

Einführung in das induktive Lernen

Prof. Dr.-Ing. R. Dillmann

Prof. Dr.-Ing. J. Marius Zöllner

Überblick

- Organisatorisches
- Induktion & Deduktion (4 9)
- Konzeptlernen als Suche im Hypothesenraum (10 18)
- Specific-to-general-Suche (19 29)
- Versionsraum (Version Space) / Candidate-Elimination-Algorithmus (30 - 44)
- Notwendigkeit von Vorzugskriterien (Bias) (45 50)

Organisatorisches

- Inhaltliche Fragen an jeweiligen Vortragenden
- Prüfungsvereinbarungen über Sekretariat!
 - Goettl@fzi.de
 - sekretariat.dillmann@anthropomatik.kit.edu
- Aktuellste Foliensätze nach der Vorlesung auf der ILIAS-Plattform

- Ein Soziologe, ein Ingenieur, ein Physiker und ein Mathematiker fahren mit dem Zug in ein fernes Land. Kurz nachdem sie die Grenze passiert haben, sehen sie ein schwarzes Schaf.
- Meint der Soziologe: "Oh, wie interessant, ein schwarzes Schaf!"
- Darauf der Ingenieur: "Wir können jetzt annehmen, dass alle Schafe in diesem Land schwarz sind."
- Der Physiker darauf: "Nein. Wir können lediglich behaupten, dass ein Schaf in diesem Land schwarz ist."
- Der Mathematiker daraufhin: "Auch das ist falsch. Wir können lediglich sagen, dass es in diesem Land ein Schaf gibt, das von mindestens einer Seite schwarz ist."

- Es sind mehrere Hypothesen aus den Beobachtungen ableitbar!
- Es gibt durchaus Unterschiede im Folgern!

(..... Weiter in ca. 40 Folien....)

- Prozess des plausiblen Schließens vom Speziellen zum Allgemeinen.
 - Basis: große Anzahl zutreffender Fälle.

$$P(x_1) \rightarrow Q(x_1)$$
 $P(x_2) \rightarrow Q(x_2)$
 $\vdots \rightarrow \vdots$
 $P(x_n) \rightarrow Q(x_n)$
 $P(X) \rightarrow Q(X)$

Induktion in der Philosophie

- Aristoteles (384-324 v. Chr., Logik):
 - Induktion ist der Fortschritt vom Einzelnen zum Allgemeinen
- Francis Bacon (1561-1626, Empirismus):
 - Induktion ist das methodisch-experimentelle Sammeln und Bewerten von Beobachtungen, um dann Schritt für Schritt diese als Naturgesetze zu verallgemeinern.
- John Stuart Mill (1806-1873, Philosoph u. Ökonom):
 - Induktion ist das Analysieren von häufig wiederkehrenden Erfahrungen und das daraus folgende Schließen auf allgemeingültige Gesetzmäßigkeiten.
- Karl R. Popper (1902-1994)
 - Kritisiert in seiner Wissenschaftstheorie den reinen Ansatz der Induktion. Induktion mache nur Sinn in Zusammenhang mit einer deduktiven Überprüfung.

Induktion vs. Deduktion

- Wahrheitserweiternd
- Wahrheitserhaltend

 Macht Lebewesen überlebensfähig - Logischer Schluss

- Plausibilität

Korrektheit

Induktive Lernverfahren

Formale Betrachtung eines induktiven Lernverfahrens:

Gegeben:

- Instanzraum X
- Trainingsmenge: $D = x_1,...,x_n \in X$
- Zielkonzept: c(..)
- Hypothesenraum H

Gesucht:

■ Hypothese $h \in H$ mit $h(x_i) = c(x_i), x_i \in X$

Die induktive Lernhypothese

Induktive Lernhypothese:

Jede Hypothese, die die Zielfunktion über einer genügend großen Menge von Trainingsbeispielen gut genug approximiert, wird die Zielfunktion auch über unbekannten Beispielen gut approximieren.

