	The dataset "cor (Vito). Hourly res March 2004 to F Non-Metanic Hy (AH), and Tempe that are represen	ntains the response average ebruary 2005 drocarbons, Berature (Celsiu	ponses of a gas ges were record The variables enzene, Total N us). There are 1	multisensor ded along with in this datase Nitrogen Oxid	device deplon gas conce et include "g es, and Nitr	oyed on the f ntrations fror round truth h ogen Dioxide	m a certified a ourly average e" along with	analyzer, an ed concentra Relative Hui	d the data wa ations for Ca midity (RH), A	as recorded fr rbon Monoxid Actual Humidi	om e, ty
	Dataset Citation: Vito, Saverio. (2016). Air Quality. UCI Machine Learning Repository. https://doi.org/10.24432/C59K5F. Identification of Tasks The regression task is to predict the temperature in the Italian city by using other variables that are useful in making this prediction. Possible predictors that could be helpful (input variables): 1. Date: (DD/MM/YYYYY) 2. Time: (Hours) 3. CO(GT): Hourly averaged concentration CO in mg/m^3 4. PT08.S1 (Tin Oxide): Hourly averaged sensor response (CO targeted) 5. NMHC(GT): Hourly averaged verall Non Metanic HydroCarbons concentration in microg/m^3 6. C6H6(GT): Hourly averaged Benzene concentration in microg/m^3 7. PT08.S2 (Titania): Hourly averaged sensor response (NMHC targeted) 8. NOx(GT): Hourly averaged NOx concentration in ppb 9. PT08.S3(NOx) (Tungsten Oxide): Hourly averaged sensor response (NOx targeted) 10. NO2(GT): Hourly averaged NO2 concentration in microg/m^3 11. PT08.S4 (lungsten Oxide): Hourly averaged sensor response (NO2 targeted) 12. PT08.S5 (Indium Oxide): Hourly averaged sensor response (NO2 targeted) 13. RH: Relative Humidity 14. RH: Absolute Humidity Response (output variable): 1. T: Temperature in °C Data Preprocessing for Tasks										
In [1]:	Step 1)	he data and n	oticing that the			be dropped					
Out[1]:		df.head(10)		cer = ";")							T 08.S5((
	2 10/03/2004 2 3 10/03/2004 2 4 10/03/2004 2 5 10/03/2004 2 6 11/03/2004 7 11/03/2004 8 11/03/2004	19.0 2.0 20.0 2.2 21.0 2.2 22.0 1.6 23.0 1.2 0.0 1.2 1.0 1.0 2.0 0.9 3.0 0.6	1292.0 1402.0 1376.0 1272.0 1197.0 1185.0 1136.0 1094.0	112.0 88.0 80.0 51.0 38.0 31.0 24.0 19.0	9.4 9.0 9.2 6.5 4.7 3.6 3.3 2.3 1.7	955.0 939.0 948.0 836.0 750.0 690.0 672.0 609.0 561.0	103.0 131.0 172.0 131.0 89.0 62.0 45.0 -200.0	1174.0 1140.0 1092.0 1205.0 1337.0 1462.0 1453.0 1579.0	92.0 114.0 122.0 116.0 96.0 77.0 76.0 60.0	1559.0 1555.0 1584.0 1490.0 1393.0 1333.0 1276.0 1235.0	97 107 120 111 94 73 73 62 50
In [2]: Out[2]:	 Dropped the # Note: Only air_quality_da	run this lidf.drop(["Urdf.drop("U	nnamed: 15", F) PT08.S1(CO) 6 1360.0 0 1292.0 2 1402.0 2 1376.0 6 1272.0 N NaN	NMHC(GT) 150.0 112.0 88.0 80.0 51.0 NaN	not "re-d 16"], axi	rop" columns=1, inplaces 1046 955 939 948 836	ns already ce=True) C) NOx(GT) 3.0 166.0 3.0 103.0 3.0 172.0 3.0 131.0 3.0 NaN	PT08.S3(NO 1056 1174 1140 1092 1205	5.0 113.0 92.0 9.0 114.0 2.0 122.0 5.0 116.0 	PT08.S4(NO2) 1692.0 1559.0 1555.0 1584.0 1490.0 NaN	
	9468 NaN 9469 NaN 9470 NaN 9471 rows × 15 c Step 3) - 200 values	NaN Na NaN Na NaN Na columns	N NaN N NaN	NaN NaN NaN	NaN NaN NaN	Na Na Na 200 data poi	aN NaN aN NaN aN NaN	Na Na	aN NaN aN NaN aN NaN	NaN NaN	l I
