Commutator width of the Grigorchuk Group

Thorsten Groth

November 15, 2016

Contents

1		ations	1
	1.1	Quadratic equations	2
	1.2	Normal form of quadratic equations	2
	1.3	Constrainted equations	4
2	Grigorchuks Group		
	2.1	Good Pairs	6
	2.2	Main proposition	7
		2.2.1 Product of 3 commutators	12
	2.3	Product of 2 commutators	13
References			13

1 Equations

In this section some standard notations similar to the ones introduced in [JE81] are established. X is a set of *variables*. As it should always be infinite countable it can be assumed to be equal to \mathbb{N} . G is some arbitrary group and S_n is the Permutation group on n-Elements. F_X denotes the free group on the generating set X.

A G-equation E is an element of the group $F_X * G$ regarded as reduced word. A G-homomorphism from $F_X * G$ to H * G is a homomorphism which is the identity on G. Define:

 $\operatorname{Var}: F_X * G \to \mathbb{P}(X), E \mapsto \operatorname{Var}(E), \quad x \in \operatorname{Var}(E) \text{ iff the symbol } x \text{ occurs in } w$

An evaluation is a G-endomorphism $e \colon F_X * G \to G$. A solution of an equation E is an evaluation s with s(E) = 1. If a solution exists the equation is called solvable.

The set of elements $x \in X$ such that $s(x) \neq 1$ is called the *support* of the solution. Often the support of a solution for an equation E is assumed to be minimal and thus a subset of $F_{\text{Var}(E)}$. As the solution is uniquely described

by the image of X the data of a minimal solution is equivalent to a map $Var(E) \to G$. The question of whether an equation E is solvable will be referred to as the diophantine problem of E. Any homomorphism $\varphi \colon G \to H$ extends to a homomorphism $\varphi^* \colon F_X * G \to F_X * H$ by extending it as the identity on F_X .

Definition 1.1. Two equations $E, F \in F_X * G$ are equivalent if there is a G-automorphism φ which maps E to F.

Lemma 1.2. Let φ be a G-homomorphism and E an equation. If $\varphi(E)$ is solvable, then so is E.

Proof. Let s be the solution of $\varphi(w)$. Write E as $E = \prod_{i=1}^m g_i x_i$ where $g_i \in G$ and $x_i \in X$. Define the evaluation s' by $x \mapsto s(\varphi(x))$. Then

$$s'(E) = \prod_{i=1}^{m} g_i s'(x_i) = \prod_{i=1}^{m} g_i s(\varphi(x_i)) = s\left(\prod_{i=1}^{m} g_i \varphi(x_i)\right) = s(\varphi(E)) = 1.$$

So s' is a solution for E.

Corollary 1.3. The diophantine problem is the same for equivalent equations.

1.1 Quadratic equations

A G-equation E is called quadratic if each $x \in Var(E)$ occurs exactly twice in E regarded as reduced word.

It is called *oriented* if for each variable $x \in Var(E)$ the number of occurrences with positive and with negative sign coincide. Otherwise the word is called unoriented.

Lemma 1.4. Being oriented or not is invariant under G-automorphisms.

Proof. Let φ be some G-homomorphism. Fix some $x \in X$. Let $n_{+,y}$ be the number of positive occurrences of x in $\varphi(y)$ and $n_{-,y}$ accordingly. If E is an oriented word then

$$\sum_{y \in \operatorname{Var}(E)} n_{+,y} = \sum_{y \in \operatorname{Var}(E)} n_{-,y^{-1}} = \sum_{y \in \operatorname{Var}(E)} n_{-,y} \ .$$

So $\varphi(E)$ is oriented too.

1.2 Normal form of quadratic equations

Definition 1.5. For $x_i, y_i, z_i \in F$ and $c_i \in G$ the following two kind of equations are called in *normal form*:

$$O_{n,m}: [x_1, y_1][x_2, y_2] \cdots [x_n, y_n] c_1^{z_1} \cdots c_{m-1}^{z_{m-1}} c_m$$

$$U_{n,m}: x_1^2 x_2^2 \cdots x_n^2 c_1^{z_1} \cdots c_{m-1}^{z_{m-1}} c_m .$$

$$(1)$$

$$U_{n,m}: \qquad x_1^2 x_2^2 \cdots x_n^2 c_1^{z_1} \cdots c_{m-1}^{z_{m-1}} c_m \ . \tag{2}$$

The form $O_{n,m}$ is called the oriented case and $U_{n,m}$ for n > 0 the unoriented. The parameter n is referred to as *genus* of the normal form of an equation.

We are going to prove the following theorem:

Theorem 1.6 ([JE81]). Each quadratic equation $E \in F_X * G$ is equivalent to an equation in normal form and the isomorphism can be effectively computed.

Proof. The proof goes through an induction on the number of variables. Starting with the oriented case: If the reduced equation E has no variables then it is already in normal form $O_{0,1}$. If there is a variable $x \in X$ occurring in E then it does also appear with opposite sign. So the equation has the form $E = ux^{-1}vxw$ or can be brought to this form by applying the automorphism $x \mapsto x^{-1}$. Choose $x \in X$ in a way such that Var(v) is minimal.

We're distinguish between multiple cases:

Case 1.0 $v \in G$. The word uw has less variables then E and can thus be brought into normal form $N \in O_{r,s}$ by G-isomorphism φ . If N ends with a variable we can use the G-isomorphism $\varphi \circ (x \mapsto xw^{-1})$ to map E to the equation $Nv^x \in O_{r,s+1}$.

