

SAT/SMT solvers9. Deciding a Combination of Theories

SAT/SMT solvers 9. Deciding a Combination of Theories

Roman Kholin

Lomonosov Moscow State University

Moscow, 2023

Why we need it

- A combination of linear arithmetic and uninterpreted functions: $(x_2 \ge x_1) \land (x_1 x_3 \ge x_2) \land (x_3 \ge 0) \land f(f(x_1) f(x_2)) \ne f(x_3)$
- ② A combination of bit vectors and uninterpreted functions: $f(a[32], b[1]) = f(b[32], a[1]) \land a[32] = b[32]$
- 3 A combination of arrays and linear arithmetic: $x = v\{i \leftarrow e\}[j] \land y = v[j] \land x > e \land x > y$

Theories

- Variables
- **2** Logical symbols: $\lor, \land, \rightarrow, \neg$, \forall, \exists
- Nonlogical symbols, namely function and predicate symbols
- Syntax
 - It is common to consider the equality sign as a logical symbol rather than a predicate
 - Signature Σ is a set of nonlogical symbols (i.e., function and predicate symbols)
 - A first-order theory is defined by a set of sentences (first-order formulas in which all variables are quantified) or axioms
 - A Σ formula ϕ is T-satisfiable if there exists an interpretation that satisfies both ϕ and T
 - A Σ -formula ϕ is T-valid ($T \models \phi$) if all interpretations that satisfy T also satisfy ϕ

Theory combination

Given two theories T_1 , T_2 with signatures Σ_1 , Σ_2 respectively, the theory combination $T_1 \oplus T_2$ is a $(\Sigma_1 \cup \Sigma_2)$ -theory defined by the axiom set $T_1 \cup T_2$

Convex theory

Σ-theory T is convex if for every conjunctive Σ-formula ϕ : $(\phi \implies \bigvee_{i=1}^{n} (x_i = y_i))$ is T-valid for some finite $n > 1 \implies (\phi \implies (x_i = y_i))$ is T-valid for some $i \in \{1, ..., n\}$ $x \le 3 \land x \ge 3 \implies x = 3$ $x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \implies (x_3 = x_1 \lor x_3 = x_2)$

Nelson-Oppen restrictions

- \bullet $T_1, \ldots T_n$ are quantifier-free first-order theories with equality
- There is a decision procedure for each of the theories
- The signatures are disjoint
- Theories that are interpreted over an infinite domain

Purification

Let
$$\phi' := \phi$$

- **1** For each "alien" subexpression φ replace on a_{φ}
- 2 Constrain ϕ' with $a_{\varphi} = \varphi$

$$\varphi := x_1 \le f(x_1)$$

After purification, we are left with a set of pure expressions F_1, \ldots, F_n , such that:

- For all i, F_i belongs to theory T_i and is a conjunction of T_i -literals
- Shared variables are allowed
- **3** The formula ϕ is satisfiable in the combined theory if and only if $\wedge_{i=1}^n F_i$

Nelson-Oppen for Convex Theories

Input: A convex formula φ that mixes convex theories, with

restrictions as specified in Definition 10.5

Output: "Satisfiable" if φ is satisfiable, and "Unsatisfiable" otherwise

- 1. Purification: Purify φ into F_1, \ldots, F_n .
- 2. Apply the decision procedure for T_i to F_i . If there exists i such that F_i is unsatisfiable in T_i , return "Unsatisfiable".
- 3. Equality propagation: If there exist i, j such that F_i T_i -implies an equality between variables of φ that is not T_j -implied by F_j , add this equality to F_j and go to step 2
- 4. Return "Satisfiable".

Example

$$(f(x_1,0) \ge x_3) \land (f(x_2,0) \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - f(x_1,0) \ge 1),$$

Example

$$(x_2 \ge x_1) \land (x_1 - x_3 \ge x_2) \land (x_3 \ge 0) \land (f(f(x_1) - f(x_2)) \ne f(x_3))$$

Nelson-Oppen

Algorithm may fail if one of the theories is not convex:

$$(1 \leq x) \, \wedge \, (x \leq 2) \, \wedge \, p(x) \wedge \neg p(1) \wedge \neg p(2)$$

Nelson-Oppen

Input: A formula φ that mixes theories, with restrictions as specified in Definition 10.5

Output: "Satisfiable" if φ is satisfiable, and "Unsatisfiable" otherwise

- 1. Purification: Purify φ into $\varphi' := F_1, \dots, F_n$.
- 2. Apply the decision procedure for T_i to F_i . If there exists i such that F_i is unsatisfiable, return "Unsatisfiable".
- 3. Equality propagation: If there exist i, j such that F_i T_i -implies an equality between variables of φ that is not T_j -implied by F_j , add this equality to F_j and go to step 2
- 4. Splitting: If there exists i such that
 - $F_i \implies (x_1 = y_1 \lor \cdots \lor x_k = y_k)$ and
 - $\forall j \in \{1, \dots, k\}. \ F_i \implies x_j = y_j,$

then apply Nelson-Oppen recursively to

$$\varphi' \wedge x_1 = y_1, \dots, \varphi' \wedge x_k = y_k$$
.

If any of these subproblems is satisfiable, return "Satisfiable". Otherwise, return "Unsatisfiable".

Return "Satisfiable".

Example

$$(1 \leq x) \, \wedge \, (x \leq 2) \, \wedge \, p(x) \wedge \neg p(1) \wedge \neg p(2)$$

