

Inlämningsuppgift 5 - 2^k faktoriell design

STAG24 - Variansanalys VT 21 Kim Thurow

Innehållsförteckning

1	Sammanfattning	1
2	$6.5 2^3$ faktoriell design	2
	2.1 a) Skattning av faktoreffekter	2
	2.2 b) Variansanalys	2
	2.3 c) Regressionsanalys	3
	2.4 d) Residualanalys	3
	2.5 e) Längst förväntade livslängd	3
3	6.7 Konfidensintervall	4
4	Bilaga: SAS-kod	5

1 Sammanfattning

Som deltagare på kursen Variansanalys förväntas var kursdeltagare lämna in beräkningsuppgifter från kursboken Design and analysis of experiments av D. C. Montgomery. Uppgifterna beräknas i onlineprogrammet SAS Studio och koden redovisas som bilaga.

2 6.5 2^3 faktoriell design

En ingenjör är intresserad av effekten av tre faktorer; (A) klipptid, (B) verktyg samt (C) klippvinkel i ett maskinverktyg. Två nivåer av varje faktor väljs och tre replikat av en 2^3 design körs.

Modellen som använts är $y_{ijkl} = \mu + \tau_i + \beta j + (\tau \beta)_{ij} + \gamma k + (\tau \gamma)_{jk} + (\tau \beta \gamma)_{ijk} + \epsilon_{ijkl}$. ϵ antas vara $N(0,\sigma^2)$. Signifikansnivå $\alpha = 0.05$.

2.1 a) Skattning av faktoreffekter

Nedan listas de skattade faktoreffekterna. Faktor B och C samt samspelet mellan A och C, det vill säga verktyg och klippvinkel, samt klipptid och klippvinkel, verkar ha störst effekt med 11.3, 6,83 och -8,83.

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits	
Intercept	1	40.83333	1.12114	36.42	<.0001	38.45663	43.21003
Α	1	0.33333	2.24227	0.15	0.8837	-4.42007	5.08673
В	1	11.33333	2.24227	5.05	0.0001	6.57993	16.08673
С	1	6.83333	2.24227	3.05	0.0077	2.07993	11.58673
AB	1	-1.66667	2.24227	-0.74	0.4681	-6.42007	3.08673
AC	1	-8.83333	2.24227	-3.94	0.0012	-13.58673	-4.07993
ВС	1	-2.83333	2.24227	-1.26	0.2245	-7.58673	1.92007
ABC	1	-2.16867	2.24227	-0.97	0.3483	-6.92007	2.58673

Figure 1: Skärmdump från SAS

2.2 b) Variansanalys

I b-uppgiften används en variansanalys för att bekräfta uppgifterna i a-uppgiften. Från testet i SAS ses i skärmdumpen nedan att faktor B, C samt samspelet mellan A och C är signifikanta. Signifikansen stämmer bra med den höga effekt faktor B och C hade i a-uppgiften.

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Α	1	0.6666667	0.6666667	0.02	0.8837
В	1	770.6666667	770.6666667	25.55	0.0001
С	1	280.1666667	280.1666667	9.29	0.0077
A*B	1	16.6666667	16.6666667	0.55	0.4681
A*C	1	468.1666667	468.1666667	15.52	0.0012
B*C	1	48.1666667	48.1666667	1.60	0.2245
A*B*C	1	28.1666667	28.1666667	0.93	0.3483

Figure 2: Variansanalys där B, C samt AC blev signifikanta.

2.3 c) Regressionsanalys

 ${\bf I}$ uppgift c
 ska en regressionsmodell som förutser verkygets livslängd ta
s fram:

$$y = 40.83 + 0.33x_A + 11.3x_B + 6.83x_C - 8.83x_{AC}$$

2.4 d) Residualanalys

Residualerna ser ut som förväntat.

Figure 3: Residualanalys, skärmdumpar från SAS

2.5 e) Längst förväntade livslängd

Längst förväntade livslängd får man vid kombinationen av följande faktorer: A -, B + och C +.

3 6.7 Konfidensintervall

I uppgift 6.7 undersöks datan från uppgift 6.5 vidare. Nu undersöks huruvida standardavvikelse och konfidensintervall följer samma mönster som variansanalysen. Från en REG funktion i SAS togs nedan skärmdump. Där utläses att standardavvikelsen ligger på 2.24227, samt att de faktorer som inte täcker noll i konfidensintervallet är samma faktorer som inte blev signifikanta i variansanalysen.

The REG P Model: MOI Dependent	DEL1						
			Paramete	r Estimat	es		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits	
Intercept	- 1	40.83333	1.12114	36.42	<.0001	38.45663	43.21003
Α	- 1	0.33333	2.24227	0.15	0.8837	-4.42007	5.08673
В	- 1	11.33333	2.24227	5.05	0.0001	6.57993	16.08673
С	1	6.83333	2.24227	3.05	0.0077	2.07993	11.58673
AB	1	-1.66667	2.24227	-0.74	0.4681	-6.42007	3.08673
AC	1	-8.83333	2.24227	-3.94	0.0012	-13.58673	-4.07993
вс	1	-2.83333	2.24227	-1.26	0.2245	-7.58673	1.92007
ABC	1	-2.16887	2.24227	-0.97	0.3483	-6.92007	2.58673

Figure 4: Skärmdump från SAS, bilden är redigerad.

4 Bilaga: SAS-kod

```
OPTIONS LS=80 PS=60 NODATE NOCENTER ;
/* Uppgift 6.5 */
DATA uppgift65;
DO C = -1, 1 ;
DO B = -1, 1;
DO A = -1, 1;
DO OBS= 1 TO 3;
INPUT effect @@ ; AB=A*B ; AC=A*C ; BC=B*C ; ABC=A*B*C ;
LABEL A='Cutting_speed'
C='Cutting _angle';
OUTPUT ;
END ;
END ;
END ;
END ;
LINES ;
22 \ \ 31 \ \ 25 \ \ 32 \ \ 43 \ \ 29 \ \ 35 \ \ 34 \ \ 50 \ \ 55 \ \ 47 \ \ 46 \ \ 44 \ \ 45 \ \ 38 \ \ 40 \ \ 37 \ \ 36
60\ 50\ 54\ 39\ 41\ 47
RUN ;
/* Variansanalys */
PROC GLM DATA=uppgift65 PLOTS=ALL;
TITLE 'tresidig_variansanalys';
CLASS A B C ;
\label{eq:model} \text{MODEL effect= A B $\mathbf{C}$ A*B A*C B*C A*B*C };
OUTPUT OUT=RES PREDICTED=Yhat RESIDUAL=RESIDUAL ;
RUN ;
/* Residualanalys */
PROC GPLOT DATA=RES ;
PLOT yhat*RESIDUAL ;
RUN ;
```

```
PROC UNIVARIATE DATA=RES NORMAL;

QQPLOT RESIDUAL;

RUN;

/* Regressions analys och konfidens intervall */

DATA uppgift 65;
SET uppgift 65;
SET uppgift 65;
title 'array';

ARRAY omkod B C AC;

DO I=1 to 3; omkod [I]=omkod [I]/2; END;

RUN;

PROC REG DATA=uppgift 65;
title 'regressions analys_och_konfidens intervall';

MODEL effect=B C AC / CLB;

RUN;
```