TTAGCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC CTGCATGGAA TTGTTGCCGT	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC	TTCCCCCAG TCTTCCCCAG TGGGACCAGG ACAGAGGATG AGAAGCCCTG	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG	480 540 600 660
	TGAGCCTCT TCATGCCTTT GGGTGCCAGG CATGGATGC ACAGAGGATG GATTTCACAC TAAATGATTT Seq ID NO: Protein Acc	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCAG TCCTTCTGTT AAACC 230 Protein cession #: N	TTAGCCCCA CTCTGGGGAT TGAGGGGCTTC GAGCAGGCCC CTGCATGGAA TTGTTGCCGT	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC TTATTTTGTA 31	TTCCCCCAG TCTTCCCAG TCGGACCAGG ACAGAGGATG AGAAGCCCTG CTCAAATCTC	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG TACATGGAGA	480 540 600 660 720
75	TGAGCCTCT TCATGCCTTT TCATGCCTTT GGGTGCCAGG CATGGAATGC ACAGAGGATG GATTTCACAC TAAATGATTT Seq ID NO: Protein Acc	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCAG TCCTTCTGTT AAACC 230 Protein cession #: N 11 1 LAVATGPALT	TTAGCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC CTGCATGGAA TTGTTGCCGT a sequence: 1P_003686 21 LRCHVCTSSS	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC TTATTTTGTA 31 NCKHSVVCPA	TTCCCCCAG TCTTCCCAG TCGGACCAGG ACAGAGGATG AGAAGCCTG CTCAAATCTC 41 SSRFCKTINT	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG TACATGGAGA	480 540 600 660 720
	TGAGCCTCT TCATGCCTTT TCATGCCTTT GGGTGCCAGG CATGGAATGC ACAGAGGATG GATTTCACAC TAAATGATTT Seq ID NO: Protein Acc	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCAG TCCTTCTGTT AAACC 230 Protein cession #: N 11 1 LAVATGPALT	TTAGCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC CTGCATGGAA TTGTTGCCGT a sequence: 1P_003686 21 LRCHVCTSSS	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC TTATTTTGTA 31 NCKHSVVCPA	TTCCCCCAG TCTTCCCAG TCGGACCAGG ACAGAGGATG AGAAGCCTG CTCAAATCTC 41 SSRFCKTINT	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG TACATGGAGA	480 540 600 660 720
75	TGAGCCTCT TCATGCCTTT TCATGCCTTT GGGTGCCAGG CATGGAATGC ACAGAGGATG GATTTCACAC TAAATGATTT Seq ID NO: Protein Acc	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCAG TCCTTCTGTT AAACC 230 Protein cession #: N 11 1 LAVATGPALT	TTAGCCCCA CTCTGGGGAT TGAGGGCTTC GAGCAGGCCC CTGCATGGAA TTGTTGCCGT a sequence: 1P_003686 21 LRCHVCTSSS	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC TTATTTTGTA 31 NCKHSVVCPA	TTCCCCCAG TCTTCCCAG TCGGACCAGG ACAGAGGATG AGAAGCCTG CTCAAATCTC 41 SSRFCKTINT	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG TACATGGAGA	480 540 600 660 720
75	TGAGCCTCT TCATGCCTTT GGGTGCCAGG CATGGATGC ACAGAGGATG GATTTCACAC TAAATGATTT Seq ID NO: Protein Acc 1 MRTALLLLAA KDCAESCTPS AVILAPSL	GGCCGTCATC CCTTCCCTTT AGCCCCAGGC TGATGACTTG CAGCCCCAG TCCTTCTGTT AAACC 230 Protein cession #: N 11 1 LAVATGPALT	TTAGCCCCA CTCTGGGGAT TGAGGGGCTTC GAGCAGGCCC CTGCATGGAA TTGTTGCCGT a sequence: iP_003686 21 LRCHVCTSSS TSSTQCCQED	GCCTGTGACC TCCACACCTC CCCGAAAGTC CACAGACCCC GGTGGAGGAC TTATTTTGTA 31 NCKHSVVCPA	TTCCCCCAG TCTTCCCAG TCGGACCAGG ACAGAGGATG AGAAGCCTG CTCAAATCTC 41 SSRFCKTINT	GGAAGGCCCC CCGGCAACGG TCCAGGTGGG AAGCCACCCC TGGATCCCCG TACATGGAGA	480 540 600 660 720

Seq ID NO: 231 DNA sequence
Nucleic Acid Accession #: Eos sequence
Coding sequence: 126-752

```
WO 02/086443
       COGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC
                                                                                60 .
       AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCACTCAG
                                                                               120
 5
       AGAAGATGAA GGATATCGAC ATAGGAAAAG AGTATATCAT CCCCAGTCCT GGGTATAGAA
                                                                               180
       GTGTGAGGGA GAGAACCAGC ACTTCTGGGA CGCACAGAGA CCGTGAAGAT TCCAAGTTCA
                                                                               240
       GGAGAACTCG ACCGTTGGAA TGCCAAGATG CCTTGGAAAC AGCAGCCCGA GCCGAGGGCC
                                                                               300
       TCTCTCTTGA TGCCTCCATG CATTCTCAGC TCAGAATCCT GGATGAGGAG CATCCCAAGG
                                                                               360
       GAAAGTACCA TCATGGCTTG AGTGCTCTGA AGCCCATCCG GACTACTTCC AAACACCAGC
                                                                               420
10
       ACCCAGTGGA CAATGCTGGG CTTTTTTCCT GTATGACTTT TTCGTGGCTT TCTTCTCTGG
                                                                               480
       CCCGTGTGGC CCACAAGAAG GGGGAGCTCT CAATGGAAGA CGTGTGGTCT CTGTCCAAGC
                                                                               540
       ACGAGTOTTO TGACGTGAAC TGCAGAAGAC TAGAGAGACT GTGGCAAGAA GAGCTGAATG
                                                                               600
       AAGTTGGGCC AGACGCTGCT TCCCTGCGAA GGGTTGTGTG GATCTTCTGC CGCACCAGGC
                                                                               660
       TCATCCTGTC CATCGTGTGC CTGATGATCA CGCAGCTGGC TGGCTTCAGT GGACCAAATT
                                                                               720
       TTCAGGATGG CTGTATTCTG CGGTCAGAAT GAGAGAGTCA AGCTGGGCAG AATCTCTCGC
15
                                                                               780
       CAAGAGTTCA GCCTTCCTTT GGAGACTGCT CCATCAGTGC CGAGGTGTGT GGGAACAGGC
                                                                               840
       TTCACTGCAC CGCCATCTTA CTGAGTTGCT TCACGTGAGG AAAAGGGGGC TTTGGCCCTG
                                                                               900
       TGACTCAGTT CCACATTTTG GATTGCATAC TGGAAAAGAA GCCAATCTTC TTGCTAGTAA
       ACCAGCAACC CGGCTGTATA CAGTGGTGAC CCAAGCAATG GATATAAACC TAAAAATCTG
                                                                              1020
20
       AGGGAGGGGA GAGGTAGAAT ACAGTAGTTC TTGGAATCTG AAGTCTCCTA TTTGATCAGG
TTATTTCCTG GGACTTGGCA AAAATCTGAT TGGTGGGGAT CTCCTAGGAC CTAGTGGACA
                                                                              1080
                                                                              1140
       TCTGGTATTA ATTTAATCTC AGGAAAAACA AGAAATTAAC CCAGAGAGAG TCTGGGTTTT
                                                                              1200
       GGAATTCAGC GTAGCTACCT CCAGACCGTG GTGTCTGGCC TCCATTTTTG TCTGTCATTC
                                                                              1260
                                                                              1320
       AGCTCTGACT TACAGCTGCA GTCACCTTTG CTATAAGGCA CCTGGGTAGA AGGGTGGATG
                                                                              1380
25
       GGCTTCACAT CAATTTTTTT CTTCCTTTAG GGTGGGGGAT TGGTTTGGCT TTCTTTTGTT
       GTGGTTTTTT GTTTATTTT TGTCAAGATT GATTTTTAGA TGCAAGGACT TGAAAAGACC
                                                                              1440
       CAGAAGGATG CCACCAGTTT TTCCTTGAGG CCTAGGATTT TTTATTCTGT CCCGAGCAGA
                                                                              1500
       GGTAATTCCT CACAACTTAG TGCACCAGTA GCACCAGCCA TTTTGAGCAG AGTACCTCTT
                                                                              1560
       TGGGGAGCTT TTCGTTTTGT TTTGTTTTTA ATTCTCTTTC CTTAGCAGCA AGGTCTTTTT
                                                                              1620
30
       TCCTAGAGAA TCTACTCCGT TGCAGAATCA TTGCAACCTC AGGAGCCCTC ACTGATTGAG 1680
       TGCTGTCAGC CTGATATACT ACTTTGGACT CTGGAAACAG ATATGGGTTC TATTCTCTAT
                                                                             1740
       TTCTACTGTG TGTCGTTAAA CAACCGTCGG AGACCAGATG ACCTGTTAGA TGGCTAGTCC
                                                                              1800
       TGTATAACTC GACTCTGTAT GTTTCAATGT ATGTTACTGC AATGCTTCAC CTGCTGTACA
                                                                             1860
       GTGTTTGTGA GATGCTCTTT GAAGATGGTA CTTTTATATT T
35
       Seq ID NO: 232 Protein sequence:
       Protein Accession #: Eos sequence
                                                                 51
                   11
                                          31
40
       MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFRR TRPLECODAL ETAARAEGLS
                                                                                60
       LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRTTSKHQHP VDNAGLFSCM TFSWLSSLAR
       VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWOEELNEV GPDAASLRRV VWIFCRTRLI
       ISTVCLMITO LAGFSGPNFO DGCILRSE
45
       Seg ID NO: 233 DNA sequence
       Nucleic Acid Accession #: CAT cluster
                                                                 51
                                                      41
50
       TTTTAATGGT GCTCATATAT ACTGTATTTT TTGTTGTTTA GTTTTACTTA TTGAGAGTGT
                                                                                60
       CACAACATGA ATCACATAAT CATGATTTTT TTTTTTTACT TTTACTCCCC AAATTATTCA
                                                                               120
       TGTTTCTTAG ATCGTAGTCA TTGAGAAGTC CCAATAACTC TAAACTTTTG AGTTATAACG
                                                                               180
       TAGTAAACTT CTCTTTCATC TTTGTGTTAG CTCTGTAGTC TTAACCTGGA TTTTAATTTT
                                                                               240
55
       TTTGTTTCCA AAGTCACAAT TGAATTATTC TTAGATACCT TAAGCCACTG AATTCAGTTC
                                                                               300
       TGTTTGACTG AAAGCAAAAC AACGTGACAG TTTATTTTCA AACACTAACT TCTTGATATT
                                                                               360
       TTGTTATGGT ATATCTTTTT ATTAAATATT TATTTTGACT AAGCTTTCAT AAAATATTTG
                                                                               420
       AAGCTATTTT AATCATCAAG TATGGAAAAC AAATTACTAT TGCATTTTCC TATATATGCA TATATTATGG ATTAACCAGA ATTGTATCAT TTTTGGCCTA ATGTCTGGAT ATAAAAGATA
                                                                               480
                                                                               540
60
       ATTAGCCTAC TATAGTATTA ATAAATTTTT CAGTTGGTTT GGGCAAATTT AAACCTGAAA
                                                                               600
       AATAGGTTAA AAAGTAGTTA CAAATTAAAC TTACTAATTT ATACCTGATT TTTTTTCTTG
                                                                               660
       AATTAAAGTA CATTTTAAAT GAGCTTTATA ATACCTŢAAA AAGTTGGTTC TAATTTAAAA
                                                                               720
       TATGAAAGCT CTGGCTATCA TCCTGGGATA GTAATTTCTA ATTATATAGT ATTTCAAAAC
TATATATTT TTAGTTCCTT TGAGATAACT AATTTCTAAT TATATATGTT TCAAAAACCA
                                                                               780
                                                                               840
65
       TATCCTGTAT TTTTTTTAAG AATTGTTTTA TAAATAGGTC ATAAGATACA AGGTCTGCAT
                                                                               900
                                                                               960
       TAGAAGACCC ACTCTTACTA GGTTCCCTAA GGATCTGCCA TAGATTTTTT TTTTTTTTT
       TTTTTTTAG GTAGTTTAAA GCAAGCACTG ATACCAGTGG GAGTTGGTCT TGATCTAGGA
                                                                              1020
       GATTCTGTTA AGCATCCAAA AACAATGCCT AATTTCAGTT CTTAGGTTAT GGCTTGTGAC
                                                                              1080
       TCCAGATAAA AGATGGAGAA TACCTCATGT ACTGTGACTT GAAAATGAAT TCTTAAAATT
                                                                              1140
70
       CTTAGGCTCT CTCCATGTAT CTTTCTTAAG GAAAAGTTTC TGAGTGTGAT CTCTCTTTTG
                                                                              1200
       CCATAGTATC AAGTGGAGGG TAGTTCAGAA AAGTTAATAG GAAATCTTTT GTGACAGCAG
                                                                              1260
       ACTATANTAG AAGTITGAGT AATATTITAA TAAATTTATA TAATTCAAAT GATAAAAATG
                                                                              1320
       TATCAATGTT ATCCAATGAT TTTTATTAAA AAATTACCTT ATTATTAGAA CTGTGCCTAT
                                                                              1380
       TACATAAAA GTGCTCATGT ATTTGAATTT TAAATAATTT ATTTAAATCA AGACCACCAT
                                                                              1440
75
       AAGTCATTAA TAATTTAATA ATTGTTTTAA ATCAGTGGTT TTCAACCCTC ACTTCATATT
                                                                              1500
       AGAATCATCT GAGGACTTTT AATATGGAAT CCACCTCATA ACAATTAAGT CTAAATTTCT
                                                                              1560
       GGAAGATGGA GCCATGCTTG TTTTTCCAAA AGCTCTTTGA GTGATTCTAA TTTGTAGTCA
                                                                              1620
       GAGTTGAAGA CCACTGCTCT AAATTAGTGC AGGAAAATGC TTTTATTTCT CCCATGTTAA
                                                                              1680
       CTTTTAAAAC TAGTAATGTA CCCAGTTAAG TTTTGATGGT TTAAATTCCA CTAAAGAACA
                                                                              1740
       TATTCTTCTA ATAACTAGCA TITATTACAT GAAATTTAAG AGTTTAAGTT CCATCAAACT
80
                                                                              1800
       AGCCCTTGTG TAAGATTATT ATTTCTTCTC TATAACTTCA AAATAGATAT TTCATTCAAA
CTGTTCAGGT GAGAAAACAT AATGGATTTT TTTTTTTTC CTCTGGAGCT GCCTGTTCAG
                                                                              1860
       TGAGATGGAG GAGGTGGGCA CATTTAAGGT CAGTTCACTA ACCTATGGTT CAGAGTTCTG
       ATCATATGGA AGTTTGGAAA AGAGAGCTTA TCACAGGTTT GTATGCTGGT GAATGGATAG
                                                                              2040
85
       TTTTAATTCT CACTGTCTCA AAAGAGAATC AGCTCTCCAG CAGTTCTAGA AAAGCTTTGA
                                                                              2100
       CAATCCCCAA GGGGCAGTGT TACCTTACTC CTTCACTGCT TCTTAGAAGG TAGAATTAAG
       TTTCTGGAAT TGCACCTACA TGTTTTCTTA TTAACATTCA GAATTGGGAA TATTAATTTT
                                                                              2220
```

```
2280
       TCCAGTGAGT AGTTTTCTGA AATTGGTAAC TTGGAGAGTA AAATAACGTA TTTTGCTTTT
       CAATTTIGTG TTTGTTTACT TTTATGTAAA AATTTGATAT GTGAATTACA CAGTTCTAAT AAAACCTCAT GCCTTTTCAT TACATCTAAT TTGAACTCTC AACTTCAGTG CCAGAAGTGC
                                                                             2340
                                                                             2400
                                                                              2460
       TTTAAAGATG CTTTAATGAA AAGTATTAAG AAAATATATA GATTTGTATG TCAGTTTATA
                                                                              2520
       CTTCAGAAAT CCATATATTT GTCATATTTA TTTTTTTAGA AACCTCCTAA TTGGATAACT
                                                                              2580
       AGATGGTATT TAAAATGAAT GCCCAAAAAT ATCTTGTACC TTTGTCCAAA AGTTTATCTG
       TTGGAAGCCG CCAGCCATTC ATGTAGAGAG TTTATAAGAA AATAATTTAA AATTGTATGC
                                                                              2640
       ATTITATATT ACTATGGTAT CTGTGTACCA TATTTCTAAG TATTCATTAT TAAATTGGTA
                                                                              2700
       CTTCTTAAAA CCATAACCTG GCTTGCCTTT TAGTGTTAAA CACAAAATCC AACATTGTAT
                                                                              2760
10
       ATAGAGATTC TTCTTTTATG AAGAAGAGCT GACGTAATTT ATTACCAGTG CATCTGCACA
                                                                              2820
       AAGACATTAA CATAAGTCTC TGAGCAGTGA TACATTTTCA AACATGAAGA GTGACAACCA
                                                                              2880
       CCACATTAAA CAACCACGGC AACACTCAGA CTTGGCACTT TCCTACGAAT CCATCCTATA
                                                                              2940
       TGTGCCTGGT ATCGCCTCTG GCATAACTTA CACGAATCGT CCTCCCTACT TGTCTACGCT
                                                                              3000
       CCTTCATCAA GCACTTGCCA ACACATTCAC CTCTAACTTG TACAACCTTA CCAACTCACC
                                                                              3060
       ACAACATCTG CAACTCTACC CTATCAACTG CCAACCTAAA GACCCCCAAC ACAACACAC
                                                                              3120
15
       CCCCAAACAC AAAACCACTA AATCATAACC ACCACACACG CCACACACCA CACACCCACC
       CACACAACCA ACACACCACG ACCAAACACC CCACCACAAA CAAGCTAACA ACCACAAACA 3240
       GACAACACAT CACATACACT CACTACCCCC CCATACTCCC ACCCACCA -
20
       Seq ID NO: 234 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 27-281
                                          31
                  11
                              21
25
       AGCAGGAGGA GAGCTGGCGG GAAGACATGC ACCCCTTGAA GACCCAGAGA GAGGCCGTCT
                                                                               60
       GTCTACCGCG TAGCAGTTAC ATCAGACTGA GACACTTCCT GTTTACAGGA GACTATAAAA
                                                                              120
       TTCCTGCCCC GTGCTCATTT GGGGCTGACG CCATTTTAGG CCTCAGCCCA TCTGCACCCA
                                                                              180
       GGCGCTCACT GAAACAGTGT GTTGCTCCAC ACCGCCTTGT TTTGCTTGTT GGCGCGCTCT
                                                                              240
30
       CAGGGTTCCG ACCAATCCAA GAGCCTTGCA GAAAGCATTA ACGTGCTTTT CTCTTTGGCA
                                                                              300
       GAGTTTTTCT TTGCTCTGAT CTTGGAGACA TCCCTCTGCC TAGTGGAAAC ATAAGGAATA
                                                                              360
       CAGAAAGAAT GCAAGGAGAT AGACCAACGT GAGATTCTCC TTCATGCACT CAAGAGAAAG
                                                                               420
       ATGTTGCAGG AAGAGCTAGT CTTTCAGGCT GGGCTGGTGA CCTGAGAAAG AATGTCCAGC
                                                                              480
       TTTTCTTCTC CACTTGGCAT ATCAAGAGCC AGGCGTGGAA GACTAAAACA GGAAATGTTT
                                                                               540
35
       ATAAAAACTG TTCAGCGGTT CGCCAACAAG AAGTGGTAAA GTAGCAAAAA TGGGGATGGA
                                                                               600
       GATGCCAGGA GGAAAGATGC CAGGGGTAAA GTGGGAAAAT GGGAACCTGA AGCCAGGAGG
                                                                               660
       TCAAGCCAAG CCAACAGGTG TTCTGTTTTT CATCACAGAA CTAATAAGTG GTGCTGAGGA
                                                                               720
       CTCAAACCCG GGGAAGCCCA CTCTAGAACC CATGCTGGTC ATCCATATCC CCAAGGCCCT
                                                                               780
       GGTCAGAACA CAGCTAAGCA GATGGCTTGG GTCATCAGGA CGTCCATTAC ATCCAAAGGA
       AGACAGCCTG TGACGTTTCA AAAGCAAAAG TCCCCTACCA GCCAGTGAAG CTACCTGATT TCTCAGTATC TTACGCCCAG TGACACGATC TACCCTCAAA ACTTAAAAAA AAAAGGGAAA
40
       CATAAACACA TAACAGCAGC AGCAATAATT AAAGATGAGA TGAGAACAAT TAAGAAAAAA
                                                                              1020
       GGAAAGGTCT CCTGTGACTG TTTTATTTTT AGGGAAACAG AGAGGAAGAA GAATGATTTT
                                                                              1080
       TCTTTTGATG ACTCTATATC CAACTCTGAG GTTTGATTAA AGAAATGACC TTGAACCACA
                                                                              1140
       GCAAAGAAAA ATAAAAGACA ATTTCCAGTA AGTATGCCAG TTCGAATTAA TGATTTACTT
45
                                                                              1200
       TTTATTTTTA AACTGAATTC AGCAGAGATT TACATGCATT ACGATGATTA ACATCTGAAA
                                                                              1260
       TTTGACCTTG AAATAATCTT TACATTGTAA ATTCTTAATG ATCAAAACAA GGTTCTCAGT
                                                                              1320
       GATTAAAACA TATTAGTAAT TAATTATTAA AGGAGAATAA TTGCAAATAC AACATTCCTA
AAATCTCAAG GCTTTTAAAG CATTTGTACA AATGACTGGA CATTTTTAA ATTGAAAAA
                                                                              1380
                                                                              1440
50
       AAAAAAAAGC CCTCCATCTG ATTCTCATTT TCATTGTCAG TGCAACAACA AAAAAGGTAT
                                                                              1500
       GCACTTCTCT TCTCATTTTC CACTGTCTCG CAAGCTAGAA ATTCTCACGA CTACCTTTGA
                                                                              1560
       TCCCATCAAA GCCAAAGAAA GAAAAGAAAA TTGTTCTGTA CAGATATATG ACATTAAAAA
                                                                              1620
       ATAATCCC
55
       Seq ID NO: 235 Protein sequence:
       Protein Accession #: Eos sequence
                                                                 51
                                          31
                                                      41
60
       MHPLKTOREA VCLPRSSYIR LRHFLFTGDY KIPAPCSFGA DAILGLSPSA PRRSLKOCVA
       PHRLVLLVGA LSGFRPIQEP CRKH
       Seq ID NO: 236 DNA sequence
65
       Nucleic Acid Accession #: NM_002075
       Coding sequence: 406..1428
                                          31
                                                                 51
70
       CCACAATAGG GGCAGACCTG TCCATCCTTC TCTGTGGGTC CCCTGTACCT TTCTCCCCCA
                                                                                60
       ACAGGATCAG ACCCAGAGGC AGCTGGTTGG GGTTTGTCGA GAAGAAGGAT TATCCAGATC
                                                                               120
       AGTCCTTTCT AATCTCAGCT CCTGCCTGTA CCCTCCCATA CTCACCAAAC CCTCTTCCCC
                                                                               180
       ACCACCCTGA GCTGAGGAGC ACAGTTTGAG GCCCCCCAA CCCCCGCCG GTCGGGGCCA
                                                                               240
       GGCCAGGCCA GGCCAGCTCC TCTGGCAGCA GAGCCTGGGC AGGTGACGGG CGGGCGCGGG
                                                                               300
75
       CGTCGCAGCT GAGGGAGTAA GGAGGCTCCC AGGAACCGGA GCTGGAAACC CGGCCGAGGT
                                                                               360
        CCAGCCAGAG CCCAAGAGCC AGAGTGACCC CTCGACCTGT CAGCCATGGG GGAGATGGAG
                                                                               420
        CAACTGCGTC AGGAAGCGGA GCAGCTCAAG AAGCAGATTG CAGATGCCAG GAAAGCCTGT
                                                                               480
       GCTGACGTTA CTCTGGCAGA GCTGGTGTCT GGCCTAGAGG TGGTGGGACG AGTCCAGATG
                                                                               540
        CGGACGCGGC GGACGTTAAG GGGACACCTG GCCAAGATTT ACGCCATGCA CTGGGCCACT
                                                                               600
        GATTCTAAGC TGCTGGTAAG TGCCTCGCAA GATGGGAAGC TGATCGTGTG GGACAGCTAC
80
                                                                               660
        ACCACCAACA AGGTGCACGC CATCCCACTG CGCTCCTCCT GGGTCATGAC CTGTGCCTAT
                                                                               720
        GCCCCATCAG GGAACTTTGT GGCATGTGGG GGGCTGGACA ACATGTGTTC CATCTACAAC
                                                                               780
        CTCAAATCCC GTGAGGGCAA TGTCAAGGTC AGCCGGGAGC TTTCTGCTCA CACAGGTTAT
        CTCTCCTGCT GCCGCTTCCT GGATGACAAC AATATTGTGA CCAGCTCGGG GGACACCACG
                                                                               900
        TGTGCCTTGT GGGACATTGA GACTGGGCAG CAGAAGACTG TATTTGTGGG ACACACGGGT
85
        GACTGCATGA GCCTGGCTGT GTCTCCTGAC TTCAATCTCT TCATTTCGGG GGCCTGTGAT
                                                                              1020
        GCCAGTGCCA AGCTCTGGGA TGTGCGAGAG GGGACCTGCC GTCAGACTTT CACTGGCCAC 1080
```

```
GAGTOGGACA TCAACGCCAT CTGTTTCTTC CCCAATGGAG AGGCCATCTG CACGGGCTCG
                                                                          1140
      GATGACGCTT CCTGCCGCTT GTTTGACCTG CGGGCAGACC AGGAGCTGAT CTGCTTCTCC
                                                                          1200
      CACGAGAGCA TCATCTGCGG CATCACGTCC GTGGCCTTCT CCCTCAGTGG CCGCCTACTA
                                                                          1260
      TTCGCTGGCT ACGACGACTT CAACTGCAAT GTCTGGGACT CCATGAAGTC TGAGCGTGTG
                                                                          1320
       GGCATCCTCT CTGGCCACGA TAACAGGGTG AGCTGCCTGG GAGTCACAGC TGACGGGATG
                                                                          1380
 5
      GCTGTGGCCA CAGGTTCCTG GGACAGCTTC CTCAAAATCT GGAACTGAGG AGGCTGGAGA
                                                                          1440
      AAGGGAAGTG GAAGGCAGTG AACACACTCA GCAGCCCCCT GCCCGACCCC ATCTCATTCA
                                                                          1500
      GGTGTTCTCT TCTATATTCC GGGTGCCATT CCCACTAAGC TTTCTCCTTT GAGGGCAGTG
                                                                          1560
      GGGAGCATGG GACTGTGCCT TTGGGAGGCA GCATCAGGGA CACAGGGGCA AAGAACTGCC
                                                                          1620
      CCATCTCCTC CCATGGCCTT CCCTCCCCAC AGTCCTCACA GCCTCTCCCT TAATGAGCAA
10
                                                                          1680
      GGACAACCTG CCCCTCCCCA GCCCTTTGCA GGCCCAGCAG ACTTGAGTCT GAGGCCCCAG
                                                                          1740
      GCCCTAGGAT TCCTCCCCCA GAGCCACTAC CTTTGTCCAG GCCTGGGTGG TATAGGGCGT
                                                                          1800
      TTGGCCCTGT GACTATGGCT CTGGCACCAC TAGGGTCCTG GCCCTCTTCT TATTCATGCT
                                                                          1860
      TTCTCCTTTT TCTACCTTTT TTTCTCTCCT AAGACACCTG CAATAAAGTG TAGCACCCTG
                                                                          1920
15
      Seq ID NO: 237 Protein sequence:
      Protein Accession #: NP_002066
20
                                                              51
                                        31
      MGEMEQLRQE AEQLKKQIAD ARKACADVTL AELVSGLEVV GRVQMRTRRT LRGHLAKIYA
      MHWATDSKLL VSASQDGKLI VWDSYTTNKV HAIPLRSSWV MTCAYAPSGN FVACGGLDNM
                                                                           120
       CSIYNLKSRE GNVKVSRELS AHTGYLSCCR FLDDNNIVTS SGDTTCALWD IETGQQKTVF
                                                                           180
       VGHTGDCMSL AVSPDFNLFI SGACDASAKL WDVREGTCRQ TFTGHESDIN AICFFPNGEA
                                                                           240
25
       ICTGSDDASC RLFDLRADQE LICFSHESII CGITSVAFSL SGRLLFAGYD DFNCNVWDSM
                                                                           300
       KSERVGILSG HDNRVSCLGV TADGMAVATG SWDSFLKIWN
       Seq ID NO: 238 DNA sequence
30
       Nucleic Acid Accession #: CAT cluster
                             21
                                        31
                  11
       TCCCAATGTG TNGAACCTAC CATAAATTCT TTTCTTACNG GACAATCTTA TNCTAANCAA
                                                                            60
       TACCATTIGC TITTAAGGCA GATAATCCTC CAAGITITCT AATGATATCT GAAACTATTA
35
                                                                            120
       ACTGATTCTG TGAATTATGA AATCTGAAAA GGAATTGGAA GTTGCTAAAA ATCTATCATT
                                                                            180
       TGCATTGACC AGTGTGAAGC ACAGTGGAAT GAGAATGCGT GCCCTGACAC CAAAGAAAAA
                                                                            240
       TAAGTGACTG GAAAGCTGAA GAATCACCGG CTTCAGTGAC ATGGAACCCA GTGATTTGAT
                                                                            300
       TTTTGACGAG TATCGGGTGA CTTTGAGGTG GTCAAGAAAC CACACTTTAA GAACAATGTC
                                                                            360
       420
40
       AAGAAAGAAA AATAAAATAC ACAATATGGA CGATGGAGAA AAACAGTTAC ATTTCTTTAT
                                                                            480
       GGATCAAGAA GTTTGTGTAC ACATAATCTC ATTTTGAGAT ATATAACTAT TTTTGTCTTT
                                                                            540
       CAGAAGTGAA TCAAAATATT TCAAAATGCT GTCTTATGAA ACTACAATAT TCTCACAGAT
       TAGAAAAGTT TTTCTGTAAA AGTCAGATAG TAAATATTTT AGGTTTTGCA GTGTCTTTTG
                                                                            660
45
       CAACTACTCA ACTITCCTAC TGTAGCACAA GAGTAGCTGT GGTACTGTGC AAATAAATTG
       CTTGTGTTCC AATAAAGCTT CATTTACAAA AACATGCCAT GGGCCATATT TGGCCTGTAC
                                                                            780
       ACTGTTGTTT GCCAAGTCCT AATATAGTTG CTTAGCAAGT ATTGTGAGCT ATTTGAGGAA
       GACATGAAAG TTCATTGGGT TGCTAAAAAG TATGTAGAAA TTCAAAGGAA AATTAAAATT
                                                                            900
       TAGGCTAAGT TATAATACAC TGTTTTAACA ATTGTAAAAT GTAAGAGAAA TTTACAAATA
50
       AAAATCCCAA ATAAAA
       Seq ID NO: 239 DNA sequence
       Nucleic Acid Accession #: NM_001786.1
       Coding sequence: 130-1023
55
                  11
                             21
       GGGGGGGGG GGCACTTGGC TTCAAAGCTG GCTCTTGGAA ATTGAGCGGA GAGCGACGCG
                                                                            60
       GTTGTTGTAG CTGCCGCTGC GGCCGCCGCG GAATAATAAG CCGGGATCTA CCATACCCAT
                                                                            120
       TGACTAACTA TGGAAGATTA TACCAAAATA GAGAAAATTG GAGAAGGTAC CTATGGAGTT
                                                                            180
60
       GTGTATAAGG GTAGACACAA AACTACAGGT CAAGTGGTAG CCATGAAAAA AATCAGACTA
                                                                            240
       GAAAGTGAAG AGGAAGGGGT TCCTAGTACT GCAATTCGGG AAATTTCTCT ATTAAAGGAA
                                                                            300
       CTTCGTCATC CAAATATAGT CAGTCTTCAG GATGTGCTTA TGCAGGATTC CAGGTTATAT
                                                                            360
       CTCATCTTTG AGTTTCTTTC CATGGATCTG AAGAAATACT TGGATTCTAT CCCTCCTGGT
                                                                            420
       CAGTACATGG ATTCTTCACT TGTTAAGAGT TATTTATACC AAATCCTACA GGGGATTGTG
                                                                            480
65
       TTTTGTCACT CTAGAAGAGT TCTTCACAGA GACTTAAAAC CTCAAAATCT CTTGATTGAT
       GACAAAGGAA CAATTAAACT GGCTGATTTT GGCCTTGCCA GAGCTTTTGG AATACCTATC
       AGAGTATATA CACATGAGGT AGTAACACTC TGGTACAGAT CTCCAGAAGT ATTGCTGGGG
       TCAGCTCGTT ACTCAACTCC AGTTGACATT TGGAGTATAG GCACCATATT TGCTGAACTA
                                                                            720
       GCAACTAAGA AACCACTTTT CCATGGGGAT TCAGAAATTG ATCAACTCTT CAGGATTTTC
                                                                            780
70
       AGAGCTTTGG GCACTCCCAA TAATGAAGTG TGGCCAGAAG TGGAATCTTT ACAGGACTAT
                                                                            840
       AAGAATACAT TTCCCAAATG GAAACCAGGA AGCCTAGCAT CCCATGTCAA AAACTTGGAT
                                                                            900
        GAAAATGGCT TGGATTTGCT CTCGAAAATG TTAATCTATG ATCCAGCCAA ACGAATTTCT
                                                                            960
       GGCAAAATGG CACTGAATCA TCCATATTTT AATGATTTGG ACAATCAGAT TAAGAAGATG
                                                                           1020
       TAGCTTTCTG ACAAAAAGTT TCCATATGTT ATGTCAACAG ATAGTTGTGT TTTTATTGTT AACTCTTGTC TATTTTTGTC TTATATATAT TTCTTTGTTA TCAAACTTCA GCTGTACTTC
75
                                                                           1080
                                                                           1140
       GTCTTCTAAT TTCAAAAATA TAACTTAAAA ATGTAAATAT TCTATATGAA TTTAAATATA
       ATTCTGTAAA TGTGAAAAAA AAAAAAAAAA AAAAA
80
        Seq ID NO: 240 Protein sequence:
        Protein Accession #: NP_001777.1
                                                    41
 85
        MEDYTKIEKI GEGTYGVVYK GRHKTTGQVV AMKKIRLESE EEGVPSTAIR EISLLKELRH
        PNIVSLQDVL MQDSRLYLIF EFLSMDLKKY LDSIPPGQYM DSSLVKSYLY QILQGIVFCH 120
```

	YSTPVDIWSI	GTIFAELATK	TIKLADFGLA KPLFHGDSEI LDLLSKMLIY	DQLFRIFRAL	GIPNNEVWPE	VESLQDYKNT	180 240	
5	Seq ID NO: 241 DNA sequence Nucleic Acid Accession #: NM_033379.1 Coding sequence: 132-854							
10			21	31	41	51		
10	GCTTTGCAGA	GAGCGCCCTC	. TTTGTAGAGC CAGGGACTAT TATACCAAAA	 GAGGGGCCAA GCGTGCGGGG	CTTGGCAGAG ACACGGGATC	CGCGCGGCCA TACCCATACC	60 120 180	
15	TTGTGTATAA TAGAAAGTGA AACTTCGTCA ATCTCATCTT	GGGTAGACAC AGAGGAAGGG TCCAAATATA TGAGTTTCTT	AAAACTACAG GTTCCTAGTA GTCAGTCTTC TCCATGGATC CTTGTTAAGG	GTCAAGTGGT CTGCAATTCG AGGATGTGCT TGAAGAAATA	AGCCATGAAA GGAAATTTCT TATGCAGGAT CTTGGATTCT	AAAATCAGAC CTATTAAAGG TCCAGGTTAT ATCCCTCCTG	240 300 360 420 480	
20	TATTGCTGGG TTGCTGAACT TCAGGATTTT TACAGGACTA	GTCAGCTCGT AGCAACTAAG CAGAGCTTTG TAAGAATACA	TACTCAACTC AAACCACTTT GGCACTCCCA TTTCCCAAAT	CAGTTGACAT TCCATGGGGA ATAATGAAGT GGAAACCAGG	TTGGAGTATA TTCAGAAATT GTGGCCAGAA AAGCCTAGCA	GGCACCATAT GATCAACTCT GTGGAATCTT TCCCATGTCA	540 600 660 720 780	
25	AACGAATTTC TTAAGAAGAT TTTTTATTGT AGCTGTACTT	TGGCAAAATG GTAGCTTTCT TAACTCTTGT CGTCTTCTAA	TTGGATTTGC GCACTGAATC GACAAAAGT CTATTTTGT TTTCAAAAAT	ATCCATATTT TTCCATATGT CTTATATATA ATAACTTAAA	TAATGATTTG TATGTCAACA TTTCTTTGTT AATGTAAATA	GACAATCAGA GATAGTTGTG ATCAAACTTC	840 900 960 1020	
30	Seq ID NO:	242 Protein		AAAAAAAA	AAAAAA			
	1	11	21	31	41	51		
35	PNIVSLQDVL SARYSTPVDI	MQDSRLYLIF WSIGTIFAEL	GRHKTTGQVV EFLSMDLKKY ATKKPLFHGD	LDSIPPGQYM SEIDQLFRIF	DSSLVKVVTL RALGTPNNEV	WYRSPEVLLG WPEVESLQDY	60 120 180	
40	Seq ID NO: Nucleic Ac:	243 DNA sec	#: AF1010		GKMALNHPYF	NDLDNQIKKM		
45	1	11	21	31	41	51		
45	1 	11	21 	31 	41 	51 		
45	 GAGCAACCTC	AGCTTCTAGT	 ATCCAGACTC	CAGCGCCGCC	CCGGGCGCGG	ACCCCAACCC	60	
	GAGCAACCTC CGACCCAGAG	AGCTTCTAGT CTTCTCCAGC	 ATCCAGACTC GGCGGCGCAG	CAGCGCCGCC CGAGCAGGGC	CCGGGCGCGG TCCCCGCCTT	ACCCCAACCC AACTTCCTCC	60 120 180	
4550	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG	 ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCGGGCGCC	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCGAGTC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGGGGCTGCA	120 180 240	
	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCGGGCGCC CCTTCCTGGG	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGGGGCTGCA GCACTGCCCT	120 180 240 300	
	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGC GCCCAGTGG CGAGGGGCTG	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCGGGCGCC CCTTCCTGGG CCTATGCCGG GCGTGTCGCA	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC GAGCACCGGG	CCGGGCGCGG TCCCCGCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGGGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT	120 180 240 300 360 420	
50	GAGCAACCTC CGACCAGAG GCGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC GAGCAACATC GAGCACCGGG GCAAGCAACAC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT CGTGCCTTGA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGGGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG	120 180 240 300 360 420 480	
	GAGCAACCTC CGACCCAGAG GCGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCCTG CTTGGAAGAC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GGAGTGATAG GATGAGGTGC	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACAACCACC GGCAAGCAACC GGCCACCGTT GATGGCTGTC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGGTG	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGGGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTG CGATATTTCT	120 180 240 300 360 420	
50	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTTGGAGAG CTTGGAGAG TTTTGCAGGGT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GGAGTGATAG GATGAGGTGC CTGGCTATTT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAC TAGTTGCCAC	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACACACTC GAGCACCGGG GCAAGCAACC GGCCACCGTT GATGGCTGTT ATGGCTGTT AGCATGGTTAT	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGGTG ATTGGGGGTG GGCAATAGAA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGTTCTGC CGGGCTGCA GCACTGCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTG TCGTTCTAAGA	120 180 240 300 360 420 480 540 600	
50	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG GCAGGGGCTC TGACTCCTTG CATCCTCCTG CTTGGAAGAC TCTTGCAAGGT ATTCTATGAC	AGCTTCTAGT CTTCTCCAGC CCTGAGCCAG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GAGTGATGC GAGTGATAG GATGAGGTGC CTGGCTATTT CCTATGACCC	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC	CAGCGCCGCC CGAGCAGGC TTGCCACCT CGAGCGAGTC ATGGATCGGC GAGCACACCAT GAGCACCGGG GCAAGCAACCAC GGCCACCGTT GATGGCTGTC AGCATGGTAT CAGGTACGAA	CCGGGCGCGG TCCCCGCTT TCCCCGCTT ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGTG GGCAATAGAA TTTGGTCAGG	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTC CGATATTTCT TCGTTCAAGA CTCTCTCAC	120 180 240 300 360 420 480 540 600 600 720	
50	GAGCAACCTC CGACCCAGAG ACCTGCACC GCTGTTGGGC GCCCAGTGG GCCCCAGTGG TGACTCCTTG CATCCTCTG CATCCTCTG CTTGGAAGAC TCTTGCAGGT ATTCTATAGAC TCGCTGGGCT CCGAAAAACCA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG TCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GATGAGGTGC GATGAGGTGC CTGCTTATTAC CCTATGACCC ACCTCTTACCC ACCTCTTACCC	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG GCAGGCCC CCTTCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGCAACCAAAG	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CCAGCGAGTC ATGGATCGGC GGCAACATC GAGCACCGG GCAAGCAACC GGCACGGTT GATGGTACGA AGCATGGTACA AGCAAGGTACCA GGGAAGGTACCA GGCAGGTACCA GGCAGGTACCA GGCAGGTACCA	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGGTG GCAATAGAA TTTGGTCAGG CTACTTTGGTCAGA	ACCCCAACCC AACTTCCTCC CGCGCTGCCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTG CGATATTTCT TCGTTCAAGA CTCTCTTCAC GTTCCTGTCC CTTCCAGCGG	120 180 240 300 360 420 480 540 600 660 720 780 840	
50 55	GAGCAACCTC CGACCCAGAG GCGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCCTG CTTGGAAGAC TCTTCCAGGT ATTCTATGAC CGGAAAAACA GAAAGACTAC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TTGGATGTCCT CTGAATCTGA GAATGAGTGATAG GATGAGTGATAC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GCTGTACACA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG AGAGAAAAG CAGCACAAAG GAGCAAAAAG GAGCAAAAAG GAGCAAAAAG	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC CGACAACACCGGG GCAAGCAACC GGCCACCGTT AGCATGGCTGTC AGCATGGTAT CAGGTACGAA GGGAAGGTGCC GCCCTATCCA GAGAAAATCA	CCGGGCGCGG CCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGTG GGCAATAGAA TTTGGTCAGG CTACTTTGCT TAAACCTGCAC TGTTGAAACA	ACCCCAACCC ACCTCTCTCC CGCCTTCTGC CGCGCTTCTGC CGGGCTGCA GCACTGCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT CGATATTCT TCGTTCAAGA CTCTCTTCAC GTTCCTGTCC CTTCCAGCGG AACCGAAAAT	120 180 240 300 360 420 480 540 600 600 720 780 840 900	
50 55	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG GCCCAGTGG TGACTCCTTG CATCCTCCTG CTTGGAAGAC TCTTGCAGGT ATTCTATGAC TGGCTGGGCT CCGAAAAACA GAAAGACTAC GGACATTGAG	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GATGAGGTGC CTGGCTATTT CCTATGACCC GCTGCTTTCC ACCTCTTACC GTGTGACACA ATACTATCAT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC TCTGCCTTCT CAACACCAG GAGGCAAAAG TAACATTAGG	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCAGTC ATGGATCGGC GAGCACCGGG GCAAGCAACCAC GGCCACCGTT GATGGCTGTC AGCATGGTAT CAGGTACGAA GGGAGGTGCC GCCCTATCCA ACCATAGCAAT ACCATAGAAA	CGGGGGGGGG TCCCCGCTT TCCCGCCTT TCCAACG GCAACGTCA GCCATCGTCA GTGACCGCC CGTGCCTTGA GGCATGAGG TTTGGGGGTG GGCAATAGAA TTTGGTCAGG CTACTTTGCT AAACCTGCAC TGTTGAAACA TTTGGGTATT	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTC TCGTTCAAGA CTCTCTCAC GTTCCACGGG AACCGAAAAT GTAATCTGAA	120 180 240 300 360 420 480 540 600 660 720 780 840	
50 55 60	GAGCAACCTC GAGCACCAGG GCGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG GCACCCCAGTGG CTACCTCCTG CTTGGAAGAC TCTTGCAGGT ATTCTATGAC TGGCTGGGCT CCGAAAAACA GAAAGACTAC GGACATTGAG GTATGGTATT AAACATGGCT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG TCATTCTCG AGGATTTACT TGGATGTCCT TGGATGTCCT TGGATGTATAG GATGAGGTGC CTGGCTATTT CCTATGACC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATACAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG GCGGGGCCC CCTTCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCATTCC CAACCAAG GAGCAAAAG GAGCAAAAG TAACATTAGG TAAACAAAAC TTATCTTCTT	CAGCGCCGCC CGAGCAGGG TTGCCCACCT CGAGCGAGTC ATGGATCGGC GGACAACATC GAGCACCGGT GATGGCTGTC AGCATGGTAC AGCATGGTAC AGGAGGTACCA ACCTTAGAAT AAAAACCCAT TCCTCAATAT	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT ATTGGGTTGA GGCATGAAGT ATTGGGTCAGG CTACTTTGCT AAACCTGCAC TGTTGAAACA TTTGGGTATT TTTGGTTATT GTGTTAAAAT AGGAGGAAA	ACCCCAACCC AACTTCCTCC CGCGTTCTGC CGGGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT CTCTTCTACG GTTCCACG GTTCCTCCC CTTCCACGGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020	
50 55	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CTTGGAAGAC TCTTCCAGGT ATTCTATGAC TCGGAAAAACA GGAAGACTAC GGACATTGAG GTATGGTTTATACT TATAGAC TTGTATTACT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TTGGATGTCCT CTGAATCTGA GAATGTGCT CTGATTCTCA GCATGTATT CCTATGACCC GCTGCTTTCT ACCTCTTACC ACCTCTTACC ACTCTTACC ATACTATCAT ACAAAACAAA TAATCTTATT GCTTCCCATT	I ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGCACAATGC TAACACCAAG TAACATTAGG CAAACAAACA TTATCTTCTT GAGTAATCAT	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC GGCAACCGTT AGGATGCTGTC AGCATGGTAT CAGGTACGAA GGGAGGTGCC GCCCTATCCA GCCTAGCAA ACCTTAGAAT TCCTCAATAT ACTCAAATGG	CGGGGGGGGGGGGGAACGGAACGGAACGGAACGGAACG	ACCCCAACCC ACCTTCTCC CGCCTTCTGC CGCGCTTCTGC CGGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTG CGATATTTCT TCGTTCAAGA CTCTTCAACA CTTCCTTCAC CTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTACCAT GCTCCTTAAA	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140	
50 55 60	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCCTG CATCCTCCTG CATCCTCCTG CATCCTGCAAAAACA CGAAAAACAAC GGACATTGAG GTATGGTATTACTATTACT TATTATATACT TATATATACT TATATATA	AGCTTCTAGT CTTCTCCAGC CCCAGCCAGC CCTGAGCCAG TCATTCTCG AGGATTTACT TGGATGTCCT TGGATGTCCT CTGAATCTGA GATGAGGTGC CTGGCTATTAC CCTATGACCC GCTGCTTCTC ACCTCTTACC GTTGGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTTCCTGGG CCTTCCTGGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG CAGTCAATGCCTCT CAACACCAAG GAGCAAAAG GAGCAAAAG TAACATTAGG CAAACAAACA TTATCTTCTT GAGTAATCAT TACATGTTAAA	CAGCGCCGCC CGAGCAGGC CGAGCAGTC ATGGATCGGC GAGCACATC GAGCACACTC GAGCACCGG GCAAGCACCC GGCACCGTT GATGGCTGTC AGCATGGTAT CAGGTACGAA ACCTTAGAAT AAAAACCCAT TCCTCAATAT ACTCAAATGG TCTATTAAAA	CCGGGCGCGG TCCCCGCTT GCAAACTCTC ATGGCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT ATTGGGGTG ATTGGGGTG ATTGGTCAGG CTACTTTGCT AAACCTGCAC TGTTGAAACA TTTGGGTATT GTGTTAAACA ATTGGGGAAG GGGAAGGGTA ATAGACAGT ATAGACAGT ATAGACAGT ATAGACAGT	ACCCCAACCC AACTTCCTCC CGCGTTCTGC CGCGGCTGCA GCACTGCCCT AGGCCATGTA GCAAGTCTT TGGTGGTTGG GTATGAAGTC TCGTTCAACG CTTCCACGGG AACCGAAAAT ACCCGAAAAT ACTCAGTGCT ATTTACCAT GCTCCTTTAAC GTTCCTTCAC GTTCACGGG AACCGAAAAT ACTCAGTGCT ATTTACCAT GCTCCTTTAAA AATACTATT GTATTTAATT	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020	
50 55 60	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG GCCCCAGTGG CGAGGGGCTG CATCCTCCTG CTTGGAAGAC TCTTGCAGGT ATTCTATGAC CGGACATTAG GGACATTAG GGACATTAG GTATTGGTATT AAACATGGCT TTGTATTACT TATATATAGAC TCATTATTATG	AGCTTCTAGT CTTCTCCAGC GCACCTTCG GCACCTTCG AGCATTCTCG AGGATTTACT TGGATGTCCT TGGATGTCCT CTGAATCTGA GATGAGGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT TAAAACAAA TAATCTTATT TGCTTCCCATT TATGTATATAT TGATACTAGC GAAGATGTTT	ATCCAGACTC GGCGGCGCG GGGGGCGCC CCTTCCTGGG CCTTCCTGGG CCTTCCTGGG CCTTCCTGGA CCATCTTTGT AGAAGATGA TAGTTGCAC CAGTCATTCC CAACACCAAG GAGCAAAACA TAACATTAGG CAAACAAACA TTATCTTCT GAGTAATCAT TACATGTTTA ATACTTAAA ATTGGTATAT	CAGCGCCGCC CGAGCAGGC CGAGCAGTC ATGGATCGGC CGACACATC CGACCACACT CGAGCACACTC GAGCACCGGG GCAAGCACCC GGCCACCGTT GATGGCTGCC AGCATGGAT CAGGTACGAA CGGAGGAAATCC ACCTTAGCAA ACCTTAGCAA TCCTCAATAT ACTCAAATGG TCTATTAAAA TATCTCTAAA TTTCTTTTC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT ATTGGGGTG GGCAATAGAA TTTGGTCAGG CTACTTTGAT AACCTGCAC TGTTGAAACA TTTGGGTATT TGTGTAAACA TTTGGGTATT AGGAGGGAA GGGAAGGGGT ATAGACAGT ATAGACAGT ATAGACAGT ATAGACAGT ATAGACATAT GTCCTTATAT	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGGCTGCA GCACTGCCCT AGGCCATGTA GCAAGTCTT TGGTGGTTGG GTATGAAGTC CTCTTCACC GTTCCATCAC GTTCCAGCGG AACCGAAAAT CTCTCTCAC GTTCCAGCGG AACCGAAAAT ATTTAACT ATTTACCAT GCTCCTTAAA AAATACTATT TGATTTAAAT ACATATGTAA	120 180 240 300 360 420 540 600 660 720 840 900 900 1020 1140 1200 1260 1320	
50556065	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CTTGGAAGAC TCTTCCAGGT ATTCTATGAC GGAAAAACA GGAACACTAC GGACATTGAG GTATGGTTTTTTAAACATGGCT TTGTATTACT TATATATAGA CTCATATTGAT CAGTCAAATA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TCCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GAATGTGCT CTGAATCTGA GATGAGTGATAG CATGAGTGATAC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC ACCTCTTACC ATACTATCAT ACAAAACAAA TAATCTTATT TGCTTCCCATT TATGTATATA TGATACTAGC GAAGATGTTT TCATTTACTC CGAAGATGTTT TCATTTACTC	I ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAACAATGA TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAACACAAG TAACATTAGG CAAACAAACA TTATCTTCTT TACATGTTTT ATTCTTTAAAA TTCTTTAAAA TTCTTCATTA	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC CGACAACACC GGCAACCGTT ATGGCTACTC AGCATGGTAT CAGGTACGAA CGCCTATCCA GCCTATCCA ACCTTAGAAT AAAAACCCAT TCCTCAATTT ACTCAAATTG TCTTATAAA TATCTCTAAA TTTCTTTTTC GCTTTGGGTG	CGGGGGGGGGGGTCCCACACGCCACACGCCACACGCCCCCAGATCCAGTCAGT	ACCCCAACCC ACCTTCTCC CGCCTTCTGC CGCGTTCTGC CGCGCTTCTGC CGGGCTGCA GCACTGCCT TGGTGGTTGG GTATGAAGTCT TCGTTCAAGA CTCTCTTCAC GTTCCTCCC CTTCCAGCGG AACCGAAAAT GTATCATGAA ACTCAGTGCT ACTCAGTGCT GCTCCTTAAA AAATACTATT GTATTTAATT TAATTTAATT	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1140 1200 1260 1320 1380	
50 55 60	GAGCAACCTC CGACCAGAG GCGGGGCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG GCCCAGTGG GCATCCTTG CATCCTCTG CATCCTCTG CATCCTCTG TCTTGCAAGAC TCTTGCAGGT ATTCTATGAC GGACATTAGG GGACATTAGG GTATGGTÄTT AAACATGGCT TTGTATTACAC CCTATTATAGA CTCATTATGAT CCATATTATAC CTTATTATAC CTTATTATAC CTTATTTTTA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTACT TGGATGTCCT CTGAATCTGA GATGAGGTGC CTGGCTATTA CCTATGACCC GCTGCTTTCC ACCTCTTACCC GTGTGACCAC ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCG GGGGCGCC CCTTCCTGGG CCTATGCCGG GCGGGCGCC CCTTCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC TCTGCCTTCT CAACACCAAG GAGGCAAAAG TAACATTATG CAACACAAAAG TTATCTTCTT GAGTAATCAT TACATTATAAA ATTGGTATAT TCTTCATTA TCTTCATTA TTATGCACTTG	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCAGTC ATGGATCGGC GAGCACCGT GAGCACCGT GAGCACCGT GAGCACCGT GATGCATGCT GATGCATGT CAGTACGAC GCCACCGTT CAGTACCA GGAGAAATCA ACCTTAGAAT ACTCAAATG TCTCAAATA TATCTTTAC GCTTCGGTG CTTCATGCT CTTCATGCT CTTCATGCT CTTCATTT CCTTCATAT TTCTTTTTC CCTTTAGGTT CTTCATGCTT CTTCATGCTT CTTCATGCTT CTTCATGCTT CTTCATGCTT CTTCATGCTT CATCGTT	CGGGGGGGGGGGTCCCCGCCTTGAACTCTCAATGGCAACGCCTGAATCCAGGGATGAAGAATTTGGGGTAGAACTTTGCTAAAACTTGAAACATTGAAACATTAAAATAAGGAAGG	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTGCA GCACTGCCCT AGGCCATGT GCAAGTCTT TGGTGGTTGG GTATGAAGTCTT TCGTTCACGGTCCTCACGGTCCTCACGCGAAACTCCTCCACGGGAACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AACTACTAT GTATTTAATT ACATATGTAA AAGACCTAGC TATACTTATT TCTTTTTTTGT	120 180 240 300 360 420 480 540 6600 720 780 960 1020 1140 1200 1320 1380 1440 1500	
50556065	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG GCAGGGGCTG TGACTCCTCTG CATCCTCCTG ATTCTATGAC TCTTGCAGGT ATTCTATGAC GGAAAACA GGAAAACA GGACATTGAG GTATGTATTACT TATATATAG CTCATATTGT CCATATTGT CCATATTGT CAGTCAAATA CTAATTTACT TATATTATC TTATTTTTA TTTCATTGT TTTCATTGT TTTCATTGT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TCCATTCTCG AGGATTTCTCG AGGATGTCCT CTGAATCTGA GAATGTCCT CTGATCTGA GATGAGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC ACTCTTACC ATACTATCAT TATGTATATA TGATACTAT GCATCCCATT TATGTATATA TGATACTAGC GAAGATGAT TCATTACT AAGGATGAT CCATAATCTT CATATACT CTCATATCTC CATATACTT CTCATATCTC CTCATATCTC CTCATATCTC CTCATATCTC CTCATATCTC CTCATATCTC	I ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATCCTGGG CCTATGCCGG CCATTCCTGGA CCAGCACATT CAATCTTTGT AGAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC TAACACCAAG GAGCAAAAG TAACATTAGG CAAACAAACA TTATCTTCTT GAGTAATCAT ATACTTATA ATACTTATA ATTCTTCATTA ATACTTCATTA TCTTTCAATT TCTTTCAATT TCTTTCAATT TTAGACACTT TAACATCTT TAACACTTAAC TTACATCTT TCTTTCAATT TTCTTCAATT TTCTTCAATT TTCTTCAATT TTCTTCAATT TTCTTCAATT TTCTTCAATT TTCAATT TTCTTCAATT TTCAATT TTCTTCAATT TTCAATT TTCAA	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACACACTC GGACACACC GGCCACGGT GATGGCTAC AGCATGGTAT CAGGTACGAC GGCCACGTT AGCATGGTAT CAGGTACCA ACCTACCA ACCTACCA ACCTAGAAT AAAAACCCAT TCCTCAATAT ACTCAAATG TCTTATTAAA TTTCTTTTC CCTTTGGGTG CTTCATGGTT CTTCATGGTT ACATTGTTTT ACATTTCATA	CCGGGCGCGG TCCCCGCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT ATTGGGGTGA GGCATCAGT ATTGGGGTGA TTTGGTCAGG CTACTTTGCT AAACCTGCAC TGTGAAACA GGGAAGGGGT ATTGGGTATT GTGTTAAAAA AGGAGGGAAG GGGAAGGGGT ATAGACAGT ATAGACAGT ATAGACAGT CCTTTATAT CCTTTGCAC GCCCTTTTA GCCTACATTT GCCTACATTT	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGGCTGCA GCACTGCCCT AGGCCATGTA GCAAGTCTT TGGTGGTTGG GTATGAAGTC TCGTTCAACG CTTCCACCG CTTCCACG GTTCCACG AACCGAAAAT ACTCCAAACT ATTTACCAT GCTCCTTCAA GCTCCTTCAA AAATACTATT GTATTTAATT ACATATGTAA AAGACCTAGC TATACTTATA TTGTTTTTTTTTT	120 180 240 300 360 420 480 540 600 660 780 840 900 1020 1080 1140 1200 1320 1380 1440 1500 1500	
5055606570	GAGCAACCTC CGACCAGAG GCGGGGCCAA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CATCCTCTGCAGAG ATTCTATGAC TGGCTGGGCT TGACTACTTCTAGACAC TGGCTGGGCT TGACTACTATTACAC TTGTATTACT TTGATTACT TATATTACT CATTATTACT CATTATTACT TATATTACT TTATATTACT TTATATTACT TTATATTACT TTATATTACT TTATATTACT TTATATTACC TTATTTTTTA TTTCATTGAT ACCAAGAAG GTGATAAATT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TCATTCTCCG AGGATTTACT TGGATGTCCT CTGAATCTGA GATGAGTGTC CCTGAGTATT CCTATGACCC GCTGCTTTTC ACCTCTTACC GCTGCTTCT ACAAAACAAA	ATCCAGACTC GGCGGCGCCAG GGAGTCCGGG CCTTCCTGGG CCTTCCTGGG CCTATCCCGG GCAGCACATT CAATCTTGT AGAAGATGAC TAGTTGCAC CAGTCAATGC CAGTCAATGC CAACACCAAG GAGGCAAAG TAACTTTCT TACATCTTCT TACATGTTT ATACTTCATT ATACTTCAAT TTCTTCAATT TTCTTCAATT ATAGGACTTC TAAATCAGAC AAATCAGAC AAATCAGAC AAATCAGAC AAATCAGAC TAATCTTCAATT TTCTTCAATT ATAGCACTC CAAATCAAAC AAATCAGAAC AAATCAGAAC AAATCAGAAC AAATCAGAAC AAATCAGAAC AAATCAGAAC	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCAGGC TTGCCCACCT CGAGCAGGT ATGGATCGGC GGCAACCATC GAGCACCGTT GATGGCTGT CAGGTACCACA ACCATGGTAT CAGGTACCAA ACCATAGAAT AAAAACCCAT TCCTCAAATAG TCTAAATAG TCTATAAA TTTCTTTTC GCTTTGGGTG CATCGTATT ACATCTATCAT ACTCATGGTAT TCTATGAGGT CATCGTTATT ACATCTATCAT TCTTTTGGGTG CATCGTTATT ACATTTCATT ACATTTCATAT TTTGGAGGCA ATCCCTGTAC	CGGGGGGGGGGGGGGGGAAACTCTC ATGGCCAACGGCCACCCCCAGATCGACGCCCCAGATCGAGGGAAGGGGAACTTTGGTCAGACTTTGGTCAGACTTTGAAACTGCACACTTTGAAACACTACACACTAACCCTTTTGCAACCCCTTTTCAAACCCCTTATGCCCTTATTAATCTTCTGACCCATTCCAAACCCCTTATTAATCTTCTGCCACCACTTCCAAACCCCATTCTTCAAACCCCATTCTCAAACCCCATTCTCACACCCACCCCCC	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGTCTCTGC CGCGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT CTCTTCAACAGA CTCTCTCAC GTTCCTGTCC CTTCCAGCAGA ACTCAGTAAT ACTCAGTGCT ATTTTACCAT ATTTTACCAT GCTCCTTAAA AAATACTATT GCTCCTTAAA AAATACTATT TATTTACATT TCATTTACTT TCATTTACTT TCATTTTTTTT	120 180 240 300 360 420 480 540 6600 720 780 960 1020 1140 1200 1320 1380 1440 1500	
50556065	GAGCAACCTC CGACCAGAG GCGGGGCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CATCCTCTG TCTTGCAGGT ATTCTATGAC TGGCTGGGCT TGGATAACCA GAAAGACTAC GGACATTGAG GTATGTATTACT TTGATTACT TATATATAGA CTCATTATTAC TTATTATAC TTATTATAC TTATTATAC TTATTATAC TTATTTAT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GAATGAGGTGC CTGGATGATCTGA GATGAGGTGC CTGGCTATTT CCTATGACCC GTGTTACCC GTGTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCG GGGGCGCC CCTTCCTGGG GCGGGCGCC CCTTCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATTAGC CAGTCAATGCCAC CAGTCAATGCCAC CAGTCAATGC TACACCAAG GAGGCAAAAG TAACATTAGG CAAACAAAAC TTACTTCTT TACATGTTTT ATACTTAAA ATTGGTAATAT TTCTTCAATT ATACTTCAATT ATACACTTC TGAATCTAAC AAATCAGAAC CAATCAACAC CAATTGAGAC CAATCAACAC CCAATTGAGT TTCCCACAC CCAATTGAGT	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCAGGC TTGCCCACCT CGAGCAGTC ATGGATCGGC GGCAACCATC GGCACCGTT GATGCTTGT CAGGTACGAA GGAGGTACCAC GGCCACCGTT CCAGGTACCAA GGAGAACC GCCCTATCCA GAGAAATCA ACCTTAGAAT ACTCTAAAAT TCTCTAAAA TTTCTTTTTC CCTTTGGGGC CATCGTTT ACATCTT ACATCTT ACATCTT ACATCTT ACATCTT ACATCTT ACATCTT ACATCTT ACATCTT ACATTTT ACATCTT ACATTTT ACATCTT ACATTTCATAT TTTGGAGGCA CATCCTGTAC AGCTGCATGC	CCGGGCGCGG CCACACG CCCCT CCCCACACG CCCCCC CCCCCC CCCCCCC CCCCCCCC	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTTCTGC CGGGGCTGCA GCACTGCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT TCGTTCACGGTCTCACGGTCCTTCAC GTTCCTGCACAAAAT ACTCCTTCAC GTTATTACAT ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AAATACTATT GTATTTAATT ACATATGTAA AAGACCTAGC TAGGTCTTATT TTGTTTTGTG TAGTTCTTAA CATGACCTAAA AGCACTCTTG GCTCTTTAA	120 180 240 300 360 420 540 600 600 720 780 840 900 1020 11260 1260 1320 1320 1440 1500 1560 1680 1740	
5055606570	GAGCAACCTC CGACCAGAG GCGGGGCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG GCCCAGTGG GCCCAGTGG CGAGGGGCTC TGACTCCTTG CATCCTCCTG CTTGCAAGAC TCTTGCAGGT ATTCTATGAC TGGCTGGGCT TGGATAACA GGACATTGG GGACATTGAG GTATATTACT TATATATAGA CTCATATTATC TTATTTTTA TTTCATTGGT AGCCAAGAAG GGACAAACTTTA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT TGGATGTCTGA GATGAGGTGC CTGATCTGA GATGAGGTGC CTGCTTTTC ACCTCTTACC GTTGTACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCG GGAGTCCGGG GGGGGCGC CCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG CAGTCAATGC TCTGCCTCT CAACACCAAG GAGGCAAAAG TAACATTATG CAACACAAAA TTATCTTCT GAGTAATCAT ATACTTTAT ATACTTAATA ATTGGTATAT TCTTTCATTA TCTTCATTA TCTTTCATTA TCTTCATTA TCTTTCATTA TCTTCATTA T	CAGCGCCGCC CGAGCAGGC CGAGCAGGC CGAGCAGTC ATGGATCGGC GAGCACCGT GAGCACCGT GAGCACCGT GAGCACCGT GATGCATGGT GATGCATGT ATGCATGT ACATGCATACA ACCTTAGAAT ACTCAAATAT ACTCAAATAT ACTCATATAC TTCTTTTC GCTTCATGGTT CTTCATGGTT CATGTTATT ACATTTCATA TTTGGAGGC ATCCTCATAT ACATTCATAT	CGGGGGGGGGGGGTCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CGTGCCTTGA GGCATCAGT ATTGGGGTAGA TTTGGTCAGG CTACTTTGCT AAACCTGCAC TGTTGAAACA TTTGGGATT TTTGGGAT TTTGGGAAGA ATTGGGAAGA TTTGGTAAAA AGGAGGGAA ATAGGTAAAT ATAGAACA TCTTTTCCT AAACCTTATAT CCTTTTTCA AGCCCTTTTCA AAGCCCTTATT AACCTTACCAC TCTTACCCAC GCTTTTCACCAC GTTTTATAT TCTTGACCCAC GTTTTATATC	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTCCAC GCACTGCCCT AGGCCATGTT TGGTGGTTGG GTATGAAGTCTT TCGTTGATTCT TCGTTCACGGTCCCTTCAC GTTCCACGGG AACCCAAAAA ACTCCATTCAC GTTCCTTCAC GTTCCTTCAC GTTCCTTCAC GTATCATGTAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AAATACTATT TCATTTAATT ACATATGTAA AAGACCTAGC TAGTTTCTG TAGTTTCTG TAGTTTCTAA CATGACCAAA AGCACCCTTAAA AGCACCCTAAACT	120 180 240 300 360 420 480 540 600 660 720 840 900 1020 1140 1220 1380 1440 1500 1560 1620 1680 1740 1800	
5055606570	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CATCCTCTGCAGAG ATTCTATGAC TGGTGGGCT TGACAGCT TGGAAAACA GGACATTGAG GTATGGTÄTT AAACATGGCT TTGTATACT TTGTATTACT TATATTACT CATTATTACT CATTATTACT TTTATTTTTA TTTCATTGGT AGCCAAGAAG GTGATAAATT TTTGCTTTGA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GATGAGCTGC CTGGCTATTC CCTATGACCC GCTGCTTCTC ACCTCTTACC ACCTCTTACC ATACTATATA TGATACTATAT TGATACTATAT TCATTATAT TCATTATAT TCATTATTC CTATTACTC AAGAATGATT CCTTATCCC AATTATTATC CCTGTTGACC AATACTTTC CATTATTACT TCATTTACTC AAGAATGAT CCCTGTTGACC AATATTTTT CTTTTACTC AATATTTATT CTCTTTTTACC TCTATTCC TTTATTTA	ATCCAGACTC GGCGGCGCGC GGGGGCGCC CCTTCCTGGG GGAGTCCGGG CCTATGCCGG GCAGCACATT CAATCTTGT AGAAGATGAC TAGTTGCAC CAGTCAATGC CAGTCAATGC TCTGCCTTCT CAACACCAAG GAGGCAAAG TAACATTAGG CAAACAAACA TTAATCTTCTT TACATGTTTT ATACTTAAAA ATTGGTAATT TTCTTCAATT TTCTTCAATT ATAGGACTTC CAAATCTAAC CAAATCAAAC CAATTGAGT TTTTCAATT TTCTTCAATT TTCTTCAATT ATAGGACTTG CAAATCTAAC CAATTGAGT TTTTAAGGT TTTTAAGGT TTTTAAGTT TTAATTGTAT TTGTTTTTATTT TTGTTCTTTT	CAGCGCCGCC CGAGCAGGC CTTGCCCACCT CGAGCAGGC CGACCACTC CGAGCAGTC ATGGATCGGC GACACACATC GAGCACCGTT GATGGCTGTC GATGGATACAC GGCACCGTT CAGGTACGAA CGCACCGTT CAGGTACCAA CGCACCGTT CACTACAATC ACCTTAGAAT TCCTCAATAT TCTCTTATAA TTTCTTTTTC CTTCATCGTT CATCGTTCATCAT TTGAGGCA ACCTTATCATA TTTGGAGGCA ATCCCTGTAC ACCTTATCATA TTTGGAGGCA ATCCCTGTAC ACCTTATCATA TTTGGAGGCA ACCCTGTAC AGCTGCATCC CTTTATTCATA ATTTCCTTAT TTTGGAGGCA ACCCTGTAC AGCTGCATCC CTTTATTCATA TGTTTCCCA AGCTGCATAC AGCTGCATAC AGCTGCATACAA	CGGGGGGGGGGGGGGGGAAACTCTC ATGGCCAACGGCCACCCCCCCCCC	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGTTCTGC CGCGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGA CTCTCTTCAC GTTCCTGTCC CTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AAATACTAAT GCACTAGA TAATCTAAT TAATTTACAT TGATTTATT TGATTTATT TCGTTTCTAG TAGTTCTAA AAGACCTAAA AAGACCTAGC TAGCCTAAA CCCCTAAACT CCCTCAAACT TCATGCGTTT TTCTGGAGT	120 180 240 300 360 420 540 600 600 720 780 840 900 1020 11260 1260 1320 1320 1440 1500 1560 1680 1740	
505560657075	GAGCAACCTC CGACCAGAG GCGGGGCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGTG TGACTCCTTG CATCCTCTG CATCCTCTG TCTTGCAGGT ATTCTATGAC TGGCTGGGCT TGGATAACAA GAAAGACTAC GGACATTATGT CATTATTACT TATATTATC TTATATTAC TTATATTAC TTATATTAC TTATATTAC TTATATTAC TTATATTAC TTATTATTAC TTATATTAC TTATATTAC TTATTTAC TTATTTAC TTATTTAC TTATTTAC TTATTTTTA TTTCATTGGT AGCCAAGAAG GTGATAAATT ACCTTTTTGA CACAACTTTA ACCTTTTTGT TATATCTTCC GGATAATCTGC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TCATTCTCG AGGATTACT TGGATGTCCT CTGAATCTGA GATGAGGTGC CTGGATGATGA GATGAGGTGC CTGGCTATTT CCTATGACCC GTGTTACCC GTGTGACACA ACAAAACAAA	ATCCAGACTC GGCGGCGCG GGGGCGCC CCTTCCTGGG GGGGTCGCG CCTTCCTGGG CCTTCCTGGG CCTTCCTGGG CCAGTCACCG GCAGCACATT CAATCTTTGT AGAAGATGAC TAGTTGCCAC CAGTCAATGC TACACCAAG GAGGCAAAAG TTACTTCTT GAGTAATCAT TACATTAAAA ATTGGTAATT TTCTTCATTA ATTGGTATT TATAGCACTTG TGAATCAACA CAATCAACA TTCTCATTA ATTGCACTTC TGAATCAACA TTCTCATTA TCTCTCATAA CAATCAACA TTCTCATTA TCTCCACAC CCAATTGAGAC TTCCCACACA TTTAATTGAT TTTAATTGTAT TGGTTTTTTAATTGTAT TGGTTCTTTTT	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCAGGC TTGCCCACCT CGAGCAGTC ATGGATCGGC GGCAACCATC GGCCACCGTT GATGGCTGTC CAGGTACGAA GGGAGGTC GCCCTATCCA GAGAAAATCA ACCTTAGAAT ACTCAAATGC TCTTAGAAT TCTTTTTC CCTTCATGCT CATCTTTTTTC CATCTTCATAT TTTGTTTTC CATCTTCATAT TTTGTTTCT CATCTTCATAT TTTGTTTTC CTTCATGCGT CATCGTATT ACATTTCATAT TTTGGAGCA ATCCCTGTAC ATCCTGTAC ATCCTGTAC ATCCTGTAC ATCCTGTAC ATCCTGTAC ATCCTGTAC ATCCTGTAC ACTCTGATGC CTTATTCATA TTTTTCCTA ACTTTTCCAA ATCCCTGTAC ACTCTGAACAA GCTGTAACAA GCTGTAACAA GCTGTAACAA	CGGGGGGGGGGGGGGGAGACCCTTATAAATTAAATTAAA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGGTCCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTC TCGTTCAC GTTCCTCAC GTTCCTCAC GTTCCTGCC CTTCCACGGG AACCGAAAAT ACTCAGTGCT ATTTTACCAT ACTCATAT ACATATGTAA AAGACCTAGC TATACTTAT TTGTTTTGTG TAGTTCTAA CATGACCTAA AGGACCTATG GGTGTTCTAA CATGACCTAT GGTGTTTTAAC TTGTTTTGTG TAGTTTCTAA CATGACCTAT GCTCCTTAA CATGACCTAT TCGTGCTTTAA CCCCTAAACT TCATGCGTT TCATGCGTT TCTTCTGCGGT TCTTCTGCGGT	120 180 240 300 360 420 480 5540 600 -660 720 780 840 900 1020 1140 1260 1320 1340 1500 1680 1740 1860 1920 1980	
5055606570	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG ATTCTATGAC TGGTGGGGT ATTCTATGAC GGAAAACA GGAAACATTA AACATGGCT TGTATTACT TATATATAGA CTCATATTGT CCATATTGT CCATATTGT TTTCATTGT TTTCATTGT AGCCAAGAAG GTGATAATT TTTCATTTGT TTTCTTTTGT ACCTTTTTT TTTCTTTTGT ACCTTTTTTT ACCAAACTTTA ACCTTTTTTTT ACCTTTTTTTT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG GCCACCTTCG AGGATTTCTCG AGGATGTCCT CTGAATCTGA GAATGTCCT CTGAATCTGA GATGAGTGCC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC ACTCTTACC ATACTATT TGATACTAT TGATACTAT TGATACTAT TGATACTAT TCATTACT CAAGATGAAT TCATTACT CAAGATGAAT TCATTACTC AAGTGATT TCATTACTC AAAAACAAA TAATCTTATT CATACTCC CAAAACTAT TCATTACTC AAAATTTTACT CAAAAACTAAT TCATTACTC CAAAATTTTACT CAAAATTTTACT CAAAATTTTACT TCATTACTC AAATTTTACT TCATTTACTC TAATTTACTC TAATTTACTC TAATTTACTC TAATTTACTC TAATTTACTC TAATTTACT TCCCATTCC TAATAATACTTC TTGATTGACT TCAATTACTC TAATAAGGTG TGACAAATTT TTGCCAAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATCCTGGG CCTATGCCGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAGATAGA TAGTTGCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAACACAAG TAACATTAGG CAACACAAG TAACATTATT TACATTATA TACATTATA TACATTATA TACATTATA TACATTATA TACATTATA TACATTATA TACATTATA TACATTAAA TACATTAAA TACATTAAA TTCTTCAATA TACATCAAC CAAATGAAAC CAAATGAAC TTCCCACAC CAAATGAGAC TTTTAAGCTA TTTTAAGCTA TTTTAAGCTA TTTTAAGCTA TTTTAAGCTA TTTTAAGCTA TTTTAAGCTA TTTTTAAGCTA TTTTTAAGCTA TTTTTAAGCTA TTTTTAAGCTA TTTTTAAGCTA TTTTTTTTTT	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGGTC ATGGATCGGC CGACACATC GGACACACCGG GCAAGCAACC GGCCACCGTT AGGATGCTGT AGGATGCTAC AGCATGGTAT CAGGTACGA ACCTACCA ACCTACCA ACCTACAAT ACAAATCA ACTCAAATG TCTATATAAA TATCTCTAAA TTTCTTTTC CTTAGGGTG CATCGTTATT ACATTTCATA TTTGGAGGCA ATCCCTGTACT AGCTGCATT TTTGGAGGCA ATCCCTGTACT TTTGGAGGCA ATCCCTGTACT TTTTCCAA TTTTCCAAT TTTTGCAGGCA ATCCCTTATT TTTTTCCAATT TTTTTCCAATT TTTTTCCAATT TTTTTTCCAATT TTTTTTCCAATT TTTTTCCAATT TTTTTCCAATT TTTTTCCAATT TTTTTCCAATT TTTTTCCAATT TTTTTCCAATT TTTTTCCAATT TTTTTCCAATT TTTTTCCCAATTCCTTAATC AGCTGCATGC CTTTATTCCAA GCTGTAAGCA GCTGTAAGCA GATACTTAAC	CGGGGGGGGGGGTCCCCGCCTT GCAAACTCTC ATGGCCAACG GCATCGTCA GCGATCACGTCAGGCGTGAACGCCTCC CGTGACCGCCC CGTGACTCAGG GCATGAGA ATTGGGGTAGA TTTGGTCAGG CTACTTTGCT AAACCTGCAC TGTTGAAACA TTTGGGAAGA TTTGGGAAGA TTTGGGAAGA TTTGGGAAGA TTTGGAACAA TAAGGAAGAGGTA ATAGGTAAAT CCTTATAT CCTTTTCCCCCA GCCCTTTTCA AACCCTTAT TCTTGACCACT TCTTACCCAC GCTTTTATAT CTTTGACCAC GCTTTTATAT TCTTCCCCCA GTTTTATATC AGTGTAAATA AGTGCTAGAA AGTCACTTAA AGTGCTAGAA CAGTCACTTAA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTCCAC GCACTGCCCT AGGCCATGTA GCACAGTCTT TGGTGGTTGG GTATGAAGTCTT TCGTTGATCAC GTTCCACGG AACCCAAAAA ACTCCACTCC	120 180 240 360 420 480 540 600 660 720 840 900 1020 1140 1220 1380 1440 1500 1560 1620 1680 1740 1800 1740 1800 1980 2040	
505560657075	GAGCAACCTC CGACCAGAG GCGGGGCCAA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CATCCTCTG CATCCTCTGCAGAG ATTCTATGAGAC TGGCTGGGCT TGGAGAAACAA GAAAGACTAC GGACAATTAACT TTATATATAC TTATATATAC TTATATATA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TCATTCTCCG AGGATTTACT TGGATGTCTC CTGAATCTGA GATGAGTGTC CTGATCTGA GCTGCTTTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCCAG GGAGTCCGGG GCGGGCGCC CCTTCCTGGG CCATCCTGGG CCAGCACATT CAATCTTGT AGAAGATAGC CCAGTCAATGCCAC CAGTCAATGCCAC CAGTCAATGC CAACACCAAG GAGGCAAAAG TAACATTAGG CAAACACAAAACA TTATCTTCTT ATACTTTAT ATACTTAAAA ATTGGTAATTC TTCATTCATT TTCTTCAATT ATAGCACTTC CAATCAACAC CAATTGAGT TTATCATTC TTCAATT ATAGCACTTC TGAATCTAAC CAATTGAGT TTTTAAGGT TTTTAAGTTA TTGGTTTT TCTCTCTGTA TTGAGATAAT TCGTCTGTTT TCTCTCTGTA TTGAGATAAT ACTCTCATTA TGGAGATAAT ACTCTCATTA TGGAGATAAT ACTCTCATTA TGGAGATAAT ACTCTCATTA TGGAGATAAT ACTCTCATTA AGGACACTGAA	CAGCGCCGCC CGAGCAGGGC CTTGCCCACCT CGAGCAGGTC ATGGATCGGC GGCAACCATC GAGCACCGTT GATGCTGTC GAGCACCGTT CAGGTACCAA GGCAACCATC GCCACCGTT CAAGCATCGAA ACCATACCAA ACCATACCAA ACCATACAA ACCATACAA ACCATACAA ACCATACAAA TCCTCAAATAT TCCTCAATAT TCTTATTTC GCTTTGGGTG CATCGTTAT ACATTCATAT TTCGTGTGC CATCGTTAT ACTCATGGTG CATCGTTAT ACTCATGGTG CATCGTTAT TTGGAGGCA ACCCTGTAC ACCTGTACCA ACCTGTACCA ACCTGTACCA ACCTGTACCA ACCTGTACCA CGTTTACCAA CGTTTACCAA CGTTTAACAA TTTTCCCA GCTGTAACCA GCTGTAACCA GCTGTAACCA GCTGTAACCA GCTGTAACCA GCTGTAACCA GCTGTAACCA GCTGTAACCA GCAGTCACTG GAAGTCACTG	CGGGGGGGGGGGGGGGGAAAAAACTCTC ATGGCCAACG GCCATCGTCA GCGATCGCCC CAGATCCAGT GGCATCAGT GGCATCAGT GGCATCAGT GGCATCAGT ATTGGGGGTA TTTGGTCAGA TTTGGTCAGA TTTGGAAACA TTTGGAAACA TTTGGAAACA TTTGGAAACA TTTGGAAACA TTTGGAAACA TTTGGAAACA TTTGGAAACA TTTGGAACA TTTGGAACA TTTGGAACA TTTGGAACA TTTGAAACA TCCTTATAAT CCTTTGCAC GCCCTTTTCA AAGCCCTAT TCTTACACT TCTGACCCA TTTTTATATC AGTGTAATT AATCTTTCTC AGTGTAATT AATCTTTCAC AGTGTAATT AGTGCTAGAC AGTTAAAAC AGTTAGAAA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT CTCTTCAC GTTCCTGTCC CTTCCACCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AAATACTATT GTATTTAATT ACATATCTAT TTGTTTTGTG TAGTTCTAA AGCACTATC TAGTTCTAA CATGACCAAA AGCACTCTTG GGTGTTGTAA CCCCTAAACT TCATGCGTTT TCTTCGGAGT TCTTCTGCAGTT TCTTCTGGAGT TCTTTCTACC AGGTAGTGTC ACTACCGTTC ACCACCGTAC	120 180 240 300 360 420 480 5540 600 -660 720 780 840 900 1020 1140 1260 1320 1340 1500 1680 1740 1860 1920 1980	
505560657075	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG GCGAGGGGTG TGACTCCTTG CATCCTCTG CATCCTCTG CATCCTCTG CATCCTCTGCAGGT ATTCTATGAC TGGCTGGGCT TGGAGAAACA GAAAGACTAC GGACATTAGG CTATTATACT TTATATACT TTATATACT TTTCATTGGT AGCCAAGAAG GTGATAAATT ACCTTTTTTA ACCTTTTTTA ACCTTTTTTA ACCTTTTTTA ACCTTTTTTTA CCATATTACT TTTTCTTTTGA CACAACTTTA ACCTTTTTTTA ACCTTTTTTTTA CCTTTTTTTT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CCTGAGCCAG TCATTCTCG AGGATTTACT TGGATGTCT CTGAATCTGA GATGAGGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCG GGGGCGCC CCTTCCTGGG GGAGTCCGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCAC CAGTCAATGCCAC CAGTCAATGC CAACACAAG GAGGCAAAAG TAACATTAGG CAAACAAAAA TTACTTCTT TAGATATATT ATACTTAAAA ATTGGTAATT TTCTTCATAT ATACACTAG TTCTCATT TAGATCACACA CAATCAAGAAC CAATTGAGT TTTAATTGTAT TTATTGTAT TTATTGTAT TTATTGAT TTATTGTAT TTATTGTAT TTATTGTAT TTATTGTAT TTAATTGTAT TTGATTTTAATTGAT TTGATTTTAATTGAT TTGATTTTAATTGAT TTGATTTTAATTGAT TTGATTTTATTGAT TTGATTTTTCTCTTGTA TTGAGATAAT ACTCTCATTCAAGAAC CCAATTGAGT TTTTAATTGTAT TGGTCTGTTT TCTCTCTGTA TTGAGATAAT ACTCTCATTCA AGACACTGAA	CAGCGCCGCC CGAGCAGGC CTGACCACT CGAGCAGGC CGACACACT CGAGCACACT CGAGCACACT CGAGCACACT CGAGCACCGT GAGCACCGT GAGCACCGT GATGCATCCA GGCACCGTT CCAGGTACCA GGCACCGTT CCAGGTACCA GGCACCTTTCCA GAGAAATCA AACACTAGAAT ACTCAAATGC TCTCAATAT TCTTTTTCT CCTATCTA ATTTCTTTTC CTTCATGCGT CATCGTATT ACTCATGCGT CATCGTATT ACATTTCATAT TTTTGAGCCA ACCCTGCACC ACCTGCACC CTTATTCCAT ACTCTCATACT TTTTTCCT ACATTTCCAT ACTCTCATCCGT CTTCATCCT ACATTTCCAT ACTCTCATCC CTTATTCATA TTTTCCAT ACTCTCATCC CTTATTCATA TTTTTCCCA ACCTGCACC GATACTTAAC GATACTTAAC GATACTTAAC GATACTTAAC GACAGCCACTG ACCAGTCTAT ACACTCACC GACAGCCACTC CTTATACCT CACCACTCTAT CACCACTCAT CACCACTCAT CACCACTCAT CACCACTCTAT CACCACTCAT CACCACTCTAT CACCACTAT CACCACTAT CACCACTCTAT CACCACTCTAT CACCACTCTAT CACCACTCTAT CACCACTCTAT C	CGGGGGGGGGGGGGGGAGACCCTCAAAAAAAAAAAAAAA	ACCCCAACCC AACTTCCTCC CGGGGTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTC TTCGTTCAC GTTCCTCAC GTTCCTCAC GTTCCTCAC GTTCCTGCA AACTCAT ACTCAGAAA ACTCAGTGCT ATTTTACCAT ATTTTACCAT ACTCATAAA AAGACCTAC TAGACTAT TGGTTCTAA AGGACCTATC TGTTCTTCAC GTGTTCTTAAT TAGATTTTTTTTTT	120 180 240 300 360 420 600 -660 720 780 840 900 1020 1140 1260 1320 1380 1440 1500 1680 1740 1880 1980 2040 2160 2220	
50 55 60 65 70 75	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG GCGCGGGGCTG TGACTCCTTG CATCCTCTG CTTGGAAGAC TCTTCCAGGT ATTCTATGAC GGACATTGAG GTATTGATACT TATATATACT TATATATACT TATATTTTTA TTTCATTGGT AGCCAAGAAAT CTAATTTTTTA TTTCATTGGT AGCCAAGAAG GTGATAATT TTTCATTGGT TATATTTTTTTA TTTCATTGGT TATATCTTCATTGGT TATATCTTCATTGGT TATATCTTCATTGGT TATATCTTCATTGGT TATATCTTCATTGGT TATATCTTCC GATAATCTTC GATAATCTTC CTTCATTTGCT TATATTACT TTTATTTGCT TATATTACT TTTATTTGCT TATATTACT TTTATTTGCT CTTCATGTGT AATATTAATT TTTATTTGCT CTTCATGTGCT CTTCATGTCATCTCC CTTCATGTGCT CTTCATGTGCT CTTCATGTGCT CTTCATGTGCT CTTCATGTCATG	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TCCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA GATGAGTGTCC CTGAGTGATAG GATGAGTGTCC CTGAGTGATAG GATGAGGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC ACCTCTTACC ATACTATTAT TGATACTAT TGATACTAT TCATACTAC AAGGATGATT TCATTTACTC AAGGATGATT TCATTTACTC CAAAAACAAA TAATCTTATT TCATTATTACTC AAGGATGATT TCATTTACTC TCATTACTC TAATAAACTT TCATTTACTC TAATAATCTT TCATTGACT TTGATTGAAT TCCCCATTCC TAATAAGGTG TGACAAAATAT ACTTGCCAAA AGTTTATATT CAGCTGGCTG TTCACTGCCT TCACTGCCT TCACTGCT TCACTGCCT TCACTCC TCACTCAC TCACTCAC TCACTC TCACT TCACTC TCACT TCACT TCACTC TCACT	I ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATCCTGGG CCTATCCTGGG CCTATCCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC TAACACCAAG TAACATTAGG CAAACAAACA TAACATTATTTT ATACATTATA ATCTTCATTA ATACTTCATTA ATACTTCATTA TCTTCAATT ATAGCACTAGA TAACATAGC TAAATCAGAAC TTAAACATTAGC TCAATTAGGTATAT TCTTCATTA TCTTCATTA TCTTCATTA TCAATTGAGT TTTAAACATTAGT TTTTAAGCAC TTCCACACA TCCCACACA CCAATTGAGT TTTTAAGCAT TTTTAACTAT TCTTCTCTTTA TCTCTCTTTT TCTCTCTTTT ATCTCCTCTTT AGGCACTGAA TCCTCTCTCTT CAGTGCTTT CAGTGCTTC CAGTGCT CAGTGCTTC CAGTGCTTC CAGTGCTTC CAGTGCTTC CAGTGCTTC CAGTGCTTC CAGTGCT CAGTC CAGTGCT CAGTGCT CAGTC	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGGGC CGACACATC CGACCACGT CGACCACGGG GCAACCACGT GATGCCACCGT GATGCCACCGT GATGCACCAC GCCACCGTT CAGGTACGAA CCGTACCA ACCTTAGAAT AAAAACCCAT TCCTCAATAT ACTCAAATGG CTTCATGGGTG CATCGTTATT TCTCAAATGG CATCGTTATT TCTCATACA TTTCGTAGCA ACCTGTACC ACCTGTACC ATCCTGACA ACCTGTACC TTTTGCAGCA ACCTGTACCA ACCTGTACCA TTTTCCCA GCTGTAAGCA TTTTTCCCA GCTGTAAGCA TTTTTCCAC GTTTATCATA TTTTTCCCA GCTGTAAGCA TTTTGAACAT TTTGAACAT CATTTTCCA GCTGTAAGCA TTTTGAACAT CATTTTCACA CTTTATCAT TTTGAACAT CATTTTCACA CTTTATCACA CTTTATCACA CTTTTACACA CTTTTACACA CTTTTACACA CTTTTACACT CACACCTCT ACCAGCTCTA CCCTCTACC ACCAGCTCT ACCAGCT ACCAGCTCT ACCAGCT ACCAGC ACCAC ACCAGC ACCAGC ACCAGC ACCAGC ACCAC ACCAGC ACCAC ACCAGC ACCAC	CGGGGGGGGGGGGGGGAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT GGCATCAGT GGCATCAGT GGCATCAGT GGCATCAGT ATTGGGGTA ATTGGGGTA TTTGGTCAGA TTTGGTCAGA TTTGGTAAACT TTTGGTAAACT GTGTTAAAACT GTGTAAACT ATAGGAGGAG GGGAAGGAGT ATAGGTAAT CCTTTGCCAC GCCCTTTTCA AAGCCCTATT AATCTTTCTG TCTGACCACT TCTGACCAT AATCTTTCTG AATCTTTCTCAC AGTGTAATT ACTGTAATT ACTGTAATT ACTGTAATT ACTGTAATT ACTGTAATT ACTGCACCAT TTTCACCAC AACAAAACCT TTCCACTGA AACTATGCCT TTCCACTGA AACTATGCT TTCCACTGA AACTATTTT	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGTCTCTGC CGCGTCTCTGC CGCGCTTCTGC CGGGGCTGCA GCACTGCCT TGGTGGTTGG GTATATTCT TCGTTCAAGA CTCTCTCAC CTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTACCAT GCTCCTTAAA AAATACTATT GTATTTATT TGATTTATT TGATTTATT TGATTTATT TGATTTATT TGATTTATT TGATTTATT TGATTTATT TGATTTATT TGATTTATT TGGTTTTTG GGTGTTGTAA AGCACTCTG GGTGTTGTAA CCCCTAAACT TCATGCGTTT TTCTTCTGGAGT TCATGCGTTT TTCTTCTGGAGT TCATGCGTTC ACACACGTAC CACACCGTAC CACACCTAC CCACTGAACCT CCACTGAACC CCACTGAACCT CCACTGAC CCACTGAC CCACTGACT CCACTGAC CCAC	120 180 240 360 420 480 540 600 660 720 840 900 1020 1140 1220 1380 1440 1500 1560 1620 1680 1740 1800 1780 1800 2040 2100 2160 2220 2280	
505560657075	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG GCAGCGGGCTG TGACTCCTTG CATCCTCTG CATCCTCTG CATCCTCTGCAGAG ATTCTATGAC TGGCTGGGCT ATTCTATGAC GGACATTGAG GTATGGTATT AAACATGGCT TTGTATTACT TATATATAGA CTCATTATGT CAGTCAAATT CAGTCAAATT ACCTATTGT AGCCAAGAG GTGATAATT TTTCATTGGT TATATTTTTT ACCTTTTTG ACCAACTTTA ACCTTTTTG CATATTTTCT TATATTTTCT TATATCTTCC GATAATCTCC CATATTCCC AATCCTT AACCTACCC AAACCTACCC AATCCTTTCAGC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG GCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCTC CTGAATCTGA GATGAGCTGC CTGGCTATTC CCTATGACCC GCTGCTTTTC ACCTCTTACC ATTACTATACT TAATCATATAT TGATACTATAT TCATTACTC AAGAATGATT TCATTTACTC AATTATTTC CTTATCCC AATTATTACT TCATTTACTC TCATTTACTC TCATTTACTC TCATTTACTC TCATTTACTC TCATTTACTC TCATTTACTC TTCATTTACTC TCATTTACTC TCATTTACTTC TCATTTACTC TCATTTACTTC TCATTTACTC TCATTTACTC TCATTTACTC TCATTTACTC TCATTTACTTC TCATTTACT TCATTACT TCATTTACT TCATTACT TCATTTACT TCATTTAC TCATTTACT TCATTTACT	ATCCAGACTC GGCGGCGCAG GGGGGCGCC CCTTCCTGGG GGAGTCCGGG CCTATCCCGG CCAATCCTGG GCAGCACATT CAATCTTGT AGAAGATAGC TAGTTGCAC CAGTCAATGC CAACACCAAG GAGGCAAAAG TAACATCATT TAACATCATT TAACATCATT TAACATTACTTCTT TAACATCATT ATACTTATA TTCTTCAATT ATAGGAATAAC AAATCAGAC CAAATCAGAC CAAATCAGAC CAAATCAGAC TTAACTTCATT TTCTTCAATT ATAGCACACA CCAATTGAGT TTTTAAGCTAAC TTAACTTAAC	CAGCGCCGCC CGAGCAGGGC CGAGCAGGGC CGAGCAGGTC ATGGATCGGC GGACACATC GAGCACCGTT GATGGCTGTC GAGCACCGTT CAGGTACCAA GGCAGCGTAC ACCTTGGATCCAA ACCTTAGAAT ACAAAACCCAT TCCTCAAATG TCTTATTATA ATTCTTTTTC CTTTTTTTC CTTTTCATC TTTGAGGCA ACCTTAGCAT ACTCATATA TTTGAGGGCA ACTTATATAA ATTCTTATAT TTTGAGGGCA ACCTTAGCGT CATCGTTAT ACTTCATAT TTTGAGGGCA ACCTTAGACT ACTTATCATA TTTGAGGCA ACCTGTACC CTTTATCATA TTTTTCCA ACCTGTACC ACCTGTACCA GCTTAACAT CTTTAACAT CTTTTAACAT CTTTAACAT CTTTGACCAT ACCAGTCTAT CTCTCTCCC CTCTTTCCC	CGGGGGGGGG TCCCCGCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CGTGCCTTGA GGCATCGGTG GTGCTTGA GGCATCGGG GTGCTTGA TTTGGTGGGT TTTTGGTCAG TTTTGGTAAAC TTTTGGTAAAC TTTTGGTAAAA TTTGGTAAAA TTTGGTATT GTGTAAAAT AGGAGGAGA ATAGGTAAAT GCCTTATTC CCTTTTGCAC GCCTTTTCA AAGCCCTAC TCTTGCCCA TTTTACAAC TCTGAACCA TTTTAACAAC AGTCATTAA ACTGTAAAAC TCTCTAACC TTTCACCCA TTTCACAC TTTCACACC TTTCACACC TTCCACTGAA CAGTCAATC TCCCCTACATC TCCCCCA TTTCACACC TTTCACACC TTTCACACC TTTCACTACA CAGTCTATTC TCCCCTGAA CAGTCTATTC TCTCTCTCCC TTTCACACC TTTTTACAAC TTTTAACAAC	ACCCCAACCC AACTTCCTCC CGGGGTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTC TTCGTTCAC GTTCCTCAC GTTCCTCAC GTTCCTCAC GTTCCTGCA AACTCAT ACTCAGAAA ACTCAGTGCT ATTTTACCAT ATTTTACCAT ACTCATAAA AAGACCTAC TAGACTAT TGGTTCTAA AGGACCTATC TGTTCTTCAC GTGTTCTTAAT TAGATTTTTTTTTT	120 180 240 300 360 420 600 -660 720 780 840 900 1020 1080 1140 1260 1320 1380 1440 1500 1680 1740 1800 1920 2040 2160 2220 2280 2340 2400	

```
2520
       GCACTGGTGT CTGGAGACCT GGATTTGAGT CTTGGTGCTA TCAATCACCG TCTGTGTTTG
       AGCAAGGCAT TTGGCTGCTG TAAGCTTATT GCTTCATCTG TAAGCGGTGG TTTGTAATTC
                                                                           2580
       CTGATCTTCC CACCTCACAG TGATGTTGTG GGGATCCAGT GAGATAGAAT ACATGTAAGT
                                                                           2640
       GTGGTTTTGT AATTTQAAAA GTGCTATACT AAGGGAAAGA ATTGAGGAAT TAACTGCATA
                                                                           2700
       CGTTTTGGTG TTGCTTTTCA AATGTTTGAA AATAAAAAA TGTTAAGAAA TGGGTTTCTT
                                                                           2760
       GCCTTAACCA GTCTCTCAAG TGATGAGACA GTGAAGTAAA ATTGAGTGCA CTAAACGAAT
                                                                           2820
       AAGATTCTGA GGAAGTCTTA TCTTCTGCAG TGAGTATGGC CCAATGCTTT CTGTGGCTAA
                                                                           2880
       ACAGATGTAA TGGGAAGAAA TAAAAGCCTA CGTGTTGGTA AATCCAACAG CAAGGGAGAT
                                                                           2940
       TTTTGAATCA TAATAACTCA TAAGGTGCTA TCTGTTCAGT GATGCCCTCA GAGCTCTTGC
                                                                           3000
10
       TGTTAGCTGG CAGCTGACGC TGCTAGGATA GTTAGTTTGG AAATGGTACT TCATAATAAA
                                                                           3060
       CTACACAAGG AAAGTCAGCC ACCGTGTCTT ATGAGGAATT GGACCTAATA AATTTTAGTG
                                                                           3120
       TGCCTTCCAA ACCTGAGAAT ATATGCTTTT GGAAGTTAAA ATTTAAATGG CTTTTGCCAC
                                                                           3180
       ATACATAGAT CTTCATGATG TGTGAGTGTA ATTCCATGTG GATATCAGTT ACCAAACATT
                                                                           3240
       ACAAAAAAT TTTATGGCCC AAAATGACCA ACGAAATTGT TACAATAGAA TTTATCCAAT
                                                                           3300
       TTTGATCTTT TTATATTCTT CTACCACACC TGGAAACAGA CCAATAGACA TTTTGGGGTT
15
                                                                           3360
       TTATAATGGG AATTTGTATA AAGCATTACT CTTTTTCAAT AAATTGTTTT TTAATTTAAA
       AAAAGGAAAA AAAAAAAAAA AAA
20
       Seg ID NO: 244 Protein sequence:
       Protein Accession #: AAD16433.1
                                         31
25
       MANAGLOLLG FILAFLGWIG AIVSTALPOW RIYSYAGDNI VTAQAMYEGL WMSCVSQSTG
                                                                             60
       QIQCKVFDSL LNLSSTLQAT RALMVVGILL GVIAIFVATV GMKCMKCLED DEVQKMRMAV
                                                                            120
       IGGAIFLLAG LAILVATAWY GNRIVQEFYD PMTPVNARYE FGQALFTGWA AASLCLLGGA
                                                                            180
       LLCCSCPRKT TSYPTPRPYP KPAPSSGKDY V
30
       Seg ID NO: 245 DNA sequence
       Nucleic Acid Accession #: CAT cluster
                                                               51
35
       TTTTTTTTT TTTTTTTT TTTTTCAAGG AGAGCACAAG GAACTTTATT AATGACTTTC
                                                                             60
       TTAATGGTTA AATGCTGTTT ACCAAGTGAC CCAGAGGCAG CGTGGTTTAG TGGTTTCAAC
                                                                            120
      AGCATGGTCC CGAGAGTCTG ACAAACCTCA GTTCAAATCC TTCTTTTGTC TTCACTTAGT
                                                                            180
       TTTTCTTCCT GAGATTTAGT TTCTTCATCG TTAACAATGA GGATATTAAT ATGTTTCACA
                                                                            240
       CAGTTGTTAT GAAGAATGCA TATATTAGAA TGCCTGTAGT CTCAGCTACT CAGGAGGCTA
40
       AGGTGGGGAG GTCGCTCAAG CCCAGGAATT CAAAGCTGCA ATGCATTATG ATTACAGCTG
       TTAATAGCCA CTGCACTTCA GCCTGGGCAA TGTAGTAAGA TCCCATCTCT GGCTCGGAGG
       GTCCTACGCC CACGGAGTCT CGCTGATTGC TAGCACAGCA GTCTGAGATC AAACTGCA
       Seg ID NO: 246 DNA seguence
45
       Nucleic Acid Accession #: XM_058553.2
       Coding sequence: 897-1400
50
       AATTITCAGA AGTITCGTAT GGGGATGGTT TTATATAAAT TCAGGTTTTT CCCACAATAA
                                                                             60
       TAAATGTATT TAGTCTCAGT GCTCAATAGA AGAGATTTCT AATAGAAAAG GATTCAAACT
                                                                            120
       GTGAAACCAT TTCTCTTTTA ATGTTTCACA TTCCTGTTAC AGATTTGTTC TCTTGTGACT
                                                                            180
       CTGTTATCCA TAATATGGAC AGTTCTTGAG TCCTAACATT GAGAGGTTTT CCCTTAGTGC
                                                                            240
       ATAGAGGGAA TGAGTATTAA TTGGAGAAGC TTAAAGTATT GCCACTTTAG CACTGAAGAT
                                                                            300
55
       TGGGATGAGA GGAGGTGAAA CCTCACTAGA AAAAGGGACA ATGTTAGTGT GGCCCTTCCT
                                                                            360
       GATCATGTTT AAGAAAAGTC ATGAAAATGG TGAACTAGTG TTTCCAAGCA TATTGGAAGG
                                                                            420
      GTTGAGTGTA TACTGTCTGT CAAAGACTTC CAGCATTTCC AGGTCCTAGA GAGGAACAAG ACTGGTAACC TGCCTATCTG TATTTTTAAG AACCCAGGAG GAAAGCTTTA TAATAGAACA
                                                                             480
                                                                            540
       TTATTTCTGT GTTTATGTAT AAGGGGTTTT TTGTTTTTTT AAAGACAGGA TCTCACTCCA
                                                                            600
60
       TTGTCCAGGC CAAGTGCAAT GGCACGAACC TCATAGCTCC TGGACTTAAG TGATCTGCCT
       GCCTTGCCT CCTGAGTAGC TGGGACTACA GCCATGAGCC CCCATGCCTG GCTAAGTTTG
                                                                            780
       TAGTCTTGCT TTGTTGCCAG GCTAGTCTCA AACTCCTGGC TTCAAGTGAT CCTCCTGCCT
                                                                            840
       CAGCCTCCCA GAGTGCTAGG ATTACAGCAC TTGGATTCAG CTTCTTCATT TCCAACATGG
                                                                            900
65
       AAGAAACTTA CACCGACTCC CTGGACCCTG AGAAGCTATT GCAATGCCCC TATGACAAAA
                                                                            960
       ACCATCAAAT CAGGGCTTGC AGGTTTCCTT ATCATCTTAT CAAGTGCAGA AAGAATCATC
                                                                           1020
       CTGATGTTGC AAGCAAATTG GCTACTTGTC CCTTCAATGC TCGCCACCAG GTTCCTCGAG
                                                                           1080
       CTGAAATTAG TCATCATATC TCAAGCTGTG ATGACAGAAG TTGTATTGAG CAAGATGTTG
                                                                           1140
       TCAACCAAAC CAGGAGCCTT AGACAAGAGA CTCTGGCTGA GAGCACTTGG CAGTGCCCTC
                                                                           1200
70
       CTTGCGATGA AGACTGGGAT AAAGATTTGT GGGAGCAGAC CAGCACCCCA TTTGTCTGGG
                                                                           1260
       GCACAACTCA CTACTCTGAC AACAACAGCC CTGCGAGCAA CATAGTTACA GAACATAAGA
                                                                           1320
       ATAACCTGGC TTCAGGCATG CGAGTTCCCA AATCTCTGCC GTATGTTCTG CCATGGAAAA
                                                                           1380
       ACAATGGAAA TGCACAGTAA CTGAATACCT ATCTCATCAA ATGCCAGACC CTAGAAGACT
                                                                           1440
       GITGCTTCTT CTTCTACCAG TGGGTTCTCA TTTTCCTCCT AATCTAATTA TAGAATGGTA
                                                                           1500
75
       AACTCCCTGT GACTTTCCAA ACTGACAAGC ACACTTTTTT CCTCCCCCCT TGAATCCTCA
                                                                           1560
       TTTAATGCAA GAACCCTCAT ACTCAGAAGC TTCCAAATAA ACCTTTGATA CAGATTG
       Seg ID NO: 247 Protein seguence:
80
       Protein Accession #: XP_058553.1
       MEETYTDSLD PEKLLQCPYD KNHQIRACRF PYHLIKCRKN HPDVASKLAT CPFNARHQVP
85
       RAEISHHISS CDDRSCIEQD VVNQTRSLRQ ETLAESTWQC PPCDEDWDKD LWEQTSTPFV
                                                                             120
       WGTTHYSDNN SPASNIVTEH KNNLASGMRV PKSLPYVLPW KNNGNAQ
```

WO 02/086443
Seg ID NO: 248 DNA sequence
Nucleic Acid Accession #: NM_003392
Coding sequence: 758..1855

	coarna sedo	ience: /50	1033				
5							
-	1	11	21	31	41	51	
			1	F	1		
	TTAAGGAAAT	CCGGGCTGCT	CTTCCCCATC	TGGAAGTGGC	TTTCCCCACA	TOGGCTCGTA	60
1.0	AACTGATTAT	GAAACATACG	ATGTTAATTC	GGAGCTGCAT	TTCCCAGCTG	GGCACTCTCG	120 180
10	CGCGCTGGTC.	CCCGGGGCCT	CGCCCCCCAC	CCCCTGCCCT	*CCCTCCCCC	CCCACCCCC	240
	CATCCTCCAC	CCCCCGCGCTC	GGCCACCCCG	CCTCCTTGGC	TCTCCCTCCA	CTTCTTCCTC	300
	TCCACTCGCC	GGGGAGAGGA	CTCTCGCCCA	CCCCACCCC	TTCTGAGTG	AATTACCCAG	360
	GGCCCAGGTT	GCACAGCACC	NACTACACAG	CCGCAGCGGG	GTGCGGGACT	CGAGCGAGCA	420
15	GAGGGACTGA	AGCGCCTGGC	AACIAGAGAG	TCACTCAACA	GAATTGAGAC	ACGTTTGTAA	480
13	TOCOTOCOCT	GCCCCGCGCA	CAGGATCCCA	GCGAAAATCA	GATTTCCTGG	TGAGGTTGCG	540
	TYCCCTCCATT	AAADSTTTAA	AAGAAACTGC	CTATATCTTG	CCATCAAAAA	ACTCACGGAG	600
	CNONNECCCA	CTCAATCAAC	ACTABACTTA	AGAGACCCCC	GATGCTCCCC	TGGTTTAACT	660
	ጥር ጥለ ጥር ርጥጥር	TOTATTAGGA	GAGAGGGAAT	AAACATCTTT	TCCTTCTTCC	CTCTCCAGAA	720
20	CTCCATTCCA	ATATTABECC	CAGGAGTTGC	TTTGGGGATG	GCTGGAAGTG	CAATGTCTTC	780
	CV V CALL CALL	CAPCACCCALA	TGGCCATATT	TTTCTCCTTC	GCCCAGGTTG	TAATTGAAGC	840
	ርን አምምርማማርር	TCCTCCCTAG	GTATGAATAA	CCCTGTTCAG	ATGTCAGAAG	TATATATTAT	900
	AGGAGCACAG	CCTCTCTGCA	GCCAACTGGC	AGGACTTTCT	CAAGGACAGA	AGAAACIGIG	960
25	CCACTTGTAT	CAGGACCACA	TGCAGTACAT	CGGAGAAGGC	GCGAAGACAG	GCATCAAAGA	1020 1080
25	ATGCCAGTAT	CAATTCCGAC	ATCGACGGTG	GAACIGCAGC	ACTGTGGATA	CCCTCACCCC	1140
	TTTTGGCAGG	GTGATGCAGA GTGAACGCCA	TAGGCAGCCG	CGAGACGGCC	CCCCACATACG	CCACCTGCGG	1200
	AGCAGGGGTG	GCCGCGCGCCC	TGAGCCGGGC	GIGCCGCGAG	TECETETEGE	GCGGCTGCGG	1260
	CTGCAGCCGC	GACTATGGCT	ACCCCTTTCC	CAACGAGTTC	GTGGACGCCC	GCGAGCGGGA	1320
30	COCCATCCAC	GCCAAGGGCT	CCTACGAGAG	TGCTCGCATC	CTCATGAACC	TGCACAACAA	1380
50	CONCACCOCC	CGCAGGACGG	TGTACAACCT	CCCTGATGTG	GCCTGCAAGT	GCCATGGGGT	1440
	CTCCCCCTCA	TGTAGCCTGA	AGACATGCTG	GCTGCAGCTG	GCAGACTTCC	GCAAGGTGGG	1500
	TONTOCCO	AAGGAGAAGT	ACGACAGCGC	GGCGGCCATG	CGGCTCAACA	GCCGGGGCAA	1560
	CTTCCTACAG	GTCAACAGCC	GCTTCAACTC	GCCCACCACA	CAAGACCTGG	TCTACATCGA	1620
35	CCCCAGCCCC	CACTACTGCG	TGCGCAATGA	GAGCACCGGC	TCGCTGGGCA	CGCAGGGCCG	1680
	CCTGTGCAAC	AAGACGTCGG	AGGGCATGGA	TGGCTGCGAG	CTCATGTGCT	GCGGCCGTGG	1740 1800
	GTACGACCAG	TTCAAGACCG	TGCAGACGGA	GCGCTGCCAC	TGCAAGTTCC	ACTOGIGCIO	1860
	CTACGTCAAG	TGCAAGAAGT ACTCAGCCCC	GCACGGAGAT	CCCCCTTATT	TATACABACT	ACAGTGATTC	1920
40	GCCACCCAGC	TTTTTAGAAA	TATETET TATE	TTTTCCCCAA	GAATTGCAAC	CGGAACCATT	1980
70	THE PROPERTY OF THE	ጥጉልርርልጥርጥል	AGAACTCTGT	GGTTTATTAT	TAATATTATA	ATTATTATTT	2040
	CCCAATAATC	CCCCTCCCAA	CCACGAAAAA	TATTTATTTT	GTGGATCTTT	GAAAAGGTAA	2100
	TACABCACTT	CTTTTCCATA	GTATAGAATG	AAGGGGGAAA	TAACACATAC	CCTAACTTAG	2160
	CTCTCTCCCA	CATGGTACAC	ATCCAGAAGG	TAAAGAAATA	CATTTTCTTT	TTCTCAAATA	2220
45	TGCCATCATA	TGGGATGGGT	AGGTTCCAGT	TGAAAGAGGG	TGGTAGAAAT	CTATTCACAA	2280 2340
	TTCAGCTTCT	ATGACCAAAA AAAACAAAAC	TGAGTTGTAA	ATTCTCTGGT	CCCAAGATAAA	TTGCTTTCTG	2400
• • .	AAAACAAAAC	AAAACAAAAC	AGAACCTCCCT	CACABGATG	TCATATTCTC	AAGGAAAAA	
	CATTTTCAAA	ATGATAALLI	CTCCTCAAAT	ATTCCATTTG	CAGACAGACC	GTCATATTCT	2520
50	N N TO N C C T C N TO	CALATTTCCCC	CAGCAGGGAG	GAAAGTCCCC	AGAAATTAAA	AAATTTAAAA	2580
50	CHCHAPATCHC	ABGATGTTGA	TTTGAAGCTG	TTATAAGAAT	TGGGATTCCA	GATTTGTAAA	2640
	አ አ ር አ ር ር ር ር ር ር	ATGATTCTGG	ACACTAGATT	TTTTGTTTGG	GGAGGTTGGC	TIGAACATAA	2700
	ATCA AATATC	CALCAL VALUATION	TTAGGGATAC	TTGGTTAGTA	AATTATAATA	GTAGAAATAA	2760
	TACATGAATC	CCATTCACAG	GTTTCTCAGC	CCAAGCAACA	AGGTAATTGC	GTGCCATTCA	2820 2880
55	GCACTGCACC	AGAGCAGACA	ACCTATTIGA	GGAAAAACAG	TGAAATCCAC	CTTCCTCTTC	2940
	ACACTGAGCC	CTCTCTGATT	CCTCCGTGTT	CACACGAAAT	GANACATTAG	TTTCCAAACG GAGCTCTGCT	3000
	GCAGCTCCAC	TGGGTCCCCT	ACCCATTOTAG	CTTTCCTAAA	ACTTTTATTT	TGAGGAGCAG	3060
	ጥ አ ርታምምም ነው የ	ጥር ጥጥጥ አልጥር	ACAGAACTTG	GCTAATGGAA	TTCACAGAGG	TGTTGCAGCG	3120
60	TATO CTOTT	カサウカサウぐサウサ	CTTTAGATTA	TCCACTCATG	CTTCTCCTAT	TGTACTGCAG	3180
00	CHOOK & COMPAN	ል እ እ ርጥርተጥሮር	CACTGTACTT	GAACAGTTGC	ATTTATAAGG	GGGGAAATGT	3240
•	ርርጥጥጥ እስጥርር	"דמרכיורים בעד איז	CTCAAAGTCT	TTTGTACATA	ACATATATAT	WINININCHI	3300
	הממתתתתתת	מבדממממת מדמ	ATATATCTCA	TTGCAGCCAG	TGATTTAGAT	TTACAGCTTA	3360
	CACAGGGGAA	アルしんしんしんしん	CTAGAGCATT	GTTGTCCTTC	ACTGCAGTCC	AGTTGGGATT	3420
65	ATTCCAAAAG	TTTTTTGAGT	CTTGAGCTTG	GGCTGTGGCC	CCGCTGTGAT	CATACCCTGA	3480 3540
	GCACGACGAA	GCAACCTCGT	TTCTGAGGAA	GAAGCTTGAG	TTCTGACTCA	CTGAAATGCG	3600
	TGTTGGGTTG	AAGATATCTT	TTTTTCTTT	CIGCCICACC	ACACATGGAC	CAACCTCCAT	3660
	TTCTGTTCAC	TTTGTGGAGA	GGGCATTACT	IGIICGIIAI	ACATACATOR I	GTTAAGAGAT GCAGAATGGA	3720
70	ATTCAAAACI	CAGAAGCAIC	CACAGIGITA	DARTTAATTGAG	TCCCTAAGGA	ATATTCAGCC	
70	CACCATOCC	. בעונועמעטעען געטעעטטטעעני	լերերերերիրեր գ	TTTTTTTAA	TAAGGACACC	TCTTTCCAAA	3840
	これははこことを	POTTOTATA	' TATCTCAGAC	TTACGTTGTT	TTAAAAGTTI	GGAAAGATAC	3900
	እርአ ጥርጥጥጥር	* ATACCCCCCC	TTAGGAGGTT	GGGCTTTCAT	ATCACCTCAG	CCAACTGTGG	3960
	ርጥር ሚጥጥል ልጥጥ ገ	ጥልልጥልግግሞል יי	GATATCCACA	TCAGCCAACT	GTGGCTCITI	AATTTATTGC	4020
75	ስጥስ ስጥርስጥ ስ ፕ	**************************************	' ተርልርተፕርር ል ር	TGAATTGTGA	GCAAAAGATC	TIGAAAGCAA	4080
	3 5 5 C C 3 C T 3 5	. ጥጥስ ርጥጥጥ አ አ አ	PACALDACT	TTTGGTTTT	' ATTATACAA	AACCATGAAG	4140
	A V CAMPAINT V A	מממיים ביודידים	TOPTEASIANT	CCTTTTTAGI	GACTCATGT	TATGAAGAGA	4200
	GTTGAGTTTA	ACAATCCTAG	CTTTTAAAAG	AAACTATTTA	ATGTAAAAT/	TTCTACATGT	4320
00	CATTCAGATA	TTATGTATAT	CTTCTAGCC	TRATICTGTA	LITTAATG	ACATATTTCT	4320
80	GTCTTGCGTC	ATTTGTATAI AGAATATAAA	TICACIGGII	· IMMANACAS	ACAICGAAA	GCTTATTCCA	-555
	AATGGAAGAT	AGARTATAAA	. MIMMMOGII	. ACTIGIAMA			
	Sea ID NO	249 Protei	n sequence:	:			
		cession #:					
85			_				
	1	ļl	21	31	41	51 1	
	1	1	1	1	ı	ı	

```
MAGSAMSSKF FLVALAIFFS FAQVVIEANS WWSLGMNNPV QMSEVYIIGA QPLCSQLAGL
                                                                                 60
       SQGQKKLCHL YQDHMQYIGE GAKTGIKECQ YQFRHRRWNC STVDNTSVFG RVMQIGSRET
                                                                                120
       AFTYAVSAAG VVNAMSRACR EGELSTCGCS RAARPKDLPR DWLWGGCGDN IDYGYRFAKE
                                                                                180
       FVDARERERI HAKGSYESAR ILMNLHNNEA GRRTVYNLAD VACKCHGVSG SCSLKTCWLQ
                                                                                240
 5
       LADFRKVGDA LKEKYDSAAA MRLNSRGKLV QVNSRFNSPT TQDLVYIDPS PDYCVRNEST
                                                                                300
       GSLGTQGRLC NKTSEGMDGC ELMCCGRGYD QFKTVQTERC HCKFHWCCYV KCKKCTEIVD
                                                                                360
       Seq ID NO: 250 DNA sequence
10
       Nucleic Acid Accession #: NM_014058
       Coding sequence: 56..1324
                              21
                                           31
                   11
15
       TGACTTGGAT GTAGACCTCG ACCTTCACAG GACTCTTCAT TGCTGGTTGG CAATGATGTA
       TCGGCCAGAT GTGGTGAGGG CTAGGAAAAG AGTTTGTTGG GAACCCTGGG TTATCGGCCT
       CGTCATCTTC ATATCCCTGA TTGTCCTGGC AGTGTGCATT GGACTCACTG TTCATTATGT
                                                                                180
       GAGATATAAT CAAAAGAAGA CCTACAATTA CTATAGCACA TTGTCATTTA CAACTGACAA
                                                                                240
       ACTATATGCT GAGTTTGGCA GAGAGGCTTC TAACAATTTT ACAGAAATGA GCCAGAGACT
                                                                                300
20
       TGAATCAATG GTGAAAAATG CATTTTATAA ATCTCCATTA AGGGAAGAAT TTGTCAAGTC
                                                                                360
       TCAGGTTATC AAGTTCAGTC AACAGAAGCA TGGAGTGTTG GCTCATATGC TGTTGATTTG
TAGATTTCAC TCTACTGAGG ATCCTGAAAC TGTAGATAAA ATTGTTCAAC TTGTTTTACA
                                                                                420
                                                                                480
       TGAAAAGCTG CAAGATGCTG TAGGACCCCC TAAAGTAGAT CCTCACTCAG TTAAAATTAA
                                                                                540
       AAAAATCAAC AAGACAGAAA CAGACAGCTA TCTAAACCAT TGCTGCGGAA CACGAAGAAG
                                                                                600
25
       TAAAACTCTA GGTCAGAGTC TCAGGATCGT TGGTGGGACA GAAGTAGAAG AGGGTGAATG
                                                                                660
       GCCCTGGCAG GCTAGCCTGC AGTGGGATGG GAGTCATCGC TGTGGAGCAA CCTTAATTAA
                                                                                720
       TGCCACATGG CTTGTGAGTG CTGCTCACTG TTTTACAACA TATAAGAACC CTGCCAGATG
                                                                                780
       GACTGCTTCC TTTGGAGTAA CAATAAAACC TTCGAAAATG AAACGGGGTC TCCGGAGAAT
                                                                                840
                                                                                900
       AATTGTCCAT GAAAAATACA AACACCCATC ACATGACTAT GATATTTCTC TTGCAGAGCT
30
       TTCTAGCCCT GTTCCCTACA CAAATGCAGT ACATAGAGTT TGTCTCCCTG ATGCATCCTA
                                                                                960
       TGAGTTTCAA CCAGGTGATG TGATGTTTGT GACAGGATTT GGAGCACTGA AAAATGATGG
                                                                               1020
       TTACAGTCAA AATCATCTTC GACAAGCACA GGTGACTCTC ATAGACGCTA CAACTTGCAA
                                                                               1080
       TGAACCTCAA GCTTACAATG ACGCCATAAC TCCTAGAATG TTATGTGCTG GCTCCTTAGA
                                                                               1140
       AGGAAAAACA GATGCATGCC AGGGTGACTC TGGAGGACCA CTGGTTAGTT CAGATGCTAG
AGATATCTGG TACCTTGCTG GAATAGTGAG CTGGGGAGAT GAATGTGCGA AACCCAACAA
                                                                               1200
35
                                                                               1260
       GCCTGGTGTT TATACTAGAG TTACGGCCTT GCGGGACTGG ATTACTTCAA AAACTGGTAT
                                                                               1320
       CTAAGAGAGA AAAGCCTCAT GGAACAGATA ACATTTTTT TTGTTTTTTG GGTGTGGAGG
       CCATTTTTAG AGATACAGAA TTGGAGAAGA CTTGCAAAAC AGCTAGATTT GACTGATCTC
       AATAAACTGT TTGCTTGATG CAAAAAAAA A
40
       Seq ID NO: 251 Protein sequence:
       Protein Accession #: NP_054777
45
       MYRPDVVRAR KRVCWEPWVI GLVIFISLIV LAVCIGLTVH YVRYNQKKTY NYYSTLSFTT
                                                                                 60
       DKLYAEFGRE ASNNFTEMSQ RLESMVKNAF YKSPLREEFV KSQVIKFSQQ KHGVLAHMLL
                                                                                120
       ICRFHSTEDP ETVDKIVQLV LHEKLQDAVG PPKVDPHSVK IKKINKTETD SYLNHCCGTR
                                                                                180
50
       RSKTLGQSLR IVGGTEVEEG EWPWQASLQW DGSHRCGATL INATWLVSAA HCFTTYKNPA
                                                                                240
       RWTASFGVTI KPSKMKRGLR RIIVHEKYKH PSHDYDISLA ELSSPVPYTN AVHRVCLPDA
                                                                                300
       SYEFQPGDVM FVTGFGALKN DGYSQNHLRQ AQVTLIDATT CNEPQAYNDA ITPRMLCAGS
LEGKTDACQG DSGGPLVSSD ARDIWYLAGI VSWGDECAKP NKPGVYTRVT ALRDWITSKT
                                                                                360
55
       Seg ID NO: 252 DNA seguence
       Nucleic Acid Accession #: NM_003504.2
       Coding sequence: 71-1771
60
                                           31
       GGCACGAGGC CTCGTGCCGC CGGGCTCTTG GTACCTCAGC GCGAGCGCCA GGCGTCCGGC
                                                                                 60
       CGCCGTGGCT ATGTTCGTGT CCGATTTCCG CAAAGAGTTC TACGAGGTGG TCCAGAGCCA
                                                                                120
       GAGGGTCCTT CTCTTCGTGG CCTCGGACGT GGATGCTCTG TGTGCGTGCA AGATCCTTCA
                                                                                180
65
       GGCCTTGTTC CAGTGTGACC ACGTGCAATA TACGCTGGTT CCAGTTTCTG GGTGGCAAGA
                                                                                240
       ACTTGAAACT GCATTTCTTG AGCATAAAGA ACAGTTTCAT TATTTTATTC TCATAAACTG
                                                                                300
       TGGAGCTAAT GTAGACCTAT TGGATATTCT TCAACCTGAT GAAGACACTA TATTCTTTGT
                                                                                360
       GTGTGACACC CATAGGCCAG TCAATGTCGT CAATGTATAC AACGATACCC AGATCAAATT
                                                                                420
       ACTCATTAAA CAAGATGATG ACCTTGAAGT TCCCGCCTAT GAAGACATCT TCAGGGATGA
                                                                                480
70
       AGAGGAGGAT GAAGAGCATT CAGGAAATGA CAGTGATGGG TCAGAGCCTT CTGAGAAGCG
                                                                                540
       CACACGGTTA GAAGAGGAGA TAGTGGAGCA AACCATGCGG AGGAGGCAGC GGCGAGAGTG
                                                                                600
       GGAGGCCCGG AGAAGAGACA TCCTCTTTGA CTACGAGCAG TATGAATATC ATGGGACATC
                                                                                660
       GTCAGCCATG GTGATGTTTG AGCTGGCTTG GATGCTGTCC AAGGACCTGA ATGACATGCT
                                                                                720
       GTGGTGGGCC ATCGTTGGAC TAACAGACCA GTGGGTGCAA GACAAGATCA CTCAAATGAA
ATACGTGACT GATGTTGGTG TCCTGCAGCG CCACGTTTCC CGCCACAACC ACCGGAACGA
                                                                                 780
75
                                                                                 840
       GGATGAGGAG AACACACTCT CCGTGGACTG CACACGGATC TCCTTTGAGT ATGACCTCCG
                                                                                 900
       CCTGGTGCTC TACCAGCACT GGTCCCTCCA TGACAGCCTG TGCAACACCA GCTATACCGC
       AGCCAGGTTC AAGCTGTGGT CTGTGCATGG ACAGAAGCGG CTCCAGGAGT TCCTTGCAGA
                                                                               1020
       CATGGGTCTT CCCCTGAAGC AGGTGAAGCA GAAGTTCCAG GCCATGGACA TCTCCTTGAA
                                                                               1080
80
       GGAGAATTTG CGGGAAATGA TTGAAGAGTC TGCAAATAAA TTTGGGATGA AGGACATGCG
                                                                               1140
       CGTGCAGACT TTCAGCATTC ATTTTGGGTT CAAGCACAAG TTTCTGGCCA GCGACGTGGT
                                                                               1200
        CTTTGCCACC ATGTCTTTGA TGGAGAGCCC CGAGAAGGAT GGCTCAGGGA CAGATCACTT
                                                                               1260
        CATCCAGGCT CTGGACAGCC TCTCCAGGAG TAACCTGGAC AAGCTGTACC ATGGCCTGGA
                                                                               1320
       ACTOGCCAAG AAGCAGCTGC GAGCCACCCA GCAGACCATT GCCAGCTGCC TTTGCACCAA
                                                                               1380
85
        CCTCGTCATC TCCCAGGGGC CTTTCCTGTA CTGCTCTCTC ATGGAGGGCA CTCCAGATGT
                                                                               1440
        CATGCTGTTC TCTAGGCCGG CATCCCTAAG CCTGCTCAGC AAACACCTGC TCAAGTCCTT
                                                                               1500
        TGTGTGTTCG ACAAAGAACC GGCGCTGCAA ACTGCTGCCC CTGGTGATGG CTGCCCCCCT
```

		/086443					
5	CAGGAAGAAC GCTGCACAAC TCTGGACGCA ATTTATGTAA	CATGGCACAG TTTTTTGGGA CATTTTGACC CTTATTTCCC CTGGCTTTCA TTAAATAAAA AA	GGGCGTTTGA TCTCAGTAAT TCCTGTCCTA TTTAGATTGT	GAAGGCAGCG TGAGCTGAAA GGAATTTGAT AAGTTATGGA	GAAAGCACCA GCTGAGGATC TCTTCCAGAA CATGATTTGA	GCTCCCGGAT GGAGCAAGTT TGACCTTCTT GATGTAGAAG	1620 1680 1740 1800 1860 1920
10	Seq ID NO: 253 Protein sequence: Protein Accession #: NP_003495.1						
15	1 MFVSDFRKEF	11 YEVVQSQRVL	LFVASDVDAL	31 CACKILQALF	41 QCDHVQYTLV	51 PVSGWQELET	60 120
15	QDDDLEVPAY RRDILFDYEQ DVGVLORHVS	YFILINCGAN EDIFRDEEED YEYHGTSSAM RHNHRNEDEE	EEHSGNDSDG VMFELAWMLS NTLSVDCTRI	SEPSEKRTRL KDLNDMLWWA SFEYDLRLVL	EEEIVEQTMR IVGLTDQWVQ YQHWSLHDSL	RRQRREWEAR DKITQMKYVT CNTSYTAARF	180 240 300
20	FSIHFGFKHK KQLRATQQTI TKNRRCKLLP	LQEFLADMGL FLASDVVFAT ASCLCTNLVI LVMAAPLSME AEDRSKFLDA	MSLMESPEKD SQGPFLYCSL HGTVTVVGIP	GSGTDHFIQA MEGTPDVMLF	LDSLSRSNLD SRPASLSLLS	KLYHGLELAK KHLLKSFVCS	360 420 480 540
25	Nucleic Aci	254 DNA sec id Accession mence: 486	#: NM_0223	37			
20							
30	ACAAGGAGCA	11 CCCTGGTCAG CCTGTACAAG	TTGCTGGTGA	TTGGCGACCT	GGGCGTGGGG	AAGACCAGTA	60 120 180
35	ACTTCGCGCT ATATCGCAGG GTGCATTTAT AAAATGATTT	CTACGTGCAC CAAGGTGCTC TCAAGAAAGA TGTCTTCGAT GGACTCCAAG ATGTGACCAG	CACTGGGACC TTTGGAAACA GTCACCAGGC TTAAGTCTCC	CGGAGACTGT TGACGAGGGT CAGCCACATT CTAATGGCAA	GGTGCGCCTG CTATTACCGA TGAAGCAGTG ACCGGTTTCA	CAGCTCTGGG GAAGCTATGG GCAAAGTGGA GTGGTTTTGT	240 300 360 420 480
40	AGTTCTGCAA ACATTGATGA TGGAGTCTAT GCTCTGGCTG	GGAGCACGGT AGCCTCCAGA TGAGCCGGAC TGCCAAATCC AATTGTGCCT	TTCGTAGGAT TGCCTGGTGA GTCGTGAAGC TAGTAGGCAC	GGTTTGAAAC AACACATACT CCCATCTCAC CTTTGCTGGT	ATCAGCAAAG TGCAAATGAG ATCAACCAAG GTCTGGTAGG	GAAAATATAA TGTGACCTAA GTTGCCAGCT AATGACCTCA	540 600 660 720 780
45	CACATGTGGC GTTCTTTCTA TCTGTTACAA TTATTTGCTT	AAGCCAAAGA TGCTTTCCTC ACTTCTGTCA CTTTTAATCA	TCTATGCCTC ACCATCATCA TGTAGCTGAC GCAAAGGCCT	TGTTTTTCA CAGTGTTTAC CAAAATCCTG CAAGTCTTAA	ATGAGAGAGA AAACTTTTGA CAGGGCCACA AATAAAAGGG	AATAGCAAAT AAATATTTAG GTCGGCACTG GAGAAGAACA	840 900 960 1020
50	AATATATTCT GACCTCCATT ACAGGTGTGC AACTGAATAT	CAAGTCAAGG CTGATGGCCT CTCGGCAGAC TATATTGTCC TGTATGAAAA GGGGCTCCTC	GACAGGCCTA CTAAGAGTTG TTGTCCTAAC GACATGCCTC	TTAAGTAGAT CCTCTGAGTT TGTCACTTGC CATATGTGCC	GTGATATTT AGCTCTTTGG CATGGCCTGA TTTCTGTTAG	CTTCCAAGAT AATCGTGAAC ATGTTGGCTT CTCTCTTTGA	1080 1140 1200 1260 1320 1380
55	GCAAGTGAAC	AATAAAACAT	TAAAAGATAA				
	Seq ID NO: 255 Protein sequence: Protein Accession #: NP_071732						
60 .	1	11	21	31	41 .	51	
65	LQLWDIAGQE SVVLLANKCD	KLLVIGDLGV RFGNMTRVYY QGKDVLMNNG DVVKPHLTST	REAMGAFIVF LKMDQFCKEH	DVTRPATFEA GFVGWFETSA	VAKWKNDLDS	LHWDPETVVR KLSLPNGKPV RCLVKHILAN	60 120 180
70	Seq ID NO: 256 DNA sequence Nucleic Acid Accession #: NM_016321 Coding sequence: 251464						
	1	11	21	31	41	51	
75	CCGCTGGCGG GGTGTTCGTG GAACTTGAGC	CTGCCGCTCA CGCTACGACT GACATGGAGA	CCTGCCTGCT TCGAGGCCGA ACGAATTCTA	CCTGCAGGTG CGCCCACTGG CTATCGCTAC	ATTATGGTGA TGGTCAGAGA CCAAGCTTCC	ACACCAACCT TTCTCTTCGG GGACGCACAA AGGACGTGCA	60 120 180 240
80	CGCCGTGGGC GGGCTGGTTC CGCTGACTTC CCCCATTCAG	TTCAACTTCC CACTTCTTAC TGCGTGGCCT CTGCTCATCA	TGTTGGCAGC AAGACCGCTA CTGTCTGCGT TGACTTTCTT	CTTCGGCATC CATCGTCGTG GGCCTTTGGG CCAAGTGACC	CAGTGGGCGC GGCGTGGAGA GCAGTTCTGG CTCTTCGCTG	ACGGCTTCAG TGCTCATGCA ACCTCATCAA GTAAAGTCAG TGAATGAGTT	300 360 420 480 540
85	CATTCTCCTT TGGCGCCTAC CAAGGAGAGA CCTGTGGATG	AACCTGCTAA TTTGGGCTCA CAGAATTCTG TACTGGCCCA	AGGTGAAGGA CAGTGACCCG TGTACCAGTC GCTTCAACTC	TGCAGGAGGC GATCCTCTAC GGACCTCTTT AGCCATATCC	TCCATGACCA CGACGCAACC GCCATGATTG TACCATGGGG	TCCACACATT TAGAGCAGAG GCACCCTCTT ACAGCCAGCA CGGTGGCAAT	600 660 720 780 840

```
900
       ATCCAGTGCC CTGCACAAGA AGGGCAAGCT GGACATGGTG CACATCCAGA ATGCCACGCT
       CGCAGGAGGG GTGGCCGTGG GTACCGCTGC TGAGATGATG CTCATGCCTT ACGGTGCCCT
                                                                              960
       CATCATCGGC TTCGTCTGCG GCATCATCTC CACCCTGGGT TTTGTATACC TGACCCCATT
                                                                             1020
                                                                             1080
       CCTGGAGTCC CGGCTGCACA TCCAGGACAC ATGTGGCATT AACAATCTGC ATGGCATTCC
       TGGCATCATA GGCGGCATCG TGGGTGCTGT GACAGCGGCC TCCGCCAGCC TTGAAGTCTA
                                                                             1140
       TGGAAAAGAA GGGCTTGTCC ATTCCTTTGA CTTTCAAGGT TTCAACGGGG ACTGGACCGC
                                                                             1200
       AAGAACACAG GGAAAGTTCC AGATTTATGG TCTCTTGGTG ACCCTGGCCA TGGCCCTGAT
                                                                             1260
       GGGTGGCATC ATTGTGGGGC TCATTTTGAG ATTACCATTC TGGGGACAAC CTTCAGATGA
                                                                             1320
       GAACTGCTTT GAGGATGCGG TCTACTGGGA GATGCCTGAA GGGAACAGCA CTGTCTACAT
                                                                             1380
       CCCTGAGGAC CCCACCTTCA AGCCCTCAGG ACCCTCAGTA CCCTCAGTAC CCATGGTGTC
10
                                                                             1440
       CCCACTACCC ATGGCTTCCT CGGTACCCTT GGTACCCTAG GCTCCCAGGG CAGGTGAGGA
                                                                             1500
       GCAGGCTCCA CAGACTSTCC TGGGGCCCAG AGGAGCTGGT GCTGACCTAG CTAGGGATGC
                                                                             1560
       AAGAGTGAGC AAGCAGCACC CCCACCTGCT GGCTTGGCCT CAAGGTGCCT CCACCCCTGC
       CCTCCCCTTC ATCCCAGGGG GTCTGMCTGA GAATGGAGAA GGAGAAGCTA CAAAGTGGGC
       ATCCAAGCCG GGTTCTGGCT GCAGAAGTTC TGCCTCTGCC TGGGGTCTTG GCCACATTGG
                                                                             1740
15
       AGAAAAACAG GCTCAAAGTG GGGCTGGGAC CTGGTGGGTG AACCTGAGCT CTCCCAGGAG
                                                                             1800
       ACAACTTAGC TGCCAGTCAC CACCTATGAG GCTCTTCTAC CCCGTGCCTG CACCTCGGCC
                                                                             1860
       AGCATCTCCT ATGCTCCCTG GGTCCCCCAG ACCTCTCTGT GTTGTGTGCG TGGCAGCCTC
                                                                            1920
       CAGGAATAAA CATTCTTGTT GTCCTTTGTA AAAAAAAAA AAAAAAAA
20
       Seg ID NO: 257 Protein seguence:
       Protein Accession #: NP_057405
                                                                51
25
       MAWNTNLRWR LPLTCLLLQV IMVILEGVEV RYDFEADAHW WSERTHKNLS DMENEFYYRY
                                                                               60
       PSFQDVHVMV FVGFGFLMTF LQRYGFSAVG FNFLLAAFGI QWALLMQGWF HFLQDRYIVV
                                                                              120
       GVENLINADF CVASVCVAFG AVLGKVSPIQ LLIMTFFQVT LFAVNEFILL NLLKVKDAGG
                                                                              180
       SMTIHTFGAY FGLTVTRILY RRNLEQSKER QNSVYQSDLF AMIGTLFLWM YWPSFNSAIS
                                                                              240
       YHGDSQHRAA INTYCSLAAC VLTSVAISSA LHKKGKLDMV HIQNATLAGG VAVGTAAEMM
30
                                                                              300
       LMPYGALIIG FVCGIISTLG FVYLTPFLES RLHIQDTCGI NNLHGIPGII GGIVGAVTAA
                                                                              360
       SASLEVYGKE GLVHSFDPQG FNGDWTARTQ GKFQIYGLLV TLAMALMGGI IVGLILRLPP
                                                                              420
       WGQPSDENCF EDAVYWEMPE GNSTVYIPED PTFKPSGPSV PSVPMVSPLP MASSVPLVP
35
       Seq ID NO: 258 DNA sequence
       Nucleic Acid Accession #: NM_002358.2
       Coding sequence: 75..692
40
                                                     41
                  11
                              21
                                          31
       GGGAAGTGCT GTTGGAGCCG CTGTGGTTGC TGTCCGCGGA GTGGAAGCGC GTGCTTTTGT
       TTGTGTCCCT GGCCATGGCG CTGCAGCTCT CCCGGGAGCA GGGAATCACC CTGCGCGGGA
                                                                              120
       GCGCCGAAAT CGTGGCCGAG TTCTTCTCAT TCGGCATCAA CAGCATTTTA TATCAGCGTG
                                                                              180
45
       GCATATATCC ATCTGAAACC TTTACTCGAG TGCAGAAATA CGGACTCACC TTGCTTGTAA
                                                                              240
       CTACTGATCT TGAGCTCATA AAATACCTAA ATAATGTGGT GGAACAACTG AAAGATTGGT
                                                                              300
       TATACAAGTG TTCAGTTCAG AAACTGGTTG TAGTTATCTC AAATATTGAA AGTGGTGAGG
                                                                              360
       TCCTGGAAAG ATGGCAGTTT GATATTGAGT GTGACAAGAC TGCAAAAGAT GACAGTGCAC
                                                                              420
       CCAGAGAAAA GTCTCAGAAA GCTATCCAGG ATGAAATCCG TTCAGTGATC AGACAGATCA
                                                                              480
50
       CAGCTACGGT GACATTTCTG CCACTGTTGG AAGTTTCTTG TTCATTTGAT CTGCTGATTT
                                                                              540
       ATACAGACAA AGATTTGGTT GTACCTGAAA AATGGGAAGA GTCGGGACCA CAGTTTATTA CCAATTCTGA GGAAGTCCGC CTTCGTTCAT TTACTACTAC AATCCACAAA GTAAATAGCA
                                                                              600
       TGGTGGCCTA CAAAATTCCT GTCAATGACT GAGGATGACA TGAGGAAAAT AATGTAATTG
       TAATTTTGAA ATGTGGTTTT CCTGAAATCA GGTCATCTAT AGTTGATATG TTTTATTTCA
       TTGGTTAATT TTTACATGGA GAAAACCAAA ATGATACTTA CTGAACTGTG TGTAATTGTT
55
                                                                              840
       CCTTTATTT TTTGGTACCT ATTTGACTTA CCATGGAGTT AACATCATGA ATTTATTGCA
       CATTETTCAA AAGGAACCAG GAGGTTTTTT TGTCAACATT GTGATGTATA TTCCTTTGAA GATAGTAACT GTAGATGGAA AAACTTGTGC TATAAAGCTA GATGCTTTCC TAAATCAGAT
                                                                              960
       GTTTTGGTCA AGTAGTTTGA CTCAGTATAG GTAGGGAGAT ATTTAAGTAT AAAATACAAC
                                                                             1080
60
       AAAGGAAGTC TAAATATTCA GAATCTTTGT TAAGGTCCTG AAAGTAACTC ATAATCTATA
                                                                             1140
       AACAATGAAA TATTGCTGTA TAGCTCCTTT TGACCTTCAT TTCATGTATA GTTTTCCCTA
TTGAATCAGT TTCCAATTAT TTGACTTTAA TTTATGTAAC TTGAACCTAT GAAGCAATGG
                                                                             1200
                                                                             1260
       ATATTTGTAC TGTTTAATGT TCTGTGATAC AGAACTCTTA AAAATGTTTT TTCATGTGTT
                                                                             1320
       65
       ААААААААА
       Seq ID NO: 259 Protein sequence:
       Protein Accession #: NP_002349.1
70
                                                                 51
       MALQLSREQG ITLRGSAEIV AEFFSFGINS ILYQRGIYPS ETFTRVQKYG LTLLVTTDLE
                                                                               60
       LIKYLNNVVE QLKDWLYKCS VQKLVVVISN IESGEVLERW QFDIECDKTA KDDSAPREKS
                                                                              120
       QKAIQDEIRS VIRQITATVT FLPLLEVSCS FDLLIYTDKD LVVPEKWEES GPQFITNSEE
75
       VRLRSFTTTI HKVNSMVAYK IPVND
       Seg ID NO: 260 DNA seguence
       Nucleic Acid Accession #: NM_001211
80
       Coding sequence: 43..3195
       AAAGGCCTGC AGCAGGACGA GGACCTGAGC CAGGAATGCA GGATGGCGGC GGTGAAGAAG
                                                                               60
85
       GAAGGGGGTG CTCTGAGTGA AGCCATGTCC CTGGAGGGAG ATGAATGGGA ACTGAGTAAA
                                                                              120
       GAAAATGTAC AACCTTTAAG GCAAGGGCGG ATCATGTCCA CGCTTCAGGG AGCACTGGCA
                                                                              180
       CAAGAATCTG CCTGTAACAA TACTCTTCAG CAGCAGAAAC GGGCATTTGA ATATGAAATT
```

```
300
       CGATTTTACA CTGGAAATGA CCCTCTGGAT GTTTGGGATA GGTATATCAG CTGGACAGAG
       CAGAACTATC CTCAAGGTGG GAAAGAGAGT AATATGTCAA CGTTATTAGA AAGAGCTGTA
                                                                                360
       GAAGCACTAC AAGGAGAAAA ACGATATTAT AGTGATCCTC GATTTCTCAA TCTCTGGCTT
                                                                                420
                                                                                480
       AAATTAGGGC GTTTATGCAA TGAGCCTTTG GATATGTACA GTTACTTGCA CAACCAAGGG
 5
       ATTGGTGTTT CACTTGCTCA GTTCTATATC TCATGGGCAG AAGAATATGA AGCTAGAGAA
                                                                                540
                                                                                600
       AACTTTAGGA AAGCAGATGC GATATTTCAG GAAGGGATTC AACAGAAGGC TGAACCACTA
       GAAAGACTAC AGTCCCAGCA CCGACAATTC CAAGCTCGAG TGTCTCGGCA AACTCTGTTG
                                                                                660
       GCACTTGAGA AAGAAGAAGA GGAGGAAGTT TTTGAGTCTT CTGTACCACA ACGAAGCACA
                                                                                720
       CTAGCTGAAC TAAAGAGCAA AGGGAAAAAG ACAGCAAGAG CTCCAATCAT CCGTGTAGGA
                                                                                780
10
       GGTGCTCTCA AGGCTCCAAG CCAGAACAGA GGACTCCAAA ATCCATTTCC TCAACAGATG
                                                                                840
       CAAAATAATA GTAGAATTAC TGTTTTTGAT GAAAATGCTG ATGAGGCTTC TACAGCAGAG
                                                                                900
       TTGTCTAAGC CTACAGTCCA GCCATGGATA GCACCCCCA TGCCCAGGGC CAAAGAGAAAT
                                                                                960
       GAGCTGCAAG CAGGCCCTTG GAACACAGGC AGGTCCTTGG AACACAGGCC TCGTGGCAAT ACAGCTTCAC TGATAGCTGT ACCCGCTGTG CTTCCCAGTT TCACTCCATA TGTGGAAGAG
                                                                               1020
       ACTGCACAAC AGCCAGTTAT GACACCATGT AAAATTGAAC CTAGTATAAA CCACATCCTA
15
       AGCACCAGAA AGCCTGGAAA GGAAGAAGGA GATCCTCTAC AAAGGGTTCA GAGCCATCAG
       CAAGCGTCTG AGGAGAAGAA AGAGAAGATG ATGTATTGTA AGGAGAAGAT TTATGCAGGA
                                                                               1260
       GTAGGGGAAT TCTCCTTTGA AGAAATTCGG GCTGAAGTTT TCCGGAAGAA ATTAAAAGAG
                                                                               1320
       CAAAGGGAAG CCGAGCTATT GACCAGTGCA GAGAAGAGAG CAGAAATGCA GAAACAGATT
                                                                               1380
20
       GAAGAGATGG AGAAGAAGCT AAAAGAAATC CAAACTACTC AGCAAGAAAG AACAGGTGAT
                                                                               1440
       CAGCAAGAAG AGACGATGCC TACAAAGGAG ACAACTAAAC TGCAAATTGC TTCCGAGTCT CAGAAAATAC CAGGAATGAC TCTATCCAGT TCTGTTTGTC AAGTAAACTG TTGTGCCAGA
                                                                               1500
                                                                               1560
       GAAACTTCAC TTGCGGAGAA CATTTGGCAG GAACAACCTC ATTCTAAAGG TCCCAGTGTA
                                                                               1620
       CCTTTCTCCA TTTTTGATGA GTTTCTTCTT TCAGAAAAGA AGAATAAAAG TCCTCCTGCA
                                                                               1680
25
       GATCCCCCAC GAGTTTTAGC TCAACGAAGA CCCCTTGCAG TTCTCAAAAC CTCAGAAAGC
                                                                               1740
       ATCACCTCAA ATGAAGATGT GTCTCCAGAT GTTTGTGATG AATTTACAGG AATTGAACCC
                                                                               1800
       TTGAGCGAGG ATGCCATTAT CACAGGCTTC AGAAATGTAA CAATTTGTCC TAACCCAGAA
                                                                               1860
       GACACTTGTG ACTTTGCCAG AGCAGCTCGT TTTGTATCCA CTCCTTTTCA TGAGATAATG
                                                                               1920
                                                                               1980
       TCCTTGAAGG ATCTCCCTTC TGATCCTGAG AGACTGTTAC CGGAAGAAGA TCTAGATGTA
30
       AAGACCTCTG AGGACCAGCA GACAGCTTGT GGCACTATCT ACAGTCAGAC TCTCAGCATC
                                                                               2040
       AAGAAGCTGA GCCCAATTAT TGAAGACAGT CGTGAAGCCA CACACTCCTC TGGCTTCTCT
                                                                               2100
       GGTTCTTCTG CCTCGGTTGC AAGCACCTCC TCCATCAAAT GTCTTCAAAT TCCTGAGAAA
                                                                               2160
       CTAGAACTTA CTAATGAGAC TTCAGAAAAC CCTACTCAGT CACCATGGTG TTCACAGTAT
                                                                               2220
       CGCAGACAGC TACTGAAGTC CCTACCAGAG TTAAGTGCCT CTGCAGAGTT GTGTATAGAA
                                                                               2280
       GACAGACCAA TGCCTAAGTT GGAAATTGAG AAGGAAATTG AATTAGGTAA TGAGGATTAC
35
                                                                               2340
       TGCATTAAAC GAGAATACCT AATATGGAA GATTACAAGT TATTCTGGGT GGCGCCAAGA
AACTCTGCAG AATTAACAGT AATAAAGGTA TCTTCTCAAC CTGTCCCATG GGACTTTTAT
                                                                               2400
       ATCAACCTCA AGTTAAAGGA ACGTTTAAAT GAAGATTTTG ATCATTTTTG CAGCTGTTAT
       CAATATCAAG ATGGCTGTAT TGTTTGGCAC CAATATATAA ACTGCTTCAC CCTTCAGGAT
       CTTCTCCAAC ACAGTGAATA TATTACCCAT GAAATAACAG TGTTGATTAT TTATAACCTT
TTGACAATAG TGGAGATGCT ACACAAAGCA GAAATAGTCC ATGGTGACTT GAGTCCAAGG
40
                                                                               2700
       TGTCTGATTC TCAGAAACAG AATCCACGAT CCCTATGATT GTAACAAGAA CAATCAAGCT
                                                                               2760
       TTGAAGATAG TGGACTTTTC CTACAGTGTT GACCTTAGGG TGCAGCTGGA TGTTTTTACC
                                                                               2820
       CTCAGCGGCT TTCGGACTGT ACAGATCCTG GAAGGACAAA AGATCCTGGC TAACTGTTCT
                                                                               2880
45
                                                                               2940
       TCTCCCTACC AGGTAGACCT GTTTGGTATA GCAGATTTAG CACATTTACT ATTGTTCAAG
       GAACACCTAC AGGTCTTCTG GGATGGGTCC TTCTGGAAAC TTAGCCAAAA TATTTCTGAG
                                                                               3000
       CTAAAAGATG GTGAATTGTG GAATAAATTC TTTGTGCGGA TTCTGAATGC CAATGATGAG
                                                                               3060
       GCCACAGTGT CTGTTCTTGG GGAGCTTGCA GCAGAAATGA ATGGGGTTTT TGACACTACA
                                                                               3120
       TTCCAAAGTC ACCTGAACAA AGCCTTATGG AAGGTAGGGA AGTTAACTAG TCCTGGGGCT
                                                                               3180
50
       TTGCTCTTC AGTGAGCTAG GCAATCAAGT CTCACAGATT GCTGCCTCAG AGCAATGGTT
                                                                               3240
       GTATTGTGGA ACACTGAAAC TGTATGTGCT GTAATTTAAT TTAGGACACA TTTAGATGCA
                                                                               3300
       CTACCATTGC TGTTCTACTT TTTGGTACAG GTATATTTTG ACGTCACTGA TATTTTTAT
                                                                               3360
       ACAGTGATAT ACTTACTCAT GGCCTTGTCT AACTTTTGTG AAGAACTATT TTATTCTAAA
                                                                               3420
       CAGACTCATT ACAAATGGTT ACCTTGTTAT TTAACCCATT TGTCTCTACT TTTCCCTGTA
                                                                               3480
       CTTTTCCCAT TTGTAATTTG TAAAATGTTC TCTTATGATC ACCATGTATT TTGTAAATAA
55
                                                                               3540
       TAAAATAGTA TCTGTTAAAA AAAAAAAAA AAAAAAAAA AAA
       Seq ID NO: 261 Protein sequence:
       Protein Accession #: NP_001202
60
                                                                  51
                                                       41
                               21
                                           31
       MAAVKKEGGA LSEAMSLEGD EWELSKENVQ PLRQGRIMST LQGALAQESA CNNTLQQQKR
       AFEYEIRFYT GNDPLDVWDR YISWTEQNYP QGGKESNMST LLERAVEALQ GEKRYYSDPR
                                                                                120
65
       FLNLWLKLGR LCNEPLDMYS YLHNQGIGVS LAQFYISWAE EYEARENFRK ADAIFQEGIQ
                                                                                180
       OKAEPLERLO SOHROFOARV SROTLLALEK EEEEEVFESS VPORSTLAEL KSKGKKTARA
                                                                                240
        PIIRVGGALK APSONRGLON PFPOOMONNS RITVFDENAD EASTAELSKP TVOPWIAPPM
                                                                                300
       PRAKENELQA GPWNTGRSLE HRPRGNTASL IAVPAVLPSF TPYVEETAQQ PVMTPCKIEP
                                                                                360
        SINHILSTRK PGKEEGDPLQ RVQSHQQASE EKKEKMMYCK EKIYAGVGEF SFEEIRAEVF
                                                                                420
70
       RKKLKEQREA ELLTSAEKRA EMQKQIEEME KKLKEIQTTQ QERTGDQQEE TMPTKETTKL
                                                                                 480
        OIASESOKIP GMTLSSSVCQ VNCCARETSL AENIWQEQPH SKGPSVPFSI FDEPLLSEKK
                                                                                540
        NKSPPADPPR VLAQRRPLAV LKTSESITSN EDVSPDVCDE FTGIEPLSED AIITGFRNVT
                                                                                 600
        ICPNPEDTCD FARAARFVST PFHEIMSLKD LPSDPERLLP EEDLDVKTSE DQQTACGTIY
                                                                                660
        SQTLSIKKLS PIIEDSREAT HSSGFSGSSA SVASTSSIKC LQIPEKLELT NETSENPTQS
                                                                                 720
75
        PWCSQYRRQL LKSLPELSAS AELCIEDRPM PKLEIEKEIE LGNEDYCIKR EYLICEDYKL
                                                                                 780
        FWVAPRNSAE LTVIKVSSQP VPWDFYINLK LKERLNEDPD HFCSCYQYQD GCIVWHQYIN
CFTLQDLLQH SEYITHEITV LIIYNLLTIV EMLHKAEIVH GDLSPRCLIL RNRIHDPYDC
                                                                                 840
                                                                                 900
        NKNNQALKIV DFSYSVDLRV QLDVFTLSGF RTVQILEGQK ILANCSSPYQ VDLFGIADLA
                                                                                 960
        HLLLFKEHLQ VFWDGSFWKL SQNISELKDG ELWNKFFVRI LNANDEATVS VLGELAAEMN
80
        GVFDTTFQSH LNKALWKVGK LTSPGALLFQ
        Seg ID NO: 262 DNA seguence
        Nucleic Acid Accession #: NM_003784
        Coding sequence: 365..1507
85
                                                                   51
                   11
                               21
                                           31
                                                       41
```

287

```
WO 02/086443
       GTCTACTTAT CAATAAGCAG CTGCCTGTGC AGAGTGCAGG CTGCACCTTT GGACAGCCTT
TAAAACTGAA TTCTCAGAAT TTTAGAACAA ATTTTTGTCT AGAAATGCTG ACTTTGGTTC
                                                                              60
                                                                             120
       ATTAGGTAGT GGTAAAACAG GCTCCCTTCG AAGCTCTCCT TCATCACCTT CCTAAGTGCA
       TGTACAGGGA AGCTCTCCTT CATCACCTTC CTAAGTGCAT GGGGGAAAAT ACCTAGGGCT
       CAACAGTCTT GAGAAGTGTG GAAACATTTT CTTTGTGAGT GAGAACAGAT CACCTAGAGA
                                                                             300
       AAGGAAACCA GATTCCCATC ACTGCTTCTG GGTATCAGAT GCTAGCGCTG CACTCCATTT
       TGCAATGGCC TCCCTTGCTG CAGCAAATGC AGAGTTTTGC TTCAACCTGT TCAGAGAGAT
                                                                             420
       GGATGACAAT CAAGGAAATG GAAATGTGTT CTTTTCCTCT CTGAGCCTCT TCGCTGCCCT
                                                                             480
10
       GGCCCTGGTC CGCTTGGGCG CTCAAGATGA CTCCCTCTCT CAGATTGATA AGTTGCTTCA
                                                                             540
       TGTTAACACT GCCTCAGGAT ATGGAAACTC TTCTAATAGT CAGTCAGGGC TCCAGTCTCA
                                                                             600
       ACTGAAAAGA GTTTTTCTG ATATAAATGC ATCCCACAAG GATTATGATC TCAGCATTGT
                                                                             660
       GAATGGGCTT TTTGCTGAAA AAGTGTATGG CTTTCATAAG GACTACATTG AGTGTGCCGA
                                                                             720
       AAAATTATAC GATGCCAAAG TGGAGCGAGT TGACTTTACG AATCATTTAG AAGACACTAG
                                                                             780
15
       ACGTAATATT AATAAGTGGG TTGAAAATGA AACACATGGC AAAATCAAGA ACGTGATTGG
                                                                             840
       TGAAGGTGGC ATAAGCTCAT CTGCTGTAAT GGTGCTGGTG AATGCTGTGT ACTTCAAAGG
                                                                             900
       CAAGTGGCAA TCAGCCTTCA CCAAGAGCGA AACCATAAAT TGCCATTTCA AATCTCCCAA
                                                                             960
       GTGCTCTGGG AAGGCAGTCG CCATGATGCA TCAGGAACGG AAGTTCAATT TGTCTGTTAT
                                                                            1020
       TGAGGACCCA TCAATGAAGA TTCTTGAGCT CAGATACAAT GGTGGCATAA ACATGTACGT
                                                                            1080
20
       TCTGCTGCCT GAGAATGACC TCTCTGAAAT TGAAAACAAA CTGACCTTTC AGAATCTAAT
                                                                            1140
       GGAATGGACC AATCCAAGGC GAATGACCTC TAAGTATGTT GAGGTATTTT TTCCTCAGTT
                                                                           1200
       CAAGATAGAG AAGAATTATG AAATGAAACA ATATTTGAGA GCCCTAGGGC TGAAAGATAT
                                                                            1260
       CTTTGATGAA TCCAAAGCAG ATCTCTCTGG GATTGCTTCG GGGGGTCGTC TGTATATATCC AAGGATGATG CACAAATCTT ACATAGAGGT CACTGAGGAG GGCACCGAGG CTACTGCTGC
                                                                            1320
                                                                            1380
25
       CACAGGAAGT AATATTGTAG AAAAGCAACT CCCTCAGTCC ACGCTGTTTA GAGCTGACCA
                                                                            1440
       CCCATTCCTA TTTGTTATCA GGAAGGATGA CATCATCTTA TTCAGTGGCA AAGTTTCTTG
                                                                            1500
       CCCTTGAAAA TCCAATTGGT TTCTGTTATA GCAGTCCCCA CAACATCAAA GRACCACCAC
                                                                            1560
       AAGTCAATAG ATYTGRGTTT AATTGGAAAA ATGTGGTGTT TCCTTTGAGT TTATTTCTTC
       CTAACATTGG TCAGCAGATG ACACTGGTGA CTTGACCCTT CCTAGACACC TGGTTGATTG
                                                                            1680
30
       TCCTGATCCC TGCTCTTAGC ATTCTACCAC CATGTGTCTC ACCCATTTCT AATTTCATTG
                                                                            1740
       TCTTTCTTCC CACGCTCATT TCTATCATTC TCCCCCATGA CCCGTCTGGA AATTATGGAG
                                                                            1800
       RGTGCTCAAC TGGTAAGGAG AACGTAGAAG TAGCCCTAGG GATCCTTTTT GAAACTCTAC
                                                                            1860
       AGTTATCGCA GATATTCTAG CTTCATTGTA AGCAATCTAG GAAATAAGCC CTGCTGCTTT
                                                                            1920
       CTAGAAATAA GTGTGAAGGA TAAATTTTCT TTGTTGACCT ATGAAGATTT TAGAGTTTAC
                                                                            1980
35
       CTTCATATGT TTGATTTTAA ATCAGTGTAT AATCTAGATG GTAAAAAATG TGAAATTGGG
                                                                           2040
       ATTAGGGACC TACCAAAATA TTTCATTAAT GCTTTCAATT GACAAATTTT GGCCTTTCTT
                                                                           2100
       TGATAAGACA ATATGTACAT GTTTTTCAA ATATTAAAGA TCTTTTAACT GTTGGCAGTT
                                                                            2160
       GTTATCTACA GAATCATATT TCATATGCTG TGTAGTTTAT AAGTTTTTCC TCTATTTATC
       AGAATAAAGA AATACAACAT ACCTGTAAA
40
       Seq ID NO: 263 Protein sequence:
       Protein Accession #: NP_003775
45
                                         31
       MASLAAANAE FCFNLFREMD DNOGNGNVFF SSLSLFAALA LVRLGAQDDS LSQIDKLLHV
       NTASGYGNSS NSQSGLQSQL KRVFSDINAS HKDYDLSIVN GLFAEKVYGF HKDYIECAEK
                                                                             120
       LYDAKVERVD FTNHLEDTRR NINKWVENET HGKIKNVIGE GGISSSAVMV LVNAVYFKGK
                                                                             180
50
                                                                             240
       WQSAFTKSET INCHFKSPKC SGKAVAMMHQ ERKFNLSVIE DPSMKILELR YNGGINMYVL
       LPENDLSEIE NKLTFONLME WTNPRRMTSK YVEVFFPOFK IEKNYEMKOY LRALGLKDIF
                                                                             300
       DESKADLSGI ASGGRLYISR MMHKSYIEVT EEGTEATAAT GSNIVEKQLP QSTLFRADHP
                                                                             360
       FLFVIRKDDI ILFSGKVSCP
55
       Seq ID NO: 264 DNA sequence
       Nucleic Acid Accession #: AB052906
       Coding sequence: 74-814
                                         31
                                                               51
                             21
60
       AAAACCTTGA GGTGATTCAT CTTCCAGGCT CTCCTTCCAT CAAGTCTCTC CTCCCTAGCG
                                                                             60
                                                                             120
       CTCTGGGTCC TTAATGGCAG CAGCCGCCGC TACCAAGATC CTTCTGTGCC TCCCGCTTCT
       GCTCCTGCTG TCCGGCTGGT CCCGGGCTGG GCGAGCCGAC CCTCACTCTC TTTGCTATGA
                                                                             180
       CATCACCGTC ATCCCTAAGT TCAGACCTGG ACCACGGTGG TGTGCGGTTC AAGGCCAGGT
                                                                             240
65
       GGATGAAAAG ACTITICITC ACTATGACTG TGGCAACAAG ACAGTCACAC CTGTCAGTCC
                                                                             300
       CCTGGGGAAG AAACTAAATG TCACAACGGC CTGGAAAGCA CAGAACCCAG TACTGAGAGA
                                                                             360
       GGTGGTGGAC ATACTTACAG AGCAACTGCG TGACATTCAG CTGGAGAATT ACACACCCAA
       GGAACCCCTC ACCCTGCAGG CCAGGATGTC TTGTGAGCAG AAAGCTGAAG GACACAGCAG
       TGGATCTTGG CAGTTCAGTT TCGATGGGCA GATCTTCCTC CTCTTTGACT CAGAGAAGAG
                                                                             540
70
       AATGTGGACA ACGGTTCATC CTGGAGCCAG AAAGATGAAA GAAAAGTGGG AGAATGACAA
                                                                             600
       GGTTGTGGCC ATGTCCTTCC ATTACTTCTC AATGGGAGAC TGTATAGGAT GGCTTGAGGA
                                                                             660
       CTTCTTGATG GGCATGGACA GCACCCTGGA GCCAAGTGCA GGAGCACCAC TCGCCATGTC
                                                                             720
       CTCAGGCACA ACCCAACTCA GGGCCACAGC CACCACCCTC ATCCTTTGCT GCCTCCTCAT
                                                                             780
       CATCCTCCCC TGCTTCATCC TCCCTGGCAT CTGAGGAGAG TCCTTTAGAG TGACAGGTTA
                                                                             840
75
       AAGCTGATAC CAAAAGGCTC CTGTGAGCAC GGTCTTGATC AAACTCGCCC TTCTGTCTGG
                                                                             900
       CCAGCTGCCC ACGACCTACG GTGTATGTCC AGTGGCCTCC AGCAGATCAT GATGACATCA
                                                                             960
       TGGACCCAAT AGCTCATTCA CTGCCTTGAT TCCTTTTGCC AACAATTTTA CCAGCAGTTA
                                                                            1020
       TACCTAACAT ATTATGCAAT TTTCTCTTGG TGCTACCTGA TGGAATTCCT GCACTTAAAG
                                                                            1080
       TTCTGGCTGA CTAAACAAGA TATATCATTT TCTTTCTTCT CTTTTTGTTT GGAAAATCAA
                                                                            1140
80
       GTACTTCTTT GAATGATGAT CTCTTTCTTG CAAATGATAT TGTCAGTAAA ATAATCACGT
                                                                            1200
       TAGACTTCAG ACCTCTGGGG ATTCTTTCCG TGTCCTGAAA GAGAATTTTT AAATTATTTA
                                                                            1260
       ATAAGAAAA ATTTATATTA ATGATTGTTT CCTTTAGTAA TTTATTGTTC TGTACTGATA
                                                                            1320
       85
       Seq ID NO: 265 Protein sequence:
       Protein Accession #: BAB61048.1
```

	WO 02	/086443					
	1	11	21	31	41	51	
5	PLHYDOGNKT LOARMSCEOK	VTPVSPLGKK AEGHSSGSWQ	GWSRAGRADP LNVTTAWKAQ PSFDGQIFLL MDSTLEPSAG	NPVLREVVDI FDSEKRMWTT	LTEQLEDIQL VHPGARKMKE	ENYTPKEPLT KWENDKVVAM	60 120 180 240
10	Nucleic Aci	266 DNA sec d Accession lence: 127-4	#: XM_084	853.1			
15	GACAAGATCA AACACCATGA	ACTTACCAGA GTGGCATCCA	21 AATCAAATTT TTTCCTAAAA CAAGAGCTTT GGACTTCCTG	GTGTACCTTA GAGGTGCTCG	ACCACAAGCC GTTATACCAA	ACCTTTTGGT CTCCAAAGGG	60 120 180 240
20	ACGGAGGAGG AAATCCGAGC CCAGACGAAA GATTCCGGCC GTGTGTGTGC	AGATGTTGGA CTGCAACCTG TCACTGCAGA AGGATGGTCA ATGCACATGT	TTGCTTTGCT CTCCGTCAAA AATATTCGCG GTGAAGTTAC GTGTGTTTTC	TCACTGTTTG GGTTCAGAAA ACTGAAATTC CAGGAATGTT CATGAGGCAC	GCCTGAATCC TTTGCCTTGA TTGGCTTAAC TAAAGCACAA TGCTTTTTAT	CGAGGGATGG AGAAGAACTT CATTTCAGAA AGGACTTTGG GCATTTCCCT	300 360 420 480 540
25	CCCCCTCTC	ATCTTTAGAA	CATTTAGACA	TTAAAGCAAG	TTTCTGGTGA	GCAAIG	
		267 Proteir ession #: }					÷
30	1	11	21	31	41	51 I	
	MSGIHKSFEV EPATCSVKGS	LGYTNSKGKK EICLEEELPD	AIRREDFLRL EITAEIFATE	LVTKGEHMTE ILGLTISEDS	EEMLDCFASL GQDGQ	FGLNPEGWKS	60
35	Nucleic Aci	268 DNA sec d Accession lence: 57-48	1 #: NM_0018	398			
40	CCCAGTATCT GCCCCAAGGA	GAGTACCCTG GGAGGATAGG	21 GCAGCTCCAG CTGCTCCTGC ATAATCCCGG	TGGCCACCCT GTGGCATCTA	AGCTGTGGCC TAACGCAGAC	CTGGCCTGGA CTCAATGATG	60 120 180
45	ACTACTACAG ATTACTTCTT ACACCTGTGC TCTACGAAGT	ACGTCCGCTG CGACGTAGAG CTTCCATGAA TCCCTGGGAG	CACTTCGCCA CGGGTACTAA GTGGGCCGCA CAGCCAGAAC AACAGAAGGT TCGCACCAGC	GAGCCAGGCA CCATATGTAC TGCAGAAGAA CCCTGGTGAA	ACAGACCGTT CAAGTCCCAG ACAGTTGTGC ATCCAGGTGT	GGGGGGTGA CCCAACTTGG TCTTTCGAGA CAAGAATCCT	240 300 360 420 480 540
50	CCACCCCTGG GACAGACAGA	ACTGGTGGCC GAAGGCTGCA GCTTCTAATA	CCCACCTGC GGAGTCCTTT GCCCTGGTAC	GGGAGGCCTC GTTGCTCAGC	CCCATGTGCC AGGGCGCTCT	TGCGCCAAGA GCCCTCCCTC	600 660 720
55		269 Protein cession #:NI	2001889.1				
	1	11	21 }	31	41	51 	
60	DDYYRRPLRV	LLATLAVALA LRARQQTVGG RSLVKSRCQE	WSPKEEDRII VNYFFDVEVG S	PGGIYNADLN RTICTKSQPN	DEWVQRALHF LDTCAFHEQP	AISEYNKATK ELQKKQLCSF	60 120
65	Nucleic Ac	270 DNA sec id Accession mence: 13-16	1 #: XM_0932	210			
	1	11	21 1	31 1	41 1	51 	
70	AAACGAGCAC GGCAGAGGGA GAGCGGACTG	ACAAGCAGCA ATGGGGAGGG GGCCTTTCCC	GGCATCCTAC	CAGAAGAAGG CCCATATCTG GGCCTCAATC	AGGCGGCAGC AGGTGCGACT AGGACTTCTT	GCGGGACGTA GCCCACGTGC	60 120 180 240
75	GCCTTCAAAA GGCGGCGGGA ACGAGTAACA GGAACGCCCC CACTGGCAGT	CGGTAAGAGC GAGATGCCCA CCGCCCCCAC GGCGCGCGGC CGGCCCTCCT	TGCAACTGAA TGAACTCAAG GGGACCGCTC CAGCAGCGGC CACACCGCAG	CGTGTGAGAC TACCCGGACA TCGAGGTCCC GGGCACCGGC GCGTGCAGTG	ATGGTGCAGA CGCCCTCCAC CCAAGCCAAG CCAATGGCCA TGGCCGACGG	TAGGCTGAGA TTCTACCACC GACGCAAGGA CGGAACTCAG AGCCTCCCGG	300 360 420 480 540
80	GCCGAGGACC CTGCCCAAGG	CAGCTAGGCC CCCCGAGCCC CCAGGCTCCC	GTCACCCCGG AGGCTCCCTG GAGCCATGGC	TTGCTCCCAC	GGGAAGGGCC	ACCAGGCAAA CGCCCAGATC	600 660 720
85		271 Protein cession #: 3					
	1	11	21	31	41	51	

```
WO 02/086443
       MLRHGEOKRK RARKKWDFLP TCAFKTVRAA TERVRHGADR LRGGGRDAHE LKYPDTPSTS
                                                                                60
       TTTSNTAPTG PLSRSPKPRT QGGTPRRRPA AAGTRANGHG TQHWQSALLT PQACSVADGA
                                                                               120
       SRAEDPARPS PRLLPREGAP GKLPKAPSPG SLAEASAGLL AHVRLQNADA QRVSISQALP
                                                                               180
       PNSSVGRKEE RPGAGQQRRA PAPMATELST GSRPSSHRRR AVWPTEPPGP RTQLEPSPRL
                                                                               240
       LPREGAPGKL PKAPSPGSLA EASAGPAQIM AATRLPSRGF LSGNGPASWL SS
       Seq ID NO: 272 DNA sequence
       Nucleic Acid Accession #: Eos sequence
10
       Coding sequence: 1..732
                                                                 51
                              21
                                          31
       GGATACTGTG TCACTCAAAG TAATGGGAGG GAGAGAGAAC AGGGAGGGTA GGGATGCTTT
15
       TGAAAAAGCT TTTTTTCCCA CTTTTAACTT GCTTTAGCGT TAAGAGTACT TACCAGCTAA
                                                                               120
       TAATGTGGAG GAAATTATTC TITCTCATTG GAGATTACAG AATATATCTA TICATCTTGA
                                                                               180
       ATACCCACTT GAAGCCTCTG TAGAAATGTC TCGTCCTCCG GTTGTATTTC TAAAACCTAC
                                                                               240
       ATGATTTTGT CTTGTTTCTG CAGTGAGAAA TTACATCCAT AGCAAAGACA AAAGTCTTTT
                                                                               300
       TAAATTATTT TTATTTATCT TTCATATAGT TCTTACAATT TCTAAAAAAT TAACACTCAT TTAGTATCAC AATTTATGGG AGAGGGTTTT TTGTATTTTT AAGCATATGT GGCTTATATA
                                                                              360
20
       AAAATTGCAG AAGTCATAGG ACTGTCATGT ATTGCAGCTC TGAGAACCAA TGCCTGAAAC
25
       Seq ID NO: 273 Protein sequence:
       Protein Accession #: Eos sequence
                              21
                                          31
                                                     41
                                                                 51
30
       MGGRENREGR DAFEKAFFPT FNLL
       Seq ID NO: 274 DNA sequence
       Nucleic Acid Accession #: NM_003976.2
       Coding sequence: 299-961
35
                                                      41
                                          31
       CTCTGAGCTT CTCTGAGCCT TGTTTGCTCA TCTGGAAAAA GGGGATTAAA CCATTTACCT
                                                                               60
       CATGGAGTTG TGAAAGAATA GCTGCAAAGC ACCTAACACA TAGTAAGGTT CCCAGTGCAG
40
       CTACTTCTGC TGGGTTGAGT CTAGCTGTGT AGGCCCCTTG TTCCTCACCT GGAGAAACTG
       GGGTGGCAGG CCGGTCCCCC ACAAAAGATA ACTCATCTCT TAATTTGCAA GCTGCCTCAA
       CAGGAGGGTG GGGGAACAGC TCAACAATGG CTGATGGGCG CTCCTGGTGT TGATAGAGAT
                                                                              300
       GGAACTTGGA CTTGGAGGCC TCTCCACGCT GTCCCACTGC CCCTGGCCTA GGCGGCAGCC
       TGCCCTGTGG CCCACCCTGG CCGCTCTGGC TCTGCTGAGC AGCGTCGCAG AGGCCTCCCT
                                                                              420
45
       GGGCTCCGCG CCCCGCAGCC CTGCCCCCCG CGAAGGCCCC CCGCCTGTCC TGGCGTCCCC
                                                                              480
       CGCCGGCCAC CTGCCGGGGG GACGCACGGC CCGCTGGTGC AGTGGAAGAG CCCGGCGGCC
                                                                              540
       GCCGCCGCAG CCTTCTCGGC CCGCGCCCCC GCCGCCTGCA CCCCCATCTG CTCTTCCCCG
                                                                              600
       CGGGGGCCGC GCGCGCGGG CTGGGGGCCC GGGCAGCCGC GCTCGGGCAG CGGGGGCGCG
                                                                              660
       GGGCTGCCGC CTGCGCTCGC AGCTGGTGCC GGTGCGCGCG CTCGGCCTGG GCCACCGCTC
                                                                              720
50
       CGACGAGCTG GTGCGTTTCC GCTTCTGCAG CGGCTCCTGC CGCCGCGCGC GCTCTCCACA
                                                                              780
       CGACCTCAGC CTGGCCAGCC TACTGGGCGC CGGGCCCCTG CGACCGCCCC CGGGCTCCCG
                                                                              840
       GCCCGTCAGC CAGCCCTGCT GCCGACCCAC GCGCTACGAA GCGGTCTCCT TCATGGACGT
                                                                              900
       CAACAGCACC TGGAGAACCG TGGACCGCCT CTCCGCCACC GCCTGCGGCT GCCTGGGCTG
                                                                              960
       AGGGCTCGCT CCAGGGCTTT GCAGACTGGA CCCTTACCGG TGGCTCTTCC TGCCTGGGAC CCTCCCGCAG AGTCCCACTA GCCAGCGGCC TCAGCCAGGG ACGAAGGCCT CAAAGCTGAG
                                                                             1020
55
                                                                             1080
       AGGCCCCTAC CGGTGGGTGA TGGATATCAT CCCCGAACAG GTGAAGGGAC AACTGACTAG
                                                                             1140
       CAGCCCCAGA GCCCTCACCC TGCGGATCCC AGCCTAAAAG ACACCAGAGA CCTCAGCTAT
                                                                             1200
       GGAGCCCTTC GGACCCACTT CTCACAGACT CTGGCACTGG CCAGGCCTCG AACCTGGGAC
                                                                             1260
       CCCTCCTCTG ATGAACACTA CAGTGGCTGA GGCATCAGCC CCCGCCCAGG CCCTGTAGGG
                                                                             1320
60
       ACAGCATTTG AAGGACACAT ATTGCAGTTG CTTGGTTGAA AGTGCCTGTG CTGGAACTGG
       CCTGTACTCA CTCATGGGAG CTGGCCCC
       Seq ID NO: 275 Protein sequence:
       Protein Accession #: NP_003967.1
65
                                                                 51
       MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
                                                                               60
       PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA
                                                                              120
70
       RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
       RPVSOPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
       Seq ID NO: 276 DNA sequence
       Nucleic Acid Accession #: NM_057091.1
75
       Coding sequence: 783-1445
                                          31
       ACTGGCCGCT GAGAGAAGAA TCGGGTGGAG CAGAGAGCAG CTGCTGCAGG GCAGACAGCC
80
       GGACCCCCAA ATCTGCACGT ACCAGCAGTC AGCCGCCCCA CGCAGGGACC GGCTTACCCC
       TOGOTOCOCG COCTCACTCA CTTTCTCCCG CCCTCGGCCC GGCCTCCCAG CTCTCTACTT
       CGCGTGTCTA CAAACTCAAC TCCCGGTTTC CGTGCCTCTC CACCGCTCGA GTTCTCTACT
                                                                              240
       CTCCATATCC GAGGGCCCC TCCCAGCATC TACCCCCCTC CCAACCTCGG GGGACCTAGC
                                                                              300
       CAAGCTAGGG GGGACTGGAT CCGACGGGTG GAGCAGCCAG GTGAGCCCCG AAAGGTGGGG
                                                                              360
85
       CGGGGCAGGG GCGCTCCCAG CCCCACCCCG GGATCTGGTG ACGCTGGGGC TGGAATTTGA
                                                                              420
       CACCGGACGG CTGCGGCGGC GGGCAGGAGG CTGCTGAGGG ATGGAGTTGG GCCCGGCCCC
                                                                              480
```

CAGACAAGGC CCGGGGGCTC CGCCAGCAGC AGGTCCCTCG GGCCCCAGCC CTCGCTGCCA

540

```
CCCGGGCCTG GAGCCCCACA CCCGAGGGTG CAGACTGGCT GCCAAGGCCA CACTTTTGGC
                                                                               600
                                                                               660
       TAAAAGAGGC ACTGCCAGGT GTACAGTCCT GGGCATGCGC TGTTTGAGCT TCGGGGGAGA
       GCCCAGCACT GGTCCCCGGA AAGGTGCCTA GAAGAACAAG GTGCAGGACC CCGTGCTGCC
                                                                               720
                                                                               780
       TCAACAGGAG GGTGGGGGAA CAGCTCAACA ATGGCTGATG GGCGCTCCTG GTGTTGATAG
       AGATGGAACT TGGACTTGGA GGCCTCTCCA CGCTGTCCCA CTGCCCCTGG CCTAGGCGGC
                                                                               840
       AGCCTGCCCT GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT
                                                                               900
       CCCTGGGCTC CGCGCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT
                                                                               960
       CCCCCGCCGG CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC
                                                                              1020
       GGCCGCCGCC GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC
                                                                              1080
       CCCGCGGGGG CCGCGCGGCC CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG
10
                                                                              1140
       CGCGGGGCTG CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC
       GCTCCGACGA GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC
       CACACGACCT CAGCCTGGCC AGCCTACTGG GGGCCGGGGC CCCCGGGGCT CAGGCCAGCCC TCCTGCGACCC TCCTGCGACCCTA CGAAGCGGTC TCCTTCATGG
                                                                              1320
                                                                              1380
15
       ACGTCAACAG CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG
                                                                              1440
       GCTGAGGGCT CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG
                                                                              1500
                                                                              1560
       GGACCCTCCC GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC
       TGAGAGGCCC CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA
                                                                              1620
       CTAGCAGCCC CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG
                                                                              1680
20
       CTATGGAGCC CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG
                                                                              1740
       GGACCCCTCC TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT
                                                                              1800
       AGGGACAGCA TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA
                                                                             1860
       CTGGCCTGTA CTCACTCATG GGAGCTGGCC CC
25
       Seg ID NO: 277 Protein sequence:
       Protein Accession #: NP_003967.1
                                                                  51
                              21
       MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
                                                                                60
30
       PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA
                                                                               120
       RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
                                                                               180
       RPVSQPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
       Seq ID NO: 278 DNA sequence
35
       Nucleic Acid Accession #: NM_057160.1
       Coding sequence: 1-714
                                                                  51
                                          31
                              21
       ATGCCCGGCC TGATCTCAGC CCGAGGACAG CCCCTCCTTG AGGTCCTTCC TCCCCAAGCC
40
       CACCTGGGTG CCCTCTTTCT CCCTGAGGCT CCACTTGGTC TCTCCGCGCA GCCTGCCCTG
                                                                               120
                                                                               180
       TGGCCCACCC TGGCCGCTCT GGCTCTGCTG AGCAGCGTCG CAGAGGCCTC CCTGGGCTCC
       GCGCCCCGCA GCCCTGCCCC CCGCGAAGGC CCCCCGCCTG TCCTGGCGTC CCCCGCCGGC
                                                                               240
       CACCTGCCGG GGGGACGCAC GGCCCGCTGG TGCAGTGGAA GAGCCCGGCG GCCGCCGCCG
                                                                               300
45
       CAGCCTTCTC GGCCCGCGCC CCCGCCGCCT GCACCCCCAT CTGCTCTTCC CCGCGGGGGC
                                                                               360
       CGCGCGCGC GGGCTGGGGG CCCGGGCAGC CGCGCTCGGG CAGCGGGGGC GCGGGGCTGC
                                                                               420
       CGCCTGCGCT CGCAGCTGGT GCCGGTGCGC GCGCTCGGCC TGGGCCACCG CTCCGACGAG
                                                                               480
       CTGGTGCGTT TCCGCTTCTG CAGCGGCTCC TGCCGCCGCG CGCGCTCTCC ACACGACCTC
                                                                               540
       AGCCTGGCCA GCCTACTGGG CGCCGGGGCC CTGCGACCGC CCCCGGGCTC CCGGCCCGTC
                                                                               600
50
       AGCCAGCCCT GCTGCCGACC CACGCGCTAC GAAGCGGTCT CCTTCATGGA CGTCAACAGC
                                                                               660
       ACCTGGAGAA CCGTGGACCG CCTCTCCGCC ACCGCCTGCG GCTGCCTGGG CTGAGGGCTC
                                                                               720
       GCTCCAGGGC TTTGCAGACT GGACCCTTAC CGGTGGCTCT TCCTGCCTGG GACCCTCCCG
       CAGAGTCCCA CTAGCCAGCG GCCTCAGCCA GGGACGAAGG CCTCAAAGCT GAGAGGCCCC
       TACCGGTGGG TGATGGATAT CATCCCCGAA CAGGTGAAGG GACAACTGAC TAGCAGCCCC
       AGAGCCCTCA CCCTGCGGAT CCCAGCCTAA AAGACACCAG AGACCTCAGC TATGGAGCCC
55
       TTCGGACCCA CTTCTCACAG ACTCTGGCAC TGGCCAGGCC TCGAACCTGG GACCCCTCCT
                                                                              1020
       CTGATGAACA CTACAGTGGC TGAGGCATCA GCCCCCGCCC AGGCCCTGTA GGGACAGCAT
                                                                              1080
       TTGAAGGACA CATATTGCAG TTGCTTGGTT GAAAGTGCCT GTGCTGGAAC TGGCCTGTAC 1140
       TCACTCATGG GAGCTGGCCC C
60
       Seq ID NO: 279 Protein sequence:
       Protein Accession #: NP_476501.1
65
       MPGLISARGO PLLEVLPPOA HLGALFLPEA PLGLSAOPAL WPTLAALALL SSVAEASLGS
                                                                                60
       APRSPAPREG PPPVLASPAG HLPGGRTARW CSGRARRPPP QPSRPAPPPP APPSALPRGG
                                                                               120
       RAARAGGPGS RARAAGARGC RLRSQLVPVR ALGLGHRSDE LVRFRFCSGS CRRARSPHDL
                                                                               180
       SLASLLGAGA LRPPPGSRPV SQPCCRPTRY EAVSFMDVNS TWRTVDRLSA TACGCLG
70 .
        Seg ID NO: 280 DNA sequence
       Nucleic Acid Accession #: NM_057090.1
       Coding sequence: 29-715
75
        CTGATGGGCG CTCCTGGTGT TGATAGAGAT GGAACTTGGA CTTGGAGGCC TCTCCACGCT
       GTCCCACTGC CCTGGCCTA GGCGGCAGGC TCCACTTGGT CTCTCCGGGC AGCCTGCCCT
GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT CCCTGGGCTC
                                                                               120
                                                                                180
80
        CGCGCCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT CCCCCGCCGG
                                                                               240
        CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC GGCCGCCGCC
                                                                                300
        GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC CCCGCGGGGG
                                                                               360
        CCGCGCGGGG CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG CGCGGGGCTG
                                                                                420
        CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC GCTCCGACGA
                                                                                4B0
85
        GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC CACACGACCT
                                                                                540
        CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT CCCGGCCCGT
                                                                                600
        CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG ACGTCAACAG
                                                                                660
```

```
WO\ 02/086443 cactegaga acceptagacc gentences caccectes generates generated generated generated by the second caccected generated gen
                                                                                                           720
          CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG GGACCCTCCC
                                                                                                           780
          GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC TGAGAGGCCC
                                                                                                           840
          CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA CTAGCAGCCC
                                                                                                           900
  5
          CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG CTATGGAGCC
                                                                                                           960
          CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG GGACCCCTCC
                                                                                                         1020
          TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT AGGGACAGCA
                                                                                                          1080
          TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA CTGGCCTGTA
                                                                                                         1140
          CTCACTCATG GGAGCTGGCC CC
10
          Seq ID NO: 281 Protein sequence:
         Protein Accession #: NP_476431.1
                                                                                        51
                                         21
                                                         31
15
         MELGLGGLST LSHCPWPRRO APLGLSAQPA LWPTLAALAL LSSVAEASLG SAPRSPAPRE
                                                                                                            60
         GPPPVLASPA GHLPGGRTAR WCSGRARRPP POPSRPAPPP PAPPSALPRG GRAARAGGPG
                                                                                                           120
          SRARAAGARG CRLRSQLVPV RALGLGHRSD ELVRFRFCSG SCRRARSPHD LSLASLLGAG
                                                                                                           180
         ALRPPPGSRP VSQPCCRPTR YEAVSFMDVN STWRTVDRLS ATACGCLG
20
          Seg ID NO: 282 DNA sequence
         Nucleic Acid Accession #: Eos sequence
25
          CTACTGCACC TGCCCTCTGT TTCCTTTGGA AATCTCTTAC CTTTCATTAG GGTTTCTTTC
                                                                                                            60
         ATAGCAATTT CCTTTGGTTT TTAAGACTTC TACATTGCTT TTTCTTTTAT TATCTGTGCT
                                                                                                           120
         COGTGAACCT TATGAATGCT GCTTAAAAAT AATGTCAAAA TATGTTTTAG CTGCCTACTC
                                                                                                           180
         AGGTAACGTT TTCTTTTGCT CTCATCTTGG TTTCCATATA CTATTTTTGG TTTTTTGTGA
                                                                                                           240
30
          GATCTAATCA ATGATCTAGT CAGAAGCTAC TTCACTGGCT AACAGTGATC ATGTTCATGT
                                                                                                           300
          GCTAAAAATG AACTTGAAAC ACGGAAGTAG TGGTTGGTCC AGTTTGAAAG CTCTTATTAG
                                                                                                           360
          TATTCTTCAT CCTGGCTGTA ATAATAGCCA TTATTTGTTA TGCCTTTGTT ATGTAGCAGA
                                                                                                           420
          CACTCTTAAG GATTTTATGT GTATTATTCA AATTGCTATT ACTGTTCTTT TTATAGTTGA
                                                                                                           480
         GAATCTCAGG ATACCTACAT TTATCACTTT TTCAATATAT ATGTATTTCT TATT
35
         Seg ID NO: 283 DNA seguence
         Nucleic Acid Accession #: Eos sequence
         Coding sequence: 564-1481
40
         GAGACTITTA ATCATCTATC CCTTGTGCTT TACGCAGACC CTACAATACA CTAGAGGCTT
          CAAAGAGGTC AAAAATTCAC ATGTGTAGAC AAATTAGGTC CCTTAAGATG CCAGGCAAAC
                                                                                                           120
         GAAGTGCTAC CAAAACACGC AATGACTGTC CTAAAAGTGC GTTCTGGGAT ACACCTGTAA
                                                                                                           180
45
          ACTTGGATCA AGTTCCCTCC CCTCTCCTCA AAATATATCG ACTTGTGCTG AAAGAAATCA
                                                                                                           240
          CGACCGATGC TCACAATTCT GACCTCGTAA TTATATAGGG GGTGGTTTTG GTTTCTGCGT
                                                                                                           300
          CTTTCCCTGA TTCAGTGGCA GGTAACATAT TTCATGTACA AAATGAACTG CAACACCACG
                                                                                                           360
         GCAAACAAGG GACAGGCCCT CAAAGTTGTC GGTAGGGAGC CAGGACCCCG CCAGTGGCGT
                                                                                                           420
         GGGGAGACAC CGTACTAAAC AAGCTTGCAA ACAGCAGGCA CCTTCCTGCC ACTGAGGAGG
                                                                                                           480
50
          AAGGGCTGGC TAAGGGAGGC CGGGGCGGAG GAAGCCAAGC TCTGCAGGCC CTGACAAAGT
                                                                                                           540
          CCTCCCGGCC TCCACGCGTC GCCATGGCAA CGCGGGGTCT GTGCTGGCCG GGATTGGCCG
                                                                                                           600
          GCCTGGCGCG CGCAGGGCCC GCTGGGAAAG CGCGTCCCCG CCGCGGCTCC GCCAGTTTGA
                                                                                                           660
          ACTTGGCGGG CCAGATGTGG GCGGCGGGGC GCTGGGGGCC TACTTTTCCC TCTTCCTACG
                                                                                                           720
          COGGTTTCTC TGCTGACTGC AGACCCAGGT CTCGGCCCTC CTCGGACTCC TGCTCAGTCC
                                                                                                           780
         CTATGACGGG CGCACGTGGG CAGGGGCTGG AGGTGGTGCG CTCGCCGTCG CCGCCGCTGC
55
                                                                                                           840
          CGCTGAGCTG CAGCAATTCC ACCAGGTCGC TGTTGTCTCC CCTTGGCCAC CAGAGCTTCC
                                                                                                           900
          AGTTTGACGA GGACGACGGT GACGGGGAGG ATGAGGAAGA CGTGGATGAT GAGGAAGACG
                                                                                                           960
         TGGATGAAGA TGCCCATGAT TCAGAGGCCA AAGTGGCGAG CCTGAGAGGA ATGGAGTTAC
         AGGGGTGCGC CAGCACTCAG GTTGAATCAG AAAATAACCA AGAAGAACAG AAACAGGTGC
60
         GCTTACCAGA AAGCCGCCTG ACACCATGGG AGGTGTGGTT TATTGGCAAA GAAAAAGAAG
                                                                                                          1140
         AACGTGACCG GCTGCAACTG AAAGCTCTAG AGGAATTAAA TCAACAACTA GAAAAAAGAA
                                                                                                          1200
          AAGAAATGGA AGAACGTGAA AAAAGAAAGA TAATTGCTGA AGAAAAGCAC AAGGAATGGG
                                                                                                          1260
          TTCAGAAAAA GAATGAGCAA AAAAGAAAAG AAAGAGAACA AAAAATTAAT AAAGAAATGG
                                                                                                          1320
          AGGAAAAAGC AGCAAAGGAA CTGGAGAAAG AATACTTGCA AGAAAAAGCA AAAGAAAAAT
                                                                                                          1380
65
          1440
          AAAACAACAG CAAGCTGAAA TACAGGAGAA AAAGGAAATA GCAGAAAAAA AGTTTCAAGA
                                                                                                          1500
          ATGGTTGGAA AATGCGAAAC ATAAACCTCG TCCAGCTGCA AAGAGCTATG GTTATGCCAA
                                                                                                         1560
          TGGAAAACTT ACAGGTTTTT ACAGTGGAAA TTCCTATCCA GAACCAGCCT TTTATAATCC
                                                                                                          1620
          AATTCCGTGG AAACCAATTC ATATGCCACC TCCCAAAGAA GCTAAGGATC TATCAGGAAG
                                                                                                          1680
70
          GAAGAGTAAA AGACCTGTGA TAAGTCAGCC ACACAAGTCA TCATCTCTGG TAATTCATAA
                                                                                                          1740
          AGCCAGGAGC AATCTTTGCC TTGGAACTCT GTGCAGAATA CAAAGATAGC GTATGTGGAA
                                                                                                          1800
          AATAACATGC TTTTATCTGG AGCTATTTAA TTTAAAAAATC AGAAATTGTT TTTTACTGCT
                                                                                                          1860
          CAGTCAATAA CTCAACACTT AATGTGATTA TTGACAAATA GCAATTTTTG CATTTGTATA
                                                                                                          1920
                                                                                                          1980
          TGGAGTCCTT AGAGTTGAGG AAGATATTTT CTGGATTTTG GTTTTTATAA ACTTTTTAAG
75
          GTTGATCTTG GCATGTTGTT TTGCAGAATA AGTGGCTGAA TATGTAAGAA TTGTGTTTGT
                                                                                                         2040
          ATTTAGCTTG TATTAAAAGT ACACTGTAAT ACCAATAAAA CTAACAATTT TTCTTG
          Seq ID NO: 284 Protein sequence:
          Protein Accession #: Eos sequence
80
                                                          31
                          11
          MATRGLOWPG LAGLARAGPA GKARPRRGSA SLINLAGOMWA AGRWGPTPPS SYAGFSADOR
                                                                                                             60
          PRSRPSSDSC SVPMTGARGQ GLEVVRSPSP PLPLSCSNST RSLLSPLGHQ SFQFDEDDGD
                                                                                                           120
85
          GEDEEDVDDE EDVDEDAHDS EAKVASLRGM BLQGCASTQV ESENNQEEQK QVRLPESRLT
                                                                                                           180
          PWEVWPIGKE KEERDRLQLK ALEELNQQLE KRKEMEEREK RKIIAEEKHK EWVQKKNEQK
                                                                                                           240
          RKEREQKINK EMBEKAAKEL EKEYLQEKAK EKYQEWLKKK NAEECERKKK EKKNNSKLKY
                                                                                                           300
```

Seq ID NO: 285 DNA sequence
Nucleic Acid Accession #: Eos sequence
Coding sequence: 1-1746

WO 02/086443

9	courne sede		. •				
	1	11	21	31	41	51	
	i	1	1	1			
	ATGCCACTGA	AGCATTATCT	CCTTTTGCTG	GTGGGCTGCC	AAGCCTGGGG	TGCAGGGTTG	60
10	GCCTACCATG	GCTGCCCTAG	CGAGTGTACC	TGCTCCAGGG	CCTCCCAGGT	GGAGTGCACC	120
	GGGGCACGCA	TTGTGGCGGT	GCCCACCCCT	CTGCCCTGGA	ACGCCATGAG	CCTGCAGATC	180
	CTCAACACGC	ACATCACTGA	ACTCAATGAG	TCCCCGTTCC	TCAATATCTC	AGCCCTCATC	240
	GCCCTGAGGA	TTGAGAAGAA	TGAGCTGTCG	CGCATCACGC	CTGGGGCCTT	CCGAAACCTG	300
1.5	GGCTCGCTGC	GCTATCTCAG	CCTCGCCAAC	AACAAGCTGC	AGGTTCTGCC	CATCGGCCTC	360
15	TTCCAGGGCC	TGGACAGCCT	TGAGTCTCTC	CTTCTGTCCA	GTAACCAGCT	GTTGCAGATC	420
	CAGCCGGCCC	ACTTCTCCCA	GTGCAGCAAC	CTCAAGGAGC	TGCAGTTGCA	CGGCAACCAC	480
	CTGGAATACA	TCCCTGACGG	AGCCTTCGAC	CACCTGGTAG	GACTCACGAA	GCTCAATCTG	540
	GGCAAGAATA	GCCTCACCCA	CATCTCACCC	AGGGTCTTCC	AGCACCTGGG	CAATCTCCAG	600
20	GTCCTCCGGC	TGTATGAGAA	CAGGCTCACG	GATATCCCCA	TGGGCACTTT	TGATGGGCTT	660
20	GTTAACCTGC	AGGAACTGGC	TCTACAGCAG	AACCAGATTG	GACTGCTCTC	CCCTGGTCTC	720
	TTCCACAACA	ACCACAACCT	CCAGAGACTC	TACCTGTCCA	ACAACCACAT	CTCCCAGCTG	780
	CCACCCAGCA	TCTTCATGCA	GCTGCCCCAG	CTCAACCGTC	TTACTCTCTT	TGGGAATTCC	840
		TCTCTCTGGG					900 960
25		ACATCTCTTC					1020
23	GTCCTGATTC	TTAGCCGCAA	TCAGATCAGC	TTCATCTCCC	CGGGTGCCTT	CAACGGGCIA	1020
		GGGAGCTGTC					1140
		TGGCCAACCT					1200
		TCTTCGCCAA					1260
30	CTGGAGAACT	TGCCCCTCGG CCTGGAGGTG	CATCTTCGAT	ATCOTTOCCO	TOCCOOR	CCTCCTCCTC	1320
20	TATGACAATC	GGTTAGGGAC	CCACACACTC	CCTCTCTCTCTT	TCAGCCCAGC	CAATGTCCGA	1380
	AACCAGCCTA	TCATTATCAT	CAACACIGIA	CONTROL	CNACCCCAGC	TCTCCCTGAG	1440
	GGCCAGTCCC	ACCCAGAAAC	ACCATGICAAC	CCDCDCDCDC	CAAGCGICCA	TGACACCACA	1500
		CTACCACTGA					1560
35		CTGATGACCG					1620
55	ATTUAGGICA	TTGTAATTGG	CAGCGITIGG	CTGGCCTGCT	CCCTGGCTGC	CTGCGTCGGC	1680
	TOTTOCTOCT	GCAAGAAGAG	GAGCCAAGCT	GTCCTGATGC	AGATGAAGGC	ACCCAATGAG	1740
	TOTTANAGAG	GCAGGCTGGA	GCAGGGCTGG	GGAATGATGG	GACTGGAGGA	CCTGGGAATT	1800
	TCATCTTTCT	GCCTCCACCC	CTGGGTCCAT	GGAGCTTTCC	CGTGATTGCT	CTTTCTGGCC	1860
40	CTAGATAAAG	GTGTGCCTAC	CTCTTCCTGA	CTTGCCTGAT	TCTCCCGTAG	AGAAGCAGGT	1920
	CGTGCCGGAC	CTTCCTACAA	TCAGGAAGAT	AGATCCAACT	GGCCATGGCA	AAAGCCCTGG	1980
	GGATTTCCGA	TTCATACCCC	TGGGCTTCCT	TCGAGAGGGC	TCTTCCTCCA	AATCCTCCCC	2040
	ACCTGTCCTC	CAAGAACAGC	CTTCCCTGCG	CCCAGGCCCC	CTCCGGGCCT	CTGTAGACTC	2100
	AGTTAGTCCA	CAGCCTGCTC	ACTTCGTGGG	AATAGTTCTC	CGCTGAGATA	GCCCCTCTCG	2160
45	CCTAAGTATT	ATGTAAGTTG	ATTTCCCTTC	TTTTGTTTCT	CTTGTTTGTG	CTATGGCTTG	2220
	ACCCAGCATG	TCCCCTCAAA	TGAAAGTTCT	CCCCTTGATT	TTCTGCTCCT	GAAGGCAGGG	2280
	TGAGTTCTCT	CCTCAAAGAA	GACTTCAAAC	CATTTAACTG	GTTTCTTAAG	AGCCGTCAAT	2340
	CAGCCTGGTT	TTGGGGATGC	TATGAAAGAG	AGAAGGAAAA	TCATGCCGCT	CAGTTCCTGG	2400
50	AGACAGAAGA	GCCGTCATCA	GTGTCTCACT	TGTGATTTTT	ATCTGGAAAA	GGAAGAAACA	2460
50	CCCCAGCACA	GCAAGCTCAG	CCTTTTAGAG	AAGGATATTT	CCAAACTGCA	AACTTTGCTT	2520
	TGAAAAGTTT	AGCCCTTTAA	GGAATGAAAT	CATGTAGAAT	TTTGGACTTC	TAAAAACATT	2580
		TATTAATACG					2640
	CACCCCTAGA	GTTTGTTTTA	AAATTTTTAA	TTGAAGCATG	TGAAGTGTAC	STGCAGAAAA	2700
55	GTGGGAACAT	GATAGTGTAT	GGCTTGGTGG	ATTTTCACAA	ACTGAACATA	CCIGIGIAAT	2760
22	CAGCATCTAG	ACCCAGACCC	AGAGCATCAC	AAATATCCCC	CATCCTGGGC	TTTTCCCAGA	2820
	GGAGATGGGG	GCTTCTGAAG	ATGGACTTAC	CTGGGACCTG	CCCCCCATGA	GCCAGGACGG	2880
	TCCCCCCACA	GTCAGCCTGT	GCAAAGGCCC	CGTGGCCAGG	GGTGGAGGAG	AATATGTGGG	2940 3000
	TGTGGACAGG	ATGGGAGACT AGACCTGGGG	GTGGCCTGAA	CAGGAGATTT	CARCOARCOR	CACTCCACAG	3060
60	AGAGACCCTG	CCACACCCTC	THEOCOTOGOGA	CCA A CTTCCTC	TOCCOOTECT	CCCACCCCCC	3120
00	TCCCGTGCAG	GCCTTCTATG	CACCECATAT	CCCTCTATCT	CTTTTTAATT	TTCATTCTTC	3180
		AGTGAAATCG					3240
		TCTTTCTAAT					3300
		AATCTCACTT					3360
65	GTCTGGGGGC	TCCCTGGAGC	TCCTCCTGCG	TGTGGTCTGG	TTAGGAGTTG	AGTTGTTTGC	3420
••	TCCAGGGTTA	TTCTCCTCCT	CGAGTCACAG	TCACACGAAT	ACCTGCCTTC	TCTGGCTTTC	3480
	CTGCTATACA	CATATTCACA	TGGCGCTCAA	GAAGTTAGGC	TCATGGCAAC	GTGTGTCTTT	3540
	CTCTGGACAA	CTGGCCCAGT	TTACAGTGAA	ATGGAGAATT	TCAGGTCTCC	ACGTCTGCCC	3600
	AGGAAAGAAC	TTCAGCTGAC	TCCACGGGGA	TCTGGAAATC	CACGACCAAT	CCCGATCGGC	3660
70	TCTTATTAGC	TCCCCGCTCC	ACAAGACACC	TGTGCTTTGG	AAATCCACCA	CCAATCCCGA	3720
•	TCGGCTCTTA	TTAGCTCCCC	GCTCCACAAG	ACACCTGTGA	TCTGGAAATC	TACCACCAAT	3780
	CCCGATCGGC	TCTTATTAGC	TCCCCGCTCC	ACAAGACACC	TGTGACATCC	TCCAGGGCCA	3840
	CAGGAGCACG	TGCTGACCAG	TTTTCCCTTC	CAGTTCCTGC	ACAAAAAGTG	TCCAGAGGGC	3900
	TGTTTGCAAA	CACTAGTGCA	CTTTGTAGCT	TTTCACCCTC	TGTCCCAGGG	AATCTAGGAG	3960
75	AGATGAGGCC	CGTCAGAGTC	AAGAGATGTC	ATCCCCCCAG	GGTCTCCAAG	GCATTTCCAC	4020
	ACTATTGGTG	GCACCTGGAG	GACATGCACC	AAGGCTTGCC	AGAGCCAACA	GGAAGTGAGC	4080
	CCAGAGCATG	GCACATGAGC	ATCACCCGCT	GATGGTGGCC	TGCTGTGCCT	GGTGCCAACA	4140
	GGGGCATCCC	GGCCCGTACC	CCTCCAGACA	GGAAGCATGG	GTTTGCCCAC	AGACCTGTCG	4200
0.0	GGTGCTCCTG	TGAGTGGCCT	CCAGATGTCT	TTGTGCATAG	GCACAAGTGG	GCCAGGGCTG	4260
80	GAGGGAGGTG	GGAAACCTCA	TCATCCGGTG	GGCCCTGCCA	ATCTTAACCC	AGAACCCTTA	4320
	GGTATTCCTG	GCAGTAGCCA	TGACATTGGA	GCACCTTCCT	CTCCAGCCAG	AGGCTGACCT	4380
	GAGGGCCACT	GTCCTCAGAT	GACACCACCC	AGGAGCACCC	TAGGTGAGGG	GTGAGGGCCC	4440
	CCTTATGTGA	ACCTCTTGCC	TCTTCCTTTC	TCCCATCAGA	GTGGTTGGAT	GGAGCCATTG	4500
0.5	GCCTCCTTTT	CTTCAGCGGG	CCCTTCAACC	TCTCTGCACC	ATGTTGTCTG	GCTGAGGAGC	4560
85	TACTAGAAAA	GCTGAGTGGA	GTCTCCTTTC	CAACAGGATG	ATGCATTTGC	TCAATTCTCA	4620
	GGGCTGGAAT	GAGCCGGCTG	GICCCCAGA	ANGCIGGAGI	CONCECCO	GIICHGIIII	4680 4740
	CCTCTCTGTT	TACAGCTCCT	TGACAGTCCC	ACCCCATCT	DADDIONDE	CIGGGRGIIA	4/40

WO 02/086443 GTGTTGGAGA AGAAACAACA AAAGCCAATT AGAACCACTA TTTTTAAAAA GTGCTTACTG 4800 TGCACAGATA CTCTTCAAGC ACTGGACGTG GATTCTCTCT CTAGCCCTCA GCACCCCTGC 4860 GGTAGGAGTG CCGCCTCTAC CCACTTGTGA TGGGGTACAG AGGCACTTGC TCTTCTGCAT 4920 GGTGTTCAAT AGGCTGGGAG TTTTATTTAT CTCTTCAAAC TTTGTACAAG AGCTCATGGC 4980 TTGTCTTGGG CTTTCGTCAT TAAACCAAAG GAAATGGAAG CCATTCCCCT GTTGCTCTCC 5040 TTAGTCTTGG TCATCAGAAC CTCACTTGGT ACCATATAGA TCAAAAGCTT TGTAACCACA 5100 5160 TGGGCTGTAT GTATATTGTT CTTCCTCCTT AGAATTTAGA GATACAAGAG TTCTACTTAG 5220 AACTTTTCAT GGACACAATT TCCACAACCT TTCAGATGCT GATGTAGAGC TATTGGGAAA 5280 10 GAACTTCCAA ACTCAGGAAG TTTGCAGAGA GCAGACAGCT AGAGATAACT CGGGACCCAG 5340 AGTTGGTCGA CAGATGTTAG ATGTATCCTA GCTTTTAGCC ATAAACCACT CAAAGATTCA 5400 GCCCCCAGAT CCCACAGTCA GAACTGAATC TGCGTTGTTG GGAAGCCAGC AGTGGCCTTG 5460 GGAAGGAAGC CATGGCTGTG GTTCAGAGAG GGTGGGCTGG CAAGCCACTT CCGGGGGAAAA CTCCTTCCGC CCCAGGTTTC TTCTTCTCTT AAGGAGAGAT TGTTCTCACC AACCCGCTGC 5520 5580 CTTCATGCTG CCTTCAAAGC TAGATCATGT TTGCCTTGCT TAGAGAATTA CTGCAAATCA GCCCCAGTGC TTGGCGATGC ATTTACAGAT TTCTAGGCCC TCAGGGTTTT GTAGAGTGTG 15 5640 5700 AGCCCTGGTG GGCAGGGTTG GGGGGTCTGT CTTCTGCTGG ATGCTGCTTG TAATCCATTT GGTGTACAGA ATCAACAATA AATAATATAC ATGTAT 20 Seg ID NO: 286 Protein sequence: Protein Accession #: NP_570843.1 31 25 MPLKHYLLLL VGCQAWGAGL AYHGCPSECT CSRASQVECT GARIVAVPTP LPWNAMSLQI 60 LNTHITELNE SPFLNISALI ALRIEKNELS RITPGAFRNL GSLRYLSLAN NKLQVLPIGL 120 FOGLDSLESL LLSSNOLLQI QPAHFSQCSN LKELQLHGNH LEYIPDGAFD HLVGLTKLNL 180 GKNSLTHISP RVFQHLGNLQ VLRLYENRLT DIPMGTFDGL VNLQELALQQ NQIGLLSPGL 240 FHNNHNLQRL YLSNNHISQL PPSIFMQLPQ LNRLTLFGNS LKELSLGIFG PMPNLRELWL 300 30 YDNHISSLPD NVFSNLRQLQ VLILSRNQIS FISPGAFNGL TELRELSLHT NALQDLDGNV 360 FRMLANLQNI SLQNNRLRQL PGNIFANVNG LMAIQLQNNQ LENLPLGIFD HLGKLCELRL 420 YDNPWRCDSD ILPLRNWLLL NQPRLGTDTV PVCFSPANVR GQSLIIINVN VAVPSVHVPE 480 VPSYPETPWY PDTPSYPDTT SVSSTTELTS PVEDYTDLTT IQVTDDRSVW GMTQAQSGLA 540 IAAIVIGIVA LACSLAACVG CCCCKKRSQA VLMQMKAPNE C 35 Seq ID NO: 287 DNA sequence Nucleic Acid Accession #: NM_002362 Coding sequence: 1..954 40 11 21 31 51 ATGTCTTCTG AGCAGAAGAG TCAGCACTGC AAGCCTGAGG AAGGCGTTGA GGCCCAAGAA 60 GAGGCCCTGG GCCTGGTGGG TGCACAGGCT CCTACTACTG AGGAGCAGGA GGCTGCTGTC 120 TCCTCCTCCT CTCCTCTGGT CCCTGGCACC CTGGAGGAAG TGCCTGCTGC TGAGTCAGCA 180 45 GGTCCTCCCC AGAGTCCTCA GGGAGCCTCT GCCTTACCCA CTACCATCAG CTTCACTTGC TGGAGGCAAC CCAATGAGGG TTCCAGCAGC CAAGAAGAGG AGGGGCCAAG CACCTCGCCT 300 GACGCAGAGT CCTTGTTCCG AGAAGCACTC AGTAACAAGG TGGATGAGTT GGCTCATTTT . 360 CTGCTCCGCA AGTATCGAGC CAAGGAGCTG GTCACAAAGG CAGAAATGCT GGAGAGAGTC 420 ATCAAAAATT ACAAGCGCTG CTTTCCTGTG ATCTTCGGCA AAGCCTCCGA GTCCCTGAAG 480 50 ATGATCTTTG GCATTGACGT GAAGGAAGTG GACCCCGCCA GCAACACCTA CACCCTTGTC 540 ACCTGCCTGG GCCTTTCCTA TGATGGCCTG CTGGGTAATA ATCAGATCTT TCCCAAGACA 600 GGCCTTCTGA TAATCGTCCT GGGCACAATT GCAATGGAGG GCGACAGCGC CTCTGAGGAG 660 GARATCTGGG AGGAGCTGGG TGTGATGGGG GTGTATGATG GGAGGGAGCA CACTGTCTAT 720 GGGGAGCCCA GGAAACTGCT CACCCAAGAT TGGGTGCAGG AAAACTACCT GGAGTACCGG 780 55 CAGGTACCCG GCAGTAATCC TGCGCGCTAT GAGTTCCTGT GGGGTCCAAG GGCTCTGGCT 840 GAAACCAGCT ATGTGAAAGT CCTGGAGCAT GTGGTCAGGG TCAATGCAAG AGTTCGCATT 900 GCCTACCCAT CCCTGCGTGA AGCAGCTTTG TTAGAGGAGG AAGAGGGAGT CTGA 60 Sea ID NO: 288 Protein sequence: Protein Accession #: NP_002353.1 31 65 MSSEQKSQHC KPEEGVEAGE EALGLVGAQA PTTEEQEAAV SSSSPLVPGT LEEVPAAESA 60 GPPQSPQGAS ALPTTISFTC WRQPNEGSSS QEEEGPSTSP DAESLFREAL SNKVDELAHP 120 LLRKYRAKEL VTKAEMLERV IKNYKRCFPV IFGKASESLK MIFGIDVKEV DPASŅTYTLV 180 TCLGLSYDGL LGNNQIFPKT GLLIIVLGTI AMEGDSASEE EIWEELGVMG VYDGREHTVY 240 GEPRKLLTQD WVQENYLEYR QVPGSNPARY EFLWGPRALA ETSYVKVLEH VVRVNARVRI 300 70 AYPSLREAAL LEEEEGV Seg ID NO: 289 DNA seguence Nucleic Acid Accession #: NM_002362 Coding sequence: 46..1344 75

31

CGGCGGCCGC GCCCTGGTTG GGTCCCCACT GCTCTCGGGG GCGCCATGGA CGAGGCCGTG

21

80

85

GGCGACCTGA AGCAGGCGCT TCCCTGTGTG GCCGAGTCGC CAACGGTCCA CGTGGAGGTG 120
CATCAGCGCG GCAGCAGCAC TGCAAAGAAA GAAGACATAA ACCTGAGTGT TAGAAAAGCTA 180
CTCAAACAGAC ATAATATTGT GTTTGGTGAT TACACATGGA CTGAGTTTGA TGAACCTTT 240
CAGCCCATCG ATTTGAGTGC TGTGTCTATT ATTGACACAG AATTAAAGGT TAAAGACTCA 300
CAGCCCATCG ATTTGAGTGC ATGCACTGTT GCACTTCACA TTTTCCAGCT GAATGAAGAT 360
GGCCCCAGCA GTGAAAATCT GGAGGAGAGA ACAGAAAACA TAATTGCAGC AAATCACTGG 420
GTTCTACCTG CAGCTGAATT CCATGGGCTT TGGGACAGCT TGGTATACGA TGTGGAAGTC 480
AAATCCCATC TCCTCGATTA TGTGATGACA ACTTTACTGT TTTCAGACAA GAACGTCAAC 540

