AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1. (previously presented): An NO_x removal catalyst management unit for use with an NO_x removal apparatus, the management unit being provided for managing a plurality of NO_x removal catalyst layers provided in a flue gas NO_x removal apparatus, characterized in that the management unit comprises NO_x measurement means for determining NO_x concentrations on the inlet and outlet sides of respective NO_x removal catalyst layers; NH_3 measurement means for determining NH_3 concentrations on the inlet and outlet sides of the same NO_x removal catalyst layers; and percent NO_x removal determination means for determining percent NO_x removal (η) on the basis of an inlet mole ratio (i.e., inlet NH_3 /inlet NO_x), the inlet mole ratio being derived from an NO_x concentration which is an NO_x concentration as measured on the inlet side by means of said NO_x measurement means and an NH_3 concentration which is an NH_3 concentration as measured on the inlet side by means of said NH_3 measurement means.
- 2. (original): An NO_x removal catalyst management unit according to claim 1 for use with an NO_x removal apparatus, wherein the percent NO_x removal (η) is determined on the basis of NH_3 concentrations.
- 3. (original): An NO_x removal catalyst management unit according to claim 2 for use with an NO_x removal apparatus, wherein the percent NO_x removal (η) is determined on the basis of the following equation (1):

 $\eta = \{(\text{inlet NH}_3 - \text{outlet NH}_3)/(\text{inlet NH}_3 - \text{outlet NH}_3 + \text{outlet NO}_x)\} \times 100 \times (\text{evaluation mole ratio/inlet mole ratio})$ (1).

- 4. (original): An NO_x removal catalyst management unit according to any of claims 1 to 3 for use with an NO_x removal apparatus, which management unit further includes transmission means for transmitting concentration values determined by the NO_x measurement means and the NH_3 measurement means to the percent NO_x removal determination means, wherein the percent NO_x removal determination means determines the percent NO_x removal (η) of respective NO_x removal catalyst layers included in a plurality of flue gas NO_x removal apparatuses.
- 5. (previously presented): A method for managing an NO_x removal catalyst for use with an NO_x removal apparatus, the method being provided for managing a plurality of NO_x removal catalyst layers provided in a flue gas NO_x removal apparatus, characterized in that the method comprises determining NO_x concentrations and NH_3 concentrations on the inlet and outlet sides of respective NO_x removal catalyst layers; determining percent NO_x removal (η) on the basis of an inlet mole ratio (i.e., inlet NH_3 /inlet NO_x); and evaluating performance of respective NO_x removal catalyst layers on the basis of the percent NO_x removal (η), the inlet mole ratio being derived from an NO_x concentration which is an NO_x concentration as measured on the inlet side and an NH_3 concentration which is an NH_3 concentration as measured on the inlet side.
- 6. (original): A method according to claim 5 for managing an NO_x removal catalyst for use with an NO_x removal apparatus, wherein the percent NO_x removal (η) is determined on the basis of NH_3 concentrations.
- 7. (original): A method according to claim 6 for managing an NO_x removal catalyst for use with an NO_x removal apparatus, wherein the percent NO_x removal (η) is determined on the basis of the following equation (1):

 $\eta = \{(\text{inlet NH}_3 - \text{outlet NH}_3)/(\text{inlet NH}_3 - \text{outlet NH}_3 + \text{outlet NO}_x)\} \times 100 \times (\text{evaluation mole ratio/inlet mole ratio})$ (1).

Preliminary Amendment Based on PCT/JP03/07538 Page 4

- 8. (currently amended): A method according to elaim 5 any of claims 5 to 7 for managing an NO_x removal catalyst for use with an NO_x removal apparatus, wherein the method further comprises performing restoration treatment of an NO_x removal catalyst layer having a catalytic performance deteriorated to a predetermined level, on the basis of results of performance evaluation of the respective NO_x removal catalyst layers.
- 9. (currently amended): A method according to claim 8 for managing an NO_x removal catalyst for use with an NO_x removal apparatus, wherein the performance restoration treatment is replacement of the NO_x removal catalyst layer with a new NO_x removal catalyst layer, replacement of the NO_x removal catalyst layer with a regenerated NO_x removal catalyst layer, replacement of the NO_x removal catalyst layer with an NO_x removal catalyst layer inverted with respect to the direction of the flow of discharge gas, or replacement of the NO_x removal catalyst layer with an NO_x removal catalyst layer from which a deteriorated portion has been removed.
- 10. (original): A method according to any of claims 5 to 7 for managing an NO_x removal catalyst for use with an NO_x removal apparatus, wherein the method further comprises determining the percent NO_x removal of respective NO_x removal catalyst layers included in a plurality of flue gas NO_x removal apparatuses and evaluating catalytic performance of respective NO_x removal catalyst layers included in a plurality of flue gas NO_x removal apparatuses.
- 11. (original): A method according to claim 8 for managing an NO_x removal catalyst for use with an NO_x removal apparatus, wherein the method further comprises determining the percent NO_x removal of respective NO_x removal catalyst layers included in a plurality of flue gas NO_x removal apparatuses and evaluating catalytic performance of respective NO_x removal catalyst layers included in a plurality of flue gas NO_x removal apparatuses.
- 12. (original): A method according to claim 9 for managing an NO_x removal catalyst for use with an NO_x removal apparatus, wherein the method further comprises determining the

Preliminary Amendment Based on PCT/JP03/07538 Page 5

percent NO_x removal of respective NO_x removal catalyst layers included in a plurality of flue gas NO_x removal apparatuses and evaluating catalytic performance of respective NO_x removal catalyst layers included in a plurality of flue gas NO_x removal apparatuses.