计算理论与 算法分析设计

教材:

- [1][王] 王晓东,计算机算法设计与分析(第4版),电子工业.
- [2][S] 唐常杰等译, Sipser著, 计算理论导引, 机械工业.

参考资料:

- [3][C]潘金贵等译,Cormen等著,算法导论,机械工业.
- [4][M] 黄林鹏等译, Manber著, 算法引论-一种创造性方法, 电子.
- [5][刘] 刘汝佳等, 算法艺术与信息学竞赛, 清华大学.
- [6][L] Lewis等著, 计算理论基础, 清华大学.

第四章 贪心算法 Greedy

[王]本章内容

- 4.1 活动安排问题
- 4.2 贪心算法的基本要素
- 4.3 最优装载 见上一章课件
- 4.4 哈夫曼编码
- 4.5 单源最短路 见上一章课件
- 4.6 最小生成树
- 4.7 多机调度问题证明

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包),需要证明
- 1. 活动安排问题
- 2. 贪心算法基本要素
- 3. Huffman算法
- 4. 最小生成树
- 5. 多机调度问题

活动安排问题

 \mathbf{n} 个活动申请一个活动室,各活动起始终止区间 (s_i,f_i)

- 输入: $n, (s_i, f_i), i = 1:n$
- 输出: 最大相容活动子集(无冲突, 活动个数最多)
- 举例: {(1,4), (3,5), (0,6), (5,7)} //解不唯一
- ·最优解有什么特点? 贪心, OSP(A[i]=true或false)
- 最优解可以包含 最早结束的 或 最晚开始的 //举例 先给出算法, 再证明正确性
- 1. 按终止时间排序 $f_1 \le f_2 \le ... \le f_n$. A[1] = true; pt = 1;
- 2. 对 i = 2:n
- 3. 若 s[i] >= f[pt], 则 A[i] = true, pt = i,
- 4. 否则 A[i] = false

活动安排算法正确性证明

- \mathbf{n} 个活动申请一个活动室,活动起始终止区间 (s_i, f_i)
- 输入: \mathbf{n} , (s_i, f_i) , i = 1:n, 输出: 最大相容活动子集
- 第一步证明贪心选择性质: 存在最优解包含相容最早结束的活动1
- 第二步 证明最优子结构性质: 若A是包含活动1的最大相容活动集(最优策略), 则A-{1}是区间[f_1 , f_n]上的最大相容活动集
- 由此用数学归纳法, 就可以证明算法正确性

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包),需要证明
- 1. 活动安排问题
- 2. 贪心算法基本要素
- 3. Huffman算法
- 4. 最小生成树
- 5. 多机调度问题

贪心算法的基本要素

对于一个具体问题,怎么知道能否用贪心算法

- 贪心选择性质和最优子结构性质(比较矩阵连乘)
- 贪心选择性质 对比: 矩阵连乘, 0-1背包, 分数背包 贪心算法第一基本要素, 与DP主要区别
 - 自顶向下计算
- · OSP: 最优策略的子策略也是最优 //动规, 贪心
- 正确性证明一般过程:

贪心选择+OSP+数学归纳法

条件: 子问题与原问题类似, 相对独立

子问题的最优解和贪心选择联合得整体最优解

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包),需要证明
- 1. 活动安排问题
- 2. 贪心算法基本要素
- 3. Huffman算法
- 4. 最小生成树
- 5. 多机调度问题

哈夫曼编码

- Huffman编码广泛应用于数据文件压缩
- 压缩率通常在20%~90%之间
- 对文章先统计各字母出现频率, 再选择最优编码
- 输入: 字母集和各字母出现频率
- 输出: 各字母的最优编码(压缩率最大)

可以唯一解码011101100 = adbc

定长码是前缀码: a:00, b:01, c:10, d:11

不同编码举例

	a	b	c	d	e	f
频率(千次)	45	13	12	16	9	5
定长码	000	001	010	011	100	101
变长码	0	101	100	111	1101	1100

使用定长码编码的存储空间:

$$3 \times (45 + 13 + 12 + 16 + 9 + 5) = 300$$
kb

使用变长码编码的存储空间:

$$1\times45+3\times(13+12+16)+4\times(9+5)=224$$
kb

节约空间约25%. 构造编码的原则?

