Homework Assignment #1

- Will be graded!
- 'Snowflake' 2D animation
 - Understanding polygon draw.
 - Data handling
 - Vertex Shader (transformations)
 - Window Handling & Timer
 - Creativity!!
- Due: March 30 (Wednesday) before midnight

Lecture & Lab

Tue/Thur			We	dnesday		
Date	Topic	Assignment		TA (LAB)		
Mar 8, 10	Introduction and HelloWorld 2D	HW #0	9	OpenGL Intro 1 (Simple 2D)		
Mar 15, 17	Linear and Affine Transformation	HW #1	14	open lab		
Mar 22, 24	Frames in Graphics		23	OpenGL I	ntro 2 (3	D & viewin
Mar 29, 31	HelloWorld 3D, Projection	HW #2	30	open lab		
Apr 5, 7	Depth	<transformation< td=""><td>6</td><td>open lab</td><td></td><td></td></transformation<>	6	open lab		
Apr 12, 14	From Vertex to Pixels	w/ simple anim>	13	<election< td=""><td>day></td><td></td></election<>	day>	
Apr 19	Geometric Modeling,		20	open lab		
Apr 20~26	Midterm Exam					
Apr 28, May 3	Color and Shading		4	Lighting setup exercise		
May 10, 12	Raytracing	HW #3	11	open lab		
May 17, 19	Lighting	Shading/Lighting	18	open lab		
May 24, 26	Texture Mapping		25	Texture mapping exercise		
May 31, Jun 2	Sampling	HW #4	1	open lab		
Jun 7, 9	Resampling	Texture mapping	8	open lab		
Jun 14	Animation					
Jun 15~21	Final Exam					

Lab (E11: 307)

- Must come sessions
 - OpenGL Introduction 1 (3/9)
 - OpenGL Introduction 2 (3/23)
 - Shading/Lighting Session (5/4 tentative)
 - Texture mapping Session (5/25 tentative)
- Other Wednesdays 7~10 PM
 - Open lab
 - TA Help Hour
 - You may come and work on your homework and ask questions to TA

LAB Session Tomorrow

Strongly Recommended!

Bring your notebook computer and power cord (just in case).

Last Week

Chaps 2 & 3: Linear & Affine Transformation

- Double buffering
- 4x4 Matrix (change of frames)
 - Frame defined by the basis vectors and a reference point
 - Homogenous representations of a point and a vector
- Affine transformation
 - Rotation, translation, scaling, sheering
 - Object transformation
 - Rigid-body transformation

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\vec{v} = \sum_{i}^{n} c_{i} \vec{b}_{i} = \begin{bmatrix} \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \mathbf{\vec{b}}^{t} \mathbf{c}_{\text{Coordinate vector}}$$

Linear transformation

$$\vec{v} \Rightarrow L(\vec{v}) = L\left(\sum_{i} c_{i} \vec{b}_{i}\right) = \sum_{i} c_{i} L(\vec{b}_{i})$$

jinah@cs.kaist.ac.kr CS380 (Spring 2016) 6

• 3-by-3 matrix:

$$\begin{bmatrix} L(\vec{b_1}) & L(\vec{b_2}) & L(\vec{b_3}) \end{bmatrix} = \begin{bmatrix} \vec{b_1} & \vec{b_2} & \vec{b_3} \end{bmatrix} \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{bmatrix}$$

Putting all together:

$$\left[\begin{array}{ccc} \vec{b_1} & \vec{b_2} & \vec{b_3} \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right] \Rightarrow \left[\begin{array}{ccc} \vec{b_1} & \vec{b_2} & \vec{b_3} \end{array} \right] \left[\begin{array}{ccc} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right]$$

A matrix to transform one vector to another:

$$\vec{v} = \vec{\mathbf{b}}^t \mathbf{c} \Longrightarrow \vec{\mathbf{b}}^t M \mathbf{c}$$

$$CS380 \text{ (Spring 2016)}$$

jinah@cs.kaist.ac.kr

• change a basis of a vector $\vec{\mathbf{b}}^t$ to $\vec{\mathbf{a}}^t$

$$\vec{\mathbf{a}}^{t} = \vec{\mathbf{b}}^{t} M ,$$

$$\vec{\mathbf{a}}^t = \vec{\mathbf{b}}^t M$$
, $\vec{v} = \vec{\mathbf{b}}^t \mathbf{c} = \vec{\mathbf{a}}^t M^{-1} \mathbf{c}$.

