Processus discrets

TD1. Espérance conditionnelle.

Exercice 1. Soient X une v.a. intégrable définie sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, et \mathcal{B} une sous-tribu de \mathcal{F} .

- 1. Rappeler la définition de $\mathbb{E}(X|\mathcal{B})$.
- 2. Compléter les égalités suivantes :
 - a) $\mathbb{E}(\mathbb{E}(X|\mathcal{B})) =$
 - b) Si X et \mathcal{B} sont indépendantes, $\mathbb{E}(X|\mathcal{B})$ =
 - c) Si Y est une v.a. \mathcal{B} -mesurable et si XY et X sont intégrables, $\mathbb{E}(YX|\mathcal{B})$ =
 - d) Pour toute v.a. Z \mathcal{B} -mesurable et bornée, $\mathbb{E}(Z\mathbb{E}(X|\mathcal{B})) =$

Exercice 2. Soit X une v.a. intégrable définie sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, et soient $\mathcal{B}_1, \mathcal{B}_2$ deux sous-tribus de $\mathcal{F}, \mathcal{B}_1 \subset \mathcal{B}_2$. Montrer que

$$\mathbb{E}(\mathbb{E}(X|\mathcal{B}_1)|\mathcal{B}_2) = \mathbb{E}(X|\mathcal{B}_1) \quad \text{et que} \quad \mathbb{E}(\mathbb{E}(X|\mathcal{B}_2)|\mathcal{B}_1) = \mathbb{E}(X|\mathcal{B}_1).$$

Exercice 3. Soit $\{A_1, A_2, ...\}$ une partition (finie ou infinie) de Ω . Soit $\mathcal{B} = \sigma(A_1, ...)$ la tribu engendrée par cette partition. Montrer que

$$\mathbb{E}(X|\mathcal{B})(\omega) = \sum_{j: \mathbb{P}(A_j) > 0} \frac{\mathbb{E}(X1_{A_j})}{\mathbb{P}(A_j)} 1_{A_j}(\omega).$$

Exercice 4. Un modèle discret d'évolution d'actifs. Soit S_0 une constante, 0 < d < u et X_n une suite iid à valeurs dans $\{u, d\}$ telle que $\mathbb{P}(X_n = u) = p$. On considère la suite S_n , $n \ge 1$ définie par $S_n = X_n S_{n-1}$ pour $n \ge 1$ qui est un modèle d'évolution d'un actif financier. Soit $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_1 = \sigma(X_1)$, $\mathcal{F}_2 = \sigma(X_1, X_2)$.

- 1. Montrer que $\sigma(S_2) \neq \sigma(X_1, X_2)$.
- 2. Calculer $\mathbb{E}[S_2|\mathcal{F}_1]$ et $\mathbb{E}[S_2|\mathcal{F}_0]$ et vérifier que $\mathbb{E}[\mathbb{E}[S_2|\mathcal{F}_1]|\mathcal{F}_0] = \mathbb{E}[S_2]$.
- 3. Si $\mathcal{F}_n = \sigma(X_1, ..., X_n)$ donner une formule pour $\mathbb{E}[S_n | \mathcal{F}_k]$ pour tout $k \leq n$.

Exercice 5. Soient $X_1, ..., X_n$ des variables aléatoires iid intégrables. Calculer

$$\mathbb{E}(X_1|X_1+X_2+\ldots+X_n).$$

Exercice 6. Soient X_1, X_2 deux v.a. indépendantes telles que $\mathbb{P}(X_i > t) = e^{-t}, \forall t > 0$. On pose $Y = X_1 + X_2$ et on considère une fonction f continue sur \mathbb{R} . Calculer $\mathbb{E}(f(X_1)|Y)$.

Exercice 7. Soit X une v.a. telle que $\mathbb{E}(X^2) < \infty$. On pose $\mathrm{Var}(X|\mathcal{F}) \equiv \mathbb{E}(X^2|\mathcal{F}) - \mathbb{E}(X|\mathcal{F})^2$. Montrer que

$$\operatorname{Var}(X) = \mathbb{E}(\operatorname{Var}(X|\mathcal{F})) + \operatorname{Var}(\mathbb{E}(X|\mathcal{F})).$$

Exercice 8. Soit X une v.a. de loi $\mathcal{B}(a,b)$, a,b>0 et, conditionnellement à X, soit Y une v.a. binomiale de paramètres (n,X). Calculer l'espérance et la variance de Y.

Exercice 9. [Formule de Bayes] Montrer que si \mathcal{G} est une sous-tribu de \mathcal{F} et $A \in \mathcal{F}$, $G \in \mathcal{G}$ on a

$$\mathbb{P}(G|A) = \frac{\mathbb{E}[\mathbb{P}(A|\mathcal{G})1_G]}{\mathbb{E}[\mathbb{P}(A|\mathcal{G})]}.$$

Exercice 10. On considère deux v.a. X, Y: X est uniforme sur l'ensemble $\{1, ..., 6\}$ et conditionnellement à X la v.a. Y a une loi Bin(X, 1/2). Calculer $\mathbb{P}(X = i | Y = 0)$ pour i = 1, ..., 6.

Exercice 11. Montrer que si $X_1 = X_2$ sur $B \in \mathcal{F}$ (c.-à.-d. $X_1(\omega) = X_2(\omega)$ si $\omega \in B$), alors $\mathbb{E}[X_1|\mathcal{F}] = \mathbb{E}[X_2|\mathcal{F}]$ sur $B \in \mathcal{F}$.

Exercice 12. Soient (X, Y) une couple des v.a. à valeurs dans $\mathbb{R}^n \times \mathbb{R}^m$ avec densité jointe $f_{X,Y}(x,y)$. Montrer que $\mathbb{E}[g(Y)|X] = h(X)$ où h est n'importe quelle fonction telle que

$$h(x) \int_{\mathbb{R}^m} f_{X,Y}(x,y) dy = \int_{\mathbb{R}^m} g(y) f_{X,Y}(x,y) dy.$$

pour tout $x \in \mathbb{R}^n$.