Análise I

MIEET, LEI

Viktor Kravchenko

Universidade do Algarve

Conteúdo

1	Lim	nite e Continuidade de Funções Reais		
	1.1	Noção de função		
		1.1.1 Definição de função		
		1.1.2 Formas de representação de uma função		
		1.1.3 Sucessão		
		1.1.4 Conjuntos limitados		
		1.1.5 Funções limitadas		
	1.2	Limites		
		1.2.1 Limite de uma sucessão		
		1.2.2 Limite de uma função		
	1.3	Funções contínuas		
		1.3.1 Definição de função contínua		
		1.3.2 Continuidade lateral		
		1.3.3 Operações algébricas com funções contínuas		
		1.3.4 Função composta		
		1.3.5 Função monótona		
		1.3.6 Função inversa		
	1.4	Algumas funções elementares		
		1.4.1 Função exponencial		
		1.4.2 Função logarítmica		
		1.4.3 Funções trigonométricas		
_	_			
2		rivada e Diferencial 25		
	2.1	Acréscimo		
	2.2	Comparação de infinitamente pequenos		
		Definição de derivada		
	2.4	Derivadas laterais		
	2.5 Definição de diferencial			
	2.6	Derivadas da soma, do produto e da divisão de duas funções		
		2.6.1 Derivadas das funções trigonométricas		
		2.6.2 Número <i>e</i>		
		2.6.3 Derivada duma função logarítmica		
	2.7	Derivada da função composta		
		2.7.1 Derivada da função potência e derivada da função exponencial		

		2.7.2	Função composta	exponencial
	2.8	Invar		icial
	2.9	Deriv	ada da função da	ada em forma paramétrica
	2.10	Deriv	ada da função in	versa
				nções trigonométricas inversas
	2.11	Deriv	adas de ordem su	superior
				iiz
	2.12			superior
	.			
3		_	indefinido ···	38
	3.1			3
	3.2		_	ndefinido
		3.2.1		gral indefinido
		3.2.2		is
	9.9	3.2.3		que não são elementares
	3.3			ais de integração
		3.3.1	Integração por pai	rtes
		3.3.2	Método de substit	tuição
	3.4			que contêm o trinómio quadrado
	0.1	3.4.1		lo
		3.4.2	Integrais	do tipe
		9.4.2	mocgrans	шр.
				$\int \frac{mx+n}{ax^2+bx+c}dx, a \neq 0 \tag{1}$
				44
		3.4.3	Integrais	do
				f = mr + n
				$\int \frac{mx+n}{\sqrt{ax^2+bx+c}} dx, a \neq 0 $ (2)
		3.4.4	Integrais	do
				$\int \sqrt{ax^2 + bx + c} dx, a \neq 0 \tag{3}$
				$\int \nabla dx + bx + c dx, a \neq 0$
	3.5	Integ	ração de funções	racionais
		3.5.1	Polinómio	
		3.5.2	Fracção racional p	própria
		3.5.3	Integração de frac	cções simples
		3.5.4	Algoritmo de integ	egração de funções racionais
	3.6	Integ	ração de funções	trigonométricas
		3.6.1	Integrais	do
				ſ
				$\int R\left(\sin x,\cos x\right)dx,\tag{4}$

	3.6.2	onde R é uma função racional	49 tipe
		$\int \sin ax \cos bx \ dx, \int \sin ax \sin bx \ dx, \int \cos ax \cos bx \ dx,$	
3.7	Integ 3.7.1	ração de funções hiperbólicas	50 50 licas
		$ ch x = \cosh x = \frac{e^x + e^{-x}}{2}, sh x = \sinh x = \frac{e^x - e^{-x}}{2} $	
		$\operatorname{tgh} x = \frac{\operatorname{sh} x}{\operatorname{ch} x}, \operatorname{ctgh} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$	
3.8	3.7.2 Integ 3.8.1	Integração de funções hiperbólicas	5(51 51 tipe
	3.8.2	onde R é uma função racional e p_1,q_1,p_2,q_2,\dots são números inteiros $$. Integrais $$ do	51 tipo
		$\int R\left[x,\sqrt{a^2-x^2}\right]dx$	
	3.8.3	onde R é uma função racional	51 tipo
	3.8.4	onde R é uma função racional	51 tipo
		$\int R\left[x,\sqrt{x^2-a^2}\right]dx$	
		onde R é uma função racional	52
Pro 4.1	4.1.1 4.1.2 Prop	des básicas das funções contínuas e das funções diferenciáveis riedades das funções contínuas	53 53 53 54 54

	4.2.2	Monotonia local	55
	4.2.3	Extremo local	55
4.3	Prop	riedades das funções diferenciáveis num intervalo	56
	4.3.1	Maior e menor valor de uma função sobre um segmento	56
	4.3.2	Zero da derivada	56
	4.3.3	Teorema dos acréscimos finitos	57
	4.3.4	Monotonia num intervalo	57
	4.3.5	Relação entre o crescimento de duas funções	57
4.4	Regra	a de L'Hospital	58
	4.4.1	Comparação de infinitamente pequenos	58
	4.4.2	Comparação de infinitamente grandes	58
	4.4.3	Eliminação das indeterminações do	tipo
	4.4.3	Eliminação das indeterminações do $0\cdot\infty, \infty-\infty, 1^\infty, 0^0, \infty^0$	(5)
	4.4.3		•
4.5		$0 \cdot \infty, \infty - \infty, 1^{\infty}, 0^{0}, \infty^{0}$	(5)
4.5 4.6	Assín	$0\cdot\infty, \infty-\infty, 1^\infty, 0^0, \infty^0$	(5) 59
	Assín Fórm	$0\cdot\infty, \infty-\infty, 1^\infty, 0^0, \infty^0$	(5) 59 60
4.6	Assín Fórm	$0\cdot\infty, \infty-\infty, 1^\infty, 0^0, \infty^0$	(5) 59 60 60
4.6	Assín Fórm Estud	$0\cdot\infty, \infty-\infty, 1^\infty, 0^0, \infty^0$	(5) 59 60 60 62
4.6	Assín Fórm Estuc 4.7.1	$0\cdot\infty,\infty-\infty, 1^\infty, 0^0,\infty^0$	(5) 59 60 60 62 62

Capítulo 1

Limite e Continuidade de Funções Reais

1.1 Noção de função

1.1.1 Definição de função

Seja X um conjunto.

Se a cada x dum subconjunto de X corresponder um número real y, então a y chama-se função de x;

a x chama-se argumento ou variável independente;

à função y chama-se também variável dependente.

O facto de y ser função de x expressa-se abreviadamente pelas fórmulas:

$$y = f(x); y = g(x); \cdots$$

Domínio e imagem da função y = f(x):

$$dom f = \{x \in X : f(x) \text{ está definida}\}$$

$$\operatorname{im} f = \{ y \in \mathbb{R} : \exists x \in \operatorname{dom} f \text{ tal que } y = f(x) \}$$

Se a cada $x \in \text{dom } f$ corresponder um e só um número y, então a função y = f(x) chama-se unívoca. Caso contrário a função y = f(x) chama-se plurívoca.

1.1.2 Formas de representação de uma função

1. Tabela

Se X é um conjunto finito:

$$X = \left\{ x_1, x_2, \cdots, x_n \right\},\,$$

então a função $y=f(x)\,$ pode ser representada na forma duma tabela:

x	x_1	x_2	• • •	x_n
y	y_1	y_2		y_n

2. Representação gráfica

$$Gr f = \{(x, f(x)) \in \mathbb{R}^2 : x \in \text{dom } f\}$$

3. Representação analítica

$$y = x^2; \quad y = \sin x; \cdots$$

1.1.3 Sucessão

Se dom $f=\mathbb{N},$ então a função y=f(n) chama-se successão.

Uma sucessão pode ser representada como um conjunto de números

$$y_1, y_2, \cdots, y_n, \cdots$$

que são os valores da função f nos pontos correspondentes:

$$y_n = f(n)$$

A sucessão $y_1, y_2, \dots, y_n, \dots$ também se representa abreviadamente por $\{y_n\}$ ou (y_n) . Exemplos:

$$1, 4, 9, \dots, n^2, \dots; \sin 1; \sin \frac{1}{2}, \dots, \sin \frac{1}{n}, \dots$$

ou

$$y_n = n^2;$$
 $y_n = \sin\frac{1}{n};$ $\cdots;$ $(n^2);$ $\left\{\sin\frac{1}{n}\right\};$ \cdots

1.1.4 Conjuntos limitados

Um conjunto $\mathcal{N} \subset \mathbb{R}$ chama-se **limitado superiormente**, se existe um número C tal que

$$x < C, \forall x \in \mathcal{N}$$

A este número C chama-se majorante ou limite superior do conjunto \mathcal{N} .

Se existe um majorante do conjunto \mathcal{N} , então existe um conjunto infinito de majorantes do conjunto \mathcal{N} .

Um número C_0 diz-se **extremo superior** ou **supremo do conjunto** \mathcal{N} e denota-se por $\sup \mathcal{N}$, se possui as propriedades seguintes:

- 1. C_0 é majorante de \mathcal{N} ;
- 2. nenhum número menor que C_0 é majorante de \mathcal{N} .

Tem lugar a propriedade importante dos conjuntos de números reais \mathbb{R} (que às vezes se chama **Axioma de completude**):

Axioma 1 Todo o conjunto de números reais \mathcal{N} não vazio e limitado superiormente **tem supremo** sup \mathcal{N} .

Analogamente, um conjunto $\mathcal{N} \subset \mathbb{R}$ chama-se **limitado inferiormente**, se existe um número C tal que

$$x > C, \forall x \in \mathcal{N}$$

Este número C chama-se minorante ou limite inferior do conjunto \mathcal{N} .

Se existe um minorante do conjunto \mathcal{N} , então existe um conjunto infinito de minorantes do conjunto \mathcal{N} .

Um número C_0 diz-se **extremo inferior** ou **infimo do conjunto** \mathcal{N} e denota-se por inf \mathcal{N} , se possui as propriedades seguintes:

- 1. C_0 é minorante de \mathcal{N} ;
- 2. nenhum número maior que C_0 é minorante de \mathcal{N} .

Do axioma de completude segue que para qualquer conjunto \mathcal{N} não vazio e limitado inferiormente **existe** inf \mathcal{N} .

Exemplo:
$$\mathcal{N} = \left\{ \frac{1}{n}, n = 1, 2, \dots \right\} \Rightarrow \sup \mathcal{N} = 1; \inf \mathcal{N} = 0$$

1.1.5 Funções limitadas

Uma função y = f(x) diz-se **limitada** no conjunto D, se

$$\exists M > 0$$
 tal que $|f(x)| \leq M$ para todo o $x \in D$

Exemplos:

$$|\sin x| \le 1 \text{ para todo o } x \in \mathbb{R}$$
$$|x^2| \le 4 \text{ para todo o } x \in [-2, +2]$$

Uma sucessão (y_n) está definida para todo o $n \in \mathbb{N}$, portanto é **limitada**, se

$$\exists M > 0 \text{ tal que } |y_n| \leq M \text{ para todos } n \in \mathbb{N}$$

ou

$$\exists M > 0$$
 tal que todos os y_n pertencem ao intervalo $[-M, M]$

Uma sucessão (y_n) não é limitada, se

$$\forall M > 0, \exists n_0 \text{ tal que } |y_{n_0}| > M$$

ou

$$\forall M > 0, \exists n_0 \text{ tal que}$$

 y_{n_0} não pertence ao intervalo $[-M, M]$

Exemplos: 1) Limitadas:

$$\left\{\sin\frac{1}{n}\right\}, \left\{\frac{1}{n+1}\right\}, \left\{(-1)^n\right\}, \left\{\frac{n+1}{2n-1}\right\}, \cdots$$

2) Não limitadas:

$$\left\{n^2\right\}, \left\{n\sin\frac{n\pi}{2}\right\}, \left\{\frac{n^2+1}{2n-1}\right\}, \cdots$$

Teorema 2 A soma algébrica de um número finito de sucessões limitadas é uma sucessão limitada.

1.2 Limites

1.2.1 Limite de uma sucessão

Sucessões infinitamente grandes

Uma sucessão (y_n) diz-se infinitamente grande se

$$\forall M>0, \exists n_0 \; \; \mathrm{tal} \; \mathrm{que} \; |y_n|>M \; \; \mathbf{para} \; \mathbf{todo} \; \mathbf{o} \; \; n>n_0$$

ou

$$\forall M > 0, \exists n_0 \text{ tal que } y_n, \text{ para todo o } n > n_0,$$

não pertence ao intervalo $[-M, M]$

Uma sucessão (y_n) diz-se infinitamente grande positiva se

$$\forall M > 0, \exists n_0 \text{ tal que } y_n > M \text{ para todo o } n > n_0$$

Este facto denota-se

$$\lim y_n = +\infty$$

Uma sucessão (y_n) diz-se infinitamente grande negativa se

$$\forall M > 0, \exists n_0 \text{ tal que } y_n < -M \text{ para todo o } n > n_0$$

Este facto denota-se

$$\lim y_n = -\infty$$

Exemplos: 1) Infinitamente grandes:

$${n^2}$$
, ${\frac{n^2+1}{2n-1}}$, ${\frac{1-n^2}{n+2}}$, ...

$$\lim n^2 = +\infty; \lim \frac{n^2 + 1}{n - 1} = +\infty; \lim \frac{1 - n^2}{n + 2} = -\infty;$$

2) Não são infinitamente grandes:

$$\left\{n^2 + (-1)^n n^2\right\}, \left\{n \sin \frac{n\pi}{2}\right\}, \left\{(-1)^n + 1000000000000\right\}$$

Sucessões infinitamente pequenas

Uma sucessão (α_n) diz-se infinitamente pequena, se

$$\forall \ \delta > 0, \exists n_0 \ \ {\rm tal \ que} \ |\alpha_n| {<} \delta \ \ {\bf para \ todo \ o} \ \ n > n_0$$

ou

$$\forall \ \delta > 0, \exists n_0 \ \text{tal que } \alpha_n, \ \mathbf{para todo o} \ n > n_0,$$
 pertence ao intervalo $[-\delta, \delta]$

O facto que a sucessão (α_n) ser infinitamente pequena denota-se por

$$\lim \alpha_n = 0$$

Exemplos: 1) Infinitamente pequenas:

$$\left\{\frac{1}{n^2}\right\}, \left\{\frac{n-1}{n^2+1}\right\}, \left\{\frac{1}{n}\right\}, \cdots$$

2) Não são infinitamente pequenas:

$$\left\{1+\left(-1\right)^{n}\right\}, \left\{\frac{1}{n^{2}}-0,0000000001\right\}$$

Propriedades das sucessões infinitamente pequenas

Teorema 3 Qualquer sucessão infinitamente pequena é limitada.

Teorema 4 A soma algébrica de um número finito de sucessões infinitamente pequenas é uma sucessão infinitamente pequena.

Teorema 5 O produto de uma sucessão infinitamente pequena por uma sucessão limitada é uma sucessão infinitamente pequena.

Lema 6 Se a sucessão (α_n) é infinitamente pequena e $\alpha_n \neq -1, \forall n$, então a sucessão $\left(\frac{1}{\alpha_n + 1}\right)$ é limitada.

Limite de uma sucessão

O número a denomina-se **limite** da sucessão $\{x_n\}$:

$$\lim x_n = a$$
 ou $x_n \to a$

se a sucessão $\alpha_n = x_n - a$ é infinitamente pequena.

$$\begin{array}{|c|c|c|c|c|}\hline \lim x_n = a, \text{ se} \\ \forall \ \delta > 0, \ \exists n_0 \ \text{ tal que } |x_n - a| < \delta \ \text{ para todo o } \ n > n_0 \end{array}$$

ou

$$\begin{array}{|c|c|c|c|}\hline
\lim x_n = a, & \text{se} \\
\forall \delta > 0, \exists n_0 & \text{tal que } x_n, \text{ para todo o } n > n_0, \\
\text{pertence ao intervalo} & [a - \delta, a + \delta]
\end{array}$$

A sucessão converge, se tem limite, e diverge, se não o tem.

Exemplos: 1) Convergentes:

$$\lim \frac{1}{n} = 0; \lim \frac{n-1}{n+1} = 1;$$
$$\lim \left(\frac{1}{n} - 0,0000000001\right) = -0,0000000001$$

2) Divergentes:

$$\{1 + (-1)^n\}; \{\sin\frac{n\pi}{2}\}; \{\cos n\pi\}$$

Propriedades das sucessões convergentes

Teorema 7 Qualquer sucessão convergente é limitada.