PCT/US02/12476

```
600
       AGCAACCTCA TCACCTGGAA CCGGGTGGTG CTGCTCCACG GTCCTCCTGG CACTGGAAAA
       ACATCCCTGT GTAAAGCGTT AGCCCAGAAA TTGACAATTA GACTTTCAAG CAGGTACCGA
                                                                             660
       TATGGCCAAT TAATTGAAAT AAACAGCCAC AGCCTCTTTT CTAAGTGGTT TTCGGAAAGT
                                                                             720
       GGCAAGCTGG TAACCAAGAT GTTTCAGAAG ATTCAGGATT TGATTGATGA TAAAGACGCC
                                                                             780
       CTGGTGTTCG TGCTGATTGA TGAGGTGGAG AGTCTCACAG CCGCCCGAAA TGCCTGCAGG
 5
                                                                             840
       GCGGGCACCG AGCCATCAGA TGCCATCCGC GTGGTCAATG CTGTCTTGAC CCAAATTGAT
       CAGATTAAAA GGCATTCCAA TGTTGTGATT CTGACCACTT CTAACATCAC CGAGAAGATC
       GACGTGGCCT TCGTGGACAG GGCTGACATC AAGCAGTACA TTGGGCCACC CTCTGCAGCA
       GCCATCITCA ANATCIACCI CICTIGITIG GAAGAACIGA IGAAGIGICA GATCATATAC
       CCTCGCCAGC AGCTGCTGAC CCTCCGAGAG CTAGAGATGA TTGGCTTCAT TGAAAACAAC
10
       GTGTCAAAAT TGAGCCTTCT TTTGAATGAC ATTTCAAGGA AGAGCGAGGG CCTCAGCGGC
                                                                            1200
       CGGGTCCTGA GAAAACTCCC CTTTCTGGCT CATGCGCTGT ATGTCCAGGC CCCCACCGTC
                                                                            1260
       ACCATAGAGG GGTTCCTCCA GGCCCTGTCT CTGGCAGTGG ACAAGCAGTT TGAAGAGAGA
                                                                            1320
       AAGAAGCTTG CAGCTTACAT CTGATCCTGG GCTTCCCCAT CTGGTGCTTT TCCCATGGAG
                                                                            1380
15
       AACACACAAC CAGTAAGTGA GGTTGCCCCA CACAGCCGTC TCCCAGGGAA TCCCTTCTGC
                                                                            1440
       AAACCAAACG TTACTTAGAC TGCAAGCTAG AAAGCCACCA AGGCCAGGCT TTGTTAAAAG
                                                                            1500
                                                                            1560
       AAGTGTATTC TATTTATGTT GTTTTAAAAT GCATACTGAG AGACAAACAT CTTGTCATTT
       TCACTGTTTG TAAAAGATAA TTCAGATTGT TTGTCTCCTT GTGAAGAACC ATCGAAACCT
                                                                            1620
                                                                            1680
       GTTTGTTCCC AGCCCACCCC CAGTGGATGG GATGCATAAT GCCAGCAAGT TTTGTTTAAC
20
       AGCAAAAAG GAAGATTAAT GCAGGTGTTA TAGAAGCCAG AAGAGAAACT GTGTCACCCT
                                                                            1740
       AAAGAAGCAT ATAATCATAG CATTAAAAAT GCACACATTA CTCCAGGTGG AAGGTGGCAA
                                                                            1800
       TTGCTTTCTG ATATCAGCTC GTTTGATTTA GTGCAAAAAT GTTTTCAAGA CTATTTAATG
                                                                            1860
       GATGTAAAAA AGCCTATTTC TACATTATAC CAACTGAGAA AAAAATGGTC GGTAAAGTGT
                                                                            1920
       TCTTTCATAA TAAATAATCA AGACATGGTC CCATTTGCAG GAAAAGTGCA GACTCTGAGT
                                                                            1980
25
                                                                            2040
       GTTCCAGGGA AACACATGCT GGACATCCCT TGTAACCCGG TATGGGCGCC CCTGCATTGC
       TGGGATGTTT CTGCCCACGG TTTTGTTTGT GCAATAACGT TATCACATTT CTAATGAGGA
                                                                            2100
       TTCACATTAA TATAATATAA AATAAATAGG TCAGTTACTG GTCTCTTTCT GCCGAATGTT
                                                                            2160
       ATGTTTTGCT TTTATCTCAC AGTAAAATAA ATATAATTAA AAA
30
       Seq ID NO: 290 Protein sequence:
       Protein Accession #: NP_004228
                                         31
       MDEAVGDLKQ ALPCVAESPT VHVEVHORGS STAKKEDINL SVRKLLNRHN IVFGDYTWTE
35
       FDEPFLTRNV QSVSIIDTEL KVKDSQPIDL SACTVALHIF QLNEDGPSSE NLEEETENII
                                                                             120
       AANHWYLPAA EFHGLWDSLV YDVEVKSHLL DYVMTTLLFS DKNVNSNLIT WNRVVLLHGP
                                                                             180
       PGTGKTSLCK ALAQKLTIRL SSRYRYGQLI EINSHSLFSK WFSESGKLVT KMFQKIQDLI
                                                                             240
       DDKDALVFVL IDEVESLTAA RNACRAGTEP SDAIRVVNAV LTQIDQIKRH SNVVILTTSN
                                                                             300
40
       ITEKIDVAFV DRADIKOYIG PPSAAAIPKI YLSCLEELMK CQIIYPRQQL LTLRELEMIG
                                                                             360
       FIENNVSKLS LLLNDISRKS EGLSGRVLRK LPFLAHALYV QAPTVTIEGF LQALSLAVDK
                                                                             420
       OFEERKKLAA YI
       Seq ID NO: 291 DNA sequence
45
       Nucleic Acid Accession #: NM_002658.1
       Coding sequence: 77-1372
       GTCCCCGCAG CGCCGTCGCG CCCTCCTGCC GCAGGCCACC GAGGCCGCCG CCGTCTAGCG
50
                                                                              60
       CCCCGACCTC GCCACCATGA GAGCCCTGCT GGCGCGCCTG CTTCTCTGCG TCCTGGTCGT
                                                                             120
       GAGCGACTCC AAAGGCAGCA ATGAACTTCA TCAAGTTCCA TCGAACTGTG ACTGTCTAAA
                                                                             180
       TGGAGGAACA TGTGTGTCCA ACAAGTACTT CTCCAACATT CACTGGTGCA ACTGCCCAAA
                                                                             240
       GAAATTCGGA GGGCAGCACT GTGAAATAGA TAAGTCAAAA ACCTGCTATG AGGGGAATGG
       TCACTTTTAC CGAGGAAAGG CCAGCACTGA CACCATGGGC CGGCCCTGCC TGCCCTGGAA
55
                                                                             360
       CTCTGCCACT GTCCTTCAGC AAACGTACCA TGCCCACAGA TCTGATGCTC TTCAGCTGGG
       CCTGGGGAAA CATAATTACT GCAGGAACCC AGACAACCG AGGCGACCCT GGTGCTATGT
GCAGGTGGGC CTAAAGCCGC TTGTCCAAGA GTGCATGGTG CATGACTGCG CAGATGGAAA
                                                                             480
       AAAGCCCTCC TCTCCTCCAG AAGAATTAAA ATTTCAGTGT GGCCAAAAGA CTCTGAGGCC
                                                                             600
60
       CCGCTTTAAG ATTATTGGGG GAGAATTCAC CACCATCGAG AACCAGCCCT GGTTTGCGGC
                                                                             660
       CATCTACAGG AGGCACCGGG GGGGCTCTGT CACCTACGTG TGTGGAGGCA GCCTCATCAG
                                                                             720
       CCCTTGCTGG GTGATCAGCG CCACACACTG CTTCATTGAT TACCCAAAGA AGGAGGACTA
                                                                             780
       CATCGTCTAC CTGGGTCGCT CAAGGCTTAA CTCCAACACG CAAGGGGAGA TGAAGTTTGA
                                                                             840
       GGTGGAAAAC CTCATCCTAC ACAAGGACTA CAGCGCTGAC ACGCTTGCTC ACCACAACGA
                                                                             900
65
       CATTGCCTTG CTGAAGATCC GTTCCAAGGA GGGCAGGTGT GCGCAGCCAT CCCGGACTAT
                                                                             960
       ACAGACCATC TGCCTGCCCT CGATGTATAA CGATCCCCAG TTTGGCACAA GCTGTGAGAT
                                                                            1020
       CACTGGCTTT GGAAAAGAGA ATTCTACCGA CTATCTCTAT CCGGAGCAGC TGAAAATGAC
                                                                            1080
       TGTTGTGAAG CTGATTTCCC ACCGGGAGTG TCAGCAGCCC CACTACTACG GCTCTGAAGT
                                                                            1140
       CACCACCAAA ATGCTATGTG CTGCTGACCC CCAATGGAAA ACAGATTCCT GCCAGGGAGA
                                                                            1200
70
       CTCAGGGGGA CCCCTCGTCT GTTCCCTCCA AGGCCGCATG ACTTTGACTG GAATTGTGAG
                                                                            1260
       CTGGGGCCGT GGATGTGCCC TGAAGGACAA GCCAGGCGTC TACACGAGAG TCTCACACTT
                                                                            1320
       CTTACCCTGG ATCCGCAGTC ACACCAAGGA AGAGAATGGC CTGGCCCTCT GAGGGTCCCC
                                                                            1380
       AGGGAGGAAA CGGGCACCAC CCGCTTTCTT GCTGGTTGTC ATTTTTGCAG TAGAGTCATC
                                                                            1440
       TCCATCAGCT GTAAGAAGAG ACTGGGAAGA TAGGCTCTGC ACAGATGGAT TTGCCTGTGG
CACCACCAGG GTGAACGACA ATAGCTTTAC CCTCACGGAT AGGCCTGGGT GCTGGCTGCC
                                                                            1500
75
                                                                            1560
       CAGACCCTCT GGCCAGGATG GAGGGGTGGT CCTGACTCAA CATGTTACTG ACCAGCAACT
                                                                            1620
       TGTCTTTTC TGGACTGAAG CCTGCAGGAG TTAAAAAGGG CAGGGCATCT CCTGTGCATG
                                                                            1680
       GGCTCGAAGG GAGAGCCAGC TCCCCCGACC GGTGGGCATT TGTGAGGCCC ATGGTTGAGA
                                                                            1740
       AATGAATAAT TTCCCAATTA GGAAGTGTAA GCAGCTGAGG TCTCTTGAGG GAGCTTAGCC
80
       AATGTGGGAG CAGCGGTTTG GGGAGCAGAG ACACTAACGA CTTCAGGGCA GGGCTCTGAT
                                                                            1860
       ATTCCATGAA TGTATCAGGA AATATATATG TGTGTGTATG TTTGCACACT TGTTGTGTGG
                                                                            1920
       GCTGTGAGTG TAAGTGTGAG TAAGAGCTGG TGTCTGATTG TTAAGTCTAA ATATTTCCTT
                                                                            1980
       AAACTGTGTG GACTGTGATG CCACACAGAG TGGTCTTTCT GGAGAGGTTA TAGGTCACTC
                                                                            2040
       CTGGGGCCTC TTGGGTCCCC CACGTGACAG TGCCTGGGAA TGTACTTATT CTGCAGCATG
                                                                            2100
85
       ACCTGTGACC AGCACTGTCT CAGTTTCACT TTCACATAGA TGTCCCTTTC TTGGCCAGTT
                                                                             2160
       ATCCCTTCCT TTTAGCCTAG TTCATCCAAT CCTCACTGGG TGGGGTGAGG ACCACTCCTT
                                                                            2220
       ACACTGAATA TITATATITC ACTATITITA TITATATITI TGTAATITTA AATAAAAGTG 2280
```

WO 02/086443 ATCAATAAAA TGTGATTTTT CTGA

```
Seq ID NO: 292 Protein sequence:
       Protein Accession #:NP_002649.1
 5
                                                                51
                                         31
       MRALLARLLL CVLVVSDSKG SNELHQVPSN CDCLNGGTCV SNKYFSNIHW CNCPKKFGGQ
       HCEIDKSKTC YEGNGHFYRG KASTDTMGRP CLPWNSATVL QQTYHAHRSD ALQLGLGKHN
                                                                             120
       YCRNPDNRRR PWCYVQVGLK PLVQECMVHD CADGKKPSSP PEELKFQCGQ KTLRPRFKII
10
                                                                             180
       GGEFTTIENQ PWFAAIYRRH RGGSVTYVCG GSLISPCWVI SATHCFIDYP KKEDYIVYLG
                                                                             240
       RSRLNSNTOG EMKPEVENLI LHKDYSADTL AHHNDIALLK IRSKEGRCAQ PSRTIQTICL
                                                                             300
       PSMYNDPQFG TSCEITGFGK ENSTDYLYPE QLKMTVVKLI SHRECQQPHY YGSEVTTKML
                                                                             360
       CAADPOWKTD SCOGDSGGPL VCSLQGRMTL TGIVSWGRGC ALKDKPGVYT RVSHFLPWIR
                                                                             420
15
       SHTKEENGLA L
       Seq ID NO: 293 DNA sequence
       Nucleic Acid Accession #: NM_001498
       Coding sequence: 93..2006
20
                  11
                             21
                                         31
                                                    41
                                                                51
       GGCACGAGGC TGAGTGTCCG TCTCGCGCCC GGAAGCGGGC GACCGCCGTC AGCCCGGAGG
                                                                              60
25
       AGGAGGAGGA GGAGGAGGAG GAGGGGGCGG CCATGGGGCT GCTGTCCCAG GGCTCGCCGC
                                                                             120
       TGAGCTGGGA GGAAACCAAG CGCCATGCCG ACCACGTGCG GCGGCACGGG ATCCTCCAGT
                                                                             180
       TCCTGCACAT CTACCACGCC GTCAAGGACC GGCACAAGGA CGTTCTCAAG TGGGGCGATG
                                                                             240
       AGGTGGAATA CATGTTGGTA TCTTTTGATC ATGAAAATAA AAAAGTCCGG TTGGTCCTGT
                                                                             300
       CTGGGGAGAA AGTTCTTGAA ACTCTGCAAG AGAAGGGGGA AAGGACAAAC CCAAACCATC
                                                                             360
       CTACCCTTTG GAGACCAGAG TATGGGAGTT ACATGATTGA AGGGACACCA GGACAGCCCT
30
                                                                             420
       ACGGAGGAAC AATGTCCGAG TTCAATACAG TTGAGGCCAA CATGCGAAAA CGCCGGAAGG
                                                                             480
       AGGCTACTTC TATATTAGAA GAAAATCAGG CTCTTTGCAC AATAACTTCA TTTCCCAGAT
                                                                             540
       TAGGCTGTCC TGGGTTCACA CTGCCCGAGG TCAAACCCAA CCCAGTGGAA GGAGGAGCTT
       CCAAGTCCCT CTTCTTTCCA GATGAAGCAA TAAACAAGCA CCCTCGCTTC AGTACCTTAA
                                                                             660
35
       CAAGAAATAT CCGACATAGG AGAGGAGAAA AGGTTGTCAT CAATGTACCA ATATTTAAGG
                                                                             720
       ACAAGAATAC ACCATCTCCA TITATAGAAA CATTTACTGA GGATGATGAA GCTTCAAGGG
CTTCTAAGCC GGATCATATT TACATGGATG CCATGGGATT TGGAATGGGC AATTGCTGTC
                                                                             780
                                                                             840
       TCCAGGTGAC ATTCCAAGCC TGCAGTATAT CTGAGGCCAG ATACCTTTAT GATCAGTTGG
                                                                             900
       CTACTATCTG TCCAATTGTT ATGGCTTTGA GTGCTGCATC TCCCTTTTAC CGAGGCTATG
                                                                             960
40
       TGTCAGACAT TGATTGTCGC TGGGGAGTGA TTTCTGCATC TGTAGATGAT AGAACTCGGG
                                                                            1020
       AGGAGCGAGG ACTGGAGCCA TTGAAGAACA ATAACTATAG GATCAGTAAA TCCCGATATG
                                                                            1080
       ACTCAATAGA CAGCTATTTA TCTAAGTGTG GTGAGAAATA TAATGACATC GACTTGACGA
                                                                            1140
       TAGATAAAGA GATCTACGAA CAGCTGTTGC AGGAAGGCAT TGATCATCTC CTGGCCCAGC
                                                                            1200
       ATGTTGCTCA TCTCTTTATT AGAGACCCAC TGACACTGTT TGAAGAGAAA ATACACCTGG
                                                                            1260
45
       ATGATGCTAA TGAGTCTGAC CATTTTGAGA ATATTCAGTC CACAAATTGG CAGACAATGA
                                                                            1320
       GATTTAAGCC CCCTCCTCCA AACTCAGACA TTGGATGGAG AGTAGAATTT CGACCCATGG
                                                                            1380
       AGGTGCAATT AACAGACTTT GAGAACTCTG CCTATGTGGT GTTTGTGGTA CTGCTCACCA
                                                                            1440
       GAGTGATCCT TTCCTACAAA TTGGATTTTC TCATTCCACT GTCAAAGGTT GATGAGAACA
                                                                            1500
       TGAAGGTAGC ACAGAAAAGA GATGCTGTCT TGCAGGGAAT GTTTTATTTC AGGAAAGATA
                                                                            1560
       TTTGCAAAGG TGGCAATGCA GTGGTGGATG GTTGTGGCAA GGCCCAGAAC AGCACGGAGC
50
                                                                            1620
       TOGCTGCAGA GGAGTACACC CTCATGAGCA TAGACACCAT CATCAATGGG AAGGAAGGTG
TGTTTCCTGG ACTGATCCCA ATTCTGAACT CTTACCTTGA AAACATGGAA GTGGATGTGG
                                                                            1680
       ACACCAGATG TAGTATTCTG AACTACCTAA AGCTAATTAA GAAGAGAGCA TCTGGAGAAC
                                                                            1800
       TAATGACAGT TGCCAGATGG ATGAGGGAGT TTATCGCAAA CCATCCTGAC TACAAGCAAG
       ACAGTGTCAT AACTGATGAA ATGAATTATA GCCTTATTTT GAAGTGTAAC CAAATTGCAA
55
                                                                            1920
       ATGAATTATG TGAATGCCCA GAGTTACTTG GATCAGCATT TAGGAAAGTA AAATATAGTG
                                                                            1980
       GAAGTAAAAC TGACTCATCC AACTAGACAT TCTACAGAAA GAAAAATGCA TTATTGACGA
                                                                            2040
       ACTGGCTACA GTACCATGCC TCTCAGCCCG TGTGTATAAT ATGAAGACCA AATGATAGAA
                                                                            2100
       CTGTACTGTT TTCTGGGCCA GTGAGCCAGA AATTGATTAA GGCTTTCTTT GGTAGGTAAA
                                                                            2160
60
       TCTAGAGTTT ATACAGTGTA CATGTACATA GTAAAGTATT TTTGATTAAC AATGTATTTT
                                                                            2220
       AATAACATAT CTAAAGTCAT CATGAACTGG CTTGTACATT TTTAAATTCT TACTCTGGAG
                                                                            2280
       CAACCTACTG TCTAAGCAGT TTTGTAAATG TACTGGTAAT TGTACAATAC TTGCATTCCA
                                                                            2340
       GAGTTAAAAT GTTTACTGTA AATTTTTGTT CTTTTAAAGA CTACCTGGGA CCTGATTTAT
                                                                            2400
       TGAAATTTTT CTCTTTAAAA ACATTTTCTC TCGTTAATTT TCCTTTGTCA TTTCCTTTGT
                                                                            2460
65
       TGTCTACATT AAATCACTTG AATCCATTGA AAGTGCTTCA AGGGTAATCT TGGGTTTCTA
                                                                            2520
       GCACCTTATC TATGATGTTT CTTTTGCAAT TGGAATAATC ACTTGGTCAC CTTGCCCCAA
                                                                            2580
       70
       Seg ID NO: 294 Protein seguence:
       Protein Accession #: NP_001489
                                                     41
                  11
                              21
                                         31
75
       MGLLSOGSPL SWEETKRHAD HVRRHGILOF LHIYHAVKDR HKDVLKWGDE VEYMLVSFDH
       ENKKYRLVLS GEKYLETLQE KGERTNPNHP TLWRPEYGSY MIEGTPGQPY GGTMSEFNTV
                                                                             120
       EANMRKRRKE ATSILEENQA LCTITSFPRL GCPGFTLPEV KPNPVEGGAS KSLFFPDEAI
                                                                             180
       NKHPRFSTLT RNIRHRRGEK VVINVPIFKD KNTPSPFIET FTEDDEASRA SKPDHIYMDA
                                                                             240
80
       MGFGMGNCCL QVTPQACSIS EARYLYDQLA TICPIVMALS AASPPYRGYV SDIDCRWGVI
                                                                             300
       SASVDDRTRE ERGLEPLKNN NYRISKSRYD SIDSYLSKCG EKYNDIDLTI DKEIYEQLLQ
                                                                             360
```

EGIDHLLAQH VAHLFIRDPL TLFEEKIHLD DANESDHFEN IQSTNWQTMR FKPPPPPNSDI

GWRVEFRPME VOLTDFENSA YVVFVVLLTR VILSYKLDFL IPLSKVDENM KVAQKRDAVL

OGMFYPRKDI CKGGNAVVDG CGKAQNSTEL AAEEYTLMSI DTIINGKEGV FPGLIPILNS

YLENMEVDVD TRCSILNYLK LIKKRASGEL MTVARWMREF IANHPDYKQD SVITDEMNYS

LILKCNOIAN ELCECPELLG SAFRKVKYSG SKTDSSN

85

420

480

540

600

PCT/US02/12476

Seq ID NO: 295 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 247-816

```
5
                               21
       AGTGTTCGGC TGGGGCAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTCCC ATCCCCCTTG
                                                                                 60
       GGCCAAACGG GATCGGTGCT TCTGGTGAGA CGCCTCCCCA TGCACATCAC TCCCAGGTGC
                                                                                120
       CCTAGGGGGC ACATTTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
                                                                                180
10
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
                                                                                240
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                                300
                                                                                360
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGA AAAGAAGCTT
                                                                                420
       ATGACAGGAC ATGCTATTCC ACCCAGCCAA TTGGATTCTC AGATTGATGA CTTCACTGGT
15
       TTCAGCAAAG ATAGGATGAT GCAGAAACCT GGTAGCAATG CACCTGTGGG AGGAAACGTT
       ACCAGCAGTT TCTCTGGAGA TGACCTAGAA TGCAGAGAAA CAGCCTCCTC TCCCAAAAGC
       CAACGAGAAA TTAATGCTGA TATAAAACGT AAATTAGTGA AGGAACTCCG ATGCGTTGGA
                                                                                660
       CAAAAATATG AAAAAATCTT CGAAATGCTT GAAGGAGTGC AAGGACCTAC TGCAGTCAGG
                                                                                720
       AAGCGATTTT TTGAATCCAT CATCAAGGAA GCAGCAAGAT GTATGAGACG AGACTTTGTT
                                                                                780
20
       AAGCACCTTA AGAAGAAACT GAAACGTATG ATTTGAGAAT ACTTGTCCCT GGAGGATTAT
                                                                                840
       CACACCCCAA ATGCATAATC TCGTTAATGA TTGAGGAGAG AAAAGGATCA GATTGCTGTT
                                                                                900
       TTCTACAATG GAGCAGGATA TTGCTGAAGT CTCCTGGCAT ATGTTACCGA ATCAAATAGC
                                                                                960
       CTTCCAGAGG CTAAGAAATT TCTGTTAGTA AAAGATGTTC TTTTTCCCAA AGCATTTTAT
                                                                              1020
       TTGAAAGGAT AACTTGTGTT TTGGTTATTT TGTATTCCCA CCTGTGCTGG TAGATATTAT
                                                                             1080
25
       TAACCCATTA GGTAAATACT ATTACAGTCG TGGTTTCTGC A
       Seq ID NO: 296 Protein sequence:
       Protein Accession #: Eos sequence
30
                                                                  51
                              21
                                          31
                                                      41
       MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKEKKLMT
                                                                                60
       GHAIPPSQLD SQIDDFTGFS KDRMMQKPGS NAPVGGNVTS SFSGDDLECR ETASSPKSQR
                                                                                120
       EINADIKRKL VKELRCVGQK YEKIFEMLEG VQGPTAVRKR FFESIIKEAA RCMRRDFVKH
35
       LKKKLKRMI
       Seg ID NO: 297 DNA seguence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 247-815
40
                              21
       AGTGTTCGGC TGGGGCAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTCCC ATCCCCCTTG
                                                                                60
45
       GGCCAAACGG GATCGGTGCT TCTGGTGAGA CGCCTCCCCA TGCACATCAC TCCCAGGTGC
                                                                               120
       CCTAGGGGGC ACATTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
                                                                               180
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
                                                                               240
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
                                                                               300
       CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                               360
50
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGA AAAGAAGCTT
                                                                               420
       ATGACAGGAC ATGCTATTCC ACCCAGCCAA TTGGATTCTC AGATTGATGA CTTCACTGGT
                                                                                480
       TTCAGCAAAG ATAGGATGAT GCAGAAACCT GGTAGCAATG CACCTGTGGG AGGAAACGTT
                                                                               540
       ACCAGCAGTT TCTCTGGAGA TGACCTAGAA TGCAGAGAAA CAGCCTCCTC TCCCAAAAGC
CAACAAGAA TTAATGCTGA TATAAAACGT AAATTAGTGA AGGAACTCCG ATGCGTTGGA
                                                                               600
                                                                               660
55
       CAAAAATATG AAAAAATCTT CGAAATGCTT GAAGGAGTGC AAGGACCTAC TGCAGTCAGG
                                                                                720
       AAACGATTTT TTGAATCCAT CATCAAGGAA GCAGCAAGAT GTATGAGACG AGACTTTGTT
                                                                                780
       AAGCACCTTA AGAAGAAACT GAAACGTATG ATTTGAGAAT ACTTGTCCCT GGAGGATTAT
                                                                                840
       CACACCCCAA ATGCATAATC TCATTAATGA TTGAGGAGAG AAAAGGATCA GATTGCTGTT
       TTCTACAATG GAGCAGGATA TTGCTGAAGT CTCCTGGCAT ATGTTACCGA ATCAACTGGC
CTTCCAGAGG CTAAGAAATT TCTGTTAGTA AAAGATGTTC TTTTTCCCAA AGCGTTTTAT
                                                                                960
60
                                                                              1020
       TTGAAAGGAT AACTTGTGTT TTGGTTATTT TGTATTCCCA CCTGTGCTGG TAGATATTAT
                                                                              1080
       TAACCCATTA GGTAAATACT ATTACAGTCG TGGTTTCTGC A
       Seq ID NO: 298 Protein sequence:
65
       Protein Accession #: Eos sequence
       MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKEKKLMT
                                                                                60
70
       GHAIPPSQLD SQIDDFTGFS KDRMMQKPGS NAPVGGNVTS SFSGDDLECR ETASSPKSQQ
                                                                               120
       EINADIKRKL VKELRCVGQK YEKIFEMLEG VQGPTAVRKR FFESIIKEAA RCMRRDFVKH
       LKKKLKRMI
       Seq ID NO: 299 DNA sequence
75
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 247-815
                               21
                                          31
80
       AGTGTTCGGC TGGGGCAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTCCC ATCCCCCTTG
       GGCCAAACGG GATCGGTGCT TCTGGTGAGA CGCCTCCCCA TGCACATCAC TCCCAGGTGC
                                                                                120
                                                                                180
       CCTAGGGGGC ACATTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
                                                                                240
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
                                                                                300
85
       CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                                360
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGC AAAGAGCTTA
                                                                                420
       TGACAGGACA TGCTATTCCA CCCAGCCAAT TGGATTCTCA GATTGATGAC TTCACTGGTT
                                                                                480
```

```
540
       TCAGCAAAGA TAGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAACGTTA
                                                                            600
       CCAGCAGTTT CTCTGGAGAT GACCTAGAAT GCAGAGAAAC AGCCTCCTCT CCCAAAAGCC
       AACAAGAAAT TAATGCTGAT ATAAAACGTA AATTAGTGAA GGAACTCCGA TGCGTTGGAC
                                                                            660
                                                                            720
       AAAAATATGA AAAAATCTTC GAAATGCTTG AAGGAGTGCA AGGACCTACT GCAGTCAGGA
       AACGATTTTT TGAATCCATC ATCAAGGAAG CAGCAAGATG TATGAGACGA GACTTTGTTA
                                                                            780
       AGCACCTTAA GAAGAAACTG AAACGTATGA TTTGAGAATA CTTGTCCCTG GAGGATTATC
                                                                            840
       ACACCCCAAA TGCATAATCT CATTAATGAT TGAGGAGAGA AAAGGATCAG ATTGCTGTTT
TCTACAATGG AGCAGGATAT TGCTGAAGTC TCCTGGCATA TGTTACCGAA TCAACTGGCC
                                                                            900
                                                                            960
       TTCCAGAGGC TAAGAAATTT CTGTTAGTAA AAGATGTTCT TTTTCCCAAA GCGTTTTATT
                                                                           1020
       TGAAAGGATA ACTTGTGTTT TGGTTATTTT GTATTCCCAC CTGTGCTGGT AGATATTATT 1080
10
       AACCCATTAG GTAAATACTA TTACAGTCGT GGTTTCTGCA
       Seg ID NO: 300 Protein sequence:
       Protein Accession #: Eos sequence
15
       MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKAKKLMT
                                                                             60
       GHAIPPSQLD SQIDDFTGFS KDRMMQKPGS NAPVGGNVTS SFSGDDLECR ETASSPKSQQ
                                                                            120
20
       EINADIKRKL VKELRCVGQK YEKIFEMLEG VQGPTAVRKR FFESIIKEAA RCMRRDFVKH
                                                                            180
       Seq ID NO: 301 DNA sequence
       Nucleic Acid Accession #: Eos sequence
25
       Coding sequence: 247-812
                  11
                             21
                                         31
                                                    41
                                                               51
       AGTGTTCGGC TGGGGCAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTCCC ATCCCCCTTG
                                                                             60
30
       GGCCAAACGG GATCGGTGCT TCTGGTGAGA CGCCTCCCCA TGCACATCAC TCCCAGGTGC
                                                                            120
       CCTAGGGGGC ACATTTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
                                                                            180
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
                                                                            240
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
                                                                            300
       CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                            360
35
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGA AAAGAGCTTA
                                                                            420
       TGACAGGACA TGCTATTCCA CCCAGCCAAT TGGATTCTCA GATTGATGAC TTCACTGGTT
                                                                            480
       TCAGCAAAGA TGGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAATGTTA
                                                                            540
       CCAGCAATTT CTCTGGAGAT GACCTAGAAT GCAGAGGAAT AGCCTCCTCT CCCAAAAGCC
       AACAAGAAAT TAATGCTGAT ATAAAATGTC AAGTAGTGAA GGAAATCCGA TGCCTTGGAC
40
       AATATGAAAA AATCTTCGAA ATGCTTGAAG GAGTGCAAGG ACCTACTGCA GTCAGGAAAC
                                                                            720
       780
       ACCTTAAGAA GAAACTGAAA CGTATGATTT GAGAATACTT GTCCCTGGAG GATTATCACA
                                                                            840
       CCCCAAATGC ATAATCTCAT TAATGATTGA GGAGAGAAAA GGATCAGATT GCTGTTTTCT
                                                                            900
       ACAATGGAGC AGGATATTGC TGAAGTCTCC TGGCATATGT TACCGAATCA ACTGGCCTTC
                                                                            960
45
       CAGAGGCTAA GAAATTTCTG TTAGTAAAAG ATGTTCTTTT TCCCAAAGCG TTTTATTTGA
                                                                           1020
       AAGGATAACT TGTGTTTTGG TTATTTTGTA TTCCCACCTG TGCTGGTAGA TATTATTAAC
                                                                           1080
       CCATTAGGTA AATACTATTA CAGTCGTGGT TTCTGCA
       Seq ID NO: 302 Protein sequence:
50
       Protein Accession #: Eos sequence
                                                    41
                                                               51
       MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKEKKLMT
                                                                             60
55
       CHAIPPSQLD SQIDDFTGFS KDGMMQKPGS NAPVGGNVTS NFSGDDLECR GIASSPKSQQ
                                                                            120
       EINADIKCQV VKEIRCLGQY EKIFEMLEGV QGPTAVRKRF FESIIKEAAR CMRRDFVKHL
       KKKLKRMI
       Seg ID NO: 303 DNA sequence
60
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 247-815
65
       AGTGTTCGGC TGGGACAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTTCC ATCCCCCTTG
       GGCCAAACAG GATCGGTGCT TCTGGTGAGA CGTCTCCCCA TGCACATCAC TCCCAGATGC
                                                                            120
       CCTAGGGGGC ACATTTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
                                                                            180
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
                                                                            240
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
                                                                            300
70
       CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                            360
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGC AAAGAGCTTA
                                                                            420
       TGACAGGACA TGCTATTCCA CCCAGCCAAT TGGATTCTCA GATTGATGAC TTCACTGGTT
                                                                            480
       TCAGCAAAGA TAGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAACGTTA
                                                                            540
       CCAGCAGTTT CTCTGGAGAT GACCTAGAAT GCAGAGAAAC AGCCTCCTCT CCCAAAAGCC
                                                                            600
75
       AACAAGAAAT TAATGCTGAT ATAAAACGTA AATTAGTGAA GGAACTCCGA TGCGTTGGAC
                                                                            660
       AAAAATATGA AAAAATCITC GAAATGCTTG AAGGAGTGCA AGGACCTACT GCAGTCAGGA
                                                                            720
       AACGATTTTT TGAATCCATC ATCAAGGAAG CAGCAAGATG TATGAGACGA GACTTTGTTA
                                                                            780
       AGCACCTTAA GAAGAAACTG AAACGTATGA TTTGAGAATA CTTGTCCCTG GAGGATTATC
                                                                            840
       ACACCCCAAA TGCATAATCT CGTTAATGAT TGAGGAGAGA AAAGGATCAG ATTGCTGTTT
                                                                            900
80
       TCTACAATGG AGCAGGATAT TGCTGAAGTC TCCTGGCATA TGTTACCGAA TCAACTGGCC
                                                                            960
       TTCCAGAGGC TAAGAAATTT CTGTTAGTAA AAGATGTTCT TTTTCCCAAA GCGTTTTATT
                                                                           1020
       TGAAAGGATA ACTTGTGTTT TGGTTATTTT GTATTCCCAC CTGTGCTGGT AGATATTATT
       AACCCATTAG GTAAATACTA TTACAGTCGT GGTTTCTGCA
85
       Seq ID NO: 304 Protein sequence:
       Protein Accession #: Eos sequence
```

WO 02/086443

	WO 02	/086443					
	1	11	21	31	41	51	
5	GHAI PPSOLD	SOIDDFTGFS	I ECDSPSYQKR KDRMMQKPGS YEKIFEMLEG	NAPVGGNVTS	SFSGDDLECR	ETASSPKSQQ	60 120 180
	LKKKLKRMI Seq ID NO:	305 DNA sec	Ineuce				
10		id Accession sence: 87-68	ı #: Eos seq 19	uence			
	1	11 	21 	31	41	51 	
15	CGTGGAGGCA	GCTAGCGCGA	GGCTGGGGAG GTCAGGATGG	CGCTGAGCCG	CCCCAAGAAA	CCTGCGCTGC	60 120
13	AGATGTCCGC	TTATGCCTTC	TTTGTGCAGA	CATGCAGAGA	AGAACATAAG	AAGAAAAACC	180
	CAGAGGTCCC	TGTCAATTTT	GCGGAATTTT AAATTTGATG	CCAAGAAGTG	CTCTGAGAGG	TGGAAGACGA	240 300
	ATCGGGAAAT	GAAGGATTAT	GGACCAGCTA	AGGGAGGCAA	GAAGAAGAAG	GATCCTAATG	360
20	CTCCCAAAAG	GCCACCGTCT	GGATTCTTCC	TGTTCTGTTC	AGAATTCCGC	CCCAAGATCA	420
	AATCCACAAA	CCCCGGCATC	TCTATTGGAG AAGCAGCCTT	ACGTGGCAAA ACATCACTAA	GGCGGCAAAG	CTGAAGGAGA	480 540
	AGTATGAGAA	GGATGTTGCT	GACTATAAGT	CGAAAGGAAA	GTTTGATGGT	GCAAAGGGTC	600
25	CTGCTAAAGT	TGCCCGGAAA	AAGGTGGAAG GATGAATAAA	AGGAAGATGA	AGAAGAGGAG	GAGGAAGAAG TTGTGAATAC	660 720
23	TTAGAGTAGG	GGAGCGCCGT	AATTGACACA	TCTCTTATTT	GAGAAGTGTC	TGTTGCCCTC	780
	ATTAGGTTTA	ATTACAAAAT	TTGATCACGA	TCATATTGTA	GTCTCTCAAA	GTGCTCTAGA	840 900
	AAGTTGTACA	TATTTCCAAA	AAGTGGCCAT CATTTTTAAA	ATGAAAAGGC	ACTCTCGTGT	TCTCCTCACT	960
30	CTGTGCACTT	TGCTGTTGGT	GTGACAAGGC	ATTTAAAGAT	GTTTCTGGCA	TTTTCTTTTT	1020
	ATTTGTAAGG	TGGTGGTAAC	TATGGTTATT AACAAAACAA	CCGAGACAAA	CCTGAGTTTT	TCCTTGCTCG	1080 1140
	GCCTTGAGGC	TGTGGGGAAG	ATGCCTTTTG	GGAGAGGCTG	TAGCTCAGGG	CGTGCACTGT	1200
35	GAGGCTGGAC	CTGTTGACTC	TGCAGGGGGC CTGCTGCCAT	ATCCATTTAG	GACAAAGGGG	GGTCAGCTGG	1260 1320
33	CATGAGAATA	TTTTTTTTT	TAAGTGCGGT	AGTTTTTAAA	CTGTTTGTTT	TTAAACAAAC	1380
	TATAGAACTC	TTCATTGTCA	GCAAAGCAAA TCGCAACGTT	GAGTCACTGC	ATCAATGAAA	GTTCAAGAAC TTAGAATGCT	1440 1500
	GAAATGTTTT	TGAAGTTAAA	TAAACAGTAT	TACATTTTTA	AAACTCTTCT	CTATTATAAC	1560
40	AGTCAATTTC	TGACTCACAG	CAGTGAACAA	ACCCCCACTC	CATTGTATTT	GGAGACTGGC	1620 1680
	TGAAGGAGAG	GGCTACTTGA	TTCTTTTATT AGCTACTGTG	TGATTTTGTT	TGTGTCTGAG	TGGCATTCAG	1740
	ATGAAGTCTG	GAGGAGTTAG	GAGAACGACA CTGAGGCTAT	TAGGCAAGGT	TCAGCAGCCT	TCCAAGGTAT	1800 1860
45	CCTATTTTGT	GGGGCCAAAT	GCATTGCTAA	ACAGCAATTT	CAGAGTGTAT	GGTGTGTCAA	1920
	AAATTAAGGC	CTTATTGTTT	TTCTCTTTCA CATTTGGGGT	CCCCTACCCC	CCGTGCTCCT	GGCACATATC	1980 2040
	AGTGAGGGTA	TGTGGGATGG	GGTGGTGGGG	TAGGGGACGG	TATCCTTTTT	TTGCTCCTAC	2100
50	TTGGAAACAC	CAAACACCCC	AAGGAAGATG	ATAGGCTCCA	TCTTGGGCCA	CCTGAGCTAT	2160 2220
30	GCCTGCTCAT	AAGTTTAGCT	ACCATTTCTG CATTCACTGG	AAATGTAGAT	TGATGTTCAA	TGTTAAACTG	2280
	GAAGGAGCTT	GGTTTGTGTG	TCAGTGGTTA	TATTAGTGGG	TAGTGTAACA	TTTTATCCAG	2340
	CTGATGTGTA	TATACATCAT	CCACAGTAGC TACTGTCCGT	AGCAATGAAG	GATACAGTAC	TGTGTTGTGG	2400 2460
55	GTGAGTGTTG	CTATTGCCCA	GCATTAATAT	TTGGGTGTGT	ATGTTTGAGG	CTATGAAACA	2520
	CGCAGGAGTG	TTTTTGTGCT	ATTAATTTTA GGAGGCGGTG	AGAGAAAGCA	CCTGTCGGGT	CCTGGATGAG	2580 2640
	TACGAGTTAT	GGTCACGGTC	ACAGCCTGAT	CTCTTATGTG	TTCATAGCCA	TTCGCTCTCC	2700
.60	CATCAGAACT	GTTTGTCCTG	AATGTGTTCC GCCCAGAGGC	ACTIGITCIA	GAAAATGACC	ACTAATTTAA TCCTGCTTCA	2760 2820
	GCCATGTCCT	TGTCACTTGG	CATTCTAAGC	TAAAGCTTTA	GCTTCCCAAT	TCGTGATGTG	2880
	CTAGGCCAAG	ATTCGGGAGC	TGTTGCCAGC TTAAGTGGTG	CTCGTCAAAT	ATGGAAGAGA	AACAACCTGC	2940 3000
	CAGGGAAGGG	CCAAGGATGG	AAAGGGGTAA	CTTTTGTGCT	TCCAAAGTAG	CTAAGCAGAA	3060
65	GTGGGGGAGC	AGTTTAGCCA	GATGATCTTT GTCCATTAGC	GATTAGGCAA	ACATTGAGTT	TTAAAGAGGC	3120 3180
	CACACTGTGG	CAAGATTGCT	CTTCTAGTGG	AATAATGCCC	TAGTTTCTCT	GAGATGATGT	3240
	AAGTGGCATG	ATGTTACCTA	AGGCTTAGGC TGCTTTTTT	TTAGCTTGAT	TTCTGGGCCC	ACTGTCTGTG	3300 3360
70	CTACTCCCTC	TAACCACCTC	ACCCCATTCT	TGAATGACAT	TTTATCCTTC	GGAAAGAACA	3420
	AGGCTGTGAT	GTAGTGACTA	TTGTCTGTGT	CTCCTGTGTG	TGTCTGTTCT	TGTCACAAAT	3480
	GTATTTGGGG	ACGTTGGATG	CATTCATTTT	CIGIAAIAAA	G		
75		306 Protein cession #: 1					
	1	11	21	31 	41 1	51 1	
	1 MAKGDPKKPK	i GKMSAYAFFV	QTCREEHKKK	NPEVPVNFAB	FSKKCSERWK	TMSGKEKSKP	60
80	DEMAKADKVR	YDREMKDYGP	AKGGKKKKDP	NAPKRPPSGF	FLFCSEFRPK	IKSTNPGISI	120 180
	EEEDEEEEE	WNNLNDSEKQ	FILIKAAKUK	PUTEVTANI	AMOURAGAGA	GPAKVARKKV	100
	Sea In Mo.	307 DNA se	mience				
85			quence n #: NM_022	342			
		uence: 12					

```
ATGGGTACTA GGAAAAAAGT TCATGCATTT GTCCGTGTCA AACCCACCGA TGACTTTGCT
                                                                           120
       CATGAAATGA TCAGATACGG AGATGACAAA AGAAGCATTG ATATTCACTT AAAAAAAGAC
       ATTCGGAGAG GAGTTGTCAA TAACCAACAG ACAGACTGGT CGTTTAAGTT GGATGGAGTT
                                                                            180
       TTCACGATG CCTCCCAGGA CTTGGTTTAT GAGACAGTTG CAAAGGATGT GGTTTCTCAG
                                                                           240
       CCCTCGATG GCTATAATGG CACCATCATG TGTTATGGGC AGACGGGAGC TGGCAAGACA
                                                                           300
       ACACCATGA TGGGGGCAAC TGAGAATTAC AAGCACCGGG GGATCCTCCC TCGTGCCCTG
                                                                           360
10
       AGCAGGITT TTAGGATGAT CGAAGAACGC CCCACACATG CCATCACTGT GCGTGTTTCC
                                                                           420
       ACTTGGAAA TCTATAATGA GAGCCTGTTT GATCTCCTGT CCACTCTGCC CTATGTTGGA
                                                                           480
       CCTCAGTCA CACCAATGAC CATCGTGGAA AACCCTCAAG GAGTCTTCAT TAAGGGCTTG
                                                                           540
       CAGTTCACC TCACAAGTCA GGAGGAGGAT GCATTCAGCC TCCTTTTTGA GGGTGAGACC
                                                                           600
       ACAGGATTA TAGCCTCCCA CACTATGAAC AAAAACTCTT CCAGATCACA CTGCATTTTC
                                                                           660
15
       CCATCTACT TAGAGGCCCA TTCCCGGACC TTATCAGAGG AAAAGTACAT CACTTCCAAA
                                                                           720
       TTAACTTGG TGGATCTGGC AGGCTCAGAG AGGCTGGGGA AGTCTGGGTC TGAGGGCCAA
                                                                           780
                                                                           B40
       TCCTGAAGG AAGCCACCTA CATCAACAAA TCGCTCTCAT TCCTGGAGCA GGCCATCATT
       CCCTTGGGG ACCAGAAGCG GGACCACATC CCCTTTCGGC AGTGCAAGCT CACCCACGCT
                                                                           900
       TGAAGGACT CGTTAGGGGG AAACTGCAAT ATGGTCCTCG TGACAAACAT CTATGGAGAA
                                                                           960
20
       CTGCCCAGT TAGAAGAAAC GCTATCTTCA CTGAGATTTG CCAGCAGGAT GAAGCTAGTC
                                                                          1020
       CCACTGAGC CTGCCATCAA TGAAAAGTAT GATGCTGAGA GAATGGTCAA GAACCTGGAG
                                                                          1080
       AGGAACTAG CACTACTCAA GCAGGAGCTG GCTATCCATG ACAGCCTGAC CAACCGCACC
       TTGTGACCT ATGACCCCAT GGATGAAATC CAGATTGCTG AGATCAACTC CCAGGTGCGG
      GGTACCTGG AGGGGACACT GGACGAGATC GACATAATCA GCCTTAGACA GATCAAGGAG
       TGTTCAACC AGTTCCGGGT GGTTCTGAGC CAACAGGAAC AGGAAGTGGA GTCCACTTTG
25
                                                                          1320
       GCAGGAAGT ACACCCTCAT TGACAGGAAT GACTTTGCAG CCATTTCTGC TATCCAGAAG
                                                                          1380
       CGGGGCTTG TGGATGTTGA TGGCCACCTA GTGGGTGAGC CTGAAGGACA AAACTTTGGA
                                                                          1440
       TCGGAGTCG CCCCTTTCTC TACCAAACCT GGGAAGAAAG CCAAGTCCAA GAAGACATTC
                                                                          1500
       AAGAGCCAC TCAGGCCCGA CACCCCACCC TCCAAACCAG TGGCCTTTGA GGAGTTTAAG
                                                                          1560
30
       ATGAGCAAG GTAGTGAGAT CAACCGAATT TTCAAAGAAA ACAAATCCAT CTTGAATGAA
                                                                          1620
       GGAGGAAAA GGGCCAGCGA GACCACACAG CACATCAATG CCATCAAGCG GGAGATTGAT
                                                                          1680
       TGACCAAGG AGGCCCTGAA TTTCCAGAAG TCACTACGGG AGAAGCAAGG CAAGTACGAA
                                                                          1740
       ACAAGGGC TGATGATCAT CGATGAGGAA GAATTCCTGC TGATCCTCAA GCTCAAAGAC
                                                                          1800
       TCAAGAAGC AGTACCGCAG CGAGTACCAG GACCTGCGTG ACCTCAGGGC TGAGATCCAG
                                                                          1860
       ATTGCCAGC ACCTAGTGGA TCAGTGTCGC CACCGCCTGC TCATGGAATT TGACATCTGG
35
                                                                          1920
       ACAATGAGT CCTTTGTCAT CCCTGAGGAC ATGCAGATGG CACTGAAGCC AGGCGGCAGC
                                                                          1980
       TCCGGCCAG GCATGGTCCC TGTGAACAGG ATTGTGTCTC TGGGAGAAGA TGACCAGGAC
                                                                          2040
       AATTCAGCC AGCTGCAGCA GAGGGTGCTT CCTGAGGGCC CTGATTCCAT CTCCTTCTAC
                                                                          2100
       ATGCCAAAG TCAAGATAGA GCAGAAGCAT AATTACTTGA AAACCATGAT GGGCCTCCAG
                                                                         2160
40
       AGGCACATA GAAAATAG
       Seq ID NO: 308 Protein sequence:
       Protein Accession #: NP_071737
45
       MGTRKKVHAF VRVKPTDDFA HEMIRYGDDK RSIDIHLKKD IRRGVVNNQQ TDWSFKLDGV
       LHDASQDLVY ETVAKDVVSQ ALDGYNGTIM CYGQTGAGKT YTMMGATENY KHRGILPRAL
                                                                            120
                                                                            180
       OOVFRMIEER PTHAITVRVS YLEIYNESLF DLLSTLPYVG PSVTPMTIVE NPQGVFIKGL
       SVHLTSQEED AFSLLFEGET NRIIASHTMN KNSSRSHCIF TIYLEAHSRT LSEEKYITSK
50
                                                                            240
       INLVDLAGSE RLGKSGSEGQ VLKEATYINK SLSFLEQAII ALGDQKRDHI PFRQCKLTHA
                                                                            300
       LKDSLGGNCN MVLVTNIYGE AAQLEETLSS LRFASRMKLV TTEPAINEKY DAERMVKNLE
                                                                            360
       KELALLKQEL AIHDSLTNRT FVTYDPMDEI QIAEINSQVR RYLEGTLDEI DIISLRQIKE
                                                                            420
                                                                            480
       VFNOFRVVLS QQEQEVESTL RRKYTLIDRN DFAAISAIQK AGLVDVDGHL VGEPEGQNFG
55
       LGVAPFSTKP GKKAKSKKTF KEPLRPDTPP SKPVAFEEFK NEQGSEINRI FKENKSILNE
                                                                            540
       RRKRASETTQ HINAIKREID VTKEALNFQK SLREKQGKYE NKGLMIIDEE EFLLILKLKD
                                                                            600
       LKKQYRSEYQ DLRDLRAEIQ YCQHLVDQCR HRLLMEFDIW YNESFVIPED MQMALKPGGS
                                                                            660
       IRPGMVPVNR IVSLGEDDQD KFSQLQQRVL PEGPDSISFY NAKVKIEQKH NYLKTMMGLQ
                                                                            720
       OAHRK
60
       Seg ID NO: 309 DNA seguence
       Nucleic Acid Accession #: CAT cluster
65
       TTTTTTTTT TTTTTTTAA TGCCTGCTGT CATGCTCTGT CTACCAGGGT GAATTTCCAA
                                                                             60
       AAATTTCTGC ATAGCAATTT TAGCCAAAAC TATATATGTT CTGGGGAGGA TAGGCATAGG
                                                                            120
       CACATTGAAG ACCAAAGGAA AGAGTGAAGA AGTGTAGTTG GGTCATTGTG AATGGATGTT
                                                                            180
       TAGATTGTCA AGAAAAGTGG GCCAGAGGCC CCACCTCACA CTAGGACGGC AATTGCCTCT
                                                                            240
70
       CATTAGTATC TCAGGCACCA TGGGTCTTAT TTGGTGTCAT AAGAAACACC CTCAACAAAG
                                                                            300
       TAATGAACCC TCAGCCTCCA GCTTCTCTTC TTCGGGATTC TTCTTAGGGC CTCCTTTTTC
                                                                            360
       CTTTTATGTT TCCAGTACCC TGAATTTCTT ATTCCCATCC CCCATTAAAA TCTGCTTCAA
                                                                            420
       AGAAAAAACA AGAAGGACAC ATTCACTTTA AGATCCAAAT GAATGATAAG AGCTTAAAAC
                                                                            480
       ATTATACTTA TCAGTATTAT TTGCATTTTT ATAGAAACCA AAACCATATT TCAACAAC
75
       Seq ID NO: 310 DNA sequence
       Nucleic Acid Accession #: NM_018622.2
       Coding sequence: 1-1140
80
                             21
                                         31
       ATGGCGTGGC GAGGCTGGGC GCAGAGAGGC TGGGGCTGCG GCCAGGCGTG GGGTGCGTCG
       GTGGGCGGCC GCAGCTGCGA GGAGCTCACT GCGGTCCTAA CCCCGCCGCA GCTCCTCGGA
                                                                            120
                                                                            180
       CGCAGGTTTA ACTTCTTTAT TCAACAAAAA TGCGGATTCA GAAAAGCACC CAGGAAGGTT
85
       GAACCTCGAA GATCAGACCC AGGGACAAGT GGTGAAGCAT ACAAGAGAAG TGCTTTGATT
                                                                            240
       CCTCCTGTGG AAGAACAGT CTTTTATCCT TCTCCCTATC CTATAAGGAG TCTCATAAAA
                                                                            300
       CCTTTATTTT TTACTGTTGG GTTTACAGGC TGTGCATTTG GATCAGCTGC TATTTGGCAA
                                                                            360
```

```
TATGAATCAC TGAAATCCAG GGTCCAGAGT TATTTTGATG GTATAAAAGC TGATTGGTTG
                                                                                420
       GATAGCATAA GACCACAAAA AGAAGGAGAC TTCAGAAAGG AGATTAACAA GTGGTGGAAT
                                                                                480
       AACCTAAGTG ATGGCCAGCG GACTGTGACA GGTATTATAG CTGCAAATGT CCTTGTATTC
                                                                                540
       TGTTTATGGA GAGTACCTTC TCTGCAGCGG ACAATGATCA GATATTTCAC ATCGAATCCA
                                                                                600
       GCCTCAAAGG TCCTTTGTTC TCCAATGTTG CTGTCAACAT TCAGTCACTT CTCCTTATTT
       CACATGGCAG CAAATATGTA TGTTTTGTGG AGCTTCTCTT CCAGCATAGT GAACATTCTG
                                                                                720
       GGTCAAGAGC AGTTCATGGC AGTGTACCTA TCTGCAGGTG TTATTTCCAA TTTTGTCAGT
       TACCTGGGTA AAGTTGCCAC AGGAAGATAT GGACCATCAC TTGGTGCATC TGGTGCCATC
                                                                                840
       ATGACAGTCC TCGCAGCTGT CTGCACTAAG ATCCCAGAAG GGAGGCTTGC CATTATTTTC
                                                                                900
10
       CTTCCGATGT TCACGTTCAC AGCAGGGAAT GCCCTGAAAG CCATTATCGC CATGGATACA
                                                                                960
       GCAGGAATGA TCCTGGGATG GAAATTTTTT GATCATGCGG CACATCTTGG GGGAGCTCTT
                                                                               1020
       TTTGGAATAT GGTATGTTAC TTACGGTCAT GAACTGATTT GGAAGAACAG GGAGCCGCTA
                                                                               1080
       GTGAAAATCT GGCATGAAAT AAGGACTAAT GGCCCCAAAA AAGGAGGTGG CTCTAAGTAA
15
       Seg ID NO: 311 Protein sequence:
       Protein Accession #: NP_061092.2
                                          31
                                                       41
                                                                  51
20
       MAWRGWAQRG WGCGQAWGAS VGGRSCEELT AVLTPPQLLG RRFNFFIQQK CGFRKAPRKV
                                                                                 60
       EPRRSDPGTS GEAYKRSALI PPVEETVFYP SPYPIRSLIK PLFFTVGFTG CAFGSAAIWQ
                                                                                120
       YESLKSRVQ9 YFDGIKADWL DSIRPQKEGD FRKEINKWWN NLSDGQRTVT GIIAANVLVF
                                                                                180
       CLWRVPSLQR TMIRYFTSNP ASKVLCSPML LSTFSHFSLF HMAANMYVLW SFSSSIVNIL
                                                                                240
       GQEOFMAVYL SAGVISNEVS YLGKVATGRY GFSLGASGAI MTVLAAVCTK IPEGRLAIIF
LPMFTFTAGN ALKAIIAMDT AGMILGWKFF DHAAHLGGAL FGIWYVTYGH ELIWKNREPL
25
                                                                                300
       VKIWHEIRTN GPKKGGGSK
       Seq ID NO: 312 DNA sequence
30
       Nucleic Acid Accession #: NM 000625
       Coding sequence: 195..3656
35
       CTCTCGGCCA CCTTTGATGA GGGGACTGGG CAGTTCTAGA CAGTCCCGAA GTTCTCAAGG
                                                                                 60
       CACAGGTCTC TTCCTGGTTT GACTGTCCTT ACCCCGGGGA GGCAGTGCAG CCAGCTGCAA
                                                                                120
       GCCCCACAGT GAAGAACATC TGAGCTCAAA TCCAGATAAG TGACATAAGT GACCTGCTTT
                                                                                180
                                                                                240
       GTAAAGCCAT AGAGATGGCC TGTCCTTGGA AATTTCTGTT CAAGACCAAA TTCCACCAGT
40
       ATGCAATGAA TGGGGAAAAA GGCATCAACA ACAATGTGGA GAAAGCCCCC TGTGCCACCT
                                                                                300
       CCAGTCCAGT GACACAGGAT GACCTTCAGT ATCACAACCT CAGCAAGCAG CAGAATGAGT
                                                                                360
       CCCCGCAGCC CCTCGTGGAG ACGGGAAAGA AGTCTCCAGA ATCTCTGGTC AAGCTGGATG
                                                                                420
       CAACCCCATT GTCCTCCCCA CGGCATGTGA GGATCAAAAA CTGGGGCAGC GGGATGACTT
                                                                                480
       TCCAAGACAC ACTTCACCAT AAGGCCAAAG GGATTTTAAC TTGCAGGTCC AAATCTTGCC
                                                                                540
       TGGGGTCCAT TATGACTCCC AAAAGTTTGA CCAGAGGACC CAGGGACAAG CCTACCCCTC
45
       CAGATGAGCT TCTACCTCAA GCTATCGAAT TTGTCAACCA ATATTACGGC TCCCTCAAAG
       AGGCAAAAAT AGAGGAACAT CTGGCCAGGG TGGAAGCGGT AACAAAGGAG ATAGAAACAA
                                                                                720
       CAGTAACCTA CCAACTGACG GGAGATGAGC TCATCTTCGC CACCAAGCAG GCCTGGCGCA
                                                                                780
       ATGCCCCACG CTGCATTGGG AGGATCCAGT GGTCCAACCT GCAGGTCTTC GATGCCCGCA
                                                                                840
50
       GCTGTTCCAC TGCCCGGGAA ATGTTTGAAC ACATCTGCAG ACACGTGCGT TACTCCACCA
                                                                                900
       ACAATGGCAA CATCAGGTCG GCCATCACCG TGTTCCCCCA GCGGAGTGAT GGCAAGCACG
                                                                                960
       ACTTCCGGGT GTGGAATGCT CAGCTCATCC GCTATGCTGG CTACCAGATG CCAGATGGCA
                                                                               1020
       GCATCAGAGG GGACCCTGCC AACGTGGAAT TCACTCAGCT GTGCATCGAC CTGGGCTGGA
                                                                               1080
       AGCCCAAGTA CGGCCGCTTC GATGTGGTCC CCCTGGTCCT GCAGGCCAAT GGCCGTGACC
                                                                               1140
55
       CTGAGCTCTT CGAAATCCCA CCTGACCTTG TGCTTGAGGT GGCCATGGAA CATCCCAAAT
                                                                               1200
       ACGAGTGGTT TCGGGAACTG GAGCTAAAGT GGTACGCCCT GCCTGCAGTG GCCAACATGC
                                                                              1260
       TGCTTGAGGT GGGCGGCCTG GAGTTCCCAG GGTGCCCCTT CAATGGCTGG TACATGGGCA
                                                                              1320
       CAGAGATCGG AGTCCGGGAC TTCTGTGATG TCCAGCGCTA CAACATCCTG GAGGAAGTGG
                                                                               1380
       GCAGGAGAAT GGGCCTGGAA ACGCACAAGC TGGCCTCGCT CTGGAAAGAC CAGGCTGTCG
                                                                               1440
60
       TTGAGATCAA CATTGCTGTG CTCCATAGTT TCCAGAAGCA GAATGTGACC ATCATGGACC
                                                                               1500
       ACCACTCGGC TGCAGAATCC TTCATGAAGT ACATGCAGAA TGAATACCGG TCCCGTGGGG
GCTGCCCGGC AGACTGGATT TGGCTGGTCC CTCCCATGTC TGGGAGCATC ACCCCCGTGT
                                                                               1560
                                                                               1620
       TTCACCAGGA GATGCTGAAC TACGTCCTGT CCCCTTTCTA CTACTATCAG GTAGAGGCCT
                                                                               1680
       GGAAAACCCA TGTCTGGCAG GACGAGAAGC GGAGACCCAA GAGAAGAGAG ATTCCATTGA
                                                                               1740
       AAGTCTTGGT CAAAGCTGTG CTCTTTGCCT GTATGCTGAT GCGCAAGACA ATGGCGTCCC
GAGTCAGAGT CACCATCCTC TTTGCGACAG AGACAGGAAA ATCAGAGGCG CTGGCCTGGG
65
                                                                               1800
       ACCTGGGGGC CTTATTCAGC TGTGCCTTCA ACCCCAAGGT TGTCTGCATG GATAAGTACA
                                                                               1920
       GECTGAGCTG CCTGGAGGAG GAACGGCTGC TGTTGGTGGT GACCAGTACG TTTGGCAATG
                                                                               1980
       GAGACTGCCC TGGCAATGGA GAGAAACTGA AGAAATCGCT CTTCATGCTG AAAGAGCTCA
                                                                               2040
70
       ACAACAAATT CAGGTACGCT GTGTTTGGCC TCGGCTCCAG CATGTACCCT CGGTTCTGCG
                                                                               2100
       CCTTTGCTCA TGACATTGAT CAGAAGCTGT CCCACCTGGG GGCCTCTCAG CTCACCCCGA
                                                                               2160
       TGGGAGAAGG GGATGAGCTC AGTGGGCAGG AGGACGCCTT CCGCAGCTGG GCCGTGCAAA
                                                                               2220
       CCTTCAAGGC AGCCTGTGAG ACGTTTGATG TCCGAGGCAA ACAGCACATT CAGATCCCCA
                                                                               2280
       AGCTCTACAC CTCCAATGTG ACCTGGGACC CGCACCACTA CAGGCTCGTG CAGGACTCAC
                                                                               2340
75
       AGCCTTTGGA CCTCAGCAAA GCCCTCAGCA GCATGCATGC CAAGAACGTG TTCACCATGA
                                                                               2400
       GGCTCAAATC TCGGCAGAAT CTACAAAGTC CGACATCCAG CCGTGCCACC ATCCTGGTGG
                                                                               2460
       AACTCTCCTG TGAGGATGGC CAAGGCCTGA ACTACCTGCC GGGGGAGCAC CTTGGGGTTT
                                                                               2520
       GCCCAGGCAA CCAGCCGGCC CTGGTCCAAG GCATCCTGGA GCCAGTGGTG GATGGCCCCA
CACCCCACCA GGCAGTGCGC CTGGAGGCCC TGGATGAGAG TGGCAGCTAC TGGGTCAGTG
                                                                               2580
                                                                               2640
80
       ACAAGAGGCT GCCCCCCTGC TCACTCAGCC AGGCCCTCAC CTACTTCCTG GACATCACCA
                                                                               2700
       CACCCCCAAC CCAGCTGCTG CTCCAAAAGC TGGCCCAGGT GGCCACAGAA GAGCCTGAGA
                                                                               2760
       GACAGAGGCT GGAGGCCCTG TGCCAGCCCT CAGAGTACAG CAAGTGGAAG TTCACCAACA
                                                                               2820
       GCCCCACATT CCTGGAGGTG CTAGAGGAGT TCCCGTCCCT GCGGGTGTCT GCTGGCTTCC
                                                                               2880
       TGCTTTCCCA GCTCCCCATT CTGAAGCCCA GGTTCTACTC CATCAGCTCC CCCCGGGATC
                                                                               2940
85
       ACACGCCCAC GGAGATCCAC CTGACTGTGG CCGTGGTCAC CTACCACACC CGAGATGGCC
       AGGGTCCCCT GCACCACGGC GTCTGCAGCA CATGGCTCAA CAGCCTGAAG CCCCAAGACC
                                                                               3060
        CAGTGCCCTG CTTTGTGCGG AATGCCAGCG GCTTCCACCT CCCCGAGGAT CCCTCCCATC
```

```
CTTGCATCCT CATCGGGCCT GGCACAGGCA TOGGGCCCTT CCGCAGTTTC TGGCAGCAAC 3180
GGCTCCATGA CTCCCAGCAC AAGGGAGTGC GGGGAGGCCG CATGACCTTG GTGTTTGGGT 3240
       GCCGCCGCCC AGATGAGGAC CACATCTACC AGGAGGAGAT GCTGGAGATG GCCCAGAAGG
       GGGTGCTGCA TGCGGTGCAC ACAGCCTATT CCCGCCTGCC TGGCAAGCCC AAGGTCTATG
                                                                            3360
       TTCAGGACAT CCTGCGGCAG CAGCTGGCCA GCGAGGTGCT CCGTGTGCTC CACAAGGAGC
                                                                            3420
       CAGGCCACCT CTATGTTTGC GGGGATGTGC GCATGGCCCG GGACGTGGCC CACACCCTGA
                                                                            3480
       AGCAGCTGGT GGCTGCCAAG CTGAAATTGA ATGAGGAGCA GGTCGAGGAC TATTTCTTTC
                                                                            3540
       AGCTCAAGAG CCAGAAGCGC TATCACGAAG ATATCTTTGG TGCTGTATTT CCTTACGAGG
                                                                            3600
       CGAAGAAGGA CAGGGTGGCG GTGCAGCCCA GCAGCCTGGA GATGTCAGCG CTCTGAGGGC
                                                                            3660
10
       CTACAGGAGG GGTTAAAGCT GCCGGCACAG AACTTAAGGA TGGAGCCAGC TCTGCATTAT
                                                                            3720
       CTGAGGTCAC AGGGCCTGGG GAGATGGAGG AAAGTGATAT CCCCCAGCCT CAAGTCTTAT
                                                                            3780
       TTCCTCAACG TTGCTCCCCA TCAAGCCCTT TACTTGACCT CCTAACAAGT AGCACCCTGG
                                                                            3840
       ATTGATCGGA GCCTC
15
       Seq ID NO: 313 Protein sequence:
       Protein Accession #: NP_000616
                                                               51
                  11
                             21
                                         31
20
       MACPWKFLFK TKFHQYAMNG EKGINNNVEK APCATSSPVT QDDLQYHNLS KQQNESPQPL
                                                                              60
       VETGKKSPES LVKLDATPLS SPRHVRIKNW GSGMTFQDTL HHKAKGILTC RSKSCLGSIM
                                                                             120
       TPKSLTRGPR DKPTPPDELL PQAIEFVNQY YGSLKEAKIE EHLARVEAVT KEIETTVTYQ
       LTGDELIFAT KOAWRNAPRC IGRIOWSNLQ VFDARSCSTA REMFEHICRH VRYSTNNGNI
25
       RSAITVFPOR SDGKHDFRVW NAOLIRYAGY OMPDGSIRGD PANVEFTQLC IDLGWKPKYG
       RFDVVPLVLQ ANGRDPELFE IPPDLVLEVA MEHPKYEWFR ELELKWYALP AVANMLLEVG
       GLEFPGCPFN GWYMGTEIGV RDFCDVQRYN ILEEVGRRMG LETHKLASLW KDQAVVEINI
                                                                             420
       AVLHSFOKON VTIMDHHSAA ESPMKYMONE YRSRGGCPAD WIWLVPPMSG SITPVFHQEM
                                                                             480
       LNYVLSPFYY YQVEAWKTHV WQDEKRRPKR REIPLKVLVK AVLFACMLMR KTMASRVRVT
                                                                             540
30
       ILFATETGKS EALAWDLGAL FSCAFNPKVV CMDKYRLSCL EEERLLLVVT STFGNGDCPG
                                                                             600
       NGEKLKKSLF MLKELNNKFR YAVFGLGSSM YPRFCAFAHD IDQKLSHLGA SQLTPMGEGD
                                                                             660
       ELSGQEDAFR SWAVQTFKAA CETFDVRGKQ HIQIPKLYTS NVTWDPHHYR LVQDSQPLDL
                                                                             720
       SKALSSMHAK NVFTMRLKSR QNLQSPTSSR ATILVELSCE DGQGLNYLPG EHLGVCPGNQ
                                                                             780
       PALVQGILER VVDGPTPHQA VRLEALDESG SYWVSDKRLP PCSLSQALTY FLDITTPPTQ
                                                                             840
35
       LLLQKLAQVA TEEPERQRLE ALCQPSEYSK WKFTNSPTFL EVLEEFPSLR VSAGFLLSQL
                                                                             900
       PILKPRFYSI SSPRDHTPTE IHLTVAVVTY HTRDGQGPLH HGVCSTWLNS LKPQDPVPCF
                                                                             960
       VRNASGFHLP EDPSHPCILI GPGTGIAPFR SFWQQRLHDS QHKGVRGGRM TLVFGCRRPD
                                                                            1020
       EDHIYQEEML EMAQKGVLHA VHTAYSRLPG KPKVYVQDIL RQQLASEVLR VLHKEPGHLY
                                                                            1080
       VCGDVRMARD VAHTLKQLVA AKLKLNEEQV EDYFFQLKSQ KRYHEDIFGA VFPYEAKKDR
                                                                            1140
40
       VAVOPSSLEM SAL
       Seg ID NO: 314 DNA sequence
       Nucleic Acid Accession #: XM_087254
       Coding sequence: 47..2332
45
                             21
                                         31
       AGAGTACGTG TTTACAGATA AAACTGGTAC ACTGACAGAA AATGAGATGC AGTTTCGGGA
50
       ATGTTCAATT AATGGCATGA AATACCAAGA AATTAATGGT AGACTTGTAC CCGAAGGACC
                                                                             120
       AACACCAGAC TCTTCAGAAG GAAACTTATC TTATCTTAGT AGTTTATCCC ATCTTAACAA
                                                                             180
       CTTATCCCAT CTTACAACCA GTTCCTCTTT CAGAACCAGT CCTGAAAATG AAACTGAACT
                                                                            240
       AATTAAAGAA CATGATCTCT TCTTTAAAGC AGTCAGTCTC TGTCACACTG TACAGATTAG
                                                                             300
       CAATGTTCAA ACTGACTGCA CTGGTGATGG TCCCTGGCAA TCCAACCTGG CACCATCGCA
                                                                             360
55
       GTTGGAGTAC TATGCATCTT CACCAGATGA AAAGGCTCTA GTAGAAGCTG CTGCAAGGAT
                                                                             420
       TGGTATTGTG TTTATTGGCA ATTCTGAAGA AACTATGGAG GTTAAAACTC TTGGAAAACT
                                                                             480
       GGAACGGTAC AAACTGCTTC ATATTCTGGA ATTTGATTCA GATCGTAGGA GAATGAGTGT
                                                                             540
       AATTGTTCAG GCACCTTCAG GTGAGAAGTT ATTATTTGCT AAAGGAGCTG AGTCATCAAT
                                                                             600
       TCTCCCTAAA TGTATAGGTG GAGAAATAGA AAAAACCAGA ATTCATGTAG ATGAATTTGC
                                                                             660
       TTTGAAAGGG CTAAGAACTC TGTGTATAGC ATATAGAAAA TTTACATCAA AAGAGTATGA
60
       GGAAATAGAT AAACGCATAT TTGAAGCCAG GACTGCCTTG CAGCAGCGGG AAGAGAAATT
       GGCAGCTGTT TTCCAGTTCA TAGAGAAAGA CCTGATATTA CTTGGAGCCA CAGCAGTAGA
       AGACAGACTA CAAGATAAAG TTCGAGAAAC TATTGAAGCA TTGAGAATGG CTGGTATCAA
       AGTATGGGTA CTTACTGGGG ATAAACATGA AACAGCTGTT AGTGTGAGTT TATCATGTGG
65
       CCATTTTCAT AGAACCATGA ACATCCTTGA ACTTATAAAC CAGAAATCAG ACAGCGAGTG
                                                                            1020
       TGCTGAACAA TTGAGGCAGC TTGCCAGAAG AATTACAGAG GATCATGTGA TTCAGCATGG
                                                                            1080
       GCTGGTAGTG GATGGGACCA GCCTATCTCT TGCACTCAGG GAGCATGAAA AACTATTTAT
                                                                            1140
       GGAAGTTTGC AGAAATTGTT CAGCTGTATT ATGCTGTCGT ATGGCTCCAC TGCAGAAAGC
                                                                            1200
       AAAAGTAATA AGACTAATAA AAATATCACC TGAGAAACCT ATAACATTGG CTGTTGGTGA
                                                                            1260
70
       TGGTGCTAAT GACGTAAGCA TGATACAAGA AGCCCATGTT GGCATAGGAA TCATGGGTAA
                                                                            1320
       AGAAGGAAGA CAGGCTGCAA GAAACAGTGA CTATGCAATA GCCAGATTTA AGTTCCTCTC
                                                                            1380
       CAAATTGCTT TTTGTTCATG GTCATTTTTA TTATATTAGA ATAGCTACCC TTGTACAGTA
                                                                            1440
       TTTTTTTTAT AAGAATGTGT GCTTTATCAC ACCCCAGTTT TTATATCAGT TCTACTGTTT
                                                                            1500
       GTTTTCTCAG CAAACATTGT ATGACAGCGT GTACCTGACT TTATACAATA TTTGTTTTAC
                                                                            1560
75
       TTCCCTACCT ATTCTGATAT ATAGTCTTTT GGAACAGCAT GTAGACCCTC ATGTGTTACA
                                                                            1620
       AAATAAGCCC ACCCTTTATC GAGACATTAG TAAAAACCGC CTCTTAAGTA TTAAAACATT
                                                                            1680
       TCTTTATTGG ACCATCCTGG GCTTCAGTCA TGCCTTTATT TTCTTTTTTG GATCCTATTT
                                                                            1740
       ACTAATAGGG AAAGATACAT CTCTGCTTGG AAATGGCCAG ATGTTTGGAA ACTGGACATT
                                                                            1800
       TGGCACTTG GTCTTCACAG TCATGGTTAT TACAGTCACA GTAAAGATGG CTCTGGAAAC
                                                                            1860
80
       TCATTTTGG ACTIGGATCA ACCATCTCGT TACCTGGGGA TCTATTATAT TTTATTTTGT
                                                                            1920
       ATTITCCTTG TITTATGGAG GGATTCTCTG GCCATTTTTG GGCTCCCAGA ATATGTATTT
       TGTGTTTATT CAGCTCCTGT CAAGTGGTTC TGCTTGGTTT GCCATAATCC TCATGGTTGT
                                                                            2040
       TACATGTCTA TTTCTTGATA TCATAAAGAA GGTCTTTGAC CGACACCTCC ACCCTACAAG
       TACTGAAAAG GCACAGCTTA CTGAAACAAA TGCAGGTATC AAGTGCTTGG ACTCCATGTG
                                                                            2160
85
       CTGTTTCCCG GAAGGAGAAG CAGCGTGTGC ATCTGTTGGA AGAATGCTGG AACGAGTTAT
                                                                            2220
       AGGAAGATGT AGTCCAACCC ACATCAGCAG ATCATGGAGT GCATCGGATC CTTTCTATAC
                                                                            2280
       CAACGACAGG AGCATCTTGA CTCTCCCAC AATGGACTCA TCTACTTGTT AAAGGGGCAG
```

```
TAGTACTTIG TGGGAGCCAG TTCACCTCCT TTCCTAAAAT TCAGTGTGAT CACCCTGTTA 2400
       ATGGCCACAC TAGCTCTGAA ATTAATTTCC AAAATCTTTG TAGTAGTTCA TACCCACTCA
                                                                           2460
       GAGTTATAAT GGCAAACAAA CAGAAAGCAT TAGTACAAGC CCCTCCCAAC ACCCTTAATT
                                                                           2520
       TGAATCTGAA CATGTTAAAA TTTGAGAATA AAGAGACATT TTTCATCTCT TTGTCTGGTT
       TGTCCCTTGT GCTTATGGGA CTCCTAATGG CATTTCAGTC TGTTGCTGAG GCCATTATAT
                                                                           2640
       TTTAATATAA ATGTAGAAAA AAGAGAGAAA TCTTAGTAAA GAGTATTTTT TAGTATTAGC
                                                                           2700
       TIGATTATIG ACTOTICTAT TTAAATCIGC TICTGTAAAT TATGCTGAAA GTTTGCCTTG
                                                                           2760
       AGAACTCTAT TTTTTTATTA GAGTTATATT TAAAGCTTTT CATGGGAAAA GTTAATGTGA
                                                                           2820
       ATACTGAGGA ATTTTGGTCC CTCAGTGACC TGTGTTGTTA ATTCATTAAT GCATTCTGAG
                                                                           2880
10
       TTCACAGAGC AAATTAGGAG AATCATTTCC AACCATTATT TACTGCAGTA TGGGGAGTAA
                                                                           2940
       ATTTATACCA ATTCCTCTAA CTGTACTGTA ACACAGCCTG TAAAGTTAGC CATATAAATG
                                                                           3000
       CAAGGGTATA TCATATATAC AAATCAGGAA TCAGGTCCGT TCACCGAACT TCAAATTGAT
                                                                           3060
       GTTTACTAAT ATTTTTGTGA CAGAGTATAA AGACCCTATA GTGGGTAAAT TAGATACTAT
                                                                           3120
       TAGCATATTA TTAATTTAAT GTCTTTATCA TTGGATCTTT TGCATGCTTT AATCTGGTTA
                                                                           3180
15
       ACATATITAA ATTIGCTITI TITCTCTITA CCTGAAGGCT CTGTGTATAG TATTTCATGA
                                                                           3240
       CATCGTTGTA CAGTTTAACT ATATCAATAA AAAGTTTGGA CAGTATTTAA ATATTGCAAA
                                                                           3300
       TATGTTTAAT TATACAAATC AGAATAGTAT GGGTAATTAA ATGAATACAA AAAGAAGAGC
                                                                           3360
       CTCTTTCTGC AGCCGACTTA GACATGCTCT TCCCTTTCTA TAAGCTAGAT TTTAGAATAA
                                                                           3420
       AGGGTTTCAG TTAATAATCT TATTTTCAGG TTATGTCATC TAACTTATAG CAAACTACCA
                                                                           3480
20
       CAATACAGTG AGTTCTGCCA GTGTCCCAGT ACAAGGCATA TTTCAGGTGT GGCTGTGGAA
                                                                           3540
       TGTAAAAATG CTCAACTTGT ATCAGGTAAT GTTAGCAATA AATTAAATGC TAAGAATGAT
                                                                           3600
       TAATCGGGTA CATGITACTG TAATTAACTC ATTGCACTTC AAAACCTAAC TTCCATCCTG
                                                                           3660
       AATTTATCAA GTAGTTCAGT ATTGTCATTT GTTTTTGTTT TATTGAAAAG TAATGTTGTC
       TTAAGATTTA GAAGTGATTA TTAGCTTGAG AACTATTACC CAGCTCTAAG CAAATAATGA
                                                                           3780
25
       TTGTATACAT ATTAAGATAA TGGTTAAATG CGGTTTTACC AAGTTTTCCC TTGAAAATGT
       AATTCCTTTA TGGAGATTTA TTGTGCAGCC CTAAGCTTCC TTCCCATTTC ATGAATATAA
                                                                           3900
       GGCTTCTAGA ATTGGACTGG CAGGGGAAAG AATGGTAGAG ACAGAAATTA AGACTTTATC
                                                                           3960
       CTTGTTTGCT TGTAAACTAT TATTTTCTTG CTAATGTAAC ATTTGTCTGT TCCAGTGATG
                                                                           4020
       TAAGGATATT AAGTTATTAA GCTAAATATT AATTTTCAAA AATAGTCCTT CTTTAACTTA
                                                                           4080
30
       GATATTTCAT AGCTGGATTT AGGAAGATCT GTTATTCTGG AAGTACTAAA AAGAATAATA
                                                                           4140
       CAACGTACAA TGTCTGCATT CACTAATTCA TGTTCCAGAA GAGGAAATAA TGAAGATATA
                                                                           4200
       CTCAGTAGAG TACTAGGTGG GAGGATATGG AAATTTGCTC ATAAAATCTC TTATAAAACG
                                                                           4260
       TGCATATAAC AAAATGACAC CCAGTAGGCC TGCATTACAT TTACATGACC GTGTTTATTT
                                                                           4320
       GCCATCAAAT AAACTGAGTA CTGACACCAG ACAAAGACTC CAAAGTCATA AAATAGCCTA
                                                                           4380
35
       TGACCAACTG CAGCAAGACA GGAGGTCAGC TCGCCTATAA TGGTGCTTAA AGTGTGATTG
                                                                           4440
                                                                           4500
       ATGTAATTTT CTGTACTCAC CATTTGAAGT TAGTTAAGGA GAACTTTATT TTTTTAAAAA
       AAGTAAATGG CAACCACTAG TGTGCTCATC CTGAACTGTT ACTCCAAATC CACTCCGTTT
                                                                           4560
       TTAAAGCAAA ATTATCTTGT GATTTTAAGA AAAGAGTTTT CTATTTATTT AAGAAAGTAA
                                                                           4620
       CAATGCAGTC TGCAAGCTTT CAGTAGTTTT CTAGTGCTAT ATTCATCCTG TAAAACTCTT
                                                                           4680
40
       ACTACGTAAC CAGTAATCAC AAGGAAAGTG TCCCCTTTGC ATATTTCTTT AAAATTCTTT
                                                                           4740
       CTTTGGAAAG TATGATGTTG ATAATTAACT TACCCTTATC TGCCAAAACC AGAGCAAAAT
                                                                           4800
       GCTAAATACG TTATTGCTAA TCAGTGGTCT CAAATCGATT TGCCTCCCTT TGCCTCGTCT
                                                                           4860
       GAGGGCTGTA AGCCTGAAGA TAGTGGCAAG CACCAAGTCA GTTTCCAAAA TTGCCCCTCA
                                                                           4920
       GCTGCTTTAA GTGACTCAGC ACCCTGCCTC AGCTTCAGCA GGCGTAGGCT CACCCTGGGC
45
       GGAGCAAAGT ATGGGCCAGG GAGAACTACA GCTACGAAGA CCTGCTGTCG AGTTGAGAAA
                                                                           5040
       AGGGGAGAAT TTATGGTCTG AATTTTCTAA CTGTCCTCTT TCTTGGGTCT AAAGCTCATA
                                                                           5100
       ATACACAAAG GCTTCCAGAC CTGAGCCACA CCCAGGCCCT ATCCTGAACA GGAGACTAAA
                                                                           5160
       CAGAGGCAAA TCAACCCTAG GAAATACTTG CATTCTGCCC TACGGTTAGT ACCAGGACTG
                                                                           5220
       AGGTCATTTC TACTGGAAAA GATTGTGAGA TTGAACTTAT CTGATCGCTT GAGACTCCTA
                                                                           5280
50
       ATAGGCAGGA GTCAAGGCCA CTAGAAAATT GACAGTTAAG AGCCAAAAGT TTTTAAAATA
                                                                           5340
       TGCTACTCTG AAAAATCTCG TGAAGGCTGT AGGAAAAGGG AGAATCTTCC ATGTTGGTGT
                                                                           5400
       TTTTCCTGTA AAGATCAGTT TGGGGTATGA TATAAGCAGG TATTAATAAA AATAACACAC
                                                                           5460
       CAAAGAGTTA CGTAAAACAT GTTTTATTAA TTTTGGTCCC CACGTACAGA CATTTTATTT
                                                                           5520
       CTATTTTGAA ATGAGTTATC TATTTTCATA AAAGTAAAAC ACTATTAAAG TGCTGTTTTA
                                                                           5580
55
       TGTGAAATAA CTTGAATGTT GTTCCTATAA AAAATAGATC ATAACTCATG ATATGTTTGT
                                                                           5640
                                                                           5700
       AATCATGGTA ATTTAGATTT TTATGAGGAA TGAGTATCTG GAAATATTGT AGCAATACTT
       GGTTTAAAAT TTTGGACCTG AGACACTGTG GCTGTCTAAT GTAATCCTTT AAAAATTCTC
                                                                           5760
       TGCATTGTCA GTAAATGTAG TATATTATTG TACAGCTACT CATAATTTTT TAAAGTTTAT
                                                                           5820
       GAAGTTATAT TTATCAAATA AAAACTTTCC TATAT
60
       Seq ID NO: 315 Protein sequence:
       Protein Accession #: XP_087254
65
                  11
                             21
                                        31
       MOFRECSING MKYQEINGRL VPEGPTPDSS EGNLSYLSSL SHLWNLSHLT TSSSFRTSPE
                                                                             60
       NETELIKEHD LFFKAVSLCH TVQISNVQTD CTGDGPWQSN LAPSQLEYYA SSPDEKALVE
                                                                            120
       AAARIGIVFI GNSEETMEVK TLGKLERYKL LHILEFDSDR RRMSVIVQAP SGEKLLFAKG
                                                                            180
70
       AESSILPKCI GGBIEKTRIH VDEFALKGLR TLCIAYRKPT SKEYEEIDKR IFEARTALQQ
                                                                            240
       REEKLAAVFQ FIEKDLILLG ATAVEDRLQD KVRETIEALR MAGIKVWVLT GDKHETAVSV
                                                                            300
       SLSCGHFHRT MNILELINQK SDSECAEQLR QLARRITEDH VIQHGLVVDG TSLSLALREH
                                                                            360
       EKLFMEVCRN CSAVLCCRMA PLQKAKVIRL IKISPEKPIT LAVGDGANDV SMIQEAHVGI
                                                                            420
       GIMGKEGRQA ARNSDYAIAR FKFLSKLLPV HGHFYYIRIA TLVQYFFYKN VCFITPQFLY
                                                                            480
75
       QFYCLFSQQT LYDSVYLTLY NICFTSLPIL IYSLLEQHVD PHVLQNKPTL YRDISKNRLL
                                                                            540
       SIKTFLYWTI LGFSHAFIFF FGSYLLIGKD TSLLGNGQMF GNWTFGTLVF TVMVITVTVK
                                                                            600
       MALETHFWTW INHLVTWGSI IFYFVFSLFY GGILWPFLGS QNMYFVFIQL LSSGSAWFAI
                                                                            660
       ILMVVTCLFL DIIKKVFDRH LHPTSTEKAQ LTETNAGIKC LDSMCCFPEG EAACASVGRM
       LERVIGROSP THISRSWSAS DPFYTNDRSI LTLSTMDSST C
80
       Seg ID NO: 316 DNA seguence
       Nucleic Acid Accession #: NM_004473
       Coding sequence: 661..1791
85
                  11
                              21
       CTCGCCAGCG GTCCGCGGG CTGGAGACCC ACGCCGTGGA GAGGACCAGC CTCAGGTCGC
```

WO 02/086443

```
120
       CCCGCCTGGG CCCGCGCCCC GACCTCGCTG CCCCCGCCTC GCCTCTCTGC CCGTGGCGCT
       TACCGCCACC TTGGCCTCGG GGGCAGGGCA TGGGCGGCCC CCGCCAGATC GCCCAGCGCC
                                                                              180
       AGTACTAACT GCCCTCGCTC TGGCCTTCGA GCCCGAAGCC TCTTCTGCGC GCACAACCTA
                                                                              240
                                                                              300
       GGCAGTAATC CTAAACTAGC GGGCACCACA GACCAGCTGC AGCCACCCCA ACCCAGGGAT
       CACTTCCGGA CCCCTCGACC GCCCGGCACC AGCGCGCAAG GGACCCTTCA GCCGGAGACC
                                                                              360
       AGAGTCCAGT CCCGGTCGCG AGGCCACCGC CGCTGCCCGC CTCGAGAAGC ACAACGCGGG
                                                                              420
       CTGAGCCGTC GGCTAGCGGG TCACTCCCGA GCCTCTGTCT GCACCGCGCC AGCCCCAGAC
                                                                              480
       CACGGACGCT GAGCCTCCAG CGCGCGCCAG CCTGGGCCGC TGGGCTCTCC GGGCCAGCCC
                                                                              540
       GCGACGATCC CCTGAGCTCT CCGCAGAAGG GCCGAGCGTC CGTTCCGGGG ACGCCAGGCC
                                                                              600
10
       CGCCCCCGCC CCCCGACAGC CGCGGGGATC CAGAGCCCGG GGGTGCGGGA CGCCCGCGCC
                                                                              660
       ATGACTGCCG AGAGCGGGCC GCCGCCGCCG CAGCCGGAGG TGCTGGCTAC CGTGAAGGAA
                                                                              720
       GAGCGCGGCG AGACGGCAGC AGGGGCCGGG GTCCCAGGGG AGGCCACGGG CCGCGGGGCG
                                                                              780
       GGCGGGCGC GCCGCAAGCG CCCCCTGCAG CGCGGGAAGC CGCCCTACAG CTACATCGCG
CTCATCGCCA TGGCCATCGC GCACGCGCC GAGCGCCGCC TCACGCTGGG CGGCATCTAC
                                                                              840
                                                                              900
       AAGTTCATCA CCGAGCGCTT CCCCTTCTAC CGCGACAACC CCAAAAAGTG GCAGAACAGC ATCCGCCACA ACCTCACACT CAACGACTGC TTCCTCAAGA TCCCGCGGGA GGCCGGCCGC
15
                                                                              960
       CCGGGTAAGG GCAACTACTG GGCGCTCGAC CCCAACGCGG AGGACATGTT CGAGAGCGGC
                                                                             1080
       AGCTTCCTGC GCCGCCGCAA GCGCTTCAAG CGCTCGGACC TCTCCACCTA CCCGGCTTAC
                                                                             1140
       ATGCACGACG CGGCGGCTGC CGCAGCCGCC GCTGCCGCAG CCGCCGCCGC CGCCGCCGCC
       GCCGCCATCT TCCCAGGCGC GGTGCCCGCC GCGCGCCCCC CCTACCCGGG CGCCGTCTAT
20
       GCAGGCTACG CGCCGCCGTC GCTGGCCGCG CCGCCTCCAG TCTACTACCC CGCGGCGTCG
                                                                             1320
       CCCGGCCCTT GCCGCGTCTT CGGCCTGGTT CCTGAGCGGC CGCTCAGCCC AGAGCTGGGG
       CCCGCACCGT CGGGGCCCGG CGGCTCTTGC GCCTTTGCCT CCGCCGGCGC CCCCGCTACC
                                                                             1440
       ACCACCGGCT ACCAGCCCGC AGGCTGCACC GGGGCCCGGC CGGCCAACCC CTCTGCCTAT
                                                                             1500
25
       GCGGCTGCCT ACGCGGGCCC CGACGGCGCG TACCCGCAGG GCGCCGGCAG TGCGATCTTT
                                                                             1560
       GCCGCTGCTG GCCGCCTGGC GGGACCCGCT TCGCCCCCAG CGGGCGGCAG CAGTGGCGGC
                                                                             1620
       GTGGAGACCA CGGTGGACTT CTACGGGCGC ACGTCGCCCG GCCAGTTCGG AGCGCTGGGA
                                                                             1680
       GCCTGCTACA ACCCTGGCGG GCAGCTCGGA GGGGCCAGTG CAGGCGCCTA CCATGCTCGC
                                                                             1740
       CATGCTGCCG CTTATCCCGG TGGGATAGAT CGGTTCGTGT CCGCCATGTG AGCCAGCGTA
                                                                             1800
30
       GGGACGAAAA CTCATAGACA CATCGGCTGT TCACACGTTC CCCGCAACCT GAGAACGAAC
                                                                             1860
       AGGAATGGAG AGAGGACTCA ACTGGGACCC ACGTGGAAAA GACCGAGCAG GCCACAGAGG
                                                                             1920
       CTCGGTCTCC CCGCGCACAG CGTAGGCACC CTGTGTACTC TGTAAACGGG AGGAGGTGGG
                                                                             1980
       GCGAGGCAGC CAGAGCCCTT GGACTGGCAC AGGGACCCTC GATGGAGCGA AGCCCTCAAA
                                                                             2040
                                                                             2100
       CGGGATGCTT TCTGGCATTC TATCGGGGAG GGTCCTTGGC GGTAACCAGA GGGCAGCGTA
       GTGTCAACAC CAGAGACCAG GATCCAAATT GTGGGGAATC AGTTTCAGCC TTCCATGTGC
35
                                                                             2160
       TGCCGGAACT CGGGCCTTTT TACGCGGTTC GTCCTCTAGT GCCTTTAACT GCGTTACTAC
                                                                             2220
       AATAAAAGGC TGCGGCAGCG CCTTTCTTCT TAAAGTGAGG AGGACAAATT TGCAAAAGAA
                                                                             2280
       ATAGGCTTTT CTTCTTTTTT AAATTGGAGA AATCTCTGCT CTGGTTGACC TGGGCTGGTT
                                                                             2340
       TTCCCTGTCT CTGAGAACTT GAGACCTAGC TCCGAGTTGA ACTGTGCGTC AGCACTCCAG
                                                                             2400
       TCCCATCACC TGAACCTTCA GTCTCCCCCA TCTGTTACAC TAGAGGGCTG CAGGACTCTA
TCCACCGCCC CCGGGTTATC ATTCAGGGCC CCATCATCTT GGATGCTGCC CTGCGTATTT
40
                                                                             2460
       GGCAGCAATG GTGGGCCACC CAGGGCCTCT GAGTAGCCAC CCAAAGCCTA GCCGCTGTTC
       TAGGGAACGG AAAAGAGTTC ATGGCCAAGC GTCTAACCTA AAGTCCCAGG ATTGGCTCCA
       GGCAGCAATT ATATCATAAC TTATTGAACT TTTGAGCAGG ACGTGCTGGT AATTTCATGG
                                                                             2700
45
       CTGTTACTGC CCAGTCATAA ATCTGCTTTT CCATTATAAG GCAGAGAGAA GTACATTCGT
                                                                             2760
       TCATTIGTCC ACTGTTTCTT GTCATCACGC AGCCCTGGAC CCAAAGGGTG AACTAAAGTT
                                                                             2820
       TAAGGAGATG AGAGGATTCA AGGAGCCCGT TGGTGACGCC TTTCAGTAGC TGGGGAGGGC
                                                                             2880
       TCTTCCATCC CCAGCACCCC CTGCTACACC TCAGCAGCCT CCCCCATGCA AAAAGGAAAG
                                                                             2940
       AGAAAATTA AGTTAGGGCA GTCAGTAAAG TGAGCTTTAG AAAGAAACTG GAATTTTAAC
                                                                             3000
50
       TTCATTITGT ATCTTGCTTA AGTAGCAGGC TCACTAAAAT TAGAGAAAGT CCAATAACTC
                                                                             3060
       TCCCCCTTTC CCTTGAGAAA TCTTTAAGTT TCGATTCTGG AGCAAAAACT TTCAGCATTA
                                                                             3120
       AATATTTCAG AGGCTCCATT CACAGCTTTC AGATAAACTG GAGTGTTCAG ATGGACTGTT
                                                                             3180
       TTAATAAAAA TCTTTGAGCA AGTGAGTTAT GGCAAGAGAA ACTCAGCCTC TTTCTGTATA
                                                                             3240
       AACTTAACAG GGAAGGGCTG GGGTGTGAAA AAGAAGATTG TATGAAAACC ATTGGTAATT
                                                                             3300
55
       TTTATTTTT ATTTTTGGGA CTGCACTATC CTGTTCACGA AGACATGTGA ACTTGGTTCA
                                                                             3360
       GTCCAAATGG GGATTTGTAT AAACCAGTGC TCTCCATTAG AAATATGGTG CAAGCCACAT
                                                                             3420
       ATGTAATTTT AAATATTCTA GTAGCCACAT TAATAAAGTN AAAAGAAACA AAAAAAAAA 3480
60
       Seg ID NO: 317 Protein sequence:
       Protein Accession #: NP_004464
                                          31
65
       FKHLTHYROI DTRANSCRIP TIONFACTOR TTFMTAESGP PPPQPEVLAT VKEERGETAA
                                                                               60
       GAGVPGEATG RGAGGRRRKR PLORGKPPYS YIALIAMAIA HAPERRLTLG GIYKFITERF
                                                                              120
       PFYRDNPKKW QNSIRHNLTL NDCFLKIPRE AGRPGKGNYW ALDPNAEDMF ESGSFLRRRK
                                                                              180
       RFKRSDLSTY PAYMHDAAAA AAAAAAAAA AAAAAIFPGA VPAARPPYPG AVYAGYAPPS
                                                                              240
       LAAPPPVYYP AASPGPCRVF GLVPERPLSP ELGPAPSGPG GSCAFASAGA PATTTGYQPA
                                                                              300
70
       GCTGARPANP SAYAAAYAGP DGAYPQGAGS AIFAAAGRLA GPASPPAGGS SGGVETTVDF
                                                                              360
        YGRTSPGOFG ALGACYNPGG QLGGASAGAY HARHAAAYPG GIDRFVSAM
       Seq ID NO: 318 DNA sequence
       Nucleic Acid Accession #: NM_005688
75
       Coding sequence: 126..4439
                   11
                              21
                                          31
80
       CCGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC
       AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCGCTCAG
                                                                              120
                                                                              180
       AGAAGATGAA GGATATCGAC ATAGGAAAAG AGTATATCAT CCCCAGTCCT GGGTATAGAA
       GTGTGAGGGA GAGAACCAGC ACTTCTGGGA CGCACAGAGA CCGTGAAGAT TCCAAGTTCA
                                                                              240
       GGAGAACTCG ACCGTTGGAA TGCCAAGATG CCTTGGAAAC AGCAGCCCGA GCCGAGGGCC
                                                                              300
85
       TCTCTCTTGA TGCCTCCATG CATTCTCAGC TCAGAATCCT GGATGAGGAG CATCCCAAGG
                                                                              360
        GAAAGTACCA TCATGGCTTG AGTGCTCTGA AGCCCATCCG GACTACTTCC AAACACCAGC
                                                                               420
        ACCCAGTGGA CAATGCTGGG CTTTTTTCCT GTATGACTTT TTCGTGGCTT TCTTCTCTGG
                                                                               480
```

	WO 02.	/086443					
				CAATGGAAGA			540
				TAGAGAGACT			600
				GGGTTGTGTG			660
5				CGCAGCTGGC			720
,				AGGCAACAGA AAATCGTGCG			780 840
				GCTTGCGGGG			900
				AAGAGAAATC			960
				AGGCAGCAGC			1020
10				TTTATAATGT			1080
	GCTTCCTGGG	ATCAGCTGTT	TTTATCCTCT	TTTACCCAGC	AATGATGTTT	GCATCACGGC	1140
				CCGCCACGGA			1200
				AAATGTATGC			1260
15				GTCGGATATT			1320
13				TGGTGGTGAT CAGCAGCACA			1380 1440
				TAACACCGTT			1500
•				GTTTGTTTCT			1560
				AGATAGAGAT			1620
20				CGCCCAAGCT			1680
	ACAAGAGGGC	TTCCAGGGGC	AAGAAAGAGA	AGGTGAGGCA	GCTGCAGCGC	ACTGAGCATC	1740
				TCCTCCTGGA			1800
				TGGGCCACCT			1860
25				AACTGGTTGG			1920
23				TAGGCCAGAT			1980
				ATGATGAAGA			2040 2100
•				TTCTTCCCAG			2160
				AGCGCCAGAG			2220
30				ACGACCCCCT			2280
	TGGGCAACCA	CATCTTCAAT	AGTGCTATCC	GGAAACATCT	CAAGTCCAAG	ACAGTTCTGT	2340
				ACTGTGATGA			2400
				AACTGATGAA			2460
35				CACCGCCAGT			2520
22				ACAAGGGTCC AGCTTGTGCA			2580 2640
				ACATCCAGGC			2700
				ATGTAGGCAG			2760
				GGAACACCAC			2820
40				CTCATATGCA			2880
	CCCTCTCCAT	GGCAGTCATG	CTGATCCTGA	AAGCCATTCG	AGGAGTTGTC	TTTGTCAAGG	2940
				ACGAGCTTTT			3000
				GGAGGATTCT			3060
45				AGGCCGAGAT			3120
43				GAGTCTTCCC			3180
				CTTTCCTCTC			3240 3300
				AAGGGCAGGA			3360
				TTTTGTTTAC			3420
50				TCATCACCAC			3480
				CGGGTCTCGC			3540
				TGGCATCTGA			3600
				CTCTGTCCTT			3660
55	AGAACAAGGC						3720
55				TCCTAAAGAA CAGGATCAGG			3780 3840
				GCTGCATCAA			3900
						GAGCCGGTGC	
60	TTTGGGATGC	CCTGGAGAGG	ACACACATGA	AAGAATGTAT	TGCTCAGCTA ·	CCTCTGAAAC	4080
						CAGCTCTTGT	
						GCCACAGCTG	
						TTTGCAGACT	
65						AGGATTATGG TCCAACGACA	
05				CAGAGAACAA			4440
						CTGGGGCGGG	
						TCGCACAGCA	
70	GTTCCGGATT	GGCTTGTGTG	TTTCACTTTT	AGGGAGAGTC	ATATTTTGAT	TATTGTATTT	4620
70						AAAAGGTTCA	
						TGTAGCTATA	
						GTTTATTTTA	
				GCATATTCCT			4860
75						TTTCATTCTT ACGTGTGGCA	
				GCCTCCCCAC			5040
				AGCGCCGTGA			5100
				GGAGAGCAGC			5160
90	TTTCACTCCC	TCCATCAAGA	ATGGGGATCA	CAGAGACATT	CCTCCGAGCC	GGGGAGTTTC	5220
80						CCACAGAGAG	
				ACTGCACAGA			5340
				CTTTTTGAGG			5400
				GCTCAGGATT		CAACTTTAAG	5460 5520
85						AAAGAGACCT	
				GTGTGTTCCC			5640
				TGCTGTCATC			5700

```
ATGTCGTGAC CAACTAGACA TTCTGTCGCC TTAGCATGTT TGCTGAACAC CTTGTGGAAG 5760
       AAAAAAA AAAAAAAA
 5
       Seg ID NO: 319 Protein sequence:
       Protein Accession #: NP_005679
                                         31
                                                               51
10
       MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFRR TRPLECODAL ETAARAEGLS
                                                                             60
       LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRTTSKHQHP VDNAGLFSCM TFSWLSSLAR
                                                                            120
       VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWQEELNEV GPDAASLRRV VWIFCRTRLI
                                                                            180
       LSIVCLMITQ LAGFSGPAFM VKHLLEYTQA TESNLQYSLL LVLGLLLTEI VRSWSLALTW
                                                                            240
15
       ALNYRTGVRL RGAILTMAFK KILKLKNIKE KSLGELINIC SNDGQRMFEA AAVGSLLAGG
                                                                            300
       PVVAILGMIY NVIILGPTGF LGSAVFILFY PAMMFASRLT AYFRRKCVAA TDERVQKMNE
                                                                            360
       VLTYIKFIKM YAWVKAPSQS VQKIREEERR ILEKAGYFQG ITVGVAPIVV VIASVVTPSV
                                                                            420
       HMTLGFDLTA AQAPTVVTVF NSMTFALKVT PFSVKSLSEA SVAVDRFKSL FLMEEVHMIK
                                                                            480
       NKPASPHIKI EMKNATLAWD SSHSSIQNSP KLTPKMKKDK RASRGKKEKV RQLQRTEHQA
                                                                            540
20
       VLAEQKGHLL LDSDERPSPE EEEGKHIHLG HLRLQRTLHS IDLEIQEGKL VGICGSVGSG
                                                                            600
       KTSLISAILG QMTLLEGSIA ISGTFAYVAQ QAWILNATLR DNILFGKEYD EERYNSVLNS
                                                                            660
       CCLRPDLAIL PSSDLTEIGE RGANLSGGQR QRISLARALY SDRSIYILDD PLSALDAHVG
                                                                            720
       NHIFNSAIRK HLKSKTVLFV THQLQYLVDC DEVIFMKEGC ITERGTHEEL MNLNGDYATI
                                                                            780
       FNNLLLGETP PVEINSKKET SGSQKKSQDK GPKTGSVKKE KAVKPEEGQL VQLEEKGQGS
                                                                            840
      VPWSVYGVYI QAAGGPLAFL VIMALFMLNV GSTAFSTWWL SYWIKQGSON TTVTRGMETS
VSDSMKDNPH MQYYASIYAL SMAVMLILKA IRGVVFVKGT LRASSRLHDE LFRRILRSPM
25
       KPFDTTPTGR ILNRFSKDMD EVDVRLPFQA EMFIQNVILV FFCVGMIAGV FPWFLVAVGP
       LVILFSVLHI VSRVLIRELK RLDNITQSPF LSHITSSIQG LATIHAYNKG QEFLHRYQEL
                                                                           1080
       LDDNQAPFFL FTCAMRWLAV RLDLISIALI TTTGLMIVLM HGQIPPAYAG LAISYAVQLT
                                                                           1140
       GLFOFTVRLA SETEARFTSV ERINHYIKTL SLEAPARIKN KAPSPDWPQE GEVTFENAEM
30
                                                                           1200
       RYRENLPLVL KKVSFTIKPK EKIGIVGRTG SGKSSLGMAL FRLVELSGGC IKIDGVRISD
                                                                           1260
       IGLADLRSKL SIIPQEPVLF SGTVRSNLDP FNQYTEDQIW DALERTHMKE CIAQLPLKLE
                                                                           1320
       SEVMENGONF SVGERQLLCI ARALLRHCKI LILDEATAAM DTETDLLIQE TIREAFADCT
                                                                           1380
       MLTIAHRLHT VLGSDRIMVL AQGQVVEFDT PSVLLSNDSS RFYAMFAAAE NKVAVKG
35
       Seg ID NO: 320 DNA sequence
       Nucleic Acid Accession #: AK022089.1
       Coding sequence: 181-1488
40
                                                               51
                                         31
       AGCAGTTGCA CAACTTCCAG CAACTTTCTC AGCCGGCTAC TAATGAGCTG AAAGCCAGGA
       ACATCCGAGG AGAAGAGAAA GCTTCCAGCC CTCCTCCCTT CACCCTGGAA ATCCAGACAC
                                                                            120
45
       CCCCACCCC ACCCTCAGAT CACTTTAAGA TAATTTCTTT ATTCGTTTGC CCGACAGACC
       ATGGCTCCCT TTGGAAGAAA CTTGCTAAAG ACTCGGCATA AAAACAGATC TCCAACTAAA
       GACATGGATT CAGAAGAGAA GGAAATTGTG GTTTGGGTTT GCCAAGAAGA GAAGCTTGTC
       TGTGGGCTGA CTAAACGCAC CACCTCTGCT GATGTCATCC AGGCTTTGCT TGAGGAACAT
       GAGGCTACGT TTGGAGAGAA ACGATTTCTT CTGGGGAAGC CCAGTGATTA CTGCATCATA
                                                                            420
50
       GAGAAGTGGA GAGGCTCCGA AAGGGTTCTT CCTCCACTAA CTAGAATCCT GAAGCTTTGG
                                                                            480
       AAAGCGTGGG GAGATGAGCA GCCCAATATG CAATTTGTTT TGGTTAAAGC AGATGCTTTT
                                                                            540
       CTTCCAGTTC CTTTGTGGCG GACAGCTGAA GCCAAATTAG TGCAAAACAC AGAAAAATTG
                                                                            600
       TGGGAGCTCA GCCCAGCAAA CTACATGAAG ACTTTACCAC CAGATAAACA AAAAAGAATA
                                                                            660
       GTCAGGAAAA CTTTCCGGAA ACTGGCTAAA ATTAAGCAGG ACACAGTTTC TCATGATCGA
                                                                            720
55.
       GATAATATGG AGACATTAGT TCATCTGATC ATTTCCCAGG ACCATACTAT TCATCAGCAA
                                                                            780
       GTCAAGAGAA TGAAAGAGCT GGATCTGGAA ATTGAAAAGT GTGAAGCTAA GTTCCATCTT
                                                                            840
       GATCGAGTAG AAAATGATGG AGAAAACTAT GTTCAGGATG CATATTTAAT GCCCAGTTTC
                                                                            900
       AGTGAAGTTG AGCAAAATCT AGACTTGCAG TATGAGGAAA ACCAGACTCT GGAGGACCTG
                                                                            960
       AGCGAAAGTG ATGGAATTGA ACAGCTGGAA GAACGACTGA AATATTACCG AATACTCATT
                                                                           1020
60
                                                                           1080
       GATAAGCTCT CTGCTGAAAT AGAAAAAGAG GTAAAAAGTG TTTGCATTGA TATAAATGAA
       GATGCGGAAG GGGAAGCTGC AAGTGAACTG GAAAGCTCTA ATTTAGAGAG TGTTAAGTGT
                                                                           1140
       GATTTGGAGA AAAGCATGAA AGCTGGTTTG AAAATTCACT CTCATTTGAG TGGCATCCAG
                                                                           1200
       AAAGAGATTA AATACAGTGA CTCATTGCTT CAGATGAAAG CAAAAGAATA TGAACTCCTG
                                                                           1260
       GCCAAGGAAT TCAATTCACT TCACATTAGC AACAAAGATG GGTGCCAGTT AAAGGAAAAC
                                                                           1320
       AGAGCGAAGG AATCTGAGGT TCCCAGTAGC AATGGGGAGA TTCCTCCCTT TACTCAAAGA
GTATTTAGCA ATTACACAAA TGACACAGAC TCGGACACTG GTATCAGTTC TAACCACAGT
65
                                                                           1380
                                                                           1440
       CAGGACTCCG AAACAACAGT AGGAGATGTG GTGCTGTTGT CAACATAGTT CCAATGGCTC
                                                                           1500
       CTTTCTGACC TGCTTTCATG TTTTAATGTT TGTTTAATTT AATAGGAAAC CTCATTTTAA
                                                                           1560
       ATATAACACT CAAAAAAATG TAAATCATAT TGTAGTATTC AATAGTTAAT AAAAACTCGA
70
       GAAATGTGTT GTTTCTG
       Seg ID NO: 321 Protein sequence:
       Protein Accession #: NP_005438.1
75
       MAPFGRNLLK TRHKNRSPTK DMDSEEKBIV VWVCQEEKLV CGLTKRTTSA DVIQALLEEH
                                                                              60
       EATFGEKRFL LGKPSDYCII EKWRGSERVL PPLTRILKLW KAWGDEQPNM QFVLVKADAF
                                                                             120
       LPVPLWRTAE AKLVQNTEKL WELSPANYMK TLPPDKQKRI VRKTFRKLAK IKQDTVSHDR
                                                                             180
80
       DNMETLVHLI ISQDHTIHQQ VKRMKELDLE IEKCEAKFHL DRVENDGENY VQDAYLMPSF
                                                                             240
       SEVEQUEDLO YEENOTLEDL SESDGIEQLE ERLKYYRILI DKLSAEIRKE VKSVCIDINE
                                                                             300
       DAEGEAASEL ESSNLESVKC DLEKSMKAGL KIHSHLSGIQ KEIKYSDSLL QMKAKEYELL
                                                                             360
       AKEPNSLHIS NKDGCOLKEN RAKESEVPSS NGEIPPFTOR VFSNYTNDTD SDTGISSNHS
                                                                             420
       ODSETTVGDV VLLST
85
       Seg ID NO: 322 DNA sequence
```

Seq ID NO: 322 DNA sequence Nucleic Acid Accession #: NM_030920.1

WO 02/086443

Coding sequence: 317-1123

```
AGCATTGAAG GGGAAGGAAC TGCGGGTGTG GTGTGTGTAT GTGTGTGTGT ATGTGTGTGC
       GGCGCGTGCG TGCGTGTGTG TGCGCGCGCT AGTGTGTGGA CAAGGAGGTG GGGGCAGCTG
                                                                          120
       AGTTAGAGTC CCAACTCTTG GACTCCATTT GCTATTCTCT TCTTTCTCCC CCACACCTAT
                                                                          180
       CTGGTGGTGG TAGTGGGCGT TTATATTTGC GTTCCTTTTC ATTCATTTCT AAATCTCTTA
                                                                          240
       AAAATTTTGG GTTGGGGGTA TTGGGGAAGG CAGGAAAGGG AAAAGGAGAG TAGTAGCTGA
                                                                          300
       AGAGCAAGAG GAGGACATGG AGATGAAGAA GAAGATTAAC CTGGAGTTAA GGAACAGATC
10
                                                                          360
       CCCGGAGGAG GTGACAGAGT TAGTCCTTGA TAATTGCCTG TGTGTCAATG GGGAAATTGA
                                                                          420
       AGGCCTGAAT GATACTTTCA AAGAACTAGA ATTTCTGAGT ATGGCTAATG TGGAACTAAG
                                                                          480
       TTCGCTGGCC CGGCTTCCCA GCTTAAATAA ACTTCGAAAA TTGGAGCTTA GTGATAATAT
                                                                          540
      AATTTCTGGA GGCTTGGAAG TCCTGGCAGA GAAATGTCCA AATCTTACCT ACCTCAATCT
                                                                          600
       GAGTGGAAAC AAAATAAAAG ATCTCAGTAC AGTAGAAGCT CTGCAAAATC TTAAAAATTT
15
                                                                          660
       GAAAAGTCTT GACCTGTTTA ACTGTGAGAT CACAAACCTG GAAGATTATA GAGAAAGTAT
                                                                          720
       TTTTGAACTA CTGCAGCAAA TCACATACTT AGATGGATTT GATCAGGAGG ATAATGAAGC
                                                                          780
       GCCGGACTCT GAAGAGGAGG ATGATGAGGA TGGAGATGAA GATGATGAAG AGGAAGAGGA
                                                                          840
       AAATGAAGCT GGTCCACCGG AAGGATATGA GGAAGAGGG GAGGAAGAGG AAGAGGAGGA
                                                                          900
       TGAGGATGAG GATGAAGATG AAGATGAAGC AGGTTCAGAG TTGGGAGAGG GAGAAGAGGA
20
                                                                          960
       AGTGGGCCTC TCATACTTAA TGAAAGAAGA AATTCAGGAT GAAGAAGATG ATGATGACTA
       TGTTGAAGAA GGGGAAGAAG AGGAAGAAGA GGAAGAAGAA GGTCTTCGAG GGGAGAAGAG
       GAAACGAGAT GCTGAAGACG ATGGAGAGGA AGAAGATGAC TAGATCATTC TAAGACCAGA
       TTCTCTAATG TTTCTGGGTG TGCAATAGAG TGATCACATC TTTGTTTCTT CATGTACGAT
                                                                         1200
       AGCTATCCCT ACAGAAGATA ATGTGTAACT TTTTATAGGA AAAGTGTGGT TTTACTATTT
25
       TTGCCTTATC ATTCCAAATA AGAACTAGTC TGTTAATGAT CATATTGTAT GTAGAGAAAA
                                                                         1320
       ATTTTCATTG ACTCCCATTG TGGAATTCCC TAGCAATTTA TTTAGACTTA ATTTTTTAAA
                                                                         1380
       TTCAAGCTTA CTGTATTAGT CATTTTTAGC CCATAATTAA AACATGATCA CTTTTAAACA
                                                                         1440
      GGTGTAGTAT GGTGCATTTC ATTCCTTATT TATAGATTAA CTGAAATTAC AGTTTGCTAT
                                                                         1500
30
       AATATAAAAT GACAATAGTC TCTTGAGTGG TAAGTTGGTT ATTTTTTAG AGGTGATCCA
                                                                         1560
       1620
       TTTGGTTGCT TTTTTGTCAC AAGTAACTTG GAAAATAGAA GCAGAATAGT AAAGGTTCTA
                                                                         1680
       TTCAGCAACA TAGTTCATGG ATTTTGTGGA GGTTCTATTC AGTAATATGG TTCATGGATT
                                                                         1740
       TAGTGGTGAC TGATAAGATT TTATTTTTGA AGGAAAAATT GCTTATACTA AGTCCAGAGA
                                                                         1800
35
       CATGCAGGTG AGCCCTTTTG TCAGGCTGCA AATCATGACA TGCCGATGGT TGTTTATTTT
                                                                         1860
       GTTTTTAGGT GTGCATTCTT TTTCTTCTTA GCAATTCCTT TATGATCACC TTCCCTTCTT
                                                                         1920
       GTTTCACTCC CTCCCGCTCT CTCAAAAGGA ACTTGGGAAA CTTGTGAAAC CCAGGAAAAC
                                                                         1980
       CTTTAGTCTT ATACCTCAAC TACGTTTCAG TCCTGTCTGG GTTTTAAATA AGTGAAGTAG
                                                                         2040
       AAGAAATTGA GTATTTTCTG ACATAAGAAT ATATTATCAA TACAGTTTTA TGCAGTAAGC
                                                                         2100
40
       TCTCCTTACC ATAAATGTTT CTTGGTTGAC AACATCTAAG ACAATATTAG TGGGATGAAG
                                                                         2160
       AAAGAAAAGC AGGGGTGCTT TTGGAAGCAG TGTTAGTGTT CCTCAAAAGT CGGAACAATT
                                                                         2220
       GCCTGTTGAT ATATTAATAA GACATTAAAG TCAAATTTTA ATGTTGGCCT CTCAAATGAT
                                                                         2280
       TTGGATACCA CTCTGCAAAG TATTTCTAAC CTTTAATTCC CAGTTTTAAA ACAGATATAA
                                                                         2340
       TAATAGCATT TAATTGGAAT ATACTAGGCA GCTGGAAAAG TATTTGAAAC TAAATTGACA
                                                                         2400
      45
                                                                         2460
       CTCCTCTTTT GCTATGGAGG CTCCATGTTC AAGGCAATGG CTTTTTAAAT CTTGGCTATC
                                                                         2580
       TAAAATTTTT TCCCTTTGTT TTGAATATTT GTAAGTTTTT AAGAAGTTAG TGTCAGCAAA
                                                                         2640
       TTAATTGAAG TTATGCTTCT ATACTGGGAC ATATTTAAAT ACTGAGTATA GTACTGCTGC
                                                                         2700
50
       TACTGCTTCT ACAATGTAAA ATGTATGACT TGGTGTTTTA AAGTAAAAAT TATGATGTTA
                                                                         2760
       CTTGTGGAGA AACTAAAAAT GTTGTACAAC TGACCGAAAG AAAACCCTTG GGGATAAGTT
                                                                         2820
       TAGTGAGGGG ATTGGAATCC CCAAAAAGAT AACATTTTTC TTCTGCTTTT AAAAACTGAA
                                                                         2880
       ATTCCCTGTT CTAGTTCCTA ACAATTCTCA TTACATACTA TGCCAGATTA CAAAATACTT
                                                                         2940
       ATTTTTAAAA TGAAATCTAT ATATTGACTT TCTTATCAAT CATCTTACTG TGCAATCAAA
                                                                         3000
       ATTAGAGTAC TTTGGTTTGA AAACAACACT TAGAGCCTCC AGATAACTTT TAAGACTTAT
55
                                                                         3060
                                                                         3120
       TTAGCTTTGT GGGTGGTATT TTCATGCAAA TAAGTAAGGG TGGGTTTTAT ATTTTGTAGA
       AGTTTTCGGT CCTATTTTAA TGCTCTTTGT ATGGCAGTAT GTATATATTG TGTTAAGTTC
                                                                         3180
       CTCAAGAATC TCCTTAAAAA CTTTGAAGTT AATACTTTTG TGCAACTGTG TTTTGAATAA 3240
       AGCCATGACA GTGTTAAAAA CAAAC
60
       Seq ID NO: 323 Protein sequence:
       Protein Accession #: NP_112182.1
                            21
                                       31
65
       MEMKKKINLE LRNRSPEEVT ELVLDNCLCV NGEIEGLNDT FKELEFLSMA NVELSSLARL
                                                                           60
       PSLNKLRKLE LSDNIISGGL EVLAEKCPNL TYLNLSGNKI KDLSTVEALQ NLKNLKSLDL
                                                                          120
                                                                          180
       FNCEITNLED YRESIFELLQ QITYLDGFDQ EDNEAPDSEE EDDEDGDEDD EEEEENEAGP
       PEGYEEEEE EEEEDEDEDE DEDEAGSELG EGEEEVGLSY LMKEEIQDEE DDDDYVEEGE
70
       EEEEEEGGL RGEKRKRDAE DDGEEEDD
       Seg ID NO: 324 DNA sequence
       Nucleic Acid Accession #: NM_003812
       Coding sequence: 224..2722
75
                                                             51
       TCCTCTGCGT CCCGCCCCGG GAGTGGCTGC GAGGCTAGGC GAGCCGGGAA AGGGGGCGCC
       GCCCAGCCCC GAGCCCCGCG CCCCGTGCCC CGAGCCCCGGA GCCCCCTGCC CGCGGCGGCA
                                                                          120
       CCATGCGCGC CGAGCCGGCG TGACCGGCTC CGCCCGCGGC CGCCCCGCAG CTAGCCCGGC
80
                                                                          180
       GCTCTCGCCG GCCACACGGA GCGGCGCCCG GGAGCTATGA GCCATGAAGC CGCCCGGCAG
                                                                          240
       CAGCTCGCGG CAGCCGCCCC TGGCGGGCTG CAGCCTTGCC GGCGCTTCCT GCGGCCCCCA
                                                                          300
       ACGCGGCCCC GCCGGCTCGG TGCCTGCCAG CGCCCCGGCC CGCACGCCGC CCTGCCGCCT
                                                                          360
       GCTTCTCGTC CTTCTCCTGC TGCCTCCGCT CGCCGCCTCG TCCCGGCCCC GCGCCTGGGG
                                                                          420
       GGCTGCTGCG CCCAGCGCTC CGCATTGGAA TGAAACTGCA GAAAAAAATT TGGGAGTCCT
85
                                                                          480
       GGCAGATGAA GACAATACAT TGCAACAGAA TAGCAGCAGT AATATCAGTT ACAGCAATGC
                                                                          540
       AATGCAGAAA GAAATCACAC TGCCTTCAAG ACTCATATAT TACATCAACC AAGACTCGGA
                                                                          600
```

```
WO 02/086443
                                                                             660
       AAGCCCTTAT CACGTTCTTG ACACAAAGGC AAGACACCAG CAAAAACATA ATAAGGCTGT
       CCATCTGGCC CAGGCAAGCT TCCAGATTGA AGCCTTCGGC TCCAAATTCA TTCTTGACCT
                                                                             720
       CATACTGAAC AATGGTTTGT TGTCTTCTGA TTATGTGGAG ATTCACTACG AAAATGGGAA
                                                                             780
       ACCACAGTAC TCTAAGGGTG GAGAGCACTG TTACTACCAT GGAAGCATCA GAGGCGTCAA
                                                                             840
 5
       AGACTCCAAG GTGGCTCTGT CAACCTGCAA TGGACTTCAT GGCATGTTTG AAGATGATAC
                                                                             900
       CTTCGTGTAT ATGATAGAGC CACTAGAGCT GGTTCATGAT GAGAAAAGCA CAGGTCGACC
                                                                             960
       ACATATAATC CAGAAAACCT TGGCAGGACA GTATTCTAAG CAAATGAAGA ATCTCACTAT
                                                                            1020
       GGAAAGAGGT GACCAGTGGC CCTTTCTCTC TGAATTACAG TGGTTGAAAA GAAGGAAGAG
                                                                            1080
       AGCAGTGAAT CCATCACGTG GTATATTTGA AGAAATGAAA TATTTGGAAC TTATGATTGT
                                                                            1140
10
       TAATGATCAC AAAACGTATA AGAAGCATCG CTCTTCTCAT GCACATACCA ACAACTTTGC
                                                                            1200
                                                                            1260
       AAAGTCCGTG GTCAACCTTG TGGATTCTAT TTACAAGGAG CAGCTCAACA CCAGGGTTGT
       CCTGGTGGCT GTAGAGACCT GGACTGAGAA GGATCAGATT GACATCACCA CCAACCCTGT
                                                                            1320
       GCAGATGCTC CATGAGTTCT CAAAATACCG GCAGCGCATT AAGCAGCATG CTGATGCTGT
                                                                            1380
       GCACCTCATC TCGCGGGTGA CATTTCACTA TAAGAGAAGC AGTCTGAGTT ACTTTGGAGG
                                                                            1440
15
       TGTCTGTTCT CGCACAAGAG GAGTTGGTGT GAATGAGTAT GGTCTTCCAA TGGCAGTGGC
                                                                            1500
       ACAAGTATTA TOGCAGAGOO TGGCTCAAAA CCTTGGAATC CAATGGGAAC CTTCTAGCAG
                                                                            1560
       AAAGCCAAAA TGTGACTGCA CAGAATCCTG GGGTGGCTGC ATCATGGAGG AAACAGGGGT
                                                                            1620
       GTCCCATTCT CGAAAATTTT CAAAGTGCAG CATTTTGGAG TATAGAGACT TTTTACAGAG
                                                                            1680
       AGGAGGTGGA GCCTGCCTTT TCAACAGGCC AACAAAGCTA TTTGAGCCCA CGGAATGTGG
                                                                            1740
20
       AAATGGATAC GTGGAAGCTG GGGAGGAGTG TGATTGTGGT TTTCATGTGG AATGCTATGG
                                                                            1800
       ATTATGCTGT AAGAAATGTT CCCTCTCCAA CGGGGCTCAC TGCAGCGACG GGCCCTGCTG
       TAACAATACC TCATGTCTTT TTCAGCCACG AGGGTATGAA TGCCGGGATG CTGTGAACGA
       GTGTGATATT ACTGAATATT GTACTGGAGA CTCTGGTCAG TGCCCACCAA ATCTTCATAA
                                                                            1980
       GCAAGACGGA TATGCATGCA ATCAAAATCA GGGCCGCTGC TACAATGGCG AGTGCAAGAC
                                                                            2040
25
       CAGAGACAAC CAGTGTCAGT ACATCTGGGG AACAAAGGCT GCAGGGTCTG ACAAGTTCTG
                                                                            2100
       CTATGAAAAG CTGAATACAG AAGGCACTGA GAAGGGAAAC TGCGGGAAGG ATGGAGACCG
                                                                            2160
       GTGGATTCAG TGCAGCAAAC ATGATGTGTT CTGTGGATTC TTACTCTGTA CCAATCTTAC
                                                                            2220
       TCGAGCTCCA CGTATTGGTC AACTTCAGGG TGAGATCATT CCAACTTCCT TCTACCATCA
                                                                            2280
       AGGCCGGGTG ATTGACTGCA GTGGTGCCCA TGTAGTTTTA GATGATGATA CGGATGTGGG
                                                                            2340
30
       CTATGTAGAA GATGGAACGC CATGTGGCCC GTCTATGATG TGTTTAGATC GGAAGTGCCT
                                                                            2400
       ACAAATTCAA GCCCTAAATA TGAGCAGCTG TCCACTCGAT TCCAAGGGTA AAGTCTGTTC
                                                                            2460
       GGGCCATGGG GTGTGTAGTA ATGAAGCCAC CTGCATTTGT GATTTCACCT GGGCAGGGAC
                                                                            2520
       AGATTGCAGT ATCCGGGATC CAGTTAGGAA CCTTCACCCC CCCAAGGATG AAGGACCCAA
                                                                            2580
       GGGTCCTAGT GCCACCAATC TCATAATAGG CTCCATCGCT GGTGCCATCC TGGTAGCAGC
                                                                            2640
35
       TATTGTCCTT GGGGGCACAG GCTGGGGATT TAAAAATGTC AAGAAGAGAA GGTTCGATCC
                                                                            2700
       TACTCAGCAA GGCCCCATCT GAATCAGCTG CGCTGGATGG ACACCGCCTT GCACTGTTGG
                                                                            2760
       ATTCTGGGTA TGACATACTC GCAGCAGTGT TACTGGAACT ATTAAGTTTG TAAACAAAAC
                                                                            2820
       CTTTGGGTGG TAATGACTAC GGAGCTAAAG TTGGGGTGAC AAGGATGGGG TAAAAGAAAA
                                                                            2880
       CTGTCTCTTT TGGAAATAAT GTCAAAGAAC ACCTTTCACC ACCTGTCAGT AAACGGGGGA
                                                                            2940
40
       GGGGGCAAAA GACCATGCTA TAAAAAGAAC TGTTCCAGAA TCTTTTTTT TCCCTAATGG
                                                                            3000
       ACGAAGGAAC AACACACAC CAAAAATTAA ATGCAATAAA GGAATCATTA AAAA
       Sea ID NO: 325 Protein sequence:
       Protein Accession #: NP_003803
45
                                         31
       MKPPGSSSRO PPLAGCSLAG ASCGPORGPA GSVPASAPAR TPPCRLLLVL LLLPPLAASS
       RPRAWGAAAP SAPHWNETAE KNLGVLADED NTLQQNSSSN ISYSNAMQKE ITLPSRLIYY
                                                                             120
50
       INODSESPYH VLDTKARHOQ KHNKAVHLAQ ASFQIEAFGS KFILDLILNN GLLSSDYVEI
                                                                             180
       HYENGKPOYS KGGEHCYYHG SIRGVKDSKV ALSTCNGLHG MFEDDTFVYM IEPLELVHDE
                                                                             240
       KSTGRPHIIQ KTLAGQYSKQ MKNLTMERGD QWPFLSELQW LKRRKRAVNP SRGIFEEMKY
                                                                             300
       LELMIVNDHK TYKKHRSSHA HTNNFAKSVV NLVDSIYKEQ LNTRVVLVAV ETWTEKDQID
                                                                             360
       ITTNPVQMLH EFSKYRQRIK QHADAVHLIS RVTFHYKRSS LSYFGGVCSR TRGVGVNEYG
                                                                             420
55
       LPMAVAQVLS QSLAQNLGIQ WEPSSRKPKC DCTESWGGCI MEETGVSHSR KFSKCSILEY
                                                                             480
       RDFLQRGGGA CLFNRPTKLF EPTECGNGYV EAGEECDCGF HVECYGLCCK KCSLSNGAHC
                                                                             540
       SDGPCCNNTS CLFQPRGYEC RDAVNECDIT EYCTGDSGQC PPNLHKQDGY ACNQNQGRCY
NGECKTRDNQ CQYIWGTKAA GSDKPCYEKL NTEGTEKGNC GKDGDRWIQC SKHDVFCGFL
                                                                             600
                                                                             660
       LCTNLTRAPR IGQLQGEIIP TSFYHQGRVI DCSGAHVVLD DDTDVGYVED GTPCGPSMMC
                                                                             720
60
       LDRKCLQIQA LNMSSCPLDS KGKVCSGHGV CSNEATCICD FTWAGTDCSI RDPVRNLHPP
                                                                             780
       KDEGPKGPSA TNLIIGSIAG AILVAAIVLG GTGWGFKNVK KRRFDPTQQG PI
       Seg ID NO: 326 DNA seguence
       Nucleic Acid Accession #: AK074418.1
65
       Coding sequence: 244-1515
       CTTTCTCCAA GACGGCCGGC CATGCTCTCC TCCTCTGCCA GTCTCCTCCA CCACTCTCTA
                                                                              60
70
       ACCTGAGAGC CTGTGGAACC TGCCCGTCTC CCCTCCTCCA TCAGACACAC CTGCCTAGGA
                                                                             120
       AACAGATGGA AAAAGTGAGG GACCGGTGAG TGACTTGCTG CTAAAGTTTA TACCAGATGC
                                                                             180
       AAATGACAGA GCTGGAGTTC TGCTGTGCCT GGAAAGGACC TCGGAAGTCT TCTAAGGAGA
                                                                             240
       GTCATGGCGT ATTACCAGGA GCCTTCAGTG GAGACCTCCA TCATCAAGTT CAAAGACCAG
                                                                             300
       GACTITACCA CCTTGCGGGA TCACTGCCTG AGCATGGGCC GGACGTTTAA GGATGAGACA
                                                                             360
75
       TTCCCCGCAG CAGATTCTTC CATAGGCCAG AAGCTGCTCC AGGAAAAACG CCTCTCCAAT
                                                                             420
       GTGATATGGA AGCGGCCACA GGATCTACCA GGGGGTCCTC CTCACTTCAT CCTGGATGAT
                                                                             480
       ATAAGCAGAT TTGACATCCA ACAAGGAGGC GCAGCTGACT GCTGGTTCCT GGCAGCACTG
                                                                             540
       GGATCCTTGA CTCAGAACCC ACAGTACAGG CAGAAGATCC TGATGGTCCA AAGCTTTTCA
                                                                             600
       CACCAGTATG CTGGCATTTT CCGTTTCCGG TTCTGGCAAT GTGGCCAGTG GGTGGAAGTG
                                                                             660
       GTGATTGATG ACCECCTACC TGTCCAGGGA GATAAATGCC TCTTTGTGCG TCCTCGCCAC
80
                                                                             720
       CAAAACCAAG AGTTCTGGCC CTGCCTGCTG GAGAAGGCCT ATGCCAAGCT GCTCGGATCC
                                                                             780
       TATTCCGATC TGCACTATGG CTTCCTCGAG GATGCCCTGG TGGACCTCAC AGGAGGCGTG
                                                                             840
       ATCACCAACA TCCATCTGCA CTCTTCCCCT GTGGACCTGG TGAAGGCAGT GAAGACAGCG
                                                                             900
       ACCAAGGCAG GCTCCCTGAT AACCTGTGCC ACTCCAAGTG GGCCAACAGA TACAGCACAG
                                                                             960
85
       GCGATGGAGA ATGGGCTGGT GAGTCTCCAT GCCTACACTG TGACTGGGGC TGAGCAGATT
                                                                            1020
       CAATACCGAA GGGGCTGGGA AGAAATTATC TCCCTGTGGA ACCCCTGGGG CTGGGGCGAG
       ACCGAATGGA GAGGGCGCTG GAGTGATGGG TCTCAGGAGT GGGAGGAAAC CTGTGATCCG
```

PCT/US02/12476

```
WO 02/086443
       CGGAAAAGCC AGCTACATAA GAAACGGGAA GATGGCGAGT TTTGGATGTC GTGTCAAGAT 1200
       TTCCAACAGA AATTCATCGC CATGTTTATA TGTAGCGAAA TTCCAATTAC CCTGGACCAT
                                                                              1260
                                                                              1320
       GGAAACACAC TCCACGAAGG ATGGTCCCAA ATAATGTTTA GGAAGCAAGT GATTCTAGGA
       AACACTGCAG GAGGACCTCG GAATGATGCT CAATTCAACT TCTCTGTGCA AGAGCCAATG
                                                                              1380
 5
       GAAGGCACCA ATGTTGTCGT GTGCGTCACA GTTGCTGTCA CACCATCAAA TTTGAAAGCA
                                                                              1440
                                                                              1500
       GAAGATGCAA AATTTCCACT CGATTTCCAA GTGATTCTGG CTGGCTCACA GAAACACTGT
                                                                              1560
       CCAAAGCTCA AATAATAAAT TCCGCCGCAA CTTCACCATG ACTTACCATC TGAGCCCTGG
       GAACTATGTT GTGGTTGCAC AGACACGGAG AAAATCAGCG GAGTTCTTGC TCCGAATCTT
                                                                              1620
       CCTGAAAATG CCAGACAGTG ACAGGCACCT GAGCAGCCAT TTCAACCTCA GAATGAAGGG
                                                                              1680
10
       AAGCCCTTCA GAACATGGCT CCCAACAAAG CATTTTCAAC AGATATGCTC AGCAGGTATG
                                                                              1740
       GTACCTAGCA CCCAGGGGCC TTACGTGGGA TTGGAGAAAG GGGACCTGAG GGAGGGACAG
CCCTCACAGG CCCTTACTGG GATGCAGAGA GGAGAAGTGA CTTGATGGAC TATTTTACCT
                                                                              1800
                                                                              1860
       GCCTCTCTTC CTGGATCGTC TCCAGAACTG CTGTGGCTGC CAAGCTCGGT AGAGACGTGG
                                                                              1920
       CGCCCCACCC AGTCTCATCC GGGGGACTTC AAGCTGGAAT GCAGAGCTTA GAAAGGGAGG
       GGATAATTAT GGGGTGTGAG GTGCATTGCC CTCTAAATCT TTAAACAAGC AATTGGCAGT
15
                                                                              2040
       ACCCCGTGAA ACCTTTCCTT CTCCTACTCG GCCACCTCCC ACCAACCTGG CATCGTTCCT
       CCCGGGAGCT AGCCAGCTTC AGAAAGCACA TACAGCATCC TTGCTGCCAA ACCACCTATG
                                                                              2160
       TGCACACAGG ATTTCCTTAA TGGCTTAATA AACTGTTATA AAGAACTCCT TGACTTGTCA
                                                                              2220
       20
       АААААААА АААААААА АААААААА
       Sed ID NO: 327 Protein sequence:
       Protein Accession #: BAB85075.1
25
                                                                  51
       MAYYQEPSVE TSIIKPKDQD FTTLRDHCLS MGRTFKDETF PAADSSIGQK LLQEKRLSNV
                                                                                60
       IWKRPQDLPG GPPHFILDDI SRFDIQQGGA ADCWFLAALG SLTQNPQYRQ KILMVQSFSH
                                                                               120
       QYAGIFRPRF WQCGQWVEVV IDDRLPVQGD KCLFVRPRHQ NQEFWPCLLE KAYAKLLGSY
                                                                               180
30
       SDLHYGFLED ALVOLTGGVI TNIHLHSSPV DLVKAVKTAT KAGSLITCAT PSGPTDTAQA
                                                                               240
       MENGLVSLHA YTVTGAEQIQ YRRGWEEIIS LWNPWGWGET EWRGRWSDGS QEWEETCDPR
                                                                               300
       KSQLHKKRED GEFWMSCQDF QQKPIAMPIC SEIPITLDHG NTLHEGWSQI MFRKQVILGN
                                                                               360
       TAGGPRNDAQ FNFSVQEPME GTNVVVCVTV AVTPSNLKAE DAKFPLDFQV ILAGSQKHCP
                                                                               420
35
       Seq ID NO: 328 DNA sequence
       Nucleic Acid Accession #: BC017490.1
       Coding sequence: 74-2788
40
                                          31
       GTGGGTCACG TGAACCACTT TTCGCGCGAA ACCTGGTTGT TGCTGTAGTG GCGGAGAGGA
       TCGTGGTACT GCTATGGCGG AATCATCGGA ATCCTTCACC ATGGCATCCA GCCCGGCCCA
                                                                               120
45
       GCGTCGGCGA GGCAATGATC CTCTCACCTC CAGCCCTGGC CGAAGCTCCC GGCGTACTGA
                                                                               180
                                                                               240
       TGCCCTCACC TCCAGCCCTG GCCGTGACCT TCCACCATTT GAGGATGAGT CCGAGGGGCT
       CCTAGGCACA GAGGGGCCCC TGGAGGAAGA AGAGGATGGA GAGGAGCTCA TTGGAGATGG
                                                                               300
       CATGGAAAGG GACTACCGCG CCATCCCAGA GCTGGACGCC TATGAGGCCG AGGGACTGGC
                                                                               360
       TCTGGATGAT GAGGACGTAG AGGAGCTGAC GGCCAGTCAG AGGGAGGCAG CAGAGCGGGC
                                                                               420
50
       CATGCGGCAG CGTGACCGGG AGGCTGGCCG GGGCCTGGGC CGCATGCGCC GTGGGCTCCT
                                                                               480
       GTATGACAGC GATGAGGAGG ACGAGGAGCG CCCTGCCCGC AAGCGCCGCC AGGTGGAGCG
                                                                               540
       GGCCACGGAG GACGGCGAGG AGGACGAGGA GATGATCGAG AGCATCGAGA ACCTGGAGGA
                                                                               600
       TCTCAAAGGC CACTCTGTGC GCGAGTGGGT GAGCATGGCG GGCCCCCGGC TGGAGATCCA
                                                                               660
       CCACCGCTTC AAGAACTTCC TGCGCACTCA CGTCGACAGC CACGGCCACA ACGTCTTCAA
                                                                               720
55
       GGAGCGCATC AGCGACATGT GCAAAGAGAA CCGTGAGAGC CTGGTGGTGA ACTATGAGGA
                                                                               780
       CTTGGCAGCC AGGGAGCACG TGCTGGCCTA CTTCCTGCCT GAGGCACCGG CGGAGCTGCT
                                                                               840
       GCAGATCTIT GATGAGGCTG CCCTGGAGGT GGTACTGGCC ATGTACCCCA AGTACGACCG
CATCACCAAC CACATCCATG TCCGCATCTC CCACCTGCCT CTGGTGGAGG AGCTGCGCTC
                                                                               900
                                                                               960
       GCTGAGGCAG CTGCATCTGA ACCAGCTGAT CCGCACCAGT GGGGTGGTGA CCAGCTGCAC
                                                                              1020
60
       TGGCGTCCTG CCCCAGCTCA GCATGGTCAA GTACAACTGC AACAAGTGCA ATTTCGTCCT
       GGGTCCTTTC TGCCAGTCCC AGAACCAGGA GGTGAAACCA GGCTCCTGTC CTGAGTGCCA
                                                                              1140
       GTCGGCCGGC CCCTTTGAGG TCAACATGGA GGAGACCATC TATCAGAACT ACCAGCGTAT
                                                                              1200
       CCGAATCCAG GAGAGTCCAG GCAAAGTGGC GGCTGGCCGG CTGCCCCGCT CCAAGGACGC
                                                                              1260
       CATTCTCCTC GCAGATCTGG TGGACAGCTG CAAGCCAGGA GACGAGATAG AGCTGACTGG
                                                                              1320
65
       CATCTATCAC AACAACTATG ATGGCTCCCT CAACACTGCC AATGGCTTCC CTGTCTTTGC
                                                                              1380
       CACTGTCATC CTAGCCAACC ACGTGGCCAA GAAGGACAAC AAGGTTGCTG TAGGGGAACT
                                                                              1440
       GACCGATGAA GATGTGAAGA TGATCACTAG CCTCTCCAAG GATCAGCAGA TCGGAGAGAA
                                                                              1500
       GATCTTTGCC AGCATTGCTC CTTCCATCTA TGGTCATGAA GACATCAAGA GAGGCCTGGC
                                                                              1560
       TCTGGCCCTG TTCGGAGGGG AGCCCAAAAA CCCAGGTGGC AAGCACAAGG TACGTGGTGA
                                                                              1620
70
       TATCAACGTG CTCTTGTGCG GAGACCCTGG CACAGCGAAG TCGCAGTTTC TCAAGTATAT
                                                                              1680
       TGAGAAAGTG TCCAGCCGAG CCATCTTCAC CACTGGCCAG GGGGCGTCGG CTGTGGGCCT
                                                                              1740
       CACGGCGTAT GTCCAGCGGC ACCCTGTCAG CAGGGAGTGG ACCTTGGAGG CTGGGGCCCT
                                                                              1800
       GGTTCTGGCT GACCGAGGAG TGTGTCTCAT TGATGAATTT GACAAGATGA ATGACCAGGA
                                                                              1860
       CAGAACCAGC ATCCATGAGG CCATGGAGCA ACAGAGCATC TCCATCTCGA AGGCTGGCAT
                                                                              1920
75
       CGTCACCTCC CTGCAGGCTC GCTGCACGGT CATTGCTGCC GCCAACCCCA TAGGAGGGCG
                                                                              1980
       CTACGACCCC TCGCTGACTT TCTCTGAGAA CGTGGACCTC ACAGAGCCCA TCATCTCACG
CTTTGACATC CTGTGTGG TGAGGGACAC CGTGGACCCA GTCCAGGACG AGATGCTGGC
                                                                              2040
                                                                              2100
       COGCTTCGTG GTGGGCAGCC ACGTCAGCA CCACCCCAGC AACAAGGAGG AGGAGGGGCT
GGCCAATGGC AGGCTGCTG AGCCCGCCAT GCCCAACAC TATGGCGTGG AGCCCTGCC
                                                                              2160
80
       CCAGGAGGTC CTGAAGAAGT ACATCATCTA CGCCAAGGAG AGGGTCCACC CGAAGCTCAA
                                                                              2280
       CCAGATGGAC CAGGACAAGG TGGCCAAGAT GTACAGTGAC CTGAGGAAAG AATCTATGGC
       GACAGGCAGC ATCCCCATTA CGGTGCGGCA CATCGAGTCC ATGATCCGCA TGGCGGAGGC
                                                                              2400
       CCACGCGCGC ATCCATCTGC GGGACTATGT GATCGAAGAC GACGTCAACA TGGCCATCCG
                                                                              2460
       CGTGATGCTG GAGAGCTTCA TAGACACACA GAAGTTCAGC GTCATGCGCA GCATGCGCAA GACTTTTGCC CGCTACCTTT CATTCCGGCG TGACAACAAT GAGCTGTTGC TCTTCATACT
                                                                              2520
85
                                                                              2580
        GAAGCAGTTA GTGGCAGAGC AGGTGACATA TCAGCGCAAC CGCTTTGGGG CCCAGCAGGA
                                                                              2640
```

CACTATTGAG GTCCCTGAGA AGGACTTGGT GGATAAGGCT CGTCAGATCA ACATCCACAA 2700

```
WO 02/086443
       CCTCTCTGCA TTTTATGACA GTGAGCTCTT CAGGATGAAC AAGTTCAGCC ACGACCTGAA 2760
       AAGGAAAATG ATCCTGCAGC AGTTCTGAGG CCCTATGCCA TCCATAAGGA TTCCTTGGGA 2820
       TTCTGGTTTG GGGTGGTCAG TGCCCTCTGT GCTTTATGGA CACAAAACCA GAGCACTTGA
                                                                            2880
       TGAACTCGGG GTACTAGGGT CAGGGCTTAT AGCAGGATGT CTGGCTGCAC CTGGCATGAC
                                                                            2940
       TGTTTGTTTC TCCAAGCCTG CTTTGTGCTT CTCACCTTTG GGTGGGATGC CTTGCCAGTG
                                                                            3000
       TGTCTTACTT GGTTGCTGAA CATCTTGCCA CCTCCGAGTG CTTTGTCTCC ACTCAGTACC
                                                                            3060
       TTGGATCAGA GCTGCTGAGT TCAGGATGCC TGCGTGTGGT TTAGGTGTTA GCCTTCTTAC
                                                                            3120
       ATGGATGTCA GGAGAGCTGC TGCCCTCTTG GCGTGAGTTG CGTATTCAGG CTGCTTTTGC
                                                                            3180
       TGCCTTTGGC CAGAGAGCTG GTTGAAGATG TTTGTAATCG TTTTCAGTCT CCTGCAGGTT
                                                                            3240
10
       TCTGTGCCCC TGTGGTGGAA GAGGGCACGA CAGTGCCAGC GCAGCGTTCT GGGCTCCTCA
                                                                            3300
       GTCGCAGGGG TGGGATGTGA GTCATGCGGA TTATCCACTC GCCACAGTTA TCAGCTGCCA
                                                                            3360
       TTGCTCCCTG TCTGTTTCCC CACTCTCTTA TTTGTGCATT CGGTTTGGTT TCTGTAGTTT
       ΤΑΑΤΤΤΤΤΑΑ ΤΑΑΑGTTGAA ΤΑΑΑΑΤΑΤΑΑ ΑΑΑΑΑΑΑΑΑ
15
       Seg ID NO: 329 Protein sequence:
       Protein Accession #: AAH17490.1
                                                               51
                                         31
                                                    41
20
       MAESSESFTM ASSPACEREG NOPLTSSPGE SSEETDALTS SPGEDLPPFE DESEGLLGTE
       GPLEEEEDGE ELIGDGMERD YRAIPELDAY EAEGLALDDE DVEELTASQR EAAERAMRQR
                                                                             120
       DREAGRGLGR MRRGLLYDSD EEDEERPARK RRQVERATED GEEDEEMIES IENLEDLKGH
                                                                             180
       SVREWVSMAG PRLEIHHRFK NFLRTHVDSH GHNVFKERIS DMCKENRESL VVNYEDLAAR
                                                                             240
       EHVLAYFLPE APAELLQIFD EAALEVVLAM YPKYDRITNH IHVRISHLPL VEELRSLRQL
                                                                             300
25
       HLNQLIRTSG VVTSCTGVLP QLSMVKYNCN KCNFVLGPFC QSQNQEVKPG SCPECQSAGP
                                                                             360
       FEVNMEETIY QNYQRIRIQE SPGKVAAGRL PRSKDAILLA DLVDSCKPGD EIELTGIYHN
                                                                             420
       NYDGSLNTAN GFPVFATVIL ANHVAKKDNK VAVGELTDED VKMITSLSKD QQIGEKIFAS
                                                                             480
       IAPSIYGHED IKRGLALALF GGEPKNPGGK HKVRGDINVL LCGDPGTAKS QFLKYIEKVS
                                                                             540
       SRAIFTTGQG ASAVGLTAYV QRHPVSREWT LEAGALVLAD RGVCLIDEFD KMNDQDRTSI
                                                                             600
30
       HEAMEQQSIS ISKAGIVTSL QARCTVIAAA NPIGGRYDPS LTFSENVDLT EPIISRFDIL
                                                                             660
       CVVRDTVDPV QDEMLARFVV GSHVRHHPSN KEEEGLANGS AAEPAMPNTY GVEPLPQEVL
                                                                             720
       KKYIIYAKER VHPKLNOMDQ DKVAKMYSDL RKESMATGSI PITVRHIESM IRMAEAHARI
                                                                             780
       HLRDYVIEDD VNMAIRVMLE SFIDTQKFSV MRSMRKTFAR YLSFRRDNNE LLLFILKQLV
                                                                             840
       AEQVTYQRNR FGAQQDTIEV PEKDLVDKAR QINIHNLSAF YDSELFRMNK FSHDLKRKMI
35
       Seg ID NO: 330 DNA sequence
       Nucleic Acid Accession #: M17254
       Coding sequence: 257-1645
40
                                                               51
                  11
                                         31
                                                    41
       GTCCGCGCGT GTCCGCGCCC GCGTGTGCCA GCGCGCGTGC CTTGGCCGTG CGCGCCGAGC
       CGGGTCGCAC TAACTCCCTC GGCGCCGACG GCGGCGCTAA CCTCTCGGTT ATTCCAGGAT
                                                                             120
45
       CTTTGGAGAC CCGAGGAAAG CCGTGTTGAC CAAAAGCAAG ACAAATGACT CACAGAGAAA
                                                                             180
       AAAGATGGCA GAACCAAGGG CAACTAAAGC CGTCAGGTTC TGAACAGCTG GTAGATGGGC
                                                                             240
       TGGCTTACTG AAGGACATGA TTCAGACTGT CCCGGACCCA GCAGCTCATA TCAAGGAAGC
                                                                             300
       CTTATCAGTT GTGAGTGAGG ACCAGTCGTT GTTTGAGTGT GCCTACGGAA CGCCACACCT
                                                                             360
       GGCTAAGACA GAGATGACCG CGTCCTCCTC CAGCGACTAT GGACAGACTT CCAAGATGAG
                                                                             420
50
       CCCACGCGTC CCTCAGCAGG ATTGGCTGTC TCAACCCCCA GCCAGGGTCA CCATCAAAAT
GGAATGTAAC CCTAGCCAGG TGAATGGCTC AAGGAACTCT CCTGATGAAT GCAGTGTGGC
                                                                             480
                                                                             540
       CARAGGCGGG AAGATGGTGG GCAGCCCAGA CACCGTTGGG ATGAACTACG GCAGCTACAT
                                                                             600
       GGAGGAGAAG CACATGCCAC CCCCAAACAT GACCACGAAC GAGCGCAGAG TTATCGTGCC
                                                                             660
       AGCAGATCCT ACCCTATGGA GTACAGACCA TGTGCGGCAG TGGCTGGAGT GGGCGGTGAA
AGAATATGGC CTTCCAGACG TCAACATCTT GTTATTCCAG AACATCGATG GGAAGGAACT
                                                                             720
55
       GTGCAAGATG ACCAAGGACG ACTTCCAGAG GCTCACCCCC AGCTACAACG CCGACATCCT
                                                                             840
       TCTCTCACAT CTCCACTACC TCAGAGAGAC TCCTCTTCCA CATTTGACTT CAGATGATGT
                                                                             900
       TGATAAAGCC TTACAAAACT CTCCACGGTT AATGCATGCT AGAAACACAG ATTTACCATA
                                                                             960
       TGAGCCCCCC AGGAGATCAG CCTGGACCGG TCACGGCCAC CCCACGCCCC AGTCGAAAGC
                                                                            1020
60
       TGCTCAACCA TCTCCTTCCA CAGTGCCCAA AACTGAAGAC CAGCGTCCTC AGTTAGATCC
                                                                            1080
       TTATCAGATT CTTGGACCAA CAAGTAGCCG CCTTGCAAAT CCAGGCAGTG GCCAGATCCA
                                                                            1140
       GCTTTGGCAG TTCCTCCTGG AGCTCCTGTC GGACAGCTCC AACTCCAGCT GCATCACCTG
                                                                            1200
                                                                            1260
       GGAAGGCACC AACGGGGAGT TCAAGATGAC GGATCCCGAC GAGGTGGCCC GGCGCTGGGG
       AGAGCGGAAG AGCAAACCCA ACATGAACTA CGATAAGCTC AGCCGCGCCC TCCGTTACTA
                                                                            1320
65
       CTATGACAAG AACATCATGA CCAAGGTCCA TGGGAAGCGC TACGCCTACA AGTTCGACTT
                                                                            1380
       CCACGGGATC GCCCAGGCCC TCCAGCCCCA CCCCCGGAG TCATCTCTGT ACAAGTACCC
                                                                            1440
       CTCAGACCTC CCGTACATGG GCTCCTATCA CGCCCACCCA CAGAAGATGA ACTTTGTGGC
                                                                            1500
       GCCCCACCCT CCAGCCCTCC CCGTGACATC TTCCAGTTTT TTTGCTGCCC CAAACCCATA
                                                                            1560
       CTGGAATTCA CCAACTGGGG GTATATACCC CAACACTAGG CTCCCCACCA GCCATATGCC
                                                                            1620
70 .
       TTCTCATCTG GGCACTTACT ACTAAAGACC TGGCGGAGGC TTTTCCCATC AGCGTGCATT
                                                                            1680
       CACCAGCCCA TCGCCACAAA CTCTATCGGA GAACATGAAT CAAAAGTGCC TCAAGAGGAA
                                                                            1740
       TGAAAAAAGC TTTACTGGGG CTGGGGAAGG AAGCCGGGGA AGAGATCCAA AGACTCTTGG
                                                                            1800
       GAGGGAGTTA CTGAAGTCTT ACTACAGAAA TGAGGAGGAT GCTAAAAATG TCACGAATAT
                                                                            1860
       GGACATATCA TCTGTGGACT GACCTTGTAA AAGACAGTGT ATGTAGAAGC ATGAAGTCTT
                                                                            1920
75
       AAGGACAAAG TGCCAAAGAA AGTGGTCTTA AGAAATGTAT AAACTTTAGA GTAGAGTTTG
                                                                            1980
       AATCCCACTA ATGCAAACTG GGATGAAACT AAAGCAATAG AAACAACACA GTTTTGACCT
                                                                            2040
       AACATACCGT TTATAATGCC ATTTTAAGGA AAACTACCTG TATTTAAAAA TAGTTTCATA
                                                                            2100
       TCAAAAACAA GAGAAAAGAC ACGAGAGAGA CTGTGGCCCA TCAACAGACG TTGATATGCA
       ACTGCATGGC ATGTGCTGTT TTGGTTGAAA TCAAATACAT TCCGTTTGAT GGACAGCTGT
                                                                            2220
80
       CAGCTTTCTC AAACTGTGAA GATGACCCAA AGTTTCCAAC TCCTTTACAG TATTACCGGG
                                                                           2280
       ACTATGAACT AAAAGGTGGG ACTGAGGATG TGTATAGAGT GAGCGTGTGA TTGTAGACAG
                                                                            2340
       AGGGGTGAAG AAGGAGGAGG AAGAGGCAGA GAAGGAGGAG ACCAGGCTGG GAAAGAAACT
                                                                            2400
       TCTCAAGCAA TGAAGACTGG ACTCAGGACA TTTGGGGACT GTGTACAATG AGTTATGGAG
                                                                            2460
       ACTOGAGGGT TCATGCAGTC AGTGTTATAC CAAACCCAGT GTTAGGAGAA AGGACACAGC
                                                                            2520
85
       GTAATGGAGA AAGGGAAGTA GTAGAATTCA GAAACAAAAA TGCGCATCTC TTTCTTTGTT
                                                                            2580
       TGTCAAATGA AAATTTTAAC TGGAATTGTC TGATATTTAA GAGAAACATT CAGGACCTCA
                                                                            2640
       TCATTATGTG GGGGCTTTGT TCTCCACAGG GTCAGGTAAG AGATGGCCTT CTTGGCTGCC
                                                                           2700
```

	WO 02	/086443							
5	AACGCTGTGC ATAATTATAT CGACAAAAGA TACAATATGA TAGCATGGCA TTGCTTAATG	GTTTGTCAGA AACTTATGCA GACAATCGAT AGTTATTAGT AATCAGATTT AAAACATGTG	ATGAAGTATA TTTATACACT ATAATGTGGC TCTTAGAATG ATACAGGAGT CTGAATGTTG	AGGCGCCTC CAAGTCAATG ACGAGTTGAT CTTGAATTTT CAGAATGTAT CTGCATTTGC TGGATTTTGT	TTTTTCCCCC CTCGGCCAGC AACTCTGTAT GTAATAAAAT ACTTTTTTTA GTTATAATTT	TTTTTATATA CAAAGACACA GCTTAATGTT AAGCTTGGCC GTGACTAAAG	2760 2820 2880 2940 3000 3060 3120		
10	Seq ID NO:	331 Protein		AGGATGTTTG	GCACCC .				
15	QDWLSQPPAR PPPNMTTNER DDFQRLTPSY SAWTGHGHPT	VTIKMECNPS RVIVPADPTL NADILLSHLH POSKAAOPSP	QVNGSRNSPD WSTDHVRQWL YLRETPLPHL STVPKTEDOR	POLDPYOILG	VGSPDTVGMN DVNILLFQNI NSPRLMHARN PTSSRLANPG	YGSYMEEKHM DGKELCKMTK TDLPYEPPRR SGQIQLWQFL	60 120 180 240 300		
20	LELLSDSSNS MTKVHGKRYA	SCITWEGTNG YKFDFHGIAQ	EFKMTDPDEV ALQPHPPESS	ARRWGERKSK LYKYPSDLPY TSHMPSHLGT	PNMNYDKLSR MGSYHAHPQK	ALRYYYDKNI	360 420 462		
25	Nucleic Aci	332 DNA sec id Accession lence: 283-1	ı#: им_оооо	20					
	1	1i ·	21	31	41	51	•		
30	AGGAAACGGT	TTATTAGGAG	GGAGTGGTGG	AGCTGGGCCA	 GGCAGGAAGA	CGCTGGAATA	60		
	AGAAACATTT	TTGCTCCAGC	CCCCATCCCA	GTCCCGGGAG CCGGGGCCGC	GCTGCCGCGC	CAGCTGCGCC	120 180		
	CCAGCGCTGG	CGGTGCAACT	GCGGCCGCGC	GGTGGAGGGG	AGGTGGCCCC	GGTCCGCCGA	240		
35	AGGAAAGGCC	CCCGCCACCC	GCAGAGCGGG GCTGATGGCC	CCCAGAGGGA TTGGTGACCC	AGGGAGACCC	TGTGAAGCCG	300 360		
	TCTCGGGGCC	CGCTGGTGAC	CTGCACGTGT	GAGAGCCCAC	ATTGCAAGGG	GCCTACCTGC	420 480		
	CGGGGCTGCG	GGAACTTGCA	CAGGGAGCTC	CGGGAGGAGG TGCAGGGGGC	GCCCCACCGA	GTTCGTCAAC	540		
40	CACTACTGCT	GCGACAGCCA	CCTCTGCAAC	CACAACGTGT	CCCTGGTGCT	GGAGGCCACC	600 660		
40	CAACCTCCTT	TGGCCTGGT	GGCCCTGGGT	GGCCAGCTGG GTCCTGGGCC	TGTGGCATGT	CCGACGGAGG	720		
	CAGGAGAAGC	AGCGTGGCCT	GCACAGCGAG	CTGGGAGAGT	CCAGTCTCAT	CCTGAAAGCA	780		
	TCTGAGCAGG	GCGACACGAT	GTTGGGGGAC	CTCCTGGACA ACAGTGGCAC	GTGACTGCAC	CACAGGGAGT	840 900		
45	TGTGTGGGAA	AAGGCCGCTA	TGGCGAAGTG	TGGCGGGGCT	TGTGGCACGG	TGAGAGTGTG	960		
	GCCGTCAAGA	TCTTCTCCTC	GAGGGATGAA	CAGTCCTGGT	TCCGGGAGAC	TGAGATCTAT	1020 °		
	AACACAGTAT	GCACGCAGCT	CGACAACATC	CTAGGCTTCA ACGCACTACC	ACGAGCACGG	CTCCCTCTAC	1140		
50	GACTTTCTGC	AGAGACAGAC	GCTGGAGCCC	CATCTGGCTC	TGAGGCTAGC	TGTGTCCGCG	1200		
50	GCATGCGGCC	TGGCGCACCT	CCCCAATGTG	ATCTTCGGTA CTGGTCAAGA	CACAGGGCAA GCAACCTGCA	GTGTTGCATC	1260 1320		
	GCCGACCTGG	GCCTGGCTGT	GATGCACTCA	CAGGGCAGCG	ATTACCTGGA	CATCGGCAAC	1380		
	AACCCGAGAG	TGGGCACCAA	GCGGTACATG	GCACCCGAGG GACATCTGGG	TGCTGGACGA	GCAGATCCGC	1440 1500		
55	CACATTCCCC	COCCGACCAT	CGTGAATGGC	ATCGTGGAGG	ACTATAGACC	ACCCTTCTAT	1560		
	GATGTGGTGC	CCAATGACCC	CAGCTTTGAG	GACATGAAGA	AGGTGGTGTG	TGTGGATCAG	1620		
	CAGACCCCCA	CCATCCTAA	CCGGCTGGCT	TCTGCCCGAC	TCACCGCGCT	CCTAGCTCAG GCGGATCAAG	1680 1740		
	AAGACACTAC	AAAAAATTAG	CAACAGTCCA	GAGAAGCCTA	AAGTGATTCA	ATAGCCCAGG	1800		
60	AGCACCTGAT	TCCTTTCTGC	CTGCAGGGGG	CTGGGGGGGT	GGGGGGCAGT	GGATGGTGCC TGCGCCTGCC	1860 1920		
	TGCTCGGCCC	CCAGCCCACC	CAGCCAAAAA	TACAGCTGGG	CTGAAACCTG	ATCCCCTGCT	1980		
	GTCTGGCCTG	CTCAAAGCGG	CAGGCTCCCT	GACGCCTGGC	TCTCTCCCCA	CCCCTATGGC	2040 2100		
65	GTGCCAAGCC	AGGGAATCCC	AGTCCCAGAC	TCAGAGCCCG	GGCCTGCACT	CAGAGTCAGA TTGCCCCCTG	2160		
•	CCCTTGATCA	ACCCCACTGC	CCCACCAGAG	CTGCCAGGGT	GGCACAGGGC	CCTGTCCAGC	2220		
	CCCTGGCACA	CACTTCCCTG	CCAGGCCTCA	GCCTCTAGCA TCAGCTCCAT	GATGCCTTGG	AGAGCCAGGG GCTTTCTGTC	2280 2340		
70	TCCTCAACAA	GAGTGCAGCT	TGCTGAATGT	CAGCTGCCTG	AGAGAGCTGG	GGCCTGACTT	2400		
70	ACTAGGGCAT	TAAATCCTAA	GAGGTCCTAC	TGAGGTGTGG	CAGGATCACA	GGCCAGTGGA GGATATCGAG	2460 2520		
	CCCAACCATG	GCAGGGGGAA	GGTCAGTGGG	TGTCAAGAGA	CCCAGGTCTG	ACCCCGGATG	2580		
	TTTGCTCCAT	GTGACAAAAG	CAGGCCTGTC	TCAGGACCTT TTGTCCAGGC	TTCTTTTCTT	TTTTCCTTCT	2640 2700		
75	CCAGCTCACC	GCAACGTCTA	CCTCCCAGGT	TCAAATCATT	CTCTTGCCTC	AGACTCCCGA	2760		
_	GTAGCTGGGA	TTACAGGCAC	ATGCCACCAT	GCCTGGCTAA	TTTTGTATAT	TTAGTAGAAA	2820		
	ACCTCAGCCT	CCCAAAGTGC	TGGGGTTACA	GGTGTGAGCC	ATCGCGCCTG	TGTTCCACCT GCCAGGACCT	2880 2940		
00	TTGTTTCTTA	TCTACATATT	GGAAGATTTG	GTCCTGATGT	CCTTTGAGGC	TTCTTTAGCT	3000		
80	CTAGTTCTCT	GACACTTCAG	CCTATATCAC	AGCTAACTTC ATGGGGGTTT	YTCAGTCTCA GAAAATAACT	TCTATTCCTT	3060 3120		
	CAAGGAGTGT	CTGGAGCACC	TCCTAGTCTA	AGTCTGCAAG	CTCCAGTTCT	TGCCTAAAAC	3180		
	CATGCCAGTG	GCCACCCTTG	GGCTCAGACA	GCTCTGGGCC	TTTTGACCAC	AAGCCAGCCC	3240		
85	GCTTCCAACC	CTCAAAAGAA	ATTTGGCTCC	ATCCAAGAAG	GCTCCAGCTC	TTCCTCCAAG CCCTACTGGC	3300 3360		
	CCCTGGCTTC	AGGCCCACAC	CCCTGGGCCA	GGSCCAGAGA	GTGTGTCTCA	GGAGAATTCA	3420		
	ATGGGCTCTA	GAGAGACACA	CAGAAAGTTT	GGGCATTTGG	GAAATTTTCA	AGGRTGTATG	3480		

```
TATGGYTCAC GTATGGWGCA GGTTGTCCTG GTCCYKGGGT GCAGGGAAGT GGGCTGCAGG 3540
       GAAGTGGATT GGAGGGAGC TTGAGGAATA TAAGGAGCG GGGTGGAGAC TCAGGCTATG
GACAAGGACA GCCCCAAGGT TGGGAAGACC TGGCCTTAGT CGTCCTCAGC CTAGGGCAGG
                                                                              3600
       GCAGTGAAGA AAGCTCTCCC CGCTCCTGCT GTAATGACCC AGAGTAGCCT CCCCAGGCCG
                                                                              3720
       GCATCTTATG TGTGTCTTCC ACCATCCTCA TGGTGGCACT TTTCTAGGCC TGTCTCCCAG
                                                                              3780
       CATTGTGCAA GGCTCGGAAG AGAACCAGGA AGTGAAACTG GGTGAAAACA GAAAGCTCAA
                                                                              3840
       TGGATGGGCT AGGTTCCCAG ATCATTAGGG CAGAGTTTGC ACGTCCTCTG GTTCACTGGG
                                                                              3900
       AATCCACCCA GCCCACGAAT CATCTCCCTC TTTGAAGGAT TTTWATTTCT ACTGGGTTTT
                                                                              3960
       GGAACAAACT CCTGCTGAGA CCCCACAGCC AGAAACTGAA AGCAGCAGCT CCCCAAAGCC
                                                                              4020
       TGGAAAATCC CTAAGAGAAG GCCTGGGGGA MAGGAAKTGG AGTGACAGGG GACAGGTAGA
10
                                                                              4080
       GAGAAGGGGG CCCAATGGCC AGGGAGTGAA GGAGGTGGCG TTGCTGAGAG CAGTCTGCAC
                                                                              4140
       ATGCTTCTGT CTGAGTGCAG GAAGGTGTTC CAGGGTCGAA ATTACACTTC TCGTACCTGG
                                                                              4200
       AGACGCTGTT TGTGGGAGCA CTGGGCTCAT GCCTGGCACA CAATAGGTCT GCAATAAACC
                                                                              4260
       ATGGTTAAAT CCTGAAAAAA AAAAAAAA
15
       Seq ID NO: 333 Protein sequence
       Protein Accession #:
20
                                                                 51
                                          31
       MTLGSPRKGL LMLLMALVTQ GDPVKPSRGP LVTCTCESPH CKGPTCRGAW CTVVLVREEG
       RHPQEHRGCG NLHRELCRGR PTEFVNHYCC DSHLCNHNVS LVLEATQPPS EQPGTDGQLA
       LILGPVLALL ALVALGVLGL WHVRRRQEKQ RGLHSELGES SLILKASEQG DTMLGDLLDS
       DCTTGSGSGL PFLVQRTVAR QVALVECVGK GRYGEVWRGL WHGESVAVKI FSSRDEQSWF
25
                                                                               240
       RETEIYNTVL LRHDNILGFI ASDMTSRNSS TQLWLITHYH EHGSLYDFLQ RQTLEPHLAL
                                                                               300
       RLAVSAACGL AHLHVEIFGT QGKPAIAHRD FKSRNVLVKS NLQCCIADLG LAVMHSQGSD
YLDIGNNPRV GTKRYMAPEV LDEQIRTDCF ESYKWTDIWA FGLVLWEIAR RTIVNGIVED
                                                                               360
                                                                               420
       YRPPFYDVVP NDPSFEDMKK VVCVDQQTPT IPNRLAADPV LSGLAQMMRE CWYPNPSARL
                                                                               480
30
       TALRIKKTLQ KISNSPEKPK VIQ
       Seq ID NO: 334 DNA sequence
       Nucleic Acid Accession #: NM_004126.1
       Coding sequence: 108-329
35
                                                                 51
                                        . 31
                                                      41
       GGCACGAGCT CGTGCCGGCC TTCAGTTGTT TCGGGACGCG CCGAGCTTCG CCGCTCTTCC
                                                                                60
       AGCGGCTCCG CTGCCAGAGC TAGCCCGAGC CCGGTTCTGG GGCGAAAATG CCTGCCCTTC
                                                                               120
                                                                               180
40
       ACATCGAAGA TTTGCCAGAG AAGGAAAAAC TGAAAATGGA AGTTGAGCAG CTTCGCAAAG
       AAGTGAAGTT GCAGAGACAA CAAGTGTCTA AATGTTCTGA AGAAATAAAG AACTATATTG
                                                                               240
       AAGAACGTTC TGGAGAGGAT CCTCTAGTAA AGGGAATTCC AGAAGACAAG AACCCCTTTA
                                                                               300
       AAGAAAAAGG CAGCTGTGTT ATTTCATAAA TAACTTGGGA GAAACTGCAT CCTAAGTGGA
                                                                               360
       AGAACTAGTT TGTTTTAGTT TTCCCAGATA AAACCAACAT GCTTTTTAAG GAAGGAAGAA
                                                                               420
45
       TGAAATTAAA AGGAGACTTT CTTAAGCACC ATATAGATAG GGTTATGTAT AAAAGCATAT
       GTGCTACTCA TCTTTGCTCA CTATGCAGTC TTTTTTAAGA GAGCAGAGAG TATCAGATGT
                                                                               540
       ACAATTATGG AAATAAGAAC ATTACTTGAG CATGACACTT CTTTCAGTAT ATTGCTTGAT
       GCTTCAAATA AAGTTTTGTC TT
50
       Seq ID NO: 335 Protein sequence
                                  NP_004117.1
       Protein Accession #:
55
       MPALHIEDLP EKEKLKMEVE QLRKEVKLQR QQVSKCSEEI KNYIEERSGE DPLVKGIPED
                                                                                 60
       KNPFKEKGSC VIS
       Seg ID NO: 336 DNA sequence
60
       Nucleic Acid Accession #: NM_005795 ·
       Coding sequence: 555-1940
                             . 21
                                          31
                                                      41
                                                                  51
       GCACGAGGGA ACRACCTCTC TCTCTSCAGC AGAGAGTGTC ACCTCCTGCT TTAGGACCAT CAAGCTCTGC TAACTGAATC TCATCCTAAT TGCAGGATCA CATTGCAAAG CTTTCACTCT
65
                                                                                120
       TTCCCACCTT GCTTGTGGGT AAATCTCTTC TGCGGAATCT CAGAAAGTAA AGTTCCATCC
                                                                                180
       TGAGAATATT TCACAAAGAA TTTCCTTAAG AGCTGGACTG GGTCTTGACC CCTGGAATTT
                                                                                240
        AAGAAATTCT TAAAGACAAT GTCAAATATG ATCCAAGAGA AAATGTGATT TGAGTCTGGA
                                                                                300
70
       GACAATTGTG CATATCGTCT AATAATAAAA ACCCATACTA GCCTATAGAA AACAATATTT
                                                                                360
       GAATAATAAA AACCCATACT AGCCTATAGA AAACAATATT TGAAAGATTG CTACCACTAA
                                                                                420
       AAAGAAAACT ACTACAACTT GACAAGACTG CTGCAAACTT CAATTGGTCA CCACAACTTG
                                                                                480
       ACAAGGTTGC TATAAAACAA GATTGCTACA ACTTCTAGTT TATGTTATAC AGCATATTTC
                                                                                540
       ATTTGGGCTT AATGATGGAG AAAAAGTGTA CCCTGTATTT TCTGGTTCTC TTGCCTTTTT
                                                                                600
75
        TTATGATTCT TGTTACAGCA GAATTAGAAG AGAGTCCTGA GGACTCAATT CAGTTGGGAG
                                                                                660
        TTACTAGAAA TAAAATCATG ACAGCTCAAT ATGAATGTTA CCAAAAGATT ATGCAAGACC
                                                                                720
        CCATTCAACA AGCAGAAGGC GTTTACTGCA ACAGAACCTG GGATGGATGG CTCTGCTGGA
                                                                                780
       ACGATGTTGC AGCAGGAACT GAATCAATGC AGCTCTGCCC TGATTACTTT CAGGACTTTG
                                                                                840
        ATCCATCAGA AAAAGTTACA AAGATCTGTG ACCAAGATGG AAACTGGTTT AGACATCCAG
                                                                                900
80
        CAAGCAACAG AACATGGACA AATTATACCC AGTGTAATGT TAACACCCAC GAGAAAGTGA
                                                                                960
                                                                               1020
        AGACTGCACT AAATTTGTTT TACCTGACCA TAATTGGACA CGGATTGTCT ATTGCATCAC
        TGCTTATCTC GCTTGGCATA TTCTTTTATT TCAAGAGCCT AAGTTGCCAA AGGATTACCT
                                                                               1080
        TACACAAAAA TCTGTTCTTC TCATTTGTTT GTAACTCTGT TGTAACAATC ATTCACCTCA
                                                                               1140
        CTGCAGTGGC CAACAACCAG GCCTTAGTAG CCACAAATCC TGTTAGTTGC AAAGTGTCCC
85
        AGTTCATTCA TCTTTACCTG ATGGGCTGTA ATTACTTTTG GATGCTCTGT GAAGGCATTT
                                                                               1260
        ACCTACACAC ACTCATTGTG GTGGCCGTGT TTGCAGAGAA GCAACATTTA ATGTGGTATT
        ATTITCTTGG CTGGGGATTT CCACTGATTC CTGCTTGTAT ACATGCCATT GCTAGAAGCT 1380
```

```
TATATTACAA TGACAATTGC TGGATCAGTT CTGATACCCA TCTCCTCTAC ATTATCCATG 1440
       GCCCAATTTG TGCTGCTTTA CTGGTGAATC TTTTTTTCTT GTTAAATATT GTACGCGTTC
                                                                            1500
       TCATCACCAA GTTAAAAGTT ACACACCAAG CGGAATCCAA TCTGTACATG AAAGCTGTGA
                                                                            1560
       GAGCTACTCT TATCTTGGTG CCATTGCTTG GCATTGAATT TGTGCTGATT CCATGGCGAC
                                                                            1620
 5
       CTGAAGGAAA GATTGCAGAG GAGGTATATG ACTACATCAT GCACATCCTT ATGCACTTCC
                                                                            1680
       AGGGTCTTTT GGTCTCTACC ATTTTCTGCT TCTTTAATGG AGAGGTTCAA GCAATTCTGA
                                                                            1740
       GAAGAAACTG GAATCAATAC AAAATCCAAT TTGGAAACAG CTTTTCCAAC TCAGAAGCTC
                                                                            1800
       TTCGTAGTGC GTCTTACACA GTGTCAACAA TCAGTGATGG TCCAGGTTAT AGTCATGACT
                                                                             1860
       GTCCTAGTGA ACACTTAAAT GGAAAAAGCA TCCATGATAT TGAAAATGTT CTCTTAAAAC
                                                                             1920
10
                                                                             1980
       CAGAAAATTT ATATAATTGA AAATAGAAGG ATGGTTGTCT CACTGTTTGG TGCTTCTCCT
       AACTCAAGGA CTTGGACCCA TGACTCTGTA GCCAGAAGAC TTCAATATTA AATGACTTTG
                                                                             2040
                                                                            2100
       GGGAATGTCA TAAAGAAGAG CCTTCACATG AAATTAGTAG TGTGTTGATA AGAGTGTAAC
       ATCCAGCTCT ATGTGGGAAA AAAGAAATCC TGGTTTGTAA TGTTTGTCAG TAAATACTCC
                                                                             2160
       CACTATGCCT GATGTGACGC TACTAACCTG ACATCACCAA GTGTGGAATT GGAGAAAAGC
                                                                             2220
15
       ACAATCAACT TTTCTGAGCT GGTGTAAGCC AGTTCCAGCA CACCATTGAT GAATTCAAAC
                                                                             2280
       AAATGGCTGT AAAACTAAAC ATACATGTTG GGCATGATTC TACCCTTATT CSCCCCAAGA
                                                                             2340
                                                                             2400
       GACCTAGCTA AGGTCTATAA ACATGAAGGG AAAATTAGCT TTTAGTTTTA AAACTCTTTA
       TCCCATCTTG ATTGGGGCAG TTGACTTTT TTTTTTCCCA GAGTGCCGTA GTCCTTTTTG
                                                                             2460
       2520
       CTATGAAAAG CAACTGAGTA CAATTGTTAT GATCTACTCA TTTGCTGACA CATCAGTTAT
20
       ATCTTGTGGC ATATCCATTG TGGAAACTGG ATGAACAGGA TGTATAATAT GCAATCTTAC
                                                                             2640
       TTCTATATCA TTAGGAAAAC ATCTTAGTTG ATGCTACAAA ACACCTTGTC AACCTCTTCC
                                                                            2700
       TGTCTTACCA AACAGTGGGA GGGAATTCCT AGCTGTAAAT ATAAATTTTG CCCTTCCATT TCTACTGTAT AAACAAATTA GCAATCATTT TATATAAAGA AAATCAATGA AGGATTTCTT
                                                                             2760
                                                                             2820
       ATTTTCTTGG AATTTTGTAA AAAGAAATTG TGAAAAATGA GCTTGTAAAT ACTCCATTAT
25
                                                                            2880
       TTTATTTTAT AGTCTCAAAT CAAATACATA CAACCTATGT AATTTTTAAA GCAAATATAT 2940
       AATGCAACAA TGTGTGTATG TTAATATCTG ATACTGTATC TGGGCTGATT TTTTAAATAA 3000
       AATAGAGTCT GGAATGCT
30
       Seg ID NO: 337 protein sequence
       Protein Accession #:
                                  NP_005786.1
                                                                51
35
       MEKKCTLYFL VLLPFFMILV TAELEESPED SIQLGVTRNK IMTAQYECYQ KIMQDPIQQA
       EGVYCNRTWD GWLCWNDVAA GTESMQLCPD YFQDFDPSEK VTKICDQDGN WFRHPASNRT
                                                                              120
       WTNYTQCNVN THEKVKTALN LFYLTIIGHG LSIASLLISL GIFFYFKSLS CQRITLHKNL
                                                                              180
       FFSFVCNSVV TIIHLTAVAN NQALVATNPV SCKVSQFIHL YLMGCNYFWM LCEGIYLHTL
IVVAVFAEKQ HLMWYYFLGW GFPLIPACIH AIARSLYYND NCWISSDTHL LYIIHGPICA
                                                                              240
                                                                              300
       ALLVNLFPLL NIVRVLITKL KVTHQAESNL YMKAVRATLI LVPLLGIEFV LIPWRPEGKI
40
                                                                              360
       AEEVYDYIMH ILMHFQGLLV STIFCFFNGE VQAILRRNWN QYKIQFGNSF SNSEALRSAS
       YTVSTISDGP GYSHDCPSEH LNGKSIHDIE NVLLKPENLY N
       Seg ID NO: 338 DNA seguence
45
       Nucleic Acid Accession #: NM_001795
       Coding sequence: 25-2379
50
       GCACGATCTG TTCCTCCTGG GAAGATGCAG AGGCTCATGA TGCTCCTCGC CACATCGGGC
       GCCTGCCTGG GCCTGCTGGC AGTGGCAGCA GTGGCAGCAG CAGGTGCTAA CCCTGCCCAA
                                                                              120
       CGGGACACCC ACAGCCTGCT GCCCACCCAC CGGCGCCAAA AGAGAGATTG GATTTGGAAC
                                                                              180
       CAGATGCACA TTGATGAAGA GAAAAACACC TCACTTCCCC ATCATGTAGG CAAGATCAAG
                                                                              240
       TCAAGCGTGA GTCGCAAGAA TGCCAAGTAC CTGCTCAAAG GAGAATATGT GGGCAAGGTC
                                                                              300
55
       TTCCGGGTCG ATGCAGAGAC AGGAGACGTG TTCGCCATTG AGAGGCTGGA CCGGGAGAAT
                                                                              360
       ATCTCAGAGT ACCACCTCAC TGCTGTCATT GTGGACAAGG ACACTGGTGA AAACCTGGAG
                                                                              420
       ACTOCTTOCA GOTTCACCAT CAAAGTTCAT GACGTGAACG ACAACTGGCC TGTGTTCACG
                                                                              480
       CATCGGTTGT TCAATGCGTC CGTGCCTGAG TCGTCGGCTG TGGGGACCTC AGTCATCTCT
                                                                              540
       GTGACAGCAG TGGATGCAGA CGACCCCACT GTGGGAGACC ACGCCTCTGT CATGTACCAA
                                                                              600
       ATCCTGAAGG GGAAAGAGTA TTTTGCCATC GATAATTCTG GACGTATTAT CACAATAACG
60
                                                                              660
       AAAAGCTTGG ACCGAGAGAA GCAGGCCAGG TATGAGATCG TGGTGGAAGC GCGAGATGCC
       CAGGGCCTCC GGGGGGACTC GGGCACGGCC ACCGTGCTGG TCACTCTGCA AGACATCAAT
       GACAACTTCC CCTTCTTCAC CCAGACCAAG TACACATTTG TCGTGCCTGA AGACACCCGT
GTGGGCACCT CTGTGGGCTC TCTGTTTGTT GAGGACCCAG ATGAGCCCCA GAACCGGATG
                                                                              900
       ACCARGTACA GCATCTTGCG GGGGGACTAC CAGGACGCTT TCACCATTGA GACAAACCCC GCCCACAACG AGGCATCAT CAAGCCCATG AAGCCTCTGG ATTATGAATA CATCCAGCAA
65
                                                                              960
                                                                             1020
       TACAGCTTCA TCGTCGAGGC CACAGACCCC ACCATCGACC TCCGATACAT GAGCCCTCCC
                                                                             1080
       GCGGGAAACA GAGCCCAGGT CATTATCAAC ATCACAGATG TGGACGAGCC CCCCATTTTC
                                                                             1140
       CAGCAGCCTT TCTACCACTT CCAGCTGAAG GAAAACCAGA AGAAGCCTCT GATTGGCACA
                                                                             1200
70
       GTGCTGGCCA TGGACCCTGA TGCGGCTAGG CATAGCATTG GATACTCCAT CCGCAGGACC
                                                                             1260
       AGTGACAAGG GCCAGTTCTT CCGAGTCACA AAAAAGGGGG ACATTTACAA TGAGAAAGAA
                                                                             1320
       CTGGACAGAG AAGTCTACCC CTGGTATAAC CTGACTGTGG AGGCCAAAGA ACTGGATTCC
                                                                             1380
       ACTGGAACCC CCACAGGAAA AGAATCCATT GTGCAAGTCC ACATTGAAGT TTTGGATGAG
                                                                             1440
       AATGACAATG CCCCGGAGTT TGCCAAGCCC TACCAGCCCA AAGTGTGTGA GAACGCTGTC
                                                                             1500
75
       CATGGCCAGC TGGTCCTGCA GATCTCCGCA ATAGACAAGG ACATAACACC ACGAAACGTG
                                                                             1560
       AAGTTCAAAT TCACCTTGAA TACTGAGAAC AACTTTACCC TCACGGATAA TCACGATAAC
                                                                             1620
       ACGGCCAACA TCACAGTCAA GTATGGGCAG TTTGACCGGG AGCATACCAA GGTCCACTTC
                                                                             1680
       CTACCCGTGG TCATCTCAGA CAATGGGATG CCAAGTCGCA CGGGCACCAG CACGCTGACC
                                                                             1740
       GTGGCCGTGT GCAAGTGCAA CGAGCAGGGC GAGTTCACCT TCTGCGAGGA TATGGCCGCC
                                                                             1800
80
       CAGGTGGGCG TGAGCATCCA GGCAGTGGTA GCCATCTTAC TCTGCATCCT CACCATCACA
                                                                             1860
       GTGATCACCC TGCTCATCTT CCTGCGGCGG CGGCTCCGGA AGCAGGCCCG CGCGCACGGC
                                                                             1920
       AAGAGCGTGC CGGAGATCCA CGAGCAGCTG GTCACCTACG ACGAGGAGGG CGGCGGCGAG
       ATGGACACCA CCAGCTACGA TGTGTCGGTG CTCAACTCGG TGCGCCGCGG CGGGGCCAAG
       CCCCCGCGC CCGCCTGGA CGCCCGGCCT TCCCTCTATG CGCAGGTGCA GAAGCCACCG
85
       AGGCACGCGC CTGGGGCACA CGGAGGGCCC GGGGAGATGG CAGCCATGAT CGAGGTGAAG
                                                                             2160
       AAGGACGAGG CGGACCACGA CGGCGACGGC CCCCCTACG ACACGCTGCA CATCTACGGC
                                                                             2220
       TACGAGGGCT CCGAGTCCAT AGCCGAGTCC CTCAGCTCCC TGGGCACCGA CTCATCCGAC 2280
```

```
TCTGACGTGG ATTACGACTT CCTTAACGAC TGGGGACCCA GGTTTAAGAT GCTGGCTGAG
                                                                            2340
       CTGTACGGCT CGGACCCCCG GGAGGAGCTG CTGTATTAGG CGGCCGAGGT CACTCTGGGC
                                                                            2400
       CTGGGGACCC AAACCCCCTG CAGCCCAGGC CAGTCAGACT CCAGGCACCA CAGCCTCCAA
                                                                            2460
       AAATGGCAGT GACTCCCCAG CCCAGCACCC CTTCCTCGTG GGTCCCAGAG ACCTCATCAG
                                                                            2520
       CCTTGGGATA GCAAACTCCA GGTTCCTGAA ATATCCAGGA ATATATGTCA GTGATGACTA
                                                                             2580
       TTCTCAAATG CTGGCAAATC CAGGCTGGTG TTCTGTCTGG GCTCAGACAT CCACATAACC
                                                                            2640
       CTGTCACCCA CAGACCGCCG TCTAACTCAA AGACTTCCTC TGGCTCCCCA AGGCTGCAAA
                                                                            2700
       GCAAAACAGA CTGTGTTTAA CTGCTGCAGG GTCTTTTTCT AGGGTCCCTG AACGCCCTGG
                                                                             2760
       TAAGGCTGGT GAGGTCCTGG TGCCTATCTG CCTGGAGGCA AAGGCCTGGA CAGCTTGACT
                                                                             2820
       TGTGGGGCAG GATTCTCTGC AGCCCATTCC CAAGGGAGAC TGACCATCAT GCCCTCTCTC
10
                                                                             2880
       GGGAGCCCTA GCCCTGCTCC AACTCCATAC TCCACTCCAA GTGCCCCACC ACTCCCCAAC
                                                                             2940
       CCCTCTCCAG GCCTGTCAAG AGGGAGGAAG GGGCCCCATG GCAGCTCCTG ACCTTGGGTC
       CTGAAGTGAC CTCACTGGCC TGCCATGCCA GTAACTGTGC TGTACTGAGC ACTGAACCAC ATTCAGGGAA ATGCTTATTA AACCTTGAAG CAACTGTGAA TTCATTCTGG AGGGGCAGTG
                                                                             3060
15
       GAGATCAGGA GTGACAGATC ACAGGGTGAG GGCCACCTCC ACACCCACCC CCTCTGGAGA
                                                                             3180
       AGGCCTGGAA GAGCTGAGAC CTTGCTTTGA GACTCCTCAG CACCCCTCCA GTTTTGCCTG
       AGAAGGGGCA GATGTTCCCG GAGATCAGAA GACGTCTCCC CTTCTCTGCC TCACCTGGTC
                                                                            3300
       GCCAATCCAT GCTCTCTTC TTTTCTCTGT CTACTCCTTA TCCCTTGGTT TAGAGGAACC
                                                                            3360
       CAAGATGTGG CCTTTAGCAA AACTGACAAT GTCCAAACCC ACTCATGACT GCATGACGGA
                                                                            3420
20
       GCCGAGCATG TGTCTTTACA CCTCGCTGTT GTCACATCTC AGGGAACTGA CCCTCAGGCA
                                                                             3480
       CACCTTGCAG AAGGAAGGCC CTGCCCTGCC CAACCTCTGT GGTCACCCAT GCATCATTCC
                                                                            3540
       ACTGGAACGT TTCACTGCAA ACACACCTTG GAGAAGTGGC ATCAGTCAAC AGAGAGGGGC
                                                                            3600
       AGGGAAGGAG ACACCAAGCT CACCCTTCGT CATGGACCGA GGTTCCCACT CTGGCAAAGC
                                                                            3660
       CCCTCACACT GCAAGGGATT GTAGATAACA CTGACTTGTT TGTTTTAACC AATAACTAGC
                                                                            3720
25
       TTCTTATAAT GATTTTTTTA CTAATGATAC TTACAAGTTT CTAGCTCTCA CAGACATATA
                                                                            3780
       GAATAAGGGT TTTTGCATAA TAAGCAGGTT GTTATTTAGG TTAACAATAT TAATTCAGGT
                                                                            3840
       TTTTTAGTTG GAAAAACAAT TCCTGTAACC TTCTATTTTC TATAATTGTA GTAATTGCTC
                                                                            3900
       TACAGATAAT GTCTATATAT TGGCCAAACT GGTGCATGAC AAGTACTGTA TTTTTTTATA
                                                                           3960
       CCTAAATAAA GAAAAATCTT TAGCCTGGGC AACAAAAAAA
30
       Seq ID NO: 339 Protein sequence
       Protein Accession #:
                                 NP_001786
                                         31
                                                     41
                                                                51
35
       MORLMMLLAT SGACLGLLAV AAVAAAGANP AQRDTHSLLP THRRQKRDWI WNQMHIDEEK
                                                                              60
       NTSLPHHVGK IKSSVSRKNA KYLLKGEYVG KVFRVDAETG DVFAIERLDR ENISEYHLTA
                                                                             120
       VIVDKDTGEN LETPSSFTIK VHDVNDNWPV FTHRLFNASV PESSAVGTSV ISVTAVDADD
       PTVGDHASVM YQILKGKEYF AIDNSGRIIT ITKSLDREKQ ARYEIVVEAR DAQGLRGDSG
40
       TATVLVTLOD INDNFFFFTO TKYTFVVPED TRVGTSVGSL FVEDPDEPQN RMTKYSILRG
                                                                             300
       DYODAFTIET NPAHNEGIIK PMKPLDYEYI QQYSFIVEAT DPTIDLRYMS PPAGNRAQVI
       INITOVDEPP IFQQPFYHFQ LKENQKKPLI GTVLAMDPDA ARHSIGYSIR RTSDKGQFFR
                                                                             420
       VTKKGDIYNE KELDREVYPW YNLTVEAKEL DSTGTPTGKE SIVQVHIEVL DENDNAPEFA
                                                                             480
       KPYQPKVCEN AVHGQLVLQI SAIDKDITPR NVKFKFTLNT ENNFTLTDNH DNTANITVKY
                                                                             540
45
       GOFDREHTKV HFLPVVISDN GMPSRTGTST LTVAVCKCNE QGEFTFCEDM AAQVGVSIQA
                                                                             600
       VVAILLCILT ITVITLLIFL RRRLRKQARA HGKSVPEIHE QLVTYDEEGG GEMDTTSYDV
                                                                             660
       SVLNSVRRGG AKPPRPALDA RPSLYAQVQK PPRHAPGAHG GPGEMAAMIE VKKDEADHDG
                                                                             720
       DGPPYDTLHI YGYEGSESIA ESLSSLGTDS SDSDVDYDFL NDWGPRFKML AELYGSDPRE
                                                                             780
50
       Seg ID NO: 340 DNA sequence
       Nucleic Acid Accession #: NM_003088
       Coding sequence: 112-1593
55
                                         31
                                                                51
       GCGGAGGGTG CGTGCGGGCC GCGGCAGCCG AACAAAGGAG CAGGGGGGCC GCCGCAGGGA
       CCCGCCACCC ACCTCCCGGG GCCGCGCAGC GGCCTCTCGT CTACTGCCAC CATGACCGCC
                                                                             120
60
       AACGGCACAG CCGAGGCGGT GCAGATCCAG TTCGGCCTCA TCAACTGCGG CAACAAGTAC
       CTGACGGCCG AGGCGTTCGG GTTCAAGGTG AACGCGTCCG CCAGCAGCCT GAAGAAGAAG
                                                                             240
       CAGATCTGGA CGCTGGAGCA GCCCCCTGAC GAGGCGGGCA GCGCGGCCGT GTGCCTGCGC
                                                                             300
       AGCCACCTGG GCCGCTACCT GGCGGCGGAC AAGGACGGCA ACGTGACCTG CGAGCGCGAG
                                                                              360
       GTGCCCGGTC CCGACTGCCG TTTCCTCATC GTGGCGCACG ACGACGGTCG CTGGTCGCTG
                                                                              420
65
       CAGTCCGAGG CGCACCGGCG CTACTTCGGC GGCACCGAGG ACCGCCTGTC CTGCTTCGCG
                                                                              480
       CAGACGGTGT CCCCCGCCGA GAAGTGGAGC GTGCACATCG CCATGCACCC TCAGGTCAAC
                                                                             540
       ATCTACAGTG TCACCCGTAA GCGCTACGCG CACCTGAGCG CGCGGCCGGC CGACGAGATC
                                                                             600
       GCCGTGGACC GCGACGTGCC CTGGGGGCGTC GACTCGCTCA TCACCCTCGC CTTCCAGGAC
                                                                              660
       CAGCGCTACA GCGTGCAGAC CGCCGACCAC CGCTTCCTGC GCCACGACGG GCGCCTGGTG
                                                                              720
70
       GCGCGCCCCG AGCCGGCCAC TGGCTACACG CTGGAGTTCC GCTCCGGCAA GGTGGCCTTC
                                                                              780
       CGCGACTGCG AGGGCCGTTA CCTGGCGCCCG TCGGGGCCCCA GCGGCACGCT CAAGGCGGGC
                                                                              840
       AAGGCCACCA AGGTGGGCAA GGACGAGCTC TTTGCTCTGG AGCAGAGCTG CGCCCAGGTC
                                                                              900
       GTGCTGCAGG CGGCCAACGA GAGGAACGTG TCCACGCGCC AGGGTATGGA CCTGTCTGCC
                                                                              960
       AATCAGGACG AGGAGACCGA CCAGGAGACC TTCCAGCTGG AGATCGACCG CGACACCAAA
                                                                             1020
75
       AAGTGTGCCT TCCGTACCCA CACGGGCAAG TACTGGACGC TGACGGCCAC CGGGGGCGTG
                                                                             1080
       CAGTICACCE CCTCCAGCAA GAATGCCAGC TGCTACTITTG ACATTGAGTG GCGTGACCGG
CGCATCACAC TGAGGGCGTC CAATGGCAAG TTTGTGACCT CCAAGAAGAA TGGGCAGCTG
                                                                             1140
                                                                             1200
       GCCGCCTCGG TGGAGACAGC AGGGGACTCA GAGCTCTTCC TCATGAAGCT CATCAACCGC
                                                                             1260
       CCCATCATCG TGTTCCGCGG GGAGCATGGC TTCATCGGCT GCCGCAAGGT CACGGGCACC
80
       CTGGACGCCA ACCGCTCCAG CTATGACGTC TTCCAGCTGG AGTTCAACGA TGGCGCCTAC
                                                                             1380
       AACATCAAAG ACTCCACAGG CAAATACTGG ACGGTGGGCA GTGACTCCGC GGTCACCAGC
                                                                             1440
       AGCGGCGACA CTCCTGTGGA CTTCTTCTTC GAGTTCTGCG ACTATAACAA GGTGGCCATC
                                                                             1500
       AAGGTGGGCG GGCGCTACCT GAAGGGCGAC CACGCAGGCG TCCTGAAGGC CTCGGCGGAA
                                                                             1560
       ACOGTGGACC COGCCTCGCT CTGGGAGTAC TAGGGCCGGC CCGTCCTTCC CCGCCCCTGC
                                                                             1620
85
       CCACATGGCG GCTCCTGCCA ACCCTCCCTG CTAACCCCTT CTCCGCCAGG TGGGCTCCAG
                                                                             1680
       GGCGGGAGGC AAGCCCCCTT GCCTTTCAAA CTGGAAACCC CAGAGAAAAC GGTGCCCCCA
                                                                             1740
       CCTGTCGCCC CTATGGACTC CCCACTCTCC CCTCCGCCCG GGTTCCCTAC TCCCCTCGGG 1800
```

```
TCAGCGGCTG CGGCCTGGCC CTGGGAGGGA TTTCAGATGC CCCTGCCCTC TTGTCTGCCA 1860
       CGGGGCGAGT CTGGCACCTC TTTCTTCTGA CCTCAGACGG CTCTGAGCCT TATTTCTCTG
                                                                           1920
                                                                           1980
       2040
       TTTGCCTCTC CCAGCCACCT CCTCCCAGCC CCCCAGGAGA GCTGGGCACA TGTCCCAAGC
 5
       CTGTCAGTGG CCCTCCCTGG TGCACTGTCC CCGAAACCCC TGCTTGGGAA GGGAAGCTGT
                                                                           2100
       CGGGAGGGCT AGGACTGACC CTTGTGGTGT TTTTTTGGGT GGTGGCTGGA AACAGCCCCT
                                                                           2160
       CTCCCACGTG GGAGAGGCTC AGCCTGGCTC CCTTCCCTGG AGCGGCAGGG CGTGACGGCC
                                                                           2220
       ACAGGGTCTG CCCGCTGCAC GTTCTGCCAA GGTGGTGGTG GCGGGCGGGT AGGGGTGTGG
                                                                           2280
       GGGCCGTCTT CCTCCTGTCT CTTTCCTTTC ACCCTAGCCT GACTGGAAGC AGAAAATGAC
                                                                           2340
       CAAATCAGTA TTTTTTTAA TGAAATATTA TTGCTGGAGG CGTCCCAGGC AAGCCTGGCT
                                                                           2400
10
       GTAGTAGCGA GTGATCTGGC GGGGGGCGTC TCAGCACCCT CCCCAGGGGG TGCATCTCAG
                                                                           2460
       CCCCCTCTTT CCGTCCTTCC CGTCCAGCCC CAGCCCTGGG CCTGGGCTGC CGACACCTGG
       GCCAGAGCCC CTGCTGTGAT TGGTGCTCCC TGGGCCTCCC GGGTGGATGA AGCCAGGCGT
                                                                           2580
       CGCCCCTCC GGGAGCCCTG GGGTGAGCCG CCGGGGCCCC CCTGCTGCCA GCCTCCCCCG
       TCCCCAACAT GCATCTCACT CTGGGTGTCT TGGTCTTTTA TTTTTTGTAA GTGTCATTTG
15
                                                                           2700
       TATAACTCTA AACGCCCATG ATAGTAGCTT CAAACTGGAA ATAGCGAAAT AAAATAACTC
       AGTCTGC
       Seq ID NO: 341 Protein sequence
20
                                 NP_003079
       Protein Accession #:
                                                               51
       MTANGTAEAV QIQFGLINCG NKYLTAEAFG FKVNASASSL KKKQIWTLEQ PPDEAGSAAV
                                                                             60
25
       CLRSHLGRYL AADKDGNVTC EREVPGPDCR FLIVAHDDGR WSLQSEAHRR YFGGTEDRLS
                                                                            120
       CFAQTVSPAE KWSVHIAMHP QVNIYSVTRK RYAHLSARPA DEIAVDRDVP WGVDSLITLA
                                                                            180
       FODORYSVOT ADHRFLRHDG RLVARPEPAT GYTLEFRSGK VAFRDCEGRY LAPSGPSGTL
                                                                            240
       KAGKATKVGK DELFALEQSC AQVVLQAANE RNVSTRQGMD LSANQDEETD QETFQLEIDR
                                                                            300
       DTKKCAFRTH TGKYWTLTAT GGVQSTASSK NASCYFDIEW RDRRITLRAS NGKFVTSKKN
                                                                            360
30
       GQLAASVETA GDSELFLMKL INRPIIVFRG EHGFIGCRKV TGTLDANRSS YDVFQLEFND
                                                                            420
       GAYNIKDSTG KYWTVGSDSA VTSSGDTPVD FFFEFCDYNK VAIKVGGRYL KGDHAGVLKA
                                                                            480
       SAETVDPASL WEY
35
       Seg ID NO: 342 DNA sequence
       Nucleic Acid Accession #: FGENESH predicted
       Coding sequence: 660..1705
                                        31
40
       CGCTCCGCAC ACATTTCCTG TCGCGGCCTA AGGGAAACTG TTGGCCGCTG GGCCCGCGGG
       GGGATTCTTG GCAGTTGGGG GGTCCGTCGG GAGCGAGGGC GGAGGGGAAG GGAGGGGGAA
                                                                            120
       CCGGGTTGGG GAAGCCAGCT GTAGAGGGCG GTGACCGCGC TCCAGACACA GCTCTGCGTC
                                                                            180
       CTCGAGCGGG ACAGATCCAA GTTGGGAGCA GCTCTGCGTG CGGGGCCTCA GAGAATGAGG
                                                                            240
45
       300
       CACCCCACTG CCGACCGTGC TGGCTGCTCG GCCTCGGGGG CCTGCTACAG CCTGCACCAC
                                                                            360
       GCTACCATGA AGCGGCAGGC GGCCGAGGAG GCCTGCATCC TGCGAGGTGG GGCGCTCAGC
                                                                            420
       ACCGTGCGTG CGGGCGCCGA GCTGCGCGCT GTGCTCGCGC TCCTGCGGGC AGGCCCAGGG
                                                                            480
       CCCGGAGGGG GCTCCAAAGA CCTGCTGTTC TGGGTCGCAC TGGAGCGCAG GCGTTCCCAC
                                                                            540
       TGCACCCTGG AGAACGAGCC TTTGCGGGGT TTCTCCTGGC TGTCCTCCGA CCCCGGCGGT
50
                                                                            600
       CTCGAAAGCG ACACGCTGCA GTGGGTGGAG GAGCCCCAAC GCTCCTGCAC CGCGCGGAGA
                                                                            660
       TGCGCGGTAC TCCAGGCCAC CGGTGGGGTC GAGCCCGCAG CTGGAAGGAG ATGCGATGCC
       ACCTGCGCGC CAACGGCTAC CTGTGCAAGT ACCAGTTTGA GGTCTTGTGT CCTGCGCCGC
GCCCCGGGGC CGCCTCTAAC TTGAGCTATC GCGCGCCCTT CCAGCTGCAC AGCGCCGCTC
                                                                             780
       TGGACTTCAG TCCACCTGGG ACCGAGGTGA GTGCGCTCTG CCGGGGACAG CTCCCGATCT
55
       CAGTTACTTG CATCGCGGAC GAAATCGGCG CTCGCTGGGA CAAACTCTCG GGCGATGTGT
       TGTGTCCCTG CCCCGGGAGG TACCTCCGTG CTGGCAAATG CGCAGAGCTC CCTAACTGCC
                                                                           1020
       TAGACGACTT GGGAGGCTTT GCCTGCGAAT GTGCTACGGG CTTCGAGCTG GGGAAGGACG
       GCCGCTCTTG TGTGACCAGT GGGGAAGGAC AGCCCACCCT TGGGGGGACC GGGGTGCCCA
CCAGGGGCCC GCCGGCCACT GCAACCAGCC CCGTGCCGCA GAGAACATGG CCAATCAGGG
                                                                           1140
60
                                                                           1200
       TCGACGAGAA GCTGGGAGAG ACACCACTTG TCCCTGAACA AGACAATTCA GTAACATCTA
                                                                           1260
       TTCCTGAGAT TCCTCGATGG GGATCACAGA GCACGATGTC TACCCTTCAA ATGTCCCTTC 1320
       AAGCCGAGTC AAAGGCCACT ATCACCCCAT CAGGGAGCGT GATTTCCAAG TTTAATTCTA 1380
       CGACTTCCTC TGCCACTCCT CAGGCTTTCG ACTCCTCCTC TGCCGTGGTC TTCATATTTG 1440
65
       TGAGCACAGC AGTAGTAGTG TTGGTGATCT TGACCATGAC AGTACTGGGG CTTGTCAAGC
                                                                           1500
       TCTGCTTTCA CGAAAGCCCC TCTTCCCAGC CAAGGAAGGA GTCTATGGGC CCGCCGGGCC
                                                                           1560
       TGGAGAGTGA TCCTGAGCCC GCTGCTTTGG GCTCCAGTTC TGCACATTGC ACAAACAATG
                                                                           1620
       GGGTGAAAGT CGGGGACTGT GATCTGCGGG ACAGAGCAGA GGGTGCCTTG CTGGCGGAGT 1680
       CCCCTCTTGG CTCTAGTGAT GCATAG
70
       Seq ID NO: 343 Protein sequence
       Protein Accession #: FGENESH predicted
                                                               51
75
       MGKDFMTKTP KAFATKAKID KWDLIKLKSP CTAKETIIRV NSOPTDWOKT FAIYPSDKGV
       IARIYKELEQ IYKKKKPTKT LRTHFLSRPK GNCWPLGPRG DSWQLGGPSG ARABGKGGGT
       GLGKPAVEGG DRAPDTALRP RAGQIQVGSS SACGASENEA GVRPVPPLAG ALARAGRRRT
                                                                             180
       PHCRPCWLLG LGGLLQPAPR YHEAAGGRGG LHPARWGAQH RACGRRAARC ARAPAGRPRA
                                                                             240
       RRGLORPAVL GRTGAQAFPL HPGERAFAGF LLAVLRPRRS RKRHAAVGGG APTLLHRAEM
80
                                                                             300
       RGTPGHRWGR ARSWKEMRCH LRANGYLCKY QFEVLCPAPR PGAASNLSYR APFQLHSAAL
                                                                             360
       DFSPPGTEVS ALCRGOLPIS VTCIADEIGA RWDKLSGDVL CPCPGRYLRA GKCAELPNCL
DDLGGFACEC ATGFELGKDG RSCVTSGEGQ PTLGGTGVPT RRPPATATSP VPQRTWPIRV
                                                                             420
                                                                             480
        DEKLGETPLV PEQDNSVTSI PEIPRWGSQS TMSTLQMSLQ AESKATITPS GSVISKFNST
                                                                             540
85
       TSBATPQAFD SSSAVVFIPV STAVVVLVIL TMTVLGLVKL CPHESPSSQP RKESMGPPGL
                                                                             600
```

ESDPEPAALG SSSAHCTNNG VKVGDCDLRD RAEGALLAES PLGSSDA

Seq ID NO: 344 DNA sequence Nucleic Acid Accession #: NM_012072 Coding sequence: 149-2107

5	Coding sequ	ence: 149-2	107				
,	1 -	11	21	31	41	51	
	1	1]		CITCO CCTCA	CCCTCAGCT	60
	AAAGCCCTCA	GCCTTTGTGT	ACCOMMENTA	GCCGGAGTGG GAAGCTCCTG	TCGCCGCTGG	GCTTCTCGCC	120
.0	#00000CXCXC	CCCCA CACAC	ACACCCCAT.	GGCCACCTCC	ATGGGCCTGC	IGCIGCIGCI	180
.0		CHO & COC & COC	ACCORDING S	GACGGGGGCT	GACACGGAGG	COCIOCICIO	240
		COCHOCHACA	CCCCCC CTC	CCCCAAGCIG	AGLGLIGULG	AGGCCCAGAA	300 360
	CCACTGCAAC	CAGAACGGGG	GCAACCTGGC	CACTGTGAAG GCGGGAGGCA	CCCTGACGG	CGAGGATGAG	420
.5	as a commonaci	N BUTCH COCCUPIC CO	ACCCACACAA	CCCCAAGTGC	CTGGACCCTA	GICIGCOGCI	480
	a	A COMOCOMOCO	CCCCCCCCCCA.	GGACACGCCT	TACTCTAACT	GGCACAAGGA	540
		TO CHOCK TO TO COT	CCN NGCGCTG	TCTGTCTCTG	CIGCIGGACC	IGICCCAGCC	600 660
	ACMACAMMACA	N N COCCCCCCC	CCNNCTCCTC	TGAGGGCCCC	TGTGGGAGCC	CAGGCICCC	720
20		CCCCC CCTC	ACCINCA COTA	GTTCAGCTTC CACCACCCCC	TTCCAGACCA	CCMGIICCIC	780
30				CAATGTAGLU	TG TGGGGMG	GIGNCHNGGN	840
	441 AL 480 AL 480	A CAMPA STATE A CAMPA	サーベック・ファール A	CCAGAAGGCC	CCCGATGTGT	TCGMCIGGGG	900
	~~~~~~~~		TONGOOCOA	GTATGGCTGC	AACTTCAACA	AIGGGGGCIG	960 1020
25	CCACCAGGAC	TGCTTTGAAG	GGGGGGGATGG	CTCCTTCCTC CTCTCGAAAC	CCTTGCAGCT	CCAGCCCATG	1080
23	macamacacaca	CCCN CCTCCC	TOTAL	CCATGGGAAA	AACTACACGT	GCCGC 1GCCC	1140
	CON NOCCOTAC	CACCTCCACT	CCACTCACCT	GGACTGTGTG	GACGIGGAIG	AATGCCAGGA	1200
	- income	CCCCACCACT	CTCTCAACAC	CCCTGGGGGGC	TTCCGCTGCG	AATGCTGGGT	1260 1320
20	TGGCTATGAG	CCGGGCGGTC	CTGGAGAGGG	GGCCTGTCAG CAACACAGAT	GGCTCATTTC	ACTGCTCCTG	1380
30		MY COMCOTICO	CCCCCCCACCA	CGGGACTCAG	TGCCAGGACG	IGGWIGWGIG	1440
		COCCOCCCC	TOTOGRACAG	TTTCTCTTC	AACACACAAG	GGTCCTTCCA	1500
	~~~~~~~~	CONTRACTOR CONTRACTOR	CCCTCCTCCC	CCCAAATGGG	GTCTCTTGCA	CLAIGGGGCC	1560 1620
25		CCNCCNCCNT	CTCCCCCCCC	CGATGAGGAG TCCCACAAGG	GACAAAGGAG	AGAMAGMAGG	1680
35	GAGCACCGTG	CCCCGCGCTG	CAACAGCCAG	GTCATCTGAC	GCCCCCATCA	CATCTGCCCC	1740
		CHACCACACACA	にかいこけずしてかり	ACCCCTCTCG	AGGGAGCCCA	GCATCCATCA	1800
	00 00 0 00 00 00 00 00 00 00 00 00 00 0	CCCTCTCCCC	CCCAGGAGCC	TCCAGGTGGG	GACTCCTCCG	TUGUCACACA	1860
40	******	CCCACTCACC	CCCVVVVCCT	CCTTTTATTC	TACATCCTAG	GUACCGIGGI	1920 1980
40	GGCCATCCTA	CTCCTGCTGG	CCCTGGCTCT	GGGGCTACTG CCAGAATGCG	GCAGACAGTT	ACTCCTGGGT	2040
	######################################	COTTONOROR	CCCCCATCCA	GAACCAGTAC	AGTCCGACAC	CIGGGACAGA	2100
		THE RECEIPTER COMMERCE COMMERC	ന്നുവാവാവ	TAGAGTCACC	AGCCACCATC	CICAGAGCII	2160
		አምምርር አአአርር	CCCACCCACA	TAP STRUCTURE TO THE PARTY OF T	AGACTGGACT	GGAATCTTAG	2220 2280
45	CAAACAATTG	TAAGTCTCCT	CCTTAAAGGC	CCCTTGGAAC GTTGGCGTGC	CACGGTGGGG	ATTTCGTGAC	2340
		かいしかける ぐむしぐ	بالبليك الماليات المالي	TCDDATTCCA	ATGTGACCAA	TICCGGALCA	2400
		3000mccccc	マカカににははててて	CCCTGAATAT	CTTCTCTGCT	CACITCUACC	2460
		33330000000	・ 中小に一丁一と 小にし	TCATTAGGAT	TGAAATGATI	TGITTCICIT	2520 2580
50 .	CCTAGGATGA	AAACTAAATC	AATTAATTAT	TCAATTAGGT	TTGCATTCCT	CCATTTCGCC	2640
		መመረተመስ እ አጥሮ	שיים איזי איזי מיזי איזי איזי איזי איזי	GACATCCTCC	AGAATGGCCA	GAAGIGCMAI	2700
	MANAGER COMPA	CCTCCCANCC	ACCCAGGAAG	TGCCTCTTTA	GTTCTTACAT	TICIAAIAGC	2760
	ARMA A ARRENA	THE PROPERTY OF A PACK	ልልፎሮሞሞሮልልል	. AATATGAGAA	AAGTTGCTT	AAGIGCATIA	2820
55	CACCOCCTTTC	TODACTOACA	TAATCTACGG	GGCTAGGGCG	AGAGAGGCCA	GGGATTIGIT	2880 2940
	CACAGATACT	TGAATTAATT	CATCCAAATG	ANGGACAACC	TGTCTTTGAG	TGACTACGGA CCAGGGCAGG	3000
	00000101010	へんかんとうかんかんかん	COCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CACTTCATCC	TGCCCGGAAI	GULHGIGGIC	3060
	00300000000	CACACCAACC	CCTGCAGAAA	GTTCCATCAG	GCTGTTTCC	AAAGGAIGIG	3120
60	man a account	へ かい かいご へん へい	α Δευπηπη τώνω ο	ACTTCTCATT	TTAAAGCATI	TIAGCACAGI	3180 3240
	TCATAGTCCA	CAGTTGATGC	AGCATCCTGA	GATTTTAAAT	ACTURACION ACTURACION	GGGTGGCGCA TCTGTCTCTT	3300
-	MTCCTTA A A A	ምጥር ርርርር ርጥ እ አ	CCACCGAAGG	: AAGAGGGAAA	GAGATGACTA	4 WCIMMMICM	3360
	mmmmmm as as ac	• NNNNCTCC	י ראאאהרראיין	' TAAATTATAT	CCTCATTI	AMMOTINCAL	3420
65		**************************************	• ሮአጥአልፕሮሮልር	I TYTATAGTGI	GCACTCTTT	TOTOTOTOTO	3480 3540
	TCTCTCTCAC	ACACACACA	ACACACACACAC	CACACACACAC	CAGAGACACGC	CACCATTCTG CAGAAGTTACC	3600
	man amamama	TOTOLOGO	· ^¤ፕሮፕሮፕሮ	r GTGGGCTTTT	TACCACCAC	L GIGCAGGAGA	
	*********	* CABATCTCT(፣ ጥርርርጥርርልል(RCCCCAAAGC	CICAGAGAA	A GGGIGITICI	3120
70	COMMENCOCO	• • • • • • • • • • • • • • • • • • • 	\	AGGTGACACT	CIGGAGIGG	I IGWWGGGCCW	3780
	A >	• // ለመመለስ መስ	י השתכרנעוניתי	r TTGAAATATA	i GAIGCIAIG	2 IICHGHIIGI	3040
	TTTTAATAG	AAACTAAAG	GGCAGGGGA	A GTGAAAGGAA A GTCATCTCAT	r GGTCTCCAG	TTTGTGCGGC TTTCAGTTGG	3960
	***	אוריים עום עימות אוריים	" " " " " " " " " " " " " " " " " " " "	A AAGGGTGTG	CCATTIGGC	W WWWCTICCIT	4020
75	2000010010		\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ TGGGCAGTCT	r GTGGTGTGG	A GAGCAGCCAI	4080
	ORO BORO CO	~ A TOTAL ACTOR	ለ ጥጥር ተገለ አልርር እ	" ATGGCTGGAT	r GCGCIGCIG	A CUARCATCAG	4740
	CR CHORN B BT	ידי מממייטידי ממ	שרבת באר בי	r cccrcrcggg	CTTGAAAAT	C CTTGCCCTTA A CGCAGTCTGT	4200
		- MOOGRACOR	• ~~»~~~~~~	ሶ ካልጥጥጥርልር /	A GTGTTCTGA	T TGCTCTCACA	4320
80	44441444	~ X40CC4C4C4C4C4	T CTCTCIA 7 TC	C AGCCCTGTT	C TCAACAACA	G GGWGGICWIG	4200
50	03300000	T CTCC33CCC	, സമനസസര	A AATGGGTGA	T AAAGAAICC	A GIICCICAAA	4440
		_ ~~~~~~~~	سابرانيفانيفانيان	T COTCCCTCC	T CCTTTCTCT	I GCWCWCCWCI	4300
	CCCACCACC	a accentace	~ AGCAACCCA	A CCAGACAGC	T CAGGIIGIG	C ATCIGATEGA	4300
85	4 mac 2 2 2 mm	~ ~~~~~~~~	പരമനസ്സ്യൂ	C CTACAGTAG	T GGGTAAALA	T ACTTTGAAGC A ATGCCCACCG	4000
0)	CCCDACACC	ሮ ሮልሞተልልሮልል	A TOCTCCTTG	T CCTGAGGGG	C CCCAGCTIV	ic reserved to a	4/40
	CACAGTGGG	G AATCCAAGG	G TCACAGTAT	G GGGAGAGGT	G CACCCTGCC	A CCTGCTAACT	4800

```
· TCTCGCTAGA CACAGTGTTT CTGCCCAGGT GACCTGTTCA GCAGCAGAAC AAGCCAGGGC 4860
       CATGGGGACG GGGGAAGTTT TCACTTGGAG ATGGACACCA AGACAATGAA GATTTGTTGT
                                                                           4920
       CCAAATAGGT CAATAATTCT GGGAGACTCT TGGAAAAAAC TGAATATATT CAGGACCAAC
                                                                           4980
       TCTCTCCCTC CCCTCATCCC ACATCTCAAA GCAGACAATG TAAAGAGAGA ACATCTCACA
                                                                           5040
 5
       CACCCAGCTC GCCATGCCTA CTCATTCCTG AATTTCAGGT GCCATCACTG CTCTTTCTTT
                                                                           5100
                                                                           5160
       CTTCTTTGTC ATTTGAGAAA GGATGCAGGA GGACAATTCC CACAGATAAT CTGAGGAATG
       CAGAAAAACC AGGGCAGGAC AGTTATCGAC AATGCATTAG AACTTGGTGA GCATCCTCTG
                                                                           5220
       TAGAGGGACT CCACCCTGC TCAACAGCTT GGCTTCCAGG CAAGACCAAC CACATCTGGT
                                                                           5280
       CTCTGCCTTC GGTGGCCCAC ACACCTAAGC GTCATCGTCA TTGCCATAGC ATCATGATGC
                                                                           5340
10
       AACACATCTA CGTGTAGCAC TACGACGTTA TGTTTGGGTA ATGTGGGGAT GAACTGCATG
                                                                           5400
       AGGCTCTGAT TAAGGATGTG GGGAAGTGGG CTGCGGTCAC TGTCGGCCTT GCAAGGCCAC
                                                                           5460
       CTGGAGGCCT GTCTGTTAGC CAGTGGTGGA GGAGCAAGGC TTCAGGAAGG GCCAGCCACA
                                                                           5520
       TGCCATCTTC CCTGCGATCA GGCAAAAAAG TGGAATTAAA AAGTCAAACC TTTATATGCA
       TGTGTTATGT CCATTTTGCA GGATGAACTG AGTTTAAAAG AATTTTTTTT TCTCTTCAAG
15
       TTGCTTTGTC TTTTCCATCC TCATCACAAG CCCTTGTTTG AGTGTCTTAT CCCTGAGCAA
                                                                           5700
       TCTTTCGATG GATGGAGATG ATCATTAGGT ACTTTTGTTT CAACCTTTAT TCCTGTAAAT
                                                                           5760
       ATTTCTGTGA AAACTAGGAG AACAGAGATG AGATTTGACA AAAAAAAATT GAATTAAAAA
TAACACAGTC TTTTTAAAAC TAACATAGGA AAGCCTTTCC TATTATTTCT CTTCTTAGCT
                                                                           5820
                                                                           5880
       TCTCCATTGT CTAAATCAGG AAAACAGGAA AACACAGCTT TCTAGCAGCT GCAAAATGGT
                                                                           5940
20
       TTAATGCCCC CTACATATTT CCATCACCTT GAACAATAGC TTTAGCTTGG GAATCTGAGA
                                                                           6000
       TATGATCCCA GAAAACATCT GTCTCTACTT CGGCTGCAAA ACCCATGGTT TAAATCTATA
                                                                           6060
       TGGTTTGTGC ATTTTCTCAA CTAAAAATAG AGATGATAAT CCGAATTCTC CATATATTCA
                                                                           6120
       CTAATCAAAG ACACTATTTT CATACTAGAT TCCTGAGACA AATACTCACT GAAGGGCTTG
                                                                           6180
       TTTAAAAATA AATTGTGTTT TGGTCTGTTC TTGTAGATAA TGCCCTTCTA TTTTAGGTAG
                                                                           6240
25
       AAGCTCTGGA ATCCCTTTAT TGTGCTGTTG CTCTTATCTG CAAGGTGGCA AGCAGTTCTT
                                                                           6300
       TTCAGCAGAT TTTGCCCACT ATTCCTCTGA GCTGAAGTTC TTTGCATAGA TTTGGCTTAA
                                                                           6360
       GCTTGAATTA GATCCCTGCA AAGGCTTGCT CTGTGATGTC AGATGTAATT GTAAATGTCA
       GTAATCACTT CATGAATGCT AAATGAGAAT GTAAGTATTT TTAAATGTGT GTATTTCAAA
                                                                           6420
                                                                           6480
       TTTGTTTGAC TAATTCTGGA ATTACAAGAT TTCTATGCAG GATTTACCTT CATCCTGTGC
                                                                           6540
30
       ATGTTTCCCA AACTGTGAGG AGGGAAGGCT CAGAGATCGA GCTTCTCCTC TGAGTTCTAA
                                                                           6600
       CAAAATGGTG CTTTGAGGGT CAGCCTTTAG GAAGGTGCAG CTTTGTTGTC CTTTGAGCTT
                                                                           6660
       TCTGTTATGT GCCTATCCTA ATAAACTCTT AAACACATT
       Seq ID NO: 345 Protein sequence
35
                                 NP_036204
       Protein Accession #:
       MATSMGLLLL LLLLLTQPGA GTGADTEAVV CVGTACYTAH SGKLSAAEAQ NHCNQNGGNL
40
       ATVKSKEEAO HVORVLAOLL RREAALTARM SKFWIGLQRE KGKCLDPSLP LKGPSWVGGG
       EDTPYSNWHK ELRNSCISKR CVSLLLDLSQ PLLPNRLPKW SEGPCGSPGS PGSNIEGFVC
       KFSFKGMCRP LALGGPGOVT YTTPFQTTSS SLEAVPFASA ANVACGEGDK DETQSHYFLC
                                                                            240
       KEKAPDVFDW GSSGPLCVSP KYGCNFNNGG CHQDCFEGGD GSFLCGCRPG FRLLDDLVTC
                                                                            300
       ASRNPCSSSP CRGGATCVLG PHGKNYTCRC PQGYQLDSSQ LDCVDVDECQ DSPCAQECVN
                                                                            360
45
       TPGGFRCECW VGYEPGGPGE GACQDVDECA LGRSPCAQGC TNTDGSFHCS CEEGYVLAGE
                                                                            420
       DGTQCQDVDE CVGPGGPLCD SLCFNTQGSF HCGCLPGWVL APNGVSCTMG PVSLGPPSGP
                                                                            480
       PDEEDKGEKE GSTVPRAATA SPTRGPEGTP KATPTTSRPS LSSDAPITSA PLKMLAPSGS
                                                                            540
       SGVWREPSIH HATAASGPQE PAGGDSSVAT QNNDGTDGQK LLLFYILGTV VAILLLLALA
                                                                            600
       LGLLVYRKRR AKREEKKEKK PQNAADSYSW VPERAESRAM ENQYSPTPGT DC
50
       Seq ID NO: 346 DNA sequence
       Nucleic Acid Accession #: 231560
       Coding sequence: <1-966
55
                                                               51
                             21
                                        31
                                                    41
       CACAGCGCCC GCATGTACAA CATGATGGAG ACGGAGCTGA AGCCGCCGGG CCCGCAGCAA
ACTTCGGGGG GCGGCGGG CAACTCCACC GCGGGGGGG CCGGCGGCAA CCAGAAAAAC
                                                                             60
                                                                            120
       AGCCCGGACC GCGTCAAGCG GCCCATGAAT GCCTTCATGG TGTGGTCCCG CGGGCAGCGG
60
       CGCAAGATGG CCCAGGAGAA CCCCAAGATG CACAACTCGG AGATCAGCAA GCGCCTGGGC
       GCCGAGTGGA AACTTTTGTC GGAGACGGAG AAGCGGCCGT TCATCGACGA GGCTAAGCGG
       CTGCGAGCGC TGCACATGAA GGAGCACCCG GATTATAAAT ACCGGCCCCG GCGGAAAACC
                                                                            360
       AAGACGCTCA TGAAGAAGGA TAAGTACACG CTGCCCGGCG GGCTGCTGGC CCCCGGCGGC
                                                                            420
       AATAGCATGG CGAGCGGGGT CGGGGTGGGC GCCGGCCTGG GCGCGGGCGT GAACCAGCGC
                                                                            480
65
       ATGGACAGTT ACGCGCACAT GAACGGCTGG AGCAACGGCA GCTACAGCAT GATGCAGGAC
                                                                            540
       600
       ATGCACCGCT ACGACGTGAG CGCCCTGCAG TACAACTCCA TGACCAGCTC GCAGACCTAC
                                                                            660
       ATGAACGGCT CGCCCACCTA CAGCATGTCC TACTCGCAGC AGGGCACCCC TGGCATGGCT
                                                                            720
       CTTGGCTCCA TGGGTTCGGT GGTCAAGTCC GAGGCCAGCT CCAGCCCCCC TGTGGTTACC
                                                                            780
70
       TCTTCCTCCC ACTCCAGGGC GCCCTGCCAG GCCGGGGACC TCCGGGACAT GATCAGCATG
                                                                            840
       TATCTCCCCG GCGCCGAGGT GCCGGAACCC GCCGCCCCCA GCAGACTTCA CATGTCCCAG
                                                                            900
       CACTACCAGA GCGGCCCGGT GCCCGGCACG GCCATTAACG GCACACTGCC CCTCTCACAC
                                                                            960
       ATGTGAGGGC CGGACAGCGA ACTGGAGGGG GGAGAAATTT TCAAAGAAAA ACGAGGGAAA
                                                                           1020
       TGGGAGGGGT GCAAAAGAGG AGAGTAAGAA ACAGCATGGA GAAAACCCGG TACGCTCAAA
                                                                           1080
75
       Seq ID NO: 347 Protein sequence
                                 CAA83435
       Protein Accession #:
80
                                                    41
                                         31
                             21
       HSARMYNMME TELKPPGPQQ TSGGGGGNST AAAAGGNQKN SPDRVKRPMN AFMVWSRGQR
       RKMAQENPKM HNSEISKRLG AEWKLLSETE KRPFIDEAKR LRALHMKEHP DYKYRPRRKT
                                                                            120
       KTLMKKDKYT LPGGLLAPGG NSMASGVGVG AGLGAGVNQR MDSYAHMNGW SNGSYSMMQD
                                                                            180
85
       QLGYPQHPGL NAHGAAQMQP MHRYDVSALQ YNSMTSSQTY MNGSPTYSMS YSQQGTPGMA
                                                                            240
       LGSMGSVVKS EASSSPPVVT SSSHSRAPCQ AGDLRDMISM YLPGAEVPEP AAPSRLHMSQ
                                                                            300
       HYQSGPVPGT AINGTLPLSH M
```

