Dept. of Computer Science & Engineering (CSE)

B.Sc. in CSE, Mid-Term Examination, Autumn 2023

Course Code: CSE-4875 Title: Pattern Recognition and image processing Total Marks: 30 Time: 1.5 hours

	[Answer all <i>three</i> questions]		CO	DL
1(a)	"Nowadays image processing based autonomous vehicle and quadcopter are widely	2	CO2	. C2
	used" – Explain the fields of image processing used in the statement.			
1(b)	A grayscale image has pixel intensities ranging from 0 to 255. Design a piecewise-	2	CO ₂	C2
	linear transformation function to achieve the following:			
	- Enhance contrast in the middle intensity range (50-150).			
	- Clip low-intensity values (0-49) to black (0).			
*	- Clip high-intensity values (151-255) to white (255).			
1(c)	"A digital image is a representation of a two-dimensional image as a finite set of	3	CO ₂	C2
()	digital values" - do you agree with the statement? Explain the answer with			
	mathematical formula.			
1 (d)	In some devices CCD based cameras are used where other use CMOS based	3	CO1	C2
(u)	cameras" Justify the significance of the statement and write the benefit of using both.	,	COI	02
	Or,			
	Write the similarity and difference between eyes and camera.			
	White the philippin and the property of the party of the			
2 (a)	At histogram equalization, why transform function must be behaved strictly	2	CO1	C2
. ()	monotonically increasing? Explain with proper diagram.			
2(b)	A 4 x4 bits/pixel original image is given by (given with 3 bits/pixel)	5	CO3	C3
	3 7 8 9			
	13 11 12 10.			
	12 13 12 9			
	14 12 11 12			
	i. Apply histogram equalization to the image by rounding the resulting			
	image pixels to integer.			
5	• ii. Sketch the histograms of the original image and the histogram-equalized			
	image.			
	in. "When automatic enhancement is desired, histogram specification is a			
	good approach"- Do you agree? Why?	2	COO	CO
2(c)	Analyze the effect of adding a constant value to a grayscale image on its overall	3	CO2	C2
	brightness and contrast. How image addition is used in image averaging?			
	Or,			
	If we convolve and correlation an image with the matrix given below, what would		283	
7	be the relation between the original and modified image?			

•0	•0	•0
•0	•0	•1
•0	•0	•0

- 3(a) "Median filter technique is the best way to de-noise the image" Justify the 3 CO2 C2 statement with your own word with proper example.
- Write a short note with your own word to explain how do human beings perceive 3 CO1 C2 color? Given a color image represented in terms of RGB components, how are the corresponding CMY and HIS coordinates derived?
- 3(c) A 4 x4 original image is given with 3 bits/pixel. 4 CO3 C3

2	3	2	0
1	1	5	2
2	7	1	5
2	5	3	1.

- i) Perform Laplacian operator on the image (Use padding, Use any Kernel)
- ii) Analyze the differences of both images.

Or,

A 4 x4 original image is given with 3 bits/pixel.

2	3	1	0 .
0	5	4	2
2	6	6	3
1	2	3.	1

- i) Perform Lowpass and High-pass filter on the image separately (Use padding)
- ii) Analyze the statement "Lowpass + Highpass = Original image".

Dept. of Computer Science & Engineering (CSE)
B.Sc. in CSE, Mid-Term Examination, Spring 2023

Course Code: CSE 4875 Title: Pattern Recognition and image processing

Total Marks: 30 Time: 1.5 hours

								CO	DL
1(a)	"One picture is worth more than ten thousand words" – Explain the fields of image processing used in the statement.							CO1	C2
1(b)	Find the resolution of a 20" m		orking	with 1	024×76	58	2	CO1	C2
1(c)	Explain the mathematical mode		_				3	CO1	C2
-(-)	to digital image?	, or all all	4.08	250.110	vv cuii v	ve convert an analog image		001	-
1 (d)	"On Aug. 23, 2023, the Indian 3 mission landed near the Mo on the lunar surface." - Write expedition. Or, Write the similarity and differ	on's sou te the ap	th pole	, and a	day la image	ter, the rover took a walk processing used in this		CO1	C2
2 (a)	Justify the statement, "Applyi image". Explain with proper Or, Justify the statement, "Blurring or the statement,	example					2	CO1	C2
2(b)	with proper example.	o la oive	n hv. (4	hita/m	:rra1)		5	CO2	02
2(0)	A 5x5 bits/pixel original imag	12	8	9	14	1	3	CO2	C3
	12	12	12	14	11				
	13	13	10	9	10				
	15	12	10	12	11	`			
	13	14	13	13	14				
	i. Apply histogram	equaliza	tion to	the in	nage b	y rounding the resulting			
	image pixels to int	eger. ams of th	ne origi	nal im	age and	d the histogram-equalized			
2(c)	A 4 x4 original image is given	n with 3	bits/pix	el.			3	CO2	C3

