Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein

Yue Xiang

2021. 1. 15

Outlines

- 1 Introduction
- 2 Background
- ③ s-DRAE
- 4 Experiments

2/17

- Introduction
- 2 Background
- 3 s-DRAE
- 4 Experiments

3/17

Autoencoder

- An autoencoder is a type of artificial neural network used to learn efficient data codings in an unsupervised manner.
- Autoencoders consist of two components, namely, an encoder E_{ϕ} and a decoder G_{θ} .
- Major task: to obtain a decoder G such that its induced distribution p_G and the data distribution are very close under some discrepancies.
- Two popular instances of autoencoders
 - variational autoencoder(VAE): KL divergence
 - Wasserstein autoencoder(WAE): Wasserstein distance

Learning Problem

$$\min_{\theta,\phi} \underbrace{\mathbb{E}_{p_d(x)} \mathbb{E}_{q_{\phi}(z|x)}[d(x, G_{\theta}(z))]}_{reconstruction\ loss} + \underbrace{\lambda D(q_{\phi}(z)||p(z))}_{distance(posterior,\ prior)} \tag{1}$$

d: the ground metric of Wasserstein distance.

D: a discrepancy between distributions.

 $q_{\phi}(z|x)$: a distribution for encoder $E_{\phi}: X \to Z$, parameterized by ϕ .

- Introduction
- 2 Background
- 3 s-DRAE
- 4 Experiments

WAE and RAE

- WAE
 - D: MMD/GAN, p(z): Gaussian. Cons: WAE suffers from either over-regularization or under-regularization problem.
- Relational regularized AutoEncoder(RAE) p(z): mixture of Gaussian $p_{\mu_{1:k},\Sigma_{1:k}}(z)$. The state-of-the-art version of RAE: deterministic relational regularized autoencoder(DRAE).

Notations

- \mathbb{S}^{d-1} : d-dimensional hypersphere.
- $\mathcal{U}(\mathbb{S}^{d-1})$: uniform distribution on \mathbb{S}^{d-1} .
- $\Pi(\mu, v)$: the set of all transport plans between μ and v.
- $\theta # \mu$: the pushforward measure of μ through the mapping \mathcal{R}_{θ} where $\mathcal{R}_{\theta}(x) = \theta^T x$ for all x.

Deterministic Relational Regularized Autoencoder (DRAE)

Object function:

$$min_{\theta,\phi,\mu_{1:k},\Sigma_{1:k}} \mathbb{E}_{p_d(x)} \mathbb{E}_{q_{\phi}(z|x)} [d(x,G_{\theta}(z))] + \lambda \mathbb{E}_{q_{\phi}(z),p_{\mu_{1:k},\Sigma_{1:k}}(z)} SFG[(\hat{q}_N(z)||\hat{p}_N(z))]. \quad (2)$$

where $\hat{q}_N(z)$ and $\hat{p}_N(z)$ are the empirical distributions of $q_{\phi}(z)$ and $p_{\mu_{1:k},\Sigma_{1:k}(z)}$ respectively.

Sliced Fused Gromov Wasserstein(SFG)

Let μ , $v \in \mathcal{P}(\mathbb{R}^d)$ be two probability distributions, β be a constant in [0,1], and $d_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ be a pseudo-metric on \mathbb{R} .

The sliced fused Gromov Wasserstein (SFG) between μ and is defined as:

$$SFG(\mu, \nu; \beta) := \mathbb{E}_{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})}[D_{fgw}(\theta \# \mu, \theta \# \nu; \beta, d_1)]$$
(3)

where the fused Gromov Wasserstein D_{fgw} is given by:

$$D_{fgw}(\theta \# \mu, \theta \# v; \beta, d_1) := \min_{\pi \in \Pi(\theta \# \mu, \theta \# v)} \{ (1 - \beta) \int_{\mathbb{R}^d \times \mathbb{R}^d} d_1(\theta^T x, \theta^T y) d\pi(x, y) + \beta \int_{(\mathbb{R}^d)^4} [d_1(\theta^T x, \theta^T x') - d_1(\theta^T y, \theta^T y')]^2 d\pi(x, y) d\pi(x', y') \}.$$
(4)