If N ends with a group constant b, N = Mb we can use the isomorphism $\varphi \circ (x \mapsto xbw^{-1})$ to map E to the equation $Mv^xb \in O_{r,s+1}$.

- Case 1.1 $v \in X \cup X^{-1}$. For simplicity let us assume that $v \in X$. In the other case we can apply $v \mapsto v^{-1}$. Now there are two possibilities: Either $v^{-1} \in u$ or $v^{-1} \in w$. In the first case $E = u_1 v^{-1} u_2 x^{-1} vxw$ then the isomorphism $x \mapsto x^{u_1} u_2, v \mapsto v^{u_1}$ results in the equation $[v, x] u_1 u_2 w$. In the second case $E = u x^{-1} v x w_1 v^{-1} w_2$ is transformed to $[x, v] u w_1 w_2$ by the isomorphism $x \mapsto x^{u w_1} w_1^{-1}, v \mapsto v^{-u w_1}$. In both cases $u_1 u_2 w$, resp. $u w_1 w_2$ are of less variable and so composition with the corresponding isomorphism results the normal form.
 - Case 2 Length(v) > 1. Then v is a word consisting of elements $X \cup X^{-1}$ with each symbol occurring at most once as v was chosen with minimal variable set, and some elements of G. If v starts with a constant $b \in G$ we can use the homomorphism $x \mapsto bx$ to achieve that v starts with a variable $y \in X$ by eventually using $y \mapsto y^{-1}$. Like in case 1.1 there are two possibilities either y^{-1} is part of u or part of w. In the first place $E = u_1 y^{-1} u_2 x^{-1} y v_1 x w$ we can use the isomorphism $x \mapsto x^{u_1 v_1} u_2$, $y \mapsto y^{u_1 v_1} v_1^{-1}$ to obtain $[y, x] u_1 v_1 u_2 w$. In the second take the isomorphism

$$x \mapsto x^{uw_1v_1}v_1^{-1}w_1^{-1}, \qquad y \mapsto y^{-uw_1v_1}v_1^{-1}$$

to get $[x, y]uw_1v_1w_2$. In both cases the second subword has again less variable and can be brought into normal form by induction.

Therefore each oriented equation can be brought to normal form by G-isomorphisms. For the unoriented case decompose the equation into E = uxvxw

with again v with a minimal number of variables. The shorter word $uv^{-1}w$ is equivalent by φ to a normal form N by induction.

The G-isomorphism $\varphi \circ (x \mapsto x^u v^{-1})$ maps E to $x^2 N$. If $N \in U_{r,s} \cup O_{0,t}$ for some r, s, t, nothing else is to do. Otherwise N = [y, z]M. Then the homomorphism

$$x \mapsto xyz, y \mapsto z^{-1}y^{-1}x^{-1}yzxyz, z \mapsto z^{-1}y^{-1}x^{-1}z$$

maps x^2N to $x^2y^2z^2M$. This homomorphism is indeed an isomorphism as

$$x \mapsto x^2 y^{-1} x^{-1}, \qquad y \mapsto xyx^{-1} z^{-1} x^{-1}, \qquad z \mapsto xz$$

is an inverse homomorphism. If M is still not in $O_{0,s}$ this procedure can be repeated with z instead of x.

For an quadratic equation E we denote by $\mathfrak{nf}(E) := \mathfrak{nf}_E(E)$ the image of the such constructed isomorphism \mathfrak{nf}_E of E.

From now on we will consider oriented equations $O_{(n,1)}$. For this we will use the abbreviation

$$R_n(x_1,\ldots,x_{2n}) = \prod_{i=1}^n [x_{2i-1},x_{2i}]$$

and often write $R_n = R_n(x_1, \dots, x_{2n})$ if the x_i are the first generators of F_X .

1.3 Constrainted equations

Definition 1.7 ([LMU13]). Given an equation $E \in F_X * G$, a group H, a homomorphism $\pi \colon G \to H$ and a homomorphism $\gamma \colon F_X \to H$ then the pair (E, γ) is called a *constrainted* equation and γ a constraint for the equation E on H.

A solution for (E, γ) is a solution s for E with the additional property, that $s(x)^{\pi} = \gamma(x)$ for all $x \in F_X$.

2 Grigorchuks Group

The Grigorchuk 2-group is a finitely generated group with finite state generators:

$$a = \langle \langle 1, 1 \rangle \rangle \langle 1, 2 \rangle, \quad b = \langle \langle a, c \rangle \rangle, \quad c = \langle \langle a, d \rangle \rangle, \quad d = \langle \langle 1, b \rangle \rangle.$$

Some useful identities are

•
$$a^2 = b^2 = c^2 = d^2 = 1$$

•
$$b^a = \langle c, a \rangle, c^a = \langle d, a \rangle, d^a = \langle b, 1 \rangle$$

•
$$(ad)^4 = (ac)^8 = (ab)^{16} = 1$$
.

Lemma 2.1. The Grigorchuk group is regular branched with branching subgroup $K := \langle (ab)^2, (bada)^2, (abad)^2 \rangle$.

The Quotient Q := G/K is of order 16.

Lemma 2.2 ([LMU13]). Given $n \in \mathbb{N}$ and any homomorphism $\gamma \colon F_X \to Q$ with $\operatorname{supp}(\gamma) \subset \langle x_1, \dots x_{2n} \rangle$ there is an element $\varphi \in \operatorname{Stab}(R_n) < \operatorname{Aut}(F_X)$ such that $\operatorname{supp}(\gamma \circ \varphi) \in \langle x_1, \dots, x_5 \rangle$.

