METODY OPTYMALIZACJI — LABORATORIUM 2

Adrian Mucha, Politechnika Wrocławska

03/05/2020

1 Chmura rozproszonych danych

1.1 Model

Dane są następujące parametry:

- T_j wektor zawierający czasy potrzebne na przeszukanie j-tego serwera.
- q_{ij} macierz zawierająca informację o tym, które cechy i zawiera j-ty serwer (1 obecność informacji, 0 brak informacji).
- k ilość serwerów (wnioskowana na podstawie wektora T_i)
- n ilość cech (wnioskowana na podstawie wektora q_{ij})

1.1.1 Zmienne decyzyjne

Zmienną decyzyjną jest wektor \mathbf{x} o długości k odpowiadającej liczności serwerów. Wektor decyduje czy w ostatecznym przeszukiwaniu uwzględniany jest j-ty serwer ($x_j = 1$) czy nie ($x_j = 0$).

1.1.2 Ograniczenia

Przynajmniej jeden wybrany serwer j zawiera dostęp do cechy i-tej

$$\forall_{i \in [n]} (\sum_{j=1}^{k} x_j \cdot q_{ij} \ge 1)$$

1.1.3 Funkcja kosztu

Dążymi do minimalizowania czasów dostępu do wszystkich serwerów tak aby odczytać wszystkie cechy. Koszt opisuje następująca funkcja

$$f(T,x) = \min \sum_{j=1}^{k} T_j \cdot x_j$$

1.2 Przykładowe dane

Dla następujących danych:

•
$$T = [1, 2, 5, 5]$$

Laboratorium 2 Page 1

$$\bullet \ q = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

solver GLPK znalazł następujące rozwiązanie o koszcie f(T,x)=6

$$x = [1, 0, 0, 1]$$

2 Biblioteka podprogramów

2.1 Model

Dane są następujące parametry, znajdź optymalny zestaw podprogramów P_{ij} rozwiązujący program P składający się z funkcji I minimalizując czas przy jednoczesnym ograniczeniu pamięci:

- m ilość funkcji
- n ilość podprogramów
- M górne ograniczenie pamięci programu P
- P_{ij} biblioteka j-tych podprogramów obliczających i-tą funkcję, $i \in [m], j \in [n]$
- r_{ij} pamięć zużywana przez podprogram P_{ij}
- t_{ij} czas wykonania podprogramu P_{ij}
- $I\subseteq\{1,\ldots,m\}$ funkcje składające się na program P

2.1.1 Zmienne decyzyjne

Zmienną decyzyjną jest wektor \mathbf{x} o wymiarach $m \times n$ przechowującą informację o wykorzystanych podprogramach w celu wykonania programu P. Mianowicie $x_{ij}=1$ oznacza wykorzystanie podprogramu P_{ij} do obliczenia i-tej funkcji, oraz $x_{ij}=0$ w p.p.

2.1.2 Ograniczenia

Uwzględniaj tylko zlecone funkcje, jeden podprogram na funkcję

$$\forall_{i \in I} \sum_{j=1}^{n} x_{ij} = 1$$

• Nie wykorzystaj więcej pamięci niż M podczas całej pracy programu P

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} \cdot r_{ij} \le M$$

Laboratorium 2 Page 2

2.1.3 Funkcja kosztu

Minimalizujemy czas pracy programu P

$$f(t,x) = \min \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} \cdot t_{ij}$$

2.2 Przykładowe dane

Dla parametrów

- m = 3
- n = 4
- M = 10
- I = [1, 3]

wygenerowano bibliotekę funkcji P_{ij} w następujący sposób

$$r_{ij} = i \cdot j, \quad t_{ij} = \left| \frac{100}{r_{ij}} \right|$$

solver GLPK znalazł następujące rozwiązanie o koszcie (czasie) f(T,x)=41

$$x = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$