PCT/US02/12476 WO 02/086443

5			uence : NM_0026 120-473				
J	•		21	31	41	51	
10	GCTGGACTGC	ATAAAGATTG	CCCTTGTAAA GTATGGCCTT	TACCACAGAC AGCTCTTAGC	CCGCCCTGGA CAAACACCTT	 GCCAGGCCAA CCTGACACCA	60 120
10	AGGCAGCTGT TCAATGGACA CGCAAGAGCC	CACGGGAGTT AGATCCCGTT AGTCAAAGGT	ATCGTGGTGG CCTGTTAAAG AAAGGACAAG CCAGTCTCCA	GTCAAGACAC TTTCAGTTAA CTAAGCCTGG	TGTCAAAGGC AGGTCAAGAT CTCCTGCCCC	CGTGTTCCAT AAAGTCAAAG ATTATCTTGA	180 240 300 360
15	TCAAGAAGTG CGGTCCTTGC TGCTGCCCTT	CTGTGAAGGC TGCACCTGTG CCCCTTCCCA	CCCCTAACC TCTTGCGGGA CCGTCCCCAG CACTGTCCAT TTTCCAATAA	TGGCCTGTTT AGCTACAGGC TCTTCCTCCC	CGTTCCCCAG CCCATCTGGT	TGAAGGGAGC CCTAAGTCCC	420 480 540 600
20		349 Protein					
	1 .	11	21	31	41	51	
25	MRASSFLIVV AQEPVKGPVS	VFLIAGTLVL TKPGSCPIIL	EAAVTGVPVK IRCAMLNPPN	GQDTVKGRVP RCLKDTDCPG	FNGQDPVKGQ IKKCCEGSCG	VSVKGQDKVK MACFVPQ	60
30	Nucleic Ac	350 DNA sec id Accession Lence: 75-24	#: NM_0071	. 83		•	
	1	11	21	31	41	51	
35	GAATTCCGGA	CAGGACGTGA	AGATAGTTGG	GTTTGGAGGC	GGCCGCCAGG	CCCAGGCCCG	60
	GTGGACCTGC	CGCCATGCAG	GACGGTAACT	TCCTGCTGTC	GGCCCTGCAG	CCTGAGGCCG	120
	GCGTGTGCTC	CCTGGCGCTG	CCCTCTGACC	TCCAGGAGCA	CCGCCGGGGC	CCCGAGGGGC	180 240
			CACAACGGGG				.300
40	CCAGAGGCAC	ATCCAGGGGG	CAGTACCACA	CCCTGCAGGC	TGGCTTCAGC	TCTCGCTCTC	360
	AGGGCCTGAG	TGGGGACAAG	ACCTCGGGCT TCCGCCGTGG	TCCGGCCCAT	CGCCAAGCCG	CTGAGTTCAG	420 480
	CCCACAATGG	GGGCAGCGCC	TTTGGGGCCG	CTGGGTACGG	GGGTGCCCAG	CCCACCCCTC	540
4.5	CCATGCCCAC	CAGGCCCGTG	TCCTTCCATG	AGCGCGGTGG	GGTTGGGAGC	CGGGCCGACT	600
45	ATGACACACT	CTCCCTGCGC	TCGCTGCGGC	TGGGGCCCGG	GGGCCTGGAC	GACCGCTACA	660 720
•	AGCGCCAGGC	CAGCTCCAGC	GAGCCCGCGG TCCAGCCGGG	CAGGGGGGGT	GGACTGGCCC	GAGGCCACTG	780
	AGGTTTCCCC	GAGCCGGACC	ATCCGTGCCC	CTGCCGTGCG	GACCCTGCAG	CGATTCCAGA	840
50	GCAGCCACCG	GAGCCGCGGG	GTAGGCGGGG	CAGTGCCGGG	GGCCGTCCTG	GAGCCAGTGG	900
50	CTCGAGCGCC	ATCTGTGCGC	AGCCTCAGCC TACGGTAGCC	ACCGARCCT	TGACTCGGGC	AGCAGCGGTT	960 1020
	TTGATGACAT	TGACCTGCCC	TCAGCAGTCA	AGTACCTCAT	GGCTTCAGAC	CCCAACCTGC	1080
•	AGGTGCTGGG	AGCGGCCTAC	ATCCAGCACA	AGTGCTACAG	CGATGCAGCC	GCCAAGAAGC	1140
55			GTGCCTAGGC GGTGCCATGC				1200 1260
33	AGCTGGCCCT	GGTGGAGGAG	AACGGGATCT	TOGAGCTGCT	GCGGACACTG	CGGGAGCAGG	1320
	ATGATGAGCT	TCGCAAAAAT	GTCACAGGGA	TCCTGTGGAA	CCTTTCATCC	AGCGACCACC	1380
	TGAAGGACCG	CCTGGCCAGA	GACACGCTGG CCCCTCATCC	AGCAGCTCAC	GGACCTGGTG	TTGAGCCCCC	1440 1500
60	ACAACGCCAC	CGGCTTCCTC	AGGAACCTCA	GCTCAGCCTC	TCAGGCCACT	CGCCAGAAGA	
	TGCGGGAGTG	CCACGGGCTG	GTGGACGCCC	TGGTCACCTC	TATCAACCAC	GCCCTGGACG	1620
			AGCGTGGAGA				1680 1740
			CCGCCGTCCG CCGGGAGAGG				1800
65	GGCTGCGCGA	GCTGCCCCTC	GCCGCCGATG	CGCTCACCTT	CGCGGAGGTG	TCCAAGGACC	1860
	CCAAGGGCCT	CGAGTGGCTG	TGGAGCCCCC	AGATOGTGGG	GCTGTACAAC	CGGCTGCTGC CAGAACATCA	1920 1980
	CGGCAGGCGA	CCGCAGGTGG	GCGGGGGGTGC	TGAGCCGCCT	GGCCCTGGAG	CAGGAGCGTA	2040
70	TTCTGAACCC	CCTGCTAGAC	CGTGTCAGGA	CCGCCGACCA	CCACCAGCTG	CGCTCACTGA	2100
70						TCCACGAAGG	2160 2220
	AGGTGCTGGT	CARCATCATA	AAGCTGCCAG GCTGTGCTCA	ACAACCTGGT	GGTGGCCAGC	CCCATCGCTG	2280
	CCCGAGACCT	GCTGTATTTT	GACGGACTCC	GAAAGCTCAT	CTTCATCAAG	AAGAAGCGGG	2340
75	ACAGCCCCGA	CAGTGAGAAG	TCCTCCCGGG	CAGCATCCAG	CCTCCTGGCC	AACCTGTGGC	2400
75	AGTACAACAA GCCCATAGGT	GAAGCCTTCT	GGAGGAGAAG	GTGACGTGGC	CCAGCGTCCA	GACTTCCTGG AGGGACAGAC	2520
	TCAGCTCCAG	GCTGCTTGGC	AGCCCAGCCT	GGAGGAGAAG	GCTAATGACG	GAGGGGCCCC	2580
	TCGCTGGGGC	CCCTGTGTGC	ATCTTTGAGG	GTCCTGGGCC	ACCAGGAGGG	GCAGGGTCTT	2640
80	ATAGCTGGGG	ACTTGGCTTC	CGCAGGGCAG	GGGGTGGGGC	AGGGCTCAAG	GCTGCTCTGG GCCTGGCAGT	2700
30	ATCTTGGGAT AAAAGGAATT	AGCCAGCACT	GGGAATAAAG	ATGGCCATGA	ACAGTCACAA	AAAAAAAAA	2820
85		351 Proteincession #:	n sequence	114.1			
	1	11	21	31	41	51	

```
WO 02/086443
       MODGNFLLSA LOPEAGVCSL ALPSDLOLDR RGAEGPEAER LRAARVQEQV RARLLQLGQQ
                                                                                60
       PRHINGAAEPE PEAETARGTS RGQYHTLQAG FSSRSQGLSG DKTSGFRPIA KPAYSPASWS
                                                                               120
       SRSAVDLSCS RRLSSAHNGG SAFGAAGYGG AQPTPPMPTR FVSFHERGGV GSRADYDTLS
                                                                               180
 5
       LRSLRLGPGG LDDRYSLVSE QLEPAATSTY RAFAYERQAS SSSSRAGGLD WPEATEVSPS
                                                                                240
       RTIRAPAVRT LQRFQSSHRS RGVGGAVPGA VLEPVARAPS VRSLSLSLAD SGHLPDVHGF
       NSYGSHRTLQ RLSSGFDDID LPSAVKYLMA SDPNLQVLGA AYIQHKCYSD AAAKKQARSL
QAVPRLVKLF NHANQEVQRH ATGAMRNLIY DNADNKLALV EENGIFELLR TLREQDDELR
                                                                               360
       KNVTGILWNL SSSDHLKDRL ARDTLEQLTD LVLSPLSGAG GPPLIQQNAS EABIFYNATG
FLRNLSSASQ ATRQKMRECH GLVDALVTSI NHALDAGKCE DKSVENAVCV LRNLSYRLYD
                                                                                480
10
       EMPPSALORL EGRGRRDLAG APPGEVVGCF TPQSRRLREL PLAADALTPA EVSKDPKGLE
                                                                                600
       WLWSPOIVGL YNRLLORCEL NRHTTEAAAG ALQNITAGDR RWAGVLSRLA LEQERILNPL
                                                                                660
       LDRVRTADHH QLRSLTGLIR NLSRNARNKO EMSTKVVSHL IEKLPGSVGE KSPPAEVLVN
                                                                               720
       IIAVLNNLVV ASPIAARDLL YFDGLRKLIF IKKKRDSPDS EKSSRAASSL LANLWQYNKL
15
       HRDFRAKGYR KEDFLGP
       Seq ID NO: 352 DNA sequence
       Nucleic Acid Accession #: M31469
20
       Coding sequence: 1-651
       ATGGCTGCGC AGGGAGAGCC CCAGGTCCAG TTCAAACTTG TATTGGTTGG TGATGGTGGT
                                                                                60
25
       ACTGGAAAAA CGACCTTCGT GAAACGTCAT TTGACTGGTG AATTTGAGAA GAAGTATGTA
                                                                               120
       GCCACCTTGG GTGTTGAGGT TCATCCCCTA GTGTTCCACA CCAACAGAGG ACCTATTAAG
                                                                               180
                                                                               240
       TTCAATGTAT GGGACACAGC CGGCCAGGAG AAATTCGGTG GACTGAGAGA TGGCTATTAT
                                                                               300
       ATCCAAGCCC AGTGTGCCAT CATAATGTTT GATGTAACAT CGAGAGTTAC TTACAAGAAT
       360
30
       GGCAACAAG TGGATATTAA GGACAGGAAA GTGAAGGCGA AATCCATTGT CTTCCACCGA
                                                                               420
       AAGAAGAATC TTCAGTACTA CGACATTTCT GCCAAAAGTA ACTACAACTT TGAAAAGCCC
                                                                               480
       TTCCTCTGGC TTGCTAGGAA GCTCATTGGA GACCCTAACT TGGAATTTGT TGCCATGCCT
                                                                               540
       GCTCTCGCCC CACCAGAAGT TGTCATGGAC CCAGCTTTGG CAGCACAGTA TGAGCACGAC
       TTAGAGGTTG CTCAGACAAC TGCTCTCCCG GATGAGGATG ATGACCTGTG A
35
       Seq ID NO: 353 Protein sequence
                                  AAA36546
       Protein Accession #:
                              21
40
       MAAOGEPOVO FKLVLVGDGG TGKTTFVKRH LTGEFEKKYV ATLGVEVHPL VFHTNRGPIK
                                                                                60
       FNVWDTAGOE KFGGLRDGYY IQAQCAIIMF DVTSRVTYKN VPNWHRDLVR VCENIPIVLC
                                                                               120
       GNKVDIKORK VKAKSIVFHR KKNLQYYDIS AKSNYNFEKP FLWLARKLIG DPNLEFVAMP
                                                                               180
       ALAPPEVVMD PALAAQYEHD LEVAQTTALP DEDDDL
45
                                                              65
       Seq ID NO: 354 DNA sequence
       Nucleic Acid Accession #: NM_002820
       Coding sequence: 304-831
50
                               21
                                          31
       CCGGTTCGCA AAGAAGCTGA CTTCAGAGGG GGAAACTTTC TTCTTTTAGG AGGCGGTTAG
       CCCTGTTCCA CGAACCCAGG AGAACTGCTG GCCAGATTAA TTAGACATTG CTATGGGAGA
                                                                                120
       CGTGTAAACA CACTACTTAT CATTGATGCA TATATAAAAC CATTTTATTT TCGCTATTAT
55
                                                                                180
       TTCAGAGGAA GCGCCTCTGA TTTGTTTCTT TTTTCCCTTT TTGCTCTTTC TGGCTGTGTG
       GTTTGGAGAA AGCACAGTTG GAGTAGCCGG TTGCTAAATA AGTCCCGAGC GCGAGCGGAG
       ACGATGCAGC GGAGACTGGT TCAGCAGTGG AGCGTCGCGG TGTTCCTGCT GAGCTACGCG
       GTGCCCTCCT GCGGGCGCTC GGTGGAGGGT CTCAGCCGCC GCCTCAAAAG AGCTGTGTCT
                                                                                420
       GAACATCAGC TCCTCCATGA CAAGGGGAAG TCCATCCAAG ATTTACGGCG ACGATTCTTC
60
                                                                                480
       CTTCACCATC TGATCGCAGA AATCCACACA GCTGAAATCA GAGCTACCTC GGAGGTGTCC
                                                                                540
       CCTAACTCCA AGCCCTCTCC CAACACAAAG AACCACCCCG TCCGATTTGG GTCTGATGAT
                                                                                600
       GAGGGCAGAT ACCTAACTCA GGAAACTAAC AAGGTGGAGA CGTACAAAGA GCAGCCGCTC
                                                                                660
       AAGACACCTG GGAAGAAAAA GAAAGGCAAG CCCGGGAAAC GCAAGGAGCA GGAAAAGAAA
                                                                                720
65
       AAACGGCGAA CTCGCTCTGC CTGGTTAGAC TCTGGAGTGA CTGGGAGTGG GCTAGAAGGG
                                                                                780
       GACCACCTGT CTGACACCTC CACAACGTCG CTGGAGCTCG ATTCACGGTA ACAGGCTTCT
                                                                                840
       CTGGCCCGTA GCCTCAGCGG GGTGCTCTCA GCTGGGTTTT GGAGCCTCCC TTCTGCCTTG
                                                                                900
       GCTTGGACAA ACCTAGAATT TTCTCCCTTT ATGTATCTCT ATCGATTGTG TAGCAATTGA
                                                                                960
       CAGAGAATAA CTCAGAATAT TGTCTGCCTT AAAGCAGTAC CCCCCTACCA CACACACCCC
                                                                               1020
70
       TGTCCTCCAG CACCATAGAG AGGCGCTAGA GCCCATTCCT CTTTCTCCAC CGTCACCCAA
                                                                               1080
       CATCAATCCT TTACCACTCT ACCAAATAAT TTCATATTCA AGCTTCAGAA GCTAGTGACC
                                                                              1140
       ATCTTCATAA TTTGCTGGAG AAGTGTATTT CTTCCCCTTA CTCTCACACC TGGGCAAACT
TTCTTCAGTG TTTTTCATTT CTTACGTTCT TTCACTTCAA GGGAGAATAT AGAAGCATTT
                                                                              1200
                                                                               1260
       GATATTATCT ACAAACACTG CAGAACAGCA TCATGTCATA AACGATTCTG AGCCATTCAC
                                                                               1320
       ACTITITATI TAATTAAATG TATTTAATTA AATCTCAAAT TTATTTTAAT GTAAAGAACT
75
       TARATTATGT TTRAACACA TGCCTTAAAT TTGTTTAATT AAATTTAACT CTGGTTTCTA CCAGCTCATA CAAATAAAT GGTTTCTGAA AATGTTTAAG TATTAACTTA CAAGGATATA
       GGTTTTTCTC ATGTATCTTT TTGTTCATTG GCAAGATGAA ATAATTTTTC TAGGGTAATG
       CCGTAGGAAA AATAAAACTT CACATTTAAA AAAAA
80
        Seq ID NO: 355 Protein sequence
                                   NM_002820
        Protein Accession #:
                                                                  51
85
        MORRLVOOWS VAVELLSYAV PSCGRSVEGL SRRLKRAVSE HOLLHDKGKS IQDLRRRFFL
        HHLIAEIHTA BIRATSEVSP NSKPSPNTKN HPVRFGSDDE GRYLTQETNK VETYKEQPLK
```

TPGKKKKGKP GKRKEQEKKK RRTRSAWLDS GVTGSGLEGD HLSDTSTTSL ELDSR

Seq ID NO: 356 DNA sequence

```
Nucleic Acid Accession #: NM_017522
 5
       Coding sequence:
                             21
       ATGGGCCTCC CCGAGCCGGG CCCTCTCCGG CTTCTGGCGC TGCTGCTGCT GCTGCTGCTG
                                                                              60
10
       CTGCTGCTGC TGCGGCTCCA GCATCTTGCG GCGGCAGCGG CTGATCCGCT GCTCGGCGGC
                                                                             120
       CAAGGCCGG CCAAGGAGTG CGAAAAGGAC CAATTCCAGT GCCGGAACGA GCGCTGCATC
                                                                             180
       CCCTCTGTGT GGAGATGCGA CGAGGACGAT GACTGCTTAG ACCACAGCGA CGAGGACGAC
                                                                             240
       TGCCCCAAGA AGACCTGTGC AGACAGTGAC TTCACCTGTG ACAACGGCCA CTGCATCCAC
                                                                             300
       GAACGGTGGA AGTGTGACGG CGAGGAGGAG TGTCCTGATG GCTCCGATGA GTCCGAGGCC
                                                                             360
15
       ACTTGCACCA AGCAGGTGTG TCCTGCAGAG AAGCTGAGCT GTGGACCCAC CAGCCACAAG
                                                                             420
       TGTGTACCTG CCTCGTGGCG CTGCGACGGG GAGAAGGACT GCGAGGGTGG AGCGGATGAG
                                                                             480
       GCCGGCTGTG CTACCTCACT GGGCACCTGC CGTGGGGACG AGTTCCAGTG TGGGGATGGG
                                                                             540
       ACATGTGTCC TTGCAATCAA GCACTGCAAC CAGGAGCAGG ACTGTCCAGA TGGGAGTGAT
                                                                             600
       GAAGCTGGCT GCCTACAGGG GCTGAACGAG TGTCTGCACA ACAATGGCGG CTGCTCACAC
                                                                             660
20
       ATCTGCACTG ACCTCAAGAT TGGCTTTGAA TGCACGTGCC CAGCAGGCTT CCAGCTCCTG
       GACCAGAAGA CTTGTGGCGA CATTGATGAG TGCAAGGACC CAGATGCCTG CAGCCAGATC
                                                                              780
       TGTGTCAATT ACAAGGGCTA TTTTAAGTGT GAGTGCTACC CTGGCTGCGA GATGGACCTA
       CTGACCAAGA ACTGCAAGGC TGCTGCTGGC AAGAGCCCAT CCCTAATCTT CACCAACCGC
                                                                             900
       ACGAGTGCGG AGGATCGACC TGTGAAGCGG AACTATTCAC GCCTCATCCC CATGCTCAAG
                                                                             960
25
       AATGTCGTGG CACTAGATGT GGAAGTTGCC ACCAATCGCA TCTACTGGTG TGACCTCTCC
                                                                            1020
       TACCGTAAGA TCTATAGCGC CTACATGGAC AAGGCCAGTG ACCCGAAAGA GCGGGAGGTC
                                                                            1080
                                                                            1140
       CTCATTGACG AGCAGTTGCA CTCTCCAGAG GGCCTGGCAG TGGACTGGGT CCACAAGCAC
                                                                            1200
       ATCTACTGGA CTGACTCGGG CAATAAGACC ATCTCAGTGG CCACAGTTGA TGGTGGCCGC
       CGACGCACTC TCTTCAGCCG TAACCTCAGT GAACCCCGGG CCATCGCTGT TGACCCCCTG
                                                                            1260
30
       CGAGGGTTCA TGTATTGGTC TGACTGGGGG GACCAGGCCA AGATTGAGAA ATCTGGGCTC
                                                                            1320
       AACGGTGTGG ACCGGCAAAC ACTGGTGTCA GACAATATTG AATGGCCCAA CGGAATCACC
                                                                            1380
       CTGGATCTGC TGAGCCAGCG CTTGTACTGG GTAGACTCCA AGCTACACCA ACTGTCCAGC
                                                                            1440
       ATTGACTTCA GTGGAGGCAA CAGAAAGACG CTGATCTCCT CCACTGACTT CCTGAGCCAC
                                                                            1500
       CCTTTTGGGA TAGCTGTGTT TGAGGACAAG GTGTTCTGGA CAGACCTGGA GAACGAGGCC
                                                                            1560
35
       ATTTTCAGTG CAAATCGGCT CAATGGCCTG GAAATCTCCA TCCTGGCTGA GAACCTCAAC
                                                                            1620
       AACCCACATG ACATTGTCAT CTTCCATGAG CTGAAGCAGC CAAGAGCTCC AGATGCCTGT
                                                                            1680
       GAGCTGAGTG TCCAGCCTAA TGGAGGCTGT GAATACCTGT GCCTTCCTGC TCCTCAGATC
                                                                            1740
       TCCAGCCACT CTCCCAAGTA CACATGTGCC TGTCCTGACA CAATGTGGCT GGGTCCAGAC
                                                                            1800
      ATGARGAGT GCTACCGAGA TGCAAATGAA GACAGTAAGA TGGGCTCAAC AGTCACTGCC GCTGTTATCG GGATCATCGT GCCCATAGTG GTGATAGCCC TCCTGTGCAT GAGTGGATAC
                                                                            1860
40
                                                                            1920
       CTGATCTGGA GAAACTGGAA GCGGAAGAAC ACCAAAAGCA TGAATTTTGA CAACCCAGTC
                                                                            1980
       TACAGGAAAA CAACAGAAGA AGAAGATGAA GATGAGCTCC ATATAGGGAG AACTGCTCAG
       ATTGGCCATG TCTATCCTGC ACGAGTGGCA TTAAGCCTTG AAGATGATGG ACTACCCTGA
       GGATGGGATC ACCCCCTTCG TGCCTCATGG AATTCAGTCC CATGCACTAC ACTCCGGATG
                                                                            2160
45
       GTGTATGACT GGATGAATGG GTTTCTATAT ATGGGTCTGT GTGAGTGTAT GTGTGTGTGT
                                                                            2220
       GATTTTTTT TTTAAATTTA TGTTGCGGAA AGGTAACCAC AAAGTTATGA TGAACTGCAA
                                                                            2280
       ACATCCAAAG GATGTGAGAG TTTTTCTATG TATAATGTTT TATACACTTT TTAACTGGTT
                                                                            2340
       GCACTACCCA TGAGGAATTC GTGGAATGGC TACTGCTGAC TAACATGATG CACATAACCA
                                                                            2400
                                                                            2460
       AATGGGGGCC AATGGCACAG TACCTTACTC ATCATTTAAA AACTATATTT ACAGAAGATG
50
       TTTGGTTGCT GGGGGGCTTT TTTAGGTTTT GGGCATTTGT TTTTTGTAAA TAAGATGATT
                                                                            2520
       ATGCTTTGTG GCTATCCATC AACATAAGT
       Seq ID NO: 357 Protein sequence
       Protein Accession #: NP_059992
55
       MGLPEPGPLR LLALLLLLL LLLLRLOHLA AAAADPLLGG QGPAKECEKD QFQCRNERCI
                                                                              60
       PSVWRCDEDD DCLDHSDEDD CPKKTCADSD FTCDNGHCIH ERWKCDGEEE CPDGSDESEA
                                                                             120
60
       TCTKQVCPAE KLSCGPTSHK CVPASWRCDG EKDCEGGADE AGCATSLGTC RGDBFQCGDG
                                                                             180
       TCVLAIKHCN QEQDCPDGSD BAGCLQGLNE CLHNNGGCSH ICTDLKIGFE CTCPAGFQLL
                                                                              240
       DOKTCGDIDE CKDPDACSOI CVNYKGYFKC ECYPGCEMDL LTKNCKAAAG KSPSLIFTNR
       TSAEDRPVKR NYSRLIPMLK NVVALDVEVA TNRIYWCDLS YRKIYSAYMD KASDPKEREV
                                                                             360
       LIDEOLHSPE GLAVDWVHKH IYWTDSGNKT ISVATVDGGR RRTLFSRNLS EPRAIAVDPL
                                                                              420
65
       RGFMYWSDWG DQAKIEKSGL NGVDRQTLVS DNIBWPNGIT LDLLSQRLYW VDSKLHQLSS
                                                                              480
       IDFSGGNRKT LISSTDFLSH PFGIAVFEDK VFWTDLENEA IFSANRLNGL EISILAENLN
                                                                             540
       NPHDIVIFHE LKQPRAPDAC ELSVQPNGGC EYLCLPAPQI SSHSPKYTCA CPDTMWLGPD
                                                                              600
       MKRCYRDANE DSKMGSTVTA AVIGIIVPIV VIALLCMSGY LIWRNWKRKN TKSMNFDNPV
                                                                              660
       YRKTTEEEDE DELHIGRTAQ IGHVYPARVA LSLEDDGLP
70
       Seg ID NO: 358 DNA seguence
       Nucleic Acid Accession #: M27826
       Coding sequence: <1-503
75
                                         31
                                                                51
       AGCCCAAGAA ACATCTCACC AATTTCAAAT CTGATCTATT CGGCTTAGCG ACTGAAGATT
                                                                              60
       GACGCTGCCC GATCGCCTCG GAAGTCCCCT GGACCATCAC AGAAGCCGAG CTTCGGGTAA
                                                                              120
       CTCTCACAGT GGAGGGTAAG TCCATCCCCT GTTTAATCGA TACGGGGGCT ACCCACTCCA
                                                                              180
       CGTTGCCTTC TTTTCAAGGG CCTGTTTCCC TTGCCCCCAT AACTGTTGTG GGTATTGACG
GCCAAGCTTC AAAACCCCTG AAAACTCCCC CACTCTGGTG CCAACTTGGA CAACACTCTT
80
                                                                              240
       TTATGCACTC TTTTTTAGTT ATCCCCACCT GCCCACTTCC CTTATTAGGC CGAAATATTT
       TAACCAAATT ATCTGCTTCC CTGACTATTC CTGGAGTACA GCTACATCTC ATTGCTGCCC
                                                                              420
       TTCTTCCCAA TCCAAAGCCT CCTTTGTGTC CTCTAACATC CCCACAATAT CAGCCCTTAC
                                                                              480
85
       CACAAGACCT CCCTTCAGCT TAATCTCTCC CACTCTAGGT TCCCACGCCG CCCCTAATCC
                                                                              540
       CACTTGAAGC AGCCCTGAGA AACATCGCCC ATTCTCTCTC CATACCACCC CCCAAAAATT
                                                                              600
       TTCGCCGCTC CAACACTTCA ACACTATTTT GTTTTATTTG TCTTATTAAT ATCAGAAGGC
```

660

		2/086443					
				GCCATCGCAT CCACAAAAGA			720 780
				CCCCACCCTA			840
_				AATTCTCCCC			900
5				CCCCCTTTGA			960
				TCTTCCTTCA		TTTCGGACTC	1020
	AGCCACCGGC	ACCCAGGTGA	AATAAACAGC	TTTATTGCTC	AC		
	Sea ID NO:	359 Protein	n secuence				
10	Protein Acc		AAA6599	9			
	1	11	21	31	41	51 I	
	PKKHLTNEKS	DLFGLATEDW	RCPIASEVPW	TITEAELRVT	LTVEGKSIPC	LIDTGATHST	60
15				LWCQLGQHSF			120
	TKLSASLTIP	GVQLHLIAAL	LPNPKPPLCP	LTSPQYQPLP	QDLPSA		
	Com TD 110-	360 DNA sec	710770	•			
		id Accession	_	54			
20	Coding sequ		162-558				
	1	11	21	31	41	51	
	AACCATCAAA	TTTAGAAGAA	AAAGCCCTTT	GACTTTTTCC	CCCTCTCCCT	CCCCAATGGC	60
25	TGTGTAGCAA	ACATCCCTGG	CGATACCTTG	GAAAGGACGA	AGTTGGTCTG	CAGTCGCAAT	120
				GGGGCTCGGA			180
				TCACCGTAAC CTCCAGTTGA			240 300
				CAACGGGATT			360
30				CAAAGCAAGC			420
				AAGACTTTTC			480 540
				CTATATATAA TTCTGTTTGA			600
				TTAACATCGC			660
35				CAATGATTGT			720
				TTGTTGATAC AGGGGGACAT			780 840
				AGGGGGACAT			900
40	CACCCAAGGC	TGCTCAAGCT	CAGGAACCTC	AGATAGATGA	GTATGCACCA	GAGGATATAA	960
40				AGTATAAAGA			1020
				AGACGGAGGC ACCAGACAGA			1080 1140
				TATTTACTGA			1200
4.00	ATTATGATTC	CCAGAGGAAA	AATTCTGAGG	ATACACTATA	TGAAAACAAA	GAAATAGACG	1260
45				ATTTAGGCGA			1320
				CTAATGAAGA ATGGCCATGG			1380 1440
				GTATGCTTGT			1500
	CAGGACCTGC	AGGTATTATG	GGTCCTCCAG	GTCTACAAGG	CCCCACTGGA	CCCCTGGTG	1560
50				CTGGCTTACC			1620
				TCCGTTATGG AAGCTATTCT			1680 1740
				CTGGAAGACC			1800
<i>E E</i>				ATCCAGGTCC			1860
55				GAAAAAGGGG AGGGAGATCG			1920 1980
				AACGAGGTCC			2040
	CTGGTGATGA	TGGAATGAGG	GGAGAAGATG	GAGAAATTGG	ACCAAGAGGT	CTTCCAGGTG	2100
60						GGGCAGCCTG	
60						CAAGGGGAGC CCACAAGGTC	
						GGACTTCCTG	
	GTGCTGATGG	GCCTCCTGGT	CATCCTGGGA	AAGAAGGCCA	GTCTGGAGAA	AAGGGGGCTC	2400
65						GTAAAGGGAG	
05						GGTTTTCCAG ATTGGCCCAA	
						GACCCAGGTC	
						GGATATCCAG	
70						AATGGAGAGA	
70						CCAACGGGTC GGCACTTCAG	
	GTGGCGATGG	CCCTCCTGGC	CCTCCAGGTG	AAAGAGGTCC	TCAAGGACCT	CAGGGTCCAG	2940
						TGCCCAGGAC	
75						GGGCCAGGGG	
,,,						CGTGGGTATC AAAGAAGGTG	
	CAAAGGGTGA	TCCAGGTCCT	CAAGGTATCT	CAGGGAAAGA	TGGACCAGCA	GGATTACGTG	3240
						AAAGGAGGG	
80						TCAGCAGGTA GGTCCAGCTG	
						GATGGAGTTC	
	AAGGTCCTGT	TGGTCTCCCA	GGGCCAGCTG	GTCCTGCCGG	CTCCCCTGGG	GAAGACGGAG	3540
	ACAAGGGTGA	AATTGGTGAG	CCGGGACAAA	AAGGCAGCAA	GGGTGGCAAG	GGAGAAAATG	3600
85						GCTGGAGGTG GATGAGGGTG	
	CCAGAGGCTT	CCCTGGACCT	CCTGGTCCAA	TAGGTCTTCA	GGGTCTGCCA	GGCCCACCTG	3780
	GTGAAAAAGG	TGAAAATGGG	GATGTTGGTC	CATGGGGGCC	ACCTGGTCCT	CCAGGCCCAA	3840

```
GAGGCCCTCA AGGTCCCAAT GGAGCTGATG GACCACAAGG ACCCCCAGGT TCTGTTGGTT
                                                                            3900
       CAGTTGGTGG TGTTGGAGAA AAGGGTGAAC CTGGAGAAGC AGGAAACCCA GGGCCTCCTG
                                                                            3960
       GGGAAGCAGG TGTAGGCGGT CCCAAAGGAG AAAGAGGAGA GAAAGGGGAA GCTGGTCCAC
                                                                            4020
       CTGGAGCTGC TGGACCTCCA GGTGCCAAGG GGCCGCCAGG TGATGATGGC CCTAAGGGTA
                                                                            4080
       ACCCGGGTCC TGTTGGTTTT CCTGGAGATC CTGGTCCTCC TGGGGAACTT GGCCCTGCAG
                                                                            4140
       GTCAAGATGG TGTTGGTGGT GACAAGGGTG AAGATGGAGA TCCTGGTCAA CCGGGTCCTC
                                                                            4200
       CTGGCCCATC TGGTGAGGCT GGCCCACCAG GTCCTCCTGG AAAACGAGGT CCTCCTGGAG
                                                                            4260
       CTGCAGGTGC AGAGGGAAGA CAAGGTGAAA AAGGTGCTAA GGGGGAAGCA GGTGCAGAAG
                                                                            4320
       GTCCTCCTGG AAAAACCGGC CCAGTCGGTC CTCAGGGAACC TGCAGGAAAG CCTGGTCCAG
                                                                            4380
       AAGGTCTTCG GGGCATCCCT GGTCCTGTGG GAGAACAAGG TCTCCCTGGA GCTGCAGGCC
10
                                                                            4440
       AAGATGGACC ACCTGGTCCT ATGGGACCTC CTGGCTTACC TGGTCTCAAA GGTGACCCTG
                                                                            4500
       GCTCCAAGGG TGAAAAGGGA CATCCTGGTT TAATTGGCCT GATTGGTCCT CCAGGAGAAC
                                                                            4560
       AAGGGGAAAA AGGTGACCGA GGGCTCCCTG GAACTCAAGG ATCTCCAGGA GCAAAAGGGG
       ATGGGGGAAT TCCTGGTCCT GCTGGTCCCT TAGGTCCACC TGGTCCTCCA GGCTTACCAG
       GTCCTCAAGG CCCAAAGGGT AACAAAGGCT CTACTGGACC CGCTGGCCAG AAAGGTGACA
15
                                                                             4740
       GTGGTCTTCC AGGGCCTCCT GGGCCTCCAG GTCCACCTGG TGAAGTCATT CAGCCTTTAC
                                                                            4800
       CARTCTTGTC CTCCAAAAAA ACGAGAAGAC ATACTGAAGG CATGCAAGCA GATGCAGATG
                                                                            4860
       ATAATATTCT TGATTACTCG GATGGAATGG AAGAAATATT TGGTTCCCTC AATTCCCTGA
                                                                            4920
       AACAAGACAT CGAGCATATG AAATTTCCAA TGGGTACTCA GACCAATCCA GCCCGAACTT
                                                                            4980
       GTAAAGACCT GCAACTCAGC CATCCTGACT TCCCAGATGG TGAATATTGG ATTGATCCTA
20
                                                                            5040
       ACCAAGGTTG CTCAGGAGAT TCCTTCAAAG TTTACTGTAA TTTCACATCT GGTGGTGAGA
                                                                            5100
       CTTGCATTTA TCCAGACAAA AAATCTGAGG GAGTAAGAAT TTCATCATGG CCAAAGGAGA
                                                                            5160
       AACCAGGAAG TTGGTTTAGT GAATTTAAGA GGGGAAAACT GCTTTCATAC TTAGATGTTG
                                                                            5220
       AAGGAAATTC CATCAATATG GTGCAAATGA CATTCCTGAA ACTTCTGACT GCCTCTGCTC
                                                                            5280
       GGCAAAATTT CACCTACCAC TGTCATCAGT CAGCAGCCTG GTATGATGTG TCATCAGGAA
GTTATGACAA AGCACTTCGC TTCCTGGGAT CAAATGATGA GGAGATGTCC TATGACAATA
25
                                                                            5340
                                                                            5400
       ATCCTTTTAT CAAAACACTG TATGATGGTT GTACGTCCAG AAAAGGCTAT GAAAAAACTG
                                                                            5460
       TCATTGAAAT CAATACACCA AAAATTGATC AAGTACCTAT TGTTGATGTC ATGATCAGTG
                                                                            5520
       ACTITGGTGA TCAGAATCAG AAGTICGGAT TTGAAGTIGG TCCTGTTTGT TTTCTTGGCT
                                                                            5580
30
       AAGATTAAGA CAAAGAACAT ATCAAATCAA CAGAAAATGT ACCTTGGTGC CACCAACCCA
                                                                            5640
       TTTTGTGCCA CATGCAAGTT TTGAATAAGG ATGTATGGAA AACAACGCTG CATATACAGG
                                                                            5700
       TACCATTTAG GAAATACCGA TGCCTTTGTG GGGGCAGAAT CACAGACAAA AGCTTTGAAA
                                                                            5760
       ATCATAAAGA TATAAGTTGG TGTGGCTAAG ATGGAAACAG GGCTGATTCT TGATTCCCAA
                                                                            5820
       TTCTCAACTC TCCTTTTCCT ATTTGAATTT CTTTGGTGCT GTAGAAAACA AAAAAAGAAA
                                                                            5880
       AATATATATT CATAAAAAAT ATGGTGCTCA TTCTCATCCA TCCAGGATGT ACTAAAACAG
35
                                                                            5940
       TGTGTTTAAT AAATTGTAAT TATTTTGTGT ACAGTTCTAT ACTGTTATCT GTGTCCATTT
                                                                             6000
       CCAAAACTTG CACGTGTCCC TGAATTCCGC TGACTCTAAT TTATGAGGAT GCCGAACTCT
       GATGGCAATA ATATATGTAT TATGAAAATG AAGTTATGAT TTCCGATGAC CCTAAGTCCC
       TTTCTTTGGT TAATGATGAA ATTCCTTTGT GTGTGTTT
40
       Seg ID NO: 361 Protein sequence
                                 NP_001845
       Protein Accession #:
                                         31
                              21
45
       MEPWSSRWKT KRWLWDFTVT TLALTFLFQA REVRGAAPVD VLKALDFHNS PEGISKTTGF
                                                                              60
       CTNRKNSKGS DTAYRVSKQA QLSAPTKQLF PGGTFPEDFS ILFTVKPKKG IQSFLLSIYN
                                                                             120
       EHGIQQIGVE VGRSPVFLFE DHTGKPAPED YPLFRTVNIA DGKWHRVAIS VEKKTVTMIV
                                                                             180
       DCKKKTTKPL DRSERAIVDT NGITVFGTRI LDEEVFEGDI QQFLITGDPK AAYDYCEHYS
                                                                             240
       PDCDSSAPKA AQAQEPQIDE YAPEDIIEYD YEYGEAEYKE AESVTEGPTV TEETIAQTEA
                                                                             300
50
       NIVDDFQEYN YGTMESYQTE APRHVSGTNE PNPVEEIFTE EYLTGEDYDS QRKNSEDTLY
                                                                             360
       ENKEIDGRDS DLLVDGDLGE YDFYEYKEYE DKPTSPPNEE FGPGVPAETD ITETSINGHG
                                                                              420
       AYGEKGQKGE PAVVEPGMLV EGPPGPAGPA GIMGPPGLQG PTGPPGDPGD RGPPGRPGLP
                                                                              480
       GADGLPGPPG TMLMLPFRYG GDGSKGPTIS AQEAQAQAIL QQARIALRGP PGPMGLTGRP
       GPVGGPGSSG AKGESGDPGP QGPRGVQGPP GPTGKPGKRG RPGADGGRGM PGEPGAKGDR
55
       GFDGLPGLPG DKGHRGERGP QGPPGPPGDD GMRGEDGEIG PRGLPGEAGP RGLLGPRGTP
       GAPGQPGMAG VDGPPGPKGN MGPQGEPGPP GQQGNPGPQG LPGPQGPIGP PGEKGPQGKP
       GLAGLPGADG PPGHPGKEGQ SGEKGALGPP GPQGPIGXPG PRGVKGADGV RGLKGSKGEK
       GEDGFPGFKG DMGLKGDRGE VGQIGPRGXD GPEGPKGRAG PTGDPGPSGQ AGEKGKLGVP
       GLPGYPGRQG PKGSTGFPGF PGANGEKGAR GVAGKPGPRG QRGPTGPRGS RGARGPTGKP
60
                                                                              900
       GPKGTSGGDG PPGPPGERGP QGPQGPVGFP GPKGPPGPPG RMGCPGHPGQ RGETGFQGKT
                                                                              960
       GPPGPGGVVG PQGPTGETGP IGERGYPGPP GPPGEQGLPG AAGKEGAKGD PGPQGISGKD
                                                                             1020
                                                                             1080
       GPAGLRGFPG ERGLPGAQGA PGLKGGEGPQ GPPGPVGSPG ERGSAGTAGP IGLRGRPGPQ
       GPPGPAGEKG APGEKGPQGP AGRDGVQGPV GLPGPAGPAG SPGEDGDKGE IGEPGQKGSK
                                                                            1140
65
       GGKGENGPPG PPGLQGPVGA PGIAGGDGEP GPRGQQGMFG QKGDEGARGF PGPPGPIGLQ
                                                                             1200
       GLPGPPGEKG ENGDVGPWGP PGPPGPRGPQ GPNGADGPQG PPGSVGSVGG VGEKGEPGEA
                                                                             1260
       GNPGPPGEAG VGGPKGERGE KGEAGPPGAA GPPGAKGPPG DDGPKGNPGP VGFPGDPGPP
                                                                             1320
       GELGPAGQDG VGGDKGEDGD PGQPGPPGPS GEAGPPGPPG KRGPPGAAGA EGRQGEKGAK
                                                                             1380
       GEAGAEGPPG KTGPVGPQGP AGKPGPEGLR GIPGPVGEQG LPGAAGQDGP PGPMGPPGLP
                                                                             1440
70
                                                                             1500
       GLKGDPGSKG EKGHPGLIGL IGPPGEQGEK GDRGLPGTQG SPGAKGDGGI PGPAGPLGPP
       GPPGLPGPQG PKGNKGSTGP AGQKGDSGLP GPPGPPGPPG EVIQPLPILS SKKTRRHTEG
                                                                             1560
       MQADADDNIL DYSDGMEEIF GSLNSLKQDI EHMKFPMGTQ TNPARTCKDL QLSHPDFPDG
                                                                             1620
       EYWIDPNQGC SGDSPKVYCN FTSGGETCIY PDKKSEGVRI SSWPKEKPGS WFSEFKRGKL
                                                                             1680
       LSYLDVEGNS INMVOMTFLK LLTASARONF TYHCHOSAAW YDVSSGSYDK ALRFLGSNDE
EMSYDNNPPI KTLYDGCTSR KGYEKTVIEI NTPKIDQVPI VDVMISDFGD QNQKFGFEVG
                                                                             1740
75
       Seq ID NO: 362 DNA sequence
80
       Nucleic Acid Accession #: NM_003107
       Coding sequence:
                                  351-1775
                              21
85
       TTCCCCAGCA TTCGAGAAAC TCCTCTCTAC TTTAGCACGG TCTCCAGACT CAGCCGAGAG
                                                                               60
       ACAGCAAACT GCAGCGCGGT GAGAGAGCGA GAGAGAGGGA GAGAGAGACT CTCCAGCCTG
                                                                              120
```

GGAACTATAA CTCCTCTGCG AGAGGCGGAG AACTCCTTCC CCAAATCTTT TGGGGACTTT

180

```
TCTCTCTTTA CCCACCTCCG CCCCTGCGAG GAGTTGAGGG GCCAGTTCGG CCGCCGCGCG
         CGTCTTCCCG TTCGGCGTGT GCTTGGCCCG GGGAACCGGG AGGGCCCGGC GATCGCGCGG
                                                                                300
         CGGCCGCCGC GAGGGTGTGA GCGCGCGTGG GCGCCCGCCG AGCCGAGGCC ATGGTGCAGC
                                                                                360
         AAACCAACAA TGCCGAGAAC ACGGAAGCGC TGCTGGCCGG CGAGAGCTCG GACTCGGGCG
                                                                                420
         CCGGCCTCGA GCTGGGAATC GCCTCCTCCC CCACGCCCGG CTCCACCGCC TCCACGGGCG
                                                                                480
         GCAAGGCCGA CGACCCGAGC TGGTGCAAGA CCCCGAGTGG GCACATCAAG CGACCCATGA
                                                                                540
        ACGCCTTCAT GGTGTGGTCG CAGATCGAGC GGCGCAAGAT CATGGAGCAG TCGCCCGACA
                                                                                600
         TGCACAACGC CGAGATCTCC AAGCGGCTGG GCAAACGCTG GAAGCTGCTC AAAGACAGCG
                                                                                660
        ACAAGATCCC TTTCATTCGA GAGGCGGAGC GGCTGCGCCT CAAGCACATG GCTGACTACC
                                                                                720
 10
         CCGACTACAA GTACCGGCCC AGGAAGAAGG TGAAGTCCGG CAACGCCAAC TCCAGCTCCT
                                                                                780
         CGGCCGCCGC CTCCTCCAAG CCGGGGGAGA AGGGAGACAA GGTCGGTGGC AGTGGCGGGG
                                                                                840
        GCGGCCATGG GGGCGGCGGC GGCGGCGGGA GCAGCAACGC GGGGGGAGGA GGCGGCGGTG
                                                                                900
        CGAGTGGCG CGGCGCCAAC TCCAAACCGG CGCAGAAAAA GAGCTGCGGC TCCAAAGTGG
                                                                                960
         CGGGCGCGC GGGCGTCGG GTTAGCAAAC CGCACGCCAA GCTCATCCTG GCAGGCGGCG
                                                                               1020
 15
        GCGGCGGCG GAAAGCAGCG GCTGCCGCCG CCGCCTCCTT CGCCGCCGAA CAGGCGGGGG
                                                                               1080
         CCGCCGCCCT GCTGCCCCTG GGCGCCGCCG CCGACCACCA CTCGCTGTAC AAGGCGCGGA
                                                                               1140
         CTCCCAGCGC CTCGGCCTCC GCCTCCTCGG CAGCCTCGGC CTCCGCAGCG CTCGCGGCCC
                                                                               1200
         CGGGCAAGCA CCTGGCGGAG AAGAAGGTGA AGCGCGTCTA CCTGTTCGGC GGCCTGGGCA
                                                                               1260
        CETCOTCOTC GCCCGTGGGC GGCGTGGGCG CGGGAGCCGA CCCCAGCGAC CCCCTGGGCC TGTACGAGGA GGAGGGCGC GGCTGCTCGC CCGACGCGC CAGCCTGAGC GGCCGCAGCA
                                                                               1320
 20
                                                                               1380
        1440
        TGCGCGCCGC CTCGCCCGCC CCGTCCAGCG CGCCCTCGCA CGCGTCCTCC TCGGCCTCGT
        CCCACTCCTC CTCTTCCTCC TCCTCGGGCT CCTCGTCCTC CGACGACGAG TTCGAAGACG ACCTGCTCGA CCTGAACCCC AGCTCAAACT TTGAGAGCAT GTCCCTGGGC AGCTTCAGTT
. 25
        CGTCGTCGGC GCTCGACCGG GACCTGGATT TTAACTTCGA GCCCGGCTCC GGCTCGCACT
                                                                               1680
        TCGAGTTCCC GGACTACTGC ACGCCCGAGG TGAGCGAGAT GATCTCGGGA GACTGGCTCG
                                                                               1740
        AGTCCAGCAT CTCCAACCTG GTTTTCACCT ACTGAAGGGC GCGCAGGCAG GGAGAAGGGC
                                                                               1800
        CGGGGGGGT AGGAGAGGAG AAAAAAAAG TGAAAAAAG AAACGAAAAG GACAGACGAA
                                                                               1860
        GAGTTTAAAG AGAAAAGGA AAAAAGAAAG AAAAAGTAAG CAGGGCTCGT TCGCCCGCGT
                                                                               1920
 30
        TCTCGTCGTC GGATCAAGGA GCGCGGCGGC GTTTTGGACC CGCGCTCCCA TCCCCCACCT
                                                                               1980
         TCCCGGGCCG GGGACCCACT CTGCCCAGCC GGAGGGACGC GGAGGAGGAA GAGGGTAGAC
                                                                               2040
        AGGGGCGACC TGTGATTGTT GTTATTGATG TTGTTGTTGA TGGCAAAAAA AAAAAGCGAC
                                                                               2100
         TTCGAGTTTG CTCCCCTTTG CTTGAAGAGA CCCCCTCCCC CTTCCAACGA GCTTCCGGAC
                                                                               2160
        TTGTCTGCAC CCCCAGCAAG AAGGCGAGTT AGTTTTCTAG AGACTTGAAG GAGTCTCCCC
                                                                               2220
 35
         CTTCCTGCAT CACCACCTTG GTTTTGTTTT ATTTTGCTTC TTGGTCAAGA AAGGAGGGGA
                                                                               2280
        GAACCCAGCG CACCCCTCCC CCCCTTTTT TAAACGCGTG ATGAAGACAG AAGGCTCCGG
                                                                               2340
        GGTGACGAAT TTGGCCGATG GCAGATGTTT TGGGGGGAACG CCGGGACTGA GAGACTCCAC
                                                                               2400
        GCAGGCGAAT TCCCGTTTGG GGCCTTTTTT TCCTCCCTCT TTTCCCCTTG CCCCCTCTGC
                                                                               2460
        AGCCGGAGGA GGAGATGTTG AGGGGAGGAG GCCAGCCAGT GTGACCGGCG CTAGGAAATG
                                                                               2520
        ACCCGAGAAC CCCGTTGGAA GCGCAGCAGC GGGAGCTAGG GGCGGGGGC GAGGAGGACA
 40
                                                                               2580
         CGAACTGGAA GGGGGTTCAC GGTCAAACTG AAATGGATTT GCACGTTGGG GAGCTGGCGG
                                                                               2640
        CGGCGGCTGC TGGGCCTCCG CCTTCTTTTC TACGTGAAAT CAGTGAGGTG AGACTTCCCA
                                                                               2700
        GACCCCGGAG GCGTGGAGGA GAGGAGACTG TTTGATGTGG TACAGGGGCA GTCAGTGGAG
        GGCGAGTGGT TTCGGAAAAA AAAAAAGAAA AAAAGGG
 45
        Seg ID NO: 363 Protein sequence
                                   NP_003098
        Protein Accession #:
 50
        MVQQTMNAEN TEALLAGESS DSGAGLELGI ASSPTPGSTA STGGKADDPS WCKTPSGHIK
                                                                                 60
        RPMNAFMVWS QIERRKIMEQ SPDMHNAEIS KRLGKRWKLL KDSDKIPFIR EAERLRLKHM
                                                                                120
        ADYPDYKYRP RKKVKSGNAN SSSSAAASSK PGEKGDKVGG SGGGGHGGGG GGGSSNAGGG
                                                                                180
        GGGASGGAN SKPAOKKSCG SKVAGGAGGG VSKPHAKLIL AGGGGGGKAA AAAAASFAAE
                                                                                240
 55
        QAGAAALLPL GAAADHHSLY KARTPSASAS ASSAASASAA LAAPGKHLAE KKVKRVYLFG
                                                                                300
         GLGTSSSPVG GVGAGADPSD PLGLYEEEGA GCSPDAPSLS GRSSAASSPA AGRSPADHRG
                                                                                360
         YASLRAASPA PSSAPSHASS SASSHSSSSS SSGSSSSDDE FEDDLLDLNP SSNFESMSLG
                                                                                420
         SPSSSSALDR DLDFNFEPGS GSHFEFPDYC TPEVSEMISG DWLESSISNL VFTY
 60
         Seq ID NO: 364 DNA sequence
         Nucleic Acid Accession #: U10860
                                   123-2204
         Coding sequence:
 65
                                                                  51
                                21
                                           31
                                                       41
                    11
         TGCCGGCTGC TCCTCGACCA GGCCTCCTTC TCAACCTCAG CCCGCGGCGC CGACCCTTCC
                                                                                 60
         GGCACCCTCC CGCCCCGTCT CGTACTGTCG CCGTCACCGC CGCGGCTCCG GCCCTGGCCC
                                                                                120
         CGATGGCTCT GTGCAACGGA GACTCCAAGC TGGAGAATGC TGGAGGAGAC CTTAAGGATG
                                                                                180
 70
         GCCACCACCA CTATGAAGGA GCTGTTGTCA TTCTGGATGC TGGTGCTCAG TACGGGAAAG
                                                                                240
         TCATAGACCG AAGAGTGAGG GAACTGTTCG TGCAGTCTGA AATTTTCCCC TTGGAAACAC
                                                                                300
         CAGCATTTGC TATAAAGGAA CAAGGATTCC GTGCTATTAT CATCTCTGGA GGACCTAATT
                                                                                360
         CTGTGTATGC TGAAGATGCT CCCTGGTTTG ATCCAGCAAT ATTCACTATT GGCAAGCCTG
                                                                                420
         TTCTTGGAAT TTGCTATGGT ATGCAGATGA TGAATAAGGT ATTTGGAGGT ACTGTGCACA
                                                                                480
 75
         AAAAAAGTGT CAGAGAAGAT GGAGTTTTCA ACATTAGTGT GGATAATACA TGTTCATTAT
                                                                                540
         TCAGGGGCCT TCAGAAGGAA GAAGTTGTTT TGCTTACACA TGGAGATAGT GTAGACAAAG
                                                                                600
         TAGCTGATGG ATTCAAGGTT GTGGCACGTT CTGGAAACAT AGTAGCAGGC ATAGCAAATG
                                                                                660
         AATCTAAAAA GTTATATGGA GCACAGTTCC ACCCTGAAGT TGGCCTTACA GAAAATGGAA
                                                                                720
         AAGTAATACT GAAGAATTTC CTTTATGATA TAGCTGGATG CAGTGGAACC TTCACCGTGC
                                                                                780
         AGAACAGAGA ACTTGAGTGT ATTCGAGAGA TCAAAGAGAG AGTAGGCACG TCAAAAGTTT
TGGTTTTACT CAGTGGTGGA GTAGACTCAA CAGTTTGTAC AGCTTTGCTA AATCGTGCTT
 80
                                                                                840
                                                                                900
         TGAACCAGGA ACAAGTCATT GCTGTGCACA TTGATAATGG CTTTATGAGA AAACGAGAAA
GCCAGTCTGT TGAAGAGGCC CTCAAAAAGC TTGGAATTCA GGTCAAAGTG ATAAATGCTG
                                                                                960
         CTCATTCTTT CTACAATGGA ACAACAACCC TACCAATATC AGATGAAGAT AGAACCCCAC
  85
         GGAAAAGAAT TAGCAAAACG TTAAATATGA CCACAAGTCC TGAAGAGAAA AGAAAAATCA
         TTGGGGATAC TTTTGTTAAG ATTGCCAATG AAGTAATTGG AGAAATGAAC TTGAAACCAG
         AGGAGGTTTT CCTTGCCCAA GGTACTTTAC GGCCTGATCT AATTGAAAGT GCATCCCTTG
```

```
TTGCAAGTGG CAAAGCTGAA CTCATCAAAA CCCATCACAA TGACACAGAG CTCATCAGAA 1320 AGTTGAGAGA GGAGGGAAAA GTAATAGAAC CTCTGAAAGA TTTTCATAAA GATGAAGTGA 1380
       GAATTTTGGG CAGAGAACTT GGACTTCCAG AAGAGTTAGT TTCCAGGCAT CCATTTCCAG
                                                                             1440
       GTCCTGGCCT GGCAATCAGA GTAATATGTG CTGAAGAACC TTATATTTGT AAGGACTITC
                                                                             1500
       CTGAAACCAA CAATATTTTG AAAATAGTAG CTGATTTTTC TGCAAGTGTT AAAAAGCCAC
                                                                             1560
       ATACCCTATT ACAGAGAGTC AAAGCCTGCA CAACAGAAGA GGATCAGGAG AAGCTGATGC
                                                                             1620
       AAATTACCAG TCTGCATTCA CTGAATGCCT TCTTGCTGCC AATTAAAACT GTAGGTGTGC
                                                                             1680
       AGGGTGACTG TCGTTCCTAC AGTTACGTGT GTGGAATCTC CAGTAAAGAT GAACCTGACT
                                                                             1740
       GGGAATCACT TATTTTTCTG GCTAGGCTTA TACCTCGCAT GTGTCACAAC GTTAACAGAG
                                                                             1800
10
       TTGTTTATAT ATTTGGCCCA CCAGTTAAAG AACCTCCTAC AGATGTTACT CCCACTTTCT
                                                                             1860
       TGACAACAGG GGTGCTCAGT ACTTTACGCC AAGCTGATTT TGAGGCCCAT AACATTCTCA
                                                                             1920
       GGGAGTCTGG GTATGCTGGG AAAATCAGCC AGATGCCGGT GATTTTGACA CCATTACATT
                                                                             1980
       TTGATCGGGA CCCACTTCAA AAGCAGCCTT CATGCCAGAG ATCTGTGGTT ATTCGAACCT
                                                                             2040
                                                                             2100
       TTATTACTAG TGACTTCATG ACTGGTATAC CTGCAACACC TGGCAATGAG ATCCCTGTAG
15
       AGGTGGTATT AAAGATGGTC ACTGAGATTA AGAAGATTCC TGGTATTTCT CGAATTATGT
                                                                             2160
       ATGACTTAAC ATCAAAGCCC CCAGGAACTA CTGAGTGGGA GTAATAAACT TC
       Seq ID NO: 365 Protein sequence
       Protein Accession #:
                                  AAA60331
20
                              21 '
                                                                51
                                         31
       MALCNGDSKL ENAGGDLKDG HHHYEGAVVI LDAGAQYGKV IDRRVRELFV QSEIFPLETP
       AFAIKEQGFR AIIISGGPNS VYAEDAPWFD PAIFTIGKPV LGICYGMQMM NKVFGGTVHK
25
       KSVREDGVFN ISVDNTCSLF RGLQXEEVVL LTHGDSVDKV ADGFKVVARS GNIVAGIANE
       SKKLYGAQFH PEVGLTENGK VILKNFLYDI AGCSGTFTVQ NRELECIREI KERVGTSKVL
VLLSGGVDST VCTALLNRAL NQEQVIAVHI DNGFMRKRES QSVEEALKKL GIQVKVINAA
                                                                              240
                                                                              300
       HSFYNGTTTL PISDEDRTPR KRISKTLNMT TSPEEKRKII GDTFVKIANE VIGEMNLKPE
                                                                              360
       EVFLAOGTLR POLIESASLV ASGKAELIKT HHNDTELIRK LREEGKVIEP LKOFHKDEVR
                                                                              420
30
       ILGRELGLPE ELVSRHPFPG PGLAIRVICA EEPYICKDFP ETNNILKIVA DFSASVKKPH
                                                                              480
       TLLORYKACT TEEDOEKLMO ITSLHSLNAF LLPIKTVGVQ GDCRSYSYVC GISSKDEPDW
                                                                              540
       ESLIFLARLI PRMCHNVNRV VYIFGPPVKE PPTDVTPTFL TTGVLSTLRQ ADFEAHNILR
                                                                              600
       ESGYAGKISO MPVILTPLHF DRDPLQKQPS CQRSVVIRTF ITSDFMTGIP ATPGNEIPVE
                                                                              660
       VVLKMVTEIK KIPGISRIMY DLTSKPPGTT EWE
35
       Seq ID NO: 366 DNA sequence
       Nucleic Acid Accession #: NM_004219
       Coding sequence:
                                  46-654
40
                                         31
                                                     41
                                                                51
       GCGGCCTCAG ATGAATGCGG CTGTTAAGAC CTGCAATAAT CCAGAATGGC TACTCTGATC
       TATGTTGATA AGGAAAATGG AGAACCAGGC ACCCGTGTGG TTGCTAAGGA TGGGCTGAAG
45
       CTGGGGTCTG GACCTTCAAT CAAAGCCTTA GATGGGAGAT CTCAAGTTTC AACACCACGT
       TTTGGCAAAA CGTTCGATGC CCCACCAGCC TTACCTAAAG CTACTAGAAA GGCTTTGGGA
                                                                              240
       ACTGTCAACA GAGCTACAGA AAAGTCTGTA AAGACCAAGG GACCCCTCAA ACAAAAACAG
                                                                              300
       CCAAGCTTTT CTGCCAAAAA GATGACTGAG AAGACTGTTA AAGCAAAAAG CTCTGTTCCT
                                                                              360
       GCCTCAGATG ATGCCTATCC AGAAATAGAA AAATTCTTTC CCTTCAATCC TCTAGACTTT
                                                                              420
50
       GAGAGTTTTG ACCTGCCTGA AGAGCACCAG ATTGCGCACC TCCCCTTGAG TGGAGTGCCT
                                                                              480
       CTCATGATCC TTGACGAGGA GAGAGAGCTT GAAAAGCTGT TTCAGCTGGG CCCCCCTTCA
                                                                              540
       CCTGTGAAGA TGCCCTCTCC ACCATGGGAA TCCAATCTGT TGCAGTCTCC TTCAAGCATT
                                                                              .600
       CTGTCGACCC TGGATGTTGA ATTGCCACCT GTTTGCTGTG ACATAGATAT TTAAATTTCT
                                                                              660
       TAGTGCTTCA GAGTTTGTGT GTATTTGTAT TAATAAAGCA TTCTTCAACA GAAAAAAAAA
                                                                              720
55
       AAAAAAA
       Seq ID NO: 367 Protein sequence
       Protein Accession #:
                                  NP_004210
60
                                         31
                                                                 51
       MATLIYVDKE NGEPGTRVVA KDGLKLGSGP SIKALDGRSQ VSTPRFGKTF DAPPALPKAT
                                                                               60
       RKALGTVNRA TEKSVKTKGP LKQKQPSFSA KKMTEKTVKA KSSVPASDDA YPEIEKFFPF
                                                                              120
       NPLDFESFDL PEEHQIAHLP LSGVPLMILD EERELEKLFQ LGPPSPVKMP SPPWESNLLQ
65
       SPSSILSTLD VELPPVCCDI DI
       Seq ID NO: 368 DNA sequence
       Nucleic Acid Accession #: NM_000597
70
                                  118-1104
       Coding sequence:
                              21
       ATTCGGGGCG AGGGAGGAGG AAGAAGCGGA GGAGGCGGCT CCCGCTCGCA GGGCCGTGCA
75
       CCTGCCCGCC CGCCCGCTCG CTCGCTCGCC CGCCGCGCCG CGCTGCCGAC CGCCAGCATG
                                                                              120
       CTGCCGAGAG TGGGCTGCCC CGCGCTGCCG CTGCCGCCGC CGCCGCTGCT GCCGCTGCTG
                                                                              180
       CCGCTGCTGC TGCTGCTACT GGGCGCGAGT GGCGGCGCGC GCGGGGCGCG CGCGGAGGTG
                                                                              240
       CTGTTCCGCT GCCCGCCCTG CACACCCGAG CGCCTGGCCG CCTGCGGGCC CCCGCCGGTT
                                                                              300
       GCGCCGCCCG CCGCGGTGGC CGCAGTGGCC GGAGGCGCCC GCATGCCATG CGCGGAGCTC
                                                                              360
       GTCCGGGAGC CGGGCTGCGG CTGCTGCTCG GTGTGCGCCC GGCTGGAGGG CGAGGCGTGC
80
       GGCGTCTACA CCCCGCGCTG CGGCCAGGGG CTGCGCTGCT ATCCCCACCC GGGCTCCGAG
                                                                              480
       CTGCCCCTGC AGGCGCTGGT CATGGGCGAG GGCACTTGTG AGAAGCGCCG GGACGCCGAG
       TATGGCGCCA GCCCGGAGCA GGTTGCAGAC AATGGCGATG ACCACTCAGA AGGAGGCCTG
       GTGGAGAACC ACGTGGACAG CACCATGAAC ATGTTGGGCG GGGGAGGCAG TGCTGGCCGG
                                                                               660
85
        AAGCCCCTCA AGTCGGGTAT GAAGGAGCTG GCCGTGTTCC GGGAGAAGGT CACTGAGCAG
                                                                               720
       CACCGGCAGA TGGGCAAGGG TGGCAAGCAT CACCTTGGCC TGGAGGAGCC CAAGAAGCTG
                                                                               780
        CGACCACCCC CTGCCAGGAC TCCCTGCCAA CAGGAACTGG ACCAGGTCCT GGAGCGGATC
                                                                              840
```

```
WO 02/086443
       TCCACCATGC GCCTTCCGGA TGAGCGGGGC CCTCTGGAGC ACCTCTACTC CCTGCACATC
                                                                                 900
       CCCAACTGTG ACAAGCATGG CCTGTACAAC CTCAAACAGT GCAAGATGTC TCTGAACGGG
                                                                                 960
       CAGCGTGGGG AGTGCTGGTG TGTGAACCCC AACACCGGGA AGCTGATCCA GGGAGCCCCC
                                                                                1020
       ACCATCOGGG GGGACCCCGA GTGTCATCTC TTCTACAATG AGCAGCAGGA GGCTTGCGGG
                                                                                1080
       GTGCACACCC AGCGGATGCA GTAGACCGCA GCCAGCCGGT GCCTGGCGCC CCTGCCCCCC
                                                                                1140
       GCCCCTCTCC AAACACCGGC AGAAAACGGA GAGTGCTTGG GTGGTGGGTG CTGGAGGATT
                                                                                1200
       TTCCAGTTCT GACACACGTA TTTATATTTG GAAAGAGACC AGCACCGAGC TCGGCACCTC
                                                                                1260
       CCCGGCCTCT CTCTTCCCAG CTGCAGATGC CACACCTGCT CCTTCTTGCT TTCCCCGGGG
       GAGGAAGGGG GTTGTGGTCG GGGAGCTGGG GTACAGGTTT GGGGAGGGGG AAGAGAAATT
10
       TTTATTTTTG AACCCCTGTG TCCCTTTTGC ATAAGATTAA AGGAAGGAAA AGT
       Seg ID NO: 369 Protein seguence
                                   NP_000588
       Protein Accession #:
15
                                                                   51
       MLPRVGCPAL PLPPPPLLPL LPLLLLLGA SGGGGGARAE VLFRCPPCTP ERLAACGPPP
                                                                                  60
       VAPPAAVAAV AGGARMPCAE LVREPGCGCC SVCARLEGEA CGVYTPRCGQ GLRCYPHPGS
                                                                                 120
       ELPLQALVMG EGTCEKRRDA EYGASPEQVA DNGDDHSEGG LVENHVDSTM NMLGGGGSAG
                                                                                 180
20
       RKPLKSGMKE LAVPREKVTE QHRQMGKGGK HHLGLEEPKK LRPPPARTPC QQELDQVLER
                                                                                 240
       ISTMRLPDER GPLEHLYSLH IPNCDKHGLY NLKQCKMSLN GQRGECWCVN PNTGKLIQGA
                                                                                 300
       PTIRGDPECH LFYNEQQEAC GVHTQRMQ
       Seg ID NO: 370 DNA seguence
25
       Nucleic Acid Accession #: NM_004264
       Coding sequence: 6-440
                                                       41
                               21
                                           31
30
       GGAACATGGC GGATCGGCTC ACGCAGCTTC AGGACGCTGT GAATTCGCTT GCAGATCAGT
       TTTGTAATGC CATTGGAGTA TTGCAGCAAT GTGGTCCTCC TGCCTCTTTC AATAATATTC AGACAGCAAT TAACAAAGAC CAGCCAGCTA ACCCTACAGA AGAGTATGCC CAGCTTTTTG
       CAGCACTGAT TGCACGAACA GCAAAAGACA TTGATGTTTT GATAGATTCC TTACCCAGTG
                                                                                 240
       AAGAATCTAC AGCTGCTTTA CAGGCTGCTA GCTTGTATAA GCTAGAAGAA GAAAACCATG
                                                                                 300
35
       AAGCTGCTAC ATGTGTGGAG GATGTTGTTT ATCGAGGAGA CATGCTTCTG GAGAAGATAC
                                                                                 360
       AAAGCGCACT TGCTGATATT GCACAGTCAC AGCTGAAGAC AAGAAGTGGT ACCCATAGCC
                                                                                 420
       AGTCTCTTCC AGACTCATAG CATCAGTGGA TACCATGTGG CTGAGAAAAG AACTGTTTGA
                                                                                 480
       GTGCCATTAA GAATTCTGCA TCAGACTTAG ATACAAGCCT TACCAACAAT TACAGAAACA
                                                                                 540
       TTAAACACTA TGACACATTA CCTTTTTAGC TATTTTTAAT AGTCTTCTAT TTTCACTCTT
                                                                                 600
40
       GATAAGCTTA TAAATCATGA TTGAATCAGC TTTAAAGCAT CATACCATCA TTTTTTAACT
                                                                                 660
       GAGTGAAATT ATTAAGGCAT GTAATACATT AATGAACATA ATATAAGGAA ACATATGTAA
                                                                                 720
       AATTCTGTTA TGACATAATT TATGTCTCCA TTTTGTTGTA TTGGCCAGTA CTTTTACAAT
                                                                                 780
45
       Seq ID NO: 371 Protein sequence
       Protein Accession #:
                                   NP_004255
50
       MADRITOLOD AVNSLADOFC NAIGVLOOCG PPASFNNIQT AINKDOPANP TEEYAQLFAA
       LIARTAKDID VLIDSLPSEE STAALQAASL YKLEEENHEA ATCVEDVVYR GDMLLEKIQS
       ALADIAOSOL KTRSGTHSQS LPDS
       Seq ID NO: 372 DNA sequence
55
       Nucleic Acid Accession #: AJ271091
       Coding sequence: 1-1113
                                                                   51
60
       ATGGAGAATC AGGTGTTGAC GCCGCATGTC TACTGGGCTC AGCGACACCG CGAGCTATAT
                                                                                  60
       CTGCGCGTGG AGCTGAGTGA CGTACAGAAC CCTGCCATCA GCATCACTGA AAACGTGCTG
                                                                                 120
       CATTTCAAAG CTCAAGGACA TGGTGCCAAA GGAGACAATG TCTATGAATT TCACCTGGAG
                                                                                 180
       TTCTTAGACC TTGTGAAACC AGAGCCTGTT TACAAACTGA CCCAGAGGCA GGTAAACATT
                                                                                 240
       ACAGTACAGA AGAAAGTGAG TCAGTGGTGG GAGAGACTCA CAAAGCAGGA AAAGCGACCA
CTGTTTTTGG CTCCTGACTT TGATCGTTGG CTGGATGAAT CTGATGCGGA AATGGAGCTC
                                                                                 300
65
                                                                                 360
       AGAGCTAAGG AAGAAGAGCG CCTAAATAAA CTCCCACTGG AAAGCGAAGG CTCTCCTGAA ACTCTTACAA ACTTAAGGAA AGGATACCTG TTTATGTATA ATCTTGTGCA ATTCTTGGGA
                                                                                 420
                                                                                 480
       TTCTCCTGGA TCTTTGTCAA CCTGACTGTG CGATTCTGTA TCTTGGGAAA AGAGTCCTTT
       TATGACACAT TCCATACTGT GGCTGACATG ATGTATTTCT GCCAGATGCT GGCAGTTGTG
                                                                                 600
70
       GAAACTATCA ATGCAGCAAT TGGAGTCACT ACGTCACCGG TGCTGCCTTC TCTGATCCAG
CTTCTTGGAA GAAATTTTAT TTTGTTTATC ATCTTTGGCA CCATGGAAGA AATGCAGAAC
                                                                                 660
                                                                                 720
       AAAGCTGTGG TTTTCTTTGT GTTTTATTTG TGGAGTGCAA TTGAAATTTT CAGGTACTCT
                                                                                 780
       TTCTACATGC TGACGTGCAT TGACATGGAT TGGAAGGTGC TCACATGGCT TCGTTACACT
                                                                                 840
       CTGTGGATTC CCTTATATCC ACTGGGATGT TTGGCGGAAG CTGTCTCAGT GATTCAGTCC
                                                                                 900
75
       ATTCCAATAT TCAATGAGAC CGGACGATTC AGTTTCACAT TGCCATATCC AGTGAAAATC
                                                                                 960
       AAAGTTAGAT TTTCCTTTTT TCTTCAGATT TATCTTATAA TGATATTTTT AGGTTTATAC
                                                                                1020
       ATAAATTTTC GTCACCTTTA TAAACAGCGC AGACTGAAAA TGAGGGCAGG CGCAGTGGCT
       CATGCCTGTG ATCCCAGCGC TTTGGGAGGC TGA
80
       Seq ID NO: 373 Protein sequence
       Protein Accession #: CAB69070
                                                                   51
                                           31
85
        MENOVLTPHV YWAORHRELY LRVELSDVON PAISITENVL HFKAOGHGAK GDNVYEFHLE
                                                                                  60
        FLDLVKPEPV YKLTOROVNI TVOKKVSOWW ERLTKOEKRP LFLAPDFDRW LDESDAEMEL
                                                                                 120
        RAKEEERLNK LRLESEGSPE TLTNLRKGYL FMYNLVQFLG FSWIFVNLTV RFCILGKESF
```

```
YDTFHTVADM MYFCQMLAVV ETINAAIGVT TSPVLPSLIQ LLGRNFILFI IFGTMEEMQN
                                                                           240
       KAVVPFVFYL WSAIEIFRYS FYMLTCIDMD WKVLTWLRYT LWIPLYPLGC LAEAVSVIQS
                                                                           300
       IPIFNETGRF SFTLPYPVKI KVRFSPFLQI YLIMIFLGLY INFRHLYKQR RLKMRAGAVA
                                                                           360
       HACDPSALGG
 5
       Seg ID NO: 374 DNA sequence
       Nucleic Acid Accession #: NM_016395
       Coding sequence: 1-1113
10
                                                               51
                                        31
       ATGGAGAATC AGGTGTTGAC GCCGCATGTC TACTGGGCTC AGCGACACCG CGAGCTATAT
       CTGCGCGTGG AGCTGAGTGA CGTACAGAAC CCTGCCATCA GCATCACTGA AAACGTGCTG
                                                                            120
       CATTTCAAAG CTCAAGGACA TGGTGCCAAA GGAGACAATG TCTATGAATT TCACCTGGAG
                                                                            180
15
       TTCTTAGACC TTGTGAAACC AGAGCCTGTT TACAAACTGA CCCAGAGGCA GGTAAACATT ACAGTACAGA AGAAAGTGAG TCAGTGGTGG GAGAGACTCA CAAAGCAGGA AAAGCGACCA
                                                                            240
       CTGTTTTTGG CTCCTGACTT TGATCGTTGG CTGGATGAAT CTGATGCGGA AATGGAGCTC
                                                                            360
       AGAGCTAAGG AAGAAGAGCG CCTAAATAAA CTCCGACTGG AAAGCGAAGG CTCTCCTGAA
       ACTOTTACAA ACTTAAGGAA AGGATACCTG TTTATGTATA ATCTTGTGCA ATTCTTGGGA
20
                                                                            480
       TTCTCCTGGA TCTTTGTCAA CCTGACTGTG CGATTCTGTA TCTTGGGAAA AGAGTCCTTT
                                                                            540
       TATGACACAT TCCATACTGT GGCTGACATG ATGTATTTCT GCCAGATGCT GGCAGTTGTG
                                                                            600
       GAAACTATCA ATGCAGCAAT TGGAGTCACT ACGTCACCGG TGCTGCCTTC TCTGATCCAG
                                                                            660
       CTTCTTGGAA GAAATTTTAT TTTGTTTATC ATCTTTGGCA CCATGGAAGA AATGCAGAAC
                                                                            720
25
       AAAGCTGTGG TTTTCTTTGT GTTTTATTTG TGGAGTGCAA TTGAAATTTT CAGGTACTCT
                                                                            780
       TTCTACATGC TGACGTGCAT TGACATGGAT TGGAAGGTGC TCACATGGCT TCGTTACACT
                                                                            840
       CTGTGGATTC CCTTATATCC ACTGGGATGT TTGGCGGAAG CTGTCTCAGT GATTCAGTCC
                                                                            900
       ATTCCAATAT TCAATGAGAC CGGACGATTC AGTTTCACAT TGCCATATCC AGTGAAAATC
                                                                           960
       AAAGTTAGAT TITCCTTTTT TCTTCAGATT TATCTTATAA TGATATTTTT AGGTTTATAC
                                                                           1020
       ATAAATTITC GTCACCTTTA TAAACAGCGC AGACTGAAAA TGAGGGCAGG CGCAGTGGCT
30
                                                                          1080
       CATGCCTGTG ATCCCAGCGC TTTGGGAGGC TGA
       Seq ID NO: 375 Protein sequence
35
                                NP_057479
       Protein Accession #:
                             21
       MENQVLTPHV YWAORHRELY LRVELSDVQN PAISITENVL HFKAQGHGAK GDNVYEFHLE
       FLDLVKPEPV YKLTQRQVNI TVQKKVSQWW ERLTKQEKRP LFLAPDFDRW LDESDAEMEL
40
       RAKEEERLNK LRLESEGSPE TLTNLRKGYL FMYNLVOFLG FSWIFVNLTV RFCILGKESF
YDTFHTVADM MYFCQMLAVV ETINAAIGVT TSPVLPSLIQ LLGRNFILPI IFGTMEEMON
                                                                            180
                                                                            240
       KAVVFFVFYL WSAIEIFRYS FYMLTCIDMD WKVLTWLRYT LWIPLYPLGC LVEAVSVIQS
                                                                            300
       IPIFNETGRF SFTLPYPVKI KVRFSFFLQI YLIMIFLGLY INFRHLYKQR RRRYGKKRKR
45
       STKKKDLDGF LPV
       Seq ID NO: 376 DNA sequence
       Nucleic Acid Accession #: NM_005987
       Coding sequence:
50
                                                               51
                             21
                                        31
       60
       GTGAAACAAC CTTGCCAGCC TCCACCCCAG GAACCATGCA TCCCCAAAAC CAAGGAGCCC
                                                                            120
       TGCCAACCCA AGGTGCCTGA GCCCTGCCAC CCCAAAGTGC CTGAGCCCTG CCAGCCCAAG
55
       ATTCCAGAGC CCTGCCAGCC CAAGGTGCCT GAGCCCTGCC CTTCAACGGT CACTCCAGCA
       CCAGCCCAGC AGAAGACCAA GCAGAAGTAA
       Seq ID NO: 377 Protein sequence
60
                                 NP_005978
       Protein Accession #:
                                         31
                                                    41
                                                               51
                             21
       MNSQQQKQPC TPPPQPQQQQ VKQPCQPPPQ EPCIPKTKEP CQPKVPEPCH PKVPEPCQPK
65
       IPEPCOPKVP EPCPSTVTPA PAQQKTKQK
       Seq ID NO: 378 DNA sequence
       Nucleic Acid Accession #: NM_002105
70
       Coding sequence:
                                 74-505
       ACAGCAGTTA CACTGCGGCG GGCGTCTGTT CTAGTGTTTG AGCCGTCGTG CTTCACCGGT
       CTACCTCGCT AGCATGTCGG GCCGCGGCAA GACTGGCGGC AAGGCCCGCG CCAAGGCCAA
75
                                                                            120
       GTCGCGCTCG TCGCGCGCCG GCCTCCAGTT CCCAGTGGGC CGTGTACACC GGCTGCTGCG
       GAAGGGCCAC TACGCCGAGC GCGTTGGCGC CGGCGCCCA GTGTACCTGG CGGCAGTGCT
       GGAGTACCTC ACCGCTGAGA TCCTGGAGCT GGCGGGCAAT GCGGCCCGCG ACAACAAGAA
       GACGCGAATC ATCCCCCGCC ACCTGCAGCT GGCCATCCGC AACGACGAGG AGCTCAACAA
80
       GCTGCTGGGC GGCGTGACGA TCGCCCAGGG AGGCGTCCTG CCCAACATCC AGGCCGTGCT
       GCTGCCCAAG AAGACCAGCG CCACCGTGGG GCCGAAGGCG CCCTCGGGCG GCAAGAAGGC
                                                                            480
       CACCCAGGCC TCCCAGGAGT ACTAAGAGGG CCCGCGCCGC GGCCGGCCGC CCCAGCTCCC
       CATGCCACCA CAAAGGCCCT TTTAAGGGCC ACCACCGCCC TCATGGAAAG AGCTGAGCCG
                                                                            600
       660
85
       TOGOGGOOG GOOTOGAGTO COOGCOGGO COOGCTCCCG TOCOGCACCG COTGCCGCGT
                                                                            720
                                                                            780
       CGGCCTCGGG CCTGCCCTGT CCGCCGTCCG CCCTCCGGTA GGGTTCGGGC CTTCCGGATG
        CGGCTTGGGC GCTCTTCGGG GACCTCCGTG GCGCGGAAGA CCCGAGCCTG CCGGGGGGAG
                                                                            840
```

PCT/US02/12476

```
WO 02/086443
      GCCGGCGGCG CCGCACCTGC CCGCCTCGGC GTTCGTGACT CAGCCGCCCC ATCCCGAGTC
      GCTAAGGGGC TGCGGGGAGG CCGCAGCACC TTCTGGAAGA CTTGGCCTTC CGCTCTGACG
      CAGGGCCGAG GTGGGCAGTC CAGGCCGAGA GCCGGCGGCC CTGAAGGTGA GTGAGGCCCT
                                                                          1020
      CGGCAGCTGC AGCCGGGGTG TCTGGTACCC CCCCGGCGTG GTGCTTAGCC CAGGACTTTC
                                                                          1080
      AGACGGCCGC TGGCCGGGAG GCTTTGGTGG GAGAGACGCG ATCGCCGATT TCGGTCTGGC
 5
                                                                          1140
      GCCCCTTCTG CGGCCGGGAC CCAGGCCTTT CACATCAGCT CTCCCTCCAT CTTCATTCAT
                                                                          1200
      AGGTCTGCGC TGGGGCCGGG ACGAAGCACT TGGTAACAGG CACATCTTCC TCCCGAGTGA
                                                                          1260
      CTGCCTCCTA GGAGGACATT TAGGGGAGGG CAGAGGCCTG CAGTTTGGCT TCACGGCTGG
                                                                          1320
      CTATGTGGAC AGCAAGAGTC GTTTTGCGGA ACGCGACTGG CAGCCAGGCC TGTCGGGCCC
                                                                          1380
10
      CCGACGCCGC CCCATTTCCC TTCCAGCAAA CTCAACTCGG CAATCCAAGC ACCTAGATAC
                                                                          1440
      CAGCACAAGT CGGTTAATCC CTGTCTGGAC TGAGCCTCCG TTGGCTTCTG AACTGGAATT
                                                                          1500
      CTGCAGCTAA CCCTTCCACG ACTAGAACCT TAGGCATTGG GGAGTTTTAG ATGGACTAAT
      TTTATTAAAG GATTGTTTTT TTTTT
15
      Seq ID NO: 379 Protein sequence
      Protein Accession #: NP_002096
                            21
      MSGRGKTGGK ARAKAKSRSS RAGLOFPVGR VHRLLRKGHY AERVGAGAPV YLAAVLEYLT
20
       AEILELAGNA ARDNKKTRII PRHLQLAIRN DEELNKLLGG VTIAQGGVLP NIQAVLLPKK
       TSATVGPKAP SGGKKATQAS QEY
25
      Seq ID NO: 380 DNA sequence
      Nucleic Acid Accession #: AL136942
                                184-864
      Coding sequence:
                 11
                            21
30
      ACGCGTCCGG CAGAAGCTCG GAGCTCTCGG GGTATCGAGG AGGCAGGCCC GCGGGCGCAC
      GGGCGAGCGG GCCGGGAGCC GGAGCGGCGG AGGAGCCGGC AGCAGCGGCG CGGCGGGCTC
                                                                           120
      CAGGCGAGGC GGTCGACGCT CCTGAAAACT TGCGCGCGCG CTCGCGCCAC TGCGCCCCGGA
                                                                           180
      GCGATGAAGA TGGTCGCGCC CTGGACGCGG TTCTACTCCA ACAGCTGCTG CTTGTGCTGC
                                                                           240
35
      CATGTCCGCA CCGGCACCAT CCTGCTCGGC GTCTGGTATC TGATCATCAA TGCTGTGGTA
                                                                           300
       CTGTTGATTT TATTGAGTGC CCTGGCTGAT CCGGATCAGT ATAACTTTTC AAGTTCTGAA
                                                                           360
       CTGGGAGGTG ACTTTGAGTT CATGGATGAT GCCAACATGT GCATTGCCAT TGCGATTTCT
                                                                           420
       CTTCTCATGA TCCTGATATG TGCTATGGCT ACTTACGGAG CGTACAAGCA ACGCGCAGCC
                                                                           480
       TGGATCATCC CATTCTTCTG TTACCAGATC TTTGACTTTG CCCTGAACAT GTTGGTTGCA
                                                                           540
       ATCACTGTGC TTATTTATCC AAACTCCATT CAGGAATACA TACGGCAACT GCCTCCTAAT
40
                                                                           600
       TTTCCCTACA GAGATGATGT CATGTCAGTG AATCCTACCT GTTTGGTCCT TATTATTCTT
                                                                           660
       CTGTTTATTA GCATTATCTT GACTTTTAAG GGTTACTTGA TTAGCTGTGT TTGGAACTGC
                                                                            720
       TACCGATACA TCAATGGTAG GAACTCCTCT GATGTCCTGG TTTATGTTAC CAGCAATGAC
                                                                            780
       ACTACGGTGC TGCTACCCCC GTATGATGAT GCCACTGTGA ATGGTGCTGC CAAGGAGCCA
                                                                            840
       CCGCCACCTT ACGTGTCTGC CTAAGCCTTC AAGTGGGCGG AGCTGAGGGC AGCAGCTTGA
45
                                                                            900
       CTTTGCAGAC ATCTGAGCAA TAGTTCTGTT ATTTCACTTT TGCCATGAGC CTCTCTGAGC
                                                                           960
                                                                          1020
       TTGTTTGTTG CTGAAATGCT ACTTTTTAAA ATTTAGATGT TAGATTGAAA ACTGTAGTTT
       TCAACATATG CTTTGCTAGA ACACTGTGAT AGATTAACTG TAGAATTCTT CCTGTACGAT
                                                                          1080
       TGGGGATATA ACGGGCTTCA CTAACCTTCC CTAGGCATTG AAACTTCCCC CAAATCTGAT
                                                                          1140
50
       GGACCTAGAA GTCTGCTTTT GTACCTGCTG GGCCCCAAAG TTGGGCATTT TTCTCTCTGT
                                                                          1200
       TCCCTCTCTT TTGAAAATGT AAAATAAAAC CAAAAATAGA CAACTTTTTC TTCAGCCATT
                                                                          1260
       CCAGCATAGA GAACAAAACC TTATGGAAAC AGGAATGTCA ATTGTGTAAT CATTGTTCTA
                                                                          1320
       ATTAGGTAAA TAGAAGTCCT TATGTATGTG TTACAAGAAT TTCCCCCACA ACATCCTTTA
                                                                          1380
                                                                           1440
       TGACTGAAGT TCAATGACAG TTTGTGTTTG GTGGTAAAGG ATTTTCTCCA TGGCCTGAAT
       TAAGACCATT AGAAAGCACC AGGCCGTGGG AGCAGTGACC ATCTACTGAC TGTTCTTGTG
55
                                                                           1500
       GATCTTGTGT CCAGGGACAT GGGGTGACAT GCCTCGTATG TGTTAGAGGG TGGAATGGAT
                                                                           1560
       GTGTTTGGCG CTGCATGGGA TCTGGTGCCC CTCTTCTCCT GGATTCACAT CCCCACCCAG
                                                                           1620
       GGCCCGCTTT TACTAAGTGT TCTGCCCTAG ATTGGTTCAA GGAGGTCATC CAACTGACTT
                                                                           1680
       TATCAAGTGG AATTGGGATA TATTTGATAT ACTTCTGCCT AACAACATGG AAAAGGGTTT
                                                                           1740
       TCTTTTCCCT GCAAGCTACA TCCTACTGCT TTGAACTTCC AAGTATGTCT AGTCACCTTT
60
                                                                           1800
       TAAAATGTAA ACATTTCAG AAAAATGAGG ATTGCCTTCC TTGTATGCGC TTTTTACCTT
                                                                           1860
       GACTACCTGA ATTGCAAGGG ATTTTTATAT ATTCATATGT TACAAAGTCA GCAACTCTCC
       TGTTGGTTCA TTATTGAATG TGCTGTAAAT TAAGTCGTTT GCAATTAAAA CAAGGTTTGC
       CCACATCCAA AAAAAAAAAA AAAAA
65
       Seg ID NO: 381 Protein sequence
                                CAB66876
       Protein Accession #:
70
       MKMVAPWTRF YSNSCCLCCH VRTGTILLGV WYLIINAVVL LILLSALADP DQYNFSSSEL
                                                                             60
       GGDFEFMDDA NMCIAIAISL LMILICAMAT YGAYKQRAAW IIPFFCYQIF DFALNMLVAI
                                                                            120
       TVLIYPNSIQ EYIRQLPPNF PYRDDVMSVN PTCLVLIILL PISIILTFKG YLISCVWNCY
       RYINGRNSSD VLVYVTSNDT TVLLPPYDDA TVNGAAKEPP PPYVSA
75
       Seg ID NO: 382 DNA sequence
       Nucleic Acid Accession #: NM_002510
                                92-1774
       Coding sequence:
80
       CAGATGCCAG AAGAACACTG TTGCTCTTGG TGGACGGGCC CAGAGGAATT CAGAGTTAAA
       CCTTGAGTGC CTGCGTCCGT GAGAATTCAG CATGGAATGT CTCTACTATT TCCTGGGATT
                                                                            120
       TCTGCTCCTG GCTGCAAGAT TGCCACTTGA TGCCGCCAAA CGATTTCATG ATGTGCTGGG
       CAATGAAAGA CCTTCTGCTT ACATGAGGGA GCACAATCAA TTAAATGGCT GGTCTTCTGA
85
                                                                            240
       TGAAAATGAC TGGAATGAAA AACTCTACCC AGTGTGGAAG CGGGGAGACA TGAGGTGGAA
                                                                            300
       AAACTCCTGG AAGGGAGGCC GTGTGCAGGC GGTCCTGACC AGTGACTCAC CAGCCCTCGT
                                                                            360
```

```
420
       GGGCTCAAAT ATAACATTTG CGGTGAACCT GATATTCCCT AGATGCCAAA AGGAAGATGC
       CAATGGCAAC ATAGTCTATG AGAAGAACTG CAGAAATGAG GCTGGTTTAT CTGCTGATCC
                                                                                 480
       ATATGTTTAC AACTGGACAG CATGGTCAGA GGACAGTGAC GGGGAAAATG GCACCGGCCA
                                                                                 540
       AAGCATCAT AACGTCTTCC CTGATGGGAA ACCTTTTCCT CACCACCCCG GATGGAGAAG
ATGGAATTTC ATCTACGTCT TCCACACACT TGGTCAGTAT TTCCAGAAAT TGGGACGATG
                                                                                 600
                                                                                 660
       TTCAGTGAGA GTTTCTGTGA ACACAGCCAA TGTGACACTT GGGCCTCAAC TCATGGAAGT
                                                                                 720
       GACTGTCTAC AGAAGACATG GACGGGCATA TGTTCCCATC GCACAAGTGA AAGATGTGTA
                                                                                 780
       CGTGGTAACA GATCAGATTC CTGTGTTTGT GACTATGTTC CAGAAGAACG ATCGAAATTC
                                                                                 840
       ATCCGACGAA ACCTTCCTCA AAGATCTCCC CATTATGTTT GATGTCCTGA TTCATGATCC
                                                                                 900
10
                                                                                 960
       TAGCCACTIC CICAATTATI CIACCATTAA CTACAAGTGG AGCTICGGGG ATAATACTGG
       CCTGTTTGTT TCCACCAATC ATACTGTGAA TCACACGTAT GTGCTCAATG GAACCTTCAG
                                                                                1020
       CCTTAACCTC ACTGTGAAAG CTGCAGCACC AGGACCTTGT CCGCCACCGC CACCACCACC
                                                                                1080
       CAGACCTTCA AAACCCACCC CTTCTTTAGG ACCTGCTGGT GACAACCCCC TGGAGCTGAG
                                                                                1140
       TAGGATTCCT GATGAAAACT GCCAGATTAA CAGATATGGC CACTTTCAAG CCACCATCAC
                                                                                1200
       AATTGTAGAG GGAATCTTAG AGGTTAACAT CATCCAGATG ACAGACGTCC TGATGCCGGT
15
                                                                                1260
       GCCATGGCCT GAAAGCTCCC TAATAGACTT TGTCGTGACC TGCCAAGGGA GCATTCCCAC
       GGAGGTCTGT ACCATCATTT CTGACCCCAC CTGCGAGATC ACCCAGAACA CAGTCTGCAG
                                                                                1380
       CCCTGTGGAT GTGGATGAGA TGTGTCTGCT GACTGTGAGA CGAACCTTCA ATGGGTCTGG
       GACGTACTGT GTGAACCTCA CCCTGGGGGA TGACACAAGC CTGGCTCTCA CGAGCACCCT
GATTTCTGTT CCTGACAGAG ACCCAGCCTC GCCTTTAAGG ATGGCAAACA GTGCCCTGAT
20 .
       CTCCGTTGGC TGCTTGGCCA TATTTGTCAC TGTGATCTCC CTCTTGGTGT ACAAAAAACA CAAGGAATAC AACCCAATAG AAAATAGTCC TGGGAATGTG GTCAGAAGCA AAGGCCTGAG
       TGTCTTTCTC AACCGTGCAA AAGCCGTGTT CTTCCCGGGA AACCAGGAAA AGGATCCGCT
                                                                                1740
       ACTCAAAAAC CAAGAATTTA AAGGAGTTTC TTAAATTTCG ACCTTGTTTC TGAAGCTCAC
                                                                                1800
25
       TTTTCAGTGC CATTGATGTG AGATGTGCTG GAGTGGCTAT TAACCTTTTT TTCCTAAAGA
                                                                                1860
       TTATTGTTAA ATAGATATTG TGGTTTGGGG AAGTTGAATT TTTTATAGGT TAAATGTCAT
                                                                                1920
       TTTAGAGATG GGGAGAGGGA TTATACTGCA GGCAGCTTCA GCCATGTTGT GAAACTGATA
                                                                                1980
       AAAGCAACTT AGCAAGGCTT CTTTTCATTA TTTTTTATGT TTCACTTATA AAGTCTTAGG
                                                                                2040
       TAACTAGTAG GATAGAAACA CTGTGTCCCG AGAGTAAGGA GAGAAGCTAC TATTGATTAG
                                                                                2100
30
       AGCCTAACCC AGGTTAACTG CAAGAAGAGG CGGGATACTT TCAGCTTTCC ATGTAACTGT
                                                                                2160
       ATGCATAAAG CCAATGTAGT CCAGTTTCTA AGATCATGTT CCAAGCTAAC TGAATCCCAC
                                                                                2220
       TTCAATACAC ACTCATGAAC TCCTGATGGA ACAATAACAG GCCCAAGCCT GTGGTATGAT
                                                                                2280
       GTGCACACTT GCTAGACTCA GAAAAAATAC TACTCTCATA AATGGGTGGG AGTATTTTGG
                                                                                2340
       TGACAACCTA CTTTGCTTGG CTGAGTGAAG GAATGATATT CATATATTCA TTTATTCCAT
                                                                                2400
35
       GGACATTTAG TTAGTGCTTT TTATATACCA GGCATGATGC TGAGTGACAC TCTTGTGTAT
                                                                                2460
       ATTTCCAAAT TTTTGTATAG TCGCTGCACA TATTTGAAAT CATATATTAA GACTTTCCAA
                                                                                2520
       AGATGAGGTC CCTGGTTTTT CATGGCAACT TGATCAGTAA GGATTTCACC TCTGTTTGTA
                                                                                2580
       ACTAAAACCA TCTACTATAT GTTAGACATG ACATTCTTTT TCTCTCCTTC CTGAAAAATA 2640
       AAGTGTGGGA AGAGACAAAA AAAAAAAAA
40
       Seq ID NO: 383 Protein sequence
                                  NP_002501
       Protein Accession #:
                               21
                                                       41
45
       MECLYYFLGF LLLAARLFLD AAKRFHDVLG NERPSAYMRE HNQLNGWSSD ENDWNEKLYP
       VWKRGDMRWK NSWKGGRVQA VLTSDSPALV GSNITFAVNL IFPRCQKEDA NGNIVYEKNC
                                                                                 120
       RNEAGLSADP YVYNWTAWSE DSDGENGTGQ SHHNVFPDGK PFPHHPGWRR WNFIYVFHTL
                                                                                 180
       GOYFOKLGRC SVRVSVNTAN VTLGPQLMEV TVYRRHGRAY VPIAQVKDVY VVTDQIPVFV
                                                                                 240
50
       TMFQKNDRNS SDETFLKDLP IMFDVLIHDP SHFLNYSTIN YKWSFGDNTG LFVSTNHTVN
                                                                                 300
       HTYVLNGTFS LNLTVKAAAP GPCPPPPPPP RPSKPTPSLG PAGDNPLELS RIPDENCQIN
                                                                                 360
       RYGHFQATIT IVEGILEVNI IQMTDVLMPV PWPESSLIDF VVTCQGSIPT EVCTIISDPT
                                                                                 420
       CEITONTVCS PVDVDEMCLL TVRRTFNGSG TYCVNLTLGD DTSLALTSTL ISVPDRDPAS
                                                                                 480
       PLRMANSALI SVGCLAIFVT VISLLVYKKH KEYNPIENSP GNVVRSKGLS VFLNRAKAVF
                                                                                 540
55
       FPGNQEKDPL LKNQEPKGVS
       Seq ID NO: 384 DNA sequence
       Nucleic Acid Accession #: NM_001134
       Coding sequence:
                                   48-1877
60
                                                       41
                                           31
                               21
       TCCATATTGT GCTTCCACCA CTGCCAATAA CAAAATAACT AGCAACCATG AAGTGGGTGG
       AATCAATTTT TTTAATTTTC CTACTAAATT TTACTGAATC CAGAACACTG CATAGAAATG
                                                                                 120
       AATATGGAAT AGCITCCATA TTGGATTCTT ACCAATGTAC TGCAGAGATA AGTTTAGCTG ACCTGGCTAC CATATTTTTT GCCCAGTTTG TTCAAGAAGC CACTTACAAG GAAGTAAGCA
65
                                                                                 180
                                                                                 240
       AAATGGTGAA AGATGCATTG ACTGCAATTG AGAAACCCAC TGGAGATGAA CAGTCTTCAG
                                                                                 300
       GGTGTTTAGA AAACCAGCTA CCTGCCTTTC TGGAAGAACT TTGCCATGAG AAAGAAATTT
                                                                                 360
       TGGAGAAGTA CGGACATTCA GACTGCTGCA GCCAAAGTGA AGAGGGAAGA CATAACTGTT
                                                                                 420
70
       TTCTTGCACA CAAAAAGCCC ACTCCAGCAT CGATCCCACT TTTCCAAGTT CCAGAACCTG
                                                                                 480
       TCACAAGCTG TGAAGCATAT GAAGAAGACA GGGAGACATT CATGAACAAA TTCATTTATG
                                                                                 540
       AGATAGCAAG AAGGCATCCC TTCCTGTATG CACCTACAAT TCTTCTTTGG GCTGCTCGCT
                                                                                 600
                                                                                 660
       ATGACAAAAT AATTCCATCT TGCTGCAAAG CTGAAAATGC AGTTGAATGC TTCCAAACAA
       AGGCAGCAAC AGTTACAAAA GAATTAAGAG AAAGCAGCTT GTTAAATCAA CATGCATGTG
                                                                                 720
75
        CAGTAATGAA AAATTTTGGG ACCCGAACTT TCCAAGCCAT AACTGTTACT AAACTGAGTC
                                                                                 780
        AGAAGTTTAC CAAAGTTAAT TTTACTGAAA TCCAGAAACT AGTCCTGGAT GTGGCCCATG
                                                                                 840
        TACATGAGCA CTGTTGCAGA GGAGATGTGC TGGATTGTCT GCAGGATGGG GAAAAAATCA
                                                                                 900
        TGTCCTACAT ATGTTCTCAA CAAGACACTC TGTCAAACAA AATAACAGAA TGCTGCAAAC
                                                                                 960
        TGACCACGCT GGAACGTGGT CAATGTATAA TTCATGCAGA AAATGATGAA AAACCTGAAG
       GTCTATCTCC AAATCTAAAC AGGTTTTTAG GAGATAGAGA TTTTAACCAA TTTTCTCAG
GGGAAAAAAA TATCTTCTTG GCAAGTTTTG TTCATGAATA TTCAAGAAGA CATCCTCAGC
80
                                                                                1080
                                                                                1140
        TTGCTGTCTC AGTAATTCTA AGAGTTGCTA AAGGATACCA GGAGTTATTG GAGAAGTGTT
        TCCAGACTGA AAACCCTCTT GAATGCCAAG ATAAAGGAGA AGAAGAATTA CAGAAATACA
       TCCAGGAGAG CCAAGCATTG GCAAAGGGAA GCTGCGGCCT CTTCCAGAAA CTAGGAGAAT
ATTACTTACA AAATGCGTTT CTCGTTGCTT ACACAAAGAA AGCCCCCCAG CTGACCTCGT
                                                                                1320
85
                                                                                1380
        CGGAGCTGAT GGCCATCACC AGAAAAATGG CAGCCACAGC AGCCACTTGT TGCCAACTCA
        GTGAGGACAA ACTATTGGCC TGTGGCGAGG GAGCGGCTGA CATTATTATC GGACACTTAT
```

```
GTATCAGACA TGAAATGACT CCAGTAAACC CTGGTGTTGG CCAGTGCTGC ACTTCTTCAT 1560
                                                                              1620
       ATGCCAACAG GAGGCCATGC TTCAGCAGCT TGGTGGTGGA TGAAACATAT GTCCCTCCTG
                                                                              1680
       CATTCTCTGA TGACAAGTTC ATTTTCCATA AGGATCTGTG CCAAGCTCAG GGTGTAGCGC
                                                                              1740
       TGCAAACGAT GAAGCAAGAG TTTCTCATTA ACCTTGTGAA GCAAAAGCCA CAAATAACAG
 5
       AGGAACAACT TGAGGCTGTC ATTGCAGATT TCTCAGGCCT GTTGGAGAAA TGCTGCCAAG
                                                                              1800
       GCCAGGAACA GGAAGTCTGC TTTGCTGAAG AGGGACAAAA ACTGATTTCA AAAACTCGTG
                                                                               1860
       CTGCTTTGGG AGTTTAAATT ACTTCAGGGG AAGAGAAGAC AAAACGAGTC TTTCATTCGG
                                                                              1920
       TGTGAACTTT TCTCTTTAAT TTTAACTGAT TTAACACTTT TTGTGAATTA ATGAAATGAT
       AAAGACTTTT ATGTGAGATT TCCTTATCAC AGAAATAAAA TATCTCCAAA TG
10
       Seq ID NO: 385 Protein sequence
                                  NP_001125
       Protein Accession #:
                                                                  51
15
       MKWVESIFLI FLLNFTESRT LHRNEYGIAS ILDSYQCTAE ISLADLATIF FAQFVQEATY
       KEVSKMVKDA LTAIEKPTGD EQSSGCLENQ LPAFLEELCH EKEILEKYGH SDCCSQSEEG
                                                                               120
       RHNCFLAHKK PTPASIPLFQ VPEPVTSCEA YEEDRETFMN KPIYEIARRH PFLYAPTILL
                                                                               180
       WAARYDKIIP SCCKAENAVE CFQTKAATVT KELRESSLLN QHACAVMKNF GTRTFQAITV
                                                                               240
20
       TKLSOKPTKV NFTEIQKLVL DVAHVHEHCC RGDVLDCLQD GEKIMSYICS QQDTLSNKIT
                                                                               300
       ECCKLTTLER GOCIIHAEND EKPEGLSPNL NRFLGDRDFN QFSSGEKNIF LASFVHEYSR
                                                                               360
       RHPOLAVSVI LRVAKGYQEL LEKCFQTENP LECQDKGEEE LQKYIQESQA LAKRSCGLFQ
                                                                               420
       KLGEYYLONA FLVAYTKKAP OLTSSELMAI TRKMAATAAT CCQLSEDKLL ACGEGAADII
                                                                               480
       IGHLCIRHEM TPVNPGVGQC CTSSYANRRP CFSSLVVDET YVPPAFSDDK FIFHKDLCQA
                                                                               540
25
       OGVALOTMKO EFLINLVKOK POITEEQLEA VIADFSGLLE KCCOGOEQEV CFAEEGOKLI
                                                                               600
       Seq ID NO: 386 DNA sequence
       Nucleic Acid Accession #: NM_002205.1
30
       Coding sequence: 1..3149
                              21
                                          31
                                                      41
                   11
       ATGGGGAGCC GGACGCCAGA GTCCCCTCTC CACGCCGTGC AGCTGCGCTG GGGCCCCCGG
       CGCCGACCCC CGCTSSTGCC GCTGCTGTTG CTGCTSSTGC CGCCGCCACC CAGGGTCGGG
35
       GGCTTCAACT TAGACGCGGA GGCCCCAGCA GTACTCTCGG GGCCCCCGGG CTCCTTCTTC
       GGATTCTCAG TGGAGTTTTA CCGGCCGGGA ACAGACGGGG TCAGTGTGCT GGTGGGAGCA
       CCCAAGGCTA ATACCAGCCA GCCAGGAGTG CTGCAGGGTG GTGCTGTCTA CCTCTGTCCT
                                                                               300
       TGGGGTGCCA GCCCCACACA GTGCACCCCC ATTGAATTTG ACAGCAAAGG CTCTCGGCTC
       CTGGAGTCCT CACTGTCCAG CTCAGAGGGA GAGGAGCCTG TGGAGTACAA GTCCTTGCAG
40
                                                                               420
       TGGTTCGGGG CAACAGTTCG AGCCCATGGC TCCTCCATCT TGGCATGCGC TCCACTGTAC
                                                                               480
       AGCTGGCGCA CAGAGAAGGA GCCACTGAGC GACCCCGTGG GCACCTGCTA CCTCTCCACA
                                                                               540
       GATAACTICA CCCGAATICI GGAGTATGCA CCCTGCCGCT CAGATITCAG CTGGGCAGCA
                                                                               600
       GGACAGGGTT ACTGCCAAGG AGGCTTCAGT GCCGAGTTCA CCAAGACTGG CCGTGTGGTT
                                                                               660
45
       TTAGGTGGAC CAGGAAGCTA TTTCTGGCAA GGCCAGATCC TGTCTGCCAC TCAGGAGCAG
                                                                               720
       ATTGCAGAAT CITATTACCC CGAGTACCTG ATCAACCTGG TTCAGGGGCA GCTGCAGACT
                                                                               780
       CGCCAGGCCA GTTCCATCTA TGATGACAGC TACCTAGGAT ACTCTGTGGC TGTTGGTGAA
                                                                               840
       TTCAGTGGTG ATGACACAGA AGACTTTGTT GCTGGTGTGC CCAAAGGGAA CCTCACTTAC
                                                                               900
                                                                               960
       GGCTATGTCA CCATCCTTAA TGGCTCAGAC ATTCGATCCC TCTACAACTT CTCAGGGGAA
50
       CAGATGGCCT CCTACTTTGG CTATGCAGTG GCCGCCACAG ACGTCAATGG GGACGGGCTG
                                                                              1020
       GATGACTTGC TGGTGGGGGC ACCCCTGCTC ATGGATCGGA CCCCTGACGG GCGGCCTCAG
                                                                               1080
       GAGGTGGGCA GGGTCTACGT CTACCTGCAG CACCCAGCCG GCATAGAGCC CACGCCCACC
                                                                               1140
       CTTACCCTCA CTGGCCATGA TGAGTTTGGC CGATTTGGCA GCTCCTTGAC CCCCCTGGGG
GACCTGGACC AGGATGGCTA CAATGATGTG GCCATCGGGG CTCCCTTTGG TGGGGAGACC
                                                                              1200
                                                                               1260
       CAGCAGGAG TAGTGTTTGT ATTTCCTGGG GGCCCAGGAG GGCTGGGCTC TAAGCCTTCC
CAGGTTCTGC AGCCCCTGTG GGCAGCCAGC CACACCCCAG ACTTCTTTGG CTCTGCCCTT
55 ·
                                                                               1320
                                                                               1380
       CGAGGAGGCC GAGACCTGGA TGGCAATGGA TATCCTGATC TGATTGTGGG GTCCTTTGGT
GTGGACAAGG CTGTGGTATA CAGGGGCCGC CCCATCGTGT CCGCTAGTGC CTCCCTCACC
                                                                               1440
       ATCTTCCCCG CCATGTTCAA CCCAGAGGAG CGGAGCTGCA GCTTAGAGGG GAACCCTGTG
                                                                               1560
60
       GCCTGCATCA ACCITAGCIT CTGCCTCAAT GCTTCTGGAA AACACGTTGC TGACTCCATT
       GGTTTCACAG TGGAACTTCA GCTGGACTGG CAGAAGCAGA AGGGAGGGGT ACGGCGGGCA
                                                                               1680
       CTGTTCCTGG CCTCCAGGCA GGCAACCCTG ACCCAGACCC TGCTCATCCA GAATGGGGCT
                                                                               1740
       CGAGAGGATT GCAGAGAGAT GAAGATCTAC CTCAGGAACG AGTCAGAATT TCGAGACAAA
                                                                               1800
       CTCTCGCCGA TTCACATCGC TCTCAACTTC TCCTTGGACC CCCAAGCCCC AGTGGACAGC
                                                                              1860
65
       CACGGCCTCA GGCCAGCCCT ACATTATCAG AGCAAGAGCC GGATAGAGGA CAAGGCTCAG
                                                                              1920
       ATCTTGCTGG ACTGTGGAGA AGACAACATC TGTGTGCCTG ACCTGCAGCT GGAAGTGTTT
                                                                               1980
       GGGGAGCAGA ACCATGTGTA CCTGGGTGAC AAGAATGCCC TGAACCTCAC TTTCCATGCC
                                                                              2040
       CAGAATGTGG GTGAGGGTGG CGCCTATGAG GCTGAGCTTC GGGTCACCGC CCCTCCAGAG
                                                                              2100
       GCTGAGTACT CAGGACTCGT CAGACACCCA GGGAACTTCT CCAGCCTGAG CTGTGACTAC
                                                                              2160
70
       TTTGCCGTGA ACCAGAGCCG CCTGCTGGTG TGTGACCTGG GCAACCCCAT GAAGGCAGGA
                                                                               2220
       GCCAGTCTGT GGGGTGGCCT TCGGTTTACA GTCCCTCATC TCCGGGACAC TAAGAAAACC
                                                                               2280
       ATCCAGTTTG ACTTCCAGAT CCTCAGCAAG AATCTCAACA ACTCGCAAAG CGACGTGGTT
                                                                               2340
        TCCTTTCGGC TCTCCGTGGA GGCTCAGGCC CAGGTCACCC TGAACGGTGT CTCCAAGCCT
                                                                               2400
        GAGGCAGTGC TATTCCCAGT AAGCGACTGG CATCCCCGAG ACCAGCCTCA GAAGGAGGAG
                                                                               2460
        GACCTGGGAC CTGCTGTCCA CCATGTCTAT GAGCTCATCA ACCAAGGCCC CAGCTCCATT
75
                                                                               2520
       AGCCAGGGTG TGCTGGAACT CAGCTGTCCC CAGGCTCTGG AAGGTCAGCA GCTCCTATAT
GTGACCAGAG TTACGGGACT CAACTGCACC ACCAATCACC CCATTAACCC AAAGGGCCTG
                                                                               2580
        GAGTTGGATC CCGAGGGTTC CCTGCACCAC CAGCAAAAAC GGGAAGCTCC AAGCCGCAGC
        TCTGCTTCCT CGGGACCTCA GATCCTGAAA TGCCCGGAGG CTGAGTGTTT CAGGCTGCGC
                                                                               2760
80
        TGTGAGCTCG GGCCCCTGCA CCAACAAGAG AGCCAAAGTC TGCAGTTGCA TTTCCGAGTC
                                                                               2820
        TGGGCCAAGA CTTTCTTGCA GCGGGAGCAC CAGCCATTTA GCCTGCAGTG TGAGGCTGTG
        TACAAAGCCC TGAAGATGCC CTACCGAATC CTGCCTCGGC AGCTGCCCCA AAAAGAGCGT
                                                                               2940
        CAGGTGGCCA CAGCTGTGCA ATGGACCAAG GCAGAAGGCA GCTATGGCGT CCCACTGTGG
                                                                               3000
        ATCATCATCC TAGCCATCCT GTTTGGCCTC CTGCTCCTAG GTCTACTCAT CTACATCCTC
                                                                               3060
85
        TACAAGCTTG GATTCTTCAA ACGCTCCCTC CCATATGGCA CCGCCATGGA AAAAGCTCAG
        CTCAAGCCTC CAGCCACCTC TGATGCCTGA
```

Seq ID NO: 387 Protein sequence Protein Accession #: NP_002196.1

```
5
       MGSRTPESPL HAVQLRWGPR RRPPLLPLLL LLLPPPPRVG GFNLDAEAPA VLSGPPGSFF
                                                                                  60
       GPSVEPYRPG TDGVSVLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP IEFDSKGSRL
                                                                                 120
       LESSLSSEG EEPVEYKSLO WFGATVRAHG SSILACAPLY SWRTEKEPLS DPVGTCYLST
                                                                                 180
10
       DNFTRILEYA PCRSDFSWAA GQGYCQGGFS AEFTKTGRVV LGGPGSYFWQ GQILSATQEQ
                                                                                 240
       IAESYYPEYL 'INLVQGQLQT RQASSIYDDS YLGYSVAVGE FSGDDTEDFV AGVPKGNLTY
                                                                                 300
       GYVTILNGSD IRSLYNFSGE QMASYFGYAV AATDVNGDGL DDLLVGAPLL MDRTPDGRPQ
                                                                                 360
       EVGRVYVYLQ HPAGIEPTPT LTLTGHDEFG RFGSSLTPLG DLDQDGYNDV AIGAPFGGET
                                                                                 420
       QQGVVFVFPG GPGGLGSKPS QVLQPLWAAS HTPDFFGSAL RGGRDLDGNG YPDLIVGSFG
                                                                                 480
15
       VDKAVVYRGR PIVSASASLT IFPAMFNPEE RSCSLEGNPV ACINLSFCLN ASGKHVADSI
                                                                                 540
       GFTVELQLDW QKQKGGVRRA LFLASRQATL TQTLLIQNGA REDCREMKIY LRNESEFRDK
                                                                                 600
       LSPIHIALMF SLDPQAPVDS HGLRPALHYQ SKSRIEDKAQ ILLDCGEDNI CVPDLQLEVF
GEQNHVYLGD KNALNLTFHA QNVGEGGAYE AELRVTAPPE AEYSGLVRHP GNFSSLSCDY
                                                                                 660
                                                                                 720
       FAVNOSRLLV CDLGNPMKAG ASLWGGLRFT VPHLRDTKKT IQFDFQILSK NLNNSQSDVV
                                                                                 780
20
       SFRLSVEAQA QVTLNGVSKP EAVLFPVSDW HPRDQPQKEE DLGPAVHHVY ELINQGPSSI
                                                                                 840
       SOGVLELSCP OALEGOOLLY VTRVTGLNCT TNHPINPKGL ELDPEGSLHH QQKREAPSRS
                                                                                 900
       SASSGPOILK CPEAECFRLR CELGPLHOOE SOSLOLHFRV WAKTFLOREH OPFSLOCEAV
                                                                                 960
       YKALKMPYRI LPROLPOKER OVATAVOWTK AEGSYGVPLW IIILAILFGL LLLGLLIYIL
                                                                               1020
       YKLGFFKRSL PYGTAMEKAQ LKPPATSDA
25
       Seq ID NO: 388 DNA sequence
       Nucleic Acid Accession #: NM_002425
       Coding sequence: 26..1453
30
                               21
                                           31
                                                       41
                                                                   51
       AAAGAAGGTA AGGGCAGTGA GAATGATGCA TCTTGCATTC CTTGTGCTGT TGTGTCTGCC
                                                                                  60
       AGTOTGOTOT GCCTATCOTO TGAGTGGGGO AGCAAAAGAG GAGGACTCCA ACAAGGATCT
                                                                                 120
       TGCCCAGCAA TACCTAGAAA AGTACTACAA CCTCGAAAAG GATGTGAAAC AGTTTAGAAG
                                                                                 180
35
       AAAGGACAGT AATCTCATTG TTAAAAAAAT CCAAGGAATG CAGAAGTTCC TTGGGTTGGA
                                                                                 240
       GGTGACAGGG AAGCTAGACA CTGACACTCT GGAGGTGATG CGCAAGCCCA GGTGTGGAGT
                                                                                 300
       TCCTGACGTT GGTCACTTCA GCTCCTTTCC TGGCATGCCG AAGTGGAGGA AAACCCACCT
                                                                                 360
       TACATACAGG ATTGTGAATT ATACACCAGA TTTGCCAAGA GATGCTGTTG ATTCTGCCAT
                                                                                 420
       TGAGAAAGCT CTGAAAGTCT GGGAAGAGGT GACTCCACTC ACATTCTCCA GGCTGTATGA
                                                                                 480
       AGGAGAGGCT GATATAATGA TCTCTTTCGC AGTTAAAGAA CATGGAGACT TTTACTCTTT
TGATGGCCCA GGACACAGTT TGGCTCATGC CTACCCACCT GGACCTGGC TTTATGGAGA
40
                                                                                 540
                                                                                 600
       TATTCACTTT GATGATGATG AAAAATGGAC AGAAGATGCA TCAGGCACCA ATTTATTCCT
                                                                                 660
       CGTTGCTGCT CATGAACTTG GCCACTCCCT GGGGCTCTTT CACTCAGCCA ACACTGAAGC
                                                                                 720
       TTTGATGTAC CCACTCTACA ACTCATTCAC AGAGCTCGCC CAGTTCCGCC TTTCGCAAGA
TGATGTGAAT GGCATTCAGT CTCTCTACGG ACCTCCCCCT GCCTCTACTG AGGAACCCCCT
                                                                                 780
45
                                                                                 840
       GGTGCCCACA AAATCTGTTC CTTCGGGATC TGAGATGCCA GCCAAGTGTG ATCCTGCTTT
                                                                                 900
       GTCCTTCGAT GCCATCAGCA CTCTGAGGGG AGAATATCTG TTCTTTAAAG ACAGATATTT
                                                                                 960
       TTGGCGAAGA TCCCACTGGA ACCCTGAACC TGAATTTCAT TTGATTTCTG CATTTTGGCC
                                                                                1020
       CTCTCTTCCA TCATATTTGG ATGCTGCATA TGAAGTTAAC AGCAGGGACA CCGTTTTTAT
                                                                                1080
50
       TTTTAAAGGA AATGAGTTCT GGGCCATCAG AGGAAATGAG GTACAAGCAG GTTATCCAAG
                                                                                1140
       AGGCATCCAT ACCCTGGGTT TTCCTCCAAC CATAAGGAAA ATTGATGCAG CTGTTTCTGA
                                                                                1200
       CAAGGAAAAG AAGAAAACAT ACTTCTTTGC AGCGGACAAA TACTGGAGAT TTGATGAAAA
                                                                                1260
       TAGCCAGTCC ATGGAGCAAG GCTTCCCTAG ACTAATAGCT GATGACTTTC CAGGAGTTGA
                                                                                1320
       GCCTAAGGTT GATGCTGTAT TACAGGCATT TGGATTTTTC TACTTCTTCA GTGGATCATC
                                                                                1380
55
       ACAGTTTGAG TTTGACCCCA ATGCCAGGAT GGTGACACAC ATATTAAAGA GTAACAGCTG
                                                                                1440
       GTTACATTGC TAGGCGAGAT AGGGGGAAGA CAGATATGGG TGTTTTTAAT AAATCTAATA
                                                                                1500
       ATTATTCATC TAATGTATTA TGAGCCAAAA TGGTTAATTT TTCCTGCATG TTCTGTGACT
                                                                                1560
       GAAGAAGATG AGCCTTGCAG ATATCTGCAT GTGTCATGAA GAATGTTTCT GGAATTCTTC
                                                                                1620
       ACTTGCTTTT GAATTGCACT GAACAGAATT AAGAAATACT CATGTGCAAT AGGTGAGAGA
                                                                                1680
60
       ATGTATTTTC ATAGATGTGT TATTACTTCC TCAATAAAAA GTTTTATTTT GGGCCTGTTC
       Seg ID NO: 389 Protein sequence
       Protein Accession #: NP_002416
65
                                           31
       MHLAFLVLLC LPVCSAYPLS GAAKEEDSNK DLAQQYLEKY YNLEKDVKQF RRKDSNLIVK
                                                                                  60
       KIQGMQKFLG LEVTGKLDTD TLEVMRKPRC GVPDVGHFSS PPGMPKWRKT HLTYRIVNYT
                                                                                 120
70
       PDLPRDAVDS AIEKALKVWE EVTPLTFSRL YEGEADIMIS FAVKEHGDFY SFDGPGHSLA
                                                                                 180
       HAYPPGPGLY GDIHFDDDEK WTEDASGTNL FLVAAHELGH SLGLFHSANT EALMYPLYNS
                                                                                 240
       FTELAQFRLS QDDVNGIQSL YGPPPASTEE PLVPTKSVPS GSEMPAKCDP ALSFDAISTL
                                                                                 300
       RGEYLFFKDR YFWRRSHWNP EPEFHLISAF WPSLPSYLDA AYEVNSRDTV PIPKGNEFWA
                                                                                 360
       IRGNEVQAGY PRGIHTLGFP PTIRKIDAAV SDKEKKKTYF FAADKYWRFD ENSQSMEQGF
                                                                                 420
75
       PRLIADDPPG VEPKVDAVLQ AFGFFYFFSG SSQFEFDPNA RMVTHILKSN SWLHC
       Seq ID NO: 390 DNA sequence
       Nucleic Acid Accession #: NM_002421.2
       Coding sequence: 1..1409
80
                                                                   51
                               21
                                           31
       ATGCACAGCT TTCCTCCACT GCTGCTGCTG CTGTTCTGGG GTGTGGTGTC ACACAGCTTC
       CCAGGGACTC TAGAAACACA AGAGCAAGAT GTGGACTTAG TCCAGAAATA CCTGGAAAAA
TACTACAACC TGAAGAATGA TGGGAGGCAA GTTGAAAAGC GGAGAAATAG TGGCCCAGTG
                                                                                 120
85
                                                                                 180
        GTTGAAAAAT TGAAGCAAAT GCAGGAATTC TTTGGGCTGA AAGTGACTGG GAAACCAGAT
                                                                                 240
        GCTGAAACCC TGAAGGTGAT GAAGCAGCCC AGATGTGGAG TGCCTGATGT GGCTCAGTTT
                                                                                 300
```

```
GTCCTCACTG AGGGGAACCC TCGCTGGGAG CAAACACATC TGACCTACAG GATTGAAAAT
                                                                             360
       TACACGCCAG ATTTGCCAAG AGCAGATGTG GACCATGCCA TTGAGAAAGC CTTCCAACTC
                                                                              420
       TEGAGTAATG TCACACCTCT GACATTCACC AAGGTCTCTG AGGGTCAAGC AGACATCATG
                                                                              480
       ATATCTTTTG TCAGGGGAGA TCATCGGGAC AACTCTCCTT TTGATGGACC TGGAGGAAAT
                                                                              540
 5
       CTTGCTCATG CTTTTCAACC AGGCCCAGGT ATTGGAGGGG ATGCTCATTT TGATGAAGAT
                                                                              600
       GAAAGGTGGA CCAACAATTT CAGAGAGTAC AACTTACATC GTGTTGCGGC TCATGAACTC
                                                                              660
       GGCCATTCTC TTGGACTCTC CCATTCTACT GATATCGGGG CTTTGATGTA CCCTAGCTAC
                                                                              720
       ACCTTCAGTG GTGATGTTCA GCTAGCTCAG GATGACATTG ATGGCATCCA AGCCATATAT
                                                                              780
       GGACGTTCCC AAAATCCTGT CCAGCCCATC GGCCCACAAA CCCCAAAAGC ATGTGACAGT
                                                                              840
10
       AAGCTAACCT TTGATGCTAT AACTACGATT CGGGGAGAAG TGATGTTCTT TAAAGACAGA
                                                                              900
       TTCTACATGC GCACAAATCC CTTCTACCCG GAAGTTGAGC TCAATTTCAT TTCTGTTTTC
                                                                              960
       TGGCCACAAC TGCCAAATGG GCTTGAAGCT GCTTACGAAT TTGCCGACAG AGATGAAGTC
                                                                             1020
       CGGTTTTTCA AAGGGAATAA GTACTGGGCT GTTCAGGGAC AGAATGTGCT ACACGGATAC
                                                                             1080
       CCCAAGGACA TCTACAGCTC CTTTGGCTTC CCTAGAACTG TGAAGCATAT CGATGCTGCT
                                                                             1140
       CTTTCTGAGG AAAACACTGG AAAAACCTAC TTCTTTGTTG CTAACAAATA CTGGAGGTAT
15
                                                                             1200
       GATGAATATA AACGATCTAT GGATCCAGGT TATCCCAAAA TGATAGCACA TGACTTTCCT
                                                                             1260
       GGAATTGGCC ACAAAGTTGA TGCAGTTTTC ATGAAAGATG GATTITTCTA TTTCTTTCAT
                                                                             1320
       GGAACAAGAC AATACAAATT TGATCCTAAA ACGAAGAGAA TTTTGACTCT CCAGAAAGCT
       AATAGCTGGT TCAACTGCAG GAAAAATTAG
20
       Sea ID NO: 391 Protein sequence
                                 NP_002412.1
       Protein Accession #:
                             21
25
       MHSPPPLLLL LFWGVVSHSF PATLETQEQD VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV
                                                                               60
       VEKLKOMQEF FGLKVTGKPD AETLKVMKQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN
                                                                              120
       YTPDLPRADV DHAIEKAFOL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN
                                                                             180
       LAHAFQPGPG IGGDAHFDED ERWINNFREY NLHRVAAHEL GHSLGLSHST DIGALMYPSY
                                                                              240
30
       TFSGDVQLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMFFKDR
                                                                              300
       FYMRTNPFYP EVELNFISVF WPQLPNGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY
                                                                              360
       PKDIYSSFGF PRTVKHIDAA LSBENTGKTY FFVANKYWRY DEYKRSMDPG YPKMIAHDFP
                                                                              420
       GIGHKVDAVF MKDGFFYFFH GTRQYKFDPK TKRILTLQKA NSWFNCRKN
35
       Seg ID NO: 392 DNA sequence
       Nucleic Acid Accession #: NM_002421.2
       Coding sequence: 1..1409
                                                                51
                             21
40
       ATGCACAGCT TTCCTCCACT GCTGCTGCTG CTGTTCTGGG GTGTGGTGTC ACACAGCTTC
       CCAGCGACTC TAGAAACACA AGAGCAAGAT GTGGACTTAG TCCAGAAATA CCTGGAAAAA
       TACTACAACC TGAAGAATGA TGGGAGGCAA GTTGAAAAGC GGAGAAATAG TGGCCCAGTG
                                                                              180
       GTTGAAAAAT TGAAGCAAAT GCAGGAATTC TTTGGGCTGA AAGTGACTGG GAAACCAGAT
                                                                              240
45
       GCTGAAACCC TGAAGGTGAT GAAGCAGCCC AGATGTGGAG TGCCTGATGT GGCTCAGTTT
                                                                              300
       GTCCTCACTG AGGGGAACCC TCGCTGGGAG CAAACACATC TGACCTACAG GATTGAAAAT
                                                                              360
       TACACGCCAG ATTTGCCAAG AGCAGATGTG GACCATGCCA TTGAGAAAGC CTTCCAACTC
                                                                              420
       TGGAGTAATG TCACACCTCT GACATTCACC AAGGTCTCTG AGGGTCAAGC AGACATCATG
                                                                              480
       ATATCTTTTG TCAGGGGAGA TCATCGGGAC AACTCTCCTT TTGATGGACC TGGAGGAAAT
                                                                              540
50
       CTTGCTCATG CTTTTCAACC AGGCCCAGGT ATTGGAGGGG ATGCTCATTT TGATGAAGAT
                                                                              600
       GAAAGGTGGA CCAACAATTT CAGAGAGTAC AACTTACATC GTGTTGCGGC TCATGCCCTC
                                                                              660
       GGCCATTCTC TTGGACTCTC CCATTCTACT GATATCGGGG CTTTGATGTA CCCTAGCTAC
                                                                              720
       ACCTTCAGTG GTGATGTTCA GCTAGCTCAG GATGACATTG ATGGCATCCA AGCCATATAT
                                                                              780
                                                                              840
       GGACGTTCCC AAAATCCTGT CCAGCCCATC GGCCCACAAA CCCCAAAAGC ATGTGACAGT
55
       AAGCTAACCT TTGATGCTAT AACTACGATT CGGGGAGAAG TGATGTTCTT TAAAGACAGA
                                                                              900
       TTCTACATGC GCACAAATCC CTTCTACCCG GAAGTTGAGC TCAATTTCAT TTCTGTTTTC
                                                                              960
       TGGCCACAAC TGCCAAATGG GCTTGAAGCT GCTTACGAAT TTGCCGACAG AGATGAAGTC
                                                                             1020
       CGGTTTTTCA AAGGGAATAA GTACTGGGCT GTTCAGGGAC AGAATGTGCT ACACGGATAC
                                                                             1080
       CCCAAGGACA TCTACAGCTC CTTTGGCTTC CCTAGAACTG TGAAGCATAT CGATGCTGCT CTTTCTGAGG AAAACCTGG AAAACCTAC TTCTTTGTTG CTAACAAATA CTGGAGGTAT GATGAATATA AACGATCTAT GGATCCAGGT TATCCCAAAA TGATAGCACA TGACTTCCT
                                                                             1140
60
       GGAATTGGCC ACAAAGTTGA TGCAGTTTTC ATGAAAGATG GATTTTCTA TTTCTTTCAT
       GGAACAAGAC AATACAAATT TGATCCTAAA ACGAAGAGAA TTTTGACTCT CCAGAAAGCT
       AATAGCTGGT TCAACTGCAG GAAAAATTAG
65
       Seg ID NO: 393 Protein sequence
       Protein Accession #:
                                 NP_002412.1
70
       MHSFPPLLLL LFWGVVSHSF PATLETQEQD VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV
                                                                               60
       VEKLKOMOEF FGLKVTGKPD AETLKVMKQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN
                                                                              120
       YTPDLPRADV DHAIEKAPQL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN
                                                                              180
75
       LAHAFQPGPG IGGDAHFDED ERWTNNFREY NLHRVAAHAL GHSLGLSHST DIGALMYPSY
                                                                              240
       TFSGDVQLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMFFKDR
                                                                              300
       FYMRTNPFYP EVELNFISVF WPQLPNGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY
                                                                              360
       PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKYWRY DEYKRSMDPG YPKMIAHDFP
                                                                              420
       GIGHKVDAVF MKDGFFYFFH GTROYKFDPK TKRILTLOKA NSWFNCRKN
80
       Sec ID NO: 394 DNA secuence
       Nucleic Acid Accession #: NM_014331.2
       Coding sequence: 1..1506
85
```

```
ATGGTCAGAA AGCCTGTTGT GTCCACCATC TCCAAAGGAG GTTACCTGCA GGGAAATGTT
       AACGGGAGGC TGCCTTCCCT GGGCAACAAG GAGCCACCTG GGCAGGAGAA AGTGCAGCTG
                                                                                120
       AAGAGGAAAG TCACTTTACT GAGGGGAGTC TCCATTATCA TTGGCACCAT CATTGGAGCA
       GGAATCTTCA TCTCTCCTAA GGGCGTGCTC CAGAACACGG GCAGCGTGGG CATGTCTCTG
                                                                                240
       ACCATCTGGA CGGTGTGTGG GGTCCTGTCA CTATTTGGAG CTTTGTCTTA TGCTGAATTG
                                                                                300
        GGAACAACTA TAAAGAAATC TGGAGGTCAT TACACATATA TTTTGGAAGT CTTTGGTCCA
                                                                                360
       TTACCAGCTT TTGTACGAGT CTGGGTGGAA CTCCTCATAA TACGCCCTGC AGCTACTGCT
                                                                                420
        GTGATATCCC TGGCATTTGG ACGCTACATT CTGGAACCAT TTTTTATTCA ATGTGAAATC
                                                                                480
       CCTGAACTTG CGATCAAGCT CATTACAGCT GTGGGCATAA CTGTAGTGAT GGTCCTAAAT
                                                                                540
10
       AGCATGAGTG TCAGCTGGAG CGCCCGGATC CAGATTTTCT TAACCTTTTG CAAGCTCACA
                                                                                600
       GCAATTCTGA TAATTATAGT CCCTGGAGTT ATGCAGCTAA TTAAAGGTCA AACGCAGAAC
                                                                                660
       TTTAAAGACG CGTTTTCAGG AAGAGATTCA AGTATTACGC GGTTGCCACT GGCTTTTTAT
                                                                                720
       TATGGAATGT ATGCATATGC TGGCTGGTTT TACCTCAACT TTGTTACTGA AGAAGTAGAA
                                                                                780
       AACCCTGAAA AAACCATTCC CCTTGCAATA TGTATATCCA TGGCCATTGT CACCATTGGC
                                                                                840
15
       TATGTGCTGA CAAATGTGGC CTACTTTACG ACCATTAATG CTGAGGAGCT GCTGCTTTCA
                                                                                900
       AATGCAGTGG CAGTGACCTT TTCTGAGCGG CTACTGGGAA ATTTCTCATT AGCAGTTCCG
                                                                                960
       ATCTTTGTTG CCCTCTCCTG CTTTGGCTCC ATGAACGGTG GTGTGTTTGC TGTCTCCAGG
                                                                              1020
       TTATTCTATG TTGCGTCTCG AGAGGGTCAC CTTCCAGAAA TCCTCTCCAT GATTCATGTC
                                                                              1080
       CGCAAGCACA CTCCTCTACC AGCTGTTATT GTTTTGCACC CTTTGACAAT GATAATGCTC
                                                                              1140
20
       TTCTCTGGAG ACCTCGACAG TCTTTTGAAT TTCCTCAGTT TTGCCAGGTG GCTTTTTATT
                                                                              1200
       GGGCTGGCAG TTGCTGGGCT GATTTATCTT CGATACAAAT GCCCAGATAT GCATCGTCCT
                                                                              1260
       TTCAAGGTGC CACTGTTCAT CCCAGCTTTG TTTTCCTTCA CATGCCTCTT CATGGTTGCC
                                                                              1320
       CTTTCCCTCT ATTCGGACCC ATTTAGTACA GGGATTGGCT TCGTCATCAC TCTGACTGGA
                                                                              1380
       GTCCCTGCGT ATTATCTCTT TATTATATGG GACAAGAAAC CCAGGTGGTT TAGAATAATG
                                                                              1440
25
       TCAGAGAAAA TAACCAGAAC ATTACAAATA ATACTGGAAG TTGTACCAGA AGAAGATAAG
                                                                              1500
       TTATGAACTA ATGGACTTGA GATCTTGGCA ATCTGCCCAA GGGGAGACAC AAAATAGGGA
       TTTTTACTTC ATTTTCTGAA AGTCTAGAGA ATTACAACTT TGGTGATAAA CAAAAGGAGT
       CAGTTATTTT TATTCATATA TTTTAGCATA TTCGAACTAA TTTCTAAGAA ATTTAGTTAT
       AACTCTATGT AGTTATAGAA AGTGAATATG CAGTTATTCT ATGAGTCGCA CAATTCTTGA
                                                                              1740
30
       GTCTCTGATA CCTACCTATT GGGGTTAGGA GAAAAGACTA GACAATTACT ATGTGGTCAT
                                                                              1800
       TCTCTACAAC ATATGTTAGC ACGGCAAAGA ACCTTCAAAT TGAAGACTGA GATTTTTCTG
                                                                              1860
       TATATATGGG TTTTGTAAAG ATGGTTTTAC ACACTACAGA TGTCTATACT GTGAAAAGTG
                                                                              1920
       TTTTCAATTC TGAAAAAAAG CATACATCAT GATTATGGCA AAGAGGAGAG AAAGAAATTT
                                                                              1980
                                                                              2040
       ATTTTACATT GACATTGCAT TGCTTCCCCT TAGATACCAA TTTAGATAAC AAACACTCAT
35
       GCTTTAATGG ATTATACCCA GAGCACTTTG AACAAAGGTC AGTGGGGATT GTTGAATACA
                                                                              2100
       TTAAAGAAGA GTTTCTAGGG GCTACTGTTT ATGAGACACA TCCAGGAGTT ATGTTTAAGT
                                                                              2160
       AAAAATCCTT GAGAATTTAT TATGTCAGAT GTTTTTTCAT TCATTATCAG GAAGTTTTAG
                                                                              2220
       TTATCTGTCA TTTTTTTTT TCACATCAGT TTGATCAGGA AAGTGTATAA CACATCTTAG AGCAAGAGTT AGTTTGGTAT TAAATCCTCA TTAGAACAAC CACCTGTTTC ACTAATAACT
                                                                              2280
                                                                              2340
40
       TACCCCTGAT GAGTCTATCT AAACATATGC ATTTTAAGCC TTCAAATTAC ATTATCAACA
                                                                              2400
       TGAGAGAAAT AACCAACAAA GAAGATGTTC AAAATAATAG TCCCATATCT GTAATCATAT
                                                                              2460
       CTACATGCAA TGTTAGTAAT TCTGAAGTTT TTTAAATTTA TGGCTATTTT TACACGATGA
                                                                              2520
       TGAATTTTGA CAGTTTGTGC ATTTTCTTTA TACATTTTAT ATTCTTCTGT TAAAATATCT
                                                                              2580
       CTTCAGATGA AACTGTCCAG ATTAATTAGG AAAAGGCATA TATTAACATA AAAATTGCAA
                                                                              2640
45
       AAGAAATGTC GCTGTAAATA AGATTTACAA CTGATGTTTC TAGAAAATTT CCACTTCTAT
       ATCTAGGCTT TGTCAGTAAT TTCCACACCT TAATTATCAT TCAACTTGCA AAAGAGACAA
       CTGATAAGAA GAAAATTGAA ATGAGAATCT GTGGATAAGT GTTTGTGTTC AGAAGATGTT
       GTTTTGCCAG TATTAGAAAA TACTGTGAGC CGGGCATGGT GGCTTACATC TGTAATCCCA
       GCACTTTGGG AGGCTGAGGG GGTGGATCAC CTGAGGTCGG GAGTTCTAGA CCAGCCTGAC
                                                                              2940
50
       CAACATGGAG AAACCCCATC TCTACTAAAA ATACAAAATT AGCTGGGCAT GGTGGCACAT
                                                                              3000
       GCTGGTAATC TCAGCTATTG AGGAGGCTGA GGCAGGAGAA TTGCTTGAAC CCGGGAGGCG
       GAGGTTGCAG TGAGCCAAGA TTGCACCACT GTACTCCAGC CTGGGTGACA AAGTCAGACT
       ССАТСТССАА ААААААААА АААА
55
       Seq ID NO: 395 Protein sequence
       Protein Accession #: NP_055146.1
                             . 21
                                          31
                                                                  51
60
       MVRKPVVSTI SKGGYLQGNV NGRLPSLGNK EPPGQEKVQL KRKVTLLRGV SIIIGTIIGA
                                                                                 60
       GIFISPKGVL QNTGSVGMSL TIWTVCGVLS LFGALSYAEL GTTIKKSGGH YTYILEVFGP
LPAFVRVWVE LLIIRPAATA VISLAFGRYI LEPFFIQCEI PELAIKLITA VGITVVMVLN
                                                                               120
                                                                               180
       SMSVSWSARI QIFLTFCKLT AILIIIVPGV MQLIKGQTQN PKDAFSGRDS SITRLPLAFY
                                                                               240
       YGMYAYAGWP YLNFVTEEVE NPEKTIPLAI CISMAITIGV YVLTNVAYFT TINABELLLS
                                                                               300
65
       NAVAVTFSER LLGNFSLAVP IFVALSCFGS MNGGVPAVSR LFYVASREGH LPEILSMIHV
                                                                               360
       RKHTPLPAVI VLHPLTMIML FSGDLDSLLN FLSFARWLFI GLAVAGLIYL RYKCPDMHRP
       FKVPLFIPAL FSFTCLFMVA LSLYSDPFST GIGFVITLTG VPAYYLFIIW DKKPRWFRIM
       SEKITRTLQI ILEVVPEEDK L
70
       Seq ID NO: 396 DNA sequence
       Nucleic Acid Accession #: NM_006528
       Coding sequence: 57..764
75
                                          31
       GCCGCCAGCG GCTTTCTCGG ACGCCTTGCC CAGCGGGCCG CCCGACCCCC TGCACCATGG
                                                                                60
       ACCCCGCTCG CCCCCTGGGG CTGTCGATTC TGCTGCTTTT CCTGACGGAG GCTGCACTGG
                                                                               120
       GCGATGCTGC TCAGGAGCCA ACAGGAAATA ACGCGGAGAT CTGTCTCCTG CCCCTAGACT
                                                                               180
80
       ACGGACCCTG CCGGCCCCTA CTTCTCCGTT ACTACTACGA CAGGTACACG CAGAGCTGCC GCCAGTTCCT GTACGGGGGC TGCGAGGGCA ACGCCAACAA TTTCTACACC TGGGAGGCTT
                                                                               240
                                                                               300
       GCGACGATGC TTGCTGGAGG ATAGAAAAAG TTCCCAAAGT TTGCCGGCTG CAAGTGAGTG
TGGACGACCA GTGTGAGGGG TCCACAGAAA AGTATTTCTT TAATCTAAGT TCCATGACAT
                                                                               360
                                                                                420
       GTGAAAAATT CTTTTCCGGT GGGTGTCACC GGAACCGGAT TGAGAACAGG TTTCCAGATG
                                                                                480
85
       AAGCTACTTG TATGGGCTTC TGCGCACCAA AGAAAATTCC ATCATTTTGC TACAGTCCAA
                                                                                540
       AAGATGAGGG ACTGTGCTCT GCCAATGTGA CTCGCTATTA TTTTAATCCA AGATACAGAA
                                                                                600
       CCTGTGATGC TTTCACCTAT ACTGGCTGTG GAGGGAATGA CAATAACTTT GTTAGCAGGG
```

```
AGGATTGCAA ACGTGCATGT GCAAAAGCTT TGAAAAAGAA AAAGAAGATG CCAAAGCTTC
                                                                                 720
       GCTTTGCCAG TAGAATCCGG AAAATTCGGA AGAAGCAATT TTAAACATTC TTAATATGTC
                                                                                 780
       ATCTTGTTTG TCTTTATGGC TTATTTGCCT TTATGGTTGT ATCTGAAGAA TAATATGACA
                                                                                 840
       GCATGAGGAA ACAAATCATT GGTGATTTAT TCACCAGTTT TTATTAATAC AAGTCACTTT
                                                                                 900
       TTCAAAAATT TGGATTTTTT TATATATAAC TAGCTGCTAT TCAAATGTGA GTCTACCATT
                                                                                 960
       TTTAATTTAT GGTTCAACTG TTTGTGAGAC GAATTCTTGC AATGCATAAG ATATAAAAGC
                                                                                1020
       AAATATGACT CACTCATTTC TTGGGGTCGT ATTCCTGATT TCAGAAGAGG ATCATAACTG
                                                                                1080
       AAACAACATA AGACAATATA ATCATGTGCT TTTAACATAT TTGAGAATAA AAAGGACTAG 1140
10
       Seq ID NO: 397 Protein sequence
       Protein Accession #: NP_006519
                                           31
                                                       41
                                                                   51
15
       MDPARPLGLS ILLLFLTEAA LGDAAQEPTG NNAEICLLPL DYGPCRALLL RYYYDRYTQS
                                                                                  60
       CRQFLYGGCE GNANNFYTWE ACDDACWRIE KVPKVCRLQV SVDDQCEGST EKYFFNLSSM
                                                                                 120
       TCEKFFSGGC HRNRIENRFP DEATCMGFCA PKKIPSFCYS PKDEGLCSAN VTRYYFNPRY
       RTCDAFTYTG CGGNDNNFVS REDCKRACAK ALKKKKMPK LRFASRIRKI RKKQF
20
       Seq ID NO: 398 DNA sequence
       Nucleic Acid Accession #: NM_001508.1
       Coding sequence: 1..1361
25
                                           31
       ATGGCTTCAC CCAGCCTCCC GGGCAGTGAC TGCTCCCAAA TCATTGATCA CAGTCATGTC
                                                                                  60
       CCCGAGTTTG AGGTGGCCAC CTGGATCAAA ATCACCCTTA TTCTGGTGTA CCTGATCATC
                                                                                 120
       TTCGTGATGG GCCTTCTGGG GAACAGCGTC ACCATTCGGG TCACCCAGGT GCTGCAGAAG
                                                                                 180
30
       AAAGGATACT TGCAGAAGGA GGTGACAGAC CACATGGTGA GTTTGGCTTG CTCGGACATC
                                                                                 240
       TTGGTGTTCC TCATCGGCAT GCCCATGGAG TTCTACAGCA TCATCTGGAA TCCCCTGACC
                                                                                 300
       ACGTCCAGCT ACACCCTGTC CTGCAAGCTG CACACTTTCC TCTTCGAGGC CTGCAGCTAC
                                                                                 360
       GCTACGCTGC TGCACGTGCT GACGCTCAGC TTTGAGCGCT ACATCGCCAT CTGTCACCCC
                                                                                 420
       TTCAGGTACA AGGCTGTGTC GGGACCTTGC CAGGTGAAGC TGCTGATTGG CTTCGTCTGG
                                                                                 480
35
       GTCACCTCCG CCCTGGTGGC ACTGCCCTTG CTGTTTGCCA TGGGTACTGA GTACCCCCTG
                                                                                 540
                                                                                 600
       GTGAACGTGC CCAGCCACCG GGGTCTCACT TGCAACCGCT CCAGCACCCG CCACCACGAG
       CAGCCCGAGA CCTCCAATAT GTCCATCTGT ACCAACCTCT CCAGCCGCTG GACCGTGTTC
                                                                                 660
       CAGTCCAGCA TCTTCGGCGC CTTCGTGGTC TACCTCGTGG TCCTGCTCTC CGTAGCCTTC
                                                                                 720
       ATGTGCTGGA ACATGATGCA GGTGCTCATG AAAAGCCAGA AGGGCTCGCT GGCCGGGGGC
                                                                                 780
       ACGCGGCCTC CGCAGCTGAG GAAGTCCGAG AGCGAAGAGA GCAGGACCGC CAGGAGGCAG
40
                                                                                 840
       ACCATCATCT TCCTGAGGCT GATTGTTGTG ACATTGGCCG TATGCTGGAT GCCCAACCAG ATTCGGAGGA TCATGGCTGC GGCCAAACCC AAGCACGACT GGACGAGGTC CTACTTCCGG
                                                                                 900
                                                                                 960
       GCGTACATGA TCCTCCTCCC CTTCTCGGAG ACGTTTTTCT ACCTCAGCTC GGTCATCAAC
                                                                                1020
       CCGCTCCTGT ACACGGTGTC CTCGCAGCAG TTTCGGCGGG TGTTCGTGCA GGTGCTGTCC
TGCCGCCTGT CGCTGCAGCA CGCCAACCAC GAGAAGCGCC TGCGCGTACA TGCGCACTCC
ACCACCGACA GCGCCGCTT TGTGCAGCGC CCGTTGCTCT TCGCGTCCCG GCGCCAGTCC
45
                                                                                1140
                                                                                1200
       TCTGCAAGGA GAACTGAGAA GATTTTCTTA AGCACTTTTC AGAGCGAGGC CGAGCCCCAG
                                                                                1260
       TCTAAGTCCC AGTCATTGAG TCTCGAGTCA CTAGAGCCCA ACTCAGGCGC GAAACCAGCC 1320
       AATTCTGCTG CAGAGAATGG TTTTCAGGAG CATGAAGTTT GA
50
       Seg ID NO: 399 Protein sequence
       Protein Accession #: NP_001499.1
55
       MASPSLPGSD CSQIIDHSHV PEFEVATWIK ITLILVYLII FVMGLLGNSV TIRVTQVLQK
                                                                                  60
                                                                                 120
       KGYLQKEVTD HMVSLACSDI LVFLIGMPME FYSIIWNPLT TSSYTLSCKL HTFLFEACSY
       ATLLHVLTLS FERYIAICHP FRYKAVSGPC QVKLLIGFVW VTSALVALPL LFAMGTEYPL
                                                                                 180
        VNVPSHRGLT CNRSSTRHHE QPETSNMSIC TNLSSRWTVF QSSIFGAFVV YLVVLLSVAF
                                                                                 240
       MCWNMMQVLM KSQKGSLAGG TRPPQLRKSE SEESRTARRQ TIIFLRLIVV TLAVCWMPNQ
IRRIMAAAKP KHDWTRSYFR AYMILLPFSE TFFYLSSVIN PLLYTVSSQQ FRRVFVQVLC
                                                                                 300
60
                                                                                 360
        CRLSLQHANH EKRLRVHAHS TTDSARFVQR PLLFASRRQS SARRTEKIFL STFQSEAEPQ
        SKSOSLSLES LEPNSGAKPA NSAAENGFQE HEV
65
        Seq ID NO: 400 DNA sequence
        Nucleic Acid Accession #: NM_006475.1
        Coding sequence: 28..2538
                                           31
                    11
70
        AACAGAACTG CAACGGAGAG ACTCAAGATG ATTCCCTTTT TACCCATGTT TTCTCTACTA
        TTGCTGCTTA TTGTTAACCC TATAAACGCC AACAATCATT ATGACAAGAT CTTGGCTCAT
                                                                                 120
        AGTCGTATCA GGGGTCGGGA CCAAGGCCCA AATGTCTGTG CCCTTCAACA GATTTTGGGC
                                                                                 180
        ACCAAAAAGA AATACTTCAG CACTTGTAAG AACTGGTATA AAAAGTCCAT CTGTGGACAG
                                                                                 240
75
        AAAACGACTG TTTTATATGA ATGTTGCCCT GGTTATATGA GAATGGAAGG AATGAAAGGC
                                                                                 300
        TGCCCAGCAG TTTTGCCCAT TGACCATGTT TATGGCACTC TGGGCATCGT GGGAGCCACC
                                                                                 360
        ACAACGCAGC GCTATTCTGA CGCCTCAAAA CTGAGGGAGG AGATCGAGGG AAAGGGATCC
                                                                                 420
        TTCACTTACT TTGCACCGAG TAATGAGGCT TGGGACAACT TGGATTCTGA TATCCGTAGA
                                                                                 480
        GGTTTGGAGA GCAACGTGAA TGTTGAATTA CTGAATGCTT TACATAGTCA CATGATTAAT
                                                                                 540
        AAGAGAATGT TGACCAAGGA CTTAAAAAAT GGCATGATTA TTCCTTCAAT GTATAACAAT
80
                                                                                  600
        TTGGGGCTTT TCATTAACCA TTATCCTAAT GGGGTTGTCA CTGTTAATTG TGCTCGAATC ATCCATGGGA ACCAGATTGC AACAAATGGT GTTGTCCATG TCATTGACCG TGTGCTTACA
                                                                                  660
                                                                                  720
        CAAATTGGTA CCTCAATTCA AGACTTCATT GAAGCAGAAG ATGACCTTTC ATCTTTTAGA
        GCAGCTGCCA TCACATCGGA CATATTGGAG GCCCTTGGAA GAGACGGTCA CTTCACACTC
        TTTGCTCCCA CCAATGAGGC TTTTGAGAAA CTTCCACGAG GTGTCCTAGA AAGGTTCATG
85
                                                                                  900
        GGAGACAAAG TGGCTTCCGA AGCTCTTATG AAGTACCACA TCTTAAATAC TCTCCAGTGT
        TCTGAGTCTA TTATGGGAGG AGCAGTCTTT GAGACGCTGG AAGGAAATAC AATTGAGATA
                                                                                 1020
```

WO 02/086443

```
GGATGTGACG GTGACAGTAT AACAGTAAAT GGAATCAAAA TGGTGAACAA AAAGGATATT 1080
GTGACAAATA ATGGTGTGAT CCATTTGATT GATCAGGTCC TAATTCCTGA TTCTGCCAAA 1140
       CAAGTTATTG AGCTGGCTGG AAAACAGCAA ACCACCTTCA CGGATCTTGT GGCCCAATTA
       GGCTTGGCAT CTGCTCTGAG GCCAGATGGA GAATACACTT TGCTGGCACC TGTGAATAAT
       GCATTTTCTG ATGATACTCT CAGCATGGTT CAGCGCCTCC TTAAATTAAT TCTGCAGAAT
                                                                                 1320
       CACATATTGA AAGTAAAAGT TGGCCTTAAT GAGCTTTACA ACGGGCAAAT ACTGGAAACC
       ATCGGAGGCA AACAGCTCAG AGTCTTCGTA TATCGTACAG CTGTCTGCAT TGAAAATTCA
                                                                                 1440
       TGCATGGAGA AAGGGAGTAA GCAAGGGAGA AACGGTGCGA TTCACATATT CCGCGAGATC
                                                                                1500
       ATCAAGCCAG CAGAGAAATC CCTCCATGAA AAGTTAAAAC AAGATAAGCG CTTTAGCACC
                                                                                 1560
10
       TTCCTCAGCC TACTTGAAGC TGCAGACTTG AAAGAGCTCC TGACACAACC TGGAGACTGG
                                                                                1620
       ACATTATTTG TGCCAACCAA TGATGCTTTT AAGGGAATGA CTAGTGAAGA AAAAGAAATT
CTGATACGGG ACAAAAATGC TCTTCAAAAC ATCATTCTTT ATCACCTGAC ACCAGGAGTT
                                                                                1680
                                                                                1740
       TTCATTGGAA AAGGATTTGA ACCTGGTGTT ACTAACATTT TAAAGACCAC ACAAGGAAGC
                                                                                1800
       AAAATCTTTC TGAAAGAAGT AAATGATACA CTTCTGGTGA ATGAATTGAA ATCAAAAGAA
                                                                                1860
15
       TCTGACATCA TGACAACAAA TGGTGTAATT CATGTTGTAG ATAAACTCCT CTATCCAGCA
                                                                                1920
       GACACACCTG TTGGAAATGA TCAACTGCTG GAAATACTTA ATAAATTAAT CAAATACATC
                                                                                1980
       CARATTARGT TTGTTCGTGG TAGCACCTTC ARAGRAPATCC CCGTGACTGT CTATACAACT
                                                                                2040
       AAAATTATAA CCAAAGTTGT GGAACCAAAA ATTAAAGTGA TTGAAGGCAG TCTTCAGCCT
                                                                                2100
       ATTATCAAAA CTGAAGGACC CACACTAACA AAAGTCAAAA TTGAAGGTGA ACCTGAATTC
                                                                                2160
20
       AGACTGATTA AAGAAGGTGA AACAATAACT GAAGTGATCC ATGGAGAGCC AATTATTAAA
                                                                                2220
                                                                                2280
       AAATACACCA AAATCATTGA TGGAGTGCCT GTGGAAATAA CTGAAAAAGA GACACGAGAA
       GAACGAATCA TTACAGGTCC TGAAATAAAA TACACTAGGA TTTCTACTGG AGGTGGAGAA
                                                                                2340
       ACAGAAGAAA CTCTGAAGAA ATTGTTACAA GAAGAGGTCA CCAAGGTCAC CAAATTCATT
                                                                                2400
       GAAGGTGGTG ATGGTCATTT ATTTGAAGAT GAAGAAATTA AAAGACTGCT TCAGGGAGAC
                                                                                2460
25
       ACACCCGTGA GGAAGTTGCA AGCCAACAAA AAAGTTCAAG GTTCTAGAAG ACGATTAAGG
                                                                                2520
       GAAGGTCGTT CTCAGTGAAA ATCCAAAAAC CAGAAAAAA TGTTTATACA ACCCTAAGTC
AATAACCTGA CCTTAGAAAA TTGTGAGAGC CAAGTTGACT TCAGGAACTG AAACATCAGC
                                                                                2580
                                                                                2640
       ACAAAGAAGC AATCATCAAA TAATTCTGAA CACAAATTTA ATATTTTTT TTCTGAATGA
GAAACATGAG GGAAATTGTG GAGTTAGCCT CCTGTGGTAA AGGAATTGAA GAAAATATAA
                                                                                2700
                                                                                2760
30
       CACCTTACAC CCTTTTTCAT CTTGACATTA AAAGTTCTGG CTAACTTTGG AATCCATTAG
                                                                                2820
       AGAAAAATCC TTGTCACCAG ATTCATTACA ATTCAAATCG AAGAGTTGTG AACTGTTATC
       CCATTGAAAA GACCGAGCCT TGTATGTATG TTATGGATAC ATAAAATGCA CGCAAGCCAT
                                                                                2940
       TATCTCTCCA TGGGAAGCTA AGTTATAAAA ATAGGTGCTT GGTGTACAAA ACTTTTTATA
                                                                                3000
       TCAAAAGGCT TTGCACATTT CTATATGAGT GGGTTTACTG GTAAATTATG TTATTTTTTA
                                                                                3060
35
       CAACTAATTT TGTACTCTCA GAATGTTTGT CATATGCTTC TTGCAATGCA TATTTTTTAA
                                                                                3120
       TCTCAAACGT TTCAATAAAA CCATTTTTCA GATATAAAGA GAATTACTTC AAATTGAGTA
                                                                                3180
       ATTCAGAAAA ACTCAAGATT TAAGTTAAAA AGTGGTTTGG ACTTGGGAA
       Seq ID NO: 401 Protein sequence
40
       Protein Accession #: NP 006466.1
                                                       41
                                                                   51
                                            31
       MIPFLPMFSL LLLLIVNPIN ANNHYDKILA HSRIRGRDQG PNVCALQQIL GTKKKYFSTC
                                                                                   60
45
       KNWYKKSICG QKTTVLYECC PGYMRMEGMK GCPAVLPIDH VYGTLGIVGA TTTQRYSDAS
                                                                                 120
       KLREEIEGKG SFTYFAPSNE AWDNLDSDIR RGLESNVNVE LLNALHSHMI NKRMLTKDLK
                                                                                  180
       NGMIIPSMYN NLGLFINHYP NGVVTVNCAR IIHGNQIATN GVVHVIDRVL TQIGTSIQDF
                                                                                  240
       IEAEDDLSSF RAAAITSDIL EALGRDGHFT LFAPTNEAFE KLPRGVLERF MGDKVASEAL
                                                                                  300
       MKYHILNTLQ CSESIMGGAV FETLEGNTIE IGCDGDSITV NGIKMVNKKD IVTNNGVIHL
                                                                                  360
       IDQVLIPDSA KQVIELAGKQ QTTFTDLVAQ LGLASALRPD GEYTLLAPVN NAFSDDTLSM
50
                                                                                  420
       VQRLLKLILQ NHILKVKYGL NELYNGGILE TIGGKQLRVF VYRTAVCIEN SCMEKGSKQG
RNGAIHIFRE IIKPAEKSLH EKLKQDKRFS TFLSLLEAAD LKELLTQPGD WTLFVPTNDA
                                                                                  480
                                                                                  540
       FKGMTSEEKE ILIRDKNALQ NIILYHLTPG VFIGKGFEPG VTNILKTTQG SKIFLKEVND
       TLLVNELKSK ESDIMTTNGV IHVVDKLLYP ADTPVGNDQL LEILNKLIKY IQIKFVRGST
                                                                                  660
55
       FKEIPVTVYT TKIITKVVEP KIKVIEGSLQ PIIKTEGPTL TKVKIEGEPE FRLIKEGETI
                                                                                  720
       TEVIHGEPII KKYTKIIDGV PVEITEKETR EERIITGPEI KYTRISTGGG ETEETLKKLL
       OEEVTKVTKF IEGGDGHLFE DEEIKRLLQG DTPVRKLQAN KKVQGSRRRL REGRSQ
       Seq ID NO: 402 DNA sequence
60
       Nucleic Acid Accession #: NM_002416
       Coding sequence: 40..417
                                                       41
                                                                   51
                                            31
65
       ATCCAATACA GGAGTGACTT GGAACTCCAT TCTATCACTA TGAAGAAAAG TGGTGTTCTT
                                                                                   60
       TTCCTCTTGG GCATCATCTT GCTGGTTCTG ATTGGAGTGC AAGGAACCCC AGTAGTGAGA
                                                                                  120
       AAGGGTCGCT GTTCCTGCAT CAGCACCAAC CAAGGGACTA TCCACCTACA ATCCTTGAAA
                                                                                  180
       GACCTTAAAC AATTTGCCCC AAGCCCTTCC TGCGAGAAAA TTGAAATCAT TGCTACACTG
                                                                                  240
       AAGAATGGAG TTCAAACATG TCTAAACCCA GATTCAGCAG ATGTGAAGGA ACTGATTAAA
                                                                                  300
       AAGTGGGAGA AACAGGTCAG CCAAAAGAAA AAGCAAAAGA ATGGGAAAAA ACATCAAAAA
70
                                                                                  360
       AAGAAAGTTC TGAAAGTTCG AAAATCTCAA CGTTCTCGTC AAAAGAAGAC TACATAAGAG
       ACCACTTCAC CAATAAGTAT TCTGTGTTAA AAATGTTCTA TTTTAATTAT ACCGCTATCA
TTCCAAAGGA GGATGGCATA TAATACAAAG GCTTATTAAT TTGACTAGAA AATTTAAAAC
                                                                                  480
       ATTACTCTGA AATTGTAACT AAAGTTAGAA AGTTGATTTT AAGAATCCAA ACGTTAAGAA
75
       TTGTTAAAGG CTATGATTGT CTTTGTTCTT CTACCACCCA CCAGTTGAAT TTCATCATGC
        TTAAGGCCAT GATTTTAGCA ATACCCATGT CTACACAGAT GTTCACCCAA CCACATCCCA
                                                                                  720
       CTCACAACAG CTGCCTGGAA GAGCAGCCCT AGGCTTCCAC GTACTGCAGC CTCCAGAGAG
                                                                                  780
       TATCTGAGGC ACATGTCAGC AAGTCCTAAG CCTGTTAGCA TGCTGGTGAG CCAAGCAGTT
                                                                                  840
       TGAAATTGAG CTGGACCTCA CCAAGCTGCT GTGGCCATCA ACCTCTGTAT TTGAATCAGC
                                                                                  900
80
       CTACAGGCCT CACACACAAT GTGTCTGAGA GATTCATGCT GATTGTTATT GGGTATCACC
                                                                                  960
       ACTGGAGATC ACCAGTGTGT GGCTTTCAGA GCCTCCTTTC TGGCTTTGGA AGCCATGTGA
                                                                                 1020
       TTCCATCTTG CCCGCTCAGG CTGACCACTT TATTTCTTTT TGTTCCCCTT TGCTTCATTC
                                                                                1080
       AAGTCAGCTC TTCTCCATCC TACCACAATG CAGTGCCTTT CTTCTCCCA GTGCACCTGT
                                                                                1140
       CATATECTCT GATTTATCTG AGTCAACTCC TTTCTCATCT TGTCCCCAAC ACCCCACAGA
                                                                                1200
85
       AGTGCTTTCT TCTCCCAATT CATCCTCACT CAGTCCAGCT TAGTTCAAGT CCTGCCTCTT
                                                                                 1260
       AAATAAACCT TTTTGGACAC ACAAATTATC TTAAAACTCC TGTTTCACTT GGTTCAGTAC
                                                                                 1320
        CACATGGGTG AACACTCAAT GGTTAACTAA TTCTTGGGTG TTTATCCTAT CTCTCCAACC
                                                                                1380
```

PCT/US02/12476 WO 02/086443

```
AGATTGTCAG CTCCTTGAGG GCAAGAGCCA CAGTATATTT CCCTGTTTCT TCCACAGTGC
                                                                            1440
       CTAATAATAC TGTGGAACTA GGTTTTAATA ATTTTTTAAT TGATGTTGTT ATGGGCAGGA
                                                                            1500
       TGGCAACCAG ACCATTGTCT CAGAGCAGGT GCTGGCTCTT TCCTGGCTAC TCCATGTTGG
                                                                            1560
       CTAGCCTCTG GTAACCTCTT ACTTATTATC TTCAGGACAC TCACTACAGG GACCAGGGAT
                                                                            1620
       GATGCAACAT CCTTGTCTTT TTATGACAGG ATGTTTGCTC AGCTTCTCCA ACAATAAGAA
                                                                            1680
       GCACGTGGTA AAACACTTGC GGATATTCTG GACTGTTTTT AAAAAATATA CAGTTTACCG
       AAAATCATAT AATCTTACAA TGAAAAGGAC TTTATAGATC AGCCAGTGAC CAACCTTTTC
CCAACCATAC AAAAATTCCT TTTCCCGAAG GAAAAGGGCT TTCTCAATAA GCCTCAGCTT
                                                                            1800
                                                                            1860
       TCTAAGATCT AACAAGATAG CCACCGAGAT CCTTATCGAA ACTCATTTTA GGCAAATATG
                                                                            1920
       AGTITIATIG TCCGTTTACT TGTTTCAGAG TTTGTATTGT GATTATCAAT TACCACACCA
10
                                                                            1980
       TCTCCCATGA AGAAAGGGAA CGGTGAAGTA CTAAGCGCTA GAGGAAGCAG CCAAGTCGGT
                                                                            2040
       TAGTGGAAGC ATGATTGGTG CCCAGTTAGC CTCTGCAGGA TGTGGAAACC TCCTTCCAGG
                                                                            2100
       GGAGGTTCAG TGAATTGTGT AGGAGAGGTT GTCTGTGGCC AGAATTTAAA CCTATACTCA
                                                                            2160
       CTTTCCCAAA TTGAATCACT GCTCACACTG CTGATGATTT AGAGTGCTGT CCGGTGGAGA
                                                                            2220
15
       TCCCACCCGA ACGTCTTATC TAATCATGAA ACTCCCTAGT TCCTTCATGT AACTTCCCTG
                                                                            2280
       AAAAATCTAA GTGTTTCATA AATTTGAGAG TCTGTGACCC ACTTACCTTG CATCTCACAG
                                                                            2340
       GTAGACAGTA TATAACTAAC AACCAAAGAC TACATATTGT CACTGACACA CACGTTATAA
                                                                            2400
       TCATTTATCA TATATACA TACATGCATA CACTCTCAAA GCAAATAATT TTTCACTTCA
                                                                            2460
       AAACAGTATT GACTTGTATA CCTTGTAATT TGAAATATTT TCTTTGTTAA AATAGAATGG
                                                                           2520
20
       TATCAATAAA TAGACCATTA ATCAG
       Seg ID NO: 403 Protein seguence
       Protein Accession #: NP_002407
25
                                                               51
       MKKSGVLFLL GIILLVLIGV QGTPVVRKGR CSCISTNQGT IHLQSLKDLK QFAPSPSCEK
                                                                             60
       IBIIATLKNG VQTCLNPDSA DVKELIKKWE KQVSQKKKQK NGKKHQKKKV LKVRKSQRSR
                                                                            120
30
       Seq ID NO: 404 DNA sequence
       Nucleic Acid Accession #: NM_006670
       Coding sequence: 85..1347
35
                                         31
                             21
       CCGGCTCGCG CCCTCCGGGC CCAGCCTCCC GAGCCTTCGG AGCGGGCGCC GTCCCAGCCC
                                                                              60
       AGCTCCGGGG AAACGCGAGC CGCGATGCCT GGGGGGTGCT CCCGGGGCCC CGCCGCCGGG
                                                                             120
       GACGGGCGTC TGCGGCTGGC GCGACTAGCG CTGGTACTCC TGGGCTGGGT CTCCTCGTCT
                                                                             180
40
       TCTCCCACCT CCTCGGCATC CTCCTTCTCC TCCTCGGCGC CGTTCCTGGC TTCCGCCGTG
                                                                            240
       TCCGCCCAGC CCCCGCTGCC GGACCAGTGC CCCGCGCTGT GCGAGTGCTC CGAGGCAGCG
                                                                             300
       CGCACAGTCA AGTGCGTTAA CCGCAATCTG ACCGAGGTGC CCACGGACCT GCCCGCCTAC
                                                                            360
       GTGCGCAACC TCTTCCTTAC CGGCAACCAG CTGGCCGTGC TCCCTGCCGG CGCCTTCGCC
                                                                             420
       CGCCGGCCGC CGCTGGCGGA GCTGGCCGCG CTCAACCTCA GCGGCAGCCG CCTGGACGAG
                                                                             480
45
       GTGCGCGCGG GCGCCTTCGA GCATCTGCCC AGCCTGCGCC AGCTCGACCT CAGCCACAAC
                                                                             540
       CCACTGGCCG ACCTCAGTCC CTTCGCTTTC TCGGGCAGCA ATGCCAGCGT CTCGGCCCCC
                                                                             600
       AGTCCCCTTG TGGAACTGAT CCTGAACCAC ATCGTGCCCC CTGAAGATGA GCGGCAGAAC
                                                                             660
       CGGAGCTTCG AGGGCATGGT GGTGGCGGCC CTGCTGGCGG GCCGTGCACT GCAGGGGCTC
                                                                             720
       CGCCGCTTGG AGCTGGCCAG CAACCACTTC CTTTACCTGC CGCGGGATGT GCTGGCCCAA
                                                                             780
       CTGCCCAGCC TCAGGCACCT GGACTTAAGT AATAATTCGC TGGTGAGCCT GACCTACGTG
50
                                                                             840
       TCCTTCCGCA ACCTGACACA TCTAGAAAGC CTCCACCTGG AGGACAATGC CCTCAAGGTC CTTCACAATG GCACCCTGGC TGAGTTGCAA GGTCTACCCC ACATTAGGGT TTTCCTGGAC
                                                                             900
                                                                             960
       AACAATCCCT GGGTCTGCGA CTGCCACATG GCAGACATGG TGACCTGGCT CAAGGAAACA
                                                                            1020
       GAGGTAGTGC AGGGCAAAGA CCGGCTCACC TGTGCATATC CGGAAAAAAT GAGGAATCGG
                                                                            1080
55
       GTCCTCTTGG AACTCAACAG TGCTGACCTG GACTGTGACC CGATTCTTCC CCCATCCCTG
                                                                            1140
       CAAACCTCTT ATGTCTTCCT GGGTATTGTT TTAGCCCTGA TAGGCGCTAT TTTCCTCCTG
                                                                            1200
       GTTTTGTATT TGAACCGCAA GGGGATAAAA AAGTGGATGC ATAACATCAG AGATGCCTGC
                                                                            1260
       AGGGATCACA TGGAAGGGTA TCATTACAGA TATGAAATCA ATGCGGACCC CAGATTAACA
                                                                            1320
       AACCTCAGTT CTAACTCGGA TGTCTGAGAA ATATTAGAGG ACAGACCAAG GACAACTCTG
                                                                            1380
60
       CATGAGATGT AGACTTAAGC TTTATCCCTA CTAGGCTTGC TCCACTTTCA TCCTCCACTA
                                                                            1440
       TAGATACAAC GGACTTTGAC TAAAAGCAGT GAAGGGGATT TGCTTCCTTG TTATGTAAAG
                                                                            1500
       TTTCTCGGTG TGTTCTGTTA ATGTAAGACG ATGAACAGTT GTGTATAGTG TTTTACCCTC
                                                                            1560
       TTCTTTTTCT TGGAACTCCT CAACACGTAT GGAGGGATTT TTCAGGTTTC AGCATGAACA
                                                                            1620
       TGGGCTTCTT GCTGTCTGTC TCTCTCTCAG TACAGTTCAA GGTGTAGCAA GTGTACCCAC
                                                                            1680
65
       ACAGATAGCA TTCAACAAAA GCTGCCTCAA CTTTTTCGAG AAAAATACTT TATTCATAAA
                                                                            1740
       TATCAGTTTT ATTCTCATGT ACCTAAGTTG TGGAGAAAAT AATTGCATCC TATAAACTGC
                                                                            1800
       CTGCAGACGT TAGCAGGCTC TTCAAAATAA CTCCATGGTG CACAGGAGCA CCTGCATCCA
                                                                            1860
       AGAGCATGCT TACATTTTAC TGTTCTGCAT ATTACAAAAA ATAACTTGCA ACTTCATAAC
                                                                            1920
       TTCTTTGACA AAGTAAATTA CTTTTTTGAT TGCAGTTTAT ATGAAAATGT ACTGATTTTT
                                                                            1980
70
       2040
       ATTCTTAAAA GAA
       Seq ID NO: 405 Protein sequence
       Protein Accession #: NP 006661
75
                                                                51
                                         31
                                                     41
                  11
                             21
       MPGGCSRGPA AGDGRLRLAR LALVLLGWVS SSSPTSSASS FSSSAPFLAS AVSAQPPLPD
       QCPALCECSE AARTVKCVNR NLTEVPTDLP AYVRNLFLTG NQLAVLPAGA FARRPPLAEL
                                                                             120
80
       AALNLSGSRL DEVRAGAFEH LPSLRQLDLS HNPLADLSPF AFSGSNASVS APSPLVELIL
                                                                             180
       NHIVPPEDER QNRSFEGMVV AALLAGRALQ GLRRLELASN HFLYLPRDVL AQLPSLRHLD
                                                                             240
       LSNNSLVSLT YVSFRNLTHL ESLHLEDNAL KVLHNGTLAE LQGLPHIRVF LDNNPWVCDC
                                                                             300
       HMADMVTWLK ETEVVQGKDR LTCAYPEKMR NRVLLELNSA DLDCDPILPP SLQTSYVFLG
                                                                             360
       IVLALIGAIF LLVLYLNRKG IKKWMHNIRD ACRDHMEGYH YRYEINADPR LTNLSSNSDV
85
```

Seg ID NO: 406 DNA sequence Nucleic Acid Accession #: Eos sequence

WO 02/086443 Coding sequence: 1..927

```
51
       ATGCCTGGGG GGTGCTCCCG GGGCCCCGCC GCCGGGGACG GGCGTCTGCG GCTGGCGCGA
                                                                                60
       CTAGOGCTGG TACTCCTGGG CTGGGTCTCC TCGTCTTCTC CCACCTCCTC GGCATCCTCC
                                                                               120
       TTCTCCTCCT CGGCGCCGTT CCTGGCTTCC GCCGTGTCCG CCCAGCCCCC GCTGCCGGAC
                                                                               180
       CAGTGCCCCG CGCTGTGCGA GTGCTCCGAG GCAGCGCGCA CAGTCAAGTG CGTTAACCGC
                                                                               240
       AATCTGACCG AGGTGCCCAC GGACCTGCCC GCCTACGTGC GCAACCTCTT CCTTACCGGC
                                                                               300
10
       AACCAGCTGG CCAGCAACCA CTTCCTTTAC CTGCCGCGGG ATGTGCTGGC CCAACTGCCC
                                                                               360
       AGCCTCAGGC ACCTGGACTT AAGTAATAAT TCGCTGGTGA GCCTGACCTA CGTGTCCTTC
                                                                               420
       CGCAACCTGA CACATCTAGA AAGCCTCCAC CTGGAGGACA ATGCCCTCAA GGTCCTTCAC
                                                                               480
       ANTIGORACCE TEGOTERGTT GCARGETCTA CCCCACATTA GGGTTTTCCT GGACAACAAT CCCTGGGTCT GCGACTGCCA CATGGCAGAC ATGGTGACCT GGCTCAAGGA AACAGAGGTA
                                                                               540
                                                                               600
       GTGCAGGGCA AAGACCGGCT CACCTGTGCA TATCCGGAAA AAATGAGGAA TCGGGTCCTC
TTGGAACTCA ACAGTGCTGA CCTGGACTGT GACCCGATTC TTCCCCCATC CCTGCAAACC
15
                                                                               660
                                                                               720
       TCTTATGTCT TCCTGGGTAT TGTTTTAGCC CTGATAGGCG CTATTTTCCT CCTGGTTTTG
       TATTTGAACC GCAAGGGGAT AAAAAAGTGG ATGCATAACA TCAGAGATGC CTGCAGGGAT
       CACATGGAAG GGTATCATTA CAGATATGAA ATCAATGCGG ACCCCAGATT AACAAACCTC
20
       AGTTCTAACT CGGATGTCCT CGAGTGA
       Seq ID NO: 407 Protein sequence
       Protein Accession #: Eos sequence
25
                                                                 51
       MPGGCSRGPA AGDGRLRLAR LALVLLGWVS SSSPTSSASS FSSSAPFLAS AVSAQPPLPD
                                                                                60
       OCPALCECSE AARTVKCVNR NLTEVPTDLP AYVRNLFLTG NQLASNHFLY LPRDVLAQLP
                                                                               120
       SLRHLDLSNN SLVSLTYVSF RNLTHLESLH LEDNALKVLH NGTLAELQGL PHIRVFLDNN
                                                                               180
30
       PWVCDCHMAD MVTWLKETEV VQGKDRLTCA YPEKMRNRVL LELNSADLDC DPILPPSLQT
                                                                               240
       SYVFLGIVLA LIGAIFLLVL YLNRKGIKKW MHNIRDACRD HMEGYHYRYE INADPRLTNL
                                                                               300
       SSNSDVLE
       Seq ID NO: 408 DNA sequence
35
       Nucleic Acid Accession #: NM_000095.1
       Coding sequence: 26..2299
                                                                 51
                  11
                              21
                                          31
                                                      41
40
       CAGCACCAG CTCCCCGCCA CCGCCATGGT CCCCGACACC GCCTGCGTTC TTCTGCTCAC
       CCTGGCTGCC CTCGGCGCGT CCGGACAGGG CCAGAGCCCG TTGGGCTCAG ACCTGGGCCC
       GCAGATGCTT CGGGAACTGC AGGAAACCAA CGCGGCGCTG CAGGACGTGC GGGACTGGCT
                                                                               180
       GCGGCAGCAG GTCAGGGAGA TCACGTTCCT GAAAAACACG GTGATGGAGT GTGACGCGTG
                                                                               240
       CGGGATGCAG CAGTCAGTAC GCACCGGCCT ACCCAGCGTG CGGCCCCTGC TCCACTGCGC
                                                                               300
45
       GCCCGGCTTC TGCTTCCCCG GCGTGGCCTG CATCCAGACG GAGAGCGGCG GCCGCTGCGG
                                                                               360
       CCCCTGCCCC GCGGGCTTCA CGGGCAACGG CTCGCACTGC ACCGACGTCA ACGAGTGCAA
                                                                               420
       CGCCCACCC TGCTTCCCCC GAGTCCGCTG TATCAACACC AGCCCGGGGT TCCGCTGCGA
                                                                               480
       GGCTTGCCCG CCGGGGTACA GCGGCCCCAC CCACCAGGGC GTGGGGGCTGG CTTTCGCCAA
                                                                               540
       GGCCAACAAG CAGGTTTGCA CGGACATCAA CGAGTGTGAG ACCGGGCAAC ATAACTGCGT
                                                                               600
50
       CCCCAACTCC GTGTGCATCA ACACCCGGGG CTCCTTCCAG TGCGGCCCGT GCCAGCCCGG
                                                                               660
       CTTCGTGGGC GACCAGGCGT CCGGCTGCCA GCGCGGCGCA CAGCGCTTCT GCCCCGACGG
                                                                               720
       CTCGCCCAGC GAGTGCCACG AGCATGCAGA CTGCGTCCTA GAGCGCGATG GCTCGCGGTC
                                                                               780
       GTGCGTGTGT CGCGTTGGCT GGGCCGGCAA CGGGATCCTC TGTGGTCGCG ACACTGACCT
                                                                               840
       AGACGGCTTC CCGGACGAGA AGCTGCGCTG CCCGGAGCCG CAGTGCCGTA AGGACAACTG
                                                                               900
       CGTGACTGTG CCCAACTCAG GGCAGGAGGA TGTGGACCGC GATGGCATCG GAGACGCCTG
55
                                                                               960
       CGATCCGGAT GCCGACGGGG ACGGGGTCCC CAATGAAAAG GACAACTGCC CGCTGGTGCG
                                                                              1020
       GAACCCAGAC CAGCGCAACA CGGACGAGGA CAAGTGGGGC GATGCGTGCG ACAACTGCCG
GTCCCAGAAG AACGACGACC AAAAGGACAC AGACCAGGAC GGCCGGGGCG ATGCGTGCGA
                                                                              1080
                                                                              1140
       CGACGACATC GACGGCGACC GGATCCGCAA CCAGGCCGAC AACTGCCCTA GGGTACCCAA
                                                                              1200
60
       CTCAGACCAG AAGGACAGTG ATGGCGATGG TATAGGGGAT GCCTGTGACA ACTGTCCCCA
                                                                              1260
       GAAGAGCAAC CCGGATCAGG CGGATGTGGA CCACGACTTT GTGGGAGATG CTTGTGACAG
       CGATCAAGAC CAGGATGGAG ACGGACATCA GGACTCTCGG GACAACTGTC CCACGGTGCC
       TAACAGTGCC CAGGAGGACT CAGACCACGA TGGCCAGGGT GATGCCTGCG ACGACGACGA
                                                                              1440
       CGACAATGAC GGAGTCCCTG ACAGTCGGGA CAACTGCCGC CTGGTGCCTA ACCCCGGCCA
                                                                              1500
65
       GGAGGACGCG GACAGGGACG GCGTGGGCGA CGTGTGCCAG GACGACTTTG ATGCAGACAA
                                                                              1560
       GGTGGTAGAC AAGATCGACG TGTGTCCGGA GAACGCTGAA GTCACGCTCA CCGACTTCAG
                                                                              1620
       GGCCTTCCAG ACAGTCGTGC TGGACCCGGA GGGTGACGCG CAGATTGACC CCAACTGGGT
                                                                              1680
                                                                              1740
       GGTGCTCAAC CAGGGAAGGG AGATCGTGCA GACAATGAAC AGCGACCCAG GCCTGGCTGT
       GGGTTACACT GCCTTCAATG GCGTGGACTT CGAGGGCACG TTCCATGTGA ACACGGTCAC
                                                                              1800
70
       GGATGACGAC TATGCGGGCT TCATCTTTGG CTACCAGGAC AGCTCCAGCT TCTACGTGGT
                                                                              1860
       CATGTGGAAG CAGATGGAGC AAACGTATTG GCAGGCGAAC CCCTTCCGTG CTGTGGCCGA
                                                                              1920
       GCCTGGCATC CAACTCAAGG CTGTGAAGTC TTCCACAGGC CCCGGGGAAC AGCTGCGGAA
                                                                              1980
       CGCTCTGTGG CATACAGGAG ACACAGAGTC CCAGGTGCGG CTGCTGTGGA AGGACCCGCG
                                                                              2040
       AAACGTGGGT TGGAAGGACA AGAAGTCCTA TCGTTGGTTC CTGCAGCACC GGCCCCAAGT
                                                                              2100
75
       GGGCTACATC AGGGTGCGAT TCTATGAGGG CCCTGAGCTG GTGGCCGACA GCAACGTGGT
                                                                              2160
       CTTGGACACA ACCATGCGGG GTGGCCGCCT GGGGGTCTTC TGCTTCTCCC AGGAGAACAT
                                                                              2220
       CATCTGGGCC AACCTGCGTT ACCGCTGCAA TGACACCATC CCAGAGGACT ATGAGACCCA
                                                                              2280
       TCAGCTGCGG CAAGCCTAGG GACCAGGGTG AGGACCCGCC GGATGACAGC CACCCTCACC
                                                                              2340
       GCGGCTGGAT GGGGGCTCTG CACCCAGCCC AAGGGGTGGC CGTCCTGAGG GGGAAGTGAG
80
       AAGGGCTCAG AGAGGACAAA ATAAAGTGTG TGTGCAGGG
       Seg ID NO: 409 Protein seguence
       Protein Accession #: NP_000086.1
85
       MVPDTACVLL LTLAALGASG QGQSPLGSDL GPQMLRELQE TNAALQDVRD WLRQQVREIT
```

```
WO 02/086443
       FLKNTVMECD ACGMQQSVRT GLPSVRPLLH CAPGFCFPGV ACIQTESGGR CGPCPAGFTG
                                                                             120
       NGSHCTDVNE CNAHPCFPRV RCINTSPGFR CEACPPGYSG PTHQGVGLAF AKANKQVCTD
                                                                             180
       INECETGORN CVPNSVCINT RGSFQCGPCQ PGFVGDQASG CQRGAQRFCP DGSPSECHER
                                                                             240
       ADCVLERDGS RSCVCRVGWA GNGILCGRDT DLDGPPDEKL RCPEPQCRKD NCVTVPNSGQ
                                                                             300
       EDVDRDGIGD ACDPDADGDG VPNEKDNCPL VRNPDQRNTD EDKWGDACDN CRSQKNDDQK
                                                                             360
       DTDODGRGDA CDDDIDGDRI RNQADNCPRV PNSDQKDSDG DGIGDACDNC PQKSNPDQAD
                                                                             420
       VDHDFVGDAC DSDODODGDG HODSRDNCPT VPNSAQEDSD HDGQGDACDD DDDNDGVPDS
                                                                             480
       RDNCRLVFNP GQEDADRDGV GDVCQDDFDA DKVVDKIDVC PENAEVTLTD FRAFQTVVLD
                                                                             540
       PEGDAQIDPN WVVLNQGREI VQTMNSDPGL AVGYTAFNGV DFEGTFHVNT VTDDDYAGFI
                                                                             600
10
       FGYODSSSFY VVMWKQMEQT YWQANPFRAV AEPGIQLKAV KSSTGPGEQL RNALWHTGDT
                                                                             660
       ESQVRLLWKD PRNVGWKDKK SYRWPLQHRP QVGYIRVRFY EGPELVADSN VVLDTTMRGG
                                                                             720
       RLGVFCFSQE NIIWANLRYR CNDTIPEDYE THQLRQA
       Seg ID NO: 410 DNA sequence
15
       Nucleic Acid Accession #: NM_001565.1
       Coding sequence: 67..363
                                                               51
                                                    41
20
       GAGACATTCC TCAATTGCTT AGACATATTC TGAGCCTACA GCAGAGGAAC CTCCAGTCTC
                                                                              60
       AGCACCATGA ATCAAACTGC GATTCTGATT TGCTGCCTTA TCTTTCTGAC TCTAAGTGGC
                                                                             120
       ATTCAAGGAG TACCTCTCTC TAGAACCGTA CGCTGTACCT GCATCAGCAT TAGTAATCAA
       CCTGTTAATC CAAGGTCTTT AGAAAAACTT GAAATTATTC CTGCAAGCCA ATTTTGTCCA
       CGTGTTGAGA TCATTGCTAC AATGAAAAAG AAGGGTGAGA AGAGATGTCT GAATCCAGAA
                                                                             300
       TCGAAGGCCA TCAAGAATTT ACTGAAAGCA GTTAGCAAGG AAATGTCTAA AAGATCTCCT
25
       TAAAACCAGA GGGGAGCAAA ATCGATGCAG TGCTTCCAAG GATGGACCAC ACAGAGGCTG
                                                                             420
       CCTCTCCCAT CACTTCCCTA CATGGAGTAT ATGTCAAGCC ATAATTGTTC TTAGTTTGCA
                                                                             480
       GTTACACTAA AAGGTGACCA ATGATGGTCA CCAAATCAGC TGCTACTACT CCTGTAGGAA
                                                                             540
       GGTTAATGTT CATCATCCTA AGCTATTCAG TAATAACTCT ACCCTGGCAC TATAATGTAA
                                                                             600
30
       GCTCTACTGA GGTGCTATGT TCTTAGTGGA TGTTCTGACC CTGCTTCAAA TATTTCCCTC
                                                                             660
       ACCITICCEA TETTECAAGG GTACTAAGGA ATCITICTGE TITGGGGTTT ATCAGAATTE
                                                                             720
       TCAGAATCTC AAATAACTAA AAGGTATGCA ATCAAATCTG CTTTTTAAAG AATGCTCTTT
                                                                             780
       ACTICATGGA CTICCACTGC CATCCTCCCA AGGGGCCCAA ATTCTTTCAG TGGCTACCTA
                                                                             840
       CATACAATTC CAAACACATA CAGGAAGGTA GAAATATCTG AAAATGTATG TGTAAGTATT
                                                                             900
                                                                             960
35
       CTTATTTAAT GAAAGACTGT ACAAAGTATA AGTCTTAGAT GTATATATTT CCTATATTGT
       TTTCAGTGTA CATGGAATAA CATGTAATTA AGTACTATGT ATCAATGAGT AACAGGAAAA
                                                                            1020
       TTTTAAAAAT ACAGATAGAT ATATGCTCTG CATGTTACAT AAGATAAATG TGCTGAATGG
                                                                            1080
       TTTTCAAATA AAAATGAGGT ACTCTCCTGG AAATATTAAG
40
       Seq ID NO: 411 Protein sequence
       Protein Accession #: NP_001556.1
                                         31
                  11
45
       MNQTAILICC LIFLTLSGIQ GVPLSRTVRC TCISISNQPV NPRSLEKLEI IPASQFCPRV
                                                                              60
       EIIATMKKKG EKRCLNPESK AIKNLLKAVS KEMSKRSP
       Seg ID NO: 412 DNA seguence
       Nucleic Acid Accession #: XM_057014
50
       Coding sequence: 143..874
                                         31
                                                    41
                                                               51
       GGGAGGGAGA GAGGCGCGCG GGTGAAAGGC GCATTGATGC AGCCTGCGGC GGCCTCGGAG
                                                                              60
55
       CGCGGCGGAG CCAGACGCTG ACCACGTTCC TCTCCTCGGT CTCCTCCGCC TCCAGCTCCG
                                                                             120
       CGCTGCCCGG CAGCCGGGAG CCATGCGACC CCAGGGCCCC GCCGCCTCCC CGCAGCGGCT
                                                                             180
       CCGCGGCCTC CTGCTGCTCC TGCTGCTGCA GCTGCCCGCG CCGTCGAGCG CCTCTGAGAT
                                                                             240
       CCCCAAGGGG AAGCAAAAGG CGCAGCTCCG GCAGAGGGAG GTGGTGGACC TGTATAATGG
                                                                             300
       AATGTGCTTA CAAGGGCCAG CAGGAGTGCC TGGTCGAGAC GGGAGCCCTG GGGCCAATGG
                                                                             360
       CATTCCGGGT ACACCTGGGA TCCCAGGTCG GGATGGATTC AAAGGAGAAA AGGGGGAATG
60
       TCTGAGGGAA AGCTTTGAGG AGTCCTGGAC ACCCAACTAC AAGCAGTGTT CATGGAGTTC
       ATTGAATTAT GGCATAGATC TTGGGAAAAT TGCGGAGTGT ACATTTACAA AGATGCGTTC
                                                                             540
       AAATAGTGCT CTAAGAGTTT TGTTCAGTGG CTCACTTCGG CTAAAATGCA GAAATGCATG
                                                                             600
       CTGTCAGCGT TGGTATTTCA CATTCAATGG AGCTGAATGT TCAGGACCTC TTCCCATTGA AGCTATAATT TATTTGGACC AAGGAAGCCC TGAAATGAAT TCAACAATTA ATATTCATCG
                                                                             660
65
                                                                             720
       CACTTCTTCT GTGGAAGGAC TTTGTGAAGG AATTGGTGCT GGATTAGTGG ATGTTGCTAT
                                                                             780
       CTGGGTTGGC ACTTGTTCAG ATTACCCAAA AGGAGATGCT TCTACTGGAT GGAATTCAGT
                                                                             840
       TTCTCGCATC ATTATTGAAG AACTACCAAA ATAAATGCTT TAATTTTCAT TTGCTACCTC
                                                                             900
       TTTTTTATT ATGCCTTGGA ATGGTTCACT TAAATGACAT TTTAAATAAG TTTATGTATA
                                                                             960
70
       CATCTGAATG AAAAGCAAAG CTAAATATGT TTACAGACCA AAGTGTGATT TCACACTGTT
                                                                            1020
       TTTAAATCTA GCATTATTCA TTTTGCTTCA ATCAAAAGTG GTTTCAATAT TTTTTTTAGT
                                                                            1080
       TGGTTAGAAT ACTTTCTTCA TAGTCACATT CTCTCAACCT ATAATTTGGA ATATTGTTGT
                                                                            1140
       GGTCTTTTGT TTTTTCTCTT AGTATAGCAT TTTTAAAAAA ATATAAAAGC TACCAATCTT
                                                                            1200
       TGTACAATTT GTAAATGTTA AGAATTTTTT TTATATCTGT TAAATAAAAA TTATTTCCAA
                                                                            1260
75
       СААССТТААА ААААААААА АААА
       Seq ID NO: 413 Protein sequence
       Protein Accession #: XP_057014
80
                                         31
                                                                51
       MRPOGPAASP ORLEGILLLI LIQIPAPSSA SEIPKGKOKA QIROREVVDI YNGMCLQGPA
       GVPGRDGSPG ANGIPGTPGI PGRDGFKGEK GECLRESFEE SWTPNYKQCS WSSLNYGIDL
                                                                             120
       GKIAECTFTK MRSNSALRVL FSGSLRLKCR NACCORWYFT FNGAECSGPL PIEAIIYLDQ
                                                                             180
85
                                                                             240
       GSPEMNSTIN IHRTSSVEGL CEGIGAGLVD VAIWVGTCSD YPKGDASTGW NSVSRIIIEE
```

WO 02/086443
Seq ID NO: 414 DNA sequence
Nucleic Acid Accession #: XM_084007
Coding sequence: 138..2405

5	1	11	21 \	31 	41 \	51 	
	CTCGTGCCGA	ATTCGGCACG	AGACCGCGTG	TTCGCGCCTG	GTAGAGATTT	CTCGAAGACA	60
	CCAGTGGGCC	CGTGTGGAAC	CAAACCTGCG	CGCGTGGCCG	GGCCGTGGGA	CAACGAGGCC	120
10	GCGGAGACGA	AGGCGCAATG	GCGAGGAAGT	TATCTGTAAT	CTTGATCCTG	ACCTTTGCCC	180
10	TCTCTGTCAC	AAATCCCCTT GAATTGGGAA	CATGAACTAA	AAGCAGCIGC	CCCAATTTCC	ACCACIGAGA	240 300
	ATCATCTACA	ACAGCTTTTC	TACCGCTATG	GAGAAAATAA	TTCTTTGTCA	GTTGAAGGGT	360
	TCAGAAAATT	ACTTCAAAAT	ATAGGCATAG	AATABBATTA	AAGAATCCAT	ATACACCATG	420
1.5	ACCACGACCA	TCACTCAGAC	CACGAGCATC	ACTCAGACCA	TGAGCGTCAC	TCAGACCATG	480
15		AGACCACGAG					540 600
		TAAAAATAAG TAGAAACAGC					660
		CAAGGACAGT					720
	TCTCTGAAGG	AACTCACTTT	CTAGAGACAA	TAGAGACTCC	AAGACCTGGA	AAACTCTTCC	780
20		AAGCAGCTCC					840
		GAAAACAAAT				ACATCTCATG	900
		CCAGGTTCCG					1020
	TCAACCAAAT	TGATGCTAGA	TCTTGTCTGA	TTCATACAAG	TGAAAAGAAG	GCTGAAATCC	1080
25	CTCCAAAGAC	CTATTCATTA	CAAATAGCCT	GGGTTGGTGG	TTTTATAGCC	ATTTCCATCA	1140
	TCAGTTTCCT	GTCTCTGCTG	GGGGTTATCT	TAGTGCCTCT	CATGAATCGG	GTGTTTTTCA	1200 1260
	AATTTCTCCT	GAGTTTCCTT TCCACATTCT	CATGCAAGTC	ACCACCATAG	TCATAGCCAT	GAAGAACCAG	1320
	CAATGGAAAT	GAAAAGAGGA	CCACTTTTCA	GTCATCTGTC	TTCTCAAAAC	ATAGAAGAAA	1380
30	GTGCCTATTT	TGATTCCACG	TGGAAGGGTC	TAACAGCTCT	AGGAGGCCTG	TATTTCATGT	1440
		ACATGTCCTC					1500
	AGAAGAAACC	TGAAAATGAT AACAAATGAG	CATGATGTGG	AGATTAAGAA	TOGRACTIGAL	GGCTATTTAC	1560 1620
	GAGCAGACTC	ACAAGAGCCC	TCCCACTTTG	ATTCTCAGCA	GCCTGCAGTC	TTGGAAGAAG	1680
35	AAGAGGTCAT	GATAGCTCAT	GCTCATCCAC	AGGAAGTCTA	CAATGAATAT	GTACCCAGAG	1740
	GGTGCAAGAA	TAAATGCCAT	TCACATTTCC	ACGATACACT	CGGCCAGTCA	GACGATCTCA	1800
	TTCACCACCA	TCATGACTAC CAGCCAGCGC	CATCATATTC	ACCATCATCA	AGATGCCGGC	GTCGCCACCATC	1860 1920
		GGTGATAATG					1980
40	GTGCTGCTTT	TACTGAAGGC	TTATCAAGTG	GTTTAAGTAC	TTCTGTTGCT	GTGTTCTGTC	2040
		TCATGAATTA					2100 2160
	GAATTTTCAT	CCTTTATAAT TGGTCATTAT	GCTGAAAATG	TTTCTATGTG	GATATTTGCA	CTTACTGCTG	2220
	GCTTATTCAT	GTATGTTGCT	CTGGTTGATA	TGGTACCTGA	AATGCTGCAC	AATGATGCTA	2280
45	GTGACCATGG	ATGTAGCCGC	TGGGGGTATT	TCTTTTTACA	GAATGCTGGG	ATGCTTTTGG	2340
		TATGTTACTT GTTTAAATGC					2400 2460
	AGGGAGATGA	GTTTGTATGC	TGTACTATGC	AGCGTTTAAA	GTTAGTGGGT	TTTGTGATTT	2520
	TTGTATTGAA	TATTGCTGTC	TGTTACAAAG	TCAGTTAAAG	GTACGTTTTA	ATATTTAAGT	2580
50	TATTCTATCT	TGGAGATAAA	ATCTGTATGT	GCAATTCACC	GGTATTACCA	GTTTATTATG	2640 2700
		ATTTGGCATG CTAACACAGT					2760
		TAAGAATGTG					2820
~ ~	AGCAAAGAAA	TAAAGGAGAA	AAGAGAAGAA	TCTGAGAATT	GGGGAGGCAT	AGATTCTTAT	2880
55	AAAAATCACA	AAATTTGTTG	TAAATTAGAG	GGGAGAAATT	TAGAATTAAG	TATAAAAAGG	2940 3000
		ATAGAGTACA CTCTCATATA					3060
		AATGAATTCA					3120
60	TTCGTGCGGG	TTATATACCA	GATGAGTACA	GTGAGTAGTT	TATGTATCAC	CAGACTGGGT	3180
60	TATTGCCAAG	TTATATATCA	CCAAAAGCTG	TATGACTGGA	TGTTCTGGTT	ACCTGGTTTA	3240
	CAAAATTATC	AGAGTAGTAA CGATTCAGAA	AACTTTGATA	TATATGAGGA	TATTAAAAACT	CTATCATTCT	3300 3360
		CTTTATATAC					3420
		TTTTACACAA					
65							
		415 Proteir cession #: }					
					-		
70	1	11	21 I	31 l	41 	51 	
70	MARKLSVILI	LTFALSVTNP	LHELKAAAPP	OTTEKISPNW	ESGINVDLAI	STROYHLOOL	60
	FYRYGENNSL	SVEGFRKLLQ	NIGIDKIKRI	HIHHDHDHHS	DHEHHSDHER	HSDHEHHSDH	120
		HHNHAASGKN					180
75	SVSASEVTST	VYNTVSEGTH FMYSRNTNEN	PLETIETPRP	GKLFPKDVSS	STPPSVTSKS	CPATINOIDA	240 300
15	RSCLIHTSEK	KAEIPPKTYS	LOIAWVGGFI	AISIISFLSL	LGVILVPLMN	RVFFKFLLSF	360
	LVALAVGTLS	GDAPLHLLPH	SHASHHHSHS	HEEPAMEMKR	GPLPSHLSSQ	NIEESAYFDS	420
						SKYESQLSTN	480
80	EEKVDTDDRT	EGYLRADSQE	PSHFDSQQPA	VLEEERVMIA	HAHPQEVYNE	YVPRGCKNKC	540 600
30	WGDGTHMEGD	SDDLIHHHHD GLAIGAAFTE	GLSSGLSTSV	AVECHELPHE	LGDFAVLLKA	GMTVKQAVLY	660
	NALSAMLAYL	GMATGIFIGH	YAENVSMWIF	ALTAGLFMYV	ALVDMVPEML	HNDASDHGCS	720
		GMLLGPGIML					
85	Sec In Mo-	416 DNA 50	mience				
5 5		id Accession		5419.1			
		uence: 18					

			21	31	41	51	
	ì	11	1		1	1	
_	ATGCCCAAGC	GCGCGCACTG	GGGGGCCCTC	TCCGTGGTGC	TGATCCTGCT	TTGGGGCCAT	60
5	CCGCGAGTGG	CGCTGGCCTG	CCCGCATCCT	TGTGCCTGCT	ACGTCCCCAG	CGAGGTCCAC	120 180
	TGCACGTTCC	GATCCCTGGC TTAATAGCAT	TTCCGTGCCC	TCAGAAACCT	CIAGACACGI	ACTGACCAAG	240
	TTGGAGCTAC	TTATGATTCA	CGGCAATGAG	ATCCCAAGCA	TCCCCGATGG	AGCTTTAAGA	300
	GACCTCAGCT	CTCTTCAGGT	TTTCAAGTTC	AGCTACAACA	AGCTGAGAGT	GATCACAGGA	360
10	CAGACCCTCC	AGGGTCTCTC	TAACTTAATG	AGGCTGCACA	TTGACCACAA	CAAGATCGAG	420
	TTTATCCACC	CTCAAGCTTT	CAACGGCTTA	ACGTCTCTGA	GGCTACTCCA	CCATTATTTC	480 540
	AATCTCCTCC	ACCAGCTGCA CCATAAGGCA	CCCCAGCACC	GCAGAGAACA	TGGTTAGAAC	TCTTCCTGCC	600
	AGCATGCTTC	GGAACATGCC	CCTTCTGGAG	AATCITTACT	TGCAGGGAAA	TCCGTGGACC	660
15	TGCGATTGTG	AGATGAGATG	GTTTTTGGAA	TGGGATGCAA	AATCCAGAGG	AATTCTGAAG	720
	TGTAAAAAGG	ACAAAGCTTA	TGAAGGCGGT	CAGTTGTGTG	CAATGTGCTT	CAGTCCAAAG	780
	AAGTTGTACA	AACATGAGAT TGAGACAGAA	ACACAAGCTG	AAGGACATGA	ACCACCAAGA	ACAGGAAGAG	840 900
	GAGTCCCCTC	GCCAGCTCAT	CAGGAGCAGG	TTCCAACTGC	CCCAGTGGAG	CATCTCTTTG	960
20	AATATGACCG	ACGAGCACGG	GAACATGGTG	AACTTGGTCT	GTGACATCAA	GAAACCAATG	1020
	GATGTGTACA	AGATTCACTT	GAACCAAACG	GATCCTCCAG	ATATTGACAT	AAATGCAACA	1080
	GTTGCCTTGG	ACTTTGAGTG	TCCAATGACC	CGAGAAAACT	ATGAAAAGCT	ATGGAAATTG	1140 1200
	ATAGCATACT	ACAGTGAAGT GCTACCAGTA	CACCCAGGAT	CTACACAGAG	AGCTCTTTA	CTACACAGGT	1260
25	GTGAGAGCCC	AGATTCTTGC	AGAACCAGAA	TGGGTCATGC	AGCCATCCAT	AGATATCCAG	1320
	CTGAACCGAC	GTCAGAGTAC	GGCCAAGAAG	GTGCTACTTT	CCTACTACAC	CCAGTATTCT	1380
	CAAACAATAT	CCACCAAAGA	TACAAGGCAG	GCTCGGGGCA	GAAGCTGGGT	AATGATTGAG	1440
	CCTAGTGGAG	CTGTGCAAÁG AAGCTTCTGA	AGATCAGACT	GTCCTGGAAG	TOCTTCCAGA	TEGETTCEATC	1500 1560
30	CTGAAACGTGA	CCATGGATGA	CCCAGACAGC	AAGTTCTCCA	TTCTCAGCAG	TGGCTGGCTG	1620
50	AGGATCAAGT	CCATGGAGCC	ATCTGACTCA	GGCTTGTACC	AGTGCATTGC	TCAAGTGAGG	1680
	GATGAAATGG	ACCGCATGGT	ATATAGGGTA	CTTGTGCAGT	CTCCCTCCAC	TCAGCCAGCC	1740
	GAGAAAGACA	CAGTGACAAT	TGGCAAGAAC	CCAGGGGAGT	CGGTGACATT	GCCTTGCAAT	1800 1860
35	GCTTTAGCAA	TACCCGAAGC ACACATCACA	CCACCTTAGC	TGGATTCTTC	GAAACAGAAG	CATCCCAAAG	1920
55	GTCCAAGTCA	GTGATAGTGG	TTACTACAGA	TGTGTGGCTG	TCAACCAGCA	AGGGGCAGAC	1980
	CATTTTACGG	TGGGAATCAC	AGTGACCAAG	AAAGGGTCTG	GCTTGCCATC	CAAAAGAGGC	2040
	AGACGCCCAG	GTGCAAAGGC	TCTTTCCAGA	GTCAGAGAAG	ACATCGTGGA	GGATGAAGGG	2100
40	GGCTCGGGCA	TGGGAGATGA TCAAAACAAA	AGAGAACACT	TCAAGGAGAC	ACAGGAAGC	CARGARAGGG	2160 2220
70	AGDAGADAGC	TGAAACTCTG	GAAGCATTCG	GAAAAAGAAC	CAGAGACCAA	TGTTGCAGAA	2280
	GGTCGCAGAG	TGTTTGAATC	TAGACGAAGG	ATAAACATGG	CAAACAAACA	GATTAATCCG	2340
	GAGCGCTGGG	CTGATATTTT	AGCCAAAGTC	CGTGGGAAAA	ATCTCCCTAA	GGGCACAGAA	2400
45	GTACCCCCGT	TGATTAAAAC TTTCTCCCCC	CACAAGTCCT	CCATCCTGA	GCCTAGAAGT	TECTEARGAR	2460 2520
43	TTTCCTGCTG	ATGTACCTCT	ACTTGGTGAA	GAAGAGCACA	TTTTGGGTAC	CATTTCCTCA	2580
	GCCAGCATGG	GGCTAGAACA	CAACCACAAT	GGAGTTATTC	TTGTTGAACC	TGAAGTAACA	2640
	AGCACACCTC	TGGAGGAAGT	TGTTGATGAC	CTTTCTGAGA	AGACTGAGGA	GATAACTTCC	2700
50	ACTGAAGGAG	ACCTGAAGGG	GACAGCAGCC	CCTACACTTA	TATCTGAGCC	TTATGAACCA	2760 2820
50	TCTCCTACTC	TGCACACATT GGTCTGCAGC	AGACACAGTC	TATGAAAAGC	AGCCCACATGA	CAGTGAGTAT	2880
	GAGCCTCCAT	TGGATGCTGT	CTCCTTGGCT	GAGTCTGAGC	CCATGCAATA	CTTTGACCCA	2940
	GATTTGGAGA	CTAAGTCACA	ACCAGATGAG	GATAAGATGA	AAGAAGACAC	CTTTGCACAC	3000
E E	CTTACTCCAA	CCCCCACCAT	CTGGGTTAAT	GACTCCAGTA	CATCACAGTT	ATTTGAGGAT	3060
55	TCTACTATAG	GGGAACCAGG TGAAAAGTAG	TGTCCCAGGC	CAATCACATC	TACAAGGACT	AAAGGGTATG	3120 3180
	AAAGAGATGT	CTCAGACACT	ACAGGGAGGA	AATATGCTAG	AGGGAGACCC	CACACACTCC	3240
	AGAAGTTCTG	AGAGTGAGGG	CCAAGAGAGC	AAATCCATCA	CTTTGCCTGA	CTCCACACTG	3300
CO	GGTATAATGA	GCAGTATGTC	TCCAGTTAAG	AAGCCTGCGG	AAACCACAGT	TGGTACCCTC	3360
60	CTAGACAAAG	ACACCACAAC CTCACCCTTC	AGTAACAACA	ACACCAAGGC	AAAAAGTTGC	ACCCCCCAAC	3420 3480
	ACCATGAGCA	ACCGGCACAA	GCAAACCCCA	CCCACAACTT	TTGCCCCATC	AGAGACTTTT	3540
•	TCTACTCAAC	CAACTCAAGC	ACCTGACATT	AAGATTTCAA	GTCAAGTGGA	GAGTTCTCTG	3600
	GTTCCTACAG	CTTGGGTGGA	TAACACAGTT	AATACCCCCA	AACAGTTGGA	aatggagaag	3660
65	AATGCAGAAC	CCACATCCAA	GGGAACACCA	CGGAGAAAAC	ACGGGAAGAG	GCCAAACAAA	3720 3780
	CATCGATATA	CCCCTTCTAC AACATAGAAA	CATTGAGCTCA	CCCAGTTCAG	AAACTATACT	TTTGCCTAGA	3840
	ACTGTTTCTC	TGAAAACTGA	GGGCCCTTAT	GATTCCTTAG	ATTACATGAC	AACCACCAGA	3900
	AAAATATATT	CATCTTACCC	TAAAGTCCAA	GAGACACTTC	CAGTCACATA	TAAACCCACA	3960
70	TCAGATGGAA	AAGAAATTAA	GGATGATGTT	GCCACAAATG	TTGACAAACA	TAAAAGTGAC	4020
	ATTTTAGTCA	CTGGTGAATC	AATTACTAAT	GCCATACCAA	TTCCAGGAAC	TCCAACCTGG	4080
	ACTATGGGAG	GGACGGCCCA	GCCTGGGAGG	CTACAGACAG	ACATACCTGT	TACCACTTCT	4200
	GGGGAAAATC	TTACAGACCC	TCCCCTTCTT	AAAGAGCTTG	AGGATGTGGA	TTTCACTTCC	4260
75	GAGTTTTTGT	CCTCTTTGAC	AGTCTCCACA	CCATTTCACC	AGGAAGAAGC	TGGTTCTTCC	4320 ·
	ACAACTCTCT	CAAGCATAAA	AGTGGAGGTG	GCTTCAAGTC	AGGCAGAAAC	CACCACCCTT	4380 4440
	GATCAAGATC	ATCTTGAAAC	CACTGTGGCT	CCAGCATCCT	CGTCCCCATC	ACCACAGAAT CACAATTCTC	4500
	ATGTCTTTGG	GACAAACCAC	CACCACTAAG	CCAGCACTTC	CCAGTCCAAG	AATATCTCAA	4560
80	GCATCTAGAG	ATTCCAAGGA	AAATGTTTTC	TTGAATTATG	TGGGGAATCC	AGAAACAGAA	4620
	GCAACCCCAG	TCAACAATGA	AGGAACACAG	CATATGTCAG	GGCCAAATGA	ATTATCAACA	4680
	CCCTCTTCCG	ACCGGGATGC	ATTTAACTTG	TCTACAAAGC	TGGAATTGGA	AAAGCAAGTA AAGAGTTCAT	4740 4800
	TTTGGTAGTA	AACTAACC	ACGTGGCCCA	AAACCCATCC	TACCAACAGO	AACAGTGAGG	
85	CTACCTGAAA	TGTCCACACA	AAGCGCTTCC	AGATACTTTG	TAACTTCCCA	GTCACCTCGT	4920
-	CACTGGACCA	ACAAACCGGA	AATAACTACA	TATCCTTCTG	GGGCTTTGCC	AGAGAACAAA	4980
	CAGTTTACAA	CTCCAAGATT	ATCAAGTACA	ACAATTCCTC	TCCCATTGCA	CATGTCCAAA	5040

