RWorksheet_Aguas#6

Diana Marie Aguas

2022-11-30

```
library(dplyr)

##

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##

## filter, lag

## The following objects are masked from 'package:base':

##

## intersect, setdiff, setequal, union

library(ggplot2)

data(mpg)
dataA <- as.data.frame(mpg)</pre>
```

1. How many columns are in mpg dataset? How about the number of rows? Show the codes and its result. #Ans: The mpg dataset has 234 rows and 11 colums.

```
rowncol <- c(nrow(mpg), ncol(mpg))
rowncol</pre>
```

```
## [1] 234 11
```

2. Which manufacturer has the most models in this data set? Which model has the most variations? Ans: The manufacturer that has the most model in this data set is dodge with the model caravan 2wd

```
carvar <- dataA %>% group_by(manufacturer, model) %>%
  count()
carvar
```

```
## # A tibble: 38 x 3
## # Groups:
               manufacturer, model [38]
##
      manufacturer model
##
      <chr>
                   <chr>
                                       <int>
##
    1 audi
                   a4
                                            8
##
    2 audi
                   a4 quattro
   3 audi
                   a6 quattro
                                            3
##
                                            5
  4 chevrolet
                   c1500 suburban 2wd
   5 chevrolet
                                            5
##
                   corvette
## 6 chevrolet
                   k1500 tahoe 4wd
                                            4
## 7 chevrolet
                   malibu
## 8 dodge
                   caravan 2wd
                                          11
## 9 dodge
                   dakota pickup 4wd
                                            9
                                            7
## 10 dodge
                   durango 4wd
```

```
## # ... with 28 more rows
```

```
colnames(carvar) <- c("Manufacturer", "Model", "Counts")</pre>
```

a. Group the manufacturers and find the unique models. Copy the codes and result.

```
uniquemodels <- dataA %>% group_by(manufacturer, model) %>%
  distinct() %>% count()
uniquemodels
```

```
## # A tibble: 38 x 3
   # Groups:
               manufacturer, model [38]
##
      manufacturer model
                                             n
                    <chr>
##
      <chr>
                                         <int>
##
    1 audi
                    a4
                                             7
##
    2 audi
                    a4 quattro
                                             8
##
    3 audi
                    a6 quattro
                                             3
##
    4 chevrolet
                    c1500 suburban 2wd
                                             4
##
    5 chevrolet
                                             5
                    corvette
    6 chevrolet
                    k1500 tahoe 4wd
                                             4
##
    7 chevrolet
                    malibu
                                             5
##
    8 dodge
                    caravan 2wd
                                             9
    9 dodge
                                             8
##
                    dakota pickup 4wd
## 10 dodge
                    durango 4wd
                                             6
## # ... with 28 more rows
```

```
colnames(uniquemodels) <- c("Manufacturers", "Model", "Counts")</pre>
```

b. Graph the result by using plot() and ggplot(). Write the codes and its result.

plot(carvar)

3. Same data set will be used. You are going to show the relationship of the model and the manufacturer.

```
modnmanuf <- mpg
modelfact <- modnmanuf %>% group_by(manufacturer, model) %>%
  distinct() %>% count()
modelfact
```

```
## # A tibble: 38 x 3
## # Groups: manufacturer, model [38]
##
      manufacturer model
                                           n
##
      <chr>
                   <chr>
                                       <int>
##
    1 audi
                   a4
                                           7
##
    2 audi
                   a4 quattro
    3 audi
                   a6 quattro
                                           3
##
##
   4 chevrolet
                   c1500 suburban 2wd
##
   5 chevrolet
                   corvette
  6 chevrolet
                   k1500 tahoe 4wd
                                           4
##
   7 chevrolet
                   malibu
                                           5
    8 dodge
                   caravan 2wd
                                           9
##
  9 dodge
                   dakota pickup 4wd
                                           8
## 10 dodge
                   durango 4wd
                                           6
## # ... with 28 more rows
colnames(modelfact) <- c("Manufacturer", "Model")</pre>
```

```
modelfact
```

```
## # A tibble: 38 x 3
               Manufacturer, Model [38]
##
   # Groups:
##
      Manufacturer Model
                    <chr>
##
      <chr>
                                         <int>
##
    1 audi
                    a4
                                             7
    2 audi
                    a4 quattro
                                             8
##
    3 audi
                    a6 quattro
                                             3
##
                    c1500 suburban 2wd
                                             4
##
    4 chevrolet
##
    5 chevrolet
                    corvette
                                             5
    6 chevrolet
                    k1500 tahoe 4wd
                                             4
##
##
    7 chevrolet
                    malibu
                                             5
                                             9
##
    8 dodge
                    caravan 2wd
    9 dodge
                                             8
##
                    dakota pickup 4wd
## 10 dodge
                    durango 4wd
                                             6
## # ... with 28 more rows
```

a. What does ggplot(mpg, aes(model, manufacturer)) + geom_point() show?

b. For you, is it useful? If not, how could you modify the data to make it more informative?

