TD Déversement

Exercice 1 : On considère la poutre bi-encastrée de la figure ci-après.

La poutre de section IPE200 et de longueur L=4m supporte une charge uniformément répartie non pondérée q=15kN/m.

Hypothèses de calcul:

- Flèche admissible l/300
- Matériau S275

Questions:

- 1. Calculez les charges dues aux combinaisons d'action ELS et ELU.
- 2. Vérifiez la flèche de la poutre.
- 3. Vérifiez la section transversale de la poutre.

100

Vérifiez la stabilité de la poutre au déversement.

Caractéristiques de la section de la poutre : Poids Α Ιx Iy kg/m ${\rm cm}^2$ cm^4 $_{ m mm}$ $_{\mathrm{mm}}$ $_{\mathrm{mm}}$ cm^4

28.48

1943

142,3

22.4

8.5

Diagramme MNT:

Pr Z. EL MASKAOUI

200

Profilé

IPE 200

Calcul de D, coefficient caractéristique des dimensions de la pièce :

Calcul de C, coefficient caractéristique de la répartition longitudinale des charges

Encastrer rapport	Encastrement par rapport à l'axe		Charge concentrée	Charge uniformément	2 charges symétriques		
Gy	Gx	constant	au milieu	répartie	à c des appuis		
sans	sans	1 ,	1,365	1,132	$1+2,92\left(\frac{c}{7}\right)^3$		
$(I_0 = I)$	avec	-	0,938	0,576	$0,1+1,2\frac{c}{l}+1,9\left(\frac{c}{l}\right)^{3}$		
avec	sans	1	1,076	0,972	$1 + \left(\frac{c}{l}\right)^3 \left(\frac{c}{l} - 0.93\right)$		
(/ ₀ = 2/)	avec	-	0,633	0,425	$0,181 + 0,307 \frac{c}{l} + \left(\frac{c}{l} - 0,474\right)^{3}$		

Lorsque le chargement comporte plusieurs charges agissant dans le même sens et auxquels correspond les coefficients c_1 , c_2 , etc. et les contraintes σ_{fl} , σ_{fl} , etc. le coefficient c applicable à l'ensemble est donné par :

$$\frac{\sigma_{f1} + \sigma_{f1} + \cdots}{c} = \frac{\sigma_{f1}}{c_1} + \frac{\sigma_{f2}}{c_2} + \cdots$$

Calcul de B, coefficient caractéristique du niveau d'application des charges,

$$B = \sqrt{1 + \left(\frac{y_a}{h} \frac{8 \beta C}{\pi^2 D}\right)^2} - \frac{y_a}{h} \frac{8 \beta}{\pi^2}$$

 y_a est la distance du point d'application des charges au centre de gravité de la section, comptée positivement au-dessus du centre de gravité.

Calcul du coefficient β

Encastrement par rapport à l'axe		Moment constant	Charge concentrée	Charge uniformément	2 charges symétriques	
Gy	Gx	CONSTAIN	au milieu	répartie	à c des appuis	
sans	sans	0	1	1 .	$6\frac{c}{l}-8\frac{c^2}{l^2}$	
(/ ₀ = /)	avec	-	2	3	$5-2\frac{c}{l}-8\frac{c^2}{l^2}$	
avec (/ ₀ = 2/)	sans	0	1	0,75	$5\left(\frac{c}{l}\right)^3\left(1,2-\frac{c}{l}\right)$	
	avec	-	2	2,25	$\frac{c^2}{l^2}\left(13-11\frac{c}{l}\right)$	

Lorsque le chargement comporte plusieurs charges auxquels correspondent les coefficients β_1 , β_2 , etc. et les contraintes σ_{fl} , σ_{f2} , etc. le coefficient β applicable à l'ensemble est donné par :

$$\beta(\sigma_{f_1} + \sigma_{f_2} + \cdots) = \beta_1 \sigma_{f_1} + \beta_2 \sigma_{f_2} + \cdots$$

Exercice 2 : Vérifier la résistance et la flèche d'une poutre console IPE360 de portée L=3m supportant une charge pondérée et uniformément répartie de $25 \mathrm{kN/m}$. La charge sera appliquée sur l'aile supérieure de la poutre. Acier S235. f_{adm} =L/150.

Caractéristiques de la section de la poutre :

Profilé	h mm	b mm	e mm	Poids kg/m	${ m Ix} { m cm}^4$	${\rm Iy} \atop {\rm cm}^4$
IPE 360	360	170	12.7	57.1	16270	1043

Diagramme MNT:

Méthode de vérification au déversement (poutre console)

a. Notations:

lo longueur de la poutre libre

l longueur de déversement, l=2lo (Poutre console parfaitement encastrée)

h hauteur du profil

b largeur de l'aile

e épaisseur de la semelle

C coefficient de la répartition longitudinale des charges

b. Vérification à effectuer :

$$\sigma_{\rm f}.k_{\rm d} \leq \sigma_{\rm e}$$

- c. Calcul de k_d:
- Charges appliquées au centre de gravité (CM66 3,631) :

$$k_d = 0.1 + 2.2 \frac{lh}{1000Cbe} \frac{\sigma_e}{24}$$

 σ_e en daN/mm²

- Charges appliquées sur l'aile supérieure (CM66 - 3,632) : On applique la formule précédente en remplaçant l par $l+0.375\,C\,h\,\frac{b}{c}$

- Charges appliquées sur l'aile inférieure (CM66 - 3,632) : On applique la même formule en remplaçant l par $l-0.375\,C\,h\,\frac{b}{e}$

d. Calcul de C (CM66 - 3,642-3):

• Charge uniformément répartie : C=4.93

• Charge concentrée à l'extrémité : C=2.77

• Charge à distance c de l'encastrement : $C = \frac{1}{c} + 0.19 \frac{l^2}{c^2}$ (c)

Lorsque le chargement comporte plusieurs charges agissant dans le même sens et auxquels correspond les coefficients c_1 , c_2 , etc. et les contraintes σ_{f1} , σ_{f2} , etc. le coefficient c est donné par :

$$\frac{\sigma_{f_1} + \sigma_{f_1} + \cdots}{c} = \frac{\sigma_{f_1}}{c_1} + \frac{\sigma_{f_2}}{c_2} + \cdots$$