ORACLE* Academy

Programação de Banco de Dados com SQL

6-1 Junções Cruzadas e Junções Naturais

Objetivos

Esta lição abrange os seguintes objetivos:

- Construir e executar uma junção natural usando a sintaxe de junção ANSI-99 SQL
- Construir uma junção cruzada usando a sintaxe de junção ANSI-99 SQL
- Explicar a importância de se ter um padrão para SQL conforme definido pelo ANSI
- Descrever uma situação de negócios em que seja necessário combinar informações de várias origens de dados

Finalidade

- Até o momento, sua experiência com SQL se limitou a consultar e retornar informações de uma tabela de banco de dados por vez.
- Isso não seria um problema se todo o conteúdo do banco de dados fosse armazenado em apenas uma tabela.

Obtendo Dados de Várias Tabelas

EMPLOYEE_ID	DEPT_ID	DEPT_NAME
200	10	Administration
201	20	Marketing
202	20	Marketing
•••		
102	90	Executive
205	110	Accounting
206	110	Accounting

EMPLOYEES

EMPLOYEE_ID	LAST_NAME	DEPT_ID
100	King	90
101	Kochhar	90
202	Fay	20
205	Higgins	110
206	Gietz	110

DEPARTMENTS

DEPARTMENT_ID	DEPT_NAME	LOCATION_ID
10	Administration	1700
20	Marketing	1800
110	Accounting	1700
190	Contracting	1700

Finalidade

Mas, com a modelagem de dados, você sabe que separar dados em tabelas individuais e ser capaz de associá-las umas com as outras é algo essencial ao design de bancos de dados relacionais.

Obtendo Dados de Várias Tabelas

EMPLOYEE_ID	DEPT_ID	DEPT_NAME
200	10	Administration
201	20	Marketing
202	20	Marketing
•••		
102	90	Executive
205	110	Accounting
206	110	Accounting

EMPLOYEES

EMPLOYEE_ID	LAST_NAME	DEPT_ID
100	King	90
101	Kochhar	90

202	Fay	20
205	Higgins	110
206	Gietz	110

DEPARTMENTS

DEPARTMENT_ID	DEPT_NAME	LOCATION_ID
10	Administration	1700
20	Marketing	1800
110	Accounting	1700
190	Contracting	1700

Finalidade

 Felizmente, a linguagem SQL fornece condições de junção que permitem que as informações sejam consultadas a partir de tabelas separadas e combinadas em um relatório.

Obtendo Dados de Várias Tabelas

EMPLOYEE_ID	DEPT_ID	DEPT_NAME
200	10	Administration
201	20	Marketing
202	20	Marketing
•••		
102	90	Executive
205	110	Accounting
206	110	Accounting

EMPLOYEES

EMPLOYEE_ID	LAST_NAME	DEPT_ID
100	King	90
101	Kochhar	90
•••		
202	Fay	20
205	Higgins	110
206	Gietz	110

DEPARTMENTS

DEPARTMENT_ID	DEPT_NAME	LOCATION_ID
10	Administration	1700
20	Marketing	1800
110	Accounting	1700
190	Contracting	1700

Comandos de Junção

- Existem dois conjuntos de comandos ou sintaxes que podem ser usados para fazer ligações entre as tabelas em um banco de dados:
 - Junções proprietárias da Oracle
 - Junções em conformidade com o padrão ANSI/ISO SQL 99
- Neste curso, você aprenderá a usar ambos os conjuntos de comandos de junção.
- As junções proprietárias da Oracle serão abordadas mais adiante no curso.

ANSI

- ANSI significa American National Standards Institute.
- Fundado em 1918, o ANSI é uma organização privada sem fins lucrativos que administra e coordena o sistema voluntário de avaliação de padronização e conformidade dos Estados Unidos.
- A missão do instituto é aumentar tanto a competitividade global dos negócios nos Estados Unidos quanto a qualidade de vida dos cidadãos norteamericanos por meio da promoção e facilitação de sistemas voluntários e consensuais de avaliação de padrões e conformidade, bem como da proteção da integridade deles.