Remark. Implemented in GAP: GammaSimplify.

Lemma 2.3. Identify the group of homomorphisms $\{\gamma \colon F_X \to Q \mid \operatorname{supp}(\gamma) \subset \langle x_1, \dots x_6 \rangle \}$ with Q^6 . Then

$$\left| Q^6 \middle/_{\operatorname{Stab}(R_3)} \right| = 90.$$

Proof. Shown by GAP calculation.

Definition 2.4. Fix some representative system \mathfrak{R} of the above 90 orbits and for $\gamma \colon F_X \to Q$ with finite support denote by φ_{γ} the G-homomorphism in $\operatorname{Stab}(R_{\mathbb{N}})$ such that $\gamma \circ \varphi_{\gamma} \in \mathfrak{R}$.

The element $\gamma \circ \varphi_{\gamma}$ will be called reduced constraint.

Corollary 2.5. The solvability of a constrainted equation $(R_n g, \gamma)$ is equivalent to the solvability of $(R_n g, \gamma \circ \varphi_{\gamma})$.

Proof. If s is a solution for $(R_n g, \gamma)$ then $s \circ \varphi_{\gamma}$ is a solution for $(R_n g, \gamma \circ \varphi_{\gamma})$. \square

Definition 2.6 ([BGS03]). A branch structure of a group $G \hookrightarrow G \wr P$ consists of

- a branching subgroup $K \unlhd G$ of finite index.
- the corresponding Quotient Q = G/K and the factor homomorphism $\pi: G \to Q$.
- A group $Q_1 \subset Q \wr P$ such that $\langle q_1, q_2 \rangle \sigma \in Q_1$ if and only if $\langle g_1, g_2 \rangle \sigma \in G$ for all $g_i \in \pi^{-1}(q_i)$.
- A map $\omega: Q_1 \to Q$ with the following property. If $g = \langle \langle g_1, g_2 \rangle \rangle \sigma \in G$ then $\omega(\langle \langle \pi(g_1), \pi(g_2) \rangle \rangle \sigma) = \pi(g)$.

Lemma 2.7. The Grigorchuk Group has a branch structure.

Theorem 2.8 ([LMU13]). The Grigorchuk group has finite commutator width. That is there exists an $N \in \mathbb{N}$ such that for all $g \in G'$ the equation $R_N g$ is solvable.

Remark. This is not true for constrainted equations: For example

$$R_n((ab)^2), \gamma \colon x_i \mapsto 1 \ \forall i$$

is not solvable for any n because otherwise it would be $ac, ca \in G'$.

2.1 Good Pairs

Definition 2.9. Given $g \in G'$ and $\gamma \in \mathfrak{R}$. The tuple (g, γ) is called a *good pair* if there exists an n such that $(R_n g, \gamma)$ is solvable.

Lemma 2.10. Denote by

$$\tau\colon G\to G/K'$$
 and $\varpi\colon G/K'\to G/K'/K/K'\simeq G/K$

the natural projections.

The pair (g, γ) is a good pair if and only if there is a solution $s: F_X \to G/K'$ for R_3g^{τ} with $s(x_i) \in \varpi^{-1}(\gamma(x_i))$.

Proof. If (g, γ) is a good pair, s a solution for $R_n g, \gamma$ then $s(x_i) \in K$ for $i \geq 6$, so $s(R_n) = s(R_3) \cdot k'$ for some $k' \in K'$ therefore there is a solution $\tau \circ s$ for $R_3 g^{\tau}$ with $s(x_i) = \gamma(x_i)$.

On the other hand if there is a solution $s: F_X \to G/K'$ for R_3g^{τ} with for each $s(x_i) \in \varpi^{-1}(\gamma(x_i))$ then for $g_i \in \tau^{-1}(s(x_i))$ there is some $k' \in K'$ such that $R_n(x_1, \ldots, x_6)gk' = 1$ and so (g, γ) is a good pair.

The previous lemma shows that the question if (g, γ) is a good pair depends only on the image $q = g^{\tau}$ in G/K'. So (q, γ) will be called a good pair if (g, γ) is a good pair for one (and hence all) preimages of q under τ .

Corollary 2.11. The following are equivalent:

- a) K is of finite commutator width.
- b) There is a $N \in \mathbb{N}$ uniform for all good pairs $(g, \gamma), g \in G', \gamma \in \mathfrak{R}$ such that $(R_N g, \gamma)$ is solvable.

Proof. First the easy direction: If $k \in K'$ then (k, 1) is a good pair. So $(R_n k, 1)$ is solvable in G for an $n \leq N$ but the constraints ensures that it is solvable in K. Therefore the commutator width of K is at most N.

If (g, γ) is a good pair there is an $m \in \mathbb{N}$ and a solution s for $R_m g, \gamma$. As $s(x_i)^{\pi} = 1$ for all $i \geq 6$ there is some $k \in K'$ such that s is a solution for $R_3 k g, \gamma$. By a) there is an N such that all $k \in K'$ can be written as product of N commutators of elements of K and therefore there is a solution for $(R_{N+3}g, \gamma)$.

This motivates to study K' and G/K' further.

