What is claimed is:

1. A compound of Formula I

$$W = L = N + \frac{R^3}{(CH_2)_n} \times \frac{R^3}{(R^2)_m} \times OH$$

$$(I)$$

wherein

5

10

15

20

25

W is selected from H, (C₁-C₆)alkyl.

O-phenyl optionally substituted with up to 2 substituents each selected independently from R¹²,

phenyl optionally substituted with up to 2 substituents each selected independently from R^{12} , OH, COOR⁷, C(O)NHR⁷, S(O)₂(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, N[(C₁-C₃)alkyl]₂, NH(C₁-C₃)alkyl,

NHC(O)(
$$C_1$$
- C_3)alkyl, $\stackrel{:}{\leftarrow}$ $\stackrel{:}{\sim}$, and

(C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, $NH(C_1-C_3)alkyl$, and

indolyl optionally substituted with 1 or 2 substituents each selected independently from R^{12} , OH, C(O)O(C₁-C₄)alkyl,

(C₁-C₃)alkyl substituted with 1 or 2 substituents each selected independently from OH, C(O)R⁸, (C₁-C₃)alkoxy, pyrrolidinyl.

$$N[(C_1-C_3)alkyl]_2$$
, pyrrolidinyl, imidazolyl, and $(C_1-C_3)alkoxy$, and

another heteroaryl optionally substituted with up to 3 substituents each independently selected from R¹²:

L is selected from CHR⁴, CHR⁵-CHR⁶, and CHR⁵-CH₂-CHR⁶;

R¹ is selected from H, C(O)R¹⁰, C(O)OR⁷, tetrahydropyranyl, (C₃-C₆)cycloalkyl, phenyl optionally substituted with up to 2 substituents each independently

selected from R12.

pyridyl, optionally substituted with up to 2 substituents each independently selected from R¹²,

S(O)₂-phenyl where said phenyl is optionally substituted with 1 or 2 substituents each independently selected from R¹²,NH₂, NHC(O)(C₁-C₃)alkyl, NH(C₁-C₃)alkyl-N[(C₁-C₃)alkyl]₂,NH(C₁-C₃)alkyl-OH, COOH, OH, and (C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, OH, and

S(O)₂(C₁-C₃)alkyl optionally substituted with one phenyl ring,

 (C_1-C_6) alkyl optionally substituted with 1 or 2 substituents each independently selected from OR^{11} , $C(O)R^{10}$, $C(O)OR^7$, $N[(C_1-C_3)alkyl]_2$,

 $(C_3\text{-}C_6)$ cycloalkyl, dioxopyrrolidinyl, $\xrightarrow{+}$ N , glucopyranosyl, glucopyranosylamino,

(C₁-C₃)alkoxy optionally substituted with 1 or 2 substituents each

selected independently from OH, + , and imidazolyl,

O-phenyl optionally substituted with up to two substituents each independently selected from R¹²,

NH₂ where one H is optionally replaced with one substituent selected from $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2NH(C_1-C_3)$ alkyl, $S(O)_2CF_3$, $C(O)R^7$, $S(O)_2N[(C_1-C_3)$ alkyl]₂, $C(O)O(C_1-C_4)$ alkyl, $C(O)NH(C_1-C_4)$ alkyl,

$$C(O)N[(C_1-C_3)alkyl]_2$$
, $C(O)-N$, and

(C₁-C₄)alkyl optionally substituted with one OH group,

selected from R¹², OH, S-(C₁-C₃)alkyl, C(O)NH₂, S(O)₂NH₂, C(O)N[(C₁-C₃)alkyl]₂, S(O)₂(C₁-C₃)alkyl, S(O)₂NHC(O)(C₁-C₃)alkyl, C(O)(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, NHS(O)₂N[(C₁-C₃)alkyl]₂, NHC(O)NH(C₁-C₃)alkyl,

phenyl optionally substituted with 1 or 2 substituents each independently

 $NHC(O)N[(C_1-C_3)alkyl]_2,\ NHC(O)NH_2,\ S(O)_2N[(C_1-C_3)alkyl]_2,$

 $NHS(O)_2NH(C_1-C_3)alkyl, NHC(O)(C_1-C_3)alkyl,$

S(O)₂NH(C₁-C₃)alkyl optionally substituted with 1 substituent selected from (C₁-C₃)alkoxy, NH(C₁-C₃)alkyl,

10

5

15

20

25

 $N[(C_1-C_3)alkyl]_2$, and

 $(C_1\text{-}C_3) \text{alkyl substituted with one substituent selected} \\ from $NHS(O)_2(C_1\text{-}C_3)$ \text{alkyl}, $NHS(O)_2N[(C_1\text{-}C_3)$ \text{alkyl}]_2$, $NHC(O)NH(C_1\text{-}C_3)$ \text{alkyl}, $NHC(O)N[(C_1\text{-}C_3)$ \text{alkyl}]_2$, $NHS(O)_2NH(C_1\text{-}C_3)$ \text{alkyl}, $\text{and }NHC(O)(C_1\text{-}C_3)$ \text{alkyl}, $\text{and }C_1\text{-}C_3\text{$

