第七章 代数系统

第五节 二元运算中的特殊元素 (3)

4、 逆元

定义

设★是 X 上有幺元 e 的二元运算, $x \in X$,如果有 $x_L^{-1} \in X$,使得 $x_L^{-1} \star x = e$,则称 x_L^{-1} 是 x 相对★的左逆元。

如果有 $x_R^{-1} \in X$,使得 $x \star x_R^{-1} = e$,则称 $x_R^{-1} = e$,则称 x

例: 实数集合R上的+和X, $x \in R$

*对加法+:
$$x^{-1} = -x$$

因为
$$e=0$$
, $x+(-x)=0$

* 对乘法×:
$$x^{-1}=1/x$$
 ($x\neq 0$)

$$\Leftrightarrow$$
 因为 $e=1$, $x \times 1/x = 1$

从运算表找x的左逆元 x_L^{-1} : 在x列向下找到e后,再 向左到左表头元素即是 x_L^{-1} 。

从运算表找x的右逆元 x_R^{-1} : 在x行向右找到e后,再向 上到上表头元素即是 x_R^{-1} 。

逆元唯一性定理

定理

设 \star 是X上有幺元e且可结合的二元运算,如果 $x \in X$,x的左、右逆元都存在,则x的左、右逆元必相等,且x的逆元是唯一的。

证明:设 x_L^{-1} 、 x_R^{-1} 分别是x的左、右逆元,于是有 $x_L^{-1} \star x = x \star x_R^{-1} = e$,而 $x_R^{-1} = e \star x_R^{-1}$ $= (x_L^{-1} \star x) \star x_R^{-1} = x_L^{-1} \star (x \star x_R^{-1}) = x_L^{-1} \star e = x_L^{-1}$ 假设 x 有两个逆元 x_1 、 x_2 ,所以 $x_1 \star x = e = x \star x_2$ $x_2 = e \star x_2 = (x_1 \star x) \star x_2 = x_1 \star (x \star x_2) = x_1 \star e = x_1$ 所以 x 的逆元是唯一的。

第五节 结束