Lemma 2.12. Denote by $k_1 := (ab)^2, k_2 := \langle \! (1, k_1) \! \rangle = (abad)^2$ and $k_3 := \langle \! (k_1, 1) \! \rangle = (bada)^2$ then

$$G' = \langle k_1, k_2, k_3, (ad)^2 \rangle,$$

$$K = \langle k_1, k_2, k_3 \rangle,$$

$$K \times K = \{ \langle k, k' \rangle \mid k, k' \in K \}$$

$$= \langle k_2, k_3, k_2 k_1^{-1} k_2^{-1} k_1, (k_2 k_1^{-1} k_2^{-1} k_1)^a, k_2 k_1 k_2 k_1^{-1}, (k_2 k_1 k_2 k_1^{-1})^a \rangle,$$

$$K' = \langle [k_1, k_2] \rangle^G$$

$$= \langle (dacabaca)^2 (baca)^4, ((ca)^2 baca)^2, (dacabaca)^2 c(acab)^3 acad,$$

$$((ac)^3 ab)^2, bacadacab(ac)^2 (acab)^3, (acadacab)^2 (acab)^4 \rangle^{1,a}.$$

Furthermore we have this chain of indices:

$$[G:G'] = 8, \quad [G':K] = 2, \quad [K:K \times K] = 4, \quad [K \times K:K'] = 16.$$

2.2 Main proposition

Definition 2.13. We define the activity of an element $q \in Q$ as the activity of an arbitrary element of $\pi^{-1}(q)$. This is well defined as K < Stab(1). Consider a constraint $\gamma \colon F_X \to Q$. Define $Act(\gamma) := x \mapsto Act(\gamma(x))$. Denote by \mathfrak{R}_{act} the reduced constraints which have a nontrivial activity.

Lemma 2.14. For each $q \in G'/K'$ there is $\gamma \in \mathfrak{R}_{act}$ such that (q, γ) is a good pair.

Proof. Assert(ForAll(GPmodKP,q->ForAny(AGPnontrivial,L->q in L))) \square

Proposition 2.15. For each good pair (q, γ) with $q \in G'/K'$ and $\gamma \in \mathfrak{R}_{act}$ there is a pair (γ', x) , with $\gamma' \in \mathfrak{R}_{act}$ and

$$x \in \{1,a,b,c,d,ab,ad,ba\}$$

such that for all g with $g^{\tau} = q$ the following holds

- $(\gamma', (q@2)^x \cdot q@1)$ is a good pair.
- The solvability of $(R_{2n-1}(g@2)^x \cdot g@1, \gamma')$ implies the solvability of (R_ng, γ) .

This pair (γ', x) can be effectively computed.

For fixed $g \in G'/K'$ and $\gamma \in \mathfrak{R}_{act}$ such that (g,γ) is a good pair denote by $(g_k,\gamma_k)_{k\in\mathbb{N}}$ the following sequence of pairs: First set $(g_1,\gamma_1)=(g,\gamma)$ then define (g_k,γ_k) recursively by apply Proposition 2.15 to the pair (g_{k-1},γ_{k-1}) and fix a pair (γ',x) with the described properties. Then set $\gamma_k:=\gamma'$ and $g_k:=(g_{k-1}@2)^x\cdot g_{k-1}@1$.

Corollary 2.16. If K has finite commutator width, this implies that the commutator width of G is at most 3.

Proof. Starting with some element $g \in G'$ there is a $\gamma \in \mathfrak{R}_{act}$ such that (g, γ) is a good pair. (Lemma 2.14).

By Proposition 2.15 there exist good pairs $(g_k, \gamma_k)_{k \in \mathbb{N}}$ such that $(R_3 g, \gamma)$ is solvable if one (and hence all) of the constrainted equations $(R_{2^k+1}g_k, \gamma_k)$ is solvable.

If K is of finite commutator width then by Corollary 2.11 there is an $N \in \mathbb{N}$ such that all for all good pairs (h, γ) and $n \geq N$ the constrainted equations $(R_n g, \gamma)$ are solvable. Therefore the sequence of good pairs (g_k, γ_k) is a sequence of solvable equations $(R_{2^k+1}g_k, \gamma_k)$.

Corollary 2.17. If for each $g \in G'$ the set $\{h \in G' \mid \exists \gamma' : (h, \gamma') \in (g_k, \gamma_k)_{k \in \mathbb{N}}\}$ is finite, then the commutator width of G is at most 3.

Proof. If the sequence g_k is finite then as \mathfrak{R}_{act} is finite there is a circle in the sequence of (g_k, γ_k) say $(g_k, \gamma_k) = (g_l, \gamma_l)$ for some $k \neq l$. Thus the solvability of $(R_n g_k, \gamma_k)$ is equivalent to the solvability of $(R_m g_k, \gamma_k)$ for arbitrary large m but the latter is solvable since (g_k, γ_k) is a good pair.

Remark. If the "x" in Proposition 2.15 would be always trivial then the assumption of the previous lemma would be true as the sequence $g_1 = g, g_k = g_{k-1}@2 \cdot g_{k-1}@1$ is finite for all g.

Remark. Computer experiments of "random" elements of G' (words of at most 100 generators) did always result in finite sequences (g_k, γ_k) of size at most 30.

Proof of Proposition 2.15. The proof constructs for each good pair (q, γ) a set $\Gamma^q(\gamma) \subset \mathfrak{R}_{act} \times Q$ where the elements fulfill the asked properties by replacing Q by a fixed representative system in G. Then GAP is used to show that for all choices $q \in G'/K'$, $\gamma \in \mathfrak{R}_{act}$ the constructed sets are never empty.

