1) Section 3.5

Proposition: si une suite converge sa limite est unique.

Demonstration 3.5 (demonstration par l'absurde)

Supposons que lin an = a et lin an = b avec a + b. Alors.

lim an = a = # =>0, In, lel que, thin, |an-a| < = (1)

lin an = b = + ≥ >0,] nz lel que, tuz nz, |an-b| ≤ = (2)

Donc, pour $N > N_0$:= $\max_i \max_i N_1, N_2$, on a > a la fois

(1) et (2) et donc, puis que $a-b = (a-a_n) + (a_n-b)$,

on obtient que, pour tout $N > N_0$

0 < | a - b | < | a - an | + | b - an | < \frac{\xi}{2} + \frac{\xi}{2} = \xi

et on a douc que $t \ge 0$, $0 \le |a-b| \le \varepsilon$. Ceci implique (voir 1.1) que |a-b| = 0 et donc a = b, en contro diction avec l'hypothèse que $a \ne b$.

3.8 Théorème des deux gendarmes

Theoreme: soient (a_n) , (b_n) , (c_n) , $n \in \mathbb{N}$ trois suites

Si i) $\lim_{n \to \infty} a_n = c$ et $\lim_{n \to \infty} b_n = c$ ii) it existe $m \in \mathbb{N}$ let que $\forall n \geqslant m$ $a_n < c_n < b_n$ alors $\lim_{n \to \infty} c_n = c$.

Démonstration (voir aussi la démonstration 3.5)

 $a_n \leq c_n \leq b_n$ $c-\epsilon \in c+\epsilon$ $n \geq m$

On a an < Cu < bu ⇔ an - c < Cu - c < bu - c , fuzm (x)

 $\forall \varepsilon > 0$, $\exists n_0 > m$ tel que $\forall u > n_0$ $\{ |\alpha_n - c| \le \varepsilon \}$ $\Rightarrow \forall n > n_0$

 $-\varepsilon \leqslant a_{\mu} - c \leqslant c_{\mu} - c \leqslant \varepsilon$ $0 \qquad (*) \qquad (*) \qquad (©)$

 $\Rightarrow \forall n > n_0$, $|C_n - C| \in \mathcal{E}$ \Leftrightarrow $\lim_{n \to \infty} C_n = C$

3) Section 4.9

 $\sum_{k=0}^{\infty} a_k \text{ converge} \Rightarrow \lim_{k \to \infty} a_k = 0$

Demonstration: si la serie est convergente la suite $S_n = \sum_{k=0}^{n} a_k$ est une suite de Cauchy. Ceci veut dire que $t \ge \infty$ il existe N_0 tel que $t \le N_0$, $|S_n - S_m| \le E$ particulier $|S_{m+1} - S_m| \le E$ et donc $|a_{m+1}| \le E$. On a donc que $t \ge \infty$ il existe N_0 tel que $t \le N_0 + 1$ $|a_n - 0| \le E$ lim $a_n = 0$

4) Section 5.9.1

$$f(x) = \begin{cases} 0 & \text{si} & \text{x} \neq 0 \\ 1 & \text{si} & \text{x} = 0 \end{cases}$$

T. Walter

Soit x = 0 (à titre d'exemple).

Proposition: $\lim_{x \to 0} f(x) = 0$

Demonstration: Soit (X_n) une suite arbitraire lelle que $X_n \neq 0$ et $\lim_{n \to \infty} X_n = 0$. Alors $y_n = f(X_n) = 0$ pour tout n (car $x_n \neq 0$) et $\lim_{n \to \infty} y_n = \lim_{n \to \infty} 0 = 0$.

