

Analog IC Design

Lecture 23 Reference Circuits

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Reference circuits
- ☐ Bandgap reference (BGR) circuit
 - BGR basic operation
 - BGR practical CMOS implementation
- ☐ Constant-gm circuit

Outline

- Reference circuits
- ☐ Bandgap reference (BGR) circuit
 - BGR basic operation
 - BGR practical CMOS implementation
- ☐ Constant-gm circuit

Reference Circuits

- ☐ Stable DC voltage and DC current generation
 - Little dependence on process (P) and supply (V)
 - Well-defined dependence on temperature (T)
 - Not necessarily independent!
- Temperature dependence
 - Positive temperature coefficient (+ve TC): Proportional to absolute temperature (PTAT)
 - Negative temperature coefficient (-ve TC): Complementary to absolute temperature (CTAT)
 - Temperature independent (Zero-TC): ZTAT = PTAT + CTAT
- Most process parameters vary with temperature
 - If we achieve a temperature independent reference it will also be process independent

Why Reference Circuits?

- ☐ Applications:
 - Voltage regulators
 - ADCs and DACs
 - Biasing of amplifiers
 - Common-mode (CM) level of fully-differential circuits
 - **-** ...

- Types of references we usually need (all should be PV insensitive):
 - PTAT: Proportional to absolute temperature (+ve TC)
 - Temperature independent (Zero-TC) → PVT insensitive
 - Constant-transconductance (constant-Gm)

Poor Man's Reference Voltage

$$V_{REF} = V_{DD} \frac{R_2}{R_1 + R_2}$$

- \Box Good layout makes V_{REF} independent of process and temperature.
- \square V_{REF} absolute value depends on V_{DD} .
- $ightharpoonup V_{REF}$ is sensitive to V_{DD} variations (poor PSR).

$$PSR = \frac{\Delta V_{REF}}{\Delta V_{DD}} = \frac{R_2}{R_1 + R_2}$$

Poor Man's Reference Current

$$I_{REF} = \frac{\mu C_{ox}}{2} \frac{W_1}{L_1} (V_{GS} - V_{TH})^2 = \frac{\beta_1}{2} (V_{GS} - V_{TH})^2$$

$$I_{REF} = \frac{V_{DD} - V_{GS}}{R} = \frac{V_{DD} - \sqrt{\frac{2I_{REF}}{\beta_1}} - V_{TH}}{R}$$

- \square I_{REF} depends on process, supply voltage, and temperature (PVT).
- \blacksquare I_{REF} is sensitive to V_{DD} variations (poor PSR).

$$\Delta I_{REF} = \frac{\Delta V_{DD}}{R + 1/g_{m1}} \rightarrow \frac{\Delta I_{REF}}{\Delta V_{DD}} \approx \frac{1}{R}$$

Outline

- ☐ Reference circuits
- ☐ Bandgap reference (BGR) circuit
 - BGR basic operation
 - BGR practical CMOS implementation
- ☐ Constant-gm circuit

Basic Bandgap Reference (BGR) Circuit

- ☐ Q1, Q2, and Q3 are diode connected PNP BJTs.
- \square The A-block is a circuit that makes $V_1 = V_2$.
- \square The current mirror copies I_2 to I_1 and I_3 .
- \Box V_{REF} is ZTAT \rightarrow How?

How much is I_2 ?

- \Box Using simple diode model you may expect $I_2 = 0$.
- \square But Q2 is n BJTs (diodes) connected in parallel.
 - $I_{C1} \approx I_1$ and $I_{C2} \approx I_2/n$
- $\square I_C = I_S e^{\frac{|V_{BE}|}{V_T}} \rightarrow |V_{BE}| = V_T \ln \frac{I_C}{I_S}$

I_2 is PTAT

$$\square I_C = I_S e^{\frac{|V_{BE}|}{V_T}} \rightarrow |V_{BE}| = V_T \ln \frac{I_C}{I_S}$$

- \square $I_{C1} \approx I_1$ and $I_{C2} \approx I_2/n$
- $\Box |V_{BE1}| \approx V_T \ln \frac{I_1}{I_S}$ and $|V_{BE2}| \approx V_T \ln \frac{I_2/n}{I_S} = V_T \ln \frac{I_2}{I_S} V_T \ln n$

