### Министерство образования Республики Беларусь Учреждение Образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электроники

Лабораторная работа № 2-3 «Исследование биполярных транзисторов»

Проверил: ассист. кафедры электроники Стома С.С.

Выполнили: ст. гр. 950503 Потапович А.Д. Полховский А.Ф. Лайло В.В.

#### 1 Цель работы:

Изучить, режим работы, принцип действия, схемы включения и классификацию биполярных транзисторов (БТ). Экспериментально исследовать статические вольт-амперные характеристики (ВАХ) транзисторов и рассчитать дифференциальные параметры в заданной рабочей точке.

#### 2 Ход работы:

#### 2.1 Исследование входных характеристик БТ в схеме с общей базой (ОБ)

Для исследования характеристик БТ собрана цепь по схеме, представленной на рисунке 1.



Рисунок 1 – Схема исследования входных характеристик БТ в схеме с ОБ

Семейство входных характеристик БТ в схеме с ОБ  $I_9 = f(U_96)$  измерено для двух фиксированных значений напряжения коллектора-база  $U_86 = 1, 10B$ . Результаты исследований занесены в таблицу 1 и таблицу 2 соответственно.

Таблица 1 — Результаты измерения входной характеристики БТ (изменять значение  $U_{\text{пит}1}$ ) Іэ = f(Uэб), при фиксированном значении Uпит2 = Uк6 = 1В

| Ік, мА | 0              | 0,1+0,05 | $0,5\pm0,1$ | 1±0,1  | 2±0,1  | 3±0,1  |
|--------|----------------|----------|-------------|--------|--------|--------|
| Uэб, В | 0              | 0,5327   | 0,5747      | 0,5884 | 0,6083 | 0,618  |
| Іэ, мА | 0              | 0,106    | 0,551       | 0,949  | 2,061  | 3,044  |
| Ік, мА | 4 <u>±</u> 0,1 | 5±0,1    | 6±0,1       | 7±0,1  | 8±0,1  | 9±0,1  |
| Uэб, В | 0,6265         | 0,6320   | 0,6365      | 0,6401 | 0,6434 | 0,6463 |
| Іэ, мА | 4,071          | 5,055    | 6,084       | 7,069  | 8,097  | 9,079  |

Таблица 2 — Результаты измерения входной характеристики БТ (изменять значение  $U_{\text{пит}1}$ ) Іэ = f(Uэб), при фиксированном значении Uпит2 = Uк6 = 10В

| Ік, мА         | 0              | 0,1+0,05 | $0,5\pm0,1$ | 1 <u>±</u> 0,1 | 2±0,1  | 3±0,1  |
|----------------|----------------|----------|-------------|----------------|--------|--------|
| Uэб, В         | 0              | 0,5263   | 0,5641      | 0,5790         | 0,5955 | 0,6033 |
| Іэ, мА         | 0              | 0,105    | 0,517       | 1,005          | 2,028  | 3,057  |
| Ік, мА         | 4 <u>±</u> 0,1 | 5±0,1    | 6±0,1       | 7±0,1          | 8±0,1  | 9±0,1  |
| <b>Ú</b> эб, В | 0,6079         | 0,6114   | 0,6145      | 0,6175         | 0,620  | 0,632  |
| Іэ, мА         | 4,038          | 5,069    | 6,052       | 7,014          | 8,065  | 9,083  |

# 2.2 Исследование выходных характеристик БТ в схеме с общей базой (OБ)

Семейство выходных характеристик  $I_K=f(U_K \delta)$  измерено для двух фиксированных значений входного тока эмиттера  $I_3=3$ , 9 мА. Результаты исследований занесены в таблицу 3 и таблицу 4 соответственно.

| <b>Uкб</b> , В          | 10     | 9      | 8      | 7      | 6      | 5      | 4      |
|-------------------------|--------|--------|--------|--------|--------|--------|--------|
| Ік, мА                  | 2,978  | 2,978  | 2,977  | 2,977  | 2,976  | 2,976  | 2,975  |
| Uэб, В                  | 0,6089 | 0,6092 | 0,6095 | 0,6102 | 0,6112 | 0,6112 | 0,6126 |
| <b>Uкб</b> , В          | 2      | 2      | 1      | 0.6    | 0.2    | Λ 1    | 0.01   |
| UKU, D                  | 3      | 2      | 1      | 0,6    | 0,3    | 0,1    | 0,01   |
| <u>Ско, в</u><br>Ік, мА | 2,975  | 2,975  | 2,974  | 2,974  | 2,974  | 2,973  | 2,973  |