SQL

- SQL é a linguagem de processamento de informações padrão do setor dos sistemas de gerenciamento de bancos de dados relacionais (RDBMS).
- Ela foi originalmente desenvolvida pela IBM, na metade da década de 70, passou a ser usada mais amplamente no início da década de 80 e se tornou um padrão do setor em 1986, quando foi adotada pelo ANSI.

SQL

- Até o momento, o ANSI fez três padronizações da linguagem SQL, sendo que cada uma se baseou na anterior.
- Elas são nomeadas de acordo com o ano em que foram propostas e são muito conhecidas pela versão abreviada: ANSI-86, ANSI-92 e ANSI-99.

10

- Uma cláusula de junção SQL combina campos de duas (ou mais) tabelas em um banco de dados relacional.
- Uma junção natural (NATURAL JOIN) se baseia em todas as colunas em duas tabelas que tenham o mesmo nome e seleciona linhas de ambas que tenham valores iguais em todas as colunas relacionadas.

11

- A tabela de funcionários tem uma coluna job id.
- Essa é uma referência à coluna com o mesmo nome na tabela de cargos.

- Como mostrado no código de amostra, quando se usa uma junção natural, é possível unir as tabelas sem precisar especificar as colunas na tabela correspondente.
- No entanto, os nomes e tipos de dados de ambas as colunas devem ser os mesmos.

```
SELECT first name, last name, job id, job title
FROM employees NATURAL JOIN jobs
WHERE department id > 80;
```

 Essa junção retornará colunas da tabela de funcionários e o job title relacionado da tabela de cargos com base na coluna em comum job id.

SELECT first_name, last_name, job_id, job_title FROM employees NATURAL JOIN jobs WHERE department_id > 80;

FIRST_NAME	LAST_NAME	JOB_ID	JOB_TITLE
Steven	King	AD_PRES	President
Neena	Kochhar	AD_VP	Administration Vice President
Lex	De Haan	AD_VP	Administration Vice President
Shelley	Higgins	AC_MGR	Accounting Manager
William	Gietz	AC_ACCOUNT	Public Accountant

Eis outro exemplo:

SELECT nome departamento, cidade FROM departamentos NATURAL JOIN locais;

- As tabelas de departamentos e locais têm uma coluna em comum, location id, que é usada para juntá-las.
- Observe que a coluna da junção natural não precisa aparecer na cláusula SELECT.

DEPARTMENT_NAME	CITY
Marketing	Toronto
Sales	Oxford
IT	Southlake
Shipping	South San Francisco
Administration	Seattle
Executive	Seattle
Accounting	Seattle
Contracting	Seattle

CROSS JOIN

- A cláusula CROSS JOIN do ANSI/ISO SQL: 1999 junta cada linha de uma tabela a cada linha de outra tabela.
- O conjunto de resultados representa todas as combinações de linhas possíveis das duas tabelas.
- Isso pode ficar muito grande!
- Se você fizer a junção cruzada (CROSS JOIN) entre uma tabela com 20 linhas e uma tabela com 100 linhas, a consulta retornará 2.000 linhas.

Exemplo de Junção Cruzada

- A tabela de funcionários contém 20 linhas e a tabela de departamentos tem 8 linhas.
- Uma junção cruzada retornará 160 linhas.

SELECT last name, department name FROM employees CROSS JOIN departments;

LAST_NAME	DEPARTMENT_NAME
Abel	Administration
Davies	Administration
De Haan	Administration
Ernst	Administration
Fay	Administration
Gietz	Administration
Grant	Administration
Hartstein	Administration
Higgins	Administration
Hunold	Administration

17

Terminologia

Estes são os principais termos usados nesta lição:

- Junção cruzada
- Junção natural

Resumo

Nesta lição, você deverá ter aprendido a:

- Construir e executar uma junção natural usando a sintaxe de junção ANSI-99 SQL
- Construir uma junção cruzada usando a sintaxe de junção ANSI-99 SQL
- Explicar a importância de se ter um padrão para SQL conforme definido pelo ANSI
- Descrever uma situação de negócios em que seja necessário combinar informações de várias origens de dados

Academy