7. Funciones de varias variables. Límites. Continuidad¹

El espacio euclídeo \mathbb{R}^n

Los elementos del conjunto \mathbb{R}^n se denominan *vectores* o *puntos*, dependiendo del contexto en que preferentemente se consideren. Recordemos que \mathbb{R}^n tiene estructura de espacio vectorial con las operaciones siguientes: si $\mathbf{u} = (u_1, \dots, u_n)$ y $\mathbf{v} = (v_1, \dots, v_n)$ son elementos de \mathbb{R}^n y $\lambda \in \mathbb{R}$, la *suma* de \mathbf{u} y \mathbf{v} es el vector $\mathbf{u} + \mathbf{v} = (u_1 + v_1, \dots, u_n + v_n)$, y el *producto* de λ por \mathbf{u} es el vector $\lambda \mathbf{x} = (\lambda x_1, \dots, \lambda x_n)$. En este contexto, los elementos de \mathbb{R}^n se denominan *vectores* y los números reales, *escalares*. Si se quieren remarcar aspectos más geométricos, los elementos de \mathbb{R}^n se denominan *puntos* y sus componentes se suelen denominar *coordenadas*.

Dados un punto $\mathbf{x} = (x_1, \dots, x_n)$ y un vector $\mathbf{v} = (v_1, \dots, v_n)$, existe un único punto $\mathbf{y} = (y_1, \dots, y_n)$ tal que $y_i - x_i = v_i$ para todo $i = 1, \dots, n$, que es el punto de coordenadas $y_i = x_i + v_i$ para todo $i = 1, \dots, n$. En estas condiciones, es natural utilizar las notaciones $\mathbf{y} = \mathbf{x} + \mathbf{v}$ y $\mathbf{v} = \mathbf{y} - \mathbf{x}$; el par ordenado (\mathbf{x}, \mathbf{y}) se denomina el representante de \mathbf{v} de origen \mathbf{x} y de extremo \mathbf{y} .

El producto escalar de dos vectores $\mathbf{u} = (u_1, \dots, u_n)$ y $\mathbf{v} = (v_1, \dots, v_n)$ es el número real

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \dots + u_n v_n,$$

y tiene las siguientes propiedades: para cualesquiera vectores ${\bf u},\,{\bf v}$ y ${\bf w},\,{\bf y}$ todo escalar $\lambda,$ se cumplen

- $\bullet \ \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u};$
- $u(\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w};$
- $(\lambda \mathbf{u}) \cdot \mathbf{v} = \lambda (\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (\lambda \mathbf{v}).$

La norma o módulo de un vector $\mathbf{u} = (u_1, \dots, u_n)$ es el número real

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + \ldots + u_n^2}.$$

Para cualesquiera vectores \mathbf{u} y \mathbf{v} y para todo escalar λ , se cumplen

- $\|\mathbf{u}\| \ge 0$;
- $\|\mathbf{u}\| = \mathbf{0} \text{ si, y sólo si, } \mathbf{u} = \mathbf{0};$
- $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.$

Un vector \mathbf{v} es unitario si $\|\mathbf{v}\| = 1$.

Suponemos conocido el concepto de ángulo que forman dos vectores. Señalemos que, si α es el ángulo que forman los vectores \mathbf{u} y \mathbf{v} , entonces

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \cdot \|\mathbf{v}\| \cdot \cos \alpha.$$

¹Extracto del libro "Cálculo para Ingeniería informática", por José A. Lubary y Josep M. Brunat, Edicions UPC Temes Clau 08, 2008

Topología de \mathbb{R}^n

La distancia entre dos puntos $\mathbf{x} = (x_1, \dots, x_n)$ e $\mathbf{y} = (y_1, \dots, y_n)$ de \mathbb{R}^n , denotada por $d(\mathbf{x}, \mathbf{y})$, es la norma del vector $\mathbf{y} - \mathbf{x}$:

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} - \mathbf{x}\| = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}.$$

Para cualesquiera puntos \mathbf{x} , \mathbf{y} , \mathbf{z} , se cumplen las propiedades siguientes:

- $d(\mathbf{x}, \mathbf{y}) \ge 0;$
- $d(\mathbf{x}, \mathbf{y}) = 0$ si, y sólo si, $\mathbf{x} = \mathbf{y}$;
- $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x});$
- $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ (designaldad triangular).