Таблица 4 — Результаты измерения (изменять значение  $U_{\text{пит}2}$ ) выходной характеристики БТ  $I\kappa = f(U\kappa\delta)$ , при фиксированном значении  $I\mathfrak{g} = 9\mathsf{m}\mathsf{A}$ 

| <b>Uкб</b> , В | 10     | 9      | 8      | 7      | 6      | 5      | 4      |
|----------------|--------|--------|--------|--------|--------|--------|--------|
| Ік, мА         | 8,941  | 8,940  | 8,939  | 8,937  | 8,935  | 8,933  | 8,931  |
| Uэб, В         | 0,6285 | 0,6311 | 0,6331 | 0,6350 | 0,6368 | 0,6387 | 0,6411 |
| Uкб, В         | 3      | 2      | 1      | 0,6    | 0,3    | 0,1    | 0,01   |
| Ік, мА         | 8,931  | 8,928  | 8,927  | 8,927  | 8,927  | 8,927  | 8,927  |
| Uэб, В         | 0,6430 | 0,6452 | 0,6463 | 0,6469 | 0,6473 | 0,6476 | 0,6478 |

# 2.3 Исследование генератора синусоидальных сигналов на основе биполярного транзистора в схеме с общей базой

Генераторы представляют собой устройства, преобразовывающие энергию питающего их источника постоянного напряжения в периодические колебания различной формы, определенные собственной схемой генератора. На рисунке 2 представлен генератор на биполярном транзисторе типа «емкостная трехточка», генерирующего синусоидальные сигналы. Рабочая частота данного генератора определяется колебательным контуром, образованным С1, С2 и L1.



Рисунок 2 – Генератор на основе биполярного транзистора

Для исследования параметров генератора собрана схема (рисунок 2). Напряжение питания генератора — 10В. Для оценки параметров выходного сигнала подключен канал A (1) осциллографа (Осц, рисунок 2).

Амплитуда выходного сигнала без нагрузки составила  $\mathbf{U}_{xx} = \mathbf{8.8} \ \mathbf{B}$ .

Амплитуда выходного сигнала с подключенной на выходе нагрузкой  $\mathbf{R}$  нагр =  $\mathbf{10}$  к $\mathbf{O}$ м (параллельно осциллографу) составила  $\mathbf{U}_{\text{H}} = \mathbf{4} \ \mathbf{B}$ .

Частота выходного сигнала составила  $f = 1,653 \ \kappa \Gamma \mu$ .

Выходное сопротивление генератора рассчитали по формуле:

Rвых = Rнагр\* 
$$\left(\frac{U_{XX}}{U_{H}}-1\right)$$
 = 12 кОм.

### 2.4 Результаты экспериментальных исследований

По результатам измерений БТ в схеме с ОБ построены графики входных, выходных, передаточных характеристик БТ (рисунки 3, 4, 5, 6).



Рисунок 3 — Входные характеристики БТ в Рисунок 4 — Выходные характеристики БТ в схеме с ОБ схеме с ОБ



Рисунок 5 — Характеристики прямой передачи БТ в схеме с ОБ

Рисунок 6 – Характеристики обратной передачи БТ в схеме с ОБ

#### 2.5 Расчет дифференциальных параметров БТ в схеме с ОБ

По построенным графикам характеристик БТ в схеме с ОБ рассчитаны его дифференциальные параметры в окрестностях рабочей точки  $I_9 = 9$  мA,  $U_K G = 10B$ .

$$h_{11\mathrm{B}} = \frac{\Delta U_{9\mathrm{B}}}{\Delta I_{9}} = \frac{U_{9\mathrm{B}}" - U_{9\mathrm{B}}'}{I_{9}" - I_{9}'} = \frac{0.632 - 0.6145}{(9.083 - 6.052) \cdot 10^{-3}} = 5.7 \text{ OM}$$

$$h_{12\mathrm{B}} = \frac{\Delta U_{9\mathrm{B}}}{\Delta U_{\mathrm{EK}}} = \frac{U_{9\mathrm{B}}" - U_{9\mathrm{B}0}}{U_{\mathrm{EK}}" - U_{\mathrm{EK}}'} = \frac{0.6463 - 0.6285}{1 - 10} = 0.0019$$

$$h_{21\mathrm{B}} = \frac{\Delta I_{\mathrm{K}}}{\Delta I_{9}} = \frac{I_{\mathrm{K}}" - I_{\mathrm{K}}'}{I_{9}" - I_{9}'} = \frac{9 - 3}{9.083 - 3.057} = 0.99$$

$$h_{22\mathrm{B}} = \frac{\Delta I_{\mathrm{K}}}{\Delta U_{\mathrm{EK}}} = \frac{I_{\mathrm{K}}" - I_{\mathrm{K}}'}{U_{\mathrm{EK}}" - U_{\mathrm{EK}}'} = \frac{(8.927 - 8.94) \cdot 10^{-3}}{0.01 - 9} = 1.4 \cdot 10^{-6} \text{ CM}$$

## 2.6 Исследование входных характеристик БТ в схеме с общим эмиттером (OЭ)

Для исследования характеристик БТ собрана цепь по схеме, представленной на рисунке 7.