5) Section 5.9.2

3)
$$f(x) = sin(\frac{1}{x})$$
, $D = \mathbb{R}^*$

Soil x*=0 (à titre d'exemple)

Proposition: f n'admet pas de limite en x = 0

Demonstration: (deux techniques equivalentes)

in) deux suites (Xn), (Xn) telles que (yn) et (yn) con vergent mais vers differentes limites

$$X_n = \frac{1}{2\pi n}$$
, $n \in \mathbb{N}^{\frac{1}{2}}$; $\hat{X}_n = \frac{1}{\frac{\pi}{2} + n \cdot 2\pi}$, $n \in \mathbb{N}$

on a $x_n \neq 0$, $\hat{x}_n \neq 0$ et lieu $x_n = 0$ et lieu $\hat{x}_n = 0$

$$y_n = f(x_n) = \sin(z_T n) = 0$$
, $\hat{y}_n = f(\hat{x}_n) = \sin(\frac{T}{2} + z_T u) = 1$

donc lim y = 0 mais lim y =1.

6) Théorème limites gauche/droite

Soit $f: I \to \mathbb{R}$, avec $I \subset \mathbb{R}$ un intervalle ouvert et soit $x^* \in I$. Montrer que $\lim_{\substack{x \to x^* \\ x \neq x^*}} f(x) = \ell \in \mathbb{R}$ si et seulement si $\lim_{\substack{x \to x^* \\ x > x^*}} f(x) = \lim_{\substack{x \to x^* \\ x > x^*}} f(x) = \ell$.

D'abord il faut donner les définitions des ces limites : Soit $\ell \in \mathbb{R}$

- 1. $\lim_{\substack{x \to x^* \\ x \neq x^*}} f(x) = \ell$ si et seulement si pout toute suite (x_n) avec $x_n \neq x^*$ et $\lim_{n \to \infty} x_n = x^*$, on a $\lim_{n \to \infty} f(x_n) = \ell$
- 2. $\lim_{\substack{x \to x^* \\ x < x^*}} f(x)\ell$ si et seulement si pout toute suite (x_n) avec $x_n < x^*$ et $\lim_{n \to \infty} x_n = x^*$, on $a \lim_{n \to \infty} f(x_n) = \ell$
- 3. $\lim_{\substack{x \to x^* \\ x > x^*}} f(x) = \ell$ si et seulement si pout toute suite (x_n) avec $x_n > x^*$ et $\lim_{n \to \infty} x_n = x^*$, on a $\lim_{n \to \infty} f(x_n) = \ell$

Ces définitions sont équivalente eux version " $\varepsilon - \delta$ " suivantes :

1. $\lim_{\substack{x \to x^* \\ x \neq x^*}} f(x) = \ell$ si et seulement si

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \ t.q. \ \forall x : 0 < |x - x^*| < \delta \ on \ a \ |f(x) - \ell| < \varepsilon$$

2. $\lim_{\substack{x \to x^* \\ x < x^*}} f(x) \ell$ si et seulement si

$$\forall \varepsilon > 0 \; \exists \delta^- = \delta^-(\varepsilon) \; t.q. \; \forall x : 0 < x^* - x < \delta^- \; on \; a \; |f(x) - \ell| < \varepsilon$$

3. $\lim_{\substack{x \to x^* \\ x > x^*}} f(x) = \ell$ si et seulement si

$$\forall \varepsilon > 0 \; \exists \delta^+ = \delta^+(\varepsilon) \; t.q. \; \forall x : 0 < x - x^* < \delta^+ \; on \; a \; |f(x) - \ell| < \varepsilon$$

Prouvons que
$$1 \Rightarrow 2$$

Soit (x_n) une suite avec $x_n < x^*$ et $\lim_{n \to \infty} x_n = x^*$, Puisque $x_n < x^*$, on a que $x_n \neq x^*$, donc c'est

une suite (x_n) avec $x_n \neq x^*$ et $\lim_{n\to\infty} x_n = x^*$, et d'après 1., on a $\lim_{n\to\infty} f(x_n) = \ell$. Donc 2.

Prouvons que $1 \Rightarrow 3$

Cette preuve est similarie à la précendente. Pas besoin de la faire. Ici on va en donner une alternative en utilisant les " $\varepsilon - \delta$ ".