Huffman编码是最优前缀码

编码的数据结构

	a	b	c	d	e	f	存储
频率(千次)	45	13	12	16	9	5	100
定长码	000	001	010	011	100	101	300kb
变长码	0	101	100	111	1101	1100	224kb

选择数据结构

二叉树:

好编码的特点

	a	b	c	d	e	f	存储
频率(千次)	45	13	12	16	9	5	100
定长码	000	001	010	011	100	101	300kb
变长码	0	101	100	111	1101	1100	224kb

- •大频率编码短
- •小频率编码长 相对平衡

构造优化模型

	a	b	c	d	e	f	存储
频率(千次)	45	13	12	16	9	5	100
定长码	000	001	010	011	100	101	300kb
变长码	0	101	100	111	1101	1100	224kb

叶节点深度

编码长度

优化目标: 叶节点频率乘深度的和最小

$$\min_{T} \sum_{c} f(c) d_{T}(c)$$
 其中 $f(c)$ 是c的频率, $d_{T}(c)$ 是c的深度, C是

 $d_T(c)$ 是c的深度, C是叶节点集

观察规律

$$\min_{T} \sum_{c \in C} f(c) d_{T}(c)$$

- •正则二叉树
- 相对平衡
- •f(c)最小?

- •f(c)最小两符号深度最大(贪心选择性质)
- ·接下来怎么做?构造子结构?OSP
- 合并fe得新二叉树(子结构)

最优编码T的性质

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

- •正则二叉树
- 贪心选择性质:
 若f(c)最小,则d_T(c)最大
 f(c)最小的两个是兄弟(s,e)
- OSP:

构造T的子结构T' 合并T中f(c)最小的两个得T' B(T)=B(T')+f(s)+f(e)? 若T最优,则T'最优

Huffman算法

```
输入C[1:n], f[1:n] //字母集C和频率f
```

- 1. Q=C //建优先队列Q, O(n)
- 2. 对 i = 1:n-1 //循环n-1次
- 3. 分配新节点z
- 4. 取出Q中f最小的x作为z的左孩子 //O(log n)
- 5. 取出Q中f最小的y作为z的右孩子 //O(log n)
- 6. f[z] = f[x] + f[y]
- 7. 将z插入Q中 //O(log n)
- 8. 取出Q中节点作为树根 //?

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包), 需要证明
- 1. 活动安排问题
- 2. 贪心算法基本要素
- 3. Huffman算法
- 4. 最小生成树
- 5. 多机调度问题

最小生成树(minimum spanning tree)

- 无向连通带权图G=(V,E,w).
- · G的生成树是G的包含所有顶点的一颗子树
- ·若G的生成树T'在所有G的生成树中各边权总和最小,则T'称为G的最小生成树(MST)

MST性质(贪心选择+归纳)

- 定理: 无向连通带权图G=(V,E,w). U⊂V,A⊂E. 若A是某MST的子集,A没有边连接U和V-U, 且(u,v)是G中连接U和V-U的权最小的边, 则G存在MST包含A和边(u,v).
- 证明: 如图, 设T是包含A的MST, $(\mathbf{u},\mathbf{v}) \notin T$, $(\mathbf{u}',\mathbf{v}') \in T$. 则必有 $\mathbf{w}(\mathbf{u},\mathbf{v}) \leq \mathbf{w}(\mathbf{u}',\mathbf{v}')$. 由T去 $(\mathbf{u}',\mathbf{v}')$ 添 (\mathbf{u},\mathbf{v}) 得树T'.

