Use $H_{\mathbb{F}}$ or $H(\mathbb{F})$ to indicate coefficients in \mathbb{F}

Definition 0.0.1. A pure Hodge structure of weight n on $H_{\mathbb{Z}}$ is a decomposition $H_{\mathbb{C}} = \bigoplus_{n+q=n} H^{p,q}$

such that $\overline{H^{p,q}} = H^{q,p}$. Equivalently, $H_{\mathbb{C}} = F^p \oplus \overline{F^{n+1-p}}$ by introducing the decreasing Hodge filtration $F^p = \bigoplus_{i>p} H^{i,n-i}$, then $\overline{F^q} = \bigoplus_{j\leq p} H^{j,n-j}$, $H^{p,q} = F^p \cap \overline{F^q}$, $F^p \cap \overline{F^{n+1-p}} = 0$

Example 0.0.2. X is a complex manifold, $H_{\mathbb{Z}} = H^n(X; \mathbb{Z})$, then

$$H^{n}(X;\mathbb{C}) = \bigoplus_{p+q=n} H^{p,q} = \bigoplus_{p+q=n} H^{p}(X;\mathbb{C}) \wedge \overline{H^{p}(X;\mathbb{C})}$$

Example 0.0.3. Tate structure $\mathbb{Z}(-k)$ is of weight 2k given by $H_{\mathbb{Z}} = \mathbb{Z}$ with filtration $F^k = \begin{cases} H_{\mathbb{C}} = \mathbb{C} & k \leq p \\ 0 & k > p \end{cases}$

Definition 0.0.4. A polarization over \mathbb{Q} of a Hodge structure over \mathbb{Q} of weight k is a $(-1)^k$ symmetric nondegenerate flat bilinear map $\beta: \mathbb{V}_{\mathbb{Q}} \times \mathbb{V}_{\mathbb{Q}} \to \mathbb{Q}$ such that the Hermitian form $\beta_x(C_xv,\bar{w})$ on each fiber \mathcal{V}_x is positive definite, here C_x is the Weil operator, given as the direct sum of multiplication i^{p-q} on $H_x^{p,q}$

Definition 0.0.5. A mixed Hodge structure on $H_{\mathbb{Z}}$ consists of an increasing weight filtration W_{\bullet} on $H_{\mathbb{Q}}$ and a decreasing filtration F^{\bullet} that are compatible, i.e.

$$F^p(\operatorname{gr}_k W)_{\mathbb{C}} = F^p\left(\frac{W_{k+1}}{W_k}\right)_{\mathbb{C}} = \frac{F^p\cap W_{k+1}(\mathbb{C})}{W_k(\mathbb{C})} = \frac{F^p\cap W_{k+1}(\mathbb{C}) + W_k(\mathbb{C})}{W_k(\mathbb{C})}$$

is a pure Hodge structure of weight k of $\operatorname{\mathsf{gr}}_k W$

Definition 0.0.6. A variation of Hodge structure of weight k over \mathbb{Q} and a complex manifold X is $(\mathbb{V}_{\mathbb{Q}}, \mathcal{F}^{\bullet})$, $\mathbb{V}_{\mathbb{Q}}$ is a locally constant sheaf of \mathbb{Q} vector spaces, \mathcal{F}^{\bullet} is a decreasing filtration of holomorphic subbundles of the locally free sheaf $\mathcal{V} = \mathcal{O}_X \otimes \mathbb{V}_{\mathbb{Q}}$ such that

- $(\mathcal{V}_x, \mathcal{F}_x^{\bullet})$ has a pure Hodge structure of weight k, i.e. $\mathcal{V}_x = \mathcal{F}^p \oplus \overline{\mathcal{F}^{k+1-p}}$
- (Griffiths transversality) $\nabla \mathcal{F}^p \subseteq \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{F}^{p-1}$

Definition 0.0.7. A variation of mixed Hodge structure over \mathbb{Q} and a complex manifold X is $(\mathbb{V}_{\mathbb{Q}}, \mathcal{W}_{\bullet}, \mathcal{F}^{\bullet})$, \mathcal{W}_{\bullet} is an increasing filtration of $\mathbb{V}_{\mathbb{Q}}$ by locally constant subsheaves such that

- $(\mathcal{V}_x, (\mathcal{W}_{\bullet})_x, \mathcal{F}_x^{\bullet})$ has a mixed Hodge structure, i.e. () is a pure Hodge structure of weight k
- $\nabla \mathcal{F}^p \subseteq \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{F}^{p-1}$

Remark 0.0.8. Given a locally constant sheaf is equivalent to given a monodromy representation $\rho_{\mathbf{x}}: \pi_1(X, \mathbf{x}) \to \operatorname{Aut}_{\mathbb{Q}}(\mathcal{V}_x)$. A variation is *unipotent* if the the monodromy representation is unipotent

Theorem 0.0.9 (Deligne). \tilde{X} is a normalization of X, $(\mathbb{V}_{\mathbb{Q}}, \mathcal{W}_{\bullet}, \mathcal{F}^{\bullet})$ is a unipotent variation of mixed Hodge structure of weight k, then there is a unique extension $\tilde{\mathcal{V}}$ over \tilde{X} such that

- Inside every section of $\tilde{\mathcal{V}}$, flat sections increase at most at the rate of $O(\log(\|x\|^k))$ on each compact set of $\tilde{X} X$
- Every flat section of \mathcal{V}^{\vee} increases at most at the rate of $O(\log(\|x\|^k))$

These conditions are equivalent to

- In a local basis of $\tilde{\mathcal{V}}$, the connection matrix ω of \mathcal{V} has at most logarithmic singularities along $\tilde{X} X$
- The residue of ω along any irreducible component of $\tilde{X} X$ is nilpotent