Soit $\varepsilon > 0$. De 1 on a qu'il existe $\delta = \delta(\varepsilon)$ tel que

$$\forall x: 0 < |x - x^*| < \delta \text{ on } a |f(x) - \ell| < \varepsilon$$

Définisson $\delta^+ = \delta$.

 $Soit \ 0 < x - x^* < \delta = \delta^+, \ alors \ 0 < |x - x^*| < \delta \ et, \ s'après \ 1. \ on \ a \ |f(x) - \ell| < \varepsilon. \ Donc \ 3.$

Prouvons que 2 et $3 \Rightarrow 1$

Pour cette partie, il est plus simple de travailler avec les " $\varepsilon - \delta$ ".

Soit $\varepsilon > 0$. De 2. et 3. on a qu'ils existent $\delta^- = \delta^-(\varepsilon)$ et $\delta^+ = \delta^+(\varepsilon)$ tels que

$$\forall x: 0 < x^* - x < \delta^- \text{ on } a |f(x) - \ell| < \varepsilon$$

$$\forall x: 0 < x - x^* < \delta^+ \text{ on } a |f(x) - \ell| < \varepsilon$$

Définisson $\delta = \min\{\delta^-, \delta^+\}$. Si $0 < |x - x^*| < \delta$, alors

- soit $x < x^*$, et donc $0 < x^* x < \delta \le \delta^-$ et, d'après 2., on a $|f(x) \ell| < \varepsilon$
- soit $x > x^*$, et donc $0 < x x^* < \delta \le \delta^+$ et, d'après 2., on a $|f(x) \ell| < \varepsilon$

7) Section 7.5

Definition: une fonction $f: D \to \mathbb{R}$ admet $x \in D$ comme point fixe si f(x) = x.

Théorème (du point fixe): soit q, b eR, a < b.

Toute fonction continue f: [a,b] - lu(f) < [a,b] admet un point fixe.

Demonstration

La fonction g(x) = x - f(x) est continue sur [a,b], $g(a) \le 0$ et g(b) > 0 et par le théorème des valeurs intermédiaires il existe $X \in [a,b]$ tel que $g(X) = 0 \iff f(X) = X$.

8) Section 7.10

7.10. Derivabilité (en un point) implique continuité (en ce point)

Théorème: une fonction qui est dérivable en X.
est continue en X.
B

$$A \Rightarrow B$$

Demonstration: pourquoi?

$$\lim_{X \to X_0} (f(x) - f(x_0)) = \lim_{X \to X_0} \left(\frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right)$$

La réciproque du théorème (B ⇒ A) est fausse ?

9) Enoncez et démontrez le théorème qui permet de calculer la dérivée de f-1

Theoreme: Soit I un intervalle,
$$I \neq \emptyset$$
, $f: I \longrightarrow Im f$) $\subset \mathbb{R}$
bijective, derivable, $\forall x \in I$, $f'(x) \neq 0$. Alors

Hye $Im(f) = D(f^{-1})$, $(f^{-1})'(y) = \frac{1}{f'(f^{-1})}$

Demonstration: Soil
$$y = f(x) \iff x = f^{-1}(y)$$

On a donc: $\forall y \in D(f^{-1}) = |m(f)|, f(f^{-1}(y)) = y$

Par derivation en chaîne on obtient

 $\forall y \in |m(f)|, f(f^{-1}(y)) \cdot (f^{-1})|y| = 1$

8.4. Théorème de Rolle

Theorems: soit $f: D \rightarrow \mathbb{R}$, $[a,b] \subset D$, $a,b \in \mathbb{R}$, a < b, f continue sur [a,b] et dérivable sur [a,b]. Si f(a) = f(b) = 0, alors il existe $u \in [a,b]$ tel que f(u) = 0

ACCROISSEMENT FINIS:

Theoreme soit f: D - R, [9,6] c D, a,6 eR, a < b,
f confinue sur [a,6] et derivable sur
]a,6[. Alors il existe ue]a,6[tel que

$$f(u) = \frac{f(b) - f(a)}{b - a} \tag{*}$$

Demonstration: soit

$$g(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{b - a}(x - a)\right)$$

Equation de la Amile en magenta

$$g(a) = f(a) - f(a) = 0$$

 $g(b) = f(b) - f(b) = 0$
 $g(a) = f(b) - f(b) = 0$
 $g(a) = f(a) - f(a) = 0$
 $g(a) = f(a) - f(a) = 0$

Par le fhéorème de Rolle il existe $u \in Ja, b \in \mathbb{R}$ lel que $0 = g'(u) = f'(u) - (0 + \frac{f(b) - f(a)}{b - a}) \Rightarrow (x)$

11) Section 9.1 : savoir énoncer le théorème de Rolle et l'utiliser pour la démo du théorème des accroissements finis généralisé

8.4. Théorème de Rolle

Theoreme: soit
$$f: D \rightarrow \mathbb{R}$$
, $[a,b] \in D$, $a,b \in \mathbb{R}$, $a < b$, f continue sur $[a,b]$ et derivable sur $[a,b]$. Si $f(a) = f(b) = 0$, alors il existe $u \in [a,b]$ tel que $f(u) = 0$

9.1. Théorème des accroissements finis genéralisé

Théorème Soit
$$f:Df \rightarrow R$$
, $g:Dg \rightarrow R$, $[a,b] = Df \cap Dg$, $a,b \in R$, $a < b$, f,g continues our $[a,b]$, $derivables$ our $[a,b]$, $et t \times e = [a,b]$, $g'(x) \neq 0$. Alors il existe $u \in [a,b]$, $f(u) = f(b) - f(a)$

$$g'(u) = g(b) - g(a)$$

Remarque: pour g(x) = x c'est le théorème des accroissements finis

Remarque: $f(x) = a_1 b [, g'(x) \neq 0 \Rightarrow g(b) \neq g(a)$ (car si g(b) = g(a), alors il existe u tel que g'(u) = 0)

Demonstration: on pose
$$h(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a))\right)$$
On a $h(a) = h(b) = 0$ et on applique le théorème de Rolle

Théorème !
Soit ICR un intervalle ouvert, nEIN, f. I-R
une fonction n+1 fois derivable sur I et soit a [.
Alors f admet un developpement limite d'ordre n.
autour de a Plus précisément, pour tout X & I.
autour de a. Plus précisément, pour tout XEI, X>a (X <a) (ue]x,a[)="" existe="" il="" td="" tel.<="" ue]a,x[=""></a)>
Cruc .
$f(x) = \sum_{k=0}^{n} q_k (x-a)^k + (x-a)^n \in (x)$
R = 0
avec
$a_{\ell} = \frac{1}{2T} f(a)$ reste
avec $a_k = \frac{1}{k!} f^{(k)}$ $= p_n(x) le$ $= p_n(x) le$ $u depend de x$
polynôme de
polynome de taylor d'ordren $E(X) = \frac{1}{(n+1)!} f(u) (x-a)$
(N+1)! T = 0
Remarque: pour n=0 on obtient $f(x) = f(a) + f(u)(x-a)$
ce qui est le fhéorème des acroissements finis.
,

13)Section 11.4.1 Théorème de la moyenne généralisé

Théorème de la moyenne généralisé

Soit
$$f,g \in C^{\circ}([a,b])$$
 et $\forall x \in [a,b], g(x) > 0$. Alors il existe $u \in [a,b]$ tel que

$$\int_{a}^{b} f(x) \cdot g(x) dx = f(u) \cdot \int_{a}^{b} g(x) dx$$

THEOREME DES VALEURS INTERMEDIAIRES:

Theoreme 2 (théoreme des valeurs intermédiaires). Soit $a,b \in R$, a < b. Toute fonction continue $f: [a,b] \rightarrow R$ prend (au moins une fois) toutes les valeurs entre f(a) et f(b).

Demonstration: soient m et M le m in m un et M le m in m un et M le M in M unit M et M le M in M in M and M in M