Linear transform of a vector

$$\vec{v} = \vec{\mathbf{b}}^t \mathbf{c} \Longrightarrow \vec{\mathbf{b}}^t \mathbf{M} \mathbf{c}$$

Linear transform of a basis

$$\vec{v} = \vec{\mathbf{b}}^t \mathbf{c} = \vec{\mathbf{a}}^t M^{-1} \mathbf{c}$$
.

• Movement of a point (original $\tilde{o} \rightarrow$ a point \tilde{p})

$$\tilde{p} = \tilde{o} + \vec{v}$$
.

$$\tilde{p} = \tilde{o} + \sum_{i} c_{i} \vec{b}_{i} = \begin{bmatrix} \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} & \tilde{o} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}.$$

Affine frame (made of three vectors and a point):

$$\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c} .$$

$$\begin{bmatrix} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{bmatrix} = \vec{\mathbf{f}}^t$$

Transforming a point:

$$\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c} \Longrightarrow \vec{\mathbf{f}}^t A \mathbf{c}$$

Linear transformation

3-by-3 transform matrix → 4-by-4 affine

transform

$$\begin{bmatrix} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ 1 \end{bmatrix} \Rightarrow$$

$$\left[\begin{array}{ccccc} \vec{b_1} & \vec{b_2} & \vec{b_3} & \tilde{o} \end{array}\right] \left[\begin{array}{ccccc} a & b & c & 0 \\ e & f & g & 0 \\ i & j & k & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ 1 \end{array}\right].$$

Translation transformation

translation transformation to points

$$\left[\begin{array}{cccc} \overrightarrow{b_1} & \overrightarrow{b_2} & \overrightarrow{b_3} & \widetilde{o} \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ 1 \end{array}\right]$$

Affine transform matrix

Note: $TL \neq LT$

 An affine matrix can be factored into a linear part and a translational part:

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & d \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c & 0 \\ e & f & g & 0 \\ i & j & k & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$\left|\begin{array}{c|c} l & t \\ 0 & 1 \end{array}\right| = \left|\begin{array}{c|c} i & t \\ 0 & 1 \end{array}\right| \left|\begin{array}{c|c} l & 0 \\ 0 & 1 \end{array}\right| A = TL$$

Rigid body transformation

 When the linear transform is a rotation, we call this as rigid body transformation (rotation + translation only).

$$A = TR$$

- A rigid body transformation preserves dot product between vectors, handedness of a basis, and distance between points.
- Its geometric topology is maintained while transforming it.

Normal transforms

- We can see this in the following diagram, where the normal is incorrect if the same transformation is applied to both the geometry and normals.
- What's wrong with using the model transformation matrix to move our normals into world space?

scaled by 0.5 along the x dimension

Normals

- Normal: a vector that is orthogonal to the tangent plane of the surfaces at that point.
 - the tangent plane is a plane of vectors that are defined by subtracting (infinitesimally) nearby surface points: $\vec{n} \cdot (\tilde{p}_1 \tilde{p}_2) = 0$

Normals

- We use normals for shading
- how do they transform
- suppose i rotate forward
 - normal gets rotated forward
- suppose squash in the y direction

Changing a shape

 Squashing a sphere makes its normals stretch along the y axis instead of squashing.

- normal gets higher in the y direction
- what is the rule?

$$\begin{bmatrix} nx \\ ny \\ nz \end{bmatrix} \neq \begin{bmatrix} nx' \\ ny' \\ nz' \end{bmatrix}.$$

• Since the normal \vec{n} and very close points \tilde{p}_1 and \tilde{p}_2 are on a surface: $\vec{n} \cdot (\tilde{p}_1 - \tilde{p}_2) = 0$

$$\begin{bmatrix} nx & ny & nz & * \end{bmatrix} \begin{bmatrix} x1 \\ y1 \\ z1 \\ 1 \end{bmatrix} - \begin{bmatrix} x0 \\ y0 \\ z0 \\ 1 \end{bmatrix} = 0.$$

