Experiment 1.3

1. Aim:

Demonstration of association rule mining using Apriori algorithm

2. Objective:

To finds interesting associations and relationships among large sets of data items.

3. Script and Output:

Apriori algorithm is a popular algorithm used in association rule mining that scans datasets to identify frequent itemsets and generate association rules. It employs a bottom-up approach by generating candidate sets and iteratively pruning infrequent itemsets. It is widely used in market basket analysis and recommendation systems.

Association rule is a pattern or relationship between variables in a dataset that are often co-occurring. It is a type of unsupervised learning that discovers hidden associations and correlations among the data. Association rules are used in various applications such as market basket analysis, customer segmentation, and recommendation systems.

CODE-

```
#Saumyamani Bhardwaz
#20BCS1682
# Apriori algorithm
                             #association rules
library(arules)
library(arules)
library(arulesViz)
library(RColorBrewer)
                              #association rules visualization
                              #just for the sake of colors
# import data set
data("Income")
# using apriori() function
# list contaning support and confidence values
rules <- apriori(Income, parameter = list(supp = 0.01, conf = 0.2))
# using inspect() function
inspect(rules[1:10])
# using itemFrequencyPlot() function
arules::itemFrequencyPlot(Income, topN = 5,
                           col = brewer.pal(8, 'Set2'),
                           main = 'Relative Item Frequency Plot',
                           type = "relative",
                           ylab = "Item Frequency (Relative)")
```

OUTPUT-

```
R 4.2.2 · D:/Sem-6/Data Mining & R/Exp3/
       > source("D:/Sem-6/Data Mining & R/Exp3/ScriptClassWork.R", echo=TRUE)
        > #20BC51682
       > # Apriori algorithm
       > library(arules)
                                     #association rules
       > library(arulesviz)
                                      #association rules visualization
       > librarv(RColorBrewer)
                                     #just for the sake of colors
       > # import data set
       > data("Income")
       > # using apriori() function
       > # list containing support and confidence values
        > rules <- apriori(Income, parameter = list(supp = 0.01, conf = 0.2))
       Apriori
       Parameter specification:
        confidence minval smax arem aval original Support maxtime support minlen maxlen target ext
              0.2 0.1 1 none FALSE
                                                     TRUE 5 0.01 1 10 rules TRUE
       Algorithmic control:
        filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
       Absolute minimum support count: 68
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[50 item(s), 6876 transaction(s)] done [0.00s]. sorting and recoding items ... [49 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 5 6 7 8 9 10 done [1.00s].
writing ... [1724743 rule(s)] done [1.17s].
creating S4 object ... done [0.83s].
> # using inspect() function
> inspect(rules[1:10])
     1hs rhs
                                                                  support confidence coverage lift
    {} => {householder status=live with parents/family} 0.2050611 0.2050611 1
{} => {dual incomes=yes} 0.2533450 0.2533450 1
[2]
                                                                  0.2755963 0.2755963 1
[3] {} => {type of home=apartment}
                                                                 0.2947935 0.2947935 1
0.3081734 0.3081734 1
     {} => {education=college graduate}
[4]
[5] {} => {number in household=2+}
                                                                0.3392961 0.3392961 1
0.3534031 0.3534031 1
[6] {} => {occupation=professional/managerial}
     {} => {years in bay area=1-9}
[7]
[8] {} => {householder status=own}
                                                                 0.3757999 0.3757999 1
[9] {} => {income=$40,000+}
[10] {} => {number of children=1+}
                                                                  0.3775451 0.3775451 1
0.3781268 0.3781268 1
     count
[1] 1410
[2] 1742
[3] 1895
[4] 2027
[5] 2119
[6]
     2333
[7] 2430
[8] 2584
[9] 2596
[10] 2600
> # using itemFrequencyPlot() function
> arules::itemFrequencyPlot(Income, topN = 5,
                                col = brewer.pal(8, 'Set2'),
         .... [TRUNCATED]
```

