СИСТЕМИ ЧИСЛЕННЯ

Спосіб запису чисел за допомогою символів називається системою числення.

Унарна (одинична, різна) система числення - непозиційних система числення з єдиною цифрою, яка позначає 1.У якості єдиної «цифри» використовується «1», риска (|), камінчик, кісточка рахунків, вузлик, зарубка і ін. У цій системі число п записується за допомогою п одиниць. Наприклад, 3 в цій системі буде записано як |||. Мабуть, це хронологічно перша система числення кожного народу, хто заволодів рахунком

Зазвичай ми користуємося десятковою системою числення. Вона використовує для запису чисел цифри від θ до θ , тобто всього десятьма символами.

Також на значення чисел, записаних десятковою системою числення, впливає не тільки символи, з яких складається запис, а й їх розташування. Тобто 245 і 452 це різні числа, на відміну від унарної системи числення, в якій не важливе місце розташування засічок/вузликів, а тільки їхня кількість. Ця властивість називається позиційністю, а система числення, що її має, називається позиційною системою числення.

Місця розташування символів у числі називаються розрядами, нумеруються вони з права наліво. Розглянемо число 333. Найправіша трійка означає просто три. Лівіша трійка означає тридцять. Найлівіша трійка означає 300. Тепер складемо докупи значення розрядів: 300+30+3 = 333. Значення цифри 3 змінюється в залежності від розташування в 10 раз. Як відомо, зазвичай лічать якісь величини починаючи з одиниці, але розряди починають лічити з нуля, тобто найправіший розряд нульовий, а лівіший за нього - перший і т.д. Розглянемо десяткове число 238. Цифра 8 знаходиться в нульовому розряді, або розряді одиниць і важить як 8 одиниць, тобто 8. Цифра 3 знаходиться в першому розряді, або розряді десяток і важить як 3 десятки, тобто 30. Цифра 2 знаходиться в другому розряді, або розряді сотень і важить як дві сотні тобто 200. Тепер додаємо значення всіх розрядів числа і отримаємо його значення: 200+30+8=238. Довжину чисел визначають за його розрядністю. Тобто 2345 - чотирирозрядне число, а 43 - дворозрядне.

Десяткову систему числення іноді також називають **системою числення з** десятковою основою. Значення кожного окремого розряду в десятковій системі

числення дорівнює: число* $10^{\text{Номер розряду}}$

Розглянемо десяткове число 1981:

```
Розряд одиниць - 0 розряд: 10^{0*}1=1
Розряд десятків - 1 розряд: 10^{1*}8=80
Розряд сотень - 2 розряд: 10^{2*}9=900
Розряд тисяч - 3 розряд: 10^{3*}1=1000
Підсумуємо значення всіх розрядів: 1+80+900+1000=1981
```

Двійкова система числення використовує для запису чисел тільки два символи, зазвичай 0 (нуль) та 1 (одиницю). Двійкова система числення є позиційною системою числення, база якої дорівнює двом. Завдяки тому, що таку систему доволі просто використовувати у електричних схемах, двійкова система отримала широке розповсюдження у світі обчислювальних пристроїв.

Основа (кількість цифр): 2

Алфавіт (використовувані цифри): 0, 1

Двійкове число можна представити як послідовність будь-яких об'єктів, які можуть знаходитися в одному з двох можливих станів. Наприклад:

- числа, що можуть приймати значення 0 або 1:
- позиції, на яких можуть стояти хрестики або нулики: х о х о о х х
- вузли електричної схеми, які може бути, а може не бути заструмлено
- ділянки магнітної смужки, які можуть бути, а можуть не бути намагнічено

Застосування: у дискретній математиці, інформатиці, програмуванні.

Найпоширенішою для подання чисел у пам'яті комп'ютера ϵ двійкова система числення. За допомогою двійкового коду кодується вся інформація к комп'ютері. Для зображення чисел у цій системі необхідно дві цифри: 0 і 1, тобто достатньо двох стійких станів фізичних елементів. Ця система ϵ близькою до оптимальної за економічністю.

Переведення цілого числа з десяткової системи числення у будь-яку іншу здійснюється шляхом послідовного ділення числа на основу нової системи

числення. Ділення виконується до тих пір, поки остання частка не стане менше дільника. Отримані остачі від ділення, взяті у зворотному порядку, будуть значеннями розрядів числа в новій системі числення. Остання частка дає старшу цифру числа.

Приклад 1. Число 22₁₀ перевести в двійкову систему числення.

- 1. Спершу ділимо 22 (число, яке треба перевести з десяткової системи числення в двійкову) на 2 (основу двійкової системи числення). Ділитися без остачі, результат 11 записуємо, залишок від ділення 0.
- 2. Ділимо 11 (результат попереднього розподілу) на 2, результат 5 записуємо, залишок від ділення 1.
- 3. Ділимо 5 (результат попереднього розподілу) на 2, результат 2 записуємо, залишок від ділення 1.
- 4. Ділимо 2 (результат попереднього розподілу) на 2, результат 1 записуємо, залишок від ділення 0.
- 5. Результатом попереднього розподілу було 1, так що зупиняємо поділу, переходимо до записування результату
- 6. двійкового числа еквівалентом десятеричного числа 22 буде число, отримане записуванням залишків від ділення всіх кроків в зворотному порядку: від 1 отриманої на кроці 4, до 0 отриманого на кроці 1. В результаті отримуємо 10110

 22_{10} =10110₂ (в даному записі 10-ка та 2-ка в нижньому індексі позначає систему числення — десяткову та двійкову відповідно)

Приклад. Перевести число 11₁₀ в двійкову систему числення

Приклад. $251_{10} = (?)_2$

Переведення дробових чисел у двійкову систему:

- 1. Можна перевести окремо цілу частину числа і дробову
- 2. Вибирається ціла частина і переводиться за алгоритмом, наведеним вище
- 3. Дробова частина множиться на 2. Ціла частина результату множення записується до дробової частини результуючого числа.
- 4. Крок 3 повторюється, доки в дробовій частині не вийде 0

Приклад 1. Перевести 6,25₁₀ в двійкову систему числення

- 1. Ціла частина 6_{10} . $6 = 1 * 2^2 + 1 * 2^1 + 0 * 2^0 = 110_2$
- 2. Дробова частина 0,25₁₀
 - а. 0.25 * 2 = 0.5 (нуль записується, дробова частина залишається) 110.02
 - b. 0.5 * 2 = 1.0 (одиниця записується, у дробовій частині нуль алгоритм завершено) 110.01_2

	Ціла частина	Дробова частина
×	0	25
	2	
×	0	5
	2	
	1	0

Для **переведення** двійкового числа в десяткове необхідно його записати у вигляді многочлена, що складається з творів цифр числа і відповідного ступеня числа 2, і обчислити за правилами десяткової арифметики:

$$X_2 = A_{_{n}} \cdot 2^{_{n-1}} + A_{_{n-1}} \cdot 2^{_{n-2}} + A_{_{n-2}} \cdot 2^{_{n-3}} + \ldots + A_{_{2}} \cdot 2^{_{1}} + A_{_{1}} \cdot 2^{_{0}}$$

Той самий алгоритм, але простіше: Кожна цифра числа помножається на базу системи числення, в якій це число знаходиться, (для двійкової — 2) в степені його розряду. Число-еквівалент в десятковій системі числення знаходиться як сума усіх результатів множення.

