MATH 368/621 Fall 2020 Homework #4

Frank Palma Gomez

Thursday 29th October, 2020

Problem 1

These exercises will give you practice with the gamma function.

- (a) [easy] Write the definition of $\Gamma(x)$. skip duplicate
- (b) [easy] Prove $\Gamma(x+1) = x\Gamma(x)$. skip duplicate
- (c) [easy] Write the definition of $\Gamma(x,a)$ without using the gamma function. skip duplicate
- (d) [harder] Write the definition of Q(x, a) without using the gamma function. skip duplicate
- (e) [easy] For $a, c \in (0, \infty)$, prove the following:

$$\int_{a}^{\infty} t^{x-1}e^{-ct}dt = \frac{\Gamma(x, ac)}{c^{x}}$$

skip — duplicate

(f) [easy] Let $X \sim \text{Gamma}(\alpha, \beta)$. Show that this r.v. is equivalent to $X \sim \text{Erlang}(k, \lambda)$ and find k and λ in terms of α and β . Are there any restrictions on the values of α and β for this relationship to hold?

skip — duplicate

Problem 2

These exercises will give you practice with transformations of discrete r.v.'s.

(a) [easy] Let $X \sim \text{Binomial}(n, p)$. Find the PMF of $Y = g(X) = \ln(X + 1)$.

$$g(x) = \ln(x+1) \to g^{-1}(y) = \exp(y) - 1$$

$$P_x(g^{-1}(y)) = P_x(\exp(y) - 1) = \binom{n}{\exp(y) - 1} p^{\exp(y) - 1} (1 - p)^{n - \exp(y) - 1}$$

- (b) [harder] Let $X \sim \text{Binomial}(n, p)$. Find the PMF of $Y = g(X) = X^2$. Is g(X) monotonic? Does that matter for this r.v.?
 - g(x) is not monotonic but it does not matter since the $Supp[X] = \{0, n\}$

$$g(x) = x^{2} \to g^{-1}(y) = \sqrt{y}$$
$$P_{x}(g^{-1}(y)) = P_{x}(\sqrt{y}) = \binom{n}{\sqrt{y}} p^{\sqrt{y}} (1-p)^{n-\sqrt{y}}$$

- (c) [difficult] Let $X \sim \text{Binomial}(n, p)$ where n is an even number. Find the PMF of Y = g(X) = mod(X, 2) where "mod" denotes modulus division of the first argument by the second argument.
- (d) [difficult] [MA] Let $X \sim \text{NegBin}(k, p)$. Find the PMF of Y = g(X) = mod(X, n) where $n \in \mathbb{N}$.

Problem 3

These exercises will give you practice with transformations of continuous r.v.'s and the quantile function.

- (a) [harder] Let $X \sim U(0, 1)$. Find the PDF of Y = g(X) = aX + c. Make sure you're careful with the indicator function that specifies the support. There are two cases.
- (b) [harder] Let $X \sim \text{Exp}(\lambda)$. Find the PDF of $Y = g(X) = \ln(X)$.
- (c) [E.C.] Let $X \sim \text{Exp}(\lambda)$. Find the PDF of $Y = g(X) = \sin(X)$.
- (d) [harder] Let $X \sim U(0, 1)$. Find the PDF of $Y = g(X) = \ln\left(\frac{X}{1-X}\right)$. If this is a brand name r.v., mark it so and include its parameter values.
- (e) [easy] Find the Quantile function of X where $X \sim \text{Logistic}(0,1)$.
- (f) [easy] Find the PDF of $Y = \sigma X + \mu \sim \text{Logistic}(\mu, \sigma)$ where $X \sim \text{Logistic}(0, 1)$.
- (g) [difficult] Let $X \sim \text{Logistic}(0,1)$. Find the PDF of $Y = g(X) = \frac{1}{1+e^{-X}}$. If this is a brand name r.v., mark it so and include its parameter values.

