(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003-18549

(P2003-18549A)

(43)公開日 平成15年1月17日(2003.1.17)

(51) Int. C1. 7 H04N 5/92	識別記号	F I	テーマコード(参考)					
G11B 20/10	311	G11B 20/10 20/12	D 5C052 311 5C053 5D044					
20/12	103 審査請求	27/00 未請求 請求項の数15	103 5D077 D 5D110 OL (全32頁) 最終頁に続く					
(21) 出願番号 (22) 出願日 (31) 優先権主張番号 (32) 優先日 (33) 優先権主張国 (31) 優先権主張番号	特願2002-7295 (P 2002-7295) 平成14年1月16日(2002.1.16) 特願2001-7900 (P2001-7900) 平成13年1月16日(2001.1.16) 日本(JP) 特願2001-131407 (P2001-131407)	松下電器 大阪府門 (72)発明者 濱坂 浩 大阪府門 産業株式 (72)発明者 矢羽田	000005821 松下電器産業株式会社 大阪府門真市大字門真1006番地 濱坂 浩史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 矢羽田 洋					
(32) 優先日 (33) 優先権主張国	平成13年4月27日(2001.4.27) 日本(JP)	大阪府門 産業株式 (74)代理人 10006214 弁理士	14					

(54) 【発明の名称】情報記録装置および方法、情報記録プログラム、および情報記録プログラムを記録した記録媒体

(57) 【要約】

【課題】 ユーザが理解しやすいように、エントリーポイントを管理する。

【解決手段】 情報記録装置は、符号化されたデジタルデータで構成されるストリームを受信する受信部と、受信したストリームの属性の変化を検出して検出情報を出力する解析部と、出力された検出情報と、変化が生じた時刻における時刻情報とを、第1のエントリーポイントを登録した管理情報を生成する制御部と、管理情報およびストリームを、情報記録媒体に記録するドライブ装置とを備えている。そして、さらに、ストリームに任意にアクセスして再生するための、ストリームの再生経路に対して設定された第2のエントリポイントを入力する入力部をさらに備える。制御部は、第1のエントリーポイントと第2のエントリポイントとを識別可能に登録した管理情報を生成する。

生成された前記管理情報と、受信部が受信した前記ストリームとを、情報記録媒体に記録するステップとからなるコンピュータにより実行可能な情報記録プログラムであって、

前記ストリームに任意にアクセスして再生するための、 前記ストリームの再生経路に対して設定された第2のエントリポイントを入力するステップをさらに備え、 前記生成するステップは、前記第1のエントリーポイントと前記第2のエントリポイントとを識別可能に登録した管理情報を生成する、コンピュータにより実行可能な 10 情報記録プログラム。

【請求項13】 前記生成するステップは、前記第1のエントリーポイントを登録した第1のテーブルと、前記第2のエントリーポイントを登録した第2のテーブルとを含む管理情報を生成する、請求項12に記載の情報記録プログラム。

【請求項14】 前記生成するステップは、前記第1のエントリーポイントおよび前記第2のエントリポイントに別個に付与された、異なる識別フラグを有する管理情報を生成する、請求項12に記載の情報記録プログラム。

【請求項15】 請求項13に記載の情報記録プログラムを記録した記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は読み書き可能な情報 記録媒体であって、特に、動画像データ、静止画デー タ、オーディオデータ等の種々のフォーマットのデータ を含むマルチメディアデータが記録される情報記録媒体 に関する。さらに、本発明はそのような情報記録媒体に 30 情報を記録し、または、記録された情報を再生する装置 および方法に関する。

[0002]

【従来の技術】近年、DVD (Digital Versatile Dis c) -ROMディスク (単にDVD-ROMとも称する)などの読み出し専用光ディスクは、コンピュータデータの記憶媒体としての利用に加えて、映画等の動画、写真等の静止画、および音声データ (以下、「AVデータ」と称する)の記憶媒体として活用されている。近年、さらに、随時書き込み可能な記憶媒体として、DV 40 D-RAMディスク (単にDVD-RAMとも称する)と呼ばれる、数GBの容量を有する相変化型ディスクが実用化されている。

【0003】ディジタルAVデータの国際標準の符号化 規格であるMoving Picture ExpertsGroup (MPEG) またはMPEG2の実用化とあいまって、DVD-RA Mは、コンピュータデータの記録媒体としてだけでな く、オーディオ・ビデオ (AV) 技術分野における記録 ・再生メディアとして期待されている。つまり従来の代 表的なAV記録メディアである磁気テープに代わるメデ 50

ィアとして普及が予測される。

【0004】これらの大容量化を目指す光ディスクを用いて、如何にAVデータを記録し、かつ、従来のAV機器を大きく超える性能や新たな機能を実現するかが今後の大きな課題である。

【0005】ディスクの利用による最大の特徴は、ランダムアクセス性能の大幅な向上である。仮にテープをランダムアクセスする場合、一巻きの巻き戻しに通常数分オーダーの時間が必要である。これは光ディスクメディアにおけるシーク時間(数10ms程度)に比べて桁違いに遅い。従ってテープは実用上ランダムアクセス装置になり得ない。このようなランダムアクセス性能によって、従来のテープでは不可能であったAVデータの分散記録が光ディスクでは可能となった。

【0006】図1は、DVDレコーダのドライブ装置のプロック図である。ドライブ装置は、DVD-RAMディスク10のデータを読み出す光ピックアップ11、ECC (Error Correcting Code) 処理部12、1トラックパッファ13、トラックパッファへ13の入出力を切り替えるスイッチ14、エンコーダ部15およびデコーダ部16を備える。

【0007】図に示すように、DVD-RAMディスク 10には、1セクタ=2 KBを最小単位としてデータが 記録される。また、16セクタ=1 ECC プロックとして、ECC 処理部 12でエラー訂正処理が施される。

【0008】トラックバッファ13は、DVD-RAMディスク10にAVデータをより効率良く記録するため、AVデータを可変ピットレートで記録するために用いられる。より詳しく説明すると、トラックバッファ13は、DVD-RAM100への読み書きレート(Va)が固定レートであるのに対して、AVデータはその内容(ビデオであれば画像)の複雑さに応じてビットレート(Vb)が変化するため、このビットレートの差を吸収するために用いられる。トラックパッファ13を更に有効に利用して、ディスク10上にAVデータが離散配置された場合にもAVデータをデコーダ部16へ連続供給することが可能である。また、録画の場合もエンコーダ部15に送られたAVデータをDVD-RAMに記録することができる。

【0009】この大容量記録メディアであるDVD-RAMではAMをより効果的に使用するため、DVD-RAMではUDF (Universal Disc Format)ファイルシステムが採用され、PCによるアクセスが可能である。UDFファイルシステムの詳細は、「Universal Disc Format Standard」に開示されている。

【0010】次に従来、我々が使用してきたAV機器を説明する。図2は、従来のAV機器とメディア、フォーマットの関係を示した図である。例えば、ユーザがビデオテープの映像を見ようと思えば、ユーザは、通常、ビデオカセットをVTRに入れ、テレビで視聴する。ま

た、音楽を聞こうと思えば、ユーザは、CDをCDプレーヤやCDラジカセに入れてスピーカまたはヘッドホンで聴く。つまり、従来のAV機器では一つのフォーマット(ビデオまたはオーディオ)に対して一つのメディアが存在していた。このため、ユーザは見たい、または、聞きたいコンテンツに対して、常にメディアやAV機器を取り替える必要があり、不便さを感じていた。

【0011】また、近年のディジタル技術の普及によって、パッケージソフトではDVDビデオディスクが、放送系ではディジタル衛星放送が実用化されてきた。これ 10らの背景にディジタル技術の革新、特にMPEGフォーマットの実用化があることは言うまでもない。

【0012】図3は、前述したDVDビデオディスクとディジタル衛星放送で使用されているMPEGストリームの図である。MPEG規格は、図3に示すような階層構造を規定する。ここで重要なことは、最終的にアプリケーションが使用するMPEGシステム層のストリームは、DVDビデオディスクのようなパッケージメディア系とディジタル衛星放送のような通信メディア系とで異なることである。前者は「MPEGプログラムストリー 20ム」と呼ばれ、DVDビデオディスクなどの記録単位となるセクタ(DVDの場合2048バイト)を意識したパック単位でデータの転送が行われる。後者は「MPEGトランスポートストリーム」と呼ばれ、特にATMを意識して188バイト単位のTSパケット単位でデータの転送が行われる。

【0013】ディジタル技術や映像音声の符号化技術であるMPEGによってAVデータはメディアに依存することなく自由に取り扱えると期待されてきたが、このような微妙な差もあって、現在までにパッケージメディア 30と通信メディアの双方に対応したAV機器やメディアは存在していない。そのため、DVD-RAM等の大容量の光ディスクの登場により、従来のAV機器で感じていた不便さの解消が期待されている。

【0014】特にディジタル衛星放送の開始に伴い、MPEGトランスポートストリームをMPEGプログラムストリームと同様に記録することのできる光ディスクの登場が望まれている。

[0015]

【発明が解決しようとする課題】 DVDレコーダは、図 40 4に示すような単一のメディア、単一のAV機器でさまざまなフォーマットやコンテンツをユーザが個々のフォーマットを意識すること無く、自由に表示再生できることが望まれている。具体的に説明すると、図5は、DV Dレコーダにおけるメニュー画面の一例である。このメニューでは、ディジタル衛星放送の"1) 洋画劇場"、地上波放送の"朝の連続ドラマ"、"ワールドカップ決勝"やCDからダビングした"4) ベートーヴェン"が、記録元のメディアや記録フォーマットを意識すること無くテレビ画面上で選択可能である。 50

【0016】次世代AV記録メディアとして期待される 光ディスクを使用して、このようなDVDレコーダを実 現する際の最大の課題は、様々なフォーマットからなる AVデータおよびAVストリームをいかに統一的に管理 できるかである。すでに存在するフォーマットのみを管 理するのであれば、特別な管理手法を用いる必要はな い。しかし、既存の多数のフォーマットだけでなく、今 後登場するであろう新たなフォーマットに対しても対応 できる管理手法を用いておくことが、前述したDVDレ コーダの実現には不可欠である。

【0017】様々なAVストリームを統一的に扱えるか否かによって生じるユーザインターフェースの差異によっては、従来例で説明したような不便さ、つまり、コンテンツやフォーマット毎にユーザが意識して操作を行う必要が生じる可能性がある。よって、様々なAVストリームのなかでも、ディジタル放送のように送信側でディジタル化されたデータを、受信側で如何に取り扱うかが大きな問題となる。特に、新たに開始されたディジタル衛星放送の様々な機能を、録画後にも利用できる、いわゆるタイムシフトを実現するためには、これらのストリームを送信されたそのままの状態で記録することが必要となる。MPEGのトランスポートストリームでは、複数のビデオストリームを同時に多重化すること(マルチビュー)が可能である。

【0018】さらに将来出現するであろう新たなディジタル放送に対しても、たとえ現時点でそのサービス内容が一部未定であっても、これらの放送をタイムシフト記録することが求められる。

【0019】ディジタル記録されたAVデータに対し、ディスクメディアの最大の特徴であるランダムアクセス性を活かす例として、エントリーポイントが挙げられる。近年、ユーザが所望の地点(エントリーポイント)を設定し、設定したエントリーポイントにアクセスしてこの地点から再生を開始できるようにする必要性が高まっている。しかし、記録装置が自動的に記録するエントリーポイントも存在する。したがって、これらのエントリーポイントを混在させると混乱を生ずるため、区別できるデータ構造が必要となる。