Dados un punto \mathbf{a} y un número real r > 0, se define la bola de centro \mathbf{a} y radio r, denotada por $\mathcal{B}_r(\mathbf{a})$, como el conjunto de puntos cuya distancia a \mathbf{a} es menor que r:

$$\mathcal{B}_r(\mathbf{a}) = \{ \mathbf{x} \in \mathbb{R}^n : d(\mathbf{a}, \mathbf{x}) < r \}.$$

Para n=1, este concepto coincide con el ya conocido de entorno de un punto, razón por la cual a veces se usa la palabra *entorno* de **a** como sinónimo de bola de centro **a**; para n=2, la bola de centro **a** y radio r es un círculo de centro **a** y radio r, excluida la circunferencia.

Sea A un subconjunto de \mathbb{R}^n . Un punto \mathbf{a} de \mathbb{R}^n es un punto frontera de A si todo entorno de \mathbf{a} contiene puntos de A y puntos que no son de A. La frontera de A es el conjunto formado por todos los puntos frontera de A, y se denota por $\mathcal{F}(A)$. Notemos que un punto frontera de A puede pertenecer o no al conjunto A, por lo que, en general, $\mathcal{F}(A)$ puede contener puntos de A y puntos que no son de A. Un conjunto A es cerrado si contiene todos los puntos de su frontera, es decir, si $\mathcal{F}(A) \subseteq A$; y un conjunto es abierto si no contiene ningún punto de su frontera, es decir, si $A \cap \mathcal{F}(A) = \emptyset$. (Subrayemos la obviedad de que abundan los conjuntos que no son ni abiertos ni cerrados.)

El conjunto $\overline{A} = A \cup \mathcal{F}(A)$ se denomina adherencia o clausura de A; ciertamente, un conjunto A es cerrado si, y sólo si, $A = \overline{A}$. El conjunto $A = A \setminus \mathcal{F}(A)$ se denomina interior de A; vemos que A es abierto si, y sólo si, A = A. Los conjuntos abiertos pueden también caracterizarse por la siguiente propiedad: un conjunto A es abierto si, y sólo si, todo punto de A tiene un entorno contenido en A.

Un conjunto A está acotado si está contenido en alguna bola; equivalentemente, si está contenido en un producto de intervalos.

Si un subconjunto de \mathbb{R}^n es cerrado y acotado, se dice que es *compacto*. El concepto de compacidad es de gran importancia en relación con la continuidad de funciones, como veremos más adelante.

Un punto $\mathbf{a} \in \mathbb{R}^n$ es un *punto de acumulación* de un conjunto A si toda bola centrada en \mathbf{a} contiene algún punto de A distinto de \mathbf{a} . Esto es equivalente a decir que toda bola centrada en \mathbf{a} contiene infinitos puntos de A.

Funciones de varias variables: conceptos generales

Sean n y m números naturales. Una función de n variables reales es una aplicación $f \colon D \to \mathbb{R}^m$, donde D es un subconjunto de \mathbb{R}^n denominado dominio de f. Si m=1, se dice que f es una función real o escalar. Si $m \geq 2$, se dice que f es una función vectorial (o también m-vectorial). La función f hace corresponder a cada elemento $\mathbf{x} = (x_1, x_2, \dots, x_n) \in D$ exactamente un elemento $\mathbf{y} \in \mathbb{R}^m$, el cual se denota por $\mathbf{y} = f(\mathbf{x})$; en este caso, se dice que \mathbf{y} es la imagen de \mathbf{x} y que \mathbf{x} es una antiimagen u original de \mathbf{y} . El conjunto de imágenes se denota por f(D) y se denomina el recorrido o la imagen de f.

Asociadas a una función vectorial $f: D \to \mathbb{R}^m$, con $D \subseteq \mathbb{R}^n$, existen m funciones escalares f_1, \ldots, f_m de dominio D definidas por la propiedad

$$f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x})),$$

es decir, $f_i(\mathbf{x})$ es la *i*-ésima coordenada de $f(\mathbf{x})$ para cada $\mathbf{x} \in D$. Las funciones f_i se denominan coordenadas de f, y suele utilizarse la notación $f = (f_1, f_2, \dots, f_m)$. A menudo, el estudio de una función vectorial se reduce al estudio de sus funciones coordenadas, por lo cual, si no se dice lo contrario, siempre nos referiremos a funciones reales, es decir, al caso m = 1.

Como en el caso de una variable, habitualmente queda definida una función mediante una expresión que permite calcular la imagen que corresponde a cada elemento, pero sin explicitar el dominio. En este caso, se sobreentiende que el dominio es el conjunto de puntos de \mathbb{R}^n para los que la expresión dada tiene sentido, es decir, el conjunto de puntos para los que es posible calcular la imagen.

