BÀI GIẢNG GIẢI TÍCH

Giảng viên: TS. Phùng Minh Đức

Bộ môn Toán Lý - Trường ĐH Công nghệ Thông tin

Chương 2: Lý thuyết chuỗi

- 2.1 Chuỗi số
- 2.2 Chuỗi số dương
- 2.3 Chuỗi số có dấu bất kỳ
- 2.4 Chuỗi lũy thừa

2.1 Chuỗi số

- 2.1.1 Định nghĩa
- 2.1.2 Điều kiện hội tụ
- 2.1.3 Một số tính chất của chuỗi hội tụ

ightharpoonup Cho dãy số $u_1,u_2,\ldots,u_n,\ldots$

lacktriangle Cho dãy số $u_1,u_2,\ldots,u_n,\ldots$ Tổng vô hạn dạng

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$
 (2.1)

được gọi là một chuỗi số,

lacktriangle Cho dãy số $u_1,u_2,\ldots,u_n,\ldots$ Tổng vô hạn dạng

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$
 (2.1)

được gọi là một *chuỗi số*, phần tử u_n gọi là số hạng thứ n của chuỗi.

lacktriangle Cho dãy số $u_1,u_2,\ldots,u_n,\ldots$ Tổng vô hạn dạng

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$
 (2.1)

được gọi là một $chu\tilde{\delta i}$ số, phần tử u_n gọi là số hạng thứ n của chuỗi.

Tổng riêng thứ n của chuỗi (2.1) là đại lượng

$$s_n = \sum_{k=1}^n u_k = u_1 + u_2 + \dots + u_n.$$

lacktriangle Cho dãy số $u_1,u_2,\ldots,u_n,\ldots$ Tổng vô hạn dạng

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$
 (2.1)

được gọi là một *chuỗi số*, phần tử u_n gọi là số hạng thứ n của chuỗi.

► Tổng riêng thứ n của chuỗi (2.1) là đại lượng

$$s_n = \sum_{k=1}^n u_k = u_1 + u_2 + \dots + u_n.$$

 $lackbox{ Nếu tồn tại } \lim_{n \to +\infty} s_n = S$ hữu hạn thì ta nói chuỗi (2.1) *hội tụ và có tổng* S, viết

$$\sum_{n=0}^{\infty}u_{n}=S.$$
 Khi đó $r_{n}=S-s_{n}$ gọi là *phần dư thứ* n của chuỗi.

lacktriangle Cho dãy số $u_1,u_2,\ldots,u_n,\ldots$ Tổng vô hạn dạng

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$
 (2.1)

được gọi là một *chuỗi số*, phần tử u_n gọi là số hạng thứ n của chuỗi.

► Tổng riêng thứ n của chuỗi (2.1) là đại lượng

$$s_n = \sum_{k=1}^n u_k = u_1 + u_2 + \dots + u_n.$$

 $lackbox{ Nếu tồn tại } \lim_{n \to +\infty} s_n = S$ hữu hạn thì ta nói chuỗi (2.1) *hội tụ và có tổng* S, viết

$$\sum_{n=0}^{\infty}u_{n}=S.$$
 Khi đó $r_{n}=S-s_{n}$ gọi là *phần dư thứ* n của chuỗi.

Chuỗi (2.1) không hôi tu thì ta nói nó phân kỳ.

Xét sự hội tụ của chuỗi:
$$\sum_{n=1}^{+\infty}\frac{1}{n(n+1)}=\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n(n+1)}+\cdots$$

Xét sự hội tụ của chuỗi:
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} + \dots$$

Giải: Ta có
$$\dfrac{1}{k(k+1)}=\dfrac{1}{k}-\dfrac{1}{k+1}, \forall k=1,2,\ldots,$$

Xét sự hội tụ của chuỗi:
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} + \dots$$

Giải: Ta có $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}, \forall k=1,2,\ldots$, do đó tổng riêng của chuỗi là

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}$$

Xét sự hội tụ của chuỗi:
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} + \dots$$

Giải: Ta có $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}, \forall k=1,2,\ldots$, do đó tổng riêng của chuỗi là

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

Xét sự hội tụ của chuỗi:
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} + \dots$$

Giải: Ta có $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}, \forall k=1,2,\ldots$, do đó tổng riêng của chuỗi là

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$\Rightarrow \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \left(1 - \frac{1}{n+1}\right) = 1.$$

Xét sự hội tụ của chuỗi:
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} + \dots$$

Giải: Ta có $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}, \forall k=1,2,\ldots$, do đó tổng riêng của chuỗi là

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$\Rightarrow \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} (1 - \frac{1}{n+1}) = 1.$$

Vậy chuỗi đã cho hội tụ và có tổng bằng 1, tức là $\frac{1}{2} + \frac{1}{6} + \cdots + \frac{1}{n(n+1)} + \cdots = 1$.

Xét sự hội tụ của chuỗi:
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} + \dots$$

Giải: Ta có $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}, \forall k = 1, 2, ...,$ do đó tổng riêng của chuỗi là

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$\Rightarrow \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} (1 - \frac{1}{n+1}) = 1.$$

Vậy chuỗi đã cho hội tụ và có tổng bằng 1, tức là $\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n(n+1)}+\cdots=1$. Phần dư thứ n của chuỗi là $r_n=S-s_n=1-(1-\frac{1}{n+1})=\frac{1}{n+1}$.

(Chuỗi cấp số nhân)
$$\sum_{i=1}^{+\infty}q^{n-1}=1+q+q^2+\cdots+q^{n-1}+\cdots$$

(Chuỗi cấp số nhân)
$$\sum_{n=1}^{+\infty}q^{n-1}=1+q+q^2+\cdots+q^{n-1}+\cdots$$

$$ightharpoonup q
eq \pm 1$$
: Ta có $s_n = 1 + q + q^2 + \dots + q^{n-1} = rac{1 - q^n}{1 - q}$

(Chuỗi cấp số nhân)
$$\sum_{}^{+\infty}q^{n-1}=1+q+q^2+\cdots+q^{n-1}+\cdots$$

$$ightharpoonup q
eq \pm 1 : ext{Ta có } s_n = 1 + q + q^2 + \dots + q^{n-1} = rac{1 - q^n}{1 - q}$$

$$\Rightarrow \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{1 - q^n}{1 - q}$$

(Chuỗi cấp số nhân)
$$\sum_{n=1}^{+\infty}q^{n-1}=1+q+q^2+\cdots+q^{n-1}+\cdots$$

$$\begin{array}{l} \blacktriangleright \ q \neq \pm 1 : \text{Ta có} \ s_n = 1 + q + q^2 + \dots + q^{n-1} = \frac{1 - q^n}{1 - q} \\ \Rightarrow \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{1 - q^n}{1 - q} = \left\{ \begin{array}{l} \frac{1}{1 - q} & \text{n\'eu} \ |q| < 1 \\ \infty & \text{n\'eu} \ |q| > 1 \end{array} \right. \end{aligned}$$

(Chuỗi cấp số nhân)
$$\sum_{n=1}^{+\infty}q^{n-1}=1+q+q^2+\cdots+q^{n-1}+\cdots$$

$$q
eq \pm 1$$
: Ta có $s_n = 1 + q + q^2 + \dots + q^{n-1} = \frac{1 - q^n}{1 - q}$

$$\Rightarrow \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{1-q^n}{1-q} = \left\{ \begin{array}{ll} \frac{1}{1-q} & \text{n\'eu } |q| < 1 \\ \infty & \text{n\'eu } |q| > 1 \end{array} \right.$$

$$ightharpoonup q=1:s_n=n\Rightarrow \lim_{n\to +\infty}s_n=+\infty$$
 nên chuỗi phân kỳ.

(Chuỗi cấp số nhân)
$$\sum_{n=1}^{+\infty}q^{n-1}=1+q+q^2+\cdots+q^{n-1}+\cdots$$

$$\begin{array}{l} \blacktriangleright \ q \neq \pm 1 : \text{Ta có} \ s_n = 1 + q + q^2 + \dots + q^{n-1} = \frac{1 - q^n}{1 - q} \\ \\ \Rightarrow \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{1 - q^n}{1 - q} = \left\{ \begin{array}{l} \frac{1}{1 - q} & \text{n\'eu} \ |q| < 1 \\ \infty & \text{n\'eu} \ |q| > 1 \end{array} \right. \end{aligned}$$

- $ightharpoonup q=1:s_n=n\Rightarrow \lim_{n\to +\infty}s_n=+\infty$ nên chuỗi phân kỳ.

(Chuỗi cấp số nhân)
$$\sum_{n=1}^{+\infty}q^{n-1}=1+q+q^2+\cdots+q^{n-1}+\cdots$$

TS. Phùng Minh Đức (BMTL)

$$\begin{array}{l} \blacktriangleright \ q \neq \pm 1 : \text{Ta có} \ s_n = 1 + q + q^2 + \dots + q^{n-1} = \frac{1 - q^n}{1 - q} \\ \\ \Rightarrow \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{1 - q^n}{1 - q} = \left\{ \begin{array}{l} \frac{1}{1 - q} & \text{n\'eu} \ |q| < 1 \\ \infty & \text{n\'eu} \ |q| > 1 \end{array} \right. \end{aligned}$$

- $ightharpoonup q=1: s_n=n\Rightarrow \lim_{n\to +\infty} s_n=+\infty$ nên chuỗi phân kỳ.