(C₁-C₃)alkoxy substituted with 1 substituent selected from OH, NH(C₁-C₃)alkyl, N[(C₁-C₃)alkyl]₂, (C₁-C₃)alkoxy,

pyrrolyl optionally substituted with one substituent selected from R¹², C(O)N[(C₁-C₃)alkyl]₂, C(O)NH(C₁-C₃)alkyl, C(O)(C₁-C₃)alkyl,

$$C(O)-N$$
 X, and $S(O)_2(C_1-C_3)$ alkyl,

pyrazolyl optionally substituted with up to 3 substituents each selected independently from R¹², C(O)N[(C₁-C₃)alkyl]₂, C(O)NH(C₁-C₃)alkyl,

and
$$C(O)-N$$
 X, and

another heteroaryl optionally substituted with up to two substituents each independently selected from R¹²;

R² is in each instance selected independently from (C₁-C₃)alkyl, halo, (C₁-C₃)alkoxy, CF₃, NO₂, NH₂, CN, and COOH;

R³ is selected from H, (C₁-C₃)alkyl, and halo;

20 R⁴ is selected from H and (C₁-C₃)alkyl-OH;

5

10

R⁵ is selected from H, OH and (C₁-C₃)alkyl;

R⁶ is selected from H, C(O)OR⁷, C(O)R⁹, and

 (C_1-C_6) alkyl optionally substituted with one substituent selected from OH, NHS(O)₂ (C_1-C_3) alkyl, and NHC(O) (C_1-C_3) alkyl;

25 R^7 is selected from H and (C_1-C_4) alkyl;

R⁸ is selected from OH, NH₂, N[(C₁-C₃)alkyl]₂, morpholinyl, and pyrrolidinyl;

R⁹ is selected from NH₂, morpholinyl, N[(C₁-C₃)alkyl]₂, and

NH(C₁-C₃)alkyl optionally substituted with one substituent selected from OH, COOH, and N[(C₁-C₃)alkyl]₂;

R¹⁰ is selected from (C₃-C₆)cycloalkyl, morpholinyl, N[(C₁-C₄)alkyl]₂, (C₁-C₃)alkoxy, heteroaryl optionally substituted with 1 or 2 substituents each independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH, halo and CF₃,

phenyl optionally substituted with 1 or 2 substituents each independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH, halo and CF₃, (C₁-C₃)alkyl optionally substituted with one substituent selected from phenyl,

5

NH(C₁-C₄)alkyl optionally substituted with 1 phenyl ring optionally substituted with 1 or 2 substituents each independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo and CF₃, and

NH-phenyl where said phenyl is optionally substituted with 1 or 2 substituents each independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo and CF₃;

10

R¹¹ is selected from H, C(O)N[(C₁-C₃)alkyl]₂, C(O)-pyrrolidinyl, C(O)NH-phenyl, and C(O)NH(C₁-C₃)alkyl optionally substituted with 1 phenyl ring;

R¹² is selected from (C₁-C₆)alkyl, (C₁-C₃)alkoxy, halo, NO₂, CN, CF₃, O-CF₃, and phenyl optionally substituted with up to 2 substituents each selected independently from halo, (C₁-C₃)alkyl, and (C₁-C₃)alkoxy;

15

X is selected from O, S, CH₂, and NH, and

when X is NH, the H on NH is optionally replaced with $C(O)(C_1-C_3)$ alkyl, $S(O)_2(C_1-C_3)$ alkyl, or (C_1-C_6) alkyl

and when X is O, S, or CH₂, the ____X moiety is optionally substituted

20

by replacing any H atom in the moiety with (C₁-C₄)alkyl;

m is selected from 0, 1 and 2;

n is selected from 1 and 2;

---- is selected from a double bond and a single bond;

or a pharmaceutically acceptable salt, ester or carbonate thereof.

25

30

2. A compound of claim 1 wherein

R¹ is selected from H, C(O)R¹⁰, tetrahydropyranyl, (C₃-C₆)cycloalkyl,

S(O)₂-phenyl where said phenyl is optionally substituted with 1 or 2 substituents each independently selected from R¹²,-NH₂, NHC(O)(C₁-C₃)alkyl, NH(C₁-C₃)alkyl-N[(C₁-C₃)alkyl]₂, NH(C₁-C₃)alkyl-OH, COOH, OH, and (C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, OH, and