The PTAT Component

$$\Box I_2 = \frac{\Delta V_{BE}}{R_2} = \frac{kT}{q} \ln n \cdot \frac{1}{R_2} \propto T \rightarrow PTAT$$

$$\Box \ a_1 = \frac{k}{q} \ln n \cdot \frac{R_3}{R_2} \approx 0.086 \ln n \cdot \frac{R_3}{R_2} \ mV/K$$

V_{BE} is CTAT

- \square It can be shown that $|V_{BE}| = V_T \ln \frac{I_C}{I_S} \approx V_{G0} b_1 T \rightarrow \text{CTAT}$
 - I_S is a strong function of temperature.
 - $|V_{BE}|$ is CTAT even if I_C itself is PTAT!
- All "simple" analytical models are inaccurate (and complicated).
 - Get b_1 from simulations: Usually $b_1 \approx 1.5 2 \ mV/K$.

23: Reference Circuits \bot

$oldsymbol{V_{REF}}$ is ZTAT

$$\square V_{R_3} = I_3 R_3 = \Delta V_{BE} \cdot \frac{R_3}{R_2} = V_T \ln n \cdot \frac{R_3}{R_2} = a_1 T \rightarrow PTAT$$

$$\square |V_{BE}| = V_T \ln \frac{I_C}{I_S} \approx V_{G0} - b_1 T \rightarrow \text{CTAT}$$

$$\Box$$
 $V_{REF} = PTAT + CTAT = ZTAT \approx V_{G0}$

Why the Name "Bandgap"?

$$\Box V_{R_3} = I_3 R_3 = \Delta V_{BE} \cdot \frac{R_3}{R_2} = V_T \ln n \cdot \frac{R_3}{R_2} = a_1 T \rightarrow PTAT$$

- \Box $V_{REF} = PTAT + CTAT = ZTAT \approx V_{G0}$

 $V_{G0} = E_{g0}/q$ $\approx 1.2 V$ is the bandgap voltage (energy) of Si extrapolated at absolute zero Kelvin

BGR Design Example: *n*

- \Box Due to layout considerations, two values of n are usually used.
 - n = 8
 - n = 24

BGR Design Example: R₂

 \Box Given current consumption select R_2 .

$$I_2 = \frac{\Delta V_{BE}}{R_2} = \frac{\frac{kT}{q} \ln n}{R_2}$$

 \Box Ex: $I_{total} = 30 \mu A$ and n = 8

$$I_2 = 10\mu A$$

$$R_2 \approx 5.4k\Omega$$

BGR Design Example: R_3

 \square Choose R_3 to achieve ZTAT V_{REF} (set $a_1 = b_1$).

$$V_{REF} = \Delta V_{BE} \cdot \frac{R_3}{R_2} + |V_{BE3}| = a_1 T + V_{G0} - b_1 T \approx V_{G0}$$

- $\Box \quad a_1 \approx \frac{k}{q} \ln n \cdot \frac{R_3}{R_2} \approx 0.086 \ln n \cdot \frac{R_3}{R_2} \ mV/K$
- \square Get b_1 from simulations (all analytical models are inaccurate).
 - Usually $b_1 \approx 1.5 2 \ mV/K$
- \Box Ex: n = 8 and $b_1 = 1.8 mV/K$

$$\frac{R_3}{R_2} \approx 10$$

$$R_3 \approx 54k\Omega$$

 \blacksquare Fine tune R_3 in SPICE.

Parasitic / Substrate / Native PNP

- The diode connected PNP can be implemented in any standard CMOS process.
 - But it usually has very low $\beta = I_C/I_B$ (< 10).
 - The n-well has relatively high parasitic ohmic resistance.
- Can be replaced by MOSFET in WI.
 - Necessary for low supply voltage operation.

