AiSD

Rafał Włodarczyk

INA 4, 2025

Contents

1	Lecture I - Sortowanie		
	1.1	Worst-case analysis	2
	1.2	Average-case analysis	2
	1.3	Analiza losowego sortowania	2
	1.4	Insertion Sort (A, n)	2
		1.4.1 Worst-case analysis - Insertion Sort (A, n)	3
		1.4.2 Average-case analysis - Insertion Sort (A, n)	3
	1.5	Przykład złożoności	3
2	Lec	ture II - Merge Sort	4
	2.1	Merge sort $(A, 1, n)$	4
3	Lecture III - Narzędzia do analizy algorytmów		
	3.1	Notacja asymptotyczna	6
	3.2	Notacja Big-O	6
	3.3	Notacja Big- Ω	7
	3.4	Notacja Big- Θ	7
	3.5	Notacja small-o	8
	3.6	Notacja small- ω	8
	3.7	Metody rozwiązywania rekurencji	8
	3.8	Rozwiązywanie rekurencji	9
	3.9	Metoda podstawiania - Metoda dowodu indukcyjnego	9
4	Lec	ture IV - Metoda drzewa rekursji	10
	4.1	Metoda drzewa rekursji	10
	4.2	Metoda iteracyjna	12
	4.3	Master Theorem	12
	4.4	Divide and Conquer	14
	4.5	Wyszukiwanie elementów w portowanej tablicy	15
	4.6	Binary search	15

1 Lecture I - Sortowanie

Definiujemy problem:

- 1. Input: $A = (a_1, \dots, a_n), |A| = n$
- 2. Output: Permutacja tablicy wyjściowej (a_1',a_2',\ldots,a_n') , takie że: $a_1'\leqslant a_2'\leqslant\cdots\leqslant a_n'$.

1.1 Worst-case analysis

$$T(n) = \max_{\text{wszystkie wejścia}} \{ \text{#operacji po wszystkich |n|-wejściach} \}$$
 (1)

1.2 Average-case analysis

Zakładamy pewien rozkład prawdopodobieństwa na danych wejściowych. Z reguły myślimy o rozkładzie jednostajnym. Niech T - zmienna losowa liczby operacji wykonanych przez badany algorytm.

$$\mathbf{E}(T)$$
 – wartość oczekiwana T (2)

Później możemy badać wariancję, oraz koncentrację.

1.3 Analiza losowego sortowania

Dla poprzedniego algorytmu zobaczmy, że: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left[\text{czyli } f(n) \sim g(n) \equiv \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1\right]$. To jest tragiczna złożoność.

1.4 Insertion Sort (A, n)

Przykład: A = (8, 2, 4, 9, 3, 6), n = 6

- $8_i, 2_i, 4, 9, 3, 6$ j = 2, i = 1, key = 2 while
- $2, 8_i, 4, 9, 3, 6$
- $2, 8_i, 4_i, 9, 3, 6$ j = 3, i = 2, key = 4 while
- 2, 4, 8, 9, 3, 6
- $2, 4, 8_i, 9_i, 3, 6$ j = 4, i = 3, key = 9 no while

- $2, 4, 8, 9_i, 3_j, 6$ j = 5, i = 4, key = 3 while
- 2, 3, 4, 8, 9, 6
- $2, 3, 4, 8, 9_i, 6_i$ j = 6, i = 5, key = 6 while
- 2, 3, 4, 6, 8, 9

Porównujemy element ze wszystkim co jest przed nim - wszystko przed j-tym elementem będzie posortowane. Insertion sort nie swapuje par elementów w tablicy, a przenosi tam gdzie jest jego miejsce.

1.4.1 Worst-case analysis - Insertion Sort (A, n)

Odwrotnie posortowana tablica powoduje najwięcej przesunięć. Ponieważ ustaliśmy że liczba operacji w while zależy od j, wtedy:

$$T(n) = \sum_{j=2}^{n} O(j-1) = \sum_{j=1}^{n-1} O(j) = O\left(\sum_{j=1}^{n-1} j\right) =$$
(3)

$$= O\left(\frac{1+n-1}{2} \cdot (n-1)\right) = O\left(\frac{(n-1)\cdot (n)}{2}\right) = O\left(\frac{n^2}{2}\right) = O(n^2)$$
 (4)

 \mathbf{c}

1.4.2 Average-case analysis - Insertion Sort (A, n)

Policzmy dla uproszczenia, że na wejściu mamy n-elementowe permutacje, z których każda jest jednakowo prawdopodobna $p=\frac{1}{n!}$. Spróbujmy wyznaczyć ${\bf E}$, korzystając z inwersji permutacji. Wartość oczekiwana liczby inwersji w losowej permutacji wynosi:

$$\mathbf{E} \sim \frac{n^2}{4} \tag{5}$$

Pominęliśmy stałe wynikające z innych operacji niż porównywanie. W average-case będziemy około połowę szybiciej niż w worst-case.