S(O)₂(C₁-C₃)alkyl optionally substituted with one phenyl ring,

(C₁-C₆)alkyl optionally substituted with 1 or 2 substituents each independently selected from OR¹¹, C(O)R¹⁰, C(O)OR⁷, N[(C₁-C₃)alkyl]₂,

$$(C_3-C_6)$$
cycloalkyl, dioxopyrrolidinyl, $+$ N x

5

10

15

20

25

30

(C₁-C₃)alkoxy optionally substituted with 1 or 2 substituents each

selected independently from OH, -+N , and imidazolyl,

O-phenyl optionally substituted with up to two substituents each independently selected from R¹²,

NH₂ where one H is optionally replaced with one substituent selected from $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2NH(C_1-C_3)$ alkyl, $S(O)_2CF_3$, $C(O)R^7$, $S(O)_2N[(C_1-C_3)$ alkyl]₂, $C(O)NH(C_1-C_4)$ alkyl,

$$C(O)N[(C_1-C_3)alkyl]_2$$
, $C(O)-N$, and

(C₁-C₄)alkyl optionally substituted with one OH group,

phenyl optionally substituted with 1 or 2 substituents each independently selected from R¹², OH, S-(C₁-C₃)alkyl, C(O)NH₂, S(O)₂NH₂, C(O)N[(C₁-C₃)alkyl]₂, S(O)₂(C₁-C₃)alkyl, S(O)₂NHC(O)(C₁-C₃)alkyl, C(O)(C₁-C₃)alkyl, C(O)NH(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, NHS(O)₂N[(C₁-C₃)alkyl]₂, NHC(O)NH(C₁-C₃)alkyl, NHC(O)N[(C₁-C₃)alkyl]₂, NHC(O)NH₂, S(O)₂N[(C₁-C₃)alkyl]₂, NHS(O)₂NH(C₁-C₃)alkyl, NHC(O)(C₁-C₃)alkyl,

S(O)₂NH(C₁-C₃)alkyl optionally substituted with 1 substituent selected from (C₁-C₃)alkoxy, NH(C₁-C₃)alkyl,

$$N[(C_1-C_3)alkyl]_2$$
, and $\stackrel{+}{\longrightarrow} N$

 (C_1-C_3) alkyl substituted with one substituent selected from NHS(O)₂(C₁-C₃)alkyl, NHS(O)₂N[(C₁-C₃)alkyl]₂, NHC(O)NH(C₁-C₃)alkyl, NHC(O)N[(C₁-C₃)alkyl]₂, NHS(O)₂NH(C₁-C₃)alkyl, and NHC(O)(C₁-C₃)alkyl, and

 (C_1-C_3) alkoxy substituted with 1 substituent selected from OH, NH (C_1-C_3) alkyl, N[(C_1-C_3) alkyl]₂, (C_1-C_3) alkoxy,

pyrrolyl optionally substituted with one substituent selected from R12,

 $C(O)N[(C_1-C_3)alkyl]_2$, $C(O)NH(C_1-C_3)alkyl$, $C(O)(C_1-C_3)alkyl$,

$$C(O)-N$$
 x, and $S(O)_2(C_1-C_3)$ alkyl,

pyrazolyl optionally substituted with up to 3 substituents each selected independently from R¹², C(O)N[(C₁-C₃)alkyl]₂, C(O)NH(C₁-C₃)alkyl,

another heteroaryl optionally substituted with up to two substituents each independently selected from R¹²;

 R^{10} is selected from (C_3-C_6) cycloalkyl, $N[(C_1-C_4)alkyl]_2$, $(C_1-C_3)alkyl$, $NH(C_1-C_4)alkyl$, heteroaryl optionally substituted with 1 or 2 substituents each independently selected from $(C_1-C_3)alkyl$, $(C_1-C_3)alkoxy$, OH, halo and CF_3 , phenyl optionally substituted with 1 or 2 substituents each independently selected from $(C_1-C_3)alkyl$, $(C_1-C_3)alkoxy$, OH, halo and CF_3 ;

R¹¹ is H:

5

10

15

20

25

30

R¹² is selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, NO₂, CN, CF₃, and O-CF₃; and m is selected from 0 and 1.

3. A compound of claim 1 wherein

W is selected from

O-phenyl optionally substituted with up to 2 substituents selected from R¹², phenyl optionally substituted with up to 2 substituents each selected independently from R¹², OH, COOR⁷, C(O)NHR⁷, S(O)₂(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, N[(C₁-C₃)alkyl]₂, NH(C₁-C₃)alkyl,

NHC(O)(
$$C_1$$
- C_3)alkyl, $\xrightarrow{+}$ N , and

(C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, $NH(C_1-C_3)alkyl$, and

indolyl optionally substituted with 1 or 2 substituents each selected independently from R^{12} , OH, C(O)O(C₁-C₄)alkyl,

(C₁-C₃)alkyl substituted with 1 or 2 substituents each selected independently from OH, C(O)R⁸, (C₁-C₃)alkoxy, pyrrolidinyl,

$$N[(C_1-C_3)alkyl]_2$$
, pyrrolidinyl, imidazolyl, and $(C_1-C_3)alkoxy$, and

another heteroaryl optionally substituted with up to 3 substituents each independently selected from R¹²;