	CCCAGCATTC	CTAGTAAGTT	TACTGACCGA	AGAACTGACC	AATTCAATGG	TTACTCCAAA	5100
	GTGTTTGGAA	ATAACAACAT	CCCTGAGGCA TGGAAGACTC	AGAAACCCAG	TTGGAAAGCC	TCCCAGTCCA	5160 5220
	CCACAGTTGG	GAGTCACCCG	GAGACCCCAG	ATACCCACTT	CTCCTGCCCC	AGTAATGAGA	5280
5	GAGAGAAAAG	TTATTCCAGG	TTCCTACAAC	AGGATACATT	CCCATAGCAC	CTTCCATCTG	5340
	GACTTTGGCC	CTCCGGCACC	TCCGTTGTTG	CACACTCCGC	AGACCACGGG	ATCACCCTCA	5400 5460
	ACTAACTTAC	AGAATATCCC	TATGGTCTCT AAGCTTCCAC	CAGAGCAGCT	CAAAGTTCTT	TGCAGGAGGA	5520
	CCTCCTGCAT	CCARATTCTG	GTCTCTTGGG	GAAAAGCCCC	AAATCCTCAC	CAAGTCCCCA	5580
10	CAGACTGTGT	CCGTCACCGC	TGAGACAGAC	ACTGTGTTCC	CCTGTGAGGC	AACAGGAAAA	5640
	CCAAAGCCTT	TCGTTACTTG	GACAAAGGTT TCTCAAGAAC	TCCACAGGAG	TGATACGGAA	GGTTCAAGTA	5700 5760
	CARGATACAAC	GCCAGTATAT	GTGCACCGCC	AGCAACCTGC	ACGGCCTGGA	CAGGATGGTG	5820
	GTCTTGCTTT	CGGTCACCGT	GCAGCAACCT	CAAATCCTAG	CCTCCCACTA	CCAGGACGTC	5880
15	ACTGTCTACC	TGGGAGACAC	CATTGCAATG	GAGTGTCTGG	CCAAAGGGAC	CCCAGCCCCC	5940
	CAAATTTCCT	GGATCTTCCC	TGACAGGAGG CCGGACCCTT	GTGTGGCAAA	ACCURACY	CTCAGAGAGC	6000 6060
	GCGTCTATA	AGTGCGTGGC	CAGCAATGCA	GCCGGGGCGG	ACAGCCTGGC	CATCCGCCTG	6120
	CACGTGGCGG	CACTGCCCCC	CGTTATCCAC	CAGGAGAAGC	TGGAGAACAT	CTCGCTGCCC	6180
20	CCGGGGCTCA	GCATTCACAT	TCACTGCACT	GCCAAGGCTG	CGCCCCTGCC	CAGCGTGCGC	6240
	TGGGTGCTCG	GGGACGGTAC	CCAGATCCGC	CCCTCGCAGT	TCCTCCACGG	GAACTTGTTT	6300 6360
	GTTTTCCCCA	ACGGGACGCT	CTACATCCGC GGTAGGCTCC	GCGCGCAGGA	CGGTGCAGCT	GAACGTGCAG	6420
	CGTGCAGCAG	CCAACGCGCG	CATCACGGGC	ACCTCCCCGC	GGAGGACGGA	CGTCAGGTAC	6480
25	GGAGGAACCC	TCAAGCTGGA	CTGCAGCGCC	TCGGGGGACC	CCTGGCCGCG	CATCCTCTGG	6540
			GATCGACGCG				6600
	TTTGCCAATG	GGACCCTGGT	GGTGAAATCA TGGTGATGAC	TACCTCCTCC	TCAAAGTGCCGA	TOTGGTGATG	6660 6720
	AAACCGGCCA	AGATTGAACA	CAAGGAGGAG	AACGACCACA	AAGTCTTCTA	CGGGGGTGAC	6780
30	CTGAAAGTGG	ACTGTGTGGC	CACCGGGCTT	CCCAATCCCG	AGATCTCCTG	GAGCCTCCCA	6840
	GACGGGAGTC	TGGTGAACTC	CTTCATGCAG	TCGGATGACA	GCGGTGGACG	CACCAAGCGC	6900
	TATGTCGTCT	TCAACAATGG	GACACTCTAC AAATCAGGTC	TTTAACGAAG	TGGGGATGAG	CAGAGGAAGGA	6960 7020
	GTGGTGACAG	CGCCCGCCAC	CATCCGGAAC	AAGACTTACT	TGGCGGTTCA	GGTGCCCTAT	7080
35	GGAGACGTGG	TCACTGTAGC	CTGTGAGGCC	AAAGGAGAAC	CCATGCCCAA	GGTGACTTGG	7140
	TTGTCCCCAA	CCAACAAGGT	GATCCCCACC	TCCTCTGAGA	AGTATCAGAT	ATACCAAGAT	7200
	GGCACTCTCC	TTATTCAGAA	AGCCCAGCGT TAGGAAGACG	TCTGACAGCG	ACCTCAACCT	CCAGCCACCC	7260 7320
	AGGAACAGCG	GTAACCCCAA	CCCCATCACC	ACCGTGCGGG	AGATAGCAGC	CGGGGGCAGT	7380
40	CGGAAACTGA	TTGACTGCAA	AGCTGAAGGC	ATCCCCACCC	CGAGGGTGTT	ATGGGCTTTT	7440
	CCCGAGGGTG	TGGTTCTGCC	AGCTCCATAC	TATGGAAACC	GGATCACTGT	CCATGGCAAC	7500
	GGTTCCCTGG	ACATCAGGAG	TTTGAGGAAG GAGGTTGATC	AGCGACTCCG	CTCTCCTCGA	GCCCATGGAG	7560 7620
	AAACCCATCT	TCCACGACCC	GATCAGCGAG	AAGATCACGG	CCATGGCGGG	CCACACCATC	7680
45	AGCCTCAACT	GCTCTGCCGC	GGGGACCCCG	ACACCCAGCC	TGGTGTGGGT	CCTTCCCAAT	7740
	GGCACCGATC	TGCAGAGTGG	ACAGCAGCTG	CAGCGCTTCT	ACCACAAGGC	TGACGGCATG	7800
	CTACACATTA	GCGGTCTCTC	CTCGGTGGAC GCTGGTCTCC	GCTGGGGCCT	GACTGAAGCC	AGAAGCAAAC	7860 7920
	AAGCAGTATC	ATAACCTGGT	CAGCATCATC	AATGGTGAGA	CCCTGAAGCT	CCCCTGCACC	7980
50	CCTCCCGGGG	CTGGGCAGGG	ACGTTTCTCC	TGGACGCTCC	CCAATGGCAT	GCATCTGGAG	8040
	GGCCCCCAAA	CCCTGGGACG	CGTTTCTCTT	CTGGACAATG	GCACCCTCAC	GGTTCGTGAG	8100
	GCCTCGGTGT	TTGACAGGGG	TACCTATGTA TGTGATCGCC	TGCAGGATGG	AGACGGAGTA	CGGCCCTTCG	8160 8220
	CCGGTCATCT	ACACCOGGCC	CGGGAACACC	GTGAAACTGA	ACTGCATGGC	TATGGGGATT	8280
55	CCCAAAGCTG	ACATCACGTG	GGAGTTACCG	GATAAGTCGC	ATCTGAAGGC	AGGGGTTCAG	8340
	GCTCGTCTGT	ATGGAAACAG	ATTTCTTCAC	CCCCAGGGAT	CACTGACCAT	CCAGCATGCC	8400
			CTACAAGTGC CTTCTGAAAT				8460 8520
	ACAACAACII	GGGGTTTGTA	AGGGAAGCCA	GGTTGGGGAA	TAGGAGCTCT	TAAATAATGT	8580
60	GTCACAGTGC	ATGGTGGCCT	CTGGTGGGTT	TCAAGTTGAG	GTTGATCTTG	ATCTACAATT	8640
	GTTGGGAAAA	GGAAGCAATG	CAGACACGAG	AAGGAGGCT	CAGCCTTGCT	GAGACACTTT	8700
	CTTTTGTGTT	TACATCATGC	CAGGGGCTTC	ATTCAGGGTG	CTCCATAGGA	GACTGCAATT	8760 8820
	ACATTCATCA	AAAATAAGCC	ATAGACATGA	ACAACACCTC	ACTACCCCAT	TGAAGACGCA	8880
65	TCACCTAGTT	AACCTGCTGC	AGTTTTTACA	TGATAGACTT	TGTTCCAGAT	TGACAAGTCA	8940
	TCTTTCAGTT	ATTTCCTCTG	TCACTTCAAA	ACTCCAGCTT	GCCCAATAAG	GATTTAGAAC	9000
			CATTTCTTCC			CAGCTACCAT	9060 9120
	TITATATGAA	TTCCTTTCAA	ATCAGACGAT	GAGACTAGAA	GGAGAAATAC	TTTCTGTCTT	9180
70	ATTAAAATTA	ATAAATTATT.	GGTCTTTACA	AGACTTGGAT	ACATTACAGC	AGACATGGAA	9240
	ATATAATTTT	AAAAAATTTC	TCTCCAACCT	CCTTCAAATT	CAGTCACCAC	TGTTATATTA	9300
	CCTTCTCCAG	GAACCCTCCA	GTGGGGAAGG	CTGCGATATT	AGATTTCCTT	GTATGCAAAG	9360 9420
	AACTTTACAG	AAGCIGIGCI	AGAGTCTTCC	CCGAAAAGCC	CAGAAACTTC	ACTGCATCAT TCTGCAGTAT	9480
75	CTGGCTTGTC	CATCTGGTCT	AAGGTGGCTG	CTTCTTCCCC	AGCCATGAGT	CAGTTTGTGC	9540
	CCATGAATAA	TACACGACCT	GTTATTTCCA	TGACTGCTTT	ACTGTATTTT	TAAGGTCAAT	9600
•	ATACTGTACA	TTTGATAATA	TTATAATAAA	CTCCCAAAAA	AAAAA		
	Seq ID NO:	417 Protein	n sequence	_			
80		cession #: 1		•			
	1	11	21	31	41	51	
	1	1	1	1			
85	MPKRAHWGAL	SVVLILLWGH	PRVALACPHP LELLMIHGNE	CACYVPSEVH	CIFRSLASVP	AGIAKHVERI SYNKI, PUTTG	60 120
0.5	OTLOGLSNIM	RLHIDHNKTE	PIHPOAFNOT.	TSLRLLHLEG	NLLHOLHPST	FSTPTFLDYF	180
	RLSTIRHLYL	AENMVRTLPA	SMLRNMPLLE	NLYLQGNPWT	CDCEMRWFLE	WDAKSRGILK	240

```
CKKOKAYEGG QLCAMCFSPK KLYKHEIHKL KOMTCLKPSI ESPLRQNRSR SIEKEQEQEE
                                                                              300
       DGGSOLILEK FOLPOWSISL NMTDEHGNMV NLVCDIKKPM DVYKIHLNQT DPPDIDINAT
                                                                              360
       VALDFECPMT RENYEKLWKL IAYYSEVPVK LHRELMLSKD PRVSYQYRQD ADEEALYYTG
                                                                               420
                                                                               480
       VRAQILAEPE WVMQPSIDIQ LARRQSTAKK VLLSYYTQYS QTISTKDTRQ ARGRSWVMIB
 5
       PSGAVQRDQT VLEGGPCQLS CNVKASESPS IFWVLPDGSI LKAPMDDPDS KFSILSSGWL
                                                                               540
       RIKSMEPSDS GLYQCIAQVR DEMDRMVYRV LVQSPSTQPA EKDTVTIGKN PGESVTLPCN
                                                                               600
       ALAIPEAHLS WILPHRRIIN DLANTSHVYM LPNGTLSIPK VQVSDSGYYR CVAVNQQGAD
                                                                               660
       HFTVGITVTK KGSGLPSKRG RRPGAKALSR VREDIVEDEG GSGMGDEENT SRRLLHPKDQ
                                                                               720
       EVFLKTKDDA INGDKKAKKG RRKLKLWKHS EKEPETNVAE GRRVFESRRR INMANKQINP
                                                                               780
       ERWADILAKV RGKNLPKGTE VPPLIKTTSP PSLSLEVTPP FPAVSPPSAS PVQTVTSAEB
10
                                                                               840
       SSADVPLLGE EEHVLGTISS ASMGLEHNHN GVILVEPEVT STPLEEVVDD LSEKTEEITS
                                                                               900
       TEGDLKGTAA PTLISEPYEP SPTLHTLDTV YEKPTHEETA TEGWSAADVG SSPEPTSSEY
       EPPLDAVSLA ESEPMQYFDP DLETKSQPDE DKMKEDTFAH LTPTPTIWVN DSSTSQLFED
                                                                              1020
       STIGEPGVPG OSHLOGLTDN IHLVKSSLST ODTLLIKKGM KEMSOTLOGG NMLEGDPTHS
                                                                              1080
15
       RSSESEGOES KSITLPDSTL GIMSSMSPVK KPAETTVGTL LDKDTTTVTT TPRQKVAPSS
                                                                              1140
       TMSTHPSRRR PNGRRRLRPN KFRHRHKOTP PTTFAPSETF STQPTQAPDI KISSQVESSL
                                                                              1200
       VPTAWVDNTV NTPKQLEMEK NAEPTSKGTP RRKHGKRPNK HRYTPSTVSS RASGSKPSPS
                                                                              1260
       PENKHRNIVT PSSETILLPR TVSLKTEGPY DSLDYMTTTR KIYSSYPKVQ ETLPVTYKPT
                                                                              1320
       SDGKEIKDDV ATNVDKHKSD ILVTGESITN AIPTSRSLVS TMGEFKEESS PVGFPGTPTW
                                                                             1380
20
       NPSRTAQPGR LQTDIPVTTS GENLTDPPLL KELEDVDFTS EFLSSLTVST PFHQEEAGSS
                                                                              1440
       TTLSSIKVEV ASSOAETTTL DODHLETTVA ILLSETRPON HTPTAARMKE PASSSPSTIL
                                                                             1500
       MSLGQTTTTK PALPSPRISQ ASRDSKENVF LNYVGNPETE ATPVNNEGTQ HMSGPNELST
                                                                             1560
       PSSDRDAFNL STKLELEKQV FGSRSLPRGP DSQRQDGRVH ASHQLTRVPA KPILPTATVR
                                                                             1620
       LPEMSTQSAS RYFVTSQSPR HWTNKPEITT YPSGALPENK QFTTPRLSST TIPLPLHMSK
                                                                             1680
25
                                                                             1740
       PSIPSKFTDR RTDQFNGYSK VFGNNNIPEA RNPVGKPPSP RIPHYSNGRL PFFTNKTLSF
       POLGVTRRPO IPTSPAPVMR ERKVIPGSYN RIHSHSTFHL DFGPPAPPLL HTPQTTGSPS
                                                                             1800
       TNLQNIPMVS STQSSISPIT SSVQSSGSFH QSSSKPFAGG PPASKFWSLG EKPQILTKSP
                                                                              1860
       QTVSVTAETD TVFPCEATGK PKPFVTWTKV STGALMTPNT RIQRFEVLKN GTLVIRKVQV
                                                                              1920
       QDRGQYMCTA SNLHGLDRMV VLLSVTVQQP QILASHYQDV TVYLGDTIAM ECLAKGTPAP
                                                                             1980
       QISWIFPDRR VWQTVSPVES RITLHENRTL SIKEASFSDR GVYKCVASNA AGADSLAIRL
30
                                                                             2040
       HVAALPPVIH QEKLENISLP PGLSIHIHCT AKAAPLPSVR WVLGDGTQIR PSQFLHGNLF
                                                                             2100
       VFPNGTLYIR NLAPKDSGRY ECVAANLVGS ARRTVQLAVQ RAAANARITG TSPRRTDVRY
GGTLKLDCSA SGDPWPRILW RLPSKRMIDA LFSFDSRIKV FANGTLVVKS VTDKDAGDYL
                                                                             2160
                                                                             2220
       CVARNKVGDD YVVLKVDVVM KPAKIEHKEE NDHKVFYGGD LKVDCVATGL PNPEISWSLP
                                                                             2280
       DGSLVNSFMQ SDDSGGRTKR YVVFNNGTLY FNEVGMREEG DYTCFAENQV GKDEMRVRVK
35
                                                                             2340
       VVTAPATIRN KTYLAVQVPY GDVVTVACEA KGEPMPKVTW LSPTNKVIPT SSEKYQIYQD
GTLLIQKAQR SDSGNYTCLV RNSAGEDRKT VWIHVNVQPP KINGNPNPIT TVREIAAGGS
                                                                             2400
       RKLIDCKAEG IPTPRVLWAF PEGVVLPAPY YGNRITVHGN GSLDIRSLRK SDSVQLVCMA
       RNEGGEARLI VOLTVLEPME KPIFHDPISE KITAMACHTI SLNCSAAGTP TPSLVWVLPN
40
       GTDLQSGQQL QRFYHKADGM LHISGLSSVD AGAYRCVARN AAGHTERLVS LKVGLKPEAN
                                                                             2640
       KOYHNLVSII NGETLKLPCT PPGAGQGRFS WTLPNGMHLE GPQTLGRVSL LDNGTLTVRE
                                                                             2700
       ASVFDRGTYV CRMETEYGPS VTSIPVIVIA YPPRITSEPT PVIYTRPGNT VKLNCMAMGI
                                                                             2760
       PKADITWELP DKSHLKAGVQ ARLYGNRFLH PQGSLTIQHA TQRDAGFYKC MAKNILGSDS
       KTTYIHVF
45
```

Seq ID NO: 418 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 1..5001

50	1	11	21	31	41	51	
	1					CAMAMMOAAG	60
				GCCCCAGCAG			120
				GACGACATCA			180
55				GTTCTGGAAA			240
55				AAGGGGGAAT			300
				AACCTGATTC			360
				GGCAAATGGA			420
				GAAAACTTGA			480
60				GCGCTACCAG			- 540
60				GTTTCCTCCT			600
				CTCTCAAACC			660
	CCTATCCTGG	AGACACTACT	TCTGCCCTGG	TGGATGGTCT	GCAGCCTGGG	GAACGCTATC	720
				GCCTGGGACC			720
65				CAGAAGGATT			
65				GATCCACAAC			840
				ATGCTGGATA			900
				TTGAÇAGGCA			960
				GAGGACAATG			1020
70				TCCTCCCAAC			1080
70				CTTGACTTGA			1140
				GCCAAGAAGG			1200
				GGTTCCCGGG			1260
				AGGCCGCCAA			1320
75				CGGATGCCAG			1380
75				CAGCCCCGCC			1440
				CAGGGCACCT			1500
				TCAGACGAAG			1560
				CGGCCAGCCC			1620
00				GTGCACCCCG			1680
80	GCGCGGAGGA	CCCCCCATTC	AGGGGCCGCA	GAGGAAGATT	CCAGTGCCTC	AGCCCCACCC	1740
				TCTCGGCTGC			1800
				GGTGAGGACG			1860
	GCGCCATCAC	GGTCCACCAT	GTCCTCCTCC	GTCTCTTCTC	ATCTCTCGTC	CAGGACGCAG	1920
0.5				GAAAGCCACG			1980
85				ACGCTGCGGG			2040
				GCCAACGGGA			2100
	ATTGGGCGGG	GACCTCGGCT	GCAGCCCTCC	AGCTCCCCAC	AGTCGACTGT	GCCCTCCCGA	2160

```
GCCCACCCCA GGGTTCCCTC TCACTCTGAT TCCCACCCTA AGCTTAGCTC AGGTATCCAT 2220
       GGAGACGAGG AGGATGAGAA GCCGCTTCCT GCCACCGTTG TCAATGACCA CGTGCCTTCC
                                                                               2280
       TCCTCCAGGC AGCCCATCTC CCGGGGCTGG GAGGACTTAA GGAGAAGCCC GCAGAGAGGG
                                                                               2340
       GCCAGCCTGC ATCGGAAGGA ACCCATCCCA GAGAACCCCA AATCCACAGG GGCAGATACA
                                                                               2400
 5
       CATCCTCAGG GCAAGTACTC CTCCCTGGCC TCCAAGGCTC AGGATGTTCA ACAGAGCACA
                                                                               2460
                                                                               2520
       GACGCGGACA CGGAGGGTCA TTCTCCCAAA GCACAGCCAG GGTCCACAGA CCGCCACGCG
                                                                               2580
       TCCCCTGCTC GTCCTCCCGC AGCACGGTCA CAGCAGCATC CCAGTGTTCC CAGAAGGATG
       ACACCOGGCC GGGCCCCAGA ACAGCAGCCC CCTCCTCCCG TCGCCACGTC CCAGCACCAC
                                                                               2640
       CCGGGACCCC AGAGCAGAGA CGCGGGTCGG TCACCTTCCC AGCCCAGGCT CTCACTGACC
                                                                               2700
10
       CAGGCCGGGC GGCCCCGCCC CACGTCGCAG GGCCGCTCCC ACTCCTCCTC GGACCCTTAC
                                                                               2760
       ACGGCGAGCT CCAGAGGGAT GCTCCCCACG GCCCTCCAGA ACCAGGACGA GGATGCCCAG
                                                                               2820
       GGCAGCTACG ACGACGACAG CACAGAAGTC GAGGCCCAGG ATGTGCGGGC CCCCGCGCAC
                                                                               2880
       GCCGCGCGC CCAAGGAGGC AGCTGCGTCC CTTCCCAAGC ACCAGCAGGT GGAGTCTCCC
                                                                               2940
       ACAGGCGCAG GGGCAGGTGG CGACCACAGG TCCCAGCGCG GACATGCGGC CTCCCCCGCC
15
       AGGCCCAGCC GACCCGGCGG CCCCCAGTCC CGCGCCCGGG TCCCCAGCAG GGCAGCGCCG
                                                                               3060
       GGGAAGTCGG AGCCTCCTTC CAAGCGGCCC CTGTCCTCCA AGTCCCAGCA GTCGGTCTCA
                                                                               3120
       GCCGAGGACG AGGAGGAGGA GGACGCGGGG TTTTTTAAAG GCGGGAAAGA AGACCTTCTG
                                                                               3180
       TCTTCCTCTG TGCCAAAGTG GCCCTCTTCC TCCACTCCCA GGGGCGGCAA AGACGCCGAT
                                                                               3240
       GGGAGCCTCG CCAAGGAAGA GAGGGAGCCT GCCATCGCGC TTGCCCCTCG CGGAGGGAGC
CTGGCTCCTG TGAAGCGACC TCTCCCCCCA CCTCCAGGCA GCTCCCCAG GGCCTCCCAC
20
       GTCCCTTCCC GACCGCCGCC TCGCAGCGCT GCCACCGTGA GCCCCGTCGC GGGCACCCAC
                                                                               3420
       CCCTGGCCGC GGTACACCAC GCGCGCCCCV CCTGGCCACT TCTCCACCAC CCCGATGCTG
                                                                               3480
       TCCTTGCGCC AGAGGATGAT GCATGCCAGA TTCCGTAACC CTCTCTCCCG ACAGCCTGCC
                                                                               3540
       AGACCCTCTT ACAGACAAGG TTATAATGGC AGACCAAATG TAGAAGGGAA AGTCCTTCCT
                                                                               3600
25
       GGTAGTAATG GAAAACCGAA TGGACAGAGA ATTATCAATG GCCCTCAAGG AACAAAGTGG
                                                                               3660
       GTTGTGGACC TTGATCGTGG GTTAGTATTG AATGCAGAAG GAAGGTACCT CCAAGATTCA
                                                                               3720
       CATGGAAATC CTCTTCGGAT TAAACTAGGA GGAGATGGTC GAACCATTGT AGATCTGGAA
                                                                               3780
       GGGACCCCG TGGTGAGTCC TGACGGCCTC CCACTCTTTG GGCAGGGGCG ACATGGCACA
                                                                               3840
       CCTCTGGCCA ATGCCCAAGA TAAGCCAATT TTGAGTCTTG GAGGAAAGCC GCTGGTGGGC
                                                                               3900
30
       TTGGAGGTCA TCAAAAAAAC CACCCATCCC CCTACCACTA CCATGCAGCC CACCACTACT
                                                                               3960
       ACGACGCCCC TGCCTACCAC TACAACCCCG AGGCCCACCA CTGCCACCAC CATGCAGCCC
                                                                               4020
       ACCACTACTA CGACGCCCCT GCCTACCACT ACACCGAGGC CCACCACTGC CACCACCGC
                                                                               4080
       CGCACGACCA CCAGGCGTCC AACAACCACA GTCCGAACCA CTACGCGGAC AACCACCACC
                                                                               4140
       ACCACCCCA AACCCACCAC TCCCATCCCC ACCTGTCCCC CTGGGACCTT GGAACGGCAC
                                                                               4200
35
       GACGATGATG GCAACCTGAT AATGAGCTCC AATGGGATCC CAGAGTGCTA CGCTGAAGAA
                                                                               4260
       GATGAGTICI CAGGCTIGGA GACTGACACI GCAGTACCTA CGGAAGAGGC CTACGTTATA
TATGATGAAG ATTATGAATT TGAGACGTCA AGGCCACCAA CCACCACTGA GCCTTCGACC
                                                                               4320
                                                                               4380
       ACTGCTACCA CACCGAGGGT GATCCCAGAG GAAGGCGCCA TCAGTTCCTT TCCTGAAGAA GAATTTGATC TGGCTGGAAG GAAACGATTT GTTGCTCCTT ACGTGACGTA CCTAAATAAA
                                                                               4440
40
       GACCCATCAG CCCCGTGCTC TCTGACTGAT GCACTGGATC ACTTCCAAGT GGACAGCCTG
                                                                               4560
       GATGAAATCA TCCCCAATGA CCTGAAGAAG AGTGATCTGC CTCCCCAGCA TGCTCCCCGC
       AACATCACCG TGGTGGCCGT GGAAGGTTGC CACTCATTTG TCATTGTGGA TTGGGACAAA
       GCCACCCCAG GAGATTIGGT CACAGGITAT TIGGITTACA GIGCATCCTA IGAAGATTIC
                                                                               4740
       ATCAGGAACA AGTTTTCCAC TCAAGCTTCA TCAGTAACTC ACTTGCCCAT TGAGAACCTA
                                                                               4800
45
       AAGCCCAACA CGAGGTATTA TTTTAAAGTG CAAGCACAAA ATCCTCATGG CTACGGACCT
                                                                               4860
       ATCAGCCCTT CGGTCTCATT TGTCACCGAA TCAGATAATC CTCTGCTTGT TGTGAGGCCC
                                                                               4920
       CCAGGCGGTG AGCTATCTGG ATCCCATTCG CTTTCAAACA TGATCCCAGC TACACGGACT
                                                                               4980
       GCCATGGACG GCAATATGTG AAGCGCACGT GGTATCGAAA GTTCGTGGGA GTTGTTCTTT
                                                                               5040
       GTAATTCACT GAGGTATAAA ATCTACCTCA GTGACAACCT GAAAGATACA TTCTACAGCA
                                                                               5100
50
       TTGGAGACAG CTGGGGAAGA GGTGAAGACC ATTGCCAATT TGTGGATTCA CACCTTGATG
                                                                               5160
       GAAGAACAGG GCCTCAGTCC TATGTAGAAG CCCTCCCTAC TATTCAAGGC TACTATCGCC
                                                                               5220
       AGTATCGTCA GGAGCCTGTC AGGTTTGGGA ACATCGGCTT CGGAACCCCC TACTACTATG
                                                                               5280
       TGGGCTGGTA CGAGTGTGGG GTCTCCATCC CTGGAAAGTG GTAATCACAG GACCGTCATG
                                                                               5340
       CTGCAAGCTT GCCCTGCCCA GCCCCACCAA CTAAGTCGCA CTAGGGGCTG TGAGCAAAGA
                                                                               5400
       CAGCCAGCAT GCTCAGCCCC GCTGCCCTAG GTGCCAGGAA GGTCACAGAT GGACACTGGC
55
                                                                               5460
       CATTCTGGTC ATCTCAGTCT GGAACTCAGT CCCACTTCTT GGCCTGGACA ATGAACAGGA
                                                                               5520
       TTCAGTTTTG CTGTTAACTT TGCTTCTCTA CTTTTTTTTG TTTGTTTGTA ATAGCACATC
                                                                               5580
       CCAGAGACAT CAGAAACCAG CAACTGATTC AGTGTGATTT CCCAGACTTT TTAGGCATGA
                                                                               5640
       AATTCGGACA CTTCAGTATT TCCAGGAATA GCATATGCAC GCTGTTCTTG CTTCATGGAA
TGCTACATGC TTTCTGTTTT TCTCATTTTG GATTTCTCCA AAACTAACTG AATTTAAGCT
                                                                               5700
60
       TCAGGTCCCT TTGTATGCAG TAGAAAGGAA TTATTAAAAA CACCACCAAA GAAAATAAAT
ATATCCTACT TGAAATTTAC TCTATGGACT TACCCACTGC TAGAATAAAT GTATCAAATC
                                                                               5820
                                                                               5880
       TTATTTGTAA ATTCTCAATT TTGATATATA TATGTATATA TGCATATACA TATCCACACT
                                                                               5940
       TGTCTGCAAG AATATTGATT AAAATTGCTA AATTTGTACT TGTTCACCAA AAAAAAAAA
                                                                               6000
65
       Seq ID NO: 419 Protein sequence
       Protein Accession #: Eos sequence
70
                                          31
                                                                  51
       MPGTKLTRTG APADYRVILK TSQEDELDVP DDISVRVMSS QSVLVSWVDP VLEKQKKVVA
                                                                                 60
       SRQYTVRYRE KGELARWDYK QIANRRVLIE NLIPDTVYEF AVRISQGERD GKWSTSVFQR
                                                                                120
       TPESAPTTAP ENLNYWPVNG KPTVVAASWD ALPETEGKVK VCLLDTGLFS VSSFQPSAKS
                                                                                180
75
       FONTFFHTPR LSNHLEQSPS PILETLLLPW WMVCSLGNAI PSKSGPQTGE AWDLTPKPSL
                                                                                240
       SLCQQECSCT QKDFSCLAYL IDIQTKQVNK DPQLEGSVFG PCFLFYFLTF MLDIGGFSFI
                                                                                300
       MCYEDPVSSL TGNSLKSVAA SKADVQQNTE DNGKPEKPEP SSPSPRAPAS SQHPSVPASP
                                                                                360
       QGRNAKDLLL DLKNKILANG GAPRKPQLRA KKAEELDLQS TEITGEEELG SREDSPMSPS
                                                                                420
       DTODOKRTLR PPSRHGHSVV APGRTAVRAR MPALPRREGV DKPGPSLATQ PRPGAPPSAS
80
       ASPAHHASTQ GTSHRPSLPA SLNDNDLVDS DEDERAVGSL HPKGAFAQPR PALSPSRQSP
       SSVLRDRSSV HPGAKPASPA RRTPHSGAAE EDSSASAPPS RLSPPHGGSS RLLPTQPHLS
       SPLSKGGKDG EDAPATNSNA PSRSTMSSSV SSHLSSRTQV SEGAEASDGE SHGDGDREDG
                                                                                660
       GRQAEATAQT LRARPASCHF HLLRHKPFAA NGRSPSRFSI GRGPRLQPSS SPQSTVPSRA
                                                                                720
       HPRVPSHSDS HPKLSSGIHG DEEDEKPLPA TVVNDHVPSS SRQPISRGWE DLRRSPQRGA
                                                                                780
85
       SLHRKEPIPE NPKSTGADTH PQGKYSSLAS KAQDVQQSTD ADTEGHSPKA QPGSTDRHAS
                                                                                840
```

PARPPAARSQ QHPSVPRRMT PGRAPEQQPP PPVATSQHHP GPQSRDAGRS PSQPRLSLTQ

AGRPRPTSQG RSHSSSDPYT ASSRGMLPTA LQNQDEDAQG SYDDDSTEVE AQDVRAPAHA

900

```
ARAKEAAASL PKHQQVESPT GAGAGGDHRS QRGHAASPAR PSRPGGPQSR ARVPSRAAPG 1020
       KSEPPSKRPL SSKSQQSVSA EDEEEEDAGF FKGGKEDLLS SSVPKWPSSS TPRGGKDADG
       SLAKEEREPA IALAPRGGSL APVKRPLPPP PGSSPRASHV PSRPPPRSAA TVSPVAGTHP
       WPRYTTRAPP GHFSTTPMLS LRQRMMHARF RNPLSRQPAR PSYRQGYNGR PNVEGKVLPG
                                                                                  1200
       SNGKPNGQRI INGPQGTKWV VDLDRGLVLN AEGRYLQDSH GNPLRIKLGG DGRTIVDLEG
       TPVVSPDGLP LFGQGRHGTP LANAQDKPIL SLGGKPLVGL EVIKKTTHPP TTTMQPTTTT
TPLPTTTTPR PITATTMQPT TTTTPLPTTT PRPTTATTRR TTTRRPTTTV RTTTRTTTTT
                                                                                  1320
                                                                                  1380
       TPKPTTPIPT CPPGTLERHD DDGNLIMSSN GIPECYAEED EFSGLETDTA VPTEEAYVIY
                                                                                  1440
       DEDYEFETSR PPTTTEPSTT ATTPRVIPEE GAISSFPEEE FDLAGRKRFV APYVTYLNKD
                                                                                  1500
       PSAPCSLTDA LDHFQVDSLD EIIPNDLKKS DLPPQHAPRN ITVVAVEGCH SFVIVDWDKA
10
                                                                                  1560
       TPGDLVTGYL VYSASYEDFI RNKFSTQASS VTHLPIENLK PNTRYYFKVQ AQNPHGYGPI
                                                                                  1620
       SPSVSFVTES DNPLLVVRPP GGELSGSHSL SNMIPATRTA MDGNM
       Sec ID NO: 420 DNA sequence
15
       Nucleic Acid Accession #: NM 022743
       Coding sequence: 128..1237
20
       GTGGATTTTA GAGATACCTC CCCTCCTTCT GCTCAGCTGC CTTGCAGTAA TTAAACTCTT
       TCTCTGCTGC AACACCCCTA CTGTTCTCCG TGTATTGGCT TTTCTGGGCA GCAGGAAGGA
                                                                                   120
       AAAGCTGATG CGATGCTCTC AGTGCCGCGT CGCCAAATAC TGTAGTGCTA AGTGTCAGAA
       AAAAGCTTGG CCAGACCACA AGCGGGAATG CAAATGCCTT AAAAGCTGCA AACCCAGATA
                                                                                   240
       TCCTCCAGAC TCCGTTCGAC TTCTTGGCAG AGTTGTCTTC AAACTTATGG ATGGAGCACC
       TTCAGAATCA GAGAAGCTTT ACTCATTTTA TGATCTGGAG TCAAATATTA ACAAACTGAC
25
        TGAAGATAAG AAAGAGGGCC TCAGGCAACT CGTAATGACA TTTCAACATT TCATGAGAGA
       AGAAATACAG GATGCCTCTC AGCTGCCACC TGCCTTTGAC CTTTTTGAAG CCTTTGCAAA AGTGATCTGC AACTCTTTCA CCATCTGTAA TGCGGAGATG CAGGAAGTTG GTGTTGGCCT
                                                                                   480
                                                                                   540
       ATATCOCAGT ATCTCTTTGC TCAATCACAG CTGTGACCCC AACTGTTCGA TTGTGTTCAA
TGGGCCCCAC CTCTTACTGC GAGCAGTCCG AGACATCGAG GTGGGAGAGG AGCTCACCAT
                                                                                   600
30
                                                                                   660
       CTGCTACCTG GATATGCTGA TGACCAGTGA GGAGCGCCGG AAGCAGCTGA GGGACCAGTA CTGCTTTGAA TGTGACTGTT TCCGTTGCCA AACCCAGGAC AAGGATGCTG ATATGCTAAC
                                                                                   720
                                                                                   780
       TEGTEATEAG CAAGTATEGA AGGAAGTTCA AGAATCCCTE AAAAAAATTE AAGAACTGAA
GGCACACTEG AAGTEGGAGC AGGTTCTEGC CATETECCAG GCGATCATAA GCAGCAATTC
                                                                                   840
                                                                                   900
       TGAACGGCTT CCCGATATCA ACATCTACCA GCTGAAGGTG CTCGACTGCG CCATGGATGC
35
                                                                                   960
       CTGCATCAAC CTCGGCCTGT TGGAGGAAGC CTTGTTCTAT GGTACTCGGA CCATGGAGCC
                                                                                  1020
       ATACAGGATT TTTTTCCCAG GAAGCCATCC CGTCAGAGGG GTTCAAGTGA TGAAAGTTGG
                                                                                  1080
       CAAACTGCAG CTACATCAAG GCATGTTTCC CCAAGCAATG AAGAATCTGA GACTGGCTTT
                                                                                  1140
       TGATATTATG AGAGTGACAC ATGGCAGAGA ACACAGCCTG ATTGAAGATT TGATTCTACT
                                                                                  1200
      TTTAGAAGAA TGCGACGCCA ACATCAGAGC ATCCTAAGGG AACGCAGTCA GAGGGAAATA
                                                                                  1260
40
        CGGCGTGTGT CTTTGTTGAA TGCCTTATTG AGGTCACACA CTCTATGCTT TGTTAGCTGT
                                                                                  1320
       GTGAACCTCT CTTATTGGAA ATTCTGTTCC GTGTTTGTGT AGGTAAATAA AGGCAGACAT
                                                                                  1380
       GGTTTGCAAA CCACAAGAAT CATTAGTTGT AGAGAAGCAC GATTATAATA AATTCAAAAC
       ATTTGGTTGA GGATGCCAAA AAAAAAAAA AAAAAAA
45
        Seq ID NO: 421 Protein sequence
        Protein Accession #: NP_073580
                                            31
50
        MRCSQCRVAK YCSAKCOKKA WPDHKRECKC LKSCKPRYPP DSVRLLGRVV FKLMDGAPSE
                                                                                     60
        SEKLYSPYDL ESNINKLTED KKEGLRQLVM TFQHFMREEI QDASQLPPAF DLFEAFAKVI
                                                                                   120
        CNSFTICNAE MOEVGVGLYP SISLLNHSCD PNCSIVFNGP HLLLRAVRDI EVGEELTICY
                                                                                   180
        LDMLMTSEER RKQLRDQYCF ECDCFRCQTQ DKDADMLTGD EQVWKEVQES LKKIEELKAH
                                                                                   240
        WKWEQVLAMC QAIISSNSER LPDINIYQLK VLDCAMDACI NLGLLEEALP YGTRTMEPYR
55
                                                                                   300
        IFFPGSHPVR GVOVMKVGKL QLHQGMFPQA MKNLRLAFDI MRVTHGREHS LIEDLILLLE
                                                                                   360
        ECDANIRAS
        Seq ID NO: 422 DNA sequence
60
        Nucleic Acid Accession #: NM_003014.2
        Coding sequence: 238..648
                                            31
        GGGGGGTTCG CGCCCCGAAG GCTGAGAGCT GGGGCTGCTC GTGCCCTGTG TGCCAGACGG
CGGAGCTCCG CGGCCGACC CCGCGGCCCC GCTTTGCTGC CGACTGGAGT TTGGGGGAAG
65
                                                                                   120
        AAACTCTCCT GCGCCCCAGA AGATTTCTTC CTCGGCGAAG GGACAGCGAA AGATGAGGGT
                                                                                   180
        GGCAGGAAGA GAAGGCGCTT TCTGTCTGCC GGGGTCGCAG CGCGAGAGGG CAGTGCCATG
                                                                                    240
        TTCCTCTCCA TCCTAGTGGC GCTGTGCCTG TGGCTGCACC TGGCGCTGGG CGTGCGCGGC
                                                                                    300
        GCGCCCTGCG AGGCGGTGCG CATCCCTATG TGCCGGCACA TGCCCTGGAA CATCACGCGG
70
                                                                                    360
        ATGCCCAACC ACCTGCACCA CAGCACGCAG GAGAACGCCA TCCTGGCCAT CGAGCAGTAC
                                                                                    420
        GAGGAGCTGG TGGACGTGAA CTGCAGCGCC GTGCTGCGCT TCTTCTTCTG TGCCATGTAC
                                                                                    480
        GCGCCCATTT GCACCCTGGA GTTCCTGCAC GACCCTATCA AGCCGTGCAA GTCGGTGTGC
                                                                                   540
        CAACGCGCGC GCGACGACTG CGAGCCCCTC ATGAAGATGT ACAACCACAG CTGGCCCGAA
                                                                                    600
75
        AGCCTGGCCT GCGACGAGCT GCCTGTCTAT GACCGTGGCG TGTGCATTTC GCCTGAAGCC
                                                                                    660
        ATCGTCACGG ACCTCCCGGA GGATGTTAAG TGGATAGACA TCACACCAGA CATGATGGTA
                                                                                    720
        CAGGAAAGGC CTCTTGATGT TGACTGTAAA CGCCTAAGCC CCGATCGGTG CAAGTGTAAA
                                                                                    780
        AAGGTGAAGC CAACTTTGGC AACGTATCTC AGCAAAAACT ACAGCTATGT TATTCATGCC
                                                                                    840
        AAAATAAAAG CTGTGCAGAG GAGTGGCTGC AATGAGGTCA CAACGGTGGT GGATGTAAAA
                                                                                    900
        GAGATETTCA AGTECTCATE ACCEATECET CGAACTEAAG TECEGETEAT TACAAATTET
80
                                                                                    960
        TCTTGCCAGT GTCCACACAT CCTGCCCCAT CAAGATGTTC TCATCATGTG TTACGAGTGG
                                                                                   1020
        CGTTCAAGGA TGATGCTTCT TGAAAATTGC TTAGTTGAAA AATGGAGAGA TCAGCTTAGT
                                                                                   1080
        AAAAGATCCA TACAGTGGGA AGAGAGGCTG CAGGAACAGC GGAGAACAGT TCAGGACAAG
                                                                                   1140
        AAGAAAACAG CCGGGCGCAC CAGTCGTAGT AATCCCCCCA AACCAAAGGG AAAGCCTCCT
GCTCCCAAAC CAGCCAGTCC CAAGAAGAAC ATTAAAACTA GGAGTGCCCA GAAGAGAACA
85
        AACCCGAAAA GAGTGTGAGC TAACTAGTTT CCAAAGCGGA GACTTCCGAC TTCCTTACAG
                                                                                   1320
        GATGAGGCTG GGCATTGCCT GGGACAGCCT ATGTAAGGCC ATGTGCCCCCT TGCCCTAACA
```

```
ACTCACTGCA GTGCTCTTCA TAGACACATC TTGCAGCATT TTTCTTAAGG CTATGCTTCA
       GTTTTCTTT GTAAGCCATC ACAAGCCATA GTGGTAGGTT TGCCCTTTGG TACAGAAGGT
                                                                            1500
       GAGTTAAAGC TGGTGGAAAA GGCTTATTGC ATTGCATTCA GAGTAACCTG TGTGCATACT
                                                                            1560
       CTAGAAGAGT AGGGAAAATA ATGCTTGTTA CAATTCGACC TAATATGTGC ATTGTAAAAT AAATGCCATA TTTCAAACAA AACACGTAAT TTTTTTACAG TATGTTTTAT TACCTTTTGA
                                                                            1620
                                                                            1680
       TATCTGTTGT TGCAATGTTA GTGATGTTTT AAAATGTGAT GAAAATATAA TGTTTTTAAG
                                                                            1740
       AAGGAACAGT AGTGGAATGA ATGTTAAAAG ATCTTTATGT GTTTATGGTC TGCAGAAGGA
                                                                            1800
       TTTTTGTGAT GAAAGGGGAT TTTTTGAAAA ATTAGAGAAG TAGCATATGG AAAATTATAA
                                                                            1860
       TGTGTTTTTT TACCAATGAC TTCAGTTTCT GTTTTTAGCT AGAAACTTAA AAACAAAAAT
                                                                            1920
10
       AATAATAAAG AAAAATAAAT AAAAAGGAGA GGCAGACAAT GTCTGGATTC CTGTTTTTTG
                                                                            1980
       GTTACCTGAT TTCCATGATC ATGATGCTTC TTGTCAACAC CCTCTTAAGC AGCACCAGAA
                                                                            2040
       ACAGTGAGTT TGTCTGTACC ATTAGGAGTT AGGTACTAAT TAGTTGGCTA ATGCTCAAGT
                                                                            2100
       ATTTTATACC CACAAGAGAG GTATGTCACT CATCTTACTT CCCAGGACAT CCACCCTGAG
                                                                            2160
                                                                            2220
       AATAATTTGA CAAGCTTAAA AATGGCCTTC ATGTGAGTGC CAAATTTTGT TITTCTTCAT
15
       TTAAATATTT TCTTTGCCTA AATACATGTG AGAGGAGTTA AATATAAATG TACAGAGAGG
                                                                            2280
       AAAGTTGAGT TCCACCTCTG AAATGAGAAT TACTTGACAG TTGGGATACT TTAATCAGAA
                                                                            2340
       AAAAAGAACT TATTTGCAGC ATTTTATCAA CAAATTTCAT AATTGTGGAC AATTGGAGGC
                                                                            2400
       ATTTATTTTA AAAAACAATT TTATTGGCCT TTTGCTAACA CAGTAAGCAT GTATTTATA
                                                                            2460
       AGGCATTCAA TAAATGCACA ACGCCCAAAG GAAATAAAAT CCTATCTAAT CCTACTCTCC
                                                                            2520
       ACTACACAGA GGTAATCACT ATTAGTATTT TGGCATATTA TTCTCCAGGT GTTTGCTTAT
20
                                                                            2580
       GCACTTATAA AATGATTTGA ACAAATAAAA CTAGGAACCT GTATACATGT GTTTCATAAC
                                                                            2640
       CTGCCTCCTT TGCTTGGCCC TTTATTGAGA TAAGTTTTCC TGTCAAGAAA GCAGAAACCA
                                                                            2700
       TCTCATTTCT AACAGCTGTG TTATATTCCA TAGTATGCAT TACTCAACAA ACTGTTGTGC
       TATTGGATAC TTAGGTGGTT TCTTCACTGA CAATACTGAA TAAACATCTC ACCGGAATTC
25
       Seg ID NO: 423 Protein seguence
       Protein Accession #: NP_003005.1.
                                                                51
30
       MFLSILVALC LWLHLALGVR GAPCEAVRIP MCRHMPWNIT RMPNHLHHST QENAILAIEQ
                                                                              60
       YEELVDVNCS AVLRFFFCAM YAPICTLEFL HDPIKPCKSV CQRARDDCEP LMKMYNHSWP
                                                                             120
       ESLACDELPV YDRGVCISPE AIVTDLPEDV KWIDITPDMM VQERPLDVDC KRLSPDRCKC
                                                                             180
       KKVKPTLATY LSKNYSYVIH AKIKAVQRSG CNEVTTVVDV KEIFKSSSPI PRTQVPLITN
                                                                             240
35
       SSCOCPHILP HODVLIMCYE WRSRMMLLEN CLVEKWRDQL SKRSIQWEER LQEQRRTVQD
                                                                             300
       KKKTAGRTSR SNPPKPKGKP PAPKPASPKK NIKTRSAQKR TNPKRV
       Seq ID NO: 424 DNA sequence
       Nucleic Acid Accession #: BC010423
40
       Coding sequence: 248..1780
                             21
                                         31
                                                     41
                                                                51
       CACAGCGTGG GAAGCAGCTC TGGGGGAGCT CGGAGCTCCC GATCACGGCT TCTTGGGGGT
45
       AGCTACGGCT GGGTGTGTAG AACGGGGCCG GGGCTGGGGC TGGGTCCCCT AGTGGAGACC
       CAAGTGCGAG AGGCAAGAAC TCTGCAGCTT CCTGCCTTCT GGGTCAGTTC CTTATTCAAG
       TCTGCAGCCG GCTCCCAGGG AGATCTCGGT GGAACTTCAG AAACGCTGGG CAGTCTGCCT
       TTCAACCATG CCCCTGTCCC TGGGAGCCGA GATGTGGGGG CCTGAGGCCT GGCTGCTGCT
                                                                             300
       GCTGCTACTG CTGGCATCAT TTACAGGCCG GTGCCCCGCG GGTGAGCTGG AGACCTCAGA
50
       CGTGGTAACT GTGGTGCTGG GCCAGGACGC AAAACTGCCC TGCTTCTACC GAGGGGACTC
                                                                             420
       CGGCGAGCAA GTGGGGCAAG TGGCATGGGC TCGGGTGGAC GCGGGCGAAG GCGCCCAGGA
                                                                             480
       ACTAGCGCTA CTGCACTCCA AATACGGGCT TCATGTGAGC CCGGCTTACG AGGGCCGCGT
                                                                             540
       GGAGCAGCCG CCGCCCCAC GCAACCCCCT GGACGCTCA GTGCTCCTGC GCAACGCAGT
                                                                              600
       GCAGGCGGAT GAGGGCGAGT ACGAGTGCCG GGTCAGCACC TTCCCCGCCG GCAGCTTCCA
                                                                             660
55
       GGCGCGGCTG CGGCTCCGAG TGCTGGTGCC TCCCCTGCCC TCACTGAATC CTGGTCCAGC
                                                                             720
       ACTAGAAGAG GGCCAGGGCC TGACCCTGGC AGCCTCCTGC ACAGCTGAGG GCAGCCCAGC
                                                                             780
       CCCCAGCGTG ACCTGGGACA CGGAGGTCAA AGGCACAACG TCCAGCCGTT CCTTCAAGCA
                                                                              840
       CTCCCGCTCT GCTGCCGTCA CCTCAGAGTT CCACTTGGTG CCTAGCCGCA GCATGAATGG
                                                                             900
       GCAGCCACTG ACTTGTGTGG TGTCCCATCC TGGCCTGCTC CAGGACCAAA GGATCACCCA
                                                                             960
       CATCCTCCAC GTGTCCTTCC TTGCTGAGGC CTCTGTGAGG GGCCTTGAAG ACCAAAATCT
60
                                                                            1020
       GTGGCACATT GGCAGAGAAG GAGCTATGCT CAAGTGCCTG AGTGAAGGGC AGCCCCCTCC
CTCATACAAC TGGACACGGC TGGATGGGCC TCTGCCCAGT GGGGTACGAG TGGATGGGGA
                                                                            1080
                                                                            1140
       CACTITGGGC TITCCCCCAC TGACCACTGA GCACAGCGGC ATCTACGTCT GCCATGTCAG
       CAATGAGTTC TCCTCAAGGG ATTCTCAGGT CACTGTGGAT GTTCTTGACC CCCAGGAAGA
65
       CTCTGGGAAG CAGGTGGACC TAGTGTCAGC CTCGGTGGTG GTGGTGGGTG TGATCGCCGC
                                                                            1320
       ACTOTTGTTC TGCCTTCTGG TGGTGGTGGT GGTGCTCATG TCCCGATACC ATCGGCGCAA
                                                                            1380
       GGCCCAGCAG ATGACCCAGA AATATGAGGA GGAGCTGACC CTGACCAGGG AGAACTCCAT
                                                                            1440
       CCGGAGGCTG CATTCCCATC ACACGGACCC CAGGAGCCAG CCGGAGGAGA GTGTAGGGCT
                                                                            1500
       GAGAGCCGAG GGCCACCCTG ATAGTCTCAA GGACAACAGT AGCTGCTCTG TGATGAGTGA
                                                                             1560
70
       AGAGCCCGAG GGCCGCAGTT ACTCCACGCT GACCACGGTG AGGGAGATAG AAACACAGAC
                                                                            1620
       TGAACTGCTG TCTCCAGGCT CTGGGCGGGC CGAGGAGGAG GAAGATCAGG ATGAAGGCAT
                                                                            1680
       CAAACAGGCC ATGAACCATT TTGTTCAGGA GAATGGGACC CTACGGGCCA AGCCCACGGG
                                                                            1740
       CAATGGCATC TACATCAATG GGCGGGGACA CCTGGTCTGA CCCAGGCCTG CCTCCCTTCC
                                                                            1800
       CTAGGCCTGG CTCCTTCTGT TGACATGGGA GATTTTAGCT CATCTTGGGG GCCTCCTTAA
                                                                            1860
75
       ACACCCCCAT TTCTTGCGGA AGATGCTCCC CATCCCACTG ACTGCTTGAC CTTTACCTCC
                                                                            1920
       AACCCTTCTG TTCATCGGGA GGGCTCCACC AATTGAGTCT CTCCCACCAT GCATGCAGGT
                                                                             1980
       CACTGTGTGT GTGCATGTGT GCCTGTGTGA GTGTTGACTG ACTGTGTGTG TGTGGAGGGG
                                                                             2040
       TGACTGTCCG TGGAGGGGTG ACTGTGTCCG TGGTGTGTAT TATGCTGTCA TATCAGAGTC
                                                                            2100
       AAGTGAACTG TGGTGTATGT GCCACGGGAT TTGAGTGGTT GCGTGGGCAA CACTGTCAGG
                                                                             2160
80
       GTTTGGCGTG TGTGTCATGT GGCTGTGTG GACCTCTGCC TGAAAAAGCA GGTATTTTCT
                                                                             2220
       CAGACCCCAG AGCAGTATTA ATGATGCAGA GGTTGGAGGA GAGAGGTGGA GACTGTGGCT
                                                                             2280
       CAGACCCAGG TGTGCGGGCA TAGCTGGAGC TGGAATCTGC CTCCGGTGTG AGGGAACCTG
                                                                             2340
       TCTCCTACCA CTTCGGAGCC ATGGGGGCAA GTGTGAAGCA GCCAGTCCCT GGGTCAGCCA
                                                                             2400
       GAGGCTTGAA CTGTTACAGA AGCCCTCTGC CCTCTGGTGG CCTCTGGGCC TGCTGCATGT
                                                                             2460
85
       ACATATTTTC TGTAAATATA CATGCGCCGG GAGCTTCTTG CAGGAATACT GCTCCGAATC
                                                                             2520
       ACTITIAATT TITTTCTTTT TITTTTCTTG CCCTTTCCAT TAGTTGTATT TTTTATTTAT
       TTTTATTTTT ATTTTTTTT AGAGTTTGAG TCCAGCCTGG ACGATATAGC CAGACCCTGT
```

WO 02/086443 стоталалал ассалалссе алалалала алалалала

Seq ID NO: 425 Protein sequence Protein Accession #: AAH10423

5	Protein Acc	cession #: A	AAH10423				
5	1	11	21	31	41	51	
	ī	ī	Ĩ	1	1	1	
			LLASFTGRCP				60
10			LLHSKYGLHV				120
10			LRLRVLVPPL				180
			SAAVTSEFHL IGREGAMLKC				240 300
			FSSRDSQVTV				360
			QMTQKYEEEL				420
15			EGRSYSTLTT				480
	AMNHFVQENG	TLRAKPTGNG	IYINGRGHLV				
	_	426 DNA sec		474 2			
20		ence: 37	1 #: NM_003	4/4.2		•	
20	couring sequ	rence. 57	,050				
	1	11	21	31	41	51	
	1		}	1	1		
25			CCCGGGCCAA				60
25			AACGGCGCGC TAGAAGAGCT				120 180
	CCCGACCTGA	CTCCCCGAGG	CAGGAAATCC	CTCCGGTCGC	GACGCCCGGC	CCCGCTCGGC	240
			CGCTCGCCGC				300
••	GCGACGATGG	CAGCGCGCCC	GCTGCCCGTG	TCCCCCGCCC	GCGCCCTCCT	GCTCGCCCTG	360
30	GCCGGTGCTC	TGCTCGCGCC	CTGCGAGGCC	CGAGGGGTGA	GCTTATGGAA	CGAAGGAAGA	420
	GCTGATGAAG	TTGTCAGTGC	CTCTGTTCGG	AGTGGGGACC	TCTGGATCCC	AGTGAAGAGC	480
			AGAAGTGCTG AAATGAAGGT				540 600
						TCTGGGTCAC	
35			ACGGGGATAT				720
	TCTGGTCTCA	GGGGACTTAT	TGTGTTTGAA	AATGAAAGCT	ATGTCTTAGA	ACCAATGAAA	780
	AGTGCAACCA	ACAGATACAA	ACTCTTCCCA	GCGAAGAAGC	TGAAAAGCGT	CCGGGGATCA	840
	TGTGGATCAC	ATCACAACAC	ACCAAACCTC	GCTGCAAAGA	ATGTGTTTCC	ACCACCCTCT	900 960
40			TAAAAGAGAG AGAGTTTCAG				1020
40			TAATCACGTT				1080
			AGTGTGGAAT				1140
	CCATTCACCA	GCCTCCATGA	ATTTCTGGAC	TGGAGGAAGA	TGAAGCTTCT	ACCTCGCAAA	1200
15			TGTCAGTGGG				1260
45			CACGGCAGAC				1320 1380
	BATCATCACA	CACTGGACAGC	CGTGACCCTG GGGCTGTAGC	TGTCABATGG	CGGTTGAGAA	AGGAGGCTGC	1440
			GTACCCATTT				1500
~^	GACTTGGAGA	CCAGCCTGGA	GAAAGGAATG	GGGGTGTGCC	TGTTTAACCT	GCCGGAAGTC	1560
50	AGGGAGTCTT	TCGGGGGCCA	GAAGTGTGGG	AACAGATTTG	TGGAAGAAGG	AGAGGAGTGT	1620
	GACTGTGGGG	AGCCAGAGGA	ATGTATGAAT ACATGGGCTG	CGCTGCTGCA	ATGCCACCAC	CTGTACCCTG	1680 1740
			CAGCAACTCC				1800
			CGTGTACCTG				1860
55	GGCTACTGCT	ACAATGGCAT	CTGCCAGACT	CACGAGCAGC	AGTGTGTCAC	ACTCTGGGGA	1920
			TGGGATCTGC				1980
			CTCGAAGAGT				2040
			TCAAGGAGGT CCCCTGCAG				2100 2160
60			CATGCCGGAC				2220
•	GCAGATGGAA	AAATCTGCCT	GAATCGTCAA	TGTCAAAATA	TTAGTGTCTT	TGGGGTTCAC	2280
	GAGTGTGCAA	TGCAGTGCCA	CGGCAGAGGG	GTGTGCAACA	ACAGGAAGAA	CTGCCACTGC	2340
	GAGGCCCACT	GGGCACCTCC	CTTCTGTGAC	AAGTTTGGCT	TTGGAGGAAG	CACAGACAGC	2400
65			TAACCAAGGT			ACGACTGCTG	2460 2520
05			CATTGAAAAA				2580
	CGTGGCTTCC	AACCCTGTCA	GGCTCACCTC	GGCCACCTTG	GAAAAGGCCT	GATGAGGAAG	2640
	CCGCCAGATT	CCTACCCACC	GAAGGACAAT	CCCAGGAGAT	TGCTGCAGTG	TCAGAATGTT	2700
70	GACATCAGCA	GACCCCTCAA	CGGCCTGAAT	GTCCCTCAGC	CCCAGTCAAC	TCAGCGAGTG	2760
70			CCCACGTGCA				2820 2880
			CCAGGGGACC			GACCCCAGGA	2940
	CAATGGGAGA	CTGGGCTCCG	CCTGGCACCC	CTCAGACCTG	CTCCACAATA	TCCACACCAA	3000
	GTGCCCAGAT	CCACCCACAC	CGCCTATATT	AAGTGAGAAG	CCGACACCTT	TTTTCAACAG	3060
75			ATCTTTCAGC				3120
			AACATCATTA				3180
			TCTGTCTACT				3240 3300
			CAGTGCGCTG GTGCTTTTAG				3360
80			TGTTTGCTTT				3420
			TTATGGTACC				3480
	CTCAGTTGAT	TTTCTGGATT	CCCCATCTCA	GGCCAGAGCC	AAGGGGCTTC	AGGTCCAGGC	3540
						GCTCCCAGGG	
85			TTCTGGCCAG				3660 3720
OJ.						AGCCAGAACT CACTCAAGGC	
						AGCACTGCCA	

```
CCAGTAGGTT ATTTAGCTTG GGAAAGGTGG TGTTTCTGTA AGAAACCTAC TGCCCAGGCA
                                                                            3900
       CTGCAAACCG CCACCTCCCT ATACTGCTTG GAGCTGAGCA AATCACCACA AACTGTAATA
                                                                            3960
       CAATGATCCT GTATTCAGAC AGATGAGGAC TTTCCATGGG ACCACAACTA TTTTCAGATG
                                                                            4020
       TGAACCATTA ACCAGATCTA GTCAATCAAG TCTGTTTACT GCAAGGTTCA ACTTATTAAC
                                                                            4080
       AATTAGGCAG ACTICTITATG CTTGCAAAAA CTACAACCAA TGGAATGTGA TGTTCATGGG
                                                                            4140
       TATAGTTCAT GTCTGCTATC ATTATTCGTA GATATTGGAC AAAGAACCTT CTCTATGGGG
                                                                            4200
       CATCCTCTTT TTCCAACTTG GCTGCAGGAA TCTTTAAAAG ATGCTTTTAA CAGAGTCTGA
                                                                            4260
       ACCTATTTCT TARACACTTG CAACCTACCT GTTGAGCATC ACAGAATGTG ATAAGGAAAT
                                                                            4320
       CAACTTGCTT ATCAACTTCC TAAATATTAT GAGATGTGGC TTGGGCAGCA TCCCCTTGAA
                                                                            4380
10
       CTCTTCACTC TTCAAATGCC TGACTAGGGA GCCATGTTTC ACAAGGTCTT TAAAGTGACT
                                                                            4440
       AATGGCATGA GAAATACAAA AATACTCAGA TAAGGTAAAA TGCCATGATG CCTCTGTCIT
                                                                            4500
       CTGGACTGGT TITCACATTA GAAGACAATT GACAACAGTT ACATAATTCA CTCTGAGTGT
                                                                            4560
                                                                            4620
       TTTATGAGAA AGCCTTCTTT TGGGGTCAAC AGTTTTCCTA TGCTTTGAAA CAGAAAAATA
       TGTACCAAGA ATCTTGGTTT GCCTTCCAGA AAACAAAACT GCATTTCACT TTCCCGGTGT
                                                                            4680
       TCCCCACTGT ATCTAGGCAA CATAGTATTC ATGACTATGG ATAAACTAAA CACGTGACAC
                                                                            4740
15
       AAACACACA AAAAGGGAAC CCAGCTCTAA TACATTCCAA CTCGTATAGC ATGCATCTGT
                                                                            4800
       TTATTCTATA GTTATTAAGT TCTTTAAAAT GTAAAGCCAT GCTGGAAAAT AATACTGCTG
                                                                            4860
       AGATACATAC AGAATTACTG TAACTGATTA CACTTGGTAA TTGTACTAAA GCCAAACATA
                                                                            4920
       TATATACTAT TAAAAAGGTT TACAGAATTT TATGGTGCAT TACGTGGGCA TTGTCTTTTT
AGATGCCCAA ATCCTTAGAT CTGGCATGTT AGCCCTTCCT CCAATTATAA GAGGATATGA
                                                                            4980
20
       ACCAAAAAA AAAAAAAAA AA
       Seq ID NO: 427 Protein sequence
       Protein Accession #: NP_003465
25
       MAARPLPVSP ARALLLALAG ALLAPCEARG VSLWNEGRAD EVVSASVRSG DLWIPVKSFD
                                                                              60
       SKNHPEVLNI RLQRESKELI INLERNEGLI ASSFTETHYL QDGTDVSLAR NYTVILGHCY
                                                                             120
       YHGHVRGYSD SAVSLSTCSG LRGLIVFENE SYVLEPMKSA TNRYKLFPAK KLKSVRGSCG
30
                                                                             180
       SHHNTPNLAA KNVFPPPSQT WARRHKRETL KATKYVELVI VADNREFQRQ GKDLEKVKQR
                                                                             240
       LIEIANHVDK FYRPLNIRIV LVGVEVWNDM DKCSVSQDPF TSLHEFLDWR KMKLLPRKSH
                                                                             300
       DNAQLVSGVY FQGTTIGMAP IMSMCTADQS GGIVMDHSDN PLGAAVTLAH ELGHNFGMNH
                                                                             360
       DTLDRGCSCQ MAVEKGGCIM NASTGYPFPM VFSSCSRKDL ETSLEKGMGV CLFNLPEVRE
                                                                              420
35
       SFGGOKCGNR FVEEGEECDC GEPEECMNRC CNATTCTLKP DAVCAHGLCC EDCQLKPAGT
                                                                              480
       ACRDSSNSCD LPEFCTGASP HCPANVYLHD GHSCQDVDGY CYNGICQTHE QQCVTLWGPG
                                                                              540
       AKPAPGICFE RVNSAGDPYG NCGKVSKSSF AKCEMRDAKC GKIQCQGGAS RPVIGTNAVS
                                                                              600
       IETNIPLQQG GRILCRGTHV YLGDDMPDPG LVLAGTKCAD GKICLNRQCQ NISVFGVHEC
                                                                              660
       AMQCHGRGVC NNRKNCHCEA HWAPPFCDKF GFGGSTDSGP IRQADNQGLT IGILVTILCL
                                                                              720
       LAAGFVVYLK RKTLIRLLFT NKKTTIEKLR CVRPSRPPRG FQPCQAHLGH LGKGLMRKPP
40
                                                                              780
       DSYPPKDNPR RLLQCQNVDI SRPLNGLNVP QPQSTQRVLP PLHRAPRAPS VPARPLPAKP
       ALROAQGICK PNPPQKPLPA DPLARTIRLI HALARIPGQW ETGLRLAPLR PAPQYPHQVP
                                                                              900
       RSTHTAYIK
45
       Seq ID NO: 428 DNA sequence
       Nucleic Acid Accession #: NM_003714
       Coding sequence: 135..1043
                                                                51
                                         31
50
       GAGGAGGAGG GAAAAGGCGA GCAAAAAGGA AGAGTGGGAG GAGGAGGGGA AGCGGCGAAG
                                                                               60
       GAGGAAGAGG AGGAGGAGGA AGAGGGGAGC ACAAAGGATC CAGGTCTCCC GACGGGAGGT
                                                                              120
       TAATACCAAG AACCATGTGT GCCGAGCGGC TGGGCCAGTT CATGACCCTG GCTTTGGTGT
                                                                              180
       TGGCCACCTT TGACCCGGCG CGGGGGACCG ACGCCACCAA CCCACCCGAG GGTCCCCAAG
                                                                              240
55
       ACAGGAGCTC CCAGCAGAAA GGCCGCCTGT CCCTGCAGAA TACAGCGGAG ATCCAGCACT
                                                                              300
       GTTTGGTCAA CGCTGGCGAT GTGGGGTGTG GCGTGTTTGA ATGTTTCGAG AACAACTCTT
                                                                              360
       GTGAGATTCG GGGCTTACAT GGGATTTGCA TGACTTTTCT GCACAACGCT GGAAAATTTG
                                                                              420
       ATGCCCAGGG CAAGTCATTC ATCAAAGACG CCTTGAAATG TAAGGCCCAC GCTCTGCGGC
                                                                              480
       ACAGGTTCGG CTGCATAAGC CGGAAGTGCC CGGCCATCAG GGAAATGGTG TCCCAGTTGC
                                                                              540
60
       AGCGGGAATG CTACCTCAAG CACGACCTGT GCGCGGCTGC CCAGGAGAAC ACCCGGGTGA
                                                                              600
       TAGTGGAGAT GATCCATTTC AAGGACTTGC TGCTGCACGA ACCCTACGTG GACCTCGTGA
                                                                              660
       ACTTGCTGCT GACCTGTGGG GAGGAGGTGA AGGAGGCCAT CACCCACAGC GTGCAGGTTC
       AGTGTGAGCA GAACTGGGGA AGCCTGTGCT CCATCTTGAG CTTCTGCACC TCGGCCATCC
       AGAAGCCTCC CACGGCGCCC CCCGAGCGCC AGCCCCAGGT GGACAGAACC AAGCTCTCCA
       GGGCCCACCA CGGGGAAGCA GGACATCACC TCCCAGAGCC CAGCAGTAGG GAGACTGGCC
65
                                                                              900
       GAGGTGCCAA GGGTGAGCGA GGTAGCAAGA GCCACCCAAA CGCCCATGCC CGAGGCAGAG
                                                                              960
       TCGGGGCCT TGGGCTCAG GGACCTTCCG GAAGCAGCGA GTGGGAAGAC GAACATCTG
AGTATTCTGA TATCCGGAGG TGAAATGAAA GGCCTGGCCA CGAAATCTTT CCTCCACGCC
                                                                             1020
                                                                             1080
       GTCCATTTTC TTATCTATGG ACATTCCAAA ACATTTACCA TTAGAGAGGG GGGATGTCAC
                                                                             1140
                                                                             1200
       ACGCAGGATT CTGTGGGGAC TGTGGACTTC ATCGAGGTGT GTGTTCGCGG AACGGACAGG
70
       TGAGATGGAG ACCCCTGGGG CCGTGGGGTC TCAGGGGTGC CTGGTGAATT CTGCACTTAC
                                                                             1260
       ACGTACTCAA GGGAGCGCGC CCGCGTTATC CTCGTACCTT TGTCTTCTTT CCATCTGTGG
                                                                             1320
       AGTCAGTGGG TGTCGGCCGC TCTGTTGTGG GGGAGGTGAA CCAGGGAGGG GCAGGGCAAG
                                                                             1380
       GCAGGGCCCC CAGAGCTGGG CCACACAGTG GGTGCTGGGC CTCGCCCCGA AGCTTCTGGT
                                                                             1440
75
       GCAGCAGCCT CTGGTGCTGT CTCCGCGGAA GTCAGGGCGG CTGGATTCCA GGACAGGAGT
                                                                             1500
       GAATGTAAAA ATAAATATCG CTTAGAATGC AGGAGAAGGG TGGAGAGGAG GCAGGGGCCG
                                                                             1560
       AGGGGGTGCT TGGTGCCAAA CTGAAATTCA GTTTCTTGTG TGGGGCCTTG CGGTTCAGAG
                                                                             1620
       CTCTTGGCGA GGGTGGAGGG AGGAGTGTCA TTTCTATGTG TAATTTCTGA GCCATTGTAC
                                                                             1680
       TGTCTGGGCT GGGGGGGACA CTGTCCAAGG GAGTGGCCCC TATGAGTTTA TATTTTAACC
                                                                             1740
       ACTGCTTCAA ATCTCGATTT CACTTTTTT ATTTATCCAG TTATATCTAC ATATCTGTCA
80
                                                                             1800
        TCTAAATAAA TGGCTTTCAA ACAAAGCAAC TGGGTCATTA AAACCAGCTC AAAGGGGGTT
                                                                             1860
       TAAAAAAAA AAAACCAGCC CATCCTTTGA GGCTGATTTT TCTTTTTTTT AAGTTCTATT
                                                                             1920
        TTAAAAGCTA TCAAACAGCG ACATAGCCAT ACATCTGACT GCCTGACATG GACTCCTGCC
        CACTTGGGGG AAACCTTATA CCCAGAGGAA AATACACACC TGGGGAGTAC ATTTGACAAA
                                                                             2040
        TTTCCCTTAG GATTTCGTTA TCTCACCTTG ACCCTCAGCC AAGATTGGTA AAGCTGCGTC
85
                                                                             2100
        CTGGCGATTC CAGGAGACCC AGCTGGAAAC CTGGCTTCTC CATGTGAGGG GATGGGAAAG
                                                                             2160
        GAAAGAAGAG AATGAAGACT ACTTAGTAAT TCCCATCAGG AAATGCTGAC CTTTTACATA
```

		/U80443	A ATCTCTA A C	GGACAGGATT	TTCCAGATCC	TARTTGGAAA	2280			
	TTTAGCAATA	AGGAGAGGAG		CAAATAAAGG		GAGAGAGAGA	2340			
5		429 Protein cession #: 1								
	1	11	21	31	41	51				
10	GDVGCGVFEC ISRKCPAIRE CGEEVKEAIT	FENNSCEIRG MVSQLQRECY HSVQVQCEQN	LHGICMTFLH LKHDLCAAAQ WGSLCSILSF	PEGPQDRSSQ NAGKFDAQGK ENTRVIVEMI CTSAIQKPPT	SPIKDALKCK HPKDLLLHEP APPERQPQVD	AHALRHRFGC YVDLVNLLLT RTKLSRAHHG	60 120 180 240			
15	EAGHHLPEPS RR	SRETGRGAKG	ERGSKSHPNA	HARGRVGGLG	AQGPSGSSEW	EDEQSEYEDI	300			
20	Seq ID NO: 430 DNA sequence Nucleic Acid Accession #: NM_005940 Coding sequence: 231489									
20	1	11	21	31	41	51				
25	CGCCCTCCTG TCTGCCGCCG	CCCCCGATGC GACGTCCACC	TGCTGCTGCT ACCTCCATGC	GGCCGCCTGG GCTCCAGCCG CGAGAGGAGG	CCGCCGCTGC GGGCCACAGC	TGGCCCGGGC CCTGGCATGC	60 120 180			
	CAGCCTCAGG CCGACAGAAG GATCCTTCGG	CCTCCCCGCT AGGTTCGTGC TTCCCATGGC	GTGGCGTGCC TTTCTGGCGG AGTTGGTGCA	TGCCACGCAG CGACCCATCT GCGCTGGAG GGAGCAGGTG	GATGGGCTGA AAGACGGACC CGGCAGACGA	GTGCCCGCAA TCACCTACAG TGGCAGAGGC	240 300 360 420			
30				CACCTTTACT			480			
	TGACATCATG	ATCGACTTCG	CCAGGTACTG	GCATGGGGAC CAAGACTCAC	GACCTGCCGT	TTGATGGGCC	540 600			
	CGACTATGAT	GAGACCTGGA	CTATCGGGGA	TGACCAGGGC	ACAGACCTGC	TGCAGGTGGC	660			
25	AGCCCATGAA	TTTGGCCACG	TGCTGGGGCT	GCAGCACACA	ACAGCAGCCA	AGGCCCTGAT	720			
35				GAGTCTCAGC TGTCACCTCC			780 840			
				ACCGCTGGAG			900			
				CATCCGAGGC			960			
40				GCTGCAGCCC			1020			
40				GGACGCTGCC GGTGTACGAC			1080 1140			
	CCCCGCACCC	CTCACCGAGC	TGGGCCTGGT	GAGGTTCCCG	GTCCATGCTG	CCTTGGTCTG	1200			
	GGGTCCCGAG	AAGAACAAGA	TCTACTTCTT	CCGAGGCAGG	GACTACTGGC	GTTTCCACCC	1260			
15				CCGCAGGGCC			1320			
45				TGATGGCTAT GAAGGCTCTG			1380 1440			
	GGGTCCTGAC	TTCTTTGGCT	GTGCCGAGCC	TGCCAACACT	TTCCTCTGAC	CATGGCTTGG	1500			
	ATGCCCTCAG	GGGTGCTGAC	CCCTGCCAGG	CCACGAATAT	CAGGCTAGAG	ACCCATGGCC	1560			
50				ACTGAGCCCA			1620			
50				GGAGGGCCAC TTGGCATGAC			1680 1740			
				ĠĠĊŢĠĊĊĊŢĠ			1800			
				AGTGTCCTTG			1860			
55				TGCTGGGGCC			1920 1980			
<i>JJ</i>				TCCTGAGGTC AAATCTGTTC			2040			
	GTTCACAGTC	AAATGGGGAG	GGGTATTCTT	CATGCAGGAG	ACCCCAGGCC	CTGGAGGCTG	2100			
•	CAACATACCT	CAATCCTGTC	CCAGGCCGGA	TCCTCCTGAA	GCCCTTTTCG	CAGCACTGCT	2160			
60			ATGTGTGTAC	AGTGTGTATA	AACCTTCTTC	TTCTTTTTT	2220			
00	Seq ID NO:	431 Proteir	sequence	•						
	FIOCETH WC	ession #: N	^^2							
65	į.	11	21	31	41	51				
	PAPATQEAPR	PASSLRPPRC	GVPDPSDGLS	ARALPPDVHH ARNRQKRFVL GRADIMIDFA	SGGRWEKTDL	TYRILRFPWQ	60 120 180			
70				QVAAHEFGHV			240			
				LGPQAGIDTN			300			
				LASRHWQGLP			360 420			
75				LVWGPEKNKI RGRLYWKFDP			480			
80	Nucleic Act	432 DNA sec ld Accession lence: 202.	#: NM_024	022						
50	1	11	21	31	41	51				
	1	1	1	1	1	1				
				TTCTTAATTA			60 120			
85	CCATCTACAT AGAGGTCCTG	TTTTGGGACT AAATAGTCAC	CGGGAATTAT CATGGGGGAA	ACACTGTGGC GAGGTAGAGG AATGATCCGC TTGAAAATAA	TGGAGGCGGA CTGCTGTTGA	GCCGGATGTC AGCCCCCTTC	180 240 300			

```
360
       GATGCTGTTG CTGCACAGAT CCTGTCACTG CTGCCATTGA AGTTTTTTCC AATCATCGTC
       ATTGGGATCA TTGCATTGAT ATTAGCACTG GCCATTGGTC TGGGCATCCA CTTCGACTGC
                                                                              420
       TCAGGGAAGT ACAGATGTCG CTCATCCTTT AAGTGTATCG AGCTGATAGC TCGATGTGAC
                                                                              480
       GGAGTCTCGG ATTGCAAAGA CGGGGAGGAC GAGTACCGCT GTGTCCGGGT GGGTGGTCAG
                                                                              540
 5
       AATGCCGTGC TCCAGGTGTT CACAGCTGCT TCGTGGAAGA CCATGTGCTC CGATGACTGG
                                                                              600
       AAGGGTCACT ACGCAAATGT TGCCTGTGCC CAACTGGGTT TCCCAAGCTA TGTGAGTTCA
                                                                              660
       GATAACCTCA GAGTGAGCTC GCTGGAGGGG CAGTTCCGGG AGGAGTTTGT GTCCATCGAT
                                                                              720
       CACCTCTTGC CAGATGACAA GGTGACTGCA TTACACCACT CAGTATATGT GAGGGAGGGA
                                                                              780
       TGTGCCTCTG GCCACGTGGT TACCTTGCAG TGCACAGCCT GTGGTCATAG AAGGGGCTAC
                                                                              840
10
       AGCTCACGCA TCGTGGGTGG AAACATGTCC TTGCTCTCGC AGTGGCCCTG GCAGGCCAGC
                                                                              900
                                                                              960
       CTTCAGTTCC AGGGCTACCA CCTGTGCGGG GGCTCTGTCA TCACGCCCCT GTGGATCATC
       ACTGCTGCAC ACTGTGTTA TGACTTGTAC CTCCCCAAGT CATGGACCAT CCAGGTGGGT
                                                                             1020
       CTAGTTTCCC TGTTGGACAA TCCAGCCCCA TCCCACTTGG TGGAGAAGAT TGTCTACCAC
                                                                             1080
       AGCAAGTACA AGCCAAAGAG GCTGGGCAAT GACATCGCCC TTATGAAGCT GGCCGGGCCA
                                                                             1140
       CTCACGTTCA ATGAAATGAT CCAGCCTGTG TGCCTGCCCA ACTCTGAAGA GAACTTCCCC
15
                                                                             1200
       GATGGAAAAG TGTGCTGGAC GTCAGGATGG GGGGCCACAG AGGATGGAGG TGACGCCTCC
CCTGTCCTGA ACCACGCGGC CGTCCCTTTG ATTTCCAACA AGATCTGCAA CCACAGGGAC
                                                                             1260
                                                                             1320
       GTGTACGGTG GCATCATCTC CCCCTCCATG CTCTGCGCGG GCTACCTGAC GGGTGGCGTG
                                                                             1380
       GACAGCTGCC AGGGGGACAG CGGGGGGCCC CTGGTGTGTC AAGAGAGGAG GCTGTGGAAG
                                                                            1440
20
       TTAGTGGGAG CGACCAGCTT TGGCATCGGC TGCGCAGAGG TGAACAAGCC TGGGGTGTAC ACCCGTGTCA CCTCCTTCCT GGACTGGATC CACGAGCAGA TGGAGAGAGA CCTAAAAACC
       TGAAGAGGAA GGGGACAAGT AGCCACCTGA GTTCCTGAGG TGATGAAGAC AGCCCGATCC
                                                                             1620
       TCCCCTGGAC TCCCGTGTAG GAACCTGCAC ACGAGCAGAC ACCCTTGGAG CTCTGAGTTC
                                                                             1680
       CGGCACCAGT AGCAGGCCCG AAAGAGGCAC CCTTCCATCT GATTCCAGCA CAACCTTCAA
                                                                             1740
25
       GCTGCTTTTT GTTTTTGTT TTTTTGAGGT GGAGTCTCGC TCTGTTGCCC AGGCTGGAGT
                                                                             1800
       GCAGTGGCGA AATCCCTGCT CACTGCAGCC TCCGCTTCCC TGGTTCAAGC GATTCTCTTG
                                                                             1860
       CCTCAGCTTC CCCAGTAGCT GGGACCACAG GTGCCCGCCA CCACACCCAA CTAATTTTTG
                                                                             1920
       TATTTTTAGT AGAGACAGGG TTTCACCATG TTGGCCAGGC TGCTCTCAAA CCCCTGACCT
                                                                             1980
       CAAATGATGT GCCTGCTTCA GCCTCCCACA GTGCTGGGAT TACAGGCATG GGCCACCACG 2040
30
       CCTAGCCTCA CGCTCCTTTC TGATCTTCAC TAAGAACAAA AGAAGCAGCA ACTTGCAAGG 2100
       GCGGCCTTTC CCACTGGTCC ATCTGGTTTT CTCTCCAGGG GTCTTGCAAA ATTCCTGACG
                                                                             2160
       AGATAAGCAG TTATGTGACC TCACGTGCAA AGCCACCAAC AGCCACTCAG AAAAGACGCA
                                                                             2220
       CCAGCCCAGA AGTGCAGAAC TGCAGTCACT GCACGTTTTC ATCTCTAGGG ACCAGAACCA
                                                                             2280
       AACCCACCCT TTCTACTTCC AAGACTTATT TTCACATGTG GGGAGGTTAA TCTAGGAATG
                                                                            2340
35
                                                                             2400
       ACTCGTTTAA GGCCTATTTT CATGATTTCT TTGTAGCATT TGGTGCTTGA CGTATTATTG
       2460
       Seg ID NO: 433 Protein sequence
40
       Protein Accession #: NP_076927
                                         31
       MGENDPPAVE APFSFRSLFG LDDLKISPVA PDADAVAAQI LSLLPLKFFP IIVIGIIALI
45
       LALAIGLGIH FDCSGKYRCR SSFKCIELIA RCDGVSDCKD GEDEYRCVRV GGQNAVLQVF
                                                                              120
       TAASWKTMCS DDWKGHYANV ACAQLGFPSY VSSDNLRVSS LEGGFREEFV SIDHLLPDDK
                                                                              180
       VTALHHSVYV REGCASGHVV TLQCTACGHR RGYSSRIVGG NMSLLSQWPW QASLQFQGYH
                                                                              240
       LCGGSVITPL WIITAAHCVY DLYLPKSWTI QVGLVSLLDN PAPSHLVEKI VYHSKYKPKR
                                                                              300
       LGNDIALMKL AGPLTFNEMI QPVCLPNSEE NFPDGKVCWT SGWGATEDGG DASPVLNHAA
                                                                              360
50
       VPLISNKICN HRDVYGGIIS PSMLCAGYLT GGVDSCQGDS GGPLVCQERR LWKLVGATSF
                                                                              420
       GIGCAEVNKP GVYTRVTSFL DWIHEQMERD LKT
       Seq ID NO: 434 DNA sequence
       Nucleic Acid Accession #: NM_000493.2
55
       Coding sequence: 97..2139
                   11
                              21
                                          31
                                                     41
                                                                51
       CACCTTCTGC ACTGCTCATC TGGGCAGAGG AAGCTTCAGA AAGCTGCCAA GGCACCATCT
60
       CCAGGAACTC CCAGCACGCA GAATCCATCT GAGAATATGC TGCCACAAAT ACCCTTTTTG
                                                                              120
       CTGCTAGTAT CCTTGAACTT GGTTCATGGA GTGTTTTACG CTGAACGATA CCAAATGCCC
                                                                              180
       ACAGGCATAA AAGGCCACT ACCCAACACC AAGACAGT TCTTCATTCC CTACACCATA
AAGAGTAAAG GTATAGCAGT AAGAGGAGAG CAAGGTACTC CTGGTCCACC AGGCCCTGCT
                                                                              240
                                                                              300
       GGACCTCGAG GGCACCCAGG TCCTTCTGGA CCACCAGGAA AACCAGGCTA CGGAAGTCCT
GGACTCCAAG GAGAGCCAGG GTTGCCAGGA CCACCGGGAC CATCAGCTGT AGGGAAACCA
                                                                              360
65
       GGTGTGCCAG GACTCCCAGG AAAACCAGGA GAGAGAGGAC CATATGGACC AAAAGGAGAT
                                                                              480
       GTTGGACCAG CTGGCCTACC AGGACCCCGG GGCCCACCAG GACCACCTGG AATCCCTGGA
                                                                              540
       CCGGCTGGAA TTTCTGTGCC AGGAAAACCT GGACAACAGG GACCCACAGG AGCCCCAGGA
                                                                              600
       CCCAGGGGCT TTCCTGGAGA AAAGGGTGCA CCAGGAGTCC CTGGTATGAA TGGACAGAAA
                                                                              660
70
       GGGGAAATGG GATATGGTGC TCCTGGTCGT CCAGGTGAGA GGGGTCTTCC AGGCCCTCAG
                                                                              720
       GGTCCCACAG GACCATCTGG CCCTCCTGGA GTGGGAAAAA GAGGTGAAAA TGGGGTTCCA
                                                                              780
       GGACAGCCAG GCATCAAAGG TGATAGAGGT TTTCCGGGAG AAATGGGACC AATTGGCCCA
                                                                              840
       CCAGGTCCCC AAGGCCCTCC TGGGGAACGA GGGCCAGAAG GCATTGGAAA GCCAGGAGCT
                                                                              900
       GCTGGAGCCC CAGGCCAGCC AGGGATTCCA GGAACAAAAG GTCTCCCTGG GGCTCCAGGA
                                                                              960
75
       ATAGCTGGGC CCCCAGGGCC TCCTGGCTTT GGGAAACCAG GCTTGCCAGG CCTGAAGGGA
                                                                             1020
       GAAAGAGGAC CTGCTGGCCT TCCTGGGGGT CCAGGTGCCA AAGGGGAACA AGGGCCAGCA
                                                                             1080
       GGTCTTCCTG GGAAGCCAGG TCTGACTGGA CCCCCTGGGA ATATGGGACC CCAAGGACCA
                                                                             1140
       AAAGGCATCC CGGGTAGCCA TGGTCTCCCA GGCCCTAAAG GTGAGACAGG GCCAGCTGGG
                                                                             1200
       CCTGCAGGAT ACCCTGGGGC TAAGGGTGAA AGGGGTTCCC CTGGGTCAGA TGGAAAACCA
                                                                             1260
       GGGTACCCAG GAAAACCAGG TCTCGATGGT CCTAAGGGTA ACCCAGGGTT ACCAGGTCCA
80
                                                                             1320
       AAAGGTGATC CTGGAGTTGG AGGACCTCCT GGTCTCCCAG GCCCTGTGGG CCCAGCAGGA 1380
       GCAAAGGGAA TGCCCGGACA CAATGGAGAG GCTGGCCCAA GAGGTGCCCC TGGAATACCA
                                                                             1440
       GGTACTAGAG GCCCTATTGG GCCACCAGGC ATTCCAGGAT TCCCTGGGTC TAAAGGGGAT
                                                                             1500
       CCAGGAAGTC CCGGTCCTCC TGGCCCAGCT GGCATAGCAA CTAAGGGCCT CAATGGACCC
                                                                             1560
85
       ACCEGGCCAC CAGGGCCTCC AGGTCCAAGA GGCCACTCTG GAGAGCCTGG TCTTCCAGGG
                                                                             1620
       CCCCCTGGGC CTCCAGGCCC ACCAGGTCAA GCAGTCATGC CTGAGGGTTT TATAAAGGCA
       GGCCAAAGGC CCAGTCTTTC TGGGACCCCT CTTGTTAGTG CCAACCAGGG GGTAACAGGA
```

WO 02/086443

```
WO 02/086443
      ATGCCTGTGT CTGCTTTTAC TGTTATTCTC TCCAAAGCTT ACCCAGCAAT AGGAACTCCC 1800
      ATACCATTTG ATAAAATTTT GTATAACAGG CAACAGCATT ATGACCCAAG GACTGGAATC
                                                                          1860
       TITACITGIC AGATACCAGG AATATACTAT TITTCATACC ACGIGCATGI GAAAGGGACI
                                                                          1920
      CATGITIGGG TAGGCCTGTA TAAGAATGGC ACCCCTGTAA TGTACACCTA TGATGAATAC
                                                                          1980
      ACCAAAGGCT ACCTGGATCA GGCTTCAGGG AGTGCCATCA TCGATCTCAC AGAAAATGAC
                                                                          2040
      CAGGTGTGGC TCCAGCTTCC CAATGCCGAG TCAAATGGCC TATACTCCTC TGAGTATGTC
                                                                          2100
      CACTCCTCTT TCTCAGGATT CCTAGTGGCT CCAATGTGAG TACACCCCAC AGAGCTAATC
                                                                          2160
      TARATCTIGT GCTAGAAAAA GCATTCTCTA ACTCTACCCC ACCCTACAAA ATGCATATGG
                                                                          2220
      AGGTAGGCTG AAAAGAATGT AATTTTTATT TTCTGAAATA CAGATTTGAG CTATCAGACC
                                                                          2280
10
                                                                          2340
      AACAAACCTT CCCCCTGAAA AGTGAGCAGC AACGTAAAAA CGTATGTGAA GCCTCTCTTG
       AATTTCTAGT TAGCAATCTT AAGGCTCTTT AAGGTTTTCT CCAATATTAA AAAATATCAC
                                                                          2400
      2460
       2520
       ATTTCCTTTT TAAAAAAGCC TGTTTCTAAC TATGAATATG AGAACTTCTA GGAAACATCC
                                                                          2580
       AGGAGGTATC ATATAACTTT GTAGAACTTA AATACTTGAA TATTCAAATT TAAAAGACAC
15
                                                                          2640
       TGTATCCCCT AAAATATTTC TGATGGTGCA CTACTCTGAG GCCTGTATGG CCCCTTTCAT
                                                                          2700
       CANTATCTAT TCAAATATAC AGGTGCATAT ATACTTGTTA AAGCTCTTAT ATAAAAAAGC
      CCCAAAATAT TGAAGTTCAT CTGAAATGCA AGGTGCTTTC ATCAATGAAC CTTTTCAAAA
       CTTTTCTATG ATTGCAGAGA AGCTTTTTAT ATACCCAGCA TAACTTGGAA ACAGGTATCT
20
       GACCTATTCT TATTTAGTTA ACACAAGTGT GATTAATTTG ATTTCTTTAA TTCCTTATTG
                                                                          2940
       AATCTTATGT GATATGATTT TCTGGATTTA CAGAACATTA GCACATGTAC CTTGTGCCTC
                                                                          3000
      CCATTCAAGT GAAGTTATAA TTTACACTGA GGGTTTCAAA ATTCGACTAG AAGTGGAGAT ATATTATTTA TTTATGCACT GTACTGTATT TTTATATTGC TGTTTAAAAC TTTTAAGCTG
                                                                          3060
                                                                          3120
       TGCCTCACTT ATTAAAGCAC AAAATGTTTT ACCTACTCCT TATTTACGAC ACAATAAAAT
                                                                          3180
      AACATCAATA GATTTTTAGG CTGAATTAAT TTGAAAGCAG CAATTTGCTG TTCTCAACCA 3240
25
       TTCTTTCAAG GCTTTTCATT CGACACAATA AAATAACATC AATAG
       Seq ID NO: 435 Protein sequence
      Protein Accession #: NP_000484.2
30
                                                              51
      MLPQIPFLLL VSLNLVHGVF YAERYQMPTG IKGPLPNTKT QFFIPYTIKS KGIAVRGEQG
                                                                            60
       TPGPPGPAGP RGHPGPSGPP GKPGYGSPGL QGEPGLPGPP GPSAVGKPGV PGLPGKPGER
                                                                           120
       GPYGPKGDVG PAGLPGPRGP PGPPGIPGPA GISVPGKPGQ QGPTGAPGPR GPPGEKGAPG
                                                                           180
35
       VPGMNGQKGE MGYGAPGRPG ERGLPGPQGP TGPSGPPGVG KRGENGVPGQ PGIKGDRGPP
                                                                           240
       GEMGPIGPPG PQGPPGERGP EGIGKPGAAG APGQPGIPGT KGLPGAPGIA GPPGPPGFGK
                                                                           300
       PGLPGLKGER GPAGLPGGPG AKGEQGPAGL PGKPGLTGPP GNMGPQGPKG IPGSHGLPGP
                                                                           360
       KGETGPAGPA GYPGAKGERG SPGSDGKPGY PGKPGLDGPK GNPGLPGPKG DPGVGGPPGL
                                                                           420
       PGPVGPAGAK GMPGHNGEAG PRGAPGIPGT RGPIGPPGIP GFPGSKGDPG SPGPPGPAGI
40
                                                                           480
       ATKGLNGPTG PPGPPGPRGH SGEPGLPGPP GPPGPPGQAV MPEGFIKAGQ RPSLSGTPLV
                                                                           540
       SANQGVTGMP VSAPTVILSK AYPAIGTPIP FDKILYNRQQ HYDPRTGIFT CQIPGIYYFS
                                                                           600
       YHVHVKGTHV WVGLYKNGTP VMYTYDEYTK GYLDQASGSA IIDLTENDQV WLQLPNAESN
       GLYSSEYVHS SFSGFLVAPM
45
       Seq ID NO: 436 DNA sequence
       Nucleic Acid Accession #: XM_062811
       Coding sequence: 1..888
50
       ATGTGGGGCG CTCGCCGCTC GTCCGTCTCC TCATCCTGGA ACGCCGCTTC GCTCCTGCAG
                                                                            60
       CTGCTGCTGG CTGCGCTGCT GGCGGCGGGG GCGAGGGCCA GCGGCGAGTA CTGCCACGGC
                                                                           120
       TGGCTGGACG CGCAGGGCGT CTGGCGCATC GGCTTCCAGT GTCCCGAGCG CTTCGACGGC
                                                                           180
       GGCGACGCCA CCATCTGCTG CGGCAGCTGC GCGTTGCGCT ACTGCTGCTC CAGCGCCGAG
55
                                                                           240
       GCGCGCCTGG ACCAGGGCGG CTGCGACAAT GACCGCCAGC AGGGCGCTGG CGAGCCTGGC
                                                                           300
       CGGGCGGACA AAGACGGCCC CGACGGCTCG GCAGTGCCCA TCTACGTGCC GTTCCTCATT
                                                                           360
       GTTGGCTCCG TGTTTGTCGC CTTTATCATC TTGGGGTCCC TGGTGGCAGC CTGTTGCTGC
                                                                           420
       AGATGTCTCC GGCCTAAGCA GGATCCCCAG CAGAGCCGAG CCCCAGGGGG TAACCGCTTG
       ATGGAGACCA TCCCCATGAT CCCCAGTGCC AGCACCTCCC GGGGGTCGTC CTCACGCCAG
60
       TCCAGCACAG CTGCCAGTTC CAGCTCCAGC GCCAACTCAG GGGCCCGGGC GCCCCCAACA
                                                                           600
       AGGTCACAGA CCAACTGTTG CTTGCCGGAA GGGACCATGA ACAACGTGTA TGTCAACATG
CCCACGAATT TCTCTGTGCT GAACTGTCAG CAGGCCACCC AGATTGTGCC ACATCAAGGG
                                                                           660
                                                                           720
       CAGTATCTGC ATCCCCCATA CGTGGGGTAC ACGGTGCAGC ACGACTCTGT GCCCATGACA
                                                                           780
65
       GCTGTGCCAC CTTTCATGGA CGGCCTGCAG CCTGGCTACA GGCAGATTCA GTCCCCCTTC
       CCTCACACCA ACAGTGAACA GAAGATGTAC CCAGCGGTGA CTGTATAA
       Seg ID NO: 437 Protein sequence
       Protein Accession #: XP_062811
70
                                                              51
       MWGARRSSVS SSWNAASLLO LLLAALLAAG ARASGEYCHG WLDAQGVWRI GFQCPERFDG
                                                                             60
       GDATICCGSC ALRYCCSSAE ARLDQGGCDN DRQQGAGEPG RADKDGPDGS AVPIYVPFLI
                                                                            120
75
                                                                            180
       VGSVFVAFII LGSLVAACCC RCLRPKQDPQ QSRAPGGNRL METIPMIPSA STSRGSSSRQ
       SSTAASSSS ANSGARAPPT RSQTNCCLPE GTMNNVYVNM PTNFSVLNCQ QATQIVPHQG
                                                                           240
       QYLHPPYVGY TVQHDSVPMT AVPPFMDGLQ PGYRQIQSPF PHTNSEQKMY PAVTV
       Seq ID NO: 438 DNA sequence
80
       Nucleic Acid Accession #: NM_004004.1
        Coding sequence: 1..681
                                                    41
                             21
                                         31
85
       ATGGATTGGG GCACGCTGCA GACGATCCTG GGGGGTGTGA ACAAACACTC CACCAGCATT
                                                                             60
       GGAAAGATCT GGCTCACCGT CCTCTTCATT TTTCGCATTA TGATCCTCGT TGTGGCTGCA
                                                                            120
       AAGGAGGTGT GGGGAGATGA GCAGGCCGAC TTTGTCTGCA ACACCCTGCA GCCAGGCTGC
```

```
240
       AAGAACGTGT GCTACGATCA CTACTTCCCC ATCTCCCACA TCCGGCTATG GGCCCTGCAG
                                                                              300
       CTGATCTTCG TGTCCAGCCC AGCGCTCCTA GTGGCCATGC ACGTGGCCTA CCGGAGACAT
                                                                              360
       GAGAAGAAGA GGAAGTTCAT CAAGGGGGAG ATAAAGAGTG AATTTAAGGA CATCGAGGAG
       ATCAAAACCC AGAAGGTCCG CATCGAAGGC TCCCTGTGGT GGACCTACAC AAGCAGCATC
                                                                               420
 5
       TTCTTCCGGG TCATCTTCGA AGCCGCCTTC ATGTACGTCT TCTATGTCAT GTACGACGGC
                                                                              480
       TTCTCCATGC AGCGGCTGGT GAAGTGCAAC GCCTGGCCTT GTCCCAACAC TGTGGACTGC
                                                                              540
       TTTGTGTCCC GGCCCACGGA GAAGACTGTC TTCACAGTGT TCATGATTGC AGTGTCTGGA
                                                                              600
       ATTTGCATCC TGCTGAATGT CACTGAATTG TGTTATTTGC TAATTAGATA TTGTTCTGGG
                                                                              660
       AAGTCAAAAA AGCCAGTTTA A
10
       Seq ID NO: 439 Protein sequence
       Protein Accession #: NP_003995.1
15
       MDWGTLQTIL GGVNKHSTSI GKIWLTVLFI FRIMILVVAA KEVWGDEQAD FVCNTLQPGC
                                                                                60
       KNVCYDHYFP ISHIRLWALQ LIFVSSPALL VAMHVAYRRH EKKRKFIKGE IKSEFKDIEE
                                                                              120
       IKTOKVRIEG SLWWTYTSSI FFRVIFEAAF MYVFYVMYDG FSMQRLVKCN AWPCPNTVDC
       FVSRPTEKTV FTVFMIAVSG ICILLNVTEL CYLLIRYCSG KSKKPV
20
       Seq ID NO: 440 DNA sequence
       Nucleic Acid Accession #: XM 061091.1
       Coding sequence: 1..2481
25
       ATGCCAAATA CTTCAGGAAC AACCAGGATT GAAATTTGGC TTCTCCAAGA GCCGCCCGGG
                                                                                60
       CACCGAGCGC TGGTCGCCGC TCTCCTTCCG GTGAGTCCCA GCCCCGAGTT GGCTCTGGCG
                                                                              120
30
       CCCGGGTACC CGCCAGTGCC GGCTGCCGAT GACCGATTCA CGCTCCCGAT GATTGGAGGT
                                                                              180
       CAGATGCATG GTGAGAAGGT AGATCTCTGG AGCCTTGGTG TTCTTTGCTA TGAATTTTTA
                                                                              240
       GTTGGGAAGC CTCCTTTTGA GGCAAACGAA GTCCATGTAA GCAAAGAAAC CATCGGGAAG
                                                                              300
       ATTTCAGCTG CCAGCAAAAT GATGTGGTGC TCGGCTGCAG TGGACATCAT GTTTCTGTTA
                                                                              360
       GATGGGTCTA ACAGCGTCGG GAAAGGGAGC TTTGAAAGGT CCAAGCACTT TGCCATCACA
       GTCTGTGACG GTCTGGACAT CAGCCCCGAG AGGGTCAGAG TGGGAGCATT CCAGTTCAGT
35
       TCCACTCCTC ATCTGGAATT CCCCTTGGAT TCATTTTCAA CCCAACAGGA AGTGAAGGCA
                                                                              540
       AGAATCAAGA GGATGGTTTT CAAAGGAGGG CGCACGGAGA CGGAACTTGC TCTGAAATAC
       CTTCTGCACA GAGGGTTGCC TGGAGGCAGA AATGCTTCTG TGCCCCAGAT CCTCATCATC
                                                                               660
       GTCACTGATG GGAAGTCCCA GGGGGATGTG GCACTGCCAT CCAAGCAGCT GAAGGAAAGG
                                                                              720
40
       GGTGTCACTG TGTTTGCTGT GGGGGTCAGG TTTCCCAGGT GGGAGGAGCT GCATGCACTG
                                                                               780
       GCCAGCGAGC CTAGAGGGCA GCACGTGCTG TTGGCTGAGC AGGTGGAGGA TGCCACCAAC
                                                                               840
       GGCCTCTTCA GCACCCTCAG CAGCTCGGCC ATCTGCTCCA GCGCCACGCC AGCTGGGAGC
                                                                              900
       CCCGAGCTTG TCTTCATGGA GCGGTTAATG GGCATCTCTC TGATAGGCCC CTGTGACTCG
                                                                              960
       CAGCCCTGCC AGAATGGAGG CACATGTGTT CCAGAAGGAC TGGACGGCTA CCAGTGCCTC
                                                                             1020
45
       TGCCCGCTGG CCTTTGGAGG GGAGGCTAAC TGTGCCCTGA AGCTGAGCCT GGAATGCAGG
                                                                              1080
       GTCGACCTCC TCTTCCTGCT GGACAGCTCT GCGGGCACCA CTCTGGACGG CTTCCTGCGG
                                                                             1140
       GCCAAAGTCT TCGTGAAGCG GTTTGTGCGG GCCGTGCTGA GCGAGGACTC TCGGGCCCGA
                                                                             1200
       GTGGGTGTGG CCACATACAG CAGGGAGCTG CTGGTGGCGG TGCCTGTGGG GGAGTACCAG
                                                                             1260
       GATGTGCCTG ACCTGGTCTG GAGCCTCGAT GGCATTCCCT TCCGTGGTGG CCCCACCCTG
                                                                              1320
50
       ACGGGCAGTG CCTTGCGGCA GGCGGCAGAG CGTGGCTTCG GGAGCGCCAC CAGGACAGGC
                                                                             1380
       CAGGACCGGC CACGTAGAGT GGTGGTTTTG CTCACTGAGT CACACTCCGA GGATGAGGTT
                                                                              1440
       GCGGGCCCAG CGCGTCACGC AAGGGCGCGA GAGCTGCTCC TGCTGGGTGT AGGCAGTGAG
                                                                              1500
       GCCGTGCGGG CAGAGCTGGA GGAGATCACA GGCAGCCCAA AGCATGTGAT GGTCTACTCG
                                                                              1560
       GATCCTCAGG ATCTGTTCAA CCAAATCCCT GAGCTGCAGG GGAAGCTGTG CAGCCGGCAG
                                                                              1620
       CGGCCAGGGT GCCGGACACA AGCCCTGGAC CTCGTCTTCA TGTTGGACAC CTCTGCCTCA
55
                                                                             1680
       GTAGGGCCCG AGAATTTTGC TCAGATGCAG AGCTTTGTGA GAAGCTGTGC CCTCCAGTTT
       GAGGTGAACC CTGACGTGAC ACAGGTCGGC CTGGTGGTGT ATGGCAGCCA GGTGCAGACT GCCTTCGGGC TGGACACCAA ACCCACCCGG GCTGCGATGC TGCGGGCCAT TAGCCAGGCC
       CCCTACCTAG GTGGGGTGGG CTCAGCCGGC ACCGCCCTGC TGCACATCTA TGACAAAGTG
ATGACCGTCC AGAGGGGTGC CCGGCCTGGT GTCCCCAAAG CTGTGGTGGT GCTCACAGGC
                                                                              1920
60
                                                                              1980
       GGGAGAGGC CAGAGGATGC AGCCGTTCCT GCCCAGAAGC TGAGGAACAA TGGCATCTCT
                                                                              2040
       GTCTTGGTCG TGGGCGTGGG GCCTGTCCTA AGTGAGGGTC TGCGGAGGCT TGCAGGTCCC
                                                                             2100
       CGGGATTCCC TGATCCACGT GGCAGCTTAC GCCGACCTGC GGTACCACCA GGACGTGCTC
                                                                              2160
       ATTGAGTGGC TGTGTGGAGA AGCCAAGCAG CCAGTCAACC TCTGCAAACC CAGCCCGTGC
                                                                              2220
65
       ATGAATGAGG GCAGCTGCGT CCTGCAGAAT GGGAGCTACC GCTGCAAGTG TCGGGATGGC
                                                                              2280
       TGGGAGGGCC CCCACTGCGA GAACCGTGAG TGGAGCTCTT GCTCTGTATG TGTGAGCCAG
                                                                              2340
       GGATGGATTC TTGAGACGCC CCTGAGGCAC ATGGCTCCCG TGCAGGAGGG CAGCAGCCGT
                                                                              2400
       ACCCCTCCCA GCAACTACAG AGAAGGCCTG GGCACTGAAA TGGTGCCTAC CTTCTGGAAT
                                                                             2460
       GTCTGTGCCC CAGGTCCTTA G
70
        Seg ID NO: 441 Protein sequence
       Protein Accession #: XP_061091.1
                                                                 51
                                          31
                                                      41
75
        MPNTSGTTRI BIWLLQEPPG HRALVAALLP VSPSPELALA PGYPPVPAAD DRFTLPMIGG
        QMHGEKVDLW SLGVLCYEFL VGKPPFEANE VHVSKETIGK ISAASKMMNC SAAVDIMFLL
       DGSNSYGKGS PERSKHPAIT VCDGLDISPE RVRVGAFQFS STPHLEFPLD SFSTQQEVKA
RIKKMVFKGG RTETELALKY LLHRGLPGGR NASVPQILII VTDGKSQGDV ALPSKQLKER
                                                                               240
        GVTVFAVGVR FPRWEELHAL ASEPRGQHVL LAEQVEDATN GLFSTLSSSA ICSSATPAGS
80
                                                                               300
        PELVFMERLM GISLIGPCDS OPCONGGTCV PEGLDGYQCL CPLAFGGEAN CALKLSLECR
                                                                               360
        VDLLFLLDSS AGTTLDGFLR AKVFVKRFVR AVLSEDSRAR VGVATYSREL LVAVPVGEYQ
                                                                               420
        DVPDLVWSLD GIPFRGGPTL TGSALRQAAE RGFGSATRTG QDRPRRVVVL LTESHSEDEV
                                                                               480
        AGPARHARAR ELLLLGVGSE AVRAELEEIT GSPKHVMVYS DPQDLFNQIP ELQGKLCSRQ
                                                                               540
85
        RPGCRTQALD LVFMLDTSAS VGPENFAQMQ SFVRSCALQF EVNPDVTQVG LVVYGSQVQT
                                                                               600
        AFGLDTKPTR AAMLRAISQA PYLGGVGSAG TALLHIYDKV MTVQRGARPG VPKAVVVLTG
                                                                               660
        GRGAEDAAVP AQKLRNNGIS VLVVGVGPVL SEGLRRLAGP RDSLIHVAAY ADLRYHQDVL
                                                                               720
```

IEWLCGEAKQ PVNLCKPSPC MNEGSCVLQN GSYRCKCRDG WEGPHCENRE WSSCSVCVSQ GWILETPLRH MAPVQEGSSR TPPSNYREGL GTEMVPTFWN VCAPGP

5 Seq ID NO: 442 DNA sequence
Nucleic Acid Accession #: Eos sequence
Coding sequence: 1..2424

	-	••	21	31	41	51	
	1	11	21	1	1	1	
10	2 ac-co-co-co-co-co-co-co-co-co-co-co-co-co	TO CONCIDENCE OF	GGAGGCCGTC	ACACAMINATOR	TGTTTTCCAG	AGTGCCCCCA	60
10	TOTOTOTOTO	TCCAGGAAGT	CCATGTAAGC	ADAGBAACCA	TOGGGAAGAT	TTCAGCTGCC	120
			GGCTGCAGTG				180
	AGCCTCGGGA	AAGGGAGCTT	TGAAAGGTCC	AAGCACTTTG	CCATCACAGT	CTGTGACGGT	240
	CTCGACATCA	GCCCCGAGAG	GGTCAGAGTG	GGAGCATTCC	AGTTCAGTTC	CACTCCTCAT	300
15	CTGGAATTCC	CCTTGGATTC	ATTTTCAACC	CAACAGGAAG	TGAAGGCAAG	AATCAAGAGG	360
10	ATGGTTTTCA	AAGGAGGGCG	CACGGAGACG	GAACTTGCTC	TGAAATACCT	TCTGCACAGA	420
	GGGTTGCCTG	GAGGCAGAAA	TGCTTCTGTG	CCCCAGATCC	TCATCATCGT	CACTGATGGG	480
	AAGTCCCAGG	GGGATGTGGC	ACTGCCATCC	AAGCAGCTGA	AGGAAAGGGG	TGTCACTGTG	540
	TTTGCTGTGG	GGGTCAGGTT	TCCCAGGTGG	GAGGAGCTGC	ATGCACTGGC	CAGCGAGCCT	600
20	AGAGGGCAGC	ACGTGCTGTT	GGCTGAGCAG	GTGGAGGATG	CCACCAACGG	CCTCTTCAGC	660
	ACCCTCAGCA	GCTCGGCCAT	CTGCTCCAGC	GCCACGCCAG	ACTGCAGGGT	CGAGGCTCAC	720
			GGAGATGGTC				780
	AGAGGATCGC	GGCGGACCCT	TGCGGTGCTG	GCTGCACACT	GTCCCTTCTA	CAGCTGGAAG	840
'	AGAGTGTTCC	TAACCCACCC	TGCCACCTGC	TACAGGACCA	CCTGCCCAGG	CCCCTGTGAC	900
25	TCGCAGCCCT	GCCAGAATGG	AGGCACATGT	GTTCCAGAAG	GACTGGACGG	CTACCAGTGC	960
	CTCTGCCCGC	TGGCCTTTGG	AGGGGAGGCT	AACTGTGCCC	TGAAGCTGAG	CCTGGAATGC	1020
	AGGGTCGACC	TCCTCTTCCT	GCTGGACAGC	TCTGCGGGCA	CCACTCTGGA	CGGCTTCCTG	1080
•	CGGGCCAAAG	TCTTCGTGAA	GCGGTTTGTG	CGGGCCGTGC	TGAGCGAGGA	CTCTCGGGCC	1140
	CGAGTGGGTG	TGGCCACATA	CAGCAGGGAG	CTGCTGGTGG	CGGTGCCTGT	GGGGGAGTAC	1200
30	CAGGATGTGC	CTGACCTGGT	CTGGAGCCTC	GATGGCATTC	CCTTCCGTGG	TGGCCCCACC	1260
•	CTGACGGGCA	GTGCCTTGCG	GCAGGCGGCA	GAGCGTGGCT	TCGGGAGCGC	CACCAGGACA	1320
	GGCCAGGACC	GGCCACGTAG	AGTGGTGGTT	TTGCTCACTG	AGTCACACTC	CGAGGATGAG	1380
	GTTGCGGGCC	CAGCGCGTCA	CGCAAGGGCG	CGAGAGCTGC	TCCTGCTGGG	TGTAGGCAGT	1440
~ ~	GAGGCCGTGC	GGGCAGAGCT	GGAGGAGATC	ACAGGCAGCC	CAAAGCATGT	GATGGTCTAC	1500
35			CAACCAAATC				1560
	CAGCGGCCAG	GGTGCCGGAC	ACAAGCCCTG	GACCTCGTCT	TCATGTTGGA	CACCTCTGCC	1620
	TCAGTAGGGC	CCGAGAATTT	TGCTCAGATG	CAGAGCTTTG	TGAGAAGCTG	TGCCCTCCAG	1680
	TTTGAGGTGA	ACCCTGACGT	GACACAGGTC	GGCCTGGTGG	TGTATGGCAG	CCAGGTGCAG	1740
40	ACTGCCTTCG	GGCTGGACAC	CAAACCCACC	CGGGCTGCGA	TGCTGCGGGC	CATTAGCCAG	1800
40	GCCCCCTACC	TAGGTGGGGT	GGGCTCAGCC	GGCACCGCCC	TGCTGCACAT	CTATGACAAA	1860
	GTGATGACCG	TCCAGAGGGG	TGCCCGGCCT	GGTGTCCCCA	AAGCTGTGGT	GGTGCTCACA	1920
	GGCGGGAGAG	GCGCAGAGGA	TGCAGCCGTT	CCTGCCCAGA	AGCTGAGGAA	CAATGGCATC	1980
	TCTGTCTTGG	TCGTGGGCGT	GGGCCTGTC	CTAAGTGAGG	GTCTGCGGAG	GCTTGCAGGT	2040
15 -	CCCCGGGATT	CCCTGATCCA	CGTGGCAGCT	TACGCCGACC	TGCGGTACCA	CCAGGACGTG	2100 2160
45	CTCATTGAGT	GGCTGTGTGG	AGAAGCCAAG	CAGCCAGTCA	ACCTCTGCAA	ACCCAGCCCG	2220
			CGTCCTGCAG				2220
	GGCTGGGAGG	GCCCCCACTG	CGAGAACCGT	GAGTGGAGCT	CTTGCTCTGT	ATGTGTGAGC	
	CAGGGATGGA	TTCTTGAGAC	GCCCTGAGG	CACATGGCTC	CCGTGCAGGA	TA COMMONICACIÓN	2340 2400
50			CAGAGAAGGC	CTGGGCACTG	AAATGGTGCC	TACCTTCTGG	2400
50	AATGTCTGTG	CCCCAGGTCC	TTAG				

Seq ID NO: 443 Protein sequence Protein Accession #: Eos sequence

55	1	11	21	31	41	51	
	ī	Ī	Ī	1	1		
			SLPLQEVHVS				60
			LDISPERVRV				120
			GLPGGRNASV				180
60	FAVGVRFPRW	EELHALASEP	RGQHVLLAEQ	VEDATNGLFS	TLSSSAICSS	ATPDCRVEAH	240
			RGSRRTLAVL				300
			LCPLAFGGEA				360
			RVGVATYSRE				420
			GQDRPRRVVV				480
65			SDPQDLFNQI				540
	SVGPENFAQM	QSFVRSCALQ	FEVNPDVTQV	GLVVYGSQVQ	TAFGLDTKPT	RAAMLRAISQ	600
	APYLGGVGSA	GTALLHIYDK	VMTVQRGARP	GVPKAVVVLT	GGRGAEDAAV	PAQKLRNNGI	660
			PRDSLIHVAA				720
	CMNEGSCVLQ	NGSYRCKCRD	GWEGPHCENR	EWSSCSVCVS	QGWILETPLR	HMAPVQEGSS	780
70	RTPPSNYREG	LGTEMVPTFW	NVCAPGP				

Seq ID NO: 444 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 89..2356

75	Coding sequence: 892356								
, 5	1	11	21	31	41	51			
	ī	1	1	1	1	1			
	GCCCCCTGGC	CCGAGCCGCG	CCCGGGTCTG	TGAGTAGAGC	CGCCCGGGCA	CCGAGCGCTG	60		
	GTCGCCGCTC	TCCTTCCGTT	ATATCAACAT	GCCCCCTTTC	CTGTTGCTGG	AAGCCGTCTG	120		
80			TGCCCCCATC				180		
			CAGCTGCCAG				240		
			GGTCTAACAG				300		
			GTGACGGTCT				360		
~~			CTCCTCATCT				420		
85			TCAAGAGGAT				480		
	ACTTGCTCTG	AAATACCTTC	TGCACAGAGG	GTTGCCTGGA	GGCAGAAATG	CTTCTGTGCC	540		
	CCAGATCCTC	ልጥሮልጥሮ ያጥሮል	CTGATGGGAA	GTCCCAGGGG	GATGTGGCAC	TGCCATCCAA	600		

PCT/US02/12476

```
WO 02/086443
       GCAGCTGAAG GAAAGGGGTG TCACTGTGTT TGCTGTGGGG GTCAGGTTTC CCAGGTGGGA
                                                                            660
       GGAGCTGCAT GCACTGGCCA GCGAGCCTAG AGGGCAGCAC GTGCTGTTGG CTGAGCAGGT
                                                                            720
       GGAGGATGCC ACCAACGGCC TCTTCAGCAC CCTCAGCAGC TCGGCCATCT GCTCCAGCGC
                                                                            780
       CACGCCAGAC TGCAGGGTCG AGGCTCACCC CTGTGAGCAC AGGACGCTGG AGATGGTCCG
                                                                            840
 5
       GGAGTTCGCT GGCAATGCCC CATGCTGGAG AGGATCGCGG CGGACCCTTG CGGTGCTGGC
                                                                            900
       TGCACACTGT CCCTTCTACA GCTGGAAGAG AGTGTTCCTA ACCCACCCTG CCACCTGCTA
                                                                            960
                                                                           1020
       CAGGACCACC TGCCCAGGCC CCTGTGACTC GCAGCCCTGC CAGAATGGAG GCACATGTGT
       TCCAGAAGGA CTGGACGGCT ACCAGTGCCT CTGCCCGCTG GCCTTTGGAG GGGAGGCTAA
                                                                           1080
       CTGTGCCCTG AAGCTGAGCC TGGAATGCAG GGTCGACCTC CTCTTCCTGC TGGACAGCTC
                                                                           1140
10
       TGCGGGCACC ACTCTGGACG GCTTCCTGCG GGCCAAAGTC TTCGTGAAGC GGTTTGTGCG
                                                                           1200
       GGCCGTGCTG AGCGAGGACT CTCGGGCCCG AGTGGGTGTG GCCACATACA GCAGGGAGCT
                                                                           1260
       GCTGGTGGCG GTGCCTGTGG GGGAGTACCA GGATGTGCCT GACCTGGTCT GGAGCCTCGA
                                                                           1320
       TGGCATTCCC TTCCGTGGTG GCCCCACCCT GACGGGCAGT GCCTTGCGGC AGGCGGCAGA
                                                                           1380
       GCGTGGCTTC GGGAGCGCCA CCAGGACAGG CCAGGACCGG CCACGTAGAG TGGTGGTTTT
                                                                           1440
15
       GCTCACTGAG TCACACTCCG AGGATGAGGT TGCGGGCCCA GCGCGTCACG CAAGGGCGCG
       AGAGCTGCTC CTGCTGGGTG TAGGCAGTGA GGCCGTGCGG GCAGAGCTGG AGGAGATCAC
       AGGCAGCCCA AAGCATGTGA TGGTCTACTC GGATCCTCAG GATCTGTTCA ACCAAATCCC
       TGAGCTGCAG GGGAAGCTGT GCAGCCGGCA GCGGCCAGGG TGCCGGACAC AAGCCCTGGA
       CCTCGTCTTC ATGTTGGACA CCTCTGCCTC AGTAGGGCCC GAGAATTTTG CTCAGATGCA
                                                                           1740
20
       GAGCTTTGTG AGAAGCTGTG CCCTCCAGTT TGAGGTGAAC CCTGACGTGA CACAGGTCGG
                                                                           1800
       CCTGGTGGTG TATGGCAGCC AGGTGCAGAC TGCCTTCGGG CTGGACACCA AACCCACCCG
                                                                           1860
       1920
       CACCGCCCTG CTGCACATCT ATGACAAAGT GATGACCGTC CAGAGGGGTG CCCGGCCTGG
                                                                           1980
       TGTCCCCAAA GCTGTGGTGG TGCTCACAGG CGGGAGAGGC GCAGAGGATG CAGCCGTTCC
                                                                           2040
25
       TGCCCAGAAG CTGAGGAACA ATGGCATCTC TGTCTTGGTC GTGGGCGTGG GGCCTGTCCT
                                                                           2100
       AAGTGAGGGT CTGCGGAGGC TTGCAGGTCC CCGGGATTCC CTGATCCACG TGGCAGCTTA
                                                                           2160
       CGCCGACCTG CGGTACCACC AGGACGTGCT CATTGAGTGG CTGTGTGGAG AAGCCAAGCA
                                                                           2220
       GCCAGTCAAC CTCTGCAAAC CCAGCCCGTG CATGAATGAG GGCAGCTGCG TCCTGCAGAA
                                                                           2280
       TGGGAGCTAC CGCTGCAAGT GTCGGGATGG CTGGGAGGGC CCCCACTGCG AGAACCGATT
                                                                           2340
30
       CTTGAGACGC CCCTGAGGCA CATGGCTCCC GTGCAGGAGG GCAGCAGCCG TACCCCTCCC
                                                                           2400
       AGCAACTACA GAGAAGGCCT GGGCACTGAA ATGGTGCCTA CCTTCTGGAA TGTCTGTGCC
                                                                           2460
       CCAGGTCCTT AGAATGTCTG CTTCCCGCCG TGGCCAGGAC CACTATTCTC ACTGAGGAG
GAGGATGTCC CAACTGCAGC CATGCTGCTT AGAGACAAGA AAGCAGCTGA TGTCACCCAC
                                                                           2520
                                                                           2580
       AAACGATGTT GTTGAAAAGT TTTGATGTGT AAGTAAATAC CCACTTTCTG TACCTGCTGT
                                                                           2640
35
       GCCTTGTTGA GGCTATGTCA TCTGCCACCT TTCCCTTGAG GATAAACAAG GGGTCCTGAA
                                                                           2700
       GACTTAAATT TAGCGGCCTG ACGTTCCTTT GCACACAATC AATGCTCGCC AGAATGTTGT
       TGACACAGTA ATGCCCAGCA GAGGCCTTTA CTAGAGCATC CTTTGGACGG
       Seg ID NO: 445 Protein seguence
40
       Protein Accession #: Eos sequence
       MPPFLLLEAV CVFLFSRVPP SLPLQEVHVS KETIGKISAA SKMMWCSAAV DIMFLLDGSN
45
       SVGKGSFERS KHFAITVCDG LDISPERVRV GAFQFSSTPH LEFPLDSFST QQEVKARIKR
                                                                            120
       MVFKGGRTET ELALKYLLHR GLPGGRNASV PQILIIVTDG KSQGDVALPS KQLKERGVTV
                                                                            180
       FAVGVRFPRW EELHALASEP RGQHVLLAEQ VEDATNGLFS TLSSSAICSS ATPDCRVEAH
                                                                            240
       PCEHRTLEMV REFAGNAPCW RGSRRTLAVL AAHCPFYSWK RVFLTHPATC YRTTCPGPCD
                                                                            300
       SQPCQNGGTC VPEGLDGYQC LCPLAFGGEA NCALKLSLEC RVDLLFLLDS SAGTTLDGFL
                                                                            360
50
       RAKVFVKRFV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVPDLVWSL DGIPFRGGPT
                                                                            420
       LTGSALRQAA ERGFGSATRT GQDRPRRVVV LLTESHSEDE VAGPARHARA RELLLLGVGS
                                                                            480
       EAVRAELEEI TGSPKHVMVY SDPQDLFNQI PELQGKLCSR QRPGCRTQAL DLVFMLDTSA
                                                                            540
       SVGPENFAQM QSFVRSCALQ FEVNPDVTQV GLVVYGSQVQ TAFGLDTKPT RAAMLRAISQ
                                                                            600
       APYLGGVGSA GTALLHIYDK VMTVQRGARP GVPKAVVVLT GGRGAEDAAV PAQKLRNNGI
                                                                            660
55
       SVLVVGVGPV LSEGLRRLAG PROSLIHVAA YADLRYHODV LIEWLCGEAK QPVNLCKPSP
       CMNEGSCVLQ NGSYRCKCRD GWEGPHCENR FLRRP
       Seg ID NO: 446 DNA sequence
       Nucleic Acid Accession #: NM_031942.1 .
60
       Coding sequence: 145..1260
                             21
                                         31
       CCCGAGCCCC GCCCTCCGG GCCCGGGTCG GCGCCCAG CCTGCCAGCC GCGCTGCTGC
65
       TGCTCCTCCT GCTGTGGGAC CGCTGACCGC GCGGCTGCTC CGCTCTCCCC GCTCCAAGCG
                                                                            120
       CCGATCTGGG CACCCGCCAC CAGCATGGAC GCTCGCCGCG TGCCGCAGAA AGATCTCAGA
                                                                            180
       GTAAAGAAGA ACTTAAAGAA ATTCAGATAT GTGAAGTTGA TTTCCATGGA AACCTCGTCA
                                                                            240
       TCCTCTGATG ACAGTTGTGA CAGCTTTGCT TCTGATAATT TTGCAAACAC GAGGCTGCAG
                                                                            300
       TCAGTTCGGG AAGGCTGTAG GACCCGCAGC CAGTGCAGGC ACTCTGGACC TCTCAGGGTG
                                                                            360
70
       GCGATGAAGT TTCCAGCGCG GAGTACCAGG GGAGCAACCA ACAAAAAAGC AGAGTCCCGC
                                                                            420
       CAGCCCTCAG AGAATTCTGT GACTGATTCC AACTCCGATT CAGAAGATGA AAGTGGAATG
                                                                            480
       AATTTTTTGG AGAAAAGGGC TTTAAATATA AAGCAAAACA AAGCAATGCT TGCAAAACTC
                                                                            540
       ATGTCTGAAT TAGAAAGCTT CCCTGGCTCG TTCCGTGGAA GACATCCCCT CCCAGGCTCC
                                                                            600
       GACTCACAAT CAAGGAGACC GCGAAGGCGT ACATTCCCGG GTGTTGCTTC CAGGAGAAAC
                                                                            660
75
       CCTGAACGGA GAGCTCGTCC TCTTACCAGG TCAAGGTCCC GGATCCTCGG GTCCCTTGAC
                                                                            720
       GCTCTACCCA TGGAGGAGGA GGAGGAAGAG GATAAGTACA TGTTGGTGAG AAAGAGGAAG
                                                                            780
       ACCGTGGATG GCTACATGAA TGAAGATGAC CTGCCCAGAA GCCCTCGCTC CAGATCATCC
GTGACCCTTC CGCATATAAT TCGCCCAGTG GAAGAAATTA CAGAGGAGGA GTTGGAGAAC
                                                                            840
       GTCTGCAGCA ATTCTCGAGA GAAGATATAT AACCGTTCAC TGGGCTCTAC TTGTCATCAA
80
       TGCCGTCAGA AGACTATTGA TACCAAAACA AACTGCAGAA ACCCAGACTG CTGGGGCGTT
       CGAGGCCAGT TCTGTGGCCC CTGCCTTCGA AACCGTTATG GTGAAGAGGT CAGGGATGCT
                                                                           1080
       CTGCTGGATC CGAACTGGCA TTGCCCGCCT TGTCGAGGAA TCTGCAACTG CAGTTTCTGC
       CGGCAGCGAG ATGGACGGTG TGCGACTGGG GTCCTTGTGT ATTTAGCCAA ATATCATGGC
                                                                           1200
       TTTGGGAATG TGCATGCCTA CTTGAAAAGC CTGAAACAGG AATTTGAAAT GCAAGCATAA
                                                                           1260
85
       TATCTGGAAA ATTTGCTGCC TGCCTTCTAC TTCTCAAATC TTTCTTGTAA AAGTTTCCAA
                                                                           1320
       TTTTTTCACT GAAACCTGAG TTAAAAATCT TGATGATCAG CCTGTTTCAT AAGAAACTCC
                                                                           1380
       AATCAAGTTA ATCTTAGCAG ACATGTGTTT CTGGAGCATC ACAGAAGGTA TATTGCTAGT
                                                                           1440
```

```
TACACTITIGE CCTCCTGCAG TITCTTCTCT GCTCCCAACC CCCATCTCAT AGCATCCCCC
                                                                            1500
       TCTATTTCCA ATGCTCCTCT CCAACCGCTT AGTTTCTGAA TTTCTTTTAA ATTACAGTTT
                                                                             1560
       TATGAAAGCA TATTTTATTT ACTTGGTGTT GAAATAGCCC TCATAAAACC TAAGCACTTG
                                                                             1620
       GAAACACAAT AATAGTATTA ACTAACTAGA TCTATTGAAT TTCAGAGAAG AGCCTTCTAA
                                                                             1680
 5
                                                                             1740
       CTTGTTTACA CAAAAACGAG TATGATTTAG CACTCATACT AGTTGAAATT TTTAATAGAA
       TCAAGGCACA AAAGTCTTAA AACCATGTGG AAAAATTAGG TAATTATTGC AGATTGATGT
                                                                             1800
       CTCTCAATCC CATGTATTGC GCTTATGTTA CAAGTTGTTG TCACAGTTGA GACTTAATTT
                                                                             1860
                                                                             1920
       CTCCTAATTT CTTCTGCCCG AAGGGTAAGT GGTGCGTCCA GCTTACACGA TCATAATTCA
       AAGGTTGGTG GGCAATGTAA TACTTAATTA AAATAATGAT GGAAGAGCTA TCTGGAGATT
                                                                             1980
10
       ATGAGTAAGC TGATTTGAAT TTTCAGTATA AAACTTTAGT ATAATTGTAG TTTGCAAAGT
                                                                             2040
       TTATTTCAGT TCACATGTAA GGTATTGCAA ATAAATTCTT GGACAATTTT GTATGGAAAC
                                                                             2100
       TTGATATTAA AAACTAGTCT GTGGTTCTTT GCAGTTTCTT GTAAATTTAT AAACCAGGCA
                                                                             2160
       CAAGGTTCAA GTTTAGATTT TAAGCACTTT TATAACAATG ATAAGTGCCT TTTTGGAGAT
                                                                             2220
       GTAACTTTTA GCAGTTTGTT AACCTGACAT CTCTGCCAGT CTAGTTTCTG GGCAGGTTTC
                                                                             2280
       CTGTGTCAGT ATTCCCCCTC CTCTTTGCAT TAATCAAGGT ATTTGGTAGA GGTGGAATCT AAGTGTTTGT ATGTCCAATT TACTTGCATA TGTAAACCAT TGCTGTGCCA TTCAATGTTT
15
                                                                             2340
       GATGCATAAT TGGACCTTGA ATCGATAAGT GTAAATACAG CTTTTGATCT GTAATGCTTT
       TATACAAAAG TITATTITAA TAATAAAATG TITGTTCTAA AAAAAAAAAA
20
       Seq ID NO: 447 Protein sequence
       Protein Accession #: NP_114148.1
                                          31
                   11
25
       MDARRYPOKO LRYKKNIKKE RYVKLISMET SSSSDDSCDS FASDNEANTR LOSVREGCRT
       RSOCRHSGPL RVAMKFPARS TRGATNKKAE SRQPSENSVT DSNSDSEDES GMNFLEKRAL
                                                                              120
       NIKONKAMLA KLMSELESFP GSFRGRHPLP GSDSQSRRPR RRTFPGVASR RNPERRARPL
                                                                              180
       TRSRSRILGS LDALPMEEEE EEDKYMLVRK RKTVDGYMNE DDLPRSRRSR SSVTLPHIIR
                                                                              240
       PVEEITEEBL ENVCSNSREK IYNRSLGSTC HQCRQKTIDT KTNCRNPDCW GVRGQFCGPC
                                                                              300
30
       LRNRYGEEVR DALLDPNWHC PPCRGICNCS FCRQRDGRCA TGVLVYLAKY HGFGNVHAYL
       KSLKQEFEMQ A
       Seq ID NO: 448 DNA sequence
       Nucleic Acid Accession #: NM_019894
35
       Coding sequence: 1..1314
       ATGTTACAGG ATCCTGACAG TGATCAACCT CTGAACAGCC TCGATGTCAA ACCCCTGCGC
       AAACCCCGTA TCCCCATGGA GACCTTCAGA AAGGTGGGGA TCCCCATCAT CATAGCACTA
40
                                                                              120
       CTGAGCCTGG CGAGTATCAT CATTGTGGTT GTCCTCATCA AGGTGATTCT GGATAAATAC
                                                                              180
       TACTTCCTCT GCGGGCAGCC TCTCCACTTC ATCCCGAGGA AGCAGCTGTG TGACGGAGAG
                                                                              240
       CTGGACTGTC CCTTGGGGGA GGACGAGGAG CACTGTGTCA AGAGCTTCCC CGAAGGGCCT
                                                                              300
       GCAGTGGCAG TCCGCCTCTC CAAGGACCGA TCCACACTGC AGGTGCTGGA CTCGGCCACA
GGGAACTGGT TCTCTGCCTG TTTCGACAAC TTCACAGAAG CTCTCGCTGA GACAGCCTGT
                                                                              360
45
                                                                              420
       AGGCAGATGG GCTACAGCAG CAAACCCACT TTCAGAGCTG TGGAGATTGG CCCAGACCAG
                                                                              480
       GATCTGGATG TTGTTGAAAT CACAGAAAAC AGCCAGGAGC TTCGCATGCG GAACTCAAGT
                                                                              540
       GGGCCCTGTC TCTCAGGCTC CCTGGTCTCC CTGCACTGTC TTGCCTGTGG GAAGAGCCTG
                                                                              600
       AAGACCCCCC GTGTGGTGGG TGGGGAGGAG GCCTCTGTGG ATTCTTGGCC TTGGCAGGTC
                                                                              660
       AGCATCCAGT ACGACAAACA GCACGTCTGT GGAGGGAGCA TCCTGGACCC CCACTGGGTC
50
                                                                              720
       CTCACGGCAG CCCACTGCTT CAGGAAACAT ACCGATGTGT TCAACTGGAA GGTGCGGGCA
                                                                              780
       GGCTCAGACA AACTGGGCAG CTTCCCATCC CTGGCTGTGG CCAAGATCAT CATCATTGAA
                                                                              840
       TTCAACCCCA TGTACCCCAA AGACAATGAC ATCGCCCTCA TGAAGCTGCA GTTCCCACTC
                                                                              900
       ACTITICICAG GCACAGICAG GCCCATCIGI CIGCCCITCI ITGATGAGGA GCTCACICCA
                                                                              960
55
       GCCACCCCAC TCTGGATCAT TGGATGGGGC TTTACGAAGC AGAATGGAGG GAAGATGTCT
                                                                             1020
       GACATACTGC TGCAGGCGTC AGTCCAGGTC ATTGACAGCA CACGGTGCAA TGCAGACGAT
                                                                             1080
       GCGTACCAGG GGGAAGTCAC CGAGAAGATG ATGTGTGCAG GCATCCCGGA AGGGGGTGTG
                                                                             1140
       GACACCTGCC AGGGTGACAG TGGTGGGCCC CTGATGTACC AATCTGACCA GTGGCATGTG
       GTGGGCATCG TTAGCTGGGG CTATGGCTGC GGGGGCCCGA GCACCCCAGG AGTATACACC
60 ·
       AAGGTCTCAG CCTATCTCAA CTGGATCTAC AATGTCTGGA AGGCTGAGCT GTAA
       Seq ID NO: 449 Protein sequence
                                  NP_063947.1
       Protein Accession #:
65
                                                                51
                                          31
                   11
                              21
       MLQDPDSDQP LNSLDVKPLR KPRIPMETFR KVGIPIIIAL LSLASIIIVV VLIKVILDKY
       YFLCGQPLHF IPRKQLCDGE LDCPLGEDEE HCVKSFPEGP AVAVRLSKDR STLQVLDSAT
                                                                              120
       GNWFSACFDN FTEALAETAC RQMGYSSKPT FRAVEIGPDQ DLDVVEITEN SQELRMRNSS
                                                                              180
70
       GPCLSGSLVS LHCLACGKSL KTPRVVGGEE ASVDSWPWQV SIQYDKQHVC GGSILDPHWV
                                                                              240
       LTAAHCFRKH TDVFNWKVRA GSDKLGSFPS LAVAKIIIIE FNPMYPKDND IALMKLQFPL
                                                                              300
       TFSGTVRPIC LPFFDEELTP ATPLWIIGWG FTKQNGGKMS DILLQASVQV IDSTRCNADD
                                                                              360
       AYQGEVTEKM MCAGIPEGGV DTCQGDSGGP LMYQSDQWHV VGIVSWGYGC GGPSTPGVYT
75
        Seq ID NO: 450 DNA sequence
       Nucleic Acid Accession #: XM_051860.2
        Coding sequence: 52..3042
80
                                                      41
                              21
                                          31
        GCTCACCCAG GAAAAATATG CAATCGTCCC ATTGATATAC AGGCCACTAC AATGGATGGA
        GTTAACCTCA GCACCGAGGT TGTCTACAAA AAAGGCCAGG ATTATAGGTT TGCTTGCTAC
                                                                              120
                                                                              180
        GACCGGGGCA GAGCCTGCCG GAGCTACCGT GTACGGTTCC TCTGTGGGAA GCCTGTGAGG
85
        CCCAAACTCA CAGTCACCAT TGACACCAAT GTGAACAGCA CCATTCTGAA CTTGGAGGAT
                                                                              240
        AATGTACAGT CATGGAAACC TGGAGATACC CTGGTCATTG CCAGTACTGA TTACTCCATG
                                                                              300
        TACCAGGCAG AAGAGTTCCA GGTGCTTCCC TGCAGATCCT GCGCCCCCAA CCAGGTCAAA
```

	WO 02	/086443					
						GGACATGCGG	420
						GGACAAATGC	480
				TTTGACTTCG TTGGAGGGCA			540 600
5				TTCCACCTGG			660
•				GACCTCTCCA			720
				TTGATCAAGG			780
	TTGGGCCACT	GCTTCTTCAC	GGAAGATGGG	CCGGAGGAAC	GCAACACTTT	TGACCACTGT	840
10				CTCCCCTCGG			900
10				TACATCCCCA			960
				AACAACAACC			1020
				TTTCACCACG ATTCCACTGG			1080 1140
				ATAGACAACG			1200
15				ATCATCTCTG			1260
				GCCATCATCA			1320
	AACCAGGACC	ACGGGGCCTG	GCTGCGCGGC	GGGGATGTGT	GGCTGGACAG	CTGCCGGTTT	1380
				AGTGGTGGAA			1440
20				GTTGGCGAGA			1500
20				GGCTTGGACC			1560
				CAGTTATATG			1620
				GAGGGCCGGC CATAACAACG			1680 1740
				GGAGAGCCTG			1800
25				CATGACGTCG			1860
				TGGCTGGTCC			1920
				GGGTGCTATG			1980
	TACAAGACCA	GTAACCTGCG	AATGAAGATC	ATCAAGAATG	ACTTCCCCAG	CCACCCTCTT	.2040
20				CATTACCAGC			2100
30				CAGACGGCCC			2160
				CGAGTGGGGC			2220
				CGCCTGCTGA			2280
				GTGGAGCAGA TTCCTGAAGC			2340
35				TGTGAGAGGA			2400 2460
<i></i>				GCCACAGCTT			2520
				CTCTTTGGTT			2580
				AAGCAGCACT			2640
40	TTCGCTTACA	TTGAAGTGGA	TGGGAAGAAG	TACCCCAGTT	CGGAGGATGG	CATCCAGGTG	2700
40				GTGAGCCACA			2760
				TATGTGGCGA			2820
				TCCAGAGGCC			2880
				AAAGAGCAAA			2940
45				GACACTGAGG AAGAAGTTGT			3000 3060
-, 5				CTTGGCAGCA			3120
				GAAGGCCGTG			3180
				ACCTGCCCCT			3240
~~				ACATTCACTT			3300
50	TTCTCTCCTA	TCTGTGCCTC	TTCAGTGGGG	GTTTGGGGAC	CATATCAGGA	GACCTGGGTT	3360
				AGCCCTGACC			3420
				TCAGCAGACA			3480
				TACTCCTGTA			3540
55				TTGGGGAAGA AGGTTTGGAC			3600 3660
<i>J J</i>				CTGCTGCATT			3720
				GATGCTGGGT			3780
						AGGCAGTCAG	
~ 0						GAGGCCAGTG	
60	CCATTTCAGA	GGGGAGGCTC	AGGAAGGCTT	CTTGCTTACA	GGAATGAAGG	CTGGGGGCAT	3960
						CTCCCTGCCG	
						TGGCCCACTC	
						GCACAGAGGA	
65	TOTTCAGTCCC	CAGGCAGCCC	TGCCTCTGAC	TCCAAGAGGG	TGAAGTCCAC	AGAAGTGAGC GGCCTCCAGG	4200
05						ATATAGAAAA	
						GATGGGAAAG	
						CCACACCACA	
						TGGAAATGGG	
70						CAGATCTCTT	
	CCCTCCTGCT	CCCAGCGCAC	ACAAACCCGC	CCTCCCCTTG	GTGTTGGCGG	TCCCTGTGGC	4620
						AACTCCCCAT	
						AGAGGGAGTA	
75						ACAGCTATTG	
13						GGCCCACCTT	
						ATAATCTTGC	
						TTTCCTGCCC AACTGCACCC	
						GAGGTCTTTC	
80						AAAGATATGG	
·						GGTGATGGAG	
	AGGAGAGTTA	AAATGACCTC	ATGTCCTTCT	TGTCCACGGT	TTTGTTGAGT	TTTCACTCTT	5280
	CTAATGCAAG	GGTCTCACAC	TGTGAACCAC	TTAGGATGTG	ATCACTTTCA	GGTGGCCAGG	5340
05	AATGTTGAAT	GTCTTTGGCT	CAGTTCATTT	AAAAAAGATA	TCTATTTGAA	AGTTCTCAGA	5400
85						TAAACCATTC	
						GCTTAGAAAA	
	TIGTCCTCCT	TGTTATTTCT	GTTTGTAAGA	CTTAAGTGAG	TTAGGTCTTT	AAGGAAAGCA	5580

	WO 02/	GAAATGCTTG	TCTTTTTCT	GTTGCCGAAA ATTTCTTGTA	TAGCTGGTCC	TTTTTCGGGA TGAACAAGA	5640 5700
5	TATATTTTCT	ATTTATTTAT	TATATGTGCA	CTTCAAGAAG AAAAAAAAAA	TCACTGTCAG	AGAAATAAAG	5760
		451 Proteir cession #:)	-				
10	1	11	21	31	41	51	
	1	1	1	<u> </u>]	
	MDGVNLSTEV	VYKKGQDYRF	ACYDRGRACR	SYRVRFLCGK VLPCRSCAPN	DAKEKPLALI	DINVNSTIEN	60 120
	DMDARVGI.I.S	PNITUMGEME	DKCABABALI	CNFFDFDTFG	GHIKFALGFK	AAHLEGTELK	180
15	HMGOOLVGOY	PIHFHLAGDV	DERGGYDPPT	YIRDLSIHHT	PSRCVTVHGS	NGLLIKDVVG	240
	YNSLGHCFFT	EDGPEERNTF	DHCLGLLVKS	GTLLPSDRDS	KMCKMITGDS	YPGYIPKPRQ	300
	DCNAVSTFWM	ANPNNNLINC	AAAGSEETGF	WFIFHHVPTG	PSVGMYSPGY	SEHIPLGKFY	360
	NNRAHSNYRA	GMIIDNGVKT	TEASAKDKRP	FLSIISARYS TLASGGTFPY	PHODADPEKE	SIFUGESCAU	420 480
20	GTEMMDNRIW	GPGGLDHSGR	TLPIGONPPI	RGIQLYDGPI	NIONCTFRKF	VALEGRHTSA	540
	LAFRLNNAWO	SCPHNNVTGI	AFEDVPITSR	VFFGEPGPWF	NOLDMDGDKT	SVFHDVDGSV	600
	SEYPGSYLTK	NDNWLVRHPD	CINVPDWRGA	ICSGCYAQMY	IQAYKTSNLR	MKIIKNDFPS	660
	HPLYLEGALT	RSTHYQQYQP	VVTLQKGYTI	HWDQTAPAEL MDKVEQSYPG	POHYVWDEDS	GULPLKIKAO	720 780
25				DCTATAYPKF			840
	TKDHFLEVKM	ESSKOHFFHL	WNDFAYIEVD	GKKYPSSEDG	IQVVVIDGNQ	GRVVSHTSFR	900
				RYVSRGPWTR	VLEKLGADRG	LKLKEQMAFV	960
	GFKGSFRPIW	VTLDTEDHKA	KIFQVVPIPV	VKKKKL	•		
30	Seq ID NO:	452 DNA sec	mence				
			#: Eos se	dreuce			
	Coding sequ	ence: 261.	. 2861				
25	1	11	21	31	41	51	
35	1	1	1]	01 01 00 00000	002400002220	60
	CCCCCCCCCCC	TCAAGCAGAG	CCCAGCGCGG	TGCTATCGGA GCCAGGGTCT	GAACCCAGAT	TTCCCAGACT	120
	AGCTACCACT	CCGCTTGCCC	ACGCCCCGGG	AGCTCGCGGC	GCCTGGCGGT	CAGCGACCAG	180
40	ACGTCCGGGG	CCGCTGCGCT	CCTGGCCCGC	GAGGCGTGAC	ACTGTCTCGG	CTACAGACCC	240
40	AGAGGGAGCA	CACTGCCAGG	ATGGGAGCTG	CTGGGAGGCA	GGACTTCCTC	TTCAAGGCCA	300 360
	TGCTGACCAT	TCACCAGAGC	COTGAGTTGC	GCTTCCCTGG AACCCTGGAA	CCCTCCCCATCC	GACCAAGACC	420
	ACCATGTGCA	TATCGGCCAG	GGCAAGACAC	TGCTGCTCAC	CTCTTCTGCC	ACGGTCTATT	480
45	CCATCCACAT	CTCAGAGGGA	GGCAAGCTGG	TCATTAAAGA	CCACGACGAG	CCGATTGTTT	540
45	TGCGAACCCG	GCACATCCTG	ATTGACAACG	GAGGAGAGCT TGTATGGAAG	GCATGCTGGG	AGTGCCCTCT	600 660
	CGGATCCTTA	CTATGGTCTG	AAGTACATTG	GGGTTGGTAA	AGGAGGCGCT	CTTGAGTTGC	720
	ATGGACAGAA	AAAGCTCTCC	TGGACATTTC	TGAACAAGAC	CCTTCACCCA	GGTGGCATGG	780
50	CAGAAGGAGG	CTATTTTTT	GAAAGGAGCT	GGGGCCACCG	TGGAGTTATT	GTTCATGTCA	840 900
50	AAGAGAGTGA	ATCAGGCACA	CACTATTTGA	CTGACCGGTT ACGCGGTGCC	CGATGGCAGG	ATCCTTTCTG	960
	TTGCAGTGAA	TGATGAAGGT	TCTCGAAATC	TGGATGACAT	GGCCAGGAAG	GCGATGACCA	1020
	AATTGGGAAG	CAAACACTTC	CTGCACCTTG	GATTTAGACA	CCCTTGGAGT	TTTCTAACTG	1080
55·	TGAAAGGAAA .CTGCTGCTGC	TCCATCATCT	TCAGTGGAAG	ACCATATTGA	TCCCCAATAT	CATCGAGGCT	1140 1200
55	CTTTGTCCAG	TGAGTGGGTT	CAAGACGTGG	AGTGGACGGA	GTGGTTCGAT	CATGATAAAG	1260
	TATCTCAGAC	TAAAGGTGGG	GAGAAAATTT	CAGACCTCTG	GAAAGCTCAC	CCAGGAAAAA	1320
	TATGCAATCG	TCCCATTGAT	ATACAGGCCA	CTACAATGGA	TGGAGTTAAC	CTCAGCACCG	1380 1440
60	AGGTTGTCTA	CAAAAAAGGC	CAGGATTATA	GGAAGCCTGT	GAGGCCCAAA	GGCAGAGCCT CTCACAGTCA	
00	CCATTGACAC	CAATGTGAAC	AGCACCATTC	TGAACTTGGA	GGATAATGTA	CAGTCATGGA	1560
	AACCTGGAGA	TACCCTGGTC	ATTGCCAGTA	CTGATTACTC	CATGTACCAG	GCAGAAGAGT	1620
	TCCAGGTGCT	TCCCTGCAGA	CACATAGACE	CCAACCAGGT GCGTGGACAT	CAAAGTGGCA	GTTGGGCTTC	1680 1740
65	TGAGCCGGAA	CATCATAGTG	ATGGGGGAGA	TGGAGGACAA	ATGCTACCCC	TACAGAAACC	1800
	ACATCTGCAA	TTTCTTTGAC	TTCGATACCT	TTGGGGGCCA	CATCAAGTTT	GCTCTGGGAT	1860
	TTAAGGCAGC	ACACTTGGAG	GGCACGGAGC	TGAAGCATAT	GGGACAGCAG	TATGACCCAC	1920 1980
	CCACATACAT	CAGGGACCTC	TCCATCCATC	ATACATTCTC	TCGCTGCGTC	ACAGTCCATG	2040
70	GCTCCAATGG	CTTGTTGATC	AAGGACGTTG	TGGGCTATAA	CTCTTTGGGC	CACTGCTTCT	2100
	TCACGGAAGA	TGGGCCGGAG	GAACGCAACA	CTTTTGACCA	CTGTCTTGGC	CTCCTTGTCA	2160
	AGTCTGGAAC	CCTCCTCCCC	TCGGACCGTG	ACAGCAAGAT GGCAAGACTG	CANTICTICTO	TCCACCAGAGG	2220 2280
	GGATGGCCAA	TCCCAACAAC	AACCTCATCA	ACTGTGCCGC	TGCAGGATCT	GAGGAAACTG	2340
75	GATTTTGGTT	TATTTTTCAC	CACGTACCAA	CGGGCCCCTC	CGTGGGAATG	TACTCCCCAG	2400
	GTTATTCAGA	GCACATTCCA	CTGGGAAAAT	TCTATAACAA	CCGAGCACAT	TCCAACTACC	2460
	GGGCTGGCAT	GATCATAGAC	TCTGCCAGAT	AAACCACCGA ACAGCCCTCA	CCAGGACGCC	GACCCGCTGA	2520 2580
0.0	AGCCCCGGGA	GCCGGCCATC	ATCAGACACT	TCATTGCCTA	CAAGAACCAG	GACCACGGGG	2640
80	CCTGGCTGCG	CGGCGGGGAT	GTGTGGCTGG	ACAGCTGCCA	TTTCAGAGGG	GAGGCTCAGG	2700
	AAGGCTTCTT	GCTTACAGGA	ATGAAGGCTG	GGGGCATTTT	GCTGGGGGGA CCTGCTGAAG	GATGAGGCAG CTGGTGACTA	2760 2820
	CGGGGTCGCC	CTTTGCTCAC	GTCTCTCTGG	CCCACTCATG	ATGGAGAAGT	CTGGTGACTA GTGGTCAGAG	2880
0.5	GGGAGCAATG	GCCTTTGCTG	CTTATGAGCA	CAGAGGAATT	CAGTCCCCAG	GCAGCCCTGC	2940
85	CTCTGACTCC	AAGAGGGTGA	AGTCCACAGA	AGTGAGCTCC	TGCCTTAGGG	CCTCATTTGC	3000
	CTCGGCCTC	GGATTTCACA	CACAGGGGGC GCTCGAAATA	CTCCAGGAGA TAGAAAATAT	CTAGCCCAAA	GCCTTCATTT	3060 3120
		JULLIA	241201211				

```
WO 02/086443
       TAACAGATGG GGAAAGTGAG CCCCCAAGAT GGGAAAGAAC CACACAGCTA AGGGAGGGCC
                                                                         3180
       TGGGGAGCCC CACCCTAGCC CTTGCTGCCA CACCACATTG CCTCAACAAC CGGCCCCAGA
                                                                         3240
       GTGCCCAGGC ACTCCTGAGG TAGCTTCTGG AAATGGGGAC AAGTCCCCTC GAAGGAAAGG
                                                                         3300
       AAATGACTAG AGTAGAATGA CAGCTAGCAG ATCTCTTCCC TCCTGCTCCC AGCGCACACA
                                                                         3360
 5
       AACCCGCCCT CCCCTTGGTG TTGGCGGTCC CTGTGGCCTT CACTTTGTTC ACTACCTGTC
                                                                         3420
       AGCCCAGCCT GGGTGCACAG TAGCTGCAAC TCCCCATTGG TGCTACCTGG CTCTCCTGTC
                                                                         3480
       TCTGCAGCTC TACAGGTGAG GCCCAGCAGA GGGAGTAGGG CTCGCCATGT TTCTGGTGAG
                                                                         3540
       CCAATTTGGC TGATCTTGGG TGTCTGAACA GCTATTGGGT CCACCCCAGT CCCTTTCAGC
                                                                         3600
       TGCTGCTTAA TGCCCTGCTC TCTCCCTGGC CCACCTTATA GAGAGCCCAA AGAGCTCCTG
                                                                         3660
10
                                                                         3720
       TAAGAGGGAG AACTCTATCT GTGGTTTATA ATCTTGCACG AGGCACCAGA GTCTCCCTGG
                                                                         3780
       GTCTTGTGAT GAACTACATT TATCCCCTTT CCTGCCCCAA CCACAAACTC TTTCCTTCAA
       AGAGGGCCTG CCTGGCTCCC TCCACCCAAC TGCACCCATG AGACTCGGTC CAAGAGTCCA
                                                                         3840
       TTCCCCAGGT GGGAGCCAAC TGTCAGGGAG GTCTTTCCCA CCAAACATCT TTCAGCTGCT
                                                                         3900
       GGGAGGTGAC CATAGGGCTC TGCTTTTAAA GATATGGCTG CTTCAAAGGC CAGAGTCACA
                                                                         3960
       GGAAGGACTT CTTCCAGGGA GATTAGTGGT GATGGAGAGG AGAGTTAAAA TGACCTCATG
15
                                                                         4020
       TCCTTCTTGT CCACGGTTTT GTTGAGTTTT CACTCTTCTA ATGCAAGGGT CTCACACTGT
                                                                         4080
       GAACCACTTA GGATGTGATC ACTITICAGGT GGCCAGGAAT GTTGAATGTC TTTGGCTCAG
                                                                         4140
       TTCATTTAAA AAAGATATCT ATTTGAAAGT TCTCAGAGTT GTACATATGT TTCACAGTAC
                                                                         4200
       AGGATCTGTA CATAAAAGTT TCTTTCCTAA ACCATTCACC AAGAGCCAAT ATCTAGGCAT
20
       TTTCTTGGTA GCACAAATTT TCTTATTGCT TAGAAAATTG TCCTCCTTGT TATTTCTGTT
                                                                          4320
       TGTAAGACTT AAGTGAGTTA GGTCTTTAAG GAAAGCAACG CTCCTCTGAA ATGCTTGTCT
       TTTTTCTGTT GCCGAAATAG CTGGTCCTTT TTCGGGAGTT AGATGTATAG AGTGTTTGTA
                                                                          4440
       TGTAAACATT TCTTGTAGGC ATCACCATGA ACAAAGATAT ATTTTCTATT TATTTATTAT
                                                                          4500
                                                                         4560
       ATGTGCACTT CAAGAAGTCA CTGTCAGAGA AATAAAGAAT TGTCTTAAAT GTCATGATTG
25
       GAGATGTCCT TTGCATTGCT TGGAAGGGGT GTACCTAGAG CCAAGGAAAT TGGCTCTGGT
                                                                         4620
       4680
       AA AAAAAAAA AAAAAAAAA
       Seq ID NO: 453 Protein sequence
30
       Protein Accession #: Eos sequence
       MGAAGRODFL FKAMLTISWL TLTCFPGATS TVAAGCPDQS PELQPWNPGH DQDHHVHIGQ
                                                                           60
35
       GKTLLLTSSA TVYSIHISEG GKLVIKDHDE PIVLRTRHIL IDNGGELHAG SALCPFQGNF
                                                                           120
       TIILYGRADE GIQPDPYYGL KYIGVGKGGA LELHGQKKLS WTFLNKTLHP GGMAEGGYFF
                                                                           180
       ERSWGHRGVI VHVIDPKSGT VIHSDRPDTY RSKKESERLV QYLNAVPDGR ILSVAVNDEG
                                                                           240
       SRNLDDMARK AMTKLGSKHF LHLGFRHPWS FLTVKGNPSS SVEDHIEYHG HRGSAAARVF
                                                                           300
       KLFQTEHGEY FNVSLSSEWV QDVEWTEWFD HDKVSQTKGG EKISDLWKAH PGKICNRPID
                                                                           360
40
       IQATTMDGVN LSTEVVYKKG QDYRFACYDR GRACRSYRVR FLCGKPVRPK LTVTIDTNVN
       STILNLEDNV OSWKPGDTLV IASTDYSMYQ AEEFQVLPCR SCAPNQVKVA GKPMYLHIGE
                                                                           480
       EIDGVDMRAE VGLLSRNIIV MGEMEDKCYP YRNHICNFFD FDTFGGHIKF ALGFKAAHLE
                                                                           540
       GTELKHMGQQ LVGQYPIHFH LAGDVDERGG YDPPTYIRDL SIHHTFSRCV TVHGSNGLLI
                                                                           600
       KDVVGYNSLG HCFFTEDGPE ERNTFDHCLG LLVKSGTLLP SDRDSKMCKM ITEDSYPGYI
                                                                           660
45
                                                                           720
       PKPRODCNAV STFWMANPNN NLINCAAAGS EETGFWFIFH HVPTGPSVGM YSPGYSEHIP
                                                                           780
       LGKFYNNRAH SNYRAGMIID NGVKTTEASA KDKRPFLSII SARYSPHQDA DPLKPREPAI
                                                                           840
       IRHFIAYKNQ DHGAWLRGGD VWLDSCHFRG EAQEGFLLTG MKAGGILLGG DEAASGMAQG
       FSPPCRCLLK LVTTGSPFAH VSLAHS
50
       Seg ID NO: 454 DNA sequence
       Nucleic Acid Accession #: NM_013282.2
       Coding sequence: 85..2466
                                        31
                                                              51
                             21
55
       CGACTCCTTA GAGCATGGCA TGGCTCAGAG GTGCTGGTAA AACTGATGGG GGTTTTTGCT
                                                                           60
       GTCCCTCCCC TCAGCGCCGA CACCATGTGG ATCCAGGTTC GGACCATGGA CGGGAGGCAG
                                                                           120
       ACCCACACGG TGGACTCGCT GTCCAGGCTG ACCAAGGTGG AGGAGCTGAG GCGGAAGATC
                                                                           180
       CAGGAGCTGT TCCACGTGGA GCCAGGCCTG CAGAGGCTGT TCTACAGGGG CAAACAGATG
                                                                           240
60
       GAGGACGGCC ATACCCTCTT CGACTACGAG GTCCGCCTGA ATGACACCAT CCAGCTCCTG
                                                                           300
       GTCCGCCAGA GCCTCGTGCT CCCCCACAGC ACCAAGGAGC GGGACTCCGA GCTCTCCGAC
                                                                           360
       ACCGACTCCG GCTGCTGCCT GGGCCAGAGT GAGTCAGACA AGTCCTCCAC CCACGGCGAG
                                                                           420
       GCGGCCGCCG AGACTGACAG CAGGCCAGCC GATGAGGACA TGTGGGATGA GACGGAATTG
       GGGCTGTACA AGGTCAATGA GTACGTCGAT GCTCGGGACA CGAACATGGG GGCGTGGTTT
                                                                           540
65
       GAGGCGCAGG TGGTCAGGGT GACGCGGAAG GCCCCCTCCC GGGACGAGCC CTGCAGCTCC
                                                                           600
       ACGTCCAGGC CGGCGCTGGA GGAGGACGTC ATTTACCACG TGAAATACGA CGACTACCCG
                                                                           660
                                                                           720
       GAGAACGGCG TGGTCCAGAT GAACTCCAGG GACGTCCGAG CGCGCGCCCG CACCATCATC
       AAGTGGCAGG ACCTGGAGGT GGGCCAGGTG GTCATGCTCA ACTACAACCC CGACAACCCC
                                                                           780
       AAGGAGCGGG GCTTCTGGTA CGACGCGGAG ATCTCCAGGA AGCGCGAGAC CAGGACGGCG
                                                                           840
70
       CGGGAACTCT ACGCCAACGT GGTGCTGGGG GATGATTCTC TGAACGACTG TCGGATCATC
                                                                           900
       TTCGTGGACG AAGTCTTCAA GATTGAGCGG CCGGGTGAAG GGAGCCCCAT GGTTGACAAC
                                                                           960
       CCCATGAGAC GGAAGAGCGG GCCGTCCTGC AAGCACTGCA AGGACGACGT GAACAGACTC
                                                                         1020
       TGCCGGGTCT GCGCCTGCCA CCTGTGCGGG GGCCGGCAGG ACCCCGACAA GCAGCTCATG
                                                                         1080
       TGCGATGAGT GCGACATGGC CTTCCACATC TACTGCCTGG ACCCGCCCCT CAGCAGTGTT
                                                                         1140
75
       CCCAGCGAGG ACGAGTGGTA CTGCCCTGAG TGCCGGAATG ATGCCAGCGA GGTGGTACTG
                                                                         1200
       GCGGGAGAGC GGCTGAGAGA GAGCAAGAAG AAGGCGAAGA TGGCCTCGGC CACATCGTCC
                                                                         1260
       TCACAGCGGG ACTGGGGCAA GGGCATGGCC TGTGTGGGCC GCACCAAGGA ATGTACCATC
                                                                         1320
       GTCCCGTCCA ACCACTACGG ACCCATCCCG GGGATCCCCG TGGGCACCAT GTGGCGGTTC
                                                                         1380
       CGAGTCCAGG TCAGCGAGTC GGGTGTCCAT CGGCCCCACG TGGCTGGCAT ACACGGCCGG
                                                                          1440
       AGCAACGACG GAGCGTACTC CCTAGTCCTG GCGGGGGGCT ATGAGGATGA CGTGGACCAT
80
                                                                          1500
       GGGAATTTTT TCACATACAC GGGTAGTGGT GGTCGAGATC TTTCCGGCAA CAAGAGGACC
                                                                          1560
       GCGGAACAGT CTTGTGATCA GAAACTCACC AACACCAACA GGGCGCTGGC TCTCAACTGC
                                                                          1620
       TTTGCTCCCA TCAATGACCA AGAAGGGGCC GAGGCCAAGG ACTGGCGGTC GGGGAAGCCG
                                                                          1680
       GTCAGGGTGG TGCGCAATGT CAAGGGTGGC AAGAATAGCA AGTACGCCCC CGCTGAGGGC
                                                                          1740
85
       AACCGCTACG ATGGCATCTA CAAGGTTGTG AAATACTGGC CCGAGAAGGG GAAGTCCGGG
                                                                          1800
       TTTCTCGTGT GGCGCTACCT TCTGCGGAGG GACGATGATG AGCCTGGCCC TTGGACGAAG
                                                                          1860
       GAGGGGAAGG ACCGGATCAA GAAGCTGGGG CTGACCATGC AGTATCCAGA AGGCTACCTG
                                                                         1920
```

PCT/US02/12476

```
WO 02/086443
       CAGGAGGGG GCTTCGCGTC CCCCAGGACG GGCAAGGGCA AGTGGAAGCG GAAGTCGGCA
       GGAGGTGGCC CGAGCAGGGC CGGGTCCCCG CGCCGGACAT CCAAGAAAAC CAAGGTGGAG
                                                                           2100
       CCCTACAGTC TCACGGCCCA GCAGAGCAGC CTCATCAGAG AGGACAAGAG CAACGCCAAG
                                                                           2160
       CTGTGGAATG AGGTCCTGGC GTCACTCAAG GACCGGCCGG CGAGCGGCAG CCCGTTCCAG
                                                                           2220
       TTGTTCCTGA GTAAAGTGGA GGAGACGTTC CAGTGTATCT GCTGTCAGGA GCTGGTGTTC
                                                                           2280
       CGGCCCATCA CGACCGTGTG CCAGCACAAC GTGTGCAAGG ACTGCCTGGA CAGATCCTTT
                                                                           2340
       CGGGCACAGG TGTTCAGCTG CCCTGCCTGC CGCTACGACC TGGGCCGCAG CTATGCCATG
                                                                           2400
       CAGGTGAACC AGCCTCTGCA GACCGTCCTC AACCAGCTCT TCCCCGGCTA CGGCAATGGC
                                                                           2460
10
       CGGTGATCTC CAAGCACTTC TCGACAGGCG TTTTGCTGAA AACGTGTCGG AGGGCTCGTT
                                                                           2520
       CATCGGCACT GATTTTGTTC TTAGTGGGCT TAACTTAAAC AGGTAGTGTT TCCTCCGTTC
                                                                           2580
       CCTAAAAAGG TTIGTCTTCC TTTTTTTTTA TTTTTATTTT TCAAATCTAT ACATTTTCAG
                                                                           2640
       GAATTTATGT ATTCTGGCTA AAAGTTGGAC TTCTCAGTAT TGTGTTTAGT TCTTTGAAAA
                                                                           2700
       CATAAAAGCC TGCAATTTCT CGACAAAACA ACACAAGATT TTTTAAAGAT GGAATCAGAA
                                                                           2760
15
       ACTACGTGGT GTGGAGGCTG TTGATGTTTC TGGTGTCAAG TTCTCAGAAG TTGCTGCCAC
                                                                           2820
       CAACTCTTTA AGAAGGCGAC AGGATCAGTC CTTCTCTAGG GTTCTGGCCC CCAAGGTCAG
                                                                           2880
       AGCAAGCATC TTCCTGACAG CATTTTGTCA TCTAAAGTCC AGTGACATGG TTCCCCGTGG
                                                                           2940
       TGGCCCGTGG CAGCCCGTGG CATGGCGTGG CTCAGCTGTC TGTTGAAGTT GTTGCAAGGA
                                                                           3000
       AAAGAGGAAA CATCTCGGGC CTAGTTCAAA CCTTTGCCTC AAAGCCATCC CCCACCAGAC
                                                                           3060
20
       TGCTTAGCGT CTGAGATCCG CGTGAAAAGT CCTCTGCCCA CGAGAGCAGG GAGTTGGGGC
                                                                           3120
       CACGCAGAAA TGGCCTCAAG GGGACTCTGC TCCACGTGGG GCCAGGCGTG TGACTGACGC
                                                                           3180
       TGTCCGACGA AGGCGGCCAC GGACGGACGC CAGCACACGA AGTCACGTGC AAGTGCCTTT
                                                                           3240
       GATTCGTTCC TTCTTTCTAA AGACGACAGT CTTTGTTGTT AGCACTGAAT TATTGAAAAT
                                                                           3300
       GTCAACCAGA TTCTAGAAAC TGCGGTCATC CAGTTCTTCC TGACACCGGA TGGGTGCTTG
                                                                           3360
       GGAACCGTTT GAGCCTTATA GATCATTTAC ATTCAATTTT TTTAACTCAG CAAGTGAGAA
25
       CTTACAAGAG GGTTTTTTT TAATTTTTTT TTCTCTTAAT GAACACATTT TCTAAATGAA
                                                                           3480
       TTTTTTTTGT AGTTACTGTA TATGTACCAA GAAAGATATA ACGTTAGGGT TTGGTTGTTT
                                                                           3540
       TTGTTTTTGT ATTTTTTTC TTTTGAAAGG GTTTGTTAAT TTTTCTAATT TTACCAAAGT
                                                                           3600
                                                                           3660
       TTGCAGCCTA TACCTCAATA AAACAGGGAT ATTTTAAATC ACATACCTGC AGACAAACTG
30
       GAGCAATGTT ATTTTTAAAG GGTTTTTTTC ACCTCCTTAT TCTTAGATTA TTAATGTATT
                                                                           3720
       AGGGAAGAAT GAGACAATTT TGTGTAGGCT TTTTCTAAAG TCCAGTACTT TGTCCAGATT 3780
       TTAGATTCTC AGAATAAATG TTTTTCACAG ATTGAAAAAA AAAAAAAA
       Seq ID NO: 455 Protein sequence
35
       Protein Accession #: NP_037414.2
                                                    41
                                         31
                                                               51
       MWIQVRTMDG RQTHTVDSLS RLTKVEELRR KIQELFHVEP GLQRLFYRGK QMEDGHTLFD
                                                                             60
40
       YEVRLNDTIQ LLVRQSLVLP HSTKERDSEL SDTDSGCCLG QSESDKSSTH GEAAAETDSR
                                                                            120
       PADEDMWDET ELGLYKVNEY VDARDTNMGA WFEAQVVRVT RKAPSRDEPC SSTSRPALEE
                                                                            180
       DVIYHVKYDD YPENGVVQMN SRDVRARART IIKWQDLEVG QVVMLNYNPD NPKERGFWYD
                                                                            240
       AEISRKRETR TARELYANVV LGDDSLNDCR IIFVDEVFKI ERPGEGSPMV DNPMRRKSGP
                                                                             300
       SCKHCKDDVN RLCRVCACHL CGGRQDPDKQ LMCDECDMAP HIYCLDPPLS SVPSEDEWYC
                                                                            360
45
       PECRNDASEV VLAGERLRES KKKAKMASAT SSSQRDWGKG MACVGRTKEC TIVPSNHYGP
       IPGIPVGTMW RPRVQVSESG VHRPHVAGIH GRSNDGAYSL VLAGGYEDDV DHGNFFTYTG
       SGGRDLSGNK RTAEOSCDOK LTNTNRALAL NCFAPINDQE GAEAKDWRSG KPVRVVRNVK
                                                                             540
       GGKNSKYAPA EGNRYDGIYK VVKYWPEKGK SGFLVWRYLL RRDDDEPGPW TKEGKDRIKK
                                                                             600
       LGLTMOYPEG YLEALANRER EKENSKREEE EQQEGGFASP RTGKGKWKRK SAGGGPSRAG
                                                                             660
50
       SPRRTSKKTK VEPYSLTAQQ SSLIREDKSN AKLWNEVLAS LKDRPASGSP FQLFLSKVEE
                                                                             720
       TFOCICCOEL VFRPITTVCQ HNVCKDCLDR SFRAQVFSCP ACRYDLGRSY AMOVNOPLOT
       Seq ID NO: 456 DNA sequence
       Nucleic Acid Accession #: NM_001200.1 .
55
       Coding sequence: 325..1514
                                         31
                                                               51
                  11
                             21
                                                    41
       GGGGACTTCT TGAACTTGCA GGGAGAATAA CTTGCGCACC CCACTTTGCG CCGGTGCCTT
60
       TGCCCCAGCG GAGCCTGCTT CGCCATCTCC GAGCCCCACC GCCCCTCCAC TCCTCGGCCT
                                                                             120
       TGCCCGACAC TGAGACGCTG TTCCCAGCGT GAAAAGAGAG ACTGCGCGGC CGGCACCCGG
                                                                             180
       GAGAAGGAG AGGCAAAGAA AAGGAACGGA CATTCGGTCC TTGCGCCAGG TCCTTTGACC AGAGTTTTC CATGTGGACG CTCTTTCAAT GGACGTGTCC CCGCGTGCTT CTTAGACGGA
                                                                             240
       CTGCGGTCTC CTAAAGGTCG ACCATGGTGG CCGGGACCCG CTGTCTTCTA GCGTTGCTGC
                                                                             360
65
       TTCCCCAGGT CCTCCTGGGC GGCGCGGCTG GCCTCGTTCC GGAGCTGGGC CGCAGGAAGT
       TCGCGGCGGC GTCGTCGGGC CGCCCTCAT CCCAGCCCTC TGACGAGGTC CTGAGCCAGT
TCGAGTTGCG GCTGCTCAGC ATGTTCGGCC TGAAACAGAG ACCCACCCCC AGCAGGGACG
                                                                             480
       CCGTGGTGCC CCCCTACATG CTAGACCTGT ATCGCAGGCA CTCAGGTCAG CCGGGCTCAC
                                                                             600
       CCGCCCCAGA CCACCGGTTG GAGAGGGCAG CCAGCCGAGC CAACACTGTG CGCAGCTTCC
                                                                             660
70
       ACCATGAAGA ATCTTTGGAA GAACTACCAG AAACGAGTGG GAAAACAACC CGGAGATTCT
                                                                             720
       TCTTTAATTT AAGTTCTATC CCCACGGAGG AGTTTATCAC CTCAGCAGAG CTTCAGGTTT
                                                                             780
       TCCGAGAACA GATGCAAGAT GCTTTAGGAA ACAATAGCAG TTTCCATCAC CGAATTAATA
                                                                             840
       TTTATGAAAT CATAAAACCT GCAACAGCCA ACTCGAAATT CCCCGTGACC AGACTTTTGG
                                                                             900
       ACACCAGGTT GGTGAATCAG AATGCAAGCA GGTGGGAAAG TTTTGATGTC ACCCCCGCTG
                                                                             960
75
       TGATGCGGTG GACTGCACAG GGACACGCCA ACCATGGATT CGTGGTGGAA GTGGCCCACT
                                                                           1020
       TGGAGGAGAA ACAAGGTGTC TCCAAGAGAC ATGTTAGGAT AAGCAGGTCT TTGCACCAAG
                                                                           1080
       ATGAACACAG CTGGTCACAG ATAAGGCCAT TGCTAGTAAC TTTTGGCCAT GATGGAAAAG
                                                                           1140
       GGCATCCTCT CCACAAAAGA GAAAAACGTC AAGCCAAACA CAAACAGCGG AAACGCCTTA
                                                                           1200
       AGTCCAGCTG TAAGAGACAC CCTTTGTACG TGGACTTCAG TGACGTGGGG TGGAATGACT
                                                                           1260
80
       GGATTGTGGC TCCCCCGGGG TATCACGCCT TTTACTGCCA CGGAGAATGC CCTTTTCCTC
                                                                           1320
       TGGCTGATCA TCTGAACTCC ACTAATCATG CCATTGTTCA GACGTTGGTC AACTCTGTTA
                                                                           1380
       ACTCTAAGAT TCCTAAGGCA TGCTGTGTCC CGACAGAACT CAGTGCTATC TCGATGCTGT
                                                                           1440
       ACCTTGACGA GAATGAAAAG GTTGTATTAA AGAACTATCA GGACATGGTT GTGGAGGGTT
       GTGGGTGTCG CTAGTACAGC AAAATTAAAT ACATAAATAT ATATATA
85
```

Seq ID NO: 457 Protein sequence Protein Accession #: NP_001191.1

	1	11	21	31	41	51	
	MVAGTRCLLA	LLLPOVLLGG	AAGLVPELGR	RKFAAASSGR	PSSOPSDEVL	SEFELRLLSM	60
5	PGLKQRPTPS	RDAVVPPYML	DLYRRHSGQP	GSPAPDHRLE	RAASRANTVR	SFHHEESLEB	120
	LPETSGKTTR TANSKFPVTR		TEEPITSAEL	QVFREQMQDA	LGNNSSFHHR	INIYEIIKPA	180
10		458 DNA sed id Accession	quence 1 #: NM_001	.999.2			
		ience: 18					
	1	11	21	31	41	51	
15	ATCCCCACAA	GACCGACGCT	GTGTCTCCAG	CALCUM CALACC	TOTOGO	Characascasca	60
13			CGGCCAGCCT				120
			TCGGTCCGCT				180 240
	GACGTGCTCC	GAGGGCCCAA	CGTGTGCGGC	TCCAGATTCC	ACTCCTACTG	CTGCCCTGGA	300
20			AAACCAGTGC TAACATGTGT				360 420
	TGTGGATCAA	AATCAATTCA	GCAGTGCAGT	GTGAGATGCA	TGAATGGTGG	GACCTGTGCA	480
			GAAAGGATAT				540
25			TGGACGTTGC AAGAGATTAC				600 660
	AACCAGATGT	GCCAAGGGCA	GCTGACAGGC	ATTGTCTGCA	CGAAGACTCT	GTGCTGTGCC	720
	ACCACTGGAC	GGGCGTGGGG	CCATCCCTGT	GGAGCTTGCC	AAGATGTTGA	TGAATGCCAG	780 840
20	GCTATCCCAG	GGATATGCCA	AGGAGGAAAC	TGTATCAATA	CAGTGGGCTC	TTTTGAATGC	900
30	AGATGCCCTG	CTGGTCACAA	ACAGAGTGAA ATGTGAAACT	ACTACTCAGA	AATGTGAAGA	CATTGATGAG	960 1020
	TTTTGTGTTT	GTCCACGTGG	ATATGTAACC	TCAACAGATG	GCTCTCGATG	CATCGATCAG	1080
	AGAACAGGCA	TGTGTTTCTC	GGGCCTGGTG CTGCTGTGAG	AATGGCCGCT	GTGCACAAGA	GCTCCCGGGG	1140 1200
35	CCTGAAGCCT	GTCCTGTCAG	AGGTTCTGAG	GAATATCGCA	GACTTTGCAT	GGATGGACTT	1260
	CCAATGGGAG	GAATTCCAGG	GAGTGCTGGT CAATGGCTAT	TCCAGACCTG	GAGGCACTGG	GGGAAATGGC	1320 1380
			TCCTGGCGTT				1440
40			AACAATTCTG				1500 1560
40	AACATGGGTT	ATAAGCAGGA	ACGCTGTATA TGCAAATGGA	GATTGTATAG	ATGTTGATGA	ATGCACATCA	1620
	AATCCCTGCA	CTAATGGAGA	TTGTGTTAAC	ACACCTGGTT	CCTATTATTG	TAAATGTCAT	1680
			TACCAAGCAA CGGTCGATGC				1740 1800
45	TGCAATGCCG	GCTTTGAATT	AACTACAGAT	GGAAAAAACT	GTGTTGATCA	TGATGAATGT	1860
	ACAACTACCA	ACATGTGTTT	GAATGGAATG CTTGGCTCCA	TGCATCAATG	AAGATGGCAG ACTGTACTGA	TGTTGATGAA	1920 1980
	TGCCAGACCC	CAGGAATCTG	CATGAATGGG	CACTGCATCA	ACAGTGAAGG	GTCCTTCCGC	2040
50			GGCTGTGGGC AGGAATCAAG				2100 2160
50	GCAGTGACCA	AGTCCGAATG	CTGCTGTGCC	AATCCAGACT	ATGGTTTTGG	AGAACCCTGC	2220
			TTCAGCTGAA TATCAATGAA				2280 2340
	GGGATTTGTG	AAAACTTAÇG	TGGTAGTTAC	CGTTGTAATT	GCAACAGTGG	CTATGAACCA	2400
55	GATGCCTCTG	GAAGAAACTG	TATTGACATT	GATGAATGTT	TAGTAAACAG	ACTGCTTTGT	2460 2520
			CACGCCAGGA GACCTGTGAA				2580
	GTCAATGGGG	CCTGCAGAAA	CAACCTTGGA	TCTTTCAATT	GTGAATGTTC	GCCCGGCAGC	2640
60			GATCTGTATT GGTGAATATT				2700 2760
٠.	GCCACCCTCG	GAGCCGCCTG	GGGGAGCCCC	TGTGAGCGGT	GTGAACTAGA	TACAGCTTGC	2820
			TAAAGGTGTT TGGACGCTGT			GTGTGAGGTG	2880 2940
	TGCCCTGAAG	GCCTTACGTT	GGATGGGACT	GGCCGTGTAT	GTTTGGATAT	TCGCATGGAG	3000
65	CAGTGTTACT	TGAAGTGGGA	TGAAGATGAA TGTCGGGGCG	TGCATCCACC	CCGACTCTGG	AAAGTTCCGC	3060 3120
	AAACCTGGCA	CCAAGGAATA	CGAGACACTG	TGCCCCCGCG	GGGCTGGCTT	TGCTAACCGA	3180
	GGGGATGTTC	TTACTGGGCG	GCCATTTTAC	AAAGACATCA	ATGAATGCAA	AGCATTTCCT	3240
70	AGTGGCTTTG	CTCTAGACAT	GTGCAGAAAT GGAGGAAAGA	AACTGCACGG	ACATCGACGA	GTGCAGGATT	3300 3360
	TCTCCTGACC	TCTGTGGCAG	TGGAATCTGC	GTCAATACAC	CGGGCAGCTT	TGAGTGCGAG	3420
			TGGCTTCATG TTGTAGGGGT				3480 3540
76	CAGTGTGACT	GCCCACTGGG	ACACGAGCTG	TCACCATCCC	GTGAGGACTG	TGTGGATATT	3600
75 .	AATGAATGCT	CCCTGAGTGA	CAATCTCTGC TCCTGGATAT	AGAAATGGAA	AATGTGTGAA	CATGATTGGA	3660 3720
	GATATTGATG	AATGTATGAT	AATGAACGGA	GGCTGTGACA	CCCAGTGCAC	AAATTCAGAG	3780
	GGAAGCTACG	AATGCAGCTG	CAGTGAGGGT	TATGCCCTGA	TGCCAGATGG	GAGATCGTGT	3840
80	ATTCCTGGAG	AGTATCGCTG	AAACAATCCT CCTCTGCTAT	GATGGCTTCA	TGGCTTCCAT	GGACATGAAA	3900 3960
_	ACATGCATTG	ATGTCAATGA	ATGTGACCTA	AATTCAAATA	TCTGCATGTT	TGGGGAATGT	4020
	GAGAACACAA ACCACAGGAT	AGGGATCCTT	CATTTGCCAC GGATGAGTGT	TGTCAGCTGG	GTTACTCAGT	GAAGAAGGGG	4080 4140
0.5	GCCTCATGTC	TGAATATCCC	AGGAAGCTTC	AAGTGTAGCT	GCAGAGAAGG	CTGGATTGGA	4200
85	AACGGCATCA	AGTGTATTGA	TCTGGACGAA CCCGGGCTCA	TACCGCTGTG	GAACCCACCA	GTGTAGCATC AGGTTTCACT	4260 4320
	GGTGATGGCT	TTACCTGCTC	AGATGTTGAT	GAGTGTGCAG	AAAACATAAA	CCTCTGTGAG	4380

		/086443					
	AACGGACAGT	GCCTTAATGT	CCCGGGTGCA	TATCGCTGCG	AGTGTGAGAT	GGGCTTCACT	4440
	CCAGCCTCAG	ACAGCAGATC	CTGCCAAGAT	ATTGATGAAT	GCTCCTTCCA	AAACATTIGT	4500
	GTCTCTGGAA	CATGTAATAA	CCTGCCTGGA	ATGTTTCATT	GCATCTGCGA	TGATGGTTAT	4560
_	GAATTGGACA	GAACAGGAGG	GAACTGTACA	GATATTGATG	AGTGTGCAGA	TCCTATAAAC	4620
5	TGTGTCAATG	GCCTATGTGT	CAACACGCCT	GGTCGCTATG	AGTGTAACTG	CCCACCCGAT	4680
	TTTCAGTTGA	ACCCAACTGG	TGTGGGTTGT	GTTGACAACC	GTGTGGGCAA	CTGCTACCTG	4740
	AAGTTTGGAC	CTCGAGGAGA	TGGGAGTCTG	TCTTGCAACA	CCGAGATCGG	GGTGGGCGTC	4800
	AGTCGCTCTT	CATGCTGCTG	CTCTCTGGGA	AAGGCCTGGG	GAAACCCCTG	TGAGACATGC	4860
	CCCCCTGTCA	ATAGCACTGA	ATATTACACC	CTGTGTCCCG	GAGGTGAAGG	CTTCAGACCT	4920
10	AACCCCATCA	CAATCATTTT	AGAAGACATT	GACGAATGCC	AGGAGTTACC	AGGTCTCTGC	4980
- •	CAGGGTGGAA	ACTGCATCAA	CACTTTTGGG	AGCTTCCAGT	GTGAGTGCCC	ACAAGGCTAC	5040
	TACCTCACCC	ACCOUNTACCOG	CATCTCTGAG	GATATTGATG	AGTGTTTTGC	ACATCCTGGT	5100
	CONCORCOCCO	VACCUA CCLC	CTATAACACC	CTGGGAAATT	ACACCTGCAT	TTGCCCACCT	5160
	GIGIGIGGGC	ACCORCA ACCC	ACCOCACAGO	TGCATGGACA	TGAGAAAAAG	CTTTTGCTAC	5220
15	GAGTACATGC	AGGICAGIGG	TOUCCACAGE	GAGTTGCCTT	TCAATGTGAC	AAAAAGGATG	5280
13	CGAAGCTATA	ATGGAACCAC	CCCCNAGAAI	GGGAACAAAC	CTTCTCAACC	ATCCCCAACT	5340
	TGCTGCTGCA	CATATAATGT	GGGCAAAGCT	GGGAACAAAC	CITGIGAACC	COTTOCCCARCI	5400
	CCAGGAACAG	CTGACTTTAA	AACCATATGT	GGAAATATTC	CIGGATICAC	CITIONCALI	5460
	CACACAGGAA	AAGCTGTTGA	CATTGATGAA	TGTAAAGAGA	TTCCAGGCAT	TIGIGCAAAI	
20	GGTGTGTGCA	TTAACCAGAT	TGGCAGTTTC	CGCTGTGAAT	GCCCTACAGG	ATTCAGTTAC	5520
20	AATGACCTGC	TGTTGGTTTG	TGAAGATATA	GATGAGTGCA	GCAATGGTGA	TAATCTCTGC	5580
	CAGCGGAATG	CAGACTGCAT	CAATAGTCCT	GGTAGTTACC	GCTGTGAATG	TGCCGCGGGT	5640
	TTCAAACTTT	CACCCAATGG	GGCCTGTGTA	GATCGCAATG	AATGTTTAGA	AATTCCTAAC	5700
	GTTTGCAGTC	ATGGCTTGTG	TGTTGATCTG	CAAGGAAGTT	ACCAGTGCAT	CTGCCACAAT	5760
	GGCTTTAAGG	CTTCTCAGGA	CCAGACCATG	TGCATGGATG	TTGATGAGTG	CGAGCGCAC	5820
25	CCATGTGGAA	ATGGAACTTG	TAAAAACACC.	GTTGGATCCT	ATAACTGTCT	GTGCTACCCA	5880
	GGGTTTGAAC	TCACTCATAA	TAATGATTGC	CTGGACATAG	ATGAGTGCAG	TTCCTTTTTT	5940
	GGTCAGGTGT	GCAGAAATGG	ACGTTGTTTT	AATGAAATTG	GTTCTTTCAA	GTGTCTATGT	6000
	AACGAAGGTT	ATGAACTTAC	CCCAGATGGC	AAAAACTGTA	TAGACACTAA	TGAGTGTGTC	6060
	GCCCTTCCCG	GCTCTTGCTC	TCCTGGTACC	TGTCAGAATT	TGGAGGGATC	CTTCAGATGC	6120
30	ATCTGTCCCC	CAGGGTATGA	AGTAAAAAGC	GAGAACTGCA	TTGATATAAA	TGAATGTGAT	6180
50	CARCATCCCA	ACATOTOTOT	TTTTCCTTCC	TGTACTAATA	CTCCAGGGGG	CTTCCAGTGC	6240
	CHAGAICCCA	CONTINUE CONTRACT	ACTATOTICAT	AATGGACGGA	GATGCTTTGA	TACTOGCCAG	6300
	CICIGCCCCC	CIGGCIIIGI	WC1V1CIGV1	AAGTGTTCTG	TACCCAAAGC	TTTCAACACC	6360
	AGCTTCTGCT	TCACAAATTT	TIGAMMATIGGA	CCAGGAGAGG	COTCCCARAGE	CCCCTGTGAG	6420
25	ACAAAAGCAA	AATGUTGUTG	TAGTAAGATG	CAGGATTTGT	CECCAMATICA	CCATCGAACT	6480
35	CTGTGCCCCA	AAGACGATGA	AGTTGCATTT	GTCAATGAGT	GICCAIAIGG	CCAIGGAACI	6540
	GTCCCTAGTC	TTCATGATAC	ACGTGAAGAT	GTCAATGAGT	GTCTTGAGAG	TCCNGGCATI	6600
	TGTTCAAATG	GTCAATGTAT	CAACACCGAC	GGATCTTTTC	GCTGTGAATG	TCCAATGGGC	
	TACAACCTTG	ACTACACTGG	AGTACGCTGT	GTGGATACTG	ATGAGTGTTC	AATCGGCAAT	6660
40	CCGTGTGGAA	ATGGTACATG	CACCAATGTT	ATTGGGAGTT	TTGAATGCAA	TIGCAATGAA	6720
40	GGCTTTGAGC	CAGGGCCCAT	GATGAATTGT	GAAGATATCA	ACGAATGTGC	CCAGAACCCA	6780
	CTGCTGTGTG	CTTTACGCTG	CATGAACACT	TTTGGGTCCT	ATGAATGCAC	GTGCCCGATT	6840
	GGCTATGCCC	TCAGGGAAGA	TCAAAAGATG	TGCAAAGATC	TGGATGAATG	TGCTGAAGGG	6900
	TTACACGACT	GTGAATCTAG	GGGCATGATG	TGTAAGAATC	TAATCGGCAC	CTTCATGTGC	6960
	ATCTGCCCTC	CTGGAATGGC	CCGAAGGCCC	GATGGAGAAG	GCTGTGTAGA	TGAAAATGAA	7020
45	TGCAGGACCA	AGCCAGGAAT	CTGTGAAAAT	GGACGTTGTG	TTAACATTAT	TGGAAGCTAT	7080
	AGATGTGAGT	GTAATGAAGG	ATTCCAGTCA	AGTTCTTCAG	GCACTGAATG	CCTTGACAAT	7140
	CGACAGGGTC	TCTGCTTTGC	AGAGGTACTG	CAGACAATAT	GTCAAATGGC	ATCCAGTAGT	7200
	CGCAATCTCG	TCACTAAGTC	AGAATGCTGC	TGTGATGGTG	GGCGAGGCTG	GGGCCACCAG	7260
	TGCGAGCTTT	GCCCACTTCC	TGGAACTGCC	CAGTACAAAA	AGATATGTCC	TCATGGCCCA	7320
50	GGATATACAA	CTGATGGAAG	AGATATTGAT	GAATGTAAGG	TAATGCCAAA	CCTCTGCACC	7380
-	AATGGTCAGT	GCATCAATAC	CATGGGCTCA	TTCCGATGCT	TCTGCAAGGT	TGGCTACACC	7440
	ACAGACATCA	CTCCAACCTC	TTGTATAGAC	CTTGATGAAT	GCTCCCAGTC	CCCGAAACCA	7500
	TOCAROTTCA	TOTOCARGA	CACTGAGGGG	AGTTATCAGT	GTTCATGTCC	GAGGGGGTAT	7560
	COCCARCIACA	ACCATCCAAA	CACATGCAAA	GACCTTGATG	AATGTCAAAC	AAAGCAGCAT	7620
55	A A CTCCCCAAGO	WOOKI GOVER	CAACACCCTC	GGGGGGTTTA	CCTGTAAATG	TCCACCTGGT	7680
JJ	AACTGCCAGT	TCCTCTGTGT	CAACACCCIG	AACAACGAAT	CTCCCTCTCA	ACCEPTECTE	7740
	TTCACACAGC	ATCACACTGC	TOTALCOAC	CCAGGCAGTT	TCACCTCTCA	ATGCCAAAGA	7800
,	TGTGGAGGAA	AGGGAATCIG	TCAAAACACI	CCAGGCAGII	TCAGCIGIGA	TCATCCCAAC	7860
	GGGTTCTCTC	TTGATGCCAC	CGGACTGAAC	TGTGAAGATG	TIGATGAATG	TGATGGGAAC	7920
60	CACAGGTGCC	AACACGGCTG	CCAGAACATC	CTGGGTGGCT	ACAGATGIGG	CTGCCCCCAA	798Ó
60	GGCTACATCC	AGCACTACCA	GTGGAATCAG	TGTGTCGATG	AGAATGAATG	CTCCAATCCC	
	AATGCCTGTG	GCTCTGCTTC	CTGCTACAAC	ACCCTGGGGA	GTTACAAGTG	CGCCTGCCCC	8040
	TCGGGGTTCT	CCTTCGACCA	GTTCTCCAGT	GCCTGCCACG	ACGTGAATGA	GTGCTCGTCC	B100.
	TCCAAGAACC	CCTGCAATTA	CGGCTGCTCT	AACACGGAGG	GGGGCTACCT	CTGTGGCTGC	B160
	CCCCCTGGGT	ATTACAGAGT	GGGACAAGGC	CACTGTGTCT	CAGGAATGGG	ATTTAACAAG	8220
65	GGGCAGTACC	TGTCACTGGA	TACAGAGGTC	GATGAGGAAA	ATGCTCTGTC	CCCAGAAGCA	8280
	TGCTACGAGT	GCAAAATCAA	CGGCTATCCT	AAGAAAGACA	GCAGGCAGAA	GAGAAGTATT	B340
	CATGAACCTG	ATCCCACTGC	TGTTGAACAG	ATCAGCCTAG	AGAGTGTCGA	CATGGACAGC	8400
	CCCGTCAACA	TGAAGTTCAA	CCTCTCCCAC	CTCGGCTCTA	AGGAGCACAT	CCTGGAACTA	8460
	AGGCCCGCCA	TCCAGCCCCCT	CAACAACCAC	ATCCGTTATG	TCATCTCTCA	AGGGAACGAT	8520
70	CACACCCTCT	TCCCCATCCA	CCADAGGAAT	GGGCTCAGCT	ACTTGCACAC	GGCCAAGAAG	
10	AACCTCATCC	CCCCCACATA	CACACTGGAA	ATCACTAGCA	TCCCTCTCTA	CAAGAAGAAG	8640
	AAGCICAIGC	CCGGCACAIA	CACACIGGAS	CATCACTACC	TCCTAGGGGA	GCTTGGGGAG	8700
	GAGCTTAAGA	MACIGUAAGA	CAUCAATGAG	TATTON CATO	TCVCTCOCCA	GGGCCCAGGC	8760
	GCTCTCAGAA	TGAGGCTGCA	GATTCAGCTC	INITAACCGT	CTCACAGACTT	A A STATEMENT A A C	
75	TCAAATCCTA	GCACAGCCAG	TCTGCAGAAG	CATTIGAAAA	GICAAGGACT	AATTTTAAAG	8880
75	AGGAAAAATA	ATAATAACTC	TTGTTTCTTT	CCTCCCTGTC	TAGACTTTG		
	CTCACAGGGA	GGGATAATTT	AGACTCTGGT	ATGGCCAAAG	ATTIGAGCTC	AAAGGCAACC	8940
	GTGGTTACTG	TATTTTTTAT	ATAACTTCAT	TTTAAAATAT	ATTAAAAGAA	ACCTAAATGT	9000
	TCAAGATATC	AGCATATGGC	ACTAAATGCA	CAAAAATAAT	GTGAGCTTTT	TTTTTTTTT	9060
00	CCTGTTAGCA	GTCTGTAACA	CTTTGGGTAT	TTTGCTATAG	TTGCTAATTA	AAAAAATATA	9120
80	GATGTTTATT	TATTTTTAAT	GCAGTAATAT	ATGGAGAAAT	GAACAAACTA	TGTAAACAAA	9180
	AAGGGAAACT	CACTTGTTTT	TCTTTAGATT	TATAAATTTG	AGCTATTTTT	TTTAGAGGTG	9240
	מממידידידים	ATCCAATAGA	TACAAGAGAT	GTTTCCTTTG	GTTTTCTGCC	AGTCATCCAG	9300
	CTGATACACA	CCTGATCGAT	TTTAAAGAAA	GCCACACAGA	GCTGAATCGG	GCAGTGCTAA	9360
	тсаатаатол	AAAAGACATG	AATGTCATTA	GATCCTTTAT	AACGTAGATC	GAAGCCAAAG	9420
85	- CACCACAMAN	GTGACAACAT	TTCATATCAC	CAGACACACC	AGGCAACAGA	AGTTGAAGCA	9480
05	CAGCICATTI	GIGACAACAT	TICHINICAC		mma coa mmco	ACCCCADACC	9540
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	CAACCACTGT	AGCAAAATAC	AACCTCAACC	TGTGAGACCA	GCTACCCACA	ACACCTCATT	9600

```
WO 02/086443
CTTACCCAGG GTECGCTGCG TCCTCATGGT ACTGTAGGCA GCTGAAGAAC CGCCGTTCCC 9660
                                                                           9720
       TTGAAAGGGA ACACCTGGCA TTCTGTGGTG TTTCGTGCTG TCTTAAATAA TGGTGCATTT
       ATTATGTTCA AGTTATTTCA GGATTGCCAT ATGTGCAAAC AAATCATGCA ATGCAGCCAA 9780
                                                                           9840
       GGAATATATG TTGTTGTTGT TGTTTTAAAC CCATTTTTT TTTAGAATTT TCATTAATAC
 5
       TGTAGTTATA CACCATATGC CTCATTTTAT CATAGCCTAT TGTGTATGAA AGATGTTTGT
                                                                           9900
       ACAATGAATT GATGTTTAGT TTGCTTTAGT CATTTAAAAA GATATTGTAC CAGGATGTGC
                                                                           9960
       TATTAAGAGC ACGTATCCAT TATTCTTCTC AACCCAAGAA CCTGTTTCCT GGACCAGTGA 10020
       CCAAACCTCA TATGTGAAAT GGCCAAAGCA CATGCAGGCT CCTGGTTGTT CCTCTCAAAC 10080
       CTGTGCTGAC CAAAGATTAG TAACCAGTTA TACCCAGTAT TTTGAGGTTT TATTGTTTTT 10140
10
       TTAATAACTA AAAAAAAACT CGTGCC
       Seg ID NO: 459 Protein seguence
       Protein Accession #: NP_001990.1
15
                                         31
       MGRRRRLCLO LYFLWLGCVV LWAQGTAGQP QPPPPKPPRP QPPPQQVRSA TAGSEGGFLA
       PEYREBGAAV ASRVRRRGOO DVLRGPNVCG SRFHSYCCPG WKTLPGGNQC IVPICRNSCG
                                                                            120
       DGFCSRPNMC TCSSGQISST CGSKSIQQCS VRCMNGGTCA DDHCQCQKGY IGTYCGQPVC
                                                                            180
20
       ENGCONGGRC IAOPCACVYG FTGPQCBRDY RTGPCFTQVN NQMCQGQLTG IVCTKTLCCA
                                                                            240
       TTGRAWGHPC EMCPAQPQPC RRGFIPNIRT GACQDVDECQ AIPGICQGGN CINTVGSFEC
                                                                            300
       RCPAGHKQSE TTOKCEDIDE CSIIPGICET GECSNTVGSY FCVCPRGYVT STDGSRCIDQ
                                                                            360
       RTGMCFSGLV NGRCAQELPG RMTKMQCCCE PGRCWGIGTI PEACPVRGSE EYRRLCMDGL
                                                                            420
       PMGGIPGSAG SRPGGTGGNG FAPSGNGNGY GPGGTGFIPI PGGNGFSPGV GGAGVGAGGQ
                                                                            480
25
       GPIITGLTIL NQTIDICKHH ANLCLNGRCI PTVSSYRCEC NMGYKQDANG DCIDVDECTS
                                                                            540
       NPCTNGDCVN TPGSYYCKCH AGFQRTPTKQ ACIDIDECIQ NGVLCKNGRC VNSDGSFQCI
                                                                            600
       CNAGFELTTD GKNCVDHDEC TTTNMCLNGM CINEDGSFKC ICKPGFVLAP NGRYCTDVDE
                                                                            660
       COTPGICMNG HCINSEGSFR CDCPPGLAVG MDGRVCVDTH MRSTCYGGIK KGVCVRPFPG
                                                                            720
       AVTKSECCCA NPDYGFGEPC QPCPAKNSAE FHGLCSSGVG ITVDGRDINE CALDPDICAN
                                                                            780
       GICENLRGSY RCNCNSGYEP DASGRNCIDI DECLVNRLLC DNGLCRNTPG SYSCTCPPGY
30
                                                                            840
       VFRTETETCE DINECESNPC VNGACRNNLG SFNCECSPGS KLSSTGLICI DSLKGTCWLN
                                                                            900
       IQDSRCEVNI NGATLKSECC ATLGAAWGSP CERCELDTAC PRGLARIKGV TCEDVNECEV
                                                                            960
       PPGVCPNGRC VNSKGSFHCE CPEGLTLDGT GRVCLDIRME QCYLKWDEDE CIHPVPGKFR
                                                                           1020
       MDACCCAVGA AWGTECEECP KPGTKEYETL CPRGAGFANR GDVLTGRPFY KDINECKAFP
                                                                           1080
35
       GMCTYGKCRN TIGSPKCRCN SGFALDMEER NCTDIDECRI SPDLCGSGIC VNTPGSFECE
                                                                           1140
       CFEGYESGFM MMKNCMDIDG CERNPLLCRG GTCVNTEGSF QCDCPLGHEL SPSREDCVDI
       NECSLEDNIC RNGKCVNMIG TYQCSCNPGY QATPDRQGCT DIDECMIMNG GCDTQCTNSE
       GSYECSCSEG YALMPDGRSC ADIDECENNP DICDGGQCTN IPGEYRCLCY DGFMASMDMK
       TCIDVNECDL NSNICMFGEC ENTKGSFICH COLGYSVKKG TTGCTDVDEC EIGAHNCDMH
                                                                           1380
40
       ASCLNIPGSP KCSCREGWIG NGIKCIDLDE CSNGTHQCSI NAQCVNTPGS YRCACSEGFT
       GDGFTCSDVD ECAENINLCE NGQCLNVPGA YRCECEMGFT PASDSRSCQD IDECSFQNIC
                                                                           1500
       VSGTCNNLPG MFHCICDDGY ELDRTGGNCT DIDECADPIN CVNGLCVNTP GRYECNCPPD
                                                                           1560
       FQLNPTGVGC VDNRVGNCYL KFGPRGDGSL SCNTEIGVGV SRSSCCCSLG KAWGNPCETC
                                                                           1620
       PPVNSTEYYT LCPGGEGFRP NPITIILEDI DECQELPGLC QGGNCINTFG SFQCECPQGY
                                                                           1680
45
       YLSEDTRICE DIDECFAHPG VCGPGTCYNT LGNYTCICPP EYMQVNGGHN CMDMRKSFCY
                                                                           1740
       RSYNGTICEN ELPFNVTKRM CCCTYNVGKA GNKPCEPCPT PGTADFKTIC GNIPGFTFDI
                                                                           1800
       HTGKAVDIDE CKEIPGICAN GVCINQIGSF RCECPTGFSY NDLLLVCEDI DECSNGDNLC
                                                                           1860
       ORNADCINSP GSYRCECAAG FKLSPNGACV DRNECLEIPN VCSHGLCVDL QGSYQCICHN
                                                                           1920
       GFKASQDQTM CMDVDECERH PCGNGTCKNT VGSYNCLCYP GFELTHNNDC LDIDECSSFF
                                                                           1980
50
       GQVCRNGRCF NEIGSFKCLC NEGYELTPDG KNCIDTNECV ALPGSCSPGT CQNLEGSFRC
                                                                           2040
       ICPPGYEVKS ENCIDINECD EDPNICLFGS CTNTPGGFQC LCPPGFVLSD NGRRCFDTRQ
                                                                           2100
       SFCFTNFENG KCSVPKAFNT TKAKCCCSKM PGEGWGDPCE LCPKDDEVAF QDLCPYGHGT
                                                                           2160
       VPSLHDTRED VNECLESPGI CSNGQCINTD GSFRCECPMG YNLDYTGVRC VDTDECSIGN
                                                                           2220
       PCGNGTCTNV IGSFECNCNE GFEPGPMMNC EDINECAQNP LLCALRCANT FGSYECTCPI
GYALREDOKM CKOLDECAEG LHDCESRGMM CKNLIGTFMC ICPPGMARRP DGEGCVDENE
                                                                           2280
55
                                                                           2340
       CRTKPGICEN GRCVNIIGSY RCECNEGFQS SSSGTECLDN RQGLCFAEVL QTICQMASSS
                                                                           2400
       RNLVTKSECC CDGGRGWGHQ CELCPLPGTA QYKKICPHGP GYTTDGRDID ECKVMPNLCT
       NGOCINTMGS FRCFCKVGYT TDISGTSCID LDECSOSPKP CNYICKNTEG SYQCSCPRGY
                                                                           2520
       VLOEDGKTCK DLDECOTKOH NCOFLCVNTL GGFTCKCPPG FTQHHTACID NNECGSQPLL
                                                                           2580
60
       CGGKGICONT PGSFSCECOR GFSLDATGLN CEDVDECDGN HRCQHGCQNI LGGYRCGCPQ
                                                                           2640
       GYIOHYOWNO CVDENECSNP NACGSASCYN TLGSYKCACP SGFSFDQFSS ACHDVNECSS
                                                                           2700
       SKNPCNYGCS NTEGGYLCGC PPGYYRVGQG HCVSGMGFNK GQYLSLDTEV DEENALSPEA
                                                                           2760
       CYECKINGYP KKDSRQKRSI HEPDPTAVEQ ISLESVDMDS PVNMKFNLSH LGSKEHILEL
                                                                           2820
       RPAIQPLNNH IRYVISQGND DSVFRIHQRN GLSYLHTAKK KLMPGTYTLE ITSIPLYKKK 2880
65
       ELKKLEESNE DDYLLGELGE ALRMRLQIQL Y
       Seq ID NO: 460 DNA sequence
       Nucleic Acid Accession #: NM_013372.1
       Coding sequence: 63..617
70
                                         31
                                                    41
                                                               51
                             21
       GCGGCCGCAC TCAGCGCCAC GCGTCGAAAG CGCAGGCCCC GAGGACCCGC CGCACTGACA
                                                                              60
       GTATGAGCCG CACAGCCTAC ACGGTGGGAG CCCTGCTTCT CCTCTTGGGG ACCCTGCTGC
                                                                             120
75
       CGGCTGCTGA AGGGAAAAAG AAAGGGTCCC AAGGTGCCAT CCCCCCGCCA GACAAGGCCC
                                                                             180
       AGCACAATGA CTCAGAGCAG ACTCAGTCGC CCCAGCAGCC TGGCTCCAGG AACCGGGGGC
       GGGGCCAAGG GCGGGCACT GCCATGCCCG GGGAGGAGGT GCTGGAGTCC AGCCAAGAGG
       CCCTGCATGT GACGGAGCGC AAATACCTGA AGCGAGACTG GTGCAAAACC CAGCCGCTTA
       AGCAGACCAT CCACGAGGAA GGCTGCAACA GTCGCACCAT CATCAACCGC TTCTGTTACG
                                                                             420
80
       GCCAGTGCAA CTCTTTCTAC ATCCCCAGGC ACATCCGGAA GGAGGAAGGT TCCTTTCAGT
                                                                             480
       CCTGCTCCTT CTGCAAGCCC AAGAAATTCA CTACCATGAT GGTCACACTC AACTGCCCTG
                                                                             540
       AACTACAGCC ACCTACCAAG AAGAAGAGAG TCACACGTGT GAAGCAGTGT CGTTGCATAT
                                                                             600
       CCATCGATTT GGATTAAGCC AAATCCAGGT GCACCCAGCA TGTCCTAGGA ATGCAGCCCC
                                                                             660
       AGGAAGTCCC AGACCTAAAA CAACCAGATT CTTACTTGGC TTAAACCTAG AGGCCAGAAG
                                                                             720
85
       AACCCCCAGC TGCCTCCTGG CAGGAGCCTG CTTGTGCGTA GTTCGTGTGC ATGAGTGTGG
                                                                             780
       ATGGGTGCCT GTGGGTGTTT TTAGACACCA GAGAAAACAC AGTCTCTGCT AGAGAGCACT
                                                                             840
       CCCTATTTTG TAAACATATC TGCTTTAATG GGGATGTACC AGAAACCCAC CTCACCCCGG
                                                                             900
```

		AAGGGGCGGG	GCCGTGGTCT	GGTTCTGACT	TTGTGTTTTT	GTGCCCTCCT	960
	GGGGACCAGA	ATCTCCTTTC	GGAATGAATG	TTCATGGAAG	AGGCTCCTCT	GAGGGCAAGA	1020
	GACCTGTTTT	AGTGCTGCAT	TCGACATGGA	AAAGTCCTTT	TAACCTGTGC	TTGCATCCTC	1080
5	CTTTCCTCCT	CCTCCTCACA TGCCAAGGTT	ATCCATCTCT	TCTTAAGTTG	CATGATGACTA	ATCTTTTTCA	1140 1200
3	TTTTGTGAAG	ACCCTCCAGA	CTCTGGGAGA	GGCTGGTGTG	GGCAAGGACA	AGCAGGATAG	1260
	TGGAGTGAGA	AAGGGAGGGT	GGAGGGTGAG	GCCAAATCAG	GTCCAGCAAA	AGTCAGTAGG	1320
	GACATTGCAG	<b>AAGCTTGAAA</b>	GGCCAATACC	AGAACACAGG	CTGATGCTTC	TGAGAAAGTC	1380
10	TTTTCCTAGT	ATTTAACAGA	ACCCAAGTGA	ACAGAGGAGA	AATGAGATTG	CCAGAAAGTG	1440
10	ATTAACTTTG	GCCGTTGCAA TGTTCGGACC	TCTGCTCAAA	CCTAACACCA	AACTGAAAAC	ATAAATACTG	1500 1560
	CCCTCAGGTG	GAAAAGAGAG	CAAGCAAGIT	AGCIAAACCA	TAGGGGTGGG	AATTAATCAA	1620
	AAACCKCAGA	GGCTGAAATT	CCTAATACCT	TTCCTTTATC	GTGGTTATAG	TCAGCTCATT	1680
	TCCATTCCAC	TATTTCCCAT	AATGCTTCTG	AGAGCCACTA	ACTTGATTGA	TAAAGATCCT	1740
15	GCCTCTGCTG	AGTGTACCTG	ACAGTAAGTC	TAAAGATGAR	AGAGTTTAGG	GACTACTCTG	1800
	TTTTAGCAAG	ARATATTKTG	GGGGTCTTTT	TGTTTTAACT	ATTGTCAGGA	GATTGGGCTA	1860
	RAGAGAAGAC	GACGAGAGTA CCTGGTAGAA	AGGAAATAAA	GGGRATTGCC	TCTGGCTAGA	GAGTAAGTTA	1920 1980
	ACCATCTGAG	GGGACCCTGT	TAGGAGAGGA	TAIGACCICC	ATGTATTAGC	TGTTCATCTG	2040
20		GATGGACATA					2100
	TCTGATTAAA	CTTGGCCTAC	TGGCAATGGC	TACTTAGGAT	TGATCTAAGG	GCCAAAGTGC	2160
		AACTTTATTG					2220
	TTTTATATAC	AAACTCCCTG	AATACTCTTT	TTGCCTTGTA	TCTTCTCAGC	CTCCTAGCCA	2280
25	AGTCCTATGT	AATATGGAAA	ACAAACACTG	CAGACTTGAG	ATTCAGTTGC	CGATCAAGGC	2340 2400
23		AGAGAACCCT TCCCATCTAA					2460
		TGTTGGGTCT					2520
	CTAGGCGAAT	TTGTCCAAAC	ACATAGTGTG	TGTGTTTTGT	ATACACTGTA	TGACCCCACC	2580
20	CCAAATCTTT	GTATTGTCCA	CATTCTCCAA	CAATAAAGCA	CAGAGTGGAT	TTAATTAAGC	2640
30		TAAGGCAGAA					2700
		ACACCAGGGA					2760 2820
		AACTCTGCCA TTCTTTTAGG					2880
	CAAGTAAAGA	GAATTTCCTC	AACACTAACT	TCACTGGGAT	AATCAGCAGC	GTAACTACCC	2940
35 ⁻	TAAAAGCATA	TCACTAGCCA	AAGAGGGAAA	TATCTGTTCT	TCTTACTGTG	CCTATATTAA	3000
	GACTAGTACA	AATGTGGTGT	GTCTTCCAAC	TTTCATTGAA	AATGCCATAT	CTATACCATA	3060
	TTTTATTCGA	GTCACTGATG	ATGTAATGAT	ATATTTTTC	ATTATTATAG	TAGAATATTT	3120
	TTATGGCAAG	ATATTTGTGG GATGTACACT	TCTTGATCAT	ACCTATTAAA	ATAATGCCAA	CATCCTGGAA	3180 3240
40	CTCTCTAACT	TGTTTTTTGT	TACTGTAGGT	CTTCAAAGTT	AAGAGTGTAA	GTGAAAAATC	3300
10	TGGAGGAGAG	GATAATTTCC	ACTGTGTGGA	ATGTGAATAG	TTAAATGAAA	AGTTATGGTT	3360
	ATTTAATGTA	ATTATTACTT	CAAATCCTTT	GGTCACTGTG	ATTTCAAGCA	TGTTTTCTTT	3420
	TTCTCCTTTA	TATGACTTTC	TCTGAGTTGG	GCAAAGAAGA	AGCTGACACA	CCGTATGTTG	3480
15	TTAGAGTCTT	TTATCTGGTC	AGGGGAAACA	AAATCTTGAC	CCAGCTGAAC	ATGTCTTCCT	3540
45	GAGTCAGTGC	CTGAATCTTT	ATTTTTTAAA	TTGAATGTTC	CTTAAAGGTT	AACATTTCTA	3600 3660
		AAGAAAGACT GATAATGATG					3720
	AATGAAAAGT	GGATAAACAG	AACATTTATA	AGTGATCAGT	TAATGCCTAA	GAGTGAAAGT	3780
	AGTTCTATTG	ACATTCCTCA	AGATATTTAA	TATCAACTGC	ATTATGTATT	ATGTCTGCTT	3840
50	AAATCATTTA	AAAACGGCAA	AGAATTATAT	AGACTATGAG	GTACCTTGCT	GTGTAGGAGG	3900
	ATGAAAGGGG	AGTTGATAGT	CTCATAAAAC	TAATTTGGCT	TCAAGTTTCA	TGAATCTGTA	3960
•		AATTTTCACC		TCTATATAGC	CTTTGCTAAA	GAGCAACTAA	4020
	TAAATTAAAC	CTATTCTTTC	AAAAAAAA				
55	Seg ID NO:	461 Protein	seguence				
		ession #: 1					
			_				
	1	11	21	31	41	51	
60		]	1		IDENTIFICATION OF THE PROPERTY	OODCCDATECE	60
00		LLLLLGTLLP				RTIINRFCYG	120
						TRVKQCRCIS	180
	IDLD		000 000 000				
~	•						
65	•	462 DNA sec	•	••			
		d Accession		quence			
	Coaing sed	ence: 12	733				
	1	11	21	31	41	51	
70	ī	ī	Ī	1	]		
	ATGAAAGTTG	GAGTGCTGTG	GCTCATTTCT	TTCTTCACCT	TCACTGACGG	CCACGGTGGC	60
	TTCCTGGGGA	AAAATGATGG	CATCAAAACA	AAAAAAGAAC	TCATTGTGAA	TAAGAAAAA	120
		CAGTCGAAGA ATTTGAGAAA					180 240
75						GAATGGAGTC	300
, •						TGATCCCCAG	360
	AACTGCTACC	TTCACACGGC	TGGAGCACTC	CCAAGCTGTG	AATGTCATCT	CAACAACCTC	420
	AGCCAGAGTG	TCAATTTCTG	TGAGAGAACA	AAGATTTGGG	GCACTTTCAA	AATTAATGAA	480
80						TGCAAATGGA	540
ou						GGTTCAGGTC CAGCAGTGCA	600 660
						CCTTCACAAG	720
		TAGAAGACGG					780
0.5	GTCTTTGGAT	TTGGGTCCAA	GGATGATGAA	TATACCCTGC	CCTGCAGCAG	TGGCTACAGG	840
85						GACTTGTGTG	900
						TGCCACTGAG	960
		CAPILITICAT	GCMAAAATCIT	ICIGICATCA	TICGCCAAAA	CCCATCAACC	1020

```
ACAGTGGGGA ATCTGGCTTC GGTGGTGTCG ATTCTGAGCA ATATTTCATC TCTGTCACTG 1080
       GCCAGCCATT TCAGGGTGTC CAATTCAACA ATGGAGGATG TCATCAGTAT AGCTGACAAT 1140
       ATCCTTAATT CAGCCTCAGT AACCAACTGG ACAGTCTTAC TGCGGGAAGA AAAGTATGCC
                                                                             1200
       AGCTCACGGT TACTAGAGAC ATTAGAAAAC ATCAGCACTC TGGTGCCTCC GACAGCTCTT
                                                                             1260
 5
       CCTCTGAATT TTTCTCGGAA ATTCATTGAC TGGAAAGGGA TTCCAGTGAA CAAAAGCCAA
                                                                             1320
       CTCAAAAGGG GTTACAGCTA TCAGATTAAA ATGTGTCCCC AAAATACATC TATTCCCATC
                                                                             1380
       AGAGGCCGTG TGTTAATTGG GTCAGACCAA TTCCAGAGAT CCCTTCCAGA AACTATTATC
                                                                             1440
       AGCATGGCCT CGTTGACTCT GGGGAACATT CTACCCGTTT CCAAAAATGG AAATGCTCAG
                                                                             1500
       GTCAATGGAC CTGTGATATC CACGGTTATT CAAAACTATT CCATAAATGA AGTTTTCCTA
                                                                             1560
10
       TTTTTTCCA AGATAGAGTC AAACCTGAGC CAGCCTCATT GTGTGTTTTG GGATTTCAGT
                                                                             1620
       CATTTGCAGT GGAACGATGC AGGCTGCCAC CTAGTGAATG AAACTCAAGA CATCGTGACG
                                                                             1680
       TGCCAATGTA CTCACTTGAC CTCCTTCTCC ATATTGATGT CACCTTTTGT CCCCTCTACA
                                                                             1740
       ATCTTCCCCG TTGTAAAATG GATCACCTAT GTGGGACTGG GTATCTCCAT TGGAAGTCTC
                                                                             1800
       ATTITATGCC TGATCATCGA GGCTTTGTTT TGGAAGCAGA TTAAAAAAAG CCAAACCTCT CACACACGTC GTATTTGCAT GGTGAACATA GCCCTGTCCC TCTTGATTGC TGATGTCTGG
                                                                             1860
15
                                                                             1920
       TTTATTGTTG GTGCCACAGT GGACACCACG GTGAACCCTT CTGGAGTCTG CACAGCTGCT
                                                                             1980
       GTGTTCTTTA CACACTTCTT CTACCTCTCT TTGTTCTTCT GGATGCTCAT GCTTGGCATC
       CTGCTGGCTT ACCGGATCAT CCTCGTGTTC CATCACATGG CCCAGCATTT GATGATGGCT
                                                                             2100
       GTTGGATTTT GCCTGGGTTA TGGGTGCCCT CTCATTATAT CTGTCATTAC CATTGCTGTC
                                                                             2160
20
       ACGCAACCTA GCAATACCTA CAAAAGGAAA GATGTGTGTT GGCTTAACTG GTCCAATGGA
                                                                             2220
       AGCAAACCAC TCCTGGCTTT TGTTGTCCCT GCACTGGCTA TTGTGGCTGT GAACTTCGTT
                                                                             2280
       GTGGTGCTGC TAGTTCTCAC AAAGCTCTGG AGGCCGACTG TTGGGGAAAG ACTGAGTCGG
                                                                             2340
       GATGACAAGG CCACCATCAT CCGCGTGGGG AAGAGCCTCC TCATTCTGAC CCCTCTGCTA
                                                                             2400
       GGGCTCACCT GGGGCTTTGG AATAGGAACA ATAGTGGACA GCCAGAATCT GGCTTGGCAT
                                                                             2460
25
       GTTATTTTTG CTTTACTCAA TGCATTCCAG GGATTTTTTA TCTTATGCTT TGGAATACTC
                                                                             2520
       TTGGACAGTA AGCTGCGACA ACTTCTGTTC AACAAGTTGT CTGCCTTAAG TTCTTGGAAG
                                                                             2580
       CAAACAGAAA AGCAAAACTC ATCAGATTTA TCTGCCAAAC CCAAATTCTC AAAGCCTTTC
                                                                             2640
       AACCCACTGC AAAACAAAGG CCATTATGCA TTTTCTCATA CTGGAGATTC CTCCGACAAC
                                                                            2700
       ATCATGCTAA CTCAGTTTGT CTCAAATGAA TAA
30
       Seg ID NO: 463 Protein sequence
       Protein Accession #: Eos sequence
                              21
                                         31
                                                     41
                                                                51
35
       MKVGVLWLIS FFTFTDGHGG FLGKNDGIKT KKELIVNKKK HLGPVEEYQL LLQVTYRDSK
       EKRDLRNFLK LLKPPLLWSH GLIRIIRAKA TTDCNSLNGV LQCTCEDSYT WFPPSCLDPQ
                                                                              120
       NCYLHTAGAL PSCECHLNNL SQSVNFCERT KIWGTFKINE RFTNDLLNSS SAIYSKYANG
                                                                              180
       IEIQLKKAYE RIQGFESVQV TQFRNGSIVA GYEVVGSSSA SELLSAIEHV AEKAKTALHK
LFPLEDGSFR VFGKAQCNDI VFGFGSKDDE YTLPCSSGYR GNITAKCESS GWQVIRETCV
                                                                              240
40
                                                                              300
       LILLELINKN FSMIVGNATE AAVSSFVONL SVIIRONPST TVGNLASVVS ILSNISSLSL
                                                                              360
       ASHFRVSNST MEDVISIADN ILNSASVTNW TVLLREEKYA SSRLLETLEN ISTLVPPTAL
       PLNFSRKFID WKGIPVNKSQ LKRGYSYQIK MCPQNTSIPI RGRVLIGSDQ FQRSLPETII
                                                                              480
       SMASLTLGNI LPVSKNGNAQ VNGPVISTVI QNYSINEVFL FFSKIESNLS QPHCVFWDFS
                                                                              540
45
       HLOWNDAGCH LVNETQDIVT CQCTHLTSFS ILMSPFVPST IFPVVKWITY VGLGISIGSL
                                                                              600
       ILCLIIEALF WKQIKKSQTS HTRRICMVNI ALSLLIADVW FIVGATVDTT VNPSGVCTAA
                                                                              660
       VFFTHFPYLS LFFWMLMLGI LLAYRIILVF HHMAQHLMMA VGFCLGYGCP LIISVITIAV
                                                                              720
       TOPSNTYKRK DVCWLNWSNG SKPLLAFVVP ALAIVAVNFV VVLLVLTKLW RPTVGERLSR
                                                                              780
       DDKATIIRVG KSLLILTPLL GLTWGFGIGT IVDSQNLAWH VIFALLNAFQ GFFILCFGIL
                                                                              840
50
       LDSKLRQLLF NKLSALSSWK QTEKQNSSDL SAKPKFSKPF NPLQNKGHYA FSHTGDSSDN
                                                                              900
       Seq ID NO: 464 DNA sequence
       Nucleic Acid Accession #: AB035089.1
55
       Coding sequence: 9845. 10219
                  11
                              21
                                         31
                                                                51
       GGGCATGCAG CCATCGGGGA AAATCCATAG TGCAGATAAA GCAAGGAGGA AGAAGAAGGA
60
       CAGTTCTAGT AAAAGGGAGA ACATCAATAT AGGATGTTTC TTAGCAATAG AAAAAGAAGG
                                                                              120
       CCAAGAGGAA TTAGGGAGAG AGTTATAAGA GATCAGCAAG GGGACAGGGT TAGATTTGGT
       TTGGTTTGAN AGCATACAGT ANATATATG TCTGTCCCTG GCAGTGTTGG CAGAGTAGGA AGGAGGAAGG GAGGCAAGAG ATAATATCAT TTTCTCTGTG CTCCAACTGT ACTTACATAT
                                                                              240
       GAGACTATTT CCCTCTCTGC TTTTCAAACC TTACTGGAGT TGTTTTCCCT CATGAAAACC
                                                                              360
65
       AAGAAAGGAA AGCTAGTTAG TCTTGTTCTG AGGTTGTTCA ATGTATACAT ATCTATATCT
                                                                              420
       GTAGACAGAA TCCTTGGGAA TACAGTAATT GACATATATT CTGTTATTTG ATGCTTGAAA
                                                                              480
       AATCTCCTCC ACTAACCAGT TTCCCTATAG ATTGCCACAA GCACATAATA AGAAACAATA
                                                                              540
       AATAAAATGT TCTCTTGACT TTGTTACTTA ACAATGCTGA GAAAACTTTA CAGCCTTCAT
                                                                              600
       AAGGAAGTGA GGTCCAGGAA AATCTAGGAG ATATTTCTTA ACCAATCTAT AAAGGCATTA
                                                                              660
70
       GTAATGACAG GATATTTCCT GAAAGTGTAA TTTCCCATTG AGGATTTGTT TTTAATTTCT
                                                                              720
       GGATTCCTGG AGCCAATGAA GTTGGTGTAT GTTTATGAAA TATCAAGAGA CATAAGTTGG
                                                                              780
       CAAGTGTTCA TATGCAAAAA CTTCTTGGAA TTTCTGAGTT CTCTGTGGCA ATATATGACA
                                                                              840
       TCAGGATATG TCCAGTCTCA CACACCAGGA TATGTCCTTT CTAGCCTGTC TATCACATGC
                                                                              900
       TAGGAGAACT ATTTAGGAAC AGAAAAAAT GCCTGAAATG ATTTCTCATT TGAACTCATC
                                                                              960
75
       CAAGCTTTCT CTAAATTTAA GCAAACTCCT GGTCATTTTC AGTTAGTACC TTTCCTTAAG
                                                                             1020
       TTCAACCTTC AGGGCAAACC TCCGTGCCTC AGACGTTTAG CCATAGTCTG AAATTCTCTT
                                                                             1080
       CCATAGATTG GTCCCCTGTA ACCCCGGTTT GTCTCAGCTT GTTATCCTGT TTTTTTCTTC
                                                                             1140
       CCTCCATTCC CAGGATGAGC TTGTTGCTTC TGTCCTATGA GACATTAGAT TCCTTTTCTT
                                                                             1200
       TGGTACCCGA GTAAATCCAT CCTACTCCAA TAGAGGAAGG TCCATTTTTG TCTTATAGCG
                                                                             1260
       CTGGATGCAG ACTCAGCTGA GAAGACCATT ATTCATTTTT GGAATTCTTT ATCTCAGATA
80
       TTTCCTCTTC TTTCTTTTTC TTCTATCTTT GGATTTTTAG TCCATCAACG CCCCATTAGT
                                                                             1380
       CTATTCCCCG ACTTCAATCA GGGAACTTAT ACCTCTTAAA CTCATTCAGA GACTCAAAAC
                                                                             1440
       ATATATATTG ATACAGGAGA CCTAAGAAGA GCATGTCTTG GGGGTTGAGG AAACAGGCAG
                                                                             1500
       GTGAGAAATT TCCAGATTGG AAACACAGCT TCCTTTCTCC CATCCAGCCC CTACTTTCAG
                                                                             1560
85
       CCTATGTGTT TCTGGCACCT TGTTGTAGAT AAATCTCCCT TGACTTTGTG ATGTGCTGAG
                                                                             1620
       AAAACAAACT CACGGCTGGT GTTAAAAAGG GCCCATGACA ATACCAAGTG TTGGGGAGAA
                                                                             1680
       TGTGGAGAAA TCAGAACTCT ATTCACGGTC GGTTGGAATG CACACTTGTG CAGAATTCTA
                                                                            1740
```

