IE 492 PROJECT FINAL PRESENTATION

Bora Polater Ömercan Mısırlıoğlu Murat Tutar

Presentation Outline

- I. Introduction & Problem Definition
- II. Project's Scope and Objective
- III. Project
 - a. Context Diagram
 - b. Schedule Generation
 - c. Frequently Asked Questions
 - d. Explanation Generation
 - e. ChatGPT's Role
 - f. Limitations
 - g. Ethical Considerations
- IV. Conclusion

Introduction & Problem Definition

CHALLENGE

Employee
Scheduling in
Service Industry

Why mostly in Service Industry?

- Continuous & Fluctuating Demand
- Flexible Shifts
 - Ex #1: Hospital Staff Scheduling
 - Ex #2: Airport Staff Scheduling → Our Case

PROBLEM

Explaining the Schedule to Stakeholders

Focus of the Project: Explaining the Schedule

- Answering Schedule-related FAQ
 - Complaints, Requests, Objections, Clarifications
 - Explaining the reasoning behind Schedule decisions

Project Scope

Step By Step

Step1: Generating a schedule for an airport staff

- Assigning to shifts and tasks such that # of uncovered tasks are minimized
- Subject to a list of given constraints

Step 2: Implementing the functions for answering FAQ

Query:

➤ Information Retrieval

Request/Objection/Reasoning:

- ➤ Rejection
 - Infeasible → Constraint Viol.
 - Feasible → Drastic Change in Objective or Schedule
- ➤ Acceptance
 - Feasible → Few changes in Schedule and Objective

Step 3: ChatGPT Integration & Streamlit User Interface

- Needed for the actualization of the Project
- Employees are not proficient with Python
- Natural Language processing
- To provide an **ergonomic** user experience

Project Objective

By implementing this Project, we aim to make stakeholders

- Understand the reasoning behind the scheduling decisions.
- Check the feasibility of schedule related requests
- · Retrieve info about schedule

Context Diagram

Benefits to Stakeholders

An Instance From the Schedule We Generated

Task ID	Required Skill	Task Start Time	Task End Time	Assigned Employee	Employee Skillset	Shift Index	Shift Start Time	Shift End Time
1	7	2023-07-10 15:15:00	2023-07-10 23:45:00	C0161	[3, 4, 5, 7]	11	2023-07-10 15:00:00	2023-07-11 02:00:00
10	6	2023-07-10 15:30:00	2023-07-10 19:00:00	C0129	[3, 4, 5, 6]	11	2023-07-10 15:00:00	2023-07-11 02:00:00
13	6	2023-07-11 02:00:00	2023-07-11 03:20:00	C0307	[3, 4, 5, 6]	22	2023-07-11 02:00:00	2023-07-11 13:00:00
14	6	2023-07-11 04:00:00	2023-07-11 05:00:00	C0307	[3, 4, 5, 6]	22	2023-07-11 02:00:00	2023-07-11 13:00:00
15	6	2023-07-11 04:15:00	2023-07-11 05:00:00	C0359	[3, 6, 7]	24	2023-07-11 04:00:00	2023-07-11 13:00:00

Objective:

➤ Minimizing the # of uncovered tasks

One can adjust these constraints as needed These constraints are assumptions of our model

Constraints:

- ➤ Skill match
- ➤No overlapping tasks to same employee
- ➤ Task's timeframe within shift's boundary
- ➤ Resting time between shifts
- ➤ 2 off days per week

QUERY QUESTIONS

"Who is on the same shift as me on [date]?"

"Who else has the same skill set as me and is working on [shift time]?"

REQUEST & OBJECTION QUESTIONS

"I can't make it to my shift tomorrow. Can it be rescheduled?"

"Can I be assigned to tasks

that

require my [skill] more

frequently?"

"Can I avoid being scheduled on [Date] for religious reasons?"

"Can I avoid being scheduled with [Employee's Name] for a while due to personal reasons?" "Can I be scheduled for the opening shift during weekends? I prefer starting early."

"Can I be scheduled for more shifts with [Employee's Name] since we coordinate well together?"

REASONING QUESTIONS

"Why am I not assigned to shift [ID]?

"Why am I not assigned to Task [ID]?

