Improving Query Efficiency of Black-box Adversarial Attack

Yang Bai ¹ Yong Jiang ¹

¹Tsinghua Berkeley Shenzhen Institute, Tsinghua University, accepted by ECCV2020.

Abstract

Deep neural networks (DNNs) are under the risk of adversarial examples that can be easily generated when the target model is accessible to an attacker (white-box setting). As plenty of machine learning models have been deployed via online services that only provide query outputs from inaccessible models (e.g., Google Cloud Vision API2), black-box adversarial attacks (inaccessible target model) are of critical security concerns in practice rather than white-box ones. However, existing query-based black-box adversarial attacks often require excessive model queries to maintain a high attack success rate. Therefore, in order to improve query efficiency, we propose a Neural Process based black-box adversarial attack (NP-Attack). Extensive experiments show that NP-Attack could greatly decrease the query counts under the black-box setting.

Introduction

Deep neural networks (DNNs) have been deployed on many real-world complex tasks and demonstrated excellent performance. However, DNNs are found vulnerable to adversarial examples crafted following either a white-box setting (the adversary has full access to the target model) or a black-box setting (the adversary has no information of the target model). Among the black-box ones, *query*-based black-box attacks that directly generate adversarial examples on target models are proposed. These query-based methods could bring almost 100% attack success rates however with very high query counts (not acceptable). Therefore, how to significantly reduce the query complexity while maintaining the attack success rate simultaneously is still an open problem.

In this paper, we introduce the structure information of the image into consideration to further reduce the query counts. To be specific, the structure is characterized by a Neural Process (NP), an efficient auto-encoder method to model a distribution over regression functions.

Our main contributions could be summarized as follows:

- We propose a distribution based black-box attack, Neural Process based black-box attack (NP-Attack), which uses the image structure information for modeling adversarial distributions and can reduce the required query counts.
- Extensive experiments demonstrate the superiority of our proposed NP-Attack on both untargeted and targeted attacks.

NP-Attack

Our method NP-Attack mainly includes two procedures, the pre-training of NP model and the main-stream black-box attack.

Algorithm

Algorithm 2 NP-Attack

Input: image data x, label y (if untargeted attack y represents the true label of x; else y represents the target label), target neural network F, pre-trained NP model (Encoder h, Decoder g, Aggregator a), maximal optimization iteration T, sample size b, projecting function P, learning rate η

- 1: Compute the variables from Encoder h on image x: $\mathcal{N}(\mu, \sigma^2)$, $r \leftarrow h(x)$
- 2: **for** t = 0 **to** T 1 **do**
- 3: if $F(x) \neq y$ (untargeted) or F(x) = y (targeted) then
- attack success.
- 5: else

12: end for

- : Sample b independent random perturbations from standard Gaussian distribution: p_i ~ N(0, I), i = 1, 2, ..., b.
- 7: Add the perturbation p_i in NP-Attack-R/Z/RZ, specifically on μ or r or both, $\begin{cases} z_i \sim \mathcal{N}(\mu, \sigma^2), r_i = r + p_i \sigma, & \text{NP-Attack-R}, \end{cases}$
 - $\begin{cases} z_i \sim \mathcal{N}(\mu + p_i \sigma, \sigma^2), r_i = r, & \text{NP-Attack-Z}, \\ z_i \sim \mathcal{N}(\mu + p_i \sigma, \sigma^2), r_i = r + p_i \sigma, & \text{NP-Attack-RZ}. \end{cases}$
- 8: Reconstruct the image from $Decoder\ g$, and use project function P to restrict its maximal distortion: $x_i = P(g(z_i, r_i))$.
- 9: Compute the losses of these reconstructed image series x_i under targeted or untargeted setting,

$$L_i = \begin{cases} \max(0, \max_{c \neq y} \log F(x_i)_c - \log F(x_i)_y), & \text{targeted,} \\ \max(0, \log F(x_i)_y - \max \log F(x_i)_c), & \text{untargeted.} \end{cases}$$

The corresponding loss $L_i = L_i - mean(L)$.

