

V TOMTO SEŠITĚ

Před šedesáti lety	201
Pragoregula '90	203
AR seznamuje (Videomagnetofon VM 6570)	204
Optoelektronika na postupu	205
AR mládeži (Integra '90)	206
Jak na to?	207
Digitální multimeter MINI	208
Telefoni ústředna pro deset účastníků (dokončení)	212
Odrůšení mikrofonního vstupu u magnetofonů	216
Mikroelektronika	217
Zkušenosti ze stavby telefonní ústředny AUT 20	225
Zařízení pro ozvučování videokazet	227
Jednoduchý měnič	230
Univerzální expoziční hodiny ..	231
Z radioamatérského světa	233
Mládež a radiokluby	235
Inzerce	236
Cetili jsme	239

AMATÉRSKÉ RÁDIO ŘADA A

Vydává Vydavatelství NAŠE VOJSKO. Adresa redakce: Jungmannova 24, 113 66 Praha 1, tel. 26 06 517. Šéfredaktor, ing. Jan Klábel, OK1UKA, I. 354, zástupce Luboš Kalousek, OK1FAC, I. 353. Redaktori: Ing. P. Engel, ing. J. Kellner – I. 353, ing. A. Myslik, OK1AMY, P. Havíř, OK1PFM, I. 348; sekretariát I. 355. Redakční rada: předseda: ing. J. T. Hyun, členové: RNDr. L. Brunnhofer, CSc., OK1HAQ, Kamil Donát, OK1DY, Dr. A. Glanc, OK1GW, Pavel Horák, Zdeněk Hradský, RNDr. L. Kryška, ing. J. Kundl, CSc., Miroslav Láb, ing. A. Mil, CSc., Vladimír Němec, Alena Skálová, OK1PUP, ing. F. Smolík, OK1ASF, ing. M. Snajder, CSc., ing. M. Srédl, OK1NL, ing. V. Teska, doc. ing. J. Vačkář, CSc.

Ročně vychází 12 čísel. Cena výtisku 6 Kčs, pokletní předplatné 36 Kčs. Redakce distribuci časopisu nezajišťuje. Informace o předplatném podá a objednávky přijímá každá PNS. Zahraniční objednávky vynutí PNS Kovpakovy 26, 160 00 Praha 6. Pro CSLA zajíždí VNV, s. p. administrace, Vladislavova 26, 113 66 Praha 1. Tiskne NAŠE VOJSKO, s. p. závod 8, 162 00 Praha 6 – Ruzyň. Vlastina 889/23. Inzerci přijímá Vydavatelství NAŠE VOJSKO, s. p. Vladislavova 26, 113 66 Praha 1, tel. 26 06 517 I. 294. Za původnost a správnost příspěvku ručí autor. Redakce rukopis vrátí, bude-li vyžádán a bude-li připojená frankovaná obálka se zpětnou adresou. Návštěvy v redakci a telefonické dotazy pro 14. hodin. Č. indexu 46 043.

Rukopisy čísla odevzdány tiskárñe 27. 3. 1990. Číslo má využít podle plánu 22. 5. 1990.

© Vydavatelství NAŠE VOJSKO, s. p. Praha.

Před šedesáti lety

Po půl třetí odpoledne 19. května 1930 kráčela skupinka mladých mužů Jindřišskou ulicí od Václavského náměstí směrem k poště. Bylo jich šest. Byli svátečně oblečeni a jejich tváře i gestikulace prozrazeny napětí a vzrušení, typické pro člověka, kterému chybí jen malý krúček k dosažení životního cíle, ke splnění velkého snu. Každý sám a všichni dohromady prožívali pocity horolezce, kterého už jen několik metrů dělí od vytouženého vrcholu v Himalájích.

Vysoký a hubený Pravoslav Motyčka, s bujnou tmavou kštici, jednatřicetiletý technický úředník firmy Philips a redaktor krátkovlnné přílohy Československého radiového, o čtyři léta mladší a o dvě hlavy menší Alois Weirauch, hodinář z Městce Králové, dva studenti z Telče, Zdeněk Neumann a Ladislav Vydra, elektrotechnik Josef Stětína a mladý elektroinženýr Mirka Schäferling, oba dva z Prahy, miřili do pražské telegrafní ústředny ve druhém poschodi hlavní pošty, kam byli pozváni na 15.00 k „radiotelegrafní zkoušce, jejíž úspěšné složení jest jednou z podmínek přiznivého vyřízení žádosti za koncesi na vysílací radioelektrickou stanici pokusnou“.

Byli z celé republiky první. Ještě nikdo před nimi takovou zkoušku nedělal. O deset let nazpět nebylo ani potuchy o rozhlasu. Existovala vojenská stanice na Petřině, která pracovala i pro civilní sektor, několik dalších vojenských radiostanic v jiných městech, byla ve výstavbě vysílací stanice na poště v Moravské ulici na Královských Vinohradech a konaly se přípravy ke stavbě v Poděbradech. Slo o stanice radiotelegrafické, pracující Morseovou abecedou.

Vlevo Z. Neumann, OK2AC,
vedle něj A. Weirauch, OK1AH, OK1AW

respondovat mezi sebou. Zrodili se amatéři. Před první světovou válkou jich v Americe bylo 4000.

Profesionální provoz se odehrával na dlouhých vlnách, které se šíří kolem zemského povrchu a jsou slyšet ve dne i v noci, v zimě i v létě stále stejně. Vliv slunečního svitu je nepatrný, markantnější se projevují vlivy povětrnostní. Vlnových délek do 10 000 m se používalo pro evropský provoz, na vlnách kolem 15 000 m a 20 000 m se pěstoval provoz dálkový, mezikontinentální. V Újezdě u Boskovic a ve Svitávce, severně od Brna, byly ve dne v noci na jednolampovku na těchto vlnách slyšet bez fadingu a bez potíží americké stanice. Vlnám středním se tehdy také říkalo krátké a byly považovány za bezcenné. Začátkem dvacátých let na nich začaly pokusy s radiofonii a v USA byly od 275 m dolů přiděleny amatérům. Ve Velké Británii amatéři pracovali i na vlně 1000 m. Na prahu dvacátých let se amatéři pokusili o něco, co profesionální odborníci prohlásili jasně a jednoznačně za nemožné: o spojení mezi Amerikou a Evropou na svých bezcenných krátkých vlnách. Pokusy byly úspěšné a profesionální stanice se začaly postupně stěhovat z vln dlouhých na krátké. Pravoslav Motyčka sledoval transatlantické pokusy na svém vlastnoručně vyrobeném přijímači a stal se prvním, kdo v Československu přijímal na krátkých vlnách signály z Ameriky. Prvním vůbec; žádná poštovní, vojenská či jakákoliv jiná stanice v Československu na krátkých vlnách neposlouchala a neslyšela je. Zahájení československého rozhlasu a založení radioklubu umožnilo čílý rozvoj radioamatérského hnutí. Radioamatér v tehdejším pojetí byla osoba, která si sama postaví rádiový přijímač na rozdíl od posluchače, který si ho kupí hotový. Motyčka šel dál. Sledoval amatérské vysílání v cizině, soustavně o něm psal do Radioamatéra i do jiných časopisů, propagoval je a dokonce se vypravil na ministerstvo pošt a telegrafů žádat a intervenovat, aby amatérské vysílání bylo povoleno i u nás. Byl zdvořile přijat a neméně zdvořile vypoklonkován. Není divu, protože ještě nedlouho před tím dalo nesmírnou práci přemoci úřední odpór proti amatérskému přijímání a proti radioklubu. Motyčka psal, přednášel, intenzivně pra-

A. Weirauch, OK1AW,
snímek z pozdější doby

Nevojenské radiostanice doprovázały v prvních dvou desetiletích dvacátého století telegramy poštovní, korespondenci pro námořní dopravu a také informace obecně zajímavé, jako tiskové a povětrnostní zprávy a časové signály. O rádiu se psalo v populárních časopisech a v denním tisku, v obchodech s hračkami se prodávaly jiskrové soupravy schopné přenášet signály na vzdálenost několika metrů až i několika desítek metrů. V USA, ve Velké Británii a ve Francii, i v jiných zemích, se objevovali jednotlivci, kteří ve volném čase, doma, experimentovali s radiotelegrafí. Neomezovali se jen na příjem. Začali si stavět vlastní vysílačky a ko-

QSL-lístek za první spojení mezi Československem a sovětskou Asii

M. Schäferling, CSAA2, jako abituerent

coval v radioklubu a zejména v jeho krátkovlnné sekci. Od vysílání se nedal odradit. V neděli 9. listopadu 1924 uskutečnil první československé amatérské spojení sice jen uvnitř Prahy mezi Lucernou a Lázeňskou ulicí, ale bylo to spojení přes vodu, přes Vltavu, na vlně 150 m. První spojení zahraniční se mu podařilo v noci 30. listopadu 1924 s holandskou stanicí 0CA v Rotterdamu někde mezi 137 až 140 m. Zanedlouho následovalo spojení s Amerikou, Novým Zélandem a čílou mezinárodní i vnitrostátní korespondence, vnitrostátní zatím ještě jen písemná. V Call booku z r. 1928, který RSGB vydávala svázány se staničním deníkem, čtěme pod záhlavím CZECHOSLOVAKIA: „Amatérské stanice v Československu nejsou ještě úředně povoleny a všechny QSL lístky se musí zasílat v uzavřené obálce na adresu Pravoslav Motyčka, Praha 1, Na Perštýně 14.“ Svoje první spojení navazoval pod značkou OK 1, kterou tiskl velký razitkem na předtištěný QSL lístek. Toto razítko se zachovalo a zasloužilo by si, aby bylo spolu se staničními deníky, korespondencí a jinými památkami pietně a bezpečně uloženo.

V pořadí druhou československou amatérskou stanicí se stala CSAA2, která zahájila provoz počátkem roku 1925. Jejím operátorem byl student Mirka Schäferling. Pilně poslouchal na krátkých vlnách a výsledky svých pozorování sděloval francouzskému

QRA: Alois Weirauch, město Králové, 9. CZECHOSLOVAKIA

TO RADIO		19	MEZ	QRH	m.
UR	SIGNS	QSB	ORM	QRN	QSS
RECEIVER	O.V.			TRANSMITTER	
Aerial				A.	
Caps				C.	
Valves				V.	
DX				Int. connections: S.	
QRH				A. current	
				QRH	
				DX	
REMARKS					
PSE QSL! QRK?					
Best 73's and DX					

QSL-Lístek Aloise Weiraucha, EC1RV, později OK1AH, OK1AW

časopisu La TSF moderne. Na rozdíl od ostatních podal již následujícího roku, v dubnu 1926 žádost o koncesi, která byla zamítнутa s tím, že žadatel není dosud pionýr, t.j. nedosáhl ještě věku 21 let, a že nebyla naležitě prokázána potřeba používati amatérské stanice k vědeckým účelům. V následujících letech 1927 a 1928 byl Schäferling již úspěšný DXmanem, ale rozděloval svůj provozní čas rovnoměrně mezi DX a spojení vnitrostátní. Rok co rok pak znova a znova předkládal žádost o koncesi.

V térmže roce jako Schäferling, tedy v roce 1925, zahájili svou činnost Zdeněk Neumann, CSUN a Ladislav Vydra, CSYD. Oba bydleli na náměstí v Telči. Neumann navázal první československé spojení s Kanadou, Vydra získal, již v roce 1927, první WAC v Československu. Byl dobrým technikem a psal zajímavé články do krátkovlnné přílohy Radiosvěta.

Alois Weirauch začal vysílat koncem roku 1926, ale první spojení navázal začátkem roku 1927 na vlně 44,8 m. Jeho prvním DX byla stanice AURABS v Taškentu a následujícího roku získává jako první v Čechách a druhý v Československu diplom WAC za spojení se všemi světadíly. Patřil – jako všichni ostatní kromě Motyčky – do věkové kategorie mezi 25 a 30 lety. Byl typickým selfmademanem. Sám, vlastní silou, poslechem telegrafních stanic se naučil morseovku. Sám, vlastní příslušenstvím, nastudoval základy elektrotechniky a vysokofrekvenční techniky. Byl pečlivým konstruktérem nejen vlastních přijímacích a vysílačních zařízení, ale vojenská odposlouchací služba si postavila přijímač podle jeho návodu v Radiosvětě a byla s ním nadmíru spokojena. A v době, kdy se s ostatními blížil k hlavní poště v Jindřišské ulici, patřil už k evropské élite.

Josef Štětina se, jako vyučený elektrotechnik, dostal na vojně ke II. telegrafnímu praporu, k radiorotě. Podle vojenského po-

sudku z 11. dubna 1925 projevoval velký zájem o radiotelegrafii, vynikal v ní a dosahoval výborných výsledků. A ten zájem už ho nikdy neopustil.

Takový je profil šesti kandidátů, kteří začali z Jindřišské ulice do budovy pošty a stoupají po schodech do druhého patra, aby se dali komisi ministerstva pošt a telegrafů vyzkoušet. Kromě nich existuje ještě několik desítek dalších amatérů vysílačů, kteří jsou aktivní na pásmech a ve světě oblíbeni. Jaký je tedy význam této historické události z 19. května 1930?

Dr. Ing. Josef Daneš, OK1YG

(Dokončení příště)

Stanice Pravoslava Motyčky, CS-OK1 v ulici Na Perštýně v Praze, snímek z r. 1925

R

REGULA

pořádané stejně jako v minulých letech v pražském Parku kultury a oddechu Julia Fučíka. Výstava se konala ve dnech 3. až 6. dubna, současně tam v dalších prostorách probíhala i přehlídka lékařské techniky pro diagnostiku a terapii a farmaceutických výrobků Pragomedica. Tyto výstavy mají profesní charakter, neprodávají se na ně vstupenky pro veřejnost, a tak se na ně soustředuje pozornost mnoha odborníků i obchodních firem. Letos bylo vystavovatelem asi čtyřicet z patnácti zemí, mezi nimiž byly i mimoevropské státy USA, Japonsko a Taiwan. Účast i aktivity vystavovatelů svědčila o zvýšeném zájmu o čs. trh — zřejmě v důsledku otevření naší ekonomiky i trhu Evropě. Zajímavých výrobků byla na Pragoregule celá řada, jejich výčet by neměl smysl. Vybrali jsme proto jen několik zajímavých ukázek z širokého sortimentu výstavní nabídky.

Zařízení v tisku grafických obrazů patří mezi nejdůležitější funkční bloky v systémech pro řešení vývojových úkolů s využitím počítače (CAD). Mezi nimi zaujmají významné místo systémy, v nichž se vytváří obraz fotocestou. Graficky „fotoplotter“ GSI (Gerber Scientific Instruments) model 3244 (obr. 1) byl vystavován v expozici spojenosti SPEA (u nás je zastupována organizací INTERSIM), která kromě uvádění vlastních výrobků také reprezentovala americkou firmu Gerber. Společnost The Gerber Scientific Instruments Company (Ing. Gerber se sám také podílí na vývoji) patří v tomto oboru k předním světovým výrobcům. Z nabídky několika modelů této firmy byl v Praze předváděn v činnosti model 3244, uváděný jako nejpřesnější systém své cenové třídy ve světovém měřítku. Pracuje s filmem nebo s deskami. Maximální rozměr obrazu je 508×660 mm, celková přesnost je $\pm 0,0254$ mm, (ve speciálních oblastech $\pm 0,0152$ mm). Z dalších parametrů: maximální rychlosť kreslení 10,16 mm/min., rozšíření 0,00508 mm, „opakovatelná“ přesnost $\pm 0,0127$ mm. Pracuje s pružnými disky 5 1/4 palce. Jako hlavní přednost tohoto modelu, vybaveného oproti předešlém typům novou optikou, mechanikou a novou generaci programového vybavení, jsou zdůrazňovány všeestránost použití (že pracovat s různými druhy fotocitlivých materiálů, uživatel si může sám vytvářet vlastní symboly apod.), jednoduchost obsluhy, přesnost a rychlosť. U mechaniky pohybu hlavy je využíváno patentovaného způsobu posuvu pomocí ocelového pásu, nahrazujícího dosud používaný dráhy šroubový nebo choucištový drátnový posuv. Velké přesnosti je dosaženo prázdnovazebním systémem průběžné kontroly činnosti „plotteru“. První z těchto zařízení u nás je již v provozu v Bratislavě při výrobě desek s plošnými spoji. Ve státech východní Evropy jich pracuje asi dvacet, z toho polovina v SSSR. Nejpřesnějším plotterem této firmy je model 3234, vybavený laserovým Interferometrem. Na ploše max. 457×559 mm a při

maximální rychlosti 4,32 m/min. pracuje s přesností $\pm 0,001016$ mm, rozšíření je 0,000127 mm.

Ve stánku ABB (Metrawatt) byl mezi řadou univerzálních i jednoúčelových přenosných měřicích přístrojů typ, určený především do výbavy revizních techniků. Model s označením M5010 spojuje v jednom celku činnost čtyř přístrojů: měřiče odporu uzemnění, měřiče Impedance smyčky, měřiče střídavého napětí a přístroje pro revizi proudových ochran. Vestavěný mikroprocesor automatizuje měření a umožňuje rychlé, snadno a přesně měřit téměř všechny veličiny (s výjimkou izolačního odporu) podle požadavků normem a bezpečnostních předpisů. Přístroj je ideální pomůckou pro uživatele i zřizovatele silnoproudých zařízení a pro elektroinstalatáře. Obsluha se omezuje na volbu požadované funkce otočným přepínačem a připojení měřicí sondy k měřenému objektu. Měření se spustí posuvným spínačem na sondě, naměřen hodnota v číslicové formě a další údaje včetně zvojené funkce se objeví na displeji z tekutých krystalů. Přístroj je nabízen ve dvou variantách — pro jmenovité napětí 230 V (M5010-02) a 127 V (M5010-03). Cena je 1500 DM. Dodává se buď samostatně, jako příslušenství se nabízí některá ze dvou variant brašen a násuvný měřicí adaptér s měřicími hroty. Přístroj je na obr. 2.

Ekoioogie je středem zájmu veřejnosti a stále se rozšiřuje i nabídka elektronických zařízení pro tento obor. O analyzátorech plynů byly již zmínky v AR např. v referátech z veletrhu v Brně. Jedním z nejskodlivějších faktorů je prahost v ovzduší, zejména uplatňuje-li se v kombinaci s dalšími činiteli, zhoršujícími životní prostředí. Na obr. 3 je výrobek, nově uváděný na trh s typovým označením série DM-P. Je to monitor prasních částic (a aerosolů), určený k použití zejména na pracovištích se zdraví nebezpečným výskytem důlního, azbestového nebo cementového prachu, ale i v brusírnách, lakovnách, při

Obr. 1.

Obr. 3.

laserový počítač prachových častic, typ 5220, určený ke kontrole „čistých“ provozů pro speciální výrobu. Oba přístroje ještě s další technikou z tohoto oboru mohou návštěvníci vidět ve stánku firmy Grimm. Tento výrobní podnik v malé obci (8700 obyvatel) Aining poblíž Saiburgu na německé straně hranic produkuje neuvěřitelný sortiment moderní techniky pro měření množství pevných častic v plynech a kapalinách (např. v koulových a výlukových plynech), obsahu škodlivých plnných složek; varovné systémy (při nebezpečných koncentracích), analýzatory velikosti pevných častic; dále speciální zařízení pro chemickou výrobu (oplachovací, čističní, dávkovací zařízení, mikrofiltry, leptaci vany, zařízení pro kontrolu filtrů apod.). V oblasti zpracování dat a programového vybavení spolupracuje s americkou firmou Compaq. Převážná většina měřicích přístrojů Grimm zahrnuje výsledky v číslicové formě na displeji a současně zaznamenává na magnetické kartě, z nichž mohou být kdykoliv vyhodnocovány podle zvoleného programu. Řada přístrojů má vestavěnou tiskárnu. Příklad grafického zpracování výsledků — záznam prahnosti ovzduší, sledované po určité době, je vidět na snímku pod monitorem. Přístroj sám je dodáván s bohatým příslušenstvím, mezi nímž je např. i záložní akumulátor pro 8 h provozu a síťový nabíječ, v praktickém kufříku.

Na obr. 4 si můžete prohlédnout pracoviště s barevnou počítačovou grafikou. Systém pracuje s centrálním procesorem Motorola 68020 (20 MHz), na stínuřtu rozměrem 295×236 mm je 1280×1024 adresovatelných bodů, zobrazit lze 256 barevných odstínů. Tento systém patří ke skupině cenově výhodných výrobků firmy Tektronix.

Na poslední straně obádky přinášíme několik dalších ukázek exponátů — osciloskopu Gould.

leštících operacích, ke zkoušení respiračních masek, vzduchových filtrů apod. Vlevo je přístroj, sloužící naopak ke kontrole velmi malého obsahu pevných častic ve vzduchu — přenosný

Obr. 2.

AMATÉRSKÉ RÁDIO SEZNAMUJE...

Videomagnetofon VM 6570

Celkový popis

Tento přístroj je v podstatě přímým pokračovatelem prvního u nás sestavovaného videomagnetofonu VM 6465, který byl po drobně popsán v AR A3/86. Od tohoto původního typu se nijak podstatně neliší ani vnějším vzhledem, ani vnitřním uspořádáním a funkcemi. Základními rozdíly jsou: možnost funkce televizního dílu přístroje až by se stroj po osmi minutách sám vypnul; dále zajištění napájení hodinového obvodu, takže hodiny zůstávají v trvalém chodu i po vypnutí přístroje ze sítě – dokonce, jak praví výrobce, až po dobu tří měsíců a například možnost programovat automatický záznam pořadu přímo ze židle pomocí dálkového ovládání. První uvedenou změnu, trvalou funkci televizního dílu, uvitají zejména majitelé starších televizních přijímačů bez dálkového ovládání, neboť tak ziskávají možnost dálkově přepínat programy, které sledují monitorovacím způsobem přes zmíněný videomagnetofon. Skutečnost, že typ VM 6570 má označení HQ je, jak jsem se již několikrát zmínil, bez většího významu. Přístroj, který jsem měl možnost testovat, navíc příliš kvalitním obrazem nevynikal – to však považuju za kusovou a nikoli konstrukční vadu.

Ani rozložení ovládacích prvků na čelní stěně přístroje se oproti původnímu typu nijak nezměnilo až na to, že až na tlačítko, jímž se stroj uvádí do pohotovostního stavu, jsou všechny ovládací prvky kryty oběma odklopými víčky. Shodná zůstala i přípojná místa na zadní stěně přístroje, tedy obě anténní zásuvky i zásuvka SCART.

Základní technické údaje podle výrobce	
Systém:	VHS PAL i SECAM.
Zvuk:	OIRT i CCIR.
Rozlišovací schop. obrazu:	3.1 MHz (-26 dB).
Odstup šumu obrazu:	43 dB.
Kmitočtová charakt. zvuku:	40 až 10 000 Hz (± 4 dB).
Odstup šumu zvuku:	47 dB.
Kolísání zvuku:	$\pm 0,5$ %.
Počet předvoleb:	35 + AV.
Počet programovatelných bloků:	2.
Počet videohlav:	2.
Záloha hodin:	3 měsíce.
Výstupní zvuk z modulátoru:	5,5 MHz.
Napájení:	220 V/50 Hz.
Spotřeba:	28 W (15 W v pohot.).
Rozměry:	42×33×10,5 cm.
Hmotnost:	7 kg.

Funkce přístroje

Již v úvodu jsem se zmínil, že obraz testovaného přístroje nebyl příliš kvalitní a objevovalo se u něj nepříjemné chvění

vodorovným směrem. Ujišťuji však všechny zájemce o tento přístroj, že šlo o zcela zjavnou kusovou závadu, která v žádném případě není vadou konstrukční. Pro nedostatek času jsem neměl možnost vyměnit přístroj za bezchybný a nepovažuji to ani pro tento účel za nezbytné. Naopak bych ale apeloval na všechny kupující, aby si před koupi nechali každý přístroj funkčně předvést, jak to ukládá prodejcům nejen zákon, ale v budoucnu doufám i logická péče o zákazníka. Není pochyb, že fundované opravní středisko by popsanou závadu patrně bez větších problémů odstranilo, ale nač obíhat opravný či posílat přístroj do výrobního závodu?

Až na zmíněný nedostatek pracoval videomagnetofon bezchybně, v tomto směru lze o něm říci totéž co o jeho předchůdcí, že je to relativně solidní výrobek. Mrzí mě však, že se opět musím dotknout příkládaného návodu k použití, kde si jeho tvůrci nedali ani tolik náruhy aby vyměnili základní obrázek na str. 4, kde je zobrazen nikoli tento, ale původní typ. Nejde sice o žádnou zásadní věc, ale u zákazníka to vzbuzuje dojem, že výrobci ani za tuto náruhu nestojí. Řada nesmyslů, kterými oplýval původní návod, byla již odstraněna, některé však tvrdosíře zůstávají. Tak například zůstává přihlouplé upozornění, že je třeba používat pouze kazety VHS, dále zde najdeme varování, že se nesmí uskladňovat kazety navinuté do polovice – jinak že doje k poškození pásku, což je čirý nesmysl. Na stránci 16 se dočteme, že se při funkci vyhledávání (picture search) mohou v obraze objevit rušivé pásky... Ty se v takovém případě objevují vždy a zákonitě. Když si totiž neznaší toto přečte, snadno dospeje k mylnému názoru, že asi u lépe nastavených přístrojů se tyto pásky neobjevují a u hůře nastavených ano a je zcela zbytečně maten.

V kapitole o odstranění poruch se opět tvrdosíře opakují stále stejně nesmysly jako „je-li při přehrávání nekvalitní obraz – je důvodem nesprávně vložená kazeta“. Rád bych skutečně věděl, kdo si tento nesmysl vymyslel a navíc na něm tak tvrdosíře trvá – a že se nenajde nikdo s pravomoci ho vyškrtnout. Tvrzce návodu si též plete pojmy „nízká kvalita záznamu“ a „nízká kvalita přehrávání“, přičemž „nízká kvalita záznamu“ je podle něj způsobena tím, že není stlačeno tlačítko VCR na televizoru anebo televizor není naladěn na předvolbu určenou pro videomagnetofon. Tento případ se totiž vůbec netýká záznamu, ale přehrávání!

Malou připominku bych měl ještě k tomu, že na str. 7, tedy vlastně v úvodu, je napsáno, že se přístroj po osmi minutách po ukončení pohybu pásku automaticky vypne, což vlastně neguje skutečnost, že videomagnetofon může pracovat jako tuner trvale. Informaci o této zásadní výhodě však naleznete až na konci návodu, na straně 28 a to ještě jaksi skrytou v textu.

Připominku mám ještě k pouzdro dálkového ovládání. Snažil jsem se do něj vložit běžnou devítivoltovou baterii, značky Centrum – koupenou v obchodě, ale měl jsem dojem, že pouzdro zničí, protože je na délku tak malé, že tam baterii musíme „cpát“ jako obouzájem. Přihneme-li, což jde rovněž dosti obtížně, kontaktní pružiny, nakonec tam baterii namáckneme, ale domnívám se, že kdyby prostor pro baterii byl jen o jediný milimetr delší, že by to bylo jen věcí ku prospěchu. Kladně lze hodnotit, že již není třeba pracně shánět miniaturní tužkové články, které byly použity v předešlém ovládání.

Poslední připominka se týká hodin. Skutečnost, že byl použit obvod typu CMOS, a že tedy s malým pomocným zdrojem je zajištěn chod hodin i při odpojení přístroje od sítě, je

jistě velice vitaným zlepšením. Bohužel však hodiny nelze nastavit s větší přesností než (v mezním případě) plus minus 59 sekund, protože je nelze „odstartovat“ od sekundové nuly. Oscilátor hodin je trvale v chodu a my pouze příslušným tlačítkem měníme údaj na displeji. Návod o této skutečnosti bohužel také skromně mlčí.

Vnější provedení přístroje

Jako všechny předešlé typy, u nás sestavené, představuje i tento přístroj standardní výrobek, který je v naprostém souladu s obdobnými zahraničními přístroji. Oproti prvnímu modelu se čelní stěna jeví jako kompaktnější a je ozdobena vodorovným pásem. Proti vnějšímu provedení nelze mít tedy žádné námítky.

Vnitřní provedení a opravitelnost

Povolením tří šroubků na zadní stěně lze bez problémů uvolnit a pak odklopit celé víko přístroje. Tím je umožněn přístup ke všem důležitým částem přístroje a modulová technika zjednoduší a zefektivníuje případné opravy.

Závěr

Videomagnetofon VM 6570 se v naší obchodní síti prodává (s jednou přiloženou kazetou E 180) za 19 500 Kčs. Porovnáme-li tedy jeho cenu s cenou VM 6465 zjistíme, že je, (po odečtení cen kazet), o něco málo dražší. Jestliže ovšem budeme uvažovat současnou tvrdou realitu, že jedna DM je

u nás prodávána za 25 Kčs, pak zjistíme, že to odpovídá přibližně 770 DM (s odečtením kazety). To znamená, že srovnatelný přístroj by v zahraničí stál včetně daně (MWSt) přibližně 880 DM. V této ceně již samozřejmě seženeme slušný videomagnetofon, musíme ovšem s obchodníkem dojednat odečtení zmíněné daně, což v některých případech, nekupujeme-li u ve věci sběhlých obchodníků v pohraniční oblasti, přináší určité problémy. Běžní prodejci totiž většinou požadují zaplatit celou částku a teprve až po dodání potvrzení o vývozu německou celnici jsou ochotni diferenci vrátit.

Z toho vyplývá, že v zahraničí sice lze za srovnatelnou částku obdobný přístroj koupit, musíme si však uvědomit, že VM 6570 je produktem firmy Philips, což není žádná druhořadá firma a že případné reklamace lze vyřizovat daleko jednodušeji v tuzemsku než do zahraničí. A já osobně znám řadu nešťastníků, kteří v zahraničí uskutečnili zdánlivě výhodnou kupu a dnes mají s vadaným přístrojem téměř neřešitelné problémy. V nejhorším případě lze samozřejmě odvézt vadný přístroj do zahraničí k opravě, pak ale všechny výhody levného nákupu jsou ztraceny, protože tam jsou jakékoli opravy neúnosně nákladné.

A tak bych se chtěl znova vrátit k tomu, co jsem napsal v předminulém testu o levném zámořském videomagnetofonu, který by se sestavoval u nás, měl zde servis a byl by podstatně levnější. Co by se stalo, kdyby některý jiný nás výrobce začal, a to co nejrychleji, uvažovat o této konkurenční možnosti – například TESLA Přelouč, která pů-

vodně měla podobná zařízení vyrábět? Neozdravilo by to nás trh a nebylo by to k prospěchu zákazníků?

Hofhans

OPTOELEKTRONIKA NA POSTUPU

Jak známo, zabývá se optoelektronika přenosem signálů tak, že mění elektrické signály v světlo a obráceně. Optický přenos světlovody poskytuje sdělovací technice podstatně větší možnosti pro přenášení řeči, dat a obrazů, než v přenosu souosými kabely. Vzhledem k velmi jakostnímu a nerušenému způsobu přenosu informaci, k čemuž přistupuje ještě neobyčejně velké množství signálů, které může jeden světlovodový kabel přenášet (což přirozeně zlevňuje provoz), soustřeďuje se zájem všech poštovních správ ve světě na optoelektronickou techniku.

Obecně známý princip přenosu signálů světlovodem spočívá v tom, že laser vysílá záření (tzv. koherentní fotony), které je nositelem signálů ve formě číslicových elektrotechnických impulsů. Po určité dráze signálu ve světlovodu je zapotřebí zeslabené signály obnovit. Kdybychom chtěli použít jako světlovod obyčejné sklo, poklesla by srozumitelnost světelných signálů na polovinu už po 3 mm. U jakostního skla by nastal pokles po přibližně třech metrech, kdežto u současných světlovodových vedení nastane pokles teprve po několika kilometrech. Útlum klesá s růstoucí délkou a dosáhne minima v vlnové délce přibližně 1,55 μm – útlum na polovinu počátečního výkonu může takto nastat po asi 25 km.

Dalším důležitým parametrem je disperze, ovlivněná indexem lomu skla, který rovněž závisí na vlnové délce světelného paprsku. Také index lomu klesá s rostoucí vlnovou délkou. Znamená to, že nejjakostnější světelné signály lze přenášet, je-li vlnová délka asi 1,3 μm. Pro tyto podmínky se podle současných poznatků jako zdroj velmi krá-

kých impulsů nejvíce osvědčil laser indiofosfidový (InP). Pohyblivost elektronů je podstatně větší než v laseru galliumarsenidovém (GaAs).

S použitím laseru InP lze přenášet značné množství číslicových signálů jedním světlovodem. Teoreticky by mohl mít takový spoj přenosovou kapacitu několik set Mbit/s a více. Pro srovnání: v zahraničí se zatím používá u širokopásmových přenosových sítí typu ISDN 64 Kbit/s. Moderní přenosové systémy, které pracují s galliumarsenidovým laserem, přenášejí signály s rychlosťí 34 Mbit/s. Nyní se plánují při použití laserů InP přenosové systémy s rychlosťí 2,5 Gbit/s a zkoumají se možnosti přenosu 10 Gbit/s.

K největším problémům tohoto výzkumu patří dosažení velké čistoty materiálu a stability krystalové mřížky InP a problém umístění vysílačiho a přijímacího prvku na křemíkovém podkladě pro sestavení vhodného čipu. Kromě toho musí výzkum vyřešit připojení laseru k světlovodu s nejmenšími možnými ztrátami.

Výhoda přenosu světlovodem je také v tom, že lze současně vysílat stejným světlovodem světelné impulsy různých vlnových délek, které se vzájemně neovlivňují, a tím se zvětšuje počet současně vysílaných signálů. Takový multiplexový systém vyžaduje ovšem zvláštní vstupní a výstupní zařízení. Můžeme si představit, že výzkum uvedených systémů vyžaduje značné finanční prostředky. V NSR se pro tento výzkum zatím uvolnilo 34 milionů DM.