EXPLANATION GENERATION PROCESS

Slide 10

ÖM1

Ömercan Mısırlıoğlu, 12/27/2023

General Logic of the Model

Query-Type Questions: Function Logic & ChatGPT Example

Conversational Schedule Explainer

Request-Type Questions: Function Logic & ChatGPT Example

Conversational Schedule Explainer

Clear Conversation

Enter your input:

Can I change my shift with employee C0003 on 2023-07-10

Press Enter to apply

Process

Who I can change my shift on 2023-07-10, I am C0001

You can potentially swap shifts with the following employees on 2023-07-10: C0003, C0006, C0008, C0012, C0013, C0026, C0027, C0036, C0040, C0043, C0046, C0048, C0050.

Reasoning-Type Questions: Function Logic & ChatGPT Example

Enter your input:

I am C0002, why I am not assigned to task '18'

Process

- Who I can change my shift on 2023-07-10, I am C0001
- You can potentially swap shifts with the following employees on 2023-07-10: C0003, C0006, C0008, C0012, C0013, C0026, C0027, C0036, C0040, C0043, C0046, C0048, C0050.
- Can I change my shift with employee C0003 on 2023-07-10
- Yes, you can change your shift with employee C0003 on 2023-07-10. The swap request is feasible.
- Can I change my task '1' with employee C0002's task '426'
- No, you cannot change your task '1' with Employee C0002's task '426' because Employee 2 already has another task assigned during the same time period.

LIMITATIONS #1

NP-HARDNESS

LIMITATIONS #2 LACK OF CLARITY IN PROMPTS

Ethical Considerations

Teach the model which data is available to share

- Consent of the employee to share his/her schedule info is required
- Some employees may have **private constraints** (e.g. Health related)
- Mis-use of query functions must be prevented
- System must be protected against hacking threats.

- Comply with laws and regulations
 - Model should be modified for the particular region/country it is used

 Use a multidisciplinary team which consist of ethicists, legal experts and representatives from the workforce to guide developments of this tool according to ethical principles and legal requirements.

CONCLUSION & FINAL REMARKS

Our project stands at the intersection of advanced scheduling needs and the transformative potential of explainable AI.

ChatGPT Integration promises an even more interactive and user-friendly interface, introducing a new era where explainable Al becomes a standard in the industry.

Literature Review & References

- Ağralı, S., Taşkın, Z. C., & Ünal, A. T. (2017). Employee scheduling in service industries with flexible employee availability and demand. Omega, 66, 159–169. https://doi.org/10.1016/j.omega.2016.03.001
- Kuźba, M. (2021). Conversational explanations of Machine Learning models using chatbots (University of Warsaw Press, Ed.; pp. 1–65) http://dx.doi.org/10.13140/RG.2.2.29768.85768
- Jentzsch, S. F., Sviatlana Höhn, & Nico Hochgeschwender. (2019). Conversational Interfaces for Explainable AI: A Human-Centred Approach. Lecture Notes in Computer Science, 77–92. https://doi.org/10.1007/978-3-030-30391-4_5

THANK YOU FOR YOUR ATTENTION

Sets:

- T: Tasks
- E: Employees
- S: Shift start times

Parameters:

- t_{start}^t : Start of task t
- t_{end}^t : End of task t
- $skill^t$: Required skill for task t
- ullet $skillset_e$: Skills of employee e
- ullet $shiftEnd_s$: End of shift at time s

Decision Vars:

- ullet $x_{e,s}$: 1 if employee e starts at s, else 0
- $^{ullet}\ y_{e,t}$: 1 if employee e covers task t, else 0
- z_t : 1 if task t is uncovered, else 0

MATHEMATICAL MODEL

Python and Gurobi Optimizer are used for modeling and solving the problem.

Objective:

Minimize $\sum_{t \in T} z_t$

Constraints:

- 1. $\sum_{e \in E} y_{e,t} + z_t = 1$, $\forall t \in T$
- 2. $y_{e,t} \leq \sum_{s=t_{\text{start}}}^{shiftEnd_{t_{\text{end}}}} x_{e,s}, \quad \forall e \in E, t \in T$
- 3. $\sum_{s \in S} x_{e,s} \leq 5, \quad \forall e \in E$
- 4. $x_{e,s'}+x_{e,s''}\leq 1$ where s'>s and $s'-s\leq 24, \quad \forall e\in E$
- 5. $y_{e,t} \leq 1$ if $skill^t \in skillset_e$, else 0, $orall e \in E, t \in T$
- 6. $y_{e,t_1}+y_{e,t_2}\leq 1$ for overlapping t_1,t_2 , $orall e\in E$