Dinámica efectiva de un sistema de N qubits

Utilizando el principio de máxima entropía

Autor: A. Castillo

Director de tesis: D. Dávalos

Equipo de trabajo: C. Pineda, D. Dávalos, K. Uriostegui, E. Navarrete.

Enero 2023

Facultad de Ciencias, UNAM

Estructura de la presentación

- 1. Motivación
- 2. Preámbulo
- 3. El modelo, la asignación, y la dinámica
- 4. Resultados
- 5. Otro tipo de asignación
- 6. Conclusiones

Motivación

Herramienta borrosa y de poca resolución

- Intrumentación imperfecta.
- Sólo resuelve una partícula.
- Puede medir la pertícula errónea.

$$\mathcal{C}[\varrho] = \mathsf{Tr}_2[(1-p)\varrho + pS\varrho S^{\dagger}].$$

La dinámica efectiva

- Objetivo: estudiar la dinámica observable.
- Se conoce la dinámica microscópica.
- Es necesario un estimado del estadp microscópico.

• Effective dynamical map:

$$\Gamma_t[\rho] := (\mathcal{C} \circ \mathcal{U}_t \circ \mathcal{A}_{\mathcal{C}})[\rho].$$

Preámbulo

Preámbulo

El operador de densidad

Mezclas estadísticas

En el contexto de la mecánica cuántica nos enfrentamos a dos tipos de probabilidades. La primera, la probabilidad cuántica, está codificada dentro de los vectores de estado que se utilizan para describir al estado en el que se pueda hallar un sistema. Los vectores de estado, sin embargo, no contemplan el segundo tipo de probabilidad: la asociada a la ignorancia.

Mezclas estadísticas

En el contexto de la mecánica cuántica nos enfrentamos a dos tipos de probabilidades. La primera, la probabilidad cuántica, está codificada dentro de los vectores de estado que se utilizan para describir al estado en el que se pueda hallar un sistema. Los vectores de estado, sin embargo, no contemplan el segundo tipo de probabilidad: la asociada a la ignorancia.

Supóngase que se estudia un sistema del que se sabe se halla en el estado $|\varphi_i\rangle$ con probabilidad p_i , donde $\{|\varphi_i\rangle\}_{i=1}^m$ es un conjunto no necesariamente ortogonal de m estados $|\varphi_i\rangle$ pertenecientes al espacio de Hilbert de dimensión n, H_n , y $\{p_i\}_{i=1}^m$ es un conjunto de números reales no negativos tales que $\sum_{i=1}^{m} p_i = 1$. De este sistema se dice que se halla en un estado de mezcla estadística.

Parametrización

Es común escoger alguna base hermítica para poder parametrizar a las matrices de densidad.

Sea $\{\varsigma_k\}_k$ el conjunto de n^2-1 matrices generalizadas de Gell-Mann que generan a SU(n) y ρ una matriz de densidad $\rho \in \mathcal{S}(H_n)$.

Parametrización

Es común escoger alguna base hermítica para poder parametrizar a las matrices de densidad.

Sea $\{\varsigma_k\}_k$ el conjunto de n^2-1 matrices generalizadas de Gell-Mann que generan a SU(n) y ρ una matriz de densidad $\rho \in \mathcal{S}(H_n)$.

Entonces ρ puede expandirse en la base formada por dichas matrices y la identidad a través del producto punto de Hilbert-Schmidt como

$$\rho = \frac{1}{n} \left(\mathbb{1}_n \operatorname{Tr}(\rho) + \sum_{k=1}^{n^2-1} \operatorname{Tr}(\rho \varsigma_k) \varsigma_k \right).$$

Preámbulo

Evolución

Sistemas cerrados

La evolución de un sistema cuántico cerrado descrito por un vector de estado está dada por la ecuación de Schrödinger,

$$\mathrm{i}\hbarrac{d}{dt}\ket{\psi(t)}=H\ket{\psi(t)}$$
 .

