MHD - Neumann bilinear form

The variational for the MHD model with inhomogeneous Neumann conditions is

$$A(\boldsymbol{u}_{h},\boldsymbol{v}) + O(\boldsymbol{u}_{h};\boldsymbol{u}_{h},\boldsymbol{v}) + C(\boldsymbol{b}_{h};\boldsymbol{v},\boldsymbol{b}_{h}) + B(\boldsymbol{v},p_{h}) = (\boldsymbol{f},\boldsymbol{v})_{\Omega} - (\boldsymbol{p}_{N},\boldsymbol{v})_{\Omega_{N}}$$

$$B(\boldsymbol{u}_{h},q) = 0,$$

$$M(\boldsymbol{b}_{h},\boldsymbol{c}) - C(\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{c}) + D(\boldsymbol{c},r_{h}) = (\boldsymbol{g},\boldsymbol{c})_{\Omega},$$

$$D(\boldsymbol{b}_{h},s) = 0,$$

$$(1)$$

where \boldsymbol{p}_N is the Neumann condition. Then the Picard iteration is given by:

$$A(\delta \boldsymbol{u}_{h}, \boldsymbol{v}) + O(\boldsymbol{u}_{h}; \delta \boldsymbol{u}_{h}, \boldsymbol{v}) + C(\boldsymbol{b}_{h}; \boldsymbol{v}, \delta \boldsymbol{u}_{h}) + B(\boldsymbol{v}, \delta p_{h}) = R_{u}(\boldsymbol{u}_{h}, \boldsymbol{b}_{h}, p_{h}; \boldsymbol{v}),$$

$$B(\delta \boldsymbol{u}_{h}, q) = R_{p}(\boldsymbol{u}_{h}; q),$$

$$M(\delta \boldsymbol{b}_{h}, \boldsymbol{c}) + D(\boldsymbol{c}, \delta r_{h}) - C(\boldsymbol{b}_{h}; \delta \boldsymbol{u}_{h}, \boldsymbol{v}) = R_{b}(\boldsymbol{u}_{h}, \boldsymbol{b}_{h}, r_{h}; \boldsymbol{c}),$$

$$D(\delta \boldsymbol{b}_{h}, s) = R_{r}(\boldsymbol{b}_{h}; s),$$

$$(2)$$

where

$$R_{\boldsymbol{u}}(\boldsymbol{u}_{h}, \boldsymbol{b}_{h}, p_{h}; \boldsymbol{v}) = (\boldsymbol{f}, \boldsymbol{v})_{\Omega} - (\boldsymbol{p}_{N}, v)_{\Omega_{N}} - A(\boldsymbol{u}_{h}, \boldsymbol{v}) - O(\boldsymbol{u}_{h}; \boldsymbol{u}_{h}, \boldsymbol{v})$$

$$- C(\boldsymbol{b}_{h}; \boldsymbol{v}, \boldsymbol{b}_{h}) - B(\boldsymbol{v}, p_{h}),$$

$$R_{p}(\boldsymbol{u}_{h}; q) = -B(\boldsymbol{u}_{h}, q),$$

$$R_{b}(\boldsymbol{u}_{h}, \boldsymbol{b}_{h}, r_{h}; \boldsymbol{c}) = (\boldsymbol{g}, c)_{\Omega} - M(\boldsymbol{b}_{h}, \boldsymbol{c}) + C(\boldsymbol{b}_{h}; \boldsymbol{u}_{h}, \boldsymbol{c}) - D(\boldsymbol{c}, r_{h}),$$

$$R_{r}(\boldsymbol{b}_{h}; s) = -D(\boldsymbol{b}_{h}, s),$$

$$(3)$$

Therefore you need to enforce the inhomogeneous Neumann conditions at each non-linear iteration???? Also, if you enforce homogeneous boundary conditions within the non-linear iteration doesn't this stop model from capturing the pressure driven flow?

MHD - smooth Neumann conditions

Consider the exact solution:

```
u = ( x*y*exp(x + y) + x*exp(x + y) , -x*y*exp(x + y) - y*exp(x + y) )
p = ( exp(y)*sin(x) )
b = ( x*cos(x) , x*y*sin(x) - y*cos(x) )
r = ( x*sin(2*pi*x)*sin(2*pi*y) )
```

The error tables are given below. Here I used a unit square domain with Neumann conditions on the left and right boundaries and Dirichlet on the top and bottom ones.

ℓ	Dofs \boldsymbol{u}_h/p_h	$\ oldsymbol{e}_u\ _{L^2(\Omega)}$	r	$\ oldsymbol{e}_u\ _{H^1(\Omega)}$	r	$ e_p _{L^2(\Omega)}$	r
1	50/9	9.0942e-02	-	1.2457e + 00	-	5.6315 e-01	-
2	162/25	1.1441e-02	3.53	3.2338e-01	2.29	7.8755e-02	3.85
3	578/81	1.3656e-03	3.34	8.1946e-02	2.16	9.2087e-03	3.65
4	2,178/289	1.6719e-04	3.17	2.0637e-02	2.08	1.0929e-03	3.35
5	8,450/1,089	2.0858e-05	3.07	5.1826e-03	2.04	1.6142e-04	2.88
6	33,282/4,225	2.6265 e-06	3.02	1.2990e-03	2.02	3.1921e-05	2.39
7	132,098/16,641	2.7450e-07	3.28	3.2522 e-04	2.01	7.4632 e-06	2.12

Table 1: Convergence for 2D MHD - fluid variables

$\overline{\ell}$	Dofs \boldsymbol{b}_h/r_h	$\ oldsymbol{e}_b\ _{L^2(\Omega)}$	l	$\ oldsymbol{e}_b\ _{H(\operatorname{curl},\Omega)}$	l
1	16/9	1.8060e-01	-	2.6788e-01	-
2	56/25	9.1265 e-02	1.09	1.3398e-01	1.11
3	208/81	4.5753 e-02	1.05	6.7003e-02	1.06
4	800/289	2.2892 e-02	1.03	3.3503 e-02	1.03
5	3,136/1,089	1.1448e-02	1.01	1.6752 e-02	1.01
6	12,416/4,225	5.7241e-03	1.01	8.3759 e-03	1.01
7	49,408/16,641	2.8621e-03	1.00	4.1879e-03	1.00

Table 2: Convergence for 2D MHD - magnetic variable

ℓ	Dofs \boldsymbol{b}_h/r_h	$\ oldsymbol{e}_r\ _{L^2(\Omega)}$	l	$\ oldsymbol{e}_r\ _{H^1(\Omega)}$	l
1	16/9	2.7524e-01	-	2.4780e+00	_
2	56/25	1.4850 e-01	1.21	1.7787e + 00	0.65
3	208/81	4.8879e-02	1.89	1.0042e+00	0.97
4	800/289	1.3198e-02	2.06	5.1942e-01	1.04
5	3,136/1,089	3.3659 e-03	2.06	2.6198e-01	1.03
6	$12,\!416/4,\!225$	8.4572 e-04	2.04	1.3128e-01	1.02
7	49,408/16,641	2.1170e-04	2.02	6.5676 e- 02	1.01

Table 3: Convergence for 2D MHD - multiplier variable

MHD - Hartmann Neumann conditions

Small domain - $(0,10) \times (1,1)$

Large domain - $(0,50) \times (1,1)$