Brandon Chen MATH 445 HW 1 7: B, D, E, F, G

7B Prove Theorem 7.7 (Existence and uniqueness of perpendicular bisectors)

Theorem 7.7: Every segment has a unique perpendicular bisector

7D Prove Theorem 7.10 (Existence and uniqueness of a reflected point)

Theorem 7.10: Let ℓ be a line and let A be a point not on ℓ . Then there is a unique point A', called the reflection of A across ℓ , such that ℓ is hte perpendicular bisector of $\overline{AA'}$.

7E Prove Lemma 7.12 (Properties of closest points)

Let P be a point and let S be any set of points.

- a) If C is a closest point to P in S, then $C' \in S$ is also a closest point to P if and only if PC' = PC
- b) If C is a point in S such that PX > PC for every point $X \in S$ other than C, then C ius the unique closest point to P in S.
- 7F Prove Theorem 7.13 (The closest point on a line)

Suppose ℓ is a line, P is a point not on ℓ , and F is the foot of the perpendicular from P to ℓ

- a) F is the unique closest point to P on ℓ
- b) If A, B are points on ℓ such that F * A * B, then PB > PA
- 7G Prove theorem 7.14 (The lossest point on a segment) [Hint: consider separately the cases in which $P \in \overrightarrow{AB}$ and $P \notin \overrightarrow{AB}$, and divide the second case into two subcases depending on whether the foot of the perpendicular from P to \overrightarrow{AB} does or does not lie in \overline{AB}].

Theorem 7.14: Suppose \overrightarrow{AB} is a segment and P is any point. Then there is a unique closest point to P in \overrightarrow{AB}