KORG®

PROGRAMMABLE DIGITAL WAVEFORM SYNTHESIZER DW-8000

SERVICE MANUAL

	CONTENTS	
1.	SPECIFICATIONS	
2.	MIDI IMPLEMENTATION	
3.	STRUCTURAL DIAGRAM	1
4.	BLOCK DIAGRAM	1
	CIRCUIT DIAGRAM	
6.	P.C. BOARD	2
7.	CIRCUIT DESCRIPTIONS	3
8.	ADJUSTMENT PROCEDURES	3
9.	PARTS LIST	4

KORG INC. TOKYO/JAPAN

1. SPECIFICATIONS

•	Keyboard	61 keys (C \sim C), Initial Touch/After Touch	Volume	(0 ∼ max.)
			Tune	±50 cents
	Voice OSC1	8 voice Octave (16', 8', 4'), Waveform (1 ~	 Joystick 	X axis (OSC bend, VCF bend), + Y axis (OSC modulation), -Y axis
	3 4 36	16), Level adjustment		(VCF modulation)
•	OSC2	Octave (16', 8', 4'), Waveform (1 ~ 16), Interval (Unison, Minor 3rd, Major 3rd, Perfect 4th, Perfect 5th), Detune (25 cents MAX), Level adjustment	 Arpeggiator 	ON/OFF, Assign (UP/DOWN Mode or ASSIGNABLE mode), Octave (1, 2, full), Latch (ON/OFF), Speed control slider (Arpeggio tempo: = approx. 20 ~ 250)
•	Auto bend	Select (OFF, OSC1, OSC2, Both), Mode (UP/DOWN), Time, Intensity	 Programmer 	Value (edit slider, UP/DOWN switches), PROGRAM/PARAMETER switches, Number select buttons (1 ~
•	Noise	Level adjustment (White noise)		8), WRITE switch, BANK HOLD switch
	VCF	Cutoff frequency, Resonance,		
		Keyboard track $(0, 1/4, 1/2, 1)$, EG polarity $(\ \ \ \ \)$, EG intensity	 Display 	Program number, Parameter number, Parameter value
•	VCF EG	Attack time, Decay time, Breakpoint level, Slope time, Sustain level, Release	Tape interface	Save, Load, Verify, Cancel
•	VCA EG	time, Velocity sens Attack time, Decay time, Breakpoint level, Slope time, Sustain level, Release	 Input jacks 	FROM TAPE (HIGH/LOW), DAMPER (王, GND), PORTAMENTO (王, GND), Program UP (王, GND)
		time, Velocity sens	 Output jacks 	Output (R, L/MONO, HIGH/LOW), PHONES, TO TAPE
•	MG	Waveform $(\land, \land, \land, \land)$,		and to adoption when simple one
		Frequency, Delay time, OSC intensity, VCF intensity	 Tape switch 	ENABLE/DISABLE
•	Bend	Max. OSC bend (±1 octave), VCF	 Write switch 	ENABLE/DISABLE
		bend ON/OFF	 MIDI jacks 	IN, OUT, THRU
•	Portamento	Portamento time	Power consumption	31W
	Digital delay	Time (approx. 4 ~ 512ms), Factor	oonsamp tron	
		(x0.5 \sim 1.0), Feedback level, Modulation frequency (max. 10Hz),	Power supply	Local voltage
		Modulation intensity, Effect level	 Weight 	10.9kg
•	After touch	OSC MG, VCF, VCA	 Dimensions 	998(W) x 338(D) x 101(H)mm
•	Key assign mode	POLY 1, POLY 2, UNISON 1, UNISON 2	 Accessories 	AC power cord, Connection cord, Data cassette, Program card
•	MIDI	Send/receive channel (ch 1 \simeq 16), ENABLE (NOTE DATA/ALL), OMNI	1	

(ON/OFF), Arpeggio clock

2. MIDI IMPLEMENTATION

1. TRANSMITTED DATA

1. Channel messages

			ST	AT	us							SEC	OND							TH	IRO					DESCRIPTION
1	0	0	0	- 11	n	n	n	n	0	k	k	k	k	k	k	k	0	1	0	0		0	0	0	0	NOTE OFF kkkkkkk = 36 – 96
1	0	0	1		n	n	n	n	0			k	k	k	k	k	0	V	V	V	,	V	V	٧	V	NOTE ON kkkkkkk = 36 - 96 vvvvvvv = 15 - 127 (40 STEPS)
1	0	1	1		n	n	n	n	0	0	0	0	0	0	0	1	0	v	v	٧	1	v	v	٧	V	OSC MODULATION vvvvvvv = 0 - 127 (31 STEPS)
1	0	1	1		n	n	n	n	0	0	0	0	0	0	1	0	0	V	٧	٧	ell)	V	v	٧	v	VCF MODULATION vvvvvvv = 0 - 127 (31 STEPS)
1	0	1	1		n	n	n	n	0	1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	DAMPER PEDAL OFF
1	0	1	1		n	n	n	n	0	1	0	0	0	0	0	0	0	1	1	1		1	1	1	1	DAMPER PEDAL ON
1	0	1	1		n	n	n	n	0	1	0	0	0	0	0	1	0	0	0	0	- 1	0	0	0	0	PORTAMENTO OFF
1	0	1	1		n	n	n	n	0	1	0	0	0	0	0	1	0	1	1	1		1	1	1	1	PORTAMENTO ON
1	1	0	0		n	n	n	n	0	р	р	р	р	р	р	р				1					-	PROGRAM CHANGE (NOTE 1 ppppppp = 0 - 63
1	1	0	1		n	n	n	n	0	٧	V	٧	V	V	V	V										CHANNEL PRESSURE (AFTER-TOUCH)
1	1	1	0		n	n	n	n	0	0	0	0	0	0	0	0	0	b	b	ь	_ 1	b	b	b	b	vvvvvvv = 0 - 127 (63 STEPS) PITCH BENDER CHANGE bbbbbbb = 0 - 127 (bbbbbbb = 64 : CENTER)

 $[\]star$ nnnn = 0 \sim 15: channel number specified by parameter 84.

NOTE: 1. PROGRAM NUMBER (Oppppppp) correspond to DISPLAY NUMBER on the PANEL which will be the following:

2. System real time messages

			STA	TUS				DESCRIPTI	ON
1	1	1	1	1	0	0	0	TIMING CLOCK	(NOTE 2)
1	1	1	1	1	0	1	0	START	(NOTE 2)
1	1	1	1	1	1	0	0	STOP	(NOTE 2)
1	1	1	1	1	1	1	0	ACTIVE SENSING	G (NOTE 3)

NOTES: 2. Can be sent when "internal clock" has been specified by parameter 87 (Arpeggio clock).

