NOS-NOC User's Manual Preliminary version

Armin Nurkanović and Moritz Diehl $^{\rm 1}$ March, 2022

Contents

1	Intr	roduction	2
2	Pro 2.1	blem Formulation Stewart's reformulation of the PSS into a Dynamic Complemen-	2
		tarity System	2
	2.2	The continuous-time optimal control problem	4
	2.3	Standard IRK Discretization of a Single Control Interval	4
	2.4	FESD Discretization of a Single Control Interval	6
	2.5	Discretization of the OCP	8
3	Sett	tings and Model	8
_	3.1	The model struct	9
	3.2	All settings at a glance	12
	3.3	The solver_initalization	15
	3.4	The results	15
	3.5	List of examples	15
4	Hor	notopy and MPCC settings	16
•	1101	4.0.1 Direct solve (mpcc_mode =1)	16
		4.0.2 Smoothing (mpcc_mode =2) and Relaxation (mpcc_mode =3)	16
		4.0.3 ℓ_1 -Penalty (mpcc_mode =4)	16
		4.0.4 Elastic Mode (mpcc_mode = 5)	17
		4.0.5 Barrier Controlled Penalty Homotopy (mpcc_mode =8)	17
		4.0.6 Objective Scaling	17
	4.1	Cross complementarities	17
		4.1.1 cross_complementarity_mode =1	17
		4.1.2 cross_complementarity_mode =2	18
		4.1.3 cross_complementarity_mode =3	18
		4.1.4 cross_complementarity_mode =4	18
		4.1.5 cross_complementarity_mode =5	18
		4.1.6 cross_complementarity_mode =6	18
		4.1.7 cross_complementarity_mode =7	19
		4.1.8 cross_complementarity_mode =8	19
		4.1.9 cross_complementarity_mode =9	19
		4.1.10 cross_complementarity_mode =10	19
	4.2	Step equilibration	19
	4.3	FESD Integrator	20
5	λТ		20
J	5.1	Sutorial Example A MATLAB Example of an OCP with a System with State Jumps	
6		acture of the Software	21

1 Introduction

NOS-NOC is an open source software package for Nonsmooth Numerical Optimal Control. It is a modular tool based on CasADi [1], IPOPT [2] and MATLAB, for numerically solving Optimal Control Problems (OCP) with piecewise smooth systems (PSS). It relies on the recently introduced Finite Elements with Switch Detection [3] which enables high accuracy optimal control and simulation of PSS. The time-freezing reformulation, which transforms several classes of systems with state jumps into PSS is supported as well. This enables the treatment of a broad class of nonsmooth systems in a unified way. The algorithms and reformulations yield mathematical programs with complementarity constraints. They can be solved with techniques of continuous optimization in a homotopy procedure, without the use of integer variables. The goal of the package is to automate all reformulations and to make nonsmooth optimal control problems practically solvable, without deep expert knowledge.

2 Problem Formulation

The goal is to high accuracy simulation and numerical optimal control algorthims for a general class of piecewise smooth systems (PSS) of the form:

$$\dot{x} = f_i(x, u), \text{ if } x \in R_i \subset \mathbb{R}^{n_x}, \ i \in \mathcal{I} := \{1, \dots, n_f\},$$
 (1)

where R_i are disjoint, nonempty, connected and open sets. The functions $f_i(\cdot)$ are assumed to be smooth on an open neighborhood of \overline{R}_i and n_f is a positive integer. The event of $x(\cdot)$ reaching some boundary ∂R_i is called a *switch*. The right hand side (r.h.s.) of (1) is in general discontinuous in x and u is an externally chosen control function.

Several important classes of systems with state jumps can be reformulated into the form of (1) via the *time-freezing* reformulation [4, 5, 6]. Therefore, the focus on PPS enables a unified treatment of several different classes of nonsmooth systems.

Much more mathematical details can be found in paper that introduces NOS-NOC [7], the FESD paper [6] and the time-freezing papers [4, 5, 6].

2.1 Stewart's reformulation of the PSS into a Dynamic Complementarity System

To have a computationally more useful we transform the PSS (1) into a Dynamic Complementarity System (DCS). First, to have a meaningful notion of solution we regard the Filippov convexification of (1), which reads as:

$$\dot{x} \in F_{\mathcal{F}}(x, u) = \Big\{ F(x)\theta \mid \sum_{i \in \mathcal{I}} \theta_i = 1, \ \theta_i \ge 0, \ \theta_i = 0 \text{ if } x \notin \overline{R_i}, \forall i \in \mathcal{I} \Big\},$$
 (2)

with
$$\theta = (\theta_1, \dots, \theta_{n_f}) \in \mathbb{R}^{n_f}$$
 and $F(x) := [f_1(x), \dots, f_{n_f}(x)] \in \mathbb{R}^{n_x \times n_f}$.

Second, we assume the sets R_i are define by the zero level sets of functions $c_i(x) = 0, i = 1, \ldots, n_c$, which are collected into the vector $c(x) = (c_1(x), \ldots, c_{n_c}(x)) \in \mathbb{R}^{n_c}$. Without lost of generality, the sets are defined as $R_1 = \{x \in \mathbb{R}^{n_x} \mid c_1(x) > 0, \ldots, c_{n_c}(x) > 0\}$, $R_2 = \{x \in \mathbb{R}^{n_x} \mid c_1(x) > 0, \ldots, c_{n_c}(x) < 0\}$, and so on. This can compactly encoded with a sign matrix $S \in \mathbb{R}^{n_f \times n_c}$ which has no repeating rows:

$$S = \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & -1 \\ \vdots & \vdots & \dots & \vdots \\ -1 & -1 & \dots & -1 & -1 \end{bmatrix}.$$
 (3)

Thus the sets R_i are compactly denoted by:

$$R_i = \{ x \in \mathbb{R}^{n_x} \mid \operatorname{diag}(S_{i,\bullet})c(x) > 0 \}. \tag{4}$$

We use Stewart's reformulation of DCS into PSS [8]. In this case, it is assumed that the sets R_i are represent via the discriminant functions $g_i(\cdot)$:

$$R_i = \{ x \in \mathbb{R}^{n_x} \mid g_i(x) < \min_{j \in \mathcal{I}, j \neq i} g_j(x) \}.$$
 (5)

Using the representation via the sign matrix S in Eq. (4), it can be shown that the function $g: \mathbb{R}^{n_x} \to \mathbb{R}^{n_f}$ whose components are $g_i(x)$ can be found as [3]:

$$q(x) = -Sc(x). (6)$$

Using Stewart's definition of the sets via Eq. (5) the multipliers $\theta(\cdot)$ in the r.h.s. of (2) can be found as a solution of a Linear Program (LP) [8], and (2) is equivalent to

$$\dot{x} = F(x, u)\theta(x),\tag{7a}$$

$$\theta(x) \in \arg\min_{\tilde{\theta} \in \mathbb{R}^{n_f}} \quad g(x)^{\top} \tilde{\theta} \quad \text{s.t.} \quad e^{\top} \tilde{\theta} = 1, \ \tilde{\theta} \ge 0.$$
 (7b)

Usinge the KKT conditions of the LP we can rewrite the last system into the following DCS:

$$\dot{x} = F(x, u)\theta \tag{8a}$$

$$0 = g(x) - \lambda - \mu(t)e, \tag{8b}$$

$$1 = e^{\top} \theta, \tag{8c}$$

$$0 \le \theta \perp \lambda \ge 0,\tag{8d}$$

where $\lambda \in \mathbb{R}^{n_f}_{\geq 0}$ and $\mu \in \mathbb{R}$ are the Lagrange multipliers associated to the constraints of the LP (7b) and $z := (\theta, \lambda, \mu) \in \mathbb{R}^{n_z}$, $n_z = 2n_f + 1$ are algebraic variables.

