Table of Contents

1. Introduction	2
Introduction Importing Libraries	2
2.1 Loading the Dataset:	
2.2 Exploring the Data:	
2.3 Checking Data Shape	4
3. Data Preprocessing Steps	4
3.1 Handling Missing Data	4
3.2 Encoding Categorical Variables	
3.3 Removing Duplicates	5
3.4 Outlier Detection	5
4. Data visualization:	6
5. Preparing Data for Modeling	7
6. Model Training and Evaluation	8

1. Introduction

This report outlines the steps taken in the Jupyter Notebook for data analysis and modeling using a stock price dataset. The analysis includes data loading, exploration, preprocessing, and the application of machine learning models to predict sentiment scores based on stock market data.

Problem Statement:

Stock price prediction and analysis require clean data to ensure accuracy. Issues like missing values, duplicate entries, and outliers must be handled before performing any analysis or modeling.

2. Importing Libraries

Libraries Used:

pandas: For data manipulation and analysis.

numpy: For numerical operations.

matplotlib.pyplot: For data visualization.

seaborn: For statistical data visualization.

sklearn: For machine learning tasks including preprocessing, model selection, and

evaluation.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
```

2.1 Loading the Dataset:

2.2 Exploring the Data:

Objective: To gain an initial understanding of the dataset's Structure and contents.

Key Features:

Adj Close, Close, High, Low, Open, Volume, Company, Date, Target, Score, Comments, Cleaned_Text, Sentiment, Sentiment_Score.

2.3 Checking Data Shape:

```
print(f"Number of Rows: {df.shape[0]} \nNumber of Columns: {df.shape[1]}")

Number of Rows: 12153
Number of Columns: 14
```

3. Data Preprocessing Steps

3.1 Handling Missing Data

- Checked for missing values in Open, Close, High, Low, and Volume columns.
- Used mean/median imputation to fill missing numerical data.
- Forward fill/backward fill used for time-series consistency.
 - Numerical columns are filled with their mean.

Categorical columns are filled with their mode.

```
for i in df.select_dtypes(include="number").columns:
    df[i] = df[i].fillna(df[i].mean())

for i in df.select_dtypes(include="object").columns:
    df[i] = df[i].fillna(df[i].mode()[0])
```

3.2 Encoding Categorical Variables:

- Convert categorical features into numerical format using 'LabelEncoder', which is essential for machine learning algorithms that require numerical input.

```
le = LabelEncoder()
for i in df.select_dtypes(include="object").columns:
    df[i] = le.fit_transform(df[i])
```

3.3 Removing Duplicates:

- Identified and removed duplicate records using pandas to prevent redundancy.

```
df.drop_duplicates(inplace = True)
```

3.4 Outlier Detection

- Applied the IQR (Interquartile Range) method and z-score analysis to detect and remove outliers in stock prices.

```
columns = ["Target"]
for i in columns:
    q1 = df[i].quantile(0.25)
    q3 = df[i].quantile(0.75)

iqr = q3 - q1

lower_limit = q1 - 1.5*iqr
    upper_limit = q3 + 1.5*iqr

df = df[(df[i]>=lower_limit) & (df[i]<=upper_limit)]</pre>
```

4. Data visualization:

Correlation Heatmap:

A heatmap is generated to visualize the correlation between different Features in the dataset.

```
plt.figure()
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Feature Correlation Heatmap")
plt.show()
```


5. Preparing Data for Modeling:

Defining Features and Target Variable: Features (x) are defined by dropping the target variable (Sentiment_Score), which is stored in y. is stored in y.

```
x = df.drop(columns=["Sentiment_Score"])
y = df["Sentiment_Score"]
```

Splitting the Dataset:

The dataset is split into training and testing sets using an 80-20 split.

```
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2)
```

6. Model Training and Evaluation

Linear Regression Model: A Linear Regression model is instantiated, trained, and predications are made on the test set.

Performance metrics: Mean Absolute Error (MAE) and Mean Squared Error (MSE) are calculated to evaluate the model's performance.

```
from sklearn.metrics import mean_absolute_error, mean_squared_error

mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
r2 = r2 score(y_test, y_pred)

print(f"Mean Absolute Error (MAE): {mae:.4f}")
print(f"Mean Squared Error (MSE): {mse:.4f}")
Mean Absolute Error (MAE): 0.0185
Mean Squared Error (MSE): 0.0086
```

Random Forest Classifier: A Radom Forest Classifier is trained and evaluated for its accuracy.

```
random = RandomForestClassifier()
random.fit(x_train,y_train)

* RandomForestClassifier **

RandomForestClassifier()

r_pred = random.predict(x_test)

accuracy = accuracy_score(r_pred,y_test)
print(f"Model Accuracy:{accuracy:.2f}%")

Model Accuracy:0.99%
```