Pro telefonní spojení se uvažuje ve Spolkové republice Německa o přenosu ve dvou

kanálech po 155 Mbitech/s. Ještě je třeba uvést, že se zkoumá novější princip laseru: jako zesilovací prvky působí doposud lasery, jejichž fotodioda mění fotony v elektronické impulsy, které se po zesílení zase mění v světelné impulsy. Nejnovější zesilovací prvky se skládají z laserů, které jsou vybuzeny docházejícími fotony tak, že vznikne fotovlávna. Přitom dochází k vybuzení laseru nikoliv pomocí přiloženého elektrického napětí, ale působením světelných paprsků („délka“ těchto laserů je kolem 0,2 mm).

Pro novou techniku uvedených systémů se začíná ve světě razit nový technický termín, a to „fotonika“. Tato poznámka může být užitečná pro čtenáře zahraničních časopisů.

Ing. Erich Termer

**Elektronický měřič rychlosti
a ujeté vzdálenosti
pro sportovní plavidla
LOG-1**

Mili mladí čtenáři,

zveme vás všechny k účasti na XVII. ročníku soutěže INTEGRA, kterou pořádá pro děvčata i chlapce se zájmem o elektrotechniku k. p. TESLA Rožnov ve spolupráci s redakcí časopisu Amatérské rádio a Ústředním domem dětí a mládeže.

Soutěž proběhne ve dvou kategoriích, mladší účastníci (roky narození 1978 až 1981), starší účastníci (roky narození 1975 až 1977).

Účastníci obou kategorií odpovídají na shodné otázky. V každé kategorii bude vybráno 16 nejlepších, kteří budou pozváni písemně na druhou část soutěže INTEGRA, která se uskuteční ve dnech 1. až 3. listopadu 1990 v rekreacním středisku k. p. TESLA Rožnov (Elektron, poblíž Rožnova p. R.).

Odpovědi na otázky vypracujte tak, že u otázek s nabídnutými možnostmi uveďte číslo otázky a písmeno vybrané odpovědi, u ostatních otázek uveďte v odpovědi podle možnosti také obecný vztah pro řešení a těprve poté dosaďte konkrétní údaj. Odpovídejte stručně a jednoznačně.

Odpovědi zašlete nejpozději do 30. září na adresu:

TESLA Rožnov s. p.
oddělení výchovy
a vzdělávání pracujících
ul. 1. máje 1000
756 61 Rožnov pod Radhoštěm

Obálku označte heslem INTEGRA 90 a pro jistotu zašlete dopis doporučeně. Nezapomeňte uvést svou přesnou adresu a přesné datum narození.

INTEGRA 1990

1. Úbytek napětí na rezistoru R3 ($6,8 \text{ k}\Omega$) je podle obrázku

- 6,5 V,
- 2,0 V,
- 12 V.

2. Absolutní hodnota zesílení zesilovače z otázky č. 1 je přibližně:

- 30,
- 10,
- 3.

3. Diody na vstupu diferenčního operačního zesilovače podle obrázku

- chrání vstupy OZ před zničením,
- tvoří se zesilovačem usměrňovač,
- nesmí se připojit.

4. Voltampérová charakteristika na obrázku přísluší

- zdroji proudu,
- rezistoru,
- zdroji napětí.

5. Proud I_Z proudového zrcadla podle obrázku je (předpokládáme shodné tranzistory)
- 10 mA,
 - 5 mA,
 - 1,44 mA.

6. Zapojení na obrázku je
- astabilní obvod (multivibrátor),
 - integrátor,
 - nemá smysl.

7. Přidržný proud tyristoru a triaku (I_{th}) je proud,
- při němž se součástka zničí,
 - při němž se součástka rozpiná,
 - doporučený pracovní proud.

8. Energie akumulovaná v magnetickém poli cívky o indukčnosti L při průchodu proudem I je:
- $W_L = (LI)^2/2$,
 - $W_L = 2(LI)^2$,
 - $W_L = LI^2/2$.

9. Se zvyšováním pracovní teploty přechodu T_j integrovaných obvodů se spolehlivosť:
- zmenšuje,
 - zvětšuje,
 - nemění.

10. Ztrátový úhel delta ($\operatorname{tg}\delta$) kondenzátoru má být:
- co nejmenší,
 - není důležitý,
 - co největší.

11. Kontakty relé Re v zapojení podle obrázku lze sepnout (orientace napětí vztázena vůči šípce) napětím
- obojí polarity,
 - pouze, je-li U větší než 0,
 - pouze, jeli U menší než 0.

12. Fázový posuv U_2 vůči U_1 (viz obrázek) na kmitočtu omega (ω) = $1/RC$ je

- nula stupňů,
- 45°,
- 180°.

13. Napětí mezi kolektorem a emitorem tranzistoru podle obrázku je

- 0,9 V,
- 0,3 V,
- 0,6 V.

14. Zisk dB tří kaskádně řazených přenosových členů podle obrázku je

- 36 dB,
- 1200 dB,
- 24 dB.

15. Harmonický signál (sinusovka) o kmitočtu 1 kHz a amplitudě 1 mV je přiveden na vstup zesilovače se ziskem 60 dB (pro první harmonickou složku) a zkreslením třetí harmonickou složkou 1% (jiné složky se nevyskytují). Určete

- amplitudu signálu na výstupu,
- kmitočet nežádoucí složky na výstupu,
- amplitudu nežádoucí složky.

16. Indukčnost cívky se s počtem závitů
- zvětšuje,
 - nemění,
 - zmenšuje.

17. Na obrázku odpovídá pro stejné odeberané výkony
- čára 1 větší kapacitě kondenzátoru C,
 - čára 2 větší kapacitě kondenzátoru C,
 - kapacitou kondenzátoru C není rozdíl mezi čarami 1 a 2 určen.

18. Autotransformátor

- transformuje se napětí v automobilech,
- má galvanicky oddělené primární a sekundární vinutí,
- primární a sekundární vinutí má společnou část.

19. Polovodičové součástky s velkým výkonem se montují na kovovou desku proto, aby
- byly dobře upevněny,
 - bylo dobře odváděno teplo, které se vyvíjí v čipu,
 - se nedeforovaly teplem.

20. Na obrázku je odezva zesilovače na vstupní napětí pravoúhlého průběhu. Zesilovač je
- spíše málo stabilní,
 - dostatečně stabilní,
 - nelze posoudit.

21. Symbol na obrázku představuje
- diodu,
 - triodu,
 - pentodu.

22. U mikroprocesoru 8080 má ADDRESS-BUS, DATA-BUS, CONTROL-BUS (v uvedeném pořadí)
- 8, 8, 8 bitů
 - 16, 8, 8 bitů,
 - 16, 8, 5 bitů.

23. U mikroprocesoru 8080 začíná start programu na adrese
- FFH,
 - OOOF,
 - OOFH.

24. Programy vysílané stacionární družici jsou na družici
- uloženy při vypuštění družice,
 - dopravovány raketoplánem,
 - vysílány z pozemního vysílače.

25. Nejkratší doby převodu A/D dosahuje převodník
- sledovací,
 - paralelní,
 - s dvojí integrací.

26. Princip approximačního převodníku A/D spočívá
- v postupném přikládání binárně odstupňovaných vah generovaných převodníkem D/A,
 - v kompenzaci vstupního napětí lineárně se zvětšujícím referenčním napětím,
 - v postupné integraci vstupního referenčního napěti.

JAK NA TO

Doplňky k článku z AR-A č. 4/88

PANELOVÝ ČÍSLICOVÝ ZDROJ RÍDICÍHO NAPĚTI

Digitální část tohoto zdroje (deskou W07) jsem použil v zařízení, které řídí světelný park. Při práci s touto částí se vyskytly tyto problémy:

- 1) Špatně je zakreslen rezistor R3 na obrázku s rozmištěním součástek. Vývod, který zasahuje do konektoru K1, má být v díře, kterou zakreslený rezistor zakrývá. Tato chyba způsobuje nefunkčnost zvětšení rychlosti čítání. Dobu, za kterou tato funkce začne pracovat, určuje konstanta R3C1. Protože tato doba byla velmi krátká, zvětšil jsem odpor rezistoru R3 na 0,33 MΩ.
- 2) Na desce s plošnými spoji je chyba, pro její odstranění je nutno propojit vývody 10 a 12 u IO1.
- 3) Nepracoval generátor kmitů (IO2 - 74123) a protože jsem nebyl schopen „přinutit“ ho kmitat, „předrátoval“ jsem desku podle schématu na obr. 1.

- 4) Největší nepříjemnosti, které mi tato konstrukce způsobila, bylo neošetření zákmítů mikrospínáčů. Díky zákmítům se lišila hodnota až o 40 (a to je moc). Tento problém řeší obvod na obr. 2.

27. Na obrázku je

5) Použil jsem nové dekodéry D347, které kromě finančních a proudových úspor umožňují i řdit jas podle okolního osvětlení. Zapojení je na obr. 3. Na desce W07 je třeba přerušit spoje mezi vývody 3 a 4 u obou dekodérů. Vývody 3 spojit drátovou propojkou a připojit na obvod z obr. 3. Vývody 4 se také propojí a připojí na R12.

Obr. 3.

- 6) V seznamu součástek nejsou uvedeny odpory rezistorů R41 a R42. Použil jsem pro R41 100 kΩ, pro R42 15 kΩ.

Ivo Löffler, Tábor

OSCILÁTOR PRO IO A244D

Ve funkčních zapojeních IO A244D (TCA440), uvedených ve firemní a jiné literatuře, se objevuje v několika provedeních totéž zapojení obvodu místního oscilátoru. Oscilační obvod je možné zapojit podle doporučení výrobce jako paralelní rezonanční obvod s indukční zpětnou vazbou (obr. 1). Právě tato indukční vazba znamená poměrnou složitost obvodu oproti ostatním vnějším obvodům (mf, AVC), neboť jsou třeba dvě v určitém poměru vázané cívky s odbočkou. Potíže nastanou, jakmile je nutné měnit rozsahy ladění, to znamená přepínat zároveň tři vývody k cívkám, což může znamenat i případnou kmitočtovou nestabilitu.

Obr. 1. Obvod s indukční vazbou

Vnitřní obvod oscilátoru pracuje jako rozdílový zesilovač. Tranzistor T1 je použit v zapojení se společnou bází, tranzistor T2 se společným kolektorem. Indukční vazbu lze nahradit vazbou kapacitní – napěťovou a zapojení převést na tzv. dvoubodové (obr. 2). Zpětnovazební obvod by měl přizpůsobit impedanci kolektoru T1 (6) k impedancii báze T2 (5) v žádaném kmitočtovém pásmu. Vstupní impedance v přívodu 5 je přibližně 8 kΩ, 15 pF. V nejjednodušším případě je možné připojit mezi vývody 5 a 6 kapacitu o velikosti od desítek pF do jednotek nF. Obvod kmitá spolehlivě v použitelném rozsahu 0,1 až 40 MHz. Výstupní napětí na vývodu 5 se pohybuje od 80 do 250 mV a závisí na

jakosti cívky a ladící kapacitě. Pro optimální funkci směšovače má být na vývodu 5 výstupní (efektivní) kmitočtu (nad 20 MHz) je třeba vinout drátem většího průměru a na větší průměr cívky. Při 27 MHz je kmitočtová stabilita krátkodobá desítky Hz, dlouhodobá stovky Hz s cívkou o průměru 13 mm se třemi závity a kondenzátorem asi 250 pF.

Obr. 2. Obvod s kapacitní – napěťovou vazbou

Pro změnu rozsahu stačí přepínat pouze jeden přívod cívky nebo kondenzátoru. Při srovnání s původním zapojením se kvalita signálu podstatně nelíší, zpětná vazba není kritická a oscilátor kmitá spolehlivě.

Tomáš Janšta

INDIKACE POKLESU NAPĚTI

Při normální velikosti napájecího napětí D2 trvale svítí a indikuje tak stav zapnutí IO, zapojený jako astabilní klopný obvod, nekmitá, protože napětí na C1 nedosáhne prahové úrovni, na kterou je referenčním napětím nastaven vnitřní komparátor (asi 1,5 V při zelené diodě LED D1).

Obr. 1. Schéma zapojení

Když se napájecí napětí zmenší na jistou mez danou odporem rezistoru R1, zmenší se i napětí na C1 na prahovou úroveň komparátoru a klopný obvod začne kmitat, dioda D2 začne blikat. Zapojení pracuje v širokém rozsahu napájecích napětí (již od 3 V); také napětí, při kterém D2 začne poblikávat, je v širokých mezech měnitelné změnou poměru R1 a R2.

Michal Kunc

28. Zapojení na obrázku je

- a) unipolární převodník D/A,
b) čítací převodník A/D,
c) převodník s postupnou approximací.

29. Vysvětlete rozdílné principy záznamu zvuku na klasické gramofonové desce a kompaktním „disku“.

30. Zdůvodněte kolísání intenzity příjmu při rozhlasovém vysílání v pásmu krátkých vln.

Digitální multimetr

MINI

Ing. L. Pikulík

Počátkem roku 1989 se objevily na našem trhu dvě stavebnice – či moduly – s monolitickým převodníkem A/D MHB7106D, zobrazovací jednotkou z kapalných krytalů a pomocnými obvody, tvořící základní stavební prvek digitálních měřicích přístrojů. Zejména typ ADM 2000 je vhodný pro konstrukci jak přesných jednoúčelových měřicích přístrojů pro rozličné účely, tak multimeterů různého stupně složitosti. Obsahuje všechny obvody, potřebné k převodu vstupního napětí na 3 1/2 místný digitální údaj a je již od výrobce přesně nastaven. Je konstruován tak, že umožňuje univerzální použití. Jeho cena (570 Kčs) je přitom v rámci cenových relací elektronických součástek u nás poměrně příznivá.

V zahraničí jsou amatérské konstrukce s obdobným převodníkem (ICL7106) publikovány již řadu let. Některé z nich byly převzaty s úpravami i našimi amatéry a publikovány v AR ještě v době, kdy byly potřebné IO i zobrazovací jednotky u nás nedostupné. Popisovaná konstrukce vychází z dostupných součástek a má poskytnout zejména mladým zájemcům o elektroniku možnost rozšířit svůj soubor měřicích přístrojů jednoduchým, ale přesným a spolehlivým multimeterem pro nejčastěji se vyskytující měření v amatérské praxi, a který lze postupně vybavovat doplňky, rozšiřujícími jeho funkční možnosti. Hlavní důraz je kladen na jednoduchost při konstrukci, stavbě i provozu.

Volba měřicích rozsahů

vychází z požadavků nejběžnější amatérské praxe. Pokud jde o napětí a proud, nejčastěji se měří stejnosměrné napětí (u obvodů s polovodičovými součástkami od deseti voltu až do 40 až 60 V), dále ss proud (rádu jednotek až stovek miliamperů). Měření proudu jednotek či desítek ampérů přichází v úvahu u výkonových zesilovačů, nabíječů, výkonových měničů napětí apod.; přitom se obvykle ani nevyužívá přesnosti, kterou poskytuje číslicový měřicí přístroj s 3 1/2 místným zobrazením, podobně jako při zřídka se vyskytujícím měření ss napětí stovek voltů.

U střídavého napětí je situace složitější o to, že amatér je potřebuje zpravidla měřit v širokém spektru kmitočtů (nf, vf) a požadovanému kmitočtovému pásmu a účelu měření je třeba obvody, citlivost i konstrukční řešení voltmetu přizpůsobit. Při měření napětí síťového kmitočtu v napájecích částech elektronických zařízení zpravidla jde spíše o kontrolu bez velkých nároků na přesnost. Odobně to platí i o měření střídavého proudu v napájecích obvodech.

Třetí ze základních veličin, k jejichž měření se nejčastěji univerzální měřicí přístroje používají, je odpor (při kontrole součástek, ale i při výběru rezistorů s přesným odporem do vstupních či vý-

stupních děličů, přizpůsobovacích a útlumových členů, párování rezistorů do stereofonních zařízení apod.). Při měření odporu je na rozdíl od měření napětí a proudu často velká přesnost nezbytná.

K měření dalších veličin – především kapacity a indukčnosti – musí být již multimeter složitější. Nejenže roste počet součástek (obvodů), ale značně složitější je přepínání rozsahů a veličin. Proto se v amatérské praxi často používají pro tyto účely samostatné konstrukční celky jako přídavné doplňky k základnímu multimeteru pro U, I, R. Stejně je tomu i při měření různých dalších fyzikálních veličin – teploty, tlaku apod.

Na základě téhoto úvah a s ohledem na možnosti, které poskytuje 3 1/2 místné zobrazení, byly navrženy jako základní tyto měřicí rozsahy:

ss napětí v rozmezí od 0,1 do 199,9 V (rozšířitelném přídavným děličem do 1999 V),

ss proud od 0,1 mA do 199 mA (s přídavným bočníkem asi do 20 A),

odpor od 0,1 Ω do 19,9 MΩ,

při přepínání jedním přepínačem běžného typu; přístroj bude mít vstup pro připojení přídavných doplňků k případnému měření dalších veličin.

Napájení multimetru

Vzhledem k účelu použití i k použitým polovodičovým součástkám (CMOS, LCD) by měl být samozřejmě přístroj napájen z baterii. Potřebné napětí v rozmezí 8 až 12 V lze nejsnáze získat z „destičkové“ baterie 9 V (Bateria typ 51D, mezinárodní označení 6F22). Pro podmínky amatérského použití však není tento zdroj nejvhodnější. Multimetr se nepoužívá denně, a máme-li v něm baterii delší dobu, je zpravidla nepoužitelná právě v tom okamžiku, kdy potřebujeme měřit. Pro častější pravidelné obměřování je baterie nevhodná jak cenou, tak občasnou nedostupností na našem trhu. Výhodnější by bylo napájet multimeter pokud možno z jediného a nejběžnějšího článku, tj. „tužkového“ monočlánku (Bateria typ 150 či 155, mezinárodní označení R6, popř. alkalický typ Bateria 6500 či LR6, jenž má nejméně trojnásobnou skladovací dobu, je však jen málokdy na trhu).

Multimetr MINI je proto doplněn tranzistorovým měničem napětí 1,5/10 V a je napájen z tužkového článku, který lze velmi jednoduše z multimetru vyjmout.

Základní vlastnosti multimetru MINI

Měřicí rozsahy, přesnost čtení (rozlišení) a vstupní (vnitřní) odpor:

Veličina	Rozsah měření	Rozlišení	$R_i(R_{vst})$	Označení rozsahu na přepínači
ss napětí	základní přístroj	0,1 až 199,9 V	0,1 V	10 MΩ
	s přídavným děličem*	1 až 1999 V	1 V	50 MΩ
ss proud	základní přístroj	0,1 až 199,9 mA	0,1 mA	1 Ω
	s přídavným bočníkem	0,1 až 20 A ^{**}	0,1 A	0,001 Ω
odpor		0,1 až 199,9 Ω	0,1 Ω	Ω
		1 Ω až 1999 kΩ	1,Ω	
		10 Ω až 19,99 kΩ	10 Ω	kΩ
		0,1 až 199,9 MΩ	100 Ω	
		1 kΩ až 1,999 MΩ	1 kΩ	MΩ
		10 kΩ až 19,99 MΩ	10 kΩ	

Poznámky:

* při použití přídavného děliče není přepnuta desetinná tečka, přečtený údaj je nutno násobit deseti. Málo být přístroj užíván k měření napětí až do maxima, je třeba k tomu přizpůsobit konstrukci svorek na děliči k hledisku bezpečnosti

** horní mez proudu je teoreticky 199,9 A, údaj 20 A je udán s ohledem na konstrukci bočníku

Vstupy:
pro měření odporu: (R - COMM)
pro měření ss napětí a proudu: (U, I - COMM)
pro připojení dalších případných doplňků:

Rozsah měření napětí je na něm od 0,1 mV do 1,999 V s rozlišením 0,001 V, vstupní (vnitřní) odpor je 10 k Ω . Lze jej využít i k přímému měření malého napětí v udaném rozsahu. Při měření s použitím tohoto vstupu má být přepínač rozsahů v poloze V, desetinná tečka je před posledním místem displeje.

Napájení: napětí 1,5 V (tužkový monočlánek), odebíraný proud asi 25 mA.
Rozměry (maximální vnější): 122 × 80 × 25 mm.
Hmotnost: asi 200 g.
Příslušenství: bočník (20 A), předradní dělič napětí (1999 V), konektor pro připojení přídavných doplňků.

Zapojení měřicích obvodů

Modul ADM 2000 je konstruován tak, aby umožňoval univerzální použití. Různé varianty základních zapojení modulu, z nichž vychází i schéma zapojení popsaného multimetru, jsou uvedeny v nepříliš dokonalém popisu, který je dodáván ke každému výrobku. Z něj je převzato označení vývodů modulu. V popisu jsou i pravidla pro manipulaci s modulem, montáž, pájení a samozřejmě jeho základní technické údaje včetně podrobného zapojení; proto nejsou v tomto textu opakovány.

Základní zapojení multimetru pro jednotlivé obory měření jsou na obr. 1 až 3. Celkové zapojení multimetru je na obr. 4. K přepínání měřených veličin a rozsahů ohmmetu slouží miniaturní otočný přepínač typu WK 533 04 (4 pakety, 8 poloh). V paketu A (obr. 4) se přepínají rozsahy měřeného odporu (polohy 3 až 8), v polohách 1 a 2 se přivádí na vstup modulu buď napětí z děliče R7/R8 (měření napětí) nebo z bočníku R9 (měření proudu). Pakety B a C slouží především

ke změně režimu modulu; v první poloze kontakty paketu B „uzemňují“ druhý konec bočníku při měření proudu. Čtvrtý paket slouží k přepínání desetinných teček na displeji. Funkce děliče R10/R11 je popsána v dokumentaci k modulu – stát o měření odporu.

Pro použití zapojení multimetru je třeba na modulu ADM přerušit spojení vývodů REFLO a COMM odpájením spojky 2 (viz popis modulu od výrobce). Při měření U a I, při němž mají být oba body

Obr. 1. Zapojení multimetru při měření napětí

Obr. 2. Zapojení multimetru při měření proudu

Obr. 3. Zapojení multimetru při měření odporu

Obr. 4. Schéma zapojení měřicí části multimetru

spojeny, je k tomu využito kontaktů ve třetím paketu (C) přepínače. Při měření R se ve třetím paketu připojuje střed děliče R10/R11 na vývod REFHI modulu.

Zapojení napájecího měniče

K získání napájecího napětí 10 V při proudu asi 2 mA pro multimeter je použito velmi jednoduché zapojení měniče podle 1. Schéma je na obr. 5. Na tranzistoru se současně i usměrňuje generované střídavé napětí. Usměrněné napětí se odbírá z kondenzátoru C1. R12 tvoří „predzátěž“ měniče – zmenšuje případné rozdíly výstupního napětí a jeho změnu lze popř. i „dostavit“ potřebné výstupní napětí, jehož rozmezí pro napájení modulu však může být značné: 8 až 12 V. R13 a C2 filtry případné špičky napětí, které zůstaly na C1.

Obr. 5. Schéma zapojení napájecí části multimetru

Jsou použity staré typy germaniových tranzistorů, které jsou pro daný účel výhodné (menší přechodové napětí, nízký mezní kmitočet, díky němuž není zapojení náchylné k nežádoucímu rozmítávání na vysokých kmitočtech). Zapojení jsem úspěšně vyzkoušel i s jinými typy tranzistorů (i křemíkovými, popř. n-p-n při opačném půlovém zdroji a kondenzátoru), ale s použitými GC507 měl měnič optimální vlastnosti. Také jádro lze použít odlišného typu (vyzkoušel jsem i feritový toroid), je však třeba brát v úvahu potřebný prostor, který chceme mít minimální.

Konstrukce

byla navržena tak, aby multimeter byl co nejménší a aby ovládací knoflík přepínače i madlo spínače nevyčnívaly z obdélníkového obrysů přístroje. Proto má deska s plošnými spoji, tvořící spolu s obvodovým pláštěm základní nosnou část, tvar podle obr. 6. Přepínač je uložen do obdélníkového otvoru v desce a připájen dvěma rádami svých vývodů přímo na příslušné spojové plošky na desce.

Pájecí plošky k propojení s modulem jsou umístěny tak, aby všechny spojky byly krátké a nezkrizíly se vzájemně (obr. 7).

K základní nosné části je připevněna čtyřmi šroubky M2 horní deska, nesoucí rámeček displeje i modul (je použito upevňovacích součástek, dodávaných k modulu) i čtyři vstupní zdírky.

Konstrukci obvodového pláště a celkovou sestavu i uchycení napájecího článu lze řešit různě podle zkušeností

a možností amatéra. Původní řešení, ovlivněné snahou o co nejmenší rozlohy, je poměrně pracné, proto je popis jen stručně. Obvodový plášť má dvě stěny (zadní a pravou) z vhodně tvarovaného pocínovaného železného plechu tloušťky 0,25 mm, zbylé dvě z kuprextitu. Tyto díly jsou vzájemně spájeny. V levé části přední stěny pláště je kruhový otvor o průměru 14,6 až 15 mm, jímž se vkládá do multimeteru tužkový článek. Jeho dno – záporný vývod – je uvnitř multimeteru opřeno o plochou pružinu, vpředu je zajištěn proti vypadnutí tvarovaným mosazným plechem, tvořícím současně vodivé spojení kladného pólu. Tento plech se vkládá z levé strany výrezem v pláště do uchycovacího nosníku jeho štěrbiny. Uspořádání je patrné z obr. 8 a 9. Je to jedno z možných konstrukčních řešení, proto neuvádím konstrukční detaily

a přesné rozměry jednotlivých částí. Obrázky jsou dostatečně názorné.

Zespoda je přístroj zakryt deskou z kuprextitu.

Použité součástky

Kromě modulu ADM obsahuje přístroj jen málo součástek. Rezistory, určující měřicí rozsahy, by měly být v provedení destičkovém (přesné, kovové), aby se plně využilo výborných vlastností modulu ADM. Lze použít i metalizované vrstvové stabilní rezistory. Deska s plošnými spoji je navržena tak, že lze pro každou pozici kromě R10 a R11 použít sériové spojení dvou rezistorů, aby se snáze dosáhlo potřebného odporu. Rezistor R9 je z odporového drátu, získaného z rozebraných starých měřicích přístrojů, a jeho odpor se nejsnáze přes-

Obr. 8. Uchycení článku: 1 – plochá pružina (vývod záporného pólu); 2 – uchycovací nosník (spojen s kladným pólem), mosaz, tl. 0,6 mm; 3 – vodič plech, pocínované železo tl. 0,25 mm; 4 – uzávěr, mosaz tl. 0,6 mm; 5 – deska s plošnými spoji; 6 – štěrbina

ně nastaví porovnáváním údaje multimeteru s údajem přesného číslicového ss ampérmetru při měření proudu. Na obr. 7

119

Seznam součástek

Obr. 6. Deska Y29 s plošnými spoji a rozmištěním součástek

Obr. 7. Pohled zespoda na multimeter bez krytu

Obr. 9. Vkládání napájecího článku do přístroje

Obr. 13. Deska se zapojeným přepínačem a měničem

je patrné „dostavení“ tohoto odporu paralelním připojením destičkového rezistoru ze strany spojů.

V měniči napětí bylo použito hrnčkové jádro o $\varnothing 14$ mm z hmoty H12, $A_L = 1500$. Vinutí (obr. 10) je kompaktní – bez kostry. Při navijení byl použit jednoduchý přípravek: na šroub M3 byly navlečeny dva válečky a mezi nimi trubička takových rozměrů, aby se vytvořila „forma“, odpovídající rozměrům prostoru pro vinutí v hrnčkovém jádru. Jednotlivé vrstvy (závit vedle závitu) byly po navinutí zpevněny řídkým bezbarvým lakem. K tomu, aby se vinutí nepřilepilo na „formu“, posloužila oddělovací vrstva z kondenzátorového papíru.

Obr. 10. Uspořádání vinutí L1 a L2

Použitý spínač byl získán ve výprodeji starých náhradních dílů k přenosným přijímačům. Pokud jej někdo nemá nebo nemůže nahradit jiným vhodným typem malých rozměrů, lze od jeho použití upustit a uvádět přístroj do chodu vsunutím monočlánku. Má to i určitou výhodu – nemůže se stát, že po delší době

znehodnocený článek vytékajícím elektrolytem poškodí multimeter.

Přídavný bočník a dělič napětí

Schéma zapojení je na obr. 11a, b spolu s náčrtky, přibližujícími konstrukční řešení obou doplňků. Nosnou částí bočníku je pásek z odporového materiálu, získaný ze starého bočníku pro 150 A. Po vhodném vytvarování podle obrázku jsou na konce připájeny zdířky – celokovové svorky, používané u měřicích přístrojů pro zemnění. Kolíky ze starých „banánek“ jsou rovněž připájeny. Celek je zalit ve vhodné formě do hmoty Dentakryl. Zespoza mezi kolíky (ve směru šípky) byl vrtákem o $\varnothing 3$ mm „dostavován“ (zvětšován) odpor bočníku, který by měl být $0,001 \Omega$; jeho správnou hodnotu lze určit (nastavit) opět jen při srovnávání údaje multimetru s údajem přesného ampérmetru při měření proudu.

Předřádný dělič napětí musí být řešen s ohledem na vysoké napětí, tj. až 2000 V. Z běžných typů rezistorů lze použít pouze typ MLT-1 pro odpor $10 \text{ M}\Omega$ a MLT-0,5 (0,25) pro $5 \text{ M}\Omega$, nechceme-li, aby dělič vycházel příliš velký. Dělič namísto předřádného odporu byl zvolen proto, aby se zmenšilo napětí na „živém“ kolíku, není-li dělič připojen k multimeteru. Vnitřní (vstupní) odpor přístroje se sice zmenší na $50 \text{ M}\Omega$, to však nemusí ve většině případů v praxi vadit. Přesný dělič poměr lze zajistit výběrem rezistorů a jejich vhodnou kombinací

(kusů s různými odchylkami od jmenovaného odporu). Vzhledem k použití uvedeného typu metalizovaných rezistorů nebude mít multimeter s děličem takovou stabilitu, jakou by měl se stabilními destičkovými typy, v běžné amatérské praxi to není na závadu.

Zatímco při měření s bočníkem souhlasí v údaji na displeji řád měřené veličiny, (odpovídá poloha desetinné tečky), při použití bočníku nesouhlasí poloha desetinné tečky a čtený údaj je třeba násobit deseti. Nepředstavuje to v praxi žádnou obtíž a není proto třeba komplikovat konstrukci přístroje přepínáním polohy desetinné tečky při zasunutí děliče, což by se také dalo udělat. Jednodušší je připomenout si tuto skutečnost označením $V \times 10$ na bočníku.

Vstup pro připojení dalších doplňků

O tento vstup byl přístroj rozšířen dodatečně, což je patrné v obrázcích na desce s plošnými spoji, na níž přibyl jeden drátový spoj. Jako nejjednodušší pro dané zapojení i pro aplikace byl zvolen vstup $1,999 \text{ V}/10 \text{ k}\Omega$. Byla použita zdířka pro menší průměr kolíku, aby nebyly vstupy zámenné.

(Dokončení na s. 230)

Obr. 11. Konstrukce přídavného bočníku (a) a děliče napětí (b)

Obr. 12. Dělič napětí, zasunutý do multimetru

Telefonní ústředna pro deset účastníků

(telekomunikační zařízení mimo jednotnou telefonní síť)*

Jan Hinze

(Dokončení)

Seznam součástek (rozpis podle bloků)

01 až 30 rezistory TR miniaturní, není-li uveden
větší výkon

31 až 50 kondenzátory TC svitkové, elektrolyty označené +

51 až 80 diody, Zenerovy diody a diaky

81 až 00 tranzistory, tyristory

Pozn.: tyristory – výběr I_H max. 5 mA.
 tranzistory – možná náhrada KFY18
 a KF508 nebo KFY46

PRACTICALLY TRANSPARENT		TRANSPARENT	TRANSPARENT
101	100 D	181	KC037
102	8.2 KC	182	KC037
103	27 1/2	183	KC037
104	27 1/2	184	KC0305W
105	27 1/2	185	KY130150
106	47 G	186	KY130150
107	47 G	187	KY130150
131	47 nF/63 V	188	KY130150
132	100 nF/63 V	189	KY130150
		190	KY130150

Označení ve schématu je mírně odlišné od běžných zvyklostí v časopisu. Pasivní součástky jsou označeny parametry, jak je v AR běžné, polovodičové součástky pro úsporu místa pouze číselným kódem; jejich typy najdete v seznamu součástek.

Součástky jsou rozmištěny na dvou deskách s plošnými spoji (obr. 8, 9), konstrukční řešení naznačují fotografie (obr. 10, 11).

280

Obr. 8. První deska s plošnými spoji (Y30) – příchozí sady a spojnice. Rozměry jsou 28 x 19 cm

280

Obr. 9. Druhá deska s plošnými spoji (Y31) – odchozí sady a zdroj. Rozměry jsou 28 x 19 cm. Diody 051, 052, 063 a 070 jsou Zenerovy, vývod od záporného pólu kondenzátoru má být označen -45 V.

