Applied Machine Learning

Autoencoders - Codes from Probability Distributions

Autoencoders Codes from Probability Distributions

- Variational Autoencoders
- Generative Adversarial Networks

Variational Autoencoders

- Codes drawn from a probability distributions
 - Produce outputs that are probabilistically similar to the input
- Probability distributions
 - mixture of normals
 - one normal per training example
- Outputs drawn from code probability distribution corresponding to input
- Generate random images similar to the ones in the training set

Variational Autoencoders - Loss

- Encoder
 - Input: Image
 - Output: mean and standard deviation of codes
 - Loss uses KL divergence between code distribution and normal distribution
- Decoder
 - Input: sample from distribution of code
 - Output: Image
 - Loss uses distance between decoder and input to the encoder

Generative Adversarial Networks

- Adversarial Generator and Discriminator Networks
- Generator Decoder
 - Input: stream of random codes drawn from a distribution
 - Output: produce synthetic images
 - goal: make discriminator classify them as real
- Discriminator Classifier
 - Trained to correctly classify images as real or synthetic

UIUC - Applied Machine Learning

Generative Adversarial Networks - Cost Function

- Dataset of real images X
- Generator G
 - from distribution of code z in set of codes Z
 - generate image $G(\mathbf{z})$
- Discriminator D
 - classify input image \mathbf{x} as $D(\mathbf{x}) \in [0 \text{ (synthetic)}, 1 \text{ (real)}].$
- Cost function

$$C(D, G) = \frac{1}{N_r} \sum_{\mathbf{x}_i \in X} \log(D(\mathbf{x}_i)) + \frac{1}{N_s} \sum_{\mathbf{z}_i \in Z} \log(1 - D(G(\mathbf{z}_i)))$$

- ullet Generator G to minimize cost, discriminator D to maximize cost
 - stochastic gradient descent/ascent
 - fix G, move through gradient in ascent direction updating D
 - fix D, move through gradient in descent direction updating G

UIUC - Applied Machine Learning

Autoencoders Codes from Probability Distributions

- Variational Autoencoders
- Generative Adversarial Networks

Applied Machine Learning

Autoencoders - Codes from Probability Distributions