

Algorithms – I (CS29003/203)

Autumn 2022, IIT Kharagpur

Graphs

Resources

- Apart from the book
- UC Riverside, CS 141 course, Fall 2021 by Prof. Yan Gu and Prof. Yihan Sun
- Stanford University, CS 161 course, Winter 2022 by Prof. Moses Charikar and Prof. Nima Anari

• For today we will focus on connected graphs. Say we have an undirected weighted graph

• For today we will focus on connected graphs. Say we have an undirected weighted graph

• For today we will focus on connected graphs. Say we have an undirected weighted graph

• For today we will focus on connected graphs. Say we have an undirected weighted graph

• For today we will focus on connected graphs. Say we have an undirected weighted graph

This is a minimum spanning tree

Why Minimum Spanning Trees

- Network Design
 - Connecting cities with roads/electricity/telephone/...
- Cluster analysis
 - e.g., genetic distance
- Image processing
 - e.g., image segmentation
- Useful primitive
 - for other graph algorithms

Ref: Felzenswalb et. Al., Efficient graph-based image segmentation, IJCV 2004

We will see two greedy algorithms

We will see two greedy algorithms

We will see two greedy algorithms

• Start growing a tree, greedily add the shortest edge we can to

We will see two greedy algorithms

	key	π
А	0	Null
В	&	Null
С	∞	Null
D	∞	Null
E	&	Null
F	&	Null
G	8	Null
Н	8	Null
I	8	Null

	key	π
A	0	Null
В	⇔ 4	Null A
С	&	Null
D	∞	Null
E	&	Null
F	8	Null
G	&	Null
Н	∞ 8	Null A
I	∞	Null

- Now A is out.
- Also, AB is the greedy choice. So, I shall first update the neighbors of B and I shall not consider B again
- Note that A's neighbors are already in updated state in the priority queue

		key	π
	✓ A	0	Null
(✓ B	∞ 4	Null A
	С	∞ 8	Null B
	D	&	Null
	E	8	Null
	F	8	Null
	G	8	Null
	Н	⇔ 8 11	Null A B
	I	∞	Null

- Now A is out.
- Also, AB is the greedy choice. So, I shall first update the neighbors of B and I shall not consider B again
- Note that A's neighbors are already in updated state in the priority queue

	<u> </u>	
	key	π
Α	0	Null
\searrow B	∞ 4	Null A
√) c	∞ 8	Null B
D	∞ 7	Null C
E	∞	Null
F	∞ 4	Null C
G	∞	Null
Н	∞ 8	Null A
I	∞ 2	Null C

- Now B is out
- Also, BC is the greedy choice. So, I shall first update the neighbors of C and I shall not consider C again

	key	π
✓ A	0	Null
\searrow B	∞ 4	Null A
√) c	∞ 8	Null B
D	∞ 7	Null C
E	8	Null
F	⇔ 4	Null C
G	⇔ 6	Null I
Н	∞ 8 7	Null A I
\ _	⇔ 2	Null C

- Now C is out
- Also, CI is the greedy choice. So, I shall first update the neighbors of I and I shall not consider I again

∞ 2

How to find Minimum Spanning Trees

- Now *I* is out
- Also, CF is the greedy choice. So, I shall first update the neighbors of F and I shall not consider F again

Null C

- Now *F* is out.
- Also, FG is the greedy choice. So, I shall first update the neighbors of G and I shall not consider G again

∞ 2

How to find Minimum Spanning Trees

- Now G is out
- Also, GH is the greedy choice. So, I shall first update the neighbors of H and I shall not consider H again
- In fact, all neighbors are out in this case This also means a cycle would come. So we don't do anything
- Same scenario with next greedy choices, GI, HI

Null C

• Our next greedy choice is CD. So, I shall first update the neighbors of D and I shall not consider D again

- Our next greedy choice is DE. However, E's neighbors are already updated
- Note choosing DE is not completing any cycle, but exploring its neighbors can
- Now the priority queue is empty, so we stop

- Our next greedy choice is DE. However, E's neighbors are already updated
- Note choosing DE is not completing any cycle, but exploring its neighbors can
- Now the priority queue is empty, so we stop


```
Prim(G)
select a source s
for each vertex u \in G. V
u. key = \infty, u.\pi = Null
s. key = 0
// Initialize a data structure for the vertices Q = \phi // Priority queue
for each vertex u \in G. V
Q. Insert(u)
while Q \neq \phi
u = Q. getMin()
for each neighbor v \in G. Adj[u]
if v \in QAND w(u,v) < v. key
v. key = w(u,v)
v. \pi = u
```