Розглянемо на прикладі

$$43210$$
 розряди
 $10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$
 $= 16 + 2 + 1 = 19$

- 1. Починаємо з нумерації розрядів двійкового числа: починаючи з 0 для найправішого числа. Для числа 10011_2 , що має 5 розрядів (4, 3, 2, 1, 0), бачимо розряди написані над кожною цифрою числа
- 2. Далі помножаємо кожну цифру числа у двійковій системі на 2 в степені його розряду. І сумуємо результаті для кожної цифри. Для числа 10011₂ маємо:
 - першу цифру 1, що має розряд 4, множимо на 2^{4} : $1*2^4=16$
 - другу цифру 0, що має розряд 3, множимо на 2^{3} : $0*2^3=0$
 - третю цифру 0, що має розряд 2, множимо на 2^{2} : $0*2^2=0$
 - четверту цифру 1, що має розряд 1, множимо на $2^{1:}$ 1 * $2^1 = 2$
 - п'яту цифру 1, що має розряд 0, множимо на 2^{0} : $1*2^0=1$
 - сумуємо результати множення 16 + 0 + 0 + 2 + 1 = 19
 - отже $10011_2 = 19_{10}$

Для дробових чисел все те саме.

$$110,001_2 = 1 * 2^2 + 1 * 2^1 + 0 * 2^0 + 0 * 2^{-1} + 0 * 2^{-2} + 1 * 2^{-3} = 1 * 4 + 1 * 2 + 0 * 1 + 0 * 0,5 + 0 * 0,25 + 1 * 0,125 = 6,125$$

При переведенні зручно користуватися таблицею ступенів:

	1 ⁿ	2 ⁿ	3 ⁿ	4 ⁿ	5 ⁿ	6 ⁿ	7 ⁿ	8n	9n	10 ⁿ
1	1	2	3	4	5	6	7	8	9	10
2	1	4	9	16	25	36	49	64	81	100
3	1	8	27	64	125	216	343	512	729	1000
4	1	16	81	256	625	1296	2401	4096	6561	10000
5	1	32	243	1024	3125	7776	16807	32768	59049	100000
6	1	64	729	4096	15625	46656	117649	262144	531441	1000000
7	1	128	2187	16384	78125	279936	823543	2097152	4782969	10000000
8	1	256	6561	65536	390625	1679616	5764801	16777216	43046721	100000000
9	1	512	19683	262144	1953125	10077696	40353607	134217728	387420489	1000000000
10	1	1024	59049	1048576	9765625	60466176	282475249	1073741824	3486784401	10000000000

Приклад. $11101000_2 = (?)_{10}$

$$11101000_{2} = 1 \cdot 2^{7} + 1 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0} = 232_{10}$$

Арифмечні дії в двійковій системі проводиться за тими ж правилами, що і в десятковій системі числення. Проте оскільки в двійковій системі числення використовуються тільки дві цифри 0 і 1, то арифметичні дії виконуються простіше, ніж десятковій системі.

Арифметика в двійковій системі числення заснована на використанні таблиць додавання, віднімання та множення.

	Таблиця додавання						бли эже	іця ння	7
0	+	0	=	0	0	•	0	=	0
0	+	1	=	1	0	•	1	=	0
1	+	0	=	1	1		0	П	0
1	+	1	= /	(1)0	1		1	=	1

	Таблиця віднімання							
0	1	0	11	0				
1	_	0	П	1				
1	ı	1	П	0				
1)0	1	1	П	1				

Складання двійкових чисел.

Додавання виконується поразрядно стовпчиком, починаючи з молодшого розряду і використовуючи таблиці двійкового складання вище:

Приклад 1. Виконати додавання двійкових чисел 11012+ 11102

	1			
	₊ 1	1	0	1
	1	1	1	0
1	1	0	1	1

- 1. Складаємо 0-ві розряди чисел: 1 + 0 = 1
- 2. Складаємо 1-ші розряди чисел 0 + 1 = 1
- 3. Складаємо 2-гі розряди чисел 1+1=0 і переносимо 1 цю в наступний розряд
- 4. Складаємо 3-ті розряди чисел 1 + 1 + 1 (від попереднього розряду) = 1 і переносимо 1цю в наступний розряд
- 5.4го розряду в вихідних числах немає, але є перенесена 1ця з попереднього розряду, тож записуємо 1цю попереду результуючого числа 6. Отже в результаті складання двійкових чисел $1101_2 + 1110_2$ отримуємо число 11011_2

Примітка. Верхній рядок на зображенні – допоміжний, він відображає перенесені 1ці в наступний розряд

Отже,
$$1101_2 + 1110_2 = 11011_2$$
.

Зробимо перевірку в десятковій системі числення :

$$\mathbf{11001}_{2} = 1.2^{3} + 1.2^{2} + 0.2^{1} + 1.2^{0} = 13_{10};$$

$$\mathbf{1110}_{2} = 1.2^{3} + 1.2^{2} + 1.2^{1} + 0.2^{0} = 14_{10};$$

$$\mathbf{11011}_{2} = 1.2^{4} + 1.2^{3} + 0.2^{2} + 1.2^{1} + 1.2^{0} = 27_{10}.$$

Розглянемо додавання двійкових чисел с дробовою частиною. Виконати додавання двійкових чисел $10101,11_2+111,101_2$

		1	1	1	1				
	₊ 1	0	1	0	1	,	1	1	
			1	1	1	,	1	0	1
	1	1	1	0	1	,	0	1	1

Додавання здійснюється таким самим чином, як цілі двійкові числа, але ми завжди записуємо числа таким чином, щоб коми були одна над іншою (додаємо 0 в кінці числа якщо необхідно)

1. Оскільки перше число має 2 цифри після коми, а друге – 3 цифри, дописуємо 0 в кінці першого числа

- 2. Додаємо -3 розряд чисел (після коми розряди нумеруються з -, перша цифра після коми має -1 розряд, друга -2 розряд, третя -3, и т.д.): 0+1=1
- 3. Додаємо -2 розряди: 0 + 1 = 1
- 4. Додаємо -1 розряди: 1 + 1 = 0, і переносимо одиницю у наступний 0й розряд (можете її побачити у верхньому рядку таблиці)
- 5. Додаємо 0й розряд: 1 + 1 + 1 (додаємо одиницю перенесену з -1го розряду) = 1 і переносимо одиницю у наступний 1й родряд
- 6. Додаємо 1й розряд: 0 + 1 + 1 = 0, переносимо одиницю в 2й розряд
- 7. Додаємо 2й розряд: 1 + 1 + 1 = 1, переносимо одиницю в 3й розряд
- 8. Додаємо 3й розряд: 0 + 0 + 1 = 1
- 9. Додаємо 4й розряд: 1 + 0 = 1

Отже $10101,11_2 + 111,101_2 = 11101,011_2$

Примітка. При додаванні кількох додатків необхідно стежити за одиницями перенесення в старші розряди, тому що ці одиниці можуть переходити не тільки в сусідні старші розряди, але і вище.