【0020】本発明の目的は、ユーザが理解しやすいように、エントリーポイントを管理することである。また、ディジタル放送で使用されるストリーム(MPEGトランスポートストリーム)を種々のAVストリームとともに記録できるようにし、さらに、記録したデータを再生することである。

[0021]

【課題を解決するための手段】本発明による情報記録装置は、符号化されたデジタルデータで構成されるストリームを受信する受信部と、受信部が受信した前記ストリームの属性の変化を検出して検出情報を出力する解析部と、解析部から出力された前記検出情報と、前記変化が

生じた時刻における時刻情報とを、第1のエントリーポイントを イントとして取得して、該第1のエントリーポイントを 登録した管理情報を生成する制御部と、制御部が生成した前記管理情報と、受信部が受信した前記ストリームと を、情報記録媒体に記録するドライブ装置とを備えた情報記録装置であって、前記ストリームに任意にアクセス して再生するための、前記ストリームの再生経路に対して設定された第2のエントリポイントを入力する入力部をさらに備え、制御部は、前記第1のエントリーポイントと前記第2のエントリポイントとを識別可能に登録し た管理情報を生成する。これにより、上記目的が達成される。

【0022】制御部は、前記第1のエントリーポイントを登録した第1のテーブルと、前記第2のエントリーポイントを登録した第2のテーブルとを含む管理情報を生成してもよい。

【0023】制御部は、前記第1のエントリーポイントおよび前記第2のエントリポイントに別個に付与された、異なる識別フラグを有する管理情報を生成してもよい。

【0024】解析部は、前記ストリームがディジタル放送ストリームである場合の放送番組の変化、ストリームの再生を制御するディジタル放送ストリームのPSI/SI情報の変化、マルチビュー情報の変化、データカルーセルの先頭への変化、データカルーセルの内容の変更、プログラムマップテーブルPMTの変化、モジュールの変化、データイベントの変化、パレンタル情報の変化、音声ストリームの属性の変化、前記ストリームがディジタル放送のMPEGビデオストリームである場合のシーケンスヘッダ情報の変化、の少なくとも1つを、前30記ストリームの属性の変化として検出してもよい。

【0025】前記管理情報は、前記第1のエントリーポイントおよび前記第2のエントリーポイントが、情報記録媒体に記録されたデータへのリンク情報を備えていてもよい。

【0026】前記情報記録媒体に記録された前記管理情報および前記ストリームを読み出す読み出し部と、読み出し部が読み出した前記ストリームをデコードするデコーダと、読み出し部が読み出した前記管理情報、および、デコーダがデコードした前記ストリームを出力する 40 出力部とをさらに備え、入力部から前記第2のエントリポイントを入力する際には、読み出し部は、前記管理情報を読み出し、前記出力部は、前記管理情報の前記第1のテーブルに登録された前記第1のエントリーポイントと、すでに入力された前記第2のテーブルに登録された前記第2のエントリーポイントとを表示してもよい。

【0027】前記情報記録媒体に記録された前記管理情報および前記ストリームを読み出す読み出し部と、読み出し部が読み出した前記ストリームをデコードするデコーダと、読み出し部が読み出した前記管理情報、およ

び、デコーダがデコードした前記ストリームを出力する出力部とをさらに備え、読み出し部は、前記管理情報を読み出し、前記出力部は、前記管理情報の前記前記第2のテーブルに登録された前記第2のエントリーポイントを表示してもよい。

【0028】前記情報記録媒体は、光ディスクであってもよい。

【0029】本発明の情報記録方法は、符号化されたデジタルデータで構成されるストリームを受信するステップと、前記ストリームの属性の変化を検出して検出情報を出力するステップと、出力された前記検出情報と、前記変化が生じた時刻における時刻情報とを、第1のエントリーポイントとして登録した管理情報を生成するステップと、生成された前記管理情報と、受信部が受信した前記ストリームとを、情報記録媒体に記録するステップとを備えた情報記録方法であって、前記ストリームに任意にアクセスして再生するための、前記ストリームの再生経路に対して設定された第2のエントリポイントを入力するステップをさらに備え、前記生成するステップは、前記第1のエントリーポイントと前記第2のエントリポイントとを識別可能に登録した管理情報を生成する。これにより上記目的が達成される。

【0030】前記生成するステップは、前記第1のエントリーポイントを登録した第1のテーブルと、前記第2のエントリーポイントを登録した第2のテーブルとを含む管理情報を生成してもよい。

【0031】前記生成するステップは、前記第1のエントリーポイントおよび前記第2のエントリポイントに別個に付与された、異なる識別フラグを有する管理情報を生成してもよい。

【0032】本発明による情報記録プログラムは、符号 化されたデジタルデータで構成されるストリームを受信 するステップと、前記ストリームの属性の変化を検出し て検出情報を出力するステップと、出力された前記検出 情報と、前記変化が生じた時刻における時刻情報とを、 第1のエントリーポイントとして登録した管理情報を生 成するステップと、生成された前記管理情報と、受信部 が受信した前記ストリームとを、情報記録媒体に記録す るステップとからなるコンピュータにより実行可能な情 報記録プログラムであって、前記ストリームに任意にア クセスして再生するための、前記ストリームの再生経路 に対して設定された第2のエントリポイントを入力する ステップをさらに備え、前記生成するステップは、前記 第1のエントリーポイントと前記第2のエントリポイン トとを識別可能に登録した管理情報を生成する。これに より上記目的が達成される。

【0033】前記生成するステップは、前記第1のエントリーポイントを登録した第1のテーブルと、前記第2のエントリーポイントを登録した第2のテーブルとを含む管理情報を生成してもよい。

[0034] 前配生成するステップは、前配第1のエントリーポイントおよび前記第2のエントリポイントに別個に付与された、異なる識別フラグを有する管理情報を生成してもよい。

[0035] 所定の記録媒体に、上記情報記録プログラムを記録してもよい。

[0036]

【発明の実施の形態】以下、添付の図面を用いて本発明 に係る情報記録媒体、記録装置および再生装置の一実施 形態であるDVD-RAM、DVDレコーダおよびDV 10 Dプレーヤを詳細に説明する。

【0037】本発明によるDVD-RAMは、一枚のディスクにおいて種々のフォーマットのAVデータが記録でき、かつ、記録されたデータを統一的に管理できる。これにより、アナログ放送をMPEGトランスポートストリームにエンコードして記録したビデオデータ、ディジタル放送として送信されるMPEGトランスポートストリームを一枚のディスクに記録することが可能となる。また、DVD-RAMに記録されたこれらのデータは、所定の順序で再生することができる。このために、本発明に係るDVD-RAMは、AVデータのフォーマットの種類に依存せずにAVストリームを管理するための管理情報を備えている。

【0038】まず、図6の(a) および(b) を参照し て、本発明のDVD-RAMに記録されるデータのデー タ構造を説明する。図6の(a)は、DVD-RAMデ ィスク100のファイルシステムを通して認識できるデ ィスク100上のデータ構造を示す。図6の(b)は、 ディスク100上の物理セクタの構造を示す。図示され るように、物理セクタの先頭部分にはリードイン領域3 1が設けられている。リードイン領域31には、サーボ を安定させるために必要な規準信号や、他のメディアと の識別信号などが記録されている。リードイン領域31 に続いてデータ領域33が設けられている。データ領域 33には、論理的に有効なデータが記録される。データ 領域33の先頭にはポリューム情報と呼ばれるファイル システム用の管理情報が記録される。ファイルシステム は、例えばUDFフォーマットであるが、周知の技術で あるため説明は省略する。最後にリードアウト領域35 が設けられている。リードアウト領域35には、リード 40 イン領域31と同様に、規準信号等が記録される。

【0039】ファイルシステムを介して、図6の(a) に示すように、ディスク100内のデータを、ディレクトリやファイルとして扱うことが可能になる。図6の(a) に示すように、DVDレコーダが扱う全てのデータは、ROOTディレクトリ直下のDVD_RTAVディレクトリ下で管理される。

【0040】本実施形態のDVDレコーダが扱うファイルには、オーディオ・ビデオデータ (AVデータ)を含むAVファイルと、それらのAVファイルを管理するた 50

めの情報を含む管理情報ファイルの2種類のファイルが存在する。図6の(a)に示す例では、管理情報ファイルは「VIDEO__RT. IFO」、AVファイルは、動画データを含むファイル「M__VOB. VOB」である。また、ディジタル放送用映像データを含むファイルは「D__VOB. VOB」である。以下、これらのファイルを詳細に説明する。なお、本実施形態では、個々のAVストリームを、オブジェクト(Object)として定義している。すなわち、オブジェクトには、MPEGプログラムストリーム等の種々のAVストリームが含まれる。ここでは、AVストリームを抽象化してオブジェクトとして捉えることにより、AVストリームの管理情報を、統一化したオブジェクト情報(Object I)として定義する。

【0041】最初に、図7を参照して、管理情報を説明 する。管理情報の例として、AVファイルの管理情報V IDEO RT. IFOを採用する。図7は、AVファ イルのオブジェクト、オブジェクト情報およびプログラ ムチェーン (Program Chain; PGC) 情報の関係を示 す。管理情報VIDEO_RT. IFOは、オプジェク トの記録位置等を管理するオブジェクト情報80と、Di VD-RAMに記録されているデータの中で再生される べきデータの再生順序および再生時間等を定義するPG C情報50、70と、ビデオ管理全体情報 (VMGI: Vide o Manager General Information) 90とを有する。A Vストリームは、そのフォーマットによって個々の違い はあるものの、共通化できる要素(例えば時間属性)も 有している。よって、上述した抽象化が可能である。ま た、同一フォーマットを有するAVストリームは同一A Vファイル内に記録順に格納される。

【0042】オブジェクト情報(ObjectI)80は、オブジェクトに関する一般情報(Object GI)80aと、オブジェクトの属性情報(AttributeI)80bと、オブジェクトの再生時間をディスク上のアドレスに変換するアクセスマップ80cと、オブジェクトの任意の箇所へのアクセスポイント(以下、エントリーポイントと称する)を示す、PGC情報50に関するエントリーポイントテーブル80dとから構成されている。

【0043】アクセスマップ80cは、時間軸とデータ (ビット列) 軸との間の変換を行うために利用される。 アクセスマップ80cはオブジェクトユニット毎に時間 領域とアドレス領域とを対応づけるデータを有する。 これは後述するように1つのオブジェクトは複数のオブジェクトユニット (VOBU) から構成されているからである。アクセスマップ80cを必要とするのは、AVストリームが一般に時間軸とデータ (ビット列) 軸の二つの基準を有しており、この二つの基準間には完全な相関性がないからである。例えば、ビデオストリームの国際 標準規格であるMPEG-2ビデオの場合、画質の複雑

さに応じてピットレートを変える可変ピットレート方式 を用いることが主流になりつつある。この場合、先頭か らのデータ量と再生時間との間に比例関係がないため、 時間軸を基準にしたランダムアクセスができない。よっ て、時間とデータとの相関関係を規定するアクセスマッ プ80 cが必要となる。

【0044】PGC情報50、70は、DVD-RAM 100に記録される画像データや音声データ、すなわち オブジェクトの再生を制御する際に利用される。PGC 生を行う際の一つの単位を示す。すなわち、PGC情報 50、70は、再生するオブジェクトと、そのオプジェ クトにおける任意の再生区間とを示したセル情報60、 61、62、63の再生シーケンスを示す。セル情報6 0等については後述する。PGC情報は、DVDレコー ダがオブジェクト記録時に全記録オブジェクトを含むよ うに自動で生成するオリジナルPGC情報50と、ユー ザが自由に再生シーケンスを定義できるユーザ定義PG C情報70の2種類に分類できる。

