Московский Авиационный Институт (Национальный Исследовательский Университет)

Факультет прикладной математики и информатики

Курсовая работа

по курсам «Основы информатики», «Алгоритмы и структуры данных» I семестр

Задание 3: Вещественный тип. Приближенные вычисления. Табулирование функций

Студент: Тулин И.Д.

Группа: М8О-101Б-21

Руководитель: Титов В.К.

Оценка:

Дата: <u>02.12.2022</u>

1. Задача

Составить программу на языке Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящиеся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью ε *k, где ε – машинное эпсилон аппаратно реализованного вещественного типа для данного ЭВМ, а k – экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

2. Вариант

22	$1 - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{n-1}{n!} x^n$	0.0	1.0	$(1+x)e^{-x}$
----	---	-----	-----	---------------

3. Общий метод решения

В программе производится вычисление значений некоторой функции на отрезке от 0.0 до 1.0 при помощи ряда Тейлора, а также при помощи средств языка программирования. В процессе работы с методом Тейлора новые члены прибавляются до тех пор пока модуль их значения превышает ранее вычисленное машинное эпсилон, что обеспечивает достаточную точность.

4. Общие сведения о программе

Аппаратное обеспечение: домашний ноутбук

Операционная система: Linux Mint

Язык и система программирования: GNU C

Число строк программы: 16

Местонахождение файлов: /home/yusayu/Рабочий стол/cppProjects Компиляция программы в консоли UNIX: g++ -o kr3.out kr3.cpp

Вызов программы: ./k3.cpp

5. Функциональное назначение

Программа предназначена для проведения высокоточных вычислений значения функции в определенной точке двумя способами. Объем данных не ограничен. Значения ограничены размерами переменной типа double для аргумента функции и типом double для значения функции.

6. Описание логической структуры

Программа вычисляет значение функции в данной точке с помощью ряда Тейлора и при помощи программных средств языка. Ряд Тейлора преобразуется в функцию, которая вычисляет слагаемые ряда и находит их сумму. Вычисление и суммирование членов ряда (как было описано ранее) производится пока последний найденный член по модулю не станет меньше эпсилон. Нахождение факториала и возведение в степень производится в отдельной переменной. В итоге выводится таблица с текущим значением аргумента, номером шага, значением функции, вычисленным с помощью ряда Тейлора и с помощью подключаемой библиотеки.

7. Описание переменных и констант

Имя	Тип	Назначение	
eps	double	Машинное эпсилон	
S		Значение функции	
X		Текущее значение аргумента	
p		Значение очередного члена ряда	
a		Левая граница отрезка	
b		Правая граница отрезка	
h		Шаг на отрезке	
d		Переменная для вычисления факториала и возведения в степень	
n	integer	Номер шага	

8. Входные данные

Входных данных нет

9. Выходные данные

Машинное эпсилон = 0.0000000000000111

x	J S	(1+x)e^(-x)	n	
0.000	1.0000000000000000	1.0000000000000000	1	
0.077	0.997188853922494	0.997188853922494	10	
0.154	0.989312214415894	0.989312214415894	12	
0.231	0.977135578852863	0.977135578852863	13	
0.308	0.961338859235280	0.961338859235280	14	
0.385	0.942524859216995	0.942524859216995	15	
0.462	0.921226965025975	0.921226965025975	15	
0.538	0.897916120220883	0.897916120220883	16	
0.615	0.873007148170555	0.873007148170555	17	
0.692	0.846864480610195	0.846864480610195	17	
0.769	0.819807345562849	0.819807345562849	18	
0.846	0.792114463279585	0.792114463279585	19	
0.923	0.764028294610983	0.764028294610983	19	
1.000	0.735758882342885	0.735758882342885	20	

10. Тестовые примеры

Не предусмотрены.

11. Дневник отладки

Дата	Место	Событие	Действие по исправлению
02.01.17	дом	Бесконечное выполнение цикла while при проверке условия p>eps -p <eps при p = 0.000</eps 	Замена условия на fabs(p) <eps< td=""></eps<>

12. Выводы по задаче

Я составил программу на языке Си, вычисляющую значение функции двумя способами. Найденные значения обоих функций сходятся с достаточной точностью (примерно до 15 символов после запятой).

13. Протокол

```
yusayu@YS:~/Рабочий стол/сррРгојесts$ cat head
Курсовая работа №4
   Вещественный тип. Приближенные вычисления.
             Табулирование функций
         Выполнил: Тулин Иван Денисович
           (номер по списку: 22)
           Группа: М8О-101Б-21
********************
yusayu@YS:~/Рабочий стол/сррРrojects$ cat kr3.cpp
#include<stdio.h>
#include<math.h>
int main(){double eps=1,S,x,p,a=0,b=1,h,d;int n;h=(b-a)/13;
while(1.+eps>1.) eps/=2.; printf("Машинное эпсилон = \%.18f\n", eps);
printf("-----
printf("| x | S | (1+x)e^{(-x)} | n | n");
for(x=a;x<b;x+=h)
  {n=1;p=x;S=1;d=x;}
  while(fabs(p)>eps)
    {n++;d*=-x/n;}
    p=d*(n-1);S+=p;
 printf("| \%.3f | \%.15f | \%.15f | \%2d | \n", x,S,(1+x)*exp(-x),n);
printf("-
return 0;
yusayu@YS:~/Рабочий стол/cppProjects$ ./kr3.out
Машинное эпсилон = 0.00000000000000111
                             (1+x)e^{(-x)}
0.077 \mid 0.997188853922494 \mid 0.997188853922494 \mid 10
0.154 | 0.989312214415894 | 0.989312214415894 |
0.231 | 0.977135578852863 | 0.977135578852863 |
0.308 | 0.961338859235280 | 0.961338859235280 |
0.385 | 0.942524859216995 | 0.942524859216995 |
0.462 | 0.921226965025975 | 0.921226965025975 |
0.538 | 0.897916120220883 | 0.897916120220883 |
0.615 \mid 0.873007148170555 \mid 0.873007148170555 \mid 17
0.692 | 0.846864480610195 | 0.846864480610195 | 17
0.769 | 0.819807345562849 | 0.819807345562849 | 18
0.846 | 0.792114463279585 | 0.792114463279585 | 19
0.923 | 0.764028294610983 | 0.764028294610983 | 19
| 1.000 | 0.735758882342885 | 0.735758882342885 | 20 |
```

yusayu@YS:~/Рабочий стол/cppProjects\$