

Лекция 4 LightGBM & CatBoost

Владимир Гулин

21 сентября 2019 г.

План лекции

Напоминание

Blending & stacking

LightGBM

Catboost

Задача обучения с учителем

Постановка задачи

Пусть дан набор объектов

 $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}, \ \mathbf{x}_i \in \mathcal{X}, \ y_i \in \mathcal{Y}, \ i \in 1, \dots, N$, полученный из неизвестной закономерности $y = f(\mathbf{x})$. Необходимо построить такую $h(\mathbf{x})$, которая наиболее точно аппроксимирует $f(\mathbf{x})$.

Будем искать неизвестную

$$h(\mathbf{x}) = C(a_1(\mathbf{x}), \dots, a_T(\mathbf{x}))$$

 $a_i(\mathbf{x}): \mathcal{X} o \mathcal{R}, \ orall i \in \{1,\dots,T\}$ - базовые модели $C: \mathcal{R} o \mathcal{Y}$ - решающее правило

Методы построения алгоритмических композиций

Стохастические методы

Бустинг

Мета алгоритмы. Stacking & Blending

Алгоритмические композиции

Simple Voting

$$h(\mathbf{x}) = \frac{1}{T} \sum_{i=1}^{T} a_i(\mathbf{x})$$

Weighted Voting

$$h(\mathbf{x}) = \frac{1}{T} \sum_{i=1}^{T} b_i a_i(\mathbf{x}), \ b_i \in \mathcal{R}$$

Mixture of Experts

$$h(\mathbf{x}) = \frac{1}{T} \sum_{i=1}^{I} b_i(\mathbf{x}) a_i(\mathbf{x}), \ b_i(\mathbf{x}) : \mathcal{X} \to \mathcal{R}$$

Gradient boosting algorithm

- 1. Инициализировать $h_0(\mathbf{x}) = argmin_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$
- 2. Для всех *i* от 1 до *T*:
 - (a) Для всех j = 1, 2, ..., N вычислить

$$g_{i,j} = -\left[\frac{\partial L(y_j, h(\mathbf{x}_j))}{\partial h(\mathbf{x}_j)}\right]_{h=h_{i-1}}$$

(b) Построить базовую модель a_i на ответах $g_{i,j}$

$$a_i = \arg\min_{a} \sum_{j=1}^{N} (g_{i,j} - a(\mathbf{x}_j))^2$$

(c) Определить вес b_i

$$b_i = \arg\min_{b} \sum_{j=1}^{N} L(y_j, h_{i-1}(\mathbf{x}) + b \cdot a_i(\mathbf{x}_j))$$

- (d) Присвоить $h_i(\mathbf{x}) = h_{i-1}(\mathbf{x}) + b_i \cdot a_i(\mathbf{x})$
- 3. Вернуть $h(x) = h_T(x)$

Stacking

Мета-алгоритм

Blending

Классическая схема

Недостатки?

Netflix Challenge

- ▶ Задача предсказания оценки фильму
- ▶ ПФ 1000000\$
- ▶ Победил Stacking на "зоопарке" алгоритмов

Stacking

Классическая схема

Недостатки?

Stacking

Признаки вместе с метапризнаками

Недостатки?

LightGBM (2017)

A Highly Efficient Gradient Boosting Decision Tree

- Microsoft
- Позиционируется для больших данных
- Показывает высокое качество
- Gradient-based One-Side Sampling
- Exclusive Feature Bundling

Best-first decision trees

Figure 1.1: Decision trees: (a) a hypothetical depth-first decision tree, (b) a hypothetical best-first decision tree.

Algorithm 2: Gradient-based One-Side Sampling

```
Input: I: training data, d: iterations
Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner
models \leftarrow \{\}, fact \leftarrow \frac{1-a}{b}
topN \leftarrow a \times len(I), randN \leftarrow b \times len(I)
for i = 1 to d do
     preds \leftarrow models.predict(I)
     g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}
     sorted \leftarrow GetSortedIndices(abs(g))
     topSet \leftarrow sorted[1:topN]
     randSet \leftarrow RandomPick(sorted[topN:len(I)],
     randN)
     usedSet \leftarrow topSet + randSet
     w[randSet] \times = fact \triangleright Assign weight fact to the
     small gradient data.
     newModel \leftarrow L(I[usedSet], -g[usedSet],
     w[usedSet])
     models.append(newModel)
```


Algorithm 3: Greedy Bundling

```
\begin{aligned} & \textbf{Input: } F \text{: features, } K \text{: max conflict count} \\ & \textbf{Construct graph } G \\ & \textbf{searchOrder} \leftarrow G.\textbf{sortByDegree()} \\ & \textbf{bundles} \leftarrow \{\}, \textbf{bundlesConflict} \leftarrow \{\} \\ & \textbf{for } i \textbf{ in } searchOrder \textbf{ do} \\ & \textbf{needNew} \leftarrow \textbf{True} \\ & \textbf{for } j = 1 \textbf{ to } len(bundles) \textbf{ do} \\ & \textbf{cnt} \leftarrow \textbf{ConflictCn(bundles[j],} F[i]) \\ & \textbf{if } cnt + bundlesConflict[i] \leq K \textbf{ then} \\ & \textbf{bundles[j].add(} F[i]), \textbf{needNew} \leftarrow \textbf{False} \\ & \textbf{break} \\ & \textbf{if } needNew \textbf{ then} \\ & \textbf{Add } F[i] \textbf{ as a new bundle to } bundles \end{aligned}
```

