Simple TWAMP (STAMP) Extensions for Direct Measurement

draft-gandhi-ippm-stamp-direct-loss-00

```
Rakesh Gandhi - Cisco Systems (<u>rgandhi@cisco.com</u>) - Presenter
Clarence Filsfils - Cisco Systems (<u>cfilsfil@cisco.com</u>)
Daniel Voyer - Bell Canada (<u>daniel.voyer@bell.ca</u>)
Mach(Guoyi) Chen - Huawei (<u>mach.chen@huawei.com</u>)
Bart Janssens - Colt (<u>Bart.Janssens@colt.net</u>)
```

Agenda

- Requirements and Scope
- Summary of Extensions
- Next Steps

Requirements and Scope

Requirements:

- Support stand-alone Direct Measurement for accurate data packet loss
- High scale for number of test sessions and faster packet loss detection interval
 - Support hardware implementation

Goals:

- Avoid provisioning test sessions on Session-Reflector for stateless mode
- Avoid control protocol for signaling dynamic parameters

Scope:

STAMP [RFC 8762] based

Stand-alone Direct Measurement Test Packet for Data Packet Loss

- Stand-alone Direct Measurement test packet defined
 - Hardware efficient counter-stamping
 - Well-known locations for traffic counters
 - Block number of the counters for alternate marking method [RFC 8321]
 - Traffic class of the counters for per class packet loss
 - Direct Measurement test packet is also defined for authenticated mode
- User-configured destination UDP Port is used for identifying direct measurement test packets
- Does not modify the existing STAMP procedure as different destination
 UDP port is used for direct measurement test packets
 - Other than Timestamp vs. Counter in the test packet, the protocol is same as STAMP
- Sequence Numbers allow to detect direct measurement test packet loss - connectivity loss detection (session state up/down)
- Flags
 - X set to 1 for 64-Bit Counter, set to 0 for 32-Bit Counter
 - B set to 1 for Byte Counter, set to 0 for Packet Counter
 - T set to 1 for Sender-DSCP scoped Counter

Direct Measurement TLV vs. Direct Measurement Test Packet

	Direct Measurement TLV	Direct Measurement Test Packet
Need to scan for DM TLV in each received packet on Session-Reflector in hardware (there can be multiple different TLVs)	Yes	No
Need to write timestamp (clock sync needed for one-way delay)	Yes	N/A
Minimum bytes to load in write-able memory in hardware	114 (Eth 18, IPv6 40, UDP 8, STAMP 44, TLV Type 4, Total = 114 Byte)	70 (Eth 18, IPv6 40, UDP 8, Seq 4, Total = 70 Byte)
Counters at fixed location in the test packet for inband hardware counter-stamping	No (TLV-based)	Yes
Reply test packets with counters at the fixed location for in-band hardware counter-stamping	No	Yes
Byte counters	No	Yes
64-bit packet and byte counters	No	Yes
Alternate-marking method packet loss - using block number for counters (out-of-order data packet support)	No	Yes
Per Traffic Class Counters	No	Yes

Alternate Marking Method for Packet Loss

- RFC 8321 Alternate-Marking Method for Passive and Hybrid Performance Monitoring
- RFC 8957 Synonymous Flow Label Framework
- Control plane-based packet loss measurement with distributed forwarding LCs, using block number of the counters

Data Packet Loss Calculation

```
C1
                              C2
             DM Test Packet
        + DM Reply Test Packet
          C4
                               C3
Session-Sender
                              Session-Reflector
            Reference Topology
```

- Using the Counters C1, C2, C3 and C4 as per reference topology, from the nth and (n-1)th direct measurement test packets.
 - Transmit Loss TxL[n-1, n] = (C1[n] C1[n-1]) (C2[n] C2[n-1])
 - Receive Loss RxL[n-1, n] = (C3[n] C3[n-1]) (C4[n] C4[n-1])
- When using Alternate-Marking Method, all Counters used for the loss calculation belongs to the same Block Number, as described in Section 3.1 of [RFC8321].

Next Steps

- Welcome your comments and suggestions
- Requesting WG adoption

Thank you

Link Loss Direct Measurement (P2P Circuits) - In-band Counter-stamping in Hardware

- · Advertise extended TE metrics link loss percentage
 - RFC 8570 (IS-IS)
 - · RFC 7471 (OSPF)
 - · RFC 8571 (BGP-LS)

```
• TX Packet Loss %
= 100* ( ( ( C1(t) - C1(t-1) ) - ( C2(t) - C2(t-1) ) / ( C1(t) - C1(t-1) )
= 100* ( ( (103 - 100) - (203 - 200) ) / (103 - 100) )
= 0
```

STAMP Test Packet with Direct Measurement TLV

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Sequence Number
Timestamp
Error Estimate
MBZ (30 octets)
STAMP TLV Flags Type
           Length
Session-Sender Tx counter (S TxC)
Session-Reflector Rx counter (R RxC)
Session-Reflector Tx counter (R TxC)
```

Figure: Session-Sender Test Packet Format

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Sequence Number
Timestamp
Error Estimate
Receive Timestamp
Session-Sender Sequence Number
Session-Sender Timestamp
Session-Sender Error Estimate
|Ses-Sender TTL |
STAMP TLV Flags Type
Session-Sender Tx counter (S TxC)
Session-Reflector Rx counter (R RxC)
Session-Reflector Tx counter (R TxC)
Figure: Session-Reflector Test Packet Format
```