

Esquemas Simétricos

- Esquemas de confidencialidade e autentidade
- Primitivas de cifra simétrica e modos de operação

ISEL – Instituto Superior de Engenharia de Lisboa Rua Conselheiro Emídio Navarro, 1 | 1959-007 Lisboa

Sumário

- Hierarquia de mecanismos criptográficos
- Esquemas criptográficos
 - Esquemas simétricos de cifra
 - Esquemas MAC
- Primitivas de cifra e modos de operação

Proteção criptográfica de dados

Situação	Ameaça	Ação
Dados em repouso:no dispositivo do utilizadorna rede internana cloud	Processo malicioso ou não autorizado pode ler ou modificar dados	Cifra e autenticação de ficheiros/discos e
Dados estão a ser transferidos entre computadores (ex: <i>browser</i> <-> servidor)	Um atacante com acesso à rede pode ler ou modificar os dados	comunicações

Mecanismos criptográficos

- Primitivas operações matemáticas, usadas como blocos construtores na realização de esquemas; a sua caracterização depende dos problemas matemáticos que sustentam a sua utilização criptográfica
 - ex: DES, RSA
- Esquemas combinação de primitivas e métodos adicionais para a realização de tarefas criptográficas como a cifra e a assinatura digital
 - ex: DES-CBC-PKCS5Padding; RSA-OAEP-MGF1-SHA1
- Protocolos sequências de operações, a realizar por duas ou mais entidades, envolvendo esquemas e primitivas, com o propósito de dotar uma aplicação com características seguras
 - ex: TLS com TLS_RSA_WITH_DES_CBC_SHA

Introdução à criptografia computacional

- Esquemas simétricos
 - Cifra e autenticidade
- Esquemas assimétricos
 - Cifra e assinatura digital

	Simétrico	Assimétrico
Confidencialidade	Cifra simétrica	Cifra assimétrica
Autenticidade	MAC	Assinatura Digital

Características gerais da criptografia simétrica

- Processo de *proteção* e *desproteção* usando a mesma chave
- Chaves são normalmente usadas durante pouco tempo
- Chaves estabelecidas após um processo de negociação entre quem cifra e quem decifra

Cifra simétrica

Esquema de cifra simétrica

- Esquema de cifra simétrica algoritmos (G,E,D)
 - **G** função (probabilística) de geração de chaves
 - $G: \rightarrow Keys$
 - E função (probabilística) de cifra
 - **E**: Keys $\rightarrow \{0,1\}^* \rightarrow \{0,1\}^*$
 - **D** função (determinística) de decifra
 - **D**: Keys $\to \{0,1\}^* \to \{0,1\}^*$

Propriedades da cifra simétrica

- Propriedade da correcção
 - \forall m \in {0,1}*, \forall k \in **Keys**: D(k)(E(k)(m)) = m
 - Keys é o conjunto de chaves geradas por G
- Propriedades de segurança
 - É computacionalmente infazível obter m a partir de c, sem o conhecimento de k
- Esquema simétrico
 - utilização da mesma chave k nas funções E e D
- Mensagem m e criptograma c são sequências de bytes com dimensão variável ({0,1}*)
- Não garante integridade
- Exemplos:
 - DES-CBC-PKCS5Padding

Autenticação de mensagens

Esquema MAC

- Esquema MAC (Message Authentication Codes) algoritmos (G,T,V)
 - G função (probabilística) de geração de chaves
 - $G: \rightarrow Keys$
 - T função (probabilística) de geração de marcas
 - T: Keys $\rightarrow \{0,1\}^* \rightarrow \mathsf{Tags}$
 - **V** função (determinística) de verificação de marcas
 - **V**: **Keys** \rightarrow (**Tags** \times {0,1}*) \rightarrow {true, false}

Esquema MAC (2)

- Esquema usual para o algoritmo de verificação
 - Algoritmo **T** é determinístico
 - Algoritmo V usa T
 - V(k)(t, m): T(k)(m) = t