Розглянемо приклад додавання декількох двійкових чисел. Виконати додавання двійкових чисел $1111_2 + 1101_2 + + 10001_2 + 0111_2$.

		₊ 1	1	1	1
		₊ 1	1	0	1
		+0	1	1	1
	1	0	0	0	1
1	1	0	1	0	0

Складаючи перший розряд отримують число 4, яке ε трирозрядним двійковим числом 100. Отже, у цьому розряді буде 0, а перенесення одиниці роблять у 3-й вищий розряд. У 2-му розряді отримують 2, у цьому випадку перенесення роблять у сусідній вищий розряд. У 3-му розряді з урахуванням перенесення двох одиниць виходить число 5, яке дорівнює числу трирозрядному 101 у двійковій системі числення, тому одиницю в цьому розряді залишають, а 100 переносять через один розряд. У 4-му розряді отримують 2,

отже, залишають 0, а одиницю переносять у сусідній вищий розряд. У 5-му розряді отримують 3, яке дорівнює дворозрядному числу 11, одиницю залишають, а другу одиницю переносять у вищий розряд.

Отже,
$$1111_2 + 1101_2 + 10001_2 + 0111_2 = 110100_2$$
.

Зробимо перевірку в десятковій системі числення:

$$1111_{2} = 15_{10};$$

$$1101_{2} = 13_{10};$$

$$10001_{2} = 17_{10};$$

$$0111_{2} = 7_{10};$$

$$15 + 13 + 17 + 7 = 52_{10}.$$

Віднімання двозначних чисел.

При відніманні двійкових чисел, якщо віднімається 0-1, то в даному випадку займається 1 зі старшого розряду. Ця займана одиниця зі старшого розряду переходить у молодший як дві одиниці (тобто старший розряд подається двійкою більшого степеня) 2-1=1. Відповідь записуємо 1.

 $110100_{100}^{5432100} = 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 32 + 16 + 4 = 52_{10}.$

Приклад. Виконати віднімання двійкових чисел 110012 – 11012

- 1	1	0	0	1
	1	1	0	1
	1	1	0	0

- 1. Спочатку віднімаємо 0й розряд чисел: 1-1 = 0
- 2. Віднімаємо 1й розряд чисел 0-0 = 0
- 3. Віднімаємо 2й розряд чисел 0-1 = 1 (займаємо 2 з наступного розряду, тобто нам необхідно відняти 1цю від наступного розряду)
- 4. Віднімаємо 3й розряд 1-1-1(віднімаємо 1цю тому що ми її займали в попереньому розряді) = 1 (займаємо 2 з найступного розряду)
- 5. Віднімаємо 4й розряд 1-1 (віднімаємо 1цю тому що її займали в попередньому розряді) = 0
- 6. Записуємо результат 01100₂

Таким чином, $11101_2 - 1101_2 = 1100_2$.

Зробимо перевірку в десятковій системі числення:

$$^{4}_{11}^{3}_{001}^{2}_{01}^{10}_{2} = 25_{10};$$

$${}^{3}_{110}{}^{1}_{01}^{0}_{2} = 13_{10};$$

$$25_{10} - 13_{10} = 12_{10};$$

$$^{3}_{1100}^{2}_{00}^{1}_{2} = 12_{10}$$

Розглянемо віднімання двійкових чисел з дробовими числами. Виконати віднімання двійкових чисел $11,01_2$ — $1,1_2$

_1	1	3	0	1
	1	1	1	
	1	1	1	1

Віднімання дробових двійкових чисел виконується таким самим чином, як віднімання цілих двійкових чисел, але ми завжди записуємо числа один над одним таким чином, щоб кома була на комою.

- 1. Віднімаємо -2й розряд: 1 0 = 1
- 2. Віднімаємо -1й розряд: 0 1 = 1 (займаємо 2 з наступного розряду)

- 3. Віднімаємо 0й розряд: 1 1 1 (віднімаємо 1цю оскільки ми її займали в попередньому розряді) = 1 (займаємо 2 з наступного розряду)
- 4. Віднімаємо 1й розряд: 1 1 (віднімаємо 1цю оскільки ми її займали в попередньому розряді)

Таким чином: 11,012 - 1,12 = 1,112.

Зробимо перевірку в десятковій системі числення:

$$^{1}_{1}$$
 $^{0}_{1}$, $^{0}_{0}$ $^{1}_{2}$ = 3,25₁₀;

$$\overset{\circ}{\mathbf{1}}, \overset{\circ}{\mathbf{1}}_{2} = 1,5_{10};$$

$$3,25_{10} - 1,5_{10} = 1,75_{10}$$
;

1
, 1 , 1 , 2

Множення двійкових чисел.

При множенні в двійковій системі числення двох n-розрядних чисел отримуємо 2^n — розрядний добуток. Множення виконується за допомогою операцій зсуву і додавання.

Приклад 8. Виконати множення двійкових чисел $111_2 \cdot 101_2$

			.1	1	1
			1	0	1
			₊ 1	1	1
		+0	0	0	
	1	1	1		
1	0	0	0	1	1

- 1. Виконуємо множення 0го розряду другого двійкового числа (1) на перше число (111) порозрядово (за допомогою таблиці множення вище).
- множимо на 0й розряд 1 * 1 = 1
- множимо на 1й розряд 1 * 1 = 1
- множимо на 2й розряд 1 * 1 = 1
- отримуємо 111₂ в результаті множення 0го розряду 2го числа на 1ше число

- 2. Множимо 1й розряд 2го числа на 1ше число порозрядово (1й розряд 2го числа = 0, так що в результаті множення завжди отримуємо 0_2)
- 3. Множимо 2й розряд 2го числа на 1ше число порозрядово (ми вже маємо результат множення 1_2 на $111_2 = 111_2$)
- 4. Додаємо результати множення кожного розряду 2го числа на 1ше число з урахуванням зсуву (для 1го розряду зсув вліво на 1 розряд, для 2го розряду зсув вліво на 2 розряди) : $111_2 + 0000_2 + 11100_2 = 100011_2$

Зробимо перевірку в десятковій системі числення:

$$\overset{?}{1} \overset{?}{1} \overset{?}{1} \overset{?}{0} \overset{?}{1}_{2} = 7_{10};$$

$$\overset{?}{1} \overset{?}{0} \overset{?}{1}_{2} = 5_{10};$$

$$7_{10} \cdot 5_{10} = 35_{10};$$

$$\overset{?}{1} \overset{?}{0} \overset{?}{0} \overset{?}{0} \overset{?}{1} \overset{?}{1}_{2} = 1 \cdot 2^{5} + 0 \cdot 2^{4} + 0 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = 32 + 2 + 1 = 35_{10}.$$

Результати множення суммуються з урахування розряду (зсуву). Як видно з наведених прикладів, операція множення може бути представлена як операції зсуву і підсумовування.

