Coches

Imanol

6/3/2021

Análisis de los coches (mtcars)

Carga de datos

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from plotnine import ggplot
from plotnine.data import mtcars

data = mtcars
# Asignar a cada fila la columna name
data.index = mtcars["name"]

print(data.head())
```

```
##
                            name mpg cyl disp ... vs am gear carb
## name
                        Mazda RX4 21.0 6 160.0 ...
## Mazda RX4
                                                     0
                                                                  4
## Mazda RX4 Wag
                   Mazda RX4 Wag 21.0
                                      6 160.0 ...
                                                    0 1
                                                             4
                                                                  4
## Datsun 710
                        Datsun 710 22.8 4 108.0 ... 1 1
                                                             4
                                                                  1
                    Hornet 4 Drive 21.4 6 258.0 ... 1 0 3
## Hornet 4 Drive
                                                                 1
## Hornet Sportabout Hornet Sportabout 18.7 8 360.0 ... 0 0
##
## [5 rows x 12 columns]
```

Medidas de centralización

```
# Media de cada una de las columnas
print(data.mean())
# Media de cada una de las filas (no tiene mucho sentido hacerlo)
```

```
## mpg 20.090625
## cyl 6.187500
## disp 230.721875
## hp 146.687500
```

```
## drat
             3.596563
## wt
             3.217250
## qsec
            17.848750
## vs
             0.437500
## am
             0.406250
             3.687500
## gear
## carb
             2.812500
## dtype: float64
print(data.mean(axis = 1)) # axis = 1 media por filas
# Mediana de cada una de las columnas
## name
## Mazda RX4
                          29.907273
## Mazda RX4 Wag
                          29.981364
## Datsun 710
                          23.598182
## Hornet 4 Drive
                          38.739545
## Hornet Sportabout
                          53.664545
## Valiant
                          35.049091
## Duster 360
                          59.720000
## Merc 240D
                          24.634545
## Merc 230
                          27.233636
## Merc 280
                          31.860000
## Merc 280C
                          31.787273
## Merc 450SE
                          46.430909
## Merc 450SL
                          46.500000
## Merc 450SLC
                          46.350000
## Cadillac Fleetwood
                          66.232727
## Lincoln Continental
                          66.058545
## Chrysler Imperial
                          65.972273
## Fiat 128
                          19.440909
## Honda Civic
                          17.742273
## Toyota Corolla
                          18.814091
## Toyota Corona
                          24.888636
## Dodge Challenger
                          47.240909
## AMC Javelin
                          46.007727
## Camaro Z28
                          58.752727
## Pontiac Firebird
                          57.379545
## Fiat X1-9
                          18.928636
## Porsche 914-2
                          24.779091
## Lotus Europa
                          24.880273
## Ford Pantera L
                          60.971818
## Ferrari Dino
                          34.508182
## Maserati Bora
                          63.155455
## Volvo 142E
                          26.262727
## dtype: float64
print(data.median())
# Moda de cada una de las columnas
```

mpg 19.200