- (h) [harder] Let $X \sim \text{Exp}(\lambda)$. Find the PDF of $Y = g(X) = ke^X$ where k > 0. This will be a brand name r.v., so mark it so and include its parameter values.
- (i) [easy] Rederive the $X \sim \text{Laplace}(0,1)$ r.v. model by taking the difference of two standard exponential r.v.'s.
- (j) [easy] Let $X \sim \text{Laplace}(0,1)$. Prove that $\mathbb{E}[X] = 0$ without using the integral definition. There's a trick.
- (k) [easy] Find the PDF of $Y = \sigma X + \mu \sim \text{Laplace}(\mu, \sigma)$ where $X \sim \text{Laplace}(0, 1)$.
- (1) [difficult] Show that $\mathcal{E} \sim \text{Laplace}(0, \sigma)$ is a reasonable error distribution.
- (m) [harder] [MA] Find the Quantile function of X where $X \sim \text{Laplace}(0,1)$.
- (n) [difficult] [MA] Let $X \sim \operatorname{ParetoI}(k, \lambda)$. Show that $Y = X \mid X > c$ where c > k is also a ParetoI r.v. and find its parameter values.

Problem 4

We will now explore a couple of extreme distributions.

- (a) [harder] Let $X \sim \text{Exp}(1)$ and $Y = -\ln(X) \sim \text{Gumbel}(0,1)$. Find the PDF of this standard Gumbel distribution. Make sure you include the indicator function throughout your proof.
- (b) [easy] Find the CDF of Y.
- (c) [easy] Let $G = \beta Y + \mu \sim \text{Gumbel}(\mu, \beta)$. Find the PDF of G, the general Gumbel distribution.
- (d) [easy] [MA] Show that for any r.v. X, if Y = aX + b, then $F_Y(y) = F_X\left(\frac{y-b}{a}\right)$.
- (e) [easy] Using the answer in the previous question, find the CDF of $G \sim \text{Gumbel}(\mu, \beta)$.

Problem 5

These exercises will give you practice with the Weibull distribution.

- (a) [easy] If $X \sim \text{Exp}(1)$ then show that $Y = \frac{1}{\lambda} X^{\frac{1}{k}} \sim \text{Weibull}(k, \lambda)$ where $k, \lambda > 0$.
- (b) [harder] Find Med[Y].
- (c) [difficult] [MA] Prove that if k > 1 then $\mathbb{P}(Y \ge y + c \mid Y \ge c) < \mathbb{P}(Y \ge y)$ for c > 0.

- (d) [difficult] If $X \sim \operatorname{Exp}(\lambda)$ then show that $Y = X^{\beta} \sim \operatorname{Weibull}$ where $\beta > 0$. Find the resulting Weibull's parameters in terms of the parameterization we learned in class (i.e. your answer in part a).
- (e) [easy] Using Y, the Weibull in terms of the parameterization we learned in class (i.e. your answer in part a), find the PDF of $W = Y + c \sim \text{Weibull}(k, \lambda, c)$ which is known as the "translated Weibull" or "3-parameter Weibull model".

Problem 6

We will practice finding kernels and relating them to known distributions. The gamma function and the beta function will come up as well.

(a) [easy] Find the kernel of the negative binomial PMF.

$$P(X = k) = \binom{k+r-1}{k} (1-p)^r p^k \mathbb{1}_{k \in \{0,1,\dots\}}$$

$$= \frac{(k+r-1)!}{k!(k+r-1-k)!} (1-p)^r p^k \mathbb{1}_{k \in \{0,1,\dots\}}$$

$$= \frac{(k+r-1)!}{k!(r-1)!} (1-p)^r p^k \mathbb{1}_{k \in \{0,1,\dots\}}$$

$$\propto \frac{(k+r-1)!}{k!} p^k \mathbb{1}_{k \in \{0,1,\dots\}}$$

(b) [easy] Find the kernel of the beta PDF.

$$P(X = x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \mathbb{1}_{x \in [0, 1]}$$
$$\propto x^{\alpha - 1} (1 - x)^{\beta - 1} \mathbb{1}_{x \in [0, 1]}$$

(c) [easy] If $k(x) = e^{-\lambda x} x^{k-1} \mathbb{1}_{x>0}$ how would you know if the r.v. X was an Erlang (k, λ) or a Gamma (k, λ) ?

