

UFPEL

Microcontroladores

Aula 8 – Comunicação com display de LCD

Prof. Dr. Alan Carlos Junior Rossetto

Introdução

- Um display de LCD (*liquid crystal display*) é um exemplo de periférico gráfico que pode ser conectado externamente ao microcontrolador;
- Este tipo de dispositivo não gera interrupção, mas possui os registradores típicos de um periférico;
- O uC escreve na memória interna do dispositivo tanto os comandos de controle quanto os dados a serem exibidos;
- Esta memória configura o controlador e armazena os caracteres que devem ser mostrados no LCD.

Esquemático elétrico interno

 O diagrama de blocos interno de um display de LCD é mostrado a seguir:

Esquemático elétrico interno

- A representação gráfica na tela do LCD é realizada pelo controlador (driver) que aciona posições individuais dentro de uma célula do display de forma a representar um caractere;
- Uma célula pode conter 5 x 7 ou 5 x 10 dessas posições individuais;
- Por padrão, os caracteres e símbolos que são enviados ao display devem estar codificados em ASCII.

Esquemático elétrico externo

R16 10K

R15

VCC

A interface de conexão elétrica de um display de LCD é mostrada a

seguir e composta por:

- Pinos (barramento) de dados:
 - D7...D0;
- Pinos de controle:
 - EN: Pino de ativação (dado pronto);
 - RS: Pino de diferenciação entre comando e caractere;
 - R/!W: Pino de leitura ou escrita.
- Pinos de alimentação:
 - VCC e GND;
- Pinos de iluminação:
 - BL+ e BL-: backlight;
 - VO: contraste.

Temporização

- Como o display recebe dados e sinais de controle pelo mesmo barramento, é preciso utilizar alguns sinais elétricos para diferenciação de um ou outro;
- Ademais, um protocolo de temporização precisa ser observado, a fim de que a comunicação entre uC e LCD ocorra sem problemas;
- Para a escrita de um comando, temos:
 - R/!W = 0;
 - RS = 0;
 - Pulso no EN.

Exemplo de função para escrita de comando:

	-	
WR_CMD:	CLR RS	; $RS = 0$.
	NOP	; Espera 1 us.
	SETB EM	; $EN = 1$.
	LCALL DELAY_5US	; Espera 5 us.
	CLR EM	; $EN = 0$.
	LCALL DELAY_5MS	; Espera 5 ms.
	RET	; Retorna da função.

Temporização

- Como o display recebe dados e sinais de controle pelo mesmo barramento, é preciso utilizar alguns sinais elétricos para diferenciação de um ou outro;
- Ademais, um protocolo de temporização precisa ser observado, a fim de que a comunicação entre uC e LCD ocorra sem problemas;
- Para a escrita de um caractere, temos:
 - R/!W = 0;
 - RS = 1;
 - Pulso no EN.

Exemplo de função para escrita de caractere:

<u> </u>	<u> </u>
WR_CHAR:	SETB RS
	NOP
	SETB EN
	LCALL DELAY_5US
	CLR EM
	LCALL DELAY_5MS
	RET

Caracteres em ASCII

 Como dito anteriormente, os caracteres a serem mostrados no display devem estar codificados em ASCII. A seguir, é mostrada a representação destes em um display de células 5x7.

