An Introduction to Peer-to-Peer Networks

Presentation for MIE456 - Information Systems Infrastructure II

Vinod Muthusamy October 30, 2003

Agenda

- Overview of P2P
 - Characteristics
 - Benefits
- Unstructured P2P systems
 - Napster (Centralized)
 - Gnutella (Distributed)
 - Kazaa/Fasttrack (Super-peers)
- Structured P2P systems (DHTs)
 - Chord
 - Pastry
 - CAN
- Conclusions

Client/Server Architecture

- Well known, powerful, reliable server is a data source
- Clients request data from server
- Very successful model
 - WWW (HTTP), FTP, Web services, etc.

^{*} Figure from http://project-iris.net/talks/dht-toronto-03.ppt

Client/Server Limitations

- Scalability is hard to achieve
- Presents a single point of failure
- Requires administration
- Unused resources at the network edge

P2P systems try to address these limitations

P2P Computing*

- P2P computing is the sharing of computer resources and services by direct exchange between systems.
- These resources and services include the exchange of information, processing cycles, cache storage, and disk storage for files.
- P2P computing takes advantage of existing computing power, computer storage and networking connectivity, allowing users to leverage their collective power to the 'benefit' of all.

^{*} From http://www-sop.inria.fr/mistral/personnel/Robin.Groenevelt/ Publications/Peer-to-Peer_Introduction_Feb.ppt

P2P Architecture

- All nodes are both clients and servers
 - Provide and consume data
 - Any node can initiate a connection
- No centralized data source
 - "The ultimate form of democracy on the Internet"
 - "The ultimate threat to copy-right protection on the Internet"

^{*} Content from http://project-iris.net/talks/dht-toronto-03.ppt

P2P Network Characteristics

- Clients are also servers and routers
 - Nodes contribute content, storage, memory, CPU
- Nodes are autonomous (no administrative authority)
- Network is dynamic: nodes enter and leave the network "frequently"
- Nodes collaborate directly with each other (not through well-known servers)
- Nodes have widely varying capabilities

P2P Benefits

- Efficient use of resources
 - Unused bandwidth, storage, processing power at the edge of the network
- Scalability
 - Consumers of resources also donate resources
 - Aggregate resources grow naturally with utilization
- Reliability
 - Replicas
 - Geographic distribution
 - No single point of failure
- Ease of administration
 - Nodes self organize
 - No need to deploy servers to satisfy demand (c.f. scalability)
 - Built-in fault tolerance, replication, and load balancing

P2P Applications

- Are these P2P systems?
 - File sharing (Napster, Gnutella, Kazaa)
 - Multiplayer games (Unreal Tournament, DOOM)
 - Collaborative applications (ICQ, shared whiteboard)
 - Distributed computation (Seti@home)
 - Ad-hoc networks

Popular P2P Systems

Napster, Gnutella, Kazaa, Freenet

- Large scale sharing of files.
 - User A makes files (music, video, etc.) on their computer available to others
 - User B connects to the network, searches for files and downloads files directly from user A

Issues of copyright infringement

Napster

- A way to share music files with others
- Users upload their list of files to Napster server
- You send queries to Napster server for files of interest
 - Keyword search (artist, song, album, bitrate, etc.)
- Napster server replies with IP address of users with matching files
- You connect directly to user A to download file

* Figure from http://computer.howstuffworks.com/file-sharing.htm

Napster

- Central Napster server
 - Can ensure correct results
 - Bottleneck for scalability
 - Single point of failure
 - Susceptible to denial of service
 - Malicious users
 - Lawsuits, legislation
- Search is centralized
- File transfer is direct (peer-to-peer)

Gnutella

- Share any type of files (not just music)
- Decentralized search unlike Napster
- You ask your neighbours for files of interest
- Neighbours ask their neighbours, and so on
 - TTL field quenches messages after a number of hops
- Users with matching files reply to you

* Figure from http://computer.howstuffworks.com/file-sharing.htm

- Decentralized
 - No single point of failure
 - Not as susceptible to denial of service
 - Cannot ensure correct results

- Flooding queries
 - Search is now distributed but still not scalable

Kazaa (Fasttrack network)

- Hybrid of centralized Napster and decentralized Gnutella
- Super-peers act as local search hubs
 - Each super-peer is similar to a Napster server for a small portion of the network
 - Super-peers are automatically chosen by the system based on their capacities (storage, bandwidth, etc.) and availability (connection time)
- Users upload their list of files to a super-peer
- Super-peers periodically exchange file lists
- You send queries to a super-peer for files of interest

Free riding*

- File sharing networks rely on users sharing data
- Two types of free riding
 - Downloading but not sharing any data
 - Not sharing any interesting data
- On Gnutella
 - 15% of users contribute 94% of content
 - 63% of users never responded to a query
 - Didn't have "interesting" data

^{*} Data from E. Adar and B.A. Huberman (2000), "Free Riding on Gnutella"

Anonymity

- Napster, Gnutella, Kazaa don't provide anonymity
 - Users know who they are downloading from
 - Others know who sent a query

- Freenet
 - Designed to provide anonymity among other features

Freenet

- Data flows in reverse path of query
 - Impossible to know if a user is initiating or forwarding a query
 - Impossible to know if a user is consuming or forwarding data
- "Smart" queries
 - Requests get routed to correct peer by incremental discovery

Figure 1.Typical request sequence. The request moves through the network from node to node, backing out of a dead-end (step 3) and a loop (step 7) before locating the desired file.

