TERM END EXAMINATIONS (TEE) - July 2024

Programme	:	B.Tech.	Semester	:	Winter Semester 2023-24
Course Name/ Course Code		Differential and Difference Equations/ MAT2001	Slot	:	C12+C13
Time		3 Hrs.	Max. Marks	:	100

Answer ALL the Questions

Q. No.		Question Description	Marks
		PART A – (60 Marks)	
1 ((a)	Show that matrix A is similar to matrix B,	12
		Where $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$	

OR

12

12

[0 0 1]

(b) Solve the initial-value problem
$$\frac{dX}{dt} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} X, \ X(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \text{ where, } X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Showing the details of your work, find the Fourier coefficients of the given function f(x), which is shown in the graph,

Also prove that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots, = \frac{\pi^2}{8}$ by using Parseval's identity.

Find the temperature distribution in semi-infinite bar with its end point and lateral surface insulated and with initial temperature distribution in the bar is prescribed by f(x). Deduce the solution when $f(x) = e^{-ax}$.

0.

otherwise

126	15	40.0		OK			
(0)	Represent	f(x)	as an	exponential	Fourier tra	nsform	when
,					$= \{ \sin x, $		
				I(x) =	= 3		

12

Show that the result can be written as

$$f(x) = \frac{1}{\pi} \int_0^\infty \frac{\cos \alpha x + \cos \alpha (x - \pi)}{1 - \alpha^2} \ d\alpha.$$

12

Find the inverse Z-transform of
$$\frac{Z}{Z^3 - Z^2 + Z - 1}$$
.

OR

12 Using the convolution theorem, find the inverse Z-transform of $\left(\frac{Z}{Z-\Omega}\right)^3$. Also (b) deduce for $\left(\frac{Z}{Z-1}\right)^3$.

12

(a) Solve the difference equation using undetermined coefficients method $u_{n+3} - 12u_{n+2} + 48u_{n+1} - 64u_n = 5.4^n$

(b) Use Z-tramsform, solve the difference equation $u_{n+2} - 2u_{n+1} + u_n = 3n + 5.$

12

PART B - (40 Marks)

6

8

4

Prove that the give matrix is diagonalize $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$

8

Find the Fourier cosine series and Fourier sine series. Sketch f(x) and its two 8 periodic extensions. (Show the details of your work.)

$$f(x) = \pi - x, \quad 0 < x < \pi .$$

Find the inverse Fourier sine transform of $\frac{1}{s}e^{-aS}$.

8

Prove that $Z(a^n \sin n\theta) = \frac{aZ \sin n\theta}{Z^2 - 2aZ \cos \theta + a^2}$, by using Z-transform. 9

8

Solve the difference equation by using method of undetermined coefficients 10 $y_{n+2} - 5y_{n+1} + 6y_n = 2n^2 - 6n - 1.$

8