Nov 24 Lecture 20 $Z-N(c,1) \Rightarrow M_z(t) = e^{t^2/2}$ X1, ..., X2 id Some Distribution 4, 52 How is Condistributed h is large? - The Slandardized X SE = 1 Cn= X-u mean=O=U Cn = Z1 + ooo + Zn such That: 7 $M_{c_{1}}(t) = (M_{2}(t))^{n} = (M_{2}$ $= E \left[1 + \{x + \frac{t^2 x^2}{2!} + \dots \right]$ Taylor Series

- 1	
	end of Prob.
	Begin of Stats. #Of ppl. who lives mushiooms in this dass
	$\hat{P} = \frac{7}{18} = 0.89$
	Sn=# of people in this class.
	Probability That Someone Lives Mushrooms
	What is probability? (1) Prob: Model Parameter.
-	1) Prob. Model Parameter.
	(2) Population Proportion
-	Imagine a "real percentage" of mushroom Lovers worldwide,
	humanwide.
_	
a)	Goal: Find p con'T = Impossible P is unknewable
6	Goal: Estimate Pusing) + H is cossible. How? -> Use & to quess/ness o.
)	Goali Estimate pusing His possible. How? -> Use ô to guess/infer p.
	Lyop hat"
	Population Parameters are ununowable!
	Α
	Best Guess of p? -> p is the best guess, since p≈p. Because P -> p by CLT
	By Central Limit Thin
i i	
	Interval Guess of p?