Zásobníkové automaty

- Zásobníkové automaty jsou rozšířením $\epsilon-{\sf NFA}$ nedeterministických konečných automatů s ϵ přechody.
- Přidanou věcí je zásobník. Má vlastní abecedu Γ.
- V každém kroku vidíme horní písmeno zásobníku (zde X), můžeme dát navrch libovolný konečný počet znaků $\gamma \in \Gamma^*$.
- Může si pamatovat neomezené množství informace.
- Deterministické zásobníkové automaty přijímají jen vlastní podmnožinu bezkontextových jazyků.

Automaty a gramatiky

Zásobníkový automat (PDA)

Definition 9.1 (Zásobníkový automat (PDA))

Zásobníkový automat (PDA) je $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, kde

- Q konečná množina stavů
- Σ neprázdná konečná množina vstupních symbolů
 - r neprázdná konečná zásobníková abeceda
 - δ přechodová funkce $δ : Q × (Σ ∪ {ε}) × Γ → P_{FIN}(Q × Γ*), <math>δ(p, a, X) ∋ (q, γ)$

kde q je nový stav a γ je řetězec zásobníkových symbolů, který nahradí X na vrcholu zásobníku

- $q_0 \in Q$ počáteční stav
- $Z_0 \in \Gamma$ Počáteční zásobníkový symbol. Víc na začátku na zásobníku není.
 - F Množina přijímajících (koncových) stavů; může být nedefinovaná.

V jednom časovém kroku zásobníkový automat:

- Přečte na vstupu žádný nebo jeden symbol. (ϵ přechody pro prázdný vstup.)
- Přejde do nového stavu.
- Nahradí symbol na vrchu zásobníku libovolným řetězcem (ε odpovídá samotnému pop, jinak následuje push jednoho nebo více symbolů).

Example 9.1

Zásobníkový automat pro jazyk: $L_{wwr} = \{ww^R | w \in (\mathbf{0} + \mathbf{1})^*\}.$

PDA přijímající L_{wwr} :

- Start q_0 reprezentuje odhad, že ještě nejsme uprostřed.
- V každém kroku nedeterministicky hádáme;
 - Zůstat q_0 (ještě nejsme uprostřed).
 - Přejít ϵ přechodem do q_1 (už jsme viděli střed).
- V q_0 , přečte vstupní symbol a dá (push) ho na zásobník
- ullet V q_1 , srovná vstupní symbol s vrcholem zásobníku pokud se shodují, přečte vstupní symbol a umaže (pop) vrchol zásobníku
- Když vyprázdníme zásobník, přijmeme vstup, který jsme doteď přečetli.

PDA pro Lwwr

```
Example 9.2 (PDA pro L_{wwr})
PDA pro L_{wwr} můžeme popsat
P_{da} = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\}) kde \delta je definovaná:
 \delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}\
                                        Ulož vstup na zásobník, startovní symbol tam nech
 \delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}
 \delta(q_0, 0, 0) = \{(q_0, 00)\}
 \delta(q_0, 0, 1) = \{(q_0, 01)\}\
                                        Zůstaň v q_0, přečti vstup a dej ho na zásobník
 \delta(q_0, 1, 0) = \{(q_0, 10)\}\
 \delta(q_0, 1, 1) = \{(q_0, 11)\}
 \delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}
 \delta(q_0, \epsilon, 0) = \{(q_1, 0)\}
                                        \epsilon přechod q_1 bez změny zásobníku (a vstupu)
 \delta(q_0, \epsilon, 1) = \{(q_1, 1)\}
 \delta(q_1,0,0) = \{(q_1,\epsilon)\}
                                        stav q<sub>1</sub> srovná vstupní symbol a vrchol zásobníku
 \delta(q_1, 1, 1) = \{(q_1, \epsilon)\}
 \delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}
                                        našli isme ww<sup>R</sup> a jdeme do přijímajícího stavu
```

Grafická notace PDA's

Definition 9.2 (Přechodový diagram pro zásobníkový automat)

Přechodový diagram pro zásobníkový automat obsahuje:

- Uzly, které odpovídají stavům PDA.
- Šipka 'odnikud' ukazuje počáteční stav, dvojité kruhy označují přijímající stavy.
- hrana odpovídá přechodu PDA. Hrana označená $a, X \to \alpha$ ze stavu p do q znamená $\delta(p, a, X) \ni (q, \alpha)$
- Konvence je, že počáteční symbol zásobníku značíme *Z*₀.

Anotace hranv:

vstupní_znak, zásobníkový_znak \rightarrow push_řetězec

Notace zásobníkových automatů

Example 9.3 (Notace)

```
a,b,c,*,+,1,(,) symboly vstupní abecedy p,q,r stavy u,v,w,x,y,z řetězce vstupní abecedy X,Y,E,I,S zásobníkové symboly řetězce zásobníkových symbolů
```

- Narozdíl od gramatik může vstupní a zásobníková abeceda obsahovat stejné symboly.
- Vyhýbáme se stejným názvům stavů jako jsou písmena kterékoli z abeced.

Marta Vomlelová Automaty a gramatiky April 10, 2024 163 / 283

Definition 9.3 (Konfigurace zásobníkového automatu)

Konfiguraci zásobníkového automatu reprezentujeme trojicí (q, w, γ) , kde

- q je stav
- w je zbývající vstup a
- γ je obsah zásobníku (vrch zásobníku je vlevo).

konfiguraci značíme zkratkou (ID) z anglického instantaneous description (ID).

