CholesterolDocking Protocol Capture

Modeling (TransformMover and HighResMover)

This protocol capture describes the CholesterolDocking protocol. Rosetta can be obtained through www.rosettacommons.org. The following protocol has been tested with Rosetta version ##. Here the example structure is the Serotonin 2B receptor crystallized in a complex with cholesterol (PDB: 4IB4). The complex was downloaded from https://opm.phar.umich.edu. All files are included in the Rosetta/main/demos/protocol_capture/cholesterol_docking

Input/

The following files are included in the **inputs/** directory to run the Modeling protocol:

Serotonin 2B PDB downloaded from OPM	
Cleaned protein	
Relaxed protein	
Combined protein and cholesterol for docking input	
Lipid accessible regions for global docking	
Rosetta spanfile	
Rosetta params file for cholesterol	
Cholesterol pdb file	
Cholesterol conformer library	
Cholesterol conformer output from MOE	
Rosetta run command for docking	
RosettaScripts XML file for docking	
Rosttea run command for relaxing the protein	
RosettaScripts XML file for relaxing the protein	

¹Indicates protein segments that should be embedded in the membrane.

Model Preparation

Before docking in Rosetta, we must prepare the protein and cholesterol separately.

²Pre-computed information about the geometry and chemical features of the cholesterol.

³Necessary for ligand flexibility.

```
#1 The PDB file is cleaned and renumbered for use in Rosetta.
Rosetta/tools/protein tools/scripts/clean pdb.py 4ib4.pdb A
Output: 4ib4 A.pdb
#2 Generate a spanfile from the cleaned PDB to indicate the transmembrane spanning
regions.
Rosetta/main/source/bin/span from pdb.linuxgccrease -in:file:s
4ib4 A.pdb
Output: 4ib4 A.span
#3 Refine the protein to correct local errors and optimize the membrane position. The protein
is relaxed without cholesterol.
## relax wo clr.sh command
Rosetta/main/source/bin/rosetta scripts.linuxgccrelease
-in:file:s 4ib4 A.pdb
-mp:setup:spanfiles 4ib4 A.span
-parser:protocol relax wo clr.xml
-relax: jump move true
-packing:pack missing sidechains false
-mp:scoring:hbond true
-relax:constrain relax to start coords
## relax wo clr.xml XML
<ROSETTASCRIPTS>
<SCOREFXNS>
  <ScoreFunction name="frank" weights="franklin2019"/>
 </SCOREFXNS>
 <TASKOPERATIONS>
  <InitializeFromCommandline name="commandline init"/>
  <RestrictToRepacking name="restrict to repacking"/>
 </TASKOPERATIONS>
 <MOVERS>
  <AddMembraneMover name="add memb"/>
  <MembranePositionFromTopologyMover name="init pos"/>
  <FastRelax name="fastrelax" disable design="True" scorefxn="frank"</pre>
task operations="commandline init, restrict to repacking"
repeats="3"/>
 </MOVERS>
 <PROTOCOLS>
  <Add mover="add memb"/>
  <Add mover="init pos"/>
  <Add mover="fastrelax"/>
 </PROTOCOLS>
</ROSETTASCRIPTS>
Output: 4ib4 A relax.pdb
```

#1 The SDF file is downloaded from PubChem and conformers are generated with MOE. Output: CLR_conformers.sdf

#2 Generate Rosetta-readable params file for ligand.