	WO 02/						
	TGGAGAAGAG	TCTGGCATTT	CCTCAAAATG	TTAACCTGGA	TTTACCATAT	GACCCAGCGA	1800
	TTTCATTCAT	AGGTTTATAC	TCAAAAGAAA	TGAAGAAATA	TGCCATGCAA	AAAAATGTAC	1860
	ATGAAAGGTC	ACAACATCAT	TATTCATAAT	AGTAAAAGGA	TGGAAACAAC	ACAAATGTCC	1920
	ATCAACTTAT	GATTAAAGAA	AATCTGGTCT	ATTCATAGAA	TGGAATATTA	TTCGACCACA	1980
5	ANANCCARTO	ATOTACTOR	CCATCCAATG	ATGTGGACAA	ACCATGAAAA	TAACACTAGA	2040
3	MANAGGAATG	AIGIACIGAI	CCVICCOVIC	GTATGATTCC	ATTTACCTCA	AATGTTTGGA	2100
	TTAAAGAAGC	CAGTCACAAA	AGGACTIACI	GIAIGAIICC	WILLYCCION	CACCAACCCA	2160
	ATAGGCAAAT	CCATAGAAAC	AGGAGGTAGA	TTCCTGGTTT	CCAGGGICIC	A CA TICATOR TO	2220
	AGAATGAAGT	ACAAGATTTC	TTTTGGAGGT	AGTGAAATTG	TIGIGGAAIG	AGAICAIGAI	
10	GATGATAGCA	CAACTTTGTG	AATATAATAA	AATCATTGAA	TTGTACAGTT	GAATTTATGG	2280
10	TATATAAATT	ATATGTTAAT	AAAAAGGGGG	TCCACAAAAC	AAACAGCCCC	CCACTCTGGT	2340
	TGTCAGGGAG	ATATTGGATT	AAATGGCCTT	GGACAACAAC	CCCTCTCCCT	GGCCACAGAC	2400
	ATTCTTCAGA	TTACAAGATA	TTCCAGGGGA	AACACTGGAA	TGAGTCTGAA	GCCAGGTGCT	2460
	AAACAGAAGG	ACCATTGAGA	AATGTTGTGA	TCCTGACAGG	TCAAGCAATT	TATTTTTCGG	2520
	CTTCATTTTT	AAATGTAAAA	TTAGAAAGCT	GCCATTTAAA	ATGGCCCGTC	TGTTTCAATT	2580
15	GCTCTTCTCA	GTGTCAGCCT	GTTAACTCAA	TGTGTTAGTC	TGTTTTCATG	CTGCTGATAA	2640
	AAACATACCT	GAGACTGGCA	AGAAAAAGAG	GTTTAATTGG	GCTTAGAGTT	CCACGTGATT	2700
	CCCCACCCCT	CAGAATCACA	GTAGGAGGCA	AAAGTTATTC	TTACATGGTG	GCTGCAAGAG	2760
	A A CATCACCA	DCD BCCD A B B	CAACAAACCC	CTGATAAACC	CATCGGATCT	CCTGAGGCTT	2820
	AAGA1GAGGA	AGAAGCAAAA	CACAACAAC	ACCGGCCCCC	ATCATTCAAT	TACCTCTACC	2880
20	ATTAACTATC	ATGAGAATAG	CACAAGAAAG	ACCGGCCCCC	ALGALICAAL	ACATOTICC T	2940
20	TGGGTCCCTC	CAATAACATG	TGGAAATTCT	GGTAGATACA	ATTCAAGITG	AGATITGGGT	
	GGGAACACAG	CCAAACCATA	TCACTCAGCA	AGGCAGATAA	CFFTCTCACT	GAGCCTATGC	3000
	AACAGAAAAC	CATCTGGGAT	GGTTGTAAGG	GGCACAGĠAA	GTGACTGGTA	GGATCACTGC	3060
	CAAAGCTGAG	CACTCAGGAG	AAGGCAATAG	AATCCTATTC	TCCATAGTAT	GCTATAAGAT	3120
	ACTGAAGTAC	ACTTCTTCAC	TATCTCTTTG	GACTTAGAAT	TAGCACTACA	TTCCTTGTTA	3180
25	TACAGAAAAA	TTACTAAGGA	AATTCATAGG	ATGACAAAAA	CTTTCAGAAC	TGAAAAACAG	3240
	GAAATGTAAG	CTTTTTAGTT	CTTTGGTATT	CGAAGTATGC	CTAAAAGACA	ATGCAAAATC	3300
	CAAGAAAAGA	ATGGTGGGGT	TTTTGTTTGT	TTGGTTTTGT	TTTTGTTTTA	CAGCTGGAGT	3360
	AGAATACAAA	GGGATGGAGT	TGAAACAAAT	GAGAGGAAAT	TGGAATTCTÄ	AACTTATTCT	3420
	CATTGGCATT	AGAAAGGCAC	CTACATGTAT	TTCACATGAG	CCGGTGACTG	CTGACTTGCA	3480
30	CHIIGGCHII	TTCCCTATAG	DTTABABAGG	AGGTACAATG	GTAGAACTGT	AATCCTGTCC	3540
50	TICITATILE	AMDUDOATAT	TO TA A A COT	GAGTGTTAGC	CCCCTTCTCA	AATCTGAAGT	3600
	TITGICATAA	ATTTCATAL	TCATAAAGGT	AAAGGCAGCA	ACACCACACA	CATABATTTA	3660
	TGAGTAACTT	CAAATACTAA	CCACAGAGGG	AAAGGCAGCA	AGAGGAGAGG	CWINGUILLE	3720
	GGATCTCACC	CTTCATTCCA	CAGACACACA	CAGCCTCTCT	GCCCACCTCT	GCTTCCTCIA	3780
25	GGAACACAGG	TAAGAGCTTC	AAGCCTCTCC	AGCTTAATAA	CATGAATTAT	TTTTGAGAAT	
35	AATAATGATA	CTGTGTTCTA	TATCATGCAT	CTCCTGCATT	CTGTCTGATT	ATATTTTACT	3840
	TATTCTGCCA	GAGCAAAATT	AAAATACCTA	TTTCATCTGA	TTTGTCCTTT	ATCTAAATTG	3900
				GGAACACAGA			3960
				TCTTAACAGC			4020
	AGGTCTCCTG	TTAGCATTCA	TTGTAAAGCC	ATCCTACCTA	GCTCTAGTGT	AACCAGCAAT	4080
40	GAAAGAAAGA	TAAAGAGGGT	CGATTACTTA	TTTACAATAG	TCTTTAAAAA	CGTAGTTTTG	4140
	TAAGCCTTCT	AATTAGGACA	TTAATATATT	TAATATATGC	ACATTGTAGA	AAGATTGAAG	4200
	CCTTAAAAAT	AAGAGAAAA	CTTTAAATGT	CAAAATCTCA	CAACCCAGAT	ATATCATTTC	4260
				CCATTTATTA			4320
	TITOGGGGGGG	CCACCACTTC	CAGATCACAT	CGAGTTCACC	ATGAATTCAC	TCAGTGAAGC	4380
45				ACAGTTCAGA			4440
73							4500
				ATTAGGGATG			4560
	CAACACTGCA	CAACAAATTA	GCAAGGTAGC	TATCAGCATC	ATTACGITGI	CCIGIIGCAG	
	TTTTTCTCTG	GTTCCGTCGG	CTAGCACGCA	GATGGTAATA	GATGTGGTGG	TCTGATGGGT	4620
<b>60</b>	AGCACAGGGG	GCTGTGCAGG	AATTCCCATA	ACTGTGAGAC	CACTGACTTA	AACAGATCTT	4680
50	TTGAGTAAAG	TTTTCTTGTC	CCGCTTCATG	TCTCTTCCAG	GTTCTTCACT	TTGATCAAGT	4740
	CACAGAGAAC	ACCACAGAAA	AAGCTGCAAC	ATATCATGTG	AGTCACAGAG	CACTCTGATT	4800
	CAGCTTTAGA	TCCCTGAACA	GGTCATAGTT	TAAACCTGGA	ACTTCACAAA	AACTAAGAAA	4860
	AGGCCAGTTT	TAGGGAAAAT	CTTGGACACA	AAGATTGAGA	CATACAGAGT	GGGTTGGCAT	4920
	TTCATGGCAC	ATAATTATTA	TTCCTCATTT	CTGCGTTACT	AAAAGACAGT	CAGCACTGTA	4980
55	CCTCAGAGCA	TAGGTCTGGA	TCAGGATAGG	CTGGGTTCAG	ACTCCAGCTT	TGCTCTTCAC	5040
	AAATGATGAA	TAAGAGCAGG	ACACAACTGC	TCGGAGTCCC	AGTGACCTCA	TCCCAGAAAA	5100
	CTAAGGGTAA	GAAAAAATCT	GACTCAATAC	ATGCAAATAC	ATGCAAATGT	TTACAACAGT	5160
	CCCTTCCCCA	TABABACTCAT	AATAAATGTT	ΔΤΥΔΤΥΔΤΥΔ	TAAAGTAGCT	ATAATTATAC	5220.
	CCCI IOCCCA	NAME OF CASE	THE PROPERTY OF P	ママクスママクス クマ	CATTAATGAG	ATTCAGAGGA	5280
60	IMMICHIAMI	CALCOT PCAPE	1001110011	ATCATTORUL	TOCARTATAT	TGGTTTAGAG	5340
· ·	WINNOCHCHA	GICCAAGIAI	MECORCONSC	CTACARACTA	CTACATTTAA	ACAGGCTTAG	5400
	CCTTAATAGT	GCAAAATGCT	TIGCIGGAAG	GIAGAAAGII	CINGALITAG	CCCCATTCTC	5460
	GTTCAAAACT	TGGCACTTCT	MATTIATGIC	TCIAIAAACA	GGGTTITIL	CCCCN11C1C	2400
	TGAGCTTTCT	TGTGTTCATC	TGAATTGAAC	TAAAGACTTA	GAGTTACCCA	TGTAAAGTCC	5520
<b>C F</b>	TTAGCCATGG	ACCTGGCATA	CACTCTTCTT	ACGTGCAGAG	AATGACCATC	ATGAGGAAAG	3380
65	AGCCACAGAT	CAGTCAATGT	GTCCTACAAG	ATAATAGCAC	CAACAGGTAT	AACAGGGCTT	5640
	CCTGGCATAA	TCTATTTAAA	ATATCCAACC	TTCAACATAC	TCGTATCCTT	GATGACTGTT	5700
	AGAAGTGAAA	TATGGTCCTT	GCCCATAAGG	AGCTGAGAGT	TTAACTGGGA	AGCTAAACCT	5760
	AACCCTTTAA	ACCAACAAGG	AGAAAATCTA	CTGGTAGACA	GCGCTGCATC	TTTAGTTCAG	5820
	AAGAGAAAAG	ATTGCAGTAC	GTTAGAGCAA	GAAGAATTTT	CTGGAAGAAG	TCAAATATAA	5880
70	GGTGGATTTT	GAAGGGTATT	TGAGGTGAAA	TACACCAATT	ATCAGGGAAT	AACATCAAAG	5940
	GTCCTCAATG	AGACTACCAG	CATTTAGGGA	CTGATCTAAC	AGACTTAGCA	TGGGTTTAGT	6000
	ATTTACATTG	ATACAGCAAT	TGAATGATCT	CCTTTTTTGA	TGTTTGAAGG	TTGATAGGTC	6060
	ACCABATCTT	CATCACCACT	TTCAAAACCT	TOTGACTGAA	TTCAACAAAT	CCACTGATGC	6120
	MANAGACAGA	PURTUCUOI	TCTTCTCT	CCCACAAAAC	ACGTATCAAT	TTTTACAGGT	6180
75						CTGAGTGGCC	
13							
	AAATGGAAGA	AAGCAAGGCA	GATGAGCCTG	GCCGACCCAG	OTOGRAGAGCA	TTTACTCAGA	6300
	GTGCATTAGC	TCCATTTCCA	CAACTCTCCC	CCACTGGAGT	GICCUAGACC	CCAACGATAC	0300
	ATCACTGAAG	TGTGGATTTA	GGGATAATCT	TGTGATAAAA	GAGGAGGTTG	TGTAATAGAG	6420
00							6480
80	CGATACATCT	TGGTGGGAAA	TGTATGACTA	ATGGGATATT	ATTGGAATGG	GCAGGCTTGG	
	GTGAGTTCCT	GAGAATAGTT	GAGGAAGTAC	CAGGAAATAT	TGAATGCACA		6600
	CAAAAACAAA	GATCAGAAAC	ATCATGGTTA	AAATTACTGG	AGAGAAGTCT	GAGAAGCAAT	6660
	GAATCTCCTT	CAGGGAAGCC	TGCTCTGCAG	TTTGCAAACC	ACAGCCTCTT	CTGCTTCTGC	6720
	CTTTTGCCAA	GATGATATTG	ACCTTCAGTG	ACCTCTTTCT	TGTGCCAGCC	CACATTCCCC	6780
85	TTTTGCATTG	CCTACATGAC	ACCTGTATAA	AAATATCCAT	GGACAGGAGA	TACTGCATCT	6840
	ATTCAGGGTC	TGGATTCAGC	TTACTGTTCT	TACAAATAAG	TAAGTTTGGT	AATATATAGT	6900
	TACATAAATT	POTOTA PAGE		CCTTCATATC	TCAAAGGAAT	ATTTAGATGC	6960
	***************************************						

```
CATCAAGAAA TTTTACCAGA CCAGTGTGGA ATCTACTGAT TTTGCAAATG CTCCAGAAGA 7020'
       AAGTCGAAAG AAGATTAACT CCTGGGTGGA AAGTCAAACG AATGGTAGGA GAGCCACCCA
                                                                          7080
       TTATAGAAC ACCITTGAGA AACCTATGCC AGTGAGCCTT GTGCTTGACA CTGCATGGGG
                                                                           7140
       GAACAGGTGT GGGGATTGAG ATGGGTTTGC AGGGAGGGCT GAAGAGGGCA CTCCAGATGA
                                                                           7200
 5
       AGGATTTGTC CAAATGAATA TGAAGAGAGC CTAGGGGAGC CAAGGAGGAA ATCACAGGAA
                                                                           7260
       GCCAATTAGA TGGAAACACA TCTGGAGAAT TATTTGCTTA TGGCCCTGCA TGACAATAGC
                                                                           7320
       TTTGTGGATC CCCTGTCTCC GCTCAGACCT ATTTTGAGAT CATATCCTTT ACTTTAAATC
                                                                           7380
       AGACTCAAAT TTTTATGATG AATATTTAAT AGAAAACATT AGAAAGCGTC TCTCGTCTCC
                                                                           7440
       TTTACTAATT GGGAAACAAG CAGCTCTCTG GTAAATCACC CTTTTGTCTC TGAGCTGGAG
                                                                           7500
       CTGCCTGGAT CACATCTGTA GCCAATGTGT TCTGCAGGGA TTATCACAGC TCTCTTCCCC ATCAAGGGCA AAGAGCTTGA CAAAGTCTCC ATTCTACAGA CATCTTCTT ACCTCCCACC
10
                                                                           7560
                                                                           7620
       TCTCATTACA GGCCAAACTT ACAGCAACTC AACATGAGAG TGAATAGGAA GATACCCCCG
                                                                           7680
       GAAGTAGTGT CTGACAGCAC AGGACATGCG TTTCATATTA CAGAGCTCAA GTCACTCATC
                                                                           7740
       CTAAAATGCA ATCAGGGCCT CCTTCCTCTG AATGGGGACC CCGTAGTTAA AAAAAAATAA
                                                                           7800
       AAGTAGGAAG AGGAGGGAGG GAGAAAGGAA AGACACATGT TGGAAGAGTA GACAAAATCA
15
                                                                           7860
       GTTTATCAGT ATTCCAAATC AGATGATTGG AGACATTCAT ACACAGAGAA CGTGAACTCC
                                                                           7920
       TTCTCTATCA CAAGAAGTGA TGTCTCCATC AAGGGTAACT TTATACGACT GGAGCCTTGA
       AGAAAGCTGC ATCTGGTGAA CCACTGGTCA GTGAGTCTAA CAATTCAAAG ATCAAAGTCA
                                                                           8040
       GTGAGTCTCA AGCAGGGATT TGGGTCAATA ATTAACGATC AGTCACGAAC ATTTGCAAAG
                                                                           8100
20
       CATCTTCCAG ACAAGCCATT TGTAGCTTGT GTAAAAGACT CTTTTATTCT TTCCCTTGCA
                                                                           8160
       GAAAAATTA AAAACCTATT TCCTGATGGG ACTATTGGCA ATGATACGAC ACTGGTTCTT
                                                                           8220
       GTGAACGCAA TCTATTTCAA AGGGCAGTGG GAGAATAAAT TTAAAAAAGA AAACACTAAA
                                                                           8280
       GAGGAAAAAT TTTGGCCAAA CAAGGTATTG TCTATATTTT ATTTATATAG TGTAATATGT
                                                                           8340
       TAATACATGG AATGTTAAAC ATTTCTGATG GAATGTAACA TGATAAGTAA AAAATAAAAA
                                                                           8400
25
       TTGTTCATGT CTGTTATTTT GTTGTTTTAC TCTTATAACT TTATTTAGTT AGGAATACCT
                                                                           8460
       GAAAAACTAT TGTTTCTAAC TCATGGAATT CCTGGGTTAT TTCTTAGAAG AAGAAGGATG
                                                                           8520
       TGTTGCTATC TCAATAATAT TATCTTTTTT GTCTTGTGTT TCACGTGTTA TTTGTTGGAC
                                                                           8580
       ACATTGATTT ATTGCAGAAT ACATACAAAT CTGTACAGAT GATGAGGCAA TACAATTCCT
                                                                           8640
       TTAATTTTGC CTTGCTGGAG GATGTACAGG CCAAGGTCCT GGAAATACCA TACAAAGGCA
                                                                           8700
30
       AAGATCTAAG CATGATTGTG CTGCTGCCAA ATGAAATCGA TGGTCTGCAG AAGGTAAGAA
                                                                           8760
       CTTGCATCTA CAACTCTTCC TTCTACTGCC GGACATTTTT CCAAAGATAC CAAGTTTAAA
                                                                           8820
       CAAGGTAAAA GCTTATGACC GAGTTGCCTC AAAATGATGA AAAATTCTAA ATGAGGAATG
                                                                           BARO
       ATGACTCACC TTCATATTAC AAATATTTGA GCATAGGGCC TGACACAAAC TGAAAGCTTA
                                                                           8940
       GTTTTGTTT GTTTGTTTGT TTTTATTATT ATTATTATAA TACTTTAAGC TTTAGGGTAC
                                                                           9000
35
       ATGTGCACAA TGTGCAGGTT AGTTACATAT GTATACATGT GCCATGCTGG TGTGCTGCAC
                                                                           9060
       CCATTAACTC ATCATTTAGC GTTAGGTATA TCTCCTAATG CTATCCCTCC CCCCTCCCCC
                                                                           9120
       CACCCCACAA CAGTCCTCAG AGTGTGATGT TACCTTCCTG TGTCCAAGTG TTCTCATTGT
                                                                           9180
       TCAATTCCCA TCTATGATTT AATTCCATCT ATGGCTTAGT TAATGATTAA TTTATTAGAG
                                                                           9240
       TTACATGCAT TGGATATCAA TTTGATGATA TTATTATGCA GCAATTTAAA CTTGACTGGG
                                                                           9300
40
       AGAAATATAT ACCAATGTGA GGAAAGTTTA CAAATAGGCC GAGTAGAAAA GGGAATACAA
                                                                           9360
       ATTTAGGAAT TTAGGGAATT ACAATTTAAT AATTGCAATG TGTACTAAAT AATGTATACA
                                                                           9420
       GAAAAATATG ATGAGCCTAT TAAAAATTGA CACATGTAGT AGGCTGTTGG CACAAGAAAT
                                                                           9480
       AGTGATACAT ACAGTTCATT GTGTACAAAA TAATGTAATC ATATTTTACA TGTGTATCAT
                                                                           9540
       ACAGTTGTAT ACATACATAT GTACACATAT ACATATACGT AAAAACATGA TTCTGTTTTT
                                                                           9600
45
       ACATACATGT ATATACATAT ACACATATAA CCCAATGTAT TTATATATTC AGGACTCATA
                                                                           9660
                                                                          9720
       TTTTACCTAT TAGAATAATA ATGTCTATTA AAGTGAACCT TCTGTATTTC ACATTTATTG
       CCAAAATAAC GAATCTCCAC ATAGTCAATT CATTGTTAAG GTGTATTAGA GATCGACAGT
                                                                           9780
       TAGTCATATC AGTTTCTTTT TTCCATTTGT ATAGCTTGAA GAGAAACTCA CTGCTGAGAA
                                                                           9840
       ATTGATGGAA TGGACAAGTT TGCAGAATAT GAGAGAGACA TGTGTCGATT TACACTTACC
                                                                          9900
50
       TCGGTTCAAA ATGGAAGAGA GCTATGACCT CAAGGACACG TTGAGAACCA TGGGAATGGT
                                                                          9960
       GAATATCTTC AATGGGGATG CAGACCTCTC AGGCATGACC TGGAGCCACG GTCTCTCAGT 10020
       ATCTAAAGTC CTACACAAGG CCTTTGTGGA GGTCACTGAG GAGGGAGTGG AAGCTGCAGC 10080
       TGCCACCGCT GTAGTAGTAG TCGAATTATC ATCTCCTTCA ACTAATGAAG AGTTCTGTTG 10140
       TAATCACCCT TTCCTATTCT TCATAAGGCA AAATAAGACC AACAGCATCC TCTTCTATGG 10200
55
       CAGATTCTCA TCCCCATAGA TGCAATTAGT CTGTCACTCC ATTTAGAAAA TGTTCACCTA 10260
       GAGGTGTTCT GGTAAACTGA TTGCTGGCAA CAACAGATTC TCTTGGCTCA TATTTCTTTT 10320
       CTATCTCATC TTGATGATGA TAGTCATCAT CAAGAATTTA ATGATTAAAA TAGCATGCCT 10380
       TTCTCTCTTT CTCTTAATAA GCCCACATAT AAATGTACTT TTCCTTCCAG AAAAATTTCC 10440
       CTTGAGGAAA AATGTCCAAG ATAAGATGAA TCATTTAATA CCGTGTCTTC TAAATTTGAA 10500
60
       ATATAATTCT GTTTCTGACC TGTTTTAAAT GAACCAAACC AAATCATACT TTCTCTTCAA 10560
       ATTTAGCAAC CTAGAAACAC ACATTTCTTT GAATTTAGGT GATACCTAAA TCCTTCTTAT 10620
       GTTTCTAAAT TTTGTGATTC TATAAAACAC ATCATCAATA AAATAATGAC ATAAAATCAT 10680
       TTTTGCTTTA CCTGTTTTCT CTCTGGAAAG GGCAAGTGTC CAGTTACACA TAGGAAAGAT 10740
       AATTTAGAGA TATATTAATC ATATATAAAG GAAAATTAAA AACAGAGTAG TTCATGATGA 10800
65
       GCCTGGAGTA GAAGGCATAT CCCAGAACAG GAGGAGCCTT GTAAACCACA TAGGAACTTC 10860
       CTATTTTATG CTAAAGGGAT AAGAAACTCA TTACAGGCTT TGATGGTTGT TTGTCAAAGA 10920
       GGGGCATAAA ATTATCATAT CCACATCTAG AAAATACATC TCTGGCTACG CTGATATCAA 10980
       TGGATGCGAG GAAAGAACAG TGTGGTTACC ATATATAAAT TAGGAAATCA TTAGAGTATT 11040
       GGGAGTGGAA ATGGAGAGAA AGAAAGAGCC TGGGGGAATT ATTTAGGAAA TAATAGTTAC 11100
70
       AGAAAGACAT CTAAGTTGCT GACCTATCTG ACTGGATGGA TGGAAGAATA TCTTGTTTCT 11160
       GAGAGAAAAA AAGACTTTGG GTTTAAATTT GTACTTGATG AATTAAGGTA CTTTTAATAT 11220
       TCAAATGGAT TTGCCTGGCA GGCACTTGAA GATATTAGTC TAAATCTCAG AAACAGAATA 11280
       TGATCTGAAG CTCTAAATTT GTGATATTCA ATATAAATAC TTTAGAGTCA TTGGGATAAA 11340
       TATGGTAGTT GTAGCTAAAA GCAAAAATAA GATACTAGGG AGAAAGGATA AAGTTAGAAG 11400
75
       AAAGAAGAAT CTAGAATTGA CCTTGAAGTA TATCAGCATG TGTAAAGATC AGGAATTGAT 11460
       CATTITIATT TTCCAGAAAG TAGCTTTTCT TAGGGTTCCA TATTTACTCC CATAGATTCT 11520
       Seg ID NO: 465 Protein sequence
80
       Protein Accession #: BAB21525.1
                                                    41
                                        31
       MNSLSEANTK FMPDLFQQFR KSKENNIFYS PISITSALGM VLLGAKDNTA QQISKVLHFD
85
       QVTENTTEKA ATYHVDRSGN VHHQFQKLLT EFNKSTDAYE LKIANKLFGE KTYQFLQEYL
       DAIKKFYQTS VESTDFANAP EESRKKINSW VESQTNEKIK NLPPDGTIGN DTTLVLVNAI
       YFKGOWENKY KKENTKEEKP WPNKNTYKSV OMMROYNSFN FALLEDVOAK VLEIPYKGKD
                                                                            240
```

360

EEFCCNHPFL FFIRQNKTNS ILFYGRFSSP 5 Seq ID NO: 466 DNA sequence Nucleic Acid Accession #: NM_001910.1 Coding sequence: 50..1240 31 41 10 60 GGAGAGAAGA AAGGAGGGG CAAGGGAGAA GCTGCTGGTC GGACTCACAA TGAAAACGCT CCTTCTTTG CTGCTGGTGC TCCTGGAGCT GGGAGAGGCC CAAGGATCCC TTCACAGGGT 120 GCCCCTCAGG AGGCATCCGT CCCTCAAGAA GAAGCTGCGG GCACGGAGCC AGCTCTCTGA 180 GTTCTGGAAA TCCCATAATT TGGACATGAT CCAGTTCACC GAGTCCTGCT CAATGGACCA 240 15 GAGTGCCAAG GAACCCCTCA TCAACTACTT GGATATGGAA TACTTCGGCA CTATCTCCAT 300 TGGCTCCCCA CCACAGAACT TCACTGTCAT CTTCGACACT GGCTCCTCCA ACCTCTGGGT 360 CCCCTCTGTG TACTGCACTA GCCCAGCCTG CAAGACGCAC AGCAGGTTCC AGCCTTCCCA 420 GTCCAGCACA TACAGCCAGC CAGGTCAATC TTTCTCCATT CAGTATGGAA CCGGGAGCTT 480 GTCCGGGATC ATTGGAGCCG ACCAAGTCTC TGTGGAAGGA CTAACCGTGG TTGGCCAGCA 540 20 GTTTGGAGAA AGTGTCACAG AGCCAGGCCA GACCTTTGTG GATGCAGAGT TTGATGGAAT 600 TCTGGGCCTG GGATACCCCT CCTTGGCTGT GGGAGGAGTG ACTCCAGTAT TTGACAACAT 660 GATGGCTCAG AACCTGGTGG ACTTGCCGAT GTTTTCTGTC TACATGAGCA GTAACCCAGA 720 AGGTGGTGCG GGGAGCGAGC TGATTTTTGG AGGCTACGAC CACTCCCATT TCTCTGGGAG 780 CCTGAATTGG GTCCCAGTCA CCAAGCAAGC TTACTGGCAG ATTGCACTGG ATAACATCCA 840 GGTGGGAGGC ACTGTTATGT TCTGCTCCGA GGGCTGCCAG GCCATTGTGG ACACAGGGAC 900 25 TTCCCTCATC ACTGGCCCTT CCGACAAGAT TAAGCAGCTG CAAAACGCCA TTGGGGCAGC CCCCGTGGAT GGAGAATATG CTGTGGAGTG TGCCAACCTT AACGTCATGC CGGATGTCAC 960 CTTCACCATT AACGGAGTCC CCTATACCCT CAGCCCAACT GCCTACACCC TACTGGACTT 1080 CGTGGATGGA ATGCAGTTCT GCAGCAGTGG CTTTCAAGGA CTTGACATCC ACCCTCCAGC 1140 TGGGCCCCTC TGGATCCTGG GGGATGTCTT CATTCGACAG TTTTACTCAG TCTTTGACCG 30 1200 TGGGAATAAC CGTGTGGGAC TGGCCCCAGC AGTCCCCTAA GGAGGGGCCT TGTGTCTGTG CCTGCCTGTC TGACAGACCT TGAATATGTT AGGCTGGGGC ATTCTTTACA CCTACAAAAA 1320 GTTATTTTCC AGAGAATGTA GCTGTTTCCA GGGTTGCAAC TTGAATTAAG ACCAAACAGA 1380 ACATGAGAAT ACACACACA ACACACATAT ACACACACA ACACTTCACA CATACACACC 1440 35 ACTCCCACCA CCGTCATGAT GGAGGAATTA CGTTATACAT TCATATTTTG TATTGATTTT 1500 TGATTATGAA AATCAAAAAT TTTCACATTT GATTATGAAA ATCTCCAAAC ATATGCACAA 1560 GCAGAGATCA TGGTATAATA AATCCCTTTG CAACTCCACT CAGCCCTGAC AACCCATCCA 1620 CACACGGCCA GGCCTGTTTA TCTACACTGC TGCCCACTCC TCTCTCCAGC TCCACATGCT 1680 GTACCTGGAT CATTCTGAAG CAAATTCCGA GCATTACATC ATTTTGTCCA TAAATATTTC 1740 40 TAACATCCTT AAATATACAA TCGGAATTCA AGCATCTCCC ATTGTCCCAC AAATGTTTGG 1800 CTGTTTTTGT AGTTGGATTG TTTGTATTAG GATTCAAGCA AGGCCCATAT ATTGCATTTA 1860 TTTGAAATGT CTGTAAGTCT CTTTCCATCT ACAGAGTTTA GCACATTTGA ACGTTGCTGG 1920 TTGAAATCCC GAGGTGTCAT TTGACATGGT TCTCTGAACT TATCTTTCCT ATAAAATGGT 1980 2040 AGTTAGATCT GGAGGTCTGA TTTTGTGGCA AAAATACTTC CTAGGTGGTG CTGGGTACTT 45 2100 CTTGTTGCAT CCTGTCAGGA GGCAGATAAT GCTGGTGCCT CTCTATTGGT AATGTTAAGA CTGCTGGGTG GGTTTGGAGT TCTTGGCTTT AATCATTCAT TACAAAGTTC AGCATTTT Seq ID NO: 467 Protein sequence Protein Accession #: NP_001901.1 50 21 31 11 MKTLLLLLV LLELGEAQGS LHRVPLRRHP SLKKKLRARS QLSEFWKSHN LDMIQFTESC 60 SMDOSAKEPL INYLDMEYFG TISIGSPPQN FTVIFDTGSS NLWVPSVYCT SPACKTHSRF 120 QPSQSSTYSQ PGQSFSIQYG TGSLSGIIGA DQVSVEGLTV VGQQFGESVT EPGQTFVDAE 55 180 FDGILGLGYP SLAVGGVTPV FDNMMAQNLV DLPMFSVYMS SNPEGGAGSE LIFGGYDHSH 240 FSGSLNWVPV TKOAYWOIAL DNIQVGGTVM FCSEGCQAIV DTGTSLITGP SDKIKQLQNA 300 IGAAPVDGEY AVECANLNVM PDVTPTINGV PYTLSPTAYT LLDFVDGMQF CSSGFQGLDI 360 HPPAGPLWIL GDVFIRQFYS VFDRGNNRVG LAPAVP 60 Seq ID NO: 468 DNA sequence Nucleic Acid Accession #: NM_018058.1 Coding sequence: 319..1575 65 51 21 31 41 TACGCGCTGC GGGACCGGCA GGGGAACGCC ATCGGGGTCA CAGCCTGCGA CATCGACGGG GACGGCCGGG AGGAGATCTA CTTCCTCAAC ACCAATAATG CCTTCTCGGG GGTGGCCACG 120 TACACCGACA AGTTGTTCAA GTTCCGCAAT AACCGGTGGG AAGACATCCT GAGCGATGAG 180 GTCAACGTGG CCCGTGGTGT GGCCAGCCTC TTTGCCGGAC GCTCTGTGGC CTGTGTGGAC 70 AGAAAGGGCT CTGGACGCTA CTCTATCTAC ATTGCCAATT ACGCCTACGG TAATGTGGGC CCTGATGCCC TCATTGAAAT GGACCCTGAG GCCAGTGACC TCTCCCGGGG CATTCTGGCG 360 CTCAGAGATG TGGCTGCTGA GGCTGGGGTC AGCAAATATA CAGGGGGCCG AGGCGTCAGC 420 GTGGGCCCCA TCCTCAGCAG CAGTGCCTCG GATATCTTCT GCGACAATGA GAATGGGCCT 480 75 AACTTCCTTT TCCACAACCG GGGCGATGGC ACCTTTGTGG ACGCTGCGGC CAGTGCTGGT 540 GTGGACGACC CCCACCAGCA TGGGCGAGGT GTCGCCCTGG CTGACTTCAA CCGTGATGGC 600 AAAGTGGACA TOGTCTATGG CAACTGGAAT GGCCCCCACC GCCTCTATCT GCAAATGAGC 660 ACCCATGGGA AGGTCCGCTT CCGGGACATC GCCTCACCCA AGTTCTCCAT GCCCTCCCCT 720 GTCCGCACGG TCATCACCGC CGACTTTGAC AATGACCAGG AGCTGGAGAT CTTCTTCAAC 780 80 AACATTGCCT ACCGCAGCTC CTCAGCCAAC CGCCTCTTCC GCGTCATCCG TAGAGAGCAC 840 GGAGACCCCC TCATCGAGGA GCTCAATCCC GGCGACGCCT TGGAGCCTGA GGGCCGGGGC ACAGGGGTG TGGTGACCGA CTTCGACGGA GACGGGATGC TGGACCTCAT CTTGTCCCAT 900 960 GGAGAGTCCA TGGCTCAGCC GCTGTCCGTC TTCCGGGGCA ATCAGGGCTT CAACAACAAC 1020 TGGCTGCGAG TGGTGCCACG CACCCGGGTT GGGGCCTTTG CCAGGGGAGC TAAGGTCGTG 1080 85 CTCTACACCA AGAAGAGTGG GGCCCACCTG AGGATCATCG ACGGGGGCTC AGGCTACCTG 1140 TGTGAGATGG AGCCCGTGGC ACACTTTGGC CTGGGGAAGG ATGAAGCCAG CAGTGTGGAG 1200 GTGACGTGGC CAGATGGCAA GATGGTGAGC CGGAACGTGG CCAGCGGGGA GATGAACTCA 1260

TMGMVNIFNG DADLSGMTWS HGLSVSKVLH KAPVEVTEEG VEAAAATAVV VVELSSPSTN

```
GTGCTGGAGA TCCTCTACCC CCGGGATGAG GACACACTTC AGGACCCAGC CCCACTGGAG
                                                                          1320
       ACACCAATGA ATGCATCCAG TTCCCATTCG TGTGCCCTCG AGACAAGCCC GTATGTGTCA
                                                                          1380
       ACACCTATGG AAGCTACAGG TGCCGGACCA ACAAGAAGTG CAGTCGGGGC TACGAGCCCA
                                                                          1440
       ACGAGGATGG CACAGCCTGC GTGGGGACTC TCGGCCAGTC ACCGGGCCCC CGCCCCACCA
                                                                          1500
       CCCCCACGC TGCTGCTGCC ACTGCCGCTG CTGCTGCCGC TGCTGGAGCT GCCACTGCTG
CACCGGTCCT CGTAGATGGA GATCTCAATC TGGGGTCGGT GGTTAAGGAG AGCTGCGAGC
                                                                          1560
                                                                          1620
       CCAGCTGCTG AGCAGGGGTG GGACATGAAC CAGCGGATGG AGTCCAGCAG GGGAGTGGGA
                                                                          1680
       AAGTGGGCTT GTGCTGCTGC CTAGACAGTA GGGATGTAAA GGCCTGGGAG CTAGACCCTC
                                                                          1740
       1800
       CTGTGCTGGG CACATAGCTG TGATCACAGC AGACAGGGTC GCTGCCCTGA TGGCGCTTAC
10
                                                                          1860
       ATTCCAGTGG GTCTAATGAC CATATCTTAG GACACAGATG TGCCCAGGGA GGTGGTGTCA
                                                                          1920
       CTGCACAGGA AGTATGAGGA CTTTAGTGTC CTGAGTTCAA ATCCTGATTC AGGAACTCAC
                                                                          1980
       AAAGCTATGT GACCTTACAC CAGTCACTTA ACTTGTTAGC CATCCATTAT CGCATCTGCA
                                                                          2040
       AAATGGGGAT TAAGAATAGA ATCTTGGGGT TAGTGTGGAG ATTAGATTAA ATGTATGTAA
                                                                          2100
15
       GACACTTGGC ACAAAACCTG GCACATAGTA AAGGCTCAAT AAAAACAAGT GCCTCTCACT
                                                                          2160
       GGGCTTTGTC AACACGTG
       Seq ID NO: 469 Protein sequence
       Protein Accession #: NP 060528.1
20
       MDPEASDLSR GILALRDVAA EAGVSKYTGG RGVSVGPILS SSASDIFCDN ENGPNFLFHN
                                                                            60
       RGDGTFVDAA ASAGVDDPHQ HGRGVALADF NRDGKVDIVY GNWNGPHRLY LQMSTHGKVR
                                                                           120
25
       FRDIASPKFS MPSPVRTVIT ADFDNDQELE IFFNNIAYRS SSANRLFRVI RREHGDPLIE
                                                                           180
       ELNPGDALEP EGRGTGGVVT DFDGDGMLDL ILSHGESMAQ PLSVFRGNQG FNNNWLRVVP
                                                                           240
       rtrvgafarg akvylytkks gahlriidgg sgylcemepv ahfglgkdea ssvevtwpdg
                                                                           300
       KMVSRNVASG EMNSVLEILY PRDEDTLQDP APLETPMNAS SSHSCALETS PYVSTPMEAT
                                                                           360
       GAGPTRSAVG ATSPTRMAQP AWGLSASHRA PAPPPPPLLL PLPLLLPLLE LPLLHRSS
30
      Seq ID NO: 470 DNA sequence
      Nucleic Acid Accession #: AJ279016
      Coding sequence: 1:.1962
35
                  11
                             21
                                        31
       ATGTCCAGGA TGTTACCGTT CCTGCTGCTG CTCTGGTTTC TGCCCATCAC TGAGGGGTCC
                                                                            60
       CAGCGGGCTG AACCCATGTT CACTGCAGTC ACCAACTCAG TTCTGCCTCC TGACTATGAC
                                                                            120
      AGTAATCCCA CCCAGCTCAA CTATGGTGTG GCAGTTACTG ATGTGGACCA TGATGGGGAC
                                                                           180
40
                                                                           240
       TTTGAGATCG TCGTGGCGGG GTACAATGGA CCCAACCTGG TTCTGAAGTA TGACCGGGCC
       CAGAAGCGGC TGGTGAACAT CGCGGTCGAT GAGCGCAGCT CACCCTACTA CGCGCTGCGG
                                                                           300
       GACCGGCAGG GGAACGCCAT CGGGGTCACA GCCTGCGACA TCGACGGGGA CGGCCGGGAG
                                                                           360
       GAGATCTACT TCCTCAACAC CAATAATGCC TTCTCGGGGG TGGCCACGTA CACCGACAAG
                                                                           420
       TTGTTCAAGT TCCGCAATAA CCCGTGGGAA GACATCCTGA GCGATGAGGT CAACGTGGCC
                                                                            480
45
       CGTGGTGTG CCAGCCTCTT TGCCGGACGC TCTGTGGCCT GTGTGGACAG AAAGGGCTCT
                                                                           540
       GGACGCTACT CTATCTACAT TGCCAATTAC GCCTACGGTA ATGTGGGCCC TGATGCCCTC
                                                                            600
       ATTGAAATGG ACCCTGAGGC CAGTGACCTC TCCCGGGGCA TTCTGGCGCT CAGAGATGTG
                                                                           660
       GCTGCTGAGG CTGGGGTCAG CAAATATACA GGGGGCCGAG GCGTCAGCGT GGGCCCCATC
                                                                           720
       CTCAGCAGCA GTGCCTCGGA TATCTTCTGC GACAATGAGA ATGGGCCTAA CTTCCTTTTC
                                                                            780
50
       CACAACCGGG GCGATGGCAC CTTTGTGGAC GCTGCGGCCA GTGCTGGTGT GGACGACCCC
                                                                            840
       CACCAGCATG GGCGAGGTGT CGCCCTGGCT GACTTCAACC GTGATGGCAA AGTGGACATC
                                                                            900
       GTCTATGGCA ACTGGAATGG CCCCCACCGC CTCTATCTGC AAATGAGCAC CCATGGGAAG
                                                                            960
       GTCCGCTTCC GGGACATCGC CTCACCCAAG TTCTCCATGC CCTCCCCTGT CCGCACGGTC
                                                                          1020
      ATCACCGCCG ACTITGACAA TGACCAGGAG CTGGAGATCT TCTTCAACAA CATTGCCTAC
                                                                          1080
55
       CGCAGCTCCT CAGCCAACCG CCTCTTCCGC GTCATCCGTA GAGAGCACGG AGACCCCCTC
                                                                          1140
       ATCGAGGAGC TCAATCCCGG CGACGCCTTG GAGCCTGAGG GCCGGGGCAC AGGGGGTGTG
       GTGACCGACT TCGACGGAGA CGGGATGCTG GACCTCATCT TGTCCCATGG AGAGTCCATG
                                                                          1260
       GCTCAGCCGC TGTCCGTCTT CCGGGGCAAT CAGGGCTTCA ACAACAACTG GCTGCGAGTG
                                                                          1320
       GTGCCACGCA CCCGGTTTGG GGCCTTTGCC AGGGGAGCTA AGGTCGTGCT CTACACCAAG
                                                                          1380
60
       AAGAGTGGGG CCCACCTGAG GATCATCGAC GGGGGCTCAG GCTACCTGTG TGAGATGGAG
                                                                          1440
       CCCGTGGCAC ACTTTGGCCT GGGGAAGGAT GAAGCCAGCA GTGTGGAGGT GACGTGGCCA
                                                                          1500
       GATGGCAAGA TGGTGAGCCG GAACGTGGCC AGCGGGGAGA TGAACTCAGT GCTGGAGATC
                                                                          1560
       CTCTACCCCC GGGATGAGGA CACACTTCAG GACCCAGCCC CACTGGAGTG TGGCCAAGGA
                                                                          1620
       TTCTCCCAGC AGGAAAATGG CCATTGCATG GACACCAATG AATGCATCCA GTTCCCATTC
                                                                          1680
65
       GTGTGCCCTC GAGACAAGCC CGTATGTGTC AACACCTATG GAAGCTACAG GTGCCGGACC
                                                                          1740
       AACAAGAAGT GCAGTCGGGG CTACGAGCCC AACGAGGATG GCACAGCCTG CGTGGGGACT
                                                                          1800
       CTCGGCCAGT CACCGGGCCC CCGCCCCACC ACCCCCACCG CTGCTGCTGC CACTGCCGCT
                                                                          1860
                                                                          1920
       GCTGCTGCCG CTGCTGGAGC TGCCACTGCT GCACCGGTCC TCGTAGATGG AGATCTCAAT
       CTGGGGTCGG TGGTTAAGGA GAGCTGCGAG CCCAGCTGCT GAGCAGGGGT GGGACATGAA
                                                                          1980
70
       CCAGCGGATG GAGTCCAGCA GGGGAGTGGG AAAGTGGGCT TGTGCTGCTG CCTAGACAGT
                                                                          2040
       AGGGATGTAA AGGCCTGGGA GCTAGACCCT CCCCAAGCCC ATCCATGCAC ATTACTTAGC
                                                                          2100
       TAACAATTAG GGAGACTCGT AAGGCCAGGC CCTGTGCTGG GCACATAGCT GTGATCACAG
                                                                          2160
       CAGACAGGGT CGCTGCCCTG ATGGCGCTTA CATTCCAGTG GGTCTAATGA CCATATCTTA
       GGACACAGAT GTGCCCAGGG AGGTGGTGTC ACTGCACAGG AAGTATGAGG ACTTTAGTGT
                                                                          2280
75
       CCTGAGTTCA AATCCTGATT CAGGAACTCA CAAAGCTATG TGACCTTACA CCAGTCACTT
                                                                           2340
       AACTTGTTAG CCATCCATTA TCGCATCTGC AAAATGGGGA TTAAGAATAG AATCTTGGGG
                                                                          2400
       TTAGTGTGGA GATTAGATTA AATGTATGTA AGACACTTGG CACAAAACCT GGCACATAGT
                                                                          2460
       AAAGGCTCAA TAAAAACAAG TGCCTCTCAC TGGGCTTTGT CAACACG
80
       Sea ID NO: 471 Protein sequence
       Protein Accession #: CAC08451
85
       MSRMLPFLLL LWFLPITEGS QRAEPMFTAV TNSVLPPDYD SNPTQLNYGV AVTDVDHDGD
                                                                             60
       FEIVVAGYNG PNLVLKYDRA QKRLVNIAVD ERSSPYYALR DRQGNAIGVT ACDIDGDGRE
                                                                            120
```

EIYFLNTNNA FSGVATYTDK LFKFRNNRWE DILSDEVNVA RGVASLFAGR SVACVDRKGS

	WO 02/									
		AYGNVGPDAL					240			
	LSSSASDIFC	DNENGPNFLF	HNRGDGTFVD	AAASAGVDDP	HQHGRGVALA	DENEDGRADI	300 360			
	PECCAMPIER	LYLQMSTHGK VIRREHGDPL	TEET NOCHAL	PDPGDGTGGV	ALUEDINDOR	DLILSHGESM	420			
5	AOPLSVPRGN	QGFNNNWLRV	VPRTREGAFA	RGAKVVLYTK	KSGAHLRIID	GGSGYLCEME	480			
•	PVAHFGLGKD	EASSVEVTWP	DGKMVSRNVA	SGEMNSVLBI	LYPRDEDTLQ	DPAPLECGQG	540			
	FSQQENGHCM	DTNECIQFPF	VCPRDKPVCV	NTYGSYRCRT	NKKCSRGYEP	NEDGTACVGT	600			
	LGQSPGPRPT	TPTAAAATAA	AAAAAGAATA	APVLVDGDLN	LGSVVKESCE	PSC				
10	O Seq ID NO: 472 DNA sequence									
10	Nucleic Acid Accession #: FGENESHH									
		ence: 14								
	,									
15	ļ	11	21	31	41	51				
13	A TOCOCOTOTO	CGGGAGGACT	COCACICCOCT	ACCEPTAGE OF THE PROPERTY OF T	GGATGGGACT	GGGTGGGCCC	60			
		CCCCAGCATC					120			
	GTTCTGAAGT	ATGACCGGGC	CCAGAAGCGG	CTGGTGAACA	TCGCGGTCGA	TGAGCGCAGC	180			
20	TCACCCTACT	ACGCGCTGCG	GGACCGGCAG	GGGAACGCCA	TCGGGGTCAC	AGCCTGCGAC	240			
20	ATCGACGGGG	ACGGCCGGGA	GGAGATCTAC	TTCCTCAACA	CCAATAATGC	CTTCTCGGGC	300 360			
	CACAGCAGCT	CAGCGCAGGT	CCCTTCTGGG	CTCCACAGAA	TCAGGGCCTGT	GCIGAAGCCI	420			
		GTCAGGCTTC					480			
	TGTCGGGGTG	GACTGAGACC	TACCCATGAA	CCAGAACCAT	TTCTTCTGAG	ACCCAAATCA	540			
25		CGTACACCGA					600			
	CTGAGCGATG	AGGTCAACGT ACAGAAAGGG	GGCCCGTGGT	GTGGCCAGCC	TCTTTGCCGG	ACCCTCTGTG	660 720			
• • •		GCCCTGATGC					780			
	GGCATTCTGG	CGCTCAGAGA	TGTGGCTGCT	GAGGCTGGGG	TCAGCAAATA	TACAGAAGGC	840			
30	TTCTCCCACA	CTGCCTCTCC	AAGCATTGGT	GAGATATCTG	GCAGAACCGA	GGAGCGGGAA	900			
	GGAGGAGACC	CAGAGGAGGC	AGATGAGGAG	CACAGTGGGG	ATGGAAGCAC	CAGCCAACTG	960			
	TGCCGGCTGG	GCTGGAAGGA CTGGGGCAGC	CGGGCAGTTC	AAGGAAGAAG	CAGCAGCTTT	GGTGGAGGAA	1020 1080			
		ATTTGGCTGA					1140			
35		CAGCCCACCC					1200			
		CTCAGCTAAT					1260			
	CCCCACCCC	GAGCCCCAGG	AATGGACCCC	AAATGTAAGG	GCCGCCATGC	TGAGCCCGGC	1320			
	CTGATGGCTG	AGGCTTTGGG GGGAGGAAAG	CGCGTGGCCA	GCGCTCAGCA	CCACTGTGGT	TGCACTCAGG	1380 1440			
40	CIGAGAAGCI	GTCCCTGGAG	CCAAGCCACA	CAGCACCTGC	CTGCTAGAGA	GCTGTATGAC	1500			
	CTGGGAGAAC	CTCCCATTTT	ACAAAGAACA	GACGGAGATC	CAGGGAGGAG	AAGGGACTCG	1560			
	CCCAAGGTCA	CACAGGAGTG	CCATCTAGTG	GCCACCATGC	CAGCTCTCGG	GGGACTCGAG	1620			
		GGGTGGCCAA					1680 1740			
45		CTGCCCTGCC					1800			
	CTGGCGTGGA	ACCAGATGGA	AAAAGAGGAG	GGGAAGATTC	ATGGAGACCA	TGAGCCCAGA	1860			
	TTTAGGCTCA	GGAAAGCACG	GGAAGCAGAA	TTCCCCCCAG	GCTCCTCTGA	GGAGCCTCTG	1920			
	CTGCAGTTCC	CCTCAGGCCT	CAGAGGCAGC	CCTGTCCTCC	AGGTGGGCCT	GGGGCTTGCT	1980			
50	TCTGCCACTC	ACTGTGGGTC GCAGTGCCTC	GATGTCTTTT	TOCALATO	AGAATGGGCC	TAACTTCCTT	2040 2100			
50		GGGGCGATGG					2160			
	GCCTTCATCG	TTCACCTCAA	ATATCACCTC	TGCAGAGATT	TTCCTCACTC	CCTGTGCCAC	2220			
	CTAGCAGAAA	CTGGTCCTTC	CTCCTCCTGC	TGCCCGTGGC	ATGCACGTCT	TCTTCAGGCT	2280			
55	CCACATTGCC	ATCATGGTTT AAGGCTTGGC	GTCTATGAGC	TTTACAAGGA	CCGGGTCACG	CONCECTTCT	2340 2400			
<i>JJ</i> .	CAGGGGGCCC	CACCCTGCCT	TCTGGCAAGA	GCTCCCTGTG	TCCTGGGGTC	TCTGATCCCC	2460			
	ACTGCCTATT	ACATTGTCCT	GTGGTCTGCC	ATCCCAGAGA	GCCTGATGAC	CCACAGCTAT	2520			
	TTGTCCTCTG	AAAGAGTCAA	CGTGGGTGTG	GACGACCCCC	ACCAGCATGG	GCGAGGTGTC	2580			
60	GCCCTGGCTG	ACTTCAACCG	TGATGGCAAA	GTGGACATCG	TCTATGGCAA	CTGGAATGGC	2640			
00	TCACCCAAGT	TCTATCTGCA	CTCCCCTGTC	CATGGGAAGG	TCACCGCCGA	GGACATCGCC CTTTGACAAT	2700 2760			
	GACCAGGAGC	TGGAGATCTT	CTTCAACAAC	ATTGCCTACC	GCAGCTCCTC	AGCCAACCGC	2820			
	CTCTTCCGAT	GCTCCATCCT	GGCTCGTGGC	TCTTCATCCT	TGACAGCTGG	TGGGAGGAAC	2880			
65	GGTCAGGGAG	AAGGTTTAAG	AATCAGAAGG	GGAGGGTTCC	CAGGGCCAGG	GGGTCAGGCC	2940			
03	AAGGTCAACA	CAGGTCCCCT	GATGAAGAAA	CAGAAAGGAA	CCCCCTCTCC	GGACTGGGCA TATTGCAGGG	3060			
	ADAGGGIGIG	GAATGCAGG	CCAAAGTGTG	CCCAGAACCC	AAGCGCCACA	AGATACAAAG	3120			
	CCACACTACC	ACAAAAAGGG	GCTACAGGGT	CCAATCACTA	CCAGGAAAAG	GGGCTACGGG	3180			
70	GTCCAATCAC	TACCAGGAAA	AGGGGCTACG	GGGTCCAATC	ACTACCAGGA	AAAGGGGCTA	3240			
70	CGGGGTCCAA	TCACTACCAG	GAAAAGGGGC	TACGGGGTCC	AATCACTACC	AGGAAAAGGG	3300			
	GCTACGGGCT	CCAATCACTA	CCAGGAAAAG	BARCEGETA	CAGGGTCCAA	TACCAGGAAA TCACTACCAC	3360 3420			
	AGAAAGGGGC	TACGGGCTCC	AATCACTACC	AGGAAAAGGG	GCTACGGGGT	CCAATCACTA	3480			
	CCAGGAAAAG	GGGCTACAGG	GTCCAATCAC	TACCAGGAAA	AGGGGCTACG	GGGTCCAATC	3540			
75	ACTACCAGGA	AAAGGGGCTA	CGGGCTCCAA	TCACTACCAG	GAAAAGGGGC	TACGGGGTCC	3600			
	AATCACTACC	AGGAAAAGGG	GCTACAGGGT	CCAATCACTA	CCAGGAAAAG	GGGCTACAGG AAAGGGGCTA	3660 3720			
	GTCCAATCAC CGGCCTCCDA	TACCACAGAA	CAAAACCCCC	TACGGGCTCC	AATCACTACC	AGGAAAAGAG	3720			
	GCTATGGGGT	CCAATCACTA	CCAGGAAAAG	GGGCTACGGG	CTCCAATCAC	TACCAGGAAA	3840			
80	AGGGGCTATG	GGGTCCAATC	ACTACCACAG	AAAGGGGCTA	CGGGGTCCAA	CGTCATCCGT	3900			
	AGAGAGCACG	GAGACCCCCT	CATCGAGGAG	CTCAATCCCG	GCGACGCCTT	GGAGCCTGAG	3960			
	GGCCGGGGCA	CAGGGGGTGT	GGTGACCGAC	CTCGACGGAG	TCCGGGGCCA	GGACCTCATC TCAGGGCTTC	4020 4080			
	AACAACAACT	GGCTGCGAGT	GGTGCCACGC	ACCCGGTTTG	GGGCCTTTGC	CAGGGGAGCT	4140			
85	AAGGTCGTGC	TCTACACCAA	GAAGAGTGGG	GCCCACCTGA	GGATCATCGA	CGGGGGCTCA	4200			
	GGCTACCTGT	GTGAGATGGA	GCCCGTGGCA	CACTTTGGCC	TGGGGAAGGA	TGAAGCCAGC	4260			
	AGTGTGGAGG	TGACGTGGCC	AGATGGCAAG	ATGGTGAGCC	GGAACGTGGC	CAGCGGGGAG	.4320			

```
ATGAACTCAG TGCTGGAGAT CCTCTACCCC CGGGATGAGG ACACACTTCA GGACCCAGCC 4380
                                                                            4440
       CCACTGGAGT GTGGCCAAGG ATTCTCCCAG CAGGAAAATG GCCATTGCAT GGACACCAAT
       GAATGCATCC AGTTCCCATT CGTGTGCCCT CGAGACAAGC CCGTATGTGT CAACACCTAT
                                                                            4500
       GGAAGCTACA GGTGCCGGAC CAACAAGAAG TGCAGTCGGG GCTACGAGCC CAACGAGGAT
                                                                            4560
 5
       GGCACAGCCT GCGTGGGTAC TGAGCTAGGC TCTAGGCATA CAATGACGTG GAAACCAAGG
                                                                            4620
       CCCAAAAAGG AGCTGCAACT TTCCCAAGGC ATCTGCACCC CCGTCTGGTC CTTTTTCCTG
                                                                            4680
       CCGGGTTGCC GGCTGCTCCT CAAAAGAGCT CAGCTCCAGG CTGCTCCCAG CACCCTTCTC
                                                                           4740
       CAGARAGCTC CAGGTATTCC AGRAGCCCAA GTGTATGAAC AAGATCAGGA ATAA
10
       Seg ID NO: 473 Protein sequence
       Protein Accession #: FGENESH predicted
15
       MACPGGLPAR CSGWMGLGGP SGSSPASPPH SSSRYNGPNL VLKYDRAQKR LVNIAVDERS
       SPYYALRDRO GNAIGVTACD IDGDGREEIY FLNTNNAFSG HSSSAQVPSG LHRNRPVLKP
                                                                            120
       PPTTPAGLIG LPPLSGRDFS SSLGOASPDS ROGERVPVPC CRGGLRPTHE PEPFLLRPKS
       GVATYTDKLP KFRNNRWEDI LSDEVNVARG VASLFAGRSV ACVDRKGSGR YSIYIANYAY
                                                                            240
       GNVGPDALIE MDPEASDLSR GILALRDVAA EAGVSKYTEG FSHTASPSIG EISGRTEERE
                                                                            300
20
       GGDPEEADEE HSGDGSTSQL CRLGWKDGQF KEEAAALVEE QREAGAAGVP RGRVRTALQT
                                                                            360
       SKSHLADKNL FGPPCYYSVC APSPAHPPPA RQAPQHYPVA PLVTQLMTHG RLAGKLARSV
                                                                             420
       PHPRAPGMDP KCKGRHAEPG LMAEALGAWP ALSTTVVPGG LRSWEESRQK GQAMSRCALR
                                                                             480
       ELGGPWSQAT QHLPARELYD LGEPPILQRT DGDPGRRRDS PKVTQECHLV ATMPALGGLE
                                                                            540
       GPGRVAKREI GRETGAVGRP LSHPLVPNFP SCLRPLEAGT VPGAALPGNP GNWVLDMAKA
                                                                            600
25
       LAWNOMEKEE GKIHGDHEPR FRLRKAREAE FPPGSSEEPL LQFPSGLRGS PVLQVGLGLA
                                                                            660
       SATHOGSMSF LGGRGVSVGP ILSSSASDIF CDNENGPNFL FHNRGDGTFV DAAASAERRL
                                                                            720
       AFIVHLKYHL CRDFPHSLCH LAETGPSSSC CPWHARLLQA PHCHHGLSMS FTRTGSRFYS
                                                                            780
       FLTQGLASSA HRRTLSLQGS QGAPPCLLAR APCVLGSLIP TAYYIVLWSA IPESLMTHSY
                                                                            840
       LSSERVNVGV DDPHQHGRGV ALADFNRDGK VDIVYGNWNG PHRLYLQMST HGKVRFRDIA
                                                                            900
30
       SPKFSMPSPV RTVITADFDN DQELEIFFNN IAYRSSSANR LFRCSILARG SSSLTAGGRN
                                                                            960
       GQGEGLRIRR GGFPGPGGQA KVNTGPLMKK QKGRKDEDWA RGCGNAGQSL AKEPASAIAG
                                                                            1020
       KGKGNVAQSV PRTQAPQDTK PHYHKKGLQG PITTRKRGYG VQSLPGKGAT GSNHYQEKGL
                                                                            1080
       RGPITTRKRG YGVQSLPGKG ATGSNHYQEK GLQGPITTRK RGYGLQSLPG KGATGSNHYH
                                                                            1140
       RKGLRAPITT RKRGYGVQSL PGKGATGSNH YQEKGLRGPI TTRKRGYGLQ SLPGKGATGS
                                                                            1200
35
       NHYQEKGLQG PITTRKRGYR VQSLPQKGAT GSNHYQEKGL RGPITTRKRG YGLQSLPGKE
                                                                            1260
       AMGSNHYOEK GLRAPITTRK RGYGVQSLPQ KGATGSNVIR REHGDPLIEE LNPGDALEPE
                                                                            1320
       GRGTGGVVTD FDGDGMLDLI LSHGESMAOP LSVFRGNQGF NNNWLRVVPR TRFGAFARGA
                                                                            1380
       KVVLYTKKSG AHLRIIDGGS GYLCEMEPVA HFGLGKDEAS SVEVTWPDGK MVSRNVASGE
                                                                           1440
       MNSVLEILYP RDEDTLODPA PLECGOGFSQ QENGHCMDTN ECIQFPFVCP RDKPVCVNTY
                                                                           1500
40
       GSYRCRTNKK CSRGYEPNED GTACVGTELG SRHTMTWKPR PKKELQLSQG ICTPVWSFFL
       PGCRLLLKRA OLOAAPSTLL OKAPGIPEAQ VYEQDQE
       Seq ID NO: 474 DNA sequence
       Nucleic Acid Accession #: NM_003661.1
45
       Coding sequence: 1..1152
                                                               51
       ATGAGTGCAC TTTTCCTTGG TGTGGGAGTG AGGGCAGAGG AAGCTGGAGC GAGGGTGCAA
                                                                             60
50
       CAAAACGTTC CAAGTGGGAC AGATACTGGA GATCCTCAAA GTAAGCCCCT CGGTGACTGG
                                                                            120
       GCTGCTGGCA CCATGGACCC AGAGAGCAGT ATCTTTATTG AGGATGCCAT TAAGTATTTC
                                                                            180
       AAGGAAAAG TGAGCACACA GAATCTGCTA CTCCTGCTGA CTGATAATGA GGCCTGGAAC
                                                                            240
       GGATTCGTGG CTGCTGCTGA ACTGCCCAGG AATGAGGCAG ATGAGCTCCG TAAAGCTCTG
                                                                            300
       GACAACCTTG CAAGACAAAT GATCATGAAA GACAAAAACT GGCACGATAA AGGCCAGCAG
TACAGAAACT GGTTTCTGAA AGAGTTTCCT CGGTTGAAAA GTGAGCTTGA GGATAACATA
                                                                            360
55
                                                                            420
       AGAAGGCTCC GTGCCCTTGC AGATGGGGTT CAGAAGGTCC ACAAAGGCAC CACCATCGCC
                                                                            480
       AATGTGGTGT CTGGCTCTCT CAGCATTTCC TCTGGCATCC TGACCCTCGT CGGCATGGGT
                                                                            540
       CTGGCACCCT TCACAGAGGG AGGCAGCCTT GTACTCTTGG AACCTGGGAT GGAGTTGGGA
                                                                             600
       ATCACAGCCG CTTTGACCGG GATTACCAGC AGTACCATGG ACTACGGAAA GAAGTGGTGG
                                                                             660
60
       ACACAAGCCC AAGCCCACGA CCTGGTCATC AAAAGCCTTG ACAAATTGAA GGAGGTGAGG
                                                                            720
       GAGTTTTTGG GTGAGAACAT ATCCAACTTT CTTTCCTTAG CTGGCAATAC TTACCAACTC
                                                                            780
       ACACGAGGCA TTGGGAAGGA CATCCGTGCC CTCAGACGAG CCAGAGCCAA TCTTCAGTCA
                                                                            840
       GTACCGCATG CCTCAGCCTC ACGCCCCCGG GTCACTGAGC CAATCTCAGC TGAAAGCGGT
                                                                            900
       GAACAGGTGG AGAGGGTTAA TGAACCCAGC ATCCTGGAAA TGAGCAGAGG AGTCAAGCTC
                                                                            960
65
       ACGGATGTGG CCCCTGTAAG CTTCTTTCTT GTGCTGGATG TAGTCTACCT CGTGTACGAA
                                                                           1020
       TCAAAGCACT TACATGAGGG GGCAAAGTCA GAGACAGCTG AGGAGCTGAA GAAGGTGGCT
                                                                           1080
       CAGGAGCTGG AGGAGAAGCT AAACATTCTC AACAATAATT ATAAGATTCT GCAGGCGGAC
                                                                           1140
       CAAGAACTGT GA
70
       Seq ID NO: 475 Protein sequence
       Protein Accession #: NP_003652.1
                                         31
                                                    41
                                                               51
                  11
75
       MSALFLGVGV RAEEAGARVQ QNVPSGTDTG DPQSKPLGDW AAGTMDPESS IFIEDAIKYF
                                                                             60
       KEKVSTONLL LLLTDNEAWN GFVAAAELPR NEADELRKAL DNLAROMIMK DKNWHDKGOO
                                                                             120
       YRNWFLKEFP RLKSELEDNI RRLRALADGV QKVHKGTTIA NVVSGSLSIS SGILTLVGMG
                                                                            180
       LAPFTEGGSL VLLEPGMELG ITAALTGITS STMDYGKKWW TQAQAHDLVI KSLDKLKEVR
                                                                            240
       EFLGENISNF LSLAGNTYQL TRGIGKDIRA LRRARANLQS VPHASASRPR VTEPISAESG
                                                                             300
80
       EQVERVNEPS ILEMSRGVKL TDVAPVSFFL VLDVVYLVYE SKHLHEGAKS ETAEELKKVA
       QELEEKLNIL NNNYKILQAD QEL
       Seq ID NO: 476 DNA sequence
       Nucleic Acid Accession #: NM 014452.1
85
       Coding sequence: 1..1968
                  11
                              21
                                         31
                                                    41
                                                               51
```

```
ATGGGGACCT CTCCGAGCAG CAGCACCGCC CTCGCCTCCT GCAGCCGCAT CGCCCGCCGA
                                                                             60
       GCCACAGCCA CGATGATCGC GGGCTCCCTT CTCCTGCTTG GATTCCTTAG CACCACCACA
                                                                            120
       GCTCAGCCAG AACAGAAGGC CTCGAATCTC ATTGGCACAT ACCGCCATGT TGACCGTGCC
                                                                            180
 5
       ACCEGCCAGE TECTAACCTE TEACAACTET CCAGCAGGAA CCTATETCTC TEAGCATTET
                                                                            240
       ACCAACACA GCCTGCGCGT CTGCAGCAGT TGCCCTGTGG GGACCTTTAC CAGGCATGAG
                                                                            300
       AATGGCATAG AGAAATGCCA TGACTGTAGT CAGCCATGCC CATGGCCAAT GATTGAGAAA 🕏 360
       TTACCTTGTG CTGCCTTGAC TGACCGAGAA TGCACTTGCC CACCTGGCAT GTTCCAGTCT
                                                                            420
       AACGCTACCT GTGCCCCCCA TACGGTGTGT CCTGTGGGTT GGGGTGTGCG GAAGAAAGGG
                                                                            480
10
       ACAGAGACTG AGGATGTGCG GTGTAAGCAG TGTGCTCGGG GTACCTTCTC AGATGTGCCT
                                                                            540
       TCTAGTGTGA TGAAATGCAA AGCATACACA GACTGTCTGA GTCAGAACCT GGTGGTGATC
                                                                            600
       AAGCCGGGGA CCAAGGAGAC AGACAACGTC TGTGGCACAC TCCCGTCCTT CTCCAGCTCC
                                                                            660
       ACCTCACCTT CCCCTGGCAC AGCCATCTTT CCACGCCCTG AGCACATGGA AACCCATGAA
                                                                            720
       GTCCCTTCCT CCACTTATGT TCCCAAAGGC ATGAACTCAA CAGAATCCAA CTCTTCTGCC
                                                                            780
       TCTGTTAGAC CAAAGGTACT GAGTAGCATC CAGGAAGGGA CAGTCCCTGA CAACACAAGC
15
                                                                            840
       TCAGCAAGGG GGAAGGAAGA CGTGAACAAG ACCCTCCCAA ACCTTCAGGT AGTCAACCAC
                                                                            900
       CAGCAAGGCC CCCACCACAG ACACATCCTG AAGCTGCTGC CGTCCATGGA GGCCACTGGG
                                                                            960
       GGCGAGAAGT CCAGCACGCC CATCAAGGGC CCCAAGAGGG GACATCCTAG ACAGAACCTA
                                                                           1020
       CACAAGCATT TTGACATCAA TGAGCATTTG CCCTGGATGA TTGTGCTTTT CCTGCTGCTG
                                                                           1080
20
       GTGCTTGTGG TGATTGTGGT GTGCAGTATC CGGAAAAGCT CGAGGACTCT GAAAAAGGGG
                                                                           1140
       CCCCGGCAGG ATCCCAGTGC CATTGTGGAA AAGGCAGGGC TGAAGAAATC CATGACTCCA
       ACCCAGAACC GGGAGAAATG GATCTACTAC TGCAATGGCC ATGGTATCGA TATCCTGAAG
                                                                           1260
       CTTGTAGCAG CCCAAGTGGG AAGCCAGTGG AAAGATATCT ATCAGTTTCT TTGCAATGCC
       AGTGAGAGGG AGGTTGCTGC TTTCTCCAAT GGGTACACAG CCGACCACGA GCGGGCCTAC
                                                                           1380
25
       GCAGCTCTGC AGCACTGGAC CATCCGGGGC CCCGAGGCCA GCCTCGCCCA GCTAATTAGC
       GCCCTGCGCC AGCACCGGAG AAACGATGTT GTGGAGAAGA TTCGTGGGCT GATGGAAGAC
                                                                           1500
       ACCACCCAGC TGGAAACTGA CAAACTAGCT CTCCCGATGA GCCCCAGCCC GCTTAGCCCG
                                                                          1560
       AGCCCCATCC CCAGCCCCAA CGCGAAACTT GAGAATTCCG CTCTCCTGAC GGTGGAGCCT
                                                                           1620
       TCCCCACAGG ACAAGAACAA GGGCTTCTTC GTGGATGAGT CGGAGCCCCT TCTCCGCTGT 1680
30
       GACTCTACAT CCAGCGGCTC CTCCGCGCTG AGCAGGAACG GTTCCTTTAT TACCAAAGAA
                                                                           1740
       AAGAAGGACA CAGTGTTGCG GCAGGTACGC CTGGACCCCT GTGACTTGCA GCCTATCTTT
                                                                           1800
       GATGACATGC TCCACTTTCT AAATCCTGAG GAGCTGCGGG TGATTGAAGA GATTCCCCAG
                                                                           1860
       GCTGAGGACA AACTAGACCG GCTATTCGAA ATTATTGGAG TCAAGAGCCA GGAAGCCAGC 1920
       CAGACCCTCC TGGACTCTGT TTATAGCCAT CTTCCTGACC TGCTGTAG
35
       Seq ID NO: 477 Protein sequence
       Protein Accession #: NP_055267.1
                                        31
                                                               51
40
       MGTSPSSSTA LASCSRIARR ATATMIAGSL LLLGFLSTTT AOPEOKASNL IGTYRHVDRA
       TGOVLTCDKC PAGTYVSEHC TNTSLRVCSS CPVGTFTRHE NGIEKCHDCS QPCPWPMIEK
       LPCAALTDRE CTCPPGMFQS NATCAPHTVC PVGWGVRKKG TETEDVRCKQ CARGTFSDVP
                                                                            180
       SSYMKCKAYT DCLSONLVVI KPGTKETDNV CGTLPSFSSS TSPSPGTAIF PRPEHMETHE
45
       VPSSTYVPKG MNSTESNSSA SVRPKVLSSI QEGTVPDNTS SARGKEDVNK TLPNLQVVNH
       QOGPHHRHIL KLLPSMEATG GEKSSTPIKG PKRGHPRQNL HKHFDINEHL PWMIVLFLLL
                                                                            360
       VLVVIVVCSI RKSSRTLKKG PRQDPSAIVE KAGLKKSMTP TONREKWIYY CNGHGIDILK
                                                                            420
       LVAAQVGSQW KDIYQFLCNA SEREVAAFSN GYTADHERAY AALQHWTIRG PEASLAQLIS
                                                                            480
       ALROHRRNDV VEKIRGLMED TTQLETDKLA LPMSPSPLSP SPIPSPNAKL ENSALLTVEP
                                                                            540
50
       SPODKNKGFF VDESEPLLRC DSTSSGSSAL SRNGSFITKE KKDTVLRQVR LDPCDLQPIF
                                                                            600
       DDMLHFLNPE ELRVIEEIPQ AEDKLDRLFE IIGVKSQEAS QTLLDSVYSH LPDLL
       Seg ID NO: 478 DNA sequence
       Nucleic Acid Accession #: XM_044533
55
       Coding sequence: 238..2751
                  11
                             21
                                        31
                                                    41
                                                               51
       GCTCTGCCCA AGCCGAGGCT GCGGGGCCGG CGCCGGCGGG AGGACTGCGG TGCCCCGCGG
60
       AGGGGCTGAG TTTGCCAGGG CCCACTTGAC CCTGTTTCCC ACCTCCCGCC CCCCAGGTCC
                                                                            120
       GGAGGCGGGG GCCCCCGGGG CGACTCGGGG GCGGACCGCG GGGCGGAGCT GCCGCCCGTG
                                                                            180
       AGTCCGGCCG AGCCACCTGA GCCCGAGCCG CGGGACACCG TCGCTCCTGC TCTCCGAATG
CTGCGCACCG CGATGGGCCT GAGGAGCTGG CTCGCCGCCC CATGGGGCGC GCTGCCGCCT
                                                                            240
                                                                            300
       CGGCCACCGC TGCTGCTGCT CCTGCTGCTG CTGCTCCTGC TGCAGCCGCC GCCTCCGACC
                                                                            360
65
       TGGGCGCTCA GCCCCGGAT CAGCCTGCCT CTGGGCTCTG AAGAGCGGCC ATTCCTCAGA
       TTCGAAGCTG AACACATCTC CAACTACACA GCCCTTCTGC TGAGCAGGGA TGGCAGGACC
                                                                            480
       CTGTACGTGG GTGCTCGAGA GGCCCTCTTT GCACTCAGTA GCAACCTCAG CTTCCTGCCA
                                                                            540
       GGCGGGGAGT ACCAGGAGCT GCTTTGGGGT GCAGACGCAG AGAAGAAACA GCAGTGCAGC
                                                                            600
       TTCAAGGGCA AGGACCCACA GCGCGACTGT CAAAACTACA TCAAGATCCT CCTGCCGCTC
                                                                            660
70
       AGCGGCAGTC ACCTGTTCAC CTGTGGCACA GCAGCCTTCA GCCCCATGTG TACCTACATC
                                                                            720
       AACATGGAGA ACTTCACCCT GGCAAGGGAC GAGAAGGGGA ATGTCCTCCT GGAAGATGGC
                                                                            780
       AAGGGCCGTT GTCCCTTCGA CCCGAATTTC AAGTCCACTG CCCTGGTGGT TGATGGCGAG
                                                                            840
       CTCTACACTG GAACAGTCAG CAGCTTCCAA GGGAATGACC CGGCCATCTC GCGGAGCCAA
                                                                            900
       AGCCTTCGCC CCACCAAGAC CGAGAGCTCC CTCAACTGGC TGCAAGACCC AGCTTTTGTG
                                                                            960
75
       GCCTCAGCCT ACATTCCTGA GAGCCTGGGC AGCTTGCAAG GCGATGATGA CAAGATCTAC
                                                                           1020
       TTTTTCTTCA GCGAGACTGG CCAGGAATTT GAGTTCTTTG AGAACACCAT TGTGTCCCGC
                                                                           1080
       ATTGCCCGCA TCTGCAAGGG CGATGAGGGT GGAGAGCGGG TGCTACAGCA GCGCTGGACC
                                                                           1140
       TCCTTCCTCA AGGCCCAGCT GCTGTGCTCA CGGCCCGACG ATGGCTTCCC CTTCAACGTG
                                                                           1200
       CTGCAGGATG TCTTCACGCT GAGCCCCAGC CCCCAGGACT GGCGTGACAC CCTTTTCTAT
                                                                           1260
       GGGGTCTTCA CTTCCCAGTG GCACAGGGGA ACTACAGAAG GCTCTGCCGT CTGTGTCTTC
80
                                                                           1320
       ACAATGAAGG ATGTGCAGAG AGTCTTCAGC GGCCTCTACA AGGAGGTGAA CCGTGAGACA
                                                                           1380
       CAGCAGTGGT ACACCGTGAC CCACCCGGTG CCCACACCCC GGCCTGGAGC GTGCATCACC
                                                                           1440
       AACAGTGCCC GGGAAAGGAA GATCAACTCA TCCCTGCAGC TCCCAGACCG CGTGCTGAAC
                                                                           1500
       TTCCTCAAGG ACCACTTCCT GATGGACGGG CAGGTCCGAA GCCGCATGCT GCTGCTGCAG
                                                                           1560
85
       CCCCAGGCTC GCTACCAGCG CGTGGCTGTA CACCGCGTCC CTGGCCTGCA CCACACCTAC
                                                                           1620
       GATGTCCTCT TCCTGGGCAC TGGTGACGGC CGGCTCCACA AGGCAGTGAG CGTGGGCCCC
       CGGGTGCACA TCATTGAGGA GCTGCAGATC TTCTCATCGG GACAGCCCGT GCAGAATCTG
```

```
CTCCTGGACA CCCACAGGGG GCTGCTGTAT GCGGCCTCAC ACTCGGGCGT AGTCCAGGTG 1800
       CCCATGGCCA ACTGCAGCCT GTACAGGAGC TGTGGGGACT GCCTCCTCGC CCGGGACCCC
                                                                           1860
       TACTGTGCTT GGAGCGGCTC CAGCTGCAAG CACGTCAGCC TCTACCAGCC TCAGCTGGCC
                                                                           1920
                                                                           1980
       ACCAGGCCGT GGATCCAGGA CATCGAGGGA GCCAGCGCCA AGGACCTTTG CAGCGCGTCT
       TOGGTTGTGT COCCGTCTTT TGTACCAACA GGGGAGAAGC CATGTGAGCA AGTCCAGTTC
                                                                           2040
       CAGCCCAACA CAGTGAACAC TTTGGCCTGC CCGCTCCTCT CCAACCTGGC GACCCGACTC
                                                                           2100
       TGGCTACGCA ACGGGGCCCC CGTCAATGCC TCGGCCTCCT GCCACGTGCT ACCCACTGGG
                                                                           2160
       GACCTGCTGC TGGTGGGCAC CCAACAGCTG GGGGAGTTCC AGTGCTGGTC ACTAGAGGAG
                                                                           2220
       GGCTTCCAGC AGCTGGTAGC CAGCTACTGC CCAGAGGTGG TGGAGGACGG GGTGGCAGAC
                                                                           2280
       CAAACAGATG AGGGTGGCAG TGTACCCGTC ATTATCAGCA CATCGCGTGT GAGTGCACCA
10
       GCTGGTGGCA AGGCCAGCTG GGGTGCAGAC AGGTCCTACT GGAAGGAGTT CCTGGTGATG
                                                                           2400
       TGCACGCTCT TTGTGCTGGC CGTGCTGCTC CCAGTTTTAT TCTTGCTCTA CCGGCACCGG
                                                                           2460
       AACAGCATGA AAGTCTTCCT GAAGCAGGGG GAATGTGCCA GCGTGCACCC CAAGACCTGC
                                                                           2520
       CCTGTGGTGC TGCCCCCTGA GACCCGCCCA CTCAACGGCC TAGGGCCCCC TAGCACCCCG
                                                                           2580
       CTCGATCACC GAGGGTACCA GTCCCTGTCA GACAGCCCCC CGGGGTCCCG AGTCTTCACT
                                                                           2640
15
       GAGTCAGAGA AGAGGCCACT CAGCATCCAA GACAGCTTCG TGGAGGTATC CCCAGTGTGC
                                                                           2700
       CCCCGGCCCC GGGTCCGCCT TGGCTCGGAG ATCCGTGACT CTGTGGTGTG AGAGCTGACT
                                                                           2760
       TCCAGAGGAC GCTGCCCTGG CTTCAGGGGC TGTGAATGCT CGGAGAGGGT CAACTGGACC
                                                                           2820
       TCCCCTCCGC TCTGCTCTTC GTGGAACACG ACCGTGGTGC CCGGCCCTTG GGAGCCTTGG
                                                                           2880
20
       GGCCAGCTGG CCTGCTGCTC TCCAGTCAAG TAGCGAAGCT CCTACCACCC AGACACCCAA
                                                                           2940
       ACAGCCGTGG CCCCAGAGGT CCTGGCCAAA TATGGGGGCC TGCCTAGGTT GGTGGAACAG
                                                                           3000
       TGCTCCTTAT GTAAACTGAG CCCTTTGTTT AAAAAACAAT TCCAAATGTG AAACTAGAAT
                                                                           3060
       GAGAGGGAAG AGATAGCATG GCATGCAGCA CACACGGCTG CTCCAGTTCA TGGCCTCCCA
                                                                           3120
       GGGGTGCTGG GGATGCATCC AAAGTGGTTG TCTGAGACAG AGTTGGAAAC CCTCACCAAC
                                                                           3180
25
       TGGCCTCTTC ACCTTCCACA TTATCCCGCT GCCACCGGCT GCCCTGTCTC ACTGCAGATT
                                                                           3240
       CAGGACCAGC TTGGGCTGCG TGCGTTCTGC CTTGCCAGTC AGCCGAGGAT GTAGTTGTTG
                                                                           3300
       CTGCCGTCGT CCCACCACCT CAGGGACCAG AGGGCTAGGT TGGCACTGCG GCCCTCACCA
                                                                           3360
       GGTCCTGGGC TCGGACCCAA CTCCTGGACC TTTCCAGCCT GTATCAGGCT GTGGCCACAC
                                                                           3420
       GAGAGGACAG CGCGAGCTCA GGAGAGATTT CGTGACAATG TACGCCTTTC CCTCAGAATT
                                                                           3480
30
       CAGGGAAGAG ACTGTCGCCT GCCTTCCTCC GTTGTTGCGT GAGAACCCGT GTGCCCCTTC
                                                                           3540
       CCACCATATC CACCCTCGCT CCATCTTTGA ACTCAAACAC GAGGAACTAA CTGCACCCTG
                                                                           3600
       GTCCTCTCC CAGTCCCCAG TTCACCCTCC ATCCCTCACC TTCCTCCACT CTAAGGGATA TCAACACTGC CCAGCACAGG GGCCCTGAAT TTATGTGGTT TTTATACATT TTTTAATAAG
                                                                           3660
       ATGCACTITA TGTCATTITT TAATAAAGTC TGAAGAATTA CTGTTT
35
       Seq ID NO: 479 Protein sequence
       Protein Accession #: XP_044533.3
                                         31
40
       MLRTAMGLRS WLAAPWGALP PRPPLLLLL LLLLLQPPPP TWALSPRISL PLGSEERPFL
       RFEAEHISNY TALLLSRDGR TLYVGAREAL FALSSNLSFL PGGEYQELLW GADAEKKQQC
                                                                            120
       SFKGKDPORD CONYIKILLP LSGSHLFTCG TAAFSPMCTY INMENFTLAR DEKGNVLLED
                                                                            180
       GKGRCPFDPN FKSTALVVDG ELYTGTVSSF QGNDPAISRS QSLRPTKTES SLNWLQDPAF
                                                                            240
45
       VASAYIPESL GSLOGDDDKI YFFFSETGQE FEFFENTIVS RIARICKGDE GGERVLQQRW
                                                                            300
       TSFLKAQLLC SRPDDGFPFN VLQDVFTLSP SPQDWRDTLF YGVFTSQWHR GTTEGSAVCV
                                                                            360
       PTMKDVORVF SGLYKEVNRE TOOWYTVTHP VPTPRPGACI TNSARERKIN SSLQLPDRVL
                                                                            420
       NFLKDHFLMD GQVRSRMLLL QPQARYQRVA VHRVPGLHHT YDVLFLGTGD GRLHKAVSVG
                                                                            480
       PRVHIIEELQ IFSSGQPVQN LLLDTHRGLL YAASHSGVVQ VPMANCSLYR SCGDCLLARD
                                                                            540
50
       PYCAMSGSSC KHVSLYQPQL ATRPWIQDIE GASAKDLCSA SSVVSPSFVP TGEKPCEQVQ
                                                                            600
       FQPNTVNTLA CPLLSNLATR LWLRNGAPVN ASASCHVLPT GDLLLVGTQQ LGEFQCWSLE
                                                                            660
       EGFQQLVASY CPEVVEDGVA DQTDEGGSVP VIISTSRVSA PAGGKASWGA DRSYWKEFLV
                                                                            720
       MCTLFVLAVL LPVLPLLYRH RNSMKVFLKQ GECASVHPKT CPVVLPPETR PLNGLGPPST
                                                                             780
       PLDHRGYQSL SDSPPGSRVF TESEKRPLSI QDSFVEVSPV CPRPRVRLGS EIRDSVV
55
       Seg ID NO: 480 DNA sequence
       Nucleic Acid Accession #: NM_004217.1
       Coding sequence: 58..1092
60
                                                    41
                                         31
       GGCCGGGAGA GTAGCAGTGC CTTGGACCCC AGCTCTCCTC CCCCTTTCTC TCTAAGGATG
                                                                              60
       GCCCAGAAGG AGAACTCCTA CCCCTGGCCC TACGGCCGAC AGACGGCTCC ATCTGGCCTG
                                                                             120
       AGCACCCTGC CCCAGCGAGT CCTCCGGAAA GAGCCTGTCA CCCCATCTGC ACTTGTCCTC
                                                                            180
65
       ATGAGCCGCT CCAATGTCCA GCCCACAGCT GCCCCTGGCC AGAAGGTGAT GGAGAATAGC
                                                                            240
       AGTGGGACAC CCGACATCTT AACGCGGCAC TTCACAATTG ATGACTTTGA GATTGGGCGT
                                                                            300
       CCTCTGGGCA AAGGCAAGTT TGGAAACGTG TACTTGGCTC GGGAGAAGAA AAGCCATTTC
                                                                            360
       ATCGTGGCGC TCAAGGTCCT CTTCAAGTCC CAGATAGAGA AGGAGGGCGT GGAGCATCAG
                                                                             420
       CTGCGCAGAG AGATCGAAAT CCAGGCCCAC CTGCACCATC CCAACATCCT GCGTCTCTAC
                                                                             480
70
       AACTATTTTT ATGACCGGAG GAGGATCTAC TTGATTCTAG AGTATGCCCC CCGCGGGGAG
                                                                             540
       CTCTACAAGG AGCTGCAGAA GAGCTGCACA TTTGACGAGC AGCGAACAGC CACGATCATG
                                                                             600
       GAGGAGTTGG CAGATGCTCT AATGTACTGC CATGGGAAGA AGGTGATTCA CAGAGACATA
                                                                             660
       AAGCCAGAAA ATCTGCTCTT AGGGCTCAAG GGAGAGCTGA AGATTGCTGA CTTCGGCTGG
                                                                             720
       TCTGTGCATG CGCCCTCCCT GAGGAGGAAG ACAATGTGTG GCACCCTGGA CTACCTGCCC
                                                                             780
75
       CCAGAGATGA TTGAGGGGCG CATGCACAAT GAGAAGGTGG ATCTGTGGTG CATTGGAGTG
                                                                             840
       CTTTGCTATG AGCTGCTGGT GGGGAACCCA CCCTTTGAGA GTGCATCACA CAACGAGACC
                                                                             900
       TATCGCCGCA TCGTCAAGGT GGACCTAAAG TTCCCCGCTT CTGTGCCCAC GGGAGCCCAG
       GACCTCATCT CCAAACTGCT CAGGCATAAC CCCTCGGAAC GGCTGCCCCT GGCCCAGGTC
                                                                            1020
       TCAGCCCACC CTTGGGTCCG GGCCAACTCT CGGAGGGTGC TGCCTCCCTC TGCCCTTCAA
                                                                            1080
80
       TCTGTCGCCT GATGGTCCCT GTCATTCACT CGGGTGCGTG TGTTTGTATG TCTGTGTATG
                                                                            1140
       TATAGGGGAA AGAAGGGATC CCTAACTGTT CCCTTATCTG TTTTCTACCT CCTCCTTTGT
       TTAATAAAGG CTGAAGCTTT TTGT
        Seq ID NO: 481 Protein sequence
85
       Protein Accession #: NP 004208
                                                     41
                                                                51
                   11
                              21
                                         31
```

```
MAQKENSYPW PYGRQTAPSG LSTLPQRVLR KEPVTPSALV LMSRSNVQPT AAPGQKVMEN
                                                                                60
       SSGTPDILTR HFTIDDFEIG RPLGKGKFGN VYLAREKKSH FIVALKVLFK SQIEKEGVEH
                                                                              120
       QLRREIEIQA HLHHPNILRL YNYFYDRRRI YLILEYAPRG ELYKELQKSC TFDEQRTATI
                                                                              180
       MEELADALMY CHGKKVIHRD IKPENLLIGL KGELKIADFG WSVHAPSLRR KTMCGTLDYL
PPEMIEGRMH NEKVDLWCIG VLCYELLVGN PPFESASHNE TYRRIVKVDL KFPASVPTGA
                                                                              240
                                                                              300
       QDLISKLLRH NPSERLPLAQ VSAHPWVRAN SRRVLPPSAL QSVA
       Seg ID NO: 482 DNA seguence
10
       Nucleic Acid Accession #: AK055663
       Coding sequence: 38..1423
                   11
                              21
                                          31
15
       AGAACGGCTT CCGGCGGGAG CTGTGCAGCT CCTTATCATG GGGACAATTC ATCTCTTTCG
       AAAACCACAA AGATCCTTTT TTGGCAAGTT GTTACGGGAA TTTAGACTTG TAGCAGCTGA
                                                                              120
       CCGAAGGTCC TGGAAGATAC TGCTCTTTGG TGTAATAAAC TTGATATGTA CTGGCTTCCT
                                                                              180
       GCTTATGTGG TGCAGTTCTA CTAATAGTAT AGCTTTAACT GCCTATACTT ACCTGACCAT
                                                                              240
       TTTTGATCTT TTTAGTTTAA TGACATGTTT AATAAGTTAC TGGGTAACAT TGAGGAAACC
                                                                              300
20
       TAGCCCTGTC TATTCATTTG GGTTTGAAAG ATTAGAAGTC CTGGCTGTAT TTGCCTCCAC
                                                                              360
       AGTCTTGGCA CAGTTGGGAG CTCTCTTTAT ATTAAAAGAA AGTGCAGAAC GCTTTTTGGA
                                                                              420
       ACAGCCCGAG ATACACACGG GAAGATTATT AGTTGGTACT TTTGTGGCTC TTTGTTTCAA
                                                                              480
       CCTGTTCACG ATGCTTTCTA TTCGGAATAA ACCTTTTGCT TATGTCTCAG AAGCTGCTAG
                                                                              540
       TACGAGCTGG CTTCAAGAGC ATGTTGCAGA TCTTAGTCGA AGCTTGTGTG GAATTATTCC
                                                                              600
25
       GGGACTTAGC AGTATCTTCC TTCCCCGAAT GAATCCATTT GTTTTGATTG ATCTTGCTGG
                                                                              660
       AGCATTTGCT CTTTGTATTA CATATATGCT CATTGAAATT AATAATTATT TTGCCGTAGA
                                                                              720
       CACTGCCTCT GCTATAGCTA TTGCCTTGAT GACATTTGGC ACTATGTATC CCATGAGTGT
                                                                              780
       GTACAGTGGG AAAGTCTTAC TCCAGACAAC ACCACCCCAT GTTATTGGTC AGTTGGACAA
                                                                              840
       ACTCATCAGA GAGGTATCTA CCTTAGATGG AGTTTTAGAA GTCCGAAATG AACATTTTTG
                                                                              900
30
       GACCCTAGGT TTTGGCTCAT TGGCTGGATC AGTGCATGTA AGAATTCGAC GAGATGCCAA
                                                                              960
       TGAACAAATG GTTCTTGCTC ATGTGACCAA CAGGCTGTAC ACTCTAGTGT CTACTCTAAC
                                                                             1020
       TGTTCAAATT TTCAAGGATG ACTGGATTAG GCCTGCCTTA TTGTCTGGGC CTGTTGCAGC
                                                                             1080
       CAATGTCCTA AACTTTTCAG ATCATCACGT AATCCCAATG CCTCTTTTAA AGGGTACTGA
                                                                             1140
       TGATTTGAAC CCAGTTACAT CAACTCCAGC TAAACCTAGT AGTCCACCTC CAGAATTTTC
                                                                             1200
       ATTTAACACT CCTGGGAAAA ATGTGAACCC AGTTATTCTT CTAAACACAC AAACAAGGCC
35
       TTATGGTTTT GGTCTCAATC ATGGACACAC ACCTTACAGC AGCATGCTTA ATCAAGGACT
                                                                             1320
       TGGAGTTCCA GGAATTGGAG CAACTCAAGG ATTGAGGACT GGTTTTACAA ATATACCAAG
       TAGATATGGA ACTAATAATA GAATTGGACA ACCAAGACCA TGATAGACTC TAACTTATTT
                                                                             1440
       TTATAAGGAA TATTGACTCC TTGGCTTCCA ATTTATTTAG TAATCCAACT TTGCATTGAC
                                                                             1500
40
       TGTTTAATCA TTTACTCTAA ATGTTAGATA ATAGTAGTCT TGTTCACATT TCATGAAACC
                                                                             1560
       TATGAAACTA TATTTTTGTA AAATGTATTT GTGACAGTGA AATCCTCGTA AATGTTAAAG
                                                                             1620
       GCTTTAAATA GGCTTCCTTT AGAAAATGTG TTTCTTTAAA TTTGGATTTT GGTATCTTTG
                                                                             1680
       GTTTTGTAGT TGACTGCAGT GTGATGTGAC CTTACCTTTA TAAGAGCCAC TTGATGGAGT
                                                                             1740
       AGATCTGTCA CATTACTAAG ATACGATATT TCTTTTTTTT TCCGAGACGG AGTCTTGCTC
                                                                             1800
45
       TGCCACTGTG CCCGGCCAAT ACATTATTAT TAACTTAAGG CTGTACTTTA TTAAGGCTTC
                                                                             1860
       CTTAGTTTTT GTTTTTTTTTTGAG ATGGAGTCTC ACTCTGTCGC CCAGGCTGGA
                                                                             1920
       ATGCAGTGGC ATGATCTCAG CTCACTGCAA CCTCTGCCTC CTGAGTTCAA ATGATTCTCC
                                                                             1980
       TGCCTCAGCC TCCCGAGTAG CTGGGATTAC AGGCACCTGC CACCACGCCC AGCTAATTTT
TGTATTTTTA GTAAAGACGG GGGATTTCAC CATGTTGGCC AGGCTGGTCT TGAACTCCTG
                                                                             2040
                                                                             2100
50
       ACCTCATGAT CCACCCACCT TAGCCTCCCA AAGTGCTGGG ATTAGGTGTG AGCCACCGCA
                                                                             2160
       CCTGGCCGAT ATTITCTITA ATGAAATTTA TAAATATGCT TCTTGAATAA TACACATTTT
GGGAAAGGGA AAAATGTCTG TTCAAAAAGT AAAGGTCTCT TTTATAGCTT TTCCAAACTT
                                                                             2220
                                                                             2280
       AATTGCTAAA TTTTTCTTTG AGGTTCTCCT GAATTATGTC TTACAAACTA AAAGCAAAAA
                                                                             2340
       TTTTTAGCAG AAATTTTGGA ATACATTCTA TCTAGCACAA TTTGAATTTT TAATTATCAA
55
       GATTTTTGTT AAAGTTTCTC TCCTTTAAAA ATTTTAGTAC ATTTGTAAAT
       Seg ID NO: 483 Protein seguence
       Protein Accession #: BAB70980.1
60
                                                                 51
       MGTIHLFRKP ORSFFGKLLR EFRLVAADRR SWKILLFGVI NLICTGFLLM WCSSTNSIÂL
       TAYTYLTIFD LFSLMTCLIS YWVTLRKPSP VYSFGFERLE VLAVFASTVL AQLGALFILK
                                                                              120
       ESAERFLEOP EIHTGRLLVG TFVALCFNLF TMLSIRNKPF AYVSEAASTS WLQEHVADLS
                                                                              180
65
       RSLCGIIPGL SSIFLPRMNP FVLIDLAGAF ALCITYMLIE INNYFAVDTA SAIAIALMTF
                                                                              240
       GTMYPMSVYS GKVLLQTTPP HVIGQLDKLI REVSTLDGVL EVRNEHFWTL GFGSLAGSVH
                                                                              300
       VRIRRDANEQ MVLAHVTNRL YTLVSTLTVQ IFKDDWIRPA LLSGPVAANV LNFSDHHVIP
                                                                              360
       MPLLKGTDDL NPVTSTPAKP SSPPPEFSFN TPGKNVNPVI LLNTQTRPYG FGLNHGHTPY
                                                                              420
       SSMLNQGLGV PGIGATQGLR TGFTNIPSRY GTNNRIGQPR P
70
       Seq ID NO: 484 DNA sequence
       Nucleic Acid Accession #: FGENESH predicted
       Coding sequence: 1..900
75
       ATGCCGCCGC GGGAGCTGAG CGAGGCCGAG CCGCCCCGC TCCGGGCCCC GACCCCTCCC
       CCGCGGCGGC GTAGCGCGCC CCCAGAGCTG GGCATCAAGT GCGTGCTGGT GGGCGACGGC
       GCCGTGGGCA AGAGCAGCCT CATCGTCAGC TACACCTGCA ATGGGTACCC CGCGCGCTAC
80
       CGGCCCACTG CGCTGGACAC CTTCTCTGGT ACGTACGTTC AATCGCCCGT GCGGCCGCGT
                                                                              240
       GGCTGCGGCG GGGCTGTGCA CCGGGGAGCT GGGGCGGGCG TCTCGGCGGG AGGGCGCAGA
                                                                              300
       GGACCCCGGG GAGGAGACTG GAGCAGGCCC CGAGGTGGCG CTGGTGCGGC CCAGGACGCT
                                                                              360
       CTTCCTAACT CAGGCTCTCC CCGCCCCGCC CCTGCAGTGC AAGTCCTGGT GGATGGAGCT
                                                                              420
       CCGGTGCGCA TTGAGCTCTG GGACACAGCG GGACAGGAGG ATTTTGACCG ACTTCGTTCC
                                                                              480
85
       CTTTGCTACC CGGATACCGA TGTCTTCCTG GCGTGCTTCA GCGTGGTGCA GCCCAGCTCC
                                                                              540
       TTTCAAAACA TCACAGAGAA ATGGCTGCCC GAGATCCGCA CGCACAACCC CCAGGCGCCT
                                                                               600
       GTGCTGCTGG TGGGCACCCA GGCCGACCTG AGGGACGATG TCAACGTACT AATTCAGCTG
                                                                              660
```

```
GACCAGGGGG GCCGGGAGGG CCCCGTGCCC CAACCCCAGG CTCAGGGTCT GGCCGAGAAG
                                                                               720
       ATCCGAGCCT GCTGCTACCT TGAGTGCTCA GCCTTGACGC AGAAGAACTT GAAGGAAGTA
                                                                               780
       TTTGACTCGG CTATTCTCAG TGCCATTGAG CACAAAGCCC GGCTGGAGAA GAAACTGAAT
                                                                               840
       GCCAAAGGTG TGCGCACCCT CTCCCGCTGC CGCTGGAAGA AGTTCTTCTG CTTCGTTTGA
       Seq ID NO: 485 Protein sequence
       Protein Accession #: PGENESH predicted
                                                                 51
10
       MPPRELSEAE PPPLRAPTPP PRRRSAPPEL GIKCVLVGDG AVGKSSLIVS YTCNGYPARY
                                                                                60
       RPTALDTFSG TYVQSPVRPR GCGGAVHRGA GAGVSAGGRR GFRGGDWSRP RGGAGAAQDA
                                                                               120
       LPNSGSPRPA PAVQVLVDGA PVRIELWDTA GQEDFDRLRS LCYPDTDVPL ACFSVVQPSS
                                                                               180
       FONITEKWLP EIRTHNPOAP VLLVGTOADL RDDVNVLIQL DOGGREGPVP OPOAOGLAEK
15
       IRACCYLECS ALTOKNIKEV FDSAILSAIE HKARLEKKIN AKGVRTISRC RWKKFFCFV
       Sea ID NO: 486 DNA sequence
       Nucleic Acid Accession #: XM_063832.2
       Coding sequence: 1..711
20
                                          31
       ATGCCGCCGC GGGAGCTGAG CGAGGCCGAG CCGCCCCCGC TCCGGGCCCC GACCCCTCCC
       CCGCGGCGGC GTAGCGCGCC CCCAGAGCTG GGCATCAAGT GCGTGCTGGT GGGCGACGGC
                                                                              120
25
       GCCGTGGGCA AGAGCAGCCT CATCGTCAGC TACACCTGCA ATGGGTACCC CGCGCGCTAC
                                                                               180
       CGGCCCACTG CGCTGGACAC CTTCTCTGTG CAAGTCCTGG TGGATGGAGC TCCGGTGCGC
                                                                              240
       ATTGAGCTCT GGGACACAGC GGGACAGGAG GATTTTGACC GACTTCGTTC CCTTTGCTAC
                                                                               300
       CCGGATACCG ATGTCTTCCT GGCGTGCTTC AGCGTGGTGC AGCCCAGCTC CTTTCAAAAC
                                                                              360
       ATCACAGAGA AATGGCTGCC CGAGATCCGC ACGCACAACC CCCAGGCGCC TGTGCTGCTG
                                                                               420
30
       GTGGGCACCC AGGCCGACCT GAGGGACGAT GTCAACGTAC TAATTCAGCT GGACCAGGGG
                                                                               480
       GGCCGGGAGG GCCCCGTGCC CCAACCCCAG GCTCAGGGTC TGGCCGAGAA GATCCGAGCC
                                                                               540
       TGCTGCTACC TTGAGTGCTC AGCCTTGACG CAGAAGAACT TGAAGGAAGT ATTTGACTCG
                                                                               600
       GCTATTCTCA GTGCCATTGA GCACAAAGCC CGGCTGGAGA AGAAACTGAA TGCCAAAGGT
                                                                               660
       GTGCGCACCC TCTCCCGCTG CCGCTGGAAG AAGTTCTTCT GCTTCGTTTG A
35
       Seg ID NO: 487 Protein sequence
       Protein Accession #: XP_063832.1
                                          31
40
       MPPRELSEAE PPPLRAPTPP PRRRSAPPEL GIKCVLVGDG AVGKSSLIVS YTCNGYPARY
                                                                               60
                                                                              120
       RPTALDTFSV OVLVDGAPVR IELWDTAGQE DFDRLRSLCY PDTDVFLACF SVVQPSSFQN
       ITEKWLPEIR THNPQAPVLL VGTQADLRDD VNVLIQLDQG GREGPVPQPQ AQGLAEKIRA
       CCYLECSALT QKNLKEVFDS AILSAIEHKA RLEKKLNAKG VRTLSRCRWK KFFCFV
45
       Seg ID NO: 488 DNA sequence
       Nucleic Acid Accession #: NM 014398.1
       Coding sequence: 64..1314
50
                                                                 51
       GGCACCGATT CGGGGCCTGC CCGGACTTCG CCGCACGCTG CAGAACCTCG CCCAGCGCCC
       ACCATGCCCC GGCAGCTCAG CGCGGCGGCC GCGCTCTTCG CGTCCCTGGC CGTAATTTTG
                                                                              120
       CACGATGGCA GTCAAATGAG AGCAAAAGCA TTTCCAGAAA CCAGAGATTA TTCTCAACCT
                                                                               180
55
       ACTGCAGCAG CAACAGTACA GGACATAAAA AAACCTGTCC AGCAACCAGC TAAGCAAGCA
                                                                               240
       CCTCACCAAA CTTTAGCAGC AAGATTCATG GATGGTCATA TCACCTTTCA AACAGCGGCC ACAGTAAAAA TTCCAACAAC TACCCCAGCA ACTACAAAAA ACACTGCAAC CACCAGCCCA ATTACCTACA CCCTGGTCAC AACCCAGGCC ACACCCAACA ACTCACACAC AGCTCCTCCA
                                                                               300
                                                                               360
       GTTACTGAAG TTACAGTCGG CCCTAGCTTA GCCCCTTATT CACTGCCACC CACCATCACC
                                                                               480
60
       CCACCAGCTC ATACAGCTGG AACCAGTTCA TCAACCGTCA GCCACACAAC TGGGAACACC
       ACTCAACCCA GTAACCAGAC CACCCTTCCA GCAACTTTAT CGATAGCACT GCACAAAAGC
       ACAACOGGTC AGAAGCCTGA TCAACCCACC CATGCCCCAG GAACAACGGC AGCTGCCCAC
AATACCACCC GCACAGCTGC ACCTGCCTCC ACGGTTCCTG GGCCCACCCT TGCACCTCAG
                                                                               720
       CCATCGTCAG TCAAGACTGG AATTTATCAG GTTCTAAACG GAAGCAGACT CTGTATAAAA
                                                                               780
65
       GCAGAGATGG GGATACAGCT GATTGTTCAA GACAAGGAGT CGGTTTTTTC ACCTCGGAGA
                                                                               840
       TACTTCAACA TCGACCCCAA CGCAACGCAA GCCTCTGGGA ACTGTGGCAC CCGAAAATCC
                                                                               900
       AACCTTCTGT TGAATTTTCA GGGCGGATTT GTGAATCTCA CATTTACCAA GGATGAAGAA
                                                                               960
       TCATATTATA TCAGTGAAGT GGGAGCCTAT TTGACCGTCT CAGATCCAGA GACAGTTTAC
                                                                              1020
       CAAGGAATCA AACATGCGGT GGTGATGTTC CAGACAGCAG TCGGGCATTC CTTCAAGTGC
                                                                              1080
70
       GTGAGTGAAC AGAGCCTCCA GTTGTCAGCC CACCTGCAGG TGAAAACAAC CGATGTCCAA
                                                                              1140
       CTTCAAGCCT TTGATTTTGA AGATGACCAC TTTGGAAATG TGGATGAGTG CTCGTCTGAC
                                                                              1200
       TACACAATTG TGCTTCCTGT GATTGGGGCC ATCGTGGTTG GTCTCTGCCT TATGGGTATG
                                                                              1260
       GGTGTCTATA AAATCCGCCT AAGGTGTCAA TCATCTGGAT ACCAGAGAAT CTAATTGTTG
                                                                              1320
       CCCGGGGGGA ATGAAAATAA TGGAATTTAG AGAACTCTTT CATCCCTTCC AGGATGGATG
                                                                              13B0
75
       TTGGGAAATT CCCTCAGAGT GTGGGTCCTT CAAACAATGT AAACCACCAT CTTCTATTCA
                                                                              1440
       AATGAAGTGA GTCATGTGTG ATTTAAGTTC AGGCAGCACA TCAATTTCTA AATACTTTTT
                                                                              1500
       GTTTATTTTA TGAAAGATAT AGTGAGCTGT TTATTTTCTA GTTTCCTTTA GAATATTTTA
                                                                              1560
       GCCACTCAAA GTCAACATTT GAGATATGTT GAATTAACAT AATATATGTA AAGTAGAATA
                                                                              1620
       AGCCTTCAAA TTATAAACCA AGGGTCAATT GTAACTAATA CTACTGTGTG TGCATTGAAG
       ATTITATITT ACCCTTGATC TTAACAAAGC CTTTGCTTTG TTATCAAATG GACTTTCAGT
80
                                                                              1740
       GCTTTTACTA TCTGTGTTTT ATGGTTTCAT GTAACATACA TATTCCTGGT GTAGCACTTA
       ACTCCTTTTC CACTTTAAAT TTGTTTTTGT TTTTTGAGAC GGAGTTTCAC TCTTGTCACC
                                                                              1860
       CAGGCTGGAG TACAGTGGCA CGATCTCGGC TTATGGCAAC CTCCGCCTCC CGGGTTCAAG
                                                                              1920
       TGATTCTCCT GCTTCAGCTT CCCGAGTAGC TGGGATTACA GGCACACACT ACCACGCCTG
                                                                              1980
85
       GCTAATTTTT GTATTTTAT TATAGACGGG TTTCACCATG TTGGCCAGAC TGGTCTTGAA
                                                                              2040
       CTCTTGACCT CAGGTGATCC ACCCACCTCA GCCTCCCAAA GTGCTGGGAT TACAGGCATG
                                                                              2100
       AGCCATTGCG CCCGGCCTTA AATGTTTTTT TTAATCATCA AAAAGAACAA CATATCTCAG
                                                                             2160
```

```
WO 02/086443
                                                                             2220
       GTTGTCTAAG TGTTTTTATG TAAAACCAAC AAAAAGAACA AATCAGCTTA TATTTTTAT
                                                                             2280
       CTTGATGACT CCTGCTCCAG AATTGCTAGA CTAAGAATTA GGTGGCTACA GATGGTAGAA
       CTAAACAATA AGCAAGAGAC AATAATAATG GCCCTTAATT ATTAACAAAG TGCCAGAGTC
                                                                             2340
       TAGGCTAAGC ACTITATCTA TATCTCATTT CATTCTCACA ACTTATAAGT GAATGAGTAA
                                                                             2400
 5
       ACTGAGACTT AAGGGAACTG AATCACTTAA ATGTCACCTG GCTAACTGAT GGCAGAGCCA
                                                                             2460
       GAGCTTGAAT TCATGTTGGT CTGACATCAA GGTCTTTGGT CTTCTCCCTA CACCAAGTTA
                                                                             2520
                                                                             2580
       CCTACAAGAA CAATGACACC ACACTCTGCC TGAAGGCTCA CACCTCATAC CAGCATACGC
       TCACCTTACA GGGAAATGGG TTTATCCAGG ATCATGAGAC ATTAGGGTAG ATGAAAGGAG
                                                                             2640
                                                                             2700
       AGCTTTGCAG ATAACAAAAT AGCCTATCCT TAATAAATCC TCCACTCTCT GGAAGGAGAC
10
       TGAGGGGCTT TGTAAAACAT TAGTCAGTTG CTCATTTTTA TGGGATTGCT TAGCTGGGCT
                                                                             2760
                                                                             2820
       GTAAAGATGA AGGCATCAAA TAAACTCAAA GTATTTTTAA ATTTTTTTGA TAATAGAGAA
                                                                             2880
       ACTTCGCTAA CCAACTGTTC TTTCTTGAGT GTATAGCCCC ATCTTGTGGT AACTTGCTGC
       TTCTGCACTT CATATCCATA TTTCCTATTG TTCACTTTAT TCTGTAGAGC AGCCTGCCAA
                                                                             2940
       GAATTTTATT TCTGCTGTTT TTTTTGCTGC TAAAGAAAGG AACTAAGTCA GGATGTTAAC
                                                                             3000
15
       AGAAAAGTCC ACATAACCCT AGAATTCTTA GTCAAGGAAT AATTCAAGTC AGCCTAGAGA
                                                                             3060
       CCATGTTGAC TITCCTCATG TGTTTCCTTA TGACTCAGTA AGTTGGCAAG GTCCTGACTT
TAGTCTTAAT AAAACATTGA ATTGTAGTAA AGGTTTTTGC AATAAAAACT TACTTTGG
       Seq ID NO: 489 Protein sequence
20
                                  NP_055213.1
       Protein Accession #:
                                          31
                                                                 51
       MPROLSAAAA LFASLAVILH DGSQMRAKAF PETRDYSQPT AAATVQDIKK PVQQPAKQAP
                                                                               60
25
       HQTLAARFMD GHITFQTAAT VKIPTTTPAT TKNTATTSPI TYTLVTTQAT PNNSHTAPPV
                                                                              120
       TEVTVGPSLA PYSLPPTITP PAHTAGTSSS TVSHTTGNTT QPSNQTTLPA TLSIALHKST
                                                                              180
       TGOKPDOPTH APGTTAAAHN TTRTAAPAST VPGPTLAPQP SSVKTGIYQV LNGSRLCIKA
                                                                              240
                                                                              300
       EMGIQLIVQD KESVFSPRRY FNIDPNATQA SGNCGTRKSN LLLNFQGGFV NLTFTKDEES
       YYISEVGAYL TVSDPETVYQ GIKHAVVMFQ TAVGHSFKCV SEQSLQLSAH LQVKTTDVQL
                                                                              360
30
       QAFDFEDDHF GNVDECSSDY TIVLPVIGAI VVGLCLMGMG VYKIRLRCQS SGYQRI
       Seq ID NO: 490 DNA sequence
       Nucleic Acid Accession #: NM_005409.3
       Coding sequence: 94..378
35
                                                                51
                                          31
       TTCCTTTCAT GTTCAGCATT TCTACTCCTT CCAAGAAGAG CAGCAAAGCT GAAGTAGCAG
                                                                               60
       CAACAGCACC AGCAGCAACA GCAAAAAACA AACATGAGTG TGAAGGGCAT GGCTATAGCC
TTGGCTGTGA TATTGTGTGC TACAGTTGTT CAAGGCTTCC CCATGTTCAA AAGAGGACGC
                                                                              120
40
       TGTCTTTGCA TAGGCCCTGG GGTAAAAGCA GTGAAAGTGG CAGATATTGA GAAAGCCTCC
                                                                              240
       ATAATGTACC CAAGTAACAA CTGTGACAAA ATAGAAGTGA TTATTACCCT GAAAGAAAAT
                                                                              300
       AAAGGACAAC GATGCCTAAA TCCCAAATCG AAGCAAGCAA GGCTTATAAT CAAAAAAGTT
                                                                              360
       GAAAGAAAGA ATTTTTAAAA ATATCAAAAC ATATGAAGTC CTGGAAAAGG GCATCTGAAA
                                                                              420
45
       AACCTAGAAC AAGTTTAACT GTGACTACTG AAATGACAAG AATTCTACAG TAGGAAACTG
                                                                              480
       AGACTTTTCT ATGGTTTTGT GACTTTCAAC TTTTGTACAG TTATGTGAAG GATGAAAGGT
                                                                              540
       GGGTGAAAGG ACCAAAAACA GAAATACAGT CTTCCTGAAT GAATGACAAT CAGAATTCCA
                                                                              600
       CTGCCCAAAG GAGTCCAGCA ATTAAATGGA TTTCTAGGAA AAGCTACCTT AAGAAAGGCT
                                                                              660
       GGTTACCATC GGAGTTTACA AAGTGCTTTC ACGTTCTTAC TTGTTGTATT ATACATTCAT
                                                                              720
50
       GCATTTCTAG GCTAGAGAAC CTTCTAGATT TGATGCTTAC AACTATTCTG TTGTGACTAT
                                                                              780
       GAGAACATTT CTGTCTCTAG AAGTTATCTG TCTGTATTGA TCTTTATGCT ATATTACTAT
                                                                              840
                                                                              900
       CTGTGGTTAC AGTGGAGACA TTGACATTAT TACTGGAGTC AAGCCCTTAT AAGTCAAAAG
       CATCTATGTG TCGTAAAGCA TTCCTCAAAC ATTTTTCAT GCAAATACAC ACTTCTTTCC
                                                                              960
       CCAAATATCA TGTAGCACAT CAATATGTAG GGAAACATTC TTATGCATCA TTTGGTTTGT
                                                                             1020
55
       TTTATAACCA ATTCATTAAA TGTAATTCAT AAAATGTACT ATGAAAAAAA TTATACGCTA
                                                                             1080
       TGGGATACTG GCAACAGTGC ACATATTTCA TAACCAAATT AGCAGCACCG GTCTTAATTT
                                                                             1140
       GATGITITIC AACTITIATI CATTGAGATG TITTGAAGCA ATTAGGATAT GTGTGTTTAC
                                                                             1200
       TGTACTTTTT GTTTTGATCC GTTTGTATAA ATGATAGCAA TATCTTGGAC ACATTTGAAA
                                                                             1260
       TACAAAATGT TITTGTCTAC CAAAGAAAAA TGTTGAAAAA TAAGCAAATG TATACCTAGC AATCACTTTT ACTTTTGTA ATTCTGTCTC TTAGAAAAAT ACATAATCTA ATCAATTTCT
                                                                             1320
60
                                                                             1380
       TTGTTCATGC CTATATACTG TAAAATTTAG GTATACTCAA GACTAGTTTA AAGAATCAAA
       Seg ID NO: 491 Protein sequence
65
       Protein Accession #: NP 005400.1
                                                                 51
       MSVKGMAIAL AVILCATVVQ GFPMFKRGRC LCIGPGVKAV KVADIEKASI MYPSNNCDKI
                                                                               60
70
       EVIITLKENK GQRCLNPKSK QARLIIKKVE RKNP
       Seq ID NO: 492 DNA sequence
       Nucleic Acid Accession #: NM_000577.1
       Coding sequence: 41..520
75
                                                                 51
                   11
                              21
                                          31
       GGCACGAGGG GAAGACCTCC TGTCCTATCA GGCCCTCCCC ATGGCTTTAG AGACGATCTG
       CCGACCCTCT GGGAGAAAAT CCAGCAAGAT GCAAGCCTTC AGAATCTGGG ATGTTAACCA
                                                                              120
80
       GAAGACCTTC TATCTGAGGA ACAACCAACT AGTTGCCGGA TACTTGCAAG GACCAAATGT
       CAATTTAGAA GAAAAGATAG ATGTGGTACC CATTGAGCCT CATGCTCTGT TCTTGGGAAT
                                                                              . 240
       CCATGGAGGG AAGATGTGCC TGTCCTGTGT CAAGTCTGGT GATGAGACCA GACTCCAGCT
                                                                              300
       GGAGGCAGTT AACATCACTG ACCTGAGCGA GAACAGAAAG CAGGACAAGC GCTTCGCCTT
                                                                              360
       CATCCGCTCA GACAGTGGCC CCACCACCAG TTTTGAGTCT GCCGCCTGCC CCGGTTGGTT
                                                                              420
85
       CCTCTGCACA GCGATGGAAG CTGACCAGCC CGTCAGCCTC ACCAATATGC CTGACGAAGG
                                                                              480
       CGTCATGGTC ACCAAATTCT ACTTCCAGGA GGACGAGTAG TACTGCCCAG GCCTGCCTGT
                                                                              540
       TCCCATTCTT GCATGGCAAG GACTGCAGGG ACTGCCAGTC CCCCTGCCCC AGGGCTCCCG
                                                                              600
```

```
GCTATGGGGG CACTGAGGAC CAGCCATTGA GGGGTGGACC CTCAGAAGGC GTCACAACAA
                                                                         660
       CCTGGTCACA GGACTCTGCC TCCTCTTCAA CTGACCAGCC TCCATGCTGC CTCCAGAATG
                                                                         720
       GTCTTTCTAA TGTGTGAATC AGAGCACAGC AGCCCCTGCA CAAAGCCCTT CCATGTCGCC
                                                                         780
       TCTGCATTCA GGATCAAACC CCGACCACCT GCCCAACCTG CTCTCCTCTT GCCACTGCCT
                                                                         840
 5
       CTTCCTCCCT CATTCCACCT TCCCATGCCC TGGATCCATC AGGCCACTTG ATGACCCCCA
                                                                         900
       960
       1020
       GAAGGAGAGC CCTTCATTTG GAGATTATGT TCTTTCGGGG AGAGGCTGAG GACTTAAAAT
                                                                        1080
      ATTCCTGCAT TTGTGAAATG ATGGTGAAAG TAAGTGGTAG CTTTTCCCTT CTTTTTCTTC
                                                                        1140
10
      TTTTTTTGTG ATGTCCCAAC TTGTAAAAAT TAAAAGTTAT GGTACTATGT TAGCCCCATA
                                                                        1200
      ATTITITIT TCCTTTTAAA ACACTTCCAT AATCTGGACT CCTCTGTCCA GGCACTGCTG
                                                                        1260
      CCCAGCCTCC AAGCTCCATC TCCACTCCAG ATTTTTTACA GCTGCCTGCA GTACTTTACC
                                                                        1320
      TCCTATCAGA AGTTTCTCAG CTCCCAAGGC TCTGAGCAAA TGTGGCTCCT GGGGGTTCTT
TCTTCCTCTG CTGAAGGAAT AAATTGCTCC TTGACATTGT AGAGCTTCTG GCACTTGGAG
                                                                        1380
                                                                        1440
15
      ACTIGIATGA AAGATGGCTG TGCCTCTGCC TGTCTCCCCC ACCAGGCTGG GAGCTCTGCA
                                                                        1500
      GAGCAGGAAA CATGACTCGT ATATGTCTCA GGTCCCTGCA GGGCCAAGCA CCTAGCCTCG
                                                                        1560
      CTCTTGGCAG GTACTCAGCG AATGAATGCT GTATATGTTG GGTGCAAAGT TCCCTACTTC
                                                                        1620
      AAAAAA AAAAAAAA AAAAAAAAA AAAAAAAA
20
      Seq ID NO: 493 Protein sequence
      Protein Accession #: NP_000568.1
25
      MALETICRPS GRKSSKMQAF RIWDVNQKTF YLRNNQLVAG YLQGPNVNLE EKIDVVPIEP
                                                                          60
      HALFLGIHGG KMCLSCVKSG DETRLQLEAV NITDLSENRK QDKRFAFIRS DSGPTTSFES
                                                                         120
      AACPGWFLCT AMEADQPVSL TNMPDEGVMV TKFYFQEDE
30
      Seq ID NO: 494 DNA sequence
      Nucleic Acid Accession #: NM_002081.1
      Coding sequence: 222..1898
                            21
                                       31
                                                  41
                                                            51
35
      GGCTGCCCGA GCGAGCGTTC GGACCTCGCA CCCCGCGCGCC CCCGCGCCGC CGCCGCCGCC
                                                                          60
      GGCTTTTGTT GTCTCCGCCT CCTCGGCCGC CGCCGCCTCT GGACCGCGAG CCGCGCGCGC
                                                                         120
      CGGGACCTTG GCTCTGCCCT TCGCGGGCGG GAACTGCGCA GGACCCGGCC AGGATCCGAG
                                                                         180
      AGAGGCGCGG GCGGGTGGCC GGGGGCGCCG CCGGCCCCGC CATGGAGCTC CGGGCCCGAG
40
      GCTGGTGGCT GCTATGTGCG GCCGCAGCGC TGGTCGCCTG CGCCCGCGGG GACCCGGCCA
      GCAAGAGCCG GAGCTGCGGC GAGGTCCGCC AGATCTACGG AGCCAAGGGC TTCAGCCTGA
      GCGACGTGCC CCAGGCGGAG ATCTCGGGTG AGCACCTGCG GATCTGTCCC CAGGGCTACA
      CCTGCTGCAC CAGCGAGATG GAGGAGAACC TGGCCAACCG CAGCCATGCC GAGCTGGAGA
                                                                         480
      CCGCGCTCCG GGACAGCAGC CGCGTCCTGC AGGCCATGCT TGCCACCCAG CTGCGCAGCT
                                                                         540
45
      TCGATGACCA CTTCCAGCAC CTGCTGAACG ACTCGGAGCG GACGCTGCAG GCCACCTTCC
                                                                         600
      CCGGCGCCTT CGGAGAGCTG TACACGCAGA ACGCGAGGGC CTTCCGGGAC CTGTACTCAG
                                                                         660
      AGCTGCGCCT GTACTACCGC GGTGCCAACC TGCACCTGGA GGAGACGCTG GCCGAGTTCT
                                                                         720
      GGGCCCGCCT GCTCGAGCGC CTCTTCAAGC AGCTGCACCC CCAGCTGCTG CTGCCTGATG
                                                                         780
      ACTACCTGGA CTGCCTGGGC AAGCAGGCCG AGGCGCTGCG GCCCTTCGGG GAGGCCCCGA
                                                                         840
50
      GAGAGCTGCG CCTGCGGGCC ACCCGTGCCT TCGTGGCTGC TCGCTCCTTT GTGCAGGGCC
                                                                         900
      TGGGCGTGGC CAGCGACGTG GTCCGGAAAG TGGCTCAGGT CCCCCTGGGC CCGGAGTGCT
                                                                         960
      CGAGAGCTGT CATGAAGCTG GTCTACTGTG CTCACTGCCT GGGAGTCCCC GGCGCCAGGC
                                                                        1020
      CCTGCCCTGA CTATTGCCGA AATGTGCTCA AGGGCTGCCT TGCCAACCAG GCCGACCTGG
                                                                        1080
      ACGCCGAGTG GAGGAACCTC CTGGACTCCA TGGTGCTCAT CACCGACAAG TTCTGGGGTA
                                                                        1140
55
      CATCGGGTGT GGAGAGTGTC ATCGGCAGCG TGCACACGTG GCTGGCGGAG GCCATCAACG
                                                                        1200
      CCCTCCAGGA CAACAGGGAC ACGCTCACGG CCAAGGTCAT CCAGGGCTGC GGGAACCCCA
                                                                        1260
      AGGTCAACCC CCAGGGCCCT GGGCCTGAGG AGAAGCGGCG CCGGGGCAAG CTGGCCCCGC
                                                                        1320
      GGGAGAGGCC ACCTTCAGGC ACGCTGGAGA AGCTGGTCTC TGAAGCCAAG GCCCAGCTCC
                                                                        1380
      GCGACGTCCA GGACTTCTGG ATCAGCCTCC CAGGGACACT GTGCAGTGAG AAGATGGCCC
                                                                        1440
60
      TGAGCACTGC CAGTGATGAC CGCTGCTGGA ACGGGATGGC CAGAGGCCGG TACCTCCCCG
      AGGTCATGGG TGACGGCCTG GCCAACCAGA TCAACAACCC CGAGGTGGAG GTGGACATCA
                                                                        1560
      CCAAGCCGGA CATGACCATC CGGCAGCAGA TCATGCAGCT GAAGATCATG ACCAACCGGC
                                                                        1620
      TGCGCAGCGC CTACAACGGC AACGACGTGG ACTTCCAGGA CGCCAGTGAC GACGGCAGCG
                                                                        1680
      GCTCGGGCAG CGGTGATGGC TGTCTGGATG ACCTCTGCGG CCGGAAGGTC AGCAGGAAGA
                                                                        1740
65
      GCTCCAGCTC CCGGACGCCC TTGACCCATG CCCTCCCAGG CCTGTCAGAG CAGGAAGGAC
                                                                        1800
      AGAAGACCTC GGCTGCCAGC TGCCCCCAGC CCCCGACCTT CCTCCTGCCC CTCCTCCTCT
                                                                        1860
       TCCTGGCCCT TACAGTAGCC AGGCCCCGGT GGCGGTAACT GCCCCAAGGC CCCAGGGACA
                                                                        1920
      GAGGCCAAGG ACTGACTTTG CCAAAAATAC AACACAGACG ATATTTAATT CACCTCAGCC
                                                                        1980
      TGGAGAGGCC TGGGGTGGGA CAGGGAGGGC CGGCGGCTCT GAGCAGGGGC AGGCGCAGAG
                                                                        2040
70
       GTCCCAGCCC CAGGCCTGGC CTCGCCTGCC TTTCTGCCTT TTAATTTTGT ATGAGGTCCT
                                                                        2100
       CAGGTCAGCT GGGAGCCAGT GTGCCCAAAA GCCATGTATT TCAGGGACCT CAGGGGCACC
                                                                        2160
      TCCGGCTGCC TAGCCCTCCC CCCAGCTCCC TGCACCGCCG CAGAAGCAGC CCCTCGAGGC
                                                                        2220
      CTACAGAGGA GGCCTCAAAG CAACCCGCTG GAGCCCACAG CGAGCCTGTG CCTTCCTCCC
                                                                        2280
       CGCCTCCTCC CACTGGGACT CCCAGCAGAG CCCACCAGCC AGCCCTGGCC CACCCCCCAG
                                                                        2340
75
      CCTCCAGAGA AGCCCCGCAC GGGCTGTCTG GGTGTCCGCC ATCCAGGGTC TGGCAGAGCC
                                                                        2400
      TCTGAGATGA TGCATGATGC CCTCCCCTCA GCGCAGGCTG CAGAGCCCGG CCCCACCTCC
                                                                        2460
      CTGCGCCCTT GAGGGGCCCC AGCGTCTGCA GGGTGACGCC TGAGACAGCA CCACTGCTGA
                                                                        2520
      GGAGTCTGAG GACTGTCCTC CCACAGACCC TGCAGTGAGG GGCCCTCCAT GCGCAGATGA
                                                                        2580
      GGGGCCACTG ACCCACCTGC GCTTCTGCTG GAGGAGGGGA AGCTGGGCCC AAAGGCCCAG
                                                                        2640
80
       GGAGGCAGCG TGGGCTCTGC CAATGTGGGC TGCCCCTCGC ACACAGGGCT CACAGGGCAG
      GCCTTGCTGG GGTCCAGGGC TGTTGGAGGA CCCCGAGGGC TGAGGAGCAG CCAGGACCCG
       CCTGCTCCCA TCCTCACCCA GATCAGGAAC CAGGGCCTCC CTGTTCACGG TGACACAGGT
                                                                        2820
       CAGGGCTCAG AGTGACCCTC GGCTGTCACC TGCTCACAGG GATGCTGGTG GCTGGTGAGA
       CCCCGCACTG CACACGGGAA TGCCTAGGTC CCTTCCCGAC CCAGCCAGCT GCACTGCAGG
                                                                        2940
85
       GCACGGGGAC CTGGATAGTT AAGGGCTTTT CCAAACATGC ATCCATTTAC TGACACTTCC
                                                                        3000
       TGTCCTTGTT CATGGAGAGC TGTTCGCTCC TCCCAGATGG CTTCGGAGGC CCGCAGGGCC
                                                                        3060
       CACCTTGGAC CCTGGTGACC TCCTGTCACT CACTGAGGCC ATCAGGGCCC TGCCCCAGGC 3120
```

```
CTGGACGGGC CCTCCTTCCC TCCTGTGCCC CAGCTGCCAG GTGGCCCTGG GGAGGGGTGG 3180
       TGTGGTGTTG GGAAGGGGTC CTGCAGGGGG AGGAGGACTT GGAGGGTCTG GGGGCAGCTG 3240
       TCCTGAACCG ACTGACCCTG AGGAGGCCGC TTAGTGCTGC TTTGCTTTTC ATCACCGTCC
                                                                            3300
       CGCACAGTGG ACGGAGGTCC CCGGTTGCTG GTCAGGTCCC CATGGCTTGT TCTCTGGAAC
                                                                            3360
 5
       CTGACTTTAG ATGTTTTGGG ATCAGGAGCC CCCAACACAG GCAAGTCCAC CCCATAATAA
                                                                            3420
       CCCTGCCAGT GCCAGGGTGG GCTGGGGACT CTGGCACAGT GATGCCGGGC GCCAGGACAG
                                                                            3480
       CAGCACTCCC GCTGCACACA GACGGCCTAG GGGTGGCGCT CAGACCCCAC CCTACGCTCA
                                                                            3540
       TCTCTGGAAG GGGCAGCCCT GAGTGGTCAC TGGTCAGGGC AGTGGCCAAG CCTGCTGTGT
                                                                            3600
       CCTTCCTCCA CAAGGTCCCC CCACCGCTCA GTGTCAGCGG GTGACGTGTG TTCTTTTGAG
                                                                            3660
10
       TCCTTGTATG AATAAAAGGC TGGAAACCTA AA
       Seg ID NO: 495 Protein seguence
       Protein Accession #: NP_002072.1
15
                                         31
       MELRARGWWL LCAAAALVAC ARGDPASKSR SCGEVRQIYG AKGFSLSDVP QAEISGEHLR
       ICPQGYTCCT SEMEENLANR SHAELETALR DSSRVLQAML ATQLRSFDDH FQHLLNDSER
                                                                             120
       TLOATFPGAF GELYTONARA FROLYSELRL YYRGANLHLE ETLAEFWARL LERLFKOLHP
                                                                             180
20
       OLLLPDDYLD CLGKQAEALR PFGEAPRELR LRATRAFVAA RSFVQGLGVA SDVVRKVAQV
                                                                             240
       PLGPECSRAV MKLVYCAHCL GVPGARPCPD YCRNVLKGCL ANQADLDAEW RNLLDSMVLI
                                                                             300
       TDKFWGTSGV ESVIGSVHTW LAEAINALQD NRDTLTAKVI QGCGNPKVNP QGPGPEEKRR
                                                                             360
       RGKLAPRERP PSGTLEKLVS EAKAQLRDVQ DFWISLPGTL CSEKMALSTA SDDRCWNGMA
                                                                             420
       RGRYLPEVMG DGLANQINNP EVEVDITKPD MTIRQQIMQL KIMTNRLRSA YNGNDVDFQD
                                                                             480
25
       Seg ID NO: 496 DNA sequence
       Nucleic Acid Accession #: NM_001650.2
       Coding sequence: 40.1011
30
                                                     41
                                                               51
                                         31
       GGGGCAGGCA ATGAGAGCTG CACTCTGGCT GGGGAAGGCA TGAGTGACAG ACCCACAGCA
                                                                              60
       AGGCGGTGGG GTAAGTGTGG ACCTTTGTGT ACCAGAGAGA ACATCATGGT GGCTTTCAAA
35
       GGGGTCTGGA CTCAAGCTTT CTGGAAAGCA GTCACAGCGG AATTTCTGGC CATGCTTATT
       TTTGTTCTCC TCAGCCTGGG ATCCACCATC AACTGGGGTG GAACAGAAAA GCCTTTACCG
       GTCGACATGG TTCTCATCTC CCTTTGCTTT GGACTCAGCA TTGCAACCAT GGTGCAGTGC
                                                                             300
       TTTGGCCATA TCAGCGGTGG CCACATCAAC CCTGCAGTGA CTGTGGCCAT GGTGTGCACC
       AGGAAGATCA GCATCGCCAA GTCTGTCTTC TACATCGCAG CCCAGTGCCT GGGGGCCATC
                                                                             420
40
       ATTGGAGCAG GAATCCTCTA TCTGGTCACA CCTCCCAGTG TGGTGGGAGG CCTGGGAGTC
                                                                             480
       ACCATEGITC AIGGAAATCI TACCGCIGGI CAIGGICICC IGGITGAGII GATAAICACA
                                                                             540
       TTTCAATTGG TGTTTACTAT CTTTGCCAGC TGTGATTCCA AACGGACTGA TGTCACTGGC
                                                                             600
       TCAATAGCTT TAGCAATTGG ATTTTCTGTT GCAATTGGAC ATTTATTTGC AATCAATTAT
                                                                             660
       ACTGGTGCCA GCATGAATCC CGCCCGATCC TTTGGACCTG CAGTTATCAT GGGAAATTGG
                                                                             720
45
       GAAAACCATT GGATATATTG GGTTGGGCCC ATCATAGGAG CTGTCCTCGC TGGTGGCCTT
                                                                             780
       TATGAGTATG TCTTCTGTCC AGATGTTGAA TTCAAACGTC GTTTTAAAGA AGCCTTCAGC
                                                                             840
       AAAGCTGCCC AGCAAACAAA AGGAAGCTAC ATGGAGGTGG AGGACAACAG GAGTCAGGTA
                                                                             900
       GAGACGGATG ACCTGATTCT AAAACCTGGA GTGGTGCATG TGATTGACGT TGACCGGGGA
                                                                             960
                                                                            1020
       GAGGAGAAGA AGGGGAAAGA CCAATCTGGA GAGGTATTGT CTTCAGTATG ACTAGAAGAT
50
       CGCACTGAAA GCAGACAAGA CTCCTTAGAA CTGTCCTCAG ATTTCCTTCC ACCCATTAAG
                                                                            1080
       GAAACAGATT TGTTATAAAT TAGAAATGTG CAGGTTTGTT GTTTCATGTC ATATTACTCA 1140
       GTCTAAACAA TAAATATTTC ATAATTTACA AAGGAGGAAC GGAAGAAACC TATTGTGAAT
                                                                            1200
       TCCAAATCTA AAAAAGAAA TATTTTTAAG ATGTTCTTAA GCAAATATAT ACCTATTTTA
                                                                            1260
       TCTAGTTACC TTTCATTAAC AACCAATTTT AACCGTGTGT CAAGATTTGG TTAAGTCTTG 1320
CCTGACAGAA CTCAAAGACA CGTCTATCAG CTTATTCCTT CTCTACTGGA ATATTGGTAT 1380
55
       AGTCAATTCT TATTTGAATA TTTATTCTAT TAAACTGAGT TTAACAATGG C
       Seg ID NO: 497 Protein seguence
       Protein Accession #: NP_001641.1
60
       MSDRPTARRW GKCGPLCTRE NIMVAFKGVW TQAFWKAVTA EFLAMLIFVL LSLGSTINWG
                                                                              60
       GTEKPLPVDM VLISLCFGLS IATMVQCFGH ISGGHINPAV TVAMVCTRKI SIAKSVFYIA
                                                                             120
65
       AOCLGAIIGA GILYLVTPPS VVGGLGVTMV HGNLTAGHGL LVELIITFQL VFTIFASCDS
                                                                             180
       KRTDVTGSIA LAIGFSVAIG HLFAINYTGA SMNPARSFGP AVIMGNWENH WIYWVGPIIG
                                                                             240
       AVLAGGLYEY VFCPDVEFKR RFKEAFSKAA QQTKGSYMEV EDNRSQVETD DLILKPGVVH
                                                                             300
       VIDVDRGEEK KGKDQSGEVL SSV
70
       Seq ID NO: 498 DNA sequence
       Nucleic Acid Accession #: AB020684.1
       Coding sequence: 1..1744
                                                     41
                                         31
75
       CCCCCTTGTC ATTAATACAT TAAAAAGATT CAATCTTTAC CCTGAGGTAA TTTTGGCCAG
       TTGGTACCGG ATTTATACCA AAATAATGGA CTTGATTGGT ATTCAAACCA AGATATGTTG
                                                                             120
       GACGGTTACC AGAGGAGAAG GACTCAGTCC TATTGAAAGC TGTGAAGGAT TGGGAGATCC
                                                                             180
       TGCTTGCTTT TATGTTGCTG TAATTTTTAT TTTAAATGGA CTAATGATGG CATTATTCTT
                                                                             240
80
       CATATATGGC ACATATTTAA GTGGCAGCCG ATTAGGAGGC CTGGTTACAG TGTTGTGCTT
                                                                             300
       CTTTTTCAAT CATGGAGAGT GTACCCGTGT AATGTGGACA CCACCTCTCC GTGAAAGCTT
CTCATATCCA TTTCTTGTTC TTCAGATGTT GCTAGTGACT CATATTCTCA GGGCTACAAA
                                                                             360
                                                                             420
       ACTITATAGA GGAAGCITGA TIGCACTOTG CATITCCAAT GTATITITCA TGCTTCCTTG
                                                                             480
       GCAGTTTGCT CAGTTTGTAC TTCTTACTCA GATTGCATCA TTATTTGCAG TATATGTTGT
                                                                             540
85
       CGGGTACATT GATATATGTA AATTACGGAA GATCATTTAT ATACACATGA TTTCTCTTGC
                                                                             600
       ACTITGITIT GITTIGATGI TIGGGAACTC AATGITATIA ACTICITATI ATGCTTCITC
                                                                              660
       TTTGGTAATT ATTTGGGGTA TTCTGGCAAT GAAACCACAT TTCCTGAAAA TAAATGTATC
                                                                             720
```

```
780
        TGAACTTAGT TTATGGGTTA TTCAAGGATG TTTTTGGTTA TTTGGAACTG TCATACTTAA
        ATACTTGACA TCTAAAATTT TTGGTATTGC AGATGACGCT CATATTGGCA ACTTACTAAC
                                                                            840
        ATCAAAATTC TITAGTTATA AGGATTTTGA TACTTTATTG TATACCTGTG CAGCGGAGTT
                                                                            900
        TGACTTTATG GAAAAAGAGA CTCCACTGAG ATACACAAAG ACATTATTGC TTCCAGTTGT
                                                                            960
        TCTTGTAGTG TTTGTTGCTA TTGTTAGAAA GATTATTAGT GATATGTGGG GTGTCTTAGC
                                                                           1020
       TAAACAACAG ACACATGTAA GAAAACACCA GTTTGATCAT GGAGAGCTGG TTTACCATGC
                                                                           1080
        ATTGCAATTG TTAGCATATA CAGCCCTTGG TATTTTAATT ATGAGACTAA AACTCTTCTT
                                                                           1140
       GACACCACAC ATGTGTGTTA TGGCATCACT GATCTGCTCA AGACAGCTAT TTGGATGGCT
       CTTTTGCAAA GTACATCCTG GTGCTATTGT GTTTGCTATA TTAGCAGCAA TGTCAATACA
       AGGTTCAGCA AATCTGCAAA CCCAGTGGAA TATTGTAGGG GAGTTCAGCA ATTTGCCCCA
10
                                                                           1320
        AGAAGAACTT ATAGAATGGA TCAAATATAG TACTAAACCA GATGCAGTGT TTGCGGGTGC
                                                                           1380
       CATGCCCACG ATGGCAAGTG TTAAGCTCTC TGCACTTCGG CCCATTGTGA ATCATCCACA
                                                                           1440
        TTATGAAGAC GCAGGCTTGA GAGCCAGAAC AAAAATAGTA TACTCAATGT ATAGTCGGAA
                                                                           1500
       AGCAGCCGAA GAAGTGAAGC GAGAACTGAT AAAGTTAAAA GTGAACTATT ACATTCTAGA
                                                                           1560
15
       AGAGTCATGG TGTGTAAGAA GATCCAAGCC TGGTTGCAGT ATGCCTGAAA TTTGGGATGT
                                                                           1620
       AGAAGATCCT GCCAATGCTG GGAAAACTCC CTTATGTAAC CTCTTGGTGA AGGATTCCAA
                                                                           1680
       ACCTCACTTC ACCACTGTAT TCCAGAACAG TGTTTACAAA GTCCTAGAAG TTGTAAAAGA
                                                                           1740
       ATGACTGCTA CATGACCTGC TGCCTACGGA GAACTACATC TGTAATGTT TTAATGTTTT
                                                                           1800
       GCTAAGTCAT GTGTTGTTCA TATCCCAAAA ACTTTTATAG GTAACTGTTT TCAAATAGAA
                                                                           1860
20
       AACGTTTTAT TTGGTCAATT TGAATGTCAT TCTAATTATA AAAATGACTT ACACCTTTAT
                                                                           1920
        CAATTGGTTA CTATTTCAAT GCACCCTTTA AAATTTGCTA TGCAAATGAG TATATGCTTG
                                                                           1980
       TACTTGACTT TAATATTTGT GCTAAAGTGA GCAAAGCTAC CTGTATAAAG AAAACACAGT
                                                                           2040
       GGGTTGTGAC AAGGATGACA TGAAAATACA GGACAATTCT GACAATGTAG GGGCTGATTT
                                                                           2100
       TATAGTGTAA GAACTATTAA TGCCCCTTGC TTCTTTTTC TGCCTCTTGC TCTTGTCTTT
                                                                           2160
25
       TGGACATTTC AGTGATTGTA AGTTCTTCGG TCATGTCAGC CCCTGTCATC AACTTGAGTT
                                                                           2220
       ACAGTAGATG GGGCAGACAT GGAGTGTTTG CTATATAAAA CTATCTGTTT GTTTTACTTC
                                                                           2280
       CTTGTGCGCT TTTTGTTCTC TGTTCTCTTG TTAATGAAGC TTTTCCTGCC CATTATTAAT
                                                                           2340
       CCAAACTCTT GGACCTTGTG GTTAGGAAAT TCCCTTAACT TCCAGCCATA TGGCATTATC
                                                                           2400
       GTGTCTCTTT CTCTCTCTC CTTGCTCTCT CTCTTCTCCT CTTCCCCATA TTTTCTGTCA
                                                                           2460
30
       AATAAGTACT GTTTACTCAT TTAGTTGCTT ATCAAGTACT TATTCTTGGT TTTAAAAAAA
                                                                           2520
       ATTAATGGTA ACTGTATTTT TCTCATTTTT AGCATTATTC AAATGTTTAT ATTTTAATAC
                                                                           2580
       CTTTAAACCA CTTTAAAGTT TTTTCATGTT TAATTATAGT TTTAAGAAAA ACTATTTTGA ACAACCCCAA ATATAGTGCA TCTAGAAACT AATGTATATT TGATTAGACA TCATTTATAG
                                                                           2640
       TGGAACAGTA GACTGTAGTA CATGGTAATT TTTCTTTTAC TATTAAGATA CAATAAAACA
                                                                           2760
35
       TGACTAATTT TGCTGTCAAA AATGTAAAGA ATAATGATAA ATGGAGTTTT TTATATTTTA
       CTTTTAAGAT TGCCTGTCTT TAATAAGACA AAGCCTTAAG CCTTATGTTA TAATTTTGGT
                                                                           2880
       TCTAAAAACC ATCATTTCAG TATAAGGAAT AAGTATATTT CGTCCTCCTC TTTAGTTTTT
                                                                           2940
       TTCTTCCTAT TTATTTTTAT TTTGAAAAAT TTCTACACCT TCTTTGAATT CCTTGTATGA
                                                                           3000
       ATTTTGTTT CTTAGAAGTT AATTTGTGTG AAATGAGATT CTTCAAAACG ATGAAACCTC
                                                                           3060
40
       ATAGCTCTGA GAAAAGGTTT TAGGGTTTTA AATTCTAAGC AAAGCGTGAC TATGGCTGAC
                                                                           3120
       AGACTACACA TITAATTATA CAGCTTCTCT TTCTTAACCA CAGGCAGATT AACCTCATTG
                                                                           3180
       TGGATTGTCC TTCAGACCTT AGTCCTCAGG CATGGTTTCT GGTGCCCACT CCTGGAAGCC
                                                                           3240
       GCTGTTCCCT TTCTACCTTC TTACCAGAGC CCAAGGGCAG GCCTGGTCCC GGGGAAGCAG
                                                                           3300
       CAGCTTGCTG ACATAAGTCA GCTGCAAAGG CTGAGGAGTG TGCCCTCAGA GAAGCACCGC
                                                                           3360
45
       CCCCCAGTCT TGTGCCAGCG CCTAGAGCCG CAGCTCCCAG GGATGCTCCT TCCCTGGAGG
                                                                           3420
       CAGCCCAGGA GAGGGACTCT GGCAGCGTTC TTCAGATTTG TGGCCACTGT TTCTCATTTG
                                                                           3480
       CTGGTTGACT GTTTTATTT CTTAGGCTTT TGCTAGTTTT AGAAAATAGG GAAGCAGCCC
                                                                           3540
       TTGATTTGTG GATTAAAAGC AACATTTGAG CGATGATGCA CAACAGTCCA GGAAAATGGG
                                                                           3600
       CGGTGGACAC TTGAGGCTGA GGATGGGAGT TGACATGAGC AGGGAGAGGG AGGTGCGCGC
                                                                           3660
50
       TGCTTATCTG TGATTGTTGC TCACCTGAGT GTGGCTGATT GTGTACATCC AGCAGTTACA
                                                                           3720
       ATTITIAAAA ATTATACTIT TACATITATI TIATATITIT CICACCCCCA GIAATITCCT
                                                                           3780
       TCCAAAGAAG TTCACATGTA ATAAGTAGAA ATTCTGTATA GGAAAAAAGC ATTAAAAATA
                                                                           3840
       CTATTATAAC TGCTTCATTT GCTGGGAACC ATTAAAAGTA ATATAAATTA GCTTTTTCCA
                                                                           3900
       GAAGGATCCT TTTGTAGCAG TGTTTATGAA TGTAACCCCC AGCAAAATAT GGCTATATAT
55
       TAGGGGAGCC AGTTTGGAGC AGAGGCCTGA AGGTCCCTGC TATGCAGCCG TGGCCACAGC
                                                                           4020
       TCGCAGCCCA AGCACTGTGG AGCATCCACA CCTTTGATGG CAATGCAGAT TGGTAGCAGG
                                                                           4080
       TTCCATAGGC GTACAAAACA GTATTAAAGC TCAGTGTTTT GCATATTGTT AGCATTTACA
                                                                           4140
       AATATTTTTG CTTTAGTATG AGGAAAGTAA GGATGGGCAA AGAAGCGATC AAAATAGCTA
                                                                           4200
       TTGCTACAAC ATTTTCGAAA ACAAAGTTGG GGCTGTATTT CTTTAAAAAG ATAAGCCTCT
                                                                           4260
60
       AAAAATGCTT GGCAAAAAA ATATAGTGTT AAAATAGGCC AGTGATATTA ATGAGAAAAT
                                                                           4320
       GAAAGTATGT ATCAGGAATA AAGTGATATT GCATAGGAGT ATTGTATTTT TATGAATTTT
                                                                           4380
       ATGCCAGTTG TTTACATGTA CTATATATGT TAAATTAAAA AAAATCATGA GAAATG
       Seq ID NO: 499 Protein sequence
65
       Protein Accession #: BAA74900.1
                                         31
       PLVINTLKRF NLYPEVILAS WYRIYTKIMD LIGIQTKICW TVTRGEGLSP IESCEGLGDP
                                                                             60
.70
       ACFYVAVIFI LNGLMMALFF IYGTYLSGSR LGGLVTVLCF FFNHGECTRV MWTPPLRESF
                                                                            120
       SYPFLVLQML LVTHILRATK LYRGSLIALC ISNVFFMLPW QFAQFVLLTQ IASLFAVYVV
                                                                            180
       GYIDICKLRK IIYIHMISLA LCFVLMFGNS MLLTSYYASS LVIIWGILAM KPHFLKINVS
                                                                            240
       ELSLWVIQGC PWLFGTVILK YLTSKIFGIA DDAHIGNLLT SKFFSYKDFD TLLYTCAAEF
                                                                            300
       DFMEKETPLR YTKTLLLPVV LVVFVAIVRK IISDMWGVLA KQQTHVRKHQ FDHGELVYHA
                                                                            360
75
       LOLLAYTALG ILIMRLKLFL TPHMCVMASL ICSRQLFGWL FCKVHPGAIV FAILAAMSIQ
       GSANLOTOWN IVGEFSNLPO EELIEWIKYS TKPDAVFAGA MPTMASVKLS ALRPIVNHPH
                                                                            480
       YEDAGLRART KIVYSMYSRK AAEEVKRELI KLKVNYYILE ESWCVRRSKP GCSMPEIWDV
        EDPANAGKTP LCNLLVKDSK PHFTTVFQNS VYKVLEVVKE
80
        Seq ID NO: 500 DNA sequence
       Nucleic Acid Accession #: NM_001276.1
        Coding sequence: 127..1278
                                                               51
                              21
                                         31
                                                    41
85
        AGTGGAGTGG GACAGGTATA TAAAGGAAGT ACAGGGCCTG GGGAAGAGGC CCTGTCTAGG
```

```
GCCAGAATGG GTGTGAAGGC GTCTCAAACA GGCTTTGTGG TCCTGGTGCT GCTCCAGTGC
       TGCTCTGCAT ACAAACTGGT CTGCTACTAC ACCAGCTGGT CCCAGTACCG GGAAGGCGAT
                                                                            240
       GGGAGCTGCT TCCCAGATGC CCTTGACCGC TTCCTCTGTA CCCACATCAT CTACAGCTTT
                                                                            300
       GCCAATATAA GCAACGATCA CATCGACACC TGGGAGTGGA ATGATGTGAC GCTCTACGGC
                                                                           360
 5
       ATGCTCAACA CACTCAAGAA CAGGAACCCC AACCTGAAGA CTCTCTTGTC TGTCGGAGGA
                                                                            420
       TEGRACTITE GETCTCAARG ATTTTCCAAG ATAGCCTCCA ACACCCAGAG TCGCCEGACT
                                                                            480
       TTCATCAAGT CAGTACCGCC ATTCCTGCGC ACCCATGGCT TTGATGGGCT GGACCTTGCC
                                                                            540
       TGGCTCTACC CTGGACGGAG AGACAAACAG CATTTTACCA CCCTAATCAA GGAAATGAAG
                                                                            600
       GCCGAATTTA TAAAGGAAGC CCAGCCAGGG AAAAAGCAGC TCCTGCTCAG CGCAGCACTG
                                                                            660
10
       TCTGCGGGGA AGGTCACCAT TGACAGCAGC TATGACATTG CCAAGATATC CCAACACCTG
                                                                           720
       GATTTCATTA GCATCATGAC CTACGATTTT CATGGAGCCT GGCGTGGGAC CACAGGCCAT
                                                                           780
       CACAGTCCCC TGTTCCGAGG TCAGGAGGAT GCAAGTCCTG ACAGATTCAG CAACACTGAC
                                                                           840
       TATGCTGTGG GGTACATGTT GAGGCTGGGG GCTCCTGCCA GTAAGCTGGT GATGGGCATC
                                                                           900
       CCCACCTTCG GGAGGAGCTT CACTCTGGCT TCTTCTGAGA CTGGTGTTGG AGCCCCAATC
                                                                           960
15
       TCAGGACCGG GAATTCCAGG CCGGTTCACC AAGGAGGCAG GGACCCTTGC CTACTATGAG
                                                                          1020
       ATCTGTGACT TCCTCCGCGG AGCCACAGTC CATAGAACCC TCGGCCAGCA GGTCCCCTAT
                                                                          1080
       GCCACCAAGG GCAACCAGTG GGTAGGATAC GACGACCAGG AAAGCGTCAA AAGCAAGGTG
                                                                          1140
       CAGTACCTGA AGGATAGGCA GCTGGCAGGC GCCATGGTAT GGGCCCTGGA CCTGGATGAC
                                                                          1200
       TTCCAGGGCT CCTTCTGCGG CCAGGATCTG CGCTTCCCTC TCACCAATGC CATCAAGGAT
                                                                          1260
20
       GCACTCGCTG CAACGTAGCC CTCTGTTCTG CACACAGCAC GGGGGCCAAG GATGCCCCGT
       CCCCCTCTGG CTCCAGCTGG CCGGGAGCCT GATCACCTGC CCTGCTGAGT CCCAGGCTGA
       GCCTCAGTCT CCCTCCCTTG GGGCCTATGC AGAGGTCCAC AACACACAGA TTTGAGCTCA
       GCCCTGGTGG GCAGAGAGGT AGGGATGGGG CTGTGGGGAT AGTGAGGCAT CGCAATGTAA
                                                                          1500
       GACTCGGGAT TAGTACACAC TTGTTGATGA TTAATGGAAA TGTTTACAGA TCCCCAAGCC
                                                                         1560
25
       TGGCAAGGGA ATTTCTTCAA CTCCCTGCCC CCTAGCCCTC CTTATCAAAG GACACCATTT
                                                                          1620
       TGGCAAGCTC TATCACCAAG GAGCCAAACA TCCTACAAGA CACAGTGACC ATACTAATTA
                                                                          1680
       TACCCCCTGC AAAGCCAGCT TGAAACCTTC ACTTAGGAAC GTAATCGTGT CCCCTATCCT
                                                                          1740
       ACTTCCCCTT CCTAATTCCA CAGCTGCTCA ATAAAGTACA AGAGTTTAAC AGTGTGTTGG
                                                                          1800
       CGCTTTGCTT TGGTCTATCT TTGAGCGCCC ACTAGACCCA CTGGACTCAC CTCCCCCATC
                                                                          1860
30
       TCTTCTGGGT TCCTTCTCT GAGCCTTGGG ACCCCTGAGC TTGCAGAGAT GAAGGCCGCC
                                                                          1920
       ATGTT
       Seq ID NO: 501 Protein sequence
       Protein Accession #: NP_001267.1
35
       MGVKASOTGF VVLVLLOCCS AYKLVCYYTS WSQYREGDGS CFPDALDRFL CTHIIYSFAN
                                                                            60
       ISNDHIDTWE WNDVTLYGML NTLKNRNPNL KTLLSVGGWN FGSQRFSKIA SNTQSRRTFI
                                                                           120
40
       KSVPPFLRTH GFDGLDLAWL YPGRRDKOHF TTLIKEMKAE FIKEAQPGKK QLLLSAALSA
                                                                           180
       GKVTIDSSYD IAKISQHLDF ISIMTYDFHG AWRGTTGHHS PLFRGQEDAS PDRFSNTDYA
       VGYMLRLGAP ASKLVMGIPT FGRSFTLASS ETGVGAPISG PGIPGRFTKE AGTLAYYEIC
       DPLRGATVHR TLGQQVPYAT KGNQWVGYDD QESVKSKVQY LKDRQLAGAM VWALDLDDFQ
       GSFCGQDLRF PLTNAIKDAL AAT
45
       Seq ID NO: 502 DNA sequence
       Nucleic Acid Accession #: NM_006474.1
       Coding sequence: 181..669
50
                                        31
                                                              51
      GCTGCCTAGG GTCTGGAAAG CTCGGGCACC CTCCCTCTCC GGGGCTCCTG CTCCCACCCC
       TCCGGCCCCC CCACCGTCGC GCTCCTCCAG GCTGGGCCTG TGGCCGCGGT GCTTTTAATT
                                                                           120
       TTCCCCCAGC TCAGAATCTT GCTGCTCGGC CCCCAGGAGA GCAACAACTC AACGGGAACG
                                                                           180
55
       ATGTGGAAGG TGTCAGCTCT GCTCTTCGTT TTGGGAAGCG CGTCGCTCTG GGTCCTGGCA
                                                                           240
       GAAGGAGCCA GCACAGGCCA GCCAGAAGAT GACACTGAGA CTACAGGTTT GGAAGGCGGC
                                                                           300
       GTTGCCATGC CAGGTGCCGA AGATGATGTG GTGACTCCAG GAACCAGCGA AGACCGCTAT
                                                                           360
       AAGTCTGGCT TGACAACTCT GGTGGCAACA AGTGTCAACA GTGTAACAGG CATTCGCATC
       GAGGATCTGC CAACTTCAGA AAGCACAGTC CACGCGCAAG AACAAAGTCC AAGCGCCACA
                                                                           480
60
       GCCTCAAACG TGGCCACCAG TCACTCCACG GAGAAAGTGG ATGGAGACAC ACAGACAACA
       GTTGAGAAAG ATGGTTTGTC AACAGTGACC CTGGTTGGAA TCATAGTTGG GGTCTTACTA
                                                                           600
       GCCATCGGTT TCATTGGTGG AATCATCGTT GTGGTTATGC GAAAAATGTC GGGAAGGTAC
                                                                           660
       TCGCCCTAAA GAGCTGAAGG GTTACGCCCT GCTTGCCAAC GTGCTTTAAA AAAAGACCGT
                                                                           720
       TTCTGACTCT GTGGCCCTGT CCCTGAGCTC GTGGGGAGAA GATGACCCTG GGAACATTTG
                                                                           780
65
       CGGGCCCATT CAGATTCCAC GGTGACTTTC CGTTTGCCAA ATTAACCGAG GAAAGACCTT
                                                                           840
       TCACCAGATT TGGTTCTTAA ACTTT
       Seq ID NO: 503 Protein sequence
      Protein Accession #: NP_006465.1
70
      MWKVSALLFV LGSASLWVLA EGASTGOPED DTETTGLEGG VAMPGAEDDV VTPGTSEDRY
       KSGLTTLVAT SVNSVTGIRI EDLPTSESTV HAQEQSPSAT ASNVATSHST EKVDGDTQTT
75
       VEKDGLSTVT LVGIIVGVLL AIGFIGGIIV VVMRKMSGRY SP
       Seq ID NO: 504 DNA sequence .
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 62..895
80
                             21
                                        31
       CACTGCTCTG AGAATTTGTG AGCAGCCCCT AACAGGCTGT TACTTCACTA CAACTGACGA
       TATGATCATC TTAATTTACT TATTTCTCTT GCTATGGGAA GACACTCAAG GATGGGGATT
                                                                           120
85
       CAAGGATGGA ATTTTCATA ACTCCATATG GCTTGAACGA GCAGCCGGTG TGTACCACAG
                                                                           180
       AGAAGCACGG TCTGGCAAAT ACAAGCTCAC CTACGCAGAA GCTAAGGCGG TGTGTGAATT
                                                                           240
       TGAAGGCGGC CATCTCGCAA CTTACAAGCA GCTAGAGGCA GCCAGAAAAA TTGGATTTCA
                                                                           300
```

```
360
       TGTCTGTGCT GCTGGATGGA TGGCTAAGGG CAGAGTTGGA TACCCCATTG TGAAGCCAGG
                                                                               420
       GCCCAACTGT GGATTTGGAA AAACTGGCAT TATTGATTAT GGAATCCGTC TCAATAGGAG
                                                                               480
       TGAAAGATGG GATGCCTATT GCTACAACCC ACACGCAAAG GAGTGTGGTG GCGTCTTTAC
                                                                              540
       AGATCCAAAG CAAATTTTTA AATCTCCAGG CTTCCCAAAT GAGTACGAAG ATAACCAAAT
       CTGCTACTGG CACATTAGAC TCAAGTATGG TCAGCGTATT CACCTGAGTT TTTTAGATTT
TGACCTTGAA GATGACCCAG GTTGCTTGGC TGATTATGTT GAAATATATG ACAGTTACGA
                                                                               600
                                                                              660
       TGATGTCCAT GGCTTTGTGG GAAGATACTG TGGAGATGAG CTTCCAGATG ACATCATCAG
                                                                              720
       TACAGGAAAT GTCATGACCT TGAAGTTTCT AAGTGATGCT TCAGTGACAG CTGGAGGTTT
                                                                              780
       CCAAATCAAA TATGTTGCAA TGGATCCTGT ATCCAAATCC AGTCAAGGAA AAAATACAAG
TACTACTTCT ACTGGAAATA AAAACTTTTT AGCTGGAAGA TTTAGCCACT TATAAAAAAA
                                                                              840
10
       AAAAAAGGA TGATCAAAAC ACACAGTGTT TATGTTGGAA TCTTTTGGAA CTCCTTTGAT
       CTCACTGTTA TTATTAACAT TTATTTATTA TTTTTCTAAA TGTGAAAGCA ATACATAATT
       TAGGGAAAAT TGGAAAATAT AGGAAACTTT AAACGAGAAA ATGAAACCTC TCATAATCCC
                                                                             1080
       ACTGCATAGA AATAACAAGC GTTAACATTT TCATATTITT TTCTTTCAGT CATTTTTCTA
15
       TTTGTGGTAT ATGTATATAT GTACCTATAT GTATTTGCAT TTGAAATTTT GGAATCCTGC
                                                                             1200
       TCTATGTACA GTTTTGTATT ATACTTTTTA AATCTTGAAC TTTATAAACA TTTTCTGAAA
                                                                             1260
       TCATTGATTA TTCTACAAAA ACATGATTTT AAACAGCTGT AAAATATTCT ATGATATGAA
                                                                             1320
       TGTTTTATGC ATTATTTAAG CCTGTCTCTA TTGTTGGAAT TTCAGGTCAT TTTCATAAAT 1380
       20
       Seq ID NO: 505 Protein sequence
       Protein Accession #: Eos sequence
25
       MIILIYLFLL LWEDTQGWGF KDGIFHNSIW LERAAGVYHR EARSGKYKLT YAEAKAVCEF
                                                                               60
       EGGHLATYKQ LEAARKIGFH VCAAGWMAKG RVGYPIVKPG PNCGFGKTGI IDYGIRLNRS
                                                                              120
       ERWDAYCYNP HAKECGGVFT DPKQIFKSPG FPNEYEDNQI CYWHIRLKYG QRIHLSFLDF
                                                                              180
       DLEDDPGCLA DYVEIYDSYD DVHGFVGRYC GDELPDDIIS TGNVMTLKFL SDASVTAGGF
                                                                              240
30
       QIKYVAMDPV SKSSQGKNTS TTSTGNKNFL AGRPSHL
       Seg ID NO: 506 DNA seguence
       Nucleic Acid Accession #: NM_007115.1
       Coding sequence: 69..902
35
                                          31
                                                     41
       GAATTCGCAC TGCTCTGAGA ATTTGTGAGC AGCCCCTAAC AGGCTGTTAC TTCACTACAA
       CTGACGATAT GATCATCTTA ATTTACTTAT TTCTCTTGCT ATGGGAAGAC ACTCAAGGAT
40
       GGGGATTCAA GGATGGAATT TTTCATAACT CCATATGGCT TGAACGAGCA GCCGGTGTGT
                                                                              180
       ACCACAGAGA AGCACGGTCT GGCAAATACA AGCTCACCTA CGCAGAAGCT AAGGCGGTGT
                                                                              240
       GTGAATTTGA AGGCGGCCAT CTCGCAACTT ACAAGCAGCT AGAGGCAGCC AGAAAAATTG
                                                                              300
       GATTTCATGT CTGTGCTGCT GGATGGATGG CTAAGGGCAG AGTTGGATAC CCCATTGTGA
                                                                              360
       AGCCAGGGCC CAACTGATGA TTTGGAAAAA CTGGCATTAT TGATTATGGA ATCCGTCTCA
                                                                              420
45
       ATAGGAGTGA AAGATGGGAT GCCTATTGCT ACAACCCACA CGCAAAGGAG TGTGGTGGCG
                                                                              480
       TCTTTACAGA TCCAAAGCGA ATTTTTAAAT CTCCAGGCTT CCCAAATGAG TACGAAGATA
                                                                              540
       ACCAAATCTG CTACTGGCAC ATTAGACTCA AGTATGGTCA GCGTATTCAC CTGAGTTTTT
                                                                              600
       TAGATTTTGA CCTTGAAGAT GACCCAGGTT GCTTGGCTGA TTATGTTGAA ATATATGACA
                                                                              660
       GTTACGATGA TGTCCATGGC TTTGTGGGAA GATACTGTGG AGATGAGCTT CCAGATGACA
                                                                              720
50
       TCATCAGTAC AGGAAATGTC ATGACCTTGA AGTTTCTAAG TGATGCTTCA GTGACAGCTG
                                                                              780
       GAGGITICCA AATCAAATAI GIIGCAAIGG AICCIGIAIC CAAAICCAGI CAAGGAAAAA
                                                                              840
       ATACAAGTAC TACTTCTACT GGAAATAAAA ACTTTTTAGC TGGAAGATTT AGCCACTTAT
                                                                              900
       AAAAAAAAA AAGGATGATC AAAACACACA GTGTTTATGT TGGAATCTTT TGGAACTCCT
                                                                              960
       TTGATCTCAC TGTTATTATT AACATTTATT TATTATTTTT CTAAATGTGA AAGAAATACA
                                                                             1020
55
       TAATTTAGGG AAAATTGGAA AATATAGGAA ACTTTAAACG AGAAAATGAA ACCTCTCATA
                                                                             1080
       ATCCCACTGC ATAGAAATAA CAAGCGTTAA CATTTTCATA TTTTTTCTT TCAGTCATTT
                                                                             1140
      TIGIATITGT GGATATGTA TATATGTACC TATATGTATT TGCATTIGAA ATTTTGGAAT CCTGCTCTAT GTACAGTTTT GTATTATACT TTTTAAATCT TGAACTTTAT GAACATTTTC
                                                                             1200
                                                                             1260
       TGAAATCATT GATTATTCTA CAAAAACATG ATTTTAAACA GCTGTAAAAT ATTCTATGAT
                                                                             1320
60
       ATGAATGTTT TATGCATTAT TTAAGCCTGT CTCTATTGTT GGAATTTCAG GTCATTTTCA
       TAAATATTGT TGCAATAAAT ATCCTTCGGA ATTC
       Seq ID NO: 507 Protein sequence
       Protein Accession #: NP_009046.1
65
                                          31
       MIILIYLFLL LWEDTOGWGF KDGIFHNSIW LERAAGVYHR EARSGKYKLT YAEAKAVCEF
                                                                               60
       EGGHLATYKQ LEAARKIGFH VCAAGWMAKG RVGYPIVKPG PNXXFGKTGI IDYGIRLNRS
                                                                              120
70
       ERWDAYCYNP HAKECGGVFT DPKRIFKSPG FPNEYEDNQI CYWHIRLKYG QRIHLSFLDF
                                                                              180
       DLEDDPGCLA DYVEIYDSYD DVHGFVGRYC GDELPDDIIS TGNVMTLKFL SDASVTAGGF
                                                                              240
       QIKYVAMDPV SKSSOGKNTS TTSTGNKNFL AGRFSHL
75
       Sea ID NO: 508 DNA sequence
       Nucleic Acid Accession #: NM 001044.1
       Coding sequence: 129..1991
                                          31
80
       ACCECTCCGG AGCGGGAGGG GAGGCTTCGC GGAACGCTCT CGGCGCCAGG ACTCGCGTGC
       AAAGCCCAGG CCCGGGCGGC CAGACCAAGA GGGAAGAAGC ACAGAATTCC TCAACTCCCA
                                                                              120
       GTGTGCCCAT GAGTAAGAGC AAATGCTCCG TGGGACTCAT GTCTTCCGTG GTGGCCCCGG
                                                                              180
       CTAAGGAGCC CAATGCCGTG GGCCCGAAGG AGGTGGAGCT CATCCTTGTC AAGGAGCAGA
                                                                              240
85
       ACGGAGTGCA GCTCACCAGC TCCACCCTCA CCAACCCGCG GCAGAGCCCC GTGGAGGCCC
                                                                              300
       AGGATCGGGA GACCTGGGGC AAGAAGATCG ACTTTCTCCT GTCCGTCATT GGCTTTGCTG
                                                                              360
       TGGACCTGGC CAACGTCTGG CGGTTCCCCT ACCTGTGCTA CAAAAATGGT GGCGGTGCCT
                                                                              420
```

```
TCCTGGTCCC CTACCTGCTC TTCATGGTCA TTGCTGGGAT GCCACTTTTC TACATGGAGC
                                                                               480
       TEGCCCTCGG CCAGTTCAAC AGGGAAGGGG CCGCTGGTGT CTGGAAGATC TGCCCCATAC
                                                                              540
       TGAAAGGTGT GGGCTTCACG GTCATCCTCA TCTCACTGTA TGTCGGCTTC TTCTACAACG
                                                                               600
       TCATCATCGC CTGGGCGCTG CACTATCTCT TCTCCTCCTT CACCACGGAG CTCCCCTGGA
                                                                               660
 5
       TCCACTGCAA CAACTCCTGG AACAGCCCCA ACTGCTCGGA TGCCCATCCT GGTGACTCCA
                                                                               720
       GTGGAGACAG CTCGGGCCTC AACGACACTT TTGGGACCAC ACCTGCTGCC GAGTACTTTG
                                                                               780
       AACGTGGCGT GCTGCACCTC CACCAGAGCC ATGGCATCGA CGACCTGGGG CCTCCGCGGT
                                                                               840
       GGCAGCTCAC AGCCTGCCTG GTGCTGGTCA TCGTGCTGCT CTACTTCAGC CTCTGGAAGG
                                                                              900
       GCGTGAAGAC CTCAGGGAAG GTGGTATGGA TCACAGCCAC CATGCCATAC GTGGTCCTCA
CTGCCCTGCT CCTGCGTGGG GTCACCCTCC CTGGAGCCAT AGACGGCATC AGAGCATACC
                                                                              960
10
                                                                             1020
       TGAGCGTTGA CTTCTACCGG CTCTGCGAGG CGTCTGTTTG GATTGACGCG GCCACCCAGG
                                                                              1080
       TGTGCTTCTC CCTGGGCGTG GGGTTCGGGG TGCTGATCGC CTTCTCCAGC TACAACAAGT
                                                                             1140
       TCACCAACAA CTGCTACAGG GACGCGATTG TCACCACCTC CATCAACTAC CTGACCAGCT
TCTCCTCCGG CTTCGTCGTC TTCTCCTTCC TGGGGTACAT GGCACAGAAG CACAGTGTGC
                                                                             1200
15
       CCATCGGGGA CGTGGCCAAG GACGGGCCAG GGCTGATCTT CATCATCTAC CCGGAAGCCA
                                                                             1320
       TOGCCACGCT COCTOTGTCC TCAGCCTGGG COGTGGTCTT CTTCATCATG CTGCTCACCC
       TGGGTATCGA CAGCGCCATG GGTGGTATGG AGTCAGTGAT CACCGGGCTC ATCGATGAGT
                                                                             1440
       TCCAGCTGCT GCACAGACAC CGTGAGCTCT TCACGCTCTT CATCGTCCTG GCGACCTTCC
                                                                             1500
       TCCTGTCCCT GTTCTGCGTC ACCAACGGTG GCATCTACGT CTTCACGCTC CTGGACCATT
                                                                             1560
20
       TTGCAGCCGG CACGTCCATC CTCTTTGGAG TGCTCATCGA AGCCATCGGA GTGGCCTGGT
                                                                             1620
       TCTATGGTGT TGGGCAGTTC AGCGACGACA TCCAGCAGAT GACCGGGCAG CGGCCCAGCC
                                                                             1680
                                                                             1740
       TGTACTGGCG GCTGTGCTGG AAGCTGGTCA GCCCCTGCTT TCTCCTGTTC GTGGTCGTGG
       TCAGCATTGT GACCTTCAGA CCCCCCCACT ACGGAGCCTA CATCTTCCCC GACTGGGCCA
                                                                             1800
       ACGCGCTGGG CTGGGTCATC GCCACATCCT CCATGGCCAT GGTGCCCATC TATGCGGCCT
                                                                             1860
25
       ACAAGTTCTG CAGCCTGCCT GGGTCCTTTC GAGAGAAACT GGCCTACGCC ATTGCACCCG
                                                                             1920
       AGAAGGACCG TGAGCTGGTG GACAGAGGGG AGGTGCGCCA GTTCACGCTC CGCCACTGGC
                                                                             1980
       TCAAGGTGTA GAGGGAGCAG AGACGAAGAC CCCAGGAAGT CATCCTGCAA TGGGAGAGAC
                                                                             2040
       ACGAACAAAC CAAGGAAATC TAAGTTTCGA GAGAAAGGAG GGCAACTTCT ACTCTTCAAC
                                                                             2100
       CTCTACTGAA AACACAAACA ACAAAGCAGA AGACTCCTCT CTTCTGACTG TTTACACCTT
                                                                             2160
30
       TCCGTGCCGG GAGCGCACCT CGCCGTGTCT TGTGTTGCTG TAATAACGAC GTAGATCTGT
                                                                             2220
       GCAGCGAGGT CCACCCCGTT GTTGTCCCTG CAGGGCAGAA AAACGTCTAA CTTCATGCTG
                                                                             2280
       TCTGTGTGAG GCTCCCTCCC TCCCTGCTCC CTGCTCCCGG CTCTGAGGCT GCCCCAGGGG
                                                                             2340
       CACTGTGTTC TCAGGCGGGG ATCACGATCC TTGTAGACGC ACCTGCTGAG AATCCCCGTG
                                                                             2400
       CTCACAGTAG CTTCCTAGAC CATTTACTTT GCCCATATTA AAAAGCCAAG TGTCCTGCTT
                                                                             2460
35
       GGTTTAGCTG TGCAGAAGGT GAAATGGAGG AAACCACAAA TTCATGCAAA GTCCTTTCCC
                                                                             2520
       GATGCGTGGC TCCCAGCAGA GGCCGTAAAT TGAGCGTTCA GTTGACACAT TGCACACACA
                                                                             2580
       GTCTGTTCAG AGGCATTGGA GGATGGGGGT CCTGGTATGT CTCACCAGGA AATTCTGTTT
       ATGTTCTTGC AGCAGAGAA AATAAAACTC CTTGAAACCA GCTCAGGCTA CTGCCACTCA
                                                                             2700
       GGCAGCCTGT GGGTCCTTGT GGTGTAGGGA ACGGCCTGAG AGGAGCGTGT CCTATCCCCG
40
       GACGCATGCA GGGCCCCCAC AGGAGCGTGT CCTATCCCCG GACGCATGCA GGGCCCCCAC
                                                                             2820
       AGGAGCATGT CCTATCCCTG GACGCATGCA GGGCCCCCAC AGGAGCGTGT ACTACCCCAG
                                                                             2880
       AACGCATGCA GGGCCCCCAC AGGAGCGTGT ACTACCCCAG GACGCATGCA GGGCCCCCAC
                                                                             2940
       TGGAGCGTGT ACTACCCCAG GACGCATGCA GGGCCCCCAC AGGAGCGTGT CCTATCCCCG
                                                                             3000
       GACCGGACGC ATGCAGGGCC CCCACAGGAG CGTGTACTAC CCCAGGACGC ATGCAGGGCC
                                                                             3060
45
       CCCACAGGAG CGTGTACTAC CCCAGGATGC ATGCAGGGCC CCCACAGGAG CGTGTACTAC
                                                                             3120
       CCCAGGACGC ATGCAGGGCC CCCATGCAGG CAGCCTGCAG ACCAACACTC TGCCTGGCCT
                                                                             3180
       TGAGCCGTGA CCTCCAGGAA GGGACCCCAC TGGAATTTTA TTTCTCTCAG GTGCGTGCCA
                                                                             3240
       CATCAATAAC AACAGTTTTT ATGTTTGCGA ATGGCTTTTT AAAATCATAT TTACCTGTGA
                                                                             3300
                                                                             3360
       ATCAAAACAA ATTCAAGAAT GCAGTATCCG CGAGCCTGCT TGCTGATATT GCAGTTTTTG
50
       TTTACAAGAA TAATTAGCAA TACTGAGTGA AGGATGTTGG CCAAAAGCTG CTTTCCATGG
                                                                             3420
       CACACTGCCC TCTGCCACTG ACAGGAAAGT GGATGCCATA GTTTGAATTC ATGCCTCAAG
TCGGTGGGCC TGCCTACGTG CTGCCCGAGG GCAGGGGCCG TGCAGGGCCA GTCATGGCTG
                                                                             3480
                                                                             3540
       TCCCCTGCAA GTGGACGTGG GCTCCAGGGA CTGGAGTGTA ATGCTCGGTG GGAGCCGTCA
                                                                             3600
       GCCTGTGAAC TGCCAGGCAG CTGCAGTTAG CACAGAGGAT GGCTTCCCCA TTGCCTTCTG
                                                                             3660
55
       GGGAGGGACA CAGAGGACGG CTTCCCCATC GCCTTCTGGC CGCTGCAGTC AGCACAGAGA
                                                                             3720
       GCGGCTTCCC CATTGCCTTC TGGGGAGGGA CACAGAGGAC AGTTTCCCCA TCGCCTTCTG
                                                                             3780
       GTTGTTGAAG ACAGCACAGA GAGCGGCTTC CCCATCGCCT TCTGGGGAGG GGCTCCGTGT
                                                                             3840
       AGCAACCCAG GTGTTGTCCG TGTCTGTTGA CCAATCTCTA TTCAGCATCG TGTGGGTCCC
       TAAGCACAAT AAAAGACATC CACAATGGAA AAAAAAAAAG GAATTC
60
       Seq ID NO: 509 Protein sequence
       Protein Accession #: NP 001035.1
65
       MSKSKCSVGL MSSVVAPAKE PNAVGPKEVE LILVKEQNGV QLTSSTLTNP RQSPVEAQDR
                                                                               60
       ETWGKKIDFL LSVIGFAVDL ANVWRFPYLC YKNGGGAFLV PYLLFMVIAG MPLFYMELAL
                                                                              120
       GQFNREGAAG VWKICPILKG VGFTVILISL YVGFFYNVII AWALHYLFSS FTTELPWIHC
                                                                              180
       NNSWNSPNCS DAHPGDSSGD SSGLNDTFGT TPAAEYFERG VLHLHQSHGI DDLGPPRWQL
                                                                              240
70
       TACLVLVIVL LYFSLWKGVK TSGKVVWITA TMPYVVLTAL LLRGVTLPGA IDGIRAYLSV
                                                                              300
       DFYRLCEASV WIDAATQUCP SLGVGFGVLI AFSSYNKFTN NCYRDAIVTT SINSLTSFSS
                                                                              360
       GFVVFSFLGY MAQKHSVPIG DVAKDGPGLI FIIYPEAIAT LPLSSAWAVV FFIMLLTLGI
                                                                              420
       DSAMGGMESV ITGLIDEFQL LHRHRELFTL FIVLATFLLS LFCVTNGGIY VFTLLDHFAA
                                                                              480
       GTSILFGVLI EAIGVAWFYG VGQFSDDIQQ MTGQRPSLYW RLCWKLVSPC FLLFVVVVSI
                                                                              540
75
       VTFRPPHYGA YIFPDWANAL GWVIATSSMA MVPIYAAYKF CSLPGSFREK LAYAIAPEKD
       RELVDRGEVR OFTLRHWLKY
       Sea ID NO: 510 DNA sequence
       Nucleic Acid Accession #: NM 001216.1
80
       Coding sequence: 43..1422
       GCCCGTACAC ACCGTGTGCT GGGACACCCC ACAGTCAGCC GCATGGCTCC CCTGTGCCCC
                                                                                60
85
       AGCCCCTGGC TCCCTCTGTT GATCCCGGCC CCTGCTCCAG GCCTCACTGT GCAACTGCTG
                                                                              120
       CTGTCACTGC TGCTTCTGAT GCCTGTCCAT CCCCAGAGGT TGCCCCGGAT GCAGGAGGAT
                                                                               180
       TCCCCCTTGG GAGGAGGCTC TTCTGGGGAA GATGACCCAC TGGGCGAGGA GGATCTGCCC
                                                                               240
```

```
300
       AGTGAAGAGG ATTCACCCAG AGAGGAGGAT CCACCCGGAG AGGAGGATCT ACCTGGAGAG
                                                                               360
       GAGGATCTAC CTGGAGAGGA GGATCTACCT GAAGTTAAGC CTAAATCAGA AGAAGAGGGC
                                                                               420
       TCCCTGAAGT TAGAGGATCT ACCTACTGTT GAGGCTCCTG GAGATCCTCA AGAACCCCAG
                                                                               480
       AATAATGCCC ACAGGGACAA AGAAGGGGAT GACCAGAGTC ATTGGCGCTA TGGAGGCGAC
                                                                               540
       COGCCCTGGC CCCGGGTGTC CCCAGCCTGC GCGGGCCGCT TCCAGTCCCC GGTGGATATC
                                                                               600
       CGCCCCCAGC TCGCCGCCTT CTGCCCGGCC CTGCGCCCCC TGGAACTCCT GGGCTTCCAG
       CTCCCGCCGC TCCCAGAACT GCGCCTGCGC AACAATGGCC ACAGTGTGCA ACTGACCCTG
                                                                               660
       CCTCCTGGGC TAGAGATGGC TCTGGGTCCC GGGCGGGAGT ACCGGGCTCT GCAGCTGCAT
                                                                               720
       CTGCACTGGG GGGCTGCAGG TCGTCCGGGC TCGGAGCACA CTGTGGAAGG CCACCGTTTC
                                                                               780
       CCTGCCGAGA TCCACGTGGT TCACCTCAGC ACCGCCTTTG CCAGAGTTGA CGAGGCCTTG
GGGCGCCCGG GAGGCCTGGC CGTGTTGGCC GCCTTTCTGG AGGAGGGCCC GGAAGAAAAC
10
       AGTGCCTATG AGCAGTTGCT GTCTCGCTTG GAAGAAATCG CTGAGGAAGG CTCAGAGACT
       CAGGTCCCAG GACTGGACAT ATCTGCACTC CTGCCCTCTG ACTTCAGCCG CTACTTCCAA
                                                                              1020
       TATGAGGGGT CTCTGACTAC ACCGCCCTGT GCCCAGGGTG TCATCTGGAC TGTGTTTAAC
                                                                              1080
       CAGACAGTGA TGCTGAGTGC TAAGCAGCTC CACACCCTCT CTGACACCCT GTGGGGACCT
15
                                                                              1140
       GGTGACTCTC GGCTACAGCT GAACTTCCGA GCGACGCAGC CTTTGAATGG GCGAGTGATT
                                                                              1200
       GAGGCCTCCT TCCCTGCTGG AGTGGACAGC AGTCCTCGGG CTGCTGAGCC AGTCCAGCTG
                                                                              1260
       AATTCCTGCC TGGCTGCTGG TGACATCCTA GCCCTGGTTT TTGGCCTCCT TTTTGCTGTC
                                                                              1320
       ACCAGCGTCG CGTTCCTTGT GCAGATGAGA AGGCAGCACA GAAGGGGAAC CAAAGGGGGT
                                                                              1380
       GTGAGCTACC GCCCAGCAGA GGTAGCCGAG ACTGGAGCCT AGAGGCTGGA TCTTGGAGAA
20
                                                                              1440
       TGTGAGAAGC CAGCCAGAGG CATCTGAGGG GGAGCCGGTA ACTGTCCTGT CCTGCTCATT
                                                                             1500
       ATGCCACTTC CTTTTAACTG CCAAGAAATT TTTTAAAATA AATATTTATA AT
       Seq ID NO: 511 Protein sequence
25
       Protein Accession #: NP_001207.1
                              21 .
                                                      41
                                          31
                   11
       MAPLCPSPWL PLLIPAPAPG LTVQLLLSLL LLMPVHPQRL PRMQEDSPLG GGSSGEDDPL
                                                                                60
       GEEDLPSEED SPREEDPPGE EDLPGEEDLP GEEDLPEVKP KSEEEGSLKL EDLPTVEAPG
30
                                                                               120
       DPQEPQNNAH RDKEGDDQSH WRYGGDPPWP RVSPACAGRF QSPVDIRPQL AAFCPALRPL
                                                                               180
       ELLGFQLPPL PELRLRNNGH SVQLTLPPGL EMALGPGREY RALQLHLHWG AAGRPGSEHT
                                                                               240
       VEGHRFPAEI HVVHLSTAFA RVDEALGRPG GLAVLAAFLE EGPEENSAYE QLLSRLEEIA
                                                                               300
       EEGSETQVPG LDISALLPSD FSRYFQYEGS LTTPPCAQGV IWTVFNQTVM LSAKQLHTLS
DTLWGPGDSR LQLNFRATQP LNGRVIEASF PAGVDSSPRA AEPVQLNSCL AAGDILALVF
35
       GLLFAVTSVA FLVQMRRQHR RGTKGGVSYR PAEVAETGA
       Seg ID NO: 512 DNA sequence
       Nucleic Acid Accession #: Eos sequence
40
       Coding sequence: 1..3978
                   11
                                          31
       ATGGTGGGTG AAGGACCCTA CCTTATCTCA GATCTGGACC AGCGAGGCCG GCGGAGATCC
                                                                                60
45
       TTTGCAGAAA GATATGACCC CAGCCTGAAG ACCATGATCC CAGTGCGACC CTGTGCAAGG
                                                                               120
       TTAGCACCCA ACCCGGTGGA TGATGCCGGG CTACTCTCCT TCGCCACATT TTCCTGGCTC
                                                                               180
       ACGCCGGTGA TGGTGAAAGG CTACCGGCAA AGGCTGACCG TAGACACCCT GCCCCCATTG
                                                                               240
       TCGACATATG ACTCATCTGA CACCAATGCC AAAAGATTTC GAGTCCTTTG GGATGAAGAG
                                                                               300
       GTAGCAAGGG TGGGTCCTGA GAAGGCCTCT CTGAGCCACG TGGTGTGGAA ATTCCAGAGG
                                                                               360
50
       ACACGCGTGT TGATGGACAT CGTGGCCAAC ATCCTGTGCA TCATCATGGC AGCCATAGGG
                                                                               420
       CCGACAGTIC TCATTCACCA AATCCTCCAG CAGACTGAGA GGACCTCTGG GAAAGTCTGG
GTTGGCATTG GACTGTGCAT AGCCCTTTTT GCCACCGAGT TTACCAAAGT CTTCTTTTGG
                                                                               480
                                                                               540
       GCCCTTGCCT GGGCCATCAA CTACCGCACG GCCATCCGGT TGAAGGTGGC GCTCTCCACC
                                                                               600
       TTGGTTTTTG AAAACCTAGT GTCCTTCAAG ACATTGACCC ACATCTCTGT TGGCGAGGTG
                                                                               660
       CTCAATATAC TGTCAAGTGA TAGCTATTCT TTGTTTGAAG CTGCCTTGTT TTGTCCTTTG
CCAGCCACCA TCCCGATCCT AATGGTCTTT TGTGCGGCGT ACGCCTTTTT CATTCTGGG
55
                                                                               720
       CCCACAGCTC TCATCGGGAT ATCAGTGTAT GTCATATTCA TACCCGTCCA GATGTTTATG
                                                                               840
       GCCAAGCTCA ATTCAGCTTT CCGAAGGTCA GCAATTTTGG TGACAGACAA GCGAGTTCAG
                                                                               900
       ACAATGAATG AGTTTCTGAC CTGCATCAGG CTGATCAAAA TGTATGCCTG GGAGAAATCT
                                                                               960
       TTTACCAACA CTATCCAAGA TATAAGAAGG AGGGAAAGAA AATTACTGGA AAAAGCTGGA
60
                                                                              1020
       TTTGTCCAAA GTGGAAACTC TGCCCTGGCC CCCATCGTGT CCACCATAGC CATCGTGCTG
                                                                              1080
       ACATTATCCT GCCACATCCT CCTGAGACGC AAACTCACCG CACECGTGGC ATTTAGTGTG
                                                                              1140
       ATTGCCATGT TTAATGTAAT GAAGTTTTCC ATTGCAATCT TGCCCTTCTC CATCAAAGCA
                                                                              1200
       ATGGCTGAAG CGAATGTCTC TCTAAGGAGA ATGAAGAAAA TTCTCATAGA TAAAAGCCCC
                                                                              1260
65
       CCATCTTACA TCACCCAACC AGAAGACCCA GATACTGTCT TGCTTTTAGC AAATGCCACC
                                                                              1320
       TTGACATGGG AGCATGAAGC CAGCAGGAAA AGTACCCCAA AGAAATTGCA GAACCAGAAA
                                                                              1380
       AGGCATTTAT GCAAGAAACA GAGGTCAGAG GCATACAGTG AGAGGAGTCC ACCAGCCAAG
                                                                              1440
       GGAGCCACTG GCCCAGAGGA GCAAAGTGAC AGCCTCAAAT CGGTTCTGCA CAGCATAAGC
                                                                              1500
       TTTGTGGTGA GAAAGTTATG TCGTTATCCC GAAGCCCAGC TCCTGGCTTG GAGGTGGCCA
                                                                              1560
7.0
       GCAGTGTTTG TTGGGAGAAT CATCAGAGGA TACAGGCCTC ATGGATTTTC TGCTAAAGAC
                                                                              1620
        AAGGATGAAT CTAGAAGGCT TCTTACTTGG CCCCAAGAAG TGGATAGGAC TCAAAGGGCA
                                                                              1680
       GCCAAATACC TGGGGAAGAT CTTGGGAATA TGTGGGAATG TGGGAAGTGG AAAGAGCTCC
                                                                              1740
        CTCCTTGCAG CTCTCCTAGG ACAGATGCAG CTGCAGAAAG GGGTGGTGGC AGTCAATGGA
                                                                              1800
       ACTITIGGCCT ACGITITCACA GCAGGCATGG ATCITITCATG GAAATGTGAG AGAAAACATA
                                                                              1860
        CTCTTTGGAG AAAAGTATGA TCACCAAAGG TATCAGCACA CAGTCCGCGT CTGTGGCCTC
75
        CAGAAGGACC TGAGCAACCT CCCCTATGGA GACCTGACTG AGATTGGGGA GCGGGGCCTC
                                                                               1980
       AACCTCTCTG GGGGGCAGAG GCAGAGGATT AGCCTGGCCC GCGCTGTCTA CTCCGACCGT
                                                                              2040
        CAGCTCTACC TGCTGGACGA CCCCCTGTCG GCCGTGGACG CCCACGTGGG GAAGCACGTC
                                                                              2100
        TTTGAGGAGT GCATTAAGAA GACGCTCAGG GGAAAGACAG TCGTCCTGGT GACCCACCAG
                                                                              2160
        CTACAGTTCT TAGAGTCTTG TGATGAAGTT ATTTTATTAG AAGATGGAGA GATTTGTGAA
80
                                                                              2220
        AAGGGAACCC ACAAGGAGTT AATGGAGGAG AGAGGGCGCT ATGCAAAACT GATTCACAAC
                                                                              2280
        CTGCGAGGAT TGCAGTTCAA GGATCCTGAA CACCTTTACA ATGCAGCAAT GGTGGAAGCC
                                                                              2340
        TTCAAGGAGA GCCCTGCTGA GAGAGAGGAA GATGCTGGTA TAATCGGGTA CCTCCTTTCT
                                                                              2400
        CTCTTCACTG TGTTCCTCTT CCTCCTGATG ATTGGCAGCG CTGCCTTCAG CAACTGGTGG
                                                                              2460
85
        CTGGGTCTCT GGTTGGACAA GGGCTCACGG ATGACCTGTG GGCCCCAGGG CAACAGGACC
                                                                               2520
        ATGTCTCAGG TCGGCGCGCT GCTGGCAGAC ATCGGTCAGC ATGTGTACCA GTGGGTGTAC
                                                                              2580
        ACTGCAAGCA TGGTGTTCAT GCTGGTGTTT GGCGTCACCA AAGGCTTCGT CTTCACCAAG 2640
```

```
ACCACACTGA TGGCATCCTC CTCTCTGCAT GACACGGTGT TTGATAAGAT CTTAAAGAGC
                                                                              2700
       CCAATGAGTT TCTTTGACAC GACTCCCACT GGCAGGCTAA TGAACCGTTT TTCCAAGGAT
                                                                              2760
       ATGGACGAGC TGGATGTGAG GCTGCCGTTT CACGCAGAGA ACTTTCTGCA GCAGTTTTTT
                                                                              2820
       ATGGTGGTGT TTATTCTCGT GATCTTGGCT GCTGTGTTTC CTGCTGTCCT TTTAGTCGTG
                                                                              2880
       GCCAGCCTTG CTGTAGGCTT CTTCATTCTG TTACGCATTT TCCACAGAGG AGTCCAGGAG
                                                                              2940
       CTCAAGAAGG TGGAGAATGT CAGCCGGTCA CCCTGGTTCA CCCACATCAC CTCCTCCATG
                                                                              3000
       CAGGGCCTGG GCATCATTCA CGCCTATGGC AAGAAGGAGA GCTGCATCAC CTATACTTCA
                                                                              3060
       TCCAAAGGCC TGTCATTGTC ATACATCATC CAGCTGAGCG GACTGCTCCA AGTGTGTGTG
                                                                              3120
       CGAACGGGAA CAGAGACGCA AGCCAAATTC ACCTCCGTGG AGCTGCTCAG GGAATACATT
                                                                              3180
10
       TOGACCTGTG TTCCTGAATG CACTCATCCC CTCAAAGTGG GGACCTGTCC CAAGGACTGG
                                                                              3240
       CCCAGCTGTG GGGAGATCAC CTTCAGAGAC TATCAGATGA GATACAGAGA CAACACCCCC
                                                                              3300
       CTTGTTCTCG ACAGCCTGAA CTTGAACATA CAAAGTGGGC AGACAGTCGG GATTGTTGGA
                                                                              3360
       AGAACAGGTT CCGGAAAGTC ATCGTTAGGA ATGGCTTTGT TTCGTCTGGT GGAGCCAGCC AGTGGCACAA TCTTTATTGA TGAGGTGGAT ATCTGCATTC TCAGCTTGGA AGACCTCAGA
15
       ACCAAGCTGA CTGTGATCCC ACAGGATCCT GTCCTGTTTG TAGGTACAGT AAGGTACAAC
                                                                              3540
       TTGGATCCCT TTGAGAGTCA CACCGATGAG ATGCTCTGGC AGGTTCTGGA GAGAACATTC
       ATGAGAGACA CAATAATGAA ACTCCCAGAA AAATTACAGG CAGAAGTCAC AGAAAATGGA
                                                                              3660
       GAAAACTTCT CAGTAGGGGA ACGTCAGCTG CTTTGTGTGG CCCGAGCTCT TCTCCGTAAT
                                                                              3720
       TCAAAGATCA TTCTCCTTGA TGAAGCCACC GCCTCTATGG ACTCCAAGAC TGACACCCTG
                                                                              3780
20
       GTTCAGAACA CCATCAAAGA TGCCTTCAAG GGCTGCACTG TGCTGACCAT CGCCCACCGC
                                                                              3840
       CTCAACACAG TTCTCAACTG CGATCACGTC CTGGTTATGG AAAATGGGAA GGTGATTGAG
                                                                              3900
       TTTGACAAGC CTGAAGTCCT TGCAGAGAAG CCAGATTCTG CATTTGCGAT GTTACTAGCA
       GCAGAAGTCA GATTGTAG
25
       Seq ID NO: 513 Protein sequence
       Protein Accession #: Eos sequence
                                                                 51
                              21
                                          31
                                                     41
       MVGEGPYLIS DLDORGRRRS FAERYDPSLK TMIPVRPCAR LAPNPVDDAG LLSFATFSWL
30
                                                                                60
       TPVMVKGYRQ RLTVDTLPPL STYDSSDTNA KRFRVLWDEE VARVGPEKAS LSHVVWKFQR
                                                                               120
       TRVLMDIVAN ILCIIMAAIG PTVLIHQILQ QTERTSGKVW VGIGLCIALF ATEFTKVFFW ALAWAINYRT AIRLKVALST LVFENLVSFK TLTHISVGEV LNILSSDSYS LFEAALFCPL
                                                                               180
i
                                                                               240
       PATIPILMVF CARYAFFILG PTALIGISVY VIFIPVQMFM AKLMSAFRRS AILVTDKRVQ
TMNEFLTCIR LIKMYAWEKS FTNTIQDIRR RERKLLEKAG FVQSGNSALA PIVSTIAIVL
                                                                               300
35
       TLSCHILLRR KLTAPVAFSV IAMFNYMKFS IAILPFSIKA MAEANVSLRR MKKILIDKSP
PSYITQPEDP DTVLLLANAT LTWEHEASRK STPKKLQNQK RHLCKKQRSE AYSERSPPAK
       GATGPEEOSD SLKSVLHSIS FVVRKLCRYP EAQLLAWRWP AVFVGRIIRG YRPHGFSAKD
                                                                               540
       KDESRRLLTW PQEVDRTQRA AKYLGKILGI CGNVGSGKSS LLAALLGQMQ LQKGVVAVNG
40
       TLAYVSQQAW IFHGNVRENI LFGEKYDHQR YQHTVRVCGL QKDLSNLPYG DLTEIGERGL
                                                                               660
                                                                               720
       NLSGGQRORI SLARAVYSDR QLYLLDDPLS AVDAHVGKHV FEECIKKTLR GKTVVLVTHQ
       LQFLESCDEV ILLEDGEICE KGTHKELMEE RGRYAKLIHN LRGLQFKDPE HLYNAAMVEA
                                                                               780
       FKESPAEREE DAGIIGYLLS LFTVFLFLLM IGSAAFSNWW LGLWLDKGSR MTCGPQGNRT
                                                                               840
       MCEVGAVLAD IGQHVYQWVY TASMVFMLVF GVTKGFVFTK TTLMASSSLH DTVFDKILKS
                                                                               900
45
       PMSFFDTTPT GRLMNRFSKD MDELDVRLPF HAENFLQQFF MVVFILVILA AVFPAVLLVV
                                                                               960
       ASLAVGFFIL LRIFHRGVQE LKKVENVSRS PWFTHITSSM QGLGIIHAYG KKESCITYTS
                                                                              1020
       SKGLSLSYII OLSGLLOVCV RTGTETQAKF TSVELLREYI STCVPECTHP LKVGTCPKDW
                                                                              1080
       PSCGEITFRD YOMRYRDNTP LVLDSLNLNI QSGQTVGIVG RTGSGKSSLG MALFRLVEPA
                                                                              1140
       SGTIFIDEVD ICILSLEDLR TKLTVIPQDP VLFVGTVRYN LDPFESHTDE MLWQVLERTF
                                                                              1200
50
       MRDTIMKLPE KLQAEVTENG ENFSVGERQL LCVARALLRN SKIILLDEAT ASMOSKTDTL
                                                                              1260
       VONTIKDAFK GCTVLTIAHR LATVLNCDHV LVMENGKVIE FDKPEVLAEK PDSAFAMLLA
                                                                              1320
       Seq ID NO: 514 DNA sequence
55
       Nucleic Acid Accession #: Z31560
       Coding sequence: 1-966
                                          31
                                                     41
                              21
60
       CACAGCGCCC GCATGTACAA CATGATGGAG ACGGAGCTGA AGCCGCCGGG CCCGCAGCAA
       ACTTCGGGGG GCGGCGGCGG CAACTCCACC GCGGCGGCGG CCGGCGGCAA CCAGAAAAAC
                                                                               120
       AGCCCGGACC GCGTCAAGCG GCCCATGAAT GCCTTCATGG TGTGGTCCCG CGGGCAGCGG
                                                                               180
       CGCAAGATGG CCCAGGAGAA CCCCAAGATG CACAACTCGG AGATCAGCAA GCGCCTGGGC
                                                                               240
       GCCGAGTGGÁ AACTTTTGTC GGAGACGGAG AAGCGGCCGT TCATCGACGA GGCTAAGCGG
                                                                               300
65
       CTGCGAGCGC TGCACATGAA GGAGCACCCG GATTATAAAT ACCGGCCCCG GCGGAAAACC
                                                                               360
       AAGACGCTCA TGAAGAAGGA TAAGTACACG CTGCCCGGCG GGCTGCTGGC CCCCGGCGGC
                                                                               420
       AATAGCATGG CGAGCGGGGT CGGGGTGGGC GCCGGCCTGG GCGCGGGCGT GAACCAGCGC
                                                                               480
       ATGGACAGTT ACGCGCACAT GAACGGCTGG AGCAACGGCA GCTACAGCAT GATGCAGGAC
                                                                               540
       600
70
       ATGCACCGCT ACGACGTGAG CGCCCTGCAG TACAACTCCA TGACCAGCTC GCAGACCTAC
                                                                               660
       ATGAACGGCT CGCCCACCTA CAGCATGTCC TACTCGCAGC AGGGCACCCC TGGCATGGCT
                                                                               720
       CTTGGCTCCA TGGGTTCGGT GGTCAAGTCC GAGGCCAGCT CCAGCCCCCC TGTGGTTACC
                                                                               780
       TCTTCCTCCC ACTCCAGGGC GCCCTGCCAG GCCGGGGACC TCCGGGACAT GATCAGCATG
                                                                               840
       TATCTCCCCG GCGCCGAGGT GCCGGAACCC GCCGCCCCCA GCAGACTTCA CATGTCCCAG
                                                                               900
75
       CACTACCAGA GCGGCCCGGT GCCCGGCACG GCCATTAACG GCACACTGCC CCTCTCACAC
                                                                               960
       ATGTGAGGGC CGGACAGCGA ACTGGAGGGG GGAGAAATTT TCAAAGAAAA ACGAGGGAAA
                                                                              1020
       TGGGAGGGGT GCAAAAGAGG AGAGTAAGAA ACAGCATGGA GAAAACCCGG TACGCTCAAA
80
       Seq ID NO: 515 Protein sequence
       Protein Accession #: CAA83435
85
       HSARMYNMME TELKPPGPQQ TSGGGGGNST AAAAGGNQKN SPDRVKRPMN AFMVWSRGQR
                                                                                60
       RKMAQENPKM HNSEISKRLG AEWKLLSETE KRPFIDEAKR LRALHMKEHP DYKYRPRRKT
                                                                               120
        KTLMKKDKYT LPGGLLAPGG NSMASGVGVG AGLGAGVNQR MDSYAHMNGN SNGSYSMMQD
                                                                               180
```

