머신러닝 모델을 활용한

Titanic 사고 생존자 예측

목차	

H요

2. 머신러닝이란?

3. 프로젝트 구조

4. 결과 및 응용

| | 5. 느낀점

1. 주제선택 및 프로젝트 개요

가. 주제선택: 왜 하필 타이타닉?

Intro to Machine Learning

Congratulations! You did it - now get your certificate!

Getting Started With Titanic

Create your own Kaggle Notebooks to organize your work in competitions.

1. 주제선택 및 프로젝트 개요

나. 프로젝트 개요

탑승자	2,224명
사망자	1,514명
생존자	710명

어떤 사람이 생존확률이 높았을까? 여자, 아이, 상류층

주어진 데이터를 바탕으로 생존에 영향을 미친 요인을 파악

1. 주제선택 및 프로젝트 개요

나. 프로젝트 개요

train_data: 승객번호 1~891번

Passengerld 승객번호		Pclass 객실등급	Name 이름	Sex 성별	Age 나이	SibSp 동승한 형제자매, 배우자	Parch 동승한 부모, 자식	Ticket 티켓번호	Fare 티켓요금	Cabin 객실번호	Embarked 승선지
1	0	3	Braund, M	male	22	1	0	A/5 21171	7.25		S
2	1	1	Cumings,	female	38	1	0	PC 17599	71.2833	C85	C
3	1	3	Heikkinen,	female	26	0	0	STON/O2.	7.925		S
4	1	1	Futrelle, M	female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr.	male	35	0	0	373450	8.05		S
6	0	3	Moran, Mi	male		0	0	330877	8.4583		Q

test_data: 승객번호 892~1309번

Passengerld 승객번호	Pclass 객실등급	Name 이름	Sex 성별	Age 나이	SibSp 동승한 형제자매, 배우자	Parch 동승한 부모, 자식	Ticket 티켓번호	Fare 티켓요금	Cabin 객실번호	Embarked 승선지
892	3	Kelly, Mr.	male	34.5	0	0	330911	7.8292		Q
893	3	Wilkes, Mr	female	47	1	0	363272	7		S
894	2	Myles, Mr.	male	62	0	0	240276	9.6875		Q
895	3	Wirz, Mr. A	male	27	0	0	315154	8.6625		S
896	3	Hirvonen,	female	22	1	1	3101298	12.2875		S
897	3	Svensson,	male	14	0	0	7538	9.225		S

train_data의 Survived값 분포를 이용해서 test_data의 Survived값을 예측

2. 머신러닝이란?

입력받은 데이터(train_data)에서 패턴을 찾아낸 후 그 패턴으로 모르는 데이터의(test_data) 값(target value)을 예측하는 알고리즘

Titanic 문제의 경우 test_data의 Survived 값을 모른다고 가정 또는 앞으로의 사고를 예측한다고 생각

사용된 패키지와 모듈

```
# data analysis and wrangling
import pandas as pd
                              낯익은 친구들
import numpy as np
import random as rnd
# visualization
import seaborn as sns
                                  플롯(그래프 그리기)
import matplotlib.pyplot as plt
%matplotlib inline
# machine learning
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
                                                    머신러닝
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
```

안 쓸 변수(Name, Passengerld) 제거

```
train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine=[train_df,test_df]
train_df.shape, test_df.shape

((891, 9), (418, 9))
```

성별(sex) 변수를 숫자 범주형 변수로 변환

```
for dataset in combine:
    dataset['Sex'] = dataset['Sex'].map({'female':1, 'male':0}).astype(int)
train df.head()
```

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	0	22.0	1	0	7.2500	S	1
1	1	1	1	38.0	1	0	71.2833	С	3
2	1	3	1	26.0	0	0	7.9250	S	2
3	1	1	1	35.0	1	0	53.1000	S	3
4	0	3	0	35.0	0	0	8.0500	S	1

for dataset in combine:

dataset.loc[dataset['Age'] <= 16, 'Age'] = 0

데이터전처리(시각화 제외)

연령(Age) 변수를 범주형 변수로 변환

일의로 5개 그룹을 지정
out이라는 method 이용하면 구간별로 나눌 수 있음
train_df['AgeBand']=pd.cut(train_df['Age'],5)
train_df[['AgeBand', 'Survived']].groupby(['AgeBand'],as_index=False).mean().sort_values(by='AgeBand', ascending=True)

	AgeBand	Survived
0	(-0.08, 16.0]	0.550000
1	(16.0, 32.0]	0.337374
2	(32.0, 48.0]	0.412037
3	(48.0, 64.0]	0.434783
4	(64.0, 80.0]	0.090909

