TÀI LIỆU DÀNH CHO ĐÔI TƯỢNG HỌC SINH KHÁ + GIỚI MỰC 7-8-9-10 ĐIỀM

DANG 1. PHƯƠNG PHÁP GIÁI PHƯƠNG TRÌNH LOGARIT

Dạng 1.1 Phương pháp đưa về cùng cơ số

+ Nếu
$$a > 0$$
, $a \ne 1$: $\log_a x = b \Leftrightarrow x = a^b$ (1)

+ Nếu
$$a > 0$$
, $a \ne 1$: $\log_a f(x) = \log_a g(x) \Leftrightarrow f(x) = g(x)$ (2)

+ Nếu
$$a > 0$$
, $a \ne 1$: $\log_a f(x) = g(x) \Leftrightarrow f(x) = a^{g(x)}$ (mũ hóa) (3)

🖎 Các bước giải phương trình & bất phương trình mũ – logarit

□ **Bước 1**. Đặt điều kiện (điều kiện đại số + điều kiện loga), ta cần chú ý:

$$\log_{a} b \xrightarrow{\text{DK}} \begin{cases} 0 < a \neq 1 \\ b > 0 \end{cases} \text{ và } \begin{cases} \log_{a} \left[f(x) \right] & \xrightarrow{\text{DK}} f(x) > 0 \\ \log_{a} \left[f(x) \right] & \xrightarrow{\text{DK}} f(x) \neq 0 \end{cases}.$$

- ☐ **Bước 2**. Dùng các công thức và biến đổi đưa về các cơ bản trên, rồi giải.
- □ **Bước 3**. So với điều kiên và kết luân nghiêm.
- (Mã 110 2017) Tìm tập nghiệm S của phương trình $\log_{\sqrt{2}}(x-1) + \log_{\frac{1}{2}}(x+1) = 1$. Câu 1.

A.
$$S = \{3\}$$

B.
$$S = \{2 - \sqrt{5}; 2 + \sqrt{5}\}$$

C.
$$S = \{2 + \sqrt{5}\}$$

C.
$$S = \left\{2 + \sqrt{5}\right\}$$
 D. $S = \left\{\frac{3 + \sqrt{13}}{2}\right\}$

Lời giải

Điều kiện
$$\begin{cases} x-1>0 \\ x+1>0 \end{cases} \Leftrightarrow x>1 \quad (*).$$

Phương trình $\Leftrightarrow 2\log_2(x-1) - \log_2(x+1) = 1$

$$\Leftrightarrow 2\log_2(x-1) = \log_2(x+1) + \log_2 2$$

$$\Leftrightarrow \log_2(x-1)^2 = \log_2[2(x+1)]$$

$$\Leftrightarrow x^2 - 2x + 1 = 2x + 2$$

$$\Leftrightarrow x^2 - 4x - 1 = 0 \Leftrightarrow \begin{bmatrix} x = 2 - \sqrt{5}(L) \\ x = 2 + \sqrt{5} \end{bmatrix}$$
. Vậy tập nghiệm phương trình $S = \{2 + \sqrt{5}\}$

(THPT Hàm Rồng Thanh Hóa 2019) Số nghiệm của Câu 2. phương trình $\log_3(x^2 + 4x) + \log_{\frac{1}{3}}(2x + 3) = 0$ là

$$\mathbf{R}$$
 3

Lời giải

Viết lại phương trình ta được

$$\log_3(x^2+4x) = \log_3(2x+3) \iff \begin{cases} 2x+3>0 \\ x^2+4x=2x+3 \end{cases} \Leftrightarrow \begin{cases} x>-\frac{3}{2} \\ x=1 \\ x=-3 \end{cases} \Leftrightarrow x=1.$$

(Đề Tham Khảo 2018) Tổng giá trị tất cả các nghiệm của phương trình Câu 3. $\log_3 x \cdot \log_9 x \cdot \log_{27} x \cdot \log_{81} x = \frac{2}{3}$ bằng

A. 0.

B. $\frac{80}{9}$.

C. 9.

D. $\frac{82}{9}$.

Lời giải

Chọn D

Điều kiện x > 0.

Phương trình đã cho tương đương với

$$\log_{3} \cdot \frac{1}{2} \cdot \log_{3} x \cdot \frac{1}{3} \log_{3} x \cdot \frac{1}{4} \log_{3} x = \frac{2}{3} \Leftrightarrow (\log_{3} x)^{4} = 16 \Leftrightarrow \begin{bmatrix} \log_{3} x = 2 \\ \log_{3} x = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 9 \\ x = \frac{1}{9} \end{bmatrix}$$

Nghiệm của phương trình $\log_2 x + \log_4 x = \log_{\frac{1}{2}} \sqrt{3}$ là Câu 4.

A.
$$x = \frac{1}{\sqrt[3]{3}}$$
. **B.** $x = \sqrt[3]{3}$. **C.** $x = \frac{1}{3}$. **D.** $x = \frac{1}{\sqrt{3}}$.

B.
$$x = \sqrt[3]{3}$$

C.
$$x = \frac{1}{3}$$
.

D.
$$x = \frac{1}{\sqrt{3}}$$
.

Lời giải

Điều kiên: x > 0

Ta có:
$$\log_2 x + \log_4 x = \log_{\frac{1}{2}} \sqrt{3} \iff \log_2 x + \frac{1}{2} \log_2 x = -\frac{1}{2} \log_2 3$$

$$\Leftrightarrow 2\log_2 x + \log_2 x + \log_2 3 = 0 \Leftrightarrow 3\log_2 x + \log_2 3 = 0$$

$$\Leftrightarrow \log_2 x^3 + \log_2 3 = 0 \Leftrightarrow \log_2 \left(3x^3\right) = 0 \Leftrightarrow 3x^3 = 1 \Leftrightarrow x = \frac{1}{\sqrt[3]{3}}.$$

So với điều kiện, nghiệm phương trình là $x = \frac{1}{\sqrt[3]{3}}$.

(THPT Lê Quý Dôn Dà Nẵng 2019) Gọi S là tập Câu 5. nghiêm của phương trình $\log_{\sqrt{2}}(x+1) = \log_2(x^2+2) - 1$. Số phần tử của tập S là

A. 2

D. 0

Lời giải

ĐK: x > -1

$$\log_{\sqrt{2}}(x+1) = \log_2(x^2+2) - 1 \Rightarrow (x+1)^2 = \frac{x^2+2}{2} \Rightarrow \begin{cases} x = 0(TM) \\ x = -4(L) \end{cases}$$

Vây tập nghiệm có một phần tử

(Chuyên Lam Son Thanh Hóa 2019) Số nghiệm thục của phương trình Câu 6. $3\log_3(x-1) - \log_{\frac{1}{2}}(x-5)^3 = 3$ là

A. 3

B. 1

C. 2

D. 0

Lời giải

Chọn B

Điều kiên: x > 5

$$3\log_3(x-1) - \log_{\frac{1}{3}}(x-5)^3 = 3 \Leftrightarrow 3\log_3(x-1) + 3\log_3(x-5) = 3$$

$$\Leftrightarrow \log_3(x-1) + \log_3(x-5) = 1 \Leftrightarrow \log_3\left[(x-1)(x-5)\right] = 1 \Leftrightarrow (x-1)(x-5) = 3$$

$$\Leftrightarrow x^2 - 6x + 2 = 0 \Leftrightarrow x = 3 \pm \sqrt{7}$$

Đối chiếu điều kiện suy ra phương trình có 1 nghiệm $x = 3 + \sqrt{7}$

Câu 7. (Chuyên Lê Hồng Phong Nam Định 2019) Tổng các nghiệm của phương trình $\log_{\sqrt{3}}(x-2) + \log_3(x-4)^2 = 0$ là $S = a + b\sqrt{2}$ (với a,b là các số nguyên). Giá trị của biểu thức Q = a.b bằng

A. 0.

B. 3.

C. 9.

<u>D</u>. 6.

Lời giải

Chọn D

Điều kiện: $2 < x \ne 4$.

Với điều kiên trên, phương trình đã cho tương đương

$$2\log_3(x-2) + 2\log_3|x-4| = 0 \Leftrightarrow \log_3(x-2)|x-4| = 0 \Leftrightarrow (x-2)|x-4| = 1$$

$$\Leftrightarrow \begin{bmatrix} (x-2)(x-4) = 1 \\ (x-2)(x-4) = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 - 6x + 7 = 0 \\ x^2 - 6x + 9 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 3 \pm \sqrt{2} \\ x = 3 \end{bmatrix}$$

So lại điều kiện, ta nhận hai nghiệm $x_1 = 3 + \sqrt{2}$; $x_2 = 3$

Ta được: $S = x_1 + x_2 = 6 + \sqrt{2} \implies a = 6; b = 1$. Vậy Q = a.b = 6.

Câu 8. (Chuyên Nguyễn Du-Đăk Lăk 2019) Tổng tất cả các nghiệm của phương trình $\log_2(x+1) + \log_2 x = 1$ là

<u>A</u>. 1.

B. −1.

C. 2.

D. -2.

Lời giải

Chọn A

Điều kiện: x > 0.

Phương trình tương đương
$$\log_2[(x+1)x] = 1 \Leftrightarrow (x+1)x = 2 \Leftrightarrow x^2 + x - 2 = 0 \Leftrightarrow \begin{bmatrix} x = 1(N) \\ x = -2(L) \end{bmatrix}$$

Vậy tổng các nghiệm của phương trình bằng 1.

Câu 9. Tổng tất cả các nghiệm thực của phương trình $\frac{1}{2}\log(x^2-4x-1) = \log 8x - \log 4x$ bằng

A. 4.

B. 3.

<u>C</u>. 5

D. 1.

Lời giải

Chọn C

Phương trình $\frac{1}{2}\log(x^2-4x-1) = \log 8x - \log 4x$ điều kiện $x > 2 + \sqrt{5}$

$$\Rightarrow \log(x^2 - 4x - 1) = 2\log(\frac{8x}{4x})$$

$$\Leftrightarrow \log(x^2 - 4x - 1) = \log(2^2)$$

$$\Leftrightarrow x^2 - 4x - 1 = 4$$

$$\Leftrightarrow \begin{bmatrix} x = -1 \\ x = 5 \end{bmatrix}.$$

Nghiệm x = -1 loại, x = 5 thỏa mãn.

Suy ra tổng các nghiệm là 5.

Câu 10. Gọi S là tập nghiệm của phương trình $2\log_2(2x-2) + \log_2(x-3)^2 = 2$ trên \mathbb{R} . Tổng các phần tử của S bằng

A.
$$6 + \sqrt{2}$$
.

B.
$$8 + \sqrt{2}$$
.

D.
$$4 + \sqrt{2}$$
.

Lời giải

Chọn D

Điều kiện:
$$\begin{cases} x > 1 \\ x \neq 3 \end{cases}$$
.

$$2\log_2(2x-2) + \log_2(x-3)^2 = 2 \Leftrightarrow \log_2(2x-2)^2 + \log_2(x-3)^2 = 2.$$

$$\Leftrightarrow \log_2[(2x-2)(x-3)]^2 = 2 \Leftrightarrow (2x^2 - 8x + 6)^2 = 2^2.$$

$$\Leftrightarrow \begin{bmatrix} 2x^2 - 8x + 6 = 2 \\ 2x^2 - 8x + 6 = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 - 4x + 2 = 0 \ (1) \\ x^2 - 4x + 4 = 0 \ (2) \end{bmatrix}$$

+)
$$(1) \Leftrightarrow \begin{bmatrix} x = 2 + \sqrt{2} \\ x = 2 - \sqrt{2} \ (l) \end{bmatrix}$$

+)
$$(2) \Leftrightarrow x = 2$$
.

$$\Rightarrow S = \left\{2; 2 + \sqrt{2}\right\}.$$

Vậy tổng các nghiệm của S là: $2+2+\sqrt{2}=4+\sqrt{2}$.

Câu 11. (**SGD** Nam Định 2019) Tổng tất cả các nghiệm của phương trình $\log_3 \sqrt{x^2 - 5x + 6} + \log_{\frac{1}{3}} \sqrt{x - 2} = \frac{1}{2} \log_{\frac{1}{81}} (x + 3)^4$ bằng

A.
$$\sqrt{10}$$
.

B.
$$3\sqrt{10}$$
.

D. 3.

Lời giải

 $\underline{\mathbf{C}}$ họn $\underline{\mathbf{A}}$

Điều kiên: x > 3.

$$\log_3 \sqrt{x^2 - 5x + 6} + \log_{\frac{1}{3}} \sqrt{x - 2} = \frac{1}{2} \log_{\frac{1}{81}} (x + 3)^4$$

$$\Leftrightarrow \frac{1}{2}\log_3(x^2 - 5x + 6) - \frac{1}{2}\log_3(x - 2) = -\frac{1}{2}\log_3(x + 3)$$

$$\Leftrightarrow \log_3(x^2 - 5x + 6) - \log_3(x - 2) + \log_3(x + 3) = 0$$

$$\Leftrightarrow \log_3(x^2 - 9) = 0$$

$$\Leftrightarrow x^2 - 9 = 1 \Leftrightarrow x = \sqrt{10}$$
 (do điều kiện).

Câu 12. (SGD Gia Lai 2019) Cho hai số thực dương x, y thỏa mãn $\log_2(x^2 + y^2) = 1 + \log_2 xy$. Mệnh đề nào dưới đây đúng?

$$\underline{\mathbf{A}}$$
. $x = y$.

B.
$$x > y$$
.

C.
$$x < y$$
.

D.
$$x = v^2$$
.

Lời giải

Chọn A

Với x, y > 0 ta có:

$$\log_2(x^2 + y^2) = 1 + \log_2 xy \Leftrightarrow \log_2(x^2 + y^2) = \log_2 2xy$$
.

$$\Leftrightarrow x^2 + y^2 = 2xy.$$

$$\Leftrightarrow x = y$$
.

Câu 13. Biết phương trình $\log_2(x^2 - 5x + 1) = \log_4 9$ có hai nghiệm thực x_1, x_2 . Tích $x_1 x_2$ bằng:

B.
$$-2$$
.

D. 5.

Lời giải

Chon B

Ta có: $\log_2(x^2 - 5x + 1) = \log_4 9 \iff \log_2(x^2 - 5x + 1) = \log_2 3$

$$\Leftrightarrow x^2 - 5x + 1 = 3 > 0 (\forall x \in \mathbb{R})$$

$$\Leftrightarrow x^2 - 5x - 2 = 0(*)$$

Phương trình (*) có a.c = -2 < 0 nên luôn có 2 nghiệm phân biệt.

Vậy
$$x_1.x_2 = -2$$
.

Câu 14. (Chuyên Long An-2019) Tìm nghiệm phương trình $2\log_4 x + \log_2 (x-3) = 2$.

$$\underline{\mathbf{A}}$$
. $x = 4$.

B.
$$x = 1$$
.

C.
$$x = 3$$
.

D.
$$x = 16$$
.

Lời giải

<u>C</u>họn <u>A</u>

Điều kiện: x > 3.

$$2\log_4 x + \log_2 (x - 3) = 2$$

$$\Leftrightarrow \log_2 x + \log_2 (x-3) = 2$$

$$\Leftrightarrow \log_2 x(x-3) = 2$$

$$\Leftrightarrow x^2 - 3x - 4 = 0$$

$$\Leftrightarrow \begin{cases} x = 4 \\ x = -1 \end{cases}$$

Kết hợp điều kiện, nghiệm của phương trình là: x = 4.

Câu 15. (Chuyên - KHTN - Hà Nội - 2019) Số nghiệm của phương trình $\log_3(x-1)^2 + \log_{\sqrt{3}}(2x-1) = 2$ là

Lời giải

<u>C</u>họn <u>B</u>

Ta có

$$\log_3(x-1)^2 + \log_{\sqrt{3}}(2x-1) = 2$$
, điều kiện $x > \frac{1}{2}$, $x \ne 1$.

$$\Leftrightarrow \log_3 (x-1)^2 + \log_3 (2x-1)^2 = \log_3 9$$

NGUYĒN BẢO VƯƠNG - 0946798489

$$\Leftrightarrow \log_3 \left[(x-1)(2x-1) \right]^2 = \log_3 9$$

$$\Leftrightarrow \left(2x^2 - 3x + 1 \right)^2 = 9$$

$$\Rightarrow \begin{bmatrix} 2x^2 - 3x + 1 = -3 \\ 2x^2 - 3x + 1 = 3 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = -\frac{1}{2} \\ x = 2 \end{bmatrix}$$

Thử lại ta có một nghiệm x = 2 thỏa mãn.

Câu 16. (Sở Quảng Trị 2019) Số nghiệm của phương trình $\log_3(x^2+4x) + \log_{\frac{1}{2}}(2x+3) = 0$ là

A. 2.

B. 0.

C. 3.

D. 1.

Lời giải

Chọn D

Điều kiện:
$$\begin{cases} x^2 + 4x > 0 \\ 2x + 3 > 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} x < -4 \\ x > 0 \\ x > -\frac{3}{2} \end{cases} \Leftrightarrow x > 0 \end{cases}$$

Ta có

$$\log_3(x^2 + 4x) + \log_{\frac{1}{3}}(2x + 3) = 0 \Leftrightarrow \log_3(x^2 + 4x) - \log_3(2x + 3) = 0$$

$$\Leftrightarrow \log_3(x^2 + 4x) = \log_3(2x + 3) \Leftrightarrow x^2 + 2x - 3 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -3(l) \end{cases} \Leftrightarrow x = 1.$$

Câu 17. Biết nghiệm lớn nhất của phương trình $\log_{\sqrt{2}} x + \log_{\frac{1}{2}} (2x-1) = 1$ là $x = a + b\sqrt{2}$ (a,b là hai số nguyên). Giá trị của a + 2b bằng

<u>A</u>. 4.

В

C. 0.

D. 1.

Lời giải

Chọn A

Điều kiện
$$x > \frac{1}{2}$$
.

$$\log_{\sqrt{2}} x + \log_{\frac{1}{2}} (2x - 1) = 1 \Leftrightarrow 2\log_2 x - \log_2 (2x - 1) = 1 \Leftrightarrow \log_2 \frac{x^2}{2x - 1} = 1 \Leftrightarrow x^2 - 4x + 2 = 0.$$

Nghiệm lớn nhất của phương trình là $x = 2 + \sqrt{2} \Rightarrow a = 2, b = 1 \Rightarrow a + 2b = 4$.

Câu 18. Tính tổng tất cả các nghiệm thực của phương trình $\log_{\sqrt{3}}(x-2) + \log_3(x-4)^2 = 0$.

A. $6 + \sqrt{2}$.

B. 6.

C. $3+\sqrt{2}$.

D. 9.

Lời giải

Chọn A

Điều kiện:
$$\begin{cases} x > 2 \\ x \neq 4 \end{cases}$$
.

Ta có:
$$\log_{\sqrt{3}}(x-2) + \log_3(x-4)^2 = 0 \Rightarrow [(x-2)(x-4)]^2 = 1$$
.

$$\Leftrightarrow \begin{bmatrix} (x-2)(x-4) = 1 \\ (x-2)(x-4) = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 - 6x + 7 = 0 \\ x^2 - 6x + 9 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 3 + \sqrt{2} \ (nhan) \\ x = 3 - \sqrt{2} \ (loai) \\ x = 3 \ (nhan) \end{bmatrix}.$$

Vậy tổng tất cả các nghiệm thực của phương trình $\log_{\sqrt{3}}(x-2) + \log_3(x-4)^2 = 0$ bằng $6 + \sqrt{2}$.

Câu 19. Gọi S là tổng tất cả các nghiệm của phương trình $\frac{1}{2}\log x^2 + \log(x+10) = 2 - \log 4$. Tính S?

A.
$$S = -10$$
.

B.
$$S = -15$$

B.
$$S = -15$$
. **C.** $S = -10 + 5\sqrt{2}$. **D.** $S = 8 - 5\sqrt{2}$.

D.
$$S = 8 - 5\sqrt{2}$$

Lời giải

Chọn C

Điều kiện phương trình:
$$\begin{cases} x \neq 0 \\ x > -10 \end{cases}$$
.

Phương trình: $\frac{1}{2}\log x^2 + \log(x+10) = 2 - \log 4 \Leftrightarrow \log|x| + \log(x+10) + \log 4 = 2$

$$\Leftrightarrow \log[4|x|(x+10)] = 2 \Leftrightarrow 4|x|(x+10) = 100 \Leftrightarrow |x|(x+10) = 25 (*).$$

+ Khi
$$-10 < x < 0$$
:

Phương trình (*) $\Leftrightarrow -x(x+10) = 25 \Leftrightarrow x^2 + 10x + 25 = 0 \Leftrightarrow x = -5 \text{ (t/m)}.$

+ Khi
$$x > 0$$
:

Phurong trình (*) $\Leftrightarrow x(x+10) = 25 \Leftrightarrow x^2 + 10x - 25 = 0 \Leftrightarrow \begin{vmatrix} x = -5 + 5\sqrt{2} & (t/m) \\ x = -5 - 5\sqrt{2} & (1) \end{vmatrix}$.

Vậy
$$S = -5 + (-5 + 5\sqrt{2}) = -10 + 5\sqrt{2}$$
.

Câu 20. Cho phương trình $\log_4(x+1)^2 + 2 = \log_{\sqrt{2}} \sqrt{4-x} + \log_8(4+x)^3$. Tổng các nghiệm của phương trình trên là

A.
$$4 + 2\sqrt{6}$$
.

C.
$$4-2\sqrt{6}$$
.

C.
$$4-2\sqrt{6}$$
. **D.** $2-2\sqrt{3}$.

Chọn C

Điều kiện:
$$\begin{cases} (x+1)^2 > 0 \\ 4-x > 0 \\ 4+x > 0 \end{cases} \Leftrightarrow \begin{cases} x \neq -1 \\ -4 < x < 4 \end{cases}.$$

$$\log_4 (x+1)^2 + 2 = \log_{\sqrt{2}} \sqrt{4-x} + \log_8 (4+x)^3$$

$$\Leftrightarrow \log_2 |x+1| + \log_2 4 = \log_2 (4-x) + \log_2 (4+x)$$

NGUYĒN BẢO VƯƠNG - 0946798489

$$\Leftrightarrow \log_2 4|x+1| = \log_2 (16-x^2) \Leftrightarrow 4|x+1| = 16-x^2$$

$$\Leftrightarrow \begin{bmatrix} 4(x+1) = 16 - x^2 \\ 4(x+1) = -(16 - x^2) \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 + 4x - 12 = 0 \\ x^2 - 4x - 20 = 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} x = 2 \\ x = -6 \\ x = 2 + 2\sqrt{6} \end{cases}$$

$$x = 2 - 2\sqrt{6}$$

So với điều kiện phương trình trình có 2 nghiệp x = 2; $x = 2 - 2\sqrt{6}$. Vậy tổng các nghiệm là $4 - 2\sqrt{2}$.

Câu 21. Cho $\log_8 |x| + \log_4 y^2 = 5$ và $\log_8 |y| + \log_4 x^2 = 7$. Tìm giá trị của biểu thức P = |x| - |y|.

A.
$$P = 56$$
.

B.
$$P = 16$$
.

C.
$$P = 8$$
.

D.
$$P = 64$$
.

Lời giải

Chọn A

Ta có:

$$\log_8 |x| + \log_4 y^2 = 5 \Leftrightarrow \frac{1}{3} \log_2 |x| + \frac{1}{2} \log_2 y^2 = 5$$
.

$$\Leftrightarrow \log_2 \sqrt[3]{|x|} + \log_2 |y| = 5 \Leftrightarrow \sqrt[3]{|x|} \cdot |y| = 2^5 \Leftrightarrow |x| \cdot |y|^3 = (2^5)^3 = 2^{15} (1)$$
.

Turong tu: $\log_8 |y| + \log_4 x^2 = 7 \Leftrightarrow |y| \cdot |x|^3 = 2^{21} (2)$.

Lấy (1) nhân (2) được
$$x^4 ext{.} y^4 = 2^{36} \Leftrightarrow x^2 ext{.} y^2 = 2^{18}$$
 (3).

Lấy (1) chia (2) được
$$\frac{y^2}{x^2} = \frac{1}{2^6} \Leftrightarrow x^2 = 2^6 \cdot y^2$$
 (4).

Thay (4) vào (3) được
$$2^6 ext{.} ext{ } ext{y}^4 = 2^{18} \Leftrightarrow ext{y}^4 = 2^{12} = \left(2^3\right)^4 \Leftrightarrow \left| ext{y} \right| = 2^3 = 8 ext{ }.$$

Thay
$$|y| = 8$$
 vào (4) được $x^2 = 2^6.64 = (2^6)^2 \Leftrightarrow |x| = 2^6 = 64$. Do đó $P = |x| - |y| = 56$.