Teorema 8 Sejam $\{x_n\}$ e $\{y_n\}$ sucessões convergentes, então as sucessões $\{x_n + y_n\}$ e $\{x_n y_n\}$ também convergem e

$$\lim (x_n + y_n) = \lim x_n + \lim y_n; \quad \lim (x_n y_n) = \lim x_n \lim y_n$$

Além disso, se $y_n \neq 0$ e $\lim y_n \neq 0$, então a sucessão $\left\{\frac{x_n}{y_n}\right\}$ converge e

$$\lim \left(\frac{x_n}{y_n}\right) = \frac{\lim x_n}{\lim y_n}$$

Lema 9 Seja $\{x_n\}$ uma sucessão convergente e tal que, a partir de certa ordem, $0 \le x_n$ $(\forall n \ge n_0)$, então

$$0 \le \lim x_n$$

Teorema 10 Sejam $\{x_n\}$ e $\{y_n\}$ sucessões convergentes e tais que, a partir de certa ordem, $x_n \leq y_n$ $(\forall n \geq n_0)$, então

$$\lim x_n \le \lim y_n$$

Teorema 11 (Sucessões enquadradas) Se $\{x_n\}$ e $\{y_n\}$ são sucessões convergentes para o mesmo limite a e se, a partir de certa ordem, a sucessão $\{z_n\}$ é tal que

$$x_n \le z_n \le y_n, \ \forall n \ge n_0$$

 $ent\~ao$

$$\lim z_n = a$$

Sucessões fundamentais

A sucessão $\{x_n\}$ chama-se fundamental ou de Cauchy, se

$$\forall \delta > 0, \exists n_0 \text{ tal que } |x_n - x_m| < \delta \text{ para todos o } n, m > n_0$$

ou

$$\forall \delta > 0, \exists n_0 \text{ tal que } x_n - x_m, \text{ para todos o } n, m > n_0,$$
 pertencem ao intervalo $[-\delta, \delta]$

Teorema 12 (Critério de Cauchy) Uma sucessão é convergete sse é fundamental.

Sucessões monótonas

Uma sucessão $\{x_n\}$ diz-se

crescente, se
$$k < m \Rightarrow x_k < x_m$$
decrescente, se $k < m \Rightarrow x_k > x_m$
não decrescente, se $k < m \Rightarrow x_k \leq x_m$
não crescente, se $k < m \Rightarrow x_k \geq x_m$

As sucessões crescentes, decrescentes, não decrescentes e não crescentes chamam-se **monótonas**. As sucessões crescentes e decrescentes chamam-se **estritamente monótonas**.

Teorema 13 Qualquer sucessão monótona e limitada converge.

Exemplos. 1) $\{a^n\}, a > 0$,

$$\lim a^n = \begin{cases} 0, & \text{se } a < 1, \\ 1, & \text{se } a = 1, \\ +\infty, & \text{se } a > 1, \end{cases}$$

2) Raiz aproximada.

Sejam a > 0 e $\{x_n\}$ a sucessão definida através da fórmula de recorrência:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), n = 1, 2, \dots$$

É possível mostrar que

$$\lim x_n = \sqrt{a}$$

Portanto, qualquer x_n é raiz aproximada do número positivo a.

2) O número e.

A sucessão

$$x_n = \left(1 + \frac{1}{n}\right)^n$$

é estritamente crescente e limitada

$$2 \le x_n \le 3$$

Portanto, a sucessão $\{x_n\}$ converge. O limite desta sucessão denota-se por e:

$$\left[\lim\left(1+\frac{1}{n}\right)^n = e\right]$$

O número e é irracional (transcendente)

$$e = 2.7182818284...$$

1.2.2 Limite de uma função

Valor limite de uma função

Vamos considerar uma função y = f(x) e um ponto $a \in \mathbb{R}$ tais que no domínio da função existem sucessões de números diferentes de a que convergem para a, i.e.

$$\exists \{x_n\} \subset \operatorname{dom} f; x_n \neq a; \lim x_n = a$$

O próprio número a pode pertencer ou não ao domínio da função.

O número b chama-se valor limite da função y = f(x) no ponto a, se

$$\{ \forall \{x_n\} \subset \operatorname{dom} f; x_n \neq a; \lim x_n = a \} \Rightarrow \lim f(x_n) = b \}$$

Se o número b é o valor limite da função y = f(x) no ponto a, escreve-se então

$$\lim_{x \to a} f(x) = b$$

Exemplos: 1) A função f(x)=c (constante) tem valor limite em qualquer ponto a da recta \mathbb{R} .

- 2) A função f(x) = x tem valor limite em qualquer ponto a da recta \mathbb{R} .
- 3) A função

$$y = \operatorname{sgn} x = \begin{cases} +1, & \text{se } x > 0, \\ 0, & \text{se } x = 0, \\ -1, & \text{se } x < 0 \end{cases}$$

tem valor limite em qualquer ponto a da recta \mathbb{R} , excepto no ponto a = 0.

4) A função y = [x] (parte inteira do número) tem valor limite em qualquer ponto a da recta \mathbb{R} que não é um número inteiro e não tem valor limite em qualquer ponto a da recta \mathbb{R} que é um número inteiro.

O número b chama-se valor limite da função y = f(x) quando $x \to \infty$, se

$$\{ \forall \{x_n\} \subset \operatorname{dom} f \text{ infinitamente grande } \} \Rightarrow \lim f(x_n) = b$$

Se o número b é o valor limite da função y = f(x) quando $x \to \infty$, escreve-se então

$$\lim_{x \to \infty} f(x) = b$$

Vamos também distinguir dois casos

- 1) $\lim_{x \to +\infty} f(x) = b$, se $\{ \forall \{x_n\} \subset \text{dom } f \text{ infinitamente grande e } x_n > 0 \} \Rightarrow \lim f(x_n) = b$
- 2) $\lim_{x \to -\infty} f(x) = b$, se $\{ \forall \{x_n\} \subset \text{dom } f \text{ infinitamente grande e } x_n < 0 \} \Rightarrow \lim f(x_n) = b$

Exemplos: 1) Se f(x) = c, então $\lim_{x\to\infty} f(x) = c$.

- 2) Se $f(x) = \frac{1}{x}$, então $\lim_{x \to \infty} f(x) = 0$.
- 3) A função $y = \sin x$ não tem valor limite quando $x \to \infty$.

Funções infinitamente pequenas

A função y = f(x) chama-se infinitamente pequena no ponto a (ou infinitamente pequena quando $x \to a$), se

$$\lim_{x \to a} f(x) = 0$$

Exemplos: 1) A função f(x) = x é infinitamente pequena no ponto a = 0.

2) A função $y = \frac{1}{x}$ é infinitamente pequena quando $x \to \infty$.

Teorema 14 A função y = f(x) tem valor limite b no ponto a sse a função $\alpha(x) = f(x) - b$ é infinitamente pequena no ponto a.

Operações algébricas com os valores limites

Vamos supor que existe um conjunto $D \subseteq \mathbb{R}$ tal que $a \in D$ e $D \cap \text{dom } f = D \cap \text{dom } g$.

Teorema 15 Se as funções y = f(x) e y = g(x) têm valor limite no ponto a, então as funções $f(x) \pm g(x)$ e f(x)g(x) também têm valor limite no ponto a e

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x);$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

Além disso, se $g(x) \neq 0$ e $\lim_{x \to a} g(x) \neq 0$, então a função $\frac{f(x)}{g(x)}$ tem valor limite no ponto a e

$$\left| \lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \right|$$

Exemplos: 1) $\lim_{x\to a} x^k = a^k, \forall k \in \mathbb{N} \text{ e } \forall a \in \mathbb{R}.$ 2) Se $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k$, então $\lim_{x\to a} p(x) = p(a), \forall a \in \mathbb{R}.$

3) Se $q(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_m x^m$, então $\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$, $\forall a \in \mathbb{R}$ tal que $q(a) \neq 0$. O teorema análogo tem jugar no caso de $x \to \infty$.

Exemplos: 1) $\lim_{x \to \infty} \left(\frac{1}{x}\right)^k = 0, \forall k \in \mathbb{N}.$

2) Se
$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$
 e $q(x) = \beta_0 + \beta_1 x + \beta_2 x^2, \beta_2 \neq 0$, então $\lim_{x \to \infty} \frac{p(x)}{q(x)} = \frac{\alpha_2}{\beta_2}$.

Limites laterais

O número b chama-se valor limite à direita da função y = f(x) no ponto a, se

$$\{ \forall \{x_n\} \subset \operatorname{dom} f; x_n > a; \lim x_n = a \} \Rightarrow \lim f(x_n) = b$$

Se o número b é o valor limite direito da função y = f(x) no ponto a, escreve-se então

$$\lim_{x \to a+0} f(x) = b \text{ ou } f(a+0) = b$$

Analogamente, o número b chama-se valor limite à esquerda da função y = f(x) no ponto

$$\{ \forall \{x_n\} \subset \operatorname{dom} f; x_n < a; \lim x_n = a \} \Rightarrow \lim f(x_n) = b$$

Se o número b é o valor limite esquerdo da função y = f(x) no ponto a, escreve-se então

$$\lim_{x \to a-0} f(x) = b \text{ ou } f(a-0) = b$$

Exemplos: 1) A função

$$y = \operatorname{sgn} x = \begin{cases} +1, & \text{se } x > 0, \\ 0, & \text{se } x = 0, \\ -1, & \text{se } x < 0 \end{cases}$$

no ponto a = 0 tem valor limite direito 1 e valor limite esquerdo -1.

2) A função y = [x] (parte inteira do número x) em qualquer ponto $k \in \mathbb{N}$ tem valor limite direito k e valor limite esquerdo k-1.

1.3 Funções contínuas

1.3.1 Definição de função contínua

Vamos considerar uma função y = f(x) e um ponto $a \in \mathbb{R}$ tais que no domínio da função existem sucessões de números diferentes de a que convergem para a e, além disso, $a \in \text{dom } a$.

A função y = f(x) é contínua no ponto a, se

$$\lim_{x \to a} f(x) = f(a)$$

Como $\lim_{x\to a} x = a$, podemos reescrever a última igualdade na forma:

$$\lim_{x \to a} f(x) = f(\lim_{x \to a} x)$$

- Exemplos: 1) $\lim_{x\to a} x^k = \left(\lim_{x\to a} x\right)^k$, $\forall k\in\mathbb{N}\ e\ \forall a\in\mathbb{R}$. 2) Qualquer polinómio $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k$ é uma função contínua em qualquer ponto $a \in \mathbb{R}$.
- 3) Se $q(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_m x^m$, então a fracção $\frac{p(x)}{q(x)}$ é uma função contínua em qualquer ponto $a \in \mathbb{R}$ tal que $q(a) \neq 0$.

1.3.2 Continuidade lateral

A função y = f(x) é contínua à direita no ponto a, se

$$\lim_{x \to a+0} f(x) = f(a)$$
 ou $f(a+0) = f(a)$

Analogamente, a função y = f(x) é contínua à esquerda no ponto a, se

$$\lim_{x \to a-0} f(x) = f(a)$$
 ou $f(a-0) = f(a)$

Exemplo: 1) A função y = [x] é contínua à direita em qualquer ponto $k \in \mathbb{N}$.

1.3.3 Operações algébricas com funções contínuas

Teorema 16 Se as funções y = f(x) e y = g(x) são contínuas no ponto a, então as funções $f(x) \pm g(x)$ e f(x)g(x) também são contínuas no ponto a. Além disso, se $g(a) \neq 0$, então a função $\frac{f(x)}{g(x)}$ também é contínua no ponto a.

Exemplos: 1) $y = x^k$ é contínua em qualquer ponto $a \in \mathbb{R}$ para qualquer $k \in \mathbb{N}$.

- 2) Qualquer polinómio $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_k x^k$ é função contínua em qualquer ponto $a \in \mathbb{R}$.
 - 3) Se $q(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_m x^m$, então a fracção

 $\frac{p(x)}{q(x)}$ é função contínua em qualquer ponto $a \in \mathbb{R}$ tal que $q(a) \neq 0$.

1.3.4 Função composta

Seja y = f(x) e x = g(t) duas funções tais que

$$\operatorname{im} g \subseteq \operatorname{dom} f$$
,

então podemos definir uma função composta y = F(t), onde

$$F(t) = f[g(t)]$$

Teorema 17 Se a função x = g(t) é contínua no ponto t_0 e a função y = f(x) é contínua no ponto $x_0 = g(t_0)$, então a função composta y = F(t) é contínua no ponto t_0 .

1.3.5 Função monótona

Uma função y = f(x) diz-se no segmento [a, b]

crescente, se
$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2);$$

decrescente, se $x_1 < x_2 \Rightarrow f(x_1) > f(x_2);$
não decrescente, se $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2);$
não crescente, se $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2),$

Notamos que em vez do segmento [a,b] pode ser considerado qualquer subconjunto da recta \mathbb{R} . As funções crescentes, decrescentes, não decrescentes e não crescentes chamam-se **monótonas**. As funções crescentes e decrescentes chamam-se **estritamente monótonas**.

Teorema 18 Seja y = f(x) uma função estritamente monótona no segmento [a,b]. A função y = f(x) é contínua no segmento [a,b] see para qualquer número y_0 que fica entre números f(a) e f(b) existe um ponto $x_0 \in [a,b]$ tal que

$$y_0 = f(x_0)$$

Notamos que funções monótonas em qualquer ponto $x_0 \in [a, b]$ têm valores limite à direita e à esquerda.

1.3.6 Função inversa

Definição de função inversa

Seja y = f(x) uma função que está definida no segmento [a, b] e

$$\operatorname{im} f = [c, d]$$

Se a cada número $y_0 \in [c, d]$ corresponder apenas um número $x_0 \in [a, b]$ tal que $f(x_0) = y_0$, então no segmento [c, d] podemos definir uma função $x = f^{-1}(y)$ tal que

$$x = f^{-1}(y)$$
 sse $y = f(x)$

A função $x = f^{-1}(y)$ chama-se função inversa da função y = f(x).

É claro que y = f(x) é função inversa da função $x = f^{-1}(y)$.

Notamos que em vez do segmento [a, b] pode ser considerado qualquer subconjunto da recta \mathbb{R} . As funções y = f(x) e $x = f^{-1}(y)$ satisfazem as seguintes propriedades:

$$f[f^{-1}(y)] = y \text{ e } f^{-1}[f(x)] = x$$

Exemplos: 1) $f(x) = 2x \Rightarrow f^{-1}(y) = \frac{1}{2}y;$

2)
$$f(x) = \frac{1}{x+2}, \forall x \neq -2, \Rightarrow f^{-1}(y) = \frac{1}{y} - 2, \forall y \neq 0.$$

Função inversa monótona

Sejam y = f(x) uma função que está definida no segmento [a, b] e

$$\operatorname{im} f = [c, d]$$

Lema 19 Se a função y = f(x) é estritamente monótona, então existe a função inversa $f^{-1}(y)$ que também é estritamente monótona.

Teorema 20 Se a função y = f(x) é estritamente monótona e contínua, então a função inversa $f^{-1}(y)$ também é estritamente monótona e contínua.

