Mathématiques - Métropole 1 - 2023

Merci d'adresser vos éventuelles remarques à anthony.le.bihan@icloud.com. Je ne réponds pas aux questions.

Exercice 1 (5 points)

D'après les données, on peut à l'avance établir l'arbre pondéré suivant :

On sait de plus que $p(G \cap D) = 0,002$ et p(D) = 0,082.

- 1. Par définition d'une probabilité conditionnelle : $p_G(D) = \frac{p(G \cap D)}{p(G)} = \frac{0,2}{20} = 0,01$. La réponse est B.
- 2. Puisque (G, \overline{G}) forme un système complet d'événements (ou une partition de l'univers), la formule des probabilités totales nous dit que :

$$p(D) = p(D \cap G) + p(D \cap \bar{G}) \implies p(D \cap \bar{G}) = p(D) - p(D \cap G) = 0,082 - 0,002 = 0,082 - 0,000 = 0,00$$

La réponse est B.

- 3. On cherche $p_D(G)$. Par définition d'une probabilité conditionnelle : $p_D(G) = \frac{p(G \cap D)}{p(D)} = \frac{0,2}{8,2} = 0,0244 \simeq 0,024$. La réponse est B.
- 4. D'après le cours sur les lois binomiales, si $X \sim \mathcal{B}(50; 0, 082)$, alors $p(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$. Ici, en utilisant les événements contraires :

$$P(X > 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$$

 $\operatorname{car} X(\Omega) = \{0, 1, 2, \dots, 50\}$. Arrivé ici, il y a 2 possibilités. Soit on utilise la calculatrice et :

- fonction de partition pour X = 0, X = 1 et X = 2
- fonction de répartition pour $X \leq 2$

Dans les deux cas, on trouve $P(X > 2) \simeq 0,78858 \simeq 0,789$. Ainsi,

$$P(X > 2) = 1 - (1 - 0.082)^{50} - 50 \times 0.082 \times (1 - 0.082)^{49} = 0.78858 \approx 0.789$$

La réponse est B.

5. On cherche désormais n tel que p(X=0) > 0,4 où $X \sim \mathcal{B}(n;0,082)$. Or,

$$P(X=0) = \binom{n}{0} \times 0,082^{0} \times (1-0,082)^{n} = (1-0,082)^{n}$$

On doit donc résoudre : $(1 - 0,082)^n > 0,4$.

$$(1-0.082)^n > 0.4 \iff n \log(1-0.082) > \log(0.4)$$

par application de la fonction log, strictement croissante sur \mathbb{R}_*^+ . Ainsi,

$$n\log(0,918) > \log(0,4) \iff n < \frac{\log(0,4)}{\log(0,918)} \quad \text{changement du sens de l'inégalité car } \log(0,918) < 0$$

Après calculs, $n < 10, 7 \iff n \le 10$. La réponse est C.

Exercice 2

$$\begin{array}{cccc} f & : &]0; +\infty[& \to & \mathbb{R} \\ & x & \mapsto & x^2 - 8\ln(x) \end{array}$$

1. Par le cours sur les limites de fonctions usuelles, on sait que $\lim_{x\to 0} x^2 = 0$ et $\lim_{x\to 0} \ln(x) = -\infty$ donc par opérations sur les limites

$$\lim_{x \to 0} f(x) = 0 - 8 \times (-\infty) = +\infty$$

2. Par le cours sur les croissances comparées, $\lim_{x\to +\infty} \frac{\ln(x)}{x^2} = 0$. Donc, par opérations sur les limites

$$\lim_{x \to +\infty} f(x) = +\infty \times (1 - 8 \times 0) = +\infty$$

3. f est dérivable sur $]0; +\infty[$ donc en dérivant terme à terme l'expression première de f, il vient que

$$\forall x \in]0; +\infty[, \quad f'(x) = 2x - \frac{8}{x} = \frac{2x^2}{x} - \frac{8}{x} = \frac{2x^2 - 8x}{x} = \frac{2(x^2 - 4)}{x}$$