Output: bundles

Algorithm 4: Merge Exclusive Features

```
 \begin{array}{ll} \textbf{Input: } numData: \text{ number of data} \\ \textbf{Input: } F: \text{ One bundle of exclusive features} \\ \text{binRanges} \leftarrow \{0\}, \text{ totalBin} \leftarrow 0 \\ \textbf{for } f \textbf{ in } F \textbf{ do} \\ & \text{totalBin} += \text{f.numBin} \\ & \text{binRanges.append(totalBin)} \\ \text{newBin} \leftarrow \text{new Bin(numData)} \\ \textbf{for } i = 1 \textbf{ to } numData \textbf{ do} \\ & \text{newBin}[i] \leftarrow 0 \\ & \text{ for } j = 1 \textbf{ to } len(F) \textbf{ do} \\ & \text{ if } F[j].bin[i] \neq 0 \textbf{ then} \\ & \text{ lenwBin}[i] \leftarrow F[j].bin[i] + \text{ binRanges}[j] \\ \end{array}
```


Figure 1: Time-AUC curve on Flight Delay.

Figure 2: Time-NDCG curve on LETOR.

Catboost (2017)

Gradient boosting with categorial features support

- Yandex
- ► Наследник MatrixNet
- Позиционируется как лучшая по качеству
- ▶ Умеет "умно" работать с категориальными фичами
- ▶ Oblivious trees → fast scoring

Решение в лоб

```
Algorithm 1: Exponential dynamic boosting
  input : \{(X_k, Y_k)\}_{k=1}^n, I;
1 M_S^0 \leftarrow 0 \text{ for all } S \subset [1, n], |S| \leq I;
2 for iter \leftarrow 1 to I do
      foreach S s.t. |S| \leq I - iter do
8 return M_{\phi}^{I}
```

Ordered dynamic boosting

Algorithm 1: Updating the models and calculating model values for gradient estimation

Скор сплита

$$\begin{split} \text{score(split)} &= \frac{\sum_{doc} leafValue(doc) * gradient(doc) * w(doc)}{\sqrt{\sum_{doc} w(doc) * leafValue(doc)^2}} \\ & leafValue(doc) = \frac{sumWeightedDer}{sumWeights} \end{split}$$

Вычисление значений в листьях

- 1. Метод Ньютона или шаг по градиенту
- 2. Несколько шагов внутри одного дерева

Benchmarks

	CatBoost		LightGBM		XGBoost		H2O	
	Tuned	Default	Tuned	Default	Tuned	Default	Tuned	Default
I≛ Adult	0.26974	0.27298 +1.21%	0.27602 +2.33%	0.28716 +6.46%	0.27542 +2.11%	0.28009 +3.84%	0.27510 +1.99%	0.27607 +2.35%
L [®] Amazon	0.13772	0.13811 +0.29%	0.16360 +18.80%	0.16716 +21.38%	0.16327 +18.56%	0.16536 +20.07%	0.16264 +18.10%	0.16950 +23.08%
Click prediction	0.39090	0.39112 +0.06%	0.39633 +1.39%	0.39749 +1.69%	0.39624 +1.37%	0.39764 +1.73%	0.39759 +1.72%	0.39785 +1.78%
E KDD appetency	0.07151	0.07138 -0.19%	0.07179 +0.40%	0.07482 +4.63%	0.07176 +0.35%	0.07466 +4.41%	0.07246 +1.33%	0.07355 +2.86%
KDD churn	0.23129	0.23193 +0.28%	0.23205 +0.33%	0.23565 +1.89%	0.23312 +0.80%	0.23369 +1.04%	0.23275 +0.64%	0.23287 +0.69%
KDD internet	0.20875	0.22021 +5.49%	0.22315 +6.90%	0.23627 +13.19%	0.22532 +7.94%	0.23468 +12.43%	0.22209 +6.40%	0.24023 +15.09%

GPU learning curves

Scorer comparison

	1 thread	32 threads
CatBoost	2.4s	231ms
XGBoost	78s (x32.5)	4.5s (x19.5)
LightGBM	122s (x50.8)	17.1s (x74)

Perfomance

Но есть один большой минус — это скорость работы. По моим предварительным наблюдениям, сразу после выхода Кэтбуст отставал от своих аналогов по этому параметру в десятки раз.

Задача

Дано: Имеется набор данных из системы поискового антиспама.

Требуется: Требуется сравнить ранее рассмотренные классификаторы с lightGBM и catboost.

Пошаговая инструкция

1. Скачать данные и запустить шаблон кода на python goo.gl/CCM2Yo

```
$ python compos.py -h
$ python compos.py -tr spam.train.txt -te spam.test.txt
```

- 2. Построить графики качества классификации в зависимости от параметров алгоритмов
- 3. Построить графики скорости обучения в зависимости от числа базовых моделей

Вопросы