2	3	3	1
0	7	1	2
2	6	6	3
0	2	4	1

- i. Perform Median filtering of the above image. (Use padding if necessary)
- ii. "Performance of Median filtering is better than Averaging filtering" Explain

- 3(a) What are the differences between spatial domain and frequency domain 2 CO2 C3 enhancement?
- 3(b) Write a short note with your own word to explain how do human beings perceive 3 CO1 C2 color? Given a color image represented in terms of RGB components, how are the corresponding CMY and HIS coordinates derived?

5

CO₂ C₃

3(c) A 4 x4 original image is given with 3 bits/pixel.

2	3	4	0.
1	7	5	2
2	7	6	5
2	1	3	1

- i) Perform Prewitt and Sobel operator on the image (Use padding)
- ii) Analyze the differences of both images.

Or.

A 4 x4 original image is given with 3 bits/pixel.

1	3	4	0
0	7	4	2
2	6	7	4
1	2 :	3	1

- i) Perform Lowpass and High-pass filter on the image separately (Use padding)
- ii) Analyze the statement "Lowpass + Highpass = Original image".

Department of Computer Science & Engineering

Mid Term Exam, Autumn-2022

4th Year 1st Semester

CSE-4875, Pattern Recognition and Image Processing

Total marks: 30 Time: I hours 30 minutes

[The figures in the right-hand margin indicate full marks, Course Outcomes and Bloom's Levels are mentioned in additional Columns]

	Course Outcomes (COs) of the Questions	
COI	Explain basic image processing techniques for solving real problems	
CO2	Apply and demonstrate image processing techniques for solving problems in computer science	
CO3	Evaluate algorithms for higher level image processing	
CO4	Develop an application using existing image processing algorithms with modern techniques	

	Bloom's Levels of the Questions						
Letter Symbols	R	U	Ap	An	E	C	
Meaning	Remember	Understand	Apply	Analyze	Evaluate	Create	

[Answer the questions from the followings]

CO B/L

- a) "Image processing is developed for improvement of pictorial information for human interpretation" - explain.
- CO1 U 02
- Consider the two image subsets, S1 and S2 in the following figure. and assuming that $V = \{1\}$, determine whether these two subsets are:
 - CO2 Ap 02

**			2,				S2_		
0	0	0	0	0	0	0	1	1	0
1	0	U	1	0	0	1	D	0	1
1	O	0	1	0	1			D	
0	0	1	1	1	0	0	0	0	0
0	0	1	1	1	U	0	1	1	1

Figure 1

- 4-adjacent.
- 2. 8-adjacent.
- c) Briefly state the working principle of camera. Write the similarity and difference between the eye and camera.
- CO1 R 04
- d) A common measure of transmission for digital data is the baud rate, defined as symbols (bits in our case) per second. As a minimum, transmission is accomplished in packets consisting of a start bit, a byte (8 bits) of information, and a stop bit. Using these facts, answer the following:

CO2 Ap 02

How many seconds would it take to transmit a sequence of 500 images of size 1024 × 1024 pixels with 256 intensity levels using a 3M-baud (106 bits/sec) baud modem? (This is a representative medium speed for a DSL (Digital Subscriber Line) residential line.

Or,

If a color image has 2160 x 3240 pixels with resolution 200 dpi. What will be the space taken by the image? What will be the size of the image?

a) Write the mathematical model of analog and digital image.

CO1 R 03

b) Discuss the effects of reducing the spatial resolution of a digital image and effects of varying the number of intensity levels in a digital image. Give

CO1 U 03

Page 1 of 2

necessary example.

e) How gray level slicing enhance the image? Why monotonically increasing COL R 02 function is used in special operation?