Câu 22. Cho a, b, x > 0; a > b và $b, x \ne 1$ thỏa mãn $\log_x \frac{a + 2b}{3} = \log_x \sqrt{a} + \frac{1}{\log_x x^2}$.

Khi đó biểu thức $P = \frac{2a^2 + 3ab + b^2}{(a+2b)^2}$ có giá trị bằng:

$$\underline{\mathbf{A}} \cdot P = \frac{5}{4}$$

B.
$$P = \frac{2}{3}$$

A.
$$P = \frac{5}{4}$$
. **B.** $P = \frac{2}{3}$. **C.** $P = \frac{16}{15}$. **D.** $P = \frac{4}{5}$.

D.
$$P = \frac{4}{5}$$

Lời giải

Chon A

$$\log_x \frac{a+2b}{3} = \log_x \sqrt{a} + \frac{1}{\log_b x^2} \Leftrightarrow \log_x \frac{a+2b}{3} = \log_x \sqrt{a} + \log_x \sqrt{b}$$

$$\Leftrightarrow a + 2b = 3\sqrt{ab} \Leftrightarrow a^{2} - 5ab + 4b^{2} = 0 \Leftrightarrow (a - b)(a - 4b) = 0 \Leftrightarrow a = 4b \text{ (do } a > b).$$

$$P = \frac{2a^{2} + 3ab + b^{2}}{(a + 2b)^{2}} = \frac{32b^{2} + 12b^{2} + b^{2}}{36b^{2}} = \frac{5}{4}.$$

Câu 23. Cho $x \in \left(0; \frac{\pi}{2}\right)$, biết rằng $\log_2(\sin x) + \log_2(\cos x) = -2$ và $\log_2(\sin x + \cos x) = \frac{1}{2}(\log_2 n + 1)$. Giá trị của n bằng

A.
$$\frac{1}{4}$$
.

B.
$$\frac{5}{2}$$
.

C.
$$\frac{1}{2}$$
.

D.
$$\frac{3}{4}$$
.

Lời giải

Chọn D

Ta có $\sin x > 0$; $\cos x > 0$, $\forall x \in \left(0; \frac{\pi}{2}\right)$.

Theo bài ra $\log_2(\sin x) + \log_2(\cos x) = -2 \Leftrightarrow \log_2(\sin x \cdot \cos x) = -2 \Leftrightarrow \sin x \cdot \cos x = \frac{1}{4}$.

Do đó $\log_2 (\sin x + \cos x) = \frac{1}{2} (\log_2 n + 1).$

$$\Leftrightarrow \log_2(\sin x + \cos x)^2 = \log_2 n + 1$$

$$\Leftrightarrow \log_2 n + 1 = \log_2 \left(\sin^2 x + 2 \sin x \cdot \cos x + \cos^2 x \right).$$

$$\Leftrightarrow \log_2 n + 1 = \log_2 \frac{3}{2}$$
.

$$\Leftrightarrow \log_2 n = \log_2 \frac{3}{4}.$$

$$\Leftrightarrow n = \frac{3}{4}$$
.

Câu 24. (**Kim Liên - Hà Nội - 2018**) Biết rằng phương trình $2\ln(x+2) + \ln 4 = \ln x + 4\ln 3$ có hai nghiệm phân biệt x_1 , x_2 ($x_1 < x_2$). Tính $P = \frac{x_1}{x_2}$.

A.
$$\frac{1}{4}$$
.

$$\underline{\mathbf{C}} \cdot \frac{1}{64}$$
.

Lời giải

Điều kiện
$$\begin{cases} x+2>0 \\ x>0 \end{cases} \Leftrightarrow x>0 \quad (*).$$

Phương trình $\Leftrightarrow \ln(x+2)^2 + \ln 4 = \ln x + \ln 3^4 \Leftrightarrow \ln\left[4(x+2)^2\right] = \ln(x.3^4)$

$$\Leftrightarrow \begin{cases} x.3^4 > 0 \\ 4(x+2)^2 = 81x \end{cases} \Leftrightarrow \begin{bmatrix} x = 16 \\ x = \frac{1}{4} \end{cases} \text{ thỏa mãn (*)} \Rightarrow \begin{cases} x_1 = \frac{1}{4} \\ x_2 = 16 \end{cases} \Rightarrow P = \frac{x_1}{x_2} = \frac{1}{64}.$$

Câu 25. (**THPT Lê Xoay - 2018**) Phương trình $\log_{49} x^2 + \frac{1}{2} \log_7 (x-1)^2 = \log_7 (\log_{\sqrt{3}} 3)$ có bao nhiều nghiệm?

Lời giải

Điều kiện
$$\begin{cases} x \neq 0 \\ x \neq 1 \end{cases}$$
.

$$\log_{49} x^{2} + \frac{1}{2}\log_{7}(x-1)^{2} = \log_{7}(\log_{\sqrt{3}} 3) \Leftrightarrow \log_{7}|x| + \log_{7}|x-1| = \log_{7} 2$$

$$\Leftrightarrow \log_7 |x(x-1)| = \log_7 2 \Leftrightarrow \begin{bmatrix} x(x-1) = 2 \\ x(x-1) = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 - x - 2 = 0 \\ x^2 - x + 2 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 2 \\ x = -1 \end{bmatrix}.$$

Câu 26. (THPT Lương Văn Tụy - Ninh Bình - 2018) Phương trình $\log_4(x+1)^2 + 2 = \log_{\sqrt{2}} \sqrt{4-x} + \log_8(4+x)^3$ có bao nhiều nghiệm?

A. Vô nghiệm.

B. Một nghiệm. <u>C.</u> Hai nghiệm.

D. Ba nghiệm.

Lời giải

Điều kiện: -4 < x < 4 và $x \ne -1$.

Ta có $\log_4(x+1)^2 + 2 = \log_{\sqrt{2}} \sqrt{4-x} + \log_8(4+x)^3 \Leftrightarrow \log_2(4|x+1|) = \log_2[(4-x)(4+x)]$

$$\Leftrightarrow 4|x+1| = 16 - x^{2} \Leftrightarrow \begin{bmatrix} 4(x+1) = 16 - x^{2} \\ 4(x+1) = x^{2} - 16 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^{2} + 4x - 12 = 0 \\ x^{2} - 4x - 20 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 2 \\ x = -6 \\ x = 2 + 2\sqrt{6} \\ x = 2 - 2\sqrt{6} \end{bmatrix}$$

Đối chiếu điều kiện, phương trình đã cho có hai nghiệm x = 2 và $x = 2 - 2\sqrt{6}$.

Câu 27. (**SGD&ĐT BRVT** - **2018**) Tổng giá trị tất cả các nghiệm của phương trình $\log_2\left(x+2\right) + \log_4\left(x-5\right)^2 + \log_{\frac{1}{2}}8 = 0$ bằng

A. 6.

B. 3

<u>C</u>. 9.

D. 12.

Lời giải

Điều kiện
$$\begin{cases} x > -2 \\ x \neq 5 \end{cases} (*).$$

Ta có $\log_2(x+2) + \log_2|x-5| - \log_2 8 = 0 \Leftrightarrow \log_2[(x+2)|x-5|] = \log_2 8$

$$\Leftrightarrow (x+2)|x-5| = 8 \Leftrightarrow \begin{cases} \begin{cases} x \ge 5 \\ (x+2)(x-5) = 8 \end{cases} \Leftrightarrow \begin{cases} x = 6 \\ x = \frac{3 \pm \sqrt{17}}{2} \end{cases} \text{ thỏa mãn (*)}.$$

Vậy tổng các nghiệm của phương trình là $6 + \frac{3 + \sqrt{17}}{2} + \frac{3 - \sqrt{17}}{2} = 9$.

Câu 28. (**Xuân Trường** - **Nam Định** - **2018**) Cho phương trình $\log_2\left(x-\sqrt{x^2-1}\right).\log_3\left(x+\sqrt{x^2-1}\right) = \log_6\left|x-\sqrt{x^2-1}\right|$. Biết phương trình có một nghiệm là 1 và một nghiệm còn lại có dạng $x=\frac{1}{2}\left(a^{\log_b c}+a^{-\log_b c}\right)$ (với a, c là các số nguyên tố và a>c). Khi đó giá trị của $a^2-2b+3c$ bằng:

A. 0.

B. 3

C. 6.

D. 4.

Diều kiện
$$\begin{cases} -1 \le x \le 1 \\ x - \sqrt{x^2 - 1} > 0 \end{cases} (*)$$

$$\log_2(x - \sqrt{x^2 - 1}) \cdot \log_3(x + \sqrt{x^2 - 1}) = \log_6|x - \sqrt{x^2 - 1}|$$

$$\Leftrightarrow \log_2(x - \sqrt{x^2 - 1}) \cdot \log_3 \frac{1}{(x - \sqrt{x^2 - 1})} = \log_6(x - \sqrt{x^2 - 1})$$

$$\Leftrightarrow -\log_2(x - \sqrt{x^2 - 1}) \cdot \log_3 6 \cdot \log_6(x - \sqrt{x^2 - 1}) = \log_6(x - \sqrt{x^2 - 1})$$

$$\Leftrightarrow \log_6(x - \sqrt{x^2 - 1}) \left[\log_3 6 \cdot \log_2(x - \sqrt{x^2 - 1}) + 1\right] = 0$$

$$\Leftrightarrow \left[\log_6(x - \sqrt{x^2 - 1})\right] \log_3 6 \cdot \log_2(x - \sqrt{x^2 - 1}) + 1 = 0 \qquad (1)$$

$$\Leftrightarrow \left[\log_3 6 \cdot \log_2(x - \sqrt{x^2 - 1}) + 1 = 0 \quad (2)\right]$$

$$(1) \Leftrightarrow x - \sqrt{x^2 - 1} = 1 \Leftrightarrow \sqrt{x^2 - 1} = x - 1 \Leftrightarrow \begin{cases} x \ge 1 \\ x^2 - 1 = (x - 1)^2 \end{cases} \Leftrightarrow x = 1.$$

$$(2) \Leftrightarrow \log_2(x - \sqrt{x^2 - 1}) \cdot \log_3 6 = -1 \Leftrightarrow \log_2(x - \sqrt{x^2 - 1}) = \log_6 3$$

$$\Leftrightarrow x - \sqrt{x^2 - 1} = 2^{\log_6 3} \iff \begin{cases} x \le 2^{\log_6 3} \\ x^2 - 1 = \left(2^{\log_6 3} - x\right)^2 \end{cases} \Leftrightarrow x = \frac{1}{2} \left(2^{\log_6 3} + 2^{-\log_6 3}\right).$$

$$\Leftrightarrow x = \frac{1}{2} \left(3^{\log_6 2} + 3^{-\log_6 2} \right)$$
. (thỏa mãn (*))

Như vậy phương trình đã cho có các nghiệm là x = 1, $x = \frac{1}{2} \left(3^{\log_6 2} + 3^{-\log_6 2} \right)$.

Khi đó a = 3, b = 6, c = 2. Vậy $a^2 - 2b + 3c = 3$.

Dạng 1.2 Phương pháp đặt ẩn phụ

- ${\bf Q}$ <u>Loại 2</u>. Sử dụng công thực ${\bf q}^{\log_b c}=c^{\log_b a}$ để đặt $t=a^{\log_b x} \Rightarrow t=x^{\log_b a}$
- **Câu 29.** Phương trình $\log_x 2 + \log_2 x = \frac{5}{2}$ có hai nghiệm $x_1, x_2(x_1 < x_2)$. Khi đó tổng $x_1^2 + x_2$ bằng

A.
$$\frac{9}{2}$$
.

B. 3.

<u>C</u>. 6.

D. $\frac{9}{4}$.

Lời giải

<u>C</u>họn <u>C</u>

Điều kiện phương trình: $x > 0, x \ne 1$.

$$\log_{x} 2 + \log_{2} x = \frac{5}{2} \Leftrightarrow \frac{1}{\log_{2} x} + \log_{2} x = \frac{5}{2} \Leftrightarrow \left(\log_{2} x\right)^{2} - \frac{5}{2}\log_{2} x + 1 = 0 \Leftrightarrow \begin{bmatrix} \log_{2} x = 2 \\ \log_{2} x = \frac{1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 4 \\ x = \sqrt{2} \end{bmatrix}$$

Suy ra $x_1 = \sqrt{2}, x_2 = 4$.

Suy ra $x_1^2 + x_2 = 6$.

Câu 30.	(SGD Gia Lai 201	1 9) Số nghiệm của	phương trình $\log_2^2 x$	h $\log_2^2 x^2 + 8\log_2 x + 4 = 0$ là:	
	A. 2.	B. 3.	C. 0.	<u>D</u> . 1.	

Lời giải

Chon D

Điều kiên: x > 0

$$\log_2^2 x^2 + 8\log_2 x + 4 = 0 \Leftrightarrow 4\log_2^2 x + 8\log_2 x + 4 = 0 \Leftrightarrow \log_2 x = -1 \Leftrightarrow x = \frac{1}{2} (TM)$$

Câu 31. Tích tất cả các nghiệm của phương trình $\log_3^2 x - 2\log_3 x - 7 = 0$ là

<u>A</u>. 9.

B. -7.

D. 2.

Lời giải

Chon A

Điều kiện: x > 0

Đặt $t = \log_3 x$, phương trình trở thành: $t^2 - 2t - 7 = 0$ (1)

Do a.c=-7<0 nên phương trình (1) có 2 nghiệm $t_1;t_2$ phân biệt thỏa mãn $t_1+t_2=2$.

Khi đó, các nghiệm của phương trình ban đầu là: $x_1 = 3^{t_1}$; $x_2 = 3^{t_2}$.

$$\Rightarrow x_1.x_2 = 3^{t_1}.3^{t_2} = 3^{t_1+t_2} = 3^2 = 9.$$

(**Yên Dũng 2-Bắc Giang 2019**) Tổng các nghiệm của phương trình $\log_2^2 x - \log_2 9.\log_3 x = 3$ Câu 32. là

A. 2.

<u>B.</u> $\frac{17}{2}$.

C. 8.

D. -2.

Lời giải

Chọn B

Ta có
$$\log_2^2 x - \log_2 9.\log_3 x = 3 \Leftrightarrow \log_2^2 x - 2\log_2 x - 3 = 0 \Leftrightarrow \begin{bmatrix} \log_2 x = -1 \\ \log_2 x = 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{1}{2} \\ x = 8 \end{bmatrix}$$

Vậy $S = \frac{1}{2} + 8 = \frac{17}{2}$.

(THPT Hai Bà Trung - Huế - 2019) Biết phương trình $\log_2^2(2x) - 5\log_2 x = 0$ có hai nghiệm Câu 33. phân biệt x_1 và x_2 . Tính $x_1.x_2$.

A. 8.

B. 5.

C. 3.

D. 1.

Lời giải

Chọn A

Điều kiện x > 0.

Biến đổi phương trình đã cho về phương trình sau: $\log_2^2 x - 3\log_2 x + 1 = 0$.

Do $\log_2 x_1$ và $\log_2 x_2$ là hai nghiệm của phương trình $t^2 - 3t + 1 = 0$ nên

$$\log_2 x_1 + \log_2 x_2 = 3$$
, mà $\log_2 x_1 + \log_2 x_2 = \log_2 (x_1 \cdot x_2)$.

Suy ra $\log_2(x_1.x_2) = 3$ nên $x_1.x_2 = 8$.

Câu 34. (Chuyên Đại học Vinh - 2019) Biết rằng phương trình $\log_2^2 x - 7\log_2 x + 9 = 0$ có 2 nghiệm x_1, x_2 . Giá trị của x_1x_2 bằng

D. 512.

Lời giải

Chọn A

+ Điều kiện x > 0.

$$+ \log_2^2 x - 7 \log_2 x + 9 = 0 \Leftrightarrow \begin{bmatrix} \log_2 x = \frac{7 + \sqrt{13}}{2} \\ \log_2 x = \frac{7 - \sqrt{13}}{2} \\ \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 2^{\frac{7 + \sqrt{13}}{2}} \\ x = 2^{\frac{7 - \sqrt{13}}{2}} \end{bmatrix} \text{ (thỏa mãn điều kiện } x > 0 \text{)}.$$

Vậy
$$x_1 x_2 = 2^{\frac{7+\sqrt{13}}{2}} . 2^{\frac{7-\sqrt{13}}{2}} = 128.$$

Câu 35. (**Hội 8 trường chuyên ĐBSH - 2019**) Cho phương trình $\log_2^2(4x) - \log_{\sqrt{2}}(2x) = 5$. Nghiệm nhỏ nhất của phương trình thuộc khoảng

$$\underline{\mathbf{A}}$$
. $(0;1)$.

Lời giải

Chọn A

Điều kiên: x > 0.

$$\log_2^2(4x) - \log_{\sqrt{2}}(2x) = 5 \Leftrightarrow (1 + \log_2(2x))^2 - 2\log_2(2x) - 5 = 0$$

$$\Leftrightarrow \log_2^2(2x) = 4 \Leftrightarrow \begin{bmatrix} \log_2(2x) = 2 \\ \log_2(2x) = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 2 \\ x = \frac{1}{8} \end{bmatrix}.$$

Nghiệm nhỏ nhất là $x = \frac{1}{8} \in (0;1)$.

Câu 36. Gọi T là tổng các nghiệm của phương trình $\log_{\frac{1}{3}}^2 x - 5\log_3 x + 4 = 0$. Tính T.

A.
$$L = 4$$
.

B.
$$T = -5$$
.

$$\underline{\mathbf{C}}$$
. $T = 84$.

D.
$$T = 5$$
.

Lời giải

Chọn C

Điều kiên: x > 0.

$$\log_{\frac{1}{3}}^{2} x - 5\log_{3} x + 4 = 0 \Leftrightarrow \log_{3}^{2} x - 5\log_{3} x + 4 = 0.$$

$$\Leftrightarrow \begin{bmatrix} \log_3 x = 1 \\ \log_3 x = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 3 \\ x = 3^4 = 81 \end{bmatrix}$$
 (thỏa mãn).

Vậy
$$T = 3 + 81 = 84$$
.

(Ngô Quyền - Hải Phòng 2019) Phương trình $\log_2^2 x - 5\log_2 x + 4 = 0$ có hai nghiệm x_1, x_2 . Tính tích $x_1.x_2$.

A. 32.

B. 36.

C. 8.

D. 16.

Lời giải

Chọn A

$$\log_2^2 x - 5\log_2 x + 4 = 0 \Leftrightarrow \begin{cases} \log_2 x = 1 \\ \log_2 x = 4 \end{cases} \Leftrightarrow \begin{cases} x_1 = 2 \\ x_2 = 16 \end{cases}. \text{ Vây tích } x_1.x_2 = 32.$$

(Chuyên ĐH Vinh 2019) Cho các số thực a, b thỏa mã 1 < a < b và $\log_a b + \log_b a^2 = 3$. Tính Câu 38. giá trị của biểu thức $T = \log_{ab} \frac{a^2 + b}{2}$.

A. $\frac{1}{6}$.

B. $\frac{3}{2}$.

C. 6.

 $\underline{\mathbf{D}} \cdot \frac{2}{2}$.

Lời giải

Chọn D

Ta có $\log_a b + \log_b a^2 = 3 \Leftrightarrow \frac{1}{\log_a a} + 2\log_b a = 3 \Leftrightarrow$

$$2\log_{b}^{2} a - 3\log_{b} a + 1 = 0 \Leftrightarrow \begin{bmatrix} \log_{b} a = 1 \\ \log_{b} a = \frac{1}{2} & \Leftrightarrow \begin{bmatrix} a = b & (L) \\ a = \sqrt{b} & (N) \end{bmatrix} \Rightarrow b = a^{2}$$

Vậy $T = \log_{ab} \frac{a^2 + b}{2} = \log_{a^3} a^2 = \frac{2}{3}$ nên đáp án D đúng.

Câu 39. Biết rằng phương trình $\log_2^2 x - \log_2(2018x) - 2019 = 0$ có hai nghiệm thực x_1, x_2 . Tích $x_1.x_2$ bằng

A. log₂ 2018.

B. 0,5.

C. 1.

<u>D</u>. 2.

Lời giải

Chọn D

$$\log_2^2 x - \log_2 (2018x) - 2019 = 0 \Leftrightarrow \log_2^2 x - \log_2 x - \log_2 2018 - 2019 = 0.$$

Đặt
$$t = \log_2 x \Rightarrow x = 2^t$$
, ta có $t^2 - t - \log_2 2018 - 2019 = 0$ (*)

Gọi t_1, t_2 là hai nghiệm của (*), ta có $x_1.x_2 = 2^{t_1+t_2} = 2^1 = 2$.

Câu 40. Cho phương trình $\log_3^2(3x) - \log_3^2 x^2 - 1 = 0$. Biết phương trình có 2 nghiệm, tính tích P của hai nghiệm đó.

A. P = 9.

D. P = 1.

Lời giải

Chọn C

Ta có $\log_{3}^{2}(3x) - \log_{3}^{2}x^{2} - 1 = 0$ (điều kiên x > 0).

$$\Leftrightarrow (1 + \log_3 x)^2 - (2\log_3 x)^2 - 1 = 0.$$

Đặt
$$\log_3 x = t$$
 ta có phương trình $(1+t)^2 - (2t)^2 - 1 = 0 \Leftrightarrow -3t^2 - 2t = 0 \Leftrightarrow \begin{bmatrix} t = -\frac{2}{3} \\ t = 0 \end{bmatrix}$

Với
$$t = 0 \Leftrightarrow \log_3 x = 0 \Leftrightarrow x = 1$$
.

Với
$$t = -\frac{2}{3} \Leftrightarrow \log_3 x = -\frac{2}{3} \Leftrightarrow x = 3^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{9}}$$

Vây
$$P = 1.\sqrt[3]{9} = \sqrt[3]{9}$$
.

(THPT Ba Đình 2019) Biết rằng phương trình $\log_3^2 x = \log_3 \frac{x^4}{3}$ có hai nghiệm a và b. Khi Câu 41. đó ab bằng

Lời giải

 \mathbf{D}/\mathbf{K} : x > 0.

Phương trinh
$$\log_3^2 x = \log_3 \frac{x^4}{3} \Leftrightarrow \log_3^2 x - 4 \cdot \log_3 x + 1 = 0 \Leftrightarrow \begin{bmatrix} \log_3 x = 2 - \sqrt{3} \\ \log_3 x = 2 + \sqrt{3} \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} x = 3^{2-\sqrt{3}} \\ x = 3^{2+\sqrt{3}} \end{cases}$$
. Khi đó $a.b = 3^{2-\sqrt{3}}.3^{2+\sqrt{3}} = 81$.

(Chuyên Quốc Học Huế -2019) Gọi T là tổng các nghiệm của phương trình $\log_{\frac{1}{3}}^2 x - 5\log_3 x + 4 = 0$. Tính T.

A.
$$T = 4$$

B.
$$T = -4$$

D.
$$T = 5$$

ĐKXĐ: x > 0

Ta có:
$$\log_{\frac{1}{2}}^2 x - 5\log_3 x + 4 = 0$$

$$\Leftrightarrow \left(-\log_3 x\right)^2 - 5\log_3 x + 4 = 0$$

$$\Leftrightarrow \log_3^2 x - 5\log_3 x + 4 = 0 \Leftrightarrow \begin{bmatrix} \log_3 x = 1 \\ \log_3 x = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 3 \\ x = 3^4 \end{bmatrix}$$

Vậy
$$T = 3 + 3^4 = 84$$

(Cụm 8 Trường Chuyên 2019) Cho phương trình $\log_2^2(4x) - \log_{\sqrt{2}}(2x) = 5$. Nghiệm nhỏ Câu 43. nhất của phương trình thuộc khoảng nào sau đây?

A.
$$(1;3)$$
.

B.
$$(5;9)$$

D.
$$(3;5)$$
.

$$\log_{2}^{2}(4x) - \log_{\sqrt{2}}(2x) = 5 \Leftrightarrow \left[1 + \log_{2}(2x)\right]^{2} - 2\log_{2}(2x) = 5 \Leftrightarrow \log_{2}^{2}(2x) = 4$$

$$\Leftrightarrow \begin{bmatrix} \log_2(2x) = 2 \\ \log_2(2x) = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x = 4 \\ 2x = \frac{1}{4} \end{cases} \Rightarrow \begin{bmatrix} x = 2 \\ x = \frac{1}{8} \end{bmatrix}.$$

Vây nghiệm nhỏ nhất của phương trình thuộc khoảng (0;1).

(THPT Lương Thế Vinh Hà Nội 2019) Tích tất cả các nghiệm của phương trình $\log_3^2 x - 2\log_3 x - 7 = 0$ là

A. 9.

D. 2.

Lời giải

Dễ thấy phương trình bậc hai: $\log_3^2 x - 2\log_3 x - 7 = 0$ luôn có 2 nghiệm phân biệt

Khi đó theo Vi-et, $\log_3 x_1 + \log_3 x_2 = -\frac{-2}{1} \Leftrightarrow \log_3(x_1.x_2) = 2 \Leftrightarrow x_1.x_2 = 9$.