3. Sent at intervals of 300ms or less.

3. System exclusive messages

(a) DEVICE ID

			BY.	TE	A.F			DESC	RIPTION
1	1	1	1	0	0	0	0	EXCLUSIV	E STATUS
0	1	0	0	0	0	1	0	KORG	ID 42H
0	0	1	1	n	n	n	n	FORMAT	ID 3*H (* = ch)
0	0	0	0	0	0	1	1	DW-8000	ID 03H
1	1	1	1	0	1	1	1	EOX	

★ nnnn = 0 ~ 15: channel number (channel to transmit exclusive messages) specified by parameter 84.

NOTE: 4. If receive DEVICE ID REQUEST, DEVICE ID message will be sent.

(b) WRITE COMPLETED

			BY	TE				DESCRIPTION
1	1	1	1	o	0	0	0	EXCLUSIVE STATUS
0	1	0	0	0	0	1	0	KORG ID 42H
0	0	1	1	n	n	n	n	FORMAT ID 3*H (* = ch)
0	0	0	0	0	0	1	1	DW-8000 ID 03H
0	0	1	0	0	0	0	1	WRITE COMPLETED 21H
1	1	1	1	0	1	1	1	EOX

★ nnnn = 0 ~ 15: channel number (channel to transmit exclusive messages) specified by parameter 84.

NOTE: 5. If WRITE REQUEST is received and program write is completed, a WRITE COMPLETED message will be sent.

(c) WRITE ERROR

	,		BY	TE			90	DESCRIPTION
1	1	1	1	o	0	0	0	EXCLUSIVE STATUS
0	1	0	0	0	0	1	0	KORG ID 42H
0	0	1	1	n	n	n	n	FORMAT ID 3*H (* = ch
0	0	1	0	0	0	1	1	DW-8000 ID 03H
0	0	1	0	0	0	1	0	WRITE ERROR 22H
1	1	1	1	0	1	1	1	EOX -

★ nnnn = 0 ~ 15: channel number (channel to transmit exclusive messages) specified by parameter 84.

NOTE: 6. If WRITE REQUEST is received and program write is not completed (if WRITE DISABLE is chosen on the rear panel), a WRITE ERROR message will be sent.

(d) DATA SAVE (DATA DUMP)

			B	YT	E			=	DESCRIPTION
1	1	1	1		0	0	0	0	EXCLUSIVE STATUS
0	1	0	0		0	0	1	0	KORG ID 42H
0	0	1	1		n	n	n	n	FORMAT ID 3+H (+ = ch
0	0	0	0		0	0	1	1	DW-8000 ID 03H
0	1	0	0		0	0	0	0	DATA DUMP 40H
0	٧	V	v		V	٧	V	V	DATA 51 BYTES
									(See DW-8000 BIT MAP)
0	٧	٧	V		v	V	V	v	
1	1	1	1		0	1	1	1	EOX

★ nnnn = 0 ~ 15: channel number (channel to transmit exclusive messages) specified by parameter 84.

NOTE: 7. If DATA SAVE REQUEST is received, DATA SAVE (DATA DUMP) will be sent.

2. RECOGNIZED RECEIVE DATA

1. Channel messages

			5	STA	rus								SECO	ND							THII	RD			16	DESCRIPTION
	0							'n				k			k			Oles	×				×		×	NOTE OFF (NOTE 1) velocity will be ignored. NOTE ON (NOTE 1)
1	0	8	0	1	n	1	n	n	n	0	k	k	k	K	k	K	K	U	٧	V	V	V	V	V	V	vvvvvvv = 1 - 127 (15 STEPS)
1	0		0	1	n	,	n	n	n	0	k	k	k	k	k	k	k	0	0	0	0	0	0	0	0	NOTE OFF (NOTE 1
1	0)	1	1	n	-	n	n	n	0	0	0	0	0	0	0	1	0	v	v	v	V	v	×	×	OSC MODULATION
																										(5 BITS RESOLUTION)
1	0)	1	1	n	į	n	n	n	0	0	0	0	0	0	1	0	0	٧	٧	٧	V	٧	×	×	VCF MODULATION
																										(5 BITS RESOLUTION)
1	0)	1	1	n	1	n	n	n	0	0	0	0	0	1	1	1	0	٧	٧	V	٧	٧	٧	V	VOLUME
									-4					72	12.		122	9	12	2	2	-		-		(7 BITS RESOLUTION)
1	0							n			- 3		0		0			1006	0				0			DAMPER PEDAL OFF
1)		1				n	1963	150	1	0	0	30	0		0			1			1			DAMPER PEDAL ON
	C							n	16.41	399		-	0		0			0		0					0	PORTAMENTO OFF
1	C)	1	1	n		n	n	n	0	1	0	0	0	0	0	1	0	1	1	1	1	1	1	1	PORTAMENTO ON
1	C)	1	1	n		n	n	n	0	1	1	1	1	0	1	1	0	0		0	100	1000		0	ALL NOTES OFF
1	C)	1	1	n		n	n	n	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	OMNI MODE OFF
																		0								(ALL NOTES OFF)
1	C)	1	1	n		n	n	n	0	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	OMNI MODE ON
										200						.57									42	(ALL NOTES OFF)
	C							n	1000	1.00		1			1				X			X			×	(ALL NOTES OFF)
1	C	_	1	1	n	-	n	n	n	0	1	1	1	9	1	1	1	0	0	0	U	0	U	U	0	(ALL NOTES OFF)
	1				n		n	n	n	13.65		p		р	p	p	p				-				-	PROGRAM CHANGE (NOTE 2
1	1		0	1	n		n	n	n	0	٧	٧	V	V	٧	٧	×				-	- 1				AFTER TOUCH
1	1	į.	1	0	n		n	n	n	0	x	x	×	×	×	x	×	0	b	b	b	b	b	b	b	(6 BITS RESOLUTION) PITCH BENDER CHANGE LSB will be ignored. MSB will be recognized. (bbbbbbb = 64 : CENTER)

★ nnnn = 0 ~ 15:

Channel number specified by parameter 84. When the mode is OMNI ON, all the data will be received. When the mode is OMNI OFF, only data of the channel designated by the parameter will be received. As to MODE MESSAGE, however, designated channel data only will be received even if the mode is OMNI ON.

- NOTES: 1. NOTE NUMBER (0kkkkkk) = 24 ~ 108. If data outside this range is received, the data will be transposed to the same note on the nearest octave.
 - 2. PROGRAM NUMBER (Oppppppp) = $0 \sim 63$. If the data is larger than 63, it will be recognized as a number that has 64 subtracted from it.

