Abaqus Analysis Workflow

Your Name Here

September 21, 2025

Step 1: Model & Assembly

- 1. File \rightarrow Import \rightarrow Assembly
- 2. **Type:** Parasolid (\rightarrow Select .x_t file)

Step 2: Property Module - Material Definitions

Material 1: ALU-LINEAR

- Name: ALU-LINEAR
- General \rightarrow Density \rightarrow 2.7E-009
- $\bullet \ \mathbf{Mechanical} \to \mathbf{Elasticity} \to \mathbf{Elastic}$
 - Young's Modulus (E): 70000
 - Poisson's Ratio (μ): 0.33

Material 2: ALU-NONLINEAR

- Name: ALU-NONLINEAR
- General \rightarrow Density \rightarrow 2.7E-009
- Mechanical \rightarrow Elasticity \rightarrow Elastic
 - Young's Modulus (E): 70000
 - Poisson's Ratio (μ): 0.33
- $\bullet \ Mechanical \rightarrow Plasticity \rightarrow Plastic \\$

Yield Stress	Plastic Strain
276	0
324	0.2

Step 3: Property Module - Section Creation

- 1. Section 1: Name: LINEAR \rightarrow Solid, Homogeneous \rightarrow Material: ALU-LINEAR
- 2. Section 2: Name: NON-LINEAR \rightarrow Solid, Homogeneous \rightarrow Material: ALU-NONLINEAR

Step 4: Property Module - Section Assignment

- 1. Assign Section \rightarrow Select Part 1 & Part 2 \rightarrow Section: LINEAR \rightarrow OK
- 2. Assign Section \rightarrow Select Part 3 (ring) \rightarrow Section: LINEAR \rightarrow OK
- 3. Assign Section \rightarrow Select Part 4 (spring) \rightarrow Section: NON-LINEAR \rightarrow OK

Step 5: Step Module - Analysis Step Creation

- Create Step \rightarrow Name: Step-1
- $\bullet \ \mathbf{Procedure} \ \mathbf{type:} \ \mathbf{General} \to \mathbf{Static}, \ \mathbf{General} \\$
- Basic Tab:
 - Time period: 1
 - Nlgeom: **On**
 - Automatic Stabilization: Specify dissipated energy fraction
- Incrementation Tab:
 - Type: Automatic
 - Max. no. of Increments: 500
 - Initial: 0.1, Min: 1E-05, Max: 0.1

Step 6: Interaction Module

Reference Points (RPs)

Procedure: $Tools \rightarrow Reference\ Point \rightarrow Select\ geometry.$

1. **RP1:** Top of the cam piston.

Figure 1: RP1 Location.

2. **RP2:** Bottom of the end of the spring.

Figure 2: RP2 Location.

3. **RP3:** Top of the spring.

Figure 3: RP3 Location.

4. **RP4:** Cam center.

Figure 4: RP4 Location.

5. **RP5:** Cam piston center bottom.

Figure 5: RP5 Location.

6. **RP6:** Cam disk left point.

Figure 6: RP6 Location.

7. **RP7:** Cam piston side.

Figure 7: RP7 Location.

Interaction Property

- $\bullet \ \mathbf{Create} \ \mathbf{Interaction} \ \mathbf{Property} \to \mathbf{Type:} \ \mathbf{Contact}$
- $\bullet \ \mathbf{Mechanical} \to \mathbf{Tangential} \ \mathbf{Behavior}$
- \bullet Friction Formulation: Penalty \rightarrow Coefficient: 0.15

Interaction Definitions

- 1. Interaction-1:
 - Master Surface (Red): cam piston bottom surface
 - Slave Surface (Purple): cam top outer surfaces
 - (a) **IN1:** Top of the cam piston.

IN1.png

Figure 8: IN1 Location.

2. Interaction-2:

- Master Surface (Red): spring
- Slave Surface (Purple): cam piston top surface (below spring)
- (a) **IN1:** Top of the cam piston.

Figure 9: IN1 Location.

3. Interaction-3:

- Master Surface (Red): disk bottom surface
- Slave Surface (Purple): spring
- (a) **IN1:** Top of the cam piston.

Figure 10: IN1 Location.