Série 4

Exercice 1

Une usine fabrique 2 produits *P*1 et *P*2 en utilisant un certain nombre de ressources : équipement, main d'œuvre, matières premières (voir le tableau ci-dessous). Par ailleurs, chaque ressource est disponible en quantité limitée.

	P1	P2	Disponibilité
Equipement	3	9	81
Main d'œuvre	4	5	55
Matière première	2	1	20

Les deux produits rapportent à la vente respectivement des bénéfices de 6 dinars et 4 dinars par unité. Donner le programme linéaire correspondant.

Exercice 2

Un fabricant d'aliment pour bétail cherche à optimiser la composition de celui-ci sachant qu'il n'entre dans sa composition que trois ingrédients : Blé, colza et soja. L'aliment devra comporter au moins 22 pour cent d'un composant C_1 et 4 pour cent d'un composant C_2 pour se conformer aux normes en vigueur. Les données sont résumées dans le tableau ci-dessous :

	Blé	Colza	Soja
Pourcentage de C ₁	12	42	52
Pourcentage de C ₂	2	10	2
Prix d'une Tonne	25	39	41

Donner le programme linéaire correspondant en prenant comme variables structurelles les différents pourcentages requis pour obtenir une tonne d'aliment.

Exercice 3

Une entreprise fabrique deux types de ceintures: A et B. Le type A est de meilleure qualité que le type B. Le bénéfice est 2 D pour le type A et 1,50 D pour le type B. Le temps de fabrication pour le type A est deux fois le temps de fabrication pour le type B et si toutes les pièces étaient du type B l'entreprise pourrait en fabriquer 1000 par jour. L'approvisionnement en cuir est suffisant pour 800 pièces par jour (type A ou B). Enfin 400 boucles de type A et 700 boucles du type B sont disponibles chaque jour.

Donner un programme linéaire permettant de déterminer les nombres respectifs de ceintures des deux types à fabriquer chaque jour de manière à maximiser le bénéfice total de l'entreprise?

Exercice 4

Une société produit de la peinture d'intérieur et d'extérieur à partir de deux produits de base M_1 et M_2 .

	Besoin pour ext.	Besoin pour int.	Disponibilité
M_1	6 T	4 T	24 T
M_2	1 T	2 T	6 T
Profit /tonne	5 MD	4 MD	

De plus, on a une demande maximale de 2 tonnes de peinture d'intérieur par jour ; et la production de peinture d'intérieur ne dépasse pas celle d'extérieur de plus d'une tonne.

Formuler ce problème sous forme d'un programme linéaire.

Exercice 5

Une entreprise fabrique deux produits *X* et *Y* à partir de 3 matières premières *A*, *B* et *C*, disponibles en quantités respectives 40, 480 et 16.

- -Pour fabriquer une unité de X, on utilise 2 unités de A, 6 unités de B et une unité de C.
- -La production de 2 unités de Y utilise comme matière A la quantité nécessaire pour fabriquer une unité de X et comme matière B, la quantité nécessaire pour fabriquer 10 unités de X.
- -La matière *C* entre dans la fabrication du produit *X* uniquement.
- -Le budget de l'entreprise est de 6000 D, et X et Y coutent respectivement 200 D et 300 D l'unité.
- -Le prix de vente de X et Y est de 240 D et 330 D l'unité.

Formuler le programme linéaire correspondant à ce problème.