Definition 9.4 (\vdash , \vdash * posloupnosti konfigurací)

Mějme PDA $P_{da} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$. Mějme stavy $p, q \in Q$, $a \in (\Sigma \cup \{\epsilon\}), X \in \Gamma, \alpha \in \Gamma^*$ a instrukci $\delta(p, a, X) \ni (q, \alpha)$. Pak říkáme, že

- konfigurace $(p, aw, X\beta)$ bezprostředně vede na konfiguraci $(q, w, \alpha\beta)$,
 - Značíme $(p, aw, X\beta) \vdash (q, w, \alpha\beta)$.
- konfigurace / vede na konfiguraci J I ⊢_P^{*} J a I ⊢^{*} J používáme na označení nuly a více kroků zásobníkového automatu, t.j.
 - I ⊢* I pro každou konfiguraci I
 - $I \vdash^* J$ pokud existuje konfigurace K tak že $I \vdash K$ a $K \vdash^* J$.

konfigurace zásobníkového automatu na vstup 1111

Jazyky zásobníkových automatů

Definition 9.5 (Jazyk přijímaný koncovým stavem, prázdným zásobníkem)

Mějme zásobníkový automat $P_{da}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$. Pak $L(P_{da})$, jazyk přijímaný (akceptovaný) koncovým stavem je

 $L(P_{da}) = \{w | (q_0, w, Z_0) \vdash_{P_{da}}^* (q, \epsilon, \alpha) \text{ pro nějaké } q \in F \text{ a libovolný řetězec}$ $\alpha \in \Gamma^*; w \in \Sigma^*\}.$

jazyk přijímaný prázdným zásobníkem $N(P_{da})$ definujeme

$$N(P_{da}) = \{w | (q_0, w, Z_0) \vdash_{P_{da}}^* (q, \epsilon, \epsilon) \text{ pro libovoln\'e } q \in Q; w \in \Sigma^*\}.$$

• Protože je množina přijímajících stavů F nerelevantní, může se vynechat a PDA je šestice $P_{da} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$.

Example 9.4

Zásobníkový automat z předchozího příkladu přijímá L_{wwr} koncovným stavem.

Example 9.5

 $P'_{da} \equiv P_{da}$ z předchozího příkladu, jen změníme instrukci, aby umazala poslední symbol $\delta(q_1,\epsilon,Z_0)=\{(q_2,Z_0)\}$ nahradíme $\delta(q_1,\epsilon,Z_0)=\{(q_2,\epsilon)\}$ Nyní $L(P'_{da})=N(P'_{da})=L_{wwr}$.

Příklad If-Else

Example 9.6 (If-else příjímané prázdným zásobníkem)

Následující zásobníkový automat zastaví při první chybě na if (i) a else (e), máme–li více else než if.

$$P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z) \text{ kde}$$

- $\delta_N(q,i,Z) = \{(q,ZZ)\}$ push
- $\delta_N(q, e, Z) = \{(q, \epsilon)\}$ pop

167 / 283

Example 9.7 (Přijímání koncovým stavem)

$$P_F = (\{p, q, r\}, \{i, e\}, \{Z, X_0\}, \delta_F, p, X_0, \{r\})$$
kde

- $\delta_F(p, \epsilon, X_0) = \{(q, ZX_0)\}$ start
- $\delta_F(q, i, Z) = \{(q, ZZ)\}$ push
- $\delta_F(q, e, Z) = \{(q, \epsilon)\}$ pop
- $\delta_F(q,\epsilon,X_0)=\{(r,\epsilon)\}$ přijmi

Nečtený vstup a dno zásobníku P neovlivní výpočet

Lemma 9.1

Mějme PDA $P_{da} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ a $(p, u, \alpha) \vdash_{P_{da}}^* (q, v, \beta)$. Potom pro libovolné slovo $w \in \Sigma^*$ and $\gamma \in \Gamma^*$ platí: $(p, uw, \alpha\gamma) \vdash_{P_{da}}^* (q, vw, \beta\gamma)$. Specielně pro $\gamma = \epsilon$ a/nebo $w = \epsilon$.

Proof.

Indukcí podle počtu konfigurací mezi $(p,uw,\alpha\gamma)$ a $(q,vw,\beta\gamma)$. Každý krok $(p,u,\alpha) \vdash_{P_{da}}^* (q,v,\beta)$ je určen bez w a/nebo γ . Proto je možný i se symboly na konci vstupu / dně zásobníku.

Lemma 9.2

Pro PDA $P_{da} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ a $(p, uw, \alpha) \vdash_{P_{da}}^* (q, vw, \beta)$ platí $(p, u, \alpha) \vdash_{P_{da}}^* (q, v, \beta)$.

Remark Pro zásobník ale obdoba neplatí. PDA může zásobníkové symboly γ použít a zase je tam naskládat (push). $L = \{0^i 1^i 0^j 1^j\}$, konfigurace $(p, 0^{i-j} 1^i 0^j 1^j, 0^j Z_0) \vdash^* (q, 1^j, 0^j Z_0)$, mezitím vyčištíme zásobník k Z_0 .

Od přijímajícího stavu k prázdnému zásobníku

Lemma 9.3 (Od přijímajícího stavu k prázdnému zásobníku)

Mějme $L = L(P_F)$ pro nějaký PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Pak existuje PDA P_N takový, že $L = N(P_N)$.

Proof:

Nechť $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$, kde

- $\delta_N(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$ start
- $\forall (q \in Q, a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma)$ $\delta_N(q, a, Y) = \delta_F(q, a, Y)$ simulujeme
- $\forall (q \in F, Y \in \Gamma \cup \{X_0\}),$ $\delta_N(q, \epsilon, Y) \ni (p, \epsilon)$ přijmout pokud P_F přijímá,
- $\forall (Y \in \Gamma \cup \{X_0\}),$ $\delta_N(p, \epsilon, Y) = \{(p, \epsilon)\}$ vyprázdnit zásobník.

Pak $w \in N(P_N)$ iff $w \in L(P_F)$.

Od prázdného zásobníku ke koncovému stavu

Lemma 9.4 (Od prázdného zásobníku ke koncovému stavu)

Pokud $L = N(P_N)$ pro nějaký PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$, pak existuje PDA P_F takový, že $L = L(P_F)$.

Proof:

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

kde δ_F je

- $\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$ (start).
- $\forall (q \in Q, a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma), \\ \delta_F(q, a, Y) = \delta_N(q, a, Y).$
- Navíc, $\delta_F(q, \epsilon, X_0) \ni (p_f, \epsilon)$ pro každý $q \in Q$.