Definition: Konzept

- Konzept:
 - Beschreibt Untermenge von Objekten oder Ereignissen definiert auf größerer Menge
 - Bool'sche Funktion definiert über größerer Menge
 - Beispiel:

$$vogel: Tiere \rightarrow \{ true, false \}$$

$$vogel(Storch) = true$$

$$vogel(Hase) = false$$

Lernen von Konzepten

Gegeben:

 Beispiele, die als Mitglieder oder Nichtmitglieder eines Konzepts gekennzeichnet sind

Gesucht:

 Automatischer Schluss auf die Definition des zugrundeliegenden Konzepts

Definition Konzeptlernen:

 Schließen auf eine Boolean-wertige Funktion aus Trainingsbeispielen ihres Inputs und Outputs. ([1])

Konzeptlernen zum Nachdenken

Welches Konzept ist gemeint?

$$c(\text{Wildkatze}) o true$$
 $c(\text{L\"owe}) o true$
 $c(\text{Leopard}) o true$
 $c(\text{Jaguar}) o false$
 $c(\text{Tiger}) o false$
 $c(\text{Zebra}) o true$
 $c(\text{Giraffe}) o true$

Gesucht: Tiere, die in Afrika heimisch sind

Konzeptlernen: Ein Beispiel I

- (aus: [1])
- Zielkonzept:
 - "Tage an denen Aldo gerne Wassersport betreibt"
 - lacktriangle c: EnjoySport: X \rightarrow {true, false}
- Gegeben 6 Attribute:
 - Himmel (sonnig, wolkig, regnerisch)
 - Lufttemperatur (warm, kalt)
 - Luftfeuchtigkeit (normal, hoch)
 - Wind (stark, schwach)
 - Wassertemperatur (warm, kalt)
 - Wettervorhersage (gleichbleibend, wechselnd)

Konzeptlernen: Ein Beispiel II

- Menge der Instanzen X:
 - Mögliche Tage, beschrieben durch die 6 Attribute
 - <Himmel, Lufttemperatur, Luftfeuchtigkeit, Wind, Wassertemperatur, Wettervorhersage>
 - Bsp.: <sonnig, warm, normal, stark, warm, gleichbl.>
- Menge der möglichen Hypothesen H:
 - Jede Hypothese beschrieben durch Konjunktion von Einschränkungen auf die Attribute:
 - ?: Jeder Wert ist akzeptabel
 - value: Ein bestimmter Attributwert ist notwendig
 - # : Kein Wert ist akzeptabel

Konzeptlernen: Ein Beispiel III

Syntax:

■ <?, kalt, hoch, ?, ?, ?> ist wahr ⇔ Lufttemperatur ist kalt und
Luftfeuchtigkeit ist hoch (während alle übrigen Attribute beliebige
Werte annehmen können)

Trainingsbeispiele:

Himmel	Lufttemp.	Luftfeuch.	Wind	Wassert.	Vorhers.	c(x _i)
sonnig	warm	normal	stark	warm	gleichbl.	true
sonnig	warm	hoch	stark	warm	gleichbl.	true
regnersch	kalt	hoch	stark	warm	wechselh.	false
sonnig	warm	hoch	stark	kalt	wechselh.	true

Zu bestimmen:

■ Eine Hypothese h aus H, so dass $h(x) = c(x) \forall x \in X$

Konsistenz und Vollständigkeit im Hypothesenraum - Definition

- Konsistenz: Keine negativen Beispiele werden positiv klassifiziert.
- Vollständigkeit: Alle positiven Beispiele werden als positiv klassifiziert.
- Achtung: Definition in [1] etwas anders, konsistent dort entspricht bei uns konsistent + vollständig

Konsistenz und Vollständigkeit im Hypothesenraum - Beispiele

vollständig, aber nicht konsistent

konsistent, aber nicht vollständig

konsistent und vollständig (-> Vorzugskriterium)

Lernen als Suche im Hypothesenraum (1)

- Repräsentation der Hypothesen legt implizit Hypothesenraum fest (Domänenwissen → Bias)
- Lernen als Suche im Raum der möglichen Hypothesen:
 - 96 mögl. Instanzen, 973 mögl. Hypothesen
- Jeder Beschreibungsraum für Konzepte ist nach Generalität (halb-)geordnet:
 - $h_1 = \langle sonnig, ?, ?, stark, ?, ? \rangle$
 - $h_2 = \langle sonnig, ?, ?, ?, ?, ? \rangle$
 - h_k spezieller $h_i \Leftrightarrow \forall x \in X$: $[h_k(x) = 1 \Rightarrow h_i(x) = 1]$
 - wobei h(x) = 1 bedeutet: x erfüllt die Hypothese h

Hypothesenraum

<sonnig, ?, ?, ?, ?, ?> <sonnig, ?, ?, stark, ?, ?> <sonnig, ?, ?, ?, kühl, ?>

Lernen als Suche im Hypothesenraum (2)