In [3]:	# Note: Only import numpy air_quality_d air_quality_d air_quality_d # Link where # https://pan air_quality_d air_quality_d air_quality_d	as np If.replace(t If.dropna(ir If.reset_inc I was able Indas.pydata. If.set_index.nam	co_replace=-2 iplace=True) dex(drop=True to reset the org/docs/ret c("Date", inplie = None # F	200, value= e, inplace= e indices aference/api place=True) Removes the	np.nan, i True) fter drop /pandas.Do "name" fo ckoverflo	nplace= Tru e ping any re ataFrame.re or the index.com/ques	e) ows with Na eset_index ex column a tions/2976	A values: .html and used t 5548/remov	re-index-na	me-in-panda	
Out[3]:	10/03/2004 18.0 10/03/2004 19.0 10/03/2004 20.0 10/03/2004 21.0 10/03/2004 22.0 30/04/2004 20.0 30/04/2004 22.0 30/04/2004 23.0 01/05/2004 0.0 Step 4)	2.6 2.0 2.2 2.2 1.6 4.4 3.1 3.0 3.1 3.0 3.1	08.S1(CO) NMH 1360.0 1292.0 1402.0 1376.0 1272.0 1449.0 1363.0 1371.0 1406.0 1425.0	150.0 11 112.0 88.0 80.0 51.0 501.0 11 234.0 11 275.0 11	9.4 9.0 9.2 6.5 19.5 15.1 14.6 13.7	1046.0 955.0 939.0 948.0 836.0 1282.0 1152.0 1136.0 1107.0 1155.0	166.0 103.0 131.0 172.0 131.0 254.0 189.0 174.0 167.0 185.0	1056.0 1174.0 1140.0 1092.0 1205.0 625.0 684.0 689.0 718.0 709.0	113.0 92.0 114.0 122.0 116.0 133.0 110.0 102.0 108.0 110.0	1692.0 1559.0 1555.0 1584.0 1490.0 2100.0 1951.0 1927.0 1872.0 1936.0	1268.0 972.0 1074.0 1203.0 1110.0 1569.0 1495.0 1471.0 1384.0 1789.0
In [4]: Out[4]:	air_quality_d	df[air_quali	are still any NA .ty_df.isna() NMHC(GT) C6	.any(axis=	1)]		708.S3(NOx)	NO2(GT) PT	708.S4(NO2)	PT08.S5(O3)	г кн
In [5]:	step 5) • Lastly, ensure print ("\nAll print (air_quare all variables time co(GT) pros.s1(co) nmhc(GT) c6H6(GT) pros.s2(nmhc) nox(GT) pros.s3(nox) no2(GT) pros.s4(no2) pros.s5(o3) trep to the step 1 step	variables a ality_df.dty are now in float64 float64 float64 float64 float64 float64 float64 float64 float64 float64	the correct	ne correct : format	format")						
In [6]:	from sklearn. from sklearn. from sklearn. X = air_quali y = air_quali X_train, X_te model = Linea model.fit(X_t y_hat = model print("MSE us MSE using Sim Step 2) However, R	model_selection in the selection in the	el import Lir port mean_squ ["T"], axis= a, y_test = t a() ain) test) Least Square	train_test nearRegress lared_error =1) crain_test_ es Regressi ession: 0.8	_split ion split(X, your mean) 7686055849	y, test_si n_squared_o 583803	ze=0.25, ra error(y_ha	andom_stat t, y_test)	e=0)	models perfor	
In [7]:	• To truly get regression regress	an idea of white model on 100 RidgeCV and preprocessive inear_model arange(1, 1) ge_x: X_test, y_t inearRegres (X_train, y) nodel.predict prend(mean_s mer = Standa norm = transf extrain = transf fit(X_train_ dge = ridgec extrain_dge = ridgec extr	el import Ric .01, 1) crain, y_test csion() v_train)	st Squares, Rest splits and matically optimate and ard Scal algeCV, Lass scoring form (X_trainsform	idge, or Laskept track of mizes the last er ocv est_split test))) in)) g = 'neg_' ridge, y_'	so) performs if all 100 mea mbda param (X, y, tes mean_square test))	t_size=0.2	this regress rrors for eac of their resp	ion task, I tra h of the three pective regres	e models.	ıch
