プログラム意味論とファイブレーション(仮)

真田 嵩大 数理解析研究所 D1

Yota25,2022年3月26日

Contents

ファイブレーション

プログラム意味論

プログラム意味論とファイブレーション

プログラム意味論

プログラム意味論とファイブレーション

▶ E, B: 圏

p: E → B: 関手

任意の対象 $J \in \mathcal{B}$, $X \in \mathcal{E}$ と射 $u: J \to pX$ に対して , ある対象 $u^*X \in \mathcal{E}$ と射 $\overline{u}X: u^*X \to X$ が存在して $p(\overline{u}X) = u$ である . さらに $\overline{u}X$ は次の普遍性を持つ .

E,B: 圏

p: E → B: 関手

 $p: \mathcal{E} \to \mathcal{B}$ がファイブレーションであるとは,

任意の対象 $J \in \mathcal{B}$, $X \in \mathcal{E}$ と射 $u: J \to pX$ に対して,ある対象 $u^*X \in \mathcal{E}$ と射 $\overline{u}X: u^*X \to X$ が存在して $p(\overline{u}X) = u$ である.さらに $\overline{u}X$ は次の普遍性を持つ.

▶ E , B: 圏

p: E → B: 関手

 $p: \mathcal{E} \to \mathcal{B}$ がファイブレーションであるとは,

任意の対象 $J \in \mathcal{B}$, $X \in \mathcal{E}$ と射 $u: J \to pX$ に対して , ある対象 $u^*X \in \mathcal{E}$ と射 $\overline{u}X: u^*X \to X$ が存在して $p(\overline{u}X) = u$ である . さらに $\overline{u}X$ は次の普遍性を持つ .

カルテシアン射の普遍性

 $\overline{u}X$ は次の普遍性を持つ.

任意の $Z \in \mathcal{E} \succeq g: Z \to X$, $v: pZ \to J$ に対して $p(g) = u \circ v$ ならば, p(h) = v を満たす $h: Z \to u^*X$ が 一意的に存在する.このような普遍性を持つ射をカルテシアン 射と呼ぶ.

カルテシアン射の普遍性

 $\overline{u}X$ は次の普遍性を持つ.

カルテシアン射の普遍性

 $\overline{u}X$ は次の普遍性を持つ.

ファイブレーションの気持ち

ファイブレーション $p: \mathcal{E} \to \mathcal{B}$ を以下のような気持ちで眺める.

- ▶ Bは基本的な構造の圏
- ε は β により細かな構造が付加された圏
- ▶ $p \bowtie X \in \mathcal{E}$ に対してそのベースの構造 $pX \in \mathcal{B}$ を抽出する
- ▶ $u:J\to pX$ に対して $u^*X\in\mathcal{E}$ は , u を \mathcal{E} に持ち上げられるような最も弱い構造

ファイブレーションの具体例: Pred \rightarrow Set

Set を集合と写像の圏とする、圏 Pred を次で定める、

- ▶ 対象は組 (I, X) たち.ここで $I \in \mathbf{Set}$ かつ $X \subset I$.
- ▶ 射 $f:(J,Y) \to (I,X)$ は写像 $f:J \to I$ であって Y の元 を X にうつすもの .

関手p: Pred \rightarrow Set を

$$(I,X) \mapsto I$$
$$f \mapsto f$$

と定める、このとき p はファイブレーションとなる、 $u: J \to p(I, X)$ に対して

$$u^*(I, X) = (J, u^{-1}(X)) = (J, \{j \in J \mid uj \in X\})$$

である、このことから u^* のことを逆像関手と呼ぶ、

ファイブレーションの具体例: Pred \rightarrow Set

Set を集合と写像の圏とする、圏 Pred を次で定める、

- ▶ 対象は組 (I, X) たち.ここで $I \in \mathbf{Set}$ かつ $X \subseteq I$.
- ▶ 射 $f:(J,Y) \to (I,X)$ は写像 $f:J \to I$ であって Y の元を X にうつすもの .