- Suche vom Allgemeinen zum Speziellen:
 - Ausgangspunkt ist allgemeinste Hypothese < ?, ..., ? >
 - Negative Beispiele: Spezialisierung
 - Positive Beispiele: werden nicht betrachtet
- Suche vom Speziellen zum Allgemeinen:
 - Ausgangspunkt ist speziellste Hypothese < #, ..., # >
 - Positive Beispiele: (minimale) Verallgemeinerung
 - Negative Beispiele: werden nicht betrachtet
- Paralleles Anwenden beider Methoden ⇒ Version Space

Specific-to-General-Suche

- Initialisiere h mit der spezifischsten Hypothese in H
- Für jedes positive Trainingsbeispiel x
 - Für jede Attributeinschränkung a_i in $h = \langle a_0, ..., a_n \rangle$
 - Wenn a_i von x erfüllt wird
 - Dann tue nichts
 - Sonst:
 - Ersetze a_i durch die nächstallgemeinere Einschränkung, die durch x erfüllt wird
- Gib die Hypothese aus

Specific-to-general Beispiel I

Himmel	Lufttemp.	Luftfeuch.	Wind	Wassert.	Vorhers.	c(x _i)
sonnig	warm	normal	stark	warm	gleichbl.	true
sonnig	warm	hoch	stark	warm	gleichbl.	true
regnerisch	kalt	hoch	stark	warm	wechselh.	false
sonnig	warm	hoch	stark	kalt	wechselh.	true

- Initialisierung mit der speziellsten Hypothese
 - h = < #, #, #, #, #, # >
- 1. Beispiel: positiv
 - $\mathbf{x}_1 = \langle \text{ sonnig, warm, normal, stark, warm, gleichbl.} \rangle$
 - $c(x_1) = true$
 - Aber $h(x_1) = false \Rightarrow Hypothese zu speziell, Verallgemeinerung$
 - h = < sonnig, warm, normal, stark, warm, gleichbl. >

Specific-to-general Beispiel II

Himmel	Lufttemp.	Luftfeuch.	Wind	Wassert.	Vorhers.	c(x _i)
sonnig	warm	normal	stark	warm	gleichbl.	true
sonnig	warm	hoch	stark	warm	gleichbl.	true
regnerisch	kalt	hoch	stark	warm	wechselh.	false
sonnig	warm	hoch	stark	kalt	wechselh.	true

- h = < sonnig, warm, normal, stark, warm, gleichbl. >
- 2. Beispiel: positiv
 - $\mathbf{x}_2 = \langle \text{ sonnig, warm, hoch, stark, warm, gleichbl.} \rangle$
 - $c(x_2) = true$
 - Aber nicht von h abgedeckt, $h(x_2) = false \Rightarrow minimale$ Verallgemeinerung, so dass $h(x_2) = true$
 - h = < sonnig, warm, ?, stark, warm, gleichbl. >

Specific-to-general Beispiel III

Himmel	Lufttemp.	Luftfeuch.	Wind	Wassert.	Vorhers.	c(x _i)
sonnig	warm	normal	stark	warm	gleichbl.	true
sonnig	warm	hoch	stark	warm	gleichbl.	true
regnerisch	kalt	hoch	stark	warm	wechselh.	false
sonnig	warm	hoch	stark	kalt	wechselh.	true

- h = < sonnig, warm, ?, stark, warm, gleichbl. >
- 3. Beispiel: negativ
 - Wird ignoriert
- 4. Beispiel
 - $\mathbf{x}_4 = \langle \text{ sonnig, warm, hoch, stark, kalt, wechselhaft} \rangle$
 - $c(x_4) = true$
 - Aber nicht von h abgedeckt, $h(x_4) = \text{false} \Rightarrow \text{minimale}$ Verallgemeinerung, so dass $h(x_4) = \text{true}$
 - h = < sonnig, warm, ?, stark, ?, ? >

Anwendung: Lernen von Präzedenzgraphen im PdV

- Programmieren von Servicerobotern durch Vormachen, im folgenden: Akquisition von Aufgabenwissen
- Intuitive Benutzerschnittstellen
 - Benutzer führt Aufgabe aus
 - Beobachten & Lernen durch PdV-System
 - Ausführung durch Roboter
- Umordnung von Teilaufgaben
 - Optimierung von Wegen, Energieeffizienz
 - Lernen der Vorrangbeziehungen zwischen Teilaufgaben