Take the branching structure (K, Q, π, Q_1, ω) of the Grigorchuk group as before and the representative system

$$S = \{1, a, b, c, d, ab, ad, ba\}$$

for Q in G. Denote by rep: $Q \to S$ the map such that $\operatorname{rep}(q)^{\pi} = q$. Denote $x_i \in X$ such that $\operatorname{supp}(\gamma) \subset \langle x_1, \dots, x_6 \rangle$ and choose $y_1, \dots, y_{12} \in X \setminus \{x_1, \dots, x_6\}$.

$$\Gamma_1(\gamma) = \{ \gamma' : \langle y_1, \dots, y_{12} \rangle \to Q \mid \langle \gamma'(y_{2i-1}), \gamma'(y_{2i}) \rangle \in w^{-1}(\gamma(x_i)) \}$$

Let $F_1 = \langle g \rangle$, $F_2 = \langle g_1, g_2 \rangle$ be free groups. Now define a homomorphism

$$\Phi_{\gamma} \colon F_X * F_1 \to (F_X * F_2) \wr C_2$$

$$g \mapsto \langle \langle g_1, g_2 \rangle \rangle,$$

$$x_i \mapsto \langle \langle x_i^{(1)}, x_i^{(2)} \rangle \rangle \mathcal{A}\mathbf{ct}(\gamma(x_i)).$$

Take $q_1, q_2 \in Q, n > 3 \in \mathbb{N}$ arbitrary and define

$$\Gamma_2^{q_1,q_2,n}(\gamma) = \left\{ \gamma' \in \Gamma_1(\gamma) \middle| \substack{\pi \colon F_2 \to Q \\ g_1 \mapsto q_1 \\ g_2 \mapsto q_2}, (\gamma' * \pi)^2(\Phi_\gamma(R_n g)) = \langle 1, 1 \rangle \right\}.$$

Denote by $v, w = v_n, w_n$ the elements such that $\Phi_{\gamma}(R_n g) = \langle v, w \rangle \langle g_1, g_2 \rangle$. By the following Lemma 2.18 there is $x \in X \cup X^{-1}$ such that $v = v_1 x v_2$ and $w = w_1 x^{-1} w_2$. Then the homomorphism

$$l_x \colon F_X * F_2 \to F_X * F_2, x_i \mapsto \begin{cases} x_i & \text{if } x_i \neq x \\ w_2 g_2 w_1 & \text{if } x_i = x \end{cases}$$

maps $vg_1 \mapsto v_1w_2g_2w_1v_1g_1$ and $wg_2 \mapsto 1$. For $\gamma' \in \Gamma_2^{q_1,q_2,n}(\gamma)$ it is $x^{\gamma'*\pi} = (w_2g_2w_1)^{\gamma'*\pi}$ so with $X' = X \setminus x$ there is no loss of information if we consider $\gamma'|_{F_{X'}}$ instead of γ' . From section 1.2 remember the normalization automorphism $\mathfrak{nf}_{\gamma,n,x} := \mathfrak{nf}_{v_1w_2g_2w_1v_1g_1} \colon F_{X'} * F_2 \to F_{X'} * F_2$ and note that $\mathfrak{nf}_{\gamma,n,x}(l_x(v)) = R_{2n-1}g_2^{x_{4n-1}}g_1$. This leads to the following definition.

$$\Gamma_3^{q_1,q_2,n,x}(\gamma) = \left\{ (\gamma''|_{X \setminus \{x_{4n-1}\}}, \gamma''(x_{4n-1})) \middle| \gamma'' = \gamma'|_{X'} \circ \mathfrak{nf}_{\gamma,n,x}, \gamma' \in \Gamma_2^{q_1,q_2,n} \right\}.$$

A solution for the constrainted equation

$$(R_{2n-1}(g@2)^{\operatorname{rep}(y)}(g@1), \gamma''')$$
 for $(\gamma''', y) \in \Gamma_3^{(g@1)^{\pi}, (g@2)^{\pi}, n, x}$

can be extended by sending $x_{4n-1} \mapsto \operatorname{rep}(y)$ to a solution s' of the equation $(R_{2n-1}g@2^{x_{4n-1}}g@1,\gamma'')$. The map $s' \circ \mathfrak{nf}_{\gamma,n,x}^{-1}$ is a solution for the constrainted equation $(v_1w_2g_2w_1v_1g_1,\gamma'|_{X'})$. Which can be extended by the mapping $x \mapsto w_2(g@2)w_1$ to a solution s of $(\Phi_{\gamma}(R_ng),\gamma')$. By definition of ω it is $t_i := \langle\!\langle s(y_{2i-1}), s(y_{2i})\rangle\!\rangle \operatorname{Act}(\gamma(x_i)) \in G$ for all i. So the mapping $x_i \mapsto t_i$ is a solution for (R_ng,γ) .

The map $\Gamma_3^{q_1,q_2,n,x}$ does not depend on the value of n: Choose fitting v,w such that $\Phi_{\gamma}(R_3g) = \langle\!\langle v,w\rangle\!\rangle \langle\!\langle g_1,g_2\rangle\!\rangle$ then $\Phi_{\gamma}(R_ng) = \langle\!\langle v,w\rangle\!\rangle \langle\!\langle R_{n-3}g_1,R'_{n-3}g_2\rangle\!\rangle$ then after applying the homomorphism l_x the word which needs to be normalized is $v_1w_2R_{n-3}g_2w_1v_1R'_{n-3}g_1$. The automorphisms

$$\psi_1 \colon F_X \ast F_2 \to F_X \ast F_2, \qquad \psi_2 \colon F_X \ast F_2 \to F_X \ast F_2$$

$$y \mapsto y^{g_1^{-1}}, \qquad y \mapsto y^{g_2^{x_{11}}g_1}, \quad \text{for } y \in \text{Var}(R'_{n-3})$$