2. System real time messages

			STA	TUS				DESCRIPTI	ON
1	1	1	1	1	0	0	0	TIMING CLOCK	(NOTE 3)
1	1	1	1	1	0	1	0	START	(NOTE 3)
1	1	1	1	1	1	0	0	STOP	(NOTE 3)
1	1	1	1	1	1	1	0	ACTIVE SENSING	G (NOTE 4)

- NOTES: 3. Can be received if external clock has been selected by parameter 87 (Arpeggio clock).
 - 4. Should be received at intervals of 300ms or less.

3. System exclusive messages

(a) DEVICE ID REQUEST

			BY.	TE				DESCRIPTION
1	1	1	1	0	0	0	0	EXCLUSIVE STATUS
0	1	0	0	0	0	1	0	KORG ID 42H
0	1	0	0	n	n	n	n	FORMAT ID 4*H (* = ch) (NOTE 5)
1	1	1	1	0	1	1	1	EOX

★ nnnn = 0 ~ 15: channel number (channel to receive exclusive messages) specified by parameter 84.

(b) WRITE REQUEST

			BY	TE				DESCRIPTION
1	1	1	1	0	0	0	0	EXCLUSIVE STATUS
0	1	0	0	0	0	1	0	KORG ID 42H
0	0	1	1	n	n	n	n	FORMAT ID 3*H (* = ch)
								(NOTE !
0	0	0	0	0	0	1	1	DW-8000 ID 03H
0	0	0	1	0	0	0	1	WRITE REQUEST 11H
0	p	p	р	P	p	p	р	PROGRAM NUMBER
1	1	1	1	0	1	1	1	(p p p p p p p = 0 - 63 EOX

★ nnnn = 0 ~ 15: channel number (channel to receive exclusive messages) specified by parameter 84.

(c) DATA SAVE REQUEST

			BY.	TE				DESCRIPTION			
1	1	1	1	0	0	0	0	EXCLUSIVE STATUS			
0	1	0	0	0	0	1	0	KORG ID 42H			
0	0	1	1	n	n	n	n	FORMAT ID 3*H (* = ch)			
								(NOTE 5)			
0	0	0	0	0	0	1	1	DW-8000 ID 03H			
0	0	0	1	0	0	0	0	DATA SAVE REQUEST 10H			
1	1	1	1	0	1	1	1	EOX			

★ nnnn = 0 ~ 15: channel number (channel to receive exclusive messages) specified by parameter 84.

(d) DATA LOAD (DATA DUMP)

			B	YTI	E				DESCRIPTION				
1	1	1	1		0	0	0	0	EXCLUSIVE STATUS				
0	1	0	0		0	0	1	0	KORG ID 42H				
0	0	1	1		n	n	n	n	FORMAT ID 3*H (* = ch)				
									(NOTE 5				
0	0	0	0		0	0	1	1	DW-8000 ID 03H				
0	1	0	0		0	0	0	0	DATA DUMP 40H				
0	v	V	V		٧	٧	V	V	DATA 51 BYTES				
				:					(See DW-8000 BIT MAP)				
0	V	V	V		٧	V	V	V	-				
1	1	1	1		0	1	1	1	EOX				

★ nnnn = 0 ~ 15: channel number (channel to receive exclusive messages) specified by parameter 84.

(e) PARAMETER CHANGE

			BY	TE				DESCRIPTION
1	1	1	1	0	0	0	0	EXCLUSIVE STATUS
0	1	0	0	0	0	1	0	KORG ID 42H
0	0	1	1	n	n	n	n	FORMAT ID 3*H (* = ch) (NOTE 5)
0	0	0	0	0	0	1	1	DW-8000 ID 03H
0	1	0	0	0	0	0	1	PARAMETER CHANGE 41H
0	v	٧	v	V	V	٧	V	PARAMETER OFFSET (See DW-8000 BIT MAP)
0	V	V	V	V	٧	٧	٧	PARAMETER VALUE (See DW-8000 BIT MAP)
1	1	1	1	0	1	1	1	EOX

★ nnnn = 0 ~ 15: channel number (channel receive exclusive messages) specified by parameter 84.

NOTE: 5. Messages with channel numbers different from those specified by parameter 84 are ignored.

(This has no relation to OMNI mode setting.)

3. SYSTEM EXCLUSIVE MESSAGE REFERENCE

1. DW-8000 Bit map

PARAMETER				PARAMET	ER VALUE				
OFFSET	b7	b6	b5	b4	b3	b2	b1	ь0	
0	0	0	0	0	0	0	OSC 1	OCTAVE	
1	0	0	0	0		OSC 1 WA	VEFORM		
2	0	0	0			OSC 1 LEVEL			
3	0	0	0	0	0	0	AUT SELI	O BEND ECT	
4	0	0	0	0 0 0 0				A. BENI MODE	
5	0	0	0			A. BEND TIME		-0	
6	0	0	0		A. E	BEND INTENSI	ITY	407	
7	0	0	0	0	0	0	OSC 2	OCTAVE	
8	0	0	0	0	The Man	OS	C 2 WAVE F	ORM	
9	0	0	0	1 . 1 . 2		OSC 2 LEVEL			
10	0	0	0	0	0	Accordance 1	INTERVAL		
11	0	0	0	0	0		DETUNE		
12	0	0	0			NOISE LEVEL	11 15 17 18		
13	0	0	0	0	0	0	ASSIC	SN MODE	
14	0	0		PARAMETER NO, MEMORY					
15	0	0	11	CUTOFF					
16	0	0	0						
17	0	0	0					TRACK	
18	0	0	0	0	0	0	0	POLARIT	
- 19	0	0	0		E	G. INTENSITY			
20	0	0	0			VCF ATTACK			
21	0	0	0			VCF DECAY			
22	0	0	0	100	١	/CF BREAK. P	1	-	
23	0	0	0			VCF SLOPE			
24	0	0	0		1	CF SUSTAIN			
25	0	0	0		ESUNCEN	CF RELEASE			
26	0	0	_ 0	0	0	VCF	VELOCITY	SENS	
27	0	0	0			VCA ATTACK			
28	0	0	0		20.00	VCA DECAY		units up at the	
29	0	0	0		V	CA BREAK, P			
30	0	0	0	VCA SLOPE					
31	0	0	0	VCA SUSTAIN					
32	0	0	0	VCA RELEASE					
. 33	0	0	0	0	0	VCA	VELOCITY	SENS	
34	0	0	0	0	0	0	MG WA	VEFORM	
35	0	0	0		М	G FREQUENC	Y	-4	
36	0	0	0		7 363	MG DELAY			
37	0	0	0			MG OSC		***	