Vậy chuỗi cấp số nhân $\begin{cases} &\text{hội tụ} &\text{khi } |q| < 1 \text{ và có tổng là } \frac{1}{1-q} \\ &\text{phân kỳ} &\text{khi } |q| \geq 1. \end{cases}$

Định lý 2.1

Nếu chuỗi số (2.1) hội tụ thì $\displaystyle \lim_{n \to +\infty} u_n = 0.$

Định lý 2.1

Nếu chuỗi số (2.1) hội tụ thì $\lim_{n \to +\infty} u_n = 0$.

Từ định lý trên ta rút ra: nếu $\nexists \lim_{n \to +\infty} u_n$ hoặc $\lim_{n \to +\infty} u_n \neq 0$ thì chuỗi phân kỳ.

Định lý 2.1

Nếu chuỗi số (2.1) hội tụ thì
$$\lim_{n \to +\infty} u_n = 0$$
.

Từ định lý trên ta rút ra: nếu $\sharp \lim_{n \to +\infty} u_n$ hoặc $\lim_{n \to +\infty} u_n \neq 0$ thì chuỗi phân kỳ. Một số giới han thường gặp:

$$\lim_{n\to\infty}\frac{\ln n}{n}=0$$

$$2. \quad \lim_{n\to\infty} \sqrt[n]{n} = 1$$

3.
$$\lim_{n \to \infty} x^{1/n} = 1$$
 $(x > 0)$

4.
$$\lim_{n \to \infty} x^n = 0$$
 $(|x| < 1)$

5.
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \qquad \text{(Any } x\text{)}$$

1.
$$\sum_{n=1}^{+\infty} \frac{-n}{2n+5}$$

1.
$$\sum_{n=1}^{+\infty} \frac{-n}{2n+5}$$
 phân kỳ vì $\lim_{n \to +\infty} \frac{-n}{2n+5} = \frac{-1}{2} \neq 0$.

1.
$$\sum_{n=1}^{+\infty} \frac{-n}{2n+5}$$
 phân kỳ vì $\lim_{n \to +\infty} \frac{-n}{2n+5} = \frac{-1}{2} \neq 0$.

$$2. \sum_{n=1}^{+\infty} \left(\frac{n-2}{n}\right)^n$$

1.
$$\sum_{n=1}^{+\infty} \frac{-n}{2n+5}$$
 phân kỳ vì $\lim_{n\to +\infty} \frac{-n}{2n+5} = \frac{-1}{2} \neq 0$.

2.
$$\sum_{n=0}^{+\infty} \left(\frac{n-2}{n}\right)^n \text{ phân kỳ vì } \lim_{n\to+\infty} \left(\frac{n-2}{n}\right)^n = \lim_{n\to+\infty} \left(1+\frac{-2}{n}\right)^n = e^{-2} \neq 0.$$

1.
$$\sum_{n=1}^{+\infty} \frac{-n}{2n+5} \text{ phân kỳ vì } \lim_{n\to+\infty} \frac{-n}{2n+5} = \frac{-1}{2} \neq 0.$$

2.
$$\sum_{n=0}^{+\infty} \left(\frac{n-2}{n}\right)^n \text{ phân kỳ vì } \lim_{n\to +\infty} \left(\frac{n-2}{n}\right)^n = \lim_{n\to +\infty} \left(1+\frac{-2}{n}\right)^n = e^{-2} \neq 0.$$

3.
$$\sum_{i=1}^{+\infty} (-1)^{n-1}$$

1.
$$\sum_{n=1}^{+\infty} \frac{-n}{2n+5} \text{ phân kỳ vì } \lim_{n\to+\infty} \frac{-n}{2n+5} = \frac{-1}{2} \neq 0.$$

$$2. \sum_{i=1}^{+\infty} \left(\frac{n-2}{n}\right)^n \text{ phân kỳ vì } \lim_{n \to +\infty} \left(\frac{n-2}{n}\right)^n = \lim_{n \to +\infty} \left(1 + \frac{-2}{n}\right)^n = e^{-2} \neq 0.$$

3.
$$\sum_{n \to +\infty}^{+\infty} (-1)^{n-1} \text{ phân kỳ vì } \nexists \lim_{n \to +\infty} (-1)^{n-1}.$$

Chú ý rằng kết luận trong Định lý 2.1 không có chiều ngược lại, tức là nếu có $\lim_{n\to+\infty}u_n=0$ thì không thể kết luận là chuỗi hội tụ được.

(Chuỗi điều hòa)
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$

Chú ý rằng kết luận trong Định lý 2.1 không có chiều ngược lại, tức là nếu có $\lim u_n = 0$ thì không thể kết luân là chuỗi hôi tu được. $n \to +\infty$

(Chuỗi điều hòa)
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$
 có $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} = 0$,

Chú ý rằng kết luận trong Định lý 2.1 không có chiều ngược lại, tức là nếu có $\lim u_n = 0$ thì không thể kết luân là chuỗi hôi tu được. $n \to +\infty$

(Chuỗi điều hòa)
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots \qquad c\acute{o} \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} = 0,$$
tuy nhiên ta có

Chú ý rằng kết luận trong Định lý 2.1 không có chiều ngược lại, tức là nếu có $\lim_{n\to +\infty} u_n=0$ thì không thể kết luận là chuỗi hội tụ được.

(Chuỗi điều hòa)
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$
 có $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} = 0$, tuy nhiên ta có

$$\frac{1}{2} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \Rightarrow s_4 = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} > 2,$$

Chú ý rằng kết luận trong Định lý 2.1 không có chiều ngược lại, tức là nếu có $\lim_{n \to +\infty} u_n = 0$ thì không thể kết luận là chuỗi hội tụ được.

(Chuỗi điều hòa)
$$\sum_{n=1}^{\infty}\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots \quad có\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}\frac{1}{n}=0,$$
 tuy nhiên ta có

$$\begin{split} &\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \Rightarrow s_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 2, \\ &\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2} \Rightarrow s_8 > \frac{5}{2} \dots \\ &\Rightarrow s_{2^k} \ge 1 + \frac{k}{2}, k = 1, 2, \dots \Rightarrow \{s_n\} \text{ không có giới hạn hữu hạn} \\ &\Rightarrow \text{chuỗi điều hòa phân kỳ}. \end{split}$$

2.1.3 Một số tính chất của chuỗi hội tụ

Định lý 2.2

(a)
$$\sum_{n=1}^{\infty} u_n = S \Rightarrow \sum_{n=1}^{\infty} \alpha u_n = \alpha S, \forall \alpha \in \mathbb{R}.$$

2.1.3 Một số tính chất của chuỗi hội tụ

Định lý 2.2

(a)
$$\sum_{n=1}^{\infty} u_n = S \Rightarrow \sum_{n=1}^{\infty} \alpha u_n = \alpha S, \forall \alpha \in \mathbb{R}.$$

(b)
$$\left\{ \begin{array}{l} \sum_{n=1}^{\infty} u_n = S \\ \sum_{n=1}^{\infty} v_n = S' \end{array} \right. \Rightarrow \sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm S'.$$

2.1.3 Một số tính chất của chuỗi hội tụ

Định lý 2.2

(a)
$$\sum_{n=1}^{\infty} u_n = S \Rightarrow \sum_{n=1}^{\infty} \alpha u_n = \alpha S, \forall \alpha \in \mathbb{R}.$$

(b)
$$\left\{ \begin{array}{l} \sum_{n=1}^{\infty} u_n = S \\ \sum_{n=1}^{\infty} v_n = S' \end{array} \right. \Rightarrow \sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm S'.$$

(c) Các chuỗi

$$\sum_{n=1}^{\infty}u_n$$
 và $\sum_{n=p}^{\infty}u_n, p>1$

cùng hội tụ hoặc cùng phân kỳ.

Ví dụ 2.5

1.
$$\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$$

Ví dụ 2.5

1.
$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}}$$

$$\textbf{1.} \ \ \sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}} = \frac{1}{1-\frac{1}{2}} - \frac{1}{1-\frac{1}{6}} = \frac{4}{5}.$$

2.
$$\sum_{n=1}^{\infty} \frac{2^n + (-3)^n}{5^n}$$

Ví dụ 2.5

1.
$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}} = \frac{1}{1 - \frac{1}{2}} - \frac{1}{1 - \frac{1}{6}} = \frac{4}{5}.$$

2.
$$\sum_{n=1}^{\infty} \frac{2^n + (-3)^n}{5^n} = \frac{2}{5} \sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^{n-1} - \frac{3}{5} \sum_{n=1}^{\infty} \left(\frac{-3}{5}\right)^{n-1}$$

Ví dụ 2.5

1.
$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}} = \frac{1}{1 - \frac{1}{2}} - \frac{1}{1 - \frac{1}{6}} = \frac{4}{5}.$$

2.
$$\sum_{n=1}^{\infty} \frac{2^n + (-3)^n}{5^n} = \frac{2}{5} \sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^{n-1} - \frac{3}{5} \sum_{n=1}^{\infty} \left(\frac{-3}{5}\right)^{n-1} = \frac{2}{5} \frac{1}{1 - \frac{2}{5}} - \frac{3}{5} \frac{1}{1 + \frac{3}{5}} = \frac{7}{24}.$$

2.2 Chuỗi số dương

- 2.2.1 Quy tắc tích phân
- 2.2.2 Các định lý so sánh
- 2.2.3 Quy tắc D'Alembert và quy tắc Cauchy

2.2.1 Quy tắc tích phân

Chuỗi $\sum_{n=0}^{\infty} u_n$ mà $u_n > 0$, $\forall n$ được gọi là chuỗi số dương.

2.2.1 Quy tắc tích phân

Chuỗi $\sum_{n=1}^{\infty} u_n$ mà $u_n > 0$, $\forall n$ được gọi là chuỗi số dương.