Propriedades do MAC

- Propriedade da correcção
 - \forall m \in {0,1}*, \forall k \in Keys: V(k)(T(k)(m),m) = true
- Propriedades de segurança
 - Sem o conhecimento de **k**, é *computacionalmente infazível*
 - falsificação selectiva dado m, encontrar t tal que V(k)(t, m) = true
 - falsificação existencial encontrar o par (m, t) tal que V(k)(t,m) = true
- Esquema simétrico
 - utilização da mesma chave k nos algoritmos T e V
- Mensagem m é uma sequência de bytes de dimensão variável
- Marca t (tag) tem tipicamente dimensão fixa
 - Por exemplo: 160, 256, 512 bits
- Códigos detectores e correctores de erros não servem para esquemas de MAC
- Exemplos: HMAC-SHA1

Primitivas de cifra simétrica

- Para usar um esquema de cifra simétrica é preciso escolher uma primitiva de cifra
 - AES, DES, Blowfish, ...
- Algumas primitivas estão especificadas em standards internacionais ou em publicações académicas
 - https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf (AES)
 - https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
 (DES, deprecated)
 - https://www.schneier.com/academic/archives/1994/09/description of a new.html
- Existem várias implementações disponíveis
- Boas práticas:
 - Usar algoritmos seguros públicos
 - Usar implementações de confiança

Primitivas de cifra simétrica

- Primitiva de cifra em bloco
 - Função **E**: $\{0,1\}^l \rightarrow \{0,1\}^n \rightarrow \{0,1\}^n$ tal que $\forall k \in \{0,1\}^l$ a função **E**(k) é uma permutação
 - Designa-se por D: $\{0,1\}^l \rightarrow \{0,1\}^n \rightarrow \{0,1\}^n$ a função que verifica $\forall k \in \{0,1\}^l \in \forall m \in \{0,1\}^n$: D(k)(E(k)(m)) = m
- A dimensão do bloco é n (ex. 64 bit, 128 bit)
- A dimensão da chaves é I (ex. 56 bit, 128 bit, 256 bit)

Características gerais das primitivas simétricas

 A dimensão n do bloco deve ser suficientemente elevada para impossibilitar ataques baseados na estatística do texto em claro

- A dimensão da chave ${f 1}$ deve ser suficientemente elevada para impossibilitar

ataques de pesquisa exaustiva

- Elementos construtores
 - Substituições
 - Transposições

Modos de operação

 Problema: Como efectuar a cifra de mensagens com dimensão superior à de um bloco?

Considerações:

- Padrões no texto em claro não deverão ser evidentes no texto cifrado
- A eficiência do método usado não deverá ser muito inferior à eficiência da primitiva de cifra em bloco usada
- A dimensão do texto cifrado deve ser aproximadamente igual à dimensão do texto em claro
- Em algumas aplicações é importante que a decifra seja capaz de recuperar de erros, adições e remoções de bits ocorridos no texto cifrado
- Acesso aleatório capacidade de decifrar e alterar apenas parte do criptograma

Modo Electronic-Codebook (ECB)

- A primtiva garante que os padões do bloco em claro não passam para os bloco cifrado
- E se o bloco se repetir na mensagem?

Modo electronic-codebook (ECB)

- Blocos de texto em claro iguais:
 - Blocos de texto em claro iguais, cifrados com a mesma chave, implicam blocos de texto cifrado iguais
- Interdependência na cifra:
 - A cifra é realizada de forma independente de bloco para bloco
- Propagação de erros:
 - A ocorrência de erros num bloco de texto cifrado afecta apenas a decifra desse bloco
- Acesso aleatório:
 - Permite acesso aleatório para decifra e "recifra" de múltiplos de blocos.

Efeito dos modos de operação

Imagem original

Imagem cifrada com **DES** em modo **ECB**

Efeito dos modos de operação

Imagem original

Imagem cifrada com **AES** em modo **ECB**

Efeito dos modos de operação

Imagem original

DES+CBC ou AES+CBC

Modo cipher block chaining (CBC)

Decifra

?