Update
$$\mu$$
 or r or both as optimization:
$$\begin{cases} r_{t+1} \leftarrow r_t - \frac{\eta}{b\sigma} \sum_{i=1}^b L_i p_i, & \text{NP-Attack-R,} \\ \mu_{t+1} \leftarrow \mu_t - \frac{\eta}{b\sigma} \sum_{i=1}^b L_i p_i, & \text{NP-Attack-Z,} \\ \mu_{t+1} \leftarrow \mu_t - \frac{\eta}{b\sigma} \sum_{i=1}^b L_i p_i, & \text{NP-Attack-RZ.} \end{cases}$$

Experiments

CIFAR-10 The black-box attack results on CIFAR-10.

Table 1:Adversarial evaluation of black-box attacks on CIFAR10.

Attack Method		Attack	Targeted Attack					
	ASR	L_2	L_{∞}	Query Count	ASR	L_2	L_{∞}	Query Count
ZOO	100%	0.12	0.02	208,384	99.52%	0.19	0.02	230,912
AutoZOOM-BiLIN	100%	1.56	0.15	8,113	100%	2.13	0.21	8,266
AutoZOOM-AE	100%	1.88	0.16	7,113	100%	2.78	0.24	8,217
QL	98.40%	1.91	0.05	857	99.55%	2.11	0.05	616
${\cal N}$ Attack	99.89%	2.61	0.05	183	100%	2.61	0.05	1,151
NP-Attack-R(Ours)	100%	1.74	0.05	94	100%	1.85	0.05	589
NP-Attack-Z(Ours)	100%	1.67	0.05	144	100%	1.78	0.05	936

ImageNet The black-box attack results on ImageNet.

Table 2:Adversarial evaluation of black-box attacks on ImageNet.

Attack Method	Ur	ntargeted	d Attack	Targeted Attack			
	ASR	L_2 Dist	Query Count	ASR	L_2 Dist	Query Count	
ZOO	90%	1.20	15,631	78%	3.43	2.11×10 ⁶	
AutoZOOM-BiLIN	100%	9.34	3,024	100%	11.26	14,228	
QL	100%	17.72	3,985	100%	17.39	33,360	
${\cal N}$ Attack	100%	24.01	2,075	100%	24.14	14,229	
Bandits	100%		3,165	92.5%		25,341	
NP-Attack-R(Ours)	100%	10.96	867	98.02%	14.38	8,001	
NP-Attack-Z(Ours)	96.04%	12.37	1,236	98.02%	14.60	11,383	

The visual results of our NP-Attack on ImageNet. The perturbations added by our NP-Attack are imperceptible.

Figure 1:Adversarial example of ImageNet generated by NP-Attack-R on untargeted attack bounded by L_{∞} =0.05. Top row shows the original images and the true labels (marked as green) while the bottom row are the adversarial examples with predicted label (marked as red). The visual results perform similar on MNIST and CIFAR-10.

References

- [1] Marta Garnelo, Jonathan Schwarz, Rosenbaum Dan, Fabio Viola, and Yee Whye Teh. Neural processes. In *ICLR*, 2018.
- [2] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited queries and information. In *ICML*, 2018.
- [3] Andrew Ilyas, Logan Engstrom, and Aleksander Madry.
 Prior convictions: Black-box adversarial attacks with bandits and priors.
 arXiv preprint arXiv:1807.07978, 2018.
- [4] Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, and Boqing Gong.

 Nattack: Learning the distributions of adversarial examples for an improved black-box attack on deep neural networks. In *ICML*, 2019.
- [5] Xinyi Liu, Yang Bai, Shu-Tao Xia, and Yong Jiang. Self-adaptive feature fool. In *ICASSP*, pages 4177--4181. IEEE, 2020.