T'也是MST 包含A和(u,v)

MST算法正确性证明

- 输入: G=(V,E,w)无向连通; 输出: G的MST
- MST性质: U⊂V, A⊂E. 若A是某MST的子集, A∩(U,V-U)=Ø, (u,v)在(U,V-U)中权最小,则存在MST包含A和(u,v).
- Prim: 维护U⊆V, 初始任取V中一点
- 1. 当U!=V, 取U到V-U的最小权边(u,v),将v加入U正确性证明: U,A是已有边集
- Kruskal: 维护A,Q⊆E, 初始A为空集, Q=E升序排列
- 1. 当Q非空,取Q最小权边(u,v),
- 2. 若(u,v)加入A会形成回路, 舍去; 否则加入A.
- 正确性证明: A, U={已经挑出边中与u连通的节点}

Prim算法

- 输入: G=(V,E,w)无向连通; 输出: G的MST
- ·维护U⊆V,初始任取V中一点

当U!=V, 取U到V-U的最小权边(u,v),将v加入U.

Prim算法O(|V|²)

- 输入: G=(V,E,w)无向连通; 输出: G的MST
- ·维护U⊆V,初始任取V中一点r

当U!=V, 取U到V-U的最小权边(u,v),将v加入U.

key[u]记u到U的最小距离, G[u]记u与U最小距离对应点

- 1. 初始G[u]=NIL, key[r]=0, 其它key[u]=INF, Q=V, U空
- 2. 当Q非空
- 3. 取出Q中u使得key[u]最小,加入U
- 4. 对u的每个邻居v,
- 5. 若 v∈Q 且 w[u,v] < key[v]
- 6. \emptyset key[v] = w[u,v], G[v] = u

 \mathbf{Q} 一般数组 $\mathbf{O}(|\mathbf{V}|^2 + |\mathbf{E}|) = \mathbf{O}(|\mathbf{V}|^2)$

Prim算法O(|E|log|V|)

- 输入: G=(V,E,w)无向连通; 输出: G的MST
- ·维护U⊆V,初始任取V中一点r

当U!=V, 取U到V-U的最小权边(u,v),将v加入U.

key[u]记u到U的最小距离, G[u]记u与U最小距离对应点

- 1. 初始G[u]=NIL, key[r]=0, 其它key[u]=INF, Q={r}, U空
- 2. 当优先队列(最小堆)Q非空
- 3. 删除Q堆顶元素u. 若u在U中,则break; 否则加入U.
- 4. 对u的每个邻居v,
- 5. 若 w[u,v] < key[v]
- 6. 则 将v按键值key[v]=w[u,v]插入Q, G[v] = u Q优先队列O(|V|log|E|+|E|log|E|) = O(|E|log|E|)

Kruskal算法

- 输入: G=(V,E,w)无向连通; 输出: G的MST
- ・维护A,Q⊆E, 初始A为空集, Q=E升序

 $Q = \{ 13, 46, 25, 36, 34, 23, 14, 12, 35, 56 \}$

当Q非空,取Q最小权边(u,v),若可行,加入A.

Kruskal算法细节O(|E|log|V|)

- 输入: G=(V,E,w)无向连通; 输出: G的MST
- ·维护A,Q⊆E,初始A为空集,Q=E升序 当Q非空,取Q最小权边(u,v),若可行,加入A.
- 1. A为空, Q=E按边权升序排列
- 2. 当Q非空
- 3. 顺序取Q中边(u,v)
- 4. 若u,v在不同连通分支(检查),
- 5. 则添(u,v)到A,合并u,v所在连通分支,
- 6. 输出A

并查集算法处理连通分支, $O(|E|log|E|+|E|log^*|V|)$

并查集算法(Make-set, Find-set)

p[x]: x的父亲; rank[x]: x的阶; Find(x): 找x的根

```
Make(x)
1 p[x]=x
2 rank[x]=0
```

```
Find(x)
1 若 x≠p[x],则
2 p[x] = Find(p[x])
3 返回 p[x]
路径压缩(pc)技术
```

```
Union(x,y)
1 Link(Find(x), Find(y))
```

```
Link(x,y) //合并两树根
1 若 rank[x]>rank[y]
2 则 p[y]=x
3 否则 p[x]=y
4 若 rank[x]=rank[y]
5 则 rank[y]=rank[y]+1
```

性质1: 只有树根 rank值 会增加 性质2: 树根阶 树节点数 $\geq 2^{r}$.

```
n个节点, m次操作. 不计pc: O(mlogn); 计pc: O(m α(n))
```