Lernen sequentieller Unabhängigkeiten

Karlsruhe Institute of Technology

- Mehrere Vorführungen
- Identifikation äquivalenter Teiloperatoren
- Operationen abhängig/unabhängig

Definition: Präzedenzgraphen

- Codierung der Hypothesen
- DAG (=Gerichteter azyklischer Graph)

$$P = (N, E)$$

Kanten: Vorrangbeziehungen

$$(o_1, o_2) \in E$$
$$o_1, o_2 \in N$$

Lernen von Präzedenzgraphen I

Hypothese zu einzelner Demonstration

$$D = (o_1, o_2, \dots, o_n)$$

$$h = (N, E) \text{ mit } N = \{o_1, \dots, o_n\}, \forall j > i : (o_i, o_j) \in E$$

Genereller-als-Beziehung zwischen Präzedenzgraphen:

$$h_1 \succ h_2 :\Leftrightarrow E_1 \subset E_2$$

Lernen von Präzedenzgraphen II

Specific to General: Beurteilung I

- Wichtiges Prinzip im Konzeptlernen
- Für Hypothesenräume, die durch Konjunktionen von Attributeinschränkungen beschrieben sind garantiert das Verfahren die spezifischste Hypothese, die mit den positiven Trainingsbeispielen vereinbar ist
- Endhypothese ist auch mit negativen Trainingsbeispielen konsistent, solange
 - die Trainingsbeispiele korrekt sind
 - die Zielhypothese in H enthalten ist

Specific to General: Beurteilung II

- Offene Fragen:
 - Sind die Trainingsbeispiele konsistent?
 - Endkonzept = korrektes Zielkonzept?
 - Warum spezifischste Hypothese?

Definition: Versionsraum

Definition: Versionsraum (Version Space)

Der Versionsraum VS_{H,D} bezüglich des Hypothesenraums H und der Menge von Trainingsbeispielen D ist die Untermenge der Hypothesen von H, die mit den Trainingsbeispielen in D konsistent ist.

Version Space / Candidate-Elimination Algorithmus (Mitchell 1982)

- Lernen ist inkrementell:
 - Menge der konsistenten Hypothesen (Version space) ist ein Intervall in der partiellen Ordnung "spezifischer als" auf dem Hypothesenraum
- Gespeichert werden:
 - Menge der spezifischsten Hypothesen S und Menge der allgemeinsten Hypothesen G, die alle Beispiele abdecken ⇒ Hypothesen müssen nicht einzeln gespeichert werden
- Spezifischste und Allgemeinste Hypothesen:
 - S={s | s ist eine Hypothese, die mit den betrachteten Beispielen konsistent ist, und es gibt keine Hypothese, die spezifischer als s und auch konsistent mit allen Beispielen ist}.
 - Initialisierung: S={#}
 - G={g | g ist eine Hypothese, die mit den betrachteten Beispielen konsistent ist, und es gibt keine Hypothese, die allgemeiner als g und auch konsistent mit allen Beispielen ist}
 - Initialisierung: G={?}

Version Space Algorithmus

Ist n ein negatives Beispiel:

Ist p ein positives Beispiel:

- Lösche aus S die Hypothesen, die n abdecken.
- Spezialisiere die Hypothesen in G soweit, dass sie n nicht abdecken und dass sie allgemeiner als eine Hypothese in S bleiben.
- Lösche aus G alle Hypothesen, die spezifischer als eine andere Hypothese aus G sind.

- Lösche aus G die mit p inkonsistenten Hypothesen.
- Verallgemeinere die Hypothesen in S soweit, dass sie p abdecken und dass sie spezifischer als eine Hypothese in G bleiben.
- Lösche aus S alle Hypothesen, die allgemeiner als eine andere Hypothese aus S sind

Version Space: Veranschaulichung

Suche im Hypothesenraum Verhältnis spez./allg. Hypothese

Nach [2]

Version-Space Beispiel I

Initialisierung:

- $G0 = \{ <?,?,?,?,?,? > \}$

< #, #, #, #, #, # >

Version Space Beispiel II

- $\mathbf{x}_1 = \langle \text{ sonnig, warm, normal, stark, warm, gleichbl.} \rangle$, $\mathbf{c}(\mathbf{x}_1) = \text{true}(\mathbf{x}_1)$
- G konsistent mit x₁
- S zu speziell ⇒ verallgemeinern bis konsistent