After applying an affine transform A,

Transformed normals:

$$\begin{bmatrix} nx' & ny' & nz' \end{bmatrix} = \begin{bmatrix} nx & ny & nz \end{bmatrix} l^{-1}.$$

Transposing this expression:

$$\begin{bmatrix} nx' \\ ny' \\ nz' \end{bmatrix} = \begin{bmatrix} nx \\ ny \\ nz \end{bmatrix}.$$

• Remember l is a <u>rotation matrix (orthonormal</u>), thus its inverse transpose is the same as the original: $l^{-t} = l$

$$LL^{t} = I(L^{t} = L^{-1}), \det L = 1$$

- inverse transpose
 - so inverse transpose/transpose inverse is the rule
 - for rotation, transpose = inverse
 - for scale, transpose = nothing

 Renormalize to correct unit normals of squashed shape:

Normal transforms

- The correct way to calculate the normal
 - apply the same rotation transformation, (inverse of a rotation matrix is its transpose,)
 - but invert the scale (its inverse inverts the scale factors, and transposition has no effect)
 - translation can safely be ignored as it will not affect the normal vector
- So, transpose of the inverse of the model transformation matrix!
- □ But, the inverse of a matrix is not always guaranteed to exist.
 - inverse of a matrix, Athe adjoint of A over the determinant of A,
 - the adjoint of a matrix is guaranteed to exist
- □ → We can use the adjoint instead of the inverse, and then re-normalize the vector.

Chapter 4. Respect

□ Frame is important ...

Chapter 5. Frames in Graphics

Chapter 4

RESPECT

• We are transforming a point \tilde{p} in a frame \mathbf{f}^t

$$\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c}$$

• With a matrix
$$\mathbf{S} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 the stretches by factor of two in first axis of \mathbf{f}^t

- Performing a transform: $\vec{\mathbf{f}}^t \mathbf{c} \Rightarrow \vec{\mathbf{f}}^t S \mathbf{c}$
- Suppose another frame: $\vec{\mathbf{a}}^t = \mathbf{f}^t A$

We could express the point with a new coordinate vector

$$\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c} = \vec{\mathbf{a}}^t \mathbf{d}
\vec{\mathbf{f}}^t \mathbf{c} = \vec{\mathbf{f}}^t A \mathbf{d}
\vec{\mathbf{f}}^t \mathbf{c} = \vec{\mathbf{f}}^t A \mathbf{d}
\vec{\mathbf{d}} = A^{-1} \mathbf{c}$$

$$\vec{\mathbf{d}} = A^{-1} \mathbf{c}$$

• Now S transforms the point $ilde{\mathcal{P}}$ with respect to $\vec{\mathbf{a}}^t$

$$\vec{\mathbf{a}}^t \mathbf{d} \Rightarrow \vec{\mathbf{a}}^t S \mathbf{d}$$

Left-of rule

- Point is transformed with respect to the the frame that appears immediately to the left of the transformation matrix in the expression.
- We read

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t S$$

 $\vec{\mathbf{f}}^t$ is transformed by S with respect to $\vec{\mathbf{f}}^t$

We read

$$\vec{\mathbf{f}}^t = \vec{\mathbf{a}}^t A^{-1} \Longrightarrow \vec{\mathbf{a}}^t S A^{-1}$$

 $\vec{\mathbf{f}}^t$ is transformed by S with respect to $\vec{\mathbf{a}}^t$

$$\tilde{p} = \vec{\mathbf{f}}^t \mathbf{c} \Rightarrow \vec{\mathbf{f}}^t S \mathbf{c}$$

 \tilde{p} is transformed by S with respect to $\vec{\mathbf{f}}^t$

$$\tilde{p} = \vec{\mathbf{a}}^t A^{-1} \mathbf{c} \Rightarrow \vec{\mathbf{a}}^t S A^{-1} \mathbf{c}$$

 \tilde{p} is transformed by S with respect to $\vec{\mathbf{a}}^t$
 $f^t A S A^{-1} c = \vec{a}^t S A^{-1} c$

 The same reasoning to transformations of frames themselves:

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t R$$

 $\vec{\mathbf{f}}^t$ is transformed by R with respect to $\vec{\mathbf{f}}^t$

In another frame:

$$\vec{\mathbf{f}}^t = \vec{\mathbf{a}}^t A^{-1} \Rightarrow \vec{\mathbf{a}}^t R A^{-1}$$

