

Q. R.S.A. ALGORITHM. * best known & widely used public key scheme. * uses large integers (eg. 1024 bits) * makes use of expression with exponentials. * plaintent is encrypted in blocks, with each block having a binary value less than n. * recor Plaintent block M, Copher Text block C. C= Memodn M = Camodn = (Me) modin = Med mod n. Public key = & e, ns. Private key = d d, m3. ed mod $\phi(n) = 1$ ed = 1 mod p(n). d= et mod p(m) * Security of RSA (1) Brute force key search. - tryfing all possible private keys. (2) Mathematical Attacks - based on difficulty of computing $\phi(n)$, by factoring modulus n. (3) Timing Atlacks - these depend on the running time of the decryption algorithm.

(4) Charen Ciphertext Attacks - this attack emploits properties

of the RSA algorithm.

Q. Diffie-Hellman Key Exchange * Method of public exchange of a secret key. * public key distribution Scheme can not be used to eachange aubit vary messages. * public key and distribution scheme can establish /compute a common key brather than sending it.

* public key dist- scheme is known only to the 2 participants.

* value of key depends on the participants. * based on exponentiation in a finite field. * Security relies on the difficulty of computing discrete K = (YB) XA mod q = (XXB mod q) XA mod q = & XXB XA mod q. = (XXA)XB mod q = (YA)XB mod q XB = d log (YB) * Man-In-the-Middle Attack: The key exchange protocol is vulnerable to such attack because it doesnot authenticate the participants.

A. Elliptic Curve Cryptography Ecc. * Offers security like RSA and Doffie-Hellman but with smaller bit sizes, which acts as an advantage * an elliptic curve is defined by an equation on of var n and y with coeff. * consider a cubic elliptic curve of form y²= x³+ ax +b. m,y,a,b are real numbers. * Zero Point Point at Trifinity If three points on an elliptic eurre lie on &a straight line, their sum is O. -> "O" serves as the additive inverse, i.e., P+0 = 0+P = 0. $P \neq 0$, $Q \neq 0$. P + (-P)' = P - P = 0, O. R.S. Algo -Step 1 — Select p, q. 2 prime nos. (private) Step 2 — n = p, q (public, calculate). Step3 - e with gcd(p(n),e)=1 (public) t 1 < e < o(n) Step 4 - dz et mod & (n) (private, calculated)

\bigcirc	Clin - 1
· ·	SHA - 1.
*	00.0 - 0 10. do. 0
*	originally designed by NIST & NSA. produces 160-bût hash values
	produces 160-64 hash values
*	designed for compatibility with increased security provided
	by the AES cipher.
0	
<u>Υ</u> ,	SHA - 512
**	Message digest size - 512 Message size < 2 ¹²⁸
~	Message Size < 2
9	Block Size - 1024
	10091// SIZ 04
*	No. of Steps -> 80.
	La up doiting 512 bit buffer
	La updating 64 bit value wit derived from the
	Current message block.
7	La ground constant based on cube root of first
	80 prime numbers.
	· ·
<u>Q.</u>	HMAC
*	specified as internet standard RFC2104. Diagram
×	uses hash function on the meseage:
T	HMAC = Hash [(k+xor opad) Hash [(k+xor ipad) M)]]
	-> k+ is the key padded out of size.
¥	opad ipad are specified padding constraints.
*	opad ipad are specified padding constraints. overhead is just 3 more has calculations than the message
*	back fine haved (SHA 512 MD5, Whistpool)
2	Security - relates to Hash funct used.
	Security relates to tash funct used. - choose hash funct based on speed ve security const.

CMAC * Overcome message size limitation (CBC-MAC) using 2 keys & padding * widely used in got. and industry + Diagram * adopted by NIST SP800-38B. * Cipher based Message Authentication Code ASYMMETRIC. SYMMETRIC * Only 1 key is used I wo diff. keys are used. * Same key used to enought and *public key for encryption and decrypt private key for decryption. * Simpler method. * Complicated cuz of 2 keys. * Process is slower. * faster * length of key - 128/256 bits. * length of keys 1024/2048 bits. * used for transferring larger * used for smaller transactions Chunks of data * the secret is shared. * private key so not shared. * higher elisks of security. * More Secure eg: RCA, DES, AES. Eg: RASI RSA, Ecc, Déffie P. Extended Euclidian Po = 0 P1 =1 $P_0 = 0$, $P_i = 1$ Paz (Po-Pigo) mod 26 P2 = (0-1) mod 26 Pr = (Pi-2 - Pi-1. 9i-2) mod n. = 1 mod 26 = (25 Eq: 15 mod 250 P3 = P1 - P2 9, = (1-25) mod 26 $= -24 \mod 26 = (2)$ 26 = 15x1 + 11 P4 = (P2 - P392) mod 26 = (25-4) mod 15 = 11×1+4 $11 = 4 \times 2 + 3$ $4 = 3 \times 1 + 1$ = (& - (21x1)) P5. - Pg-Pa93 3 = 1x3+0 -19 mod 26 15 mod 26 = 7.