Package 'rules'

March 9, 2023

```
Title Model Wrappers for Rule-Based Models
Version 1.0.2
Description Bindings for additional models for use with the 'parsnip'
     package. Models include prediction rule ensembles (Friedman and
     Popescu, 2008) <doi:10.1214/07-AOAS148>, C5.0 rules (Quinlan, 1992)
     ISBN: 1558602380), and Cubist (Kuhn and Johnson, 2013)
     <doi:10.1007/978-1-4614-6849-3>.
License MIT + file LICENSE
URL https://github.com/tidymodels/rules, https://rules.tidymodels.org/
BugReports https://github.com/tidymodels/rules/issues
Depends parsnip (>= 0.2.1.9004), R (>= 3.4)
Imports dials (>= 0.1.1.9001), dplyr, generics (>= 0.1.0), purrr,
     rlang, stats, stringr, tidyr, utils
Suggests C50, covr, Cubist, knitr, modeldata, recipes, rmarkdown,
     spelling, testthat (>= 3.0.0), tibble, xrf (>= 0.2.0)
Config/Needs/website tidyr, tidyverse/tidytemplate, recipes, xrf
Config/testthat/edition 3
Encoding UTF-8
Language en-US
RoxygenNote 7.2.3
NeedsCompilation no
Author Emil Hvitfeldt [aut, cre] (<a href="https://orcid.org/0000-0002-0679-1945">https://orcid.org/0000-0002-0679-1945</a>),
     Max Kuhn [aut] (<https://orcid.org/0000-0003-2402-136X>),
     Posit Software, PBC [cph, fnd]
Maintainer Emil Hvitfeldt <emil.hvitfeldt@posit.co>
Repository CRAN
Date/Publication 2023-03-08 23:40:02 UTC
```

2 committees

R topics documented:

Index		9
	tidy.C5.0	3
	multi_predictcubist	
	committees	2

committees

Parameter functions for Cubist models

Description

Committee-based models enact a boosting-like procedure to produce ensembles. committees parameter is for the number of models in the ensembles while max_rules can be used to limit the number of possible rules.

Usage

```
committees(range = c(1L, 100L), trans = NULL)
max_rules(range = c(1L, 500L), trans = NULL)
```

Arguments

range A two-element vector holding the *defaults* for the smallest and largest possible

values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()

or scales::reciprocal_trans(). If not provided, the default is used which

matches the units used in range. If no transformation, NULL.

Value

A function with classes "quant_param" and "param"

Examples

```
committees()
committees(4:5)
max_rules()
```

multi_predict._cubist 3

multi_predict._cubist multi_predict() methods for rule-based models

Description

multi_predict() methods for rule-based models

Usage

```
## S3 method for class '`_cubist`'
multi_predict(object, new_data, type = NULL, neighbors = NULL, ...)
## S3 method for class '`_xrf`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)
```

Arguments

object	A model_fit object.
new_data	A rectangular data object, such as a data frame.
type	A single character value or NULL. This argument is ignored in the method for _cubist objects and is handled internally (since type = "numeric" is always used).
neighbors	A numeric vector of neighbors values between zero and nine.
	Not currently used.
penalty	Non-negative penalty values.

tidy.C5.0

Turn C5.0 and rule-based models into tidy tibbles

Description

Turn C5.0 and rule-based models into tidy tibbles

Usage

```
## S3 method for class 'C5.0'
tidy(x, trees = x$trials["Actual"], ...)
## S3 method for class 'cubist'
tidy(x, committees = x$committee, ...)
## S3 method for class 'xrf'
tidy(x, penalty = NULL, unit = c("rules", "columns"), ...)
```

Arguments

X	A Cubist, C5.0, or xrf object.
trees	The number of boosting iterations to tidy (defaults to the entire ensemble).
	Not currently used.
committees	The number of committees to tidy (defaults to the entire ensemble).
penalty	A single numeric value for the lambda penalty value.
unit	What data should be returned? For unit = 'rules', each row corresponds to a rule. For unit = 'columns', each row is a predictor column. The latter can be helpful when determining variable importance.

Details

The outputs for these tidy functions are different since the model structures are different. Let's look at Cubist and RuleFit first, using the Ames data, then C5.0 with a different data set.