5 R¹ is selected from H, C(O)R¹⁰, tetrahydropyranyl, (C₃-C₆)cycloalkyl,

S(O)₂-phenyl where said phenyl is optionally substituted with 1 or 2 substituents each independently selected from R^{12} ,-NH₂, NHC(O)(C₁-C₃)alkyl, NH(C₁-C₃)alkyl-N[(C₁-C₃)alkyl]₂, NH(C₁-C₃)alkyl-OH, COOH, OH, and (C₁-C₃)alkoxy substituted with 1 substituent selected from

10 N[(C₁-C₃)alkyl]₂, OH, and

15

20

25

30

S(O)₂(C₁-C₃)alkyl optionally substituted with one phenyl ring,

(C₁-C₆)alkyl optionally substituted with 1 or 2 substituents each independently selected from OR¹¹, C(O)R¹⁰, C(O)OR⁷, N[(C₁-C₃)alkyl]₂,

$$(C_3-C_6)$$
cycloalkyl, dioxopyrrolidinyl, $+$

(C₁-C₃)alkoxy optionally substituted with 1 or 2 substituents each

selected independently from OH, +, and imidazolyl,

O-phenyl optionally substituted with up to two substituents each independently selected from R¹²,

NH₂ where one H is optionally replaced with one substituent selected from $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2NH(C_1-C_3)$ alkyl, $S(O)_2CF_3$, $C(O)R^7$, $S(O)_2N[(C_1-C_3)$ alkyl]₂, $C(O)NH(C_1-C_4)$ alkyl,

$$C(O)N[(C_1-C_3)alkyl]_{2_1}$$
 $C(O)-N$, and

(C₁-C₄)alkyl optionally substituted with one OH group,

phenyl optionally substituted with 1 or 2 substituents each independently selected from R¹², OH, S-(C₁-C₃)alkyl, C(O)NH₂, S(O)₂NH₂, C(O)N[(C₁-C₃)alkyl]₂, S(O)₂(C₁-C₃)alkyl, S(O)₂NHC(O)(C₁-C₃)alkyl, C(O)(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, NHS(O)₂N[(C₁-C₃)alkyl]₂, NHC(O)NH(C₁-C₃)alkyl, NHC(O)N[(C₁-C₃)alkyl]₂, NHC(O)NH₂, S(O)₂N[(C₁-C₃)alkyl]₂, NHS(O)₂NH(C₁-C₃)alkyl, NHC(O)(C₁-C₃)alkyl,

 $S(O)_2NH(C_1-C_3)$ alkyl optionally substituted with 1 substituent

selected from (C₁-C₃)alkoxy, NH(C₁-C₃)alkyl,

$$N[(C_1-C_3)alkyl]_2$$
, and

 $(C_1\text{-}C_3) \text{alkyl substituted with one substituent selected} \\ \text{from NHS}(O)_2(C_1\text{-}C_3) \text{alkyl, NHS}(O)_2 N[(C_1\text{-}C_3) \text{alkyl}]_2, \\ \text{NHC}(O) \text{NH}(C_1\text{-}C_3) \text{alkyl, NHC}(O) N[(C_1\text{-}C_3) \text{alkyl}]_2, \\ \text{NHS}(O)_2 \text{NH}(C_1\text{-}C_3) \text{alkyl, and NHC}(O)(C_1\text{-}C_3) \text{alkyl, and } (C_1\text{-}C_3) \text{alkoxy substituted with 1 substituent selected} \\ \text{(C_1-C_3)} \text{(C_$

from OH, NH(C_1 - C_3)alkyl, N[(C_1 - C_3)alkyl]₂, (C_1 - C_3)alkoxy.

and +NX

pyrrolyl optionally substituted with one substituent selected from R^{12} , $C(O)N[(C_1-C_3)alkyl]_2$, $C(O)NH(C_1-C_3)alkyl$, $C(O)(C_1-C_3)alkyl$,

$$C(O)-N$$
 , and $S(O)_2(C_1-C_3)$ alkyl,

pyrazolyl optionally substituted with up to 3 substituents each selected independently from R¹², C(O)N[(C₁-C₃)alkyl]₂, C(O)NH(C₁-C₃)alkyl,

and
$$C(O)-N$$
 X, and

another heteroaryl optionally substituted with up to two substituents each independently selected from R¹²;

 R^2 is in each instance selected independently from (C₁-C₃)alkyl, halo, (C₁-C₃)alkoxy or CF₃; R^4 and R^5 are each H;

20 R⁶ is selected from H, and

5

10

15

25

30

 (C_1-C_6) alkyl optionally substituted with one substituent selected from OH, NHS(O)₂ (C_1-C_3) alkyl, and NHC(O) (C_1-C_3) alkyl;