Розглянемо множення двійкових чисел з дробовими частинами. Виконати множення двійкових чисел $10.1_2 \cdot 1.01_2$

*		1	0	1	
·			1	0	1
+			1	0	1
		0	0	0	
+	1	0	1		
	1	1	0	0	1

Множення дробових двійкових чисел виконується таким самим чином, як множення цілих двійкових чисел, але вкінці кома зсувається вліво на кількість знаків, що дорівнює сумі знаків після ком у множниках. $10,1_2$ - один знак після коми, $1,01_2$ — два знаки після коми. Таким чином для отриманого числа потрібно кому змістити на 1+2=3 знаки від кінця.

1. Записуємо числа один над одним таким чином, щоб кома була над комою. Далі множимо числа як цілі

- 2. Множимо -2й розряд 2го числа (1_2) на перше число без урахування коми (101_2) порозрядно, отримуємо 101_2
- 3. Множимо -1й розряд 2го числа 0_2 на перше число без урахування коми (101_2) порозрядно, отримуємо 000_2
- 4. Множимо 0й розряд 2го числа 1_2 на перше число без урахування коми (101_2) порозрядно, отримуємо 101_2
- 5. Додаємо результати множення з рахуванням зсуву (для -1 розряду зсув на 1 позицію вліво, для 0го розряду на 2 позиції вліво): $101_2 + 0000_2 + 10100_2 = 11001_2$
- 6. Оскільки перше число мало 1 знак після кома, а друге 2 знаки, результат множення повинен мати 1+2=3 знаки. Тож ставимо кому після трьох знаків зліва: $11,001_2$

Таким чином: $10,1_2 \cdot 1,01_2 = 11,001_2$.

Зробимо перевірку в десятковій системі числення:

$$10,1_{2} = 2,5_{10};$$

$$1,01_{2} = 1,25_{10};$$

$$2,5_{10} \cdot 1,25_{10} = 3,125_{10};$$

$$11,001_{2} = 3,125_{10}.$$

Поділ двозначних чисел.

Ділення двійкових чисел здійснюється за тими ж правилами, що й для десяткових. При цьому використовуються таблиці двійкового множення і віднімання.

Поділ у двійковій системі проводиться вирахуванням дільника зі зрушенням вправо, якщо залишок більше нуля.

Приклад. Знайти частку двох чисел, якщо:

1. Ділене більше дільника:

$$\begin{array}{c|c}
-\frac{110010}{1010} & 1010 \\
\hline
-\frac{1010}{001010} & 101 \\
\hline
-\frac{1010}{0} & \\
50:10=5
\end{array}$$

- 1) Так як дільник 4розрядне число, від останніх 4х розрядів діленого числа віднімаємо дільник: $1100_2 1010_2 = 0010_2$. До результату додаємо 1
- 2) До результату ділення на попередньому кроці додаємо дві цифри, що залишилися в діленого числа: 1010_2 . До результату додаємо 0
- 3) Від отриманого числа віднімаємо дільник $1010_2 1010_2 = 0$. До результату додаємо 1. Ділиться націло
- 4) В результаті отримуємо 101_{2.} Перевірку через 10річну системи счислення наведено вище.
- 2. Ділене менше дільника:

- 1) Так як дільник більше діленого, результат ділення буде менше 1, тож пишемо до результату 0 та кому. До діленого додаємо 0
- 2) Від отриманого числа віднімаємо дільник $110010_2 101000_2 = 1010_2$. В результат записуємо 1
- 3) До отриманого числа додаємо 0. Отримаємо число, яке менше дільника, тож додаємо ще один 0. До результату додаємо 0

- 4) Від отриманого числа віднімаємо дільник $101000_2 101000_2 = 0_2$. В результат додаємо 1
- 5) Отримуємо 0,101₂. Перевірку через 10річну системи числення наведено вище.

3. Ділення дробових чисел:

- 1) Привести дільник і ділене до цілих значень
- 2) Виконати ділення для цілих чисел.

$$110.111_2 \div 101.1_2 \rightarrow 1101111 \div 101100$$

- 1) Так як дільник 6розрядне число, від останніх 6х розрядів діленого числа віднімаємо дільник: 110111_2 101100_2 = 001011_2 . До результату додаємо 1
- 2) Так як у відніманні на першому кроці взяли участь всі цифри діленого, а результат віднімання менший за дільник, то до результату віднімання на попередньому кроці додаємо один 0 і ставимо кому в результаті ділення. Результат віднімання є 0010110_2 (перші нулі не мають значення, у прикладі нулі для наглядності), а результат ділення зараз 1, $0010110_2 = 10110_2$. Це число все ще менше від дільника.
- 3) До 10110_2 (результат віднімання) додаємо 0, а до результату ділення також додаємо 0. Маємо 101100_2 і $1,0_2$ у результаті.
- 4) Від отриманого числа віднімаємо дільник $101100_2 101100_2 = 0$. До результату додаємо 1. Результат $1{,}01_2$

Перевірка:

$$110,111_{2} = 6,875_{10}$$

$$101,1_{2} = 5,5_{10}$$

$$1,01_{2} = 1,25_{10}$$

$$6,875_{10} \div 5,5_{10} = 1,25_{10}$$

Як видно з наведених прикладів, операція поділу може бути представлена як операції порівняння, зсуву і підсумовування.

Вісімко́ва систе́ма чи́слення — позиційна цілочисельна система числення з основою 8. Для представлення чисел в ній використовуються цифри від 0 до 7.

Основа (кількість цифр): 8

Алфавіт (використовувані цифри): 0, 1, 2, 3, 4, 5, 6, 7

Переведення чисел з десяткової системі числення в будь-яку іншу здійснюється таким самим чином як переведення в двійкову: початкове число ділиться послідовно на базу системи числення, в яку мі це число переводимо. Результатом буде остатки ділення записані в зворотному напрямку.

Приклад 1. Число 571₁₀ перевести в вісімкову систему числення.

- 1. Початкове число 571 ділимо на 8 (основа вісімкової системи числення). Результат 71 записуємо, залишок від ділення 3.
- 2. Результат ділення на попередньому кроці 71 ділимо на 8, отримуємо 8, залишок від ділення 7.
- 3. Результат ділення на попередньому кроці 8 ділимо на 8, отримуємо 1, залишок від ділення 0
- 4. Результат ділення на попередньому кроці був 1, тож зупиняємо ділення на записуємо результат
- 5. Число в вісімковій системі числення це послідовно записання залишки від ділення в зворотному порядку, тож $571_{10} = 1073_8$

Приклад 2. Перевести число 122₁₀ в вісімкову систему числення.

