Quadrant Queries

There are n 2D points on a plane, and the i^{th} point, p_i , has coordinates (x_i, y_i) , where $1 \le i \le n$. There are three types of queries:

- 1. X i j Reflect all points in the inclusive range between points p_i and p_j along the x-axis.
- 2. Y i j Reflect all points in the inclusive range between points p_i and p_j along the y-axis.
- 3. C i j Count the number of points in the inclusive range between points p_i and p_j in each of the 4 quadrants. Then print a single line of four space-separated integers describing the respective numbers of points in the first, second, third, and fourth quadrants. Recall that the four quadrants of a graph are labeled as follows:

Given a set of n points (where each point p is indexed from 1 to n) and q queries, perform each query in order.

Input Format

The first line contains a single integer, n, denoting the number of points.

Each line i of the n subsequent lines contains two space-separated integers describing the respective x_i and y_i values for point p_i on the 2D plane.

The next line contains a single integer, q, denoting the number of queries.

Each of the q subsequent lines contains three space-separated values describing a query in one of the three forms defined above. You must process each query in the same order as it's read from stdin.

Constraints

- $1 < n < 10^5$
- $1 \le q \le 10^6$
- ullet It is guaranteed that no point lies on the $oldsymbol{x}$ or $oldsymbol{y}$ axes.
- All (x_i,y_i) points will fit in a 32-bit signed integer.
- In all queries, $1 \leq i \leq j \leq n$.

Output Format

For each query of type ${\tt C}$ ${\tt i}$ ${\tt j}$, print four space-separated integers describing the number of points having indices in the inclusive range between points p_i and p_j in the respective first, second, third, and fourth graph quadrants.

Sample Input

```
1 1 -1 1 -1 -1 -1 -1 -1 5 C 1 4 X 2 4 C 3 4 Y 1 2 C 1 3
```

Sample Output

```
1111
1100
0201
```

Explanation

Query C 1 4 asks you to consider the set of points having indices in $\{1,2,3,4\}$, meaning $p_1=(1,1)$, $p_2=(-1,1)$, $p_3=(-1,-1)$, and $p_4=(1,-1)$; amongst those points, how many of them lie in the respective first, second, third, and fourth quadrants? Because we have one point in each quadrant, we print 1 1 1 1 on a new line.

Recall that queries in the form X i j and Y i j are telling us to take all the points in the inclusive range between indices i and j (i.e., points p_i and p_j) and reflect them along the axis specified by the first character of the query. Note that i and j here refer to actual point numbers/subscripts and *not* coordinates on the plane.

So when we process query X 2 4, we reflect the points in the inclusive range between indices 2 and 4 (i.e., points p_2 , p_3 , and p_4) along the x-axis. This means our coordinates are now $p_1=(1,1)$, $p_2=(-1,-1)$, $p_3=(-1,1)$, and $p_4=(1,1)$.

Next, C 3 4 tells us to consider the set of points in the inclusive range between indices 3 and 4 (i.e., points p_3 and p_4) and print the number of points in this range falling on each respective axis. Point $p_3 = (-1,1)$ lies in quadrant 2 and point $p_4 = (1,1)$ lies in quadrant 1, so we print 1 1 0 0 on a new line.

Next, Y 1 2 tells us to reflect the points in the inclusive range between indices 1 and 2 (i.e., points p_1 and p_2) along the y-axis. This means our coordinates are now $p_1=(-1,1)$, $p_2=(1,-1)$, $p_3=(-1,1)$, and $p_4=(1,1)$.

Finally, $[C\ 1\ 3]$ tells us to count the number of points in each quadrant that fall in the inclusive range between indices 1 and 3 (i.e., points p_1 , p_2 , and p_3). Point $p_1=(-1,1)$ is in quadrant 2, point $p_2=(1,-1)$ is in quadrant 2, and point 20 10 on a new line.