 $\label{eq:R10} R^{10} \mbox{ is selected from } (C_3-C_6) \mbox{cycloalkyl, } N[(C_1-C_4)alkyl]_2, \mbox{ } (C_1-C_3)alkyl, \mbox{ } NH(C_1-C_4)alkyl, \mbox{ } heteroaryl \mbox{ optionally substituted with 1 or 2 substituents each independently } \\ \mbox{ selected from } (C_1-C_3)alkyl, \mbox{ } (C_1-C_3)alkoxy, \mbox{ } OH, \mbox{ halo and } CF_3, \mbox{ } NH(C_1-C_4)alkyl, \mbox{ } (C_1-C_3)alkyl, \mbox{ } (C_1-C_3)alkoxy, \mbox{ } OH, \mbox{ } NH(C_1-C_4)alkyl, \mbox{ } (C_1-C_3)alkyl, \mbox{ } (C_1-C_3)alkyl,$

phenyl optionally substituted with 1 or 2 substituents each independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH, halo and CF₃;

R¹¹ is H:

R¹² is selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, NO₂, CN, CF₃, and O-CF₃; and m is selected from 0 and 1.

4. A compound of claim 3 wherein

W is selected from

5

10

15

20

25

30

phenyl optionally substituted with up to 2 substituents each selected independently from R¹², and

(C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, $NH(C_1-C_3)alkyl$, and

indolyl optionally substituted with 1 or 2 substituents each selected independently from R¹²,

(C₁-C₃)alkyl substituted with 1 or 2 substituents each selected independently from OH and (C₁-C₃)alkoxy, and another heteroaryl optionally substituted with up to 3 substituents each independently selected from R¹².

5. A compound of claim 3 wherein L is CHR5-CHR6.

6. A compound of claim 3 wherein

R¹ is selected from H, C(O)R¹⁰, tetrahydropyranyl,

S(O)₂-phenyl where said phenyl is optionally substituted with 1 or 2 substituents each independently selected from R¹², COOH, OH, and (C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, OH, and

(C₁-C₆)alkyl optionally substituted with 1 or 2 substituents each independently selected from OR¹¹, N[(C₁-C₃)alkyl]₂,

$$(C_3\text{-}C_6)$$
cycloalkyl, $\stackrel{+}{\longrightarrow}$ N ,

(C₁-C₃)alkoxy optionally substituted with 1 or 2 OH,

NH₂ where one H is replaced with one substituent selected from $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2NH(C_1-C_3)$ alkyl, $S(O)_2CF_3$, $C(O)R^7$, $S(O)_2N[(C_1-C_3)$ alkyl]₂, $C(O)NH(C_1-C_4)$ alkyl,

$$C(O)N[(C_1-C_3)alkyl]_2$$
, $C(O)-N$, and

(C₁-C₄)alkyl optionally substituted with one OH group,

phenyl optionally substituted with 1 or 2 substituents each independently selected from R¹², OH, C(O)NH₂, S(O)₂NH₂,

 $S(O)_2NHC(O)(C_1-C_3)alkyl,\ C(O)NH(C_1-C_3)alkyl,\ NHS(O)_2(C_1-C_3)alkyl,\ NHS(O)_2N[(C_1-C_3)alkyl]_2,\ NHC(O)NH(C_1-C_3)alkyl,\ NHC(O)N[(C_1-C_3)alkyl]_2,\ NHC(O)NH_2,\ NHS(O)_2NH(C_1-C_3)alkyl,\ NHC(O)(C_1-C_3)alkyl,\ S(O)_2NH(C_1-C_3)alkyl\ optionally\ substituted\ with\ 1\ substituent\ selected\ from\ (C_1-C_3)alkoxy,\ NH(C_1-C_3)alkyl,\ NHC(C_1-C_3)alkyl,\ NHC(C_1-C_3)alkyl$

 $N[(C_1-C_3)alkyl]_2$, and

 $(C_1-C_3) alkyl \ substituted \ with \ one \ substituent \ selected$ $from \ NHS(O)_2(C_1-C_3) alkyl, \ NHS(O)_2N[(C_1-C_3)alkyl]_2,$ $NHC(O)NH(C_1-C_3) alkyl, \ NHC(O)N[(C_1-C_3)alkyl]_2,$ $NHS(O)_2NH(C_1-C_3) alkyl, \ and \ NHC(O)(C_1-C_3) alkyl, \ and$

 (C_1-C_3) alkoxy substituted with 1 substituent selected from OH, NH (C_1-C_3) alkyl, N[(C_1-C_3) alkyl]₂, (C_1-C_3) alkoxy,

pyrrolyl optionally substituted with one substituent selected from R^{12} , $C(O)N[(C_1-C_3)alkyl]_2$, $C(O)NH(C_1-C_3)alkyl$, $C(O)(C_1-C_3)alkyl$,

$$C(O)-N$$
 X, and $S(O)_2(C_1-C_3)$ alkyl,

pyrazolyl optionally substituted with up to 3 substituents each selected independently from R¹², C(O)N[(C₁-C₃)alkyl]₂, C(O)NH(C₁-C₃)alkyl,

and
$$C(O)-N$$
 X and

another heteroaryl optionally substituted with up to two substituents each independently selected from R¹².

