1 Section 6.7 Exercises

Exercises with solutions from Section 6.7 of [UA].

Exercise 6.7.1. Assuming WAT, show that if f is continuous on [a, b], then there exists a sequence (p_n) of polynomials such that $p_n \to f$ uniformly on [a, b].

Solution. The Weierstrass Approximation Theorem implies that for each $n \in \mathbb{N}$ there exists a polynomial p_n such that

$$|f(x) - p_n(x)| < \frac{1}{n}$$

for all $x \in [a, b]$. It follows that $p_n \to f$ uniformly on [a, b].

Exercise 6.7.2. Prove Theorem 6.7.3.

Solution. Since f is a continuous function defined on the compact set [a, b], Theorem 4.4.7 implies that f is uniformly continuous on [a, b] and hence there exists a $\delta > 0$ such that

$$x, y \in [a, b] \text{ and } |x - y| < \delta \implies |f(x) - f(y)| < \frac{\epsilon}{2}.$$

Let $n \in \mathbb{N}$ be such that $\frac{1}{n} < \delta$ and for each $0 \le j \le n$ let $x_j = a + j \frac{b-a}{n}$. Let $\phi : [a, b] \to \mathbb{R}$ be the polygonal function which is linear on each subinterval $[x_j, x_{j+1}]$ and passes through the points $(x_j, f(x_j))$ and $(x_{j+1}, f(x_{j+1}))$. For $x \in [a, b]$, we have $x \in [x_j, x_{j+1}]$ for some $0 \le j \le n - 1$. It follows that

$$|f(x) - \phi(x)| \le |f(x) - \phi(x_j)| + |\phi(x_j) - \phi(x)| \le |f(x) - \phi(x_j)| + |\phi(x_j) - \phi(x_{j+1})|$$

for the last inequality we are using that ϕ is a line segment on the interval $[x_j, x_{j+1}]$ and thus $|\phi(x) - \phi(y)| \leq |\phi(x_j) - \phi(x_{j+1})|$ for any $x, y \in [x_j, x_{j+1}]$. By definition we have $\phi(x_j) = f(x_j)$ for any j and so

$$|f(x) - \phi(x)| \le |f(x) - f(x_j)| + |f(x_j) - f(x_{j+1})| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

- **Exercise 6.7.3.** (a) Find the second degree polynomial $p(x) = q_0 + q_1x + q_2x^2$ that interpolates the three points (-1,1), (0,0), and (1,1) on the graph of g(x) = |x|. Sketch g(x) and p(x) over [-1,1] on the same set of axes.
 - (b) Find the fourth degree polynomial that interpolates g(x) = |x| at the points x = -1, -1/2, 0, 1/2, and 1. Add a sketch of this polynomial to the graph from (a).

Figure 1: g, p, and q on [-1, 1]

Solution. (a) It is clear that the desired second degree polynomial is $p(x) = x^2$. See Figure 1 for the sketches.

(b) We are looking for a polynomial $q(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ such that q(-1) = 1, $q(-\frac{1}{2}) = \frac{1}{2}$, q(0) = 0, $q(\frac{1}{2}) = \frac{1}{2}$, and q(1) = 1. The condition q(0) = 0 immediately gives us $a_0 = 0$ and the remaining four conditions give us the linear system

$$\begin{cases}
-a_1 + a_2 - a_3 + a_4 = 1 \\
\frac{1}{2}a_1 + \frac{1}{4}a_2 - \frac{1}{8}a_3 + \frac{1}{16}a_4 = \frac{1}{2} \\
\frac{1}{2}a_1 + \frac{1}{4}a_2 + \frac{1}{8}a_3 + \frac{1}{16}a_4 = \frac{1}{2} \\
a_1 + a_2 + a_3 + a_4 = 1
\end{cases}$$

Using Gaussian elimination, or otherwise, this system can be solved to obtain $a_1 = 0, a_2 = \frac{7}{3}, a_3 = 0$, and $a_4 = -\frac{4}{3}$ and thus $q(x) = \frac{1}{3}x^2(7 - 4x^2)$. See Figure 1 for the sketch.

Exercise 6.7.4. Show that $f(x) = \sqrt{1-x}$ has Taylor series coefficients a_n where $a_0 = 1$ and

$$a_n = \frac{-1 \cdot 3 \cdot 5 \cdots (2n-3)}{2 \cdot 4 \cdot 6 \cdots 2n}$$

for $n \geq 1$.