Định lý 2.3

(Quy tắc tích phân) Giả sử f(x) là một hàm số dương, liên tục, đơn điệu giảm trên $[1,+\infty)$ và có $\lim_{x\to +\infty} f(x)=0$. Đặt $u_n=f(n), n=1,2,\ldots$ Khi đó

tích phân suy rộng
$$\int_1^{+\infty} f(x) dx$$
 và chuỗi số dương $\sum_{n=1}^{\infty} u_n$

cùng hội tụ hoặc cùng phân kỳ.

Ví dụ 2.6

Chuỗi Riemann:
$$\sum_{p=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$$
 $(p > 0)$

Giải: Ta có hàm số $f(x)=\frac{1}{x^p}$ là một hàm số dương, liên tục, đơn điệu giảm trên $[1,+\infty)$ và $\lim_{x\to+\infty}f(x)=0.$

Chuỗi Riemann:
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$$
 $(p > 0)$

Giải: Ta có hàm số $f(x)=\frac{1}{x^p}$ là một hàm số dương, liên tục, đơn điệu giảm trên $[1,+\infty)$ và $\lim_{x\to+\infty}f(x)=0$. Ngoài ra, theo Ví dụ 1.15,

tích phân
$$\int_1^{+\infty} \frac{1}{x^p} dx$$

Chuỗi Riemann:
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots \qquad (p>0)$$

Giải: Ta có hàm số $f(x)=\frac{1}{x^p}$ là một hàm số dương, liên tục, đơn điệu giảm trên $[1,+\infty)$ và $\lim_{x\to +\infty}f(x)=0$. Ngoài ra, theo Ví dụ 1.15,

tích phân
$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx$$
 hội tụ khi $p > 1$ và phân kỳ khi $p \le 1$.

Chuỗi Riemann:
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$$
 $(p > 0)$

Giải: Ta có hàm số $f(x)=\frac{1}{x^p}$ là một hàm số dương, liên tục, đơn điệu giảm trên $[1,+\infty)$ và $\lim_{x\to +\infty} f(x)=0$. Ngoài ra, theo Ví dụ 1.15,

tích phân
$$\int_{1}^{+\infty} \frac{1}{x^p} dx$$
 hội tụ khi $p > 1$ và phân kỳ khi $p \le 1$.

Do đó, theo quy tắc tích phân, ta suy ra

Chuỗi
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 hội tụ khi $p>1$ và phân kỳ khi $p\leq 1$.

Định lý 2.4

Giả sử hai chuỗi số dương $\sum_{n=1}^{\infty}u_n$ và $\sum_{n=1}^{\infty}v_n$ có

$$u_n \le v_n, \forall n \ge n_0 \in \mathbb{N}.$$

Khi đó

- **1.** Chuỗi $\sum_{n=1}^{\infty} v_n$ hội tụ thì chuỗi $\sum_{n=1}^{\infty} u_n$ cũng hội tụ.
- 2. Chuỗi $\sum_{n=1}^{\infty} u_n$ phân kỳ thì chuỗi $\sum_{n=1}^{\infty} v_n$ cũng phân kỳ.

Ví du 2.7

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

Ví du 2.7

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

a. Ta có
$$\frac{2}{n} \leq \frac{2n}{n^2-n+1} \ \forall n \geq 1$$

Ví du 2.7

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

a. Ta có
$$\frac{2}{n} \leq \frac{2n}{n^2-n+1} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n}$

Ví du 2.7

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

a. Ta có
$$\frac{2}{n} \leq \frac{2n}{n^2-n+1} \; \forall n \geq 1 \; \text{và chuỗi} \; \sum_{n=1}^{\infty} \frac{2}{n} \; \text{phân kỳ}$$

Ví du 2.7

Xét sự hội tu của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

a. Ta có
$$\frac{2}{n} \leq \frac{2n}{n^2-n+1} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n}$ phân kỳ nên chuỗi $\sum_{n=1}^{\infty} \frac{2n}{n^2-n+1}$ cũng phân kỳ.

Ví du 2.7

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

a. Ta có
$$\frac{2}{n} \leq \frac{2n}{n^2-n+1} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n}$ phân kỳ nên chuỗi $\sum_{n=1}^{\infty} \frac{2n}{n^2-n+1}$ cũng phân kỳ.

b. Ta có
$$\frac{n+1}{n^2\sqrt{n}} \leq \frac{2n}{n^2\sqrt{n}} = \frac{2}{n^{3/2}} \ \forall n \geq 1$$

Ví du 2.7

Xét sự hội tu của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

a. Ta có
$$\frac{2}{n} \leq \frac{2n}{n^2-n+1} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n}$ phân kỳ nên chuỗi $\sum_{n=1}^{\infty} \frac{2n}{n^2-n+1}$ cũng phân kỳ.

b. Ta có
$$\frac{n+1}{n^2\sqrt{n}} \leq \frac{2n}{n^2\sqrt{n}} = \frac{2}{n^{3/2}} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n^{3/2}}$

Ví du 2.7

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

a. Ta có
$$\frac{2}{n} \leq \frac{2n}{n^2-n+1} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n}$ phân kỳ nên chuỗi $\sum_{n=1}^{\infty} \frac{2n}{n^2-n+1}$ cũng phân kỳ.

b. Ta có
$$\frac{n+1}{n^2\sqrt{n}} \leq \frac{2n}{n^2\sqrt{n}} = \frac{2}{n^{3/2}} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n^{3/2}}$ hội tụ

Ví du 2.7

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{2n}{n^2 - n + 1}$$

$$b.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

a. Ta có
$$\frac{2}{n} \leq \frac{2n}{n^2-n+1} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n}$ phân kỳ nên chuỗi $\sum_{n=1}^{\infty} \frac{2n}{n^2-n+1}$ cũng phân kỳ.

b. Ta có
$$\frac{n+1}{n^2\sqrt{n}} \leq \frac{2n}{n^2\sqrt{n}} = \frac{2}{n^{3/2}} \ \forall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{2}{n^{3/2}}$ hội tụ nên chuỗi $\sum_{n=1}^{\infty} \frac{n+1}{n^2\sqrt{n}}$ cũng hôi tu.

Định lý 2.5

Nếu hai chuỗi số dương $\sum_{n=1}^{\infty}u_n$ và $\sum_{n=1}^{\infty}v_n$ có

- lacksquare $\lim_{n o +\infty} rac{u_n}{v_n} = k \in (0, +\infty)$ thì hai chuỗi số ấy cùng hội tụ hoặc cùng phân kỳ.
- $ightharpoonup \lim_{n o +\infty} rac{u_n}{v_n} = +\infty \ extbf{va} \sum_{n=1}^\infty u_n \ extbf{phân kỳ} \Rightarrow \sum_{n=1}^\infty v_n \ extbf{phân kỳ}.$

Ví dụ 2.8

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}\ln n}$$

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1 + \frac{1}{n}) = 1$$

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1+\frac{1}{n}) = 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

Giải:

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1+\frac{1}{n}) = 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

hội tụ,

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}\ln n}$$

Giải:

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1+\frac{1}{n}) = 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

hội tụ, do đó chuỗi $\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$ cũng hội tụ.

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

Giải:

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1+\frac{1}{n}) = 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

hội tụ, do đó chuỗi $\sum_{i=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$ cũng hội tụ.

b. Ta có
$$\lim_{n\to +\infty}\frac{1}{\sqrt{n}\ln n}:\frac{1}{n}=\lim_{n\to +\infty}\frac{\sqrt{n}}{\ln n}$$

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

Giải:

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1+\frac{1}{n}) = 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

hội tụ, do đó chuỗi $\sum_{n=0}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$ cũng hội tụ.

b. Ta có
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n} \ln n} : \frac{1}{n} = \lim_{n \to +\infty} \frac{\sqrt{n}}{\ln n} \stackrel{\text{(L'Hospital)}}{=} \lim_{n \to +\infty} \frac{\sqrt{n}}{2} = +\infty$$

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

Giải:

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1+\frac{1}{n}) = 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

hội tụ, do đó chuỗi $\sum_{i=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$ cũng hội tụ.

b. Ta có
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n} \ln n} : \frac{1}{n} = \lim_{n \to +\infty} \frac{\sqrt{n}}{\ln n} \stackrel{\text{(L'Hospital)}}{=} \lim_{n \to +\infty} \frac{\sqrt{n}}{2} = +\infty$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

Giải:

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1+\frac{1}{n}) = 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

hội tụ, do đó chuỗi $\sum_{i=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$ cũng hội tụ.

b. Ta có
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n} \ln n} : \frac{1}{n} = \lim_{n \to +\infty} \frac{\sqrt{n}}{\ln n} \stackrel{\text{(L'Hospital)}}{=} \lim_{n \to +\infty} \frac{\sqrt{n}}{2} = +\infty$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$

phân kỳ,

Xét sự hội tụ của chuỗi

$$a.\sum_{n=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$$

$$b.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

Giải:

a. Ta có
$$\lim_{n \to +\infty} \frac{n+1}{n^2 \sqrt{n}} : \frac{1}{n^{3/2}} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} (1+\frac{1}{n}) = 1$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

hội tụ, do đó chuỗi $\sum_{i=1}^{\infty} \frac{n+1}{n^2 \sqrt{n}}$ cũng hội tụ.

b. Ta có
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n} \ln n} : \frac{1}{n} = \lim_{n \to +\infty} \frac{\sqrt{n}}{\ln n} \stackrel{\text{(L'Hospital)}}{=} \lim_{n \to +\infty} \frac{\sqrt{n}}{2} = +\infty$$
 và chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$

phân kỳ, do đó chuỗi $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ln n}$ cũng phân kỳ.