23: Reference Circuits [Razavi, 2017]

Outline

- ☐ Reference circuits
- ☐ Bandgap reference (BGR) circuit
 - BGR basic operation
 - BGR practical CMOS implementation
- ☐ Constant-gm circuit

CMOS BGR Example (1)

- \square Current mirror: M_{P1-3}
- \square A-block: $M_{N1,2} \rightarrow$ Same current \rightarrow Same V_{GS}
- lacksquare Choice of L and W
 - Large L (> $1\mu m$) is usually used: Reduce CLM and flicker noise.
 - For low supply voltage, bias the transistors in MI or WI
 - Given L, g_m/I_D , and $I_D \rightarrow \text{get } W$ from charts / look-up tables

CMOS BGR Example (2)

- \square The op-amp keeps V_1 and V_2 at the same voltage.
- \square The op-amp can be implemented as a simple 5T OTA.
 - Folded cascode may be used if wide input range is required.
- Bias the op-amp using a constant-gm circuit.
 - Or use the BGR itself to bias it (self-biased)!

Positive or Negative FB?

- \square Cut the loop at OTA output: We must guarantee $\beta_N > \beta_P$.
- lacktriangle Note that $M_{P1,2}$ add 180^o phase shift.

$$\beta_N \approx g_{mP2}(R_2 + 1/g_{mQ})$$
 $\beta_P \approx g_{mP1}(1/g_{mQ})$

 \square Ex: To set $\beta_N > 2\beta_P$ \rightarrow $R_2 > \frac{1}{g_m} = \frac{V_T}{I_C}$ \rightarrow $V_{R_2} = V_T \ln n > V_T$

Low Voltage BGR: How?

- \square Adding PTAT and CTAT in voltage domain gives $V_{REF} \approx 1.2V$.
- \square For modern technologies, this value is higher than V_{DD} itself!
- ☐ The solution is to add PTAT and CTAT in the current domain.

Low Voltage BGR

- Q2 carries PTAT current
- R_3 converts CTAT voltage (V_{BE1}) to CTAT current.
- R_1 maintains $I_{E1} = I_{E2}$
- I_2 is PTAT + CTAT = ZTAT
- $\square V_{BG} = R_4 \left(\frac{\Delta V_{BE}}{R_2} + \frac{V_{BE1}}{R_3} \right) < 1.2V$

The Start-up Problem

- ☐ All currents = 0 is another valid solution for the circuit!
- Start-up circuit must drive the circuit out of the zero bias point.
 - Then it should automatically turn-off or consume little current
- \square Start-up verified by ramping-up VDD from zero in DC sweep and transient simulations.

Startup Circuit Example

- \square Startup problem means $V_X = V_{DD}$ and $V_Y = 0$.
 - M_{S1} will turn on charging the gates of $M_{N1,2}$.
 - $Q_{1,2}$ will turn on and the BGR starts.
 - V_Y will increase turning off M_{S1} and driving M_{S2} in linear region.

BGR Curvature

- ☐ PTAT and CTAT are **not perfectly linear.**
 - They both have convex upward curvature → Curvatures add!
- ☐ If expressed mathematically:

$$V_{PTAT} \approx a_1 T - a_2 T^2$$

$$V_{CTAT} \approx V_{G0} - b_1 T - b_2 T^2$$

$$V_{REF} \approx V_{G0} + (a_1 - b_1)T - (a_2 + b_2)T^2$$

- \Box We can set $a_1 = b_1$
- $oldsymbol{\square}$ But a_2 and b_2 add (convex upward)

$$V_{REF} \approx V_{G0} - (a_2 + b_2)T^2$$

Curvature can be corrected by adding a <u>convex downward</u> signal (e.g., PTAT²).

$$V_{NL} \approx c_2 T^2 \rightarrow c_2 = a_2 + b_2$$

Example of BGR Simulation Results

Complete BGR Example

23: Reference Circuits [Brokaw, IDT, 2011] 30

Outline

- ☐ Reference circuits
- ☐ Bandgap reference (BGR) circuit
 - BGR basic operation
 - BGR practical CMOS implementation
- ☐ Constant-gm circuit

