Einführung in die Statistik

Prof. Dr. rer. soc. Berthold Löffler

Fakultät Soziale Arbeit, Gesundheit und Pflege

Hochschule Ravensburg Weingarten

- Führt zur Rosignation (lange Arbeitlosigkeit) - Begriendung der ESF - Vorher 12 Es gab Veeine 13 Rote Wien im Kleinen 4 Es gab Bildungarten / Institutionen La Sozialarten Ly Orx evebt rund um die Textilindustrie einen Sufserward 17 100 Textilarbeite ziehen mit Fam. um die Fabrik 17 Mariental entwickelf sich zur hochburg de Dibeitabewegung - Nach de Weltwirtschaftskise 1929 1> Triff die Arbeite mit volle Wucht Ly Fabrikan mussen schließen 12 Ort wird mit einem Shleg arbeitslos 1900 - 1300 Arbeitslose, in diese Zeit gab es schon Untestitang 1-3,005 chilling pro Tog, nur fur ein peur Monete 12 Danach war man ausgesteurts - In de Studie wurde beschrieben, des es zentrel com die Nahrungsmittel Boschaffung ging 17 Nenschen wersehrten Katzen & Hunde La Kaninchen zucht & Stehreber gräuten wurden erfanden - Mariental wurde zeem labor, Arbeitslosigkeit lies Sin Studisen Entwicklung eines nentwicklungs psychologisches Systems welches den menschlichen lebenslauf umfesste La Kategorien La Selbst afüllung
La Komplexe Lebenswelten

Inhaltsverzeichnis

1	Einfül	hrung in die Statistik	3
1.1		oe und Erkenntniswert der Statistik	
1.2	Teilbei	reiche der Statistik	4
	1.2.1		4
	1.2.2		5
_			_
2		iptive Statistik	
2.1		nale und statistische Meßskalen	
2.2		formationsniveau von Meßskalen	
	2.2.1		
	2.2.2	Komparative/Ordinale Merkmale	7
	2.2.3	Metrische Merkmale	
	2.2.4		
2.3	Häufig	keitsverteilungen	9
2.4		cht über Häufigkeitssummenfunktion und empirische	
	Verteil	lungsfunktion	11
3	Statist	ische Maßzahlen	14
3.1	Therei	cht: Eindimensionale statistische Maßzahlen	14
J.1	3.1.1	Der Modus	
	3.1.2	Das arithmetische Mittel	17
	J.1.2	3.1.2.1 Berechnung des anthmetischen Mittels aus	••• ±/
		Einzelwerten	17
		3.1.2.2 Bestimmung des arithmetischen Mittels aus	*** I./
		einer Häufigkeitsverteilung	18
	3.1.3	Der Median	
		3.1.3.1 Berechnung des Median aus Einzelwerten	
		3.1.3.2 Medianberechnung aus Häufigkeitsverteilungen	21
		3.1.3.3 Medianberechnung bei klassierten Werten	22
	3.1.4	Die Spannweite	
	3.1.5	Standardabweichung und Varianz	27
		3.1.5.1 Die Standardabweichung	
		3.1.5.2 Die Varianz s ²	
3.2	7 weid	imensionale statistische Maßzahlen	
J.2	3.2.2	· · · · · · · · · · · · · · · · · · ·	
	J. 12. 12.	Statistik): Kontingenz-/ Kreuztabelle	33
	3.2.3	Absolute und Relative Häufigkeitsverteilung (integrierte	
	J.2	K reuztahelle)	34
	3.2.4	Kreuztabelle)	
	J.211	Häufigkeitsverteilungen	35
	3.2.5	Mögliche Kombinationen: Merkmal/Maßzahl	35
	3.2.6	Interpretation der Maßzahlen	
	3.2.7	Statistische Unabhängigkeit (SU für klassifikatorische	
	J.E./	Merkmale)	37
	3.2.8	Der Kontingenzkoeffizient	39
	3.2.9	Rangkorrelationskoeffizient R von Krueger – Spearman	/
	J.=./	(für komparative Merkmale)	40
	3.2.10		
		(metrische Merkmale)	43
		(,,,	

Forschungs frage La Welche Konsequenz Massenarbeits losigheit hei Abeitein austost 4 Ganzas Dorf wurde untersucht, nicht de einzelne La Stellung zur Arbeitslosigkeit, Wirkungen der Arbeitslosigkeit La Objektive & Subjektive Beobachtung 19 Empfinden & Handely der Menschen spielt eine wichtige La Qualitative & quantitative Methoden 4 Feldforsman La Matrial Sammlung & Kontakt zu den Bewohnen wurde mit humanitäre Hilfe (Kleideraktion) Kombiniert 1- Handlengsforshang Ly Teilnehmende Beobachtung & Aktionsforschung - Kleide aktion (Sommeln & austeilen) - Forschungs MA engagisten sich in pol. Verbande li orth. Vseinen - Schnittzeichen keis am den 50 Frauen teilnehmen - Avall. Sprechstunden - Tunkus dui Madches - Beratungs gespræle ûse Probleme in de Fam & de Erz. Ly Mund Befragang - Befragung de lehier über Shulleist ungen & Gabelfaitsticht - Befragary des Burgt neistes - Befragung Umsatz rahlen La Projektive Daten - Schulaufsatze wurden über > Lieblings weigh -> was will ich werden -> was ich mir zu weihnachten wursde

4	Begriffserklärungen		•••••••••••••••••••••••••••••••••••••••	47
. 5	Symbol- und Abkürzur	ngsverzeichnis		48
6	QUELLENVERZEIC	HNIS		49
- rawing Gen:	utheit≘Vozerfaktor:w Man addieit immes c	uy	uir Woren? niemand sygtidass wen von Gesell. at	wy.
mice jouso	of mouseafer form	on i picture tam ran	tu genau! (Statistik a 1s kommt -zgeld eig. ga	beitet mut i niclu
- kreative St	utistik: statet sich nuc	the auf Ligen		
Hal gekland	g kann man Antwort be ' hast? -> neutral :	wie u ltast du scho		ls du das 1.
gestiagen -> notation = s	V10% Gehalt zugenon Ausrechnung der Spiegelu	nmen ->Annahme: Ug der Vergungenheit 25 um schon mad in	citistiken von früheren ver Löhne sind von Jahr zu H in zukunft lahes was In Vorans zu überlegen wo nich	Jalu um 5% in Trendextra-
Grundbegriffe d	y. Statistik.			
1) Untusuchungs Lakkar definier	zweck≘was mäckte ic übesduift	h madhen/wissen?		
000 CT CT . 7101	theit = kann ich Pelso wand will u. kann ich t aus Grundgesamtheit,	~,0001	igen? ->Studenten in gant?	DE abe in West
3) Stichprobe -	muss Reculity passon	action I (Constant ing	9, 51/10:	
ch) Bsp. ges. b) Bsp. Willk	500 SO Studenten > Liste Instiduptobe > stehe an	uon allen - jede S. u	ma A s b .	auch so in Stick Inprobe
	otenstichpiobe = veklei	netës Abbila dë Rezuli	tàt	
nundregeth .		•	ich heerfissien was nie	alexa
3) logisch Wede	Spruchfiei (2) kein aff nichtagund wich haru	ensichtlicher Unsing attoen, was für andere vollerendoor ist	ich beschreibe was, der an (3) intel Subjektiv rachp - iolgt meiner Anweiser.	Millianus soin

Caesandheid La Sprechstunde beim Arzt wurde Setten angenommen 1- 11 Mude Gesellshaft

1> Nach der Schließeney der Fabrik wer des leben von eine elsgestumpften Gleichmießigkeit bestimmt.

- Situation abgefunden

y sich daran gewohnt wenige zu besitzen

-venige ru bun, wenige ru enwanten als als bisher für ihre Existenz als not mendig angosehen worden war

17 Ruck gang de Aktivitäte, & der Soz. Kontakte 17 Mitgliede welust in Vaeinen 19 Zeitungs dos gingen zurück

Obroh/ Menschen mehr Zeit hatten

Zeit

Ly Viele freie Zeit wor Kein Geninn, sondem tragisches Ly wassten nicht, was sie mit ihre Zit machen sollen, glitten is leeve

Ly Frauen gingen in Durchschnitt schneller als Känne, weil Sie noch Aufgaben (Haushalt, Kinde) hatten. Manne dagegen nicht hatten kaum bis ger nix zu tan. Sie weren auf de Stroße um nicht alleine ruhause zu sein, dochei Stenden sie haufig nur herem. Zeiteinteilang in Strenden hat für die Kienne keinen Sinn gehebt.

- 3 Orienti rangs punkte Aufstehen. Mittagessen - Schlagen gebon

- Die Zwischenzeiten Konnten schwe beschrieben weden, da es nichts Simrolles zu tun gab.

EINFÜHRUNG IN DIE STATISTIK

Statistik in Krieg ist immer Propaganda

ജ

Vertraue keiner Statistik, die Du nicht selber gefälscht hast.

(Statistiker - Kalauer)

8003

man muss misstrautisch grüber statistiken sein!

Definition:

Statistik ist das methodische Vorgehen bei der Beschaffung von Daten und deren Interpretation für Informations- und/oder Entscheidungszwecke. & Sammeln u. Etheben "

1.1 Aufgabe und Erkenntniswert der Statistik

- Statistik ist ein wissenschaftliches Werkzeug zur Beschaffung und Interpretation von Daten für Informations-, Entscheidungsoder Erkenntniszwecke
- Die statistische Urteilsbildung ist das Ergebnis induktiver Vorgehensweise
- Statistische Aussagen informieren über typische, allgemeine, quantifizierbare Eigenschaften von Gesamtheiten, Mengen, Ereignissen usw.
- Statistische Urteile gelten für die Gesamtheit, nicht jedoch zwangsläufig für jedes Element dieser Gesamtheit
- Statistische Urteile enthalten Informationen über die Verteilung spezifischer Merkmalsausprägungen in einer Gesamtheit und/oder über die Beziehungen zwischen verschiedenen Variablen.
- Statistik kann keine Beweise in streng mathematischem Sinn führen, sondern nur eine rational begründbare Gewissheit (Evidenz) zugunsten bestimmter Hypothesen deutlich machen.
- · bei einer Stockistik kann nicht pauschal das selbe auskommen (albhangis von Land, Kultur etc.) -> DESHALB Wiederhollungsstadie? · Veranderungen (bepw. Werkelmandel) tann nur bei wiedeholungsstudie herausgefunction worder

Haltung
la Familian wasen unteschiedlich
Ly Ungebrachene Haltung (34 Schilling)
- Dufrechthaltung des Haushalts
- Pflege der kinder
- subjektives wohlbefinden
- Aktivitat, Plane & Hoffnungen für die Zukunft - Versuche einen Job zu Linden
La Resigniete Haltung (30 Schilling) - Aufzehthaltung des Haushaltes,
pllma de kids
- Gefühl dos relativen Wohlhefinders - Keine Plane, Keine Beziehung zur Zukanft
. Keine Hoffnergen
- max. Finschvänkungen aller Bedüfnisse
1) Verneifelte Haltung (25 Schilling)
- Aufrechthaltung des Houshalts
- Pflege de Kinde Vezweiflæng, Depression, Hoffnengslosigkeid, Keize Plane
- Coefint de Vageblich Keit alle Bemühungn, Keine Jobsude
Keise Verbesseung de Situation murde utsucht
4 Apathishe Haltung (49 Schilling)
- Wohners & Kinds Sind unsaube & angeptless
- energie losses, tatenloses reusden
- Keine Hoffnung auf Bessfrung
Jude of the Gold Sohon (Cliff: - Zuncheninkeit
=> Unter schied bein Geld, Schon & Schilling => Zugohörigkeit zu eine anden Lebenform
=> Studie reigt: læng dauernde Anheitslosigkeit führt nicht zur Radikalisie eng senden zur Apathie

1.2 Teilbereiche der Statistik

1.2.1 Inhaltliche Unterteilung

Deskriptive Statistik:

Ausgangspunkt jeder Datenanalyse:

Beschreibung und Darstellung der Beobachtungsdaten anhand von Häufigkeitsverteilungen (z.B. Tabellen, Grafiken), statistischen Maßzahlen und Zusammenhangsmaßen.