2.2.3 Quy tắc D'Alembert và Quy tắc Cauchhy

Định lý 2.6

(Quy tắc D'Alembert) Chuỗi số dương $\sum_{n=1}^{\infty} u_n$ có $\lim_{n o +\infty} rac{u_{n+1}}{u_n} = \ell$

- hôi tu khi $\ell < 1$:
- phân kỳ khi $\ell > 1$;
- ightharpoonup không có kết luận khi $\ell=1$.

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$$

a.
$$\sum_{n=1}^{\infty} rac{(2n)!}{n!n!}$$
: Đặt $u_n = rac{(2n)!}{n!n!}$,

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$$
: Đặt $u_n = \frac{(2n)!}{n!n!}$, ta có $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!}$

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$$
: Đặt $u_n = \frac{(2n)!}{n!n!}$, ta có $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!}$

$$= \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)}$$

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} : \text{\it D} \breve{\textbf{a}} t \, u_n = \frac{(2n)!}{n!n!}, \, \text{\it ta c\'o} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4,$$

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} : \text{Dặt } u_n = \frac{(2n)!}{n!n!}, \text{ ta có} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4, \text{ do đó chuỗi đã cho phân kỳ}.$$

$$\begin{array}{l} \textbf{a.} \ \sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} \colon \textbf{D} \breve{\textbf{a}} t \, u_n = \frac{(2n)!}{n!n!} \text{, ta có} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} \\ = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4 \text{, do dó chuỗi đã cho phân kỳ.} \\ \end{array}$$

b.
$$\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$$
:

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} : \text{\it D} \breve{\textbf{a}} t \, u_n = \frac{(2n)!}{n!n!}, \, \text{\it ta c\'o} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} \\ = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4, \, \text{\it do d\'o chu\'o} \, \breve{\textbf{\it d}} \breve{\textbf{\it a}} \, \, \text{\it cho phân k\'o}.$$

b.
$$\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$$
: Đặt $u_n = \frac{2^n n! n!}{(2n)!}$, tương tự câu a: $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{n+1}{2n+1} = \frac{1}{2}$,

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} : \text{ D\~at} \ u_n = \frac{(2n)!}{n!n!}, \ \text{ta c\'o} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4, \ \text{do d\'o chu\~oi d\~a cho phân kỳ}.$$

b.
$$\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$$
: Đặt $u_n = \frac{2^n n! n!}{(2n)!}$, tương tự câu a:
$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{n+1}{2n+1} = \frac{1}{2}$$
, do đó chuỗi đã cho hôi tu.

b.
$$\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$$
: Đặt $u_n = \frac{2^n n! n!}{(2n)!}$, tương tự câu a:
$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{n+1}{2n+1} = \frac{1}{2}$$
, do đó chuỗi đã cho hôi tu.

c.
$$\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$$
:

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} : \text{Dặt } u_n = \frac{(2n)!}{n!n!}, \text{ ta có} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4, \text{ do đó chuỗi đã cho phân kỳ.}$$

- **b.** $\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$: Đặt $u_n = \frac{2^n n! n!}{(2n)!}$, tương tự câu a: $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{n+1}{2n+1} = \frac{1}{2}$, do đó chuỗi đã cho hôi tu.
- **c.** $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$: Đặt $u_n = \frac{4^n n! n!}{(2n)!}$, tương tự câu a: $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{2n+2}{2n+1} = 1$.

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} : \text{Dặt } u_n = \frac{(2n)!}{n!n!}, \text{ ta có} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4, \text{ do đó chuỗi đã cho phân kỳ.}$$

- **b.** $\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$: Đặt $u_n = \frac{2^n n! n!}{(2n)!}$, tương tự câu a: $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{n+1}{2n+1} = \frac{1}{2}$, do đó chuỗi đã cho hội tụ.
- **c.** $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$: Đặt $u_n = \frac{4^n n! n!}{(2n)!}$, tương tự câu a: $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{2n+2}{2n+1} = 1$. Tuy nhiên, chú ý rằng $\frac{u_{n+1}}{u_n} = \frac{2n+2}{2n+1} > 1$,

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} : \text{Dặt } u_n = \frac{(2n)!}{n!n!}, \text{ ta có} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4, \text{ do đó chuỗi đã cho phân kỳ.}$$

- **b.** $\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$: Đặt $u_n = \frac{2^n n! n!}{(2n)!}$, tương tự câu a: $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{n+1}{2n+1} = \frac{1}{2}$, do đó chuỗi đã cho hội tụ.
- $\begin{array}{l} \textbf{c.} \ \sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!} \colon \textbf{D} \breve{\textbf{A}} \textbf{t} \ u_n = \frac{4^n n! n!}{(2n)!}, \ \textbf{tương tự câu a:} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{2n+2}{2n+1} = 1. \\ \ \textit{Tuy nhiên, chú ý rằng} \ \frac{u_{n+1}}{u_n} = \frac{2n+2}{2n+1} > 1, \Rightarrow \{u_n\} \ \textbf{là dãy tăng và} \\ \ u_n \geq u_1 = 2 \ \forall n, \ \textbf{do d\acute{o}} \ \lim_{n \to +\infty} u_n \neq 0, \end{array}$

a.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} : \text{ \it D} \breve{\textbf{a}} t \, u_n = \frac{(2n)!}{n!n!}, \, \text{\it ta c\'o} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{[2(n+1)]!n!n!}{(2n)!(n+1)!(n+1)!} \\ = \lim_{n \to +\infty} \frac{(2n+1)(2n+2)}{(n+1)(n+1)} = \lim_{n \to +\infty} \frac{4n+2}{n+1} = 4, \, \text{\it do d\'o} \, \text{\it chu\~o} \, \breve{\textbf{\it d}} \breve{\textbf{\it a}} \, \, \text{\it cho ph\^an k\'o}.$$

- b. $\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$: Đặt $u_n = \frac{2^n n! n!}{(2n)!}$, tương tự câu a: $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{n+1}{2n+1} = \frac{1}{2}$, do đó chuỗi đã cho hội tụ.
- $\begin{array}{l} \textbf{c.} \ \sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!} \colon \textbf{D} \Breve{A} t \ u_n = \frac{4^n n! n!}{(2n)!}, \ \textit{tương tự câu a:} \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{2n+2}{2n+1} = 1. \\ Tuy \ \textit{nhiên, chú ý rằng} \ \frac{u_{n+1}}{u_n} = \frac{2n+2}{2n+1} > 1, \Rightarrow \{u_n\} \ \textit{là dãy tăng và} \\ u_n \geq u_1 = 2 \ \forall n, \ \textit{do đó} \ \lim_{n \to +\infty} u_n \neq 0, \ \textit{suy ra chuỗi đã cho phân kỳ}. \\ \end{array}$

2.2.3 Quy tắc D'Alembert và Quy tắc Cauchhy

Định lý 2.7

(Quy tắc Cauchy) Chuỗi số dương $\sum_{n=1}^\infty u_n$ có $\lim_{n o +\infty} \sqrt[n]{u_n} = \ell$

- hôi tu khi $\ell < 1$;
- phân kỳ khi $\ell > 1$;
- không có kết luận khi $\ell=1$.

Xét sự hội tụ của chuỗi có số hạng tổng quát
$$u_n = \begin{cases} n/2^n & \textit{với } n \text{ lể} \\ 1/2^n & \textit{với } n \text{ chẵn.} \end{cases}$$

Xét sự hội tụ của chuỗi có số hạng tổng quát
$$u_n = \begin{cases} n/2^n & \textit{với } n \text{ lẻ} \\ 1/2^n & \textit{với } n \text{ chẵn.} \end{cases}$$

$$ullet$$
 Chú ý rằng, ta có $\dfrac{u_{n+1}}{u_n}=egin{cases} rac{1}{2n} & ext{với } n ext{ lể} \\ rac{n+1}{2} & ext{với } n ext{ chẵn} \end{cases}$

Xét sự hội tụ của chuỗi có số hạng tổng quát
$$u_n = \begin{cases} n/2^n & \textit{với } n \text{ lẻ} \\ 1/2^n & \textit{với } n \text{ chẵn.} \end{cases}$$

Giải:

• Chú ý rằng, ta có $\frac{u_{n+1}}{u_n} = \begin{cases} \frac{1}{2n} & \text{với } n \text{ lẻ} \\ \frac{n+1}{2} & \text{với } n \text{ chẵn} \end{cases}$ nên $\nexists \lim_{n \to +\infty} \frac{u_{n+1}}{u_n}$, do đó **không** áp dụng quy tắc D'Alembert được.