Pseudokod bez przykładu jest słaby.

1.5 Przykład złożoności

Patrzymy na wiodący czynnik.

$$13n^2 + 91n\log n + 4n + 13^{10} = O(n^2) \tag{6}$$

$$=13n^2 + O(n\log n)\tag{7}$$

Chcielibyśmy gdzie to konieczne, zapisać lower order terms.

 $Pytanie\ o\ dzielenie\ liczb$ - istnieją algorytmy, które ze względu na arytmetyczne właściwości liczb sprawiają, że mniejsze liczby mogą dzielić się dłużej niż większe. Podczas tego kursu nie omawiamy złożoności dla takich algorytmów.

2 Lecture II - Merge Sort

2.1 Merge sort (A, 1, n)

Niech złożoność T(n) - złożność algorytmu.

Funkcja merge sort

```
0(1)
               | \text{ if } |A[1...n]| == 1 \text{ return } A[1...n]
               | else
T(floor(n/2)) |
                     B = MERGE_SORT(A,1,floor(n/2))
                     C = MERGE\_SORT(A,floor(n/2)+1, n)
T(ceil(n/2))
0(n)
               return MERGE(B,C)
Funkcja merge
MERGE(X[1...k], Y[1...1])
if k = 0 return Y[1...1]
if l = 0 return X[1...k]
if X[1] <= Y[1]
    return X[1] o MERGE(X[2...k], Y[1...1])
    return Y[1] o MERGE(X[1...k], Y[2...1])
MERGE(A,B)
2 1 ---> [1] + MERGE(A,B (bez 1))
7 9
13 10
19 11
20 14
2 9 ---> [1,2] + MERGE(A (bez 2),B)
7 10
13 11
19 14
20 .
\dots \longrightarrow [1,2,7,9,10,11,13,14]
19 .
20 .
... ---> [1,2,7,9,10,11,13,14,19,20]
[10], [2], [5], [3], [7], [13], [1], [6]
[2, 10], [3,5], [7,13], [1,6]
[2,3,5,10], [1,6,7,13]
[1,2,3,5,6,7,10,13]
```

Złożoność obliczeniowa merge-a wynosi O(k+l) - w najgorszym przypadku bierzemy najpierw z jednej strony, potem z drugiej i na zmianę.

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + O(n) \tag{8}$$

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n) \tag{9}$$

Rozpiszmy tzw drzewo rekursji:

Musimy dodać wszystkie koszty, które pojawiły się w drzewie. Dodajmy piętra, a następnie zsumumjmy. Żeby znać wysokość drzewa interesuje nas dla jakiego h zajdzie $\frac{n}{2^h}=1$

$$\frac{n}{2^h} = 1 \implies 2^h = n \implies h = \log_2 n \tag{10}$$

Zatem złożność:

$$\sum_{i=1}^{\log n} cn = cn \log n \sim O(n \log n)$$
(11)

3 Lecture III - Narzędzia do analizy algorytmów

Dzisiejszy wykład prowadzi GODfryd

3.1 Notacja asymptotyczna

- Big-O (O-duże) $f: \mathbb{N} \to \mathbb{R}$
- Big- Ω (Ω -duże) $f: \mathbb{N} \to \mathbb{R}$
- Big- Θ (Θ -duże) $f: \mathbb{N} \to \mathbb{R}$
- Small-o (o-małe) $f: \mathbb{N} \to \mathbb{R}$

3.2 Notacja Big-O

Definition. Notacja Big-O**.** Funkcja $f(n) \in O(g(n))$, gdy:

$$f(n) = O(g(n)) \equiv (\exists c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| \leqslant c \cdot |g(n)|)$$

Przykład: $2n^2 = O(n^3)$, dla $n_0 = 2, c = 1$ definicja jest spełniona.