1.4 Algumas funções elementares

1.4.1 Função exponencial

A potência $a^x, a > 0$, define-se passo a passo:

Passo 1: $x = n \in \mathbb{N}$:

$$\begin{array}{rcl} a^1 & = & a; \\ a^2 & = & a \cdot a \\ & & \cdots \\ a^n & = & a^{n-1} \cdot a \end{array}$$

Passo 2: Expoentes inteiros negativos e expoente nulo:

$$a^{-n} = \frac{1}{a^n}$$
$$a^0 = 1$$

Passo 3: Raiz:

$$\sqrt[m]{a}=a^{\frac{1}{m}}$$
é um número tal que $\left(a^{\frac{1}{m}}\right)^m=a, m\in\mathbb{N}$

Passo 4: Potência de expoente fraccionário:

$$a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^n$$

Passo 5: Potência de expoente irracional:

$$a^x = \lim a^{r_n}$$
,

onde $\{r_n\}$ é qualquer sucessão de números racionais tal que

$$\lim r_n = x$$

A potência assim definida goza das propriedades seguintes:

1.
$$a^x \cdot a^t = a^{x+t}$$
;

$$2. \ \frac{a^x}{a^t} = a^{x-t};$$

3.
$$(a^x)^t = a^{tx}$$
;

4.
$$a^x \cdot b^x = (ab)^x$$

A função exponencial $y = a^x, a > 0, a \neq 1$, tem as seguintes propriedades:

1. dom
$$(a^x) = \mathbb{R}$$
;

2.
$$\operatorname{im}(a^x) = \mathbb{R}_+ = \{ y \in \mathbb{R} : y > 0 \};$$

3. a função $y = a^x$ é estritamente monótona;

4. a função $y = a^x$ é contínua;

5.

$$\lim_{x \to +\infty} a^x = \left\{ \begin{array}{ll} +\infty, & a > 1, \\ 0, & a < 1 \end{array} \right. \quad \text{e} \quad \lim_{x \to -\infty} a^x = \left\{ \begin{array}{ll} 0, & a > 1, \\ +\infty, & a < 1 \end{array} \right.$$

1.4.2 Função logarítmica

A função potencial $y=a^x$ é estritamente monótona e contínua em qualquer segmento $[\alpha,\beta]$ da recta \mathbb{R} . Portanto, existe a função inversa, a que se chama função logarítmica e denota-se

$$x = \log_a y$$

Vamos na notação mudar os lugares de x e y, então

$$y = \log_a x$$

Como as funções exponencial e logarítmica são inversas uma da outra temos as igualdades:

$$a^{\log_a x} = x$$
 e $\log_a a^y = y$

A partir das propriedades da potência podemos obter as propriedades do logaritmo:

1. $\log_a(xy) = \log_a x + \log_a y;$

$$2. \log_a \frac{x}{y} = \log_a x - \log_a y;$$

3. $\log_a x^p = p \log_a x, \forall p \in \mathbb{R};$

4.
$$\log_b x = (\log_b a) \log_a x$$

A função logarítmica $y = \log_a x, a > 0, a \neq 1$, tem as seguintes propriedades:

1. dom $(\log_a x) = \mathbb{R}_+ = \{x \in \mathbb{R} : x > 0\};$

2. $\operatorname{im}(\log_a x) = \mathbb{R};$

3. a função $y = \log_a x$ é estritamente monótona;

4. a função $y = \log_a x$ é contínua;

5.

$$\lim_{x\to +\infty} \log_a x = \left\{ \begin{array}{ll} +\infty, & a>1, \\ -\infty, & a<1 \end{array} \right. \quad \text{e} \quad \lim_{x\to +0} \log_a x = \left\{ \begin{array}{ll} -\infty, & a>1, \\ +\infty, & a<1 \end{array} \right.$$

 $y = \log_2 x$

A função logarítmica de base e tem um papel especial muito importante. Chama-se logaritmo natural ou neperiano e usa-se a notação especial

$$y = \ln x$$

 $y = \ln x$

1.4.3 Funções trigonométricas

Propriedades básicas das funções trigonométricas

As funções seno e co-seno têm as seguintes propriedades básicas:

1. Para quaisquer $x, t, \tau \in \mathbb{R}$ têm lugar as igualdades seguintes:

$$\sin(x+t) = \sin x \cos t + \cos x \sin t$$
$$\cos(x+t) = \cos x \cos t - \sin x \sin t$$
$$\cos^2 \tau + \sin^2 \tau = 1$$

2.

$$\sin 0 = 0;$$
 $\cos 0 = 1;$
 $\sin \frac{\pi}{2} = 1;$ $\cos \frac{\pi}{2} = 0$

3. Se $0 < x < \frac{\pi}{2}$, então

$$0 < \sin x < x$$

Através destas propriedades é possível obter todas as outras propriedades das funções seno e co-seno.

Exercício 21 Usando as propriedades básicas 1-3 mostre que

1.
$$\sin(-x) = -\sin x$$
 e $\cos(-x) = \cos x$;

2.
$$\sin 2x = 2\sin x \cos x$$
 $e \cos 2x = \cos^2 x - \sin^2 x$;

3.
$$\cos^2 x = \frac{1}{2} (1 + \cos 2x)$$
 $e^{-\sin^2 x} = \frac{1}{2} (1 - \cos 2x)$;

4.
$$\sin k\pi = 0$$
; $\cos k\pi = (-1)^k$, $k = 0, \pm 1, \pm 2, \cdots$

5. as funções seno e co-seno são periódicas com periodo 2π , i.e.,

$$\sin(x + 2\pi) = \sin x; \quad \cos(x + 2\pi) = \cos x, \forall x \in \mathbb{R};$$

6.
$$\sin\left(\frac{\pi}{2} \pm x\right) = \cos x$$
 $e^{-\cos\left(\frac{\pi}{2} \pm x\right)} = \pm \sin x;$

7.
$$\sin(\pi \pm x) = \pm \sin x$$
 e $\cos(\pi \pm x) = \pm \cos x$;

8.
$$\cos x \cos t = \frac{1}{2} \left[\cos (x - t) + \cos (x + t) \right];$$

9.
$$\sin x \sin t = \frac{1}{2} [\cos (x - t) - \cos (x + t)];$$

10.
$$\sin x \cos t = \frac{1}{2} \left[\sin (x - t) + \sin (x + t) \right];$$

11.
$$\cos x + \cos t = 2\cos\frac{x-t}{2}\cos\frac{x+t}{2};$$

12.
$$\cos x - \cos t = -2\sin\frac{x-t}{2}\sin\frac{x+t}{2}$$
;

13.
$$\sin x - \sin t = 2\sin\frac{x-t}{2}\cos\frac{x+t}{2}$$
;

14.
$$\sin x + \sin t = 2\cos\frac{x-t}{2}\sin\frac{x+t}{2}$$
;

As funções seno e co-seno são contínuas em cada ponto da recta \mathbb{R} . $\sin x$

As funções $\operatorname{tg} x = \frac{\sin x}{\cos x}$ e $\sec x = \frac{1}{\cos x}$ são contínuas em cada ponto da recta \mathbb{R} , excepto nos zeros da função co-seno que são $\frac{\pi}{2} + k\pi, k = 0, \pm 1, \pm 2, \cdots$

As funções $\operatorname{ctg} x = \frac{\cos x}{\sin x}$ e $\operatorname{cosec} x = \frac{1}{\sin x}$ são contínuas em cada ponto da recta \mathbb{R} , excepto nos zeros da função seno que são $k\pi, k = 0, \pm 1, \pm 2, \cdots$

Funções trigonométricas inversas

Arco seno A função seno é periódica. Portanto, a qualquer valor $y_0 \in \operatorname{im}(\sin x)$ corresponde um conjunto infinito dos pontos $\{x_0 + 2k\pi, k = 0, \pm 1, \pm 2, \cdots\}$ tais que

$$\sin\left(x_0 + 2k\pi\right) = y_0$$

Daqui segue que a função inversa unívoca da função seno não existe.

A função seno é estritamente monótona e contínua em qualquer segmento $\left[k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}\right],k=0,\pm 1,\pm 2,\cdots$, da recta $\mathbb R$. Portanto, para cada **restrição da função seno** ao intervalo $\left[k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}\right],k=0,\pm 1,\pm 2,\cdots$, existe a função inversa desta restrição da função seno.

 $0,\pm 1,\pm 2,\cdots$, existe a função inversa desta restrição da função seno. A função inversa da restrição da função seno ao segmento $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ chama-se principal e denota-se

$$x = \arcsin y$$

Vamos na notação mudar os lugares de x e y, então

$$y = \arcsin x$$

A função $y = \arcsin x$ está definida no segmento [-1, 1], é contínua, crescente e

$$\operatorname{im}(\arcsin x) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Como as funções seno e arco seno são inversas uma da outra temos as igualdades:

$$\sin(\arcsin x) = x$$
 e $\arcsin(\sin y) = y, \forall y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Para as outras funções trigonométricas a situação é análoga. Por isso apenas vamos referir, para cada função, os intervalos das restrições invertíveis e aquela que é considerada a restrição principal.

Arco co-seno A função co-seno é estritamente monótona e contínua em qualquer segmento $[k\pi, k\pi + \pi], k = 0, \pm 1, \pm 2, \cdots$, da recta \mathbb{R} .

A função inversa da restrição da função co-seno ao segmento $[0,\pi]$ chama-se principal e denota-se

$$y = \arccos x$$

A função $y = \arccos x$ está definida no segmento [-1,1], é contínua, decrescente e

$$\operatorname{im}(\arccos x) = [0, \pi]$$

Como as funções co-seno e arco co-seno são inversas uma da outra temos as igualdades:

$$\cos\left(\arccos x\right.) = x \ \ \text{e} \ \ \arccos\left(\cos y\right) = y, \forall y \in \ \ [0,\pi]$$

 $\arcsin x$ (vermelho), $\arccos x$ (verde)

Arco tangente A função tangente é estritamente monótona e contínua em qualquer intervalo aberto $\left(k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}\right),k=0,\pm 1,\pm 2,\cdots$, da recta $\mathbb R.$

A função inversa da restrição da função tangente ao intervalo $\left(-\frac{\pi}{2}, +\frac{\pi}{2}\right)$ chama-se principal e denota-se

$$y = \operatorname{arctg} x$$

A função $y = \operatorname{arctg} x$ está definida em toda a recta \mathbb{R} , é contínua, crescente e

$$\operatorname{im}\left(\operatorname{arctg} x\right) = \left(-\frac{\pi}{2}, +\frac{\pi}{2}\right)$$

Como as funções tangente e arco tangente são inversas uma da outra temos as igualdades:

$$\operatorname{tg}\left(\operatorname{arctg} x\right) = x \ \text{ e } \ \operatorname{arctg}\left(\operatorname{tg} y\right) = y, \forall y \in \left(-\frac{\pi}{2}, +\frac{\pi}{2}\right)$$

Arco co-tangente A função co-tangente é estritamente monótona e contínua em qualquer intervalo aberto $(k\pi, k\pi + \pi)$, $k = 0, \pm 1, \pm 2, \cdots$, da recta \mathbb{R} .

A função inversa da restrição da função co-tangente ao intervalo $(0,\pi)$ chama-se principal e denota-se

$$y = \operatorname{arcctg} x$$

A função $y=\operatorname{arcctg} x$ está definida em toda a recta $\mathbb{R},$ é contínua, crescente e

$$\operatorname{im}(\operatorname{arcctg} x) = (0, \pi)$$

Como as funções co-tangente e arco co-tangente são inversas uma da outra temos as igualdades:

$$\operatorname{ctg}(\operatorname{arcctg} x) = x \text{ e } \operatorname{arcctg}(\operatorname{ctg} y) = y, \forall y \in (0, \pi)$$

Capítulo 2

Derivada e Diferencial

2.1 Acréscimo

Consideremos uma função real de uma variável real y = f(x), um ponto $x_0 \in \text{dom } f$ e um número real Δx tal que $x_0 + \Delta x \in \text{dom } f$.

É usual chamar-se **acréscimo** ou **incremento** da função f, correspondente ao acréscimo Δx dado a partir do ponto x_0 , à diferença $f(x_0 + \Delta x) - f(x_0)$. Designá-la-emos por

$$\Delta y = \Delta f(x_0) = f(x_0 + \Delta x) - f(x_0), \qquad x_0, x_0 + \Delta x \in \text{dom } f$$

É claro que $\Delta y = \Delta f(x_0)$ é uma função real de variável real Δx .

Exemplos: 1)
$$y = x^2, x_0 = 3 \Rightarrow \Delta y = (3 + \Delta x)^2 - 3^2 = (\Delta x)^2 + 6\Delta x;$$

2) $y = \frac{1}{x}, x_0 = 1 \Rightarrow \Delta y = \frac{1}{1 + \Delta x} - 1 = -\frac{\Delta x}{1 + \Delta x}$

Teorema 22 A função y = f(x) é contínua no ponto x_0 sse o acréscimo $\Delta y = \Delta f(x_0)$ é uma função infinitamente pequena quando $\Delta x \to 0$.

2.2 Comparação de infinitamente pequenos

Sejam

$$\alpha(t), \beta(t), \gamma(t), \cdots$$

várias funções infinitamente pequenas quando $t \to 0$.

 $S\epsilon$

$$\lim_{t \to 0} \frac{\alpha(t)}{\beta(t)} = a \neq 0,$$

então, as funções infinitamente pequenas $\alpha(t)$ e $\beta(t)$ dizem-se infinitamente pequenas da mesma ordem.

Exemplos: 1) $\alpha(t) = 5t^2 + 3t^3$ e $\beta(t) = t^2 + t^4 \Rightarrow \lim_{t\to 0} \frac{\alpha(t)}{\beta(t)} = 5 \Rightarrow \alpha(t)$ e $\beta(t)$ são infinitamente pequenas da mesma ordem.

2) $\alpha(t) = t$ e $\beta(t) = \frac{t}{t^2 + 2} \Rightarrow \lim_{t \to 0} \frac{\alpha(t)}{\beta(t)} = 2 \Rightarrow \alpha(t)$ e $\beta(t)$ são infinitamente pequenas da mesma ordem.

No caso especial, em que

$$\lim_{t \to 0} \frac{\alpha(t)}{\beta(t)} = 1,$$

as funções infinitamente pequenas $\alpha(t)$ e $\beta(t)$ dizem-se **equivalentes infinitamente pequenas.**

Exemplos: 1) $\alpha(t) = t^2 + 3t^3$ e $\beta(t) = t^2 + t^4 \Rightarrow \lim_{t\to 0} \frac{\alpha(t)}{\beta(t)} = 1 \Rightarrow \alpha(t)$ e $\beta(t)$ são equivalentes infinitamente pequenas.

2) $\alpha(t) = t$ e $\beta(t) = \frac{t}{t^2 + 1} \Rightarrow \lim_{t \to 0} \frac{\alpha(t)}{\beta(t)} = 1 \Rightarrow \alpha(t)$ e $\beta(t)$ são equivalentes infinitamente pequenas.

A função $\alpha(t)$ é infinitamente pequena de ordem superior em relação a $\beta(t)$, se

$$\lim_{t \to 0} \frac{\alpha(t)}{\beta(t)} = 0$$

Exemplo: 1) $\alpha(t) = 3t^3 + t^4$ e $\beta(t) = t^2 + t^4 \Rightarrow \lim_{t\to 0} \frac{\alpha(t)}{\beta(t)} = 0 \Rightarrow \alpha(t)$ é infinitamente pequena de ordem superior em relação a $\beta(t)$.

pequena de ordem superior em relação a $\beta(t)$.

2) $\alpha(t) = t^2$ e $\beta(t) = \frac{t}{t^2 + 2} \Rightarrow \lim_{t \to 0} \frac{\alpha(t)}{\beta(t)} = 0 \Rightarrow \alpha(t)$ é infinitamente pequena de ordem superior em relação a $\beta(t)$.

Notamos que quando

$$\lim_{t \to 0} \frac{\alpha(t)}{\beta(t)} = \infty$$

temos que

$$\lim_{t \to 0} \frac{\beta(t)}{\alpha(t)} = 0$$

e, portanto, $\beta(t)$ é infinitamente pequena de ordem superior em relação a $\alpha(t)$.

Definições análogas existem e para os casos de funções infinitamente pequenas quando $t \to a$ (a também pode ser ∞).

2.3 Definição de derivada

Sejam y = f(x) uma função real de variável real definida em (a,b) e $x_0 \in (a,b)$.

A função f(x) diz-se **derivável em** x_0 **se existe**

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

a que se chama **derivada de** f(x) **em** x_0 e se representa de um dos seguintes modos:

$$f'(x_0); \quad y'_{x=x_0}; \quad \left(\frac{df}{dx}\right)_{x=x_0}$$

Portanto

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 (2.1)

Se denotamos

$$x - x_0 = \Delta x$$
,

então

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$(2.2)$$

Lembrando que

$$\Delta y = \Delta f(x_0) = f(x_0 + \Delta x) - f(x_0),$$

então podemos escrever a definição da derivada na forma:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 (2.3)

Exemplos: 1) y = C (onde C é uma constante), $\forall x_0 \Rightarrow \{f(x_0 + \Delta x) = C \land f(x_0) = C\} \Rightarrow \{\Delta y = C - C = 0, \forall x_0\} \Rightarrow \frac{\Delta y}{\Delta x} = 0 \Rightarrow \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0 \Rightarrow y' = 0$

$$(C)' = 0, C = Const.$$

2)
$$y = x, \forall x_0 \Rightarrow \Delta y = (x_0 + \Delta x) - x_0 = \Delta x \Rightarrow \frac{\Delta y}{\Delta x} = 1,$$

 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1 \Rightarrow y' = 1;$

$$(x)' = 1$$

3)
$$y = x^2, \forall x_0 \Rightarrow \Delta y = (x_0 + \Delta x)^2 - x_0^2 = (\Delta x)^2 + 2x_0 \Delta x \Rightarrow \frac{\Delta y}{\Delta x} = \Delta x + 2x_0,$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} (\Delta x + 2x_0) = 2x_0 \Rightarrow y'_{x=x_0} = 2x_0;$$
Acabámos de obter a fórmula:

$$\left(x^2\right)' = 2x$$

2.4 Derivadas laterais

A função f(x) diz-se derivável à esquerda em x_0 se existe o

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}$$

a que se chama derivada lateral à esquerda de f(x) em x_0 e se representa por

$$f'(x_0-0)$$

Portanto

$$f'(x_0 - 0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}$$
 (2.4)

A função f(x) diz-se derivável à direita em x_0 se existe o

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}$$

a que se chama derivada lateral à direita de f(x) em x_0 e se representa por

$$f'(x_0+0)$$

Portanto

$$f'(x_0+0) = \lim_{x \to x_0+0} \frac{f(x) - f(x_0)}{x - x_0}$$
 (2.5)

Teorema 23 A função f(x) é derivável num ponto x_0 see existirem e forem iguais as derivadas laterais. Nesse caso

$$f'(x_0 + 0) = f'(x_0 - 0) = f'(x_0)$$

Exemplo: 1) f(x) = |x|

$$f(x) = \begin{cases} x, & \text{se } x \ge 0, \\ -x, & \text{se } x < 0, \end{cases}$$

 \Rightarrow

$$f'(x+0) = f'(x-0) = f'(x) = \begin{cases} 1, & \text{se } x > 0, \\ -1, & \text{se } x < 0, \end{cases}$$
$$f'(+0) = 1; \qquad f'(-0) = -1$$

2.5 Definição de diferencial

Uma função y = f(x) diz-se **diferenciável** num ponto x_0 , se nesse ponto tem **derivada finita.** Seja y = f(x) uma função diferenciável em qualquer ponto do segmento [a, b].