Xét sự hội tụ của chuỗi có số hạng tổng quát
$$u_n = \begin{cases} n/2^n & \textit{với } n \text{ lẻ} \\ 1/2^n & \textit{với } n \text{ chẵn.} \end{cases}$$

- Chú ý rằng, ta có $\frac{u_{n+1}}{u_n} = \begin{cases} \frac{1}{2n} & \text{với } n \text{ lẻ} \\ \frac{n+1}{2} & \text{với } n \text{ chẵn} \end{cases}$ nên $\nexists \lim_{n \to +\infty} \frac{u_{n+1}}{u_n}$, do đó **không** áp dụng quy tắc D'Alembert được.
- ullet Áp dụng quy tắc Cauchy: trước hết ta có $\sqrt[n]{u_n}=$

Xét sự hội tụ của chuỗi có số hạng tổng quát $u_n = \begin{cases} n/2^n & \textit{với } n \text{ lẻ} \\ 1/2^n & \textit{với } n \text{ chẵn.} \end{cases}$

- Chú ý rằng, ta có $\frac{u_{n+1}}{u_n} = \begin{cases} \frac{1}{2n} & \text{với } n \text{ lẻ} \\ \frac{n+1}{2} & \text{với } n \text{ chẵn} \end{cases}$ nên $\nexists \lim_{n \to +\infty} \frac{u_{n+1}}{u_n}$, do đó **không**
- áp dụng quy tắc D'Alembert được.
- Áp dụng quy tắc Cauchy: trước hết ta có $\sqrt[n]{u_n} = \begin{cases} \sqrt[n]{n}/2 & \text{với } n \text{ lẻ} \\ 1/2 & \text{với } n \text{ chẵn,} \end{cases}$ và ngoài ra $\lim_{n \to +\infty} \sqrt[n]{n}$

Xét sự hội tụ của chuỗi có số hạng tổng quát $u_n = \begin{cases} n/2^n & ext{với } n ext{ lể} \\ 1/2^n & ext{với } n ext{ chẵn}. \end{cases}$

- Chú ý rằng, ta có $\frac{u_{n+1}}{u_n} = \begin{cases} \frac{1}{2n} & \text{với } n \text{ lể} \\ \frac{n+1}{2} & \text{với } n \text{ chẵn} \end{cases}$ nên $\nexists \lim_{n \to +\infty} \frac{u_{n+1}}{u_n}$, do đó **không** áp dụng quy tắc D'Alembert được.
- Áp dụng quy tắc Cauchy: trước hết ta có $\sqrt[n]{u_n} = \begin{cases} \sqrt[n]{n}/2 & \text{với } n \text{ lẻ} \\ 1/2 & \text{với } n \text{ chẵn}, \end{cases}$ và ngoài ra $\lim_{n \to +\infty} \sqrt[n]{n} = 1$, do đó ta có

Xét sự hội tụ của chuỗi có số hạng tổng quát $u_n = \begin{cases} n/2^n & \textit{với } n \text{ lẻ} \\ 1/2^n & \textit{với } n \text{ chẵn.} \end{cases}$

Giải:

 $\bullet \text{ Chú ý rằng, ta có } \frac{u_{n+1}}{u_n} = \begin{cases} \frac{1}{2n} & \text{với } n \text{ lể} \\ \frac{n+1}{2} & \text{với } n \text{ chẵn} \end{cases} \quad \text{nên } \nexists \lim_{n \to +\infty} \frac{u_{n+1}}{u_n}, \text{ do đó } \textbf{không}$

áp dụng quy tắc D'Alembert được.

• Áp dụng quy tắc Cauchy: trước hết ta có $\sqrt[n]{u_n} = \begin{cases} \sqrt[n]{n}/2 & \text{với } n \text{ lẻ} \\ 1/2 & \text{với } n \text{ chẵn}, \end{cases}$ và ngoài ra $\lim_{n \to +\infty} \sqrt[n]{n} = 1$, do đó ta có

$$\lim_{n \to +\infty} \sqrt[n]{u_n} = \frac{1}{2} < 1.$$

Vậy chuỗi đã cho hội tụ.

Ví dụ 2.11

Xét sự hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.

Ví du 2.11

Xét sự hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.

• (Áp dụng quy tắc D'Alembert) Đặt
$$u_n=\frac{n^2}{2^n}$$
, ta có $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to+\infty}\frac{(n+1)^2}{2n^2}$

Ví du 2.11

Xét sự hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.

• (Áp dụng quy tắc D'Alembert) Đặt
$$u_n=\frac{n^2}{2^n}$$
, ta có $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to+\infty}\frac{(n+1)^2}{2n^2}=$

$$\lim_{n \to +\infty} \frac{(1+\frac{1}{n})^2}{2}$$

Ví du 2.11

Xét sự hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.

• (Áp dụng quy tắc D'Alembert) Đặt
$$u_n=\frac{n^2}{2^n}$$
, ta có $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to +\infty}\frac{(n+1)^2}{2n^2}=\lim_{n\to +\infty}\frac{(1+\frac{1}{n})^2}{2}=\frac{1}{2}$, do đó chuỗi đã cho hội tụ.

Ví du 2.11

Xét sự hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.

- (Áp dụng quy tắc D'Alembert) Đặt $u_n=\frac{n^2}{2^n}$, ta có $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to +\infty}\frac{(n+1)^2}{2n^2}=\lim_{n\to +\infty}\frac{(1+\frac{1}{n})^2}{2}=\frac{1}{2}$, do đó chuỗi đã cho hội tụ.
- (Áp dụng quy tắc Cauchy) Đặt $u_n=\frac{n^2}{2^n}$, ta có $\lim_{n\to+\infty}\sqrt[n]{u_n}=\lim_{n\to+\infty}\frac{\sqrt[n]{n^2}}{2}$

Ví du 2.11

Xét sự hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.

- (Áp dụng quy tắc D'Alembert) Đặt $u_n=\frac{n^2}{2^n}$, ta có $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to +\infty}\frac{(n+1)^2}{2n^2}=\lim_{n\to +\infty}\frac{(1+\frac{1}{n})^2}{2}=\frac{1}{2}$, do đó chuỗi đã cho hội tụ.
- (Áp dụng quy tắc Cauchy) Đặt $u_n=\frac{n^2}{2^n}$, ta có $\lim_{n\to+\infty}\sqrt[n]{u_n}=\lim_{n\to+\infty}\frac{\sqrt[n]{n^2}}{2}=\lim_{n\to+\infty}\frac{\left(\sqrt[n]{n}\right)^2}{2}$

Ví du 2.11

Xét sự hội tụ của chuỗi
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
.

- (Áp dụng quy tắc D'Alembert) Đặt $u_n=\frac{n^2}{2^n}$, ta có $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to +\infty}\frac{(n+1)^2}{2n^2}=\lim_{n\to +\infty}\frac{(1+\frac{1}{n})^2}{2}=\frac{1}{2}$, do đó chuỗi đã cho hội tụ.
- (Áp dụng quy tắc Cauchy) Đặt $u_n = \frac{n^2}{2^n}$, ta có $\lim_{n \to +\infty} \sqrt[n]{u_n} = \lim_{n \to +\infty} \frac{\sqrt[n]{n^2}}{2} = \lim_{n \to +\infty} \frac{(\sqrt[n]{n})^2}{2} = \frac{1}{2}$, do đó chuỗi đã cho hội tụ.

2.3 Chuỗi số có dấu bất kỳ

- 2.3.1 Chuỗi đan dấu
- 2.3.2 Hội tụ tuyệt đối

2.3.1 Chuỗi đan dấu

Chuỗi đan dấu là chuỗi số có dạng

$$\pm \left(\sum_{n=1}^{\infty} (-1)^{n-1} u_n\right) = \pm (u_1 - u_2 + u_3 - \cdots), \ u_n > 0 \,\forall n.$$

Chuỗi đan dấu là chuỗi số có dạng

$$\pm \left(\sum_{n=1}^{\infty} (-1)^{n-1} u_n\right) = \pm (u_1 - u_2 + u_3 - \cdots), \ u_n > 0 \,\forall n.$$

Định lý 2.8

(Leibniz) Nếu dãy số dương $\{u_n\}$ thỏa mãn:

- (i) là dãy giảm từ chỉ số n_0 nào đó: $u_{n+1} \le u_n, \forall n \ge n_0 \ge 1$,
- (ii) $colonized \lim_{n\to+\infty}u_n=0$

thì chuỗi đan dấu $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ hội tụ.

Chuỗi đan dấu là chuỗi số có dạng

$$\pm \left(\sum_{n=1}^{\infty} (-1)^{n-1} u_n\right) = \pm (u_1 - u_2 + u_3 - \cdots), \ u_n > 0 \,\forall n.$$

Định lý 2.8

(Leibniz) Nếu dãy số dương $\{u_n\}$ thỏa mãn:

- (i) là dãy giảm từ chỉ số n_0 nào đó: $u_{n+1} \le u_n, \forall n \ge n_0 \ge 1$,
- (ii) $c\acute{o}\lim_{n\to+\infty}u_n=0$

thì chuỗi đan dấu $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ hội tụ.

Chú ý rằng, nếu chuỗi $\sum u_n$ có $\lim_{n \to +\infty} u_n \neq 0$ hoặc $\nexists \lim_{n \to +\infty} u_n$ thì chuỗi không hội

$$\textbf{1. Chuỗi} \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}:$$

1.
$$\mathit{Chu\~oi} \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$
: $\mathit{do} \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{n}{n+1} = 1 \neq 0$ $\mathit{n\^{e}n}$ $\mathit{chu\~oi}$ $\mathit{ph\^{a}n}$ $\mathit{k\`o}$.