 $\vec{\mathbf{f}}^t$ is transformed by R with respect to $\vec{\mathbf{a}}^t$

 $\tilde{p} = \vec{\mathbf{a}}^t A^{-1} \mathbf{c} \Rightarrow \vec{\mathbf{a}}^t R A^{-1} \mathbf{c}$ \tilde{p} is transformed by R with respect to $\vec{\mathbf{a}}^t$

Auxiliary Frame

- You want to build the solar system
 - The Moon rotates around the Earth's frame
 - The Earth rotates around the Sun's frame

Slide from Prof. MH Kim CS380 (Spring 2016) 35

Transforms using an Auxiliary Frame

• Sometimes we need to transform a frame \mathbf{f}^t in some specific way, represented by a matrix M, with respect to some auxiliary frame $\vec{\mathbf{a}}^t$

$$\vec{\mathbf{a}}^t \Rightarrow \vec{\mathbf{f}}^t A$$

· The transform frame can then be expressed as

$$\vec{\mathbf{f}}^t$$

$$= \vec{\mathbf{a}}^t A^{-1}$$

$$\Rightarrow \vec{\mathbf{a}}^t M A^{-1}$$

$$= \vec{\mathbf{f}}^t A M A^{-1}$$

Multiple Transformations

Rotation and translation with frame

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t TR$$

 in general, matrix multiplication is not commutative!!!

$$\vec{\mathbf{f}}^{t}TR \neq \vec{\mathbf{f}}^{t}RT$$

- There are two different ways to apply multiple transformations
 - Local transformation
 - Global transformation

Local Transformations

• Local transformations $\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t TR$

In the first step,

$$\vec{\mathbf{f}}^t \Longrightarrow \vec{\mathbf{f}}^t T = \vec{\mathbf{f}}^{t}$$

 $\vec{\mathbf{f}}^t$ is transformed by T with respect to $\vec{\mathbf{f}}^t$ as the resulting frame: $\vec{\mathbf{f}}^{t}$

Local Transformations

• Local transformations $\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t TR$

· In the second step,

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t TR$$
,

$$\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^{\,\prime t} R.$$

 $\vec{\mathbf{f}}^t$ is transformed by R with respect to $\vec{\mathbf{f}}^{t}$

Global Transformations

• Global transformations $\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t TR$

(c) Global rotation

(c) Global translation

In the first step (in the reverse order)

$$\vec{\mathbf{f}}^t \Longrightarrow \vec{\mathbf{f}}^t R = \vec{\mathbf{f}}^{\circ t}$$

 $\vec{\mathbf{f}}^t$ is transformed by R with respect to $\vec{\mathbf{f}}^t$ as the resulting frame: $\vec{\mathbf{f}}^{\circ t}$

Global Transformations

• Global transformations $\vec{\mathbf{f}}^t \Rightarrow \vec{\mathbf{f}}^t TR$

(c) Global rotation

(c) Global translation

· In the second step

$$\vec{\mathbf{f}}^{\circ t} = \vec{\mathbf{f}}^{t} R \Longrightarrow \vec{\mathbf{f}}^{t} T R$$

 $\vec{\mathbf{f}}^{\circ t}$ is transformed by T with respect to $\vec{\mathbf{f}}^{t}$

Two interpretations of transformations

- Two different ways for multiple transformations:
 - 1. (Local transformations) Translate with respect to \mathbf{f}^t then rotate with respect to the intermediate frame \mathbf{f}^{t}
 - 2. (Global transformations) Rotate with respect to \mathbf{f}^t then translate with respect to the original frame \mathbf{f}^t

Chapter 5. Frames in Graphics

Transformation in OpenGL

A simplified view of the OpenGL fixed pipeline.

- Each vertex passes through 2 transformations that are defined by the *current* model view and projection *matrices*, which are part of the OpenGL state.
- Initially both are set to 4x4 identity matrices.
- Model-view matrix
 - is used to position objects relative to a camera.
- Projection matrix
 - forms the image through projection
- □ → We use same concept (thinking as in two stages, i.e., product of two matrices) in our vertex shader.