	WO 02						
	LGSMGSVVKS	nahgaaqmqp Easssppvvt Aingtlplsh	MHRYDVSALQ SSSHSRAPCQ M	Ynsmtssqty Agdlrdmism	MNGSPTYSMS YLPGAEVPEP	YSQQGTPGMA AAPSRLHMSQ	240 300
5	Nucleic Ac:	516 DNA sec id Accession Lence: 29!	#: U91618				
10	1	11	21	31	41	51	
10	CATGCTACTC AGCATTAGAA TCCCTCTTGG	CTGGCTTTCA GCAGATTTCT AAGATGACTC	GCTGAAAGAT GCTCCTGGAG TGACCAATAT TGCTAAATGT	TCTGTGCTCA GCATACATCA TTGCAGTCTT	GATTCAGAAG AAGATTAGTA GTAAATAATT	AGGAAATGAA AAGCACATGT TGAACAGCCC	60 120 180 240
15	TGCTTTAGAT TCACAGCAGG TGACAAAAAT GCTGTATGAG	GGCTTTAGCT GCTTTTCAAC GGAAAGGAAG AATAAACCCA	TTCATGAAGA TGGAAGCAAT ACTGGGAGTT AAGTCATAAA GAAGACCCTA	GTTGACAATA AATCCAGGAA GAGAAAAATT CATACTCAAA	TACCAGCTCC GATATTCTTG CCTTATATTC AGAGATTCTT	ACAAAATCTG ATACTGGAAA TGAAACGGCA ACTATTACTG	300 360 420 480 540
20	ATTATATTTG ATTGAATGTG	TGTGAAAATG TTTTTCTGCA	ACATGTGATT TGACAAACAC CTAATAGAAA AAATGGGGCC	ACTTATCTGT TTAGACTAAG	CTCTTCTACA	ATTGTGGTTT	600 660 720
25		517 Proteir cession #: /					
•	1	11 "	21	31	41	51	
30	VCSLVNNLNS	PAEETGEVHE	SLCSDSEEEM EELVARRKLP KRKIPYILKR	TALDGFSLEA	MLTIYQLHKI	) VPSWKMTLLN CHSRAFQHWE	60 120
35	Nucleic Aci	518 DNA sec id Accession Lence: 109	#: NM_006	536.2			
	1	11	21	31	41	51 1	
40	ACCTABAACC	TTGCAAGTTC	I AGGAAGAAAC	CATCTGCATC	CATATTGAAA	ACCTGACACA	60
	ATGTATGCAG	CAGGCTCAGT	GTGAGTGAAC	TGGAGGCTTC	TCTACAACAT	GACCCAAAGG	120
			CAACCTGAAG TGGAGTACAG				180 240
			ACCTGAGAAT				300
45	ATAACTGAAG	CTTCATTTTA	CCTATTTAAT	GCTACCAAGA	GAAGAGTATT	TTTCAGAAAT	360
			CACATGGAAA CATAGTGACT				420 480
			GTGTGGAAAA				540
50			AACAGCTGGC				600
30			GGGTGTGTTC TAAAGTGACA				660 720
	GTGTGTGAAA	AAGGTCCTTG	CCCCCAAGAA	AACTGTATTA	TTAGTAAGCT	TTTTAAAGAA	780
			TAGCACCCAA ATTTTGTAAT				840 900
55			CCTCAGAAGT				960
	TTTCACCACA	GCTTTCCCAT	GAATGGGACT	GAGCTTCCAC	CTCCTCCCAC	ATTCTCGCTT	1020
	GTACAGGCTG	GTGACAAAGT	GGTCTGTTTA	GCAGAATTTT	TGTCCAGCAA ATTTGATGCA	GATGGCAGAG GATTGTTGAA	1080 1140
	ATTCATACCT	TCGTGGGCAT	TGCCAGTTTC	GACAGCAAAG	GAGAGATCAG	AGCCCAGCTA	1200
60	CACCAAATTA	ACAGCAATGA	TGATCGAAAG	TTGCTGGTTT	CATATCTGCC	CACCACTGTA	1260 1320
	AAACTGAATG	GAAAAGCTTA	TGGCTCTGTG	ATGATATTAG	TGACCAGCGG	GGTGGTTGAA AGATGATAAG	
	CTTCTTGGCA	ATTGCTTACC	CACTGTGCTC	AGCAGTGGTT	CAACAATTCA	CTCCATTGCC	1440
65						AGGTTTAAAG TAGAATTTCC	1500 1560
03	TCTGGAACTG	GAGACATTTT	CCAGCAACAT	ATTCAGCTTG	AAAGTACAGG	TGAAAATGTC	1620
	AAACCTCACC	ATCAATTGAA	AAACACAGTG	ACTGTGGATA	ATACTGTGGG	CAACGACACT	1680 1740
	GGACGAAAAT	ACTACACAAA	TAATTTTATC	ACCAATCTAA	CTTTTCGGAC	TGATCCTGAT AGCTAGTCTT	1800
70	TGGATTCCAG	GAACAGCTAA	GCCTGGGCAC	TGGACTTACA	CCCTGAACAA	TACCCATCAT	1860
	TCTCTGCAAG	CCCTGAAAGT	GACAGTGACC	TCTCGCGCCT	CCAACTCAGC	TGTGCCCCCA TGTGATGATT	1920 1980
	TATGCCAATG	TGAAACAGGG	ATTTTATCCC	ATTCTTAATG	CCACTGTCAC	TGCCACAGTT	2040
75	GAGCCAGAGA	CTGGAGATCC	TGTTACGCTG	AGACTCCTTG	ATGATGGAGC	AGGTGCTGAT	2100
75						AAATGGTAGA CCACTCTATT	2160 2220
	CCAGGGAGTC	<b>ATGCTATGTA</b>	TGTACCAGGT	TACACAGCAA	ACGGTAATAT	TCAGATGAAT	2280
	GCTCCAAGGA	AATCAGTAGG	CAGAAATGAG	GAGGAGCGAA	AGTGGGGCTT	TAGCCGAGTC	2340
80	AGCTCAGGAG CCACCATGCA	AAATTATTGA	AGTGCTGGGA	GTAAAAGTAG	AAGAGGAATT	TGATGTGTTT GACCCTATCT	2400 2460
	TGGACAGCAC	CTGGAGAAGA	CTTTGATCAG	GGCCAGGCTA	CAAGCTATGA	aataagaatg	2520
	AGTAAAAGTC	TACAGAATAT	CCAAGATGAC TGGCATCAGG	TTTAACAATG	CTATTTTAGT	AAATACATCA	2580 2640
	ACGAATGGAC	CTGAACATCA	GCCAAATGGA	GAAACACATG	AAAGCCACAG	AATTTATGTT	2700
85	GCAATACGAG	CAATGGATAG	GAACTCCTTA	CAGTCTGCTG	TATCTAACAT	TGCCCAGGCG	2760
	CCTCTGTTTA	TTCCCCCCAA	TTCTGATCCT	GTACCTGCCA	GAGATTATCT TTATTATACT	TATATTGAAA	2820 2880
	OGNOTITION	-warww100G					

```
CATACTITAA GCAGGAAAAA GAGAGCAGAC AAGAAAGAGA ATGGAACAAA ATTATTATAA
                                                                             2940
       ATAAATATCC AAAGTGTCTT CCTTCTTAGA TATAAGACCC ATGGCCTTCG ACTACAAAAA
                                                                             3000
       CATACTAACA AAGTCAAATT AACATCAAAA CTGTATTAAA ATGCATTGAG TTTTTGTACA
                                                                             3060
       ATACAGATAA GATTTTTACA TGGTAGATCA ACAATTCTTT TTGGGGGTAG ATTAGAAAAC
                                                                             3120
 5
       CCTTACACTT TGGCTATGAA CAAATAATAA AAATTATTCT TTAAAGTAAT GTCTTTAAAG
                                                                             3180
       GCAAAGGGAA GGGTAAAGTC GGACCAGTGT CAAGGAAAGT TTGTTTTATT GAGGTGGAAA
                                                                             3240
       AATAGCCCCA AGCAGAGAAA AGGAGGGTAG GTCTGCATTA TAACTGTCTG TGTGAAGCAA
                                                                             3300
       TCATTTAGTT ACTITGATTA ATTTTTCTTT TCTCCTTATC TGTGCAGTAC AGGTTGCTTG
                                                                             3360
       TTTACATGAA GATCATGCTA TATTTTATAT ATGTAGCCCC TAATGCAAAG CTCTTTACCT
                                                                             3420
10
       CTTGCTATTT TGTTATATAT ATTTCAGATG ACATCTCCCT GCTAATGCTC AGAGATCTTT
                                                                             3480
       TTTCACTGTA AGAGGTAACC TTTAACAATA TGGGTATTAC CTTTGTCTCT TCATACCGGT
                                                                             3540
       TTTATGACAA AGGTCTATTG AATTTATTTG TNTGTAAGTT TCTACTCCCA TCAAAGCAGC
                                                                             3600
       TTTCTAAGTT TATTGCCTTG GGTTATTATG GAATGATAGT TATAGCCCCN TATAATGCCT
                                                                             3660
15
       Seq ID NO: 519 Protein sequence
       Protein Accession #: NP_006527.1
                              21
                                          31
                                                     41
                                                                 51
20
       MTQRSIAGPI CNLKFVTLLV ALSSELPPLG AGVQLQDNGY NGLLIAINPQ VPENQNLISN
                                                                               60
       IKEMITEASF YLFNATKRRV FFRNIKILIP ATWKANNNSK IKQESYEKAN VIVTDWYGAH
                                                                              120
       GDDPYTLQYR GCGKEGKYIH FTPNFLLNDN LTAGYGSRGR VFVHEWAHLR WGVFDEYNND
                                                                              180
       KPFYINGONO IKVTRCSSDI TGIFVCEKGP CPQENCIISK LFKEGCTFIY NSTQNATASI
MFMQSLSSVV EFCNASTHNO EAPNLQNOMC SLRSAWDVIT DSADFHHSFP MNGTELPPPP
                                                                              240
25
                                                                               300
       TESLVOAGDK VVCLVLDVSS KMAEADRLLQ LQQAAEFYLM QIVEIHTFVG IASFDSKGEI
                                                                              360
       RAQLHQINSN DDRKLLVSYL PTTVSAKTDI SICSGLKKGF EVVEKLNGKA YGSVMILVTS
       GDDKLLGNCL PTVLSSGSTI HSIALGSSAA PNLEELSRLT GGLKFFVPDI SNSNSMIDAF
                                                                               480
       SRISSGTGDI FOOHIQLEST GENVKPHHQL KNTVTVDNTV GNDTMFLVTW QASGPPEIIL
30
       FDPDGRKYYT NNFITNLTFR TASLWIPGTA KPGHWTYTLN NTHHSLQALK VTVTSRASNS
                                                                               600
       AVPPATVEAF VERDSLHFPH PVMIYANVKQ GFYPILNATV TATVEPETGD PVTLRLLDDG
                                                                               660
       AGADVIKNDG IYSRYFFSFA ANGRYSLKVH VNHSPSISTP AHSIPGSHAM YVPGYTANGN
                                                                              720
       IOMNAPRKSV GRNEEERKWG FSRVSSGGSF SVLGVPAGPH PDVFPPCKII DLEAVKVEEE
                                                                              780
       LTLSWTAPGE DFDQGQATSY EIRMSKSLQN IQDDFNNAIL VNTSKRNPQQ AGIREIFTFS
                                                                              840
35
       PQISTNGPEH QPNGETHESH RIYVAIRAMD RNSLQSAVSN IAQAPLFIPP NSDPVPARDY
                                                                              900
       LILKGVLTAM GLIGIICLII VVTHHTLSRK KRADKKENGT KLL
       Seq ID NO: 520 DNA sequence
       Nucleic Acid Accession #: NM_000228.1
40
       Coding sequence: 82..3600
                                          31
                                                     41
                                                                 51
       GCTTTCAGGC GATCTGGAGA AAGAACGGCA GAACACACAG CAAGGAAAGG TCCTTTCTGG
                                                                               60
45
                                                                              120
       GGATCACCCC ATTGGCTGAA GATGAGACCA TTCTTCCTCT TGTGTTTTGC CCTGCCTGGC
       CTCCTGCATG CCCAACAAGC CTGCTCCCGT GGGGCCTGCT ATCCACCTGT TGGGGACCTG
                                                                              180
       CTTGTTGGGA GGACCCGGTT TCTCCGAGCT TCATCTACCT GTGGACTGAC CAAGCCTGAG
                                                                              240
       ACCTACTGCA CCCAGTATGG CGAGTGGCAG ATGAAATGCT GCAAGTGTGA CTCCAGGCAG
                                                                              300
       CCTCACAACT ACTACAGTCA CCGAGTAGAG AATGTGGCTT CATCCTCCGG CCCCATGCGC
                                                                              360
50
       TGGTGGCAGT CCCAGAATGA TGTGAACCCT GTCTCTCTGC AGCTGGACCT GGACAGGAGA
       TTCCAGCTTC AAGAAGTCAT GATGGAGTTC CAGGGGCCCA TGCCCGCCGG CATGCTGATT GAGCGCTCCT CAGACTTCGG TAAGACCTGG CGAGTGTACC AGTACCTGGC TGCCGACTGC
                                                                               480
       ACCTCCACCT TCCCTCGGGT CCGCCAGGGT CGGCCTCAGA GCTGGCAGGA TGTTCGGTGC CAGTCCCTGC CTCAGAGGCC TAATGCACGC CTAAATGGGG GGAAGGTCCA ACTTAACCTT
55
       ATGGATTTAG TGTCTGGGAT TCCAGCAACT CAAAGTCAAA AAATTCAAGA GGTGGGGGAG
                                                                               720
       ATCACAAACT TGAGAGTCAA TTTCACCAGG CTGGCCCCTG TGCCCCAAAG GGGCTACCAC
       CCTCCCAGCG CCTACTATGC TGTGTCCCAG CTCCGTCTGC AGGGGAGCTG CTTCTGTCAC
                                                                              840
       GGCCATGCTG ATCGCTGCGC ACCCAAGCCT GGGGCCTCTG CAGGCCCCTC CACCGCTGTG
                                                                              900
       CAGGTCCACG ATGTCTGTGT CTGCCAGCAC AACACTGCCG GCCCAAATTG TGAGCGCTGT
                                                                              960
60
       GCACCCTTCT ACAACAACCG GCCCTGGAGA CCGGCGGAGG GCCAGGACGC CCATGAATGC
                                                                             1020
       CAAAGGTGCG ACTGCAATGG GCACTCAGAG ACATGTCACT TTGACCCCGC TGTGTTTGCC
                                                                             1080
       GCCAGCCAGG GGGCATATGG AGGTGTGTGT GACAATTGCC GGGACCACAC CGAAGGCAAG
                                                                             1140
       AACTGTGAGC GGTGTCAGCT GCACTATTTC CGGAACCGGC GCCCGGGAGC TTCCATTCAG
                                                                             1200
       GAGACCTGCA TCTCCTGCGA GTGTGATCCG GATGGGGCAG TGCCAGGGGC TCCCTGTGAC
                                                                             1260
65
                                                                             1320
       CCAGTGACCG GGCAGTGTGT GTGCAAGGAG CATGTGCAGG GAGAGCGCTG TGACCTATGC
       AAGCCGGGCT TCACTGGACT CACCTACGCC AACCCGCAGG GCTGCCACCG CTGTGACTGC
                                                                             1380
       AACATCCTGG GGTCCCGGAG GGACATGCCG TGTGACGAGG AGAGTGGGCG CTGCCTTTGT
                                                                             1440
       CTGCCCAACG TGGTGGGTCC CAAATGTGAC CAGTGTGCTC CCTACCACTG GAAGCTGGCC
                                                                             1500
       AGTGGCCAGG GCTGTGAACC GTGTGCCTGC GACCCGCACA ACTCCCCTCA GCCCACAGTG
                                                                             1560
70
       CAACCAGTTC ACAGGGCAGT GCCCTGTCGG GAAGGCTTTG GTGGCCTGAT GTGCAGCGCT
                                                                             1620
       GCAGCCATCC GCCAGTGTCC AGACCGGACC TATGGAGACG TGGCCACAGG ATGCCGAGCC
                                                                             1680
       TGTGACTGTG ATTTCCGGGG AACAGAGGCC CCGGGCTGCG ACAAGGCATC AGGCCGCTGC
                                                                             1740
       CTCTGCCGCC CTGGCTTGAC CGGGCCCCGC TGTGACCAGT GCCAGCGAGG CTACTGCAAT
                                                                             1800
       CGCTACCCGG TGTGCGTGGC CTGCCACCCT TGCTTCCAGA CCTATGATGC GGACCTCCGG
                                                                             1860
75
       GAGCAGGCCC TGCGCTTTGG TAGACTCCGC AATGCCACCG CCAGCCTGTG GTCAGGGCCT
                                                                             1920
       GGGCTGGAGG ACCGTGGCCT GGCCTCCCGG ATCCTAGATG CAAAGAGTAA GATTGAGCAG
                                                                             1980
       ATCCGAGCAG TTCTCAGCAG CCCCGCAGTC ACAGAGCAGG AGGTGGCTCA GGTGGCCAGT
                                                                             2040
       GCCATCCTCT CCCTCAGGCG AACTCTCCAG GGCCTGCAGC TGGATCTGCC CCTGGAGGAG
                                                                             2100
       GAGACGTTGT CCCTTCCGAG AGACCTGGAG AGTCTTGACA GAAGCTTCAA TGGTCTCCTT
                                                                             2160
80
       ACTATGTATC AGAGGAAGAG GGAGCAGTTT GAAAAAATAA GCAGTGCTGA TCCTTCAGGA
                                                                             2220
       GCCTTCCGGA TGCTGAGCAC AGCCTACGAG CAGTCAGCCC AGGCTGCTCA GCAGGTCTCC
                                                                             2280
       GACAGCTCGC GCCTTTTGGA CCAGCTCAGG GACAGCCGGA GAGAGGCAGA GAGGCTGGTG
                                                                             2340
       CGGCAGGCGG GAGGAGGAGG AGGCACCGGC AGCCCCAAGC TTGTGGCCCT GAGGCTGGAG
                                                                             2400
       ATGTCTTCGT TGCCTGACCT GACACCCACC TTCAACAAGC TCTGTGGCAA CTCCAGGCAG
                                                                             2460
85
       ATGGCTTGCA CCCCAATATC ATGCCCTGGT GAGCTATGTC CCCAAGACAA TGGCACAGCC
                                                                             2520
       TGTGGCTCCC GCTGCAGGGG TGTCCTTCCC AGGGCCGGTG GGGCCTTCTT GATGGCGGGG
                                                                             2580
       CAGGTGGCTG AGCAGCTGCG GGGCTTCAAT GCCCAGCTCC AGCGGACCAG GCAGATGATT
                                                                             2640
```

```
AGGGCAGCCG AGGAATCTGC CTCACAGATT CAATCCAGTG CCCAGCGCTT GGAGACCCAG 2700
       GTGAGCGCCA GCCGCTCCCA GATGGAGGAA GATGTCAGAC GCACACGGCT CCTAATCCAG 2760
       CAGGTCCGGG ACTTCCTAAC AGACCCCGAC ACTGATGCAG CCACTATCCA GGAGGTCAGC 2820
       GAGGCCGTGC TGGCCCTGTG GCTGCCCACA GACTCAGCTA CTGTTCTGCA GAAGATGAAT
                                                                         2880
       GAGATCCAGG CCATTGCAGC CAGGCTCCCC AACGTGGACT TGGTGCTGTC CCAGACCAAG
                                                                          2940
       3000
       CATGCAGTGG AGGGCCAGGT GGAAGATGTG GTTGGGAACC TGCGGCAGGG GACAGTGGCA
                                                                          3060
       CTGCAGGAAG CTCAGGACAC CATGCAAGGC ACCAGCCGCT CCCTTCGGCT TATCCAGGAC
                                                                          3120
       AGGGTTGCTG AGGTTCAGCA GGTACTGCGG CCAGCAGAAA AGCTGGTGAC AAGCATGACC
                                                                          3180
10
       AAGCAGCTGG GTGACTTCTG GACACGGATG GAGGAGCTCC GCCACCAAGC CCGGCAGCAG
                                                                          3240
       GGGGCAGAGG CAGTCCAGGC CCAGCAGCTT GCGGAAGGTG CCAGCGAGCA GGCATTGAGT
                                                                          3300
       GCCCAAGAGG GATTTGAGAG AATAAAACAA AAGTATGCTG AGTTGAAGGA CCGGTTGGGT
                                                                         3360
       CAGAGTTCCA TGCTGGGTGA GCAGGGTGCC CGGATCCAGA GTGTGAAGAC AGAGGCAGAG
       GAGCTGTTTG GGGAGACCAT GGAGATGATG GACAGGATGA AAGACATGGA GTTGGAGCTG
15
       CTGCGGGGCA GCCAGGCCAT CATGCTGCGC TCGGCGGACC TGACAGGACT GGAGAAGCGT
                                                                         3540
       GTGGAGCAGA TCCGTGACCA CATCAATGGG CGCGTGCTCT ACTATGCCAC CTGCAAGTGA
                                                                         3600
       TGCTACAGCT TCCAGCCCGT TGCCCCACTC ATCTGCCGCC TTTGCTTTTG GTTGGGGGCA
                                                                         3660
       GATTGGGTTG GAATGCTTTC CATCTCCAGG AGACTTTCAT GCAGCCTAAA GTACAGCCTG
                                                                         3720
       GACCACCCT GGTGTGTAGC TAGTAAGATT ACCCTGAGCT GCAGCTGAGC CTGAGCCAAT
                                                                         3780
20
       GGGACAGTTA CACTTGACAG ACAAAGATGG TGGAGATTGG CATGCCATTG AAACTAAGAG
                                                                         3840
       CTCTCAAGTC AAGGAAGCTG GGCTGGGCAG TATCCCCCGC CTTTAGTTCT CCACTGGGGA
                                                                         3900
       GGAATCCTGG ACCAAGCACA AAAACTTAAC AAAAGTGATG TAAAAATGAA AAGCCAAATA
       AAAATCTTTG G
25
       Seq ID NO: 521 Protein sequence
       Protein Accession #: NP_000219.1
                                       31
                                                  41
                                                             51
30
       MRPFFLLCFA LPGLLHAQQA CSRGACYPPV GDLLVGRTRF LRASSTCGLT KPETYCTQYG
                                                                           60
       EWOMKCCKCD SROPHNYYSH RVENVASSSG PMRWWOSOND VNPVSLOLDL DRRFOLOEVM
                                                                          120
       MEFOGPMPAG MLIERSSDFG KTWRVYQYLA ADCTSTFPRV RQGRPQSWQD VRCQSLPQRP
                                                                          180
       NARLNGGKVO LNLMDLVSGI PATOSOKIQE VGEITNLRVN FTRLAPVPQR GYHPPSAYYA
                                                                          240
       VSQLRLQGSC FCHGHADRCA PKPGASAGPS TAVQVHDVCV CQHNTAGPNC ERCAPFYNNR
                                                                          300
35
       PWRPAEGQDA HECORCDCNG HSETCHFDPA VFAASQGAYG GVCDNCRDHT EGKNCERCQL
                                                                          360
       HYFRNRRPGA SIQETCISCE CDPDGAVPGA PCDPVTGQCV CKEHVQGERC DLCKPGFTGL
                                                                          420
       TYANPOGCHR CDCNILGSRR DMPCDEESGR CLCLPNVVGP KCDQCAPYHW KLASGQGCEP
       CACDPHNSPQ PTVQPVHRAV PCREGFGGLM CSAAAIRQCP DRTYGDVATG CRACDCDFRG
       TEGPGCDKAS GRCLCRPGLT GPRCDQCQRG YCNRYPVCVA CHPCFQTYDA DLREQALRFG
40
       RLRNATASLW SGPGLEDRGL ASRILDAKSK IEQIRAVLSS PAVTEQEVAQ VASAILSLRR
       TLQGLQLDLP LEEETLSLPR DLESLDRSFN GLLTMYQRKR EQFEKISSAD PSGAFRMLST
                                                                          720
       AYEQSAQAAQ QVSDSSRLLD QLRDSRREAE RLVRQAGGGG GTGSPKLVAL RLEMSSLPDL
                                                                          780
       TPTFNKLCGN SRQMACTPIS CPGELCPQDN GTACGSRCRG VLPRAGGAFL MAGQVAEQLR
                                                                          840
       GFNAQLQRTR QMIRAAEESA SQIQSSAQRL ETQVSASRSQ MEEDVRRTRL LIQQVRDFLT
                                                                          900
45
       DPDTDAATIQ EVSEAVLALW LPTDSATVLQ KMNEIQAIAA RLPNVDLVLS QTKQDIARAR
                                                                          960
       RLQAEAEEAR SRAHAVEGQV EDVVGNLRQG TVALQEAQDT MQGTSRSLRL IQDRVAEVQQ
                                                                        1020
       VLRPAEKLVT SMTKQLGDFW TRMEELRHQA RQQGAEAVQA QQLAEGASEQ ALSAQEGFER
                                                                         1080
       IKQKYAELKD RLGQSSMLGE QGARIQSVKT EAEELFGETM EMMDRMKDME LELLRGSQAI 1140
       MLRSADLTGL EKRVEOIRDH INGRVLYYAT CK
50
       Seg ID NO: 522 DNA seguence
      Nucleic Acid Accession #: NM 001944.1
       Coding sequence: 84..3083
55
                                       31
       TTTTCTTAGA CATTAACTGC AGACGGCTGG CAGGATAGAA GCAGCGGCTC ACTTGGACTT
       TTTCACCAGG GAAATCAGAG ACAATGATGG GGCTCTTCCC CAGAACTACA GGGGCTCTGG
       CCATCTTCGT GGTGGTCATA TTGGTTCATG GAGAATTGCG AATAGAGACT AAAGGTCAAT
60 ·
      ATGATGAAGA AGAGATGACT ATGCAACAAG CTAAAAGAAG GCAAAAACGT GAATGGGTGA
       AATTTGCCAA ACCCTGCAGA GAAGGAGAAG ATAACTCAAA AAGAAACCCA ATTGCCAAGA
       TTACTTCAGA TTACCAAGCA ACCCAGAAAA TCACCTACCG AATCTCTGGA GTGGGAATCG
      ATCAGCCGCC TTTTGGAATC TTTGTTGTTG ACAAAAACAC TGGAGATATT AACATAACAG
                                                                          420
       CTATAGTCGA CCGGGAGGAA ACTCCAAGCT TCCTGATCAC ATGTCGGGCT CTAAATGCCC
                                                                          480
65
      AAGGACTAGA TGTAGAGAAA CCACTTATAC TAACGGTTAA AATTTTGGAT ATTAATGATA
                                                                          540
      ATCCTCCAGT ATTTTCACAA CAAATTTTCA TGGGTGAAAT TGAAGAAAAT AGTGCCTCAA
                                                                          600
      ACTCACTGGT GATGATACTA AATGCCACAG ATGCAGATGA ACCAAACCAC TTGAATTCTA
                                                                          660
      AAATTGCCTT CAAAATTGTC TCTCAGGAAC CAGCAGGCAC ACCCATGTTC CTCCTAAGCA
                                                                          720
      GAAACACTGG GGAAGTCCGT ACTTTGACCA ATTCTCTTGA CCGAGAGCAA GCTAGCAGCT
                                                                          780
70
      ATCGTCTGGT TGTGAGTGGT GCAGACAAAG ATGGAGAAGG ACTATCAACT CAATGTGAAT
                                                                          840
      GTAATATTAA AGTGAAAGAT GTCAACGATA ACTTCCCAAT GTTTAGAGAC TCTCAGTATT
                                                                          900
       CAGCACGTAT TGAAGAAAAT ATTTTAAGTT CTGAATTACT TCGATTTCAA GTAACAGATT
                                                                          960
       TGGATGAAGA GTACACAGAT AATTGGCTTG CAGTATATTT CTTTACCTCT GGGAATGAAG
                                                                         1020
       GAAATTGGTT TGAAATACAA ACTGATCCTA GAACTAATGA AGGCATCCTG AAAGTGGTGA
                                                                         1080
75
      AGGCTCTAGA TTATGAACAA CTACAAAGCG TGAAACTTAG TATTGCTGTC AAAAACAAAG
                                                                         1140
       CTGAATTTCA CCAATCAGTT ATCTCTCGAT ACCGAGTTCA GTCAACCCCA GTCACAATTC
                                                                         1200
       AGGTAATAAA TGTAAGAGAA GGAATTGCAT TCCGTCCTGC TTCCAAGACA TTTACTGTGC
       AAAAAGGCAT AAGTAGCAAA AAATTGGTGG ATTATATCCT GGGAACATAT CAAGCCATCG
       ATGAGGACAC TAACAAAGCT GCCTCAAATG TCAAATATGT CATGGGACGT AACGATGGTG
80
      GATACCTAAT GATTGATTCA AAAACTGCTG AAATCAAATT TGTCAAAAAT ATGAACCGAG
       ATTCTACTTT CATAGTTAAC AAAACAATCA CAGCTGAGGT TCTGGCCATA GATGAATACA
                                                                         1500
       CGGGTAAAAC TTCTACAGGC ACGGTATATG TTAGAGTACC CGATTTCAAT GACAATTGTC, 1560
       CAACAGCTGT CCTCGAAAAA GATGCAGTTT GCAGTTCTTC ACCTTCCGTG GTTGTCTCCG
                                                                         1620
       CTAGAACACT GAATAATAGA TACACTGGCC CCTATACATT TGCACTGGAA GATCAACCTG
                                                                         1680
85
       TAAAGTTGCC TGCCGTATGG AGTATCACAA CCCTCAATGC TACCTCGGCC CTCCTCAGAG
                                                                         1740
       CCCAGGAACA GATACCTCCT GGAGTATACC ACATCTCCCT GGTACTTACA GACAGTCAGA
                                                                         1800
       ACAATCGGTG TGAGATGCCA CGCAGCTTGA CACTGGAAGT CTGTCAGTGT GACAACAGGG 1860
```

```
GCATCTGTGG AACTTCTTAC CCAACCACAA GCCCTGGGAC CAGGTATGGC AGGCCGCACT 1920
       CAGGGAGGCT GGGGCCTGCC GCCATCGGCC TGCTGCTCCT TGGTCTCCTG CTGCTGCTGT
                                                                                1980
       TGGCCCCCCT TCTGCTGTTG ACCTGTGACT GTGGGGCAGG TTCTACTGGG GGAGTGACAG
                                                                                 2040
       GTGGTTTTAT CCCAGTTCCT GATGGCTCAG AAGGAACAAT TCATCAGTGG GGAATTGAAG
                                                                                 2100
       GAGCCCATCC TGAAGACAAG GAAATCACAA ATATTTGTGT GCCTCCTGTA ACAGCCAATG
GAGCCGATTT CATGGAAAGT TCTGAAGTTT GTACAAATAC GTATGCCAGA GGCACAGCGG
 5
                                                                                 2160
                                                                                 2220
       TGGAAGGCAC TTCAGGAATG GAAATGACCA CTAAGCTTGG AGCAGCCACT GAATCTGGAG
                                                                                 2280
       GTGCTGCAGG CTTTGCAACA GGGACAGTGT CAGGAGCTGC TTCAGGATTC GGAGCAGCCA
                                                                                 2340
       CTGGAGTTGG CATCTGTTCC TCAGGGCAGT CTGGAACCAT GAGAACAAGG CATTCCACTG
                                                                                 2400
       GAGGAACCAA TAAGGACTAC GCTGATGGGG CGATAAGCAT GAATTTTCTG GACTCCTACT
10
                                                                                 2460
       TTTCTCAGAA AGCATTTGCC TGTGCGGAGG AAGACGATGG CCAGGAAGCA AATGACTGCT
                                                                                 2520
       TGTTGATCTA TGATAATGAA GGCGCAGATG CCACTGGTTC TCCTGTGGGC TCCGTGGGTT
       GTTGCAGTTT TATTGCTGAT GACCTGGATG ACAGCTTCTT GGACTCACTT GGACCCAAAT
                                                                                 2640
       TTAAAAAACT TGCAGAGATA AGCCTTGGTG TTGATGGTGA AGGCAAAGAA GTTCAGCCAC
                                                                                2700
15
       CCTCTAAAGA CAGCGGTTAT GGGATTGAAT CCTGTGGCCA TCCCATAGAA GTCCAGCAGA
                                                                                2760
       CAGGATTTGT TAAGTGCCAG ACTTTGTCAG GAAGTCAAGG AGCTTCTGCT TTGTCCGCCT
                                                                                2820
       CTGGGTCTGT CCAGCCAGCT GTTTCCATCC CTGACCCTCT GCAGCATGGT AACTATTTAG
TAACGGAGAC TTACTCGGCT TCTGGTTCCC TCGTGCAACC TTCCACTGCA GGCTTTGATC
                                                                                2880
                                                                                2940
       CACTTCTCAC ACAAATGTG ATAGTGACAG AAAGGGTGAT CTGTCCCATT TCCAGTGTTC
                                                                                3000
20
                                                                                3060
       CTGGCAACCT AGCTGGCCCA ACGCAGCTAC GAGGGTCACA TACTATGCTC TGTACAGAGG
       ATCCTTGCTC CCGTCTAATA TGACCAGAAT GAGCTGGAAT ACCACACTGA CCAAATCTGG
                                                                                3120
       ATCTTTGGAC TAAAGTATTC AAAATAGCAT AGCAAAGCTC ACTGTATTGG GCTAATAATT
                                                                                3180
       TGGCACTTAT TAGCTTCTCT CATAAACTGA TCACGATTAT AAATTAAATG TTTGGGTTCA
                                                                                3240
       TACCCCAAAA GCAATATGTT GTCACTCCTA ATTCTCAAGT ACTATTCAAA TTGTAGTAAA
                                                                                3300
25
       TCTTAAAGTT TTTCAAAACC CTAAAATCAT ATTCGC
       Seq ID NO: 523 Protein sequence
       Protein Accession #: NP_001935.1
30
                                                                    51
                   11
                                            31
                                                        41
       MMGLFPRTTG ALAIFVVVIL VHGELRIETK GQYDEEEMTM QQAKRRQKRE WVKFAKPCRE
       GEDNSKRNPI AKITSDYQAT QKITYRISGV GIDQPPFGIF VVDKNTGDIN ITAIVDREET
       PSFLITCRAL NAQGLDVEKP LILTVKILDI NDNPPVFSQQ IFMGEIEENS ASNSLVMILN
                                                                                  180
       ATDADEPNHL NSKIAFKIVS QEPAGTPMFL LSRNTGEVRT LTNSLDREQA SSYRLVVSGA
35
       DKDGEGLSTQ CECNIKVKDV NDNFPMFRDS QYSARIBENI LSSELLRFQV TDLDEEYTDN
                                                                                  300
       WLAVYFFTSG NEGNWFEIQT DPRTNEGILK VVKALDYEQL QSVKLSIAVK NKAEFHQSVI
       SRYRVQSTPV TIQVINVREG IAFRPASKTF TVQKGISSKK LVDYILGTYQ AIDEDTNKAA
SNVKYVMGRN DGGYLMIDSK TAEIKFVKNM NRDSTFIVNK TITAEVLAID EYTGKTSTGT
                                                                                  420
                                                                                  480
       VYVRVPDFND NCPTAVLEKD AVCSSSPSVV VSARTLNNRY TGPYTFALED QPVKLPAVWS
40
                                                                                  540
       ITTLNATSAL LRAQEQIPPG VYHISLVLTD SQNNRCEMPR SLTLEVCQCD NRGICGTSYP
                                                                                  600
       TTSPGTRYGR PHSGRLGPAA IGLLLLGLLL LLLAPLLLLT CDCGAGSTGG VTGGFIPVPD
                                                                                  660
       GSEGTIHOWG IEGAHPEDKE ITNICVPPVT ANGADFMESS EVCTNTYARG TAVEGTSGME
                                                                                  720
       MITKLGAATE SGGAAGFATG TVSGAASGFG AATGVGICSS GQSGTMRTRH STGGTNKDYA
                                                                                  780
45
       DGAISMNFLD SYFSQKAFAC AEEDDGQEAN DCLLIYDNEG ADATGSPVGS VGCCSFIADD
                                                                                  840
        LDDSFLDSLG PKFKKLAEIS LGVDGEGKEV QPPSKDSGYG IESCGHPIEV QQTGFVKCQT
                                                                                  900
       LSGSQGASAL SASGSVQPAV SIPDPLQHGN YLVTETYSAS GSLVQPSTAG FDPLLTQNVI
                                                                                  960
        VTERVICPIS SVPGNLAGPT QLRGSHTMLC TEDPCSRLI
50
       Seq ID NO: 524 DNA sequence
       Nucleic Acid Accession #: XM_058069.2
       Coding sequence: 1..1413
                   11
                               21
                                            31
55
       ATGAAGTTTC TTCTAATACT GCTCCTGCAG GCCACTGCTT CTGGAGCTCT TCCCCTGAAC
       AGCTCTACAA GCCTGGAAAA AAATAATGTG CTATTTGGTG AAAGATACTT AGAAAAATTT
                                                                                  120
       TATGGCCTTG AGATAAACAA ACTTCCAGTG ACAAAAATGA AATATAGTGG AAACTTAATG
                                                                                  180
       AAGGAAAAA TCCAAGAAAT GCAGCACTTC TTGGGTCTGA AAGTGACCGG GCAACTGGAC
                                                                                  240
60
       ACATCTACCC TGGAGATGAT GCACGCACCT CGATGTGGAG TCCCCGATGT CCATCATTTC
                                                                                  300
        AGGGAAATGC CAGGGGGGCC CGTATGGAGG AAACATTATA TCACCTACAG AATCAATAAT
                                                                                  360
       TACACACCTG ACATGAACCG TGAGGATGTT GACTACGCAA TCCGGAAAGC TTTCCAAGTA
                                                                                  420
        TEGAGTAATG TTACCCCCTT GAAATTCAGC AAGATTAACA CAGGCATGGC TGACATTTTG
                                                                                  480
       GTGGTTTTTG CCCGTGGAGC TCATGGAGAC TTCCATGCTT TTGATGGCAA AGGTGGAATC
                                                                                  540
65
        CTAGCCCATG CTTTTGGACC TGGATCTGGC ATTGGAGGGG ATGCACATTT CGATGAGGAC
                                                                                  600
        GAATTCTGGA CTACACATTC AGGAGGCACA AACTTGTTCC TCACTGCTGT TCACGAGATT
                                                                                  660
        GGCCATTCCT TAGGTCTTGG CCATTCTAGT GATCCAAAGG CCGTAATGTT CCCCACCTAC
                                                                                  720
        AAATATGTTG ACATCAACAC ATTTCGCCTC TCTGCTGATG ACATACGTGG CATTCAGTCC
                                                                                  780
        CTGTATGGAG ACCCAAAAGA GAACCAACGC TTGCCAAATC CTGACAATTC AGAACCAGCT
                                                                                  840
       CTCTGTGACC CCAATTTGAG TTTTGATGCT GTCACTACCG TGGGAAATAA GATCTTTTTC
TTCAAAGACA GGTTCTTCTG GCTGAAGGTT TCTGAGAGAC CAAAGACCAG TGTTAATTTA
70
                                                                                  900
                                                                                  960
       ATTICTTCCT TATGGCCAAC CTTGCCATCT GGCATTGAAG CTGCTTATGA AATTGAAGCC AGAAATCAAG TTTTTCTTTT TAAAGATGAC AAATACTGGT TAATTAGCAA TTTAAGACCA
                                                                                 1020
       GAGCCAAATT ATCCCAAGAG CATACATTCT TTTGGTTTTC CTAACTTTGT GAAAAAAATT GATGCAGCTG TTTTTAACCC ACGTTTTTAT AGGACCTACT TCTTTGTAGA TAACCAGTAT
                                                                                 1140
75
                                                                                 1200
        TGGAGGTATG ATGAAAGGAG ACAGATGATG GACCCTGGTT ATCCCAAACT GATTACCAAG
                                                                                 1260
        AACTTCCAAG GAATCGGGCC TAAAATTGAT GCAGTCTTCT ACTCTAAAAA CAAATACTAC
                                                                                 1320
        TATTTCTTCC AAGGATCTAA CCAATTTGAA TATGACTTCC TACTCCAACG TATCACCAAA
                                                                                 1380
        ACACTGAAAA GCAATAGCTG GTTTGGTTGT TGA
80
        Seq ID NO: 525 Protein sequence
        Protein Accession #: P39900
                                                                    51
                                                        41
85
        MKPLLILLLQ ATASGALPLN SSTSLEKNNV LPGERYLEKF YGLEINKLPV TKMKYSGNLM
        KEKIQEMQHF LGLKVTGQLD TSTLEMMHAP RCGVPDVHHF REMPGGPVWR KHYITYRINN
```

5	LAHAFGPGSG KYVDINTFRL FKDRPFWLKV EPNYPKSIHS	IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI	WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE	NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY	GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	180 240 300 360 420
10	Nucleic Act	526 DNA sec id Accession mence: 642	#: NM_024	423.1			
	1	11	21	31	41	51	
	GGCAGGTCTC	GCTCTCGGCA	CCCTCCCGGC	GCCCGCGTTC	TCCTGGCCCT	GCCCGGCATC	60
15	CCGATGGCCG	CCGCTGGGCC	CCGGCGCTCC	GTGCGCGGAG	CCGTCTGCCT	GCATCTGCTG	120
	CTGACCCTCG	TGATCTTCAG	TCGTGATGGT CAAAATAATT	GAAGCCTGCA	AAAAGGTGAT	ACTTAATGTA	180 240
			AAGTGATCCT				300
20	TACACAGCCA	GGGCTGTTGC	GCTGTCTGAT	AAGAAAAGAT	CATTTACCAT	ATGGCTTTCT	360
20	GACAAAAGGA TCGAAGACAA	AACAGACACA GACACACTAG	GAAAGAGGTT AGAAACTGTT	ACTGTGCTGC	CCAAGAGGAG	ATGGGCACCT	420 480
	ATTCCTTGCT	CTATGCAAGA	GAATTCCTTG	GGCCCTTTCC	CATTGTTTCT	TCAACAAGTT	540
			CTATACTGTC TTATATAGAA				600 660
25			TGATGTTTTT				720
	GGATATTCAG	CAGATCTGCC	CCTCCCACTA	CCCATCAGGG	TAGAGGATGA	AAATGACAAC	780
	CACCCTGTTT		TGCCACAGAC				840 900
	CTGAAATACA	GCATTTTGCA	GCAGACACCA	AGGTCACCTG	GGCTCTTTTC	TGTGCATCCC	960
30	AGCACAGGCG	TAATCACCAC	AGTCTCTCAT	TATTTGGACA	GAGAGGTTGT	AGACAAGTAC	1020
	TCATTGATAA	TGAAAGTACA	AGACATGGAT AGATTCAAAT	GGCCAGTTTT	CCACTTTCAG	ACAAAATGCT	1080 1140
	TATGAAGCAT	TTGTAGAGGA	AAATGCATTC	AATGTGGAAA	TCTTACGAAT	ACCTATAGAA	1200
35	GATAAGGATT	TAATTAACAC	TGCCAATTGG CAGCACAGAC	AGAGTCAATT	TTACCATTTT	AAAGGGAAAT	1260 1320
33	GTAAAGCCAC	TGAATTATGA	AGAAAACCGT	CAAGTGAACC	TGGAAATTGG	AGTAAACAAT	1380
	GAAGCGCCAT	TTGCTAGAGA	TATTCCCAGA	GTGACAGCCT	TGAACAGAGC	CTTGGTTACA	1440
	GTTCATGTGA	GGGATCTGGA	TGAGGGGCCT GGGGTCAAAG	GAATGCACTC	ATABGGCATA	TGACCCCGAA	1500 1560
40	AATAGAAATG	GCAATGGTTT	AAGGTACAAA	AAATTGCATG	ATCCTAAAGG	TTGGATCACC	1620
	ATTGATGAAA	TTTCAGGGTC	AATCATAACT	TCCAAAATCC	TGGATAGGGA	GGTTGAAACT	1680
	ACTGGAACAC	AGTTGTATAA	TATTACAGTC CATTGAAGAT	CTGGCAATAG GTAAATGATA	ACAAAGATGA ATCCACCAGA	AATACTTCAA	1740 1800
4.5	GAATATGTAG	TCATTTGCAA	ACCAAAAATG	GGGTATACCG	ACATTTTAGC	TGTTGATCCT	1860
45			TCCATTTTAT CAAAGTTAAT				1920 1980
			TACCATTCCT				2040
			TAATCTGTGT				2100
50			AATACTTGGA ATTGCTAACT				2160 2220
50	GGGAAACGTT	TTCCTGAAGA	TTTAGCACAG	CAAAACTTAA	TTATATCAAA	CACAGAAGCA	2280
			CTCTGCCAAT				2340 2400
	GAAATGATGA	AAGGAGGAAA	TATGGGATCA CCAGACCTTG	GAATCCTGCC	GGGGGGCTGG	GCATCATCAT	2460
55	ACCCTGGACT	CCTGCAGGGG	AGGACACACG	GAGGTGGACA	ACTGCAGATA	CACTTACTCG	2520
			ACCCCGTCTC AATTGCATCG				2580 2640
	CCAAGATTAT	GTCCTCACTT	ATAACTATGA	GGGAAGAGGA	TCTCCAGCTG	GTTCTGTGGG.	2700
60	CTGCTGCAGT	GAAAAGCAGG	AAGAAGATGG	CCTTGACTTT	TTAAATAATT	TGGAACCCAA	2760
00	ATTTATTACA	TTAGCAGAAG ATTCTGGAGG	CATGCACAAA	TANTATTGTA	AAGTTCAATT	CAATTAGGTC TCAACATGTA	2820 2880
	TGTATATGAT	GATTTTTTTC	TCAATTTTGA	ATTATGCTAC	TCACCAATTT	ATATTTTTAA	2940
						AACTGGTAAA TTTTTTTACG	
65	GATATTTTAG	TAATAAATAT	GCTGGATAAA	TATTAGTCCA	ACAATAGCTA	AGTTATGCTA	3120
	ATATCACATT	ATTATGTATT	CACTTTAAGT	GATAGTTTAA	AAAATAAACA	AGAAATATTG	3180
						TAAATTAAAA TCATTTGACT	3240 3300
	TTGGAGGCAA	AATGTGTTGA	AGTGCCCTAT	GAAGTAGCAA	TTTTCTATAG	GAATATAGTT	3360
70	GGAAATAAAT	GTGTGTGTGT	ATATTATTAT	TAATCAATGC	AATATTTAAA	ATGAAATGAG	3420 3480
	GAAAAAAGAGG	AGAGCTTCCT	AGGCCTGGGC	TCTTAAATGC	TGCATTATAA	TCCTACAATA CTGAGTCTAT	3540
	GAGGAAATAG	TTCCTGTCCA	ATTTGTGTAA	TTTGTTTAAA	ATTGTAAATA	AATTAAACTT	3600
75	TTCTGGTTTC	TGTGGGAAGG	AAATAGGGAA	TCCAATGGAA	CAGTAGCTTT	GCTTTGCAGT CGCTGCAGCT	3660 3720
15	GGGGTTCCCT	GCTTTTTGGT	AGCAAGGGTC	CAGAGATGAG	GTGTTTTTTT	CGGGGAGCTA	
	ATAACAAAAA	CATTTTAAAA	CTTACCTTTA	CTGAAGTTAA	ATCCTCTATT	GCTGTTTCTA	3840
	AGTTTAGAGG	CTAGAGGGAG	CTGAGGGGAG	GATCTTACTC	AAAGCACCCT	GTCCTCCTAG GGGGAGATTG	3900 3960
80	ATTGTCCTTA	AACCTAAGCC	CCACAAACTT	GACACCTGAT	CAGGTCTGGG	AGCTACAAAA	4020
	TTTCATTTTT	CTCCTCACTG	CCCTTCTTCT	GAGTGGCATT	GGCCTGAATC	AAGGAAAGCC	4080
	AGGCCTTGTG CCTTAAGTGA	CTCCAGGTTT	TCCACCATCC	TTCAGCGTGA	ATTAATTTT	GCAGAGATTC AATCAGTTTG	4140 4200
0.5	CTTTCTCCAG	AGAAATTTTA	AAATAATAGA	AGAAATAGAA	ATTTTGAATG	TATAAAAGAA	4260
85	AAAGATCAAG	TTGTCATTTT	AGAACAGAGG	GAACTTTGGG	AGAAAGCAGC	CCAAGTAGGT GAGAGGCCAC	4320 4380
	AAGGAATATG	GGTGGGAGTA	AAAGCAACAT	CGTCTGCTTC	ATACTTTTTC	CTAGGCTTGG	4440
			_				

```
CACTGCCTTT TCCTTTCTCA GGCCAATGGC AACTGCCATT TGAGTCCGGT GAGGGATCAG
                                                                            4500
       CCAACCTCTT CTCTATGGCT CACCTTATTT GGAGTGAGAA ATCAAGGAGA CAGAGCTGAC
                                                                            4560
       TGCATGATGA GTCTGAAGGC ATTTGCAGGA TGAGCCTGAA CTGGTTGTGC AGAACAAACA
                                                                            4620
       AGGCATTCAT GGGAATTGTT GTATTCCTTC TGCAGCCCTC CTTCTGGGCA CTAAGAAGGT
                                                                            4680
 5
       CTATGAATTA AATGCCTATC TAAAATTCTG ATTTATTCCT ACATTTTCTG TTTTCTAATT
                                                                            4740
       TGACCCTAAA ATCTATGTGT TTTAGACTTA GACTTTTTAT TGCCCCCCCC CCCTTTTTTT
       TTGAGACGGA GTCTCGCTCT GACGCACAGG CTGGAGTGCA GTGGCTCCGA TCTCTGCTCA
                                                                            4860
       CTGANAGCTC CGCCTCCCGG GTTCATGCCA TTCTCCTGCC TCAGCCTCCT GAGTAGCTGG
GACTACAGGC GCCCACCACC ACGCCCGGCT AATTTTTTGT ATTTTTAATA GAGACGGGGT
       TTCACTGTGT TAGCCAGGAT GGTCTCGATC TCCTGACCTC GTGATCCGCC TGCCTCGGCC
10
       TCCCAAAGTG CTGGGATTAC AGGCATGACC CACCGCTCCC GGCCTTGTTT TCCGTTTAAA
                                                                            5100
       GTCGTCTTCT TTTAATGTAA TCATTTTGAA CATGTGTGAA AGTTGATCAT ACGAATTGGA
                                                                            5160
       TCAATCTTGA AATACTCAAC CAAAAGACAG TCGAGAAGCC AGGGGGAGAA AGAACTCAGG
GCACAAAATA TTGGTCTGAG AATGGAATTC TCTGTAAGCC TAGTTGCTGA AATTTCCTGC
                                                                            5220
                                                                            5280
15
       TGTAACCAGA AGCCAGTTTT ATCTAACGGC TACTGAAACA CCCACTGTGT TTTGCTCACT
                                                                            5340
       CCCACTCACC GATCAAAACC TGCTACCTCC CCAAGACTTT ACTAGTGCCG ATAAACTTTC
                                                                            5400
       TCAAAGAGCA ACCAGTATCA CTTCCCTGTT TATAAAACCT CTAACCATCT CTTTGTTCTT
                                                                            5460
       TGAACATGCT GAAAACCACC TGGTCTGCAT GTATGCCCGA ATTTGTAATT CTTTTCTCTC
                                                                            5520
       AAATGAAAAT TTAATTTTAG GGATTCATTT CTATATTTTC ACATATGTAG TATTATTATT
                                                                            5580
20
       TCCTTATATG TGTAAGGTGA AATTTATGGT ATTTGAGTGT GCAAGAAAAT ATATTTTAA
                                                                            5640
       AGCTTTCATT TTTCCCCCAG TGAATGATTT AGAATTTTTT ATGTAAATAT ACAGAATGTT
                                                                            5700
       TTTTCTTACT TTTATAAGGA AGCAGCTGTC TAAAATGCAG TGGGGTTTGT TTTGCAATGT
                                                                            5760
       TTTAAACAGA GTTTTAGTAT TGCTATTAAA AGAAGTTACT TTGCTTTTAA AGAAACTTGG
                                                                            5820
       CTGCTTAAAA TAAGCAAAAA TTGGATGCAT AAAGTAATAT TTACAGATGT GGGGAGATGT
                                                                            5880
25
       AATAAAACAA TATTAACTTG GCTGCTTAAA ATAAGCAAAA ATTGGATGCA TAAAGTAATA
                                                                            5940
       TTTACAGATG TGGGGAGATG TAATAAAACA ATATTAACTT GGTTTCTTGT TTTTGCTGTA
                                                                            6000
       TTTAGAGATT AAATAATTCT AAGATGATCA CTTTGCAAAA TTATGCTTAT GGCTGGCATG
                                                                            6060
       GAAATAGAAA TACTCAATTA TGTCTTTGTT GTATTAATGG GGAATATTTT GGACAATGTT
                                                                            6120
       TCATTATCAA ATTGTCGACA TCATTAATAT ATATTGTAAT GTTGGGAAGA GATCACTATT
                                                                            6180
       TTGAAGCACA GCTTTACAGA TGAGTATCTA TGATACATAT GTATAATAAA TTTTGATCGG
30
                                                                            6240
       GTATTAAAAG TATTAGAAGG TGGTTATAAT TGCAGAGTAT TCCATGAATA GTACACTGAC
                                                                            6300
       6360
       CAGGCAATAT TGCAGTCTTG ATTCTGCCAC TTACAGGATA GATAATGCCT GAACTTTAAT
       GACAAGATGA TCCAACCATA AAGGTGCTCT GTGCTTCACA GTGAATCTTT TCCCCATGCA
35
       GGAGTGTGCT CCCCTACAAA CGTTAAGACT GATCATTTCA AAAATCTATT AGCTATATCA
       AAAGCCTTAC ATTTTAATAT AGGTTGAACC AAAATTTCAA TTCCAGTAAC TTCTATTGTA
                                                                            6600
       ACCATTATTT TTGTGTATGT CTTCAAGAAT GTTCATTGGA TTTTTGTTTG TAATAGTAAA
                                                                            6660
       ATACCGGATA CATTTCACGT GTCCTTCAGT ATTGATTTGG TTGAATATTG GGTCATAATG
                                                                            6720
       GTTGAGAAGC ATGGACACTA GAGCCAGAAT GCTTGGATAT GAATCCTGGA TCTGTCACTT
                                                                            6780
40
       ACTTCTGTGT GACCTTTGAA AGGCTACTTA TTTCCTCTCT TAGCTTTCTC ATTAAAATCA
                                                                            6840
       ATGAACAATG CCAGCCTCAT GGGGTTGTTG AATGATTAAA TTAGTTAATA TACCTAAAGT
                                                                            6900
       ACATAGAACA CTGCCTGCAC ATAGTAAAAG AATTATAAGT GTGAGGTAGT TGGTAAAATT
                                                                            6960
       ATGTAGTTGG ATATACTACC GAACAATATC TAATCTCTTT TTAGGGAAAT AAAGTTTGTG
                                                                           7020
       CATATATATA ATCCCGAAAC ATG
45
       Seq ID NO: 527 Protein sequence
       Protein Accession #: NP 077741.1
                                                               51.
                                         31
                                                    41
50
       MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS
       ADLIRSSDPD FRVLNDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS
       KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK
       EPLNLFYIER DTGNLFCTRP VDREEYDVFD LIAYASTADG YSADLPLPLP IRVEDENDNH
55
       PVFTEAIYNF EVLESSRPGT TVGVVCATDR DEPDTMHTRL KYSILQQTPR SPGLFSVHPS
                                                                             300
       TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY
       EAFVEENAPN VEILRIPIED KOLINTANWR VNFTILKGNE NGHFKISTOK ETNEGVLSVV
                                                                             420
       KPLNYBENRO VNLEIGVNNE APFARDIPRV TALNRALVTV HVRDLDEGPE CTPAAQYVRI
                                                                             480
       KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP
                                                                             540
60
       KNELYNITVL AIDKDDRSCT GTLAVNIEDV NDNPPEILQE YVVICKPKMG YTDILAVDPD
                                                                             600
       EPVHGAPFYF SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA
                                                                             660
       TKLLRVNLCE CTHPTQCRAT SRSTGVILGK WAILAILLGI ALLFSVLLTL VCGVFGATKG
                                                                             720
       KRFPEDLAQQ NLIISNTEAP GDDRVCSANG FMTQTTNNSS QGFCGTMGSG MKNGGQETIE
                                                                             780
       MMKGGNOTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTQPRLG EESIRGHTG
65
       Seq ID NO: 528 DNA sequence
       Nucleic Acid Accession #: NM_001941.2
       Coding sequence: 64..2754
70
                                                                51
                              21
                                         31
                                                     41
       GGCAGGTCTC GCTCTCGGCA CCCTCCCGGC GCCCGCGTTC TCCTGGCCCT GCCCGGCATC
       CCGATGGCCG CCGCTGGGCC CCGGCGCTCC GTGCGCGGAG CCGTCTGCCT GCATCTGCTG
       CTGACCCTCG TGATCTTCAG TCGTGATGGT GAAGCCTGCA AAAAGGTGAT ACTTAATGTA
75
       CCTTCTAAAC TAGAGGCAGA CAAAATAATT GGCAGAGTTA ATTTGGAAGA GTGCTTCAGG
       TCTGCAGACC TCATCCGGTC AAGTGATCCT GATTTCAGAG TTCTAAATGA TGGGTCAGTG
       TACACAGCCA GGGCTGTTGC GCTGTCTGAT AAGAAAAGAT CATTTACCAT ATGGCTTTCT
       GACAAAAGGA AACAGACACA GAAAGAGGTT ACTGTGCTGC TAGAACATCA GAAGAAGGTA
                                                                             420
       TCGAAGACAA GACACACTAG AGAAACTGTT CTCAGGCGTG CCAAGAGGAG ATGGGCACCT
                                                                             480
80
       ATTCCTTGCT CTATGCAAGA GAATTCCTTG GGCCCTTTCC CATTGTTTCT TCAACAAGTT
                                                                             540
       GAATCTGATG CAGCACAGAA CTATACTGTC TTCTACTCAA TAAGTGGACG TGGAGTTGAT
                                                                             600
       AAAGAACCTT TAAATTTGTT TTATATAGAA AGAGACACTG GAAATCTATT TTGCACTCGG
                                                                             660
        CCTGTGGATC GTGAAGAATA TGATGTTTTT GATTTGATTG CTTATGCGTC AACTGCAGAT
                                                                             720
        GGATATTCAG CAGATCTGCC CCTCCCACTA CCCATCAGGG TAGAGGATGA AAATGACAAC
                                                                             780
85
        CACCCTGTTT TCACAGAAGC AATTTATAAT TTTGAAGTTT TGGAAAGTAG TAGACCTGGT
                                                                             840
        ACTACAGTGG GGGTGGTTTG TGCCACAGAC AGAGATGAAC CGGACACAAT GCATACGCGC
                                                                             900
        CTGAAATACA GCATTTTGCA GCAGACACCA AGGTCACCTG GGCTCTTTTC TGTGCATCCC
                                                                             960
```

	WO 02/						
			AGTCTCTCAT				1020
			AGACATGGAT				1080
			AGATTCAAAT				1140
5			AAATGCATTC				1200 1260
)			TGCCAATTGG CAGCACAGAC				1320
	CTARACCCAC	TCAATTATCA	AGAAAACCGT	Carcicalca	TOGALATTOG	AGTAAACAAT	1380
	GARGOGCAT	TTGCTAGAGA	TATTCCCAGA	GTGACAGCCT	TGAACAGAGC	CTTGGTTACA	1440
	GTTCATGTGA	GGGATCTGGA	TGAGGGGCCT	GAATGCACTC	CTGCAGCCCA	ATATGTGCGG	1500
10	ATTAAAGAAA	ACTTAGCAGT	GGGGTCAAAG	ATCAACGGCT	ATAAGGCATA	TGACCCCGAA	1560
			AAGGTACAAA				1620
			AATCATAACT				1680
			TATTACAGTC				1740
15			CATTGAAGAT				1800
15	GAATATGTAG	TCATTTGCAA	ACCAAAAATG	GGGTATACCG	ACATTITAGC	TGTTGATCCT	1860 1920
	GATGAACCTG	TCCATGGAGC	TCCATTTTAT CAAAGTTAAT	CATACAGITIC	CCAMINCITE	ATATCAGAAA	1980
	AGIAGACIGI	TTCABCABTA	TACCATTCCT	ATTACTGTAA	AAGACAGGGC	CGGCCAAGCT	2040
			TAATCTGTGT				2100
20	ACTTCAAGGA	GTACAGGAGT	AATACTTGGA	AAATGGGCAA	TCCTTGCAAT	ATTACTGGGT	2160
	ATAGCACTGC	TCTTTTCTGT	ATTGCTAACT	TTAGTATGTG	GAGTTTTTGG	TGCAACTAAA	2220
			TTTAGCACAG				2280
			CTCTGCCAAT				2340
25	AGCCAAGGTT	TTTGTGGTAC	TATGGGATCA	GGAATGAAAA	ATGGAGGGCA	GGAAACCATT	2400
25	GAAATGATGA	AAGGAGGAAA	CCAGACCTTG	GAATCCTGCC	GGGGGGGTTGG	GCATCATCAT	2460 2520
			AGGACACACG ACCCCGTCTC				2580
			AGATTATGTC				2640
			CTGCAGTGAA				2700
30			TATTACATTA				2760
	AGTGCTACAA	TTAGGTCTTT	GTCAGACATT	CTGGAGGTTT	CCAAAAATAA	TATTGTAAAG	2820
	TTCAATTTCA	ACATGTATGT	ATATGATGAT	TTTTTTCTCA	ATTTTGAATT	ATGCTACTCA	2880
			CAGTTGTTGC				2940
25	AACAGACAAC	TGGTAAATCT	CAAACTCCAG	CACTGGAATT	AAGGTCTCTA	AAGCATCTGC	3000
35	TCTTTTTTT	TTTTACGGAT	ATTTTAGTAA	TAAATATGCT	GGATAAATAT	AGTCCAACA	3060 3120
	ATAGCTAAGT	ANTATTOACT	TCACATTATT ATCACTATGT	CARCARACTT	TTCCDADAGA	AGITIAAAAA	3180
	ATAMACAAGA	STARRAGE	TTGCAGCTCA	TAAAGAATTG	GGACTCACCC	CTACTGCACT	3240
			GAGGCAAAAT				3300
40	TCTATAGGAA	TATAGTTGGA	AATAAATGTG	TGTGTGTATA	TTATTATTAA	TCAATGCAAT	3360
			AAAGAGGAAA				3420
			AAAAGAGAGA				3480 3540
			GAAATAGTTC TGGTTTCTGT				3600
45			TTTCAAGATT				3660
			GTTCCCTGCT				3720
			ACAAAAACAT				3780
			TCTCTTATAG				3840
50	TAACCATGTC	CTCCTAGAGT	TTAGAGGCTA GTCCTTAAAC	GAGGGAGCTG	AGGGGAGGAT	DOCTONTOR	3900 3960
50			CATTTTTCTC				4020
			CCTTGTGGGC				4080
			TAAGTGACTC				4140
	AATTTTTAAT	CAGTTTGCTT	TCTCCAGAGA	AATTTTAAA	TAATAGAAGA	AATAGAAATT	4200
55			GATCAAGTTG				4260
			TTGTACAGTC				4320
	GGGCAAGGAG	AGGCCACAAG	GAATATGGGT	GGGAGTAAAA	GCAACATCGT	CTGCTTCATA	4380
	CTTTTTCCTA	GGCTTGGCAC	TGCCTTTTCC	TTTCTCAGGC	CAATGGCAAC	CTCACATTIGA	4440
60	ANGGAGAGAG	ACCTCACTCA	ACCICITCIC	TGAAGGCATT	TCCACCATGA	GTGAGAAATC GCCTGAACTG	4560
00	GTTGTGCAGA	ACAAACAAGG	CATTCATGGG	AATTGTTGTA	TTCCTTCTGC	AGCCCTCCTT	4620
			TGAATTAAAT				4680
	TTTTCTGTTT	TCTAATTTGA	CCCTAAAATC	TATGTGTTTT	AGACTTAGAC	TTTTTATTGC	
						GAGTGCAGTG	
65	GCTCCGATCT	CTGCTCACTG	AAAGCTCCGC	CTCCCGGGTT	CATGCCATTC	TCCTGCCTCA	4860
			TACAGGCGCC				4920 4980
			ACTGTGTTAG			CGCTCCCGGC	
						GTGTGAAAGT	
70	TGATCATACG	AATTGGATCA	ATCTTGAAAT	ACTCAACCAA	AAGACAGTCG	AGAAGCCAGG	5160
. •	GGGAGAAAGA	ACTCAGGGCA	CAAAATATTG	GTCTGAGAAT	GGAATTCTCT	GTAAGCCTAG	5220
						TGAAACACCC	
						CAAGACTTTA	
75	CTAGTGCCGA	TAAACTTTCT	CAAAGAGCAA	CCAGTATCAC	TTCCCTGTTT	ATAAAACCTC	5400
75	TAACCATCTC	TTTGTTCTTT	GAACATGCTG	AAAACCACCT	GGTCTGCATG	TATGCCCGAA	
			AATGAAAATT CCTTATATGT				5520 5580
						GAATTTTTTA	
	TGTAAATATA	CAGAATGTTT	TTTCTTACTT	TTATAAGGAA	GCAGCTGTCT	AAAATGCAGT	5700
80	GGGGTTTGTT	TTGCAATGTT	TTAAACAGAG	TTTTAGTATT	GCTATTAAAA	GAAGTTACTT	5760
	TGCTTTTAAA	GAAACTTGGC	TGCTTAAAAT	AAGCAAAAAT	TGGATGCATA	aagtaatatt	
	TACAGATGTG	GGGAGATGTA	ATAAAACAAT	ATTAACTTGG	TTTCTTGTTT	TTGCTGTATT	5880
	TAGAGATTAA	ATAATTCTAA	GATGATCACT	TTGCAAAATT	ATGCTTATGG	CTGGCATGGA	5940
85						ACAATGTTTC	
S	ATTATCAAAT	TUTCGACATC	ATTAATATAT	ATTGTAATGT	AUAUAAUDU	TCACTATTTT TTGATCGGGT	6060 6120
	ATTACACACTA	TINCHOAIG	CTTATATATO	CAGAGTATTC	CATGAATAGT	ACACTGACAC	6180
	··· • ································	- ***********	~nu1110				

```
AGGGGTTTTA CTTTGAGGAC CAGTGTAGTC AAGGGAAAAC ATGAGTTAAA AAGAAAAGCA 6240
        GGCAATATTG CAGTCTTGAT TCTGCCACTT ACAGGATAGA TAATGCCTGA ACTTTAATGA
                                                                                       6300
        CAAGATGATC CAACCATAAA GGTGCTCTGT GCTTCACAGT GAATCTTTTC CCCATGCAGG
                                                                                       6360
        AGTGTGCTCC CCTACAAACG TTAAGACTGA TCATTTCAAA AATCTATTAG CTATATCAAA
                                                                                       6420
 5
        AGCCTTACAT TITAATATAG GITGAACCAA AATTICAATT CCAGTAACTT CTATTGTAAC
        CATTATTTT GTGTATGTCT TCAAGAATGT TCATTGGATT TTTGTTTGTA ATAGTAAAAT
                                                                                       6540
        ACCEGATACA TITCACETET CCTTCAETAT TEATITEETT GAATATTEGE TCATAATEET
        TGAGAAGCAT GGACACTAGA GCCAGAATGC TTGGATATGA ATCCTGGATC TGTCACCTTAC TTCTGTGTGA CCTTTGAAAG GCTACTTATT TCCTCTCTTA GCTTTCTCAT TAAAATCAAT
                                                                                       6660
                                                                                       6720
        GAACAATGCC AGCCTCATGG GGTTGTTGAA TGATTAAATT AGTTAATATA CCTAAAGTAC ATAGAACACT GCCTGCACAT AGTAAAAGAA TTATAAGTGT GAGGTAGTTG GTAAAATTAT
10
                                                                                       6780
                                                                                       6840
        GTAGTTGGAT ATACTACCGA ACAATATCTA ATCTCTTTTT AGGGAAATAA AGTTTGTGCA
                                                                                       6900
        TATATATAAT CCCGAAACAT G
15
        Seg ID NO: 529 Protein sequence
        Protein Accession #: NP 001932.1
                                                                         51
20
        MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS
        ADLIRSSDPD FRVINDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS
                                                                                        120
        KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK
                                                                                        180
        EPLNLFYIER DTGNLFCTRP VDREEYDVFD LIAYASTADG YSADLPLPLP IRVEDENDNH
                                                                                        240
        PVFTEAIYNF EVLESSRPGT TVGVVCATDR DEPDTMHTRL KYSILQQTPR SPGLFSVHPS
                                                                                        300
25
        TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY
                                                                                        360
        EAFVEENAFN VEILRIPIED KOLINTANWR VNFTILKGNE NGHFKISTOK ETNEGVLSVV
                                                                                        420
        KPLNYEENRQ VNLEIGVNNE APFARDIPRV TALMRALVTV HVRDLDEGPE CTPAAQYVRI
                                                                                        480
        KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP
                                                                                        540
        KNELYNITVL AIDKODRSCT GTLAVNIEDV NUNPPEILQE YVVICKPKMG YTDILAVDPD
EPVHGAPFYP SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA
                                                                                        600
30
                                                                                        660
        TKLLRVNLCE CTHPTQCRAT SRSTGVILGK WAILAILLGI ALLFSVLLTL VCGVFGATKG
                                                                                        720
        KRFPEDLAQQ NLIISNTEAP GDDRVCSANG FMTQTTNNSS QGFCGTMGSG MKNGGQETIE
                                                                                        780
        MMKGGNQTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTQPRLG EKLHRCNQNE
        DRMPSQDYVL TYNYEGRGSP AGSVGCCSEK QEEDGLDFLN NLEPKFITLA EACTKR
35
        Seg ID NO: 530 DNA sequence
        Nucleic Acid Accession #: NM_016583.2
        Coding sequence: 72..842
40
                                                                         51
                     11
                                  21
                                               31
        GGAGTGGGGG AGAGAGAGGA GACCAGGACA GCTGCTGAGA CCTCTAAGAA GTCCAGATAC
                                                                                         60
        TAAGAGCAAA GATGTTTCAA ACTGGGGGCC TCATTGTCTT CTACGGGCTG TTAGCCCAGA
                                                                                        120
45
        CCATGGCCCA GTTTGGAGGC CTGCCCGTGC CCCTGGACCA GACCCTGCCC TTGAATGTGA
                                                                                        180
        ATCCAGCCCT GCCCTTGAGT CCCACAGGTC TTGCAGGAAG CTTGACAAAT GCCCTCAGCA
                                                                                        240
        ATGGCCTGCT GTCTGGGGGC CTGTTGGGCA TTCTGGAAAA CCTTCCGCTC CTGGACATCC
                                                                                        300
        TGAAGCCTGG AGGAGGTACT TCTGGTGGCC TCCTTGGGGG ACTGCTTGGA AAAGTGACGT
                                                                                        360
        CAGTGATTCC TGGCCTGAAC AACATCATTG ACATAAAGGT CACTGACCCC CAGCTGCTGG
                                                                                        420
        AACTTGGCCT TGTGCAGAGC CCTGATGGCC ACCGTCTCTA TGTCACCATC CCTCTGGCA
TAAAGCTCCA AGTGAATACG CCCCTGGTCG GTGCAAGTCT GTTGAGGCTG GCTGTGAAGC
50
                                                                                        480
        TRABECTOCA AGGARANCE CTUGGICE GIGLARGIC GIGLAGGETO CACCUGGTOC
TEGGACATCAC TECAGARANCE TTAGCTETGA GAGATARGCA GGAGAGGATC CACCUGGTOC
TTGGTGACTG CACCCATTCC CCTGGARAGCC TGCARANTTC TCTGCTTGAT GGACTTGGCC
CCCTCCCCAT TCARGGTCTT CTGGACAGCC TCACAGGGAT CTTGARTARA GTCCTGCCTG
AGTTGGTTCA GGGCARCGTG TGCCCTCTGG TCARTGAGGT TCTCAGAGGC TTGGACATCA
                                                                                        660
                                                                                        720
55
                                                                                        780
        CCCTGGTGCA TGACATTGTT AACATGCTGA TCCACGGACT ACAGTTTGTC ATCAAGGTCT AAGCCTTCCA GGAAGGGGCT GGCCTCTGCT GAGCTGCTTC CCAGTGCTCA CAGATGGCTG
                                                                                        840
                                                                                        900
        GCCCATGTGC TGGAAGATGA CACAGTTGCC TTCTCTCCGA GGAACCTGCC CCCTCTCCTT
                                                                                        960
        TCCCACCAGG CGTGTGTAAC ATCCCATGTG CCTCACCTAA TAAAATGGCT CTTCTTCTGC
                                                                                       1020
60
        АААААААА АААААААА АААААААА
        Seq ID NO: 531 Protein sequence
        Protein Accession #: NP_057667.1
65
                                  21
                                               31
        MFQTGGLIVF YGLLAQTMAQ FGGLPVPLDQ TLPLNVNPAL PLSPTGLAGS LTNALSNGLL
                                                                                         60
        SGGLIGILEN LPLLDILKPG GGTSGGLLGG LLGKVTSVIP GLNNIIDIKV TDPQLLELGL
                                                                                        120
                                                                                        180
        VQSPDGHRLY VTIPLGIKLQ VNTPLVGASL LRLAVKLDIT AEILAVRDKQ ERIHLVLGDC
70
        THSPGSLQIS LLDGLGPLPI QGLLDSLTGI LNKVLPELVQ GNVCPLVNEV LRGLDITLVH
        DIVNMLIHGL OFVIKY
        Seq ID NO: 532 DNA sequence
        Nucleic Acid Accession #: NM 004363.1
Coding sequence: 115..2223
75
80
        CTCAGGGCAG AGGGAGGAAG GACAGCAGAC CAGACAGTCA CAGCAGCCTT GACAAAACGT
                                                                                         60
        TCCTGGAACT CAAGCTCTTC TCCACAGAGG AGGACAGAGC AGACAGCAGA GACCATGGAG
                                                                                        120
        TCTCCCTCGG CCCCTCCCCA CAGATGGTGC ATCCCCTGGC AGAGGCTCCT GCTCACAGCC
                                                                                        180
        TCACTTCTAA CCTTCTGGAA CCCGCCCACC ACTGCCAAGC TCACTATTGA ATCCACGCCG
                                                                                        240
        TTCAATGTCG CAGAGGGGAA GGAGGTGCTT CTACTTGTCC ACAATCTGCC CCAGCATCTT
                                                                                        300
85
        TTTGGCTACA GCTGGTACAA AGGTGAAAGA GTGGATGGCA ACCGTCAAAT TATAGGATAT
                                                                                        360
        GTAATAGGAA CTCAACAAGC TACCCCAGGG CCCGCATACA GTGGTCGAGA GATAATATAC
                                                                                        420
        CCCAATGCAT CCCTGCTGAT CCAGAACATC ATCCAGAATG ACACAGGATT CTACACCCTA
                                                                                        480
```

```
540
       CACGTCATAA AGTCAGATCT TGTGAATGAA GAAGCAACTG GCCAGTTCCG GGTATACCCG
                                                                           600
       GAGCTGCCCA AGCCCTCCAT CTCCAGCAAC AACTCCAAAC CCGTGGAGGA CAAGGATGCT
                                                                           660
       GTGGCCTTCA CCTGTGAACC TGAGACTCAG GACGCAACCT ACCTGTGGTG GGTAAACAAT
                                                                           720
       CAGAGCCTCC CGGTCAGTCC CAGGCTGCAG CTGTCCAATG GCAACAGGAC CCTCACTCTA
                                                                           780
       TTCAATGTCA CAAGAAATGA CACAGCAAGC TACAAATGTG AAACCCAGAA CCCAGTGAGT
       GCCAGGCGCA GTGATTCAGT CATCCTGAAT GTCCTCTATG GCCCGGATGC CCCCACCATT
                                                                           840
       TCCCCTCTAA ACACATCTTA CAGATCAGGG GAAAATCTGA ACCTCTCCTG CCACGCAGCC
                                                                           900
       TCTAACCCAC CTGCACAGTA CTCTTGGTTT GTCAATGGGA CTTTCCAGCA ATCCACCCAA
       GAGCTCTTTA TCCCCAACAT CACTGTGAAT AATAGTGGAT CCTATACGTG CCAAGCCCAT
                                                                         1020
10
       AACTCAGACA CTGGCCTCAA TAGGACCACA GTCACGACGA TCACAGTCTA TGCAGAGCCA
                                                                         1080
       CCCAAACCCT TCATCACCAG CAACAACTCC AACCCCGTGG AGGATGAGGA TGCTGTAGCC
       TTAACCTGTG AACCTGAGAT TCAGAACACA ACCTACCTGT GGTGGGTAAA TAATCAGAGC
       CTCCCGGTCA GTCCCAGGCT GCAGCTGTCC AATGACAACA GGACCCTCAC TCTACTCAGT
                                                                          1260
       GTCACAAGGA ATGATGTAGG ACCCTATGAG TGTGGAATCC AGAACGAATT AAGTGTTGAC
                                                                         1320
15
                                                                         1380
       CACAGCGACC CAGTCATCCT GAATGTCCTC TATGGCCCAG ACGACCCCAC CATTTCCCCC
       TCATACACCT ATTACCGTCC AGGGGTGAAC CTCAGCCTCT CCTGCCATGC AGCCTCTAAC
                                                                         1440
       CCACCTGCAC AGTATTCTTG GCTGATTGAT GGGAACATCC AGCAACACAC ACAAGAGCTC
                                                                         1500
       TTTATCTCCA ACATCACTGA GAAGAACAGC GGACTCTATA CCTGCCAGGC CAATAACTCA
                                                                         1560
       GCCAGTGGCC ACAGCAGGAC TACAGTCAAG ACAATCACAG TCTCTGCGGA GCTGCCCAAG
                                                                         1620
20
       CCCTCCATCT CCAGCAACAA CTCCAAACCC GTGGAGGACA AGGATGCTGT GGCCTTCACC
                                                                         1680
       TGTGAACCTG AGGCTCAGAA CACAACCTAC CTGTGGTGGG TAAATGGTCA GAGCCTCCCA
                                                                         1740
       GTCAGTCCCA GGCTGCAGCT GTCCAATGGC AACAGGACCC TCACTCTATT CAATGTCACA
                                                                         1800
       AGAAATGACG CAAGAGCCTA TGTATGTGGA ATCCAGAACT CAGTGAGTGC AAACCGCAGT
                                                                         1860
       GACCCAGTCA CCCTGGATGT CCTCTATGGG CCGGACACCC CCATCATTTC CCCCCCAGAC
                                                                         1920
25
                                                                         1980
       TOGTOTTACC TTTCGGGAGC GAACCTCAAC CTCTCCTGCC ACTCGGCCTC TAACCCATCC
       CCGCAGTATT CTTGGCGTAT CAATGGGATA CCGCAGCAAC ACACACAAGT TCTCTTTATC
                                                                         2040
                                                                         2100
       GCCAAAATCA CGCCAAATAA TAACGGGACC TATGCCTGTT TTGTCTCTAA CTTGGCTACT
       GGCCGCAATA ATTCCATAGT CAAGAGCATC ACAGTCTCTG CATCTGGAAC TTCTCCTGGT
                                                                         2160
       CTCTCAGCTG GGGCCACTGT CGGCATCATG ATTGGAGTGC TGGTTGGGGT TGCTCTGATA
                                                                         2220
30
       TAGCAGCCCT GGTGTAGTTT CTTCATTTCA GGAAGACTGA CAGTTGTTTT GCTTCTTCCT
                                                                         2280
       TAAAGCATTT GCAACAGCTA CAGTCTAAAA TTGCTTCTTT ACCAAGGATA TTTACAGAAA
                                                                         2340
       AGACTETGAC CAGAGATEGA GACCATECTA GECAACATEG TGAAACECCA TETETACTAA
                                                                         2400
       AAATACAAAA ATGAGCTGGG CTTGGTGGCG CGCACCTGTA GTCCCAGTTA CTCGGGAGGC
                                                                         2460
       TGAGGCAGGA GAATCGCTTG AACCCGGGAG GTGGAGATTG CAGTGAGCCC AGATCGCACC
35
       TCTGACCTGT ACTCTTGAAT ACAAGTTTCT GATACCACTG CACTGTCTGA GAATTTCCAA
                                                                         2640
       AACTTTAATG AACTAACTGA CAGCTTCATG AAACTGTCCA CCAAGATCAA GCAGAGAAAA
                                                                         2700
       TAATTAATTT CATGGGACTA AATGAACTAA TGAGGATTGC TGATTCTTTA AATGTCTTGT
                                                                         2760
       TTCCCAGATT TCAGGAAACT TTTTTTCTTT TAAGCTATCC ACTCTTACAG CAATTTGATA
                                                                         2820
40
       AAATATACTT TTGTGAACAA AAATTGAGAC ATTTACATTT TCTCCCTATG TGGTCGCTCC
                                                                         2880
       AGACTTGGGA AACTATTCAT GAATATTTAT ATTGTATGGT AATATAGTTA TTGCACAAGT
                                                                         2940
       TCAATAAAA TCTGCTCTTT GTATAACAGA AAAA
       Seq ID NO: 533 Protein sequence
45
       Protein Accession #: NP_004354.1
                                        31
                                                              51
       MESPSAPPHR WCIPWORLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE VLLLVHNLPQ
50
      HLFGYSWYKG ERVDGNRQII GYVIGTQQAT PGPAYSGREI IYPNASLLIQ NIIQNDTGFY
       TLHVIKSDLV NEEATGOFRV YPELPKPSIS SNNSKPVEDK DAVAFTCEPE TQDATYLWWV
      NNOSLPVSPR LOLSNGNRTL TLFNVTRNDT ASYKCETQNP VSARRSDSVI LNVLYGPDAP
       TISPLNTSYR SGENLNLSCH AASNPPAQYS WFVNGTFQQS TQELFIPNIT VNNSGSYTCQ
                                                                           300
       AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA VALTCEPEIQ NTTYLWWVNN
                                                                           360
55
       QSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIQNELS VDHSDPVILN VLYGPDDPTI
                                                                           420
       SPSYTYYRPG VNLSLSCHAA SNPPAQYSWL IDGNIQQHTQ ELFISNITEK NSGLYTCQAN
                                                                           480
       NSASGHSRTT VKTITVSAEL PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS
                                                                           540
       LPVSPRLQLS NGNRTLTLFN VTRNDARAYV CGIQNSVSAN RSDPVTLDVL YGPDTPIISP
                                                                           600
       PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN GTYACFVSNL
                                                                           660
60
       ATGRNNSIVK SITVSASGTS PGLSAGATVG IMIGVLVGVA LI
       Seq ID NO: 534 DNA sequence
       Nucleic Acid Accession #: NM_006952.1
       Coding sequence: 11..793
65
                                        31
                                                   41
                                                              51
                             21
       AATCCCGACA ATGGCGAAAG ACAACTCAAC TGTTCGTTGC TTCCAGGGCC TGCTGATTTT
                                                                            60
       TGGAAATGTG ATTATTGGTT GTTGCGGCAT TGCCCTGACT GCGGAGTGCA TCTTCTTTGT
                                                                           120
70
       ATCTGACCAA CACAGCCTCT ACCCACTGCT TGAAGCCACC GACAACGATG ACATCTATGG
                                                                           180
       GGCTGCCTGG ATCGGCATAT TTGTGGGCAT CTGCCTCTTC TGCCTGTCTG TTCTAGGCAT
       TGTAGGCATC ATGAAGTCCA GCAGGAAAAT TCTTCTGGCG TATTTCATTC TGATGTTTAT
                                                                           300
       AGTATATGCC TTTGAAGTGG CATCTTGTAT CACAGCAGCA ACACAACGAG ACTTTTTCAC
       ACCCAACCTC TTCCTGAAGC AGATGCTAGA GAGGTACCAA AACAACAGCC CTCCAAACAA
                                                                           420
75
       TGATGACCAG TGGAAAAACA ATGGAGTCAC CAAAACCTGG GACAGGCTCA TGCTCCAGGA
                                                                           480
       CAATTGCTGT GGCGTAAATG GTCCATCAGA CTGGCAAAAA TACACATCTG CCTTCCGGAC
                                                                           540
       TGAGAATAAT GATGCTGACT ATCCCTGGCC TCGTCAATGC TGTGTTATGA ACAATCTTAA
                                                                           600
       AGAACCTCTC AACCTGGAGG CTTGTAAACT AGGCGTGCCT GGTTTTTATC ACAATCAGGG
                                                                           660
       CTGCTATGAA CTGATCTCTG GTCCAATGAA CCGACACGCC TGGGGGGTTG CCTGGTTTGG
                                                                           720
80
       ATTTGCCATT CTCTGCTGGA CTTTTTGGGT TCTCCTGGGT ACCATGTTCT ACTGGAGCAG
                                                                           780
       AATTGAATAT TAAGAA
       Seq ID NO: 535 Protein sequence
       Protein Accession #: NP_008883.1
85
```

```
MAKDNSTVRC FQGLLIFGNV IIGCCGIALT AECIFFVSDQ HSLYPLLEAT DNDDIYGAAW
       IGIFVGICLP CLSVLGIVGI MKSSRKILLA YFILMFIVYA FEVASCITAA TQRDFFTPNL
                                                                            120
       PLKOMLERYO NNSPPNNDDO WKNNGVTKTW DRLMLODNCC GVNGPSDWQK YTSAFRTENN
       DADYPWPROC CVMNNLKEPL NLEACKLGVP GFYHNQGCYE LISGPMNRHA WGVAWFGFAI
                                                                            240
 5
       LCWTFWVLLG TMFYWSRIBY
       Seq ID NO: 536 DNA sequence
       Nucleic Acid Accession #: NM 002638.1
       Coding sequence: 120..473
10
                             21
                                         31
                                                               51
       CAATACAGCT AAGGAATTAT CCCTTGTAAA TACCACAGAC CCGCCCTGGA GCCAGGCCAA
                                                                             60
       GCTGGACTGC ATAAAGATTG GTATGGCCTT AGCTCTTAGC CAAACACCTT CCTGACACCA
                                                                            120
15
       TGAGGGCCAG CAGCTTCTTG ATCGTGGTGG TGTTCCTCAT CGCTGGGACG CTGGTTCTAG
                                                                            180
       AGGCAGCTGT CACGGGAGTT CCTGTTAAAG GTCAAGACAC TGTCAAAGGC CGTGTTCCAT
                                                                            240
       TCAATGGACA AGATCCCGTT AAAGGACAAG TTTCAGTTAA AGGTCAAGAT AAAGTCAAAG
                                                                            300
       CGCAAGAGCC AGTCAAAGGT CCAGTCTCCA CTAAGCCTGG CTCCTGCCCC ATTATCTTGA
                                                                            360
       TCCGGTGCGC CATGTTGAAT CCCCCTAACC GCTGCTTGAA AGATACTGAC TGCCCAGGAA
                                                                            420
20
       TCAAGAAGTG CTGTGAAGGC TCTTGCGGGA TGGCCTGTTT CGTTCCCCAG TGAAGGGAGC
                                                                            480
       CGGTCCTTGC TGCACCTGTG CCGTCCCCAG AGCTACAGGC CCCATCTGGT CCTAAGTCCC
TGCTGCCCTT CCCCTTCCCA CACTGTCCAT TCTTCCTCCC ATTCAGGATG CCCACGGCTG
                                                                            540
       GAGCTGCCTC TCTCATCCAC TTTCCAATAA A
25
       Seq ID NO: 537 Protein sequence
       Protein Accession #: NP_002629.1
                                                    41
                                                               51
30
       MRASSFLIVV VFLIAGTLVL EAAVTGVPVK GQDTVKGRVP FNGQDPVKGQ VSVKGQDKVK
                                                                             60
       AQEPVKGPVS TKPGSCPIIL IRCAMLNPPN RCLKDTDCPG IKKCCEGSCG MACFVPQ
       Seq ID NO: 538 DNA sequence
       Nucleic Acid Accession #: NM_001793.2
35
       Coding sequence: 71..2560
                                                    41
       AAAGGGGCAA GAGCTGAGCG GAACACCGGC CCGCCGTCGC GGCAGCTGCT TCACCCCTCT
40
       CTCTGCAGCC ATGGGGCTCC CTCGTGGACC TCTCGCGTCT CTCCTCCTTC TCCAGGTTTG
                                                                            120
       CTGGCTGCAG TGCGCGGCCT CCGAGCCGTG CCGGGCGGTC TTCAGGGAGG CTGAAGTGAC
       CTTGGAGGCG GGAGGCGCGG AGCAGGAGCC CGGCCAGGCG CTGGGGAAAG TATTCATGGG
       CTGCCCTGGG CAAGAGCCAG CTCTGTTTAG CACTGATAAT GATGACTTCA CTGTGCGGAA
       TGGCGAGACA GTCCAGGAAA GAAGGTCACT GAAGGAAAGG AATCCATTGA AGATCTTCCC
                                                                            360
45
       ATCCAAACGT ATCTTACGAA GACACAAGAG AGATTGGGTG GTTGCTCCAA TATCTGTCCC
       TGAAAATGGC AAGGGTCCCT TCCCCCAGAG ACTGAATCAG CTCAAGTCTA ATAAAGATAG
                                                                            480
       AGACACCAAG ATTTTCTACA GCATCACGGG GCCGGGGGCA GACAGCCCCC CTGAGGGTGT
                                                                            540
       CTTCGCTGTA GAGAAGGAGA CAGGCTGGTT GTTGTTGAAT AAGCCACTGG ACCGGGAGGA
                                                                            600
       GATTGCCAAG TATGAGCTCT TTGGCCACGC TGTGTCAGAG AATGGTGCCT CAGTGGAGGA
                                                                            660
50
       CCCCATGAAC ATCTCCATCA TCGTGACCGA CCAGAATGAC CACAAGCCCA AGTTTACCCA
                                                                            720
       GGACACCTTC CGAGGGAGTG TCTTAGAGGG AGTCCTACCA GGTACTTCTG TGATGCAGGT
                                                                            780
       GACAGCCACG GATGAGGATG ATGCCATCTA CACCTACAAT GGGGTGGTTG CTTACTCCAT
                                                                            840
       CCATAGCCAA GAACCAAAGG ACCCACACGA CCTCATGTTC ACCATTCACC GGAGCACAGG
                                                                            900
       CACCATCAGC GTCATCTCCA GTGGCCTGGA CCGGGAAAAA GTCCCTGAGT ACACACTGAC
                                                                            960
55
       CATCCAGGCC ACAGACATGG ATGGGGACGG CTCCACCACC ACGGCAGTGG CAGTAGTGGA
                                                                           1020
       GATCCTTGAT GCCAATGACA ATGCTCCCAT GTTTGACCCC CAGAAGTACG AGGCCCATGT
                                                                           1080
       GCCTGAGAAT GCAGTGGGCC ATGAGGTGCA GAGGCTGACG GTCACTGATC TGGACGCCCC
                                                                           1140
       CAACTCACCA GCGTGGCGTG CCACCTACCT TATCATGGGC GGTGACGACG GGGACCATTT
                                                                           1200
       TACCATCACC ACCCACCCTG AGAGCAACCA GGGCATCCTG ACAACCAGGA AGGGTTTGGA
                                                                           1260
60
       TTTTGAGGCC AAAAACCAGC ACACCCTGTA CGTTGAAGTG ACCAACGAGG CCCCTTTTGT
                                                                           1320
       GCTGAAGCTC CCAACCTCCA CAGCCACCAT AGTGGTCCAC GTGGAGGATG TGAATGAGGC
                                                                           1380
       ACCTGTGTTT GTCCCACCCT CCAAAGTCGT TGAGGTCCAG GAGGGCATCC CCACTGGGGA
                                                                           1440
       GCCTGTGTGT GTCTACACTG CAGAAGACCC TGACAAGGAG AATCAAAAGA TCAGCTACCG
       CATCCTGAGA GACCCAGCAG GGTGGCTAGC CATGGACCCA GACAGTGGGC AGGTCACAGC
65
       TGTGGGCACC CTCGACCGTG AGGATGAGCA GTTTGTGAGG AACAACATCT ATGAAGTCAT
                                                                           1620
       GGTCTTGGCC ATGGACAATG GAAGCCCTCC CACCACTGGC ACGGGAACCC TTCTGCTAAC
                                                                           1740
       ACTGATTGAT GTCAATGACC ATGGCCCAGT CCCTGAGCCC CGTCAGATCA CCATCTGCAA
       CCAAAGCCCT GTGCGCCAGG TGCTGAACAT CACGGACAAG GACCTGTCTC CCCACACCTC
                                                                           1800
       CCCTTTCCAG GCCCAGCTCA CAGATGACTC AGACATCTAC TGGACGGCAG AGGTCAACGA
                                                                           1860
70
                                                                           1920
       GGAAGGTGAC ACAGTGGTCT TGTCCCTGAA GAAGTTCCTG AAGCAGGATA CATATGACGT
       GCACCTTTCT CTGTCTGACC ATGGCAACAA AGAGCAGCTG ACGGTGATCA GGGCCACTGT
                                                                           1980
       GTGCGACTGC CATGGCCATG TCGAAACCTG CCCTGGACCC TGGAAGGGAG GTTTCATCCT
                                                                           2040
       CCCTGTGCTG GGGGCTGTCC TGGCTCTGCT GTTCCTCCTG CTGGTGCTGC TTTTGTTGGT
                                                                           2100
       GAGAAAGAAG CGGAAGATCA AGGAGCCCCT CCTACTCCCA GAAGATGACA CCCGTGACAA
                                                                           2160
75.
                                                                           2220
       CGTCTTCTAC TATGGCGAAG AGGGGGGTGG CGAAGAGGAC CAGGACTATG ACATCACCCA
       GCTCCACCGA GGTCTGGAGG CCAGGCCGGA GGTGGTTCTC CGCAATGACG TGGCACCAAC
                                                                           2280
       CATCATCCCG ACACCCATGT ACCGTCCTCG GCCAGCCAAC CCAGATGAAA TCGGCAACTT
                                                                           2340
       TATAATTGAG AACCTGAAGG CGGCTAACAC AGACCCCACA GCCCCGCCCT ACGACACCCT
                                                                           2400
       CTTGGTGTTC GACTATGAGG GCAGCGGCTC CGACGCCGCG TCCCTGAGCT CCCTCACCTC
                                                                           2460
       CTCCGCCTCC GACCAAGACC AAGATTACGA TTATCTGAAC GAGTGGGGCA GCCGCTTCAA
80
                                                                           2520
       GAAGCTGGCA GACATGTACG GTGGCGGGGA GGACGACTAG GCGGCCTGCC TGCAGGGCTG
                                                                           2580
       GGGACCAAAC GTCAGGCCAC AGAGCATCTC CAAGGGGTCT CAGTTCCCCC TTCAGCTGAG
                                                                           2640
       GACTTCGGAG CTTGTCAGGA AGTGGCCGTA GCAACTTGGC GGAGACAGGC TATGAGTCTG
       ACGITAGAGI GGITGCITCC TTAGCCITTC AGGATGGAGG AATGTGGGCA GTITGACITC
85
       AGCACTGAAA ACCTCTCCAC CTGGGCCAGG GTTGCCTCAG AGGCCAAGTT TCCAGAAGCC
       TCTTACCTGC CGTAAAATGC TCAACCCTGT GTCCTGGGCC TGGGCCTGCT GTGACTGACC
                                                                            2880
       TACAGTGGAC TTTCTCTCTG GAATGGAACC TTCTTAGGCC TCCTGGTGCA ACTTAATTTT
```

PCT/US02/12476 WO 02/086443

```
3000
       TTTTTTTAAT GCTATCTTCA AAACGTTAGA GAAAGTTCTT CAAAAGTGCA GCCCAGAGCT
       GCTGGGCCCA CTGGCCGTCC TGCATTTCTG GTTTCCAGAC CCCAATGCCT CCCATTCGGA
                                                                             3060
       TGGATCTCTG CGTTTTTATA CTGAGTGTGC CTAGGTTGCC CCTTATTTTT TATTTTCCCT
                                                                             3120
       GTTGCGTTGC TATAGATGAA GGGTGAGGAC AATCGTGTAT ATGTACTAGA ACTTTTTTAT
                                                                             3180
       TAAAGAAACT TTTCCCAGAA AAAAA
       Seq ID NO: 539 Protein sequence
       Protein Accession #: NP_001784.2
10
       MGLPRGPLAS LLLLQVCWLQ CAASEPCRAV FREAEVTLEA GGAEQEPGQA LGKVFMGCPG
       QEPALFSTDN DDFTVRNGET VQERRSLKER NPLKIFPSKR ILRRHKRDWV VAPISVPENG
                                                                              120
       KGPFPQRLNQ LKSNXDRDTK IFYSITGPGA DSPPEGVFAV EKETGWLLLN KPLDREEIAK
       YELFGHAVSE NGASVEDPMN ISIIVTDQND HKPKFTQDTF RGSVLEGVLP GTSVMQVTAT
15
                                                                              240
       DEDDAIYTYN GVVAYSIHSQ EPKDPHDLMF TIHRSTGTIS VISSGLDREK VPEYTLTIQA
                                                                              300
       TOMOGOGIST TAVAVVEILD ANDNAPMFDP QKYEAHVPEN AVGHEVQRLT VTDLDAPNSP
AWRATYLING GDDGDHFTIT THPESNQGIL TTRKGLDFEA KNQHTLYVEV TNEAPFVLKL
                                                                              360
                                                                              420
       PTSTATIVVH VEDVNEAPVF VPPSKVVEVQ EGIPTGEPVC VYTAEDPDKE NQKISYRILR
                                                                              480
20
       DPAGWLAMDP DSGQVTAVGT LDREDEQFVR NNIYEVMVLA MDNGSPPTTG TGTLLLTLID
                                                                              540
       VNDHGPVPEP ROITICNOSP VRQVLNITDK DLSPHTSPFQ AQLTDDSDIY WTAEVNEEGD
                                                                              600
       TVVLSLKKFL KODTYDVHLS LSDHGNKEQL TVIRATVCDC HGHVETCPGP WKGGFILPVL
                                                                              660
       GAVLALLFLL LVLLLLVRKK RKIKEPLLLP EDDTRDNVFY YGEEGGGEED QDYDITQLHR
                                                                              720
       GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNPIIE NLKAANTDPT APPYDTLLVF
                                                                              780
25
       DYEGSGSDAA SLSSLTSSAS DQDQDYDYLN EWGSRFKKLA DMYGGGEDD
       Seq ID NO: 540 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..672
30
                                         31
                                                                51
       ATGAGGCTCC AAAGACCCCG ACAGGCCCCG GCGGGTGGGA GGCGCGCGCC CCGGGGCGGG
                                                                               60
       CGGGGCTCCC CCTACCGGCC AGACCCGGGG AGAGGCGCGC GGAGGCTGCG AAGGTTCCAG
                                                                              120
35
       AAGGGCGGG AGGGGGCGCC GCGCGCTGAC CCTCCCTGGG CACCGCTGGG GACGATGGCG
                                                                              180
       CTGCTGCCT TGCTGCTGGT CGTGGCCCTA CCGCGGTGT GGACAGACGC CAACCTGACT GCGAGACAAC GAGATCCAGA GGACTCCCAG CGAACGGACG AGGGTGACAA TAGAGTGTGG
                                                                              240
                                                                              300
       TGTCATGTTT GTGAGAGAGA AAACACTTTC GAGTGCCAGA ACCCAAGGAG GTGCAAATGG
                                                                              360
       ACAGAGCCAT ACTGCGTTAT AGCGGCCGTG AAAATATTTC CACGTTTTTT CATGGTTGCG
40
       AAGCAGTGCT CCGCTGGTTG TGCAGCGATG GAGAGACCCA AGCCAGAGGA GAAGCGGTTT
                                                                              480
       CTCCTGGAAG AGCCCATGCC CTTCTTTTAC CTCAAGTGTT GTAAAATTCG CTACTGCAAT
                                                                              540
       TTAGAGGGGC CACCTATCAA CTCATCAGTG TTCAAAGAAT ATGCTGGGAG CATGGGTGAG
                                                                              600
       AGCTGTGGTG GGCTGTGGCT GGCCATCCTC CTGCTGCTGG CCTCCATTGC AGCCGGCCTC
                                                                              660
       AGCCTGTCTT GA
45
       Seg ID NO: 541 Protein sequence
       Protein Accession #: Eos sequence
                                         31
                                                                51
50
       MRLQRPRQAP AGGRRAPRGG RGSPYRPDPG RGARRLRRFQ KGGEGAPRAD PPWAPLGTMA
                                                                               60
       LLALLLVVAL PRVWTDANLT ARQRDPEDSQ RTDEGDNRVW CHVCERENTF ECQNPRRCKW
                                                                              120
       TEPYCVIAAV KIPPRFFMVA KQCSAGCAAM ERPKPEEKRF LLEEPMPFFY LKCCKIRYCN
       LEGPPINSSV FKEYAGSMGE SCGGLWLAIL LLLASIAAGL SLS
55
       Seg ID NO: 542 DNA sequence
       Nucleic Acid Accession #: XM_035292.2
       Coding sequence: 53..1576
60
                                         31
       GCTCGCTGGG CCGCGGCTCC CGGGTGTCCC AGGCCCGGCC GGTGCGCAGA GCATGGCGGG
       TGCGGGCCCG AAGCGGCGCG CGCTAGCGGC GCCGGCGGCC GAGGAGAAGG AAGAGGCGCG
                                                                              120
                                                                              180
       GGAGAAGATG CTGGCCGCCA AGAGCGCGGA CGGCTCGGCG CCGGCAGGCG AGGGCGAGGG
65
       CGTGACCCTG CAGCGGAACA TCACGCTGCT CAACGGCGTG GCCATCATCG TGGGGACCAT
                                                                              240
       TATCGGCTCG GGCATCTTCG TGACGCCCAC GGGCGTGCTC AAGGAGGCAG GCTCGCCGGG
                                                                              300
       GCTGGCGCTG GTGGTGTGGG CCGCGTGCGG CGTCTTCTCC ATCGTGGGCG CGCTCTGCTA
                                                                              360
       CGCGGAGCTC GGCACCACCA TCTCCAAATC GGGCGGCGAC TACGCCTACA TGCTGGAGGT
                                                                              420
       CTACGGCTCG CTGCCCGCCT TCCTCAAGCT CTGGATCGAG CTGCTCATCA TCCGGCCTTC
                                                                              480
70
       ATCGCAGTAC ATCGTGGCCC TGGTCTTCGC CACCTACCTG CTCAAGCCGC TCTTCCCCAC
                                                                              540
       CTGCCCGGTG CCCGAGGAGG CAGCCAAGCT CGTGGCCTGC CTCTGCGTGC TGCTGCTCAC
                                                                              600
       GGCCGTGAAC TGCTACAGCG TGAAGGCCGC CACCCGGGTC CAGGATGCCT TTGCCGCCGC
                                                                              660
       CAAGCTCCTG GCCCTGGCCC TGATCATCCT GCTGGGCTTC GTCCAGATCG GAAAGGGTGA
                                                                              720
       TGTGTCCAAT CTAGATCCCA ACTTCTCATT TGAAGGCACC AAACTGGATG TGGGGAACAT
                                                                              780
75
       TGTGCTGGCA TTATACAGCG GCCTCTTTGC CTATGGAGGA TGGAATTACT TGAATTTCGT
       CACAGAGGAA ATGATCAACC CCTACAGAAA CCTGCCCCTG GCCATCATCA TCTCCCTGCC
                                                                              900
       CATCGTGACG CTGGTGTACG TGCTGACCAA CCTGGCCTAC TTCACCACCC TGTCCACCGA
       GCAGATGCTG TCGTCCGAGG CCGTGGCCGT GGACTTCGGG AACTATCACC TGGGCGTCAT
                                                                             1020
       GTCCTGGATC ATCCCCGTCT TCGTGGGCCT GTCCTGCTTC GGCTCCGTCA ATGGGTCCCT
                                                                             1080
80
       GTTCACATCC TCCAGGCTCT TCTTCGTGGG GTCCCGGGAA GGCCACCTGC CCTCCATCCT
                                                                             1140
       CTCCATGATC CACCCACAGC TCCTCACCCC CGTGCCGTCC CTCGTGTTCA CGTGTGTGAT
                                                                             1200
       GACGCTGCTC TACGCCTTCT CCAAGGACAT CTTCTCCGTC ATCAACTTCT TCAGCTTCTT
                                                                             1260
       CAACTGGCTC TGCGTGGCCC TGGCCATCAT CGGCATGATC TGGCTGCGCC ACAGAAAGCC
                                                                             1320
       TGAGCTTGAG CGGCCCATCA AGGTGAACCT GGCCCTGCCT GTGTTCTTCA TCCTGGCCTG
                                                                             1380
85
       CCTCTTCCTG ATCGCCGTCT CCTTCTGGAA GACACCCGTG GAGTGTGGCA TCGGCTTCAC
                                                                             1440
       CATCATCCTC AGCGGGCTGC CCGTCTACTT CTTCGGGGTC TGGTGGAAAA ACAAGCCCAA
                                                                             1500
       GTGGCTCCTC CAGGGCATCT TCTCCACGAC CGTCCTGTGT CAGAAGCTCA TGCAGGTGGT
```

1560

CCCCCAGGAG ACATAGCCAG GAGGCCGAGT GGCTGCCGGA GGAGCATGC

```
Seq ID NO: 543 Protein sequence
       Protein Accession #: XP_035292.2
 5
                                                                51
       MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLORNI TLLNGVAIIV
                                                                              60
       GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVFSIVGA LCYAELGTTI SKSGGDYAYM
                                                                             120
10
       LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL FPTCPVPEEA AKLVACLCVL
                                                                             180
       LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSFEGTKLDV
                                                                             240
       GNIVLALYSG LPAYGGWNYL NFVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL
                                                                             300
       STEQMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLP
                                                                             360
       SILSMIHPQL LTPVPSLVFT CVMTLLYAFS KDIFSVINFF SFFNWLCVAL AIIGMIWLRH
                                                                             420
15
       RKPELERPIK VNLALPVFFI LACLFLIAVS FWKTPVECGI GFTIILSGLP VYFFGVWWKN
                                                                             480
       KPKWLLQGIF STTVLCQKLM QVVPQET
       Seg ID NO: 544 DNA seguence
       Nucleic Acid Accession #: NM_005268.1
20
       Coding sequence: 168..989
                                         31
       TARARAGCAR ARGARTICGC GGCCGCGTCG ACACGGGCTT CCCCGARARC CTTCCCCGCT
       TCTGGATATG AAATTCAAGC TGCTTGCTGA GTCCTATTGC CGGCTGCTGG GAGCCAGGAG
25
                                                                             120
       AGCCCTGAGG AGTAGTCACT CAGTAGCAGC TGACGCGTGG GTCCACCATG AACTGGAGTA
                                                                             180
       TCTTTGAGGG ACTCCTGAGT GGGGTCAACA AGTACTCCAC AGCCTTTGGG CGCATCTGGC
                                                                             240
       TGTCTCTGGT CTTCATCTTC CGCGTGCTGG TGTACCTGGT GACGGCCGAG CGTGTGTGGA
                                                                             300
       GTGATGACCA CAAGGACTTC GACTGCAATA CTCGCCAGCC CGGCTGCTCC AACGTCTGCT
                                                                             360
30
       TTGATGAGTT CTTCCCTGTG TCCCATGTGC GCCTCTGGGC CCTGCAGCTT ATCCTGGTGA
                                                                             420
       CATGCCCCTC ACTGCTCGTG GTCATGCACG TGGCCTACCG GGAGGTTCAG GAGAAGAGGC
                                                                             480
       ACCGAGAAGC CCATGGGGAG AACAGTGGGC GCCTCTACCT GAACCCCGGC AAGAAGCGGG
                                                                             540
       GTGGGCTCTG GTGGACATAT GTCTGCAGCC TAGTGTTCAA GGCGAGCGTG GACATCGCCT
                                                                             600
       TTCTCTATGT GTTCCACTCA TTCTACCCCA AATATATCCT CCCTCCTGTG GTCAAGTGCC
                                                                             660
35
       ACGCAGATCC ATGTCCCAAT ATAGTGGACT GCTTCATCTC CAAGCCCTCA GAGAAGAACA
                                                                             720
       TTTTCACCCT CTTCATGGTG GCCACAGCTG CCATCTGCAT CCTGCTCAAC CTCGTGGAGC
                                                                             780
       TCATCTACCT GGTGAGCAAG AGATGCCACG AGTGCCTGGC AGCAAGGAAA GCTCAAGCCA
                                                                             840
       TGTGCACAGG TCATCACCCC CACGGTACCA CCTCTTCCTG CAAACAAGAC GACCTCCTTT
                                                                             900
       CGGGTGACCT CATCTTTCTG GGCTCAGACA GTCATCCTCC TCTCTTACCA GACCGCCCCC
                                                                             960
       GAGACCATGT GAAGAAAACC ATCTTGTGAG GGGCTGCCTG GACTGGTCTG GCAGGTTGGG
CCTGGATGGG GAGGCTCTAG CATCTCTCAT AGGTGCAACC TGAGAGTGGG GGAGCTAAGC
40
                                                                            1020
                                                                            1080
       CATGAGGTAG GGGCAGGCAA GAGAGAGGAT TCAGACGCTC TGGGAGCCAG TTCCTAGTCC
                                                                            1140
       TCAACTCCAG CCACCTGCCC CAGCTCGACG GCACTGGGCC AGTTCCCCCT CTGCTCTGCA
       GCTCGGTTTC CTTTTCTAGA ATGGAAATAG TGAGGGCCAA TGC
45
       Seq ID NO: 545 Protein sequence
       Protein Accession #: NP_005259.1
                                                               51
50
       MNWSIFEGLL SGVNKYSTAF GRIWLSLVFI FRVLVYLVTA ERVWSDDHKD FDCNTRQPGC
                                                                              60
       SNVCFDEFFP VSHVRLWALQ LILVTCPSLL VVMHVAYREV QEKRHREAHG ENSGRLYLNP
                                                                             120
       GKKRGGLWWT YVCSLVFKAS VDIAFLYVFH SFYPKYILPP VVKCHADPCP NIVDCFISKP
                                                                             180
       SEKNIFTLFM VATAAICILL NLVELIYLVS KRCHECLAAR KAQAMCTGHH PHGTTSSCKQ
                                                                             240
55
       DDLLSGDLIF LGSDSHPPLL PDRPRDHVKK TIL
       Seq ID NO: 546 DNA sequence
       Nucleic Acid Accession #: NM_002391.1
       Coding sequence: 26..457
60
                             21
                                         31
       CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
                                                                             120
65
       CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG
                                                                             180
       CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT
                                                                             240
       GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
                                                                             300
       TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
                                                                             360
       CAATGCTCAG TGCCAGGAGA CCATCCGCGT CACCAAGCCC TGCACCCCCA AGACCAAAGC
                                                                             420
70
       AAAGGCCAAA GCCAAGAAAG GGAAGGGAAA GGACTAGACG CCAAGCCTGG ATGCCAAGGA
                                                                             480
       GCCCCTGGTG TCACATGGGG CCTGGCCACG CCCTCCCTCT CCCAGGCCCG AGATGTGACC
                                                                             540
       CACCAGTGCC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC
                                                                             600
       ACTCCCCAGC CCCACCCCTA AGTGCCCAAA GTGGGGAGGG ACAAGGGATT CTGGGAAGCT
                                                                             660
       TGAGCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCGCTT TTGTTCTTCC CCACAATTCC
                                                                             720
75
       ATTACTAAGA AACACATCAA ATAAACTGAC TTTTTCCCCC CAATAAAAGC TCTTCTTTTT
                                                                             780
       Seg ID NO: 547 Protein sequence
       Protein Accession #: NP_002382.1
80
                                                                51
                                         31
                                                     41
                  11
       MOHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECAEW AWGPCTPSSK DCGVGFREGT
       CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAQCQETI
85
       RVTKPCTPKT KAKAKAKKGK GKD
```

Seq ID NO: 548 DNA sequence

Nucleic Acid Accession #: NM_006783.1 Coding sequence: 1..786

```
51
                                          31
       ATGGATTGGG GGACGCTGCA CACTTTCATC GGGGGTGTCA ACAAACACTC CACCAGCATC
       GGGAAGGTGT GGATCACAGT CATCTTTATT TICCCAGTCA TGATCCTAGT GGTGGCTGCC CAGGAAGTGT GGGGTGACGA GCAAGAGGAC TICGTCTGCA ACACACTGCA ACCGGGATGC
                                                                              120
       AAAAATGTGT GCTATGACCA CTTTTTCCCG GTGTCCCACA TCCGGCTGTG GGCCCTCCAG
CTGATCTTCG TCTCCACCCC AGCGCTGCTG GTGGCCATGC ATGTGGCCTA CTACAGGCAC
                                                                              240
10
                                                                              300
       GARACCACTC GCAAGTTCAG GCGAGGAGAG AAGAGGAATG ATTTCAAAGA CATAGAGGAC
                                                                              360
       ATTAAAAAGC ACAAGGTTCG GATAGAGGGG TCGCTGTGGT GGACGTACAC CAGCAGCATC
                                                                              420
       TTTTTCCGAA TCATCTTTGA AGCAGCCTTT ATGTATGTGT TTTACTTCCT TTACAATGGG
                                                                              480
       TACCACCTGC CCTGGGTGTT GAAATGTGGG ATTGACCCCT GCCCCAACCT TGTTGACTGC
                                                                              540
15
       TTTATTTCTA GGCCAACAGA GAAGACCGTG TTTACCATTT TTATGATTTC TGCGTCTGTG
                                                                              600
       ATTTGCATGC TGCTTAACGT GGCAGAGTTG TGCTACCTGC TGCTGAAAGT GTGTTTTAGG
                                                                              660
       AGATCAAAGA GAGCACAGAC GCAAAAAAAT CACCCCAATC ATGCCCTAAA GGAGAGTAAG
                                                                              720
       CAGAATGAAA TGAATGAGCT GATTTCAGAT AGTGGTCAAA ATGCAATCAC AGGTTTCCCA
                                                                              780
20
       Seq ID NO: 549 Protein sequence
       Protein Accession #: NP_006774.1
                                          31
                              21
25
       MDWGTLHTFI GGVNKHSTSI GKVWITVIPI FRVMILVVAA QEVWGDEQED FVCNTLQPGC
                                                                               60
       KNVCYDHFFP VSHIRLWALQ, LIFVSTPALL VAMHVAYYRH ETTRKFRRGE KRNDFKDIED
                                                                              120
       IKKHKVRIEG SLWWTYTSSI FFRIIFEAAF MYVFYFLYNG YHLPWVLKCG IDPCPNLVDC
                                                                              180
       FISRPTEKTV FTIFMISASV ICMLLNVAEL CYLLLKVCFR RSKRAQTQKN HPNHALKESK
                                                                              240
30
       ONEMNELISD SGONAITGFP S
       Seg ID NO: 550 DNA seguence
       Nucleic Acid Accession #: NM 002571.1
       Coding sequence: 99..587
35
                                          31
       CATCCCTCTG GCTCCAGAGC TCAGAGCCAC CCACAGCCGC AGCCATGCTG TGCCTCCTGC
       TCACCCTGGG CGTGGCCCTG GTCTGTGGTG TCCCGGCCAT GGACATCCCC CAGACCAAGC
                                                                              120
40
       AGGACCTGGA GCTCCCAAAG TTGGCAGGGA CCTGGCACTC CATGGCCATG GCGACCAACA
                                                                              180
       ACATCTCCCT CATGGCGACA CTGAAGGCCC CTCTGAGGGT CCACATCACC TCACTGTTGC
                                                                              240
       CCACCCCGA GGACAACCTG GAGATCGTTC TGCACAGATG GGAGAACAAC AGCTGTGTTG
                                                                              300
       AGAAGAAGGT CCTTGGAGAG AAGACTGGGA ATCCAAAGAA GTTCAAGATC AACTATACGG
                                                                              360
       TGGCGAACGA GGCCACGCTG CTCGATACTG ACTACGACAA TTTCCTGTTT CTCTGCCTAC
                                                                              420
45
       AGGACACCAC CACCCCATC CAGAGCATGA TGTGCCAGTA CCTGGCCAGA GTCCTGGTGG
                                                                              480
       AGGACGATGA GATCATGCAG GGATTCATCA GGGCTTTCAG GCCCCTGCCC AGGCACCTAT
                                                                              540
       GGTACTTGCT GGACTTGAAA CAGATGGAAG AGCCGTGCCG TTTCTAGCTC ACCTCCGCCT
                                                                              600
       CCAGGAAGAC CAGACTCCCA CCCTTCCACA CCTCCAGAGC AGTGGGACTT CCTCCTGCCC
                                                                              660
       TTTCAAAGAA TAACCACAGC TCAGAAGACG ATGACGTGGT CATCTGTGTC GCCATCCCCT
                                                                              720
50
       TCCTGCTGCA CACCTGCACC ATTGCCATGG GGAGGCTGCT CCCTGGGGGC AGAGTCTCTG
                                                                              780
       GCAGAGGTTA TTAATAAACC CTTGGAGCAT G
       Seg ID NO: 551 Protein seguence
       Protein Accession #: NP 002562.1
55
       MDIPOTKODL ELPKLAGTWH SMAMATNNIS LMATLKAPLR VHITSLLPTP EDNLEIVLHR
       WENNSCYEKK VLGEKTGNPK KFKINYTVAN EATLLDTDYD NFLFLCLQDT TTPIQSMMCQ
60
       YLARVLVEDD EIMQGFIRAF RPLPRHLWYL LDLKQMEEPC RF
       Seq ID NO: 552 DNA sequence
       Nucleic Acid Accession #: NM_006500.1
       Coding sequence: 27..1967
65
                                                                 51
                              21
                                          31
       ACTTGCGTCT CGCCCTCCGG CCAAGCATGG GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC
                                                                               60
       TOGCOGCOTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG
                                                                              120
70
       CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC
                                                                              180
       AGTCCCAAGG CAACCTCAGC CATGTCGACT GGTTTTCTGT CCACAAGGAG AAGCGGACGC
                                                                              240
       TCATCTTCCG TGTGCGCCAG GGCCAGGGCC AGAGCGAACC TGGGGAGTAC GAGCAGCGGC
                                                                              300
       TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC
                                                                              360
       GCATCTTCTT GTGCCAGGGC AAGCGCCCTC GGTCCCAGGA GTACCGCATC CAGCTCCGCG
                                                                              420
75
       TCTACAAAGC TCCGGAGGAG CCAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA
       GTAAGGAGCC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCCTCAAG
                                                                              540
       TCATCTGGTA CAAGAATGGC CGGCCTCTGA AGGAGGAGAA GAACCGGGTC CACATTCAGT
                                                                              600
       CGTCCCAGAC TGTGGAGTCG AGTGGTTTGT ACACCTTGCA GAGTATTCTG AAGGCACAGC
                                                                              660
       TGGTTAAAGA AGACAAAGAT GCCCAGTTTT ACTGTGAGCT CAACTACCGG CTGCCCAGTG
                                                                              720
80
       GGAACCACAT GAAGGAGTCC AGGGAAGTCA COGTCCCTGT TTTCTACCCG ACAGAAAAAG
                                                                              780
       TGTGGCTGGA AGTGGAGCCC GTGGGAATGC TGAAGGAAGG GGACCGCGTG GAAATCAGGT
                                                                              840
       GTTTGGCTGA TGGCAACCCT CCACCACACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA
                                                                              900
       GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGTCCT GGTGCTGGAG CCTGCCCGGA
                                                                              960
       AGGAACACAG TGGGCGCTAT GAATGTCAGG CCTGGAACTT GGACACCATG ATATCGCTGC
                                                                             1020
85
       TGAGTGAACC ACAGGAACTA CTGGTGAACT ATGTGTCTGA CGTCCGAGTG AGTCCCGCAG
                                                                             1080
       CCCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGCAGAG AGTAGCCAGG
                                                                             1140
       ACCTCGAGTT CCAGTGGCTG AGAGAAGAGA CAGACCAGGT GCTGGAAAGG GGGCCTGTGC 1200
```

```
WO 02/086443
       TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGGCTA TCGCTGCGTG GCGTCTGTGC 1260
       CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCCATTTTT GGCCCCCCTT
                                                                           1320
                                                                           1380
       GGATGGCATT CAAGGAGAG AAGGTGTGGG TGAAAGAGAA TATGGTGTTG AATCTGTCTT
       GTGAAGCGTC AGGGCACCCC CGGCCCACCA TCTCCTGGAA CGTCAACGGC ACGGCAAGTG
                                                                           1440
 5
       AACAAGACCA AGATCCACAG CGAGTCCTGA GCACCCTGAA TGTCCTCGTG ACCCCGGAGC
                                                                           1500
       TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAAC ACCAGCATCC
                                                                           1560
       TCTTCCTGGA GCTGGTCAAT TTAACCACCC TCACACCAGA CTCCAACACA ACCACTGGCC
                                                                           1620
       TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC
                                                                           1680
       TGCCGGAGCC GGAGAGCCGG GGCGTGGTCA TCGTGGCTGT GATTGTGTCA ATCCTGGTCC TGGCGGTGCT GGGCGCTGTC CTCTATTTCC TCTATAAGAA GGGCAAGCTG CCGTGCAGGC
10
                                                                           1800
       GCTCAGGGAA GCAGGAGATC ACGCTGCCCC CGTCTCGTAA GACCGAACTT GTAGTTGAAG
       TTAAGTCAGA TAAGCTCCCA GAAGAGATGG GCCTCCTGCA GGGCAGCAGC GGTGACAAGA
                                                                           1920
       GGGCTCCGGG AGACCAGGGA GAGAAATACA TCGATCTGAG GCATTAGCCC CGAATCACTT
                                                                           1980
       CAGCTCCCTT CCCTGCCTGG ACCATTCCCA GCTCCCTGCT CACTCTTCTC TCAGCCAAAG
                                                                           2040
       CCTCCAAAGG GACTAGAGAG AAGCCTCCTG CTCCCCTCAC CTGCACACCC CCTTTCAGAG
15
                                                                           2100
       GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTTT TCAGGGACCA
                                                                           2160
       GTCCACCACC ATCTCCTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC
                                                                           2220
       CCGAGCGGGT AGGAGAGTTT CTTGCAGAAC GTGTTTTTTC TTTACACACA TTATGGCTGT
                                                                           2280
       AAATACCTGG CTCCTGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTGG TTTCCTGCCC
                                                                           2340
20
       CAAAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC
                                                                           2400
       GCCTGCTCAT GTTGAAGTGC GCTGTTCACA CCCGCTCCGG AGAGCACCCC AGCGGCATCC
                                                                           2460
       AGAAGCAGCT GCAGTGTTGC TGCCACCACC CTCCTGCTCG CCTCTTCAAA GTCTCCTGTG
                                                                           2520
       ACATTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTCATT CCTTAAAAGA TACGTGCCGG
                                                                           2580
       GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGCCGA GGCGGGCGGA
                                                                           2640
25
       TCACAAAGTC AGGACGAGAC CATCCTGGCT AACACGGTGA AACCCTGTCT CTACTAAAAA
                                                                           2700
       TACAAAAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG
                                                                           2760
       CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC
                                                                           2820
       2880
       ACGCGTACCT GCGGTGAGGA AGCTGGGCGC TGTTTTCGAG TTCAGGTGAA TTAGCCTCAA TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAACT GAAAGGCAGC
                                                                           2940
30
                                                                           3000
       GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA
                                                                           3060
       TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG
                                                                           3120
       AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTCGGGTGT GTGTGTCTGT
                                                                           3180
       CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTTGT CAGGTGTGTA AATTTGCAAA
                                                                           3240
       35
                                                                           3300
                                                                           3360
       AACCTGGGGG CCTGTGAAAC TACAACCAAA AGGCACACAA AACCGTTTCC AGTTGGCAGC
                                                                           3420
       AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG
       CTACCCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC
                                                                           3540
40
       TGTTAGCAGG AGCTATGTCC CTTCCTATCG TTTCCGTCCA CTT
       Seq ID NO: 553 Protein sequence
       Protein Accession #: NP_006491.1
45
                                                               51
                                                    41
       GLPRLVCAPL LAACCCCPRV AGVPGEAEQP APELVEVEVG STALLKCGLS QSQGNLSHVD
                                                                             60
       WFSVHKEKRT LIFRVRQGQG QSEPGEYEQR LSLQDRGATL ALTQVTPQDE RIFLCQGKRP
                                                                            120
       RSQEYRIQLR VYKAPEEPNI QVNPLGIPVN SKEPEEVATC VGRNGYPIPQ VIWYKNGRPL
                                                                            180
50
       KEEKNRVHIQ SSQTVESSGL YTLQSILKAQ LVKEDKDAQF YCELNYRLPS GNHMKESREV
TVPVFYPTEK VWLEVEPVGM LKEGDRVEIR CLADGNPPPH FSISKQNPST REAEEETTND
                                                                            240
                                                                            300
       NGVLVLEPAR KEHSGRYECQ AWNLDTMISL LSEPQELLVN YVSDVRVSPA APERQEGSSL
                                                                            360
       TLTCEAESSQ DLEFQWLREE TDQVLERGPV LQLHDLKREA GGGYRCVASV PSIPGLNRTQ
       LVKLAIFGPP WMAFKERKVW VKENMVLNLS CEASGHPRPT ISWNVNGTAS EQDQDPQRVL
                                                                            480
55
       STLMVLVTPE LLETGVECTA SMDLGKNTSI LFLELVNLTT LTPDSNTTTG LSTSTASPHT
       RANSTSTERK LPEPESRGVV IVAVIVCILV LAVLGAVLYF LYKKGKLPCR RSGKQEITLP
       PSRKTELVVE VKSDKLPEEM GLLQGSSGDK RAPGDQGEKY IDLRH
       Seg ID NO: 554 DNA seguence
60
       Nucleic Acid Accession #: NM_003183.3
       Coding sequence: 165..2639
                                         31
                                                    41
65
       TCGAGCCTGG CGGTAGAATC TTCCCAGTAG GCGGCGCGGG AGGGAAAAGA GGATTGAGGG
                                                                             60
       GCTAGGCCGG GCGGATCCCG TCCTCCCCCG ATGTGAGCAG TTTTCCGAAA CCCCGTCAGG
                                                                            120
       CGAAGGCTGC CCAGAGAGGT GGAGTCGGTA GCGGGGCCGG GAACATGAGG CAGTCTCTCC
                                                                            180
       TATTCCTGAC CAGCGTGGTT CCTTTCGTGC TGGCGCCGCG ACCTCCGGAT GACCCGGGCT
                                                                            240
       TCGGCCCCCA CCAGAGACTC GAGAAGCTTG ATTCTTTGCT CTCAGACTAC GATATTCTCT
                                                                            300
70
       CTTTATCTAA TATCCAGCAG CATTCGGTAA GAAAAAGAGA TCTACAGACT TCAACACATG
                                                                            360
       TAGAAACACT ACTAACTTTT TCAGCTTTGA AAAGGCATTT TAAATTATAC CTGACATCAA
                                                                            420
       GTACTGAACG TTTTTCACAA AATTTCAAGG TCGTGGTGGT GGATGGTAAA AACGAAAGCG
                                                                            480
       AGTACACTGC AAAATGGCAG GACTTCTTCA CTGGACACGT GGTTGGTGAG CCTGACTCTA
                                                                            540
       GGGTTCTAGC CCACATAAGA GATGATGATG TTATAATCAG AATCAACACA GATGGGGCCG
                                                                            600
75
       AATATAACAT AGAGCCACTT TGGAGATTTG TTAATGATAC CAAAGACAAA AGAATGTTAG
                                                                            660
       TTTATAAATC TGAAGATATC AAGAATGTTT CACGTTTGCA GTCTCCAAAA GTGTGTGGTT
                                                                            720
       ATTTAAAAGT GGATAATGAA GAGTTGCTCC CAAAAGGGTT AGTAGACAGA GAACCACCTG
                                                                            780
       AAGAGCTTGT TCATCGAGTG AAAAGAAGAG CTGACCCAGA TCCCATGAAG AACACGTGTA
       AATTATTGGT GGTAGCAGAT CATCGCTTCT ACAGATACAT GGGCAGAGGG GAAGAGAGTA
                                                                            900
80
       CAACTACAAA TTACTTAATA GAGCTAATTG ACAGAGTTGA TGACATCTAT CGGAACACTT
                                                                            960
       CATGGGATAA TGCAGGTTTT AAAGGCTATG GAATACAGAT AGAGCAGATT CGCATTCTCA
                                                                           1020
       AGTCTCCACA AGAGGTAAAA CCTGGTGAAA AGCACTACAA CATGGCAAAA AGTTACCCAA
                                                                           1080
       ATGAAGAAAA GGATGCTTGG GATGTGAAGA TGTTGCTAGA GCAATTTAGC TTTGATATAG
                                                                           1140
       CTGAGGAAGC ATCTAAAGTT TGCTTGGCAC ACCTTTTCAC ATACCAAGAT TTTGATATGG
                                                                           1200
85
       GAACTCTTGG ATTAGCTTAT GTTGGCTCTC CCAGAGCAAA CAGCCATGGA GGTGTTTGTC
                                                                           1260
       CAAAGGCTTA TTATAGCCCA GTTGGGAAGA AAAATATCTA TTTGAATAGT GGTTTGACGA
                                                                           1320
       GCACAAAGAA TTATGGTAAA ACCATCCTTA CAAAGGAAGC TGACCTGGTT ACAACTCATG
                                                                          1380
```

```
AATTGGGACA TAATTTTGGA GCAGAACATG ATCCGGATGG TCTAGCAGAA TGTGCCCCGA 1440
        ATGAGGACCA GGGAGGGAAA TATGTCATGT ATCCCATAGC TGTGAGTGGC GATCACGAGA
                                                                              1500
       ACAATAAGAT GTTTTCAAAC TGCAGTAAAC AATCAATCTA TAAGACCATT GAAAGTAAGG
                                                                              1560
        CCCAGGAGTG TTTTCAAGAA CGCAGCAATA AAGTTTGTGG GAACTCGAGG GTGGATGAAG
                                                                              1620
       GAGAAGAGT TGATCCTGGC ATCATGTATC TGAACCAACGA CACCTGGTGC AACAGCGACT
GCACGTTGAA GGAAGGTGTC CAGTGCAGTG ACAGGAACAG TCCTTGCTGT AAAAACTGTC
                                                                              1680
                                                                              1740
       AGTTTGAGAC TGCCCAGAAG AAGTGCCAGG AGGCGATTAA TGCTACTTGC AAAGGCGTGT
                                                                              1800
       CCTACTGCAC AGGTAATAGC AGTGAGTGCC CGCCTCCAGG AAATGCTGAA AATGACACTG
                                                                              1860
       TTTGCTTGGA TCTTGGCAAG TGTAAGGATG GGAAATGCAT CCCTTTCTGC GAGAGGGAAC
                                                                              1920
10
       AGCAGCTGGA GTCCTGTGCA TGTAATGAAA CTGACAACTC CTGCAAGGTG TGCTGCAGGG
       ACCITICIGG CCGCTGTGTG CCCTATGTCG ATGCTGAACA AAAGAACTTA TTTTTGAGGA
                                                                               2040
       AAGGAAAGCC CTGTACAGTA GGATTTTGTG ACATGAATGG CAAATGTGAG AAACGAGTAC
                                                                              2100
       AGGATGTAAT TGAACGATTT TGGGATTTCA TTGACCAGCT GAGCATCAAT ACTTTTGGAA
                                                                              2160
       AGTTTTTAGC AGACAACATC GTTGGGTCTG TCCTGGTTTT CTCCTTGATA TTTTGGATTC
                                                                              2220
15
       CTTTCAGCAT TCTTGTCCAT TGTGTGGATA AGAAATTGGA TAAACAGTAT GAATCTCTGT
                                                                              2280
       CTCTGTTTCA CCCCAGTAAC GTCGAAATGC TGAGCAGCAT GGATTCTGCA TCGGTTCGCA
                                                                              2340
       TTATCAAACC CTTTCCTGCG CCCCAGACTC CAGGCCGCCT GCAGCCTGCC CCTGTGATCC
                                                                              2400
       CTTCGGCGCC AGCAGCTCCA AAACTGGACC ACCAGAGAAT GGACACCATC CAGGAAGACC
                                                                              2460
       CCAGCACAGA CTCCCATATG GACGAGGATG GGTTTGAGAA GGACCCCTTC CCAAATAGCA
                                                                              2520
20
       GCACAGCTGC CAAGTCATTT GAGGATCTCA CGGACCATCC GGTCGCCAGA AGTGAAAAGG
                                                                              2580
       CTGCCTCCTT TAAACTGCAG CGTCAGAATC GTGTTAACAG CAAAGAAACA GAGTGCTAAT
                                                                              2640
       TTAGTTCTCA GCTCTTCTGA CTTAAGTGTG CAAAATATTT TTATAGATTT GACCTACAAA
                                                                              2700
       TCAATCACAG CTTGTATTTT GTGAAGACTG GGAAGTGACT TAGCAGATGC TGGTCATGTG
                                                                              2760
       TTTGAACTTC CTGCAGGTAA ACAGTTCTTG TGTGGTTTGG CCCTTCTCCT TTTGAAAAGG
                                                                              2820
25
       TAAGGTGAAA GTGAATCTAC TTATTTTGAG GCTTTCAGGT TTTAGTTTTT AAAATATCTT
                                                                              2880
       TTGACCTGTG GTGCAAAAGC AGAAAATACA GCTGGATTGG GTTATGAATA TTTACGTTTT
                                                                              2940
       TGTAAATTAA TCTTTTATAT TGATAACAGC ACTGACTAGG GAAATGATCA GTTTTTTTT
ATACACTGTA ATGAACCGCT GAATATGAAG CATTTGGCAT TTATTTGTGA GAAAAGTGGA
ATAGTTTTTT TTTTTTTTT TTTTTTTTGC CTTCAACTAA AAACAAAGGA GATAAATTTA
                                                                              3000
                                                                              3060
                                                                              3120
30
       GTATACATTG TATCTAAATT GTGGGTCTAT TTCTAGTTAT TACCCAGAGT TTTTATGTAG
                                                                              3180
       CAGGGAAAAT ATATATCTAA ATTTAGAAAT CATTTGGGTT AATATGGCTC TTCATAATTC
                                                                              3240
       TAAGACTAAT GCTCAGAACC TAACCACTAC CTTACAGTGA GGGCTATACA TGGTAGCCAG
                                                                              3300
       TIGAATITAT GGAATCTACC AACTGTTTAG GGCCCTGATT TGCTGGGCAG TTTTTCTGTA
                                                                              3360
        TTTTATAAGT ATCTTCATGT ATCCCTGTTA CTGATAGGGA TACATGTCTT AGAAAATTCA
                                                                              3420
       CTATTGGCTG GGAGTGGTGG CTCATGCCTG TAATCCCAGC ACTTGGAGAG GCTGAGGTTG
35
       CGCCACTACA CTCCAGCCTG GGTGACAGAG TGAGATCTGC CTC
       Seg ID NO: 555 Protein seguence
       Protein Accession #: NP_003174.2
40
                                                                  51
       MRQSLLFLTS VVPFVLAPRP PDDPGFGPHQ RLEKLDSLLS DYDILSLSNI QQHSVRKRDL
                                                                                 60
       QTSTHVETLL TFSALKRHFK LYLTSSTERF SQNFKVVVVD GKNESEYTAK WQDFFTGHVV
                                                                                120
45
       GEPDSRVLAH IRDDDVIIRI NTDGAEYNIE PLWRFVNDTK DKRMLVYKSE DIKNVSRLQS
                                                                                180
                                                                                240
       PKVCGYLKVD NEELLPKGLV DREPPEELVH RVKRRADPDP MKNTCKLLVV ADHRFYRYMG
       RGEESTTTNY LIELIDRVDD IYRNTSWDNA GFKGYGIQIE QIRILKSPQE VKPGEKHYNM
                                                                                300
       AKSYPNEEKD AWDVKMLLEQ FSFDIAEEAS KVCLAHLFTY QDFDMGTLGL AYVGSPRANS
                                                                                360
       HGGVCPKAYY SPVGKKNIYL NSGLTSTKNY GKTILTKEAD LVTTHELGHN FGAEHDPDGL
                                                                                420
50
       AECAPNEDOG GKYVMYPIAV SGDHENNKMF SNCSKOSIYK TIESKAQECF QERSNKVCGN
                                                                                480
       SRVDEGRECD PGIMYLNNDT CCNSDCTLKE GVQCSDRNSP CCKNCQPETA QKKCQEAINA
                                                                                540
       TCKGVSYCTG NSSECPPPGN AENDTVCLDL GKCKDGKČIP FCEREQQLES CACNETDNSC
                                                                                600
       KVCCRDLSGR CVPYVDAEQK NLFLRKGKPC TVGFCDMNGK CEKRVQDVIE RFWDFIDQLS
                                                                                660
       INTEGRETAD NIVGSVLVFS LIFWIPFSIL VHCVDKKLDK QYESLSLFHP SNVEMLSSMD
       SASVRIIKPP PAPQTPGRLQ PAPVIPSAPA APKLDHQRMD TIQEDPSTDS HMDEDGFEKD
55
                                                                                780
       PFPNSSTAAK SFEDLTDHPV ARSEKAASFK LQRQNRVNSK ETEC
       Seq ID NO: 556 DNA sequence
       Nucleic Acid Accession #: NM 021832.1
60
       Coding sequence: 164..2248
                               21
                                         . 31
                                                                  51
                   11
       TOGAGCCTGG CGGTAGAATC TTCCCAGTAG GCGGCGCGGG AGGAAAAGAG GATTGAGGGG
                                                                                 60
65
        CTAGGCCGGG CGGATCCCGT CCTCCCCCGA TGTGAGCAGT TTTCCGAAAC CCCGTCAGGC
                                                                                120
        GAAGGCTGCC CAGAGAGGTG GAGTCGGTAG CGGGGCCGGG AACATGAGGC AGTCTCTCCT
                                                                                180
       ATTCCTGACC AGCGTGGTTC CTTTCGTGCT GGCGCCGCGA CCTCCGGATG ACCCGGGCTT
                                                                                240
       CGGCCCCCAC CAGAGACTCG AGAAGCTTGA TTCTTTGCTC TCAGACTACG ATATTCTCTC
                                                                                300
       TTTATCTAAT ATCCAGCAGC ATTCGGTAAG AAAAAGAGAT CTACAGACTT CAACACATGT
                                                                                360
70
       AGAAACACTA CTAACTTTTT CAGCTTTGAA AAGGCATTTT AAATTATACC TGACATCAAG
                                                                                420
       TACTGAACGT TTTTCACAAA ATTTCAAGGT CGTGGTGGTG GATGGTAAAA ACGAAAGCGA
       GTACACTGTA AAATGGCAGG ACTTCTTCAC TGGACACGTG GTTGGTGAGC CTGACTCTAG
GGTTCTAGCC CACATAAGAG ATGATGATGT TATAATCAGA ATCAACACAG ATGGGGCCGA
       ATATAACATA GAGCCACTTT GGAGATTTGT TAATGATACC AAAGACAAAA GAATGTTAGT
                                                                                660
75
       TTATAAATCT GAAGATATCA AGAATGTTTC ACGTTTGCAG TCTCCAAAAG TGTGTGGTTA
        TTTAAAAGTG GATAATGAAG AGTTGCTCCC AAAAGGGTTA GTAGACAGAG AACCACCTGA
                                                                                780
       AGAGCTTGTT CATCGAGTGA AAAGAAGAGC TGACCCAGAT CCCATGAAGA ACACGTGTAA
                                                                                840
       ATTATTGGTG GTAGCAGATC ATCGCTTCTA CAGATACATG GGCAGAGGGG AAGAGAGTAC
                                                                                900
       AACTACAAAT TACTTAATAG AGCTAATTGA CAGAGTTGAT GACATCTATC GGAACACTTC
                                                                                960
80
        ATGGGATAAT GCAGGTTTTA AAGGCTATGG AATACAGATA GAGCAGATTC GCATTCTCAA
                                                                              1020
       GTCTCCACAA GAGGTAAAAC CTGGTGAAAA GCACTACAAC ATGGCAAAAA GTTACCCAAA
                                                                              1080
        TGAAGAAAAG GATGCTTGGG ATGTGAAGAT GTTGCTAGAG CAATTTAGCT TTGATATAGC
                                                                              1140
        TGAGGAAGCA TCTAAAGTTT GCTTGGCACA CCTTTTCACA TACCAAGATT TTGATATGGG
                                                                              1200
        AACTCTTGGA TTAGCTTATG TTGGCTCTCC CAGAGCAAAC AGCCATGGAG GTGTTTGTCC
                                                                              1260
85
        AAAGGCTTAT TATAGCCCAG TTGGGAAGAA AAATATCTAT TTGAATAGTG GTTTGACGAG
                                                                              1320
        CACAAAGAAT TATGGTAAAA CCATCCTTAC AAAGGAAGCT GACCTGGTTA CAACTCATGA
                                                                              1380
        ATTGGGACAT AATTTTGGAG CAGAACATGA TCCGGATGGT CTAGCAGAAT GTGCCCCGAA 1440
```

```
TGAGGACCAG GGAGGGAAAT ATGTCATGTA TCCCATAGCT GTGAGTGGCG ATCACGAGAA 1500
                                                                           1560
       CAATAAGATG TTTTCAAACT GCAGTAAACA ATCAATCTAT AAGACCATTG AAAGTAAGGC
       CCAGGAGTGT TTTCAAGAAC GCAGCAATAA AGTTTGTGGG AACTCGAGGG TGGATGAAGG
                                                                           1620
       AGAAGAGTGT GATCCTGGCA TCATGTATCT GAACAACGAC ACCTGCTGCA ACAGCGACTG
                                                                           1680
 5
       CACGTTGAAG GAAGGTGTCC AGTGCAGTGA CAGGAACAGT CCTTGCTGTA AAAACTGTCA
                                                                           1740
       GTTTGAGACT GCCCAGAAGA AGTGCCAGGA GGCGATTAAT GCTACTTGCA AAGGCGTGTC
       CTACTGCACA GGTAATAGCA GTGAGTGCCC GCCTCCAGGA AATGCTGAAG ATGACACTGT
                                                                           1860
       TTGCTTGGAT CTTGGCAAGT GTAAGGATGG GAAATGCATC CCTTTCTGCG AGAGGGAACA
                                                                           1920
       GCAGCTGGAG TCCTGTGCAT GTAATGAAAC TGACAACTCC TGCAAGGTGT GCTGCAGGGA
                                                                           1980
10
       CCTTTCCGGC CGCTGTGTGC CCTATGTCGA TGCTGAACAA AAGAACTTAT TTTTGAGGAA
       AGGAAAGCCC TGTACAGTAG GATTTTGTGA CATGAATGGC AAATGTGAGA AACGAGTACA
                                                                           2100
       GGATGTAATT GAACGATTTT GGGATTTCAT TGACCAGCTG AGCATCAATA CTTTTGGAAA
                                                                           2160
       GTTTTTAGCA GACAACATCG TTGGGTCTGT CCTGGTTTTC TCCTTGATAT TTTGGATTCC
                                                                           2220
       TTTCAGCATT CTTGTCCATT GTGTGTAACG TCGAAATGCT GAGCAGCATG GATTCTGCAT
                                                                           2280
15
                                                                           2340
       CGGTTCGCAT TATCAAACCC TTTCCTGCGC CCCAGACTCC AGGCCGCCTG CAGCCTGCCC
       CTGTGATCCC TTCGGCGCCA GCAGCTCCAA AACTGGACCA CCAGAGAATG GACACCATCC
                                                                           2400
                                                                           2460
       AGGAAGACCC CAGCACAGAC TCACATATGG ACGAGGATGG GTTTGAGAAG GACCCCTTCC
       CAAATAGCAG CACAGCTGCC AAGTCATTTG AGGATCTCAC GGACCATCCG GTCACCAGAA
                                                                           2520
       GTGAAAAGGC TGCCTCCTTT AAACTGCAGC GTCAGAATCG TGTTGACAGC AAAGAAACAG
                                                                           2580
20
       AGTGCTAATT TAGTTCTCAG CTCTTCTGAC TTAAGTGTGC AAAATATTTT TATAGATTTG
                                                                           2640
       ACCTACAATC AATCACAGCT TATATTTTGT GAAGACTGGG AAGTGACTTA GCAGATGCTG
                                                                           2700
       GTCATGTGTT TGAACTTCCT GCAGGTAAAC AGTTCTTGTG TGGTTTGGCC CTTCTCCTTT
                                                                           2760
       TGAAAAGGTA AGGTGAAGGT GAATCTAGCT TATTTTGAGG CTTTCAGGTT TTAGTTTTTA
                                                                           2820
       AAATATCTTT TGACCTGTGG TGCAAAAGCA GAAAATACAG CTGGATTGGG TTATGAGTAT
                                                                           2880
25
       TTACGTTTTT GTAAATTAAT CTTTTATATT GATAACAGGC ACTGACTAGG GAAATGATCA
                                                                           2940
       GTTTTTTTT ATACACTGTA ATGAACCGCT GAATATGAAG CATTTGGCAT TTATTTGTGA
                                                                           3000
                                                                           3060
       GATAAATTTA GTATACATTG TATCTAAATT GTGGGTCTAT TTCTAGTTAT TACCCAGAGT
                                                                           3120
       TTTTATGTAG CAGGGAAAAT ATATATCTAA ATTTAGAAAT CATTTGGGTT AATATGGCTC
                                                                           3180
30
       TTCATAATTC TAAGACTAAT GCTCAGAACC TAACCACTAC CTTACAGTGA GGGCTATACA
                                                                           3240
       TGGTAGCCAG TTGAATTTAT GGAATCTACC AACTGTTTAG GGCCCTGATT TGCTGGGCAG
                                                                           3300
       TTTTTCTGTA TTTTATAAGT ATCTTCATGT ATCCCTGTTA CTGATAGGGA TACATGTCTT
                                                                           3360
       AGAAAATTCA CTATTGGCTG GGAGTGGTGG CTCATGCCTG TAATCCCAGC ACTTGGAGAG
        3421 GCTGAGGTTG CGCCACTACA CTCCAGCCTG GGTGACAGAG TGAGATCTGC CTC
35
       Seg ID NO: 557 Protein seguence
       Protein Accession #: NP_068604.1
40
       MRQSLLFLTS VVPFVLAPRP PDDPGFGPHQ RLEKLDSLLS DYDILSLSNI QQHSVRKRDL
                                                                             60
       OTSTHVETLL TFSALKRHFK LYLTSSTERF SQNFKVVVVD GKNESEYTVK WQDFFTGHVV
                                                                            120
       GEPDSRVLAH IRDDDVIIRI NTDGAEYNIE PLWRFVNDTK DKRMLVYKSE DIKNVSRLQS
                                                                            180
       PKVCGYLKVD NEELLPKGLV DREPPEELVH RVKRRADPDP MKNTCKLLVV ADHRFYRYMG
                                                                            240
45
       RGEESTTTNY LIELIDRVDD IYRNTSWDNA GFKGYGIQIE QIRILKSPQE VKPGEKHYNM
                                                                            300
       AKSYPNEEKD AWDVKMLLEQ FSFDIAEEAS KVCLAHLFTY QDFDMGTLGL AYVGSPRANS
                                                                            360
       HGGVCPKAYY SPVGKKNIYL NSGLTSTKNY GKTILTKEAD LVTTHELGHN FGAEHDPDGL
                                                                            420
       AECAPNEDQG GKYVMYPIAV SGDHENNKMP SNCSKQSIYK TIESKAQECF QERSNKVCGN
                                                                            480
       SRVDEGEECD PGIMYLNNDT CONSDCTLKE GVQCSDRNSP CCKNCQFETA QKKCQEAINA
                                                                            540
50
       TCKGVSYCTG NSSECPPPGN AEDDTVCLDL GKCKDGKCIP FCEREQQLES CACNETDNSC
                                                                            600
       KVCCRDLSGR CVPYVDAEQK NLFLRKGKPC TVGFCDMNGK CEKRVQDVIE RFWDFIDQLS
       INTEGRELAD NIVGSVLVFS LIFWIPFSIL VHCV
       Seg ID NO: 558 DNA sequence
       Nucleic Acid Accession #: NM_004994.1
55
       Coding sequence: 20..2143
                                         31
                                                    41
60
       AGACACCTCT GCCCTCACCA TGAGCCTCTG GCAGCCCCTG GTCCTGGTGC TCCTGGTGCT
       GGGCTGCTGC TTTGCTGCCC CCAGACAGCG CCAGTCCACC CTTGTGCTCT TCCCTGGAGA
                                                                            120
       CCTGAGAACC AATCTCACCG ACAGGCAGCT GGCAGAGGAA TACCTGTACC GCTATGGTTA
                                                                            180
       CACTCGGGTG GCAGAGATGC GTGGAGAGTC GAAATCTCTG GGGCCTGCGC TGCTGCTTCT
                                                                            240
       CCAGAAGCAA CTGTCCCTGC CCGAGACCGG TGAGCTGGAT AGCGCCACGC TGAAGGCCAT
                                                                            300
65
       GCGAACCCCA CGGTGCGGGG TCCCAGACCT GGGCAGATTC CAAACCTTTG AGGGCGACCT
                                                                            360
       CAAGTGGCAC CACCACAACA TCACCTATTG GATCCAAAAC TACTCGGAAG ACTTGCCGCG
                                                                            420
       GGCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT
                                                                            480
       CACCTTCACT CGCGTGTACA GCCGGGACGC AGACATCGTC ATCCAGTTTG GTGTCGCGGA
                                                                            540
       GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
                                                                            600
       TGGCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA GGGCGTCGTG GTTCCAACTC GGTTTGGAAA CGCAGATGGC GCGGCCTGCC ACTTCCCCTT
70
                                                                            660
                                                                            720
       CATCTTCGAG GGCCGCTCCT ACTCTGCCTG CACCACCGAC GGTCGCTCCG ACGGCTTGCC
                                                                             780
       CTGGTGCAGT ACCACGGCCA ACTACGACAC CGACGACCGG TTTGGCTTCT GCCCCAGCGA
       GAGACTOTAC ACCOGGACG GCAATGCTGA TGGGAAACCC TGCCAGTTTC CATTCATCTT
CCAAGGCCAA TCCTACTCCG CCTGCACCAC GGACGGTCGC TCCGACGGT ACCGCTGGTG
75
       CGCCACCACC GCCAACTACG ACCGGGACAA GCTCTTCGGC TTCTGCCCGA CCCGAGCTGA
                                                                           1020
       CTCGACGGTG ATGGGGGGCA ACTCGGCGGG GGAGCTGTGC GTCTTCCCCT TCACTTTCCT
                                                                           1080
       GGGTAAGGAG TACTCGACCT GTACCAGCGA GGGCCGCGGA GATGGGCGCC TCTGGTGCGC
                                                                           1140
       TACCACCTCG AACTTTGACA GCGACAAGAA GTGGGGCTTC TGCCCGGACC AAGGATACAG
                                                                           1200
80
       TITGITCCTC GTGGCGGCGC ATGAGTTCGG CCACGCGCTG GGCTTAGATC ATTCCTCAGT
                                                                           1260
                                                                           1320
       GCCGGAGGCG CTCATGTACC CTATGTACCG CTTCACTGAG GGGCCCCCCT TGCATAAGGA
       CGACGTGAAT GGCATCCGGC ACCTCTATGG TCCTCGCCCT GAACCTGAGC CACGGCCTCC
                                                                           1380
       AACCACCACC ACACCGCAGC CCACGGCTCC CCCGACGGTC TGCCCCACCG GACCCCCCAC
                                                                           1440
       TGTCCACCCC TCAGAGOGCC CCACAGCTGG CCCCACAGGT CCCCCCTCAG CTGGCCCCAC
                                                                           1500
85
       AGGTCCCCCC ACTGCTGGCC CTTCTACGGC CACTACTGTG CCTTTGAGTC CGGTGGACGA
                                                                           1560
       TGCCTGCAAC GTGAACATCT TCGACGCCAT CGCGGAGATT GGGAACCAGC TGTATTTGTT
                                                                           1620
       CAAGGATGGG AAGTACTGGC GATTCTCTGA GGGCAGGGGG AGCCGGCCGC AGGGCCCCTT 1680
```

```
CCTTATCGCC GACAAGTGGC CCGCGCTGCC CCGCAAGCTG GACTCGGTCT TTGAGGAGCC 1740
        GCTCTCCAAG AAGCTTTTCT TCTTCTCTGG GCGCCAGGTG TGGGTGTACA CAGGCGCGTC
                                                                              1800
        GGTGCTGGGC CCGAGGCGTC TGGACAAGCT GGGCCTGGGA GCCGACGTGG CCCAGGTGAC
                                                                              1860
        CGGGGCCCTC CGGAGTGGCA GGGGGAAGAT GCTGCTGTTC AGCGGGCGGC GCCTCTGGAG
                                                                              1920
  5
        GTTCGACGTG AAGGCGCAGA TGGTGGATCC CCGGAGCGCC AGCGAGGTGG ACCGGATGTT
                                                                              1980
        CCCCGGGGTG CCTTTGGACA CGCACGACGT CTTCCAGTAC CGAGAGAAAG CCTATTTCTG
                                                                              2040
        CCAGGACCGC TTCTACTGGC GCGTGAGTTC CCGGAGTGAG TTGAACCAGG TGGACCAAGT
                                                                              2100
        GGGCTACGTG ACCTATGACA TCCTGCAGTG CCCTGAGGAC TAGGGCTCCC GTCCTGCTTT
                                                                              2160
        GCAGTGCCAT GTAAATCCCC ACTGGGACCA ACCCTGGGGA AGGAGCCAGT TTGCCGGATA
                                                                              2220
10
        CAAACTGGTA TTCTGTTCTG GAGGAAAGGG AGGAGTGGAG GTGGGCTGGG CCCTCTCTTC
                                                                              2280
        TCACCTTTGT TTTTTGTTGG AGTGTTTCTA ATAAACTTGG ATTCTCTAAC CTTT
        Seg ID NO: 559 Protein sequence
        Protein Accession #: NP 004985.1
15
                                          31
       MSLWQPLVLV LLVLGCCPAA PRQRQSTLVL FPGDLRTNLT DRQLAEEYLY RYGYTRVAEM
        RGESKSLGPA LLLLQKQLSL PETGELDSAT LKAMRTPRCG VPDLGRFQTF EGDLKWHHHN
20
        ITYWIQNYSE DLPRAVIDDA FARAFALWSA VTPLTFTRVY SRDADIVIQF GVAEHGDGYP
       FDGKDGLLAH AFPPGPGIQG DAHFDDDELW SLGKGVVVPT RFGNADGAAC HFPFIFEGRS
                                                                               240
       YSACTTDGRS DGLPWCSTTA NYDTDDRFGF CPSERLYTRD GNADGKPCQF PFIFQGQSYS ACTTDGRSDG YRWCATTANY DRDKLFGFCP TRADSTVMGG NSAGELCVFP FTFLGKEYST
                                                                               300
                                                                               360
        CTSEGRGDGR LWCATTSNFD SDKKWGFCPD QGYSLFLVAA HEFGHALGLD HSSVPEALMY
                                                                               420
25
       PMYRFTEGPP LHKDDVNGIR-HLYGPRPEPE PRPPTTTTPQ PTAPPTVCPT GPPTVHPSER
                                                                               480
       PTAGPTGPPS AGPTGPPTAG PSTATTVPLS PVDDACNVNI FDAIAEIGNQ LYLFKDGKYW
                                                                               540
       RFSEGRGSRP OGPFLIADKW PALPRKLDSV FEEPLSKKLF FFSGROVWVY TGASVLGPRR
                                                                               600
       LDKLGLGADV AQVTGALRSG RGKMLLFSGR RLWRFDVKAQ MVDPRSASEV DRMFPGVPLD
                                                                               660
       THOVFOYREK AYFCODRFYW RVSSRSELNO VDOVGYVTYD ILOCPED
30
       Seg ID NO: 560 DNA seguence
       Nucleic Acid Accession #: NM_000213.1
       Coding sequence: 127..5385
35
                              21
                                          31
                                                      41
                                                                 51
       CGCCCGCGCG CTGCAGCCCC ATCTCCTAGC GGCAGCCCAG GCGCGGAGGG AGCGAGTCCG
                                                                                60
       CCCCGAGGTA GGTCCAGGAC GGGCGCACAG CAGCAGCCGA GGCTGGCCGG GAGAGGGAGG
                                                                               120
       AAGAGGATGG CAGGGCCACG CCCCAGCCCA TGGGCCAGGC TGCTCCTGGC AGCCTTGATC
                                                                              180
40
       AGCGTCAGCC TCTCTGGGAC CTTGGCAAAC CGCTGCAAGA AGGCCCCAGT GAAGAGCTGC
                                                                              240
       ACGGAGTGTG TCCGTGTGGA TAAGGACTGC GCCTACTGCA CAGACGAGAT GTTCAGGGAC
       CGGCGCTGCA ACACCCAGGC GGAGCTGCTG GCCGCGGGCT GCCAGCGGGA GAGCATCGTG
                                                                              360
       GTCATGGAGA GCAGCTTCCA AATCACAGAG GAGACCCAGA TTGACACCAC CCTGCGGCGC
                                                                               420
       AGCCAGATGT CCCCCCAAGG CCTGCGGGTC CGTCTGCGGC CCGGTGAGGA GCGGCATTTT
                                                                               480
45
       GAGCTGGAGG TGTTTGAGCC ACTGGAGAGC CCCGTGGACC TGTACATCCT CATGGACTTC
                                                                              540
       TCCAACTCCA TGTCCGATGA TCTGGACAAC CTCAAGAAGA TGGGGCAGAA CCTGGCTCGG
                                                                              600
       GTCCTGAGCC AGCTCACCAG CGACTACACT ATTGGATTTG GCAAGTTTGT GGACAAAGTC
                                                                              660
       AGCGTCCCGC AGACGGACAT GAGGCCTGAG AAGCTGAAGG AGCCCTGGCC CAACAGTGAC
                                                                              720
       CCCCCCTTCT CCTTCAAGAA CGTCATCAGC CTGACAGAAG ATGTGGATGA GTTCCGGAAT AAACTGCAGG GAGAGCGGAT CTCAGGCAAC CTGGATGCTC CTGAGGGCGG CTTCGATGCC
                                                                              780
50
                                                                              840
       ATCCTGCAGA CAGCTGTGTG CACGAGGGAC ATTGGCTGGC GCCCGGACAG CACCCACCTG
                                                                              900
       CTGGTCTTCT CCACCGAGTC AGCCTTCCAC TATGAGGCTG ATGGCGCCAA CGTGCTGGCT
                                                                              960
       GGCATCATGA GCCGCAACGA TGAACGGTGC CACCTGGACA CCACGGGCAC CTACACCCAG
                                                                             1020
       TACAGGACAC AGGACTACCC GTCGGTGCCC ACCCTGGTGC GCCTGCTCGC CAAGCACAAC
                                                                             1080
55
       ATCATCCCCA TCTTTGCTGT CACCAACTAC TCCTATAGCT ACTACGAGAA GCTTCACACC
                                                                             1140
       TATTTCCCTG TCTCCTCACT GGGGGTGCTG CAGGAGGACT CGTCCAACAT CGTGGAGCTG
                                                                             1200
       CTGGAGGAGG CCTTCAATCG GATCCGCTCC AACCTGGACA TCCGGGCCCT AGACAGCCCC
                                                                             1260
       CGAGGCCTTC GGACAGAGGT CACCTCCAAG ATGTTCCAGA AGACGAGGAC TGGGTCCTTT
                                                                             1320
       CACATCCGGC GGGGGGAAGT GGGTATATAC CAGGTGCAGC TGCGGGCCCT TGAGCACGTG
                                                                             1380
60
       GATGGGACGC ACGTGTGCCA GCTGCCGGAG GACCAGAAGG GCAACATCCA TCTGAAACCT
                                                                             1440
       TCCTTCTCCG ACGCCTCAA GATGGACGCG GGCATCATCT GTGATGTGTG CACCTGCGAG
                                                                             1500
       CTGCAAAAAG AGGTGCGGTC AGCTCGCTGC AGCTTCAACG GAGACTTCGT GTGCGGACAG
       TGTGTGTGCA GCGAGGGCTG GAGTGGCCAG ACCTGCAACT GCTCCACCGG CTCTCTGAGT
                                                                             1620
       GACATTCAGC CCTGCCTGCG GGAGGGCGAG GACAAGCCGT GCTCCGGCCG TGGGGAGTGC
                                                                             1680
65
       CAGTGCGGGC ACTGTGTGT CTACGGCGAA GGCCGCTACG AGGGTCAGTT CTGCGAGTAT
                                                                             1740
       GACAACTTCC AGTGTCCCCG CACTTCCGGG TTCCTCTGCA ATGACCGAGG ACGCTGCTCC
                                                                             1800
                                                                             1860
       ATGGGCCAGT GTGTGTGA GCCTGGTTGG ACAGGCCCAA GCTGTGACTG TCCCCTCAGC
       ANTGCCACCT GCATCGACAG CAATGGGGGC ATCTGTAATG GACGTGGCCA CTGTGAGTGT
GGCCGCTGCC ACTGCCACCA GCAGTCGCTC TACACGGACA CCATCTGCGA GATCAACTAC
                                                                             1920
                                                                             1980
70
       TCGGCGATCC ACCCGGGCCT CTGCGAGGAC CTACGCTCCT GCGTGCAGTG CCAGGCGTGG
                                                                             2040
       GGCACCGGCG AGAAGAAGGG GCGCACGTGT GAGGAATGCA ACTTCAAGGT CAAGATGGTG
                                                                             2100
       GACGAGCTTA AGAGAGCCGA GGAGGTGGTG GTGCGCTGCT CCTTCCGGGA CGAGGATGAC
                                                                             2160
       GACTGCACCT ACAGCTACAC CATGGAAGGT GACGGCGCCC CTGGGCCCAA CAGCACTGTC
                                                                             2220
       CTGGTGCACA AGAAGAAGGA CTGCCCTCCG GGCTCCTTCT GGTGGCTCAT CCCCCTGCTC
                                                                             2280
75
       CTCCTCCTCC TGCCGCTCCT GGCCCTGCTA CTGCTGCTAT GCTGGAAGTA CTGTGCCTGC
                                                                             2340
       TGCAAGGCCT GCCTGGCACT TCTCCCGTGC TGCAACCGAG GTCACATGGT GGGCTTTAAG
                                                                             2400
       GAAGACCACT ACATGCTGCG GGAGAACCTG ATGGCCTCTG ACCACTTGGA CACGCCCATG
                                                                             2460
       CTGCGCAGCG GGAACCTCAA GGGCCGTGAC GTGGTCCGCT GGAAGGTCAC CAACAACATG
                                                                             2520
       CAGCGGCCTG GCTTTGCCAC TCATGCCGCC AGCATCAACC CCACAGAGCT GGTGCCCTAC
                                                                             2580
80
       GGGCTGTCCT TGCGCCTGGC CCGCCTTTGC ACCGAGAACC TGCTGAAGCC TGACACTCGG
                                                                             2640
       GAGTGCGCCC AGCTGCGCCA GGAGGTGGAG GAGAACCTGA ACGAGGTCTA CAGGCAGATC
                                                                             2700
       TCCGGTGTAC ACAAGCTCCA GCAGACCAAG TTCCGGCAGC AGCCCAATGC CGGGAAAAAG
       CAAGACCACA CCATTGTGGA CACAGTGCTG ATGGCGCCCC GCTCGGCCAA GCCGGCCCTG
       CTGAAGCTTA CAGAGAAGCA GGTGGAACAG AGGGCCTTCC ACGACCTCAA GGTGGCCCCC
                                                                             2880
85
       GGCTACTACA CCCTCACTGC AGACCAGGAC GCCCGGGGCA TGGTGGAGTT CCAGGAGGGC
                                                                             2940
       GTGGAGCTGG TGGACGTACG GGTGCCCCTC TTTATCCGGC CTGAGGATGA CGACGAGAAG
                                                                             3000
       CAGCTGCTGG TGGAGGCCAT CGACGTGCCC GCAGGCACTG CCACCCTCGG CCGCCGCCTG
                                                                             3060
```

. . . .

```
GTAAACATCA CCATCATCAA GGAGCAAGCC AGAGACGTGG TGTCCTTTGA GCAGCCTGAG 3120
       TTCTCGGTCA GCCGCGGGGA CCAGGTGGCC CGCATCCCTG TCATCCGGCG TGTCCTGGAC
                                                                            3180
       GGCGGGAAGT CCCAGGTCTC CTACCGCACA CAGGATGGCA CCGCGCAGGG CAACCGGGAC
                                                                            3240
       TACATCCCCG TGGAGGGTGA GCTGCTGTTC CAGCCTGGGG AGGCCTGGAA AGAGCTGCAG
                                                                            3300
 5
       GTGAAGCTCC TGGAGCTGCA AGAAGTTGAC TCCCTCCTGC GGGGCCGCCA GGTCCGCCGT
                                                                            3360
       TTCCACGTCC AGCTCAGCAA CCCTAAGTTT GGGGCCCACC TGGGCCAGCC CCACTCCACC
                                                                            3420
       ACCATCATCA TCAGGGACCC AGATGAACTG GACCGGAGCT TCACGAGTCA GATGTTGTCA
                                                                            3480
       TCACAGCCAC CCCCTCACGG CGACCTGGGC GCCCCGCAGA ACCCCAATGC TAAGGCCGCT
                                                                             3540
       GGGTCCAGGA AGATCCATTT CAACTGGCTG CCCCCTTCTG GCAAGCCAAT GGGGTACAGG
                                                                            3600
10
       GTAAAGTACT GGATTCAGGG TGACTCCGAA TCCGAAGCCC ACCTGCTCGA CAGCAAGGTG
                                                                            3660
       CCCTCAGTGG AGCTCACCAA CCTGTACCCG TATTGCGACT ATGAGATGAA GGTGTGCGCC
       TACGGGGCTC AGGGCGAGGG ACCCTACAGC TCCCTGGTGT CCTGCCGCAC CCACCAGGAA
       GTGCCCAGCG AGCCAGGGCG TCTGGCCTTC AATGTCGTCT CCTCCACGGT GACCCAGCTG
                                                                             3840
       AGCTGGGCTG AGCCGGCTGA GACCAACGGT GAGATCACAG CCTACGAGGT CTGCTATGGC
                                                                            3900
15
       CTGGTCAACG ATGACAACCG ACCTATTGGG CCCATGAAGA AAGTGCTGGT TGACAACCCT
       AAGAACCGGA TGCTGCTTAT TGAGAACCTT CGGGAGTCCC AGCCCTACCG CTACACGGTG
                                                                             4020
       AAGGCGCGCA ACGGGGCCGG CTGGGGGCCT GAGCGGGAGG CCATCATCAA CCTGGCCACC
                                                                             4080
       CAGCCCAAGA GGCCCATGTC CATCCCCATC ATCCCTGACA TCCCTATCGT GGACGCCCAG
                                                                             4140
       AGCGGGGAGG ACTACGACAG CTTCCTTATG TACAGCGATG ACGTTCTACG CTCTCCATCG
                                                                            4200
20
       GGCAGCCAGA GGCCCAGCGT CTCCGATGAC ACTGAGCACC TGGTGAATGG CCGGATGGAC
                                                                            4260
       TTTGCCTTCC CGGGCAGCAC CAACTCCCTG CACAGGATGA CCACGACCAG TGCTGCTGCC
                                                                            4320
       TATGGCACCC ACCTGAGCCC ACACGTGCCC CACCGCGTGC TAAGCACATC CTCCACCCTC
                                                                            4380
       ACACGGGACT ACAACTCACT GACCCGCTCA GAACACTCAC ACTCGACCAC ACTGCCGAGG
                                                                            4440
       GACTACTCCA CCCTCACCTC CGTCTCCTCC CACGACTCTC GCCTGACTGC TGGTGTGCCC
                                                                            4500
25
       GACACGCCCA CCCGCCTGGT GTTCTCTGCC CTGGGGCCCA CATCTCTCAG AGTGAGCTGG
                                                                            4560
       CAGGAGCCGC GGTGCGAGCG GCCGCTGCAG GGCTACAGTG TGGAGTACCA GCTGCTGAAC
                                                                            4620
       GGCGGTGAGC TGCATCGGCT CAACATCCCC AACCCTGCCC AGACCTCGGT GGTGGTGGAA
                                                                            4680
       GACCTCCTGC CCAACCACTC CTACGTGTTC CGCGTGCGGG CCCAGAGCCA GGAAGGCTGG
                                                                             4740
       GGCCGAGAGC GTGAGGGTGT CATCACCATT GAATCCCAGG TGCACCCGCA GAGCCCACTG
                                                                            4800
       TGTCCCCTGC CAGGCTCCGC CTTCACTTTG AGCACTCCCA GTGCCCCAGG CCCGCTGGTG
30
                                                                            4860
       TTCACTGCCC TGAGCCCAGA CTCGCTGCAG CTGAGCTGGG AGCGGCCACG GAGGCCCAAT
                                                                            4920
       GGGGATATCG TCGGCTACCT GGTGACCTGT GAGATGGCCC AAGGAGGAGG GCCAGCCACC
                                                                            4980
       GCATTCCGGG TGGATGGAGA CAGCCCCGAG AGCCGGCTGA CCGTGCCGGG CCTCAGCGAG
                                                                            5040
       AACGTGCCCT ACAAGTTCAA GGTGCAGGCC AGGACCACTG AGGGCTTCGG GCCAGAGCGC
                                                                            5100
       GAGGGCATCA TCACCATAGA GTCCCAGGAT GGAGGACCCT TCCCGCAGCT GGGCAGCCGT
35
                                                                            5160
       GCCGGGCTCT TCCAGCACCC GCTGCAAAGC GAGTACAGCA GCATCACCAC CACCCACACC
                                                                            5220
       AGCGCCACCG AGCCCTTCCT AGTGGATGGG CCGACCCTGG GGGCCCAGCA CCTGGAGGCA
       GGCGGCTCCC TCACCCGGCA TGTGACCCAG GAGTTTGTGA GCCGGACACT GACCACCAGC
GGAACCCTTA GCACCCACAT GGACCAACAG TTCTTCCAAA CTTGACCGCA CCCTGCCCCA
                                                                            5340
40
       CCCCCGCCAT GTCCCACTAG GCGTCCTCCC GACTCCTCTC CCGGAGCCTC CTCAGCTACT
                                                                            5460
       CCATCCTTGC ACCCCTGGGG GCCCAGCCCA CCCGCATGCA CAGAGCAGGG GCTAGGTGTC
                                                                            5520
       TCCTGGGAGG CATGAAGGGG GCAAGGTCCG TCCTCTGTGG GCCCAAACCT ATTTGTAACC
                                                                            5580
       AAAGAGCTGG GAGCAGCACA AGGACCCAGC CTTTGTTCTG CACTTAATAA ATGGTTTTGC
45
       Seq ID NO: 561 Protein sequence
       Protein Accession #: NP_000204.1
                                         31
                                                                51
                                                     41
50
       MAGPRPSPWA RLLLAALISV SLSGTLANRC KKAPVKSCTE CVRVDKDCAY CTDEMFRDRR
                                                                               60
       CNTQAELLAA GCQRESIVVM ESSFQITEET QIDTTLRRSQ MSPQGLRVRL RPGEERHFEL
                                                                             120
       EVFEPLESPV DLYILMDFSN SMSDDLDNLK KMGQNLARVL SQLTSDYTIG FGKFVDKVSV
                                                                              180
       POTDMRPEKL KEPWPNSDPP FSFKNVISLT EDVDEFRNKL QGERISGNLD APEGGFDAIL
                                                                              240
       QTAVCTRDIG WRPDSTHLLV FSTESAFHYE ADGANVLAGI MSRNDERCHL DTTGTYTQYR
55
                                                                              300
       TQDYPSVPTL VRLLAKHNII PIFAVTNYSY SYYEKLHTYF PVSSLGVLQE DSSNIVELLE
                                                                              360
       EAFNRIRSNL DIRALDSPRG LRTEVTSKMF QKTRTGSFHI RRGEVGIYQV QLRALEHVDG
THVCQLPEDQ KGNIHLKPSF SDGLKMDAGI ICDVCTCELQ KEVRSARCSF NGDFVCGQCV
                                                                              420
       CSEGWSGQTC NCSTGSLSD1 QPCLREGEDK PCSGRGECQC GHCVCYGEGR YEGQFCEYDN
60
       FQCPRTSGFL CNDRGRCSMG QCVCEPGWTG PSCDCPLSNA TCIDSNGGIC NGRGHCECGR
                                                                              600
       CHCHQQSLYT DTICEINYSA IHPGLCEDLR SCVQCQAWGT GEKKGRTCEE CNFKVKMVDE
                                                                              660
       LKRAEEVVVR CSFRDEDDDC TYSYTMEGDG APGPNSTVLV HKKKDCPPGS FWWLIPLLLL
                                                                              720
       LLPLLALLL LCWKYCACCK ACLALLPCON RGHMVGFKED HYMLRENLMA SDHLDTPMLR
                                                                              780
       SGNLKGRDVV RWKVTNNMQR PGFATHAASI NPTELVPYGL SLRLARLCTE NLLKPDTREC
                                                                              840
65
       AQLRQEVEEN LNEVYRQISG VHKLQQTKPR QQPNAGKKQD HTIVDTVLMA PRSAKPALLK
                                                                              900
       LTEKQVEQRA FHDLKVAPGY YTLTADQDAR GMVEFQEGVE LVDVRVPLFI RPEDDDEKQL
                                                                              960
       LVEAIDVPAG TATLGRRLVN ITIIKEQARD VVSFEQPEFS VSRGDQVARI PVIRRVLDGG
                                                                            1020
       KSQVSYRTQD GTAQGNRDYI PVEGELLFQP GEAWKELQVK LLELQEVDSL LRGRQVRRFH
                                                                             1080
       VQLSNPKFGA HLGQPHSTTI IIRDPDELDR SFTSQMLSSQ PPPHGDLGAP QNPNAKAAGS
                                                                             1140
70
       RKIHFNWLPP SGKPMGYRVK YWIQGDSESE AHLLDSKVPS VELTNLYPYC DYEMKVCAYG
                                                                             1200
       AQGEGPYSSL VSCRTHQEVP SEPGRLAPNV VSSTVTQLSW AEPAETNGEI TAYEVCYGLV
                                                                             1260
       NDDNRPIGPM KKVLVDNPKN RMLLIENLRE SQPYRYTVKA RNGAGWGPER EAIINLATQP
                                                                             1320
       KRPMSIPIIP DIPIVDAQSG EDYDSFLMYS DDVLRSPSGS QRPSVSDDTE HLVNGRMDFA
                                                                             1380
       FPGSTNSLHR MTTTSAAAYG THLSPHVPHR VLSTSSTLTR DYNSLTRSEH SHSTTLPRDY
                                                                             1440
75
       STLTSVSSHD SRLTAGVPDT PTRLVFSALG PTSLRVSWQE PRCERPLQGY SVEYQLLNGG
                                                                             1500
       ELHRLNIPNP AQTSVVVEDL LPNHSYVFRV RAQSQEGWGR EREGVITIES QVHPQSPLCP
                                                                             1560
       LPGSAFTLST PSAPGPLVFT ALSPDSLOLS WERPRRPNGD IVGYLVTCEM AQGGGPATAF
       RVDGDSPESR LTVPGLSENV PYKFKVQART TEGFGPEREG IITIESQDGG PFPQLGSRAG
       LPOHPLOSEY SSITTTHTSA TEPFLVDGPT LGAQHLEAGG SLTRHVTQEF VSRTLTTSGT
80
       LSTHMDOOFF OT
       Seq ID NO: 562 DNA sequence
       Nucleic Acid Accession #: NM 013332.1
       Coding sequence: 1..63
85
```

```
60
       GCACGAGGGC GCTTTTGTCT CCGGTGAGTT TTGTGGCGGG AAGCTTCTGC GCTGGTGCTT
       AGTAACOGAC TITCCTCOGG ACTOCTGCAC GACCTGCTCC TACAGCCGGC GATCCACTCC
                                                                             120
       CGGCTGTTCC CCCGGAGGGT CCAGAGGCCT TTCAGAAGGA GAAGGCAGCT CTGTTTCTCT
                                                                             180
       GCAGAGGAGT AGGGTCCTTT CAGCCATGAA GCATGTGTTG AACCTCTACC TGTTAGGTGT
                                                                             240
       GGTACTGACC CTACTCTCCA TCTTCGTTAG AGTGATGGAG TCCCTAGAAG GCTTACTAGA
                                                                             300
       GAGCCCATCG CCTGGGACCT CCTGGACCAC CAGAAGCCAA CTAGCCAACA CAGAGCCCAC
                                                                             360
       CAAGGGCCTT, CCAGACCATC CATCCAGAAG CATGTGATAA GACCTCCTTC CATACTGGCC
       ATATTTTGGA ACACTGACCT AGACATGTCC AGATGGGAGT CCCATTCCTA GCAGACAAGC
       TGAGCACCGT TGTAACCAGA GAACTATTAC TAGGCCTTGA AGAACCTGTC TAACTGGATG
CTCATTGCCT GGGCAAGGCC TGTTTAGGCC GGTTGCGGTG GCTCATGCCT GTAATCCTAG
10
       CACTTTGGGA GGCTGAGGTG GGTGGATCAC CTGAGGTCAG GAGTTCGAGA CCAGCCTCGC
                                                                             660
       CAACATGGCG AAACCCCATC TCTACTAAAA ATACAAAAGT TAGCTGGGTG TGGTGGCAGA
                                                                             720
       GGCCTGTAAT CCCAGTTCCT TGGGAGGCTG AGGCGGGAGA ATTGCTTGAA CCCGGGGACG
                                                                             780
       GAGGTTGCAG TGAACCGAGA TCGCACTGCT GTACCCAGCC TGGGCCACAG TGCAAGACTC
                                                                             840
15
       CATCTCAAAA AAAAAAGAA AAGAAAAAGC CTGTTTAATG CACAGGTGTG AGTGGATTGC
                                                                             900
       TTATGGCTAT GAGATAGGTT GATCTCGCCC TTACCCCGGG GTCTGGTGTA TGCTGTGCTT
                                                                             960
       TCCTCAGCAG TATGGCTCTG ACATCTCTTA GATGTCCCAA CTTCAGCTGT TGGGAGATGG
                                                                            1020
       TGATATTTTC AACCCTACTT CCTAAACATC TGTCTGGGGT TCCTTTAGTC TTGAATGTCT
                                                                            1080
       TATGCTCAAT TATTTGGTGT TGAGCCTCTC TTCCACAAGA GCTCCTCCAT GTTTGGATAG
                                                                            1140
20
       CAGTTGAAGA GGTTGTGTGG GTGGGCTGTT GGGAGTGAGG ATGGAGTGTT CAGTGCCCAT
                                                                            1200
       TTCTCATTTT ACATTTTAAA GTCGTTCCTC CAACATAGTG TGTATTGGTC TGAAGGGGGT
                                                                            1260
       GGTGGGATGC CAAAGCCTGC TCAAGTTATG GACATTGTGG CCACCATGTG GCTTAAATGA
                                                                           1320
       25
       Seg ID NO: 563 Protein sequence
       Protein Accession #: NP_037464.1
                                                                51
                                         31
                                                    41
       MKHVLNLYLL GVVLTLLSIF VRVMESLEGL LESPSPGTSW TTRSQLANTE PTKGLPDHPS
30
                                                                              60
       RSM
       Seg ID NO: 564 DNA seguence
      Nucleic Acid Accession #: NM 023915.1
Coding sequence: 250..1326
35
       GGCACGAGGG TTTCGTTTTC ATGCTTTACC AGAAAATCCA CTTCCCTGCC GACCTTAGTT
                                                                              60
40
       TCAAAGCTTA TTCTTAATTA GAGACAAGAA ACCTGTTTCA ACTTGAAGAC ACCGTATGAG
                                                                             120
       GTGAATGGAC AGCCAGCCAC CACAATGAAA GAAATCAAAC CAGGAATAAC CTATGCTGAA
                                                                             180
       CCCACGCCTC AATCGTCCCC AAGTGTTTCC TGACACGCAT CTTTGCTTAC AGTGCATCAC
                                                                             240
       AACTGAAGAA TGGGGTTCAA CTTGACGCTT GCAAAATTAC CAAATAACGA GCTGCACGGC
                                                                             300
       CAAGAGAGTC ACAATTCAGG CAACAGGAGC GACGGGCCAG GAAAGAACAC CACCCTTCAC
                                                                             360
45
       AATGAATTTG ACACAATTGT CTTGCCGGTG CTTTATCTCA TTATATTTGT GGCAAGCATC
                                                                             420
       TTGCTGAATG GTTTAGCAGT GTGGATCTTC TTCCACATTA GGAATAAAAC CAGCTTCATA
                                                                             480
       TTCTATCTCA AAAACATAGT GGTTGCAGAC CTCATAATGA CGCTGACATT TCCATTTCGA
                                                                             540
       ATAGTCCATG ATGCAGGATT TGGACCTTGG TACTTCAAGT TTATTCTCTG CAGATACACT
                                                                             600
       TCAGTTTTGT TTTATGCAAA CATGTATACT TCCATCGTGT TCCTTGGGCT GATAAGCATT
                                                                             660
       GATCGCTATC TGAAGGTGGT CAAGCCATTT GGGGACTCTC GGATGTACAG CATAACCTTC
50
       ACGAAGGTTT TATCTGTTTG TGTTTGGGTG ATCATGGCTG TTTTGTCTTT GCCAAACATC
       ATCCTGACAA ATGGTCAGCC AACAGAGGAC AATATCCATG ACTGCTCAAA ACTTAAAAGT
       CCTTTGGGGG TCAAATGGCA TACGGCAGTC ACCTATGTGA ACAGCTGCTT GTTTGTGGCC
GTGCTGGTGA TTCTGATCGG ATGTTACATA GCCATATCCA GGTACATCCA CAAATCCAGC
                                                                             900
       AGGCAATTCA TAAGTCAGTC AAGCCGAAAG CGAAAACATA ACCAGAGCAT CAGGGTTGTT
55
                                                                            1020
       GTGGCTGTGT TTTTTACCTG CTTTCTACCA TATCACTTGT GCAGAATTCC TTTTACTTTT
                                                                            1080
       AGTCACTTAG ACAGGCTTTT AGATGAATCT GCACAAAAAA TCCTATATTA CTGCAAAGAA
                                                                            1140
       ATTACACTTT TCTTGTCTGC GTGTAATGTT TGCCTGGATC CAATAATTTA CTTTTTCATG
                                                                            1200
       TGTAGGTCAT TTTCAAGAAG GCTGTTCAAA AAATCAAATA TCAGAACCAG GAGTGAAAGC
                                                                            1260
60
       ATCAGATCAC TGCAAAGTGT GAGAAGATCG GAAGTTCGCA TATATTATGA TTACACTGAT
                                                                            1320
       GTGTAGGCCT TTTATTGTTT GTTGGAATCG ATATGTACAA AGTGTAAATA AATGTTTCTT
                                                                            1380
       TTCATTATCC TTAAAAAAAA AA
       Seg ID NO: 565 Protein sequence
65
       Protein Accession #: NP_076404
                                         31
       MGFNLTLAKL PMNELHGQES HNSGNRSDGP GKNTTLHNEF DTIVLPVLYL IIFVASILLN
       GLAVWIFFHI RNKTSPIFYL KNIVVADLIM TLTFPFRIVH DAGFGPWYFK FILCRYTSVL
70
                                                                             120
       FYANMYTSIV FLGLISIDRY LKVVKPFGDS RMYSITFTKV LSVCVWVIMA VLSLPNIILT
                                                                             180
       NGQPTEDNIH DCSKLKSPLG VKWHTAVTYV NSCLFVAVLV ILIGCYIAIS RYIHKSSRQF
       ISOSSRKRKH NOSIRVVVAV FFTCFLPYHL CRIPPTPSHL DRLLDESAQK ILYYCKEITL
       PLSACNVCLD PITYFFMCRS FSRRLFKKSN IRTRSESIRS LQSVRRSEVR IYYDYTDV
75
       Seq ID NO: 566 DNA sequence
       Nucleic Acid Accession #: NM 005365.1
       Coding sequence: 1..948
80
                                         31
       ATGTCTCTCG AGCAGAGGAG TCCGCACTGC AAGCCTGATG AAGACCTTGA AGCCCAAGGA
                                                                              60
       GAGGACTTGG GCCTGATGGG TGCACAGGAA CCCACAGGCG AGGAGGAGGA GACTACCTCC
                                                                             120
       TCCTCTGACA GCAAGGAGGA GGAGGTGTCT GCTGCTGGGT CATCAAGTCC TCCCCAGAGT
                                                                             180
85
       CCTCAGGGAG GCGCTTCCTC CTCCATTTCC GTCTACTACA CTTTATGGAG CCAATTCGAT
                                                                             240
       GAGGGCTCCA GCAGTCAAGA AGAGGAAGAG CCAAGCTCCT CGGTCGACCC AGCTCAGCTG
                                                                             300
```

GAGTTCATGT TCCAAGAAGC ACTGAAATTG AAGGTGGCTG AGTTGGTTCA TTTCCTGCTC

```
420
       CACAAATATC GAGTCAAGGA GCCGGTCACA AAGGCAGAAA TGCTGGAGAG CGTCATCAAA
       AATTACAAGC GCTACTTTCC TGTGATCTTC GGCAAAGCCT CCGAGTTCAT GCAGGTGATC
                                                                                 480
                                                                                 540
       TTTGGCACTG ATGTGAAGGA GGTGGACCCC GCCGGCCACT CCTACATCCT TGTCACTGCT
       CTTGGCCTCT CGTGCGATAG CATGCTGGGT GATGGTCATA GCATGCCCAA GGCCGCCCTC
                                                                                 600
       CTGATCATTG TCCTGGGTGT GATCCTAACC AAAGACAACT GCGCCCCTGA AGAGGTTATC
                                                                                 660
       TGGGAAGCGT TGAGTGTGAT GGGGGTGTAT GTTGGGAAGG AGCACATGTT CTACGGGGAG
       CCCAGGAAGC TGCTCACCCA AGATTGGGTG CAGGAAAACT ACCTGGAGTA CCGGCAGGTG
CCCGGCAGTG ATCCTGCGCA CTACGAGTTC CTGTGGGGTT CCAAGGCCCA CGCTGAAACC
                                                                                 780
       AGCTATGAGA AGGTCATAAA TTATTTGGTC ATGCTCAATG CAAGAGAGCC CATCTGCTAC CCATCCCTTT ATGAAGAGGT TTTGGGAGAG GAGCAAGAGG GAGTCTGA
10
       Seq ID NO: 567 Protein sequence
       Protein Accession #: NP_005356.1
15
                                           31
       MSLEQRSPHC KPDEDLEAGG EDLGLMGAGE PTGEEEETTS SSDSKEEEVS AAGSSSPPQS
                                                                                  60
       PQGGASSSIS VYYTLWSQFD EGSSSQEEEE PSSSVDPAQL EFMFQEALKL KVAELVHFLL
                                                                                 120
       HKYRVKEPVT KAEMLESVIK NYKRYFPVIF GKASEFMQVI FGTDVKEVDP AGHSYILVTA
                                                                                 180
20
       LGLSCDSMLG DGHSMPKAAL LIIVLGVILT KDNCAPEEVI WEALSVMGVY VGKEHMPYGE
                                                                                 240
       PRKLLTODWV QENYLEYRQV PGSDPAHYEF LWGSKAHAET SYEKVINYLV MLNAREPICY
                                                                                 300
       PSLYEEVLGE EQEGV
       Seg ID NO: 568 DNA sequence
25
       Nucleic Acid Accession #: NM_014400
       Coding sequence: 86..1126
                   11
                                           31
                                                                   51
30
       GGTTACTCAT CCTGGGCTCA GGTAAGAGGG CCCGAGCTCG GAGGCGGCAC ACCCAGGGGG
                                                                                  60
       GACGCCAAGG GAGCAGGACG GAGCCATGGA CCCCGCCAGG AAAGCAGGTG CCCAGGCCAT
                                                                                 120
       GATCTGGACT GCAGGCTGGC TGCTGCTGCT GCTGCTTCGC GGAGGAGCGC AGGCCCTGGA
                                                                                 180
       GTGCTACAGC TGCGTGCAGA AAGCAGATGA CGGATGCTCC CCGAACAAGA TGAAGACAGT
       GAAGTGCGCG CCGGGCGTGG ACGTCTGCAC CGAGGCCGTG GGGGCGGTGG AGACCATCCA
       CGGACAATTC TCGCTGGCAG TGCSGGGTTG CGGTTCGGGA CTCCCCGGCA AGAATGACCG
35
       CGGCCTGGAT CTTCACGGGC TTCTGGGGTT CATCCAGCTG CAGCAATGGG CTCAGGATCG
CTGCAACGCC AAGCTCAACC TCACCTCGCG GGCGCTCGAC CCGGCAGGTA ATGAGAGTGC
       ATACCCGCCC AACGGCGTGG AGTGCTACAG CTGTGTGGGC CTGAGCCGGG AGGCGTGCCA
                                                                                 540
       GGGTACATCG CCGCCGGTCG TGAGCTGCTA CAACGCCAGC GATCATGTCT ACAAGGGCTG
                                                                                 600
40
       CTTCGACGGC AACGTCACCT TGACGGCAGC TAATGTGACT GTGTCCTTGC CTGTCCGGGG
                                                                                 660
       CTGTGTCCAG GATGAATTCT GCACTCGGGA TGGAGTAACA GGCCCAGGGT TCACGCTCAG
                                                                                 720
       TGGCTCCTGT TGCCAGGGGT CCCGCTGTAA CTCTGACCTC CGCAACAAGA CCTACTTCTC
                                                                                 780
       CCCTCGAATC CCACCCCTTG TCCGGCTGCC CCCTCCAGAG CCCACGACTG TGGCCTCAAC
                                                                                 840
       CACATCTGTC ACCACTTCTA CCTCGGCCCC AGTGAGACCC ACATCCACCA CCAAACCCAT
                                                                                 900
45
       GCCAGCGCCA ACCAGTCAGA CTCCGAGACA GGGAGTAGAA CACGAGGCCT CCCGGGATGA
                                                                                 960
       GGAGCCCAGG TTGACTGGAG GCGCCGCTGG CCACCAGGAC CGCAGCAATT CAGGGCAGTA
                                                                               1020
       TCCTGCAAAA GGGGGGCCCC AGCAGCCCCA TAATAAAGGC TGTGTGGCTC CCACAGCTGG
                                                                                1080
       ATTGGCAGCC CTTCTGTTGG CCGTGGCTGC TGGTGTCCTA CTGTGAGCTT CTCCACCTGG
                                                                                1140
       ARATTTCCCT CTCACCTACT TCTCTGGCCC TGGGTACCCC TCTTCTCATC ACTTCCTGTT CCCACCACTG GACTGGGCTG GCCCAGCCCC TGTTTTTCCA ACATTCCCCA GTATCCCCAG
                                                                                1200
50
                                                                                1260
       CTTCTGCTGC GCTGGTTTGC GGCTTTGGGA AATAAAATAC CGTTGTATAT ATTCTGGCAG GGGTGTTCTA GCTTTTTGAG GACAGCTCCT GTATCCTTCT CATCCTTGTC TCTCCGCTTG
                                                                                1320
                                                                                1380
       TCCTCTTGTG ATGTTAGGAC AGAGTGAGAG AAGTCAGCTG TCACGGGGAA GGTGAGAGAG
                                                                                1440
       AGGATGCTAA GCTTCCTACT CACTTTCTCC TAGCCAGCCT GGACTTTGGA GCGTGGGGTG
55
       GGTGGGACAA TGGCTCCCCA CTCTAAGCAC TGCCTCCCCT ACTCCCCGCA TCTTTGGGGA
                                                                                1560
       ATCGGTTCCC CATATGTCTT CCTTACTAGA CTGTGAGCTC CTCGAGGGCA GGGACCGTGC
       CTTATGTCTG TGTGTGATCA GTTTCTGGCA CATAAATGCC TCAATAAAGA TTTAATTACT
       TTGTATAGTG AAAAAAA
60
       Seq ID NO: 569 Protein sequence
       Protein Accession #: NP_055215
                                           31
65
       MDPARKAGAQ AMIWTAGWLL LLLLRGGAQA LECYSCVQKA DDGCSPNKMK TVKCAPGVDV
                                                                                  60
       CTEAVGAVET IHGQFSLAVX GCGSGLPGKN DRGLDLHGLL AFIQLQQCAQ DRCNAKLNLT
                                                                                 120
       SRALDPAGNE SAYPPNGVEC YSCVGLSREA CQGTSPPVVS CYNASDHVYK GCFDGNVTLT
                                                                                 180
       AANVTVSLPV RGCVQDEPCT RDGVTGPGFT LSGSCCQGSR CNSDLRNKTY FSPRIPPLVR
                                                                                 240
       LPPPEPTTVA STTSVTTSTS APVRPTSTTK PMPAPTSQTP RQGVEHEASR DEEPRLTGGA
                                                                                 300
70
       AGHQDRSNSG QYPAKGGPQQ PHNKGCVAPT AGLAALLLAV AAGVLL
       Seg ID NO: 570 DNA sequence
       Nucleic Acid Accession #: NM_005329.1
       Coding sequence: 1..1662
75
                                                       41
                   11
                               21
                                           31
       ATGCCGGTGC AGCTGACGAC AGCCCTGCGT GTGGTGGGCA CCAGCCTGTT TGCCCTGGCA
       GTGCTGGGTG GCATCCTGGC AGCCTATGTG ACGGGCTACC AGTTCATCCA CACGGAAAAG
                                                                                 120
80
       CACTACCTGT CCTTCGGCCT GTACGGCGCC ATCCTGGGCC TGCACCTGCT CATTCAGAGC
                                                                                 180
       CTTTTTGCCT TCCTGGAGCA CCGGCGCATG CGACGTGCCG GCCAGGCCCT GAAGCTGCCC
                                                                                 240
       TCCCCGCGC GGGGCTCGGT GGCACTGTGC ATTGCCGCGT ACCAGGAGGA CCCTGACTAC
                                                                                 300
       TTGCGCAAGT GCCTGCGCTC GGCCCAGCGC ATCTCCTTCC CTGACCTCAA GGTGGTCATG
                                                                                 360
       GTGGTGGATG GCAACCGCCA GGAGGACGCC TACATGCTGG ACATCTTCCA CGAGGTGCTG
                                                                                 420
85
       GGCGGCACCG AGCAGGCCGG CTTCTTTGTG TGGCGCAGCA ACTTCCATGA GGCAGGCGAG
                                                                                 480
       GGTGAGACGG AGGCCAGCCT GCAGGAGGGC ATGGACCGTG TGCGGGATGT GGTGCGGGCC
                                                                                 540
       AGCACCTTCT CGTGCATCAT GCAGAAGTGG GGAGGCAAGC GCGAGGTCAT GTACACGGCC
                                                                                 600
```

```
660
        TTCAAGGCCC TCGGCGATTC GGTGGACTAC ATCCAGGTGT GCGACTCTGA CACTGTGCTG
                                                                                     720
        GATCCAGCCT GCACCATCGA GATGCTTCGA GTCCTGGAGG AGGATCCCCA AGTAGGGGGA
        GTCGGGGGAG ATGTCCAGAT CCTCAACAAG TACGACTCAT GGATTTCCTT CCTGAGCAGC
                                                                                     780
        GTGCGGTACT GGATGGCCTT CAACGTGGAG CGGGCCTGCC AGTCCTACTT TGGCTGTGTG
                                                                                     840
        CAGTGTATTA GTGGGCCCTT GGGCATGTAC CGCAACAGCC TCCTCCAGCA GTTCCTGGAG
                                                                                     900
        GACTGGTACC ATCAGAAGTT CCTAGGCAGC AAGTGCAGCT TCGGGGATGA CCGGCACCTC
                                                                                     960
        ACCAACCGAG TCCTGAGCCT TGGCTACCGA ACTAAGTATA CCGCGCGCTC CAAGTGCCTC
                                                                                   1020
        ACAGAGACCC CCACTAAGTA CCTCCGGTGG CTCAACCAGC AAACCCGCTG GAGCAAGTCT
                                                                                   1080
        TACTTCCGGG AGTGGCTCTA CAACTCTCTG TGGTTCCATA AGCACCACCT CTGGATGACC TACGAGTCAG TGGTCACGGG TTTCTTCCCC TTCTTCCTCA TTGCCACGGT TATACAGCTT
                                                                                   1140
10
                                                                                   1200
        TTCTACCGGG GCGCATCTG GAACATTCTC CTCTTCCTGC TGACGGTGCA GCTGGTGGGC
ATTATCAAGG CCACCTACGC CTGCTTCCTT CGGGGCAATG CAGAGATGAT CTTCATGTCC
                                                                                   1260
        CTCTACTCCC TCCTCTATAT GTCCAGCCTT CTGCCGGCCA AGATCTTTGC CATTGCTACC
                                                                                   1380
        ATCAACAAAT CTGGCTGGGG CACCTCTGGC CGAAAAACCA TTGTGGTGAA CTTCATTGGC
15
        CTCATTCCTG TGTCCATCTG GGTGGCAGTT CTCCTGGGAG GGCTGGCCTA CACAGCTTAT
                                                                                   1500
        TGCCAGGACC TGTTCAGTGA GACAGAGCTA GCCTTCCTTG TCTCTGGGGC TATACTGTAT
        GGCTGCTACT GGGTGGCCCT CCTCATGCTA TATCTGGCCA TCATCGCCCG GCGATGTGGG
        AAGAAGCCGG AGCAGTACAG CTTGGCTTTT GCTGAGGTGT GA
20
        Seq ID NO: 571 Protein sequence
        Protein Accession #: NP_005320.1
                                                         41
                                                                      51
                                             31
25
        MPVQLTTALR VVGTSLFALA VLGGILAAYV TGYQFIHTEK HYLSFGLYGA ILGLHLLIQS
        LFAFLEHRRM RRAGQALKLP SPRRGSVALC IAAYQEDPDY LRKCLRSAQR ISFPDLKVVM
                                                                                    120
        VVDGNRQEDA YMLDIFHEVL GGTEQAGFFV WRSNFHEAGE GETEASLQEG MDRVRDVVRA
                                                                                    180
        STFSCIMQKW GGKREVMYTA FKALGDSVDY IQVCDSDTVL DPACTIEMLR VLEEDPQVGG
                                                                                    240
        VGGDVQILNK YDSWISFLSS VRYWMAFNVE RACQSYFGCV QCISGPLGMY RNSLLQQFLE
                                                                                    300
30
        DWYHQKFLGS KCSFGDDRHL TNRVLSIGYR TKYTARSKCL TETPTKYLRW LNQQTRWSKS
YFREWLYNSL WFHKHHLWMT YESVVTGFFP PFLIATVIQL FYRGRIWNIL LFLLTVQLVG
                                                                                    360
                                                                                    420
        IIKATYACFL RGNAEMIFMS LYSLLYMSSL LPAKIFAIAT INKSGWGTSG RKTIVVNFIG
                                                                                    480
        LIPVSIWVAV LLGGLAYTAY CODLFSETEL AFLVSGAILY GCYWVALLML YLAIIARRCG
        KKPEOYSLAF AEV
35
        Seg ID NO: 572 DNA sequence
        Nucleic Acid Accession #: Eos sequence
        Coding sequence: 148-7095
40
                                             31
                                21
        CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
                                                                                     60
        CAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                                    120
        CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                                    180
45
        CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
                                                                                    240
        CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAA TTGGGGAAAG
                                                                                    300
        AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA
                                                                                    360
        CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA
                                                                                    420
        AACACATTCA TTCATAACAC TGGGAAAACA GTGGAAATTA ATCTCACTAA TGACTACCGT
                                                                                    480
50
        GTCAGCGGAG GAGTTTCAGA AATGGTGTTT AAAGCAAGCA AGATAACTTT TCACTGGGGA
                                                                                    540
       ANATGCANTA TETCATCTGA TEGATCAGAG CATAGTTTAG ANGGACANAN ATTTCCACTT
GAGATGCANA TCTACTGCTT TGATGCGGAC CGATTTTCAN GTTTTGAGGA AGCAGTCANA
                                                                                    600
                                                                                    660
       GGAAAAGGGA AGTTAACAGC TTTATCCATT TTGTTTGAGG TTGGGACAGA AGAAAATTTG
GATTTCAAAG CGATTATTGA TGGAGTCGAA AGTGTTAGTC GTTTTGGGAA GCAGGCTGCT
                                                                                    720
55
        TTAGATCCAT TCATACTGTT GAACCTTCTG CCAAACTCAA CTGACAAGTA TTACATTTAC
                                                                                    840
        AATGGCTCAT TGACATCTCC TCCCTGCACA GACACAGTTG ACTGGATTGT TTTTAAAGAT
                                                                                    900
        ACAGTTAGCA TCTCTGAAAG CCAGTTGGCT GTTTTTTGTG AAGTTCTTAC AATGCAACAA
                                                                                    960
        TCTGGTTATG TCATGCTGAT GGACTACTTA CAAAACAATT TTCGAGAGCA ACAGTACAAG
        TTCTCTAGAC AGGTGTTTTC CTCATACACT GGAAAGGAAG AGATTCATGA AGCAGTTTGT
                                                                                   1080
60
        AGTTCAGAAC CAGAAAATGT TCAGGCTGAC CCAGAGAATT ATACCAGCCT TCTTGTTACA
                                                                                   1140
        TGGGAAAGAC CTCGAGTCGT TTATGATACC ATGATTGAGA AGTTTGCAGT TTTGTACCAG
                                                                                   1200
        CAGTTGGATG GAGAGGACCA AACCAAGCAT GAATTTTTGA CAGATGGCTA TCAAGACTTG
                                                                                   1260
        GGTGCTATTC TCAATAATTT GCTACCCAAT ATGAGTTATG TTCTTCAGAT AGTAGCCATA
                                                                                   1320
        TGCACTAATG GCTTATATGG AAAATACAGC GACCAACTGA TTGTCGACAT GCCTACTGAT
                                                                                   1380
65
        AATCCTGAAC TTGATCTTTT CCCTGAATTA ATTGGAACTG AAGAAATAAT CAAGGAGGAG
                                                                                   1440
        GAAGAGGGAA AAGACATTGA AGAAGGCGCT ATTGTGAATC CTGGTAGAGA CAGTGCTACA
                                                                                   1500
       AACCAAATCA GGAAAAAGGA ACCCCAGATT TCTACCACAA CACACTACAA TCGCATAGGG
                                                                                   1560
        ACGARATACA ATGARGCCAR GACTARCCGA TCCCCARCAR GAGGARGTGA ATTCTCTGGA
                                                                                   1620
       AAGGGTGATG TTCCCAATAC ATCTTTAAAT TCCACTTCCC AACCAGTCAC TAAATTAGCC
                                                                                   1680
70
        ACAGAAAAAG ATATTTCCTT GACTTCTCAG ACTGTGACTG AACTGCCACC TCACACTGTG
                                                                                   1740
        GAAGGTACTT CAGCCTCTTT AAATGATGGC TCTAAAACTG TTCTTAGATC TCCACATATG
                                                                                   1800
        AACTTGTCGG GGACTGCAGA ATCCTTAAAT ACAGTTTCTA TAACAGAATA TGAGGAGGAG
                                                                                   1860
       AGITTATTGA CCAGTTTCAA GCTTGATACT GGAGCTGAAG ATTCTTCAGG CTCCAGTCCC
GCAACTTCTG CTATCCCATT CATCTCTGAG AACATATCCC AAGGGTATAT ATTTTCCTCC
GAAAACCCAG AGACAATAAC ATATGATGTC CTTATACCAG AATCTGCTAG AAATGCTTCC
                                                                                   1920
                                                                                   1980
75 .
                                                                                   2040
        GAAGATTCAA CTTCATCAGG TTCAGAAGAA TCACTAAAGG ATCCTTCTAT GGAGGGAAAT
GTGTGGTTTC CTAGCTCTAC AGACATAACA GCACAGCCCG ATGTTGGATC AGGCAGAGAG
        AGCTTTCTCC AGACTAATTA CACTGAGATA CGTGTTGATG AATCTGAGAA GACAACCAAG
                                                                                   2220
        TCCTTTTCTG CAGGCCCAGT GATGTCACAG GGTCCCTCAG TTACAGATCT GGAAATGCCA
                                                                                   2280
80
        CATTATTCTA CCTTTGCCTA CTTCCCAACT GAGGTAACAC CTCATGCTTT TACCCCATCC
                                                                                   2340
        TCCAGACAAC AGGATTTGGT CTCCACGGTC AACGTGGTAT ACTCGCAGAC AACCCAACCG
                                                                                   2400
        GTATACAATG GTGAGACACC TCTTCAACCT TCCTACAGTA GTGAAGTCTT TCCTCTAGTC
                                                                                   2460
        ACCCCTTTGT TGCTTGACAA TCAGATCCTC AACACTACCC CTGCTGCTTC AAGTAGTGAT
                                                                                   2520
        TCGGCCTTGC ATGCTACGCC TGTATTTCCC AGTGTCGATG TGTCATTTGA ATCCATCCTG
                                                                                   2580
85
        TCTTCCTATG ATGGTGCACC TTTGCTTCCA TTTTCCTCTG CTTCCTTCAG TAGTGAATTG
                                                                                   2640
        TITCGCCATC TGCATACAGT TTCTCAAATC CTTCCACAAG TTACTTCAGC TACCGAGAGT
                                                                                   2700
        GATAAGGTGC CCTTGCATGC TTCTCTGCCA GTGGCTGGGG GTGATTTGCT ATTAGAGCCC
```

		/086443					
	AGCCTTGCTC	AGTATTCTGA	TGTGCTGTCC	ACTACTCATG	CTGCTTCAGA	GACGCTGGAA	2820
			TCTTTATAAA				2880
			TGCACGTTCT				2940
~	GATAATGAGG	GCTCCCAACA	CATCTTCACT	GTTTCTTACA	GTTCTGCAAT	ACCTGTGCAT	3000
5	GATTCTGTGG	<b>GTGTAACTTA</b>	TCAGGGTTCC	TTATTTAGCG	GCCCTAGCCA	TATACCAATA	3060
			CCCAACTGCA				3120
	GGTGATGGGG	AATGGTCTGG	AGCCTCTTCT	GATAGTGAAT	TTCTTTTACC	TGACACAGAT	3180
	GGGCTGACAG	CCCTTAACAT	TTCTTCACCT	GTTTCTGTAG	CTGAATTTAC	ATATACAACA	3240
	TCTGTGTTTG	GTGATGATAA	TAAGGCGCTT	TCTAAAAGTG	AAATAATATA	TGGAAATGAG	3300
10	ACTGAACTGC	AAATTCCTTC	TTTCAATGAG	ATGGTTTACC	CTTCTGAAAG	CACAGTCATG	3360
			AAATAAGTTG				3420
	ATTTCTAGCA	CCAAGGGCAT	GTTTCCAGGG	TCCCTTGCTC	ATACCACCAC	TAAGGTTTTT	3480
	GATCATGAGA	TTAGTCAAGT	TCCAGAAAAT	AACTTTTCAG	TTCAACCTAC	ACATACTGTC	3540
	TCTCAAGCAT	CTGGTGACAC	TTCGCTTAAA	CCTGTGCTTA	GTGCAAACTC	AGAGCCAGCA	3600
15	TCCTCTGACC	CTGCTTCTAG	TGAAATGTTA	TCTCCTTCAA	CTCAGCTCTT	ATTTTATGAG	3660
	ACCTCAGCTT	CTTTTAGTAC	TGAAGTATTG	CTACAACCTT	CCTTTCAGGC	TTCTGATGTT	3720
	GACACCTTGC	TTAAAACTGT	TCTTCCAGCT	GTGCCCAGTG	ATCCAATATT	GGTTGAAACC	3780
			TTCTACAATG				3840
	AGTGAAAACA	TGCTGCACTC	TACATCTGTA	CCAGTTTTTG	ATGTGTCGCC	TACTTCTCAT	3900
20	ATGCACTCTG	CTTCACTTCA	AGGTTTGACC	ATTTCCTATG	CAAGTGAGAA	ATATGAACCA	3960
	GTTTTGTTAA	AAAGTGAAAG	TTCCCACCAA	GTGGTACCTT	CTTTGTACAG	TAATGATGAG	4020
	TTGTTCCAAA	CGGCCAATTT	GGAGATTAAC	CAGGCCCATC	CCCCAAAAGG	AAGGCATGTA	4080
	TTTGCTACAC	CTGTTTTATC	AATTGATGAA	CCATTAAATA	CACTAATAAA	TAAGCTTATA	4140
	CATTCCGATG	AAATTTTAAC	CTCCACCAAA	AGTTCTGTTA	CTGGTAAGGT	ATTTGCTGGT	4200
25	ATTCCAACAG	TTGCTTCTGA	TACATTTGTA	TCTACTGATC	ATTCTGTTCC	TATAGGAAAT	4260
			TGTTTCTCCC				4320
	TTGCTGTTTC	CTTCTAAGGC	AACTTCTGAG	CTGAGTCATA	GTGCCAAATC	TGATGCCGGT	4380
	TTAGTGGGTG	GTGGTGAAGA	TGGTGACACT	GATGATGATG	GTGATGATGA	TGATGATGAC	4440
	AGAGGTAGTG	ATGGCTTATC	CATTCATAAG	TGTATGTCAT	GCTCATCCTA	TAGAGAATCA	4500
30	CAGGAAAAGG	TAATGAATGA	TTCAGACACC	CACGAAAACA	GTCTTATGGA	TCAGAATAAT	4560
	CCAATCTCAT	ACTCACTATC	TGAGAATTCT	GAAGAAGATA	ATAGAGTCAC	AAGTGTATCC	4620
			GGACAGAAGT				4680
			AAAAGAGGAA				4740
	CCTCTCAGCC	CTGAATCTAA	AGCATGGGCA	GTTCTGACAA	GTGATGAAGA	AAGTGGATCA	4800
35	GGGCAAGGTA	CCTCAGATAG	CCTTAATGAG	AATGAGACTT	CCACAGATTT	CAGTTTTGCA	4860
			TGATGGGATC				4920
			ATCATCTGTT				4980
			TAGTAGCCAT				5040
	GAATCCGAGA	AGAAGGCAGT	TATACCCCTT	GTGATCGTGT	CAGCCCTGAC	TTTTATCTGT	5100
40	CTAGTGGTTC	TTGTGGGTAT	TCTCATCTAC	TGGAGGAAAT	GCTTCCAGAC	TGCACACTTT	5160
	TACTTAGAGG	ACAGTACATC	CCCTAGAGTT	ATATCCACAC	CTCCAACACC	TATCTTTCCA	5220
	ATTTCAGATG	ATGTCGGAGC	AATTCCAATA	AAGCACTTTC	CAAAGCATGT	TGCAGATTTA	5280
			TGAAGAATTT				5340
	CAGAGCTGTA	CTGTTGACTT	AGGTATTACA	GCAGACAGCT	CCAACCACCC	AGACAACAAG	5400
45	CACAAGAATC	GATACATAAA	TATCGTTGCC	TATGATCATA	GCAGGGTTAA	GCTAGCACAG	5460
	CTTGCTGAAA	AGGATGGCAA	ACTGACTGAT	TATATCAATG	CCAATTATGT	TGATGGCTAC	5520
	AACAGACCAA	AAGCTTATAT	TGCTGCCCAA	GGCCCACTGA	AATCCACAGC	TGAAGATTTC	5580
	TGGAGAATGA	TATGGGAACA	TAATGTGGAA	GTTATTGTCA	TGATAACAAA	CCTCGTGGAG	5640
	AAAGGAAGGA	GAAAATGTGA	TCAGTACTGG	CCTGCCGATG	GGAGTGAGGA	GTACGGGAAC	5700
50	TTTCTGGTCA	CTCAGAAGAG	TGTGCAAGTG	CTTGCCTATT	ATACTGTGAG	GAATTTTACT	5760
			AAAGGGCTCC				5820
	ACACAGTATC	ACTACACGCA	GTGGCCTGAC	ATGGGAGTAC	CAGAGTACTC	CCTGCCAGTG	5880
			AGCCTATGCC				5940
	CACTGCAGTG	CTGGAGTTGG	AAGAACAGGC	ACATATATTG	TGCTAGACAG	TATGTTGCAG	6000
55	CAGATTCAAC	ACGAAGGAAC	TGTCAACATA	TTTGGCTTCT	TAAAACACAT	CCGTTCACAA	6060
	AGAAATTATT	TGGTACAAAC	TGAGGAGCAA	TATGTCTTCA	TTCATGATAC	ACTGGTTGAG	6120
	GCCATACTTA	GTAAAGAAAC	TGAGGTGCTG	GACAGTCATA	TTCATGCCTA	TGTTAATGCA	6180
	CTCCTCATTC	CTGGACCAGC	AGGCAAAACA	AAGCTAGAGA	AACAATTCCA	GCTCCTGAGC	6240
	CAGTCAAATA	TACAGCAGAG	TGACTATTCT	GCAGCCCTAA	AGCAATGCAA	CAGGGAAAAG	6300
60	AATCGAACTT	CTTCTATCAT	CCCTGTGGAA	AGATCAAGGG	TTGGCATTTC	ATCCCTGAGT	6360
	GGAGAAGGCA	CAGACTACAT	CAATGCCTCC	TATATCATGG	GCTATTACCA	GAGCAATGAA	6420
	TTCATCATTA	CCCAGCACCC	TCTCCTTCAT	ACCATCAAGG	ATTTCTGGAG	GATGATATGG	6480
	GACCATAATG	CCCAACTGGT	GGTTATGATT	CCTGATGGCC	AAAACATGGC	AGAAGATGAA	6540
	TTTGTTTACT	GGCCAAATAA	AGATGAGCCT	ATAAATTGTG	AGAGCTTTAA	GGTCACTCTT	6600
65	ATGGCTGAAG	AACACAAATG	TCTATCTAAT	GAGGAAAAAC	TTATAATTCA	GGACTTTATC	6660
	TTAGAAGCTA	CACAGGATGA	TTATGTACTT	GAAGTGAGGC	ACTTTCAGTG	TCCTAAATGG	6720
	CCAAATCCAG	ATAGCCCCAT	TAGTAAAACT	TTTGAACTTA	TAAGTGTTAT	AAAAGAAGAA	6780
	GCTGCCAATA	GGGATGGGCC	TATGATTGTT	CATGATGAGC	ATGGAGGAGT	GACGGCAGGA	6840
<b>~</b> 0	ACTTTCTGTG	CTCTGACAAC	CCTTATGCAC	CAACTAGAAA	AAGAAAATTC	CGTGGATGTT	6900
70	TACCAGGTAG	CCAAGATGAT	CAATCTGATG	AGGCCAGGAG	TCTTTGCTGA	CATTGAGCAG	6960
						AGAGAATÇCA	7020
	TCCACCTCTC	TGGACAGTAA	TGGTGCAGCA	TTGCCTGATG	GAAATATAGC		7080
	GAGTCTTTAG	TTTAACACAG	AAAGGGGTGG	GGGGACTCAC	ATCTGAGCAT	TGTTTTCCTC	7140
75	TTCCTAAAAT	TAGGCAGGAA	AATCAGTCTA	GTTCTGTTAT	CTGTTGATTT	CCCATCACCT	7200
75	GACAGTAACT	TTCATGACAT	AGGATTCTGC	CGCCAAATTT	ATATCATTAA	CAATGTGTGC	7260
	CTTTTTGCAA	GACTTGTAAT	TTACTTATTA	TGTTTGAACT	AAAATGATTG		7320
	TATTTCTAAG	AATGGAATTG	TGGTATTTTT	TTCTGTATTG	ATTTTAACAG	AAAATTTÇAA	7380
						CAAATTTTTA	7440
00	GCTGTATTTG	TAGCAATTAT	CAGGTTTGCT	AGAAATATAA	CTTTTAATAC		7500
80	AAATAAAACA	CTCTTCCATA	TGATATTCAA	CATTTTACAA	CTGCAGTATT	CACCTAAAGT	7560
	AGAAATAATC	TGTTACTTAT	TGTAAATACT	GCCCTAGTGT	CTCCATGGAC	CAAATTTATA	7620
			TATTTATA	CTGAGTCAAG	TTTTCTAGTT	CTGTGTAATT	7680
	TTTATAATTG	TAGATTTTTA	INITIACIA				
	GTTTAGTTTA	ATGACGTAGT	TCATTAGCTG	GTCTTACTCT	ACCAGTTTTC	TGACATTGTA	7740
0.5	GTTTAGTTTA TTGTGTTACC	ATGACGTAGT TAAGTCATTA	TCATTAGCTG ACTTTGTTTC	GTCTTACTCT AGCATGTAAT	ACCAGTTTTC TTTAACTTTT	GTGGAAAATA	7800
85	GTTTAGTTTA TTGTGTTACC GAAATACCTT	ATGACGTAGT TAAGTCATTA CATTTTGAAA	TCATTAGCTG ACTTTGTTTC GAAGTTTTTA	GTCTTACTCT AGCATGTAAT TGAGAATAAC	ACCAGTTTTC TTTAACTTTT ACCTTACCAA	GTGGAAAATA ACATTGTTCA	7800 7860
85	GTTTAGTTTA TTGTGTTACC GAAATACCTT AATGGTTTTT	ATGACGTAGT TAAGTCATTA CATTTTGAAA	TCATTAGCTG ACTTTGTTTC GAAGTTTTTA TTGCAAAAAT	GTCTTACTCT AGCATGTAAT TGAGAATAAC	ACCAGTTTTC TTTAACTTTT ACCTTACCAA	GTGGAAAATA	7800 7860

