Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 17

Matrix-Chain Multiplication

• Given a chain of matrices $\langle A_1, A_2, ..., A_n \rangle$, where for i = 1, 2, ..., n matrix A_i has dimensions $p_{i-1}x$ p_i , fully parenthesize the product $A_1 \cdot A_2 \cdot \cdot \cdot A_n$ in a way that minimizes the number of scalar multiplications.

$$A_1 \cdot A_2 \cdot A_i \cdot A_i \cdot A_{i+1} \cdot A_n$$

 $p_0 \times p_1 \cdot p_1 \times p_2 \cdot p_{i-1} \times p_i \cdot p_i \times p_{i+1} \cdot p_{n-1} \times p_n$

1. The Structure of an Optimal Parenthesization

Notation:

$$A_{i...j} = A_i A_{i+1} \cdot A_j, i \leq j$$

• For i < j:

$$A_{i...j} = A_i A_{i+1} \bullet \bullet \bullet A_j$$

$$= A_i A_{i+1} \bullet \bullet \bullet A_k A_{k+1} \bullet \bullet \bullet A_j$$

$$= A_{i...k} A_{k+1...j}$$

• Suppose that an optimal parenthesization of $A_{i...j}$ splits the product between A_k and A_{k+1} , where $i \le k < j$

2. A Recursive Solution

```
m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
```

- We do not know the value of k
 - There are j i possible values for k: k = i, i+1, ..., j-1
- Minimizing the cost of parenthesizing the product $A_i A_{i+1} \cdot \cdot \cdot A_i$ becomes:

3. Computing the Optimal Costs

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- Length = 1: i = j, i = 1, 2, ..., n
- Length = 2: j = i + 1, i = 1, 2, ..., n-1

m[1, n] gives the optimal solution to the problem

Compute elements on each diagonal, starting with the longest diagonal. In a similar matrix s we keep the optimal values of k.

3

Memoization

- Top-down approach with the efficiency of typical bottom-up dynamic programming approach
- Maintains an entry in a table for the solution to each subproblem
 - memoize the inefficient recursive top-down algorithm
- When a subproblem is first encountered its solution is computed and stored in that table
- Subsequent "calls" to the subproblem simply look up that value

Memoized Matrix-Chain

Alg.: MEMOIZED-MATRIX-CHAIN(p)

- 1. $n \leftarrow length[p]$
- 2. **for** i ← 1 **to** n
- 3. **do for** $j \leftarrow i to n$
- 4. **do** m[i, j] $\leftarrow \infty$

Initialize the **m** table with large values that indicate whether the values of **m[i, j]** have been computed

5. **return** LOOKUP-CHAIN(p, 1, n) Top-down approach

Memoized Matrix-Chain

```
Alg.: LOOKUP-CHAIN(p, i, j)
                                                         Running time is O(n<sup>3</sup>)
     if m[i, j] < ∞
              then return m[i, j]
2.
     if i = j
3.
        then m[i, j] \leftarrow 0
                                         m[i, j] = min \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_i\}
5.
        else for k \leftarrow i to j - 1
                                         i≤k<i
6.
                         do q \leftarrow LOOKUP-CHAIN(p, i, k) +
                                 LOOKUP-CHAIN(p, k+1, j) + p_i
     _{1}p_{k}p_{i}
                              if q < m[i, j]
```

cs**then** m[i,ri] + q

8.

Dynamic Progamming vs. Memoization

- Advantages of dynamic programming vs. memoized algorithms
 - No overhead for recursion
 - The regular pattern of table accesses may be used to reduce time or space requirements
- Advantages of memoized algorithms vs. dynamic programming
 - More intuitive

Optimal Substructure - Examples

Assembly line

Fastest way of going through a station j contains:
 the fastest way of going through station j-1 on
 either line

Matrix multiplication

- Optimal parenthesization of $A_i \cdot A_{i+1} \cdot A_j$ that splits the product between A_k and A_{k+1} contains:
 - an optimal solution to the problem of parenthesizing A_{i..k}
 - an optimal solution to the problem of parenthesizing $A_{k+1..j}$

Parameters of Optimal Substructure

- Intuitively, the running time of a dynamic programming algorithm depends on two factors:
 - Number of subproblems overall
 - How many choices we examine for each subproblem
- Assembly line
 - $-\Theta(n)$ subproblems (n stations)

Θ(n) overall

- 2 choices for each subproblem
- Matrix multiplication:
 - $-\Theta(n^2)$ subproblems (1 ≤ i ≤ j ≤ n)
 - At most n-1 choices

