○
$$J = (c - 1) * (b + a)$$

○ $J = (a - 1) * (b + c)$

○ $J = a * b + b * c + a * c$

○ Correct

Yes.

J = u + v - w = a * b + a * c - (b + c) = a * (b + c) - (b + c) = (a - 1) * (b + c).

 $\bigcup J = (b-1) * (c+a)$

1. What does a neuron compute?

- A neuron computes a function g that scales the input x linearly (Wx + b)
- A neuron computes the mean of all features before applying the output to an activation function
- lacktriangledown A neuron computes a linear function z=Wx+b followed by an activation function
- igcirc A neuron computes an activation function followed by a linear function z=Wx+b
 - **⊘** Correct

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

- 2. Suppose that $\hat{y}=0.5$ and y=0. What is the value of the "Logistic Loss"? Choose the best option.
 - 0.693
 - $\bigcirc +\infty$
 - $\bigcirc \ \mathcal{L}(\hat{y},y) = -\left(y\,\log\hat{y} + (1-y)\,\log(1-\hat{y})\right)$
 - 0.5
 - **⊘** Correct

Yes. Given the values of \hat{y} and y we get $\mathcal{L}(0.5,0) = -\left(0\,\log 0.5 + 1\,\log(0.5)\right) pprox 0.693$.

3.	Suppose x is a (8, 1) array.	Which of the	following is a	valid reshape?
----	------------------	--------------	--------------	----------------	----------------

- x.reshape(2, 2, 2)
- x.reshape(1, 4, 3)
- x.reshape(-1, 3)
- x.reshape(2, 4, 4)

⊘ Correct

Yes. This generates uses 2*2*2 = 8 entries.

4. Consider the following random arrays a and b, and c:

$$a = np.random.randn(2,3) \, \# \, a.shape = (2,3)$$

$$b = np.random.randn(2,1) \, \# \, b.shape = (2,1)$$

$$c = a + b$$

What will be the shape of c?

- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (3, 2)
- c.shape = (2, 3)
- $\bigcirc c.shape = (2, 1)$

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

- $a = np.random.randn(1,3) \, \# \, a.shape = (1,3)$
- $b = np.random.randn(3,3) \, \# \, b.shape = (3,3)$
- c = a * b

What will be the shape of c?

- The computation cannot happen because the sizes don't match.
- The computation cannot happen because it is not possible to broadcast more than one dimension.
- \bigcirc c.shape = (1, 3)
- c.shape = (3, 3)
 - **⊘** Correct

Yes. Broadcasting allows row a to be multiplied element-wise with each row of b to from c.

1/1 point

6. Suppose you have n_x input features per example. If we decide to use row vectors \mathbf{x}_j for the features and

$$X = egin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \ dots \ \mathbf{x}_m \end{bmatrix}.$$

What is the dimension of X?

- $igodentom{igotimes}{(m,n_x)}$
- \bigcirc $(1, n_x)$

/	
(n)	n
$(n_x,$	n_x

- $\bigcap (n_x, m)$
 - **⊘** Correct

Yes. Each \mathbf{x}_j has dimension $1 imes n_x$, X is built stacking all rows together into a $m imes n_x$ array.

7. Consider the following array:

$$a=np.array([[2,1],[1,3]])$$

What is the result of a * a?

- The computation cannot happen because the sizes don't match. It's going to be an "Error"!
- $\bigcirc \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 5 & 5 \\ 5 & 10 \end{pmatrix}$
 - **⊘** Correct

Yes, recall that * indicates element-wise multiplication.

1/1 point

1/1 point

8. Consider the following code snippet:

$$a.shape = (3,4)$$

$$b.shape = (4,1)$$

for i in range(3):

for j in range(4):

$$c[i][j] = a[i][j]*b[j]$$

How do you vectorize this?

- \bigcirc c = np.dot(a,b)
- \bigcirc c = a*b
- \bigcirc c = a*b.T
- \bigcirc c = a.T*b

⊘ Correct

Yes. b.T gives a column vector with shape (1, 4). The result of c is equivalent to broadcasting a*b.T.

9. Consider the following arrays:

$$a = np.array([[1,1],[1,-1]])$$

$$b = np.array([[2],[3]])$$

$$c = a + b$$

Which of the following arrays is stored in c?

- $\begin{pmatrix}
 3 & 3 \\
 3 & 1 \\
 4 & 4 \\
 5 & 2
 \end{pmatrix}$
- The computation cannot happen because the sizes don't match. It's going to be an "Error"!
- 342
 - **⊘** Correct

Yes. The array b is a column vector. This is copied two times and added to the array a to construct the array c.

10. Consider the following computation graph.