Solution. We have $f(0) = a_0 = 1$ and it is a straightforward calculation to see that

$$f^{(n)}(x) = \frac{-1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n} (1-x)^{-n-1/2}$$

for $n \geq 1$. It follows from this that

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{-1 \cdot 3 \cdot 5 \cdots (2n-3)}{2^n n!} = a_n = \frac{-1 \cdot 3 \cdot 5 \cdots (2n-3)}{2 \cdot 4 \cdot 6 \cdots 2n}$$

for $n \geq 1$.

Exercise 6.7.5. (a) Follow the advice in Exercise 6.6.9 to prove the Cauchy form of the remainder:

$$E_N(x) = \frac{f^{(N+1)}(c)}{N!}(x-c)^N x$$

for some c between 0 and x.

(b) Use this result to prove equation (1) is valid for all $x \in (-1,1)$.

Solution. (a) See Exercise 6.6.9.

(b) Suppose 0 < |x| < 1. For $n \in \mathbb{N}$, the Cauchy Remainder Theorem implies that there exists some c_n such that $0 < |c_n| < |x|$ and

$$E_n(x) = \frac{f^{(n+1)}(c_n)}{n!} (x - c_n)^n x$$

$$= \frac{-1 \cdot 3 \cdots (2n-3)(2n-1)}{2^{n+1}n!} (1 - c_n)^{-n-3/2} (x - c_n)^n x$$

$$= -\frac{1}{2} \cdot \frac{1 \cdot 3 \cdots (2n-3)(2n-1)}{2 \cdot 4 \cdots (2n-2)(2n)} \left(\frac{x - c_n}{1 - c_n}\right)^n \frac{x}{(1 - c_n)^{3/2}}$$

$$= -\frac{1}{2} \left(\prod_{j=1}^n \frac{2j-1}{2j}\right) \left(\frac{x - c_n}{1 - c_n}\right)^n \frac{x}{(1 - c_n)^{3/2}}.$$

Since $\frac{2j-1}{2j} < 1$ for each $1 \le j \le n$, we have $\prod_{j=1}^n \frac{2j-1}{2j} < 1$ and thus

$$|E_n(x)| < \left| \frac{x - c_n}{1 - c_n} \right|^n \frac{|x|}{(1 - c_n)^{3/2}};$$

we have used that $|c_n| < 1 \implies 0 < 1 - c_n < 2$ to obtain $|1 - c_n| = 1 - c_n$. Note that

$$c_n \le |c_n| < |x| \implies -|x| < -c_n \implies \frac{1}{(1 - c_n)^{3/2}} < \frac{1}{(1 - |x|)^{3/2}}.$$

Note further that if $0 < c_n < x < 1$ then

$$xc_n < c_n \implies \frac{x - c_n}{1 - c_n} < x \implies \left| \frac{x - c_n}{1 - c_n} \right| < |x|,$$

and if $-1 < x < c_n < 0$ then

$$c_n < xc_n \implies \frac{c_n - x}{1 - c_n} < -x \implies \left| \frac{x - c_n}{1 - c_n} \right| < |x|.$$

Combining these inequalities, we see that

$$|E_n(x)| < \frac{|x|^{n+1}}{(1-|x|)^{3/2}}$$

and it follows that $\lim_{n\to\infty} E_n(x) = 0$ since |x| < 1.

Exercise 6.7.6. (a) Let

$$c_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}$$

for $n \ge 1$. Show $c_n < \frac{2}{\sqrt{2n+1}}$.

- (b) Use (a) to show that $\sum_{n=0}^{\infty} a_n$ converges (absolutely, in fact) where a_n is the sequence of Taylor coefficients generated in Exercise 6.7.4.
- (c) Carefully explain how this verifies that equation (1) holds for all $x \in [-1, 1]$.