SibSp와 Parch를 가족과의 동반여부를 알 수 있는 새로운 변수로 통합

for dataset in combine:
 dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1

train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().sort_values(by='Survived', ascending=False)

	FamilySize	Survived
3	4	0.724138
2	3	0.578431
1	2	0.552795
6	7	0.333333
0	1	0.303538
4	5	0.200000
5	6	0.136364
7	8	0.000000
8	11	0.000000

Age 변수와 Pclass를 곱한 Age*class 변수 생성

그밖에도...

for dataset in combine: # L/O/6/고 정석동급하고 합성 dataset['Age*Class'] = dataset.Age * dataset.Pclass
train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10) ##100첫번째 인수?는 일이름, 두번째 인수는 행이름(돌.

	Age*Class	Age	Pclass
0	66	22	3
1	38	38	1
2	78	26	3
3	35	35	1
4	105	35	3
5	75	25	3
6	54	54	1
7	6	2	3
8	81	27	3
9	28	14	2

승선지 데이터를 범주형으로 변화

티켓요금 결측값 처리 후 범주형으로 변환

AgeBand를 바탕으로 Age를 범주형 변수로 바꿔준 후, AgeBand변수는 제거

	dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[dataset['Age'] > 64, 'Age'] train_df.head()											
:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title	AgeBand	
	0	0	3	0	1	1	0	7.2500	s	1	(16.0, 32.0]	
	1	1	1	1	2	1	0	71.2833	С	3	(32.0, 48.0]	
	2	1	3	1	1	0	0	7.9250	s	2	(16.0, 32.0]	
	3	1	1	1	2	1	0	53.1000	s	3	(32.0, 48.0]	
	4	0	3	0	2	0	0	8.0500	s	1	(32.0, 48.0]	

dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1

승선지(Ebmarked) 변수를 최빈값으로 대체

freq_port = train_df.Embarked.dropna().mode()[0]
freq_port
'S'

For dataset in combine: # 번 값 2개는 최번값인 S로 채윤다음 승선지별 생존물을 구함 dataset['Embarked'] = dataset['Embarked'].fillna(freq.port)

train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values(by='Survived', ascending=False)

Embarked Survived

	Embarked	Survived
0	С	0.553571
1	Q	0.389610
2	S	0.339009

데이터전처리(시각화) 다. 승선지·성별과 생존률 (train_data) 가. 좌석과 생존률 (train_data)

가. 결과

나이와 등급을 곱한 값을 갖는 열을 만든 후

```
for dataset in combine:
    dataset['Age*Class'] = dataset.Age * dataset.Pclass
train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10)
```

	Age*Class	Age	Pclass
0	3	1	3
1	2	2	1
2	3	1	3
3	2	2	1
4	6	2	3
5	3	1	3
6	3	3	1
7	0	0	3
8	3	1	3
9	0	0	2

모든 열과 생존률 간의 상관관계를 계산함

```
coeff_df = pd.DataFrame(train_df.columns.delete(0))
coeff_df.columns = ['Feature']
coeff_df["Correlation"] = pd.Series(logreg.coef_[0])
coeff_df.sort_values(by='Correlation', ascending=False)
```

	Feature	Correlation
1	Sex	2.201527
5	Title	0.398234
2	Age	0.287163
4	Embarked	0.261762
6	IsAlone	0.129140
3	Fare	-0.085150
7	Age*Class	-0.311201
0	Pclass	-0.749007

성별값이 클수록(여성) 생존률 UP

좌석등급값 작으면(1등석) 생존률 UP

가. 결과

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.74
0	Support Vector Machines	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	78.00
6	Stochastic Gradient Decent	77.55
4	Naive Bayes	72.28

다양한 머신러닝 모델을 적용한 결과 모델마다 target 예측 성공률이 달랐다

데이터마다 특성을 고려하여 적절한 모델을 선택할 필요가 있다!

