Practice Session 2

Part 1: Measures of central tendency & Measures of spread for quantitative data

Calculating the Sample Standard Deviation by Hand

Here is the formula for the sample mean:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

And here is the formula for the sample standard deviation:

$$s=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2}$$

Using the above data, perform the following calculations. Complete the table for calculating the sample standard deviation.

Cost \$\$\$	b. Deviations (x_i - \bar{x})	c. Deviations squared $\underline{(x_i - \bar{x})^2}$
850		
900		
1400		
1200		
1050		
750		
1250		
1050		
565		
1000		
a. mean =		

d. Sum of squared deviations
$$\sum_{i=1}^{n}(x_i-\bar{x})^2$$
 =

e. Sum of squared deviations divided by n - 1:
$$\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}$$
 =

$$\sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}$$

f. Take the square root to get s:

Five-Number Summary

Using the numbers from the previous exercise, do the following:

- Calculate the sample mean
- Calculate the sample median
- Find the 5-number summary (minimum, Q1, median, Q3, maximum)
- Check your work using R functions

Graphing the shape of quantitative data: histograms and outliers

Consider the data from the previous exercises. Using R, create a histogram of the data. What would you consider to be the shape of the distribution? Do you consider any of the data points to be potential outliers?

Classifying shapes of distributions

Generate histograms for each of the following data sets. Use the \$ command to access the individual data sets. For each histogram, add the mean to the plot using abline(). Do you see any potential outliers? Also calculate the five-number summary for each using R.

```
set.seed(999)
s2_data = data.frame(
  dat1 = -rchisq(1000, df = 1),
  dat2 = rchisq(1000, df = 1),
  dat3 = runif(1000),
  dat4 = rnorm(1000),
  dat5 = sample(c(rnorm(1000, mean = 2), rnorm(1000, mean = 10)), size = 1000)
)
```

Z-Scores

Read the following description on Z-scores, then answer the question below.

5.1 Standardizing with z-Scores

Expressing a distance from the mean in standard deviations *standardizes* the performances. To **standardize** a value, we subtract the mean and then divide this difference by the standard deviation:

$$z = \frac{y - \overline{y}}{s}$$

NOTATION ALERT

We always use the letter z to denote values that have been standardized with the mean and standard deviation.

The values are called **standardized values**, and are commonly denoted with the letter z. Usually we just call them z-scores.

z-scores measure the distance of a value from the mean in standard deviations. A z-score of 2 says that a data value is two standard deviations above the mean. It doesn't matter whether the original variable was measured in fathoms, dollars, or carats; those units don't apply to z-scores. Data values below the mean have negative z-scores, so a z-score of -1.6 means that the data value was 1.6 standard deviations below the mean. Of course, regardless of the direction, the farther a data value is from the mean, the more unusual it is, so a z-score of -1.3 is more extraordinary than a z-score of 1.2.

15. Temperatures A town's January high temperatures average 2°C with a standard deviation of 6°, while in July the mean high temperature is 24° and the standard deviation is 5°. In which month is it more unusual to have a day with a high temperature of 13°? Explain.

Percentiles

Compute the 25th, 50th, and 75th percentile for the 5 data sets in the s2_data data.frame. Which has the smallest median? Which as the largest?

Normal Distribution and +/-2 Standard Deviations

The normal distribution (also known as the "bell-curve") occurs very frequently in mathematics, statistics, and the natural and social sciences. Which of the 5 data sets in the s2_data data.frame appears to be normally distributed?

Using this data set, find the mean and standard deviation, then calculate 2 standard deviations above, and 2 standard deviations below the mean. What percentiles do these values correspond to?

Boxplots

Consider the mtcars data set. This data is built into R, so you can access it directly; no downloads required! First, create a histogram of the variable mpg. Then create a boxplot of mpg. How do these two plots compare?