Question 1

I've used the emboss cli on MacOs

Question 2

Sequence = CTCGGATTTGTAAAGATCATGATCTCATACATAGTACCTAGCCATTG

Complement : GAGCCTAAACATTTCTAGTACTAGAGTATGTATCATGGATCGGTAAC
Reverse Complement : CAATGGCTAGGTACTATGTATGAGATCATGATCTTTACAAATCCGAG

```
[(base) Ajeet@MacBook-touch BT3040 Bioinformatics % echo ">Seq1\nCTCGGATTTGTAAAGATCATGATCTCATAC]
ATAGTACCTAGCCATTG" > file
[(base) Ajeet@MacBook-touch BT3040 Bioinformatics % more file
>Seq1
CTCGGATTTGTAAAGATCATGATCTCATACATAGTACCTAGCCATTG
[(base) Ajeet@MacBook-touch BT3040 Bioinformatics % revseq
Reverse and complement a nucleotide sequence
Input (gapped) nucleotide sequence(s): file1
Error: Failed to open filename 'file1'
Error: Unable to read sequence 'file1'
Input (gapped) nucleotide sequence(s): file
output sequence(s) [seq1.rev]: ans
[(base) Ajeet@MacBook-touch BT3040 Bioinformatics % more ans
>Seq1 Reversed:
CAATGGCTAGGTACTATGAGATCATGATCTTTACAAATCCGAG
ans (END)
```

Question 3

```
In [8]:
    seq = "CTCGGATTTGTAAAGATCATGATCTCATACATAGTACCTAGCCATTG"
    d = {a : b for a,b in zip('ATGC','TACG')}
    complement = ''.join([d[base] for base in seq])
    print(f"Complement : {complement}")
    print(f'Reverse Complement : {complement[::-1]}')
```

Complement : GAGCCTAAACATTTCTAGTACTAGAGTATGTATCATGGATCGGTAAC
Reverse Complement : CAATGGCTAGGTACTATGTATGAGATCATGATCTTTACAAATCCGAG

Question 4

Sequence =

GACATTGTGAACAGTAAAAAAGTCCATGCAATGCGCAAGGAGCAGAAGAAGCAGGGCAAGC
TCCCATGGACTACTCTCCTCTGCCCATCGACAAGCATGAGCCTGAATTTGGTCCATGCAGAAGAA

Part (i)

Protein Sequence =

DIVNSKKVHAMRKEQKRKQGKQRSMGSPMDYSPLPIDKHEPEFGPCRRKLDG

about:srcdoc Page 1 of 4

```
| (base) Ajeet@MacBook-touch BT3040 Bioinformatics % echo ">seq1\nGACATTGTGAACAGTAAAAAAGTCCATGCAATGCGCAAGGAGCAGAAGAGGGAAGCAGGGGCAAGCAGGGCAAGCAGGGCAAGCAGGGCAAGCAGGGCAAGCAGGGCAAGCAGGGCCTCCATGGGCTCCCATGGACTACTCTCCCTCTGCCCATCGACAAGCATGAGCCTGAATTTGGTCCATGCAGAAGAAAACTGGATGGG" > file

8445678857

[(base) Ajeet@MacBook-touch BT3040 Bioinformatics % StranseqZTZnZz09"

Translate nucleic acid sequences | G='0w842' | B. owner='tue'shtbs://
Input nucleotide sequence(s): file | w96wsb.zoom.us//844567688552

protein output sequence(s) [seq1.pep]: ans
[(base) Ajeet@MacBook-touch BT3040 Bioinformatics % more | ans

>seq1_1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

DIVNSKKVHAMRKEQKRKQGKQRSMGSPMDYSPLPIDKHEPEFGPCRRKLDG

ans (END)
```

Part (ii)

ORF = [156 - 1] (REVERSE SENSE)

```
[(base) Ajeet@MacBook-touch BT3040 Bioinformatics % getorf file
Find and extract open reading frames (ORFs)
protein output sequence(s) [seq1.orf]: file commus
[(base) Ajeet@MacBook-touch BT3040 Bioinformatics % more file

**seq1_1 [18 - 116]

KSPCNAQGAEEEAGQAALHGLSHGLLSSAHRQA

**seq1_2 [11 - 154]

TVKKSMQCARSRRGSRASSAPWALPWTTLLCPSTSMSLNLVHAEENWM

**seq1_3 [126 - 155]

IWSMQKKTGW

**seq1_4 [1 - 156]

DIVNSKKVHAMRKEQKRKQGKQRSMGSPMDYSPLPIDKHEPEFGPCRRKLDG com.us/N

**seq1_5 [155 - 93] (REVERSE SENSE)
PSSFLLHGPNSGSCLSMGRGE

**seq1_6 [89 - 3] (REVERSE SENSE)

**Seq1_6 [89 - 3] (REVERSE SENSE)

**PSSFLLHGPNSGSCLSMGRGE

**seq1_7 [154 - 2] (REVERSE SENSE)

HPVFFCMDQIQAHACRWAEESSPMESPWSAACPASSSAPCALHGLFYCSQC

**seq1_8 [156 - 1] (REVERSE SENSE)

**PIQFSSAWTKFRLMLVDGQRRVVHGRAHGALLALLPLLLLAHCMDFFTVHNV

**file (END)
```

