Exercise 2.20: Design a 1-bit synchronous adder <code>lBitAdder</code> by composing instances of And, Or, Not, and Xor gates. The component <code>lBitAdder</code> has three input variables x, y, and carry-in and two output variables z and carry-out. In each round, the value encoded by the two output bits z and carry-out, where z is the least significant bit, should equal the sum of the values of three input variables. Then, design a 3-bit synchronous adder <code>3BitAdder</code> by composing three instances of the component <code>1BitAdder</code>. The component <code>3BitAdder</code> has input variables x_0 , x_1 , x_2 , y_0 , y_1 , y_2 , and carry-in and has output variables z_0 , z_1 , z_2 , and carry-out. In each round, the 4-bit number encoded by the output variables z_0 , z_1 , z_2 , and carry-out should equal the sum of the 3-bit number encoded by the input variables x_0 , x_1 , and x_2 , the 3-bit number encoded by the input variables y_0 , y_1 , and y_2 , and the input value of carry-in.

Exercise 2.22: Consider the leader election algorithm in synchronous networks (<u>figure 2.35</u>). Argue that if the value of *id* does not change in a given round, then there is no need to send it in the following round (that is, the output *out* can be absent in the next round). This can reduce the number of messages sent. Modify the description of the component SyncleNode to implement this change. ■

Figure 2.35: Component SyncLENode for Synchronous Leader Election

Exercise 3.6: Consider a transition system T with two integer variables x and y and a Boolean variable z. All the variables are initially 0. The transitions of the system correspond to executing the conditional statement

if
$$(z = 0)$$
 then $\{x := x + 1; z := 1\}$ else $\{y := y + 1; z := 0\}$.

Consider the property ϕ given by $(x = y) \lor (x = y + 1)$. Is ϕ an invariant of the transition system T? Is ϕ an inductive invariant of the transition system T? Find a formula ψ such that ψ is stronger than ϕ and is an inductive invariant of the transition system T. Justify your answers.

Exercise 3.7: Recall the transition system Mult(m, n) from exercise 3.1. First, show that the invariant property $(mode = stop) \rightarrow (y = m \cdot n)$ is not an inductive invariant. Then find a stronger property that is an inductive invariant. Justify your answers.

Exercise 3.1: Given two natural numbers m and n, consider the program Mult that multiplies the input numbers using two variables x and y, of type nat, as shown in figure 3.2. Describe the transition system Mult(m, n) that captures the behavior of this program on input numbers m and n, that is, describe the states, initial states, and transitions. Argue that when the value of the variable x is 0, the value of the variable y must equal the product of the input numbers m and n, that is, the following property is an invariant of this transition system:

$$(mode = stop) \rightarrow (y = m \cdot n)$$

 $(x>0) \rightarrow \{x:=x-1; \ y:=y+n\}$ nat x:=m; y:=0 (x=0)? stop

Figure 3.2: Program for Multiplication

Exercise 3.3: The reaction description for the controller Controller2 consists of three tasks as shown in figure 3.8. Split the task A_3 into four tasks, each of which writes exactly one of the state variables *east*, *west*, *near*_W, and *near*_E. Each task should be described by its read-set, write-set, and update code, along with the necessary precedence constraints. The revised description should have the same set of reactions as the original description. Does this splitting impact output/ input await dependencies? If not, what would be the potential benefits and/ or drawbacks of the revised description compared to the original description?

Figure 3.8: A Safe Controller for the Railroad Problem

Exercise 3.4: Consider a component C with an output variable x of type int. Design a safety monitor to capture the requirement that the sequence of values output by the component C is strictly increasing (that is, the output in each round should be strictly greater than the output in the preceding round).