関手p: Pred \rightarrow Set を

$$(I,X) \mapsto I$$
$$f \mapsto f$$

と定める、このときpはファイブレーションとなる。

$$u: J \to p(I,X)$$
 に対して

$$u^*(I, X) = (J, u^{-1}(X)) = (J, \{j \in J \mid uj \in X\})$$

である、このことから u^* のことを逆像関手と呼ぶ

ファイブレーションの具体例: Pred \rightarrow Set

Set を集合と写像の圏とする、圏 Pred を次で定める、

- ▶ 対象は組 (I, X) たち.ここで $I \in \mathbf{Set}$ かつ $X \subseteq I$.
- ▶ 射 $f:(J,Y) \to (I,X)$ は写像 $f:J \to I$ であって Y の元を X にうつすもの .

関手p: Pred \rightarrow Set を

$$(I,X) \mapsto I$$
$$f \mapsto f$$

と定める.このとき p はファイブレーションとなる. $u: J \to p(I, X)$ に対して

$$u^*(I, X) = (J, u^{-1}(X)) = (J, \{j \in J \mid uj \in X\})$$

である、このことから u^* のことを逆像関手と呼ぶ、

プログラム意味論

プログラム意味論とファイブレーション

プログラム意味論

単なる文字列としてのプログラムに何らか意味を与えることで計 算の性質を研究する.

- ▶ 操作的意味論:プログラムをどう実行するかを指定する(= 簡約規則を与える)ことで意味を定める
- ▶ 表示的意味論:プログラムが何を表すかを指定する(=プログラムの集合から数学的構造への割り当てを定める)ことで意味を定める.

今回は表示的意味論,特にプログラムの意味を圏によって解釈する<mark>圏論的意味論</mark>について考える.

型とプログラム

データの種類のことを型と呼ぶ.プログラムはデータを加工する レシピである.一般に型がついたプログラムを以下のように書く.

 $x_1:\tau_1,\ldots,x_n:\tau_n\vdash M:\tau$

プログラムの例

Intを整数を表す型とする.

- $x: Int, y: Int \vdash add(x, y): Int は, Int 型の変数 <math>x, y$ が与えられている状況で add(x, y) というプログラムは Int 型であることを主張している.
- $ightharpoonup x: Int \vdash \lambda y^{Int}.add(x,y): Int \rightarrow Int$

プログラムの解釈

プログラムに圏 Set における解釈を与えたい.

ightharpoonup 型 au に \mathbf{Set} の対象 , つまり集合 $[\![au]\!]$ を割り当てる .

$$\begin{aligned}
&\llbracket \mathsf{Unit} \rrbracket = \{*\} \\
&\llbracket \mathsf{Int} \rrbracket = \mathbb{N} \\
&\llbracket \tau_1 \to \tau_2 \rrbracket = \llbracket \tau_2 \rrbracket^{\llbracket \tau_1 \rrbracket}
\end{aligned}$$

ightharpoonup プログラム $x_1: au_1,\ldots,x_n: au_ndash M: au$ は f Set における射

$$\llbracket M \rrbracket : \llbracket \tau_1 \rrbracket \times \cdots \times \llbracket \tau_n \rrbracket \rightarrow \llbracket \tau \rrbracket$$

として解釈する.

ここでは **Set** における解釈しか考えないが,一般には適当な構造(カルテシアン閉,モノイダル閉など)を持つ圏でプログラムを解釈できる.