PARAMETER				PARAMET	ER VALUE			Parling 11
OFFSET	ь7	b6	b5	b4	b3	b2	b1	ь0
38	0	0	0			MG VCF		
38	0	0	0	0 BEND OSC				
40	0	0	0	0	0	0	0	BEND VCF
41	0	0	0	0	0		DELAY TIN	/E
42	0	0	0	0		DELAY	FACTOR	
43	0	0	0	0		DELAY F	EEDBACK	
44	0	0	0		DE	LAY FREQUE	NCY	
45	0	0	0		DI	LAY INTENS	ITY	
46	0	0	0	0		DELAY EF	ECT LEVEL	
47	0	0	0			PORTAMENT	0	ann -
48	0	0	0	0	0	0	AFTEF	R T. OSC MG
49	0	0	0	0	0	0	AFT	ER T. VCF
50	0	0	0	0	0	0	AFTE	ER T. VCA

2. DW-8000 Bit map and corresponding parameter values

PARAMETER NAME	PARAMETER OFFSET	віт	CORRESPONDING PANEL VALUE	PARAMETER NUMBER			
OSC 1 OCTAVE	0	b1 - b0	00 = 16 01 = 8 10 = 4 11 = INHIBIT	11			
OSC 1 WF	1	b3 - b0	0000 - 1111 = 1 - 16	12			
OSC 1 LEVEL	2	b4 - b0	00000 - 11111 = 0 - 31	13			
A. B. SELECT	3	b1 - b0	00 = OFF 01 = OSC1 10 = OSC2 11 = BOTH	14			
A. B. MODE	4	ьо	0 = UP 1 = DOWN	15			
A. B. TIME	5	b4 - b0	00000 - 11111 = 0 - 31	16			
A. B. INT.	6	b4 - b0	00000 - 11111 = 0 - 31	17			
OSC 2 OCTAVE	7	b1 - b0	00 = 16 01 = 8 10 = 4 11 = INHIBIT	21			
OSC 2 WF	8 -	b3 - b0	0000 - 1111 = 1 - 16	22			
OSC 2 LEVEL	9	b4 - b0	00000 - 111111 = 0 - 31	23			
OSC2 INTERVAL	10	b2 - b0	000 = 1 001 = -3 010 = 3 011 = 4 100 = 5 101 - 111 = INHIBIT	24			
OSC 2 DETUNE	11	b2 - b0	000 - 110 = 0 - 6 111 = INHIBIT	25			
NOISE LEVEL	12	b4 - b0	00000 - 11111 = 0 - 31	26			
CUTOFF	15	b5 - b0	000000 - 111111 = 0 - 63	31			
RESONANCE	16	b4 - b0	00000 - 11111 = 0 - 31	32			
KBD TRACK	17	b1 - b0	00 = (0) 01 = 1(1/4) 10 = 2(1/2) 11 = 3(1)	33			
POLARITY	18	ь0	0 = 1(/) 1 = 2(/)	34			
VCF EG INT.	19	b4 - b0	00000 - 11111 = 0 - 31	35			
VCF ATTACK	20	b4 - b0	00000 - 11111 = 0 - 31	41			
VCF DECAY	21	b4 - b0	00000 - 11111 = 0 - 31	42			
VCF BREAK P.	22	b4 - b0	00000 - 11111 = 0 - 31				

PARAMETER NAME	PARAMETER OFFSET	віт	CORRESPONDING PANEL VALUE	PARAMETER NUMBER
VCF SLOPE	23	b4 - b0	00000 - 11111 = 0 - 31	44
VCF SUSTAIN	24	b4 - b0	00000 - 111111 = 0 - 31	45
VCF RELEASE	SE 25 b4 - b0		00000 - 111111 = 0 - 31	46
VCF V. SENS	26	b2 - b0	000 - 111 = 0 - 7	47
VCA ATTACK	27	b4 - b0	00000 - 111111 = 0 - 31	51
VCA DECAY	28	b4 - b0	00000 - 111111 = 0 - 31	52
VCA BREAK P.	29	b4 - b0	00000 - 11111 = 0 - 31	53
VCA SLOPE	30	b4 - b0	00000 - 111111 = 0 - 31	54
VCA SUSTAIN	31	b4 - b0	00000 - 11111 = 0 - 31	55
VCA RELEASE	32	b4 - b0	00000 - 11111 = 0 - 31	. 56
VCA V. SENS	33	b2 - b0	000 - 111 = 0 - 7	57
MG WAVE FORM	34	b1 - b0	0=1(\(\) 1=2(\(\) 2=3(\(\))3=4(\(\) \)	61
MG FREQUENCY	35	b4 - b0	00000 - 111111 = 0 - 31	62
MG DELAY	36	64 - 60	00000 - 11111 = 0 - 31	63
MG OSC	37	b4 - b0	00000 - 11111 = 0 - 31	64
MG VCF	38	b4 - b0	00000 - 11111 = 0 - 31	65
BEND OSC	39	b3 - b0	0000 - 1100 = 0 - 12 1101 - 1111 = INHIBIT	66
BEND VCF	40	b0	0 = 0(OFF) 1 = 1(ON)	67
DELAY TIME	41	b2 - b0	000 - 111 = 0 - 7	71
DELAY FACTOR	42	b3 - b0	0000 - 1111 = 0 - 15	72
D. FEEDBACK	43	b3 - b0	0000 - 1111 = 0 - 15	73
D. FREQUENCY	44	b4 - b0	00000 - 111111 = 0 - 31	74
D. INTENSITY	45	b4 — b0	00000 - 11111 = 0 - 31	75
D. EFF. LEVEL	46	b3 - b0	0000 - 1111 = 0 - 15	76
PORTAMENTO	47	b4 - b0	00000 - 11111 = 0 - 31	77
A.T. OSC MG	48	b1 - b0	00 - 11 = 0 - 3	81
AFTER T. VCF	49	b1 - b0	00 - 11 = 0 - 3	82
AFTER T. VCA	50	b1 - b0	00 - 11 = 0 - 3	83

PARAMETER NAME	PARAMETER OFFSET	віт 1	CORRESPONDING PANEL DISPLAY/MEMORY
ASSIGN MODE	13	b1 - b0	00 = POLY 1 01 = POLY 2 10 = UNISON 1 11 = UNISON 2
PAR. NO. MEMO.	14	b5 – b0	000000-111110 = 0-62 (7, 14, 15, 21, 22, 23, 31, 39, 47, 55, = INHIBIT)

3, DW-8000 can send/receive the following data.

Sending

DEVICE ID : Identifies the equipment. Sent upon receiving a DEVICE REQUEST.

WRITE : Sent in response to a WRITE RE-COMPLETED QUEST, This indicates that the PRO-GRAM WRITE task has been success-

fully completed.

WRITE ERROR: Sent in response to a WRITE RE-

QUEST. This indicates that the synth is set to the WRITE DISABLE mode so PROGRAM WRITE task cannot be

completed.

