(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 27.01.1999 Bulletin 1999/04
- (51) Int CL⁶: **H01Q 25/00**, H01Q 21/06, H01Q 23/00
- (21) Application number: 93309558.0
- (22) Date of filing: 30.11.1993
- (54) Active transmit phased array antenna

 Aktive phasengesteuerte Sende-Gruppenantenne
 Réseau d'antennes émettrices à commande de phase du type actif
- (84) Designated Contracting States: DE FR GB IT
- (30) Priority: 30.11.1992 US 983123
- (43) Date of publication of application: 08.06.1994 Bulletin 1994/23
- (73) Proprietor: SPACE SYSTEMS / LORAL INC. Palo Alto, California 94303-4697 (US)
- (72) Inventors:
 - Hirshfield, Edward
 Cupertino, California 95014 (US)
 - Matthews, Edgar W., Jr.
 Mountain View, California 94040 (US)
 - Luh, Howard H.
 Sunnyvale, California 94087 (US)

- (74) Representative: Vaufrouard, John Charles Elkington and Fife Prospect House 8 Pembroke Road Sevenoaks, Kent TN13 1XR (GB)
- (56) References cited: US-A- 4 360 813 US-A- 5 162 803

US-A- 4 901 369

- 13TH ANNUAL GAAS IC SYMPOSIUM
 TECHNICAL DIGEST 1991, October 1991,
 MONTEREY, CALIFORNIA pages 41 44 GUPTA
 ET AL. 'BEAM-FORMING MATRIX DESIGN
 USING MMICS FOR A MULTIBEAM
 PHASED-ARRAY ANTENNA'
- IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol.39, no.7, July 1991, NEW YORK US pages 919 925 BUCCI ET AL. 'Reconfigurable Arrays by Phase-Only Control'

P 0 600 715 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

The present invention relates to microwave beam antenna systems and more particularly to phased array antenna systems of the type which generate multiple simultaneous antenna beams by controlling the relative phase of signals in multiple radiating elements.

For many years radar systems array antennas have been known and have been used for the formation of sharply directive beams. Array antenna characteristics are determined by the geometric position of the radiator elements and the amplitude and phase of their individual excitations.

Later radar developments, such as the magnetron and other high powered microwave transmitters, had the effect of pushing the commonly used radar frequencies upward. At-those higher frequencies, simpler antennas became practical which usually included shaped (parabolic) reflectors illuminated by hom feed or other simple primary antenna.

Next, electronic (inertialess) scanning became important for a number of reasons, including scanning speed and the capability for random or programmed beam pointing. Since the development of electronically controlled phase shifters and switches, attention has been redirected toward the array type antenna in which each radiating element can be individually electronically controlled. Controllable phase shifting devices in the phased array art provides the capability for rapidly and accurately switching beams and thus permits a radar to perform multiple functions interlaced in time, or even simultaneously. An electronically steered array radar may track a great multiplicity of targets, illuminate a number of targets for the purpose of guiding missiles toward them, perform wide-angle search with automatic target selection to enable selected target tracking and may act as a communication system directing high gain beams toward distant receivers and/or transmitters. Accordingly, the importance of the phase scanned array is very great. The text "Radar Handbook" by Merrill I. Skolnik. McGraw Hill (1970) provides a relatively current general background in respect to the subject of array antennas in general.

Other references which provide general background in the art include:

U.S. Patent 2,967,301 issued January 3, 1961 to Rearwin entitled, SELECTIVE DIRECTIONAL SLOTTED WAVEGUIDE ANTENNA describes a method for creating sequential bearns for determining aircraft velocity relative to ground.

U.S. Patent 3,423,756 issued January 21, 1969, to Folder, entitled SCANNING ANTENNA FEED describes a system wherein an electronically controlled conical scanning antenna feed is provided by an oversized waveguide having four tuned cavities mounted about the waveguide and coupled to it. The signal of the frequency to which these cavities are tuned is split into higher order modes thus resulting in the movement of

the radiation phase center from the center of the antenna aperture. By tuning the four cavitles in sequence to the frequency of this signal, it is conically scanned. Signals at other frequencies if sufficiently separated from the frequency to which the cavitles are tuned continue to propagate through the waveguide without any disturbance within the waveguide.