Funkční blok 1
start vysílače / závěrce

401	0,82 MΩ	481	KT505
402	2,2 kΩ	482	BF259
403	0,18 MΩ		
404	1 kΩ		
405	1,5 kΩ/2 W	451	KR 105/600
406	2,2 kΩ	452	KY130/300
407	15 kΩ	453	KY130/300
408	12 kΩ	454	KY130/300
		455	KY130/600
431	88 nF/100 V		
432	68 nF/100 V		
433	1 μF/100 V		

Funkční blok 3

- separátor volacích impulů, obvod závěru a časové kroužky

301	12 kΩ	309	8,2 kΩ
302	2,2 kΩ	310	8,2 kΩ
303	2,2 kΩ	311	27 kΩ
304	0,12 MΩ	312	0,27 MΩ
305	6,8 kΩ	313	0,82 MΩ
306	5,6 kΩ	314	1,5 MΩ
307	0,18 MΩ	315	3,9 kΩ
308	4,7 kΩ	316	22 kΩ
		317	1,5 MΩ

331	1 μF/100 V	351	KY130/300
332	0,33 μF/100 V	352	KY130/300
333	1,2 nF/100 V	353	KY130/300
334	0,82 μF/100 V	354	KY130/300
		355	KY130/300
335	15 nF/40 V	356	KY130/300
336	68 nF/100 V	357	KR105
337	50 μF/70 V+	358	KY130/300
381	KF508		
382	KC237		
383	KC307		
384	KC237		

Obr. 10. Pohled na ústřednu po sejmání krytu

Obr. 11. Pohled po vyklopení první desky

Funkční blok 5

– identifikace konce volby, řízení vyzvánění
501 10 kΩ 581 KC307
502 10 kΩ 582 KC237
503 8,2 kΩ 583 KC237
504 3,9 kΩ 584 KC307
505 22 kΩ 585 KC307
506 22 kΩ
507 3,9 kΩ 551 KY130/300
508 22 kΩ 552 KY130/300
509 8,2 kΩ 553 KZ260/12
510 8,2 kΩ 554 KY130/300
511 0,12 MΩ 555 KY130/300
512 0,39 MΩ 556 KZ260/5V1
513 2,2 kΩ 557 KY130/600
514 2,2 kΩ 558 KZ260/5V1
515 8,2 kΩ 559 KY130/600
560 KY130/300
531 1 nF/100 V 561 KY130/300
532 2 μF/63 V 562 KY130/300
533 0,47 μF/100 V 563 KY130/300
534 0,1 μF/100 V 564 KY130/300

Funkční blok 6

– volci řetězec, přichozí napájecí
– opakuje se 10×

601 2,2 kΩ	681 KT505
602 0,18 MΩ	
603 1 kΩ/2 W	651 KY130/600
604 2,7 MΩ	652 KY130/600
631 68 nF/300 V	653 KY130/600
	654 KY130/300

Funkční blok 7

– generátor kontrolního tónu

701 22 kΩ	781 KC307
702 0,39 MΩ	
	751 KY130/300
	752 KY130/300
731 4,7 nF/100 V	753 KR105
732 5,6 nF/100 V	754 KY130/300

Funkční blok 8

– diagnostika	851 KY130/300
801 1,2 kΩ	852 KY130/300
802 47 kΩ	853 KY130/300
803 27 kΩ	854 KY130/300
804 1,5 kΩ	855 KY130/300
805 1,5 kΩ	856 KY130/300
806 10 kΩ	857 LQ1212
807 0,56 MΩ	858 LQ1812
	859 LQ1512
831 20 μF/35 V+	860 KR105
832 20 μF/35 V+	
833 2 μF/100 V	881 KC307

Funkční blok 9

– řízení voliči řetězce	981 KF508
901 6,8 kΩ	982 KC237
902 6,8 kΩ	983 KC237
903 6,8 kΩ	984 KF508
904 6,8 kΩ	985 KC307
905 39 kΩ	
906 0,1 MΩ	986 KC307
907 0,1 MΩ	987 KC237
908 0,12 MΩ	988 KFY18
909 68 kΩ	989 KC237
910 68 kΩ	
911 22 kΩ	951 KY130/300
912 22 kΩ	952 KY130/300
913 0,56 MΩ	953 KY130/300
914 39 kΩ	954 KY130/300
915 0,18 MΩ	955 KY130/300
916 22 kΩ	956 KY130/600
917 68 kΩ	957 KY130/600
918 2,2 kΩ	958 KY130/300
919 2,2 kΩ	959 KY130/600
920 3,9 kΩ	960 KY130/300
921 2,2 kΩ	961 KY130/300
922 5,1 kΩ	962 KY130/300
931 68 nF/100 V	
932 68 nF/100 V	
933 0,15 μF/100 V	

Funkční blok 0

– napájení, vyzvánění	
001 15 kΩ/0,5 W	084 KT505
002 5,6 kΩ	085 BF259
003 12 kΩ	086 MA7815
004 56 kΩ	051 7NZ70
005 0,12 MΩ	052 7NZ70
006 22 kΩ	053 KY132/300
007 2,2 kΩ	054 KY132/300
008 6,8 kΩ	055 KY132/300
009 33 kΩ/0,2 W	056 KY132/300
010 22 kΩ/0,2 W	057 KY130/300
011 56 kΩ	058 KY130/300
031 50 μF/70 V+	059 KY130/300
032 1 μF/70 V+	060 KY130/600
033 50 μF/70 V+	061 KY130/600
034 10 μF/70 V+	062 KY130/150
035 0,1 μF/250 V	063 7NZ70
036 20 μF/70 V+	064 KY132/300
037 500 μF/70 V+	065 KY132/300
038 0,33 μF/400 V	066 KY132/300
039 0,1 μF/250 V	067 KY132/300
081 MA7815	068 KY130/600
082 KC307	069 KY130/600
083 KC307	070 7NZ70
Ž1 24 V/50 mA	
Ž2 60 V/50 mA	
Ž3 60 V/50 mA	
LT symetrikační transformátor 2 × 100 (není podmínkou):	
S = 0,6 cm²	

vinutí	počet záv.	drát
a	1000	0,18 CuL
b	1000	0,18 CuL

vinutí	počet záv.	drát
P 220 V	2200 z	0,15 Cu
S1 44 V	450 z	0,224 Cu
S2 110 V	1130 z	0,11 Cu
S3 44 V	450 z	0,18 Cu

kde Z je vstupní impedance mikrofonního vstupu a f je maximální kmitočet propusti.

Cívka je navinuta drátem o $\varnothing 0,1$ mm CuS na toroidním jádru $\varnothing 10 \times 4$, H 20.

Miroslav Větrovec

Obr. 1. Schéma zapojení

MIKROPROCESOROVÁ A VÝPOČETNÍ TECHNIKA * HARDWARE & SOFTWARE

mikroelektronika

Demonstrační obrázek

Demonstrační obrázek

obrázek

JEMNÝ TISK ZE ZX SPECTRA

RNDr. Ivan Horsák, Ježkova 3, 130 00 Praha 3

Pojem „jemná grafika“ je velmi relativní. V historických dobách mikropočítačů, když se objevil Sinclair ZX-81, byly mikropočítače vybaveny pouze tzv. „semigrafikou“. Nástup ZX Spectra, s grafikou 256×192 bodů, představoval velký pokrok. Avšak dnes, ve srovnání s počítači typu IBM PC (s grafikou 640×400 bodů) se grafika Spectra jeví jako hrubá.

Možnost zobrazení grafické informace na TV obrazovce, resp. na monitoru, je velmi užitečná, nicméně cennější je možnost trvalého uložení grafické informace na papír, k čemuž slouží buď mozaikové tiskárny nebo plottery. Zde budeme uvažovat pouze první eventualitu, především vzhledem k možnosti provedení „hardcopy“ obrazovky. Provedeme-li kopii takovým způsobem, že jeden pixel obrazovky odpovídá jednomu úderu jehličky, potom obdržíme miniaturní obrázek velikosti asi 6×9 cm. Ve snaze zvětšit konečný obrázek existují takové rutiny, které zobrazí jeden pixel čtvericí bodů z tiskárny. Takový obrázek je sice větší, ale vynikne jeho hrubost (viz obr. 1).

Cílem tohoto příspěvku je obohatit ZX Spectrum o jemnou grafiku kvality jakou mají počítače IBM PC, alespoň ve výstupu na papír pomocí mozaikové tiskárny. Základní myšlenka byla taková, aby grafické příkazy

souběžně ukládaly grafické informace do dvou souborů (videoRAM), jednak do původního a jednak do nového, pro jemnou grafiku. Původní by sloužil pouze k zobrazení na obrazovce, nový k vytisknutí na tiskárně. Struktura nového displayfile je zcela jiná než původního, taková, aby co nejlépe vyhovovala grafickému režimu tiskárny. Tento způsob je náročný na paměť – např. obrázek 600×400 bodů vyžaduje velikost paměti 30 kB. Je to jedna z možností, jak využít rozšíření paměti u Spectra 80k nebo 128k.

Řešení uvedené úlohy lze samozřejmě naprogramovat v jazyku BASIC; program však pracuje velmi pomalu (např. vykreslení obr. 2 trvá asi 17 minut). Po přeložení pomocí Hisoft Compileru se výpočet výrazně zrychlil (tentýž obrázek trvá asi 2 minuty, tedy asi $8 \times$ rychleji), což jistě uvítají stoupení tohoto způsobu výpočtu. Nicméně stále platí, že nejkratších časů lze dosáhnout

jedině programováním v assembleru. Vyšvětlení je prosté: překladač nepozná, že např. pro ukládání do bitových informací je výhodnější použít rotace než sčítání vah, které je použito v BASICu. V našem konkrétním případě trvá výpočet asi 30 sekund, což je ještě $4 \times$ rychlejší než po překladu a pouze $2 \times$ pomalejší než pouhé vykreslení na obrázku pomocí původních grafických příkazů.

Program, jehož výpis v assembleru následuje, má délku 1340 bajtů a má několik vstupů. Syntaxe grafických příkazů má obvyklý tvar (PRINT USR příkaz, parametry ...) a je zřejmá z příkladu.

Adresy jednotlivých vstupů je výhodné uložit do proměnných, které svým názvem

připomínají příslušnou grafickou instrukci:

```
LET txy=64000
LET sxy=64046
LET scale=64063
LET cls=64106
LET line=64280
LET plot=64296
LET move=64311
LET draw=64375
LET label=64418
LET locate=64656
LET cplot=64686
LET csizet=64815
LET csizet=64828
LET tisk=65222
```

Popis jednotlivých grafických instrukcí

PRINT USR txy,tx,ty

Nejprve je nutno definovat fyzický rozměr obrázku z tiskárny, *tx* a *ty*, v počtu jehliček (svislý rozměr musí být dělitelný 8). Tím je také určen rozměr obrázku v centimetrech. Pozor: součin obou parametrů dělený 8 určuje velikost nového obrazového souboru a tak i snížení RAMTOP (při extrémních rozměrech by nemuselo zbýt místo pro vlastní program).

PRINT USR sxy,sx,sy

Také je možná nepovinná definice velikosti obrázku na obrazovce, *sx* a *sy*. Pokud není použita, je nastaven běžný rozdíl 256×176 bodů. Tento příkaz má význam tehdy, když je potřeba přizpůsobit tvar obrázku na obrazovce požadovanému tvaru na papíře, např. při kreslení čtvercových obrázků.

Obr. 1. Zvětšená hardcopy obrazovky ZX Spectra (945-1)

PRINT USR scale,xmin,xmax,ymin,ymax

Dále je třeba definovat pomocí čtyř parametrů příkazu scale skutečné rozdíly obrázku (mezi, v nichž se pohybují hodnoty souřadnic *x,y*). Default hodnoty jsou: 0,255,0,175. Pomocí těchto parametrů jsou vstupující souřadnice přepočítávány jednak na počty pixelů pro výstup na obrazovku a jednak na počty jehliček pro výstup na tiskárnu.

PRINT USR cls

Tento příkaz je určen pro mazání grafických informací z obou souborů.

Vlastní grafické příkazy jsou následující:

PRINT USR plot x,y – pro zobrazení bodu o souřadnicích *x,y*.

Výpis 1. Zdrojový text programu (945-V1)

<pre>FA00 10 ORG 64000 64100CD7CFA 460 CALL STKUL 20 *D+ 64000 64103C386FE 470 JP KONEC 30 ;***** 641062ABDFE 480 ;***** 40 TXY CALL VSTUP 490 MAZANI LD HL,(DFZAC) 50 LD (TX),BC 500 PUSH HL 60 CALL VSTUP 510 POP DE 70 LD (TY),BC 520 INC BC,(DELKA) 80 PUSH BC 530 LD BC 90 POP DE 540 DEC BC 100 CALL DE8 550 XOR A 110 LD HL,(TX) 560 LD (HL),A 120 CALL #30A9 570 LDIR . 130 LD (DELKA),HL 580 JP KONEC 140 EX DE,HL 590 ;----- 150 LD HL,64000 600 STKUL LD HL,(#5C65) 160 SBC HL,DE 610 LD BC,5 170 LD (DFZAC),HL 620 SBC HL,BC 180 RET 630 LDIR BC,5 190 ;----- 640 LD BC 200 VSTUP RST #20 650 SCF . 210 CALL #1C82 660 CCF . 220 CALL #1E99 670 SBC HL,BC 230 RET 680 LD (#5C65),HL 240 ;***** 690 RET ;----- 250 SXY CALL VSTUP 700 ;----- 260 LD (SX),BC 710 FETCH LD DE,(#5C65) 270 CALL VSTUP 720 LD BC,5 280 LD (SY),BC 730 LDIR . 290 JP KONEC 740 LD (#5C65),DE 300 ;***** 750 RET ;----- 310 SCALE RST #20 760 ;----- 320 CALL #1C82 770 TRANSF RST #28 330 LD DE,XMIN 780 DEFB #C2,1 340 CALL STKUL 790 DEFB #C1,1,#38 350 RST #20 800 LD HL,(TY) 360 CALL #1C82 810 DEC HL 370 LD DE,XMAX 820 LD (OY),HL 380 CALL STKUL 830 LD HL,(TX) 390 RST #20 840 DEC HL 400 CALL #1C82 850 LD (OX),HL 410 LD DE,YMIN 860 CALL TRAN 420 CALL STKUL 870 RST #28 430 RST #20 880 DEFB #E1,#E2,#38 440 CALL #1C82 890 LD HL,(SY) 450 LD DE,YMAX 900 DEC HL ;----- 910 LD (OY),HL ;----- 920 LD HL,(SX) ;----- 930 DEC HL ;----- 940 LD HL,(DFZAC) ;----- 950 DEC HL ;----- 960 LD HL,(DFZAC) ;----- 970 DEC HL ;----- 980 LD HL,(DFZAC) ;----- 990 DEC HL ;----- 1000 LD HL,(DFZAC) ;----- 1010 DEC HL ;----- 1020 LD HL,(DFZAC) ;----- 1030 DEC HL ;----- 1040 LD HL,(DFZAC) ;----- 1050 DEC HL ;----- 1060 LD HL,(DFZAC) ;----- 1070 DEC HL ;----- 1080 LD HL,(DFZAC) ;----- 1090 DEC HL ;----- 1100 LD HL,(DFZAC) ;----- 1110 DEC HL ;----- 1120 LD HL,(DFZAC) ;----- 1130 DEC HL ;----- 1140 LD HL,(DFZAC) ;----- 1150 DEC HL ;----- 1160 LD HL,(DFZAC) ;----- 1170 DEC HL ;----- 1180 LD HL,(DFZAC) ;----- 1190 DEC HL ;----- 1200 LD HL,(DFZAC) ;----- 1210 DEC HL ;----- 1220 LD HL,(DFZAC) ;----- 1230 DEC HL ;----- 1240 LD HL,(DFZAC) ;----- 1250 DEC HL ;----- 1260 LD HL,(DFZAC) ;----- 1270 DEC HL ;----- 1280 LD HL,(DFZAC) ;----- 1290 DEC HL ;----- 1300 LD HL,(DFZAC) ;----- 1310 DEC HL ;----- 1320 LD HL,(DFZAC) ;----- 1330 DEC HL ;----- 1340 LD HL,(DFZAC) ;----- 1350 DEC HL ;----- 1360 LD HL,(DFZAC) ;----- 1370 DEC HL ;----- 1380 LD HL,(DFZAC) ;----- 1390 DEC HL ;----- 1400 LD HL,(DFZAC) ;----- 1410 DEC HL ;----- 1420 LD HL,(DFZAC) ;----- 1430 DEC HL ;----- 1440 LD HL,(DFZAC) ;----- 1450 DEC HL ;----- 1460 LD HL,(DFZAC) ;----- 1470 DEC HL ;----- 1480 LD HL,(DFZAC) ;----- 1490 DEC HL ;----- 1500 LD HL,(DFZAC) ;----- 1510 DEC HL ;----- 1520 LD HL,(DFZAC) ;----- 1530 DEC HL ;----- 1540 LD HL,(DFZAC) ;----- 1550 DEC HL ;----- 1560 LD HL,(DFZAC) ;----- 1570 DEC HL ;----- 1580 LD HL,(DFZAC) ;----- 1590 DEC HL ;----- 1600 LD HL,(DFZAC) ;----- 1610 DEC HL ;----- 1620 LD HL,(DFZAC) ;----- 1630 DEC HL ;----- 1640 LD HL,(DFZAC) ;----- 1650 DEC HL ;----- 1660 LD HL,(DFZAC) ;----- 1670 DEC HL ;----- 1680 LD HL,(DFZAC) ;----- 1690 DEC HL ;----- 1700 LD HL,(DFZAC) ;----- 1710 DEC HL ;----- 1720 LD HL,(DFZAC) ;----- 1730 DEC HL ;----- 1740 LD HL,(DFZAC) ;----- 1750 DEC HL ;----- 1760 LD HL,(DFZAC) ;----- 1770 DEC HL ;----- 1780 LD HL,(DFZAC) ;----- 1790 DEC HL ;----- 1800 LD HL,(DFZAC) ;----- 1810 DEC HL ;----- 1820 LD HL,(DFZAC) ;----- 1830 DEC HL ;----- 1840 LD HL,(DFZAC) ;----- 1850 DEC HL ;----- 1860 LD HL,(DFZAC) ;----- 1870 DEC HL ;----- 1880 LD HL,(DFZAC) ;----- 1890 DEC HL ;----- 1900 LD HL,(DFZAC) ;----- 1910 DEC HL ;----- 1920 LD HL,(DFZAC) ;----- 1930 DEC HL ;----- 1940 LD HL,(DFZAC) ;----- 1950 DEC HL ;----- 1960 LD HL,(DFZAC) ;----- 1970 DEC HL ;----- 1980 LD HL,(DFZAC) ;----- 1990 DEC HL ;----- 2000 LD HL,(DFZAC) ;----- 2010 DEC HL ;----- 2020 LD HL,(DFZAC) ;----- 2030 DEC HL ;----- 2040 LD HL,(DFZAC) ;----- 2050 DEC HL ;----- 2060 LD HL,(DFZAC) ;----- 2070 DEC HL ;----- 2080 LD HL,(DFZAC) ;----- 2090 DEC HL ;----- 2100 LD HL,(DFZAC) ;----- 2110 DEC HL ;----- 2120 LD HL,(DFZAC) ;----- 2130 DEC HL ;----- 2140 LD HL,(DFZAC) ;----- 2150 DEC HL ;----- 2160 LD HL,(DFZAC) ;----- 2170 DEC HL ;----- 2180 LD HL,(DFZAC) ;----- 2190 DEC HL ;----- 2200 LD HL,(DFZAC) ;----- 2210 DEC HL ;----- 2220 LD HL,(DFZAC) ;----- 2230 DEC HL ;----- 2240 LD HL,(DFZAC) ;----- 2250 DEC HL ;----- 2260 LD HL,(DFZAC) ;----- 2270 DEC HL ;----- 2280 LD HL,(DFZAC) ;----- 2290 DEC HL ;----- 2300 LD HL,(DFZAC) ;----- 2310 DEC HL ;----- 2320 LD HL,(DFZAC) ;----- 2330 DEC HL ;----- 2340 LD HL,(DFZAC) ;----- 2350 DEC HL ;----- 2360 LD HL,(DFZAC) ;----- 2370 DEC HL ;----- 2380 LD HL,(DFZAC) ;----- 2390 DEC HL ;----- 2400 LD HL,(DFZAC) ;----- 2410 DEC HL ;----- 2420 LD HL,(DFZAC) ;----- 2430 DEC HL ;----- 2440 LD HL,(DFZAC) ;----- 2450 DEC HL ;----- 2460 LD HL,(DFZAC) ;----- 2470 DEC HL ;----- 2480 LD HL,(DFZAC) ;----- 2490 DEC HL ;----- 2500 LD HL,(DFZAC) ;----- 2510 DEC HL ;----- 2520 LD HL,(DFZAC) ;----- 2530 DEC HL ;----- 2540 LD HL,(DFZAC) ;----- 2550 DEC HL ;----- 2560 LD HL,(DFZAC) ;----- 2570 DEC HL ;----- 2580 LD HL,(DFZAC) ;----- 2590 DEC HL ;----- 2600 LD HL,(DFZAC) ;----- 2610 DEC HL ;----- 2620 LD HL,(DFZAC) ;----- 2630 DEC HL ;----- 2640 LD HL,(DFZAC) ;----- 2650 DEC HL ;----- 2660 LD HL,(DFZAC) ;----- 2670 DEC HL ;----- 2680 LD HL,(DFZAC) ;----- 2690 DEC HL ;----- 2700 LD HL,(DFZAC) ;----- 2710 DEC HL ;----- 2720 LD HL,(DFZAC) ;----- 2730 DEC HL ;----- 2740 LD HL,(DFZAC) ;----- 2750 DEC HL ;----- 2760 LD HL,(DFZAC) ;----- 2770 DEC HL ;----- 2780 LD HL,(DFZAC) ;----- 2790 DEC HL ;----- 2800 LD HL,(DFZAC) ;----- 2810 DEC HL ;----- 2820 LD HL,(DFZAC) ;----- 2830 DEC HL ;----- 2840 LD HL,(DFZAC) ;----- 2850 DEC HL ;----- 2860 LD HL,(DFZAC) ;----- 2870 DEC HL ;----- 2880 LD HL,(DFZAC) ;----- 2890 DEC HL ;----- 2900 LD HL,(DFZAC) ;----- 2910 DEC HL ;----- 2920 LD HL,(DFZAC) ;----- 2930 DEC HL ;----- 2940 LD HL,(DFZAC) ;----- 2950 DEC HL ;----- 2960 LD HL,(DFZAC) ;----- 2970 DEC HL ;----- 2980 LD HL,(DFZAC) ;----- 2990 DEC HL ;----- 3000 LD HL,(DFZAC) ;----- 3010 DEC HL ;----- 3020 LD HL,(DFZAC) ;----- 3030 DEC HL ;----- 3040 LD HL,(DFZAC) ;----- 3050 DEC HL ;----- 3060 LD HL,(DFZAC) ;----- 3070 DEC HL ;----- 3080 LD HL,(DFZAC) ;----- 3090 DEC HL ;----- 3100 LD HL,(DFZAC) ;----- 3110 DEC HL ;----- 3120 LD HL,(DFZAC) ;----- 3130 DEC HL ;----- 3140 LD HL,(DFZAC) ;----- 3150 DEC HL ;----- 3160 LD HL,(DFZAC) ;----- 3170 DEC HL ;----- 3180 LD HL,(DFZAC) ;----- 3190 DEC HL ;----- 3200 LD HL,(DFZAC) ;----- 3210 DEC HL ;----- 3220 LD HL,(DFZAC) ;----- 3230 DEC HL ;----- 3240 LD HL,(DFZAC) ;----- 3250 DEC HL ;----- 3260 LD HL,(DFZAC) ;----- 3270 DEC HL ;----- 3280 LD HL,(DFZAC) ;----- 3290 DEC HL ;----- 3300 LD HL,(DFZAC) ;----- 3310 DEC HL ;----- 3320 LD HL,(DFZAC) ;----- 3330 DEC HL ;----- 3340 LD HL,(DFZAC) ;----- 3350 DEC HL ;----- 3360 LD HL,(DFZAC) ;----- 3370 DEC HL ;----- 3380 LD HL,(DFZAC) ;----- 3390 DEC HL ;----- 3400 LD HL,(DFZAC) ;----- 3410 DEC HL ;----- 3420 LD HL,(DFZAC) ;----- 3430 DEC HL ;----- 3440 LD HL,(DFZAC) ;----- 3450 DEC HL ;----- 3460 LD HL,(DFZAC) ;----- 3470 DEC HL ;----- 3480 LD HL,(DFZAC) ;----- 3490 DEC HL ;----- 3500 LD HL,(DFZAC) ;----- 3510 DEC HL ;----- 3520 LD HL,(DFZAC) ;----- 3530 DEC HL ;----- 3540 LD HL,(DFZAC) ;----- 3550 DEC HL ;----- 3560 LD HL,(DFZAC) ;----- 3570 DEC HL ;----- 3580 LD HL,(DFZAC) ;----- 3590 DEC HL ;----- 3600 LD HL,(DFZAC) ;----- 3610 DEC HL ;----- 3620 LD HL,(DFZAC) ;----- 3630 DEC HL ;----- 3640 LD HL,(DFZAC) ;----- 3650 DEC HL ;----- 3660 LD HL,(DFZAC) ;----- 3670 DEC HL ;----- 3680 LD HL,(DFZAC) ;----- 3690 DEC HL ;----- 3700 LD HL,(DFZAC) ;----- 3710 DEC HL ;----- 3720 LD HL,(DFZAC) ;----- 3730 DEC HL ;----- 3740 LD HL,(DFZAC) ;----- 3750 DEC HL ;----- 3760 LD HL,(DFZAC) ;----- 3770 DEC HL ;----- 3780 LD HL,(DFZAC) ;----- 3790 DEC HL ;----- 3800 LD HL,(DFZAC) ;----- 3810 DEC HL ;----- 3820 LD HL,(DFZAC) ;----- 3830 DEC HL ;----- 3840 LD HL,(DFZAC) ;----- 3850 DEC HL ;----- 3860 LD HL,(DFZAC) ;----- 3870 DEC HL ;----- 3880 LD HL,(DFZAC) ;----- 3890 DEC HL ;----- 3900 LD HL,(DFZAC) ;----- 3910 DEC HL ;----- 3920 LD HL,(DFZAC) ;----- 3930 DEC HL ;----- 3940 LD HL,(DFZAC) ;----- 3950 DEC HL ;----- 3960 LD HL,(DFZAC) ;----- 3970 DEC HL ;----- 3980 LD HL,(DFZAC) ;----- 3990 DEC HL ;----- 4000 LD HL,(DFZAC) ;----- 4010 DEC HL ;----- 4020 LD HL,(DFZAC) ;----- 4030 DEC HL ;----- 4040 LD HL,(DFZAC) ;----- 4050 DEC HL ;----- 4060 LD HL,(DFZAC) ;----- 4070 DEC HL ;----- 4080 LD HL,(DFZAC) ;----- 4090 DEC HL ;----- 4100 LD HL,(DFZAC) ;----- 4110 DEC HL ;----- 4120 LD HL,(DFZAC) ;----- 4130 DEC HL ;----- 4140 LD HL,(DFZAC) ;----- 4150 DEC HL ;----- 4160 LD HL,(DFZAC) ;----- 4170 DEC HL ;----- 4180 LD HL,(DFZAC) ;----- 4190 DEC HL ;----- 4200 LD HL,(DFZAC) ;----- 4210 DEC HL ;----- 4220 LD HL,(DFZAC) ;----- 4230 DEC HL ;----- 4240 LD HL,(DFZAC) ;----- 4250 DEC HL ;----- 4260 LD HL,(DFZAC) ;----- 4270 DEC HL ;----- 4280 LD HL,(DFZAC) ;----- 4290 DEC HL ;----- 4300 LD HL,(DFZAC) ;----- 4310 DEC HL ;----- 4320 LD HL,(DFZAC) ;----- 4330 DEC HL ;----- 4340 LD HL,(DFZAC) ;----- 4350 DEC HL ;----- 4360 LD HL,(DFZAC) ;----- 4370 DEC HL ;----- 4380 LD HL,(DFZAC) ;----- 4390 DEC HL ;----- 4400 LD HL,(DFZAC) ;----- 4410 DEC HL ;----- 4420 LD HL,(DFZAC) ;----- 4430 DEC HL ;----- 4440 LD HL,(DFZAC) ;----- 4450 DEC HL ;----- 4460 LD HL,(DFZAC) ;----- 4470 DEC HL ;----- 4480 LD HL,(DFZAC) ;----- 4490 DEC HL ;----- 4500 LD HL,(DFZAC) ;----- 4510 DEC HL ;----- 4520 LD HL,(DFZAC) ;----- 4530 DEC HL ;----- 4540 LD HL,(DFZAC) ;----- 4550 DEC HL ;----- 4560 LD HL,(DFZAC) ;----- 4570 DEC HL ;----- 4580 LD HL,(DFZAC) ;----- 4590 DEC HL ;----- 4600 LD HL,(DFZAC) ;----- 4610 DEC HL ;----- 4620 LD HL,(DFZAC) ;----- 4630 DEC HL ;----- 4640 LD HL,(DFZAC) ;----- 4650 DEC HL ;----- 4660 LD HL,(DFZAC) ;----- 4670 DEC HL ;----- 4680 LD HL,(DFZAC) ;----- 4690 DEC HL ;----- 4700 LD HL,(DFZAC) ;----- 4710 DEC HL ;----- 4720 LD HL,(DFZAC) ;----- 4730 DEC HL ;----- 4740 LD HL,(DFZAC) ;----- 4750 DEC HL ;----- 4760 LD HL,(DFZAC) ;----- 4770 DEC HL ;----- 4780 LD HL,(DFZAC) ;----- 4790 DEC HL ;----- 4800 LD HL,(DFZAC) ;----- 4810 DEC HL ;----- 4820 LD HL,(DFZAC) ;----- 4830 DEC HL ;----- 4840 LD HL,(DFZAC) ;----- 4850 DEC HL ;----- 4860 LD HL,(DFZAC) ;----- 4870 DEC HL ;----- 4880 LD HL,(DFZAC) ;----- 4890 DEC HL ;----- 4900 LD HL,(DFZAC) ;----- 4910 DEC HL ;----- 4920 LD HL,(DFZAC) ;----- 4930 DEC HL ;----- 4940 LD HL,(DFZAC) ;----- 4950 DEC HL ;----- 4960 LD HL,(DFZAC) ;----- 4970 DEC HL ;----- 4980 LD HL,(DFZAC) ;----- 4990 DEC HL ;----- 5000 LD HL,(DFZAC) ;----- 5010 DEC HL ;----- 5020 LD HL,(DFZAC) ;----- 5030 DEC HL ;----- 5040 LD HL,(DFZAC) ;----- 5050 DEC HL ;----- 5060 LD HL,(DFZAC) ;----- 5070 DEC HL ;----- 5080 LD HL,(DFZAC) ;----- 5090 DEC HL ;----- 5100 LD HL,(DFZAC) ;----- 5110 DEC HL ;----- 5120 LD HL,(DFZAC) ;----- 5130 DEC HL ;----- 5140 LD HL,(DFZAC) ;----- 5150 DEC HL ;----- 5160 LD HL,(DFZAC) ;----- 5170 DEC HL ;----- 5180 LD HL,(DFZAC) ;----- 5190 DEC HL ;----- 5200 LD HL,(DFZAC) ;----- 5210 DEC HL ;----- 5220 LD HL,(DFZAC) ;----- 5230 DEC HL ;----- 5240 LD HL,(DFZAC) ;----- 5250 DEC HL ;----- 5260 LD HL,(DFZAC) ;----- 5270 DEC HL ;----- 5280 LD HL,(DFZAC) ;----- 5290 DEC HL ;----- 5300 LD HL,(DFZAC) ;----- 5310 DEC HL ;----- 5320 LD HL,(DFZAC) ;----- 5330 DEC HL ;----- 5340 LD HL,(DFZAC) ;----- 5350 DEC HL ;----- 5360 LD HL,(DFZAC) ;----- 5370 DEC HL ;----- 5380 LD HL,(DFZAC) ;----- 5390 DEC HL ;----- 5400 LD HL,(DFZAC) ;----- 5410 DEC HL ;----- 5420 LD HL,(DFZAC) ;----- 5430 DEC HL ;----- 5440 LD HL,(DFZAC) ;----- 5450 DEC HL ;----- 5460 LD HL,(DFZAC) ;----- 5470 DEC HL ;----- 5480 LD HL,(DFZAC) ;----- 5490 DEC HL ;----- 5500 LD HL,(DFZAC) ;----- 5510 DEC HL ;----- 5520 LD HL,(DFZAC) ;----- 5530 DEC HL ;----- 5540 LD HL,(DFZAC) ;----- 5550 DEC HL ;----- 5560 LD HL,(DFZAC) ;----- 5570 DEC HL ;----- 5580 LD HL,(DFZAC) ;----- 5590 DEC HL ;----- 5600 LD HL,(DFZAC) ;----- 5610 DEC HL ;----- 5620 LD HL,(DFZAC) ;----- 5630 DEC HL ;----- 5640 LD HL,(DFZAC) ;----- 5650 DEC HL ;----- 5660 LD HL,(DFZAC) ;----- 5670 DEC HL ;----- 5680 LD HL,(DFZAC) ;----- 5690 DEC HL ;----- 5700 LD HL,(DFZAC) ;----- 5710 DEC HL ;----- 5720 LD HL,(DFZAC) ;----- 5730 DEC HL ;----- 5740 LD HL,(DFZAC) ;----- 5750 DEC HL ;----- 5760 LD HL,(DFZAC) ;----- 5770 DEC HL ;----- 5780 LD HL,(DFZAC) ;----- 5790 DEC HL ;----- 5800 LD HL,(DFZAC) ;----- 5810 DEC HL ;----- 5820 LD HL,(DFZAC) ;----- 5830 DEC HL ;----- 5840 LD HL,(DFZAC) ;----- 5850 DEC HL ;----- 5860 LD HL,(DFZAC) ;----- 5870 DEC HL ;----- 5880 LD HL,(DFZAC) ;----- 5890 DEC HL ;----- 5900 LD HL,(DFZAC) ;----- 5910 DEC HL ;----- 5920 LD HL,(DFZAC) ;----- 5930 DEC HL ;----- 5940 LD HL,(DFZAC) ;----- 5950 DEC HL ;----- 5960 LD HL,(DFZAC) ;----- 5970 DEC HL ;----- 5980 LD HL,(DFZAC) ;----- 5990 DEC HL ;----- 6000 LD HL,(DFZAC) ;----- 6010 DEC HL ;----- 6020 LD HL,(DFZAC) ;----- 6030 DEC HL ;----- 6040 LD HL,(DFZAC) ;----- 6050 DEC HL ;----- 6060 LD HL,(DFZAC) ;----- 6070 DEC HL ;----- 6080 LD HL,(DFZAC) ;----- 6090 DEC HL ;----- 6100 LD HL,(DFZAC) ;----- 6110 DEC HL ;----- 6120 LD HL,(DFZAC) ;----- 6130 DEC HL ;----- 6140 LD HL,(DFZAC) ;----- 6150 DEC HL ;----- 6160 LD HL,(DFZAC) ;----- 6170 DEC HL ;----- 6180 LD HL,(DFZAC) ;----- 6190 DEC HL ;----- 6200 LD HL,(DFZAC) ;----- 6210 DEC HL ;----- 6220 LD HL,(DFZAC) ;----- 6230 DEC HL ;----- 6240 LD HL,(DFZAC) ;----- 6250 DEC HL ;----- 6260 LD HL,(DFZAC) ;----- 6270 DEC HL ;----- 6280 LD HL,(DFZAC) ;----- 6290 DEC HL ;----- 6300 LD HL,(DFZAC) ;----- 6310 DEC HL ;----- 6320 LD HL,(DFZAC) ;----- 6330 DEC HL ;----- 63</pre>

Demonstrační obrázek

Demonstrační obrázek

Obrázek

Obr. 2. Obrázek stejné velikosti jako obr. 1 pořízený popisovaným programem (945-2)

PRINT USR move x,y – pro vykreslení úsečky z posledního bodu do bodu o absolutních souřadnicích x,y.