- it is useful, yes, but using legend would be very much useful to summarize the data.

4. Using the pipe (%>%), group the model and get the number of cars per model. Show codes and its result.

```
group_mod <- dataA %>% group_by(model) %>% count()
group_mod
```

```
## # A tibble: 38 x 2
## # Groups: model [38]
      model
##
##
      <chr>
                         <int>
##
   1 4runner 4wd
## 2 a4
                             7
## 3 a4 quattro
## 4 a6 quattro
                             3
## 5 altima
                             6
## 6 c1500 suburban 2wd
                             5
## 7 camry
                             7
                             7
## 8 camry solara
## 9 caravan 2wd
                            11
## 10 civic
                             9
## # ... with 28 more rows
colnames(group_mod) <- c("Model", "Counts")</pre>
group_mod
## # A tibble: 38 x 2
## # Groups: Model [38]
     Model
##
                         Counts
##
      <chr>>
                          <int>
## 1 4runner 4wd
                              6
## 2 a4
                              7
## 3 a4 quattro
                              8
                              3
## 4 a6 quattro
## 5 altima
                              6
## 6 c1500 suburban 2wd
                              5
## 7 camry
                              7
## 8 camry solara
                              7
## 9 caravan 2wd
                             11
## 10 civic
                              9
## # ... with 28 more rows
  a. Plot using the geom_bar() + coord_flip() just like what is shown below. Show codes and its result.
qplot(model,data = mpg,main = "Number of Cars per Model", ylab = "Number of Cars",
      xlab = "Model", geom = "bar", fill = manufacturer) +
  coord_flip()
```

Warning: `qplot()` was deprecated in ggplot2 3.4.0.

b. Use only the top 20 observations. Show code and results.

twenty <- group_mod[1:20,] %>% top_n(2)

Selecting by Counts

twenty

A tibble: 20 x 2 ## # Groups: Model [20] ## Model Counts <chr> ## <int> ## 1 4runner 4wd 6 7 ## 2 a4 8 ## 3 a4 quattro ## 4 a6 quattro 3 5 altima 6 ## ## 6 c1500 suburban 2wd 5 7 ## 7 camry 7 8 camry solara ## 9 caravan 2wd 11 ## 10 civic 9 5 ## 11 corolla ## 12 corvette 5 ## 13 dakota pickup 4wd 9 ## 14 durango 4wd 7 ## 15 expedition 2wd 3 6 ## 16 explorer 4wd

```
## 17 f150 pickup 4wd 7
## 18 forester awd 6
## 19 grand cherokee 4wd 8
## 20 grand prix 5
ggplot(twenty, aes(x = Model, y = Counts)) +
   geom_bar(stat = "identity") + coord_flip()
```


- 5. Plot the relationship between cyl number of cylinders and displ engine displacement using geom_point with aesthetic colour = engine displacement. Title should be "Relationship between No. of Cylinders and Engine Displacement".
- a. Show the codes and its result.

How would you describe its relationship?

- cyl is the y in the chart which stands for the number of cylinders and displ is the x/engine displacement.

- 6. Get the total number of observations for drv type of drive train (f = front-wheel drive, r = rear wheel drive, 4 = 4wd) and class type of class (Example: suv, 2seater, etc.). Plot using the geom_tile() where the number of observations for class be used as a fill for aesthetics.
- a. Show the codes and its result for the narrative in #6.

```
ggplot(data = mpg, mapping = aes(x = drv, y = class)) + geom_tile(aes(fill=class))
```


- b. Interpret the result.
- $geom_tile()$ with fill makes it easier to navigate through the chart and identify class(y axis) and drive trains(drv- x axis)
 - 7. Discuss the difference between these codes. Its outputs for each are shown below.

• Code #1

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, colour = "blue"))
```


• Code #2

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), colour = "blue")
```


Try to run the command? mpg. What is the result of this command?

?mpg

- It showed the dataset that cointains a subset of the fuel economy data from 1999 to 2008 for 38 popular model cars.

- a. Which variables from mpg dataset are categorical?
- Manufacturer trans ,model, drv, fl, and class
 - b. Which are continuous variables?
- displ, cyl, and hwy
 - c. Plot the relationship between displ (engine displacement) and hwy(highway miles per gallon). Mapped it with a continuous variable you have identified in #5-b. What is its result? Why it produced such output?

9. Plot the relationship between displ (engine displacement) and hwy(highway miles per gallon) using geom_point(). Add a trend line over the existing plot using geom_smooth() with se = FALSE. Default method is "loess".

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
  geom_point(mapping=aes(color=class)) +
  geom_smooth(se = FALSE)
```

$geom_smooth()$ using method = 'loess' and formula = 'y ~ x'

10. Using the relationship of displ and hwy, add a trend line over existing plot. Set these = FALSE to remove the confidence interval and method = lm to check for linear modeling.

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = class)) + geom_point() +
geom_smooth(se = FALSE, method = lm)
```

`geom_smooth()` using formula = 'y ~ x'