De acordo com (2.3) o quociente $\frac{\Delta y}{\Delta x}$ quando $\Delta x \to 0$ tende para um número determinado f'(x). De acordo com o teorema 14 temos que

$$\frac{\Delta y}{\Delta x} = f'(x) + \alpha(\Delta x),$$

onde $\alpha(\Delta x)$ é infinitamente pequena quando $\Delta x \to 0$.

Desta igualdade segue que

$$\Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x \tag{2.6}$$

Portanto, o acréscimo Δy da função derivável y = f(x) é a soma de duas funções (de variável Δx) infinitamente pequenas quando $\Delta x \to 0$:

- 1) A parte principal é $f'(x)\Delta x$. A função $f'(x)\Delta x$ é linear (x é um ponto fixo, a variável independente é Δx).
 - 2) A parte $\alpha(\Delta x)\Delta x$ é infinitamente pequena de ordem superior em relação a Δx .

Se a função y = f(x) é diferenciável no ponto x, então é contínua neste ponto.

O recíproco não tem lugar.

À parte principal $f'(x)\Delta x$ chama-se diferencial da função y=f(x) no ponto x e designa-se pela notação dy ou df(x):

$$dy = df(x) = f'(x)\Delta x \tag{2.7}$$

Se f(x) = x, então f'(x) = 1 e

$$df(x) = dx = \Delta x$$

Assim, o diferencial dx da variável independente x identifica-se com o seu acréscimo Δx .

Portanto a fórmula (2.7) pode ser reescrita na forma:

$$dy = df(x) = f'(x)dx$$
(2.8)

Da última igualdade segue que

$$f'(x) = \frac{dy}{dx} \tag{2.9}$$

Exemplos: 1) y = C (onde C é uma constante)

$$dC = 0, C = Const.$$

2) $y = x^2$

$$d\left(x^{2}\right) = 2xdx$$

Podemos reescrever a igualdade (2.6) na forma:

$$\Delta y = dy + \alpha(\Delta x)\Delta x$$

Assim, a diferença entre o acréscimo e diferencial $\Delta y - dy$ é infinitamente pequena de ordem superior em relação a Δx . Por isso, em cálculos numéricos usa-se frequentamente a igualdade aproximada

$$\Delta y \approx dy$$

ou

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$
(2.10)

Exemplos: 1) Calcule $(2,001)^2$.

Resolução: Seja $f(x)=x^2, x_0=2$ e $\Delta x=0,01$, então

$$(2,001)^2 = f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x = f(x_0) + 2x_0\Delta x = 4 + 0,04 = 4,004$$

O erro cometido é $(2,001)^2 - 4,004 = 0,000001$

Notamos que o problema do cálculo do diferencial é equivalente ao cálculo da derivada.

2.6 Derivadas da soma, do produto e da divisão de duas funções

Teorema 24 Se as funções u(x) e v(x) são deriváveis no ponto x, então a soma u(x) + v(x)e o produto u(x)v(x) também são deriváveis no ponto x e têm lugar as igualdades:

$$(u+v)' = u' + v'$$
 (2.11)

$$\boxed{(uv)' = u'v + uv'} \tag{2.12}$$

Se, além disso, $v(x) \neq 0$, então a fracção $\frac{u(x)}{v(x)}$ é função derivável e

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

2.6.1 Derivadas das funções trigonométricas

$$\frac{(\sin x)' = \cos x}{(\cos x)' = -\sin x}
\frac{(\tan x)' = \frac{1}{\cos^2 x}}{(\cot x)' = -\frac{1}{\sin^2 x}}$$
(2.13)

2.6.2 Número e

A sucessão

$$x_n = \left(1 + \frac{1}{n}\right)^n$$

converge:

$$\boxed{\lim\left(1+\frac{1}{n}\right)^n = e}$$

Lema 25 O valor limite da função $f(x) = \left(1 + \frac{1}{x}\right)^x$ quando $x \to \infty$ existe e é igual e :

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \tag{2.14}$$

2.6.3 Derivada duma função logarítmica

$$\left(\log_a x\right)' = \frac{1}{x}\log_a e$$

Em particular,

$$(\ln x)' = \frac{1}{x}$$

2.7 Derivada da função composta

Sejam y = f(u) e u = g(x) duas funções tais que

$$\operatorname{im} g \subseteq \operatorname{dom} f$$
,

então podemos definir uma função composta y = F(x), onde

$$F(x) = f(u) = f[g(x)]$$

Teorema 26 Se a função u = g(x) é derivável no ponto x e a função y = f(u) é derivável no ponto u = g(x), então a função composta y = F(x) é derivável no ponto x e

$$F_x' = f_u' \cdot u_x' \tag{2.15}$$

Exemplos: 1) $y = \sin^2 x \Rightarrow y = u^2, u = \sin x \Rightarrow y'_u = 2u, u'_x = \cos x \Rightarrow x'_u = 2u, u'_x = 2u, u'_$

 $y'_x = 2\sin x \cos x = \sin 2x;$ 2) $y = \sin \{\cos [\cot (\cot x)]\} \Rightarrow$

$$y' = \cos\left(\cos\left[\operatorname{ctg}\left(\operatorname{tg}x\right)\right]\right) \cdot \left\{-\sin\left[\operatorname{ctg}\left(\operatorname{tg}x\right)\right]\right\} \cdot \left\{-\frac{1}{\sin^2\left(\operatorname{tg}x\right)}\right\} \cdot \frac{1}{\cos^2x}$$

Derivada da função potência e derivada da função exponencial 2.7.1

$$(2.16)$$

$$(2.17)$$

Em particular,

$$(e^x)' = e^x$$

2.7.2Função composta exponencial

Chama-se função composta exponencial a toda a função exponencial em que a base e expoente são funções de x, i.e.,

$$y = u^v$$

onde u e v são funções.

Lema 27 Se $y = u^v$, então

$$y' = vu^{v-1}u' + u^vv'\ln u$$

Com efeito, temos que

$$y = u^v \Rightarrow \ln y = v \ln u \Rightarrow \frac{1}{y}y' = v' \ln u + v \frac{1}{u}u' \Rightarrow$$

$$y' = \left(v' \ln u + v \frac{1}{u} u'\right) y \Rightarrow y' = v u^{v-1} u' + u^v v' \ln u$$

Exemplo:
$$y = x^x \Rightarrow \ln y = x \ln x \Rightarrow \frac{1}{y}y' = \ln x + x\frac{1}{x} \Rightarrow y' = (\ln x + 1)y \Rightarrow y' = x^x (\ln x + 1)$$

2.8 Invariância do diferencial

Para a função y = f(u) com a variável independente u o diferencial está definido pela fórmula

$$dy = df(u) = f'(u)du$$

Se agora a variável u é uma função: u = g(x), então o diferencial du também deve ser calculado pela fórmula anterior:

$$du = dq(x) = q'(x)dx$$

e a função y = f(u) começa ser a função composta de x:

$$y = F(x) = f[g(x)]$$

e podemos calcular o diferencial desta função em relação a variável \boldsymbol{x} :

$$dy = dF(x) = F'(x)dx$$

Usando a fórmula (2.15), obtemos

$$F_x' = f_u' \cdot g_x'$$

Daqui segue que o diferencial dy em relação a variável x é

$$dy = f_u' \cdot g_x' dx$$

ou

$$dy = f'_u du$$

Esta fórmula mostra que a **forma do diferencial é invariante,** i.e., não depende do facto: o argumento da função é uma variável independente ou não.

Em outras palavras, a propriedade da invariância do diferencial permite-nos considerar a derivada f'(x) como quociente dos diferenciais da função e do argumento:

$$f' = \frac{dy}{dx} \tag{2.18}$$

Portanto, a regra de derivação da função composta é simplesmente uma identidade para fracções:

$$\boxed{\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}}$$

2.9 Derivada da função dada em forma paramétrica

Vamos supor que a dependência entre a função $y\,$ e o argumento $\,x\,$ é dada através do parámetro t, i.e.,

$$\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$$

De acordo de definição do diferencial, temos que

$$dx = \varphi'(t)dt$$
 e $dy = \psi'(t)dt$

Daqui e da fórmula (2.18) segue que

$$\frac{dy}{dx} = \frac{\psi'(t)dt}{\varphi'(t)dt}$$

ou

$$\frac{dy}{dx} = \frac{\psi'(t)}{\varphi'(t)}$$

ou, ainda,

$$y_x' = \frac{y_t'}{x_t'}$$

Exemplo:

$$\begin{cases} x = r \cos t, \\ y = r \sin t \end{cases} \Rightarrow y'_x = \frac{r \cos t}{-r \sin t} = -\operatorname{ctg} t$$

Derivada da função inversa 2.10

Teorema 28 Se a função

$$y = f(x)$$

é contínua numa vizinhança do ponto x_0 , tem derivada $f'(x_0) \neq 0$ e admite uma função inversa

$$x = f^{-1}(y)$$

contínua numa vizinhança do ponto $y_0 = f(x_0)$, então a função inversa $x = f^{-1}(y)$ ponto y_0 uma derivada $\frac{d}{dy} [f^{-1}(y)]$ e tem lugar a seguinte igualdade:

ou

$$\frac{dx}{dy} = \frac{1}{\left(\frac{dy}{dx}\right)}$$

As funções y = f(x) e $x = f^{-1}(y)$ satisfazem a igualdade:

$$f^{-1}[f(x)] = x$$
 ou $f^{-1}[y] = x$

Por isso,
$$\frac{d}{dx} \left[f^{-1}(y) \right] = (x)' \Rightarrow \frac{d}{dy} \left[f^{-1}(y) \right] \cdot \frac{dy}{dx} = 1 \Rightarrow (2.19)$$

2.10.1 Derivadas das funções trigonométricas inversas

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$
$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$
$$(\arctan x)' = \frac{1}{1 + x^2}$$
$$(\operatorname{arcctg} x)' = -\frac{1}{1 + x^2}$$

2.11 Derivadas de ordem superior

Se a função y = f(x) é derivável em cada ponto do intervalo (a, b), então a derivada f'(x) desta função também é uma função que esta definida no intervalo (a, b). Pode acontecer que a função f'(x) seja derivável. Neste caso à derivada da função f'(x) chama-se **derivada de segunda ordem ou segunda derivada da função** f(x) e denota-se

$$f''(x)$$
 ou $f^{(2)}(x)$

Em geral, a derivada $f^{(n)}(x)$ de ordem n da função y = f(x) é

$$f^{(n)}(x) = \left[f^{(n-1)}(x)\right]' \tag{2.20}$$

Exemplos: 1) $y = x^r \Rightarrow y' = rx^{r-1} \Rightarrow y'' = r(r-1)x^{r-2} \Rightarrow y''' = r(r-1)(r-2)x^{r-3} \Rightarrow \cdots \Rightarrow y^{(k)} = r(r-1)(r-2)\cdots(r-k+1)x^{r-k}$ Em particular, se $r = n \in \mathbb{N}$, então

$$(x^n)^{(n)} = n!$$
 e $(x^n)^{(m)} = 0, \forall m > n$

2)
$$y = \ln x \Rightarrow y' = x^{-1} \Rightarrow y'' = -x^{-2} \Rightarrow y''' = 2x^{-3} \Rightarrow \dots \Rightarrow y^{(n)} = (-1)^{n+1} (n-1)! \cdot x^{-n}$$

2.11.1 Fórmula de Leibniz

$$(uv)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v'' + \dots + uv^{(n)}$$
(2.21)

2.12 Diferencial de ordem superior

Se a função y = f(x) é diferenciável em cada ponto do intervalo (a, b), então o diferencial dy = f'(x)dx desta função é uma função de duas variáveis x e dx. Vamos supor que a função f'(x) também é diferenciável e a grandeza dx não depende da variável x. Neste caso existe o diferencial da função dy = f'(x)dx a que se chama o **diferencial da segunda ordem ou o segundo diferencial da função** f(x) e denota-se d^2y .

Temos que

$$d^2y = f''(x) \left(dx\right)^2$$

Em geral, com as nossas condições que a grandeza dx não depende de variável x o diferencial $d^n y$ de ordem n da função y = f(x) é

$$d^{n}y = d\left[d^{(n-1)}y\right] = f^{(n)}(x)(dx)^{n}$$
(2.22)

Para simplificar as notações, escreve-se também

$$(dx)^n = dx^n$$

e para a derivada de ordem $\,n\,$ no caso em que a grandeza $\,dx\,$ não depende da variável $\,x\,$ temos a igualdade:

$$f^{(n)}(x) = \frac{d^n y}{dx^n}$$

Capítulo 3

Integral indefinido

3.1 Primitiva

À função F(x) chama-se **primitiva duma função** f(x) **no intervalo** (a,b), se, em cada ponto deste intervalo, a função F(x) for derivável e for válida a igualdade:

$$F'(x) = f(x) \tag{3.1}$$

Na definição de primitiva o intervalo (a, b) pode ser substituído por qualquer conjunto da recta, onde tenha sentido considerar uma derivada.

Exemplo 29 $F(x) = x^n$ é uma primitiva da função $f(x) = \frac{1}{n+1}x^{n+1}$;

Exemplo 30 $F(x) = \operatorname{tg}^2 x$ é uma primitiva da função $f(x) = \operatorname{tg} x - x$;

Exemplo 31 $F(x) = \frac{2x+3}{2x+1}$ é uma primitiva da função $f(x) = x + \ln|2x+1|$;

Teorema 32 Se $F_1(x)$ e $F_2(x)$ forem duas primitivas de uma função f(x) no intervalo (a,b), então em todo o intervalo

$$F_1(x) - F_2(x) = C,$$

onde C é uma constante.

