Oppgaver MAT2500

Fredrik Meyer

12. september 2014

Oppgave 1. La $\{p_1, \dots, p_n\}$ være hjørnene til en regulær n-kant med senter i origo. Vis at definisjonen av tyngdepunktet som

$$T := \frac{1}{n} \sum_{i=1}^{n} p_i$$

"stemmer". Det vil, si, vis at $T = \vec{0}$, origo.

Løsning 1. Tenk på $E^2 = \mathbb{R}^2$ som det komplekse planet, \mathbb{C} . Da kan vi identifisere en hjørnene til en regulær n-kant med enhetsrøttene

$$p_i = e^{\frac{2\pi i k}{n}}$$

for $k=1,2,\ldots,n$. La $z=e^{\frac{2\pi i}{n}}$ være $p_1.$ Da ser vi at $p_k=z^k.$ Dermed er

$$T = \frac{1}{n} (z + z^2 + \dots + z^n) = \frac{z}{n} (1 + \dots + z^{n-1}) = \frac{z}{n} \frac{z^n - 1}{z - 1}.$$

 \Diamond

Men $z^n = e^{2\pi i} = 1$, så T = 0, akkurat som vi ønsket.

Oppgave 2. La $M = \{m\vec{x} + n\vec{y} \mid m, n \in \mathbb{Z}\} = \vec{x}\mathbb{Z} \oplus \vec{y}\mathbb{Z}$ være gitteret utspent av vektorene \vec{x} og \vec{y} . La D være det tilhørende Dirichlet-området. Tegn Dog beskriv symmetrigruppa til D.

- a) Når $\vec{x} = (1,0)$ og $\vec{y} = (0,1)$.
- Løsning 2. a) Vi starter med å tegne standardparallellogrammet. Dette består av seks trekanter, og vi skal finne omsentrene til disse trekantene¹. I dette tilfellet sammenfaller flere av omsentrene, og vi får et kvadrat. Se

Figur 1: Dirichlet-området i a).

Figur 1, hvor Dirichlet-området er merket i gult. Dermed blir symmetrigruppen D_4 , firkantgruppen.

- b) I dette tilfellet er $\vec{x} = (1,0)$ og $\vec{y} = \frac{1}{2}(1,\sqrt{3})$. Trekanten OAB er da en likesidet trekant, så Dirichlet-området blir en regulær sekskant. Symmetrigruppen blir da D_6 .
- c) Nå er $\vec{x}=(1,0)$ og $\vec{y}=\frac{1}{2}(1,2)$. Se Figur 2 for Dirichlet-området. Vi får en sekskant, men den er ikke regulær, så vi har ingen rotasjonssymmetri. Men vi ser at vi kan speile i x-aksen og i y-aksen. Sammensetningen av disse to speilingene blir en rotasjon på 180° . Så til sammen har vi fire symmetrier, og vi kan kalle gruppa for $\mathbb{Z}/2 \times \mathbb{Z}/2$.

 \Diamond

Oppgave 3. Vis at en diskret undergruppe av SO(2) er endelig.

Løsning 3. Husk at SO(2) er gruppen av ortogonale operatorer på \mathbb{R}^2 . Konkret er dette mengden av ortogonale 2×2 -matriser. Disse kan alle dekomponeres som $M = SM_{\theta}$, der S er matrisen til speiling om x-aksen og M_{θ} er en rotasjon på θ grader om origo.

Husk at en undergruppe G av SO(2) er diskret hvis det finnes en $\epsilon > 0$ slik at for hver rotasjon M_{θ} i G, så er $|\theta| \ge \epsilon$ (om $\theta \ne 0$). På mer forståelig norsk betyr dette at alle rotasjonene i G roterer mer enn ϵ grader.

¹Husk at et *omsenteret* til en trekant er skjæringspunktet til midtnormalene.

Figur 2: Dirichlet-området i c).

Nå påstår jeg at dette impliserer at om M_{θ}, M_{φ} er to rotasjoner i G, så er $|\theta - \varphi| \ge \epsilon$. Siden G er en gruppe, er også $M_{\varphi}^{-1} \in G$, og følgelig også $M_{\theta}M_{\varphi}^{-1} = M_{\theta}M_{-\varphi} = M_{\theta-\varphi}$. Men siden G er diskret, følger det at $|\theta - \varphi| \ge \epsilon$.