Pomijamy tutaj stałe - interesuje nas rząd wielkości

$$O(g(n)) = \{ f \in \mathbb{N}^{\mathbb{R}} : f \text{ spełnia definicję} \}$$

O(g(n)) jest klasą funkcji, ale jako informatycy możemy zapisywać f=O(g), zamiast $f\in O(g)$. Notacja nie ma symetrii, to znaczy $f=O(g) \nrightarrow g=O(f)$

Fact. Definicja Big-O za pomocą granicy. Możemy zapisać alternatywnie:

$$f(n) = O(g(n)) \equiv \limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| \le \infty$$

Uwaga. Jeśli $\lim_{n\to\infty} \left| \frac{f(n)}{g(n)} \right| < \infty$ (istnieje), to:

$$\limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right|$$

Przykłady:
$$\begin{cases} f(n) = n^2 \\ g(n) = (-1)^n n^2 \end{cases}$$
 Granica nie istnieje, ale $\limsup = 1$
$$\begin{cases} \frac{f(n)}{g(n)} = \begin{cases} 1, & 2 & \mid n \\ \frac{1}{n}, & 2 & \nmid n \end{cases}$$

Granica nie istnieje.

Fact. Dokładność zapisu Big-O. Pomijamy składniki niższego rzędu jako mniej istotne, ale podkreślamy że istnieją:

$$f(n) = n^3 + O(n^2) \equiv (\exists h(n) = O(n^2)) (f(n) = n^3 + h(n))$$
(12)

Rozważmy następnie stwierdzenie:

$$n^{2} + O(n) = O(n^{2}) \equiv (\forall f(n) = O(n)) \left(\exists h(n) = O(n^{2}) \right) \left(n^{2} + f(n) = h(n) \right)$$
(13)

Rozumiemy to następująco - dodając dowolną funkcję z klasy funkcji liniowych do n^2 otrzymamy funkcję z klasy funkcji kwadratowych.

3.3 Notacja Big- Ω

Definition. Notacja Big- Ω . Funkcja $f(n) \in \Omega(q(n))$, gdy:

$$f(n) = \Omega(g(n)) \equiv (\exists c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| \geqslant c \cdot |g(n)|) \tag{14}$$

biorąc $c'=\frac{1}{c}>0$ mamy: (|g(n)| $\leqslant c'\cdot |f(n)|),$ czylig(n)=O(f(n)). Przykład:

$$2n^2 = O(n^3) \tag{15}$$

$$n^3 = \Omega(2n^2) \tag{16}$$

$$n = \Omega(\log n) \tag{17}$$

Każda funkcja jest Omega od siebie samej.

3.4 Notacja Big- Θ

Definition. Notacja Big- Θ . Funkcja $f(n) \in \Theta(g(n))$, gdy:

$$f(n) = \Theta(g(n)) \equiv (\exists c_1, c_2 > 0) \, (\exists n_0 \in \mathbb{N}) \, (\forall n \ge n_0) \, (c_1 \cdot |g(n)| \le |f(n)| \le c_2 \cdot |g(n)|) \quad (18)$$

Przykład:

$$n^2 = \Theta(2n^2) \tag{19}$$

$$n^3 = \Theta(n^3) \tag{20}$$

$$n^4 + 3n^2 + \log n = \Theta(n^4) \tag{21}$$

Fact. Dokładność zapisu Theta.

$$f(n) = \Theta(g(n)) \equiv f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$
(22)

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)) \tag{23}$$

Rozważmy przypadek patologiczny

$$f(n) = n^{1+\sin\frac{\pi \cdot n}{2}}$$
 $g(n) = n$ (24)

$$f \neq O(g), g \neq O(f) \tag{25}$$

3.5 Notacja small-o

Definition. Notacja small-o. Funkcja $f(n) \in o(g(n))$, gdy:

$$f(n) = o(g(n)) \equiv (\forall c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| < c \cdot |g(n)|)$$

$$(26)$$

Równoważnie:

$$f(n) = o(g(n)) \equiv \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0 \tag{27}$$

Przykład:

$$n = o(n^2) (28)$$

$$n^2 = o(n^3) \tag{29}$$

$$n^3 = o(2^n) \tag{30}$$

3.6 Notacja small- ω

Definition. Notacja small- ω **.** Funkcja $f(n) \in \omega(g(n))$, gdy:

$$f(n) = \omega(g(n)) \equiv (\forall c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| > c \cdot |g(n)|)$$
(31)

Równoważnie:

$$f(n) = \omega(g(n)) \equiv \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = \infty$$
 (32)

Przykład:

$$3.14n^2 + n = O(n^3) = \omega(n) \tag{33}$$

3.7 Metody rozwiązywania rekurencji

- Metoda podstawienia (indukcji) Cormen
- Metoda drzewa rekursji
- Metoda master theorem

3.8 Rozwiązywanie rekurencji

- 1. Zgadnij odpowiedź (wiodący składnik)
- 2. Sprawdź przez indukcję, czy dobrze zgadliśmy
- 3. Wylicz stałe

Information. Historyjka. Dwóch przyjaciół zgubiło się podczas podróży balonem.