In [8]:	statistics state Based on the this is an incomprint ("Average "\nAverage")	arting with the ne outputted in dicator of which ge MSE for Lage MSE for Lage MSE for Least Square for Least Square Ridge Refor Lasso Refore Lasso Refore Control of the co	formation below th model is bes east Squares Ridge Regre Lasso Regre uares Regres gression: 1. gression: 1.	w, Ridge has t, averages ca s Regressio ession:", n ession: 1.02 0200024426	the lowest as an be misled n:", np.m. p.mean(ms.) p.mean(ms.) 0148810743	ean(mse_lse_ridge),	and Lasso houtliers so le	nas the highe	est average N	MSE. Although	
In [9]:	probably be print("Minimu "\nMini "\nMaxi "\n	e more helpful um MSE for L thum MSE for	Ridge Regree Lasso Regree Lasso Regree Lasso Regree Lasso Regree gression: 0. gression: 0. uares Regres gression: 1. gression: 1.	Regression:", mession:", mession:", mession:", mession:", mession:", mession:", mession: 0.71 7071602614 7060022505 resion: 1.43 4371099996 4507825453	n:", min(in(mse_ridin(mse_lated)) ion:", matax(mse_ridin(mse_lated)) ax(mse_lated) 1714248609 699856 659077 7510975736 82004 188052	mse_ls), dge), sso)) x(mse_ls), dge), sso)) 98923					plr
In [10]:	• In conclusion Regression print("\nMedi "\nMedi "\nMedi # Link where # https://sta Median MSE fo Median MSE fo Median MSE fo Median MSE fo The first book MSEs and reference MSEs and reference • In conclusion Regression Regression The first book MSEs and reference • The first book MSEs and reference • The first book MSEs and reference • The first book • The	ian MSE for tan MSE for tan MSE for I figured of ackoverflow. The continued of the continu	Ridge Regres Lasso Regres out how to ge com/question ares Regress ression: 1.6 ression: 1.6	es Regressi ssion:", np ssion:", np et np.media ns/40112487 sion: 1.017 01401360754 01971140216	on:", np.i.median(nj.media	median(np.ap.array(msap.array(msap.array(msap.array)) as Least Squass	I model to us array(mse_: e_ridge)), e_lasso))) by-ndarray	se, when presents), -object-ha	dicting tempo es-no-attri	bute-median	s of
In [11]:	<pre>import matplo plt.boxplot(x plt.title("Bo plt.ylabel("M plt.show()) plt.boxplot(x plt.title("Zo plt.ylim(1.01 plt.ylabel("M plt.show())</pre> Box Plots of MSE	<pre>c=[mse_ls, n ox Plots of dSE") c=[mse_ls, n oomed In at l0, 1.025) dSE")</pre>	nse_ridge, ms MSE Values F nse_ridge, ms the Median M	For 100 Dif se_lasso], MSE Values	ferent Test labels=[" for Least	st Splits (Least Squa Squares, (of Least So res", "Rido Ridge, and	quares, Ri ge", "Lass Lasso Reg	dge, and L		sions'
	Zoomed In at the		Squares	Ridge	Lasso dge, and Las	so Regression	ns				
	1022 - 1020 - 1018 - 1016 - 1014 - 1012 - 1010	Least Squares			Lasso	erpreta	ation				
In [12]:	Step 1) Now that we coefficient experience of the state	e know which estimates, and **np.linspace dgeCV(alphase (_train_norm n_Lambda Val = pd.Series(=ficient Est ridge) = ridgecv.pr _error(y_hat n_Squared Er value from stimates for -0.17353 -1.02847 -0.11001 -0.14219 0.43571 2.34556 0.28006	model to use, le mean squared e(4,-2,100)* = lambdas, , y_train) ue from Ridg ridgecv.coef imates for t edict(X_test ridge, y_te ror for the RidgeCV: 0. r the Lambda 7 5 6 2 5 2	et's re-train R error are. 10.5 scoring = geCV:", rid 1., index=X 1.the Lambda 1norm) 1.est) 1.est) 1.est	'neg_mean gecv.alpha .columns) Value Choo	_squared_e a_) sen by Ride	rror')				r,
	N02(GT) PT08.S4(N02) PT08.S5(03) RH AH dtype: float6 Mean Squared Step 1 (C	0.44233 -0.98277 -0.70473 -5.00732 3.60268 Error for t	9 1 7 3 7 he Ridge Reg d) elpful visualizatinge due to an in	tion of our coo	efficient esti bda value.	mates at the		•			nany

