Thermodynamics and Tornado Prediction

Tierney Dillon, Paddy Halloran, Alex Lopez

CAM Summer Research Meeting August 12, 2015

Advisors: Misha Shvartsman and Pavel Bělík

Why this research is important Tornado 06/17/2010

DI No.	Damage Indicator (DI)	Degrees of Damage (DOD
1	Small Barns or Farm Outbuildings (SBO)	8
2	One- or Two-Family Residences (FR12)	10
3	Manufactured Home - Single Wide (MHSW)	9
4	Manufactured Home - Double Wide (MHDW)	12
5	Apartments, Condos, Townhouses [3 stories or less] (ACT)	6
6	Motel (M)	10
7	Masonry Apartment or Motel Building (MAM)	7
8	Small Retail Building [Fast Food Restaurants] (SRB)	8
9	Small Professional Building [Doctor's Office, Branch Banks] (SPB)	9
10	Strip Mall (SM)	9
11	Large Shopping Mall (LSM)	9
12	Large, Isolated Retail Building [K-Mart, Wal-Mart] (LIRB)	7
13	Automobile Showroom (ASR)	8
14	Automobile Service Building (ASB)	8
15	Elementary School [Single Story; Interior or Exterior Hallways] (ES)	10
16	Junior or Senior High School (JHSH)	11
17	Low-Rise Building [1–4 Stories] (LRB)	7
18	Mid-Rise Building [5–20 Stories] (MRB)	10
19	High-Rise Building [More than 20 Stories] (HRB)	10
20	Institutional Building [Hospital, Government or University Building] (IB)	11
21	Metal Building System (MBS)	8
22	Service Station Canopy (SSC)	6
23	Warehouse Building [Tilt-up Walls or Heavy-Timber Construction] (WHB)	7
24	Electrical Transmission Lines (ETL)	6
25	Free-Standing Towers (FST)	3
26	Free-Standing Light Poles, Luminary Poles, Flag Poles (FSP)	3
27	Trees: Hardwood (TH)	5
28	Trees: Softwood (TS)	5

June 16-18th 2010 Storm

EF0	EF1	EF2	EF3	EF4	EF5	Total
48	28	9	4	4	0	93

Original Fujita Scale: Wind

Speed = $6.3(F+2)^{1.5}$, F0: 18 m/s

F4: 92 m/s, F5: 117 m/s, F12: 330 m/s

- 1st tornado in South Dakota, Last touched town in Iowa
- 4 fatalities in Minnesota alone, highest in MN since July 5th 1978
- \$117.7 Million in damage

Why is it important to know energy distribution in a tornado vortex?

Energy of a Thunderstorm: 10 km×10 km×15 km

Average Density: 0.75 kg/m^3 , Mass $\approx 1.125 \times 10^{12} \text{ kg}$

CAPE $\approx 1.5 \times 10^3$ J/kg, Energy $\approx 1.125 \times 1.5 \times 10^{15}$ J = 1.687 TJ

CAPE vs Latent Heat Release:

CAPE $\approx 1.5 \text{ kJ/kg},$

Latent Heat ≈ 2260 kJ/kg

Thermodynamic System

Equilibrium Systems vs Non-Equilibrium Systems

Air Parcel in a Tornado Vortex can be thought of as a Thermodynamic System

Equilibrium and 4 Laws of Thermodynamics

0th Law: Absolute Temperature *T* exists

1st Law: Internal Energy U exists

$$\delta Q = dU + \delta W, \quad \delta W = PdV$$

2nd Law: Entropy S exists

$$dS = \frac{\delta Q}{T}$$

3rd Law: $S \rightarrow 0$ as $T \rightarrow 0$

$$dU = TdS - PdV = \frac{\partial U}{\partial S}dS + \frac{\partial U}{\partial V}dV$$

$$=\langle T, -P \rangle \cdot \langle dS, dV \rangle = \text{forces} \cdot \text{fluxes}$$

$$U = U(S,V)$$

S,V: extensive

T,P: intensive

Helmholtz Free Energy:

$$F = U - TS$$

Units for these functions: J

$$dF = dU - TdS - SdT = TdS - PdV$$

$$-TdS - SdT = -PdV - SdT$$

$$F = F(T, V)$$
 !!!!

Non - Equilibrium Thermodynamics

Local Hypothesis: Small air parcel is in state of equilibrium for a short period of time. So thermodynamic variables will depend on position x and time t

Helmholtz Free Energy:

$$F(\mathbf{x},t) = U(\mathbf{x},t) - T(\mathbf{x},t)S(\mathbf{x},t)$$

Note the units for these functions are J/kg so F is a local quantity (free energy **density**)

We wish to use Local Equilibrium Idea to test the influence of tornado parameters on Helmholtz free energy

- 1. C. A. Doswell, D. M. Schultz, On the Use of Indices and Parameters in Forecasting Severe Storms, E-Journal of Severe Storms Meteorology, Vol. 3, No. 3, 2006
- 2. G. P. Bystrai, I. A. Lykov, S. A. Okhotnikov, Thermodynamics of nonequilibrium processes in a tornado: synergistic approach,

http://arxiv.org/pdf/1109.5019v1.pdf, 09/23/2011

Rate Equation for the Free Energy Density F = U - TS = F(T, V)

The vortex layer at the height h is a non-equilibrium air parcel with

$$\hat{F}(t) = F(\theta(t, \boldsymbol{\xi}(t)), V(t), t)$$

$$\frac{d\hat{F}}{dt} = \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial t} + \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \xi} \cdot \frac{d\xi}{dt} + \frac{\partial F}{\partial V} \frac{dV}{dt} + \frac{\partial F}{\partial t}$$

$$d\hat{F} = \dots + \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \xi} \cdot d\xi + \frac{\partial F}{\partial V} dV + \dots$$

