Ed 9-Convolution

Exo 1 1.1. Scient $f \in L^{1}(\mathbb{R})$ et $g \in L^{\infty}(\mathbb{R})$, ma $f \neq g$ est bien léfine, que $f \neq g \in L^{\infty}(\mathbb{R})$ et que ||f*3|| < ||f||, ||3||_n.

Jist zek, mg $f \star g(\pi) := \int_{R} f(\pi - g) \cdot g(g) dg$ to an effini. Mg $\int_{\mathbb{R}} |f(x-y)| g(y) |dy < \infty$ (tree \mathbb{R} ...) angul cas f + g(x) seva bien défini. On, ∫_R (f(x-y)·g(y)|dy ≤ ||g||_∞ ||f(x-y)|dy < ||f||_∞ ||g||_∞ < ∞. ||f(x-y)|dy < ||g|| ≤ ||g||_∞ ||g||_∞ ||f(x-y)|dy (poler z := x-y···)

1.2. Signif fet $g \in L^2(\mathbb{R})$, my freg hien défini, que freg $L^2(\mathbb{R})$, et que $\|f * g\|_{\mathcal{D}} \leq \|f\|_2 \|g\|_2$. $M_{9/1}$) | $f(x-y).g(y)|dy < \infty.6n, & x \in IR,$ wit seem, MR $\int_{MR} |f(x-y)|^{2} dy \leq \int_{R}^{1} \int_{R} (|f(x-y)|^{2} + |g(y)|^{2}) dy$ $|ab| \leq \frac{a^{2}+h^{2}}{2} = \int_{R}^{1} (||f||_{2}^{2} + ||g||_{2}^{2}) \leq p$

Done fix bien défini en tout x = 1R et bonnée juisque, si sce/p $|f + g(x)| = |\int f(x-y)g(y)dy|$ $\leq \int_{\mathbb{R}} |f(x-y)g(y)| dy \leq \frac{1}{2} (\|f\|_{2}^{2} + \|g\|_{2}^{2})$ $a \not= (y) := f(x-y) (axfxé) \in L^2(k) (f. f. f. |f.|^2 m = |f|^2 dy)$

donc $f : g \in L^1(IR)$ et = 117112 $\implies |8*5(2)| \le ||f||_2 ||5||_2$ $=) || f + 3||_{\infty} \leq || f ||_{2} ||_{3} ||_{2}$ ii) \frac{1}{r} + \frac{1}{q} = 1 + \frac{1}{r}, \frac{1}{r} \in \frac{1}{r} \ tx0 2 $P = \chi_{(0,n)} \in \mathcal{L}_{(R)} = \chi_{(0,n)} \in \mathcal{L}_{(R)} = \chi_{(0,n)} = \chi_{(0,n)}$ 9.1. f = x (5,1) = (1(1R)) Leterminer fxf. Bist XE IR, $f + f(x) = \int_{\mathbb{R}} \chi_{(x-3)} \chi_{($ $= \frac{1}{(x-y)}dy$

 $\frac{1}{3} = \frac{\chi_{(5,17)}(3) | \psi(3)| d3}{3 = \chi - 3}$ $\frac{\chi_{(5,17)}(3) | \psi(3)| d3}{1 = \chi - 3}$ $\frac{\chi_{(5,17)}(3) | \psi(3)| d3}{1 = \chi - 3}$ -1×+ (EG°(1R)) $(2'(3)=-1,3) \in [x-1,x]$ $\sum_{x \in X} (x) = 0$ $\sum_{x \in X} f(x) = 0$ $\sum_{x \in X} f(x) = 0$ Si $0 \le x \le 1$, $f * f(x) = \int_{x}^{x} 1.dy = x$ Si $1 \le x \le 2$, $f * f(x) = \int_{x-1}^{2} 1.dy = 1 - (x-1) = x-x$ Si x > 2, f * f(x) = 0 $\int_{x-1}^{x} 1.dy = 1 - (x-1) = x-x$ J. ()

2.2. $\chi_{-9,a}$ + los : tien léfrie (ef. exo1) et $\in L^{\infty}(IR)$ $X = \int_{\mathbb{R}} X = \int_{\mathbb{R}} X = \int_{\mathbb{R}} (y) \cdot \cos(x - y) \, dy$ $= \int_{\mathbb{R}} \cos(x - y) \, dy = \left[-\sin(x - y) \right] y = -a$ = Sin(x+a) - Sin(x-a). $\frac{\sum_{i=1}^{n} \frac{1}{\sum_{i=1}^{n} \frac{1}{\sum_$

Rq: $\int_{-\infty}^{3} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de \int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de <math>\int_{-\infty}^{\infty} f(y) dy = :F(n) : la primitive de \int_{-\infty}$ Exo3

3.1 Soient fet $g \in L^{2}(\mathbb{R})$, $mq \neq *g = \hat{f}$ Sit $g \in \mathbb{R}$, $f * s \in \mathbb{R}$ $f * s \in \mathbb{R}$ f * $f_i \quad f(x,y) := e^{-2iN5x} f(x-y) g(y)$ $\in L^{1/2^2}$ on pourra utiliser Futini pour écrire $f * 5 (5) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} e^{2i\pi 5 x \cdot 3} f(x-5) g(5) dx \right) dy$ Fubini $= \int_{\mathbb{R}} e^{-2i\pi \xi S} g(S) \cdot \left(\int_{\mathbb{R}} e^{-2i\pi \xi (x-S)} f(x-S) dx \right) dy$ $=\frac{1}{2}\left(\frac{1}{2}\right)$ (= 21 = 3 + (3). H(d) = +(5)

Montione donc que $f \in L'(\mathbb{R}^2)$: $\int_{\mathbb{R}^2} e^{2i\pi \xi z} f(x-y) g(y) |dy dy$ DER 10 2 = | e/8 | . | 2 | $= \int_{\mathbb{R}^{2}} |g(x)| \left(\int_{\mathbb{R}} |f(x,y)| \, dx \right) dy = \int_{\mathbb{R}^{2}} |g(y)| \, dy \right) \cdot \left(\int_{\mathbb{R}} |f(x,y)| \, dx \right)$ $= \|f\|_{1} \cdot \|f(x)\| \, dx$ $= \|f\|_{1} \cdot \|f(x)\| \, dx$

3.2. Coluber $\chi_{(e,n)} * \chi_{(e,n)} * \chi_{(e,n)}$ $= (\chi_{(e,n)})^3 (f, \tau_n 8)$