(Chuyên Hùng Vương Gia Lai 2019) Cho 2 số thực dương a và b thỏa mãn Câu 45. $\log_9 a^4 + \log_3 b = 8$ và $\log_3 a + \log_{\sqrt[3]} b = 9$. Giá trị biểu thức P = ab + 1 bằng

A. 82.

- **B.** 27.
- **C.** 243.

Ta có:
$$\begin{cases} \log_9 a^4 + \log_3 b = 8 \\ \log_3 a + \log_{\sqrt[3]{3}} b = 9 \end{cases} \Leftrightarrow \begin{cases} 2\log_3 a + \log_3 b = 8 \\ \log_3 a + 3\log_3 b = 9 \end{cases} \Leftrightarrow \begin{cases} \log_3 a = 3 \\ \log_3 b = 2 \end{cases} \Leftrightarrow \begin{cases} a = 27 \\ b = 9 \end{cases}$$

Nên P = ab + 1 = 244

(Chuyên Đại Học Vinh 2019) Biết phương trình $\log_2^2 x - 7\log_2 x + 9 = 0$ có hai nghiệm x_1, x_2 . Câu 46. Giá trị $x_1.x_2$ bằng

A. 128

B. 64

C. 9

D. 512

Lời giải

Chọn A

Dk:
$$x > 0$$
; $\log_2^2 x - 7\log_2 x + 9 = 0 \Leftrightarrow \begin{bmatrix} \log_2 x = \frac{7 - \sqrt{13}}{2} \\ \log_2 x = \frac{7 + \sqrt{13}}{2} \\ \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 2^{\frac{7 - \sqrt{13}}{2}} \\ x = 2^{\frac{7 + \sqrt{13}}{2}} \end{bmatrix}$

Vậy
$$x_1.x_2 = 2^{\frac{7-\sqrt{13}}{2}}.2^{\frac{7+\sqrt{13}}{2}} = 2^7 = 128$$

(Mã 104 2017) Xét các số nguyên dương a, b sao cho phương trình $a \ln^2 x + b \ln x + 5 = 0$ có hai nghiệm phân biệt x_1 , x_2 và phương trình $5\log^2 x + b\log x + a = 0$ có hai nghiệm phân biệt x_3 , x_4 thỏa mãn $x_1x_2 > x_3x_4$. Tính giá trị nhỏ nhất S_{\min} của S = 2a + 3b.

A. $S_{\min} = 17$

- **B.** $S_{\min} = 30$
- **C.** $S_{\min} = 25$ **D.** $S_{\min} = 33$

Lời giải

Điều kiện x > 0, điều kiện mỗi phương trình có 2 nghiệm phân biệt là $b^2 > 20a$.

Đặt $t = \ln x, u = \log x$ khi đó ta được $at^2 + bt + 5 = 0(1), 5t^2 + bt + a = 0(2)$.

Ta thầy với mỗi một nghiệm t thì có một nghiệm x, một u thì có một x.

Ta có
$$x_1.x_2 = e^{t_1}.e^{t_2} = e^{t_1+t_2} = e^{-\frac{b}{a}}, \ x_3.x_4 = 10^{u_1+u_2} = 10^{-\frac{b}{5}}, \ \text{lai có} \ x_1x_2 > x_3x_4 \Leftrightarrow e^{-\frac{b}{a}} > 10^{-\frac{b}{5}}$$

$$\Rightarrow -\frac{b}{a} > -\frac{b}{5} \ln 10 \Leftrightarrow a > \frac{5}{\ln 10} \Leftrightarrow a \ge 3$$
 (do a,b nguyên dương), suy ra $b^2 > 60 \Rightarrow b \ge 8$.

Vậy $S = 2a + 3b \ge 2.3 + 3.8 = 30$, suy ra $S_{\min} = 30$ đạt được a = 3, b = 8.

(Chuyên Lê Quý Đôn Điện Biên 2019) Tích các nghiệm của phương trình Câu 48. $\log_x (125x) . \log_{25}^2 x = 1$

A. 630.

B. $\frac{1}{125}$.

C. $\frac{630}{625}$.

D. $\frac{7}{125}$

Lời giải

Điều kiện $x > 0; x \neq 1$.

Ta có
$$\log_x (125x) . \log_{25}^2 x = 1 \Leftrightarrow (\log_x 125 + \log_x x) (\frac{1}{2} \log_5 x)^2 = 1 \Leftrightarrow (3.\log_x 5 + 1) \log_5^2 x = 4$$

Đặt $\log_5 x = t$ phương trình tương đương:

$$\left(\frac{3}{t}+1\right)t^2 = 4 \Leftrightarrow t^2 + 3t - 4 = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \log_5 x = 1 \\ \log_5 x = -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 5 \\ x = \frac{1}{625} \end{bmatrix}$$

Vậy tích các nghiệm của phương trình là $\frac{1}{125}$.

(Chuyên Lê Quý Đôn Điện Biên 2019) Tích các nghiệm của phương trình Câu 49. $\log_x (125x) . \log_{25}^2 x = 1$

A. 630.

 $\underline{\mathbf{B}}$. $\frac{1}{125}$.

C. $\frac{630}{625}$. D. $\frac{7}{125}$

Lời giải

Chọn B

Điều kiện x > 0; $x \ne 1$.

Ta có
$$\log_x (125x) . \log_{25}^2 x = 1 \Leftrightarrow (\log_x 125 + \log_x x) (\frac{1}{2} \log_5 x)^2 = 1 \Leftrightarrow (3.\log_x 5 + 1) \log_5^2 x = 4$$

Đặt $\log_5 x = t$ phương trình tương đương:

$$\left(\frac{3}{t}+1\right)t^2 = 4 \Leftrightarrow t^2 + 3t - 4 = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \log_5 x = 1 \\ \log_5 x = -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 5 \\ x = \frac{1}{625} \end{bmatrix}$$

Vậy tích các nghiệm của phương trình là $\frac{1}{125}$.

(Kiểm tra năng lực - ĐH - Quốc Tế - 2019) Xét phương trình $(\log_2 x - 1)(\log_3 x + 2) = 3$. Câu 50.

Mệnh đề nào sau đây đúng?

- A. Phương trình trên vô nghiệm.
- **B.** Phương trình trên có nghiệm bé hơn 1.
- C. Phương trình trên có nghiệm lớn hơn 1 và một nghiệm bé hơn 1.
- **D.** Phương trình trên chỉ có nghiệm hơn 1.

Lời giải

Chọn C

NGUYĒN BAO VƯƠNG - 0946798489

 $(\log_2 x - 1)(\log_3 x + 2) = 3$, điều kiện x > 0.

$$\Leftrightarrow (\log_2 x - 1)(\log_3 2 \cdot \log_2 x + 2) - 3 = 0 \Leftrightarrow \log_3 2 \cdot (\log_2 x)^2 + (2 - \log_3 2)\log_2 x - 5 = 0$$
 (1).

Đặt $t = \log_2 x$.

Phương trình (1) trở thành: $(\log_3 2) t^2 + (2 - \log_3 2) t - 5 = 0$ (2).

Phương trình (2) có ac < 0 nên luôn có hai nghiệm $t_1 < 0 < t_2$.

Suy ra
$$x_1 = 2^{t_1} < 2^0 = 1$$
 và $x_2 = 2^{t_2} > 2^0 = 1$.

Vây phương trình (1) có nghiệm lớn hơn 1 và một nghiệm bé hơn 1.

- (**Tham khảo 2018**) Cho dãy số (u_n) thỏa mãn $\log u_1 + \sqrt{2 + \log u_1 2 \log u_{10}} = 2 \log u_{10}$ và Câu 51. $u_{\scriptscriptstyle n+1}=2u_{\scriptscriptstyle n}$ với mọi $\,n\geq 1\,.$ Giá trị nhỏ nhất của $\,n\,$ để $\,u_{\scriptscriptstyle n}>5^{\scriptscriptstyle 100}\,$ bằng
 - **A.** 247.
- **B.** 248.
- **C.** 229.
- **D.** 290.

Lời giải

Chọn B

Có
$$u_{n+1} = 2u_n = 2^n u_1$$
. Xét $\log u_1 + \sqrt{2 + \log u_1 - 2 \log u_{10}} = 2 \log u_{10}$ (*)

Đặt $t = \log u_1 - 2 \log u_{10}$, điều kiện $t \ge -2$

Pt (*) trở thành
$$\sqrt{2+t} = -t \iff \begin{cases} t \le 0 \\ t^2 - t - 2 = 0 \end{cases} \iff t = -1$$

Với
$$t = -1 \iff \log u_1 - 2\log u_{10} = -1$$
 (với $\log u_{10} = \log(2^9 \cdot u_1) = 9\log 2 + \log u_1$)

$$\Leftrightarrow \log u_1 = 1 - 18 \log 2 \Leftrightarrow u_1 = 10^{1-18 \log 2}$$

Mặt khác
$$u_n = 2^{n-1}u_1 = 2^{n-1}.10^{1-18\log 2} = 2^n.5.10^{-18\log 2} > 5^{100} \implies n > \log_2(5^{99}.10^{18\log 2}) \approx 247,87$$

Vậy giá trị nhỏ nhất của n là 248.

Câu 52. Cho a, b là các số dương thỏa mãn $\log_9 a = \log_{16} b = \log_{12} \frac{5b-a}{2}$. Tính giá trị $\frac{a}{b}$.

A.
$$\frac{a}{b} = \frac{3 + \sqrt{6}}{4}$$

B.
$$\frac{a}{b} = 7 - 2\sqrt{6}$$

A.
$$\frac{a}{b} = \frac{3+\sqrt{6}}{4}$$
. **B.** $\frac{a}{b} = 7-2\sqrt{6}$. **C.** $\frac{a}{b} = 7+2\sqrt{6}$. **D.** $\frac{a}{b} = \frac{3-\sqrt{6}}{4}$.

D.
$$\frac{a}{b} = \frac{3 - \sqrt{6}}{4}$$

Lời giải

Chọn B

+ Đặt
$$\log_9 a = \log_{16} b = \log_{12} \frac{5b - a}{2} = t$$

$$\Rightarrow \begin{cases} a = 9^{t} \\ b = 16^{t} \\ \frac{5b - a}{2} = 12^{t} \end{cases} \Rightarrow \frac{5.16^{t} - 9^{t}}{2} = 12^{t} \Leftrightarrow 9^{t} + 2.12^{t} - 5.16^{t} = 0$$

$$\Leftrightarrow \left(\frac{3}{4}\right)^{2t} + 2 \cdot \left(\frac{3}{4}\right)^{t} - 5 = 0 \Leftrightarrow \begin{bmatrix} \left(\frac{3}{4}\right)^{t} = -1 + \sqrt{6} \\ \left(\frac{3}{4}\right)^{t} = -1 - \sqrt{6}(l) \end{bmatrix}$$

$$+ \frac{a}{b} = \frac{9^{t}}{16^{t}} = \left(\frac{3}{4}\right)^{2t} = \left(-1 + \sqrt{6}\right)^{2} = 7 - 2\sqrt{6}.$$

(THPT Hai Bà Trung - Huế - 2019) Cho hai số thực dương m,n thỏa mãn $\log_4\left(\frac{m}{2}\right) = \log_6 n = \log_9\left(m+n\right)$. Tính giá trị của biểu thức $P = \frac{m}{n}$.

A.
$$P = 2$$
.

B.
$$P = 1$$
.

C.
$$P = 4$$
.

C.
$$P = 4$$
. **D.** $P = \frac{1}{2}$.

Lời giải

Chọn B

$$\Rightarrow 2.4^{t} + 6^{t} = 9^{t} \Leftrightarrow 2.\left(\frac{2}{3}\right)^{2t} + \left(\frac{2}{3}\right)^{t} - 1 = 0 \Leftrightarrow \begin{bmatrix} \left(\frac{2}{3}\right)^{t} = -1(VN) \\ \left(\frac{2}{3}\right)^{t} = \frac{1}{2} \end{cases} \Leftrightarrow \left(\frac{2}{3}\right)^{t} = \frac{1}{2} \Leftrightarrow t = \log_{\frac{2}{3}} \frac{1}{2}$$

$$\Rightarrow \begin{cases} m = 2.4^t \\ n = 6^t \end{cases} \Rightarrow P = \frac{m}{n} = 2 \cdot \left(\frac{4}{6}\right)^t = 2 \cdot \left(\frac{2}{3}\right)^t = 2 \cdot \left(\frac{2}{3}\right)^{\log_2 \frac{1}{3}} = 2 \cdot \frac{1}{2} = 1.$$

Chon

(Hội 8 trường chuyên ĐBSH - 2019) Giả sử p,q là các số thực dương thỏa mãn Câu 54. $\log_{16} p = \log_{20} q = \log_{25} (p+q)$. Tính giá trị của $\frac{p}{q}$.

A.
$$\frac{1}{2}(-1+\sqrt{5})$$
. B. $\frac{8}{5}$. C. $\frac{1}{2}(1+\sqrt{5})$. D. $\frac{4}{5}$.

B.
$$\frac{8}{5}$$

C.
$$\frac{1}{2}(1+\sqrt{5})$$
.

D.
$$\frac{4}{5}$$
.

Chọn A

$$\log_{16} p = \log_{20} q = \log_{25} (p+q) \Leftrightarrow \begin{cases} \log_{16} p = t \\ \log_{20} q = t \\ \log_{25} (p+q) = t \end{cases} \Leftrightarrow \begin{cases} p = 16^{t} \\ q = 20^{t} \Rightarrow 16^{t} + 20^{t} = 25^{t} \end{cases}$$

$$\Leftrightarrow \left(\frac{16}{25}\right)^{t} + \left(\frac{4}{5}\right)^{t} - 1 = 0 \Leftrightarrow \begin{bmatrix} \left(\frac{4}{5}\right)^{t} = \frac{-1 - \sqrt{5}}{2} (vn) \\ \left(\frac{4}{5}\right)^{t} = \frac{-1 + \sqrt{5}}{2} \end{bmatrix}$$

Suy ra
$$\frac{p}{q} = \left(\frac{4}{5}\right)^t = \frac{-1 + \sqrt{5}}{2}$$
.

(TT Diệu Hiền - Cần Thơ - 2018) Tích các nghiệm của phương trình $\log_x (125x) \log_{25}^2 x = 1$ Câu 55.

A.
$$\frac{7}{25}$$
.

B. $\frac{630}{625}$.

 $\underline{\mathbf{C}} \cdot \frac{1}{125}$.

D. 630.

Lời giải

Điều kiện: $0 < x \ne 1$, ta có:

 $\log_{x} (125x) \log_{25}^{2} x = 1 \iff \log_{25}^{2} x + \log_{25}^{2} x \cdot \log_{x} 125 = 1 \iff \log_{25}^{2} x + \frac{3}{2} \log_{25} x - 1 = 0$

$$\Leftrightarrow \begin{bmatrix} \log_{25} x = \frac{1}{2} \\ \log_{25} x = -2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 5 \\ x = \frac{1}{25^2} \end{bmatrix}.$$

Vậy tích các nghiệm của phương trình là: $\frac{1}{125}$.

(Đặng Thúc Hứa - Nghệ An - 2018) Tích tất cả các nghiệm của phương trình Câu 56. $\log_2^2 x + \sqrt{\log_2 x + 1} = 1$

A.
$$2^{\frac{-1-\sqrt{5}}{2}}$$
.

B. 1.

C. $2^{\frac{1-\sqrt{5}}{2}}$. **D.** $\frac{1}{2}$.

Lời giải

Điều kiện
$$\begin{cases} x > 0 \\ \log_2 x + 1 \ge 0 \end{cases} \Leftrightarrow \begin{cases} x > 0 \\ x \ge \frac{1}{2} \Leftrightarrow x \ge \frac{1}{2}. \end{cases}$$

Đặt $\sqrt{\log_2 x + 1} = t$, $(t \ge 0) \Rightarrow \log_2 x = t^2 - 1$ ta có phương trình

$$(t^{2}-1)^{2}+t=1 \Leftrightarrow t^{4}-2t^{2}+t=0 \Leftrightarrow t(t^{3}-2t+1)=0 \Leftrightarrow t(t-1)(t^{2}-2t+1)=0$$

$$= \begin{bmatrix} t=0 & (t/m) \\ t=1 & (t/m) \end{bmatrix}$$

$$\Rightarrow t=\frac{-1+\sqrt{5}}{2} & (t/m) \\ t=\frac{-1-\sqrt{5}}{2} & (loai)$$

Với t = 0 thì $\log_2 x = -1 \Leftrightarrow x = 2^{-1}$.

Với t = 1 thì $\log_2 x = 0 \Leftrightarrow x = 2^0$.

Với
$$t = \frac{-1 + \sqrt{5}}{2}$$
 thì $\log_2 x = \frac{1 - \sqrt{5}}{2} \iff x = 2^{\frac{1 - \sqrt{5}}{2}}$.

Vậy tích các nghiệm của phương trình là $2^{\frac{-1-\sqrt{5}}{2}}$.

(Lý Nhân Tông - Bắc Ninh - 2020) Gọi x, y các số thực dương thỏa mãn điều kiện $\log_9 x = \log_6 y = \log_4 (x + y)$ và $\frac{x}{y} = \frac{-a + \sqrt{b}}{2}$, với a, b là hai số nguyên dương. Tính $T = a^2 + b^2.$ **B.** T = 29. **C.** T = 20. **D.** T = 25.

A.
$$T = 26$$
.

B.
$$T = 29$$

C.
$$T = 20$$
.

D.
$$T = 25$$
.

Lời giải

Chon A

Đặt
$$t = \log_9 x = \log_6 y = \log_4 (x + y)$$
, ta có
$$\begin{cases} x = 9^t \\ y = 6^t \end{cases} \Rightarrow 9^t + 6^t = 4^t$$
$$x + y = 4^t$$

$$\Leftrightarrow \left(\frac{3}{2}\right)^{2t} + \left(\frac{3}{2}\right)^{t} - 1 = 0 \Leftrightarrow \begin{bmatrix} \left(\frac{3}{2}\right)^{t} = \frac{-1 - \sqrt{5}}{2} (loai) \\ \left(\frac{3}{2}\right)^{t} = \frac{-1 + \sqrt{5}}{2} \end{cases} \Rightarrow \left(\frac{3}{2}\right)^{t} = \frac{-1 + \sqrt{5}}{2}.$$

Suy ra
$$\frac{x}{v} = \left(\frac{9}{6}\right)^t = \left(\frac{3}{2}\right)^t = \frac{-1 + \sqrt{5}}{2}$$
.

Mà
$$\frac{x}{v} = \frac{-a + \sqrt{b}}{2} = \frac{-1 + \sqrt{5}}{2} \Rightarrow a = 1; b = 5.$$

Vậy
$$T = a^2 + b^2 = 1^2 + 5^2 = 26$$

(THPT Nguyễn Viết Xuân - 2020) Cho các số thực dương a,b thỏa mãn Câu 58. $\log_4 a = \log_6 b = \log_9 (4a - 5b) - 1$. Đặt $T = \frac{b}{a}$. Khẳng định nào sau đây **đúng**?

A.
$$1 < T < 2$$
.

A.
$$1 < T < 2$$
. **B.** $\frac{1}{2} < T < \frac{2}{3}$. **C.** $-2 < T < 0$. $\underline{\mathbf{D}}$. $0 < T < \frac{1}{2}$.

C.
$$-2 < T < 0$$

D.
$$0 < T < \frac{1}{2}$$
.

Lời giải

Chọn D

Giả sử:
$$\log_4 a = \log_6 b = \log_9 (4a - 5b) - 1 = t \Rightarrow \begin{cases} a = 4^t \\ b = 6^t \\ 4a - 5b = 9^{t+1} \end{cases}$$

Khi đó
$$4.4^t - 5.6^t = 9.9^t \Leftrightarrow 4.\left(\frac{4}{9}\right)^t - 5.\left(\frac{6}{9}\right)^t = 9 \Leftrightarrow 4.\left(\frac{2}{3}\right)^{2t} - 5.\left(\frac{2}{3}\right)^t - 9 = 0$$

$$\Leftrightarrow \begin{bmatrix} \left(\frac{2}{3}\right)^t = \frac{9}{4} \\ \left(\frac{2}{3}\right)^t = -1 \quad (VN) \end{cases} \Leftrightarrow t = \log_{\frac{2}{3}} \left(\frac{9}{4}\right) \Leftrightarrow t = -2$$

Vậy
$$T = \frac{b}{a} = \left(\frac{6}{4}\right)^t = \left(\frac{3}{2}\right)^{-2} = \frac{4}{9} \in \left(0; \frac{1}{2}\right).$$

Dạng 1.3 Phương pháp mũ hóa

+ Nếu
$$a > 0$$
, $a \ne 1$: $\log_a f(x) = g(x) \Leftrightarrow f(x) = a^{g(x)}$ (mũ hóa)

- **Câu 59.** (**Cần Thơ 2019**) Tích tất cả các nghiệm của phương trình $\log_2(12-2^x)=5-x$ bằng
 - **A.** 2.

- **B.** 32.
- <u>C</u>. 6.

Lời giải

D. 3.

Chon C

Điều kiện $12 - 2^x > 0$ (*)

Khi đó
$$\log_2(12-2^x) = 5-x \Leftrightarrow 12-2^x = 2^{5-x} \Leftrightarrow 2^{2x}-12.2^x+32=0 \Leftrightarrow \begin{bmatrix} 2^x=4\\ 2^x=8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=2\\ x=3 \end{bmatrix}$$

Ta thấy cả hai nghiệm đều thoả mãn điều kiện (*), và tích bằng 2.3 = 6.

- **Câu 60.** Phương trình $\log_4(3.2^x) = x 1$ có nghiệm là x_0 thì nghiệm x_0 thuộc khoảng nào sau đây
 - **A.** (1;2).
- **B.** (2;4).
- $\mathbf{C.} (-2;1)$.
- **D.** $(4; +\infty)$.

Lời giải

Chon B

Ta có
$$\log_4(3.2^x) = x - 1 \Leftrightarrow 3.2^x = 4^{x-1} \Leftrightarrow 4^x - 12.2^x = 0$$

$$\Leftrightarrow \begin{bmatrix} 2^x = 0, (vn) \\ 2^x = 12 \end{bmatrix} \Leftrightarrow x = \log_2 12 \in (2; 4).$$

- **Câu 61.** Phương trình $\log_4(3.2^x 1) = x 1$ có hai nghiệm $x_1; x_2$. Tính giá trị của $P = x_1 + x_2$.
 - **A.** $6 + 4\sqrt{2}$.
- **B.** 12.
- C. $\log_2(6-4\sqrt{2})$. **<u>D.</u>** 2.

Lời giải

Chọn D

Điều kiện:
$$3.2^x - 1 > 0 \Leftrightarrow 2^x > \frac{1}{3}$$
 (*).

$$\log_4(3.2^x - 1) = x - 1 \Leftrightarrow 3.2^x - 1 = 4^{x-1} \Leftrightarrow \frac{1}{4}(2^x)^2 - 3.2^x + 1 = 0$$

$$\Leftrightarrow \begin{bmatrix} 2^{x} = 6 + 4\sqrt{2} & (t/m(*)) \\ 2^{x} = 6 - 4\sqrt{2} & (t/m(*)) \end{cases} \Leftrightarrow \begin{vmatrix} x = \log_{2}(6 + 4\sqrt{2}) \\ x = \log_{2}(6 - 4\sqrt{2}) \end{vmatrix}$$

Khi đó
$$P = \log_2\left(6 + 4\sqrt{2}\right) + \log_2\left(6 - 4\sqrt{2}\right) = \log_2\left(6 + 4\sqrt{2}\right)\left(6 - 4\sqrt{2}\right) = \log_24 = 2$$
.

- (Sở Bạc Liêu 2018) Gọi x_1, x_2 (với $x_1 < x_2$) là nghiệm của phương trình Câu 62. $\log_3\left(3^{2x-1}-3^{x-1}+1\right)=x$ khi đó giá trị của biểu thức $\sqrt{3^{x_1}}-\sqrt{3^{x_2}}$ là:
 - **A.** $1-\sqrt{3}$.
- **B.** $1+\sqrt{3}$.
- **C.** $2-\sqrt{3}$. **D.** $2-\sqrt{3}$.

Lời giải

$$\log_3\left(3^{2x-1} - 3^{x-1} + 1\right) = x$$

$$\Leftrightarrow 3^{2x-1} - 3^{x-1} + 1 = 3^x$$

$$\Leftrightarrow 3^{2x} - 4.3^x + 3 = 0$$

$$\Leftrightarrow$$
 3^x = 3 \vee 3^x = 1

$$\Leftrightarrow x = 1 \lor x = 0$$
.

Do $x_1 < x_2$ nên $x_1 = 0, x_2 = 1$. Ta được đáp án A là đúng.

