Valeria Naigé Rodríguez Martínez

2132985

Investigación de Operaciones - G032

Actividad 6

01 de febrero de 2025

Comprender el espacio muestral

El espacio muestral son todos aquellos resultados posibles que se pueden obtener al lanzar simultáneamente 3 dados de 20 caras cada uno. Cada dado puede tomar valores del 1 al 20.

Enumeración de resultados posibles

Si bien el espacio muestral abarca 8000 resultados posibles, podemos escribirlo como se muestra:

$$S = \{ (1, 1, 1), (1, 1), (1, 1, 2), \dots \\ (20, 20, 19), (20, 20, 20) \}$$

Definir la variable aleatoria X

Definimos *X* como la variable aleatoria que representa la suma de los 3 números obtenidos al lanzar los 3 dados.

$$X = D1 + D2 + D3$$

Donde

D1 = Número obtenido en el dado 1

D2 = Número obtenido en el dado 2

D3 = Número obtenido en el dado 3

$$D1, D2, D3 = \{1, 2, 3, ..., 20\}$$

Calcular los valores de X

Con ayuda de un programa de Python, se calcularon las sumas de todos los valores del espacio muestral, así como su frecuencia.

Suma	Frecuencia	30	298
3	1	31	300
4	3	32	300
5	6	33	298
6	10	34	294
7	15	35	288
8	21	36	280
9	28	37	270
		38	258
10	36	39	244
11	45	40	228
12	55	41	210
13	66	42	190
14	78	43	171
15	91	44	153
16	105	45	136
17	120	46	120
18	136	47	105
19	153	48	91
20	171	49	78
21	190	50	66
22	210	51	55
		52	45
23	228	53	36
24	244	54	28
25	258	55	21
26	270	56	15
27	280	57	10
28	288	58	6
29	294	59	3
30	298	60	1

Crear un gráfico

Con el mismo programa de Python, se ha generado una gráfica que modele las frecuencias de los valores de X.

Como se observa, los datos generan una función que modela la Distribución Normal.

