計算理論 第11回 第6章: プッシュダウンオートマトン (2/2)

基礎工学部情報科学科中川 博之

本日の概要

- ・ 第6章: プッシュダウンオートマトン
 - − テキスト: p.265~
 - 6.3 PDAとCFGの等価性
 - 6.4 決定性PDA
- 重要概念
 - CFGとの等価性, 決定性PDA

6.3 PDAとCFGの等価性

等価性の証明方針

• CFGが受理するクラス = PDAが受理するクラス

- ・以下の方針で示す
 - 1. 任意のCFG Gに対し、Gの言語を受理するPDAが存在する
 - CFGのクラス ⊆ PDAが受理する言語のクラス
 - 2. 任意のPDA Pに対し、Pが受理する言語はCFG
 - PDAが受理する言語のクラス ⊆ CFGのクラス

文法からPDAへ

入力:任意のCFG G

出力: Gの言語を空スタック受理するPDA P

- 変換アルゴリズムの方針
 - PDA PはGの最左導出を模倣
 - 模倣の上, L(G)に含まれる文字列wが導出できればPは受理

文法Gの言語を受理するPDAの概要 (1/2)

- ・ Gでの導出の途中:S⇒xAα
 - A: 最も左に現れる変数
 - xは変換が終わった終端記号だけの列 (<u>最左導出なので</u>)
 - α:変数/終端記号を含む列
- 対応するPDAの動作:
 - 入力記号列w
 - x: 読み終えた終端記号列
 - y:残りの文字列 (w=xy)
 - スタック上端Aに対応する規則A→βを適用
 - $(q, y, A\alpha) \vdash (q, y, \beta\alpha)$

文法Gの言語を受理するPDAの概要 (2/2)

- もしスタック上端が終端記号なら、yの先頭文字と照合して、一文字読み進める
 - スタック上端の終端記号を消費

- 全体概要
 - 動作開始時: Gの出発記号<u>Sをスタックにプッシュ</u>
 - 入力記号列wを読み終えたときに空スタックなら 受理

文法Gの言語を受理するPDA

• CFG G=(V, T, Q, S)としたとき, 言語L(G)を<u>空ス</u> <u>タック受理</u>するPDA Pは,

 $P=(\{q\}, T, VUT, \delta, q, S)$

- ただし、
 - 各変数Aについて $\sqrt{\pm 成規則を適用}$ $\delta(q, \epsilon, A) = \{(q, \beta) | A \rightarrow \beta \hat{N} Q \mathcal{O} \pm 成規則 \}$
 - 各終端記号aについて $\delta(q, a, a) = \{(q, ε)\}$ \leftarrow 照合して消費

例6.12

- CFG G_{Exp}=(V, T, Q, S)
 - $-V=\{I, E\}, T=\{a,b,0,1,(,),+,*\}, S=E$
 - $-I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 - $-E \rightarrow I \mid E^*E \mid E+E \mid (E)$
- PDA P=($\{q\}$, T, VUT, δ , q, S)
 - $-\delta(q, \epsilon, I)=\{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}$
 - $-\delta(q, \epsilon, E)=\{(q, I), (q, E+E), (q, E*E), (q, (E))\}$
 - $-\delta(q, a, a) = \{(q, \epsilon)\}, \delta(q, b, b) = \{(q, \epsilon)\}, ...$

PDAから文法へ

- 入力:任意の空スタック受理PDA P
- ・ 出力: Pが受理する言語を生成するCFG G

- 変換アルゴリズムの方針
 - Pの遷移関数の各要素に対応した生成規則を 作成

文法上の変数

- 文法上の各変数は [pXq] の形
 - これで1つの変数
- [pXq]はPDA Pの以下の動作に対応
 - スタック上端の記号Xが消費される
 - Xを消費するまでに状態がpからqに遷移

PDAからの文法構成(1/2)

- S:開始記号
 - これだけ3つ組ではない
- Sに対する生成規則 S→[q, Z, p] を追加
 - q_o: PDAの初期状態
 - Z₀: PDAの初期スタック記号
 - p:任意の状態(すべての状態に対して用意する)
 - 空スタック受理でどの状態で受理しても良いため
- ・ 変数 [q₀ Z₀ p] は(q₀, w, Z₀) ⊢* (p, ε, ε)を表現
 - 状態qoから何回かの遷移を経てスタック上端のZoを 消費して、状態pに至り、空スタック受理

PDAからの文法構成(2/2)

PDAが遷移関数(r, Y₁Y₂...Yk)∈δ(q, a, X)を持つ場合, 以下の生成規則を文法Gに追加

 $[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k]$

- PDAの動作としての解釈:
 - 状態qから入力aを読んで、スタック上端のXを $Y_1Y_2...Y_k$ に書き換えて状態rへ (a= ϵ の場合もあり)
 - その後, 追加したY₁Y₂…Y₂を消去する必要がある
 - 最終的に全て消去できたときの状態がr_k

PDAと文法との関係

- [性質] [qXp]^{*}⇒wであるための必要十分条件 は (q, w, X) ⊢* (p, ε, ε)
 - 証明はテキストp271~272参照

これを使うと...

- 先に生成規則 S→[q₀ Z₀ p] を追加したが,
- S⇒wであるとき、そのときのみに限り

$$(q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon)$$

– つまり、空スタック受理できるときのみ、S⇒w

例6.15

- PDA $P_N = (\{q\}, \{i,e\}, \{Z\}, \delta_N, q, Z)$
 - $-\delta_{N}(q, i, Z) = \{(q, ZZ)\}, \delta_{N}(q, e, Z) = \{(q, \epsilon)\}$
 - if/elseの誤りを空スタックで受理するPDA
 - elseがifを上回ると受理(エラー時に受理(検知))

例6.15: 文法Gの生成

δ(q,a,X)∋ (r, Y₁Y₂...Y_k)のとき

 $[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k]$

- 変数は2つ:開始記号Sと[qZq]
 - 状態もスタック記号も1つずつしかないため
- 生成規則
 - $-S \rightarrow [qZq]$
 - $\delta_N(q, i, Z) = \{(q, ZZ)\}$ より [qZq] $\rightarrow i[qZq][qZq]$
 - $\delta_N(q, e, Z) = \{(q, ε)\}$ より [qZq] $\rightarrow e$
- [qZq]をAで表すと
 - $-S \rightarrow A$
 - $-A \rightarrow iAA|e$
 - SとAは同一視できるので, G=({S}, {i,e}, {S→iSS|e}, S)

決定性PDA (DPDA)

決定性プッシュダウンオートマトン (Deterministic pushdown automaton: DPDA)

- 受理できる言語は文脈自由言語の部分クラス
- コンパイラの構文解析器はDPDA

DPDAの定義

DPDAは次の2つの条件によって定義する

- ∀q∈Q, ∀a∈Σ∪{ε}, ∀X∈Γに対して δ(q,a,X)は高々一つの要素を含む
 - 1文字読み動作は高々1通りだけ
- Σ中のあるaに対して、
 δ(q,a,X)が空でなければ、δ(q,ε,X)は空
 - -1文字読み動作かε動作のいずれかのみ

例6.16

- 言語Lwy = {ww^R | wは(0+1)*に属する}はCFLだが DPDAでは受理できない
 - 以前述べた通り(非決定的)PDAだと受理できる(境界を非決定的に推測する)が、DPDAでは境目を判断することが出来ない
- 言語L_{wcwr} = {wcwr|wは(0+1)*に属する}なら DPDAでも受理できる
 - w中の文字をスタックに順次積む
 - cを見つけたら照合用の状態に遷移
 - wrの文字とスタック上端の文字を順次照合

正則言語とDPDA

- 定理6.17の概要:
 - 任意の正則言語Lに対して、Lを受理するDPDA Pが 存在

証明

- スタックは使わない
- DFA A=(Q, Σ , δ _A, q₀, F)のとき
- DPDA P =(Q, Σ, {Z₀}, δϝ, q₀, Z₀, F) と構成すればよい
 - もしδ_A(q, a)=pならδ_F(q, a, Z₀)={(p, Z₀)}と定義する

空スタック受理DPDAの言語認識能力

- ただし空スタック受理DPDAは、言語認識能力が かなり限定される
- → prefix性を持たない言語は受理できない
 - prefix性を持つ言語L: Lのどの列x,y (x≠y)も, 一方が他方のprefixではない
- 例えば, {0}*は,
 - prefix性を持たない
 - 正則言語であるが
 - 空スタック受理DPDAでは受理できない
 - どこで空スタックにすべきかを判断できない

DPDAと文脈自由言語

- 今までの議論から
 - 任意の正則言語Lに対して、Lを受理するDPDA Pが存在(定理6.17)
 - CFLにはDPDAでは受理できない言語もある (例6.16の言語L_{ww})

文脈自由言語のクラス

最終状態受理DPDAが受理 する言語のクラス

> 正則言語の クラス

最終状態受理DPDAが 受理する言語のクラス:

- ・正則言語のクラスを 真に含む
- ・文脈自由言語のクラスに 真に含まれる

DPDAとあいまいな文法

- DPDAが受理する言語は、「本質的にあいまいでない文脈自由言語」の部分クラス
 - 本質的にあいまいでないCFLのすべてを受理できるわけではない(例: L,,,,,r)
 - 定理6.20: あるDPDA Pについて, L=N(P)ならば Lはあいまいでない文脈自由文法で記述できる
 - 定理6.21:あるDPDA Pについて, L=L(P)ならばLは あいまいでない文脈自由文法で記述できる

N(P): 空スタック受理, L(P): 最終状態受理

ミニレポート

ミニレポート: 11-1

- テキストp280 問6.4.2 a)を一部改訂
 - 次の言語を受理する決定性プッシュダウン・オートマトン(DPDA)を作れ. <u>ただし、最終状態で受理</u>するDPDAとせよ.
 - $-\{0^{n}1^{m} | n \le m\}$