

Energieeffizienz im digitalen Alltag und beim Coding

Julia Padberg

mit Unterstützung von

Nina Godenrath, Haron Nazari, Aaron Sielaff und Emirhan

Computer Science for Future

Stand der globalen Energietransformation

Rolle der digitalen Techniken

Digitaler CO₂ -Fußabdruck im Alltag

- CO₂ effiziente Software
- Experiment
- Computer Science for Future
- Fazit

Stand der Energietransformation International Energy Agency Net Zero Roadmap

Bericht des IPCC

AR6 Synthesis Report: Climate Change 2023

Limiting warming to 1.5°C and 2°C involves rapid, deep and in most cases immediate greenhouse gas emission reductions

Net zero CO₂ and net zero GHG emissions can be achieved through strong reductions across all sectors

Volkswirtschaftliche Kosten aufgrund des Klimawandels nach Weltregion 2050

World Economic Forum, 1/2024

Brauchbare individuelle Strategien laut der 380 befragten Experten in Prozent

Guardian vom 9.5.2024

Stand der globalen Energietransformation

Rolle der digitalen Techniken

Digitaler CO₂ -Fußabdruck im Alltag

- CO₂ effiziente Software
- Experiment
- Computer Science for Future
- Fazit

Digitale Techniken Problem oder Lösung

Christoph Meinel (HPI) - Environmental Impact of Digitalization

Digitale Techniken tragen erheblich zur weltweiten CO_{2eq} -Emission bei

Digitale Techniken verringern die weltweiten

CO_{2eq}-Emissionen

zB durch Datenanalyse und KI

ABER Reduktion der CO_{2eq}-Emissionen DRINGEND NOTWENDIG

https://theshiftproject.org/en/article/virtual-worlds-and-networks-new-reports-release/

Digitalisierung & CO_{2eq}-Emissionen

(iea tracking)

Digitale Technologien 2% der energiebezogenen Treibhausgasemissionen

Geringe Steigerung der Emissionen seit 2010

Dennoch Halbierung der Emissionen bis 2030

Energieverbrauch der IT in Deutschland nach [Grünwald, Caviezel] S.2

CO_{2eq}- Emissionen

CO_{2eq}-Emission für digitale Aktionen

	Eine Visa Transaktion	0,45 g	
**	Eine Google-Anfrage	5 g	
	Eine Stunde Video-Streaming	135 g	
	Eine Bitcoin Transaktion	479.760 g	
	Vergleich 100km im Auto	17.000 g	
	Vergleich Flug M-HH	78.200 g	

Stand der globalen Energietransformation

Rolle der digitalen Techniken

Digitaler CO₂ -Fußabdruck im Alltag

CO₂ - effiziente Software

- Experiment
- Computer Science for Future
- Fazit

Wie sieht mein digitaler CO₂-Fußabdruck aus?

Jeder für sich selbst hier: https://www.digitalcarbonfootprint.eu/

Brauchbare individuelle Strategien laut der 380 befragten Experten in Prozent

Stand der globalen Energietransformation

Rolle der digitalen Techniken

Digitaler CO₂ -Fußabdruck im Alltag

CO₂ - Effiziente Software

- Experiment
- Computer Science for Future
- Ausblick

Digitale Suffizienz

(Santarius et al, 2022)

Hardwaresuffizienz

Softwaresuffizienz

Nutzersuffizienz

Ökonomische Suffizienz

CO₂-effiziente Softwareentwicklung

Softwareprodukte

- ressourcenschonend
- energie-effizient

Auf älterer Hardware

- laufend
- zu aktualisieren

Hohes Maß an Transparenz & Autonomie

CO₂-effiziente Software

Oktobe 19

Stand der globalen Energietransformation

Rolle der digitalen Techniken

Digitaler CO₂ -Fußabdruck im Alltag

CO₂ - effiziente Software

Experiment

Computer Science for Future

Fazit

Startpunkt: Messung des Energieverbrauchs

https://learn.greensoftware.foundation/measurement

What you can't measure, you can't improve.

Wie viel wird Energie verbraucht?

- Messungen durch spezifische Werkzeuge
- wie JoularJX, turbostat etc

Wie ist der Energie-Mix (erneuerbar, fossil)

Wie viel Hardware wird benötigt?

Laufzeit- und Energieeffizienz

Laufzeiteffizienz:

- Geschwindigkeit und Leistung von Computersystemen
- Komplexität von Algorithmen & Qualität der Implementierung

Energieeffizienz:

Verbrauchte Energie eines Systems

Proportionalität?

- Laufzeiteffizienz korreliert mit Energieeffizienz
- Unentschiedene wissenschaftliche Einschätzung

Green Software Measurement Model (GSMR) [Guldner]

Experiment:

Erster Schritt zur energie-effizienten Softwareentwicklung

Mögliche Aufgaben

• Vergleich Laufzeit vs. Energieeffizienz

JUNIT-Tests für die Messung

des Energieverbrauchs und der Laufzeit

Erstellung einer Tabelle

Korrelationstest

Energiemessung von Software als Experiment

Vorteile der Software-Tools

- niedriger Kosten
- geringerer Aufwand
- detailliertere Informationen auf Prozessebene
- mehr Flexibilität und leichter skalierbar

Mögliche Tools:

JoularJX, PowerJoular, Softwarefootprint.py, turbostat

Stand der globalen Energietransformation

Rolle der digitalen Techniken

Digitaler CO₂ -Fußabdruck im Alltag

- CO₂ effiziente Software
- Experiment
- Computer Science for Future
- Fazit

CS4F Computer Science for Future

Initiative um Klimaschutze und Nachhalti (im Dep Informatik)