- 1. $\mathit{Chu\~oi} \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$: $\mathit{do} \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{n}{n+1} = 1 \neq 0$ $\mathit{n\^{e}n}$ $\mathit{chu\~oi}$ $\mathit{ph\^an}$ $\mathit{k\`o}$.
- **2.** Chuỗi $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ có:

- 1. $\mathit{Chu\~oi} \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$: $\mathit{do} \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{n}{n+1} = 1 \neq 0$ $\mathit{n\^{e}n}$ $\mathit{chu\~oi}$ $\mathit{ph\^an}$ $\mathit{k\`o}$.
- 2. Chuỗi $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ có:

(i)
$$u_{n+1} = \frac{1}{n+1} < \frac{1}{n} = u_n \ \forall n \ge 1$$
,

- 1. $\mathit{Chu\~oi} \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$: $\mathit{do} \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{n}{n+1} = 1 \neq 0$ $\mathit{n\^{e}n}$ $\mathit{chu\~oi}$ $\mathit{ph\^an}$ $\mathit{k\`o}$.
- 2. Chuỗi $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ có:
 - (i) $u_{n+1} = \frac{1}{n+1} < \frac{1}{n} = u_n \ \forall n \ge 1$, (ii) $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} = 0$

Ví du 2.12

- 1. $\mathit{Chu\~oi} \sum_{n=1}^{n} (-1)^n \frac{n}{n+1}$: $\mathit{do} \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{n}{n+1} = 1 \neq 0$ $\mathit{n\^{e}n}$ $\mathit{chu\~oi}$ $\mathit{ph\^{a}n}$ $\mathit{k\`o}$.
- **2.** Chuỗi $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ có:

(i)
$$u_{n+1} = \frac{1}{n+1} < \frac{1}{n} = u_n \ \forall n \ge 1$$
,
(ii) $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} = 0$

(ii)
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} = 0$$

nên theo Đinh lý Leibniz, chuỗi đó hôi tu.

Định lý 2.9

Nếu chuỗi
$$\sum_{n=1}^{\infty} |u_n|$$
 hội tụ thì chuỗi $\sum_{n=1}^{\infty} u_n$ cũng hội tụ.

Định lý 2.9

Nếu chuỗi $\sum_{n=1}^{\infty} |u_n|$ hội tụ thì chuỗi $\sum_{n=1}^{\infty} u_n$ cũng hội tụ.

Định nghĩa 2.1

Chuỗi $\sum_{n=1}^{\infty}u_{n}$ được gọi là

- ightharpoonup hội tụ tuyệt đối nếu chuỗi $\sum_{n=1}^{\infty}|u_n|$ hội tụ.
- **bán hội tụ** *nếu nó hội tụ nhưng chuỗi* $\sum_{n=1}^{\infty} |u_n|$ *phân kỳ.*

Ví du 2.13

 $\textbf{1.} \; \textit{Chuỗi} \sum_{n=1}^{\infty} \frac{\sin n}{n^2} \; \textit{hội tụ tuyệt đối vì chuỗi} \sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right| \; \textit{hội tụ (do} \left| \frac{\sin n}{n^2} \right| \leq \frac{1}{n^2}$

$$orall n \geq 1$$
 và chuỗi $\sum_{n=1}^{\infty} rac{1}{n^2}$ hội tụ).

- **1.** Chuỗi $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ hội tụ tuyệt đối vì chuỗi $\sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right|$ hội tụ (do $\left| \frac{\sin n}{n^2} \right| \le \frac{1}{n^2}$
 - $orall n \geq 1$ và chuỗi $\sum_{n=1}^{\infty} rac{1}{n^2}$ hội tụ).
- 2. $Chu\tilde{\delta i}\sum_{n=1}^{\infty}(-1)^n\frac{1}{n}$ bán hội tụ do nó hội tụ (Ví dụ 2.12) nhưng chuỗi $\sum_{n=1}^{\infty}\frac{1}{n}$ phân kỳ (Ví dụ 2.4).

Chú ý khi thực hiện sắp xếp lại chuỗi:

Định lý 2.10

Chú ý khi thực hiện sắp xếp lại chuỗi:

Định lý 2.10

1. Nếu chuỗi $\sum_{n=1}^\infty u_n$ hội tụ tuyệt đối và có tổng S thì chuỗi suy từ nó bằng cách thay đổi thứ tự các phần tử hoặc nhóm tùy ý các số hạng lại cũng hội tụ tuyệt đối và có tổng S.

Chú ý khi thực hiện sắp xếp lại chuỗi:

Định lý 2.10

- 1. Nếu chuỗi $\sum_{n=1}^\infty u_n$ hội tụ tuyệt đối và có tổng S thì chuỗi suy từ nó bằng cách thay đổi thứ tự các phần tử hoặc nhóm tùy ý các số hạng lại cũng hội tụ tuyệt đối và có tổng S.
- 2. Nếu chuỗi $\sum_{n=1} u_n$ bán hội tụ thì ta có thể thay đổi thứ tự và nhóm các số hạng của nó để tạo ra chuỗi mới có tổng khác hoặc phân kỳ.

2.4 Chuỗi lũy thừa

- 2.4.1 Chuỗi lũy thừa và sự hội tụ
- 2.4.2 Bán kính hôi tu
- 2.4.3 Khai triển một hàm thành chuỗi lũy thừa

Chuỗi lũy thừa là chuỗi hàm số dạng

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (2.2)

với $x \in \mathbb{R}$ và các hệ số $a_n \in \mathbb{R}, \forall n$.

Chuỗi lũy thừa là chuỗi hàm số dạng

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (2.2)

với $x \in \mathbb{R}$ và các hệ số $a_n \in \mathbb{R}, \forall n$.

Định nghĩa 2.2

Chuỗi lũy thừa (2.2) được gọi là hội tụ tại điểm x_0 nếu chuỗi số $\sum_{n=0}a_nx_0^n$ hội tụ.

Tập tất cả các điểm mà tại đó chuỗi (2.2) hội tụ gọi là miền hội tụ của chuỗi.

Định lý 2.11

- (i) (Abel) Nếu chuỗi lũy thừa $\sum_{n=0}^{\infty}a_nx^n$ hội tụ tại $x=x_0\neq 0$ thì nó hội tụ tuyệt đối tại mọi x với $|x|<|x_0|$.
- (ii) Nếu chuỗi lũy thừa $\sum_{n=0}^{\infty} a_n x^n$ phân kỳ tại $x=x_1\neq 0$ thì nó phân kỳ tại mọi x với $|x|>|x_1|$.

Định lý 2.11

- (i) (Abel) Nếu chuỗi lũy thừa $\sum_{n=0}^{\infty}a_nx^n$ hội tụ tại $x=x_0\neq 0$ thì nó hội tụ tuyệt đối tại mọi x với $|x|<|x_0|$.
- (ii) Nếu chuỗi lũy thừa $\sum_{n=0}^{\infty} a_n x^n$ phân kỳ tại $x=x_1\neq 0$ thì nó phân kỳ tại mọi x với $|x|>|x_1|$.
- ⇒ chuỗi lũy thừa (2.2):
 - 1. hoặc chỉ hội tụ tại x=0;
 - **2.** hoặc hội tụ $\forall x \in \mathbb{R}$;
 - 3. hoặc $\exists R > 0$ sao cho chuỗi lũy thừa (2.2) hội tụ tuyệt đối với |x| < R và phân kỳ với |x| > R. Số R đó được gọi là *bán kính hội tụ* của chuỗi lũy thừa (2.2).

Đinh lý 2.12

Nếu có $\lim_{n\to+\infty} \frac{|a_{n+1}|}{|a_n|} = \rho$ hoặc $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = \rho$ thì bán kính hội tụ của chuỗi lũy thừa (2.2) được xác định bởi

$$R = \left\{ egin{array}{ll} 0 & extit{n\'eu} \
ho = +\infty \ +\infty & extit{n\'eu} \
ho = 0 \ rac{1}{
ho} & extit{n\'eu} \ 0 <
ho < +\infty. \end{array}
ight.$$

Từ kết quả trên, ta có quy tắc tìm miền hội tụ của chuỗi lũy thừa (2.2): tìm ρ theo một trong hai cách như Định lý 2.12.

- **1.** Nếu $\rho = +\infty$: chuỗi chỉ hội tụ tại x = 0;
- 2. Nếu $\rho = 0$: miền hội tụ của chuỗi là $(-\infty, +\infty)$;
- 3. Nếu $0<\rho<+\infty$: kiểm tra tính hội tụ của chuỗi tại $x=\pm R$ rồi kết luận miền hội tụ của chuỗi.

Ví du 2.14

1.
$$\sum_{n=0}^{\infty} (2x)^n$$
:

Ví du 2.14

1.
$$\sum_{n=0}^{\infty} (2x)^n$$
: ta có $a_n = 2^n \ \forall n \Rightarrow \rho = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2 \Rightarrow R = \frac{1}{2}$

Ví du 2.14

$$\begin{array}{l} \textbf{1.} \ \sum_{n=0}^{\infty} (2x)^n \text{: ta có } a_n = 2^n \ \forall n \Rightarrow \rho = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2 \Rightarrow R = \frac{1}{2} \\ \text{(hoặc } \rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 2 \text{).} \end{array}$$

Ví du 2.14

1.
$$\sum_{n=0}^{\infty} (2x)^n$$
: ta có $a_n = 2^n \ \forall n \Rightarrow \rho = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2 \Rightarrow R = \frac{1}{2}$ (hoặc $\rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 2$).

- Tại
$$x=\frac{1}{2}$$
: Chuỗi trở thành $\sum_{}^{\infty}1^{n}=+\infty$ nên nó phân kỳ.

Ví du 2.14

1.
$$\sum_{n=0}^{\infty} (2x)^n$$
: ta có $a_n = 2^n \ \forall n \Rightarrow \rho = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2 \Rightarrow R = \frac{1}{2}$ (hoặc $\rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 2$).

- Tại
$$x=rac{1}{2}$$
: Chuỗi trở thành $\sum_{n=0}^{\infty}1^n=+\infty$ nên nó phân kỳ.

- Tại
$$x=-rac{1}{2}$$
: Chuỗi trở thành $\sum_{n=0}^{\infty}(-1)^n$. Chuỗi này có các tổng riêng S_{2k}

Ví du 2.14

1.
$$\sum_{n=0}^{\infty} (2x)^n$$
: ta có $a_n = 2^n \ \forall n \Rightarrow \rho = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2 \Rightarrow R = \frac{1}{2}$ (hoặc $\rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 2$).