$$z \mapsto z^{(g_2w_1v_1g_1)^{-1}} \qquad z \mapsto z^{g_2^{x_{11}}g_1} \qquad \text{for } z \in \text{Var}(R_{n-3})$$

$$x \mapsto x \qquad \qquad \text{for all other generators}$$

have the property that $\mathfrak{nf}_{v_1w_2R_{n-3}g_2w_1v_1R'_{n-3}g_1} = \psi_2 \circ \mathfrak{nf}_{v_1w_2g_2w_1v_1g_1} \circ \psi_1$ and $\gamma' \circ \psi_i = \gamma'$. The map $\Gamma_3^{q_1,q_2,n,x}$ does depend on x, therefore we take the union of all of them and define

$$\Gamma_4^{q_1,q_2}(\gamma) := \left\{ (\gamma''' = \gamma'' \circ \varphi_{\gamma''}, y) \, \middle| \, (\gamma'',y) \in \bigcup_{x \in \operatorname{Var}(v) \cap \operatorname{Var}(w)} \Gamma_3^{q_1,q_2,n}(\gamma) \right\}.$$

Note now that $q_1, q_2 \in Q$ are determined by $q \in G'/K'$ in the sense that there is a map $\bar{@}i: G'/K' \to Q$ such that if $g^{\tau} = q$ and $g_i = g@i$ then $q_i = q@i$ (Lemma 2.21). So we can write $\Gamma_4^{q_1,q_2}$ as Γ_4^q instead and finally define

$$\Gamma^q(\gamma) := \{ \gamma' \in \Gamma_4^q(\gamma) \mid \mathcal{A}\mathbf{ct}(\gamma') \neq 1 \}.$$

As a next step we want to make sure that for all preimages g of q under τ there are good pairs among the resulting pairs $((g@2)^{\text{Rep}(y)} \cdot g@1, \gamma''')$.

Define for $h \in G$ maps $p_h \colon G \to G$ by $g \mapsto \left((g@2)^h \cdot g@1, \gamma''' \right)$ this maps are in general not homomorphisms but by Lemma 2.19 we see that for $g \in G'$ that $p_h(g) \in G'$ for all $h \in G$ thus there is a chance that these elements form good pairs with the correct choices of γ .

We can show even better: For each fixed $q \in G'/K'$ and fixed $\gamma \in \mathfrak{R}_{act}$ there is $(\gamma', x) \in \Gamma^q(\gamma)$ such that for all g such that $g^{\tau} = q$ the element $(p_{rep(x)}(g), \gamma')$ is a good pair.

For this purpose we need to reduce this to a finite number of checks. By Lemma 2.20 we can define the map $\bar{p}_h \colon G'/\!\!/K' \to G'/\!\!/(K \times K)$ and the natural homomorphism

$$\varpi' \colon G'/K' \to (G'/K')/(K \times K/K') \simeq G'/K \times K$$

and now only need to show that there is a $(\gamma', x) \in \Gamma^q(\gamma)$ such that all preimages of $\bar{p}_{\text{rep}(x)}(q)$ under ϖ' form good pairs with γ' . In formulas what needs to be checked is:

$$\forall q \in G' /_{K'} \ \forall \gamma \in \mathfrak{R}_{act} \exists (\gamma', x) \in \Gamma^q(\gamma) \forall r \in \varpi'^{-1}(\bar{p}_{rep(x)}) : (r, \gamma') \text{ is a good pair.}$$

This last formula quantifies only over finite sets and is implemented in GAP and can be verified there. \Box

Lemma 2.18. If γ is a constraint with nontrivial activity, and $\Phi_{\gamma}(R_n g) = \langle w_1, w_2 \rangle$ then $\operatorname{Var}(w_1) \cap \operatorname{Var}(w_2) \neq \emptyset$.

Proof. Let x be generator of F_X with non vanishing constraint activity. Then R_n contains either a factor [x,y] or [y,x] for another generator y. Assume without loss of generality the first case. Let further be $\Phi_{\gamma}(x) = \langle\!\langle x_1, x_2 \rangle\!\rangle (1,2)$ and $\Phi_{\gamma}(y) = \langle\!\langle y_1, y_2 \rangle\!\rangle \sigma$. Then $\Phi_{\gamma}(R_n g)$ contains a factor

$$[\langle\!\langle x_1, x_2 \rangle\!\rangle (1, 2), \langle\!\langle y_1, y_2 \rangle\!\rangle \sigma] = \begin{cases} \langle\!\langle x_2^{-1} y_2^{-1} x_2 y_1, x_1^{-1} y_1^{-1} x_1 y_2 \rangle\!\rangle & \text{if } \sigma = \mathbb{1} \\ \langle\!\langle x_2^{-1} y_1^{-1} x_1 y_2, x_1^{-1} y_2^{-1} x_2 y_1 \rangle\!\rangle & \text{if } \sigma = (1, 2). \end{cases}$$

So in both cases $y_1, y_2 \in Var(w_1) \cap Var(w_2)$.

Lemma 2.19. Let $h \in G$ and $p_h \colon G \to G$ be the map $g \mapsto ((g@2)^h \cdot g@1, \gamma''')$. It holds that $p_h(G') \subset G'$ for all $h \in G$ and $p_1(K) \subset K$.