For compact notation, we use a C-function $\Phi(\cdot,\cdot)$ for the complementarity conditions and rewrite the KKT conditions of the LP as a nonsmooth equation

$$G_{LP}(x, \theta, \lambda, \mu) := \begin{bmatrix} g(x) - \lambda - \mu e \\ 1 - e^{\mathsf{T}} \theta \\ \Phi(\theta, \lambda) \end{bmatrix} = 0.$$
 (9)

Finally, the Filippov system is equivalent to the following DCS (which can be interpreted as a nonsmooth differential algebraic equation):

$$\dot{x} = F(x, u)\theta,\tag{10a}$$

$$0 = G_{LP}(x, \theta, \lambda, \mu). \tag{10b}$$

2.2 The continuous-time optimal control problem

We regard the continuous-time optimal control problem

$$\min_{x(\cdot), u(\cdot), z(\cdot)} \int_{0}^{T} f_{\mathbf{q}}(x(t), u(t)) dt + f_{\mathbf{qT}}(x(T))$$
(11a)

s.t.
$$x_0 = s_0$$
, (11b)

$$\dot{x}(t) = F(x(t), u(t))\theta(t), \qquad t \in [0, T], \tag{11c}$$

$$0 = g(x(t)) - \lambda(t) - \mu(t)e, t \in [0, T], (11d)$$

$$0 \le \theta(t) \perp \lambda(t) \ge 0, \qquad t \in [0, T], \tag{11e}$$

$$1 = e^{\top} \theta(t), \qquad \qquad t \in [0, T], \tag{11f}$$

$$x_{\rm lb} \le x(t) \le x_{\rm ub}, \qquad t \in [0, T], \tag{11g}$$

$$u_{\rm lb} \le u(t) \le u_{\rm ub}, \qquad t \in [0, T], \tag{11h}$$

$$G_{\text{ineq,lb}} \le G_{\text{ineq}}(x(t), u(t)) \le G_{\text{ineq,ub}}, \qquad t \in [0, T],$$
 (11i)

$$G_{\text{T.lb}} \le G_{\text{T}}(x(t)) \le G_{\text{T.ub}},$$

$$\tag{11j}$$

where $u(t) \in \mathbb{R}^{n_u}$ is the control function, $f_{qT} : \mathbb{R}^{n_x} \to \mathbb{R}$ is the Mayer term and $f_q : \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}$ is the Lagrange objective term. The path and terminal constraints are collected in the functions $G_{\text{ineq}} : \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_{g1}}$ and $G_{\text{term}} : \mathbb{R}^{n_x} \to \mathbb{R}^{n_{g2}}$, respectively.

2.3 Standard IRK Discretization of a Single Control Interval

We briefly state how a single control interval is discretized in NOS-NOC. We start with the standard IRK discretization and later we detail how this is extended to obtain FESD. Consider the single control interval [0,T] with a constant externally choose control input q. Suppose the initial value $x_0 = s_0$ to be given. The control interval is divided into $N_{\rm fe}$ finite elements (i.e., integration intervals) $[t_n,t_{n+1}]$ via the grid points $0=t_0 < t_1 < \ldots < t_{N_{\rm fe}} = T$.

On each of these intervals an n_s -stage Implicit Runge-Kutta (IRK) scheme is applied. An IRK scheme is defined by its Butcher tableau entries $A \in$

 $\mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}, \ b \in \mathbb{R}^{n_{\mathrm{s}}}, \ c \in \mathbb{R}^{n_{\mathrm{s}}}$ [9]. The fixed step-size reads as $h_n = t_{n+1} - t_n$, $n = 0, \ldots, N_{\mathrm{fe}} - 1$. The approximation of the differential state at the grid points t_n is denoted by $x_n \approx x(t_n)$. The derivative of state at the stage points $t_n + c_i h_n$, $i = 1, \ldots, n_{\mathrm{s}}$, for a single finite element are summarized in the vector $V_n \coloneqq (v_{n,1}, \ldots, v_{n,n_{\mathrm{s}}}) \in \mathbb{R}^{n_{\mathrm{s}} \cdot n_x}$. The stage values for the algebraic variables are collected in the vectors: $\Theta_n \coloneqq (\theta_{n,1}, \ldots, \theta_{n,n_{\mathrm{s}}}) \in \mathbb{R}^{n_{\mathrm{s}} \cdot n_f}$, $\Lambda_n \coloneqq (\lambda_{n,1}, \ldots, \lambda_{n,n_{\mathrm{s}}}) \in \mathbb{R}^{n_{\mathrm{s}} \cdot n_f}$ and $M_n \coloneqq (\mu_{n,1}, \ldots, \mu_{n,n_{\mathrm{s}}}) \in \mathbb{R}^{n_{\mathrm{s}}}$. We also define the vector $Z_n = (x_n, \Theta_n, \Lambda_n, M_n, V_n)$. which collects all internal variables.

