

Teorie Obvodů

Semestrální projekt - řešení obvodů

19. prosince 2012

Autor: Lukáš Vokráčko, xvokra00@stud.fit.vutbr.cz

Fakulta Informačních Technologií Vysoké Učení Technické v Brně

Obsah

1	Příklad 1	1
	1.1 Zadání	1
	1.2 Postup řešení	1
	1.3 Výsledky	1
2	Příklad 2	2
	2.1 Zadání	2
	2.2 Postup řešení	2
	2.3 Výsledky	3
3	Příklad 3	3
	3.1 Zadání	3
	3.2 Postup řešení	3
	3.3 Výsledky	4
4	Příklad 4	4
	4.1 Zadání	4
	4.2 Postup řešení	5
	4.3 Výsledky	5
5	Příklad 5	5
	5.1 Zadání	5
	5.2 Postup řešení	6
	5.3 Výsledky	6
6	Příklad 6	7
	6.1 Zadání	7
	6.2 Postup řešení	7
	6.3 Výsledky	8
7	Přehled výsledků	8

1 Příklad 1

1.1 Zadání

Stanovte napětí na U_{R7} a proud I_{R7} . Použijte metodu postupného zjednodušování obvodu. Hodnoty:

Sk.	U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$
В	95	650	730	340	330	410	830	340	220

1.2 Postup řešení

- 1. Vypočítám hodnoty paralelně zapojených rezistorů R_2, R_3 a R_7, R_8 .
- 2. Odpory R_1, R_{23}, R_4 transformuji na hvězdu a vypočítám hodnoty odporů R_a, R_b, R_c
- 3. Vypočítám celkový odpor R_{EKV} 1 zjednodušením schématu 1, které vzniklo transfigurací
- 4. Vypočítám proud I
- 5. Vypočítám napětí U_{R7} 2 na rezistoru R_{78} a z něj proud I_{R7} 3 na rezistoru R_7

Obrázek 1: Schéma obvodu po tranfiguraci

$$R_{EKV} = \frac{R_1 * \frac{R_2 * R_3}{R_2 + R_3}}{R_1 + \frac{R_2 * R_3}{R_2 + R_3} + R_4} + \frac{\left(\frac{R_1 * R_4}{R_1 + \frac{R_2 * R_3}{R_2 + R_3} + R_4} + R_5\right) * \left(\frac{R_4 * \frac{R_2 * R_3}{R_2 + R_3} + R_4}{R_1 + \frac{R_2 * R_3}{R_2 + R_3} + R_4} + R_6\right)}{\left(\frac{R_1 * R_4}{R_1 + \frac{R_2 * R_3}{R_2 + R_3} + R_4} + R_5\right) + \left(\frac{R_4 * \frac{R_2 * R_3}{R_2 + R_3} + R_4}{R_1 + \frac{R_2 * R_3}{R_2 + R_3} + R_4} + R_6\right)} + \frac{R_7 * R_8}{R_7 + R_8}$$

$$R_{EKV} = 612.1807\Omega$$

$$I = \frac{U}{R_{EKV}}$$

1.3 Výsledky

$$U_{R7} = I * \frac{R_7 * R_8}{R_7 + R_8} = 20.7280V \tag{2}$$

$$I_{R7} = \frac{U_{R7}}{R_7} = 0.0609A \tag{3}$$

2 Příklad 2

2.1 Zadání

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu Theveninovy věty. Hodnoty:

	- v					
Sk.	U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$
F	130	350	600	195	320	280

2.2 Postup řešení

- 1. Odpojení odporu R_5
- 2. Transfigurace rezistorů R_1, R_2, R_3 na hvězdu 2
- 3. Překreslení obvodu ${\color{red}3}$ pro výpočet celkového odporu R_i ${\color{red}4}$
- 4. Výpočet proudu I 5 protékajícího celým obvodem
- 5. Nakreslení náhradního schématu 4
- 6. Výpočet U_i 6
- 7. Výpočet I_{R5} 7, U_{R5} 8

