

Green University of Bangladesh

Department of Computer Science and Engineering

Course Outline

1 General Information

Spring 2024 cse 315

Faculty Faculty of Science and Engineering (FSE)

Department Department of Computer Science and Engineering (CSE)

Programme Bachelor of Science in Computer Science and Engineering

Semester Spring 2024

Course Title Artificial Intelligence

Course Code CSE 315
Course Credit 3.0 units
Contact Hours 2.5/week
Course Status Core Course

Prerequisite Course None

2 Course Instructors

Section	Name	Office	Email
213 D2	Sheikh Fazle Rabbi	A 608	rabbi@cse.green.edu.bd
212 D2	Farjana Akter Jui	A-608	jui@cse.green.edu.bd
212 D3	Farjana Akter Jui	A-608	jui@cse.green.edu.bd
211 D1	Wahia Tasnim	A-608	wahia@cse.green.edu.bd
211 D2	Wahia Tasnim	A-608	wahia@cse.green.edu.bd
212 D4	Sagufta Sabah Nakshi	A-608	sagufta@cse.green.edu.bd
213 D5	Sagufta Sabah Nakshi	A-608	sagufta@cse.green.edu.bd

3 Class Hours

Section	Room	Weekday	Time	Weekday	Time
213 D2	J 101 &106	Thursday	09:45 AM - 11:00 AM	Saturday	09:45 AM - 11:00 AM
212 D2	A 602	Friday	9:15 AM - 10:30 AM	Saturday	09:45 AM - 11:00 AM
212 D3	A 605	Friday	8:00 AM - 9:15 AM	Saturday	8:30 AM - 9:45 AM
211 D1	K-112 & K-112	Tuesday	9:45:0 AM-11:0:0 AM	Thursday	9:45:0 AM-11:0:0 AM
211 D2	K-112 & K-112	Monday	8:30 AM - 9:45 AM	Tuesday	8:30 AM - 9:45 AM
212 D4	K-104 & K-103	Monday	09:45 AM - 11:00 AM	Tuesday	09:45 AM - 11:00 AM
213 D5	A-605 & A-605	Monday	12:15 PM - 1:30 PM	Tuesday	12:15 PM - 1:30 PM

4 Counseling Hours

Section	Weekday	Time	Weekday	Time
213 D2	null	null	null	null
212 D2	Tuesday	11:00 AM -12:15 PM	Tuesday	12:15 PM - 1:30 PM

212 D3	Wednesday	11:00 AM -12:15 PM	Wednesday	12:15 PM - 1:30 PM
211 D1	Wednessday	8:30 AM - 9:45 AM	Wednessday	8:30 AM - 9:45 AM
211 D2	Thursday	8:30 AM - 9:45 AM	Thursday	8:30 AM - 9:45 AM
212 D4	Thursday	09:45 AM - 11:00 AM	Thursday	09:45 AM - 11:00 AM
213 D5	Thursday	12:15 PM - 1:30 PM	Thursday	12:15 PM - 1:30 PM

5 Course Rationale

Artificial intelligence is an extremely broad field with applications to many disciplines and many subfields. This course gives a broad survey of artificial intelligence, as opposed to focusing on any particular subfield of AI. The course offered by the department of CSE, will cover methods from search, optimization, probabilistic reasoning, and learning, among other topics. Of course, these topics are closely related with each other. For example, the knowledge acquired through learning can be used both for problem solving and for reasoning. In fact, the skill for problem solving itself should be acquired through learning. Also, methods for problem solving are useful both for reasoning and planning. Further, both natural language understanding and computer vision can be solved using methods developed in the field of pattern recognition.

6 Course Description

Introduction to artificial intelligence, Foundation and history of artificial intelligence, Intelligent agents; Solving problem by searching; Adversarial searching; Logical agents; First-order logic; Knowledge representation; Probabilistic reasoning; Planning; Making decisions; Natural Language Processing; Perception; Robotics.

7 Teaching Methods

Maximum topics will be covered from the textbook. For the rest of the topics, reference books will be followed. Some class notes will be uploaded on the web. White board will be used for most of the time. For some cases, multimedia projector will be used for the convenience of the students. Students must participate in classroom discussions for case studies, problems solving and project developments.