DATA SAVE : In response to a DATA SAVE RE-(DATA DUMP) QUEST, this sends the data for the

sound presently being produced.

 The DW-8000 can use these system exclusive messages to communicate with a computer equipped with a M1DI interface. (A program to process the exclusive messages is required.)

Connecting a computer

Because each exclusive message for the DW-8000 is specified with a channel designated by parameter 84, the corresponding channel must be used for message transmission from a computer to the DW-8000. A message sent using the incorrect channel will be ignored, regardless of OMNI mode being ON or OFF.

These channels are used to effectively that timbre control could be done independently for each DW-8000 in a system using two or more DW-8000s.

Examples of communication with a computer

(1) To find the ID number for equipment connected to the computer.

Receiving

REQUEST

RECEIVE ID : A reque REQUEST identific WRITE : A reque

: A request for the equipment's MIDI

identification number.

: A request for the DW-8000 to write data for the present sound to program

memory.

DATA SAVE REQUEST DATA LOAD (DATA DUMP)

PARAMETER

CHANGE

: A request for the DW-8000 to send data for the present sound.

data for the present sound.

: Sound data information. Sound data is

entered via the Data Load.

: Used to change parameters of the cur-

rent sound.

(2) To edit sound data within the DW-8000.

(3) To edit data already available in the computer.

(4) To load all 64 sound programs from the computer to the DW-8000.

(5) To save all 64 sound programs from the DW-8000 to the computer.

 PART NO.
 SCREWS
 αTY

 A
 TP2G B B ZMC
 3x8
 6

 B
 F E B B ZMC
 5x8
 5

 C
 PLAX B B ZMC
 4x10
 10

 D
 PLAX B B ZMC
 3x8
 4

4. BLOCK DIAGRAM

5. CIRCUIT DIAGRAM

KLM-658, 663, 664

DIODES; 1S1555 or equivalent

6. P.C. BOARD

KLM-658

KLM-659

CAUTION FOR CONTINUED SAFETY REPLACE BARRIER AFTER SARVICING.

ATTENTION AFIN DE NE PAS COMPROMETTRE LA SECURITE DE L'APPAREIL.
REMETTRE L'ECRAN EN PLACE
APRES LE DEPANNAGE.

KLM-663 KLM-664

KLM-760

KLM-775

KLM-759

-30-

7. CIRCUIT DESCRIPTIONS

1. Hardware:

NAME	DESCRIPTION	PC BOARD
CPU 63B03X (8 bit, 2MHz)		KLM-661
ROM 27128 (N-MOS 16KB)	System program, data table	KLM-66'i
RAM1 6116 (C-MOS 2KB)	Tone data, backup	KLM-661
RAM2 6116 (C-MOS 2KB)	System use	KLM-661
Sound source DWGS	2 DC0 x 8 voice	KLM-661
Wave table ROM 613256	(256Kbit x 4) 16 Waveforms	KLM-661
VCF, VCA 2069		KLM-662
Digital delay		KLM-775

2. Memory map

(4) KBD1 (First Connection)

Bi	t							
	7	6	5	4	3	2	1	0
4010H	G1	F1	# F1	E1	# D1	D1	# C1	C1
4011H	# D2	D2	# C2	C2	В1	# A1	A1	# G1
4012H	B2	# A2	A2	# G2	G2	# F2	F2	E2
4013H	G3	# F3	F3	E3	# D3	D3	# C3	СЗ
4014H	# D4	D4	# C4	C4	В3	# A3	А3	# G3
4015H	B4	# A4	A4	# G4	G4	# F4	F4	E4
4016H	G5	# F5	F5	# E5	E5	D5	# C5	C5
4017H				C6	85	# A5	A5	# G5

8 VCF, VCA EG SELECT

Bit	7	6	5	4	3	2	1	0	HEX	JOB
4060H	•	-	-	-	-	-	-	-		Fc 1 ~ 8
		-	-	-	-	_	-	-		
	-	1	1	1	1	-	-	_	78	INHIBIT
									58	LEVEL 1
									59	" 2
									5A	RESONANCE
									5B	NOISE
									5C	MG OV
									5D	DDL 0V
									60	VCA0 EG
									67	VCA7 EG
									70	VCF0 EG
									77	VCF7 EG

(5) KBD2 (Second Connection)

4018H

SAME AS KBD1 BIT MAP
401FH

9 DDL CONTROL

Bit	7	6	5	4	3	2	1	· 0	JOB
4080H								•	MUTE
							٠		STB (TOS154)
		X				•			CLK
					•				DATA SERIAL
				•					STB (D650100W)

6 DWGS

Bit	7	6	5	4	3	2	1	0
4020H	VOI	CE1 OS	C1 FRE	Q, DA	A BOT	гтом		
4021H	VOI	CE1 OS	C2		٠			•
· [?				
4030Н	-	-				WAVE	FORM	V.1 OSC1
4031H		-					6	OSC2
₹				}				
403ЕН [-				WAVE	ORM	/.8 OSC1
403FH		-						OSC2

(7) DAC - HC374 (IC19)

10 LED 11 4	0001
-------------	------

Bit	7	6	5	4	3	2	1 .	0	DISP.
40A0H 0	DOT	F	\exists	A	S	\exists	FI	\exists	PRG H
1									" L
2	DOT								PAR H
3									" L
4									VALH
5	DOT								" L
6	PRG	PAR			POLY1	UN1	UN2	POLY2	
7	LATCH	ON/OFF	ASSIGN		FULL	200T	100T	TEMPO	

(12) AD SELECT etc.

Bit	7	6	5	4	3	2	1	0	
40E0H						٠	•	•	AD SELECT
						0	0	0	Bender
						0	0	1	MG
						0	1	0	Edit Slider
						0	1	1	Tune
						1	0	0	After Touch
				•	•				WAVEFORM SELECT
				0	0				OSC1 1 ~ 8
				0	1				·· 9 ~ 16
				1	0				OSC2 1 ~ 8
				1	1				·· 9 ~ 16
			•						VCF EG POLARITY
			0						<u></u>
			1						
		•							ARP. RESET
	•								ARP, TEMPO LED

3. Using the diagnostics and utility programs

To test DW-8000 functions you can use the built-in diagnostics and utility programs. These are executed by holding down particular number keys (in the synthesizer's "programmer" section) and at the same time turning on the power (i.e., resetting the unit).

- 1,2: (1) Displays system ROM version number. The system ROM version number is shown in the value display. Version number 850708 is indicated by "07".
 - (2) Sets write protect attribute. This is useful when displaying the synthesizer in a shop. It prevents anything from being written into memory. Effective on versions 850709 and later.

