Probabilistic Graph Reasoning for Natural Proof Generation

Changzhi Sun Yuanbin Wu Xinbo Zhang Jiaze Chen

Jiangjie Chen Hao Zhou

Chun Gan Lei Li

Reasoning Over Formal Representation

Pros

- Interpretable
- Easy combine human knowledge

Cons

- Knowledge acquisition bottleneck
- Brittleness
 - when confront with unusual or atypical cases

Formal Reasoning

Reasoning over Natural Language

- Input: a set of facts and rules and a question expressed in natural language.
- Output:predict the answer and provide proof to prove or disprove the question.
- Proof:
 - Node: fact, rule or NAF
 - Edge: logical deduction
- Potential advantages
 - Write theories in natural language
 - Have the machine apply general knowledge

Facts:

 F_1 : The circuit includes the battery.

F₂: The wire is metal.

F₃: The circuit includes the bell.

Rules:

 $\mathbf{R_1}$: If the circuit includes the battery and the battery is not flat then the circuit is powered.

 \mathbf{R}_2 : If the circuit includes the switch and the switch is on then the circuit is complete.

R₃: If the circuit does not have the switch then the circuit is complete.

R₄: If the wire is metal then the wire is conducting.

R₅: If the wire is plastic then the wire is not conducting.

R₆: If the circuit is powered and the circuit is complete and the wire is conducting then the current runs through the circuit.

Question: The current runs through the circuit.

Answer: True

Proof:

Existing Solution

PRover

- Three sub-task, multi-task learning
 - Question answering
 - Node prediction
 - Edge prediction
- Nodes, edges and answer are independent on each other

Our Solution

$$P(Y = y) \propto \Phi^{A}(a) \prod_{i} \Phi_{i}^{V}(v_{i}, a) \prod_{i,j} \Phi_{ij}^{E}(v_{i}, v_{j}, e_{ij}, a)$$

PRobr

- Undirected graphical model
- Nodes, edges and answer are dependent on each other
- Learning by variational approximation

Results

Results

– Fully supervised setting:
PRobr > PRover

Fully supervised

- Few-shot & zero shot setting:
 PRobr >> PRover
 - Comparable proof performance
 - Very high QA performance (+ 10%-30%)

Few-shot

Zero-shot

D	Cnt _	QA			PA		FA	
		RT	PV	PB	PV	PB	PV	PB
0	6299	100	100	100	98.4	98.4	98.4	98.4
1	4434	98.4	99.0	99.9	93.2	94.3	93.1	94.3
2	2915	98.4	98.8	99.9	84.8	86.1	84.8	86.1
3	2396	98.8	99.1	100	80.5	82	80.5	82
4	2134	99.2	98.8	100	72.5	76.1	72.4	76.1
5	2003	99.8	99.3	100	65.1	72.2	65.1	72.2
All	20192	99.2	99.3	99.9	87.1	88.8	87.1	88.8

Train Data		QA		PA		FA	
		PV	PB	PV	PB	PV	PB
	100%	99.3	99.9	87.1	88.8	87.1	88.8
RC	10% 5% 1%	94.5 80.6 70.2	99.9 99.7 88.2	63.6 34.0 20.0	60.4 44.2 21.6	63.3 32.1 15.1	60.4 44.2 20.3
RQ	30k 10k 1k	97.8 87.1 51.3	99.9 99.9 82.1	72.5 44.0 28.0	86.8 72.4 21.1	72.4 42.7 15.0	86.8 72.3 18.4

Test	Cnt_	QA			PA		FA	
		RT	PV	PB	PV	PB	PV	PB
B 1	40	97.5	95.0	100.0	92.5	100.0	92.5	100.0
B2	40	100	95.0	100.0	95.0	100.0	95.0	100.0
$\mathbf{E1}$	162	96.9	100	100.0	95.1	97.5	95.1	97.5
$\mathbf{E2}$	180	98.3	100	100.0	91.7	93.3	91.7	93.3
E3	624	91.8	89.7	98.2	72.3	79.3	71.8	79.3
E4	4224	76.7	84.8	95.6	80.6	77.7	80.6	77.7
All	5270	80.1	86.5	96.3	80.7	79.3	80.5	79.3

Paper & Code