Ще декілька прикладів для перевірки:

Переведення дробових десяткових чисел у вісімкову систему

- 1. Переводиться ціла частина окремо і дробова окремо
- 2. Переводиться ціла частина
- 3. Дробова частина переводиться аналогічно до двійкової системи
 - а. Дробова частина множиться на 8. Вся ціла частина добутку записується до результату як дробова частина
 - b. Дробова частина добутку знову множиться на 8
 - с. Процес повторюється доки дробова частина не стане 0

Приклад. Перевести 31,90625₁₀ у вісімкову систему числення

1) Оберемо цілу частину та переведемо до вісімкової системи (значення - 31)

Результат – 37

- 2) Візьмемо дробову частину (значення 0,90625)
- 3) Множимо дробову частину на 8 (0,90625 * 8 = 7,25) 7 додаємо до дробової частини результату (37). Зараз маємо 37,7
- 4) Залишок дробової частини (0,25) знову множимо на 8 (0,25 * 8 = 2). 2 додаємо до дробової частини і отримуємо $37,72_8$
- 5) Дробова частина добутку дорівнює 0. Алгоритм завершено

Для **переведення вісімкового числа в десяткове** необхідно його записати у вигляді многочлена, що складається з творів цифр числа і відповідного ступеня числа 8, і обчислити за правилами десяткової арифметики:

$$X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + \ldots + A_2 \cdot 8^1 + A_1 \cdot 8^0$$

Для зворотного переведення вісімкового числа в десяткове, застосовується той самий алгоритм, що й для переведення двійкового числа у десяткове:

Кожна цифра числа помножається на базу системи числення, в якій це число знаходиться, в степені його розряду. Число-еквівалент в десятковій системі числення знаходиться як сума усіх результатів множення.

$$^{2 \ 1 \ 0}_{144_8} = 1 \cdot 8^2 + 4 \cdot 8^1 + 4 \cdot 8^0$$

= $64 + 32 + 4 = 100$

- 1. Починаємо з нумерації розрядів вісімкового числа: починаючи з 0 для найправішого числа. Для числа 144_8 , що має 3 розряди (2, 1, 0), бачимо розряди написані над кожною цифрою числа
- 2. Далі помножаємо кожну цифру числа у вісімковій системі числення на 8 в степені його розряду. І сумуємо результаті для кожної цифри. Для числа 144₈ маємо:
 - першу цифру 1, що має розряд 2, множимо на 8^{2} : $1*8^2=64$
 - другу цифру 4, що має розряд 1, множимо на $8^{1:}$ $4*8^1=32$
 - третю цифру 4, що має розряд 0, множимо на $8^{0:}$ 4 * $8^0 = 4$
 - сумуємо результати множення 64 + 32 + 4 = 100
 - отже 144₈=100₁₀

Приклад. Число 750138 перевести в десяткову систему числення.

$$75013_8 = 7 \cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$$

Переведення дробового числа з вісімкової системи числення у десяткову Переведення відбувається порозрядним множенням на 8 у відповідній степені і складанням (розряди після коми нумеруються з -, перша цифра після коми маж розряд -1, друга -2, третя -3, и т.д.)

Приклад. Перевести $145,01_8$ у десяткову систему $145,01_8=1*8^2+4*8^1+5*8^0+0*8^{-1}+1*8^{-2}=64+32+5+0*0,125+1*0,015625=101,015625$

• першу цифру 1, що має розряд 2, множимо на 8^{2} : $1 * 8^2 = 64$

• другу цифру 4, що має розряд 1, множимо на $8^{1:}$ $4*8^1=32$

• третю цифру 4, що має розряд 0, множимо на 8^{0} : $5 * 8^0 = 5$

• першу цифру після коми, що має розряд -1, множимо на 8^{-1} 0 * 8^{-1} = 0

• другу цифру після коми, що має розряд -2, множимо на 8^{-2} 1 * 8^{-2} = 0,015625

• сумуємо результати множення 64 + 32 + 5 + 0 + 0.015625 = 101.015625

• отже $145,01_8=101,015625_{10}$

У вісімковій системі числення всі арифметичні операції проводяться за тими ж правилами, за якими ці дії виконуються в десятковій системі числення. При виконанні операцій додавання і віднімання зручно використовувати вісімкову таблицю складання, при виконання операції множення використовуємо таблицю множення

Приклад. Додавання вісімкових чисел 741₈ + 252₈

	7	4	1
	+2	5	2
1	2	1	3

- 1. Додаємо 0ві розряди чисел $1_8 + 2_8 = 3_8$
- 2. Додаємо 1 ші розряди чисел $4_8 + 5_8 = 11_8$ (1цю залишаємо і 1цю переносимо в наступний розряд)
- 3. Додаємо 2гі розряди чисел $7_8 + 2_8 + 1_8$ (перенесена 1ця з попереднього розряду) = 12_8 (2ку залишаємо, 1цю переносимо в наступний розряд)
- 4. Записуємо результат 12138

Зробимо перевірку в десятковій системі числення:

Приклад. Додавання дробових чисел $777,23_8 + 201,17_8$

- 1. Записуємо числа так, щоб дробові частини були одна під одною
- 2. Виконуємо додавання як для цілих чисел
 - а. Для розряду -2 сума 7 + 3 буде 12. 2 записуємо, а 1 переходить у старший розряд
 - b. Для розряду -1 сума 2 + 1 = 3 і додаємо одиницю, що перейшла з попереднього розряду сума = 4
 - с. Для розряду 0 сума 7 + 1 = 10. 0 пишемо, 1 перейде у наступний розряд
 - d. Для розряду 1 сума 7 + 0 = 7 і ще одиниця з попереднього розряду = 10.0 запишемо і 1 перейде в наступний розряд
 - е. Для розряду 2 сума 7 + 2 = 11 + 1 (з попереднього розряду) = 12. 2 запишемо і 1 у наступний розряд

_		7	7	7	,	2	3
		2	0	1	,	1	7
	1	2	1	0	,	4	2

Результат 777,23 $_8$ + 201,17 $_8$ 1210,42 $_8$

Приклад. Віднімання вісімкових чисел $346_8 - 154_8$

_3	4	6		
1	5	4		
1	7	2		

- 1. Віднімаємо 0ві розряди 6_8 4_8 = 2_8
- 2. Віднімаємо 1ші розряди 4_8 $5_8 = 7_8$ (займаємо 1цю у наступного розряду)
- 3. Віднімаємо 2гі розряди 3_8 1_8 (віднімаємо додаткову 1цю, бо вона була займана попереднім розрядом)

4. Записуємо результат 1728

Зробимо перевірку в десятковій системі числення:

$$\overset{2}{3}\overset{1}{4}\overset{0}{6}_{8} = 3.8^{2} + 4.8^{1} + 6.8^{0} = 230_{10};$$

$$\overset{2}{1}\overset{1}{5}\overset{0}{4}_{8} = 1.8^{2} + 5.8^{1} + 4.8^{0} = 108_{10};$$

$$230_{10} - 154_{10} = 122_{10};$$

$${\overset{_{2}}{1}}{\overset{_{1}}{7}}{\overset{_{0}}{\overset{_{0}}{2}}}_{8} = 1 \cdot 8^{2} + 7 \cdot 8^{1} + 2 \cdot 8^{0} = 122_{10}.$$