Proof. Denote first by $p := p_1$ then each element $g \in G'$ is a word in generators $w((ab)^2, (abad)^2, (bada)^2, (ad)^2)$. The generators have the following form:

$$(ab)^2 = \langle (ca, ac) \rangle, (abad)^2 = \langle (1, (ab)^2) \rangle, (bada)^2 = \langle (ab)^2, 1 \rangle, (ad)^2 = \langle (b, b) \rangle.$$

Therefore it is

$$p(g) = w(ac, (ab)^2, 1, b) \cdot w(ca, 1, (ab)^2, b)$$

$$\equiv w(ac, 1, 1, 1) \cdot w(ca, 1, 1, 1) \cdot w(1, 1, 1, b)^2 \equiv 1 \mod G'.$$

For $h \in G$ it is $p_h(g) = [h, (g@2)^{-1}]p(g)$ and therefore $p_h(g) \in G'$ for all $g \in G'$. An element $g \in K$ is a word $w((ab)^2, (abad)^2, (bada)^2,)$ and therefore

$$p(g) = w(ac, (ab)^2, 1) \cdot w(ca, 1, (ab)^2)$$

$$\equiv w(ac, 1, 1) \cdot w(ca, 1, 1) \equiv 1 \mod K.$$

Lemma 2.20. The map

$$\bar{p}_h \colon G'/_{K'} \to G'/_{K \times K}$$

$$gK' \mapsto (g@2)^h \cdot g@1) K \times K$$

is well defined.

Proof. It's easy to verify by GAP that $k@i \in K \times K$ for i = 1, 2 and $k \in K'$ using Lemma 2.12. Then for $k \in K'$ it is

$$p_h(gk) = ((gk)@2)^h \cdot (gk)@1 = (g@2)^h \cdot (k@2)^h \cdot g@1 \cdot k@1 \in (g@2)^h \cdot g@1K \times K.$$

Lemma 2.21. The maps $@i: G \to G, g \mapsto g@i$ induce well defined maps $@i: G/K' \to G/K$

Proof. Either by same brute-force argument as before that $k'@i \in K \times K < K$ or:

Note that $@i|_{G'}$ is a group homomorphism then consider the following diagram:

$$1 \longrightarrow K/K' \longrightarrow G'/K' \longrightarrow G'/K \longrightarrow 1$$

$$\varphi \downarrow \qquad \qquad = \downarrow$$

$$1 \longrightarrow K/K \times K \longrightarrow G'/K \times K \longrightarrow G'/K \longrightarrow 1$$

Where the map φ exists because the group $K/K \times K$ has order 4 and hence is abelian. So there need to be a homomorphism $G'/K' \to G'/K \times K$ which makes all cells commute.

2.2.1 Product of 3 commutators

We will prove that every element $g \in G'$ is a product of three commutators by proving that the assumptions of Corollary 2.17 are always satisfied. For this purpose remember the map $p_x \colon g \mapsto (g@2)^x g@1$ from the proof of Proposition 2.15. We will show that for each $g \in G'$ the sequence of sets

$$Suc_1^g = \{g\}, Suc_n^g = \{p_x(h) \mid h \in Suc_{n-1}^g, x \in S\}$$

stagnates in a finite set.

In [Bar98] there is a choice of weights on generators which result in a length on G with good properties.

Lemma 2.22 ([Bar98]). Let $\eta \approx 0.811$ be the real root of $x^3 + x^2 + x - 2$ and set the weights

$$\omega(a) = 1 - \eta^3 \qquad \qquad \omega(c) = 1 - \eta^2$$

$$\omega(b) = \eta^3 \qquad \qquad \omega(d) = 1 - \eta$$

then

$$\eta(\omega(b) + \omega(a)) = \omega(c) + \omega(a)$$
$$\eta(\omega(c) + \omega(a)) = \omega(d) + \omega(a)$$
$$\eta(\omega(d) + \omega(a)) = \omega(b).$$

The next lemma is a small variation of a lemma in [Bar98].

Lemma 2.23. Denote by ∂_{ω} the length on G induced by the weight ω . Then $\partial_{\omega}(p_x(g)) \leq \delta \partial_{\omega}(g)$ for all $x \in S, g \in G$ with $\partial_{\omega}(g) > C$ some constant $C \in \mathbb{N}, \delta < 1$.

Corollary 2.24. The sequences of sets

$$Suc_1^g = \{g\}, \ Suc_n^g = \{p_x(h) \mid h \in Suc_{n-1}^g, x \in S\}$$

stagnates at a finite step for all $g \in G$.

Proof of Lemma.([Bar98]). Each element $g \in G$ can be written in a word of minimal length of the form $g = a^{\varepsilon}x_1ax_2a\dots x_na^{\delta}$ where $x_i \in \{b, c, d\}$ and $\varepsilon, \delta \in \{0, 1\}$. Denote by n_b, n_c, n_d the number of occurrences of b, c, d accordingly. Then

$$\partial_{\omega}(g) = (n - 1 + \varepsilon + \delta)\omega(a) + n_{b}\omega(b) + n_{c}\omega(c) + n_{d}\omega(d)$$

$$\partial_{\omega}(p_{x}(g)) \leq (n_{b} + n_{c})\omega(a) + n_{b}\omega(c) + n_{c}\omega(d) + n_{d}\omega(b) + 2\partial_{\omega}(x)$$

$$= \eta \left((n_{b} + n_{c} + n_{d})\omega(a) + n_{b}\omega(b) + n_{c}\omega(c) + n_{d}\omega(d) \right) + 2\partial_{\omega}(x)$$

$$= \eta(\partial_{\omega}(g) + (1 - \varepsilon - \delta)\omega(a)) + 2\partial_{\omega}(x)$$

$$\leq \eta(\partial_{\omega}(g) + \omega(a)) + 2(\omega(a) + \omega(b))$$

$$= \eta(\partial_{\omega}(g) + \omega(a)) + 2.$$

Thus the length of $p_x(g)$ growths with a linear factor smaller 1 in terms of the length of g. Therefore the claim holds. For instance one could take $\delta = 0.86$ and C = 50 or $\delta = 0.96$ and C = 16.

