

www.**eritecampinas**.com.br

PROFESSOR DANILO

AULA 5 – NÚMEROS BINÁRIOS

VAMOS CONTAR ATÉ TRINTA

DECIMAL	BINÁRIO
00	00000
01	00001
02	00010
03	00011
04	00100
05	00101
06	00110
07	00111
08	01000
09	01001
10	01010
11	01011
12	01100
13	01101
14	01110
15	01111
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110

COMO CONVERTER DE BINÁRIO PARA DECIMAL

Computadores usam o sistema binário. Há outros sistemas, como visto na tabela anterior, mas vamos focar neste sistema. Seja um número binário qualquer. Por exemplo:

<u>1</u> <u>0</u> <u>1</u> <u>1</u>

Vamos numerar os caracteres da direita para a esquerda, comecando pelo zero:

Número binário	1	0	1	1
Posição	3	2	1	0

Para determinar o valor do número binário, basta eleva a posição como uma potência de 2 e multiplicar pelo valor do caractere correspondente e depois somar todos os números. Veiamos:

v ojarrioo.				
Número binário	1	0	1	1
Posição	3	2	1	0
Operação 2 ^{posição}	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
Multiplicando pelo caractere	1x8 = 8	0x4 = 0	1x2 = 2	1x1 = 1

Agora é só somar o resultado da última linha:

8 + 0 + 2 + 1 = 11

Mas como diferenciamos se um número é binário ou decimal? Resolvemos isso com um subscrito, ou seja

 $1011_{(2)} = 11_{(10)}$

que pode ser lido como: "um zero um um na base dois é igual à um um na base dez" ou ""um zero um um na base dois é igual à onze na base dez".

Vamos treinar um pouco.

8° ANO - ROBÓTICA - 17/05/2024

EXERCÍCIOS - NÃO VALE NOTA

Converta os números abaixo, em binário, para decimal.

1.
$$1_{(2)} = 1 \times 2^0 = 1 \times 1 = 1_{(10)}$$

2.
$$11_{(2)} = 1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3_{(10)}$$

3.
$$111_{(2)} = 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 4 + 2 + 1 = 7_{(10)}$$

4.
$$1111_{(2)} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 8 + 4 + 2 + 1 = 15_{(10)}$$

5.
$$1101_{(2)} = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13_{(10)}$$

6.
$$1100_{(2)} = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 8 + 4 + 0 + 0 = 12_{(10)}$$

7.
$$1000_{(2)} = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 8 + 0 + 0 + 0 = 8_{(10)}$$

8. 0010 1000₍₂₎ =
$$0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$$
$$= 0 + 0 + 32 + 0 + 8 + 0 + 0 + 0 = 12_{(10)}$$

MEMÓRIA DO COMPUTADOR E OS NÚMEROS BINÁRIO

Toda informação deve esta guardada em um espaço de memória de um computador. Assim, se você quiser guardar o número de carteiras na sala de aula, por exemplo, deve reservar um espaço de memória de um computador.

Digamos que você reservou um byte apenas, isto é, 8 bits. Isso quer dizer que você pode guardar desde o número 0000 00001

até o número

1111 1111₁

que, convertendo para a base dez, vai de 0 até 255 (veja exercício 7). Ou seja, apenas um byte é suficiente para armazenar o número de carteiras de cada sala de aula, pois provavelmente não teremos mais que 255 carteiras em uma sala. Mas isso é suficiente para armazenar a quantidade de todas as carteiras na escola?

No Arduíno, é comum falarmos que uma porta tem resolução de 10 bits, assim, quer dizer que ele aceita números que vão de 0 até $2^{10} - 1 = 1023$.

Ou seja, se tivermos n bits de espaço em memória, podemos armazenar números que vão de 0 até $2^n - 1$.

ATIVIDADE PRÁTICA

Vamos considerar que nosso kit irá armazenar dados: como temos 8 botões, podemos dizer que temos um minicomputador manual de 8 bit.

Assim, vamos colocar oito LEDs e representar alguns números em binário.

Como atividade prática, além de montar o circuito descrito abaixo, represente os números usados nos exercícios feitos em sala de aula. Na ausência de números à esquerda, considere como sendo o número 0.

www.**eritecampinas**.com.br

8° ANO – ROBÓTICA – 17/05/2024

PROFESSOR DANILO

Vamos usar

- 8 LEDs da cor que você quiser;
- 8 resistores de 200 ohm;
- 9 fios.

Você deverá realizar as seguintes conexões:

- O pino menor de cada LED no GND;
- Cada pino maior do LED deverá ir ao terminal de um resistor (cada LED com um resistor);
- O outro terminal de cada resistor deve ir à cada um dos bornes (de B1 ao B8).

Note que você pode consultar a figura a seguir, que mostra a numeração dos bornes de nosso kit.

Figura 1: Nomes dos bornes do nosso kit

Não usaremos as saídas de 5V nem de 9V.

Figura 2: Esquema de ligação usando o Tinkercad para simular o nosso kit

Figura 3: Detalhe do esquema de ligação de alguns bornes

Figura 4: Acesse a simulação clicando ou lendo a figura acima. Note que isso é particularmente importante para quem faltou da aula de hoje.

Figura 5: Diagrama esquemático gerado automaticamente pelo Tikercad. Note que o circuito que você irá montar pode ser representado conforme a figura acima. Veja também que os circuitos são separados pois usamos duas chaves de 4 botões no simulador.