With x_n^{next} we denote the value at the next time step t_{n+1} , which is obtained after a single IRK step. For the FESD scheme, additional to the stage values of $\lambda_{n,i}$, $\mu_{n,i}$ we need their values on t_n and t_{n+1} which are denoted by $\lambda_{n,0}$, $\mu_{n,0}$ and λ_{n,n_s+1} , μ_{n,n_s+1} , respectively. Due to continuity, we impose that $\lambda_{n,n_s+1} = \lambda_{n+1,0}$ and $\mu_{n,n_s+1} = \mu_{n+1,0}$ and compute explicitly only the right boundary points of the finite elements. These values can be computed from an LP solve for x_n^{next} :

$$0 = G_{LP}(x_n^{\text{next}}, \theta_{n,n_s+1}, \lambda_{n,n_s+1}, \mu_{n,n_s+1}).$$
(12)

Now we write the IRK equations for the DCS (10), including the additional Eq. (12) for the boundary value, in a compact differential form. The IRK equations of a single integration step are summarized in

$$G_{\text{irk}}(x_{n}^{\text{next}}, h_{n}, Z_{n}, q) \coloneqq \begin{bmatrix} v_{n,1} - F(x_{n} + h_{n} \sum_{j=1}^{n_{s}} a_{1,j} v_{n,j}, q) \theta_{n,1} \\ \vdots \\ v_{n,n_{s}} - F(x_{n} + h_{n} \sum_{j=1}^{n_{s}} a_{n_{s},j} v_{n,j}, q) \theta_{n,n_{s}} \\ G_{\text{LP}}(x_{n} + h_{n} \sum_{j=1}^{n_{s}} a_{1,j} v_{n,j}, \theta_{n,1}, \lambda_{n,1}, \mu_{n,1}) \\ \vdots \\ G_{\text{LP}}(x_{n} + h_{n} \sum_{j=1}^{n_{s}} a_{n_{s},j} v_{n,j}, \theta_{n,n_{s}}, \lambda_{n,n_{s}}, \mu_{n,n_{s}}) \\ G_{\text{LP}}(x_{n}^{\text{next}}, \lambda_{n,n_{s}+1}, \theta_{n,n_{s}+1}, \mu_{n,n_{s}+1}) \\ x_{n}^{\text{next}} - x_{n} - h_{n} \sum_{i=1}^{n_{s}} b_{i} v_{n,i} \end{bmatrix} .$$
 (13)

We remind the reader that h_n in (13) are implicitly fixed by the chosen discretization grid. We also want to highlight, that some IRK schemes contain the right boundary points as a stage point (e.g., Radau and Lobbatto schemes [9]), i.e., $c_{n_s} = 1$, thus we have $\lambda_{n,n_s} = \lambda_{n,n_s+1} \ \mu_{n,n_s} = \mu_{n,n_s+1}$ and we do not need the additional constraint (12).

The next equations summarize all $N_{\rm fe}$ IRK steps over the control interval in the same discrete-time system style. We introduce some new notation. All variables for a single control interval of all finite elements are collected in the following vectors $\mathbf{x} = (x_0, x_0^{\rm next}, \dots, x_{N_{\rm fe}}) \in \mathbb{R}^{(2N_{\rm fe}+1)n_x}, \mathbf{V} = (V_0, \dots, V_{N_{\rm fe}-1}) \in \mathbb{R}^{N_{\rm fe}n_{\rm s}n_x}$ and $\mathbf{h} := (h_0, \dots, h_{N_{\rm fe}-1}) \in \mathbb{R}^{N_{\rm fe}}$. For the algebraic variables, we collect the stage values and the newly introduced boundary values into the vectors $\mathbf{\Theta} = (\Theta_0, \theta_{0,n_{\rm s}+1}, \dots, \Theta_{N_{\rm fe}-1}) \in \mathbb{R}^{N_{\rm fe}(n_{\rm s}+1)n_f}$. The vectors $\mathbf{\Lambda} \in \mathbb{R}^{N_{\rm fe}(n_{\rm s}+1)n_f}$, $\mathbf{M} \in \mathbb{R}^{N_{\rm fe}(n_{\rm s}+1)}$ are defined accordingly. The vector $\mathbf{Z} = (\mathbf{x}, \mathbf{\Theta}, \mathbf{\Lambda}, \mathbf{M}, \mathbf{V})$ collects all internal variables.

Finally, we can summarize all computations over a single control interval which we call here the **standard discretization**. We interpret it as a discrete-time nonsmooth system:

$$s_1 = F_{\text{std}}(\mathbf{x}),\tag{14a}$$

$$0 = G_{\text{std}}(s_0, \mathbf{Z}, q), \tag{14b}$$

with $F_{\rm std}(\mathbf{x}) = x_{N_{\rm fe}}$ and

$$G_{\mathrm{std}}(s_0, \mathbf{h}, \mathbf{Z}, q) \coloneqq \begin{bmatrix} x_1 - x_0^{\mathrm{next}} \\ G_{\mathrm{irk}}(x_0^{\mathrm{next}}, Z_n, q) \\ \vdots \\ x_{N_{\mathrm{fe}}} - x_{N_{\mathrm{fe}}-1}^{\mathrm{next}} \\ G_{\mathrm{irk}}(x_{N_{\mathrm{fe}}-1}^{\mathrm{next}}, Z_{N_{\mathrm{fe}}-1}, q) \end{bmatrix}.$$

Note that s_0 and **h** are given parameters.

2.4 FESD Discretization of a Single Control Interval

In Finite Elements with Switch Detection (FESD) scheme the step-sizes h_n are left as degrees of freedom (as first proposed by [10]) such that the grid points t_n can coincide with the switching times. To exploit the additional degrees of freedom and to achieve exact switch detection we introduce additional conditions to the standard IRK equations (14) called $cross\ complementaries$ and step-equilibration.

The cross complementaries The cross complementarity conditions avoid switching inside a finite element and make exact switch detection possible. They read as

$$0 = G_{\text{cross}}(\boldsymbol{\Theta}, \boldsymbol{\Lambda}) := \begin{bmatrix} \sum_{i=1}^{n_{\text{s}}} \sum_{j=1, j \neq i}^{n_{\text{s}}+1} \theta_{1, i}^{\top} \lambda_{1, j} \\ \vdots \\ \sum_{i=1}^{n_{\text{s}}} \sum_{\substack{j=0, \\ j \neq i}}^{n_{\text{s}}} \theta_{N_{\text{fe}}-1, i}^{\top} \lambda_{N_{\text{fe}}-1, j} \end{bmatrix}.$$
(15)

Due to the nonnegativity of the variables Θ and Λ there are ten equivalent formulations of these constraints which have different degrees of sparsity, see Section 4.1 for an overview. All variants are supported in NOS-NOC.