Sea f una función real de dominio $D \subseteq \mathbb{R}^n$. El conjunto de puntos de \mathbb{R}^{n+1} de la forma $(x_1, x_2, \ldots, x_n, f(\mathbf{x}))$, con $\mathbf{x} = (x_1, x_2, \ldots, x_n) \in D$, se denomina gráfica de f. Como ya sabemos, para n = 1 la gráfica es habitualmente una curva de \mathbb{R}^2 . Para n = 2, la gráfica es usualmente una superficie de \mathbb{R}^3 . En relación con las gráficas, son de utilidad los denominados conjuntos de nivel de f. Sea $k \in \mathbb{R}$. El conjunto $C_k = \{\mathbf{x} \in D : f(\mathbf{x}) = k\}$ se denomina conjunto de nivel k de la función f. Para n = 2, se trata de curvas de \mathbb{R}^2 que reciben el nombre específico de curvas de nivel de f.

Los conceptos de inyectividad, operaciones con funciones y cotas superiores e inferiores son completamente análogos a los conceptos correspondientes para funciones de una variable.

Límites y continuidad

Sean f una función real de dominio D y ${\bf a}$ un punto de acumulación de D.

El l'imite de f en \mathbf{a} es el número real ℓ si, para cada entorno $\mathcal{B}_{\epsilon}(\ell)$ de ℓ , existe un entorno $\mathcal{B}_{\delta}(\mathbf{a})$ tal que todos los puntos $\mathbf{x} \in D \cap (\mathcal{B}_{\delta}(\mathbf{a}) \setminus \{\mathbf{a}\})$ tienen sus imágenes en $\mathcal{B}_{\epsilon}(\ell)$. Equivalentemente, si para cada $\epsilon > 0$ existe un $\delta > 0$ tal que

$$\mathbf{x} \in D \ \ \mathbf{y} \ \ 0 < d(\mathbf{a}, \mathbf{x}) < \delta \ \Rightarrow \ |f(\mathbf{x}) - \ell| < \epsilon.$$

El límite de f en ${\bf a}$, si existe, es único. La notación

$$\lim_{x \to \mathbf{a}} f(x) = \ell$$

significa que el límite de f en \mathbf{a} existe y que es ℓ .

El *límite* de f en \mathbf{a} es $+\infty$, y se escribe $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = +\infty$, si, para cada K > 0, existe un entorno $\mathcal{B}_{\delta}(\mathbf{a})$ tal que todos los puntos $\mathbf{x} \in D \cap (\mathcal{B}_{\delta}(\mathbf{a}) \setminus \{\mathbf{a}\})$ cumplen $f(\mathbf{x}) > K$. Equivalentemente, si

$$\mathbf{x} \in D \ \ \mathbf{y} \ \ 0 < d(\mathbf{a}, \mathbf{x}) < \delta \ \Rightarrow \ f(\mathbf{x}) > K.$$

El *límite* de f en \mathbf{a} es $-\infty$, y se escribe $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = -\infty$, si para cada K < 0 existe un entorno $\mathcal{B}_{\delta}(\mathbf{a})$ tal que todos los puntos $\mathbf{x} \in D \cap (\mathcal{B}_{\delta}(\mathbf{a}) \setminus \{\mathbf{a}\})$ cumplen $f(\mathbf{x}) < K$. Equivalentemente, si

$$\mathbf{x} \in D \ \ \mathbf{y} \ \ 0 < d(\mathbf{a}, \mathbf{x}) < \delta \ \Rightarrow \ f(\mathbf{x}) < K.$$

En las tres definiciones anteriores, la condición de que \mathbf{a} sea un punto de acumulación de D es un requisito para que el conjunto $D \cap (\mathcal{B}_{\delta}(\mathbf{a}) \setminus \{\mathbf{a}\})$ no sea vacío, sea cual sea δ . Sean $C \subseteq \mathbb{R}^n$ y \mathbf{a} un punto de acumulación de $C \cap D$. El límite de f en \mathbf{a} según el subconjunto C se define de manera análoga, sustituyendo D por $D \cap C$ en las definiciones anteriores. Un caso particular importante es el de los límites direccionales, para los cuales el subconjunto C es una recta que pasa por \mathbf{a} . Se deduce fácilmente que, si el límite de f en \mathbf{a} es ℓ , entonces el límite de f en \mathbf{a} según cualquier subconjunto C (tal que \mathbf{a} sea un punto de acumulación de $C \cap D$) también es ℓ ; análogamente, con $+\infty$ y $-\infty$. Esta propiedad se utiliza a menudo como técnica para demostrar que no existe el límite de una función f en un punto \mathbf{a} : basta calcular los límites de f en \mathbf{a} según dos subconjuntos y comprobar que estos límites son distintos.

