

T.C. Karabük Üniversitesi Mühendislik Fakültesi Mekatronik Mühendisliği Bölümü

MEM315 – Mikrodenetleyiciler ve Programlanması Laboratuvarı

1. Deneyde kullanılacak malzemeler

- ADuC842 Evalution Board
- Keil µVision C51 IDE
- Osiloskop

2. Deneyin amacı ve tanımı

ADuC842 mikrodenetleyicisinde Interrupt kullanımı ve ilgili register özelliklerini öğrenmek.

• Timer 0 kesmesi kullanarak, P3.4 pini ile 1 ms periyodundan bir kare dalga üretiniz. Bu işlem yapılırken Port 0'dan okunan bilgi, P2'ye aktarılacaktır. Timer 0 mod 1 kullanılacaktır. Mikrodenetleyici 16.78 MHz çalışma frekansında olacak ayarlayınız. P3.4 pin çıkışını osiloskop kullanarak sinyalin frekansını kontrol ediniz.

Interrupt

ADuC842 toplamda 9 interrupt kaynağına ve bu interrupt'ların önceliğini belirlemek için 2 öncelik seviyesine sahiptir. Interrupt sisteminlerinin konfigürasyonları ve kontrolleri 3 Interrupt SFR'leri ile yapılmaktadır. Bunlar;

- IE: Interrupt Enable register
- IP: Interrupt Priority register
- IEIP2: Secondary Interrupt Enable register

Tablo 1. Interrupt Enable register bit tanımlaması

7							0
EA	EADC	ET2	ES	ET1	EX1	ET0	EX0

IE SFR adresi: A8H

İsim	Açıklaması
EX0	External Interrupt 0 aktif/pasif seçme biti
ET0	Timer 0 aktif/pasif seçme biti
EX1	External Interrupt 1 aktif/pasif seçme biti
ET1	Timer 1 aktif/pasif seçme biti
ES	UART seri port kesmesi aktif/pasif seçme biti
ET2	Timer 2 aktif/pasif seçme biti
EADC	ADC aktif/pasif seçme biti
EA	Bütün Interrupt kaynaklarının aktif/pasif seçme biti

Tablo 2. Interrupt Priority register bit tanımlaması

7							0
	PADC	PT2	PS	PT1	PX1	PT0	PX0

IP (Interrupt Priority) SFR adresi: B8H

İsim	Açıklaması
PX0	External Interrupt 0 üstünlük tanımlama biti (1 = High, 0 = Low)
PT0	Timer 0 üstünlük tanımlama biti $(1 = High, 0 = Low)$
PX1	External Interrupt 1 üstünlük tanımlama biti (1 = High, 0 = Low)
PT1	Timer 1 üstünlük tanımlama biti (1 = High, 0 = Low)

PS	UART seri port kesmesi üstünlük tanımlama biti (1 = High, 0 = Low)
PT2	Timer 2 üstünlük tanımlama biti (1 = High, 0 = Low)
PADC	ADC üstünlük tanımlama biti (1 = High, 0 = Low)

---- Rezerve edilmiş

Tablo 3. Secondary Interrupt Enable register bit tanımlaması

7						0
	PTI	PPSM	PSI	 ETI	EPSMI	ESI

IEIP2 (Secondary Interrupt Enable Register) SFR adresi: A9H

İsim	Açıklaması
ESI	SPI veya I ² C seri port kesmesi aktif/pasif seçme biti
EPSMI	Güç kaynağı izleme kesmesi aktif/pasif seçme biti
ETI	Dahili zaman sayıcı kesme aktif/pasif seçme biti
	Sıfır olmalı
PSI	SPI / I^2 C kesmesi üstünlük tanımlama biti (1 = High, 0 = Low)
PPSM	Güç kaynağı izleme kesmesi üstünlük tanımlama biti (1 = High, 0 = Low)
PTI	Dahili zaman sayacı kesmesi üstünlük tanımlama biti (1 = High, 0 = Low)
	Rezerve edilmiş

Interrupt Priority

ADuC842'de toplamda 9 farklı interrupt kesmesi olduğu belirtilmişti. Bu kesmelerin aynı anda olması durumuna karşı bir üstünlük sıralarının olması gerekmektedir. Interrupt Priority bu işi yapmaktadır. ADuC842 tarafından kesmeler arasındaki üstünlük seviyesi Tablo 4'de gösterilmiştir.

Tablo 4. Interrupt üstünlük sıralaması

Kaynak	Üstünlük	Açıklama
PSMI		,
	1 (En yüksek)	Güç kaynağı izleme kesmesi
WDS	2	Watchdog timer kesmesi
IE0	3	Harici kesme 0
ADCI	4	ADC kesmesi
TF0	5	Timer/Counter 0 kesmesi
IE1	6	Harici kesme 1
TF1	7	Timer/Counter 1 kesmesi
ISPI / I2CI	8	SPI / I ² C kesmesi
RI + TI	9	Seri haberleşme kesmesi
TF2 + EXF2	10	Timer/Counter 2 kesmesi
TII	11 (En düşük)	Dahili zaman sayacı kesmesi

Interrupt Vectors

Interrupt meydana geldiğinde, program sayacı stack'a push edilir ve interrupt vektör adresine karşılık gelen değer program sayacının içerisine yüklenir. Interrupt vektör adresleri Tablo 5'de gösterilmiştir.

Tablo 5. Interrupt vektör adresleri

Kaynak	Vektör Adresi
IEO	0003H
TF0	000BH
IE1	0013H
TF1	001BH
RI + TI	0023H

TF2 + EXF2	002BH
ADCI	0033H
ISPI / I2SCI	003BH
PSMI	0043H
TII	0053H
WDS	005BH

Tablo 1. Interrupt Enable register bit tanımlaması

7							0
EA	EADC	ET2	ES	ET1	EX1	ET0	EX0

Assembly komutlarıyla interrupt aktif etme:

- (a) Seri haberleşme, timer 0 ve harici donanımsal kesme (EX1) bitlerini aktif ediniz,
- (b) sadece timer 0 kesmesini pasif ediniz,
- (c) bütün kesmeleri pasif ediniz.

(a)	MOV	IE,	#10010110B
;Başl	ka bir yolu		
	SETB	IE.7	
	SETB	IE.4	
	SETB	IE.1	
	SETB	IE.2	
(b)	CLR	IE.1	
(c)	CLR	IR.7	

Deneyin Değerlendirilmesi

- Keil µVision C51 IDE konfigürasyon ayarlarının yapılması,
- Kaynak kodu ve proje dosyalarının doğru isimlendirilmesi,
- Kaynak kodunda gerekli açıklama satırlarının olması,
- Kodun doğru çalışması,

Şeklinde olacaktır.

Deneyinizi belirtilen talimatlara uygun ve belirtilen süre içerisinde mem315odev@gmail.com adresine gönderiniz.

- 1. Deney-7 teslim süresi: 6 Ocak 2021 23:59
- 2. Atılacak mailin konusu deneyin adı olacaktır. Örnek: Deney7.
- 3. Atılacak maili son teslim tarih ve saatinden önce gönderiniz.
- 4. Gönderilecek dosyanın ismi; deney numarası, birinci veya ikinci öğretimde olduğunuz ve öğrenci numarasından oluşacaktır. Örnek: Deney7_1_xxxxxx.zip veya Deney7_2_xxxx.rar biçiminde olacaktır.