3.2 Conceito de integral indefinido

3.2.1 Definição de integral indefinido

Ao conjunto de todas as primitivas de uma dada função f(x) no intervalo (a,b) chama-se integral indefinido da função f(x) (neste intervalo) e denota-se por

$$\int f(x)dx$$

Teorema 33 Se F(x) for uma primitiva da função f(x) no intervalo (a,b), então

$$\int f(x)dx = F(x) + C,$$
(3.2)

 $onde \ C \ \acute{e} \ uma \ constante.$

Exemplo 34
$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C;$$

Exemplo 35
$$\int \operatorname{tg}^2 x dx = \operatorname{tg} x - x + C;$$

Exemplo 36
$$\int \frac{2x+3}{2x+1} dx = x + \ln|2x+1| + C;$$

Propriedades principais do integral indefinido

Seja F(x) uma primitiva da função f(x) no intervalo (a,b). Neste intervalo temos que

$$\underline{dF} = F'(x)dx = f(x)dx$$

Desta igualdade deduzem-se as duas principais propriedades do integral indefinido:

$$\begin{array}{c|c}
\hline
1) & d \int f(x) dx = f(x) dx \\
\hline
2) & \int dF(x) = F(x) + C
\end{array}$$
(3.3)

Devido ao facto da operação de derivação ser linear, a operação de integração também será linear, i.e.,

1)
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$
2)
$$\int Af(x) dx = A \int f(x) dx, A = Const.$$

3.2.2 Tabela de integrais

1.
$$\int 0dx = C$$
;

2.
$$\int 1 dx = x + C$$
;

3.
$$\int x^r dx = \frac{1}{r+1}x^{r+1} + C, r \neq -1;$$

4.
$$\int x^{-1}dx = \int \frac{1}{x}dx = \ln|x| + C, x \neq 0;$$

5.
$$\int a^x dx = \frac{1}{\ln a} a^x + C, a > 0, a \neq 1;$$

6.
$$\int e^x dx = e^x + C$$
:

7.
$$\int \sin x dx = -\cos x + C;$$

8.
$$\int \cos x dx = \sin x + C;$$

9.
$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C, x \neq \frac{\pi}{2} + k\pi, k = 0, \pm 1, \pm 2, \dots;$$

10.
$$\int \frac{1}{\sin^2 x} dx = -\cot x + C, x \neq k\pi, k = 0, \pm 1, \pm 2, \dots;$$

11.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \begin{cases} \arcsin x + C, \\ -\arccos x + C, \end{cases} x \in (-1,1);$$

12.
$$\int \frac{1}{1+x^2} dx = \begin{cases} \arctan x + C, \\ -\arctan x + C, \end{cases} ;$$

13.
$$\int \frac{1}{\sqrt{x^2 + 1}} dx = \ln |x + \sqrt{x^2 + 1}| + C;$$

14.
$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \ln |x + \sqrt{x^2 - 1}| + C, |x| > 1;$$

15.
$$\int \frac{1}{1-x^2} dx = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C, |x| \neq 1;$$

3.2.3 Algumas funções que não são elementares

1. Logarítmo integral:

$$\int \frac{dx}{\ln x}, x > 0, x \neq 1;$$

2. Integral-seno:

$$\int \frac{\sin x}{x} dx;$$

3. Co-seno integral:

$$\int \frac{\cos x}{x} dx, x \neq 0;$$

3.3 Dois métodos principais de integração

3.3.1 Integração por partes

A derivada do produto de duas funções u(x) e v(x) é

$$[u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)$$

Portanto, o diferencial do produto de duas funções u(x) e v(x) é

$$d[uv] = [u(x)v(x)]' dx = v(x)u'(x)dx + u(x)v'(x)dx$$

ou

$$d\left[uv\right] = vdu + udv$$

Daqui segue que

$$\int d\left[uv\right] = \int vdu + \int udv$$

De acordo com as fórmulas (3.3) temos que

$$\int d\left[uv\right] = uv$$

Portanto,

$$uv = \int v du + \int u dv$$

Temos uma fórmula que permite cacular um dos integrais $\int u dv$ ou $\int v du$ através do outro:

$$\int udv = uv - \int vdu$$
 (3.4)

A este método de integração chama-se método de integração por partes.

A maioria dos integrais que podem ser calculados com o método de integração por partes pode ser dividida em três grupos:

I) A função subintegral contém como um dos factores uma das seguintes funções:

$$\ln x$$
; $\arcsin x$; $\arccos x$; $\arctan x$; $(\arctan x)^2$; $\ln \varphi(x)$; \cdots

Para usar a fórmula (3.4) é preciso escolher u(x) como sendo uma destas funções que está presente no integral.

Exemplo 37
$$\int x^2 \ln x dx = \begin{bmatrix} u = \ln x, & du = \frac{1}{x} dx \\ dv = x^2 dx & v = \frac{1}{3} x^3 \end{bmatrix} = \frac{1}{3} x^3 \ln x - \int \frac{1}{3} x^3 \frac{1}{x} dx = \frac{1}{3} x^3 \ln x - \frac{1}{3} \int x^2 dx = \frac{1}{3} x^3 \ln x - \frac{1}{3} \frac{1}{3} x^3 = \frac{1}{3} x^3 \left[\ln x - \frac{1}{3} \right] + C;$$

II) Integrais do tipo:

$$\int (ax+b)^n \cos(cx) dx; \quad \int (ax+b)^n \sin(cx) dx; \quad \int (ax+b)^n e^{cx} dx,$$

onde $a, b, c \in \mathbb{R}, n \in \mathbb{N}$.

Para estes integrais a fórmula (3.4) usa-se n vezes. Para a função u(x) é preciso escolher sempre $(ax+b)^k$. Neste caso, a potência de (ax+b) com cada uso da fórmula (3.4) vai diminuir uma unidade e depois de n passos chegamos à potência 0.

Exemplo 38
$$\int x \cos x dx = \begin{bmatrix} u = x, & du = dx \\ dv = \cos x dx & v = \sin x \end{bmatrix} = x \sin x - \int \sin x dx = x \sin x + \cos x + C;$$

Exemplo 39
$$\int xe^x dx = \begin{bmatrix} u = x, & du = dx \\ dv = e^x dx & v = e^x \end{bmatrix} = xe^x - \int e^x dx = xe^x - e^x = (x - 1)e^x + C;$$

III) Integrais do tipo:

$$\int e^{ax} \cos(bx) dx; \quad \int e^{ax} \sin(bx) dx; \quad \int \sin(\ln x) dx; \quad \int \cos(\ln x) dx; \quad \cdots$$

Para estes integrais temos que usar a fórmula (3.4) 2 vezes e obtemos uma equação de primeira ordem, onde a incógnita é o integral.

É importante notar que para os integrais

$$\int e^{ax} \cos(bx) \, dx; \quad \int e^{ax} \sin(bx) \, dx$$

as funções u(x) e v(x) podem ser escolhidos arbitrariamente, mas no segundo passo a natureza destas funções deve ser mantida. Caso contrário, em vez de uma equação, obtemos uma identidade que não permitirá encontrar o integral.

Exemplo 40
$$\int e^x \sin x dx = \begin{bmatrix} u = \sin x, & du = \cos x dx \\ dv = e^x dx & v = e^x \end{bmatrix} = e^x \sin x - \int e^x \cos x dx = \begin{bmatrix} u = \cos x, & du = -\sin x dx \\ dv = e^x dx & v = e^x \end{bmatrix} = e^x \sin x - e^x \cos x - \int e^x \sin x dx \Rightarrow \int e^x \sin x dx = \frac{1}{2} \left[e^x \sin x - e^x \cos x \right] = \frac{1}{2} e^x \left[\sin x - \cos x \right] + C;$$

Existem ainda integrais que não pertencem a nenhum destes grupos, mas que podem ser calculados pelo método de integração por partes.

3.3.2 Método de substituição

Se F(x) for uma primitiva da função f(x) no intervalo (a,b), então F'(x)=f(x) e

$$dF = f(x)dx$$

Se $x = \varphi(t)$ for uma função diferenciável, admitir função inversa e for tal que im $\varphi \subseteq \text{dom } f$, então podemos considerar as funções compostas $F[\varphi(t)]$ e $f[\varphi(t)]$. Para estas funções temos que

$$F'[\varphi(t)] = f[\varphi(t)] \varphi'(t)$$
 e $dF = f[\varphi(t)] \varphi'(t) dt$

Portanto,

$$f(x)dx = f[\varphi(t)]\varphi'(t)dt,$$

onde

$$x = \varphi(t) \tag{3.5}$$

Daqui segue a primeira fórmula de substituição:

$$\int f(x)dx = \int f[\varphi(t)]\varphi'(t)dt \tag{3.6}$$

A primeira fórmula de substituição também pode ser escrita na forma:

$$\int f(x)dx = \int f(\varphi)d\varphi$$

Se denotamos por $\psi(x)$ a função inversa da função (3.5), i.e., $\varphi[\psi(x)] = x$, então

$$t = \psi(x)$$
 e $dt = \psi'(x)dx$ (3.7)

Se, além disso, a função g(t) for tal que

$$f(x)dx = q[\psi(x)]\psi'(x)dx$$

ou, de modo equivalente,

$$f(x)dx = q(\psi)d\psi$$

então vamos ter a igualdade:

$$\int f(x)dx = \int g[\psi(x)]\psi'(x)dx = \int g(\psi)d\psi, \tag{3.8}$$

que é a segunda fórmula de substituição.

É claro que a diferença entre as fórmulas de substituição (3.6) e (3.8) consiste apenas na notação. Às vezes é cómoda a substituição (3.5) e outras vezes é mais cómoda a substituição (3.7).

Exemplo 42
$$\int \cos(ax) dx = \left[x = \frac{1}{a}t \Rightarrow dx = \frac{1}{a}dt \right] = \int \cos(t) \frac{1}{a}dt = \frac{1}{a}\int \cos t dt = \frac{1}{a}\sin t = \frac{1}{a}\sin(ax) + C;$$

Exemplo 43
$$\int (ax+b)^{2007} dx = \left[t = ax+b \Rightarrow x = \frac{1}{a}(t-b) \Rightarrow dx = \frac{1}{a}dt\right] = \int t^{2007} \frac{1}{a} dt = \frac{1}{a} \int t^{2007} dt = \frac{1}{a} \frac{1}{2008} t^{2008} = \frac{1}{2008a} (ax+b)^{2008} + C;$$

Exemplo 44
$$\int \frac{x}{x^2 + 1} dx = \left[t = x^2 + 1 \Rightarrow dt = 2x dx \Rightarrow x dx = \frac{1}{2} dt \right] = \int \frac{1}{t} \frac{1}{2} dt = \frac{1}{2} \int \frac{1}{t} dt = \frac{1}{2} \ln t = \frac{1}{2} \ln (x^2 + 1) + C;$$

Exemplo 45 O caso mais geral, $\int \frac{\psi'(x)}{\psi(x)} dx = \left[t = \psi(x) \Rightarrow dt = \psi'(x) dx\right] = \int \frac{1}{\psi} d\psi = \ln|\psi| = \ln|\psi(x)| + C;$

Por exemplo,
$$\int \frac{2x+p}{x^2+px+q} dx = \ln \left| x^2 + px + q \right| + C;$$

Exemplo 46
$$\int \frac{1}{x\sqrt{x^2+1}} dx = \left[x = \frac{1}{t} \Rightarrow dx = -\frac{1}{t^2} dt \right] = \int \frac{1}{\frac{1}{t}\sqrt{\left(\frac{1}{t}\right)^2 + 1}} \left(-\frac{1}{t^2} \right) dt = -\int \frac{1}{\sqrt{t^2+1}} dt = -\ln\left| t + \sqrt{t^2+1} \right| = -\ln\left| \frac{1}{x} + \sqrt{\left(\frac{1}{x}\right)^2 + 1} \right| = \ln\left| \frac{x}{1 + \sqrt{x^2+1}} \right| + C;$$

É claro que, na prática, muitas vezes, é preciso usar ambos os métodos e, nalguns casos, mais do que uma vez.

Exemplo 47
$$\int \arctan x dx = \begin{bmatrix} u = \arctan x, & du = \frac{1}{1+x^2} dx \\ dv = dx & v = x \end{bmatrix}$$

= $x \arctan x - \int \frac{x}{1+x^2} dx = x \arctan x - \frac{1}{2} \ln (x^2+1) + C;$

Exemplo 48
$$\int \frac{x}{\cos^2 x} dx = \begin{bmatrix} u = x, & du = dx \\ dv = \frac{1}{\cos^2 x} dx & v = \operatorname{tg} x \end{bmatrix} = x \operatorname{tg} x - \int \operatorname{tg} x dx = x \operatorname{tg} x - \int \frac{\sin x}{\cos x} dx = [t = \cos x \Rightarrow dt = \sin x dx] = x \operatorname{tg} x - \int \frac{1}{t} dt = x \operatorname{tg} x - \ln|t| = x \operatorname{tg} x - \ln|\cos x| + C$$

Notamos que este integral não pertence a nenhum grupo I)-III), mas pode ser calculado com a ajuda da fórmula (3.4).

Exemplo 49
$$J_k = \int \frac{1}{(x^2 + a^2)^k} dx, \ k \in \mathbb{N}, \ k \ge 1, \ a > 0.$$
 Seja $k > 1$,

$$J_{k} = \int \frac{1}{(x^{2} + a^{2})^{k}} dx = \frac{1}{a^{2}} \int \frac{a^{2}}{(x^{2} + a^{2})^{k}} dx = \frac{1}{a^{2}} \int \frac{x^{2} + a^{2} - x^{2}}{(x^{2} + a^{2})^{k}} dx = \frac{1}{a^{2}} J_{k-1} - \frac{1}{a^{2}} \int \frac{x^{2}}{(x^{2} + a^{2})^{k}} dx;$$

$$\int \frac{x}{(x^{2} + a^{2})^{k}} dx = \left[t = x^{2} + a^{2} \Rightarrow dt = 2x dx \Rightarrow x dx = \frac{1}{2} dt \right] = \frac{1}{2} \int \frac{1}{t^{k}} dt = -\frac{1}{2} \frac{1}{k-1} \frac{1}{t^{k-1}} = -\frac{1}{k-1} \frac{1}{2} \frac{1}{(x^{2} + a^{2})^{k-1}}$$

$$\int \frac{x^{2}}{(x^{2} + a^{2})^{k}} dx = \begin{bmatrix} u = x, & du = dx \\ dv = \frac{x}{(x^{2} + a^{2})^{k}} dx & v = -\frac{1}{2(k-1)} \frac{1}{(x^{2} + a^{2})^{k-1}} \end{bmatrix} = \frac{1}{2(k-1)} \frac{x}{(x^{2} + a^{2})^{k-1}} + \frac{1}{2(k-1)} J_{k-1}$$

$$Portanto, J_{k} = \frac{1}{a^{2}} J_{k-1} + \frac{1}{a^{2}} \frac{1}{2} \frac{1}{k-1} \frac{x}{(x^{2} + a^{2})^{k-1}} - \frac{1}{a^{2}} \frac{1}{2} \frac{1}{k-1} J_{k-1} \Rightarrow$$

$$J_{k} = \frac{x}{2a^{2}(k-1)} \frac{x}{(x^{2} + a^{2})^{k-1}} - \frac{2k-3}{a^{2}(2k-2)} J_{k-1}$$

$$(3.9)$$

Para calcular o integral temos a fórmula de recorrência:

$$J_{1} = \int \frac{1}{x^{2} + a^{2}} dx = \frac{1}{a^{2}} \operatorname{arctg} \frac{x}{a} + C; \Rightarrow$$

$$J_{2} = \frac{x}{2a^{2}(x^{2} + a^{2})} - \frac{1}{2a^{2}} J_{1} = \frac{x}{2a^{2}(x^{2} + a^{2})} - \frac{1}{2a^{4}} \operatorname{arctg} \frac{x}{a} + C; \Rightarrow \cdots$$

3.4 Integrais elementares que contêm o trinómio quadrado

3.4.1 Trinómio quadrado

A equação quadrática

$$ax^2 + bx + c = 0, a \neq 0,$$

tem duas raizes:

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

ou

$$\lambda_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Se soubermos as raízes, podemos¹ escrever o trinómio na forma:

$$ax^{2} + bx + c = a(x - \lambda_{1})(x - \lambda_{2})$$

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a}\right) = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right]$$

¹Compare a separação do quadrado perfeito:

ou

$$ax^{2} + bx + c = a\left[\left(x + \frac{b}{2a}\right) - \frac{\sqrt{b^{2} - 4ac}}{2a}\right]\left[\left(x + \frac{b}{2a}\right) + \frac{\sqrt{b^{2} - 4ac}}{2a}\right]$$

ou

$$ax^{2} + bx + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right]$$

Denotamos

$$d^2 = \left| \frac{b^2 - 4ac}{4a^2} \right|$$

e

$$t = x + \frac{b}{2a} \tag{3.10}$$

Vamos ter dois casos:

$$ax^{2} + bx + c = \begin{cases} a(t^{2} + d^{2}), & \text{se } \frac{b^{2} - 4ac}{4a^{2}} \ge 0\\ a(t^{2} - d^{2}), & \text{se } \frac{b^{2} - 4ac}{4a^{2}} < 0 \end{cases}$$

3.4.2 Integrais do tipo

$$\int \frac{mx+n}{ax^2+bx+c} dx, a \neq 0 \tag{3.11}$$

Passo 1:
$$\frac{mx+n}{ax^2+bx+c} = \frac{\frac{m}{2a}\left(2ax+b\right) + \left(n - \frac{mb}{2a}\right)}{ax^2+bx+c} \Rightarrow$$

$$\int \frac{mx+n}{ax^2+bx+c} dx = \frac{m}{2a} \int \frac{2ax+b}{ax^2+bx+c} dx + \left(n - \frac{mb}{2a}\right) \int \frac{1}{ax^2+bx+c} dx;$$
Passo 2: O integral
$$\int \frac{2ax+b}{ax^2+bx+c} dx \text{ \'e do tipo } \int \frac{\psi'(x)}{\psi(x)} dx. \text{ Por isso temos que}$$

$$\int \frac{2ax+b}{ax^2+bx+c} dx = \ln\left|ax^2+bx+c\right|$$

Passo 3: Para calcular o integral $\int \frac{1}{ax^2 + bx + c} dx$ pode-se empregar a substituição (3.10). Com esta substituição vamos chegar a um dos dois integrais

$$\int \frac{1}{1-t^2} dt = \ln \left| \frac{1+t}{1-t} \right| + C, |t| \neq 1;$$

ou

$$\int \frac{1}{1+t^2} dt = \left\{ \begin{array}{l} \arctan t + C, \\ -\arctan t + C, \end{array} \right.$$

Passo 4: Juntamos todos os cálculos feitos.