- "Gdzie jesteśmy?"
- "W balonie."

Osoba, którą spotkali, była matematykiem.

Odpowiedź była precyzyjna, dokładna i całkowicie bezużyteczna.

3.9 Metoda podstawiania - Metoda dowodu indukcyjnego

Przykład 1. Rozwiążmy równanie rekurencyjne:

$$T(n) = 4T\left(\frac{n}{2}\right) + n \quad T(1) = \Theta(1) \tag{34}$$

Załóżmy, że $T(n) = O(n^3)$ - pokazać, że $T(n) \le c \cdot n^3$. dla dużych n.

- 1. Krok początkowy $T(1) = \Theta(1) \leqslant c \cdot 1^3 = c$ ok.
- 2. Założmy, że $\forall_{k \leq n} T(k) \leqslant c \cdot k^3$ (zał. indukcyjne, nie $\Theta(k^3)$ chcemy konkretną stałą c)
- 3. $T(n) = 4T\left(\frac{n}{2}\right) + n \le 4c\left(\frac{n}{2}\right)^3 + n = \frac{1}{2}cn^3 + n = cn^3 \frac{1}{2}cn^3 + n \le cn^3$.
- 4. Wystarczy wskazać c,takie że $\frac{1}{2}cn^3-n\geqslant 0,$ np $c\geqslant 2$
- 5. Pokazaliśmy, że $T(n) = O(n^3)$

Załóżmy, że $T(n) = O(n^2)$ - pokazać, że $T(n) \leqslant c \cdot n^2.$ dla dużych n.

- 1. Krok początkowy $T(1) = \Theta(1) \leqslant c \cdot 1^2 = c$ ok.
- 2. Założmy, że $\forall_{k < n} T(k) \leqslant c \cdot k^2$ (zał. indukcyjne)
- 3. $T(n) = 4T(\frac{n}{2}) + n \le 4c(\frac{n}{2})^2 + n = cn^2 + n = cn^2 cn^2 + n \le cn^2$.
- 4. Tego się nie da pokazać nie jest prawdą, że $T(n) = {\cal O}(n^2)$

Wzmocnijmy zatem założenie indukcyjne:

- 1. $T(n) \leq c_1 n^2 c_2 n$ (zał. indukcyjne)
- 2. $T(n) = 4T(\frac{n}{2}) + n \le 4(c_1 \frac{n^2}{2} c_2 \frac{n}{2}) + n$
- 3. $= c_1 n^2 2c_2 n + n = c_1 n^2 (2c_2 1)n \le$
- $4. \leqslant c_1 n^2 c_2 n$
- 5. Weźmy $c_1=1, c_2=2,$ wtedy $T(n)\leqslant n^2-2n=O(n^2)$

Przykład 2. Weźmy paskudną rekursję $T(n)=2T(\sqrt{n})+\log n$. Załóżmy, że n jest potęgą 2 oraz oznaczny $n=2^m, m=\log_2 n$.

$$T(2^m) = 2T((2^m)^{\frac{1}{2}}) + m \tag{35}$$

Oznaczmy $T(2^m) = S(m)$. Wtedy:

$$S(m) = 2S\left(\frac{m}{2}\right) + m\tag{36}$$

(dobrze znana rekurencja - $S(n) = O(m \log m)$) - patrz Lecture 2. Przejdźmy z powrotem na T, n:

$$T(2^m) = S(m)T(2^m) = O(m \log m)T(n) = O(\log n \log \log n)$$
 (37)

Formalnie pokazaliśmy to tylko dla potęg 2 - musielibyśmy jeszcze indukcyjnie to udowodnić.

Kiedy podłogi i sufity mają znaczenie?

4 Lecture IV - Metoda drzewa rekursji

4.1 Metoda drzewa rekursji

W danym węźle wstawiamy koszt operacji. Sumujemy koszty węzłów na danym poziomie.

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + n^2, \quad T(1) = \Theta(1)$$
(38)

Chcemy sumować koszty na danym poziomie, a potem napisać pełną sumę.