Chceme ukázat $w \in N(P_N)$ iff $w \in L(P_F)$.

- (If) P_F přijímá následovně: $(p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_F = N_F}^* (q, \epsilon, X_0) \vdash_{P_F} (p_f, \epsilon, \epsilon).$
- (Only if) Do p_f nelze dojít jinak než předchozím bodem.

Ekvivalence jazyků rozpoznávaných zásobníkovými automaty a bezkontextových jazyků

Theorem 9.1 (L(CFG), L(PDA), N(PDA))

Následující tvrzení jsou ekvivalentní:

- Jazyk L je bezkontextový, tj. generovaný bezkontextovou gramatikou.
- Jazyk L je přijímaný nějakým zásobníkovým automatem koncovým stavem.
- Jazyk L je přijímaný nějakým zásobníkovým automatem prázdným zásobníkem.

Důkaz bude veden směry dle následujícího obrázku.

Od bezkontextové gramatiky k zásobníkovému automatu

Algorithm: Konstrukce PDA z CFG G

Mějme CFG gramatiku G = (V, T, P, S). Konstruujeme PDA $P = (\{q\}, T, V \cup T, \delta, q, S)$.

- (1) Pro neterminally $A \in V$, $\delta(q, \epsilon, A) = \{(q, \beta) | A \rightarrow \beta \text{ je pravidlo } G\}$.
- (2) pro každý terminál $a \in T$, $\delta(q, a, a) = \{(q, \epsilon)\}$.

Example 9.8

Konvertujme gramatiku: $G = (\{E, I\}, \{a, b, 0, 1, (,), +, *\}, \{I \rightarrow a|b|Ia|Ib|I0|I1, E \rightarrow I|E * E|E + E|(E)\}, E).$

Množina vstupních symbolů PDA je $\Sigma = \{a, b, 0, 1, (,), +, *\}$, $\Gamma = \Sigma \cup \{I, E\}$, přechodová funkce δ :

- $\delta(q, \epsilon, I) = \{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}.$
- $\delta(q, \epsilon, E) = \{(q, I), (q, E * E), (q, E + E), (q, (E))\}.$
- $\forall s \in \Sigma$ je $\delta(q, s, s) = \{(q, \epsilon)\}$, např. $\delta(q, +, +) = \{(q, \epsilon)\}$.

Marta Vomlelová

CFG a PDA

Lemma 9.5 (Přijímání prázdným zásobníkem ze CFG)

Pro PDA P_{da} konstruovaný z CFG G algoritmem výše je N(P) = L(G).

- (1) Pro neterminally $A \in V$, $\delta(q, \epsilon, A) = \{(q, \beta) | A \rightarrow \beta \text{ je pravidlo } G\}$.
- (2) pro každý terminál $a \in T$, $\delta(q, a, a) = \{(q, \epsilon)\}$.
- Levá derivace: $E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * I \Rightarrow a * b$
- Posloupnost konfigurací:

$$(q, a * b, E) \vdash (q, a * b, E * E) \vdash (q, a * b, I * E) \vdash (q, a * b, a * E) \vdash (q, b, E) \vdash (q, b, E) \vdash (q, b, I) \vdash (q, b, b) \vdash (q, \epsilon, \epsilon)$$

Pozorování:

- ullet Kroky derivace simuluje PDA ϵ přepisy zásobníku
- odmazávaný vstup u PDA v derivaci zůstává až do konce
- až PDA vymaže terminály, pokračuje v přepisech.

CFG a PDA

$w \in N(P_{da}) \Leftarrow w \in L(G).$

Nechť $w \in L(G)$, w má levou derivaci $S = \gamma_1 \underset{lm}{\Rightarrow} \gamma_2 \underset{lm}{\Rightarrow} \dots \underset{lm}{\Rightarrow} \gamma_n = w$. Indukcí podle i dokážeme $(q, w, S) \underset{p}{\vdash}^* (q, v_i, \alpha_i)$, kde $\gamma_i = u_i \alpha_i$ je levá sentenciální forma a $u_i v_i = w$.

- Pokud γ_i obsahuje pouze terminály, $\gamma_i = u_i \alpha_i = w = u_i v_i$, tedy $\alpha_i = v_i$ a pravidly typu (2) vyprázdníme vstup i zásobník.
- Každá nekoncová sentenciální forma γ_i může být zapsaná $u_i A \alpha_i$, A nejlevější neterminál, u_i řetězec terminálů
- indukční předpoklad nás dovedl do konfigurace $(q, v_i, A\alpha_i)$, $w = u_i v_i$
- Pro $\gamma_i \Rightarrow \gamma_{i+1}$ bylo použilo pravilo $(A \to \beta) \in P$
- PDA nahradí A na zásobníku β , přejde na konfiguraci $(q, v_i, \beta \alpha_i)$.
- odstraňme všechny terminály $v \in \Sigma^*$ zleva $\beta \alpha$ porovnáváním se vstupem $v_i = vv_{i+1}$ a zároveň $\beta \alpha = v\alpha_{i+1}$
- přešli jsme do nové konfigurace $(q, v_{i+1}, \alpha_{i+1})$ a iterujeme.

Marta Vomlelová Automaty a gramatiky April 10, 2024

$w \in N(P_{da}) \Rightarrow w \in L(G)$.

Dokazujeme: Pokud $(q,u,A) \vdash_{P}^{*} (q,\epsilon,\epsilon)$, tak $A \stackrel{*}{\Rightarrow}_{G} u$.

Indukcí podle počtu kroků P_{da} .

- *n* = 1 kroků:
 - $a \in \Sigma$, přechod $\delta(q, a, a) \ni (q, \epsilon)$, v derivaci žádný krok,
 - $A \in \Gamma$, přechod $\delta(q, \epsilon, A) \ni (q, \epsilon)$ pro pravidlo gramatiky $(A \to \epsilon) \in G$.
- n > 1 kroků;
 - První krok typu (2) terminály, nerozšiřujeme derivaci
 - První krok typu (1), A nahrazeno $Y_1 Y_2 \dots Y_k$ z pravidla $A \to Y_1 Y_2 \dots Y_k$. Rozdělíme $u = u_1 u_2 \dots u_k$:
 - čtením symbolu Y_i skončilo slovo u_{i-1} a začíná u_i .