3.4.3 Integrais do tipo

$$\int \frac{mx+n}{\sqrt{ax^2+bx+c}} dx, a \neq 0 \tag{3.12}$$

O algoritmo é análogo ao anterior:

No passo 2 vamos ter o integral do tipo $\int \frac{\psi'(x)}{\sqrt{\psi(x)}} dx$:

$$\int \frac{2ax+b}{\sqrt{ax^2+bx+c}} dx = 2\sqrt{ax^2+bx+c}$$

e no passo 3 chegamos aos integrais:

$$\int \frac{1}{\sqrt{1-t^2}} dt = \left\{ \begin{array}{l} \arcsin t + C, \\ -\arccos t + C, \end{array} \right. \quad t \in (-1,1) \, ;$$

ou

$$\int \frac{1}{\sqrt{t^2+1}} dt = \ln \left| t + \sqrt{t^2+1} \right| + C;$$

ou

$$\int \frac{1}{\sqrt{t^2 - 1}} dt = \ln \left| t + \sqrt{t^2 - 1} \right| + C, \qquad |t| > 1;$$

3.4.4 Integrais do tipo

$$\int \sqrt{ax^2 + bx + c} \, dx, \quad a \neq 0 \tag{3.13}$$

Fazendo a substituição (3.10) chegamos a um dos seguintes integrais:

$$\int \sqrt{p^2 - t^2} dt = \frac{t}{2} \sqrt{p^2 - t^2} + \frac{p^2}{2} \arcsin \frac{t}{p} + C;$$

ou

$$\int \sqrt{t^2 + q} \, dt = \frac{t}{2} \sqrt{t^2 + q} + \frac{q}{2} \ln \left| t + \sqrt{t^2 + q} \right| + C;$$

3.5 Integração de funções racionais

3.5.1 Polinómio

De acordo com o Teorema fundamental da Álgebra, qualquer polinómio

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \neq 0,$$

tem n raízes: $\lambda_1,\,\lambda_2,\cdots,\,\lambda_n.$ Por isso, qualquer polinómio pode ser escrito na forma:

$$P_n(x) = a_n (x - \lambda_1) (x - \lambda_2) \cdots (x - \lambda_n)$$
(3.14)

Se todos os coeficientes do polinómio forem reais e alguma das raízes for um número complexo

$$\lambda = \alpha + \beta i$$
,

então entre as raízes do polinómio encontra-se também o número complexo conjugado:

$$\overline{\lambda} = \alpha - \beta i$$

Neste caso, o produto $(x - \lambda)(x - \overline{\lambda})$ é

$$(x - \lambda)(x - \overline{\lambda}) = x^2 + px + q,$$

onde p e q são números reais.

Juntando todas as raízes complexas com as raízes complexas conjugadas correspondentes e juntando todas as raízes iguais, podemos escrever a igualdade (3.14) na forma:

$$P_n(x) = a_n \left(x - \lambda_{j_1} \right)^{k_{j_1}} \cdots \left(x - \lambda_{j_i} \right)^{k_{j_i}} \left(x^2 + p_{l_1} x + q_{l_1} \right)^{s_{l_1}} \cdots \left(x^2 + p_{l_r} x + q_{l_r} \right)^{s_{l_r}}, \tag{3.15}$$

onde $k_{i_1}, \ldots, k_{i_i}, s_{i_1}, \ldots, s_{i_n}$ são os graus de multiplicidade das raízes.

3.5.2 Fracção racional própria

A função racional é uma função do tipo

$$f(x) = \frac{Q_m(x)}{P_n(x)},$$

onde $Q_m(x)$ e $P_n(x)$ são polinómios de grau m e n respectivamente. Se

$$n > m$$
,

então a f(x) chama-se fracção racional própria.

Notamos que no caso $n \leq m$ podemos dividir $Q_m(x)$ por $P_n(x)$, separar a parte inteira da fracção e obter a representação da função f(x) como a soma dum polinómio e duma fracção racional própria.

Às fracções

$$\frac{1}{(x-\lambda)^k}$$
 e $\frac{Mx+N}{(x^2+px+q)^k}$,

onde $\lambda, p, q, M, N \in \mathbb{R}$, $k \in \mathbb{N}$ e o polinómio $x^2 + px + q$ tem raízes complexas, vamos chamar fracções simples.

Lema 50 Qualquer fracção racional própria decompõe-se em soma de fracções simples, i.e., se o denominador da fracção $P_n(x)$ estiver representado na forma (3.15), então

$$\frac{Q_m(x)}{P_n(x)} = \frac{A_{k_{j_1}}}{(x - \lambda_{j_1})^{k_{j_1}}} + \frac{A_{k_{j_1} - 1}}{(x - \lambda_{j_1})^{k_{j_1} - 1}} + \dots + \frac{A_1}{x - \lambda_{j_1}} + \dots + \frac{B_{k_{j_i}}}{(x - \lambda_{j_i})^{k_{j_i}}} + \frac{B_{k_{j_i} - 1}}{(x - \lambda_{j_i})^{k_{j_i} - 1}} + \dots + \frac{B_1}{x - \lambda_{j_i}} + \dots + \frac{B_1}{x - \lambda_{j_i}}$$

$$\frac{C_{s_{l_1}}x + D_{s_{l_1}}}{(x^2 + p_{l_1}x + q_{l_1})^{s_{l_1}}} + \frac{C_{s_{l_1}-1}x + D_{s_{l_1}-1}}{(x^2 + p_{l_1}x + q_{l_1})^{s_{l_1}-1}} + \dots + \frac{C_1x + D_1}{x^2 + p_{l_1}x + q_{l_1}} + \dots + \frac{M_{s_{l_r}}x + N_{s_{l_r}}}{(x^2 + p_{l_r}x + q_{l_r})^{s_{l_r}}} + \frac{M_{s_{l_r}-1}x + N_{s_{l_r}-1}}{(x^2 + p_{l_r}x + q_{l_r})^{s_{l_r}-1}} + \dots + \frac{M_1x + N_1}{x^2 + p_{l_r}x + q_{l_r}}$$
(3.16)

É preciso acrescentar que quando o denominador tem uma raiz real λ de multiplicidade k, então na expressão (3.16) devem entrar todas as fracções simples:

$$\frac{A_k}{(x-\lambda)^k}$$
, $\frac{A_{k-1}}{(x-\lambda)^{k-1}}$, \cdots , $\frac{A_1}{x-\lambda}$

e quando o denominador tem uma raiz complexa de multiplicidade k, então na expressão (3.16) devem entrar todas as fracções simples:

$$\frac{M_k x + N_k}{(x^2 + px + q)^k}, \quad \frac{M_{k-1} x + N_{k-1}}{(x^2 + px + q)^{k-1}}, \quad \cdots, \quad \frac{M_1 x + N_1}{x^2 + px + q}$$

Método dos coeficientes indeterminados

Para calcular os coeficientes indeterminados $A_{k_{j_1}}, \cdots, A_1, \cdots, M_1, N_1$:

Passo 1: Ambos os membros da identidade (3.16) reduzem-se à forma inteira:

$$Q_m(x) = A_{k_{j_1}} (x - \lambda_{j_2})^{k_{j_2}} \cdots (x - \lambda_{j_i})^{k_{j_i}} + \cdots$$

$$(M_1 x + N_1) (x - \lambda_{j_1})^{k_{j_1}} \cdots (x^2 + p_{l_r} x + q_{l_r})^{s_{l_r} - 1}$$
(3.17)

Passo 2: Obter e resolver um sistema para as incógnitas $A_{k_{j_1}}, \dots, A_1, \dots, M_1, N_1$.

Para obter o sistema podemos usar métodos diferentes:

- i) Igualam-se os coeficientes de cada uma das potências iguais da variável x em ambos os membros da identidade (3.17).
- ii) Iguala-se a variável x em ambos os membros da identidade (3.17), a certos números devidamente escolhidos.
 - iii) Mistura-se i) e ii) para obter o sistema mais simples possível.

Exemplo 51
$$f(x) = \frac{3x^4 + 2x^3 + 3x^2 - 1}{(x-2)(x^2+1)^2}$$

De acordo com (3.16) temos que procurar a decomposição da fracção na forma:

$$f(x) = \frac{A}{x-2} + \frac{Bx+C}{(x^2+1)^2} + \frac{Mx+N}{x^2+1}$$

Passo 1:

$$3x^4 + 2x^3 + 3x^2 - 1 = A(x^2 + 1)^2 + (Bx + C)(x - 2) + (Mx + N)(x - 2)(x^2 + 1)$$

$$3x^4 + 2x^3 + 3x^2 - 1 = (A + M)x^4 + (N - 2M)x^3 +$$

$$(2A + B + M - 2N) x^{2} + (C - 2B - 2M + N) x + (A - 2C - 2N) \Rightarrow$$

$$\begin{cases}
A + M = 3 \\
N - 2M = 2 \\
2A + B + M - 2N = 3 \\
C - 2B - 2M + N = 0 \\
A - 2C - 2N = -1
\end{cases}$$

A solução do sistema obtido é

$$A = 3$$
, $B = 1$, $C = 0$, $M = 0$, $N = 2$

Portanto

$$f(x) = \frac{3}{x-2} + \frac{x}{(x^2+1)^2} + \frac{2}{x^2+1}$$
(3.18)

Exemplo 52
$$f(x) = \frac{x+1}{(x-2)x(x-1)}$$

De acordo com (3.16) temos que procurar a decomposição da fracção na forma:

$$f(x) = \frac{A}{x-2} + \frac{B}{x} + \frac{C}{x-1}$$

Passo 1:

$$x + 1 = A(x - 1)x + B(x - 1)(x - 2) + Cx(x - 2)$$

Passo 2: ii)

$$x = 2$$
 \Rightarrow $3 = 2A$ \Rightarrow $A = \frac{3}{2}$
 $x = 0$ \Rightarrow $1 = 2B$ \Rightarrow $B = \frac{1}{2}$
 $x = 1$ \Rightarrow $2 = -C$ \Rightarrow $C = -2$

Portanto

$$f(x) = \frac{3}{2(x-2)} + \frac{1}{2x} - \frac{2}{x-1}$$
(3.19)

Exemplo 53 $f(x) = \frac{x+1}{(x+3)(x^2+1)}$

De acordo com (3.16) temos que procurar a decomposição da fracção na forma:

$$f(x) = \frac{A}{x+3} + \frac{Bx + C}{x^2 + 1}$$

Passo 1:

$$x + 1 = A(x^{2} + 1) + (Bx + C)(x + 3)$$

Passo 2: iii)

$$x = -3$$
 \Rightarrow $-2 = 10A$ \Rightarrow $A = -\frac{1}{5}$
 $x = 0$ \Rightarrow $1 = A + 3C$ \Rightarrow $C = \frac{2}{5}$
 $Coef.$ x^2 \Rightarrow $0 = A + B$ \Rightarrow $B = \frac{1}{5}$

Portanto

$$f(x) = -\frac{1}{5(x+3)} + \frac{x+2}{5(x^2+1)}$$
(3.20)

3.5.3 Integração de fracções simples

1.
$$\int \frac{1}{x-\lambda} dx = \ln|x-\lambda| + C;$$

2.
$$\int \frac{1}{(x-\lambda)^k} dx = -\frac{1}{k-1} \frac{1}{(x-\lambda)^{k-1}}, k > 1;$$

3.
$$\int \frac{Mx+N}{x^2+px+q} dx = \{ \text{ver } (3.11) \} = \frac{M}{2} \ln \left(x^2+px+q \right) + \frac{2N-Mp}{2\sqrt{q-\frac{p^2}{4}}} \arctan \left(\frac{x+\frac{p}{2}}{\sqrt{q-\frac{p^2}{4}}} + C \right)$$

4.
$$\int \frac{Mx+N}{(x^2+px+q)^k} dx = \frac{M}{2} \int \frac{2x+p}{(x^2+px+q)^k} dx + \left(N - \frac{Mp}{2}\right) \int \frac{1}{(x^2+px+q)^k} dx;$$

$$\int \frac{2x+p}{(x^2+px+q)^k} dx = -\frac{1}{k-1} \frac{1}{(x^2+px+q)^{k-1}};$$

$$\int \frac{1}{(x^2+px+q)^k} dx = \left[t = x + \frac{p}{2} \Rightarrow dt = dx\right] = \int \frac{1}{(t^2+a^2)^k} dx,$$
onde $a = \sqrt{q - \frac{p^2}{4}} \Rightarrow \{\text{ver } (3.9)\}$

3.5.4 Algoritmo de integração de funções racionais

Passo 1: Separar a parte inteira da fracção e obter a representação da função racional como a soma dum polinómio e duma fracção racional própria.

Passo 2 Decompor a fracção racional própria em soma de fracções simples.

Passo 3 Calcular os integrais da parte inteira e de cada fracção simples que estão presentes na decomposição (3.16) da função racional dada.

Exemplo 54
$$\int \frac{3x^4 + 2x^3 + 3x^2 - 1}{(x - 2)(x^2 + 1)^2} dx = \{ver \ (3.18)\} = \int \frac{3}{x - 2} dx + \int \frac{x}{(x^2 + 1)^2} dx + \int \frac{2}{x^2 + 1} dx = 3 \ln|x - 2| - \frac{1}{2(x^2 + 1)} + 2 \arctan x + C;$$

Exemplo 55
$$\int \frac{x+1}{(x-2)x(x-1)} dx = \{ver\ (3.19)\} = \int \frac{3}{2(x-2)} dx + \int \frac{1}{2x} dx - \int \frac{2}{x-1} dx = \frac{3}{2} \ln|x-2| + \frac{1}{2} \ln|x| - 2 \ln|x-1| + C;$$

Exemplo 56
$$\int \frac{x+1}{(x+3)(x^2+1)} dx = \{ver \ (3.20)\} = -\int \frac{1}{5(x+3)} dx + \int \frac{x+2}{5(x^2+1)} dx = -\frac{1}{5} \ln|x+3| + \frac{1}{10} \ln(x^2+1) + \frac{2}{5} \arctan x + C$$

3.6 Integração de funções trigonométricas

3.6.1 Integrais do tipo

$$\int R(\sin x, \cos x) \, dx,\tag{3.21}$$

onde R é uma função racional

Substituição universal

$$t = \operatorname{tg} \frac{x}{2}$$

Com esta substituição obtemos

$$\sin x = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1-t^2}{1+t^2}$, $dx = \frac{2}{1+t^2}dt$

Por isso,

$$\int R(\sin x, \cos x) \, dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2}{1+t^2} dt$$

O último integral é o integral duma função racional que já sabemos calcular.