We know that X will be Gamma (k, λ) since the indicator functions tell us about their supports. We know that:

Erlang
$$(k, \lambda) \to \text{Supp}[X] = [0, \infty)$$

$$\operatorname{Gamma}(k,\lambda) \to \operatorname{Supp}[X] = (0,\infty)$$

(d) [harder] If $k(x) = xe^{-x^2} \mathbb{1}_{x>0}$, how is X distributed?

Problem 7

We will now practice using order statistics concepts.

- (a) [easy] If $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x)$ where its CDF is denoted F(x), express the CDF of the maximum X_i and express the CDF of the minimum X_i .
- (b) [easy] If $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x)$ where its CDF is denoted F(x), express the PDF of the maximum X_i and express the PDF of the minimum X_i .
- (c) [easy] If $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x)$ where its CDF is denoted F(x), express the PDF and the CDF of $X_{(k)}$ i.e. the kth smallest X_i .
- (d) [difficult] [MA] If discrete $X_1, \ldots, X_n \stackrel{iid}{\sim} p(x)$, why would the formulas in (a-c) not be accurate?
- (e) [harder] If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathrm{U}(0, 1)$, show that $X_{(k)} \sim \mathrm{Beta}(k, n k + 1)$.
- (f) [harder] Express $\binom{n}{k}$ in terms of the beta function.
- (g) [E.C.] If $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathrm{U}(a, b)$, show that $X_{(k)}$ is a linear transformation of the beta distribution and find its parameters.
- (h) [harder] [MA] Show that $I_x(\alpha, \beta + 1) = \frac{\beta I_x(\alpha, \beta) + x^{\alpha}(1 x)^{\beta}}{\alpha + \beta}$.

Problem 8

We will now practice multivariate change of variables where Y = g(X) where X denotes a vector of k continuous r.v.'s and $g : \mathbb{R}^k \to \mathbb{R}^k$ and is 1:1.

- (a) [easy] State the formula for the PDF of \boldsymbol{Y} .
- (b) [harder] Demonstrate that the formula for the PDF of Y reduces to the univariate change of variables formula if the dimensions of Y and X are 1.
- (c) [easy] State the formula for the PDF of $R = \frac{X_1}{X_2}$.

- (d) [easy] State the formula for the PDF of $R = \frac{X_1}{X_2}$ if X_1 and X_2 are independent.
- (e) [easy] State the formula for the PDF of $R = \frac{X_1}{X_2}$ if X_1 and X_2 are independent and have positive supports.
- (f) [easy] State the formula for the PDF of $R = \frac{X_1}{X_1 + X_2}$.
- (g) [easy] State the formula for the PDF of $R = \frac{X_1}{X_1 + X_2}$ if X_1 and X_2 are independent.
- (h) [harder] State the formula for the PDF of $R = \frac{X_1}{X_1 + X_2}$ if X_1 and X_2 are independent and have positive supports. This should be a simpler expression than the previous.
- (i) [difficult] Find a formula for the PDF of $E = X_1^{X_2}$ where $X_1, X_2 \stackrel{iid}{\sim} f(x)$.
- (j) [difficult] Find the simplest formula you can for the PDF of $Q = \frac{X_1}{X_2}e^{X_3}$ where X_1, X_2, X_3 are dependent r.v.'s.
- (k) [difficult] Show that $R = \frac{X_1}{X_2} \sim \beta'(\alpha, \beta)$, the beta prime distribution, if $X_1 \sim \text{Gamma}(\alpha, 1)$ independent of $X_2 \sim \text{Gamma}(\beta, 1)$.

$$f_R(r) = \int_0^\infty \frac{1^\alpha}{\Gamma(\alpha)} (ru)^{\alpha - 1} \exp(-ru) \, \mathbb{1}_{ru \in [0, \infty]} \frac{(1)^\beta u^{\beta - 1}}{\Gamma(\beta)} \exp(-u) |u| \, du$$

$$= \frac{1^{\alpha + \beta}}{\Gamma(\alpha)} r^{\alpha - 1} \mathbb{1}_{r > 0} \int_0^\infty u^{\alpha + \beta - 1} \exp(r + 1 + u) \, du$$

$$= \frac{r^{\alpha - 1}}{B(\alpha, \beta)(r + 1)^{\alpha + \beta}}$$

$$= \text{BetaPrime}(\alpha, \beta)$$