4. On étudie successivement le signe du numérateur et du dénominateur de f' pour en déduire son signe :

x	0		2		$+\infty$
$2(x^2-4)$		_	0	+	
x	0	+		+	
f'(x)		_	0	+	
f(x)	+∞		f(2)		+∞

Avec
$$f(2) = 4 - 8\ln(2) = 4(1 - \ln(4)) \approx -1,54.$$

- 5. On sait que:
 - f est continue sur [0;2]
 - f est strictement décroissante sur [0; 2]
 - $-[f(2), f(0)] = [4 8\ln(2); +\infty[\text{ et donc } 0 \in [f(2), f(0)]]$

d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution sur [0; 2].

6. A partir des 2 questions précédentes, on peut déduire le tableau de signe de f:

x	0		α		β		$+\infty$
f(x)		+	0	_	0	+	

7. On a finalement $\forall x \in]0; +\infty[, g_k(x) = f(x) + k]$. On peut tout simplement retracer le tableau de variations de g_k à partir de celui de f:

x	0	2	+∞
f(x)	+∞ -	f(2)	→ +∞
$g_k(x)$	+∞ -	f(2)+k	\rightarrow $+\infty$

Il suffit juste de "décaler de k". Et on veut donc g_k positive c'est-à-dire $f(2) + k \ge 0 \iff k \ge -f(2)$. La plus petite valeur de k telle que g_k reste positive est $8 \ln(2) - 4$.

Exercice 3

Première modélisation

- 1. $u_2 = 0, 9 \times 3 + 1, 3 = 4$ et $u_3 = 0, 9 \times 4 + 1, 3 = 4, 9$. Au 2ème mois de la FAQ, la modélisation prévoit 400 questions et au 3ème mois elle en prévoit 490.
- 2. Notons, $\forall n \in \mathbb{N}, \mathcal{H}(n)$ la propriété " $u_n = 13 \frac{100}{9} \times 0, 9^n$ ".

<u>Initialisation</u>: $u_1 = 3$ et $13 - \frac{100}{9} \times 0$, 9 = 13 - 10 = 3. Donc $\mathcal{H}(1)$ est vraie.

<u>Hérédité</u>: soit $N \in \mathbb{N}$. Supposons que $\mathcal{H}(N)$ est vraie, *i.e.* $u_N = 13 - \frac{100}{9} \times 0, 9^N$. Montrons $\mathcal{H}(N+1)$. On part de la définition de la suite

$$u_{N+1} = 0, 9u_N + 1, 3 = 0, 9 \times \left(13 - \frac{100}{9} \times 0, 9^N\right) + 1, 3 = 11, 7 - \frac{100}{9} \times 0, 9^{N+1} + 1, 3 = 13 - \frac{100}{9} \times 0, 9^{N+1} + 1, 3 = 10 - \frac{100}{9} \times 0, 9^{N+1} + 1, 3 = 10 - \frac{100}{9} \times 0, 9^{N+1} + 1, 3 = 10 - \frac{100}{9} \times 0, 9^{N+1} + 1, 3 = 10 - \frac{10$$

C'est $\mathcal{H}(N+1)$!

Conclusion : on a prouvé que $\forall n \in \mathbb{N}, \mathcal{H}(n)$ est vraie.

La propriété est démontrée par principe de récurrence.

- 3. $u_{n+1} u_n = -\frac{100}{9} \times (0, 9^{n+1} 0, 9^n) = \frac{100}{9} \times 0, 9^n \times (1 0, 9) = \frac{10}{9} \times 0, 9^n = 0, 9^{n-1} \ge 0$. Ainsi, la suite (u_n) est croissante.
- 4. Ce programme renvoie le premier rang N tel que $u_N > p$. Dans le cas présent,

$$u_n > 8,5 \iff 13 - \frac{100}{9} \times 0, 9^n > 8,5 \iff \frac{100}{9} \times 0, 9^n < 4,5 \iff 0,9^n < 4,5 \times 0,09 \iff 0,9^n < 0,405$$

Par application du log strictement croissant sur \mathbb{R}_*^+ ,

$$n\log(0,9) < \log(0,405) \iff n > \frac{\log(0,405)}{\log(0,9)} \iff n > 8,57$$

Le programme renvoie donc N=9.