U.S. Patent 3,969,729, issued July 13, 1976 to Nemet, entitled NETWORK-FED PHASED ARRAY ANTENNA SYSTEM WITH INTRINSIC RF PHASE SHIFT CAPABILITY discloses an integral element/phase shifter for use in a phase scanned array. A non-resonant waveguide or stripline type transmission line series force feeds the elements of an array. Four RF diodes are arranged in connection within the slots of a symmetrical slot pattern in the outer conductive wall of the transmission line to vary the coupling therefrom through the slots to the aperture of each individual antenna element. Each diode thus controls the contribution of energy from each of the slots, at a corresponding phase, to the individual element aperture and thus determines the net phase of the said aperture.

U.S. Patent 4,041,501 issued, August 9, 1977 to Frazeta et al., entitled LIMITED SCAN ARRAY ANTENNA SYSTEMS WITH SHARP CUTOFF OF ELEMENT PATTERN discloses array antenna systems wherein the effective element pattern is modified by means of coupling circuits to closely conform to the ideal element pattern required for radiating the antenna beam within a selected angular region of space. Use of the coupling circuits in the embodiment of a scanning beam antenna significantly reduces the number of phase shifters required.

U.S. Patent 4,099,181, issued July 4, 1978, to Scillieri et al, entitled FLAT RADAR ANTENNA discloses a flat radar antenna for radar apparatus comprising a plurality of aligned radiating elements disposed in parallel rows, in which the quantity of energy flowing between each one of said elements and the radar apparatus can be adjusted, characterized in that said radiating elements are waveguides with coplanar radiating faces, said waveguides being grouped according to four quadrants, each one of said quadrants being connected with the radar apparatus by means of a feed device adapted to take on one or two conditions, one in which it feeds all the waveguides in the quadrant and the other in which it feeds only the rows nearest to the center of the antenna excluding the other waveguides in the quadrant, means being provided for the four feed devices to take on at the same time the same condition, so that the radar antenna emits a radar beam which is symmetrical relatively to the center of the antenna, and having a different configuration according to the condition of the feed de-

U.S. Patent 4, 595,926, issued June 17, 1986 to kobus et al. entitled DUAL SPACE FED PARALLEL PLATE LENS ANTENNA BEAMFORMING SYSTEM describes a beamforming system for a linear phased array anten-

55

4

na system which can be used in a monpulse transceiver, comprising a pair of series connected parallel plate constrained unfocused lenses which provide a suitable amplitude taper for the linear array to yield a low sidelobe radiation pattern. Digital phase shifters are used for beam steering purposes and the unfocused lenses decorrelate the quantisation errors caused by the use of such phase shifters.

U.S. Patent 3, 546, 699, issued December 8, 1970 to Smith, entitled SCANNING ANTENNA SYSTEM discloses a scanning antenna system comprising a fixed array of separate sources of in-phase electromagnetic energy arranged in the arc of a circle, a transducer having an arcuate input contour matching and adjacent to the arc, a linear output contour, and transmission properties such that all of the output energy radiated by the transducer is in phase, and means for rotating the transducer in the plane of the circle about the center of the circle.

A "beam-forming matrix design using MMICS for a multibeam phased-array antenna" is described in "13th Annual GAAS IC Symposium Technical Digest 1991". October 1991, Monterey California USA, pages 41-44, Gupta et al. This suggests the use of a beam forming matrix in the form of a four way power combiner feeding each radiating horn. The combiner employs for each of four signals a bit digital phase shifter capable of ajusting the phase of the signal to be combined in steps. The phase adjustment influences the steering of the associated beam.

· Re-configurable arrays by phase only control are disclosed in "IEEE Transactions on Antennas and Propogation" Vol 39, No.7, July 1991, New York USA, pages 919-925:- Bucci et al discloses a single array antenna suggests the steering of a signal beam by applying different phase shifts whilst maintaining a fixed amplitude of signal known as "phase - only control".