Supply Independent Reference Current

- \Box To avoid V_{DD} dependence, the circuit must bias itself!
- $lue{}$ The circuit is governed by only one equation: $I_1 = I_2$
- The currents are supply-independent (if CLM is neglected)
 - But they are undefined!
 - To uniquely define the currents, we must add another constraint to the circuit

Self-Biased Circuit

Assume sq. law is valid:

$$I_{D} = \frac{\beta}{2} (V_{GS} - V_{TH})^{2}$$

$$\frac{\beta_{2}}{\beta_{1}} = \frac{W_{2}}{W_{1}} = K$$

$$\Delta V_{GS} = \sqrt{\frac{2I_{1,2}}{\beta_{1}}} - \sqrt{\frac{2I_{1,2}}{K\beta_{1}}} = I_{1,2}R$$

- $oldsymbol{\square}$ Solve quadratic equation for $\sqrt{I_{1,2}}$
 - 1st soln: $\sqrt{I_{1,2}} = 0$
 - Startup circuit is required!
 - 2nd soln: $\sqrt{I_{1,2}} = \frac{1}{R} \sqrt{\frac{2}{\beta_1}} \left(1 \frac{1}{\sqrt{K}} \right)$
 - Is this useful?

Self-Biased Circuit

$$I_{1,2} = \frac{1}{R^2} \cdot \frac{2}{\beta_1} \left(1 - \frac{1}{\sqrt{K}} \right)^2$$

 \square $I_{1,2}$ independent of supply, but depends on process and temp

$$g_{m1} = \sqrt{\beta_1 \cdot 2I_1} = \frac{2}{R} \left(1 - \frac{1}{\sqrt{K}} \right)$$

- ☐ Independent of process, supply, and temperature
 - Assuming ideal R

Constant- g_m Circuit

$$g_{m1} = \sqrt{\beta_1 \cdot 2I_1} = \frac{2}{R} \left(1 - \frac{1}{\sqrt{K}} \right)$$

- ☐ Independent of process, supply, and temperature
 - Assuming ideal R
- $oldsymbol{\square} \ g_m$ is what actually matters!
 - Determines gain, noise, and speed.
 - We want constant- g_m !
- □ Ex: $K = 4 \implies g_{m1} = \frac{1}{R}$
 - Let $|A_v| = g_{m1}R_D = \frac{R_D}{R} = constant!$
- \blacksquare It can be shown that g_m is still constant even if biased at MI or WI!

Quiz

- ☐ Note that the FB loop formed by M1-M4 is a +ve FB loop.
 - Does it oscillate?
 - Find the loop gain and find the stability condition (LG < 1)
 - Is the stability affected if *R* is off-chip?

OTA Bias Circuit Example

$$\square \quad Q_4 \rightarrow Q_7 \rightarrow Q_5 \rightarrow V_{casc-n}$$

$$(I_{Q5} = 5 \times I_{Q1})$$

- ☐ Startup: Q_8 (large res) → $Q_{10,11}$ (ON) → $Q_{5,13}$ → Q_9 → $Q_{10,11}$ (OFF)

MOSFET Temperature Effects

 \square V_{TH} of long channel MOS:

$$\partial V_{THN}/\partial T \approx -1 \ mV/K$$
 and $\partial V_{THP}/\partial T \approx -1.4 \ mV/K$

 \square V_{TH} of short channel MOS:

$$\partial V_{THN}/\partial T \approx -0.6 \ mV/K$$
 and $\partial V_{THP}/\partial T \approx -0.6 \ mV/K$

- \square Mobility: $\mu \approx \mu(T_o) \left(\frac{T_o}{T}\right)^{1.5}$
- \square V_{TH} dominate at low V_{GS} (WI): $I_D \uparrow$ with temperature
- \square μ dominate at high V_{GS} (SI): $I_D \downarrow$ with temperature

Thank you!

References

- ☐ B. Razavi, "Design Of Analog CMOS Integrated Circuit," 2nd ed., McGraw-Hill, 2017.
- T. C. Carusone, D. Johns, and K. W. Martin. "Analog Integrated Circuit Design," 2nd ed., Wiley, 2012.
- □ R. J. Baker, "CMOS circuit design," 3rd ed., Wiley, 2010.