8 Course Outcomes

СО	CO Description	РО	Domain (LoBT)	Weight	WK	WP	EA	Assessment Methods
CO1	Demonstrate various concepts of Artificial Intelligence, including different types of intelligent agents, heurictics functions, knowledge representations, first-order logics, and others.	PO1	Cognitive (C3)	50%	WK3			
CO2	Analyze various AI search algorithms and techniques like uninformed, informed, heuristic, constraint satisfaction, genetic algorithms, machine learning, and others.	PO2	Cognitive (C4)	30%	WK4			Please refer to Section 9.

Understand the advanced and adaptive knowledge
CO3 of artificial intelligence for identifying solution space accordingly.

Affective (A3)

(A3)

WK7

Legend:

CO: Course Outcome (Appendix: A)

WK: Knowledge Profile (Appendix: B) WP: Complex Problem Solving (Appendix: C) EA: Complex Engineering Activities (Appendix: D) LoBT: Level of Bloom's Taxonomy (Appendix: E)

9 Assessment Methods of COs

Assessment Method	CO1	CO2	CO3	Total
Final Exam	20%	20%		40%
Midterm Exam	20%	10%		30%
Class Tests	10%			10%
K/S/A Test 1			10%	10%
K/S/A Test 2			10%	10%
Total	50%	30%	20%	100%

10 Topic Outline

Lecture	Selected Topic	Article	Problems
(1)	Socialization and Introduction to the course	-	-
(2-3)	What is Artificial Intelligence, The AI problems, The Underlying Assumptions, What is an AI Technique.	T 1.1, 1.2, 1.4	T 1.1-1.15
(4-6)	Intelligent Agents, Environments, The concept of rationally, The nature of environments, Structure of agents.	T 2.1, 2.2, 2.3,2.4	T 2.1-2.13
(7-9)	Breadth First Search, Depth First Search, Bi-directional Search, Best First Search.	T 3.4, 3.4, 3.4, 3.4,3.5	T 3.1-3.32
(10-12)	Heuristic Functions and Their Effects on Searching Algorithms, Introduction to Genetic Algorithms	T 3.5, 3.6, 4.1	T 3.1-3.32
	Midterm	-	-
(13-15)	Knowledge Representation, Proposition logic	T 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7	T 7.1-7.27
(16-17)	First order logic , Using First order Logic	T 8.1,8.2, 8.3, 8.4	T 8.1-8.28
(18-20)	Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search, Local Search.	T 6.1,6.2, 6.3, 6.4	T 6.1-6.17
(21-23)	Game Playing Overviews, The Minimax search procedure, Adding Alpha-Beta Cut-offs, Iterative Deepening.	T 5.1, 5.3, 5.3, 3.4	T 5.1-5.22
(24-25)	Planning Overview, An example domain-The blocks world, Components of a planning system.	T 10.1, 10.2, 10.3, 10.5, 10.6	T 10.1-10.16

(26-27)	Uncertainty- Probability Theory, Bayesian Networks , Certainty Factors Methods, Basics of Fuzzy Logic, Non-monotonic reasoning systems.	12.7, 13.2, 13.4, 13.6,		
(28-30)	Natural Language Processing Introduction, Syntactic Processing, Semantic Analysis, Discourse & Pragmatic Processing.	22.4,	23.1- 23.3,	T 23.1-23.19

For the definitions of T and R, Please refer to Section 11.

11 Text and Reference Materials

T Textbook:

- Russell, S. y Norvig, P., Artificial Intelligence, a modern approach, Ed. Prentice Hall, 1995.

R References:

- T.M. Mitchell. Machine Learning, McGraw-Hill, 1997.

12 Grading Policy

Marks Obtained	Letter Grade	Numerical Evaluation	Definition
80% and above	A+	4.00	Excellent
75% <80%	A	3.75	Excellent
70% <75%	A-	3.50	Very Good
65% <70%	B+	3.25	Good
60% <65%	В	3.00	Good
55% <60%	B-	2.75	Good
50% <55%	C+	2.50	Average
45% <50%	С	2.25	Average
40% <45%	D	2.00	Below Average
below 40%	F	0.00	Failing

13 Additional Course Policies

- 1. **Equipment and Aids**: Bring your own materials such as a calculator, notebook, and pen to participate effectively in classroom activities. You are NOT allowed to borrow from others inside the classroom which may potentially create distractions for your classmates.
- 2. **Assignments**: There will be a number of assignments for formative assessment purposes. The average of the assignment marks will be used for computing the final grade. Late submission of homework will carry a zero mark.
- 3. **Class Tests**: There will be at least three Class Tests taken during the semester and the best two will be counted for final grading. A class test can be taken with/without prior announcement.
- 4. **Examinations**: The midterm and final examinations will be a closed book, closed notes. Mobile phones are strictly prohibited in the exam hall. Please bring your own watch (non-smart) and synchronize at the beginning of the examination.