Explorative Datenanalyse:

Suche nach Strukturen, möglichen Fragestellungen und Hypothesen. Die entstandenen Hypothesen werden im Anschluss mit Methoden der induktiven Statistik überprüft.

Induktive Statistik:

Handelt es sich beim Datensatz um eine repräsentative Stichprobe, so können mit den Methoden der induktiven Statistik Rückschlüsse auf die Grundgesamtheit getroffen werden. Diese Aussagen bergen zwar Unsicherheiten, lassen sich aber einigermaßen zuverlässig abschätzen.

(DULLER 2013:9)

- Kinder / Jusend
 Ly Resignite was izgen night typisch ist, Kinder sind normal das Coegenteil
 - La In Aufsatzen & Wanschen Schrieben Kindle:
 - " wenn meine Eltern nicht arbeitslos waren, denn würde ich mir...
 - Ly Kinder konnten bei schlechtem Wetle häufig nicht in die Schule weil sie keine Schule mehr hatten 7 was bebraucht war 2.h. Kleidang konnte nicht nachbeschafft werden
 - Ly Kindy bekammen Fude de Woche immer was suffes, nenn ()
 niv mehr zu essen da war (Pausenbrote) => als Entschaldgag

1, Hinde Goetstaft

— Mircle Gemein Schaft: Ausdruck des die Wirkung de Aibeitslosigkeit, Auswirkungen auf des Gesellschaftliche leben heut

Analytische Statistik:

Erklärung und Prognose möglicher Ursachen von Ereignissen durch Modelle (Hypothesenbildung) auf der Grundlage der Wahrscheinlichkeitsrechnung.

Beispiel für Aussagen der beschreibenden Statistik:

Bei 100 Würfen mit einem Würfel fällt 14mal die 1, 17mal die 2, 17mal die 3, 18mal die 4, 19mal die 5 und 15mal die 6. Die mittlere Augenzahl beträgt 3,56. Der Median (die Zahl, die genau in der Mitte aller 100 Würfe liegt) ist die 4. Der Modus (die Zahl, die am häufigsten gewürfelt wurde) ist die 5.

Problemstellung der analytischen Statistik:

Bei 100 Würfen trat die 1 nur 11mal, die 6 dagegen 25mal auf. Lässt sich daraus schließen, dass der Würfel gezinkt ist?

1.2.2 Unterscheidung nach Anzahl betrachteter Merkmale

Bei der Erhebung von Daten werden in der Regel mehrere Merkmale erhoben. Bei der Analyse kann jedoch jedes einzelne Merkmal für sich analysiert werden. Man spricht dann von der univariaten Statistik. Die Analyse von zwei Variablen wird bivariate Statistik genannt. Multivariate Statistik analysiert mehr als zwei Merkmale.

magebooken: wornit lent it! Lenklifen?

(DULLER 2013:9)

MERKHAL.

A LEINPOF à Eigenschaft Bsp. Alter/Famstand D Nachhilla

€ angetremente remnistre × remniquo

HERYMALSAUSPRAGUNG.

= Henschen haben unendlich viele Helkmelseigenschaften, die in einem Oberbegriff tsmgeforest sind -> Bep. ledig. we'heiratet

= Auswalumöglichkeiten

MERKMALSTRÄGER

€ etu. (Pason/Institution), die durch unendliche Herkmauseigenschaften verfüser 2 total sum Ausfüller

GRUNDGESAMTHEIT

= Henge aller Herkmalsträger / Henge der zettet (Bop. 100)

Video	FDF	boduile	
90	20	10	Amusiren in absoluten talle
70/100	301100	101100	relative Housigkeit
30%	70%	10%	(0
			Q.

-> Character chather

2.2.2 Komparative/Ordinale Merkmale

(Rangmerkmale)

Hessqualitat

Merkmale sind ordinal, wenn:

- ihre Ausprägungen nur in einer relativ unbestimmten Rangbeziehung zueinander stehen
- ·1.1213 Plate

Bsp.: besser - schlechter, größer - kleiner

Ordinalskala:

Likertskala:

2.2.3 Metrische Merkmale

Hessenalitat

Merkmale sind metrisch, wenn:

- ihre Ausprägungen Vielfache einer Einheit sind.
- die Ausprägungen sich voneinander unterscheiden.
- sie eine eindeutige Anordnung haben.
- sie einen eindeutig definierten Abstand haben.
- " Zahlen

(BOURIER 2013:14)

2,0

(2) bland = non-inal -bland weden > uenn Kekmal eine Egenschaft zeggeeilt betonnnt => bland = blad -> je helle, disho blader) - ordinal, weil mela as. wenige metrisch wei messbor? (1) nicht alle Heltmale sind eindeutig -> Anja marila von Aud inner tempong von 3 Kategoriens Hekmain.

i nominal -> United scluede

-> Veliera an Infos! metrisch -> alkes, ordinal -> ya

metrisch -> ordinal

Bap. Anja 1,60m

7

2 DESKRIPTIVE STATISTIK

2.1 Merkmale und statistische Meßskalen

Merkmalswerte (xi) werden anhand von Beobachtung, Befragung oder Messung ermittelt. Die statistische Meßskala bildet hierfür das Instrument.

Jede der folgenden Skalen ist verbunden mit:

- einem gewissen Informationsniveau.
- einer Reihe von statistischen Verfahren, die eingesetzt werden dürfen.

(DULLER 2013:13)

Hessqualital

2.2 Das Informationsniveau von Meßskalen

2.2.1 Klassifikatorische/Nominale Merkmale (Unterschiedsmerkmale)

Merkmale sind nominal, wenn:

- ihre Ausprägungen nicht in eindeutiger Weise geordnet werden können.
- eine sinnvolle Interpretation von Abständen nicht möglich ist.
- sie nur aufgrund ihrer Bezeichnungen unterschieden werden können.
- · onne_ INPHLLA

(DULLER 2013:13; Sibbertsen/Lehne 2012:4)

Nominalskala:

1 2 3 4 5 6

Hamburg Bayern NRW Ba-Wü Bremen Hessen

- =>Geschlect or od. q
- -> Vorname
- -> Hokunftsland
- -> Haar, Parbe
- => Farbe allq.

2.2.4 Übersicht und Konsequenzen

Merkmalstyp	Charakterisierung	Messmethode	Messergebnis
klassifikatorisch	Art/Klasse	nominal	Klassen
komparativ	Intensität	ordinal	Rangordnung
metrisch	Zahlen	kardinal	Größenmäßig festgelegte Werte

Aus den verschiedenen Informationsniveaus von Merkmalen resultiert folgender hierarchischer Aufbau:

Eigene Darstellung in Anlehnung an Duller 2013:13 (© Linda Barth)

Aus dieser Hierarchie der Merkmale ergeben sich zwei Konsequenzen:

 Jedes Merkmal aus einer h\u00f6heren Hierarchlestufe kann durch Zusammenfassen und Umbenennen von Merkmalsauspr\u00e4gungen in ein Merkmal der niedrigeren Stufe umgewandelt werden, allerdings entsteht dadurch ein Informationsverlust.

> Beispiel: Das Merkmal Körpergröße kann in cm gemessen werden, es sind jedoch auch die Ausprägungen klein – mittel – groß möglich.

 Alle Verfahren, die für ein Merkmal aus einer bestimmten Stufe zulässig sind, sind auch zulässig für Merkmale aus darüber liegenden Stufen.

(DULLER 2013:13)

Informationsgehalt nimmt zu Zunahme anwendbarer Verfahren

Mekmal = Fam stand (überbegiff) Herkmatsausprogung = ledig, verheindet,...

2.3 Häufigkeitsverteilungen

Häufigkeitsverteilungen können in zwei Gruppen aufgeteilt werden:

bedrywyen idass Tabelle richting:

· Obeschift (wanniwasiwa)

· Ouella

- Eindimensionale Häufigkeitsverteilung:
 - Die statistische Untersuchung beschränkt sich auf ein Merkmal

CAW

- Euresdinensionale Hauffgkeitsverteilling. 2 Hermale
- Mehrdimensionale Häufigkeitsverteilung: Die statistische Untersuchung erstreckt sich auf mehrere Merkmale

(BOURIER 2013:38)

Voteilung des Fam. standes auf ges. Bev.

Beispiele für eindimensionale Häufigkeitsverteilungen:

LEIT VERGLEKH

Wohnbevölkerung der BRD nach Familienstand

(alle 10 Jalue) => muss drin statur!

DOMINA ASSIFIKATORISCH

desto besser

ARER: Lauren konnen Wirklichkeit

veischteien

Wohnbevölkerung der BRD am \$1.12.1986 nach Familienstand

ie new Daten, Konnen Unterschikete ekonnt weder

Familienstand (x) Häufigkeit in 1000 Häufigkeit in Prozent (absolute Häufigkeit) (relative Häufigkeit) 39,5 ledig 24.172 verheiratet 29.401 5.366 8.8 verwitwet 2.198 3,6 geschieden 100,00 Wohnbevölkerung 61.137 Quelle: Statistisches Jahrbuch 1988 für die BRD (SJ 1988)

3:3,5 % von 100% bew. von ges. Bev. = ledy -> Dreiscute

=> MOMENTAUTNAHMEN

Wohnbevölkerung der BRD am 31.12.1996 nach Familienstand

de svielnew -Fratien -> Witchen (wg. He Krieg

Häufigkeit in 1 000	Häufigkeit in Prozent	
33.429	40,7 ~	
38.103	46,5 ❖	
6.463	8,3	
4.018	4,9 ↑	
82.012	100,0	
	33.429 38.103 6.463 4.018	

Wohnbevölkerung der BRD im Jahre 2014 nach Familienstand

Familienstand (x)	Häufigkeit in 1000 (absolute Häufigkeit)	Häufigkeit in Prozent (relative Häufigkeit)	
Ledig	32.926	40,8~	
verheiratet	36.793	45,5 ❖	
Verwitwet/geschieden	11.083	13,7 ↑	
Wohnbevölkerung gesamt	80.802	100,0	

2 Helkmalsalls- < progrungen wurden temgefous+ " =>das day elg wicht passieun

https://www.destatis.de/DE/Publikationen/Thematisch/Bevoelkerung/HaushalteMikrozensus/HaushalteFamilien2010300147 7. FRage

=> nur Momentaufnahme: vilt. nausgan schon geschieden! is 1. umfrage: verherrater, 2. umfrage: geschieden lègen ja la jour auserrander

=> eig. Newstrukturierungen von Form, Singlehaushaute, Alleineziehend, Patich-work wenig zewegung in Tabelle!