An example using the Ames data:

1

First we will fit a Cubist model and tidy it:

```
library(tidymodels)
library(rules)
library(rlang)
data(ames, package = "modeldata")
ames <- ames %>%
 mutate(Sale_Price = log10(Sale_Price)) %>%
 select(Sale_Price, Longitude, Latitude, Central_Air)
cb_fit <-
 cubist_rules(committees = 10) %>%
 set_engine("Cubist") %>%
 fit(Sale_Price ~ ., data = ames)
cb_res <- tidy(cb_fit)</pre>
cb_res
## # A tibble: 223 x 5
##
     committee rule_num rule
                                                            estimate statistic
##
         <int>
                  <int> <chr>
                                                               st>
                                                                       <list>
## 1
                    1 ( Central_Air == 'N' ) & ( Latitude <=~ <tibble> <tibble>
            1
## 2
            1
                    2 (Latitude <= 41.992611) & (Latitude~ <tibble> <tibble>
## 3
            1
                    3 ( Central_Air == 'N' ) & ( Latitude > ~ <tibble> <tibble>
## 4
                    4 (Latitude <= 42.026997) & (Longitud~ <tibble> <tibble>
                    5 ( Longitude > -93.63002 ) & ( Latitude~ <tibble> <tibble>
## 5
            1
## 6
            1
                    6 (Latitude <= 42.035858) & (Longitud~ <tibble> <tibble>
## 7
                    7 (Latitude <= 42.024029) & (Latitude~ <tibble> <tibble>
```

Since Cubist fits linear regressions within the data from each rule, the coefficients are in the estimate column and other information are in statistic:

```
cb_res$estimate[[1]]
## # A tibble: 3 x 2
     term
                 estimate
##
     <chr>
                     <dbl>
## 1 (Intercept)
                  -509.
## 2 Longitude
                     -5.05
## 3 Latitude
                      0.99
cb_res$statistic[[1]]
## # A tibble: 1 x 6
     num_conditions coverage mean
                                             max error
                                       min
##
              <dbl>
                        <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1
                           38 4.87 4.12 5.22 0.149
                  3
Note that we can get the data for this rule by using rlang::parse_expr() with it:
rule_1_expr <- parse_expr(cb_res$rule[1])</pre>
rule_1_expr
## (Central_Air == "N") & (Latitude <= 42.026997) & (Longitude >
       -93.639572)
then use it to get the data back:
filter(ames, !!rule_1_expr)
## # A tibble: 38 x 4
##
      Sale_Price Longitude Latitude Central_Air
##
           <dbl>
                      <dbl>
                               <dbl> <fct>
## 1
            5.04
                      -93.6
                                42.0 N
##
    2
            4.74
                      -93.6
                                42.0 N
                     -93.6
                                42.0 N
##
    3
            4.75
## 4
            4.54
                     -93.6
                                42.0 N
## 5
            4.64
                     -93.6
                                42.0 N
##
    6
            5.22
                      -93.6
                                42.0 N
## 7
            4.80
                                42.0 N
                     -93.6
## 8
            4.99
                      -93.6
                                42.0 N
## 9
            5.09
                      -93.6
                                42.0 N
## 10
            4.89
                      -93.6
                                42.0 N
## # ... with 28 more rows
```

Now let's fit a RuleFit model. First, we'll use a recipe to convert the Central Air predictor to an indicator:

```
xrf_reg_mod <-</pre>
  rule_fit(trees = 3, penalty = .001) %>%
 set_engine("xrf") %>%
  set_mode("regression")
# Make dummy variables since xgboost will not
ames_rec <-
 recipe(Sale_Price ~ ., data = ames) %>%
 step_dummy(Central_Air) %>%
 step_zv(all_predictors())
ames_processed <- prep(ames_rec) %>% bake(new_data = NULL)
xrf_reg_fit <-</pre>
 xrf_reg_mod %>%
 fit(Sale_Price ~ ., data = ames_processed)
xrf_rule_res <- tidy(xrf_reg_fit, penalty = .001)</pre>
xrf_rule_res
## # A tibble: 8 x 3
## rule_id
                  rule
                                                                      estimate
## <chr>
                  <chr>
                                                                          <dbl>
## 1 (Intercept)
                   (TRUE)
                                                                           16.4
## 2 Central_Air_Y ( Central_Air_Y )
                                                                         0.0567
## 3 Latitude
                ( Latitude )
                                                                         -0.424
## 4 Longitude
                  (Longitude)
                                                                        -0.0694
## 5 r1_1
                  (Longitude < -93.6299744)
                                                                          0.102
## 6 r2_3
                 ( Central\_Air\_Y < 0.5 ) & ( Latitude < 42.0460129 )
                                                                         -0.136
## 7 r2_5
                 (Latitude >= 42.0460129) & (Longitude < -93.650901~
                                                                         0.302
## 8 r2_6
                (Latitude \geq 42.0460129) & (Longitude \geq -93.650901~ 0.0853
```