Příklad: Od zásobníkového automatu ke gramatice

Example 9.9

Převeďme PDA $P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z)$ na obrázku na gramatiku.

- Neterminály gramatiky budou $V = \{S, [qZq]\}$ nový start a jediná trojice P_N .
- Pravidla:
 - $S \rightarrow [qZq]$.
 - $[qZq] \rightarrow e$
 - $[qZq] \rightarrow i[qZq][qZq]$.

Můžeme nahradit trojici [qZq] symbolem A a dostaneme:

$$S \rightarrow A$$

$$A \rightarrow iAA|e$$
.

Protože A a S odvozují přesně stejné řetězce, můžeme je ztotožnit: $G = (\{S\}, \{i, e\}, \{S \rightarrow iSS|e\}, S)$.

Od zásobníkového automatu ke gramatice CFG

- Zásobní automat bere jeden symbol ze zásobníku. Stav před a po kroku může být různý.
- Neterminály gramatiky budou složené symboly [qXp],
 PDA vyšel z q, vzal X a přešel do p;
 - a zavedeme nový počáteční symbol \mathcal{S} .

Lemma 9.6 (Gramatika pro PDA)

Mějme PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$. Pak existuje bezkontextová gramatika G taková, že L(G) = N(P).

Pravidla definujeme:

- $\forall p \in Q: S \rightarrow [q_0 Z_0 p]$, tj. uhodni koncový stav a spusť PDA na $(q_0, w, Z_0) \vdash^* (p, \epsilon, \epsilon)$.
- Pro všechny dvojice $(p, Y_1 Y_2 \dots Y_k) \in \delta(q, s, X), s \in \Sigma \cup \{\epsilon\}, \forall p_1, \dots, p_{k-1} \in Q \text{ vytvoř pravidlo}$ $[qXp_k] \to s[pY_1p_1][p_1Y_2p_2] \dots [p_{k-1}Y_kp_k]$
- spec. pro $(p,\epsilon) \in \delta(q,a,A)$ vytvoř $[qAp] \to a$.

Proof.

Pro $w \in \Sigma^*$ dokazujeme $[qXp] \Rightarrow^* w$ právě když $(q, w, X) \vdash^* (p, \epsilon, \epsilon)$ indukcí v obou směrech (počet kroků PDA, počet kroků derivace.)

Example 9.10 ($\{0^n1^n; n > 0\}$) δ Pravidla $S \rightarrow [pZ_0p]|[pZ_0q]$ (1) $\delta(p,0,Z_0)\ni(p,A)$ $[pZ_0p]\to 0[pAp]$ (2)(3) $[pZ_0q] \rightarrow 0[pAq]$ $\delta(p,0,A) \ni (p,AA) \quad [pAp] \rightarrow 0[pAp][pAp]$ (4) $[pAp] \rightarrow 0[pAq][qAp]$ (5)(6) $[pAq] \rightarrow 0[pAp][pAq]$ $[pAq] \rightarrow 0[pAq][qAq]$ (7) $\delta(p,1,A)\ni(q,\epsilon)$ $[pAq]\to 1$ (8) $\delta(q, 1, A) \ni (q, \epsilon)$ $[qAq] \rightarrow 1$ (9)

$$0, Z_0 \to A \\ 0, A \to AA$$

$$1, A \to \epsilon$$

$$p$$

$$1, A \to \epsilon$$

Derivace 0011

$$S \Rightarrow^{(1)} [pZ_0q] \Rightarrow^{(3)} 0[pAq] \Rightarrow^{(7)} 00[pAq][qAq] \Rightarrow^{(8)} 001[qAq] \Rightarrow^{(9)} 0011$$

Shrnutí

- Zásobníkový automat PDA je ε-NFA automat rozšířený o zásobník, potenciálně nekonečnou paměť
 - a zásobníkovou abecedu, počáteční zásobníkový symbol, přechodová funkce čte a píše na zásobník, píše i řetězec
- Přijímání koncovým stavem a prázdným zásobníkem, pro nedeterministiké PDA přijímají stejnou třídu jazyků
- a to bezkontextové jazyky, generované bezkontextovými gramatikami.

Deterministický zásobníkový automat (DPDA)

Definition 9.6 (Deterministický zásobníkový automat (DPDA))

Zásobníkový automat $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ je **deterministický** PDA právě když platí zároveň:

- $\delta(q, a, X)$ je nejvýše jednoprvková $\forall (q, a, X) \in Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma$.
- Je–li $\delta(q,a,X)$ neprázdná pro nějaké $a\in \Sigma$, pak $\delta(q,\epsilon,X)$ musí být prázdná.

Example 9.11 (Det. PDA přijímající L_{wcwr})

- Jazyk L_{wwr} palindromů je bezkontextový, ale nemá přijímající deterministický zásobníkový automat.
- Druhá podmínka zaručuje, že nebude volba mezi ε přechodem a čtením vstupního symbolu.
- Vložením středové značky c do $L_{wcwr} = \{wcw^R | w \in (\mathbf{0} + \mathbf{1})^*\}$ dostaneme jazyk rozpoznatelný DPDA.

Regulární jazyky, DPDA's

$$RL \subsetneq L_{DPDA} \subsetneq L_{PDA} = CFL = N_{PDA} \supsetneq N_{DPDA}$$
.

Theorem 9.2

Nechť L je regulární jazyk, pak L = L(P) pro nějaký DPDA P.

Proof.

DPDA může simulovat deterministický konečný automat a ignorovat zásobník. (nechat tam Z_0).

Lemma

Jazyk Lwcwr je přijímaný DPDA ale není regulární.

Důkaz neregularity z pumping lemmatu na slovo $0^n c 0^n$.

