Natural Deduction for Propositional Logic

1 Proof Systems for Propositional Logic

- What we would like from a proof system
 - Completeness Using our proof system, we should be able to prove all of the tautologies
 - Soundness All theorems proved by our proof system should be tautologies
- A **proof system** defines the proofs (valid mathematical arguments) of the system it is a collection of **rules of inference**
- These rules of inference can be applied to infer new formulae from old
- Henceforth, we consider propositional logic to consist only of those formulae build using the connectives $\land \lor \neg \Rightarrow$
 - With other connectives, such as ⇔, abbreviations
- An **argument form** in propositional logic is a sequence of formulae $\varphi_1, \varphi_2, ..., \varphi_n, \psi$ and such an argument form is valid if:
 - Whenever a truth assignment f is s.t. $\varphi_1, \varphi_2, ..., \varphi_n$ evaluate to true under f then ψ necessarily evaluates to true under f
- An argument form can also be written in the form $\varphi_1, \varphi_2, ..., \varphi_n \vdash \psi$ when it is referred to as a **sequent**
- The rule of inference corresponding to the above argument form is: $\varphi_1, \varphi_2, ..., \varphi_n \Rightarrow \psi$ and if the above argument form is valid then this rule of inference is a **tautology**
- The most well known rule of inference for propositional logic is the law of detachment

2 Applying rules of inference

• Of course, when applying a rule of inference we can substitute arbitrary formulae for p and q

- Similarly, given any rule of inference $\varphi_1, \varphi_2, ..., \varphi_n \Rightarrow \psi$
 - We can apply this rule by substituting **any** formula for **any** propositional variable, so long as the same formula is substituted for the same variable
 - Thus, a valid argument form yields an infinite collection of tautologies

3 Other rules of inference

Modus tollens	$\neg q$	$p \Rightarrow q$
	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
Hypothetical syllogism	$p \Rightarrow q$	$q \Rightarrow r$
	$p \Rightarrow r$	
Resolution	$p \vee q$	$\neg p \lor r$
	$q \vee r$	

For all these diagrams, if the two statements on the top are true, then the statement on the bottom must be true.

4 Rules of inference in action

5 An alternative approach

- We could write down all possible truth assignments on A,W,I,P,S and D, and:
 - Retain only those for which $A \land W \Rightarrow I, A \lor P, W \lor S, \neg I \text{ and } D \Rightarrow \neg (P \lor S)$ are true
 - Then check to see that for all of these retained truth assignments we have that $\neg D$ is true
- However, this would mean that $2^6 = 64$ different truth assignments need to be checked
- Consequently, the proof-theoretic approach can be significantly more efficient than the truth table approach, especially when there is a large number of propositional variables
- Of course knowing which rules of inference to apply which formulae so that we get a speedy proof is another difficulty that needs to be overcome

6 Natural Deduction

• The proof system **natural deduction** consists of a collection of valid rules of inference and is used to obtain proofs of sequence of the form:

$$\varphi_1, \varphi_2, ..., \varphi_n \vdash \psi$$

- We assume that we are given $\varphi_1, \varphi_2, ..., \varphi_n$ as **premises**. We hope to apply our rules of inference from the proof system to obtain ψ
- Rules for conjunction:

$$\frac{\varphi_1}{\varphi_1} \wedge \varphi_2 \qquad \wedge i \qquad \qquad \frac{\varphi_1 \wedge \varphi_2}{\varphi_1} \wedge e1 \qquad \frac{\varphi_1 \wedge \varphi_2}{\varphi_2} \wedge e2$$

$$\wedge \text{-introduction} \qquad \wedge \text{-elimination}$$

• Rules for double negation:

$$\frac{\varphi}{\neg \neg \varphi} \neg \neg i \qquad \frac{\neg \neg \varphi}{\varphi} \neg \neg e$$

- Note
 - In general φ_1 and φ_2 are formulae and not necessarily propositional variables
 - All of our rules are valid

7 A simple proof

- Here is the proof of the sequent $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$ using the rules we have introduced so far
 - 1 p premise 2 $\neg\neg(q \land r)$ premise 3 $\neg\neg p$ $\neg\neg i1$ 4 $q \land r$ $\neg\neg e2$ 5 r $\land e24$ 6 $\neg\neg p \land r$ $\land i35$
- Note that the validity of the rules means that
 - If p and ¬¬($q \land r$) are true under some truth assignment then ¬¬ $p \land r$ is necessarily true under this truth assignment
- We often say that a sequent is **valid** if it can be proved

8 More rules

• Rule for eliminating implication

$$\frac{\varphi_1}{\varphi_2} \Rightarrow \text{-elimination} \Rightarrow \varphi_2$$

• Rule for introducing implication

⇒-introduction

- The box doesn't imply φ_1 is true, just that the stuff below the line is true if the stuff above the line is true
- In order to apply the rules $\Rightarrow i$
 - To start with the intended premise φ_1 , as the first line of the box
 - Continue until we prove φ_2
 - Close the box and write our implication $\varphi_1 \Rightarrow \varphi_2$
- Thereafter we are not allowed to use any formula in the box. Once a box has closed then the formula within it are no longer available to us

9 Proof using boxes

- Here is a proof of the sequent $p \Rightarrow q, q \Rightarrow r \vdash p \Rightarrow r$
 - 1. $p \Rightarrow q$ premise 2. $q \Rightarrow r$ premise 3. p assumption 4. q $\Rightarrow e 1 3$ 5. r $\Rightarrow e 2 4$ 6. $p \Rightarrow r$ $\Rightarrow i 3-5$
- Note that it is possible
 - For a proof to involve more than one box

- For boxes to be nested within each other
- Note that boxes cannot overlap
 - We cannot **open** a box and then **open** another box, then **close** the first box before **closing** the second box

10 More than one box

• Here is a proof of the sequent $(p \land q) \Rightarrow r \vdash p \Rightarrow (q \Rightarrow r)$

1.	$(p \land q) \Rightarrow r$	premise
2.	p	assumption
3.	q	assumption
4.	p ^ q	лі 2 3
5.	r	⇒e 1 4
6.	$q \Rightarrow r$	⇒i 3-5
7.	$p \Rightarrow (q \Rightarrow r)$	⇒i 2-6

• Note that the structure of the formula we wish to prove helps to determine the structure/tactics of our proof