Clamical Mechanics (Phys 601) - September 20, 2011 Canonical variables (introduced in previous lecture): $p_i = \frac{\partial L}{\partial \dot{q}_i}$ \rightarrow (q_i, p_i) are canonical variables Lagrangian mechanics:

q;(f) is only independent function

Les second order differential egn Hamiltonian mechanics: q:(t) and p:(t) are independent functions Gind differential equations for both q; (+) and p; (+) Remember how we got to the (Euler) Lagrange equation: $S[q_i(t)] = \int_{t}^{\infty} L dt$ $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ This record order differential equation requires that we specify not only $q_i(t,)$ but also $q_i(t,)$ to determine how the system will evolve in time? => vre p; as independent "coordinate"

* Hamilton's equations

Recall:
$$H = \begin{cases} p_j \dot{q}_j - L \\ \frac{\partial L}{\partial \dot{q}_j} = p_j (q_i, \dot{q}_i, t) \end{cases}$$

$$\dot{q}_j = \dot{q}_j (q_i, p_i, t)$$

To find the Hamiltonian, we determined the generalized momenta p, and inverted those expressions to find q as a fullation of qi, p; and t.

Total differential in terms of q; , q, , t:

$$dH = \sum_{i}^{m} (q_i dp_i + p_i dq_i)$$

where
$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$
 and $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} = \dot{p}_i = \frac{\partial L}{\partial q_i}$

$$dH = \left[\frac{1}{2} \left(\dot{q}_i dp_i - \dot{p}_i dq_i \right) - \frac{\partial L}{\partial t} dt \right]$$

Total differential in terms of qi, pi, t:

$$dH = \sum_{i} \left(\frac{\partial H}{\partial q_{i}} dq_{i} + \frac{\partial H}{\partial p_{i}} dp_{i} \right) + \frac{\partial H}{\partial t} dt$$

$$\Rightarrow$$
 $\dot{q}_i = \frac{\partial H}{\partial p_i}$ and $\dot{p}_i = -\frac{\partial H}{\partial q_i}$
Hamilton's equations of notion

Two first order differential equations for the independent functions q; and p; of time

Notice also
$$\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$$
, and even $\frac{dH}{dt} = \frac{\xi}{i} \left(\frac{\partial H}{\partial q_i} \frac{dq_i}{dt} + \frac{\partial H}{\partial p_i} \frac{dp_i}{dt} \right) + \frac{\partial H}{\partial t}$

$$\Rightarrow \frac{dt}{dt} = \frac{\partial t}{\partial H} = -\frac{\partial t}{\partial T}$$

All time dependence in the Hamiltonian is explicit, even though q; and p; vary with time.

By construction (H: 5 p;q; -L) the of L and H are equal and opposite.

Again, if $\frac{\partial L}{\partial t} = 0$ or $\frac{\partial H}{\partial t} = 0 \Rightarrow$ H is a constant of motion.

In the special case of conservative systems with $V(q_i)$ and time-independent constraints, we have shown that

Σpiqi = 2T => H=T+V=E= combant

Hamilton's equations:
$$|\dot{p}_{i}| = -\frac{\partial H}{\partial q_{i}}$$
, $i = 1, ..., m$
 $|\dot{q}_{i}| = \frac{\partial H}{\partial p_{i}}$;

If $|\dot{q}_{i}| = 0$, then $|\dot{p}_{i}| = constant = \omega$;

 $|\dot{q}_{i}| = \frac{\partial H}{\partial p_{i}}$;

 $|\dot{q}_{i}| = \frac{\partial H}{\partial \omega_{i}} = 0$, then $|\dot{p}_{i}| = constant = \omega$;

 $|\dot{q}_{i}| = \frac{\partial H}{\partial \omega_{i}} = 0$, $|\dot{q}_{i}| = \frac{\partial H}{\partial \omega_{i}} + q_{i}$, $|\dot{q}_{i}| = \frac{\partial H}{\partial \omega_{i}} + q_{i}$, $|\dot{q}_{i}| = \frac{\partial H}{\partial \omega_{i}} = 0$, $|\dot{q}_{i}| = \frac{\partial H}{\partial \omega_{i}} + q_{i}$, $|\dot{q}_{i}| = \frac{\partial H}{\partial \omega_{i}}$

* Variational derivation of Hamilton's equations:

Hamilton's principle stated
$$SS=0$$
with action $S=\int_{t_i}^{t_i} L(q_i,q_i,t)dt$
Because $L=\sum_{t_i}^{t_i} p_i q_i - H(q_i,p_i,t)$

$$\delta S = \delta \int_{t_i}^{t_i} dt \left[\sum_{i}^{t_i} p_i \dot{q}_i - H(q_i, p_i, t) \right]$$

-
$$\frac{\partial H}{\partial q_i} \int_{Q_i} \frac{\partial H}{\partial p_i} \int_{Q_$$

and
$$p_i \frac{d}{dt} dq_i = \frac{d}{dt} \left(p_i dq_i \right) - p_i dq_i$$

$$= \int_{t_i}^{t_2} dt \, \sum_{i} \left[\left(\dot{q}_i - \frac{\partial H}{\partial p_i} \right) \delta p_i - \left(\dot{p}_i + \frac{\partial H}{\partial q_i} \right) \delta q_i \right]$$

$$\Rightarrow \frac{\partial H}{\partial p_i} = \frac{\partial H}{\partial q_i}$$

$$\Rightarrow \frac{\partial H}{\partial p_i} \quad \text{and} \quad p_i = -\frac{\partial H}{\partial q_i}$$

* Relation between L and H:

Legendre transformation of
$$f(x)$$
 to $g(p)$

$$q(p) = \mathcal{L}(f(x)) = \alpha(p)p - f(x(p))$$

with
$$p = \frac{\partial f}{\partial x}$$

For
$$f(x)$$
 conver $(f''(x)>0)$
find $x(p)$ such that the
distance g between $f(x)$
and the line is maximal

$$\Rightarrow g = xp - f(x)$$

$$\frac{dg}{dx} = p - f'(x) = 0$$

$$(=) p = \int_{-\infty}^{\infty} (x)$$

Example:
$$f(x) = x^2 \rightarrow f \text{ vid } g(p) = \mathcal{L}(f(x))$$

$$p = \frac{1}{2}(x) = 2x \Rightarrow x(p) = \frac{p}{2}$$

$$g(p) = x(p) \cdot p - f(x(p)) = \frac{p^2}{2} - (\frac{p}{2})^2 = \frac{1}{4}p^2$$

Properly: if
$$f(x)$$
 is convex then also $g(p)$ convex

$$g'(p) = \frac{dx}{dp} \cdot p + \chi(p) - f'(\chi(p)) \frac{dx}{dp} = \chi(p)$$

$$g''(p) = \frac{dx}{dp}$$

If $f''(x) > 0$ with $p = f'(x)$, then $dp > 0 \Rightarrow dx > 0$

Property: $\mathcal{L}^2 = 1 \Rightarrow \text{Legendre hausform of Legendre transform is identity greation}$

$$f(x) \xrightarrow{\mathcal{L}} g(p) = \chi(p) \cdot p - f(\chi(p)) \text{ with } p = f'(x)$$

$$g(p) \xrightarrow{\mathcal{L}} h(x) = \chi \cdot p(x) - g(p(x)) \text{ with } x = g'(p) \cdot \chi(p)$$

$$= h(x) = \chi \cdot p(x) - \chi(p(x)) \cdot p(x) + f(\chi(p(x)))$$

$$= f(\chi(p(x))) = f(x)$$

Into intuitively dear

$$\mathcal{L}^2(f(x)) = f(x)$$
and $d^{-1}(f(x)) = \mathcal{L}(f(x)) \rightarrow \text{rel}$ -inverse

Legendre transform in thermodynamics:

U: internal energy of a system = U(S, V)

S = entropy

V = volume

3 dV =
$$\frac{\partial U}{\partial S}$$
 dS + $\frac{\partial U}{\partial V}$ dV = T dS - P dV

 $T = \frac{\partial U}{\partial S}$ $P = -\frac{\partial U}{\partial V}$

Introduce Helmholtz free energy using Legendre transform:

$$F(T, V) = U(S, V) - TS \quad \text{with } T = \frac{\partial U}{\partial S}$$

=> $dF = \frac{\partial U}{\partial S} + \frac{\partial U}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT + \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT + \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT + \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT + \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT + \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial U}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS - S dT$

= $\frac{\partial F}{\partial T} dT - \frac{\partial F}{\partial V} dV - T dS$