Практические задания для подготовки к экзамену по дискретной математике для студентов 1 курса

1. Найти все различные варианты раскрасок графа G и определить его хроматическое число

2. Задан орграф. Найти количество компонент сильной связности. Построить изображение компонент.

3. Вычислить длину минимального пути из вершины v_1 в вершину v_6 и определить минимальный путь, используя алгоритм Дейкстры.

4. Задан орграф. Найти количество компонент сильной связности. Построить изображение компонент.

- 5. Найти решение рекуррентного соотношения f(n+2)+4f(n+1)+4f(n)=0, используя начальные значения: f(1)=4, f(2)=12.
- 6.. Найти общее решение рекуррентного соотношения: f(n+3)-3f(n+2)-9f(n+1)-5f(n)=0

- 7.. Найти значение показателя m в разложении бинома $(1+a)^m$, если коэффициент пятого члена равен коэффициенту девятого члена.
- 8. Определить матрицу сильной связности, если орграф задан матрицей смежности:

$$\begin{pmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{pmatrix}$$

- 9. Из 100 опрошенных студентов 50 изучают информатику, 53 математику, 42— физику, 15 информатику и физику, 20 занимаются физикой и математикой, 25 математикой и информатикой и 5 студентов изучают все три предмета.
 - 1) Сколько студентов изучают один из трех перечисленных предметов?
 - 2) Сколько студентов не изучают ни один из трех перечисленных предметов?
 - 3) Сколько студентов изучают только математику?
 - 4) Сколько студентов изучают физику или информатику, но не изучают математику?
 - 5) Сколько студентов не изучают ни математику, ни информатику?
- 10. Доказать: $A_n^k = A_{n-1}^k + k A_{n-1}^{k-1}$
- 11. Найти член, содержащий x^4 в разложении бинома: $(\sqrt{x} + \sqrt[3]{x})^9$
- 12. Доказать: $C_n^{k} * C_k^{r} = C_{n-r}^{k-r} * C_n^{r}$.
- 13. Доказать: $(C_n^0)^2 + (C_n^1)^2 + \dots + (C_n^n)^2 = C_{2n}^n$
- 14. Найти пятый член разложения бинома: $(2x\sqrt{x} \sqrt[3]{x})^8$
- 15. Найти все маршруты длины три в заданном графе

16. По алгоритму Флери найти эйлеров цикл в графе:

- 17. Для заданной булевой функции трех переменных
- а) постройте таблицу истинности, найдите двоичную форму булевой функции и привести функцию к СДНФ и СКНФ,
- б) Найдите двумя способами многочлен Жегалкина и ответить на вопрос, является ли данная булева функция линейной,
- в) С помощью эквивалентных преобразований приведите функцию к ДНФ, КНФ, СДНФ, СКНФ.

1.
$$(x \mid y) \oplus (\overline{z} \rightarrow y)$$
;

2.
$$((x \downarrow y) \rightarrow \overline{z}) \oplus y$$
;

3.
$$(x \lor y) \to (\overline{z} \leftrightarrow y)$$
.

18. Для заданного графа найти остовное дерево:

19. Для графа заданного матрицеи инцидентности, определить матрицу смежности графа и изобразить граф.

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$