- Tại
$$x=rac{1}{2}$$
: Chuỗi trở thành $\sum_{n=0}^{\infty}1^n=+\infty$ nên nó phân kỳ.

- Tại
$$x=-rac{1}{2}$$
: Chuỗi trở thành $\sum_{n=0}^{\infty}(-1)^n$. Chuỗi này có các tổng riêng $S_{2k}=1$ và S_{2k+1}

Ví du 2.14

1.
$$\sum_{n=0}^{\infty} (2x)^n$$
: ta có $a_n = 2^n \ \forall n \Rightarrow \rho = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2 \Rightarrow R = \frac{1}{2}$ (hoặc $\rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 2$).

- Tại
$$x=rac{1}{2}$$
: Chuỗi trở thành $\sum_{n=0}^{\infty}1^n=+\infty$ nên nó phân kỳ.

- Tại
$$x=-\frac{1}{2}$$
: Chuỗi trở thành $\sum_{n=0}^{\infty}(-1)^n$. Chuỗi này có các tổng riêng $S_{2k}=1$ và $S_{2k+1}=0, \forall k\geq 0$ nên $\nexists\lim_{n\to+\infty}S_n$, do đó chuỗi đã cho phân kỳ.

Ví du 2.14

Tìm miền hội tụ của chuỗi:

1.
$$\sum_{n=0}^{\infty} (2x)^n$$
: ta có $a_n = 2^n \ \forall n \Rightarrow \rho = \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2 \Rightarrow R = \frac{1}{2}$ (hoặc $\rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 2$).

- Tại
$$x=rac{1}{2}$$
: Chuỗi trở thành $\sum_{n=0}^{\infty}1^n=+\infty$ nên nó phân kỳ.

- Tại
$$x=-rac{1}{2}$$
: Chuỗi trở thành $\sum_{n=0}^{\infty}(-1)^n$. Chuỗi này có các tổng riêng $S_{2k}=1$

và
$$S_{2k+1}=0, orall k\geq 0$$
 nên $existsim_{n o +\infty}S_n$, do đó chuỗi đã cho phân kỳ.

Vậy miền hội tụ của chuỗi $\sum_{n=0}^{\infty} (2x)^n$ là khoảng $(-\frac{1}{2},\frac{1}{2})$.

$$2. \sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$$

$$2. \sum_{n=0}^{\infty} \frac{3^n x^n}{n!} : \text{ta co}$$

$$a_n = \frac{3^n}{n!} \Rightarrow \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{3^{n+1}n!}{3^n(n+1)!} = \lim_{n \to +\infty} \frac{3}{n+1} = 0 \Rightarrow R = +\infty.$$

2. $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$: ta có

$$a_n = \frac{3^n}{n!} \Rightarrow \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{3^{n+1} n!}{3^n (n+1)!} = \lim_{n \to +\infty} \frac{3}{n+1} = 0 \Rightarrow R = +\infty.$$

Vậy miền hội tụ của chuỗi $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$ là $(-\infty, +\infty)$.

$$3. \sum_{n=1}^{\infty} (\ln n) x^n$$
:

3.
$$\sum_{n=1}^{\infty} (\ln n) x^n \text{: ta có } 1 < a_n = \ln n < n, \ \forall n \geq 3 \Rightarrow 1 \leq \lim_{n \to +\infty} \sqrt[n]{|a_n|} \leq \lim_{n \to +\infty} \sqrt[n]{n} = 1 \Rightarrow \rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 1 \Rightarrow R = 1.$$

- $\begin{array}{l} \textbf{3.} \; \displaystyle \sum_{n=1} (\ln n) x^n \text{: ta có } 1 < a_n = \ln n < n, \; \forall n \geq 3 \Rightarrow 1 \leq \lim_{n \to +\infty} \sqrt[n]{|a_n|} \leq \\ \lim_{n \to +\infty} \sqrt[n]{n} = 1 \Rightarrow \rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 1 \Rightarrow R = 1. \end{array}$
 - Tại x=1: Chuỗi trở thành $\sum_{i=1}^{\infty} \ln n = +\infty$ nên nó phân kỳ.

2.4.2 Tìm bán kính hội tụ

- 3. $\sum_{n=1}^{\infty} (\ln n) x^n \colon \mathsf{ta} \ \mathsf{co} \ 1 < a_n = \ln n < n, \ \forall n \geq 3 \Rightarrow 1 \leq \lim_{n \to +\infty} \sqrt[n]{|a_n|} \leq \lim_{n \to +\infty} \sqrt[n]{n} = 1 \Rightarrow \rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 1 \Rightarrow R = 1.$
 - Tại x=1: Chuỗi trở thành $\sum_{n=1}^{\infty} \ln n = +\infty$ nên nó phân kỳ.
 - Tại x=-1: Chuỗi trở thành $\sum_{n=1}(-1)^n\ln n$. Do $\lim_{n\to+\infty}\ln n=+\infty$ nên chuỗi này phân kỳ.

2.4.2 Tìm bán kính hội tụ

- 3. $\sum_{n=1}^{\infty} (\ln n) x^n \colon \mathsf{ta} \ \mathsf{co} \ 1 < a_n = \ln n < n, \ \forall n \geq 3 \Rightarrow 1 \leq \lim_{n \to +\infty} \sqrt[n]{|a_n|} \leq \lim_{n \to +\infty} \sqrt[n]{n} = 1 \Rightarrow \rho = \lim_{n \to +\infty} \sqrt[n]{|a_n|} = 1 \Rightarrow R = 1.$
 - Tại x=1: Chuỗi trở thành $\sum_{n=1}^{\infty} \ln n = +\infty$ nên nó phân kỳ.
 - Tại x=-1: Chuỗi trở thành $\sum_{n=1}^\infty (-1)^n \ln n$. Do $\lim_{n\to+\infty} \ln n = +\infty$ nên chuỗi này phân kỳ.

Vậy miền hội tụ của chuỗi $\sum_{n=1}^{\infty} (\ln n) x^n$ là khoảng (-1,1).

Một số tính chất

Giả sử chuỗi $\sum_{n=0}a_nx^n$ hội tụ trên miền I với bán kính hội tụ R. Khi đó với $x\in I$, giới hạn của dãy tổng riêng

$$f(x) = \lim_{n \to +\infty} s_n(x) = \lim_{n \to +\infty} \sum_{k=0}^n a_k x^k$$

gọi là tổng của chuỗi.

Môt số tính chất

Định lý 2.13

- 1. Giả sử chuỗi $\sum a_n x^n = f(x)$ hội tụ trên miền I với bán kính hội tụ R. Khi đó:
 - a. f là một hàm liên tục trên I.
 - **b.** $f'(x) = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$ là chuỗi có bán kính hội tụ R.
 - c. $\int f(x)dx = \sum_{n=0}^{\infty} \int a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ là chuỗi có bán kính hội tụ R.
- **2.** Giả sử các chuỗi $\sum_{n=0}^{\infty} a_n x^n = f(x), \sum_{n=0}^{\infty} b_n x^n = g(x)$ hội tụ trên miền I. Khi đó

$$\sum_{n=0}^{\infty} (a_n \pm b_n) x^n = f(x) \pm g(x) \quad \text{trên } I.$$

Ví dụ 2.15

Tìm miền hội tụ và tính tổng của chuỗi lũy thừa:

$$1. \sum_{n=0}^{\infty} x^{2n}$$

Tìm miền hội tụ và tính tổng của chuỗi lũy thừa:

1. $\sum_{n=0}^{\infty} x^{2n}$: Đặt $y=x^2\geq 0$, chuỗi đã cho trở thành $\sum_{n=1}^{\infty} y^n$. Chuỗi này có

$$a_n=1, \forall n \; {\sf n\hat{e}n} \; \rho=\lim_{n o +\infty} rac{|a_{n+1}|}{|a_n|}=1 \Rightarrow R=1.$$

Tìm miền hội tụ và tính tổng của chuỗi lũy thừa:

1. $\sum_{n=0}^{\infty}x^{2n}$: Đặt $y=x^2\geq 0$, chuỗi đã cho trở thành $\sum_{n=1}^{\infty}y^n$. Chuỗi này có

$$a_n=1, \forall n \text{ nên } \rho=\lim_{n\to+\infty}rac{|a_{n+1}|}{|a_n|}=1 \Rightarrow R=1.$$

- Tại y=1: Chuỗi trở thành $\sum_{n=0}^{\infty}1^n=+\infty$ nên nó phân kỳ.

Tìm miền hội tụ và tính tổng của chuỗi lũy thừa:

1. $\sum_{n=0}^{\infty}x^{2n}$: Đặt $y=x^2\geq 0$, chuỗi đã cho trở thành $\sum_{n=1}^{\infty}y^n$. Chuỗi này có

$$a_n=1, \forall n \text{ nên } \rho=\lim_{n\to+\infty}rac{|a_{n+1}|}{|a_n|}=1 \Rightarrow R=1.$$

- Tại y=1: Chuỗi trở thành $\sum_{n=0} 1^n = +\infty$ nên nó phân kỳ.

Vậy miền hội tụ của chuỗi $\sum_{n=0} y^n$ là nửa khoảng [0,1),

Tìm miền hội tụ và tính tổng của chuỗi lũy thừa:

1. $\sum_{n=0}^{\infty}x^{2n}$: Đặt $y=x^2\geq 0$, chuỗi đã cho trở thành $\sum_{n=1}^{\infty}y^n$. Chuỗi này có

$$a_n=1, \forall n \; {\sf n\hat{e}n} \; \rho=\lim_{n \to +\infty} rac{|a_{n+1}|}{|a_n|}=1 \Rightarrow R=1.$$

- Tại y=1: Chuỗi trở thành $\sum_{n=0}^{\infty}1^n=+\infty$ nên nó phân kỳ.