- 5, 6: Reference voltage adjustment mode. Refer to the adjustment procedures.
- 7, 8: Tuning mode.
 Tune fixed, touch sense maximums setting, voice indication.
 Refer to adjustment procedures.
- 5, 8: RAM clear mode.

 Erases 64 sound program settings from memory.

Tape interface format

1. Modulation system

"1"
$$t = 320 \mu s$$
"0" $2t = 640 \mu s$

Example:

2. Format of one set of program data

3. Format of one message

3.4 **PRELOAD** TAPE No. ID (FOR TEST) NORMAL "00 H"

END BLOCK DATA 3.5 "FFH"

(130 MESSAGES)

5. Main circuit explanation

1) Keyboard scanning

The CPU outputs 3-bit addresses in the range A0~A2 which are decoded by the address decoder HC138 (IC25, IC28). The output of this decoder goes through connector CN10 (first contact) and CN11 (second contact) to the keyboard matrix for scanning.

Keyboard matrix output goes from connector CN6 through the inverting octal buffer HC240 (IC16 HD specification) to be passed to the data bus $D0\sim D7$.

2) Key on/off data and velocity data

Velocity data is computed using the CPU timer to measure the time from when the key contact leaves the first contact until it reaches the second contact.

KEY ON data is generated when the key contact reaches the second contact. Key off data is generated when the first contact is reached after leaving the second contact.

3) After Touch data

The ESK-901 keyboard's after touch unit (sandwich of metal plate, conductive rubber, and metal plate) produces impedance variations which KLM-759 detects as analog voltages over the range of $0V\sim3.5V$.

The voltage passes through the multiplexer 4051 (IC5) to the CPU where, via a DAC, it changes the control voltage for the effect.

4) DWGS system

This board contains the DWGS basic system. The purpose of this system is to get pitch and waveform data from the CPU bus and output a cyclic (repetitive) waveform of constant amplitude.

Oscillator operation

The PAI (phase angle increment) value and PAR (phase angle register) value are added and the result is stored again in the PAR. The PAR value is used as the wave table address. The wave table stores different harmonic configuration data for each octave on the keyboard.

IC47 (MB64H129) performs the processing needed to use the PAR value as the wave table address.

Finally, data read from the wave table is converted to an analog waveform by a D/A converter.

Time division multiplexing enables dual oscillator 6-voice sound source capability.

Maximum simultaneous output of this system is 8 voices x 2 oscillators.

Note: Given a sampling frequency of 50 kHz, PAI data $N = 2^{18} \times f/50 \times 10^3$ (where f is the pitch frequency) is rounded to an integer value for N and converted to a hexadecimal number.

The main LSI chips are the CMOS gate array IC47 (MB-64H129) and IC60 (MB62H133), the wave-table 256K mask ROM IC45 and IC46 (HN613256), the ten TTL 64-bit RAM chips for PAI & PAR (IC48~IC57; S189), the 8-bit D/A converter IC42 (DAC-08), decoder chips IC50, IC59 (LS244), KLM-662 IC16 (LS175), IC14, IC15 (LS138), as well as S/H analog switches (IC17~IC20; 4066) and OP AMPS (IC21~IC25; 072).

IC60 (MB62H133) is a 64-pin LSI with about 800 gates handling major aspects of the system including the CPU interface, timing generation, and adder.

MB62H133 TERMINAL NAMES

Pin No.	Туре	Term	Pin No.	Туре	Term	Pin No.	Туре	Term
1	Input	A0	23	Input	CS	44	Bus	DB18
2	Input	A1	24	Input	WR	45	Bus	DB17
3	Input	A2	25	Input	RST	46	Bus	DB16
4	Input	A3	26	Input	CLK	47	Bus	DB15
5	Input	A4	27	Output	SHEN	48	Power supply	Vss
6	Input	D0	28	Output	VN3	49	Bus	DB14
7	Input	D1	29	Output	VN2	50	Bus	DB13
8	Input	D2	30	Output	VN1	51	Bus	DB12
9	Input	D3	31	Output	VNO	52	Bus	DB11
10	Input	D4	32	Power supply	VDD	53	Bus	DB10
11	Input	D5	33	Output	RAMC	54	Bus	DB9
12	Input	D6	34	Output	WFW	55	Bus	DB8
13	Input	D7	35	Output	PAIW	56	Bus	DB7
14	Input	D8	36	Output	PAIS	57	Bus	DB6
15	Input	D9	37	Output	PARW	58	Bus	DB5
16	Power supply	VSS	38	Output	PARS	59	Bus	DB4
17	Input	D10	39	Output	WFG	60	Bus	DB3
18	Input	D11	40	Output	OCT2	61	Bus	DB2
19	Input	D12	41	Output	OCT1	62	Bus	DB1
20	Input	D13	42	Output	ОСТО	63	Bus	DBO
21	Input	D14	43	Bus	DB19	64	Power supply	VDD
22	Input	D15						. 00

IC47 (MB64H129) is used mainly for wave table ROM address decoding; it is a 40-pin LSI having about 400 gates.

MB64H129 TERMINAL NAMES

Pin No.	Type	Term	Pin No.	Type	Term	Pin No.	Туре	Term
1	Input	DB0	15	Input	ОСТО	28	Output	A09
2	Input	DB1	16	Input	OCT1	29	Output	80A
3	Input	DB2	17	Input	OCT2	30	Power supply	Vpp
4	Input	DB3	18	Input	WFG	31	N.C.	
5	Input	DB4	19	Input	FNG	32	Output	A07
6	Input	DB5	20	Input	RST	33	Output	A06
7	Input	DB6	21	N.C.		34	Output	A05
8	Input	DB7	22	Output	CEC	35	Output	A04
9	Input	DB8	23	Output	CEB	36	Output	AO3
10	Power supply	V_{SS}	24	Output	CEA	37	Output	A02
11	N.C.		25	Output	A012	38	Output	A01
12	Input	DB9	26	Output	A011	39	Output	A00
13	Input	DB10.	27	Output	AO10	40	N.C.	
14	Input	DB11						

IC45 and IC46 (HN613256) store digitally encoded harmonic waveforms of the harmonics 2, 5, 10, 20, 40, 80, 160 and 320.

Here a waveform including the 320th harmonic refers to addition of the sine value 320 times at a particular phase.

PIN CONFIGURATION

BLOCK DIAGRAM

5) Panel switch scanning

In similar fashion to keyboard scanning, 2-bit addresses in the range $A0\sim A1$ are decoded by the address decoder LSI139 (IC18) and supplied to the switch matrix. The output goes to octal buffer HC240 (IC16) (the same as used by the keyboard) and is passed to the data bus.

6) LED Display

The LED display is software controlled. Latch HC374 (IC22, IC24) takes LCD display data from the D0~D7 8-bit data bus to operate LED drivers 54513 and 54562.