Sliced Fused Gromov Wasserstein(SFG)

- relational regularization: sliced fused Gromov Wasserstein(SFG).
- Cons: SFG uses the uniform distribution over the unit sphere $(\theta \sim \mathcal{U}(\mathbb{S}^{d-1}))$ to sample projecting directions, which leads to the underestimation of the discrepancy between the two distributions.
- Pros:
 - SFG is a linear combination of sliced Wasserstein (SW) and sliced Gromov Wasserstein (SG), so takes advantages of both of them.
 - If μ and v have n supports and uniform weights and $d_1(x, y) = (x y)^2$, SFG has good computational complexity (O(nlogn)).

- Introduction
- 2 Background
- 3 s-DRAE
- 4 Experiments

Von Mises-Fisher Distribution

The von Mises-Fisher distribution (vMF) is a probability distribution on the unit sphere \mathbb{S}^{d-1} where its density function is given by:

$$f(x|\epsilon,\kappa) := C_d(\kappa) exp(\kappa \epsilon^T x),$$
 (5)

where $\kappa \geq 0$ is the concentration parameter , $\epsilon \in \mathbb{S}^{d-1}$ is the location vector , and $C_d(\kappa) := \frac{\kappa^{d/2-1}}{(2\pi)^{d/2} I_{d/2-1}(\kappa)}$ is the normalization constant. Here, $I_{d/2-1}$ is the modified Bessel function of the first kind at order d/2-1. It is possible to define the Bessel function by its series expansion around x=0 as:

$$I_{\frac{d}{2}-1}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+\frac{d}{2})} \left(\frac{\kappa}{2}\right)^{2m+\frac{d}{2}-1}$$
 (6)

The vMF concentrates around mode ϵ and its density decreases when x goes away from ϵ .

Von Mises-Fisher Distribution

- By changing κ from 0 to infinity, the vMF family could interpolate from the uniform distribution to any Dirac distribution on the sphere.
- When $\kappa \to 0$, vMF converges to the uniform distribution.
- When $\kappa \to \infty$, vMF approaches to the Dirac distribution centered at ϵ .

Spherical Sliced Fused Gromov Wasserstein(SSFG)

Definition 3. (SSFG) Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ be two probability distributions, $\kappa > 0$, $\beta \in [0,1]$, $d_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$ be a pseudo-metric on \mathbb{R} . The **spherical sliced fused Gromov Wasserstein** (SSFG) between μ and ν is defined as follows:

$$SSFG(\mu, \nu; \beta, \kappa) := \max_{\epsilon \in \mathbb{S}^{d-1}} \mathbb{E}_{\theta \sim vMF(\cdot | \epsilon, \kappa)} \left[D_{fgw}(\theta \sharp \mu, \theta \sharp \nu; \beta, d_1) \right], \tag{6}$$

where the fused Gromov Wasserstein D_{fgw} is defined at equation (3).

Complexity:

- General case of d_1 : $O(n^4)$
- $d_1(x, y) = (x y)^2$: O(nlog n)

Key Properties of SSFG

SSFG is a pseudo-metric in the probability space and does not suffer from the curse of dimensionality.

Theorem 1. For any $\beta \in [0,1]$ and $\kappa > 0$, SSFG $(.,.;\beta,\kappa)$ is a pseudo-metric in the space of probability measures, namely, it is non-negative, symmetric, and satisfies the weak triangle inequality.

Theorem 2. For any probability measures $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$, the following holds:

$$\begin{split} &(a) & \lim_{\kappa \to 0} SSFG(\mu, \nu; \beta, \kappa) = SFG(\mu, \nu; \beta), \\ & \lim_{\kappa \to \infty} SSFG(\mu, \nu; \beta, \kappa) = \max_{\theta \in \mathbb{S}^{d-1}} D_{fgw}(\theta \sharp \mu, \theta \sharp \nu; \beta) := \textit{max-SFG}(\mu, \nu; \beta). \end{split}$$