Приклад 2. Віднімання дробових вісімкових чисел 37,728 – 25,28

- 1. Для віднімання дробових потрібно записати числа одне під іншим так, щоб кома була над комою
- 2. Віднімаємо порозрядно
- 3. Записуємо результат

	3	7	,	7	2
_	2	5	,	2	
	1	2	,	5	2

Результат: 12,528

Для множення вісімкових чисел необхідно використовувати наступну таблицю множення:

	1			1	1			
×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	10	12	14	16
3	0	3	6	11	14	17	22	25
4	0	4	10	14	20	24	30	34
5	0	5	12	17	24	31	36	43
6	0	6	14	22	30	36	44	52
7	0	7	16	25	34	43	52	61

Приклад. Виконати множення вісімкових чисел 318 · 238

	. 3	1	
	2	3	
7	3	3	

1. Виконуємо множення 0го розряду другого числа на 1ше число порозрядно: $3_8*31_8=113_8$ (спочатку множимо 3_8 на 0й розряд 1шого числа: $3_8*1_8=3_8$, потім множимо на 1й розряд 1го числа: $3_8*3_8=11_8$, отримуємо 113_8)

- 2. Виконуємо множення 1го розряду другого числа на 1ше число порозрядно: $2_8*31_8=62_8$ (спочатку множимо 2_8 на 0й розряд 1шого числа: $2_8*1_8=2_8$, потім множимо на 1й розряд 1го числа: $2_8*3_8=6_{8}$, отримуємо 62_8)
- 3. Додаємо результати множення з урахуванням зсуву для 1го розряду (на 1 цифру вліво): $113_8 + 620_8 = 733_8$

Зробимо перевірку в десятковій системі числення:

$$^{1}_{3}^{0}_{1}_{8} = 3 \cdot 8^{1} + 1 \cdot 8^{0} = 25_{10};$$

$$^{\frac{1}{2}} {^{0}_{8}} = 2 \cdot 8^{1} + 3 \cdot 8^{0} = 19_{10};$$

$$25_{10} \cdot 19_{10} = 475_{10}$$
;

$$7^{2} \stackrel{1}{3} \stackrel{0}{3}_{8} = 7 \cdot 8^{2} + 3 \cdot 8^{1} + 3 \cdot 8^{0} = 475_{10}.$$

Приклад 2, Множення дробових чисел 14,18 * 30,548

*			1	4	1	
			3	0	5	4
+				6	0	4
+			7	4	5	
+		0	0	0		
	4	4	3			
	4	5	4	2	5	4

- 1. Можна записати числа в стовпчик без зап'ятих. Як цілі числа, але таким чином, щоб 0й розряд чисел був один на одним)
- 2. Множимо 0 розряд другого числа на перше число. За табличкою 4*4=20. Тож 0 запишемо, а 2 піде в 2 розряд першого числа. Для 2 розряду першого числа 4*1=4+2(3 попереднього розряду) = 6
- 3. Множимо 1 розряд другого числа на перше число. Для 1 розряду першого числа 5*4=24 за табличкою. 4 запишемо, 2 в наступний розряд. Для 2 розряду першого числа 5*1=5+2(з попереднього розряду) = 7
- 4. Повторюємо для розрядів другого числа, що залишилися.
- 5. Сумуємо отримані добутки, враховуючи зсув на 1 для кожного наступного розряду. $604 + 7450 + 0 + 443000 = 454254_8$
- 6. В першому множнику 1 цифра після коми, у другому 2 цифри. Отже в результаті кома має бути зсунута на 3 цифри. $454254 \rightarrow 454,254_8$

Перевіримо:

$$14,1_8 = 12,125_{10}$$

 $30,54_8 = 24,6875_{10}$
 $12,125 * 24,6875 = 299,3359375_{10}$
 $454,254_8 = 299,3359375_{10}$

Приклад. Ділення вісімкових чисел $31,306_8 \div 14,1_8$

- 1. Позбавимося від дробу. 31306₈ ÷ 14100₈
- 2. Поділимо

- 3. Підбираємо таке число, яке б при множення на дільник дало максимальне число, яке менше діленого записуємо це число в результаті (зпочатку беремо від діленого ту саму кількість цифр, як і в дільнику, якщо отримане число менше від дільника додаємо ще одну)
- 4. Множимо підібране число на дільник та записуємо під діленим
- 5. Віднімаємо отримане число від діленого.
- 6. До отриманого результату додаємо наступну «не застосовану» цифру діленого. Якщо всі цифри діленого застосовані в результаті ставиться кома, та до отриманої різниці додається 0. Якщо всі цифри діленого застосовані і результатом віднімання на попередньому кроці є 0 − ділення закінчене, результат отриманий, якщо ж ні переходимо до наступного кроку
- 7. Повертаємся до кроку 3, повторюємо кроки 3-6 доки остача не буде 0 (для чисел, що діляться нарівно) або доки необхідна точність (кількість знаків після коми) не буде реалізована в такому разі буде остача від ділення

Шістнадцяткова система числення — це позиційна система числення з основою 16. Тобто кожне число в ній записується за допомогою 16 символів. Арабські цифри від 0 до 9 відповідають значенням від нуля до дев'яти, а 6 літер латинської абетки A, B, C, D, E, F відповідають значенням від десяти до п'ятнадцяти. Шістнадцяткова система числення широко використовується розробниками комп'ютерів та програмістами.

Цю систему часто називають також Hex (початкові літери англ. hexadecimal — шістнадцятковий).

Основа (кількість цифр): 16

Алфавіт (використовувані цифри): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (A_{16} = 10_{10} , B_{16} = 11_{10} , C_{16} = 12_{10} , D_{16} = 13_{10} , E_{16} = 14_{10} , F_{16} = 15_{10})

Приклад 1. Число 7467,125₁₀ перевести в шістнадцяткову систему числення.

- 1. Відкидуємо дробову частину и спочатку переводи цілу частину. Число 7467 ділимо на 16 (основа шістнадцятирічної системи числення). Результат 466 записуємо, залишок від ділення 11.
- 2. Результат ділення на попередньому кроці— 466— ділимо на 16, отримуємо 29, залишок від ділення— 2.
- 3. Результат ділення на попередньому кроці 29 ділимо на 16, отримуємо 1, залишок від ділення 13
- 4. Результат ділення на попередньому кроці був 1, тож зупиняємо ділення та записуємо результат
- 5. Число в шістнадцятковій системі числення це послідовно записаня залишків від ділення в зворотньому порядку, тож $7467_{10} = 1D2B_{16}$ ($A_{16} = 10_{10}$, $B_{16} = 11_{10}$, $C_{16} = 12_{10}$, $D_{16} = 13_{10}$, $E_{16} = 14_{10}$, $F_{16} = 15_{10}$)
- 6. Дробова частина десяткового числа переводиться окремо таким самим чином, як для будь-якої іншої системи числення:
 - Дробова частина множиться на базу системи числення (16 в данному випадку): 0.125 * 16 = 2

- Ціла частина результату множення записується послідовно в дробову частину результуючого числа в шістнадцятковій системі числення: 1D2B,2₁₆
- Дробова частина результату множення множиться на 16 знову, знову ціла частина записується в дробову частину результуючого шістнадцяткового числа, а дробова множиться на 16 доти, доки дробова частина не буде 0.

