What Is Bayesian Classification?

- A statistical classifier
 - Perform probabilistic prediction (i.e., predict class membership probabilities)
- Foundation—Based on Bayes' Theorem
- Performance
 - A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental
 - Each training example can incrementally increase/decrease the probability that a hypothesis is correct—prior knowledge can be combined with observed data
- Theoretical Standard
 - Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

■ Total probability Theorem:

- X: a data sample ("evidence")
- H: X belongs to class C

Prediction can be done based on Bayes' Theorem:

Classification is to derive the maximum posteriori

Naïve Bayes Classifier: Making a Naïve Assumption

- Practical difficulty of Naïve Bayes inference: It requires initial knowledge of many probabilities, which may not be available or involving significant computational cost
- A Naïve Special Case
 - Make an additional assumption to simplify the model, but achieve comparable performance.

attributes are conditionally independent (i.e., no dependence relation between attributes)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

Only need to count the class distribution w.r.t. features

Naïve Bayes Classifier: Categorical vs. Continuous Valued Features

□ If feature x_k is categorical, $p(x_k = v_k | C_i)$ is the # of tuples in C_i with $x_k = v_k$, divided by $|C_{i,D}|$ (# of tuples of C_i in D)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

 $\hfill \square$ If feature x_k is continuous-valued, $p(x_k=v_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$p(x_k = v_k | C_i) = N(x_k | \mu_{C_i}, \sigma_{C_i}) = \frac{1}{\sqrt{2\pi}\sigma_{C_i}} e^{-\frac{(x - \mu_{C_i})^2}{2\sigma^2}}$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified: 90 classified

X = (age <= 30, Income = medium,

Student = yes, Credit_rating = Fair)

เขาสพร					
P CH, Y	χ)	1.1	7 ->	res yes	1 00
P(H'N)					

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no /
<=30	high	no	excellent	no 🗸
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	ye <mark>s</mark>
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	ye <mark>s</mark>
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no /

yeszs Noz G

Naïve Bayes Classifier: An Example

P(C_i): P(buys_computer = "yes") =
$$9/14 = 0.643$$

P(buys_computer = "no") = $5/14 = 0.357$

Compute P(X|C_i) for each class

$$P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$$

$$P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6$$

$$P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667$$

X = (age ·	<= 30 , income	e = medium,	student = ves	s, credit rat	.i ng = fair)
1. (, , , , , , , , , , , , , , , , , , , ,	,	,	,	,

$$P(X|C_i)$$
: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 $P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019$$

$$P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

 $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys_computer = yes")

_					
	age	income	student	credit_rating	buys_computer
	<=30	high	no	fair	no
	<=30	high	no	excellent	no
	3140	high	no	fair	yes
	≯40 (medium	(ho)	fair	ves
	>40	low	yes	fair	ves
	>40/	low	yes	excellent	no
	3140	low	yes	excellent	yes
	<=30	medium	no	fair	no
	<=30	low	yes	fair	yes ?
	≥40	medium	yes	fair	ves
	<=30	medium	yes	excellent	yes
7	3140	medium	no	excellent	yes
	3140	high	yes	fair	yes
	>40	medium	nô	excellent	no
			7	0 2/10 C	+ 1007

Avoiding the Zero-Probability Problem

- □ Naïve Bayesian prediction requires each conditional probability be **non-zero**
 - Otherwise, the predicted probability will be zero

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \dots \cdot p(x_n|C_i)$$

■ Example. Suppose a dataset with 1000 tuples:

```
income = low (0), income = medium (990), and income = high (10)
```

- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

$$Prob(income = low) = 1/(1000 + 3)$$

Prob(income = medium) =
$$(990 + 1)/(1000 + 3)$$

Prob(income = high) =
$$(10 + 1)/(1000 + 3)$$

The "corrected" probability estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Strength vs. Weakness

- Strength
 - Easy to implement
 - Good results obtained in most of the cases
- Weakness
 - Assumption: attributes conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., Patients: Profile: age, family history, etc.
 - Symptoms: fever, cough etc.
 - Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies?
 - Use Bayesian Belief Networks (to be covered in the next chapter)