Câu 63. (Chuyên Thái Bình - 2018) Số nghiệm của phương trình $2^{\log_5(x+3)} = x$ là:

A. 0.

B. 1.

C. 3.

D. 2.

Lời giải

Dk: x > -3

Đặt $t = \log_5(x+3) \Rightarrow x = 5^t - 3$, phương trình đã cho trở thành

$$2^{t} = 5^{t} - 3 \Leftrightarrow 2^{t} + 3 = 5^{t} \Leftrightarrow \left(\frac{2}{5}\right)^{t} + 3 \cdot \left(\frac{1}{5}\right)^{t} = 1$$
 (1)

Dễ thấy hàm số $f(t) = \left(\frac{2}{5}\right)^t + 3 \cdot \left(\frac{1}{5}\right)^t$ nghịch biến trên \mathbb{R} và f(1) = 1 nên phương trình (1) có nghiệm duy nhất t = 1.

Với t = 1, ta có $\log_5(x+3) = 1 \Leftrightarrow x = 2$

Vậy phương trình có nghiệm duy nhất x = 2.

Câu 64. (Hồng Bàng - Hải Phòng - 2018) Phương trình $\log_2(5-2^x)=2-x$ có hai ngiệm x_1, x_2 . Tính $P=x_1+x_2+x_1x_2$.

A. 11.

B. 9.

C. 3.

D. 2.

Lời giải

Điều kiện: $2^x < 5$

$$\log_2(5-2^x) = 2-x \Leftrightarrow 5-2^x = 2^{2-x} \Leftrightarrow 5-2^x = \frac{4}{2^x} \Leftrightarrow \begin{bmatrix} 2^x = 1 \\ 2^x = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$$

$$\Rightarrow P = x_1 + x_2 + x_1 x_2 = 2$$

Câu 65. (THPT Cao Bá Quát - 2018) Cho phương trình $\log_4 (3.2^x - 1) = x - 1$ có hai nghiệm x_1, x_2 . Tổng $x_1 + x_2$ là:

A. $\log_2(6-4\sqrt{2})$.

<u>B</u>. 2.

C. 4.

D. $6 + 4\sqrt{2}$

Lời giải.

Chọn B

$$\log_4(3.2^x - 1) = x - 1 \Leftrightarrow 3.2^x - 1 = 4^{x-1} \Leftrightarrow \frac{4^x}{4} - 3.2^x + 1 = 0 (1).$$

Đặt
$$t = 2^x (t > 0)$$
. PT $(2) \Rightarrow \frac{1}{4}t^2 - 3t + 1 = 0 (2)$.

Giả sử 2 nghiệm của PT (2) là $t_1, t_2 \Rightarrow t_1, t_2 = 4 \Rightarrow 2^{x_1}.2^{x_2} = 4 \Rightarrow 2^{x_1+x_2} = 4 \Rightarrow x_1 + x_2 = 2$.

Dạng 1.4 Phương pháp hàm số, đánh giá

Thông thường ta sẽ vận dụng nội dung các định lý (và các kết quả) sau:

 $oldsymbol{\mathbb{O}}$ Nếu hàm số y = f(x) đơn điệu một chiều trên D thì phương trình f(x) = 0 không quá một nghiệm trên $oldsymbol{\mathbb{D}}$.

NGUYĒN BẢO VƯƠNG - 0946798489

- \longrightarrow Để vận dụng định lý này, ta cần nhẩm được 1 nghiệm $x=x_o$ của phương trình, rồi chỉ rõ hàm đơn điệu một chiều trên D (luôn đồng biến hoặc luôn nghịch biến trên D) và kết luận $x=x_o$ là nghiệm duy nhất.
- **2** Hàm số f(t) đơn điệu một chiều trên khoảng (a;b) và tồn tại $u; v \in (a;b)$ thì $f(u) = f(v) \Leftrightarrow u = v$ ".
- \longrightarrow Để áp dụng định lý này, ta cần xây dựng hàm đặc trưng f(t).
- **Câu 66. (Đề tham khảo 2017)** Hỏi phương trình $3x^2 6x + \ln(x+1)^3 + 1 = 0$ có bao nhiều nghiệm phân biệt?

A. 2.

B. 1.

<u>C</u>. 3.

D. 4

Lời giải

Chọn C

Điều kiện: x > -1.

Phương trình đã cho tương đương với $3x^2 - 6x + 3\ln(x+1) + 1 = 0$.

Xét hàm số $y = 3x^2 - 6x + 3\ln(x+1) + 1$ liên tục trên khoảng $(-1; +\infty)$.

$$y' = 6(x-1) + \frac{3}{x+1} = \frac{6x^2 - 3}{x+1}$$
.

$$y' = 0 \Leftrightarrow 2x^2 - 1 = 0 \Leftrightarrow x = \pm \frac{\sqrt{2}}{2}$$
 (thỏa điều kiện).

x	-1 $-\frac{}{2}$		$\frac{\sqrt{2}}{2}$	$+\infty$
y'	+ 0	_	0	+
y	$f(-\frac{1}{2})$	$\frac{\sqrt{2}}{2}$)	$(\frac{\sqrt{2}}{2})$	+∞

Vì $f\left(-\frac{\sqrt{2}}{2}\right) > 0$, $f\left(\frac{\sqrt{2}}{2}\right) < 0$ và $\lim_{x \to \pm \infty} y = \pm \infty$ nên đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt.

Câu 67. (**Chuyên Lam Sơn - Thanh Hóa - 2018**) Số nghiệm của phương trình $\ln(x-1) = \frac{1}{x-2}$ là:

A. 1.

B. 0.

C. 3.

<u>D</u>. 2.

Lời giải

Hàm số $f(x) = \ln(x-1)$ luôn đồng biến trên khoảng $(1; +\infty)$.

Hàm số $g(x) = \frac{1}{x-2}$ có $g'(x) = -\frac{1}{(x-2)^2} < 0$, $\forall x \neq 2$ nên g(x) luôn nghịch biến trên

khoảng (1;2) và $(2;+\infty)$.

Vậy phương trình đã cho luôn có hai nghiệm.

(THPT Nguyễn Trãi Đà Nẵng 2018) Giải Câu 68. phương trình $\log_2 x \cdot \log_3 x + x \cdot \log_3 x + 3 = \log_2 x + 3 \log_3 x + x$. Ta có tổng tất cả các nghiệm bằng

A. 35.

B. 5.

<u>C</u>. 10.

D. 9.

Lời giải

Điều kiên x > 0.

 $\log_2 x \cdot \log_3 x + x \cdot \log_3 x + 3 = \log_2 x + 3\log_3 x + x \Leftrightarrow (\log_2 x + x - 3)(\log_3 x - 1) = 0$

$$\Leftrightarrow \begin{bmatrix} x=3 \\ \log_2 x + x - 3 = 0 \end{bmatrix}.$$

Ta có hàm số $f(x) = \log_2 x + x$ liên tục và đồng biến trên $(0; +\infty)$ và f(2) = 3 nên phương trình $\log_2 x + x - 3 = 0$ có một nghiệm x = 2.

Vây tổng tất cả các nghiệm bằng 5.

Tính tổng tất cả các nghiệm của phương trình $\frac{1}{2}\log_2(x+3) = \log_2(x+1) + x^2 - x - 4 + 2\sqrt{x+3}$.

A.
$$S = 2$$
.

B.
$$S = 1$$
.

C.
$$S = -1$$

C.
$$S = -1$$
. **D.** $S = 1 - \sqrt{2}$.

Lời giải

Chọn B

Điều kiên: x > -1.

Ta có:

$$\frac{1}{2}\log_2(x+3) = \log_2(x+1) + x^2 - x - 4 + 2\sqrt{x+3} \Leftrightarrow \log_2\sqrt{x+3} + \left(\sqrt{x+3} - 1\right)^2 = \log_2(x+1) + x^2 \quad (*)$$

Xét hàm số $f(t) = \log_2 t + (t-1)^2$ trên khoảng $(0; +\infty)$

$$f'(t) = \frac{1}{t \ln 2} + 2(t-1) = \frac{1 + 2 \ln 2(t^2 - t)}{t \ln 2} = \frac{2 \ln 2 \cdot \left(t - \frac{1}{2}\right)^2 + \left(1 - \ln \sqrt{2}\right)}{t \ln 2} > 0 \quad \forall t > 0.$$

Vậy hàm số f(t) đồng biến trên khoảng $(0; +\infty)$.

Suy ra

$$(*) \Leftrightarrow f(\sqrt{x+3}) = f(x+1) \Leftrightarrow \sqrt{x+3} = x+1$$

$$\Leftrightarrow \begin{cases} x > -1 \\ x^2 + x - 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x > -1 \\ x = 1 \\ x = -2 \end{cases} \Leftrightarrow x = 1.$$

Vậy tổng các nghiệm của phương trình bằng 1.

- **Câu 70.** Biết phương trình $\log_5 \frac{2\sqrt{x}+1}{x} = 2\log_3 \left(\frac{\sqrt{x}}{2} \frac{1}{2\sqrt{x}}\right)$ có một nghiệm dạng $x = a + b\sqrt{2}$ trong đó a,b là các số nguyên. Tính 2a+b.
 - **A.** 3.

- **B.** 8.
- **C.** 4.
- **D.** 5.

Lời giải

Chon B

Điều kiên:

$$\begin{cases} x > 0 \\ \frac{\sqrt{x}}{2} - \frac{1}{2\sqrt{x}} > 0 \end{cases} \Leftrightarrow \begin{cases} x > 0 \\ \sqrt{x} > \frac{1}{\sqrt{x}} \Leftrightarrow x > 1. \end{cases}$$

Ta có:

$$\log_5 \frac{2\sqrt{x}+1}{x} = 2\log_3 \left(\frac{x-1}{2\sqrt{x}}\right) \Leftrightarrow \log_5 \left(2\sqrt{x}+1\right) - \log_5 x = 2\log_3 \left(x-1\right) - 2\log_3 \left(2\sqrt{x}\right)$$

$$\Leftrightarrow \log_5(2\sqrt{x}+1) + 2\log_3(2\sqrt{x}) = \log_5 x + 2\log_3(x-1) \qquad (*)$$

Xét hàm số: $f(t) = \log_5(t+1) + 2\log_3(t)$ trên $(2; +\infty)$

Ta có:
$$f'(t) = \frac{1}{(t+1)\ln 5} + \frac{2}{t \cdot \ln 3} > 0$$
 với mọi $t \in (2; +\infty)$.

Suy ra f(t) đồng biến trên $(2; +\infty)$

Từ đó ta có (*)
$$\Leftrightarrow f(2\sqrt{x}) = f(x-1) \Rightarrow 2\sqrt{x} = x-1 \Leftrightarrow x-2\sqrt{x}-1 = 0 \Leftrightarrow \begin{bmatrix} \sqrt{x} = 1-\sqrt{2} \\ \sqrt{x} = 1+\sqrt{2} \end{bmatrix}$$

Vậy
$$\sqrt{x} = 1 + \sqrt{2} \Rightarrow x = 3 + 2\sqrt{2} \Rightarrow a = 3, b = 2$$

- **Câu 71.** Số nghiệm thực của phương trình $2^{\sqrt{x^2+1}} \log_2(x+\sqrt{x^2+1}) = 4^x \log_2(3x)$.
 - **A.** 0.

B. 1.

- C. 2.
- **D.** 3.

Lời giải

$\underline{\mathbf{C}}$ họn $\underline{\mathbf{B}}$

Dk: x > 0.

Ta có
$$x + \sqrt{x^2 + 1} > 1, \forall x > 0$$
 do đó $2^{\sqrt{x^2 + 1}} \log_2(x + \sqrt{x^2 + 1}) > 0, \forall x > 0$.

Với
$$0 < x \le \frac{1}{3}$$
 thì
$$\begin{cases} 2^{\sqrt{x^2+1}} \log_2\left(x+\sqrt{x^2+1}\right) > 0 \\ 4^x \log_2\left(3x\right) \le 0 \end{cases}$$
, do đó phương trình đã cho vô nghiệm.

Với
$$x > \frac{1}{3}$$
.

$$2^{\sqrt{x^2+1}} \log_2\left(x+\sqrt{x^2+1}\right) = 4^x \log_2\left(3x\right) \Leftrightarrow 2^{x+\sqrt{x^2+1}} \log_2\left(x+\sqrt{x^2+1}\right) = 2^{3x} \log_2\left(3x\right).(*)$$

Xét hàm số $f(t) = 2^t \log_2 t$, với t > 1.

Có
$$f'(t) = 2^{t} \left(\frac{1}{t \ln 2} + \ln 2 \log_2 t\right) \Rightarrow f'(t) > 0, \forall t \in (1; +\infty).$$

Suy ra hàm số đồng biến trên khoảng $(1;+\infty)$.

Do đó (*)
$$\Leftrightarrow f\left(x+\sqrt{x^2+1}\right) = f\left(3x\right) \Leftrightarrow x+\sqrt{x^2+1} = 3x \Leftrightarrow x = \frac{1}{\sqrt{3}} \in \left(\frac{1}{3}; +\infty\right).$$

Vậy phương trình đã cho có 1 nghiệm thực.

Câu 72. (**Bắc Ninh - 2018**) Cho phương trình $\frac{1}{2}\log_2(x+2)+x+3=\log_2\frac{2x+1}{x}+\left(1+\frac{1}{x}\right)^2+2\sqrt{x+2}$, gọi S là tổng tất cả các nghiệm của nó. Khi đó, giá trị của S là

A.
$$S = -2$$
.

B.
$$S = \frac{1 - \sqrt{13}}{2}$$
.

C.
$$S = 2$$
.

D.
$$S = \frac{1 + \sqrt{13}}{2}$$
.

Lời giải

Điều kiện
$$\begin{bmatrix} -2 < x < -\frac{1}{2} \\ x > 0 \end{bmatrix}$$
.

Xét hàm số $f(t) = \log_2 t + (t-1)^2$, t > 0

Ta có $f'(t) = \frac{1}{t \ln 2} + 2(t-1) = \frac{2 \ln 2.t^2 - 2 \ln 2.t + 1}{t \cdot \ln 2} > 0$, $\forall t > 0$, do đó hàm số f(t) đồng biến trên khoảng $(0; +\infty)$.

Mặt khác ta có:

$$\frac{1}{2}\log_2(x+2) + x + 3 = \log_2\frac{2x+1}{x} + \left(1 + \frac{1}{x}\right)^2 + 2\sqrt{x+2}$$

$$\Leftrightarrow \log_2 \sqrt{x+2} + (\sqrt{x+2} - 1)^2 = \log_2 \left(2 + \frac{1}{x}\right) + \left[\left(2 + \frac{1}{x}\right) - 1\right]^2$$

$$\Leftrightarrow f\left(\sqrt{x+2}\right) = f\left(2 + \frac{1}{x}\right)$$

$$\Rightarrow \sqrt{x+2} = 2 + \frac{1}{x}$$

$$\Leftrightarrow x^3 - 2x^2 - 4x - 1 = 0$$

$$\Leftrightarrow \begin{bmatrix} x = -1 \\ x = \frac{3 - \sqrt{13}}{2} \\ x = \frac{3 + \sqrt{13}}{2} \end{bmatrix}$$

Kết hợp với điều kiện ta được $\begin{bmatrix} x=-1 \\ x=\frac{3+\sqrt{13}}{2} \end{bmatrix}. \ \text{Vậy} \ S=\frac{1+\sqrt{13}}{2}.$

Câu 73. (**Toán Học Và Tuổi Trẻ - 2018**) Biết x_1 , x_2 là hai nghiệm của phương trình $\log_7\left(\frac{4x^2-4x+1}{2x}\right)+4x^2+1=6x$ và $x_1+2x_2=\frac{1}{4}\left(a+\sqrt{b}\right)$ với a, b là hai số nguyên dương.

A.
$$a + b = 16$$
.

Tính a+b.

B.
$$a + b = 11$$
.

$$\mathbf{C}$$
. $a+b=14$.

D.
$$a + b = 13$$
.

Điều kiện
$$\begin{cases} x > 0 \\ x \neq \frac{1}{2} \end{cases}$$

Ta có
$$\log_7 \left(\frac{4x^2 - 4x + 1}{2x} \right) + 4x^2 + 1 = 6x \Leftrightarrow \log_7 \left(\frac{(2x - 1)^2}{2x} \right) + 4x^2 - 4x + 1 = 2x$$

$$\Leftrightarrow \log_7 (2x-1)^2 + (2x-1)^2 = \log_7 2x + 2x(1)$$

Xét hàm số
$$f(t) = \log_7 t + t \Leftrightarrow f'(t) = \frac{1}{t \ln 7} + 1 > 0 \text{ với } t > 0$$

Vậy hàm số đồng biến

Phương trình (1) trở thành
$$f((2x-1)^2) = f(2x) \Leftrightarrow (2x-1)^2 = 2x \Leftrightarrow \begin{vmatrix} x = \frac{3+\sqrt{5}}{4} \\ x = \frac{3-\sqrt{5}}{4} \end{vmatrix}$$

Vậy
$$x_1 + 2x_2 = \begin{bmatrix} \frac{9 - \sqrt{5}}{4} & (l) \\ \frac{9 + \sqrt{5}}{4} & (tm) \end{bmatrix} \Rightarrow a = 9; b = 5 \Rightarrow a + b = 9 + 5 = 14.$$

Câu 74. (**Chuyên Hoàng Văn Thụ - Hòa Bình - 2018**) Số nghiệm của phương trình $\frac{x^2}{2} + x - \ln(x^2 - 2) = 2018 \text{ là}$

A. 3.

B. 1

<u>C</u>. 4.

D. 2.

Lời giải

Xét hàm số
$$f(x) = \frac{x^2}{2} + x - \ln(x^2 - 2)$$
 với $x \in (-\infty; -\sqrt{2}) \cup (\sqrt{2}; +\infty)$.

Ta có
$$f'(x) = x + 1 - \frac{2x}{x^2 - 2}$$
; $f''(x) = 1 + \frac{2x^2 + 4}{(x^2 - 2)^2} > 0, \forall x \in (-\infty; -\sqrt{2}) \cup (\sqrt{2}; +\infty)$.

Nên suy ra hàm số $f'(x) = x + 1 - \frac{2x}{x^2 - 2}$ đồng biến trên mỗi khoảng $(-\infty; -\sqrt{2})$ và $(\sqrt{2}; +\infty)$.

Mặ khác $f'(2).f'(\sqrt{3})=1.(1-\sqrt{3})<0$ và $f'(-3).f'(-2)=-\frac{8}{7}.1<0$ nên f'(x) có đúng một nghiệm $a\in (-\infty; -\sqrt{2})$ và đúng một nghiệm $b\in (\sqrt{2}; +\infty)$.

Ta có bảng biến thiên

Dựa vào bảng biến thiên suy ra phương trình f(x) = 2018 có bốn nghiệm phân biệt.

(THPT Lê Xoay - 2018) Số nghiệm của phương trình $\sin 2x - \cos x = 1 + \log_2(\sin x)$ trên Câu 75. khoảng $\left(0; \frac{\pi}{2}\right)$ là:

A. 4.

B. 3.

C. 2.

D. 1.

Lời giải

Vì $\sin x > 0$ và $\cos x > 0$, $\forall x \in \left(0; \frac{\pi}{2}\right)$ nên phương trình đã cho tương đương

 $\sin 2x - \cos x + \log_2(\cos x) = 1 + \log_2(\sin x) + \log_2(\cos x)$

 $\Leftrightarrow \log_2(\cos x) - \cos x = \log_2(\sin 2x) - \sin 2x$ (*)

Xét hàm số $f(t) = \log_2 t - t$, với $t \in (0,1)$ ta có $f'(t) = \frac{1}{t \ln 2} - 1 > 0$, $\forall t \in (0,1)$.

Do đó, hàm số f(t) đồng biến trên khoảng (0;1).

Từ phương trình (*), ta có $f(\cos x) = f(\sin 2x) \Leftrightarrow \cos x = \sin 2x \Leftrightarrow \sin x = \frac{1}{2}$ hay $x = \frac{\pi}{6}$.

(THPT Nguyễn Thị Minh Khai - Hà Tĩnh -Câu 76. $\log_3\left(x^2+2x-3\right)+x^2-x-7=\log_3\left(x+1\right)\text{ có số nghiệm là }T\text{ và tổng các nghiệm là }S\text{ . Khi đó }$ T + S bằng

A. 2.

B. 4.

C. 3.

D. 1.

Lời giải

* Điều kiện
$$\begin{cases} x^2 + 2x - 3 > 0 \\ x + 1 > 0 \end{cases} \Leftrightarrow x > 1.$$

* Ta có x = 3 là một nghiệm của phương trình.

* Khi x > 1, phương trình đã cho được viết lại $\log_3\left(\frac{x^2 + 2x - 3}{x + 1}\right) = -x^2 + x + 7$ (*).

* Phương trình (*) có về trái là hàm đồng biến và về phải là hàm nghịch biến khi x > 1 suy ra x = 3 là nghiệm duy nhất của phương trình đã cho.

* Vây T + S = 4.

(THPT Nguyễn Tất Thành - Yên Bái - 2018) Biết $x_1, x_2(x_1 < x_2)$ là hai nghiệm của phương Câu 77.

trình $\log_7\left(\frac{4x^2-4x+1}{2x}\right) + 4x^2 + 1 = 6x$ và $x_1 + 3x_2 = \frac{1}{4}(a+2\sqrt{b})$ với a,b là các số nguyên

dương. Tính a+b

A. a + b = 14.

B. a + b = 16.

<u>C</u>. a+b=17. **D.** a+b=15.

$$\frac{4x^2 - 4x + 1}{2x} > 0 \Leftrightarrow \frac{\left(2x - 1\right)^2}{2x} > 0 \Leftrightarrow \begin{cases} x \neq \frac{1}{2} \\ x > 0 \end{cases}$$

$$\log_7\left(\frac{4x^2 - 4x + 1}{2x}\right) + 4x^2 + 1 = 6x \iff \log_7\left(2x - 1\right)^2 + \left(2x - 1\right)^2 = \log_7 2x + 2x$$

Xét hàm $f(t) = \log_7 t + t(t > 0)$.

Ta có $f'(t) = \frac{1}{t \ln 7} + 1 > 0 \forall t > 0$, vậy $f(t) = \log_7 t + t(t > 0)$ là hàm đồng biến suy ra

$$\log_7 (2x-1)^2 + (2x-1)^2 = \log_7 2x + 2x \Leftrightarrow (2x-1)^2 = 2x \Leftrightarrow 4x^2 - 6x + 1 = 0 \Leftrightarrow 4x^2 - 6x + 1 = 0$$

$$\Leftrightarrow \begin{bmatrix} x_2 = \frac{3 + \sqrt{5}}{4} \\ x_1 = \frac{3 - \sqrt{5}}{4} \end{bmatrix}$$

$$x_1 + 3x_2 = \frac{1}{4} (12 + 2\sqrt{5}).$$

(THPT Lương Văn Can - 2018) Cho biết phương trình $\log_5 \frac{2\sqrt{x+1}}{x} = 2\log_3 \left(\frac{\sqrt{x}}{2} - \frac{1}{2\sqrt{x}}\right)$ có Câu 78.

nghiệm duy nhất $x = a + b\sqrt{2}$. Hỏi m thuộc khoảng nào dưới đây để hàm số $y = \frac{mx + a - 2}{x - m}$ có giá trị lớn nhất trên đoạn [1; 2] bằng -2.

A.
$$m \in (7; 9)$$
.

B.
$$m \in (6; 7)$$

B.
$$m \in (6; 7)$$
. **C.** $m \in (2; 4)$. **D.** $m \in (4; 6)$.

D.
$$m \in (4; 6)$$

Lời giải

+ Điều kiên: x > 1.

Ta có:
$$\log_5 \frac{2\sqrt{x}+1}{x} = 2\log_3 \left(\frac{\sqrt{x}}{2} - \frac{1}{2\sqrt{x}}\right) \Leftrightarrow \log_5 \frac{2\sqrt{x}+1}{x} = 2\log_3 \frac{x-1}{2\sqrt{x}}$$

$$\Leftrightarrow \log_5\left(2\sqrt{x}+1\right) - \log_5 x = \log_3\left(x-1\right)^2 - \log_3\left(2\sqrt{x}\right)^2$$

$$\Leftrightarrow \log_5(2\sqrt{x}+1) + \log_3(2\sqrt{x})^2 = \log_5(x) + \log_3(x-1)^2$$
 (*).

Xét hàm số $f(t) = \log_5 t + \log_3 (t-1)^2$, với t > 1

$$có f'(t) = \frac{1}{t \cdot \ln 5} + \frac{2}{(t-1) \cdot \ln 3} > 0, \forall t > 1$$

nên f(t) đồng biến do đó (*) $\Leftrightarrow x = 2\sqrt{x} + 1 \Leftrightarrow \sqrt{x} = 1 + \sqrt{2}$ (vì x > 1)

$$\Leftrightarrow x = 3 + 2\sqrt{2}$$
. Vậy $a = 3$.

