Amendments to the Claims

Please amend the claims as indicated below.

1. (Currently Amended) A compound of the general formula:

wherein:

- a) Rb and Ro are independently -H;
- b) R_a is -N₃, -C=N, -C=C-R, -CH=CH-R, -R-CH=CH₂, -C=CH, -O-R, -R-R₁, -OC(O)CH₃, -C(O)H, -NH₂, -NHMe, or -O-R-R₁ where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃;
 - c) Z' is >COH;
 - d) >C-R_g is >C(H)-OH;
- e) R_{h1} and R_{h2} are independently H, or a straight or branched chain alkyl, alkenyl or alkynyl with up to 6 carbons that is unsubstituted, or substituted with one or more groups selected from a hetero functionality (O-Y, N-Y2 or S-Y) where Y is independently selected from H, Me or an alkyl chain up to 6 carbons; a halo functionality (F, Cl, Br or I); an aromatic group optionally substituted with hetero, halo or alkyl; or R_{h1} and R_{h2} are independently an aromatic group optionally substituted with hetero, halo or alkyl, provided that both R_{h1} and R_{h2} are not H;

f) Z" is >CH2;

and wherein all monosubstituted substituents have either an α or β configuration.

2. (Previously presented) The compound of Claim 1, wherein:

Ra is OCH3; and

>C-R_g is >C(H)- β -OH.

3. (Original) The compound of Claim 2, wherein:

 R_{h1} and R_{h2} are independently H and Et.

4. (Original) The compound of Claim 2, wherein:

R_{h1} and R_{h2} are independently H and n-Pr.

5. (Original) The compound of Claim 2, wherein:

 R_{h1} and R_{h2} are independently H and i-Bu.

6. (Original) The compound of Claim 2, wherein:

 R_{h1} and R_{h2} are independently H and CH_2OH .

7. (Original) The compound of Claim 2, wherein:

 R_{h1} and R_{h2} are independently H and n-Bu.

8. (Original) The compound of Claim 2, wherein:

 R_{h1} and R_{h2} are independently H and Me.

9. (Previously presented) The compound of Claim 1, wherein:

 R_{h1} and R_{h2} are independently H and $(CH_2)_nN(Me)_2$, wherein n is from 1 to 6.

10. (Canceled).

11. (Previously presented) A compound of the general formula:

wherein:

 R_a is -O-R where R is a straight or branched alkyl with up to 10 carbons or aralkyl, with the proviso that R_a is not OMe;

Rb and Ro are H,

Z' is >C-OH,

>C-R_g is >C(H)OH,

 R_{h1} and R_{h2} are independently H, or a straight or branched chain alkyl, alkenyl or alkynyl with up to 6 carbons that is unsubstituted, or substituted with one or more groups selected from a hetero functionality (O-Y, N-Y2 or S-Y) where Y is independently selected from H, Me or an alkyl chain up to 6 carbons; a halo functionality (F, Cl, Br or I); an aromatic group optionally substituted with hetero, halo or alkyl; or R_{h1} and R_{h2} are independently an aromatic group optionally substituted with hetero, halo or alkyl, provided that both R_{h1} and R_{h2} are not H; and

Z" is >CH₂,

and wherein all monosubstituted substituents have either an α or β configuration.

- 12. (Previously presented) The compound of Claim 1, wherein: R_a is OC(O)CH₃.
- 13. (Previously presented) The compound of Claim 1, wherein: R_a is C(O)H.
- 14. (Previously presented) The compound of Claim 1, wherein: R_a is CH_2OH .
- 15. (Previously presented) The compound of Claim 1, wherein: R_a is NH_2 .
- 16. (Previously presented) The compound of Claim 1, wherein:Ra is C≡CCH₃.
- 17. (Previously presented) The compound of Claim 1, wherein: R_a is N_3 .
- 18. (Previously presented) The compound of Claim 1, wherein: R_a is OEt.
- 19. (Previously presented) The compound of Claim 1, wherein:

 Ra is CH=CHCH₃.
- 20. (Previously presented) The compound of Claim 1, wherein: $R_a \ \text{is NMe}_2.$
- 21. (Previously presented) The compound of Claim 1, wherein: R_a is O-n-Pr.

- 22. (Previously presented) The compound of Claim 1, wherein:

 Ra is OCH₂CF₃.
- 23. (Withdrawn) A compound of the general formula:

$$R_a$$
 R_b
 R_{h1}
 R_{h2}
 R_{h2}

wherein:

Rb is H,

 R_0 is -H, -Cl, -Br, -I, -F, -CN, lower alkyl, -OH, -CH₂-OH, -NH₂; or N(R₆)(R₇), wherein R₆ and R₇ are independently hydrogen or an alkyl or branched alkyl with up to 6 carbons;

 R_a is -N₃, -C=N, -C=C-R, -CH=CH-R, -R-CH=CH₂, -C=CH, -O-R, -R-R₁, -OC(O)CH₃, -C(O)H, -NH₂, -NHMe, or -O-R-R₁ where R is a straight or branched alkyl with up to 10 carbons or aralkyl, and R₁ is -OH, -NH₂, -Cl, -Br, -I, -F or CF₃;

$$Z'$$
 is $>C$ -OH,

>C-R_g is >C(H)OH or >CH₂,

 R_{h1} and R_{h2} are H, and

Response to Office Action Serial No. 09/779,331

Z" is $>CH_2$, >C=O, >C(H)-OH, $>C=N-OR_5$, $>C(H)-C\equiv N$, or

>C(H)-NR₅R₅, wherein each R₅ is independently hydrogen, an alkyl or branched alkyl with up to 10 carbons or aralkyl;

and wherein all monosubstituted substituents have either an α or β configuration.

24. (Withdrawn) The compound of Claim 23, wherein:

Ro is Br,

Ra is Br,

>C-Rg is >C(H)OH, and

Z" is >CH₂.

25. (Withdrawn) The compound of Claim 23, wherein:

Ro is H,

Ra is OEt,

>C- R_g is >C(H)OH, and

Z" is >C(H)OH.

26. (Withdrawn) The compound of Claim 23, wherein:

Ro is H,

Ra is OEt,

>C-R_g is >C(H)OH, and

Z" is >C=NOMe.

27. (Withdrawn) The compound of Claim 23, wherein:

Ro is H,

Ra is OEt,

>C-Rg is >C(H)OH, and

Z" is >C=NOH.

28. (Withdrawn) The compound of Claim 23, wherein:

Ro is H,

Ra is NH2,

>C-Rg is >CH2, and

Z" is >CH₂.

29. (Withdrawn) The compound of Claim 23, wherein:

Ro is H,

Ra is NMe2,

>C-Rg is >CH2, and

Z" is >CH₂.

30. (Withdrawn) The compound of Claim 23, wherein:

Ro is H,

Ra is NHMe,

>C-Rg is >CH2, and

Z" is >CH₂.