=> Kinder weden mut einberechnet -> demogr. wander kinder b -> ledice # (mit kinder u. Erwachsere).

9

We elle schwer! weil keth exakter zamemovet zamenya megl.

absolute Hallfigkeit: => kann sein dass sich absolute tellon nicht anden but frans 2 kandidaten, heute met water => umwelt laktoren berack-sicution

relative Hauffgkert 4) Veränderugen über Jawe Winneg

Privathaushalte in der BRD am 30.04,1986 nach Personenzahl Hermal u. - auspracius absolute Hallfickelt relative that keit

Anzahl der Personen im Haushalt	Häufigkeit in 1000 (absolute Häufigkeit)	Häufigkeit in Prozent (relative Häufigkeit)
1	9.177	34,3
2	7.886	29,5
3	4.564	17,1
4	3.516	13,1
5	1.596	6,0
insgesamt	26.739	100,0

Ethyl alle 10 Jalve Raumval. : gelist hur went rel. Housigiceitcla

Quelle: Statistisches Jahrbuch 1988

HETRISCH

Privathaushalte in der BRD im April 1997 nach Personenzahl

Anzahl der Personen im Haushalt	Häufigkeit in 1 000 (absolute Häufigkeit)	Häufigkeit in Prozent (relative Häufigkeit)
1	13 259	35,4 ↑
2	12.221	32,6
3	5.725	15,3
4	4.537	12,1
5 und mehr	1.715	4,6
insgesamt	37.457	100,0

Quelle: Statistisches Jahrbuch 1998

Prozent (-> Prozentpuniste 20 Prozentpunkte sind 40 Prozent

Privathaushalte in der BRD im Jahre 2014 nach Personenzahl

Anzahl der Personen im Haushalt	Häufigkeit in 1000 (absolute Häufigkeit)	Häufigkeit in Prozent (relative Häufigkeit)
1	16.411	40,8 1
2	13.837	34,4
3	4.988	12,4
4 .	3.660	9,1
5 und mehr	1.327	3,3
insgesamt	40.223	100,0

https://www.destatis.de/DE/ZahlenFakten/Indikatoren/LangeReihen/Bevoelkerung/Irbev05.html

equantitative Statistic: 1 Auswertung, 2. Interpretation de Werte is tall abein saft nichts aus!

Fragenkatason bei Tabellenippl.

·Wordber reden wir? Was verandent sich mit der zeit?

· Warum ist das so? Wsachen?

relative Haufighett - Probleme:

· Artikel: todi. Harangrille steigen um 100%

La von 1 Person auf 2 gestieger

· von 4 Sower and 6 sower -> steppet sowerkapazitet um 50%

DKUN zu vielle Unjalle - wieder von 6 auf 4 Speren -> Sprunkapazitat um 33,3 gesunkan -> im vgl. zu 50%: cun 17% ist Sprunkapazitat gesteger! => WICHTIG: immer noch absolute talken anschan! -> füllen sonst in Irre

2.4 Übersicht über Häufigkeitssummenfunktion und empirische Verteilungsfunktion

Eigene Darstellung in Anlehnung an Bourler 2013:38 ff. (@ Linda Barth)

Häufigkeitsverteilung von Familien nach Zahl der Kinder (Kinder unter 18 Jahren) in der BRD im Jahre 2015

METRISCHI

Kinderzahl	Familien- anzahl (in 1000)	relative Häufigkeit	Häufigkeits- summenfunktion (in 1000)	empirische Vertei- lungsfunktion
Xi	$n(x_i)$	f(x _i)	$S(x_i)$	$F(x_i)$
0	32.732	0,803	32.732	0,803
1	4.248	0,104	36.980	0,907
2	2.924	0,072	39.904	0,979
3	701	0,017	40,605	0,996
4	127	0,003	40.732	0,999
5 und mehr	43	0,001	40.775	1,000
	40.775	1,000		

Quelle:

https://www.destatis.de/DE/Publikationen/Thematisch/Bevoelkerung/HaushalteMikrozensus/HaushalteFamilien2010300157004.pdf?__blob=publicationFile

Hautigkeitssummenfunktion

36.980 = 32.732 + 4248 12 wow hat mind 2 kinder

=> taunien wuden summiert

Empirische Verteilungfunktion

480% - kein kind

90% - tems od ein kind

3 Qualitatskithelien in ESF:

Beispiel:

(1) Object with > WER unresulut? => egal, we as madent

(2) Palicabilitat - das, was misst barn man yol. => zum selben Sachwerhalt (= Zuve lässigkeit)

(3) Usuditat -> Wet/ Gültiqkeit => messe ich das, was ich überhaupt wissen will?

Entstehung einer Häufigkeitsverteilung

BSP. Roumtemperation:

(1) Not jeder Student Themometer?

(2) The moment wish Immer 20°C metrison -> zeit wird angeschaut

(3) The mometer has Guiltgkeit > Temp moster smit War nicht messen = Guiltgkeit nein

Wlisk

Die Unternehmensberatung "Hire & Fire" ist auf Beschluss des Kreistages nun auch im Ravensburger Landratsamt - Kreissozialamt zugange. Offiziell verkündetes Ziel ist es, die Belegschaft zu dezimieren, was heutzutage auch "Lean Clean Team Management" genannt wird. Natürlich wissen die Kreisräte, dass im öffentlichen Dienst faktisch niemand entlassen werden kann. Aber in der Öffentlichkeit suggeriert der Einsatz von Unternehmensberatern die Möglichkeit einer Effizienzsteigerung, die es in Wirklichkeit nicht einmal in der Privatwirtschaft gibt. Die Unternehmensberater messen, wie lange die Sachbearbeiter für einen durchschnittlichen Antrag auf ALG II brauchen. Von (80) Beand unealistisch leher 800 u new) arbeitungsvorgängen wird die Zeit genommen (in Minuten):

52 45 59 32 46 48 30 53 44 44 58 46 40 37 54 43 39 35 55 44

47 50 46 40 29 48 37 42 38 53 40 43 52 58 38 45 42 41 57 55 53 39 47 56 45 42 30 47 48 61 50 47 44 33 43 49 49 33 42 51

54 40 35 44 54 35 41 46 51 37 38 48 45 57 46 56 49 50 43 41

man kann auch nur etw. messen, wenn man es vegleichen kam! (ungenaue Methode)

Bearbeitungsdauer	Häufigkeit	Bearbeitungsdauer	Häufigkeit
x_i		x_i	
	$n(x_i)$		$n(x_i)$
29	1	47	4
30	2	48	4
32	1	49	3
33	2	50	3
35	3	51	2
37	3	52	2
38	3	53	3
39	2	54	3
40	-4	55	2
41	3	56	2
42	4	57	2
43	4	58	2
44	5	59	1
45	4	61	1
46	5		n = 80

-> Sortierung der Wiste aute Hesstamen werden der größe nach aufgelistet und dann gestatut, wie viele in welcher Gruppe

-> noch keine Höufigkeitsverteilung (zu detailliert)

4> Leistungsklassen bilden, damit (STRUKTUR

Aufbereitung von Hesswerten immer so, dass Struktur vorhanden!

relative Häufig Keiten $f(x_i) = \frac{n(x_i)}{\sum_{n}}$ absolute Häufigkeil $n(x_i)$

Harfigkeitssammen funktion Scxi)

empirische Verleil	ungsten ktie Klassen bleite	M FCX. BAncxi)	relativ	Scxi)	Fcxi)	×; - x	(x' - v)2	(y) - y) nr.
1000 - 2000 2000 - 3000 3000 - 4000	2500 3500 4500 3500	5 15 100 110 30	0,025 0,075 0,5 0,2	5 20 120 160 190	01025 O17 O1575 O17 0135 O12	475	2 175625	31878125 34884375 27562500 9025000 65268750 61256250
X = 4025		∑=200	E=1		l,		\$17503750	£22987500e

Median
$$Z = \frac{n}{2} = \frac{200}{2} = 100$$

$$Z = \overline{x_i} - 1 + (0.5 - 0.1) \cdot (\frac{1000}{0.5})$$

$$Z = 3000 + (0.4) \cdot 2000$$

$$Z = 3800$$

$$\sum_{n=2}^{\infty} 87.518.75$$

 $S = 245.83$ -27518.75

he did au

Klassenintervall vonbis unter Klassere were	Klassenmitte	absolute Häufigkeit $n(x_i)$	relative Häu- figkeit $f(x_i)$
27,5 - 32,5	30	4	0,05
32,5 – 37,5	35	8	0,10
37,5 - 42,5	40	16	0,20
42,5 - 47,5	45	22	0,275
47,5 – 52,5	50	14	0,175
52,5 - 57,5	55	12	0,15
57,5 – 62,5	60	4	0,05
$\sum =$		80	1,00

-> Struktur entstelut!

teit-spannen

Klassenbreite uon 5 -> sind noch 7 weste übrig

VOTEN STRUKTUR EMSKLA

wo sieht man die struktur in den Spatten? absolute Häufigkett (in welchem teitintervall am meisten)

=> Gaussche Normalverteilung

Korpegiote intelligent ist normal verteilt (gr. Masse befindet sich in der Mitte)

Welche Struktor?

Zahlen so detailliet wie mogt doustellen u Struktur entstehen lassen

BSO: "Ich sehe den wold vor lauter Bouner nicht mehr,"
Ida stehe ich im wold)

Lames einen Plata finden, wo Wald von oben PLUS einzelne Baume sehen

Wassenbreite mache ich 10: NW 3 Abschnitte -> viel zu weit weg vom Wall -> Struktur ist weg.

intervalle masser mones deach breit sein, damit ygl. modich! Ideshab auch vorher und nachher wenizer ad nehr)

wichtig: der 29 - wert muss drin sein, Intervallbrette vorne u. winten gierch viel 27,5-32,49) -> 32,5 - 37,5
savaburese A

uon 27,5 bis unter 32,5 (also 32,49)

3 STATISTISCHE MAßZAHLEN

Definition:

Statistische Maßzahlen haben die Aufgabe, relativ aufwendig darstellbare Häufigkeitsverteilungen in wenigen Werten zu beschreiben.

3.1 Übersicht: Eindimensionale statistische Maßzahlen

Diese Maßzahlen lassen sich in 2 Gruppen gliedern:

Mittelwerte Mittelwerte kennzeichnen die zent oder die zentrale Tendenz einer V (CLAUB/FINZ	Streuungswerte Streuungswerte sind die Maßzahlen zur Bewertung der Variabilität der Messewerte, also der Breite einer Verteilung. (CLAUS/FINZE 2011:27 ff.)		
Durchschnittswerte, Zentral- werte	Abkürzung	Streuungsmaße, Varia- bilitätsmaße	Abkürzung
rechnerischer West- (1) arithmetisches Mittel (Durchschnittswert, Mittelwert) rur bei metrisch med.	\overline{x}	Spannweite (Variationsbreite, Variationsweite)	·Sw
Medianwert (Zentralwert, Stellungsmittel, mittelster Wert) für Stellungsmittel, wertrisch	Z	(2)) durchschnittliche Abweichung (mittlere Abweichung)	е
Modalwert/Modus (Dichtemittel, häufigster Wert)	D	3) Varianz	S ²
4) Geometrisches Mittel	G	Standardabweichung (mittlere quadratische Abweichung) Abweichung vom &	S
5) Harmonisches Mittel	Ή	5) Quartilsabstand (Hälftesplelraum)	QA
Die drei gebräuchlichsten Mittelw der <i>Modus</i> , der <i>Median</i> und das s sche Mittel.		Die drei gebräuchlichsten s werte sind die Spannweite anz und die Standardabw	, die <i>Vari</i> -

3.1.1 Der Modus

Definition:

Der Modus kennzeichnet innerhalb einer Häufigkeitsverteilung diejenige Merkmalsausprägung einer Variablen, die die größte Häufigkeit aufweist.

Haben wir eine bimodale Verteilung, d.h. weisen zwei Werte die größte Häufigkeit auf, dann besitzt die Verteilung zwei Modalwerte.

Formel:

$$D = n(x_i) \max .$$

$$i = 1, 2, ..., k$$

D Modalwert (Dichtemittel, häufigster Wert) n(x) absolute Häufigkeit k Anzahl der verschiedenen Ausprägungen i Zahl der Teilnehmer

Beispiel:

Musikinteressen von Jugendlichen in der Stadt x im Jahre y

Musikart	Häufigkeit
Klassik	47
Volkstümliche Musik	(302) Modus
Rockmusik	259
Country	44
Hip Hop / Rap	123
Jazz	34
Techno	111 .
Popmusik	80
	1.000

Quelle : fiktiv

wenn 2 mal the 302 I dann hat man hatt 2 Hodi)

1500 Hedion - 18	Hediant	74.47 A 7 18			
wie viele Kinder pro Fam?					
NODODOD	可国国 ·	→ F/= 1 Kind		1	TOTAL TOTAL
四回回回回回				kinder 1	ACCES OF
(1)0+0+0+0+1+ 1+1+	2+3 = 8	9 = 0.9 kinder	$\hat{z} \mathcal{O} = X_{\Lambda}$	× .	g CS
+ 1+1 + 1+0+0+0+0(5)	2+11=16	19 = 1.8 Kinder	= Ø = X2 <	15 &	कु
					_

Anmerkung:

Für alle Merkmalstypen zulässig.

Vor- und Nachteile:

+	t-
lässt sich ohne Rechenaufwand aus der Häufigkeitsverteilung able-	relative Unzuverlässigkeit
sen	
gegen Ausreißer unempfindlich	

(CLAUS/FINZE 2011:29)

3.1.2 Das arithmetische Mittel

Definition:

Das arithmetische Mittel wird im Alltag auch als Mittelwert bezeichnet. Die meisten Durchschnittswerte sind arithmetische Mittel.

(DULLER 2013:90)

3.1.2.1 Berechnung des arithmetischen Mittels aus Einzelwerten

Dieses Maß wird aus der Summe aller Merkmalsausprägungen (Messwerte) einer Variablen, geteilt durch ihre Anzahl, berechnet.

Bei ungeordneten Daten ist das arithmetische Mittel über folgende *Formel* definiert:

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_t + \dots + x_n}{N}$$

oder in abgekürzter Schreibweise:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} (x_i)$$

- x arithmetisches Mittel (Durchschnittswert)
- n Gesamtheit der Merkmalsträger
- k Anzahl der verschiedenen Ausprägungen
- x Merkmalswert

3.1.2.2 Bestimmung des arithmetischen Mittels aus einer Häufigkeitsverteilung

Formel:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i \ n(x_i)$$

Anmerkung:

Ausschließlich für metrische Merkmale zulässig.

"(...) Wenn man einer Londoner Staatsanwältin glauben darf, ist dieses Verschwinden der Großfamilie nur zu begrüßen. Denn Großfamilien machen kriminell. Nur in wenigen Fällen von Jugendkriminalität, mit denen die Staatsanwältin befasst war, kamen die Übeltäter aus Ein-Kind-Familien. Je größer die Familien, desto krimineller. Auch hier der gleiche Fehler beim Umrechnen von Haushalten auf Personen: Kleine Haushalte machen zwar einen großen Prozentsatz der Haushalte, aber einen weit kleineren Prozentsatz der Personen aus."

(KRÄMER 2012:61f.)

Beispiel 1:

Anzahl der zu leistenden Sozialstunden im Rahmen von Urteilen nach dem Jugendgerichtsgesetz von 40 Jugendlichen (nicht klassierte Werte)

Anzahl der Sozialstunden	Anzahl der hierzu verurteilten Jugendlichen	
15	4	60.
25	12	300
35	10	350
45	6	270
55	7	385
150	1	150
	N=40	Σ = 1515
		1

Quelle fiktiv

Beispiel 2: Anzahl der zu leistenden Sozialstunden im Rahmen von Urteilen nach dem Jugendgerichtsgesetz von 40 Jugendlichen (klassierte Werte)

Anzahl der Sozialstunden vonbis unter	Anzahl der hierzu verurteilten Jugendlichen	
0-20	16	160
20-40	7	210
40-60	14	700
60-80	3	210
, , , , , , , , , , , , , , , , , , ,	N=40	Σ = 1280
	1	O alla Clai

Quelle fiktiv

Vor- und Nachteile:

+	-
	reagiert empfindlich auf extreme
	Messwerte → nur unter Berücksich-
	tigung der Verteilung interpretierbar

3.1.3 Der Median

Definition:

Er ist der Wert, der eine nach der Größe geordnete Reihe von Messwerten halbiert, d.h. der Median ist der Wert, unter dem 50% und über dem 50% aller Messwerte der Verteilung liegen.

Um den Median zu ermitteln, wird die Urliste der Größe nach geordnet. Eine ungerade Anzahl n im Datensatz hat genau eine Ausprägung in der Mitte. Sie damit den Median. Handelt es sich beim Datensatz um eine gerade Anzahl n, stehen zwei Ausprägungen in der Mitte. Der Median errechnet sich dann aus dem arithmetischen Mittel dieser beiden Ausprägungen, falls es sich um ein metrisches Merkmal handelt.

(DULLER 2013:92)

3.1.3.1 Berechnung des Median aus Einzelwerten

Nachana, san	(Grundformel)	
	<u>n</u>	
	2	

n = Gesamtheit der Merkmalsträger

Anmerkung:

- Medianstelle $\neq Z$, denn Z= der Wert x_i , der der Medianstelle entspricht
- Median kann nur bei ordinal- und intervallskalierten Daten ermittelt werden

Beispiel:

Das 1. Semester besteht aus 27 Studierenden im Alter von 20 bis 36 Jahren

20 21 21 21 22 22 22 23 23 23 23 23 23 23 24 24 25 26 26 27 28 29 29 30 34 36

3.1.3.2 Medianberechnung aus Häufigkeitsverteilungen

Beispiel:

Intelligenz von Jugendlichen, gemessen in IQ (I)

INPUS 1St Hadian? $\frac{n}{2} = \frac{30}{2} = 15$ warn wird 15
woerschulten? 4×15 4×15 $30 \times 10 \times 90$

IQ Xi	Anzahl der Jugendlichen $n(x_l)$	kumulierte Häufigkeit $S(x_l)$
80	9	9
90	6 ****************************	(15)
100	6	21
110	6	27
120	3	30
	N = 30	30

Intelligenz von Jugendlichen, gemessen in IQ (II)

nann which hyps when solvithen? uberschrithen? uberschrithen

IQ xi	Anzahl der Jugendlichen $n(x_i)$	kumulierte Häufigkeit $Sig(x_iig)$
80	9	.9
90	4	13
(100) <	7	(20)
110	6	26
120	3	29
	N = 29	29

14,5 > kunnulierte Harrfigkeit: 13 ist zu niedzig, 20 ist zu hoch => blogt bei 20% => also 10,100

Beispiel: Altersverteilung eines Semesters

	Alter	Häufigkeit	relative Häufigkeit	Häufigkeits- summenf.	empirische Verteilungsf
		$n(x_i)$	$f(x_i)$	$S(x_i)$	$F(x_i)$
	20	1	0,037	1	0,037
	21	3	0,111	4	0.148
	22)	3 -	0,111	7	0,259
-	23	8	0,296	15	0,555
	24	2	0,074	17	0,629
	25	1	0,037	18	0,666
	26	2	0,074	20	0,740
	27	1	0,037	21	0,777
	28	1	0,037	22	0,814
	29	2	0,074	24	0,888
	30	1	0,037	25	0,925
	34	1	0,037	26	0,925
	36	1	0,037	27	0,962
	Σ	27	≈1,000	27	≈1,000

Modus = $n(x_i)$ (max)

3.1.3.3 Medianberechnung bei klassierten Werten

Liegen Werte nur in Form von Merkmalsklassen vor, muss man bei der Ermittlung des Median anders vorgehen. Hierfür ist zunächst die richtige Medianklasse zu ermitteln, anschließend wird dann der Wert des Median mit Hilfe einer linearen Interpolation geschätzt. Die nach Merkmalsklassen geordnete Tabelle unserer Variable "Alter" hat folgende Form:

Tabelle:

Variable Alter in Altersgruppen

Altersgruppe von bis	Häufigkeit n(x _i)	relative Häufigkeit f(x _i)	Prozent- werte	empirische Verteilungsf. F(x _i)
20-22	7	0,259	25,9	0,259
23-25	11	0,407	40,7	0.666
26-28	4	0,148	14,8	0,814
29-31	3	0,111	11,1	0,925
32-34	1	0,037	3,7	0,962
35-37	1	0,037	3,7	0,999
Σ =	27	≈ 1,000	≈ 100 <u>,</u> 0	≈1,000

Die Medianklasse lässt sich anhand der empirischen Verteilungsfunktion ermitteln. Der Median befindet sich in der Klasse, bei der die empirische Verteilungsfunktion einen kumulierten Wert aufweist, der zum ersten Mal größer als 0,5 ist. In unserem Beispiel ist das der Wert 0.666 bzw. die Klasse 23-bis 25 Jahre.