Version Space Beispiel III

- $x_2 = \langle sonnig, warm, hoch, stark, warm, gleichbl. \rangle$, $c(x_2) = true$
- G konsistent mit x₂
- S zu speziell ⇒ verallgemeinern bis konsistent

Version Space Beispiel IV

- $\mathbf{x}_3 = \langle \text{ regnerisch}, \text{ kalt}, \text{ hoch}, \text{ stark}, \text{ warm}, \text{ wechselh} \rangle, c(\mathbf{x}_3) = \text{ false}$
- S konsistent mit x₃
- G zu allgemein, suche minimale Spezialisierungen
 - Inkonsistente Aussortieren, allgemeiner als ein s ∈ S!

< #, #, #, #, #, # >

<sonnig, warm, normal, stark, warm, gleichbl.>

<sonnig, warm, ?, stark, warm, gleichbl.>

<sonnig, ?, ?, ?, ?> <?, warm, ?, ?, ?> <?, ?, normal, ?, ?, ?>
<?, ?, ?, schwach, ?, 2 < ?, ?, ?, ?, kalt, ?> <?, ?, ?, ?, ?, gleichbl.>

Version Space Beispiel IV

- $\mathbf{x}_3 = \langle \text{ regnerisch}, \text{ kalt}, \text{ hoch}, \text{ stark}, \text{ warm}, \text{ wechselh} \rangle, c(\mathbf{x}_3) = \text{ false}$
- S konsistent mit x₃
- G zu allgemein, suche minimale Spezialisierungen
 - Inkonsistente Aussortieren, allgemeiner als ein $s \in S$!

<sonnig, warm, normal, stark, warm, gleichbl.>

<sonnig, warm, ?, stark, warm, gleichbl.>

<sonnig, ?, ?, ?, ?, ?> <?, warm, ?, ?, ?, ?> <?, ?, ?, ?, ?, gleichbl.>
< ?, ?, ?, ?, ?, ?</pre>

Version Space Beispiel V

- $x_2 = \langle sonnig, warm, hoch, stark, kühl, wechselh. \rangle, c(x_2) = true$
- Eine Hypothese in G inkonsistent mit x₂
- \blacksquare S nicht konsistent mit $x_2 \Rightarrow verallgemeinern bis konsistent$

Version Space = alle konsistenten Hypothesen

Himmel	Lufttemp.	Luftfeuch.	Wind	Wassert.	Vorhers.	c(x _i)
sonnig	warm	normal	stark	warm	gleichbl.	true
sonnig	warm	hoch	stark	warm	gleichbl.	true
regnersch	kalt	hoch	stark	warm	wechselh.	false
sonnig	warm	hoch	stark	kalt	wechselh.	true

Einordnung

Typ der Inferenz
Ebenen des Lernens
Lernvorgang
Beispielgebung
Umfang der Beispiele
Hintergrundwissen

Version Space: Beurteilung I

- Version Space konvergiert zur korrekten Hypothese (S=G)
 - Voraussetzung:
 - Beispiele konsistent
 - Korrekte Hypothese in Hypothesenraum enthalten
 - Probleme:
 - fehlerbehaftete Trainingsdaten (Rauschen)!
 - Zielkonzept nicht von Hypothesenrepräsentation abgedeckt
 - ⇒ mögliche Erweiterung: disjunktive Begriffe
- Anfrage des Konzeptlerners:
 - möglichst so, dass Hypothesen im Version Space halbiert werden
 - Dann: Schnelle Lernrate / geringe Anzahl von Beispielen

Version Space: Beurteilung II

Umgang mit teilweise gelernten Konzepten nötig

Wenn mehr als eine Hypothese im Versionsraum vorhanden ist dann:

- Alle klassifizieren positiv bzw. negativ ⇒ Entscheidung klar
- Ansonsten:
 - Mehrheitsentscheidung, evtl. mit Angabe von Konfidenz
 - Probabilistische Entscheidung / Wahrscheinlichkeit
 - Plausibilitätsbetrachtungen

Version Space: Beurteilung III

- Konsistente Beispiele notwendig
- Attributgeneralisierungsregeln maßgebend für Lernerfolg
- Kein Speichern alter Beispiele notwendig
- Stellt fest, wann genügend Beispiele gegeben wurden (S=G)
- Unter Umständen Art noch benötigter Beispiele erkennbar

Induktiver Bias

Induktiver Bias

- Dem Soziologen wird es zu bunt, er zieht die Notbremse, der Zug kommt zum Stehen und die 4 steigen aus, um den Dingen auf den Grund zu gehen. Als sie das Tier erreicht haben, stellen sie fest, dass es tatsächlich auf der einen Seite weiß ist und auf der anderen Seite schwarz mit kleinen, aus der Ferne nicht erkennbaren weißen Flecken. Mittlerweile eilt der Bauer heran, der sich über den Aufmarsch auf seinem Feld wundert.
- Der Soziologe spricht ihn an: "Komische Schafe haben Sie hier!"
- Daraufhin der Bauer: "Das ist kein Schaf. Das ist eine Ziege."

