Computational Geometry

Voronoi Diagrams, Delaunay Triangulations, and Convex Hull

Convexity of the Voronoi Regions

• Heavily dependent on distance metric

Spider Web

Giraffe

3D

- Nature by Numbers
- Animated 3D Voronoi

Lemma

 Let A and B be two circles with chords that properly cross. Then at least one endpoints of one circle's chord is strictly inside the other circle.

Theorem

- The straight-line dual graph of Vor(S) is planar
- The straight-line dual graph of *Vor(S)* is a triangulation of *S* when *S* is in general position.
- The dual triangulation of *Vor(S)* is the Delaunay triangulation of *S*.

Delaunay and Convex Hull

- Lift sites to a paraboloid $(z = x^2 + y^2)$
- Compute 3D convex hull of points
- Project lower hull faces back to plane

Theorem

• Given a point set S in the plane, the Delaunay triangulation Del(S) is exactly the projection to the xy-plane of the lower convex hull of the points $(x, y, x^2 + y^2)$

Correctness

- All points on the paraboloid are convex and will be on the lower hull
- The lower hull consists of triangles
- The projection is a triangulation projected edges do not cross
- To prove
 - The triangulation is Delaunay

Notes

- Each triangle on the lower hull defines a plane
- These planes intersect the paraboloid
- Drop the plane by some r^2 so that it becomes tangent to the paraboloid at $(a, b, a^2 + b^2)$
- Then the projected vertices of the triangle must lie on a circle of radius r around the point $(a, b, a^2 + b^2)$.

Intersection of Plane and Paraboloid

- Tangent plane to the paraboloid at $(a, b, a^2 + b^2)$ $-z = 2ax + 2by - (a^2 + b^2)$
- Shift plane upwards in Z^+ by r^2 $-z = 2ax + 2by - (a^2 + b^2) + r^2$
- Plane intersection with the paraboloid is a circle

$$-z = x^{2} + y^{2} = 2ax + 2by - (a^{2} + b^{2}) + r^{2} \Rightarrow (x - a)^{2} + (y - b)^{2} = r^{2}$$

Empty Circle

- Original plane was on the lower hull, so all other points must be above
- Raise the plane until it hits any other point
- Distance from the projection of this other point to (a, b) must be larger than r.
- The circle of radius r around (a, b) is empty

Conclusion

A lower face f on the convex hull projects to a triangle with a circumcircle of radius r. Since f is on the lower hull, all other sites lie above (> r w.r.t. plane of tangency), and thus project outside of the circle, which then satisfies the empty circle property

Notes

 If the tangent planes are also constructed and their intersections projected, it's the Voronoi diagram

Notes

- Compute Delaunay by computing 3D convex hull instead O(nlogn)
- The relationship holds in higher dimensions as well, thus Delaunay tetrahedralizations are typically constructed by constructing 4D convex hulls.