プログラムの解釈の例

 $ightharpoonup x: ext{Int, } y: ext{Int }
ightharpoonup ext{add}(x,y): ext{Int } の解釈は$

$$\llbracket \operatorname{add}(x,y) \rrbracket : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$(m,n) \mapsto m+n$$

▶ $x : Int \vdash \lambda y^{Int}.add(x, y) : Int \rightarrow Int の解釈は$

$$\llbracket \lambda y^{ ext{Int}}.\mathsf{add}(x,y)
rbracket : \mathbb{N} o \mathbb{N}^{\mathbb{N}} \ m \mapsto (n \mapsto m+n)$$

プログラム意味論

プログラム意味論とファイブレーション

ファイブレーションの気持ち(改)

ファイブレーション $p: \mathcal{E} \to \mathcal{B}$ を以下のような気持ちで眺める.

- ▶ Bは基本的な構造の圏
 - ▶ 型とプログラムが解釈される圏
- ε は β により細かな構造が付加された圏
 - ▶ 型とプログラムの性質の圏
- ▶ pは $X \in \mathcal{E}$ に対してそのベースの構造 $pX \in \mathcal{B}$ を抽出する
 - ▶ 性質を記述する領域の抽出
- ▶ $u:J\to pX$ に対して $u^*X\in\mathcal{E}$ は , u を \mathcal{E} に持ち上げられるような最も弱い構造
 - ▶ プログラムの最弱事前条件

プログラムのファイブレーション意味論

プログラム $x_1:\tau_1,\ldots,x_n:\tau_n\vdash M:\tau$ に対して

 $x_1 : \tau_1, \ldots, x_n : \tau_n \{P\} \vdash M : \tau \{v.Q\}$

で「プログラム実行前に条件 $\frac{P}{P}$ が満たされているとき,M を実行した結果を $\frac{v}{P}$ とすると,実行後に条件 $\frac{Q}{Q}$ が成立する」ことを表す.

これをファイブレーションを用いて以下のように表す!

プログラムのファイブレーション意味論

プログラム $x_1:\tau_1,\ldots,x_n:\tau_n\vdash M:\tau$ に対して

$$x_1 : \tau_1, \ldots, x_n : \tau_n \{P\} \vdash M : \tau \{v.Q\}$$

で「プログラム実行前に条件 $\stackrel{\textbf{P}}{P}$ が満たされているとき , M を実行した結果を $\stackrel{\textbf{v}}{V}$ とすると , 実行後に条件 $\stackrel{\textbf{Q}}{Q}$ が成立する 」ことを表す .

これをファイブレーションを用いて以下のように表す.

ファイブレーションを使ったプログラムの解釈の具体例

変数 $x \ge y$ が x = 0 かつ y = 2 という条件を満たしているならば,プログラム add(x, y) を実行した結果の値は偶数である.

$$x: \text{Int}, y: \text{Int } \{x = 0 \land y = 2\}$$

 $\vdash \text{add}(x, y): \text{Int } \{v.v \text{ is even}\}$

この主張が正しいことは,プログラム $\operatorname{add}(x,y)$ の Set における解釈がファイブレーション p に沿って Pred に持ち上がることからわかる.

Pred
$$(\mathbb{N}^2, \{(0,2)\}) \longrightarrow (\mathbb{N}, \{n \mid n \text{ is even}\})$$
 $p \downarrow$

Set $\mathbb{N}^2 \xrightarrow{[\![\mathsf{add}(x,y)]\!]} \mathbb{N}$

ファイブレーションを使ったプログラムの解釈の具体例

変数 $x \ge y$ が x = 0 かつ y = 2 という条件を満たしているならば,プログラム add(x, y) を実行した結果の値は<mark>偶数</mark>である.

```
x : \text{Int}, y : \text{Int} \{x = 0 \land y = 2\}
 \vdash \text{add}(x, y) : \text{Int} \{v.v \text{ is even}\}
```

この主張が正しいことは,プログラム $\operatorname{add}(x,y)$ の Set における解釈がファイブレーション p に沿って Pred に持ち上がることからわかる.