Рисунок 7 – Схема исследования входных характеристик БТ в схеме с ОЭ

Семейство входных характеристик БТ в схеме с ОЭ Iб = f(Uбэ) измерено для двух фиксированных значений напряжения коллектора-эмиттер: Uкэ = 1, 10B. Результаты исследований занесены в таблицу 5 и таблицу 6 соответственно.

Таблица 5 — Результаты измерения входной характеристики БТ (изменять значение Uпит1) Іб = f(Uбэ), при фиксированном значении Uκ3 = Unur2 = 1B

|        | 0 223 | U        |             |        |        |        |
|--------|-------|----------|-------------|--------|--------|--------|
| Ік, мА | 0     | 0,1+0,05 | $0,5\pm0,1$ | 1±0,1  | 2±0,1  | 3±0,1  |
| Uбэ, В | 0     | 0,5683   | 0,6111      | 0,6306 | 0,6478 | 0,6590 |
| Іб, мА | 0     | 0,004    | 0,001       | 0,001  | 0,004  | 0,008  |
| Ік, мА | 4±0,1 | 5±0,1    | 6±0,1       | 7±0,1  | 8±0,1  | 9±0,1  |
| Uбэ, B | 0,667 | 0,6725   | 0,6784      | 0,6823 | 0,686  | 0,69   |
| Іб, мА | 0,011 | 0,014    | 0,018       | 0,023  | 0,025  | 0,027  |

Таблица 6 — Результаты измерения входной характеристики БТ (изменять значение Uпит1) Іб = f(Uбэ), при фиксированном значении Uκэ = Uпит2 = 10B

| Ік, мА | 0              | 0,1+0,05 | $0,5\pm0,1$ | 1±0,1          | 2±0,1  | 3±0,1         |
|--------|----------------|----------|-------------|----------------|--------|---------------|
| Uбэ, В | 0              | 0,5647   | 0,6085      | 0,6245         | 0,6402 | 0,6485        |
| Іб, мА | 0              | 0,004    | 0,002       | 0,001          | 0,003  | $x_1 = 0.006$ |
| Ік, мА | 4 <u>±</u> 0,1 | 5±0,1    | 6±0,1       | 7 <u>±</u> 0,1 | 8±0,1  | 9±0,1         |
| Uбэ, В | 0,6512         | 0,6525   | 0,6546      | 0,6546         | 0,6535 | 0,6526        |
| Іб, мА | 0,008          | 0,012    | 0,013       | 0,016          | 0,018  | $x_2 = 0.021$ |

# 2.7 Исследование выходных характеристик БТ в схеме с общим эмиттером (ОЭ)

Семейство выходных характеристик  $I\kappa = f(U\kappa_9)$  измерено для двух фиксированных значений входного тока базы  $I\delta = x_1$ ,  $x_2$  мА. Результаты исследований занесены в таблицу 7 и таблицу 8 соответственно.

Таблица 7 — Результаты измерения выходной характеристики БТ (изменять значение  $U_{\text{пит}2}$ ) Ік =  $f(U\kappa\mathfrak{P})$ , при фиксированном значении  $\mathbf{I6} = \mathbf{x}_1$  (из таблицы 6) = 0.006 мА

| <b>Uкэ</b> , В | 0,01  | 0,1   | 0,5   | 1     | 2     | 3     | 4     | 5    | 6     | 7     | 8      | 9      | 10    |
|----------------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|--------|--------|-------|
| Ік, мА         | 0,01  | 0,915 | 2,549 | 2,586 | 2,645 | 2,696 | 2,75  | 2,80 | 2,84  | 2,885 | 2,924  | 2,968  | 3,009 |
| <b>Ибэ</b> , В | 0,549 | 0,629 | 0,655 | 0,655 | 0,654 | 0,65  | 0,651 | 0,65 | 0,649 | 0,647 | 0,6456 | 0,6456 | 0,641 |