ROSETTA/main/source/scripts/python/public/molfile_to_params.py -n
CLR -p CLR --conformers-in-one-file CLR_conformers.sdf

Output: CLR.params, CLR.pdb, CLR_conformers.pdb

Docking (Modeling phase)

```
#1 Calculate lipid accessible regions on the protein using the Rosie server:
https://rosie.graylab.jhu.edu/mp lipid acc

    Reduce XYZ coordinates from per atom to center of mass of each residue (centroid)

     in output PDB

    Change the resname (example: ASP) to water (HOH) in output PDB

    Change the atoms (example: CA) to oxygen (O) in output PDB

    Keep only ATOMS in output PDB

Output: 4ib4_A_positions.pdb
#2 Prepare docking input file
   - Combine 4ib4 A relax.pdb with CLR.pdb
Output: 4ib4 A dock.pdb
#3 Dock cholesterol to the protein and generate 10 models
## dock.sh command
Rosetta/main/source/bin/rosetta scripts.linuxgccrelease
-in:file:s 4ib4 A dock.pdb
-mp:setup:spanfiles 4ib4 A.span
-in:file:extra res fa CLR.params
-packing:pack missing sidechains false
-parser:protocol dock.xml
-nstruct 10
## dock.xml XML
<ROSETTASCRIPTS>
 <SCOREFXNS>
  <ScoreFunction name="frank" weights="franklin2019"/>
 <SCORINGGRIDS ligand chain="X" width="25" name="lipid">
  <LipidMemGrid grid name="head" weight="0.8" mem weight="2"</pre>
ligand atom="01" kbpot file="chol o mem z smooth energies"/>
  <LipidMemGrid grid name="tail" weight="1.0" mem weight="2"</pre>
ligand atom="C25" kbpot file="chol c25 mem z smooth energies"/>
  <ClassicGrid grid name="classic" weight="0.00000001"/>
 </scoringgribs>
 <MOVERS>
  <StartFrom name="start" chain="X" >
   <PDB filename="4ib4 A positions" atom name="0"/>
  </StartFrom>
  <Transform name="transform" chain="X" box size="6"</pre>
move distance="0.2" angle="20" cycles="500" repeats="5"
temperature="5" grid set="lipid"/>
 <MOVERS/>
</ROSETTASCRIPTS>
```

Output/

The following files are included in the **outputs/** directory:

The head and tail atoms of the lipid are optimized independently. The score.sc file contains the individual score terms labeled head_grid_X and tail_grid_X, respectively.

4ib4_A.000*.pdb	Output file
score.sc	scorefile

Specificity Filter Calculation

After running the Modeling protocol protein-cholesterol complexes can be further analyzed with the *spec_score* script. *spec_score* is a python script used to predict the likelihood that an integral membrane protein-cholesterol interface is specific.

Input/

The following files are included in the **inputs/** directory to run the SpecificityFilter:

4ib4_A_pdbs/	Modeling protocol output pdbs		
buried_area.csv	Names of pockets to investigate with their corresponding buried		
	area (http://schuellerlab.org/dr_sasa/)		
4ib4_A_evorator.csv1	Evorator rate of evolution predictions (evorator.tau.ac.il)		
4ib4_A_consurf.txt1	Consurf rate of evolution predictions (consurf.tau.ac.il)		
4ib4_A_netsurfp.txt	Netsurfp lipid accessibility predictions		
	(https://services.healthtech.dtu.dk/service.php?NetSurfP-3.0)		
4ib4_A_lips.pdb	Rosetta lipid accessibility prediction		

¹Only one rate of evolution prediction software is needed.

```
#1 Calculate lipid accessible regions on the protein using the Rosie server:
https://rosie.graylab.jhu.edu/mp_lipid_acc
Output: 4ib4_A_lips.pdb

#2 Use spec_score command to generate the specificity.csv file

## python spec_score.py
-q inputs/buried_area.csv
-p inputs/4ib4_A_pdbs/
-c inputs/4ib4_A_consurf.txt # optional
-e inputs/4ib4_A_evorator.csv # optional
-l inputs/4ib4_A_lips.pdb
-n inputs/4ib4_A_netsurfp.txt
```

Output/

The following files are included in the **outputs/** directory:

The output is a csv file containing the rate of evolution, residue-interface, hydrophobicity, bulkiness, volume and specificity score scores.

specificity.csv	Output file	
-----------------	-------------	--