Une autre modélisation

- 1. $v_1 = 9 6 = 3,00 \text{ et } v_2 = 9 6e^{-0.19} \simeq 4,04.$
- 2. On cherche n tel que $v_n = 8, 5$:

$$9 - 6e^{-0.19(n-1)} = 8.5 \iff e^{-0.19(n-1)} = \frac{0.5}{6} \iff -0.19(n-1) = -\ln(12) \iff n = 1 + \frac{\ln(12)}{0.19}$$

On trouve après calculs n = 15.

Comparaison des deux modèles

- 1. Il s'agit de comparer les questions A.4. et B.2. . La première modélisation dépasse les 850 questions au 9ème mois alors que la deuxième ne les dépasse qu'au 15ème mois. La première modélisation conduit donc à la modification la plus prématurée.
- 2. Il s'agit en fait de calculer les limites des deux suites (u_n) et (v_n) . Le cours sur les suites géométriques nous assure que pour -1 < q < 1, $\lim_{n \to +\infty} q^n = 0$. Donc par opérations sur les limites

$$\lim_{n\to+\infty}u_n=13-\frac{100}{9}\times0=13$$

De plus, on sait que $\lim_{n\to+\infty} \exp(-n) = 0$ donc par opérations sur les limites :

$$\lim_{n \to +\infty} v_n = 9 - 6 \times 0 = 9$$

La 1ère modélisation prévoit le plus de questions : au maximum 1300 alors que la 2ème modélisation n'en prévoit que 900.

Exercice 4

1.
$$E\begin{pmatrix}0\\0\\1\end{pmatrix}$$
, $C\begin{pmatrix}1\\1\\0\end{pmatrix}$ et $G\begin{pmatrix}1\\1\\1\end{pmatrix}$.

2. Il faut un point appartenant et (EC): on a $E \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Il faut également un vecteur directeur de (EC): on

a $\overrightarrow{EC}\begin{pmatrix}1-0\\1-0\\0-1\end{pmatrix}=\begin{pmatrix}1\\1\\-1\end{pmatrix}$. Une représentation paramètre de (EC) est donc

$$\begin{cases} x = 0 + 1t \\ y = 0 + 1t \\ z = 1 - 1t \end{cases} \implies \begin{cases} x = t \\ y = t \\ z = 1 - t \end{cases} \quad t \in \mathbb{R}$$

3. $\overrightarrow{GB}\begin{pmatrix} 1-1\\0-1\\0-1 \end{pmatrix} = \begin{pmatrix} 0\\-1\\-1 \end{pmatrix}$ et $\overrightarrow{GD}\begin{pmatrix} 0-1\\1-1\\0-1 \end{pmatrix} = \begin{pmatrix} -1\\0\\-1 \end{pmatrix}$ sont 2 vecteurs directeurs du plan (GBD) et \overrightarrow{EC} est un vecteur directeur de la droite (EC). Or,

$$\overrightarrow{GB} \cdot \overrightarrow{EC} = 1 \times 0 - 1 \times 1 + (-1) \times (-1) = 0$$

De même,

$$\overrightarrow{GD} \cdot \overrightarrow{EC} = 1 \times (-1) + 0 \times 1 + (-1) \times (-1) = 0$$

Ainsi, \overrightarrow{EC} est orthogonal à \overrightarrow{GB} et \overrightarrow{GD} donc (EC) est orthogonal au plan (GBD).

