

## Chapter6: Registers and Counters

Lecture 4- Problem-Solving Session

Engr. Arshad Nazir, Asst Prof Dept of Electrical Engineering SEECS **Problem6-6**: Design a four-bit shift register with parallel load, using D flip-flips. There are two control inputs: Shift and Load. When Shift=1, the contents of the register are shifted by one position. New data are transferred into the register when Load=1 and Shift=0. If both control inputs are equal to 0, the contents of the register do not change.

Fall 2021

Fall 2021

3

**Problem6-7**: Draw the logic diagram of a 4-bit register with four D flip-flops and four 4:1 multiplexers with mode selection inputs S1 and S0. The register operates according to the following function table.

| 51 | s <sub>0</sub> | Register Operation                               |  |  |  |
|----|----------------|--------------------------------------------------|--|--|--|
| 0  | 0              | No change                                        |  |  |  |
| 0  | 1              | Complement the four outputs                      |  |  |  |
| 1  | 0              | Clear register to 0 (synchronous with the clock) |  |  |  |
| 1  | 1              | Load parallel data                               |  |  |  |

Fall 2021

5

**Problem 6-13:** Show that a BCD ripple counter can be constructed from a 4-bit binary ripple counter with asynchronous Clear input and a NAND gate that detects the occurrence of the count 1010.



**Problem 6-19:** The flip-flop input equations for a BCD counter using T flip-flops are given in section 6-4. Obtain the input equations for a BCD counter that uses

- (a) JK flip-flops and
- (b) D flip-flops
- (b) From the state table in Table 6.5:

$$D_{Q1} = Q'_1$$
  
 $D_{Q2} = \sum (1, 2, 5, 6)$   
 $D_{Q4} = \sum (3, 4, 5, 6)$   
 $D_{Q8} = \sum (7, 8)$   
Don't care:  $d = \sum (10, 11, 12, 13, 14, 15)$ 

Simplifying with maps:

$$D_{Q2} = Q_2 Q'_1 + Q'_8 Q'_2 Q_1$$

$$D_{Q4} = Q_4 Q'_1 + Q_4 Q'_2 + Q'_4 Q_2 Q_1$$

$$D_{Q8} = Q_8 Q'_1 + Q_4 Q_2 Q_1$$

Fall 2021

**Problem 6-28:** Design a 3-bit counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Use D flip-flops. Is your counter self-correcting.

| Present | Next  |   |                  |                 |       |               |                |
|---------|-------|---|------------------|-----------------|-------|---------------|----------------|
| state   | state |   |                  |                 |       |               |                |
| ABC     | ABC   |   |                  | $\backslash BC$ | 1     |               |                |
| 000     | 001   | - |                  | A               | 00    | 01            | 11             |
| 001     | 010   |   |                  | 0               | $m_0$ | $m_1$         | m <sub>3</sub> |
| 010     | 100   |   |                  | U               |       |               | X              |
| 011     | XXX   |   |                  |                 | $m_4$ | $m_5$         | $m_7$          |
| 100     | 110   |   | $\boldsymbol{A}$ | 1               | 1     | X             | X              |
| 101     | XXX   |   |                  |                 |       |               |                |
| 110     | 000   |   |                  |                 |       |               | C              |
| 111     | xxx   |   |                  |                 |       | $D_A = A \in$ | ∌ <i>B</i>     |
|         |       |   |                  |                 |       | . <del></del> |                |

Fall 2021 8

10

 $m_{6}$ 



**Problem:** Design a synchronous modulo-6 up-down counter with a single input line x. The counter uses a creeping code, advances following x=0 and regresses for x=1. it operates as under:-

When x=0: counts up through the sequence 000, 001, 011, 111, 110, 100, and repeat

When x=1: counts down through the sequence 000, 100, 110, 111, 011, 001, and repeat.

- (a) Draw the state diagram
- (b) List the state transition table
- (c) Design the modulo-6 up-down counter with D flip-flops and external AND, OR, and NOT gates as required.



**Figure** State table and transition table for a modulo-6 up-down counter.

|                       | WX |    |    |    |    |    |
|-----------------------|----|----|----|----|----|----|
|                       |    | 00 | 01 | 11 | 10 |    |
| yz                    | 00 |    |    | 1  | 1  |    |
|                       | 01 |    | ×  | ×  |    | VZ |
|                       | 11 | 1  | 1  |    |    | yz |
|                       | 10 | ×  | 1  | 1  | ×  |    |
| $D_1 = x'y_2 + xy_3'$ |    |    |    |    |    |    |

|    |    | WX |    |    |    |  |  |  |
|----|----|----|----|----|----|--|--|--|
|    |    | 00 | 01 | 11 | 10 |  |  |  |
| yz | 00 | 1  |    |    |    |  |  |  |
|    | 01 | 1  | ×  | ×  |    |  |  |  |
|    | 11 | 1  |    | 1  | 1  |  |  |  |
|    | 10 | ×  |    | 1  | ×  |  |  |  |
| D  |    |    |    |    |    |  |  |  |

$$D_3 = x'y_1' + xy_2$$



Figure Design of Modulo-6 up-down Counter with D Flip-Flops and external gates

## The End