Formel:

$$Z = \widetilde{x}_{i-1} + \left(0.5 - F_{x}(\widetilde{x}_{i-1})\right) \cdot \left(\frac{b_{i}}{f(x_{i})}\right)$$

 $\widetilde{X}i - 1$

Production S LT unterste Grence
$$S(x_i)$$

 $\frac{1}{2} = \frac{225}{2} = 112.5 = 63$
 $\Rightarrow x_i - 1 = 63 \Rightarrow x_i - 1 = 100$
 $b_i = 10$
 $f(x_i) = 0.223$
 $f_X(x_i - 1) = 0.280$

$$F_x(\widetilde{x}_{i-1})$$
 Wert für die empirische Verteilungsfunktion, die genau unterhalb der Klasse liegt, in der sich der Median befindet
$$f(x_i) \cong \text{imme das } f(x_i) \text{ des in dem der } \text{Median liest}$$

100 - 110 = 100 = UnterprenseUntergrenze der Klasse, in der Z liegt

$$= 7 = \widehat{x}_{1} - 1 + (0,5 - 7_{x}(\widehat{x}_{1} - 1)) \cdot (\frac{bi}{f(x_{1})})$$

$$= 100 + (0,5 - 0,788) \cdot (\frac{10}{0,7023})$$

$$= 109,9$$

$$= 109,9$$

$$= 100 = 100$$
Normal wheiting is known that either this reight

Beispiel:) Intelligenzquotientenmessung bei Studierenden Technikmanagement

	IQ von bis unter	$n(x_i)$	No smatrestering $f(x_i)$	$S(x_i)$	$F(x_i)$
15	70-80	3	0,013	3	0,013
రిక	80-90	15	0,067	18	0,080
95	90-100	45 -4	~ 0,200 [→]	Luc (63)	0,280
105	(100-110) ←	50	0,223	(113)	0,503
115	110-120	57	0,253	170	0,756
125	120-130	36	0,160	206	0,916
135	130-140	12	0,053	218	0,969
142	140-150	7	0,031	225	1,000
		5 = (225) TN	1,000		

Vor- und Nachteile: Hedian (112,5), 0 = 128 109,8

+	-
Unempfindlich gegenüber Ausrei- ßern	kommt u.U. als Merkmalswert selbst nicht vor
einfach zu ermitteln	

weldus Intervall passt bei 112,5: GKLASSE 100-110 passt

"Sollen wir das arithmetische Mittel als durchschnittliche Körpergröße nehmen und den Gegner erschrecken, oder wollen wir ihn einlullen und nehmen den Median?"

(KRÄMER 2012:71)

Rechenbeispiel:

Im fünfköpfigen Vorstand der X - AG sitzen Mänädscher im Alter von 48, 53, 53, 55 und 62 Jahren. Man plant eine Geschäftsreise nach Bangkok. Das älteste Vorstandsmitglied kann jedoch nicht mitreisen, weil ihm sein

Arzt wegen hohen Blutdrucks eindringlich von der möglicherweise sehr anstrengenden Reise abgeraten hat. An seiner Stelle kann nun ein junger dynamischer Prokurist im Alter von 35 Jahren mitreisen. Wie ändert sich der Zentralwert und das arithmetische Mittel der Altersverteilung der Geschäftsleute?

http://www.von-der-lippe.org/dokumente/Des-auf.pdf S.13

3.1.4 Die Spannweite

Definition:

juroples Aller 20

hochstes Alter: 36

Spannuseite:

36-20 = 16

Die Spannweite gibt die Länge des Bereiches an, über den sich die Merkmalswerte verteilen. Sie ergibt sich aus der Differenz des größten und des kleinsten beobachteten Merkmalswertes.

(BOURIER 2013:89)

Anmerkung:

Die Spannweite findet in der Regel nur bei metrischen Daten Anwendung. Liegen klassierte oder komparative Merkmale vor, kann die Spannweite nur näherungsweise bestimmt werden. Man erreicht dies, indem man die kleinste Klassengrenze von der größten Klassengrenze abzieht.

Formel:

 $Sw = x_n - x_1$

Sw Spannweite
xn größter beobachteter
Merkmalswert
xn kleinster beobachteter
Merkmalswert

!

Beispiel 1:

Schulgrößen in einer Großstadt (Zahl der Schüler)

Klassen vonbis www	Anzahl	
200 - 400	4	$300 \times 4 = 1.200$
400 - 600	9	$500 \times 9 = 4.500$
600 - 800	9	$700 \times 9 = 6.300$
800 - 1000	12	$900 \times 12 = 10.800$
1000 - 1200	7	$1100 \times 7 = 7.700$
1200 - 1400	2	$1300 \times 2 = 2.600$
	n = 43	$\bar{x} = 770$

Quelle: fiktiv

Beispiel 2:

Im 1. Semester sind 30 Studierende im Alter zwischen 19 und 42 Jahren. Die altersmäßige Spannweite berechnet sich wie folgt:

42 - 19 Jahre = 23 Jahre

Sw = 23 Jahre

Vor- und Nachteile:

+	-
einfach zu berechnen	Ausreißer haben großen Einfluss
schneller erster Eindruck über Streuung	keine Aussage über die Streuung zwischen den beiden Extremwer- ten

Bsp.: jungle = 20, altester = 40 -> man weiß nur Extremwerte, Rest nicht ruie sieht Verteilung aus? einheitlich = homogen, untersch. = heterogen max. streuung

3.1.5 Standardabweichung und Varianz

Definition Varianz:

Die Varianz ergibt sich aus der Summe der quadrierten Abweichungen der Merkmalswerte vom arithmetischen Mittel. Diese Summe wird dann durch die Anzahl der Merkmalsträger dividiert.

Definition Standardabweichung:

Die Standardabweichung berechnet sich aus der Quadratwurzel der Varianz.

(BOURIER 2013:97)

3.1.5.1 Die Standardabweichung

a) Berechnung aus Einzelwerten

Folgende sechs Schritte führen zur Standardabweichung:

- 1. Berechnung von \bar{x} (a) Spannweike
- 2. Berechnung der Differenzen zwischen den Merkmalswerten und x Bep. 1-376 - (Ø €) 843 = 327
- 3. Quadrieren der Differenzen von 2
- 4. Addieren der quadrierten Differenzen
- 5. Teilen der Summe der quadrierten Differenzen durch die Anzahl der Werte / dusch n / Teilnehmeraul ⇒ Varjant
- 6. Wurzel aus dem unter 5. berechneten Durchschnitt
- Variationskoefficient &

88p S. 28.

=> Vouications to efficient
$$V = \frac{\text{Standard abusidung S}}{\text{culturn. Hittel } X} = \frac{39811}{849} = 0147$$

Wie ist
$$0.5$$
 Trennlinie zw. Homogenitot u. Hetelogenitot! $V < 0.5 = Homogenitot$

		0
		0

Formel:

$$s = \sqrt{\left(\frac{1}{n} \cdot \sum_{i=1}^{k} (x_i - \overline{x})^2\right)}$$

s Standardabweichung

n Gesamtheit der Merkmalsträger

x Merkmalswert

k Anzahl der verschiedenen Ausprägungen

 \overline{x} arithmetisches Mittel

Anmerkung:

Nur für metrische Merkmale.

Beispiel:

wenn jeder gleich viel verdienen dann Abweichung = O
Bruttoanfangsgehälter bei verschiedenen Trägern Sozialer Arbeit (Halbtagsstelle)

Stourna wird Eleine

Strenning wird kieiner wenn Ludwig u. Simone rous!->gringers strenningsmob

		hohe		
	in EURO	Streum $x_i - \overline{x}$	$(x_i - \overline{x})^2$ and	h quadrioen &
Ernst	778	- 71	5.041	
Pauline	933	84	7.056	
Otto	604	- 245	60.025	
Karin	629	- 220	48.400	
Ludwig	520	- 329	108.241	
Friedrich	703	- 146	21.316	
Simone	1.776 34	>927	859.329	
7 Pusonen	5.943		1.109.408 -> Zwi	chenegebnis
, , source	$\varnothing \bar{x} = 849 = +in$. Gemeinsamkeit/	Ideal Rustand: alle vex Quelle: fik	tienen deich
_	102/ 52	_	Quelle: fik	iv

9 Spannweite = 1.776-520 = 1.256

-Thomas Spaninweite ?

- O withmethadus Wittel = 849
- => Teststelling: wie groß ist Strening?

 Bezugspunkt = auithmetisches hittel

 Sman nuss wissen, wovon etw. streut!

 Jum strening zu ermitteln

who arithmetischen Hittel ab? (Diffeent or u. Entommen

=> auithmetisches Mittel; orientlet sich an Realität (nicht sagen, was sout man in diesem Job & verdienen?") Summe du quadr. Abweichungen von duch 7 teilen, DANN belommt man Vollanz

1.109.408: 7=158.486, DE

quarter expression mail so mant -> Mar de stremme

>>DESHALB 1158.486.9 = 398,10€ duichedhn. Abweichung vom & S

hier Minzielen,
weiß man?
- alla 5 ppleila institte
- Berugspunkt
- Berugspunkt
- Horale Homogental

- je grābe Strecke 28050 gróße Strewng

b) Berechnung aus einer Häufigkeitsverteilung

Formel:

$$s = \sqrt{\left(\frac{1}{n} \cdot \sum_{i=1}^{k} (x_i - \overline{x})^2 \cdot n(x_i)\right)}$$

Beispiel:

Tägliche Kosten von Fremdunterbringungen bei verschiedenen Trägern im Rahmen der HzE

Kosten vonbis unterEURO	Anzahl Inanspruchnahmen HzE $n(x_i)$	Klassenmitte	To Control of the Con	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$(x_i-\overline{x})^2 n_i$
100-200	3	150	450	-130	16 900	50 700
200-300	9	250	2 250	-30	900	8 100
300-400	7	350	2 450	70	4 900	34,300
400-500	1	450	450	170	28 900	28 900
N =	20		Σ= 5 600			
			$\bar{x} = 280$			Σ = 122 000

Aussagewert der Standardabweichung:

- Die Standardabweichung s ist ein Maß der Streuung von Abweichungen um \bar{x}
- s = 0 heißt, alle Merkmale haben dieselbe Merkmalsausprägung und liegen damit auf der Geraden von \bar{x}
- Je größer s, desto größer die Streuung um \bar{x} ; je geringer s, desto geringer die Streuung um \bar{x} .
- Das Verhältnis des Wertes von s zu \bar{x} gibt einen Anhaltspunkt für die Streuung Diesen Anhaltspunkt liefert der sog. Variationskoeffizient.

Der Variationskoeffizient wird nach folgender Formel berechnet:

Formel:

 $v = \frac{s}{\overline{x}}$

v Variationskoeffizient s Standardabweichung \overline{x} anthmetisches Mittel

Nimmt ν Werte über 0,5 an, so kann man sagen, dass die untersuchte statistische Masse inhomogen ist (Faustregel).

3.1.5.2 Die Varianz s^2

Definition:

Die Varianz s^2 ist ein weiteres und ebenfalls sehr häufig gebrauchtes, aber für den Ungeübten recht unhandliches Streuungsmaß. Die Varianz erhält man dadurch, dass man vorgeht wie bei s, am Ende wird jedoch darauf verzichtet, die Wurzel zu ziehen.

Vor- und Nachteile:

-
Rechenvorgang inhaltlich nicht nachvollziehbar, nicht interpretierbar (Bourier 2013: 99)
Informationsgehalt gering

Größere Abweichungen werden durch die Quadrierung stärker berücksichtigt als Kleinere. Ob das ein Vorteil oder Nachteil ist, hängt vom jeweiligen Untersuchungsgegenstand ab.