+ Với
$$a = 3$$
, ta xét hàm số $y = \frac{mx+1}{x-m}$

TXĐ:
$$D = \mathbb{R} \setminus \{m\}$$

$$y' = \frac{-m^2 - 1}{(x - m)^2} < 0$$
 do đó hàm số luôn nghịch biến.

Khi đó hàm số có giá trị lớn nhất trên đoạn [1; 2] bằng $-2 \Leftrightarrow \begin{cases} m \notin [1; 2] \\ v(1) = -2 \end{cases}$

$$\Leftrightarrow \begin{cases} m \notin [1; 2] \\ \frac{m+1}{1-m} = -2 \end{cases} \Leftrightarrow m = 3.$$

DANG 2. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MỮ

Dang 2.1 Phương pháp đưa về cùng cơ số

+ Nếu
$$a > 0$$
, $a \ne 1$ thì $a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x)$

+ Nếu a chứa ẩn thì
$$a^{f(x)} = a^{g(x)} \Leftrightarrow (a-1)[f(x)-g(x)] = 0 \Leftrightarrow \begin{bmatrix} a=1 \\ f(x)=g(x) \end{bmatrix}$$

$$+ a^{f(x)} = b^{g(x)} \Leftrightarrow \log_a a^{f(x)} = \log_a b^{g(x)} \Leftrightarrow f(x) = \log_a b.g(x)$$
 (logarit hóa).

Câu 1. (Chuyên Bắc Giang 2019) Nghiệm của phương trình
$$\left(\frac{1}{5}\right)^{x^2-2x-3} = 5^{x+1}$$
 là

A.
$$x = -1$$
; $x = 2$.

A.
$$x = -1$$
; $x = 2$. **B.** $x = 1$; $x = -2$.

C.
$$x = 1$$
; $x = 2$.

D. Vô nghiệm.

Lời giải

Chọn A

$$\left(\frac{1}{5}\right)^{x^2 - 2x - 3} = 5^{x + 1} \Leftrightarrow 5^{-(x^2 - 2x - 3)} = 5^{x + 1} \Leftrightarrow -x^2 + 2x + 3 = x + 1 \Leftrightarrow -x^2 + x + 2 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 2 \end{bmatrix}.$$

Vậy nghiệm của phương trình là x = -1; x = 2.

Câu 2. Tập nghiệm của phương trình
$$\left(\frac{1}{7}\right)^{x^2-2x-3} = 7^{x+1}$$
 là

A.
$$\{-1\}$$

B.
$$\{-1;2\}$$
. **C.** $\{-1;4\}$.

$$C. \{-1;4\}.$$

D.
$$\{2\}$$
.

Ta có:
$$\left(\frac{1}{7}\right)^{x^2-2x-3} = 7^{x+1} \Leftrightarrow 7^{-x^2+2x+3} = 7^{x+1} \Leftrightarrow -x^2+2x+3=x+1$$
.

$$\Leftrightarrow x^2 - x - 2 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 2 \end{bmatrix}$$
.

Câu 3. Tổng các nghiệm của phương trình
$$2^{x^2+2x} = 8^{2-x}$$
 bằng

D. 6.

Lời giải

Chon B

Ta có:
$$2^{x^2+2x} = 8^{2-x} \iff 2^{x^2+2x} = 2^{6-3x} \iff x^2 + 5x - 6 = 0 \iff \begin{bmatrix} x = 1 \\ x = -6 \end{bmatrix}$$
.

Vậy tổng hai nghiệm của phương trình bằng −5.

(SGD Điện Biên - 2019) Gọi x_1 , x_2 là hai nghiệm của phương trình $7^{x+1} = \left(\frac{1}{7}\right)^{x^2-2x-3}$. Khi đó Câu 4.

$$x_1^2 + x_2^2$$
 bằng:

- **A.** 17.
- **B.** 1.
- **C.** 5.
- **D.** 3.

Lời giải

Chọn C

$$7^{x+1} = \left(\frac{1}{7}\right)^{x^2 - 2x - 3} \iff 7^{x+1} = 7^{-\left(x^2 - 2x - 3\right)} \iff x + 1 = -x^2 + 2x + 3 \iff x^2 - x - 2 = 0 \iff \begin{bmatrix} x_1 = -1 \\ x_2 = 2 \end{bmatrix}.$$

Vậy $x_1^2 + x_2^2 = 5$.

- Tổng bình phương các nghiệm của phương trình $5^{3x-2} = \left(\frac{1}{5}\right)^{-x^2}$ bằng Câu 5.
 - **A.** 2.

B. 5.

- **D.** 3.

Lời giải

Chọn B

Ta có
$$5^{3x-2} = \left(\frac{1}{5}\right)^{-x^2} \Leftrightarrow 5^{3x-2} = 5^{x^2} \Leftrightarrow x^2 - 3x + 2 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 2 \end{bmatrix}$$
.

Vậy tổng bình phương các nghiệm của phương trình $5^{3x-2} = \left(\frac{1}{5}\right)^{-x^2}$ bằng 5.

- Nghiệm của phương trình $2^{7x-1} = 8^{2x-1}$ là Câu 6.
 - **A.** x = 2.
- **B.** x = -3.
- $\underline{\mathbf{C}}. \ x = -2.$
- **D.** x = 1.

Chọn C

$$2^{7x-1} = 8^{2x-1} \Leftrightarrow 2^{7x-1} = 2^{3(2x-1)} \Leftrightarrow 2^{7x-1} = 2^{6x-3} \Leftrightarrow 7x-1 = 6x-3 \Leftrightarrow x = -2$$

- (THPT Lurong Văn Tụy Ninh Bình 2018) Giải phương trình $(2,5)^{5x-7} = \left(\frac{2}{5}\right)^{3/3}$. Câu 7.
 - **A.** $x \ge 1$.
- **<u>B</u>**. x = 1.
- **C.** x < 1.
- **D.** x = 2.

Ta có
$$(2,5)^{5x-7} = \left(\frac{2}{5}\right)^{x+1} \Leftrightarrow \left(\frac{5}{2}\right)^{5x-7} = \left(\frac{5}{2}\right)^{-x-1} \Leftrightarrow 5x-7 = -x-1 \Leftrightarrow x=1$$
.

- (THPT Nguyễn Thị Minh Khai Hà Tĩnh 2018) Phương trình $3^{x^2-4} = \left(\frac{1}{9}\right)^{3x-1}$ có hai Câu 8. nghiệm x_1 , x_2 . Tính x_1x_2 .
 - **A.** -6.
- **B.** -5.
- **C.** 6.
- **D.** -2.

Lời giải

Ta có
$$3^{x^2-4} = \left(\frac{1}{9}\right)^{3x-1} \Leftrightarrow x^2 - 4 = 2 - 6x \Leftrightarrow x^2 + 6x - 6 = 0$$
.

Áp dụng Vi-ét suy ra phương trình đã cho có hai nghiệm x_1 , x_2 thì $x_1x_2 = -6$.

- (Sở Quảng Nam 2018) Tổng các nghiệm của phương trình $2^{x^2+2x} = 8^{2-x}$ bằng Câu 9.
 - **A.** 5.

- **B.** -5.
- **C.** 6.

Lời giải

Phương trình đã cho tương đương: $2^{x^2+2x} = 2^{3(2-x)} \Leftrightarrow x^2 + 2x = 6 - 3x \Leftrightarrow x^2 + 5x - 6 = 0$. Do đó tổng các nghiệm của phương trình là: $S = -\frac{b}{a} = -5$.

(THPT Thăng Long - Hà Nội - 2018) Tập nghiệm của phương trình $4^{x-x^2} = \left(\frac{1}{2}\right)^x$ là

A.
$$\left\{0; \frac{2}{3}\right\}$$
.

B.
$$\left\{0; \frac{1}{2}\right\}$$
.

C.
$$\{0;2\}$$
.

$$\underline{\mathbf{D}}$$
, $\left\{0; \frac{3}{2}\right\}$.

Ta có
$$4^{x-x^2} = \left(\frac{1}{2}\right)^x \Leftrightarrow 2^{2x-2x^2} = 2^{-x} \Leftrightarrow -2x^2 + 2x = -x \Leftrightarrow -2x^2 + 3x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \frac{3}{2} \end{bmatrix}$$

(THPT Kim Liên - Hà Nội - 2018) Tính tổng $S = x_1 + x_2$ biết x_1 , x_2 là các giá trị thực thỏa Câu 11. mãn đẳng thức $2^{x^2-6x+1} = \left(\frac{1}{4}\right)^{x^2}$.

A.
$$S = -5$$

B.
$$S = 8$$
.

$$\underline{\mathbf{C}} \cdot S = 4$$
. $\mathbf{D} \cdot S = 2$.

D.
$$S = 2$$
.

Lời giải

Ta có
$$2^{x^2-6x+1} = \left(\frac{1}{4}\right)^{x-3} \iff 2^{x^2-6x+1} = \left(2\right)^{-2(x-3)} \iff x^2 - 6x + 1 = -2x + 6$$

$$\Leftrightarrow x^2 - 4x - 5 = 0 \Leftrightarrow \begin{bmatrix} x_1 = -1 \\ x_2 = 5 \end{bmatrix} \Rightarrow S = x_1 + x_2 = 4.$$

Câu 12. (THPT Nguyễn Thị Minh Khai - Hà Nội - 2018) Tích các nghiệm của phương trình $\left(\sqrt{5}+2\right)^{x-1} = \left(\sqrt{5}-2\right)^{\frac{x-1}{x+1}}$ là

Lời giải

Chon. A.

ÐKXÐ: x ≠ -1

Vì
$$(\sqrt{5}-2)(\sqrt{5}+2)=1$$
 nên $(\sqrt{5}-2)=(\sqrt{5}+2)^{-1}$.

Khi đó phương trình đã cho tương đương $\left(\sqrt{5}+2\right)^{x-1} = \left(\sqrt{5}+2\right)^{\frac{-x+1}{x+1}}$

$$\iff x - 1 = \frac{-x + 1}{x + 1}$$

$$\Leftrightarrow \begin{bmatrix} x=1\\ x=-2 \end{bmatrix}$$
. (thỏa điều kiện)

Suy ra tích hai nghiệm là -2.

(THCS&THPT Nguyễn Khuyến - Bình Dương - 2018) Giải phương trình $4^{2x+3} = 8^{4-x}$. Câu 13.

$$\underline{\mathbf{A}} \cdot x = \frac{6}{7}.$$

B.
$$x = \frac{2}{3}$$

C.
$$x = 2$$

B.
$$x = \frac{2}{3}$$
. **C.** $x = 2$. **D.** $x = \frac{4}{5}$.

Lời giải

$$4^{2x+3} = 8^{4-x} \iff 2^{4x+6} = 2^{12-3x} \iff 4x+6 = 12-3x \iff x = \frac{6}{7}$$

- (THPT Cao Bá Quát 2018) Cho phương trình $2^{\left|\frac{28}{3}x+4\right|} = 16^{x^2-1}$. Khẳng định nào sau đây là đúng:
 - A. Nghiệm của phương trình là các số vô tỷ.
 - B. Tổng các nghiệm của một phương trình là một số nguyên.
 - C. Tích các nghiệm của phương trình là một số âm.
 - D. Phương trình vô nghiệm.

Lời giải.

Chon C

$$2^{\left|\frac{28}{3}x+4\right|} = 16^{x^2-1} \iff 2^{\left|\frac{28}{3}x+4\right|} = 2^{4x^2-4} \iff \left|\frac{28}{3}x+4\right| = 4x^2-4 \ (1).$$

TH1: Nếu
$$x > -\frac{3}{7}$$
. PT (1): $\frac{28}{3}x + 4 = 4x^2 - 4 \Leftrightarrow 4x^2 - \frac{28}{3}x - 8 = 0 \Leftrightarrow \begin{bmatrix} x = 3 & (TM) \\ x = -\frac{2}{3} & (L) \end{bmatrix}$

TH1: Nếu
$$x \le -\frac{3}{7}$$
. PT (1): $-\frac{28}{3}x - 4 = 4x^2 - 4 \Leftrightarrow 4x^2 + \frac{28}{3}x = 0 \Leftrightarrow \begin{bmatrix} x = 0 & (L) \\ x = -\frac{7}{3} & (TM) \end{bmatrix}$

Phương trình có tập nghiệm $S = \left\{-\frac{7}{3}; 3\right\}$.

Dạng 2.2 Phương pháp đặt ấn phụ

- $\mathfrak{D} \underline{\text{Loai 1}}. P(a^{f(x)}) = 0 \xrightarrow{PP} \text{ dăt } t = a^{f(x)}, t > 0.$
- (chia cho cơ số lớn nhất hoặc nhỏ nhất).
- 3 Loại 3. $a^{f(x)} + b^{f(x)} = c$ với $a.b = 1 \xrightarrow{PP} \text{ dặt } t = a^{f(x)} \Rightarrow b^{f(x)} = \frac{1}{t}$
- $\textcircled{4} \ \underline{\text{Loai 4.}} \ \alpha.a^{f(x)} + \begin{vmatrix} a^{f(x)}.a^{g(x)} \\ \underline{a^{f(x)}} \\ \end{vmatrix} + \beta.a^{g(x)} + b = 0 \xrightarrow{PP} \overset{\text{dăt}}{\longrightarrow} \begin{cases} u = a^{f(x)} \\ v = a^{g(x)} \end{cases}.$
- (Mã 123 2017) Cho phương trình $4^x + 2^{x+1} 3 = 0$. Khi đặt $t = 2^x$ ta được phương trình nào Câu 15. sau đây
 - **A.** $2t^2 3t = 0$ **B.** 4t 3 = 0
- **C.** $t^2 + t 3 = 0$ **D.** $t^2 + 2t 3 = 0$

Lời giải

Chọn D

Phương trình $\Leftrightarrow 4^x + 2.2^x - 3 = 0$

- Câu 16. (THPT Hoàng Hoa Thám Hưng Yên 2019) Tập nghiệm của phương trình $5^{x^2-4x+3} + 5^{x^2+7x+6} = 5^{2x^2+3x+9} + 1 \text{ là}$
- **A.** $\{1;-1;3\}$. **B.** $\{-1;1;3;6\}$. **C.** $\{-6;-1;1;3\}$. **D.** $\{1;3\}$.

$$5^{x^2-4x+3} + 5^{x^2+7x+6} = 5^{2x^2+3x+9} + 1 \Leftrightarrow 5^{x^2-4x+3} + 5^{x^2+7x+6} = 5^{(x^2-4x+3)+(x^2+7x+6)} + 1.$$

Đặt
$$\begin{cases} a = x^2 - 4x + 3 \\ b = x^2 + 7x + 6 \end{cases}$$
, ta được phương trình:

$$5^{a} + 5^{b} = 5^{a+b} + 1 \Leftrightarrow 5^{a} + 5^{b} = 5^{a} \cdot 5^{b} + 1 \Leftrightarrow \left(1 - 5^{a}\right)\left(1 - 5^{b}\right) = 0 \Leftrightarrow \begin{bmatrix} 5^{a} = 1 \\ 5^{b} = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} a = 0 \\ b = 0 \end{bmatrix}$$

Khi đó
$$\begin{bmatrix} x^2 - 4x + 3 = 0 \\ x^2 + 7x + 6 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 3 \\ x = -1 \\ x = -6 \end{bmatrix}$$

Tập nghiệm của phương trình là $\{-6; -1; 1; 3\}$.

(Chuyên Lê Quý Đôn Điện Biên 2019) Phương trình $9^x - 6^x = 2^{2x+1}$ có bao nhiều nghiệm âm?

A. 2.

$$=2.4^{x} \Leftrightarrow \left(\frac{3}{3}\right)^{2x} - \left(\frac{3}{3}\right)^{x} = 2 (*).$$

Phurong trình
$$9^x - 6^x = 2^{2x+1} \Leftrightarrow 9^x - 6^x = 2.4^x \Leftrightarrow \left(\frac{3}{2}\right)^{2x} - \left(\frac{3}{2}\right)^x = 2 \ (*).$$

Đặt
$$\left(\frac{3}{2}\right)^x = t \text{ với } t > 0$$
, phương trình (*) trở thành $t^2 - t - 2 = 0 \Leftrightarrow \begin{bmatrix} t = -1 & (L) \\ t = 2 \end{bmatrix}$.

Với
$$t = 2 \Leftrightarrow \left(\frac{3}{2}\right)^x = 2 \Leftrightarrow x = \log_{\frac{3}{2}} 2 > 0$$
.

Vậy phương trình đã cho không có nghiệm âm.

Câu 18. (Chuyên Nguyễn Trãi Hải Dương 2019) Tổng các nghiệm của phương trình $4^x - 6.2^x + 2 = 0$ bằng

B. 1.

D. 2.

$$4^{x} - 6.2^{x} + 2 = 0 \Leftrightarrow (2^{x})^{2} - 6.2^{x} + 2 = 0 \Leftrightarrow \begin{bmatrix} 2^{x} = 3 + \sqrt{7} \\ 2^{x} = 3 - \sqrt{7} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \log_{2}(3 + \sqrt{7}) \\ x = \log_{2}(3 - \sqrt{7}) \end{bmatrix}.$$

Vậy tổng hai nghiệm của phương trình

$$l\grave{a} \log_2 \left(3 + \sqrt{7} \right) + \log_2 \left(3 - \sqrt{7} \right) = \log_2 \left\lceil \left(3 + \sqrt{7} \right) \left(3 - \sqrt{7} \right) \right\rceil = \log_2 2 = 1.$$

(Cụm 8 Trường Chuyên 2019) Tổng các nghiệm của phương trình $3^{x+1} + 3^{1-x} = 10$ là

A. 1.

Ta có:
$$3^{x+1} + 3^{1-x} = 10 \Leftrightarrow 3.3^x + \frac{3}{3^x} = 10$$

Đặt
$$t = 3^x (t > 0)$$
, phương trình trở thành: $3t + \frac{3}{t} = 10 \Leftrightarrow 3t^2 - 10t + 3 = 0 \Leftrightarrow \begin{bmatrix} t = 3 \\ t = \frac{1}{3} \end{bmatrix}$

Với t = 3 ta có $3^x = 3 \Leftrightarrow x = 1$.

Với
$$t = \frac{1}{3}$$
 ta có $3^x = \frac{1}{3} \Leftrightarrow 3^x = 3^{-1} \Leftrightarrow x = -1$.

Vậy tổng các nghiệm của phương trình là: 1-1=0.

Câu 20. Gọi x_1, x_2 là nghiệm của phương trình $\left(2 - \sqrt{3}\right)^x + \left(2 + \sqrt{3}\right)^x = 4$. Khi đó $x_1^2 + 2x_2^2$ bằng

A. 2.

B. 3.

D. 4.

Ta có:
$$\left(2-\sqrt{3}\right)^x \cdot \left(2+\sqrt{3}\right)^x = 1$$
. Đặt $t = \left(2-\sqrt{3}\right)^x$, $t > 0 \Rightarrow \left(2+\sqrt{3}\right)^x = \frac{1}{t}$.

Phương trình trở thành: $t + \frac{1}{t} = 4 \Rightarrow t^2 - 4t + 1 = 0 \Leftrightarrow t = 2 \pm \sqrt{3}$.

Với
$$t = 2 - \sqrt{3} \Rightarrow (2 - \sqrt{3})^x = 2 - \sqrt{3} \Leftrightarrow x = 1$$
.

Với
$$t = 2 + \sqrt{3} \Rightarrow (2 - \sqrt{3})^x = 2 + \sqrt{3} \Leftrightarrow (2 - \sqrt{3})^x = (2 - \sqrt{3})^{-1} \Leftrightarrow x = -1$$
.

Vậy
$$x_1^2 + 2x_2^2 = 3$$
.

Câu 21. (Đề Thi Công Bằng KHTN 2019) Tổng tất cả các nghiệm của phương trình $2.4^{x} - 9.2^{x} + 4 = 0$ bằng.

A. 2.

B. −1.

C. 0.

D. 1.

Lời giải

Phương trình: $2.4^{x} - 9.2^{x} + 4 = 0$ (1) có TXĐ: $D = \mathbb{R}$.

Đặt $t = 2^x$ (t > 0) Khi đó pt(1) trở thành:

$$2t^{2}-9t+4=0 \Leftrightarrow (t-4)(2t-1)=0 \Leftrightarrow \begin{bmatrix} t=4(tm) \\ t=\frac{1}{2}(tm) \end{bmatrix}$$

Với
$$t = 4 \Rightarrow 2^x = 4 \Leftrightarrow 2^x = 2^2 \Leftrightarrow x = 2$$

Với
$$t = \frac{1}{2} \Rightarrow 2^x = \frac{1}{2} \Leftrightarrow 2^x = 2^{-1} \Leftrightarrow x = -1$$

Phương trình có tập nghiệm là: $S = \{2; -1\}$. Vậy tổng tất cả các nghiệm của pt (1) là 1.

(THPT Nghĩa Hưng NĐ 2019) Phương trình $6^{2x-1} - 5.6^{x-1} + 1 = 0$ có hai nghiệm x_1, x_2 . Khi Câu 22. đó tổng hai nghiệm $x_1 + x_2$ là.

A. 5.

B. 3.

D. 1.

$$6^{2x-1} - 5.6^{x-1} + 1 = 0 \Leftrightarrow \frac{6^{2x}}{6} - \frac{5.6^{x}}{6} + 1 = 0 \Leftrightarrow 6^{2x} - 5.6^{x} + 6 = 0 \Leftrightarrow \begin{bmatrix} 6^{x_{1}} = 2 \\ 6^{x_{2}} = 3 \end{bmatrix}.$$

$$\Rightarrow 6^{x_1}.6^{x_2} = 3.2 \Leftrightarrow 6^{x_1+x_2} = 6 \Leftrightarrow x_1+x_2=1.$$

Câu 23. Cho phương trình $25^x - 20.5^{x-1} + 3 = 0$. Khi đặt $t = 5^x$, ta được phương trình nào sau đây.

A. $t^2 - 3 = 0$. **B.** $t^2 - 4t + 3 = 0$. **C.** $t^2 - 20t + 3 = 0$. **D.** $t - \frac{20}{t} + 3 = 0$.

Lời giải

Ta có:
$$25^x - 20.5^{x-1} + 3 = 0 \iff (5^x)^2 - 20.\frac{5^x}{5} + 3 = 0 \iff (5^x)^2 - 4.5^x + 3 = 0$$

$$\text{Dăt } t = 5^x, \ t > 0$$

Khi đó phương trình trở thành: $t^2 - 4t + 3 = 0$.

Câu 24. (Sở Bình Phước -2019) Tập nghiệm của phương trình $9^x - 4.3^x + 3 = 0$ là

A.
$$\{0;1\}$$

C.
$$\{0\}$$

Lời giải

Chon A

Ta có:
$$9^x - 4.3^x + 3 = 0 \Leftrightarrow \begin{bmatrix} 3^x = 1 \\ 3^x = 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3^x = 3^0 \\ 3^x = 3^1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix}$$
.

(Chuyên Thái Nguyên 2019) Số nghiệm thực của phương trình $4^{x-1} + 2^{x+3} - 4 = 0$ là: Câu 25.

Lời giải

$$pt \Leftrightarrow 4^{x-1} + 16.2^{x-1} - 4 = 0 \Leftrightarrow \begin{bmatrix} 2^{x-1} = -8 + 2\sqrt{17} \\ 2^{x-1} = -8 - 2\sqrt{17} \end{bmatrix} \Leftrightarrow x = 1 + \log_2(-8 + 2\sqrt{7})$$

(Chuyên Bắc Giang 2019) Tập nghiệm của phương trình $3^{2+x} + 3^{2-x} = 30$ là Câu 26.

A.
$$S = \left\{3; \frac{1}{3}\right\}$$
 B. $S = \{-1\}$

B.
$$S = \{-1\}$$

$$\underline{\mathbf{C}}$$
. $S = \{1; -1\}$ \mathbf{D} . $S = \{3; 1\}$.

D.
$$S = \{3;1\}$$

Lời giải

$$3^{2+x} + 3^{2-x} = 30 \Leftrightarrow 3.3^{2x} - 10.3^{x} + 3 = 0 \Leftrightarrow \begin{bmatrix} 3^{x} = 3 \\ 3^{x} = \frac{1}{3} \Leftrightarrow x = \pm 1 \end{bmatrix}$$

(THPT Nguyễn Khuyến 2019) Cho hàm số $f(x) = x.5^x$. Tổng các nghiệm của phương trình Câu 27.

$$25^{x} + f'(x) - x.5^{x} \cdot \ln 5 - 2 = 0$$
 1à

lời giải:

Chon B

Ta có
$$f(x) = x.5^x \implies f'(x) = 5^x + x.5^x . \ln 5$$

Nên
$$25^x + f'(x) - x \cdot 5^x \cdot \ln 5 - 2 = 0 \Rightarrow 25^x + 5^x - 2 = 0$$

Đặt
$$t = 5^x (t > 0)$$

Ta được phương trình
$$t^2 + t - 2 = 0 \Rightarrow \begin{bmatrix} t = 1 \\ t = -2(1) \Rightarrow 5^x = 1 \Rightarrow x = 0 \end{bmatrix}$$

(Chuyên KHTN 2019) Tổng tất cả các nghiệm của phương trình $3^{2x} - 2.3^{x+2} + 27 = 0$ bằng Câu 28.