The step-equilibration If now switches happen the cross complementarity conditions are trivial satisfied and spurios degrees of freedom in h_n appear. For detailed explanations see [3]. We introduce the following backward and forward

sums:

$$\begin{split} & \sigma_n^{\lambda,\mathrm{B}} = e^\top \Lambda_{n-1}, \\ & \sigma_n^{\lambda,\mathrm{F}} = e^\top \Lambda_n, \\ & \sigma_n^{\theta,\mathrm{B}} = e^\top \Theta_{n-1}, \\ & \sigma_n^{\theta,\mathrm{F}} = e^\top \Theta_n, \end{split}$$

The switch indicating quantities reads as

$$\begin{split} \pi_n^{\lambda} &= \mathrm{diag}(\sigma_n^{\lambda,\mathrm{B}}) \sigma_n^{\lambda,\mathrm{F}}, \\ \pi_n^{\theta} &= \mathrm{diag}(\sigma_n^{\theta,\mathrm{B}}) \sigma_n^{\theta,\mathrm{F}}, \\ v_n &= \pi_n^{\lambda} + \pi_n^{\theta}. \end{split}$$

The joint effect of all components is collected in the product

$$\eta_n(\mathbf{\Theta}, \mathbf{\Lambda}) \coloneqq \eta(\Theta_{n-1}, \Lambda_{n-1}, \Theta_n, \Lambda_n) = \prod_{i=1}^{n_f} (v_n)_i.$$

The constraints that remove possible spurious degrees of freedom in h_n read as:

$$0 = G_{\text{eq}}(\mathbf{h}, \boldsymbol{\Theta}, \boldsymbol{\Lambda}) := \begin{bmatrix} (h_1 - h_0)\eta_1(\boldsymbol{\Theta}, \boldsymbol{\Lambda}) \\ \vdots \\ (h_{N_{\text{fe}}-1} - h_{N_{\text{fe}}-2})\eta_{N_{\text{fe}}-1}(\boldsymbol{\Theta}, \boldsymbol{\Lambda}) \\ \sum_{n=0}^{N_{\text{fe}}-1} h_n - T \end{bmatrix}.$$
(16)

These constraint are sometimes very nonlinear and might harm the convergence. Several different formulations and heuristic are offered to help the convergence. For an overview see Section 4.2.

A single FESD step We summarize the developments of this subsection which result in the FESD discretization. We use again the same discrete-timer representation and refer to this as the *FESD discretization*.

$$s_1 = F_{\text{fesd}}(\mathbf{x}),\tag{17a}$$

$$0 = G_{\text{fesd}}(\mathbf{x}, \mathbf{h}, \mathbf{Z}, q), \tag{17b}$$

and $F_{\text{fesd}}(\mathbf{x}) = x_{N_{\text{fe}}}$ renders the state transition map and the equation $0 = G_{\text{fesd}}(\mathbf{x}, \mathbf{h}, \mathbf{Z}, q)$ collects all other internal computations including all IRK steps within the regarded control interval:

$$G_{\mathrm{fesd}}(\mathbf{x}, \mathbf{h}, \mathbf{Z}, q) \coloneqq \begin{bmatrix} G_{\mathrm{std}}(\mathbf{x}, \mathbf{h}, \mathbf{Z}, q) \\ G_{\mathrm{cross}}(\boldsymbol{\Theta}, \boldsymbol{\Lambda}) \\ G_{\mathrm{eq}}(\mathbf{h}, \boldsymbol{\Theta}, \boldsymbol{\Lambda}) \end{bmatrix}.$$

For a known control function q, the formulation (17) can be used as a integrator with exact switch detection for PSS (1). This feature is implemented in NOS-NOC via the function integrator_fesd(). The FESD scheme can automatically handle all kind of switching cases such as [11]:

- 1. crossing a discontinuity,
- 2. sliding mode,
- 3. leaving a sliding mode and
- 4. spontaneous switches.

2.5 Discretization of the OCP

Using the FESD (recommended) or standard discretization of a single control interval we can discretized and OCP with $N_{\rm stg} \geq 1$ control intervals indexed by k. We assume piecewise constant controls collected in $\mathbf{q} = (q_0, \dots, q_{N_{\rm stg}-1}) \in \mathbb{R}^{N_{\rm stg}n_u}$. All internal variables of every control interval are additionally equipped with an index k. On every control interval k we apply a discretization (17) with $N_{{\rm fe},k}$ internal finite elements. The state values at the control interval boundaries are collected in $\mathbf{s} = (s_0, \dots, s_{N_{\rm stg}}) \in \mathbb{R}^{(N_{\rm stg}+1)n_x}$. The following vectors collect all internal variables of all discretization steps: $\mathcal{H} = (\mathbf{h}_0, \dots, \mathbf{h}_{N_{\rm stg}-1})$ and $\mathcal{Z} = (\mathbf{Z}_0, \dots, \mathbf{Z}_{N_{\rm stg}-1})$. Finally the discretized version of the OCP (11) reads as:

$$\min_{\mathbf{s}, \mathbf{q}, \mathcal{H}, \mathcal{Z}} \quad \sum_{k=1}^{N_{\text{stg}} - 1} \hat{f}_{\mathbf{q}}(s_k, \mathbf{x}_k, q_k) + \hat{f}_{\mathbf{q}T}(s_{N_{\text{stg}}})$$
(18a)

s.t.
$$s_0 = \bar{x}_0,$$
 (18b)
 $s_{k+1} = F_{\text{fesd}}(\mathbf{x}_k),$ $k = 0, \dots, N_{\text{str}} - 1,$ (18c)

$$0 = G_{\text{fesd}}(\mathbf{x}_k, \mathbf{h}_k, \mathbf{Z}_k, q_k), \qquad k = 0, \dots, N_{\text{stg}} - 1, \quad (18d)$$

$$G_{\text{ineq,lb}} \le G_{\text{ineq}}(s_k, q_k) \le G_{\text{ineq,ub}}, \quad k = 0, \dots, N_{\text{stg}} - 1, \quad (18e)$$

$$x_{\rm lb} \le s_k \le x_{\rm ub},$$
 $k = 0, \dots, N_{\rm stg},$ (18f)

$$u_{\rm lb} \le q_k \le u_{\rm ub},$$
 $k = 0, \dots, N_{\rm stg} - 1,$ (18g)

$$G_{\mathrm{T,lb}}0 \le G_{\mathrm{T}}(s_{N_{\mathrm{stg}}}) \le G_{\mathrm{T,ub}},\tag{18h}$$

where $\hat{f}_{qT}: \mathbb{R}^{n_x} \times \mathbb{R}^{(N_{\text{fe}}+1)n_s n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}$ and $\hat{f}_{qT}: \mathbb{R}^{n_x} \to \mathbb{R}$ are the discrteized stage and terminal costs. The path constraint $G_{\text{ineq}}(\cdot)$ in this formulation is evaluated only on the control discretization grid but the possibility to evaluate the constrain on a finer grid is supported as well.

3 Settings and Model

This sections provides details on the user settings and model input.

3.1 The model struct

This table gives an overview of the model data and what is mandatory user input.