【0045】なお、先に説明したオプジェクト情報80 20 のエントリーポイントテーブル80 dは、オリジナルP GC情報50のみに関するエントリーポイント(オリジ ナルエントリーポイントとも称する)を規定する。ユー ザ定義PGC情報70に関するエントリーポイント(ユ ーザエントリーポイントとも称する)は、ユーザ定義P GC情報70内の各セル情報、例えば、セル情報71に 設けられたエントリーポイントテーブル72に規定され ている。オリジナルエントリーポイントは、DVDレコ ーダによって自動的に、オブジェクト情報80中に規定 されたオプジェクト自体に設定される。一方、ユーザエ 30 ントリーポイントは、ユーザによって任意に、オブジェ クトの再生経路に対して設定される。

【0046】なお、エントリーポイントテーブル80d は、オリジナルPGC情報50に設けられていてもよ い。オリジナルPGC情報50内であれば、各セル情報 に対応して設けられていてもよいし、各セル情報に含ま れない情報としてオリジナルPGC情報50内に1つ設 けられていてもよい。また、ユーザ定義PGC情報70 に含まれるエントリーポイントテーブルは、各セル情報 に1つ設けられなくてもよく、セル情報に含まれない情 40 報としてユーザ定義PGC情報70内に1つ設けられて いてもよい。

【0047】PGC情報50、70の構成および機能 は、ユーザ定義PGC情報70がユーザにより定義され ること、および、エントリーポイントテーブル72を有 することを除いて、同様である。よって、以下では、主 としてオリジナルPGC情報50を詳細に説明する。エ ントリーポイントテーブル72、80dについては後述 する。

【0048】図7に示すように、オリジナルPGC情報 50 刻(M_VOB_REC_TM)と、動画オブジェクト

50は少なくとも1つのセル情報60、61、62、6 3を含む。セル情報60等は再生するオブジェクトを指 定し、かつ、そのオブジェクトの再生区間を指定する。 通常、PGC情報50は複数のセルをある順序で記録し ている。PGC情報50におけるセル情報の記録順序 は、各セルが指定するオブジェクトが再生されるときの 再生順序を示す。

[0049] 一のセル情報、例えば、セル情報60に は、それが指定するオプジェクトの種類を示すタイプ情 情報50、70は、DVDプレーヤが連続してデータ再 10 報 (Type) 60 a と、オブジェクトの後述するマル チピュー情報 (View_Type) 60bと、オブジ ェクトの識別情報であるオブジェクトID(Objec t ID) 60cと、時間軸上でのオブジェクト内の開 始位置情報 (Start) 60dと、時間軸上でのオプ ジェクト内の終了位置情報 (End) 60 e とが含まれ る。データ再生時は、PCG情報50内のセル情報60 が順次読み出され、各セルにより指定されるオブジェク トが、セルにより指定される再生区間分だけ再生され る。

> 【0050】抽象化したオブジェクト情報を実際のAV ストリームに適用するためには、より具体化する必要が ある。この考え方は、オブジェクト指向モデルに見られ るクラスの継承、特に、オブジェクト情報をスーパーク ラスとして、各AVストリーム用に具体化した構造をサ ブクラスと捉えるとわかり易い。図8は、オブジェクト 情報から派生した各ストリームの管理情報を示す。図示 されるように、本実施の形態では、オブジェクト情報の サブクラスとして、動画サブクラス、ディジタルビデオ 放送サブクラス、ストリームサブクラスの各サブクラス を定義する。動画サブクラスは、ビデオ用のオブジェク ト情報(MPEGトランスポートストリーム)を表す動 画オプジェクト情報 (M_VOBI: Movie Video Obje ct Information) 82である。ディジタルピデオ放送サ ブクラスは、ディジタル放送データ(MPEGトランス ポートストリーム) 用のオブジェクト情報を表すディジ タルビデオ放送オブジェクト情報(D_VOBI:Digi tal Video Object Information) 86である。ストリー ムサブクラスは、用途を特定しないストリーム用のオブ ジェクト情報を表すストリームオブジェクト情報(SO BI: Stream Object Information) 89である。以 下、各オブジェクト情報を説明する。

【0051】動画オブジェクト情報82は、MPEGト ランスポートストリームの一般情報(M_VOB_G I) 82aと、動画オプジェクトのストリーム情報(M __VOB__STI)82bと、タイムマップ82cと、 エントリーポイントテーブル82 dとを有する。

【0052】動画オブジェクト情報82の一般情報(M __VOB__GI)82aは、動画オプジェクトの識別情 報(M_VOB_ID)と、動画オブジェクトの記録時 の開始時刻情報(M_VOB_V_S_PTM)と、動画オプジェクトの終了時刻情報(M_VOB_V_E_PTM)とを含む。動画オプジェクトのストリーム情報(M_VOB_STI)82bは、ビデオストリームのコーディングモードをはじめとするビデオストリーム情報(V_ATR)と、オーディオストリームのコーディングモードをはじめとするオーディオストリーム情報(A_ATR)とを含む。タイムマップ82cは、AVファイル内での動画オプジェクトの先頭アドレスと、各動画オプジェクトユニット(VOBU)の再生時間(VOBU_PB_TM)と、データサイズ(VOBU_SZ)とを含む。ここで、動画オプジェクトユニット(VOBU)とは、動画オプジェクト(M_VOB)内の最小アクセス単位を示すが、その詳細は後述する。

【0053】ディジタルビデオ放送オブジェクト情報 (D_VOBI) 86は、MPEGトランスポートストリームの一般情報 (D_VOB_GI) 86aと、ストリーム情報 (D_VOB_STI) 86bと、タイムマップ86cと、エントリーポイントテーブル86dとを 20 有する。

【0054】ディジタル放送オブジェクトの一般情報(D_VOB_GI)86aは、ディジタル放送オブジェクトの識別情報(D_VOB_ID)と、ディジタル放送オブジェクトの記録時刻(D_VOB_REC_TM)と、ディジタル放送オブジェクトの開始時刻情報(D_VOB_V_S_PTM)と、ディジタル放送オブジェクトの終了時刻情報(D_VOB_V_E_PTM)とを含む。ディジタル放送オブジェクトのストリーム情報(D_VOB_STI)は、ディジタル放送で配送される付加情報を格納する情報(PROVIDER_INF)を含む。タイムマップ86cは、AVファイル内でのディジタル放送オブジェクト(D_VOB)の先頭アドレスと、各オブジェクトユニット(VOBU)の再生時間(VOBU_PB_TM)と、データサイズ(VOBU_SZ)とを含む。

【0055】ストリームオブジェクト情報 (SOBI) 89は、デジタルストリームの一般情報 (SOB_G I) 89aと、デジタルストリームのストリーム情報 (SOB_STI) 89bと、タイムマップ89cと、 エントリーポイントテーブル89dとを有する。

【0056】デジタルストリームの一般情報(SOB_GI)89aは、ストリームオブジェクトの識別情報(SOB_ID)と、ストリームオブジェクトの記録時刻(SOB_REC_TM)と、ストリームオブジェクトの開始時刻情報(SOB_S_TM)と、ストリームオブジェクトの終了時刻情報(SOB_E_TM)とを含む。SOBのストリーム情報(SOB_STI)89bは、ストリームとして配送される付加情報を格納する情報(PROVIDER_INF)を含む。タイムマッ

プ89cは、AVファイル内でのSOB先頭アドレスと、ストリームオブジェクトユニット(SOBU)毎の再生時間(SOBU_PB_TM)とを含む。各SOBUのサイズは前述した ECCブロックのサイズと同一であり固定である。ここで、ストリームオブジェクトユニット(SOBU)は、ストリームオブジェクト(SOB)内の最小アクセス単位を示すが、その詳細は後述する。

【0057】このように、抽象化されているオブジェクト情報を具体化することで、図8に示すように、個々のAVストリームに対し、対応するストリーム情報テーブルが定義される。

【0058】次に、図9を参照して、オブジェクト情報 (ObjectI)の具体例の1つ、ディジタル放送オブジェクト情報(D_VOBI)86と、セル情報60 との対応関係を説明する。

【0059】セル情報60に指定されたタイプ情報(Type)の値が「D_VOB」であれば、そのセルはディジタル放送用オブジェクトに対応することを意味する。なお、タイプ情報の値が「M_VOB」であれば、そのセルは動画オブジェクトに対応し、タイプ情報の値が「SOB」であれば、ストリームオブジェクトに対応することを意味する。

【0060】セル情報60に指定されたタイプ情報(T ype)の値が「D_VOB」である場合、セル情報内 にビュータイプ情報 (View_Type) が指定され る。ビュータイプ情報は、該当セルにおいてマルチビュ 一(後述)が存在するか否か、存在する場合にビューが いくつあるかを指定する。ビュータイプ情報には、マル チビューが存在する場合には最大のビューの個数を、存 在しない場合は0を設定する。また、オプジェクトID (Object ID) を利用して、対応するオプジェ クト情報(VOBI)を検索できる。これは、例えば、 ディジタル放送オブジェクトを示すオブジェクトID と、ディジタル放送オブジェクト情報(D VOBI) 86の一般情報 (D_VOB_GI) 86aに含まれる ディジタル放送オブジェクトID(識別番号)(D_V OB_ID) とが、一対一に対応していることを利用し て実現できる。このように、タイプ情報(Type)と 40 オプジェクトID (Object ID) を用いること により、セル情報60に対応するオブジェクト情報を探 すことができる。

【0061】セル情報60における開始位置情報(Start)は、ディジタル放送オブジェクトの開始時刻情報(D_VOB_V_S_PTM)と対応する。各々によって示される値が同一の値(時刻)であれば、そのセルはディジタル放送オブジェクトの先頭からの再生を示す。開始位置情報(Start)の値が開始時刻情報(D_VOB_V_S_PTM)より大きい場合、その

50 セルはディジタル放送オブジェクトの途中からの再生を

示す。この場合、開始時刻情報(D_VOB_V_S_PTM)の値と、開始位置情報(Start)の値との差(時間差)だけ、そのセルはディジタル放送オブジェクトの先頭から遅れて再生される。また、セルの終了位置情報(End)とディジタル放送オブジェクトの終了時刻情報(D_VOB_V_E_PTM)も同様の関係を有する。

【0062】このように、セル情報60内の開始位置情報(Start)と、終了位置情報(End)と、ディジタル放送オプジェクト情報(D_VOBI)86の一10般情報(D_VOB_GI)86a内の開始時刻情報(D_VOB_V_S_PTM)と、終了時刻情報(D_VOB_V_E_PTM)とに基づいて、当該セルの再生開始および終了位置を動画オプジェクト内の相対時間として得ることができる。

【0063】ディジタル放送オブジェクト86内のタイムマップ86cは、動画オブジェクトユニット(VOBU)毎の再生時間とデータサイズとから構成されるテーブルである。前述したセルの動画オブジェクト内での再生開始および終了相対時間をこのタイムマップ86cを 20参照することによりアドレスデータに変換することができる。なお、動画オブジェクトユニット(VOBU)とは、図のAVファイルを表すVOBのうち、太実線で囲まれた、複数のパックのまとまりである。なお、各パックはセクタと同じサイズであり、1つまたはそれ以上のパックを利用して、画像データが格納される。