Приклад 2. Перевести число 500₁₀ в шістнадцяткову систему числення.

Ще декілька прикладів для перевірки:

Для **переводу шіснадцяткового числа в десяткове** необхідно його записати у вигляді многочлена, що складається з творів цифр числа і відповідного ступеня числа 16, і обчислити за правилами десяткової арифметики:

$$X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$$

Кожна цифра числа помножається на базу системи числення, в якій це число знаходиться, в степені його розряду. Число-еквівалент в десятковій системі числення знаходиться як сума усіх результатів множення.

- 1. Починаємо з нумерації розрядів шіснадцяткового числа: починаючи з 0 для найправішого числа. Для числа $1C5_{16}$, що має 3 розряди (2, 1, 0), бачимо розряди написані над кожною цифрою числа
- 2. Далі помножаємо кожну цифру числа у вісімковій системі числення на 16 в степені його розряду. І сумуємо результаті для кожної цифри. Для числа $1C5_{16}$ маємо:
 - першу цифру 1, що має розряд 2, множимо на 16^{2} : $1*16^2 = 256$
 - другу цифру $C_{16} = 12_{10}$, що має розряд 1, множимо на $16^{1:}$ $12*16^1 = 192$
 - третю цифру 5, що має розряд 0, множимо на 16^{0} : $5*16^0 = 5$
 - сумуємо результати множення 256 + 192 + 5 = 453
 - отже 1C5₁₆=453₁₀

Приклад. Число FDA1,39₁₆ перевести в десяткову систему числення.

$$FDA1,39_{16} = 15 * 16^3 + 13 * 16^2 + 10 * 16^1 + 1 * 16^0 + 3 * 16^{-1} + 9 * 16^{-2} = 64929.22265625_{10}$$

Арифметичні дії в шіснадцятковій системі проводиться за тими ж правилами, що і в десятковій системі числення. Проте оскільки в двійковій системі числення використовуються тільки дві цифри 0 і 1, то арифметичні дії виконуються простіше, ніж десятковій системі.

Додавання у шістнадцятковій системі числення виконується порозрядно, починаючи з молодших розрядів. Кожний символ перетворюється в десяткову систему числення, потім виконується додавання, а результат обернено переводиться назад у шістнадцяткову систему.

Приклад. Виконати додавання двох чисел у шістнадцятковій системі числення $FB_{16} + C6_{16}$

$$\frac{\stackrel{1}{F}B}{C6}$$

$$B_{16} + 6_{16} = 11_{10} + 6_{10} = 17_{10} = 16_{10} + 1_{10} = 11_{16}$$
;

 $F_{16}+C_{16}+1_{16}=15_{10}+12_{10}+1_{10}=28_{10}=16_{10}+12_{10}=1C_{16};$ - перенесення з молодших розрядів

$$FB_{16} + C6_{16} = 1C1_{16}$$
.

Зробимо перевірку в десятковій системі числення:

$$FB_{16} = 15 \cdot 16^1 + 11 \cdot 16^0 = 251_{10};$$

$$C6_{16} = 13 \cdot 16^1 + 6 \cdot 16^0 = 198_{10};$$

$$251_{10} + 198_{10} = 449_{10}$$
;

$$1C1_{16} = 1 \cdot 16^2 + 13 \cdot 16^1 + 1 \cdot 16^0 = 449_{10}$$
.

Віднімання в шістнадцятковій системі числення здійснюється за тими ж правилами, що й для десятирічної системи

Приклад. Відняти шестнадцяткові числа $59AC2,C_{16}$ — $EB78,B_{16}$

- 1. Віднімаємо дробові розряди C_{16} $B_{16} = 1_{16}$
- 1. Віднімаємо 0ві розряди: 2_{16} 8_{16} = A_{16} (займаємо 1цю у наступного розряду)
 - 2. Віднімаємо 1 ші розряди: C₁₆ 7₁₆ 1₁₆= 4₁₆
- 3. Віднімаємо 2гі розряди: A_{16} B_{16} = F_{16} (займаємо одиницю у наступного розряду)
- 4. Віднімаємо 3ті розряди 9_{16} E_{16} 1_{16} = A_{16} (займаємо одиницю у наступного розряду)
 - 5. Віднімаємо 4ті розряди 5_{16} 1_{16} = 4_{16}

6. В результаті отримуємо 4AF4A, 1_{16} (зберігаємо кому в тому самому місці, де вона була у початкових числах (при віднімання в стовпчик усі коми мають бути одна над одною)

Перевіримо результати за допомогою 10річної системи

$$59AC2_{16} = 367298.75$$

$$EB78,B_{16} = 60280.6875$$

$$367298.75_{10} - 60280.6875_{10} = 307\ 018,0625_{10}$$

$$307\ 018,0625_{10} = 4AF4A.1_{16}$$

Для **множення шіснадцяткових чисел** необхідно користуватися наступною таблицею множення:

×	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	б	7	8	9	Α	В	С	D	Е	F
2	0	2	4	6	8	Α	С	Е	10	12	14	16	18	1A	1C	1E
3	0	3	6	9	С	F	12	15	18	1B	1E	21	24	27	2A	2D
4	0	4	8	С	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	0	5	Α	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	0	б	С	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
Α	0	Α	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
С	0	С	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	В4
D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	В6	С3
Е	0	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	В6	C4	D2
F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	В4	C3	D2	E1

Розглянемо приклад множення CF1,3₁₆ * D4,F₁₆

- 1. Множимо дробові розряди $F_{16} * 3_{16} = 2D_{16}$. D записується, а 2 переходить у старший розряд. $F_{16} * 1_{16} = F_{16} + 2_{16} = 11_{16}$. 1 записується, а 1 переходить у наступний розряд. Далі $F_{16} * F_{16} = E1_{16} + 1_{16} = E2_{16}$. 2 записується, а E в наступний розряд. Далі $F_{16} * C_{16} = B4_{16} + E_{16} = C2_{16}$. Добуток дробового розряду другого числа на перше число становить C221D
- 2. Аналогічні дії виконуються для наступних розрядів. При цьому для кожного наступного розряду відбувається зсув на 1 вліво.
- 3. Сумуємо усі добутки: $C221D_{16} + 33C4C0_{16} + A83F700_{16} = AC3DDDD_{16}$
- 4. Кома зсувається на 2 розряди (1 розряд від першого числа і 1 розряд від другого). Таким чином результат: AC3DD,DD