Lower Bis	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			0	<u> </u>	F :		P					7	ш	Ο	ŗ
xxxx0001	(2)		!	1.	A	Ω	æ	-=4			<u></u>	7'	;	4	ä	q
xxxx0010	(3)		!!	2		R	Ŀ	ŗ			ľ	4	ij	×	ß	8
xxxx0011	(4)		#	<u>::</u>		5	C.	:5			Ŀ	7	Ť	Æ	€.	60
xxxx0100	(5)		\$	4	D	T	d	t.			۸.	I	ţ.	†7	1-4	Ω
xxxx0101	(6)		" ' <u>"</u>	5	E	<u> </u>	€	Ļį			#	才	ナ		C5	Ü
xxxx0110	(7)		8	6	F-	Ų	ŧ.	Ų			₹	<u> </u>		∄	ρ	Σ
xxxx0111	(8)		7	7	6	ij	9	ij			; ; '	ŧ	X	Ð	9	Щ
xxxx1000	(1)		(8	H	X	h	×			4	7	*	ij	٠,٢	X
xxxx1001	(2))	9	Ι	Y	i	' ::			75	Ţ	ļ	ij,	i	<u>!_</u> j
xxxx1010	(3)		:4:	•	.,T	2	j	Z			I		ı'n	<u> </u> /	j	7
xxxx1011	(4)		-+-	;	K	<u>[</u>	k	{			7:	ij	<u> </u>		×	沔
xxxx1100	(5)		7	<.	L.	详	I	i			† ?	E ;	7	7	4	Fi
xxxx1101	(6)			===	M	Ţ	M	>			. : 3.	Z	^,	_,	ŧ	÷
xxxx1110	(7)		•	>	N	^	'n	÷			==	世	:†:	••	ñ	
xxxx1111	(8)		/	?	0		O	-			111	IJ	₹	15	Ö	

- Antes da utilização, é necessário configurar o display de LCD de acordo com as suas características e/ou com o formato de exibição desejado através do envio de alguns comandos ao display;
- Quanto às características físicas, podemos configurar:

Instrução	D7	D6	D5	D4	D3	D2	D1	D0
Configurações físicas	0	0	1	DL	N	F	0	0

- DL: número de bits no barramento de dados
 - DL = 0: 4 bits (MSBs da porta) | DL = 1: 8 bits.
- N: número de linhas do display
 - N = 0: Uma linha | N = 1: Duas linhas.
- F: número de pontos na matriz de caracteres
 - $F = 0: 5x7 \text{ pontos} \mid F = 1: 5x10 \text{ pontos}.$
- Tipicamente DL = 1; N = 1; F = 0 -> (00111000)b = 38h

- Antes da utilização, é necessário configurar o display de LCD de acordo com as suas características e/ou com o formato de exibição desejado através do envio de alguns comandos ao display;
- Quanto às características gráficas, podemos configurar:

Instrução	D7	D6	D5	D4	D3	D2	D1	D0
Configurações gráficas	0	0	0	0	1	D	С	В

- D: Controle do display
- D = 0: Display desligado | D = 1: Display ligado.
- C: Controle do cursor
- C = 0: Cursor desligado | C = 1: Cursor ligado.
- B: Cursor piscante
- B = 0: Cursor não piscante | B = 1: Cursor piscante.
- Normalmente: D = 1; C = 1; B = 0 -> (00001110)b = 0Eh

- Antes da utilização, é necessário configurar o display de LCD de acordo com as suas características e/ou com o formato de exibição desejado através do envio de alguns comandos ao display;
- Quanto às características do cursor, podemos configurar:

Instrução	D7	D6	D5	D4	D3	D2	D1	D0
Deslocamento do Cursor	0	0	0	0	0	1	I/D	S

- I/D: Deslocamento do cursor
 - I/D = 0: direita para a esquerda (decremento);
 - I/D = 1: esquerda para a direita (incremento).
- S: Função scroll
 - S = 0: Scroll desligado;
 - S = 1: Scroll ligado.
- Normalmente: I/D = 1; S = 0 -> (00000110)b = 06h

- Antes da utilização, é necessário configurar o display de LCD de acordo com as suas características e/ou com o formato de exibição desejado através do envio de alguns comandos ao display;
- Quanto às características do cursor, podemos configurar:

Instrução	D7	D6	D5	D4	D3	D2	D1	D0
Deslocamento do Cursor	0	0	0	0	0	1	I/D	S

Outras configurações úteis:

01h: limpa o display;

02h: vai para a primeira posição do display.