Or.

is Monochrome image more suitable for image segmentation then color image? Why?

"In digital image processing high color image is presented by 12 bit where 24 bit CO2 U image is presented by true color"- justify the statement.

Or

In industrial applications for detecting missing components in product assembly which image processing can be used?

a) Find all the bit planes of the following 4-bit image

CO3 Ap 04

2 2 1 1

3 6 9 10

Or

Suppose that a 3-bit image (L = 8) of size 64×64 pixels (MN = 4096) has the intensity distribution in the figure 3, where the intensity levels are integers in the range [0,L-1] = [0, 7]. Now sketch the original histogram, transformation function and equalized histogram.

誤	r,	n,
-	$r_0 = 0$	790
	r. = 1	1023
	$r_2 = 2$	850
	$r_3 = 3$	656
1	$r_4 = 4$	329
	r ₅ = 5	245
	$r_{\rm e} = 6$	122
	r ₇ = 7	81

Figure 3: intensity distribution of a 3-bit image

b) "The performance of Median filtering is better than low pass filtering for CO3 Ap 04 removing noise" - Why? Calculate median filtering of the following image. (Use padding, 3-bit image (1. - 8))

0 1 0 0

c) Explain spatial filtering in image enhancement. Explain different types of COI R 0. thresholding operation in short.

END

Dept. of Computer Science & Engineering (CSE)

B.Sc. in CSE, Semester Mid-Term Examination, Spring 2022 Course Code: CSE 4875 Title: Pattern Recognition and image processing Total Marks: 30 Time: 1.5 hours

									CO	DL
1(a)	"One picture is worth mo			ousand	words	" – Ex	plain the fields of image	2.	CO1	C2
171	processing used in the sta	atemen	t. on and	correla	tion is	used in	n the image processing?	2	CO1	C2
1(b)	Why convolution/mask operation and correlation is used in the image processing? Explain the answer with proper example.							CO1	C2	
1(c)	The continuum from image processing to computer vision can be broken up into low-, mid- and high-level processes. Explain why we need to process images in low, mid and high level processing with proper example. "A digital image is a representation of a two-dimensional image as a finite set of digital values" – do you agree with the statement? Explain the answer with mathematical formula.									
(L, .1)							3	.CO1	C2	
2 (a)	Justify the statement, "A	nivlaaA	ig Low-p	ass filt	er on a	an imag	ge result in a blurrier	2	CO1	C2
2 (0)	image"							5	CO2	C3
2(b)	A 5x5 bits/pixel original image is given by (4 bits/pixel)									
		15	12	8	9	14				
		12	12	12	14	11				
		13	13	10	9	10				
		15	12	10	12	11				
		13	14	13	13	14				

i. Apply histogram equalization to the image by rounding the resulting image pixels to integer.

ii. Sketch the histograms of the original image and the histogram-equalized image.

iii. Why histogram equalization not produce a perfectly flat histogram?

Or,

Find the optimal threshold of the following image using Otsu method.

0	1	4	0
0	2	1	2
2	1	4	4
0	2	3	1

2(c) A 4 x4 original image is given with 3 bits/pixel.

2	3	3	1
0	7	1	2
2	6	6	3
0	2	4	1

PAGE 1 OF 2

CO₂ C₃

- i. Perform Median filtering of the above image. (Use padding if necessary)
- ii. "Performance of Median filtering is better than Averaging filtering" Explain
- When automatic enhancement is desired, equalization is a good approach. Explain 2 CO2 C3 with example in which approach Histogram specification performs better. Justify your answer with the image provided in 2(b).
- Write a short note with your own word to explain how do human beings perceive 3 CO1 C2 color? Given a color image represented in terms of RGB components, how are . the corresponding CMY and HIS coordinates derived?

CO2 C3

3(c) A 4 x4 original image is given with 3 bits/pixel.

2	3	4	0
1	7	5	2
2	7	6	5
2	1	3	1

- i) Perform Prewitt and Sobel operator on the image (Use padding)
- ii) Analyze the differences of both images.

Or,

A 4 x4 original image is given with 3 bits/pixel.

1	3	4	0
0	7	4	2
2	6	7	4
1	2	3	1

- i) Perform Lowpass and High-pass filter on the image separately (Use padding)
- ii) Analyze the statement "Lowpass + Highpass = Original image".