Question 5

Translated sequence = DIVNSKKVHAMRKEQKRKQGKQRSMGSPMDYSPLPIDKHEPEFGPCRRKLDG

Question 6

about:srcdoc Page 2 of 4

```
Searching for : 'GAC'

Number of matches = 3
Positions of matches = [(0, 3), (87, 90), (108, 111)]
```

Question7

dan - Calculate nucleic acid melting temperature

banana - Plot bending and curvature data for B-DNA

Pepstats - Calculate properties of protein sequences such as molecular weight

Question 8

```
In [57]:
    seq = "CTCGGATTTGTAAAGATCATGATCTCATACATAGTACCTAGCCATTG"
    stacking = {"AA": -4, "AT": -7, "AC": -5, "AG": -11, "TA": -7, "TT": -2, "TET": -2, "TET": -5, "CC": -6, "CG": -7, "GA": -9, "GT": -6, 'GOT: -6, 'GOT: -6, 'GOT: -7, "GA": -9, "GT": -6, 'GOT: -6, 'GOT: -7, "GA": -9, "GT": -6, 'GOT: -6, 'GOT: -6, 'GOT: -7, "GA": -9, "GT": -6, 'GOT: -7, "GAT: -9, "GT": -7, "GAT: -9, "GT": -7, "GAT: -7, "GAT: -7, "GAT: -7, "GAT: -7, "GA
```

Average Stacking Energy = -5.804347826086956

Question 9

Your input seq is:

Physicochemical Properties:

Properties	Scaleunit	Average value
Stacking energy	kcal/mol	1.8
Enthalpy	kcal/mol	6.04444
Entropy	cal/mol/K	16.6222
Flexibility_shift	kJ mol^-1 A^-2	2.53
Flexibility_slide	kJ mol^-1 A^-2	9.66333
Free energy	kcal/mol	0.655556
Melting Temperature	degree	48.0022
Mobility to bend towards major groove	mu	1.09778
Mobility to bend towards minor groove	mu	1.03333
Probability contacting nucleosome core	%	6.75556
Rise stiffness	kcal/mol angstroem	7.80778
Roll stiffness	kcal/mol degree	19.3333
Shift stiffness	kcal/mol angstroem	0.892222
Slide stiffness	kcal/mol angstroem	2.66111
Tilt stiffness	kcal/mol degree	28
Twist stiffness	kcal/mol degree	25.8889

about:srcdoc Page 3 of 4

Your input seq

GCGCGCGCGC

Physicochemical Properties:

Properties	Scaleunit	Average value
Stacking energy	kcal/mol	1.75556
Enthalpy	kcal/mol	11.0778
Entropy	cal/mol/K	27.5556
Flexibility_shift	kJ mol^-1 A^-2	6.49111
Flexibility_slide	kJ mol^-1 A^-2	4.19778
Free energy	kcal/mol	1.85889
Melting Temperature	degree	107.867
Mobility to bend towards major groove	mu	0.997778
Mobility to bend towards minor groove	mu	1.20556
Probability contacting nucleosome core	%	3.37778
Rise stiffness	kcal/mol angstroem	8.06333
Roll stiffness	kcal/mol degree	21.5556
Shift stiffness	kcal/mol angstroem	1.14667
Slide stiffness	kcal/mol angstroem	2.33889
Tilt stiffness	kcal/mol degree	31.5556
Twist stiffness	kcal/mol degree	20.1111

part (i) ATATATATAT

melting temperature = 48.0022

part (ii) GCGCGCGCGC

melting temperature = 107.867

Question 10

GC content of AAATGGCCCTAA: 41.666667%

Your input seq is

AAATGGCCCTAA

Nucleotide Content:

	Nucleotide content in %
AT_content	58.333333
Adenine_content	41.666667
Cytosine_content	25.00000
GC_content	41.666667
Guanine_content	16.666667
Keto_GT_content	33.333333
Purine_AG_content	58.333333
Thymine_content	16.666667
·	

about:srcdoc Page 4 of 4