7. A compound of claim 1 wherein

W is selected from

5

10

15

20

30

phenyl optionally substituted with up to 2 substituents each selected independently from R¹², and (C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, $NH(C_1-C_3)alkyl$, and

indolyl optionally substituted with 1 or 2 substituents each selected independently from R¹²,

(C₁-C₃)alkyl substituted with 1 or 2 substituents each selected

independently from OH, (C₁-C₃)alkoxy,

another heteroaryl optionally substituted with up to 3 substituents each independently selected from R¹²;

5 L is CHR⁵-CHR⁶;

R¹ is selected from H, C(O)R¹⁰, tetrahydropyranyl,

S(O)₂-phenyl where said phenyl is optionally substituted with 1 or 2 substituents each independently selected from R¹², COOH, OH, and (C₁-C₃)alkoxy substituted with 1 substituent selected from

10

15

20

25

N[(C₁-C₃)alkyl]₂, OH, and

(C₁-C₆)alkyl optionally substituted with 1 or 2 substituents each independently selected from OR¹¹, N[(C₁-C₃)alkyl]₂,

(C₁-C₃)alkoxy optionally substituted with 1 or 2 OH groups,

NH₂ where one H is replaced with one substituent selected from $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2NH(C_1-C_3)$ alkyl, $S(O)_2CF_3$, $C(O)R^7$, $S(O)_2N[(C_1-C_3)$ alkyl]₂, $C(O)NH(C_1-C_4)$ alkyl,

$$C(O)N[(C_1\text{-}C_3)alkyl]_2, \ \ C(O)-N \ \ X \ , \ and$$

(C₁-C₄)alkyl optionally substituted with one OH group,

phenyl optionally substituted with 1 or 2 substituents each independently selected from R^{12} , OH, C(O)NH₂, S(O)₂NH₂,

 $S(O)_2NHC(O)(C_1-C_3)alkyl, C(O)NH(C_1-C_3)alkyl,$

 $NHS(O)_2(C_1\text{-}C_3)alkyl,\ NHS(O)_2N[(C_1\text{-}C_3)alkyl]_2,$

 $NHC(O)NH(C_1-C_3)alkyl,\ NHC(O)N[(C_1-C_3)alkyl]_2,\ NHC(O)NH_2,$

 $NHS(O)_2NH(C_1-C_3)alkyl,\ NHC(O)(C_1-C_3)alkyl,$

S(O)₂NH(C₁-C₃)alkyl optionally substituted with 1 substituent selected from (C₁-C₃)alkoxy, NH(C₁-C₃)alkyl,

$$N[(C_1-C_3)alkyl]_2$$
, and

 $\label{eq:continuous} (C_1-C_3) alkyl substituted with one substituent selected $$ from NHS(O)_2(C_1-C_3)$ alkyl, NHS(O)_2N[(C_1-C_3)alkyl]_2, $$ NHC(O)NH(C_1-C_3)$ alkyl, NHC(O)N[(C_1-C_3)alkyl]_2, $$ $$ $(C_1-C_3)alkyl, NHC(O)N[(C_1-C_3)alkyl]_2, $$ $(C_1-C_3)alkyl, $$(C_1-C_3)alkyl, $$ $(C_1-C_3)alky$

NHS(O)₂NH(C₁-C₃)alkyl, and NHC(O)(C₁-C₃)alkyl, and (C₁-C₃)alkoxy substituted with 1 substituent selected from OH, NH(C_1 - C_3)alkyl, N[(C_1 - C_3)alkyl]₂, (C_1 - C_3)alkoxy,

5

pyrrolyl optionally substituted with one substituent selected from R¹², $C(O)N[(C_1-C_3)alkyl]_2$, $C(O)NH(C_1-C_3)alkyl$, $C(O)(C_1-C_3)alkyl$,

$$C(O)-N$$
x, and $S(O)_2(C_1-C_3)$ alkyl,

pyrazolyl optionally substituted with up to 3 substituents each selected independently from R¹², C(O)N[(C₁-C₃)alkyl]₂, C(O)NH(C₁-C₃)alkyl,

and
$$C(O)-N$$
 X, and

10

another heteroaryl optionally substituted with up to two substituents each independently selected from R12;

R² is halo:

R⁵ is H:

15 R⁶ is selected from H, and

> (C₁-C₆)alkyl optionally substituted with one substituent selected from OH, NHS(O)₂(C₁-C₃)alkyl, and NHC(O)(C₁-C₃)alkyl;

 R^{10} is selected from (C_3-C_6) cycloalkyl, $N[(C_1-C_4)alkyl]_2$, $(C_1-C_3)alkyl$ and $NH(C_1-C_4)alkyl$; R¹¹ is H:

R¹² is selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, NO₂, CN, CF₃, and O-CF₃; and 20 m is selected from 0, and 1.