Exemplo 57
$$\int \frac{1}{\sin x} dx = \int \frac{1+t^2}{2t} \frac{2}{1+t^2} dt = \int \frac{1}{t} dt = \ln|t| = \ln|\operatorname{tg} \frac{x}{2}| + C$$

Casos particulares

1)
$$R(-\sin x, -\cos x) = R(\sin x, \cos x) \Rightarrow \text{Substituição}$$

$$t = \operatorname{tg} x$$

1. Neste caso

$$\sin x = \frac{t}{\sqrt{1+t^2}}, \quad \cos x = \frac{1}{\sqrt{1+t^2}}, \quad dx = \frac{1}{1+t^2}dt$$

Exemplo 58
$$\int \frac{1}{1+3\cos^2 x} dx = \int \frac{1}{\frac{1}{\cos^2 x} + 3} \frac{1}{\cos^2 x} dx = \int \frac{1}{\operatorname{tg}^2 x + 4} \frac{1}{\cos^2 x} dx = \int \frac{1}{\cos^2 x$$

2)
$$R(\sin x, \cos x) = \widetilde{R}(\sin^2 x, \cos x) \sin x \Rightarrow \text{Substituição}$$

$$t = \cos x$$

3)
$$R(\sin x, \cos x) = \widehat{R}(\sin x, \cos^2 x) \cos x \Rightarrow \text{Substituição}$$

$$t = \sin x$$

Exemplo 59
$$\int \frac{\sin x}{1 + 3\sin^2 x - \cos x} dx = \int \frac{\sin x}{1 + 3(1 - \cos^2 x) - \cos x} dx = \int \frac{\sin x}{4 - 3\cos^2 x - \cos x} dx = \int \frac{\sin x}{4 - 3\cos^2 x - \cos x} dx = \int \frac{1}{4 - 3t^2 - t} dt = \cdots$$

Exemplo 60
$$\int \frac{\cos x}{1 + 3\cos^2 x - \sin x} dx = \int \frac{\cos x}{1 + 3(1 - \sin^2 x) - \sin x} dx = \int \frac{\cos x}{4 - 3\sin^2 x - \sin x} dx = [t = \sin x \Rightarrow dt = \cos x dx] = -\int \frac{1}{4 - 3t^2 - t} dt = \cdots$$

3.6.2 Integrais do tipo

$$\int \sin ax \cos bx \ dx, \quad \int \sin ax \sin bx \ dx, \quad \int \cos ax \cos bx \ dx,$$

Para calcular estes integrais é preciso saber as fórmulas:

Exercício 61

1)
$$\cos^2 x = \frac{1}{2} (1 + \cos 2x)$$
 $e \sin^2 x = \frac{1}{2} (1 - \cos 2x)$;

2)
$$\cos x \cos t = \frac{1}{2} [\cos (x - t) + \cos (x + t)];$$

3)
$$\sin x \sin t = \frac{1}{2} \left[\cos (x - t) - \cos (x + t) \right];$$

4)
$$\sin x \cos t = \frac{1}{2} \left[\sin (x - t) + \sin (x + t) \right];$$

Exemplo 62 $\int \sin ax \cos bx \ dx = \frac{1}{2} \int \left[\sin \left(ax - bx \right) + \sin \left(ax + bx \right) \right] dx = \cdots$

3.7 Integração de funções hiperbólicas

3.7.1 Funções hiperbólicas

$$\operatorname{ch} x = \cosh x = \frac{e^x + e^{-x}}{2}, \quad \operatorname{sh} x = \sinh x = \frac{e^x - e^{-x}}{2}$$
$$\operatorname{tgh} x = \frac{\operatorname{sh} x}{\operatorname{ch} x}, \quad \operatorname{ctgh} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$$

Algumas propriedades:

1.
$$\cosh^2 x - \sinh^2 x = 1$$
;

Exercício 63
$$\operatorname{ch}^2 x = \frac{1}{2} (1 + \operatorname{ch} 2x)$$
 $e \operatorname{sh}^2 x = \frac{1}{2} (\operatorname{ch} 2x - 1);$

2)
$$\operatorname{ch} x \operatorname{ch} t = \frac{1}{2} \left[\operatorname{ch} (x - t) + \operatorname{ch} (x + t) \right];$$

3)
$$\operatorname{sh} x \sin t = \frac{1}{2} \left[\operatorname{ch} (x+t) - \operatorname{ch} (x-t) \right];$$

4)
$$\operatorname{sh} x \operatorname{ch} t = \frac{1}{2} \left[\operatorname{sh} (x - t) + \operatorname{sh} (x + t) \right];$$

3.7.2 Integração de funções hiperbólicas

A integração de funções hiperbólicas é completamente análoga à integração de funções trigonométricas.

3.8 Integração de algumas funções irracionais

3.8.1 Integrais do tipo

$$\int R \left[x, \left(\frac{ax+b}{cx+d} \right)^{\frac{p_1}{q_1}}, \left(\frac{ax+b}{cx+d} \right)^{\frac{p_2}{q_2}}, \cdots \right] dx$$

onde R é uma função racional e p_1,q_1,p_2,q_2,\ldots são números inteiros

Substituição

$$\frac{ax+b}{cx+d} = t^n,$$

onde n é o mínimo múltiplo comum dos denominadores q_1, q_2, \ldots

Exemplo 64
$$\int \sqrt{\frac{x-1}{x+1}} dx = \left[\frac{x-1}{x+1} = t^2 \Rightarrow x = \frac{1+t^2}{1-t^2} \Rightarrow dx = \frac{4t}{(1-t^2)^2} dt \right] = \int \frac{4t^2}{(1-t^2)^2} dt = \cdots$$

3.8.2 Integrais do tipo

$$\int R\left[x,\sqrt{a^2-x^2}\right]dx$$

onde R é uma função racional

Substituição

$$x = a \sin t$$

3.8.3 Integrais do tipo

$$\int R\left[x,\sqrt{a^2+x^2}\right]dx$$

onde R é uma função racional

Substituição

$$x = a \operatorname{tg} t$$

3.8.4 Integrais do tipo

$$\int R\left[x,\sqrt{x^2-a^2}\right]dx$$

onde R é uma função racional

Substituição

$$x = a \cosh t$$

Exemplo 65
$$\int \sqrt{p^2 - x^2} dx = [x = p \sin t \Rightarrow dx = p \cos t dt] = p^2 \int \cos^2 t dt = p^2 \frac{1}{2} \int [1 + \cos 2t] dt = \frac{1}{2} p^2 \left[t + \frac{1}{2} \sin 2t \right] = \frac{1}{2} p^2 \left[t + \sin t \cos t \right] = \frac{x}{2} \sqrt{p^2 - x^2} + \frac{p^2}{2} \arcsin \frac{x}{p} + C;$$

$$Nota: \ t = \arcsin \frac{x}{p} \Rightarrow \sin \left[\arcsin \frac{x}{p} \right] = \frac{x}{p}; \ \cos \left[\arcsin \frac{x}{p} \right] = \sqrt{1 - \left(\frac{x}{p} \right)^2}$$

Exemplo 66
$$\int \sqrt{x^2 - p^2} dx = [x = p \cosh t \Rightarrow dx = p \sinh t dt] = p^2 \int \sinh^2 t dt = p^2 \frac{1}{2} \int [\cosh 2t - 1] dt = \frac{1}{2} p^2 \left[-t + \frac{1}{2} \sinh 2t \right] = \frac{1}{2} p^2 \left[-t + \sinh t \cosh t \right] = \frac{x}{2} \sqrt{x^2 + q} + \frac{q}{2} \ln \left| x + \sqrt{x^2 + q} \right| + C;$$

Nota:
$$t = \operatorname{arccosh} \frac{x}{p} \Rightarrow \operatorname{cosh} \left[\operatorname{arccosh} \frac{x}{p} \right] = \frac{x}{p}$$
; $\operatorname{sinh} \left[\operatorname{arccosh} \frac{x}{p} \right] = \sqrt{\left(\frac{x}{p}\right)^2 - 1}$

Capítulo 4

Propriedades básicas das funções contínuas e das funções diferenciáveis

4.1 Propriedades das funções contínuas

4.1.1 Sobre limites e continuidade das funções

Teorema 67 (Definição $\varepsilon - \delta$) Seja y = f(x) uma função definida numa vizinhança do ponto x_0 . A função y = f(x) tende para o limite y_0 quando $x \to x_0$ sse

$$\forall \varepsilon > 0, \quad \exists \delta > 0:$$

$$|x - x_0| < \delta \quad \Rightarrow \quad |f(x) - y_0| < \varepsilon$$

Ao intervalo $(x_0 - \delta, x_0 + \delta)$ vamos chamar δ -vizinhança do ponto x_0 .

$$\forall \varepsilon > 0, \quad \exists \delta > 0:$$

 $x_0 \in (x_0 - \delta, x_0 + \delta) \Rightarrow f(x_0) \in (y_0 - \varepsilon, y_0 + \varepsilon)$

Teorema 68 Seja y = f(x) uma função definida numa vizinhança do ponto x_0 . A função y = f(x) é contínua no ponto x_0 sse

$$\forall \varepsilon > 0, \quad \exists \delta > 0:$$

 $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$

Estabilidade do sinal

Teorema 69 Se a função f(x) é contínua no ponto x_0 e $f(x_0) \neq 0$, então existe uma δ -vizinhança do ponto x_0 tal que

$$f(x) \neq 0$$
 $e \operatorname{sgn} f(x) = \operatorname{sgn} f(x_0), \forall x \in (x_0 - \delta, x_0 + \delta)$

4.1.2 Propriedades das funções contínuas sobre um segmento

Existência de zero da função

Teorema 70 Se y = f(x) é uma função contínua sobre o segmento [a,b], então

$$\operatorname{sgn} f(a) \neq \operatorname{sgn} f(b) \quad \Rightarrow \quad \exists x_0 \in [a, b] : \ f(x_0) = 0$$

Exercício 71 Mostre que a equação:

$$8x^7 - 7x^6 + 6x^5 - 5x^4 + 4x^3 - 3x^2 + 2x - 1 = 0$$

tem pelo menos uma raiz no segmento [0,1].

Valores intermédios

Corolário 72 Se y = f(x) é uma função contínua sobre o segmento [a,b], então

$$f(a) \neq f(b)$$
 \Rightarrow $\forall y_0 \text{ que fica entre } f(a) \text{ e } f(b), \exists x_0 \in [a, b]: f(x_0) = y_0$

Limitação

Teorema 73 Se y = f(x) é uma função contínua sobre o segmento [a,b], então ela é limitada neste segmento.

É importante notar, que uma função contínua sobre um intervalo aberto (a,b) pode ser não limitada neste intervalo.

Exemplo 74 $y = \frac{1}{x}$ no intervalo (0,1) não é limitada.

Supremo e ínfimo

Teorema 75 Se y = f(x) é uma função contínua sobre o segmento [a, b], então

$$\exists x_1, x_2 \in [a, b]: \sup_{x \in [a, b]} f(x) = f(x_1) \quad e \quad \inf_{x \in [a, b]} f(x) = f(x_2)$$

Corolário 76 Se y = f(x) é uma função contínua sobre o segmento [a, b], então

$$\inf_{x \in [a,b]} f(x) \neq \sup_{x \in [a,b]} f(x) \quad \Rightarrow \quad \forall y_0 \text{ que fica entre} \quad \inf_{x \in [a,b]} f(x) \text{ e } \sup_{x \in [a,b]} f(x), \quad \exists x_0 \in [a,b] : \quad f(x_0) = y_0$$

4.2 Propriedades locais das funções diferenciáveis

4.2.1 Interpretação geométrica da derivada

O valor da derivada $f'(x_0)$ é igual à tangente do ângulo formado pelo eixo dos x positivos e a recta tangente à curva representativa da função y = f(x) no ponto correspondente $(x_0, f(x_0))$. (Ver [1], pag. 76-77).

A equação da recta tangente à curva y = f(x) no ponto correspondente (x_0, y_0) , onde $y_0 = f(x_0)$, é

$$y - y_0 = f'(x_0)(x - x_0) (4.1)$$

4.2.2 Monotonia local

Teorema 77 (Condição suficiente de monotonia local) Seja y = f(x) uma função diferenciável numa vizinhança do ponto x_0 . Se $f'(x_0) \neq 0$, então existe uma δ -vizinhança do ponto x_0 tal que

4.2.3 Extremo local

Diz-se que a função y = f(x) tem um **máximo local no ponto** x_0 , se existe uma δ -vizinhança do ponto x_0 tal que

$$f(x_0) > f(x)$$
, $\forall x \in (x_0 - \delta, x_0 + \delta)$

Diz-se que a função y = f(x) tem um **mínimo local no ponto** x_0 , se existe uma δ -vizinhança do ponto x_0 tal que

$$f(x_0) < f(x)$$
, $\forall x \in (x_0 - \delta, x_0 + \delta)$

Chama-se máximo e mínimo duma função aos **extremos** ou aos **valores extremais** desta função.

Teorema 78 (Condição necessária de extremo local) Se a função y = f(x) for diferenciável no ponto x_0 e tiver um extremo neste ponto, então

$$f'(x_0) = 0$$

Aos pontos onde a derivada se anula chamam-se **pontos críticos.** $\frac{x+1}{x+2}$

4.3 Propriedades das funções diferenciáveis num intervalo

4.3.1 Maior e menor valor de uma função sobre um segmento

Seja y = f(x) uma função contínua no segmento fechado [a,b] e diferenciável no intervalo aberto (a,b). Vamos supor ainda que a função y = f(x) tem um conjunto finito de pontos críticos:

$$M = \{x_1, x_2, \cdots, x_m\}$$

Exercício 79 Calcule

$$\max_{x \in [a,b]} f(x) \quad e \quad \min_{x \in [a,b]} f(x)$$

Algoritmo de resolução:

- 1. Determinar $M = \{x_1, x_2, \dots, x_m\}$.
- 2. Calcular $\{f(a), f(b), f(x_1), f(x_2), \dots, f(x_m)\}$
- 3. $\max_{x \in [a,b]} f(x) = \max \{ f(a), f(b), f(x_1), f(x_2), \dots, f(x_m) \}$ e $\min f(x) = \min \{ f(a), f(b), f(x_1), f(x_2), \dots, f(x_m) \}$

Exercício 80 Calcule

$$\max_{x \in [-3,+3]} f(x) \quad e \quad \min_{x \in [-3,+3]} f(x),$$

onde

$$f(x) = x^3 - 3x^2 - 4$$

4.3.2 Zero da derivada

Teorema 81 (de Rolle) Se a função y = f(x) é contínua no segmento fechado [a,b] e diferenciável no intervalo aberto (a,b), então

$$f(a) = f(b) \Rightarrow \{ \exists x_0 \in (a, b) : f'(x_0) = 0 \}$$

4.3.3 Teorema dos acréscimos finitos

Teorema 82 (de Lagrange) Se a função y = f(x) é contínua no segmento fechado [a,b] e diferenciável no intervalo aberto (a,b), então

$$\exists x_0 \in (a,b) : f(b) - f(a) = f'(x_0)(b-a)$$

Vamos supor que a função y=f(x) satisfaz as condições do teorema de Lagrange e $c\in[a,b]$. Se $\Delta x>0$ é tal que $c+\Delta x\in[a,b]$, então a função y=f(x) satisfaz as condições do teorema de Lagrange no segmento $[c,c+\Delta x]$ e, portanto,

$$\exists x_c \in (c, c + \Delta x) : f(c + \Delta x) - f(c) = f'(x_c) \Delta x$$

ou

$$\exists x_c \in (c, c + \Delta x) : \Delta f(c) = f'(x_c) \Delta x$$

Por isso ao teorema de Lagrange também se chama teorema dos acréscimos finitos.

Corolário 83 Se a função y = f(x) é diferenciável no intervalo (a,b), então

$$f'(x) = 0, \forall x \in (a, b) \iff f(x) = Const., \forall x \in (a, b)$$

Aplicação às desigualdades

Exercício 84 Mostre que

- 1. $|\sin \alpha \sin \beta| \le |\alpha \beta|, \forall \alpha, \beta \in \mathbb{R};$
- 2. $|\cos \alpha \cos \beta| \le |\alpha \beta|, \forall \alpha, \beta \in \mathbb{R};$
- 3. $|\operatorname{arctg} A \operatorname{arctg} B| \le |A B|, \forall A, B \in \mathbb{R};$
- 4. $|\operatorname{tg} \alpha \operatorname{tg} \beta| \le 2 |\alpha \beta|, \ \forall \alpha, \beta \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$

4.3.4 Monotonia num intervalo

Teorema 85 Se a função y = f(x) é diferenciável no intervalo (a,b), então

$f'(x) \ge 0, \ \forall x \in (a, b)$	\Leftrightarrow	f(x) é uma função não decrescente	
$f'(x) \le 0, \ \forall x \in (a, b)$	\Leftrightarrow	f(x) é uma função não crescente	(4.2)
$f'(x) > 0, \ \forall x \in (a, b)$	\Rightarrow	f(x) é uma função crescente	(4.2)
$f'(x) < 0, \ \forall x \in (a, b)$	\Rightarrow	f(x) é uma função decrescente	

4.3.5 Relação entre o crescimento de duas funções

Teorema 86 (de Cauchy) Se as funções f(x) e g(x) são contínuas no segmento fechado [a,b], diferenciáveis no intervalo aberto (a,b) e $g'(x) \neq 0$, $\forall x \in (a,b)$, então

$$\exists x_0 \in (a,b): \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}$$

4.4 Regra de L'Hospital

4.4.1 Comparação de infinitamente pequenos

Sejam $\alpha(x)$ e $\beta(x)$ funções diferenciáveis nos conjuntos onde estão consideradas. Suponhamos que

$$\lim_{x \to a} \alpha(x) = \lim_{x \to a} \beta(x) = 0 \quad e \quad \beta'(x) \neq 0, \forall x$$

1. Então

$$\exists \lim_{x \to a} \frac{\alpha'(x)}{\beta'(x)} \quad \Longrightarrow \quad \exists \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} \quad e \quad \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to a} \frac{\alpha'(x)}{\beta'(x)}$$

2. Se as funções $\alpha'(x)$ e $\beta'(x)$ são contínuas no ponto a e $\beta'(a) \neq 0$, então

$$\exists \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} \quad e \quad \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \frac{\alpha'(a)}{\beta'(a)}$$

3. Se as funções $\alpha'(x)$ e $\beta'(x)$ satisfazem as mesmas condições do que as funções $\alpha(x)$ e $\beta(x)$, então

$$\exists \lim_{x \to a} \frac{\alpha''(x)}{\beta''(x)} \implies \exists \lim_{x \to a} \frac{\alpha'(x)}{\beta'(x)} \implies \exists \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} \quad \text{e} \quad \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to a} \frac{\alpha'(x)}{\beta'(x)} = \lim_{x \to a} \frac{\alpha''(x)}{\beta''(x)}$$

E assim por diante.

