Choosing the covariance type

If you look at the details of the preceding fits, you will see that the covariance_type option was set differently within each. This hyperparameter controls the degrees of freedom in the shape of each cluster; it is essential to set this carefully for any given problem. The default is covariance_type="diag", which means that the size of the cluster along each dimension can be set independently, with the resulting ellipse constrained to align with the axes. A slightly simpler and faster model is covariance_type="spherical", which constrains the shape of the cluster such that all dimensions are equal. The resulting clustering will have similar characteristics to that of k-means, though it is not entirely equivalent. A more complicated and computationally expensive model (especially as the number of dimensions grows) is to use covariance_type="full", which allows each cluster to be modeled as an ellipse with arbitrary orientation.

We can see a visual representation of these three choices for a single cluster within Figure 5-131:

Figure 5-131. Visualization of GMM covariance types

GMM as Density Estimation

Though GMM is often categorized as a clustering algorithm, fundamentally it is an algorithm for *density estimation*. That is to say, the result of a GMM fit to some data is technically not a clustering model, but a generative probabilistic model describing the distribution of the data.

As an example, consider some data generated from Scikit-Learn's make_moons function (visualized in Figure 5-132), which we saw in "In Depth: k-Means Clustering" on page 462:

```
In[13]: from sklearn.datasets import make_moons
   Xmoon, ymoon = make_moons(200, noise=.05, random_state=0)
   plt.scatter(Xmoon[:, 0], Xmoon[:, 1]);
```


Figure 5-132. GMM applied to clusters with nonlinear boundaries

If we try to fit this to a two-component GMM viewed as a clustering model, the results are not particularly useful (Figure 5-133):

```
In[14]: gmm2 = GMM(n_components=2, covariance_type='full', random_state=0)
    plot_gmm(gmm2, Xmoon)
```


Figure 5-133. Two component GMM fit to nonlinear clusters

But if we instead use many more components and ignore the cluster labels, we find a fit that is much closer to the input data (Figure 5-134):

```
In[15]: gmm16 = GMM(n_components=16, covariance_type='full', random_state=0)
    plot_gmm(gmm16, Xmoon, label=False)
```


Figure 5-134. Using many GMM clusters to model the distribution of points

Here the mixture of 16 Gaussians serves not to find separated clusters of data, but rather to model the overall *distribution* of the input data. This is a generative model of the distribution, meaning that the GMM gives us the recipe to generate new random data distributed similarly to our input. For example, here are 400 new points drawn from this 16-component GMM fit to our original data (Figure 5-135):

Figure 5-135. New data drawn from the 16-component GMM

GMM is convenient as a flexible means of modeling an arbitrary multidimensional distribution of data.

How many components?

The fact that GMM is a generative model gives us a natural means of determining the optimal number of components for a given dataset. A generative model is inherently a probability distribution for the dataset, and so we can simply evaluate the *likelihood* of the data under the model, using cross-validation to avoid overfitting. Another means of correcting for overfitting is to adjust the model likelihoods using some analytic criterion such as the Akaike information criterion (AIC) or the Bayesian information criterion (BIC). Scikit-Learn's GMM estimator actually includes built-in methods that compute both of these, and so it is very easy to operate on this approach.

Let's look at the AIC and BIC as a function as the number of GMM components for our moon dataset (Figure 5-136):

Figure 5-136. Visualization of AIC and BIC for choosing the number of GMM components

The optimal number of clusters is the value that minimizes the AIC or BIC, depending on which approximation we wish to use. The AIC tells us that our choice of 16 components was probably too many: around 8–12 components would have been a

better choice. As is typical with this sort of problem, the BIC recommends a simpler model.

Notice the important point: this choice of number of components measures how well GMM works as a density estimator, not how well it works as a clustering algorithm. I'd encourage you to think of GMM primarily as a density estimator, and use it for clustering only when warranted within simple datasets.

Example: GMM for Generating New Data

We just saw a simple example of using GMM as a generative model of data in order to create new samples from the distribution defined by the input data. Here we will run with this idea and generate new handwritten digits from the standard digits corpus that we have used before.

To start with, let's load the digits data using Scikit-Learn's data tools:

```
In[18]: from sklearn.datasets import load digits
        digits = load_digits()
        digits.data.shape
Out[18]: (1797, 64)
```

Next let's plot the first 100 of these to recall exactly what we're looking at (Figure 5-137):

```
In[19]: def plot digits(data):
            fig, ax = plt.subplots(10, 10, figsize=(8, 8),
                                   subplot_kw=dict(xticks=[], yticks=[]))
            fig.subplots adjust(hspace=0.05, wspace=0.05)
            for i, axi in enumerate(ax.flat):
                im = axi.imshow(data[i].reshape(8, 8), cmap='binary')
                im.set_clim(0, 16)
        plot_digits(digits.data)
```

We have nearly 1,800 digits in 64 dimensions, and we can build a GMM on top of these to generate more. GMMs can have difficulty converging in such a high dimensional space, so we will start with an invertible dimensionality reduction algorithm on the data. Here we will use a straightforward PCA, asking it to preserve 99% of the variance in the projected data:

```
In[20]: from sklearn.decomposition import PCA
        pca = PCA(0.99, whiten=True)
        data = pca.fit_transform(digits.data)
        data.shape
Out[20]: (1797, 41)
```