Assignment 3

Sarah Sindeband

Z23498939

COP 3014 001

3.8 Order the following functions by asymptotic growth rate.

Ranging from most efficient to least:

$$2^{10}$$
, 2^{logn} , 4n, 3n + 100logn, 4n, nlogn, 4nlogn + 2n, $n^2 + 10n$, n^3 , 2^n

3.19 Show that n is O(nlogn).

$f(n) \le cg(n)$	
n ≤ cnlogn	
n ≤ c nlogn	let c = 3 & n = 2
⇒ 2 ≤ 3(2log2)	$2log_2 2 = 2 x 1$
⇒ 2 ≤ 3(2)	

Therefore, n is O(nlogn).

3.20 Show that n^2 is $\Omega(nlogn)$.

$f(n) \ge cg(n)$, for $n \ge n_0$	let c = 1 & n = 2
$n^2 \ge c(nlogn)$	$2log_2 2 = 2 x 1$
$\Rightarrow 2^2 \ge 1(2 \times \log 2)$	$2log_2 2 = 2 x 1$
$\Rightarrow 4 \ge 1(2 \times 1)$	
\Rightarrow 4 \geq 2	

Therefore, n^2 is $\Omega(nlogn)$.

3.24 Give a big-Oh characterization, in terms of n, of the running time of the example2 function shown in Code Fragment 3.10.

```
9 def example2(S):
    """Return the sum of the elements with even index in sequence S."""
10
     n = len(S)
11
12
     total = 0
     for j in range(0, n, 2):
                            # note the increment of 2
13
14
        total += S[j]
15
     return total
   line 12
            n
   line 13
   line 14
            1
   line 15
```

n + n + 1 + 1 is O(n) characterization.

3.25 Give a big-Oh characterization, in terms of n, of the running time of the example3 function shown in Code Fragment 10.

```
def example3(S):
      """Return the sum of the prefix sums of sequence S."""
18
19
      n = len(S)
20
      total = 0
      for j in range(n):
21
                                      # loop from 0 to n-1
                                      # loop from 0 to j
22
        for k in range(1+j):
23
          total += S[k]
24
      return total
   line 20
            n
   line 21
            n
            n^2
   line 22
   line 23
            1
   line 24
            1
```

 $n + n + n^2 + 1 + 1$ is $O(n^2)$ characterization.

3.27 Give a big-Oh characterization, in terms of n, of the running time of the example5 function shown in Code Fragment 10.

```
33
                                  # assume that A and B have equal length
    def example5(A, B):
36
      """Return the number of elements in B equal to the sum of prefix sums in A."""
37
      n = len(A)
38
      count = 0
39
      for i in range(n):
                                # loop from 0 to n-1
40
        total = 0
41
42
        for j in range(n):
                                # loop from 0 to n-1
                                 # loop from 0 to j
          for k in range(1+j):
43
            total += A[k]
44
45
        if B[i] == total:
46
          count += 1
47
      return count
```

The three nested loops would be $O(n^3)$ characterization.

3.33

Al: O(nlogn) faster for $n \ge 100$

Bob: $O(n^2)$ faster for n < 100

This is possible because Al's nlogn function will begin at a higher y intercept when the y axis is featuring the constant (c) value. As n, the number of inputs, increases (on the x axis) the Bob's exponential function will grow at a much larger rate than Al's. Therefore, until the threshold of n = 100 is passed, Al's algorithm will be slower.