p.m.f. or p.d.f.
$$f(x;\theta)$$
, $\theta \in \Omega$.

$$\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$$
 are i.i.d. $f(x; \theta)$

- $\theta \neq \theta' \Rightarrow f(x;\theta) \neq f(x;\theta')$
- $f(x;\theta)$ have common support for all θ
- $\bullet \qquad \theta_0 \ \ \text{is an interior point in} \ \ \Omega$

Let θ_0 be the true parameter.

Then
$$P[L(\theta_0 \mid X_1, X_2, \dots, X_n) > L(\theta \mid X_1, X_2, \dots, X_n)] \to 1 \text{ as } n \to \infty$$
 for all $\theta \neq \theta_0$.

• $f(x;\theta)$ is differentiable as a function of θ

Then equation $\frac{d}{d\theta} L(\theta) = 0$ has a solution $\hat{\theta}$, such that $\hat{\theta} \stackrel{P}{\to} \theta_0$.

- $f(x; \theta)$ is twice differentiable as a function of θ
- $\int f(x;\theta) dx$ can be twice differentiable under the integral sign as a function of θ

•
$$\left| \frac{\partial^3}{\partial \theta^3} \ln f(x; \theta) \right| < M(x)$$
 with $E[M(X)] < \infty$

Then
$$\sqrt{n} \left(\hat{\theta} - \theta \right)$$
 is approx. $N \left(0, \frac{1}{I(\theta)} \right)$ for large n .

That is, for large n , $\hat{\theta}$ is approximately $N \left(\theta, \frac{1}{n \cdot I(\theta)} \right)$.

Likelihood Ratio Test:

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$ Reject H_0 if $\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})} \leq k$. $\Leftrightarrow -2 \ln \Lambda \geq -2 \ln k = c$.

$$-2\ln\Lambda$$
 is approx. $\chi^2(1)$ for large n .

$$\text{Reject H}_0 \quad \text{if} \quad -2\ln\Lambda \geq \chi^2_\alpha(1) \quad \text{(for large } n\text{)}.$$

Example 2:

Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\mu, \sigma^2)$ distribution (σ^2 known).

$$\begin{split} &H_0\colon \mu = \mu_0 \quad \mathrm{vs.} \quad H_1\colon \mu \neq \mu_0 \\ &\Lambda = \frac{L(\mu_0)}{L(\hat{\mu})} = \exp \biggl\{ -\frac{n \bigl(\overline{X} - \mu_0\bigr)^2}{2\sigma^2} \biggr\}. \\ &-2\ln \Lambda = \frac{n \bigl(\overline{X} - \mu_0\bigr)^2}{\sigma^2} = \biggl(\frac{\overline{X} - \mu_0}{\sigma/\Box} \biggr)^2 \quad \mathrm{is} \quad \chi^2(1). \end{split}$$

Wald-type test: Reject
$$H_0$$
 if $\left\{\sqrt{n\,\mathrm{I}(\hat{\theta})}(\hat{\theta}-\theta_0)\right\}^2 \geq \chi_{\alpha}^2(1)$ (for large n).

Scores-type test: Reject
$$H_0$$
 if $\left(\frac{\frac{d}{d\theta}\ln L(\theta_0)}{\sqrt{n\,I(\theta_0)}}\right)^2 \geq \chi_{\alpha}^2(1)$ (for large n).