Name	Type	Is it manda	Description
		tory	
User input			
N_stages	double	yes	This is the number of control intervals $n_{\rm s}$.
N_finte_elements	double	yes	This is the number of finite elements $N_{\rm fe}$ per control interval/stage. If a single value is passed the all stages have the same number of finite elements. Alternatively, a double vector of size $[1, n_{\rm s}]$ can be passed to determined the number of finite elements $N_{{\rm fe}k}$ for every stage.
T	double	yes	Length of the control horizon T in the OCP (11). Note that if time-freezing is used this is the total numerical time horizon and a time scaling will be introduced to achieve the same terminal physical time.
x0	double	no	This is the initial value of the PSS s_0 .
х	CasADi SX or MX	yes	A CasADi symbolic vector for the differential states.
u	CasADi SX or MX	yes	A CasADi symbolic vector for the control variables.
F	CasADi expr	yes	The Matrix $F(x)$ that stores all modes $f_i(x)$ of the PSS.
S	double	no	The sign matrix S for encoding the regions R_i (4). Note that if this matrix is not passed, it is assumed that the function $g(x)$ (6) is provided.
С	CasADi expr	yes	The constraint function $c(x)$ that defines the regions R_i in (4)
g_{ind}	CasADi sym expr	no	The discriminant function $g(x)$ (6).

f_q	CasADi sym expr	no	CasADi symbolic expression for
			the stage cost $f_q(\cdot,\cdot)$ in the OCP
6 m	C AD:		(11).
f_qT	CasADi sym expr	no	CasADi symbolic expression for
			the terminal cost $f_{q,T}(\cdot)$ in the
	C AD:		OCP (11).
$g_{-}ineq$	CasADi sym expr	no	CasADi symbolic expression for
			the path constraints $G_{\text{ineq}}(\cdot)$ in the OCP (11).
g_terminal	CasADi sym expr	no	CasADi symbolic expression for
g_cerminar	Casadi sym expi	110	the terminal constraints $G_{\mathrm{T}}(\cdot)$ in
			the OCP (11).
lbx	double	no	The upper bound for the differ-
IDX	double	no	ential state x in (11g). If not pro-
			vided, its entries are by default
			set to inf.
ubx	double	no	The lower bound for the differen-
ubx	double	110	tial state x in (11g). If not pro-
			vided, its entries are by default
			set to -inf.
lbu	double	no	The lower bounds for the control
Ibu	double	110	u in (11h). If not provided, its
			entries are by default set to -inf.
ubu	double	no	The upper bound for the control
	404020	110	u in (11h). If not provided, its
			entries are by default set to inf.
u0	double	no	Initial guess for the control u in
			(11). If not provided, its entries
			are by default set to 0.
lb_g_ineq	double	no	The lower bound for the general
			inequality constraints $G_{\text{ineq}}(x, u)$
			in (11i). If not provided, its en-
			tries are by default set to -inf.
ub_g_ineq	double	no	The upper bound for the general
_			inequality constraints $G_{\text{ineq}}(x, u)$
			in (11i). If not provided, its en-
			tries are by default set to 0.
lb_g_terminal	double	no	The lower bound for the termi-
			nal constraints $G_{\rm T}(x)$ in (11j). If
			not provided, its entries are by
			default set to 0.

ub_g_terminal	double	no	The upper bound for the terminal constraints $G_{\rm T}(x)$ in (11j). If not provided, its entries are by default set to 0.
n_simplex	int		to be explained.
Auto generated			
Dimensions			
n_x	int		Dimension of state vector x .
n_u	int	•	Dimension of control u .
n_z	int	•	Dimension of all algebraic variables z .
n_theta	int		Dimension of θ .
n_p	int		Dimension of parameter vector p .
m_ind_vec	int		to be explained
n_cross_comp	int		Number of complementarity constraint per stage or per finite element.
CasADi Functions	and misc.		
h	int	•	Nominal step size h = T/N_stages
c_fun	CasADi Function	•	Function for the evaluation of $c(x)$.
f_x_fun	CasADi Function	•	Function for the evaluation of the r.h.s. $F(x)\theta$.
fqfun	CasADi Function		Function for the evaluation stage cost.
f_qT_fun	CasADi Function		Function for the evaluation of the terminal cost .
f_z_fun	CasADi Function		Function for the evaluation of $G_{LP}(x,z)$.
h_fun	CasADi Function		Function should be g ind function, for $g(\cdot)$.
$g_{\mathtt{ineq_fun}}$	CasADi Function		Function for the evaluation of general path constraints.
g_terminal_fun	CasADi Function	•	Function for the evaluation of the terminal constraints.
NLP solver		<u> </u>	
W	CasADi sym		Vector that contains all decision variables in the finite-dimensional NLP (18).
g	CasADi exp	•	All nonlinear constraints functions in the finite-dimensional NLP (18).

J	CasADi		Symoblic expression for the ob-	
			jective of the finite dimensional	
			NLP (18).	
sigma	CasADi MX		The homotopy parameters σ_i .	
J_fun	CasADi sym		Function for the NLP objective.	
f_J_cc	CasADi sym	•	Function for evaluating the con-	
			straint residual.	
nlp	struct		MATLAB struct containing	
			all NLP elements to create a	
			CasADi NLP solver Function.	
prob	struct		difference to nlp???	
solver	CasADi Function		Function for solving an NLP vi	
			IPOPT.	
comp_res	CasADi Function	??		
Index sets		<u>'</u>		
ind_x	int	•	Indices of all \mathbf{x} in \mathbf{w} .	
ind_u	int	•	Indices of all q in w.	
ind_z	int		Indices of all $(\mathbf{\Theta}, \mathbf{\Lambda}, \mathbf{M})$ in w.	
ind_g_clock_state	int		to be explained.	
ind_boundary	int		to be explained.	
ind_tf	int		to be explained.	
ind_h	int		Indices of all \mathcal{H} in w, i.e., all vari-	
			ables for the step-size $h_{k,i}$.	
ind_total	int		All indices of w.	

TODO: delete f_z_cc .n_algebraic_constraints n_bilinear_cc

3.2 All settings at a glance

Name	Default value	Possible values	Description				
General							
solver_name	'solver_fesd'	string	Name of the CasADi function calling the NLP solver.				
use_fesd	1	{0,1}	Determine if the FESD scheme from ?? is used. If turned off, a standard IRK schemes for a DCS from Section ?? with a fixed step size is used.				
IRK and FESD Settings							

d	2	$\{1,\ldots,9\}$	Number of stages in
			IRK scheme.
collocation_scheme	'radau'	'radau','legendre'	Choose which IRK
			Scheme Familiy (and
			corresponding Butcher
			Tabelu) is used in the
			FESD scheme
cross_comp_mode	3	$\{1,\ldots,9\}$	Determines which form
			of the cross comple-
			mentarity, cf. Section
			??. this is renamed
gamma_h	1	[0,1]	Determines the lower
			and upper bound for
			h_n as $(1-\gamma_h)\frac{T}{N}$ and
			$(1+\gamma_h)\frac{T}{N}$, respectively.
lp_initalization	0	{0,1}	Solve a parametric LP
_			(9) to get a feasible
			guess for the algebraic
			variables $\theta_{n,m}, \lambda_{n,m}$
			and $\mu_{n,m}$.
initial_theta	1	$\mathbb{R}_{\geq 0}$	Initial guess for the
		_*	convex multiplers θ .
initial_lambda	1	$\mathbb{R}_{\geq 0}$	Initial guess for the
		_*	dual variable in the
			DCS λ .
initial_mu	1	$\mathbb{R}_{\geq 0}$	Initial guess for the
			dual variable in the
			DCS μ .
MPCC and Homoto	py Settings		
mpcc_mode	5	$\{1, \dots, 10\}$	Choose which MPCC
			approach is used, cf.
			Section ??
comp_tol	10^{-16}	$\mathbb{R}_{>0}$	Stopping criterion for
			the homotopy loops in
			therms of the comple-
			mentarity residual.
objective_scaling	1	{0,1}	objective scaling.
sigma_0	1	$\mathbb{R}_{>0}$ and $> \sigma_N$	Initial value for homo-
			topy parameter.
sigma_N	10^{-14}	$\mathbb{R}_{>0}$ and $<\sigma_0$	Final value of the ho-
			motopy parameter.
kappa	0.1	0,1	Constant in the homo-
			topy parameter update
			rule $\sigma_{i+1} = \kappa \sigma i$.

	σ_N		
N_homotopy	$\left\lceil \left \frac{\log(\frac{\sigma_N}{\sigma_0})}{\log \kappa} \right \right\rceil$	\mathbb{N}	Maximum number of
	1 20870		homotopy parameters.
s_elastic_0	1	$\mathbb{R}_{>0}$	elastic mode.
s_elastic_max	100	$\mathbb{R}_{>0}$	elastic mode.
s_elastic_min	0	$\mathbb{R}_{>0}$	elastic mode.
store_homotopy_itera	tes 1	$\{0, 1\}$	Store the solution of
			every NLP in the ho-
			motopy loop.
Se	ettings for Barrier H	Based MPCC Heur	ristic
Step-Equilibration			
Time Settings			
time_optimal_problem	0	0,1	is the given OCP a
		- ,	time optimal OCP? If
			yes, removes the con-
			straints that the sum
			of all h_n equals T and
			adds the parameter T
			to the objective and to
			the vector of optimiza-
			tion variables w.
time_freezing	0	$\{0,1\}$	Is time freezing used,
cime_ireezing	U	$\{0,1\}$	this is useful to iso-
			late the clock state and
			other time transforma-
			tion variables.
time_rescaling	0	{0,1}	This enables to extend
cime_rescaring	U	$\{0,1\}$	the bounds of h, so
			that a desired terminal
			time can be achieved.
			If only time_freezing
			is true, speed of
			time and step size all
			lumped together, e.g.,
			$h_{n,m} = s_n h_{n,m}$, hence
			the bounds need to be
		(0.1)	extended."
use_speed_of_time_var		{0,1}	ggggggg
local_speed_of_time_v	ariable1	$\{0, 1\}$	Add a speed of time
			variable s(.) for every
			control interval.

stagewise_clock_cons		{0,1}	Determine is there after every stage a "terminal" constraint for the time that has passed so far, if on. Or if off, just add a final terminal constraint for the clock state.		
s_sot0	1	> 0	Initial guess for the speed of time variables.		
s_sot_max	25	03	Upper bound for the speed of time variables.		
s_sot_min	s_sot_max ⁻¹	≥ 0	Lower bound for the speed of time varaibles.		
impose_terminal_phyi	sical_time	$\{0,1\}$	This option is only avilable if time-freezing is used. It imposes that the final physical time is equl to the provided T (except in time optimal control problems where it is a degree of freedom, then it determines is the physical or numericla timize minimized). If it is off, it turns off time_rescaling during time_freezing.		
IPOPT Settings					
Integrator Settings					

3.3 The solver_initalization

3.4 The results

3.5 List of examples

This table provides a list of example currently available in the NOS-NOC repository. It gives a classification regarding number of control and variables, number of regions R_i (i.e., number of mode of the PSS), type of problem: OCP or SIM (for simulation), time-freezing type: elastic impacts (TF-E), inelastic impacts (TF-I), hyseresis (TF-H).

Example Name	n_f	n_x, n_u	Class
--------------	-------	------------	-------

time_freezing_thworing_a_ball	2	5,2	OCP, TF-E
time_optimal_control_car	4	5,1	OCP, TF-H
thermostat	4	3,0	SIM, TF-H

4 Homotopy and MPCC settings

The discrete-time OCP from the last section obtained via direct transcription using FESD is an MPCC. It can be written more compactly as

$$\min_{w} \quad f(w) \tag{19a}$$

s.t.
$$0 \le h(w)$$
, (19b)

$$0 < w_1 \perp w_2 > 0,$$
 (19c)

where $w = (w_0, w_1, w_2) \in \mathbb{R}^{n_w}$ is a given decomposition of the problem variables. MPCC are difficult nonsmooth NLP which violate e.g., the MFCQ at all feasible points [12]. Fortunately, they can often be solved efficiently via reformulations and homotopy approaches [12, 13, 14]. We briefly discuss the standard ways of solving MPCC that are implemented in NOS-NOC. They differ in how Eq. (19c) is handled. In all cases $w_1, w_2 \geq 0$ is kept unaltered and the bilinear constraint $w_1^\top w_2 = 0$ is treated differently.

In a homotopy procedure we solve a sequence of more regular, relaxed NLP related to (19) and parameterized by a homotopy parameter $\sigma_i \in \mathbb{R}_{\geq 0}$. Every new NLP is initialized with the solution of the previous one. In all approaches the homotopy parameter is updated via the rule: $\sigma_{i+1} = \kappa \sigma_i$, $\kappa \in (0,1)$, $\sigma_0 > 0$, where i is the index of the NLP in the homotopy. In the limit as $\sigma_i \to 0$ (or often even for a finite i and σ_i) the solution of the relaxed NLP matches a solution of (19). NOS-NOC supports the following approaches:

4.0.1 Direct solve (mpcc_mode =1)

The bilinear term is treated directly as as $w_1^{\top}w_2 \leq 0$ and a single NLP is solved. This results in a degenerate NLP where the MFCQ is violated at all feasible points [12]. This approach usually yields poor performance.

4.0.2 Smoothing (mpcc_mode =2) and Relaxation (mpcc_mode =3)

In smoothing the bilinear term is replaced by the simpler constraint $w_1^{\top}w_2 = \sigma_i$ and in relaxation by $w_1^{\top}w_2 \leq \sigma_i$. A sequence of NLP for a decreasing σ_i is solved and under certain assumptions for $\sigma_i \to 0$ a solution of the initial MPCC (19) is obtained [13].

4.0.3 ℓ_1 -Penalty (mpcc_mode =4)

In this approach the bilinear constraint is discarded and the term $\frac{1}{\sigma_i}w_1^\top w_2$ is added to the objective, which is a penalized ℓ_1 norm of the complementarity

residual. When the penalty $\frac{1}{\sigma_i}$ exceeds a certain (often finite) threshold we have $w_1^{\mathsf{T}}w_2 = 0$ and the solution of such an NLP is a solution to (19) [14].

4.0.4 Elastic Mode (mpcc_mode = 5)

In elastic mode (sometimes called ℓ_{∞} -approach) [12] a bounded scalar slack variable $\gamma \in [0, \bar{\gamma}]$ is introduced. The relaxed bilinear constraint reads as $w_1^{\top}w_2 \leq \gamma$ and we add to the objective $\frac{1}{\sigma_i}\gamma$. Variants with $w_1^{\top}w_2 = \gamma$ (mpcc_mode =6) and $-\gamma \leq w_1^{\top}w_2 \leq \gamma$ (mpcc_mode =7) are supported as well. Once the penalty $\frac{1}{\sigma_i}$ exceeds a certain (often finite) threshold we have $\gamma = 0$ and we recover a solution of (19) [12].

4.0.5 Barrier Controlled Penalty Homotopy (mpcc_mode =8)

As controlling the homotopy parameters σ_i might sometimes be difficult we propose a heuristic approach, were the homotopy parameter is indirectly controlled by the barrier parameter in IPOPT [2]. The formulation works as follows. We introduce two scalar slack variables τ and δ . We add the constraint

$$0 \le \tau \le \bar{\tau},\tag{20}$$

$$0 \le \delta \le \bar{\delta},\tag{21}$$

$$\tau \le e^{-\delta}. (22)$$

and to the objective the term $-\rho_{\delta}\delta^2$. This objective term will favor larger δ which imply very small values for τ . Intuitively, as the interior point iterations proceed, τ will be implicitly controlled by the barrier parameter as the constraints get more "active", cf. Fig. ??. The positive scalars $\bar{\tau}, \bar{\delta}, \rho_{\delta}$ are tuning parameters. We can now use τ instead of σ_i in all of the reformulations above and solve a single NLP.

4.0.6 Objective Scaling

Furthermore, in the ℓ_1 and ℓ_{∞} approaches, direct $(f(w) + \frac{1}{\sigma_i}\psi(w))$ and indirect $(\sigma_i f(w) + \psi(w))$ objective scaling are available, which are mathematically equivalent but often result in different performance.

4.1 Cross complementarities

4.1.1 cross_complementarity_mode =1

$$0 = \operatorname{diag}(\theta_{0,m}) \lambda_{0,m'}, \ m, \ m' \in \mathcal{I}_{stg}, \tag{23a}$$

$$0 = \operatorname{diag}(\theta_{n,m})\lambda_{n,m'}, \ n \in \mathcal{I}_{grd} \setminus \{0\}, m \in \mathcal{I}_{stg}, m' \in \mathcal{I}_{stg} \cup \{0\}.$$
 (23b)

4.1.2 cross_complementarity_mode =2

$$0 = \theta_{0,m}^{\top} \lambda_{0,m'}, \ m, \ m' \in \mathcal{I}_{\text{stg}}, \tag{24a}$$

$$0 = \theta_{n,m}^{\top} \lambda_{n,m'}, \ n \in \mathcal{I}_{grd} \setminus \{0\}, m \in \mathcal{I}_{stg}, m' \in \mathcal{I}_{stg} \cup \{0\}.$$
 (24b)

4.1.3 cross_complementarity_mode =3

Case 3: For every stage point one vector-valued constraint via sum of all $\lambda_{n,m}$.

$$0 = \operatorname{diag}(\theta_{0,m}) \sum_{k=1}^{n_{s}} \lambda_{0,k}, \ m \in \mathcal{I}_{stg}, \tag{25a}$$

$$0 = \operatorname{diag}(\theta_{n,m}) \sum_{k=0}^{n_{s}} \lambda_{n,k}, \ n \in \mathcal{I}_{grd} \setminus \{0\}, m \in \mathcal{I}_{stg}.$$
 (25b)

4.1.4 cross_complementarity_mode =4

Now we do the same via sum of θ for the remaining caseses. Note that here we have one more constraint as we make an extra constraint for $\lambda_{0,n}$. For every stage point one vector-valued constraint via sum of all θ .

$$0 = \operatorname{diag}(\lambda_{0,m}) \sum_{k=1}^{n_{s}} \theta_{0,k}, \ m \in \mathcal{I}_{stg}, \tag{26a}$$

$$0 = \operatorname{diag}(\lambda_{n,m}) \sum_{k=1}^{n_{s}} \theta_{n,m}, \ n \in \mathcal{I}_{grd} \setminus \{0\}, m \in \mathcal{I}_{stg} \cup \{0\}.$$
 (26b)

4.1.5 cross_complementarity_mode =5

Case 5: Per stage point one scalar-valued constraint via sum of λ .

$$0 = \theta_{0,m}^{\top} \sum_{k=1}^{n_{\rm s}} \lambda_{0,k}, \ m \in \mathcal{I}_{\rm stg}, \tag{27a}$$

$$0 = \theta_{n,m}^{\mathsf{T}} \sum_{k=0}^{n_{\mathrm{s}}} \lambda_{n,k}, \ n \in \mathcal{I}_{\mathrm{grd}} \setminus \{0\}, m \in \mathcal{I}_{\mathrm{stg}}.$$
 (27b)

4.1.6 cross_complementarity_mode =6

Case 6: For every collocation point one scalar-valued constraint via sum of all θ

$$0 = \lambda_{0,m}^{\top} \sum_{k=1}^{n_s} \theta_{0,k}, \ m \in \mathcal{I}_{stg}, \tag{28a}$$

$$0 = \lambda_{n,m}^{\top} \sum_{k=1}^{n_{s}} \theta_{n,m}, \ n \in \mathcal{I}_{grd} \setminus \{0\}, m \in \mathcal{I}_{stg} \cup \{0\}.$$
 (28b)

4.1.7 cross_complementarity_mode =7

One constraint per finite element. Case 7: Per stage (finite element) one vector valued constraint via sum of λ .

$$0 = \sum_{k=1}^{n_{s}} \operatorname{diag}(\theta_{n,k}) \sum_{m=1}^{n_{s}} \lambda_{0,m}, \tag{29a}$$

$$0 = \sum_{k=1}^{n_{s}} \operatorname{diag}(\theta_{n,k}) \sum_{m=0}^{n_{s}} \lambda_{n,m}, \ n \in \mathcal{I}_{grd} \setminus \{0\}, m \in \mathcal{I}_{stg}.$$
 (29b)

4.1.8 cross_complementarity_mode =8

Case 8: Per stage (finite element) one scalar constraint via sum of λ .

$$0 = \sum_{k=1}^{n_{\rm s}} \theta_{0,k}^{\top} \sum_{m=1}^{n_{\rm s}} \lambda_{0,m}, \tag{30a}$$

$$0 = \sum_{k=1}^{n_{\rm s}} \theta_{n,k}^{\top} \sum_{m=0}^{n_{\rm s}} \lambda_{n,m}, \ n \in \mathcal{I}_{\rm grd} \setminus \{0\}.$$
 (30b)

The cases one constraint per stage are the same no matter if they are performed via sum of θ or sum of λ .