Seq ID NO: 573 Protein sequence: Protein Accession #: Eos sequence

```
5
       MRILKRFLAC IQLLCVCRLD WANGYYRQQR KLVEBIGWSY TGALNQKNWG KKYPTCNSPK
                                                                                  60
       QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                                 120
       FKASKITFHW GKCNMSSDGS EHSLEGQKPP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                                 180
10
       ILFEVGTEEN LOPKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
                                                                                 240
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
                                                                                 300
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                                 360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                                 420
       LIGTEBIIKE EEEGKDIBEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
                                                                                 480
15
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                                 540
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
                                                                                 600
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                                 660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
       TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNGETPLQ PSYSSEVFPL VTPLLLDNQI
                                                                                 780
20
       LNTTPAASSS DSALHATPVF PSVDVSFESI LSSYDGAPLL PFSSASFSSE LFRHLHTVSQ
       ILPOVTSATE SDKVPLHASL PVAGGDLLLE PSLAQYSDVL STTHAASETL EFGSESGVLY
                                                                                 900
       KTLMPSQVEP PSSDAMMHAR SSGPEPSYAL SDNEGSQHIP TVSYSSAIPV HDSVGVTYQG
                                                                                 960
       SLFSGPSHIP IPKSSLITPT ASLLOPTHAL SGDGEWSGAS SDSEFLLPDT DGLTALNISS
                                                                                1020
       PVSVAEFTYT TSVFGDDNKA LSKSEIIYGN ETELQIPSFN EMVYPSESTV MPNMYDNVNK
                                                                                1080
25
       LNASLQETSV SISSTKGMFP GSLAHTTTKV FDHEISQVPE NNFSVQPTHT VSQASGDTSL
                                                                                1140
       KPVLSANSEP ASSDPASSEM LSPSTQLLFY ETSASFSTEV LLQPSFQASD VDTLLKTVLP
                                                                                1200
       AVPSDPILVE TPKVDKISST MLHLIVSNSA SSENMLHSTS VPVFDVSPTS HMHSASLQGL
                                                                                1260
       TISYASEKYE PVLLKSESSH QVVPSLYSND ELFQTANLEI NQAHPPKGRH VFATFVLSID
                                                                                1320
       EPLNTLINKL IHSDEILTST KSSVTGKVFA GIPTVASDTF VSTDHSVPIG NGHVAITAVS
                                                                                1380
30
       PHRDGSVTST KLLFPSKATS ELSHSAKSDA GLVGGGEDGD TDDDGDDDDD DRGSDGLSIH
                                                                                1440
       KCMSCSSYRE SQEKVMNDSD THENSLMDQN NPISYSLSEN SEEDNRVTSV SSDSQTGMDR
                                                                                1500
       SPGKSPSANG LSQKHNDGKE ENDIQTGSAL LPLSPESKAW AVLTSDEESG SGQGTSDSLN
                                                                                1560
       ENETSTDFSF ADTNEKDADG ILAAGDSEIT PGFPQSPTSS VTSENSEVFH VSEAEASNSS
                                                                                1620
       HESRIGLAEG LESEKKAVIP LVIVSALTFI CLVVLVGILI YWRKCFOTAH FYLEDSTSPR
VISTPPTPIF PISDDVGAIP IKHFPKHVAD LHASSGFTEE FETLKEFYQE VQSCTVDLGI
                                                                                1680
35
                                                                                1740
       TADSSMHPDN KHKNRYINIV AYDHSRVKLA QLAEKDGKLT DYINANYVDG YNRPKAYIAA
QGPLKSTAED FWRMIWEHNV EVIVMITNLV EKGRRKCDQY WPADGSEEYG NFLVTQKSVQ
                                                                                1800
                                                                                1860
                                                                                1920
       VLAYYTVRNF TLRNTKIKKG SQKGRPSGRV VTQYHYTQWP DMGVPEYSLP VLTFVRKAAY
       AKRHAVGPVV VHCSAGVGRT GTYIVLDSML QQIQHEGTVN IFGFLKHIRS QRNYLVQTEE
                                                                                1980
40
       OYVFIHDTLV EAILSKETEV LDSHIHAYVN ALLIPGPAGK TKLEKOFOLL SQSNIQQSDY
                                                                                2040
       SAALKQCNRE KNRTSSIIPV ERSRVGISSL SGEGTDYINA SYIMGYYQSN EFIITQHPLL
                                                                                2100
       HTIKDFWRMI WDHNAOLVVM IPDGONMAED EFVYWPNKDE PINCESFKVT LMAEEHKCLS
       NEEKLIIODF ILEATODDYV LEVRHPOCPK WPNPDSPISK TFELISVIKE EAANRDGPMI
       VHDEHGGVTA GTFCALTTLM HQLEKENSVD VYQVAKMINL MRPGVFADIE QYQFLYKVIL
45
       SLVSTRQEEN PSTSLDSNGA ALPDGNIAES LESLV
       Seq ID NO: 574 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-4518
50
                                                                   51
                   11
                               21
                                           31
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
                                                                                  60
                                                                                 120
55
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                                180
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
                                                                                240
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAA TTGGGGAAAG
                                                                                 300
       AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA AACACATTCA TTCATAACAC TGGGAAAACA GTGGAAATTA ATCTCACTAA TGACTACCGT
                                                                                360
                                                                                 420
60
                                                                                 480
       GTCAGCGGAG GAGTTTCAGA AATGGTGTTT AAAGCAAGCA AGATAACTTT TCACTGGGGA
                                                                                 540
       AAATGCAATA TGTCATCTGA TGGATCAGAG CATAGTTTAG AAGGACAAAA ATTTCCACTT
                                                                                 600
       GAGATGCAAA TCTACTGCTT TGATGCGGAC CGATTTTCAA GTTTTGAGGA AGCAGTCAAA
                                                                                 660
       GGAAAAGGGA AGTTAAGAGC TTTATCCATT TTGTTTGAGG TTGGGACAGA AGAAAATTTG
                                                                                 720
65
       GATTTCAAAG CGATTATTGA TGGAGTCGAA AGTGTTAGTC GTTTTGGGAA GCAGGCTGCT
                                                                                 780
       TTAGATCCAT TCATACTGTT GAACCTTCTG CCAAACTCAA CTGACAAGTA TTACATTTAC
                                                                                 840
       AATGGCTCAT TGACATCTCC TCCCTGCACA GACACAGTTG ACTGGATTGT TTTTAAAGAT
                                                                                 900
       ACAGTTAGCA TCTCTGAAAG CCAGTTGGCT GTTTTTTGTG AAGTTCTTAC AATGCAACAA
                                                                                960
       TCTGGTTATG TCATGCTGAT GGACTACTTA CAAAACAATT TTCGAGAGCA ACAGTACAAG
                                                                                1020
70
       TTCTCTAGAC AGGTGTTTTC CTCATACACT GGAAAGGAAG AGATTCATGA AGCAGTTTGT
                                                                                1080
       AGTTCAGAAC CAGAAAATGT TCAGGCTGAC CCAGAGAATT ATACCAGCCT TCTTGTTACA
                                                                                1140
       TGGGAAAGAC CTCGAGTCGT TTATGATACC ATGATTGAGA AGTTTGCAGT TTTGTACCAG
                                                                                1200
       CAGTTGGATG GAGAGGACCA AACCAAGCAT GAATTTTTGA CAGATGGCTA TCAAGACTTG
                                                                                1260
       GGTGCTATTC TCAATAATTT GCTACCCAAT ATGAGTTATG TTCTTCAGAT AGTAGCCATA
                                                                                1320
75
       TGCACTAATG GCTTATATGG AAAATACAGC GACCAACTGA TTGTCGACAT GCCTACTGAT
                                                                                1380
       AATCCTGAAC TTGATCTTTT CCCTGAATTA ATTGGAACTG AAGAAATAAT CAAGGAGGAG
                                                                                1440
       GAAGAGGGAA AAGACATTGA AGAAGGCGCT ATTGTGAATC CTGGTAGAGA CAGTGCTACA
                                                                                1500
       AACCAAATCA GGAAAAAGGA ACCCCAGATT TCTACCACAA CACACTACAA TCGCATAGGG
                                                                                1560
       ACGARATACA ATGRAGCCAA GACTARCOGA TCCCCCARCAA GAGGRAGTGA ATTCTCTGGA
AAGGGTGATG TTCCCAATAC ATCTTTAAAT TCCACTTCCC AACCAGTCAC TAAATTAGCC
                                                                                1620
80
                                                                                1680
       ACAGAAAAG ATATTTCCTT GACTTCTCAG ACTGTGACTG AACTGCCACC TCACACTGTG
                                                                                1740
       GAAGGTACTT CAGCCTCTTT AAATGATGGC TCTAAAACTG TTCTTAGATC TCCACATATG
                                                                                1800
       AACTTGTCGG GGACTGCAGA ATCCTTAAAT ACAGTTTCTA TAACAGAATA TGAGGAGGAG
                                                                                1860
       AGTTTATTGA CCAGTTTCAA GCTTGATACT GGAGCTGAAG ATTCTTCAGG CTCCAGTCCC
                                                                                1920
85
       GCAACTTCTG CTATCCCATT CATCTCTGAG AACATATCCC AAGGGTATAT ATTTTCCTCC
                                                                                1980
       GAAAACCCAG AGACAATAAC ATATGATGTC CTTATACCAG AATCTGCTAG AAATGCTTCC
                                                                                2040
       GAAGATTCAA CTTCATCAGG TTCAGAAGAA TCACTAAAGG ATCCTTCTAT GGAGGGAAAT
                                                                               2100
```

```
GTGTGGTTTC CTAGCTCTAC AGACATAACA GCACAGCCCG ATGTTGGATC AGGCAGAGAG 2160
       AGCTTTCTCC AGACTAATTA CACTGAGATA CGTGTTGATG AATCTGAGAA GACAACCAAG
                                                                              2220
       TCCTTTTCTG CAGGCCCAGT GATGTCACAG GGTCCCTCAG TTACAGATCT GGAAATGCCA
                                                                              2280
       CATTATTCTA CCTTTGCCTA CTTCCCAACT GAGGTAACAC CTCATGCTTT TACCCCATCC
                                                                              2340
 5
       TCCAGACAAC AGGATTTGGT CTCCACGGTC AACGTGGTAT ACTCGCAGAC AACCCAACCG
                                                                              2400
       GTATACAATG CAGAGGCCAG TAATAGTAGC CATGAGTCTC GTATTGGTCT AGCTGAGGGG
                                                                              2460
       TTGGAATCCG AGAAGAAGGC AGTTATACCC CTTGTGATCG TGTCAGCCCT GACTTTTATC
                                                                              2520
       TGTCTAGTGG TTCTTGTGGG TATTCTCATC TACTGGAGGA AATGCTTCCA GACTGCACAC
                                                                              2580
       TTTTACTTAG AGGACAGTAC ATCCCCTAGA GTTATATCCA CACCTCCAAC ACCTATCTTT
                                                                              2640
10
                                                                              2700
       CCAATTTCAG ATGATGTCGG AGCAATTCCA ATAAAGCACT TTCCAAAGCA TGTTGCAGAT
       TTACATGCAA GTAGTGGGTT TACTGAAGAA TTTGAGACAC TGAAAGAGTT TTACCAGGAA
                                                                              2760
       GTGCAGAGCT GTACTGTTGA CTTAGGTATT ACAGCAGACA GCTCCAACCA CCCAGACAAC
                                                                              2820
       AAGCACAAGA ATCGATACAT AAATATCGTT GCCTATGATC ATAGCAGGGT TAAGCTAGCA
                                                                              2880
       CAGCTTGCTG AAAAGGATGG CAAACTGACT GATTATATCA ATGCCAATTA TGTTGATGGC
                                                                              2940
15
       TACAACAGAC CAAAAGCTTA TATTGCTGCC CAAGGCCCAC TGAAATCCAC AGCTGAAGAT
                                                                              3000
       TTCTGGAGAA TGATATGGGA ACATAATGTG GAAGTTATTG TCATGATAAC AAACCTCGTG
                                                                              3060
       GAGAAAGGAA GGAGAAAATG TGATCAGTAC TGGCCTGCCG ATGGGAGTGA GGAGTACGGG
                                                                              3120
       AACTITCTGG TCACTCAGAA GAGTGTGCAA GTGCTTGCCT ATTATACTGT GAGGAATTTT
       ACTCTAAGAA ACACAAAAAT AAAAAAGGGC TCCCAGAAAG GAAGACCCAG TGGACGTGTG
GTCACACAGT ATCACTACAC GCAGTGGCCT GACATGGGAG TACCAGAGTA CTCCCTGCCA
20
       GTGCTGACCT TTGTGAGAAA GGCAGCCTAT GCCAAGCGCC ATGCAGTGGG GCCTGTTGTC
GTCCACTGCA GTGCTGGAGT TGGAAGAACA GGCACATATA TTGTGCTAGA CAGTATGTTG
                                                                              3360
                                                                              3420
       CAGCAGATTC AACACGAAGG AACTGTCAAC ATATTTGGCT TCTTAAAACA CATCCGTTCA
                                                                              3480
       CAAAGAAATT ATTTGGTACA AACTGAGGAG CAATATGTCT TCATTCATGA TACACTGGTT
                                                                              3540
25
                                                                              3600
       GAGGCCATAC TTAGTAAAGA AACTGAGGTG CTGGACAGTC ATATTCATGC CTATGTTAAT
       GCACTCCTCA TTCCTGGACC AGCAGGCAAA ACAAAGCTAG AGAAACAATT CCAGCTCCTG
                                                                              3660
       AGCCAGTCAA ATATACAGCA GAGTGACTAT TCTGCAGCCC TAAAGCAATG CAACAGGGAA
                                                                              3720
       AAGAATCGAA CTTCTTCTAT CATCCCTGTG GAAAGATCAA GGGTTGGCAT TTCATCCCTG
                                                                              3780
       AGTGGAGAAG GCACAGACTA CATCAATGCC TCCTATATCA TGGGCTATTA CCAGAGCAAT
                                                                              3840
       GAATTCATCA TTACCCAGCA CCCTCTCCTT CATACCATCA AGGATTTCTG GAGGATGATA
30
                                                                              3900
       TGGGACCATA ATGCCCAACT GGTGGTTATG ATTCCTGATG GCCAAAACAT GGCAGAAGAT
                                                                              3960
       GAATTTGTTT ACTGGCCAAA TAAAGATGAG CCTATAAATT GTGAGAGCTT TAAGGTCACT
                                                                              4020
       CTTATGGCTG AAGAACACAA ATGTCTATCT AATGAGGAAA AACTTATAAT TCAGGACTTT
                                                                              4080
       ATCTTAGAAG CTACACAGGA TGATTATGTA CTTGAAGTGA GGCACTTTCA GTGTCCTAAA
                                                                              4140
35
       TGGCCAAATC CAGATAGCCC CATTAGTAAA ACTTTTGAAC TTATAAGTGT TATAAAAGAA
                                                                              4200
                                                                              4260
       GAAGCTGCCA ATAGGGATGG GCCTATGATT GTTCATGATG AGCATGGAGG AGTGACGGCA
       GGAACTITCT GTGCTCTGAC AACCCTTATG CACCAACTAG AAAAAGAAAA TTCCGTGGAT
                                                                              4320
       GTTTACCAGG TAGCCAAGAT GATCAATCTG ATGAGGCCAG GAGTCTTTGC TGACATTGAG
                                                                              4380
       CAGTATCAGT TTCTCTACAA AGTGATCCTC AGCCTTGTGA GCACAAGGCA GGAAGAGAAT
                                                                              4440
       CCATCCACCT CTCTGGACAG TAATGGTGCA GCATTGCCTG ATGGAAATAT AGCTGAGAGC
TTAGAGTCTT TAGTTTAACA CAGAAAGGG TGGGGGGACT CACATCTGAG CATTGTTTTC
40
                                                                              4500
       CTCTTCCTAA AATTAGGCAG GAAAATCAGT CTAGTTCTGT TATCTGTTGA TTTCCCATCA
       CCTGACAGTA ACTITICATGA CATAGGATTC TGCCGCCAAA TTTATATCAT TAACAATGTG
       TGCCTTTTTG CAAGACTTGT AATTTACTTA TTATGTTTGA ACTAAAATGA TTGAATTTTA
                                                                              4740
45
       CAGTATTTCT AAGAATGGAA TTGTGGTATT TTTTTCTGTA TTGATTTTAA CAGAAAATTT
                                                                              4800
       CAATTTATAG AGGTTAGGAA TTCCAAACTA CAGAAAATGT TTGTTTTTAG TGTCAAATTT
                                                                              4860
       TTAGCTGTAT TTGTAGCAAT TATCAGGTTT GCTAGAAATA TAACTTTTAA TACAGTAGCC
                                                                              4920
       TGTAAATAAA ACACTCTTCC ATATGATATT CAACATTTTA CAACTGCAGT ATTCACCTAA
                                                                              4980
       AGTAGAAATA ATCTGTTACT TATTGTAAAT ACTGCCCTAG TGTCTCCATG GACCAAATTT
                                                                              5040
50
       ATATTTATAA TIGIAGATTI TIATATTITA CIACIGAGIC AAGITTICIA GIICIGIGIA
                                                                              5100
       ATTGTTTAGT TTAATGACGT AGTTCATTAG CTGGTCTTAC TCTACCAGTT TTCTGACATT
                                                                              5160
       GTATTGTGTT ACCTAGGTCA TTAACTTTGT TTCAGCATGT AATTTTAACT TTTGTGGAAA
                                                                              5220
                                                                              5280
       ATAGAAATAC CTTCATTTTG AAAGAAGTTT TTATGAGAAT AACACCTTAC CAAACATTGT
       TCAAATGGTT TTTATCCAAG GAATTGCAAA AATAAATATA AATATTGCCA TTAAAAAAAA
                                                                              5340
55
       АААААА АААААААА ААААААА
```

## Seq ID NO: 575 Protein sequence: Protein Accession #: Eos sequence

1	11	21	31	41	51	
1	1	1	1	1		
MRILKRFLAC	İQLLCVCRLD	WANGYYROOR	KLVEEIGWSY	TGALNQKNWG	KKYPTCNSPK	60
QSPINIDEDL	TOVNVNLKKL	KFQGWDKTSL	ENTFIHNTGK	TVEINLTNDY	RVSGGVSEMV	120
<b>FKASKITFHW</b>	GKCNMSSDGS	EHSLEGQKFP	LEMQIYCFDA	DRFSSFEEAV	KGKGKLRALS	180
ILFEVGTEEN	LDFKAIIDGV	<b>ESVSRFGKQA</b>	ALDPFILLNL	LPNSTDKYYI	YNGSLTSPPC	240
TDTVDWIVFK	DTVSISESQL	AVFCEVLTMQ	QSGYVMLMDY	LONNFREQQY	KFSRQVFSSY	300
						360
						420
LIGTEETIKE	EEEGKDIEEG	AIVNPGRDSA	TNQIRKKEPQ	ISTTTHYNRI	GTKYNEAKTN	480
RSPTRGSEFS	GKGDVPNTSL	NSTSQPVTKL	ATEKDISLTS	QTVTELPPHT	VEGTSASLND	540
						600
						660
						720
TEVTPHAFTP	SSRQQDLVST	VNVVYSQTTQ	<b>PVYNAEASNS</b>	SHESRIGLAE	GLESEKKAVI	780
PLVIVSALTF	ICLVVLVGIL	IYWRKCFQTA	HFYLEDSTSP	RVISTPPTPI	<b>FPISDDVGAI</b>	840
PIKHFPKHVA	DLHASSGFTE	EPETLKEFYQ	EVQSCTVDLG	ITADSSNHPD	NKHKNRYINI	900
VAYDHSRVKL	AQLAEKDGKL	TDYINANYVD	GYNRPKAYIA	AQGPLKSTAB	DFWRMIWEHN	960
VEVIVMITNL	VEKGRRKCDQ	YWPADGSEEY	GNFLVTQKSV	QVLAYYTVRN	FTLRNTKIKK	1020
GSQKGRPSGR	VVTQYHYTQW	PDMGVPEYSL	PVLTPVRKAA	YAKRHAVGPV	VVHCSAGVGR	1080
TGTYIVLDSM	LOQIQHECTV	NIFGFLKHIR	SQRNYLVQTE	EQYVPIHDTL	VEAILSKETE	1140
VLDSHIHAYV	NALLIPGPAG	KTKLEKQFQL	LSQSNIQQSD	YSAALKQCNR	EKNRTSSIIP	1200
VERSRVGISS	LSGEGTDYIN	<b>ASYIMGYYQS</b>	NEFIITOHPL	LHTIKDFWRM	IWDHNAQLVV	1260
MIPDGQNMAE	DEFVYWPNKD	<b>EPINCESFKV</b>	TLMAEEHKCL	SNEEKLIIQD	FILEATQDDY	1320
VLEVRHFQCP	KWPNPDSPIS	KTFELISVIK	EEAANRDGPM	IVHDEHGGVT	AGTFCALTTL	1380
MHQLEKENSV	DVYQVAKMIN	LMRPGVFADI	EQYQPLYKVI	LSLVSTRQEE	NPSTSLDSNG	1440
	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP PLVIVSALTF VAYDHSRVKL VEVIVMITNL GSQKGRPSGR TGTTIVLDSM VLDSHIHAYV VERSRVGISS MIPDGQNMAS VLEVRHFQCP MHQLEKENSV	MRILKRFLAC IQLLCVCRLD QSPINIDEDL TQVNVNLKKL PKASKITFHW GKCNMSSDGS ILFEVGTEEN LDFKAIIDGV TDTVDWIVFK DTVSISESQL TGKEEIHEAV CSSEPENVQA HEFLITDGYQD LGAILNNLLP LIGTEEIIKE EEEGKDIEEG RSPTRGSEFS GKGDVENTSL GSKTVLRSPH MNLSGTAESL ENISQGYIFS SENPETITYD TAQPDVGSGR ESFLQTNYTE TEVTPHAFTP SSRQQDLVST TPLVIVSALTF VAYDHSRVKL AQLAEKDGKL VEVIVMITNL VEKGRRKCDQ GSQKGRPSGR TGTYIVLDSM LQQIQHEGTV VLDSHIHAYV NALLIPGPAG VERSRVGISS LSGEGTDYIN MIPDGQNMAE DEFVYWPNKD VLEVRHFQCP KWPNPDSPIS	MRILKRFLAC IQLLCVCRLD WANGYYRQQR QSPINIDEDL TQVNVNLKLL KFQWDKTSL FKASKITFHW GKCMMSSDGS EHSLEGQKFP ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA TDTVDWIVFK DTVSISESQL AVFCEVLTMQ TGKEEIHEAV CSSEPENVQA DPENYTSLLV HEFLTDGYQD LGAILNNLLP NMSYVLQIVA LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA RSPTRGSEFS GKGDVPNTSL NTSTQPVTKL GSKTVLRSPH MMLSGTAESL NTVSITEYEE ENISQGYIFS SEMPETITYD VLIPBSARNA TAQPDVGSGR ESFLQTNYTE IRVDESEKTT TEVTPHAFTP SSRQQDLVST VNVVVSQTTQ PLVIVSALTF ICLVVLVGIL IYWRKCFQTA VAYDHSRVKL AQLAEKDGKL TDYINANYVD VEVIVMITNL VEKGRRKCDQ YWPADGSEFY VTQYHYTQW PDMGVPEYSL TGTYIVLDSM LQQIQHEGTV NIFGFLKHIR VLDSHIHAYV NALLIPGPAG KTKLEKQFQL VERSRVGISS LSGEGTDYIN ASYIMGYYQS MIPDGQNMAE DEFYYWPNKD MHQLEKENSV DVYQVAKMIN LMRPGVFADI	MRILKRFLAC IQLLCVCRLD WANGYYRQOR KLVEEIGWSY QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIENTGK FRASKITFHW GKCNMSSDGS EHSLEGGKFP LEMQIYCFDA ILFEVGTEEN LDFKAILDGV ESVSRFGKQA ALDPFILLNL TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD LIGTEEIIKE EEGKDIEEG ALVNPGRDSA TNQIRKKEPQ LIGTEEIIKE EEGKDIEEG ALVNPGRDSA TNQIRKKEPQ RSPTRGSEFS GKGDVENTSL NSTSQPVTKL ATEKDISLTS GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS TEVTPHAFTP SSRQQDLVST VNVYSGTTQ PVYNAEASNS PIKHFPKHVA DLHASSGFTE EPETLKEFYQ EVQSCTVDLG VAYDHSRVKL AQLAEKDGKL TDYINANYVD GYNRPKAYIA VEVIVMITNL VEKGRRKCDQ YWPADGSESY GNFLVTQKSV VENGRPSGS VVTQYHYTQW PDMGVPEYSL PVLTFYKKAA TGTYIVLDSM LQQIQHEGTV NIFGFLKHIR SQRNYLVQTE VLDSHIHAYV NALLIPGPAG KTKLEKQFQL LSQSNIQQSD VERSRVGISS LSGEGTDYIN ASYIMGYYQS NEFIITOHPL MIPDGQNMAE DEFVYWPNKD EPINCESFKV TLMAEEHKCL VLEVRHFQCP KWPNPDSPIS KTFELISVIK EEAANRIGDPM MHQLEKENSV DVYQVAKMIN LMRPGVFADI EQYQFLYKVI	MRILKRFLAC IQLLCVCRLD WANGYYRQOR KLVEEIGWSY TGALNQKNWG QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY FRASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEAV ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY TCKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKPAVLY HEFLTDGYQD LGAILNNLLP MSYVLQIVA ICTNGLYGKY SDQLIVDMPT LIGTEEIIKE EEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEXDISLTS QTVTELPPHT GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSGSS ENISQGVIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM TEVTPHAFTP SSRQODLVST VNVVYSQTTQ PVYNAEASNS SHESRIGLAE PIKHFPKHVA DLHASSGFTE EPETLKEFYQ EVQSCTVDLG ITADSSNHPD VAYDHSRVKL AQLAEKDGKL TDYINANYVD GYNRPKAYIA AQGPLKSTAE VEVIVMITNL VEKGRRKCDQ YWPADGSEEY GNFLVTQKSV QVLAYYTVRN GGNGKRPSGR VVTQYHYTQW PDMGVPEYSL PVLTFVRKAA YAKRHAVGFV VERSRVGISS LSGEGTDYIN ASYINGYYQS NEFIITQHPL LHTIKDFWRM MIPDGQNMAE DEFVYWPNKD EPINCESFKV TLMAEEHKCL SVENLIQD VLEVRHFQCP KKNPNDSPIS KTFELISVIK EEAANRDGFM IVHDEHGGVT MIQLEKENSV DVYQVAKMIN LMRPGVFADI EQYQFLYKVI LSUVSTRQEE	MRILKRFLAC IQLLCVCRLD WANGYYRQQR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK GSPINIDEDL TQVNVMLKKL KFQGMDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSFEEAV KGKGKLRALS ILFEVGTEEN LDFKAILDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMFT DNEELDLFPE LIGTEEIIKE EEGKDIEEG AIVNFGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN RSPTRGSEFS GKGDVENTSL NSTSQFVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND SENSGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGFVMS QGPSVTDLEM PHYSTFAYFP EVTPHAFTP SSRQQILVST VNVVYSQTTQ PVYNAEASNS SHESRIGLAE GLESEKKAVI VAYDHSRVKL AQLAEKDGKL TDYINANYVD GYNRPKAYIA AQGPLKSTAB DFWRMIWEHN VEVIVMITNL VEKGRRKCDQ YWPADGSEFY GNFLVTQKSV QVLAYYTVRN FTLRNTKIKK GSQKGRPSGS VVTQYHYTQW PDMGVPEYSL PVLTFVRKAA YAKRHAVGPV VVHCSAGVGR LQQIQHEGTV NIFGFLKHR SQRNYLVQTE EQYVPIHDTL VEALLSKETE VLDSHIHAYV NALLIPGPAG KTKLEKQFQL LSQSNIQQSD YSAALKQCNR EKNRTSSIIP VERSRVGISS LSGEGTDYIN ASYMGYYGS NEFIITQHPL LHTIKDFWRM IWDMNAQLVV VLEVRHFQCP KWPNPDSPIS KTFELISVIK EEAANRBGPM IVHDEHGGVT AGTFCALTTL MHQLEKENSV DVYQVAKMIN LMRPGVFADI EQYVPLYKVI LSLVSTRQEE NPSTSLDSNG

Seq ID NO: 576 DNA sequence Nucleic Acid Accession #: EOS sequence Coding sequence: 148-4494

5	Coding sequ	ience: 148-4	1494				
•	1	11	21	31	41	51	
	1	1	<u>L</u>	<u> </u>			60
			CTCACTTCGA				120
10			TCTGGAAATG				180
	CAGCTCCTCT	GTGTTTGCCG	CCTGGATTGG	GCTAATGGAT	ACTACAGACA	ACAGAGAAAA	240
	CTTGTTGAAG	AGATTGGCTG	GTCCTATACA CCCAAAACAA	GGAGCACTGA	ATCAAAAAAA	TTGGGGAAAG	300 360
			GAAACTTAAA				420
15	AACACATTCA	TTCATAACAC	TGGGAAAACA	GTGGAAATTA	ATCTCACTAA	TGACTACCGT	480
			AATGGTGTTT				540
			TGGATCAGAG TGATGCAGAC				600 660
			TTTATCCATT				720
20	GATTTCAAAG	CGATTATTGA	TGGAGTCGAA	AGTGTTAGTC	GTTTTGGGAA	GCAGGCTGCT	780
	TTAGATCCAT	TCATACTGTT	GAACCTTCTG TCCCTGCACA	CCAAACTCAA	CTGACAAGTA	TTACATTTAC	840 900
			CCAGTTGGCT				960
0.5	TCTGGTTATG	TCATGCTGAT	<b>GGACTACTTA</b>	CAAAACAATT	TTCGAGAGCA	ACAGTACAAG	1020
25			CTCATACACT				1080 1140
			TCAGGCTGAC TTATGATACC				1200
	CAGTTGGATG	GAGAGGACCA	AACCAAGCAT	GAATTTTTGA	CAGATGGCTA	TCAAGACTTG	1260
20			GCTACCCAAT				1320
30			AAAATACAGC CCCTGAATTA				1380 1440
	GAAGAGGGAA	AAGACATTGA	AGAAGGCGCT	ATTGTGAATC	CTGGTAGAGA	CAGTGCTACA	1500
	AACCAAATCA	GGAAAAAGGA	ACCCCAGATT	TCTACCACAA	CACACTACAA	TCGCATAGGG	1560
35			GACTAACCGA ATCTTTAAAT				1620 1680
55			GACTTCTCAG				1740
	GAAGGTACTT	CAGCCTCTTT	AAATGATGGC	TCTAAAACTG	TTCTTAGATC	TCCACATATG	1800
	AACTTGTCGG	GGACTGCAGA	ATCCTTAAAT	ACAGTTTCTA	TAACAGAATA	TGAGGAGGAG	1860
40	AGTTTATTGA	CCAGTTTCAA	GCTTGATACT CATCTCTGAG	BACATATCCC	ATTCTTCAGG	ATTTTCCTCC	1920 1980
40			ATATGATGTC				2040
	GAAGATTCAA	CTTCATCAGG	TTCAGAAGAA	TCACTAAAGG	ATCCTTCTAT	GGAGGGAAAT	2100
	GTGTGGTTTC	CTAGCTCTAC	AGACATAACA CACTGAGATA	GCACAGCCCG	ATGTTGGATC	AGGCAGAGAG	2160 2220
45	TCCTTTTCTG	CAGGCCCAGT	GATGTCACAG	GGTCCCTCAG	TTACAGATCT	GGAAATGCCA	2280
	CATTATTCTA	CCTTTGCCTA	CTTCCCAACT	GAGGTAACAC	CTCATGCTTT	TACCCCATCC	2340
			CTCCACGGTC				2400 2460
			TAGTAGCCAT TATACCCCTT				2520
50	CTAGTGGTTC	TTGTGGGTAT	TCTCATCTAC	TGGAGGAAAT	GCTTCCAGAC	TGCACACTTT	2580
	TACTTAGAGG	ACAGTACATC	CCCTAGAGTT	ATATCCACAC	CTCCAACACC	TATCTTTCCA	2640
			AATTCCAATA TGAAGAATTT				2700 2760
			CAACCACCCA				2820
55			CAGGGTTAAG				2880
			CAATTATGTT ATCCACAGCT				2940 3000
			GATAACAAAC				3060
<b>CO</b>	CAGTACTGGC	CTGCCGATGG	GAGTGAGGAG	TACGGGAACT	TTCTGGTCAC	TCAGAAGAGT	3120
60	GTGCAAGTGC	TTGCCTATTA	TACTGTGAGG ACCCAGTGGA	AATTTTACTC	TAAGAAACAC	AAAAATAAAA	3180 3240
	TGGCCTGACA	TGGGAGTACC	AGAGTACTCC	CTGCCAGTGC	TGACCTTTGT	GAGAAAGGCA	3300
	GCCTATGCCA	AGCGCCATGC	AGTGGGGCCT	GTTGTCGTCC	ACTGCAGTGC	TGGAGTTGGA	3360
65						CGAAGGAACT GGTACAAACT	3420 3480
05	GAGGAGCAAT	ATGTCTTCAT	TCATGATACA	CTGGTTGAGG	CCATACTTAG	TAAAGAAACT	3540
	GAGGTGCTGG	ACAGTCATAT	TCATGCCTAT	GTTAATGCAC	TCCTCATTCC	TGGACCAGCA	3600
	GGCAAAACAA	AGCTAGAGAA	ACAATTCCAG	CTCCTGAGCC	AGTCAAATAT	ACAGCAGAGT	3660
70	GACTATTCTG	CAGCCCTAAA	GCAATGCAAC TGGCATTTCA	AGGGAAAAGA	GAGAAGGCAC	TTCTATCATC AGACTACATC	3780
, 0	AATGCCTCCT	ATATCATGGG	CTATTACCAG	AGCAATGAAT	TCATCATTAC	CCAGCACCCT	3840
	CTCCTTCATA	CCATCAAGGA	TTTCTGGAGG	ATGATATGGG	ACCATAATGC	CCAACTGGTG	3900
	GTTATGATTC	CTGATGGCCA	AAACATGGCA	GAAGATGAAT	TEGETTACE	GCCAAATAAA ACACAAATGT	3960 4020
75	CTATCTAATG	AGGAAAAACT	TATAATTCAG	GACTTTATCT	TAGAAGCTAC		4080
	TATGTACTTG	AAGTGAGGCA	CTTTCAGTGT	CCTAAATGGC	CAAATCCAGA	TAGCCCCATT	4140
	AGTAAAACTT	TTGAACTTAT	AAGTGTTATA	AAAGAAGAAG	CTGCCAATAG	GGATGGGCCT	4200
	CTTATGCACC	AACTAGAAAA	AGAAAATTCC	GTGGATGTTT	ACCAGGTAGC	TCTGACAACC CAAGATGATC	4320
80	AATCTGATGA	GGCCAGGAGT	CTTTGCTGAC	ATTGAGCAGT	ATCAGTTTCT	CTACAAAGTG	4380
	ATCCTCAGCC	TTGTGAGCAC	AAGGCAGGAA	GAGAATCCAT	CCACCTCTCT	GGACAGTAAT	4440
	GGTGCAGCAT AACGCCTCCC	GGGACTCACA	AAATATAGCT TCTGAGCATT	GTTTTCCTCT	TCCTAAAATT	TTAACACAGA AGGCAGGAAA	4500 4560
0.5	ATCAGTCTAG	TTCTGTTATC	TGTTGATTTC	CCATCACCTG	ACAGTAACTT	TCATGACATA	4620
85	GGATTCTGCC	GCCAAATTTA	TATCATTAAC	AATGTGTGCC	TTTTTGCAAG	ACTTGTAATT	
	TACTTATTAT	GTTTGAACTA	AAATGATTGA	ATTTTACAGT	ATITCTAAGA		4740 4800
	GGIATITTT	TOTALIGA	TITAMCAGA		TINDAGGI		-000

```
AAACTACAGA AAATGTTTGT TTTTAGTGTC AAATTTTTAG CTGTATTTGT AGCAATTATC 4860 AGGTTTGCTA GAAATATAAC TTTTAATACA GTAGCCTGTA AATAAAACAC TCTTCCATAT 4920
       GATATTCAAC ATTITACAAC TGCAGTATTC ACCTAAAGTA GAAATAATCT GTTACTTATT
GTAAATACTG CCCTAGTGTC TCCATGGACC AAATTTATAT TTATAATTGT AGATTTTAT
                                                                                4980
                                                                                5040
        ATTITACTAC TGAGTCAAGT ITTCTAGTTC TGTGTAATTG TTTAGTTTAA TGACGTAGTT
CATTAGCTGG TCTTACTCTA CCAGTTTTCT GACATTGTAT TGTGTTACCT AAGTCATTAA
                                                                                5100
                                                                                5160
        CTTTGTTTCA GCATGTAATT TTAACTTTTG TGGAAAATAG AAATACCTTC ATTTTGAAAG
                                                                                5220
        AAGTTTTTAT GAGAATAACA CCTTACCAAA CATTGTTCAA ATGGTTTTTA TCCAAGGAAT
                                                                                5280
        ТССААЛАТА АЛТАТАЛАТА ТТСССАТТАЛ АЛЛАЛАЛАЛ АЛЛАЛАЛАЛ АЛЛАЛАЛАЛ
                                                                                5340
10
        Seq ID NO: 577 Protein sequence:
        Protein Accession #: EOS sequence
15
        MRILKRPLAC IQLLCVCRLD WANGYYRQQR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK
                                                                                  60
        QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                                 120 ·
        FKASKITFHW GKCNMSSDGS EHSLEGQKPP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                                 180
20
        ILPEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
        TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
                                                                                 300
        TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                                 360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                                 420
        LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
                                                                                 480
25
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                                 540
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
                                                                                 600
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                                 660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                                 720
       TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNEASNSS HESRIGLAEG LESEKKAVIP
                                                                                 780
30
       LVIVSALTFI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTFIF PISDDVGAIP
IKHFPKHVAD LHASSGFTEE FEEVQSCTVD LGITADSSNH PDNKHKNRYI NIVAYDHSRV
                                                                                 840
                                                                                 900
       KLAQLAEKOG KLTDYINANY VDGYNRPKAY IAAQGPLKST AEDFWRMIWE HNVEVIYMIT
NLVEKGRRKC DQYWPADGSE EYGNFLVTQK SVQVLAYYTV RNFTLRNTKI KKGSQKGRPS
                                                                                 960
                                                                                1020
       GRVVTQYHYT QWPDMGVPEY SLPVLTFVRK AAYAKRHAVG PVVVHCSAGV GRTGTYIVLD
                                                                                1080
35
       SMLQQIQHEG TVNIPGFLKH IRSQRNYLVQ TEEQYVFIHD TLVEAILSKE TEVLDSHIHA
                                                                                1140
        YVNALLIPGP AGKTKLEKOF OLLSOSNIQO SDYSAALKOC NREKNRTSSI IPVERSRVGI
                                                                                1200
       SSLSGEGTDY INASYIMGYY QSNEFIITQH PLLHTIKDFW RMIWDHNAQL VVMIPDGQNM
       AEDEFVYWPN KDEPINCESF KVTLMAEEHK CLSNEEKLII QDFILEATQD DYVLEVRHFQ
                                                                                1320
       CPKWPNPDSP ISKTFELISV IKEEAANRDG PMIVHDEHGG VTAGTFCALT TLMHQLEKEN
40
       SVDVYQVAKM INLMRPGVFA DIEQYQFLYK VILSLVSTRQ EENPSTSLDS NGAALPDGNI
       Seq ID NO: 578 DNA sequence
45
       Nucleic Acid Accession #: EOS sequence
       Coding sequence: 501-4514
50
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
       CAAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                                120
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                                 180
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
                                                                                 240
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAT TGGGGAAAGA
55
       AATATCCAAC ATGTAATAGC CCAAAACAAT CTCCTATCAA TATTGATGAA GATCTTACAC
       AAGTAAATGT GAATCTTAAG AAACTTAAAT TTCAGGGTTG GGATAAAACA TCATTGGAAA
       ACACATTCAT TCATAACACT GGGAAAACAG TGGAAATTAA TCTCACTAAT GACTACCGTG
                                                                                 480
       TCAGCGGAGG AGTTTCAGAA ATGGTGTTTA AAGCAAGCAA GATAACTTTT CACTGGGGAA
       AATGCAATAT GTCATCTGAT GGATCAGAGC ATAGTTTAGA AGGACAAAAA TTTCCACTTG
                                                                                 600
60
       AGATGCAAAT CTACTGCTTT GATGCGGACC GATTTTCAAG TTTTGAGGAA GCAGTCAAAG
                                                                                 660
       GAAAAGGGAA GTTAAGAGCT TTATCCATTT TGTTTGAGGT TGGGACAGAA GAAAATTTGG
                                                                                 720
       ATTTCAAAGC GATTATTGAT GGAGTCGAAA GTGTTAGTCG TTTTGGGAAG CAGGCTGCTT
                                                                                 780
       TAGATCCATT CATACTGTTG AACCTTCTGC CAAACTCAAC TGACAAGTAT TACATTTACA
                                                                                840
       ATGGCTCATT GACATCTCCT CCCTGCACAG ACACAGTTGA CTGGATTGTT TTTAAAGATA
                                                                                900
65
       CAGTTAGCAT CTCTGAAAGC CAGTTGGCTG TTTTTTGTGA AGTTCTTACA ATGCAACAAT
                                                                                960
       CTGGTTATGT CATGCTGATG GACTACTTAC AAAACAATTT TCGAGAGCAA CAGTACAAGT
                                                                               1020
       TCTCTAGACA GGTGTTTTCC TCATACACTG GAAAGGAAGA GATTCATGAA GCAGTTTGTA
                                                                               1080
       GTTCAGAACC AGAAAATGTT CAGGCTGACC CAGAGAATTA TACCAGCCTT CTTGTTACAT
                                                                               1140
       GGGAAAGACC TCGAGTCGTT TATGATACCA TGATTGAGAA GTTTGCAGTT TTGTACCAGC
                                                                               1200
70
       AGTTGGATGG AGAGGACCAA ACCAAGCATG AATTTTTGAC AGATGGCTAT CAAGACTTGG
                                                                               1260
       GTGCTATTCT CAATAATTTG CTACCCAATA TGAGTTATGT TCTTCAGATA GTAGCCATAT
                                                                               1320
       GCACTAATGG CTTATATGGA AAATACAGCG ACCAACTGAT TGTCGACATG CCTACTGATA
                                                                               1380
       ATCCTGAACT TGATCTTTC CCTGAATTAA TTGGAACTGA AGAAATAATC AAGGAGGAGG
       AAGAGGGAAA AGACATTGAA GAAGGCGCTA TTGTGAATCC TGGTAGAGAC AGTGCTACAA
75
       ACCAAATCAG GAAAAAGGAA CCCCAGATTT CTACCACAAC ACACTACAAT CGCATAGGGA
       CGAAATACAA TGAAGCCAAG ACTAACCGAT CCCCAACAAG AGGAAGTGAA TTCTCTGGAA
                                                                               1620
       AGGGTGATGT TCCCAATACA TCTTTAAATT CCACTTCCCA ACCAGTCACT AAATTAGCCA
                                                                               1680
       CAGAAAAAGA TATTTCCTTG ACTTCTCAGA CTGTGACTGA ACTGCCACCT CACACTGTGG
                                                                               1740
       AAGGTACTTC AGCCTCTTTA AATGATGGCT CTAAAACTGT TCTTAGATCT CCACATATGA
                                                                               1800
80
       ACTTGTCGGG GACTGCAGAA TCCTTAAATA CAGTTTCTAT AACAGAATAT GAGGAGGAGA
                                                                               1860
       GTTTATTGAC CAGTTTCAAG CTTGATACTG GAGCTGAAGA TTCTTCAGGC TCCAGTCCCG
                                                                               1920
       CAACTTCTGC TATCCCATTC ATCTCTGAGA ACATATCCCA AGGGTATATA TTTTCCTCCG
                                                                               1980
       AAAACCCAGA GACAATAACA TATGATGTCC TTATACCAGA ATCTGCTAGA AATGCTTCCG
                                                                               2040
       AAGATTCAAC TTCATCAGGT TCAGAAGAAT CACTAAAGGA TCCTTCTATG GAGGGAAATG
                                                                               2100
85
       TGTGGTTTCC TAGCTCTACA GACATAACAG CACAGCCCGA TGTTGGATCA GGCAGAGAGA
                                                                               2160
       GCTTTCTCCA GACTAATTAC ACTGAGATAC GTGTTGATGA ATCTGAGAAG ACAACCAAGT
                                                                               2220
       CCTTTTCTGC AGGCCCAGTG ATGTCACAGG GTCCCTCAGT TACAGATCTG GAAATGCCAC
```

```
ATTATTCTAC CTTTGCCTAC TTCCCAACTG AGGTAACACC TCATGCTTTT ACCCCATCCT
                                                                             2340
       CCAGACAACA GGATTTGGTC TCCACGGTCA ACGTGGTATA CTCGCAGACA ACCCAACCGG
                                                                             2400
       TATACAATGA GGCCAGTAAT AGTAGCCATG AGTCTCGTAT TGGTCTAGCT GAGGGGTTGG
                                                                              2460
       AATCCGAGAA GAAGGCAGTT ATACCCCTTG TGATCGTGTC AGCCCTGACT TTTATCTGTC
                                                                              2520
 5
                                                                              2580
       TAGTGGTTCT TGTGGGTATT CTCATCTACT GGAGGAAATG CTTCCAGACT GCACACTTTT
       ACTTAGAGGA CAGTACATCC CCTAGAGTTA TATCCACACC TCCAACACCT ATCTTTCCAA
                                                                              2640
       TTTCAGATGA TGTCGGAGCA ATTCCAATAA AGCACTTTCC AAAGCATGTT GCAGATTTAC
                                                                              2700
       ATGCAAGTAG TGGGTTTACT GAAGAATTTG AGACACTGAA AGAGTTTTAC CAGGAAGTGC
                                                                              2760
       AGAGCTGTAC TGTTGACTTA GGTATTACAG CAGACAGCTC CAACCACCCA GACAACAAGC
                                                                              2820
       ACAAGAATCG ATACATAAAT ATCGTTGCCT ATGATCATAG CAGGGTTAAG CTAGCACAGC
10
                                                                              2880
       TTGCTGAAAA GGATGGCAAA CTGACTGATT ATATCAATGC CAATTATGTT GATGGCTACA
                                                                              2940
       ACAGACCAAA AGCTTATATT GCTGCCCAAG GCCCACTGAA ATCCACAGCT GAAGATTTCT
       GGAGAATGAT ATGGGAACAT AATGTGGAAG TTATTGTCAT GATAACAAAC CTCGTGGAGA
                                                                              3060
       AAGGAAGGAG AAAATGTGAT CAGTACTGGC CTGCCGATGG GAGTGAGGAG TACGGGAACT
15
       TTCTGGTCAC TCAGAAGAGT GTGCAAGTGC TTGCCTATTA TACTGTGAGG AATTTTACTC
                                                                              3180
       TARGARACAC ARARATARAR RAGGGCTCCC AGRARGGRAG ACCCAGTGGA CGTGTGGTCA
                                                                              3240
       CACAGTATCA CTACACGCAG TGGCCTGACA TGGGAGTACC AGAGTACTCC CTGCCAGTGC
                                                                              3300
       TGACCTTTGT GAGAAAGGCA GCCTATGCCA AGCGCCATGC AGTGGGGCCT GTTGTCGTCC
                                                                              3360
       ACTGCAGTGC TGGAGTTGGA AGAACAGGCA CATATATTGT GCTAGACAGT ATGTTGCAGC
                                                                              3420
20
       AGATTCAACA CGAAGGAACT GTCAACATAT TTGGCTTCTT AAAACACATC CGTTCACAAA
                                                                              3480
       GAAATTATTT GGTACAAACT GAGGAGCAAT ATGTCTTCAT TCATGATACA CTGGTTGAGG
                                                                             3540
       CCATACTTAG TAAAGAAACT GAGGTGCTGG ACAGTCATAT TCATGCCTAT GTTAATGCAC
                                                                              3600
       TCCTCATTCC TGGACCAGCA GGCAAAACAA AGCTAGAGAA ACAATTCCAG CTCCTGAGCC
                                                                             3660
       AGTCAAATAT ACAGCAGAGT GACTATTCTG CAGCCCTAAA GCAATGCAAC AGGGAAAAGA
                                                                              3720
25
                                                                             3780
       ATCGAACTIC TICTATCATC CCTGTGGAAA GATCAAGGGT TGGCATTICA TCCCTGAGTG
       GAGAAGGCAC AGACTACATC AATGCCTCCT ATATCATGGG CTATTACCAG AGCAATGAAT
                                                                             3840
       TCATCATTAC CCAGCACCCT CTCCTTCATA CCATCAAGGA TTTCTGGAGG ATGATATGGG
                                                                              3900
       ACCATAATGC CCAACTGGTG GTTATGATTC CTGATGGCCA AAACATGGCA GAAGATGAAT
                                                                              3960
       TTGTTTACTG GCCAAATAAA GATGAGCCTA TAAATTGTGA GAGCTTTAAG GTCACTCTTA
                                                                              4020
       TGGCTGAAGA ACACAAATGT CTATCTAATG AGGAAAAACT TATAATTCAG GACTTTATCT
30
                                                                              4080
       TAGAAGCTAC ACAGGATGAT TATGTACTTG AAGTGAGGCA CTTTCAGTGT CCTAAATGGC
                                                                              4140
       CARATCCAGA TAGCCCCATT AGTARACTT TTGAACTTAT AAGTGTTATA AAAGAAGAAG
CTGCCAATAG GGATGGGCCT ATGATTGTTC ATGATGAGCA TGGAGGAGTG ACGGCAGGAA
                                                                              4200
                                                                              4260
       CTTTCTGTGC TCTGACAACC CTTATGCACC AACTAGAAAA AGAAAATTCC GTGGATGTTT
                                                                              4320
35
       ACCAGGTAGC CAAGATGATC AATCTGATGA GGCCAGGAGT CTTTGCTGAC ATTGAGCAGT
                                                                              4380
       ATCAGTTTCT CTACAAAGTG ATCCTCAGCC TTGTGAGCAC AAGGCAGGAA GAGAATCCAT
                                                                              4440
       CCACCTCTCT GGACAGTAAT GGTGCAGCAT TGCCTGATGG AAATATAGCT GAGAGCTTAG
       AGTCTTTAGT TTAACACAGA AAGGGGTGGG GGGACTCACA TCTGAGCATT GTTTTCCTCT
                                                                              4560
       TCCTAAAATT AGGCAGGAAA ATCAGTCTAG TTCTGTTATC TGTTGATTTC CCATCACCTG
                                                                              4620
40
       ACAGTAACTT TCATGACATA GGATTCTGCC GCCAAATTTA TATCATTAAC AATGTGTGCC
                                                                              4680
       TTTTTGCAAG ACTTGTAATT TACTTATTAT GTTTGAACTA AAATGATTGA ATTTTACAGT
                                                                              4740
       ATTTCTAAGA ATGGAATTGT GGTATTTTT TCTGTATTGA TTTTAACAGA AAATTTCAAT
                                                                              4800
       TTATAGAGGT TAGGAATTCC AAACTACAGA AAATGTTTGT TTTTAGTGTC AAATTTTTAG
                                                                              4860
       CTGTATTTGT AGCAATTATC AGGTTTGCTA GAAATATAAC TTTTAATACA GTAGCCTGTA
                                                                              4920
45
       AATAAAACAC TCTTCCATAT GATATTCAAC ATTTTACAAC TGCAGTATTC ACCTAAAGTA
                                                                              4980
       GAAATAATCT GTTACTTATT GTAAATACTG CCCTAGTGTC TCCATGGACC AAATTTATAT
                                                                             5040
       TTATAATTGT AGATTTTTAT ATTTTACTAC TGAGTCAAGT TTTCTAGTTC TGTGTAATTG
                                                                             5100
       TTTAGTTTAA TGACGTAGTT CATTAGCTGG TCTTACTCTA CCAGTTTTCT GACATTGTAT
                                                                             5160
       TGTGTTACCT AAGTCATTAA CTTTGTTTCA GCATGTAATT TTAACTTTTG TGGAAAATAG
                                                                             5220
50
       AAATACCTTC ATTTTGAAAG AAGTTTTTAT GAGAATAACA CCTTACCAAA CATTGTTCAA
                                                                              5280
       5340
       AAA AAAAAAAA AAAAAAAAA
       Seq ID NO: 579 Protein sequence:
55
       Protein Accession #: EOS sequence
                                                                 51
                              21
                                          31
                                                      41
       MVFKASKITF HWGKCNMSSD GSEHSLEGOK FPLEMQIYCF DADRFSSFEE AVKGKGKLRA
                                                                                60
60
                                                                               120
       LSILFEVGTE ENLDFKAIID GVESVSRFGK QAALDPFILL NLLPNSTDKY YIYNGSLTSP
       PCTDTVDWIV FKDTVSISES QLAVFCEVLT MQQSGYVMLM DYLQNNFREQ QYKFSRQVFS
                                                                               180
       SYTGKEEIHE AVCSSEPENV QADPENYTSL LVTWERPRVV YDTMIEKFAV LYQQLDGEDQ
                                                                               240
       TKHEFLTDGY QDLGAILNNL LPNMSYVLQI VAICTNGLYG KYSDQLIVDM PTDNPELDLF
                                                                               300
       PELIGTEEII KEEEEGKDIE EGAIVNPGRD SATNQIRKKE PQISTTTHYN RIGTKYNEAK
                                                                               360
65
       TNRSPTRGSE FSGKGDVPNT SLNSTSQPVT KLATEKDISL TSQTVTELPP HTVEGTSASL
                                                                               420
       NDGSKTVLRS PHMNLSGTAE SLNTVSITEY EEESLLTSFK LDTGAEDSSG SSPATSAIPF
                                                                               480
       ISENISQGYI FSSENPETIT YDVLIPESAR NASEDSTSSG SEESLKDPSM EGNVWFPSST
                                                                               540
       DITAQPDVGS GRESFLQTNY TEIRVDESEK TTKSFSAGPV MSQGPSVTDL EMPHYSTFAY
                                                                               600
       FPTEVTPHAF TPSSRQQDLV STVNVVYSQT TQPVYNEASN SSHESRIGLA EGLESEKKAV
                                                                               660
       IPLVIVSALT FICLVVLVGI LIYWRKCFQT AHFYLEDSTS PRVISTPPTP IFFISDDVGA IPIKHFPKHV ADLHASSGFT EEFETLKEFY QEVQSCTVDL GITADSSNHP DNKHKNRYIN
70
                                                                               720
                                                                               780
       IVAYDHSRVK LAQLAEKDGK LTDYINANYV DGYNRPKAYI AAQGPLKSTA EDFWRMIWEH
                                                                               840
       NVEVIVMITN LVEKGRRKCD QYWPADGSEE YGNFLVTQKS VQVLAYYTVR NFTLRNTKIK
       KGSQKGRPSG RVVTQYHYTQ WPDMGVPEYS LPVLTFVRKA AYAKRHAVGP VVVHCSAGVG
RTGTYIVLDS MLQQIQHEGT VNIFGFLKHI RSQRNYLVQT EBQYVFIHDT LVEAILSKET
EVLDSHIHAY VNALLIPGPA GKTKLEKQFQ LLSQSNIQQS DYSAALKQCN REKNRTSSII
                                                                               960
75
                                                                              1080
       PVERSRYGIS SLSGEGTDYI NASYIMGYYQ SNEFIITQHP LLHTIKDFWR MIWDHNAQLV
                                                                              1140
       VMIPDGONMA EDEFVYWPNK DEPINCESFK VTLMAEEHKC LSNEEKLIIQ DFILEATQDD
                                                                              1200
       YVLEVRHFOC PKWPNPDSPI SKTFELISVI KEEAANRDGP MIVHDEHGGV TAGTFCALTT
                                                                              1260
80
       LMHQLEKENS VDVYQVAKMI NIMRPGVFAD IEQYQFLYKV ILSLVSTRQE ENPSTSLDSN
                                                                              1320
       GAALPDGNIA ESLESLV
       Seg ID NO: 580 DNA sequence
       Nucleic Acid Accession #: EOS sequence
85
       Coding sequence: 148-4632
                              21
                                          31
                                                      41
                                                                 51
                   11
```

	WO 02	/086443					
	1	1	<u></u>	1	1	1 .	
			CTCACTTCGA				60 120
			TCTGGAAATG				180
5			CCTGGATTGG				240
			GTCCTATACA CCCAAAACAA				300 360
	CAAGTAAATG	TGAATCTTAA	GAAACTTAAA	TTTCAGGGTT	GGGATAAAAC	ATCATTGGAA	420
10	AACACATTCA	TTCATAACAC	TGGGAAAACA	GTGGAAATTA	ATCTCACTAA	TGACTACCGT	480 540
10			AATGGTGTTT TGGATCAGAG				600
	GAGATGCAAA	TCTACTGCTT	TGATGCGGAC	CGATTTTCAA	GTTTTGAGGA	AGCAGTCAAA	660
			TTTATCCATT				720 780
15	GATTTCAAAG	TCATACTGTT	TGGAGTCGAA GAACCTTCTG	CCAAACTCAA	CTGACAAGTA	TTACATTTAC	840
10	AATGGCTCAT	TGACATCTCC	TCCCTGCACA	GACACAGTTG	ACTGGATTGT	TTTTAAAGAT	900
			CCAGTTGGCT GGACTACTTA				960 1020
	TTCTCTAGAC	AGGTGTTTTC	CTCATACACT	GGAAAGGAAG	AGATTCATGA	AGCAGTTTGT	1080
20	AGTTCAGAAC	CAGAAAATGT	TCAGGCTGAC	CCAGAGAATT	ATACCAGCCT	TCTTGTTACA	1140
	TGGGAAAGAC	CTCGAGTCGT	TTATGATACC AACCAAGCAT	ATGATTGAGA	AGTTTGCAGT	TTTGTACCAG	1200 1260
	GGTGCTATTC	TCAATAATTT	GCTACCCAAT	ATGAGTTATG	TTCTTCAGAT	AGTAGCCATA	1320
25	TGCACTAATG	GCTTATATGG	AAAATACAGC	GACCAACTGA	TTGTCGACAT	GCCTACTGAT	1380
25	AATCCTGAAC	TTGATCTTTT	CCCTGAATTA AGAAGGCGCT	ATTGGAACTG	AAGAAATAAT	CAAGGAGGAG	1440 1500
	AACCAAATCA	GGAAAAAGGA	ACCCCAGATT	TCTACCACAA	CACACTACAA	TCGCATAGGG	1560
	ACGAAATACA	ATGAAGCCAA	GACTAACCGA	TCCCCAACAA	GAGGAAGTGA	ATTCTCTGGA	1620
30	AAGGGTGATG	TTCCCAATAC	ATCTTTAAAT GACTTCTCAG	TCCACTTCCC	AACCAGTCAC	TCACACTGTG	1680 1740
50	GAAGGTACTT	CAGCCTCTTT	AAATGATGGC	TCTAAAACTG	TTCTTAGATC	TCCACATATG	1800
	AACTTGTCGG	GGACTGCAGA	ATCCTTAAAT	ACAGTTTCTA	TAACAGAATA	TGAGGAGGAG	1860
	AGTTTATTGA	CCAGTTTCAA	GCTTGATACT CATCTCTGAG	GGAGCTGAAG AACATATCCC	ATTCTTCAGG	ATTTTCCTCC	1920 1980
35	GAAAACCCAG	AGACAATAAC	ATATGATGTC	CTTATACCAG	AATCTGCTAG	AAATGCTTCC	2040
	GAAGATTCAA	CTTCATCAGG	TTCAGAAGAA	TCACTAAAGG	ATCCTTCTAT	GGAGGGAAAT	2100 2160
	AGCTTTCTCC	AGACTAATTA	AGACATAACA CACTGAGATA	CGTGTTGATG	AATCTGAGAA	GACAACCAAG	2220
40	TCCTTTTCTG	CAGGCCCAGT	GATGTCACAG	GGTCCCTCAG	TTACAGATCT	GGAAATGCCA	2280
40	CATTATTCTA	CCTTTGCCTA	CTTCCCAACT CTCCACGGTC	GAGGTAACAC	CTCATGCTTT	TACCCCATCC	2340 2400
•	GTATACAATG	AGGCCAGTAA	TAGTAGCCAT	GAGTCTCGTA	TTGGTCTAGC	TGAGGGGTTG	2460
	GAATCCGAGA	AGAAGGCAGT	TATACCCCTT	GTGATCGTGT	CAGCCCTGAC	TTTTATCTGT	2520
45	CTAGTGGTTC	TTGTGGGTAT	TCTCATCTAC CCCTAGAGTT	TGGAGGAAAT	GCTTCCAGAC	TGCACACTTT	2580 2640
73	ATTTCAGATG	ATGTCGGAGC	AATTCCAATA	AAGCACTTTC	CAAAGCATGT	TGCAGATTTA	2700
	CATGCAAGTA	GTGGGTTTAC	TGAAGAATTT	GAGACACTGA	AAGAGTTTTA	CCAGGAAGTG	2760
	CAGAGCTGTA	CTGTTGACTT	AGGTATTACA TATCGTTGCC	GCAGACAGCT TATGATCATA	GCAGGGTTAA	GCTAGCACAG	2820 2880
50	CTTGCTGAAA	AGGATGGCAA	ACTGACTGAT	TATATCAATG	CCAATTATGT	TGATGGCTAC	2940
	AACAGACCAA	AAGCTTATAT	TGCTGCCCAA TAATGTGGAA	GGCCCACTGA	AATCCACAGC	TGAAGATTTC	3000 3060
	AAAGGAAGGA	GAAAATGTGA	TCAGTACTGG	CCTGCCGATG	GGAGTGAGGA	GTACGGGAAC	3120
<i></i>	TTTCTGGTCA	CTCAGAAGAG	TGTGCAAGTG	CTTGCCTATT	ATACTGTGAG	GAATTTTACT	3180
55			AAAGGGCTCC			CCTGCCAGTG	3240
	CTGACCTTTG	TGAGAAAGGC	AGCCTATGCC	AAGCGCCATG	CAGTGGGGCC	TGTTGTCGTC	3360
	CACTGCAGTG	CTGGAGTTGG	AAGAACAGGC	ACATATATTG	TGCTAGACAG	TATGTTGCAG	3420
60	CAGATTCAAC	ACGAAGGAAC	TGTCAACATA	TTTGGCTTCT	TAAAACACAT	ACTGGTTGAG	3480 3540
00	GCCATACTTA	GTAAAGAAAC	TGAGGTGCTG	GACAGTCATA	TTCATGCCTA	TGTTAATGCA	3600
	CTCCTCATTC	CTGGACCAGC	AGGCAAAACA	AAGCTAGAGA	AACAATTCCA	GGGTCTCACT	3660
	CTGTCACCCA	ATCCTCCTAC	CAGAGGCACA	CGAGTGGCTG	GGACTATACT	TCCTCTCCCT	3780
65	TCAAATATAC	AGCAGAGTGA	CTATTCTGCA	GCCCTAAAGC	AATGCAACAG	GGAAAAGAAT	3840
	CGAACTTCTT	CTATCATCCC	TGTGGAAAGA	TCAAGGGTTG	GCATTTCATC	CCTGAGTGGA CAATGAATTC	3900 3960
	ATCATTACCC	AGCACCCTCT	CCTTCATACC	ATCATGGGCT	TCTGGAGGAT	GATATGGGAC	4020
70	CATAATGCCC	AACTGGTGGT	TATGATTCCT	GATGGCCAAA	ACATGGCAGA	AGATGAATTT	4080
70	GTTTACTGGC	CAAATAAAGA	TGAGCCTATA	AATTGTGAGA	GCTTTAAGGT	CACTCTTATG	4140
	GAAGCTACAC	AGGATGATTA	TGTACTTGAA	GTGAGGCACT	TTCAGTGTCC	TAAATGGCCA	4260
	AATCCAGATA	GCCCCATTAG	TAAAACTTTT	GAACTTATAA	GTGTTATAAA	AGAAGAAGCT	4320
75	GCCAATAGGG	ATGGGCCTAT	GATTGTTCAT	GATGAGCATG	GAGGAGTGAC	GGCAGGAACT GGATGTTTAC	4440
15	CAGGTAGCCA	AGATGATCAA	TCTGATGAGG	CCAGGAGTCT	TTGCTGACAT	TGAGCAGTAT	4500
	CAGTTTCTCT	ACAAAGTGAT	CCTCAGCCTT	GTGGGCACAA	GGCAGGAAGA	GAATCCATCC	4560
	ACCTCTCTGG	ACAGTAATGG	TGCAGCATTG	CCTGATGGAA	ATATAGCTGA TGAGCATTGT	GAGCTTAGAG TTTCCTCTTC	4680
80	CTAAAATTAG	GCAGGAAAAT	CAGTCTAGTT	CTGTTATCTG	TTGATTTCCC	ATCACCTGAC	4740
	AGTAACTTTC	ATGACATAGG	ATTCTGCCGC	CAAATTTATA	TCATTAACAA	TGTGTGCCTT	4800
	TTTGCAAGAC	TTGTAATTTA	CTTATTATGT TATTTTTTT	TGTATTGATT	ATGATTGAAT	TTTACAGTAT ATTTCAATTT	4920
0.5	ATAGAGGTTA	GGAATTCCAA	ACTACAGAAA	ATGTTTGTTT	TTAGTGTCAA	ATTTTTAGCT	4980
85	GTATTTGTAG	CAATTATCAG	GTTTGCTAGA	AATATAACTT	TTAATACAGT	AGCCTGTAAA CTAAAGTAGA	5040
	AATAATCTGT	TACTTATTGT	AAATACTGCC	CTAGTGTCTC	CATGGACCAA	ATTTATATTT	5160
		•					

```
ATAATTGTAG ATTTTTATAT TTTACTACTG AGTCAAGTTT TCTAGTTCTG TGTAATTGTT 5220
       TAGTTTAATG ACGTAGTTCA TTAGCTGGTC TTACTCTACC AGTTTTCTGA CATTGTATTG
                                                                            5280
       TGTTACCTAA GTCATTAACT TTGTTTCAGC ATGTAATTTT AACTTTTGTG GAAAATAGAA
                                                                            5340
       ATACCTTCAT TTTGAAAGAA GTTTTTATGA GAATAACACC TTACCAAACA TTGTTCAAAT
                                                                            5400
       Seg ID NO: 581 Protein seguence:
       Protein Accession #: EOS sequence
10
                                                                51
       MRILKRFLAC IQLLCVCRLD WANGYYROOR KLVEEIGWSY TGALNOKNWG KKYPTCNSPK
                                                                              60
       QSPINIDEDL TOVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                             120
15
       PKASKITFHW GKCMMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                             180
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPPILLNL LPNSTDKYYI YNGSLTSPPC
                                                                             240
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
                                                                             300
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKPAVLY QQLDGEDQTK
                                                                             360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                             420
20
       LIGTEEIIKE EEBGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
                                                                             480
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSPKLD TGAEDSSGSS PATSAIPFIS
                                                                             540
                                                                             600
       ENISQGYIFS SEMPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                             660
       TAQPDVGSGR ESPLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                             720
       TEVTPHAPTP SSRQQDLVST VNVVYSQTTQ PVYNEASNSS HESRIGLAEG LESEKKAVIP
LVIVSALTPI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTPIF PISDDVGAIP
25
                                                                             780
                                                                             840
       IKHPPKHVAD LHASSGFTEE FETLKEFYQE VQSCTVDLGI TADSSNHPDN KHKNRYINIV
                                                                             900
       AYDHSRVKLA QLAEKDGKLT DYINANYVDG YNRPKAYIAA QGPLKSTAED FWRMIWEHNV
       EVIVMITNLV EKGRRKCDQY WPADGSEEYG NFLVTQKSVQ VLAYYTVRNF TLRNTKIKKG
       SQKGRPSGRV VTQYHYTQWP DMGVPEYSLP VLTFVRKAAY AKRHAVGPVV VHCSAGVGRT
30
       GTYIVLDSML QQIQHEGTVN IFGFLKHIRS QRNYLVQTEE QYVFIHDTLV EAILSKETEV
       LDSHIHAYVN ALLIPGPAGK TKLEKOFOGL TLSPRLECRG TISAHCNLPL PGLTDPPTSA
                                                                            1200
       SRVAGTILLS QSNIQQSDYS AALKQCNREK NRTSSIIPVE RSRVGISSLS GEGTDYINAS
                                                                            1260
       YIMGYYQSNE FIITQHPLLH TIKDFWRMIW DHNAQLVVMI PDGQNMAEDE FVYWPNKDEP
                                                                            1320
35
       INCESFKVTL MAEEHKCLSN EEKLIIQDFI LEATQDDYVL EVRHFQCPKW PNPDSPISKT
                                                                            1380
       FELISVIKEE AANROGPMIV HDEHGGVTAG TFCALTTLMH QLEKENSVDV YQVAKMINLM
                                                                            1440
       RPGVFADIEQ YQFLYKVILS LVGTRQEENP STSLDSNGAA LPDGNIAESL ESLV
40
       Seq ID NO: 582 DNA sequence
       Nucleic Acid Accession #: NM_002851.1
       Coding sequence: 148..7092
                                                                51
                             21
                                         31
                                                    41
45
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
                                                                              60
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
50
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAA TTGGGGAAAG
                                                                             300
       AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA
                                                                             360
       CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA
                                                                             420
       AACACATTCA TTCATAACAC TGGGAAAACA GTGGAAATTA ATCTCACTAA TGACTACCGT
                                                                             480
       GTCAGCGGAG GAGTTTCAGA AATGGTGTTT AAAGCAAGCA AGATAACTTT TCACTGGGGA
                                                                             540
55
       AAATGCAATA TGTCATCTGA TGGATCAGAG CATAGTTTAG AAGGACAAAA ATTTCCACTT
                                                                             600
       GAGATGCAAA TCTACTGCTT TGATGCGGAC CGATTTTCAA GTTTTGAGGA AGCAGTCAAA
                                                                             660
       GGAAAAGGGA AGTTAAGAGC TTTATCCATT TTGTTTGAGG TTGGGACAGA AGAAAATTTG
                                                                             720
       GATTTCAAAG CGATTATTGA TGGAGTCGAA AGTGTTAGTC GTTTTGGGAA GCAGGCTGCT
                                                                             780
       TTAGATCCAT TCATACTGTT GAACCTTCTG CCAAACTCAA CTGACAAGTA TTACATTTAC
                                                                             840
60
       AATGGCTCAT TGACATCTCC TCCCTGCACA GACACAGTTG ACTGGATTGT TTTTAAAGAT
                                                                             900
       ACAGTTAGCA TCTCTGAAAG CCAGTTGGCT GTTTTTTGTG AAGTTCTTAC AATGCAACAA TCTGGTTATG TCATGCTGAT GGACTACTTA CAAAACAATT TTCGAGAGCA ACAGTACAAG
                                                                             960
                                                                            1020
       TTCTCTAGAC AGGTGTTTTC CTCATACACT GGAAAGGAAG AGATTCATGA AGCAGTTTGT
                                                                            1080
       AGTTCAGAAC CAGAAAATGT TCAGGCTGAC CCAGAGAATT ATACCAGCCT TCTTGTTACA
                                                                            1140
       TGGGAAAGAC CTCGAGTCGT TTATGATACC ATGATTGAGA AGTTTGCAGT TTTGTACCAG
65
                                                                            1200
       CAGTTGGATG GAGAGGACCA AACCAAGCAT GAATTTTTGA CAGATGGCTA TCAAGACTTG
                                                                            1260
       GGTGCTATTC TCAATAATTT GCTACCCAAT ATGAGTTATG TTCTTCAGAT AGTAGCCATA
       TGCACTAATG GCTTATATGG AAAATACAGC GACCAACTGA TTGTCGACAT GCCTACTGAT
                                                                            1380
       AATCCTGAAC TTGATCTTTT CCCTGAATTA ATTGGAACTG AAGAAATAAT CAAGGAGGAG
                                                                            1440
70
       GAAGAGGGAA AAGACATTGA AGAAGGCGCT ATTGTGAATC CTGGTAGAGA CAGTGCTACA
                                                                            1500
       AACCAAATCA GGAAAAAGGA ACCCCAGATT TCTACCACAA CACACTACAA TCGCATAGGG
                                                                            1560
       ACGAAATACA ATGAAGCCAA GACTAACCGA TCCCCAACAA GAGGAAGTGA ATTCTCTGGA
                                                                            1620
       AAGGGTGATG TTCCCAATAC ATCTTTAAAT TCCACTTCCC AACCAGTCAC TAAATTAGCC
                                                                            1680
       ACAGAAAAAG ATATTTCCTT GACTTCTCAG ACTGTGACTG AACTGCCACC TCACACTGTG
                                                                            1740
75
       GAAGGTACTT CAGCCTCTTT AAATGATGGC TCTAAAACTG TTCTTAGATC TCCACATATG
                                                                            1800
       AACTTGTCGG GGACTGCAGA ATCCTTAAAT ACAGTTTCTA TAACAGAATA TGAGGAGGAG
                                                                            1860
       AGTTTATTGA CCAGTTTCAA GCTTGATACT GGAGCTGAAG ATTCTTCAGG CTCCAGTCCC
                                                                            1920
       GCAACTTCTG CTATCCCATT CATCTCTGAG AACATATCCC AAGGGTATAT ATTTTCCTCC
                                                                            1980
       GAAAACCCAG AGACAATAAC ATATGATGTC CTTATACCAG AATCTGCTAG AAATGCTTCC
                                                                            2040
       GAAGATTCAA CTTCATCAGG TTCAGAAGAA TCACTAAAGG ATCCTTCTAT GGAGGGAAAT
80
                                                                            2100
       GTGTGGTTTC CTAGCTCTAC AGACATAACA GCACAGCCCG ATGTTGGATC AGGCAGAGAG
                                                                            2160
       AGCTTTCTCC AGACTAATTA CACTGAGATA CGTGTTGATG AATCTGAGAA GACAACCAAG
                                                                            2220
       TCCTTTTCTG CAGGCCCAGT GATGTCACAG GGTCCCTCAG TTACAGATCT GGAAATGCCA
                                                                            2280
       CATTATTCTA CCTTTGCCTA CTTCCCAACT GAGGTAACAC CTCATGCTTT TACCCCATCC
                                                                            2340
85
       TCCAGACAAC AGGATTTGGT CTCCACGGTC AACGTGGTAT ACTCGCAGAC AACCCAACCG
                                                                            2400
       GTATACAATG GTGAGACACC TCTTCAACCT TCCTACAGTA GTGAAGTCTT TCCTCTAGTC
       ACCCCTTTGT TGCTTGACAA TCAGATCCTC AACACTACCC CTGCTGCTTC AAGTAGTGAT
```

		/086443					
			TGTATTTCCC				2580
			TTTGCTTCCA				2640
			TTCTCAAATC				2700
_	GATAAGGTGC	CCTTGCATGC	TTCTCTGCCA	GTGGCTGGGG	GTGATTTGCT	ATTAGAGCCC	2760
5	AGCCTTGCTC	AGTATTCTGA	TGTGCTGTCC	ACTACTCATG	CTGCTTCAGA	GACGCTGGAA	2820
	TTTGGTAGTG	AATCTGGTGT	TCTTTATAAA	ACCCTTATGT	TTTCTCAAGT	TGAACCACCC	2880
	AGCAGTGATG	CCATGATGCA	TGCACGTTCT	TCAGGGCCTG	AACCTTCTTA	TGCCTTGTCT	2940
	GATAATGAGG	GCTCCCAACA	CATCTTCACT	GTTTCTTACA	GTTCTGCAAT	ACCTGTGCAT	3000
	GATTCTGTGG	GTGTAACTTA	TCAGGGTTCC	TTATTTAGCG	GCCCTAGCCA	TATACCAATA	3060
10	CCTAAGTCTT	CGTTAATAAC	CCCAACTGCA	TCATTACTGC	AGCCTACTCA	TGCCCTCTCT	3120
	GGTGATGGGG	AATGGTCTGG	AGCCTCTTCT	GATAGTGAAT	TTCTTTTACC	TGACACAGAT	3180
	GGGCTGACAG	CCCTTAACAT	TTCTTCACCT	GTTTCTGTAG	CTGAATTTAC	ATATACAACA	3240
	TCTGTGTTTG	GTGATGATAA	TAAGGCGCTT	TCTAAAAGTG	AAATAATATA	TGGAAATGAG	3300
	ACTGAACTGC	AAATTCCTTC	TTTCAATGAG	ATGGTTTACC	CTTCTGAAAG	CACAGTCATG	3360
15	CCCAACATGT	ATGATAATGT	AAATAAGTTG	AATGCGTCTT	TACAAGAAAC	CTCTGTTTCC	3420
	ATTTCTAGCA	CCAAGGGCAT	GTTTCCAGGG	TCCCTTGCTC	ATACCACCAC	TAAGGTTTTT	3480
	GATCATGAGA	TTAGTCAAGT	TCCAGAAAAT	AACTTTTCAG	TTCAACCTAC	ACATACTGTC	3540
	TCTCAAGCAT	CTGGTGACAC	TTCGCTTAAA	CCTGTGCTTA	GTGCAAACTC	AGAGCCAGCA	3600
-	TCCTCTGACC	CTGCTTCTAG	TGAAATGTTA	TCTCCTTCAA	CTCAGCTCTT	ATTTTATGAG	3660
20	ACCTCAGCTT	CTTTTAGTAC	TGAAGTATTG	CTACAACCTT	CCTTTCAGGC	TTCTGATGTT	3720
	GACACCTTGC	TTAAAACTGT	TCTTCCAGCT	GTGCCCAGTG	ATCCAATATT	GGTTGAAACC	3780
	CCCAAAGTTG	ATAAAATTAG	TTCTACAATG	TTGCATCTCA	TTGTATCAAA	TTCTGCTTCA	3840
	AGTGAAAACA	TGCTGCACTC	TACATCTGTA	CCAGTTTTTG	ATGTGTCGCC	TACTTCTCAT	3900
	ATGCACTCTG	CTTCACTTCA	AGGTTTGACC	ATTTCCTATG	CAAGTGAGAA	ATATGAACCA	3960
25			TTCCCACCAA				4020
	TTCTTCCAAA	CCCCCAATTT	GGAGATTAAC	CAGGCCCATC	CCCCAAAAGG	AAGGCATGTA	4080
	TTTGCTACAC	CTGTTTTATC	AATTGATGAA	CCATTAAATA	CACTAATAAA	TAAGCTTATA	4140
	CATTCCCATC	ΔΑΑΤΤΤΤΑΑС	CTCCACCAAA	AGTTCTGTTA	CTGGTAAGGT	ATTTGCTGGT	4200
	ATTCCAACAG	TTGCTTCTGA	TACATTTGTA	TCTACTGATC	ATTCTGTTCC	TATAGGAAAT	4260
30	GGGCATGTTG	CCATTACAGC	TGTTTCTCCC	CACAGAGATG	GTTCTGTAAC	CTCAACAAAG	4320
50	THE PROPERTY OF THE PROPERTY O	CTTCTAAGGC	AACTTCTGAG	CTGAGTCATA	GTGCCAAATC	TGATGCCGGT	4380
	TTACTCCCTC	CTCCTCAACA	TGGTGACACT	GATGATGATG	GTGATGATGA	TGATGACAGA	4440
	CATACTCATC	COTTATCCAT	TCATAAGTGT	ATGTCATGCT	CATCCTATAG	AGAATCACAG	4500
	CARAGECTAR	TEAATEATTE	AGACACCCAC	GAAAACAGTC	TTATGGATCA	GAATAATCCA	4560
35			GAATTCTGAA				4620
55	CACACTCAAA	CTCCTATCCA	CAGAAGTCCT	GGTAAATCAC	CATCAGCAAA	TGGGCTATCC	4680
	CARAGICAAA	ATCATCCAAA	AGAGGAAAAT	GACATTCAGA	CTGGTAGTGC	TCTGCTTCCT	4740
	CHARAGEREA	ANTOTABACO	ATGGGCAGTT	CTGACAAGTG	ATGAAGAAAG	TGGATCAGGG	4800
			TAATGAGAAT				4860
40			TGGGATCCTG				4920
70	TOTOTOTO	CCCCAACATC	ATCTGTTACT	AGCGAGAACT	CAGAAGTGTT	CCACGTTTCA	4980
	CACCACAGI	CCCCAACAIC	TAGCCATGAG	TOTOGTATTG	GTCTAGCTGA	GGGGTTGGAA	5040
	TOOCACAACA	CCMGIAMIAG	ACCCCTTGTG	ATCCTCTCAG	CCCTCACTTT	TATCTGTCTA	5100
	CUCCAGAAGA	WOOCWOIIWI	CATCTACTGG	ACCAAATCCT	TOCAGACTGC	ACACTTTTAC	5160
45	GIGGIICIIG	CTACATOCCC	TAGAGTTATA	TOCACACCTC	CANCACCTAT	CTTTCCAATT	5220
73			TCCAATAAAG				5280
	TCAGATGATG	CODERACTOR	AGAATTTGAG	DCDCTGDDDG	ACTTTTACCA	GGAAGTGCAG	5340
	ACCRECATAGIG	WWC A COURT CC	TATTACAGCA	GACACCTCCA	ACCACCCAGA	CAACAAGCAC	5400
	AGCTGTACTG	TIGACTIAGG	CGTTGCCTAT	CATCATOCICCA	CCCTTARCCT	AGCACAGCTT	5460
50	AAGAATCGAT	ACATAAATAT	GACTGATTAT	ATCA ATCCCA	ATTATCTTCA	TCCCTACAAC	5520
50	GCTGAAAAGG	ATGGCAAACT	TGCCCAAGGC	CCVCACATOCCA	CCACACCTCA	AGATTTCTGG	5580
	AGACCAAAAG	CTTATATIGC	TGTGGAAGTT	ACTIONANT	TRACABLICA	CCTCCACAAA	5640
	AGAATGATAT	GGGAACATAA	TGTGGAAGIT	ATTGTCATGA	COCACCACTA	CCCCAACTT	5700
			GTACTGGCCT GCAAGTGCTT				5760
55							5820
55	AGAAACACAA	AAATAAAAA	GGGCTCCCAG GCCTGACATG	AAAGGAAGAC	TOTAL CECCOE	CCCACTCCTC	5880
	CAGTATCACT	ACACGCAGTG	CTATGCCAAG	GGAGTACCAG	MOCCOCCOCCA	TOTOTOCIO	5940
	ACCTTTGTGA	GAAAGGCAGC	CTATGCCAAG	CGCCATGCAG	TACACACTOT	GTTGCAGCAG	6000
	TGCAGTGCTG	GAGTTGGAAG	AACAGGCACA	TATATTGTGC	TAGACAGIAI	GIIGCAGCAG	6060
60	ATTCAACACG	AAGGAACTGT	CAACATATTT	GGCTTCTTAA	AACACATCCG	TTCACAAAGA	6120
UU	AATTATTTGG	TACAAACTGA	GGAGCAATAT	GTCTTCATTC	ATGATACACT	GGTTGAGGCC	
	ATACTTAGTA	AAGAAACTGA	GGTGCTGGAC	AGICATATTC	ALUCCIATGT	TAATGCACTC CCTGAGCCAG	0100
	CTCATTCCTG	GACCAGCAGG	CAAAACAAAG	CTAGAGAAAC	AATTCCAGCI	CCIGAGCCAG	6240
	TCAAATATAC	AGCAGAGTGA	CTATTCTGCA	GCCCTAAAGC	AAIGCAACAG	GGAAAAGAAT	6360
65	CGAACTTCTT	CTATCATCCC	TGTGGAAAGA	TCAAGGGTTG	GCATTTCATC	CCTGAGTGGA	6360
03	GAAGGCACAG	ACTACATCAA	TGCCTCCTAT	ATCATGGGCT	ATTACCAGAG	CAATGAATTC	6420
	ATCATTACCC	AGCACCCTCT	CCTTCATACC	ATCAAGGATT	TCTGGAGGAT	GATATGGGAC	5540
	CATAATGCCC	AACTGGTGGT	TATGATTCCT	GATGGCCAAA	ACATGGCAGA	AGATGAATTT	6540
	GTTTACTGGC	CAAATAAAGA	TGAGCCTATA	AATTGTGAGA	GCTTTAAGGT	CACTCTTATG	6600
70	GCTGAAGAAC	ACAAATGTCT	ATCTAATGAG	GAAAAACTTA	TAATTCAGGA	CTTTATCTTA	6660
70	GAAGCTACAC	AGGATGATTA	TGTACTTGAA	GTGAGGCACT	TTCAGTGTCC	TAAATGGCCA	6720
	AATCCAGATA	GCCCCATTAG	TAAAACTTTT	GAACTTATAA	GTGTTATAAA	AGAAGAAGCT	6780
	GCCAATAGGG	ATGGGCCTAT	GATTGTTCAT	GATGAGCATG	GAGGAGTGAC	GGCAGGAACT	6840
•	TTCTGTGCTC	TGACAACCCT	TATGCACCAA	CTAGAAAAAG	AAAATTCCGT	GGATGTTTAC	6900
76	CAGGTAGCCA	AGATGATCAA	TCTGATGAGG	CCAGGAGTCT	TTGCTGACAT	TGAGCAGTAT	6960
75	CAGTTTCTCT	ACAAAGTGAT	CCTCAGCCTT	GTGAGCACAA	GGCAGGAAGA	GAATCCATCC	7020
	ACCTCTCTGG	ACAGTAATGG	TGCAGCATTG	CCTGATGGAA	ATATAGCTGA	GAGCTTAGAG	7080
	TCTTTAGTTT	AACACAGAAA	GGGGTGGGG	GACTCACATC	TGAGCATTGT	TTTCCTCTTC	7140
	CTAAAATTAG	GCAGGAAAAT	CAGTCTAGTT	CTGTTATCTG	TTGATTTCCC	ATCACCTGAC	7200
00	AGTAACTTTC	ATGACATAGG	ATTCTGCCGC	CAAATTTATA	TCATTAACAA	TGTGTGCCTT	7260
80	TTTGCAAGAC	TTGTAATTTA	CTTATTATGT	TTGAACTAAA	ATGATTGAAT	TTTACAGTAT	/320
	TTCTAAGAAT	GGAATTGTGG	TATTTTTTC	TGTATTGATT	TTAACAGAAA	ATTTCAATTT	7380
	ATAGAGGTTA	GGAATTCCAA	ACTACAGAAA	ATGTTTGTTT	TTAGTGTCAA	ATTTTTAGCT	7440
	GTATTTGTAG	CAATTATCAG	GTTTGCTAGA	AATATAACTT	TTAATACAGT	AGCCTGTAAA	7500
O.F	TAAAACACTC	TTCCATATGA	TATTCAACAT	TTTACAACTG	CAGTATTCAC	CTAAAGTAGA	7560
85	AATAATCTGT	TACTTATTGT	AAATACTGCC	CTAGTGTCTC	CATGGACCAA	ATTTATATTT	7620
	ATAATTGTAG	ATTTTTATAT	TTTACTACTG	AGTCAAGTTT	TCTAGTTCTG	TGTAATTGTT	7680
	TAGTTTAATG	ACGTAGTTCA	TTAGCTGGTC	TTACTCTACC	AGTTTTCTGA	CATTGTATTG	7740

TGTTACCTAA GTCATTAACT TTGTTTCAGC ATGTAATTTT AACTTTTGTG GAAAATAGAA 7800 ATACCTTCAT TTTGAAAGAA GTTTTTATGA GAATAACACC TTACCAAACA TTGTTCAAAT 7860 Α ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ Seg ID NO: 583 Protein sequence Protein Accession #: NP_002842.1 10 MRILKRFLAC IQLLCVCRLD WANGYYROOR KLVEEIGWSY TGALNOKNWG KKYPTCNSPK QSPINIDEDL TOVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV 120 FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS 180 ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC 240 15 TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY 300 TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK 360 HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE 420 LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN 480 RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND 540 20 GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS 600 ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWPPSSTDI 660 TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP 720 TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNGETPLQ PSYSSEVFPL VTPLLLDNQI 780 LNTTPAASSS DSALHATPVF PSVDVSFESI LSSYDGAPLL PFSSASFSSE LFRHLHTVSQ 840 25 ILPQVTSATE SDKVPLHASL FVAGGDLLLE PSLAQYSDVL STTHAASETL EFGSESGVLY 900 KTLMFSQVEP PSSDAMMHAR SSGPEPSYAL SDNEGSQHIF TVSYSSAIPV HDSVGVTYQG 960 SLFSGPSHIP IPKSSLITPT ASLLQPTHAL SGDGEWSGAS SDSEFLLPDT DGLTALNISS 1020 PVSVAEFTYT TSVFGDDNKA LSKSEIIYGN ETELQIPSFN EMVYPSESTV MPNMYDNVNK 1080 LNASLOETSV SISSTKGMPP GSLAHTTTKV FDHEISQVPE NNFSVQPTHT VSQASGDTSL 1140 30 KPVLSANSEP ASSDPASSEM LSPSTQLLFY ETSASFSTEV LLQPSFQASD VDTLLKTVLP 1200 AVPSDPILVE TPKVDKISST MLHLIVSNSA SSENMLHSTS VPVFDVSPTS HMHSASLQGL 1260 TISYASEKYE PVLLKSESSH QVVPSLYSND ELFQTANLEI NQAHPPKGRH VFATPVLSID 1320 EPLNTLINKL IHSDEILTST KSSVTGKVFA GIPTVASDTF VSTDHSVPIG NGHVAITAVS PHRDGSVTST KLLFPSKATS ELSHSAKSDA GLVGGGEDGD TDDDGDDDDD RDSDGLSIHK 1440 35 CMSCSSYRES QEKVMVDSDT HENSLMDQNN PISYSLSENS EEDNRVTSVS SDSQTGMDRS 1500 PGKSPSANGL SOKHNDGKEE NDIQTGSALL PLSPESKAWA VLTSDEESGS GQGTSDSLNE 1560 NETSTDFSFA DTNEKDADGI LAAGDSEITP GFPQSPTSSV TSENSEVFHV SEAEASNSSH 1620 ESRIGLAEGL ESEKKAVIPL VIVSALTFIC LVVLVGILIY WRKCFQTAHF YLEDSTSPRV 1680 ISTPPTPIFP ISDDVGAIPI KHFPKHVADL HASSGFTEEF ETLKEFYQEV QSCTVDLGIT 1740 40 ADSSNHPDNK HKNRYINIVA YDHSRVKLAQ LAEKDGKLTD YINANYVDGY NRPKAYIAAQ 1800 GPLKSTAEDF WRMIWEHNVE VIVMITNLVE KGRRKCDQYW PADGSEEYGN FLVTQKSVQV 1860 LAYYTVRNFT LRNTKIKKGS QKGRPSGRVV TQYHYTQWPD MGVPEYSLPV LTFVRKAAYA 1920 KRHAVGPVVV HCSAGVGRTG TYIVLDSMLQ QIQHEGTVNI FGFLKHIRSQ RNYLVQTEEQ 1980 YVFIHDTLVE AILSKETEVL DSHIHAYVNA LLIPGPAGKT KLEKQFQLLS QSNIQQSDYS 2040 45 AALKQCNREK NRTSSIIPVE RSRVGISSLS GEGTDYINAS YIMGYYQSNE FIITQHPLLH 2100 TIKDFWRMIW DHNAQLVVMI PDGQNMAEDE FVYWPNKDEP INCESFKVTL MAEEHKCLSN 2160 EEKLIIQDFI LEATQDDYVL EVRHFQCPKW PNPDSPISKT FELISVIKEE AANRDGPMIV 2220 HDEHGGVTAG TFCALTTLMH QLEKENSVDV YQVAKMINLM RPGVFADIEQ YQFLYKVILS 2280 LVSTRQEENP STSLDSNGAA LPDGNIAESL ESLV 50 Seg ID NO: 584 DNA seguence Nucleic Acid Accession #: NM_005688.1 Coding sequence: 126..4439 55 21 31 51 CCGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCGCTCAG 120 AGAAGATGAA GGATATCGAC ATAGGAAAAG AGTATATCAT CCCCAGTCCT GGGTATAGAA 180 60 GTGTGAGGGA GAGAACCAGC ACTTCTGGGA CGCACAGAGA CCGTGAAGAT TCCAAGTTCA 240 GGAGAACTOG ACCGTTGGAA TGCCAAGATG CCTTGGAAAC AGCAGCCCGA GCCGAGGGCC 300 TCTCTCTGA TGCCTCCATG CATTCTCAGC TCAGAATCCT GGATGAGGAG CATCCCAAGG 360 GAAAGTACCA TCATGGCTTG AGTGCTCTGA AGCCCATCCG GACTACTTCC AAACACCAGC 420 ACCCAGTGGA CAATGCTGGG CTTTTTTCCT GTATGACTTT TTCGTGGCTT TCTTCTCTGG 480 65 CCCGTGTGGC CCACAAGAAG GGGGAGCTCT CAATGGAAGA CGTGTGGTCT CTGTCCAAGC 540 ACGAGTOTTO TGACGTGAAC TGCAGAAGAC TAGAGAGACT GTGGCAAGAA GAGCTGAATG 600 AAGTTGGGCC AGACGCTGCT TCCCTGCGAA GGGTTGTGTG GATCTTCTGC CGCACCAGGC 660 TCATCCTGTC CATCGTGTGC CTGATGATCA CGCAGCTGGC TGGCTTCAGT GAACCAGCCT TCATGGTGAA ACACCTCTTG GAGTATACCC AGGCAACAGA GTCTAACCTG CAGTACAGCT 720 780 70 · TGTTGTTAGT GCTGGGCCTC CTCCTGACGG AAATCGTGCG GTCTTGGTCG CTTGCACTGA 840 CTTGGGCATT GAATTACCGA ACCGGTGTCC GCTTGCGGGG GGCCATCCTA ACCATGGCAT TTAAGAAGAT CCTTAAGTTA AAGAACATTA AAGAGAAATC CCTGGGTGAG CTCATCAACA TTTGCTCCAA CGATGGGCAG AGAATGTTTG AGGCAGCAGC CGTTGGCAGC CTGCTGGCTG GAGGACCCGT TGTTGCCATC TTAGGCATGA TTTATAATGT AATTATTCTG GGACCAACAG 1080 75 GCTTCCTGGG ATCAGCTGTT TTTATCCTCT TTTACCCAGC AATGATGTTT GCATCACGGC TCACAGCATA TTTCAGGAGA AAATGCGTGG CCGCCACGGA TGAACGTGTC CAGAAGATGA 1200 ATGAAGTTCT TACTTACATT AAATTTATCA AAATGTATGC CTGGGTCAAA GCATTTTCTC 1260 AGAGTGTTCA AAAAATCCGC GAGGAGGAGC GTCGGATATT GGAAAAAGCC GGGTACTTCC 1320 1380 AGGGTATCAC TGTGGGTGTG GCTCCCATTG TGGTGGTGAT TGCCAGCGTG GTGACCTTCT 80 CTGTTCATAT GACCCTGGGC TTCGATCTGA CAGCAGCACA GGCTTTCACA GTGGTGACAG 1440 TCTTCAATTC CATGACTTTT GCTTTGAAAG TAACACCGTT TTCAGTAAAG TCCCTCTCAG 1500 AAGCCTCAGT GGCTGTTGAC AGATTTAAGA GTTTGTTTCT AATGGAAGAG GTTCACATGA 1560 TANAGANCAN ACCAGCCAGT CCTCACATCA AGATAGAGAT GAAAAATGCC ACCTTGGCAT 1620 GGGACTCCTC CCACTCCAGT ATCCAGAACT CGCCCAAAGCT GACCCCCAAA ATGAAAAAAG 1680 85 ACAAGAGGGC TTCCAGGGGC AAGAAAGAGA AGGTGAGGCA GCTGCAGCGC ACTGAGCATC 1740 AGGCGGTGCT GGCAGAGCAG AAAGGCCACC TCCTCCTGGA CAGTGACGAG CGGCCCAGTC 1800 CCGAAGAGGA AGAAGGCAAG CACATCCACC TGGGCCACCT GCGCTTACAG AGGACACTGC 1860

```
ACAGCATCGA TCTGGAGATC CAAGAGGGTA AACTGGTTGG AATCTGCGGC AGTGTGGGAA 1920
GTGGAAAAAC CTCTCTCATT TCAGCCATTT TAGGCCAGAT GACGCTTCTA GAGGGCAGCA 1980
       TTGCAATCAG TGGAACCTTC GCTTATGTGG CCCAGCAGGC CTGGATCCTC AATGCTACTC
                                                                             2040
       TGAGAGACAA CATCCTGTTT GGGAAGGAAT ATGATGAAGA AAGATACAAC TCTGTGCTGA
                                                                             2100
       ACAGCTGCTG CCTGAGGCCT GACCTGGCCA TTCTTCCCAG CAGCGACCTG ACGGAGATTG
                                                                             2160
       GAGAGCGAGG AGCCAACCTG AGCGGTGGGC AGCGCCAGAG GATCAGCCTT GCCCGGGCCT
       TGTATAGTGA CAGGAGCATC TACATCCTGG ACGACCCCCT CAGTGCCTTA GATGCCCATG
       TGGGCAACCA CATCTTCAAT AGTGCTATCC GGAAACATCT CAAGTCCAAG ACAGTTCTGT
       TTGTTACCCA CCAGTTACAG TACCTGGTTG ACTGTGATGA AGTGATCTTC ATGAAAGAGG
                                                                             2400
10
       GCTGTATTAC GGAAAGAGGC ACCCATGAGG AACTGATGAA TTTAAATGGT GACTATGCTA
                                                                             2460
       CCATTTTTAA TAACCTGTTG CTGGGAGAGA CACCGCCAGT TGAGATCAAT TCAAAAAAGG
                                                                             2520
       AAACCAGTGG TTCACAGAAG AAGTCACAAG ACAAGGGTCC TAAAACAGGA TCAGTAAAGA
                                                                             2580
       AGGAAAAAGC AGTAAAGCCA GAGGAAGGGC AGCTTGTGCA GCTGGAAGAG AAAGGGCAGG
                                                                             2640
       GTTCAGTGCC CTGGTCAGTA TATGGTGTCT ACATCCAGGC TGCTGGGGGC CCCTTGGCAT
                                                                             2700
15
       TCCTGGTTAT TATGGCCCTT TTCATGCTGA ATGTAGGCAG CACCGCCTTC AGCACCTGGT
                                                                             2760
       GGTTGAGTTA CTGGATCAAG CAAGGAAGCG GGAACACCAC TGTGACTCGA GGGAACGAGA
                                                                             2820
       CCTCGGTGAG TGACAGCATG AAGGACAATC CTCATATGCA GTACTATGCC AGCATCTACG
                                                                             2880
       CCCTCTCCAT GGCAGTCATG CTGATCCTGA AAGCCATTCG AGGAGTTGTC TTTGTCAAGG
                                                                             2940
       GCACGCTGCG AGCTTCCTCC CGGCTGCATG ACGAGCTTTT CCGAAGGATC CTTCGAAGCC
                                                                             3000
20
       CTATGAAGTT TTTTGACACG ACCCCCACAG GGAGGATTCT CAACAGGTTT TCCAAAGACA
                                                                             3060
       TEGATGAAGT TGACGTGCGG CTGCCGTTCC AGGCCGAGAT GTTCATCCAG AACGTTATCC
                                                                             3120
       TGGTGTTCTT CTGTGTGGGA ATGATCGCAG GAGTCTTCCC GTGGTTCCTT GTGGCAGTGG
                                                                             3180
       GGCCCCTTGT CATCCTCTTT TCAGTCCTGC ACATTGTCTC CAGGGTCCTG ATTCGGGAGC
TGAAGCGTCT GGACAATATC ACGCAGTCAC CTTTCCTCTC CCACATCACG TCCAGCATAC
                                                                             3240
                                                                             3300
25
       AGGGCCTTGC CACCATCCAC GCCTACAATA AAGGGCAGGA GTTTCTGCAC AGATACCAGG
                                                                             3360
       AGCTGCTGGA TGACAACCAA GCTCCTTTTT TTTTGTTTAC GTGTGCGATG CGGTGGCTGG
CTGTGCGGCT GGACCTCATC AGCATCGCCC TCATCACCAC CACGGGCTG ATGATCGTTC
                                                                             3420
                                                                             3480
       TTATGCACGG GCAGATTCCC CCAGCCTATG CGGGTCTCGC CATCTCTTAT GCTGTCCAGT
                                                                             3540
       TAACGGGGCT GTTCCAGTTT ACGGTCAGAC TGGCATCTGA GACAGAAGCT CGATTCACCT
                                                                             3600
30
       CGGTGGAGAG GATCAATCAC TACATTAAGA CTCTGTCCTT GGAAGCACCT GCCAGAATTA
                                                                             3660
       AGAACAAGGC TCCCTCCCCT GACTGGCCCC AGGAGGGAGA GGTGACCTTT GAGAACGCAG
       AGATGAGGTA CCGAGAAAAC CTCCCTCTTG TCCTAAAGAA AGTATCCTTC ACGATCAAAC
       CTAAAGAGAA GATTGGCATT GTGGGGCGGA CAGGATCAGG GAAGTCCTCG CTGGGGATGG
       CCCTCTTCCG TCTGGTGGAG TTATCTGGAG GCTGCATCAA GATTGATGGA GTGAGAATCA
                                                                             3900
35
       GTGATATTGG CCTTGCCGAC CTCCGAAGCA AACTCTCTAT CATTCCTCAA GAGCCGGTGC
       TGTTCAGTGG CACTGTCAGA TCAAATTTGG ACCCCTTCAA CCAGTACACT GAAGACCAGA
                                                                             4020
       TTTGGGATGC CCTGGAGAGG ACACACATGA AAGAATGTAT TGCTCAGCTA CCTCTGAAAC
                                                                             4080
       TTGAATCTGA AGTGATGGAG AATGGGGATA ACTTCTCAGT GGGGGAACGG CAGCTCTTGT
                                                                             4140
       GCATAGCTAG AGCCCTGCTC CGCCACTGTA AGATTCTGAT TTTAGATGAA GCCACAGCTG
                                                                             4200
40
       CCATGGACAC AGAGACAGAC TTATTGATTC AAGAGACCAT CCGAGAAGCA TTTGCAGACT
                                                                             4260
       GTACCATGCT GACCATTGCC CATCGCCTGC ACACGGTTCT AGGCTCCGAT AGGATTATGG
                                                                             4320
       TGCTGGCCCA GGGACAGGTG GTGGAGTTTG ACACCCCATC GGTCCTTCTG TCCAACGACA
                                                                             4380
       GTTCCCGATT CTATGCCATG TTTGCTGCTG CAGAGAACAA GGTCGCTGTC AAGGGCTGAC
                                                                             4440
       TCCTCCCTGT TGACGAAGTC TCTTTTCTTT AGAGCATTGC CATTCCCTGC CTGGGGCGGG
                                                                             4500
45
       CCCCTCATCG CGTCCTCCTA CCGAAACCTT GCCTTTCTCG ATTTTATCTT TCGCACAGCA
                                                                             4560
       GTTCCGGATT GGCTTGTGTG TTTCACTTTT AGGGAGAGTC ATATTTTGAT TATTGTATTT
                                                                             4620
       ATTCCATATT CATGTAAACA AAATTTAGTT TTTGTTCTTA ATTGCACTCT AAAAGGTTCA
                                                                             4680
       GGGAACCGTT ATTATAATTG TATCAGAGGC CTATAATGAA GCTTTATACG TGTAGCTATA
                                                                             4740
       TCTATATATA ATTCTGTACA TAGCCTATAT TTACAGTGAA AATGTAAGGT GTTTATTTA
TATTAAAATA AGCACTGTGC TAATAACAGT GCATATTCCT TTCTATCATT TTTGTACAGT
                                                                             4800
50
                                                                             4860
       TTGCTGTACT AGAGATCTGG TTTTGCTATT AGACTGTAGG AAGAGTAGCA TTTCATTCTT
                                                                             4920
       CTCTAGCTGG TGGTTTCACG GTGCCAGGTT TTCTGGGTGT CCAAAGGAAG ACGTGTGGCA
       ATAGTGGGCC CTCCGACAGC CCCCTCTGCC GCCTCCCCAC AGCCGCTCCA GGGGTGGCTG
       GAGACGGGTG GGCGCTGGA GACCATGCAG AGCGCCGTGA GTTCTCAGGG CTCCTGCCTT
55
       CTGTCCTGGT GTCACTTACT GTTTCTGTCA GGAGAGCAGC GGGGCGAAGC CCAGGCCCCT
       TTTCACTCCC TCCATCAAGA ATGGGGATCA CAGAGACATT CCTCCGAGCC GGGGAGTTTC
                                                                             5220
       TTTCCTGCCT TCTTCTTTTT GCTGTTGTTT CTAAACAAGA ATCAGTCTAT CCACAGAGAG
                                                                             5280
       TCCCACTGCC TCAGGTTCCT ATGGCTGGCC ACTGCACAGA GCTCTCCAGC TCCAAGACCT
                                                                             5340
       GTTGGTTCCA AGCCCTGGAG CCAACTGCTG CTTTTTGAGG TGGCACTTTT TCATTTGCCT
                                                                             5400
60
       ATTCCCACAC CTCCACAGTT CAGTGGCAGG GCTCAGGATT TCGTGGGTCT GTTTTCCTTT
                                                                             5460
       CTCACCGCAG TCGTCGCACA GTCTCTCTCT CTCTCTCCCC TCAAAGTCTG CAACTTTAAG
                                                                             5520
       CAGCTCTTGC TAATCAGTGT CTCACACTGG CGTAGAAGTT TTTGTACTGT AAAGAGACCT
                                                                             5580
       ACCTCAGGTT GCTGGTTGCT GTGTGGTTTG GTGTGTTCCC GCAAACCCCC TTTGTGCTGT
                                                                             5640
       GGGGCTGGTA GCTCAGGTGG GCGTGGTCAC TGCTGTCATC AGTTGAATGG TCAGCGTTGC
                                                                             5700
65
       ATGTCGTGAC CAACTAGACA TTCTGTCGCC TTAGCATGTT TGCTGAACAC CTTGTGGAAG
                                                                             5760
       5820
       AAAAAAAA AAAAAAAA
       Seq ID NO: 585 Protein sequence
70
       Protein Accession #: NP_005679.1
                                                                 51
                   11
                              21
                                          31
       MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFRR TRPLECODAL ETAARAEGLS
                                                                               60
75
       LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRTTSKHQHP VDNAGLFSCM TFSWLSSLAR
                                                                              120
       VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWQBELNEV GPDAASLRRV VWIFCRTRLI
                                                                              180
       LSIVCLMITQ LAGFSGPAFM VKHLLEYTQA TESNLQYSLL LVLGLLLTEI VRSWSLALTW
       ALMYRTGVRL RGAILTMAPK KILKLKNIKE KSLGELINIC SNDGQRMFEA AAVGSLLAGG
       PVVAILGMIY NVIILGPTGF LGSAVFILFY PAMMFASRLT AYFRRKCVAA TDERVQKMNE
80
       VLTYIKFIKM YAWVKAPSQS VQKIREEERR ILEKAGYFQG ITVGVAPIVV VIASVVTFSV
                                                                              420
       HMTLGFDLTA AQAFTVVTVF NSMTFALKVT PFSVKSLSEA SVAVDRFKSL FLMEEVHMIK
       nkpasphiki emknatlawd sshssiqnsp kltpkmkkdk rasrgkkekv rqlqrtehqa
                                                                              540
       VLAEQKGHLL LDSDERPSPE EEEGKHIHLG HLRLQRTLHS IDLEIQEGKL VGICGSVGSG
                                                                              600
       KTSLISAILG QMTLLEGSIA ISGTPAYVAQ QAWILNATLR DNILFGKEYD EERYNSVLNS
                                                                              660
85
       CCLRPDLAIL PSSDLTEIGE RGANLSGGQR QRISLARALY SDRSIYILDD PLSALDAHVG
                                                                              720
       NHIFNSAIRK HLKSKTVLFV THQLQYLVDC DEVIPMKEGC ITERGTHEEL MNLNGDYATI
                                                                              780
       FNNLLLGETP PVEINSKKET SGSQKKSQDK GPKTGSVKKE KAVKPEEGQL VQLEEKGQGS
                                                                              840
```

		/086443					
5	VSDSMKDNPH KFFDTTPTGR LVILFSVLHI LDDNQAPFFL GLFQFTVRLA RYRENLPLVL IGLADLRSKL	VSRVLIRELK PTCAMRWLAV SETEARFTSV KKVSFTIKPK SIIPQEPVLF	SMAVMLILKA EVDVRLPFQA RLDNITQSPF RLDLISIALI ERINHYIKTL EKIGIVGRTG SGTVRSNLDP	IRGVVFVKGT EMFIQNVILV LSHITSSIQG TTTGLMIVLM SLEAPARIKN SGKSSLGMAL FNQYTEDQIW	LRASSRLHDE FFCVGMIAGV LATIHAYNKG HGQIPPAYAG KAPSPDWPQE FRLVELSGGC DALERTHMKB	LFRRILRSPM FPWFLVAVGP QEFLHRYQEL LAISYAVQLT GEVTFENAEM IKIDGVRISD CIAQLPLKLE	900 960 1020 1080 1140 1200 1260 1320
10		SVGERQLLCI VLGSDRIMVL					1380
15		586 DNA se id Accession uence: 89	n. #: NM_001	1327.1			
13	1     AGCAGGGGGC	11       GCTGTGTGTA	21   CCGAGAATAC	31   GAGAATACCT	41   CGTGGGCCCT	51   GACCTTCTCT	60
20	CTGAGAGCCG GACGGGCGAT TGGCGGCCCA AAGGGCCTCG GCTGAATGGA	GGCAGAGGCT GCTGATGGCC GGAGAGGCGG GGGCCGGGAG TGCTGCAGAT	CCGGAGCCAT CAGGAGGCCC GTGCCACGGG GAGGCGCCCC GCGGGGCCAG	GCAGGCCGAA TGGCATTCCT CGGCAGAGGT GCGGGGTCCG GGGGCCGGAG	GGCCGGGGCA GATGGCCCAG CCCCGGGGCG CATGGCGGCG AGCCGCCTGC	CAGGGGTTC GGGGCAATGC CAGGGGCAGC CGGCTTCAGG TTGAGTTCTA	120 180 240 300 360
25	GGATGCCCCA CATACTGACT CTGTCTCCAG GGCTCAGCCT	CCTTTCGCGA CCGCTTCCCG ATCCGACTGA CAGCTTTCCC CCCTCAGGGC CTAGGGAATG	TGCCAGGGGT CTGCTGCAGA TGTTGATGTG AGAGGCGCTA	GCTTCTGAAG CCACCGCCAA GATCACGCAG AGCCCAGCCT	GAGTTCACTG CTGCAGCTCT TGCTTTCTGC GGCGCCCCTT	TGTCCGCAA CCATCAGCTC CCGTGTTTTT CCTAGGTCAT	420 480 540 600 660 720
30		GGAGGAGGAC					
25		cession #: 1	NP_001318.1				
35	1	11	21 	31 	41	51 	
40	PRGPHGGAAS	STGDADGPGG GLNGCCRCGA NILTIRLTAA	RGPESRLLEF	YLAMPFATPM	EAELARRSLA	QDAPPLPVPG	60 120
70	Seq ID NO: Nucleic Ac:	588 DNA se		ouence			
		uence: 52		,			•
45				31	41	<b>51</b>	•
45	Coding sequents of the correct code of the correct code of the cod	uence: 524  11    CCTGACCTTC	21       TCTCTGAGAG	31   CCGGGCAGAG	 GCTCCGGAGC	 CATGCAGGCC	60
	Coding sequents  CCTCGTGGGC GAAGGCCAGG	11     CCTGACCTTC   GCACAGGGGG	21     TCTCTGAGAG TTCGACGGGC	31     CCGGGCAGAG GATGCTGATG	 GCTCCGGAGC GCCCAGGAGG	 CATGCAGGCC CCCTGGCATT	120
45 50	Coding sequence of the control of th	11     CCTGACCTTC   GCACAGGGG   CAGGGGGCAA   GCGCAGGGGC	21   TCTCTGAGAG TTCGACGGGC TGCTGGCGGC AGCAAGGGCC	31   CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA	GCTCCGGAGC GCCCAGGAGG CGGGTGCCAC GAGGAGGCGC	CATGCAGGCC CCCTGGCATT GGGCGCAGA CCCGCGGGGT	120 180 240
	Coding sequence of the control of the control of the control of the code of th	11     CCTGACCTTC GCACAGGGG CAGGGGCAA GCGCAGGGG GTGCGGCTTC TGCTTCAGTT	21   TCTCTGAGAG TTCGACGGGC TGCTGAGGGCC AGCAAGGGCC TGCGCAGGAT CCGACTGACT	31     CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC	GCTCCGGAGC GCCCAGGAGG CGGGTGCCAC GAGGAGGCGC CCTGCGGGGC ACCGCCAACT	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC	120 180 240 300 360
50	Coding sequence of the control of th	11    CCTGACCTTC GCACAGGGGG CAGGGGGCAA GCGCAGGGGC GTGCCGCTTC TGCTTCAGTT GTCTCCAGCA	21     TCTCTGAGAG TTCGACGGC TGCTGGCGGC AGCAAGGGCC TGCGCAGGAC TGCGCAGGACT CCGACTGACT	31     CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGGA	GCTCCGGAGC GCCCAGGAGG CGGGTGCCAC GAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGTG	CATGCAGGCC CCCTGGCATT GGGCGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CTTTCTGCCC	120 180 240 300
	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGCA GCGCGCAGGGCA GCGCAGGGGCA GCGCTTC TGCTTCCAGCT GTCTCCAGCT CTCAGGCTCC CTCCTCCCCCT	21   TCTCTGAGAG TTCGACGGGC TGCTGGCGGC AGCAAGGGCC TGCGCAGGAT CCGACTGACT CCTCAGGGCAG AGGGAATGGT	31     CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGG AGGCGCTAAG CCCAGCACGA	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGTG CCCAGCCTGG GTGGCCAGTT	CATGCAGGCC CCCTGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CGCCCCTTCC CATTGTGGGG	120 180 240 300 360 420 480 540
50	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGG CAGGGGCAA GCGCAGGGGC GTGCCGCTTC TGCTTCCAGTT GTCTCCAGCA CTCAGGCTCC	21   TCTCTGAGAG TTCGACGGGC TGCTGGCGGC AGCAAGGGCC TGCGCAGGAT CCGACTGACT CCTCAGGGCAG AGGGAATGGT	31     CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGG AGGCGCTAAG CCCAGCACGA	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGTG CCCAGCCTGG GTGGCCAGTT	CATGCAGGCC CCCTGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CGCCCCTTCC CATTGTGGGG	120 180 240 300 360 420 480
50	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGCA GCGCGCAGGGCA GCGCAGGGGCA GCGCTTC TGCTTCCAGCT GTCTCCAGCT CTCAGGCTCC CTCCTCCCCCT	21   TCTCTGAGAG TTCGACGGGC TGCGCAGGAT AGCAAGGGCC TGCGCAGGAT CCTACTGCCTG CTCTAGGGCAG AGGGAATGGT AGGAATGGT AGGAATGGT AGGAATGGT	31     CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGTG CCCAGCCTGG GTGGCCAGTT	CATGCAGGCC CCCTGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CTTTCTGCCC CGCCCCTTCC CATTGTGGGG	120 180 240 300 360 420 480 540
50 55	Coding sequence of the control of th	11	21   TCTCTGAGAG TTCGACGGGC TGCGCAGGAT AGCAAGGGCC TGCGCAGGAT CCTACTGCCTG CTCTAGGGCAG AGGGAATGGT AGGAATGGT AGGAATGGT AGGAATGGT	31     CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGTG CCCAGCCTGG GTGGCCAGTT	CATGCAGGCC CCCTGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CTTTCTGCCC CGCCCCTTCC CATTGTGGGG	120 180 240 300 360 420 480 540
50 55	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGG CAGGGGGCA GCGCGCTTC TGCTTCAGTT GTCTCCAGCA CTCAGGCTCC TTGTCCCTG TTGTCGCTGG  589 Protes cession #: 1   STGDADGPGG AQDGRCPCGA	21   TCTCTGAGAG TTCGACGGC TGCTGACGGC TGCGCAGGAT CCGACTGACT GCTTTCCCTG CTCAGGCAG AGGAATGGT AGGAGACGG  In sequence Eos sequence 21   PGIPDGPGGN	31   CCGGGCAGAG GATGCTGATG CCAGGAGAGG GCAAGGTGCC GCTGCAGACC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT	GCTCCGGAGC GCCCAGGAGG GCCCAGCAGG GAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGT TCACGCAGT TGTTTCTGTA  41   GGRGPRGAGA	CATGCAGGCC CCTTGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG CTTTCTGCCC CGCCCCTTCC CATTGTGGGG GAAAATAAAG	120 180 240 300 360 420 480 540
50 55 60	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGG CAGGGGGCA GCGCGCTTC TGCTTCAGTT GTCTCCAGCA CTCAGGCTCC TTGTCCCTG TTGTCGCTGG  589 Protes cession #: 1   STGDADGPGG AQDGRCPCGA	21   TCTCTGAGAG TTCGACGGC TGCTGACGGC TGCTGACGGC TGCGCAGGAT CCGACTGACT GCTTTCCCTG CTCAGGCCAG AGGAATGGT AGGAGACGG  in sequence cos sequence plipting properties RRPDSRLLQF equence ##: NM_0055	31   CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGGA CCCAGCACGA CCCAGCACGA CTTACATGTT  31   AGGCGCAGAC AGGAGAC AGGAGAC AGGAGAC AGGAGAC AGGAGAC AGGAGAC AGGAGAC AGAAC AGGAGAC AGGAC AGGAGAC AGGAC AGGAGAC AGGAC AGGAC AGGAC AGGAGAC AGGAC AGGAC AG	GCTCCGGAGC GCCCAGGAGG GCCCAGCAGG GAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGT TCACGCAGT TGTTTCTGTA  41   GGRGPRGAGA	CATGCAGGCC CCTTGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG CTTTCTGCCC CGCCCCTTCC CATTGTGGGG GAAAATAAAG	120 180 240 300 360 420 480 540 600
<ul><li>50</li><li>55</li><li>60</li><li>65</li></ul>	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGG CAGGGGGCA GCGCAGGGGC TGCTCCAGCT TGCTCCAGCT TTGTCGCTG  589 Protes Cession #: 1   STGDADGPGG AQDGRCPCGA SGQRR  590 DNA seid Accession	21   TCTCTGAGAG TTCGACGGC TGCTGACGGC TGCTGACGGC TGCGCAGGAT CCGACTGACT GCTTTCCCTG CTCAGGCCAG AGGAATGGT AGGAGACGG  in sequence cos sequence plipting properties RRPDSRLLQF equence ##: NM_0055	31   CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGGA CCCAGCACGA CCCAGCACGA CTTACATGTT  31   AGGCGCAGAC AGGAGAC AGGAGAC AGGAGAC AGGAGAC AGGAGAC AGGAGAC AGGAGAC AGAAC AGGAGAC AGGAC AGGAGAC AGGAC AGGAGAC AGGAC AGGAC AGGAC AGGAGAC AGGAC AGGAC AG	GCTCCGGAGC GCCCAGGAGG GCCCAGCAGG GAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGT TCACGCAGT TGTTTCTGTA  41   GGRGPRGAGA	CATGCAGGCC CCTTGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG CTTTCTGCCC CGCCCCTTCC CATTGTGGGG GAAAATAAAG	120 180 240 300 360 420 480 540 600
<ul><li>50</li><li>55</li><li>60</li><li>65</li></ul>	Coding sequence of the coding sequence of the code of	11   CCTGACCTTC GCACAGGGGG GGGCAGGGGCA GCGCAGGGGCA TGCTCCAGCTC TGCTCCCCT TTGTCGCTG  589 Prote: CCSSSION #: 1	21   TCTCTGAGAG TTCGACGGGC TGCGCAGGCC AGCAAGGGCC TGCGCAGGAT AGCACGACC CTCAGGGCAG AGGAATGGT AGGAGACGGC  in sequence be sequence pgippgggn RRPDSRLLQF  equence #: NM_0055 3671  21   AACCACCAAC GGCACCGGCA ATCTTGATC	31   CCGGGCAGAG GATGCTGATG CCAGGAGGG GCTGCAGAC GCTGCAGAC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT  31   AGGPGEAGAT RLTAADHRQL  31   CGAGGCGCCG TGCCTGCGCCT TGCAGGCCCG CGAGGCCCCG CGAGGCCCCG CGAGCCCCCAC GGGAACTTCA	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGG GAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGTG CCCAGCCTGG GTGGCCAGTT TGTTTCTGTA  41  GGRGPRGAGA QLSISSCLQQ  41  GGCAGCGACC CTGGCTGGG GCAGGACC CTGGCTGGGC CAGACAACT CTGGCTGGGC CAGACAACT CAGACAAACT	CATGCAGGCC CCCTGGCATT GGGCGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CATTGTGGGG GAAAATAAAG  51 ARASGPRGGA LSLLMWITQC  51 CCTGCAGCG TGCTGCCTCT TGTGATTGCA GGTAATGGAT GGTAATGGAT	120 180 240 360 420 480 540 600
<ul><li>50</li><li>55</li><li>60</li><li>65</li><li>70</li><li>75</li></ul>	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGG CAGGGGCAA GCGCAGGGGCAA GCGCAGGGGC TTGTTCCAGCT TTGTCCACCT TTGTCGCTG  589 Protein cession #: 1   STGDADGPGG AQDGRCPCGA SGQRR  590 DNA sc id Accession dence: 90 11   GCACAGGGGCCC CCTCCTGCCC CAGGCAGTGAG TGAGCGCCC CCAGCAGTAT CAACTGCAAT GCACAGAGAAA	21   TCTCTGAGAG TTCGACGGGC TGCGCAGGGCC AGCAAGGGCC TGCGCAGGAT CCGACTGACT GCTTTCCCTG CTCAGGGCAG AGGGAATGGT AGGAGGACGG  In sequence 21   GEORGAGAGGCC PGIPDGPGGN RRPDSRLLQF  equence 1 #: NM_0055 8671 21   AACCACCAAC GCCACCGCCA GCAGCCCGGG ATCTTTGATC AGGGACCGCT AGGGACCGCT AGGGACCGCT AGGGACCGCT AGGGACCGCCT AGGGACCGCCT AGGGACCGCCT AGGGACCGCCT	31   CCGGGCAGAG GATGCTGATG CCAGGAGAGG GCAGGAGGG GGAAGGTGCC GCTGCAGACC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT  31   AGGPGEAGAT RLTAADHRQL 31   CCAGGCGCCG TGCCTGCGCT CCACCTCCAG GGGAACTTCA GTTTGCCCTG	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGG GCCCAGGAGG CCTGCGGGGC CCTGCGGGGC CCCAGCCTGG GTGGCCAGTT TGTTTCTGTA  41  GGRGPRGAGA QLSISSCLQQ  41  GGCAGCGACC CTGGCTGGG GGCAGCGACC CTGGCTGGG CAGACAAACT CAGACAAACT CTGCAGAGAG CAATTGTAAC	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CATTGTGGGG GAAAATAAAG  51 ARASGPRGGA LSLLMWITQC  51 CCTGCAGCGG TGCTGCCTCT TGTGATTGCA GGTAATGCAT TGCAAGAATG TCCAAAGGTT	120 180 240 300 360 420 480 540 600
<ul><li>50</li><li>55</li><li>60</li><li>65</li><li>70</li></ul>	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGG CAGGGGCAA GCGCAGGGGC TGCTTCAGTT TGTCTCAGTT TGTCTCAGTC TTGTCGCTG  589 Proteicession #: I   STGDADGPGG AQDGRCPCGA SGQRR  590 DNA se id Accession uence: 903   GCAGAGTGAG TCAGCGCCC CCTCCTGCCC CCTCTGCCCT CAGCAGGAAT CCAGCAGGAAT CCAGCAGGAAT CCAGTGTCAGCC CCCAGCCAGCAAT CCAATGTCTG	21   TCTCTGAGAG TTCGACGAGC TGCGCAGGACT AGCAAGGGCC TGCGCAGGAT CCGACTGACT CTCAGGCAG AGGGAATGGT AGGGAATGGT AGGAGACGGC  in sequence 21   PGIPDGPGGN RRPDSRLLQF  equence 1 #: NM_0055 1671  21   AACCACCAAC GCAGCCCGGG ATCTTGATC AAGGACCGCT AACTCTGGAC CCAGGCTTCC CCAGGCTTCC CCAGGCTTCC CCAGGCTTCC	31   CCGGGCAGAG GATGCTGATG CCAGGAGGG GCAGGAGGG GCAGGAGGC GCAGCAGACC TTGATGTT  31   AGGCGCTAAG AGGCGCAGA AGGCGCAGA 31   CCAGGAGAGT TACATGTT  31   CCAGGCGCC TGCCTCCAGC TGCCTGCGCT TGCCTGCGCT CCACCTCCAG ATGGCATTCA ATGGCATTCA ATGGCATTCA ATTGCCCTG GGTGCAGCTG ACATGCTCAC	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGG GCCCAGGAGG GCGGGGGC ACCGCCAACT TCACGCAGTG CCCAGCCTGG GTGGCCAGTT TGTTTCTGTA  41  GGRGPRGAGA QLSISSCLQQ  41  GGCAGCGACC CTGGCTGGG GAGGGAACC CTGGCTGGG CAGACAACT CTGCGAGAAG CAATTGTAAC TAAACCAGGT GGATGCGGGG	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CATTGTGGGG GAAAATAAAG  51 ARASGPRGGA LSLLMWITQC  51 CCTGCAGCGG TGCTGCTCT TGTGATTGCA GGTAATGGAT GCAAAGGTT GTGACAGGAG TGCACCCAAG	120 180 240 300 360 420 480 540 600 120
<ul><li>50</li><li>55</li><li>60</li><li>65</li><li>70</li><li>75</li></ul>	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGG CAGGGGCAAGGGGCAAGGGGCAAGGGGCACTCCCCCT TTGTCGCTG  589 Protestession #: 1   STGDADGPGG AQDGRCPCGA SGQRR  590 DNA settle Accession tence: 90 11   GCAGGAGTGAG TGAGCGCCC CTCTCTCCCAGT TGACCGCAAT CCAAGGAGAAA TCGAATTCCAAT GCACAGAGAAA TCGAATTCCC CCGATGTCTC CCCAGGCAGTCCC CCCAGGCAGTCCC CCGATGTCTC CCCAGGCAGTCCC CCGATGTCTC CCCAGGCATCCC CCGATGTCTC CCCAGGCATCCC CCCAGGCATCCC CCGATGTCTC CCCAGGCATCCC CCTCTTGCCC CCGATGTCTC CCCAGGCATCCC CCGATGTCTC CCCAGGCATCTCC CCTAGCCC CCGATGTCTC CCGATGTCTC CCTAGCCC CCTACTCCC CCGATGTCTC CCGATGTCTC CCTAGCCC CCTACTCCC CCGATGTCTC CCGATGTCTC CCTAGCCTC CCTAGCCC CCTACTCCC CCGATGTCTC CCTAGACTCC CCTAGCCC CCTACTCCC CCGATGTCTC CCTAGACTCC CCTACTCC CCTAGACTCC CCTACTCC CCTACTC CCTACT CCTACTC CTACTC CTAC	21   TCTCTGAGAG TTCGACGGGC TGCGCAGGGCC AGCAAGGGCC TGCGCAGGAT GCTTTCCCTG GCTTTCCCTG CTCAGGGCAG AGGGAATGGT AGGAGGACGGC  in sequence 21   PGIPDGPGGN RRPDSRLLQF  equence 1 #: NM_0055 6671 21   AACCACCAAC GGCACCGCCA GCAGCCCGCA GCAGCCCGCA AACTCTGGAC AACTCTGGAC CCAAGCTTCC AAGTGTGACC AAGTGTGACC    CTCTCGACC AAGTGTGACC AAGTGTGACC    CTCTCGACC AAGTGTGACC AAGTGTGACC    CTCTCGACC AAGTGTGACC AAGTGTGACC    CTCTCCAACACCC AAGTGTGACC AAGTGTGACC    CTCTCAACACCC AAGTGTGACC AAGTGTGACC    CTCTCCAACACCC AAGTGTGACC    CTCTCCAACACCC   CCAGGCTTCC   CCAGGCTTCC   CCAGGCTTCC   CCAGGCTTCC   CAGGTTCC   CCAGGCTTCC   CAGGGTTCC   CCAGGCTTCC   CAGGGTTCC   CAGGTTCC   CAGGGTTCC   CAGGTTCC   CAGTTCC   CAGGTTCC   CAGTTCC   CAGGTTCC   C	31   CCGGGCAGAG GATGCTGATG CCAGGAGAG GCAGGAGGG GCAGGAGGC TCGGGGCCAAA AGGCGCTAAG CCCAGCACGA CTTACATGTT  31   AGGPGEAGAT AGGPGEAGAT RLTAADHRQL 31   CGAGGCGCCG TGCCTCCAG GGGAACTTCA ATGGCATTCA GTTTGCCTG GGTGCAGCT GCTTGCCTG GGTGCAGCT GCTTGCCCTG GGTGCAGCT GCTTGCCCTG GGTGCAGCT GCTTGCCCTG GGTGCAGCT GCTTGCCCTG GGTGCAGCT GCTGCCCTG	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGG GCCCAGGAGG CCGGGAGC CCTGCGGGGC CCCAGCCAGT TCACGCAGTG CCCAGCCTGG GTGGCCAGTT TGTTTCTGTA  41    GGRGPRGAGA QLSISSCLQQ  41    GGCAGCGACC CTGGCTGGG GAGGGAAGT CCAGACAAACT CTGCGAGAAG CAATTGTAAC TAAACCAGGT GGATGCGGG	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC CATTGTGGGG GAAAATAAAG  51 ARASGPRGGA LSLLMWITQC  51 CCTGCAGCGG TGCTGCTCT TGTGATTGCA GGTAATGGAT TGCAAGAATG TCCAAAGGTT TGTGACAGGAG GGGCCCTTGG GGGCCCTTGG	120 180 240 360 420 480 540 600 120 60 120 180 240 300 360 420 480 540
<ul><li>50</li><li>55</li><li>60</li><li>65</li><li>70</li><li>75</li></ul>	Coding sequence of the control of th	11   CCTGACCTTC GCACAGGGGG CAGGGGCAA GCGCAGGGGC TGCTTCAGTT TGTCTCAGTT TGTCTCAGTC TTGTCGCTG  589 Proteicession #: I   STGDADGPGG AQDGRCPCGA SGQRR  590 DNA se id Accession uence: 903   GCAGAGTGAG TCAGCGCCC CCTCCTGCCC CCTCTGCCCT CAGCAGGAAT CCAGCAGGAAT CCAGCAGGAAT CCAGTGTCAGCC CCCAGCCAGCAAT CCAATGTCTG	21   TCTCTGAGAG TTCGACGGGC TGCGCAGGGCC AGCAAGGGCC TGCGCAGGAT CCGACTGACT CCTCTGCCTG CTTCCCTG AGGGAATGGT AGGAGGACGG  in sequence 21   PGIPDGPGGN RRPDSRLLQF  equence 1 #: NM_0055 8671 21   AACCACCAAC GCAGCCCGG ATCTTTGATC GACAACACT AAGCCACCTG AAGTGTGAC CCAGGCTTCC AAGTGTGAC GGGGGGAACC GGGGGGAACC GGGGGGGAACC GGGGGGGAACC GGGGGGGAACC	31   CCGGGCAGAG GATGCTGATG CCAGGAGAGG GCAGGAGGGCCGA GGAAGGTGCC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT  31   AGGPGEAGAT CCAGCCCG GGAAGCCCG TGCCTGCGCT CCACCTCCAG GGGAACTTCA ATGGCATTCA ATGGCATTCA GTTTGCCCTG GTTACCAGC TTACTGGAGA CTGAGGCCTG CCTGCGCT CCACTCCAG CTGACCCTCCAG CTGACCCAGC CTGACCCTCCAG CTGACCCTCCAG CTGACCCTCCAG CTGACCCAGC CTGACCCTCCAG CTGACCCAGC CTGACCCTCCAG CTGACCCAGC CTGACGCCTG CTGAGGCCTG CTGAGGCCTG CTGAGGCCTG CTGAGGGCTC	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGG GCCCAGGAGG CCGGGGGC CCTGCGGGGC CCCAGCCTGC CCCAGCCTGC GTGGCCAGTT TGTTTCTGTA  41  GGRGPRGAGA QLSISSCLQQ  41  41  CGCAGCGACC CTGGCTGGG GAGGAAACT CTGCGAGAAA CTAAACCAGGT GGATGCGGG GGATGCGGG GGATGCGGG TGGCATCGCAATT TACCCAGTGT TACCCAGTGT TACCCAGTGT	CATGCAGGCC CCTTGCATT GGGCGCGGT CAGGAGGCCG GCAGCTCTCC CTTTCTGCCC CGCCCCTTCC CATTGTGGGG GAAAATAAAG  51 ARASGPRGGA LSLLMWITQC  51 CCTGCAGCGG TGCTGCCTCT TGTGATTGCA GGTAATGGAT GTGACAGAGG TCCAAAGGTT TCTGACAGGAG GGGCCCTTG TGTGACAGAT TCCAAAGGTT TTCTGCTATG	60 120 120 360 420 480 540 600

			CTTGGGAATC				900
			GGAGGCAGAC GCTCCCTTGA				960 1020
			AGGTTAAATG				1080
5			AGGTTACTGC				1140
			GGGTACATTG				1200
			TGGGTTGAAC TCTGGCTACA				1260 1320
			TGTCAAGGGG				1380
10			CCTGACATTG				1440
	ACGATCCGCA	CGACCCCCGC	AGCTGCAAGC	CATGTCCCTG	TCATAACGGG	TTCAGCTGCT	1500
	CAGTGATGCC	GGAGACGGAG	GAGGTGGTGT GATGGCTACT	GCAATAACTG	CCCTCCCGGG	GTCACCGGTG	1560 1620
	TCACCCTTG	TCAGCCCTGT	CAATGCAACA	ACAATGTGGA	CCCCAGTGCC	TCTGGGAATT	1680
15	GTGACCGGCT	GACAGGCAGG	TGTTTGAAGT	GTATCCACAA	CACAGCCGGC	ATCTACTGCG	1740
	ACCAGTGCAA	AGCAGGCTAC	TTCGGGGACC	CATTGGCTCC	CAACCCAGCA	GACAAGTGTC	1800
	GAGCTTGCAA	CTGTAACCCC	ATGGGCTCAG	AGCCTGTAGG	ATGTCGAAGT	GATGGCACCT	1860 1920
	GTGTTTGCAA	GCCAGGATTT	GGTGGCCCCA ATTCAGATGG	ACTGTGAGCA	GCAGCAGCTT	CAGAGAATGG	1980
20	AGGCCCTGAT	TTCAAAGGCT	CAGGGTGGTG	ATGGAGTAGT	ACCTGATACA	GAGCTGGAAG	2040
20	GCAGGATGCA	GCAGGCTGAG	CAGGCCCTTC	AGGACATTCT	GAGAGATGCC	CAGATTTCAG	2100
	AAGGTGCTAG	CAGATCCCTT	GGTCTCCAGT	TGGCCAAGGT	GAGGAGCCAA	GAGAACAGCT	2160
	ACCAGAGCCG	CCTGGATGAC	CTCAAGATGA GATACTCACA	CTGTGGAAAG	AGTTCGGGCT	CIGGGAAGIC	2220 2280
25	CAGAAACTGA	AGCTTCCTTG	GGAAACACTA	ACATTCCTGC	CTCAGACCAC	TACGTGGGGC	2340
23	CAAATGGCTT	TAAAAGTCTG	GCTCAGGAGG	CCACAAGATT	AGCAGAAAGC	CACGTTGAGT	2400
	CAGCCAGTAA	CATGGAGCAA	CTGACAAGGG	AAACTGAGGA	CTATTCCAAA	CAAGCCCTCT	2460
	CACTGGTGCG	CAAGGCCCTG	CATGAAGGAG	TCGGAAGCGG	AAGCGGTAGC	CCGGACGGTG	2520 2580
30	CTGTGGTGCA	AGGGCTTGTG	GAAAAATTGG GAAATTGAAG	CAGATAGGTC	TTATCAGCAC	AGTCTCCGCC	2640
50	TCCTGGATTC	AGTGTCTCGG	CTTCAGGGAG	TCAGTGATCA	GTCCTTTCAG	GTGGAAGAAG	2700
	CAAAGAGGAT	CAAACAAAAA	GCGGATTCAC	TCTCAACGCT	GGTAACCAGG	CATATGGATG	2760
	AGTTCAAGCG	TACACAAAAG	AATCTGGGAA	ACTGGAAAGA	AGAAGCACAG	CAGCTCTTAC	2820
35	AGAATGGAAA	AAGTGGGAGA	GAGAAATCAG CTGAGTATGG	ATCAGCTGCT	TTCCCGTGCC	GTTGAGAGCA	2880 2940
55	TCCTTAAAAA	CCTCAGAGAG	TTTGACCTGC	AGGTGGACAA	CAGAAAAGCA	GAAGCTGAAG	3000
	AAGCCATGAA	GAGACTCTCC	TACATCAGCC	AGAAGGTTTC	AGATGCCAGT	GACAAGACCC	3060
	AGCAAGCAGA	AAGAGCCCTG	GGGAGCGCTG	CTGCTGATGC	ACAGAGGGCA	AAGAATGGGG	3120
40	CCGGGGAGGC	COTGGAAATC	TCCAGTGAGA GGAGCCTTGG	TIGAACAGGA	GGGACTGGCC	TCTCTGAAGA	3180 3240
40	GTGAGATGAG	GGAAGTGGAA	GGAGCCTTGG	AAAGGAAGGA	GCTGGAGTTT	GACACGAATA	3300
	TGGATGCAGT	ACAGATGGTG	ATTACAGAAG	CCCAGAAGGT	TGATACCAGA	GCCAAGAACG	3360
	CTGGGGTTAC	AATCCAAGAC	ACACTCAACA	CATTAGACGG	CCTCCTGCAT	CTGATGGACC	3420
45	AGCCTCTCAG	TGTAGATGAA	GAGGGGCTGG CTGCGGCCCA	TCTTACTGGA	GCAGAAGCTT	AGGGCACGC	3480 3540
45	AGACCCAGAT	CCACCTCCAT	TTGCTGGAGA	CAAGCATAGA	TGGGATTCTG	GCTGATGTGA	3600
	AGAACTTGGA	GAACATTAGG	GACAACCTGC	CCCCAGGCTG	CTACAATACC	CAGGCTCTTG	3660
	AGCAACAGTG	AAGCTGCCAT	AAATATTTCT	CAACTGAGGT	TCTTGGGATA	CAGATCTCAG	3720
50	GGCTCGGGAG	CCATGTCATG	TGAGTGGGTG TGACCCCATT	GGATGGGGAC	TGGCCAGGTG	GTTTAATGGG	3780 3840
50	TGCACCATAC	TCCTTGCTTC	CTGATGCTGG	GCAATGAGGC	AGATAGCACT	GGGTGTGAGA	3900
	ATGATCAAGG	ATCTGGACCC	CAAAGAATAG	ACTGGATGGA	AAGACAAACT	GCACAGGCAG	3960
	ATGTTTGCCT	CATAATAGTC	GTAAGTGGAG	TCCTGGAATT	TGGACAAGTG	CTGTTGGGAT	4020
55	ATAGTCAACT	TATTCTTTGA	GTAATGTGAC AGAACAGAGT	TAAAGGAAAA	CACACTGTGG	CCAGTAAAAT	4080 4140
55	ACTATTGCCT	CATATTGTCC	TCTGCAAGCT	TCTTGCTGAT	CAGAGTTCCT	CCTACTTACA	4200
	ACCCAGGGTG	TGAACATGTT	CTCCATTTTC	AAGCTGGAAG	AAGTGAGCAG	TGTTGGAGTG	4260
	AGGACCTGTA	AGGCAGGCCC	ATTCAGAGCT	ATGGTGCTTG	CTGGTGCCTG	CCACCTTCAA	4320
60	GTTCTGGACC	TGGGCATGAC	ATCCTTTCTT	TTAATGATGC	CATGGCAACT	TAGAGATTGC	4380 4440
00	GTTTCDAAGT	CATAGAAAAG	TGTGGCTTGG	GCATTGAAAG	AGGTAAAATT	CTCTAGATTT	4500
	ATTAGTCCTA	ATTCAATCCT	ACTTTTCGAA	CACCAAAAAT	GATGCGCATC	AATGTATTTT	4560
	ATCTTATTTT	CTCAATCTCC	TCTCTCTTTC	CTCCACCCAT	AATAAGAGAA	TGTTCCTACT	4620
65	CACACTTCAG	CTGGGTCACA	TCCATCCCTC AACATATATT	CATTCATCCT	CTACTGTGTG	CCAGGGGGGTG	4680 4740
05	GTGGGACAGT	CCATCCTTCC	TCTCTGCCCT	CATAGAGTTG	ATTGTCTAGT	GAGGAAGACA	4800
	AGCATTTTTA	AAAAATAAAT	TTAAACTTAC	AAACTTTGTT	TGTCACAAGT	GGTGTTTATT	4860
	GCAATAACCG	CTTGGTTTGC	AACCTCTTTG	CTCAACAGAA	CATATGTTGC	AAGACCCTCC	4920
70	CATGGGGGCA	CTTGAGTTTT	GGCAAGGCTG	ACAGAGCTCT	GGGTTGTGCA	CATTTCTTTG	4980 5040
70	TAACACCAGCT	GCGAATTGCT	GCCTTTCTAC	GAGGCACTTC	CACCTTGGCT	TGAGTTATGA GGGAAGACTA	
	TGGTGCTGCC	TTGCTTCTGT	ATTTCCTTGG	ATTTTCCTGA	AAGTGTTTTT	AAATAAAGAA	5160
	CAATTGTTAG						
75		591 Prote cession #: 1		•			
	į	11	21	31	41	51	
90	1	1				PROLNCHOVE	60
80	MPALWLGCCL	CFSLLLPAAR	ATSRREVCDC	NGKSRQCIFD	RELHRUTGNG	ARCDRCLPGF	120
	HMIJTDAGCTO	DORLLDSKCD	COPAGIAGEC	DAGRCVCKPA	VTGERCDRCR	SGYYNLDGGN	
	PEGCTOCECY	GHSASCRSSA	EYSVHKITST	FHODVDGWKA	VQRNGSPAKL	QWSQRHQDVF	240
0.5	SSAORLDPVY	FVAPAKFLGN	QQVSYGQSLS	FDYRVDRGGR	HPSAHDVILE	GAGLRITAPL	300 360
85	MPLGKTLPCG	LTKTYTPRLN	EHPSNNWSPQ	DECODORSON	KEDSARIGER	TYGEYSTGYI GTCIPCNCQG	
	GGACDPDTGD	CYSGDENPDI	ECADCPIGFY	NDPHDPRSCK	PCPCHNGFSC	SVMPETEEVV	480

```
CNNCPPGVTG ARCELCADGY FGDPFGEHGP VRPCQPCQCN NNVDPSASGN CDRLTGRCLK
       CIHNTAGIYC DQCKAGYFGD PLAPNPADKC RACNCNPMGS EPVGCRSDGT CVCKPGFGGP
                                                                                   600
       NCEHGAFSCP ACYNQVKIQM DQFMQQLQRM EALISKAQGG DGVVPDTELE GRMQQAEQAL
                                                                                   660
       QDILRDAQIS EGASRSLGLQ LAKVRSQENS YQSRLDDLKM TVERVRALGS QYQNRVRDTH
       RLITOMOLSL AESEASLENT NIPASDHYVE PNEFKSLAGE ATRLAESHVE SASNMEQLTR
       ETEDYSKQAL SLVRKALHEG VGSGSGSPDG AVVQGLVEKL EKTKSLAQQL TREATQAEIE
       ADRSYCHSIR LLDSVSRLOG VSDOSFOVEE AKRIKOKADS LSTLVTRHMD EFKRTOKNLG
       NWKEEAQQLL QNGKSGREKS DQLLSRANLA KSRAQEALSM GNATFYEVES ILKNLREFDL
       OVDNRKAEAE EAMKRLSYIS OKVSDASDKT QQAERALGSA AADAQRAKNG AGEALEISSE
                                                                                 1020
10
       IEOEIGSLNL EANVTADGAL AMEKGLASLK SEMREVEGEL ERKELEFDTN MDAVOMVITE
                                                                                 1080
       AQKVDTRAKN AGVTIQDTLN TLDGLLHLMD QPLSVDEEGL VLLEQKLSRA KTQINSQLRP
                                                                                 1140
       MMSELEERAR QORGHLHLLE TSIDGILADV KNLENIRDNL PPGCYNTQAL EQQ
       Seq ID NO: 592 DNA sequence
15
       Nucleic Acid Accession #: AF101051.1
       Coding sequence: 221.856
                                                                    51
20
       GAGCAACCTC AGCTTCTAGT ATCCAGACTC CAGCGCCGCC CCGGGCGCGG ACCCCAACCC
                                                                                   60
       CGACCCAGAG CTTCTCCAGC GGCGGCGCAG CGAGCAGGGC TCCCCGCCTT AACTTCCTCC
                                                                                  120
       GCGGGGCCCA GCCACCTTCG GGAGTCCGGG TTGCCCACCT GCAAACTCTC CGCCTTCTGC
                                                                                  180
       ACCTGCCACC CCTGAGCCAG CGCGGGCGCC CGAGCGAGTC ATGGCCAACG CGGGGCTGCA
                                                                                  240
       GCTGTTGGGC TTCATTCTGG CCTTCCTGGG ATGGATCGGC GCCATCGTCA GCACTGCCCT
GCCCCAGTGG AGGATTTACT CCTATGCCGG CGACAACATC GTGACCGCCC AGGCCATGTA
                                                                                  300
25
                                                                                  360
       CGAGGGGCTG TGGATGTCCT GCGTGTCGCA GAGCACCGGG CAGATCCAGT GCAAAGTCTT
                                                                                  420
       TGACTCCTTG CTGAATCTGA GCAGCACATT GCAAGCAACC CGTGCCTTGA TGGTGGTTGG
                                                                                  480
       CATCCTCCTG GGAGTGATAG CAATCTTTGT GGCCACCGTT GGCATGAAGT GTATGAAGTG
                                                                                  540
       CTTGGAAGAC GATGAGGTGC AGAAGATGAG GATGGCTGTC ATTGGGGGTG CGATATTTCT
30
       TCTTGCAGGT CTGGCTATTT TAGTTGCCAC AGCATGGTAT GGCAATAGAA TCGTTCAAGA
       ATTCTATGAC CCTATGACCC CAGTCAATGC CAGGTACGAA TTTGGTCAGG CTCTCTTCAC
                                                                                  720
       TGGCTGGGCT GCTGCTTCTC TCTGCCTTCT GGGAGGTGCC CTACTTTGCT GTTCCTGTCC
                                                                                  780
       CCGAAAAACA ACCTCTTACC CAACACCAAG GCCCTATCCA AAACCTGCAC CTTCCAGCGG
                                                                                  840
       GAAAGACTAC GTGTGACACA GAGGCAAAAG GAGAAAATCA TGTTGAAACA AACCGAAAAT
                                                                                  900
35
       GGACATTGAG ATACTATCAT TAACATTAGG ACCTTAGAAT TTTGGGTATT GTAATCTGAA
                                                                                  960
       GTATGGTATT ACAAAACAAA CAAACAAACA AAAAACCCAT GTGTTAAAAT ACTCAGTGCT
                                                                                 1020
       AAACATGGCT TAATCTTATT TTATCTTCTT TCCTCAATAT AGGAGGGAAG ATTTTACCAT
                                                                                 1080
       TTGTATTACT GCTTCCCATT GAGTAATCAT ACTCAAATGG GGGAAGGGGT GCTCCTTAAA
                                                                                 1140
       TATATATAGA TATGTATATA TACATGTTTT TCTATTAAAA ATAGACAGTA AAATACTATT
                                                                                 1200
40
       CTCATTATGT TGATACTAGC ATACTTAAAA TATCTCTAAA ATAGGTAAAT GTATTTAATT
                                                                                 1260
       CCATATTGAT GAAGATGTTT ATTGGTATAT TTTCTTTTTC GTCCTTATAT ACATATGTAA
                                                                                 1320
       CAGTCAAATA TCATTTACTC TTCTTCATTA GCTTTGGGTG CCTTTGCCAC AAGACCTAGC
                                                                                 1380
       CTAATTTACC AAGGATGAAT TCTTTCAATT CTTCATGCGT GCCCTTTTCA TATACTTATT
                                                                                 1440
       TTATTTTTTA CCATAATCTT ATAGCACTTG CATCGTTATT AAGCCCTTAT TTGTTTTGTG
                                                                                 1500
45
       TTTCATTGGT CTCTATCTCC TGAATCTAAC ACATTTCATA GCCTACATTT TAGTTTCTAA
                                                                                 1560
       AGCCAAGAAG AATTTATTAC AAATCAGAAC TTTGGAGGCA AATCTTTCTG CATGACCAAA
                                                                                 1620
       GTGATAAATT CCTGTTGACC TTCCCACACA ATCCCTGTAC TCTGACCCAT AGCACTCTTG
TTTGCTTTGA AAATATTTGT CCAATTGAGT AGCTGCATGC TGTTCCCCCA GGTGTTGTAA
                                                                                 1680
                                                                                 1740
       CACAACTTTA TTGATTGAAT TTTTAAGCTA CTTATTCATA GTTTTATATC CCCCTAAACT ACCTTTTTGT TCCCCATTCC TTAATTGTAT TGTTTTCCCA AGTGTAATTA TCATGCGTTT
                                                                                 1800
50
                                                                                 1860
       TATATCTTCC TAATAAGGTG TGGTCTGTTT GTCTCAACAA AGTGCTAGAC TTTCTGGAGT GATAATCTGG TGACAAATAT TCTCTCTGTA GCTGTAAGCA AGTCACTTAA TCTTTCTACC
                                                                                 1920
                                                                                 1980
       TCTTTTTCT ATCTGCCAAA TTGAGATAAT GATACTTAAC CAGTTAGAAG AGGTAGTGTG
                                                                                 2040
       AATATTAATT AGTTTATATT ACTCTCATTC TTTGAACATG AACTATGCCT ATGTAGTGTC
                                                                                 2100
55
       TTTATTTGCT CAGCTGGCTG AGACACTGAA GAAGTCACTG AACAAAACCT ACACACGTAC
                                                                                 2160
       CTTCATGTGA TTCACTGCCT TCCTCTCTT ACCAGTCTAT TTCCACTGAA CAAAACCTAC
                                                                                 2220
       ACACATACCT TCATGTGGTT CAGTGCCTTC CTCTCTCTAC CAGTCTATTT CCACTGAACA
                                                                                 2280
       AAACCTACGC ACATACCTTC ATGTGGCTCA GTGCCTTCCT CTCTCTACCA GTCTATTTCC
                                                                                 2340
       ATTCTTTCAG CTGTGTCTGA CATGTTTGTG CTCTGTTCCA TTTTAACAAC TGCTCTTACT
                                                                                 2400
60
       TTTCCAGTCT GTACAGAATG CTATTTCACT TGAGCAAGAT GATGTATGGA AAGGGTGTTG
                                                                                 2460
       GCACTGGTGT CTGGAGACCT GGATTTGAGT CTTGGTGCTA TCAATCACCG TCTGTGTTTG
                                                                                 2520
       AGCAAGGCAT TTGGCTGCTG TAAGCTTATT GCTTCATCTG TAAGCGGTGG TTTGTAATTC
                                                                                 2580
       CTGATCTTCC CACCTCACAG TGATGTTGTG GGGATCCAGT GAGATAGAAT ACATGTAAGT
                                                                                 2640
       GTGGTTTTGT AATTTGAAAA GTGCTATACT AAGGGAAAGA ATTGAGGAAT TAACTGCATA
                                                                                 2700
       CGTTTTGGTG TTGCTTTTCA AATGTTTGAA AATAAAAAAA TGTTAAGAAA TGGGTTTCTT
65
                                                                                 2760
       GCCTTAACCA GTCTCTCAAG TGATGAGACA GTGAAGTAAA ATTGAGTGCA CTAAACGAAT
                                                                                 2820
       AAGATTCTGA GGAAGTCTTA TCTTCTGCAG TGAGTATGGC CCAATGCTTT CTGTGGCTAA
                                                                                 2880
       ACAGATGTAA TGGGAAGAAA TAAAAGCCTA CGTGTTGGTA AATCCAACAG CAAGGGAGAT
                                                                                 2940
       TTTTGAATCA TAATAACTCA TAAGGTGCTA TCTGTTCAGT GATGCCCTCA GAGCTCTTGC
TGTTAGCTGG CAGCTGACGC TGCTAGGATA GTTAGTTTGG AAATGGTACT TCATAATAAA
CTACACAAGG AAAGTCAGCC ACCGTGTCTT ATGAGGAATT- GGACCTAATA AATTTTAGTG
                                                                                 3000
70
                                                                                 3060
                                                                                 3120
       TGCCTTCCAA ACCTGAGAAT ATATGCTTTT GGAAGTTAAA ATTTAAATGG CTTTTGCCAC
                                                                                 3180
       ATACATAGAT CTTCATGATG TGTGAGTGTA ATTCCATGTG GATATCAGTT ACCAAACATT
                                                                                 3240
       ACAAAAAAT TTTATGGCCC AAAATGACCA ACGAAATTGT TACAATAGAA TTTATCCAAT
                                                                                 3300
75
       TTTGATCTTT TTATATTCTT CTACCACACC TGGAAACAGA CCAATAGACA TTTTGGGGTT
        TTATAATGGG AATTTGTATA AAGCATTACT CTTTTTCAAT AAATTGTTTT TTAATTTAAA
                                                                                 3420
       ААААGGAAAA ААААААААА ААА
       Sea ID NO: 593 Protein sequence
80
       Protein Accession #: AAD16433.1
       MANAGLQLLG FILAFLGWIG AIVSTALPQW RIYSYAGDNI VTAQAMYEGL WMSCVSQSTG
                                                                                    60
85
       QIQCKVFDSL LNLSSTLQAT RALMVVGILL GVIAIFVATV GMKCMKCLED DEVQKVRMAV
IGGAIFLLAG LAILVATAWY GNRIVQEFYD PMTPVNARYE FGQALPTGWA AASLCLLGGA
                                                                                   120
       LLCCSCPRKT TSYPTPRPYP KPAPSSGKDY V
```

Seq ID NO: 594 DNA sequence Nucleic Acid Accession #: NM_006180.1 Coding sequence: 352..2820

5	coarna sedr	lence: 352.	2020				
-	1	11	21	31	41	51	
	1	1	1	1		I	
	CCCCCATTCG	CATCTAACAA	GGAATCTGCG	CCCCAGAGAG	TCCCGGACGC	CGCCGGTCGG	60
10	TGCCCGGCGC	GCCGGGCCAT	GCAGCGACGG	CCGCCGCGGA CCACTGTGAA	CCTCCGAGCA	TGCCGGAACA	120 180
10	CTCTTCCCTC	CCOACCACCT	CACCCTCTGA	TAAGCTGGAC	TCGGCACGCC	CGCAACAAGC	240
	ACCGAGGAGT	TAAGAGAGCC	GCAAGCGCAG	GGAAGGCCTC	CCCGCACGGG	TGGGGGAAAG	300
	CCCCCCCCCCCCC	AGCGCGGGGA	CAGGCACTCG	GGCTGGCACT	GGCTGCTAGG	GATGTCGTCC	360
1.5	TGGATAAGGT	GGCATGGACC	CGCCATGGCG	CGGCTCTGGG	GCTTCTGCTG	GCTGGTTGTG	420
15	GGCTTCTGGA	GGGCCGCTTT	CGCCTGTCCC	ACGTCCTGCA	AATGCAGTGC	CTCTCGGATC	480
	TGGTGCAGCG	ACCCTTCTCC	TGGCATCGTG	GCATTTCCGA	GATTGGAGCC	TAACAGTGTA	540 600
•	GATCCTGAGA	ACATCACCGA	AATITICATC	GCAAACCAGA AGAAATCTGA	CARTCTCCA	TTCTGGATTA	660
	AAAGAIGAIG	CTCATABAGC	ATTTCTGAAA	AACAGCAACC	TGCAGCACAT	CAATTTTACC	720
20	CGAAACAAAC	TGACGAGTTT	GTCTAGGAAA	CATTTCCGTC	ACCTTGACTT	GTCTGAACTG	780
	ATCCTGGTGG	GCAATCCATT	TACATGCTCC	TGTGACATTA	TGTGGATCAA	GACTCTCCAA	840
	GAGGCTAAAT	CCAGTCCAGA	CACTCAGGAT	TTGTACTGCC	TGAATGAAAG	CAGCAAGAAT	900
	ATTCCCCTGG	CAAACCTGCA	GATACCCAAT	TGTGGTTTGC	CATCTGCAAA	TCTGGCCGCA	960
25	CCTAACCTCA	CTGTGGAGGA	AGGAAAGTCT	ATCACATTAT	CCTGTAGTGT	GGCAGGTGAT	1020 1080
25	CCGGTTCCTA	ATATGTATIG	GGATGTTGGT	AACCTGGTTT AACATTTCAT	CCGATGACAG	TECENNECNE	1140
	AGCCACACAC	TECCECANA	TOTTOTAGGA	GAAGATCAAG	ATTCTGTCAA	CCTCACTGTG	1200
	CATTTTGCAC	CAACTATCAC	ATTTCTCGAA	TCTCCAACCT	CAGACCACCA	CTGGTGCATT	1260
	CCATTCACTG	TGAAAGGCAA	CCCCAAACCA	GCGCTTCAGT	GGTTCTATAA	CGGGGCAATA	1320
30	TTGAATGAGT	CCAAATACAT	CTGTACTAAA	ATACATGTTA	CCAATCACAC	GGAGTACCAC	1380
	GGCTGCCTCC	AGCTGGATAA	TCCCACTCAC	ATGAACAATG	GGGACTACAC	TCTAATAGCC	1440
	AAGAATGAGT	ATGGGAAGGA	TGAGAAACAG	ATTTCTGCTC	ACTTCATGGG		1500 1560
	ATTGACGATG	GTGCAAACCC	AAATTATCCT	GATGTAATTT AGTAATGAAA	TCCCTTCCTC	AGACCTCACT	1620
35	GCGAATGACA	GTCGGGACAC	TOTOTOGGTO	TATGCTGTGG	TGGTGATTGC	GTCTGTGGTG	1680
55	GGATTTTGCC	TTTTGGTAAT	GCTGTTTCTG	CTTAAGTTGG	CAAGACACTC	CAAGTTTGGC	1740
	ATGAAAGGCC	CAGCCTCCGT	TATCAGCAAT	GATGATGACT	CTGCCAGCCC	ACTCCATCAC	1800
	ATCTCCAATG	GGAGTAACAC	TCCATCTTCT	TCGGAAGGTG	GCCCAGATGC	TGTCATTATT	1860
40	GGAATGACCA	AGATCCCTGT	CATTGAAAAT	CCCCAGTACT	TTGGCATCAC	CAACAGTCAG	1920
40	CTCAAGCCAG	ACACATTTGT	TCAGCACATC	AAGCGACATA	ACATTGTTCT	CTCTCCTCAC	1980 2040
	CTAGGCGAAG	TOTTOG	AAAAGIGITC	CTAGCTGAAT CTGAAGGATG	CCAGTGACAA	TGCACGCAAG	2100
	GACTTCCACC	GTGAGGCCGA	GCTCCTGACC	AACCTCCAGC	ATGAGCACAT	CGTCAAGTTC	2160
	TATGGCGTCT	GCGTGGAGGG	CGACCCCCTC	ATCATGGTCT	TTGAGTACAT	GAAGCATGGG	2220
45	GACCTCAACA	AGTTCCTCAG	GGCACACGGC	CCTGATGCCG	TGCTGATGGC	TGAGGGCAAC	2280
	CCGCCCACGG	AACTGACGCA	GTCGCAGATG	CTGCATATAG	CCCAGCAGAT	CGCCGCGGGC	2340
	ATGGTCTACC	TGGCGTCCCA	GCACTTCGTG	CACCGCGATT	TGGCCACCAG	GAACTGCCTG	2400
	GTCGGGGAGA	ACTTGCTGGT	GAAAATCGGG	GACTTTGGGA ATGCTGCCCA	TGTCCCGGGA	CCTCTACAGC	2460 2520
50	ACTGACTACT	ACAGGGTCGG	CACCACACA	AUGCIGCCCA	GCAGCCTGGG	GCCTCCAGAG	2520
50	TCCGAGATTT	TCACCTATGG	CARACAGCCC	TGGTACCAGC	TGTCAAACAA	TGAGGTGATA	2640
				CGACCCCGCA			2700
	GAGCTGATGC	TGGGGTGCTG	GCAGCGAGAG	CCCCACATGA	GGAAGAACAT	CAAGGGCATC	2760
	CATACCCTCC	TTCAGAACTT	GGCCAAGGCA	TCTCCGGTCT	ACCTGGACAT	TCTAGGCTAG	2820
55	GGCCCTTTTC	CCCAGACCGA	TCCTTCCCAA	CGTACTCCTC	AGACGGGCTG		2880
	CATCTTTTAA	CTGCCGCTGG	AGGCCACCAA	GCTGCTCTCC	TTCACTCTGA	CAGTATTAAC	2940 3000
	ATCAAAGACT	CCGAGAAGCT	CTCGAGGGAA	GCAGTGTGTA CTCTCTTTCC	ATCTCCCTTG	CATAGACACA	3060
				TTTTTTCGTC			3120
60	ACCCTTTCTT	TTGAATCAAT	CTGGCTTCTG	CATTACTATT	AACTCTGCAT	AGACAAAGGC	3180
	CTTAACAAAC	GTAATTTGTT	ATATCAGCAG	ACACTCCAGT	TTGCCCACCA	CAACTAACAA	3240
	TGCCTTGTTG	TATTCCTGCC	TTTGATGTGG	ATGAAAAAA	GGGAAAACAA	ATATTTCACT	3300
	TAAACTTTGT	CACTTCTGCT	GTACAGATAT	CGAGAGTTTC	TATGGATTCA	CTTCTATTTA	3360
65	TTTATTATTA	TTACTGTTCT	TATTGTTTTT	GGATGGCTTA	MANAGERE	TAAAAAAGAA GAGAAAGAAG	3420
05	AACTIGIGIT	AACCCCAATA	TEGGAGGAAC	AAGACAACC	ACTGGGATCA	GCTGGTGTCA	3540
	GTCCCTACTT	AGGAAATACT	CAGCAACTGT	TAGCTGGGAA	GAATGTATTC	GGCACCTTCC	3600
	CCTGAGGACC	TTTCTGAGGA	GTAAAAAGAC	TACTGGCCTC	TGTGCCATGG	ATGATTCTTT	3660
	TCCCATCACC	AGAAATGATA	GCGTGCAGTA	GAGAGCAAAG	ATGGCTT		
70		595 Protes cession #: 1					
				31	41	51	
75	1	11	21	31	41	1	
13	MCCWIDWUGD	AMADI.WGECW	LANGEWEARE	ACDASCRC67	SRIWCEDDED	GIVAFPRLEP	60
	MOUDDENITE	TEINNOKPI.E	TIMEDDUEAY	VGLRNLTIVD	SCLKEVAHKA	FLKNSNLOHI	120
	NETRNKLTSL	SRKHFRHLDL	SELILVGNPF	TCSCDIMWIK	TLQEAKSSPD	TODLYCLNES	180
0.5	SKNIPLANLO	IPNCGLPSAN	LAAPNLTVEE	GKSITLSCSV	AGDPVPNMYW	DVGNLVSKHM	240
80	NETSHTQGSL	RITNISSDDS	GKQISCVAEN	LVGEDQDSVN	LTVHFAPTIT	FLESPTSDHH	300
	WCIPFTVKGN	PKPALOWFYN	GAILNESKYI	CTKIHVTNHT	EYHGCLQLDN	PTHMNNGDYT	360
	LIAKNEYGKD	EKOISAHFMG	WPGIDDGANP	NYPDVIYEDY	GTAANDIGDT	TNRSNEIPST	420
	DVTDKTGREH	LSVYAVVVIA	SVVGFCLLVM	LFLLKLARHS	KFGMKGPASV	ISNDDDSASP	480
85	LHHISNGSNT	PESSEGGPDA	VIIGMTKIPV	LENPQYFGIT	VOKUBRDEVE	QHIKRHNIVL LLTNLQHEHI	540 600
0.5	VKEVGUGUEG	DDI.TMUPPUM	CAECOLVICE	AHGPDAVI.MA	EGNPPTELTO	SQMLHIAQQI	660
	AAGMVYLASO	HFVHRDLATR	NCLVGENLLV	KIGDFGMSRD	VYSTDYYRVG	GHTMLPIRWM	720
				_			

PPESIMYRKF TTBSDVWSLG VVLWEIFTYG KQPWYQLSNN EVIECITQGR VLQRPRTCPQ 780 EVYELMLGCW QREPHMRKNI KGIHTLLQNL AKASPVYLDI LG

Seq ID No: 596 DNA sequence
Nucleic Acid Accession #: AF410899
Coding sequence: 483..2999

	couring bequ	2011-01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					
	1	11	21	31	41	51	
10	1	<u> </u>			cocomos emo	000000000000000000000000000000000000000	60
10	GGGAGCAGGA	GCCTCGCTGG GGACCCAGGC	CTGCTTCGCT	CGCGCTCTAC	COCCAGIC	CCCCGCCGTA	120
	TOCATACOCC	ACCCCCATTC	GCATCTAACA	ACCAATCTCC	GCCCCAGAGA	GTCCCGGACG	180
	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GTGCCCGGCG	CGCCGGGCCA	TGCAGCGACG	GCCGCCGCGG	AGCTCCGAGC	240
		CCCCCTGTA					300
15	CTGCCGGAAC	ACTCTTCGCT	CCGGACCAGC	TCAGCCTCTG	ATAAGCTGGA	CTCGGCACGC	360
	CCGCAACAAG	CACCGAGGAG	TTAAGAGAGC	CGCAAGCGCA	GGGAAGGCCT	CCCCGCACGG	420
	GTGGGGGAAA	GCGGCCGGTG	CAGCGCGGGG	ACAGGCACTC	GGGCTGGCAC	TGGCTGCTAG	480
	GGATGTCGTC	CTGGATAAGG	TGGCATGGAC	CCGCCATGGC	GCGGCTCTGG	GGCTTCTGCT	540
20	GGCTGGTTGT	GGGCTTCTGG CTGGTGCAGC	AGGGCCGCTT	TCGCCTGTCC	CACGTCCTGC	AAATGCAGTG	600 660
20	CCTCTCGGAT	AGATCCTGAG	BACATCACCC	AAATTTTCAT	CCCAAACCAG	AGATIGGAGC	720
	AAATCATCAA	CGAAGATGAT	CTTCA ACCTT	ATCTCCCACT	GAGAAATCTG	ACAATTGTGG	780
	ATTCTGGATT	AAAATTTGTG	GCTCATAAAG	CATTTCTGAA	AAACAGCAAC	CTGCAGCACA	840
	TCAATTTTAC	CCGAAACAAA	CTGACGAGTT	TGTCTAGGAA	ACATTTCCGT	CACCTTGACT	900
25	TGTCTGAACT	GATCCTGGTG	GGCAATCCAT.	TTACATGCTC	CTGTGACATT	ATGTGGATCA	960
	AGACTCTCCA	AGAGGCTAAA	TCCAGTCCAG	ACACTCAGGA	TTTGTACTGC	CTGAATGAAA	1020
	GCAGCAAGAA	TATTCCCCTG	GCAAACCTGC	AGATACCCAA	TTGTGGTTTG	CCATCTGCAA	1080
	ATCTGGCCGC	ACCTAACCTC	ACTGTGGAGG	AAGGAAAGTC	TATCACATTA	TCCTGTAGTG	1140
30	TGGCAGGTGA	TCCGGTTCCT	AATATGTATT	GGGATGTTGG	TAACCTGGTT	TCCAAACATA	1200 1260
30	TGAATGAAAC	AAGCCACACA GATCTCTTGT	CAGGGCTCCT	AMOUTTOTACC	ACARCATTICA	CATTCTCTCA	1320
	GTGGGAAGCA	GCATTTTGCA	GIGGCGGAAA	CATTTGTAGG	AGAAGAICAA	TCAGACCACC	1380
	ACCICACIGI	TCCATTCACT	GTGAAAGGCA	ACCCCAAACC	AGCGCTTCAG	TGGTTCTATA	1440
	ACGGGGCAAT	ATTGAATGAG	TCCAAATACA	TCTGTACTAA	AATACATGTT	ACCAATCACA	1500
35	CGGAGTACCA	CGGCTGCCTC	CAGCTGGATA	ATCCCACTCA	CATGAACAAT	GGGGACTACA	1560
	CTCTAATAGC	CAAGAATGAG	TATGGGAAGG	ATGAGAAACA	GATTTCTGCT	CACTTCATGG	1620
	GCTGGCCTGG	AATTGACGAT	GGTGCAAACC	CAAATTATCC	TGATGTAATT	TATGAAGATT	1680
	ATGGAACTGC	AGCGAATGAC	ATCGGGGACA	CCACGAACAG	AAGTAATGAA	ATCCCTTCCA	1740
40	CAGACGTCAC	TGATAAAACC	GGTCGGGAAC	ATCTCTCGGT	CTATGCTGTG	GTGGTGATTG	1800
40		GGGATTTTGC CATGAAAGAT					1860 1920
		AGCCTCCGTT					1980
	TCTCCAATGG	GAGTAACACT	CCATCTTCTT	CGGAAGGTGG	CCCAGATGCT	GTCATTATTG	2040
		GATCCCTGTC					2100
45	TCAAGCCAGA	CACATTTGTT	CAGCACATCA	AGCGACATAA	CATTGTTCTG	AAAAGGGAGC	2160
	TAGGCGAAGG	AGCCTTTGGA	AAAGTGTTCC	TAGCTGAATG	CTATAACCTC	TGTCCTGAGC	2220
		CTTGGTGGCA					2280
	ACTTCCACCG	TGAGGCCGAG	CTCCTGACCA	ACCTCCAGCA	TGAGCACATC	GTCAAGTTCT	2340
50	ATGGCGTCTG	CGTGGAGGGC	GACCCCCTCA	TCATGGTCTT	TGAGTACATG	AAGCATGGGG	2400
50	ACCTCAACAA	GTTCCTCAGG	GCACACGGCC	CTGATGCCGT	GCTGATGGCT	CCCCCCCCC	2460 2520
	CGCCCACGGA	ACTGACGCAG GGCGTCCCAG	TCGCAGATGC	TGCATATAGC	CCAGCAGATC	AACTECCTEE	2520
	TOGGGGAGAA	CTTGCTGGTG	AAATOGGG	ACCOCCATIT	GTCCCGGGAC	GTGTACAGCA	2640
	CTCACTACTA	CAGGGTCGGT	GGCCACACAA	TGCTGCCCAT	TCGCTGGATG	CCTCCAGAGA	2700 .
55	GCATCATGTA	CAGGAAATTC	ACGACGGAAA	GCGACGTCTG	GAGCCTGGGG	GTCGTGTTGT	2760
	GGGAGATTTT	CACCTATGGC	AAACAGCCCT	GGTACCAGCT	GTCAAACAAT	GAGGTGATAG	2820
	AGTGTATCAC	TCAGGGCCGA	GTCCTGCAGC	GACCCCGCAC	GTGCCCCCAG	GAGGTGTATG	2880
						AAGGGCATCC	2940
60	ATACCCTCCT	TCAGAACTTG	GCCAAGGCAT	CTCCGGTCTA	CCTGGACATT	CTAGGCTAGG	3000
60	GCCCTTTTCC	CCAGACCGAT	CCTTCCCAAC	GTACTCCTCA	GACGGGCTGA	GAGGATGAAC	3060 3120
	ATCITTTAAC	TGCCGCTGGA CGAGAAGCTC	GGCCACCAAG	CIGCICICCI	TUACTUTGAC	AGIATIAACA	3180
	TATTCACTO	TTTTTGGCAT	TEGNIGGGAAG	TOTOTOTA	TCTCCCTTGG	TTGTTCCTTT	3240
						ACGATTCTTA	
65						GACAAAGGCC	3360 -
	TTAACAAACG	TAATTTGTTA	TATCAGCAGA	CACTCCAGTT	TGCCCACCAC	AACTAACAAT	3420
	GCCTTGTTGT	ATTCCTGCCT	TTGATGTGGA	TGAAAAAAG	GGAAAACAAA	TATTTCACTT	3480
	AAACTTTGTC	ACTTCTGCTG	TACAGATATC	GAGAGTTTCT	ATGGATTCAC	TTCTATTTAT	3540
70	TTATTATTAT	TACTGTTCTT	ATTGTTTTTG	GATGGCTTAA	GCCTGTGTAT	AAAAAAGAAA	3600
70	ACTTGTGTTC	AATCTGTGAA	GCCTTTATCT	ATGGGAGATT	AAAACCAGAG	AGAAAGAAGA	3720
	TTTATTATGA	ACCGCAATAT	GGGAGGAACA	AAGACAACCA	AATGTATTCG	CTGGTGTCAG GCACCTTCCC	3780
	CTCACCACCT	TTCTCACCAC	TABABAGACT	ACTECECTET	GTGCCATGGA	TGATTCTTTT	3840
	CCCATCACCA	GAAATGATAG	CGTGCAGTAG	AGAGCAAAGA	TGGCTTCCGT	GAGACACAAG	3900
75	ATGGCGCATA	GTGTGCTCGG	ACACAGTTTT	GTCTTCGTAG	GTTGTGATGA	TAGCACTGGT	3960
	TTGTTTCTCA	AGCGCTATCC	ACAGAACCTT	TGTCAACTTC	AGTTGAAAAG	AGGTGGATTC	4020
		CTCATTTCGG					
	A71						
80		597 Prote					
٥0	Protein Acc	cession #: 1	AAL67965.1				
		11	21	31	41	51	
	1	Î	1	ī	ī*	ī	
• -	MSSWIRWHGP	AMARLWGFCW	LVVGFWRAAF	ACPTSCKCSA	SRIWCSDPSP	GIVAFPRLEP	60
85	NSVDPENITE	IFIANOKRLE	INEDDVEAY	VGLRNLTIVD	SGLKPVAHKA	PLKNSNLQHI	120
	NFTRNKLTSL	SRKHFRHLDL	SELILVGNPP	TCSCDIMWIK	TLQEAKSSPD	TODLYCLNES	180
	SKNIPLANLQ	IPNCGLPSAN	LAAPNLTVEE	GKSITLSCSV	AGDPVPNMYW	DVGNLVSKHM	240

```
NETSHTQGSL RITNISSDDS GKQISCVAEN LVGEDQDSVN LTVHPAPTIT FLESPTSDHH
                                                                              300
       WCIPFTVKGN PKPALQWFYN GAILNESKYI CTKIHVTNHT EYHGCLQLDN PTHMNNGDYT
                                                                              360
       LIAKNBYGKD EKQISAHFMG WPGIDDGANP NYPDVIYEDY GTAANDIGDT TNRSNEIPST
                                                                              420
       DVTDKTGREH LSVYAVVVIA SVVGFCLLVM LFLLKLARHS KFGMKDFSWF GFGKVKSRQG
                                                                              480
       VGPASVISND DDSASPLHHI SNGSNTPSSS EGGPDAVIIG MTKIPVIENP QYFGITNSQL
                                                                              540
       KPDTFVQHIK RHNIVLKREL GEGAFGKVFL AECYNLCPEQ DKILVAVKTL KDASDNARKD
                                                                              600
       FHREAELLTN LOHEHIVKFY GVCVEGDPLI MVPEYMKHGD LNKPLRAHGP DAVLMAEGNP
                                                                              660
       PTELTOSOML HIAQQIAAGM VYLASQHFVH RDLATRNCLV GENLLVKIGD FGMSRDVYST
                                                                              720
       DYYRVGGHTM LPIRWMPPES IMYRKFTTES DVWSLGVVLW EIFTYGKQPW YQLSNNEVIE
                                                                              780
       CITQGRVLQR PRTCPQEVYE LMLGCWQREP HMRKNIKGIH TLLQNLAKAS PVYLDILG
10
       Seq ID NO: 598 DNA sequence
       Nucleic Acid Accession #: AB052906
       Coding sequence: 74..814
15
       AAAACCTTGA GGTGATTCAT CTTCCAGGCT CTCCTTCCAT CAAGTCTCTC CTCCCTAGCG
                                                                               60
       CTCTGGGTCC TTAATGGCAG CAGCCGCCGC TACCAAGATC CTTCTGTGCC TCCCGCTTCT
                                                                              120
20
       GCTCCTGCTG TCCGGCTGGT CCCGGGCTGG GCGAGCCGAC CCTCACTCTC TTTGCTATGA
                                                                              180
       CATCACCGTC ATCCCTAAGT TCAGACCTGG ACCACGGTGG TGTGCGGTTC AAGGCCAGGT
                                                                              240
       GGATGAAAAG ACTTTTCTTC ACTATGACTG TGGCAACAAG ACAGTCACAC CTGTCAGTCC
                                                                              300
       CCTGGGGAAG AAACTAAATG TCACAACGGC CTGGAAAGCA CAGAACCCAG TACTGAGAGA
                                                                              360
       GGTGGTGGAC ATACTTACAG AGCAACTGCG TGACATTCAG CTGGAGAATT ACACACCCAA
                                                                              420
25
       GGAACCCCTC ACCCTGCAGG CCAGGATGTC TTGTGAGCAG AAAGCTGAAG GACACAGCAG
                                                                              480
       TGGATCTTGG CAGTTCAGTT TCGATGGGCA GATCTTCCTC CTCTTTGACT CAGAGAAGAG
                                                                              540
       AATGTGGACA ACGGTTCATC CTGGAGCCAG AAAGATGAAA GAAAAGTGGG AGAATGACAA
                                                                              600
       GGTTGTGGCC ATGTCCTTCC ATTACTTCTC AATGGGAGAC TGTATAGGAT GGCTTGAGGA
                                                                              660
       CTTCTTGATG GGCATGGACA GCACCCTGGA GCCAAGTGCA GGAGCACCAC TCGCCATGTC
       CTCAGGCACA ACCCAACTCA GGGCCACAGC CACCACCCTC ATCCTTTGCT GCCTCCTCAT
30
                                                                              780
       CATCCTCCCC TGCTTCATCC TCCCTGGCAT CTGAGGAGAG TCCTTTAGAG TGACAGGTTA
       AAGCTGATAC CAAAAGGCTC CTGTGAGCAC GGTCTTGATC AAACTCGCCC TTCTGTCTGG
                                                                              900
       CCAGCTGCCC ACGACCTACG GTGTATGTCC AGTGGCCTCC AGCAGATCAT GATGACATCA
                                                                              960
       TEGACCCAAT AGCTCATTCA CTECCTTEAT TCCTTTTECC AACAATTTTA CCAECAGTTA
TACCTAACAT ATTATECAAT TTTCTCTTEG TECTACCTEA TEGAATTCCT ECACTTAAAG
                                                                            1020
35
                                                                            1080
       TTCTGGCTGA CTAAACAAGA TATATCATTT TCTTTCTTCT CTTTTTGTTT GGAAAATCAA
                                                                            1140
       GTACTTCTTT GAATGATGAT CTCTTTCTTG CAAATGATAT TGTCAGTAAA ATAATCACGT
                                                                            1200
       TAGACTTCAG ACCTCTGGGG ATTCTTTCCG TGTCCTGAAA GAGAATTTTT AAATTATTTA
                                                                            1260
       ATAAGAAAAA ATTTATATTA ATGATTGTTT CCTTTAGTAA TTTATTGTTC TGTACTGATA 1320
40
       ТТТАААТААА GAGTTCTATT ТСССАААААА ААААААААА АА
       Seq ID NO: 599 Protein sequence
       Protein Accession #: BAB61048.1
45
                                         31
                                                     41
       MAAAAATKIL LCLPLLLLLS GWSRAGRADP HSLCYDITVI PKFRPGPRWC AVQGQVDEKT
                                                                               60
       FLHYDCGNKT VTPVSPLGKK LNVTTAWKAQ NPVLREVVDI LTEQLRDIQL ENYTPKEPLT
                                                                              120
       LQARMSCEQK AEGHSSGSWQ FSFDGQIFLL FDSEKRMWTT VHPGARKMKE KWENDKVVAM
                                                                              180
       SFHYFSMGDC IGWLEDFLMG MDSTLEPSAG APLAMSSGTT QLRATATTLI LCCLLIILPC
50
       FILPGI
       Seq ID NO: 600 DNA sequence
       Nucleic Acid Accession #: NM_001898.1
55
       Coding sequence: 57..482
                                         31
                  11
                              21
       GGCTCTCACC CTCCTCTCCT GCAGCTCCAG CTTTGTGCTC TGCCTCTGAG GAGACCATGG
60
       CCCAGTATCT GAGTACCCTG CTGCTCCTGC TGGCCACCCT AGCTGTGGCC CTGGCCTGGA
                                                                              120
       GCCCCAAGGA GGAGGATAGG ATAATCCCGG GTGGCATCTA TAACGCAGAC CTCAATGATG
                                                                              180
       AGTGGGTACA GCGTGCCCTT CACTTCGCCA TCAGCGAGTA TAACAAGGCC ACCAAAGATG
                                                                              240
       ACTACTACAG ACGTCCGCTG CGGGTACTAA GAGCCAGGCA ACAGACCGTT GGGGGGGTGA
                                                                              300
       ATTACTTCTT CGACGTAGAG GTGGGCCGCA CCATATGTAC CAAGTCCCAG CCCAACTTGG
                                                                              360
65 ·
       ACACCTGTGC CTTCCATGAA CAGCCAGAAC TGCAGAAGAA ACAGTTGTGC TCTTTCGAGA
                                                                              420
       TCTACGAAGT TCCCTGGGAG AACAGAAGGT CCCTGGTGAA ATCCAGGTGT CAAGAATCCT AGGGATCTGT GCCAGGCCAT TCGCACCAGC CACCACCCAC TCCCACCCCC TGTAGTGCTC
                                                                              480
                                                                              540
       CCACCCTGG ACTGGTGGCC CCCACCCTGC GGGAGGCCTC CCCATGTGCC TGCGCCAAGA
                                                                              600
       GACAGACAGA GAAGGCTGCA GGAGTCCTTT GTTGCTCAGC AGGGCGCTCT GCCCTCCCTC
                                                                              660
       CTTCCTTCTT GCTTCTAATA GCCCTGGTAC ATGGTACACA CCCCCCACC TCCTGCAATT
70
       AAACAGTAGC ATCGCC
       Seg ID NO: 601 Protein sequence
       Protein Accession #: NP 001889.1
75
                                          31
                                                     41
                                                                 51
                   11
                              21
       MAQYLSTLLL LLATLAVALA WSPKEEDRII PGGIYNADLN DEWVQRALHF AISEYNKATK
                                                                               60
       DDYYRRPLRV LRARQQTVGG VNYFFDVEVG RTICTKSQPN LDTCAFHEQP ELQKKQLCSF
                                                                              120
80
       EIYEVPWENR RSLVKSRCQE S
       Seq ID NO: 602 DNA sequence
       Nucleic Acid Accession #: NM_003976.2
       Coding sequence: 299.961
85
                                          31
                                                      41
                                                                 51
```

```
60
       CTCTGAGCTT CTCTGAGCCT TGTTTGCTCA TCTGGAAAAA GGGGATTAAA CCATTTACCT
       CATGGAGTTG TGAAAGAATA GCTGCAAAGC ACCTAACACA TAGTAAGGTT CCCAGTGCAG
                                                                                  120
       CTACTTCTGC TGGGTTGAGT CTAGCTGTGT AGGCCCCTTG TTCCTCACCT GGAGAAACTG
                                                                                  180
       GGGTGGCAGG CCGGTCCCCC ACAAAAGATA ACTCATCTCT TAATTTGCAA GCTGCCTCAA
                                                                                  240
       CAGGAGGGTG GGGGAACAGC TCAACAATGG CTGATGGGCG CTCCTGGTGT TGATAGAGAT
                                                                                  300
       GGAACTTGGA CTTGGAGGCC TCTCCACGCT GTCCCACTGC CCCTGGCCTA GGCGGCAGCC
                                                                                  360
       TGCCCTGTGG CCCACCCTGG CCGCTCTGGC TCTGCTGAGC AGCGTCGCAG AGGCCTCCCT
                                                                                  420
       GGGCTCCGCG CCCCGCAGCC CTGCCCCCCG CGAAGGCCCC CCGCCTGTCC TGGCGTCCCC
                                                                                  480
       CGCCGGCCAC CTGCCGGGGG GACGCACGGC CCGCTGGTGC AGTGGAAGAG CCCGGCGGCC
                                                                                  540
10
                                                                                  600
       GCCGCCGCAG CCTTCTCGGC CCGCGCCCCC GCCGCCTGCA CCCCCATCTG CTCTTCCCCG
       CEGGGGCCCC GCGGCGCGGG CTGGGGGGCCC GGGCAGCCGC GCTCGGGCAG CGGGGGCGCG
                                                                                  660
       GGGCTGCCGC CTGCGCTCGC AGCTGGTGCC GGTGCGCGCG CTCGGCCTGG GCCACCGCTC
                                                                                  720
       CGACGAGGTG GTGCGTTTCC GCTTCTGCAG CGGCTCCTGC CGCCGCGCG GCTCTCCACA CGACCTCAGC CTGGCCAGCC TACTGGGCGC CGGGGCCCTG CGACCGCCCC CGGGCTCCCG
                                                                                  780
                                                                                  840
       GCCCGTCAGC CAGCCCTGCT GCCGACCCAC GCGCTACGAA GCGGTCTCCT TCATGGACGT
CAACAGCACC TGGAGAACCG TGGACCGCCT CTCCGCCACC GCCTGCGGCT GCCTGGGCTG
15
                                                                                  900
                                                                                  960
       AGGGCTOGCT CCAGGGCTTT GCAGACTGGA CCCTTACOGG TGGCTCTTCC TGCCTGGGAC CCTCCCGCAG AGTCCCACTA GCCAGCGGC TCAGCCAGGG ACGAAGGCCT CAAAGCTGAG
                                                                                 1020
                                                                                 1080
       AGGCCCCTAC CGGTGGTGA TGGATATCAT CCCCGAACAG GTGAAGGGAC AACTGACTAG CAGCCCCAGA GCCCTCACCC TGCGGATCCC AGCCTAAAAG ACACCAGAGA CCTCAGCTAT
                                                                                 1140
20
       GGAGCCCTTC GGACCCACTT CTCACAGACT CTGGCACTGG CCAGGCCTCG AACCTGGGAC
                                                                                 1260
       CCCTCCTCTG ATGAACACTA CAGTGGCTGA GGCATCAGCC CCCGCCCAGG CCCTGTAGGG
                                                                                1320
       ACAGCATTTG AAGGACACAT ATTGCAGTTG CTTGGTTGAA AGTGCCTGTG CTGGAACTGG
                                                                                1380
       CCTGTACTCA CTCATGGGAG CTGGCCCC
25
       Seq ID NO: 603 Protein sequence
       Protein Accession #: NP_003967.1
30
       MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
                                                                                   60
       PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA
                                                                                  120
       RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
                                                                                  180
       RPVSQPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
35
       Seq ID NO: 604 DNA sequence
       Nucleic Acid Accession #: NM_057091.1
       Coding sequence: 783..1445
40
                   11
                               21
                                            31
       ACTGGCCGCT GAGAGAAGAA TCGGGTGGAG CAGAGAGCAG CTGCTGCAGG GCAGACAGCC
       GGACCCCCAA ATCTGCACGT ACCAGCAGTC AGCCGCCCCA CGCAGGGACC GGCTTACCCC
                                                                                  120
       TOGOTOCOCG COCTOACTOA CTTTCTCCCG CCCTCGGCCC GGCCTCCCAG CTCTCTACTT
                                                                                  180
45
       CGCGTGTCTA CAAACTCAAC TCCCGGTTTC CGTGCCTCTC CACCGCTCGA GTTCTCTACT
                                                                                  240
       CTCCATATCC GAGGGGCCCC TCCCAGCATC TACCCCCCTC CCAACCTCGG GGGACCTAGC
                                                                                  300
       CAAGCTAGGG GGGACTGGAT CCGACGGGTG GAGCAGCCAG GTGAGCCCCG AAAGGTGGGG
                                                                                  360
       CGGGGCAGGG GCGCTCCCAG CCCCACCCCG GGATCTGGTG ACGCTGGGGC TGGAATTTGA
                                                                                  420
       CACCGGACGG CTGCGGCGGC GGGCAGGAGG CTGCTGAGGG ATGGAGTTGG GCCCGGCCCC
                                                                                  480
50
       CAGACAAGGC CCGGGGGCTC CGCCAGCAGC AGGTCCCTCG GGCCCCAGCC CTCGCTGCCA
                                                                                  540
       CCCGGGCCTG GAGCCCCACA CCCGAGGGTG CAGACTGGCT GCCAAGGCCA CACTTTTGGC
                                                                                  600
       TAAAAGAGGC ACTGCCAGGT GTACAGTCCT GGGCATGCGC TGTTTGAGCT TCGGGGGAGA
                                                                                  660
       GCCCAGCACT GGTCCCCGGA AAGGTGCCTA GAAGAACAAG GTGCAGGACC CCGTGCTGCC
                                                                                  720
       TCAACAGGAG GGTGGGGGAA CAGCTCAACA ATGGCTGATG GGCGCTCCTG GTGTTGATAG
                                                                                  780 .
55
       AGATGGAACT TGGACTTGGA GGCCTCTCCA CGCTGTCCCA CTGCCCCTGG CCTAGGCGGC
                                                                                  B40
       AGCCTGCCCT GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT
                                                                                  900
       CCCTGGGCTC CGCGCCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT
                                                                                  960
       CCCCCGCCGG CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC
                                                                                1020
       GGCCGCCGCC GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC
                                                                                 1080
       CCCGCGGGGG CGCGCGGCG CGGCCTGGG GCCGGGCAG CCGCGCTCGG GCAGCGGGGG
CGCGGGGCTG CCGCCTGCG TCGCAGCTGG TGCCGGTCGG CGCGCTCGG CTGGGCCACC
GCTCCGACGA GCTGCTGCGT TTCCGCTTCT GCAGCGGCTC CTGCGCCCGC GCGCGCTCTC
60
                                                                                 1140
                                                                                 1200
                                                                                1260
       CACACGACCT CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT
                                                                                1320
       CCCGGCCCGT CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG
65
       ACGTCAACAG CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG
                                                                                1440
       GCTGAGGGCT CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG
                                                                                1500
       GGACCCTCCC GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC
                                                                                1560
       TGAGAGGCCC CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA
                                                                                1620
       CTAGCAGCCC CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG
                                                                                1680
70
       CTATGGAGCC CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG
                                                                                1740
       GGACCCCTCC TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT
                                                                                1800
       AGGGACAGCA TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA 1860
       CTGGCCTGTA CTCACTCATG GGAGCTGGCC CC
75
       Seg ID NO: 605 Protein sequence
       Protein Accession #: NP_003967.1
                   11
                                21
                                            31
80
       MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
                                                                                   60
       PAGHLPGGRT ARWCSGRARR PPPOPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA
                                                                                  120
       RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
       RPVSQPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
85
```

Seq ID NO: 606 DNA sequence Nucleic Acid Accession #: NM_057160.1

```
51
 5
       ATGCCCGGCC TGATCTCAGC CCGAGGACAG CCCCTCCTTG AGGTCCTTCC TCCCCAAGCC
                                                                                  60
       CACCTGGGTG CCCTCTTTCT CCCTGAGGCT CCACTTGGTC TCTCCGCGCA GCCTGCCCTG
                                                                                 120
       TEGCCCACCC TEGCCECTCT GECTCTECTE AGCAGCETCE CAGAGGCCTC CCTEGGCTCC
                                                                                 180
       GCGCCCCGCA GCCCTGCCCC CCGCGAAGGC CCCCCGCCTG TCCTGGCGTC CCCCGCCGGC
                                                                                 240
       CACCTGCCGG GGGGACGCAC GGCCCGCTGG TGCACTGGAA GAGCCCGGGG GCCGCCGCCGCAGCCTTCTC GGCCCGCGCC CCCGCCGCCCT GCACCCCCAT CTGCTCTTCC CCGCGGGGGC
                                                                                 300
10
                                                                                 360
       CGCGCGCGC GGGCTGGGGG CCCGGGCAGC CGCGCTCGGG CAGCGGGGGC GCGGGGCTGC
                                                                                 420
       CGCCTGCGCT CGCAGCTGGT GCCGGTGCGC GCGCTCGGCC TGGGCCACCG CTCCGACGAG
                                                                                 480
       CTGGTGCGTT TCCGCTTCTG CAGCGGCTCC TGCCGCCGCG CGCGCTCTCC ACACGACCTC
                                                                                 540
       AGCCTGGCCA GCCTACTGGG CGCCGGGGCC CTGCGACCGC CCCCGGGCTC CCGGCCCGTC
15
       AGCCAGCCCT GCTGCCGACC CACGCGCTAC GAAGCGGTCT CCTTCATGGA CGTCAACAGC
       ACCTGGAGAA CCGTGGACCG CCTCTCCGCC ACCGCCTGCG GCTGCCTGGG CTGAGGGCTC
                                                                                 720
       GCTCCAGGGC TTTGCAGACT GGACCCTTAC CGGTGGCTCT TCCTGCCTGG GACCCTCCCG
                                                                                 780
       CAGAGTCCCA CTAGCCAGCG GCCTCAGCCA GGGACGAAGG CCTCAAAGCT GAGAGGCCCC
                                                                                 840
       TACCGGTGGG TGATGGATAT CATCCCCGAA CAGGTGAAGG GACAACTGAC TAGCAGCCCC
                                                                                 900
20
       AGAGCCCTCA CCCTGCGGAT CCCAGCCTAA AAGACACCAG AGACCTCAGC TATGGAGCCC
                                                                                 960
       TTCGGACCCA CTTCTCACAG ACTCTGGCAC TGGCCAGGCC TCGAACCTGG GACCCCTCCT
                                                                               1020
                                                                               1080
       CTGATGAACA CTACAGTGGC TGAGGCATCA GCCCCCGCCC AGGCCCTGTA GGGACAGCAT
       TTGAAGGACA CATATTGCAG TTGCTTGGTT GAAAGTGCCT GTGCTGGAAC TGGCCTGTAC
                                                                               1140
       TCACTCATGG GAGCTGGCCC C
25
       Seq ID NO: 607 Protein sequence
       Protein Accession #: NP_476501.1
30
       MPGLISARGO PLLEVLPPOA HLGALFLPEA PLGLSAOPAL WPTLAALALL SSVAEASLGS
                                                                                 60
       APRSPAPREG PPPVLASPAG HLPGGRTARW CSGRARRPPP QPSRPAPPPP APPSALPRGG
                                                                                 120
       RAARAGGPGS RARAAGARGC RLRSQLVPVR ALGLGHRSDE LVRFRFCSGS CRRARSPHDL
                                                                                 180
       SLASLIGAGA LRPPPGSRPV SQPCCRPTRY EAVSFMDVNS TWRTVDRLSA TACGCLG
35
       Seq ID NO: 608 DNA sequence
       Nucleic Acid Accession #: NM_057090.1
       Coding sequence: 29..715
40
                               21
                                           31
                                                       41
       CTGATGGGCG CTCCTGGTGT TGATAGAGAT GGAACTTGGA CTTGGAGGCC TCTCCACGCT
       GTCCCACTGC CCCTGGCCTA GGCGGCAGGC TCCACTTGGT CTCTCCGCGC AGCCTGCCCT
                                                                                 120
       GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT CCCTGGGCTC
                                                                                 180
45
                                                                                240
       CGCGCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCGCCT GTCCTGGCGT CCCCCGCCG
       CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC GGCCGCCGCC
                                                                                 300
       GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC CCCGCGGGGG
                                                                                 360
       CCGCGCGCGC CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG CGCGGGGCTG
                                                                                 420
       CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC GCTCCGACGA
GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC CACACGACCT
                                                                                 480
50
                                                                                 540
       CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT CCCGGCCCGT CAGCCAGCCC TGCTGCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG ACGTCAACAG
                                                                                 600
                                                                                 660
       CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG GCTGAGGGCT
CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG GGACCCTCCC
                                                                                 720
                                                                                 780
55
       GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC TGAGAGGCCC
                                                                                 840
       CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA CTAGCAGCCC
       CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG CTATGGAGCC
                                                                                 960
       CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG GGACCCCTCC
       TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT AGGGACAGCA
                                                                                1080
60
       TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA CTGGCCTGTA
       CTCACTCATG GGAGCTGGCC CC
       Seq ID NO: 609 Protein sequence
       Protein Accession #: NP_476431.1
65
                                           31
       MELGLGGLST LSHCPWPRRQ APLGLSAQPA LWPTLAALAL LSSVAEASLG SAPRSPAPRE
                                                                                 60
       GPPPVLASPA GHLPGGRTAR WCSGRARRPP PQPSRPAPPP PAPPSALPRG GRAARAGGPG
                                                                                 120
70
       SRARAAGARG CRLRSQLVPV RALGLGHRSD ELVRFRPCSG SCRRARSPHD LSLASLIGAG
                                                                                 180
       ALRPPPGSRP VSQPCCRPTR YEAVSFMDVN STWRTVDRLS ATACGCLG
       Seq ID NO: 610 DNA sequence
       Nucleic Acid Accession #: Eos sequence
75
       Coding sequence: 1..1746
                                           31
       ATGCCACTGA AGCATTATCT CCTTTTGCTG GTGGGCTGCC AAGCCTGGGG TGCAGGGTTG
80
       GCCTACCATG GCTGCCCTAG CGAGTGTACC TGCTCCAGGG CCTCCCAGGT GGAGTGCACC
                                                                                 120
       GGGGCACGCA TTGTGGCGGT GCCCACCCCT CTGCCCTGGA ACGCCATGAG CCTGCAGATC
                                                                                 180
       CTCAACACGC ACATCACTGA ACTCAATGAG TCCCCGTTCC TCAATATCTC AGCCCTCATC
                                                                                 240
       GCCCTGAGGA TTGAGAAGAA TGAGCTGTCG CGCATCACGC CTGGGGCCTT CCGAAACCTG
                                                                                 300
       GECTCGCTGC GCTATCTCAG CCTCGCCAAC AACAAGCTGC AGGTTCTGCC CATCGGCCTC
                                                                                 360
85
       TTCCAGGGCC TGGACAGCCT TGAGTCTCTC CTTCTGTCCA GTAACCAGCT GTTGCAGATC
                                                                                 420
        CAGCOGGCCC ACTTCTCCCA GTGCAGCAAC CTCAAGGAGC TGCAGTTGCA CGGCAACCAC
                                                                                 480
       CTGGAATACA TCCCTGACGG AGCCTTCGAC CACCTGGTAG GACTCACGAA GCTCAATCTG
                                                                                 540
```

	WU 02/	080443					
	GGCAAGAATA	GCCTCACCCA	CATCTCACCC	AGGGTCTTCC	AGCACCTGGG	CAATCTCCAG	600
	GTCCTCCGGC	TGTATGAGAA	CAGGCTCACG	GATATCCCCA	TGGGCACTTT	TGATGGGCTT	660
			TCTACAGCAG				720
_	TTCCACAACA	ACCACAACCT	CCAGAGACTC	TACCTGTCCA	ACAACCACAT	CTCCCAGCTG	780
5	CCACCCAGCA	TCTTCATGCA	GCTGCCCCAG	CTCAACCGTC	TTACTCTCTT	TGGGAATTCC	840
	CTGAAGGAGC	TCTCTCTGGG	GATCTTCGGG	CCCATGCCCA	ACCTGCGGGA	GCTTTGGCTC	900
			TCTACCCGAC				960
	GTCCTGATTC	TTAGCCGCAA	TCAGATCAGC	TTCATCTCCC	CGGGTGCCTT	CAACGGGCTA	1020
	ACCOACCTTC	CCCACCTCTC	CCTCCACACC	AACCCACTGC	AGGACCTGGA	CGGGAATGTC	1080
10			GCAGAACATC				1140
10			CGTCAATGGC				1200
	CCAGGGAATA	TCTTCGCCAA	CGICAAIGGC	CICATOGCCA	1 CONSCISOR	CONCOCCON	1260
	CTGGAGAACT	TGCCCCTCGG	CATCTTCGAT	CACCIGGGGA	AACIGIGIGA	GCIGCGGCIG	
	TATGACAATC	CCTGGAGGTG	TGACTCAGAC	ATCCTTCCGC	TCCGCAACIG	GCTCCTGCTC	1320
1.5	AACCAGCCTA	GGTTAGGGAC	GGACACTGTA	CCTGTGTGTT	TCAGCCCAGC	CAATGTCCGA	1380
15	GGCCAGTCCC	TCATTATCAT	CAATGTCAAC	GTTGCTGTTC	CAAGCGTCCA	TGTCCCTGAG	1440
	GTGCCTAGTT	ACCCAGAAAC	ACCATGGTAC	CCAGACACAC	CCAGTTACCC	TGACACCACA	1500
	TCCGTCTCTT	CTACCACTGA	GCTAACCAGC	CCTGTGGAAG	ACTACACTGA	TCTGACTACC	1560
	ATTCAGGTCA	CTGATGACCG	CAGCGTTTGG	GGCATGACCC	AGGCCCAGAG	CGGGCTGGCC	1620
			CATTGTCGCC				1680
20	TOTTOCTOCT	CCANGANGAG	GAGCCAAGCT	GTCCTGATGC	AGATGAAGGC	ACCCAATGAG	1740
20	TOTTGCTGCT	CCACCCCCCA	GCAGGGCTGG	CCDATCATCC	CACTGGAGGA	CCTGGGAATT	1800
	TGTTAAAGAG	GCAGGCIGGA	GCWGGGC1GG	GONATONIGO	CONCINCA	CCIGGGWIII	1860
	TCATCTTTCT	GCCTCCACCC	CTGGGTCCAT	GGAGCTTTCC	CGIGATIGCI	CITICIOGCC	
	CTAGATAAAG	GTGTGCCTAC	CTCTTCCTGA	CTTGCCTGAT	TCTCCCGTAG	AGAAGCAGGT	1920
0.5	CGTGCCGGAC	CTTCCTACAA	TCAGGAAGAT	AGATCCAACT	GGCCATGGCA	AAAGCCCTGG	1980
25	GGATTTCCGA	TTCATACCCC	TGGGCTTCCT	TCGAGAGGGC	TCTTCCTCCA	AATCCTCCCC	2040
	ACCTGTCCTC	CAAGAACAGC	CTTCCCTGCG	CCCAGGCCCC	CTCCGGGCCT	CTGTAGACTC	2100
	AGTTAGTCCA	CAGCCTGCTC	ACTTCGTGGG	AATAGTTCTC	CGCTGAGATA	GCCCCTCTCG	2160
	CCTAAGTATT	ATGTAAGTTG	ATTTCCCTTC	TTTTGTTTCT	CTTGTTTGTG	CTATGGCTTG	2220
			TGAAAGTTCT				2280
30			GACTTCAAAC				2340
50	TGAGIICICI	CCICAAAGAA	TATGAAAGAG	CATTIANCIO	TO T	CACALCACA	2400
	CAGCCTGGTT	TIGGGGATGC	TATGAAAGAG	AGAAGGAAAA	TCATGCCGCT	CAGIICCIGG	2460
	AGACAGAAGA	GCCGTCATCA	GTGTCTCACT	TGTGATTTTT	ATCIGGAAAA	GGAAGAAACA	
	CCCCAGCACA	GCAAGCTCAG	CCTTTTAGAG	AAGGATATIT	CCAAACTGCA	AACTTTGCTT	2520
25	TGAAAAGTTT	AGCCCTTTAA	GGAATGAAAT	CATGTAGAAT	TTTGGACTTC	TAAAAACATT	2580
35	AAAATCAGCT	TATTAATACG	GGATAGAGAA	AGAAATCTGG	TGCCTGGGGG	TCCCTGTGTT	2640
			AAATTTTTAA				2700
	GTGGGAACAT	GATAGTGTAT	GGCTTGGTGG	ATTTTCACAA	ACTGAACATA	CCTGTGTAAT	2760
	CAGCATCTAG	ACCCAGACCC	AGAGCATCAC	AAATATCCCC	CATCCTGGGC	TTTTCCCAGA	2820
	GGAGATGGGG	CCTTCTGAAG	ATGGACTTAC	CTGGGACCTG	CCCCCCATGA	GCCAGGACGG	2880
40	TOCCCCCACA	CTCACCCTCT	GCAAAGGCCC	CCTCCCCAGG	GGTGGAGGAG	AATATGTGGG	2940
40	TCCCCCCACA	PACCON CD CO.	GTGGCCTGAA	CACCACATTT	ייים מיים מיים מיים	GGAGACCCTG	3000
							3060
	AGAGACCCTG	AGACCTGGGG	CACCATGGCT	GGCCAGGTCA	GAAGCATCCT	GACTGCAGAG	
	GTCCGTGCAG	CCACACCCTC	TTCCCTGCCA	GCAAGTTGTC	TGCGGCTCAT	CGGAGGCCCC	3120
4 5			GACGTGATAT				3180
45			CTCAGAGATG				3240
	GAATCTAGTG	TCTTTCTAAT	GTGGTAAAAT	TCTCCATCAA	CATCACAGTC	AGCTGGCAGC	3300
	TGAACTTCAG	AATCTCACTT	ACAGCAGGCG	ACACGGGGGT	ACACCGATGG	GTCACACTGG	3360
	GTCTGGGGGC	TCCCTGGAGC	TCCTCCTGCG	TGTGGTCTGG	TTAGGAGTTG	AGTTGTTTGC	3420
			CGAGTCACAG				3480
50			TGGCGCTCAA				3540
50	CIGCIAIACA	CATATICACA	TTACAGTGAA	AUCOTO TOOL	TCX COUCTCC	* COMOTOTO	3600
	CTCTGGACAA	CIGGCCCAGI	TIACAGIGAA	MIGGAGAAII	CAGGICICE	CCCCATCCCC	3660
	AGGAAAGAAC	TTCAGCTGAC	TCCACGGGGA	TCTGGAAATC	CACGACCAAI	CCCGATCGGC	
			ACAAGACACC				3720
	TCGGCTCTTA	TTAGCTCCCC	GCTCCACAAG	ACACCTGTGA	TCTGGAAATC	TACCACCAAT	3780
55	CCCGATCGGC	TCTTATTAGC	TCCCCGCTCC	ACAAGACACC	TGTGACATCC	TCCAGGGCCA	3840
	CAGGAGCACG	TGCTGACCAG	TTTTCCCTTC	CAGTTCCTGC	ACAAAAAGTG	TCCAGAGGGC	3900
	TGTTTGCAAA	CACTAGTGCA	CTTTGTAGCT	TTTCACCCTC	TGTCCCAGGG	AATCTAGGAG	3960
	AGATGAGGCC	CGTCAGAGTC	AAGAGATGTC	ATCCCCCCAG	GGTCTCCAAG	GCATTTCCAC	4020
	ACTATICCTC	CCACCTCCAC	GACATGCACC	AAGGCTTGCC	AGAGCCAACA	GGAAGTGAGC	4080
60	CCACACCARC	CONCATOR	ATCACCCCC	CATCCTCCCC	TOTTOTOTOT	GGTGCCAACA	4140
00							
	GGGGCATCCC	GGCCCGTACC	CCTCCAGACA	GGAAGCAIGG	GITTGCCCAC	AGACCTGTCG	4260
	GGTGCTCCTG	TGAGTGGCCT	CCAGATGTCT	TIGIGCATAG	SOUTHWAY S CO.	GCCAGGGCTG	4220
	GAGGGAGGTG	GGAAACCTCA	TCATCCGGTG	GGCCCTGCCA	ATCTTAACCC	AGAACCCTTA	4320
65	GGTATTCCTG	GCAGTAGCCA	TGACATTGGA	GCACCTTCCT	CTCCAGCCAG	AGGCTGACCT	4380
65	GAGGGCCACT	GTCCTCAGAT	GACACCACCC	AGGAGCACCC	TAGGTGAGGG	GTGAGGGCCC	4440
	CCTTATGTGA	ACCTCTTGCC	TCTTCCTTTC	TCCCATCAGA	GTGGTTGGAT	GGAGCCATTG	4500
	GCCTCCTTTT	CTTCAGCGGG	CCCTTCAACC	TCTCTGCACC	ATGTTGTCTG	GCTGAGGAGC	4560
	TACTAGAAAA	GCTGAGTGGA	GTCTCCTTTC	CAACAGGATG	ATGCATTTGC	TCAATTCTCA	4620
	GGGCTGGAAT	GAGCCGGCTG	GTCCCCCAGA	AAGCTGGAGT	GGGGTACAGA	GTTCAGTTTT	4680
70	CCTCTCTCTT	TACAGCTCCT	TGACAGTCCC	ACCCCCATCT	GGAGTGGGAG	CTGGGAGTTA	4740
, 0	COLOTOTOTA	DCDADCICCI	NA ACCCA ATT	ACAACCACTA	ΤΤΤΤΤΔΔΔΔΔ	GTGCTTACTG	4800
	GIGIIOGAGA	MOMMONACA COMMONACA	AAAGCCAAII	CAMMONCTOTO	CTACCCCTCA	GCACCCTGC	4860
	TGCACAGATA	CICITCAAGC	ACTGGACGIG	GWIICICICI	LINGCCCICA	MONTH OFFICE AND	4070
	GGTAGGAGTG	CCGCCTCTAC	CCACTTGTGA	TUGUGTACAG	AGGCACTTGC	TCTTCTGCAT	4000
75	GGTGTTCAAT	AGGCTGGGAG	TTTTATTTAT	CTCTTCAAAC	TTTGTACAAG	AGCTCATGGC	4980
75	TTGTCTTGGG	CTTTCGTCAT	TAAACCAAAG	GAAATGGAAG	CCATTCCCCT	GTTGCTCTCC	5040
,	TTAGTCTTGG	TCATCAGAAC	CTCACTTGGT	ACCATATAGA	TCAAAAGCTT	TGTAACCACA	5100
	GGAAAAAATA	AACTCTTCCA	TCCCTTAAAG	AATAGAATAG	TTTGTCCCTC	TCATGGGAAT	5160
	TGGGCTGTAT	GTATATTGTT	CTTCCTCCTT	AGAATTTAGA	GATACAAGAG	TTCTACTTAG	5220
	AACTTTTCAT	GGACACAATT	TCCACAACCT	TTCAGATGCT	GATGTAGAGC	TATTGGGAAA	5280
80	CDACTTCCAR	DCTCDCCD AC	TTTCCAGAGA	GCAGACAGCT	AGAGATAACT	CGGGACCCAG	5340
<b>5</b> 5	TURECTIONS	"CICUGANO	VANCOUNT ACCOUNT	COLORANGO	ATANACCACT	CAAAGATTCA	5400
	AULTUUTCEA	CAUATOTTAG	WIGHT CCIA	ACCOUNTMENT	CCDPCCCACI	VC-LC-CC-LC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC	5460
	GCCCCCAGAT	CCCACAGTCA	GAACTGAATC	TGCGTTGTTG	CARGCCAGC	AGTGGCCTTG	2400
	GGAAGGAAGC	CATGGCTGTG	GTTCAGAGAG	GGTGGGCTGG	CAAGCCACTT		5520
05	CTCCTTCCGC	CCCAGGTTTC	TTCTTCTCTT	AAGGAGAGAT	TGTTCTCACC	AACCCGCTGC	5580
85	CTTCATGCTG	CCTTCAAAGC	TAGATCATGT	TTGCCTTGCT	TAGAGAATTA	CTGCAAATCA	5640
	GCCCCAGTGC	TTGGCGATGC	ATTTACAGAT	TTCTAGGCCC	TCAGGGTTTT	GTAGAGTGTG	5700
	AGCCCTGGTG	GGCAGGGTTG	GGGGGTCTGT	CTTCTGCTGG	ATGCTGCTTG	TAATCCATTT	5760

Seq ID NO: 611 Protein sequence Protein Accession #: BAB84587.1

```
5
       MPLKHYLLLL VGCQAWGAGL AYHGCPSECT CSRASQVECT GARIVAVPTP LPWNAMSLQI
       LNTHITELNE SPFLNISALI ALRIEKNELS RITPGAFRNL GSLRYLSLAN NKLQVLPIGL
                                                                           120
10
       FQGLDSLESL LLSSNQLLQI QPAHFSQCSN LKELQLHGNH LEYIPDGAFD HLVGLTKLNL
                                                                           180
       GKNSLTHISP RVFQHLGNLQ VLRLYENRLT DIPMGTFDGL VNLQELALQQ NQIGLLSPGL
                                                                           240
                                                                           300
       FHRMHNLQRL YLSNNHISQL PPSIFMQLPQ LNRLTLFGNS LKELSLGIFG PMPNLRELWL
       YDNHISSLPD NVFSNLRQLQ VLILSRNQIS FISPGAFNGL TELRELSLHT NALQDLDGNV
                                                                           360
       FRMLANLQNI SLQNNRLRQL PGNIFANVNG LMAIQLQNNQ LENLPLGIFD HLGKLCELRL
                                                                           420
15
       YDNPWRCDSD ILPLRNWLLL NQPRLGTDTV PVCFSPANVR GQSLIIINVN VAVPSVHVPE
                                                                           480
       VPSYPETPWY PDTPSYPDTT SVSSTTELTS PVEDYTDLTT IQVTDDRSVW GMTQAQSGLA
                                                                           540
       IAAIVIGIVA LACSLAACVG CCCCKKRSQA VLMQMKAPNE C
       Seq ID NO: 612 DNA sequence
20
       Nucleic Acid Accession #: XM_098151
       Coding sequence: 1..447
                                        31
                             21
25
       ATGATGCATT TGCTCAATTC TCAGGGCTGG AATGAGCCGG CTGGTCCCCC AGAAAGCTGG
       AGTGGGGTAC AGAGTTCAGT TTTCCTCTCT GTTTACAGCT CCTTGACAGT CCCACGCCCA
                                                                           120
                                                                           180
       TCTGGAGTGG GAGCTGGGAG TCAGTGTTGG AGAAGAACA ACAAAAGCCA ATTAGAACCA
       CTATTTTTAA AAAGTGCTTA CTGTGCACAG ATACTCTTCA AGCACTGGAC GTGGATTCTC
                                                                           240
                                                                           300
       TCTCTAGCCC TCAGCACCCC TGCGGTAGGA GTGCCGCCTC TACCCACTTG TGATGGGGTA
30
       CAGAGGCACT TGCTCTTCTG CATGGTGTTC AATAGGCTGG GAGTTTTATT TATCTCTTCA
                                                                           360
       AACTITGTAC AAGAGCTCAT GGCTTGTCTT GGGCTTTCGT CATTAAACCA AAGGAAATGG
                                                                           420
       AAGCCATTCC CCTGTTGCTC TCCTTAG
       Seq ID NO: 613 Protein sequence
35
       Protein Accession #: XP_098151
       MMHLLNSQGW NEPAGPPESW SGVQSSVFLS VYSSLTVPRP SGVGAGSQCW RRNNKSQLEP
40
       LFLKSAYCAQ ILFKHWTWIL SLALSTPAVG VPPLPTCDGV QRHLLFCMVF NRLGVLFISS
       NFVQELMACL GLSSLNQRKW KPFPCCSP
       Seg ID NO: 614 DNA seguence
       Nucleic Acid Accession #: NM 002658.1
45
      Coding sequence: 77..1372
                                        31
       GTCCCCGCAG CGCCGTCGCG CCCTCCTGCC GCAGGCCACC GAGGCCGCCG CCGTCTAGCG
50
       CCCCGACCTC GCCACCATGA GAGCCCTGCT GGCGCGCCTG CTTCTCTGCG TCCTGGTCGT
                                                                           120
       GAGCGACTCC AAAGGCAGCA ATGAACTTCA TCAAGTTCCA TCGAACTGTG ACTGTCTAAA
                                                                           180
       TGGAGGAACA TGTGTGTCCA ACAAGTACTT CTCCAACATT CACTGGTGCA ACTGCCCAAA
                                                                           240
       GAAATTCGGA GGGCAGCACT GTGAAATAGA TAAGTCAAAA ACCTGCTATG AGGGGAATGG
                                                                           300
       TCACTTTTAC CGAGGAAAGG CCAGCACTGA CACCATGGGC CGGCCCTGCC TGCCCTGGAA
                                                                           360
55
       CTCTGCCACT GTCCTTCAGC AAACGTACCA TGCCCACAGA TCTGATGCTC TTCAGCTGGG
                                                                           420
       CCTGGGGAAA CATAATTACT GCAGGAACCC AGACAACCGG AGGCGACCCT GGTGCTATGT
                                                                           480
       GCAGGTGGGC CTAAAGCCGC TTGTCCAAGA GTGCATGGTG CATGACTGCG CAGATGGAAA
                                                                           540
       AAAGCCCTCC TCTCCTCCAG AAGAATTAAA ATTTCAGTGT GGCCAAAAGA CTCTGAGGCC
                                                                           600
       CCGCTTTAAG ATTATTGGGG GAGAATTCAC CACCATCGAG AACCAGCCCT GGTTTGCGGC
                                                                           660
60
       CATCTACAGG AGGCACCGGG GGGGCTCTGT CACCTACGTG TGTGGAGGCA GCCTCATCAG
                                                                           720
       CCCTTGCTGG GTGATCAGCG CCACACACTG CTTCATTGAT TACCCAAAGA AGGAGGACTA
                                                                           780
       CATCGTCTAC CTGGGTCGCT CAAGGCTTAA CTCCAACACG CAAGGGGAGA TGAAGTTTGA
       GGTGGAAAAC CTCATCCTAC ACAAGGACTA CAGCGCTGAC ACGCTTGCTC ACCACAACGA
       CATTGCCTTG CTGAAGATCC GTTCCAAGGA GGGCAGGTGT GCGCAGCCAT CCCGGACTAT
65
       ACAGACCATC TGCCTGCCCT CGATGTATAA CGATCCCCAG TTTGGCACAA GCTGTGAGAT
                                                                          1020
       CACTGGCTTT GGAAAAGAGA ATTCTACCGA CTATCTCTAT CCGGAGCAGC TGAAAATGAC
                                                                          1080
       TGTTGTGAAG CTGATTTCCC ACCGGGAGTG TCAGCAGCCC CACTACTACG GCTCTGAAGT
                                                                          1140
       CACCACCAAA ATGCTATGTG CTGCTGACCC CCAATGGAAA ACAGATTCCT GCCAGGGAGA
                                                                          1200
       CTCAGGGGGA CCCCTCGTCT GTTCCCTCCA AGGCCGCATG ACTTTGACTG GAATTGTGAG
                                                                          1260
70
                                                                          1320
       CTGGGGCCGT GGATGTGCCC TGAAGGACAA GCCAGGCGTC TACACGAGAG TCTCACACTT
       CTTACCCTGG ATCCGCAGTC ACACCAAGGA AGAGAATGGC CTGGCCCTCT GAGGGTCCCC
                                                                          1380
       AGGGAGGAAA CGGGCACCAC CCGCTTTCTT GCTGGTTGTC ATTTTTGCAG TAGAGTCATC
                                                                          1440
       TCCATCAGCT GTAAGAAGAG ACTGGGAAGA TAGGCTCTGC ACAGATGGAT TTGCCTGTGG
                                                                          1500
       CACCACCAGG GTGAACGACA ATAGCTTTAC CCTCACGGAT AGGCCTGGGT GCTGGCTGCC
                                                                          1560
75
       CAGACCCTCT GGCCAGGATG GAGGGGTGGT CCTGACTCAA CATGTTACTG ACCAGCAACT
                                                                          1620
       TGTCTTTTTC TGGACTGAAG CCTGCAGGAG TTAAAAAGGG CAGGGCATCT CCTGTGCATG
                                                                          1680
       GGCTCGAAGG GAGAGCCAGC TCCCCCGACC GGTGGGCATT TGTGAGGCCC ATGGTTGAGA
                                                                          1740
       AATGAATAAT TTCCCAATTA GGAAGTGTAA GCAGCTGAGG TCTCTTGAGG GAGCTTAGCC
                                                                          1800
       AATGTGGGAG CAGCGGTTTG GGGAGCAGAG ACACTAACGA CTTCAGGGCA GGGCTCTGAT
                                                                          1860
80
       ATTCCATGAA TGTATCAGGA AATATATATG TGTGTGTATG TTTGCACACT TGTTGTGTGG
                                                                          1920
       GCTGTGAGTG TAAGTGTGAG TAAGAGCTGG TGTCTGATTG TTAAGTCTAA ATATTTCCTT
                                                                          1980
       AAACTGTGTG GACTGTGATG CCACACAGAG TGGTCTTTCT GGAGAGGTTA TAGGTCACTC
                                                                          2040
       CTGGGGCCTC TTGGGTCCCC CACGTGACAG TGCCTGGGAA TGTACTTATT CTGCAGCATG
                                                                          2100
       ACCTGTGACC AGCACTGTCT CAGTTTCACT TTCACATAGA TGTCCCTTTC TTGGCCAGTT
                                                                          2160
85
       ATCCCTTCCT TTTAGCCTAG TTCATCCAAT CCTCACTGGG TGGGGTGAGG ACCACTCCTT
                                                                          2220
       ACACTGAATA TITATATITC ACTATITITA TITATATITI TGTAATITTA AATAAAAGTG
                                                                          2280
       ATCAATAAAA TGTGATTTTT CTGA
```

