Introduction to Game Theory

3b. Extensive-Form Games

Dana Nau University of Maryland

The Sharing Game

- Suppose agents 1 and 2 are two children
- Someone offers them two cookies, but only if they can agree how to share them
- Agent 1 chooses one of the following options:
 - > Agent 1 gets 2 cookies, agent 2 gets 0 cookies
 - > They each get 1 cookie
 - > Agent 1 gets 0 cookies, agent 2 gets 2 cookies
- Agent 2 chooses to accept or reject the split:
 - Accept =>
 they each get their cookies(s)
 - > Otherwise, neither gets any

Extensive Form

- The sharing game is a game in **extensive form**
 - > A game representation that makes the temporal structure explicit
 - Doesn't assume agents act simultaneously
- Extensive form can be converted to normal form, so previous results carry over
 - > But there are additional results that depend on the temporal structure
- In a perfect-information game, the extensive form is a **game tree**:
 - > Nonterminal node = place where an agent chooses an action
 - > Edge = an available **action** or **move**
 - > Terminal node = a final outcome
 - At each terminal node h, each agent i has a utility $u_i(h)$

Pure Strategies

- Pure strategy for agent *i* in a perfect-information game:
 - > specifies which action to take at every node where it's *i*'s choice

Sharing game:

- Agent 1 has 3 pure strategies:
 - $S_1 = \{2-0, 1-1, 0-2\}$
- Agent 2 has 8 pure strategies:

Extensive form vs. normal form

- Every game tree corresponds to an equivalent normal-form game
- The first step is to get all of the agents' pure strategies
- An agent's complete strategy must specify an action at every node where it's the agent's move
- Example: the game tree shown here
 - > Agent 1 has four pure strategies:

•
$$s_1 = \{(A, G), (A, H), (B, G), (B, H)\}$$

- Must include (A, G) and (A, H), even though action A makes the G-versus-H choice moot
- Agent 2 also has four pure strategies:

•
$$s_2 = \{(C, E), (C, F), (D, E), (D, F)\}$$

Extensive form vs. normal form

- Once we have all of the pure strategies, we can rewrite the game in normal form
- Converting to normal form introduces redundancy
 - ➤ 16 outcomes in the payoff matrix, versus 5 outcomes in the game tree
 - > Payoff (3,8) occurs
 - once in the game tree
 - four times in the payoff matrix
- This can cause an exponential blowup

(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

Nash Equilibrium

- **Theorem.** Every perfect-information game in extensive form has a pure-strategy Nash equilibrium
 - This theorem has been attributed to Zermelo (1913), but there's some controversy about that

- Agents take turns, and everyone sees what's happened so far before making a move
- So never need to introduce randomness into action selection to find an equilibrium (A,H)
- In our example, there are three pure-strategy Nash equilibria

(C,F)

(C,E)

(A,G)

(B,G)

(B,H)

3,8	3,8	8,3	8,3
3,8	3,8	8,3	8,3
5,5	2,10	5,5	2,10
5,5	1,0	5,5	1,0

(D,E)

(D,F)

Nash Equilibrium

- The concept of a Nash equilibrium can be too weak for use in extensive-form games
- Recall that our example has three pure-strategy Nash equilibria:
 - $\rightarrow \{(A,G),(C,F)\}$
 - \rightarrow {(A,H), (C,F)}
 - > {(B,H), (C,E)}
- Here is $\{(B,H), (C,E)\}$ with the game in extensive form

Nash Equilibrium

- If agent 1 used (B,G) instead of (B,H)
 - Then agent 2's best response would be (C,F), not (C,E)
- When agent 1 plays B
 - > The only reason for agent 2 to choose E is if agent 1 has already committed to H rather than G

- > By committing to choose H, which is harmful to agent 2, agent 1 can make agent 2 avoid that part of the tree
- > Thus agent 1 gets a payoff of 5 instead of 2
- But is agent 1's threat credible?
 - ➤ If agent 2 plays F, would agent 1 really play H rather than G?
 - > It would reduce agent 1's own utility

