Series de tiempo

Tarea 3

Fecha de entrega: 3 de noviembre

- 1. Considera $\{X_t: t \in T\}$ un proceso estocástico.
 - (a) Demuestra que si $\{X_t : t \in T\}$ es estrictamente estacionario entonces $\{X_t : t \in T\}$ es débilmente estacionario.
 - (b) Demuestra que el reverso es cierto si $\{X_t : t \in T\}$ es un proceso gaussiano.
- 2. Sea $\{X_t : t \in T\}$ una serie de tiempo estacionaria de media μ y función de autocorrelación $\rho(\cdot)$. Demuestra que el mejor predictor lineal de X_{t+h} de la forma aX_t+b se encuentra tomando $a=\rho(h)$ y $b=\mu(1-\rho(h))$.
- 3. Sea $\{X_t : t \in T\}$ un proceso MA de orden 2 dado por

$$X_t = Z_t + \theta Z_{t-2},$$

donde | θ |< 1 y Z_t es un ruido blanco de media cero y varianza 1.

- (a) Encuentra $\rho(h)$.
- (b) Utiliza la fórmula de Bartlett para encontrar w_{ii} .
- (c) Simula una trayectoria de tamaño 200 de este proceso para $\theta = 0.8$. Obtén la función de autocorrelación muestral y grafica las bandas de confianza asintóticas de $\widehat{\rho}(h)$ para $h \leq 40$.
- 4. Considera el proceso estocástico X_t definido como

$$X_t = a + bt + Y_t,$$

donde Y_t es un ruido blanco de media cero y varianza σ^2 .

(a) Si $m_t = a + bt$, demuestra que el filtro de promedios móviles de orden q con pesos $(2q + 1)^{-1}$ deja intacto a m_t , esto es,

$$m_t = (2q+1)^{-1} \sum_{j=-q}^{q} m_{t-j}$$

(b) Si ahora se define a

$$W_t = (2q+1)^{-1} \sum_{j=-q}^{q} X_{t-j}.$$

Obtén la media y la función de autocovarianza de W_t . ¿Es estacionario el proceso W_t ?

- (c) Construye una serie de tiempo (fijando una semilla para efectos de reproducibilidad) de tamaño 100 con un componente de tendencia dado por $m_t = 1 + 2t$ y $Y_t \sim \mathcal{N}(0, 100^2)$. Y realiza lo siguiente.
 - i. Calcula la media muestral y la función de autcorrelación muestral.
 - ii. Aplica un filtro de promedios móviles de orden q=1,2,3 y calcula la media muestral del proceso W_t resultante. ¿Qué puedes observar si la comparas con respecto a la de X_t ? ¿Esto es algo que esperabas sucediera?
 - iii. Obtén los residuales $\hat{Y}_t = X_t W_t$. ¿Se puede considerar que ya son estacionarios?
- 5. Sea $\{X_t : t \in T\}$ un proceso AR de orden 1 dado por

$$X_{t+1} = \phi X_t + Z_{t+1},$$

donde $|\phi| > 1$ y Z_t es un ruido blanco de media cero y varianza σ^2 . Multiplica por ϕ^{-1} ambos lados de la ecuación, lo cual deja a X_t en términos de X_{t+1} . Resuelve de manera recursiva hasta encontrar una función para X_t que sólo dependa del ruido blanco. ¿Consideras que es natural la solución?

- 6. Considera la base de datos *co2MaunaLoa* que contiene las concentraciones atmosféricas mensuales de CO2 del volcán Mauna Loa en el periodo de 1959 a 1997.
 - (a) Grafica los datos y comenta si son estacionarios o no. Si no son estacionarios, ¿por qué no lo son?
 - (b) Considera ahora el proceso $Y_t = (1 B)(1 B^{12})X_t$ y grafica el ACF. ¿Te parece estacionario ahora? Si no es así, comenta los motivos.
 - (c) Finalmente, utiliza la función *ets* de la paquetería *forecast* de R y analiza los residuales resultantes. ¿Te parecen estacionarios?

- 7. Considera la base de datos *tempNottingham* que contiene las temperaturas promedio mensuales de la ciudad de Nottingham de 1920 a 1939.
 - (a) Grafica los datos y comenta si son estacionarios o no. Si no son estacionarios, ¿por qué no lo son?
 - (b) Considera ahora el proceso $Y_t = (1 B^{12})X_t$ y grafica el ACF. ¿Te parece estacionario ahora? Si no es así, comenta los motivos.
 - (c) Finalmente, utiliza la función *ets* de la paquetería *forecast* de R y analiza los residuales resultantes. ¿Te parecen estacionarios?

Actividades de DataCamp

- 1. Manipulating Time Series Data in R
- 2. Time Series Analysis in R
- 3. Visualizing Time Series Data in R