Lời giải

$$3^{2x} - 2.3^{x+2} + 27 = 0 \Leftrightarrow (3^x)^2 - 18.3^x + 27 = 0 \Leftrightarrow \begin{bmatrix} 3^x = 9 + 3\sqrt{6} \\ 3^x = 9 - 3\sqrt{6} \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 = \log_3(9 + 3\sqrt{6}) \\ x_2 = \log_3(9 - 3\sqrt{6}) \end{bmatrix}.$$

Vậy tổng tất cả các nghiệm của phương trình đã cho là:

$$x_1 + x_2 = \log_3(9 + 3\sqrt{6}) + \log_3(9 - 3\sqrt{6}) = \log_3[(9 + 3\sqrt{6})(9 - 3\sqrt{6})] = \log_3 27 = 3$$
.

Câu 29. (THPT-Thang-Long-Ha-Noi- 2019) Phương trình $9^x - 6^x = 2^{2x+1}$ có bao nhiều nghiệm âm?

A. 3

B. 0

C. 1

D. 2

Lời giải

Ta có:
$$9^x - 6^x = 2^{2x+1} \Leftrightarrow 9^x - 6^x = 2.4^x \Leftrightarrow \left(\frac{3}{2}\right)^{2x} - \left(\frac{3}{2}\right)^x - 2 = 0 \Leftrightarrow \left[\left(\frac{3}{2}\right)^x = -1(L)\right]$$

$$\Leftrightarrow x = \log_{\frac{3}{2}} 2.$$

Vậy phương trình đã cho không có nghiệm âm.

Câu 30. (Chuyen Phan Bội Châu Nghệ An 2019) Phương trình $(\sqrt{2}-1)^x + (\sqrt{2}+1)^x - 2\sqrt{2} = 0$ có tích các nghiêm là?

A. 0.

B. 2.

C. −1.

D. 1.

Lời giải

Đặt
$$t = (\sqrt{2} - 1)^x$$
 $(t > 0) \Rightarrow (\sqrt{2} + 1)^x = \frac{1}{t}$

Phương trình đã cho trở thành

$$t + \frac{1}{t} - 2\sqrt{2} = 0$$

$$\iff t^2 - 2\sqrt{2} \ t + 1 = 0$$

$$\Leftrightarrow \begin{bmatrix} t = 1 + \sqrt{2} \\ t = -1 + \sqrt{2} \end{bmatrix}$$

Với
$$t = 1 + \sqrt{2} \Rightarrow (\sqrt{2} - 1)^x = 1 + \sqrt{2} \Leftrightarrow x = -1$$

Với
$$t = -1 + \sqrt{2} \Rightarrow (\sqrt{2} - 1)^x = -1 + \sqrt{2} \Leftrightarrow x = 1$$

Vậy tích 2 nghiệm của phương trình đã cho là −1

Câu 31. (Chuyên Bắc Giang 2019) Gọi $x_1; x_2$ là 2 nghiệm của phương trình $4^{x^2-x} + 2^{x^2-x+1} = 3$. Tính $|x_1 - x_2|$

A. 3

B. 0

C. 2

D. 1

Lờigiải

Chon D

Đặt $2^{x^2-x} = t(t > 0)$. Phương trình tương đương với

$$t^2 + 2t - 3 = 0 \Rightarrow \begin{bmatrix} t = 1 \\ t = -3 \end{bmatrix}$$

Vì
$$t > 0 \Rightarrow t = 1 \Rightarrow x^2 - x = 0 \Rightarrow \begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix} \Rightarrow |x_1 - x_2| = 1$$

(HSG Bắc Ninh 2019) Giải phương trình: $4^{1+x} + 4^{1-x} = 2(2^{2+x} - 2^{2-x}) + 8$ Câu 32.

$$4^{1+x} + 4^{1-x} = 2\left(2^{2+x} - 2^{2-x}\right) + 8 \Leftrightarrow 4^{1+x} + 4^{1-x} = 4\left(2^{1+x} - 2^{1-x}\right) + 8$$

Đặt
$$t = 2^{1+x} - 2^{1-x} \implies t^2 = 4^{1+x} + 4^{1-x} - 8$$

Phương trình trở thành:

$$t^{2} = 4t \Leftrightarrow \begin{bmatrix} t = 0 \\ t = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2^{1+x} - 2^{1-x} = 0 \\ 2^{1+x} - 2^{1-x} = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2^{1+x} = 2^{1-x} \\ 2^{2x} - 2 \cdot 2^{x} - 1 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 + x = 1 - x \\ 2^{x} = 1 - \sqrt{2} \\ 2^{x} = 1 + \sqrt{2} \end{bmatrix} (VN) \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \log_{2}(1 + \sqrt{2}) \end{bmatrix}$$

Câu 33. Tính tổng tất cả các nghiệm của phương trình $3^{2x+8} - 4.3^{x+5} + 27 = 0$?

A. 5.

- C. $\frac{4}{27}$. D. $-\frac{4}{27}$.

Lời giải

Chọn B

Ta có:
$$3^{2x+8} - 4.3^{x+5} + 27 = 0 \Leftrightarrow 3^{2(x+4)} - 12.3^{x+4} + 27 = 0$$
.

Đặt
$$t = 3^{x+4} (t \ge 0)$$
 ta được phương trình $t^2 - 12t + 27 = 0 \Leftrightarrow \begin{bmatrix} t = 3 \\ t = 9 \end{bmatrix}$

từ đó ta có
$$\begin{bmatrix} 3^{x+4} = 3 \\ 3^{x+4} = 9 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -3 \\ x = -2 \end{bmatrix}$$

Vậy tổng các nghiệm phương trình đã cho là -5.

Tổng tất cả các nghiệm của phương trình $3^{2x} - 2.3^{x+2} + 27 = 0$ bằng

A. 0.

- <u>C</u>. 3.
- **D.** 27.

Lời giải

Chọn C

Ta có:

$$3^{2x} - 2 \cdot 3^{x+2} + 27 = 0 \Leftrightarrow (3^x)^2 - 18 \cdot 3^x + 27 = 0 \Leftrightarrow \begin{bmatrix} 3^x = 9 + 3\sqrt{6} \\ 3^x = 9 - 3\sqrt{6} \end{bmatrix} \Leftrightarrow \begin{cases} x = \log_3(9 + 3\sqrt{6}) \\ x = \log_3(9 - 3\sqrt{6}) \end{cases}$$

Vây tổng các nghiệm là

$$\log_3\left(9+3\sqrt{6}\right) + \log_3\left(9-3\sqrt{6}\right) = \log_3\left(9+3\sqrt{6}\right)\left(9-3\sqrt{6}\right) = \log_327 = 3\;.$$

(Hội 8 trường chuyên ĐBSH 2019) Tổng các nghiệm của phương trình $3^{x+1} + 3^{1-x} = 10$ là

A. 1.

- **B.** 3.
- **C.** −1.
- **D**. 0.

Lời giải

Chọn D

Cách 1: Ta có
$$3^{x+1} + 3^{1-x} = 10 \Leftrightarrow 3.3^x + \frac{3}{3^x} = 10$$
.

Đặt
$$t = 3^x, t > 0$$
 phương trình trở thành $3t^2 - 10t + 3 = 0 \Leftrightarrow \begin{bmatrix} t = 3 \\ t = \frac{1}{3} \end{bmatrix}$

Với
$$t = 3$$
 ta có $3^x = 3 \Leftrightarrow x = 1$

Với
$$t = \frac{1}{3}$$
 ta có $3^x = \frac{1}{3} \Leftrightarrow x = -1$

Câu 36. (SGD Điện Biên - 2019) Tích tất cả các nghiệm của phương trình $3^x + 3^{4-x} = 30$ bằng

Lời giải

Chọn A

$$3^{x} + 3^{4-x} = 30 \Leftrightarrow 3^{x} + \frac{81}{3^{x}} = 30$$
.

Đặt $t = 3^x (t > 0)$, phương trình đã cho trở thành:

$$t + \frac{81}{t} = 30 \Leftrightarrow t^2 - 30t + 81 = 0$$
$$\Leftrightarrow \begin{bmatrix} t = 27 \Rightarrow 3^x = 27 \Leftrightarrow x = 3 \\ t = 3 \Rightarrow 3^x = 3 \Leftrightarrow x = 1 \end{bmatrix}$$

Vậy tích tất cả các nghiệm của phương trình là 1.3 = 3.

Câu 37. (**Thi thử hội 8 trường chuyên 2019**) Kí hiệu x_1 , x_2 là hai nghiệm thực của phương trình $4^{x^2-x}+2^{x^2-x+1}=3$. Giá trị của $\left|x_1-x_2\right|$ bằng

Lời giải

Chọn D

Ta có
$$4^{x^2-x} + 2^{x^2-x+1} = 3 \Leftrightarrow (2^{x^2-x})^2 + 2 \cdot 2^{x^2-x} - 3 = 0$$
.

Đặt
$$2^{x^2-x} = t > 0$$
 ta được: $t^2 + 2t - 3 = 0 \Leftrightarrow \begin{bmatrix} t = -3 \\ t = 1 \end{bmatrix}$.

Vì
$$t > 0$$
 nên nhận $t = 1$. Suy ra $2^{x^2 - x} = 1 \Leftrightarrow x^2 - x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix}$.

Như thế
$$\begin{cases} x_1 = 0 \\ x_2 = 1 \end{cases} \text{hoặc } \begin{cases} x_1 = 1 \\ x_2 = 0 \end{cases}.$$

Vậy
$$|x_1 - x_2| = 1$$
.

Câu 38. (Đại học Hồng Đức 2019) Cho phương trình $\left(\sqrt{7+4\sqrt{3}}\right)^{\sin x} + \left(\sqrt{7-4\sqrt{3}}\right)^{\sin x} = 4$. Tổng các nghiệm của phương trình trong $\left[-2\pi; 2\pi\right]$ bằng

A.
$$\frac{3\pi}{2}$$
.

B.
$$\frac{\pi}{2}$$
.

D.
$$\pi$$
 .

$$\left(\sqrt{7+4\sqrt{3}}\right)^{\sin x} + \left(\sqrt{7-4\sqrt{3}}\right)^{\sin x} = 4 \iff \left(2+\sqrt{3}\right)^{\sin x} + \left(2-\sqrt{3}\right)^{\sin x} = 4.$$

Đặt $t = (2 + \sqrt{3})^{\sin x}$, t > 0. Khi đó phương trình đã cho trở thành

$$t + \frac{1}{t} = 4 \Leftrightarrow t^2 - 4t + 1 = 0 \Leftrightarrow \begin{bmatrix} t = 2 + \sqrt{3} \\ t = 2 - \sqrt{3} \end{bmatrix}.$$

Với
$$t = 2 + \sqrt{3} \implies \sin x = 1 \implies x = \frac{\pi}{2} + k2\pi \xrightarrow{k \in \mathbb{Z}} x \in \left\{-\frac{3\pi}{2}; \frac{\pi}{2}\right\}.$$

Với
$$t = 2 - \sqrt{3} \implies \sin x = -1 \implies x = -\frac{\pi}{2} + k2\pi \xrightarrow{k \in \mathbb{Z} \atop x \in [-2\pi; 2\pi]} x \in \left\{-\frac{\pi}{2}; \frac{3\pi}{2}\right\}.$$

Vây tổng các nghiêm bằng 0.

Câu 39. (**Xuân Trường - Nam Định - 2018**) Gọi a là một nghiệm của phương trình $4.2^{2\log x} - 6^{\log x} - 18.3^{2\log x} = 0$. Khẳng định nào sau đây đúng khi đánh giá về a?

A.
$$(a-10)^2 = 1$$
.

B. *a* cũng là nghiệm của phương trình $\left(\frac{2}{3}\right)^{\log x} = \frac{9}{4}$.

C.
$$a^2 + a + 1 = 2$$
.

D.
$$a = 10^2$$
.

Lời giải

Điều kiên x > 0.

Chia cả hai vế của phương trình cho $3^{2\log x}$ ta được $4\left(\frac{3}{2}\right)^{2\log x} - \left(\frac{3}{2}\right)^{\log x} - 18 = 0$.

$$\text{D}\check{\text{g}} t \ t = \left(\frac{3}{2}\right)^{\log x}, \ t > 0.$$

Ta có
$$4t^2 - t - 18 = 0 \iff t = \frac{9}{4}$$
.
 $t = -2(L)$

Với
$$t = \frac{9}{4} \Rightarrow \left(\frac{3}{2}\right)^{\log x} = \frac{9}{4} \Leftrightarrow \log x = 2 \Leftrightarrow x = 100$$
.

Vậy
$$a = 100 = 10^2$$
.

Câu 40. (THPT Lục Ngạn - 2018) Nghiệm của phương trình $25^x - 2(3-x)5^x + 2x - 7 = 0$ nằm trong khoảng nào sau đây?

A.
$$(5;10)$$
.

B.
$$(0;2)$$
.

Lời giải

Đặt
$$t = 5^x$$
, $t > 0$.

Phương trình trở thành:
$$t^2 - 2(3-x)t + 2x - 7 = 0 \Leftrightarrow \begin{bmatrix} t = -1(L) \\ t = -2x + 7 \end{bmatrix}$$

Với t = -2x + 7 ta có : $5^x = -2x + 7 \Leftrightarrow 5^x + 2x - 7 = 0$.

Phương trình có một nghiệm x = 1.

Với x > 1: $5^x + 2x - 7 > 5 + 2 - 7 \Leftrightarrow 5^x + 2x - 7 > 0 \Rightarrow$ phương trình vô nghiệm.

Với $x < 1 : 5^x + 2x - 7 < 5 + 2 - 7 \Leftrightarrow 5^x + 2x - 7 < 0 \Rightarrow$ phương trình vô nghiêm.

Vậy phương trình có một nghiệm duy nhất $x = 1 \in (0,2)$.

(THPT Chu Văn An -Thái Nguyên - 2018) Số nghiệm nguyên không âm của bất phương trình $\sqrt{15.2^{x+1}+1} \ge |2^x-1|+2^{x+1}$ bằng bao nhiêu?

A. 3.

D. 2.

Lời giải

Với
$$x \ge 0$$
 thì $\sqrt{15.2^{x+1}+1} \ge |2^x-1|+2^{x+1} \Leftrightarrow \sqrt{30.2^x+1} \ge 3.2^x-1$. (1)

Đặt
$$t = 2^x \ge 1$$
 thì $(1) \Leftrightarrow \sqrt{30t+1} \ge 3t-1 \Leftrightarrow 30t+1 \ge (3t-1)^2$

$$\Leftrightarrow 9t^2 - 36t \le 0 \Leftrightarrow 0 \le t \le 4$$

$$\Rightarrow 1 \le 2^x \le 4 \Rightarrow x \in \{0;1;2\}$$
.

Câu 42. (**Toán Học Tuổi Trẻ Số 6**) Cho phương trình $8^{x+1} + 8.(0,5)^{3x} + 3.2^{x+3} = 125 - 24.(0,5)^{x}$. Khi đặt $t = 2^x + \frac{1}{2^x}$, phương trình đã cho trở thành phương trình nào dưới đây?

- **A.** $8t^3 3t 12 = 0$. **B.** $8t^3 + 3t^2 t 10 = 0$. **C.** $8t^3 125 = 0$. **D.** $8t^3 + t 36 = 0$.

Ta có
$$8^{x+1} + 8.(0,5)^{3x} + 3.2^{x+3} = 125 - 24.(0,5)^x \Leftrightarrow 8.2^{3x} + 8.\frac{1}{2^{3x}} + 24.2^x + 24.\frac{1}{2^x} - 125 = 0$$

$$\Leftrightarrow 8\left(2^{3x} + \frac{1}{2^{3x}}\right) + 24\left(2^x + \frac{1}{2^x}\right) - 125 = 0.$$

Đặt
$$t = 2^x + \frac{1}{2^x} (t \ge 2)$$
. Khi đó ta có $2^{3x} + \frac{1}{2^{3x}} = t^3 - 3t$

Phương trình trở thành $8(t^3 - 3t) + 24t - 125 = 0 \iff 8t^3 - 125 = 0$.

Câu 43. (THPT Bình Giang - Hải Dương - 2018) Gọi S là tập nghiệm của của phương trình: $4^{x^2-3x+2} + 4^{x^2+6x+5} = 4^{2x^2+3x+7} + 1$. Khi đó S là

A. $\{1; 2\}$.

- **B.** $\{1;2;-1\}$.
- $\underline{\mathbf{C}}$. $\{1; 2; -1; -5\}$. \mathbf{D} . \emptyset .

Lời giải

Nhận xét:

Ta có
$$(x^2 - 3x + 2) + (x^2 + 6x + 5) = 2x^2 + 3x + 7$$
 do đó $4^{2x^2 + 3x + 7} = 4^{x^2 - 3x + 2} \cdot 4^{x^2 + 6x + 5}$

Phương trình đã cho tương đương với phương trình sau:

$$(4^{x^2-3x+2}-4^{2x^2+3x+7})-(1-4^{x^2+6x+5})=0 \Leftrightarrow 4^{x^2-3x+2}(1-4^{x^2+6x+5})-(1-4^{x^2+6x+5})$$

$$\Leftrightarrow (1 - 4^{x^2 + 6x + 5})(4^{x^2 - 3x + 2} - 1) = 0 \Leftrightarrow \begin{bmatrix} 4^{x^2 + 6x + 5} = 1 \\ 4^{x^2 - 3x + 2} = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 + 6x + 5 = 0 \\ x^2 - 3x + 2 = 0 \end{bmatrix}$$

 $V \hat{a} y S = \{1; 2; -1; -5\}.$

Dang 2.3 Phương pháp logarit hóa

Dạng 1: Phương trình:
$$a^{f(x)} = b \Leftrightarrow \begin{cases} 0 < a \neq 1, b > 0 \\ f(x) = \log_a b \end{cases}$$

Dang 2: Phương trình:

$$a^{f(x)} = b^{g(x)} \Leftrightarrow \log_a a^{f(x)} = \log_a b^{f(x)} \Leftrightarrow f(x) = g(x) \cdot \log_a b$$

hoặc $\log_b a^{f(x)} = \log_b b^{g(x)} \Leftrightarrow f(x) \cdot \log_b a = g(x)$.

(THPT Thuận Thành 3 - Bắc Ninh 2019) Số giao điểm của các đồ thị hàm số $y = 3^{x^2+1}$ và Câu 44. v = 5 là

A. 0.

B. 3.

D. 1.

Chọn C

Số giao điểm của hai đồ thị hàm số $y = 3^{x^2+1}$ và y = 5 bằng số nghiệm của phương trình

$$3^{x^2+1} = 5$$

$$+13^{x^2+1} = 5 \Leftrightarrow x^2 + 1 = \log_3 5 \Leftrightarrow x^2 = \log_3 5 - 1 \Leftrightarrow x = \pm \sqrt{\log_3 5 - 1}$$

+) Vây số giao điểm của hai đồ thi hàm số $y = 3^{x^2+1}$ và y = 5 bằng 2

(Sở GD Nam Định - 2019) Tính tích các nghiệm thực của phương trình $2^{x^2-1} = 3^{2x+3}$ Câu 45.

 $A. -3\log_2 3$.

B. $-\log_2 54$.

C. −1.

D. $1-\log_2 3$.

Lời giải

Chon B

 $PT \Leftrightarrow \log_2 2^{x^2 - 1} = \log_2 3^{2x + 3}$

$$\Leftrightarrow x^2 - 1 = (2x + 3)\log_2 3$$

$$\Leftrightarrow x^2 - 2x \cdot \log_2 3 - 1 - 3\log_2 3 = 0$$

Do $1.(-1-3\log_2 3) < 0$ nên phương trình luôn có 2 nghiệm thực phân biệt x_1, x_2 .

Theo Vi-ét ta có $x_1x_2 = -1 - 3\log_2 3 = -\log_2 2 - \log_2 27 = -\log_2 54$.

Câu 46. Cho hai số thực a > 1, b > 1. Gọi x_1, x_2 là hai nghiệm của phương trình $a^x \cdot b^{x^2 - 1} = 1$. Trong trường hợp biểu thức $S = \left(\frac{x_1 \cdot x_2}{x + x}\right)^2 - 4x_1 - 4x_2$ đạt giá trị nhỏ nhất, mệnh đề nào sau đây là đúng?

A. $a \ge b$.

B. a.b = 4.

C. a.b = 2. **D.** a < b.

Lời giải

Ta có: $a^x \cdot b^{x^2-1} = 1 \Leftrightarrow x^2 + x \log_b a - 1 = 0$. Nhận thấy phương trình luôn có hai nghiệm trái dấu. Theo Vi-et: $x_1 + x_2 = -\log_b a$; $x_1.x_2 = -1$.

Khi đó:
$$S = \left(\frac{x_1.x_2}{x_1+x_2}\right)^2 - 4x_1 - 4x_2 = \log_a^2 b + \frac{4}{\log_a b}$$
.

Đặt
$$\log_a b = t, t > 0$$
 (Vì $a > 1, b > 1$), $S = t^2 + \frac{4}{t}$; $S' = 2t - \frac{4}{t^2} = \frac{2t^3 - 4}{t^2}$; $S' = 0 \Leftrightarrow t = \sqrt[3]{2}$

Suy ra biểu thức S đạt giá trị nhỏ nhất tại $t = \sqrt[3]{2}$ hay $\log_a b = \sqrt[3]{2} > 1 \Longrightarrow a < b$.

(TT Diệu Hiền - Cần Thơ - 2018) Cho x, y, z là các số thực thỏa mãn $2^x = 3^y = 6^{-z}$. Giá trị của biểu thức M = xy + yz + xz là:

Lời giải

Đặt
$$2^x = 3^y = 6^{-z} = t \text{ với } t > 0.$$

$$\Rightarrow \begin{cases} 2^{x} = t \\ 3^{y} = t \end{cases} \Rightarrow \begin{cases} x = \log_{2} t \\ y = \log_{3} t \end{cases} .$$
$$z = -\log_{6} t$$

Mặt khác:
$$\log_6 t = \frac{1}{\log_t 6} = \frac{1}{\log_t 3 + \log_t 2} = \frac{1}{\frac{1}{\log_3 t} + \frac{1}{\log_2 t}} = \frac{\log_3 t \cdot \log_2 t}{\log_3 t + \log_2 t}$$
.

 $M = xy + yz + xz = \log_3 t \cdot \log_2 t - \log_3 t \cdot \log_2 t - \log_6 t \cdot \log_2 t = \log_3 t \cdot \log_2 t - (\log_3 t + \log_2 t) \cdot \log_6 t$ $= \log_3 t \cdot \log_2 t - (\log_3 t + \log_2 t) \cdot \frac{\log_3 t \cdot \log_2 t}{\log_3 t + \log_3 t} = 0.$

(Lý Nhân Tông - Bắc Ninh - 2020) Gọi x, y các số thực dương thỏa mãn điều kiện Câu 48. $\log_9 x = \log_6 y = \log_4 (x+y)$ và $\frac{x}{v} = \frac{-a+\sqrt{b}}{2}$, với a, b là hai số nguyên dương. Tính $T = a^2 + b^2.$

A.
$$T = 26$$
.

B.
$$T = 29$$
.

C.
$$T = 20$$
. **D.** $T = 25$.

D.
$$T = 25$$
.

Chọn A

Đặt
$$t = \log_9 x = \log_6 y = \log_4 (x + y)$$
, ta có
$$\begin{cases} x = 9^t \\ y = 6^t \end{cases} \Rightarrow 9^t + 6^t = 4^t$$

$$\Leftrightarrow \left(\frac{3}{2}\right)^{2t} + \left(\frac{3}{2}\right)^{t} - 1 = 0 \Leftrightarrow \begin{bmatrix} \left(\frac{3}{2}\right)^{t} = \frac{-1 - \sqrt{5}}{2} (loai) \\ \left(\frac{3}{2}\right)^{t} = \frac{-1 + \sqrt{5}}{2} \end{cases} \Rightarrow \left(\frac{3}{2}\right)^{t} = \frac{-1 + \sqrt{5}}{2}.$$

Suy ra
$$\frac{x}{y} = \left(\frac{9}{6}\right)^t = \left(\frac{3}{2}\right)^t = \frac{-1 + \sqrt{5}}{2}$$
.