Brief Aside

• A cut is a partition of the vertices into two parts

This is the cut "{A,B,D,E} and {C,I,H,G,F}"

Cuts in Graphs

• This is **not** a cut. Cuts are partitions of vertices

Let S be a set of edges in G

- We say a cut **respects** S if no edges in S cross the cut
- An edge crossing a cut is called **light** if it has the smallest weight of any edge crossing the cut

S is the set of **thick orange** edges

Source: Stanford, CS 161 course, Winter 2022 CS21003/CS21203 / Algorithms - I | Graphs

Nov 02, 03, 04, 2022

Let S be a set of edges in G

- We say a cut **respects** S if no edges in S cross the cut
- An edge crossing a cut is called **light** if it has the smallest weight of any edge crossing the cut

Lemma

- Let S be a set of edges, and consider a cut that respects S
- Suppose there is an MST containing S
- Let {u,v} be a light edge
- Then there is an MST containing S ∪ {{u,v}}

Lemma

- Let S be a set of edges, and consider a cut that respects S
- Suppose there is an MST containing S
- Let {u,v} be a light edge
- Then there is an MST containing S ∪ {{u,v}}

If we haven't ruled out the possibility of success so far, then adding a light edge still won't rule it out.

S is the set of **thick orange** edges

Source: Stanford, CS 161 course, Winter 2022 CS21003/CS21203 / Algorithms - I | Graphs

- Assume that we have:
 - a cut that respects S

- Assume that we have:
 - a cut that respects S
 - S is part of some MST T
- Say that {u,v} is light

lowest cost crossing the cut

Nov 02, 03, 04, 2022

- Assume that we have:
 - a cut that respects S
 - S is part of some MST T
- Say that {u,v} is light
 - lowest cost crossing the cut
- If {u,v} is in T, we are done.
 - T is an MST containing both {u,v} and S.

- Assume that we have:
 - a cut that respects S
 - S is part of some MST T
- Say that {u,v} is light.
 - lowest cost crossing the cut
- Say {u,v} is not in T

Note that adding {u,v} to T

will make a cycle

Claim: Adding any additional edge to a spanning tree will create a cycle

Proof: Both endpoints are already in the tree and connected to each other.

- Assume that we have:
 - a cut that respects S
 - S is part of some MST T
- Say that {u,v} is light.
 - lowest cost crossing the cut
- Say {u,v} is not in T
- Note that adding {u,v} to T will make a cycle
- There is at least one other edge, {x,y}, in this cycle crossing the cut

Claim: Adding any additional edge to a spanning tree will create a cycle

Proof: Both endpoints are already in the tree and connected to each other.

- Consider swapping {u,v} for {x,y} in T
 - Call the resulting tree T'

- Consider swapping {u,v} for {x,y} in T
 - Call the resulting tree T'
- Claim: T' is still an MST
 - It is still a spanning tree (why?)
 - It has cost at most that of T
 - Because {u,v} was light
 - T had minimal cost
 - So T' does too
- So T' is an MST containing S and {u,v}
 - This is what we wanted

Lemma

- Let S be a set of edges, and consider a cut that respects S
- Suppose there is an MST containing S
- Let {u,v} be a light edge
- Then there is an MST containing S ∪ {{u,v}}

- Assume that our choices S so far don't rule out success
 - There is an MST consistent with those choices
- How can we use our lemma to show that our next choice also does not rule out success?

S is the set of edges selected so far.

- Assume that our choices S so far don't rule out success
 - There is an MST consistent with those choices
- Consider the cut {visited, unvisited}
 - This cut respects S

- Assume that our choices S so far don't rule out success
 - There is an MST consistent with those choices
- Consider the cut {visited, unvisited}
 - This cut respects S

• Our greedy choices don't rule out success.

• This is enough (along with an argument by induction) to guarantee correctness of Prim's algorithm.

- what if we just always take the cheapest edge?whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?
 whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?
 whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?
 whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?
 whether or not it's connected to what we have so far?

- what if we just always take the cheapest edge?
 whether or not it's connected to what we have so far?