【0064】続いて図10の(a) \sim (f) を参照して、タイムマップを参照したアドレス変換の具体例を説明する。

【0065】図10の(a)は、時間軸上でのビデオ表 30 示を表現したディジタル放送オブジェクト(D_VOB)を示す。(b)は動画オブジェクトユニット(VOBU)毎の再生時間長とデータサイズから構成されるタイムマップを示す。(c)は、データ(セクタ列)軸上で表現したディジタル放送オブジェクトを示す。(d)はディジタル放送オブジェクト(D_VOB)の一部を拡大したパック列を示す。(e)はビデオストリーム、(f)はオーディオストリームをそれぞれ示す。

【0067】トランスポートパケット(TSパケット)は、188パイトの固定サイズである。DVD-RAMの1セクタは2048パイトであるので、セクタ内には複数のトランスポートパケット(2048パイト/188パイト=10TSパケット)が、後述するヘッダ情報と共に記録される。

【0068】トランスポートストリームでは、TSパケット化したビデオパケット(V_PKT)およびオーディオパケット(A_PKT)を多重化して1本のストリームが構成される。図10の(c)、(d)、(e)、(f)は、多重化の様子を示す。

【0069】また、トランスポートストリームおよびプログラムストリームの総称である、MPEGシステムストリームは、多重化したビデオおよびオーディオストリームの同期再生のために、ストリーム内にタイムスタンプを有する。

【0070】トランスポートストリームの場合、タイムスタンプとして、フレームの再生時刻を示すPTS (Presentation Time Stamp) がある。前述のディジタル放送オブジェクトの開始時刻情報 (D_VOB_V_S_PTM)、ディジタル放送オブジェクトの終了時刻情報 (D_VOB_V_E_PTM) は、このPTSを基準にして求められた時刻情報である。

【0071】続いて、動画オブジェクトユニット(VOBU)を説明する。動画オブジェクトユニット(VOBU)とは、ディジタル放送オブジェクト(D_VOB)内の最小アクセス単位を示す。MPEGビデオストリームは、ビデオフレーム内での空間周波数特性を用いた画像圧縮だけでなく、ビデオフレーム間、つまり時間軸上での動き特性をも利用して画像圧縮を行い、高効率な画像圧縮を実現する。これは、あるビデオフレームを伸長する場合に、時間軸上の情報、すなわち、未来または過去のビデオフレームの情報が必要となり、ビデオフレームを単独で伸長することができないことを意味している。この問題を解決するため、一般的なMPEGビデオストリームでは、0.5秒に1枚程度の割合で、時間軸上での動き特性を用いないビデオフレーム(I-ピクチャ)を挿入して、ランダムアクセス性を高めている。

【0072】動画オブジェクトユニット(VOBU)は、この1-ピクチャの先頭データを含むパックを先頭として、次の1-ピクチャの先頭データを含むパックの直前のパックまでの区間として規定されるまとまりである。タイムマップでは、この各オブジェクトユニット(VOBU)のデータサイズ(TSパケット数)と、オブジェクトユニット(VOBU)内のピデオフレームの再生時間(フィールド数)とから構成されている。

【0073】なお、Iーピクチャの先頭データは必ずしもTSパケットの先頭ではない。このため、あるオブジェクトユニット(VOBU)における最終データは、次のオブジェクトユニット(VOBU)における先頭データと同一のTSパケット内に存在する場合がある。このため、オブジェクトユニット(VOBU)のデータサイズは、次オブジェクトユニット(VOBU)、すなわち次のIーピクチャの先頭データを含むTSパケットの直前までのTSパケット数とする。

50 【0074】例えば、セルのStartで示す値と、デ

ィジタル放送オブジェクトの開始時刻情報(D_VOB _V_S_PTM)の示す値との差が1秒(60フィールド)であったと仮定する。タイムマップ86c内の各オブジェクトユニット(VOBU)の再生時間を先頭から積算していくことで、ディジタル放送オブジェクト(D_VOB)の先頭からの各オブジェクトユニットの再生開始時刻を求めることができる。同様に各オブジェクトユニットのデータサイズ(TSパケット数)を積算していくことで、ディジタル放送オブジェクト(D_VOB)の先頭からの各オブジェクトユニットのアドレス 10を求めることができる。

【0075】本実施形態の場合では、ディジタル放送オ ブジェクト (D_VOB) の先頭からそれぞれ24、3 0、24フィールドのオブジェクトユニット(VOB U)が並んでいるので、ディジタル放送オブジェクト (D VOB) の先頭から1秒(60フィールド)後の ビデオフレームは先頭から3番目のオブジェクトユニッ ト(VOBU#3)に含まれていることが求められる。 また、オブジェクトユニット(VOBU)のデータ量が ディジタル放送オブジェクトの先頭からそれぞれ125 20 0、908、1150TSパケットであるから、3番目 のオブジェクトユニット (VOBU#3) の先頭アドレ スは、オブジェクトの先頭から2158TSパケット 目、つまり215セクタの8TSパケット目であること が求められる。この結果と、AVファイル内でのD_V OBの先頭アドレス (ADR_OFF) である5010 セクタとを加算することで、再生を開始するデータの先 頭アドレスが求められる。

【0076】以上の説明では、先頭から60フィールド目のビデオフレームからの再生を想定した。すでに説明したように、MPEGビデオの性質上、任意のビデオフレームからのデコードおよび再生は不可能であるので、Iーピクチャの先頭から再生されるように、6フィールドずれた近傍のオブジェクトユニット(VOBU)の先頭から再生する。ただし、デコーダが当該6フィールドのデコードのみを行い、表示をしないように動作することで、セルが指定するビデオフィールドから再生することができる。セルの終了位置に対応するディジタル放送オブジェクトの再生終了時刻、AVファイル内のアドレスは、上記の説明と同様にしてえることができる。

【0077】なお、ディジタル放送オブジェクトのストリーム情報(D_VOB_STI)内のPROVIDE R_INFフィールドには、放送事業社を識別するID と、放送事業社毎の固有の情報とが含まれる。

【0078】次に、動画オブジェクト情報(M_VOB I)を説明する。動画オブジェクト情報も、オブジェクト情報から派生したサブクラスであるので、基本的にはディジタル放送オブジェクト情報と同様である。大きな違いは、動画オブジェクト(M_VOB)は地上波が録画されて生成されることである。すなわち、ディジタル 50

放送オブジェクト(D_VOB)は、ディジタル放送衛星から送信されるデータが直接記録されて生成されるのに対して、動画オブジェクトは、レコーダがエンコードを行って得られたAVストリームである点が、大きく異なっている。タイムマップを参照したアドレス変換については、D_VOBと同様である。

【0079】例えば、DVD-RAMの1セクタが2048パイトとして、M_VOBにおけるパケットも、2048パイトの固定サイズであるとする。すると、動画オプジェクト(M_VOB)の場合、1パック=1セクタとして扱うことができる。DVD-RAMに対してデータの読み書きができる単位はセクタであるので、動画オプジェクトユニットをセクタからセクタまでと定義することができる。Tマップを参照したアドレス変換については、基本的にはD_VOBと同様である。なお、M_VOBのアドレス変換に使用するタイムマップは、D_VOBの場合のようにVOBUのデータサイズをパケット数で表す代わりに、これをパック数で表してもよい。

【0080】次に、ストリームオブジェクト情報(SO BI) を説明する。ストリームオブジェクト情報も、オ ブジェクト情報から派生したサブクラスであるので、基 本的にはディジタル放送オブジェクト情報と同様であ る。大きな違いは、ディジタル放送オブジェクト(D_ VOB) ではそのストリームの内容がレコーダで解析可 能であるのに対し、ストリームオブジェクト (SOB) では、レコーダでその内容を解析できないことである。 ディジタル放送オブジェクト(D_VOB)は、動画オ プジェクト (M_VOB) のように、レコーダ自身がデ ータをエンコードする。よって、ストリームのデータ構 造が自明であり、レコーダは解析可能である。しかし、 ストリームオブジェクト(SOB)では、レコーダがデ ータを解析せずに記録するので、例えば、データが著作 権保護等の目的で暗号化されている場合、または、新規 のサービスのためレコーダが対応したデコーダを持たな い場合等には、レコーダは、ストリームの内部構造が分 からない。

【0081】よって、ストリームオブジェクト(SOB)を取り扱う場合には、前述したタイムマップを作成40することができないことになる。そこで、本実施の形態では、MPEGトランスポートストリームにおけるそれぞれのTSパケットの到着時刻を表すATS(Arrival Time Stamp)を用いてタイムマップを作成する。

【0082】図11の(a) および(b) は、ストリームオブジェクト(SOB) における、TSパケットとヘッダ情報との関係を示す。ストリームオブジェクト(SOB) では、ATSを含むヘッダ情報とTSパケットを交互に1セクタの中に複数配置する。本実施の形態では、ヘッダ情報が4バイト、TSパケットは188バイトなので、1セクタ中に10個のヘッダ情報とTSパケ

19

ットの対が配置されている。このATSを用いて、スト リームオブジェクト (SOB) における時刻を指定す

【0083】ストリームオプジェクト (SOB) のタイ ムマップ89c (図8) におけるオブジェクトは、SO Bユニット (SOBU) というまとまりを利用して規定 される。ストリームオブジェクト(SOB)では、その 内容を解析できないので、SOBUのデータサイズは固 定する。本実施の形態では、SOBUのデータサイズ は、ECCプロックのサイズとする。このように、SO 10 BUのデータサイズを固定することにより、ストリーム オブジェクト (SOB) のタイムマップ89cではサイ ズを指定する必要がない。よって、タイムマップは、オ ブジェクトユニット (SOBU) の先頭TSパケットの 到着時刻 (ATS) 情報のみのテーブルである。ストリ ームオプジェクト (SOB) の場合、オプジェクトの開 始時刻情報 (SOB_V_S_PTM)、オプジェクト の終了時刻情報 (SOB_V_E_PTM) は、それぞ れオブジェクトの先頭もしくは最終TSパケット到着時 刻(ATS)である。

【0084】タイムマップを参照したアドレス変換につ いては、基本的にはD_VOBと同様である。但し、S OBのアドレス変換のために使用するタイムマップで は、D_VOBの場合のように各オブジェクトユニット (VOBU) のデータサイズは、固定であり、パケット 数で表していない。

【0085】なおATSを付与する代わりにに、MPE GトランスポートストリームのTSパケット内に存在す るPCR (Program Clock Reference) を用いてタイム マップを生成することもできる。PCRとは、それぞれ 30 のTSパケットのデコーダへの入力時刻を表す。この場 合、PCRは必ずしも全てのトランスポートパケットに 付与されないので、レコーダでこれらの値を補間する必 要がある。

【0086】ストリームオブジェクトのストリーム情報 (S VOB STI) 内のPROVIDER_INF フィールドにも、ディジタル放送オブジェクトの場合と 同様、放送事業者を識別するIDと、放送事業者毎の固 有の情報とが含まれている。

[0087] 図12は本実施形態の光ディスクにおける 管理情報全体の構成を示す。図12には、これまで説明 したデータ構造が記載されている。以下、管理情報全体 を説明する。本実施の形態による光ディスクは、前述の PGC情報50、70等の他に、ビデオ管理全体情報9 0や、各種のファイル情報テーブル92、94、96を 備えている。

[0088] ビデオ管理全体情報 VMG I 90は、ディ スク全体に関する管理情報であり、例えば、オリジナル PGC情報50、ユーザ定義PGC情報70、および、 各種ファイル管理テーブル92、94等の開始アドレ