The present invention seeks to provide an active phased array transmitter which enables improved power efficiency.

According to the invention there is provided a phased array transmitting antenna system for generating multiple Independent simultaneous microwave signal beams comprising a plurality of antenna radiating elements disposed on an array on a substrate, each one of said elements including amplifier means, a hybrid coupler disposed in a cavity on said substrate for providing orthogonal microwave energy signals having selected phases, filter means responsive to the microwave output signals of said cavity for passing signals within a selected frequency band, a radiating hom responsive to said microwave signals passed by said filter and means for transmitting said microwave signals as a beam having a direction and shape, characterised in that each said cavity includes a first pair of microwave probes disposed in said cavity 180 degrees apart, a second pair of probes disposed in said cavity 180 degrees apart, said first and second pairs of probes being disposed 90

degrees apart, a first pair of linear amplifiers connected to said first pair of probes and a second pair of linear amplifiers connected to said second pair of probes for exciting orthogonal microwave energy in said cavity such that each of said plurality of said antenna radiating elements transmit one of a multiple of simultaneous microwave beams having the same power value and different phase values which determine the shape and transmitted direction of said beams.

The phased array antenna system, more particularly, an active transmit phased array antenna permits generation of multiple independent simultaneous antenna beams to illuminate desired regions while not illuminating other regions. The size and shape of the regions is a function of the size and number of elements populating the array and the number of beams is a function of the number of beam forming networks feeding the array. All the elements of the array are operated at the same amplitude level and beam shapes and directions are determined by the phase settings.

In order that the invention and its various other preferred features may be understood more easily an embodiment thereof will now be described, by way of example only, with reference to the drawings in which;

Figure 1 is an illustration of a plurality of arrayed elements for an active transmit phased array antenna.

Figure 2 is a schematic illustration of a cross-section of an element of the plurality of the type employed in the multi-element phased array antenna of Figure 1.

Figure 3 is a schematic top view of the air dielectric cavity shown in Figure 2.

Figure 4 is a schematic bottom view of the controller used in the system of Figure 2.

Figure 5 is a schematic illustration showing phase shifters and attenuators of Figure 4 in more detail and with their associated circuits.

Referring to Figure 1, a version of an active transmit phased array antenna is shown including an illustrative number of the 213 elements disposed in a hexiform configuration. Fig. 2 illustrates a single one of the 213 elements included in the antenna of Fig. 1. Each element of Fig. 1 is identical to that shown in Fig. 2 and includes a radiating hom 10 capable of radiating in each of two orthogonal polarizations with isolation of 25 dB or greater. The horn is fed by a multi-pole bandpass filter means 12 whose function is to pass energy in the desired band and reject energy at other frequencies. This is of particular importance when the transmit antenna of the present invention is employed as part of a communication satellite that also employs receiving antenna(s) because spurious energy from the transmitter in the receive band could otherwise saturate and interfere with the sensitive receiving elements in the receiving antenna(s). In the present embodiment the filter means 12 is comprised of a series of sequential resonant cavities. coupled to one another in a way which maintains the high degree of orthogonality necessary to maintain the isolation referred to above.

The filter means 12 is coupled into an air dielectric cavity 14 mounted on substrate 36. Air dielectric cavity 14 contains highly efficient monolithic amplifiers which excite orthogonal microwave energy in a push-pull configuration. Referring to Fig. 3, which is a schematic plan view of the air dielectric cavity 14 of Fig. 2, this excitation is accomplished by probes 18, 20, 30 and 32 in combination with amplifiers 22, 24, 26 and 28. In Fig. 3, the probes 18 and 20 are placed such that they drive the cavity 14 at relative positions 180° apart. This provides the transformation necessary to afford the push pull function when amplifiers 22 and 24 are driven out-ofphase. Amplifiers 26 and 28 similarly feed probes 30 and 32 which are 180° apart and are positioned at 90° from probes 18 and 20 so that they may excite orthogonal microwave energy in the cavity. The two pairs of amplifiers are fed in phase quadrature by hybrid-input 34 via 180 degree couplers 34A and 34B to create circular polarization.

