4.3 8位 ISA 总线:

8086 系统总线

A0=0, BHE=1, 选中偶地址; A0=1, BHE=0, 选中奇地址 A0=0, BHE=0, 两片都选中

4.10

400FFFFH-40000000H=FFFFFH,共 2^{20} =1MB 容量,要用 1MB/256KB=4 片 256KB= 2^{18} ,故该芯片有 18 条地址线 地址前导为 400=0100 0000 0000

4.16

1) 1111 110X XXXX XXXX XXXX 地址范围: FC000H~FDFFFH

2)

4.24 (C)

10+100(1-X)=16 X=94%

4.25

- (1) 标记: 9, 索引: 1, 块内地址: 10
- (2) 主存地址为 ABCDEH: (1010 1011 1)(1)(00 1101 1110) 标记 157H 出现在地址映射表,命中第 3 路的第 1 块(每路由第 0 块、第 1 块组成),路内地址为: (1)(00 1101 1110)。
- (3) 主存地址为 12345H: (0001 0010 0)(**0**)(11 0100 0101) 标记 024H 在地址映射表各路 0 块中未出现,所以未命中。

4.26

- 1) 主存 1MB, 20 位;每块 1KB, 10 位, 主存块号 10 位,块内地址 10 位 地址变换表(4)个单元,每个单元(10)位
- 2) 30+(1-X)300=32.7 X=99.1%
- 3)主存地址为 88888H 时, 1000100010 0010001000
- 主存块号 222H, 查地址变换表为 1 块, Cache 地址为 01 0010001000, 即 488H 主存地址为 56789H 时, 0101011001 1110001001
- 主存块号 159H, 查地址变换表为 2 块, Cache 地址为 10 1110001001, 即 B89H 4)优点: Cache 利用率高, 命中率高

缺点:需要相联存储器容量大,地址变换硬件复杂。

4.27

1) 主存 1MB, 20 位地址;每块 512B,块内地址 9 位;每路 4 块,块号 2 位;区号 20-9-2 = 9 位;每条记录区号+有效位=9+1=10 位,共 8 条记录,故相联

存储器容量为 8*10b, (B)

2)2 路, 故每次参与的存储单元为 2 个, (B)

4.31

主存 4MB, 实地址为 22 位 虚存 1GB, 虚地址为 30 位 页面大小 4KB, 则 1GB/4KB=256K

4.32

段 3 的首地址为 44000H 故 1059H 单元的实地址为 1059H+44000H=45059H 段 2 的首地址为 15000H, 故 1678H 单元的实地址为 16678H

4.34

FIFO

P3	P3	P3	P6	P6	P6	P6	P4	P4	P4	P4	P4	P8	P8	P8
	P4	P4	P4	P4	P3	P3	P3	P3	P6	P6	P6	P6	P4	P4
		P2	P2	P2	P2	P7	P7	P7	P7	P3	P3	P3	P3	P6

命中 命中 命中

命中率 3/15=20%

LRU

P3	P3	P3	P6	P6	P6	P7	P7	P7	P6	P6	P6	P8	P8	P8
	P4													
		P2	P2	P2	P3	P6								

命中 命中 命中 命中 命中

命中率 6/15=40%

主存为4页时

FIFO

	-													
P3	P3	P3	P3	P3	P3	P7	P6							
	P4	P3												
		P2	P4	P4	P4	P4								
			P6	P8	P8	P8								

命中命中 命中 命中 命中

命中率 6/15=40%

LRU

| P3 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| | P4 |
| | | P2 | P2 | P2 | P2 | P7 | P7 | P7 | P7 | P7 | P7 | P8 | P8 | P8 |
| | | | P6 |

命中 命中 命中 命中 命中 命中 命中

命中率 9/15=60%

Cache 共 32 块, 每块可容纳 8 个 int 型数据。

数组每个元素访问 2 次 (读、写各一次),则每 8 个数组元素共访问 16 次,缺失 1 次 (第一次访问时 Cache 不命中; Cache 每次装入 8 个数组元素,即 1 块),因此缺失率为 1/16,即 6.25%。