Seq ID NO: 615 Protein sequence Protein Accession #: NP_002649.1

```
5
                                          31
       MRALLARLLL CVLVVSDSKG SNELHQVPSN CDCLNGGTCV SNKYFSNIHW CNCPKKFGGQ
                                                                                60
       HCEIDKSKTC YEGNGHPYRG KASTDTMGRP CLPWNSATVL QQTYHAHRSD ALQLGLGKHN
                                                                               120
       YCRNPDNRRR PWCYVQVGLK PLVQECMVHD CADGKKPSSP PEELKFQCGQ KTLRPRFKII
                                                                               180
       GGEFTTIENQ PWFAAIYRRH RGGSVTYVCG GSLISPCWVI SATHCFIDYP KKEDYIVYLG
10
       RSRLNSNTQG EMKFEVENLI LHKDYSADTL AHENDIALLK IRSKEGRCAQ PSRTIQTICL
                                                                               300
       PSMYNDPQFG TSCEITGFGK ENSTDYLYPE QLKMTVVKLI SHRECQQPHY YGSEVTTKML
                                                                               360
       CAADPOWKTD SCOGDSGGPL VCSLQGRMTL TGIVSWGRGC ALKDKPGVYT RVSHFLPWIR
                                                                               420
       SHTKEENGLA L
15
       Seq ID NO: 616 DNA sequence
       Nucleic Acid Accession #: NM_024422.1
       Coding sequence: 202..2907
20
                                                                 51
       CGCCAAAGGA AAAGCCCCTT GGATGAGAGG CAGGCGCTTC AGAGAAGCTA AGAAAAGCAC
                                                                                60
       CTCTCCGCGC GCCCCACCTC CTCCGCCTCG CGCTCCTCCT GAGCAGCGGG CCCAGACTGC
                                                                               120
       GCTCCGGCCG CGGCCCTCGC CCCGCGGAGC CCTCCTACCC CGGCCCGACG CTCGGCCCGC
                                                                               180
25
       GACCTGCCCC GAGCCCTCTC CATGGAGGCA GCCCGCCCCT CCGGCTCCTG GAACGGAGCC
                                                                               240
       CTCTGCCGGC TGCTCCTGCT GACCCTCGCG ATCTTAATAT TTGCCAGTGA TGCCTGCAAA
                                                                               300
       AATGTGACAT TACATGTTCC CTCCAAACTA GATGCCGAGA AACTTGTTGG TAGAGTTAAC
                                                                               360
       CTGARAGAGT GCTTTACAGC TGCARATCTA ATTCATTCAR GTGATCCTGA CTTCCARATT TTGGAGGATG GTTCAGTCTA TACARCARAT ACTATTCTAT TGTCCTCGGA GARGAGAAGT
                                                                               420
                                                                               480
       TTTACCATAT TACTTTCCAA CACTGAGAAC CAAGAAAAGA AGAAAATATT TGTCTTTTTG
30
       GAGCATCAAA CAAAGGTCCT AAAGAAAAGA CATACTAAAG AAAAAGTTCT AAGGCGCGCC
                                                                               600
       AAGAGAAGAT GGGCTCCAAT TCCTTGTTCG ATGCTAGAAA ACTCCTTGGG TCCTTTTCCA
                                                                               660
       CTTTTCCTTC AACAGGTTCA ATCTGACACG GCCCAAAACT ATACCATATA CTATTCCATA
                                                                               720
       AGAGGTCCTG GAGTTGACCA AGAACCTCGG AATTTATTTT ATGTGGAGAG AGACACTGGA
                                                                               780
       AACTTGTATT GTACTCGTCC TGTAGATCGT GAGCAGTATG AATCTTTTGA GATAATTGCC
35
                                                                               840
       TTTGCAACAA CTCCAGATGG GTATACTCCA GAACTTCCAC TGCCCCTAAT AATCAAAATA
                                                                               900
       GAGGATGAAA ATGATAACTA CCCAATTTTT ACAGAAGAAA CTTATACTTT TACAATTTTT
GAAAATTGCA GAGTGGGCAC TACTGTGGGA CAAGTGTGTG CTACTGACAA AGATGAGCCT
                                                                               960
                                                                              1020
       GACACGATGC ACACACGCCT GAAGTACTCC ATCATTGGGC AGGTGCCACC ATCACCCACC
                                                                              1080
       CTATTTTCTA TGCATCCAAC TACAGGCGTG ATCACCACAA CATCATCTCA GCTAGACAGA
40
                                                                              1140
       GAGTTAATTG ACAAGTACCA GTTGAAAATA AAAGTACAAG ACATGGATGG TCAGTATTTT
                                                                              1200
       GGTCTACAGA CAACTTCAAC TTGTATCATT AACATTGATG ATGTAAATGA CCACTTGCCA
                                                                              1260
       ACATTTACTC GTACTTCTTA TGTGACATCA GTGGAAGAAA ATACAGTTGA TGTGGAAATC
                                                                              1320
       TTACGAGTTA CTGTTGAGGA TAAGGACTTA GTGAATACTG CTAACTGGAG AGCTAATTAT
                                                                              1380
45
       ACCATTITAA AGGGCAATGA AAATGGCAAT TITAAAATTG TAACAGATGC CAAAACCAAT
                                                                              1440
                                                                              1500
       GAAGGAGTTC TTTGTGTAGT TAAGCCTTTG AATTATGAAG AAAAGCAACA GATGATCTTG
       CAAATTGGTG TAGTTAATGA AGCTCCATTT TCCAGAGAGG CTAGTCCAAG ATCAGCCATG
                                                                              1560
       AGCACAGCAA CAGTTACTGT TAATGTAGAA GATCAGGATG AGGGCCCTGA GTGTAACCCT
                                                                              1620
       CCAATACAGA CTGTTCGCAT GAAAGAAAAT GCAGAAGTGG GAACAACAAG CAATGGATAT
                                                                              1680
50
       AAAGCATATG ACCCAGAAAC AAGAAGTAGC AGTGGCATAA GGTATAAGAA ATTAACTGAT
                                                                              1740
       CCAACAGGGT GGGTCACCAT TGATGAAAAT ACAGGATCAA TCAAAGTTTT CAGAAGCCTG
GATAGAGAGG CAGAGACCAT CAAAAATGGC ATATATAATA TTACAGTCCT TGCATCAGAC
                                                                              1800
                                                                              1860
       CAAGGAGGA GAACATGTAC GGGGACACTG GGCATTATAC TTCAAGACGT GAATGATAAC
                                                                              1920
       AGCCCATTCA TACCTAAAAA GACAGTGATC ATCTGCAAAC CCACCATGTC ATCTGCGGAG
                                                                              1980
       ATTGTTGCGG TTGATCCTGA TGAGCCTATC CATGGCCCAC CCTTTGACTT TAGTCTGGAG
                                                                              2040
55
       AGTTCTACTT CAGAAGTACA GAGAATGTGG AGACTGAAAG CAATTAATGA TACAGCAGCA
                                                                              2100
       CGTCTTTCCT ATCAGAATGA TCCTCCATTT GGCTCATATG TAGTACCTAT AACAGTGAGA
                                                                              2160
       GATAGACTTG GCATGTCTAG TGTCACTTCA TTGGATGTTA CACTGTGTGA CTGCATTACC
                                                                              2220
       GAAAATGACT GCACACATCG TGTAGATCCA AGGATTGGCG GTGGAGGAGT ACAACTTGGA
                                                                              2280
60
       AAGTGGGCCA TCCTTGCAAT ATTGTTGGGC ATAGCATTGC TCTTTTGCAT CCTGTTTACG
                                                                              2340
       CTGGTCTGTG GGGCTTCTGG GACGTCTAAA CAACCAAAAG TAATTCCTGA TGATTTAGCC
                                                                              2400
       CAGCAGAACC TAATTGTATC AAACACAGAA GCTCCTGGAG ATGACAAAGT GTATTCTGCG
                                                                              2460
       AATGGCTTCA CAACCCAAAC TGTGGGCGCT TCTGCTCAGG GAGTTTGTGG CACCGTGGGA
                                                                              2520
       TCAGGAATCA AAAACGGAGG TCAGGAGACC ATCGAAATGG TGAAAGGAGG ACACCAGACC
                                                                              2580
65
       TCGGAATCCT GCCGGGGGC TGGCCACCAT CACACCCTGG ACTCCTGCAG GGGAGGACAC
                                                                              2640
       ACGGAGGTGG ACAACTGCAG ATACACTTAC TCGGAGTGGC ACAGTTTTAC TCAGCCCCGT
                                                                              2700
       CTTGGTGAAA AAGTGTATCT GTGTAATCAA GATGAAAATC ACAAGCATGC CCAAGACTAT
                                                                              2760
       GTCCTGACAT ATAACTATGA AGGAAGAGGA TCGGTGGCTG GGTCTGTAGG TTGTTGCAGT
                                                                              2820
       GAACGACAAG AAGAAGATGG GCTTGAATTT TTGGATAATT TGGAGCCCAA ATTTAGGACA
                                                                              2880
70
       CTAGCAGAAG CATGCATGAA GAGATGAGTG TGTTCTAATA AGTCTCTGAA AGCCAGTGGC
                                                                              2940
        TTTATGACTT TTAAAAAAA TTACAAACCA AGAATTTTTT AAAGCAGAAG ATGCTATTTG
                                                                              3000
       TGGGGGTTTT TCTCTCATTA TTTGGATGGA ATCTCTTTGG TCAAATGCAC ATTTACAGAG
                                                                              3060
       AGACACTATA AACAAGTACA CAAATTTTTC AATTTTTACA TATTTTTAAA TTACTTATCT
       TCTATCCAAG GAGGTCTACA GAGAAATTAA AGTCTGCCTT ATTTGTTACA TTTGGGTATA
                                                                              3180
       ATGACAACAG CCAATTTATA GTGCAATAAA ATGTAATTAA TTCAAGTCCT TATTATAGAC
75
                                                                              3240
        TATTIGAAGC ACAACCTAAT GGAAAATTGT AGAGACCTTG CTTTAACATT ATCTCCAGTT
                                                                              3300
       AATTAAGTGT TCATGTGGTG CTTGGAAACT GTTGTTTTCC TGAACATCTA AAGTGTGTAG
                                                                              3360
       ACTGCATTCT TGCTATTATT TTATTCTTGT AATGTGACCT TTTCACTGTG CAAAGGGAGA
                                                                              3420
       TTTCTAGCCA GGCATTGACT ATTACAATTT CATT
80
        Sea ID NO: 617 Protein sequence
        Protein Accession #: NP_077740.1
                                                                  51
                                           31
                                                      41
85
        MEAARPSGSW NGALCRLLLL TLAILIPASD ACKNVTLHVP SKLDAEKLVG RVNLKECFTA
                                                                                60
        ANLIHSSDPD FQILEDGSVY TTNTILLSSE KRSFTILLSN TENQEKKKIF VFLEHQTKVL
```

```
KKRHTKEKVL RRAKRRWAPI PCSMLENSLG PPPLFLQQVQ SDTAQNYTIY YSIRGPGVDQ
                                                                               180
       EPRNLFYVER DTGNLYCTRP VDREQYESFE IIAFATTPDG YTPELPLPLI IKIEDENDNY
                                                                               240
       PIFTEETYTF TIFENCRYGT TYGQYCATDK DEPDTMHTRL KYSIIGQYPP SPTLFSMHPT
                                                                               300
       TGVITTTSSQ LDRELIDKYQ LKIKVQDMDG QYFGLQTTST CIINIDDVND HLPTFTRTSY
                                                                               360
       VTSVEENTVD VEILRVTVED KOLVNTANWR ANYTILKGNE NGNFKIVTDA KTNEGVLCVV
                                                                               420
       KPLNYEEKQQ MILQIGVVNE APFSREASPR SAMSTATVTV NVEDQDEGPE CNPPIQTVRM
       KENAEVGTTS NGYKAYDPET RSSSGIRYKK LTDPTGWVTI DENTGSIKVF RSLDREAETI
                                                                               540
       KNGIYNITVL ASDQGGRTCT GTLGIILQDV NDNSPFIPKK TVIICKPTMS SAEIVAVDPD
       EPIHGPPFDF SLESSTSEVQ RMWRLKAIND TAARLSYQND PPFGSYVVPI TVRDRLGMSS
                                                                               660
10
       VTSLDVTLCD CITENDCTHR VDPRIGGGGV OLGKWAILAI LLGIALLFCI LFTLVCGASG
       TSKOPKVIPD DLAQONLIVS NTEAPGDDKV YSANGFTTQT VGASAQGVCG TVGSGIKNGG
       OETIEMVKGG HOTSESCRGA GHHHTLDSCR GGHTEVDNCR YTYSEWHSFT QPRLGEKVYL
       CNODENHKHA ODYVLTYNYE GRGSVAGSVG CCSERQEEDG LEFLDNLEPK FRTLAEACMK
15
       Seg ID NO: 618 DNA sequence
       Nucleic Acid Accession #: NM 004949.1
       Coding sequence: 202..2745
20
                                                                 51
       CGCCAAAGGA AAAGCCCCTT GGATGAGAGG CAGGCGCTTC AGAGAAGCTA AGAAAAGCAC
                                                                                60
       CTCTCCGCGC GCCCCACCTC CTCCGCCTCG CGCTCCTCCT GAGCAGCGGG CCCAGACTGC
                                                                               120
       GCTCCGGCCG CGGCCCTCGC CCCGCGGAGC CCTCCTACCC CGGCCCGACG CTCGGCCCGC
                                                                              180
25
       GACCTGCCCC GAGCCCTCTC CATGGAGGCA GCCCGCCCCT CCGGCTCCTG GAACGGAGCC
                                                                              240
       CTCTGCCGGC TGCTCCTGCT GACCCTCGCG ATCTTAATAT TTGCCAGTGA TGCCTGCAAA
                                                                               300
       AATGTGACAT TACATGTTCC CTCCAAACTA GATGCCGAGA AACTTGTTGG TAGAGTTAAC
                                                                              360
       CTGAAAGAGT GCTTTACAGC TGCAAATCTA ATTCATTCAA GTGATCCTGA CTTCCAAATT
                                                                               420
       TTGGAGGATG GTTCAGTCTA TACAACAAAT ACTATTCTAT TGTCCTCGGA GAAGAGAAGT
                                                                               480
30
       TTTACCATAT TACTTTCCAA CACTGAGAAC CAAGAAAAGA AGAAAATATT TGTCTTTTTG
                                                                               540
       GAGCATCAAA CAAAGGTCCT AAAGAAAAGA CATACTAAAG AAAAAGTTCT AAGGCGCGCC
                                                                               600
       AAGAGAAGAT GGGCTCCAAT TCCTTGTTCG ATGCTAGAAA ACTCCTTGGG TCCTTTTCCA
                                                                               660
       CTTTTCCTTC AACAGGTTCA ATCTGACACG GCCCAAAACT ATACCATATA CTATTCCATA
                                                                               720
       AGAGGTCCTG GAGTTGACCA AGAACCTCGG AATTTATTTT ATGTGGAGAG AGACACTGGA
                                                                               780
35
       AACTTGTATT GTACTCGTCC TGTAGATCGT GAGCAGTATG AATCTTTTGA GATAATTGCC
       TTTGCAACAA CTCCAGATGG GTATACTCCA GAACTTCCAC TGCCCCTAAT AATCAAAATA
                                                                               900
       GAGGATGAAA ATGATAACTA CCCAATTTTT ACAGAAGAAA CTTATACTTT TACAATTTTT
                                                                               960
       GARARTIGCA GAGTGGGCAC TACTGTGGGA CAAGTGTGTG CTACTGACAA AGATGAGCCT
                                                                              1020
       GACACGATGC ACACACGCCT GAAGTACTCC ATCATTGGGC AGGTGCCACC ATCACCCACC
                                                                             1080
40
       CTATTTTCTA TGCATCCAAC TACAGGCGTG ATCACCACAA CATCATCTCA GCTAGACAGA
                                                                             1140
       GAGTTAATTG ACAAGTACCA GTTGAAAATA AAAGTACAAG ACATGGATGG TCAGTATTTT
                                                                             1200
       GGTCTACAGA CAACTTCAAC TTGTATCATT AACATTGATG ATGTAAATGA CCACTTGCCA
                                                                              1260
       ACATTTACTC GTACTTCTTA TGTGACATCA GTGGAAGAAA ATACAGTTGA TGTGGAAATC
                                                                             1320
       TTACGAGTTA CTGTTGAGGA TAAGGACTTA GTGAATACTG CTAACTGGAG AGCTAATTAT
                                                                             1380
45
       ACCATTITAA AGGGCAATGA AAATGGCAAT TITAAAATTG TAACAGATGC CAAAACCAAT
                                                                             1440
       GAAGGAGTTC TTTGTGTAGT TAAGCCTTTG AATTATGAAG AAAAGCAACA GATGATCTTG
                                                                             1500
       CAAATTGGTG TAGTTAATGA AGCTCCATTT TCCAGAGAGG CTAGTCCAAG ATCAGCCATG
                                                                             1560
       AGCACAGCAA CAGTTACTGT TAATGTAGAA GATCAGGATG AGGGCCCTGA GTGTAACCCT
                                                                             1620
       CCAATACAGA CTGTTCGCAT GAAAGAAAAT GCAGAAGTGG GAACAACAAG CAATGGATAT
                                                                             1680
50
       AAAGCATATG ACCCAGAAAC AAGAAGTAGC AGTGGCATAA GGTATAAGAA ATTAACTGAT
                                                                             1740
       CCAACAGGGT GGGTCACCAT TGATGAAAAT ACAGGATCAA TCAAAGTTTT CAGAAGCCTG
GATAGAGAGG CAGAGACCAT CAAAAATGGC ATATATAATA TTACAGTCCT TGCATCAGAC
CAAGGAGGGA GAACATGTAC GGGGACACTG GGCATTATAC TTCAAGACGT GAATGATAAC
                                                                             1800
                                                                             1860
                                                                             1920
       AGCCCATTCA TACCTAAAAA GACAGTGATC ATCTGCAAAC CCACCATGTC ATCTGCGGAG
                                                                              1980
55
       ATTGTTGCGG TTGATCCTGA TGAGCCTATC CATGGCCCAC CCTTTGACTT TAGTCTGGAG
                                                                             2040
       AGTTCTACTT CAGAAGTACA GAGAATGTGG AGACTGAAAG CAATTAATGA TACAGCAGCA
                                                                             2100
       CGTCTTTCCT ATCAGAATGA TCCTCCATTT GGCTCATATG TAGTACCTAT AACAGTGAGA
                                                                              2160
       GATAGACTTG GCATGTCTAG TGTCACTTCA TTGGATGTTA CACTGTGTGA CTGCATTACC
       GAAAATGACT GCACACATCG TGTAGATCCA AGGATTGGCG GTGGAGGAGT ACAACTTGGA
                                                                             2280
60
       AAGTGGGCCA TCCTTGCAAT ATTGTTGGGC ATAGCATTGC TCTTTTGCAT CCTGTTTACG
                                                                             2340
       CTGGTCTGTG GGGCTTCTGG GACGTCTAAA CAACCAAAAG TAATTCCTGA TGATTTAGCC
                                                                             2400
       CAGCAGAACC TAATTGTATC AAACACAGAA GCTCCTGGAG ATGACAAAGT GTATTCTGCG
                                                                             2460
       AATGGCTTCA CAACCCAAAC TGTGGGCGCT TCTGCTCAGG GAGTTTGTGG CACCGTGGGA
                                                                             2520
       TCAGGAATCA AAAACGGAGG TCAGGAGACC ATCGAAATGG TGAAAGGAGG ACACCAGACC
                                                                             2580
65
       TCGGAATCCT GCCGGGGGC TGGCCACCAT CACACCCTGG ACTCCTGCAG GGGAGGACAC
                                                                             2640
       ACGGAGGTGG ACAACTGCAG ATACACTTAC TCGGAGTGGC ACAGTTTTAC TCAGCCCCGT
                                                                             2700
       CTTGGTGAAG AATCCATTAG AGGACACACT CTGATTAAAA ATTAAACAAT GAAAGAAAGT
                                                                             2760
       GTATCTGTGT AATCAAGATG AAAATCACAA GCATGCCCAA GACTATGTCC TGACATATAA
                                                                             2820
       CTATGAAGGA AGAGGATCGG TGGCTGGGTC TGTAGGTTGT TGCAGTGAAC GACAAGAAGA
                                                                             2880
       AGATGGGCTT GAATTTTTGG ATAATTTGGA GCCCAAATTT AGGACACTAG CAGAAGCATG
CATGAAGAGA TGAGTGTGTT CTAATAAGTC TCTGAAAGCC AGTGGCTTTA TGACTTTTAA
70
                                                                              2940
                                                                              3000
       AAAAAATTAC AAACCAAGAA TTTTTTAAAG CAGAAGATGC TATTTGTGGG GGTTTTTCTC
                                                                              3060
       TCATTATTTG GATGGAATCT CTTTGGTCAA ATGCACATTT ACAGAGAGAC ACTATAAACA
                                                                              3120
       AGTACACAAA TTTTTCAATT TTTACATATT TTTAAATTAC TTATCTTCTA TCCAAGGAGG
                                                                              3180
75
       TCTACAGAGA AATTAAAGTC TGCCTTATTT GTTACATTTG GGTATAATGA CAACAGCCAA
       TTTATAGTGC AATAAAATGT AATTAATTCA AGTCCTTATT ATAGACTATT TGAAGCACAA
                                                                              3300
       CCTAATGGAA AATTGTAGAG ACCTTGCTTT AACATTATCT CCAGTTAATT AAGTGTTCAT
       GTGGTGCTTG GAAACTGTTG TTTTCCTGAA CATCTAAAGT GTGTAGACTG CATTCTTGCT
                                                                              3420
       ATTATTTTAT TCTTGTAATG TGACCTTTTC ACTGTGCAAA GGGAGATTTC TAGCCAGGCA
80
       TTGACTATTA CAATTTCATT
       Seq ID NO: 619 Protein sequence
       Protein Accession #: NP_004940.1
85
                              21
                                          31
       MEAARPSGSW NGALCRLLLL TLAILIFASD ACKNVTLHVP SKLDAEKLVG RVNLKECFTA
```

```
ANLIHSSDPD FQILEDGSVY TTNTILLSSE KRSPTILLSN TENQEKKKIP VFLEHQTKVL
                                                                             120
       KKRHTKEKVL RRAKRRWAPI PCSMLENSLG PFPLFLQQVQ SDTAQNYTIY YSIRGPGVDQ
                                                                             180
       EPRNLFYVER DTGNLYCTRP VDREQYESFE IIAPATTPDG YTPELPLPLI IKIEDENDNY PIPTEETYTP TIPENCRVGT TVGQVCATDK DEPDTMHTRL KYSIIGQVPP SPTLFSMHPT
                                                                             240
                                                                             300
 5
       TGVITTTSSQ LDRELIDKYQ LKIKVQDMDG QYFGLQTTST CIINIDDVND HLPTFTRTSY
                                                                             360
       VTSVEENTVD VEILRVTVED KDLVNTANWR ANYTILKGNE NGNFKIVTDA KTNEGVLCVV
                                                                             420
       KPLNYEEKQQ MILQIGVVNE APFSREASPR SAMSTATVTV NVEDQDEGPE CNPPIQTVRM
                                                                             480
       KENAEVGTTS NGYKAYDPET RSSSGIRYKK LTDPTGWVTI DENTGSIKVF RSLDREAETI
                                                                             540
       KNGIYNITVL ASDQGGRTCT GTLGIILQDV NDNSPFIPKK TVIICKPTMS SAEIVAVDPD
                                                                             600
10
       EPIHGPPFDP SLESSTSEVQ RMWRLKAIND TAARLSYQND PPFGSYVVPI TVRDRLGMSS
                                                                             660
       VTSLDVTLCD CITENDCTHR VDPRIGGGGV QLGKWAILAI LLGIALLFCI LFTLVCGASG
                                                                             720
       TSKOPKVIPD DLAOONLIVS NTEAPGDDKV YSANGFTTQT VGASAQGVCG TVGSGIKNGG
                                                                             780
       OETIEMVKGG HOTSESCRGA GHHHTLDSCR GGHTEVDNCR YTYSEWHSFT QPRLGEESIR
15
       Seg ID NO: 620 DNA sequence
       Nucleic Acid Accession #: NM_032545.1
       Coding sequence: 46..718
20
                                                               51
       AAACTGATCT TCAATGCACT AAGAGAAGGA GACTCTCAAA CCAAAAATGA CCTGGAGGCA
                                                                              60
       CCATGTCAGG CTTCTGTTTA CGGTCAGTTT GGCATTACAG ATCATCAATT TGGGAAACAG
                                                                             120
       CTATCAAAGA GAGAAACATA ACGGCGGTAG AGAGGAAGTC ACCAAGGTTG CCACTCAGAA
                                                                             180
25
       GCACCGACAG TCACCGCTCA ACTGGACCTC CAGTCATTTC GGAGAGGTGA CTGGGAGCGC
                                                                             240
       CGAGGGCTGG GGGCCGGAGG AGCCGCTCCC CTACTCCCGG GCTTTCGGAG AGGGTGCGTC
                                                                             300
       CGCGCGGCCG CGCTGCTGCA GGAACGGCGG TACCTGCGTG CTGGGCAGCT TCTGCGTGTG
                                                                             360
       CCCGGCCCAC TTCACCGGCC GCTACTGCGA GCATGACCAG AGGCGCAGTG AATGCGGCGC
                                                                             420
       CCTGGAGCAC GGAGCCTGGA CCCTCCGCGC CTGCCACCTC TGCAGGTGCA TCTTCGGGGC
                                                                             480
       CCTGCACTGC CTCCCCCTCC AGACGCCTGA CCGCTGTGAC CCGAAAGACT TCCTGGCCTC
30
                                                                             540
       CCACGCTCAC GGGCCGAGCG CCGGGGGGCGC GCCCAGCCTG CTACTCTTGC TGCCCTGCGC
                                                                             600
       ACTOCTGCAC CGCCTCCTGC GCCCGGATGC GCCCGCGCAC CCTCGGTCCC TGGTCCCTTC
                                                                             660
       CGTCCTCCAG CGGGAGCGGC GCCCCTGCGG AAGGCCGGGA CTTGGGCATC GCCTTTAATT
                                                                             720
       TTCTATGTTG TAAATAATAG ATGTGTTTAG TTTACCGTAA GCTGAAGCAC TGGGTGAATA
                                                                             780
       TTTTTATTGG GTAATAAATA TTTTCATGAA AGCGCCAAAA AAAAAAAAA AAAAAAAAA
35
       Seq ID NO: 621 Protein sequence
       Protein Accession #: NP_115934.1
40
                                                               51
       MTWRHHVRLL FTVSLALQII NLGNSYQREK HNGGREEVTK VATQKHRQSP LNWTSSHFGE
                                                                              60
       VTGSAEGWGP EEPLPYSRAF GEGASARPRC CRNGGTCVLG SFCVCPAHFT GRYCEHDQRR
                                                                             120
45
       SECGALEHGA WTLRACHLCR CIFGALHCLP LQTPDRCDPK DFLASHAHGP SAGGAPSLLL
       LLPCALLHRL LRPDAPAHPR SLVPSVLQRE RRPCGRPGLG HRL
       Seq ID NO: 622 DNA sequence
       Nucleic Acid Accession #: FGENESH predicted
50
       Coding sequence: 1..390
                                                               51
                                                    41
                                         31
       ATGAGGTTCA GTGTCTCAGG CATGAGGACC GACTACCCCA GGAGTGTGCT GGCTCCTGCT
55
       TATGTGTCAG TCTGTCTCCT CCTCTTGTGT CCAAGGGAAG TCATCGCTCC CGCTGGCTCA
                                                                             120
       GAACCATGGC TGTGCCAGCC GGCACCCAGG TGTGGAGACA AGATCTACAA CCCCTTGGAG
                                                                             180
       CAGTGCTGTT ACAATGACGC CATCGTGTCC CTGAGCGAGA CCCGCCAATG TGGTCCCCCC
                                                                             240
       TGCACCTTCT GGCCCTGCTT TGAGCTCTGC TGTCTTGATT CCTTTGGCCT CACAAACGAT
                                                                             300
       TTTGTTGTGA AGCTGAAGGT TCAGGGTGTG AATTCCCAGT GCCACTCATC TCCCATCTCC
                                                                             360
60
       AGTAAATGTG AAAGAGGCCG GATATGTTAG
       Seq ID NO: 623 Protein sequence
       Protein Accession #: FGENESH predicted
65
                                         31
                                                    41
                             21
       MRFSVSGMRT DYPRSVLAPA YVSVCLLLLC PREVIAPAGS EPWLCQPAPR CGDKIYNPLE
                                                                              60
       QCCYNDAIVS LSETRQCGPP CTFWPCFELC CLDSFGLTND FVVKLKVQGV NSQCHSSPIS
       SKCERGRIC
70
       Seq ID NO: 624 DNA sequence
       Nucleic Acid Accession #: M18728.1
       Coding sequence: 51..1085
75
       GGAGCTCAAG CTCCTCTACA AAGAGGTGGA CAGAGAAGAC AGCAGAGACC ATGGGACCCC
                                                                              60
       CCTCAGCCCC TCCCTGCAGA TTGCATGTCC CCTGGAAGGA GGTCCTGCTC ACAGCCTCAC
                                                                             120
       TTCTAACCTT CTGGAACCCA CCCACCACTG CCAAGCTCAC TATTGAATCC ACGCCATTCA
                                                                             180
80
       ATGTCGCAGA GGGGAAGGAG GTTCTTCTAC TCGCCCACAA CCTGCCCCAG AATCGTATTG
                                                                             240
       GTTACAGCTG GTACAAAGGC GAAAGAGTGG ATGGCAACAG TCTAATTGTA GGATATGTAA
                                                                             300
       TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACAGTGG TCGAGAGACA ATATACCCCA
                                                                             360
       ATGCATCCCT GCTGATCCAG AACGTCACCC AGAATGACAC AGGATTCTAT ACCCTACAAG
                                                                             420
       TCATAAAGTC AGATCTTGTG AATGAAGAAG CAACCGGACA GTTCCATGTA TACCCGGAGC
                                                                             480
85
       TGCCCAAGCC CTCCATCTCC AGCAACAACT CCAACCCCGT GGAGGACAAG GATGCTGTGG
                                                                             540
       CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA
                                                                             600
       GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA
```

```
GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
                                                                                720
       ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
                                                                                780
       CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
                                                                                840
       ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
                                                                                900
 5
       TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                                960
       CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
                                                                               1020
       TOCTOTOAGO TOTOGOCACO GTOGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
                                                                               1080
       TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                              1140
       GAATTCTTCT AGCTCCTCCA ATCCCATTTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                               1200
10
       CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA
                                                                               1260
       ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
                                                                               1320
       GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
                                                                               1380
       AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                               1440
       TGCCTCTTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
                                                                               1500
15
       GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG
AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTTC
                                                                               1560
                                                                               1620
       AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
                                                                               1680
                                                                               1740
       GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
                                                                               1800
20
       GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                               1860
       CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
                                                                               1920
       CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
                                                                               1980
       CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                               2040
       GGCTGGAATT ACAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                              2100
25
       ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
                                                                              2160
       TCTCACCTAG GTGAGCGCAT TGAGCCAGTG GTGCTAAATG CTACATACTC CAACTGAAAT
                                                                              2220
       2280
       ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                               2340
       TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
                                                                              2400
30
       TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
                                                                               2460
       CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
                                                                              2520
       TAGCTCTATA ACT
       Seq ID NO: 625 Protein sequence
35
       Protein Accession #: AAA59907.1
                                          31
       MGPPSAPPCR LHVPWKEVLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE VLLLAHNLPQ
40
       NRIGYSWYKG ERVDGNSLIV GYVIGTQQAT PGPAYSGRET IYPNASLLIQ NVTQNDTGFY
                                                                                120
       TLQVIKSDLV NEEATGQFHV YPELPKPSIS SNNSNPVEDK DAVAFTCEPE VQNTTYLWWV
       NGQSLPVSPR LQLSNGNMTL TLLSVKRNDA GSYECEIQNP ASANRSDPVT LNVLYGPDVP
                                                                                240
       TISPSKANYR PGENLNLSCH AASNPPAQYS WFINGTFQQS TQELFIPNIT VNNSGSYMCQ
                                                                               300
       AHNSATGLNR TTVTMITVSG SAPVLSAVAT VGITIGVLAR VALI
45
       Seq ID NO: 626 DNA sequence
       Nucleic Acid Accession #: M18728.1
       Coding sequence: 1355..1657
50
                              21
                                          31
                                                      41
                                                                  51
       GGAGCTCAAG CTCCTCTACA AAGAGGTGGA CAGAGAAGAC AGCAGAGACC ATGGGACCCC
                                                                                60
       CCTCAGCCCC TCCCTGCAGA TTGCATGTCC CCTGGAAGGA GGTCCTGCTC ACAGCCTCAC
TTCTAACCTT CTGGAACCCA CCCACCACTG CCAAGCTCAC TATTGAATCC ACGCCATTCA
                                                                               120
                                                                               180
55
       ATGTCGCAGA GGGGAAGGAG GTTCTTCTAC TCGCCCACAA CCTGCCCCAG AATCGTATTG
                                                                                240
       GTTACAGCTG GTACAAAGGC GAAAGAGTGG ATGGCAACAG TCTAATTGTA GGATATGTAA
       TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACAGTGG TCGAGAGACA ATATACCCCA
                                                                                360
       ATGCATCCCT GCTGATCCAG AACGTCACCC AGAATGACAC AGGATTCTAT ACCCTACAAG
       TCATAAAGTC AGATCTTGTG AATGAAGAAG CAACCGGACA GTTCCATGTA TACCCGGAGC
                                                                                480
60
       TGCCCAAGCC CTCCATCTCC AGCAACAACT CCAACCCCGT GGAGGACAAG GATGCTGTGG
                                                                                540
       CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA
                                                                                600
       GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA
                                                                                660
       GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
                                                                                720
       ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
                                                                                780
65
       CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
                                                                                840
       ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
                                                                                900
       TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                                960
       CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
                                                                               1020
       TCCTCTCAGC TGTGGCCACC GTCGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
                                                                               1080
70
       TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                               1140
       GAATTCTTCT AGCTCCTCCA ATCCCATTTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                               1200
       CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
                                                                               1260
                                                                               1320
       GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                              1380
75
                                                                               1440
       TGCCTCTTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
                                                                               1500
       GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG
                                                                               1560
       AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTTC
                                                                               1620
       AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
80
       TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
                                                                               1740
       GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
                                                                               1800
       GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                               1860
       CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
                                                                               1920
       CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
                                                                               1980
85
       CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                               2040
       GGCTGGAATT ACAAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                               2100
       ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
```

```
2220
       TCTCACCTAG GTGAGCGCAT TGAGCCAGTG GTGCTAAATG CTACATACTC CAACTGAAAT
       2280
       ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                              2340
                                                                              2400
       TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
 5
                                                                              2460
       TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
       CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
                                                                              2520
       TAGCTCTATA ACT
       Sea ID NO: 627 Protein sequence
10
       Protein Accession #: AAA59908.1
                                                                 51
                                          31
       MDSFSODVKT RLLIMIRLLP PFNLSLLMPA SPAWODDAVI SISQEVASEG NLTECQIYLV
15
       NPNVLHKIRD PLVHPVTDIS SIFNTAVCSN VQWSFSELDF
       Seg ID NO: 628 DNA sequence
       Nucleic Acid Accession #: M18728.1
       Coding sequence: 2370..2501
20
       GGAGCTCAAG CTCCTCTACA AAGAGGTGGA CAGAGAAGAC AGCAGAGACC ATGGGACCCC
                                                                                60
       CCTCAGCCCC TCCCTGCAGA TTGCATGTCC CCTGGAAGGA GGTCCTGCTC ACAGCCTCAC
                                                                               120
25
       TTCTAACCTT CTGGAACCCA CCCACCACTG CCAAGCTCAC TATTGAATCC ACGCCATTCA
                                                                               180
       ATGTCGCAGA GGGGAAGGAG GTTCTTCTAC TCGCCCACAA CCTGCCCCAG AATCGTATTG
                                                                               240
       GTTACAGCTG GTACAAAGGC GAAAGAGTGG ATGGCAACAG TCTAATTGTA GGATATGTAA
                                                                               300
       TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACAGTGG TCGAGAGACA ATATACCCCA
                                                                               360
       ATGCATCCCT GCTGATCCAG AACGTCACCC AGAATGACAC AGGATTCTAT ACCCTACAAG
                                                                               420
       TCATRAAGTC AGATCTTGTG AATGAAGAAG CAACCGGACA GTTCCATGTA TACCCGGAGC TGCCCAAGCC CTCCATCTCC AGCAACAACT CCAACCCCGT GGAGGACAAG GATGCTGTGG
30
                                                                               480
                                                                               540
       CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA
                                                                               600
       GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA
                                                                               660
       GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
35
       CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
                                                                               840
                                                                               900
       TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                               960
       CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
                                                                              1020
40
       TCCTCTCAGC TGTGGCCACC GTCGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
                                                                              1080
       TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                              1140
       GAATTCTTCT AGCTCCTCCA ATCCCATTTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                              1200
       CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA
                                                                              1260
       ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
                                                                              1320
45
       GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
                                                                              1380
       AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                              1440
       TGCCTCTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
                                                                              1500
       GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTC AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
                                                                              1560
                                                                              1620
50
                                                                              1680
       TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
                                                                              1740
                                                                              1800
       GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                              1860
       CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
55
       CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
                                                                              1980
       CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                              2040
       GGCTGGAATT ACAAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                              2100
       ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
                                                                              2160
       TCTCACCTAG GTGAGCGCAT TGAGCCAGTG GTGCTAAATG CTACATACTC CAACTGAAAT
                                                                              2220
60
       2280
       ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                              2340
       TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
                                                                              2400
       TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
                                                                              2460
       CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
                                                                             2520
65
       TAGCTCTATA ACT
       Seq ID NO: 629 Protein sequence
       Protein Accession #: AAA59909.1
70
                                                                 51
                              21
                                          31
       MLTNVFISVV LFPCSNLTKP TVLVLYCPGG AITVLVEWCC FNS
75
       Seq ID NO: 630 DNA sequence
       Nucleic Acid Accession #: NM 016639.1
       Coding sequence: 40..429
                                                                 51
                                          31
80
       GCGGCGGGCG CAGACAGCGG CGGGCGCAGG ACGTGCACTA TGGCTCGGGG CTCGCTGCGC
                                                                                60
       120
       GAGCAAGCGC CAGGCACCGC CCCCTGCTCC CGCGGCAGCT CCTGGAGCGC GGACCTGGAC
                                                                               180
       AAGTGCATGG ACTGCGCGTC TTGCAGGGCG CGACCGCACA GCGACTTCTG CCTGGGCTGC
                                                                               240
85
       GCTGCAGCAC CTCCTGCCCC CTTCCGGCTG CTTTGGCCCA TCCTTGGGGG CGCTCTGAGC
                                                                               300
       CTGACCTTCG TGCTGGGGCT GCTTTCTGGC TTTTTGGTCT GGAGACGATG CCGCAGGAGA
                                                                               360
       GAGAAGTTCA CCACCCCAT AGAGGAGACC GGCGGAGAGG GCTGCCCAGC TGTGGCGCTG
                                                                               420
```

```
ATCCAGTGAC AATGTGCCCC CTGCCAGCCG GGGCTCGCCC ACTCATCATT CATTCATCCA
                                                                              480
       TTCTAGAGCC AGTCTCTGCC TCCCAGACGC GGCGGGAGCC AAGCTCCTCC AACCACAAGG
                                                                              540
       GGGGTGGGG GCGGTGAATC ACCTCTGAGG CCTGGGCCCA GGGTTCAGGG GAACCTTCCA
                                                                              600
       AGGTGTCTGG TTGCCCTGCC TCTGGCTCCA GAACAGAAAG GGAGCCTCAC GCTGGCTCAC
                                                                              660
       ACAAAACAGC TGACACTGAC TAAGGAACTG CAGCATTTGC ACAGGGGAGG GGGGTGCCCT
                                                                               720
       CCTTCCTTAG GACCTGGGG CCAGGCTGAC TTGGGGGGGCA GACTTGACAC TAGGCCCCAC
                                                                              780
       TCACTCAGAT GTCCTGAAAT TCCACCACGG GGGTCACCCT GGGGGGTTAG GGACCTATTT
                                                                              840
       TTAACACTAG GGGCTGGCCC ACTAGGAGGG CTGGCCCTAA GATACAGACC CCCCCAACTC
                                                                              900
       CCCAAAGCGG GGAGGAGATA TTTATTTTGG GGAGAGTTTG GAGGGGAGGG AGAATTTATT
                                                                              960
10
       ААТААААДАА ТСТТТААСТТ ТАААААААА АААААААА
       Seq ID NO: 631 Protein sequence
       Protein Accession #: NP_057723.1
15
                                                                 51
                                          31
       MARGSLRRLL RLLVLGLWLA LLRSVAGEQA PGTAPCSRGS SWSADLDKCM DCASCRARPH
SDFCLGCAAA PPAPFRLLWP ILGGALSLTF VLGLLSGFLV WRRCRREKF TTPIEETGGE
                                                                               60
20
       Seg ID NO: 632 DNA sequence
       Nucleic Acid Accession #: NM_003816.1
       Coding sequence: 79..2538
25
                                                                 51
                                          31
       CGGCAGGGTT GGAAAATGAT GGAAGAGGCG GAGGTGGAGG CGACCGAGTG CTGAGAGGGAA
                                                                               60
       CCTGCGGAAT CGGCCGAGAT GGGGTCTGGC GCGCGCTTTC CCTCGGGGAC CCTTCGTGTC
                                                                              120
       CGGTGGTTGC TGTTGCTTGG CCTGGTGGGC CCAGTCCTCG GTGCGGCGCG GCCAGGCTTT
                                                                              180
30
       CAACAGACCT CACATCTTC TTCTTATGAA ATTATAACTC CTTGGAGATT AACTAGAGAA
                                                                              240
       AGAAGAGAAG CCCCTAGGCC CTATTCAAAA CAAGTATCTT ATGTTATTCA GGCTGAAGGA
                                                                              300
       AAAGAGCATA TTATTCACTT GGAAAGGAAC AAAGACCTTT TGCCTGAAGA TTTTGTGGTT
                                                                              360
       TATACTTACA ACAAGGAAGG GACTTTAATC ACTGACCATC CCAATATACA GAATCATTGT
                                                                              420
       CATTATCGGG GCTATGTGGA GGGAGTTCAT AATTCATCCA TTGCTCTTAG CGACTGTTTT
                                                                              480
35
       GGACTCAGAG GATTGCTGCA TTTAGAGAAT GCGAGTTATG GGATTGAACC CCTGCAGAAC
                                                                              540
       AGCTCTCATT TTGAGCACAT CATTTATCGA ATGGATGATG TCTACAAAGA GCCTCTGAAA
                                                                              600
       TGTGGAGTTT CCAACAAGGA TATAGAGAAA GAAACTGCAA AGGATGAAGA GGAAGAGCCT
                                                                              660
       CCCAGCATGA CTCAGCTACT TCGAAGAAGA AGAGCTGTCT TGCCACAGAC CCGGTATGTG
GAGCTGTTCA TTGTCGTAGA CAAGGAAGG TATGACATGA TGGGAAGAA TCAGACTGCT
                                                                              720
                                                                              780
40
       GTGAGAGAAG AGATGATTCT CCTGGCAAAC TACTTGGATA GTATGTATAT TATGTTAAAT
       ATTCGAATTG TGCTAGTTGG ACTGGAGATT TGGACCAATG GAAACCTGAT CAACATAGTT
       GGGGGTGCTG GTGATGTGCT GGGGAACTTC GTGCAGTGGC GGGAAAAGTT TCTTATCACA
                                                                              960
       CGTCGGAGAC ATGACAGTGC ACAGCTAGTT CTAAAGAAAG GTTTTGGTGG AACTGCAGGA
                                                                             1020
       ATGGCATTTG TGGGAACAGT GTGTTCAAGG AGCCACGCAG GCGGGATTAA TGTGTTTGGA
                                                                             1080
45
       CAAATCACTG TGGAGACATT TGCTTCCATT GTTGCTCATG AATTGGGTCA TAATCTTGGA
                                                                             1140
       ATGAATCACG ATGATGGGAG AGATTGTTCC TGTGGAGCAA AGAGCTGCAT CATGAATTCA
                                                                             1200
       1260
       TTAAATAAAG GAGGAAACTG CCTTCTTAAT ATTCCAAAGC CTGATGAAGC CTATAGTGCT
                                                                             1320
       CCCTCCTGTG GTAATAAGTT GGTGGACGCT GGGGAAGAGT GTGACTGTGG TACTCCAAAG
                                                                             1380
50
       GAATGTGAAT TGGACCCTTG CTGCGAAGGA AGTACCTGTA AGCTTAAATC ATTTGCTGAG
                                                                             1440
       TGTGCATATG GTGACTGTTG TAAAGACTGT CGGTTCCTTC CAGGAGGTAC TTTATGCCGA
                                                                             1500
       GGAAAAACCA GTGAGTGTGA TGTTCCAGAG TACTGCAATG GTTCTTCTCA GTTCTGTCAG
                                                                             1560
       CCAGATGTTT TTATTCAGAA TGGATATCCT TGCCAGAATA ACAAAGCCTA TTGCTACAAC
                                                                             1620
       GGCATGTGCC AGTATTATGA TGCTCAATGT CAAGTCATCT TTGGCTCAAA AGCCAAGGCT
                                                                             1680
       GCCCCCAAAG ATTGTTTCAT TGAAGTGAAT TCTAAAGGTG ACAGATTTGG CAATTGTGGT
55
                                                                             1740
       TTCTCTGGCA ATGAATACAA GAAGTGTGCC ACTGGGAATG CTTTGTGTGG AAAGCTTCAG
                                                                             1800
       TGTGAGAATG TACAAGAGAT ACCTGTATTT GGAATTGTGC CTGCTATTAT TCAAACGCCT
                                                                             1860
       AGTOGAGGCA CCAAATGTTG GGGTGTGGAT TTCCAGCTAG GATCAGATGT TCCAGATCCT
                                                                             1920
       GGGATGGTTA ACGAAGGCAC AAAATGTGGT GCTGGAAAGA TCTGTAGAAA CTTCCAGTGT
                                                                             1980
60
       GTAGATGCTT CTGTTCTGAA TTATGACTGT GATGTTCAGA AAAAGTGTCA TGGACATGGG
       GTATGTAATA GCAATAAGAA TTGTCACTGT GAAAATGGCT GGGCTCCCCC AAATTGTGAG
ACTAAAGGAT ACGGAGGAAG TGTGGACAGT GGACCTACAT ACAATGAAAT GAATACTGCA
                                                                             2100
                                                                             2160
       TTGAGGGACG GACTTCTGGT CTTCTTCTTC CTAATTGTTC CCCTTATTGT CTGTGCTATT
                                                                             2220
       TTTATCTTCA TCAAGAGGGA TCAACTGTGG AGAAGCTACT TCAGAAAGAA GAGATCACAA
                                                                             2280
65
       ACATATGAGT CAGATGGCAA AAATCAAGCA AACCCTTCTA GACAGCCGGG GAGTGTTCCT
                                                                             2340
       CGACATGTTT CTCCAGTGAC ACCTCCCAGA GAAGTTCCTA TATATGCAAA CAGATTTGCA
                                                                             2400
       GTACCAACCT ATGCAGCCAA GCAACCTCAG CAGTTCCCAT CAAGGCCACC TCCACCACAA
                                                                             2460
       CCGAAAGTAT CATCTCAGGG AAACTTAATT CCTGCCCGTC CTGCTCCTGC ACCTCCTTTA
                                                                             2520
       TATAGTTCCC TCACTTGATT TTTTTAACCT TCTTTTTGCA AATGTCTTCA GGGAACTGAG
                                                                             2580
70
       CTAATACTTT TTTTTTTCT TGATGTTTTC TTGAAAAGCC TTTCTGTTGC AACTATGAAT
                                                                             2640
       GAAAACAAAA CACCACAAAA CAGACTTCAC TAACACAGAA AAACAGAAAC TGAGTGTGAG
                                                                             2700
       AGTTGTGAAA TACAAGGAAA TGCAGTAAAG CCAGGGAATT TACAATAACA TTTCCGTTTC
                                                                             2760
                                                                             2820
       CATCATTGAA TAAGTCTTAT TCAGTCATCG GTGAGGTTAA TGCACTAATC ATGGATTTTT
       TGAACATGTT ATTGCAGTGA TTCTCAAATT AACTGTATTG GTGTAAGATT TTTGTCATTA
                                                                              2880
75
       AGTGTTTAAG TGTTATTCTG AATTTTCTAC CTTAGTTATC ATTAATGTAG TTCCTCATTG
                                                                              2940
       AACATGTGAT AATCTAATAC CTGTGAAAAC TGACTAATCA GCTGCCAATA ATATCTAATA
TTTTTCATCA TGCACGAATT AATAATCATC ATACTCTAGA ATCTTGTCTG TCACTCACTA
                                                                              3000
       CATGAATAAG CAAATATTGT CTTCAAAAGA ATGCACAAGA ACCACAATTA AGATGTCATA
       TTATTTTGAA AGTACAAAAT ATACTAAAAG AGTGTGTGTG TATTCACGCA GTTACTCGCT
       TCCATTTTTA TGACCTTTCA ACTATAGGTA ATAACTCTTA GAGAAATTAA TTTAATATTA
80
                                                                              3240
       GAATTTCTAT TATGAATCAT GTGAAAGCAT GACATTCGTT CACAATAGCA CTATTTTAAA
                                                                              3300
       TAAATTATAA GCTTTAAGGT ACGAAGTATT TAATAGATCT AATCAAATAT GTTGATTCAT
                                                                              3360
       GGCTATAATA AAGCAGGAGC AATTATAAAA TCTTCAATCA ATTGAACTTT TACAAAACCA
                                                                              3420
       CTTGAGAATT TCATGAGCAC TTTAAAATCT GAACTTTCAA AGCTTGCTAT TAAATCATTT
                                                                              3480
85
       AGAATGTTTA CATTTACTAA GGTGTGCTGG GTCATGTAAA ATATTAGACA CTAATATTTT
                                                                              3540
       CATAGAAATT AGGCTGGAGA AAGAAGGAAG AAATGGTTTT CTTAAATACC TACAAAAAAG
                                                                              3600
       TTACTGTGGT ATCTATGAGT TATCATCTTA GCTGTGTTAA AAATGAATTT TTACTATGGC
                                                                              3660
```

```
AGATATGGTA TGGATCGTAA AATTTTAAGC ACTAAAAATT TTTTCATAAC CTTTCATAAT 3720
       AAAGTTTAAT AATAGGTTTA TTAACTGAAT TTCATTAGTT TTTTAAAAGT GTTTTTGGTT 3780
        TGTGTATATA TACATATACA AATACAACAT TTACAATAAA TAAAATACTT GAAATTCTCA
                                                                               3840
        AAAAA AAAAAAAAA AAAAAAAAA
 5
        Seq ID NO: 633 Protein sequence
        Protein Accession #: NP_003807.1
                                           31
                                                       41
                                                                  51
10
       MGSGARPPSG TLRVRWLLLL GLVGPVLGAA RPGFQQTSHL SSYEIITPWR LTRERREAPR
                                                                                 60
       PYSKQVSYVI QAEGKEHIIH LERNKDLLPE DFVVYTYNKE GTLITDHPNI QNHCHYRGYV
                                                                                120
       EGVHNSSIAL SDCFGLRGLL HLENASYGIE PLQNSSHFEH IIYRMDDVYK EPLKCGVSNK
                                                                                180
       DIEKETAKDE EEEPPSMTQL LRRRRAVLPQ TRYVELFIVV DKERYDMMGR NQTAVREEMI
LLANYLDSMY IMLNIRIVLV GLEIWTNGNL INIVGGAGDV LGNFVQWREK FLITRRRHDS
                                                                                240
15
                                                                                300
       AQLVLKKGFG GTAGMAFVGT VCSRSHAGGI NVFGQITVET FASIVAHELG HNLGMNHDDG
                                                                                360
       RDCSCGAKSC IMNSGASGSR NFSSCSAEDF EKLTLNKGGN CLLNIPKPDE AYSAPSCGNK
       LVDAGEECDC GTPKECELDP CCEGSTCKLK SFAECAYGDC CKDCRFLPGG TLCRGKTSEC
       DVPEYCNGSS QFCQPDVFIQ NGYPCQNNKA YCYNGMCQYY DAQCQVIFGS KAKAAPKDCF
20
       IEVNSKGDRF GNCGPSGNEY KKCATGNALC GKLQCENVQE IPVFGIVPAI IQTPSRGTKC
                                                                                600
       WGVDFQLGSD VPDPGMVNEG TKCGAGKICR NFQCVDASVL NYDCDVQKKC HGHGVCNSNK
                                                                                660
       NCHCENGWAP PNCETKGYGG SVDSGPTYNE MNTALRDGLL VFFFLIVPLI VCAIFIFIKR
                                                                                720
       DQLWRSYFRK KRSQTYESDG KNQANPSRQP GSVPRHVSPV TPPREVPIYA NRFAVPTYAA
        KOPOOFPSRP PPPOPKVSSO GNLIPARPAP APPLYSSLT
25
       Seq ID NO: 634 DNA sequence
       Nucleic Acid Accession #: NM_002091.1
       Coding sequence: 56..503
30
                                                                  51
                                                       41
                                           31
       AGTCTCTGCT CTTCCCAGCC TCTCCGGCGC GCTCCAAGGG CTTCCCGTCG GGACCATGCG
                                                                                 60
       CGGCAGTGAG CTCCCGCTGG TCCTGCTGGC GCTGGTCCTC TGCCTAGCGC CCCGGGGGGCG
                                                                                120
       AGCGGTCCCG CTGCCTGCGG GCGGAGGGAC CGTGCTGACC AAGATGTACC CGCGCGGCAA
                                                                                180
       CCACTGGGG GTGGGGCACT TAATGGGGAA AAAGAGCACA GGGGAGTCTT CTTCTGTTTC
TGAGAGAGGG AGCCTGAAGC AGCAGCTGAG AGAGTACATC AGGTGGGAAG AAGCTGCAAG
35
                                                                                240
                                                                                300
       GAATTTGCTG GGTCTCATAG AAGCAAAGGA GAACAGAAAC CACCAGCCAC CTCAACCCAA
                                                                                360
       GGCCTTGGGC AATCAGCAGC CTTCGTGGGA TTCAGAGGAT AGCAGCAACT TCAAAGATGT
AGGTTCAAAA GGCAAAGTTG GTAGACTCTC TGCTCCAGGT TCTCAACGTG AAGGAAGGAA
                                                                                420
                                                                                480
40
       CCCCCAGCTG AACCAGCAAT GATAATGATG GCCTCTCTCA AAAGAGAAAA ACAAAACCCC
                                                                                540
       TAAGAGACTG AGTTCTGCAA GCATCAGTTC TACGGATCAT CAACAAGATT TCCTTGTGCA
                                                                                600
       AAATATTTGA CTATTCTGTA TCTTTCATCC TTGACTAAAT TCGTGATTTT CAAGCAGCAT
                                                                                660
       CTTCTGGTTT AAACTTGTTT GCTGTGAACA ATTGTCGAAA AGAGTCTTCC AATTAATGCT
                                                                                720
       TTTTTATATC TAGGCTACCT GTTGGTTAGA TTCAAGGCCC CGAGCTGTTA CCATTCACAA
45
        TAAAAGCTTA AACACAT
       Seq ID NO: 635 Protein sequence
       Protein Accession #: NP_002082.1
50
                                                                  51
       MRGSELPLVL LALVLCLAPR GRAVPLPAGG GTVLTKMYPR GNHWAVGHLM GKKSTGESSS
                                                                                 60
       VSERGSLKQQ LREYIRWEEA ARNLLGLIEA KENRNHQPPQ PKALGNQQPS WDSEDSSNFK
                                                                                120
       DVGSKGKVGR LSAPGSQREG RNPQLNQQ
55
       Seg ID NO: 636 DNA seguence
       Nucleic Acid Accession #: NM_016522.1
       Coding sequence: 265..1299
60
                                                                  51
                                           31
                                                       41
       GCGGAAGCAG CGAGGAGGGA GCCCCCTTTG GCCGTCCTCC GTGGAACCGG TTTTCCGAGG
                                                                                 60
                                                                                120
       CTGGCAAAAG CCGAGGCTGG ATTTGGGGGA GGAATATTAG ACTCGGAGGA GTCTGCGCGC
       TTTTCTCCTC CCCGCGCCTC CCGGTCGCCG CGGGTTCACC GCTCAGTCCC CGCGCTCGCT
                                                                                180
65
       CCGCACCCCA CCCACTTCCT GTGCTCGCCC GGGGGGGCGTG TGCCGTGCGG CTGCCGGAGT
                                                                                240
        TCGGGGAAGT TGTGGCTGTC GAGAATGGGG GTCTGTGGGT ACCTGTTCCT GCCCTGGAAG
                                                                                300
       TGCCTCGTGG TCGTGTCTCT CAGGCTGCTG TTCCTTGTAC CCACAGGAGT GCCCGTGCGC
                                                                                360
       AGCGGAGATG CCACCTTCCC CAAAGCTATG GACAACGTGA CGGTCCGGCA GGGGGAGAGC
                                                                                420
       GCCACCCTCA GGTGCACTAT TGACAACCGG GTCACCCGGG TGGCCTGGCT AAACCGCAGC
                                                                                480
70
       ACCATCCTCT ATGCTGGGAA TGACAAGTGG TGCCTGGATC CTCGCGTGGT CCTTCTGAGC
                                                                                540
       AACACCCAAA CGCAGTACAG CATCGAGATC CAGAACGTGG ATGTGTATGA CGAGGGCCCT
                                                                                600
       TACACCTGCT CGGTGCAGAC AGACAACCAC CCAAAGACCT CTAGGGTCCA CCTCATTGTG
                                                                                660
       CAAGTATCTC CCAAAATTGT AGAGATTTCT TCAGATATCT CCATTAATGA AGGGAACAAT
                                                                                720
       ATTAGCCTCA CCTGCATAGC AACTGGTAGA CCAGAGCCTA CGGTTACTTG GAGACACATC
                                                                                780
75
       TCTCCCAAAG CGGTTGGCTT TGTGAGTGAA GACGAATACT TGGAAATTCA GGGCATCACC
                                                                                840
       CGGGAACAGT CAGGGGACTA CGAGTGCAGT GCCTCCAATG ACGTGGCCGC GCCCGTGGTA
                                                                                900
       CGGAGAGTAA AGGTCACCGT GAACTATCCA CCATACATTT CAGAAGCCAA GGGTACAGGT
GTCCCCGTGG GACAAAAGGG GACACTGCAG TGTGAAGCCT CAGCAGTCCC CTCAGCAGAA
                                                                                960
       TTCCAGTGGT ACAAGGATGA CAAAAGACTG ATTGAAGGAA AGAAAGGGGT GAAAGTGGAA
80
       AACAGACCTT TCCTCTCAAA ACTCATCTTC TTCAATGTCT CTGAACATGA CTATGGGAAC
       TACACTTGCG TGGCCTCCAA CAAGCTGGGC CACACCAATG CCAGCATCAT GCTATTTGGT
                                                                                1200
       CCAGGCGCCG TCAGCGAGGT GAGCAACGGC ACGTCGAGGA GGGCAGGCTG CGTCTGGCTG
                                                                                1260
       CTGCCTCTTC TGGTCTTGCA CCTGCTTCTC AAATTTTGAT GTGAGTGCCA CTTCCCCACC
                                                                               1320
       CGGGAAAGGC TGCCGCCACC ACCACCACCA ACACAACAGC AATGGCAACA CCGACAGCAA
                                                                                1380
85
        CCAATCAGAT ATATACAAAT GAAATTAGAA GAAACACAGC CTCATGGGAC AGAAATTTGA
                                                                               1440
                                                                               1500
        GGGAGGGGAA CAAAGAATAC TTTGGGGGGA AAAGAGTTTT AAAAAAGAAA TTGAAAATTG
        CCTTGCAGAT ATTTAGGTAC AATGGAGTTT TCTTTTCCCA AACGGGAAGA ACACAGCACA
                                                                               1560
```

```
CCCGGCTTGG ACCCACTGCA AGCTGCATCG TGCAACCTCT TTGGTGCCAG TGTGGGCAAG
                                                                             1620
       GGCTCAGCCT CTCTGCCCAC AGACTGCCCC CACGTGGAAC ATTCTGGAGC TGGCCATCCC
                                                                             1680
       ARATTCARTC AGTCCATAGA GACGAACAGA ATGAGACCTT CCGGCCCAAG CGTGGCGCTT CCGGCCCAAG CGTGGCGCTG CGGGCACTTT GGTAGACTGT GCCACCACGG CGTGTGTTGT
       GAAACGTGAA ATAAAAAGAG CAAAAAAAAA AAAAAAAAA
       Seq ID NO: 637 Protein sequence
       Protein Accession #: NP_057606.1
10
       MGVCGYLFLP WKCLVVVSLR LLFLVPTGVP VRSGDATFPK AMDNVTVRQG ESATLRCTID
                                                                               60
       NRVTRVAWLN RSTILYAGND KWCLDPRVVL LSNTQTQYSI EIQNVDVYDE GPYTCSVQTD
                                                                              120
       NHPKTSRVHL IVQVSPKIVE ISSDISINEG NNISLTCIAT GRPEPTVTWR HISPKAVGFV
                                                                              180
15
       SEDEYLEIQG ITREQSGDYE CSASNDVAAP VVRRVKVTVN YPPYISEAKG TGVPVGQKGT
                                                                              240
       LQCEASAVPS AEFQWYKDDK RLIEGKKGVK VENRPFLSKL IFFNVSEHDY GNYTCVASNK
                                                                              300
       LGHTNASIML FGPGAVSEVS NGTSRRAGCV WLLPLLVLHL LLKP
       Seq ID NO: 638 DNA sequence
20
       Nucleic Acid Accession #: NM_012261.1
       Coding sequence: 203..1045
                                                                51
                                         31
25
       GATTTGCTCT GCCAGCAGCT GTCGGTGCCG CGCTCGACAC CGAGTCCTAG CTAGGCGCTC
                                                                               60
       ACAGAATACG CGCTCCCTCC CTCCCCCTTC TCTGTCCCCC GCCTCTCGCT CACCCCGGCC
                                                                              120
       CACTCCAGCG GCGACTTTGA GGGATTCCCT CTCTGGCGGC CTCTGCAGCA GCACAGCCGG
                                                                              180
       CCTCATTCGG GGCACTGCGA GTATGGATCT CCAAGGAAGA GGGGTCCCCA GCATCGACAG
                                                                              240
       ACTTCGAGTT CTCCTGATGT TGTTCCATAC AATGGCTCAA ATCATGGCAG AACAAGAAGT
                                                                              300
30
       GGAAAATCTC TCAGGCCTTT CCACTAACCC TGAAAAAGAT ATATTTGTGG TGCGGGAAAA
                                                                              360
       TGGGACGACG TGTCTCATGG CAGAGTTTGC AGCCAAATTT ATTGTACCTT ATGATGTGTG
       GGCCAGCAAC TACGTAGATC TGATCACAGA ACAGGCCGAT ATCGCATTGA CCCGGGGAGC
                                                                              480
       TGAGGTGAAG GGCCGCTGTG GCCACAGCCA GTCGGAGCTG CAAGTGTTCT GGGTGGATCG
                                                                              540
       CGCATATGCA CTCAAAATGC TCTTTGTAAA GGAAAGCCAC AACATGTCCA AGGGACCTGA
                                                                              600
35
       GGCGACTTGG AGGCTGAGCA AAGTGCAGTT TGTCTACGAC TCCTCGGAGA AAACCCACTT
                                                                              660
       CAAAGACGCA GTCAGTGCTG GGAAGCACAC AGCCAACTCG CACCACCTCT CTGCCTTGGT
                                                                              720
       CACCCCCCT GGGAAGTCCT ATGAGTGTCA AGCTCAACAA ACCATTTCAC TGGCCTCTAG
                                                                              780
       TGATCCGCAG AAGACGGTCA CCATGATCCT GTCTGCGGTC CACATCCAAC CTTTTGACAT
                                                                              840
       TATCTCAGAT TTTGTCTTCA GTGAAGAGCA TAAATGCCCA GTGGATGAGC GGGAGCAACT
                                                                              900
40
       GGAAGAAACC TTGCCCCTGA TTTTGGGGCT CATCTTGGGC CTCGTCATCA TGGTAACACT
                                                                              960
       CGCGATTTAC CACGTCCACC ACAAAATGAC TGCCAACCAG GTGCAGATCC CTCGGGACAG
                                                                            1020
       ATCCCAGTAT AAGCACATGG GCTAGAGGCC GTTAGGCAGG CACCCCCTAT TCCTGCTCCC
                                                                            1080
       CCAACTGGAT CAGGTAGAAC AACAAAAGCA CTTTTCCATC TTGTACACGA GATACACCAA
                                                                            1140
                                                                            1200
       CATAGCTACA ATCAAACAGG CCTGGGTATC TGAGGCTTGC TTGGCTTGTG TCCATGCTTA
45
       AACCCACGGA AGGGGGAGAC TCTTTCGGAT TTGTAGGGTG AAATGGCAAT TATTCTCTCC
                                                                            1260
       1320
       TGACTCTCCA AAGAGCAATA AATGCCACTT GGAGCTGTAT CTGGCCCCAA AGTTTAGGGA
TTGAAAACAT GCTTCTTTGA GGAGGAAACC CCTTTAGGTT CAGAAGAATA TGGGGTGCTT
                                                                            1380
                                                                            1440
       TGCTCCCTTG GACACAGCTG GCTTATCCTA TACAGTTGTC AATGCACACA GAATACAACC TCATGCTCCC TGCAGCAAGA CCCCTGAAAG TGATTCATGC TTCTGGCTGG CATTCTGCAT
                                                                            1500
50
                                                                            1560
       GTTTAGTGAT TGTCTTGGGA ATGTTTCACT GCTACCCGCA TCCAGCGACT GCAGCACCAG
                                                                            1620
       AAAACGACTA ATGTAACTAT GCAGAGTTGT TTGGACTTCT TCCTGTGCCA GGTCCAAGTC
                                                                            1680
       GGGGGACCTG AAGAATCAAT CTGTGTGAGT CTGTTTTTCA AAATGAAATA AAACACACTA
       TTCTCTGGC
55
       Seg ID NO: 639 Protein sequence
       Protein Accession #: NP_036393.1
                                         31
60
       MDLQGRGVPS IDRLRVLLML FHTMAQIMAE QEVENLSGLS TNPEKDIFVV RENGTTCLMA
                                                                               60
       EFAAKFIVPY DVWASNYVDL ITEQADIALT RGAEVKGRCG HSQSELQVFW VDRAYALKML
                                                                             120
       FVKESHNMSK GPEATWRLSK VQFVYDSSEK THFKDAVSAG KHTANSHHLS ALVTPAGKSY
                                                                              180
       ECQAQQTISL ASSDPQKTVT MILSAVHIQP FDIISDFVFS EEHKCPVDER EQLEETLPLI
                                                                              240
65
       LGLILGLVIM VTLAIYHVHH KMTANQVQIP RDRSQYKHMG
       Seq ID NO: 640 DNA sequence
       Nucleic Acid Accession #: NM_002993.1
       Coding sequence: 64..408
70
                                                                51
                                         31
       GGCACGAGCC AGTCTCCGCG CCTCCACCCA GCTCAGGAAC CCGCGAACCC TCTCTTGACC
       ACTATGAGCC TCCCGTCCAG CCGCGCGCC CGTGTCCCGG GTCCTTCGGG CTCCTTGTGC
                                                                              120
75
       GCGCTGCTCG CGCTGCTGCT CCTGCTGACG CCGCCGGGGC CCCTCGCCAG CGCTGGTCCT
       GTCTCTGCTG TGCTGACAGA GCTGCGTTGC ACTTGTTTAC GCGTTACGCT GAGAGTAAAC
                                                                              240
       CCCAAAACGA TTGGTAAACT GCAGGTGTTC CCCGCAGGCC CGCAGTGCTC CAAGGTGGAA
                                                                              300
       GTGGTAGCCT CCCTGAAGAA CGGGAAGCAA GTTTGTCTGG ACCCGGAAGC CCCTTTTCTA
                                                                              360
                                                                              420
       AAGAAAGTCA TCCAGAAAAT TTTGGACAGT GGAAACAAGA AAAACTGAGT AACAAAAAAG
80
       ACCATGCATC ATAAAATTGC CCAGTCTTCA GCGGAGCAGT TTTCTGGAGA TCCCTGGACC
                                                                              480
       CAGTAAGAAT AAGAAGGAAG GGTTGGTTTT TTTCCATTTT CTACATGGAT TCCCTACTTT
                                                                              540
       GAAGAGTGTG GGGGAAAGCC TACGCTTCTC CCTGAAGTTT ACAGCTCAGC TAATGAAGTA
                                                                              600
       CTAATATAGT ATTTCCACTA TTTACTGTTA TTTTACCTGA TAAGTTATTG AACCCTTTGG
                                                                              660
       CAATTGACCA TATTGTGAGC AAAGAATCAC TGGTTATTAG TCTTTCAATG AATATTGAAT
                                                                              720
85
       TGAAGATAAC TATTGTATTT CTATCATACA TTCCTTAAAG TCTTACCGAA AAGGCTGTGG
                                                                              780
       ATTTCGTATG GAAATAATGT TTTATTAGTG TGCTGTTGAG GGAGGTATCC TGTTGTTCTT
                                                                              840
       ACTCACTCTT CTCATAAAAT AGGAAATATT TTAGTTCTGT TTTCTTGGGG AATATGTTAC
                                                                              900
```

```
TCTTTACCCT AGGATGCTAT TTAAGTTGTA CTGTATTAGA ACACTGGGTG TGTCATACCG
                                                                             960
       TTATCTGTGC AGAATATATT TCCTTATTCA GAATTTCTAA AAATTTAAGT TCTGTAAGGG
                                                                            1020
                                                                            1080
       CTAATATATT CTCTTCCTAT GGTTTTAGAT GTTTGATGTC TTCTTAGTAT GGCATAATGT
       CATGATTTAC TCATTAAACT TTGATTTTGT ATGCTATTTT TTCACTATAG GATGACTATA
                                                                            1140
       ATTCTGGTCA CTAAATATAC ACTITAGATA GATGAAGAAG CCCAAAAACA GATAAATTCC
TGATTGCTAA TITACATAGA AATGTATTCT CTTGGTTTTT TAAATAAAAG CAAAATTAAC
                                                                            1200
                                                                            1260
       ARTGATCTGT GCTCTGCAAA GTTTTGAAAA TATATTTGAA CAATTTGAAT ATAAATTCAT
                                                                            1320
       CATTTAGTCC TCAAAATATA TACAGCATTG CTAAGATTTT CAGATATCTA TTGTGGATCT
                                                                            1380
       TTTAAAGGTT TIGACCATTT TGTTATGAGG AATTATACAT GTATCACATT CACTATATTA
                                                                            1440
10
       ARATTGCACT TTTATTTTT CCTGTGTGTC ATGTTGGTTT TTGGTACTTG TATTGTCATT
       TGGAGAAACA ATAAAAGATT TCTAAACCAA AAAAAAAAA AAAAAAA
       Seq ID NO: 641 Protein sequence
       Protein Accession #: NP_002984.1
15
       MSLPSSRAAR VPGPSGSLCA LLALLLLLTP PGPLASAGPV SAVLTELRCT CLRVTLRVNP
                                                                              60
       KTIGKLOVFP AGPOCSKVEV VASLKNGKOV CLDPEAPFLK KVIQKILDSG NKKN
20
                  642 DNA sequence
       Nucleic Acid Accession #: NM_013271.1
Coding sequence: 27..809
25
                                                                51
                                         31
       TCCGGAGCCA GGCTCGCTGG GGCAGCATGG CGGGGTCGCC GCTGCTCTGG GGGCCGCGGG
                                                                              60
       CCGGGGGCGT CGGCCTTTTG GTGCTGCTGC TGCTCGGCCT GTTTCGGCCG CCCCCCGCGC
                                                                             120
       TCTGCGCGCG GCCGGTAAAG GAACCCCGCG GCCTAAGCGC AGCGTCTCCG CCCTTGGCTG
                                                                             180
30
       AGACTGGCGC TCCTCGCCGC TTCCGGCGGT CAGTGCCCCG AGGTGAGGCG GCGGGGGCGG
                                                                             240
       TGCAGGAGCT GGCGCGGGCG CTGGCGCATC TGCTGGAGGC CGAACGTCAG GAGCGGGCGC
                                                                             300
       GGGCCGAGGC GCAGGAGGCT GAGGATCAGC AGGCGCGCGT CCTGGCGCAG CTGCTGCGCG
                                                                             360
       TCTGGGGCGC CCCCGCAAC TCTGATCCGG CTCTGGGCCT GGACGACGAC CCCGACGCGC
       CTGCAGCGCA GCTCGCTCGC GCTCTGCTCC GCGCCCGCCT TGACCCTGCC GCCCTAGCAG
                                                                              480
35
       CCCAGCTTGT CCCCGCGCCC GTCCCCGCCG CGGCGCTCCG ACCCCGGCCC CCGGTCTACG
                                                                             540
       ACGACGCCC CGCGGCCCG GATGCTGAGG AGGCAGGCGA CGAGACACCC GACGTGGACC
                                                                             600
       CCGAGCTGTT GAGGTACTTG CTGGGACGGA TTCTTGCGGG AAGCGCGGAC TCCGAGGGGG
                                                                             660
       TGGCAGCCCC GCGCCGCCTC CGCCGTGCCG CCGACCACGA TGTGGGCTCT GAGCTGCCCC
                                                                             720
       CTGAGGGCGT GCTGGGGGCG CTGCTGCGTG TGAAACGCCT AGAGACCCCG GCGCCCCAGG
                                                                             780
40
       TGCCTGCACG CCGCCTCTTG CCACCCTGAG CACTGCCCGG ATCCCGTGCA CCCTGGGACC
                                                                             840
       CAGAAGTGCC CCCGCCATCC CGCCACCAGG ACTTCTCCCC GCCAGCACGT CCAGAGCAAC
                                                                             900
       TTACCCCGGC CAGCCAGCCC TCTCACCCGA GGATCCCTAC CCCCTGGCCC ACAATAACAT
                                                                             960
       GATCTGAGC
45
       Seq ID NO: 643 Protein sequence
       Protein Accession #: NP_037403.1
50
       MAGSPLLWGP RAGGVGLLVL LLLGLFRPPP ALCARPVKEP RGLSAASPPL AETGAPRRFR
                                                                              60
       RSVPRGEAAG AVQELARALA HLLEAERQER ARAEAQEAED QQARVLAQLL RVWGAPRNSD
                                                                             120
       PALGLDDDPD APAAQLARAL LRARLDPAAL AAQLVPAPVP AAALRPRPPV YDDGPAGPDA
       EEAGDETPDV DPELLRYLLG RILAGSADSE GVAAPRRLRR AADHDVGSEL PPEGVLGALL
       RVKRLETPAP QVPARRLLPP
55
       Seq ID NO: 644 DNA sequence
       Nucleic Acid Accession #: NM 002214
       Coding sequence: 681..2990
60
                                                                51
                              21
                                         31
                                                    41.
       CCCAGAGCCG CCTCCCCCTG TTGCTGGCAT CCCGAGCTTC CTCCCTTGCC AGCCAGGACG
                                                                              60
       CTGCCGACTT GTCTTTGCCC GCTGCTCCGC AGACGGGGCT GCAAAGCTGC AACTAATGGT
                                                                             120
       GTTGGCCTCC CTGCCCACCT GTGGAAGCAA CTGCGCTGAT TGATGCGCCA CAGACTTTTT
                                                                             180
65
       TCCCCTCGAC CTCGCCGGCG TACCCTCCCA CAGATCCAGC ATCACCCAGT GAATGTACAT
                                                                             240
       TAGGGTGGTT TCCCCCCCAG CTTCGGGCTT TGTTTGGGTT TGATTGTGTT TGGCTCTTCG
                                                                             300
       CTAAGCTGAT TTATGCAGCA GAAGCCCCAC CGGCTGGAGA GAAACAAAAG CTCTTTTCTT
                                                                             360
       TGTCCCGGAG CAGGCTGCGG AGCCCTTGCA GAGCCCTCTC TCCAGTCGCC GCCGGGCCCT
                                                                             420
       TGGCCGTCGA AGGAGGTGCT TCTCGCGGAG ACCGCGGAC CCGCCGTGCC GAGCCGGGAG
                                                                             480
70
       GGCCGTAGGG GCCCTGAGAT GCCGAGCGGT GCCCGGGCCC GCTTACCTGC ACCGCTTGCT
                                                                             540
       CCGAGCCGCG GGGTCCGCCT GCTAGGCCTG CGGAAAACGT CCTAGCGACA CTCGCCCGCG
                                                                             600
       GGCCCCGAGG TCGCCCGGGA GGCCGAGCCC GCGTCCGGAA GGCAGCCAGG CGGCGGGCGC
                                                                             660
       GGGGCGGCT GTTTTGCATT ATGTGCGGCT CGGCCCTGGC TTTTTTTACC GCTGCATTTG
       TCTGCCTGCA AAACGACCGG CGAGGTCCCG CCTCGTTCCT CTGGGCAGCC TGGGTGTTTT
                                                                             780
75
       CACTTGTTCT TGGACTGGGC CAAGGTGAAG ACAATAGATG TGCATCTTCA AATGCAGCAT
       CCTGTGCCAG GTGCCTTGCG CTGGGTCCAG AATGTGGATG GTGTGTTCAA GAGGATTTCA
                                                                             900
       TTTCAGGTGG ATCAAGAAGT GAACGTTGTG ATATTGTTTC CAATTTAATA AGCAAAGGCT
                                                                             960
       GCTCAGTTGA TTCAATAGAA TACCCATCTG TGCATGTTAT AATACCCACT GAAAATGAAA
                                                                            1020
       TTAATACCCA GGTGACACCA GGAGAAGTGT CTATCCAGCT GCGTCCAGGA GCCGAAGCTA
                                                                            1080
80
       ATTTTATGCT GAAAGTTCAT CCTCTGAAGA AATATCCTGT GGATCTTTAT TATCTTGTTG
                                                                            1140
       ATGTCTCAGC ATCAATGCAC AATAATATAG AAAAATTAAA TTCCGTTGGA AACGATTTAT
                                                                            1200
       CTAGAAAAAT GGCATTTTTC TCCCGTGACT TTCGTCTTGG ATTTGGCTCA TACGTTGATA
                                                                            1260
       AAACAGTTTC ACCATACATT AGCATCCACC CCGAAAGGAT TCATAATCAA TGCAGTGACT
                                                                            1320
       ACAATTTAGA CTGCATGCCT CCCCATGGAT ACATCCATGT GCTGTCTTTG ACAGAGAACA
                                                                            1380
85
       TCACTGAGTT TGAGAAAGCA GTTCATAGAC AGAAGATCTC TGGAAACATA GATACACCAG
                                                                            1440
       AAGGAGGTTT TGACGCCATG CTTCAGGCAG CTGTCTGTGA AAGTCATATC GGATGGCGAA
                                                                            1500
       AAGAGGCTAA AAGATTGCTG CTGGTGATGA CAGATCAGAC GTCTCATCTC GCTCTTGATA
```

```
GCAAATTGGC AGGCATAGTG GTGCCCAATG ACGGAAACTG TCATCTGAAA AACAACGTCT
                                                                               1620
       ACGTCAAATC GACAACCATG GAACACCCCT CACTAGGCCA ACTTTCAGAG AAATTAATAG
                                                                               1680
       ACAACAACAT TAATGTCATC TTTGCAGTTC AAGGAAAACA ATTTCATTGG TATAAGGATC
                                                                               1740
       TTCTACCCCT CTTGCCAGGC ACCATTGCTG GTGAAATAGA ATCAAAGGCT GCAAACCTCA
                                                                               1800
       ATAATTTGGT AGTGGAAGCC TATCAGAAGC TCATTTCAGA AGTGAAAGTT CAGGTGGAAA
                                                                               1860
       ACCAGGTACA AGGCATCTAT TITAACATTA CCGCCATCTG TCCAGATGGG TCCAGAAAGC
                                                                               1920
       CAGGCATGGA AGGATGCAGA AACGTGACGA GCAATGATGA AGTTCTTTTC AATGTAACAG
                                                                               1980
       TTACAATGAA AAAATGTGAT GTCACAGGAG GAAAAAACTA TGCAATAATC AAACCTATTG
                                                                               2040
       GTTTTAATGA AACCGCTAAA ATTCATATAC ACAGAAACTG CAGCTGTCAG TGTGAGGACA
                                                                               2100
       ACAGAGGACC TAAAGGAAAG TGTGTAGATG AAACTTTTCT AGATTCCAAG TGTTTCCAGT
10
                                                                               2160
       GTGATGAGAA TAAATGTCAT TTTGATGAAG ATCAGTTTTC TTCTGAGAGT TGCAAGTCAC
       ACAAGGATCA GCCTGTTTGC AGTGGTCGAG GAGTTTGTGT TTGTGGGAAA TGTTCATGTC
       ACAAAATTAA GCTTGGAAAA GTGTATGGAA AATACTGTGA AAAGGATGAC TTTTCTTGTC
CATATCACCA TGGAAATCTG TGTGCTGGGC ATGGAGAGTG TGAAGCAGGC AGATGCCAAT
                                                                               2340
                                                                               2400
15
       GCTTCAGTGG CTGGGAAGGT GATCGATGCC AGTGCCCTTC AGCAGCAGCC CAGCACTGTG
                                                                               2460
       TCAATTCAAA GGGCCAAGTG TGCAGTGGAA GAGGCACGTG TGTGTGTGGA AGGTGTGAGT
                                                                               2520
       GCACCGATCC CAGGAGCATC GGCCGCTTCT GTGAACACTG CCCCACCTGT TATACAGCCT
                                                                               2580
       GCAAGGAAAA CTGGAATTGT ATGCAATGCC TTCACCCTCA CAATTTGTCT CAGGCTATAC
                                                                               2640
       TTGATCAGTG CAAAACCTCA TGTGCTCTCA TGGAACAACA GCATTATGTC GACCAAACTT
                                                                               2700
20
       CAGAATGITT CTCCAGCCCA AGCTACTTGA GAATATTTTT CATCATTTTC ATAGTTACAT
                                                                               2760
       TCTTGATTGG GTTGCTTAAA GTCCTGATCA TTAGACAGGT GATACTACAA TGGAATAGTA
                                                                               2820
       ATAAAATTAA GTCCTCATCA GATTACAGAG TGTCAGCCTC AAAAAAGGAT AAGTTGATTC
                                                                               2880
       TGCAAAGTGT TTGCACAAGA GCAGTCACCT ACCGACGTGA GAAGCCTGAA GAAATAAAAA
                                                                               2940
       TGGATATCAG CAAATTAAAT GCTCATGAAA CTTTCAGGTG CAACTTCTAA AAAAAGATTT
                                                                               3000
25
       TTAAACACTT AATGGGAAAC TGGAATTGTT AATAATTGCT CCTAAAGATT ATAATTTTAA
                                                                               3060
       AAGTCACAGG AGGAGACAAA TTGCTCACGG TCATGCCAGT TGCTGGTTGT ACACTCGAAC
                                                                               3120
       GAAGACTGAC AAGTATCCTC ATCATGATGT GACTCACATA GCTGCTGACT TTTTCAGAGA
                                                                               3180
       AAAATGTGTC TTACTACTGT TTGAGACTAG TGTCGTTGTA GCACTTTACT GTAATATATA
                                                                               3240
       ACTIATITAG ATCAGCATAG AATGTAGATC CTCTGAAGAG CACTGATTAC ACTITACAGG
                                                                               3300
       TACCTGTTAT CCCTACGCTT CCCAGAGAGA ACAATGCTGT GAGAGAGTTT AGCATTGTGT
30
                                                                               3360
       CACTACAAGG GTACAGTAAT CCCTGCACTG GACATGTGAG GAAAAAAATA ATCTGGCAAG
                                                                               3420
       TATATTCTAA GGTTGCCAAA CACTTCAACA GTTGGTGGTT GAATAGACAA GAACAGCTAG
ATGAATAAAT GATTCGTGTT TCACTCTTTC AAGAGGTGAA CAGATACAAC CTTAATCTTA
                                                                               3480
                                                                               3540
       AAAGATTATT GCTTTTTAAA GTGTGTGTT TTATGCATGT GTGTTTATG TTTGCTATT
TTTGCAAGAT GGATACTAAT TCCAGCATTC TCTCCTCTTT GCCTTTATGT TTTGTTTTCT
                                                                               3600
35
                                                                               3660
       TTTTTACAGG ATAAGTTTAT GTATGTCACA GATGACTGGA TTAATTAAGT GCTAAGTTAC
                                                                               3720
       TACTGCCATA AAAAACTAAT AATACAATGT CACTTTATCA GAATACTAGT TTTAAAAGCT
       GAATGTTAA
40
       Seg ID NO: 645 Protein sequence
       Protein Accession #: NP_002205
                                                                  51
45
       MCGSALAFFT AAFVCLONDR RGPASFLWAA WVFSLVLGLG QGEDNRCASS NAASCARCLA
                                                                                 60
       LGPECGWCVQ EDFISGGSRS ERCDIVSNLI SKGCSVDSIE YPSVHVIIPT ENEINTQVTP
                                                                                120
       GEVSIOLRPG AEANFMLKVH PLKKYPVDLY YLVDVSASMH NNIEKLNSVG NDLSRKMAFF
                                                                                180
       SRDFRLGFGS YVDKTVSPYI SIHPERIHNQ CSDYNLDCMP PHGYIHVLSL TENITEPEKA
                                                                                240
       VHRQKISGNI DTPEGGFDAM LQAAVCESHI GWRKEAKRLL LVMTDQTSHL ALDSKLAGIV
                                                                                300
50
       VPNDGNCHLK NNVYVKSTTM EHPSLGQLSE KLIDNNINVI FAVQGKQFHW YKDLLPLLPG
                                                                                360
       TIAGEIESKA ANLNNLVVEA YQKLISEVKV QVENQVQGIY FNITAICPDG SRKPGMEGCR
NVTSNDEVLF NVTVTMKKCD VTGGKNYAII KPIGFNETAK IHIHRNCSCQ CEDNRGPKGK
                                                                                420
                                                                                480
       CVDETFLDSK CFQCDENKCH FDEDQFSSES CKSHKDQPVC SGRGVCVCGK CSCHKIKLGK
                                                                                540
       VYGKYCEKDD FSCPYHHGNL CAGHGECEAG RCQCFSGWEG DRCQCPSAAA QHCVNSKGQV
                                                                                600
55
       CSGRGTCVCG RCECTDPRSI GRFCEHCPTC YTACKENWNC MQCLHPHNLS QAILDQCKTS
       CALMEQOHYV DOTSECFSSP SYLRIFFIIF IVTFLIGLLK VLIIROVILO WNSNKIKSSS
       DYRVSASKKO KLILQSVCTR AVTYRREKPE EIKMDISKLN AHETFRONF
       Seg ID NO: 646 DNA seguence
60
       Nucleic Acid Accession #: NM 003318.1
       Coding sequence: 1..2574
                                                       41
                                                                  51
65
                                                                                 60
       ATGGAATCCG AGGATTTAAG TGGCAGAGAA TTGACAATTG ATTCCATAAT GAACAAAGTG
       AGAGACATTA AAAATAAGTT TAAAAATGAA GACCTTACTG ATGAACTAAG CTTGAATAAA
                                                                                120
       ATTTCTGCTG ATACTACAGA TAACTCGGGA ACTGTTAACC AAATTATGAT GATGGCAAAC
                                                                                180
       AACCCAGAGG ACTGGTTGAG TTTGTTGCTC AAACTAGAGA AAAACAGTGT TCCGCTAAGT
                                                                                 240
       GATGCTCTTT TAAATAAATT GATTGGTCGT TACAGTCAAG CAATTGAAGC GCTTCCCCCA
                                                                                300
       GATAAATATG GCCAAAATGA GAGTTTTGCT AGAATTCAAG TGAGATTTGC TGAATTAAAA
70
                                                                                 360
       GCTATICARG AGCCAGATGA TGCACGTGAC TACTITCANA TGGCCAGAGC AAACTGCAAA
AAATTTGCTT TTGTTCATAT ATCTTTTGCA CAATTTGAAC TGTCACAAGG TAATGTCAAA
                                                                                 420
                                                                                 480
       AAAAGTAAAC AACTTCTTCA AAAAGCTGTA GAACGTGGAG CAGTACCACT AGAAATGCTG
                                                                                 540
       GAAATTGCCC TGCGGAATTT AAACCTCCAA AAAAAGCAGC TGCTTTCAGA GGAGGAAAAG
       AAGAATTTAT CAGCATCTAC GGTATTAACT GCCCAAGAAT CATTTTCCGG TTCACTTGGG
75
       CATTTACAGA ATAGGAACAA CAGTTGTGAT TCCAGAGGAC AGACTACTAA AGCCAGGTTT
                                                                                 720
       TTATATGGAG AGAACATGCC ACCACAAGAT GCAGAAATAG GTTACCGGAA TTCATTGAGA
                                                                                 780
       CAAACTAACA AAACTAAACA GTCATGCCCA TTTGGAAGAG TCCCAGTTAA CCTTCTAAAT
                                                                                 840
       AGCCCAGATT GTGATGTGAA GACAGATGAT TCAGTTGTAC CTTGTTTTAT GAAAAGACAA
                                                                                 900
80
       ACCTCTAGAT CAGAATGCCG AGATTTGGTT GTGCCTGGAT CTAAACCAAG TGGAAATGAT
                                                                                 960
       TCCTGTGAAT TAAGAAATTT AAAGTCTGTT CAAAATAGTC ATTTCAAGGA ACCTCTGGTG
                                                                               1020
       TCAGATGAAA AGAGTTCTGA ACTTATTATT ACTGATTCAA TAACCCTGAA GAATAAAACG
                                                                               1080
       GAATCAAGTC TTCTAGCTAA ATTAGAAGAA ACTAAAGAGT ATCAAGAACC AGAGGTTCCA
                                                                               1140
       GAGAGTAACC AGAAACAGTG GCAATCTAAG AGAAAGTCAG AGTGTATTAA CCAGAATCCT
                                                                               1200
85
       GCTGCATCTT CAAATCACTG GCAGATTCCG GAGTTAGCCC GAAAAGTTAA TACAGAGCAG
                                                                                1260
       AAACATACCA CTTTTGAGCA ACCTGTCTTT TCAGTTTCAA AACAGTCACC ACCAATATCA
                                                                                1320
        ACATCTAAAT GGTTTGACCC AAAATCTATT TGTAAGACAC CAAGCAGCAA TACCTTGGAT
                                                                               1380
```

```
GATTACATGA GCTGTTTTAG AACTCCAGTT GTAAAGAATG ACTTTCCACC TGCTTGTCAG 1440
       TTGTCAACAC CTTATGGCCA ACCTGCCTGT TTCCAGCAGC AACAGCATCA AATACTTGCC
                                                                             1500
                                                                             1560
       ACTOCACTIC AAAATTTACA GGTTTTAGCA TCTTCTTCAG CAAATGAATG CATTTCGGTT
                                                                             1620
       AAAGGAAGAA TTTATTCCAT TTTAAAGCAG ATAGGAAGTG GAGGTTCAAG CAAGGTATTT
       CAGGTGTTAA ATGAAAAGAA ACAGATATAT GCTATAAAAT ATGTGAACTT AGAAGAAGCA
                                                                             1680
       GATAACCAAA CTCTTGATAG TTACCGGAAC GAAATAGCTT ATTTGAATAA ACTACAACAA
                                                                             1740
       CACAGTGATA AGATCATCCG ACTITATGAT TATGAAATCA CGGACCAGTA CATCTACATG
                                                                             1800
       GTAATGGAGT GTGGAAATAT TGATCTTAAT AGTTGGCTTA AAAAGAAAAA ATCCATTGAT
                                                                             1860
       CCATGGGAAC GCAAGAGTTA CTGGAAAAAT ATGTTAGAGG CAGTTCACAC AATCCATCAA
                                                                             1920
10
       CATGGCATTG TTCACAGTGA TCTTAAACCA GCTAACTTTC TGATAGTTGA TGGAATGCTA
                                                                             1980
       AAGCTAATTG ATTTTGGGAT TGCAAACCAA ATGCAACCAG ATACAACAAG TGTTGTTAAA
       GATTCTCAGG TTGGCACAGT TAATTATATG CCACCAGAAG CAATCAAAGA TATGTCTTCC
       TCCAGAGAGA ATGGGAAATC TAAGTCAAAG ATAAGCCCCA AAAGTGATGT TTGGTCCTTA
                                                                             2160
       GGATGTATTT TGTACTATAT GACTTACGGG AAAACACCAT TTCAGCAGAT AATTAATCAG
                                                                             2220
15
       ATTTCTAAAT TACATGCCAT AATTGATCCT AATCATGAAA TTGAATTTCC CGATATTCCA
                                                                             2280
       GAGAAAGATC TTCAAGATGT GTTAAAGTGT TGTTTAAAAA GGGACCCAAA ACAGAGGATA
                                                                             2340
       TCCATTCCTG AGCTCCTGGC TCATCCCTAT GTTCAAATTC AAACTCATCC AGTTAACCAA
                                                                             2400
       ATGGCCAAGG GAACCACTGA AGAAATGAAA TATGTTCTGG GCCAACTTGT TGGTCTGAAT
                                                                             2460
       TCTCCTAACT CCATTTGAA AGCTGCTAAA ACTTTATATG AACACTATAG TGGTGGTGAA
                                                                             2520
20
       AGTCATAATT CTTCATCCTC CAAGACTTTT GAAAAAAAAA GGGGAAAAAA ATGA
       Seq ID NO: 647 Protein sequence
       Protein Accession #: NP_003309.1
25
                                                                 51
                                                     41
       MESEDLSGRE LTIDSIMNKV RDIKNKFKNE DLTDELSLNK ISADTTDNSG TVNQIMMMAN
                                                                               60
       NPEDWLSLLL KLEKNSVPLS DALLNKLIGR YSQAIEALPP DKYGQNESFA RIQVRFAELK
                                                                              120
       AIQEPDDARD YFQMARANCK KFAFVHISPA QFELSQGNVK KSKQLLQKAV ERGAVPLEML
                                                                              180
30
       EIALRNLNLQ KKQLLSEEEK KNLSASTVLT AQESPSGSLG HLQNRNNSCD SRGQTTKARF
                                                                              240
       LYGENMPPQD AEIGYRNSLR QTNKTKQSCP FGRVPVNLLN SPDCDVKTDD SVVPCFMKRO
                                                                              300
       TSRSECRDLV VPGSKPSGND SCELRNLKSV QNSHFKEPLV SDEKSSELII TDSITLKNKT
                                                                              360
       ESSLLAKLEE TKEYQEPEVP ESNQKQWQSK RKSECINQNP AASSNHWQIP ELARKVNTEQ
                                                                              420
       KHTTFEQPVF SVSKQSPPIS TSKWFDPKSI CKTPSSNTLD DYMSCFRTPV VKNDFPPACQ
LSTPYGQPAC FQQQQHQILA TPLQNLQVLA SSSANECISV KGRIYSILKQ IGSGGSSKVF
                                                                              480
35
                                                                              540
       OVLNEKKOIY AIKYVNLEEA DNOTLDSYRN EIAYLNKLQQ HSDKIIRLYD YEITDQYIYM
                                                                              600
       VMECGNIDLN SWLKKKKSID PWERKSYWKN MLEAVHTIHQ HGIVHSDLKP ANFLIVDGML
                                                                              660
       KLIDFGIANQ MQPDTTSVVK DSQVGTVNYM PPEAIKDMSS SRENGKSKSK ISPKSDVWSL
                                                                              720
       GCILYYMTYG KTPFQQIINQ ISKLHAIIDP NHEIEFPDIP EKDLQDVLKC CLKRDPKQRI
                                                                              780
40
       SIPELLAHPY VQIQTHPVNQ MAKGTTEEMK YVLGQLVGLN SPNSILKAAK TLYEHYSGGE
                                                                              840
       SHNSSSSKTF EKKRGKK
       Seq ID NO: 648 DNA sequence
       Nucleic Acid Accession #: NM_015507
45
       Coding sequence: 241..1902
                                          31
                                                     41
                                                                51
       CCGCAGAGGA GCCTCGGCCA GGCTAGCCAG GGCGCCCCCA GCCCCTCCCC AGGCCGCGAG
                                                                               60
50
       CONCETTEC GUETTECTE GUETCUCTU CUAGACTECA GEGACACIAC CUEGTAACTE
                                                                              120
       CGACTGGACC GGAGGACCCG AGCGGCTGAG GAGACAAGGAG GCGCGGCTT AGCTGCTACG
GGGTCCGGCC GGCGCCCTCC CGAGGGGGGC TCAGGAGGAG GAAGGAGGAC CCGTGCGAGA
                                                                              180
                                                                              240
       ATGCCTCTGC CCTGGAGCCT TGCGCTCCCG CTGCTGCTCT CCTGGGTGGC AGGTGGTTTC
                                                                              300
       GGGAACGCGG CCAGTGCAAG GCATCACGGG TTGTTAGCAT CGGCACGTCA GCCTGGGGTC
                                                                              360
55
       TGTCACTATG GAACTAAACT GGCCTGCTGC TACGGCTGGA GAAGAAACAG CAAGGGAGTC
                                                                              420
       TGTGAAGCTA CATGCGAACC TGGATGTAAG TTTGGTGAGT GCGTGGGACC AAACAAATGC
                                                                              480
       AGATGCTTTC CAGGATACAC CGGGAAAACC TGCAGTCAAG ATGTGAATGA GTGTGGAATG
       AAACCCCGGC CATGCCAACA CAGATGTGTG AATACACACG GAAGCTACAA GTGCTTTTGC
       CTCAGTGGCC ACATGCTCAT GCCAGATGCT ACGTGTGTGA ACTCTAGGAC ATGTGCCATG
60
       ATAAACTGTC AGTACAGCTG TGAAGACACA GAAGAAGGGC CACAGTGCCT GTGTCCATCC
                                                                              720
       TCAGGACTCC GCCTGGCCCC AAATGGAAGA GACTGTCTAG ATATTGATGA ATGTGCCTCT
                                                                              780
       GGTAAAGTCA TCTGTCCCTA CAATCGAAGA TGTGTGAACA CATTTGGAAG CTACTACTGC
                                                                              840
       AAATGTCACA TTGGTTTCGA ACTGCAATAT ATCAGTGGAC GATATGACTG TATAGATATA
                                                                              900
       AATGAATGTA CTATGGATAG CCATACGTGC AGCCACCATG CCAATTGCTT CAATACCCAA
                                                                              960
65
       GGGTCCTTCA AGTGTAAATG CAAGCAGGGA TATAAAGGCA ATGGACTTCG GTGTTCTGCT
                                                                             1020
       ATCCCTGAAA ATTCTGTGAA GGAAGTCCTC AGAGCACCTG GTACCATCAA AGACAGAATC
                                                                             1080
       AAGAAGTTGC TTGCTCACAA AAACAGCATG AAAAAGAAGG CAAAAATTAA AAATGTTACC
                                                                             1140
       CCAGAACCCA CCAGGACTCC TACCCCTAAG GTGAACTTGC AGCCCTTCAA CTATGAAGAG
                                                                             1200
       ATAGTTTCCA GAGGCGGGAA CTCTCATGGA GGTAAAAAAG GGAATGAAGA GAAAATGAAA
                                                                             1260
70
       GAGGGGCTTG AGGATGAGAA AAGAGAAGAG AAAGCCCTGA AGAATGACAT AGAGGAGCGA
                                                                             1320
       AGCCTGCGAG GAGATGTGTT TTTCCCTAAG GTGAATGAAG CAGGTGAATT CGGCCTGATT
                                                                             1380
       CTGGTCCAAA GGAAAGCGCT AACTTCCAAA CTGGAACATA AAGATTTAAA TATCTCGGTT
                                                                             1440
       GACTGCAGCT TCAATCATGG GATCTGTGAC TGGAAACAGG ATAGAGAAGA TGATTTTGAC
                                                                             1500
       TGGAATCCTG CTGATCGAGA TAATGCTATT GGCTTCTATA TGGCAGTTCC GGCCTTGGCA GGTCACAAGA AAGACATTGG CCGATTGAAA CTTCTCCTAC CTGACCTGCA ACCCCAAAGC
                                                                             1560
75
                                                                             1620
       AACTTCTGTT TGCTCTTTGA TTACCGGCTG GCCGGAGACA AAGTCGGGAA ACTTCGAGTG
       TTTGTGAAAA ACAGTAACAA TGCCCTGGCA TGGGAGAAGA CCACGAGTGA GGATGAAAAG
       TGGAAGACAG GGAAAATTCA GTTGTATCAA GGAACTGATG CTACCAAAAG CATCATTTTT
       GAAGCAGAAC GTGGCAAGGG CAAAACCGGC GAAATCGCAG TGGATGGCGT CTTGCTTGTT
                                                                             1860
80
       TCAGGCTTAT GTCCAGATAG CCTTTTATCT GTGGATGACT GAATGTTACT ATCTTTATAT
                                                                             1920
       TTGACTTTGT ATGTCAGTTC CCTGGTTTTT TTGATATTGC ATCATAGGAC CTCTGGCATT
                                                                             1980
       TTAGAATTAC TAGCTGAAAA ATTGTAATGT ACCAACAGAA ATATTATTGT AAGATGCCTT
                                                                             2040
       TCTTGTATAA GATATGCCAA TATTTGCTTT AAATATCATA TCACTGTATC TTCTCAGTCA
                                                                             2100
       TTTCTGAATC TTTCCACATT ATATTATAAA ATATGGAAAT GTCAGTTTAT CTCCCCTCCT
                                                                             2160
85
       CAGTATATCT GATTTGTATA AGTAAGTTGA TGAGCTTCTC TCTACAACAT TTCTAGAAAA
                                                                             2220
       TAGAAAAAA AGCACAGAGA AATGTTTAAC TGTTTGACTC TTATGATACT TCTTGGAAAC
                                                                             2280
       TATGACATCA AAGATAGACT TTTGCCTAAG TGGCTTAGCT GGGTCTTTCA TAGCCAAACT 2340
```

Seg ID NO: 649 Protein sequence

```
5
       Protein Accession #: NP_056322
                                         31
       MPLPWSLALP LLLSWVAGGF GNAASARHHG LLASAROPGV CHYGTKLACC YGWRRNSKGV
                                                                              60
10
       CEATCEPGCK FGECVGPNKC RCFPGYTGKT CSQDVNECGM KPRPCQHRCV NTHGSYKCFC
                                                                             120
       LSGHMLMPDA TCVNSRTCAM INCOYSCEDT BEGPOCLCPS SGLRLAPNGR DCLDIDECAS
                                                                             180
       GKVICPYNRR CVNTFGSYYC KCHIGFELOY ISGRYDCIDI NECTMDSHTC SHHANCFNTQ
       GSFKCKCKQG YKGNGLRCSA IPENSVKEVL RAPGTIKDRI KKLLAHKNSM KKKAKIKNVT
                                                                             300
       PEPTRTPTPK VNLOPFNYEE IVSRGGNSHG GKKGNEEKMK EGLEDEKREE KALKNDIEER
                                                                             360
15
       SLRGDVFFPK VNEAGEFGLI LVQRKALTSK LEHKDLNISV DCSFNHGICD WKQDREDDFD
                                                                             420
       WNPADRDNAI GFYMAVPALA GHKKDIGRLK LLLPDLQPQS NFCLLFDYRL AGDKVGKLRV
                                                                             480
       FVKNSNNALA WEKTTSEDEK WKTGKIQLYQ GTDATKSIIF EAERGKGKTG EIAVDGVLLV
                                                                             540
       SGLCPDSLLS VDD
20
       Seq ID NO: 650 DNA sequence
       Nucleic Acid Accession #: NM_003506.1
       Coding sequence: 259..2379
25
       GCAGCTCCAG TCCCGGACGC AACCCCGGAG CCGTCTCAGG TCCCTGGGGG GAACGGTGGG
                                                                             60
       TTAGACGGGG ACGGGAAGGG ACAGCGGCCT TCGACCGCCC CCCGAGTAAT TGACCCAGGA
                                                                             120
       CTCATTTCA GGAAAGCCTG AAAATGAGTA AAATAGTGAA ATGAGGAATT TGAACATTTT
                                                                            180
       ATCTTTGGAT GGGGATCTTC TGAGGATGCA AAGAGTGATT CATCCAAGCC ATGTGGTAAA
                                                                            240
30
       ATCAGGAATT TGAAGAAAAT GGAGATGTTT ACATTTTTGT TGACGTGTAT TTTTCTACCC
                                                                            300
       CTCCTAAGAG GGCACAGTCT CTTCACCTGT GAACCAATTA CTGTTCCCAG ATGTATGAAA
                                                                            360
       ATGGCCTACA ACATGACGTT TTTCCCTAAT CTGATGGGTC ATTATGACCA GAGTATTGCC
                                                                             420
       GCGGTGGAAA TGGAGCATTT TCTTCCTCTC GCAAATCTGG AATGTTCACC AAACATTGAA
                                                                             480
       ACTITICATOT GCAAAGCATT TOTACCAACC TGCATAGAAC AAATTCATGT GGTTCCACCT
TGTCGTAAAC TTTGTGAGAA AGTATATTCT GATTGCAAAA AATTAATTGA CACTTTTGGG
                                                                            540
35
                                                                             600
       ATCCGATGGC CTGAGGAGCT TGAATGTGAC AGATTACAAT ACTGTGATGA GACTGTTCCT
                                                                             660
       GTAACTTTTG ATCCACACA AGAATTTCTT GGTCCTCAGA AGAAAACAGA ACAAGTCCAA
       AGAGACATTG GATTTTGGTG TCCAAGGCAT CTTAAGACTT CTGGGGGACA AGGATATAAG
       TTTCTGGGAA TTGACCAGTG TGCGCCTCCA TGCCCCAACA TGTATTTTAA AAGTGATGAG
40
       CTAGAGTTTG CAAAAAGTTT TATTGGAACA GTTTCAATAT TTTGTCTTTG TGCAACTCTG
                                                                             900
       TTCACATTCC TTACTTTTT AATTGATGTT AGAAGATTCA GATACCCAGA GAGACCAATT
                                                                             960
       ATATATTACT CTGTCTGTTA CAGCATTGTA TCTCTTATGT ACTTCATTGG ATTTTTGCTG
                                                                           1020
       GGCGATAGCA CAGCCTGCAA TAAGGCAGAT GAGAAGCTAG AACTTGGTGA CACTGTTGTC
                                                                           1080
       CTAGGCTCTC AAAATAAGGC TTGCACCGTT TTGTTCATGC TTTTGTATTT TTTCACAATG
                                                                           1140
45
       GCTGGCACTG TGTGGTGGGT GATTCTTACC ATTACTTGGT TCTTAGCTGC AGGAAGAAAA
                                                                           1200
       TGGAGTTGTG AAGCCATCGA GCAAAAAGCA GTGTGGTTTC ATGCTGTTGC ATGGGGAACA
                                                                           1260
       CCAGGTTTCC TGACTGTTAT GCTTCTTGCT CTGAACAAAG TTGAAGGAGA CAACATTAGT
                                                                           1320
       GGAGTTTGCT TTGTTGGCCT TTATGACCTG GATGCTTCTC GCTACTTTGT ACTCTTGCCA
                                                                           1380
       CTGTGCCTTT GTGTGTTTGT TGGGCTCTCT CTTCTTTTAG CTGGCATTAT TTCCTTAAAT
                                                                           1440
50
       CATGTTCGAC AAGTCATACA ACATGATGGC CGGAACCAAG AAAAACTAAA GAAATTTATG
                                                                           1500
       ATTCGAATTG GAGTCTTCAG CGGCTTGTAT CTTGTGCCAT TAGTGACACT TCTCGGATGT
                                                                           1560
       TACGTCTATG AGCAAGTGAA CAGGATTACC TGGGAGATAA CTTGGGTCTC TGATCATTGT
                                                                           1620
       CGTCAGTACC ATATCCCATG TCCTTATCAG GCAAAAGCAA AAGCTCGACC AGAATTGGCT
                                                                           1680
       TTATTTATGA TAAAATACCT GATGACATTA ATTGTTGGCA TCTCTGCTGT CTTCTGGGTT
                                                                           1740
55
       GGAAGCAAAA AGACATGCAC AGAATGGGCT GGGTTTTTTA AACGAAATCG CAAGAGAGAT
                                                                           1800
       CCAATCAGTG AAAGTCGAAG AGTACTACAG GAATCATGTG AGTTTTTCTT AAAGCACAAT
                                                                           1860
       TCTAAAGTTA AACACAAAAA GAAGCACTAT AAACCAAGTT CACACAAGCT GAAGGTCATT
                                                                           1920
       TCCAAATCCA TGGGAACCAG CACAGGAGCT ACAGCAAATC ATGGCACTTC TGCAGTAGCA
       ATTACTAGCC ATGATTACCT AGGACAAGAA ACTTTGACAG AAATCCAAAC CTCACCAGAA
                                                                           2040
60
       ACATCAATGA GAGAGGTGAA AGCGGACGGA GCTAGCACCC CCAGGTTAAG AGAACAGGAC
                                                                           2100
       TGTGGTGAAC CTGCCTCGCC AGCAGCATCC ATCTCCAGAC TCTCTGGGGA ACAGGTCGAC
                                                                           2160
       GGGAAGGGCC AGGCAGGCAG TGTATCTGAA AGTGCGCGGA GTGAAGGAAG GATTAGTCCA
                                                                           2220
       AAGAGTGATA TTACTGACAC TGGCCTGGCA CAGAGCAACA ATTTGCAGGT CCCCAGTTCT
                                                                           2280
       TCAGAACCAA GCAGCCTCAA AGGTTCCACA TCTCTGCTTG TTCACCCAGT TTCAGGAGTG
                                                                           2340
65
       AGAAAAGAGC AGGGAGGTGG TTGTCATTCA GATACTTGAA GAACATTTTC TCTCGTTACT
                                                                           2400
       CAGAAGCAAA TTTGTGTTAC ACTGGAAGTG ACCTATGCAC TGTTTTGTAA GAATCACTGT
                                                                           2460
       TACGTTCTTC TTTTGCACTT AAAGTTGCAT TGCCTACTGT TATACTGGAA AAAATAGAGT
                                                                           2520
       TCAAGAATAA TATGACTCAT TTCACACAAA GGTTAATGAC AACAATATAC CTGAAAACAG
                                                                           2580
       AAATGTGCAG GTTAATAATA TTTTTTTAAT AGTGTGGGAG GACAGAGTTA GAGGAATCTT
                                                                           2640
70
       CCTTTTCTAT TTATGAAGAT TCTACTCTTG GTAAGAGTAT TTTAAGATGT ACTATGCTAT
                                                                           2700
       TTTACCTTTT TGATATAAAA TCAAGATATT TCTTTGCTGA AGTATTTAAA TCTTATCCTT
                                                                           2760
       GTATCTTTTT ATACATATTT GAAAATAAGC TTATATGTAT TTGAACTTTT TTGAAATCCT
                                                                           2820
       ATTCAAGTAT TTTTATCATG CTATTGTGAT ATTTTAGCAC TTTGGTAGCT TTTACACTGA
                                                                           2880
       ATTTCTAAGA AAATTGTAAA ATAGTCTTCT TTTATACTGT AAAAAAAGAT ATACCAAAAA
                                                                           2940
75
       GTCTTATAAT AGGAATTTAA CTTTAAAAAC CCACTTATTG ATACCTTACC ATCTAAAATG
                                                                           3000
       TGTGATTTTT ATAGTCTCGT TTTAGGAATT TCACAGATCT AAATTATGTA ACTGAAATAA
                                                                            3060
       GETGCTTACT CAAAGAGTGT CCACTATTGA TTGTATTATG CTGCTCACTG ATCCTTCTGC
                                                                           3120
       ATATTTAAAA TAAAATGTCC TAAAGGGTTA GTAGACAAAA TGTTAGTCTT TTGTATATTA
                                                                           3180
       GGCCAAGTGC AATTGACTTC CCTTTTTTAA TGTTTCATGA CCACCCATTG ATTGTATTAT
                                                                           3240
80
       AACCACTTAC AGTTGCTTAT ATTTTTTGTT TTAACTTTTG TTTCTTAACA TTTAGAATAT
       TACATTTTGT ATTATACAGT ACCTTTCTCA GACATTTTGT AG
       Seq ID NO: 651 Protein sequence
       Protein Accession #: NP_003497.1
85
```

```
MEMFTFLLTC IFLPLLRGHS LFTCEPITVP RCMKMAYNMT FFPNLMGHYD QSIAAVEMEH
                                                                                 60
       PLPLANLECS PNIETFLCKA FVPTCIEQIH VVPPCRKLCB KVYSDCKKLI DTFGIRWPBE
                                                                                120
       LECDRLQYCD ETVPVTPDPH TEPLGPQKKT EQVQRDIGFW CPRHLKTSGG QGYKFLGIDQ
       CAPPCPNMYF KSDELEFAKS FIGTVSIFCL CATLFTFLTF LIDVERFRYP ERPIIYYSVC
       YSIVSLMYFI GFLLGDSTAC NKADEKLELG DTVVLGSQNK ACTVLFMLLY FFTMAGTVWW
                                                                                300
       VILTITWFLA AGRKWSCEAI EQKAVWFHAV AWGTPGFLTV MLLALNKVEG DNISGVCFVG
       LYDLDASRYF VLLPLCLCVF VGLSLLLAGI ISLNHVRQVI QHDGRNQEKL KKFMIRIGVF
                                                                                420
       SGLYLVPLVT LLGCYVYEQV NRITWEITWV SDHCRQYHIP CPYQAKAKAR PELALPMIKY
                                                                                480
       LMTLIVGISA VFWVGSKKTC TEWAGFFKRN RKRDPISESR RVLQESCEFF LKHNSKVKHK
                                                                                540
10
       KKHYKPSSHK LKVISKSMGT STGATANHGT SAVAITSHDY LGQETLTEIQ TSPETSMREV
                                                                                600
       KADGASTPRL REQUCGEPAS PAASISRLSG EQVDGKGQAG SVSESARSEG RISPKSDITD
                                                                                660
       TGLAQSNNLQ VPSSSEPSSL KGSTSLLVHP VSGVRKEQGG GCHSDT
       Seg ID NO: 652 DNA sequence
15
       Nucleic Acid Accession #: NM_014791.1
       Coding sequence: 171..2126
                                                                  51
20
       TTGGCGGGCG GAAGCGGCCA CAACCCGGCG ATCGAAAAGA TTCTTAGGAA CGCCGTACCA
                                                                                 60
       GCCGCGTCTC TCAGGACAGC AGGCCCCTGT CCTTCTGTCG GGCGCCGCTC AGCCGTGCCC
                                                                                120
       TCCGCCCCTC AGGTTCTTTT TCTAATTCCA AATAAACTTG CAAGAGGACT ATGAAAGATT
                                                                                180
       ATGATGAACT TCTCAAATAT TATGAATTAC ATGAAACTAT TGGGACAGGT GGCTTTGCAA
                                                                                240
       AGGTCAAACT TGCCTGCCAT ATCCTTACTG GAGAGATGGT AGCTATAAAA ATCATGGATA
                                                                                300
25
       AAAACACACT AGGGAGTGAT TTGCCCCGGA TCAAAACGGA GATTGAGGCC TTGAAGAACC
                                                                                360
       TGAGACATCA GCATATATGT CAACTCTACC ATGTGCTAGA GACAGCCAAC AAAATATTCA
                                                                                420
       TGGTTCTTGA GTACTGCCCT GGAGGAGAGC TGTTTGACTA TATAATTTCC CAGGATCGCC
                                                                                480
       TGTCAGAAGA GGAGACCCGG GTTGTCTTCC GTCAGATAGT ATCTGCTGTT GCTTATGTGC
                                                                                540
       ACAGCCAGGG CTATGCTCAC AGGGACCTCA AGCCAGAAAA TTTGCTGTTT GATGAATATC
                                                                                600
30
       ATAAATTAAA GCTGATTGAC TTTGGTCTCT GTGCAAAACC CAAGGGTAAC AAGGATTACC
                                                                                660
       ATCTACAGAC ATGCTGTGGG AGTCTGGCTT ATGCAGCACC TGAGTTAATA CAAGGCAAAT
                                                                                720
       CATATCTTGG ATCAGAGGCA GATGTTTGGA GCATGGGCAT ACTGTTATAT GTTCTTATGT
GTGGATTTCT ACCATTTGAT GATGATAATG TAATGGCTTT ATACAAGAAG ATTATGAGAG
       GAAAATATGA TGTTCCCAAG TGGCTCTCTC CCAGTAGCAT TCTGCTTCTT CAACAAATGC
                                                                                900
35
       TGCAGGTGGA CCCAAAGAAA CGGATTTCTA TGAAAAATCT ATTGAACCAT CCCTGGATCA
                                                                                960
       TGCAAGATTA CAACTATCCT GTTGAGTGGC AAAGCAAGAA TCCTTTTATT CACCTCGATG
                                                                               1020
       ATGATTGCGT AACAGAACTT TCTGTACATC ACAGAAACAA CAGGCAAACA ATGGAGGATT
                                                                               1080
       TAATTTCACT GTGGCAGTAT GATCACCTCA CGGCTACCTA TCTTCTGCTT CTAGCCAAGA
                                                                               1140
       AGGCTCGGGG AAAACCAGTT CGTTTAAGGC TTTCTTCTTT CTCCTGTGGA CAAGCCAGTG
                                                                               1200
40
       CTACCCCATT CACAGACATC AAGTCAAATA ATTGGAGTCT GGAAGATGTG ACCGCAAGTG
                                                                               1260
       ATAAAAATTA TGTGGCGGGA TTAATAGACT ATGATTGGTG TGAAGATGAT TTATCAACAG
                                                                               1320
       GTGCTGCTAC TCCCCGAACA TCACAGTTTA CCAAGTACTG GACAGAATCA AATGGGGTGG
                                                                               1380
       AATCTAAATC ATTAACTCCA GCCTTATGCA GAACACCTGC AAATAAATTA AAGAACAAAG
                                                                               1440
       AAAATGTATA TACTCCTAAG TCTGCTGTAA AGAATGAAGA GTACTTTATG TTTCCTGAGC
                                                                               1500
45
       CAAAGACTCC AGTTAATAAG AACCAGCATA AGAGAGAAAT ACTCACTACG CCAAATCGTT
                                                                               1560
                                                                               1620
       ACACTACACC CTCAAAAGCT AGAAACCAGT GCCTGAAAGA AACTCCAATT AAAATACCAG
       TAAATTCAAC AGGAACAGAC AAGTTAATGA CAGGTGTCAT TAGCCCTGAG AGGCGGTGCC
                                                                               1680
       GCTCAGTGGA ATTGGATCTC AACCAAGCAC ATATGGAGGA GACTCCAAAA AGAAAGGGAG
                                                                               1740
       CCAAAGTGTT TGGGAGCCTT GAAAGGGGGT TGGATAAGGT TATCACTGTG CTCACCAGGA
GCAAAAGGAA GGGTTCTGCC AGAGACGGGC CCAGAAGACT AAAGCTTCAC TATAATGTGA
CTACAACTAG ATTAGTGAAT CCAGATCAAC TGTTGAATGA AATAATGTCT ATTCTTCCAA
                                                                               1800
50
                                                                               1860
                                                                               1920
       AGAAGCATGT TGACTTTGTA CAAAAGGGTT ATACACTGAA GTGTCAAACA CAGTCAGATT
                                                                               1980
       TTGGGAAAGT GACAATGCAA TTTGAATTAG AAGTGTGCCA GCTTCAAAAA CCCGATGTGG
TGGGTATCAG GAGGCAGCGG CTTAAGGGCG ATGCCTGGGT TTACAAAAGA TTAGTGGAAG
                                                                               2040
                                                                               2100
55
       ACATCCTATC TAGCTGCAAG GTATAATTGA TGGATTCTTC CATCCTGCCG GATGAGTGTG
       GGTGTGATAC AGCCTACATA AAGACTGTTA TGATCGCTTT GATTTTAAAG TTCATTGGAA
                                                                               2220
       CTACCAACTT GTTTCTAAAG AGCTATCTTA AGACCAATAT CTCTTTGTTT TTAAACAAAA
                                                                               2280
       GATATTATTT TGTGTATGAA TCTAAATCAA GCCCATCTGT CATTATGTTA CTGTCTTTTT
                                                                               2340
       TAATCATGTG GTTTTGTATA TTAATAATTG TTGACTTTCT TAGATTCACT TCCATATGTG
                                                                               2400
60
       AATGTAAGCT CTTAACTATG TCTCTTTGTA ATGTGTAATT TCTTTCTGAA ATAAAACCAT
       TTGTGAATAT
       Seq ID NO: 653 Protein sequence
       Protein Accession #: NP_055606.1
65
                                                                  51
       MKDYDELLKY YELHETIGTG GFAKVKLACH ILTGEMVAIK IMDKNTLGSD LPRIKTEIEA
                                                                                 60
                                                                                120
       LKNLRHQHIC QLYHVLETAN KIFMVLEYCP GGELFDYIIS QDRLSEEETR VVFRQIVSAV
70
       AYVHSQGYAH RDLKPENLLF DEYHKLKLID FGLCAKPKGN KDYHLQTCCG SLAYAAPELI
                                                                                180
       QGKSYLGSEA DVWSMGILLY VLMCGFLPFD DDNVMALYKK IMRGKYDVPK WLSPSSILLL
       QQMLQVDPKK RISMKNLLNH PWIMQDYNYP VEWQSKNPFI HLDDDCVTEL SVHHRNNRQT
                                                                                300
       MEDLISLWOY DHLTATYLLL LAKKARGKPV RLRLSSFSCG QASATPFTDI KSNNWSLEDV
                                                                                360
       TASDKNYVAG LIDYDWCEDD LSTGAATPRT SOFTKYWTES NGVESKSLTP ALCRTPANKL
                                                                                420
75
       KNKENVYTPK SAVKNEEYPM FPEPKTPVNK NQHKREILTT PNRYTTPSKA RNQCLKETPI
                                                                                480
       KIPVNSTGTD KLMTGVISPE RRCRSVELDL NOAHMEETPK RKGAKVFGSL ERGLDKVITV
                                                                                540
       LTRSKRKGSA RDGPRRLKLH YNVTTTRLVN PDQLLNEIMS ILPKKHVDFV QKGYTLKCQT
                                                                                600
       QSDFGKVTMQ FELEVCQLQK PDVVGIRRQR LKGDAWVYKR LVEDILSSCK V
80
       Seg ID NO: 654 DNA sequence
       Nucleic Acid Accession #: NM 000582
       Coding sequence: 88..990
                                                                  51
                               21
                                           31
85
       GCAGAGCACA GCATCGTCGG GACCAGACTC GTCTCAGGCC AGTTGCAGCC TTCTCAGCCA
       AACGCCGACC AAGGAAAACT CACTACCATG AGAATTGCAG TGATTTGCTT TTGCCTCCTA
                                                                                120
```

```
GGCATCACCT GTGCCATACC AGTTAAACAG GCTGATTCTG GAAGTTCTGA GGAAAAGCAG
                                                                             180
       CTTTACAACA AATACCCAGA TGCTGTGGCC ACATGGCTAA ACCCTGACCC ATCTCAGAAG
                                                                             240
       CAGAATCTCC TAGCCCCACA GACCCTTCCA AGTAAGTCCA ACGAAAGCCA TGACCACATG
       GATGATATGG ATGATGAAGA TGATGATGAC CATGTGGACA GCCAGGACTC CATTGACTCG
       AACGACTCTG ATGATGTAGA TGACACTGAT GATTCTCACC AGTCTGATGA GTCTCACCAT
       TCTGATGAAT CTGATGAACT GGTCACTGAT TTTCCCACGG ACCTGCCAGC AACCGAAGTT
                                                                              480
       TTCACTCCAG TTGTCCCCAC AGTAGACACA TATGATGGCC GAGGTGATAG TGTGGTTTAT
                                                                             540
       GGACTGAGGT CAAAATCTAA GAAGTTTCGC AGACCTGACA TCCAGTACCC TGATGCTACA
                                                                             600
       GACGAGGACA TCACCTCACA CATGGAAAGC GAGGAGTTGA ATGGTGCATA CAAGGCCATC
                                                                             660
10
       CCCGTTGCCC AGGACCTGAA CGCGCCTTCT GATTGGGACA GCCGTGGGAA GGACAGTTAT
                                                                             720
       GAAACGAGTC AGCTGGATGA CCAGAGTGCT GAAACCCACA GCCACAAGCA GTCCAGATTA
                                                                             780
       TATAAGOGGA AAGCCAATGA TGAGAGCAAT GAGCATTCCG ATGTGATTGA TAGTCAGGAA
                                                                             840
       CTTTCCAAAG TCAGCCGTGA ATTCCACAGC CATGAATTTC ACAGCCATGA AGATATGCTG
                                                                             900
       GTTGTAGACC CCAAAAGTAA GGAAGAAGAT AAACACCTGA AATTTCGTAT TTCTCATGAA
                                                                             960
15
       TTAGATAGTG CATCTTCTGA GGTCAATTAA AAGGAGAAAA AATACAATTT CTCACTTTGC
                                                                            1020
       ATTTAGTCAA AAGAAAAAAT GCTTTATAGC AAAATGAAAG AGAACATGAA ATGCTTCTTT
                                                                            1080
       CTCAGTTTAT TGGTTGAATG TGTATCTATT TGAGTCTGGA AATAACTAAT GTGTTTGATA
                                                                            1140
       ATTAGTTTAG TTTGTGGCTT CATGGAAACT CCCTGTAAAC TAAAAGCTTC AGGGTTATGT
                                                                            1200
       CTATGTTCAT TCTATAGAAG AAATGCAAAC TATCACTGTA TTTTAATATT TGTTATTCTC
                                                                            1260
20
       TCATGAATAG AAATTTATGT AGAAGCAAAC AAAATACTTT TACCCACTTA AAAAGAGAAT
                                                                            1320
       ATAACATTT ATGTCACTAT AATCTTTTGT TTTTTAAGTT AGTGTATATT TTGTTGTGAT
                                                                            1380
      TATCTTTTTG TGGTGTGAAT AAATCTTTTA TCTTGAATGT AATAAGAATT TGGTGGTGTC AATTGCTTAT TTGTTTTCCC ACGGTTGTCC AGCAATTAAT AAAACATAAC CTTTTTTACT
                                                                            1440
                                                                            1500
       GCCTAAAAAA AAAAAAAAAA AAAA
25
       Seq ID NO: 655 Protein sequence
       Protein Accession #: NP 000573
30
       MRIAVICECL LGITCAIPVK QADSGSSEEK QLYNKYPDAV ATWLNPDPSQ KQNLLAPQTL
                                                                              60
       PSKSNESHDH MDDMDDEDDD DHVDSQDSID SNDSDDVDDT DDSHQSDESH HSDESDELVT
                                                                             120
       DFPTDLPATE VFTPVVPTVD TYDGRGDSVV YGLRSKSKKF RRPDIQYPDA TDEDITSHME
                                                                             180
       SEELNGAYKA IPVAQDLNAP SDWDSRGKDS YETSQLDDQS AETHSHKQSR LYKRKANDES
                                                                             240
35
       NEHSDVIDSQ ELSKVSREFH SHEFHSHEDM LVVDPKSKEE DKHLKFRISH ELDSASSEVN
       Seg ID NO: 656 DNA seguence
       Nucleic Acid Accession #: NM_003108.1
       Coding sequence: 76..1401
40
                                                                51
                             21
                                         31
                                                     41
       GGGGTGGGAG GGGGAGGGGG ACCTCCGCAC GAGACCCAGC GGCCCGGGTT GGAGCGTCCA
                                                                              60
45
       GCCCTGCAAC GGATCATGGT GCAGCAGGCG GAGAGCTTGG AAGCGGAGAG CAACCTGCCC
                                                                             120
       CGGGAGGCGC TGGACACGGA GGAGGGCGAA TTCATGGCTT GCAGCCCGGT GGCCCTGGAC
                                                                             180
       GAGAGCGACC CAGACTGGTG CAAGACGGCG TCGGGCCACA TCAAGCGGCC GATGAACGCG
       TTCATGGTAT GGTCCAAGAT CGAACGCAGG AAGATCATGG AGCAGTCTCC GGACATGCAC
       AACGCCGAGA TCTCCAAGAG GCTGGGCAAG CGCTGGAAAA TGCTGAAGGA CAGCGAGAAG
50
       ATCCCGTTCA TCCGGGAGGC GGAGCGGCTG CGGCTCAAGC ACATGGCCGA CTACCCCGAC
                                                                             420
       TACAAGTACC GGCCCCGGAA AAAGCCCAAA ATGGACCCCT CGGCCAAGCC CAGCGCCAGC
                                                                             480
       CAGAGCCCAG AGAAGAGCGC GGCCGGCGGC GGCGGCGGA GCGCGGGGG AGGCGCGGGC
                                                                             540
       GGTGCCAAGA CCTCCAAGGG CTCCAGCAAG AAATGCGGCA AGCTCAAGGC CCCCGCGGCC
                                                                             600
       GCGGGCGCCA AGGCGGGCGC GGGCAAGGCG GCCCAGTCCG GGGACTACGG GGGCGCGGGC
                                                                             660
55
       GACGACTACG TGCTGGGCAG CCTGCGCGTG AGCGGCTCGG GCGGCGGCGG CGCGGGCAAG
                                                                             720
       ACGGTCAAGT GCGTGTTTCT GGATGAGGAC GACGACGACG ACGACGACGA CGACGAGCTG
                                                                             780
       CAGCTGCAGA TCAAACAGGA GCCGGACGAG GAGGACGAGG AACCACCGCA CCAGCAGCTC
                                                                             840
       CTGCAGCCGC CGGGGCAGCA GCCGTCGCAG CTGCTGAGAC GCTACAACGT CGCCAAAGTG
                                                                             900
       CCCGCCAGCC CTACGCTGAG CAGCTCGGCG GAGTCCCCCG AGGGAGCGAG CCTCTACGAC
                                                                             960
60
       GAGGTGCGGG CCGGCGCGAC CTCGGGCGCCC GGGGGCGGCA GCCGCCTCTA CTACAGCTTC
                                                                            1020
       AAGAACATCA CCAAGCAGCA CCCGCCGCCG CTCGCGCAGC CCGCGCTGTC GCCCGCGTCC
                                                                            1080
       TCGCGCTCGG TGTCCACCTC CTCGTCCAGC AGCAGCGGCA GCAGCAGCGG CAGCAGCGGC
                                                                            1140
       GAGGACGCCG ACGACCTGAT GTTCGACCTG AGCTTGAATT TCTCTCAAAG CGCGCACAGC
                                                                            1200
       GCCAGCGAGC AGCAGCTGGG GGGCGGCGGG GCGGCCGGGA ACCTGTCCCT GTCGCTGGTG
                                                                            1260
65
       GATAAGGATT TGGATTCGTT CAGCGAGGGC AGCCTGGGCT CCCACTTCGA GTTCCCCGAC
                                                                            1320
       TACTGCACGC CGGAGCTGAG CGAGATGATC GCGGGGGACT GGCTGGAGGC GAACTTCTCC
                                                                            1380
       GACCTGGTGT TCACATATTG AAAGGCGCCC GCTGCTCGCT CTTTCTCTCG GAGGGTGCAG
                                                                            1440
       AGCTGGGTTC CTTGGGAGGA AGTTGTAGTG GTGATGATGA TGATGATGAT AATGATGATG
                                                                            1500
       ATGATGGTGG TGTTGATGGT GGCGGTGGTA GGGTGGAGGG GAGAGAAGAA GATGCTGATG
                                                                            1560
70
       ATATTGATAA GATGTCGTGA CGCAAAGAAA TTGGAAAACA TGATGAAAAT TTTGGTGGAG
TTAAAGTGAA ATGAGTAGTT TTTAAACATT TTTCCTGTCC TTTTTTTGTC CCCCCTCCCT
       TCCTTTATCG TGTCTCAAGG TAGTTGCATA CCTAGTCTGG AGTTGTGATT ATTTTCCCAA
                                                                            1740
       AAAATGTGTT TTTGTAATTA CTATTTCTTT TTCCTGAAAT TCGTGATTGC AACAAAGGCA
                                                                            1800
       GAGGGGGCGG CGCGGCGGAG GGGAGGTAGG ACCCGCTCCG GAAGGCGCTG TTTGAAGCTT
                                                                            1860
75
       GTCGGTCTTT GAAGTCTGGA AGACGTCTGC AGAGGACCCT TTTGGCAGCA CAACTGTTAC
                                                                            1920
       TCTAGGGAGT TGGTGGAGAT ATTTTTTTT CTTAAGAGAA CTTAAAGAAC TGGTGATTTT
                                                                            1980
       TTTTTAACAA AAAAAGGG
       Seq ID NO: 657 Protein sequence
80
       Protein Accession #: NP_003099.1
                                                                51
       MVQQAESLEA ESNLPREALD TEEGEFMACS PVALDESDPD WCKTASGHIK RPMNAFMVWS
                                                                               60
85
       KIERRKIMEQ SPDMHNAEIS KRIGKRWKML KDSEKIPFIR EAERLRLKHM ADYPDYKYRP
                                                                              120
       RKKPKMDPSA KPSASQSPEK SAAGGGGGSA GGGAGGAKTS KGSSKKCGKL KAPAAAGAKA
                                                                              180
       GAGKAAOSGD YGGAGDDYVL GSLRVSGSGG GGAGKTVKCV FLDEDDDDDD DDDELQLQIK
```

300

```
QEPDEEDEEP PHOOLLOPPG QOPSQLLRRY NVAKVPASPT LSSSAESPEG ASLYDEVRAG
       ATSGAGGGSR LYYSFKNITK QHPPPLAQPA LSPASSRSVS TSSSSSSGSS SGSSGEDADD
                                                                               360
       LMFDLSLNF9 QSAHSASEQQ LGGGAAAGNL SLSLVDKDLD SFSEGSLGSH FEFPDYCTPE
       LSEMIAGDWL EANPSDLVFT Y
       Seg ID NO: 658 DNA sequence
       Nucleic Acid Accession #: NM_001719
       Coding sequence: 123..1418
10
       GGGCGCAGCG GGGCCCGTCT GCAGCAAGTG ACCGACGGCC GGGACGGCCG CCTGCCCCCT
                                                                                 60
       CTGCCACCTG GGGCGGTGCG GGCCCGGAGC CCGGAGCCCG GGTAGCGCGT AGAGCCGGCG
                                                                                120
       CGATGCACGT GCGCTCACTG CGAGCTGCGG CGCCGCACAG CTTCGTGGCG CTCTGGGCAC
                                                                                180
       CCCTGTTCCT GCTGCGCTCC GCCCTGGCCG ACTTCAGCCT GGACAACGAG GTGCACTCGA
15
       GCTTCATCCA CCGGCGCCTC CGCAGCCAGG AGCGGCGGGA GATGCAGCGC GAGATCCTCT
       CCATTTTGGG CTTGCCCCAC CGCCCGCGCC CGCACCTCCA GGGCAAGCAC AACTCGGCAC
       CCATGTTCAT GCTGGACCTG TACAACGCCA TGGCGGTGGA GGAGGGCGGC GGGCCCGGCG
       GCCAGGGCTT CTCCTACCCC TACAAGGCCG TCTTCAGTAC CCAGGGCCCC CCTCTGGCCA
                                                                                480
20
       GCCTGCAAGA TAGCCATTTC CTCACCGACG CCGACATGGT CATGAGCTTC GTCAACCTCG
                                                                                540
       TGGAACATGA CAAGGAATTC TTCCACCCAC GCTACCACCA TCGAGAGTTC CGGTTTGATC
                                                                                600
       TTTCCAAGAT CCCAGAAGGG GAAGCTGTCA CGGCAGCCGA ATTCCGGATC TACAAGGACT
                                                                                660
       ACATCCGGGA ACGCTTCGAC AATGAGACGT TCCGGATCAG CGTTTATCAG GTGCTCCAGG
                                                                                720
       AGCACTTGGG CAGGGAATCG GATCTCTTCC TGCTCGACAG CCGTACCCTC TGGGCCTCGG
                                                                               780
25
       AGGAGGGCTG GCTGGTGTTT GACATCACAG CCACCAGCAA CCACTGGGTG GTCAATCCGC
                                                                                840
       GGCACAACCT GGGCCTGCAG CTCTCGGTGG AGACGCTGGA TGGGCAGAGC ATCAACCCCA
                                                                               900
       AGTTGGCGGG CCTGATTGGG CGGCACGGGC CCCAGAACAA GCAGCCCTTC ATGGTGGCTT
                                                                               960
       TCTTCAAGGC CACGGAGGTC CACTTCCGCA GCATCCGGTC CACGGGGAGC AAACAGCGCA
                                                                               1020
       GCCAGAACCG CTCCAAGACG CCCAAGAACC AGGAAGCCCT GCGGATGGCC AACGTGGCAG
                                                                               1080
30
       AGAACAGCAG CAGCGACCAG AGGCAGGCCT GTAAGAAGCA CGAGCTGTAT GTCAGCTTCC
                                                                               1140
       GAGACCTGGG CTGGCAGGAC TGGATCATCG CGCCTGAAGG CTACGCCGCC TACTACTGTG
                                                                               1200
       AGGGGGAGTG TGCCTTCCCT CTGAACTCCT ACATGAACGC CACCAACCAC GCCATCGTGC
                                                                               1260
       AGACGCTGGT CCACTTCATC AACCCGGAAA CGGTGCCCAA GCCCTGCTGT GCGCCCACGC
                                                                               1320
       AGCTCAATGC CATCTCCGTC CTCTACTTCG ATGACAGCTC CAACGTCATC CTGAAGAAAT
                                                                               1380
       ACAGAAACAT GGTGGTCCGG GCCTGTGGCT GCCACTAGCT CCTCCGAGAA TTCAGACCCT
35
                                                                               1440
       TTGGGGCCAA GTTTTTCTGG ATCCTCCATT GCTCGCCTTG GCCAGGAACC AGCAGACCAA CTGCCTTTG TGAGACCTTC CCCTCCCTAT CCGCAACTTT AAAGGTGTGA GAGTATTAGG
                                                                               1500
                                                                               1560
       AAACATGAGC AGCATATGGC TTTTGATCAG TTTTTCAGTG GCAGCATCCA ATGAACAAGA
       TCCTACAAGC TGTGCAGGCA AAACCTAGCA GGAAAAAAAA ACAACGCATA AAGAAAAATG
40
       GCCGGGCCAG GTCATTGGCT GGGAAGTCTC AGCCATGCAC GGACTCGTTT CCAGAGGTAA.
                                                                               1740
       TTATGAGCGC CTACCAGCCA GGCCACCCAG CCGTGGGAGG AAGGGGGCGT GGCAAGGGGT
                                                                               1800
       GGGCACATTG GTGTCTGTGC GAAAGGAAAA TTGACCCGGA AGTTCCTGTA ATAAATGTCA
       CAATAAAACG AATGAATG
45
       Seg ID NO: 659 Protein seguence
       Protein Accession #: NP_001710
50
       MHVRSLRAAA PHSFVALWAP LFLLRSALAD FSLDNEVHSS FIHRRLRSQE RREMQREILS
                                                                                 60
       ILGLPHRPRP HLQGKHNSAP MFMLDLYNAM AVEEGGGPGG QGFSYPYKAV FSTQGPPLAS
                                                                               120
       LODSHFLTDA DMVMSFVNLV EHDKEFFHPR YHHREFRFDL SKIPEGEAVT AAEFRIYKDY
                                                                               180
       IRERFDNETF RISVYQVLQE HLGRESDLFL LDSRTLWASE EGWLVFDITA TSNHWVVNPR
                                                                                240
       HNLGLQLSVE TLDGQSINPK LAGLIGRHGP QNKQPFMVAF FKATEVHFRS 1RSTGSKQRS
                                                                               300
55
       QNRSKTPKNQ EALRMANVAE NSSSDQRQAC KKHELYVSFR DLGWQDWIIA PEGYAAYYCE
                                                                               360
       GECAFPLNSY MNATNHAIVQ TLVHFINPET VPKPCCAPTQ LNAISVLYFD DSSNVILKKY
       RNMVVRACGC H
       Seg ID NO: 660 DNA sequence
60
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 211..1895
65
       GGATCTGAGG GGCGCCCAGT CACTTCCTCC ACGTTCTCGT GCTGGGCGGG AGGAGCGGAT
                                                                                 60
       GGGGCTTGGG AGGCAGCCTG CTCTCCAGTC CCTATCCACC CACAGGTTTT TTGGGTCGGA
                                                                               120
       GAGGAATTAT CTGATAAAAT TCCTGGGTTA ATATTTTTAA AAACGGAGAG TTTTTAAAAA
                                                                                180
       TGATTTTTT CCCTCGAAAA TGACCTTTTT ATGCTTCGAA GCAGTTTGTC AACCAGCATA
                                                                                240
       GTGCTTTTTC TTTTCTCTTC TTTTTCTACG ATAAATGAAA GCATTTCTTC AAGAAAAAGG
                                                                                300
70
       CACAGGTTCC TTGAACAGCT GGATTCTGAT GGCACCATTA CTATAGAGGA GCAGATTGTC
                                                                                360
       CTTGTGCTGA AAGCGAAAGT ACAATGTGAA CTCAACATCA CAGCTCAACT CCAGGAGGGA
                                                                                420
       GAAGGTAATT GTTTCCCTGA ATGGGATGGA CTCATTTGTT GGCCCAGAGG AACAGTGGGG
                                                                                480
       AAAATATCGG CTGTTCCATG CCCTCCTTAT ATTTATGACT TCAACCATAA AGGAGTTGCT
                                                                                540
       TTCCGACACT GTAACCCCAA TGGAACATGG GATTTTATGC ACAGCTTAAA TAAAACATGG
                                                                                600
75
       GCCAATTATT CAGACTGCCT TCGCTTTCTG CAGCCAGATA TCAGCATAGG AAAGCAAGAA
                                                                                660
       TTCTTTGAAC GCCTCTATGT AATGTATACC GTTGGCTACT CCATCTCTTT TGGTTCCTTG
                                                                                720
       GCTGTGGCTA TTCTCATCAT TGGTTACTTC AGACGATTGC ATTGCACTAG GAACTATATC
                                                                                780
       CACATGCACT TATTTGTGTC TTTCATGCTG AGAGCTACAA GCATCTTTGT CAAAGACAGA GTAGTCCATG CTCACATAGG AGTAAAGGAG CTGGAGTCCC TAATAATGCA GGATGACCCA
                                                                                840
                                                                                900
       CAAAATTCCA TTGAGGCAAC TTCTGTGGAC AAATCACAAT ATATCGGGTG CAAGATTGCT
GTTGTGATGT TTATTTACTT CCTGGCTACA AATTATTATT GGATCCTGGT GGAAGGTCTC
80
                                                                                960
       TACCTGCATA ATCTCATCTT TGTGGCTTTC TTTTGGACA CCAAATACCT GTGGGGCTTC ATCTTGATAG GCTGGGGGTT TCCAGCAGCA TTTGTTGCAG CATGGGCTGT GGCACGAGCA
                                                                               1080
       ACTOTGGCTG ATGCGAGGTG CTGGGAACTT AGTGCTGGAG ACATCAAGTG GATTTATCAA
                                                                               1200
85
       GCACCGATCT TAGCAGCTAT TGGGCTGAAT TTTATTCTGT TTCTGAATAC GGTTAGAGTT
                                                                               1260
       CTAGCTACCA AAATCTGGGA GACCAATGCA GTTGGGCATG ACACAAGGAA GCAATACAGG
                                                                               1320
       AAACTGGCCA AATCGACACT GGTCCTGGTC CTAGTCTTTG GAGTGCATTA CATCGTGTTC 1380
```

```
GTATGCCTGC CTCACTCCTT CACTGGGCTC GGGTGGGAGA TCCGCATGCA CTGTGAGCTC 1440
                                                                                 1500
       TTCTTCAACT CCTTTCAGGG TTTCTTTGTG TCTATCATCT ACTGCTACTG CAATGGAGAG
       GTTCAGGCAG AGGTGAAGAA GATGTGGAGT CGGTGGAATC TCTCCGTGGA CTGGAAAAGG
                                                                                 1560
       ACACCGCCAT GTGGCAGCCG CAGATGCGGC TCAGTGCTCA CCACCGTGAC GCACAGCACC
                                                                                 1620
       AGCAGCCAGT CACAGGTGGC GGCCAGCACA CGCATGGTGC TTATCTCTGG CAAAGCTGCC
                                                                                 1680
       AAGATCGCCA GCAGACAGCC TGACAGCCAC ATCACTTTAC CTGGCTATGT CTGGAGTAAC
       TCAGAGCAGG ACTGCCTGCC ACACTCTTTC CACGAGGAGA CCAAGGAAGA TAGTGGGAGG
                                                                                 1800
       CAGGGAGATG ATATTCTAAT GGAGAAGCCT TCCAGGCCTA TGGAATCTAA CCCAGACACT
       GAAGGATGCC AAGGAGAAAC TGAGGATGTT CTCTGA
10
       Seg ID NO: 661 Protein sequence
       Protein Accession #: Eos sequence
                                                                    51
15
       MLRSSLSTSI VLFLFSSFST INESISSRKR HRFLEQLDSD GTITIEEQIV LVLKAKVQCE
       LNITAQLQEG EGNCFPEWDG LICWPRGTVG KISAVPCPPY IYDFNHKGVA FRHCNPNGTW
                                                                                  120
       DPMHSLNKTW ANYSDCLRFL QPDISIGKQE FFERLYVMYT VGYSISFGSL AVAILIIGYF
                                                                                  180
       RRLHCTRNYI HMHLFVSFML RATSIFVKDR VVHAHIGVKE LESLIMQDDP QNSIEATSVD
                                                                                  240
20
       KSQYIGCKIA VVMFIYFLAT NYYWILVEGL YLHNLIFVAF FSDTKYLWGF ILIGWGFPAA
                                                                                  300
       FVAAWAVARA TLADARCWEL SAGDIKWIYQ APILAAIGLN FILFLNTVRV LATKIWETNA
                                                                                  360
       VGHDTRKQYR KLAKSTLVLV LVFGVHYIVF VCLPHSFTGL GWEIRMHCEL FFNSFQGFFV
                                                                                  420
       SIIYCYCNGE VOAEVKKMWS RWNLSVDWKR TPPCGSRRCG SVLTTVTHST SSQSQVAAST
                                                                                  480
       RMVLISGKAA KIASRQPDSH ITLPGYVWSN SEQDCLPHSF HEETKEDSGR QGDDILMEKP
                                                                                  540
25
       SRPMESNPDT EGCQGETEDV L
       Seq ID NO: 662 DNA sequence
       Nucleic Acid Accession #: NM_005048
       Coding sequence: 143..1795
30
                                                       41
                                           31
       GGCCGGTGGC CCGGGCCCGA CCACCCCAGC TGCGCGTCGT TACTGGCCAC AAGTTTGCTC
       TGGGCCAGCC AAGTTGGCAA CTTGGAAGCT TCTCCCGGGC TCTGGAGGAG GGTCCCTGCT
TCTTCCTACA GCCGTTCCGG GCATGGCCGG GCTGGGGGGCG TCGCTCCACG TCTGGGGGTTG
                                                                                  120
35
       GCTAATGCTC GGCAGCTGCC TCCTGGCCAG AGCCCAGCTG GATTCTGATG GCACCATTAC
TATAGAGGAG CAGATTGTCC TTGTGCTGAA,AGCGAAAGTA CAATGTGAAC TCAACATCAC
                                                                                  300
       AGCTCAACTC CAGGAGGGAG AAGGTAATTG TTTCCCTGAA TGGGATGGAC TCATTTGTTG
                                                                                  360
       GCCCAGAGGA ACAGTGGGGA AAATATCGGC TGTTCCATGC CCTCCTTATA TTTATGACTT
                                                                                  420
40
       CAACCATAAA GGAGTTGCTT TCCGACACTG TAACCCCAAT GGAACATGGG ATTTTATGCA
                                                                                  480
       CAGCTTAAAT AAAACATGGG CCAATTATTC AGACTGCCTT CGCTTTCTGC AGCCAGATAT
                                                                                  540
       CAGCATAGGA AAGCAAGAAT TCTTTGAACG CCTCTATGTA ATGTATACCG TTGGCTACTC
                                                                                  600
       CATCTCTTTT GGTTCCTTGG CTGTGGCTAT TCTCATCATT GGTTACTTCA GACGATTGCA
                                                                                  660
       TTGCACTAGG AACTATATCC ACATGCACTT ATTTGTGTCT TTCATGCTGA GAGCTACAAG
                                                                                  720
45
       CATCTTTGTC AAAGACAGAG TAGTCCATGC TCACATAGGA GTAAAGGAGC TGGAGTCCCT
                                                                                  780
       AATAATGCAG GATGACCCAC AAAATTCCAT TGAGGCAACT TCTGTGGACA AATCACAATA
                                                                                  840
       TATCGGGTGC AAGATTGCTG TTGTGATGTT TATTTACTTC CTGGCTACAA ATTATTATTG
                                                                                  900
       GATCCTGGTG GAAGGTCTCT ACCTGCATAA TCTCATCTTT GTGGCTTTCT TTTCGGACAC
                                                                                  960
       CAAATACCTG TGGGGCTTCA TCTTGATAGG CTGGGGGTTT CCAGCAGCAT TTGTTGCAGC
                                                                                 1020
       ATGGGCTGTG GCACGAGCAA CTCTGGCTGA TGCGAGGTGC TGGGAACTTA GTGCTGGAGA
50
                                                                                 1080
       CATCAAGTGG ATTTATCAAG CACCGATCTT AGCAGCTATT GGGCTGAATT TTATTCTGTT TCTGAATACG GTTAGAGTTC TAGCTACCAA AATCTGGGAG ACCAATGCAG TTGGGCATGA
                                                                                 1140
       CACAAGGAAG CAATACAGGA AACTGGCCAA ATCGACACTG GTCCTGGTCC TAGTCTTTGG
AGTGCATTAC ATCGTGTTCG TATGCCTGCC TCACTCCTTC ACTGGGCTCG GGTGGGAGAT
                                                                                 1260
       CCGCATGCAC TGTGAGCTCT TCTTCAACTC CTTTCAGGGT TTCTTTGTGT CTATCATCTA CTGCTACTGC AATGGAGAGG TTCAGGCAGA GGTGAAGAAG ATGTGGAGTC GGTGGAATCT
55
                                                                                 1380
       CTCCGTGGAC TGGAAAAGGA CACCGCCATG TGGCAGCCGC AGATGCGGCT CAGTGCTCAC
                                                                                 1500
       CACCGTGACG CACAGCACCA GCAGCCAGTC ACAGGTGGCG GCCAGCACAC GCATGGTGCT
       TATCTCTGGC AAAGCTGCCA AGATCGCCAG CAGACAGCCT GACAGCCACA TCACTTTACC
                                                                                 1620
60
       TGGCTATGTC TGGAGTAACT CAGAGCAGGA CTGCCTGCCA CACTCTTTCC ACGAGGAGAC
                                                                                 1680
       CAAGGAAGAT AGTGGGAGGC AGGGAGATGA TATTCTAATG GAGAAGCCTT CCAGGCCTAT
                                                                                 1740
       GGAATCTAAC CCAGACACTG AAGGATGCCA AGGAGAAACT GAGGATGTTC TCTGAATGGA
                                                                                 1800
       CATTTGTGGC TGACTTTCAT GGGCTGGTCC AATGGCTGGT TGTGTGAGAG GGCTTGGCTG
                                                                                 1860
       ATACTCCTAT GCTTGAGTTC AAAGGCTGAA AATTCAGTTA AGGTGTTACT TAATAATAGT
                                                                                 1920
65
       TTTTAGGCTC CATGAATTGG CTCCTGTAAA TACTAACGAC ATGAAAATGC AAGTGTCAAT
                                                                                 1980
       GGAGTAGTTT ATTACCTTCT ATTGGCATCA AGTTTTCCTC TAAATTAATG TATGGTATTT
                                                                                 2040
       GCTCTGTGAT TGTTCATTTT TTTCTGCTAC TTTTGGGTAG AAAAAAGATT CAATTGCTTG
                                                                                 2100
       GCTGTAGCTT TCTCTCATAT ATATCACCCT AAATATAATG AAGATCTTTT AGTGTGTATC
                                                                                 2160
       ATTITCCITT TAGAAACTAG TATTCTCTTA TITCTTACTT TAATGTACTT CTATCACTGC
                                                                                 2220
70
       ATTTATTTTG CCTGTGCATA GGAGCAATTA GGATCTAAAA AAATATATGG GAAGATAAAA
                                                                                 2280
       GATCTAAGAA CAAGTACTTG CTGGAAAATT AGTTGGCTGG ACATTGATAA AATAATGCAT
                                                                                 2340
        TTATAACAAT TACATGTGTT TTTGGGAACA AGGAAAATTT CTCAAAAAAG AATATTTCAC
                                                                                 2400
       ACATCCCTTC TTTTGAATGG CCTCTTTGTG ACCAGCCAGA CCTCAGGTCT TCACTCTTTC
                                                                                 2460
       TTCTTTGTAA ACCATGTCAT GTGGAAAGAT TTCCTCAGTT AGTGAGCTTG TGTCTGCAAA
TTGATTTTGT TTGTAATGTA TTTTGATAGC AAATCATGCT GCATCTATAT CTTTTCTTG
                                                                                 2520
75
        TTTGAGCTGT TACTACATTG TACATGGCAT GTGGGATCAA TTAAAAATTT GTTTTAAAAA
        Seq ID NO: 663 Protein sequence
80
        Protein Accession #: NP_005039
        MAGLGASLHV WGWLMLGSCL LARAQLDSDG TITIEEQIVL VLKAKVQCEL NITAQLQEGE
                                                                                   60
85
        GNCFPEWDGL ICWPRGTVGK ISAVPCPPYI YDFNHKGVAF RHCNPNGTWD FMHSLNKTWA
                                                                                  120
        NYSDCLRFLQ PDISIGKQEF FERLYVMYTV GYSISPGSLA VAILIIGYFR RLHCTRNYIH
                                                                                  180
        MHLFVSFMLR ATSIFVKDRV VHAHIGVKEL ESLIMQDDPQ NSIEATSVDK SQYIGCKIAV
                                                                                  240
```

5	VMFIYFLATN LADARCWELS LAKSTLVLVL QAEVKKMWSR	AGDIKWIYQA VFGVHYIVFV WNLSVDWKRT	LHNLIFVAFP PILAAIGLNF CLPHSFTGLG PPCGSRRCGS EQDCLPHSFH	ILFLNTVRVL WEIRMHCELF VLTTVTHSTS	ATKIWETNAV FNSFQGFFVS SQSQVAASTR	GHDTRKQYRK IIYCYCNGEV MVLISGKAAK	300 360 420 480 540
10	Nucleic Ac	664 DNA se id Accession sence: 43	1 #: NM_012	152			
	1	11	21	31	41	51	
	 CTTCTTTAAA	TTTCTTTCTA	GGATGTTCAC	TTCTTCTCCA	CAATGAATGA	 GTGTCACTAT	60
15	GGAACAAAGC TCTAATTCTC TACCTGTTGG	TTGTGATTGT TGGTCATCGC CTAATTTAGC	TTATAATAGG TTTGTGTGTT GGCAGTGATC TGCTGCCGAT TTCAAAAACT	GGGACGTTTT AAAAACAGAA TTCTTCGCTG	TCTGCCTGTT AATTTCATTT GAATTGCCTA	TATTTTTTT CCCCTTCTAC TGTATTCCTG	120 180 240 300 360
20	GGGCTTCTGG AGGCACATGT CTGCTCATTT TGGAATTGCC	ACAGTAGCTT CAATCATGAG TGCTTGTCTG TCTGCAACAT	GACTGCTTCC GATGCGGGTC GGCCATCGCC CTCTGCCTGC	CTCACCAACT CATAGCAACC ATTTTATGG TCTTCCCTGG	TGCTGGTTAT TGACCAAAAA GGGCGGTCCC CCCCCATTTA	CGCCGTGGAG GAGGGTGACA CACACTGGGC CAGCAGGAGT	420 480 540 600
25	CTGCGGATCT TCCATCAGCC GCGTTTGTGG AGGCAGTGTG	ACGTGTACGT GCCGGAGGAC TATGCTGGAC GCGTGCAGCA	GTCCAACCTC CAAGAGGAAA ACCCATGAAG CCCGGGCCTG TGTGAAAAGG	ACCAACGTCT CTAATGAAGA GTGGTTCTGC TGGTTCCTGC	TGTCTCCGCA CGGTGATGAC TCCTCGACGG TGCTGGCGCT	TACAAGTGGG TGTCTTAGGG CCTGAACTGC GCTCAACTCC	660 720 780 840 900
30	ATGATCTGCT GTCCTCAGCA	GCTTCTCTCA GGAGTGACAC	CTCCTACAAG GGAGAACCCA AGGCAGCCAG CTAAACTCTG	GAGAGGCGTC TACATAGAGG	CCTCTCGCAT ATAGTATTAG	CCCCTCCACA CCAAGGTGCA	960 1020 1080 1140
35		665 Protei cession #: 1		•			
	1	11	21	31	41	51	
40 ·	FHFPFYYLLA LVIAVERHMS	NLAAADFFAG IMRMRVHSNL	TVDDWTGTKL IAYVFLMFNT TKKRVTLLIL IMVVVYLRIY	GPVSKTLTVN LVWAIAIFMG	RWFLRQGLLD AVPTLGWNCL	SSLTASLTNL CNISACESLA	60 120 180 240
45	VMTVLGAFVV	CWTPGLVVLL	LDGLNCRQCG SRIPSTVLSR	VQHVKRWFLL	LALLNSVVNP	IIYSYKDEDM	300
50	Nucleic Ac	666 DNA se id Accession Lence: 150.	1 #: NM_0028	21		٠	
30	1	11	21	31	41	51	
	AACTCCCCC	TOGGGACGCC	TCGGGGTCGG	GCTCCGGCTG	CGGCTGCTGC	TGCGGCGCCC	60
	GCGCTCCGGT	GCGTCCGCCT	CCTGTGCCCG	CCGCGGAGCA	GTCTGCGGCC	CGCCGTGCGC	120
<b>55</b> .	CCTCAGCTCC	TTTTCCTGAG	CCCGCCGCGA AGCGTCCTGC	TGGGAGCTGC	GCGGGGGATCC	ACCCAGACAG	180 240
	CCATTGTCTT	CATCAAGCAG	CCGTCCTCCC	AGGATGCACT	GCAGGGGCGC	CGGGCGCTGC	300
	TTCGCTGTGA	GGTTGAGGCT	CCGGGCCCGG	TACATGTGTA	CTGGCTGCTC	GATGGGGCCC	360 420
60	ACCGGCTGCA	GGACTCTGGC	ACCTTCCAGT	GTGTGGCTCG	GGATGATGTC	ACTGGAGAAG	480
			TCCTTCAACA GCTGAGATCC				540 600
	ACATTGATGG	GCACCCTCGG	CCCACCTACC	AATGGTTCCG	AGATGGGACC	CCCCTTTCTG	660
65	ATGGTCAGAG	CAACCACACA	GTCAGCAGCA TATTCCTGCT	AGGAGCGGAA	CCTGACGCTC	CAGCCAGCTG	720 780
03	GCAGCCAGAA	CTTCACCTTG	AGCATTGCTG	ATGAAAGCTT	TGCCAGGGTG	GTGCTGGCAC	840
	CCCAGGACGT	GGTAGTAGCG	AGGTATGAGG	AGGCCATGTT	CCATTGCCAG	TTCTCAGCCC	900 960
	AGCCACCCC GCCCCCACA	GAGCCTGCAG	TGGCTCTTTG GCCACAGTGT	TTGCCAACGG	GTCTCTGCTG	CTGACCCAGG	1020
70	TCCGGCCACG	CAATGCAGGG	ATCTACCGCT	GCATTGGCCA	GGGGCAGAGG	GGCCCACCCA	1080
	TCATCCTGGA	AGCCACACTT	CACCTAGCAG GAGGAGCGTG	AGATTGAAGA TGACCTGCCT	TCCCCCCAAG	GGTCTGCCAG	1140 1200
	AGCCCAGCGT	GTGGTGGGAG	CACGCGGGAG	TCCGGCTGCC	CACCCATGGC	AGGGTCTACC	1260
75	AGAAGGGCCA	CGAGCTGGTG	TTGGCCAATA GGTCAGCGGA	TTGCTGAAAG	TGATGCTGGT	GTCTACACCT	1320 1380
, 5	TGCCCTCCTG	GCTGAAGAAG	CCCCAAGACA	GCCAGCTGGA	GGAGGGCAAA	CCCGGCTACT	1440
	TGGATTGCCT	GACCCAGGCC	ACACCAAAAC	CTACAGTTGT	CTGGTACAGA	AACCAGATGC	1500
			TTCGAGGTCT TGGTACCGTT				1560 1620
80	AGGCGCAAGC	CCGTGTCCAA	GTGCTGGAAA	AGCTCAAGTT	CACACCACCA	CCCCAGCCAC	1680
	AGCAGTGCAT	GGAGTTTGAC	AAGGAGGCCA	CGGTGCCCTG GGAGCAGCCT	TTCAGCCACA	GGCCGAGAGA GTGACAGACA	1740 1800
	<b>PGCCCVCMM</b>						
	ACGCTGGGAC	CCTGCATTTT	GCCCGGGTGA	CTCGAGATGA	CGCTGGCAAC	TACACTTGCA	1860
25	ACGCTGGGAC TTGCCTCCAA	CCTGCATTTT	GCCCGGGTGA GGCCAGATTC	CTCGAGATGA GTGCCCATGT	CGCTGGCAAC	TACACTTGCA GTGGCAGTTT	1920
85	ACGCTGGGAC TTGCCTCCAA TTATCACCTT TGCAGTGCGA	CCTGCATTTT CGGGCCGCAG CAAAGTGGAA GGCCCAGGGG	GCCCGGGTGA	CTCGAGATGA GTGCCCATGT CGACTGTGTA CGCTGATTCA	CGCTGGCAAC CCAGCTCACT CCAGGGCCAC GTGGAAAGGC	TACACTTGCA GTGGCAGTTT ACAGCCCTAC AAGGACCGCA	

```
WO 02/086443
TCCATGACGT GGCCCCTGAG GACTCAGGCC GCTACACCTG CATTGCAGGC AACAGCTGCA 2160
       ACATCAAGCA CACGGAGGCC CCCCTCTATG TOSTGGACAA GCCTGTGCCG GAGGAGTCGG
                                                                           2220
       AGGGCCTGG CAGCCCTCCC CCCTACAAGA TGATCCAGAC CATTGGGTTG TCGGTGGGTG
                                                                            2280
       COGCTGTGGC CTACATCATT GCCGTGCTGG GCCTCATGTT CTACTGCAAG AAGCGCTGCA
                                                                            2340
 5
       AAGCCAAGCG GCTGCAGAAG CAGCCCGAGG GCGAGGAGCC AGAGATGGAA TGCCTCAACG
                                                                            2400
       GAGGGCCTTT GCAGAACGGG CAGCCCTCAG CAGAGATCCA AGAAGAAGTG GCCTTGACCA
                                                                            2460
       GCTTGGGCTC CGGCCCCGCG GCCACCAACA AACGCCACAG CACAAGTGAT AAGATGCACT
                                                                            2520
       TCCCACGGTC TAGCCTGCAG CCCATCACCA CGCTGGGGAA GAGTGAGTTT GGGGAGGTGT
                                                                            2580
       TCCTGGCAAA GGCTCAGGGC TTGGAGGAGG GAGTGGCAGA GACCCTGGTA CTTGTGAAGA
                                                                            2640
       GCCTGCAGAC GAAGGATGAG CAGCAGCAGC TGGACTTCCG GAGGGAGTTG GAGATGTTTG
GGAAGCTGAA CCACGCCAAC GTGGTGCGGC TCCTGGGGCT GTGCCGGGAG GCTGAGCCCC
10
                                                                            2700
                                                                            2760
       ACTACATGGT GCTGGAATAT GTGGATCTGG GAGACCTCAA GCAGTTCCTG AGGATTTCCA
                                                                            2820
       AGAGCAAGGA TGAAAAATTG AAGTCACAGC CCCTCAGCAC CAAGCAGAAG GTGGCCCTAT
                                                                            2880
       GCACCCAGGT AGCCCTGGGC ATGGAGCACC TGTCCAACAA CCGCTTTGTG CATAAGGACT
                                                                            2940
15
       TGGCTGCGCG TAACTGCCTG GTCAGTGCCC AGAGACAAGT GAAGGTGTCT GCCCTGGGCC
       TCAGCAAGGA TGTGTACAAC AGTGAGTACT ACCACTTCCG CCAGGCCTGG GTGCCGCTGC
                                                                            3060
       GCTGGATGTC CCCCGAGGCC ATCCTGGAGG GTGACTTCTC TACCAAGTCT GATGTCTGGG
       CCTTCGGTGT GCTGATGTGG GAAGTGTTTA CACATGGAGA GATGCCCCAT GGTGGGCAGG
                                                                            3180
       CAGATGATGA AGTACTGGCA GATTTGCAGG CTGGGAAGGC TAGACTTCCT CAGCCCGAGG
20
       GCTGCCCTTC CAAACTCTAT CGGCTGATGC AGCGCTGCTG GGCCCTCAGC CCCAAGGACC
                                                                            3300
       GGCCCTCCTT CAGTGAGATT GCCAGCGCCC TGGGAGACAG CACCGTGGAC AGCAAGCCGT
       GAGGAGGGAG CCCGCTCAGG ATGGCCTGGG CAGGGGAGGA CATCTCTAGA GGGAAGCTCA
                                                                            3420
       CAGCATGATG GGCAAGATCC CTGTCCTCCT GGGCCCTGAG GTGCCCTAGT GCAACAGGCA
                                                                            3480
       TTGCTGAGGT CTGAGCAGGG CCTGGCCTTT CCTCCTCTTC CTCACCCTCA TCCTTTGGGA
                                                                           3540
25
       GGCTGACTTG GACCCAAACT GGGCGACTAG GGCTTTGAGC TGGGCAGTTT CCCCTGCCAC
                                                                           3600
       CTCTTCCTCT ATCAGGGACA GTGTGGGTGC CACAGGTAAC CCCAATTTCT GGCCTTCAAC
                                                                           3660
       TTCTCCCCTT GACCGGGTCC AACTCTGCCA CTCATCTGCC AACTTTGCCT GGGGAGGGCT
                                                                           3720
       AGGCTTGGGA TGAGCTGGGT TTGTGGGGAG TTCCTTAATA TTCTCAAGTT CTGGGCACAC
                                                                           3780
       AGGGTTAATG AGTCTCTTGC CCACTGGTCC ACTTGGGGGT CTAGACCAGG ATTATAGAGG
                                                                           3840
30
       ACACAGCAAG TGAGTCCTCC CCACTCTGGG CTTGTGCACA CTGACCCAGA CCCACGTCTT
                                                                           3900
       CCCCACCCTT CTCTCCTTTC CTCATCCTAA GTGCCTGGCA GATGAAGGAG TTTTCAGGAG
                                                                           3960
       CTTTTGACAC TATATAAACC GCCCTTTTTG TATGCACCAC GGGCGGCTTT TATATGTAAT
                                                                            4020
       TGCAGCGTGG GGTGGGTGGG CATGGGAGGT AGGGGTGGGC CCTGGAGATG AGGAGGGTGG
                                                                            4080
       4140
35
       TOTTTTTGTT TTTACACTCG CTGCTCTCAA TAAATAAGCC TTTTTTA
       Seq ID NO: 667 Protein sequence
       Protein Accession #: NP 002812
40
                                         31
       MGAARGSPAR PRRLPLLSVL LLPLLGGTQT AIVFIKQPSS QDALQGRRAL LRCEVEAPGP
                                                                              60
       VHVYWLLDGA PVQDTERRFA QGSSLSFAAV DRLQDSGTFQ CVARDDVTGE EARSANASFN
                                                                            120
       IKWIEAGPVV LKHPASEAEI QPQTQVTLRC HIDGHPRPTY QWFRDGTPLS DGQSNHTVSS
                                                                            180
45
       KERNLTLRPA GPEHSGLYSC CAHSAFGQAC SSQNFTLSIA DESFARVVLA PQDVVVARYE
                                                                            240
                                                                            300
       EAMFHCOFSA OPPPSLOWLF EDETPITHRS RPPHLRRATV FANGSLLLTQ VRPRNAGIYR
       CIGOGORGPP IILEATLHLA EIEDMPLFEP RVFTAGSEER VTCLPPKGLP EPSVWWEHAG
                                                                            360
       VRLPTHGRVY QKGHELVLAN IAESDAGVYT CHAANLAGQR RQDVNITVAT VPSWLKKPQD
                                                                             420
       SQLEEGKPGY LDCLTQATPK PTVVWYRNQM LISEDSRFEV FKNGTLRINS VEVYDGTWYR
                                                                             480
50
       CMSSTPAGSI EAQARVQVLE KLKFTPPPQP QQCMEFDKEA TVPCSATGRE KPTIKWERAD
                                                                            540
       GSSLPEWVTD NAGTLHFARV TRDDAGNYTC IASNGPQGQI RAHVQLTVAV FITFKVEPER
                                                                             600
       TTVYQGHTAL LQCEAQGDPK PLIQWKGKDR ILDPTKLGPR MHIFQNGSLV IHDVAPEDSG
                                                                             660
       RYTCIAGNSC NIKHTEAPLY VVDKPVPEES EGPGSPPPYK MIQTIGLSVG AAVAYIIAVL
                                                                            720
       GLMFYCKKRC KAKRLQKQPE GEEPEMECLN GGPLQNGQPS AEIQEEVALT SLGSGPAATN
                                                                             780
55
       KRHSTSDKMH FPRSSLQPIT TLGKSEFGEV FLAKAQGLEE GVABTLVLVK SLQTKDEQQQ
                                                                             840
       LDFRRELEMF GKLNHANVVR LLGLCREAEP HYMVLEYVDL GDLKOFLRIS KSKDEKLKSQ
                                                                             900
       PLSTKQKVAL CTQVALGMEH LSMNRFVHKD LAARNCLVSA QRQVKVSALG LSKDVYNSEY
                                                                             960
       YHFROAWVPL RWMSPEAILE GDFSTKSDVW AFGVLMWEVF THGEMPHGGO ADDEVLADLO
                                                                           1020
       AGKARLPOPE GCPSKLYRLM QRCWALSPKD RPSFSEIASA LGDSTVDSKP
60
       Seg ID NO: 668 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..1389
65
                                         31
                                                               51
       ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGA GAGATTTAGA TGACAGAGAA
                                                                             60
       ACCCTTGTTT CTGAACATGA GTATAAAGAG AAAACCTGTC AGTCTGCTGC TCTTTTTAAT
                                                                            120
       GTTGTCAACT CGATTATAGG ATCTGGTATA ATAGGATTGC CTTATTCAAT GAAGCAAGCT
                                                                            180
70
       GGGTTTCCTT TGGGAATATT GCTTTTATTC TGGGTTTCAT ATGTTACGGA CTTTTCCCTT
                                                                            240
       GTTTTATTGA TAAAAGGAGG GGCCCTCTCT GGAACAGATA CCTACCAGTC TTTGGTCAAT
                                                                            300
       AAAACTTTCG GCTTTCCAGG GTATCTGCTC CTCTCTGTTC TTCAGTTTTT GTATCCTTTT
                                                                            360
       ATAGCAATGA TAAGTTACAA TATAATAGCT GGAGATACTT TGAGCAAAGT TTTTCAAAGA
                                                                             420
       ATCCCAGGAG TTGATCCTGA AAACGTGTTT ATTGGTCGCC ACTTCATTAT TGGACTTTCC
                                                                             480
       ACAGTIACCT TTACTCTGCC TTTATCCTTG TACCGAAATA TAGCAAAGGTC
TCCCTCATCT CTACAGGTTT AACAACTCTG ATTCTTGGAA TTGTAATGGC AAGGGCAATT
75
                                                                             540
                                                                             600
       TCACTGGGTC CACACATACC AAAAACAGAA GACGCTTGGG TATTTGCAAA GCCCAATGCC
                                                                             660
       ATTCAAGCGG TCGGGGTTAT GTCTTTTGCA TTTATTTGCC ACCATAACTC CTTCTTAGTT
       TACAGTTCTC TAGAAGAACC CACAGTAGCT AAGTGGTCCC GCCTTATCCA TATGTCCATC
                                                                             780
80
       GTGATTTCTG TATTTATCTG TATATTCTTT GCTACATGTG GATACTTGAC ATTTACTGGC
       TTCACCCAAG GGGACTTATT TGAAAATTAC TGCAGAAATG ATGACCTGGT AACATTTGGA
                                                                             900
       AGATTTTGTT ATGGTGTCAC TGTCATTTTG ACATACCCTA TGGAATGCTT TGTGACAAGA
       GAGGTAATTG CCAATGTGTT TTTTGGTGGG AATCTTTCAT CGGTTTTCCA CATTGTTGTA
                                                                            1020
       ACAGTGATGG TCATCACTGT AGCCACGCTT GTGTCATTGC TGATTGATTG CCTCGGGATA
                                                                            1080
85
       GTTCTAGAAC TCAATGGTGT GCTCTGTGCA ACTCCCCTCA TTTTTATCAT TCCATCAGCC
                                                                            1140
       TGTTATCTGA AACTGTCTGA AGAACCAAGG ACACACTCCG ATAAGATTAT GTCTTGTGTC
                                                                            1200
       ATGCTTCCCA TTGGTGCTGT GGTGATGGTT TTTGGATTCG TCATGGCTAT TACAAATACT
                                                                           1260
```

AATACCTCAG AGTCTCATGT TCAGCAGACA ACACAACTTT CTACTTTAAA TATTAGTATC 1380 TTTCAATGA 5 Seq ID NO: 669 Protein sequence Protein Accession #: Eos sequence 31 10 MGYORQEPVI PPORDLDDRE TLVSEHEYKE KTCQSAALFN VVNSIIGSGI IGLPYSMKQA 60 GPPLGILLLF WVSYVTDFSL VLLIKGGALS GTDTYQSLVN KTFGFPGYLL LSVLQFLYPF 120 180 IAMISYNIIA GDTLSKVFQR IPGVDPENVF IGRHFIIGLS TVTFTLPLSL YRNIAKLGKV SLISTGLTTL ILGIVMARAI SLGPHIPKTE DAWVFAKPNA IQAVGVMSFA FICHHNSFLV 240 YSSLEEPTVA KWSRLIHMSI VISVFICIFF ATCGYLTFTG FTQGDLFENY CRNDDLVTFG 300 15 RFCYGVTVIL TYPMECFVTR EVIANVFFGG NLSSVPHIVV TVMVITVATL VSLLIDCLGI 360 VLELNGVLCA TPLIFIIPSA CYLKLSEEPR THSDKIMSCV MLPIGAVVMV FGFVMAITNT 420 QDCTHGQEMF YCFPDNFSLT NTSESHVQQT TQLSTLNISI FQ Seq ID NO: 670 DNA sequence 20 Nucleic Acid Accession #: Eos sequence Coding sequence: 1..1284 51 31 25 ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGA GAGGATTGCC TTATTCAATG 60 AAGCAAGCTG GGTTTCCTTT GGGAATATTG CTTTTATTCT GGGTTTCATA TGTTACAGAC 120 TTTTCCCTTG TTTTATTGAT AAAAGGAGGG GCCCTCTCTG GAACAGATAC CTACCAGTCT 180 TTGGTCAATA AAACTTTCGG CTTTCCAGGG TATCTGCTCC TCTCTGTTCT TCAGTTTTTG 240 TATCCTTTTA TAGCAATGAT AAGTTACAAT ATAATAGCTG GAGATACTTT GAGCAAAGTT
TTTCAAAGAA TCCCAGGAGT TGATCCTGAA AACGTGTTTA TTGGTCGCCA CTTCATTATT 300 30 360 GGACTITICCA CAGTIACCTI TACTCTGCCT TTATCCTTGT ACCGAAATAT AGCAAAGCTT
GGAAAGGTCT CCCTCATCTC TACAGGTTTA ACAACTCTGA TTCTTGGAAT TGTAATGGCA AGGGCAATTT CACTGGGTCC ACACATACCA AAAACAGAAG ACGCTTGGGT ATTTGCAAAG 540 CCCAATGCCA TTCAAGCGGT CGGGGTTATG TCTTTTGCAT TTATTTGCCA CCATAACTCC 35 TTCTTAGTTT ACAGTTCTCT AGAAGAACCC ACAGTAGCTA AGTGGTCCCG CCTTATCCAT 660 ATGTCCATCG TGATTTCTGT ATTTATCTGT ATATTCTTTG CTACATGTGG ATACTTGACA 720 TTTACTGGCT TCACCCAAGG GGACTTATTT GAAAATTACT GCAGAAATGA TGACCTGGTA 780 ACATTIGGAA GATTITGITA TGGTGTCACT GTCATTITGA CATACCCTAT GGAATGCTTT 840 GTGACAAGAG AGGTAATTGC CAATGTGTTT TTTGGTGGGA ATCTTTCATC GGTTTTCCAC 900 40 ATTGTTGTAA CAGTGATGGT CATCACTGTA GCCACGCTTG TGTCATTGCT GATTGATTGC 960 CTCGGGATAG TTCTAGAACT CAATGGTGTG CTCTGTGCAA CTCCCCTCAT TTTTATCATT 1020 CCATCAGCCT GTTATCTGAA ACTGTCTGAA GAACCAAGGA CACACTCCGA TAAGATTATG 1080 TCTTGTGTCA TGCTTCCCAT TGGTGCTGTG GTGATGGTTT TTGGATTCGT CATGGCTATT 1140 ACAAATACTC AAGACTGCAC CCATGGGCAG GAAATGTTCT ACTGCTTTCC TGACAATTTC 1200 45 TCTCTCACAA ATACCTCAGA GTCTCATGTT CAGCAGACAA CACAACTTTC TACTTTAAAT 1260 ATTAGTATCT TTCAACTCGA GTAA Seq ID NO: 671 Protein sequence Protein Accession #: Eos sequence 50 MGYOROEPVI PPORGLPYSM KQAGFPLGIL LLFWVSYVTD FSLVLLIKGG ALSGTDTYQS LVNKTFGFPG YLLLSVLQPL YPFIAMISYN IIAGDTLSKV FQRIPGVDPE NVFIGRHFII 120 55 GLSTVTFTLP LSLYRNIAKL GKVSLISTGL TTLILGIVMA RAISLGPHIP KTEDAWVFAK PNAIQAVGVM SFAFICHHNS FLVYSSLEEP TVAKWSRLIH MSIVISVFIC IFFATCGYLT FTGFTQGDLF ENYCRNDDLV TFGRFCYGVT VILTYPMECF VTREVIANVF PGGNLSSVFH 240 300 IVVTVMVITV ATLVSLLIDC LGIVLELNGV LCATPLIFII PSACYLKLSE EPRTHSDKIM 360 SCVMLPIGAV VMVPGFVMAI TNTQDCTHGQ EMFYCPPDNF SLTNTSESHV QQTTQLSTLN 420 60 ISIFQLE . Seq ID NO: 672 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 1..1203 65 41 51 31 ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGT TTTCCCTTGT TTTATTGATA 60 AAAGGAGGG CCCTCTCTGG AACAGATACC TACCAGTCTT TGGTCAATAA AACTTTCGGC 120 70 TTTCCAGGGT ATCTGCTCCT CTCTGTTCTT CAGTTTTTGT ATCCTTTTAT AGCAATGATA 180 AGTTACAATA TAATAGCTGG AGATACTTTG AGCAAAGTTT TTCAAAGAAT CCCAGGAGTT 240 GATCCTGAAA ACGTGTTTAT TGGTCGCCAC TTCATTATTG GACTTTCCAC AGTTACCTTT 300 ACTCTGCCTT TATCCTTGTA CCGAAATATA GCAAAGCTTG GAAAGGTCTC CCTCATCTCT 360 ACAGGTTTAA CAACTCTGAT TCTTGGAATT GTAATGGCAA GGGCAATTTC ACTGGGTCCA 75 CACATACCAA AAACAGAAGA CGCTTGGGTA TTTGCAAAGC CCAATGCCAT TCAAGCGGTC GGGGTTATGT CTTTTGCATT TATTTGCCAC CATAACTCCT TCTTAGTTTA CAGTTCTCTA 480 GAAGAACCCA CAGTAGCTAA GTGGTCCCGC CTTATCCATA TGTCCATCGT GATTTCTGTA TTTATCTGTA TATTCTTTGC TACATGTGGA TACTTGACAT TTACTGGCTT CACCCAAGGG GACTTATTTG AAAATTACTG CAGAAATGAT GACCTGGTAA CATTTGGAAG ATTTTGTTAT 720 80 GGTGTCACTG TCATTTTGAC ATACCCTATG GAATGCTTTG TGACAAGAGA GGTAATTGCC 780 AATGTGTTTT TTGGTGGGAA TCTTTCATCG GTTTTCCACA TTGTTGTAAC AGTGATGGTC 840 ATCACTGTAG CCACGCTTGT GTCATTGCTG ATTGATTGCC TCGGGATAGT TCTAGAACTC 900 AATGGTGTGC TCTGTGCAAC TCCCCTCATT TTTATCATTC CATCAGCCTG TTATCTGAAA 960 CTGTCTGAAG AACCAAGGAC ACACTCCGAT AAGATTATGT CTTGTGTCAT GCTTCCCATT 1020 85 GGTGCTGTGG TGATGGTTTT TGGATTCGTC ATGGCTATTA CAAATACTCA AGACTGCACC 1080 CATGGGCAGG AAATGTTCTA CTGCTTTCCT GACAATTTCT CTCTCACAAA TACCTCAGAG 1140 TCTCATGTTC AGCAGACAAC ACAACTTTCT ACTTTAAATA TTAGTATCTT TCAACTCGAG 1200

CAAGACTGCA CCCATGGGCA GGAAATGTTC TACTGCTTTC CTGACAATTT CTCTCTCACA 1320

WO 02/086443

```
Seq ID NO: 673 Protein sequence
        Protein Accession #: Eos sequence
 5
                                                                     51
        MGYQRQEPVI PPQFSLVLLI KGGALSGTDT YQSLVNKTFG FPGYLLLSVL QPLYPFIAMI
                                                                                    60
        SYNIIAGDTL SKVFQRIPGV DPENVFIGRH FIIGLSTVTF TLPLSLYRNI AKLGKVSLIS
                                                                                   120
10
        TGLTTLILGI VMARAISLGP HIPKTEDAWV FAKPNAIQAV GVMSFAFICH HNSFLVYSSL
                                                                                   180
        EEPTVAKWSR LIHMSIVISV PICIFFATCG YLTFTGFTQG DLFENYCRND DLVTFGRFCY
                                                                                   240
        GVTVILTYPM ECFVTREVIA NVFFGGNLSS VFHIVVTVMV ITVATLVSLL IDCLGIVLEL
                                                                                   300
        NGVLCATPLI FIIPSACYLK LSEEPRTHSD KIMSCVMLPI GAVVMVFGFV MAITNTQDCT
                                                                                   360
        HGQEMFYCFP DNFSLTNTSE SHVQQTTQLS TLNISIFQLE
15
        Seq ID NO: 674 DNA sequence
        Nucleic Acid Accession #: Eos sequence
        Coding sequence: 1..1140
20
                                            31
        ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGG TCAATAAAAC TTTCGGCTTT
        CCAGGGTATC TGCTCCTCTC TGTTCTTCAG TTTTTGTATC CTTTTATAGC AATGATAAGT
                                                                                   120
        TACAATATAA TAGCTGGAGA TACTTTGAGC AAAGTTTTTC AAAGAATCCC AGGAGTTGAT
                                                                                   180
25
        CCTGAAAACG TGTTTATTGG TCGCCACTTC ATTATTGGAC TTTCCACAGT TACCTTTACT
                                                                                   240
        CTGCCTTTAT CCTTGTACCG AAATATAGCA AAGCTTGGAA AGGTCTCCCT CATCTCTACA
                                                                                   300
        GGTTTAACAA CTCTGATTCT TGGAATTGTA ATGGCAAGGG CAATTTCACT GGGTCCACAC
                                                                                   360
        ATACCAAAAA CAGAAGACGC TTGGGTATTT GCAAAGCCCA ATGCCATTCA AGCGGTCGGG
                                                                                   420
        GTTATGTCTT TTGCATTTAT TTGCCACCAT AACTCCTTCT TAGTTTACAG TTCTCTAGAA
                                                                                   480
30
        GAACCCACAG TAGCTAAGTG GTCCCGCCTT ATCCATATGT CCATCGTGAT TTCTGTATTT
                                                                                   540
        ATCTGTATAT TCTTTGCTAC ATGTGGATAC TTGACATTTA CTGGCTTCAC CCAAGGGGAC
                                                                                   600
        TTATTTGAAA ATTACTGCAG AAATGATGAC CTGGTAACAT TTGGAAGATT TTGTTATGGT
                                                                                   660
        GTCACTGTCA TTTTGACATA CCCTATGGAA TGCTTTGTGA CAAGAGAGGT AATTGCCAAT
                                                                                   720
        GTGTTTTTTG GTGGGAATCT TTCATCGGTT TTCCACATTG TTGTAACAGT GATGGTCATC
                                                                                   780
       ACTGTAGCCA CGCTTGTGTC ATTGCTGATT GATTGCCTCG GGATAGTTCT AGAACTCAAT
GGTGTGCTCT GTGCAACTCC CCTCATTTTT ATCATTCCAT CAGCCTGTTA TCTGAAACTG
35
                                                                                   840
                                                                                   900
       TCTGAAGAAC CAAGGACACA CTCCGATAAG ATTATGTCTT GTGTCATGCT TCCCATTGGT
GCTGTGGTGA TGGTTTTTGG ATTCGTCATG GCTATTACAA ATACTCAAGA CTGCACCCAT
                                                                                   960
       GGGCAGGAAA TGTTCTACTG CTTTCCTGAC AATTTCTCTC TCACAAATAC CTCAGAGTCT
CATGTTCAGC AGACAACACA ACTTTCTACT TTAAATATTA GTATCTTTCA ACTCGAGTAA
40
        Seq ID NO: 675 Protein sequence
        Protein Accession #: Eos sequence
45
                                            31
        MGYORQEPVI PPOVNKTFGF PGYLLLSVLQ PLYPFIAMIS YNIIAGDTLS KVFORIPGVD
                                                                                    60
        PENVFIGRHF IIGLSTVTFT LPLSLYRNIA KLGKVSLIST GLTTLILGIV MARAISLGPH
                                                                                   120
        IPKTEDAWVF AKPNAIQAVG VMSFAFICHH NSFLVYSSLE EPTVAKWSRL IHMSIVISVF
                                                                                   180
50
        ICIFFATCGY LTFTGFTQGD LFENYCRNDD LVTFGRFCYG VTVILTYPME CFVTREVIAN
                                                                                   240
        VFFGGNLSSV FHIVVTVMVI TVATLVSLLI DCLGIVLELN GVLCATPLIF IIPSACYLKL
                                                                                   300
        SEEPRTHSDK IMSCVMLPIG AVVMVFGFVM AITNTQDCTH GQEMFYCFPD NFSLTNTSES
                                                                                   360
       HVOOTTOLST LNISIFOLE
55
        Seq ID NO: 676 DNA sequence
       Nucleic Acid Accession #: NM_006853.1
Coding sequence: 26..874
60
        AGGAATCTGC GCTCGGGTTC CGCAGATGCA GAGGTTGAGG TGGCTGCGGG ACTGGAAGTC
        ATCGGGCAGA GGTCTCACAG CAGCCAAGGA ACCTGGGGCC CGCTCCTCCC CCCTCCAGGC
                                                                                   120
        CATGAGGATT CTGCAGTTAA TCCTGCTTGC TCTGGCAACA GGGCTTGTAG GGGGAGAGAC
                                                                                   180
        CAGGATCATC AAGGGGTTCG AGTGCAAGCC TCACTCCCAG CCCTGGCAGG CAGCCCTGTT
                                                                                   240
65
        CGAGAAGACG CGGCTACTCT GTGGGGCGAC GCTCATCGCC CCCAGATGGC TCCTGACAGC
                                                                                   300
        AGCCCACTGC CTCAAGCCCC GCTACATAGT TCACCTGGGG CAGCACAACC TCCAGAAGGA
                                                                                   360
        GGAGGGCTGT GAGCAGACCC GGACAGCCAC TGAGTCCTTC CCCCACCCCG GCTTCAACAA
                                                                                   420
        CAGCCTCCCC AACAAGACC ACCGCAATGA CATCATGCTG GTGAAGATGG CATCGCCAGT
                                                                                   480
        CTCCATCACC TGGGCTGTGC GACCCCTCAC CCTCTCCTCA CGCTGTGTCA CTGCTGGCAC
                                                                                   540
70
        CAGCTGCCTC ATTTCCGGCT GGGGCAGCAC GTCCAGCCCC CAGTTACGCC TGCCTCACAC
                                                                                   600
        CTTGCGATGC GCCAACATCA CCATCATTGA GCACCAGAAG TGTGAGAACG CCTACCCCGG CAACATCACA GACACCATGG TGTGTGCCAG CGTGCAGGAA GGGGGCAAGG ACTCCTGCCA
                                                                                   660
                                                                                   720
        GGGTGACTCC GGGGGCCCTC TGGTCTGTAA CCAGTCTCTT CAAGGCATTA TCTCCTGGGG
                                                                                   780
        CCAGGATCCG TGTGCGATCA CCCGAAAGCC TGGTGTCTAC ACGAAAGTCT GCAAATATGT
                                                                                   840
        GGACTGGATC CAGGAGACGA TGAAGAACAA TTAGACTGGA CCCACCCACC ACAGCCCATC ACCCTCCATT TCCACTTGGT GTTTGGTTCC TGTTCACTGT GTTAATAAGA AACCCTAAGC
75
                                                                                   900
                                                                                   960
        CAAGACCCTC TACGAACATT CTTTGGGCCT CCTGGACTAC AGGAGATGCT GTCACTTAAT
        AATCAACCTG GGGTTCGAAA TCAGTGAGAC CTGGATTCAA ATTCTGCCTT GAAATATTGT
        GACTCTGGGA ATGACAACAC CTGGTTTGTT CTCTGTTGTA TCCCCAGCCC CAAAGACAGC
80
        TCCTGGCCAT ATATCAAGGT TTCAATAAAT ATTTGCTAAA TGAGTG
        Seg ID NO: 677 Protein seguence
        Protein Accession #: NP_006844.1
85
                                                                     51
        MRILOLILLA LATGLVGGET RIIKGFECKP HSQPWQAALF EKTRLLCGAT LIAPRWLLTA
```

120

```
AHCLKPRYIV HLGQHNLQKE EGCEQTRTAT ESPPHPGFNN SLPNKDHRND IMLVKMASPV
       SITWAVRPLT LSSRCVTAGT SCLISGWGST SSPQLRLPHT LRCANITIIE HQKCENAYPG
                                                                               180
       NITDTMVCAS VQEGGKDSCQ GDSGGPLVCN QSLQGIISWG QDPCAITRKP GVYTKVCKYV
                                                                               240
       DWIGETMKNN
 5
       Seq ID NO: 678 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..933
10
                              21
                                          31
                   11
       ATGTGCAGCA ATGGACGGTG CATCCCGGGC GCCTGGCAGT GTGACGGGCT GCCTGACTGC
                                                                                60
       TTCGACAAGA GTGATGAGAA GGAGTGCCCC AAGGCTAAGT CGAAATGTGG CCCGACCTTC
                                                                               120
       TTCCCCTGTG CCAGCGCAT CCATTGCATC ATTGGTCGCT TCCGGTGCAA TGGGTTTGAG
                                                                               180
       GACTGTCCCG ATGGCAGCGA TGAAGAGAAC TGCACAGCAA ACCCTCTGCT TTGCTCCACC
                                                                               240
15
       GCCCGCTACC ACTGCAAGAA CGGCCTCTGT ATTGACAAGA GCTTCATCTG CGATGGACAG
                                                                               300
       AATAACTGTC AAGACAACAG TGATGAGGAA AGCTGTGAAA GTTCTCAAGA ACCCGGCAGT
                                                                               360
       GGGCAGGTGT TTGTGACTTC AGAGAACCAA CTTGTGTATT ACCCCAGCAT CACCTATGCC
                                                                               420
       ATCATCGGCA GCTCCGTCAT TTTTGTGCTG GTGGTGGCCC TGCTGGCACT GGTCTTGCAC
                                                                               480
       CACCAGCGGA AGCGGAACAA CCTCATGACG CTGCCCGTGC ACCGGCTGCA GCACCCTGTG
                                                                               540
20
       CTGCTGTCCC GCCTGGTGGT CCTGGACCAC CCCCACCACT GCAACGTCAC CTACAACGTC
                                                                               600
       AATAATGGCA TCCAGTATGT GGCCAGCCAG GCGGAGCAGA ATGCGTCGGA AGTAGGCTCC
                                                                               660
       CCACCCTCCT ACTCCGAGGC CTTGCTGGAC CAGAGGCCTG CGTGGTATGA CCTTCCTCCA
                                                                               720
        CCGCCCTACT CTTCTGACAC GGAATCTCTG AACCAAGCCG ACCTGCCCCC CTACCGCTCC
                                                                               780
        CGGTCCGGGA GTGCCAACAG TGCCAGCTCC CAGGCAGCCA GCAGCCTCCT GAGCGTGGAA
                                                                               840
25
        GACACCAGCC ACAGCCCGGG GCAGCCTGGC CCCCAGGAGG GCACTGCTGA GCCCAGGGAC
        TCTGAGCCCA GCCAGGGCAC TGAAGAAGTA TAA
        Seq ID NO: 679 Protein sequence
30
        Protein Accession #: Eos sequence
                                                      41
        MCSNGRCIPG AWQCDGLPDC FDKSDEKECP KAKSKCGPTF FPCASGIHCI IGRFRCNGFE
                                                                                60
        DCPDGSDEEN CTANPLLCST ARYHCKNGLC IDKSFICDGQ NNCQDNSDEE SCESSQEPGS
                                                                               120
35
        GOVFVTSENQ LVYYPSITYA IIGSSVIFVL VVALLALVLH HQRKRNNLMT LPVHRLQHPV
                                                                               180
        LLSRLVVLDH PHHCNVTYNV NNGIQYVASQ AEQNASEVGS PPSYSEALLD QRPAWYDLPP
                                                                               240
        PPYSSDTESL NQADLPPYRS RSGSANSASS QAASSLLSVE DTSHSPGQPG PQEGTAEPRD
                                                                               300
        SEPSOGTEEV
40
        Seq ID NO: 680 DNA sequence
        Nucleic Acid Accession #: S78203.1
        Coding sequence: 1..2190
                                                                  51
45.
                               21
                   11
        ATGAATCCTT TCCAGAAAAA TGAGTCCAAG GAAACTCTTT TTTCACCTGT CTCCATTGAA
        GAGGTACCAC CTCGACCACC TAGCCCTCCA AAGAAGCCAT CTCCGACAAT CTGTGGCTCC
        AACTATCCAC TGAGCATTGC CTTCATTGTG GTGAATGAAT TCTGCGAGCG CTTTTCCTAT
                                                                                180
        TATGGAATGA AAGCTGTGCT GATCCTGTAT TTCCTGTATT TCCTGCACTG GAATGAAGAT
                                                                                240
 50
        ACCTCCACAT CTATATACCA TGCCTTCAGC AGCCTCTGTT ATTTTACTCC CATCCTGGGA
                                                                                300
        GCAGCCATTG CTGACTCGTG GTTGGGAAAA TTCAAGACAA TCATCTATCT CTCCTTGGTG
                                                                                360
        TATGTGCTTG GCCATGTGAT CAAGTCCTTG GGTGCCTTAC CAATACTGGG AGGACAAGTG
                                                                                420
        GTACACACAG TCCTATCATT GATCGGCCTG AGTCTAATAG CTTTGGGGAC AGGAGGCATC
                                                                                480
        AAACCCTGTG TGGCAGCTTT TGGTGGAGAC CAGTTTGAAG AAAAACATGC AGAGGAACGG
                                                                                540
 55
        ACTAGATACT TCTCAGTCTT CTACCTGTCC ATCAATGCAG GGAGCTTGAT TTCTACATTT
                                                                                600
        ATCACACCCA TGCTGAGAGG AGATGTGCAA TGTTTTGGAG AAGACTGCTA TGCATTGGCT
TTTGGAGTTC CAGGACTGCT CATGGTAATT GCACTTGTTG TGTTTGCAAT GGGAAGCAAA
                                                                                660
                                                                                720
        ATATACAATA AACCACCCCC TGAAGGAAAC ATAGTGGCTC AAGTTTTCAA ATGTATCTGG
                                                                                780
         TTTGCTATTT CCAATCGTTT CAAGAACCGT TCTGGAGACA TTCCAAAGCG ACAGCACTGG
                                                                                840
 60
        CTAGACTGGG CAGCTGAGAA ATATCCAAAG CAGCTCATTA TGGATGTAAA GGCACTGACC AGGGTACTAT TCCTTTATAT CCCATTGCC ATGTTCTGGG CTCTTTTGGA TCAGCAGGGT
                                                                                900
                                                                                960
         TCACGATGGA CTTTGCAAGC CATCAGGATG AATAGGAATT TGGGGTTTTT TGTGCTTCAG
         CCGGACCAGA TGCAGGTTCT AAATCCCTTT CTGGTTCTTA TCTTCATCCC GTTGTTTGAC
        TTTGTCATTT ATCGTCTGGT CTCCAAGTGT GGAATTAACT TCTCATCACT TAGGAAAATG
                                                                               1140
 65
         GCTGTTGGTA TGATCCTAGC GTGCCTGGCA TTTGCAGTTG CGGCAGCTGT AGAGATAAAA
                                                                               1200
         ATAAATGAAA TGGCCCCAGC CCAGTCAGGT CCCCAGGAGG TTTTCCTACA AGTCTTGAAT
                                                                               1260
         CTGGCAGATG ATGAGGTGAA GGTGACAGTG GTGGGAAATG AAAACAATTC TCTGTTGATA
                                                                               1320
         GAGTCCATCA AATCCTTTCA GAAAACACCA CACTATTCCA AACTGCACCT GAAAACAAAA
                                                                               1380
         AGCCAGGATT TTCACTTCCA CCTGAAATAT CACAATTTGT CTCTCTACAC TGAGCATTCT
                                                                               1440
 70
         GTGCAGGAGA AGAACTGGTA CAGTCTTGTC ATTCGTGAAG ATGGGAACAG TATCTCCAGC
                                                                               1500
         ATGATGGTAA AGGATACAGA AAGCAAAACA ACCAATGGGA TGACAACCGT GAGGTTTGTT
                                                                               1560
         AACACTTTGC ATAAAGATGT CAACATCTCC CTGAGTACAG ATACCTCTCT CAATGTTGGT
                                                                               1620
         GAAGACTATG GTGTGTCTGC TTATAGAACT GTGCAAAGAG GAGAATACCC TGCAGTGCAC
TGTAGAACAG AAGATAAGAA CTTTTCTCTG AATTTGGGTC TTCTAGACTT TGGTGCAGCA
                                                                               1680
                                                                               1740
 75
         TATCTGTTTG TTATTACTAA TAACACCAAT CAGGGTCTTC AGGCCTGGAA GATTGAAGAC
                                                                               1800
         ATTCCAGCCA ACAAAATGTC CATTGCGTGG CAGCTACCAC AATATGCCCT GGTTACAGCT
                                                                               1860
         GGGGAGGTCA TGTTCTCTGT CACAGGTCTT GAGTTTTCTT ATTCTCAGGC TCCCTCTAGC
                                                                               1920
         ATGAAATCTG TGCTCCAGGC AGCTTGGCTA TTGACAATTG CAGTTGGGAA TATCATCGTG
                                                                                1980
         CTTGTTGTGG CACAGTTCAG TGGCCTGGTA CAGTGGGCCG AATTCATTTT GTTTTCCTGC
                                                                                2040
  80
         CTCCTGCTGG TGATCTGCCT GATCTTCTCC ATCATGGGCT ACTACTATGT TCCTGTAAAG
                                                                                2100
         ACAGAGGATA TGCGGGGTCC AGCAGATAAG CACATTCCTC ACATCCAGGG GAACATGATC 2160
         AAACTAGAGA CCAAGAAGAC AAAACTCTGA
  85
         Seq ID NO: 681 Protein sequence
         Protein Accession #: AAB34388.1
```

```
11
       MNPFOKNESK ETLPSPVSIE EVPPRPPSPP KKPSPTICGS NYPLSIAFIV VNEPCERFSY
       YGMKAVLILY FLYPLHWNED TSTSIYHAFS SLCYPTPILG AAIADSWLGK PKTIIYLSLV
                                                                           120
 5
       YVLGHVIKSL GALPILGGQV VHTVLSLIGL SLIALGTGGI KPCVAAFGGD QFEEKHAEER
                                                                           180
       TRYFSVFYLS INAGSLISTF ITPMLRGDVQ CFGEDCYALA FGVPGLLMVI ALVVFAMGSK
                                                                            240
       IYNKPPPEGN IVAQVFKCIW FAISNRFKNR SGDIPKRQHW LDWAAEKYPK QLIMDVKALT
                                                                            300
       RVLFLYIPLP MFWALLDQQG SRWTLQAIRM NRNLGPPVLQ PDQMQVLNPF LVLIFIPLFD
                                                                           360
       FVIYRLVSKC GINFSSLRKM AVGMILACLA PAVAAAVEIK INEMAPAQSG PQEVFLQVLN
                                                                            420
10
       LADDEVKVTV VGNENNSLLI ESIKSFQKTP HYSKLHLKTK SQDFHFHLKY HNLSLYTEHS
                                                                            480
       VQEKNWYSLV IREDGNSISS MMVKDTESKT TNGMTTVRFV NTLHKDVNIS LSTDTSLNVG
                                                                           540
       EDYGVSAYRT VQRGEYPAVH CRTEDKNFSL NLGLLDFGAA YLFVITNNTN QGLQAWKIED
                                                                            600
       IPANKMSIAW QLPQYALVTA GEVMFSVTGL EFSYSQAPSS MKSVLQAAWL LTIAVGNIIV
                                                                            660
       LVVAQFSGLV QWAEFILFSC LLLVICLIFS IMGYYYVPVK TEDMRGPADK HIPHIQGNMI
15
       KLETKKTKL
       Seg ID NO: 682 DNA seguence
       Nucleic Acid Accession #: NM_016077.1
       Coding sequence: 128..667
20
                             21
                  11
       TOGOTTTGTG ATTOTTGATO COGGAACTTTG TOACCOAGGA ACCCOGGAAG AGGTAGOTCA
       120
25
       ACTGTAGATG CCCTCCAAAT CCTTGGTTAT GGAATATTTG GCTCATCCCA GTACACTCGG
                                                                           180
       CTTGGCTGTT GGAGTTGCTT GTGGCATGTG CCTGGGCTGG AGCCTTCGAG TATGCTTTGG
                                                                           240
       GATGCTCCCC AAAAGCAAGA CGAGCAAGAC ACACACAGAT ACTGAAAGTG AAGCAAGCAT
                                                                           300
       CTTGGGAGAC AGCGGGGAGT ACAAGATGAT TCTTGTGGTT CGAAATGACT TAAAGATGGG
                                                                           360
       AAAAGGGAAA GTGGCTGCCC AGTGCTCTCA TGCTGCTGTT TCAGCCTACA AGCAGATTCA
                                                                            420
30
       AAGAAGAAAT CCTGAAATGC TCAAACAATG GGAATACTGT GGCCAGCCCA AGGTGGTGGT
                                                                           480
       CAAAGCTCCT GATGAAGAAA CCCTGATTGC ATTATTGGCC CATGCAAAAA TGCTGGGACT
                                                                           540
       GACTGTAAGT TTAATTCAAG ATGCTGGACG TACTCAGATT GCACCAGGCT CTCAAACTGT
                                                                            600
       CCTAGGGATT GGGCCAGGAC CAGCAGACCT AATTGACAAA GTCACTGGTC ACCTAAAACT
                                                                            660
       TTACTAGGTG GACTTTGATA TGACAACAAC CCCTCCATCA CAAGTGTTTG AAGCCTGTCA
                                                                            720
       GATTCTAACA ACAAAAGCTG AATTTCTTCA CCCAACTTAA ATGTTCTTGA GATGAAAATA
35
       AAACCTATTC CCATGTTCTA AAAAAA
       Seq ID NO: 683 Protein sequence
       Protein Accession #: NP_057161.1
40
       MPSKSLVMEY LAHPSTLGLA VGVACGMCLG WSLRVCFGML PKSKTSKTHT DTESEASILG
                                                                            60
       DSGEYKMILV VRNDLKMGKG KVAAQCSHAA VSAYKQIQRR NPEMLKQWEY CGQPKVVVKA
                                                                           120
45
       PDEETLIALL AHAKMLGLTV SLIQDAGRTQ IAPGSQTVLG IGPGPADLID KVTGHLKLY
       Seq ID NO: 684 DNA sequence
       Nucleic Acid Accession #: NM_004864.1
       Coding sequence: 26..952
50
                             21
                                        31
                  11
       CGGAACGAGG GCAACCTGCA CAGCCATGCC CGGGCAAGAA CTCAGGACGG TGAATGGCTC
       TCAGATGCTC CTGGTGTTGC TGGTGCTCTC GTGGCTGCCG CATGGGGGCG CCCTGTCTCT
55
       GGCCGAGGCG AGCCGCGCAA GTTTCCCGGG ACCCTCAGAG TTGCACTCCG AAGACTCCAG
                                                                           180
       ATTCCGAGAG TTGCGGAAAC GCTACGAGGA CCTGCTAACC AGGCTGCGGG CCAACCAGAG
                                                                            240
       CTGGGAAGAT TCGAACACCG ACCTCGTCCC GGCCCCTGCA GTCCGGATAC TCACGCCAGA
                                                                            300
       AGTGCGGCTG GGATCCGGCG GCCACCTGCA CCTGCGTATC TCTCGGGCCG CCCTTCCCGA
                                                                            360
       GGGGCTCCCC GAGGCCTCCC GCCTTCACCG GGCTCTGTTC CGGCTGTCCC CGACGGCGTC
                                                                            420
60
       AAGGTCGTGG GACGTGACAC GACCGCTGCG GCGTCAGCTC AGCCTTGCAA GACCCCAAGC
                                                                            480
       GCCCGCGCTG CACCTGCGAC TGTCGCCGCC GCCGTCGCAG TCGGACCAAC TGCTGGCAGA
                                                                            540
       ATCTTCGTCC GCACGGCCCC AGCTGGAGTT GCACTTGCGG CCGCAAGCCG CCAGGGGGCG
                                                                            600
       CCGCAGAGCG CGTGCGCGCA ACGGGGACGA CTGTCCGCTC GGGCCCGGGC GTTGCTGCCG
                                                                            660
       TCTGCACACG GTCCGCGCGT CGCTGGAAGA CCTGGGCTGG GCCGATTGGG TGCTGTCGCC
                                                                            720
65
       ACGGGAGGTG CAAGTGACCA TGTGCATCGG CGCGTGCCCG AGCCAGTTCC GGGCGGCAAA
                                                                            780
       CATGCACGCG CAGATCAAGA CGAGCCTGCA CCGCCTGAAG CCCGACACGG AGCCAGCGCC
                                                                            840
       CTGCTGCGTG CCCGCCAGCT ACAATCCCAT GGTGCTCATT CAAAAGACCG ACACCGGGGT
                                                                            900
       GTCGCTCCAG ACCTATGATG ACTTGTTAGC CAAAGACTGC CACTGCATAT GAGCAGTCCT
                                                                            960
       GGTCCTTCCA CTGTGCACCT GCGCGGGGGA GGCGACCTCA GTTGTCCTGC CCTGTGGAAT
                                                                           1020
       GGGCTCAAGG TTCCTGAGAC ACCCGATTCC TGCCCAAACA GCTGTATTTA TATAAGTCTG
TTATTTATTA TTAATTTATT GGGGTGACCT TCTTGGGGAC TCGGGGGCTG GTCTGATGA
70
                                                                           1080
                                                                           1140
       ACTGTGTATT TATTTAAAAC TCTGGTGATA AAAATAAAGC TGTCTGAACT GTTAAAAAAA
       AAAA
75
       Seg ID NO: 685 Protein seguence
       Protein Accession #: NP_004855.1
                             21
80
       MPGQELRTVN GSQMLLVLLV LSWLPHGGAL SLAEASRASF PGPSELHSED SRFRELRKRY
                                                                             60
       EDLLTRLRAN QSWEDSNTDL VPAPAVRILT PEVRLGSGGH LHLRISRAAL PEGLPEASRL
                                                                            120
       HRALFRLSPT ASRSWDVTRP LRRQLSLARP QAPALHLRLS PPPSQSDQLL AESSSARPQL
                                                                            180
       ELHLRPQAAR GRRRARARNG DDCPLGPGRC CRLHTVRASL EDLGWADWVL SPREVQVTMC
                                                                            240
       IGACPSQFRA ANMHAQIKTS LHRLKPDTEP APCCVPASYN PMVLIQKTDT GVSLQTYDDL
                                                                            300
85
```

Seq ID NO: 686 DNA sequence

WO 02/086443

Nucleic Acid Accession #: NM_002423.2 Coding sequence: 48..851

```
5
       ACCANATONA CONTAGGTOC ANGANCANTT GTOTOTGGAC GGCAGCTATG CGACTCACCG
                                                                              60
       TGCTGTGTGC TGTGTGCCTG CTGCCTGGCA GCCTGGCCCT GCCGCTGCCT CAGGAGGCGG
                                                                             120
       GAGGCATGAG TGAGCTACAG TGGGAACAGG CTCAGGACTA TCTCAAGAGA TTTTATCTCT
                                                                             180
       ATGACTCAGA AACAAAAAT GCCAACAGTT TAGAAGCCAA ACTCAAGGAG ATGCAAAAAT
                                                                             240
10
       TCTTTGGCCT ACCTATAACT GGAATGTTAA ACTCCCGCGT CATAGAAATA ATGCAGAAGC
                                                                             300
       CCAGATGTGG AGTGCCAGAT GTTGCAGAAT ACTCACTATT TCCAAATAGC CCAAAATGGA
                                                                             360
       CTTCCAAAGT GGTCACCTAC AGGATCGTAT CATATACTCG AGACTTACCG CATATTACAG
                                                                             420
       TGGATCGATT AGTGTCAAAG GCTTTAAACA TGTGGGGCAA AGAGATCCCC CTGCATTTCA
                                                                             480
       GGAAAGTTGT ATGGGGAACT GCTGACATCA TGATTGGCTT TGCGCGAGGA GCTCATGGGG
                                                                             540
15
       ACTCCTACCC ATTTGATGGG CCAGGAAACA CGCTGGCTCA TGCCTTTGCG CCTGGGACAG
                                                                             600
       GTCTCGGAGG AGATGCTCAC TTCGATGAGG ATGAACGCTG GACGGATGGT AGCAGTCTAG
                                                                             660
       GGATTAACTT CCTGTATGCT GCAACTCATG AACTTGGCCA TTCTTTGGGT ATGGGACATT
       CCTCTGATCC TAATGCAGTG ATGTATCCAA CCTATGGAAA TGGAGATCCC CAAAATTTTA
                                                                             780
       AACTITCCCA GGATGATATT AAAGGCATTC AGAAACTATA TGGAAAGAGA AGTAATTCAA
                                                                             840
       GARAGARTA GARACTTCAG GCAGARCATC CATTCATTCA TTCATTGCAT TGTATATCAT
TGTTGCACAA TCAGAATTGA TAAGCACTGT TCCTCCACTC CATTTAGCAA TTATGTCACC
20
                                                                             900
                                                                             960
       CTTTTTTATT GCAGTTGGTT TTTGAATGTC TTTCACTCCT TTTATTGGTT AAACTCCTTT
                                                                            1020
       ATGGTGTGAC TGTGTCTTAT TCCATCTATG AGCTTTGTCA GTGCGCGTAG ATGTCAATAA
       ATGTTACATA CACAAATAAA TAAAATGTTT ATTCCATGGT AAATTTA
25
       Seq ID NO: 687 Protein sequence
       Protein Accession #: NP_002414.1
                                         31
                                                    41
                                                               51
30
       MRLTVLCAVC LLPGSLALPL PQEAGGMSEL QWEQAQDYLK RPYLYDSETK NANSLEAKLK
                                                                              60
       EMQKFFGLPI TGMLNSRVIE IMQKPRCGVP DVAEYSLFPN SPKWTSKVVT YRIVSYTRDL
                                                                             120
       PHITVDRLVS KALNMWGKEI PLHFRKVVWG TADIMIGFAR GAHGDSYPPD GPGNTLAHAF
                                                                             180
       APGTGLGGDA HFDEDERWTD GSSLGINFLY AATHELGHSL GMGHSSDPNA VMYPTYGNGD
                                                                             240
35
       PONFKLSODD IKGIQKLYGK RSNSRKK
       Seg ID NO: 688 DNA seguence
       Nucleic Acid Accession #: NM_005221.3
       Coding sequence: 1..870
40
                                         31
       ATGACAGGAG TGTTTGACAG AAGGGTCCCC AGCATCCGAT CCGGCGACTT CCAAGCTCCG
                                                                              60
       TTCCAGACGT CCGCAGCTAT GCACCATCCG TCTCAGGAAT CGCCAACTTT GCCCGAGTCT
                                                                             120
45
       TCAGCTACCG ATTCTGACTA CTACAGCCCT ACGGGGGGAG CCCCGCACGG CTACTGCTCT
                                                                             180
       CCTACCTCGG CTTCCTATGG CAAAGCTCTC AACCCCTACC AGTATCAGTA TCACGGCGTG
                                                                             240
       AACGGCTCCG CCGGGAGCTA CCCAGCCAAA GCTTATGCCG ACTATAGCTA CGCTAGCTCC
                                                                             300
       TACCACCAGT ACGGCGCGC CTACAACCGC GTCCCAAGCG CCACCAACCA GCCAGAGAAA
                                                                             360
       GAAGTGACCG AGCCCGAGGT GAGAATGGTG AATGGCAAAC CAAAGAAAGT TCGTAAACCC
                                                                             420
50
       AGGACTATTT ATTCCAGCTT TCAGCTGGCC GCATTACAGA GAAGGTTTCA GAAGACTCAG
                                                                             480
       TACCTCGCCT TGCCGGAACG CGCCGAGCTG GCCGCCTCGC TGGGATTGAC ACAAACACAG
                                                                             540
       GTGAAAATCT GGTTTCAGAA CAAAAGATCC AAGATCAAGA AGATCATGAA AAACGGGGAG
                                                                             600
       ATGCCCCCGG AGCACAGTCC CAGCTCCAGC GACCCAATGG CGTGTAACTC GCCGCAGTCT
                                                                             660
       CCAGCGGTGT GGGAGCCCCA GGGCTCGTCC CGCTCGCTCA GCCACCACCC TCATGCCCAC
                                                                             720
55
       CCTCCGACCT CCAACCAGTC CCCAGCGTCC AGCTACCTGG AGAACTCTGC ATCCTGGTAC
       ACAAGTGCAG CCAGCTCAAT CAATTCCCAC CTGCCGCCGC CGGGCTCCTT ACAGCACCCG
       CTGGCGCTGG CCTCCGGGAC ACTCTATTAG
       Seq ID NO: 689 Protein sequence
60
       Protein Accession #: NP_005212.1
                                                               51
       MTGVFDRRVP SIRSGDFQAP FQTSAAMHHP SQESPTLPES SATDSDYYSP TGGAPHGYCS
                                                                              60
65
       PTSASYGKAL NPYQYQYHGV NGSAGSYPAK AYADYSYASS YHQYGGAYNR VPSATNQPEK
                                                                             120
       EVTEPEVRMV NGKPKKVRKP RTIYSSFQLA ALQRRFQKTQ YLALPERAEL AASLGLTQTQ
                                                                             180
       VKIWPQNKRS KIKKIMKNGE MPPEHSPSSS DPMACNSPQS PAVWEPQGSS RSLSHHPHAH
                                                                             240
       PPTSNQSPAS SYLENSASWY TSAASSINSH LPPPGSLQHP LALASGTLY
```

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein neorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

## WHAT IS CLAIMED IS:

1		1.	A method of detecting a lung cancer-associated transcript in a cell	
2	from a patient, the method comprising contacting a biological sample from the patient with a			
3	polynucleotid	polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence		
4	as shown in T	ables 1	A-16.	
1		2.	The method of claim 1, wherein the polynucleotide selectively	
 2	hybridizes to		nce at least 95% identical to a sequence as shown in Tables 1A-16.	
-			•	
1		3.	The method of claim 1, wherein the biological sample is a tissue	
2	sample.			
1		4.	The method of claim 1, wherein the biological sample comprises	
2	isolated nucle	ic acids	•	
_	•	_	The state of the s	
1		5.	The method of claim 4, wherein the nucleic acids are mRNA.	
1		6.	The method of claim 4, further comprising the step of amplifying	
2	nucleic acids l	before t	he step of contacting the biological sample with the polynucleotide.	
	•			
1		7.	The method of claim 1, wherein the polynucleotide comprises a	
2	sequence as sh	nown in	Tables 1A-16.	
1		8.	The method of claim 1, wherein the polynucleotide is labeled.	
1		9.	The method of claim 8, wherein the label is a fluorescent label.	
		10	The weather the following the malamy election is immedilized on	
1		10.	The method of claim 1, wherein the polynucleotide is immobilized on	
2	a solid surface	<b>ð.</b>		
1		11.	The method of claim 1, wherein the patient is undergoing a therapeutic	
2	regimen to tre	at lung	cancer.	
_				
1	•	12.	The method of claim 1, wherein the patient is suspected of having lung	
2	cancer.			
1		13.	A method of monitoring the efficacy of a therapeutic treatment of lung	
2	cancer, the me	ethod co	omprising the steps of:	

PCT/US02/12476 WO 02/086443 3 (i) providing a biological sample from a patient undergoing the therapeutic treatment; and 4 5 (ii) determining the level of a lung cancer-associated transcript in the 6 biological sample by contacting the biological sample with a polynucleotide that selectively 7 hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, 8 thereby monitoring the efficacy of the therapy. 1 . 14. The method of claim 13, further comprising the step of: (iii) comparing 2 the level of the lung cancer-associated transcript to a level of the lung cancer-associated 3 transcript in a biological sample from the patient prior to, or earlier in, the therapeutic 4 treatment. 1 15. The method of claim 13, wherein the patient is a human. 1 16. A method of monitoring the efficacy of a therapeutic treatment of lung 2 cancer, the method comprising the steps of: 3 (i) providing a biological sample from a patient undergoing the therapeutic 4 treatment; and 5 (ii) determining the level of a lung cancer-associated antibody in the biological 6 sample by contacting the biological sample with a polypeptide encoded by a polynucleotide 7 that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in 8 Tables 1A-16, wherein the polypeptide specifically binds to the lung cancer-associated 9 antibody, thereby monitoring the efficacy of the therapy. 1 17. The method of claim 16, further comprising the step of: (iii) comparing 2 the level of the lung cancer-associated antibody to a level of the lung cancer-associated 3 antibody in a biological sample from the patient prior to, or earlier in, the therapeutic 4 treatment. 1 18. The method of claim 16, wherein the patient is a human. 1 19. A method of monitoring the efficacy of a therapeutic treatment of lung 2 cancer, the method comprising the steps of: 3 (i) providing a biological sample from a patient undergoing the therapeutic

4

treatment; and

5	(ii) determining the level of a lung cancer-associated polypeptide in the			
6	biological sample by contacting the biological sample with an antibody, wherein the antibody			
7	specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to			
8	a sequence at least 8	0% identical to a sequence as shown in Tables 1A-16, thereby		
9	monitoring the effica	acy of the therapy.		
1	20.	The method of claim 19, further comprising the step of: (iii) comparing		
2		cancer-associated polypeptide to a level of the lung cancer-associated		
3		ogical sample from the patient prior to, or earlier in, the therapeutic		
4	treatment.	ogical sample from the patient prior to, or earlier m, the therapeutic		
•				
1	21.	The method of claim 19, wherein the patient is a human.		
1	22.	An isolated nucleic acid molecule consisting of a polynucleotide		
2	sequence as shown i			
1	23.	The nucleic acid molecule of claim 22, which is labeled.		
1	24.	The nucleic acid of claim 23, wherein the label is a fluorescent label		
1	25.	An expression vector comprising the nucleic acid of claim 22.		
1	26.	A host cell comprising the expression vector of claim 25.		
1	27.	An isolated polypeptide which is encoded by a nucleic acid molecule		
2	having polynucleotic	de sequence as shown in Tables 1A-16.		
1	28.	An antibody that specifically binds a polypeptide of claim 27.		
1	29.	The antibody of claim 28, further conjugated to an effector component.		
1	30.	The antibody of claim 29, wherein the effector component is a		
2	fluorescent label.			
1	31.	The antibody of claim 29, wherein the effector component is a		
2	radioisotope or a cyl	•		
1	32.	The antibody of claim 29, which is an antibody fragment.		

1		<i>33</i> .	The antibody of claim 29, which is a numarized antibody		
1		34.	A method of detecting a lung cancer cell in a biological sample from a		
2	patient, the me	ethod co	omprising contacting the biological sample with an antibody of claim		
3	28.				
1		35.	The method of claim 34, wherein the antibody is further conjugated to		
2	an effector con	mponen	t.		
1		36.	The method of claim 35, wherein the effector component is a		
2	fluorescent lab		110 110 110 110 02 01 1111 00, 1110 0110 0		
2					
1		37.	A method of detecting antibodies specific to lung cancer in a patient,		
2	the method co	mprisin	g contacting a biological sample from the patient with a polypeptide		
3	encoded by a nucleic acid comprises a sequence from Tables 1A-16.				
1		38.	A method for identifying a compound that modulates a lung cancer-		
2	associated polypeptide, the method comprising the steps of:				
3		• •	tacting the compound with a lung cancer-associated polypeptide, the		
4	polypeptide er	ncoded l	by a polynucleotide that selectively hybridizes to a sequence at least		
5	80% identical	to a seq	uence as shown in Tables 1A-16; and		
6		(ii) det	ermining the functional effect of the compound upon the polypeptide.		
		20	The method of claim 38, wherein the functional effect is a physical		
1	~	39.	The method of claim 38, wherein the functional effect is a physical		
2	effect.				
1		40.	The method of claim 38, wherein the functional effect is a chemical		
2	effect.				
1		41.	The method of claim 38, wherein the polypeptide is expressed in a		
2	eukaryotic hos	st cell o	r cell membrane.		
			m at 1 C.1 to 0.1 to 1 C. at an a Constitute determined by		
1		42.	The method of claim 38, wherein the functional effect is determined by		
2	measuring lig	and bine	ding to the polypeptide.		
1		42	The method of claim 38 wherein the polymentide is recombinant		

1	44.	A method of inhibiting profferation of a lung cancer-associated cent to	
2	treat lung cancer in a patient, the method comprising the step of administering to the subject		
3	therapeutically effective amount of a compound identified using the method of claim 38.		
1	45.	The method of claim 44, wherein the compound is an antibody.	
1	46.	The method of claim 45, wherein the patient is a human.	
1	47.	A drug screening assay comprising the steps of	
2	(i) a	dministering a test compound to a mammal having lung cancer or a cell	
3	isolated therefrom;		
4	(ii) c	comparing the level of gene expression of a polynucleotide that selectively	
5	hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16 in a		
6	treated cell or mammal with the level of gene expression of the polynucleotide in a control		
7	cell or mammal, wi	nerein a test compound that modulates the level of expression of the	
8	polynucleotide is a	candidate for the treatment of lung cancer.	
1	48.	The assay of claim 47, wherein the control is a mammal with lung	
2	cancer or a cell then	refrom that has not been treated with the test compound.	
1	49.	The assay of claim 47, wherein the control is a normal cell or mammal.	
1	50.	A method for treating a mammal having lung cancer comprising	
2 .	administering a cor	npound identified by the assay of claim 47.	
1	51.	A pharmaceutiPcal composition for treating a mammal having lung	
2	cancer, the compos	ition comprising a compound identified by the assay of claim 47 and a	
3	physiologically acceptable excipient.		