Marta Vomlelová Automaty a gramatiky April 10, 2024 181 / 283

Example 9.12

Jazyk $L_{abb}=\{a^ib^i|i\in\mathbb{N}\}\cup\{a^ib^{2i}|i\in\mathbb{N}\}$ je bezkontextový, ale není přijímaný žádným deterministickým zásobníkovým automatem.

Proof.

- SPOREM: Předokládejme, že existuje deterministický PDA M přijímající jazyk L_{abb}.
- Vytvořme dvě kopie, M_1 a M_2 , odpovídající si uzly budeme nazývat sourozenci.
- Zkonstuujeme nový automat:
 - Počátečním stavem bude počáteční stav M₁
 - koncovými stavy budou koncové stavy M₂
 - přechody z koncových stavů M_1 $\delta(p,b,X)=(q,X)$
 - ullet přesměrujeme do sourozenců q v M_2 a přejmenujeme b na c
 - v automatu M_2 hrany označené b přeznačíme na c.
- Výsledný automat přijímá $\{a^ib^ic^i|i\in\mathbb{N}\}$ protože
 - M je deterministický, nemá jinou cestu, tj. i ve slově a^ib^{2i} musel jít začátek stejně a pak číst b^i , nyní c^i ,

182 / 283

• o $\{a^ib^ic^i|i\in\mathbb{N}\}$ víme, že není bezkontextový, tj. deterministický M nemůže existovat.

Marta Vomlelová Automaty a gramatiky April 10, 2024

Bezprefixové jazyky

Definition 9.7 (bezprefixové jazyky)

Říkáme, že jazyk $L \subset \Sigma^*$ je **bezprefixový** pokud neexistují slova $u, v \in L$ a $z \in \Sigma^+$ tak, že u = vz. Tj. pro žádná slova jazyka u, v není vlastní v **prefix** u.

Example 9.13

- Jazyk L_{wcwr} je bezprefixový.
- Jazyk $L = \{0\}^*$ není bezprefixový.

Theorem 9.3 $(L \in \mathit{N}(P_{\mathit{DPDA}})$ právě když L bezprefixový a $L \in \mathit{L}(P'_{\mathit{DPDA}})$)

Jazyk L je N(P) pro nějaký DPDA P právě když L je bezprefixový a L je L(P') pro nějaký DPDA P'.

Proof.

Marta Vomlelová

- \Rightarrow Prefix přijmeme prázdným zásobníkem, pro prázdný zásobník neexistuje instrukce, tj. žádné prodloužení není v N(P).
- Převod P na P nepřidá nedeterminismus (první koncový -> smaž hrany z něj, přijmi).

deterministické PDA
$$\{0^n1^m; 0 < n \leq m\}$$

bezkontextové (=CFL)
$$\{ww^R | w \in \{0,1\}\}$$

$$\begin{array}{l} \mathsf{kontextov\acute{e}} \; (=\mathsf{CL}) \\ \mathcal{L}_1 \\ \{ \mathit{a^ib^ic^i} | i = 0, 1, \ldots \} \\ \{ \mathit{ww} | \mathit{w} \in \{0, 1\} \} \end{array}$$

rekurzivně spočetné
$$\mathcal{L}_0$$
 $L_u = \{(M,w);$ TM M přijímá $w\}$

 $L_d = \{w; \text{ TM s k\'odem w nep\'ij\'im\'a vstup } w\}$

Uzávěrové vlastnosti

Theorem 10.1 (CFL uzavřené na sjednocení, konkatenaci, iteraci, reverzi)

CFL jsou uzavřené na sjednocení, konkatenaci, iterace (*), positivní iterace (+), zrcadlový obraz w^R .

Proof:

- Sjednocení:
 - pokud $V_1 \cap V_2 \neq \emptyset$ přejmenujeme neterminály,
 - ullet přidáme nový symbol S_{new} a pravidlo $S_{new}
 ightarrow S_1 | S_2$
- zřetězení (=konkatenace) $L_1.L_2$

$$S_{new} o S_1 S_2$$
 (pro $V_1 \cap V_2 = \emptyset$, jinak přejmenujeme)

• iterace $L^* = \bigcup_{i>0} L^i$

$$S_{new} o SS_{new} | \epsilon$$

• pozitivní iterace $L^+ = \bigcup_{i>1} L^i$

$$S_{new} \rightarrow SS_{new}|S$$

• zrcadlový obraz $L^R = \{ w^R | w \in L \}$

 $X \rightarrow \omega^R$ obrátíme pravou stranu pravidel.

Marta Vomlelová Automaty a gramatiky April 10, 2024

Průnik bezkontextových jazyků

Example 10.1 (ICFL nejsou uzavřené na průnik)

- Jazyk $L=\{0^n1^n2^n|n\geq 1\}=\{0^n1^n2^i|n,i\geq 1\}\cap\{0^i1^n2^n|n,i\geq 1\}$ není CFL, i když oba členy průniku jsou bezkontextové, dokonce deterministické bezkontextové. $\begin{cases} 0^n1^n2^i|n,i\geq 1\} & \{S\to AC,A\to 0A1|01,C\to 2C|2\} \\ \{0^i1^n2^n|n,i\geq 1\} & \{S\to AB,A\to 0A|0,B\to 1B2|12\} \end{cases}$
 - průnik není CFL z pumping lemmatu.

paralelní běh dvou zásobníkových automatů

- řídící jednotky umíme spojit (viz konečné automaty)
- čtení umíme spojit (jeden automat může čekat)
- bohužel dva zásobníky nelze obecně spojit do jednoho

dva neomezené zásobníky = Turingův stroj = rekurzivně spočetné jazyky
$$\mathcal{L}_0$$

Průnik bezkontextového a regulárního jazyka

Theorem 10.2 (CFL i DCFL jsou uzavřené na průnik s regulárním jazykem)

- Mějme L bezkontextový jazyk a R regulární jazyk.
 Pak L ∩ R je bezkontextový jazyk.
- Mějme L deterministický CFL a R regulární jazyk.
 Pak L ∩ R je deterministický CFL.