. . .

$$T^*(n) = \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k n^2 = \tag{39}$$

$$=n^2 \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k = \tag{40}$$

$$=n^2 \cdot \left(\frac{1}{1-\frac{5}{16}}\right) = \tag{41}$$

$$=\frac{16}{11}n^2\tag{42}$$

Nie mogłoby być mniej niż n^2 , bo już w pierwszym rzędzie jest n^2 . Nie jest to dokładne, ale dostaliśmy górne ograniczenie.

$$T(n) = O(n^2) (43)$$

Wysokości różnią się o stałą:

$$\frac{n}{2^H} = 1 \implies H = \log_2 n \tag{44}$$

$$\frac{n}{4^h} = 1 \implies h = \log_4 n \tag{45}$$

Za chwilę będę dodawał rzeczy, które nie istnieją

Pamiętajmy, że:

$$a^{\log_b n} = n^{\log_b a}$$

$$\hat{T}(n) = \sum_{k=0}^{H = \log_2(n)} \left(\frac{5}{16}\right)^k n^2 = \tag{46}$$

$$= n^2 \sum_{k=0}^{H} \left(\frac{5}{16}\right)^k = \tag{47}$$

$$= n^2 \cdot \frac{1}{11} \left(16 - 5 \left(\frac{5}{16} \right)^{\log_2 n} \right) = \tag{48}$$

$$=\frac{16}{11}n^2 - \frac{5}{11}n^{2-1.67} \tag{49}$$

Rozważmy ograniczenie dolne:

$$\check{T}(n) = \sum_{k=0}^{h=\log_4(n)} \left(\frac{5}{16}\right)^k n^2 = n^2 \frac{1}{11} \left(16 - C \cdot \left(\frac{5}{16}\right)^{\log_4 n}\right)$$
 (50)

Zatem wiemy, że:

$$T(n) = O(\hat{T}(n)) = O(T^*(n))$$
 (51)

$$T(n) = \Omega(\check{T}(n)) \tag{52}$$

$$T(n) = \Theta(n^2) = \frac{16}{11}n^2 + o(n^2)$$
(53)

4.2 Metoda iteracyjna

$$T(n) = 3T(\left(\frac{n}{4}\right)) + n = \tag{54}$$

$$T(n) = 3\left(3T\left(\left(\frac{n}{16}\right)\right) + \left(\frac{n}{4}\right)\right) + n = 9T\left(\frac{n}{16}\right) + \frac{3}{4}n + n =$$

$$(55)$$

$$T(n) = n + \frac{3}{4}n + 9\left(3T\left(\frac{n}{64}\right) + \frac{n}{16}\right) = \tag{56}$$

$$T(n) = n + \frac{3}{4}n + \frac{9}{16}n + 27T\left(\frac{n}{64}\right) = \tag{57}$$

$$T(n) = n + \frac{3}{4}n + \left(\frac{3}{4}\right)^2 n + \left(\frac{3}{4}\right)^3 n + \dots + 3^j T\left(\frac{n}{4^j}\right) =$$
 (58)

(59)

Wyznaczmy koniec iteracji:

$$\frac{n}{4^j} = 1 \implies j = \log_4 n \tag{60}$$

To jest nic innego jak:

$$\sum_{j=0}^{\log_4 n} \left(\frac{3}{4}\right)^j = O(n) \tag{61}$$

4.3 Master Theorem

Theorem. Master Theorem. Jeśli $T(n) = a \cdot T(\lceil \frac{n}{b} \rceil) + \Theta(n^d)$ dla pewnych stałych a > 0, b > 1, d > 0, oraz $T(1) = \Theta(1)$ to:

$$T(n) = \begin{cases} \Theta\left(n^d\right) & \text{jeśli} \quad d > \log_b a \\ \Theta\left(n^d \log n\right) & \text{jeśli} \quad d = \log_b a \\ \Theta\left(n^{log_b a}\right) & \text{jeśli} \quad d < \log_b a \end{cases}$$

$$\hat{T}(n) = a \cdot \hat{T}\left(\frac{n}{b} + 1\right) + \Theta(n^d) \tag{62}$$

$$\check{T}(n) = a \cdot \check{T}\left(\frac{n}{h}\right) \tag{63}$$

Dowód

wielkość . liczba podproblemów

. . .