Getragen von allen Student*innen, Mitarbeiter*innen und Prof

Veränderungsprozess in unterschiedlichei

Chat

Chat le Teams

Teams

Planner

Anrufe

OneDrive

CS4F

▼ Hauptkanäle

Allgemein

Board 👶

ChatGTPInDerLehre

Drittmittel 🗅

FAO

Jugendhilfe

Landing Page

Lehre

Lektüre

Nachhaltigkeitslabor 🗇

P3.1-Podcast ₼

Planung

Podcast-Diskussion

PublicRelations 🙃

CC BY-SA 4.0 Oktober 24

Stand der globalen Energietransformation

Rolle der digitalen Techniken

Digitaler CO₂ -Fußabdruck im Alltag

CO₂ - effiziente Software

- Experiment
- Computer Science for Future
- Fazit

Fazit

Energieverbrauch durch IT ist erheblich

CO₂-effiziente Software nötig

Neues Forschungsgebiet:

Messungen der Energieeffizienz von Software

Eigene Messungen als Experiment möglich

Quellen

- Approved Summary for Policymakers IPCC AR6 SYR https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf
- Oliver Wyman; World Economic Forum, Quantifying the Impact of Climate Change on Human Health, Seite 17, Januar 2024
- Guardian vom 9.5.2024, https://www.theguardian.com/environment/article/2024/may/09/what-are-the-most-powerful-climate-actions-you-can-take?CMP=Share_AndroidApp_Other
- Shift report https://theshiftproject.org/en/article/virtual-worlds-and-networks-new-reports-release/
- Grünwald, Caviezel, Energy consumption of ICT infrastructurel Institut für Technikfolgenabschätzung und Systemanalyse (ITAS), Karlsruher Institut für Technologie (KIT), 2022, https://publikationen.bibliothek.kit.edu/1000152733
- Jens Gröger, <u>Digitaler CO2-Fußabdruck</u>, Öko-Institut e.V. 2020
- A. Guldner, et al. <u>Development and evaluation of a reference measurement model for assessing the resource and energy efficiency of software products and components—Green Software Measurement Model (GSMM)</u>. In: *Future Generation Computer Systems* 155 (June 2024)

Abbildungsnachweise (alle CC BY 4.0)

Folie 1: generiert mit Adobe-FireFly

Folie 3: https://www.iea.org/data-and-statistics/charts/global-energy-sector-co2-emissions-in-the-pre-paris-baseline-and-stated-policies-scenarios-2015-2030,

Folie 4: https://www.ipcc.ch/report/ar6/syr/figures/figure-spm-5

Folie 5: Eigenes Diagramm, daten aus Statista nach Wyman, 2024

Folie 6: Eigenes Diagramm nach Daten aus Guardian vom 9.5.2024

Folie 8: https://theshiftproject.org/en/article/virtual-worlds-and-networks-new-reports-release/

Foie 10: Eigenes Diagramm nach [Grünwald] S.2

Folie 11: Eigenes Diagramm, Daten s. letzte Folie

Folie 12: Eigene Illustration, Daten anbei, s letzte Folie

Folie 14: Erstellt mit Webseite https://www.digitalcarbonfootprint.eu/

Folie 15: eigenes Diagramm, Daten aus dem Guardian vom 9.5.2024

Folie 19: Eigene Illustration nach https://learn.greensoftware.foundation/measurement

Folie 23: A. Guldner, et al., aus [Guldner] Fig. 1, p. 405

Folie 27: Eigener Screenshot

Daten

Aktion	g CO2e _{→1}	Intervall (falls angegeben)	Quellen	
Eine Visa Transaktion	0,45		https://digiconomist.net/bitcoin-energy-consumption	
Eine Google-Anfrage	5	0.1 - 10	https://digiconomist.net/bitcoin-energy-consumption	
Eine Stunde Video-Streaming	135	100-175	https://www.oeko.de/blog/der-co2-fussabdruck-unseres-digitalen-lebensstils/	
Eine Bitcoin Transaktion	479.760	369490- 479760	https://www.borderstep.de/wp-content/uploads/2020/06/Videostreaming-2020.pdf	
Vergleich 100km im Auto	17.000	1/I his 20 kg (102 hro 100km)	https://www.worms.de/neu-de/zukunft-gestalten/klima-und-	
Vergeeren 100km mit tate			umwelt/Klimaschutz/CO2-Berechnung-fuer-KFZ.php	
Vergleich Flug M-HH	78.200	66kg bis 198 kg pro 1000km	https://www.icao.int/environmental-protection/CarbonOffset/Pages/default.aspx	

Herstellung	kg CO2eq pro Jahr	Quellen
Sprachassistent	33	
Smartphone	50	https://www.oeko.de/blog/der-co2-fussabdruck-unseres-digitalen-lebensstils/
Laptop	63	
Fernseher	200	
Desktop+Monitor	435	
max Verbrauch (klimaverträglich)	600	https://www.umweltbundesamt.de/daten/klima/treibhausgas- emissionen-in-der-europaeischen-union#hauptverursacher
60qm-Wohnung pro Jahr	1450	https://www.nachhaltiges-zuhause.de/co2-aussto%C3%9F-geb%C3%A4ude
Verbrauch weltweit 4700		Veröffentlicht von Statista Research Department, 07.02.2024 https://de.statista.com/statistik/daten/studie/1273207/umfrage/pro-kopf-co2-
Verbrauch in D (2022)	9200	https://www.eea.europa.eu/data-and-maps/data/data- viewers/greenhouse-gases-viewer