Cause and Effect Graphing

MADHESWARI.K AP/CSE

Why Cause and Effect Graph

- A Major weakness with equivalence class partitioning is that it **does not allow** the tester to **combine conditions**.
- May not disclose inconsistencies in a specification.
- Example int char a;

If a given variable is integer as well as character display the value of the variable.

What is cause and effect Graph

- Cause and effect graphing is a technique that can be used to combine conditions and derive an effective set of test cases that may disclose inconsistencies in a specification.
- This is basically a hardware testing technique adapted to software testing. It considers only the desired external behavior of a system.
- This is a testing technique that aids in selecting test cases that logically relate Causes (inputs) to Effects (outputs) to produce test cases.

What is cause? Effect?

Cause

A "Cause" represents a distinct input condition that brings about an internal change in the system.

Effect

An "Effect" represents an output condition, a system transformation or a state resulting from a combination of causes.

Example

- Effect E occurs if both causes 1 and 2 are present
- Cause and effects can be represented using oval shape or circle shape.
- Left side-cause
- Right side- Effect

Basic cause effect graph symbols

Notations	Meaning	Explanation		
C1 E1	IDENTITY	Effect E1 occurs if cause 1 occurs		
C1 E1	NOT	The NOT function states that if C2 is 1, E2 is 0 and vice-versa.		
C1	OR	Similarly, OR function states that if C1 or C2 or C3 is 1, e1 is 1 else e1 is 0.		
C1 ^ E1	AND	The AND function states that if both C, and C2 are 1, e1 is 1; else e1 is 0. The AND and OR		

Steps to develop test cases

Test technique based on cause effect graph consist in the following step;

- 1. decompose of the unit to be tested, if it has many functionalities
- 2. identify the causes (input combinations or classes of input conditions)
- 3. identify the effects (output conditions, or system transformations)
- 4. Establish the graph of relations between causes and effects
- 5. complete the graph by adding the constraints between causes and effects
- 6. convert the graph to a decision table
- 7. The columns in the decision table are transformed into test cases.

Cause effect graph: optimization rules

Disjunctive case

R1: for X at 1 then

don't take the case A= B=1

 R_2 : for X at o, enumerates all the

situations where A=B=o

A	В
0	0
0	1
1	0
1	-

Cause effect graph: optimization rules

Conjunctive case

R3: for X at 1, enumerate all the situations

Where A=B=C=1

R4: For X at o

R4.1 include only the case A=B=C=0

R4.2 for all other cases (001, 010, 100,

011,, 101, 110), include only one sample

A	В
1	0
1	1
0	0
	-

Cause effect graph, an example

- The character of the first column should be "A" or "B". The second column should be a number. In this case the file is considered up dated.
- If the first character is erroneous, we should print then the message X12.
- If in the second column we don't have a number, we print the message X13.

contd...

Identify Causes(input)

- C1: first char is "A"
- C2:the first char is :B"
- C3: the second is a number

Identify Effects(output)

- E1: update the file
- E2: message X12
- E3: the message X13

Cause and effect graph

- Start with Effect E1. For E1 to be true, the condition is: (C1 C2) and C3.
- Here we are representing True as 1 and False as 0

- Start with Effect E1. For E1 to be true, the condition is: (C1 v $\,$ C2) $\,$ C3 $\,$
- Here we are representing True as 1 and False as 0
- Now for E1 to be "1" (true), we have the below two conditions –

C1 AND C3 will be true C2 AND C3 will be true

TEST DATA(RULES)	CAUSE			EFFECT		
	C1	C2	С3	E1	E2	E3
1	1	0	1	1		
2	0	1	1	1		
3						
4						
5						
6						

• For E2 to be True, either C1 or C2 has to be false shown as

TEST DATA(RULES)	CAUSE			EFFECT		
	C1	C2	C3	E1	E2	E3
1	1	0	1	1	0	O
2	О	1	1	1	0	0
3	0	1	1	0	1	O
4	1	0	1	0	1	O
5						

• For E3 to be true, C3 should be false.

TEST DATA(RULES)	CAUSE	C		EFFEC	T	
	C1	C2	C3	E1	E2	E3
1	1	0	1	1	0	O
2	O	1	1	1	0	0
3	О	O	1	О	1	O
4	1	O	1	0	1	O
5	1	1	O	0	O	1
6	1	0	0	0	(0 1

TEST DATA(RULES)	CAUSE			EFFECT		
	C1	C2	C3	E1	E2	E3
1	0	0	0	O	1	1
2	0	1	0	0	0	1
3	1	0	0	O	0	1
	1	1	0	-		
4	0	0	1	O	1	O
5	1	0	1	1	0	0
	1	1	1			
	0	0	0			
6	0	1	1	1	0	O

Test case design

Since there are 6 rules, we get following 6 test cases

Test case #	Input data	Expected result
1	Ss	Print messages E2, E3
2	Bs	Print Message E3
3	As	Print Message E3
4	C2	Print message E2
5	A2	File updated(E1)
6	В3	File updated(E1)

Assignment

• Determine if three numbers make a valid triangle; if not, print message NOT A TRIANGLE.

If it is a triangle, classify it according to the length of the sides as scalene(no sides equal), isosceles (two sides equal), or equilateral (all sides equal)