In order to accomplish the exact phase and amplitude uniformity necessary for orthogonal beams, amplifiers 22, 24, 26, and 28 must be virtually identical. The only practical way to enable this identity is to employ monolithic microwave integrated circuits (MMIC's) for the amplifiers.

The 90° hybrid 34 is shown terminating in two dots in Fig. 3. These dots represent feed thru connections from the substrate 36 illustrated in the bottom view of Fig. 4, and the other ends of the feed thru connections can be seen at location 38 and 39. One of these excites right circular polarization while the other excites left circular polarization. Additionally, if the signals passing through the feed thru connections were fed directly to 180° couplers 34A and 34B without the benefit of the 90° hybrid 34, linearly polarized beams rather than circularly polarized beams would be excited. The hybrid 34 is fed through connectors 38 and 39 by MMIC driver amplifiers 40 and 42, one for each sense of polarization. The desired polarization for each beam is selected by switch matrix 44, which also combines all the signals for each polarization to feed the two driver amplifiers 40 and 42. Each beam input (in the present example four) includes an electronically controlled phase shifter 48 and attenuator 46 used to establish the beam direction and shape (size of each beam). All elements in the array are driven at the same level for any given beam. This is different from other transmit phased arrays, which use amplitude gradients across the array to reduce beam sidelobes.

The active transmit phased array antenna being disclosed herein employs uniform illumination (no gradient) in order to maximize the power efficiency of the antenna. Otherwise, the power capacity of an antenna element is not fully utilized. The total available power can be arbitrarily distributed among the set of beams with no loss of power. Once the power allocation for a given beam has been set on all elements of the antenna by setting the attenuators 46, then the phase (which is

most likely different for every element) is set employing phase shifters 48 to establish the beam directions and shapes. The phase settings for a desired beam shape and direction are chosen by a process to synthesize the beam. The synthesis process is an iterative, computation-intensive procedure, which can be stored in a computer. The objective of the synthesis process is to form a beam which most efficiently illuminates the desired region without illuminating the undesired regions. The region could be described by a regular polygon and the minimum size of any side will be set by a selected number of elements in the array and their spacing, in general, the more elements in the array the more complex the shape of the polygon that may be synthesized. The process of phase-only beam shaping generates the desired beam shape but also generates grating lobes. This invention; as used for a satellite antenna, may permit the relative magnitude of the grating lobes to be minimised and prevent them from appearing on the surface of the earth as seen from the satellite orbital position so that they will not appear as interference in an adjacent beam or waste power by transmitting it to an undesired location. The synthesis process minimises the grating lobes, and it may also be used to generate a beam null at the location of a grating lobe that cannot otherwise be minimised to an acceptable level.

The number of independent beams that can be generated by the active transmit phase array antenna is limited only by the number of phase shifters 48 and attenuators 46 feeding each element. Referring to Figure 5, it is indicated that each string of phase shifters 48 and attenuators 46 is fed by different uniform power divider. The number of ports on each power divider must be equal to or greater than the number of elements. In the example shown in Fig. 5, the number of ports on the power divider must be 213 or greater. The number of power dividers must equal to the number of independent beams that the antenna can generate. The systems of example shown would thus require four power dividers each having 213 ports.

As stated previously, the sum of the power in each of the beams must equal the capacity of all of the elements in order to maximize efficiency. The capacity of each element is understood to be the linear or non-distorting capacity. In order for the active transmit phased array antenna to preserve the independence of the several beams it generates, each of the amplifiers in the chain must operate in its linear range in order to prevent an unacceptable degree of crosstalk between the beams. As long as the amplifiers are linear, then the principle of linear superposition is valid. When the amplifiers are driven into their non-linear region, the independence of the beams is jeopardized. The final amplifiers 22, 24, 26 and 28 are most critical because they consume more than 90% of the power. In order to provide acceptable performance, they must exhibit on the order of 0.1% total harmonic distortion at all operating levels below the specified maximum.