koszt na poziomie 'k' = c $(n/b^k)^d$ liczba podproblemów na poziomie 'k' = a^k

suma kosztów 'k'-tym wierszu = c (a/b^d)^k * n^d

Wysokość drzewa rekursji

$$\frac{n}{b^h} = 1 \implies h = \log_b n \tag{64}$$

Zatem:

$$T(n) = \Theta\left(\sum_{k=0}^{\log_b n} \cdot \left(\frac{a}{b^d}\right)^k n^d\right)$$
 (65)

Mogę wziąć thetę zamiast o, bo dość dokładnie robię - ale trochę nie

$$\sum_{k=0}^{h} q^k = \frac{1 - q^{h+1}}{1 - q} \quad \sum_{k=0}^{h} 1^k = (h+1)$$

$$T(n) = \Theta\left(n^d \sum_{k=0}^{\log_b n} \cdot \left(\frac{a}{b^d}\right)^k\right)$$
(66)

(1) Jeśli $\frac{a}{b^d} < 1$, to:

$$a < b^d \tag{67}$$

$$\log_b(a) < d \quad \text{zatem} \tag{68}$$

$$T(n) = \Theta(n^d) \tag{69}$$

(większość pracy dzieje się z korzenia - okolic korzenia)

(2) Jeśli $\frac{a}{b^d}=1,$ to:

$$a = b^d (70)$$

$$\log_b(a) = d \tag{71}$$

$$T(n) = \Theta(n^d \log n) \tag{72}$$

(suma kosztów w k-tym wierszu - każdy wiersz kontrybuuje równie mocno)

(3) Jeśli $\frac{a}{h^d} > 1$, to:

$$a > b^d \tag{73}$$

$$\log_b(a) > d \tag{74}$$

$$T(n) = \Theta(n^{\log_b a}) \tag{75}$$

(z każdym kolejnym poziomem koszt rośnie - większość złożoności kryje się na dole drzewa rekursji)

Z tego co dzieje się na początku... albo na końcu, bo to może być scalanie Stworzyliście za dużo podproblemów.

Co jeśli rekurencja nie ma $n^d,$ a ma $n\log(n)?$ - możemy przybliżać

Przykład

$$T(n) = 4T\left(\frac{n}{2}\right) + 11n \quad a = 4, b = 2, d = 1$$
 (76)

$$\log_b a = \log_2 4 = 2 > 1 = d \quad \text{to jest przypadek (3)}$$

$$T(n) = \Theta\left(n^{\log_a b}\right) = \Theta\left(n^{\log_2 4}\right) = \Theta\left(n^2\right) \tag{78}$$

Przykład

$$T(n) = 4T\left(\frac{n}{3}\right) + 3n^2 \quad a = 4, b = 3, d = 2$$
 (79)

$$\log_b a = \log_3 4 > 2 = d$$
 to jest przypadek (1) (80)

$$T(n) = \Theta\left(n^d\right) = \Theta\left(n^2\right) \tag{81}$$

Przykład

$$T(n) = 27T\left(\frac{n}{3}\right) + 0.(3)n^3 \quad a = 27, b = 3, d = 3$$
 (82)

$$\log_b a = \log_3 27 = 3 = d \quad \text{to jest przypadek (2)}$$

$$T(n) = \Theta\left(n^d \log n\right) = \Theta\left(n^3 \log n\right) \tag{84}$$

4.4 Divide and Conquer

- 1. Podział problemu na mniejsze podproblemy.
- 2. Rozwiąż rekurencyjnie mniejsze (rozłączne) podproblemy.
- 3. Połącz rozwiązania problemów w celu rozwiązania problemu wejściowego.

4.5 Wyszukiwanie elementów w portowanej tablicy

- Input posortowana tablica A[1..n], element x
- $\bullet\,$ Output indeks itaki, że A[i]=xlub błąd, gdy xnie występuje w A

4.6 Binary search

- 1. if n = 1, A[n] = x return n, else A does not contain x
- 2. porównujemy x z $A[\frac{n}{2}]$
- 3. jeśli $x = A[\frac{n}{2}]$ return $\frac{n}{2}$
- 4. jeśli $x < A[\frac{n}{2}],$ Binary
Search $(A[1..\frac{n}{2}-1],x)$
- 5. jeśli $x>A[\frac{n}{2}],$ Binary
Search $(A[\frac{n}{2}+1..n],x)$

Wy nie patrzcie na pseudokody na tablicy, tylko w książce

$$T(n) = 1T\left(\frac{n}{2}\right) + \Theta(1) \tag{85}$$

$$T(n) = \Theta(\log n) \tag{86}$$