1

Oxidación redución

• Estequiometría redox

- 1. 100 g de NaBr trátanse con ácido nítrico concentrado de densidade 1,39 g/cm³ e riqueza 70 % en masa, ata reacción completa. Sabendo que os produtos da reacción son Br₂, NO₂, NaNO₃ e auga:
 - a) Axusta as semirreaccións que teñen lugar polo método do ión-electrón, a ecuación iónica e a molecular.
 - b) Calcula o volume de ácido nítrico consumido.

Datos: $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

(A.B.A.U. extr. 19)

Rta.: a) $2 \text{ Br}^-(\text{aq}) + 2 \text{ NO}_3^-(\text{aq}) + 4 \text{ H}^+(\text{aq}) \rightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ H}_2\text{O}(\text{l});$ $2 \text{ NaBr}(\text{aq}) + 4 \text{ HNO}_3(\text{aq}) \rightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O}(\text{l});$ b) $V = 126 \text{ cm}^3 \text{ HNO}_3$

Datos Cifras significativas: 3

Masa de bromuro de sodio m(NaBr) = 100 g Disolución de ácido nítrico: densidade $\rho = 1,39 \text{ g/cm}^3$ riqueza r = 70,0 %

Masa molar do bromuro de sodio M(NaBr) = 103 g/molMasa molar do ácido nítrico $M(HNO_3) = 63.0 \text{ g/mol}$

Incógnitas

Volume de disolución de HNO₃ que reacciona

V

Solución:

a) Escríbense as semirreaccións iónicas:

Oxidación: $2 \text{ Br}^- - 2 \text{ e}^- \rightarrow \text{Br}_2$

Redución: $(NO_3)^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$

Obtense a ecuación iónica axustada multiplicando a segunda semirreacción por 2 e sumando:

$$2 Br^{-} + 2 (NO_3)^{-} + 4 H^{+} \rightarrow Br_2 + 2 NO_2 + 2 H_2O$$

Para obter a ecuación global, súmase a cada lado 2 Na⁺ e 2 (NO₃)⁻, e combínanse os ións para formar os compostos:

$$2 \text{ NaBr(aq)} + 4 \text{ HNO}_3(\text{aq}) \longrightarrow \text{Br}_2(\text{l}) + 2 \text{ NO}_2(\text{g}) + 2 \text{ NaNO}_3(\text{aq}) + 2 \text{ H}_2\text{O(l)}$$

b) Calcúlase a cantidade de bromuro de sodio que hai en 100 g:

$$n=100$$
 g NaBr $\frac{1 \text{ mol NaBr}}{103 \text{ g NaBr}} = 0,972 \text{ mol NaBr}$

Calcúlase a cantidade de ácido nítrico necesaria para reaccionar con esa cantidade de bromuro de sodio, mirando a ecuación axustada da reacción:

$$n'=0,972 \text{ mol NaBr} \frac{4 \text{ mol HNO}_3}{2 \text{ mol NaBr}} = 1,94 \text{ mol HNO}_3$$

Calcúlase o volume de disolución ácido nítrico do 70 % e densidade 1,39 g/cm³ que contén esa cantidade:

$$V=1,94 \text{ mol HNO}_3 = \frac{63.0 \text{ g HNO}_3}{1 \text{ mol HNO}_3} = \frac{100 \text{ g D HNO}_3}{70.0 \text{ g HNO}_3} = \frac{1 \text{ cm}^3 \text{ D HNO}_3}{1,39 \text{ g D HNO}_3} = 126 \text{ cm}^3 \text{ D HNO}_3$$

Pode obter as respostas na pestana «Redox» da folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

 D111 00, C5C110	4.						
$Reactivos \rightarrow$			Produtos				
NaBr	HNO ₃		$\mathrm{Br}_{\scriptscriptstyle 2}$	NO_2	NaNO₃	H_2O	

					_		
	Calcular:	volume	disolución	HNO ₃	$[HNO_3] =$	7	% masa
					Densidade	1,3	g/cm³
	necesarios para reaccionar con						
	100	g		NaBr			
RES	SULTADOS:						
	Axuste ión-electrón						
	Oxidación	2 Br ⁻		- 2 e^- →	Br_2		×1
	Redución	$(NO_3)^-$	+ 2 H ⁺	$+ e^{-} \rightarrow$	NO_2	+ H ₂ O	×2
		2 Br ⁻	+ 2 (NO ₃) ⁻	+ 4 $H^+ \rightarrow$	Br_2	+ 2 NO ₂	+ 2 H ₂ O
	Ecuación axustada:						
$2 \text{ NaBr} + 4 \text{ HNO}_3 \longrightarrow \text{Br}_2 + 2 \text{ NO}_2 + 2 \text{ NaNO}_3 + 2 \text{ H}_2\text{O}$							
	n(NaBr) = 0,972		mol		$n(HNO_3) =$	1,	94 mol
					$V(HNO_3) =$	1	26 cm³ (D)

Electrólise

- Durante a electrólise do cloruro de magnesio fundido:
 - a) Cantos gramos de Mg prodúcense cando pasan 8,80·10³ culombios a través da célula?
 - b) Canto tempo tárdase en depositar 0,500 gramos de Mg cunha corrente de 25,0 amperios?
 - c) Cantos litros de cloro obteranse no punto (b) a unha presión de 1,23 atm e a unha temperatura de 27 ℃.
 - d) Escribe os procesos electrolíticos que ocorren no ánodo e no cátodo.

