Activités -

Acti. 1. Factoriser complètement.

a)
$$6x^2 - 6$$

d)
$$9x^3 - 36x$$

g)
$$12y^2 + 24yz + 12z^2$$

j)
$$9xy^2 + 6xyz + xz^2$$

b)
$$6x^2 - 12x + 6$$

e)
$$4x^3 - 9x$$

h)
$$27x^4 - 12x^2$$

k)
$$20x^2 + 60x + 45$$

c)
$$12y^2 - 12y + 3$$

f)
$$2xy^2 + 4xy + 2x$$

i)
$$12 - 8x + x^2$$

1)
$$a^2x^4 - a^4x^2$$

Acti. 2. Factoriser complètement (utiliser notamment la méthode des groupements).

a)
$$2ax + ay - 12x - 6y$$

c)
$$x^2 - y^2 + a(x^2 - 2xy + y^2)$$

e)
$$5bx - ay + by - 5ax$$

g)
$$6x^2 - 6y + ay - ax^2$$

i)
$$y^2 - 1 - x^2 + x^2y^2$$

i)
$$u^2 - 1 - x^2 + x^2 u^2$$

b)
$$5x^3 - 10x^2 - x + 2$$

d)
$$7x^3 + 9 - 3x^2 - 21x$$

f)
$$(x-y)(2x-y+1) + (y-x)(x-y+1)$$

h)
$$(x-8)(4x-3) + x^2 - 8x$$

j)
$$3x^4 + 6x^3 + 2x^2 + 4x$$

Acti. 3. Factoriser complètement (utiliser notamment la méthode des groupements).

a)
$$axy^2 + bxy^2 - ax - bx$$

b)
$$8x^2 + 4xy - 2ax - ay$$

c)
$$u^3 - u - u^2 + 1$$

d)
$$ax^2 - 1 - x^2 + a$$

e)
$$x^3 - 2x^2 + x - 2$$

h) $a^2 - b^2 - 5a + 5b$

f) (*)
$$x^3 + 2x^2 + 2x + 1$$

i) $a^2b^2 + a^2 - b^2 - 1$

g)
$$(x^2 - 1) - 3(1 - x)$$

j) $x^3 + 2x^2 - 4x - 8$

k)
$$a^2b^2 + b^2 - a^2 - 1$$

1)
$$x^3 - 7x^2 - 4x + 28$$

Indice pour le j):
$$2x^2 = x^2 + x^2$$

Acti. 4. Développer les produits, factoriser les sommes.

a)
$$(2x+3)^2$$

b)
$$4x + 6y^2$$

c)
$$9b^2 + 12b + 4$$

d)
$$x^2 + 6x - 7$$

e)
$$9y^2 - 6y + 1$$

f)
$$4h^2(2h+3)$$

g)
$$(1-x)^2$$

h)
$$16a^2 - 25$$

i)
$$(4a-5)(4a+5)$$

j)
$$1 - 2x + x^2$$

k)
$$8h^3 + 12h^2$$

l)
$$(3y-1)^2$$

m)
$$(x-1)(x+7)$$

n)
$$(2+3b)^2$$

o)
$$(2x + 3y^2) \cdot 2$$

p)
$$4x^2 + 12x + 9$$

Acti. 5. (*) Retrouver les identités remarquables pour le cube du binôme : $(a+b)^3$ et $(a-b)^3$. En partant de ces identités, obtenir celles pour (ou la factorisation de) :

a)
$$a^3 + b^3$$

b)
$$a^3 - b^3$$
.

Acti. 6. (*) Par la méthode de complétion du carré, factoriser (si possible) les polynômes suivants :

a)
$$x^2 - 8x + 13$$

b)
$$x^2 - 2x - 5$$

c)
$$x^2 + 20x + 91$$

d)
$$x^2 + 3x + 1$$

e)
$$x^2 + 4x + 6$$

f)
$$x^2 - x - 1$$

g)
$$4x^2 + 4x - 3$$

h)
$$-3x^2 + 3x + 1$$

i)
$$2x^2 + 7x + 3$$

Acti. 7. (*) Soit le polynôme $x^6 - 1$.

- a) Le factoriser de deux manières différentes (Indication: $x^6 = (x^3)^2 = (x^2)^3$).
- b) En déduire une factorisation pour le polynôme $x^4 + x^2 + 1$.

Acti. 8. Factoriser autant que possible.

$$a) 2xy^2 + 4xy + 2x$$

b)
$$45a^2 - 30a + 5$$

c)
$$5x^4 - 20x^2$$

d)
$$3x^2y + 30xy + 48y$$

e)
$$7a^4x - 14a^3x^2 + 7a^2x^3$$

$$f) 9a^5 + 24a^3b^2 + 16ab^4$$

g)
$$4x^3y - 16x^2y^2 + 16xy^3$$

h)
$$2a^3x^3 - 4a^2x^2 + 2ax$$

i)
$$3x(x+1)^2 - 27x$$

j)
$$9ab^2c^4 - 4ab^4$$

k)
$$a^2x^2 - 4b^2x^4$$

l)
$$a^2(x+2y) - 4(x+2y)$$

Acti. 9. Factoriser complètement.

a)
$$6x^3 - 3x^2 + 3x$$

b)
$$12x^2 - 12x + 3$$

c)
$$x^2 - 10x - 11$$

d)
$$u^7 - 16u^3$$

e)
$$18a^2 - 2b^2$$

f)
$$3a^4b + 6a^3b^2 - a^2b^3$$

- g) $4a^2 + 9 + 12a$
- h) $2xy^2 20xy + 32x$
- i) $-ab^2 + 2a^2b a^3$
- j) $2x^2y + 2xy 24y$
- k) $2y^3 2y^2 2y$
- l) $2ab^2 16ab + 32a$
- m) $7x^3 + 28x^2 35x$
- n) $1 36m^2$
- o) $6a^3b^2c 21a^2b^3c^2 + 9a^3b^2c^2$

-Exercices -

-Automatismes -