Math 4B: Differential Equations

Lecture 14: Repeated Roots

- Repeated Roots,
- Reduction of Order,
- Some examples & More!

© 2021 Peter M. Garfield

Please do not distribute outside of this course.

Once More to Mass & Spring

A mass on a spring:

Again we'll focus on the homogeneous case (no external forcing):

$$mx'' + \gamma x' + kx = 0.$$

We saw to solve this we got $x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$, where r_1 , r_2 are roots of the **characteristic equation**

$$mr^2 + \gamma r + k = 0$$
 \Longrightarrow $r_1, r_2 = \frac{-\gamma \pm \sqrt{\gamma^2 - 4mk}}{2m}$

So there are three cases:

• $\gamma^2 - 4mk > 0 \implies 2$ distinct real roots.

Done this!

• $\gamma^2 - 4mk < 0 \implies 2$ complex (non-real) roots.

Last time!

• $\gamma^2 - 4mk = 0 \implies 1$ repeated real root.

Today!

Repeated Roots

So today we're assuming that $\gamma^2 - 4mk = 0$, so the only root of the characteristic polynomial

$$mr^2 + \gamma r + k = 0$$

is
$$r_1 = r_2 = -\frac{\gamma}{2m}$$
.

Question: Is $\{e^{r_1t}, e^{r_2t}\}$ a fundamental set of solutions?

Of course not! These are the same function, so the Wronskian is always zero.

Question 2: Can we find a second function to go with $x_1 = e^{rt}$ (where $r = r_1 = r_2$)?

Trick / Technique: Rather than look at a constant multiple of x_1 , we'll look at a **function** multiple. That is, we guess that $x_2(t) = v(t) \cdot x_1(t)$.

Trying the Technique

So we're going to substitute $x_2(t) = v(t)x_1(t)$ into

$$mx'' + \gamma x' + kx = 0$$

where $x_1(t) = e^{rt}$ is one solution when $r = \frac{-\gamma}{2m}$.

Let's Plug In: $x'_2 = v'x_1 + vx'_1$ and $x''_2 = v''x_1 + 2v'x'_1 + vx''_1$, so we want

$$mx_2'' + \gamma x_2' + kx_2 = m(v''x_1 + 2v'x_1' + vx_1'') + \gamma(v'x_1 + vx_1') + kvx_1$$

= $v''mx_1 + v'(2mx_1' + \gamma x_1) + v(mx_1'' + \gamma x_1' + kx_1).$

Notice that

- $mx_1'' + \gamma x_1' + kx_1 = 0$
- $x_1 = e^{rt}$ implies $x_1' = re^{rt} = -\frac{\gamma}{2m}x_1$, so $2mx_1' = -\gamma x_1$.
- Thus $2mx'_1 + \gamma x_1 = 0$ as well.

So $v''mx_1 = 0$, which means v'' = 0. Hence v(t) = at + b.

A Fundamental Set

So we have seen that if $x_1 = e^{rt}$ is one solution of

$$mx'' + \gamma x' + kx = 0 \qquad \text{with } \gamma^2 - 4mk = 0$$

then $(at + b)e^{rt}$ is also a solution. So we'll take $x_2(t) = te^{rt}$ as our second solution.

Suppose the differential equation ay'' + by' + cy = 0 satisfies $b^2 - 4ac = 0$. Then the general solution is $y = c_1 e^{rt} + c_2 e^{rt}$

$$y = c_1 e^{rt} + c_2 t e^{rt} = (c_1 + c_2 t) e^{rt}$$

where
$$r = -\frac{b}{2a}$$
.

Why? Check the Wronskian:

$$W[e^{rt}, te^{rt}] = \begin{vmatrix} e^{rt} & te^{rt} \\ re^{rt} & (rt+1)e^{rt} \end{vmatrix} = rte^{2rt} + e^{2rt} - rte^{2rt} = e^{2rt} \neq 0.$$

Example 1

1. Find the general solution to

$$y'' + 6y' + 9y = 0$$

then find the particular solution satisfying the initial conditions y(0) = 4, y'(0) = 1.

Solution: The repeated root of the characteristic polynomial $r^2 + 6r + 9 = (r+3)^2$ is r = -3. Thus the general solution of the ODE is $y(t) = c_1 e^{-3t} + c_2 t e^{-3t}$.

The derivative of y(t) is $y'(t) = (-3c_1 + c_2)e^{-3t} - 3c_2te^{-3t}$, so the initial conditions say

$$y(0) = c_1 = 4$$
$$y'(0) = -3c_1 + c_2 = 1.$$

Thus the particular solution is $y = 4e^{-3t} + 13te^{-3t}$.

Pictures

Example 2

Find the general solution to

$$y'' - y' + \frac{1}{4}y = 0$$

then find the particular solution satisfying the initial conditions y(0) = 2, y'(0) = 1/2.

Solution: The repeated root of the characteristic polynomial $r^2 - r + \frac{1}{4} = \left(r - \frac{1}{2}\right)^2$ is $r = +\frac{1}{2}$. Thus the general solution of the ODE is $y(t) = c_1 e^{t/2} + c_2 t e^{t/2}$.