Control for each element is embodied in a microprocessor controller 50 shown in Fig. 5, together with interface electronics incorporated within a large scale gate array. The controller 50 not only has the capability of generating the specific control voltages required by each phase shifter and attenuator, but it can also store the present and next command set. With this control mechanization in place beams may be switched either on an as required-basis, or on a time division multiplexed basis to serve a large quantity of independent 10 regions. The controllers for each element are interconnected by means of a typical inter-device control bus. When the antenna is used as part of a communication satellite, an inter-device control bus also is used to connect to a master controller co-located with the satellite control electronics. A typical set of coefficients for each beam will be computed on the ground and relayed to the satellite by way of the satellite control link. Each element has a unique bus address, established by hard wired code built into the combining network to which the element hardware is attached. Because of the potential of temperature related drift a thermistor may be used to compensate control voltages if required. If the voltages needed to control phase and amplitude are not linear. the microprocessors can store look up tables to allow linearization.

Claims

1. A phased array transmitting antenna system for generating multiple independent simultaneous microwave signal beams, comprising a plurality of antenna radiating elements (10,12,14) disposed on an array on a substrate (36), each one of said elements including amplifier means (22, 24,26, 28), a hybrid coupler (34) disposed in a cavity (14) on said substrate for providing orthogonal microwave energy signals having selected phases, filter means (12) responsive to the microwave output signals of said cavity for passing signals within a selected frequency band, a radiating hom (10) responsive to said microwave signals passed by said filter (12) and means for transmitting said microwave signals as a beam having a direction and shape, characterised in that each of said cavity (14) includes a first pair of microwave probes (18, 20) disposed in said cavity 180 degrees apart, a second pair of probes (30,32) disposed in said cavity 180 degrees apart, said first and second pairs of probes (18,20;30,32) being disposed 90 degrees apart, a first pair of linear amplifiers (22, 24) connected to said first pair of probes (18,20) and a second pair of linear amplifiers (26, 32) connected to said second pair of probes (30, 32) for exciting orthogonal microwave energy in said cavity such that each of said plurality of said antenna radiating elements transmit one of a multiple of simultaneous microwave beams having the

same power value and different phase values which determine the shape and transmitted direction of said beams.

- A phased array transmitting antenna system as claimed in claim 1, characterised in that said substrate (36) includes phase shift means (48) and attenuator means (46) connected to said first and second pairs of amplifier (22,24; 26,28) and probes (18,20,30,32) in said cavity for providing phase quadrature signals to create circular signal polarisation wherein one of said pairs of amplifiers (22,24) and probes (18,20) is excited to right circular polarisation and the other of said pairs of amplifiers (26,28) and probes (30,32) is excited to left circular polarisation.
- 3. A phased array transmitting antenna system as claimed in claim 2, characterised in that said phase shift means (48) and attenuator means (46) includes a plurality of separate phase shift (48) and attenuator circuits (46) and a switch matrix (44) connected to each of said phase shift and attenuator circuits to selectively connect separate polarization signals to said pairs of amplifiers and probes in said cavity, said separate polarization signals providing the direction and shape of said microwave beam transmitted from said horn (10).
- 30. 4. A phased array transmitting antenna system as claimed in claim-3, characterised in that said attenuator means (46) are set to provide that said microwave beams transmitted from said homs of said plurality of elements are equal in amplitude.
 - 5. A phased array transmitting antenna system as claimed in claim 4, characterised in the inclusion of a plurality of power signals and wherein said phase shift (48) and attenuator (46) circuits for each antenna element includes a plurality of series connected phase shift (48) and attenuator (46) circuits, each of said plurality of series connected phase shift and attenuator circuits is connected to a separate power signal wherein each of said series connected phase shift and attenuator circuits is associated with a separate beam to be transmitted by said antenna element, and wherein each of said series connected phase shift and attenuator circuits establishes the direction and shape for each associated beam.
 - 6. A phased array transmitting antenna system as claimed in claim 5, characterised in the inclusion of control means (50) connected to each of said phase shift circuits (48) and attenuator circuits (46) for setting said phase shift circuits at selected values to provide desired beam directions and shapes, and for setting said attenuator circuits at selected values

15

25

35

wherein all said antenna elements have the same amplitude level.

