TUGAS PRAKTIKUM PERTEMUAN 6 PENGANTAR MATEMATIKA KOMPUTASIONAL

1. Tentukan nilai maksimum dan minimum lokal dari fungsi:

$$f(x,y) = 11x^3 + 4y^3 - 8y - 66$$

Nama : Athirah Mu	Flihah			
NIM : G640120103				
Tensukan				
Tentukan nilai mat	s & min lokal dr			
1 (x,y) = 11x3	+ 44 - 84 - 66			
		_		
fx (x,y) = 0	fy (x,y) = 0	f ((a,b) = (u,	2)
33 X, = O	1242-8 =0			
a = 0	3 /2y2 = 82	4		
	y2 = 2			
	3			
	$b = \boxed{\frac{2}{3}}$	Δ		
	13			
fxx (x,y) = 66x		D (a,b) =	fxx. fyy -	(fxy) ²
fxy (x,y) = 0		=	66 (0) . 24	(2) - 0
fyy (x,y) = 24y		=		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
→ 0=0				8 - 1 - E N =
karena D=0 m	aka maks lokal	& min loka	1 tak apt o	disimpulkan

2. Tentukan nilai maksimum dan minimum mutlak dari fungsi:

$$f(x,y) = x^2 + y^2 + x^2y + 8$$

Pada $D = \{(x, y) | |x| \le 1, |y| \le 1\}$

$\frac{ddd D - \{(x,y) x \le 1, y \}}{2}$		
Tentukan nilai maks d	an min mutlak darı	
f(x,y) = x'+ y2 + >	x'y + 8	
pada D = {(x,y)/ x	£1, 191 £1}	
		()
fx (x;y) = 0	fy (x,y) = 0	f(a,b) * (0,0)
2x + 2xy =0	2y + x2 = 0	
· 2x + &x · -x = 0	2y = -x'	; (-√2,-1)
<i>A</i>	y = -x'	
2x - x3 = 0	2	
× (2-X2) =0	· 24 + 2 = 0	
2-x" = 0	1 2y = -2	
X, = 5	/ y = -1	
$a = \pm \sqrt{2}$	b = -1	
4 batas yaitu : x = 1		
→ utk x = -1 , f(-1, y)	= 1 + 4 + 4 + 8 =	y'+y+9, 191 = 1
fy (-1, y) = 0		
2y t 1 = 0		
y = -0,5		
f (-1, -0.5) = (-0.5)2	+ (-0,5) + 9 = 8,75	
TUS : Y = -1 → f (-1;	1) = (-1) + (-1) + 9	= 9
y: 1 → f(-1,	1) = (1) + 1 + 9 =	11
→ U+K X=1, f(1,y)=		
fy (1,y) = 0		
29 + 1 = 0		
y = -0,5		
f (1, -0,5) = (-0,5) +	(0,5) +9 = 8,75	
TUS : 7 = -1 → f(1,-1		= 9
y,1 → { (1.1)) = 1 + 1 + 9	= 11
771 -71 (1)11		