Berechnungsoptionen Merkmalstyp/Maßzahl:

	Modus	Median	arithm. Mittel
metrisch =	*	V	No.
komparativ	×P*	*	34
klassifikatorisch	V	38	*

relative Haufigkeiten fexi)

3.2 Zweidimensionale statistische Maßzahlen

Bei bivariablen (zweidimensionalen) Häufigkeitsverteilungen sind sogenannte Beobachtungspaare Gegenstand der statistischen Untersuchung. Wie das Wort bereits sagt, werden beide Variablen gemeinsam erhoben und betrachtet. Es geht letztlich darum, den Zusammenhang zwischen beiden herauszufinden.

(CLAUB/FINZE/PARTSCH 2013:54)

3.2.2 Zweidimensionale Häufigkeitsverteilungen (bivariate Statistik): Kontingenz-/ Kreuztabelle

Beispiel:

Für 50 Frauen und Männer werden die Schuhgröße und das Monatseinkommen aufgelistet. Jedem Merkmalsträger werden zwei Merkmale zugeordnet.

Person (Geschlecht)	Schuhgröße (x)	Einkommen in € (y)
1 (m)	46	10.000
2 (m)	46	10.000
3 (m)	46	3.000
4 (m)	45	10.000
5 (m)	45	10.000
6 (m)	45	5.000
7 (m)	44	10.000
8 (m)	44	5.000
9 (m)	44	5.000
10 (w)	44	3.000
11 (m)	43	. 10.000
12 (m)	43	5.000
13 (m)	43	5.000
14 (m)	43	3.000
15 (m)	43	2.000
16 (m)	42	5.000
17 (m)	42	5.000
18 (w)	42	3.000
19 (m)	42	3.000
20 (m)	42	1.000
21 (m)	41	5.000
22 (m)	41 '	3.000
23 (m)	41	3.000
24 (w)	41	2.000
25 (w)	41	2.000

Person (Geschlecht)	Schuhgröße (x)	Einkommen in € (y)
26 (m)	41	2.000
27 (w)	41	1.000
28 (m)	40	5.000
29 (w)	40	3.000
30 (w)	40	3.000
31 (w)	40	2.000
32 (w)	40	2.000
33 (w)	40	1.000
34 (w)	39	5.000
35 (m)	39	3.000
36 (w)	39	2.000
37 (w)	39	1.000
38 (w)	. 39	1.000
39 (w)	39	1.000
40 (w)	39	1.000
41 (w)	39	1.000
42 (w)	38	3.000
43 (w)	38	2.000
44 (w)	38	1.000
45 (w)	38	1.000
46 (w)	37	5.000
47 (w)	37	2.000
48 (w)	37	2.000
49 (w)	37	1.000
50 (w)	37	1.000

3.2.3 Absolute und relative Häufigkeit (integrierte Kreuztabelle)

Die gebräuchlichste Darstellungsform von bivariaten Datenberechnungen ist die Kontingenz-/ oder Kreuztabelle. Sie lässt bereits erste Rückschlüsse über den Zusammenhang von zwei Variablen zu.

		mtl.	Einkomme	n in €	7000	учения админиров, в
Einkommen (y) Schuhgröße (x)	1.000	2.000	3.000	5.000	10.000	
46	0 (0,00)	0 (0,00)	1 (0,02)	0 (0,00)	2 (0,04)	3
45	(0,00)	0 (0,00)	0 (0,00)	1 (0,02)	2 (0,04)	3
44	(0,00)	0 (0,00)	(0,02)	2 (0,04)	1 (0,02)	4
43	0. (0,00)	1 (0,02)	1 (0,02)	(0,04)	(0,02)	5
42	1 (0,02)	0 (0,00)	2 (0,04)	2 (0,04)	(0,00)	5
41	1 (0,02)	3 (0,06)	2 (0,04)	1 (0,02)	(0,00)	7
40	1 (0,02)	2 (0,04)	2 (0,04)	1 (0,02)	0 (0,00)	6
39	5 (0,10)	1 (0,02)	1 (0,02)	1 (0,02)	(0,00)	8
38	2 (0,04)	1 (0,02)	1 (0,02)	0 (0,00)	0. (0,00)	4
37	2 (0,04)	2 (0,04)	0 (0,00)	1 (0,02)	.0 (0,00)	5
	12	10	11	11	6	50

3.2.4 Übersicht statistischer Maßzahlen für zweidimensionale Häufigkeitsverteilungen

Klassifikatorische Merkmale	Assoziationsmaße	z.B. die statistische Unab- hängigkeit SU bzw. der Kontingenzkoeffi- zient C
Komparative Merkmale	Kontingenzmaße	z.B. der Rangkorrelations- koeffizient R von Krueger- Spearman
Metrische Merkmale	Korrelationsmaße	z.B. der Maßkorrelations- koeffizient r von Bravais- Pearson

3.2.5 Mögliche Kombinationen: Merkmal/Maßzahl

Merkmal y Merkmal x	Nominalskala	Ordinalskala	Metrische Skala
Nominalskala	su/C	SU/C	SU/C
.Ordinalskala	SU/C	R	R
Metrische Skala	SU/C	R	r

Treffen unterschiedliche Messniveaus aufeinander, wird die Maßzahl für das jeweils niedrigere Merkmal herangezogen.

3.2.6 Interpretation der Maßzahlen

Mit der Berechnung von Korrelationskoeffizienten kann zunächst nur ein rein mathematischer Zusammenhang aufgezeigt werden. Ob tatsächlich ein kausaler Zusammenhang besteht, ist damit nicht unbedingt gesagt. Häufig handelt es sich um Scheinkorrelationen.

Oft liegt eine indirekte Abhängigkeit vor, weil zwei Merkmale kausal mit einem dritten Merkmal (intervenierende Variable) zusammenhängen.

Beispiel:

Wenn festgestellt wird, dass Männer im Straßenverkehr mehr Unfälle verursachen als Frauen, dann muss das nicht darauf zurückzuführen sein, dass Männer schlechter Auto fahren. Es kann einfach daran liegen, dass die Männer im Untersuchungszeitraum mehr Kilometer gefahren sind als die Frauen und daher ein erhöhtes Unfallrisiko hatten. Das Merkmal "Geschlecht" ist dann nur indirekt über das Merkmal "Kilometerleistung" mit dem Merkmal "Unfallhäufigkeit verbunden.

"Solche übersehenen Hintergrundvariablen produzieren Nonsenskorrelationen zuhauf. Angefangen bei den Klapperstörchen, deren Zahl hoch positiv mit den bundesdeutschen Geburten korreliert, über die Zahl der unverheirateten Tanten eines Menschen und den Kalziumgehalt seines Skeletts (negative Korrelation), Heuschnupfen und Weizenpreis (negative Korrelation), Schuhgröße und Lesbarkeit der Handschrift (positive Korrelation), Schulbildung und Einkommen (positive Korrelation) bis zu Ausländeranteil und Kriminalität (positive Korrelation) spannt sich ein weiter Bogen eines falsch verstandenen bzw. absichtlich missbrauchten Korrelationsbegriffs."

(KRÄMER 2012:172)

Definition:

Korrelationskoeffizienten messen die Stärke des Zusammenhangs zweier Merkmale. Er liegt im Wertebereich (-1≤ 0 ≤ +1),

d.h.

bei-1: hoch negativer Zusammenhang, hohes x gepaart mit niedrigem y bei +1: hoch positiver Zusammenhang, hohes x gepaart mit hohem y bei 0: beide Variablen in keinem statistischen Zusammenhang

Relevant für die Interpretation der Korrelationskoeffizienten sind das Vorzeichen und der Betrag. Aus dem Vorzeichen geht die Richtung des Zusammenhangs hervor. Der Betrag ermöglicht eine Aussage bezüglich der Stärke des Zusammenhangs.

(vgl. DULLER 2013:124)

3.2.7 Statistische Unabhängigkeit (SU für klassifikatorische Merkmale)

Frage:

Besteht ein Zusammenhang zwischen gemeinsam untersuchten Merkmalen?

Unabhängigkeit besteht immer dann, wenn die Verteilung auf die einzelnen Merkmalsausprägungen der Zeilen bzw. Spalten den jeweiligen Randverteilungen entspricht.

Beispiel:

Zusammenhang der Merkmale "Schultyp des Kindes" und "soziale Stellung der Eltern"

Soziale S. der Eltern y Schultyp des Kindes	Arbeiter	Angestellter	Beamter	Selbständiger	
Hauptschule	12	• 4	2	2	20
Realschule	8	4	4	4	20
Gymnasium	0	2	4	4	10
	20	10	10	10	50

Beispiel:

Zusammenhang der Merkmale "Schultyp des Kindes" und "soziale Stellung der Eltern"

Soziale S. der Eltern y Schultyp les Kindes	Arbeiter	Angestellter	Beamter	Selbständiger	
Hauptschule	$\frac{20\cdot 20}{50} = 8$	$\frac{20\cdot 10}{50} = 4$	$\frac{20\cdot 10}{50} = 4$	$\frac{20\cdot 10}{50} = 4$	20
Realschule	$\frac{20\cdot 20}{50} = 8$	$\frac{20\cdot 10}{50} = 4$	$\frac{20\cdot10}{50}=4$	$\frac{20\cdot 10}{50} = 4$	20
Gymnasium	$\frac{20\cdot10}{50}=4$	$\frac{10\cdot 10}{50} = 2$	$\frac{10\cdot 10}{50} = 2$	$\frac{10\cdot 10}{50} = 2$	10
	20	10	10	10	50

Die SU ist ein unpräzises Instrument zur Feststellung eines Zusammenhangs. Eine brauchbare Messung liefert der sog. Kontingenzkoeffizient C.

		U
		0

3.2.8 Der Kontingenzkoeffizient

Definition:

Kontingenzkoeffizienten beschreiben die Stärke des Zusammenhangs zwischen zwei Merkmalen, von denen mindestens eines nominalskaliert ist.

(BOURIER 2013:223)

Besteht keine Abhängigkeit, nimmt der Kontingenzkoeffizient C den Wert 0 an. Mit zunehmender Abhängigkeit wird der Kontingenzkoeffizient C größer. Bei vollständiger Abhängigkeit erreicht C den maximal möglichen Wert C_{max}.

(BOURIER 2013:226)

Formel:

$$C = \sqrt{\frac{\sum_{i=1}^{k} \sum_{j=1}^{m} \frac{n_{ij}^{2}}{n_{i} \cdot n_{j}} - 1}{\min \{(k-1), (m-1)\}}}$$

L = Lukanal y → Bsp.: 4 -> Arbeite, Angest., Browner, selectionally → Bsp.: 3 -> HS, ES, Gym

Formalisierte Tabelle:

S. de	Soziale er Eltern		Ł				
Schultyp des Kindes		Arbeiter Angestellter		Beamter y ₃	Selbständiger y4	Zeilen- summe	
Т	-	12	4	2	2	20	
HS	x_1	nıı	n 12	n 13	<i>n</i> 14	nı	
		8	4	4	4	20	
RS ₹	<i>x</i> ₂	n 21	n ₂₂	n23	N24	n ₂	
		<u>0</u>	2	4	4	10	
Gym	$\int x_3$	n 31	n32	n 33	<i>n</i> ₃₄	<i>n</i> ₃	
Spalten	summe	<i>n</i> 1	n ₂	пз	M4	n	
		20	10	10	10	50	

C= Konting em Koeffizient

$$1. = \frac{n_{11}^{2}}{n_{1} \cdot n_{1}} + \frac{n_{12}^{2}}{n_{2} \cdot n_{1}} + \frac{n_{21}^{2}}{n_{2} \cdot n_{1}} + \frac{n_{22}^{2}}{n_{2} \cdot n_{2}} - 1$$

$$20^{2} \cdot 3^{2} \cdot 3^{2} \cdot 10^{3} + \frac{n_{22}^{2}}{n_{2}^{2} \cdot n_{2}}$$

$$\frac{20^{2} + 3^{2} + 10^{3} + 13^{2}}{30.25} + \frac{30.25}{30.25}$$

$$= \frac{400}{750} + \frac{25}{300} + \frac{100}{730} + \frac{300}{500} - 1$$

$$C = \frac{0,1667}{(2-1),(2-1)} = \frac{0,1667}{1} = 0,44$$

Zu berechnen ist also:

$$\frac{n_{11}^{2}}{n_{1} \cdot n_{1}} + \frac{n_{12}^{2}}{n_{2} \cdot n_{1}} + \frac{n_{13}^{2}}{n_{3} \cdot n_{1}} + \frac{n_{14}^{2}}{n_{4} \cdot n_{1}} + \frac{n_{21}^{2}}{n_{1} \cdot n_{2}} + \frac{n_{22}^{2}}{n_{2} \cdot n_{2}} + \frac{n_{23}^{2}}{n_{3} \cdot n_{2}} + \frac{n_{24}^{2}}{n_{4} \cdot n_{2}} + \frac{n_{31}^{2}}{n_{4} \cdot n_{2}} + \frac{n_{31}^{2}}{n_{1} \cdot n_{3}} + \frac{n_{32}^{2}}{n_{2} \cdot n_{3}} + \frac{n_{33}^{2}}{n_{3} \cdot n_{3}} + \frac{n_{34}^{2}}{n_{3} \cdot n_{4}} - 1$$

Setzt man die entsprechenden Zahlen aus der Tabelle ein, so ergibt sich: ((1) 12 (Antall Arbelte in #5) 12

Sich: (13) = (Antali) Aresino in 1131 = 201en. Spatiersumme
$$\frac{12^{\frac{1}{2}}}{20 \cdot 20} + \frac{4^2}{10 \cdot 20} + \frac{2^2}{10 \cdot 20} + \frac{2^2}{10 \cdot 20} + \frac{8^2}{20 \cdot 20} + \frac{4^2}{10 \cdot 20} + \frac{4^2}{10 \cdot 20} + \frac{4^2}{10 \cdot 20} + \frac{4^2}{10 \cdot 10} + \frac{4^2}{10 \cdot 10} + \frac{4^2}{10 \cdot 10} = 3$$
with allen Felden machen and dark (1) => -1 width vergessen 3

Der Wert von C beträgt folglich:

$$C = \sqrt{\frac{0,24}{\min \{(4-1),(3-1)\}}} = \sqrt{\frac{0,24}{2}} = 0,35$$

c = 0,35 Interpretation: Esmhang nicht groß (nicht erkennber)) = schwach mittleer Zomhang

3.2.9 Rangkorrelationskoeffizient R von Krueger – Spearman (für komparative Merkmale)

Formel:

$$R = 1 - \frac{6\sum_{i=1}^{n} \dot{d}_{i}^{2}}{n \left(n^{2} - 1\right)}$$

für Rangmerkmal
PUS (metrisch) umcodken!
85p. s. S. 433

 d_i Differenz des Rangplatzpaares $\left(\mathcal{X}_i - \mathcal{Y}_i \right)$ n Anzahl der Rangplätze

Zur Berechnung:

Gegeben sind zwei Rangfolgen X und Y. Gefragt ist nach dem Grad des Zusammenhangs zwischen ihnen.

Bei Kontingenzbeffizient:

4) Formel 88p. S.40

-> wieso down

Rang Korrelations Koefficient R TV A-Note B-Note Rangeliff di? 4,4 0,4 0,76 1 418 2 5,0 5,1 =0,1 0,01 5,8 5,6 0,7 0,04 3 5,5 5,7 -0,2 0,04 4 5,3 5,7 -0,4 0,16 5 6 5,0 3,5 0,5 0,25 7 5,1 513 -0,2 0,04 8 4,6 4,9 -0,3 0,09 9 4,7 4,4 0,3 0,09 10 319 318 014 0101 11 3,5 5,7 -0,2 0,04 12 5,4 5,4

5,4 0 0 \(\sum_{=0.93}

$$R = 1 - \frac{6 \cdot 0.93}{12 \cdot (42^2 - 1)} = 1 - \frac{5.58}{12.743} = 1 - \frac{5.58}{12.743}$$

n 12

Beispiel 1:

Im Rahmen eines Hochschulprojektes bewerten die beiden Studentinnen Anja und Tanja die Kitas der Gemeinde. Ihre Aufgabe besteht darin, den Gesamteindruck der Einrichtung zu bewerten und Rängen zuzuordnen. Dabei sind die beiden Mädels zu folgenden Bewertungen gekommen:

Kindertagesstätte	Anja X Rang oder Platz	Tanja Y Rang oder Platz
St. Johanna	2	1
Karl Marx KiTa	5	5
Flohkiste	6	7
El Alamein	1	3
Käpt'n Seebär	8	8-
KiTa im Argonnerwald	3	2
Wasserfrösche	4	4
Zipfelmützen	7	6

Anja und Tanja konnten das Ergebnis zur Qualität natürlich nicht metrisch messen, sondern konnten nur Angaben mit einem ordinalen Merkmal machen: "besser als…", "schlechter als…". R misst nun, wie groß die Übereinstimmung der Ergebnisse der beiden Mädels ist.

Beispiel 2: Berechnung von R für Rangfolge aus der KiTa Bewertung

KiTa	Anja X Rang oder Platz	Tanja Y Rang oder Platz	Rang- differenz (d _i)	$\frac{d_i^2}{(x-y)^2}$
St. Johanna	2	1	1	1
Karl Marx KiTa	5	5	0	0
Flohkiste	6	7	-1	11
El Alamein	1	3	-2	4
Käpt'n Seebär	8	8	0	0
KiTa im Argon- nerwald	3	2	1	1
Wasserfrösche	4	4 .	0	0
Zipfelmützen	7	6	1	· 1
n=8 ⁻				$\sum d_i^2 = 8$

$$R = 1 - \frac{6 \cdot (\text{summe d};^2)}{n \cdot (n^2 \cdot 1)} = \frac{6 \cdot 8}{8 \cdot (8^2 - 1)} = \frac{48}{8 \cdot 63} = \frac{48}{509}$$

$$= 1 - \frac{48}{509}$$

$$= 0.905 = \text{hoher 4smhars 2w. beiden 3}$$
41

$$R = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

$$R = 1 - \frac{6 \times 8}{8 \times 63}$$

$$R = 0.905$$

R= 0,905: Großer Zusammenhang zwischen der Einschätzung von Anja und Tanja besteht. Was bedeutet das Ergebnis? Welche Hypothesen?

Beispiel 3:Berechnung von R für den Zusammenhang zwischen Leistungseinschätzungen in einer berufsbildenden Werkstätte

Ausbilder Auszubildende	Meister/ Rang oder Platz	Sozialarbeiter/ Rang oder Platz	Rangdifferenz (d _i)	d_i^2
Hans	1	3	-2	4
Georg ·	2	4	-2	4
Susi	3	1	2	4
Maike	4	2	2	4
Jenny	5	9	-4	16
Maik	6	5	1	11
Peter	7	7	0	0
Lisa	8	6	. 2	4
Harald	9	e 8·	1	1
n=9				$\sum d_i^2 = 38$

$$R = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

$$R = 1 - \frac{6 \times 38}{9 \times 80}$$

$$R = 0,683$$

R= 0,683 drückt aus, dass es einen mittleren Zusammenhang gibt zwischen der Rangfolge der Einschätzung des Meisters und des Sozialarbeiters. Was bedeutet das Ergebnis? Welche Hypothesen sind mög-

			0

Die Verwandlung von metrischen Messwerten in Rangplätze Beispiel: Vorlesungsbesuch und Studienerfolg

) x gefelt: 1. Plate	Vorname	x (Studienerfolg)	y (nicht besuchte Vorlesungen		
Ido u. Filte naben beide XX yfellet 5750 eig. L. u. 3. Plate => ogmeinsam any 5=) 5: 2=215	(Studierierioig)		y (mont besut	one vonesungen)	
3. Plate => gemeinson dy 5=> 5:2=215		komparatives Merkmal	metrisches Merkmal → komparatives Merkmal		
	Max	5	0 \	1	
otto: Plate 3	Udo	2	1	2,5	
630)	Fritz	6	1	2,5	
	Otto	4	5	4	
	Karl	1	12	5	
	lgor	3	14./	6	

Der Rangplatzunterschied zwischen Otto und Karl erscheint ebenso groß wie derjenige zwischen Karl und Igor, obwohl die Zahlen x_i ausweisen, dass sich die Häufigkeit des Fehlens bei Otto (5mal) und Karl (12mal) viel stärker unterscheidet als zwischen Karl (12mal) und Igor (14mal). Errechnen Sie R. Was bedeutet das Ergebnis?

3.2.10 Maßkorrelationskoeffizient r von Bravais – Pearson (metrische Merkmale)

nur für metrisch

Definition:

Der Maßkorrelationskoeffizient nach Bravais-Pearson wird mit r abgekürzt. Meist ist nur vom Korrelationskoeffizienten nach Pearson die Rede. Wie der Name es ausdrückt, kennzeichnet diese Maßzahl die Stärke des linearen (statistischen) Zusammenhangs zwischen den einzelnen Werten von zwei Variablen. Man spricht auch vom Zusammenhang von zwei Stichproben metrischer oder intervallskalierter Werte.

Im Unterschied zum Korrelationskoeffizienten von Bravais-Pearson misst der Rangkorrelationskoeffizient von Krueger-Spearman den Zusammenhang zwischen den Merkmalen X und Y indirekt, da der Zusammenhang zwischen den Rangziffern gemessen wird. Der Rangkorrelationskoeffizient ermittelt, wie stark die Tendenz ausgeprägt ist, dass mit einem höheren Rangplatz für Merkmal X ein höherer (oder niedrigerer) Rangplatz für Merkmal Y verbunden ist.