PRINT USR draw x,y – obdoba původního příkazu DRAW, x a y jsou relativní souřadnice vzhledem k poslednímu bodu.

PRINT USR line x,y,p – je-li hodnota parametru p=1, potom příkaz působí jako plot, pro p≠1 jako move.

Pro zobrazení textu do obrázku slouží další skupina příkazů:

PRINT USR label „text“ – zobrazí text umístěný v uvozovkách (s využitím původního generátoru znaku a udg).

PRINT USR locate,x,y – určuje počáteční bod umístění textu (levého horního rohu). Na rozdíl od příkazu PRINT AT dovoluje přesnéjší umístění textu s přesností jednoho pixelu).

PRINT USR cplot,cx,cy – dovoluje snadnější umísťování textu; oproti poloze určené pomocí locate je posunuta v násobcích šířky a výšky znaku.

PRINT USR csizen,zx,zy – nastavuje zvětšení znaků pro výstup na obrazovku (celé číslo, default 1,1).

PRINT USR csizet,ztx,zty – nastavuje zvětšení znaků pro výstup na tiskárnu.

PRINT USR tisk

Tímto příkazem dosáhneme vykreslení obrázku na tiskárně (trvá asi 2,5 minuty). Rutina TISKAR ve strojovém programu je vázána na konkrétní typ tiskárny ROBOTRON K6313 (nebo K6314), který je kompatibilní s tiskárnami EPSON a konkrétně zapojení paralelního interfejsu. Pro jiné typy tiskáren je nutno zmíněnou rutinu přepracovat.

Na obr. 2 je vidět výsledný obrázek v grafice 512 × 352 bodů. Jeho vykreslení (uložení informací do obou souborů) trvá asi 30 sekund. Program „test“ vyžaduje strojový program (mo), grafická data (slecn) a udg znaky. Na str. 217 je tentýž obrázek v grafice 640 × 400 bodů, která odpovídá grafice EGA karty počítačů IBM PC.

Na závěr lze uvést, že pomocí uvedeného strojového programu lze na ZX Spectru ve spojení s mozaikovou tiskárnou produkovat jakékoli obrázky pro amatérské i profesionální účely, jako např. pro publikace, s rozlišovací schopností danou vzdáleností jehel tiskárny (asi 0,35 mm). Souběžně vznikající obrázek na obrazovce v hrubé grafice pak slouží pouze pro přibližnou orientaci.

641972299FE	940	LD	(0X),HL	64308C386FE	1420	JP	KONEC
64200CDC9FA	950	CALL	TRAN	64311CD99FB	1430 ;*****		
64203C9	960	RET		64314CD9FFA	1440 MOVE	CALL	VXY
	970 ;-----			64317ED4B7D5C	1450 MOVEE	CALL	TRANSF
6420421A7FE	980	TRAN	LD	6432178	1460 LD		BC,(23677)
64207CD91FA	990	CALL	FETCH	64322CD64FB	1470 LD		A,B
64210EF	1000	RST	#28	64325ED4B7D5C	1480 CALL		MIN1
642110338	1010	DEFB	3,#38	6432979	1490 LD		BC,(23677)
6421321ACFE	1020	LD	HL,YMAX	64330CD64FB	1500 LD		A,C
64216CD91FA	1030	CALL	FETCH	64333CD7724	1510 CALL		MIN1
6421921A7FE	1040	LD	HL,YMIN	64336ED4B83FE	1520 CALL		#2477
64222CD91FA	1050	CALL	FETCH	64340CD6BF8	1530 LD		BC,(YST)
64225EF	1060	RST	#28	64343ED4B81FE	1540 CALL		MIN2
64226030538	1070	DEFB	3,5,#38	64347CD6BF8	1550 LD		BC,(XST)
64229ED4B9BFE	1080	LD	BC,(0Y)	64350CDA3FD	1560 CALL		MIN2
64233CD0DFB	1090	CALL	AN	64353C386FE	1570 CALL		DRTISK
64236219DFE	1100	LD	HL,XMIN		1580 JP		KONEC
64239CD91FA	1110	CALL	FETCH		1590 ;-----		
64242EF	1120	RST	#28	64356CD282D	1600 MIN1	CALL	#2D28
642430338	1130	DEFB	3,#38	64359CD72F8	1610 CALL		MIN
6424521A2FE	1140	LD	HL,XMAX	64362C9	1620 RET		
64248CD91FA	1150	CALL	FETCH		1630 ;-----		
64251219DFE	1160	LD	HL,XMIN	64363CD2B2D	1640 MIN2	CALL	#2D28
64254CD91FA	1170	CALL	FETCH	64366CD72F8	1650 CALL		MIN
64257EF	1180	RST	#28	64369C9	1660 RET		
64258030538	1190	DEFB	3,5,#38		1670 ;-----		
64261ED4B99FE	1200	LD	BC,(0X)	64370EF	1680 MIN	RST	#28
64265CD0DFB	1210	CALL	AN	64371030138	1690 DEF8		3,1,#38
64268C9	1220	RET		64374C9	1700 RET		
	1230 ;-----				1710 ;*****		
64269CD2B2D	1240	AN	CALL	64375CD99FB	1720 DRAW	CALL	VXY
64272EF	1250	RST	#28	6437821A7FE	1730 LD		HL,YMIN
6427304A20F	1260	DEFB	4,#A2,#0F	64381CD92FB	1740 CALL		MIN5
64276270138	1270	DEFB	#27,1,#38	64384219DFE	1750 LD		HL,XMIN
64279C9	1280	RET		64387CD92FB	1760 CALL		MIN5
	1290 ;*****			64390CD9FFA	1770 CALL		TRANSF
64280CD99FB	1300	LINE	CALL	64393CD7724	1780 CALL		#2477
64283E7	1310	RST	#20	64396CDA3FD	1790 CALL		DRTISK
64284CD821C	1320	CALL	#1C82	64399C386FE	1800 JP		KONEC
64287CD1423	1330	CALL	#2314		1810 ;-----		
64290FE01	1340	CP	1	64402CD91FA	1820 MIN5	CALL	FETCH
642922805	1350	JR	Z,PLOTT	64405CD72FB	1830 CALL		MIN
642941812	1360	JR	MOVEE	64408C9	1840 RET		
	1370 ;*****						
64296CD99FB	1380	PLOT	CALL				
64299CD9FFA	1390	PLOTT	CALL				
64302CDC22	1400	CALL	#22DC				
64305CD49FD	1410	CALL	PLTISK				

64409E7	1850 ;-----			64579E1	2820	POP	HL
64410CD821C	1860 VXY	RST	#20	64580FD2AC4FE	2830	LD	IY,(ZVXT)
64413E7	1870	CALL	#1C82	64584FDE5	2840 ZNT12	PUSH	IY
64414CD821C	1880	RST	#20	645860E08	2850	LD	C,B
64417C9	1890	CALL	#1C82	64588E5	2860	PUSH	HL
	1900	RET		64589D5	2870	PUSH	DE
64418E7	1910 ;*****			6459007	2880 ZNT2	RLCA	
	1920 LABEL	RST	#20	64591FD2AC4FE	2890	LD	IY,(ZVXT)
64419CDFB24	1930	CALL	#24FB	64595300B	2900 ZNT22	JR	NC,ZNT3
64422CDF12B	1940	CALL	#28F1	64597F5	2910	PUSH	AF
644251A	1950 LAB0	LD	A,(DE)	64598E5	2920	PUSH	HL
64426D5	1960	PUSH	DE	64599D5	2930	PUSH	DE
64427C5	1970	PUSH	BC	64600C5	2940	PUSH	BC
64428FE20	1980	CP	32	64601CD61FD	2950	CALL	SOURAD
64430382C	1990	JR	C,NETISK	64604C1	2960	POP	BC
64432FEA5	2000	CP	165	64605D1	2970	POP	DE
644343028	2010	JR	NC,NETISK	64606E1	2980	POP	HL
64436FE80	2020	CP	128	64607F1	2990	POP	AF
644383007	2030	JR	NC,UDG	6460823	3000 ZNT3	INC	HL
6444001003D	2040	LD	BC,#3D00	64609FD2D	3010	DEFB	#FD,#2D
64443D620	2050	SUB	32	6461120EE	3020	JR	NZ,ZNT22
644451809	2060	JR	LAB1	646130D	3030	DEC	C
64447FE90	2070 UDG	CP	144	6461420E6	3040	JR	NZ,ZNT2
644493819	2080	JR	C,NETISK	64616D1	3050	POP	DE
64451D690	2090	SUB	144	64617E1	3060	POP	HL
644530158FF	2100	LD	BC,65368	64618FDE1	3070	POP	IY
644566F	2110 LAB1	LD	L,A	646201B	3080	DEC	DE
644572600	2120	LD	H,0	64621FD25	3090	DEFB	#FD,#25
64459110800	2130	LD	DE,8	6462320D7	3100	JR	NZ,ZNT12
64462CDA930	2140	CALL	#30A9	64625E5	3110	PUSH	HL
6446509	2150	ADD	HL,BC	646262AC0FE	3120	LD	HL,(AA)
64466E5	2160	PUSH	HL	6462923	3130	INC	HL
64467CDE3FB	2170	CALL	ZNAKS	6463022C0FE	3140	LD	(AA),HL
64470E1	2180	POP	HL	64633E1	3150	POP	HL
64471CD30FC	2190	CALL	ZNAKT	6463405	3160	DEC	B
64474C1	2200	POP	BC	6463520C1	3170	JR	NZ,ZNT1
64475D1	2210	POP	DE	64637FDE1	3180	POP	IY
6447613	2220 NETISK	INC	DE	646392A85FE	3190	LD	HL,(U1)
644770D	2230	DEC	C	64642110800	3200	LD	DE,8
6447820C9	2240	JR	NZ,LAB0	646453AC4FE	3210	LD	A,(ZVXT)
64480C386FE	2250	JP	KONEC	6464819	3220 ZNT4	ADD	HL,DE
	2260 ;-----			646493D	3230	DEC	A
64483ED4BBDFE	2270 ZNAKS	LD	BC,(Z1)	6465020FC	3240	JR	NZ,ZNT4
6448722C0FE	2280	LD	(AA),HL	6465222B5FE	3250	LD	(U1),HL
644901608	2290	LD	D,8	64655C9	3260	RET	
64492C5	2300	PUSH	BC		3270 ;*****		
644932AC0FE	2310 L1	LD	HL,(AA)	64656CD99FB	3280 LOCATE	CALL	VXY
644967E	2320	LD	A,(HL)	64659CD9FFA	3290	CALL	TRANSF
644972AC2FE	2330	LD	HL,(ZVX)	64662CD0723	3300	CALL	#2307
64500E5	2340 L12	PUSH	HL	64665ED43BDFF	3310	LD	(Z1),BC
645011E08	2350	LD	E,8	64669CD991E	3320	CALL	#1E99
64503C5	2360	PUSH	BC	64672ED43B7FE	3330	LD	(U2),BC
6450407	2370 L2	RLCA		64676CD991E	3340	CALL	#1E99
645052AC2FE	2380	LD	HL,(ZVX)	64679ED43B5FE	3350	LD	(U1),BC
64508300B	2390 L22	JR	NC,L3	64683C386FE	3360	JP	KONEC
64510F5	2400	PUSH	AF		3370 ;*****		
64511E5	2410	PUSH	HL	64686E7	3380 CPLOT	RST	#20
64512D5	2420	PUSH	DE	64687CDFB24	3390	CALL	#24FB
64513C5	2430	PUSH	BC	646903E08	3400	LD	A,8
64514CDE522	2440	CALL	#22E5	64692CD282D	3410	CALL	#2D28
64517C1	2450	POP	BC	64695EF	3420	RST	#28
64518D1	2460	POP	DE	64696043138	3430	DEFB	4,#31,#38
64519E1	2470	POP	HL	646993AC2FE	3440	LD	A,(ZVX)
64520F1	2480	POP	AF	64702CD282D	3450	CALL	#2D28
645210C	2490 L3	INC	C	64705EF	3460	RST	#28
645222D	2500	DEC	L	647060438	3470	DEFB	4,#38
6452320EF	2510	JR	NZ,L22	647083ABDFE	3480	LD	A,(Z1)
645251D	2520	DEC	E	64711CD282D	3490	CALL	#2D28
6452620E8	2530	JR	NZ,L2	64714EF	3500	RST	#28
64528C1	2540	POP	BC	647150F38	3510	DEFB	#0F,#38
64529E1	2550	POP	HL	64717CD1423	3520	CALL	#2314
6453005	2560	DEC	B	6472032BDFF	3530	LD	(Z1),A
6453125	2570	DEC	H	647233AC4FE	3540	LD	A,(ZVX)
6453220DE	2580	JR	NZ,L12	64726CD282D	3550	CALL	#2D28
645342AC0FE	2590	LD	HL,(AA)	64729EF	3560	RST	#28
6453723	2600	INC	HL	647300438	3570	DEFB	4,#38
6453822C0FE	2610	LD	(AA),HL	64732ED4BB5FE	3580	LD	BC,(U1)
6454115	2620	DEC	D	64736CD2B2D	3590	CALL	#2D28
6454220CD	2630	JR	NZ,L1	64739EF	3600	RST	#28
64544C1	2640	POP	BC	647400F38	3610	DEFB	#0F,#38
6454579	2650	LD	A,C	64742CD991E	3620	CALL	#1E99
645462AC2FE	2660	LD	HL,(ZVX)	64745ED43B5FE	3630	LD	(U1),BC
64549C608	2670 L4	ADD	A,8	64749E7	3640	RST	#28
645512D	2680	DEC	L	64750CDFB24	3650	CALL	#24FB
6455220FB	2690	JR	NZ,L4	647533E08	3660	LD	A,8
645544F	2700	LD	C,A	64755CD282D	3670	CALL	#2D28
645555ED43BDFF	2710	LD	(Z1),BC	64758EF	3680	RST	#28
64559C9	2720	RET		64759043138	3690	DEFB	04,#31,#38
	2730 ;-----			647623AC3FE	3700	LD	A,(ZVY)
6456022C0FE	2740 ZNAKT	LD	(AA),HL	64765CD282D	3710	CALL	#2D28
645632A85FE	2750	LD	HL,(U1)	64768EF	3720	RST	#28
64566ED5BB7FE	2760	LD	DE,(U2)	647690438	3730	DEFB	04,#38
645700608	2770	LD	B,8	647713ABEFE	3740	LD	A,(Z2)
64572FDE5	2780	PUSH	IY	64774CD282D	3750	CALL	#2D28
64574E5	2790 ZNT1	PUSH	HL	64777EF	3760	RST	#28
645752AC0FE	2800	LD	HL,(AA)	647780F38	3770	DEFB	#0F,#38
645787E	2810	LD	A,(HL)	64780CD1423	3780	CALL	#2314

6478332BFE	3790	LD	(Z2),A	64992ED5BB7FE	4760	LD	DE,(U2)	
647863AC5FE	3800	LD	A,(ZYV)	64996ED53B5FE	4770	LD	(U1),DE	
64789CD282D	3810	CALL	#2D28	6500022B7FE	4780	LD	(U2),HL	
64792EF	3820	RST	#28	650032AB9FE	4790	LD	HL,(P1)	
647930438	3830	DEFB	4,#38	65006ED5BBBFE	4800	LD	DE,(P2)	
64795ED4BB7FE	3840	LD	BC,(U2)	65010ED53B9FE	4810	LD	(P1),DE	
64799CD2B2D	3850	CALL	#2D28	6501422BBFE	4820	LD	(P2),HL	
64802EF	3860	RST	#28	650173ABDFE	4830	LD	A,(Z1)	
648030F38	3870	DEFB	#0F,#38	6502047	4840	LD	B,A	
64805CD991E	3880	CALL	#1E99	650213ABFE	4850	LD	A,(Z2)	
64808ED43B7FE	3890	LD	(U2),BC	6502432BDDE	4860	LD	(Z1),A	
64812C386FE	3900	JP	KONEC	6502778	4870	LD	A,B	
	3910	*****			6502832BFE	4880	LD	(Z2),A
64815CD99FB	3920	CSIZE	CALL	VXY	650312AB5FE	4890	DAL	HL,(U1)
64818CD0723	3930	CALL	#2307	650342299FE	4900	LD	(0X),HL	
64821ED43C2FE	3940	LD	(ZVX),BC	65037CB3C	4910	SRL	H	
64825C386FE	3950	JP	KONEC	65039CB1D	4920	RR	L	
	3960	*****			65041229BFE	4930	LD	(OY),HL
64828CD99FB	3970	CSIZET	CALL	VXY	650442AB7FE	4940	SMYC	LD
64831CD0723	3980	CALL	#2307	65047ED5BBBFE	4950	LD	DE,(OY)	
64834ED43C4FE	3990	LD	(ZVXT),BC	6505119	4960	ADD	HL,DE	
64838C386FE	4000	JP	KONEC	6505222C0FE	4970	LD	(AA),HL	
	4010	-----			65055ED5B85FE	4980	LD	DE,(U1)
64841CD991E	4020	PLTISK	CALL	#1E99	65059ED52	4990	SBC	HL,DE
64844ED43B3FE	4030	LD	(YST),BC	650613814	5000	JR	C,DALE	
64848CD991E	4040	CALL	#1E99	6506322C0FE	5010	LD	(AA),HL	
64851ED43B1FE	4050	LD	(XST),BC	650662ABBF	5020	LD	HL,(P2)	
64855CS	4060	PUSH	BC	650693ABFE	5030	LD	A,(Z2)	
64856E1	4070	POP	HL	65072FE01	5040	CP	1	
64857ED5BB3FE	4080	LD	DE,(YST)	650742803	5050	JR	Z,PLUS2	
64861CD61FD	4090	CALL	SOURAD	650762B	5060	DEC	HL	
64864C9	4100	RET		650771801	5070	JR	DAL2	
	4110	-----			6507923	5080	PLUS2	INC
64865E5	4120	SOURAD	PUSH	HL	6508022BBFE	5090	DAL2	HL
648662A97FE	4130	LD	HL,(TY)	650832AC0FE	5100	DALE	HL,(AA)	
64869ED52	4140	SBC	HL,DE	65086229BFE	5110	LD	(OY),HL	
64871EB	4150	EX	DE,HL	650892AB9FE	5120	LD	HL,(P1)	
64872E1	4160	POP	HL	650923ABDFE	5130	LD	A,(Z1)	
648737B	4170	LD	A,E	65095FE01	5140	CP	1	
64874E607	4180	AND	7	650972803	5150	JR	Z,PLUS1	
648763C	4190	INC	A	650992B	5160	DEC	HL	
648774F	4200	LD	C,A	651001801	5170	JR	DAL1	
64878CD8CFD	4210	CALL	DE8	6510223	5180	PLUS1	INC	
64881E5	4220	PUSH	HL	6510322B9FE	5190	DAL1	HL	
648822A95FE	4230	LD	HL,(TX)	651062ABBF	5200	LD	HL,(P2)	
64885CDA930	4240	CALL	#30A9	65109ED5BB9FE	5210	LD	DE,(P1)	
64888D1	4250	POP	DE	651133ABFFE	5220	LD	A,(YVX)	
6488919	4260	ADD	HL,DE	65116FE01	5230	CP	1	
64890ED5BBBDFE	4270	LD	DE,(DFZAC)	651182B01	5240	JR	Z,PRES	
6489419	4280	ADD	HL,DE	65120EB	5250	EX	DE,HL	
648957E	4290	LD	A,(HL)	65121CD61FD	5260	PRES	SOURAD	
6489641	4300	LD	B,C	651242A99FE	5270	LD	HL,(OX)	
6489717	4310	SMYC1	RLA	651272B	5280	DEC	HL	
6489810FD	4320	DJNZ	SMYC1	651282299FE	5290	LD	(OX),HL	
649000D8	4330	RET	C	651317C	5300	LD	A,H	
649013F	4340	CCF		65132B5	5310	OR	L	
6490241	4350	LD	B,C	6513320A5	5320	JR	NZ,SMYC	
649031F	4360	SMYC2	RRA	651352AB9FE	5330	LD	HL,(P1)	
6490410FD	4370	DJNZ	SMYC2	65138ED5BBBFE	5340	LD	DE,(P2)	
6490677	4380	LD	(HL),A	651423ABFE	5350	LD	A,(YVX)	
64907C9	4390	RET		65145FE01	5360	CP	1	
	4400	-----			651472801	5370	JR	Z,PRESS
64908CB3A	4410	DE8	SRL	D	65149EB	5380	EX	DE,HL
64910CB1B	4420	RR	E	6515022B3FE	5390	PRESS	LD	
64912CB3A	4430	SRL	D	65153ED53B1FE	5400	LD	(YST),HL	
64914CB1B	4440	RR	E	65157C9	5410	RET	(XST),DE	
64916CB3A	4450	SRL	D		5420	-----		
64918CB1B	4460	RR	E	651582A3D5C	5430	KONEC	LD	
64920C9	4470	RET		651612B	5440	DEC	HL	
	4480	-----			651622B	5450	DEC	HL
64921EF	4490	SGNABS	RST	#28	65163F9	5460	LD	SP,HL
649223137	4500	DEFB	#31,#37	65164C9	5470	RET		
64924012A38	4510	DEFB	1,#2A,#38		5480	-----		
64927CD991E	4520	CALL	#1E99	651650000	5490	DFZAC	DEFB	
64930C9	4530	RET		651670000	5500	DELKA	DEFB	
	4540	-----			651690001	5510	SX	DEFB
64931CD99FD	4550	DRTISK	CALL	651718000	5520	SY	DEFB	
64934ED43B5FE	4560	LD	(U1),BC	651730002	5530	TX	DEFB	
64938CD1423	4570	CALL	#2314	651756001	5540	TY	DEFB	
6494132BDFE	4580	LD	(Z1),A	651770000	5550	OX	DEFB	
64944CD99FD	4590	CALL	SGNABS	651790000	5560	OY	DEFB	
64947ED43B7FE	4600	LD	(U2),BC	6518100000000	5570	XMIN	DEFB	
64951CD1423	4610	CALL	#2314	651860000FF00	5580	XMAX	DEFB	
6495432BFF	4620	LD	(Z2),A	6519100000000	5590	YMIN	DEFB	
649572AB1FE	4630	LD	HL,(XST)	651960000AF00	5600	YMAX	DEFB	
6496022B3FE	4640	LD	(P2),HL	652010000	5610	XST	DEFB	
649632AB3FE	4650	LD	HL,(YST)	652030000	5620	YST	DEFB	
6496622B9FE	4660	LD	(P1),HL	652050000	5630	U1	DEFB	
649693E01	4670	LD	A,1	652070000	5640	U2	DEFB	
6497132BFF	4680	LD	(YVX),A	652090000	5650	P1	DEFB	
649742AB5FE	4690	LD	HL,(U1)	652110000	5660	P2	DEFB	
64977ED5BB7FE	4700	LD	DE,(U2)	6521300	5670	Z1	DEFB	
64981ED52	4710	SBC	HL,DE				0	
64983302E	4720	JR	NC,DAL					
64985AF	4730	XOR	A					
6498632BFF	4740	LD	(YVX),A					
649892AB5FE	4750	LD	HL,(U1)					

```

6521400 5680 Z2 DEFB 0
6521500 5690 YVX DEFB 0
652160000 5700 AA DEFB 0,0
6521801 5710 ZVX DEFB 1
6521901 5720 ZVY DEFB 1
6522001 5730 ZVXT DEFB 1
6522101 5740 ZVYT DEFB 1
652223E88 5750 ;***** DEFB
65224D37F 5760 TISKAR LD A,136
652263E07 5770 OUT (127),A
65228D37F 5780 LD A,7
652303E1B 5790 OUT (127),A
65232CD25FF 5800 LD A,27
652353E41 5810 CALL TISK
65237CD25FF 5820 LD A,65
652403E08 5830 CALL TISK
65242CD25FF 5840 LD A,8
65245ED5B97FE 5850 CALL TISK
65249CD8CFD 5860 LD DE,(TY)
6525243 5870 CALL DE8
652532A8DFE 5880 LD B,E
652563E1B 5890 LD HL,(DFZAC)
65258CD25FF 5900 RADEK LD A,27
652613E2A 5910 CALL TISK
65263CD25FF 5920 LD A,42
652663E05 5930 CALL TISK
65268CD25FF 5940 LD A,5
652713A95FE 5950 CALL TISK
65274CD25FF 5960 LD A,(TX)
652773A96FE 5970 CALL TISK
65280CD25FF 5980 LD A,(TX+1)
65283ED5B95FE 5990 CALL TISK
652877E 6000 LD DE,(TX)
65288CD25FF 6010 OPET LD A,(HL)
6529123 6020 CALL TISK
652921B 6030 INC HL
652937A 6040 DEC DE
65294B3 6050 LD A,D
6529520F6 6060 OR E
652973E0D 6070 JR NZ,OPET
65299CD25FF 6080 LD A,13
6530210D0 6090 CALL TISK
653043E1B 6100 DJNZ RADEK
65306CD25FF 6110 LD A,27
653093E40 6120 CALL TISK
65311CD25FF 6130 LD A,64
65314C386FE 6140 CALL TISK
65314C386FE 6150 JP KONEC
65314C386FE 6160 ;-----
65317F5 6170 TISK PUSH AF
65318DB5F 6180 ZPET IN A,(95)
65320CB67 6190 BIT 4,A
653220FA 6200 JR NZ,ZPET
65324F1 6210 POP AF
65325D31F 6220 OUT (31),A
653273E06 6230 LD A,6
65329D37F 6240 OUT (127),A
65331E07 6250 LD A,7
65333D37F 6260 OUT (127),A
65335C9 6270 RET

```

chod 2 chyby: 00
vyuzita tab : 1017 z 1200

Výpis 2. Demonstrační program v BASICu (945-2)

```

10 CLEAR 63999
20 LOAD ""CODE
30 LET tx=512: LET ty=352
40 PRINT USR 64000,tx,ty
50 CLEAR 64000-tx*ty/8-1
55 LOAD "" DATA a()
56 LOAD ""CODE
60 LET txy=64000
70 LET sxy=64046
80 LET scale=64063
90 LET cls=64106
100 LET line=64280
110 LET plot=64296
120 LET move=64311
130 LET draw=64375
140 LET label=64418
150 LET locate=64656
160 LET cplot=64686
170 LET csize=64815
180 LET csizet=64828
190 LET tisk=65222
200 PRINT USR scale,0,360,0,300
210 CLS
220 PRINT USR cls
230 PRINT USR plot,0,0
240 PRINT USR move,360,0
250 PRINT USR move,360,300
260 PRINT USR plot,0,0
270 PRINT USR draw,0,300
280 PRINT USR draw,360,0
290 PRINT USR csize,1,1
300 PRINT USR csizet,1,1
320 PRINT USR locate,10,280
330 PRINT USR label,"Demonstra obrzek"
340 PRINT USR csize,1,2
350 PRINT USR csizet,1,2
360 PRINT USR locate,10,260
370 PRINT USR label,"Demonstra obrzek"
380 PRINT USR csize,2,2
390 PRINT USR csizet,2,2
400 PRINT USR locate,10,230
410 PRINT USR label,"obrzek"
430 FOR j=1 TO 359
440 PRINT USR line,a(j,1),a(j,2),a(j,3)
450 NEXT j
460 INPUT "tiskarna pripravena";t
470 PRINT USR tisk
480 STOP

```

MERANIE NAPÄTIA S ATARI 800 XL

Ing. Peter Cengel, CSc., Krakovská 13, 040 11 Košice

V AR č. 5/1988 bol popísaný spôsob merania odporu, resp. veličín meraných pasívnymi rezistorovými snímačmi, mikropočítačom Atari. Merania podľa uvedeného spôsobu sa realizovali cez odporové vstupy mikropočítača; merania napäťia alebo veličín meraných snímačmi generujúcimi napätie podľa tohto príspevku sa realizujú cez rovnaké vstupy.

Odporové vstupy mikropočítača ATARI 800 XL sú očislované 0, 1, 2 a 3. Aktivizujú sa príkazom PADDLE; konkrétnie napr. vstup č. 0 sa aktivizuje príkazom v tvare N=PADDLE (0). Hodnota N sa zobrazí príkazom PRINT. Prevodové číslo N môže nadobudnúť hodnoty 1 až 228. Pri odpore pripojeného rezistora $R=1,25 \text{ k}\Omega$ mení sa prevodové číslo z 1 na 2. Pre ďalší vzťah medzi prevodovými číslami (od hodnoty 2)

a pripojeným odporom R platí rovnica $R = 2,25 \cdot N - 3,25$. Mikropočítač má štyri odporové vstupy, teda možné súčasne realizovať štyri nezávislé merania. V tabuľke 1 sú čísla kontaktov pre jednotlivé čísla odporových vstupov.

Pri meraní odporu je nezávisle premenou veličinou odpor (ten sa môže nezávisle meniť); na meracích vstupoch je konštantné napätie. To znamená, že závisle premenou veličinou je prúd. V mikropočítači je prúdový prevodník, ktorý meria zmenu prúdu a pri konštantnom napätí meria takto odpor pripojených rezistorov. S tým súvisí aj princíp

Predná zásuvka	
číslo vstupu	čísla kontaktov
0	7, 9
1	7, 5
Zadná zásuvka	
číslo vstupu	čísla kontaktov
2	7, 9
3	7, 5

Tab. 1. Označenie kontaktov odporových vstupov mikropočítača (910-T1)

merania napäťia. Merací okruh mikropočítača sa nastaví na minimálny merateľný prúd zapojením rezistora s maximálnou hodnotou odporu, ktorý je mikropočítač ešte schopný zmerať. Je to odpor, pri ktorom sa zmení hodnota prevodového čísla N z 227 na 228.

(Pokračovanie na str. 224)

(TURBO) PROLOG

Ing. Karel David, U měšické tvrze 302, 391 56 Tábor 4

(Dokončení)

Pro snažší pochopení programu je níže uveden popis důležitých predikátů:

string_integlist – převádí postupně jednotlivé znaky řetězce Str do seznamu List, **frontchar** standardní predikát; z řetězce oddělí první znak, **char_int** – standardní predikát; převádí znak na jeho číselnou ASCII hodnotu, **rozpulsez** – vytváří ze vstupního seznamu, zadáno jako první parametr dva stejně velké podseznamy, jeden z lichých a druhý ze sudých prvků, **znak_integ** – převádí číselný znak na číslici 0 až 9, **exor** – provádí operaci „XOR“ (exkluzivní OR) mezi dvěma seznamy zadánymi jako 1. a 2. parametr a výsledek ukládá do seznamu, jenž je třetím parametrem. Čtvrtým parametrem je počet prvků výsledného seznamu, **equ** – vytváří dva samostatné prvky z dvoučlenného seznamu.

Leckomu se může zdát, že řešení je málo elegantní, děláme-li postupně pevně stanovený počet kroků. Můžeme tedy řešení v tomto směru vylepšit a použít rekurze. Program by pak vypadal podle **výpisu 4**.

Výpis 3. Program Parita (934-V3)

```
/* program parita */
domains
  cislo = integer
  sezcis = cislo*
predicates
  run
  znak_integ(char,cislo)
  string_integlist(string,sezcis)
  rozpulsez(sezcis,sezcis,sezcis,cislo)
  oddel(sezcis,sezcis,sezcis)
  zpracuj_K(sezcis,sezcis,sezcis)
  exor(sezcis,sezcis,sezcis,cislo)
  equ(sezcis,cislo,cislo)
  pomequ(sezcis,cislo)
  xor(cislo,cislo,cislo)

closures
  xor(0,0,0).
  xor(0,1,1).
  xor(1,0,1).
  xor(1,1,0).

run:- write("Zadej 8 bitu pomocí nul a jedniček:"),!
  readln(Str),
  string_integlist(Str,Str),
  rozpulsez(List,L1,L2,4),!,
  rozpulsez(OutList1,L1,L2,2),!,
  equ(OutList2,A,B),
  write("\n Paritní bit je: ",ParBit), nl.

string_integlist(Str,[H|T]):-
  frontchar(Str,CH,Substr), znak_integ(CH,H), !,
  string_integlist(Substr,T).

string_integlist(_,[ ]).

znak_integ(Char,Int):- char_int(Char,Y), Int=Y-48.

rozpulsez(L,L1,L2,K):- zpracuj_K(L,L1,K), oddel(L,L1,L2).

zpracuj_K([H|T],[G|S],K):-
  K > 0, !, G = H, KM1 = K-1, zpracuj_K(T,S,KM1).
zpracuj_K([_],0).
oddel(List,[ ],List).
oddel([H|TList],[H|TL1],L2):- oddel(TList,TL1,L2).
exor([H|T],[G|S],[F|R],K):-
  K > 0, !, xor(H,G,F),
  KM1 = K-1, exor(T,S,R,KM1).

exor([H|T],[G|S],[F|R],0):- xor(H,G,F).
equ([H|T],A,B):- A = H, pomequ(T,B).
pomequ([H|T],B):- B = H.

/* KONEC PROGRAMU */
```

V upraveném programu **PARITA** je použit nový rekurzivní predikát „spojxor“, který rekurzivně provádí operaci „XOR“ mezi dvěma seznamy do té doby, než bude zapotřebí provést operaci „XOR“ s jedním prvkem seznamu. Tedy konkrétně se uplatní klauzule „spojxor“([H | | |], [G | | |])“, kde vstupním parametrem je seznam mající pouze hlavu (t.j. první prvek seznamu), následovanou tělem, jež je tvořeno prázdným seznamem. Splynění subúkolu lze provést, ztotožní-li se hlavy „H“ a „G“, což má za následek, že ve výstupním seznamu se jako jediný prvek objeví výsledek předchozích operací „XOR“, zadáný jako vstupní parametr. Současně je v tomto inovovaném příkladu ukázáno vložení cíle „GOAL“ přímo do programu. Tento program po kompliaci a spuštění provádí rovnou klaузuli „run“, zatímco v předchozím případě se příkaz „run“ zadává až na výzvu počítače.

