2. Functions

Definition of a function

IMI

Many to 1

1 to many

Many to many

Domain and Range

Domain is all the possible x values of a function.

Range is all the possible y values of a function.

The diagram shows the graph of $y = f^{-1}(x)$, where f^{-1} is defined by $f^{-1}(x) = \frac{1 - 5x}{2x}$ for $0 < x \le 2$.

(i) Find an expression for f(x) and state the domain of f.

[5]

range of f^-1(x):
$$(1-5*0)/2*0 < f^-1(x) \le (1-5*2)/2*2$$

 $0 < f^-1(x) \le -2.25$
 domain of f(x):0 < x ≤ -2.25

$$y=(1-5x)/2x$$
 $x=(1-5y)/2y$
 $2yx=1-5y$
 $2yx+5y=1$
 $y(2x+5)=1$
 $y=1/(2x+5)$
 $f(x)=1/(2x+5)$

Original function

$$f(x) = \sqrt{x+2}$$

Inverse function

$$f^{-1}(x) = x^2 - 2$$

Domain

Range

Domain

Range

Yup – we got the full switch of the domain & range for the inverse.

2.2 Composite functions

If
$$g(x) = x^2$$
 and $f(x) = x + 3$

Calculate $f(g(x))$ 1. Identify the outer and inner functions

 $f(x) = x + 3$ 2. Write the outer function

 $f(g(x)) = x^2 + 3$ 3. Substitute each x with the inner function

2.2 Composite functions

fg only exists if the range of g is contained within the domain of f.

In general, $fg(x) \neq gf(x)$.

Functions f and g are defined by

$$f: x \mapsto 10 - 3x, \quad x \in \mathbb{R},$$

 $g: x \mapsto \frac{10}{3 - 2x}, \quad x \in \mathbb{R}, \quad x \neq \frac{3}{2}.$

Solve the equation ff(x) = gf(2).

$$ff(x) = 10 - 3(10-3x)$$

 $ff(x)=10-30+9x$
 $ff(x)=9x-20$

$$x = \frac{-(-273) + 57}{2 \cdot 54} \colon \frac{55}{18}$$

$$x = \frac{-(-273) - 57}{2 \cdot 54} \colon 2$$

The graph of a function and its inverse

- remember that not every function has an inverse
- An inverse function $f^{-1}(x)$ exists if, and only if, the function f(x) is a **one-one mapping**.
- If f and f^-1 are the same function, then f is called a **self-inverse function**.

https://www.google.com/search? q=self+inverse+function&source=lmns&bih=625&biw=1366&rlz=1C 1BNSD_enUA978UA978&hl=en&sa=X&ved=2ahUKEwjHgvaCp5z7Ah UsOIsBHRRfBHEQ_AUoAHoECAEQAA&safe=active&ssui=on#kpvalb x=_rRlpY4rVKtOOoASSi6ngBQ_28

The graph of a function and its inverse

symmetrical about the line y = x.

Transformation Rules for Functions

Function Notation	Type of Transformation	Change to Coordinate Point
f(x) + d	Vertical translation up d units	$(x, y) \rightarrow (x, y + d)$
f(x) – d	Vertical translation down d units	$(x, y) \rightarrow (x, y - d)$
f(x + c)	Horizontal translation left c units	$(x, y) \rightarrow (x - c, y)$
f(x - c)	Horizontal translation right c units	$(x, y) \rightarrow (x + c, y)$
-f(x)	Reflection over x-axis	$(x, y) \rightarrow (x, -y)$
f(-x)	Reflection over y-axis	$(x, y) \rightarrow (-x, y)$
af(x)	Vertical stretch for a >1	(x, y) → (x, ay)
	Vertical compression for 0 < a < 1	
f(bx)	Horizontal compression for b > 1	$(x,y) \rightarrow \left(\frac{x}{b},y\right)$
	Horizontal stretch for 0 < b < 1	

Translation by vector

- positive numbers mean right or upward
- negative numbers mean left or downward

The diagram shows part of the graph of $y = a + b \sin x$. Find the values of the constants a and b.

a - translation --> a = -2 b - horizontal stretch --> b = 3