WHAT IS CLAIMED IS:

1

1

2

1	1. An airplane guidance method involving an inertial reference system and a		
2	GPS landing system, the airplane guidance method comprising:		
3	converting position coordinates of an aircraft from the inertial reference		
4	system to runway, lateral, and vertical coordinates;		
5	calibrating runway distance and lateral distance based on the converted		
6	position coordinates from the inertial reference system using runway distance and lateral		
7	distance from the GPS landing system with a third-order calibration filter when the		
8	aircraft is below a first height above terrain;		
9	calibrating vertical distance based on the converted position coordinates		
10	from the inertial reference system using vertical distance from the GPS landing system		
11	with a second-order calibration filter when the aircraft is below the first height above		
12	terrain; and		
13	using the calibrated runway, lateral, and vertical distances for deviation		
14	computations when GPS signals are interrupted below a second height above terrain.		

- 1 2. The method of claim 1, further comprising determining a reference 2 trajectory, the reference trajectory including horizontal and vertical positions, for the 3 inertial reference system computed with velocity from the inertial reference system and 4 initial position from the GPS landing system.
 - 3. The method of claim 1, wherein the first height is 1500 feet.
 - 4. The method of claim 1, wherein the third-order calibration filter converges when an error signal is within 0.15m for 30 seconds.
- 1 5. The method of claim 1, wherein the second-order calibration filter converges when an error signal is within 0.2m for 30 seconds.
- 1 6. The method of claim 1, further comprising generating airplane control signals based on the deviation computations.

- 1 7. The method of claim 1, wherein the GPS landing system comprises a 2 ground station for generating differential global positioning system information. 8. 1 The method of claim 1, wherein the velocity error state of the third-order calibration filter is initialized by velocity difference between velocity measurements in 2 3 the GPS landing system and the inertial reference system. 1 9. The method of claim 1, further comprising buffering values from the GPS 2 landing system and the inertial reference system before processing to ensure data 3 integrity. 1 10. A method of deriving inertial-aided deviations for autoland systems during 2 GPS signal interruptions, the method comprising: 3 generating global positioning positions; generating inertial reference system positions; and 4 5 generating calibrated positions based on the global positioning positions and the inertial reference system positions using a third-order calibration filter and a 6 second-order calibration filter. 7 The method of claim 10, wherein the calibrated positions comprise 1 11. 2 runway distance, lateral distance, and aircraft height. 1 12. The method of claim 10, wherein a velocity error state of the third-order
- calibration filter is initialized by velocity difference between velocity measurements in a
 BPS landing system and an inertial reference system.
- 1 13. The method of claim 10, further comprising providing airplane control signals using deviation computations from the generated calibrated positions when the calibration filters converge.
- 1 14. The method of claim 13, wherein the third-order calibration filter converges when an error signal is within 0.15m for 30 seconds.

1	15.	The method of claim 13, wherein the second-order calibration filter	
2	converges when an error signal is within 0.2m for 30 seconds.		
1	16.	The method of claim 13, wherein the airplane control signals are provided	
2	using deviation computation when GPS signals are interrupted.		
3	17.	The method of claim 16, wherein aircraft height is 200 feet or less.	
1	18.	A system for deriving inertial-aided deviations for autoland systems	
2	during GPS signal interruptions, the system comprising:		
3		a first component for generating global positioning positions;	
4	a second component for generating inertial reference system positions;		
5		a third component for generating calibrated positions based on the global	
6	positioning positions and the inertial reference system positions using a third-order		
7	calibration filter and a second-order calibration filter; and		
8		a fourth component for providing airplane control signals using deviation	
9	computations from the generated calibrated positions when the calibration filters		
10	converge.		
1	19.	The system of claim 18, wherein the third-order calibration filter	
2	converges when an error signal is within 0.15m for 30 seconds; and wherein the second-		
3	order calibration filter converges when an error signal is within 0.2m for 30 seconds.		
1	20.	The system of claim 18, wherein the airplane control signals are provided	
2	using deviation computation when GPS signals are interrupted.		