Теоретическое домашнее задание не сдается и не проверяется. Вместо проверки в начале каждого семинара будет устраиваться самостоятельная работа, которая будет включать в себя набор задач из домашнего задания. Время, отведенное на выполнение самостоятельной работы, будет невелико (около 10 мин). Использование чего-либо, кроме ручки и выданных листов бумаги, запрещено. В случае обнаружения списывания, подлога и т.д. выставляется оценка "0".

Теоретическое домашнее задание №2

Лед тронулся

Задача 1. Найдите константу C, решающую следующую задачу для $\tau = 0.6$ и $y_i = \{10, 5, 3, 8, 6\}$:

$$\sum_{i=1}^{l} \rho_{\tau}(y_i - C) \to \min_{C},$$

$$\rho_{\tau}(x) = \begin{cases} \tau x, & x > 0\\ (\tau - 1)x, & x \le 0 \end{cases}$$

Задача 2. Мальчик Петя мечтает стать дата сайентистом, когда вырастет. Поэтому пока, он ещё не вырос, он тренируется строить модели для прогноза дождя, используя "бабушкино обучение". В течение года он с бабушкой много раз выходил на прогулку и записывал в свой дневник наблюдений следующие факты:

- Зима на улице, или нет.
- Есть ли на небе облака или нет.
- Взяла ли бабушка зонт или нет.
- Идёт ли дождь или нет.

В итоге, в таблицу 1 он выписал все возможные случаи, которые происходили на его прогулках (неважно, сколько раз). Бабушкино обучение состоит в том, что бабушка строит на основе данных ей наблюдений неопровергаемые отношения $A \implies Y$, затем $A \cap B \implies Y$. Причём, если $A \implies Y$ или $B \implies Y$ уже построено, то $A \cap B \implies Y$ не строится. Если случай не подпадает под построенное отношение, то для него не производится прогноз. Например, когда бабушке говорят, что в течение 3-х прогулок дождь шёл всегда, когда она брала зонт, то она формулирует отношнение: "Зонт \implies Дождь" и строит модель:

- Если зонт взят, то предсказать дождь.
- Если зонт не взят, то дождь может пойти или не пойти.

	Таблица 1: Петин дневник			
	Зима	Облака	Зонт	Дождь
1	0	0	0	0
2	0	1	1	1
3	0	1	1	0
4	0	1	0	1
5	0	0	1	1
6	0	1	0	0
7	0	0	1	0
8	1	0	0	0

После этого проверяется качество модели на основе следующей метрики:

$$Q=rac{1}{l}\sum_{i=1}^{l}\left([ext{верный прогноз для }x_i]-[ext{неверный прогноз для }x_i]
ight),$$

где [истина] = 1, [ложь] = 0.

- 1. Пусть бабушке Петя для прогноза дождя дал только значение признака "Зима" для всех наблюдений. Какие отношения между целевой переменной и обучающей выборкой найдёт бабушка? Каково значение метрики?
- 2. После Петя попросил бабушку построить модель по признакам "Облака" и "Зонт". Какие на сей раз будут выявлены отношения и метрика?
- 3. Теперь же пусть признаки "Облака" и "Зонт" даны бабушке только для первых 5 наблюдений. Как изменится набор выявленных отношений и метрика по сравнению с предыдущим пунктом? Почему появились новые отношения? Какова метрика на первых 5 наблюдениях?
- 4. Какова будет метрика качества модели из предыдущего пункта на тех данных, которые не использовались для её построения? Что тянет метрику вниз?
- 5. Является ли наблюдение за зонтом бабушки полезным занятием? Если бы бабушка строила модель для первых 5 наблюдений только по облакам, модель была бы качественнее? Сравните метрику такой модели для обучающей выборки и всей таблицы Пети.

Убедитесь, что Вы знаете ответы на следующие вопросы:

- Почему L_1 -регуляризация производит отбор признаков?
- Почему коэффициент регуляризации нельзя подбирать по обучающей выборке?
- Что такое кросс-валидация, чем она лучше использования отложенной выборки?
- Как функция ShuffleSplit(n_splits=5, test_size=0.5) разбивать выборку?