7) Digital delay

The KLM-775 board has its own dedicated delay gate array, μ PD65010CW-113. The delay circuit comprises this gate array, 64KB dynamic RAM x 2, ADC, DAC, and analog compander. The delay time can be specified.

CPU 63B03X STATE OF PORT

Port	Pin	Function
P20	9	Velocity Sens. Control 3 Bit
P21	10	Velocity Sens. Control 2 Bit
P22	11	Velocity Sens. Control 1 Bit
P27	16	Velocity Sens. Control O Bit
RX	12	MIDI RX
TX	13	MIDI TX
P25	14	TAPE OUT
P26	15	TAPE OUT
IRQ1	17	Arpeggio Clock
P51	18	Joy Stick -Y or +Y
P52	19	A/D Compare
P53	20	+5
P54	21	Portamento Pedal
P55	22	Program Up Pedal
P56	23	Damper Pedal
P57	24	TAPE IN
P60	25	DWGS FREQ. DATA D15
P61	26	DWGS FREQ. DATA D14
P62	27	DWGS FREQ. DATA D13
P63	28	DWGS FREQ. DATA D12
P64	29	DWGS FREQ. DATA D11
P65	30	DWGS FREQ. DATA D10
P66	31	DWGS FREQ, DATA D 9
P67	32	DWGS FREQ. DATA D 8

μPD6510 CW-113 TERMINAL NAMES

Pin No.	Pin Name	1/0	Pin No.	Pin Name	1/0	Pin No.	Pin Name	1/0
1	HOLD	-1	23	DO8	0	44	AO	0
2	RST1	- 1	24	D07	0	45	WRO	0
3	RST2	1	25	D06	0	46	103	1/0
4	SPON	-1	26	DO5	0	47	102	1/0
5	STRT	-1	27	DO4	0	48	CAS	0
6	X1	1	28	DO3	0	49	OEO	0
7	PRSR	1	29	DO2	0	50	101	1/0
8	256K	1	30	DO1	0	51	104	1/0
9	D9	1	31	DO0	0	52	OE1	0
10	D8	1	32	GND	ov	53	OE2	0
11	TCO	0	33	WR3	0	54	OE3	0
12	TE13	1	34	WR2	0	55	D0	1
13	TMOD	1	35	WR1	0	56	D1	1
14	MTEN	1	36	A7	0	57	D2	1
15	MUTB	0	37	A4	0	58	D3	1
16	MUTE	0	38	А3	0	59	D4	1
17	SHB	0	39	A5	0	60	D5	1
18	SH	0	40	A2	0	61	D6	1
19	DATA	1	41	A6	0	62	D7	1
20	DO11	0	42	A1	0	63	CLK	1
21	DO10	0	43	RAS	0	64	VDD	+51
22	DO9	0		The second second		11111111		

PIN CONFIGURATION

8. ADJUSTMENT PROCEDURES

PROGRAM NO. ASSIGN MODE PARA.MEMORY	11 POLY1 13	12 POLY1 23	13 POLY1 31	14 POLY1 31	15 POLY1 26	16 POLY1 72	17 POLY1 72	18 POLY1 71	21 POLY1 73
OSC1 oct	8	8	8	8	8	8	8	8	8
waveform /=	15	15	15	15	5	15	15	15	15
level 13	31	0	0	0	0	31	31	31	31
A.BEND st.	0	0	0	0	0	D	0	0	0
mode /5	\bigcap	/	$\overline{\Box}$		$\overline{}$	\sqcap	\sqcap	\sqcap	\sqcap
time 15	D	0	0		0	0	0	0	0
int 17	0	0	0	0	0	0	0	0	0
OSC2 oct	8	8	8	8	8	8	8	8	8
waveform 22	15	15	- 15	15	15	15	15	15	15
evel 23	0	31	0	ŋ	0	0	0	0	0
interval 24	1	1	1	1	1	1	1	1	1
detune 25	0	0	0	0	0	.0	0	0	0
NOISE level		0	0		31	0	0	0	0
VCF cutoff	53	53	32	44	63	53	53	53	53
resonance 32	0	0	31	31	0	D	0		0
kbd track	0	0	0	0	0	0	0	0	0
polarity 34	/	$\overline{\Box}$	7	\Box	\bigcap	\Box	7	$ \sqrt{} $	
eg int	П	0	0	0	0	0	0	0	0
VCF attack	0	0	0	0	0	0	0	0	0
decay 42		0	0	0	0	0	0	D	0
break.p	0	0	0	- 0	0	0	0	0	
slope 나나		0	<i>a</i>	0	0	0	0	0	0
sustain 45	0	0	0	0	D	0	0	D	0
release 45	0	0	0	0	0	0	0	0	0
velocity L/ []	0	0	0	D	0	0	0	0	0

ROGRAM NO. SSIGN MODE ARA.MEMORY	POLY1	12 POLY1 23	13 POLY1 31	14 POLY1 31	15 POLY1 26	16 POLY1 72	17 POLY1 72	18 POLY1 71	21 POLY1 73
VCA attack								F	
51		0	0	0	0	0	0	0	0
decay 52		0	Q	0	0		0	10	10
53	31	31	31	31	31	31	31		0
slope 54		0	0		0	0	0	0	0
sustain 55	31	31	31	31	31	31	31	0	0
release 55	0	0	0	0	0	0	0	10	10
velocity 57	0		0	0	0	0	0	0	0
MG w.form	^	^	^	^	^	^	^	^	^
freq 52	0	0	0	0	0	0	0	0	0
delay 53	0			0		0	0	0	0
osc 54	0	0	B	0	8	0	0	0	0
vc1 85	0	0	D	0	0	0	0	0	0
BEND osc	П	0	0		0	0	0	0	0
57	off	off	off	off	off	off	off	aff	off
DDL time	0	О.	D	0	0	0	0	3	0
factor 72	0	0	0	0	0	15	0	0	0
feedback	0		0	0	0	0	0	15	19
frequency	0	0	0	0	0	0	0	0	0
int 75	0	0	0	0	0	0	0	0	0
affect lev	0	0	0	0	0	15	15	15	15
PORTA time	0	0	0	0	0	0	0	0	0
A.T osc mg	0	0	0	0	0	0	0	0	0
vet 82	0	0	0	0	0	0	0	0	0
vca 83	0	0	0	0	0	0	0	0	0

Caution:

- 1) This product has been throughly adjusted at the factory before shipment. Therefore never turn any Semi Fixed VRs other than those required for servicing.
- 2) After turning on power, wait at least 15 minutes before beginning test and adjustment.
- 3) Be sure to save the data on tape before loading test data as when loading test data into DW-8000, previous data is erased.