- 5. **Test Policy**: In case of missing a test without prior notice to the respected faculty member, a zero mark will be given. No makeup tests will be taken as the best two test scores will be considered for grading out of three tests.
- 6. **Mobile Devices Policy**: Empirical evidence of using multitasking devices such as laptops and smartphones in the classroom hinders the learning experience. Thus, the use of multitasking devices is strictly discouraged. Switch off your laptop/mobile devices during class activities.

14 Additional Information

Please click or scan:

ACADEMIC CALENDAR SPRING, 2024:

ACADEMIC INFORMATION AND POLICIES:

PROCTORIAL RULES:

GRADING AND PERFORMANCE EVALUATION:

Fatema Akter Course Coordinator, CSE 315 February 14, 2024 Prof. Dr. Md. Saiful Azad Chairman, Department of CSE February 14, 2024

Appendix A: Program Outcomes

POs	Category	Program Outcomes
PO1	Engineering Knowl- edge	Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis	Identify, formulate, research the literature and analyze complex engineering problems and reach substantiated conclusions using first principles of mathematics, the natural sciences and the engineering sciences.
PO3	Design/Development of Solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety as well as cultural, societal and environmental concerns.
PO4	Investigations	Conduct investigations of complex problems, considering design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5	Modern tool usage	Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7	Environment and sustainability	Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics	Apply ethical principles and commit to professional ethics, responsibilities and the norms of the engineering practice.
PO9	Individual work and teamwork	Function effectively as an individual and as a member or leader of diverse teams as well as in multidisciplinary settings.
PO10	Communication	Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.
PO11	Project management and finance	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work as a member or a leader of a team to manage projects in multidisciplinary environments.
PO12	Life Long Learning	Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

Appendix B: Knowledge Profile

Knowledge Profile	Attribute
WK1	A systematic, theory-based understanding of the natural sciences applicable to the discipline
WK2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline
WK3	A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline
WK4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline
WK5	Knowledge that supports engineering design in a practice area
WK6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline
WK7	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability

Appendix C: Range of Complex Engineering Problem Solving

Attribute	Identity	Complex Engineering Problem Description
Depth of knowledge required	WP1	Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach
Range of conflicting requirements	WP2	Involve wide-ranging or conflicting technical, engineering and other issues
Depth of analysis required	WP3	Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models
Familiarity of issues	WP4	Involve infrequently encountered issues
Extent of applicable codes	WP5	Are outside problems encompassed by standards and codes of practice for professional engineering
Extent of stakeholder involve- ment and conflicting require- ments	WP6	Involve diverse groups of stakeholders with widely varying needs
Interdependence	WP7	Are high-level problems including many component parts or sub-problems

Note: Complex Engineering Problems have IDENTITY P1 AND SOME OR ALL OF P2 TO P7.

Appendix D: Range of Complex Engineering Activities

Attribute	Identity	Activity Description
Range of resources	EA1	Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)
Level of interaction	EA2	Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues
Innovation	EA3	Involve creative use of engineering principles and researchbased knowledge in novel ways
Consequences for society and the environment	EA4	Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation
Familiarity	EA5	Can extend beyond previous experiences by applying principles- based approaches

Note: Complex activities means (engineering) activities or projects that have some or all of the above activities.

Appendix E: Domain and Level of Bloom's Taxonomy

Cognitive Domain		Psych	Psychomotor Domain		Affective Domain	
C1	Remembering	P1	Perception	A1	Receive	
C2	Understanding	P2	Set	A2	Respond	
C3	Applying	P3	Guided Response	A3	Value	
C4	Analyzing	P4	Mechanism	A4	Organize	
C5	Evaluating	P5	Complex Overt Response	A5	Internalize	
C6	Creating/ Designing	P6	Adaption			
		P7	Origination			