Assignment 1

杨乐天

Problem 1

1

Because A is countable, A is either finite or enumerable.

If A is finite, then there exists $n \in \mathbb{N}$ and a bijection f between $\{0,1,...,n\}$ and A. We construct the listing $a_0,a_1,...,a_n,...$ as follows: $\forall i \in \mathbb{N}, \ a_i = f(i \mod (n+1))$. Then for any $i, \ a_i \in A$ because $\operatorname{Ran}(f) = A$; for any $x \in A, \ a_{f^{-1}(x)} = x$, so it is a listing of A.

If A is enumerable, then there exists bijection f between $\mathbb N$ and A. Then the listing $a_0, a_1, ..., a_n, ...$ is defined by $a_i = f(i)$. Because $\operatorname{Ran}(f) = A$, for any $i, a_i \in A$; f is a surjection so for any $x \in A$ there exists $n \in \mathbb N$ s.t. f(n) = x, and therefore $a_n = x$. Consequently, $a_0, a_1, ...$ is a listing of A.

2

Suppose $a_0, a_1, ..., a_n, ...$ is a listing of A. For any $x \in A$, there exists $n \in \mathbb{N}$ s.t. $a_n = x$. Define $f : A \to \mathbb{N}$ satisfying $f(x) = \min\{n \in \mathbb{N} | a_n = x\}$. Then f is an injection because a_n is unique for any $n \in \mathbb{N}$.

If A is finite, then A is countable.

If A is infinite, then Ran (f) is an infinite subset of \mathbb{N} . We further define $g: \mathbb{N} \to A$ s.t. g(n) = x iff f(x) is the n-th smallest element in Ran (f). Then g is obviously injection. g is also surjection because for any $x \in A$, there exists n s.t. $a_n = x$, and therefore there exists $m \le n$ s.t. f(x) = m. Therefore there are at most m elements smaller than f(x). In other words, there exists $k \le m$ s.t. g(k) = x. Now we conclude that g is a bijection, so A is enumerable, and thus countable.

Problem 2

Let $a_0, a_1, ..., a_n, ...$ be a sequence such that $a_i = f(i)$ for any $i \in \mathbb{N}$. We prove that this sequence is a listing of A.

- $\forall i \in \mathbb{N}, a_i = f(i) \in A$.
- $\forall a \in A$, because f is a surjection, $\exists n \in \mathbb{N}$ s.t. f(n) = a. Therefore, there exists $a_n = a$.

Therefore, $a_0, a_1, ..., a_n, ...$ is a listing of A. Using the conclusion of problem 1, we know that A is countable.

Problem 3

We prove by induction.

(Base step) Expressions of length n=1 are exactly the alphabet, which is enumerable.

(Induction step) Expressions of length n+1 can be considered as a combination of two parts: the preceding part with length n and a suffix with length 1. Mathematically, $S_{n+1} = S_n \times S_1$. As introduced in the class, the Cartesian product of two enumerable sets are also enumerable. Therefore, for any finite $n \in \mathbb{N}^+$, if S_n is enumerable, then S_{n+1} is enumerable, too.

By induction, we have shown that for any $n \in \mathbb{N}^+$, S_n is enumerable.

Problem 4

1

$$((\neg (A_2 \land A_3)) \to (\neg A_1)) \tag{1}$$

Explanation: The sentence is "not A_1 unless A_2 and A_3 ", and "not A unless B" means as long as B isn't true, A can't be true, which is translated into $\neg B \rightarrow \neg A$.

2

$$(A_1 \to (A_2 \lor (\neg A_3))) \tag{2}$$

Explanation: The sentence is "if A_1 then A_2 or not A_3 " where "if ... then ..." is translated to $(... \to ...)$.

Problem 5

We prove by induction that the length of a wff without negation is 4k-3 if there are k sentence symbols.

(Base case) For the wff with only one sentence symbol A, the only valid wff is the sentence symbol itself, which has length $1 = 4 \times 1 - 3$.

(Induction step) Assume that $\forall i \leq k$, the length of wffs without negation is 4i-3 if there are i sentence symbols, we consider the case when i=k+1. Suppose α is a wff with no negation and k+1 sentence symbols, then $\alpha=(\beta\Box\gamma)$ where β and γ are wffs and \Box is one of $\{\land,\lor,\to,\leftrightarrow\}$. Here the number of the wffs n_β and n_γ satisfy $n_\beta+n_\gamma=k+1$. Because n_β and n_γ are positive integers, we know $n_\beta \leq k$ and $n_\gamma \leq k$. Therefore, the length of α is $n_\alpha=1+(4n_\beta-3)+1+(4n_\gamma-3)+1=4(n_\beta+n_\gamma)-3=4k-3$.

Then by induction, the length of a wff without negation is 4k-3 if there are k sentence symbols. Therefore there are more than a quarter sentence symbols.