Solution. (a) We will prove this by induction. For the base case n = 1, we have

$$c_1 = \frac{1}{2} < \frac{2}{\sqrt{3}} = \frac{2}{\sqrt{2(1)+1}}.$$

Suppose the inequality holds for some $n \in \mathbb{N}$, so that

$$c_{n+1} = c_n \cdot \frac{2n+1}{2n+2} < \frac{2}{\sqrt{2n+1}} \cdot \frac{2n+1}{2n+2} = \frac{2\sqrt{2n+1}}{2n+2}.$$

Now observe that

$$\frac{2\sqrt{2n+1}}{2n+2} < \frac{2}{\sqrt{2n+3}} \iff \frac{\sqrt{2n+1}}{2n+2} < \frac{1}{\sqrt{2n+3}}$$

$$\iff \frac{2n+1}{4n^2+8n+4} < \frac{1}{2n+3}$$

$$\iff 4n^2+8n+3 < 4n^2+8n+4$$

$$\iff 0 < 1.$$

Thus $c_{n+1} < \frac{2}{\sqrt{2n+3}}$. This completes the induction step and the proof.

(b) Since

$$\sum_{n=0}^{\infty} |a_n| = 1 + \sum_{n=1}^{\infty} |a_n|,$$

it will suffice to show that $\sum_{n=1}^{\infty} |a_n|$ is convergent. Note that for $n \geq 1$ we have by part (a)

$$|a_n| = \frac{c_n}{2n-1} < \frac{2}{(2n-1)\sqrt{2n+1}} < \frac{2}{(2n-1)^{3/2}} \le \frac{2}{n^{3/2}}.$$

Since the series $\sum_{n=1}^{\infty} \frac{2}{n^{3/2}}$ is convergent (Corollary 2.4.7), we see by comparison that the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

(c) Part (b) shows that the power series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely at the points x=-1 and x=1. It follows from Abel's Theorem (Theorem 6.5.4) that the power series converges uniformly and hence is continuous on [-1,1]. Thus the function $h:[-1,1] \to \mathbf{R}$ given by

$$h(x) = \sqrt{1-x} - \sum_{n=0}^{\infty} a_n x^n$$

is continuous on its domain and, by Exercise 6.7.5, satisfies h(x) = 0 for all $x \in (-1, 1)$. It must then be the case that h(-1) = h(1) = 0 also.

Exercise 6.7.7. (a) Use the fact that $|a| = \sqrt{a^2}$ to prove that, given $\epsilon > 0$, there exists a polynomial q(x) satisfying

$$||x| - q(x)| < \epsilon$$

for all $x \in [-1, 1]$.

- (b) Generalize this conclusion to an arbitrary interval [a, b].
- Solution. (a) Note that $x \in [-1, 1]$ implies that $1 x^2 \in [0, 1]$ and thus by Exercise 6.7.6 we have

$$\sqrt{1 - (1 - x^2)} = \sum_{n=0}^{\infty} a_n (1 - x^2)^n.$$

As we showed in Exercise 6.7.6 this convergence is uniform, so there exists an $N \in \mathbb{N}$ such that

$$\left| \sqrt{1 - (1 - x^2)} - \sum_{n=0}^{N} a_n (1 - x^2)^n \right| = \left| |x| - \sum_{n=0}^{N} a_n (1 - x^2)^n \right| < \epsilon$$

for all $x \in [-1, 1]$. Thus the desired polynomial is $q(x) = \sum_{n=0}^{N} a_n (1 - x^2)^n$.

(b) For a < b and $\epsilon > 0$, we would like to find a polynomial p such that $||x| - p(x)| < \epsilon$ for all $x \in [a,b]$. Let $c = \max\{|a|,|b|\}$ and note that c > 0. Note further that $x \in [a,b]$ implies that $\frac{x}{c} \in [-1,1]$ and thus by part (a) there exists a polynomial q such that

$$\left| \left| \frac{x}{c} \right| - q\left(\frac{x}{c}\right) \right| < \frac{\epsilon}{c} \tag{1}$$

for all $\frac{x}{c} \in [-1, 1]$, i.e for all $x \in [-c, c]$. Let p be the polynomial given by $p(x) = cq(\frac{x}{c})$. It follows from (1) that

$$||x| - p(x)| < \epsilon$$

for all $x \in [-c, c]$ and hence in particular for all $x \in [a, b]$.

Exercise 6.7.8. (a) Fix $a \in [-1, 1]$ and sketch

$$h_a(x) = \frac{1}{2}(|x-a| + (x-a))$$

over [-1,1]. Note that h_a is polygonal and satisfies $h_a(x) = 0$ for all $x \in [-1,a]$.

