Université de Batna 2 Département de Mathématiques L2 SAD S4 Variables aléas multiples 2021/2022

TD 2

Exercice 1

Considérons la matrice $\Sigma = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}$.

- 1- Montrer qu'il existe un vecteur gaussien $X = (X_1, X_2, X_3)^T$ de moyenne $\mu = (0, 1, 1)^T$ et de matrice de covariance Σ .
- 2- Préciser l'indépendance entre les coordonnées de X.
- 3- Posons $Y_1 = X_1 + X_2$, $Y_2 = \alpha X_1 + 2X_2 + \beta X_3$, $Y_3 = -X_1 X_2 + X_3$.
 - a- Montrer que $Y = (Y_1, Y_2, Y_3)^T$ est vecteur gaussien.
 - b- Les v.a. Y_1 , Y_2 , Y_3 sont-elles indépendantes ?
 - c- Pour quelles valeurs de α , β , Y_2 , Y_3 sont indépendants ?

Exercice 2

Soit
$$X = (X_1, X_2, X_3)^T \sim N(0_{\mathbb{R}^3}, \Sigma_X)$$
 avec $\Sigma_X = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.

- 1- Quelle est la loi de $(X_1, X_2)^T$?
- 2- Posons $Y = aX_1 + X_2$, pour quelle valeur de a, Y et X_1 sont-elles indépendantes ? E(Y) = ?

Exercice 3

Soit
$$X = (X_1, X_2, X_3)^T \sim N(0_{\mathbb{R}^3}, \Sigma_X)$$
 avec $\Sigma_X = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & 1 \\ -2 & 1 & 5 \end{pmatrix}$.

- 1- Prouver que $det(\Sigma_X) = 0$. Le vecteur X possède-t-il une densité ?
- 2- Quelle est la valeur de a pour que $Y = X_2 aX_1$ et X_1 soient indépendants ? Calculer var(Y) et en déduire la loi de $(X_1, Y)^T$.