8. A compound of claim 7 wherein

W is selected from

25

30

phenyl optionally substituted with up to 2 substituents each selected independently from R12, and

(C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, $NH(C_1-C_3)alkyl$, and

indolyl optionally substituted with 1 or 2 substituents each selected independently from R12,

(C₁-C₃)alkyl substituted with 1 or 2 substituents each selected independently from OH, and (C₁-C₃)alkoxy.

9. A compound of claim 7 wherein

R¹ is selected from H.

5

10

15

20

25

30

S(O)₂-phenyl where said phenyl is optionally substituted with 1 or 2 substituents each independently selected from R¹², COOH, and OH,

(C1-C6)alkyl optionally substituted with 1 or 2 substituents each independently

selected from
$$OR^{11}$$
, (C_3-C_6) cycloalkyl, \xrightarrow{i} , and

(C₁-C₃)alkoxy optionally substituted with 1 or 2 OH groups, NH₂ where one H is replaced with one substituent selected from

 $S(O)_2(C_1-C_3)alkyl, S(O)_2NH(C_1-C_3)alkyl, S(O)_2CF_3, C(O)R^7, S(O)_2N[(C_1-C_3)alkyl]_2, C(O)NH(C_1-C_4)alkyl, C(O)N[(C_1-C_3)alkyl]_2,$

(C₁-C₄)alkyl optionally substituted with one OH group, phenyl optionally substituted with 1 or 2 substituents each independently

selected from R¹², OH, C(O)NH₂, S(O)₂NH₂,

 $S(O)_2NHC(O)(C_1-C_3)alkyl, C(O)NH(C_1-C_3)alkyl,$

 $NHS(O)_2(C_1-C_3)alkyl,\ NHS(O)_2N[(C_1-C_3)alkyl]_2,$

 $NHC(O)NH(C_1-C_3)alkyl,\ NHC(O)N[(C_1-C_3)alkyl]_2,\ NHC(O)NH_2,$

NHS(O)₂NH(C₁-C₃)alkyl, NHC(O)(C₁-C₃)alkyl,

S(O)₂NH(C₁-C₃)alkyl optionally substituted with 1 substituent selected from (C₁-C₃)alkoxy, NH(C₁-C₃)alkyl,

$$N[(C_1-C_3)alkyl]_2$$
, and $+$

 (C_1-C_3) alkyl substituted with one substituent selected from NHS(O)₂(C₁-C₃)alkyl, NHS(O)₂N[(C₁-C₃)alkyl]₂, NHC(O)NH(C₁-C₃)alkyl, NHC(O)N[(C₁-C₃)alkyl]₂, NHS(O)₂NH(C₁-C₃)alkyl, and NHC(O)(C₁-C₃)alkyl, and

(C₁-C₃)alkoxy substituted with 1 substituent selected from OH, NH(C₁-C₃)alkyl, N[(C₁-C₃)alkyl]₂, (C₁-C₃)alkoxy,

and
$$+$$
 \sqrt{x}

pyrrolyl optionally substituted with one substituent selected from R^{12} , $C(O)N[(C_1-C_3)alkyl]_2$, $C(O)NH(C_1-C_3)alkyl$, $C(O)(C_1-C_3)alkyl$, and

pyrazolyl optionally substituted with up to 3 substituents each selected independently from R¹², C(O)N[(C₁-C₃)alkyl]₂, C(O)NH(C₁-C₃)alkyl,

5

10. A compound of claim 1 wherein

W is selected from

phenyl optionally substituted with up to 2 substituents each selected independently from R^{12} , and

10

(C₁-C₃)alkoxy substituted with 1 substituent selected from

$$N[(C_1-C_3)alkyl]_2$$
, $NH(C_1-C_3)alkyl$, and

indolyl optionally substituted with 1 or 2 substituents each selected independently from R¹²,

(C₁-C₃)alkyl substituted with 1 or 2 substituents each selected independently from OH, and (C₁-C₃)alkoxy;

15

L is CHR5-CHR6;

R¹ is selected from H.