- (b) Explain why we know $h_a(x)$ can be uniformly approximated with a polynomial on [-1,1].
- (c) Let ϕ be a polygonal function that is linear on each subinterval of the partition

$$-1 = a_0 < a_1 < a_2 < \dots < a_n = 1.$$

Show there exist constants $b_0, b_1, \ldots, b_{n-1}$ so that

$$\phi(x) = \phi(-1) + b_0 h_{a_0}(x) + b_1 h_{a_1}(x) + \dots + b_{n-1} h_{a_{n-1}}(x)$$

for all $x \in [-1, 1]$.

(d) Complete the proof of WAT for the interval [-1,1], and then generalize to an arbitrary interval [a,b].

Figure 2: $h_{1/2}$, h_0 , and $h_{1/2}$ on [-1, 1]

Solution. (a) See Figure 2 for a sketch of $h_{1/2}, h_0$, and $h_{1/2}$ on [-1, 1].

(b) From Exercise 6.7.7 (b), for a given $\epsilon > 0$ we know that there exists a polynomial q such that

$$||x - a| - q(x - a)| < 2\epsilon$$

for all $x \in [-1, 1]$. Let $p(x) = \frac{1}{2}q(x - a) + \frac{1}{2}(x - a)$ and observe that

$$|h_a(x) - p(x)| = \frac{1}{2}||x - a| - q(x - a)| < \epsilon$$

for all $x \in [-1, 1]$.

(c) For $0 \le j \le n-1$, the polygonal function ϕ is given by a line segment on the subinterval $[a_j, a_{j+1}]$; let m_j be the slope of this line segment, i.e.

$$m_j = \frac{\phi(a_{j+1}) - \phi(a_j)}{a_{j+1} - a_j}.$$

Now set $b_0 = m_0$ and $b_j = m_j - m_{j-1}$ for $1 \le j \le n-1$ and let $\psi: [-1,1] \to \mathbf{R}$ be given by

$$\psi(x) = \phi(a_0) + b_0 h_{a_0}(x) + b_1 h_{a_1}(x) + \dots + b_{n-1} h_{a_{n-1}}(x).$$

Our aim is to show that $\phi(x) = \psi(x)$ for all $x \in [-1, 1]$. For such an x, we have $x \in [a_j, a_{j+1}]$ for some $0 \le j \le n-1$. Note that

$$\phi(x) = \phi(a_i) + m_i(x - a_i).$$

Note further that $h_{a_0}(x) = x - a_0, \dots, h_{a_j}(x) = x - a_j$ and that $h_{a_{j+1}}(x) = \dots = h_{a_{n-1}}(x) = 0$. Thus

$$\psi(x) = \phi(a_0) + b_0 h_{a_0}(x) + b_1 h_{a_1}(x) + \dots + b_j h_{a_j}(x)$$

$$= \phi(a_0) + m_0(x - a_0) + (m_1 - m_0)(x - a_1) + \dots + (m_j - m_{j-1})(x - a_j)$$

$$= \phi(a_0) + m_0(a_1 - a_0) + m_1(a_2 - a_1) + \dots + m_{j-1}(a_j - a_{j-1}) + m_j(x - a_j)$$

$$= \phi(a_1) + m_1(a_2 - a_1) + \dots + m_{j-1}(a_j - a_{j-1}) + m_j(x - a_j)$$

$$= \dots$$

$$= \phi(a_j) + m_j(x - a_j)$$

$$= \phi(x).$$

(d) Let $f: [-1,1] \to \mathbf{R}$ be continuous and let $\epsilon > 0$ be given. By Theorem 6.7.3 (see Exercise 6.7.2), there exists a polygonal function $\phi: [-1,1] \to \mathbf{R}$ which is linear on each subinterval of some partition

$$-1 = a_0 < a_1 < \cdots < a_n = 1$$

and which satisfies $|f(x) - \phi(x)| < \frac{\epsilon}{2}$ for all $x \in [-1, 1]$. By part (c), there exist constants b_0, \ldots, b_{n-1} such that

$$\phi(x) = \phi(a_0) + b_0 h_{a_0}(x) + \dots + b_{n-1} h_{a_{n-1}}(x)$$

for all $x \in [-1, 1]$. Furthermore, by part (b), for each $0 \le j \le n-1$ there exists a polynomial p_j such that