Таблица 8 — Результаты измерения выходной характеристики БТ (изменять значение  $U_{\text{пит}2}$ )  $I\kappa = f(U\kappa_3)$ , при фиксированном значении  $I\mathbf{6} = \mathbf{x}_2$  (из таблицы 6) = 0.021 мА

|                |       | (     | - 44 04 11 |       | , ,   |       |       |       |       |       |       |       |       |
|----------------|-------|-------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| <b>Uкэ</b> , В | 0,01  | 0,1   | 0,5        | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| Ік, мА         | 0,03  | 2,036 | 7,419      | 7,562 | 7,752 | 7,93  | 8,1   | 8,28  | 8,461 | 8,7   | 9,022 | 9,154 | 9,304 |
| <b>Иб</b> э, В | 0,579 | 0,652 | 0,685      | 0,685 | 0,69  | 0,681 | 0,678 | 0,675 | 0,671 | 0,665 | 0,657 | 0,655 | 0,652 |

# 2.8 Исследование усилителя на основе биполярного транзистора в схеме с общим эмиттером

Усилители — это устройства, как правило, четырехполюсники, имеющие входные и выходные клеммы, и предназначенные для увеличения амплитуды напряжения (либо тока) входного сигнала. Выходной сигнал усилителя формируется активным элементом (транзистором) за счет энергии питающего источника постоянного напряжения и оказывается пропорционален входному. На рисунке 8 представлен усилитель сигналов на биполярном транзисторе с коллекторной стабилизацией. Транзистор включен по схеме с общим эмиттером, что позволяет усилить входной сигнал как по напряжению, так и по току.



Рисунок 8 – Усилитель с коллекторной стабилизацией

Для исследования усилителя собрана схема (рисунок 8). Параметры входного сигнала: размах сигнала Ubx = 30 mVpp, частота  $f = 1 \text{к} \Gamma \text{ц}$ , форма сигнала – синусоидальная. Напряжение питания усилителя – 10B. Для оценки параметров выходного сигнала усилителя подключен канал A (1) осциллографа (Осц), рисунок 8.

Размах выходного сигнала составил **Uвых** = 360 В.

Коэффициент усиления по напряжению  $Ku = U_{Bbix}/U_{Bx} = 12$ .

Увеличивая размах входного сигнала, определили максимальный размах выходного сигнала без искажения его формы, он составил  $U_{Bbx_{max}} = 3.4 B$ . Размах входного сигнала при этом составил  $U_{Bx_{max}} = 830 \text{ MB}$ .

### 2.9 Результаты экспериментальных исследований

По результатам измерений БТ в схеме с ОЭ построены графики входных, выходных, передаточных характеристик БТ (рисунки 9, 10, 11, 12).



Рисунок 9 — Входные характеристики БТ в Рисунок 10 — Выходные характеристики БТ в схеме с ОЭ схеме с ОЭ



Рисунок 11 – Характеристики прямой передачи БТ в схеме с ОЭ

Рисунок 12 – Характеристики обратной передачи БТ в схеме с ОЭ

#### 2.10 Расчет дифференциальных параметров БТ в схеме с ОЭ

По построенным графикам характеристик БТ в схеме с ОЭ рассчитаны его дифференциальные параметры в окрестности рабочей точки  $\mathbf{I6} = \mathbf{x}_2$  (из таблицы 6) = 0,021 мA, Uкэ = 10B.

$$h_{119} = \frac{\Delta U_{\text{B9}}}{\Delta I_{\text{E}}} = \frac{U_{\text{B9}}" - U_{\text{B9}}'}{I_{\text{E}}" - I_{\text{E}}'} = \frac{0.6546 - 0.6512}{(0,016 - 0,008) \cdot 10^{-3}} = 425 \text{ Om}$$

$$h_{129} = \frac{\Delta U_{\text{B9}}}{\Delta U_{\text{K9}}} = \frac{U_{\text{B9}}" - U_{\text{B90}}}{U_{\text{K9}}" - U_{\text{K9}}'} = \frac{0.652 - 0.685}{10 - 1} = -0.003$$

$$h_{219} = \frac{\Delta I_{\text{K}}}{\Delta I_{\text{E}}} = \frac{I_{\text{K}}" - I_{\text{K}}'}{I_{\text{E}}" - I_{\text{E}}'} = \frac{(9 - 3) \cdot 10^{-3}}{(0,021 - 0,006) \cdot 10^{-3}} = 400$$

$$h_{229} = \frac{\Delta I_{\text{K}}}{\Delta U_{\text{K9}}} = \frac{I_{\text{K}}"" - I_{\text{K}}"}{U_{\text{K9}}" - U_{\text{K9}}'} = \frac{(9.304 - 7,562) \cdot 10^{-3}}{10 - 1} = 19 \cdot 10^{-4} \text{ Cm}$$