Progetto Deep Learning: Ottimizzazione di TinyViT per Embedded

Questo repository contiene tutti i file e le cartelle relativi al progetto svolto per il corso di Deep Learning, il cui obiettivo stato l'ottimizzazione di un Vision Transformer (TinyViT) per il deployment su dispositivi embedded.

Obiettivi del progetto

- Ridurre la complessit di TinyViT tramite:
 - Knowledge Distillation (da ResNet18)
- Pruning (disattivazione dropout)
- Esportazione in formato TFLite (float32)
- Adattare il modello al dataset CIFAR-10 (10 classi, immagini 32x32)
- Validare il funzionamento su ambiente embedded (simulazione CPU)

Struttura del pacchetto consegna

```
...
PACCHETTO_CONSEGNA/
                                          # Diagrammi, descrizioni e struttura architetturale dei modelli
--- ARCHITETTURA_MODELLO/
--- CODICE_PROGETTO/
                                               # Script Python organizzati per addestramento, verifica,
esportazione
--- FONTI PAPER/
                                  # Riferimenti scientifici, paper in PDF o link utili
--- MODELLO DISTILLATO PRUNATO/
                                                  # Checkpoint del modello student dopo distillazione e
pruning
--- MODELLO_ORIGINALE/
                                       # Versione originale del modello student pre-distillazione
--- MODELLO TFLITE EMBEDDED/
                                             # File .tflite esportato per dispositivi embedded (es. Android,
Raspberry)
--- SCREEN_SHOT_PROGETTO/
                                           # Screenshot dell'interfaccia, risultati, inferenze
```

--- Giustificazione_Scientifica_TinyViT.pdf # Motivazione scientifica del progetto

--- presentazione_pechakucha.pdf # Presentazione finale (formato PechaKucha - 20 slide)

--- presentazione_pechakucha.pptx # Presentazione modificabile in PowerPoint

Rapporto_TinyViT.pdf	# Report sintetico (4-6 pagine)	

## Dipendenze principali		
- torch, torchvision		
- timm (per ViT e TinyViT)		
- tensorflow (per validazione TFLite)		
- ai-edge-torch (per esportazione TFL	ite da PyTorch)	
- matplotlib, numpy		
## Note tecniche		
- La distillazione effettuata su CIFA	AR-10, sebbene TinyViT sia gi sta	ato distillato durante il pretraining su
ImageNet-21k. Il fine-tuning distillato	ha senso per l'adattamento al task	specifico.
- La quantizzazione int8 non stata	possibile, in quanto TinyViT non	compatibile con TFLite quantization
post-training standard.		
- Il modello finale esportato in `.tflite`	(float32) ed pronto per inferenza s	su dispositivi embedded CPU.
## Autore		
Davide lannella		
Progetto Deep Learning - Laurea Mag	gistrale Ingegneria Informatica	
5 1 5 5 5 5 5 5	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	