S(O)₂-phenyl where said phenyl is optionally substituted with 1 or 2 substituents each independently selected from R¹², COOH, and OH,

20

25

(C₁-C₆)alkyl optionally substituted with 1 or 2 substituents each independently

selected from
$$\mathsf{OR}^{11}$$
, $(\mathsf{C}_3\text{-}\mathsf{C}_6)$ cycloalkyl, $\xrightarrow{\ \dot{+}\ \mathsf{N}}$, and

 $(C_1\text{-}C_3)$ alkoxy optionally substituted with 1 or 2 OH groups,

 $\ensuremath{\text{NH}_2}$ where one H is replaced with one substituent selected from

 $S(O)_2(C_1-C_3)alkyl, S(O)_2NH(C_1-C_3)alkyl, S(O)_2CF_3, C(O)R^7,$

 $S(O)_2N[(C_1-C_3)alkyl]_2$, $C(O)NH(C_1-C_4)alkyl$, $C(O)N[(C_1-C_3)alkyl]_2$,

$$C(O)-N$$
 , and

 $(C_1\text{-}C_4)$ alkyl optionally substituted with one OH group,

phenyl optionally substituted with 1 or 2 substituents each independently selected from R¹², OH, C(O)NH₂, S(O)₂NH₂,

 $S(O)_2NHC(O)(C_1-C_3)alkyl, C(O)NH(C_1-C_3)alkyl,$

NHS(O)₂(C₁-C₃)alkyl, NHS(O)₂N[(C₁-C₃)alkyl]₂,

 $NHC(O)NH(C_1-C_3)alkyl, NHC(O)N[(C_1-C_3)alkyl]_2, NHC(O)NH_2,\\ NHS(O)_2NH(C_1-C_3)alkyl, NHC(O)(C_1-C_3)alkyl,\\ S(O)_2NH(C_1-C_3)alkyl optionally substituted with 1 substituent\\ selected from (C_1-C_3)alkoxy, NH(C_1-C_3)alkyl,\\$

 $N[(C_1-C_3)alkyl]_2$, and

 (C_1-C_3) alkyl substituted with one substituent selected from NHS(O)₂(C₁-C₃)alkyl, NHS(O)₂N[(C₁-C₃)alkyl]₂, NHC(O)NH(C₁-C₃)alkyl, NHC(O)N[(C₁-C₃)alkyl]₂, NHS(O)₂NH(C₁-C₃)alkyl, and NHC(O)(C₁-C₃)alkyl, and

(C₁-C₃)alkoxy substituted with 1 substituent selected from OH, NH(C₁-C₃)alkyl, N[(C₁-C₃)alkyl]₂, (C₁-C₃)alkoxy,

and +NX

pyrrolyl optionally substituted with one substituent selected from R^{12} , $C(O)N[(C_1-C_3)alkyl]_2$, $C(O)NH(C_1-C_3)alkyl$, $C(O)(C_1-C_3)alkyl$, and

C(O)-N_X

pyrazolyl optionally substituted with up to 3 substituents each selected independently from R¹², C(O)N[(C₁-C₃)alkyl]₂, C(O)NH(C₁-C₃)alkyl,

R² is halo:

20 R³ is selected from H, and (C₁)alkyl;

R⁵ is H;

5

10

15

30

 R^6 is selected from H, and (C_1-C_6) alkyl optionally substituted with one OH group; R^7 is selected from H and (C_1-C_4) alkyl;

R¹¹ is H:

- 25 R¹² is selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CN, and CF₃; m is selected from 0, and 1; and n is 1.
 - 11. A compound of claim 10 wherein L is CH2-CH2.

12. A pharmaceutical composition comprising a compound of Claim 1.

- 13. A pharmaceutical composition comprising a compound of Claim 2.
- 14. A pharmaceutical composition comprising a compound of Claim 3.
- 15. A pharmaceutical composition comprising a compound of Claim 4.
- 16. A pharmaceutical composition comprising a compound of Claim 5.
- 5 17. A pharmaceutical composition comprising a compound of Claim 6.
 - 18. A pharmaceutical composition comprising a compound of Claim 7.
 - 19. A pharmaceutical composition comprising a compound of Claim 8.
 - 20. A pharmaceutical composition comprising a compound of Claim 9.
 - 21. A pharmaceutical composition comprising a compound of Claim 10.
- 10 22. A pharmaceutical composition comprising a compound of Claim 11.

15

- 23. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim I.
- 24. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 2.
- 25. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 3.
- 26. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 4.
 - 27. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 5.
 - 28. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 6.
- 29. A method of treating a hyper-proliferative disorder in a mammal comprising
 30 administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 7.

30. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 8.

31. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 9.

5

- 32. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 10.
- 33. A method of treating a hyper-proliferative disorder in a mammal comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 11.
 - 34. A method of any of Claim 23, Claim 24, Claim 25, Claim 26, Claim 27, Claim 28, Claim 29, Claim 30, Claim 31, Claim 32, and Claim 33, wherein the hyper-proliferative disorder is selected from solid tumors, lymphomas, sarcomas and leukemias.
 - 35. A method of claim 34 wherein the disorder is selected from solid tumors.
 - 36. A method according to claim 35 wherein the tumor is selected from cancers of the breast, reproductive organs, respiratory tract, brain, head, neck, hematopoietic tissue, digestive tract and urinary tract.
- 37. A method according to claim 36 wherein the disorder is selected from cancers of the breast, prostate, ovary, lung, colon, head, neck and hematopoietic tissue.