ス、すなわちポインタ情報を含む。このポインタ情報を 参照することにより、PGC情報50、70や、ファイ ル管理テーブル92、94等ヘアクセスできる。

【0089】ここで、図12に示すファイル管理テープ ル92、94、96を説明する。ファイル管理テーブル 92、94、96のそれぞれは、オブジェクトから構成 されるデータファイルを管理するためのテーブルであ り、オブジェクトの種類毎に設けられている。ディジタ ル放送オブジェクトを記録したファイルを管理する動画 ファイル管理テーブル92や、動画オプジェクトを記録 した動画ファイルを管理するディジタル放送ファイル管 理テーブル94、ストリームオブジェクトを記録したス トリームファイルを管理するストリームファイル管理テ ープル96がある。

[0090] 前述のようにPGC情報内のセル情報のオ ブジェクト I Dに基づきオブジェクト情報が特定される が、この場合、ファイル管理テーブル92、94、96 を介してオブジェクト情報のアドレスが特定される。こ のため、ファイル管理テーブル92、94、96は、管 20 理するオプジェクト情報の数、オブジェクトID、オプ ジェクト情報のサイズ等の情報を有している。例えば、 オブジェクトIDが順番を示す場合、セル情報により指 定されたオブジェクトIDに基づいて、その指定された オブジェクト情報が、ファイル管理テーブルにより管理 されているオブジェクト情報の中の何番目のオブジェク ト情報であるかを認識できる。その後、そのオブジェク ト情報の順番と、ファイルサイズとからファイル管理テ ーブルの開始アドレスを基準としたオフセット量を計算 することにより、その指定されたオブジェクト情報のア ドレスを得ることができる。

【0091】図12に示すように、ディジタル放送ファ イル管理テープル94は、ディジタル放送オブジェクト を記録したディジタル放送ファイルを管理するテーブル である。ディジタル放送ファイル管理テーブル94は、 ディジタル放送オブジェクト情報(D_VOBI)94 a、94b…と、そのテーブル94が管理するディジタ ル放送オブジェクト情報の数、ディジタル放送オブジェ クトのサイズ等を含むテーブル管理情報(D_AVFI TI)94hとを含む。このテーブル管理情報94hに 記述されているディジタル放送オブジェクト情報の数だ け、ディジタル放送オブジェクト情報がディスク上に続 けて記録されている。ディジタル放送オブジェクト情報 9 4 a …は、前述のように、一般情報 (D_VOB_G I)、ストリーム情報(D_VOB_STI)、タイム マップ、エントリーポイントテーブルを含む。また、タ イムマップは、各ディジタル放送オブジェクトユニット (VOBU) の表示時間およびサイズ (VOBU_EN T) を含む。なお、動画オブジェクトを記録した動画フ ァイルの管理テーブル (M_AVFIT) 92、ストリ 50 ームオブジェクトを記録したストリームファイルの管理 テーブル (S_AVFIT) 96も、ディジタル放送ファイル管理テーブル94と同様のデータ構造を有する。 【0092】オリジナルPGC情報50には、再生すべき順にセル情報が記録されている。セル情報はオブジェクト情報への対応情報(タイプおよびオブジェクトID)と、オブジェクト内での再生区間情報(StartおよびEnd)とを有する。セルが示す再生区間情報は、オブジェクト情報内のアクセスマップを通してオブジェクト実態のアドレス情報に変換できる。

【0093】前述した通り、エントリーポイントテープ 10 ルを有しないか、または有するかを除いては、ユーザ定 義PGC情報70のデータ構造は、オリジナルPGC情報50のデータ構造と同一である。

【0094】以上のように、AVストリーム用管理情報を先に抽象化しておくことで、再生制御情報であるPGC情報をAVストリームフォーマット毎に固有な情報に依存することなく定義でき、AVストリームを統合的に管理できる。これにより、AVフォーマットを意識せずにユーザが自由にAVデータの再生ができる環境が実現できる。

【0095】また、上述のデータ構造により、新たなA Vフォーマットを取り込む場合であっても、既存のAV フォーマットと同じようにオブジェクト情報から派生し た管理情報を規定すればよい。これにより、新たなフォ ーマットをデータ構造内に簡単に取り込むことができ る。

【0096】次に、エントリーポイントテーブルを詳細に説明する。エントリーポイントは、ユーザがディスク上に録画された放送番組の任意地点から再生を開始するためのアクセスポイントである。例えば、図7に記載されているとおり、オリジナルPGC情報50に関するエントリーポイントは、オブジェクト情報80内に設けられたエントリーポイントテーブル80dに記録されており、一方、ユーザ定義PGC情報70に関するエントリーポイントは、ユーザ定義PGC情報70の各セル情報、例えば、セル情報71に設けられたエントリーポイントテーブル72に記録されている。

【0097】エントリーポイントは、セルのスタート位置、終了位置と同様に、ディジタル放送オブジェクト(D_VOB)および動画オブジェクト(M_VOB)の場合はPTSを用いて指定され、ストリームオブジェクトの場合はATSを用いて指定される。

【0098】エントリーポイントの設定は、以下のように行われる。まず、ディジタル衛星放送は、AVストリームの他に多くの付加情報を含んでいる。ディジタル衛星放送ではプログラム仕様情報PSI (Program Specific Information) という特殊なテーブルに納められた情報により1番組分のAVストリームを識別する。プログラム仕様情報PSIおよびサービス情報SI (Service Information) は、トランスポートストリームの再生を

制御する情報である。具体的には、1番組分のAVストリームは、トランスポートストリーム中に含まれる複数の番組に対応したビデオおよびオーディオストリームのTSパケット群から、当該番組を構成する複数のTSパケット列を抽出することにより得られる。当該番組を構成する複数のTSパケット列は、各パケットに付されたパケットID情報(PID)によって特定できる。このパケットID情報(PID)は、当該番組に対応したPSI情報内のプログラムマップテーブル(PMT)に記録されている。ディジタル衛星放送は、データ放送などインタラクティブな情報を含んでおり、従来のアナログ放送では実現できなかったサービスを実現している。

【0099】ディジタル放送にはマルチビューという機能があり、1つの番組中に時間的に並列する複数の動画を含めることができる。マルチビューについては、ARIBTR-B15に詳しく記載されているが、本明細書では、図13を参照して簡単にマルチビューを実現するデータ構造を説明する。図13は、マルチビューを説明するイベント情報テーブルEIT (Event Information Table)のデータ構造を示す図である。

【0100】メインのビューを再生する場合、componen t_group_id="0x0"のテーブルが参照される。component_group_id="0x0"のテーブルにおいて、対応する動画ストリームのcomponent_tagはV0であることが判る。次にユーザ提示単位のテーブルが参照され、component_tagがV0のVideo_PIDは、"0x01"であることから、0x01のPIDをもつTSパケット列が対応するストリームであることが判る。同様に、メインのビューに対応する音声ストリームは、0x02のPIDを持つTSパケット列であることが判る。デジタルテレビではこれらのストリームをデコードすることによって、ユーザに対してマルチビュー番組のメイン・ビューを表示している。

【0101】また、この他にも、ディジタル放送のAVストリームは映像、音声情報の他に多くの付加情報を含む。これらの付加情報には、ユーザによるインタラクティブな操作を可能とするデータ放送に関する情報、成人向け内容を幼少者に見せないようにするためのパレンタル情報などがある。データ放送に関する情報は、カルーセル方式で送出されている。カルーセル方式とは、一定時間ごとに蓄積された同内容のデータを、ファイル又はそれより小さい単位毎に繰り返し送出することをいう。カルーセル方式を採用することにより、放送という一方向の通信方式であってもデータが繰り返し送出されるため、必要なときに必要なデータを取得することができる。

【0102】データ放送を視聴する場合、カルーセルの 先頭から視聴すれば、必要データを短時間で取得できる ため効率的である。また、パレンタルによる幼少者の視 聴禁止部分をスキップして再生することができれば、効 50 率的なタイムシフト視聴が実現できる。 【0103】ユーザはこれらの切り換り点で、番組にアクセスする場合が多い。すなわちこれらの切り換り点をエントリーポイントとすることでユーザは効率的に光ディスクに記録された番組にアクセスすることができる。このようなエントリーポイントは、レコーダで自動検出および自動設定が可能である。

【0104】一方、お気に入りのシーンなど、ユーザが独自にエントリーポイントを設定する場合がある。ユーザにとっては、自らが意識して設定したエントリーポイントと、レコーダによって自動設定されたエントリーポ10イントとは別物である。これらを同時に表示し、選択させると混乱を生ずるため、区別できるデータ構造が必要となる。

【0105】本実施の形態では、各々のエントリーポイントに属性情報を設定することによって、自動設定されたエントリーポイントとユーザ設定によるエントリーポイントとを区別するようにした。図14は、エントリーポイントに属性情報を設定できるエントリーポイントテーブルを示す。エントリーポイントテーブルは、個々のエントリーポイントに対して、ユーザがこのエントリー 20ポイントを意識して指定したことを示すUSER_EPフラグ情報を備える。例えば、ユーザエントリーポイントに対しては、識別フラグ1が与えられ、オリジナルエントリーポイントに対しては、識別フラグ0が与えられる。フラグ情報を参照することによって、レコーダまたはプレーヤは、当該エントリーポイントがユーザによって設定されたものか否かを明確にユーザに表示できる。

【0106】さらに、エントリーポイントテーブルは個 々のエントリーポイントに対して、番組の変更点である ことを示すPG_Change、トランスポートストリ 30 ームにおけるPSI/SI情報の変更点であることを示 すPSI SI、トランスポートストリームにおけるM PEGストリームの属性が変更されたことを示すSQH **__Change、データカルーセルの先頭地点を示すD** ata_Top、データカルーセルの内容変更点を示す Data_Change、PMTの変更点を示すPMT ___Change、データイベントの更新点を示すDE__ Change、モジュールの更新点を示すModule Change、音声属性が変更されたことを示すAu d_Changeの各フラグ情報と、マルチピューに対 40 応するために番組のピュー数を示すMulti_Vie wフィールド、パレンタル(年少者に対する視聴制限) 情報フィールドを備える。エントリーポイントテーブル は個々のエントリーポイントに対して、光ディスク内の 本管理情報やAVストリーム以外のファイルへのリンク 情報を備えている。このリンク情報とは、ディジタル放 送オブジェクト (D_VOB) および動画オブジェクト (M_VOB) の場合は、個々のエントリーポイントに 対するPTSであり、ストリームオブジェクトの場合は ATSである。

【0107】レコーダは、ユーザがエントリーポイント を設定する際には、USER__EPフラグが設定されて いるか否かに関らず、全エントリーポイントと、その属 性情報(PG_Change、PSI_SI、SQH__ Change, Data_Top, Data_Chan ge, PMT_Change, DE_Change, M odule_Change, Aud_Change, M ulti_Viewフィールド、パレンタル情報)をユ ーザに対して表示することができる。ユーザは、これら 表示された全エントリーポイントとその属性情報から、 自らが編集に必要とするエントリーポイントをマーキン グする。マーキングされたエントリーポイントが、レコ ーダにより設定されていた場合には、マーキングされた エントリーポイントには、レコーダによりUSER_E Pフラグ"1"が設定される。ユーザが前に設定してい たエントリーポイントを再びマーキングした場合には、 これまでのUSER__EPフラグ"1"が保持される。 【0108】また、自動検出されていない箇所にユーザ がエントリーポイントを設定する場合もある。この場合 はユーザがレコーダを操作して所望のシーンを選び、エ ントリーポイントを設定する。このエントリーポイント は、レコーダによってエントリーポイントテーブルに登 録される際にUSER_EPフラグ"1"が設定され る。