Transformation Matrix

Current Transformation Matrix

- □ In (old) OpenGL
 - The matrix that is applied to all primitives is the product of the model-view matrix and the projection matrix.

Transformation Matrix

- \Box C \leftarrow 1
- \Box C \leftarrow CT
- \Box C \leftarrow CS
- \Box C \leftarrow C R
- \Box C \leftarrow M

glLoadIdentity():

- Old OpenGL functions
- glTranslatef(Tx, Ty, Tz);
 components of the displacement vector
- glScalef(Sx, Sy, Sz);
 scale factors along the coordinate axes
- glRotatef(angle, Vx, Vy, Vz); angle in degrees, the component of the rotation vector
- glLoadMatrixf(ptr_to_matrix);

We will create these matrices on our own.

- Give a matrix M to transform the square rotated about its center = (10,10), 45 degree counter-clock wise.
- 2) Compute the new position of the head marked in red (10, 15) using your matrix M.

jinah@cs.kaist.ac.kr

Example

$$C = I$$

$$C = T(P_f)$$

$$C = C R(\theta) = T(P_f) R(\theta)$$

$$C = C T(-P_f)$$

$$= T(P_f) R(\theta) T(-P_f)$$

The transformation specified last is the one applied first!

Model + View + Projection Transform

Model-view Transform

- Model (object) transform
 - For each object
- View transform
 - Camera location and orientation
 - To whole scene (all objects)

Camera Analogy

Viewing with a Computer

- Viewing consists of
 - I. Position the camera (model-view transformation)

2. Apply the projection transformation (orthographic or perspective)

Positioning of the Camera

The matrix that is applied to all primitives is the product of the model-view matrix and the projection matrix.

- Model-view matrix
 - To position objects in space
 - To convert from the reference frame used for modeling to the frame of the camera

Positioning of the Camera Frame

Example:

want the image of the faces of the object that point in the positive x-direction


```
mat4 model_view;

model_view =

   Translate(0.0, 0.0, -d)

   * Rotate (-90.0, 0.0, 1.0, 0.0);
```

Describe the camera's position and orientation in the world frame.

Define the viewing coordinate system, u-v-n.

User specifies a view-reference point, a view-up vector and a view-plane normal.

- Describe the camera's position and orientation in the world frame.
 - Specify the view reference point (VRP)
 - Specify the view plane normal, n
 - Specify the view-up vector (VUP)
 - Compute the **up-vector**, **v**
 - Compute the side vector, u
 - Defines the viewing coordinate system, u-v-n.

- Viewing-coordinate system.
 - $VRP = p = (x,y,z,I)^T$
 - $= n = (n_x, n_y, n_z, 0)^T$
 - $v_{UP} = (v_{up_x}, v_{up_y}, v_{up_z}, 0)^T$
 - Compute the up-vector, **v**
 - □ n v = 0
 - Compute the side vector, u
 - $u = v \times n$
 - Normalize u,v,n
 - u' − v' − n' system

- View-orientation matrix
 - Orients a vector in the u'-v'-n' with respect to the original system
 - The rotation matrix
 - We want to represent the vector in the original system with respect to the camera system.
 - \Box u v n system

- View-orientation matrix
 - Orients a vector in the u'-v'-n' with respect to the original system
 - The rotation matrix
 - ▶ We want M⁻¹
 - Because M is a rotation matrix,
 M⁻¹ = M^T = R

$$\mathbf{M}^{\mathsf{T}} = \begin{bmatrix} \mathbf{u'_x} & \mathbf{u'_y} & \mathbf{u'_z} & \mathbf{0} \\ \mathbf{v'_x} & \mathbf{v'_y} & \mathbf{v'_z} & \mathbf{0} \\ \mathbf{n'_x} & \mathbf{n'_y} & \mathbf{n'_z} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

World, object and eye frames

- World frame (world coordinates)
 - a basic right-handed orthonormal frame $\vec{\mathbf{w}}^t$
 - we never alter this frame
 - other frames can be described wrt the world frame
- Object frame (object coordinates)
 - model the geometry of the object using vertex coordinates
 - not need to be aware of the global placement
 - a right-handed orthonormal frame of object $\vec{\mathbf{o}}^t$
- Eye frame (camera coordinates): later on

World vs. object frame

- The relationship between the world frame and object frame:
 - affine 4-by-4 matrix O (rigid body transformation: rotation + translation only)

$$\vec{\mathbf{o}}^t = \vec{\mathbf{w}}^t O$$

- The meaning of O is the relationship between the world frame to the object's coordinate system.
- To move the object frame $\vec{\mathbf{o}}^t$ itself, we change the matrix O.