1. Clearing RAM and Loading Test Data

- 1) After keeping DW-8000 power on at least 15 minutes, once turn off power and then on pressing number keys [5] and [8].
- 2) Connect to an Amplifier etc. and confirm if there is no sound to check all data of RAM have been erased.
- 3) Load Test Data.
- *For convenience, save those chart on tape as Check and Adjustment procedure described below is always made with the data.

2. D/A converter, CV Check and Adjustment Procedure (KLM-661)

- 1) Turn off power and then on pressing number keys [5] and [6] at the same time.
- 2) Confirm if UrEF (Voltage reference) is displayed and becomes Test Mode 1.
- 3) Connect a Digital Voltmeter to Test Points: [TP-AG], [TP-REF1] allocated in left side of the board.

GND side - [TP-AG], +side - [TP-REF1]

4) Memorize the value of Digital Voltmeter and then connect as follows.

+side - [TP-CV]

5) Adjust VR1 to obtain the same value as one of +side – [TP-REF1].

Remarks: Adjustment value is in range of 3.29V - 3.64V.

Note: Test Mode 1 cannot be cancelled till being reset.

(Power OFF - ON)

3. VCA Level Check and Adjustment (KLM-662)

Turn off power and then on pressing number keys [7] and [8] and Test Mode becomes 2.

Oscillating voice is displayed on LED Display with any single key being played under this mode.

Note: It must be Test Mode 2 though voice displaying is not required.

- 1) Select Program number 11.
- 2) Connect an Oscilloscope to [TP-SG] (GND side [TP-AG]) and observe amplitude of output waveform.
- 3) Press C5 key and observe waveform described in Fig. 1.
- 4) Adjust Semi Fixed VRs (VR101 VR801) of oscillating voice (refer to Voice Display) to obtain waveform of amplitude being 0.7VP-P.

Remarks: Allowance of deviation of each voice is under 40mV.

4. OSC 2 Level Check and Adjustment (KLM-662)

- 1) Select Program number 12.
- 2) Make same adjustment as VCA Level one.
- 3) Necessary Semi Fixed VRs for adjustment are among VR105 VR805 of oscillating voice. (refer to Voice Display)

5. VCF Resonance Check and Adjustment (KLM-662)

- 1. Level
- 1) Select Program number 13.
- 2) Connect an Oscilloscope to [TP-SG]. (GND side to [TP-AG])
- 3) Press any single key and confirm amplitude of output waveform of each voice is 0.9VP-P. Unless, adjust Semi Fixed VRs among VR103—VR803 of oscillating voice.

Remarks: Allowance of deviation of each voice is under 40mVP-P.

- 2. fo
- 1) Select Program number 13.
- 2) Connect Chromatic Tuner AT-12 to Output Jack of DW-8000.
- 3) Press any single key and confirm oscillation frequency of each voice on AT-12 Display is C (523Hz), 1 octave, 0 cent.
- 4) Unless, adjust Semi Fixed VRs among VR102 VR802 of oscillating voice.

Remarks: Allowance of deviation of each voice is 0 cent \pm 10 cent.

- 3. fc
- 1) Select Program number 14.
- 2) Connect Chromatic Tuner AT-12 to Output Jack of DW-8000.
- 3) Press any single key and confirm oscillation frequency of each voice on AT-12 Display is C (2093Hz), 3 octave, 0 cent.
- 4) Unless, adjust Semi Fixed VRs among VR104 -- VR804 of oscillating voice.

Remarks: Allowance of deviation of each voice is under 0 cent ± 10 cent.

6. Noise Level Check and Adjustment (KLM-662)

- 1) Select Program number 15,
- 2) Connect a Noise Meter to [TP-SG] (GND side [TP-AG]).
- 3) Press any single key and confirm value of the meter is -15dbm.
- 4) Unless, adjust VR1 to obtain correct value.

7. DWGS Clock Check and Adjustment (KLM-661)

- 1) Connect a Frequency Counter to [TP-CLK] (GND side to [TP-DG]).
- 2) Confirm the counter value is in range of 6.395MHz 6.405MHz.
- 3) Unless, adjust VR2 to obtain correct value.

8. Digital Delay MG-CLK Check and Adjustment (KLM-775)

- 1) Select Program number 16.
- 2) Connect a Frequency Counter to [TP-CLK] (GND side
- to [TP-AG]).
- 3) Confirm the counter value is 20.0kHz. (Effective with 3 figures only.)
- 4) Unless, adjust VR3 to correct value.
- 5) After 3) is confirmed, select Program number 17.
- 6) Confirm the counter value is in range of 35.0kHz 40.0kHz.

9. Digital Delay Output Waveform Center Position Check and Adjustment (KLM-775)

- 1) Select Program number 17.
- 2) Connect an Oscilloscope to [TP-EXP] (GND side to [TP-AG]). Adjust lit line of the Oscilloscope to 0 volt line of the screen,
- 3) Press C5 key and confirm center of amplitude of output waveform is on 0 volt line of the screen.
- 4) Unless, adjust VR2 to obtain correct position.

10. Digital Delay Feed Back Check and Adjustment (KLM-775)

- 1) Select Program number 18.
- 2) Press C5 key and confirm if delayed sound lasts 2 seconds without no ringing.
- 3) Unless, adjust VR1. (Start to ring when turn to the right. Turn to the left and adjustment point is where ringing stops.)
- 4) After 2) is confirmed, select Program number 21.
- 5) Press C5 key and confirm if there is no ringing with delayed sound.

11. Check and adjustment of keyboard after touch

Purpose: This should be performed if the keyboard is replaced or in other cases when it is necessary to assure balanced response and compensate for differences in the weight of individual keys.

1) Remove connector CN23 from KLM-759 and connect a digital multimeter (DVM or other device that measures impedance) to the 1-pin (output) and 3-pin (GND or earth).

2) Place a 1,500 gram weight on each key in sequence and note the keys that give the lowest (the low weight key) and highest (the high weight key) impedance values. Mark these two keys (with tape, etc.).

General standard: The low weight key is a white key and has an impedance value of 3 ohms or less.

The high weight key is a black key and has an impedance value of $500 \text{ ohms } (\pm 10\%)$.

Connect an oscilloscope to KLM-759 CN21 1-pin (output) and 3-pin (GND).

Connect to CN23 which was previously disconnected.

4) Place a 500g weight on the front of the low weight key found above.

Adjust VR1 so that output voltage crosses the 0V line (rising from - to +) within 2 to 8 seconds of loading the key with the weight.

(Threshold voltage level adjustment.)

5) Next, put a 1,500 gram weight on the front of the high weight key and adjust VR2 so that the output voltage crosses the +3.5V line within 2 to 8 seconds of loading the key with the weight.

(Buffer amp gain adjustment.)