回顾定义(b>1)2^^ $b=2^{2^{(b-1)}}$, 2^^1=2, $\log^*(2^{a}) = b$

加入并查集结构的Kruskal算法

- 1. A为空, Q=E按边权升序排列, 每个点是一颗树
- 2. 当Q非空
- 3. 顺序取Q中边(u,v)
- 4. 若u,v在不同树中,则添(u,v)到A,合并u,v所在树,
- 5. 输出A
- 1. A为空, Q=E按边权升序排列, ∀x Make(x)
- 2. 当Q非空
- 3. 顺序取Q中边(u,v)
- 4. 若Find(u)≠Find(v),则添(u,v)到A, Union(u,v),
- 5. 输出A

Kruskal: 取边, 查找, 合并

Q={13, 46, 25, 36, 34, 23, 14, 12, 35, 56}

查(3,4)

查并(2,3)

查(1,2)

[刘]n个节点, m次操作, O((n+m)log*n)

n个节点分log*n块: 第b块={x: 2^^(b-1)<rank[x]≤2^^b }

性质1: 只有树根rank会增加, 非树根rank不变.

性质2: 树根阶 = $\mathbf{r} \Rightarrow$ 树节点数 $\geq 2^{\mathbf{r}}$.

性质3:至多有n/2^r个rank为r的点, rank值不大于n-1

性质4: 第b块至多n/(2^^b)个点.

设 $Find(x_0)$ 依次经过 $x_0, x_1, ..., x_{L_1}$ 到根节点 x_L, x_i 分四类

- (1)根 (2)根的儿子 (3)非根或根的儿子, x_i和父不在同块
- (4) 非根或根的儿子, x;和父在同块
- Find(x_0): (1)贡献1次; (2)贡献1次; (3)贡献 $\leq \log*n$ 次.
- (4)贡献:求m次操作总和的上界 // x_i :阶不变,父变,父阶增≥1/
- •设 x_i 和父都在第b块,则 x_i 对(4)的贡献 $\leq 2^{\circ}$ b次;
- 第b块所有元素对(4)的贡献 $\leq (n/2^{h}) \times 2^{h} = n$ 次.

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包), 需要证明
- 1. 活动安排问题
- 2. 贪心算法基本要素
- 3. Huffman算法
- 4. 最小生成树
- 5. 多机调度问题

多机调度问题

输入: n,m, t[1:n], n个作业, m台机器

输出: 最早完成全部作业的调度方案.

要求:作业不能拆分

Multiprocessor scheduling, NP完全, 现无有效的解法

近似算法: LPT(Longest Processing Time)算法

n≤m:一个机器一个作业

n>m: 作业按时长降序排列, 依次分配空闲机器

近似比例 $\leq 4/3-1/(3m)$. 例m=1, m=2(11,10,7,7,7)

PTAS: $\forall \varepsilon > 0$, 有(1+ ε)-优化的多项式时间近似算法

APX: ∃c>1, 有c-优化的近似算法. 若P≠NP, PTAS⊂APX

Gone fishing

在一条水平路边,有n个钓鱼湖,从左到右编号1-n.

John有H小时的时间,希望钓到尽量多的鱼.

从湖1出发向右,在一些湖边停留一定时间钓鱼.

求钓最多鱼的方案(多余时间都给湖1).

(i=1:n)在第i个湖中钓鱼,第1个5分钟可以钓到F[i]条鱼,

以后每钓5分钟鱼,可钓到的鱼数减少D[i].

(i=1:n-1)从第i个湖到第i+1个湖需要5×T[i]分钟.

输入:	n //n=0输入结束 H F[1:n]	2 1	45, 5 Number of fish expected: 31					
	D[1:n] T[1:n-1]	10 1 2 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	n	2	10 8 6 4 2 0 0 0 0 1 合计3					

本章小结

贪心不一定正确,需要证明

- 1. 活动安排问题
- 2. 贪心算法基本要素
- 3. Huffman算法
- 4. 最小生成树
- 5. 多机调度问题

本章作业

- 1. 字符a~h出现的频率恰好是前8个Fibonacci数,它们的Huffman编码是什么? 将结果推广到 n个字符的频率恰好是前n个Fibonacci数的情形.
- 2. 若在0-1背包问题中, 各物品依重量递增排列时, 其价值恰好降序排列, 对这个特殊的0-1背包 问题, 设计一个有效算法找出最优解, 并说明 算法的正确性.
- 3. 将最优装载问题的贪心算法推广到2艘船的情形 贪心算法还能产生最优解吗?
- 4. 最优分解问题. 见下页

本章作业

4. 最优分解问题.