The eye's view

- The world frame is in red
- The object frame is in green
- The eye frame is in blue
 - The eye is looking down its negative z toward the object.

(a) The frames

(b) The eye's view

2

The eye frame

- Eye frame (camera coordinates)
 - a right-handed orthonormal frame $\vec{\mathbf{e}}^t$
 - the eye looks down its negative z axis to make a picture

$$\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E$$

(a) The frames

(b) The eye's view

2

Extrinsic transformation of the eye

• we explicitly store the matrix E

$$\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E$$

$$\tilde{p} = \vec{\mathbf{o}}^t \mathbf{c} = \vec{\mathbf{w}}^t O \mathbf{c} = \vec{\mathbf{e}}^t E^{-1} O \mathbf{c}$$

- Object coordinates:
- World coordinates: Oc
- Eye coordinates: $E^{-1}Oc$
- Calculating the eye coordinates of every vertexes:

$$\begin{bmatrix} x_e \\ y_e \\ z_e \\ 1 \end{bmatrix} = E^{-1}O \begin{bmatrix} x_o \\ y_o \\ z_o \\ 1 \end{bmatrix}$$

- We want the object to rotate around its own center about the viewer's y axis, when we move the mouse to the right.
- How we could do this?

• Basic idea: set a frame $\vec{\mathbf{a}}^t = \vec{\mathbf{w}}^t A$

$$\vec{\mathbf{o}}^t$$

$$= \vec{\mathbf{w}}^t O$$

$$= \vec{\mathbf{a}}^t A^{-1} O$$

$$\Rightarrow \vec{\mathbf{a}}^t M A^{-1} O$$

$$= \vec{\mathbf{w}}^t A M A^{-1} O.$$

• What is the best frame $\vec{\mathbf{a}}^t$ to do this?

- What if we choose $\vec{\mathbf{o}}^t$
- we transform this object with respect to \vec{o}^t rather than with respect to our observation through the window.

- What if we choose $\vec{\mathbf{o}}^t$
- we transform this object with respect to \vec{o}^t rather than with respect to our observation through the window.
- What if we transform $\vec{\mathbf{o}}^t$ with respect to $\vec{\mathbf{e}}^t$
- we will rotate around the origin of the eye's frame \vec{e}^t (it appears to orbit around the eye).
- Then what frame it should be?

- We actually want two different operations
 - 1. to transform (rotate) the object at its origin
 - but the rotation axis should be the y axis of the eye.

How to move an Object

- Recalling the Affine transform.: A = TR
- The object's Affine transform.: $O = (O)_T(O)_R$ (we want the object's rotation about the object's origin)
- The eye's Affine transform.: $E = (E)_T (E)_R$ (we want the object's rotation about the eye's y axis)
- The desired auxiliary frame $\vec{\mathbf{a}}^t$ (imagine in a inverse way):

$$\vec{\mathbf{a}}^t = \vec{\mathbf{w}}^t(O)_T(E)_R$$

$$A = (O)_T(E)_R$$

From the left, we translate the world frame t the center of the object's frame, and then rotating the object's frame about that point to align with the directions of the eye.

Moving the eye

- We use the same auxiliary coordinate system.
- But in this case, the eye would orbit around the center of the object.
- Apply an affine transform directly to the eye's own frame (turning one's head, first-person motion)

$$\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E$$
,

$$E \leftarrow EM$$

The eye matrix (camera transform)

- Specifying the eye matrix $\vec{\mathbf{e}}^t = \vec{\mathbf{w}}^t E$ by:
 - the eye point \tilde{p}

NB P. 35 contains errors (see errata)!!!