Dermed har alle rotasjonene i G en avstand på større enn ϵ , noe som betyr at vi maksimalt kan ha $\frac{2\pi}{\epsilon}$ rotasjoner i G. Så en diskret undergruppe av SO(2) kan bare inneholde endelig mange rotasjoner, og siden $SM_{\theta} = M_{-\theta}S$, følger det at maksimal størrelse på G er $\frac{4\pi}{\epsilon}$ (ved å putte inn maksimalt antall speilinger).

Oppgave 4. Hvis $G \subset Isom_2$ er en diskret undergruppe og rangen til L_G er 2, vis at D_G , Dirichlet-området, er et fundamentalområde for L_G .

Løsning 4. For å vise at D_G er et fundamentalområde må vi vise to ting: Det ene er at $E^2 = \mathbb{R}^2$ er dekket av translasjoner/rotasjoner av D_G : $E^2 = \bigcup_{g \in G} g(D_G)$. Det andre er at når $g \neq h$, så er det indre av $g(D) \cap h(D)$ tom.

Først: Kall vektorene i gitteret for \vec{x} og \vec{y} . La $\vec{a} = (a, b) \in \mathbb{R}^2$. Siden \vec{x}, \vec{y} utgjør en basis, kan vi skrive $\vec{a} = r_1 \vec{x} + r_2 \vec{y}$ for noen $r_1, r_2 \in \mathbb{R}$. Nå, skriv r_1 og r_2 som en sum av heltall pluss et tall i intervallet $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (dette kan vi alltid gjøre, og til og med unikt), altså som $r_1 = n_1 + s_1, r_2 = n_2 + s_2$, der n_1, n_2 er heltall, og s_1, s_2 er i intervallet over. Da er $\vec{x} = t_{n_1 \vec{x}} t_{n_2 \vec{y}} (s_1 \vec{x} + s_2 \vec{y})$.

Nå påstår jeg at $s_1\vec{x} + s_2\vec{y}$ ligger innenfor Dirichlet-området til G. Men å ligge innenfor Dirichlet-området er det samme som å ligge innenfor alle

midtnormalene til trekantene i fundamentalheksagonet. Så om $s_1 \geq 0$ og $s_2 \geq 0$, er vi automatisk i den første trekanten. Anta nå $s_1 < 0$ og $s_2 > 0$. Om $s_1 + s_2 < \frac{1}{2}$, kan vi skrive

$$s_1\vec{x} + s_2\vec{y} = s_1\vec{x} - s_1\vec{y} + s_1\vec{y} + s_2\vec{y} = (-s_1)(\vec{y} - \vec{x}) + (s_1 + s_2)\vec{y}.$$

Dermed er $s_1\vec{x} + s_2\vec{y}$ i den øverste trekanten. Om $s_1 + s_2 > \frac{1}{2}$ kan vi skrive

$$s_1\vec{x} + s_2\vec{y} = (-s_1 - s_1)(-\vec{x}) + s_2(\vec{y} - \vec{x}).$$

Da er $s_1\vec{x} + s_2\vec{y}$ i den øvre, venstre trekanten.

Repeter samme argumenter for $s_2 < 0$, og konkluder med at hvert element $\vec{a} \in \mathbb{R}^2$ kan skrives som et element i D_G , pluss heltallskombinasjoner av \vec{x}, \vec{y} . Dette er det samme som å si at $\mathbb{R}^2 = \bigcup_{g \in G} g(D_G)$.

Det andre kravet for å være et fundamentalområde var at om $g \neq h$, så hadde vi at $g(D_G) \cap h(D_G)$ ikke hadde noe indre. Men dette er klart: det "verste" som kan skje er at $g(D_G)$ og $h(D_G)$ er naboer, men da snitter de kun i randen.

PS: Til slutt en formel jeg måtte bruke for å lage noen av diagrammene i løsningsforslaget. Vi skulle finne omsenteret til en trekant. Anta ene hjørnet er origo, og andre er (a,b), og tredje er (c,d). Da kan vi regne ut at omsenteret har koordinater:

$$\frac{1}{2(bc-ad)} \left(a^2d - d^2b + b^2d - c^2b, a^2c + b^2c - ac^2 - ad^2 \right)$$

Hvordan jeg fant denne formelen: la ℓ være linjen $\frac{1}{2}\vec{a} + t\vec{a}^{\perp}$ (altså linjen som står ortogonalt på \vec{a} og går ut fra midtpunktet). La ℓ' være den tilsvarende linjen for \vec{b} . Da kan man regne ut skjæringspunktet mellom disse linjene, og dette er omsenteret (engelsk *circumcenter*).