Here, the focus is on the model coefficients produced by glmnet. We can also break down the results and sort them by the original predictor columns:

```
tidy(xrf_reg_fit, penalty = .001, unit = "columns")
## # A tibble: 11 x 3
     rule_id
                   term
                                 estimate
##
     <chr>
                   <chr>
                                    <dbl>
## 1 r1_1
                   Longitude
                                   0.102
## 2 r2_3
                   Latitude
                                  -0.136
## 3 r2_5
                   Latitude
                                   0.302
## 4 r2_6
                   Latitude
                                   0.0853
## 5 r2_3
                   Central_Air_Y -0.136
## 6 r2_5
                   Longitude
                                   0.302
## 7 r2_6
                                   0.0853
                   Longitude
## 8 (Intercept)
                   (Intercept)
                                  16.4
## 9 Longitude
                                  -0.0694
                   Longitude
```

```
## 10 Latitude
                     Latitude
                                     -0.424
## 11 Central_Air_Y Central_Air_Y
                                      0.0567
C5.0 classification models:
Here, we'll use the Palmer penguin data:
data(penguins, package = "modeldata")
penguins <- drop_na(penguins)</pre>
First, let's fit a boosted rule-based model and tidy:
rule_model <-
  C5_rules(trees = 3) %>%
  fit(island ~ ., data = penguins)
rule_info <- tidy(rule_model)</pre>
rule_info
## # A tibble: 25 x 4
     trial rule_num rule
##
                                                                         statistic
##
      <int>
               <int> <chr>
                                                                            st>
## 1
                  1 ( bill_length_mm > 37.5 )
                                                                          <tibble>
## 2
                  2 ( species == 'Chinstrap' )
                                                                          <tibble>
         1
## 3
         1
                 3 \text{ (body\_mass\_g > 3200 ) \& (body\_mass\_g < 3700 ) \& (~ <tibble>}
## 4
         1
                  4 (flipper_length_mm < 193)
                                                                          <tibble>
## 5
         1
                 5 (species == 'Adelie') & (bill_length_mm > 38.299~ <tibble>
                 6 ( bill_length_mm < 40.799999 ) & ( bill_depth_mm > \sim <tibble>
## 6
         1
## 7
         1
                 7 (species == 'Adelie') & (bill_length_mm > 41.599~ <tibble>
## 8
                 8 ( species == 'Adelie' ) & ( bill_depth_mm > 18.9 ) \sim <tibble>
         1
## 9
                  1 ( species == 'Gentoo' )
         2
                                                                          <tibble>
## 10
                  2 ( body_mass_g > 3700 ) & ( sex == 'female' )
         2
                                                                          <tibble>
## # ... with 15 more rows
# The statistic column has the pre-computed data about the
# data covered by the rule:
rule_info$statistic[[1]]
## # A tibble: 1 x 4
##
     num_conditions coverage lift class
##
               <dbl>
                        <dbl> <dbl> <chr>
## 1
                   1
                          286 1.10 Biscoe
```

Tree-based models can also be tidied. Rather than saving the results in a recursive tree structure, we can show the paths to each of the terminal nodes (which is just a rule).

Let's fit a model and tidy:

```
tree_model <-
boost_tree(trees = 3) %>%
set_engine("C5.0") %>%
```

```
set_mode("classification") %>%
  fit(island ~ ., data = penguins)
tree_info <- tidy(tree_model)</pre>
tree_info
## # A tibble: 34 x 4
     trial node rule
                                                                       statistic
      <int> <int> <chr>
                                                                          t>
              1 "( species %in% c(\"Adelie\") ) & ( sex == \"female\" ~ <tibble>
## 1
## 2
              2 "( species %in% c(\"Adelie\") ) & ( sex == \"female\" ~ <tibble>
## 3
              3 "( species %in% c(\"Adelie\") ) & ( sex == \"female\" \sim <tibble>
              4 "( species %in% c(\"Adelie\") ) & ( sex == \"female\" ~ <tibble>
## 4
## 5
              5 "( species %in% c(\"Adelie\") ) & ( sex == \"female\" ~ <tibble>
              6 "( species %in% c(\"Adelie\") ) & ( sex == \"female\" ~ <tibble>
## 6
        1
## 7
              7 "( species %in% c(\"Adelie\") ) & ( sex == \"female\" ~ <tibble>
              8 "( species %in% c(\"Adelie\") ) & ( sex == \"male\" ) \sim <tibble>
## 8
              9 "( species %in% c(\"Adelie\") ) & ( sex == \"male\" ) ~ <tibble>
## 9
             10 "( species %in% c(\"Adelie\") ) & ( sex == \"male\" ) ~ <tibble>
## 10
        1
## # ... with 24 more rows
# The statistic column has the class breakdown:
tree_info$statistic[[1]]
## # A tibble: 3 x 2
    value
               count
               <dbl>
##
    <chr>
## 1 Biscoe
                   3
## 2 Dream
                   1
## 3 Torgersen
```

Note that C5.0 models can have fractional estimates of counts in the terminal nodes.

Index