概率论知识复习

四、随机变量函数的分布计算

问题 已知随机变量 X 的密度函数 f(x) ,求 Y = g(X) 的密度函数或分布函数.

主要步骤:

(1)在自变量取值范围内求分布函数 $F_{v}(y) = P(Y \le y)$;

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in S_y)$$
$$= \int_{S_y} f(x) dx = h(y),$$

- (2)对自变量求导即得Y的密度函数 $f_Y(y) = F_Y'(y) = h'(y)$.
- (3)由密度函数或分布函数特点写出完整表达.

卷积公式 设连续型随机变量 X 与 Y 相互独立,且已知 $X \sim f_X(x), Y \sim f_Y(y)$. 则 Z = X + Y 的概率密度函数 为 $f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$. ——称为卷积公式.

概率论知识复习

五、二维随机变量分布概念

如果一个二维随机向量只可能取有限个或可列个值,则称 其为二维离散型随机向量。

设
$$(X,Y)$$
的值域为 $\Omega_{(X,Y)}=\{(a_i,b_j),i,j=1,2,\cdots\}$,称
$$P(X=a_i,Y=b_j) \triangleq P(\{X=a_i\} \cap \{Y=b_j\}) \triangleq p_{ij}$$

$$i=1,2,\cdots;j=1,2,\cdots$$

为二维随机向量(X,Y)的联合概率函数或联合分布律.

其中
$$p_{ij}$$
 需满足下列条件: (1) $p_{ij} \ge 0$; (2) $\sum_{i} \sum_{j} p_{ij} = 1$.

也可用表格形式表示

$X \setminus Y$	b_1	b_2	•••	$b_{_{j}}$	•••	
a_1	p_{11}	p_{12}	•••	p_{1j}	•••	$p_{1.}$
a_2	p_{21}	p_{22}	•••	p_{2j}	•••	p_{2}
:	:	:				:
a_{i}	p_{i1}	p_{i2}	•••	p_{ij}	•••	$p_{i\cdot}$
:	:		•••			
	$p_{\cdot 1}$	$p_{\cdot 2}$	•••	$p_{\cdot j}$		

其中
$$P(X = a_i) = p_{i.} = \sum_j p_{ij}, P(Y = b_i) = p_{.j} = \sum_i p_{ij}$$

相互独立性 设随机变量 X与Y的联合概率函数为

$$P(X = a_i, Y = b_j) = p_{ij}, i, j = 1, 2, \dots, n, \dots$$

如果等式 $p_{ij} = p_{i.} \times p_{.j}$ 对所有的 $i, j = 1, 2, \dots, n, \dots$ 都

成立,则称随机变量 X 与 Y 是相互独立的.

上述等式即 $P(X = a_i, Y = b_j) = P(X = a_i) \times P(Y = b_j)$

独立性意味着在下表中,交叉点的元素 p_{ij} 是下标所对应的行和与列和(分别是两个边缘概率函数值)的乘积.

$X \setminus Y$	b_1	b_2	•••	$b_{_{j}}$	•••	$p_{i\cdot}$
a_1	p_{11}	p_{12}	•••	p_{1j}	• • •	$p_{1.}$
a_2	p_{21}	p_{22}	•••			$p_{2\cdot}$
	:					
a_{i}	p_{i1}	p_{i2}	•••	p_{ij}	•••	$p_{i\cdot}$
$p_{\cdot j}$	$p_{\cdot 1}$	$p_{\cdot 2}$	•••	$p_{\cdot j}$	•••	

