Układy doświadczalne dla testowania wielu dawek lub metod leczenia

- Wielokrotne porównania
- Określanie dawki (dose finding)
- Układ czynnikowy

Poprawka Bonferroniego

Niech α_{overall} oznacza pożądany poziom istotności dla całego doświadczenia (experiment-wise).

Jeśli przeprowadzamy N niezależnych testów, jaki powinniśmy przyjąć nominalny poziom istotności dla każdego z nich?

Bonferroni:
$$(1 - \alpha_{nominal})^N = (1 - \alpha_{overall})$$

 $\Rightarrow \alpha_{nominal} \cong \alpha_{overall} / N$

Poprawka Bonferroniego

Przykład:

$$\alpha_{overall} = 5\%$$
 $10 \ test\'ow$

$$\alpha_{nominal} \cong 0.5\%$$

Poprawka Bonferroniego jest łatwa do zastosowania, lecz jest (zbyt) konserwatywna.

Testy hipotez w próbach określających dawkę (dose-finding trials)

Notacja

p₀: odsetek (odpowiedzi) w grupie kontrolnej

 p_i ($i \neq 0$): odsetek w grupie leczonej i = 1, ..., K

Testy hipotez w próbach określających dawkę: hipoteza ogólna

Hipotezy

$$H_0$$
: $p_0 = p_1 = p_2 = ... = p_K$

 $H_A: p_i \neq p_j$ dla co najmniej jednej pary (i,j)

Procedura testowa

Porównania wszystkich par z poprawką na wielokrotne porównania (np. Bonferroni)

"Domknięta" procedura testowa (closed test procedure)

Testy hipotez w próbach określających dawkę: porównywanie "sąsiednich" dawek

Hipotezy

$$H_0$$
: $p_0 = p_1 = p_2 = ... = p_K$

VS

$$H_A$$
: $p_0 \le p_1 \le p_2 \le ... \le p_K$ z $p_i < p_{i+1}$ dla przynajmniej jednego i

Procedura testowa

Test trendu liniowego (lub innego)

"Domknięta" procedura testowa

Testy hipotez w próbach określających dawkę: porównania "wielu-do-jednej" (many-to-one)

Hipotezy

 H_0 : $p_0 = p_i$ dla wszystkich i vs

 H_A : $p_0 \neq p_i$ dla przynajmniej jednego i

Procedura testowa

Porównania grup leczonych vs kontrola z poprawką na wielokrotne porównania (np. Bonferroni)

"Domknięta" procedura testowa

Procedura "zstępująca" (step-down procedure)

Procedura Hochberga

Test na trend (alternatywa dla porównań "sąsiednich" dawek)

Hipotezy (trend liniowy)

$$H_0$$
: $\beta = 0$

VS

$$H_A$$
: $\beta > 0$

Would quadratic dose response curve fit better and/or make more sense?

Dose

"Domknięta" procedura testowa

Procedura testowa

Dla zbioru elementarnych hipotez, konstruujemy domknięty zbiór pojedyńczych hipotez. Hipoteza elementarna jest odrzucana wtedy i tylko wtedy gdy

- · wynik jej testu jest istotnie statystyczny
- wyniki testów dla hipotez będących jej podzbiorem są istotne statystycznie

"Domknięta" procedura testowa

Notacja

(0,1) oznacza
$$H_0^{0,1}$$
: $p_0 = p_1$
(0,1,2) oznacza $H_0^{0,1} \cap H_0^{0,2}$: $p_0 = p_1 = p_2$
(0,1/2,3) oznacza $H_0^{0,1} \cap H_0^{2,3}$: $p_0 = p_1$, $p_2 = p_3$

Refs: Budde and Bauer, *JASA* **84**:792, 1989 Bauer, *Stat in Med* **10**:871, 1991

"Domknięta" procedura testowa porównania "sąsiednich" dawek

"Domknięta" procedura testowa porównania "sąsiednich" dawek

"Domknięta" procedura testowa porównania "wielu-do-jednej"

"Domknięta" procedura testowa porównania "wielu-do-jednej"

Interpretacja testów na poziomie:

- Level 1: lek działa (test oparty na wszystkich chorych)
- Level 2: dawka ma znaczenie (każdy test oparty na ¾ chorych)
- Level 3: która dawka ma znaczenie (każdy test oparty na ½ chorych)

"Domknięta" procedura testowa Hipotetyczny przykład: działa jedna dawka leku

STATISTICALLY SIGNIFICANT TESTS / STATISTICALLY NON-SIGNIFICANT TESTS

⇒ recommend medium dose

"Domknięta" procedura testowa Hipotetyczny przykład: lek działa

STATISTICALLY SIGNIFICANT TESTS / STATISTICALLY NON-SIGNIFICANT TESTS

⇒ Confirm activity of lowest « active » dose (medium dose), or look at other endpoints

"Domknięta" procedura testowa Przykład: nudności w próbie antyemetyku z trzema dawkami

STATISTICALLY SIGNIFICANT TESTS / STATISTICALLY NON-SIGNIFICANT TESTS

(unadjusted P-values shown in parenthesis)

"Domknięta" procedura testowa Przykład: liczba przypadków wymiotów w próbie antyemetyku z trzema dawkami

STATISTICALLY SIGNIFICANT TESTS / STATISTICALLY NON-SIGNIFICANT TESTS

Procedura "zstępująca" (porównaina "wielu-do-jednej")

 P_1 , P_2 , P_3 to poziomy krytyczne (P-values) testów porównujących placebo z, odpowiednio, niską, średnią i wysoką dawką leku

Procedura "zstępująca" Przykład: nudności w próbie antyemetyku z trzema dawkami

$$P_1 = 0.54, P_2 = 0.01, P_3 = 0.80$$

Procedura "zstępująca" Przykład: liczba przypadków wymiotów w próbie antyemetyku z trzema dawkami

$$P_1 = 0.06, P_2 = 0.009, P_3 = 0.023$$

Procedura Hochberga (porównania "wielu-do-jednej")

 $P_a \leq P_b \leq P_c$ są uporządkowanymi poziomami krytycznymi testów porównujących aktywne dawki z placebo

Procedura Hochberga Przykład: nudności w próbie antyemetyku z trzema dawkami

$$P_a = 0.01, P_b = 0.54, P_c = 0.80$$

Procedura Hochberga Przykład: liczba przypadków wymiotów w próbie antyemetyku z trzema dawkami

$$P_a = 0.009, P_b = 0.023, P_c = 0.06$$

