1)

(1) Investanda momentodor e demanmodor ma proviso da hipírbale, alternos suma proviso linear:

1/g(x) = 0x1 + 0x X

Damonda duas Punçais: $g_1(x) = 1 + g_2(x) = X$ Podemas excurer: & $f_1(x) = x_1 g_1(x) + x_2 g_2(x)$ $g = 1/g(x) \longrightarrow f_1(x) \longrightarrow f_2(x)$ Utilizanda a MMQ:

Risalvanda as pradutas escalares alternas:

Digitalizado com CamScanno

Digitalizado com CamScanner

Partanta:
$$3(x) = 0,1963 + 0,0186 \frac{1}{1}$$

$$3(x) = \frac{1}{0,1963 + 0,0186 \frac{1}{1}}$$

(2) ii) Portunda de $g(x) = \alpha l^{x}$, oplicanda lagge a america lodas lag $(y) = \log(\alpha l^{x}) \rightarrow \log(y) = \log(\alpha) + \log(\alpha l^{x})$ $\log(y) = \log(\alpha) + x \log(\alpha) \rightarrow \frac{\log(y)}{\log(y)} \frac{\log(\alpha)}{\log(x)} + x$ $\log(y) = \log(\alpha) + x \log(\alpha) \rightarrow \frac{\log(y)}{\log(x)} \frac{\log(\alpha)}{\log(x)} + x$ $\log(y) = \log(\alpha) + x \log(\alpha) \rightarrow \frac{\log(y)}{\log(x)} \log(\alpha) + x$ $\log(y) = \log(\alpha) + x \log(\alpha) \rightarrow \frac{\log(x)}{\log(x)} \log(x)$ $\log(y) = \log(\alpha) + \log(\alpha) + \log(\alpha)$ $\log(x) = \log(\alpha)$

Digitalizado com CamScanner

Resolvanda a sistema pela metada de ganos

$$3 = \alpha + \alpha \times x$$
 $\Rightarrow \alpha_1 = \log(\alpha) \Rightarrow 10$ = α

Para a item i):
$$F(\alpha) = \sum_{k=1}^{n} [g(x_k) - g(x_k)]^2 = 0,001323$$

ii) $F(\alpha) = \sum_{k=1}^{n} [g(x_k) - g(x_k)]^2 = 0,091099$

coluborda $R^2 = \sum_{k=1}^{n} [g(x_k) - \overline{g}]^2$
 $E(\alpha) = \sum_{k=1}^{n} [g(x_k) - \overline{g}]^2$

Partanta, a ograte de dadas utilizansa uma hipirbale cama apraximação e mais precisa.

Digitalizado com CamScarre

Tabelas de dados e gráficos de dispersão com ajuste linear:

