GitHub Recommender System

Big Data Computing Project 2020/2021

Fabrizio Rossi 1815023 Matteo Orsini 1795119

Goal

- GitHub is the largest source code host
 - 40+ million users
 - o 200+ million repositories
- GitHub users can star interesting repositories
 - Used to suggest new useful repositories
- Our project goal is:
 - Given a list of starred repositories or an already existing user
 - Predict new repositories which may be interesting

Challenges

- Find suitable dataset:
 - We couldn't, so we collected it ourselves
- We don't have ratings: implicit feedback
- Implementation of models with PySpark
- Deal with a large amount of data

Data collection

Dataset collection

- Custom Python scripts with requests and BeautifulSoup
- Started from users that starred the *React.js* repository
- Collected repositories starred by them
- Collected repositories metadata
 - o creator, name
 - about (short description)
 - main programming language
 - o stars, forks
 - updated
 - sponsor (a form of donations)
- Total: 10.000 users and 354.981 repositories

Dataset Pruning

Dataset pruning I

- Some models require to process DataFrames with 100+ billions of records
 - Even if number of users/repos is restricted, number of comparisons is huge
- Unfortunately neither Colab or Databricks can provide us the necessary computational power for free
- So, we pruned the dataset obtaining:

o Users: 1.000

o Repositories: 1.000

Starred relationships: 104.499

Dataset pruning II

- How we did it:
 - Took 1.000 users with highest number of starred repos
 - Took 1.000 most starred repos among those starred by the previous users
 - o Discarded all user-repo relationships not relative to the previous users/repos
- Even with these numbers, still have many records:
 - Example: Item-Based Collaborative Filtering
 - Dataframe with users x ns_repos x s_repos records
 - o Total: 64.413.366

Models

- Based on features extracted from repositories
 - Doesn't need to know ratings from other users
- Needs feature engineering:
 - Text processing for the about field
 - lowercase, punctuation, tokenization
 - stopwords
 - stemming
 - tf-idf
 - One-Hot Encoding for the language field
 - o Time conversion for the *updated* field
 - MinMax Normalization for the fields stars, forks, updated
- Build item profiles

- Build user profiles
 - Prepare for each user the vectors of the starred repositories
 - Compute the user profile as the average of those vectors
 - We used the Summarizer class offered by PySpark
 - groupBy user id and compute mean of starred repos vectors
 - It works even with sparse vectors, so we can save some RAM
- Compute cosine similarity between each user profile and all item profiles of the repos that the user has not rated

- Take top-k most similar repos for each user
 - We used a Window function
 - Partition by user id
 - Sort by similarity
 - Filter by row number

user_id	repo_id	similarity
1	2	0.92
1	3	0.56
1	4	0.88
2	1	0.92
2	3	0.31
2	4	0.25

- Take top-k most similar repos for each user
 - We used a Window function
 - Partition by user id
 - Sort by similarity
 - Filter by row number

user_id	repo_id	similarity
1	2	0.92
1	3	0.56
1	4	0.88
2	1	0.92
2	3	0.25
2	4	0.31

- Take top-k most similar repos for each user
 - We used a Window function
 - Partition by user id
 - Sort by similarity
 - Filter by row number

user_id	repo_id	similarity		
1	2	0.92		
1	4	0.88		
1	3	0.56		
2	1	0.92		
2	4	0.31		
2	3	0.25		

- Take top-k most similar repos for each user
 - We used a Window function
 - Partition by user id
 - Sort by similarity
 - Filter by row number

user_id	repo_id	similarity	row_number	
1	2	0.92	1	
1	4	0.88	2	
1	3	0.56	3	
2	1	0.92	1	
2	4	0.31	2	
2	3	0.25	3	

- Take top-k most similar repos for each user
 - We used a Window function
 - Partition by user id
 - Sort by similarity
 - Filter by row number

user_id	repo_id	similarity	row_number	
1	2	0.92	1	
1	4	0.88	2	
1	3	0.56	3	
2	1	0.92	1	
2	4	0.31	2	
2	3	0.25	3	

User-Based Collaborative Filtering I

- No need to extract features from repositories
- Based on user rating vectors
 - Set of repositories starred by the user
- Steps:
 - Build user rating vectors
 - For each user, compute similarity among other user rating vectors.
 - This time we used the Jaccard similarity
 - Take top-k most similar users (*Window function*)
 - Take repos starred by those users
 - Recommend them by assigning to each one the average rating given by other users

User-Based Collaborative Filtering II

• The average rating in our case is just the normalized count of top-k users that starred that repo:

$$r_{v,i} \in \{0,1\}$$
 $r_{u,i} = \frac{1}{k} \sum_{v \in \mathcal{U}^k} r_{v,i}$

Item-Based Collaborative Filtering I

- Based on item rating vectors
 - Users that starred the repository
- Achieves better performances than User-Based but high RAM usage
- Steps:
 - Build item rating vectors
 - For each user we need to compute a score for each not starred repo:
 - Compute similarity with actually starred repos (**Jaccard similarity**)
 - Take top-k most similar starred repos (*Window function*)
 - Compute a score by aggregating the ratings of the found repos
 - Recommend non starred repos with highest obtained score

Item-Based Collaborative Filtering II

- In this case the aggregation can't be performed as a simple average since we have that all the ratings are 1
- We opted to use the similarity between items to compute the score, as follows:

$$r_{u,i} = \frac{\sum_{i' \in \mathcal{I}_u^k} sim(i,i')}{k}$$

Item-Based Collaborative Filtering III

- We have to compute many times the similarity between the same pairs of items
- So, we pre-computed the *Jaccard similarity* between each pair of item to make the computation faster

Matrix Factorization I

• Ratings matrix R seen as product of a user matrix X and an item matrix W:

$$R = X \times W^T$$

- X and W computed based on hidden factors extracted from observed starring relationships
- Score for a non-starred repo computed as dot product between user and repo vector

$$r_{u,i} = x_u^T \cdot w_i = \sum_{j=0}^{d} x_{u,j} w_{j,i}$$

Matrix Factorization II

- There are various methods to compute the two matrices
- Alternating Least Squares (ALS) method implemented and provided by PySpark
- Important parameters:
 - o rank: rank of the latent matrices (5)
 - o implicitPrefs: adapt implementation to implicit feedbacks (True)
 - o alpha: feedback confidence (1.0)
- Challenge: how to predict repos for new user not in training?
 - Solution: non-standard approaches, not implemented in PySpark
 - So, in our case, train again the model (doesn't take much time)

Evaluation

Evaluation

- We computed the MAP@K and the Personalization measure
- Mean Average Precision at K (MAP@K) is the mean of the Average Precision at K (AP@K) metric computed for each user
 - Takes into consideration precision of the system and order of the items recommended
- Personalization is defined as the average of the dissimilarity between users lists of recommendations
 - Tells us if the recommender system produces items which are personalized for each user, or always the same items to different users

Evaluation II

Model	MAP@1	MAP@2	MAP@3	MAP@4	MAP@5	Personalization
Content-based	0.067	0.051	0.043	0.037	0.033	0.676
User-based	0.357	0.261	0.213	0.183	0.164	0.965
Item-based	0.388	0.308	0.263	0.229	0.205	0.680
Matrix Factorization	0.506	0.395	0.332	0.298	0.268	0.864

- Content-Based Filtering low performances probably due to low discriminance of extracted repos features
 - about field very short and contains recurring terms → similar TF-IDF vectors for different repos

Demo

Demo

- Built in React (frontend) + Flask (backend)
- Uses ngrok to host the server directly on Colab
- Predict repos starting from:
 - Already existing user of the system
 - A list of repos starred by a new user
- Available at https://recommend-hub.netlify.app/