Proof:

- zásobníkový a konečný automat můžeme spojit
 - FA $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$
 - PDA přijímání stavem $M_1 = (Q_2, \Sigma, \Gamma, \delta_2, q_2, Z_0, F_2)$
- nový automat $M = (Q_1 \times Q_2, \Sigma, \Gamma, \delta, (q_1, q_2), Z_0, F_1 \times F_2)$
 - $((r,s),\alpha) \in \delta((p,q),a,Z)$ právě když $a \neq \epsilon$: $r = \delta_1(p,a)\&(s,\alpha) \in \delta_2(q,a,Z)$... automaty čtou vstup $a = \epsilon$: $(s,\alpha) \in \delta_2(q,\epsilon,Z)$ PDA mění zásobník r = p FA stojí
- zřejmě $L(M) = L(A_1) \cap L(M_2)$

Substituce a homomorfismus

• Opakování definice:

Definition ((5.1,5.2)substituce, homomorfismus, inverzní homomorfismus)

Mějme jazyk L nad abecedou Σ .

Substituce σ ; $\forall a \in \Sigma : \sigma(a) = L_a$ jazyk abecedy Σ_a , tj. $\sigma(a) \subseteq \Sigma_a^*$ převádí slova na jazyky:

- $\sigma(\epsilon) = \{\epsilon\},$
- $\sigma(a_1 \dots a_n) = \sigma(a_1) \dots \sigma(a_n)$ (konkatenace), tj. $\sigma : \Sigma^* \to P((\bigcup_{a \in \Sigma} \Sigma_a)^*)$
- $\sigma(L) = \bigcup_{w \in I} \sigma(w)$.

homomorfismus h, $\forall a \in \Sigma : h(a) \in \Sigma_a^*$ převádí slova na slova

- $h(\epsilon) = \epsilon$,
- $h(a_1 \ldots a_n) = h(a_1) \ldots h(a_n)$ (konkatenace) tj. $h: \Sigma^* \to (\bigcup_{a \in \Sigma} \Sigma_a)^*$
- $h(L) = \{h(w) | w \in L\}.$

Inverzní homomorfismus převádí slova zpět

• $h^{-1}(L) = \{w | h(w) \in L\}.$

Příklad: Substituce

Example 10.2

Mějme gramatiku $G = (\{E\}, \{a, +, (,)\}, \{E \rightarrow E + E | (E) | a\}, E)$. Mějme substituci:

- $\sigma(a) = L(G_a), G_a = (\{I\}, \{a, b, 0, 1\}, \{I \rightarrow I0|I1|Ia|Ib|a|b\}, I),$
- $\sigma(+) = \{-, *, :, div, mod\},$
- $\sigma(() = \{()\},$
- $\sigma() = \{)\}.$
- $(a + a) + a \in L(G)$
- v $\sigma(+)$ chybí + pro ukázku, že $(a + a) + a \notin \sigma(L(G))$.
- $(a001 bba) * b1 \in \sigma((a + a) + a) \subset \sigma(L(G))$

Co se stane, když změníme definici:

- $\sigma(() = \{(, [\},$
- $\sigma()) = \{), \}?$

Příklad: Homomorfismus

Example 10.3

Mějme gramatiku $G = (\{E\}, \{a, +, (,)\}, \{E \rightarrow E + E | (E) | a\}, E)$. Mějme homomorfimus:

- $h(a) = \epsilon$
- $h(+) = \epsilon$,
- h(() = left,
- h()) = right.
- h((a + a) + a) = leftright,
- $h^{-1}(leftright) \ni (a++)a$.

Example 10.4

Mějme gramatiku $G = (\{E\}, \{a, +, (,)\}, \{E \rightarrow a + E | (E) | a\}, E)$. Mějme homomorfimus:

- $h_2(a) = a$
- $h_2(+) = +$
- $h(() = \epsilon$
- $h()) = \epsilon$.
- 1 Je jazyk L(G) regulární?
- 2 Je jazyk h(L(G)) regulární?
- 3 Je jazyk $h^{-1}(h(L(G)))$ regulární?
- 4 Je $h^{-1}(h(L(G))) = L(G)$?

Uzávěrové vlastnosti bezkontextových jazyků

Theorem 10.3 (CFL jsou uzavřené na substituci)

Mějme CFL jazyk L nad Σ a substituci σ na Σ takovou, že $\sigma(a)$ je CFL pro každé $a \in \Sigma$. Pak je i $\sigma(L)$ bezkontextový (CFL).

191 / 283

Proof:

- Idea: listy v derivačním stromu generují další stromy.
- Přejmenujeme neterminály na jednoznačné všude v $G = (V, \Sigma, P, S)$, $G_a = (V_a, T_a, P_a, S_a)$, $a \in \Sigma$.
- Vytvoříme novou gramatiku G = (V', T', P', S) pro $\sigma(L)$:
 - $V' = V \cup \bigcup_{a \in \Sigma} V_a$
 - $T' = \bigcup_{a \in \Sigma} T_a$
 - $P' = \bigcup_{a \in \Sigma} P_a \cup \{p \in P \text{ kde všechna } a \in \Sigma \text{ nahradíme } S_a\}.$

G' generuje jazyk $\sigma(L)$.

Substituce bezkontextových jazyků

Example 10.5 (substituce)

$$\begin{array}{ll} L = \{a^ib^j|0 \leq i \leq j\} & S \rightarrow aSb|Sb|\epsilon \\ \sigma(a) = L_1 = \{c^id^i|i \geq 0\} & S_1 \rightarrow cS_1d|\epsilon \\ \sigma(b) = L_2 = \{c^i|i \geq 0\} & S_2 \rightarrow cS_2|\epsilon \\ \sigma(L): & S \rightarrow S_1SS_2|SS_2|\epsilon, S_1 \rightarrow cS_1d|\epsilon, S_2 \rightarrow cS_2|\epsilon \end{array}$$

Theorem 10.4 (homomorfismus)

Bezkontextové jazyky jsou uzavřeny na homomorfismus.

Proof:

- Přímý důsledek předchozí věty.
- Terminál a v derivačním stromě nahradím slovem h(a).

