MTH 532 Homework 1

Roy Howie

January 30, 2017

Exercise 1

Let k < l and let f be a smooth function on \mathbb{R}^k . Let F be a function on \mathbb{R}^l such that $F(a_1, \dots, a_k, 0, \dots, 0) = f(a_1, \dots, a_k)$. Consider $\pi \colon \mathbb{R}^k \to \mathbb{R}^k$ defined by $x \mapsto x$ and note that $F = f \circ \pi$. Hence, F is the composition of smooth functions and is therefore smooth itself.

On the other hand, suppose F is smooth on $\{(a_1, \dots, a_k, 0, \dots, 0)\}$. Let $i : \mathbb{R}^k \to \mathbb{R}^l$ be the smooth map defined by $(a_1, \dots, a_k) \mapsto (a_1, \dots, a_k, 0, \dots, 0)$ and let f be a function on \mathbb{R}^k such that $f(a_1, \dots, a_k) = F(a_1, \dots, a_k, 0, \dots, 0)$. Then F is smooth, as it is the composition of the smooth maps f and i.

Exercise 2

Let f be smooth on $X \subset \mathbb{R}^N$. As f is smooth on X, for every $p \in X$, there is an open neighborhood $O(p) \subset \mathbb{R}^N$ such that $F \colon O(p) \to \mathbb{R}$ is smooth on O(p) and F(p) = f(p) for all $p \in O(p) \cap X$.

Now consider $Z \subset X$ and, for every $p \in Z$, take O(p) and F as before. Then F(p) = f(p) for all $p \in O(p) \cap Z$ and f is thus smooth on Z.

Exercise 4

a Let f^{-1} : $\mathbb{R}^k \to B_a$ be the smooth map defined by

$$f^{-1}(y) = \frac{ay}{\sqrt{a^2 + ||y||^2}}$$

Note that $f^{-1}(0) = 0$ and $\lim_{y \to \infty} f^{-1}(y) = a$. That is, f^{-1} maps $[0, \infty)^k$ to $[0, a)^k$, which makes intuitive sense as f did the opposite.

b Since X is a manifold, for every $x \in X$, there is a parameterization $p \colon U \to O(x)$ where $U \subset \mathbb{R}^k$ and O(x) is an open neighborhood of x. But U can be the ball B_a of radius a, as there is always one small enough inside of U such that $x \in p(B_a) \subset V$. So consider $f^{-1} \circ p$ restricted to B_a , which is a parameterization of an open neighborhood of x with all of \mathbb{R}^k as its domain.

Exercise 6

Let $h(x) = x^{1/3}$. Note that $f \circ h = h \circ f = id$ and that $h'(x) = \frac{1}{3}x^{-2/3}$. However $\lim_{x\to 0} h(x)$ does not exist, so h is not smooth and f is not a diffeomorphism.

Exercise 8

Let a > 0 and let H be the hyperboloid $\{(x, y, z) \mid x^2 + y^2 - z^2 = a\}$. Let B_a be the ball of radius a centered at the origin. The upper half of H can then be parameterized via ϕ : $\mathbb{R}^2 - B_a \to \mathbb{R}^3$ defined by $(x, y) \mapsto (x, y, \sqrt{x^2 + y^2 - a})$. Similarly, the lower half of H can be parameterized by $(x, y) \mapsto (x, y, -\sqrt{x^2 + y^2 - a})$. Intuitively speaking, this involves lifting the plane minus B_a so that it "covers" the given half of H.

When a = 0, the point (0, 0, 0) becomes a problem. Removing the origin from \mathbb{R}^2 leaves one component, whereas removing the origin from H leaves two components, so H is not a manifold.

Exercise 12

Let N = (0,0,1) and let p be a point on S^2 . The line through points N and p then has the equation

$$l(t) = (0 + t(x - 0), \ 0 + t(y - 0), \ 1 + t(z - 1))$$

= $(tx, \ ty, \ 1 + t(z - 1))$

This line hits the xy-plane when z=0, or when 1+t(z-1)=0, implying $t=\frac{1}{1-z}$. Hence,

$$\pi(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z})$$

To find π^{-1} , note that

$$\pi^{-1}(0,0) = -N$$

$$\pi^{-1}(1,0) = (1,0,0)$$

$$\pi^{-1}(0,1) = (0,1,0)$$

and $||(x,y)||=1 \iff z=0$. I couldn't think of a function z=f(x,y) which satisfied these conditions, but google gave me $z=\frac{x^2+y^2-1}{x^2+y^2+1}$, which definitely works. This makes finding π^{-1} easy:

$$\pi^{-1}(x,y) = (\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, \frac{x^2+y^2-1}{1+x^2+y^2})$$

Exercise 14

Let $(x,y) \in X \times Y$ and let $U \times V$ be an open neighborhood of (x,y) such that F is smooth on U, G is smooth on V, F restricted to $U \cap X$ equals f, and G restricted to $V \cap Y$ equals g. Note that $(U \times V) \cap (X \times Y) = (U \cap X) \times (V \cap Y)$. Hence, since $F \times G$ is smooth on $(U \cap X) \times (V \cap Y)$, it is also smooth on $(U \times V) \cap (X \times Y)$, so $f \times g$ is too.

Exercise 18

- **a** From class, we had that $f^{(n)}(x) = P_n e^{-1/x^2}$, where P_n is a polynomial of order n or less. Thus $\lim_{x\to 0} f^{(n)}(x) = 0$ for all $n \in \mathbb{N}$, so f is smooth.
- **b** Subtraction and $(x,y) \mapsto xy$ are smooth functions, so g, the composition of smooth functions, is too. Since g is smooth and positive function on (a,b), we have that $c=\int_{-\infty}^{\infty}g\ dx$ is nonzero. Hence, $h(x)=\frac{1}{c}\int_{-\infty}^{x}g\ dx=\frac{1}{c}G(x)$ by the Second Fundamental Theorem of Calculus. As G'=g and g was smooth, h must be too, with $h^{(n)}=\frac{1}{c}G^{(n)}$ for all $n\in\mathbb{N}$.
- **c** Consider the function r(x) = 1 h(||x||).