Na výzvu počítače ovšem můžeme zadat jako úkol libovolný z podúkolů; musíme však jako výstupní parametry zapsat volné proměnné. Tak např. úkol:

„Goal:“ run
„Zadej 8 bitu pomocí nul a jedniček:“
„10001100

dá výsledek:

„Paritní bit je: __1“
„True“

a zadáný úkol:

„Goal:“ exor([1,0,1,0],[0,0,1,0],ParBit)

vede v podstatě k témuž výsledku (v prvním podseznamu jsou liché a ve druhém sudé prvky hořejšího zadání):

„ParBit = 1“
„1 Solution“

Rozdíl v „komfortu“ zadání je patrný na první pohled.

Následující příklad je ukázkou **expertního systému**, pochopitelně ve zjednodušené podobě, snažící se vystihnout základní rysy a mechanismus práce takového systému

(Výpis 5.). Demonstrativní příklady procedur autorů Clocksin & Mellish, jejichž zkrácené verze byly publikovány v časopise Byte, řešící logické vazby, větnou stavbu, sémantiku apod., mají několik stran textu a bez interaktivního odzkoušení na počítači je nelze pochopit.

Předváděný malý expertní systém dokáže poradit, jaký se má použít vzorec pro výpočet obsahu obrazce (trojúhelníku nebo čtverce).

Výpis 5. Program Export (934-V5)

```
(934-V5)
  /* program expert */
  /*trace*/
domains
  popis = symbol
database
  kladna_odpoved(popis)
  zaporna_odpoved(popis)
predicates
  run
  vzorec_je(string)
  obrazec_je(popis)
  je_dano(popis)
  není_dano(popis)
  zeptej_se(popis,popis)
  zapamatuj_si(popis,popis)
  vycisti_databazi

clauses
run:- vzorec_je (X),!,
  write("\n Použijte vzorec: ",X), nl,
  vycisti_databazi.
run:- write("\n Lituji, ale ze zadanych udaju
  nelze obsah spočitat"),
  nl, vycisti_databazi.

vzorec_je(heronuv):-
  obrazec_je(trojuhelnik),
  je_dano(strana_c),
  není_dano(je_dan_jeste_jiny_udaj).
vzorec_je("P = a*b*c / 4R"):-!
  obrazec_je(trojuhelnik),
  je_dano(strana_c),
  je_dano(pomer_kruznice_ropsane).
vzorec_je(" P = r * s"):-!
  obrazec_je(trojuhelnik),
  je_dano(strana_c),
  je_dano(pomer_kruznice_vepsane).
vzorec_je(" P = 1/2 * a*b * sin(gama)"):-!
  obrazec_je(trojuhelnik),
  je_dano(uhel_gama).
vzorec_je(" P = 1/2 * a * va"):-!
  obrazec_je(trojuhelnik),
  je_dano(strana_a),
  je_dano(vyska_na_stranu_a).
vzorec_je(" P = a * a"):-!
  obrazec_je(ctverec),
  je_dano(strana_a).
vzorec_je(" P = 1/2 * u*v"):-!
  obrazec_je(ctverec),
  je_dano(uhlopricka).

obrazec_je(trojuhelnik):-
  je_dano(trojuhelnik),
  je_dano(strana_a),
  je_dano(strana_b).
obrazec_je(ctverec):-
  je_dano(ctverec).

je_dano(A):- kladna_odpoved(A) and !.
je_dano(A):- not (zaporna_odpoved(A)),!,
  zeptej_se(A,Odp),
  Odp = ano.
```

```

neni_dano(A) if zaporna_odpoved(A) and !.
neni_dano(A) if not(kladna_odpoved(A)), !,
zeptej_se(A,Odp), Odp = ne.

/* není-li fakt v databázi, zeptam se na nej */

zeptej_se(A,Odpoved) if
    write(" Je dano ",A," ?\n"),
    readln(Odpoved),
    zapamatuj_si(A,Odpoved).

zapamatuj_si(A,ano) if asserta( kladna_odpoved(A)).
zapamatuj_si(A,ne) if asserta(zaporna_odpoved(A)).
/* vycisteni databaze */
vycisti_datubazi if
    retract(kladna_odpoved(_)), fail.
vycisti_datubazi if
    retract(zaporna_odpoved(_)), fail.
vycisti_datubazi if
    write("\n Stiskni libovolnu klavesu \n"),
    readchar(_).
/* KONEC PROGRAMU */

```

ce), zadají-li se na dotaz počítače ty prvky obrazce, jejichž míry jsou dány. Odpovědi se ukládají do databáze, zvlášť odpovědi kladné, zvlášť záporné. Na konci programu se databáze vycistí.

Příklad pochopitelně nezahrnuje všechny kombinace pro výpočet obsahu. Předpokládá základní znalost matematiky.

(Dokončenie zo str. 222)

Ak sa do tohto meraného obvodu pripoji prídavné napätie, je možné zmenou tohto napäcia meniť hodnotu prúdu v meranom obvode a tým aj hodnotu prevodového čísla.

Obr. 1. Jednoduchý prípravok na meranie napäcia (910-1)

Na meranie napäcia mikropočítačom sa zhotoví jednoduchý prípravok podľa obr. 1. Pozostáva z rezistora $0,47\text{ M}\Omega$ a z lineárneho potenciometra $50\text{ k}\Omega$. Kombinácia rezistora a potenciometra môže byť aj iná, schopná regulať odpor v intervale 500 až 520 $\text{k}\Omega$. Prípravok sa pripoji na odporový vstup mikropočítača M a na ciachovacie zariadenie. To pozostáva z voltmetra, lineárneho potenciometra 2,5 až 5 $\text{k}\Omega$ a z batérie 5 V. Ciachovacie zariadenie sa použije len pri ciachovaní a kontrole meriaceho programu.

Postup merania je nasledovný. Merací prípravok sa pripoji k mikropočítaču, vstupné svorky prípravku A,B sa spoja nakrátko, ciachovaci prípravok je odpojený. Do mikropočítača sa vloží a spustí program:

5 N = PADDLE (0): PRINT N:GOTO 5

Na obrazovke sa objavujú hodnoty prevodového čísla N. Otáča sa potenciometrom až do polohy, v ktorej sa zmení prevodové číslo z 227 na 228. Kontakty A,B sa rozpoja a pripojí sa k ním prípravok na ciachovanie. Ciachovaci potenciometer sa nastaví na nulové napäcie na voltmetri. Spustí sa program na mikropočítač a na obrazovke by sa mala objavovať hodnota 228. Otáčaním ciachovacieho potenciometra nastavujú sa na voltmetri rôzne hodnoty napäcia v intervale 0 až

Subúkol „je_dáno(Parametr)“ lze splnit, jestliže databáze obsahuje kladný fakt, že Parametr je dán. Potom cut-element (stříh, řez) zamezí dalšímu hledání.

Není-li kladný fakt v databázi, uplatní se v pořadí druhá klauzule predikátu „je_dáno“. Subúkol lze tedy jinak splnit, pokud se v databázi nenachází záporná odpověď (nachází-li se, pak prvek, rozumí se Parametr, není dán) a subúkol končí neúspěchem – FAIL. Není-li v databázi záporná odpověď, řeší se dále subúkol „zeptej_se(Prvek,Odpoved)“, který způsobí, že se počítá zeptá dotazem na dosud neznámý parametr, váže odpověď do proměnné a realizací klauzule „zapamatuj_si (...)“ uloží po ztotožnění s jednou ze dvou popsaných klauzulí odpověď bud' mezi kladné nebo záporné.

Pokud např. odpovíme „NE“, uloží si počítáč odpověď do databáze, ovšem dílčí subúkol „NE = ano“ v subúkole „je_dáno“ nelze splnit a celý subúkol „je_dáno(Parametr)“ je FAIL!

Při spuštění programu a zadání úkolu „run“ se PROLOG pokouší splnit úkol „vzorec_je(X)“ postupným dosazováním za X po jednotlivých definovaných klauzulích (s dalšími závislými subúkoly na nižší úrovni). Najde-li jedno řešení, nehledá v důsledku řezu další alternativy.

Jak by tedy vypadala konverzace, je-li v trojúhelníku dán: strany a, b, c a poloměr kružnice opsané R?:

„Goal:“ run
/* Pozn: realizuje se ted' subúkol

vzorem_je(heronuv) ; X vázáno na heronuv*)

,,je_dano strana_a ?“

ANO

,,je_dano strana_b ?“

ANO

,,je_dano strana_c ?“

ANO

,,Je_dan_jeste_jiny_udaj ?“

ANO

(* Pozn.: po odpovědi NE by byl subúkol splněn s řešením X=heronuv. Nyní je však subúkol s tímto řešením neúspěšný (FAIL), proměnná X je uvolněna a zkouší se splnit subúkol „vzorec_je(,P= a*b*c/4R)“/*

,,je_dano polomer_kruznice_opsane 3?“

ANO

,,Použijte vzorec: P = a * b * c / 4R “

,,True“

Snad jsou uvedené příklady dostatečně jasné. Zvláště poslední příklad expertního systému demonstreuje sílu a možnosti PROLOGu a nastíňuje oblasti jeho nejvhodnějšího použití. Všem přátelům PROLOGu přejí hodně zdaru při tvorbě vlastních programů. Programátorům programujícím v klasických jazycích, zvyklým používat pomocné proměnné a indexy, pak přejí hodně trpělivosti při přechodu na „nové myšlení“ pod PROLOGem.

Tab. 2. Namerané hodnoty (910-T2)

U [V]	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
N	228	199	183	166	151	139	128	120	112	105	99

5 V, čomu na obrazovke zodpovedajú príslušné prevodové čísla. Namerané hodnoty sú v Tab. 2.

Graficky túto závislosť interpretuje obr. 2; z obrázku je zrejmý krvíkový vtiah medzi prevodovými číslami mikropočítača a napäťom. S použitím regresnej analýzy bol vypočítaný matematický vtiah medzi N a U. Má tvar:

$$U = 31,235 - 5,802 \cdot \ln N.$$

Merací program je potom možné doplniť o výpočet napäcia:

5 N = PADDLE (0):
U = 31,235 - 5,802 * LOG(N):
PRINT „U=“;U:GOTO 5

Uvedený program číselne na obrazovke zobrazuje napätie merané mikropočítačom.

Presnejších výsledkov merania sa dosiahne, ak sa uvedený jednoduchý program nahradí pripojeným zložitejším programom. Tento program vypočítava hodnotu napäcia vyhodnocovaním krivky vždy len v úzkom intervale s použitím Lagrangeovej trojbodovej interpolácie. Program pracuje v uzavretej súčke a preto je vhodný na nepretržité meranie napäcia.

Pri meraniach napäcia sa pripoji na mikropočítač merací prípravok, na kontakty A,B prípravku sa pripoji merané napätie, spustí sa program a na obrazovke sa nepretržite zobrazuje hodnota napäcia. Ak sa meria iná veličina snímačom generujúcim napätie (napr. termočlánkom, fotočlánkom apod.), je potrebné doplniť program o rovnici prepočítávajúcu napätie na meranú veličinu (napr. na teplotu). Metoda a zariadenie sú jednoduché, umožňujú meriať stejnosmerné napätie 0 až 5 V; tento rozsah rozlišujú prevodové čísla hodnotami 99 až 228. Je to presnosť cca 1 %. S ohľadom na možnosť poškodenia mikropočítača merané napätie nesmie prekročiť 5 V.

Obr. 2. Vztah medzi prevodovými číslami mikropočítača a napäťom (910-2)

(910-V1)

```

5 REM MERANIE NAPATIA
10 DIM A(11,3)
15 A(1,2)=228:A(2,2)=199:A(3,2)=183:
A(4,2)=166:A(5,2)=151
20 A(6,2)=139:A(7,2)=128:A(8,2)=120:
A(9,2)=112:A(10,2)=105
25 A(11,2)=99
30 A(1,3)=0:A(2,3)=0.5:A(3,3)=1:
A(4,3)=1.5:A(5,3)=2:A(6,3)=2.5
35 A(7,3)=3:A(8,3)=3.5:A(9,3)=4:
A(10,3)=4.5:A(11,3)=5
40 N=PADDLE(0)
45 IF N=228 THEN U=0:GOTO 130
50 IF N>=183 THEN B=3:GOTO 80
55 IF N>=151 THEN B=5:GOTO 80
60 IF N>=128 THEN B=7:GOTO 80
65 IF N>=112 THEN B=9:GOTO 80
70 IF N>=99 THEN B=11:GOTO 80
75 PRINT"POZOR VYSIE NAPATIE":GOTO 40
80 X0=N:Y0=A((B-2),3)
85 X1=A((B-1),2):Y1=A((B-1),3)
90 X2=A(B,2):Y2=A(B,3)
95 A0=X*X-X*X*(X1+X2)+X1*X2
100 A1=X*X-X*X*(X0+X2)+X0*X2
105 A2=X*X-X*X*(X0+X1)+X0*X1
110 B0=X0*X0-X0*X*(X1+X2)+X1*X2
115 B1=X1*X1-X1*X*(X0+X2)+X0*X2
120 B2=X2*X2-X2*X*(X0+X1)+X0*X1
125 U=Y0*A0/B0+Y1*A1/B1+Y2*A2/B2
130 PRINT"U=";U:GOTO 40

```

Zkušenosti ze stavby telefonní ústředny AUT 20

Jindřich Burian

Telefonní ústředna AUT 10, oceněná v Konkursu AR 1988, byla postavena ve spolupráci s redakcí AR a od srpna 1989 je v provozu v chatové osadě u Berouna. Nahradiла 20 let starou reléovou ústřednu s upravenými telefonními přístroji s místní baterií. Toto použití si vyžádalo některé změny a doplňky původního zapojení AUT 10: rozšíření počtu linek na dvacet, změnu napájení ze síťového na stejnosměrné (24 V), ruční ovládání a odpuslech, doplnění ochran proti přepětí, opravu telefonních přístrojů a kabeláže, uzemnění ústředny.

Popis AUT 20

Pro napájení ústředny je použita akumulátorová baterie NiCd 240 Ah, dobíjená pravidelně naftovým agregátem a používaná k osvětlení chát. Ústřednu napájí galvanicky oddělený měnič (obr. 1), který vytváří tři výstupy napájení podle původního síťového napáječe. Zapojení je převzato z měniče pro akumulátorový vozík s doplněním o optoelektrický člen. Transformátor je na feritovém hříčkovém jádru o Ø 32 mm. V obvodu primárního vinutí je volně kmitající tranzistor KD607, který je blokován zpětnou vazbou z výstupu +45 V přes optoelektrický člen. Měnič pracuje v rozsahu napájecího napětí 10 až 35 V, odebrávaný proud (s ústřednou) je 0,2 A při napětí 24 V.

Pro rozšíření na dvacet linek bylo třeba zvětšit obě desky s plošnými spoji. Při kopírování předlohy na desku byla část s účastnickými obvody obou desek zdvojena a propojena spojkami. V zapojení ústředny byly doplněny dvě diody u linky č. 0 (obr. 2). Po

voltě čísla 0 ústředna dává znova oznamovací tón, což umožňuje snadno kontrolovat funkci číselnice telefonního přístroje. Vytíčením dalšího čísla jsou voleny linky druhé desítky. Kontrolní telefon je připojen na neupravenou linku č. 0, umožňuje odpuslech a volbu všech linek, ale není jej možno volat.

Stejnosměrné napájení ústředny si vyžádalo doplnit modulátor vyzváněcího napětí

Obr. 2. Úprava zapojení AUT 10, umožňující rozšíření o dalších deset linek. Součástky jsou doplněny do původní desky s plošnými spoji

Změny a doplňky v seznamu součástek

107	470 Ω	Napájecí měnič	040	0,1 μF/100 V	C1	1 nF
456	KY130/600	R1 1,5 kΩ	041	10 μF/350 V	C2	6,8 nF
457	KY130/600	R2 470 Ω	084	BF259	D1	KZ260/12
318	0,33 MΩ	R3 10 Ω	087	KC307	D2	KZ260/15
359	KY130/300	R4 680 Ω	071	KR105	T1	KF508
534	10 μF/100	R5 1,2 kΩ	072	KY130/150	T2	KD607
631	68 nF/300 V	R6 680 Ω/1 W	073	6NZ70	T3	KFY18
011	1,6 kΩ	R7 8,2 kΩ	060	KY197	T4	WK16412
012	1,2 MΩ	R8 2,7 kΩ	067	KY197		
013	47 kΩ	R9 2,2 kΩ	055	KY197		

Obr. 1. Schéma napájecího měniče AUT 20. V zapojení jsou pro názornost funkce zakresleny i součástky, uvedené na obr. 3 (umístěny na desce s plošnými spoji AUT 10). Ostatní součástky měniče jsou umístěny na univerzální desce s plošnými spoji, tvořící společný konstrukční celek s chladicím. P1, P2 Ø 0,5 mm CuL, ostatní Ø 0,12 CuL. P1, P2 a 53, 54 vinout současně.

(obr. 3). Obsahuje multivibrátor 087, který budí tranzistor na místě původního tyristoru 084 obdélníkovým signálem 30 Hz. Ten je navíc přerušován v rytmu vyzvánění multivibrátorů 082, 083. Vyzváněcí napětí 150 V z měniče je usměrněno rychlou diodou 060 a vyhlazeno kondenzátorem 041.

Oba zdroje 45 V mají jako usměrňovače jednu rychlou diodu a byly z nich vypuštěny

Obr. 5. Pohled na vnitřek ústředny shora

Obr. 6. Pohled na vnitřek ústředny zdola

Obr. 4. Ruční ovládání a odposlech. Součástky jsou umístěny na předním panelu ústředny

stabilizátor 7815. Stabilitu všech napětí zajišťuje měnič. Proud Zenerových diod je obnoven zmenšením odporu rezistoru 001 a nahradou 010 Zenerovou diodou jako stabilizátor -45 V . Polarizační napětí $+250\text{ V}$ je vzhledem k dvojnásobné zátěži posileno zmenšením odporu 011.

Dále bylo třeba zvětšit kapacitu kondenzátoru 534 a doplnit rezistor 107 u tranzistoru 183. Bez odporu byl 183 pootevřen v klidu ústředny a činnost byla nespolehlivá.

Časová kontrola sleduje vyvěšení 20 s přes 318, 359 a délku vyzvánění 80 s přes 317.

Ruční ovládání

Dalším doplňkem ústředny je ruční ovládání a odposlech (obr. 4). Tvoří jej tři dvacetipoľové přepínače, zapojené paralelně, a dvě tlačítka. Lze spojit až tři linky s odposlechem a s ručním vyzváněním tlačítkem ZV.

Po prepnutí na MAN je ústředna zablokována přivedením napěti -45 V na vodič R. Signál pro kontrolní odposlech je odebrán ze spojených běžců přepínačů, kterými lze „navolit“ jednu až tři linky. Napájecí napětí -45 V pro telefony se vede z R přes 253, 205 a 255 příslušné sady. Bliká kontrolka SVOD 857.

Při ručním vyzvánění se tlačítkem ZV odpoji kontrolní odposlech, (kromě vazby kondenzátorem 6.8 nF) na linku se připojí napětí

-45 V a spustí se vyzváněcí generátor přivedením napěti -15 V na ZV.

Po přihlášení se rozsvít žárovka příslušné linky a lze zavolat dalšího účastníka.

Ochrany

Vzhledem k tomu, že ústředna je v síti linek dlouhých až 1 km, bylo třeba doplnit ochranné bleskojistky typu 11 TN 40, připojené mezi vodiče „a“ a uzemnění. Jinak je celé zapojení plovoucí a při případném rušení rozhlasu lze uzemnit i zemnicí bod ústředny $+45\text{ V}$. Symetrikační transformátory nebyly použity.

Oživení ústředny

Při oživení ústředny bylo nejprve třeba si zvyknout na terminologii a označení, obvyklé v telefonní technice. Desky byly osazovány již jednou použitými součástkami, které byly proto předem změřeny. Po doplnění zapomenutých součástek a spojů byl nejprve oživen napáječ a kontrolní blok. Obě napěti 45 V se nemají lišit více než o 2 V . Dále byl pomocí kontrolek bloku 800 a rozsáhlým měřením oživen hlavní spínač – blok 100. Protože tranzistor 183 zůstával pootevřen asi na 15 V , byl doplněn rezistor 107 mezi B-E 183.

Odchozí napáječe byly oživeny pomocí telefonního přístroje, který již měl oznamovací tón z bloku 700. Obvod časové kontroly je po 80 s vypinal.

Pak byla zkontořována cesta voličích impulů přes tranzistor 382 a vodič J do klopného obvodu voličího řetězce 900. Tato cesta je v několika místech blokována, proto je zpočátku třeba zrušit funkci tranzistorů 482, 584, 585 a jiných, aby se umožnilo měření.

Klopny obvod bloku 900 a přichozí napájecí byl oživen druhým telefonním přístrojem, který po navolení získal napájecí napětí. Pro vyzkoušení vyzváněcích obvodů je opět třeba dočasně zrušit funkce blokování 585, 583 apod. Modulátor 30 Hz 087 se nastaví na střídu asi 1:1 rezistorem 013.

Nejobtížnější je oživování bloku přihlášení 500, vzhledem ke spolupráci dvou napáječů -45 V a -45 V . Pro snadnější sledování činnosti je dobré využít klopny obvodu 582, 585 odpolením 508. K činnosti obvodu je nutné správné polarizační napěti -250 V , které musí být větší, než vrcholová hodnota vyzváněcího napěti, a to i při zatížení; jinak dochází k otevření diod 653 a k přihlášení od prvního vyzváněcího impulsu.

Pokud je vše v pořádku, lze zapojit všechny odpojené blokovací obvody.

Zhodnocení

Celkově musíme zapojení ústředny hodnotit jako funkční a dobré reprodukovatelné. Potíže, které nastaly při oživování, byly vždy způsobeny chybami montáže, nebo souvisejí s rozšířením ústředny na dvacet linek. Je ovšem třeba zvýknout si na vyšší napájecí napěti s uzemněnou kladnou větví a na použití tyristorů a diaků.

Pro radioamatéra, zvyklého na elektronická schémata z AR, je nezvyklý způsob značení součástek jen čísly, bez názvu. To se však ukázalo jako přehledné a užitečné díky rozdělení schématu zapojení na deset bloků č. 000 až 900 a značení spojovacích vodičů velkými písmeny.

Další doplňkové obvody navržené automaticky nebyly zkoušeny (dvě ústředny, dálkové ovládání, odposlech místnosti atd.).

Obr. 7. Po odklopení horní desky jsou připustné strany spojů obou desek

Zařízení pro ozvučování videokazet

Vojtěch Voráček

Popsaný přístroj usnadňuje amatérskou tvorbu audiovizuálních pořadů na videokazetách. Blokové schéma přístroje je na obr. 1.

Přístroj lze použít ve třech základních provozních režimech: Přepis „sestřihané“ videokazety, opatřené originálním (např. kamrou kontaktně sejmutým) zvukem z jednoho videomagnetofonu na druhý přístroj, vybavený automatickou regulací záznamové úrovni a doplnění původního zvuku komentářem nebo i hudebním doprovodem. Při vybuzení mikrofonního vstupu se automaticky zeslabí původní zvuk i případný hudební doprovod. Míra zeslabení a návratová časová konstanta jsou nastavitelné podle požadavků.

Výstupní signál pro druhý videomagnetofon je v pauzách nahrazen (se zpožděním inverzním k časové konstantě obvodu automatického řízení úrovni nahrávky) pomocným signálem s kmitočtem ležícím nad akustickým pásem (18 až 20 kHz). Tímto signálem se vyloučí nežádoucí zvětšení zisku záznamového zesilovače druhého video-

magnetofonu a tím i zvětšení šumu a hluku v záznamu. Ve zvukové skladbě audiovizuálního díla se toto zdůraznění rušivého pozadí projevuje nejvíce pravě tehdy, když má nastoupit dramaticky účinné filmové ticho. Tato technická chyba je divákem vnímána jako rušivý element a je v protikladu se zásadami zvukové dramaturgie jakéhokoliv druhu audiovizuálního díla.

V tomto pracovním režimu jsou sepnuty spínače S1, S2 a pracují bloky A, B i C.

Druhý pracovní režim má stejnou funkci jako první, ale s vypnutým generátorem pomocného ultrazvukového kmitočtu. Používá se tehdy, je-li druhý videomagnetofon vybaven ruční regulací záznamové úrovni zvukového signálu. Je sepnut spínač S1 a pracuje bloky A a C.

Třetí pracovní režim se používá při přepisu již kompletně ozvučené videokazety z jednoho videomagnetofonu na druhý, který má automatickou regulaci záznamové úrovni zvukového kanálu. K původnímu zvuku lze přemíchat (vstup AUX) např. hudební doprovod bez ovlivnění úrovni původního

záznamu. Pomocný generátor ultrazvukového signálu je zapnut, sepnut je spínač S2 a pracují bloky A a B.

Technické parametry

Vstupní napětí jmenovité: 500 mV, (max. 1 V pro $k = 10\%$, $U_b = 9$ V).

Vstupní impedance: 47 k Ω .

Výstupní napětí: 500 mV (47 k Ω).

Kmitočtová charakteristika: vstup „audio“ 26 Hz až 35 kHz (+0, -3 dB),

vstup „mic“ 300 Hz až 15 kHz (+0, -3 dB).

Citlivost vstupu „mic“: 0,5 mV (5 k Ω) (R20 na max.).

Vstupní napětí na vstupu „mic“ pro nasazení regulace zisku: 2,5 mV.

Maximální napětí na vstupu „mic“ pro $k = 10\%$: 1,5 V.

Odstup rušivých napětí (generátor vypnut): 65 dB.

Napájecí napětí: 9 až 15 V.
Odběr proudu: 10 až 15 mA.

Popis zapojení přístroje

Přístroj se zapojuje mezi dva videomagnetofony podle obr. 2. Elektrické schéma přístroje je na obr. 3. Nf signál z videomagnetofonu se přivádí do konektoru na přístroji, který je označen „vstup audio“. Signál je regulován odporovým trimrem R1 na úrovni vhodné pro další zpracování. Tímto trimrem lze přizpůsobit rozdílné výstupní úrovni různých videomagnetofonů. Případný další nf signál z externího zdroje (např. hudba

Obr. 2. Zapojení přístroje mezi dva videomagnetofony

Obr. 1. Blokové schéma

D1, 1, 8 = KA261
T1, 7, 11 = KC507
(KC508,
KC509)

Obr. 3. Schéma přístroje

z magnetofonu, mixážního stolu atd.) se přivádí na vstup přístroje označený „aux“ a směšuje se se signálem z videomagnetofonu.

Tranzistor T1 slouží k zesílení a impedančnímu přezpůsobení vstupu. Pokud není přítomen signál na mikrofonním vstupu nebo je-li mikrofonní zesilovač vypnutý, pokračuje signál přes tranzistor T2 na výstup „audio“ do druhého videomagnetofonu. Napájecí napájení (9 až 15 V) pro tu část přístroje je přivedeno přes spínače S1 a S2 do bodu A.

Signál z mikrofonu přivedený do vstupu „mic“ je zesílován zesilovačem s tranzistory T3 a T4, vybaveným jednoduchým limitérem, zajistujícím optimální využití signálu bez nebezpečí, že bychom zesilovač přebudili. Při překročení vstupního efektivního napětí nad asi 2,5 mV se otevřou napájení na kondenzátorech C9 a C10 diody D1 a D2. Kondenzátory jsou nabijeny usměrněným napájením z emitorového sledovače s tranzistorem T5. Diody se stávají vodivými a zkratují část vstupního napětí na zem. Výstupní napájení mikrofonního zesilovače zůstává konstantní v širokém rozmezí vstupních napětí z mikrofona.

Signál z mikrofonního zesilovače se přivádí přes rezistor R29 a kondenzátor C18 do směšovače s tranzistorem T2. Jeho úroveň lze regulovat odporovým trimrem R20. Ve druhé větví se signál z mikrofonu zesiluje tranzistorem T6, který má v kolektoru zařazen usměrňovač s diodami D5 a D6. Jeho výstupním napájením je otevírá tranzistor T7, který přes odporový trimr R30 uzemňuje signál z prvního videomagnetofonu. Tím se tento signál při vybuzení mikrofonního vstupu zeslabí (míra zeslabení je nastavitelná trimrem R30). Kmitočtová charakteristika mikrofonního zesilovače je omezena kondenzátory C7, C8 a C13 v oblasti nízkých kmitočtů a kondenzátorem C28 v oblasti kmitočtů vysokých. Tím se dosáhne lepší srozumitelnosti mluveného slova při použití běžných dynamických nebo kondenzátorových mikrofonů.

Napájecí napájení mikrofonního zesilovače a regulačního stupně je přivedeno přes spínač S1 do bodu C. Pro první stupeň je napájení filtrováno členem R16, C11.

Poslední částí zařízení je zdroj ultrazvukového signálu. Obdélníkové napájení o kmitočtu asi 18 až 20 kHz je generováno v multivibrátoru s tranzistory T10 a T11 a tvarováno na přibližně sinusový signál rezonančním obvodem L1, C23, vyládeným na tento kmitočet. Toto řešení se nakonec ukázalo nejjednodušší a spolehlivější než různé osciloskopové RC a LC. Napájet se reguluje trimrem R37, jeho kmitočet lze nastavit trimrem R42 tak, aby se v záznamu na druhém videomagnetofonu nevyskytly případné záznamy s předmagnetizačním kmitočtem. Přes rezistor R35 se tvarované napájení zavádí do výstupu pro druhý videomagnetofon.

Pokud se však na výstupu objeví nf napájetí z výstupu směšovacího zesilovače, je zesíleno stupněm s tranzistorem T8, usměrněno diodami D7 a D8 a přivedeno na bázi tranzistoru T9. Ten se otevře proudem tekoucím do báze přes rezistor R34 a zablokuje ultrazvukový generátor. Stupeň záporné zpětné vazby vznikající v této smyčce je pro vyšší kmitočty zmenšen kondenzátorem C20. Napájecí napájení pro multivibrátor a zesilovač regulace je přivedeno do bodu B.

Stavba přístroje

Přístroj je postaven na jedné desce s plošnými spoji (obr. 4). Deska je svými rozměry navržena pro vestavění do plastikové krabičky.

ce dostupné v prodejnách Domácích potřeb za 11,50 Kčs, výrobce Kovoplast. Napájení je z jedné destičkové baterie 9 V, kterou lze vložit do „kapsy“ zhotovené např. z pocinovaného plechu a zapájené do výrezu v desce s plošnými spoji. Napájení je možné i z jiného zdroje o napájení 9 až 15 V, případně i z připojeného videomagnetofonu. Některé přístroje mají napájení 12 V vyvedeno např. na konektor pro připojení kamery. Potenciometr P1, spínače S1 a S2 a vstupní i výstupní konektory jsou umístěny na bocích krabice. Stavba přístroje je snadná, spočívá v osazení desky součástkami a propojení příslušných bodů s konektory (stíněnými kablíky), spínači a baterii. Doporučuji použít tranzistory se zesílením okolo 300 až 400, při ozivování pak odpadne nastavování pracovních bodů a výhovu hodnoty ustanovené v seznamu součástek.

Oživení přístroje

K oživení je dobré mit k dispozici tónový generátor, nf milivoltmetr a osciloskop. Vyhnout se nejjednodušší i školní přístroje.

Připojíme napájecí napájení. Sepneme nejprve spínač S1, S2 zůstane zatím rozpojen. Trimry R20 a R25 nastavíme běžcem směrem ke kladnému pólu napájecího napájení. Na vstup „audio“ připojíme tónový generátor, kmitočet asi 1 kHz, efektivní napájení 0,5 V. Na výstup připojíme nf milivoltmetr se vstupním odporem minimálně 50 kΩ a trimrem R1 nastavíme na výstupu napájení také 0,5 V. Tím je nastaven přenos směšovacího zesilovače na 1.

Napájení tónového generátoru postupně zvyšujeme a osciloskopem zapojeným na výstup kontrolujeme symetrii limitace sinusového signálu. Větší rozdíly mezi limitacemi kladné a záporné půlvalny lze odstranit změnou rezistoru R8, případně R3.

Tónový generátor připojíme dále na vstup pro mikrofon, kmitočet zůstane asi 1 kHz, napájení asi 10 mV. Na výstupu nastavíme nyní napájení 0,5 V trimrem R20. Napájení generátoru postupně zvyšujeme a kontrolujeme činnost limitéru. Pokud se přebudí stupeň s tranzistorem T2 dříve než při napájení asi 50 mV, zmenšíme trimrem R20 napájení z mikrofonního zesilovače.

Dále rozepneme spínač S1 a sepneme S2. Osciloskop a nf milivoltmetr zůstanou zapojeny na výstup zařízení. Trimr R37 nastavíme asi doprostřed dráhy, trimr R33 běžcem směrem ke kladnému pólu napájení. Osciloskopem nebo čítačem změříme kmitočet multivibrátoru a trimrem R42 ho dostavíme na 18 až 20 kHz. Nejdokonalejší tvar sinusového napájení na výstupu lze nastavit změnou kapacity kondenzátoru C23 nebo změnou velikosti vzduchové mezery cívky L1. Trimrem R37 nastavíme velikost efektivního napájení na výstupu na 60 mV. Tónový generátor nyní připojíme na vstup „audio“ (napájení 50 mV, kmitočet asi 1 kHz). Trimr R33 nastavíme tak, aby napájení o kmitočtu 18 až 20 kHz na výstupu téměř zaniklo. To lze zjistit jen osciloskopem nebo selektivním milivoltmetrem z kombinace obou signálů na výstupu.