(P.A.U. set. 00)

Rta.: a) m = 1.11 g de Mg; b) t = 159 s; c) V = 0.412 dm³; d) ánodo: $2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$; cátodo: $Mg^{2+} + 2 \text{ e}^- \rightarrow Mg$.

Datos	Cifras significativas: 3		
Carga eléctrica que atravesa a célula (apdo. a)	$Q = 8,80 \cdot 10^3 \text{ C}$		
Masa de magnesio depositada (apdo. b)	$m(\mathrm{Mg}) = 0.500~\mathrm{g}$		
Intensidade que atravesa a célula (apdo. b)	I = 25,0 A		
Gas cloro: presión	p = 1,23 atm		
temperatura	$T = 27 ^{\circ}\text{C} = 300 \text{K}$		
Constante dos gases ideais	$R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$		
Masa atómica do magnesio	M(Mg) = 24.3 g/mol		
Incógnitas			
Masa de magnesio depositada cando pasan 8,80·10³ C	m(Mg)		
Tempo que se tarda en depositar 0,500 g de magnesio	t		
Volume de gas cloro desprendido	V		
Outros símbolos			
Cantidade de sustancia (número de moles)	n		

Solución:

a) Calcúlase a cantidade de electróns equivalente á carga de 8,80×10³ C:

$$n(e) = 8,80 \cdot 10^{3} \text{ C} \frac{1 \text{ mol e}}{9.65 \cdot 10^{4} \text{ C}} = 0,912 \text{ mol e}$$

A reacción no cátodo é:

$$\mathrm{Mg^{2+}}$$
 + 2 $\mathrm{e^-}$ \longrightarrow Mg

Se calcula a masa de magnesio depositada, mirando a ecuación axustada da reacción:

$$m(Mg) = 0.0912 \text{ mol e } \frac{1 \text{ mol Mg}}{2 \text{ mol e}} \frac{24.3 \text{ g Mg}}{1.00 \text{ mol Mg}} = 1.11 \text{ g Mg}$$

b) Calcúlase a cantidade de magnesio que hai en 0,500 g

$$n(Mg) = 0,500 \text{ g Mg} \frac{1,00 \text{ mol Mg}}{24,3 \text{ g Mg}} = 0,0206 \text{ mol Mg}$$

Calcúlase a cantidade de electróns necesaria para que se deposite todo o magnesio, mirando a ecuación axustada da reacción:

$$n(e) = 0.0206 \text{ mol Mg} \frac{2 \text{ mol e}}{1 \text{ mol Mg}} = 0.0412 \text{ mol e}$$

Calcúlase a carga eléctrica equivalente:

$$Q = 0.041 \text{ 2mol e} \cdot \frac{9.65 \cdot 10^4 \text{ C}}{1 \text{ mol e}} = 3.98 \cdot 10^3 \text{ C}$$

Calcúlase o tempo coa expresión da intensidade:

$$I = \frac{Q}{t} \Rightarrow t = \frac{Q}{I} = \frac{3,98 \cdot 10^3 \text{ C}}{25 \text{ A}} = 159 \text{ s}$$

c) A reacción de electrólise é:

$$MgCl_2 \rightarrow Mg(s) + Cl_2(g)$$

Calcúlase a cantidade de cloro, mirando a ecuación axustada da reacción:

$$n(Cl_2) = n(Mg) = 0.0206 \text{ mol } Cl_2$$

Calcúlase o volume de cloro, medido a 1,23 atm e 27 °C, supoñendo comportamento ideal para o gas:

$$V = \frac{n \cdot R \cdot T}{p} = \frac{0,0206 \text{ mol } \text{Cl}_2 \cdot 0,0820 \text{ atm} \cdot \text{dm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 300 \text{ K}}{1,23 \text{ atm}} = 0,412 \text{ dm}^3 = 412 \text{ cm}^3 \text{ Cl}_2$$

d) A reacción no ánodo é a de oxidación:

$$2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$$

A reacción no cátodo é a de redución:

$$Mg^{2+} + 2 e^{-} \rightarrow Mg$$

Pode obter as respostas na pestana «Electrolise» da folla de cálculo <u>Quimica (gal)</u>. <u>Instrucións</u>. En DATOS, escriba:

RESULTADOS:

Cifras significativas: 3

Cátodo: $Mg^{2+} + 2 e^{-} \rightarrow Mg$

Cantidade 0,0456 0,0912 0,0456 mol

Masa m = 1,11 g Mg

b) Borre os datos, facendo clic no botón Borrar datos, e escriba:

Calcular Tempo

Elemento: Mg

Carga do ión: z = 2Masa m = 0.5 g

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 05/10/24

Sumario

OVID	ACION RE	DITCION

AIDACION REDUCION	
Estequiometría redox	1
 1. 100 g de NaBr trátanse con ácido nítrico concentrado de densidade 1,39 g/cm³ e riqueza 70 % en masa, ata reacción completa. Sabendo que os produtos da reacción son Br₂, NO₂, NaNO₃ e auga: a) Axusta as semirreaccións que teñen lugar polo método do ión-electrón, a ecuación iónica e a molecular 	ı :1
b) Calcula o volume de ácido nítrico consumido	
Electrólise	2
1. Durante a electrólise do cloruro de magnesio fundido:	2
a) Cantos gramos de Mg prodúcense cando pasan 8,80·10³ culombios a través da célula?	
b) Canto tempo tárdase en depositar 0,500 gramos de Mg cunha corrente de 25,0 amperios?	
c) Cantos litros de cloro obteranse no punto (b) a unha presión de 1,23 atm e a unha temperatu de 27 °C	
d) Escribe os procesos electrolíticos que ocorren no ánodo e no cátodo	