We've Reached Kruskal's Algorithm

- slowKruskal(G = (V,E)):
 - Sort the edges in E by non-decreasing weight.
 - MST = {}
 - for e in E (in sorted order):
 - if adding e to MST won't cause a cycle:
 - add e to MST.
 - return MST

|E| iterations through this loop

How do we check this?

Naively, the running time is ???:

- For each of |E| iterations of the for loop:
 - Check if adding e would cause a cycle...

Two questions

- Does it work?
 - That is, does it actually return a MST?
- How do we actually implement this?
 - The pseudocode above says "slowKruskal" ...

• We are maintaining a forest

- We are maintaining a forest
 When we add an edge, we merge two trees

- We are maintaining a forest
 When we add an edge, we merge two trees

- We are maintaining a forest
 When we add an edge, we merge two trees
 We never add an edge within a tree since that would create a cycle

Keep the Trees in a Special Data Structure

Union-find Data Structure

- Also called disjoint-set data structure
- Used for storing collections of sets
- Supports
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in

makeSet(x)
makeSet(y)
makeSet(z)
union(x,y)

Union-find Data Structure

- Also called disjoint-set data structure
- Used for storing collections of sets
- Supports
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in

```
makeSet(x)
makeSet(y)
makeSet(z)
union(x,y)
```


Union-find Data Structure

- Also called disjoint-set data structure
- Used for storing collections of sets
- Supports
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in

```
makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

find(x)
```


Kruskal Pseudocode

- **Kruskal**(G = (V,E)):
 - Sort the edges in E by non-decreasing weight.

Once More ...

• To start, every vertex is in its own tree

Running Time

- Sorting the edges takes $O(|E| \log |V|)$
- For the rest
 - |V| calls to makeSet
 - Put each vertex in its own set
 - |2*E*| calls to **find**
 - For each edge, find its end points
 - |V-1| calls to union
 - We will never add more than |V-1| edges to the tree
 - So, we will never call **union** more than |V-1| times
- Total running time:
 - Worst-case $O(|E|\log|V|)$

In practice, each of makeSet, find, and union run in constant time*

Two questions

- Does it work?
 - That is, does it actually return a MST?

Now that we understand this "tree-merging" view, let's do this one

- How do we actually implement this?
 - The pseudocode above says "slowKruskal" ...
 - Worst-case running time $O(|E| \log |V|)$ using a union-find data structure

Does it Work?

- We need to show that our greedy choices don't rule out success
- That is, at every step:
 - There exists an MST that contains all of the edges we have added so far
- Now it is time to use our lemma!

again!

Lemma

- Let S be a set of edges, and consider a cut that respects S
- Suppose there is an MST containing S
- Let {u,v} be a light edge
- Then there is an MST containing S ∪ {{u,v}}

Partway through Kruskal

- Assume that our choices S so far don't rule out success
 - There is an MST extending them

Partway through Kruskal

- Assume that our choices S so far don't rule out success
 - There is an MST extending them

• The next edge we add will merge two trees, T1, T2

Partway through Kruskal

• Our greedy choices don't rule out success.

• This is enough (along with an argument by induction) to guarantee correctness of Kruskal's algorithm.

Two questions

- Does it work?
 - That is, does it actually return a MST?
 - Yes
- How do we actually implement this?
 - The pseudocode above says "slowKruskal" ...
 - Using a union-find data structure!

Recap

- Two algorithms for Minimum Spanning Tree
 - Prim's algorithm
 - Kruskal's algorithm
- Both are greedy algorithms
 - Make a series of choices
 - Show that at each step, your choice does not rule out success
 - At the end of the day, you haven't ruled out success, so you must be successful

SSSP Again

- We have seen Dijkstra's method
 - One drawback is that it needs non-negative edge weights
- Bellman-Ford algorithm
 - It is a dynamic programming algorithm
 - It has a higher cost than Dijkstra, but can handle graphs with negative edge weights

Bellman-Ford as DP

- Let $D_{i,k}$ indicate the shortest distance from source s to vertex i using no more than k hops (number of edges)
- Consider the last edge:

•
$$D_{i,k} = \min \begin{cases} D_{i,k-1} \\ \min_{(j,i) \in E} \{D_{j,k-1} + w(j,i)\} \end{cases}$$

- Boundaries: $D_{s,0} = 0$, $D_{i,0} = \infty$ $(i \neq s)$
- Final answer to vertex i is $D_{i,n-1}$

SSSP Again

Thank You