(b) For any $\kappa > 0$, we find that

$$\exp(-\kappa)C_d(\kappa)SFG(\mu,\nu;\beta) \leq SSFG(\mu,\nu;\beta,\kappa) \leq \exp(\kappa)C_d(\kappa)SFG(\mu,\nu;\beta),$$

$$SSFG(\mu,\nu;\beta,\kappa) \leq max\text{-}SFG(\mu,\nu;\beta).$$

s-DRAE

 $min_{\theta,\phi,\mu_{1:k},\Sigma_{1:k}}\mathbb{E}_{p_d(x)}\mathbb{E}_{q_\phi(z|x)}[d(x,\,G_\theta(z))] + \lambda \mathbb{E}_{q_\phi(z),p_{\mu_{1:k},\Sigma_{1:k}}(z)}SSFG[(\hat{q}_N(z)\|\hat{p}_N(z))].$

2 Variants of SSFG

• mixture spherical sliced fused Gromov Wasserstein(MSSFG)

$$MSSFG(\mu, \nu; \beta, \{\kappa_i\}_{i=1}^k, \{\alpha_i\}_{i=1}^k) = \max_{\epsilon_{1:k} \in \mathbb{S}^{d-1}} \mathbb{E}_{\theta \sim MovMF(\cdot | \epsilon_{1:k}, \{\kappa_i\}_{i=1}^k, \{\alpha_i\}_{i=1}^k)} \left[D_{fgw}(\theta \sharp \mu, \theta \sharp \nu; \beta, d_1) \right], \quad (7)$$

where D_{fgw} is defined in equation (3) and the mixture of vMF distributions is defined as $MovMF(\cdot|\epsilon_{1:k}, \{\kappa_i\}_{i=1}^k, \{\alpha_i\}_{i=1}^k) := \sum_{i=1}^k \alpha_i vMF(\cdot|\epsilon_i, \kappa_i)$.

 power SSFG (PSSFG)
 PSSFG uses power spherical distribution instead of vMF and its mixtures as the slicing distribution to improve the computational time of (M)SSFG.

- 1 Introduction
- 2 Background
- 3 s-DRAE
- 4 Experiments

FID Score and Reconstruction Loss

Method	MNIST		CelebA	
	FID	Reconstruction	FID	Reconstruction
VAE	71.55 ± 26.65	18.59 ± 2.22	59.99(*)	96.36(*)
GMVAE	75.68 ± 11.95	18.19 ± 0.14	212.59 ± 18.15	97.77 ± 0.19
Vampprior	138.03 ± 34.09	29.98 ± 4.09	_	-
PRAE	100.25 ± 41.72	16.20 ± 3.14	52.20 (*)	63.21(*)
WAE	80.77 ± 11	11.53 ± 0.33	52.07 (*)	63.83(*)
SWAE	80.28 ± 19.22	14.12 ± 2.06	86.53 ± 2.49	89.71 ± 2.15
DRAE	58.04 ± 20.74	14.07 ± 4.31	50.09 ± 1.33	66.05 ± 2.56
m-DRAE (ours)	52.92 ± 13.81	13.13 ± 0.33	49.05 ± 0.93	66.30 ± 0.22
s-DRAE (ours)	47.97 ± 13.83	11.17 ± 1.73	46.63 ± 0.83	66.62 ± 0.51
ps-DRAE (ours)	49.15 ± 12.93	11.71 ± 1.21	48.21 ± 1.02	66.31 ± 0.43
mps-DRAE (ours)	44.67 ± 9.98	11.01 ± 1.32	46.61 ± 1.01	66.23 ± 0.56
ms-DRAE (ours)	$\textbf{43.57} \pm \textbf{10.98}$	$\textbf{11.12} \pm \textbf{0.91}$	46.01 \pm 0.91	65.91 ± 0.4

Computational Time

Figure 2: Each dot represents the computational time per minibatch and FID score. For DRAE, we vary the number of projections $L \in \{1,5,10,20,50,100,200,500,1000\}$; for s-DRAE we set $\kappa=10$, $L \in \{1,5,10,20,50,100\}$; for ps-DRAE we set $\kappa=50$, $L \in \{1,5,10,20,50,100\}$; and for m(p)s-DRAE we set L=50, the number of vMF components $k \in \{2,5,10,50\}$ (for each k, we find the best $\kappa \in \{1,5,10,50,100\}$).