Structured P2P

- Second generation P2P overlay networks
- Self-organizing
- Load balanced
- Fault-tolerant
- Scalable guarantees on numbers of hops to answer a query
 - Major difference with unstructured P2P systems
- Based on a distributed hash table interface

Distributed Hash Tables (DHT)

- Distributed version of a hash table data structure
- Stores (key, value) pairs
 - The key is like a filename
 - The value can be file contents
- Goal: Efficiently insert/lookup/delete (key, value) pairs
- Each peer stores a subset of (key, value) pairs in the system
- Core operation: Find node responsible for a key
 - Map key to node
 - Efficiently route insert/lookup/delete request to this node

DHT Generic Interface

- Node id: m-bit identifier (similar to an IP address)
- Key: sequence of bytes
- Value: sequence of bytes

- put(key, value)
 - Store (key, value) at the node responsible for the key
- value = get(key)
 - Retrieve value associated with key (from the appropriate node)

DHT Applications

- Many services can be built on top of a DHT interface
 - File sharing
 - Archival storage
 - Databases
 - Naming, service discovery
 - Chat service
 - Rendezvous-based communication
 - Publish/Subscribe

DHT Desirable Properties

- Keys mapped evenly to all nodes in the network
- Each node maintains information about only a few other nodes
- Messages can be routed to a node efficiently
- Node arrival/departures only affect a few nodes

DHT Routing Protocols

- DHT is a generic interface
- There are several implementations of this interface
 - Chord [MIT]
 - Pastry [Microsoft Research UK, Rice University]
 - Tapestry [UC Berkeley]
 - Content Addressable Network (CAN) [UC Berkeley]
 - SkipNet [Microsoft Research US, Univ. of Washington]
 - Kademlia [New York University]
 - Viceroy [Israel, UC Berkeley]
 - P-Grid [EPFL Switzerland]
 - Freenet [Ian Clarke]
- These systems are often referred to as P2P routing substrates or P2P overlay networks

Node id: unique m-bit identifier

(hash of IP address or other unique ID)

Key: m-bit identifier (hash of a sequence of bytes)

Value: sequence of bytes

API

- insert(key, value) → store key/value at r nodes
- lookup(key)
- update(key, newval)
- join(n)
- leave()

Chord Identifier Circle

- Nodes organized in an identifier circle based on node identifiers
- Keys assigned to their successor node in the identifier circle
- Hash function ensures even distribution of nodes and keys on the circle

Chord Finger Table

O(logN) table size

ith finger
points to
first node
that
succeeds n
by at least
2ⁱ⁻¹

Chord Key Location

- Lookup in finger table the furthest node that precedes key
- Query homes in on target in O(logN) hops

Chord Properties

- In a system with N nodes and K keys, with high probability...
 - each node receives at most K/N keys
 - each node maintains info. about O(logN) other nodes
 - lookups resolved with O(logN) hops
- No delivery guarantees
- No consistency among replicas
- Hops have poor network locality

Network locality

 Nodes close on ring can be far in the network.

^{*} Figure from http://project-iris.net/talks/dht-toronto-03.ppt

Pastry

- Similar interface to Chord
- Considers network locality to minimize hops messages travel
- New node needs to know a nearby node to achieve locality
- Each routing hop matches the destination identifier by one more digit
 - Many choices in each hop (locality possible)

Figure 2: Routing a message from node 65a1fc with key d46a1c. The dots depict live nodes in Pastry's circular namespace.

- Based on a "d-dimensional Cartesian coordinate space on a d-torus"
- Each node owns a distinct zone in the space
- Each key hashes to a point in the space

Figure 1: Example 2-d space with 5 nodes

CAN Routing and Node Arrival

1's coordinate neighbor set = $\{2,3,4,5\}$ 7's coordinate neighbor set = $\{\}$

6	2		
3	1	7	5
	4		

1's coordinate neighbor set = $\{2,3,4,7\}$ 7's coordinate neighbor set = $\{1,2,4,5\}$

Figure 2: Example 2-d space before node 7 joins

Figure 3: Example 2-d space after node 7 joins

P2P Review

- Two key functions of P2P systems
 - Sharing content
 - Finding content
- Sharing content
 - Direct transfer between peers
 - All systems do this
 - Structured vs. unstructured placement of data
 - Automatic replication of data
- Finding content
 - Centralized (Napster)
 - Decentralized (Gnutella)
 - Probabilistic guarantees (DHTs)

Conclusions

- P2P connects devices at the edge of the Internet
- Popular in "industry"
 - Napster, Kazaa, etc. allow users to share data
 - Legal issues still to be resolved
- Exciting research in academia
 - DHTs (Chord, Pastry, etc.)
 - Improve properties/performance of overlays
- Applications other than file sharing are being developed