

Domaći zadatak iz Paralelnih računarskih sistema

Zadata petlja:

Grupa 13

Za zadatu petlju:

Do i = 3, 100

Op1: M(i) := C(i-1) + B(i-2)

Op2: C(i) := C(i-1) * D(i)

Op3: E(i) := F(i) + X(i)

Op4: B(i) := E(i-1) + C(i)

Op5: F(i) := M(i) * D(i)

End

Petlja softverske protočnosti (MDDG):

Graf parcijalnog uredjenja komponenti jake povezanosti:

Nakon formiranja grafa komponenti jake povezanosti primenjujemo protočnost komponenti jake povezanosti i konačno formiramo samu petlju.

op2 1.1										
op2 1.2	op3 1									
op2 2.1		op2 1.2->FIFO1	op3 1 -> FIFO2		op4 1					
op2 2.2	op3 2			FIFO2 -> op4 2		op4 1 ->FIFO3				
op2 3.1		op2 2.2->FIFO1	op3 2 -> FIFO2		op4 2					
op2 3.2	op3 3			FIFO2 -> op4 3		op4 2 ->FIFO3				
op2 4.1		op2 3.2->FIFO1	op3 2 -> FIFO2		op4 3					
op2 4.2	op3 4			FIFO2 -> op4 4		op4 3 ->FIFO3			op1 1	
op2 i.1		op2(i-1).2->FIFO1	l op3 (i-1) ->FIFO2		op4 (i-1)		FIFO1-> op1(i-3)	FIFO3-> op1(i-3)		op5(i-4).1
op2 i.2	ор3 і			FIFO2-> op4 (i)		op4(i-1)->FIFO3			op1 (i-3)	op5(i-4).2
		op2 100.2->FIFO:	1 op3 100 -> FIFO2		op4 100		FIFO1-> op1 98	FIFO3-> op1 98		op5 97.1
						op4 100 ->FIFO	3		op1 98	op5 97.2
							FIFO1 -> op1 99	FIFO3-> op1 99		op5 98.1
									op1 99	op5 98.2
							FIFO1 -> op1 100	FIFO3-> op1 100		op5 99.1
									op1 100	op5 99.2
										op5 100.1
										op5 100.2

Nivo softverske protocnosti LSP = n-1 i iznosi 3 pošto nam petlja zahvata 4 iteracije.

U ovom slučaju petlje, graf parcijalnog uredjenja je takav da su komponente povezanosti vezane svaka za svoju operaciju i svaka komponenta sadrži samo jednu operaciju (osim SCC2), tako da je paralelizam koji se dobija približno najvećem mogućem. Rešenje drugačije u odnosu na ovo bi imalo približno isti raspored sa nekim sitnim promenama u rasporedu smeštanja operacija u FIFO registre ili pomoćne registre. Ako se primenjuje protočnost komponenti jake povezanosti i svuda se na inter SCC grane umeću najmanje iteracione distance veličine 1 teorijski se dobija optimalno rešenje i u ovom slučaju je broj SCC približno jednak broju operacija sto dovodi do najvećeg paralelizma. Ako bi se vrednosti interSCC grana postavljale na neke druge vrednosti dobili bi se drugačiji rezultati.

U rešenju su potrebni FIFO registri na par mesta a jedan od primera je zavisnost op4 2.1 od op3 1.1 koje su udaljene 2 ciklusa iz tog razloga je potrebno pamtiti rezultat u fifo i nije dovoljan pomoćni registar.

EDCr za sve cikluse u grafu je jednako 2 tako da se nova iteracija izvršava za 2 ciklusa.