Université Sultan Moulay Slimane Faculté Polydisciplinaire Khouribga

Examen d'Analyse Durée: 2h

A.U. 2018-2019

Filière: SMA/SMI

Module: Analyse 1

- Les documents et téléphones portables sont formellement interdits.
- Les calculatrices sont à usage personnel.

Exercice 1.(3pts)

Démontrer que les réels suivants sont irrationnels :

- (1) $\sqrt{x} + \sqrt{y}$ où x et y sont des rationnels positifs tels que \sqrt{x} et \sqrt{y} sont irrationnels.
- (2) $\sqrt{2} + \sqrt{3} + \sqrt{5}$.

Indication: On pourra supposer que $r = \sqrt{2} + \sqrt{3} + \sqrt{5}$ est rationnel et calculer $(r - \sqrt{2})^2$

Exercice 2.(5pts)

Soient u_0 et v_0 deux nombres réels. Pour tout $n \in \mathbb{N}$ on pose

$$u_{n+2} = \frac{u_n + u_{n+1}}{2}$$
 et $v_n = u_{n+1} + \frac{1}{2}u_n$

- (1) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est constante puis déterminer sa valeur.
- (2) Donner une relation entre u_n et u_{n+1} satisfaite pour tout $n \in \mathbb{N}$.
- (3) Trouver $\alpha \in \mathbb{R}$ tel que la suite $(u_n \alpha)_{n \in \mathbb{N}}$ soit géométrique.
- (4) En déduire, pour tout entier $n \in \mathbb{N}$, une expression de u_n en fonction de n, u_0 et u_1 .
- (5) La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente? Si oui, déterminer sa limite.

Exercice 3. (5 pts)

Soient $f; g: [a; b] \longrightarrow \mathbb{R}$ deux fonctions continues sur [a, b] (a < b) et dérivables sur [a, b]. On suppose que $g'(x) \neq 0$ pour tout $x \in]a, b[$.

- (1) Rappeler l'énoncé de théorème de Rolle.
- (2) Montrer que $g(x) \neq g(a)$ pour tout $x \in]a,b[$.
- (3) On pose

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)), \quad \forall x \in [a, b]$$

Montrer que F vérifie les hypothèses du théorème de Rolle et en déduire qu'il existe un nombre réel $c \in]a,b[$ tel que

$$\frac{f(b) - f(a)}{q(b) - q(a)} = \frac{f'(c)}{q'(c)}$$

(4) On suppose que $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R}$. Montrer que

$$\lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} = \ell$$

(Indication: On pourra utiliser le résultat précédent sur l'intervalle [x,b])

(5) **Application**: Calculer

$$\lim_{x \to 1^-} \frac{\arccos(x)}{\sqrt{1 - x^2}}$$

Exercice 4. (7 pts)

On considère la fonction f définie par

$$f(x) = \arccos\left(\frac{1-x}{1+x}\right)$$

- (1) En étudiant la fonction $g(x) = \frac{1-x}{1+x}$, montrer que $\frac{1-x}{1+x} \in [-1,1]$ si et seulement si $x \in \mathbb{R}^+$. En déduire le domaine de définition de f.
- (2) Donner le domaine de dérivation de f et calculer sa dérivée.
- (3) Justifier que la fonction $x \mapsto \arctan(\sqrt{x})$ est dérivable et calculer sa dérivée.
- (4) En déduire que pour tout $x \ge 0$, $f(x) = 2\arctan(\sqrt{x})$.
- (5) Donner le tableau de variation complet de f ainsi que les asymptotes de la courbe représentative C_f de f.
- (6) Justifier que C_f admet une tangente verticale au point d'abscisse x = 0.
- (7) Montrer que f est bijective de \mathbb{R}^+ sur un intervalle J que l'on précisera puis déterminer f^{-1} .