问题描述:设n是一个正整数,将n分解为若干互不相同的自然数之和,且使这些自然数的乘积最大. 算法设计:对于给定的正整数n,计算最优分解方案. 数据输入:由文件input.txt提供输入数据.

文件只有一行,是正整数n.

结果输出:将计算的最大乘积输出到文件output.txt 例如若n=10,则最优分解为2+3+5,最大乘积为30.

附录一

最小堆自底向上建堆 $\Theta(n)$

数据结构

- ·数组,链表,二叉树(堆和搜索树),hash表
- (最小)堆: 每个节点的关键值

小于或等于左右子节点的关键值

操作:插入,删除,O(h)

一般隐式存储, 即数组

T[i]的左孩子T[2i], 右孩子T[2i+1]

·二叉搜索树:每个节点的关键值 大于所有左分支节点关键值, 小于所有右分支节点关键值 操作:查找,插入,删除,O(h)

最小堆的插入操作

例如: 在下面的堆中插入3

过程: 先放在最后, 再调整

1	2	3	4	5	6	7
4	4	6	5	6	9	3
4	4	3	5	6	9	6
3	4	4	5	6	9	6

堆的删除操作

例如:对下面的堆中作删除

过程:取出T[1],

将T[n]赋给T[1],调整

特点: 仍然是连续片段

• 堆顶以外元素位置很乱

1	2	3	4	5	6	7
3	4	4	6	5	6	9
9	4	4	6	5	6	
4	9	4	6	5	6	
4	5	4	6	9	6	

自顶向下建堆

	1	2	3	4	5	6	7	8
1	4	2	6	1	3	5	7	8
2	2	4	6	1	3	5	7	8
3	2	4	6	1	3	5	7	8
4	1	2	6	4	3	5	7	8
5	1	2	6	4	3	5	7	8
6	1	2	5	4	3	6	7	8
7	1	2	5	4	3	6	7	8
8	1	2	5	4	3	6	7	8

$$\sum_{i=1}^{n} \log i \ge \frac{n}{2} \log \frac{n}{2}$$

$$\sum_{i=1}^{n} \log i = \Theta(n \log n)$$

自底向上建堆

	1	2	3	4	5	6	7	8
1	4	2	6	1	3	5	7	8
2	4	2	6	1	3	5	7	8
3	4	2	6	1	3	5	7	8
4	4	2	6	1	3	5	7	8
5	4	2	6	1	3	5	7	8
6	4	2	5	1	3	6	7	8
7	4	1	5	2	3	6	7	8
8	1	2	5	4	3	6	7	8

$$T(n) = 2T(n/2) + \log n = \Theta(n)$$

本质上是分治(奇怪的分)

用数学归纳法容易证明:

$$T(n) \le c_2 n - 2 \log n$$

$$T(n) \ge c_1 n$$

附录二

活动安排问题的动态规划算法

活动安排问题的动态规划算法

 \mathbf{n} 个活动申请一个活动室,活动起始终止区间 (s_i,f_i)

- 输入: \mathbf{n} , (s_i, f_i) , i = 1:n, 输出: 最大相容活动子集
- 设 $f_1 \le f_2 \le ... \le f_n$, 添加 $f_0 = 0$, $s_{n+1} = \infty$
- • $S[i,j] = {在活动i结束后和活动j开始前能添加的活动}$
- c[i,j] = S[i,j]中的最大相容活动子集
- 输出 = c[0, n+1]
- · 若i ≥ j, 则S[i,j] = Ø.

$$c[i,j] = \begin{cases} 0 & \text{若}S[i,j] = \phi \\ \max_{i < k < j} \{c[i,k] + c[k,j] + 1\} & \text{否则} \end{cases}$$