

Dados

Carlos H. Grohmann 2021

Instituto de Energia e Ambiente USP

Dados para SIG

- Obter dados é uma parte importante de qualquer projeto de SIG
- · Você precisa saber:
 - · Que tipos de dados você pode usar no SIG
 - · Como avaliar os dados
 - · Onde encontrar dados
 - Como criar dados

Fontes de Dados

 Dados Primários: dados medidos diretamente por levantamentos, coletas de campo e sensoriamento remoto

 Dados Secundários: dados obtidos de mapas e tabelas existentes, ou outras fontes de dados

Dados Primários

- Não é possível observar a distribuição espacial de uma variável em toda a área de estudo
- É necessário amostrar
 - Fazer medições de um subconjunto de objetos na área que melhor capture a variação espacial total

Amostragem

- A densidade de amostragem determina a resolução dos dados
- Amostras tomadas em intervalos de 1 km não refletem variações menores que 1 km
- · Principais tipos de modelos de amostragem:
 - · Aleatória
 - · Sistemática
 - · Estratificada

Amostragem Aleatória

Cada ponto deve ter a mesma probabilidade de ser escolhido

Amostragem Sistemática

Os pontos de amostragem são espaçados em intervalos regulares

Amostragem Estratificada

Exigem conhecimentos sobre subpopulações distintas, espacialmente definidas (formações, zonas ecológicas)

Mais amostras são coletadas nas áreas onde é esperada maior variabilidade

Dados Secundários

- · Cada vez mais dados digitais para SIGs são disponíveis
 - · Agências governamentais: censo, dados abertos...
 - · Levantamentos topográficos (IBGE), geológicos (CPRM)...
 - Companhias privadas

Metadados

- · Metadados: dados sobre os dados
 - · Procedimentos de coleta ou compilação
 - Linhagem dos dados
 - · Exatidão, precisão, padrões de medição
 - · Esquemas de codificação
- · Muitas vezes não há metadados, o que leva a:
 - · Má interpretação
 - · Mau uso
 - · Falsa percepção de exatidão

Metadados - exemplo

Imagem Landsat 7

Metadados - exemplo

```
PRODUCT CREATION TIME = 2004-02-12T18:09:52Z
PRODUCT FILE SIZE = 690.6
STATION ID = "EDC"
GROUND STATION = "AGS"
GROUP = ORTHO PRODUCT METADATA
SPACECRAFT ID = "Landsat7"
SENSOR ID = "ETM+"
ACQUISITION DATE = 2000-05-07
WRS PATH = 220
WRS ROW = 079
SCENE CENTER LAT = -27.4280401
SCENE CENTER LON = -49.1205180
SCENE UL CORNER LAT = -26.4839052
SCENE UL CORNER LON = -49.8367208
SCENE UR CORNER LAT = -26.7496923
SCENE UR CORNER LON = -47.9986978
```

GROUP = METADATA FILE

Exatidão e Precisão

- · Exatidão (acurácia): quão correta é a medida
- Precisão (reproducibilidade): indica a dispersão de um conjunto de dados

Entrada de Dados

- A entrada de dados envolve a digitalização de dados espaciais e de atributos
- · Dados de atributos
 - Planilhas
 - · Gerenciadores de bancos de dados
- · Dados espaciais:
 - · Entrada de coordenadas
 - · Digitalização
 - Escaneamento

Entrada de Dados

- A conversão de mapas de papel para digital é a tarefa que mais consume tempo em SIG
 - Até 80% dos custos dos projetos
 - · Tedioso, trabalhoso e muito sujeito a erro
 - A montagem do banco de dados às vezes acaba sendo um fim em si mesmo

Entrada por teclado

- São digitadas coordenadas (ex. longitude/latitude de pontos):
 - · de listas de nomes e coordenadas
 - · de localizações lidas em mapas

Digitalização Manual

- Mesas digitalizadoras (será que alguém ainda usa?)
- · 25x25cm a 200x150cm
- Rede de fios na mesa cria um campo magnético que é detectado pelo cursor
- Grava coordenadas x/y arbitrárias, baseadas na precisão da mesa
- Precisão pode ser alta, mas é fixa

Figure 7. Converting map information to digital form using a hand-held computer mouse.

- · Scanner de tambor
- Scanner plano (grande e pequeno)

Figure 8. An electronic scanning device will convert some types of map information to digital form.

- · A saída do scanner é um arquivo matricial (raster)
- Muitas vezes tem que ser convertido ao formato vetorial
 - Manualmente (digitalização em tela)
 - (Semi-)Automaticamente (conversão raster-vetor) ex.
 R2V, Didger, ArcScan
 - · Quanto mais automático, mais pós-edição

- Didger (Golden Software)
- Funcionalidades incorporadas ao Surfer

· R2V (Able Software)

· ArcScan (ESRI)

- · O pré-processamento pode reduzir a pós-edição
- Ex: redesenhar em película transparente layers separados
- · Mapas mais simples e claros
- Permite usar diretamente imagens digitalizadas fotos aéreas, imagens de satélite
- · Mapas topográficos digitais em formato raster

Erros de Digitalização

- · Qualquer mapa digitalizado requer pós-processamento
- Procurar feições faltantes
- Conectar linhas
- · Remover polígonos espúrios
- · Algumas operações podem ser automatizadas

Erros de Digitalização

Problemas na imagem escaneada

Limpeza do raster

Remoção de lacuna (vazio)

Remoção de pixel solto

Afinamento de linhas

Georreferenciamento (registro)

- O mapa-fonte é desenhado em coordenadas do mundo real e parâmetros associados (m, km)
- Coordenadas são gravadas em unidades de digitalização ou escaneamento (cm da mesa, pixels)
- É preciso georreferenciar (registrar)

Georreferenciamento – Transformações