April 10, 2024 192 / 283 Automaty a gramatiky

CFL jsou uzavřené na inverzní homomorfizmus

Theorem 10.5 (CFL jsou uzavřené na inverzní homomorfizmus)

Mějme CFL jazyk L a homomorfizmus h. Pak $h^{-1}(L)$ je bezkontextový jazyk. Je–li L deterministický CFL, je i $h^{-1}(L)$ deterministický CFL.

Idea

- přečteme písmeno a a do vnitřního bufferu dáme h(a)
- simulujeme výpočet M, kdy vstup bereme z bufferu
- po vyprázdnění bufferu načteme další písmeno ze vstupu
- slovo je přijato, když je buffer prázdný a M je v koncovém stavu
- ! buffer je konečný, můžeme ho tedy modelovat ve stavu

Proof:

- pro L máme PDA $M = (Q, \Sigma, \Gamma, \delta, g_0, Z_0, F)$ (koncovým stavem)
- $h: T \to \Sigma^*$
- definujeme PDA $M' = (Q', T, \Gamma, \delta', [g_0, \epsilon], Z_0, F \times \{\epsilon\})$ kde

 $Q' = \{[q, u] | q \in Q, u \in \Sigma^*, \exists (a \in T) \exists (v \in \Sigma^*) h(a) = vu\}$ u je buffer $\delta'([q, \epsilon], a, Z) = \{([q, h(a)], Z)\}$ naplňuje buffer

Automaty a gramatiky

 $\delta'([q, u], \epsilon, Z) = \{([p, u], \gamma) | (p, \gamma) \in \delta(q, \epsilon, Z)\}$ $\bigcup \{([p,v],\gamma)|(p,\gamma) \in \delta(q,x,Z), u = xv\}$

Pro deterministický PDA M je i M' deterministický. April 10, 2024 Marta Vomlelová

čte buffer, $x \in \Sigma$

Použití uzavřenosti průniku CFL a RL

Example 10.6

Jazyk $L = \{0^i 1^j 2^k 3^l | i = 0 \lor j = k = l\}$ není bezkontextový.

Proof: Důkaz sporem:

- Nechť L je bezkontextový jazyk
- $L_1 = \{01^j 2^k 3^l | j, k, l \ge 0\}$ je regulární jazyk
 - $\{S \rightarrow 0B, B \rightarrow 1B | C, C \rightarrow 2C | D, D \rightarrow 3D | \epsilon\}$
- $L \cap L_1 = \{01^i 2^i 3^i | i \ge 0\}$ není bezkontextový \Rightarrow SPOR s uzavřeností na průnik s regulárním jazykem.

L je kontextový jazyk

$$S \to \epsilon |0|0A|B_1|C_1|D_1$$

 $B_1 \to 1|1B_1|C_1$, $C_1 \to 2|2C_1|D_1$, $D_1 \to 3|3D_1$

$$A \rightarrow 0|0A|P$$

$$P \rightarrow 1PCD|1CD$$

$$DC o CD$$
 přepíšeme $\{DC o XC, XC o XY, XY o CY, CY o CD\}$

$$1C o 12,\ 2C o 22,\ 2D o 23,\ 3D o 33.$$
Marta Vomlelová

Rozdíl a doplněk

Theorem 10.6 (Odečtení regulárního jazyka)

Mějme bezkontextový jazyk L a regulární jazyk R. Pak:

• *L* − *R* je CFL.

Proof.

 $L - R = L \cap \overline{R}$, \overline{R} je regulární.

Theorem 10.7 (CFL nejsou uzavřené na doplněk ani rozdíl)

Třída bezkontextových jazyků není uzavřená na doplněk ani na rozdíl.

CFL nejsou uzavřené na doplněk ani rozdíl.

Mějme bezkontextové jazyky L, L_1, L_2 , regulární jazyk R. Pak:

• \overline{L} nemusí být CFL.

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}.$$

• $L_1 - L_2$ nemusí být CFL.

 $\Sigma^* - L$ není vždy CFL.

Marta Vomlelová Automaty a gramatiky April 10, 2024 196 / 283

Uzávěrové vlastnosti deterministických CFL

- Rozumné programovací jazyky jsou deterministické CFL.
- Deterministické bezkontextové jazyky
 - nejsou uzavřené na průnik
 - jsou uzavřené na průnik s regulárním jazykem
 - jsou uzavřené na inverzní homomorfismus.

Lemma

Doplněk deterministického CFL je opět deterministický CFL.

Proof:

- idea: prohodíme koncové a nekoncové stavy
- nedefinované kroky ošetříme 'podložkou' na zásobníku
- cyklus odhalíme pomocí čítače
- až po přečtení slova prochází koncové a nekoncové stavy stačí si pamatovat, zda prošel koncovým stavem.

Marta Vomlelová Automaty a gramatiky April 10, 2024 197 / 283

Ne-uzavřenost deterministických CFL

Example 10.7 (DCFL nejsou uzavřené na sjednocení)

Jazyk $L = \{a^i b^j c^k | i \neq j \lor j \neq k \lor i \neq k\}$ je CFL, ale není DCFL.

Proof.

Vzhledem k uzavřenosti DCFL na doplněk by byl DCFL i $\overline{L} \cap a^*b^*c^* = \{a^ib^jc^k|i=j=k\}$, o kterém víme, že není CFL (pumping lemma)

Example 10.8 (DCFL nejsou uzavřené na homomorfismus)

Jazyky $L_1 = \{a^i b^j c^k | i \neq j\}, L_2 = \{a^i b^j c^k | j \neq k\}, L_3 = \{a^i b^j c^k | i \neq k\}$ jsou deterministické bezkontextové.

