Mesures en hyperfréquences

Adaptation d'impédance (adaptation quart d'onde et Adaptation simple stub)

Franck Daout fdaout@parisnanterre.fr

https://cva-geii.parisnanterre.fr/

CFD - Bourges

Ligne de transmission

- Basses fréquences
 - Longueur d'onde >> longueur de la ligne
 - La tension (courant) ne dépend pas de la position

- Hautes fréquences
 - Longueur d'onde = ou < longueur de la ligne
 - La tension (crt) dépend de la position
 - L'adaptation à l'impédance caractéristique de la ligne de transmission est importante
 - Pas de réflexion
 - Puissance maximum transmise

Impédance caractéristique Z₀

- Z₀ n'est pas une résistance ohmique
- Z₀ dépend des caractéristiques de la ligne de transmission (dimension, permittivité)
- Z₀ est généralement de 50 Ohms

Optimisation du transfert de puissance

La puissance maximum est observée pour RL=Rs

Ligne de transmission terminée par une charge Z₀

Ligne de transmission terminée par un CC, CO

Ligne de transmission terminée avec 25Ω

Le ROS: un indicateur de performance

Rôle de la cellule d'adaptation

"Transforme » l'impédance
Z_L en impédance Z_g*

Boite d'accord d'antenne

Rôle de la cellule d'adaptation

Adaptation quart-d'onde (exemple)

Dans cet exemple, l'impédance d'adaptation est de 75 Ohms

Charge purement résistive

Charge complexe

Charge complexe (autre solution)

Contexte

Deux paramètres à déterminer :

- La position du stub (par rapport à la charge) : d_{stub}
- La longueur du stub : \mathbf{L}_{stub}

Stub en court-circuit

- 1 Positionner z
- 2 Construire y = 1/z
- 3 Repérer le point y = 1 + jb : intersection entre le cercle g = 1 et le cercle de rayon |ρ| associé à z
- 4 En déduire L
- 5 Repérer le point y = -jb
- 6 Positionner zcc puis ycc
- 7) En déduire Ls