El comportamiento de los límites respecto a las operaciones y desigualdades es similar al del caso n=1 (siempre que la similitud tenga sentido), pero el cálculo efectivo de límites puede ser considerablemente más complicado.

Una función f es continua en un punto \mathbf{a} de su dominio D si

$$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a}).$$

Como en el caso de una variable, esta condición equivale a las tres siguientes.

(i) existe
$$\ell = \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x})$$
 y es un número real; (ii) $\mathbf{a} \in D$; (iii) $\ell = f(\mathbf{a})$.

Si se cumple la condición (i), pero no la (ii) o la (iii), entonces se dice que f tiene una discontinuidad evitable en \mathbf{a} . En este caso, se puede definir una nueva función F por $F(\mathbf{a}) = \ell$ y $F(\mathbf{x}) = f(\mathbf{x})$ para todo $\mathbf{x} \in D$, $\mathbf{x} \neq \mathbf{a}$. La función F difiere de f sólo en el punto \mathbf{a} , en el que F es continua y f no. Se dice entonces que F es la prolongación por continuidad de f en \mathbf{a} . Si f no es continua en \mathbf{a} y la discontinuidad no es evitable, se dice que f tiene una discontinuidad esencial en \mathbf{a} .

La relación de la continuidad con las operaciones es la misma que la que se ha visto para el caso n = 1.

Una función f es continua en $A \subseteq \mathbb{R}^n$ si es continua en todo punto $\mathbf{a} \in A$.

El resultado más importante en cuanto a la continuidad en conjuntos es el siguiente teorema.

Teorema de Weierstrass. Si $K \subseteq \mathbb{R}^n$ es un compacto y $f: K \to \mathbb{R}^m$ es una función continua en K, entonces f(K) es un compacto de \mathbb{R}^m .

Como consecuencia, se obtiene el siguiente corolario.

Corolario. Si f es una función real continua definida en un compacto $K \subseteq \mathbb{R}^n$, entonces existen \mathbf{a} y \mathbf{b} en K tales que $f(\mathbf{a}) \leq f(\mathbf{x}) \leq f(\mathbf{b})$ para todo $\mathbf{x} \in K$.

Menos formalmente, el corolario anterior asegura que una función definida en un compacto alcanza máximo y mínimo absolutos en dicho compacto.

Coordenadas polares

Sea $\mathbf{a} = (a_1, a_2)$ un punto de \mathbb{R}^2 . Es fácil ver que la función (denominada cambio a coordenadas polares centradas en (a_1, a_2)) $p: [0, +\infty) \times \mathbb{R} \to \mathbb{R}^2$, definida por $p(r, \alpha) = (a_1 + r \cos \alpha, \ a_2 + r \sin \alpha)$, es exhaustiva y continua en todo punto de su dominio. Esta función y sus propiedades se utilizan con frecuencia para calcular el límite de funciones de dos variables. Sea $f: D \to \mathbb{R}$ una función real, con $D \subseteq \mathbb{R}^2$, y $\mathbf{a} = (a_1, a_2)$ un punto de acumulación de D. Para cualquier α , se cumple $p(0, \alpha) = \mathbf{a} = (a_1, a_2)$. Si existe $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x})$, para cualquier α_0 fijado, tenemos la igualdad

$$\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = \lim_{(r,\alpha)\to(0,\alpha_0)} (f(p(r,\alpha)) = \lim_{(r,\alpha)\to(0,\alpha_0)} f(a_1 + r\cos\alpha, a_2 + r\sin\alpha).$$

Recíprocamente, si para cada α_0 existe el límite de la derecha, entonces existe el de la izquierda y ambos coinciden. Por ejemplo, si $f(a_1 + r \cos \alpha, a_2 + r \sin \alpha) = h(r)g(\alpha)$ para ciertas funciones h y g, y la función $g(\alpha)$ está acotada y lím $_{r\to 0} h(r) = 0$, entonces lím $_{\mathbf{x}\to \mathbf{a}} f(\mathbf{x}) = 0$.