Contrôle continu 2 le 27 novembre 2019

Les documents, téléphones portables ainsi que tous les autres dispositifs électroniques sont strictement interdits. Une calculette et une feuille recto-verso manuscrite sont autorisées. **Toutes** les réponses doivent être justifiées et la qualité de la rédaction sera prise en compte.

Exercice nº 1

- 1. Que vaut $\varphi(15)$?
- 2. Quels sont les éléments inversibles de $\mathbb{Z}/15\mathbb{Z}$?
- 3. Pour chacun de ces éléments, donner leur ordre dans $(\mathbb{Z}/15\mathbb{Z})^*$.
- 4. Le groupe $(\mathbb{Z}/15\mathbb{Z})^*$ est-il cyclique? On rappelle qu'un groupe est cyclique s'il admet au moins un générateur.

Exercice nº 2

- 1. Calculer le reste de la division euclidienne de 2^{26} par 53 à l'aide de l'algorithme d'exponentiation rapide. On détaillera les calculs.
- 2. Montrer que $\bar{2}$ est un générateur de $(\mathbb{Z}/53\mathbb{Z})^*$.

Exercice nº 3

On rappelle qu'un menteur de Fermat d'un entier n non premier est un entier $x \in \{0, \dots, n-1\}$ tel que $x^{n-1} \equiv 1$ [n].

- 1. Justifier pourquoi un menteur de Fermat pour n=57 est nécessairement premier avec 3 et 19.
- 2. Soit $x \in \{0, ..., 56\}$. Montrer en utilisant le théorème des restes chinois que x est un menteur de Fermat de 57 si et seulement si x est solution du système d'équations suivant :

$$\begin{cases} x^2 \equiv 1 \ [3] \\ x^2 \equiv 1 \ [19] \end{cases}$$

- 3. Quelles sont les solutions dans \mathbb{Z} de l'équation $x^2 \equiv 1$ [3]? et de $x^2 \equiv 1$ [19]?
- 4. Déterminer l'ensemble des menteurs de Fermat de 57.