$$\left|h_{a_j}(x) - p_j(x)\right| < \frac{\epsilon}{2n(1+|b_j|)}.$$

Let p be the polynomial given by

$$p(x) = \phi(a_0) + b_0 p_0(x) + \dots + b_{n-1} p_{n-1}(x)$$

and observe that for any $x \in [-1, 1]$ we have

$$|\phi(x) - p(x)| = |b_0 h_{a_0}(x) + \dots + b_{n-1} h_{a_{n-1}}(x) - b_0 p_0(x) - \dots - b_{n-1} p_{n-1}(x)|$$

$$\leq |b_0| |h_{a_0}(x) - p_0(x)| + \dots + |b_{n-1}| |h_{a_{n-1}}(x) - p_{n-1}(x)|$$

$$< \frac{\epsilon |b_0|}{2n(1+|b_0|)} + \dots + \frac{\epsilon |b_{n-1}|}{2n(1+|b_{n-1}|)}$$

$$< \frac{\epsilon}{2n} + \dots + \frac{\epsilon}{2n}$$

$$= \frac{\epsilon}{2}.$$

It now follows that for any $x \in [-1, 1]$ we have

$$|f(x) - p(x)| \le |f(x) - \phi(x)| + |\phi(x) - p(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

We can now prove the general case. For a < b, let $f : [a,b] \to \mathbf{R}$ be continuous and let $\epsilon > 0$ be given. We would like to find a polynomial p such that $|f(x) - p(x)| < \epsilon$ for all $x \in [a,b]$. Note that the function

$$[-1,1] \rightarrow [a,b]$$

$$x \mapsto \frac{b-a}{2}(x+1) + a$$

is a continuous bijection with inverse

$$[a,b] \rightarrow [-1,1]$$

$$x \mapsto \frac{2(x-a)}{b-a} - 1.$$

Thus $g:[-1,1]\to\mathbf{R}$ given by

$$g(x) = f\left(\frac{b-a}{2}(x+1) + a\right)$$

is well-defined and, as a composition of continuous functions, is continuous on [-1, 1]. It follows from our previous discussion that there exists a polynomial q such that $|g(x) - q(x)| < \epsilon$ for all $x \in [-1, 1]$. Let p be the polynomial defined by

$$p(x) = q\left(\frac{2(x-a)}{b-a} - 1\right).$$

Since $x \in [a, b]$ implies that $\frac{2(x-a)}{b-a} - 1 \in [-1, 1]$, we have

$$\left| g\left(\frac{2(x-a)}{b-a} - 1\right) - q\left(\frac{2(x-a)}{b-a} - 1\right) \right| = |f(x) - p(x)| < \epsilon$$

for all $x \in [a, b]$.

Exercise 6.7.9. (a) Find a counterexample which shows that WAT is not true if we replace the closed interval [a, b] with the open interval (a, b).

- (b) What happens if we replace [a, b] with the closed set $[a, \infty)$. Does the theorem still hold?
- Solution. (a) Consider $f:(0,1)\to \mathbf{R}$ given by $f(x)=x^{-1}$. Since any polynomial is bounded on (0,1), if we could uniformly approximate f with a polynomial on (0,1) then we would have that f is bounded on (0,1), which is not true.
 - (b) The theorem does not hold. Consider $g:[0,\infty)\to \mathbf{R}$ given by $g(x)=\sin(x)$. Evidently g cannot be uniformly approximated by a constant polynomial on $[0,\infty)$, and for a non-constant polynomial p we have $\lim_{x\to\infty}|p(x)|=+\infty$, whereas $|g(x)|\leq 1$ for all $x\in[0,\infty)$; it follows that we cannot uniformly approximate g with a non-constant polynomial on $[0,\infty)$ either.

Exercise 6.7.10. Is there a countable subset of polynomials \mathcal{C} with the property that every continuous function on [a, b] can be uniformly approximated by polynomials from \mathcal{C} ?