4.36

(1) A、B 虚页号, 20 位; C 实页号, 14 位; D 页内地址 12 位; E 标记(Tag) 11 位; F 索引(Index,或"组号") 9 位; G 块内地址 6 位。

(2) 4102=4096+6=1000 000000110 B, 则:

9位 Index (组号) 为 000000110 B (6), 11位 H 字段 (Tag) 为 00000001000 B (8)。

(3) Cache 缺失:用硬件实现;访问主存,开销小。

缺页:用软件实现;访问磁盘,处理的开销大。

(4)

- ✓ 若修改页面内容时采用写直达(Write Through)策略,需同时写主存与磁盘, 而写磁盘比写主存慢得多。
- ✓ Cache 采用写直达(Write Through)策略,硬件实现,写主存可以与 CPU 处理 其他事物并行。
- ✓ 磁盘与主存之间的速度差异比主存与 Cache 之间的速度差异更大。

4.37

主存地址共30位,数据Cache 共16块,每块64B,则主存地址划分如下:

Tag (20bit)、Index (4bit)、块内地址 (6bit)。

Cache 地址映射表包括: (有效位)(修改位)(替换控制位)(标记 Tag),按照题意,忽略修改位、替换控制位,则地址映射表每行容量=1位有效位+20位 Tag=21位。

- (1) $16 \times (64 + 21/8)B = 1066B$.
- (2) $(768+62\times4)$ DIV 64 MOD 16=15;

 $(768+256\times4+150\times4)$ DIV 64 MOD 16=5.

即: 若命中, a[0][62]在 Cache 的第 15 块; a[1][150]在 Cache 的第 5 块。

(3)

数据 Cache 每块可容纳 16 个数组元素(64B/4B),如果数据 Cache 装满,可容纳 16 块 $\times 16$ 个元素/块=256 个数组元素,刚好对应数组的一行。

数组 a 的首地址 768,是块大小 64 的整数倍,因此数组 a 在内存中是按块对齐存放的。数组 a 每行占用 16 个块(256×4/64),假设块编号为 $0\sim15$,则:按照直接映射规则,数组 a 每行的第0块必须装入 Cache 的第0块;数组 a 每行的第1块必须装入 Cache 的第1块,……;数组 a 每行的第15 块必须装入 Cache 的第15 块。

程序 A (按行访问数组元素):程序访问数组每一个块的第一个元素,必不命中,则将该块装入 Cache,后续 15 个元素必然命中。则:Cache 命中率=15/16=93.75%。

程序 B (按列访问数组元素):数组相同列元素在所在的块被映射到 Cache 相同的块位置,每次访问数组元素都会导致 Cache 块的替换、且无法利用块内其他元素(同一行相邻的),因此 Cache 命中率为 0。显然,程序 A 的执行时间更短。

4.38

- (1)虚拟地址共28位(高16位为虚页号、低12位为页内地址),物理地址共24位(高12位为实页号,低12位为页内地址)。
 - (2) 主存物理地址: Tag (16位)、Index (3位)、块内地址 (5位)。
- (3)虚拟地址 00056A8H, 虚页号 0005H, 查页表, 实页号 20DH, 则主存地址 20D6A8H; 主存地址: (0010 0000 1101 0110) (101)(0 1000), Tag 为 20D6H, Index 为 5。Cache 地址映射表第 5 行内容是 20D6H, 与 Tag 相同, 因此命中 Cache。Cache 内部地址为 A8H。
- (4) 虚拟地址 00356A8H, 页内地址 12 位、索引(Index)1 位、标记(Tag)15 位,则:
 - 二进制(Tag)(Index)(页内地址)形式: (0000 0000 0011 010)(1) (0110 1010 1000), Tag 为 001AH, Index 为 1。

查 4 路 TLB 的第 1 行, 查找有效的"001AH"标记: 有,对应实页号 87EH,则主存物理地址为 87E6A8H。