ECE 5720 Modeling and Synthesis of Digital Systems Using Verilog

Worcester Polytechnic Institute

C-Term 2023s

Homework Report 3: Sequential Synthesis

Submitted by
Drew Solomon
 Professor Navabi

Controller States

The controller operates on 3 states, each representing one of the major steps in the Booth algorithm. The first state is solely about loading in the operands M and Q, and resetting registers to = 0 if necessary to prepare for the next multiplication operation. Upon the next clock tick, the next state is for adding or subtracting depending on the present state of Q[0] and register Q_{-1} . Addition flags occur when Q[0] = 1 and Q_{-1} = 0, and subtraction flags occur when Q[0] = 0 and Q_{-1} = 1. A load flag is also raised to load the output of the add/sub unit to the A register when either of these operations occur, but logic ensures the operand registers won't be changed during this state. State 1 will always lead into state 2 on next clock tick.

State 2 is about the arithmetic shift steps of the algorithm, and has two different potential next states depending on the current state of the counter's count. After shifting the result register right by 1 bit, upon the next clock tick the next state will be state 1 again if count > 0, or state 0 if count <= 0. If state 0 is entered, the algorithm has produced the final outcome of the multiplication and a valid flag is raised signaling the current output of the module is not an intermediate value but the final product. If state 1 is entered again, it means the algorithm is not finished yet and will loop between state 1 and 2 until the count is 0.

Datapath and Controller

The controller and datapath share quite a few control signals to keep synchronized with each other. The controller outputs flags load (for loading registers), add (signals math unit to add operands), sub (signals math unit to subtract operands), shift (shift output registers right 1 bit) and dc (decrement the counter by 1). These flags are sent to the datapath in response to the current state it is in, which is decided partially by the signals the datapath sends to the controller. These signals include the Qzero (Q[0]) register and Qsub1 (Q-1) register, as well as the down counter's current count. The registers are used to determine whether to send an add or sub signal to the datapath, and the count is used to determine which state to enter next while in state 2.

Valid is the flag indicating multiplication is finished and the module output is usable, and result is the module output. Notably, the <u>positive edge</u> is the indicator, not just the signal itself being a 1.

Test Bench Results

Table 1: multi	inlication	of -5 and	d -7 using	Booth a	lgorithm
I WOLL I. HILLIE	pucuuon	U) Juin	4 / WISHING	Dooni	COL COLORIE

Operation	A	Q	Q-1	step	M = -5
	0000	100 <mark>1</mark>	0	0	
A-M	0101	1001	0	1	
Arithmetic shift right	0010	110 <mark>0</mark>	1		
A+M	1101	1100	1	2	
Arithmetic shift right	1110	111 <mark>0</mark>	0		
Arithmetic shift right	1111	011 <mark>1</mark>	0	3	
A-M	0100	011 <mark>1</mark>	0	4	
Arithmetic shift right	0010	0011	1		

For the test bench, the example of -5 * -7 from the assignment instructions was used, with an additional test of 1 * 1 for extra confidence. To ensure that subsequent multiplication operations would work, the -5 * -7 operation occurs twice in a row, and the 1 * 1 operation occurs after. Below is a table of the inputs for each trial and expected output:

Trial					M								Q									Result									
	1				-5 (1011)								-7 (1001)									35 (0010_0011)									
	2				-5 (1011)								-7 (1001)									35 (0010_0011)									
	3							1							1								1 (0000_0001)								
Wave - Default																															
\$1 -	Msgs																														
☐ ◆ /tb_booth_multiplier,M	1011 1001	(1011																			0001									_	
☐ ★ /tb_booth_multiplier/Q	1001	1001																			0001										
/b_booth_multiplier/dk											ш						\Box														
□- /tb_booth_multiplier/result	00100011	00000	00001	01011	00101	11011	11101110		11110	01000	0010) 0	0001	01011	00101	11011	11101110		11110	01000	00100	00000	11110	111111	00001	0000010		00000010		00000001	
/tb_booth_multiplier/valid	1										+																				
/b_booth_multiplier/UUT/U1/dk	St1										ы																			_	
/b_booth_multiplier/UUT/U1/M	1011	1011											_						=		0001								=		_
/tb_booth_multiplier/UUT/U1/Q /tb_booth_multiplier/UUT/U1/Qad	1001	1001							_		-					_				_	0001								_	_	=
/b_booth_multipler/UUT/U1/add	501										-																				
/b_booth_multiplier/UUT/U1/sub	940										-																				
/b_booth_multipler/UUT/U1/shift	Sm				_						-						_													_	
/ /tb booth multiplier/UUT/U1/ldc	911		_								-		$\overline{}$							\vdash							_			_	
/tb_booth_multipler/UUT/U1/Areg	0010	0000	=	0101	0010	1101	1110		111	0100	0010	10	000	0101	10010	1101	1110		1111	10100	0010	10000	11111	_	0000				_	_	
(tb_booth_multiplier/UUT/U1/Qreg	0011	0000			1100		1110		0111		001				1100		1110		0111		0011			1000		0100		10010	_	0001	
/tb_booth_multiplier/UUT/U1/Qzero																															
/tb_booth_multiplier/UUT/U1/Qsub1																															
/tb_booth_multiplier/UUT/U1/count			(011		1010		1001		1000			100	X011		X010)001)(000		X 10	101	1	1010		1001		(000		X 100	[011
/tb_booth_multiplier/UUT/U1/Mreg		0000	1011																			0001									
/tb_booth_multiplier/UUT/U1/Qsub1reg																															
□- /b_booth_multplier/UUT/U1/A	0100	0000	0101		1101				0100			- 0	101		1101				0100			1111		0000						1111	

The first trial of -5*-7 produced an outcome of 35, as expected.

The second trial of -5*-7 produced an outcome of 35, as expected.

The third trial using 1*1 produced an outcome of 1, as expected.

Quartus Synthesis Report

Compilation Report - booth_multiplier							
Flow Summary							
< <filter>></filter>							
Flow Status	Successful - Tue Feb 28 16:00:18 2023						
Quartus Prime Version	18.0.0 Build 614 04/24/2018 SJ Lite Edition						
Revision Name	booth_multiplier						
Top-level Entity Name	booth_multiplier						
Family	Cyclone V						
Device	5CGXFC7C7F23C8						
Timing Models	Final						
Logic utilization (in ALMs)	14 / 56,480 (< 1 %)						
Total registers	33						
Total pins	18 / 268 (7 %)						
Total virtual pins	0						
Total block memory bits	0 / 7,024,640 (0 %)						
Total DSP Blocks	0 / 156 (0 %)						
Total HSSI RX PCSs	0/6(0%)						
Total HSSI PMA RX Deserializers	0/6(0%)						
Total HSSI TX PCSs	0/6(0%)						
Total HSSI PMA TX Serializers	0/6(0%)						
Total PLLs	0 / 13 (0 %)						
Total DLLs	0 / 4 (0 %)						