Solution. There is such a countable subset. Let $\mathcal{P}(\mathbf{R})$ be the collection of polynomials with real coefficients, let $\mathcal{P}(\mathbf{Q}) \subseteq \mathcal{P}(\mathbf{R})$ be the collection of polynomials with rational coefficients, and for each $n \geq 0$ let $\mathcal{P}_n(\mathbf{Q}) \subseteq \mathcal{P}(\mathbf{Q})$ be the collection of polynomials of degree n with rational coefficients. Then $\mathcal{P}_0(\mathbf{Q})$ is in bijection with $\mathbf{Q} \setminus \{0\}$ and $\mathcal{P}_n(\mathbf{Q})$ is in bijection with $\mathbf{Q}^{n-1} \times (\mathbf{Q} \setminus \{0\})$ for each $n \geq 1$. Thus each $\mathcal{P}_n(\mathbf{Q})$ is countable and it follows from the expression

$$\mathcal{P}(\mathbf{Q}) = \{0\} \cup \bigcup_{n=0}^{\infty} \mathcal{P}_n(\mathbf{Q})$$

(by 0 we mean the zero polynomial) and Theorem 1.5.8 (ii) that $\mathcal{P}(\mathbf{Q})$ is countable.

Now let a < b be given and set $M = \max\{|a|, |b|, 1\}$. Suppose $f : [a, b] \to \mathbf{R}$ is continuous and let $\epsilon > 0$ be given. By the Weierstrass Approximation Theorem, there exists a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathcal{P}(\mathbf{R})$$

such that $|f(x) - p(x)| < \frac{\epsilon}{2}$ for all $x \in [a, b]$. By the density of **Q** in **R**, we can choose rational numbers $b_n, b_{n-1}, \ldots, b_1, b_0$ such that $|a_j - b_j| < \frac{\epsilon}{2M^n(n+1)}$ for each $0 \le j \le n$. Set

$$q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0 \in \mathcal{P}(\mathbf{Q})$$

and observe that for any $x \in [a, b]$ we have

$$|p(x) - q(x)| = |(a_n - b_n)x^n + (a_{n-1} - b_{n-1})x^{n-1} + \dots + (a_1 - b_1)x + (a_0 - b_0)|$$

$$\leq |a_n - b_n||x|^n + |a_{n-1} - b_{n-1}||x|^{n-1} + \dots + |a_1 - b_1||x| + |a_0 - b_0|$$

$$\leq |a_n - b_n|M^n + |a_{n-1} - b_{n-1}|M^{n-1} + \dots + |a_1 - b_1|M + |a_0 - b_0|$$

$$\leq |a_n - b_n|M^n + |a_{n-1} - b_{n-1}|M^n + \dots + |a_1 - b_1|M^n + |a_0 - b_0|M^n$$

$$< \frac{\epsilon}{2(n+1)} + \frac{\epsilon}{2(n+1)} + \dots + \frac{\epsilon}{2(n+1)} + \frac{\epsilon}{2(n+1)}$$

$$= \frac{\epsilon}{2}.$$

It follows that

$$|f(x) - q(x)| \le |f(x) - p(x)| + |p(x) - q(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for any $x \in [a, b]$. Thus the desired countable subset \mathcal{C} is $\mathcal{P}(\mathbf{Q})$.

Exercise 6.7.11. Assume that f has a continuous derivative on [a, b]. Show that there exists a polynomial p(x) such that

$$|f(x) - p(x)| < \epsilon$$
 and $|f'(x) - p'(x)| < \epsilon$

for all $x \in [a, b]$.

Solution. By assumption f' is continuous on [a,b], so the Weierstrass Approximation Theorem yields a polynomial q such that $|f'(x) - q(x)| < \frac{\epsilon}{b-a}$ for all $x \in [a,b]$. Let p be the polynomial which satisfies p' = q and p(a) = f(a) and let $g: [a,b] \to \mathbf{R}$ be given by g(x) = f(x) - p(x). Then g(a) = 0 and g'(x) = f'(x) - q(x), so that $|g'(x)| < \frac{\epsilon}{b-a}$ for all $x \in [a,b]$. Let $x \in (a,b]$ be given. By the Mean Value Theorem (Theorem 5.3.2), there exists some $c \in (a,x)$ such that

$$|f(x) - p(x)| = |g(x) - g(a)| = |g'(c)(x - a)| \le (b - a)\frac{\epsilon}{b - a} = \epsilon.$$

[UA] Abbott, S. (2015) Understanding Analysis. 2nd edition.