ファイブレーションを使ったプログラムの解釈の具体例

変数 $x \ge y$ が x = 0 かつ y = 2 という条件を満たしているならば,プログラム add(x, y) を実行した結果の値は<mark>偶数</mark>である.

```
x: \text{Int}, y: \text{Int } \{x = 0 \land y = 2\}
 \vdash \text{add}(x, y): \text{Int } \{v.v \text{ is even}\}
```

この主張が正しいことは,プログラム $\operatorname{add}(x,y)$ の Set における解釈がファイブレーション p に沿って Pred に持ち上がることからわかる.

Pred
$$(\mathbb{N}^2, \{(0,2)\}) \longrightarrow (\mathbb{N}, \{n \mid n \text{ is even}\})$$

$$\downarrow p$$
Set $\mathbb{N}^2 \xrightarrow{[\![\mathsf{add}(x,y)]\!]} \mathbb{N}$

ファイブレーションの定義に , $u:J\to pX$ に対して $\overline{u}X:u^*X\to X$ があってカルテシアン射となる , というもの があった .

プログラムのファイブレーション意味論の文脈では, u^*X はプログラムの最弱事前条件に対応している.

ファイブレーションの定義に , $u:J \to pX$ に対して $\overline{u}X:u^*X \to X$ があってカルテシアン射となる , というもの があった .

プログラムのファイブレーション意味論の文脈では , u^*X はプログラムの最弱事前条件に対応している .

ファイブレーションの定義に , $u:J \to pX$ に対して $\overline{u}X:u^*X \to X$ があってカルテシアン射となる , というもの があった .

プログラムのファイブレーション意味論の文脈では, u^*X はプログラムの最弱事前条件に対応している.

ファイブレーションの定義に , u:J o pX に対して $\overline{u}X:u^*X o X$ があってカルテシアン射となる , というもの があった .

プログラムのファイブレーション意味論の文脈では, u^*X はプログラムの最弱事前条件に対応している.

逆像関手の役割を具体例で観察

W に入る最も弱い条件は何か.

 $x: {
m Int}\, \{ {\it W} \} \vdash {
m add}(x,y): {
m Int}\, \{ v.v \ {
m is even} \}$ 「最も弱い」というのは

 $x: \operatorname{Int}, y: \operatorname{Int} \{ P \} \vdash \operatorname{add}(x,y): \operatorname{Int} \{ v.v \text{ is even} \}$ を満たす任意の条件 P に対して $P \Rightarrow W$ が成り立つこと.

これは W が逆像の普遍性を持つということを言っている.

具体的な計算

```
x : Int, y : Int \{ \mathcal{W} \} \vdash add(x, y) : Int \{ v.v \text{ is even} \}
\{v.v \text{ is even}\} に対するプログラム add(x,y) の最弱事前条件
W \downarrow t .
            [add(x,y)]^*(\mathbb{N}, \{n \mid n \text{ is even}\})
             = (\mathbb{N}^2, [add(x, y)]^{-1} \{n \mid n \text{ is even}\})
             = (\mathbb{N}^2, \{(x, y) \mid x + y \text{ is even}\})
より「x + y is even」である.
```

具体的な計算

```
x : Int, y : Int \{ \mathcal{W} \} \vdash add(x, y) : Int \{ v.v \text{ is even} \}
\{v.v \text{ is even}\} に対するプログラム add(x,y) の最弱事前条件
W \downarrow t .
           [add(x,y)]^*(\mathbb{N}, \{n \mid n \text{ is even}\})
            = (\mathbb{N}^2, [add(x, y)]^{-1} \{n \mid n \text{ is even}\})
            = (\mathbb{N}^2, \{(x, y) \mid x + y \text{ is even}\})
より「x + y is even」である.
                x : Int, y : Int \{x = 0 \land y = 2\}
                 \vdash add(x,y): Int \{v,v\} is even
も成り立っていたが、このとき
               x = 0 \land y = 2 \Rightarrow x + y is even
が成り立っている.
```

最近考えていること