Mà
$$\frac{x}{y} = \frac{-a + \sqrt{b}}{2} = \frac{-1 + \sqrt{5}}{2} \Rightarrow a = 1; b = 5.$$

Vậy
$$T = a^2 + b^2 = 1^2 + 5^2 = 26$$
.

Câu 49. (THPT Nguyễn Viết Xuân - 2020) Cho các số thực dương a,b thỏa mãn $\log_4 a = \log_6 b = \log_9 (4a - 5b) - 1$. Đặt $T = \frac{b}{a}$. Khẳng định nào sau đây **đúng**?

A.
$$1 < T < 2$$

A.
$$1 < T < 2$$
. **B.** $\frac{1}{2} < T < \frac{2}{3}$. **C.** $-2 < T < 0$. $\underline{\mathbf{D}}$. $0 < T < \frac{1}{2}$.

C.
$$-2 < T < 0$$
.

D.
$$0 < T < \frac{1}{2}$$
.

Lời giải

Chon D

Giả sử:
$$\log_4 a = \log_6 b = \log_9 (4a - 5b) - 1 = t \Rightarrow \begin{cases} a = 4^t \\ b = 6^t \\ 4a - 5b = 9^{t+1} \end{cases}$$

Khi đó
$$4.4^t - 5.6^t = 9.9^t \Leftrightarrow 4.\left(\frac{4}{9}\right)^t - 5.\left(\frac{6}{9}\right)^t = 9 \Leftrightarrow 4.\left(\frac{2}{3}\right)^{2t} - 5.\left(\frac{2}{3}\right)^t - 9 = 0$$

$$\Leftrightarrow \begin{bmatrix} \left(\frac{2}{3}\right)^t = \frac{9}{4} \\ \left(\frac{2}{3}\right)^t = -1 \quad (VN) \end{cases} \Leftrightarrow t = \log_{\frac{2}{3}} \left(\frac{9}{4}\right) \Leftrightarrow t = -2$$

Vậy
$$T = \frac{b}{a} = \left(\frac{6}{4}\right)^t = \left(\frac{3}{2}\right)^{-2} = \frac{4}{9} \in \left(0; \frac{1}{2}\right).$$

(THPT Cao Bá Quát - 2018) Phương trình $3^{x^2} \cdot 4^{x+1} - \frac{1}{3^x} = 0$ có hai nghiệm x_1, x_2 . Tính Câu 50.

$$T = x_1 \cdot x_2 + x_1 + x_2 \,.$$

A.
$$T = -\log_3 4$$
. **B.** $T = \log_3 4$. **C.** $T = -1$.

B.
$$T = \log_3 4$$

C.
$$T = -1$$

D.
$$T = 1$$
.

Lời giải

Ta có
$$3^{x^2} \cdot 4^{x+1} - \frac{1}{3^x} = 0$$

$$\Leftrightarrow 3^{x(x+1)}.4^{x+1} = 1$$

$$\Leftrightarrow \log(3^{x(x+1)}.4^{x+1}) = 0$$

$$\Leftrightarrow \log 3^{x(x+1)} + \log 4^{x+1} = 0$$

$$\Leftrightarrow x(x+1)\log 3 + (x+1)\log 4 = 0$$

$$\Leftrightarrow (x+1)(x\log 3 + \log 4) = 0$$

$$\Leftrightarrow \begin{bmatrix} x = -1 \\ x = -\log_3 4 \end{bmatrix}$$

Do đó
$$T = x_1.x_2 + x_1 + x_2 = \log_3 4 - (1 + \log_3 4) = -1$$

<u>D</u>ạng 2.4 Phương pháp hàm số, đánh giá

Thông thường ta sẽ vận dụng nội dung các định lý (và các kết quả) sau:

 Φ Nếu hàm số y = f(x) đơn điệu một chiều trên D thì phương trình f(x) = 0 không quá một nghiêm trên D.

- \longrightarrow Để vận dụng định lý này, ta cần nhẩm được 1 nghiệm $x=x_o$ của phương trình, rồi chỉ rõ hàm đơn điệu một chiều trên D (luôn đồng biến hoặc luôn nghịch biến trên D) và kết luận $x=x_o$ là nghiệm duy nhất.
- **2** Hàm số f(t) đơn điệu một chiều trên khoảng (a;b) và tồn tại $u; v \in (a;b)$ thì $f(u) = f(v) \Leftrightarrow u = v$ ".
- \longrightarrow Để áp dụng định lý này, ta cần xây dựng hàm đặc trưng f(t).
- **Câu 51.** (**SGD** Nam Định 2019) Tổng tất cả các nghiệm thực của phương trình $15x.5^x = 5^{x+1} + 27x + 23$ bằng.

A. -1.

R 2

C. 1.

D. 0.

Lời giải

Chọn $\underline{\mathbf{D}}$.

Ta có $15x.5^x = 5^{x+1} + 27x + 23 \Leftrightarrow 5^{x+1} (3x-1) = 27x + 23$ (1)

Dễ thấy $x = \frac{1}{3}$ không thỏa mãn phương trình trên nên ta có

$$5^{x+1}(3x-1) = 27x + 23 \Leftrightarrow 5^{x+1} = \frac{27x + 23}{3x-1}.$$
 (2)

Hàm số $y = f(x) = 5^{x+1} = 5.5^x$ đồng biến trên \mathbb{R} .

Hàm số $y = g(x) = \frac{27x + 23}{3x - 1}$, có đạo hàm $g'(x) = -\frac{96}{(3x - 1)^2} < 0$, nên nghịch biến trên mỗi

khoảng $\left(-\infty; \frac{1}{3}\right)$ và $\left(\frac{1}{3}; +\infty\right)$.

Do đó trên mỗi khoảng $\left(-\infty; \frac{1}{3}\right)$ và $\left(\frac{1}{3}; +\infty\right)$, phương trình (2) có nhiều nhất một nghiệm.

Ta thấy x = -1 và x = 1 là các nghiệm lần lượt thuộc các khoảng $\left(-\infty; \frac{1}{3}\right)$ và $\left(\frac{1}{3}; +\infty\right)$.

Do đó (2) và (1) có hai nghiệm x = -1 và x = 1.

Tổng hai nghiệm này bằng 0.

Câu 52. Cho số thực α sao cho phương trình $2^x - 2^{-x} = 2\cos(\alpha x)$ có đúng 2019 nghiệm thực. Số nghiệm của phương trình $2^x + 2^{-x} = 4 + 2\cos(\alpha x)$ là

A. 2019.

- **B.** 2018.
- C. 4037.

D. 4038.

Lời giải

<u>C</u>họn <u>D</u>

Ta có: $2^x + 2^{-x} = 4 + 2\cos(\alpha x) \Leftrightarrow \left(2^{\frac{x}{2}} - 2^{-\frac{x}{2}}\right)^2 = 2.2\cos^2(\alpha x)$

$$\Leftrightarrow \begin{bmatrix} 2^{\frac{x}{2}} - 2^{-\frac{x}{2}} = 2\cos\left(\alpha \cdot \frac{x}{2}\right) & (1) \\ 2^{\frac{x}{2}} - 2^{-\frac{x}{2}} = -2\cos\left(\alpha \cdot \frac{x}{2}\right) & (2) \end{bmatrix}$$

Ta thấy, nếu phương trình $2^x - 2^{-x} = 2\cos(\alpha x)$ có 2019 nghiệm thực thì phương trình (1) cũng có 2019 nghiệm thực.

Nhân xét:

 $+ x_0$ là nghiệm của phương trình (1) $\Leftrightarrow -x_0$ là nghiệm của phương trình (2).

+ $x_0 = 0$ không là nghiệm của hai phương trình (1), (2).

Do đó, tổng số nghiệm của cả hai phương trình (1),(2) là 4038.

Vậy phương trình $2^x + 2^{-x} = 4 + 2\cos(\alpha x)$ có 4038 nghiệm thực.

Câu 53. Biết x_1, x_2 là hai nghiệm của phương trình $\log_7 \left(\frac{4x^2 - 4x + 1}{2x} \right) + 4x^2 + 1 = 6x$ và $x_1 + 2x_2 = \frac{1}{4}(a + \sqrt{b})$ với a, b là hai số nguyên dương. Tính a + b.

A.
$$a+b=13$$
. **B.** $a+b=11$.

B.
$$a+b=11$$

C.
$$a+b=16$$
. **D**. $a+b=14$.

D.
$$a+b=14$$

Lời giải

Chon C

Điều kiện: $x > 0, x \neq \frac{1}{2}$.

Ta có:
$$\log_7 \left(\frac{4x^2 - 4x + 1}{2x} \right) + 4x^2 + 1 = 6x \Leftrightarrow \log_7 \left(4x^2 - 4x + 1 \right) + 4x^2 - 4x + 1 = \log_7 \left(2x \right) + 2x$$
.

Xét hàm số $f(t) = \log_7 t + t$ có $f'(t) = \frac{1}{t \ln 7} + 1 > 0 \ \forall t > 0$ nên là hàm số đồng biến trên $(0;+\infty)$.

Do đó ta có $4x^2 - 4x + 1 = 2x \Leftrightarrow 4x^2 - 6x + 1 = 0 \Leftrightarrow x = \frac{3 \pm \sqrt{5}}{4}$.

$$x_1 + 2x_2 = \frac{3 - \sqrt{5}}{4} + 2\frac{3 + \sqrt{5}}{4} = \frac{1}{4} \left(9 + \sqrt{5}\right) \text{ hoặc } x_1 + 2x_2 = \frac{3 + \sqrt{5}}{4} + 2\frac{3 - \sqrt{5}}{4} = \frac{1}{4} \left(9 - \sqrt{5}\right).$$
 Vậy $x_1 = \frac{3 - \sqrt{5}}{4}; x_2 = \frac{3 + \sqrt{5}}{4}$. Do đó $a = 9; b = 5$ và $a + b = 9 + 5 = 14$.

Câu 54. Phương trình $x(2^{x-1}+4)=2^{x+1}+x^2$ có tổng các nghiệm bằng

Lời giải:

Chọn

$$x(2^{x-1}+4) = 2^{x+1} + x^2 \Leftrightarrow x \cdot 2^{x-1} - 4 \cdot 2^{x-1} + 4x - x^2 = 0$$

Ta có
$$\Leftrightarrow 2^{x-1}(x-4) - x(x-4) = 0 \Leftrightarrow (x-4)(2^{x-1} - x) = 0$$

$$\Leftrightarrow \begin{cases} x = 4 \\ 2^x = 2x \ (*) \end{cases}$$

Giải phương trình (*):

Xét hàm số $f(x) = 2^x - 2x$ có $f'(x) = 2^x \ln 2 - 2$; $f''(x) = 2^x \ln^2 2 > 0$. Suy ra phương trình f'(x) = 0 có duy nhất một nghiệm, suy ra phương trình f(x) = 0 có nhiều nhất là hai nghiệm.

Mà ta thấy f(1) = f(2) = 0 nên phương trình (*) có 2 nghiệm x = 1; x = 2

Vậy tổng các nghiệm của phương trình là 7.

Câu 55. (**Chuyên Ngữ Hà Nội 2019**) Tìm số nghiệm của phương trình $(|x|-1)^2 e^{|x|-1} - \log 2 = 0$.

Lời giải

Chọn A

Tập xác định: $D = \mathbb{R}$.

Đặt
$$t = |x| - 1 \ge -1$$
. Với $t \ge -1 \Rightarrow |x| = t + 1 \Leftrightarrow \begin{bmatrix} x = t + 1 \\ x = -t - 1 \end{bmatrix}$.

Khi đó phương trình trở thành $t^2 e^t - \log 2 = 0$ (1).

Số nghiệm của phương trình (1) là số điểm chung của đồ thị hàm số $y = f(t) = t^2 e^t - \log 2$ và đường thẳng y = 0

Ta có:
$$f'(t) = e^t(t^2 + 2t) \Rightarrow f'(t) = 0 \Leftrightarrow \begin{bmatrix} t = 0 & (TM) \\ t = -2 & (L) \end{bmatrix}$$
.

Bảng biến thiên

Ta có $-\log 2 < 0 < \frac{1}{e} - \log 2$, dựa vào bảng biên thiên ta được phương trình (1) có 2 nghiệm phân biệt t_1, t_2 thỏa mãn $-1 < t_1 < t_2$ hay phương trình đã cho có 4 nghiệm x phân biệt.

Câu 56. Tính số nghiệm của phương trình $\cot x = 2^x$ trong khoảng $\left(\frac{11\pi}{12}; 2019\pi\right)$.

Lời giải

<u>C</u>họn <u>B</u>.

Xét phương trình $\cot x = 2^x$ (1)

Điều kiện: $\sin x \neq 0 \Leftrightarrow x \neq k\pi, k \in \mathbb{Z}$.

Xét hàm số $f(x) = 2^x - \cot x, x \in \left(\frac{11\pi}{12}; 2019\pi\right) \setminus \{k\pi\}, \text{ với } k \in \mathbb{Z}.$

$$\Rightarrow f'(x) = 2^x . \ln 2 + 1 + \cot^2 x > 0 \ \forall x \in \left(\frac{11\pi}{12}; 2019\pi\right) \setminus \left\{k\pi\right\}, \text{ v\'oi } k \in \mathbb{Z}.$$

Suy ra hàm số f(x) liên tục và đồng biến trên mỗi khoảng $\left(\frac{11\pi}{12};\pi\right);(\pi;2\pi);...;(2018\pi;2019\pi)\,.$

+) Trên khoảng $\left(\frac{11\pi}{12};\pi\right)$ ta có bảng biến thiên

Ta có $f\left(\frac{11\pi}{12}\right) = 2^{\frac{11\pi}{12}} - \cot\left(\frac{11\pi}{12}\right) \approx 11,0925 > 0$. Do đó phương trình $f\left(x\right) = 0$ vô nghiệm trên khoảng $\left(\frac{11\pi}{12};\pi\right)$.

+) Trên mỗi khoảng $(k\pi;(k+1)\pi), k \in \{1;2;....;2018\}$ ta có bảng biến thiên

Dựa vào đồ thị hàm số ta thấy mỗi khoảng $(k\pi;(k+1)\pi), k \in \{1;2;....;2018\}$ phương trình f(x) = 0 có đúng 1 nghiệm. Mà có 2018 khoảng nên phương trình f(x) = 0 có đúng 2018 nghiệm.

Vậy phương trình f(x) = 0 có 2018 nghiệm.

Câu 57. Hỏi phương trình $3.2^x + 4.3^x + 5.4^x = 6.5^x$ có tất cả bao nhiều nghiệm thực?

Lời giải

Chọn B

Ta có:
$$3.2^x + 4.3^x + 5.4^x = 6.5^x \Leftrightarrow 3\left(\frac{2}{5}\right)^x + 4\left(\frac{3}{5}\right)^x + 5\left(\frac{4}{5}\right)^x - 6 = 0$$
.

Xét hàm số
$$f(x) = 3\left(\frac{2}{5}\right)^x + 4\left(\frac{3}{5}\right)^x + 5\left(\frac{4}{5}\right)^x - 6$$
, $\forall x \in \mathbb{R}$.

Có
$$f'(x) = 3\left(\frac{2}{5}\right)^x \ln\frac{2}{5} + 4\left(\frac{3}{5}\right)^x \ln\frac{3}{5} + 5\left(\frac{4}{5}\right)^x \ln\frac{4}{5} < 0$$
, $\forall x \in \mathbb{R}$ nên hàm số $f(x)$ nghịch biến trên \mathbb{R} suy ra phương trình $f(x) = 0$ có nhiều nhất một nghiệm (1).

Mặt khác $f(1).f(2) = \frac{8}{5}.\left(-\frac{22}{25}\right) = -\frac{176}{125} < 0$ nên phương trình có ít nhất một nghiệm thuộc khoảng (1;2).(2).

Từ (1) và (2) suy ra phương trình đã cho có nghiệm duy nhất.

Câu 58. (SP Đồng Nai - 2019) Phương trình $2019^{\sin x} = \sin x + \sqrt{2 - \cos^2 x}$ có bao nhiều nghiệm thực trên $[-5\pi; 2019\pi]$?

D. Vô nghiệm.

Lời giải

Chọn A

Xét:
$$2019^{\sin x} = \sin x + \sqrt{2 - \cos^2 x} \Leftrightarrow 2019^{\sin x} = \sin x + \sqrt{1 + \sin^2 x}$$
 (1).

Đặt:
$$t = \sin x, t \in [-1;1]$$
.

Khi đó (1) trở thành
$$2019^t = t + \sqrt{1 + t^2} \Leftrightarrow 2019^t \left(t - \sqrt{1 + t^2}\right) = -1$$
 (2).

Xét hàm số:

$$f(t) = 2019^{t} \left(t - \sqrt{1 + t^{2}}\right), \forall t \in [-1; 1] \Rightarrow f'(t) = \frac{2019^{t} \left(t - \sqrt{1 + t^{2}}\right) \left(\sqrt{1 + t^{2}} \ln 2019 - 1\right)}{\sqrt{1 + t^{2}}}.$$

Cho
$$f'(t) = 0 \Leftrightarrow \begin{bmatrix} t - \sqrt{1 + t^2} = 0 \\ \sqrt{1 + t^2} \ln 2019 - 1 = 0 \end{bmatrix}$$
 vô nghiệm $\Rightarrow f'(t) < 0, \forall t \in [-1;1].$

 \Rightarrow (2) có nghiệm duy nhất $t = 0 \Rightarrow$ s inx $= 0 \Leftrightarrow x = k\pi, k \in Z$.

$$\text{mà } x \in \left[-5\pi; 2019\pi \right] \Rightarrow -5\pi \le k\pi \le 2019\pi \Leftrightarrow -5 \le k \le 2019 \Rightarrow k \in \left[-5; 2019 \right].$$

Kết luận: Có 2025 nghiệm thực trên $[-5\pi; 2019\pi]$.

Câu 59. (**Bim Sơn - Thanh Hóa - 2019**) Số nghiệm của phương trình $3^{\log_7(x+4)} = x$ là

D. 3.

Lời giải

Chọn A

Điều kiện của phương trình: x > -4.

Với x > 0 phương trình đã cho tương đương với phương trình $\log_7(x+4) = \log_3 x$.

 $\text{D} \check{\text{a}} t \, \log_7 \left(x + 4 \right) = \log_3 x = t.$

Ta có
$$\begin{cases} x + 4 = 7^t \\ x = 3^t \end{cases}$$
 suy ra $7^t - 3^t = 4 \Leftrightarrow 7^t = 3^t + 4 \Leftrightarrow \left(\frac{3}{7}\right)^t + 4\left(\frac{1}{7}\right)^t - 1 = 0$ (1).

Xét hàm số
$$f(t) = \left(\frac{3}{7}\right)^t + 4\left(\frac{1}{7}\right)^t - 1, t \in \mathbb{R}.$$

Ta có
$$f'(t) = \left(\frac{3}{7}\right)^t \ln\left(\frac{3}{7}\right) + 4\left(\frac{1}{7}\right)^t \ln\left(\frac{1}{7}\right) < 0, \ \forall t \in \mathbb{R}.$$

Nên f(t) nghịch biến trên tập \mathbb{R} .

Mà f(1) = 0 nên phương trình có nghiệm duy nhất $t = 1 \Leftrightarrow x = 3$

Câu 60. Cho các số thực x, y với $x \ge 0$ thỏa mãn $e^{x+3y} + e^{xy+1} + x(y+1) + 1 = e^{-xy-1} + \frac{1}{e^{x+3y}} - 3y$. Gọi m là giá trị nhỏ nhất của biểu thức T = x + 2y + 1. Mệnh đề nào sau đây là **đúng**?

A.
$$m \in (2;3)$$

B.
$$m \in (-1; 0)$$
.

$$\underline{\mathbf{C}}$$
. $m \in (0;1)$.

D.
$$m \in (1,2)$$
.

Lời giải

Chọn C

Từ giả thiết $e^{x+3y} + e^{xy+1} + x(y+1) + 1 = e^{-xy-1} + \frac{1}{e^{x+3y}} - 3y$

$$\Leftrightarrow e^{x+3y} - \frac{1}{e^{x+3y}} + (x+3y) = e^{-xy-1} - \frac{1}{e^{-xy-1}} + (-xy-1)$$
 (1).

Xét hàm số $f(t) = e^t - \frac{1}{e^t} + t$ với $t \in \mathbb{R}$ ta có $f'(t) = e^t + \frac{1}{e^t} + 1 > 0$, $\forall t \in \mathbb{R} \Rightarrow f(t)$ là hàm số đồng biến trên \mathbb{R} .

Phương trình (1) có dạng $f(x+3y)=f(-xy-1) \Rightarrow x+3y=-xy-1 \Rightarrow y=\frac{-x-1}{x+3}(x \ge 0)$.

Khi đó
$$T = x + 2y + 1 = x - \frac{2x + 2}{x + 3} + 1 \Rightarrow T' = 1 - \frac{4}{(x + 3)^2} = \frac{x^2 + 6x + 5}{(x + 3)^2} > 0, \forall x \ge 0$$

$$\Rightarrow T_{\min} = 0 - \frac{2.0 + 2}{0 + 3} + 1 = \frac{1}{3} = m.$$

Câu 61. (**Chuyên Vĩnh Phúc - 2018**) Số nghiệm của phương trình $x^2 - 5x - 2 = (x^2 - 8x + 3).8^{3x - 5} + (3x - 5).8^{x^2 - 8x + 3}$ là

A. 4

B. 3

C. 1

D. 2.

Lời giải

Đặt $u = x^2 - 8x + 3$, v = 3x - 5, phương trình đã cho viết lại là

$$u + v = u.8^{v} + v.8^{u} \Leftrightarrow u(1 - 8^{v}) = v(8^{u} - 1)$$
 (*)

Ta thấy u = 0 hoặc v = 0 thỏa mãn phương trình (*).

Với
$$u \neq 0$$
 và $v \neq 0$ ta có (*) $\Leftrightarrow \frac{1-8^v}{v} = \frac{8^u - 1}{u}$ (**)

Ta thấy:

$$\square \ \text{N\'eu} \ u>0 \ \text{thì} \ \frac{8^u-1}{u}>0 \ \text{và n\'eu} \ u<0 \ \text{thì} \ \frac{8^u-1}{u}>0 \ . \ \text{Do d\'e} \ VP\big(**\big)>0, \forall u\neq 0 \ .$$

□ Nếu
$$v > 0$$
 thì $\frac{1-8^v}{v} < 0$ và nếu $v < 0$ thì $\frac{1-8^v}{v} < 0$. Do đó $VT(**) < 0$, $\forall v \neq 0$.

Từ đó suy ra (**) vô nghiệm.

Như vậy, phương trình đã cho tương đương với

$$\begin{bmatrix} u = 0 \\ v = 0 \end{cases} \Leftrightarrow \begin{bmatrix} x^2 - 8x + 3 = 0 \\ 3x - 5 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 4 + \sqrt{13} \\ x = 4 - \sqrt{13} \\ x = \frac{5}{3} \end{bmatrix}.$$

Vây, phương trình đã cho có 3 nghiệm.

(THPT Chu Văn An - Hà Nội - 2018) Tích tất cả các giá trị của x thỏa mãn phương trình Câu 62. $(3^x - 3)^2 - (4^x - 4)^2 = (3^x + 4^x - 7)^2$ bằng

Phương trình \iff $(3^x + 4^x - 7)(3^x - 4^x + 1) = (3^x + 4^x - 7)^2$

$$\Leftrightarrow (3^{x} + 4^{x} - 7)(2.4^{x} - 8) = 0 \Leftrightarrow \begin{bmatrix} 2.4^{x} = 8 & (1) \\ 3^{x} + 4^{x} - 7 = 0 & (2) \end{bmatrix}$$

Xét phương trình (1): (1) $\Leftrightarrow 4^x = 4 \Leftrightarrow x = 1$

Xét phương trình (2): Xét hàm $f(x) = 3^x + 4^x - 7$ trên \mathbb{R} .

Hàm f(x) liên tục và $f'(x) = 3^x \cdot \ln 3 + 4^x \cdot \ln 4 > 0 \ \forall x \in \mathbb{R}$ nên f(x) là hàm đồng biến trên \mathbb{R} Khi đó, $(2) \Leftrightarrow f(x) = f(1) \Leftrightarrow x = 1$. Vậy tích các nghiệm của phương trình bằng 1.

(THPT Chu Văn An - Hà Nội - 2018) Phương trình $e^x - e^{\sqrt{2x+1}} = 1 - x^2 + 2\sqrt{2x+1}$ có nghiệm Câu 63. trong khoảng nào?

$$\underline{\mathbf{A}} \cdot \left(2; \frac{5}{2}\right)$$
.