7. A phased array transmitting antenna system as claimed in claim 6, characterised in the inclusion of first and second monolithic microwave integrated circuit amplifiers (40,42) connected between said hybrid coupler (34) and said switch matrix (44), said monolithic microwave integrated circuit amplifiers being highly linear to maintain said transmitted beams independent of each other to provide for multiple beams to be transmitted simultaneously without interaction.

Patentansprüche

1. Phasengesteuertes Sendeantennensystem zur Erzeugung mehrfacher, unabhängiger, gleichzeitiger Mikrowellensignalstrahlen, bestehend aus mehreren Antennenstrahlerelementen (10, 12, 14), die in einem Feld auf einem Träger (36) angeordnet sind, von denen jeder Verstärker (22, 24, 26, 28), einen Hybridkoppler (34), der in einem Hohlraum (14) auf dem Träger zur Erzeugung orthogonaler Mikrowellenenergiesignale mit ausgewählten Phasen angeordnet ist, eine Filtereinrichtung, die auf die Mikrowellenausgangssignale des Hohlraums zur Übertragung von Signalen in einem ausgewählten Frequenzband anspricht, einen Homstrahler (10), der 30 auf die vom Filter (12) übertragenen Mikrowellensignale anspricht, und eine Einrichtung zur Übertragung der Mikrowellensignale als Strahl mit einer Richtung und einer Form aufweist,

dadurch gekennzeichnet, daß

jeder Hohlraum (14) ein erstes Paar Mikrowellensonden (18, 20) aufweist, die im Hohlraum um 180° versetzt angeordnet sind, ein zweites Paar Sonden (30, 32), die im Hohlraum um 180° versetzt angeordnet sind, wobei das erste und zweite Paar Sonden (18, 20; 30, 32) um 90° versetzt angeordnet sind, ein erstes Paar Linearverstärker (22, 24), die mit dem ersten Paar Sonden (18, 20) verbunden sind, und ein zweites Paar Linearverstärker (26, 32), die mit dem zweiten Paar Sonden (30, 32) zur Erregung orthogonaler Mikrowellenenergie im Hohlraum verbunden sind, so daß jedes der mehreren Antennenstrahlereiemente einen von mehreren, gleichzeitigen Mikrowellenstrahlen überträgt, die die gleiche Energiegröße und unterschiedliche Phasengrößen haben, die die Form und Übertragungsrichtung der Strahlen bestimmen, aufweist.

2. Phasengesteuertes Sendeantennensystem nach Anspruch 1.

dadurch gekennzelchnet, daß

der Träger (36) Phasenschieber (48) und Dämpfungsglieder (46) aufweist, die mit dem ersten und

zweiten Paar Verstärker (22, 24; 26, 28) und den Sonden (18, 20, 30, 32) im Hohlraum zur Erzeugung von 90° phasenverschobenen Signalen verbunden sind, um ein Zirkularpolarisationssignal zu erzeugen, wobei eines der Verstärkerpaare (22, 24) und der Proben paare (18, 20) zu einer Rechtszirkularpolarisation und das andere der Verstärkerpaare (26, 28) und der Proben paare (30, 32) zu einer Linkszirkularpolarisation erregt wird.

3. Phasengesteuertes Sendeantennensystem nach Anspruch 2,

dadurch gekennzeichnet, daß

die Phasenschieber (48) und die Dämpfungsglieder (46) mehrere separate Phasenschieberkreise (48) und Dämpfungsgliederkreise (46) und eine Schaltmatrix (44) aufweisen, die mit jedem der Phasenschieber- und Dämpfungsgliederkreise verbunden ist, um selektiv separate Polarisationssignale auf die Verstärker- und Sonden paare im Hohlraum zu ertragen, wobei die separaten Polarisationssignale die Richtung und Form des vom Hornstrahler (10) übertragenen Mikrowellenstrahls bestimmen.

