Discrete Math

Exercise 2

Aviv Vaknin 316017128

1

$f(C_1 \backslash C_2) = f(C_1) \backslash f(C_2)$ 1.1

The statement is incorrect.

Let:

$$A = \{1, 2, 3\}$$

$$B = \{4, 5, 6\}$$

$$f(1) = 4$$

$$f(2) = 5$$

$$f(3) = 4$$

$$C_1 = \{1, 2\}$$

$$C_2 = \{2, 3\}$$

Therefore:

$$f(C_1 \backslash C_2) = f(1) = 4$$

$$f(C_1) \backslash f(C_2) = \{4, 5\} \backslash \{4, 5\} = \emptyset$$

Therefore, we can see that:

$$f(C_1 \backslash C_2) \neq f(C_1) \backslash f(C_2)$$

$f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$ 1.2

In order to prove this identity, we'll need to show the following:

$$f(C_1 \cup C_2) \subseteq f(C_1) \cup f(C_2)$$

$$f(C_1) \cup f(C_2) \subseteq f(C_1 \cup C_2)$$

1.2.1 $f(C_1 \cup C_2) \subseteq f(C_1) \cup f(C_2)$

Let $y \in f(C_1 \cup C_2)$.

Therefore, there exists $x \in C_1 \cup C_2$ such that f(x) = y.

Hence, there are two possibilities, $x \in C_1$ or $x \in C_2$.

If $x \in C_1$, then $y \in f(C_1)$, and similarly, if $x \in C_2$, then $y \in f(C_2)$.

Therefore, $y \in f(C_1)$ or $y \in f(C_2)$, or formally:

$$y \in f(C_1) \cup f(C_2)$$

$f(C_1) \cup f(C_2) \subseteq f(C_1 \cup C_2)$ 1.2.2

Let $y \in f(C_1) \cup f(C_2)$.

If $y \in f(C_1)$, then there exists an $x \in C_1$ such that f(x) = y.

If $x \in C_1$, then $x \in C_1 \cup C_2$, and therefore f(x) = y still stands.

Therefore:

$$y \in f(C_1 \cup C_2)$$

 $\mathbf{2}$

2.1

The statement is true. First, let's look at: $f(C) \cap D$ Let:

$$y \in f(C) \cap D$$

Therefore:

$$y \in f(c) \tag{1}$$

$$y \in D \tag{2}$$

Now, let's look at: $f(C \cap f^{-1}(D))$ Let:

$$x \in C \cap f^{-1}(D)$$

Therefore:

$$x \in C \tag{3}$$

$$x \in f^{-1}(D) \tag{4}$$

If we apply f on 3 and 4, we'll return to 1 and 2, accordingly.

2.2

The statement is incorrect, here's a counter example:

$$A = \{1\}$$

$$B = \{2, 3\}$$

$$C = A = \{1\}$$

$$D = \{2\}$$

$$f(1) = 3$$

Now, we can see:

$$f(C) \cup D = \{2, 3\}$$

$$f(C \cup f^{-1}(D)) = f(\{1\} \cup \{\}) = f(\{1\}) = f(1) = 3$$

$$\{2, 3\} \neq \{3\}$$

3

It is given that $g \circ f$ is surjective, therefore:

$$(\forall y \in C) \ (\exists x \in A) \ g(f(x)) = y$$

We want to show that q is surjective, that is:

$$(\forall y \in C) \ (\exists x \in B) \ g(x) = y$$

Because f is defined as:

$$f:A\longrightarrow B$$

We can read $g \circ f$ surjection as: "f outputs g's input, and then every output of g is surjective".

Therefore, we can conclude that if $g \circ f$ is surjective, g must be surjective as well.

4

4.1

The statement is incorrect.

Let:

$$A = \{1, 2\}$$

$$B = \{3, 4\}$$

$$C = \{5\}$$

$$f(1) = 3$$

$$f(2) = 3$$

$$g(1) = 4$$

$$g(2) = 4$$

$$h(3) = 5$$

$$h(4) = 5$$

Therefore, we can see that h is **surjective**, $h \circ f = h \circ g$, but $g \neq f$.

4.2

The statement is correct, let's show it. it is given that $h \circ f = h \circ g$, therefore:

$$\forall x \in A \ h(f(x)) = h(g(x))$$

However, because it is given that h is **injective**, we can conclude that:

$$q(x) = f(x)$$

And therefore:

$$g = f$$

5

5.1 Compute $g \circ f$

$$h_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 6 & 4 & 1 & 7 & 5 \end{pmatrix}$$

5.2 Compute $f \circ g$

$$h_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 7 & 1 & 5 & 4 & 6 \end{pmatrix}$$

5.3 Find the order of h_1 and h_2

First, we'll factor h_1 and h_2 :

$$h_1 = (13675)(2)(4)$$

$$h_2 = (13764)(2)(5)$$

Therefore, the order of h_1 and h_2 is 5.

5.4 Find the permutation h_1^{5781} and h_2^{5782}

5.4.1 h_1^{5781}

We can see that:

$$5781 \mod 5 = 1$$

Therefore:

$$h_1^{5781} = h_1^1 = h_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 6 & 4 & 1 & 7 & 5 \end{pmatrix}$$

5.4.2 h_2^{5782}

We can see that:

$$5782 \ mod \ 5 = 2$$

Therefore:

$$h_2^{5782} = h_2^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 2 & 6 & 3 & 5 & 1 & 4 \end{pmatrix}$$