B.
$$\left(\frac{3}{2};2\right)$$
. **C.** $\left(1;\frac{3}{2}\right)$. **D.** $\left(\frac{1}{2};1\right)$.

C.
$$\left(1; \frac{3}{2}\right)$$
.

$$\mathbf{D.}\left(\frac{1}{2};1\right).$$

Lời giải

Chon A

ĐK:
$$x \ge -\frac{1}{2}$$

$$e^{x} - e^{\sqrt{2x+1}} = 1 - x^{2} + 2\sqrt{2x+1}$$

$$\Leftrightarrow e^{x} - e^{\sqrt{2x+1}} = -(x+1)^{2} + (\sqrt{2x+1} + 1)^{2}$$

$$\Leftrightarrow e^{x} + (x+1)^{2} = e^{\sqrt{2x+1}} + (\sqrt{2x+1} + 1)^{2} (*)$$

Xét hàm số
$$f(t) = e^t + (t+1)^2$$
 với $t \ge -\frac{1}{2}$

$$f'(t) = e^t + 2(t+1) > 0$$
 với mọi $t \ge -\frac{1}{2}$

Suy ra hàm số đồng biến trên $\left[-\frac{1}{2}; +\infty\right]$.

$$(*) \Leftrightarrow f(x) = f(\sqrt{2x+1}) \Leftrightarrow x = \sqrt{2x+1}$$

$$\Leftrightarrow \begin{cases} x \ge 0 \\ x^2 = 2x + 1 \end{cases} \Leftrightarrow \begin{cases} x \ge 0 \\ x^2 - 2x - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x \ge 0 \\ x = 1 - \sqrt{2} \\ x = 1 + \sqrt{2} \end{cases} \Leftrightarrow x = 1 + \sqrt{2}.$$

DANG 3. PHƯƠNG TRÌNH TỔ HƠP CỦA MŨ VÀ LOGARIT

Câu 1. (Tham khảo 2019) Tổng tất cả các nghiệm của phương trình $\log_3(7-3^x) = 2-x$ bằng

<u>**A**</u>. 2.

B. 1.

C. 7.

D. 3.

Lời giải

Chọn A

Điều kiện xác định của phương trình là $7-3^x > 0 \Leftrightarrow 3^x < 7 \Leftrightarrow x < \log_3 7$.

$$\log_3(7-3^x) = 2-x \Leftrightarrow 7-3^x = 3^{2-x} \Leftrightarrow 7-3^x = \frac{9}{3^x}.$$

Đặt $t = 3^x$, với 0 < t < 7, suy ra $x = \log_3 t$.

Ta có phương trình $t^2 - 7t - 9 = 0$ có hai nghiệm $t_1 = \frac{7 - \sqrt{13}}{2}$ và $t_2 = \frac{7 + \sqrt{13}}{2}$.

Vậy có hai nghiệm x_1, x_2 tương ứng.

Ta có $x_1 + x_2 = \log_3 t_1 + \log_3 t_2 = \log_3 t_1 \cdot t_2$

Theo định lý Vi-ét ta có $t_1.t_2 = 9$, nên $x_1 + x_2 = \log_3 9 = 2$.

Câu 2. Tích các nghiệm của phương trình $\log_{\frac{1}{\sqrt{5}}} (6^{x+1} - 36^x) = -2$ bằng

<u>**A**</u>. 0.

B. $\log_6 5$.

C. 5.

D. 1.

Lời giải

Chon A

Ta có:
$$\log_{\frac{1}{\sqrt{5}}} \left(6^{x+1} - 36^x \right) = -2 \Leftrightarrow -2 \log_5 \left(6^{x+1} - 36^x \right) = -2 \Leftrightarrow \log_5 \left(6^{x+1} - 36^x \right) = 1$$
.

$$\Leftrightarrow 6^{x+1} - 36^x = 5 \Leftrightarrow 6^{2x} - 6.6^x + 5 = 0 \Leftrightarrow \begin{bmatrix} 6^x = 1 \\ 6^x = 5 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \log_6 5 \end{bmatrix}.$$

Vậy tích các nghiệm của phương trình bằng: $0.\log_6 5 = 0$.

Câu 3. Tổng các nghiệm của phương trình $\log_2(5-2^x)=2-x$ bằng

A. 3.

B. 1.

<u>C</u>. 2.

D. 0.

Lời giải

Chon C

Điều kiên: $5-2^x > 0$.

$$\log_2(5-2^x) = 2 - x \Leftrightarrow 5 - 2^x = 2^{2-x} \Leftrightarrow 5 - 2^x = \frac{4}{2^x} \Leftrightarrow 2^{2x} - 5 \cdot 2^x + 4 = 0.$$

$$\Leftrightarrow \begin{bmatrix} 2^x = 1 \\ 2^x = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix} (tmdk).$$

Vậy tổng các nghiệm của phương trình đã cho là bằng 2.

Câu 4. (Thi thử cụm Vũng Tàu - 2019) Số nghiệm của phương trình $\log_2(4^x + 4) = x - \log_{\frac{1}{2}}(2^{x+1} - 3)$

A. 3.

B. 1.

C. 0.

D. 2

Lời giải

Chon B

Điều kiện:
$$2^{x+1} - 3 > 0 \Leftrightarrow 2^x > \frac{3}{2}$$
.

Ta có:
$$\log_2(4^x + 4) = x - \log_{\frac{1}{2}}(2^{x+1} - 3) \Leftrightarrow \log_2(4^x + 4) = \log_2 2^x - \log_{\frac{1}{2}}(2^{x+1} - 3)$$

$$\Leftrightarrow \log_2(4^x + 4) = \log_2 2^x (2^{x+1} - 3)$$

$$\Leftrightarrow 4^x + 4 = 2^x (2^{x+1} - 3)$$

$$\Leftrightarrow (2^x)^2 - 3 \cdot 2^x - 4 = 0$$

$$\Leftrightarrow \begin{bmatrix} 2^x = -1(k \ t/m)) \\ 2^x = 4(t/m) \end{cases} \Leftrightarrow x = 2.$$

Đối chiếu điều kiện ta thấy x = 2 thõa mãn. Vậy phương trình đã cho có một nghiệm.

Câu 5. Gọi S là tập hợp tất cả các nghiệm nguyên dương của phương trình $\log(2-10^{2x}) = x$. Số tập con của S bằng

A. 4.

B. 1.

<u>C</u>. 2.

D. 0.

Lời giải

<u>C</u>họn <u>C</u>

Xét phương trình $\log(2-10^{2x}) = x$, điều kiện $2-10^{2x} > 0 \Leftrightarrow 2x < \log 2 \Leftrightarrow x < \log \sqrt{2}$.

Ta có
$$\log(2-10^{2x}) = x \Leftrightarrow 2-10^{2x} = 10^x \Leftrightarrow 10^{2x} + 10^x - 2 = 0 \Rightarrow \begin{bmatrix} 10^x = -2 \\ 10^x = 1 \end{bmatrix} \Rightarrow x = \log 1 = 0.$$

(Vì $10^x = -2 < 0$ vô nghiệm)

Vậy phương trình có một nghiệm x = 0 thỏa mãn điều kiện. loại

 \Rightarrow Số tập con của S là $2^1 = 2$.

Câu 6. Tổng tất cả các nghiệm của phương trình $\log_2(6-2^x)=1-x$ bằng

<u>A</u>. 1.

B. 2.

C. 0.

D. 3.

Lời giải

 $\underline{\mathbf{C}}$ họn $\underline{\mathbf{A}}$

Điều kiện xác định $6-2^x > 0 \Leftrightarrow 2^x < 6 \Leftrightarrow x < \log_2 6$

Ta có:

$$\log_2(6-2^x) = 1 - x \iff 6 - 2^x = 2^{1-x} \iff 6 - 2^x = \frac{2}{2^x} \iff -2^{2x} + 6 \cdot 2^x - 2 = 0$$

Hon nữa $2^{x_1+x_2} = 2^{x_1} \cdot 2^{x_2} = \frac{c}{a} = 2 \iff x_1 + x_2 = 1$

Câu 7. (**Chuyên Thái Bình - 2018**) Tính tích tất cả các nghiệm thực của phương trình $\log_2\left(\frac{2x^2+1}{2x}\right)+2^{\left(x+\frac{1}{2x}\right)}=5.$

A. 0.

B. 2.

C. 1.

 $\underline{\mathbf{D}} \cdot \frac{1}{2}$.

Lời giải

Điều kiên: x > 0.

PT:
$$\Leftrightarrow \log_2\left(\frac{2x^2+1}{2x}\right) + 2^{\left(\frac{2x^2+1}{2x}\right)} = 5$$
 (1).

$$\text{Dăt } t = \frac{2x^2 + 1}{2x} = x + \frac{1}{2x} \ge 2\sqrt{x \cdot \frac{1}{2x}} = \sqrt{2}$$

PT trở thành $\log_2 t + 2^t = 5$

(2).

Xét hàm $f(t) = \log_2 t + 2^t (t \ge \sqrt{2})$ là hàm đồng biến nên:

$$(2) \Leftrightarrow f(t) = f(2) \Leftrightarrow t = 2 (t/m).$$

Với
$$t = 2$$
 thì $\frac{2x^2 + 1}{2x} = 2 \iff 2x^2 - 4x + 1 = 0$ (t/m). Vậy $x_1 x_2 = \frac{1}{2}$ (theo Viet).

Câu 8. (**Thi thử hội 8 trường chuyên 2019**) Phương trình $\log_2(5.2^x - 4) = 2x$ có bao nhiều nghiệm nguyên dương?

A. 2.

B. 0.

C. 3.

D. 1.

Lời giải

Chọn D

Phuong trình
$$\log_2(5.2^x - 4) = 2x \Leftrightarrow 2^{2x} - 5.2^x + 4 = 0 \Leftrightarrow \begin{bmatrix} 2^x = 1 \\ 2^x = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \end{bmatrix}$$
.

Vậy phương trình có một nghiệm nguyên dương.

Câu 9. (SP Đồng Nai - 2019) Phương trình $\log_2(5-2^x)=2-x$ có hai nghiệm thực x_1, x_2 . Tính $P=x_1+x_2+x_1x_2$

<u>A</u>. 2.

B. 9.

C. 3.

D. 11.

Lời giải

Chọn A

Điều kiện: $5-2^x > 0 \Leftrightarrow 0 < 2^x < 5 \Leftrightarrow x < \log_2 5$.

Phurong trình
$$\log_2(5-2^x) = 2-x \Leftrightarrow 5-2^x = 2^{2-x} \Leftrightarrow 2^{2x}-5.2^x+4=0 \Leftrightarrow \begin{bmatrix} 2^x = 1 \Rightarrow x = 0 \ (n) \\ 2^x = 4 \Rightarrow x = 2 \ (n) \end{bmatrix}$$

Khi đó $P = x_1 + x_2 + x_1 x_2 = 2$.

Câu 10. Phương trình $(2^x - 5)(\log_2 x - 3) = 0$ có hai nghiệm x_1, x_2 (với $x_1 < x_2$). Tính giá trị của biểu thức $K = x_1 + 3x_2$.

- **A.** $K = 32 + \log_3 2$. **B.** $K = 18 + \log_2 5$. **C.** $K = 24 + \log_2 5$. **D.** $K = 32 + \log_2 3$.

Lời giải

Chon C

Điều kiện: x > 0.

$$(2^{x}-5)(\log_{2}x-3) = 0 \Leftrightarrow \begin{bmatrix} 2^{x}-5=0 \\ \log_{2}x-3=0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2^{x}=5 \\ \log_{2}x=3 \end{cases} \Leftrightarrow \begin{bmatrix} x=\log_{2}5 \\ x=8 \end{bmatrix} \Rightarrow \begin{cases} x_{1}=\log_{2}5 \\ x_{2}=8 \end{cases}.$$

Vậy $K = x_1 + 3x_2 = \log_2 5 + 3.8 = 24 + \log_2 5$.

Câu 11. Cho biết phương trình $\log_3(3^{x+1}-1)=2x+\log_{\frac{1}{3}}2$ có hai nghiệm x_1,x_2 . Hãy tính tổng $S = 27^{x_1} + 27^{x_2}$.

A. S = 252. **B.** S = 45.

- **C.** S = 9.
- **D.** S = 180.

Lời giải

Chọn D

Ta có $\log_3(3^{x+1}-1) = 2x + \log_{\frac{1}{3}} 2 \Leftrightarrow \log_3 2(3^{x+1}-1) = 2x \Leftrightarrow 2 \cdot 3^{x+1} - 2 = 3^{2x}$

$$\Leftrightarrow 3^{2x} - 6.3^x + 2 = 0.$$

Đặt $3^x = t$, (t > 0), phương trình trở thành $t^2 - 6.t + 2 = 0$. Phương trình luôn có hai nghiệm dương phân biệt.

Đặt
$$3^{x_1} = t_1$$
, $3^{x_2} = t_2$, $t_1 + t_2 = 6$, $t_1, t_2 = 2$.

Ta có
$$S = (t_1^3 + t_2^3) = (t_1 + t_2)^3 - 3t_1 \cdot t_2 (t_1 + t_2) = 216 - 3.2.6 = 180$$

(THPT Yên Dũng 2-Bắc Giang 2019) Tính tích tất cả các nghiệm thực của phương trình $\log_2\left(\frac{2x^2+1}{2x}\right) + 2^{x+\frac{1}{2x}} = 5.$

A. 2.

- **B.** 0.
- $\underline{\mathbf{C}} \cdot \frac{1}{2}$.
- **D.** 1.

Lời giải

Chọn C

Điều kiện: $\begin{cases} 2x \neq 0 \\ \frac{2x^2 + 1}{2} > 0 \end{cases} \Leftrightarrow x > 0.$

Khi đó, $\log_2\left(\frac{2x^2+1}{2x}\right) + 2^{x+\frac{1}{2x}} = 5 \Leftrightarrow \log_2\left(x+\frac{1}{2x}\right) + 2^{x+\frac{1}{2x}} = 5 \Leftrightarrow \log_2\left(x+\frac{1}{2x}\right) = 5 - 2^{x+\frac{1}{2x}}$

Đặt $t = x + \frac{1}{2x} \ge 2\sqrt{x \cdot \frac{1}{2x}} = \sqrt{2}$, phương trình trở thành: $\log_2 t = 5 - 2^t$, $t \ge \sqrt{2}$.

Xét $f(t) = \log_2 t$, $t \ge \sqrt{2}$. Ta có: $f'(t) = \frac{1}{t \ln 2} > 0$, $\forall t \ge \sqrt{2}$ nên f(t) đồng biến trên $\left[\sqrt{2};+\infty\right).$

Xét $g(t) = 5 - 2^t$, $t \ge \sqrt{2}$. Ta có: $g'(t) = -2^t \cdot \ln 2 < 0$, $\forall t \ge \sqrt{2}$ nên g(t) nghịch biến trên $\lceil \sqrt{2}; +\infty \rangle$.

Từ đó phương trình f(t) = g(t) có nhiều nhất một nghiệm $t \ge \sqrt{2}$. Ta nhận thấy t = 2 là nghiệm, và đây là nghiệm duy nhất của phương trình $\log_2 t = 5 - 2^t$ trên $\left\lceil \sqrt{2}; +\infty \right\rceil$.

Suy ra
$$x + \frac{1}{2x} = 2 \Rightarrow 2x^2 - 4x + 1 = 0 \Leftrightarrow \begin{bmatrix} x = \frac{2 + \sqrt{2}}{2} \\ x = \frac{2 - \sqrt{2}}{2} \end{bmatrix}$$
. Cả hai giá trị này đều thỏa mãn điều kiện

x > 0, nên đều là nghiệm của phương trình đã cho.

Tích hai nghiệm là:
$$\frac{2+\sqrt{2}}{2} \cdot \frac{2-\sqrt{2}}{2} = \frac{1}{2}$$
.

Câu 13. Số nghiệm của phương trình $\log_2 \frac{2^x + 4}{2^x + 12} = x - 3$

A. 0.

B. 1

C. 2.

D. 3.

Lời giải

Chọn B

Phương trình
$$\log_2 \frac{2^x + 4}{2^x + 12} = x - 3 \Leftrightarrow \frac{2^x + 4}{2^x + 12} = 2^{x-3} \Leftrightarrow 2^x + 4 = \frac{2^x}{2^3} (2^x + 12)$$

$$\Leftrightarrow (2^x)^2 + 4.(2)^x - 32 = 0 \Leftrightarrow \begin{bmatrix} 2^x = 4 \\ 2^x = -8 \end{bmatrix}.$$

+ Với
$$2^x = 4 \Leftrightarrow x = 2$$
.

+ Với $2^x = -8$ phương trình vô nghiệm.

Vậy phương trình đã cho có 1 nghiệm.

Câu 14. Tính tích tất cả các nghiệm thực của phương trình $\log_2\left(\frac{2x^2+1}{2x}\right)+2^{\left(x+\frac{1}{2x}\right)}=5$.

A. 0.

B. 2.

C. 1.

 $\underline{\mathbf{D}} \cdot \frac{1}{2}$.

Lời giải

<u>C</u>họn <u>D</u>

$$\log_2\left(\frac{2x^2+1}{2x}\right)+2^{\left(x+\frac{1}{2x}\right)}=5. \text{ Diều kiện } \frac{2x^2+1}{2x}>0 \Leftrightarrow x>0.$$

Ta có
$$\frac{2x^2+1}{2x} \ge \frac{2\sqrt{2x^2.1}}{2x} = \sqrt{2}$$
.

Xét hàm số
$$f(t) = \log_2 t + 2^t \Rightarrow f'(t) = \frac{1}{t \ln 2} + 2^t \ln 2 > 0, \forall t \ge \sqrt{2}$$
.

Phương trình
$$f(t) = \log_2 t + 2^t = 5 \Leftrightarrow f(t) = f(2) \Rightarrow t = 2$$
.

Vậy
$$\log_2\left(\frac{2x^2+1}{2x}\right) + 2^{\left(x+\frac{1}{2x}\right)} = 5 \Leftrightarrow \frac{2x^2+1}{2x} = 2 \Leftrightarrow 2x^2 - 4x + 1 = 0$$

Ta có phương trình $2x^2 - 4x + 1 = 0$ có hai nghiệm dương phân biệt có tích bằng $\frac{1}{2}$.

- **Câu 15.** Tổng tất cả các nghiệm của phương trình $\log_2 \left(10\left(\sqrt{2019}\right)^x 2019^x\right) = 4$ bằng
 - **A.** $\log_{2019} 16$.
- **B.** $2\log_{2019} 16$.
- C. $\log_{2010} 10$.
- **D.** $2\log_{2019} 10$.

Lời giải

Chọn B

Ta có
$$\log_2 \left(10 \left(\sqrt{2019} \right)^x - 2019^x \right) = 4 \iff 10 \left(\sqrt{2019} \right)^x - 2019^x = 16$$
 (1)

Đặt
$$t = 2019^{\frac{x}{2}}(t > 0)$$
 ta có PT (1) trở thành $10t - t^2 = 16 \iff t^2 - 10t + 16 = 0 \iff t = 8$

Với
$$t = 2$$
 ta có $2019^{\frac{x}{2}} = 2 \Leftrightarrow \frac{x}{2} = \log_{2019} 2 \Leftrightarrow x = 2\log_{2019} 2$

Với
$$t = 8$$
 ta có $2019^{\frac{x}{2}} = 8 \Leftrightarrow \frac{x}{2} = \log_{2019} 8 \Leftrightarrow x = 2\log_{2019} 8$. Do đó tổng tất cả các nghiệm bằng

$$2\log_{2019} 2 + 2\log_{2019} 8 = 2(\log_{2019} 2 + \log_{2019} 8) = 2(\log_{2019} 2.8) = 2\log_{2019} 16.$$

- (THPT Hòa Vang Đà Nẵng 2018) Biết rằng $2^{x+\frac{1}{x}} = \log_2 \left\lceil 14 (y-2)\sqrt{y+1} \right\rceil$ với x > 0. Câu 16. Tính giá trị của biểu thức $P = x^2 + y^2 - xy + 1$.
 - **A.** 3.

B. 1.

- <u>C</u>. 2.
- **D.** 4.

Do
$$x > 0$$
 nên $x + \frac{1}{x} \ge 2\sqrt{x \cdot \frac{1}{x}} = 2 \Rightarrow 2^{x + \frac{1}{x}} \ge 2^2 = 4$, dấu bằng xảy ra khi $x = 1$.

Xét hàm
$$f(y) = 4 - (y-2)\sqrt{y+1}, y \ge -1$$
, ta có $f'(y) = -\sqrt{y+1} + \frac{y-2}{2\sqrt{y+1}}$

$$= -\left(\frac{2y+2+y-2}{2\sqrt{y+1}}\right) = 0 \iff y = 0. \text{ Lập bảng biến thiên, suy ra } \max_{[-1;+\infty)} f(y) = 16 \text{ khi } y = 0.$$

Suy ra
$$\log_2 \left[14 - (y-2)\sqrt{y+1} \right] \le \log_2 16 = 4$$
.

Do đó
$$2^{x+\frac{1}{x}} = \log_2 \left[14 - (y-2)\sqrt{y+1} \right] \Leftrightarrow \begin{cases} x=1 \\ y=0 \end{cases}$$
. Vậy $P = x^2 + y^2 - xy + 1 = 2$.

- (**Toán Học Tuổi Trẻ 2018**) Phương trình $(4x)^{\log_8 x} + x^{\log_8 (4x)} = 4$ có tập nghiệm là
- $\mathbf{B.} \left\{ \frac{1}{2}; 8 \right\}. \qquad \mathbf{C.} \left\{ \frac{1}{2}; \frac{1}{8} \right\}. \qquad \underline{\mathbf{D}.} \left\{ 2; \frac{1}{8} \right\}.$

Lời giải

Điều kiện: x > 0.

$$(4x)^{\log_8 x} + x^{\log_8(4x)} = 4$$

$$\Leftrightarrow (4x)^{\log_8 x} + (4x)^{\log_8 x} = 4$$

$$\Leftrightarrow (4x)^{\log_8 x} = 2$$

$$\Leftrightarrow \log_8 x \log_8 (4x) = \log_8 2$$

$$\Leftrightarrow \log_8 x \left(\frac{2}{3} + \log_8 x\right) = \frac{1}{3}.$$

Đặt $t = \log_8 x$.

Phương trình trở thành: $t\left(\frac{2}{3}+t\right) = \frac{1}{3} \Leftrightarrow t^2 + \frac{2}{3}t - \frac{1}{3} = 0 \Leftrightarrow \begin{bmatrix} t = \frac{1}{3} \\ t = -1 \end{bmatrix}$.

$$t = \frac{1}{3} \Leftrightarrow \log_8 x = \frac{1}{3} \Leftrightarrow x = 2 \text{ (nhận)}.$$

$$t = -1 \Leftrightarrow \log_8 x = -1 \Leftrightarrow x = \frac{1}{8}$$
 (nhận).

Vậy tập nghiệm là $\left\{2;\frac{1}{8}\right\}$.

Câu 18. (THPT Yên Lạc- 2018) Tính tổng S tất cả các nghiệm của phương trình:

$$\ln\left(\frac{5^x + 3^x}{6x + 2}\right) + 5^{x+1} + 5 \cdot 3^x - 30x - 10 = 0.$$

A.
$$S = 1$$
.

B.
$$S = 2$$
.

C.
$$S = -1$$
.

D.
$$S = 3$$

Lời giải

Điều kiện $x > -\frac{1}{3}$.

Phương trình tương đương

$$\ln(5^x + 3^x) - \ln(6x + 2) + 5(5^x + 3^x) - 5(6x + 2) = 0$$

$$\Leftrightarrow \ln(5^x + 3^x) + 5(5^x + 3^x) = \ln(6x + 2) + 5(6x + 2)$$
 (1).

Xét hàm số $f(t) = \ln t + 5t, t > 0$. Có $f'(t) = \frac{1}{t} + 5 > 0$, $\forall t > 0$ nên f(t) đồng biến. Từ (1)

suy ra
$$f(5^x + 3^x) = f(6x + 2) \Leftrightarrow 5^x + 3^x = 6x + 2 \Leftrightarrow 5^x + 3^x - 6x - 2 = 0$$

Xét
$$g(x) = 5^x + 3^x - 6x - 2$$
, $g'(x) = 5^x \ln 5 + 3^x \ln 3 - 6$

$$g''(x) = 5^x (\ln 5)^2 + 3^x (\ln 3)^2 > 0 \quad \forall x > -\frac{1}{3}.$$

Nên g'(x) = 0 có không quá 1 nghiệm suy ra g(x) = 0 có không quá 2 nghiệm trên

$$\left(-\frac{1}{3};+\infty\right).$$

Mà g(0) = g(1) = 0. Vậy phương trình có nghiệm 0,1. Do đó S = 1.

BAN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

*https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKIG?usp=sharing

Theo dõi Fanpage: Nguyễn <u>B</u>ảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🕶 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) 🖝

https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

F

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber
Tåi nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/
ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!