of the coefficient values shown in the plot below is a good indicator as to why making the change to Ridge Regression was a logical

Time CO(GT) PT08.S1(CO) NMHC(GT)

C6H6(GT) PT08.S2(NMHC) NOx(GT)

RH AH

• Since the mean squared error for Ridge Regression is relatively low, especially compared to the MSE values for Least Squares and Lasso Regressions, we can state that our model is the most successful out of the three in predicting temperature in the Italian city.

observations remaining, which is a good size to train/test with. And there are 14 predictors, which is a good amount of variables to

• Furthermore, another reason as to why the Ridge Regression is successful is because after cleaning the data, there are 827

PT08.S3(NOx) NO2(GT) PT08.S4(NO2) PT08.S5(O3)

+ AH Coefficient Value at Chosen Lambda

★ RH Coefficient Value at Chosen Lambda

---- Lambda Value Chosen by RidgeCV

→ PT08.S2(NMHC) Coefficient Value at Chosen Lambda
→ PT08.S4(NO2) Coefficient Value at Chosen Lambda

choice.

In [14]:

coefs_lambdas = []
for l in lambdas:

plt.xscale('log')

2

10-2

Conclusion

10-1

10°

10¹

Lambda Values

choose from that most help predict temperature values.

10²

 10^{3}

Coefficients

In [13]: **from** sklearn.linear_model **import** Ridge

ridge = Ridge(alpha = 1, random_state=381)
ridge.fit(X_train_norm, y_train)

coefs_lambdas = pd.DataFrame(coefs_lambdas, columns=X.columns)

color="r", linestyles='dashed', linewidth=1)

label='AH Coefficient Value at Chosen Lambda')

label='RH Coefficient Value at Chosen Lambda')

Coefficient Estimates for a Range of Lambda Values

plt.plot(ridgecv.alpha_, coefs_ridge['AH'], marker='*', markersize=10,

label='PT08.S4(NO2) Coefficient Value at Chosen Lambda')
plt.plot(ridgecv.alpha_, coefs_ridge['RH'], marker='*', markersize=10,

plt.ylabel('Coefficients')
plt.title('Coefficient Estimates for a Range of Lambda Values for Ridge Regression')

plt.plot(ridgecv.alpha_, coefs_ridge['PT08.S2(NMHC)'], marker='*', markersize=10, label='PT08.S2(NMHC) Coefficient Value at Chosen Lambda')
plt.plot(ridgecv.alpha_, coefs_ridge['PT08.S4(N02)'], marker='*', markersize=10,

plt.vlines(x=ridgecv.alpha_, ymin=-10, ymax=10, label='Lambda Value Chosen by RidgeCV',

plt.plot(lambdas, coefs_lambdas[var], label = var)

coefs_lambdas.append(ridge.coef_)

for var in coefs_lambdas.columns:

plt.legend(bbox_to_anchor = (1.1,1.1))
plt.show()

plt.axis('tight')
plt.xlabel('Lambda Values')