Link to Github

Lab 08

1. Preparation Tasks

Completed state table

Input P	0	0	1	1	0	1	0	1	1	1	1	0	0	1	1	1
Clock	1	↑	1	1	1	1	1	1	1	↑	↑	1	1	1	1	1
State	Α	Α	В	С	С	D	Α	В	С	D	В	В	В	С	D	В
Output R	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0

Completed table with color settings

RGB LED	Artix-7 pin names	Red	Yellow	Green
LD16	N15, M16, R12	1,0,0	1,1,0	0,1,0
LD17	N16, R11, G14	1,0,0	1,1,0	0,1,0

2. Traffic light controller

State diagram

Listing of VHDL code of sequential process p_traffic_fsm

```
end if;
                  when WEST_GO =>
                      if (s_cnt < c_DELAY_4SEC) then</pre>
                           s_cnt <= s_cnt + 1;
                      else
                           s_state <= WEST_WAIT;</pre>
                           s_cnt <= c_ZERO;</pre>
                      end if;
                  when WEST_WAIT =>
                      if (s_cnt < c_DELAY_2SEC) then</pre>
                           s_cnt <= s_cnt + 1;
                      else
                           s_state <= STOP2;</pre>
                           s_cnt <= c_ZERO;</pre>
                      end if;
                  when STOP2 =>
                      if (s_cnt < c_DELAY_1SEC) then</pre>
                          s_cnt <= s_cnt + 1;
                           s_state <= SOUTH_GO;</pre>
                           s_cnt <= c_ZERO;</pre>
                      end if;
                  when SOUTH_GO =>
                      if (s cnt < c DELAY 4SEC) then</pre>
                           s_cnt <= s_cnt + 1;
                      else
                           s_state <= SOUTH_WAIT;</pre>
                           s_cnt <= c_ZERO;</pre>
                      end if;
                  when SOUTH_WAIT =>
                      if (s_cnt < c_DELAY_2SEC) then</pre>
                           s_cnt <= s_cnt + 1;
                      else
                           s_state <= STOP1;</pre>
                           s_cnt <= c_ZERO;</pre>
                      end if;
                  when others =>
                      s_state <= STOP1;</pre>
             end case;
         end if;
    end if;
end process p_traffic_fsm;
```

Listing of VHDL code of combinatorial process p_output_fsm

```
when WEST_WAIT =>
           south_o <= "100"; -- Red
           west_o <= "110";
                              -- Yellow
       when STOP2 =>
           south_o <= "100";
                              -- Red
                              -- Red
           west_o <= "100";
       when SOUTH_GO =>
           south_o <= "010";
                              -- Green
           west_o <= "100";
                              -- Red
       when SOUTH_WAIT =>
           south_o <= "110";
                              -- Yellow
           west_o <= "100";
                              -- Red
       when others =>
           south_o <= "100";
                              -- Red
           west_o <= "100"; -- Red
   end case;
end process p_output_fsm;
```

Screenshot(s) of the simulation, from which it is clear that controller works correctly

3. Smart controller

State table

Current state	Controllers lights (SW)	Controllers values (SW)	No cars	West	South	Both
SOUTH_GO	GREEN, RED	010, 100	SOUTH_GO	SOUTH_WAIT	SOUTH_GO	SOUTH_WAIT
SOUTH_WAIT	YELLOW,	110, 100	SOUTH_WAIT	SOUTH_WAIT	SOUTH_WAIT	SOUTH_WAIT
WEST_GO	RED, GREEN	100, 010	WEST_GO	WEST_GO	WEST_WAIT	WEST_WAIT
WEST_WAIT	RED, YELLOW	100, 110	WEST_WAIT	WEST_WAIT	WEST_WAIT	WEST_WAIT

State diagram

Listing of VHDL code of sequential process $p_smart_traffic_fsm$

```
when SOUTH_WAIT =>
                     if (s_cnt < c_DELAY_1SEC) then</pre>
                         s_cnt <= s_cnt + 1;
                     else
                         s_state <= WEST_GO;
                         s_cnt <= c_ZERO;
                     end if;
                 when WEST_GO =>
                     -- sensors check
                     if (s_cnt < c_DELAY_2SEC and (sens_i = "00" or sens_i = "01")) then
                           s_cnt <= s_cnt + 1;
                         end if;
                     else
                          s_state <= WEST_WAIT;</pre>
                          s_cnt <= c_ZERO;</pre>
                     end if;
                 when WEST_WAIT =>
                     if (s_cnt < c_DELAY_1SEC) then</pre>
                         s_cnt <= s_cnt + 1;
                     else
                          s_state <= SOUTH_GO;</pre>
                          s_cnt <= c_ZERO;</pre>
                     end if;
                 when others =>
                    s_state <= SOUTH_GO;</pre>
            end case;
        end if;
    end if;
end process p_smart_traffic_fsm;
```

end if;