Лабораторная работа №7

Эффективность рекламы

Исаханян Эдуард Тигранович 2022 March 26th

Содержание

1	. Цель работы 2.1 Теоретическое введение		6	
2				
3	Выполнени	е лабораторной работы	8	
4	Ответы на	вопросы	14	
	4.0.1	Записать модель Мальтуса (дать пояснение, где используется данная модель)	14	
	4.0.2	Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)	14	
	4.0.3	На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы	15	
	4.0.4	Как ведет себя рассматриваемая модель при $lpha_1(t)\gglpha_2(t)$	15	
	4.0.5	Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$	15	
5	Выводы		16	
Сп	Список литературы			

List of Tables

List of Figures

3.1	Начальные условия	8
3.2	Функции	9
3.3	ДУ	9
3.4	График распространения информации о товаре	10
3.5	График распространения информации о товаре	11
3.6	Функции	11
3.7	График распространения информации о товаре	12
3.8	График распространения информации о товаре	13

1 Цель работы

Цель данной лабораторной работы изучить модель эффективности рекламы.

2 Задание

- 1. Построить график распространения рекламы о салоне красоты;
- 2. Сравнить эффективность рекламной кампании;
- 3. Определить в какой момент времени эффективность рекламы будет иметь максимально быстрый рост;
- 4. Построить решение, если учитывать вклад только платной рекламы;
- 5. Построить решение, если предположить, что информация о товаре распространятся только путем «сарафанного радио», сравнить оба решения.

2.1 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытится, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом,

после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что

 $\frac{dn}{dt}$ — скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить;

t — время, прошедшее с начала рекламной кампании;

n(t) — число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем. Это описывается следующим образом:

$$\alpha_1(t)(N-n(t))$$

N — общее число потенциальных платежеспособных покупателей

 $lpha_1(t)>0$ — характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной

$$\alpha_2(t)n(t)(N-n(t))$$

эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

¹Методические материалы к лабораторной работе

1

3 Выполнение лабораторной работы

1. Записываем начальные условия: $n_0=11$ - количество людей, знающих о товаре в начальный момент времени, N=810 - максимальное количество людей, которых может заинтересовать товар.(рис. 3.1)

```
1 model lab7
2 parameter Real N = 810;
3 parameter Real n0 = 11;
4 Real n(start = n0);
```

Figure 3.1: Начальные условия

2. Далее прописываем две функции K и P для дольнейших вычислений.(рис. 3.2)

```
function k
 7
      input Real t;
      output Real res;
 9
    algorithm
10
     res := 0.64;
    //res := 0.000014;
11
      //res := 0.7 * t;
12
13
    end k;
14
    function p
15
16
      input Real t;
17
      output Real res;
18
   algorithm
      res := 0.00014;
19
20
      //res := 0.63;
21
     //res := 0.4 * cos(t);
    end p;
22
```

Figure 3.2: Функции

3. Записсываем дифференциальное уравнение:(рис. 3.3)

```
24 equation

25 der(n) = (k(time)+p(time)*n)*(N-n);

26 end lab7;
```

Figure 3.3: ДУ

4. Далее строим график распространения рекламы:(рис. 3.4)

Figure 3.4: График распространения информации о товаре

Далее делаем то же самое для 2 и 3 случая, только меняем коэффиценты в функциях.

5. Код второго случая:(рис. ??)

![Функции](images/image3.png){ #fig:005 width=70% }

6. График 2 случая:(рис. 3.5)

Figure 3.5: График распространения информации о товаре

7. Код третьего случая:(рис. 3.6)

```
function k
 7
      input Real t;
      output Real res;
 9
    algorithm
      //res := 0.64;
10
      //res := 0.000014;
11
12
      res := 0.7 * t;
13
    end k;
14
15
    function p
16
      input Real t;
17
      output Real res;
18
    algorithm
19
      //res := 0.00014;
20
      //res := 0.63;
21
      res := 0.4 * cos(t);
22
    end p;
```

Figure 3.6: Функции

8. График 3 случая:(рис. 3.7)

Figure 3.7: График распространения информации о товаре

9. Также нам необходимо определить максимальное значение скорости распространения рекламы во 2 случае.(рис. 3.8)

Figure 3.8: График распространения информации о товаре

По графику видно, что значение графика производной максимально в начальный момент времени t0 = 0.

4 Ответы на вопросы

4.0.1 Записать модель Мальтуса (дать пояснение, где используется данная модель)

Демографическая модель

Скорость роста пропорциональна текущему размеру популяции

$$\frac{\partial x}{\partial t} = \alpha x$$

где x — исходная численность населения, α — некоторый параметр, определяемый разностью между рождаемостью и смертностью. t — время.

4.0.2 Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

$$\frac{\partial x}{\partial t} = \alpha (1 - \frac{x}{x_s}) x$$

где x_s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x_s , причем такое поведение структурно устойчиво. Данное уравнение описывает рождаемость и смертность с учетом роста численности.

4.0.3 На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы

 $lpha_1(t)$ — интенсивность рекламной кампании, зависящая от затрат $lpha_2(t)$ — интенсивность рекламной кампании, зависящая от сарафанного радио.

4.0.4 Как ведет себя рассматриваемая модель при $\alpha_1(t)\gg \alpha_2(t)$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса.

$$\frac{\partial x}{\partial t} = \alpha x$$

4.0.5 Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$

При $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой:

$$\frac{\partial x}{\partial t} = \alpha (1 - \frac{x}{x_s}) x$$

5 Выводы

В ходе работы, мы научились строить эффективности рекламы, а также вычислили и сравнили эффективность рекламы для трех случаев.

Список литературы

1. Методические материалы к лабораторной работе, представленные на сайте "ТУИС РУДН" https://esystem.rudn.ru/

::: {#refs} :::