The derivative of y(t) is $y'(t) = (\frac{1}{2}c_1 + c_2)e^{t/2} + \frac{1}{2}c_2te^{t/2}$, so the initial conditions say

$$y(0) = c_1 = 2$$
$$y'(0) = \frac{1}{2}c_1 + c_2 = \frac{1}{2}.$$

Thus the particular solution is $y = 2e^{t/2} - \frac{1}{2}te^{t/2}$.

$$y = 2e^{t/2} - \frac{1}{2}te^{t/2}$$

Pictures

General Approach

So we have fully solved the ODE

$$mx'' + \gamma x' + kx = 0.$$

We find the roots r_1 and r_2 of

$$mr^2 + \gamma r + k = 0$$
:
$$r = \frac{-\gamma \pm \sqrt{\gamma^2 - 4mk}}{2m}$$

Three Cases:

Case	Discriminant	Fundamental Set	General Solution
Two real roots $r_1 \neq r_2$	$\gamma^2 > 4mk$	$\left\{e^{r_1t},e^{r_2t}\right\}$	$y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$
Two non-real roots $\alpha \pm i\beta$	$\gamma^2 < 4mk$	$\left\{e^{\alpha t}\cos(\beta t), e^{\alpha t}\sin(\beta t)\right\}$	$y = e^{\alpha t} (c_1 \cos(\beta t) + c_2 \sin(\beta t))$
One real repeated root r	$\gamma^2 = 4mk$	$\left\{ e^{rt},te^{rt}\right\}$	$y = (c_1 + c_2 t)e^{rt}$

Reduction of Order

This technique works for more general ODEs – ones with non-constant coefficients:

$$y'' + p(t)y' + q(t)y = 0.$$

Suppose $y_1(t)$ is one solution and assume $y_2(t) = v(t)y_1(t)$.

As before: $y'_2 = v'y_1 + vy'_1$ and $y''_2 = v''y_1 + 2v'y'_1 + vy''_1$, so we want

$$y_2'' + py_2' + qy_2 = (v''y_1 + 2v'y_1' + vy_1'') + p(v'y_1 + vy_1') + qvy_1$$
$$= v''y_1 + v'(2y_1' + py_1) + v(y_1'' + py_1' + qy_1).$$

Since $y_1'' + py_1' + qy_1 = 0$, we get the ODE

$$y_1v'' + (2y_1' + py_1)v' = 0.$$

This is a *first order equation* in v'.

Example

3. Suppose we know that $y_1 = \sqrt{t}$ is a solution of

$$2t^2y'' + 3ty' - y = 0 (t > 0).$$

Use reduction of order to find the general solution.

Solution: Set $y_2(t) = v(t)y_1(t) = v(t)\sqrt{t}$, from which we find

$$y_2 = v t^{1/2}$$
 $y_2' = v' t^{1/2} + \frac{1}{2} v t^{-1/2}$ $y_2'' = v'' t^{1/2} + v' t^{-1/2} - \frac{1}{4} v t^{-3/2}$.

Then

$$0 = 2t^{2}y_{2}'' + 3ty_{2}' - y_{2}$$

$$= 2t^{2} \left(v''t^{1/2} + v't^{-1/2} - \frac{1}{4}vt^{-3/2} \right) + 3t \left(v't^{1/2} + \frac{1}{2}vt^{-1/2} \right) - vt^{1/2}$$

$$= 2t^{5/2}v'' + 5t^{3/2}v'.$$

Now: Solve $2t^{5/2}v'' + 5t^{3/2}v' = 0$ or $2t^{5/2}u' + 5t^{3/2}u = 0$ for u = v'.

Example (cont'd)

So we'd like to find v, where $2t^{5/2}u' + 5t^{3/2}u = 0$ for u = v'. Notice we can re-write this as

$$t^{5/2}u' + \frac{5}{2}t^{3/2}u = 0$$
 or $t^{5/2}u' + (t^{5/2})'u = 0$.

Thus $t^{5/2}u = C$, or $v' = u = Ct^{-5/2}$. Integrating, we get $v = C't^{-3/2}$ and so

$$y_2(t) = C't^{-3/2}y_1 = C't^{-3/2} \cdot \sqrt{t} = C't^{-1}$$

is also a solution of our ODE. So take $y_2 = t^{-1}$. Check:

$$2t^{2}y'' + 3ty' - y = 2t^{2}(+2t^{-3}) + 3t(-t^{-2}) - t^{-1} = 4t^{-1} - 3t^{-1} - t^{-1} = 0.$$

Wronskian:

$$W[\sqrt{t}, t^{-1}] = \begin{vmatrix} \sqrt{t} & t^{-1} \\ \frac{1}{2\sqrt{t}} & -t^{-2} \end{vmatrix} = -t^{-3/2} - \frac{1}{2}t^{-3/2} = -\frac{3}{2}t^{-3/2} \neq 0.$$

General Solution: $y = c_1 \sqrt{t} + c_2 t^{-1}$