Phasengesteuertes Sendeantennensystem nach Anspruch 3,

dadurch gekennzelchnet, daß

17 1

die Dämpfungsglieder (46) so eingestellt sind, daß sie bewirken, daß die von den Hornstrahlern der mehreren Elemente übertragenen Mikrowellenstrahlen gleiche Amplitude haben.

Phasengesteuertes Sendeantennensystem nach Anspruch 4,

dadurch gekennzeichnet, daß

mehrere Energiesignale vorhanden sind, und daß die Phasenschieber- und Dämpfungsgliederkreise (48, 46) für jedes Antennenelement mehrere in Reihe geschaftete Phasenschieber- und Dämpfungsgliederkreise (46, 48) umfassen, wobei ieder der mehreren in Reihe geschalteten Phasenschieberund Dämpfungsgliederkreise an ein gesondertes Energiesignal angeschlossen ist, jeder der in Reihe geschalteten Phasenschieber- und Dämpfungsgliederkreise einem gesonderten, vom Antennenelement zu übertragenden Strahl zugeordnet ist, und jeder der in Reihe geschalteten Phasenschleber- und Dämpfungsgliederkreise die Richtung und Form jedes zugehörigen Strahls bestimmt.

Phasengesteuertes Sendeantennensystem nach Anspruch 5.

dadurch gekenzeichnet, daß

eine Steuereinrichtung (50) vorhanden ist, die mit jedem der Phasenschieberkreise (48) und der Dämpfungsgliederkreise (46) zur Einstellung der Phasenschieberkreise auf ausgewählte Größen verbunden ist, um die Sollstrahlrichtungen und -for-

55

men zu bewirken, und um die Dämpfungsgliederkreise auf ausgewählte Größen einzustellen, wobei alle Antennenelemente den gleichen Amplitudenpegel haben.

 Phasengesteuertes Sendeantennensystem nach Anspruch 6,

gekennzeichnet durch

erete und zweite monolithische IC-Mikrowellenverstärker (40, 42), die zwischen den Hybridkoppler (34) und die Schaltmatrix (44) geschaltet sind, wobei die monolithischen IC-Mikrowellenverstärker hochlinear sind, um die übertragenen Strahlen unabhängig vonelnander aufrechtzuerhalten und die gleichzeitige Übertragung von Mehrfachstrahlen ohne Wechselwirkung zu bewirken.

Revendications

 Système d'antenne émettrice à balayage électronique destiné à engendrer des faisceaux multiples de signal hyperfréquence indépendants et simultanés et comprenant une pluralité d'éléments rayonnants d'antenne (10, 12, 14) disposés sur un groupement 25 sur un substrat (36), chacun desdits éléments comprenant des moyens d'amplification (22, 24, 26, 28), un coupleur hybride (34) disposé dans une cavité (14) aménagée dans ledit substrat pour fournir des signaux d'énergie hyperfréquence orthogonaux présentant des phases sélectionnées, des moyens de filtrage (12) sensibles aux signaux hyperfréquence de sortie de ladite cavité pour faire passer des signaux se trouvant dans une bande de fréquences sélectionnée, un cornet rayonnant (10) sensible auxdits signaux hyperfréquence transmis par ledit filtre (12) et des moyens pour émettre lesdits signaux hyperfréquence sous la forme d'un faisceau présentant une direction et une forme, caractérisé en ce que chacune desdites cavités (14) comprend une première paire de sondes hyperfréquence (18, 20) disposées dans ladite cavité avec un espacement de 180 degrés, une deuxième paire de sondes (30, 32) disposées dans ladite cavité avec un espacement de 180 degrés, lesdites première et deuxième paires de sondes étant disposées avec un espacement de 90 degrés, une première paire d'amplificateurs linéaires (22, 24) reliés à ladite première paire de sondes (18, 20) et une deuxième paire d'amplificateurs linéaires (26, 28) reliés à ladite deuxième paire de sondes (30, 32) pour exciter une énergie hyperfréquence orthogonale dans ladite cavité, cette énergie étant telle que chacun de ladite pluralité des éléments rayonnants d'antenne émet un faisceau parmi des faisceaux multiples hyperfréquence simultanés présentant la même valeur de puissance et différentes valeurs de phase qui déterminent la forme et la direction

d'émission desdits faisceaux.

