EE359 – Lecture 14 Outline

- Announcements
 - Graded MTs ready for pickup
 - Bonus lecture 11/30 5:15-7:15 in 204 Packard
- Midterm Postmortem and Grade Distribution
- Practical Issues in Adaptive MQAM
 - Update rate
 - Estimation error and delay
- Introduction to MIMO
- MIMO channel capacity

Midterm Postmortem

- Grade distribution typical
- Common Mistakes
 - Prob 1(d): For outage, target SNR must be based on P_b in AWGN and not average P_b in fading
 - Prob 2(a)(ii): Instantaneous rate should not be weighted by state probability
 - 2(c): Transmit power is fixed, so formula same as capacity w/RX CSI only (not inversion)

$$C = \int_{0}^{\infty} B \log_{2} \left(1 + \frac{\gamma P(\gamma)}{\overline{P}} \right) p(\gamma) d\gamma = \int_{0}^{\infty} B \log_{2} \left(1 + \gamma \right) p(\gamma) d\gamma$$

 2(d): Constellation size M for all channel states is not fixed; should adapt M to SNR.

Midterm Grade Distribution

Review of Last Lecture

- Introduction to adaptive modulation
- Variable-rate variable-power MQAM
 - Optimal power adaptation is water-filling
 - Optimal rate adaptation is R/B=log(γ/γ_k)
- Finite Constellation Sets
 - Use heuristic to assign rates to regions
 - Channel inversion power control in each region

Constellation Restriction

Power adaptation:

$$\frac{P_{j}(\gamma)}{P} = \begin{cases} (M_{j} - 1)/(\gamma K) & \gamma_{j} \leq \gamma < \gamma_{j+1}, j > 0 \\ 0 & \gamma < \gamma_{1} \end{cases}$$

• Average rate:
$$\frac{R}{B} = \sum_{j=1}^{N} \log_2 M_j p(\gamma_j \le \gamma < \gamma_{j+1})$$

Efficiency in Rayleigh Fading

Practical Constraints

Constellation updates: fade region duration

$$\overline{\tau}_{j} = \frac{\pi_{j}}{N_{j+1} + N_{j}} > T > T_{M}$$
 $\tau_{j} = AFRD$
 $T_{M} = delay spread$
 $N_{j} = level crossing$

```
\overline{\tau_j} = AFRD

T_M = delay spread

N_j = level crossing rate at min fade in region

N_{j+1} = level crossing rate at max fade in region
```

- Error floor from estimation error
 - Estimation error at RX can cause error in absence of noise (e.g. for MQAM)
 - Estimation error at TX causes mismatch of adaptive power and rate to actual channel
- Error floor from delay: let $\rho(t,\tau) = \gamma(t-\tau)/\gamma(t)$.
 - Feedback delay causes mismatch of adaptive power and rate to actual channel

Detailed Formulas

• Error floor from estimation error $(\hat{\gamma} \neq \gamma)$

$$\overline{P}_{b} = \int_{0}^{\infty} \int_{\gamma_{K}}^{\infty} .2[5BER_{\text{target}}]^{y/\hat{\gamma}} p(\gamma, \hat{\gamma}) d\hat{\gamma} d\gamma$$

- Joint distribution $p(\chi,\gamma)$ depends on estimation: hard to obtain. For PSAM the envelope is bi-variate Rayleigh
- Error floor from delay: let $\xi = \frac{1}{2} \frac{$

$$\overline{P}_{b} = \int_{0}^{\infty} \int_{0}^{\infty} .2[5BER_{\text{target}}]^{\xi} p(\xi \mid \gamma) p(\gamma) d\xi d\gamma$$

• $p(\xi|\gamma)$ known for Nakagami fading

Multiple Input Multiple Output (MIMO)Systems

 MIMO systems have multiple (r) transmit and receiver antennas

- With perfect channel estimates at TX and RX, decomposes into r independent channels
 - R_H-fold capacity increase over SISO system
 - Demodulation complexity reduction
 - Can also use antennas for diversity (beamforming)
 - Leads to capacity versus diversity tradeoff in MIMO

Capacity of MIMO Systems

- Depends on what is known at TX and RX and if channel is static or fading
- For static channel with perfect channel knowledge at TX and RX, waterfilling over space is optimal power allocation:
 - Similar idea in fading, based on short-term or longterm power constraint
- Without channel knowledge, capacity metric is based on an outage probability

Main Points

- Restricting constellation to a finite set has negligible impact on adaptive MQAM
- Adaptive MQAM need not change more than every 10-100 symbol times.
- Estimation error and delay lead to irreducible error floors in adaptive MQAM
- Multiple antennas at both TX and RX greatly enhance capacity and reduce complexity.
 - Alternatively, can be used for diversity gain