Obrázek 2: Schéma obvodu po tranfiguraci

$$R_{i} = \frac{R_{2} * R_{3}}{R_{1} + R_{2} + R_{3}} + \frac{\left(\frac{R_{1} * R_{3}}{R_{1} + R_{2} + R_{3}} + R_{4}\right) * \frac{R_{1} * R_{2}}{R_{1} + R_{2} + R_{3}}}{\frac{R_{1} * R_{3}}{R_{1} + R_{2} + R_{3}} + R_{4} + \frac{R_{1} * R_{2}}{R_{1} + R_{2} + R_{3}}}$$

$$R_{i} = 225.8434\Omega$$
(4)

$$I = \frac{U}{\frac{R_1 * R_2}{R_1 + R_2 + R_3} + R_4 + \frac{R_1 * R_3}{R_1 + R_2 + R_3}} \tag{5}$$

$$U_i = I * \left(\frac{R_1 * R_3}{R_1 + R_2 + R_3} + R_4\right) \tag{6}$$

Obrázek 3: Překreslený obvod

Obrázek 4: Náhradní obvod

2.3 Výsledky

$$I_{R5} = \frac{U_i}{R_i + R_5} = 0.1732A \tag{7}$$

$$U_{R5} = R_5 * I_{R5} = 48.5178V (8)$$

3 Příklad 3

3.1 Zadání

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí (U_A, U_B, U_C) . Hodnoty:

	J								
				$R_1[\Omega]$					
Е	135	55	0.65	520	420	520	420	215	305

3.2 Postup řešení

- 1. Zápis rovnic pro proudy $I_{R1}-I_{R6}$ 9
- 2. Vytvoření rovnic pro uzlovy $A-C\ {\bf 10}$

- 3. Řešení soutavy 3 rovnic se 3 neznámými U_A, U_B, U_C
- 4. Výpočet proudu I_{R4} 11

$$I_{R1} = \frac{U_A}{R_1}$$

$$I_{R2} = \frac{U_A + U_B + U_1}{R_2}$$

$$I_{R3} = \frac{U_A - U_B}{R_3}$$

$$I_{R4} = \frac{U_C}{R_4}$$

$$I_{R5} = \frac{U_B - U_C}{R_5}$$

$$I_{R6} = \frac{U_2 + U_C - U_B}{R_6}$$
(9)

$$A: I + I_{R2} - I_{R3} - I_{R1} = 0$$

$$B: I_{R3} - I_{R2} + I_{R6} - I_{R5} = 0$$

$$C: I_{R5} - I_{R6} - I_{R4} = 0$$
(10)

$$U_{R4} = U_C I_{R4} = \frac{U_C}{R_4} \tag{11}$$

3.3 Výsledky

$$U_{R4} = U_C = 77.8185V$$
$$I_{R4} = 0.1852A$$

4 Příklad 4

4.1 Zadání

Pro napájecí napětí platí: $u = U*sin(2\pi ft)$. Ve vztahu pro napětí na cívce: $u_L = U_L*sin(2\pi ft + \varphi_L)$ určete $|U_L|$ a φ_L . Použijte metodu zjednodušování obvodu. Hodnoty:

	J							
Sk.	U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	L[mH]	$C_1[\mu F]$	$C_2[\mu F]$	f[Hz]
В	35	160	220	270	480	440	170	85

4.2 Postup řešení

- 1. Výpočet celkové impedance obvodu 12
- 2. Výpočet proudu i_L na větvi s cívkou 13
- 3. Výpočet napětí u_L na cívce L 14
- 4. Výpočet $|u_L|$ 15
- 5. Výpočet φ_L 16

$$Z = \frac{1}{2\pi f C_1 j} + \frac{\frac{(\frac{1}{2\pi f C_2 j} + R_2) * (2\pi f L j + R_1)}{(\frac{1}{2\pi f C_2 j} + R_2) * (2\pi f L j + R_1)} * R_3}{\frac{(\frac{1}{2\pi f C_2 j} + R_2) * (2\pi f L j + R_1)}{(\frac{1}{2\pi f C_2 j} + R_2) * (2\pi f L j + R_1)} + R_3} \Omega$$
(12)

$$i_L = \frac{U - \frac{U}{Z} * \frac{1}{2\pi f C_1 j}}{2\pi f L j + R_1} A \tag{13}$$

$$u_L = i_L * 2\pi f L j V \tag{14}$$

$$|U_L| = \sqrt{Im(u_C)^2 + Re(u_C)^2}V$$
 (15)

$$\varphi_L = \arctan(\frac{Im(u_C)}{Re(u_C)}) rad \tag{16}$$

4.3 Výsledky

$$|u_L| = 29.9934V$$

$$\varphi_L = 0.6009 rad$$

5 Příklad 5

5.1 Zadání

Pro napájecí napětí platí: $u_1 = U_1 * sin(2\pi ft)$, $u_2 = U_2 * sin(2\pi ft)$. Ve vztahu pro napění na cívce $L_1 : u_{L_1} = U_{L_1} * sin(2\pi ft + \varphi L_1)$ určete $|U_{L_1}|$ a φL_1 . Použijte metodu smyčkových proudů.