Sistemas cerrados

La evolución de un sistema cuántico cerrado descrito por un vector de estado está dada por la ecuación de Schrödinger,

$$\mathrm{i}\hbar \frac{d}{dt} \ket{\psi(t)} = H \ket{\psi(t)}.$$

La evolución de un sistema descrito por un operador de densidad ρ está descrita por ecuación de Liouville-von Neumann,

$$\mathrm{i}\hbar\frac{d}{dt}\rho(t)=[H,\rho(t)].$$

Sistemas abiertos

para hallar la ecuación de la dinámica del sistema de interés es necesario trazar al entorno de ambos lados de esta ecuación, de forma que se halla

$$\mathrm{i}\hbarrac{d}{dt}
ho_{\mathcal{S}}(t)=\mathrm{Tr}_{\mathcal{E}}([H,
ho(t)]),$$

con $\rho(0) = \rho_S(0) \otimes \rho_E$, y cuya solución formal está dada en términos de un superoperador parametrizado por t, \mathcal{E}_t ,

$$\rho_{\mathcal{S}}(t) = \mathcal{E}_t(\rho_{\mathcal{S}}(0)).$$

Sistemas abiertos

para hallar la ecuación de la dinámica del sistema de interés es necesario trazar al entorno de ambos lados de esta ecuación, de forma que se halla

$$\mathrm{i}\hbarrac{d}{dt}
ho_{\mathcal{S}}(t)=\mathrm{Tr}_{\mathcal{E}}([H,
ho(t)]),$$

con $\rho(0) = \rho_S(0) \otimes \rho_E$, y cuya solución formal está dada en términos de un superoperador parametrizado por t. \mathcal{E}_t .

$$\rho_{\mathcal{S}}(t) = \mathcal{E}_t(\rho_{\mathcal{S}}(0)).$$

En esta ecuación, \mathcal{E}_t está definido como

$$\mathcal{E}_t(
ho_{\mathcal{S}}(0)) = \mathsf{Tr}_{\mathcal{E}}\left[\mathit{U}(t,0) \left(
ho_{\mathcal{S}}(0) \otimes
ho_{\mathcal{E}}
ight) \mathit{U}^\dagger(t,0)
ight]$$

y cumple que es un canal cuántico

Canal de desfasamiento

El canal de desfasamiento tiene operadores de Kraus $\{\sqrt{p}\mathbb{1}, \sqrt{(1-p)}\sigma_3\}$. Su efecto sobre un estado ρ es

$$\rho \mapsto p\rho + (1-p)\sigma_3\rho\sigma_3$$
.

FIGURA

Canal de bitflip

El canal de bitflip es análogo al canal de desfasamiento. Este canal tiene por operadores de Kraus $\{\sqrt{p}\mathbb{1}, \sqrt{(1-p)}\sigma_1\}$, y no será difícil ver que su efecto es el de reducir la magnitud de las componentes de σ_2 y σ_3 por un factor de 2p-1.

FIGURA

Canal de despolarización

Finalmente, el *canal de despolarización* se define mediante

$$ho\mapsto
horac{1}{2}\mathbb{1}+(1-
ho)
ho.$$

FIGURA

Esto equivale a perder toda la información acerca del estado con una probabilidad p.

Preámbulo

Entropía

Entropía clásica

Entropía cuántica

Preámbulo

El principio de Máxima Entropía

El PME clásico

El PME cuántico

Preámbulo

Modelos de grano grueso

Modelos de grano grueso

El modelo, la asignación, y la dinámica

El modelo, la asignación, y la dinámica

El modelo de grano grueso

Motivación

Construcción y extensión

El modelo, la asignación, y la dinámica

La aplicación de asignación

Repaso: PME

Construcción del estado asignado

El modelo, la asignación, y la dinámica

La dinámica efectiva

Construcción de la dinámica

Resultados

Dinámicas separables

Compuerta SWAP

Compuerta CNOT

Canales de Pauli

Cadena de Ising

Otro tipo de asignación

Definición

Diferencia

Dinámicas separables

Compuerta SWAP

Discusión

Conclusiones

Conclusiones

Referencias

- Nielsen, M. & Chuang, L. (2010). *Quantum Computation and Quantum Information*. Cambridge, United Kingdom: Cambridge University Press.
- Silva, P. & Concha, P. & Vallejos, R. & de Melo, F. (2020). *Macro-to-micro quantum mapping and the emergence of nonlinearity*. PsyArXiv. DOI:10.1103/PhysRevA.103.052210