4.1.9 cross_complementarity_mode =9

All conditions in one vector valued constraint.

$$0 = \sum_{k=1}^{n_{s}} \operatorname{diag}(\theta_{n,k}) \sum_{m=1}^{n_{s}} \lambda_{0,m} + \sum_{n=1}^{N_{grid}-1} \sum_{k=1}^{n_{s}} \operatorname{diag}(\theta_{n,k}) \sum_{m=0}^{n_{s}} \lambda_{n,m}.$$
(31)

4.1.10 cross_complementarity_mode =10

All conditions in one scalar valued constraint.

$$0 = \sum_{k=1}^{n_{s}} \theta_{n,k}^{\top} \sum_{m=1}^{n_{s}} \lambda_{0,m} + \sum_{n=1}^{N_{grid}-1} \sum_{k=1}^{n_{s}} \theta_{n,k}^{\top} \sum_{m=0}^{n_{s}} \lambda_{n,m}.$$
 (32)

Remark: The scalar valued constraint seem to work better with equality type relaxations and the vector valued ones with inequality type ones.

4.2 Step equilibration

Heuristic step-equilibration The constraint (16) can due to its nonlinearity slow down the convergence and impair the progress of the homotopy loop. Therefore, we propose several heuristic approach to improve the convergence

properties. Instead of having the bilinear terms of (16) as constraints we add for every k the objective the term:

$$\psi_{\text{eq}}(\mathbf{h}, \mathbf{Z}) = \rho_{\text{eq}} \sum_{k=0}^{N-1} \sum_{n=0}^{N_{\text{fe}}-1} \tanh(\eta_{k,n}) (h_{k,n+1} - h_{k,n})^2,$$

where $\rho_{\rm eq} > 0$ and the tanh(·) bring all η_n to the same scale. An alternative simple heuristic is to add the quadratic cost term

$$\tilde{\psi}_{\text{eq}}(\mathbf{h}, \mathbf{Z}) = \rho_{\text{eq}} \sum_{k=0}^{N-1} \sum_{n=0}^{N_{\text{fe}}-1} (h_{k,n+1} - h_{k,n})^2.$$

However, in this case a too large ρ_{eq} biases towards selecting control inputs that lead to switches on an equidistant grid.

4.3 FESD Integrator

5 A Tutorial Example

5.1 A MATLAB Example of an OCP with a System with State Jumps

```
1 import casadi.*
 2 % Call this function to have an overview of all options.
 3 [settings] = default_settings_fesd();
 4\ \% Highlight that the problem is treated with time-freezing
       reformulation and change the number of IRK stages
 5 settings.time_freezing = 1;
 6 \text{ settings.n_s} = 3;
 7~\% Discretization data
 8 \text{ model.T} = 5;
9 model.N_stages = 15;
10 model.N_finite_elements = 3;
11\ \% Define states, controls and inital values
12 q = MX.sym('q',2); v = MX.sym('v',2); t = MX.sym('t');
13 \text{ model.x} = [q;v;t];
14 \text{ model.x0} = [0;0.5;0;0;0];
15 u = MX.sym('u',2);
16 \text{ model.u} = u;
17\ \% Define regions of the PSS
18 \text{ model.S} = [1; -1];
19 \text{ model.c} = q(2);
20~\% Define modes of PSS
21 f_1 = [v;u(1);u(2)-9.81;1];
22 f_2 = [0; v(2); 0; -10*(q(2)) -0.211989*v(2); 0];
23 \text{ model.F} = [f_1 f_2];
24\ \% Stage and terminal costs
25 model.f_q = u'*u; model.f_q_T = 10*v'*v;
26\ \% Path and terminal constraints
27 \text{ model.g_ineq} = u'*u-7^2;
28 \text{ model.g\_terminal} = q-[4;0.25];
```

6 Structure of the Software

The aim of this section is to give more detail on the structure of NOS-NOC and to provide more insight on all functions shipped with this packages. (work in progress...)

References

- [1] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, "CasADi a software framework for nonlinear optimization and optimal control," *Mathematical Programming Computation*, vol. 11, no. 1, pp. 1–36, 2019.
- [2] A. Wächter and L. T. Biegler, "On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming," *Mathematical Programming*, vol. 106, no. 1, pp. 25–57, 2006.
- [3] A. Nurkanović, M. Sperl, S. Albrecht, and M. Diehl, "Finite Elements with Switch Detection for Direct Optimal Control of Nonsmooth Systems," to be submitted, 2022.
- [4] A. Nurkanović, T. Sartor, S. Albrecht, and M. Diehl, "A Time-Freezing Approach for Numerical Optimal Control of Nonsmooth Differential Equations with State Jumps," *IEEE Control Systems Letters*, vol. 5, no. 2, pp. 439–444, 2021.
- [5] A. Nurkanović, S. Albrecht, B. Brogliato, and M. Diehl, "The Time-Freezing Reformulation for Numerical Optimal Control of Complementarity Lagrangian Systems with State Jumps," arXiv preprint, 2021.
- [6] A. Nurkanović and M. Diehl, "Continuous optimization for control of hybrid systems with hysteresis via time-freezing," Submitted to The IEEE Control Systems Letters (L-CSS), 2022.
- [7] ——, "Nos-noc: A software package for numerical optimal control of nons-mooth systems," Submitted to The IEEE Control Systems Letters (L-CSS), 2022
- [8] D. E. Stewart, "A high accuracy method for solving ODEs with discontinuous right-hand side," *Numerische Mathematik*, vol. 58, no. 1, pp. 299–328, 1990.

- [9] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II Stiff and Differential-Algebraic Problems, 2nd ed. Berlin Heidelberg: Springer, 1991.
- [10] B. T. Baumrucker and L. T. Biegler, "MPEC strategies for optimization of a class of hybrid dynamic systems," *Journal of Process Control*, vol. 19, no. 8, pp. 1248–1256, 2009.
- [11] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides. Springer Science & Business Media, Series: Mathematics and its Applications (MASS), 2013, vol. 18.
- [12] M. Anitescu, P. Tseng, and S. J. Wright, "Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties," *Mathematical Programming*, vol. 110, no. 2, pp. 337–371, 2007.
- [13] S. Scholtes, "Convergence properties of a regularization scheme for mathematical programs with complementarity constraints," SIAM Journal on Optimization, vol. 11, no. 4, pp. 918–936, 2001.
- [14] D. Ralph and S. J. Wright, "Some properties of regularization and penalization schemes for mpecs," *Optimization Methods and Software*, vol. 19, no. 5, pp. 527–556, 2004.