Induktiver Bias

- Bisher ging es nur darum, wie sehr man aufgrund von Beispielen verallgemeinern kann.
- Der Raum der betrachteten Hypothesen spielt aber eine wesentliche Rolle !!!
- In diesem Fall z.B. war die ganze Diskussion bzgl. der Farbe "an der Sache vorbei", da ALLE Hypothesen falsch waren, weil immer nur von Schafen die Rede war.

Einschränkung des Hypothesenraums?

- Problem: Zielkonzept evtl. nicht im Hypothesenraum enthalten
- Lösung: Hypothesenraum, der alle möglichen Hypothesen enthält?
- Grundlegende Eigenschaft von induktiver Inferenz:
 - Ein induktives Lernsystem, das keine a priori-Annahmen über die Identität des Zielkonzepts macht, hat keine rationale Basis, um unbekannte Instanzen zu klassifizieren.
- Induktives Lernen erfordert Vorannahmen ("inductive bias")

Vergleich induktiver Lernsysteme anhand ihres inductive bias

- Auswendiglerner:
 - keine Vorannahme
- Version Space:
 - Zielkonzept kann im Hypothesenraum repräsentiert werden
- Specific to General-Lerner:
 - wie Version Space, und zusätzlich:
 - alle Instanzen sind negative Instanzen, solange nicht das Gegenteil bekannt ist
- Je strenger die Vorannahmen, desto mehr unbekannte Beispiele können klassifiziert werden!

Vorzugskriterien (Bias) I

- Bias (Vorzugskriterium)
 - Vorschrift nach der Hypothesen gebildet werden.
- Mögliche Vorzugskriterien:
 - Verständlichkeit (für den menschlichen Benutzer)
 - Klassifikationsgenauigkeit
 - Messaufwand für die verwendeten Deskriptoren
 - Berechnungs- und Speicheraufwand für die Hypothese

Vorzugskriterien (Bias) II

Hypothesenraumbias:

- h gehöre zu einem beschränkten Raum von Hypothesen,
 - logische Konjunktionen
 - lineare Schwellwertfunktionen
 - Geraden, Polynome ...etc
 - 3-NN (Nearest Neighbour)
 - **...**

Präferenzbias:

- Ordnung auf dem Raum der Hypothesen.
- Wähle h mit der höchsten Präferenz.
 - Bevorzuge Hypothesen mit weniger Disjunktionen
 - Bevorzuge kleinere Entscheidungsbäume
 - **....**

Vorzugskriterien (Bias) III

- Problem:
 - Es existiert keine Funktion h, die konsistent mit allen Trainingsbeispielen ist, z.B. wegen verrauschter Trainingsdaten.
- Unterschiedliche Ansätze möglich unterschiedliche Lösungen:
- Anpassen des Hypothesenraumbias:
 - Problem, da zwar sehr gute Klassifikation i.a. durch eine komplexe Hypothese erreicht wird aber
 - Overfitting!
- Anpassen des Präferenzbias:
 - Wähle das h

 H, das möglichst viele Beispiele richtig klassifiziert
 - Misklassifikation muss in Kauf genommen werden

Zusammenfassung

- Induktion & Deduktion
- Konzeptlernen als Suche im Hypothesenraum
- Specific to general-Suche
- Versionsraum (Version Space) / Candidate-Elimination-Algorithmus
- Notwendigkeit von Vorzugskriterien (Bias)

Literatur

- [1] Tom Mitchell: Machine Learning. McGraw-Hill, New York, 1997.
- [2] Garry Briscoe, Terry Caeli: A Compendium of Machine Learning, Vol.1: Symbolic Machine Learning. Ablex Publishing, Norwood, NJ, 1996.
- [3] Tom Mitchell: Generalization as Search. Artificial Intelligence, Vol. 18, 1982, S. 203-226