```
## cyl
        6.000
## disp 196.300
## hp
        123.000
## drat
          3.695
          3.325
## wt
## qsec
         17.710
## vs
          0.000
           0.000
## am
## gear
          4.000
## carb
           2.000
## dtype: float64
```

print(data.mode())

				_		_						_
##		name	mpg	cyl	disp	hp	• • •	qsec	٧s	am	gear	carb
##		AMC Javelin	10.4	8.0	275.8	110.0	• • •	17.02	0.0	0.0	3.0	2.0
	1	Cadillac Fleetwood	15.2	NaN	NaN	175.0	• • •	18.90	NaN	NaN	NaN	4.0
##	2	Camaro Z28	19.2	NaN	NaN	180.0	• • •	NaN	NaN	NaN	NaN	NaN
##	3	Chrysler Imperial	21.0	NaN	NaN	NaN		NaN	\mathtt{NaN}	NaN	NaN	\mathtt{NaN}
##	4	Datsun 710	21.4	${\tt NaN}$	NaN	NaN		NaN	${\tt NaN}$	\mathtt{NaN}	${\tt NaN}$	${\tt NaN}$
##	5	Dodge Challenger	22.8	${\tt NaN}$	NaN	NaN		NaN	${\tt NaN}$	\mathtt{NaN}	${\tt NaN}$	${\tt NaN}$
##	6	Duster 360	30.4	${\tt NaN}$	NaN	NaN		NaN	${\tt NaN}$	NaN	${\tt NaN}$	${\tt NaN}$
##	7	Ferrari Dino	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$	NaN
##	8	Fiat 128	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$
##	9	Fiat X1-9	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$
##	10	Ford Pantera L	NaN	${\tt NaN}$	NaN	NaN		NaN	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$
##	11	Honda Civic	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	${\tt NaN}$
##	12	Hornet 4 Drive	NaN	${\tt NaN}$	NaN	NaN		NaN	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$	${\tt NaN}$
##	13	Hornet Sportabout	NaN	NaN	NaN	NaN		NaN	NaN	NaN	${\tt NaN}$	${\tt NaN}$
##	14	Lincoln Continental	NaN	NaN	NaN	NaN		NaN	NaN	NaN	${\tt NaN}$	${\tt NaN}$
##	15	Lotus Europa	NaN	NaN	NaN	NaN		NaN	NaN	NaN	${\tt NaN}$	${\tt NaN}$
##	16	Maserati Bora	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	${\tt NaN}$
##	17	Mazda RX4	NaN	${\tt NaN}$	NaN	NaN		NaN	${\tt NaN}$	${\tt NaN}$	NaN	${\tt NaN}$
##	18	Mazda RX4 Wag	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	${\tt NaN}$
##	19	Merc 230	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	NaN	NaN	${\tt NaN}$
##	20	Merc 240D	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	NaN	NaN	${\tt NaN}$
##	21	Merc 280	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	NaN	NaN	${\tt NaN}$
##	22	Merc 280C	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	NaN	NaN	${\tt NaN}$
##	23	Merc 450SE	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	NaN	NaN	${\tt NaN}$
##	24	Merc 450SL	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN
##	25	Merc 450SLC	NaN	NaN	NaN	NaN		NaN	${\tt NaN}$	NaN	NaN	${\tt NaN}$
##	26	Pontiac Firebird	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN
##	27	Porsche 914-2	NaN	NaN	NaN	NaN		NaN	\mathtt{NaN}	NaN	NaN	NaN
##	28	Toyota Corolla	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN
##	29	Toyota Corona	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN
##	30	Valiant	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN
##	31	Volvo 142E	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN
##												

[32 rows x 12 columns]

Medidas vs distribuciones

```
# Con distribución normal
norm_data = pd.DataFrame(np.random.normal(size=100000))
norm_data.plot(kind="density", figsize=(10,10))

## Media y mediana estan muy cerca de cero
plt.vlines(norm_data.mean(), ymin = 0, ymax = 0.4, linewidth=5.0, color = "green")
plt.vlines(norm_data.median(), ymin = 0, ymax = 0.4, linewidth=2.0, color = "red")

plt.show()

# Con distribución exponencial que tiene sesgo
```



```
skewed_data = pd.DataFrame(np.random.exponential(size=100000))
skewed_data.plot(kind="density", figsize=(10,10), xlim = (-1,5))

# Media y mediana estan mas alejadas
plt.vlines(skewed_data.mean(), ymin = 0, ymax = 1.0, linewidth=5.0, color = "green")
plt.vlines(skewed_data.median(), ymin = 0, ymax = 1.0, linewidth=2.0, color = "red")
plt.show()

# Con otra distribución normal
```



```
norm_data = np.random.normal(size=50)
outliers = np.random.normal(15, size=3)
```

```
combined_data = pd.DataFrame(np.concatenate((norm_data, outliers), axis = 0))

combined_data.plot(kind="density", figsize=(10,10), xlim = (-5,20))

# La mediana queda desplazada a la derecha
plt.vlines(combined_data.mean(), ymin = 0, ymax = 0.3, linewidth=5.0, color = "green")
plt.vlines(combined_data.median(), ymin = 0, ymax = 0.3, linewidth=2.0, color = "red")

plt.show()
```