【0109】レコーダは、PGCの編集において、ユーザに対してUSER_EPフラグの設定されているエントリーポイントのみを表示する。ユーザはこれによって、自らが意識しない、自動設定により検出されたエントリーポイントに煩わされることなく必要なエントリーポイントのみを選んでPGCの編集を行うことができる。

【0110】図14に示すエントリーポイントテーブルであれば、オブジェクト情報80のエントリーポイントテーブル80dを設ければ十分である。しかし、これまで説明したとおり、ユーザ定義PGC情報70(図7)内に別個設けてもよい。この場合は、セル情報に含まれてもよいし、含まれていなくてもよい。

【0111】自動設定されたエントリーポイントとユーザ設定によるエントリーポイントとを図15に示すような別個のテーブルで管理することにより、それぞれのエントリーポイントを区別することもできる。図15は、自動設定エントリーポイントテーブルとを示す図である。エントリーポイントが自動設定されるのはレコーダによる記録時のみのため、自動設定されたエントリーポイントのテーブルはオリジナルPGC情報にのみ設定されればよい。このテーブルには、先に説明したエントリーポイントの属性情報が記録される。一方、ユーザ設定エントリーポイントテーブルは、ユーザ定義PGC情報70(図7)のセル情報内に設けられる。なお、自動設定されたエント

リーポイントのテーブルは、オブジェクト情報80(図7)ではなく、オリジナルPGC情報50(図7)に設けてもよい。

【0112】なお、別の例として、前述したマルチビューにおいて各ビューに対応したエントリーポイントテーブルを設けてもよい。図16は、各ビューに対応して設けたエントリーポイントテーブルを示す図である。これにより、ビュー毎のエントリーポイントを容易に管理できる。いうまでもなく、各エントリーポイントテーブルには、属性情報の記録フィールドを設けてもよい。

【0113】次に、図17を参照して、上述した光ディスクを再生するプレーヤモデルを説明する。図17に示すように、プレーヤ1700は、光ディスク100からデータを読み出す光ピックアップ1701と、読み出したデータのエラー訂正等を行うECC処理部1702と、エラー訂正後の読み出しデータを一時的に格納するトラックバッファ1703と、動画オブジェクト(M_VOB)と、ディジタル放送オブジェクト(D_VOB)をディジタル放送オブジェクト(D_VOB)等のトランスポートストリームを再生するTSデコーダ1706と、プレーヤ1700の各部を制御する制 20 御部1711とを備える。

【0114】プレーヤ1700は、さらに、AVストリームを外部に供給するためのディジタルインターフェース1704を有している。これにより、AVストリームをIEEE1394やIEC958などの通信プロトコルを介して外部に供給することも可能である。これは、特に、新たなAVフォーマットを取り込んだ場合、プレーヤ1700内部のデコーダを介さずにディジタルインターフェース1704を通じて外部のAV機器に出力し、そのAV機器で再生させるときに有効となる。プレーヤ1700が新たなAVフォーマットをサポートする場合は、他のデコーダと同様にトラックバッファ1703に接続する、新たなAVフォーマットに対応したデコーダ1709をさらに備えればよい。

【0115】プレーヤ1700の再生動作を以下説明す る。プレーヤ1700は、光ピックアップ1701を利 用して、光ディスク100上に記録されているデータを 読み出す。ECC処理部1702は、読み出したデータ ・にECC処理を行い、トランスポートストリーム(T S)を得る。ECC処理したトランスポートストリーム 40 (TS) は、トラックパッファ1703に格納される。 制御部1711は、トランスポートストリーム(TS) がデコード可能である場合には、選択部1710を動作 させて、トラックバッファ1703とデコーダ1706 を接続する。デコーダ1706は、トランスポートスト リーム (TS) をエンコードされたビデオデータおよび オーディオデータに分離し、各々をデコードする。そし て、デコードしたビデオデータとオーディオデータとを 出力する。なお、制御部1711が、トランスポートス トリーム (TS) がデコード不可能であると判断した場 50

合には、新たなAVフォーマットに対応したデコーダ1709を設けデコードさせればよい。

【0116】次に、図18を参照して、上述した光ディスクに対して、データを記録するDVDレコーダの構成および動作を説明する。DVDレコーダは、光ディスクに記録されたデータの再生もできるので、後に再生動作についても説明する。

【0117】図に示すように、DVDレコーダ1900 は、ユーザへの表示およびユーザからの要求を受け付け る入力部としてのユーザインターフェース (ユーザ I / F) 部1901、DVDレコーダ1900全体の管理お よび制御を司るシステム制御部1902、VHFおよび UHFを受信するアナログチューナ1903、アナログ 信号をディジタル信号に変換し、さらにMPEGトラン スポートストリームにエンコードするエンコーダ190 4、ディジタル衛星放送のデータストリームを受信する ディジタルチューナ1905、符号化されたデジタルデ ータで構成されるストリーム(MPEGトランスポート ストリーム)を解析する解析部1906、テレビおよび スピーカなどの表示部1907、AVストリームをデコ ードするデコーダ1908とを備える。デコーダ190 8は、図17に示したデコーダ1706のみならず、追 加されたデコーダ1709も含む。さらに、DVDレコ ーダ1900は、ディジタルインターフェース部190 9と、DVD-RAMに書き込むデータを一時的に格納 するトラックパッファ1910と、DVD-RAM10 0を回転させるモータ、DVD-RAM100にデータ を書き込むレーザ照射部、光ピックアップ等を有するド ライブ1911とを備える。ディジタルインターフェー ス部1909はIEEE1394等の通信プロトコルに より外部機器にデータを出力するインタフェースであ る。

【0118】 DVDレコーダ1900は、ユーザインターフェース部1901が最初にユーザからの要求を受ける。ユーザインターフェース部1901はユーザからの要求をシステム制御部1902に伝え、システム制御部1902はユーザからの要求を解釈および各モジュールへ処理要求を行う。

【0119】以下、図19を参照して、ユーザからの要求がディジタル放送の録画である場合の動作を説明する。図19は、DVDレコーダ1900(図18)の録画処理を示すフローチャートである。

【0120】ユーザによるディジタル放送録画要求は、ユーザインターフェース部1901を通してシステム制御部1902に伝えられる。システム制御部1902はディジタルチューナ1905に対してデジタル放送の受信を要求し、さらに、解析部1906に対してそのMPEGトランスポートストリームのデータ解析を要求する。解析部1906は、MPEGトランスポートストリームからディジタル放送オブジェクト情報(D_VOB

I) の生成に必要な情報として、まず開始時刻情報(D __VOB__V_S__PTM)を抽出してシステム制御部 1902に送る(ステップS191)。

【0121】解析部1906はさらに、MPEGトラン スポートストリーム中のオブジェクトユニット(VOB U) を決定して分割し、タイムマップ生成に必要なオブ ジェクトユニットの時間長とサイズとをシステム制御部 1902に送る(ステップS192)。なお、オブジェ クトユニット (VOBU) は、トランスポートストリー ム中のI-ピクチャを検出することにより決定できる。 【0122】ディジタルチューナ1905から送られる MPEGトランスポートストリームは解析部1906を 通してトラックパッファ1910へ転送される。システ ム制御部1902は、ドライブ1911に対して記録要 求を出力し、ドライブ1911はトラックバッファ19 10に蓄積されているデータを取り出しDVD-RAM ディスク100に記録する(ステップS193)。この 時、システム制御部1902はファイルシステムのアロ ケーション情報からディスク上のどこに記録するかをあ わせてドライブ1911に指示する。

【0123】解析部1906は、オブジェクトユニット時刻情報の検出に併せて、受信中のMPEGトランスポートストリームを監視し、その属性の変化を検出する(ステップS194)。以下にBSデジタル放送における具体的な検出方法の例を挙げる。このとき、記録機器は(a)~(k)の各情報の変更点を検出するために、以前の情報を一定のデータ量だけ保存しておくメモリを持つものとする。

【0124】なお、ここに挙げた検出方法は単に一例であり、ARIBで規定されたデータ構造に一部準拠して 30いない場合もあるが、ARIBの規定に準拠したデータ構造を用いて検出を行ってももちろんよい。

(a) PG_Change:ディジタル放送ストリーム中のEIT(Event_Information_Table)中のevent_idを参照し(図20)、この値に変化が生じたときに付加する。

(b) PSI/SI:ディジタル放送ストリーム中のPSI/SI情報を構成するテーブルである、PAT(Program_Association_Table)、CAT(Conditional_Access_Table)、NIT(Network_Information_Table)、BIT(Broadcaster_Information_Table)、SDT(Service_Description_Table)、SDT(Service_Description_Table)、EIT(Event_Information_Table)、CONCETTABLE)のversion_numberを参照し(図21)、この値に変化が生じたときに付加する。

(c) $SQH_Change: ディジタル放送ストリー 1901を通してシステム制御部1902に伝えられ、 ムにおけるMPEG2ストリーム中のシーケンスヘッダ 50 システム制御部1902はディジタルチューナ1905$

情報を参照し(図22)、これが変化したときに付加する。

- (d) Data_Top:ディジタル放送ストリーム中のDII (Download InfoIndication) におけるdsmccMessageHeader () (図23) を検出したときに付加する。
- (e) Data_Change:ディジタル放送ストリーム中のDII中のdsmccMessageHeader()におけるtransaction_idを参照し(図24)、この値に変化が生じたときに付加する。
- (f) PMT_Change:ディジタル放送ストリーム中のPMT (Program_Map_Table)中のversion_numberを参照し(図25)、この値に変化が生じたときに付加する。
- (g) DE_Change:ディジタル放送ストリーム中のDIIメッセージ中のdownloadID中のdata_event_idを参照し(図26)、この値に変化が生じたときに付加する。
- (h) Module__Change:ディジタル放送ストリーム中のDIIメッセージ中のmodule__versionを参照し(図27)、この値に変化が生じたときに付加する。
- (i) Aud_Change:ディジタル放送ストリーム中のEIT中の音声コンポーネント記述子におけるcomponent_type、およびEIT中の音声コンポーネント記述子におけるsampling_rateを参照し(図28)、その値に変化が生じたときに付加する。
- (j) Multi_View:ディジタル放送ストリーム中のEIT中のコンポーネントグループ記述子におけるnum_of_groupを参照し(図29)、それにより付加する。
- (k) パレンタル情報:ディジタル放送ストリーム中の PMT中の限定受信方式記述子におけるprivate __data__byte、又はEIT(Event__In fomation__Table)中のパレンタルレート 記述子におけるratingフィールドのパレンタルレート情報を参照することにより付加する(図30)。

【0125】再び図19を参照して、解析部1906 は、MPEGトランスポートストリームの内容変化を検 出した場合には、これらの検出情報をそのときの時刻情 報と併せて、エントリーポイント情報としてシステム制 御部1902に送る(ステップS195)。システム制 御部1902は、エントリーポイント情報の集合であ る、エントリーポイントテーブルを作成する。

【0126】録画を終了するか否かはユーザからのストップ要求によって指示される(ステップS196)。ユーザからの録画停止要求は、ユーザインターフェース部1901を通してシステム制御部1902に伝えられ、システム制御部1902に伝えられ、システム制御部1902はディジタルチェーナ1005

と解析部1906に停止要求を出す。ユーザから録画停 止要求がない場合には、ステップS192からの処理を 繰り返し、そのまま録画を継続する。

【0127】解析部1906はシステム制御部1902 からの解析停止要求を受け解析処理を止め、最後に解析 を行ったMPEGトランスポートストリームの動画オブ ジェクトユニット(VOBU)の最後の表示終了時刻 (D_VOB_V_E_PTM) をシステム制御部19 02に送る。