- Jazyk $0L_1 \cup 1L_2 \cup 2L_3$ je deterministický bezkontextový
- Jazyk $L_1 \cup L_2 \cup L_3$ není deterministický bezkontextový položme $h(0) = \epsilon, \ h(1) = \epsilon,, \ h(2) = \epsilon$ h(x) = x pro ostatní symboly
 - $h(0L_1 \cup 1L_2 \cup 2L_3) = L_1 \cup L_2 \cup L_3$,
 - doplněk $\overline{L_1 \cup L_2 \cup L_3} \cap a^*b^*c^* = \{a^ib^jc^k|i=j=k\}.$

Uzávěrové vlastnosti v kostce

jazyk	regulární (RL)	bezkontextové	deterministické CFL
sjednocení	ANO	ANO	NE
průnik	ANO	NE	NE
∩ s RL	ANO	ANO	ANO
doplněk	ANO	NE	ANO
homomorfizmus	ANO	ANO	NE
inverzní hom.	ANO	ANO	ANO

Marta Vomlelová Automaty a gramatiky April 10, 2024 199 / 283

Uzávěrové vlastnosti v kostce

jazyk	regulární (RL)	bezkontextové	deterministické CFL
sjednocení	$F = F_1 \times Q_2 \cup Q_1 \times F_2$	$S o S_1 S_2$	$A \cap B = \overline{\overline{A} \cup \overline{B}}$
průnik	$F = F_1 \times F_2$	$L=\{0^n1^n2^n n\geq$	$1\} = \left\{ \begin{cases} \{0^{n}1^{n}2^{i} n, i \ge 1\} \\ \cap \{0^{i}1^{n}2^{n} n, i \ge 1\} \end{cases} \right\}$
∩ s RL	$F = F_1 \times F_2$	$F = F_1 \times F_2$	$F = F_1 \times F_2$
doplněk	$F=Q_1-F_1$, δ tot.	$A \cap B = \overline{\overline{A} \cup \overline{B}}$	$F=Q_1-F_1$, Z_0 , cykly, tot.
homom.	Kleene + RegExp + uz.	a nahraď Sa	$h(0)=h(1)=0$ cca. \cup
inverzní hom.	Imput a Imput blingst Imput A Accept/reject	Input a h h(a)	A Accept/

Dyckovy jazyky

Definition 10.1 (Dyckův jazyk)

Dyckův jazyk D_n je definován nad abecedou $Z_n = \{a_1, a_1^{\mid}, \dots, a_n, a_n^{\mid}\}$ následující gramatikou: $S \to \epsilon |SS|a_1Sa_1^{\mid}|\dots|a_nSa_n^{\mid}$.

Úvodní pozorování:

- jedná se zřejmě o jazyk bezkontextový
- ullet Dyckův jazyk D_n popisuje správně uzávorkované výrazy s n druhy závorek
- tímto jazykem lze popisovat výpočty libovolného zásobníkového automatu
- pomocí Dyckova jazyka lze popsat libovolný bezkontextový jazyk.

Marta Vomlelová

Jak charakterizovat bezkontextové jazyky?

- Pokud do zásobníku pouze přidáváme potom si stačí pamatovat poslední symbol
- stačí konečná paměť → konečný automat.
- potřebujeme ze zásobníku také odebírat (čtení symbolu) takový proces nelze zaznamenat v konečné struktuře
- přidávání a odebírání není zcela libovolné
 jedná se o zásobník, tj. LIFO (last in, first out) strukturu
- roztáhněme si výpočet se zásobníkem do lineární struktury
 X symbol přidán do zásobníku
- X^{-1} symbol odebrán do zásobníku
- přidávaný a odebíraný symbol tvoří pár $ZZ^{-1}BAA^{-1}CC^{-1}B^{-1}$

který se v celé posloupnosti chová jako závorka

Theorem 10.8 (Dyckovy jazyky)

Pro každý bezkontextový jazyk L existuje regulární jazyk R tak, že $L=h(D\cap R)$ pro vhodný Dyckův jazyk D a homomorfismus h.

Proof:

- máme PDA přijímající L prázdným zásobníkem
- převedeme na instrukce tvaru $\delta(q, a, Z) \in (p, w), |w| \leq 2$
 - delší psaní na zásobník rozdělíme zavedením nových stavů
- nechť R obsahuje všechny výrazy
 - $q^{-1}aa^{-1}Z^{-1}BAp$ pro instrukci $\delta(q, a, Z) \ni (p, AB)$
 - podobně pro instrukce $\delta(q, a, Z) \in (p, A), \delta(q, a, Z) \in (p, \epsilon)$
 - je–li $a = \epsilon$, potom dvojici aa^{-1} nezařazujeme
- definujeme R takto: $Z_0q_0(R^{|})^*Q^{-1}$
- ullet Dyckův jazyk je definován nad abecedou $\Sigma \cup \Sigma^{-1} \cup Q \cup Q^{-1} \cup \Gamma \cup \Gamma^{-1}$
- $D \cap Z_0 q_0(R^{|})^* Q^{-1}$ popisuje korektní výpočty

$$\underbrace{Z_0 \, q_0 q_0^{-1} \, aa^{-1} Z_0^{-1}}_{0} B \underbrace{A \, pp^{-1} \, bb^{-1} A^{-1}}_{0} qq^{-1} \, cc^{-1} B^{-1} \, rr^{-1}$$

- homomorfismus h vydělí přečtené slovo, tj.
 - h(a) = a pro vstupní (čtené) symboly
 - $h(y) = \epsilon$ pro ostatní.

Marta Vomlelová

Přehled kapitol

- 1 Úvod, Iterační lemma pro reg. jazyky
- Redukovaný DFA a ekvivalence automatů, stavů
- 3 Nedeterministické ϵ -NFA, Operace zachovávající regularitu
- Regulární výrazy, Kleeneova věta, Substituce, Homomorfizmus
- 5 Dvousměrné FA, Mealy a Moore stroje
- 6 Gramatiky, Chomského hierarchie, víceznačnost
- Chomského NF, Pumping Lemma pro CFL,CYK náležení do CFL
- Zásobníkové automaty, Deterministické PDA
- Uzávěrové vlastnosti, Dykovy jazyky
- Turingův stroj, rozšíření
- Lineárně omezené automaty, Univerzální TM, Diagonální jazyk
- Nerozhodnutelné problémy, Postův korespondenční p.
- Časová složitost