Hodnoty:

Sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$L_1[mH]$	$L_2[mH]$	$C_1[\mu F]$	$C_2[\mu F]$	f[Hz]
F	20	35	120	100	170	80	150	90	65

5.2 Postup řešení

- 1. Vyjádření rovnic pro smyčkové proudy 17 podle obrázku 5
- 2. Výpočet smyčkových proudů ze soustavy rovnic
- 3. Výpočet napětí u_{L1} na cívce L_1 18
- 4. Výpočet absolutní hodnoty $|U_{L1}|$ 19
- 5. Výpočet φ_{L1} 20

$$I_a: X_{C1}I_a + R_1I_a + X_{L2}(I_a - I_c) + X_{C2}(I_a - I_b) = U_1$$

$$I_b: X_{L1}(I_b - I_c) + X_{C2}(I_b - I_a) + U_1 = 0$$

$$I_c: X_{L2}(I_c - I_a) + X_{L1}(I_c - I_b) + R_2I_c + U_2 = 0$$
(17)

$$U_{L1} = X_{L1} * (I_b - I_c) (18)$$

$$|U_{L1}| = \sqrt{Im(U_{L1})^2 + Re(U_{L1})^2}$$
(19)

$$\varphi_{L1} = \arctan\left(\frac{Im(U_{L1})}{Re(U_{L1})}\right) - \pi \tag{20}$$

Obrázek 5: Směry proudů

5.3 Výsledky

$$|U_{L1}| = 45.6745V$$

$$\varphi_{L1} = 2.0907 rad$$

6 Příklad 6

6.1 Zadání

Sestavne deferenciílní rovnici popisující chování obvodu na obrzku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C = f(t)$. Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Hodnoty:

Sk.	U[V]	C[F]	$R[\Omega]$	$u_c(0)[V]$
\mathbf{E}	12	30	45	6

6.2 Postup řešení

- 1. Vytvoření obecné rovnice 21
- 2. Vyjádření λ z charakteristické rovnice 22
- 3. Dosazení do očekávaného řešení 23
- 4. Vytvoření u'_c 24
- 5. Dosazení do obecné rovnice 25
- 6. Integrace K'(t) 26
- 7. Výpočet konstatny dosazením podmínky 27
- 8. Dosazení do očekávaného řešení 28

$$u'_{c} = \frac{1}{C} * \frac{U - u_{c}}{R}$$

$$1350u'_{c} + u_{c} = 12$$
(21)

$$1350\lambda + 1 = 0 \tag{22}$$

$$\lambda = -\frac{1}{1350}$$

$$u_c(t) = K(t)e^{-\frac{t}{1350}} (23)$$

$$u_c'(t) = K'(t)e^{-\frac{t}{1350}} + K(t)(-\frac{1}{1350})e^{-\frac{t}{1350}}$$
(24)

$$1350K'(t)e^{-\frac{t}{1350}} + 1350K(t)(-\frac{1}{1350})e^{-\frac{t}{1350}}) + K(t)e^{-\frac{t}{1350}} = 12$$
 (25)

$$K'(t) = \frac{12e^{\frac{t}{1350}}}{1350}$$

$$K(t) = \frac{1350 * 12e^{\frac{t}{1350}}}{1350} + c \tag{26}$$

$$6 = 12 + ce^{-\frac{0}{1350}}$$

$$c = -6$$
(27)

$$u_c(t) = 12 - 6e^{-\frac{t}{1350}} (28)$$

6.3 Výsledky

$$1350u'_c + u_c = 12$$
$$u_c(t) = 12 - 6e^{-\frac{t}{1350}}$$

7 Přehled výsledků

Př.	Sk.	V	ýsledky
1	В	$I_{R7} = 0.0609A$	$U_{R7} = 20.7280V$
2	F	$I_{R5} = 0.1732A$	$U_{R5} = 48.5178V$
3	Е	$I_{R4} = 0.1852A$	$U_{R4} = U_C = 77.8185V$
4	В	$\varphi_L = 0.6009 rad$	$ u_L = 29.9934V$
5	F	$\varphi_{L1} = 2.0907 rad$	$ U_{L1} = 45.6745V$
6	Е	$1350u_c' + u_c = 12$	$u_c(t) = 12 - 6e^{-\frac{t}{1350}}$