Steps for Hypothesis Testing

- 1. Define your parameters. Say explicitly what symbols like p, \hat{p} , n, x, \bar{x} , and μ represent
- 2. State the claim being tested in symbols.
- 3. State the opposite of the claim in symbols.
- 4. Determine H_0 and H_1 . H_0 is the statement from 2 and 3 which involves equality. H_1 is the statement from 2 and 3 which does not involve equality.
- 5. Select a significance level α . If α is not given, use $\alpha = 0.05$.
- 6. Decide on the appropriate distribution (binomial, z, t, etc.) and test statistic (observed successes, z-score, t-score, etc.). If using technology, you are deciding which test to use on your machine.
- 7. Find the P-value. This is the probability of getting a test statistic at least as extreme as your calculated test statistic. The P-value is a measure of consistency between your observations and the null hypothesis H_0 .
- 8. Decide if you should reject H_0 .
 - (a) If $P < \alpha$, then the observations are not consistent with H_0 . REJECT H_0 (Support H_1).
 - (b) If $P > \alpha$, then the observations are consistent with H_0 . DO NOT REJECT H_0 (Do not support H_1).
- 9. Restate your conclusion in non-technical terms that refer directly to the claim being tested.
 - If your claim is H_0 , your conclusion will be one of these
 - There is enough sample evidence to reject the claim.
 - There is NOT enough sample evidence to reject the claim.
 - If your claim is H_1 , then your conclusion will be one of these
 - There is enough sample evidence to support the claim.
 - There is NOT enough sample evidence to support the claim.