			С	F	1	3
				D	4	F
		С	2	2	1	D
	3	3	С	4	С	
A	С	3	D	D	D	D

*

+

Приклад. Ділення шістнадцяткового числа CF1,3₁₆ на число D,4₁₆

- 1. Позбудемося дробів помножимо кожне число на 16 (основа числення). Отримаємо: CF13 $_{16} \div D4_{16}$
- 2. Далі ділення цілих шістнадцяткових чисел.
- 3. CF1₁₆ уміщує F цілих разів D4. D4₁₆ * $F_{16} = C6C_{16}$
- 4. Віднімаємо $C6C_{16}$ від $CF1_{16}$. Буде 85_{16}
- 5. Додаємо цифру з нульового розряду (3). Маємо 853₁₆
- 6. 853_{16} уміщує A цілих разів $D4_{16}$. $D4_{16} * A_{16} = 848_{16}$
- 7. Віднімаємо 848_{16} від 853_{16} і отримуємо B_{16}

- 8. На цьому ціла частина числа закінчилась. Шукаємо дробову частину. До В дописуємо 0 і в результаті дописуємо кому. $B0_{16}$ все ще менше від $D4_{16}$, дописуємо ще 0 до B0 і дописуємо 0 в результат. (Результат зараз: FA_{16})
- 9. $B00_{16}$ вміщує $D4_{16}$ цілих D разів. $D4_{16} * D_{16} = AC4_{16}$
- 10.Віднімаємо від $B00_{16}$ $AC4_{16}$ і отримуємо $3C_{16}$. $3C_{16}$ остача на даному кроці. Алгоритм продовжується доки остача не буде 0.

Перевід чисел із 2-кової с.ч. у 8-кову та 16-кову с.ч. та навпаки

Щоб перевести число з двійкової системи в вісімкову, його потрібно розбити на тріади (трійки цифр), починаючи з молодшого розряду, в разі необхідності доповнивши старшу тріаду нулями, і кожну тріаду замінити відповідної вісімковій цифрою.

Десяткова СЧ Р=10	Двій- кова СЧ Р=2	Вісімко- ва СЧ Р=8	Шістнацят- кова СЧР=16
1	2	3	4
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Приклад. Число 1001011,1112 перевести в вісімкову систему числення.

$$001\ 001\ 011\ ,\ 111_2 = 113,7_8$$

1 1 3 , 7

1. Розбиваемо число $1001011,111_2$ на тріади починаючи з 0го розряду (доповнюємо першу тріаду двома 0 спочатку):

- 2. Кожну тріаду переводимо в вісімкову систему числення за допомогою таблиці:
 - $001_2 = 1_8$
 - $001_2 = 1_8$
 - $011_2 = 3_8$
 - $111_2 = 7_8$
- 3. Поєднуємо результати в одне число: $113,7_8$

Щоб перевести число з **двійкової системи в шістнадцяткову**, його потрібно розбити на тетради (четвірки цифр), починаючи з молодшого розряду, в разі необхідності доповнивши старшу тетраду нулями, і кожну тетраду замінити відповідної вісімковій цифрою.

Приклад. Число $1011100011,1110_2$ перевести в шістнадцяткову систему числення.

0010 1110 0011,
$$1110_2 = 2E3,E_{16}$$

1. Розбиваемо число $1011100011,1110_2$ на тетради (4 цифри) починаючи з 0го розряду (доповнюємо першу тріаду двома 0 зпочатку):

$$0010 \quad 1110 \quad 0011 \; , \; 1110_2$$

- 2. Кожну тетраду переводимо в шістадцяткову систему числення за допомогою таблиці:
 - $0010_2 = 2_{16}$
 - $1110_2 = E_{16}$
 - $0011_2 = 3_{16}$
 - $1110_2 = E_{16}$
- 3. Поеднуємо результати в одне число: 2E3, E_{16}

Для переведення **вісімкового числа в двійкове** необхідно кожну цифру замінити еквівалентною їй двійковою тріадою.

Приклад. Число 531,68 перевести в двійкову систему числення.

$$531,6_8 = 101\ 011\ 001\ ,\ 110_2$$

- 1. Кожну цифру вісімкового числа замінюємо на відповідну тріаду двійкового числа користуючись таблицею вище.
 - $5_8 = 101_2$
 - $3_8 = 011_2$
 - $1_8 = 001_2$
 - $6_8 = 110_2$
 - 2. Об'єднуємо тріади разом: $531,6_8 = 101011001,110_2$

Для переведення **шістнадцяткового числа в двійкове** необхідно кожну цифру замінити еквівалентною їй двійковою тетрадою.

Приклад. Число EE8,AD₁₆ перевести в двійкову систему числення.

$$EE8,AD_{16} = 1110 \ 1110 \ 1000, \ 1010 \ 1101_2$$

- 1. Кожну цифру шістнадцяткового числа замінюємо на відковідну тетраду двійкого числа користуючись таблицею вище.
 - $E_{16} = 1110_2$
 - $E_{16} = 1110_2$
 - $8_{16} = 1000_2$
 - $A_{16} = 1010_2$
 - $D_{16} = 1101_2$
 - 2. Об'єднуємо тріади разом: EE8, $AD_{16} = 1110 \ 1110 \ 1000, \ 1010 \ 1101_2$

При переході з вісімковій системи числення в шістнадцяткову і назад, необхідний проміжний переклад чисел в двійкову систему.

Приклад 1. Число FEA₁₆ перевести в вісімкову систему числення.

$$FEA_{16} = 1111111101010_2$$

111 111 101 $010_2 = 7752_8$

Приклад 2. Число 66358 перевести в шістнадцяткову систему числення.

$$\begin{aligned} \mathbf{6635}_8 &= \mathbf{110110011101}_2 \\ \mathbf{1101} \ \ \mathbf{1001} \ \ \mathbf{1101}_2 &= \mathbf{D9D}_{16} \end{aligned}$$

Ще декілька прикладів переходу **від вісімкової до шістнадцяткової** системи счислення

$$142_8 = \underbrace{0110\ 0010_2}_{2} = 62_{16}$$

$$373_8 = \underbrace{1111\ 1011_2}_{2} = FB_{16}$$

$$20_8 = \underbrace{0001\ 0000_2}_{2} = 10_{16}$$

$$212_8 = \underbrace{1000\ 1010_2}_{2} = 8A_{16}$$

Ще декілька прикладів переходу **від шістнадцяткової до вісімкової** системи счислення

$$62_{16} = \underbrace{001}_{100} \underbrace{100}_{010_2} = 142_8$$

$$FB_{16} = \underbrace{011}_{111} \underbrace{111}_{011_2} = 373_8$$

$$10_{16} = \underbrace{010}_{000_2} = 20_8$$

$$8A_{16} = \underbrace{010}_{001} \underbrace{001}_{010_2} = 212_8$$