Intensive ("Forces"): $\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \xi}$, Extensive ("Fluxes"): $d\xi$

Thermodynamic Fluxes and Thermodynamic Forces

$$\frac{d\hat{F}}{dt} = \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial t} + \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \xi} \cdot \frac{d\xi}{dt} + \frac{\partial F}{\partial V} \frac{dV}{dt} + \frac{\partial F}{\partial t}$$

$$\frac{d\hat{F}}{dt} = -S \frac{\partial \theta}{\partial t} - P \frac{dV}{dt} - \theta X \cdot J - K$$

$$J = -\frac{d\xi}{dt}$$
 is a vector of thermodynamic fluxes

X is a vector of thermodynamic forces

Onsager Relations:

J = LX, L is a matrix

$$\frac{d\hat{F}}{dt} = -\theta X \cdot J, \qquad X = (\text{CAPE, SRH}), \quad J = LX$$

Moist Air is a homogeneous mixture of Dry air and Water Vapor, we assume that both are Ideal Gases

$$\rho_{\scriptscriptstyle m} = \rho_{\scriptscriptstyle d} + \rho_{\scriptscriptstyle v}$$

$$P_m = P_d + P_v = \rho_d R_d T + \rho_v R_v T = \rho_d R_d T \left(1 + \frac{R_v}{R_d} \frac{\rho_v}{\rho_d} \right)$$

$$= \rho_m R_d T \left(1 + \left(\frac{R_v}{R_d} - 1 \right) \frac{\rho_v}{\rho_m} \right) = \rho_m R_d \theta$$

 θ is **Virtual Temperature:** Shows how a 2 - gas system (dry air and water vapor) would behave if it was a 1 - gas system

Indeed,

$$\begin{split} & \rho_m R_d \theta = \rho_m R_d T \left(1 + \left(\frac{R_v}{R_d} - 1 \right) \frac{\rho_v}{\rho_m} \right) \\ & = \rho_m R_d T + R_d T \frac{R_v - R_d}{R_d} \rho_v = \rho_m R_d T + T \left(R_v - R_d \right) \rho_v \\ & = \left(\rho_d + \rho_v \right) R_d T + T \left(R_v - R_d \right) \rho_v = \rho_d R_d T + \rho_v R_v T \\ & = P_d + P_v = P_m \end{split}$$

$$\mathbf{CAPE} = \int_{z_1}^{z_2} \frac{\theta - \theta_{env}}{\theta_{env}} g \ dz$$

SRH (Storm Relative Helicity)

 $H = \mathbf{u} \cdot \boldsymbol{\omega}$, $\boldsymbol{\omega} = \nabla \times \mathbf{u}$, so H is a local quantity

Integrated Version: $HI \approx v\Delta u$ in $m^2/s^2 = J/kg$

Soundings

06/17/2010 Minneapolis Station 7:00 PM

<u>Indices</u>

PR HGT	TE C	DEW C	W D DEG	W S M/S
TIFA W			DLG	IVI/O
973. 270.	29.1	20.8	176.3	8.7
950. 484.	26.5	19.6	164.8	13.4
925. 720.	24.7	20.8	167.8	17.4
900. 960.	22.1	19.6	171.6	20.4
875. 1204.	20.9	13.3	177.9	22.5
850. 1455.	21.0	8.8	184.8	23.7
825. 1713.	19.4	7.0	191.1	24.4
800. 1976.	17.2	-0.7	200.4	25.5
775. 2246.	15.3	-8.5	209.8	25.6
750. 2522.	14.1	-8.4	213.3	23.5
725. 2807.	12.0	-5.7	212.7	23.7
700. 3099.	9.0	-3.6	219.5	24.7
650. 3706.	4.4	-2.2	232.5	24.8
600. 4353.	-0.2	-4.9	237.4	23.0
550. 5044.	-4.7	-8.2	240.4	24.3

SRH. Blue: 4 PM, Red: 7 PM, Green: 10 PM

Helmholtz free energy as a function of **CAPE** and **SRH** 06/17/2010 4 PM Minneapolis Storm

Helmholtz free energy as a function of **CAPE** and **SRH** 06/17/2010 7 PM Minneapolis Storm

Helmholtz free energy as a function of **CAPE** and **SRH** 06/17/2010 10 PM Minneapolis Storm

In Bystrai's et al. paper the estimate of

$$\frac{d\hat{F}}{dt} = -S\frac{\partial\theta}{\partial t} - P\frac{dV}{dt} - \theta \mathbf{X} \cdot \mathbf{J} - \theta \sigma$$

for a typical tornado is given by

$$0.01 \le \left| \frac{d\hat{F}}{dt} \right| \le 2.0 \quad \frac{J}{kg \ s}$$

Our data is spaced by 3 hours so the time derivative estimate for $\frac{d\hat{F}}{dt}$ is unlikely to be accurate

Helmholtz Free Energy Density F as a function of time t

$$h = 1200 m$$

$$h = 2500 \ m$$

Future Plans

- 1. To calculate the CAPE using precise virtual temperature to avoid distorted values at the low CAPE values
- 2. To refine the calculation for $\hat{F}(t)$ taking into consideration the updraft component of the flow
- 3. Evaluate additional parameters such as EHI, STP, LI and their ability to influence $\hat{F}(t)$