(BOURIER 2013:221)

TV	Lite Olk	18 71	(x.x)	(g-3)	(x-x)2	(y-y) ²	(x-x)x (y-g)	
1	174	62	- 3	-8	9	64	24	
2	182	75	5	5	25	25	25	
3	178	63	1	- 7	1	49	- 7	
4	190	95	43	25	769	625	325	
5	772	69	- 5	-1	25	1	5	
6	165	58	- 12	_ 12	144	144	144	
7	172	78	-5	8	25	64	-40	
8	189	84	12	74	744	196	168	
9	468	63	- 9	-8	81	64	72	,
10	181	70	4	0	16	0	0	
11	172	72	-5	2	25	4	-40	
12	178	65	4	-5	1	25	-5	
43	174	30	-3	0	9	0	0	
74	184	65	7	- 5	49	25	-35	
45	189	78	42	8	144	64	96	
16	167	60	-10	- 10	100	100	100	
17	472	65	- 5	- 5	25	25	25	0
18	184	72	7	2	49	4	74	
19	768	65	-9	.5	31	25	45	
20	181	72	4	2	16	4	8	
h=20	∑ 3540	£1400			Σ-1138	<u>\Sigma 1508</u>	∑ 954	
arith.	Mittel X	3540	- 777		4 .	954 =	בבי	

 $\bar{y} = \frac{7400}{30} = 70$

Sxy = 1 - 954 = 477 Sx = (30.4438) = 7,54 Sy = 19.1508) = 8,68

 $= r = \frac{47.7}{7.54 \cdot 8.68} = r = 0.73$

Beispiel:

Bei 10 Sozialarbeitern wurde das Alter (x) und das Jahreseinkommen (y) ermittelt. Die Werte sind in der nachfolgenden Tabelle dargestellt.

Code Nr.	Alter des Beschäftig- ten (x)	Jahreseinkommen (y) in 1000 Euro
1	22	19
2	25	22
3	26	21
4	26	23
5	27	23
6	28	24
7	30	29
8	30	27
9	35	33
10	41	· 29

Es stellt sich nun die Frage, ob es einen Zusammenhang zwischen dem Alter und der Einkommenshöhe bei Sozialarbeitern gibt.

Formel:

Formel:

Code DI Atter Einkommen
$$x - \overline{x}$$
 $(x - \overline{x})^2$ $y - \overline{y}$ $(y - \overline{y})^2$ $(x - \overline{x}) \cdot (y - \overline{y})$

immed Summe belections:

$$r = \frac{s_{xy}}{s_x \cdot s_y}$$

(1) within Hittel up $x = \overline{x}$ $u \cdot y = \overline{y}$ belection on $u \cdot \overline{abelle}$ fallen!

$$= \frac{A_1 \cdot 9}{27 \cdot \sqrt{A7}} = 0.84 \cdot 25 \text{ minutes}$$

Anmerkung: sxy wird als Kovarianz bezeichnet. Sie errechnet sich SO:

$$S_{xy} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{1} (x_i - \overline{x})(y_j - \overline{y}) = \frac{1}{10} \cdot 179 = 17.9$$

$$EAHLER$$
Tormel

sx und sy ist die jeweilige Standardabweichung:

$$s_{x} = \sqrt{\frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2}}; \quad s_{y} = \sqrt{\frac{1}{n} \sum_{j=1}^{1} (y_{j} - \bar{y})^{2}}$$

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2}}; \quad s_{y} = \sqrt{\frac{1}{n} \sum_{j=1}^{1} (y_{j} - \bar{y})^{2}}$$

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2}}; \quad s_{y} = \sqrt{\frac{1}{n} \sum_{j=1}^{1} (y_{j} - \bar{y})^{2}}$$

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2}}; \quad s_{y} = \sqrt{\frac{1}{n} \sum_{j=1}^{1} (y_{j} - \bar{y})^{2}}$$

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2}}; \quad s_{y} = \sqrt{\frac{1}{n} \sum_{j=1}^{k} (y_{j} - \bar{y})^{2}}$$

$$= \sqrt{\frac{1}{n} \sum_{j=1}^{k} (x_{i} - \bar{x})^{2}}; \quad s_{y} = \sqrt{\frac{1}{n} \sum_{j=1}^{k} (y_{j} - \bar{y})^{2}}$$

$$= \sqrt{\frac{1}{n} \sum_{j=1}^{k} (y_{j} - \bar{y})^{2}}; \quad s_{y} = \sqrt{\frac{1}{n} \sum_{j=1}^{k} (y_{j} - \bar{y})^{2}}$$

Beispiel 1:

Stärke des Zusammenhangs zwischen dem Alter von Sozialarbeitern und ihrem Jahreseinkommen

NR	Al- ter	Jah- res-	$(x-\overline{x})$	$(x-\overline{x})^2$	$(y-\overline{y})$	$(y-\overline{y})^2$	$(x-\overline{x})\times(y-\overline{y})$
	(x)	EK (y) in 1000€					
1	22	19	-7	49	-6	36	42
2	25	22	-4	16	-3	9	12
3	26	21	-3	9	-4	16	12
4	26	23	-3	9	-2	4	6
5	27	23	-2	4	-2	4	4
6	28	24	-1	1	-1	1	1
7	30	29	1	1	4	16	4
8	30	27	1	·1	2	4	2
9	35	33	6	36	8	64	48
10	41	29	12	144	4	16	48
Σ	290	-250		270		170	179
Arith m. Mittel	29	25					

Die Rechnung lautet:

$$s_{xy} = \frac{1}{10} \cdot 179 = 17,9$$
 (Zähler / Formel)

$$s_x = \sqrt{\frac{1}{10} \cdot 270}$$
 \longrightarrow $s_x = \sqrt{27}$ \longrightarrow $s_x = 5,2$ (Nenner / Formel)

$$s_y = \sqrt{\left(\frac{1}{10} \cdot 170\right)} \longrightarrow s_y = \sqrt{17} \longrightarrow s_y = 4,1 \text{ (Nenner / Formel)}$$

$$r = \frac{17,9}{5,2 \cdot 4,1} = \frac{17,9}{21,32}$$

$$r = 0.84$$

Beispiel 2:

An zwei Tagen hintereinander laufen 5 Studentinnen, die bei der Frühjahrsdiät von BRIGITTE mitmachen, jeweils eine Strecke von 1000 m. Dabei erzielen sie die in der Tabelle aufgeführten Laufzeiten (in Minuten):

Name	erster Durchgang	zweiter Durchgang	
Moni	3	3	
Lissi	5	5	
Jenny	11	7	
Lilli	14	6	
Susi	15	9	

Aufgaben:

- Berechnen Sie bitte, ob es einen Zusammenhang gibt zwischen den Werten der beiden Durchgänge.
- Kommentieren Sie das Ergebnis und interpretieren Sie es hinsichtlich seiner Bedeutung für "Lernen durch Üben".

4 BEGRIFFSERKLÄRUNGEN

Eindimensionale Häufigkeitsverteilung: Wenn Merkmalsträger hinsichtlich eines einzigen Merkmals (Dimension) untersucht werden. Sie beschreibt, wie sich die Merkmalsträger auf die Merkmalswerte des einen Merkmals verteilen (häufen). (BOURIER 2013:38)

Erhebungseinheit: Ein einzelnes Element der Grundgesamtheit, Die Anzahl der Erhebungseinheiten bildet den Umfang der Grundgesamtheit (=N). (DUL-LER 2013:8)

Grundgesamtheit: Die Menge aller Objekte, über die man Informationen gewinnen will. Eine exakte räumliche, zeitliche und sachliche Abgrenzung ist notwendig. (DULLER 2013:8)

Kontingenztabelle: Darstellungsmöglichkeit für zweidimensionale Häufigkeitsverteilungen

Kumulierte Häufigkeit: Die kumulierte Häufigkeit (Summenhäufigkeit) gibt die Anzahl bzw. den Anteil der Merkmalsträger an, die einen bestimmten Merkmalswert nicht überschreiten. (BOURIER 2013:40)

Merkmal: Die interessierende Eigenschaft der Erhebungseinheiten. Jedes Merkmal besitzt verschiedene Ausprägungen. (DULLER 2013:8) Die statistische Größe nennt man Merkmal. (SIBBERTSEN/LEHNE 2012:3)

Merkmalsausprägung: Den Wert, den ein Merkmal bei einem Merkmalsträger annimmt, nennt man Merkmalsausprägung. (SIBBERTSEN/LEHNE 2012:3)

Merkmalsträger: Objekte, beispielsweise befragte Personen, an denen statistische Größen gemessen werden, nennt man Merkmalsträger. (SIBBERT-SEN/LEHNE 2012:3)

Repräsentative Stichprobe: Die Stichprobe zeichnet ein möglichst genaues Abbild der Grundgesamtheit. (DULLER 2013:8)

Stichprobe: Eine Teilmenge der Grundgesamtheit. (DULLER 2013:8)

Urliste: Nach einer Erhebung liegen die Daten bzw. Merkmalswerte (Urwerte, Urdaten) zunächst in Form einer sogenannten Urliste (statistische Reihe) vor. (BOURIER 2013:34)

5 SYMBOL- UND ABKÜRZUNGSVER-ZEICHNIS

C Kontingenzkoeffizient D Modalwert (Dichtemittel, häufigster Wert) durchschnittliche Abweichung (mittlere Abweichung) е relative Häufigkeit $f(x_i)$ $F(x_i)$ kumulierte relative Häufigkeit (empirische Verteilungsfunktion) G geometrisches Mittel harmonisches Mittel Н Zahl der Teilnehmer i Anzahl der verschiedenen Ausprägungen k Gesamtheit der Merkmalsträger n absolute Häufigkeit $n(x_i)$ QA Quartilsabstand Maßkorrelationskoeffizient von Bravais-Pearson R Rangkorrelationskoeffizient von Krueger Spearman Standardabweichung (mittlere quadratische Abweichung S S^2 Varianz SU statistische Unabhängigkeit Spannweite (Variationsbreite, Variationsweite) Sw $S(x_i)$ kumulierte Häufigkeit Merkmalswert X_I \overline{x} arithmetisches Mittel (Durchschnittswert) Ζ Medianwert (Zentralwert, Stellungsmittel, mittlerer Wert)

			0

6 QUELLENVERZEICHNIS

BOURIER, GÜNTHER: Beschreibende Statistik – Praxisorientierte Einführung Mit Aufgaben und Lösungen; 11. Auflage; Springer Fachmedien Wiesbaden 2013

CLAUß, GÜNTER/FINZE, FALK-RÜDIGER/PARTZSCH, LOTHAR: Grundlagen der Statistik. Für Soziologen, Pädagogen, Psychologen und Mediziner; 6. Korrigierte Auflage; Frankfurt am Main 2011

DULLER, CHRISTINE: Einführung in die Statistik mit EXCEL und SPSS – Ein anwendungsorientiertes Lehr- und Arbeitsbuch; 3. Auflage; Springer Berlin Heidelberg 2013

Krämer, Walter: So lügt man mit Statistik; Überarbeitete Neuausgabe; Campus Verlag GmbH, München 2012

SIBBERTSEN, PHILIPP/LEHNE, HELMUT: Statistik — Einführung für Wirtschafts- und Sozialwissenschaftler; Springer-Verlag Berlin Heidelberg 2012

