Kapittel 10: Rekursive funksjoner

Nettkurs

Boka

De triangulære tallene

• Formelen til funksjon til de triangulære tallene: $\blacktriangle(n+1) = \blacktriangle(n) + (n+1)$

Form, innhold og plassholdere

- En plassholder er et ord eller en variabel som kan stå for noe annet.
- Det er viktig å være klar over at i en gitt kontekst, kan enkelte symboler være reserverte og ikke brukes som plassholdere $(+,-,\times,\div,\cdot,osv)$
- Noen ganger ønsker vi å oppgi hva slags form et uttrykk er på, og da bruker vi plassholdere.
 - $\circ (1+4)/(2+3)$ er på formen x/y

Rekursive funksjoner

- ullet Hvis en mengde er induktivt definert, , kan vi definere en **rekursiv funksjon** (recursive function) f med definisjonsområdet Mpå følgende måte:
 - \circ For hvert element x i basismengden til M, spesifiser en verdi for f(x).
 - Dette kalles basissteget eller basistilfellet (base case) for funksjonen.
 - For hvert element x i M som fremkommer i et induksjonssteg, definer verdien til f(x) ved å bruke de tidligere definerte verdiene for f. Dette kalles **rekursjonssteget** (recursion step).

Eksempler på rekursive funksjoner

- Rekursiv definisjon på naturlige tall:
 - La d(0) = 0
 - $\circ \ \ \mathsf{La} \ d(n+1) = d(n) + 1$, for alle $n \in \mathbb{N}$.
- Fakultetsfunksjonen:
 - La 0! = 1
 - \circ La $(n+1)! = (n+1) \cdot n!$, for alle $n \in \mathbb{N}$.
- Fibonacci-tallene:
 - La F(0) = 1 og F(1) = 1.
 - $\circ \ \ \mathsf{La}\ F(n+2) = F(n) + F(n+1) \ \mathsf{for\ alle}\ n \in \mathbb{N}.$
- Bitstrenger:
 - La v(0) = 0 og v(1) = 1
 - \circ Hvis b er en bitstreng, la $v(b\mathbf{0}) = 2 \cdot v(b)$ og

$$v(b1) = 2 \cdot v(b) + 1.$$