- the view point (where the eye looks at) q
- the up vector \vec{u}

NB matrix sent to the vertex shader is

$$\mathbf{z} = normalize(p-q)$$

$$\mathbf{x} = normalize(\mathbf{u} \times \mathbf{z})$$

$$y = z \times x$$

$$normalize(\mathbf{c}) =$$

$$\mathbf{c} / \sqrt{c_1^2 + c_2^2 + c_3^2}$$

$$\begin{array}{c} \times \mathbf{x} \\ alize(\mathbf{c}) = \\ \mathbf{c} / \sqrt{c_1^2 + c_2^2 + c_3^2} \end{array} \qquad E = \begin{bmatrix} x_1 & y_1 & z_1 & p_1 \\ x_2 & y_2 & z_2 & p_2 \\ x_3 & y_3 & z_3 & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The view matrix (gluLookAt)

- Specifying the view matrix $V = E^{-1}$
 - the eye point \tilde{p}
 - the view point (where the eye looks at)
 - the up vector \vec{u}

$$\mathbf{z} = normalize(q - p)$$

$$\mathbf{x} = normalize(\mathbf{u} \times \mathbf{z})$$

$$y = x \times z$$

 $normalize(\mathbf{c}) =$

$$\mathbf{c} / \sqrt{c_1^2 + c_2^2 + c_3^2}$$

NB gluLookAt is not the part of modern OpenGL!

Hierarchy frames

76

 An object can be treated as being assembled by some fixe and movable subobjects.

$$\vec{\mathbf{o}}^{t} = \vec{\mathbf{w}}^{t} O$$

$$\vec{\mathbf{o}}^{t} = \vec{\mathbf{o}}^{t} O'$$

$$\vec{\mathbf{a}}^{t} = \vec{\mathbf{o}}^{t} A$$

$$\vec{\mathbf{b}}^{t} = \vec{\mathbf{a}}^{t} B$$

$$\vec{\mathbf{b}}^{t} = \vec{\mathbf{b}}^{t} B'$$

$$\vec{\mathbf{c}}^{t} = \vec{\mathbf{b}}^{t} C$$

$$\vec{\mathbf{d}}^{t} = \vec{\mathbf{c}}^{t} D$$

$$\vec{\mathbf{d}}^{t} = \vec{\mathbf{d}}^{t} D'$$

$$\vec{\mathbf{f}}^{t} = \vec{\mathbf{o}}^{t} F$$

Moving the entire robot

 We just update its O matrix to the object frame, instead of relating it to the world frame

$$\vec{\mathbf{o}}^t = \vec{\mathbf{w}}^t O$$

$$\vec{\mathbf{a}}^t = \vec{\mathbf{w}}^t O A$$

$$\vec{\mathbf{b}}^t = \vec{\mathbf{w}}^t OAB$$

$$\vec{\mathbf{b}}^{\,\prime t} = \vec{\mathbf{w}}^t OABB^{\,\prime}$$

$$\vec{\mathbf{c}}^t = \vec{\mathbf{w}}^t OABC$$

$$\vec{\mathbf{d}}^t = \vec{\mathbf{w}}^t OABCD$$

$$\vec{\mathbf{d}}^{t} = \vec{\mathbf{w}}^{t} OABCDD^{t}$$

Matrix stack

- Matrix stack data structure can be used to keep track of the matrix
- push(M)
 - creates a new 'topmost' matrix
 - a copy of the previous topmost matrix
 - M. multiplies this new top matrix
- pop()
 - removes the topmost layer of the stack
- descending
 - descend down to a subobject, when a push operation is done
 - this matrix is popped off the stack when returning from this descent to the parent

Moving limbs

Moving limbs

Scene graph pseudocode


```
matrixStack.initialize(inv(E));
matrixStack.push(O);
     matrixStack.push(O');
           draw(matrixStack.top(), cube); \\ body
     matrixStack.pop(); \\ O'
     matrixStack.push(A); \\ grouping
           matrixStack.push(B);
                matrixStack.push(B');
                      draw(matrixStack.top(), sphere); \\ upper arm
                matrixstack.pop(); \\ B'
                matrixStack.push(C);
                      matrixStack.push(C');
                           draw(matrixStack.top(), sphere); \\ lower arm
                      matrixStack.pop(); \\ C'
                matrixStack.pop(); \\ C
           matrixStack.pop(); \\ B
     matrixStack.pop(); \\ A
\\ current top matrix is inv(E)*O
\\ we can now draw another arm
    matrixStack.push(F);
```

Chapter 6

HELLO WORLD 3D