Tímto je základní nastavení přístroje skončeno. Zbývá v provozu nastavit práh nasazení útlumu původního zvuku s návratou časovou konstantou trimrem R25. Stupeň potlačení původního zvuku lze nastavit trimrem R30. Oba tyto trimry je nejvýhodnější nastavit definitivně při praktickém používání přístroje podle požadavků, druhu a žánru vytvářeného audiovizuálního pořadu. Tyto trimry lze také nahradit potenciometry vyvedenými na panel přístroje.

Závěr

Je jisté, že tento „neinteligentní“ přístroj nemůže ve všech případech nahradit práci mistra zvuku s příslušným vybavením a možnostmi střihu a vpisu. Zřízení nerespektuje nutnost předstihu v zeslabení hudebního doprovodu nebo původního zvuku před nástupem komentáře. V každém případě bude ale přinosem při tvorbě komentovaných hudebních pořadů, instruktážních a dokumentárních filmů atd. Zařízení podstatně zlepší srozumitelnost při opatřování cizojezycích filmových pořadů českým překladem nebo komentářem.

Zařízení lze samozřejmě dále vylepšit, např. zesilovačem pro sluchátka (s IO MBA915), zrychlit náběhovou časovou konstantu obvodu tlumení přidáním výkonového stupně za tranzistor T6 atd. Pak však již nevyhoví napájení baterii 9 V a je nutné použít síťový zdroj. Také lze rozšířit počet vstupů podle požadavků.

Literatura

- Bláha, I.: Zvuková dramaturgie filmu. SPN 1983.
- Voráček, V.: Mluvené slovo ve filmu a jeho úloha ve střihové skladbě. Seminářní práce FAMU 1985.
- Janoušek, I.: ABC akustiky pro hudební praxi. Supraphon 1979.
- Tauš, G., Novák, V.: Magnetický záznam obrazu. SNTL 1983.

Seznam součástek

Rezistory (TR 212, TR 151)	
R1	68 kΩ, TP 009
R2	22 kΩ
R3	1,8 MΩ
R4	1,5 kΩ
R5	6,8 kΩ
R6, R7	15 kΩ
R8	820 kΩ
R9	100 Ω
R10	3,3 kΩ
R11	10 kΩ
R12	47 kΩ
R13	4,7 kΩ
R14	330 Ω
R15	68 kΩ
R16	4,7 kΩ
R17	180 kΩ
R18	560 Ω
R19	68 kΩ
R20	4,7 kΩ, TP 009
R21	15 kΩ, TP 009
R22	2,2 kΩ, TP 009
R23	56 Ω
R24	820 kΩ
R25	3,3 kΩ, TP 009
R26	150 kΩ
R27	47 kΩ
R28	1 MΩ
R29	15 kΩ
R30	10 kΩ, TP 009
R31	47 kΩ, TP 009
R32	1 MΩ
R33	4,7 kΩ, TP 009
R34	33 kΩ
R35	47 kΩ
R36	3,3 kΩ
R37	10 kΩ, TP 009
R38, R39	82 kΩ
R40	10 kΩ
R41	2,2 kΩ
R42	10 kΩ, TP 009
R43	47 kΩ, TP 009
P1	50 kΩ/G, TP 160
Kondenzátory	
C1	33 nF
C2	100 nF
C3	220 pF
C4	100 nF

Obr. 4. Deska Y32 s plošnými spoji

C5	2 μ F, TE 986	C17	47 μ F, TF 010	Ostatní součástky
C6	470 μ F, TF 008	C18, C19	100 nF	D1 až D8 KA261 (DUS)
C7, C8	22 nF	C20	2,2 nF	KC507-9 (KC237-9)
C9, C10	50 μ F, TE 002	C21	10 μ F, TE 003	L1 50 mH, hrničkové jádro, \varnothing 14,
C11	47 μ F, TF 010	C22	20 μ F, TE 004	$A_L = 1600$, 190 z drátem
C12	150 nF	C23	1,5 nF	o \varnothing 0,1 mm.
C13	20 μ F, TE 004	C24	10 nF	
C14	100 nF	C25, C26	470 pF	
C15	10 μ F, TE 003	C27	100 μ F, TE 003	
C16	5 μ F, TE 004	C28	2,2 nF	

JEDNODUCHÝ MĚNIČ

Při stavbě různých přenosných zařízení (nejčastěji měřicích přístrojů) se setkáváme s problémem ekonomického využití napájecích zdrojů (baterií). Vzhledem k tomu, že tato zařízení většinou využívají vhodných vlastností operačních zesilovačů, můžeme tento problém řešit použitím malého měniče. Při jeho konstrukci jsem se snažil splnit následující požadavky:

- napájecí napětí 1 až 3 V (jeden nebo dva články 1,5 V),
- stabilizované výstupní napětí,
- odběr za baterii závislý na odběru zařízení,
- jednoduchost zapojení a malé rozměry.

V zapojení (obr. 1) je použit běžný nf oscilátor s kladnou zpětnou vazbou realizovanou vinutím L2. Méně obvyklé je použití tranzistoru T2, který zde ovládá chod oscilátoru a tím stabilizuje výstupní napětí. Tento oscilátor bývá v literatuře označován jako „blokující oscilátor“. Je-li napětí na C4 menší než napětí regulační smyčky (ZD+R3), T2 je otevřen (přes R2), oscilátor kmitá na svém základním kmitočtu. Zvětší-li se toto napětí nad určitou mez, T2 se uzavře a oscilátor je blokován. Při zmenšujícím se napájecím napětí odebírá měnič stále větší proud. Přitom jeho účinnost zůstává asi 50 %.

V zapojení jsou použity běžné součástky bez nároku na přesnost. Nezvyklé na dnešní dobu se může zdát pouze použití germaniového tranzistoru v oscilátoru. Tento tranzistor je však vhodný vzhledem k malému napájecímu napětí. Ovšem na jeho vlastnostech nezáleží. Výstupní stabilizované napětí ovlivňuje Zenerova dioda ZD. Podmínkou je, že napětí na polovině L3 při

odpojené regulační větví (R3+ZD) je větší než požadované výstupní stabilizované napětí. Rovněž je nutno dodržet smysl vinutí.

Na mechanickém provedení nezáleží. V náročnějších aplikacích doporučuji stínit krabičkou z pocihananého plechu nebo kuprexitu. Měnič byl již vícekrát postaven v různém provedení a s různými typy součástek. V žádném případě nebyly nutné další úpravy, kromě nastavení výstupního napětí výměnou Zenerovy diody.

C1	50 μ F/6 V
C2	2 μ F/6 V
C3	2,2 nF
C4, C5	50 μ F/15 V
T1	GS500 (libovolný germaniový p-n-p)
T2	KC508 (TUN)
ZD	KZ260/15
D1, D2	KY130/80
TR	Hrnčkové jádro o \varnothing 18 × 11 mm, hmota H22, $A_L = 100$, L1 18 z drátem o \varnothing 0,2 mm CuL, L2 30 z drátem o \varnothing 0,1 mm CuL, L3 2 × 180 z drátem o \varnothing 0,1 mm CuL.

Transformátor byl vinut i na jiné druhy a průměry jader bez porovnatelného vlivu na vlastnosti měniče.

Jan Matušek

Seznam součástek (platí pro měnič 3 V/2× 15 V)

R1	100 Ω , TR 151
R2	5,6 k Ω , TR 151
R3	1 k Ω , TR 151

Obr. 1. Schéma zapojení měniče

Digitální multimetr

MINI

(Dokončení ze str. 211)

Poznámky ke stavbě a oživení

Osazování desky s plošnými spoji začneme přepínačem. Vzájemné propojení jeho vývodů a spoje od něj na desku vyžadují pozornost, pečlivost a čisté pájení. Postupujeme přitom podle obrázku s rozložením součástek i podle schématu zapojení. Přepínač se vloží do výrezu v desce tak, že na desku a příslušné spojové plošky dosedají vývody přepínače, odpovídající polohám 2 a 3 přepínače podle schématu na obr. 4. Pro vývody lze v místech spojových plošek mírně naříznout okraje desky ve výrezu lumenkovou pilkou. V místech, kde mají být vzájemné propojeny vývody přepínače nad a pod deskou s plošnými spoji, je vhodné ji provrtat a spojovací vodič protáhnout otvorem (\varnothing 0,8 mm).

Po zapojení přepínače, které je nejpracnější, a proto je dobré mít k němu dobrý přístup, připájíme součástky držáku napájecího článku a spinač. Pak osadíme součástky měniče a zkонтrolujeme jeho činnost. Nakonec pájíme vybrané a změřené rezistory měřicích obvodů multimetru.

Pro vstupy byly použity zdírky, použí-

vány u elektronických měřicích přístrojů TESLA (soustružené, zalisované v plastu). Kovový konec, určený k pájení, byl odříznut, osou zdírky provrtána do jejího „dna“ díra a v ní vyříznut závit M2. Mosazným šroubem M2, procházejícím deskou s plošnými spoji, jsou zdírky přichyceny a současně vodivě propojeny s ploškami spojů. Lze volit i jiný způsob připojení podle typu použitých zdírek.

Odporový drát, tvořící R9, ustříhneme trochu delší, než odpovídá předepsanému odporu, svineme do šroubovice a jeden konec definitivně připájíme k příslušné ploše. Druhý konec prostrčíme otvorem v desce tak, aby ho mohl za výčnivající část ze strany spojů vytahovat ven a tím zkracovat délku drátu při přesné nastavování rozsahu.

Po celkové kontrole osazené desky, spojené s pláštěm, přišroubujeme k tomuto celku vrchní desku přístroje, v níž je upevněn modul ADM s krycím rámečkem (nezapomeňte předem odstranit spojku 2 modulu!). Po propojení obou desek spojkami ze strany spojů je multimeter schopen funkce. Jestliže jsme použili přesné změřené rezistory, napěťový i odporové rozsahy nevyžadují další práci. Zbývá nastavit odpor R9 postupným povytahovalním a provizorním připájením konce odporového drátu mezi jednotlivými měřenými známými proudy (porovnáváme s údajem přesného číslicového ampérmetru). Odporový drát lze též hned připájet trvale a zmenšovat pak jeho odpor paralelním připojením destič-

kového rezistoru (máme-li možnost výběru z různých odporů) ze strany spojů.

Nastavením proudového rozsahu je oživování skončeno a přístroj můžeme opatřit spodním krytem. U popsaného vzorku byl připevněn tak, že kratší stranou na straně displeje je deska krytu (z kuprexitu) vložena do z plechu vytvořené „drážky“ na pláště; na opačné straně je uchycena jedním šroubkem M2. do desky s plošnými spoji přes rozpěrnou podložku.

Kontrolní měření, určení chyby (korekce)

Máte-li možnost, ověříme údaje multimetru porovnáním s výsledky měření jiným číslicovým přístrojem, přesnějším (s větším počtem míst).

Připadná nepřesnost tohoto amatérského multimetru může být způsobena prakticky jen nepřesností odporu použitých rezistorů, popř. jeho nestabilitou, pokud nejsou použity stabilní typy. Jsou-li v multimeteru rezistory stabilního provedení, jejichž odpory však nejsou zcela přesné (může se to stát u přesných stabilních odporů, získaných z výroby), stojí za to zhotovit si korekční tabulky, která nám pomůže vyloučit odchyly, způsobené nepřesnými odporů. Jako ukázkou může posloužit tab. 1, jež byla sestavena na základě porovnávacího měření několika rezistorů popisovaným multimetrem a 5 1/2 místným digitálním multimetrem zahraniční výroby.

UNIVERZÁLNÍ EXPOZIČNÍ HODINY

Zdeněk Rozsypálek

V AR B2/87 bylo zveřejněno zajímavé zapojení automatických expozičních hodin. Světlo odražené od fotografického papíru bylo snímáno fototranzistorem. Po několika pokusech se bohužel ukázalo, že tuzemské fototranzistory nevyhovují, protože při úrovni, které dosahuje odražené světlo, zůstávají uzavřené. Jako vhodné čidlo využívají fotorezistory WK65060a, 65062, 65075. Vém případě byl k dispozici typ WK65075. Je ovšem nutno vybrat vhodný kus, který má lineární závislost odporu na osvětlení a malý počáteční odpor (vyhovuje asi 100 kΩ).

Vhodný kus vybereme tímto způsobem: Do zvětšovacího přístroje vložíme středně hustý negativ a zvětšíme na rozměr pohlednice. Fotorezistor vložíme do vhodné upínky (obr. 1) ve vzdálenosti 8 až 10 cm od průmětny, na kterou položíme bílý papír a zamíříme na střed obrazu. Clonu nastavíme na číslo 4, případně 4,5 a změříme odpor.

S každým dalším nastavením o jedno clonové číslo se osvětlení dvakrát zmenší.

Obr. 1.
Konstrukce sondy

Ve stejném poměru by se měl zvětšovat i odpor. Pokud nemáme na objektivu clonu 4, musíme si uvědomit, že clona 4,5 není v clonové řadě. Proto odpor při cloně 4,5 musíme vydělit 1,25. Zcela postačí, když odpor bude lineární přes tři clonová čísla. Z deseti kusů, které jsem měřil, vyhovovaly pouze dva. Upozorňuji, že fotorezistory naší výroby nejsou vhodné pro barevnou fotografii.

Schéma zapojení je na obr. 2. Proměnné napětí se přivádí na neinvertující vstup IO1, kde se zesiluje. Na výstup je připojen napětí řízený oscilátor VCO, který kmitá na kmitočtu úměrném vstupnímu napěti. Pro dosažení větší přesnosti je kmitočet vydělen stem. Podrobný popis funkce s výpočty je uveden v AR B2/87 na str. 67.

Obr. 2. Schéma zapojení

Tab. 1. Kontrola přesnosti multimetru

Údaj kontrolního přístroje	Údaj multimetru	Přepočítání	
		Rozsah	K*
90,00 Ω	89,2 Ω	$R \Omega$	1,009
900,0 Ω	893 Ω		1,008
10,000 kΩ	9,94 kΩ	$R k\Omega$	1,006
100,00 kΩ	99,5 kΩ		1,005
1,0000 MΩ	993 kΩ	$R M\Omega$	1,007
9,9835 MΩ	9,64 MΩ		1,035
198,27 mA	198,5 mA	I	0,999
92,00 V	92,4 V	U	0,996

Proti původnímu zapojení je vybavovací část realizována triaky místo relé. Vstupní část je doplněna potenciometrem P1, kterým se po přepnutí přepínače Př1 nastavuje pevný čas, protože automatická sonda nedokáže přesně zvládnout snímky za extrémních podmínek (např. na sněhu, v protisvětle apod.). Spinač S1 slouží k zapnutí zvětšovacího přístroje při zaostřování. Deska s plošnými spoji je na obr. 3.

Postup při oživení

Nejprve zkontrolujeme napájecí napětí. Pokud je v pořádku, nastavíme kompenzaci napěťové nesymetrie u IO1. Přepínač Př1 odpojíme od +15 V, potenciometr P2 nastavíme přibližně do poloviny dráhy, vývod 3 IO1 spojíme se zemí, trimrem P3 nastavíme na výstupu nulu. Potom vše uvedeme do původního stavu. Př1 přepneme do polohy 1, potenciometr P2 nastavíme na maximum. P1 nastavíme do krajních poloh a změříme minimální a maximální čas sepnutí. Měly by být asi 3,5 až 60 s. Pokud min. čas vychází delší, můžeme ho zkrátit zmenšením C1, max. čas můžeme prodloužit zvětšením P2, kterým se nastavuje napěťové zesílení IO1.

Casová stupnice vychází lineární, proto stačí cejchovat měřením stopkami po 10 s a díly po 1 s rozdělit např. kružítkem. Minimální čas nezačíná hned na začátku odporové dráhy, ale až po malém pootočení. Tento bod zjistíme nejlépe voltmetrem, když se při otáčení potenciometrem P1 začne na

[1] Ainscow, F.: Low voltage d.c. to d.c. converter. Wireless world, July 1978.s. 74.

*Skutečná hodnota = K naměřená

vývodu 3 nebo 6 IO1 zmenšovat napětí. Tím je ocejchována stupnice pro ruční nastavování času.

Při práci s automatickou sondou přepneme Př1 do polohy 2. Sondu umístíme nepohyblivě nad průmětnu ve vzdálenosti asi 10 cm. Správný osvit nastavíme potenciometrem P2. Pro přesné nastavení rozdělíme stupnice P2 na díly s roztečí 2,5 mm. Doporučuji použít přístrojové knoflíky s průsvitní manžetou s ryskou. Při zkouškách jsem expoноval týž snímek při čtyřech různých clonách, což představuje osminásobné prodloužení času, rozdíl mezi jednotlivými pozitivy byl neznačitelný.

Osvětlení fotokomory není nutno při expozici vypínat, můžeme proto vypustit obvod R17, R18, D3, T4, Tc2, ale musíme vhodným zacloněním zajistit, aby přímé ani odražené světlo nedopadalo na průmětnu.

Potenciometry P1, P2 by měly mit na hřideli malou vúli. Vybrat vhodný kus se podaří málkodky. Potenciometry proto rozebereme a otvor upravíme důlčíkem. Jiný způsob jak eliminovat větší vúli, je nastavování stejným směrem. Například když potřebujeme nastavit kratší čas, pootočíme potenciometrem poněkud více a potom se vrátíme k nastavovanému času.

Jako doplněk jsem postavil časový spínač pro kontrolu vyvolávací doby 1.5 až 2 min. Nedodržením vyvolávací doby získáme šedivé, mdlé fotografie bez patřičné brillance.

Schéma zapojení je na obr. 4. Kondenzátor C1 se stisknutím tlačítka vybije. Tranzistory T1, T2 se uzavřou, relé odpadne. Po uvolnění tlačítka se C1 nabije proudem určeným R1, R2. Po dosažení potřebného napětí se otevře T1, T2 a relé sepne. Čas sepnutí

určuje R1, R2, C1. Relé je použito proto, aby se dioda LED rozsvícela skokově. Vyhoví jakékoli miniaturní s odběrem do 50 mA. Pokud je na nižší napětí než je napájecí, zapojíme do série rezistor Rx:

$$R_x = \frac{U_n - U_{Re}}{I_{Re}}$$

Schéma zdroje k expozičním hodinám je na obr. 5. Při konstrukci musíme dbát na dodržení bezpečnostních předpisů, protože zařízení je pod síťovým napětím.

Seznam součástek

Rezistory (TR 212)	
R1	viz text
R2	3.3 kΩ
R3	100 kΩ
R4	6.8 kΩ
R5	2.2 kΩ
R6	56 kΩ
R7	27 kΩ
R8	100 kΩ
R9, R10	2.2 kΩ
R11	47 kΩ
R12	330 Ω
R13, R14,	
R15, R18	1 kΩ
R16, R17	68 Ω/0.5 W
P1	500 kΩ/N
P2	10 kΩ/N

Kondenzátory

C1	220 n
C2	10 μ F
C3	2 μ F

<i>Polovodičové součástky</i>	
IO1	MAA741
IO2	MA1458
IO3, IO4	MH7490
IO5	MH7420
IO6	MH7400
T1	KC509
T2, T3, T4	KF508
D1	KZ141
D2	KZ140
D3	KY132/80
Tc1, Tc2	KT207/400

Obr. 3. Deska Y33
s plošnými spoji

Obr. 4. Časový spínač 1,5 až 2 min.

Obr. 5. Napájecí zdroj

Z RADIOAMATÉRSKÉHO SVĚTA

Na startovní čáře

Po mnoha letech se opět dění v radioamatérství dostalo na rozcestí. Bývaly Svazarm se změnily ve Sdružení technických sportů a činnosti, vice-méně federovanou strukturu, kde vedle samostatných členských svazů přetrvala tzv. Asociace viceúčelových základních organizací, která bývalý Svazarm velmi připomínala. Ale právě ve viceúčelových organizacích existuje řada našich radio klubů. Zasadním obratem je fakt, že již nyní, před náležitou právní úpravou, je uplatňována zásada, že držitel radioamatérské koncese nemusí být členem žádné organizace, a klubovní povolení mohou být propůjčována jakékoli řádně registrované společenské organizaci. Stojíme dnes tedy všichni před volbou. Po letech tuhé seširovanosti zákonitě vzniká množství radioamatérských organizací, následnické organizace Svazarmu se o svém členství ve Sdružení budou rozhodovat na svých sjezdech.

Snadné rozhodování budou mít radioamatérji jednotlivci. Mohou si vybrat z pěti organizací, ale mohou také volit naprostou samostatnost. Pět radioamatérských organizací nabízí přihlášku v RZ 4/90. A nové struktury mohou vznikat také kdekoli jinde, třeba v Junáku, v odborech, a všude tam, kde mají materiální zázemí. Záleží jen na vlastní iniciativě zájemců.

Složitější postavení mají radikluby; ty budou i v budoucnu hlavním nástrojem k tomu, aby radioamatérství nováčci měli kde začít, protože trh s radioamatérskými zařízeními ještě dlouhá léta jen těžko nabídne něco téměř, kdo mají hlboubější do kapsy. Radikluby se tedy musí snažit, aby měly svým členům co nabídnout, a to nutně vyžaduje materiální zázemí. A byla by samozřejmě škoda přijít o to, čeho se v minulosti

podařilo nabýt. Neze s dělat iluze: s politikou velkorysých finančních dotací ze statutu rozpočtu je konec. Stat je poskytoval na účet budoucnosti, a mimo jiné právě proto teď nebude mít prostředky na podporu zájmůve činnosti občanů, byť by byla sebezáslužnější. A vlastní příjmy Sdružení ze stávajících podniků a hospodařských zařízení jsou pro budoucnost také velmi nejisté. Úprava daňového systému a zelená soukromému podnikání udělají i zde úpině novou situaci. Radio kluby si tedy nemohou dovolit sedět se založenýma rukama a čekat, co jim shora spadne do klinu. Mohly by se velmi brzy divit, co jim to tam spadlo. Peníze z centra tedy nebudou ani ve Sdružení, ani mimo ně. O to víc je třeba hledat možnosti místní — na národních výborech, školách, později i v podnicích a jiných organizacích.

Ty radio kluby, které byly dosud jednoučlovou ZO, to mají poměrně jednoduché. Stačí svorat členskou schůzku a rozhodnout, ke které z nových organizací se radiklub přihlásí. Radikluby ve viceúčelových organizacích mají tři možnosti. Bud ve stávající organizaci setrvat, pak ale nemohou náležet k žádné organizaci rye radioamatérské, a mří jejich nezávislosti je nejistá. Nemonou mít například vlastní právní subjektivitu a hospodařit nezávisle se svým majetkem. Z viceúčelové organizace je ovšem možné vystoupit, pak ale o majetkovém vypořádání rozhoduje členská schůze celé základní organizace; tam budou radioamatérů obvykle v menšině. A může dojít i k tomu, že se celá organizace rozhodne rozdělit na jednotlivé kluby, které pak budou hledat novou budoucnost samostatně. I zde ale bude o vypořádání společného majetku rozhodovat členská

schůze celé ZO. Rozhodování v rádioklubech ve viceúčelových ZO bude tedy složité a také capovědné. I zde by je proto mělo učinit společné demokratické jednání všech členů.

Mnohost radioamatérských organizací dělá mnoha rádioklubům starost. Jde ovšem o typický jev přechodové doby. Část organizací vznikla z nechutí ke členství radioamatérů ve Sdružení jako nástupci Svazarmu. Ale to může připravovaný radioamatérský sjezd změnit. Funkční organizace je jen taková, která svým členům zajistí uspokojení jejich potřeb. K tomu nevede ani subjektivní předpojatost, ani neuspokojené osobní ambice, ale jen a jen práce. Důležité je, aby radioamatérů mohli vysílat, startovat v závodech ve hře, telegrafii a viceboji. Už velmi brzy budeme mít všichni úplně jiné starosti, než hašteření a mrhání energií na neúčelné projekty. Ač Sdružení není určitě přelakovaným Svazarem, mnoho z jeho rysů zde přežilo. Jenže část radio klubů je v něm vázana existenční základnou. I když se většina radioamatérů na svém sjezdu rozhodne ze Sdružení odejít, právě tyto radio kluby zde zřejmě zůstanou. Jedno řešení rozporu se nabízí samo: aby Československý radio klub jako nástupce všech radioamatérských organizací minulosti (ČAV počínaje) se zcela osamostatnil, a stal se konfederací všech radioamatérských organizací a struktur u nás, samostatných i začleněných v jiných organizacích. Tato konfederace by zajistila základní členské služby — QSL a diplomovou službu a radioamatérský časopis, reprezentaci v IARU a vůči federálním státním a dalším orgánům. Ostatní by bylo věci jednotlivých členských organizací.

Po letech stojíme opět na startovní čáře. Vyběhněme správným směrem.

OK1XU

KV

Kalendář KV závodů na červen a červenec 1990

2.-3. 6.	IARU Reg. 1 HF CW Fieldday	15.00-15.00
9.-10. 6.	ANARTS WW RTTY*)	00.00-24.00
9.-10. 6.	World Wide South America	15.00-15.00
16.-17. 6.	All Asian DX contest SSB	00.00-24.00
16.-17. 6.	Nine Land CW contest**) 17.00-17.00	
17. 6.	Čs. krátkovlnn polní den	04.00-07.00
23.-24. 6.	Summer 1,8 MHz RSGB contest	21.00-01.00
29. 6.	TEST 160 m	20.00-21.00
1. 7.	Canada day contest	00.00-24.00
7. 7.	Čs. polní den mládeže 160 m	19.00-21.00
14.-15. 7.	World IARU HF Championship	12.00-12.00
21.-22. 7.	Colombian Independence Day	00.00-24.00

*) V některých pramech je termín závodu uveden na první víkend v červnu. **) Termín závodu uveden podle pramenů z předchozích let, není jistý.

Podmínky závodu najeznete v předchozích ročnících červené řady AR takto: IARU Fielday AR 5/87, WW South America tamtéž, All Asian AR 6/87, IARU Championship AR 6/89, Colombian Ind. Day (HK-DX contest) tamtéž.

Stručné podmínky Čs. KV polního dne

Závod pořádá ÚRK vždy třetí neděli v červnu ve třech etapách po jedné hodině (04-05, 05-06, 06-07), udáno v UTC. Kmi-

točí 3540-3600 pro CW a 3650-3750 kHz pro SSB provoz. Kategorie: a) stanice z přechodného QTH do 5 W výkonu, b) stanice z přechodného QTH do 100 W výkonu, c) stanice ze stálých QTH. Vyměňuje se kód složený z RS nebo RST a okresního znaku. Úplné spojení se hodnotí jedním bodem, násobiči jsou různé okresy jednou za závod, tzn. bez ohledu na etapy a druh provozu. Stanice ze stálých QTH navazují spojení jen se stanicemi na přechodných QTH. Deníky je třeba zaslát do 14 dnů po závodu na adresu: ing. J. Jelinek, 5. května 478, 538 51 Chrast u Chrudimi.

Stručné podmínky Čs. PD mládeže 160 m

Závod probíhá každoročně prvnou sobotu v červenci ve dvou etapách: 19.00-20.00, 20.00-21.00 UTC, na kmitočtech 1860 až 2000 kHz jen CW provozem. Kategorie: a) operátoři, kteří do dne závodu nemají 19 let a vysírají z přechodného QTH, b) posluchači. Ostatní stanice se mohou závodu zúčastnit, ale nebudu hodnoceny. Operátoři mohou vysílat pod vlastními značkami i pod značkami kolektivních stanic, předpokládá se práce společně s VKV polním dnem, není to však podmírkou. Soutěžící stanice navazují spojení mezi sebou i s ostatními stanicemi na pásmu bez ohledu na to, zda vysílají ze stálého či přechodného QTH; musí však být od protistanic přijat RST a okresní znak. Soutěžní deník musí obsahovat údaj o datu

narození operátora. Soutěžící stanice předávají RST, pořadové číslo spojení od 001 a okresní znak. Za každé spojení se počítá 1 bod, násobiči jsou různé okresní znaky mimo vlastního, bez ohledu na etapy. Deníky zašlete do 14 dnů po závodu na adresu: Radioklub Svazarmu OK1OPT, 330 32 Kozolupy 33.

Pozor — opravte si ve všech materiálech o závodech a soutěžích: vzhledem ke změně názvu okresu Gottwaldov na Zlín se bude předávat z tohoto okresu okr. znak GZL! Pro diplom bude možné předložit QSL buď s dřívějším znakem GGV, nebo novým GZL — nejedná se tudiž o nový okres!

OK2QX

Předpověď podmínek šíření KV na červen 1990

Pro předpověď na červen jsme vybrali z předpovědí různých renomovaných institucí R12 = 170 (podle NGDC). Pro srovnání: SIDC udává R12 jen 138+ - 35. Stejně jako tato se i jiné předpovědi vzájemně vejdu do svých konfidenčních intervalů. Pozorované R v lednu 1990 bylo 179,4; dosadime-li jej na konec vzorce pro klouzavý průměr, máme za červenec 1989 R12 = 158,1. Pokud by snad

toto mělo být maximem 22. cyklu, šlo by sice stále ještě o cykl vysoký, ale již jen čtvrtý nejvyšší. Nejlepší bylo maximum cyklu devatenáctého s $R12 = 201,3$ v březnu roku 1958, druhé nejvyšší patřilo jedenadvacátému, které má většinu z nás ještě v dobré paměti, s $R12 = 164,5$ v prosinci 1979, třetí třetímu s $R12 = 158,5$ v květnu 1978. Pro srovnání: nejnižšími cykly byly pátý a šestý s $R12$ pouze 49,2 a 48,7 v únoru 1805 a dubnu 1816. Průměr všech jedenadvaceti maxim $R12$ je 111,7 a tento tzv. průměrný cykl trvá 11,02 let, z toho od minima do maxima 4,29 roky. Tyto doby se pohybovaly co do délky cyklu od devíti let (cykl 2.) až po 13,67 let (cykl 4.), vzestupná část pak trvala nejméně 2,92 roky (cykl 3.) a nejvíce 6,75 (cykl 5.). Vše se samozřejmě odvozeno z pozorování slunečních skvrn, neboť až poválečné úspěchy radiotechniky dovolily podstatně dokonaleji monitorování slunečního rádiového šumu. Nejlépe na kmitočtu 2800 MHz, kde je zdroj v malé výšce nad sluneční fotosférou a tudíž se nejlépe blíže jinak těžko definovatelné celkové sluneční aktivity (pro nás je mimořádně výhodnou skutečnost, že je v celém dobré shodě s intenzitou ultrafialového a rentgenova záření – rozdružujících původců ionizace ionosféry). Dvaadvacátý cykl začal v září 1986 a strmá část jeho vzestupné křivky dávala dlouho naději na více, než $R12 = 158,5$ – od podzimu 1989 došlo ale ke stagnaci. Nicméně již příští měsíce patrně poskytnou odpověď. A víceméně nezávisle na bezprostředním vývoji můžeme považovat za vysoce pravděpodobné, že ještě alespoň po příští dva roky budou horní pásmo KV dobře použitelná pro komunikaci v globálním měřítku.

Letová denní měření slunečního toku dopadla následovně: 216, 212, 198, 194, 191, 187, 183, 177, 165, 172, 177, 173, 173, 189, 196, 198, 226, 242, 245, 265, 242, 243, 250, 241, 245, 237, 239, 229, 219 a 213, průměr je 210, což statisticky odpovídá krouzavému průměru $R12 = 170$. Denní indexy aktivity magnetického pole Země určili v observatoři Wingst takto: 19, 23, 16, 12, 22, 10, 6, 13, 14, 18, 18, 18, 12, 6, 10, 15, 10, 10, 4, 19, 18, 22, 22, 29, 18, 12, 5, 10, 23, 32 a 20. Podmínky šíření byly v první polovině měsíce většinou podprůměrné, potom po vzniku sluneční aktivity velmi dobré, nejlepší 28.–29. 1. (včetně kladných fází poruchy 29.–30. 1.).

Následuje výpočet intervalů otevření na jednotlivých pásmech. Časový údaj v závorce se vztahuje k minimu útlumu.

TOP band: UA1P 22.00–23.00, W2-VE3 výjimečně okolo 02.00.

Osmdesátka: BY1-P29 20.00, PY 23.30–04.00, VE3 00.30–04.30.

Čtyřicítka: YJ 19.00, JA 17.30–20.45, W5 02.15–04.15.

Třicítka: YJ 18.00–19.30, JA 17.00–21.00 (20.00), W6 03.45.

Dvacítka: JA 17.00–21.00 (20.00), VK6 24.00, W5 02.00–04.15.

Sedmáckta: JA 17.00–21.00 (19.00), W4 23.00–04.30 (01.00).

Patnáctka: JA 18.00–20.00, PY 20.00–04.00, W3 20.00–01.45.

Dvanáctka: BY1 17.00–20.00 (18.00), VK9 19.30, PY 24.00.

Desítka: 3B 16.00–22.30 (21.30), ZD7 16.30–01.00 (19.00).

Sestimetr: nebude pásmem DX, zato zde uslyšíme signály z řady evropských zemí, jejichž správy spojují vysílání mezi 50–52 MHz (někde výjimečně, jinde běžně) povolují.

OK1HH

ROB

Premiéra s úspechom

(ke 3. straně obálky)

Už na podzim 1988 sa začala rozbiehať práca organizačného výboru medzinárodných porovnávacích pretekov ORAVA 1989 (MPS '89). Organizáciu dostala do vienkia okresná zväzarmovská organizácia v Dolnom Kubine. Organizačný výbor viedol Ing. František Kravčík. Nie je možné vymenoť mená osôb a organizácií, ktoré sa zapájajú do prípravy pretekov. Aktivisti z ČSFTV mapujú terény a pripravujú podklady pre nové IOF mapy, výtvarnici majú plno práce s emblemom súťaže, plagátom, návrhom medailí, pripravujú informačných bulletínov, QSL listíkov OK5FOX atď. Veľký diel práce odvádzia komisia ROB, ktorá pod vedením MŠ Emila Kubeša, OK1AUH, chystá prvú medzinárodnú premiéru nových vysielačov ROB.