【0128】システム制御部1902は、ディジタル放 10 送の受信処理終了後、解析部1906から受け取った情 報に基づき、ディジタル放送オブジェクト情報(D_V OBI) を生成し、次に、このディジタル放送オブジェ クト情報(D_VOBI)に対応するセル情報を生成す る。この時、セル情報内のタイプ情報として「D_VO B」を設定する。システム制御部1902はこのとき、 解析部1906から受け取ったエントリーポイント情報 からエントリーポイントテーブルを生成する(ステップ S197)。またこのときシステム制御部1902は、 記録したセルのビュータイプ (View Type)を エントリーポイント情報に基づいて設定する。

【0129】最後にシステム制御部1902は、ドライ プ1911に対してトラックパッファ1910に蓄積さ れているデータの記録終了と、ディジタル放送オブジェ クト情報およびセル情報の記録を要求する。ドライブ1 911は、トラックパッファ1910の残りデータと、 ディジタル放送オブジェクト情報(D_VOBI)、セ ル情報をDVD-RAMディスク100に記録し、録画 処理を終了する(ステップS198)。

【0130】ユーザからの要求がアナログ放送の録画で あった場合も、基本的に同様の処理が行われる。ただし エンコーダ部1904によりトランスポートストリーム にエンコードされるため、VOBUは機器により生成さ れるという点が異なる。

【0131】ユーザからの要求がストリーム記録であっ た場合、基本的に同様の処理が行われる。ただしストリ ームオブジェクト(SOB)の解析が行われないので、 各時刻情報がATSによって設定されることが異なる。

【0132】以上、ユーザからの録画開始および終了要 求をもとに動作を説明した。しかし、例えば従来のVT Rでも使用されていたタイマー録画の場合では、ユーザ の代わりに、システム制御部が自動的に録画開始および 終了要求を発行する点が相違するのみであって、DVD レコーダ1900の動作は本質的には同じである。

【0133】以下、図31を参照して、ユーザからの要 求がDVD-RAMに記録されたデータの再生である場 合の動作を説明する。図31は、DVDレコーダ190 0 (図18) の再生処理を示すフローチャートである。 以下では、1つの動画オブジェクト(D_VOB)と、 1つのセル情報とから構成されるオリジナルPGCを再 50 8に対して再生終了要求を出す。デコーダ1908はト

生する場合を説明する。なお、以下に説明する再生動作 に関しては、先のDVDプレーヤ1700(図17)も 同じ動作が実現できる。

【0134】まず、ユーザインターフェース部1901

がユーザからオリジナルPGCの再生要求を受ける。ユ ーザインターフェース部1901はユーザからの要求を システム制御部1902に伝え、システム制御部190 2はユーザからの要求が、オリジナルPGCの再生要求 であると解釈して、各モジュールへの処理要求を行う。 システム制御部1902はオリジナルPGC情報50 (図7) およびセル情報60等(図7)を解析して、再 生すべきオブジェクトを特定する(ステップS31 1)。すなわち、システム制御部1902は、まず、P GC情報内のセル情報内のタイプ情報を解析する。タイ プ情報が「D_VOB」であった場合、再生するAVス トリームがMPEGトランスポートストリームとして記 録されたAVストリームであると判断する。次にシステ ム制御部1902は、セル情報のIDから対応するディ ジタル放送オブジェクト情報(D_VOBI)を、テー ブル (D_AVFIT) から探し出す (ステップS31 2)。その後、システム制御部1902は、動画オプジ ェクト情報の開始時刻情報 (D_VOB_V_S_PT M) および終了時刻情報 (D_VOB_V_E_PT M) と、タイムマップとに基づいて、DVD-RAMに おけるオブジェクトの位置を特定する(ステップS31 3)。オプジェクトの位置が特定できると、システム制 御部1902は、セル情報の開始および終了位置情報 と、タイムマップとに基づいて、再生するAVデータの DVD-RAMにおける開始および終了アドレスを求め

【0135】アクセスすべきアドレスが得られると、シ ステム制御部1902はドライブ1911に対して、D VD-RAMディスク100からの読み出し要求を、読 み出しアドレスと共に送る。ドライブ1911は、シス テム制御部1902に指示されたアドレスからAVデー 夕を読み出し、トラックバッファ1910に格納する (ステップS315)。システム制御部1902は、デ コーダ1908に対してデコード要求を行う。デコーダ 1908はトラックバッファ1910に格納されている AVデータを読み出し、デコード処理を行う。デコード されたAVデータは表示装置1907を通して出力され る(ステップS316)。

る(ステップS314)。

【0136】ドライプ1911はシステム制御部190 2から指示された全データの読み出しが終了したか否か を判定する(ステップS317)。終了していない場合 には、ステップS315からの処理を繰り返し、AVデ ータの読み出しを継続する。終了した場合には、ドライ プ1911は、システム制御部1902に読み出し終了 を報告し、システム制御部1902は、デコーダ190

ラックバッファ1910が空になるまでデータの再生を 行い、トラックバッファ1910が空になり、全てのデ ータのデコードおよび再生が終了した後、システム制御 部1902に再生終了の報告を行い、再生処理が終了す る。

【0137】以上、1つのディジタル放送オブジェクト(D_VOB)、1つのセル情報から構成されるオリジナルPGCを例に説明を行った。ただし、オリジナルPGCが、1つの動画オブジェクト(M_VOB)のみを含む場合、複数の動画オブジェクトを含む場合、複数のディジタル放送オブジェクトを含む場合、または、動画オブジェクトとディジタル放送オブジェクトとが混在する場合でも、同様の処理を行うことにより、AVストリームが再生できる。また、オリジナルPGCが複数のセルを含む場合や、ユーザ定義PGCの場合も同様である。

【0138】次に、ストリームオブジェクト(SOB)に対して、デコーダ1908が全てのAVストリームの再生機能を持たない場合の例を説明する。再び図18参照して、例えば、デコーダ1908がMPEGトランス 20ポートストリームの再生機能を有していない場合、上述のように、デコーダ1908を通してストリームを再生できない。そこで、この場合には、ディジタルインターフェース部1909を介して外部機器にデータを供給し、外部機器にてデータの再生を行う。

【0139】システム制御部1902は、ユーザから再 生要求されたPGC情報内のセル情報が、システムがサ ポートしていないストリームオブジェクト (SOB) で あることを検出した場合、デコーダ1908に対する再 生要求の代わりに、ディジタルインターフェース190 9に対してデータの外部出力要求を行う。ディジタルイ ンターフェース部1909はトラックパッファ1910 に蓄積されているAVデータを接続しているディジタル インターフェースの通信プロトコルに従いデータの転送 を行う。なお、上述した処理以外はディジタル放送オブ ジェクト (D_VOB) の再生時と同様である。デコー ダ1908が再生対象のAVストリームに対応している か否かは、システム制御部1902が自身で判断しても よいし、システム制御部1902からデコーダ1908 に問い合わせるようにしてもよい。デコーダ1908は 40 MPEGトランスポートストリームのPSI/SI情報 を参照して自らがこのストリームに対応しているか否か を判断する。

【0140】留意すべきは、ストリームオブジェクト (SOB) に関しては、ストリームの内容が解析できないこともあって、一部の再生機能が制限される場合がある。特にいわゆる特殊再生、例えばスロー再生は、単独で再生可能なストリームデータを繰り返して送出する必要があるため、ストリームデータの内容を解析できないSOBにおいては実現が困難である。

【0141】そこで本実施の形態によるレコーダ1900は、ユーザからこのような特殊再生の指示を受け取った場合に、当該セルのタイプ情報を参照し、これがSOBであれば、指示された特殊再生が不可能である旨をユーザ1/F部1901に通知する。

【0142】またストリームオブジェクト(SOB)再生には上述した制限が考えられるため、一連のAVストリームの再生順序を指定するPGCを作成する際に、ストリームオブジェクト(SOB)と他のオブジェクトすなわちディジタル放送オブジェクト(D_VOB)および動画オブジェクト(M_VOB)が1つのPGC内に混在することを禁止することも可能である。

【0143】以下、AVデータが記録された光ディスク に対し、ユーザからエントリーポイント設定の要求があ った場合の処理を説明する。図32は、ユーザエントリ ーポイントの設定処理を示すフローチャートである。ユ ーザI/F部1901 (図18) を介して、ユーザから エントリーポイント設定の要求があった場合(ステップ S321)、システム制御部1902(図18)は、デ ィスクからエントリーポイントテーブルを読み出し、該 当セルにおけるエントリーポイントテーブルの全エント リーポイントと、設定されている属性情報とを、ユーザ I/F部190に表示する(ステップS322)。ここ でいうエントリーポイントテーブルとは、図15に示す 自動設定エントリーポイントテーブルおよびユーザ設定 エントリーポイントテーブルを意図する。すなわち、ユ ーザ定義PGC情報70(図7)のセル情報71のエン トリーポイントテーブル72、および、オブジェクト情 報80(図7)のエントリーポイントテーブル80dを 意図する。しかし、ユーザ設定エントリーポイントテー ブルのみでもよい。また、属性情報が特に必要でない場 合には表示しなくともよい。

【0144】なお、属性情報は、例えば、番組の変更点であることを示すPG_Change、トランスポートストリームにおけるPSI/SI情報の変更点であることを示すPSI_SI、トランスポートストリームにおけるMPEGストリームの属性が変更されたことを示すSQH_Change、データカルーセルの先頭地点を示すData_Change、アMTの変更点を示すData_Change、データイベントの更新点を示すDE_Change、モジュールの更新点を示すModule_Changeの各フラグ情報と、マルチビューに対応するために番組のビュー数を示すMulti_Viewフィールド、パレンタル情報である。

【0145】表示された全てのエントリーポイントと、 属性情報とに基づいて、ユーザは、必要に応じてそのポイントからの再生を行い、所望の番組の所望シーンや、 所望のデータ放送番組、所望のマルチビューシーンへの 飛び込み位置を容易にみつけることできる。

【0146】ユーザは、エントリーポイントを選択した ことを示すマーキングを、レコーダ1900に指定する (ステップS323)。レコーダ1900のシステム制 御部1902は、ユーザから、エントリーポイントに対 するマーキング指示を受け取ると、ユーザ設定エントリ ーポイントテーブルにエントリーを追加する(ステップ S324)。このとき、ユーザが、オリジナルエントリ ーポイント以外の位置にエントリーポイントを設定した い場合には、設定を希望するストリームの部分区間の開 10 始位置および終了位置を指定する。レコーダ1900の システム制御部1902は、受け取った開始位置の情報 に基づいて、その開始位置に対応する時刻情報PTSを 取得する。システム制御部1902は、ユーザ設定エン トリーポイントテーブルにエントリーを追加して、取得 した時刻情報PTSを時刻情報EP_PTMに登録す る。なお、2種類のエントリーポイントテーブル(図1 5) を設けず、自動設定されたエントリーポイントとユ ーザが設定したエントリーポイントとを1つのテーブル で管理する場合、すなわち図14のエントリーポイント 20 テーブルを利用する場合には、エントリーポイントテー プルのUSER_EPフラグを設定する。

【0147】エントリーポイントの設定が完了した場合には、処理を終了する(ステップS324)。完了していない場合には、ステップS322からの処理を繰り返し、それまでに設定した全てのエントリーポイントと、設定されている属性情報とを表示する。

