3.1-3.4 Orbits & Iteration

In: For a function F, Fr(x) is the n-fold composition of F with itself, or, Fr(x) is the nth iterate of F evaluated at x.

Ea) If
$$F(x) = x^2 + 1$$
, then $F^2(x) = F(F(x)) = (x^2 + 1)^2 + 1$

If x_0 : Given $x_0 \in \mathbb{R}$, we define the orbit of x_0 under x_0 to be the sequence x_0 , $x_1 = F(x_0)$, $x_2 = F^2(x_0)$,..., $x_n = F^n(x_0)$.

The point x_0 is called the seed of the orbit.

Ex) If
$$F(x) = \sqrt{x}$$
 and $x_0 = 256$, Hen:
 $x_0 = 256$

$$x_1 = \sqrt{256} = 16$$

$$x_3 = \sqrt{4} = 2$$

Din: A fixed point is a point ro that satisfies F(x0) = x0. 7 Lp Orbit of a fixed point: x0, x0, x0,...

Den) The point to is periodic if $F^n(x_0) = x_0$ for some n>0. The least such n is called the prime period of the orbit.

.. If xo is periodic no with prime period n, then orbit of xo is just a repeating requence: xo, F(xo),..., Fn-1(xo),xo, F(xo),..., Fn-1(xo),...

Ofn) A point ro is called eventually fixed or eventually periodic if ro is not fixed/periodic, but some point on the orbit of ro is fixed or periodic.

Ex.1: For $F(x) = 2^3$, if x = 1 - p F(1) = 1, $F^2(1) = 1$, $F^3(1) = 1$ PEx.2: For $F(x) = 2^2 - 1$, if x = 0 - p F(0) = -1, $F^2(0) = F(-1) = 0$, $F^3(x) = F(0) = 0$ Ex.3: For $F(x) = 2^2$, if x = -1 - p F(-1) = 1, $F^2(-1) = 1$, $F^3(-1) = 1$ period 2.

Ex.4: For $F(x) = 2^2 - 1$, if x = 1 - p F(1) = 0, $F^2(1) = -1$, $F^3(1) = 0$, $F^4(1) = -1$

Some for simple functions can have orbits of great complexity!

n	2=0	2x = 0.1	7 = 0.01	A = 0.001
0	~40	0.1	0.01	0.001
Ĭ	- 2	-1.99	- 1.999	-1.999
2	2	1.960	1.999	1.999
3	2	1.842	1.998	1.999
4	2	1.393	1,993	1.999
	2	-0.597	1.971	1.999
5		-1.996	1.998 hr	
6	2	1.986	1.604	1.999
7	2		0.573	1.996
8	2	1.943	-1.671	1.984
9	ર	1.776		1.938
10	٤	1.154	0.793	1.755

3.5 2 The Doubling Function

$$\mathfrak{D}(x) = \begin{cases} 2x & 0 \leq x \leq 1/2 \\ 2x = 1 \end{cases}$$
 . Donain is half open, half closed $[0,1)$

or,
$$\mathfrak{D}(x) = 2x \mod 1$$
 ... $\mathfrak{D}(x)$ is fractional part of $2x$.

$$E_{2}$$
) $9(0.3) = 0.6$ $9(0.6) = 1.2 - 1 = 0.2$

3.62 Experiment

See Github. We consider the functions

a.
$$F(x) = x^2 - 2$$
, for $-2x < 2$

c. The doubling function D.