Exemplo de rotina para configuração do display:

```
CONFIG LCD: MOV LCD, #38h; Define 8 bits, duas linhas e
                          ; matriz de 5x7 pontos.
             LCALL WR CMD ; Escreve comando.
             MOV LCD, #06H; Deslocamento do cursor E->D.
             LCALL WR CMD ; Escreve comando.
             MOV LCD, #0EH ; Cursor fixo.
             LCALL WR CMD ; Escreve comando.
             MOV LCD, #01H ; Limpa o display.
             LCALL WR CMD ; Escreve comando.
             MOV LCD, #02H ; Vai para a primeira linha
                         ; (opcional).
             LCALL WR CMD ; Escreve comando.
             RET
```

Endereçamento de linha / coluna

 A tabela a seguir mostra os endereços base de cada posição em um display de LCD 16x4, sendo que as duas primeiras linhas equivalem aos endereços de um display 16x2:

00	01	02	03	04	05	06	07	08	09	OA	ОВ	0C	OD	0E	OF
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F

- Dessa forma, é possível acessar diretamente qualquer posição do display com base no endereço da posição desejada, sendo o endereço final dado por:
 - Endereço final = 80h + Endereço base
- Exemplo: posição dada pela linha 1 e coluna 7
 - Endereço final = 80h + 06h = 86h

Endereçamento de linha / coluna

 A tabela a seguir mostra os endereços base de cada posição em um display de LCD 16x4, sendo que as duas primeiras linhas equivalem aos endereços de um display 16x2:

00	01	02	03	04	05	06	07	08	09	OA	ОВ	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4 E	4F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1 F
50	51	52	53	54	55	56	57	58	59	5 A	5B	5C	5D	5E	5F

- Dessa forma, é possível acessar diretamente qualquer posição do display com base no endereço da posição desejada, sendo o endereço final dado por:
 - Endereço final = 80h + Endereço base
- Exemplo: posição dada pela linha 2 e coluna 1
 - Endereço final = 80h + 40h = C0h

Endereçamento de linha / coluna

 A tabela a seguir mostra os endereços base de cada posição em um display de LCD 16x4, sendo que as duas primeiras linhas equivalem aos endereços de um display 16x2:

00	01	02	03	04	05	06	07	08	09	0A	ОВ	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F

Exemplo: função para "pular" para a segunda linha:

```
LINE_2: MOV LCD, #0C0h ; Move a posição desejada ; para o barramento.

LCALL WR_CMD ; Escreve um comando.

RET ; Retorna da função.
```

Exemplo

 Utilizando a placa de desenvolvimento v0.7 e o arquivo exemplo disponíveis na página da disciplina, elabore um programa que escreva a seguinte mensagem estática em um display de LCD 16x2:

> _Disciplina de:_ _µControladores_

 Requisito: utilize a diretiva DB para armazenar as mensagens e o DPTR para varrer a lista.

Exercício

 Utilizando a placa de desenvolvimento v0.7 e o arquivo exemplo disponíveis na página da disciplina, modifique o programa para que a mensagem a seguir fique "rolando" (função scroll) no display indefinidamente:

Disciplina de µControladores / UFPEL 2023/1

Tabela ASCII

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	4
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	5	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	δı.	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	1
10	A	[LINE FEED]	42	ZA.		74	4A	J	106	6A	1
11	В	[VERTICAL TAB]	43	28	+	75	48	K	107	6B	k
12	C	[FORM FEED]	44	2C		76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	ISHIFT OUT!	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	P
17	11	IDEVICE CONTROL 11	49	31	1	81	51	Q	113	71	a
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	5
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	INEGATIVE ACKNOWLEDGE	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	y
26	1A	[SUBSTITUTE]	58	3A.		90	5A	Z	122	7A	z
27	18	[ESCAPE]	59	3B	;	91	58	1	123	7B	4
28	1C	IFILE SEPARATORI	60	3C	<	92	5C	1	124	7C	1
29	10	[GROUP SEPARATOR]	61	3D		93	5D	1	125	7D	1
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E		126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]