- 2. Système d'antenne émettrice à balayage électronique selon la revendication 1, caractérisé en ce que ledit substrat (36) comprend des dispositifs déphaseurs (48) et des dispositifs atténuateurs (48) reliés auxdites première et deuxième paires d'amplificateurs (22, 24; 26, 28) et de sondes (18, 20; 30, 32) disposés dans ladite cavité pour fournir des signaux en quadrature de phase en vue de créer une polarisation de signal circulaire, une desdites paires d'amplificateurs (22, 24) et de sondes (18, 20) étant excitée pour une polarisation circulaire à droite et l'autre desdites paires d'amplificateurs (26, 28) et de sondes (30, 32) étant excitées pour une polarisation circulaire à gauche.
- 3. Système d'antenne émettrice à balayage électronique selon la revendication 2, caractérisé en ce que lesdits dispositifs déphaseurs (48) et dispositifs atténuateurs (46) comprennent une pluralité de circuits déphaseurs (48) et atténuateurs (46) séparés et une matrice de commutation (44) reliée à chacun des circuits déphaseurs et atténuateurs pour relier de manière sélective des signaux de polarisation séparés auxdites paires d'amplificateurs et de sondes disposés dans ladite cavité, lesdits signaux de polarisation séparés fournissant la direction et la forme dudit faisceau hyperfréquence émis à partir dudit comet (10).
- 4. Système d'antenne émettrice à balayage électronique selon la revendication 3, caractérisé en ce que lesdits dispositifs atténuateurs (46) sont réglés pour assurer que lesdits faisceaux hyperfréquence émis à partir desdits cornets de ladite pluralité d'éléments soient égaux en amplitude.
- 5. Système d'antenne émettrice à balayage électronique selon la revendication 4, caractérisé par l'inclusion d'une pluralité de signaux de puissance, dans lequel lesdits circuits déphaseurs (48) et dispositifs atténuateurs (46) de chaque élément d'antenne comprennent une pluralité de circuits déphaseurs (48) et atténuateurs (46) reliés en série, dans lequel chacun de ladite pluralité de circuits déphaseurs et atténuateurs reliés en série est relié à un signal de puissance séparé, dans lequel chacun desdits circuits déphaseurs et atténuateurs reliés en série est associé à un faisceau séparé à émettre par ledit élément d'antenne et dans lequel chacun desdits circuits déphaseurs et atténuateurs reliés en série détermine la direction et la forme pour chaque faisceau associé.
- Système d'antenne émettrice à balayage électronique selon la revendication 5, caractérisé par l'inclusion de dispositifs de commande (50) relié à chacun

des circuits déphaseurs (48) et atténuateurs (46) pour le réglage desdits circuits déphaseurs à des valeurs sélectionnées pour fournir les directions et formes de faisceau désirées et pour le réglage desdits circults atténuateurs à des valeurs sélectionnées, dans lequel tous lesdits éléments d'antenne ont le même niveau d'amplitude.

7. Système d'antenne émettrice à balayage électronique selon la revendication 6, caractérisé par l'inclusion de premier et deuxième amplificateurs à circuit intégré monolithique hyperfréquence (40, 42) branchés entre ledit coupleur hybride (34) et ladite matrice de commutation (44), lesdits amplificateurs à circuit intégré monolithique hyperfréquence étant 15 fortement linéaires pour maintenir les dits faisceaux émis indépendants l'un de l'autre afin de fournir des faisceaux multiples à émettre simultanément sans interaction.

25

30

36

45

50

*5*5

FIG. I.

FIG. 2.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☑ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.