Corollary 2.25. K has commutator width 3.

Proof. To show that K has commutator width 3 it is sufficient, to show that the constrainted equations $(R_3g, 1)$ have solutions for all $g \in K'$. Since 1 has trivial activity one cannot simply apply Proposition 2.15. But one can check that all pairs $(h, \gamma_1), (f, \gamma_2)$ such that $g = \langle h, f \rangle$ and $\gamma_1, \gamma_2 = (1, 1, 1, 1, (bad)^{\pi}, 1)$, $\gamma_2 = (1, 1, 1, 1, (ca)^{\pi})$ are good pairs with active constraints and hence the equations $(R_3g, 1)$ have solutions for all $g \in K'$.

2.3 Product of 2 commutators

If it were true that for each $q \in G'/K'$ there is a $\gamma \in \mathfrak{R}_{act}$ with (q, γ) a good pair and $\gamma(x_i) = 1$ for $i \geq 4$ then it would follow immediately that under the assumptions of either Corollary 2.16 or Corollary 2.17 that each $g \in G'$ is a product of two commutators. But unfortunately this isn't the case.

In fact there are 8 elements of $G'\!/K'$ which are no good pairs for active γ 's with trivial activity in the 5th component. $G'\!/K'$ is generated by the following elements $q_1 = ((ab)^2)^{\tau}$, $q_2 = ((bada)^2)^{\tau}$, $q_3 = ((abad)^2)^{\tau}$, $q_4 = ((ad)^2)^{\tau}$.

Fortunately there are inactive γ 's with support inside the first 4 coordinates such that all descendant problems are in none of these problematic cases.

For instance the table below shows all problematic $q \in G'/K'$ and a choice of γ such that (q, γ) is a good pair and $(g@i)^{\tau}, \gamma_i)$ are good pairs with active constraints for i = 1, 2 and all g such that $g^{\tau} = q$. Furthermore the solvability of $(R_2g@i, \gamma_i)$ implies the solvability of (R_2g, γ) and the latter is solvable by the previous section.

```
\frac{\gamma_1}{(1,bad^{\pi},a^{\pi},ad^{\pi},1,1)} \frac{\gamma_2}{(1,ca^{\pi},c^{\pi},da^{\pi},1,1)}
                          (1, 1, b^{\pi}, dada^{\pi}, 1, 1)
       q_2q_1^2
q_2^{-1}q_4q_1^{-1}
                          (1, 1, b^{\pi}, dada^{\pi}, 1, 1)
                                                                    (1, bad^{\pi}, a^{\pi}, ad^{\pi}, 1, 1) (1, ca^{\pi}, c^{\pi}, da^{\pi}, 1, 1)
q_{3}q_{1}^{2}
q_{2}^{-1}(q_{1}^{-1}q_{4})^{2}
q_{1}^{-2}q_{2}
                             (1,1,c^{\pi},b^{\pi},1,1)
                                                                     (1, 1, a,^{\pi} bada^{\pi}, 1, 1)
                                                                                                                 (1, 1, d^{\pi}, dad^{\pi}, 1, 1)
                             (1,1,c^{\pi},b^{\pi},1,1)
                                                                     (1, 1, a^{\pi}, bada^{\pi}, 1, 1)
                                                                                                                 (1, 1, d^{\pi}, dad^{\pi}, 1, 1)
                           (1, 1, b, dada^{\pi}, 1, 1)
                                                                    (1, bad^{\pi}, a^{\pi}, ad^{\pi}, 1, 1)
                                                                                                                (1, ca^{\pi}, c^{\pi}, da^{\pi}, 1, 1)
                          (1, 1, b^{\pi}, dada^{\pi}, 1, 1)
                                                                    (1, bad^{\pi}, a^{\pi}, ad^{\pi}, 1, 1)
                                                                                                                (1, ca^{\pi}, c^{\pi}, da^{\pi}, 1, 1)
    q_1^{-2}q_3 
 q_1^{-2}q_3^{-1}
                             (1,1,c^{\pi},b^{\pi},1,1)
                                                                     (1, 1, a^{\pi}, bada^{\pi}, 1, 1)
                                                                                                                  (1, 1, d^{\pi}, dad^{\pi}, 1, 1)
                                                                     (1, 1, a^{\pi}, bada^{\pi}, 1, 1)
                                                                                                                 (1, 1, d^{\pi}, dad^{\pi}, 1, 1)
                              (1,1,c^{\pi},b^{\pi},1,1)
```

Corollary 2.26. All elements $g \in G'$ are products of two commutators.

References

[Bar98] Laurent Bartholdi, The growth of grigorchuk's torsion group, IMRN **20** (1998), 1049–1054.

- [BGS03] Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Sunik, *Branch groups*, Handbook of algebra **3** (2003), 989–1112.
- [JE81] Leo P Comerford Jr. and Charles C Edmunds, Quadratic equations over free groups and free products, Journal of Algebra **68** (1981), no. 2, 276 297.
- [LMU13] Igor Lysenok, Alexei Miasnikov, and Alexander Ushakov, Quadratic equations in the Grigorchuk group, 1304.5579.