Stredné odborné učiliště spoločného stavovania (SOUSS) sa nachádzajú na brehu Oravského prievidzy. Riaditeľ zariadenia Rudolf Černota ponúkol službu SOUSS pre MPS '89. Je pripravená Európska, Balkánska, ale aj ázijská kuchyná. K tomu milý úsmiev a ochota obsluhujúceho personálu. Ubytovanie vo vynovenom internáte dopĺňa základné služby pre športovcov 8 štátov v dňoch 14. až 20. 8. 1989.

Pre prvú súťaž na 80metrovom pásme vybrali staviteľia trati zmapovaný terén bezprostredne súsediaci s lokalitou ubytovania. Hlavný rozhodca pretekov ZMŠ Ing. Boris Magnusek, OK2BFQ, stanovuje časový limit na hornej hranici, tj. 140 minút. Start pretekov je na horskom hrebeni pri TV vysielači na Magure.

Úderom desiatej hodiny vybieha do horského terénu prvá „runda“ pretekárov 4 kategórií. Posledný rozbeh oficiálnej startovej listiny je 5 min. pred dvanásťou.

Na základe prognóz o možnostiach najlepších časov inštalujú rozhodcovia techniku v celi v pohode. Ledva stačili všetko pozapájať a už sa v cieľovom koridore objavujú prvi pretekári. Seniori a ženy dobiehajú s najlepšími časmi neceľej trištrve hodiny, juniori stiahli časy až na pol hodiny. Triumfuje veterán Viktor Kirpičenko zo SSSR s časovým rekordom 28:59,8 min. Opäť potvrdenie toho, že staviteľia trate musia počítať s tzv. oravským koeficientom. Navzdory historii je tento koeficient dnes menší ako jedna. Staťať trate asi nebude na Orave nikdy jednoznačná záležitosť.

V celi plnom ruchu a očekávania vidieť časy dobiehajúcich pretekárov na veľkom displeji. Súčasne na obrazovkách farebných televízorov rolujú výsledky v jednotlivých kategóriach priebežne dopĺňané podľa dobových. Vytláčené výsledky sú aktualizované každých 15 minút, kde nechýba aj poradie v hodnotení družstiev.

Z prvého súťažného dňa si odnáša víťazstvo M. Slezák z čsl. A-družstva juniorov. Spolu s J. Havlikom získava ČSSR aj prvú zlatú medailu v hodnotení družstiev. Prvé úspechy si pripisali na konte až seniori (J. Šustra a P. Sváb) a tiež ženy (L. Kronesová a P. Dedková) – všetko bronzové medaily. V ženách prekvapivo zvíťazili pretekárky z Rumunska (v družstvách aj jednotlivcoch). Z favorizovaných pretekárov ZSSR spinili očakávanie v tomto prvom pretek u len muži nad 40 rokov. Pretekári KĽDR dvomi striebornými medailami za hodnotenie družstiev a dvomi za jednotlivcov tiež naznačili, že nepřišli na Oravu len v roli turistov.

Deň odpočinku venujú športovci návštěve patronátých závodov, rekreáciu na vode až na suchu, relaxáciu, každý, ako vie. V odpo-

udňajších hodinách stihni až návštěvu kleknutice Oravy – Oravského podzámkmu. V predvečer konania „dvojmetra“ už majú všetky výpravy vzorne spracované štartové listiny.

Stvrtok ráno 18. augusta odchádzajú autobusy s pretekárm do terénu pod Babiu horu. V mieste štartu vyhodnocuje signál kontrol merač sil poča. Dispečing, ihneď po odovzdani pretekárskej prijímačov, dáva signál obsluham na spustenie kontrol. Jeho vedúci Ján Török, OK3TCH, od tej chvíle v pohode sleduje ich minutové vysielanie. Páska na magnetofóne zaznamenáva všetky signály z dvojmetrového pásma. Opäť úderom desiatej hodiny vybiehajú štartovné „rundy“ do hustého porastu. Nad krajinou visia clovené mraky, z ktorých onedlho príde osvieženie. Na dvojmetri veľmi nežiaduce.

Cieľový rozhodca Ing. Attila Maťáš má v tomto pretek u dostatok času na jeho vybudovanie. Kto pribehne medzi prvými? Do dobrovoleho cieľového koridoru, strmo stúpajúceho až na neviditeľnú lúč cieľovej fotobunku (od firmy LONGINES), vidia všetci prítomní v celi. V činnosti je komentáorské pracovisko s dostatkom obrazových a ostatných informácií o tom, čo sa deje v celi, aj na trati.

Bežecké časy v tomto pretek už zodpovedali skutočne svetovej súťaži s veľkou náročnosťou. Sú okolo jednej hodiny. Pod tento čas sa dostáva ako jediná pretekárka Ljuba Byčakovová z ZSSR (čas 59:19,0 min.). Pretekári ZSSR na tomto pásme vyhrajú väčšinu svojich kategórií, čím potvrdzujú rolu jasného favorita pretekov. „Úradujúci“ majster sveta Petr Kopor z Brna dobieha na peknom druhom mieste a v silne obsadenej kategórii seniorov si ho udrží až do konca dobohov. Do zbierky medailí pre ČSSR prispeli športovci aj v hodnotení družstiev: seniori striebro, juniori a muži nad 40 rokov zasa bronz. V jednotlivcoch sa pričinením víťazstva Arpáda Šarkéžiho dostáva Juhoslávia na druhé miesto. Mitko Mladenov z Bulharska zaostal za víťazom len 4,3 sekundy.

Zamáčaný a miestami ťažko priestupný terén prpravil pre pretekárov, najmä v závere pretek, hotové peklo. Zdravotný servis má v celi plné ruky práce. Plnia sa výsledky tabuľiek, k poludňu dobiehajú poslední zblúdilci. Jury sa nachádzajú v mieste ciela a keďže nemusí riešiť žiadne protesty, schvaľuje výsledky druhého pretek.

Pretekom na dvoch metroch končí sa práca rozhodcov a technikov v teréne. Vrcholí však práca organizátorov, pripravujúcich program vyhodnotenia. Rozdelenie cien, výpisanie diplomov, upresnenie rézie záverečného ceremoniálu.

Prichádza čas na komentáre, hodnotenia a interviely pre novinárov. Redaktorka miestneho denníka zaznamenala: *Li Myong Ok z KĽDR, čerstvá držiteľka 4 strieborných medailí*: „Zúčastnila som sa viacerých dobrých i horších medzinárodných pretekov v ROB, ale ČSSR môžem zaradiť medzi vynikajúce usporiadateľské krajinu. Všetci členovia nášho tímu sme ocenili najmä kuchárov, ktorí nám varili naše jedlá. Oravská priehra da mi stala na 7 dní novým domovom.“ Čermen Gulijev, ZSSR: „MPS '89 bola veľmi dobre prípravená. Malí sme možnosť v silnej konkurencii overiť si svoje schopnosti a zistené nedostatky budeme musieť odstrániť. Boli sme veľmi spokojní s ubytovaním, stravou a vôlebc s celou organizáciou súťaže.“

ZMŠ Karel Koudelka z Pardubic, ktorý súťažil v kategórii mužov nad 40 rokov, povedal: „Už dávno sme sa nestretli s takou dobrou organizáciou súťaže. Odchádzame z Oravy plní dojmov. Aj v súťaži sa nám darilo, svedčí o tom 8 medailí.“

OK3UQ

MLÁDEŽ A RADIOKLUBY

Udělali bychom zkoušku v Japonsku?

Správné odpovědi na otázky v AR 4/1990:
(a) 4, (b) 4, (c) 2, (d) 5, (e) 3.

Další otázky ze zkoušek v říjnu loňského roku:

(a) Elektrické vlastnosti cívky jsou popsány v následujících pěti větách. Správné věty označte číslicí 1, nesprávné číslicí 2.

A. I když přiložíme stejnosměrné napětí, elektrický proud cívkom neprotéká.

B. Když připojíme střídavé napětí, elektrický proud prochází tím snadněji, čím je vyšší kmitočet.

C. Když připojíme střídavé napětí, zpožďuje se proud fázově o 90° za napětím.

D. Čím je nižší impedance, tím obtížněji protéká cívkom střídavý proud.

E. Při průtoku elektrického proudu vzniká magnetické pole.

(b) V následujících pěti větách o magnetických silokřivkách označte ty správné číslicí 1, nesprávné číslicí 2.

A. Směr magnetické silokřivky ukazuje v každém bodě směr magnetického pole.

B. Hustota magnetických silokřivek ukazuje, jak silné je magnetické pole v příslušných místech.

C. Magnetické silokřivky vystupují ze severního pólu a vstupují do jižního.

D. Magnetické silokřivky se protínají v pravém úhlu.

E. Sousední magnetické siločáry se k sobě přitahují.

(c) Napětí nezatíženého zdroje je 24,6 V. Když po připojení určité zátěže napětí zdroje klesne na 24 V, jaká je napěťová účinnost zdroje?

(1) 1.4 %, (2) 2.5 % (3) 4.4 %, (4) 7.2 %, (5) 8.1 %.

(d) Která z následujících vysvětlení fadingu jsou správná?

(1) Je to jev, ke kterému dochází rozptylem na horách a kopcích při šíření na vzdálenost dohlednosti.

(2) Je to jev, kdy spojení na krátkých vlnách náhle přestane a za několik minut nebo za několik desítek minut se zase obnoví.

(3) Je to jev, kdy spojení na krátkých vlnách je znemožněno na dobu od několika hodin do několika dnů.

(4) Je to jev, kdy na středních vlnách se ve večerních hodinách šíří signály na velké vzdálenosti.

(5) Je to jev, kdy během příjmu se signál občas zesiluje a občas zeslabuje.

(e) Kterého napětí používáme v přijímači DSB pro AGC?

(1) Výstupní napětí vf zesilovače.

(2) Výstupní napětí oscilátoru.

(3) Výstupní napětí směšovače.

(4) Výstupní napětí nf oscilátoru.

(5) Výstupní napětí detektoru.

Dr. Ing. J. Daneš, OK1YG

Z vaší činnosti

Dlouhodobým pravidelným účastníkem celoroční soutěže OK – maratón je OK2-18248, František Mikeš z Přerova, kterého vám dnes představujeme.

Když František nastupoval v srpnu 1968 základní vojenskou službu, neměl o radioamatérech ani tušení. Byl však zařazen do výcviku k radistům, kde se naučil morseovku a úspěšně splnil podmínky 2. výkonnostní třídy radisty. Telegrafie se mu zalíbila natolik, že jí zůstal věrný dodnes. Spolu s ním vykonával základní vojenskou službu také OK2TBC, Kamil Stúpal a jemu František vděčí za to, že ho seznámil s činností radioamatérů a zasměl do tajů radioamatérského sportu. Ve volných chvílích měl možnost poslouchat na různých přijímačích v pásmech krátkých i velmi krátkých vln, a proto si již během výkonu základní vojenské služby zažádal o přidělení pracovního čísla posluchače.

Po příchodu z výkonu základní vojenské služby se František zapojil do činnosti městského radioklubu OK2KJU v Přerově a úspěšně absolvoval zkoušky rádiového operátora. Velmi rád se již tehdy zúčastňoval různých radioamatérských závodů a soutěží. Radioklub mu vysílal vstříc a zapůjčil mu přijímač R3, aby mohl poslouchat také doma. Nyní František bydlí ve 12. poschodí panelového domu a k poslechu používá zakoupený přijímač EL10 s konvertorem pro pásmo 1,8 až 28 MHz. Anténu LW 54 m má nataženou na střeše.

Za dvacet roků posluchačské činnosti již dosáhl mnoha pěkných úspěchů. Zvítězil v závodech PACC, WADM, Košice 160 m a o dobrém umístění v závodech svědčí další desítky diplomů. Za svoji úspěšnou posluchačskou činnost obdržel více než 40 diplomů z různých zemí celého světa. Má splněny podmínky mnoha dalších diplomů,

Josefa Zahoutová, OK1FBL, blahopřeje Františkovi Mikešovi k vítězství v OK – maratónu 1988

pro nedostatek IRC kupónů však zatím o ně požádat nemohli.

Dosud má odposloucháno 286 různých zemí DXCC a z 252 z nich obdržel QSL listky. Potvrzeno má také více než 1250 různých prefixů. Největší radost má z QSL listků od stanic A35XX, CE0AE, D4CBC, F00XD, HV3SJ, JD1BIR, KH3AB, ST0RK, VK2BQQ/LH, VK0JS, VP8ANT, YJ8VU, ZL8AMO, 3V8AA, 3Y1VC, 4W1RC, 9D5A a 9F3USA. Zvláště se těší na QSL listky od stanic 3C1CW, 8Q7MX, 9N1MM, 4M0ARV, XW8BP, 1A0KM, VK9XI, TT5AD, T32AF, KM6FC, TI9CF, N01Z/KH1, KH8/SM7PKK, P29JS a další.

Dosavadním největším úspěchem Františka je vítězství v celoroční soutěži OK – maratón 1988. Právě OK – maratónu vděčí za odposlouchání velkého množství vzácných stanic a expedicí.

V plánech do budoucna má zahrnuto získání dalších diplomů, odposlechy a potvrzení dalších nových zemí, celkové vítězství v některém světovém závodě a získání vlastní konceze OK. Jeho „tajné“ přání – rád by se stal účastníkem některé DX expedice. Přeji Františkovi hodně dalších úspěchů.

73! Josef, OK2 – 4857

Víte, co znamená značka EIMAC?

Je to jeden z největších výrobců elektrotechnik v USA a jejimi zakladateli a majiteli jsou W6UF (William W. Elite) a W6CHE (Jack A. Mc Cullough) od roku 1934, kdy dali do prodeje elektronku s označením 150 T pro práci v oblasti KV s anodovým napětím 1000 V. V roce 1940 již (hlavně díky vojenským zakázkám elektronek pro práci v oblasti VKV) překonali svého velkého soupeře, firmu Western Electric produkci 10 000 ks elektronek. V roce 1965 firma fúzovala s firmou VARIAN a své výrobky nyní dává na trh jako Varian EIMAC.

(podle RadComm, Ham Radio 2QX)

BT4YL je stanici propagující mezinárodní přátelství mezi městy Sanghaj a Osaka. Stanice BT4YL je aktivní a hlavně v různých mezinárodních závodech a je přístupná všem radioamatérům z celého světa, kteří navštíví Čínu. QSL manažerem je JA3UB, p. o. box 73, Amagasaki 660, Japan.

OK2JS

Dva nové radioamatérské diplomy ze SSSR

WAAD – Worked All Administrative Districts

Diplom vydává ITARC (Informačne technický amatérsky rádioklub) za spojenia a rádioamatérmi v rôznych administratívnych okresoch ZSSR, s cieľom pomoci rozvoju rádioamatérského vysielania v malých mestách a na dedine. Diplom je vydávaný aj poslucháčom. Platia QSO od 1. 1. 1989, uskutočnené ľubovoľným druhom prevádzky, i zmiešaným, a to na ľubovoľných rádioamatérských pásmach. Diplom má 7 stupňov:

- 4. stupeň – min. 500 okresov
- 3. stupeň – min. 1000 okr.
- 2. stupeň – min. 1500 okr.
- 1. stupeň – min. 2000 okr.
- bronzový pohár – min. 2500 okr.
- strieborný pohár – min. 3000 okr.
- zlatý pohár – všetkých 3227 okr., respektive všetky okresy, ktoré budú existovať v dobe podania žiadosti.

Spojenia s expediami pracujúcimi z okresov, kde nie je stála rádioamatérská stanica, bude platiť iba v tom pripade, ak tam vznikne stála stanica najneskoršie počas jedného roku od ukončenia expedicie.

So žiadostou o diplom sa zasiela registrátor okresov, ktorý je možné vyžadať od

vydavateľa diplomu. Po kontrole bude registrátor vrátený žiadateľovi.

Pre členov ITARC je diplom vydávaný bezplatne, ostatný za 10 IIRC, alebo 3 ruble. Poháry sú udeľované bezplatne, hradí sa iba poštovne. Žiadosti sa posielajú na adresu:

USSR, 220050 Minsk, Box 41
WAAD Committee
Laco, OK1AD

UC-SWL-AWARD

Tento diplom, ktorý je vlastně vicebarevná hodvábná vlažečka, vydává běloruský klub posluchačů „UC-SWL-C“ za potvrzená spojení nebo poslechy člena UC-SWL-C.

Každé spojení se stanicí, která je členem UC-SWL-C, se hodnotí 3 body, totéž platí i o QSL lístcích od posluchačů tohoto klubu. Ostatní QSL od běloruských SWL, kteří však nejsou členy klubu, se hodnotí pouze 1 bodem.

Evropské stanice musí získat alespoň 15 bodů a mít QSL od stanic z nejméně 2 oblastí Běloruska.

Plati QSO/SWL od 1. 1. 1988 bez ohľadu na druh provozu a pásmo.

Potvrzená žádost se zasílá na adresu:

Award Manager
UC-SWL-C
P.O. Box 18
Mogilev 212011
SSSR

Běloruské oblasti jsou: 005, 006, 007, 008, 009, 010 a 188. Členové UC-SWL-C jsou: EO2CSM, RC2SA, UC1AWP, UC1SWC, UC2AAS, UC2ADZ, UC2AT, UC2CAO, UC2CAR, UC2CBR, UC1IAG, UC2SA, UC2SAN, UC2SKF, UC2WG, UC7S a UY5XE. Pavel, OK2-32478

Zajímavosti ze světa

Velká expedice na Madeiru se uskutečnila v závěru listopadu loňského roku za účasti radioamatérů z CT, DL, HB, OE, OH, PA a UA. Během CQ WW DX contestu pracovali jako CT3M a QSL se zasílají na CT3EE, Box 4055, P-9051 Funchal Codex, Madeira.

XT2CW vysílal od 6. do 12. 8. 89 z republiky Burkina Faso a navázal 6500 spojení. Byl to DK7PE, který pracoval na všech pásmech včetně WARC a 160 m a některým W stanicím se podařilo dokonce navázat s XT2CW spojení na devíti pásmech! Jeho koncese osobně podepsaná ministrem pošt byla první od roku 1983. Na dobu dvou let je nyní v této zemi další radioamatér, XT2PS, který již také po dlouhém čekání obdržel koncesi.

ARRL rozhodla, že pro diplom DXCC se uznavají i spojení navázaná v pásmu 10 MHz. Platná jsou vždy spojení od data kdy v zemi, se kterou bylo spojení navázané bylo pásmo 10 MHz uvolněno pro radioamatérský provoz. Prvá zpráva však nehovoří o tom, zda budou z tohoto pásmu uznavána i fonická spojení. OK2QX

INZERCE

Inzerci přijímá osobně a poštou Vydatelství Naše vojsko, inzertní oddělení (inzerce ARA), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9 linka 294. Uzávěrka tohoto čísla byla 15. 3. 1990, odkdy jsme museli obdržet úhradu za inzerát. Neopomíňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předloh. Cena za první řádek čini Kčs 50,- a za další (i započatý) Kčs 25,-. Platby přijímáme výhradně na složenkách našeho vydatelství.

PRODEJ

Antenný predzós. UHF 300/75 (konektor+protík), +18 V, s BFR90+91 (250), 90A+91A (330), BFG65+91 (420), BFG65 + 91A (450), BFR91 (50). Ing. Alexy, Pred Polom 19/63, 911 01 Trenčín, tel. 327 37.

BFG65, BFG65, BFT66 (176, 147, 138), BFR90, 91, 96 (39, 44, 48), TDA1053, BB221, BB405 (40, 14, 40), BAT45 (35), TL072, TL074 (35, 50), NE5534, NE5532 (80, 90) a celou řadu obvodů C-MOS. T. Majer, 739 38 Soběšovice 157, tel. F-M 29 64 57. Rózne R, C, D, T, IO. Zoznam proti známcu. Ing. P. Removčík, Exnárova 6, 080 01 Prešov.

BFG65, BFT66, SO42, BFR91, 90 (280, 160, 120, 80), keram. trimre, tantalové kondenz., nahrané videoklipy, stereo hifi VHS aj., S. VHS. L. Szilágyi, Bernolákovo n. 30, 940 01 Nové Zámky. Software k evidenci DKP (PPPS) na mikropočítači SMEP s podporou REDAPU. V. Maleček, Lidičká 33, 795 01 Rýmařov.

BFR90, SO42, NE553 (60, 120, 25), HEMT FUBA 1,4 (11 000), vnětřní jednotku Tv SAT die AR (5800). I. Marek, Tyršova 920, 763 02 Zlín.

-RAM disk pre SHARP MZ-800 osadený 512/250 alebo 64 KB (10 000, 5500, 2500). Pracuje pod BASICom i CP (M.SW-Super Calk, dBASE, T-PASCAL, POWER apod.). J. Jary, Nábrežná 9, 036 07 Martin 7.

Univerzální konvertor pro převod pásem VKV OIRT do CCIR nebo opačně bez zásahu do přijímače (150), konvertor pro autorádio převod OIRT do CCIR (120), kontrola zdrojové soustavy automobilu (90). V. Pantlík, Kamikova 14, 621 00 Brno.

Tyristorový zdroj strádavého napětí typové řady AUT 3 (2500). M. Stojko, Husova 223, 439 82 Vroutek.

Siemens TFK, PH, BFG69 (170), BFG65 (170), BFT97 (120), BFT 66 (130), BFR90, 91 (à 60), UHF zosilňovač vhodný pro fažkové přijímače podmienky osadený BFG69, BFR90, G=22 dB (400), dekoder FilmNet (3000), kupím koax. kabel 200 m, anténu 2023 GL P. Poremba, Clementisova 12, 040 14 Košice.

Výrobky IFK120 (à 70). J. Baláz, Hazín 61, 072 34 Zálužice.

Přenosný radiomagnetofon zn. ASAHI/FAIR MATE RD-831, japonský, odním. bedny, FM 1 – OIRT, FM 2 – CCIR, AM, 5. kanál, ekvalizér, pův. cena 8500, kazetový přehrávací s rádiem FM 1 – OIRT zn. ASAHI/FAIR MATE PR-223, pův. cena 3100, přenos. televizi MINITESLA pův. cena 3800, vše perf. stav, 2/3 ceny, celkem za (10 000). Videorekorder zn. PANASONIC NV-L25EE (HQ), programovatelný do r. 2010, 4 hlavy, dabing, nový nepoužívaný (28 000). Stereoradio zn. Sextet, bez beden, funkční, bez krytu a panelu (4470) (1000). B. Gembala, Wolkerova 294, 739 61 Třinec VI.

Nový sat. konvertor Echostar LNB-1095, 10,95-11,7; 2,3 dB a rezonanční díl (8000). J. Rákosník, Jiřáskova 376, 294 71 Benátky n. Jizerou 1.

Počítač APPLE 64k, 2 flopy 51/4" umí CPM, za cenu flopy jednotek (8000). Ing. A. Blížek, Malinovského 773, Uh. Hradiště 686 01.

Tuner VKV obe normy oživený (800). P. Králik, Gottwaldova 11, 914 41 Nemšová.

Gramofon Nordmende Direct Drive (4900), nové el. varhany (4000), nový tuner Ziphona (1950), 2 ks reproskriň 100 l (1600), BF245C (19), ant. předzesilovač, radiomateriál, gramodeska. Seznam zašlu. J. Krejča, 561 81 Kunvald 356.

BFR90 91, SO42P, 4543 (35, 40, 80, 45). M. Hrbáč, 696 73 Hr. Vrbka 17.

CMOS koprocessor 12 MHz INTEL 80C287A (37000). F. Kadúch, Pod Zečákem 49, 841 03 Bratislava, tel. 36 76 55.

RX-YAESU FRG 7700 včetně doplňků a dokumentace pořizovací cena 2000 DM. Dále RX-KÖRTING 2x, KWEA, RFT 188, HAMZEL, SX 42, + panoramatický zobrazovač + dokumentace, S36A, LAMBDA 4, CR 101 PHILIPS, R311 (MLR), KROT, GEC, RS1/5 UD, K12, BC312N, TRX-R105 2x, radiopřijímače 30. až 50. leta asi 100 ks, ICO MRT, měřicí C 10 pF až 1 μF, RC generátor, krystaly asi 300 ks, elky nové EF89, EC86, EF800, EL95, PC88, RVP2000, různé polovodiče, celé ročníky AIR. Funkamatér, SSSR Radio, katalogy a spousta radioliteratury. J. Červinka, Skalka 831, 277 11 Neratovice.

Matematic coprocesor 80287 a 80387, sadu paměti DRAM 70 ns 1-8 MB, PC-AT, A. Trnáková, Plovdivská 3, 616 00 Brno. Sharp MZ 811, Quick Disc, diskety, mgf. joystick, myš, BT-100 software (9500). M. Krajcí, Šalvičova 32, 821 01 Bratislava.

Deck SM 260 TESLA (3900), gramofon Z-4S JVC hiFi, nová (400). Koupím µPC 1213C 1 ks. T. Thiemel, Osada míru 301, 747 22 D. Benešov.

Zesilovač 2x 40 W, 4-8 Ω, 5 vstupů dig. indikace vstupů (2000). Stabilizovaný zdroj 1,8-38 V, 0,2-5 A, 5 V - 1,5 A, vybavený MP-40 (1500). Větší množství radiomateriálu, seznam na zámknu. Končím. M. Pospíšil, A. Gavlase 10, 703 00 Ostrava 3.

Radio Grundig Satellit 600 Professional, LW, MW, SW 1,7 - 26 MHz, FM 87,50-108 MHz, Mode LSB, AM, USB, BFO, SSB, Clarify, LCD Display, Time, Date, Freq. (program). Dowoz z NSR, původní cena 1440 DM, nyní (17 000). F. Vlček, T. G. Masaryka 1140, 293 01 Mladá Boleslav.

Širokopásmové zosilňovače: 40-800 MHz 1x BFG69, 1x BFR91, 75/75 Ω, 24 dB vhodný aj pre diaľkový prijem (390), 40-800 MHz 1x BFG65, 1x BFR96, 75/75 Ω, 24 dB vhodný aj pre malé domové rozvody TV (390). F. Ridarčík, Karpatská 1, 040 00 Košice.

Zesilovač VKV všechna Tv pásmá s BF961 (220), IV-V. Tv s BF166+BFR96 (480), výhýbka (30), BFR90, 91, 96 (60). S. Beznoska, Dzeržinského 5, Bohatice, 360 04 Karlovy Vary.

Coprocesor 80A287C 12 MHz (30 000). R. Kadúch, Pod zahradami 62, 841 01 Bratislava, tel. 07/38 24 95 večer.

Výrobky IFK-120 (90). V. Adame, Lunačarského 49, 851 07 Bratislava.

DRIVE 1541 k C64 + 4 disket (11000), nahr. literaturu. M. Mazánek, Lesná 162, 347 01 Tachov.

Osobní počítač Commodore Plus/4, 2 Joystick, cassette, hry a programy, literatura (8000). J. Mejes, Lokvancova 103, 549 54 Police nad Metují.

Atari 130XE, mgf. (T 2 000), JOY, programy, hry, mnoho literatury. 100% stav (10 000). S. Riha, Podpěrová 3, 621 00 Brno.

Paměť MN 41256A-08 (350). Z. Blaha, Holubyho 2, 036 01 Martin.

UNIMER 33 - U, I, R, C (950), osc. obr. B754 nová (250), osciloskop Krížek T 531 dobrý (700), SS voltmetr „Vosa“ - AR 5/88 (750), multimetr SS, SL, U, I, R a MHB7106 + LCD 3 1/2 místa (900). F. Šohajda, 696 33 Archlebov 371.

Poč. Didaktik Gama + joy + 4 kazety programů (5000), k.mgf. Elta (1000), mgf B101 - vadný levý kanál (2000). Koupím ARA 12/88 a ARA 1/89. M. Zemeck. Kollárova 598, 417 42 Krupka.

Počítač ZX Spektrum 48 kB, joystick, interface 2x včetně programů (5000), koupím návod na stavbu dekodéru Teletclub. G. Hesche, Klášterského 255, 460 10 Liberec 10.

Různý radiomateriál. Končím. V. Pecina, Družstevní 22, 685 01 Bučovice II.

Sat. konvertor Sharp 1,15 dB (13900), Tv hry (900), BFR96 (50), BF980 Philips (35). M. Ondrejkov, 059 84 Vyšné Hágy.
Tape deck AKAI 4000DS (6000), 15 ks zahr. pásků (200), mgf B73 (1500), am. gen. nf (600). L. Zelinka, 679 03 Olomoučany 151.

Osciloskop C1-94 (3200). M. Kuželová, Ulička 6, 623 00 Brno. DRAM 4164, 6116, CS20, EMULÁTOR 2764 (100, 150, 120, 530), O. Holub, Dobrovského 830, 250 82 Úvaly.
PC-XT: FD 5 1/4, 3 1/2; HD 10MB; 4, 77 MHz; Hercules; monit., kláv.; RAM 640; IO karta; vcelku (40 000) nebo po dílech. motherboard XT+FDC+IO. RAM 256k (6000), floppy 3 1/2 (5500), RAM 41256-15: 6116 (200, 150), 8272, 8237, 8253 (300, 200, 110) a jiné IO a ND pro PC. M. Stíkar, Dělostřelecká 47, 162 00 Praha 6, tel. 312 36 07.

HN 462716G (300), MK 2716T (200), D8255AC-5 (150). P. Holý, V užlabíne 14, 100 00 Praha 10.

Spř. 3hlavový double deck AIWA WX-909 1250 DM (28 500). Servis v ČSSR a diskety 5,25 DD (39), HD-1,6 MB (79), CD-Player Sony-770. Koupím RS 634/8. R. Blažek, Pod lipami 43/3D, 130 00 Praha 3.

NE555 (25); 10; 3,2768 MHz (60); BFR90 (65); BF245 (25); BFX89 (27); AY-3-8500 (290); LM709, 339, 739 (6, 40, 60); BC 307 (5); XR2206 (370); SAS580, 590 (12); CP4013, 4017, 4020 (9, 18, 18); CM4072 (22); SO41P (30); SO42P (250); MC1310P (25); LCD Display (45). Nové jen písemně. J. Romler, Tupolevo-va 516, 199 00 Praha 9.

Atari 130 EX, XC12 (Turbo), joystick, literaturu, programy, dálkomis, RFT, el. psaci stroj Consul, interface, dokumentace. Cena celkem 12 000. J. Kríž, Havlíčkova 9, 682 01 Vyškov.

Sinclair ZX81 1+16 kB + přísl. (3000); tape deck HiFi, doby NR, stříbrný (6500); Gramo polout. HiFi MC400 (2500), Spec-trum holé (4000). V. Plaček, 262 03 Nový Knín 64.

BFG69, BFG65, BFR90, 91, 96, BF961 (215, 220, 60, 70, 75, 50), 300 ks podnik, odznázků (450), sym. člen UHF (30), literatura k akupunktúre (45). M. Martinková, Dolejšíno 972/35, 142 00 Praha 4.

IFK-120 (60), sov. teletest gen. TV sign. + multimeter (2200), ručk. m. př. (800), multimeter - U, I, R (1200). Vše nové A. Podhomá, U nádraží 25, 736 01 Havířov-Sumbark.

ARA roč. 1979-88, ARB roč. 1982-88, různou elektrotechnickou liter. Seznam zašlu. P. Smrž, Zlatnická 1127/4, 110 00 Praha 1.

Programy, literatura na ZX Spectrum (10, 50). R. Koza, Řeřetková 544, 181 00 Praha 8.

Sat. ant. Ø 135 offset, polárn., konvertor 1,3-1,4 dB, polariz. (16 000) i jednotlivé. M. Polák, Mexická 9, 101 00 Praha 10.

Servisní dokumentaci na videokameru Panasonic M5 200 stran (280). Ing. J. Vávra, Nádražní 609, 509 01 Nová Paka.

Sharp MZ 811 + joystick + 4 kazety programů (6600). P. Černý, 739 91 Jablunkov 26.

Cu drát 25 m Ø 7 mm (m/12). CuL Ø 0,1 mm (100 m/1), RP 92/220 V (25), kanál, voliče T 62.02, KP 21/0 (100, 50), VN trafa 6 PN 350 10, 20, 25 (30, 40, 50), ST 1987/88/89 (roč. 40), Elektronika 1987/88 (a 6), MH7493, 193 (a 5), TC 180 1M, 2M (à 1,50). J. Mešter, Slavíčkova 22, 586 02 Jihlava.

Samsung RC-015 (1100), National RQ-2035D (700), gramo NZC 710 (700), NZC 431 (4000), Spidola 231 (350), walkman Crown CS-11 + repro (500), Philips D8534 (9000). R. Pacovský, Budovatelská 766, 388 01 Blatná.

Mikropočítač Didaktik Gama 80 kB (v záruce) + joystick GS 123 (2200). V. Vlasák, Koberov 61, 468 22 Železný Brod.

Zosilňovače pre VKV-CCIR, OIRT III. Tl. IV.-V. Tl. vs BF961 (à 210), IV.-V. Tl. s BFT66 (360), 40-860 MHz z BFR90+91 (380), výhýbka (à 30). BFR90, 91, 96 (70). J. Kucej, 972 24 Diviacká Nová Ves 409.

ULAEC001E, ULAEC210E, 4164 (900, 800, 150) pre C-64 svetelné pero, Cartridge s už. prog. (520, 800). M. Németh, Jilemnického 3, 943 01 Stříbro, tel. 0810-4316.

Programy (0,2 za 1 kB) pro ZX Spectrum, Didaktik Gama. Seznam za známkou. J. Špałek, Uhlové 782, 763 31 Brumov. Diskety 5,25 rôznych známk, nové (à 55), aj málo použité (à 50), vsetky inicializované, formátované a 100% bez chyby. L. Gaál, Ul. 9. mája 26, 911 00 Trenčín.

Ant. zosil. 2x BFR; k1=60 22,5,5 dB (315), k2=60 25/2,9 dB (280); MOSFET VKV 24/1,4 dB; k6=12/20/2 dB (à 175); vše 75/75 Ω; symetrické (+15); nap. výhýbka (+15); odzkušené, záruka. Ing. R. Řehák, Štipa 329, 763 14 Zlín.

