ПОКА НИЧЕГО

Лектор: Бурский Владимир Петрович.

ФРКТ МФТИ

Весна 2022

Содержание

1	Основные обозначения	2
2	Линейные уравнения второго порядка	3
	2.1 Классификация уравнения в двумерном случае	3

2022 ФРКТ МФТИ 1

1 Основные обозначения

- Множество натуральных чисел не включает в себя ноль: $\mathbb{N} = \{1, 2, \ldots\}$.
- $\mathbb{Z}^+ \equiv \mathbb{Z}_+ := \{0, 1, 3, \ldots\}$ множество положительных чисел.
- Назовём мультииндексом вектор $\alpha = (\alpha_1, \alpha_2, \dots \alpha_n)$, $\alpha_i \in \mathbb{Z}^+$. Для мультииндексов, как и для прочих векторов, вводится сумма, а также абсолютное значение (это не евклидова норма!): $|\alpha| = \sum_{i=1}^n \alpha_i$.
- Компактная запись оператора дифференцирования с использованием мультииндекса:

$$\partial_u^{\alpha} = \frac{\partial^{|\alpha|} u}{\partial^{\alpha_1} x_1 \partial^{\alpha_2} x_2 \dots \partial^{\alpha_n} x_n}, \quad u = u (x_1, x_2, \dots x_n).$$

- Если не оговорено, символы $\Omega, G \in \mathbb{R}^n$ обычно обозначают области, $x \in \Omega$ переменные, u = u(x) функцию нескольких переменных (решения уравнения).
- $C^0(\Omega)$, $C^1(\Omega)$, $C^k(\Omega)$ множества функций, непрерывных, гладких, k раз гладких на области Ω соответственно. $A(\Omega)$ множество аналитичных на Ω функций, то есть представимых степенным рядом:

$$A(\Omega) := \left\{ f : \forall x \in \Omega \to f(x) = \sum_{k=0}^{\infty} f_k (x - x_0)^k, \ x_0 \in \Omega \right\}$$

ullet L — линейный дифференциальный оператор. Например,

$$Lu = \sum_{i,j=1}^{n} A_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{k=1}^{n} B_k(x) \frac{\partial u}{\partial x_k} + C(x)u$$

— общий вид линейного дифференциального оператора второго порядка.

 $2022 \Phi PKT M\Phi TH$ 2

2 Линейные уравнения второго порядка

2.1 Классификация уравнения в двумерном случае

Рассмотрим уравнения следующего вида:

$$a(x,y)\frac{\partial^{2} u}{\partial x^{2}} + 2b(x,y)\frac{\partial^{2} u}{\partial x \partial y} + c(x,y)\frac{\partial^{2} u}{\partial y^{2}} = F(x,y,u,\nabla u),$$

$$a, b, c \in C^{2}(\Omega), \ \Omega \subset \mathbb{R}^{2},$$

$$u(x,y) \in C^{2}(\Omega).$$

$$(1)$$

Попытаемся найти замену $\xi = \xi(x,y), \ \eta = \eta(x,y),$ которая привела бы уравнения (по крайней мере, старшие производные) к более простому виду. Замена должна быть обратимой, поэтому по теореме о системе обратных функций потребуем в области Ω равенства

$$J \equiv \begin{vmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{vmatrix} \neq 0.$$

Кроме того, потребуем $\xi \eta \in C^2(\Omega)$. Посмотрим, как преобразуются коэффициенты при старших производных при такой замене. Первые производные:

$$u_x = u_{\xi} \xi_x + u_{\eta} \eta_x,$$

$$u_y = u_{\xi} \xi_y + u_{\eta} \eta_y.$$

Вторые производные:

$$u_{xx} = \partial_x u_x = \partial_x \left(u_\xi \xi_x + u_\eta \eta_x \right) = u_\xi \xi_{xx} + \xi_x \frac{\partial u_\xi}{\partial x} + u_\eta \eta_{xx} + \eta_x \frac{\partial u_\eta}{\partial x}.$$

Опустим слагаемые $u_{\xi}\xi_{xx}$ и $u_{\eta}\eta_{xx}$, так как мы рассматриваем преобразования коэффициентов только при старших производных:

$$\xi_x \left(\xi_x \frac{\partial u_{\xi}}{\partial \xi} + \eta_x \frac{\partial u_{\xi}}{\partial \eta} \right) + \eta_x \left(\eta_x \frac{\partial u_{\eta}}{\partial \eta} + \xi_x \frac{\partial u_{\eta}}{\partial \xi} \right) + \dots =$$

$$= \xi_x^2 u_{\xi\xi} - \eta_x^2 u_{\eta\eta} + 2\xi_x \eta_x u_{\xi\eta} + \dots$$

Аналогично нетрудно получить остальные выражения:

$$u_{yy} = \xi_y^2 u_{\xi\xi} + \eta_y^2 u_{\eta\eta} + 2\xi_y \eta_y u_{\xi\eta} + \cdots,$$

$$u_{xy} = \xi_x \xi_y u_{\xi\xi} + (\xi_x \eta_y + \xi_y \eta_x) u_{\xi\eta} + \eta_x \eta_y u_{\eta\eta}.$$

 $2022 \Phi PKT M\Phi TM$

Таким образом, после подстановки ξ и η в (1) получаем следующее уравнение:

$$\tilde{a}(\xi,\eta)u_{\xi\xi} + 2\tilde{b}(\xi,\eta)u_{\xi\eta} + \tilde{c}(\xi,\eta)u_{\eta\eta} = \tilde{F}(\xi,\eta,u,\nabla u).$$

Преобразованные коэффициенты равны:

$$\tilde{a} = a \cdot \xi_x^2 + 2b \cdot \xi_x \xi_y + c \cdot \xi_y^2,$$

$$\tilde{b} = a \cdot \xi_x \eta_x + b \left(\xi_x \eta_y + \xi_y \eta_x \right) + c \cdot \xi_y \eta_y,$$

$$\tilde{c} = a \cdot \eta_x^2 + 2b \cdot \eta_x \eta_y + c \cdot \eta_y^2.$$

В случае, если коэффициенты a,b,c уравнения (1) постоянны, мы можем выбрать функции ξ и η так, чтобы приравнять коэффициенты \tilde{a} и \tilde{c} к нулю. То же можно сделать, рассматривая уравнение в конкретной точке $(x_0,y_0)\in\Omega$ и положив $a=a(x_0,y_0),\ b=\dots$

 $2022 \Phi PKT M\Phi TM$