Vậy miền hội tụ của chuỗi $\sum_{n=0} y^n$ là nửa khoảng [0,1), suy ra miền hội tụ của

chuỗi
$$\sum_{n=1}^{\infty} x^{2n}$$
 là khoảng $(-1,1)$.

Để tính tổng của chuỗi, ta có với $x \in (-1, 1)$:

$$f(x) = \lim_{n \to +\infty} s_n(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} x^{2k} = \lim_{n \to +\infty} \sum_{k=0}^{n} (x^2)^k = \lim_{n \to +\infty} \frac{1 - (x^2)^{n+1}}{1 - x^2} = \frac{1}{1 - x^2}.$$

Vậy

$$\sum_{n=0}^{\infty} x^{2n} = \frac{1}{1 - x^2} \quad \text{trên khoảng } (-1, 1). \tag{2.3}$$

Để tính tổng của chuỗi, ta có với $x \in (-1,1)$:

$$f(x) = \lim_{n \to +\infty} s_n(x) = \lim_{n \to +\infty} \sum_{k=0}^n x^{2k} = \lim_{n \to +\infty} \sum_{k=0}^n (x^2)^k = \lim_{n \to +\infty} \frac{1 - (x^2)^{n+1}}{1 - x^2} = \frac{1}{1 - x^2}.$$

Vậy

$$\sum_{n=0}^{\infty} x^{2n} = \frac{1}{1 - x^2} \quad \text{trên khoảng } (-1, 1). \tag{2.3}$$

2.
$$\sum_{n=0}^{\infty} (2n+1)x^{2n}$$
:

Để tính tổng của chuỗi, ta có với $x \in (-1, 1)$:

$$f(x) = \lim_{n \to +\infty} s_n(x) = \lim_{n \to +\infty} \sum_{k=0}^n x^{2k} = \lim_{n \to +\infty} \sum_{k=0}^n (x^2)^k = \lim_{n \to +\infty} \frac{1 - (x^2)^{n+1}}{1 - x^2} = \frac{1}{1 - x^2}.$$

Vậy

$$\sum_{n=0}^{\infty} x^{2n} = \frac{1}{1 - x^2} \quad \text{trên khoảng } (-1, 1). \tag{2.3}$$

2. $\sum_{n=0}^{\infty} (2n+1)x^{2n}$: tương tự như trên ta có khoảng hội tụ của chuỗi là (-1,1).

Để tính tổng của chuỗi, ta có với $x \in (-1, 1)$:

$$f(x) = \lim_{n \to +\infty} s_n(x) = \lim_{n \to +\infty} \sum_{k=0}^n x^{2k} = \lim_{n \to +\infty} \sum_{k=0}^n (x^2)^k = \lim_{n \to +\infty} \frac{1 - (x^2)^{n+1}}{1 - x^2} = \frac{1}{1 - x^2}.$$

Vậy

$$\sum_{n=0}^{\infty} x^{2n} = \frac{1}{1 - x^2} \quad \text{trên khoảng } (-1, 1).$$
 (2.3)

2. $\sum_{n=1}^{\infty} (2n+1)x^{2n}$: tương tự như trên ta có khoảng hội tụ của chuỗi là (-1,1). Tuy nhiên, để tìm tổng của chuỗi thì không tính theo cách như trên được.

 \mathring{O} đây, chú ý rằng $(2n+1)x^{2n} = (x^{2n+1})'$.

 $\mathring{\mathbf{O}}$ đây, chú ý rằng $(2n+1)x^{2n}=(x^{2n+1})'$. Nhân 2 vế của (2.3) với x rồi đạo hàm, ta được:

$$\left(\sum_{n=0}^{\infty} x^{2n+1}\right)' = \left(\frac{x}{1-x^2}\right)' \Rightarrow \sum_{n=1}^{\infty} (2n+1)x^{2n} = \frac{1+x^2}{(1-x^2)^2}.$$

$$\left(\sum_{n=0}^{\infty} x^{2n+1}\right)' = \left(\frac{x}{1-x^2}\right)' \Rightarrow \sum_{n=1}^{\infty} (2n+1)x^{2n} = \frac{1+x^2}{(1-x^2)^2}.$$

3.
$$\sum_{n=1}^{\infty} 2nx^{2n}$$
:

$$\left(\sum_{n=0}^{\infty} x^{2n+1}\right)' = \left(\frac{x}{1-x^2}\right)' \Rightarrow \sum_{n=1}^{\infty} (2n+1)x^{2n} = \frac{1+x^2}{(1-x^2)^2}.$$

3. $\sum_{i=1}^{n} 2nx^{2n}$: tương tự như trên ta có khoảng hội tụ của chuỗi là (-1,1).

$$\left(\sum_{n=0}^{\infty} x^{2n+1}\right)' = \left(\frac{x}{1-x^2}\right)' \Rightarrow \sum_{n=1}^{\infty} (2n+1)x^{2n} = \frac{1+x^2}{(1-x^2)^2}.$$

3. $\sum_{n=1}^{\infty} 2nx^{2n}$: tương tự như trên ta có khoảng hội tụ của chuỗi là (-1,1). Ta có

$$\sum_{n=1}^{\infty} 2nx^{2n}$$

$$\left(\sum_{n=0}^{\infty} x^{2n+1}\right)' = \left(\frac{x}{1-x^2}\right)' \Rightarrow \sum_{n=1}^{\infty} (2n+1)x^{2n} = \frac{1+x^2}{(1-x^2)^2}.$$

3. $\sum_{i=1}^{n} 2nx^{2n}$: tương tự như trên ta có khoảng hội tụ của chuỗi là (-1,1). Ta có

$$\sum_{n=1}^{\infty} 2nx^{2n} = \sum_{n=1}^{\infty} [(2n+1) - 1]x^{2n} = \sum_{n=1}^{\infty} (2n+1)x^{2n} - \sum_{n=0}^{\infty} x^{2n}$$

$$\left(\sum_{n=0}^{\infty} x^{2n+1}\right)' = \left(\frac{x}{1-x^2}\right)' \Rightarrow \sum_{n=1}^{\infty} (2n+1)x^{2n} = \frac{1+x^2}{(1-x^2)^2}.$$

3. $\sum_{i=1}^{n} 2nx^{2n}$: tương tự như trên ta có khoảng hội tụ của chuỗi là (-1,1). Ta có

$$\sum_{n=1}^{\infty} 2nx^{2n} = \sum_{n=1}^{\infty} [(2n+1) - 1]x^{2n} = \sum_{n=1}^{\infty} (2n+1)x^{2n} - \sum_{n=0}^{\infty} x^{2n}$$
$$= \frac{1+x^2}{(1-x^2)^2} - \frac{1}{1-x^2} = \frac{2x^2}{(1-x^2)^2}.$$

2.4.3 Khai triển một hàm thành chuỗi lũy thừa

Định lý 2.14

Giả sử hàm f xác định và có đạo hàm mọi cấp trong lân cận V của x_0 . Khi đó, với $x \in V$, ta có

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

2.4.3 Khai triển một hàm thành chuỗi lũy thừa

Định lý 2.14

Giả sử hàm f xác định và có đạo hàm mọi cấp trong lân cận V của x_0 . Khi đó, với $x \in V$, ta có

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

Công thức trên gọi là *chuỗi Taylor* của hàm f(x) trong lân cận của x_0 .

2.4.3 Khai triển một hàm thành chuỗi lũy thừa

Định lý 2.14

Giả sử hàm f xác định và có đạo hàm mọi cấp trong lân cận V của x_0 . Khi đó, với $x \in V$, ta có

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

Công thức trên gọi là ${\it chuỗi}$ ${\it Taylor}$ của hàm f(x) trong lân cận của x_0 . Nếu $x_0=0$ thì chuỗi có dạng

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

được gọi là chuỗi Mac Laurin của f.

Ví du 2.16

1.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)!} x^{2n-1}.$$

Ví du 2.16

1.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)!} x^{2n-1}.$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}.$$

Ví du 2.16

1.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)!} x^{2n-1}.$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}.$$

3.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!} x^n$$
.

Ví du 2.16

1.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)!} x^{2n-1}.$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}.$$

3.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!} x^n$$
.

Cả 3 hàm trên đều có khai triển tương ứng với $x \in (-\infty, +\infty)$.

Ví du 2.16

1.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)!} x^{2n-1}.$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}.$$

3.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!} x^n$$
.

Cả 3 hàm trên đều có khai triển tương ứng với $x \in (-\infty, +\infty)$.

4.
$$\frac{1}{x+1} = 1 - x + x^2 + \dots + (-1)^n x^n + \dots = \sum_{n=0}^{\infty} (-1)^n x^n, \quad x \in (-1,1).$$

Ví du 2.16

1.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(2n-1)!} x^{2n-1}.$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n}.$$

3.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=1}^{\infty} \frac{1}{n!} x^n$$
.

Cả 3 hàm trên đều có khai triển tương ứng với $x \in (-\infty, +\infty)$.

4.
$$\frac{1}{x+1} = 1 - x + x^2 + \dots + (-1)^n x^n + \dots = \sum_{n=0}^{\infty} (-1)^n x^n, \quad x \in (-1,1).$$

5.
$$\ln(x+1) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n_{\text{TS. Phùng Minh Diver(BMTL)}}} - \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad x \in (-1,1).$$

Thực hiện bởi Trường Đại học Công nghệ Thông tin, ĐHQG-HCM