Subgame-Perfect Equilibrium

- Given a perfect-information extensive-form game G, the **subgame** of G rooted at node h is the restriction of G to the descendants of h
- Now we can define a refinement of the Nash equilibrium that eliminates noncredible threats
- A **subgame-perfect equilibrium** (SPE) is a strategy profile S such that for every subgame G' of G, the restriction of S to G' is a Nash equilibrium of G'
 - > Since G itself is a subgame of G, every SPE is also a Nash equilibrium
- Every perfect-information extensive-form game has at least 1 SPE
 - Can prove this by induction on the height of the game tree

Example

• Recall that we have three Nash equilibria:

$$\{(A, G), (C, F)\}\$$

 $\{(A, H), (C, F)\}\$
 $\{(B, H), (C, E)\}\$

- Consider this subgame:
 - For agent 1,G strictly dominates H
 - > Thus *H* can't be part of a Nash equilibrium
 - \triangleright This excludes $\{(A, H), (C, F)\}$ and $\{(B, H), (C, E)\}$
 - Just one subgame-perfect equilibrium
 - $\{(A, G), (C, F)\}$

Backward Induction

- To find subgame-perfect equilibria, we can use backward induction
- Identify the equilibria in the bottom-most nodes
 - > Assume they'll be played if the game ever reaches these nodes
- For each node x, recursively compute a vector $v_x = (v_{x1}, ..., v_{xn})$ that gives every agent's equilibrium utility
 - \triangleright At each node x,
 - If i is the agent to move, then i's equilibrium action is to move to a child y of xfor which *i*'s equilibrium utility v_{vi} is highest
 - Thus $v_x = v_y$

Let's Play a Game

- I need two volunteers to play the game shown here:
- ➤ One to be Agent 1
- One to be Agent 2
- Whenever it's your turn to move, you have two possible moves:
 - > C (continue) and S (stop)
- Agent 1 makes the first move
- At each terminal node, the payoffs are as shown

A Problem with Backward Induction

The Centipede Game

Can extend this game to any length

- The payoffs are constructed in such a way that for each agent, the only SPE is always to choose S
- This equilibrium isn't intuitively appealing
 - > Seems unlikely that an agent would choose S near the start of the game
 - > If the agents continue the game for several moves, they'll both get higher payoffs
 - In lab experiments, subjects continue to choose C until close to the end of the game

A Problem with Backward Induction

- Suppose agent 1 chooses C
- If you're agent 2, what do you do?

- > SPE analysis says you should choose S
- > But SPE analysis also says you should never have gotten here at all
- How to amend your beliefs and course of action based on this event?
- Fundamental problem in game theory
 - Differing accounts of it, depending on
 - the probabilistic assumptions made
 - what is common knowledge (whether there is common knowledge of rationality)
 - how to revise our beliefs in the face of an event with probability 0

Backward Induction in Zero-Sum Games

- Backward induction works much better in zero-sum games
 - No zero-sum version of the Centipede Game, because we can't have increasing payoffs for both players
- Only need one number: agent 1's payoff (= negative of agent 2's payoff)
- Propagate agent 1's payoff up to the root
 - > At each node where it's agent 1's move, the value is the maximum of the labels of its children
 - ➤ At each node where it's agent 2's move, the value is the minimum of the labels of its children
 - > The root's label is the **value** of the game (from the Minimax Theorem)
- In practice, it may not be possible to generate the entire game tree
 - \triangleright E.g., extensive-form representation of chess has about 10^{150} nodes
- Need a heuristic search algorithm

Summary

- Extensive-form games
 - > relation to normal-form games
 - Nash equilibria
 - subgame-perfect equilibria
 - backward induction
 - The Centipede Game
 - backward induction in zero-sum games