Proabilidade e Estatística

Exercícios sobre Convergência Estocástica

Exercício 1 Considere o espaço de probabilidade $(\{0,1\}, 2^{\{0,1\}}, \mathbb{P}), \text{ com } \mathbb{P}[\{0\}] = 1/2$. Considere a sequência de variáveis aleatórias $X_n = \mathbf{1}_{\{1\}}$ para todo $n \in \mathbb{N}$ e $X = \mathbf{1}_{\{0\}}$. Mostre que $X_n \stackrel{d}{\to} X$, mas que não há convergência em probabilidade de X_n a X.

Exercício 2 Considere o espaço de probabilidade $([0,1], \mathcal{B}[0,1], \lambda)$, com λ a medida uniforme. Considere a sequência de variáveis aleatórias:

$$X_{1} = \mathbf{1}_{[0,1]}$$

$$X_{2} = \mathbf{1}_{[0,1]} + \mathbf{1}_{[0,1/2]}$$

$$X_{3} = \mathbf{1}_{[0,1]} + \mathbf{1}_{[1/2,1]}$$

$$X_{4} = \mathbf{1}_{[0,1]} + \mathbf{1}_{[0,1/3]}$$

$$X_{5} = \mathbf{1}_{[0,1]} + \mathbf{1}_{[1/3,2/3]}$$

$$X_{6} = \mathbf{1}_{[0,1]} + \mathbf{1}_{[2/3,1]}$$

$$X_{7} = \mathbf{1}_{[0,1]} + \mathbf{1}_{[0,1/4]}$$

$$\vdots$$

- a Mostre que, para todo $\omega \in [0,1]$, a sequência $(X_n(\omega))_{n \in \mathbb{N}}$ não converge. Conclua que não X_n não converge quase certamente.
- b Mostre que $X_n \stackrel{p}{\to} X_1$.

Exercício 3 Seja X_n uma sequência de variáveis aelatórias, que converge em distribuição a uma variável aleatória X. Mostre que, se a função distribuição F_X de X é contínua, então:

$$\lim_{n \to \infty} \sup_{s \in (-\infty, \infty)} |F_{X_n}(s) - F_X(s)| = 0.$$

Dica: considere $k \in \mathbb{N}$ e use continuidade para encontrar pontos s_1, s_2, \ldots, s_k tais que $F_X(s_j) = \frac{j}{k+1}$. Use esses pontos para limitar por cima o supremo.

Exercício 4 No que segue, sejam X_n e Y_n duas sequências de variáveis aleatórias definidas num mesmo espaço de probabilidade, e a_n e b_n duas sequências de números reais. Mostre que:

- 1. $X_n = O_P(1)$ se e somente se existe uma sequência de números reais $\epsilon_n \uparrow \infty$ tais que $\lim_{n\to\infty} \mathbb{P}[|X_n| > \epsilon_n] = 0$.
- 2. Se $X_n = O_P(a_n)$ e $a_n \downarrow 0$, então $Y_n = o_P(1)$.

- 3. Se $X_n = o_P(a_n)$, então $Y_n = O_P(a_n)$.
- 4. Se $X_n = O_P(a_n)$ e $Y_n = O_P(b_n)$ então $X_n Y_n = O_P(a_n b_n)$. e $X_n Y_n = O_P(\max\{a_n, b_n\})$.
- 5. Se, para r > 0, $\mathbb{E}[|X_n|^r] < \infty$ para todo $n \in \mathbb{N}$ então $X_n = O_P(||X_n||_r)$. *Dica:* use a desigualdade de Markov.

Exercício 5 Sejam $X_1, X_2, ..., X_n$ duas variáveis aleatórias definidas num mesmo espaço de probabilidade. Mostre que essas variáveis aleatórias são independentes se, e somente se, definindo o vetor aleatório $\mathbf{X} = (X_1, X_2, ..., X_n)'$, a função caractéristica de \mathbf{X} satisfaz:

$$\phi_{\mathbf{X}}(s) = \prod_{i=1}^{n} \phi_{X_i}(s_i), \quad \forall s \in \mathbb{R}^n.$$

Exercício 6 Sejam $\boldsymbol{X}=(X_1,X_2,\ldots,X_n)'$ um vetor de variáveis aleatórias definidas no mesmo espaço de probabilidade. Dizemos que \boldsymbol{X} segue distribuição normal com média $\boldsymbol{\mu}\in\mathbb{R}^n$ e matriz de variância-covariância $\boldsymbol{\Sigma}\in\{A\in\mathbb{R}^{n\times n}:A$ positiva semidefinida}, denotado por $\boldsymbol{X}\sim\mathcal{N}(\mu,\boldsymbol{\Sigma})$ se a medida induzida $\mathbb{P}_{\boldsymbol{X}}$ admite densidade (com respeito à medida de Lebesgue em \mathbb{R}^n) dada por:

$$f(s) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(s-\mu)' \Sigma(s-\mu)\right).$$

Nesse caso, é possível mostrar que $\mathbb{E}[X_j]=\pmb{\mu}_j$ e $\Sigma_{i,j}=\mathbb{C}(\pmb{X}_i,\pmb{X}_j)$ para todo $i,j=1,\dots,n.$

- a Mostre que X_1, \ldots, X_n são independentes se, e somente se, $\mathbb{C}(\boldsymbol{X}_i, \boldsymbol{X}_j) = 0$ para $i \neq j$. Dica: a função característica de \boldsymbol{X} é $\boldsymbol{s} \mapsto \exp(i\boldsymbol{\mu}'\boldsymbol{s} + (1/2)\boldsymbol{s}'\boldsymbol{\Sigma}\boldsymbol{s})$.
- b A equivalência anterior também é verdadeira pra qualquer distribuição não normal?

Exercício 7 Seja X_1, X_2, \ldots uma sequência de vetores aleatórios k-dimensionais iid com $\mathbb{V}[X_{1,l}] < \infty$, para $l = 1 \ldots, k$. Denote por $\boldsymbol{\mu} \in \mathbb{R}^k$ o vetor com j-ésima entrada dada por $\boldsymbol{\mu}_j = \mathbb{E}[X_{1,j}]$ e Σ a matriz $k \times k$ com entrada (i,j) dada por $\Sigma_{i,j} = \mathbb{C}(X_{1,i}, X_{1,j})$ Use o dispositivo de Crámer-Wold para mostrar que, quando $n \to \infty$:

$$\frac{1}{\sqrt{n}} \sum_{j=1}^{n} (\boldsymbol{X}_{j} - \boldsymbol{\mu}) \stackrel{d}{\to} \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma})$$

Exercício 8 Seja $(X_n)_n$ uma sequência de variáveis aleatórias. Suponha que $X_n \stackrel{d}{\to} c$, onde $c \in \mathbb{R}^k$ é uma **constante**. Mostre que $X_n \stackrel{p}{\to} c$.