4. Resultados análogos têm lugar nos casos $a=+\infty$ ou $a=-\infty$.

Por exemplo,

$$\exists \lim_{x \to +\infty} \frac{\alpha'(x)}{\beta'(x)} \implies \exists \lim_{x \to +\infty} \frac{\alpha(x)}{\beta(x)} \quad e \quad \lim_{x \to +\infty} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to +\infty} \frac{\alpha'(x)}{\beta'(x)}$$

ou

$$\exists \lim_{x \to +\infty} \frac{\alpha''(x)}{\beta''(x)} \implies \exists \lim_{x \to +\infty} \frac{\alpha'(x)}{\beta'(x)} \implies \exists \lim_{x \to +\infty} \frac{\alpha(x)}{\beta(x)} \quad \text{e} \quad \lim_{x \to +\infty} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to +\infty} \frac{\alpha''(x)}{\beta'(x)} = \lim_{x \to +\infty} \frac{\alpha''(x)}{\beta''(x)} = \lim_{x \to +\infty} \frac{\alpha''(x)}{\beta''(x)$$

4.4.2 Comparação de infinitamente grandes

Sejam f(x) e g(x) funções diferenciáveis nos conjuntos onde estão consideradas. Suponhamos que

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty \quad \text{e} \quad g'(x) \neq 0, \forall x$$

1. Então

$$\exists \lim_{x \to a} \frac{f'(x)}{g'(x)} \implies \exists \lim_{x \to a} \frac{f(x)}{g(x)} \quad e \quad \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

2. Se as funções f'(x) e g'(x) satisfizerem as mesmas condições que as funções f(x) e g(x), então

$$\exists \lim_{x \to a} \frac{f''(x)}{g''(x)} \implies \exists \lim_{x \to a} \frac{f'(x)}{g'(x)} \implies \exists \lim_{x \to a} \frac{f(x)}{g(x)} \quad \text{e} \quad \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f''(x)}{g''(x)}$$

E assim por diante.

3. Resultados análogos têm lugar nos casos $a = +\infty$ ou $a = -\infty$. Por exemplo,

$$\exists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} \implies \exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} \quad e \quad \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

ou

$$\exists \lim_{x \to +\infty} \frac{f''(x)}{g''(x)} \quad \Longrightarrow \quad \exists \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} \quad \Longrightarrow \quad \exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} \quad \text{e} \quad \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to +\infty} \frac{f''(x)}{g''(x)} = \lim_{x \to +\infty} \frac{f''(x)}$$

4.4.3 Eliminação das indeterminações do tipo

$$0 \cdot \infty, \quad \infty - \infty, \quad 1^{\infty}, \quad 0^0, \quad \infty^0$$
 (4.3)

Todas as indeterminações deste tipo reduzem-se a indeterminações do tipo

$$\frac{0}{0}$$
 ou $\frac{\infty}{\infty}$

Por outras palavras, as indeterminações do tipo (4.3) reduzam-se à comparação de funções infinitamente pequenas ou infinitamente grandes.

1.
$$0 \cdot \infty \mapsto \frac{0}{0} \text{ ou } \frac{\infty}{\infty}$$

$$\lim_{x \to a} f(x) = 0 \text{ e } \lim_{x \to a} g(x) = \infty \Rightarrow$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} \frac{f(x)}{[g(x)]^{-1}} \quad \Rightarrow \quad \frac{0}{0}$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} \frac{g(x)}{[f(x)]^{-1}} \quad \Rightarrow \quad \frac{\infty}{\infty}$$

$$2. \quad \infty - \infty \quad \mapsto \quad 0 \cdot \infty$$

$$\lim_{x\to a} f(x) = \infty$$
, $\lim_{x\to a} g(x) = \infty$ e $\lim_{x\to a} \frac{f(x)}{g(x)} = 1 \Rightarrow$

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} \left[\frac{f(x)}{g(x)} - 1 \right] g(x) \quad \Rightarrow \quad 0 \cdot \infty$$

$$3. 1^{\infty} \mapsto 0 \cdot \infty$$

$$\lim_{x \to a} f(x) = 1, \lim_{x \to a} g(x) = \infty \text{ e } y = [f(x)]^{g(x)} \Rightarrow \left\{ \lim_{x \to a} [f(x)]^{g(x)} \sim 1^{\infty} \right\}$$

$$\lim_{x \to a} \ln y = \lim_{x \to a} g(x) \ln [f(x)] \Rightarrow 0 \cdot \infty$$

$$4. \quad 0^0 \quad \mapsto \quad 0 \cdot \infty$$

$$\lim_{x \to a} f(x) = 0, \lim_{x \to a} g(x) = 0 \text{ e } y = [f(x)]^{g(x)} \Rightarrow \left\{ \lim_{x \to a} [f(x)]^{g(x)} \sim 0^0 \right\}$$

$$\lim_{x \to a} \ln y = \lim_{x \to a} g(x) \ln [f(x)] \Rightarrow 0 \cdot \infty$$

5.
$$\infty^0 \mapsto 0 \cdot \infty$$

$$\lim_{x \to a} f(x) = \infty, \lim_{x \to a} g(x) = 0 \text{ e } y = [f(x)]^{g(x)} \Rightarrow \left\{ \lim_{x \to a} [f(x)]^{g(x)} \sim \infty^0 \right\}$$

$$\lim_{x \to a} \ln y = \lim_{x \to a} g(x) \ln [f(x)] \quad \Rightarrow \quad 0 \cdot \infty$$

4.5 Assímptotas

Diz-se que a recta x = a é uma assímptota vertical da curva y = f(x), se pelo menos um dos limites

$$\lim_{x \to a-0} f(x) \text{ ou } \lim_{x \to a+0} f(x)$$

é igual a $+\infty$ ou $-\infty$.

Diz-se que a recta y = mx + b é uma **assímptota oblíqua** da curva y = f(x) **quando** $x \to +\infty$, se a função f(x) pode ser representada na forma:

$$f(x) = mx + b + \alpha(x),$$

onde $\alpha(x)$ é infinitamente pequena quando $x \to +\infty$.

Diz-se que a recta y = mx + b é uma **assímptota oblíqua** da curva y = f(x) **quando** $x \to -\infty$, se a função f(x) pode ser representada na forma:

$$f(x) = mx + b + \alpha(x),$$

onde $\alpha(x)$ é infinitamente pequena quando $x \to -\infty$.

Teorema 87 A curva y = f(x) tem uma assímptota oblíqua y = mx + b quando $x \to +\infty$ sse

$$\lim_{x \to +\infty} \frac{f(x)}{x} = m \quad e \quad \lim_{x \to +\infty} [f(x) - mx] = b$$

Teorema 88 A curva y = f(x) tem uma assímptota oblíqua y = mx + b quando $x \to -\infty$ sse

$$\lim_{x \to -\infty} \frac{f(x)}{x} = m \quad e \quad \lim_{x \to -\infty} [f(x) - mx] = b$$

4.6 Fórmula de Taylor

Definições.

Seja y = f(x) uma função que tem todas as derivadas até à ordem n+1 inclusivamente numa vizinhança do ponto a. À igualdade

$$f(x) = f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n + R_n(x)$$
(4.4)

chama-se **fórmula de Taylor.** À função $R_n(x)$ chama-se **resto.** O polinómio

$$P_n(x) = f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$$
(4.5)

satisfaz as seguintes igualdades:

$$P_n(a) = f(a); P'_n(a) = f'(a); P''_n(a) = f''(a); \cdots P_n^{(n)}(a) = f^{(n)}(a)$$
 (4.6)

Para cada x fixo, é possível escrever o resto $R_n(x)$ na forma:

$$R_n(x) = \frac{1}{(n+1)!} (x-a)^{n+1} f^{(n)}(c), \tag{4.7}$$

onde c é um número compreendido entre os números a e x. À igualdade (4.7) chama-se a fórmula de Lagrange.

Existem outras fórmulas para o resto $R_n(x)$.

É importante notar que o resto $R_n(x)$ é uma função infinitamente pequena quando $x \to a$ de ordem superior em relação a $(x-a)^n$. Este facto traduz-se na forma:

$$R_n(x) = o\left[\left(x - a\right)^n\right]$$

(Fórmula de Peano).

No caso particular, quando a=0 à fórmula (4.4) chama-se a **fórmula de Maclaurin:**

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(a)}{2!}x^2 + \dots + \frac{f^{(n)}(a)}{n!}x^n + R_n(x)$$

Desenvolvimento de algumas funções elementares pela fórmula de Maclaurin com o resto na forma de Lagrange

A fórmula de Maclaurin com o resto na forma de Lagrange é

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{1}{(n+1)!}x^{n+1}f^{(n)}(\theta x),$$

onde θ está compreendido entre 0 e 1.

1.
$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n + \frac{e^{\theta x}}{(n+1)!}x^{n+1};$$

2.
$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots + \frac{\sin\frac{n\pi}{2}}{n!}x^n + \frac{\sin\left[\theta x + \frac{(n+1)\pi}{2}\right]}{(n+1)!}x^{n+1};$$

3.
$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \dots + \frac{\cos\frac{n\pi}{2}}{n!}x^n + \frac{\cos\left[\theta x + \frac{(n+1)\pi}{2}\right]}{(n+1)!}x^{n+1};$$

$$\beta = o\left(\alpha\right)$$

O símbolo $\,o$ lê-se: o- pequeno.

 $^{^{1}\}mathrm{O}$ facto que α é infinitamente pequena de ordem superior em relação a β simbolicamente escreve-se na forma

4.7 Estudo da variação das funções

4.7.1 Pontos de extremo

Primeira condição suficiente do extremo

Vamos considerar uma função y = f(x) que é diferenciável numa δ -vizinhança do ponto x_0 e $f'(x_0) = 0$, i.e., o ponto x_0 é crítico. De acordo com (4.2) temos que

Portanto,

$$\begin{cases} f'(x) > 0, \forall x \in (x_0 - \delta, x_0) \\ f'(x) < 0, \forall x \in (x_0, x_0 + \delta) \end{cases} \Longrightarrow f(x) \text{ admite } \mathbf{máximo local no ponto } x_0$$

Analogamente,

Portanto,

$$f'(x) < 0, \forall x \in (x_0 - \delta, x_0)$$

 $f'(x) > 0, \forall x \in (x_0, x_0 + \delta)$ $\Longrightarrow f(x)$ admite **mínimo local** no ponto x_0

Notamos que neste raciocínio para concluir que a função tem extremo local no ponto x_0 usa-se só o facto da derivada mudar de sinal quando atravessa o ponto x_0 . No próprio ponto x_0 a derivada pode simplesmente não existir.

No caso da função ser diferenciável numa δ -vizinhança do ponto x_0 excepto o ponto x_0 , ao ponto x_0 também se chama **ponto crítico** da função.

Teorema 89 Se y = f(x) é uma função diferenciável numa δ -vizinhança do ponto x_0 é x_0 é ponto crítico da função, então x_0 é um ponto extremo local sse a derivada muda de sinal quando atravessa o ponto x_0 .

Segunda condição suficiente do extremo

Teorema 90 Se a função y = f(x) é diferenciável numa δ -vizinhança do ponto x_0 , $f'(x_0) = 0$ e existe segunda derivada finita $f''(x_0)$, então

$$f''(x_0) < 0 \implies f(x)$$
 admite **máximo local** no ponto x_0
 $f''(x_0) > 0 \implies f(x)$ admite **mínimo local** no ponto x_0

4.7.2 Convexidade e concavidade das curvas

Vamos considerar a função y = f(x) diferenciável no intervalo (a, b).

O gráfico da função y = f(x) tem tangente em qualquer ponto (x_0, y_0) , onde $y_0 = f(x_0)$, $x_0 \in (a, b)$:

$$y - y_0 = f'(x_0)(x - x_0)$$

E, além disso, cada uma destas tangentes não é vertical.

Diz-se que a curva tem a sua **convexidade orientada para cima** (ou **voltada no sentido dos** y **positivos**) no intervalo (a,b), se todos os pontos da curva se encontram abaixo do gráfico da tangente em qualquer um dos pontos desta curva nesse intervalo. Neste caso à **curva** chama-se **convexa no intervalo** (a,b).

Diz-se que a curva tem a sua **convexidade orientada para baixo** (ou **voltada no sentido dos** y **negativos**) no intervalo (a,b), se todos os pontos da curva se encontram acima do gráfico da tangente em qualquer um dos pontos desta curva nesse intervalo. Neste caso à **curva** chama-se **côncava no intervalo** (a,b).

Teorema 91 Se a função y = f(x) tem segunda derivada finita f''(x) no intervalo (a,b), então

$$f''(x) \le 0, \ \forall x \in (a,b) \implies curva \ convexa$$

 $f''(x) \ge 0, \ \forall x \in (a,b) \implies curva \ concava$

4.7.3 Pontos de inflexão

Chama-se **ponto de inflexão** ao ponto que separa a parte convexa duma curva contínua da sua parte côncava.

Num ponto de inflexão a tangente atravessa a curva, visto que dum lado deste ponto a curva está disposta por baixo da tangente e no outro lado por cima.

Nos teoremas a seguir denotamos: $y_0 = f(x_0)$.

Teorema 92 Se (x_0, y_0) é ponto de inflexão do gráfico da função y = f(x) e a função tem segunda derivada finita $f''(x_0)$, então

$$f''(x_0) = 0$$

Teorema 93 Se a função y = f(x) tem segunda derivada finita f''(x) numa δ -vizinhança do ponto x_0 , $f''(x_0) = 0$ e a segunda derivada f''(x) muda de sinal quando atravessa o ponto x_0 , então (x_0, y_0) é um ponto de inflexão do gráfico da função y = f(x).

4.7.4 Esquema geral da construção dos gráficos

Seja y = f(x) uma função real de uma variável real.

Para construir o grafico da função y = f(x) temos que

- 1. Determinar o domínio natural da função.
- 2. Determinar (se existem) as assímptotas.
- 3. Determinar os pontos críticos, os intervalos de crescimento e decrescimento e os pontos de extremo local.

4. Determinar os intervalos de convexidade e de concavidade e os pontos de inflexão do grafico.

Exemplo 94
$$f(x) = \frac{x^2}{x+1}$$

- 1. dom $f = \mathbb{R} \setminus \{-1\}$;
- 2. $\lim_{x\to -1+0} f(x) = +\infty$ $e \lim_{x\to -1-0} f(x) = -\infty \implies x = -1$ \acute{e} uma assimptota vertical. $\lim_{x\to \infty} \frac{f(x)}{x} = 1$ $e \lim_{x\to \infty} [f(x) x] = -1 \implies y = x 1$ \acute{e} uma assimptota obliqua.

3.
$$f'(x) = \frac{x^2 + 2x}{(x+1)^2} = \frac{x(x+2)}{(x+1)^2} \Longrightarrow$$

In	tervalo	$(-\infty, -2)$	(-2, -1)	(-1,0)	$(0,+\infty)$
Si	fnal da $f'(x)$	+	_	_	+
	Comportamento la função	cresce	decresce	decresce	cresce

Pontos	-2	0
Extremo	$m\'aximo$	mí n i m o

4.
$$f''(x) = \frac{2}{(x+1)^3} \Longrightarrow$$

Intervalo	$(-\infty, -1)$	$(-1, +\infty)$	
Sinal da $f''(x)$	_	+	
Comportamento	curva convexa	curva côncava	
do grafico			

Bibliografia:

- 1. N. Piskounov, Cálculo diferencial e integral, volume 1.
- 2. Problemas e exercícios de análise matemática, Sob a redação de Demidovitch.