# Graph Mining SD212

## 2. Graph structure

Thomas Bonald

2019 - 2020



## Motivation

Are real graphs random?





#### Outline

- 1. Degrees
- 2. Distances
- 3. Triangles

- $\rightarrow$  power law
- $\rightarrow$  small world

#### Power law

A few nodes have **very** high degrees (= hubs)



Power law:

$$P(D \ge k) = \left(\frac{k_{\rm m}}{k}\right)^{\alpha} \quad \alpha > 0$$

## Example

In-degree distribution of Wikipedia Vitals (10,012 nodes, average in-degree  $\approx$  80)



# Erdős-Rényi model (1959)

- ▶ *n* nodes
- pairs connected with probability p



 $\label{eq:Adjacency} \mbox{Matrix} = \mbox{symmetric matrix with}$ 

 $A_{ij} \sim \text{Bernoulli}(p) \text{ for } i < j$ 

## Degree distribution

- Each node pair is connected with probability p
- ▶ Degree  $\sim$  **Binomial** with parameters n-1, p
- ▶ For large graphs,  $n \to +\infty$  with  $np \to \lambda$ , this tends to a **Poisson** distribution with parameter  $\lambda$



## Example

Wikipedia Vitals vs. random graph (10,012 nodes, average degree  $\approx$  80)



# Edge sampling in random graphs



Biased Poisson distribution:

$$\mathrm{P}_{\infty}(D=k) \propto k \mathrm{P}_0(D=k) \propto \mathrm{P}_0(D=k|D\geq 1)$$

Expected degree:

$$\mathrm{E}_{\infty}(D)=\mathrm{E}_0(D)+1$$

# Edge sampling in power-law graphs



Expected degree:

$$\mathrm{E}_{\infty}(D) = \frac{\mathrm{E}_0(D^2)}{\mathrm{E}_0(D)} = \mathrm{E}_0(D)(1+c_v^2)$$

where  $c_v$  is the coefficient of variation:

$$c_{v} = \frac{\sigma_{0}(D)}{\mathrm{E}_{0}(D)} = \frac{1}{\alpha(\alpha - 2)} \quad \alpha > 2$$

## Scale-free graphs



Source: Barabasi, Network Science, 2016

# Barabasi-Albert model (1999)

- ▶ Start from a clique of d nodes (with  $d \ge 1$ )
- ► Add new nodes one at a time, each of degree *d* and with **preferential attachment**



"rich get richer"

# Example (n = 100, d = 3)



#### Outline

- 1. Degrees
- 2. Distances
- 3. Triangles

- $\rightarrow$  power law
- $\rightarrow$  small world

#### Small world

How many pages are accessible in k clicks from Plato on Wikipedia?

## Using Wikipedia Vitals (10,012 pages):

| # clicks | # nodes | proportion |
|----------|---------|------------|
| 1        | 392     | 4%         |
| 2        | 5866    | 59%        |
| 3        | 9939    | 99%        |
| 4        | 9990    | 99.8%      |

## The six degrees of separation

- Stated by Karinthy in 1929!
- Verified experimentally by Milgram in 1967



Source: Wikipedia

#### **Emails**

#### Dodds, Muhamad, Watts 2003

- ▶ 18 target people from all over the world
- ▶ 24,163 volunteers
- ► 384 successful chains Length of successful chains



#### **Facebook**

Bhagat, Burke, Diuk, Filiz, Edunov 2016

- Based on the 1.6 billion people active on Facebook
- ► Compute the average path length to any other people



The 3.5 degrees of separation of Facebook

#### Erdős number

- Graph of co-authors of scientific papers
- Distance to Erdős (1913-1996)



#### The Bacon number

#### See The Oracle of Bacon

- Originated from an interview of Kevin Bacon by Premiere Magazine in 1994
- Graph of co-starring in movies



Results from YAGO database (44,586 actors)

# Planar graphs



Distance = 
$$O(\sqrt{n})$$

# Random graphs





 $\mathsf{Distance} = O(\ln n)$ 

# Power-law graphs



 $\mathsf{Distance} = \mathit{O}(1) \; (\mathsf{for} \; \alpha < 3)$ 

#### Outline

- 1. Degrees
- 2. Distances
- 3. Triangles

- $\rightarrow \text{power law}$
- $\rightarrow$  small world

# Clustering coefficient





| Graph          | C    |
|----------------|------|
| Karate Club    | 0.26 |
| Les Miserables | 0.50 |
| Openflights    | 0.25 |
| WikiVitals     | 0.19 |

## Watts-Strogatz model (1998)

- 1. Start from a ring of n nodes where each node is connected to its d nearest neighbors (d even)
- 2. Modify each edge at random with probability p



# Example



n = 12, d = 4, p = 0.4

#### Small-world vs clusters



Source: Watts & Strogatz 1998

#### Small-world with clusters



$$n = 100, d = 6, p = 0.2$$