【0148】次に、図33を参照して、ユーザエントリ ーポイントの再生処理を説明する。図33は、ユーザエ ントリーポイントの再生処理を示すフローチャートであ 30 る。システム制御部1902は、ユーザからエントリー ポイントの再生要求を受け取ると(ステップS33 1)、光ディスクにユーザ設定エントリーポイントテー ブル(すなわち、エントリーポイントテーブル72、ま たは、図15の下段のテーブル)が存在するか否かを判 断する(ステップS332)。ユーザ設定エントリーポ イントテーブルが存在する場合には、そのテーブルを読 み出して表示用のメモリ領域に格納し、エントリーポイ ントを表示する(ステップS334)。ユーザは、自ら が意識しないエントリーポイントが多数表示されること 40 に煩わされることなく必要なエントリーポイントのみか ら再生開始点を選択することが可能となる。ユーザ設定 エントリーポイントテーブルが存在しない場合には、自 動設定エントリーポイントテーブルを読み出して表示用 のメモリ領域に格納し、エントリーポイントを表示する (ステップS334)。なお、図14のエントリーポイ ントテーブルを利用する場合には、各エントリーポイン トについて、USER_EPフラグが設定されているか 否かを参照し、設定されているエントリーポイントのみ を読み出せばよい。

【0149】ユーザがエントリーポイントを選択すると、システム制御部1902は、選択されたエントリーポイントを特定する情報を、ユーザ I / F部1901から受け取る(ステップS335)。システム制御部1902はエントリーポイントテーブルの、該当エントリーポイントに対応する時刻情報 EP_PTMを検出する(ステップS336)。エントリーポイントテーブルにおける各エントリーポイントの時刻情報の精度は、通常MPEGで用いられる27MHzである。なお、これをビデオのフレーム数や、90KHzまたは27MHzの下位数ピットを省略した値でもよい。

【0150】さらにシステム制御部1902は対応するオプジェクト(D_VOB)の、オプジェクト情報に設けられたタイムマップを用いて、時刻情報をディスク上のセクタ位置情報に変換する(ステップS337)。システム制御部1902は、このセクタ位置から光ディスク上のMPEGトランスポートストリームを再生する(ステップS338)。

【0151】このようにして、ユーザ所望のシーンであるエントリーポイントから画像や音声の再生が行われる。このときシステム制御部1902は、セル情報内のビュータイプ (View Type)を参照し、これが0以外の値である、すなわちマルチビューを示していれば、ユーザインターフェース部1901にセル情報内のビュータイプ (View Type)を通知する。通知されたビュータイプに基づいて、DVDレコーダ1900は、ユーザインターフェース部1901画面上に、例えばOSD (On Screen Display)情報としてマルチビューのビュー数を表示できる。

【0152】図32および図33およびこれらに関連する説明では、全てのエントリーポイントを表示するとして説明した。しかし、必ずしも全てのエントリーポイントを表示しなくてもよい。例えば、所定の属性変化を示すエントリーポイントのみを選択的に表示してもよいし、所定の時間帯に存在するエントリーポイントのみを選択的に表示してもよい。このような選択は、エントリーポイントテーブルに設けられた属性情報、または、時刻情報(EP_PTM)に基づいて行うことができる。

【0153】なお、DVDレコーダの再生において、デコーダがサポートしていないAVストリームを再生する場合には、ディジタルインターフェースを介して再生を行うとした。しかし、デコーダがサポートしているAVストリームであっても、ユーザの要求によってディジタルインターフェースを介してセットトップボックスなどの外部機器に出力するようにしてもよい。

【0154】また、本発明は、光ディスクおよび光ディスクレコーダおよび光ディスクプレーヤとして説明したが、例えばハードディスクなどの他のメディアにMPE Gトランスポートストリームを記録する場合であって

0 も、同様の構成要素により、同様の処理を行うことによ

り、同じ効果が得られる。よって、本質的に物理メディアに制限されるものではない。ただし、この場合の「同様の構成要素」は、例えば、PCの中央演算装置(CPU)や、画像処理ICが担ってもよい。このときのCPU等は、上述したフローチャート(図19、図31~図33)の処理にしたがったコンピュータにより実行可能な記録プログラムに基づいて動作する。このようなプログラム自体は、フレキシブルディスク、光ディスク、半導体記憶装置等の様々な記憶媒体に記録され、または、インターネット等の通信回線を介して伝送され、PCに10インストールされる。

【0155】本実施の形態では、セルフエンコードとしてMPEGトランスポートストリームを用いるとして説明した。しかし、MPEGプログラムストリームを用いてもよく、また、他のフォーマットによるストリームであってもよい。

[0156]

【発明の効果】本発明の情報記録媒体によれば、他のA Vストリームとともに、ディジタル放送で送られてきた トランスポートストリームを記録することができ、さら 20 に、記録したディジタル放送オブジェクトのエントリー ポイントに対してユーザが設定したものを識別すること が可能となる。また、エントリーポイントテーブル内の 各エントリーポイント情報に、番組の変更点であること を示すフラグ、PSI/SI情報の変更点であることを 示すフラグ、MPEGストリームの属性が変更されたこ とを示すフラグ、データカルーセルの先頭地点を示すフ ラグ、データカルーセルの内容が変更された地点を示す フラグ、PMTの内容が変更された地点を示すフラグ、 モジュールの変化した地点を示すフラグ、データイペン 30 トが変更された地点を示すフラグ、音声属性が変更され たことを示すフラグ情報と、番組のビュー数を示すフィ ールド、パレンタル情報フィールドを設け、これを表示 することでユーザがこれらの情報から所望のシーンを見 つけることを容易にすることができる。また、セルがマ ルチピューで構成される場合にこれをユーザに示すこと ができる。

【図面の簡単な説明】

【図1】 DVDレコーダのドライブ装置のブロック図である。

【図2】 従来のAV機器とメディアの関係を示す図である。

【図3】 MPEGプログラムストリームとトランスポートストリームを示す図である。

【図4】 DVDレコーダが目指すAV機器とメディアの関係を示す図である。

【図 5 】 D V

【図6】 (a)はAVファイルとディレクトリの関係 【図3]を示す図である。(b)は、ディスク上のアドレス空間 50 である。

を示す概念図である。

【図7】 オブジェクト、オブジェクト情報およびPG C情報の関係を説明した図である。

【図8】 オブジェクト情報から派生した各ストリーム 管理情報を示す図である。

【図9】 ディジタル放送オブジェクト (D_VOB) と、ディジタル放送オブジェクト情報 (D_VOBI) およびPGC情報の関係を示す図である。

【図10】 (a)~(f)は、本発明に係るタイムマップを説明する図である。

【図11】 ストリームオブジェクト (SOB) におけるTSパケットとヘッダ情報との関係を示す図である。

【図12】 DVD-RAMにおける管理情報を説明した図である。

【図13】 マルチビューの説明イメージ図である。

【図14】 本発明に係るエントリーポイントの説明図である。

【図15】 自動設定エントリーポイントテーブルとユーザ設定エントリーポイントテーブルの説明図である。

【図16】 各ビューに対応して設けたエントリーポイントテーブルを示す図である。

【図17】 本発明に係るプレーヤモデルのブロック図である。

【図18】 DVDレコーダのブロック図である。

【図19】 レコーダの記録動作を示すフローチャートである。

【図20】 PG_Change検出のためのEITの説明図である。

【図21】 PSI/SI検出のためのPSI/SI情報の説明図である。

【図22】 SQH_Change検出のためのMPE G2ストリームの説明図である。

【図23】 Data_Top検出のためのDIIの説明図である。

【図24】 Data_Change検出のためのDI Iの説明図である。

【図25】 PMT_Change検出のためのPMTの説明図である。

【図26】 DE_Change検出のためのDIIの40 説明図である。

【図27】 Module_Change検出のためのDIIの説明図である。

【図28】 Aud_Change検出のためのEITの説明図である。

【図29】 Multi_View検出のためのEIT の説明図である。

【図30】 パレンタル情報検出のためのPMT、EITの説明図である。

【図31】 レコーダの再生動作を示すフローチャート である。

【図32】 ユーザエントリーポイントの設定処理を示すフローチャートである。

【図33】 ユーザエントリーポイントの再生処理を示すフローチャートである。

【符号の説明】

50,70 PGC情報 (PGCI: Program Chain Inform ation)

60 セル情報 (CellI: Cell Information)

60b ビュータイプ情報

60f エントリーポイントテーブル

80 オプジェクト情報(OBJECT 1: Object Informatio

n)

. 80c アクセスマップ

100 DVD-RAM (光ディスク)

1700 プレーヤ

1701 光ピックアップ

1704, 1909, 2005 ディジタルインターフ

ェース部

1706 TSデコーダ

1710 選択部

1711 制御部

1900 レコーダ

1901 ユーザインターフェース部

- 10 1902 システム制御部

1906 解析部

1908 デコーダ・

1909 ディジタルインターフェース部

1911 ドライブ

【図1】

[図11]

【図2】

【図3】

[図4]

【図5】

番組名	<u>録画日時</u>
1) 洋画劇場	99.9.20 pm 9:00 -
2) 朝の連続ドラマ	99.9.22 am 8:30 -
3) ワールドカップ決勝	99.6.10 am 2:00 -
4) ベートーヴェン	96.4.1

[図6]

【図7】

【図8】

【図9】

[図20]

【図10】

REST AVAILABLE COPY

【図13】

EIT/componet_group_descriptor

CA_unit_id = "0x0" (非課金)	: componet_tag = V0 : componet_tag = A0	: ューザ	提示单位				
text="通常放送"] 🔻	ゴルフ放送(通常放送)				
(2) componet_group_id = "(0x1" (サブ1)	12	Video_PID = "0x01" : componet_tag = V(Andio_PID = "0x02" : componet_tag = A(
CA_unit_id = "0x0" (非課金)	: componet_tag = V1	#	ゴルフ放送(最終ホール)				
	: componet_tag = A0] [7	Video_PID = "0x03" : componet_tag = V				
	: componet_tag = A3	1 1	Audio_PID = "0x02" : componet_tag = A0				
text = "最終ホール"]	Audio_PID = "0x07" : compones_tag = A1				
(A)		#	ゴルフ放送(トップ集団)				
(3) componet_group_id = "(7 2	Video_PID = "0x05" : componet_tag = V2				
CA_unit_id = "0x0"	: componet_tag = V2	-	Audio_PID = "0x02" : componet_tag = A0				

【図14】

エントリーポイントテーブル

[図22]

【図15】

[図16]

【図32】

[図23]

[図17]

【図18】

【図21】

【図24】

[図25]

[図26]

[図27]

【図28】

【図29】

【図30】

【図31】

【図33】

終了

フロントページの続き

(51) Int. C1.	識別記号		FI					テーマコード(参考)				
G11B	27/00			G 1 1 B	27/10)			Α	•		
0	27/034			H 0 4 N	5/85				Z			
	27/10				5/9	2			H			
H04N	5/85			G 1 1 B	27/02				K	••		
	八木 知隆 大阪府門真市大字門真1006番地			Fターム(参考)	5C052	AA02	AB03	CC01	DD04		
		松下電器			5C053	FA25	GB05	$\dot{GB37}$	HA29	JA22		
	産業株式会社内	,					LA07					
(72)発明者	中西 信夫					5D044	AB05	AB07	BC06	CC06	DE02	
	大阪府門真市大字門真1006番地	松下電器			•		DE03	DE12	DE25	DE39	DE49	
	産業株式会社内						DE54	EF05	GK08	-GK12	HL11	
							HL16					
				•		5D077	AA30	BA15	CA02	CB04	DC11	
-	•			<i>:</i>		5D110	AA17	AA27	AA29	CA09	CA10	
	•						CA42	DA04	DA17	DB02	EA07	
	•			•			EA09					