Korrespondenzproblem Subtitle

Soeren Berken-Mersmann

Duale Hochschule Baden-Württemberg Karlsruhe

17. April 2015

Gliederung

- Postsches Korrespondenzproblem
- 2 Simulation einer Turingmaschine
- 3 Beweis der Nichtberechenbarkeit
- 4 Beweise weiterer Probleme

Postsches Korrespondenzproblem

Postsches Korrespondenzproblem (formell)

Definition des PKP

Gegeben sei eine endliche Menge an Wortpaaren $K = ((x_1, y_1), ..., (x_k, y_k))$, über dem Alphabet Σ mit $x_i, y_i \in \Sigma$. Gibt es eine Folge von Indizes $i_1, i_2, ..., i_n \in 1, 2, ..., k, n \geq 1$, so dass $x_{i_1}, x_{i_2}, ..., x_{i_n} = y_{i_1}, y_{i_2}, ..., y_{i_n}$.

Simulation einer Turingmaschine

Das bisher sehr abstrakte PKP kann dazu verwendet werden eine Turingmaschine zu simulieren.

Zuerst müssen wir den Rechenweg einer Turingmaschine formalisieren.

Zustand einer Turingmaschine

Linkskontext: u

■ Interner Zustand: q

Gelesenes Symbol: a

Rechtskontext: w

Somit lässt sich der Zustand Q_t einer Turingmaschine zum Zeitpunkt t durch die Folge $u_tq_ta_tw_t$ darstellen.

Rechenweg

Den Rechenweg einer Turingmaschine können wir als die Folge von Zuständen $Q_0, ..., Q_n$ vom Startzeitpunkt t=0 bis zum Endzeitpunkt t=n bei dem die Turingmaschine einen der Endzustände erreicht hat.

Beispiel

 $0110101q_010010\sharp 01101011q_100010$

Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist q_10R .

Beweis der Nichtberechenbarkeit

Beweise weiterer Probleme

Seien G_1 und G_2 zwei kontextfreie Grammatiken, und $L_1 = L(G_1)$ und $L_2 = L(G_2)$ zwei daraus konstruierte kontextfreie Sprachen.

Eindeutigkeit

Ist G_1 eindeutig?

Gleichheit

Ist $L_1 = L_2$?

Eindeutigkeit

Gleichheitstest

Vielen Dank für Ihre Aufmerksamkeit!