4a. Un vecteur normal \overrightarrow{n} $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ suffit généralement à caractériser un plan. Dans ce cas, l'équation cartésienne

du plan est de la forme ax + by + cz + d = 0 avec $d \in \mathbb{R}$.

Puisque (EC) est orthogonale à (BDG), \overrightarrow{EC} est un vecteur normal à (BCG). Donc l'équation cartésienne de (BDG) est de la forme 1x+1y-1z+d=0. Il reste à déterminer d. On sait qu'un point qui appartient au plan vérifie les coordonnées du plan. Or, $B \in (BDG)$ donc

$$x_B + y_B - z_B + d = 0 \implies 1 + 0 + 0 + d = 0 \implies d = -1$$

Donc une équation cartésienne de (BDG) est x + y - z - 1 = 0.

4b. I est l'intersection de (BDG) est de (EC). Il vérifie à la fois l'équation cartésienne de (BDG) et l'équation paramétrique de (EC). Ainsi,

$$\begin{cases} x_B + y_B - z_B - 1 &= 0 \\ x_B &= t_B \\ y_B &= t_B \\ z_B &= 1 - t_B \end{cases} \implies \begin{cases} t_B + t_B + t_B - 1 &= 0 \\ x_B &= t_B \\ y_B &= t_B \\ z_B &= 1 - t_B \end{cases} \implies \begin{cases} 3t_B &= 2 \\ x_B &= t_B \\ y_B &= t_B \\ z_B &= 1 - t_B \end{cases} \implies t_B = \frac{2}{3}$$

Les coordonnées de I sont donc $I\left(\frac{2}{3}; \frac{2}{3}; \frac{1}{3}\right)$.

4c. Un schéma permet de se rendre compte que $d(E;GBD) = ||\overrightarrow{EI}||EI$. Or, $\overrightarrow{EI}\begin{pmatrix} 2/3 - 0 \\ 2/3 - 0 \\ 1/3 - 1 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 2/3 \\ -2/3 \end{pmatrix}$ Donc,

$$EI = \sqrt{3 \times \left(\frac{2}{3}\right)^2} = \frac{2\sqrt{3}}{3} = \frac{2}{\sqrt{3}}$$

5a. Pour montrer que BDG est équilatéral, il suffit de montrer que ses 3 côtés sont de même longueur. On calcule donc la norme des vecteurs associés aux 3 côtés : $\overrightarrow{GD}\begin{pmatrix} -1\\0\\-1\end{pmatrix}$ de norme $\sqrt{2}$, $\overrightarrow{GB}\begin{pmatrix} 0\\-1\\-1\end{pmatrix}$ de norme

$$\sqrt{2}$$
 et $\overrightarrow{DB}\begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$ de norme $\sqrt{2}$. Donc BDG est équilatéral de côté $\sqrt{2}$.

5b. Géométriquement, on a :

$$A_{BDG} = 2A_{BJG}$$

Or, BJG est un triangle rectangle en J grâce aux propriétés sur les triangles équilatéraux. Donc en appliquant le théorème de Pythagore dans BJG, on trouve :

$$JG^2 + JB^2 = BG^2 \implies JG = \sqrt{BG^2 - JB^2} = \sqrt{2 - \frac{1}{2}} = \sqrt{\frac{3}{2}}$$

car $JB=DB/2=\sqrt{2}/2=1/\sqrt{2}.$ Donc l'aire du triangle BJG est :

$$A_{BJG} = \frac{JG \times JB}{2} = \frac{\sqrt{3}}{4}$$
 (moitié de l'aire d'un rectangle)

Et donc,

$$\mathcal{A}_{BDG} = \frac{\sqrt{3}}{2}$$

6. Le tétraèdre EGBD a pour base BDG et pour hauteur relative EI. Donc,

$$\mathcal{V}_{EBD} = \frac{1}{3} \mathcal{A}_{BDG} \times EI = \frac{\sqrt{3} \times 2}{3 \times \sqrt{2} \times \sqrt{3}} = \frac{1}{3}$$