Modo cipher block chaining (CBC)

Modo cipher block chaining (CBC)

- Blocos de texto em claro iguais:
 - Sob a mesma chave e sob o mesmo vector de iniciação, duas mensagens iguais implicam criptogramas iguais
- Interdependência na cifra:
 - A cifra de um bloco de texto em claro afecta a cifra dos blocos seguintes
- Propagação e recuperação de erros:
 - A ocorrência de erros num bloco $\mathbf{c}_{\mathbf{j}}$ de texto cifrado afecta a decifra do próprio bloco e a do bloco seguinte $\mathbf{c}_{\mathbf{j+1}}$. A decifra do bloco $\mathbf{c}_{\mathbf{j+1}}$ terá erros nas mesmas posições que $\mathbf{c}_{\mathbf{j}}$
- Observações:
 - A reordenação dos blocos de texto cifrado afecta a decifra
 - É relativamente fácil manipular um determinado bloco de texto em claro

Boas práticas sobre o IV

- Deve ser armazenado/transmitido em claro
- Não se deve repetir (uniqueness)
- Não deve ser previsível

Padding

- Seja X o número de bytes a acrescentar para que a dimensão da mensagem seja múltipla da dimensão do bloco
- Ex: PKCS# 5 (CBC-PAD):
 - Acrescentar X bytes com o valor X
 - Utilizações PKCS# 7, CMS, SSL
- A segurança do esquema depende da forma de padding?
- Ataque proposto por S. Vaudenay: chosen ciphertext attack utilizando o destinatário como oráculo que recebe criptogramas e retorna 1 ou 0 conforme o padding esteja correcto ou não
 - https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/ 2850.pdf

Demonstração com OpenSSL

Cifra e MAC

Modos de operação em stream

- Modos como o CBC precisam de algoritmos diferentes para cifra e decifra
- Modo de operação em stream

Modos de operação em stream

- Modo Stream
 - Estado I
 - Key stream ks
 - $ks_i = E(k)(I_i)$
 - $c_i = m_i \oplus ks_i$
- Cipher FeedBack (CFB)
 - $I_i = C_{i-1}$
- Output FeedBack (OFB)
 - I_i = ks_{i-1}
- Counter (CTR)
 - $I_i = f(I_{i-1})$
- Problema:
 - se $\mathbf{ks}_i = \mathbf{ks}_j$ então $\mathbf{m}_i \oplus \mathbf{m}_j = \mathbf{c}_i \oplus \mathbf{c}_j$

Modo Counter (CTR)

Modo Counter (CTR)

- Blocos de texto em claro iguais:
 - Sob a mesma chave e sob o mesmo vector de iniciação, duas mensagens iguais implicam criptogramas iguais
- Propagação e recuperação de erros:
 - A ocorrência de erros num bloco de texto cifrado $\mathbf{c_j}$ afecta apenas a decifra desse bloco. O bloco $\mathbf{m_j}$ resultante da decifra do bloco $\mathbf{c_j}$ terá erros nas mesmas posições que $\mathbf{c_j}$
- Acesso aleatório:
 - Permite acesso aleatório para decifra e "recifra" de bits
- Observações:
 - É relativamente fácil manipular um determinado bloco de texto em claro

Cifra autenticada

- Para garantir confidencialidade e simultaneamente autenticidade, tem de se usar uma combinação dos esquemas Cifra e MAC
- Existem duas abordagens
 - Encrypt-then-MAC
 - E(k₁)(M) || T(k₂)(E(k₁)(M))
 - A marca indica se houve alteração ou não do criptograma
 - MAC-then-encrypt
 - E(k₁)(M | | T(k₂)(M))
 - A marca é gerada sobre a mensagem, e é posteriormente tudo cifrado
- Existem modos de operação cujo objectivo é produzirem uma cifra autenticada, combinando as operações num só algoritmo
 - Galois Counter Mode (GCM)
 - Offset codebook mode (OCB)
 - Counter with CBC-MAC (CCM)

Cifra autenticada - Exemplo

Galois Counter Mode

Adaptado de

https://en.wikipedia.org/wiki/Galois/Counter Mode