BFG69, BFG65, CF300 (159, 199, 149). J. Jirsa, Gomelská 2165, 398 01 Písek.

Čisl. mult. U, I, R (1000), můstek RLC10 (900), TV lad. konv. (100). BAT 3 V Ø 23x2 (15), nastavený 3 1/2 LCD+7106+4030 (450). Z. Havelka, Škroupova 29, 636 00 Brno.

Zos. mf 2x 15-2x 200 W (800-4000), rádio VKV s čisl. stupnicou + pred. (2000), mgf B47 (500), čisl. multimeter 2,5 a 3,5 miestny (500, 1000), svet. had 5 m (750), mix. pult - 10 vstupov s konc. zos. 2x 60 W. M. Pivko, Nám. Siobodc 1624, 020 01 Púchov, tel. 0825/3014.

Mixpult 14 vstupů připínatelný ekvalizér (5000), studio ECHO TESLA (1500), koncový zesilovač 4x 150 W (3500), magnetofon B101 (1000), dále kupím měř. přístroje a součástky KD, KF, KC, MA, TL, MH a jiné - nabídnete. J. Simánek, Cerhonice 36, 398 01 Mirovice.

16 osazených desek polyfonních varhan + díly mechaniky (4900), ladička hudeb. nástrojů podle ARA (1490). J. Petuely, 439 01 Černíčce 306.

BFR91 (40). O. Marek, 751 24 Vinary 190.

Dekodér (4000), kompl. schéma + 3 ks plóš. spojů (350). Filmnet. Z. Douša, Českova 1721, 530 02 Pardubice.

ZX Spectrum Plus 48 kB (6500), 10 ks RAM 256 (à 150), krystal 4 MHz fa TXC (200), disk. jednotka NEC FD 1037A DSDD 3,5" (6500). BF981 (50), SFE10,7 (50), tiš. komplet desek na Bele 128-5,03 dvojice pokročená (400). P. Švajda, Kovrovská 483/21, 460 03 Liberec III, tel. 42 31 24.

Commodore C 64 + 1541 II (14000), oscil. N313 (1200). L. Hlavá, Letná 305, 513 01 Semily, tel. 0431-3289.

ARA, B 84-89 (350). J. Paroubek, Nám. Čapajeva 10, 130 00 Praha 3.

SAT (trvale) - plošné spoje přijímačů, dekoderů, doplňků. S. Žárský, Vrchlického 1523, 742 58 Přibor.

ZX Spectrum 80k + vylepšení, tiskárna Seikosa GP 500A; svět. pero; interface pro tisk.; svět. pero; joystick, literatura SW vše (9900), SAT. přij. amatérsky (4200). J. Svoboda, Čechova 1125, 250 82 Úvaly.

CD MC902 nový (5500), TW 140 2x 50 W (2500), TW 40 2x 20 W v orig. kov. skř. Hi-Fi klubu (1600), konc. zes. TW 120 2x 60 W bez skř. (900). Trafa prim. 220 V: 2x 8-10-12 V/4 A, 0-6-13 V/11 A (150) 2x 30 V/3 A (200), 24 V/2 A (100). Mgf A3 bez víčka kaz. jinak bezv. (500), tlac. předv. + potenc. Pluto a maf. TV tuner PIN (à 200), Ing. J. Lahodný, Škroupovo nám. 3, 130 00 Praha 3.

RX pro 3,5 MHz a 14 MHz s digi. stup. a filtrem PKF 9 MHz/2,4/8Q (4900). RX 145 MHz PS83 - dvoukristalová verze (1100), čitač do 100 MHz 6 míst (1500), čitač do 100 MHz 9 míst (4900), vý generátor AM, FM 100 kHz-110 MHz s digi. stupnicí (4900). B. Gavlas, SPC G-33, 794 00 Kroměříž.

EPROM 27256, 2716 (SSSR) (390, 140). J. Pajtí, RA 1375, 739 11 Frýdlant n. O.

Manuál MS-DOS 3,2 v češtine (210). J. Surovec, Sobědužská 173, 417 12 Proboštov.

Ob. videokameru AKAI (15 000). J. Ondřich, Živkov 13, 382 42 Kaplice 2.

Hry a programy na ATARI 800XE v Turbu 2000 (à 2). V. Franc, Foerstrova 3, 796 01 Prostějov.

Osciloskop N 313 (1800), labor. zdroj (300), zesil. 2x 85 W - 90 % souč. (500), VKV stereo přij. - 90 % souč. (200), R (TR 161), C, D, Tr, Ty, OZ, TTL, LED a jiné souč. a radiomateriál za 30-50 % MC. Seznam proti známcé. S. Šťastný, Janáčkova 1241, 739 11 Frýdlant n. O.

EPROM 27128 (220). M. Kroupová, Dobrovského 434/7, 460 01 Liberec 2.

VOLT CRAFT GS 6520, 3 1/2 LCD multimeter + ochr. púzdro (3500). Po 2 ks diody 160 A/100 V, 200 A/1200 V. Itron IV-6. (à 150, 200, 10, 110), Ing. P. Gábor, Karpatká 1,080 01 Prešov.

Commodore 64 (6500), disketovou jednotku (6900), 6 ks výkrových reproduktorů fir. Mc Farlow 8 Ω, 150 W. Z. Szalimach, Vrchlického 16/1479, 736 00 Havířov-Bludovice.

Comp. Ericsson Z80-CP/M FD 5,25" 780 kB, RAM 64 kB + MON 12" + softw. 10 disket (16 900). A. Svoboda, Gružinská 21, 301 56 Plzeň 3.

Osciloskop 10 MHz (2300), čitač 100 MHz (1900), DU 10+VN sonda (1000), voliče KOMBI PM-1, GPN 38244, KTJ92-80-100, zosilňovač AR 1985 príloha (1600), MP80, DHR (80, 110), oddl. transformátor v skrinie 220/220, 24 V, 200 W (200), spinacie hod. TU60 (200), ARO667 (45), KD367B (30), CS20D (120), X - 27, 120 MHz, 10 MHz (50, 100). Foto prístrojov k dispozícii. L. Ivančík, Partzánska 57, 949 01 Nitra. 2 ks repro ARO 835 nepoužité (à 300). P. Klos, Na Fojtství 5, 705 00 Ostrava 3.

Špičkový digit. tuner AIWA AT 9700 (10 000), tuner PIONEER TX 608 (4000), 1 pár občan. radiost. FM 27 MHz (2300). AVOMET (1300), osciloskop (1500), RCL můstek (350), kazety SONY FeCr 90 typ III (120), digit. stopky 24 h - hodiny „LUGANO“ (420). Stabilizovaný zdroj 0 až 30 V/2,5 A (3700). E. Benedikt, 334 01 Přeštice č. 1044, tel. 019 98 25 22.

Soukromý výrobce nabízí satelitní antény Ø 60, 90, 120, 150 i s držáky. Uveřejněn článek Amatérské rádio 1989. Sopované, ihned, dokonale. Tel. 301 61 79 Praha. J. Lněnička, Jilemnického 5, 160 00 Praha 6.

Počítač APPLE IIIE, monitor, 2x disketová mechanika 5 1/4", joystick, 130 disket s kompletním programovým vybavením, hodně radioamatérských programů, karty Centronics CP/M 128 kB, kompletní knihovna programů (24 000). R. Toužín, slli/984, 593 01 Bystrice n. P.

Koupě

Lum. zobraz. IVL-1-7/5, krystal 3,2768 MHz, 12,8 kHz. J. Mašlera, Slavíčkova 22, 586 02 Jihlava.

IO STK 4026. J. Voráček, Krašovská 14, 323 00 Plzeň.

Osciloskopickou obrazovku BT52 a prodám osciloskopickou obrazovku GLO11 včetně rastrov před obrazovkou (350), krystal 10,7 MHz (50). M. Brachaček, 739 34 Senov u Ostravy č. 739.

Přijímač pro SAT (vnitřní). NE568, SL1451, SL1454, UZ07; NE592, UL1042, MC4558. NBA 192 průchod. kond. toroid, C trimr 2,5 až 6 pF, kon. BNC. V. Pribáň, Zdemyslice 169, 336 01 Blovice.

Koupíme zař. pro satelit. příjem pro 4 byt. družst. jedn. na fakturu. P. Michal, Želivského 589, 284 01 Kutná Hora.

SAA1056, U1056D, SAA1059. Xtal 4 MHz, SO42P, CMOS i jednotl. Ing. P. Procházka, Smirnovova 962, 432 01 Kadaň.

Tranzistory BFR90, 91, diody BB121, BB205, KAS34, integrované obvody SO42P (UL1042), K500LP116 (MC10116), UZ70. M. Hasník, Leninova 7, 737 01 Český Těšín.

IO FCH151, Data sette 1530 - nový. J. Špůrek, Na výsluni 260, 562 01 Ústí nad Orlicí.

VI generátor TESLA BM-368 ihned. L. Vanko, TOM 21/44, 921 01 Přeštiny.

ATARI 800 XE + XC 12, nabídnete cenu. L. Kučmerák, Klokočí 59, 753 61 Drahonice.

ARA ročník 1980, 84, 86, 4 ks mf filtry - EKG10,7; SFE10,7; SF10,7; SPF10,7. L. Hanzlík, Na úvoze 10, 664 91 Ivančice.

M710A nebo celou Minivéž. S. Maňhal, Vrbická 4, 441 01 Podbořany.

FD 1793. F. Húrka, B. Němcová 531, 353 01 Mar. Lázně.

ZX81 s vadnou klávesnicí. L. Čoupek, Ostrávka 336, 664 61 Rajhrad.

Osciloskop Krížik T 565, alebo Krížik D 581. Ing. V. Hudcov, Botanicke 2, 917 08 Tmava.

Obvody ULA a LM1889N do ZX Spektra. O. Kulheim, Štěpničká 1054, 686 06 Uh. Hradiště, tel. 621 02.

Magnetofon XC 12 k počítáču ATARI 800 XE. D. Motl, Cenrum II 92/51, 018 41 Dubnica nad Váhom.

ANWA deck FX-01, FX-W1500, FX-90; CD-DX-770, DX-1000, DX-500 popřípadě jiné ve stříbře, 330 mm. M. Mlátilík, 696 39 Lovčice 13.

ARA - 89/3, 4, 5, 9; relé QN59925, MP40. J. Durec, 916 01 Stará Turá 1224.

ZX 81 s dokumentací příp. i s tiskárnou. P. Sedláček, Týnec 84, 340 21 Janovice n. Úhl.

Mikropřečesor Motorola 6502 nebo jeho ekvivalent CO 14 806. M. Svetník, Žižkova 22, 794 01 Kroměříž.

Feritová hříčková jádra Ø 36x22 mm, A, 8000 - 60 páru, Ø 26x16 mm A, 4200 - 80 páru, trafoplechy EI50, tl. 0,35 mm (zelené). A. Molnář, Jesenského 66, 943 01 Stříbro.

Veškeré SMD; Polyskop aj. vči nf přistř.; CD desky, mat. na SAT podél ELRADU (smešovací 12 GHz, GaAs FET-Mitsubishi) vlnod R100 aj. + fit.; zahr. el. fit. - i kopie; min. konektory; μ-spinače; terč. a průch. C; vči tlumivky; ferity; průchody; zahr. vči nf T; Cu drát s páj. izol.; lit. o kláves. synt. a MIDI; pár. výk. nf T MOSFET; + dokum.; IO-CMOS, ECL, spec. zahr. IO + dokum.; SA5A231 (5230), SAA5243 (5241, 5241) - teletext; nahr. díly do BVTP, video apod.; a jiný rad. mater. šíř. sortimentu; možná výměna; trvalá spolupráce vitána, inz. platí stálé. J. Ježek, Dimitrovova 88, 272 04 Kladno.

Český předád pro CPC 6128-Snaider. R. Wonka, J. z Poděbrad 184/A, 412 01 Litoměřice.

Disketovou jednotku + fádi na ZX Spectrum. R. Koza, Řeřetkova 544, 181 00 Praha 8.

Knihu: Zajíček, „Byty do bytu“. J. Machač, Sladkovičova 11 142 00 Praha 4.

IO MHB4311, 4029, K500TM131. P. Neruda, Korejská 186/III, 337 01 Rykycany.

Double Tape deck Technics RS-B66 W, černý. 100% stav, cenu respektuji. Urbas Armand, Bystřice n. Olši 798, 739 95 Bystřice 1.

Nf černý, bílý, žlutý 7x7 sada do 30 Kčs. A. Bohdan, Revoluční 142, 284 01 Kutná Hora.

Integr. UPC-1185 HL. M. Čihelka, 331 65 Žihle 205.

IO - MM5314, krystal 100 kHz. J. Vlk, 512 43 Jablonec n. Jiz. 504.

Osciloskop BM 430, BM 463, H 3015 nebo podobný do (3000).

Uveďte popis a cenu. J. Janáček, 592 22 Vojnův Městec 272. B51, B589D, A1524 nebo ekvivalenty. O. Škoda, Podhradí 30, 507 21 Velká u Jičína.

ŘEDITELSTVÍ POŠTOVNÍ PŘEPRAVY PRAHA

přijme
do tříletého nově koncipovaného učebního oboru
**MANIPULANT POŠTOVNÍHO PROVOZU
A PŘEPRAVY**

chlapce

Učební obor je určen především pro chlapce, kteří mají zájem o zeměpis a rádi cestují. Absolventi mají uplatnění ve vlakových poštách, výpravních listovních uzávěrů a na dalších pracovištích v poštovní přepravě. Úspěšní absolventi mají možnost dalšího zvyšování kvalifikace – nástavba ukončená maturitou.

Výuka je zajištěna v Olomouci, ubytování a stravování je internátu a je zdarma. Učni dostávají zvýšené měsíční kapesné a obdrží náborový příspěvek ve výši 2000 Kčs.

Bližší informace podá
**Ředitelství poštovní přepravy, Praha 1, Opletalova 40,
PSČ 116 70, telef. 22 20 51-5, linka 277.**

Náborová oblast:
Jihomoravský, Severomoravský kraj.

2 ks AY-3-8610; 2 ks MM5314; 1 ks CiC-4820E; 2 ks BF926.
F. Gluch, 029 45 Rabčice 311.
Literaturu k počítači C64 strojový kód, hardware, ovládání sběrnic. D. Dočkal, Kravsko 111, 671 51.

VÝMĚNA

Počítač ZX Spectrum s interfejsem za počítač ZX Spectrum 128K + 2 a doplňkem, nebo prodám a kupím. Ing. Z. Šašek, 687 56 Pražice 255.

RŮZNÉ

Pro ZX Spektrum 48, 128, +2, +3, Delta, Didaktik poskytnu programy, manuály, zkušenosti. Ing. B. Holba, Boučkova 17, 162 00 Praha 6.

Zprostředkuj prodej, nákup či výměnu jakéhokoliv továrního zařízení pro radioamatéry. Nabídky a poplatky na adresu: M. Černý, Lounovací 14, 140 00 Praha 4.

Vyrábím zesilovače pro V KV a všechny TV pásmá s BF961 (až 210) IV.-V. TV s BFT66 (360), vyhýbka (30), BFR90, 91, 96 (60). O. Zolmajer, Zelená Lhota 10, 340 23 Dešenice.

REŠERŠE Z ČASOPISŮ

Amatérské radio A
Amatérské radio B
Elektronika
Sdělovací technika
Každý měsíc na disketu PC 360k
Cena rešerši ze 4 časopisů + disketa 200 Kčs.
Programové vybavení na vyhledávání článků podle zadání problematiky cena 1000 Kčs.
Předplatné na rok komplet 3200 Kčs (12 disket).

TRUKLA Hardware - Software servis
Na hrázi 169, 290 01 Poděbrady
tel. 0324 43 690

Programujem EPROM: 2708-27512; 74188-74S571 a μC8748. Písmo. M. Žeman, Febr. vif. 68, 907 01 Myjava.
Kdo provede rozšíření RC soupravy ACMOS AP-227 MK III o jeden kanál. J. Focet, 788 05 Libina 718.

Kdo poskytne návod na zdroj stejnosměrného vysokého napětí měnitelného v rozsahu 2 až 50 KV po 5 KV s vyhlašením asi 0,001 % - urychlovací napětí elektronového mikroanalyzátoru a
koupím literaturu o elektronové optice, materiály a prospekty EMA a REM. R. Fraňo, U stadionu 8, 350 02 Cheb.

Pro Sord M5 prodám víceúčelový program na kopirování, úpravu a opravu i poškozených a nečitelných souborů na kazetě. Pracuje s 32k nebo 64k RAM. Nepostradatelný pomocník při práci s magnetofonem! Podrobný popis zašlu zdarma. M. Skopec, Ostrovského 14, 150 00 Praha 5.

Kto predá alebo požičia schémum mag. A3 - VKV. Š. Kondor, 076 72 Vojany 76.

Kdo zapůjčí nebo poskytne schéma tranzistorového přijímače PHILIPS FM-AM de LUXE, type L 6X38T/02 a PHILIPS type 22 RL 165/02 R. Čestně vrátím nebo zaplatím. Ing. J. Solin, Dibrova 18/3, 911 01 Trenčín.

Objednávky přijímá

**Sloučené JZD Bánov, stř. 455,
687 54 Bánov u Uherského Brodu – písemně
nebo tel. 0633 – 94 12 11 až 5, linka 31.**

Prodáme organizacím zcela nové nepoužívané části počítačů JPR 12 R. Cena dle dohody. Chronotechna, k. p., 785 13 Sternberk.

**Správa pošt a telekomunikací
š. p.**

Technická ústředňa spojov
Bratislava, Kukučínova 52,
PSČ 832 25
ponúka

vol'nú kapacitu v novo vybudované výrobě plošných spojov IV. triedy s pokovenými otvormi.

Bližšie informácie na tel. čísle 21 11 12, kl. 660 (p. Nováková),
príp. 21 24 64 (Ing. Kucej).

HW doplňky, opravy, PD i původní software
pro počítače Sharp MZ, Commodore, Amiga,
Atari nabízí Microware. Informace PO BOX
216, 111 21 Praha 1 nebo tel. (02) 236 91 70.

PUUK UNIVERSAL
soukromý podnik
Praha 5, Plzeňská 209
tel. 52 50 52

Nabízíme laminátové parabolky s vysokou pevností s dvojitou tepelně nanášenou kovovou vrstvou. Průměry přímých parabol 60, 90, 100, 120 150 cm a offsetové 90, 120 cm v cenových relacích 1 800,- až 3 200,- Kčs, s kompletními držáky a možností dokoupit feedhorny a polarmounty. Poskytujeme záruku po dobu 18 měsíců.

GOULD

Electronics

- logické analyzátor, testery
 - osciloskopy, zapisovače, zdroje

**Zastoupení Intersim, Za strašnickou vozovnou 12, Praha 10,
ing. Petr Hejda, tel. (02) 77 07 96, 77 84 07**

JZD 9. květen se sídlem v Červené ve svých přidružených výrobách SÍTOTISK a KOVO

Vám nabízí

- výrobu různých propagačních a reklamních materiálů s použitím moderní sítotiskové techniky
 - zhotovení různých tiskopisů ofsetem (formát A3)
 - výrobu jednostranné i oboustranné desky plošných spojů podle podkladů zákaznika – ve 3. třídě přesnosti z vlastního nebo zákazníkem dodaného materiálu
 - tisk nepájivou maskou
 - potisk plošných spojů
 - lakování desek plošných spojů
 - možnost vrtání desek
 - zhotovení menších sérií desek ve vyšší třídě přesnosti fotocestou
 - výhledově možnost prokovených otvorů
 - provedení návrhu desky plošných spojů dle zadání
 - osazování a oživování desek i včetně zajištění materiálu podle dodané dokumentace, případně výrobu elektronických dílů podle zadání s využitím vlastní projekční kapacity
 - výrobu typových a atypických rozváděčů nízkého napětí (skříňové, nástenné, zapuštěné)
 - montáž zařízení, případně zajišťování servisu

S vašimi požadavky se obraťte na přidružené výroby
SÍTISK a KOVO při JZD 9. květen se sídlem v Červené,
784 01 Litovel, tel. 2303 Litovel UTO 644, telex 66 574

ČETLI
JSME

**Honyš, V.: REVIZE ELEKTRONICKÝCH
ZAŘÍZENÍ DO 1000 V. SNTL: Praha 1989.
312 stran, 151 obr., 30 tabulek. Cena váz.
25 Kčs.**

Stejně jako všechny druhy energie může být i elektřina jak dobrým služobou, tak nebezpečným párem člověka. Elektrická energie je dnes nejrozšířenější a s výjimkou některých oblastí v rozvojových zemích jsou s ní v denním kontaktu všichni lidé. Při tak širokém využití je přirozené, že byly postupem času vytvořeny přesné předpisy, zaručující maximální bezpečnost provozu zařízení či rozvodů elektřiny. Jejich účelem je udržovat zařízení v dobrém stavu a zajistit správné zacházení s nimi.

Stav elektrických zařízení může posoudit jen odborník, mající nejen dobré technické znalosti z oboru, ale který dokonale zná i předpisy, jež je nutno respektovat, aby byl provoz elektrických zařízení trvale bezpečný.

U nás byla k tomu účelu zřízena profese revizní technik. Jeho odborná způsobilost je ověřena orgánem státního odborného dozoru a na základě zkoušky je mu vydáno osvědčení této způsobilosti. Bezpečnost elektrických zařízení není však pochopitelně pouze věcí revizních techniků. Musí ji brát v úvahu všichni, kdo se na výrobě a provozu elektrotechnických zařízení podílejí, od konstruktérů a výrobců až po opraváře. Proto je tato kniha určena nejen revizním technikům, ale i elektromontérům a elektrodružbářům, a také „kutilům“ může poskytnout cenné poznatky.

Obsah je poměrně podrobně rozčleněn do 24 kapitol a lze jej orientačně shrnout výčtem jejich titulů. Jsou to: Význam revize pro bezpečnost elektrických zařízení (1); Odborná způsobilost v elektrotechnice (2); Posloupnost technických a právních norem (3); Technická normalizace (4); Státní zkoušebnictví (5); Elektrizační a telekomunikační zákon (6); Dozor nad bezpečnosti práce a technických zařízení (7); Právní opodstatnění revizi (8); Dokumentace elektrických zařízení (9); Bezpečnost práce při provádění revizi (10); Přehled základních elektrotechnických pojmu a vztahů (11); Úraz elektrickým proudem (12); Ochrana před nebezpečným dotykovým napětím (13); Dimenzování elektrických vedení (14); Jištění vedení proti nadprudom (15); Elektrická rozvodná zařízení (16); Elektrická vedení (17); Elektrická zařízení v různých prostředích (18); Připojování elektrických přístrojů a spotřebičů (19); Provedení elektrických zařízení (20); Ochrana před účinky atmosférické a statické elektřiny (21); Měření při revizích (22); Zkouška při revizích (23); Postup při revizi, revizní zpráva (24). Vzhledem k úzce vymezeným tématům mají jednotlivé kapitoly poměrně malý rozsah. Výjimkou jsou stati o základních elektrotechnických pojmech a vztazích, o provedení elektrických zařízení a o měření při revizích.

Za seznam doporučené literatury deseti titulů českých a jedné zahraniční publikace zařadil autor několik

KENWOOD Amateur Radio you can count on!

HANS ENTNER, DJ4YJ

obecní zástupce firmy

KENWOOD, ICOM, RICOH/FUNK

**CONFIDENCE, PATIENCE, AND THE PLANNED
ATTACK ON BRAZILIAN TRADE POLICIES**

TRIADYSPERIUM - TRIDYSPERIUM - TRIDYSPERIUM

ANALYSTS OF THE UNITED STATES
TOKYO, JAPAN

Radio, Fernsehen, Elektronik (NDR), č. 2/1990

Bez radosti? - Konektory pro elektronické přístroje pro domácností - Dvouvrstvové kondenzátory pro napájení paměti - Ziskávání naměřených údajů dlouhovlnných spekter pomocí MFA - Barevné rádiové spektrogramy Slunce - Zkoušení, programované paměti - Příčiny chyb velmi rychlých bipolárních prevodníků A/D - Zákažnické obvody 13 - Pro servis - Informace o polovodičových součástkách 256 - Měřicí pracoviště pro kazetové magnetofonové pásky - Nové magnetofonové kazety ORWO - LAS 700, šestnáctibitový laboratorní automatizační systém - Konfigurace počítače s osmibitovými mikropočítači - Inteligentní čidlo s U 8820 - Širokopásmový zesilovač a omezovací obvod - Inteligentní prevodník pro IMS-2 - Televizní projekční obrazovky - Mezinárodní veletrh spotřebního zboží v Budapešti.

Radio-Electronics (USA), č. 3/1990

Novinky z elektroniky, video - Přenosné pracoviště pro ověřování elektronických konstrukcí - Rozmítaný generátor 2 MHz Beckman Industrial FG3A - Metody testování - Nové výrobky - Univerzální laboratorní napájecí zdroj - Měřicí iontu v atmosféře - Stabilizátor (omezovač) nf úrovni - Všechno o bateriích - Použití výkonových integrovaných nf zesilovačů - Synchronní demodulace - Využití mikrokontroléru.

Radioelektronik (PLR), č. 12/1989

Z domova a ze zahraničí - Amatérské reproduktory pro vysoký výkon - Dvě rychlosti posuvu pásku v magnetofonu M 7010 - Čitač s měřicím kmitočtu do 100 MHz s IO Z80 ACTC - Družicový televizní systém Astra - Úprava BTVP Elektron 280 (380) pro příjem signálu v systému PAL - HiFi sestava Grundig Fine Arts 9000 - Indikátor z řady diod - Spínaci polovodičové součástky - Paket radio - Přijímač BTV Selena CR55D (2) - Příklady použití jazyčkových kontaktů - Polovodičové součástky sovětské výroby (2) - Elektronický otáčkoměr - zdroj vn pro jiskry k zapalování plynových spotřebičů - Radioamatérské rubriky - Obsah ročníku 1989.

Rádiotechnika (MR), č. 2/1990

Speciální IO 41, obvody TV a video - Běžící světlo (2) - MIDI 3 - Poplašné zařízení pro auta Super Alarm LED control - Konvertor pro transceiver 80/20 m (2) - Mikrofoni zesilovač s malým šumem - VFO s Franklinovým oscilátorem - Zdroj 13.5 V/20 A - Šestipásmová vertikální anténa - KV a VKV anténa nového typu - Videotechnika 74 - Kódovaná televize - TV servis (ITT Ideal Color 3537H) - Tabulky vysílačů, dodatek - Měřicí kmitočtu do 1 GHz - Programátor EPROM pro C16, C64 a ZX Spectrum - Optoelektronické členy z běžných součástek - Náhradní zapojení polovodičových součástek - Katalog IO: RCA CMOS 4543B - Je třeba měřit!

dodatek: vzory různých technických dokumentů a přehled používaných značek ve schématech elektrických zařízení. Text zakončuje věcný rejstřík.

Kniha, vydaná jako 92. svazek knižnice SNTL „Praktické elektrotechnické příručky“ shrnuje velké množství důležitých údajů z příslušné tématické oblasti. Proto bude dobrým pomocníkem zejména revizním technikům. Také elektromontéřům a údržbářům může posloužit ke zkvalitňování jejich práce.

V knize jsou shrnuti jak technické, tak právní předpisy, a proto může publikace poskytnout dobrou představu o širém problémům tohoto oboru všem, kdo se o bezpečnost provozu elektrických zařízení zajímají, nebo se na ni jakýmkoli způsobem podílejí.

JB

Krček, K.: AKVARISTICKÁ ELEKTROTECHNIKA. SNTL: Praha 1989. 312 stran, 226 obr., 38 tabulek. Cena váz. 40 Kčs.

Pro akvaristy - zvláště ty, kteří se zabývají chovem rybek ve větším měřítku či profesionálně - jsou pomocná zařízení, poháněná elektrickou energií, nezbytným pomocníkem v jejich činnosti. Elektrotechnika se uplatňuje v několika speciálních aplikacích - osvětlování, vytápění, pro pohon vzduchovacích zařízení, výrobu ozonu a samozřejmě k regulaci, popř. programování režimů v akváriích. Proto byl popis a výklad činnosti elektrotechnických zařízení podstatnou součástí již první publikace SNTL „Akvaristická technika od A do Z“, vydané v r. 1972 a opakováno v r. 1977. V další - dvoudílné publikaci téhož autora byl popis elektrotechnických zařízení oddělen od ostatní akvaristické tématiky do

samostatného svazku (1984). Loni vydaná kniha je druhým, doplněným vydáním této publikace. Podrobněji rozvádí koncepci knihy autor ve svém úvodě, tvůrcem krátkou první kapitolu.

Druhá a nejdélešší kapitola seznamuje čtenáře se základy elektrotechniky, součástkami, používanými v elektrotechnických zařízení pro akvaristy, jejich činností a využitím. Přehledně se uvádějí typy tuzemských dostupných součástek. Součásti kapitoly jsou i základní informace o elektrostalačním materiálu, spínacích, motoricích, signálnicích prvcích apod.. V závěru je popsán návrh síťových transformátorů a jejich konstrukce.

Osvětlování nádrží je věnován text třetí kapitoly. Autor popisuje jednak různé druhy světelných zdrojů a jejich vlastnosti, konstrukce osvětlovacích těles v akvaristice i regulace osvětlení pro tyto účely.

Vytápění nádrží je námětem čtvrté kapitoly. Popisuje se jednak různé druhy topných tělesek, jejich konstrukce a vlastnosti z hlediska dané aplikace, jednak regulátory a způsoby regulace.

Pátá kapitola pojednává o vzduchování a vzduchovacích zařízeních. Jsou popisovány principy činnosti a zásady konstrukčního řešení několika komerčních vzduchovadel zahraničních výrobců. Podrobně je popsána konstrukce vibracního kompresoru čs. původu. Protože dodávka kyslíku do vody patří stejně jako teplostní a světelné podmínky k nezbytným předpokladům udržení života ryb, je v této kapitole (ale i v ostatních) věnována pozornost i zálohování elektrického zdroje při výpadku síťového napájení.

S udržováním optimálních vlastností prostředí v akváriích souvisí i obohacování ozónem. Jeho výrobě a použití je věnována šestá kapitola knihy.

Jako poslední námět je v sedmém kapitulo probírá elektrický rozvod ve stojanech s důrazem na zajištění bezpečnosti provozu (na tu bylo upozorňováno i v popisu jednotlivých druhů zařízení v předchozích kapitolách).

Jako osmá kapitola je do publikace zařazen dodatek

Radio (SSSR), č. 2/1990

Mírový oceán k kosmu - O klasifikaci a terminologii - Syntezátor kmitočtu pro transceiver - Snížování kmitočtu kremenných rezonátorů - Poliautomatický blok zapalování - Zapojení výkonných sedmidípkových indikátorů LED - Aktivní nf filtr RC - Programové zabezpečení osobního radioamatérského počítače Orion-128 - Generátor zadávaného počtu impulsů - Příjem televizního signálu z družic, vstupní části - Televizor 4USCT - Nf zesilovač s korekcí dynamické charakteristiky - Záznamový zesilovač kazetového magnetofonu - Jakostrní nf zesilovač s elektronkami - Změna rozsahu přijímače Olympik - Přijímač s přímým zesílením s proměnnou šířkou pásmu - Dokončení stavby transceiveru s přímou proměnnou kmitočtu - Melodický automat - Zkoušečka pro opravy přijímačů - Konvertor pro VKV - Elektroluminiscenční indikátory ILT1 až ILT3 - Zkratky, často používané v časopisu.

Practical Electronics (V. Brit.), č. 2/1990

Novinky z elektroniky - Modern PE (konstrukční návody) - Počítače - Programátor EEPROM - Elektronický filtr, rozdělující monofonní signál na tři složky, umožňující třípásmovou korekci, popř. pseudo stereo - Základy elektroniky (2) - Pro čtenáře PE - Astronomická rubrika - Měření času a kmitočtu (2).

k druhému vydání. Seznamuje s výsledky rozvoje všech druhů elektrotechnických zařízení pro akvaristy v období od prvního vydání publikace. Kromě toho se v ní popisuje amatérská konstrukce digitálního pHmetru, teploměru a hledáče vodní hladiny.

Závěr knihy tvoří výčet literatury (50 titulů) a věcný rejstřík.

Forma výkladu je vhodná pro daný čtenářský okruh, tj. pro zájemce, jejichž hlavní náplní činnosti je chov ryb a nikoli elektrotechnika, jež je v tomto případě jenom nezbytným pomocným prostředkem. Pro ty je kniha nesporným přílohou. Z tohoto hlediska lze však mít připomínek k volbě rozvrhu jednotlivých částí výkladu - zejména teoretického. Pravděpodobně by knize nijak neuškodilo omízet výklad fyzikálních principů činnosti polovodičových součástek a vycházet již z jejich vlastností, jimž se projevují v obvodech. K pochopení podstaty činnosti stačí stručná, ale na první pohled názorná analogie, jak byla použita např. u diody a tyristoru na s. 63 knihy, a v textu se pak mohou uvést pouze praktické údaje, určující nebo omezuječí činnost součástek (přípustná napětí, proudy, výkonová ztráta apod.). Při příliš podrobném vysvětlování snadno může dojít i k nepřesnosti nebo špatnému výkladu - v knize se takový „šotek“ objevil např. na s. 15, kde ve velmi důležitém upozornění autor správně připomíná, jak dosazovat jednotky do vzorců. Druhá část věty však neplatí: do Ohmova zákona např. nelze dosazovat současně milivolty, miliampery a miliohmů.

Elektrotechnická zařízení pro akvaristy jsou u nás do značné míry záležitostí amatérské výroby, proto je vydání knihy velmi užitečné a stejně jako předchozí vydání jen málo početné literatury z této oblasti, i tato publikace bude bezpochyby brzy rozebrána. Stav naší báky komerčních zařízení pro akvaristy i poměrná zastarlost těch málo druhů zařízení, která jsou dostupná, může být podnětem k rozvoji amatérské konstrukční činnosti či zvýšené aktivity podnikání v tomto oboru.

-Ba-