나. 응용1: 새로운 열(feature) 만들기

생존률에 영향을 미친 나이와 티켓요금을 곱해 Age*Fare 열을 만든 것과 비슷하게

성별과 티켓요금을 곱한 Sex*Fare 열을 만든 후의 결과 비교

for dataset ir dataset["\$	combine: .x*Fare"]= dataset.Sex*dataset.Fare	
train_df.head(test_df.head() train_df.tail(

	0	Dalaaa	0		-	Fortrades	Tial -	1-41	A *O!	0*5
	Survived	Polass	Sex	Age	Fare	Embarked	Title	Isalone	Age*Class	Sex*Fare
886	0	2	0	1	1	0	5	1	2	0
887	1	1	1	1	2	0	2	1	1	2
888	0	3	1	1	2	0	2	0	3	2
889	1	1	0	1	2	1	1	1	1	0
890	0	3	0	1	0	2	1	1	3	0

<기존>

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.74
0	Support Vector Machines	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	78.00
6	Stochastic Gradient Decent	74.19
4	Naive Bayes	72.28

	<sex*fare 생성="" 후=""> Model</sex*fare>	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.85
0	Support Vector Machines	84.18
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	77.78
6	Stochastic Gradient Decent	77.33
4	Naive Bayes	75.42

나. 응용1: 새로운 열(feature) 만들기

비슷한 방법으로 승선지와 성별을 곱한 feature, 나이와 성별을 곱한 feature 생성 후 각각 결과 비교

Embarked*Sex

 <pre>for dataset in combine: dataset['E*S']=dataset['Embarked']*dataset['Sex'] display(train_df.head())</pre>
display(test_df.head())

	Passengerld	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class	E*S
0	892	3	0	2	0	2	1	1	6	0
1	893	3	1	2	0	0	3	0	6	0
2	894	2	0	3	1	2	1	1	6	0
3	895	3	0	1	1	0	1	1	3	0
4	896	3	1	1	1	0	3	0	3	0

<기존>

	· -	
	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.74
0	Support Vector Machines	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	78.00
6	Stochastic Gradient Decent	74.19
4	Naive Bayes	72.28

<E*S 생성 후>

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.74
2	Logistic Regression	81.03
7	Linear SVC	79.57
0	Support Vector Machines	78.23
6	Stochastic Gradient Decent	77.89
4	Naive Bayes	74.75
5	Perceptron	66.78

Age*Sex

for dataset in combine: dataset['Age*Sex'] = dataset.Age * dataset.Sex train_df.head()

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class	Age*Sex
0	0	3	0	1	7.2500	S	1	0	3	0
1	1	1	1	2	71.2833	С	3	0	2	2
2	1	3	1	1	7.9250	S	2	1	3	1
3	1	1	1	2	53.1000	S	3	0	2	2
4	0	3	0	2	8.0500	S	1	1	6	0

<기존>

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.74
0	Support Vector Machines	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	78.00
6	Stochastic Gradient Decent	74.19
4	Naive Bayes	72.28

<Age*Sex 생성 후> Model Score

3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.85
2	Logistic Regression	81.37
7	Linear SVC	79.12
6	Stochastic Gradient Decent	79.01
0	Support Vector Machines	78.34
4	Naive Bayes	75.20
5	Perceptron	74.41

나. 응용2: 나이를 범주화 하지 않는다면?

연령범위를 5부분으로 나누어 범주화

Let us create Age bands and determine correlations with Survived.

```
In [26]:
    train_df['AgeBand'] = pd.cut(train_df['Age'], 5)
    train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=F
    alse).mean().sort_values(by='AgeBand', ascending=True)
```

Out [26]

		AgeBand	Survived
	0	(-0.08, 16.0]	0.550000
	1	(16.0, 32.0]	0.337374
	2	(32.0, 48.0]	0.412037
	3	(48.0, 64.0]	0.434783
	4	(64.0, 80.0]	0.090909

Out[51]: <범주화 후> <범주화 전>

	Model	Score	Out [51]:	Model	Score
3	Random Forest	86.76	3	Random Forest	94.16
8	Decision Tree	86.76	8	Decision Tree	94.16
1	KNN	84.74	1	KNN	87.21
0	Support Vector Machines	83.84	7	Linear SVC	81.59
2	Logistic Regression	80.36	2	Logistic Regression	80.58
7	Linear SVC	79.12	4	Naive Bayes	77.10
6	Stochastic Gradient Decent	78.56	5	Perceptron	74.52
5	Perceptron	78.00	6	Stochastic Gradient Decent	73.40
4	Naive Bayes	72.28	0	Support Vector Machines	70.93

5. 느낀점

가. 데이터전처리가 머신러닝을 이용한 데이터분석의 대부분을 차지한다.

나. 머신러닝 모델을 제대로 적용하기 위해서는 알고리즘의 작동방식에 대해 더 자세히 이해할 필요가 있다

다. 이번 프로젝트에서는 다루지 않은 데이터 수집과정을 더 알아볼 필요가 있다.