Math 477, Lecture 2 class work

Name:			
Net ID:			

1. Given a class with 10 students, how many ways are there to separate them into 5 groups consisting of 2 students each?

$$\binom{10}{2,2,2,2,2}$$
 if the groups are distinguishable, and $\frac{\binom{10}{2,2,2,2,2}}{5!}$ otherwise.

2. If we roll a die 10 times, how many ways can we get exactly 3 ones, 3 twos, 2 threes and 2 fours? What's the probability that this occurs?

There are $\binom{10}{3,3,2,2}$ ways. The probability is $\frac{\binom{10}{3,3,2,2}}{6^{10}}$.

3. Given a class with 10 students, if we distribute 5 identical balls to the class (students are allowed to receive more than 1 ball), what's the probability that no one gets more than 1 ball??

 $\frac{\binom{10}{5}}{\binom{14}{5}}$

4. If we roll a die 10 times, how many ways can we get exactly 6 ones? What's the probability that this occurs?

There are $\binom{10}{6}5^4$ ways this can happen. The probability is $\frac{\binom{10}{6}5^4}{6^10}$.

5. Let $S = \{1, 2, 3, 4, 5, 6, 7\}, A = \{1, 2, 3\}, B = \{1, 3, 4, 5\}, C = \{4, 5, 6\}.$ Compute the following sets:

$$ABC$$
, A^cBC , AB^cC , $A+B+C$, $(A+B)^cC$, $(A+B+C)^c$

$$ABC = \emptyset$$
, $A^cBC = \{4,5\}$, $A + B + C = \{1,2,3,4,5,6\}$, $(A + B)^cC = \{6\}$

6. Suppose S is a sample space with subsets A, B, and such that P(A + B) = 0.7, P(A) = P(B) = 0.5. What is $P(AB^c)$? What is P(AB)?

$$P(AB) = 0.3 = P(A) + P(B) - P(A + B)$$
. $P(AB^c) = P(A) - P(AB) = 0.2$.