Θ(n³) overall

Longest Common Subsequence

Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$

 $Y = \langle y_1, y_2, ..., y_n \rangle$

find a maximum length common subsequence (LCS) of X and Y

• E.g.:

$$X = \langle A, B, C, B, D, A, B \rangle$$

- Subsequence of X:
 - A subset of elements in the sequence taken in order (but not necessarily consecutive)

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $X = \langle A, B, C, B, D, A, B \rangle$
 $Y = \langle B, D, C, A, B, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$

- (B, C, B, A) and (B, D, A, B) are longest common subsequences of X and Y (length = 4)
- (B, C, A), however is not a LCS of X and Y

Brute-Force Solution

- For every subsequence of X, check whether it's a subsequence of Y
- There are 2^m subsequences of X to check
- Each subsequence takes Θ(n) time to check
 - scan Y for first letter, from there scan for second,
 and so on
- Running time: Θ(n2^m)

1. Making the choice

$$X = \langle A, B, D, E \rangle$$

 $Y = \langle Z, B, E \rangle$

 Choice: include one element into the common sequence (E) and solve the resulting subproblem

$$X = \langle A, B, D, G \rangle$$
 $X = \langle A, B, D, G \rangle$
 $Y = \langle Z, B, D \rangle$ $Y = \langle Z, B, D \rangle$

 Choice: exclude an element from a string and solve the resulting subproblem

Notations

• Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ we define the i-th prefix of X, for i = 0, 1, 2, ..., m $X_i = \langle x_1, x_2, ..., x_i \rangle$

• c[i, j] = the length of a LCS of the sequences $X_i = \langle x_1, x_2, ..., x_i \rangle \text{ and } Y_i = \langle y_1, y_2, ..., y_i \rangle$

2. A Recursive Solution

Case 1:
$$x_i = y_j$$

e.g.: $X_i = \langle A, B, D, E \rangle$
 $Y_j = \langle Z, B, E \rangle$
 $c[i, j] = c[i - 1, j - 1] + 1$

- Append $x_i = y_j$ to the LCS of X_{i-1} and Y_{j-1}
- Must find a LCS of X_{i-1} and Y_{j-1} ⇒ optimal solution to a problem includes optimal solutions to subproblems
 CS 477/677 Lecture 17

2. A Recursive Solution

```
Case 2: x_i = y_j

e.g.: X_i = \langle A, B, D, G \rangle

Y_j = \langle Z, B, D \rangle

c[i, j] = max \{ c[i - 1, j], c[i, j-1] \}
```

- Must solve two problems
 - find a LCS of X_{i-1} and Y_j : $X_{i-1} = \langle A, B, D \rangle$ and $Y_j = \langle Z, B, D \rangle$
 - find a LCS of X_i and Y_{j-1} : $X_i = \langle A, B, D, G \rangle$ and $Y_j = \langle Z, B \rangle$
- Optimal solution to a problem includes optimal solutions to a problem includes

3. Computing the Length of the LCS

4. Additional Information

A matrix b[i, j]:

- For a subproblem [i, j] it tells us what choice was made to obtain the optimal value
- If $x_i = y_j$ b[i, j] = \(\frac{1}{2} \)
 - Else, if $c[i 1, j] \ge$ c[i, j-1] $b[i, j] = " \uparrow "$ else

$$b[i, j] = " \leftarrow"$$

LCS-LENGTH(X, Y, m, n)

```
1. for i ← 1 to m
        do c[i, 0] \leftarrow 0
                                   The length of the LCS is zero if one
    for j ← 0 to n
                                   of the sequences is empty
       do c[0, j] ← 0
5. for i \leftarrow 1 to m
         do for j ← 1 to n
6.
                     do if x_i = y_i
7.
                            then c[i, j] \leftarrow c[i - 1, j - 1] + 1 Case 1: x_i = y_j
8.
                                   b[i, j ] ← * "
9.
                            else if c[i - 1, j] \ge c[i, j - 1]
10.
                                     then c[i, j] \leftarrow c[i - 1, j]
11.
12.
                                           b[i, j] ← "↑"
                                                                   Case 2: x_i \neq y_i
13.
                                     else c[i, j] \leftarrow c[i, j - 1]
14.
                                           b[i, j] ← "←"
15.return c and b
```

Running time: Θ(mn)

Example

Readings

- For this lecture
 - Chapter 14
 - Coming next
 - Chapter 14