Routing Minitask Report

Palo Alto Research Center (PARC)

Group members:

UC Berkeley (UCB)

Notre Dame (ND)

Ohio State (OSU)

Vanderbilt University (VU)

University of Virginia (UVA)

June 2004

Motivation

- **Routing Modeling:**
 - ✓ Networks
 - **✓** Applications
 - ✓ Metrics
- > Layered Architecture:
 - ✓ Algorithm Repository
 - ✓ Component Sharing
 - ✓ Plug and Play

- ✓ Tree-based
- ✓ Flooding-based
- ✓ Search-based

Application Scenarios:

- ✓ Dynamic-to-static
- ✓ Dynamic-to-mobile
- ✓ Many-to-one

Application-oriented Routing Strategy Comparisons

Rmase Modeling: Network Topology

Rmase Modeling: Application Scenarios

User given trace: (ID, Time)

Source

Prowler - Application Paramet	ersX
Parameters for application 'RMASE'	
Parameter Groups =	Application Source
SourceType =	static
SourceCenterType =	random
SourceCenterX =	0
SourceCenterY =	0
SourceRadius =	1
SourcePercentage =	1
	✓ SourceUnique
SourceSpeedX =	-0.2
SourceSpeedY =	-0.2
RandSourceSpeed =	0.1

Destination

Rmase Modeling: Performance Metrics

- Latency (s): $T_{\text{received}} T_{\text{sent}}$
- **1** Throughput (p/s): R/T
- Loss Rate: L/(L+R)
- Success Rate: $\Sigma R/\Sigma S$
- lacksquare Energy Use: ΣU
- **T** Energy Efficiency: $\Sigma R/\Sigma U$
- Lifetime Predication: $E_{\text{max}} (\underline{U} + \sigma)$ $U \leftarrow \Sigma U/N$

 $\sigma^2 \leftarrow \Sigma (U - \underline{U})^2 / N$

T: time

R: received packets

L: lost packets

S: original packets

U: used energy

N: total nodes

E: energy

Layered Routing Architecture

Motivation

- Component Reuse
- Component Reconfiguration
- General Flow
 - Commands flow down
 - Events flow up

Commands

- Commands
 - Send_Packet
- Events
 - Packet_Received
 - Packet_Sent
 - Clock_Tick
 - Init_Application

Common Routing Components

Taxonomy of Algorithm Repository

Control Packets: *: periodic, -: initialization, +: repair Structure Maintenance: asymmetric, symmetric

Component Strategies of Routing Algorithms

Application-oriented Comparisons

Assumptions

$$P_{rec,ideal}(d) \leftarrow P_{transmit} \frac{1}{1+d^{\gamma}}$$

Radio Model:

$$P_{rec}(i,j) \leftarrow P_{rec,ideal}(d_{i,j})(1+\alpha(i,j))(1+\beta(t))$$

$$\alpha: N(0,\sigma_{\alpha}), \sigma_{\alpha} \leftarrow 0.45$$

$$\beta : N(0, \sigma_{\beta}), \sigma_{\beta} \leftarrow 0.02$$

$$i \leftarrow j \Leftrightarrow P_{rec}(i,j) > \Delta$$

- Radio Strength: constant
- Algorithm Parameters: default
- Applications
 - LIS: A Line in the Sand (OSU)
 - RFT: Red Force Tagging (ND)
 - PEG: Pursuer/Evader Game (UCB)
 - SL: Shooter Localization (VU)
 - OSU: OSU Testbed (OSU)

A Line in the Sand

Source: given trace

Destination: static at (0,0)

Simulation time: 100 s

Total runs: 10

Application: LIS

LIS Experiments

Red Force Tagging

- Source:
 - dynamic, speed 0.2/s
 - Rate 1p/s
- Destination:
 - static at (0, 0)
- Simulation time: 50 s
- Total runs: 10

RFT Experiments

Pursuer/Evader Game

- Source:
 - dynamic, speed 0.2/s
 - Rate 1p/s
- Destination:
 - Mobile, speed 0.2/s
- Simulation time: 20 s
- Total runs: 10

PEG Experiments

Shooter Localization

nformation Exploitation () frice

Source: given trace

Destination: static given

• Simulation time: 100 s

Total runs: 10

SL Experiments

OSU Testbed

- Source: give trace
- Destination: static at (0, 0)
- Simulation time: 15 s
- Total runs: 10

Plug-Play Routing Components

- grad:
 - with aggregation
 - with transmit queue
 - without queue
- RC:
 - with aggregation
 - with transmit queue
- backbone:
 - with aggregation
 - without aggregation

Lessons Learned: Modeling and Simulation

Rmase

- Plug/play reusable routing components
- Model routing applications
- Analyze routing algorithms
- Optimize routing performance

Lessons Learned: Routing Stratagies snoop Dynamic learning Burst suppression confirmation directed delay flooding transmit Real-time Long-live Reliable duplication tree 23

Take Away Points

Performance of routing strategies depends on

- the network and application types
- metrics the application cares about
- The relationship between simulation and hardware
 - Simulation makes assumptions
 - Hardware verifies assumptions

Thanks

- Young-ri Choi (OSU/UTexas), Hongwei Zhang (OSU)
- Miklos Maroti (VU), Manish Kushwaha (VU)
- Marian Iordache (ND)
- Alex Woo (UCB)
- Tian He (UVA)