Mean and variance from frequency table

Example

x	Frequency
0	40
2	10
3	20
4	30
Total	100

Mean:

$$\bar{x} = \frac{1}{100} (0 \times 40 + 2 \times 10 + 3 \times 20 + 4 \times 30)$$
= 2

That is,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i f_i$$

Variance:

$$s^{2} = \frac{1}{99}((0-2)^{2} \times 40 + (2-2)^{2} \times 10 + (3-2)^{2} \times 20 + (4-2)^{2} \times 30)$$

= 3.03

That is,

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2} f_{i}$$

Exercise

Calculate mean deviation (from mean) from the above frequency table.

Solution:

Do it yourself.

Example

Class	Frequency
0 – 5	40
5 - 10	20
10 - 15	10
15 - 20	30
Total	100

We use mid-values of each class in our calculation.

Mean:

$$\bar{x} = \frac{1}{100} (2.5 \times 40 + 7.5 \times 20 + 12.5 \times 10 + 17.5 \times 30)$$
= 9

That is,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} m_i f_i$$

Here, m_i is the mid-value of the ith class.

Variance:

$$s^{2} = \frac{1}{99}((2.5 - 9)^{2} \times 40 + (7.5 - 9)^{2} \times 20 + (12.5 - 9)^{2} \times 10$$
$$+ (17.5 - 9)^{2} \times 30)$$
$$= 40.66$$

That is,

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} (m_{i} - \bar{x})^{2} f_{i}$$

Exercise

Calculate mean deviation (from mean) from the above frequency table.

Solution

Do it yourself.

Assignment (not to be handed in)

- 1. Learn 'stem and leaf plot' from textbook. Find out its advantage and disadvantage when it is compared to histogram.
- 2. Learn 'cumulative frequency polygon' (also called 'ogive') and 'cumulative relative frequency polygon' from the textbook. Find out one of its uses.