

1 151. (Amended) A method of controlling a synchronous memory
2 device, wherein the memory device includes a plurality of memory cells,
3 the method of controlling the memory device comprises:

4 issuing a first operation code to the memory device, wherein in
5 response to the first operation code, the memory device outputs first
6 and second portions of data;

7 sampling the first portion of data synchronously with respect to
8 a rising edge transition of an external clock signal; and

9 sampling the second portion of data synchronously with respect to
10 a falling edge transition of the external clock signal.

1 2. (Amended) The method of claim 151 further including:

2 providing block size information to the memory device, wherein the
3 block size information defines an amount of data to be output by the
4 memory device.

1 3. (Amended) The method of claim 151 wherein, in response to the
2 first operation code, the first portion of data is output after a
3 programmed amount of time transpires.

1 4. (Amended) The method of claim 151 further including:

2 providing access time information to the memory device; and

3 issuing a second operation code, wherein in response to the second
4 operation code, the memory device stores the access time information in
5 a register within the memory device.

1 5 4
2 155. (Amended) The method of claim ~~154~~ wherein the access time
3 information is representative of a number of clock cycles of the
4 external clock signal to transpire before the first portion of data is
5 output by the memory device in response to the first operation
code.

1 7 1
2 156. The method of claim ~~151~~ wherein both the rising and falling
3 edge transitions of the external clock signal include voltage swings of
4 less than one volt.

1 8 1
2 157. (Amended) A controller device for controlling a synchronous
3 memory device, the controller device comprising:

4 output driver circuitry to provide an operation code to the memory
5 device, wherein in response to the operation code, the memory device
6 outputs a first portion of data synchronously with respect to a rising
7 edge transition of an external clock signal and a second portion of
8 data synchronously with respect to a falling edge transition of the
9 external clock signal; and

10 input receiver circuitry to sample the first portion of data and
the second portion of data output by the memory device.

1 9 18
2 158. The controller device of claim ~~157~~ wherein the input receiver
3 circuitry includes first latch circuitry to latch the first portion of
4 data, and second latch circuitry to latch the second portion of
data.

20 159. (Amended) The controller device of claim *157* further
2 including a delay lock loop circuit, coupled to the external clock
3 signal, to generate a first internal clock signal, wherein the input
4 receiver circuitry samples the first portion of data in response to the
5 first internal clock signal.

21 160. (Amended) The controller device of claim *159* wherein the
2 delay lock loop circuit generates a second internal clock signal that
3 is complementary to the first internal clock signal, wherein the input
4 receiver circuitry samples the second portion of data in response to
5 the second internal clock signal.

22 161. The controller device of claim *157* wherein both the rising
2 and falling edge transitions of the external clock signal include
3 voltage swings of less than one volt.

23 162. The controller device of claim *157* wherein the input receiver
2 circuitry samples an amount of data output by the memory device in
3 response to the operation code wherein the amount of data is sampled
4 during a plurality of clock cycles of the external clock signal.

24 163. (Amended) The controller device of claim *162* wherein the
2 output driver circuitry provides block size information to the memory
3 device, wherein the block size information is representative of the
4 amount of data output by the memory device in response to the operation
5 code, and wherein, in response to the operation code, the memory device

6 outputs the amount of data during a plurality of clock cycles of the
7 external clock signal.

25
1 ~~164~~. (Amended) The controller device of claim ~~163~~ wherein the
2 operation code and the block size information are included in a request
3 packet.

30
1 ~~165~~. (Amended) A method of operation of a memory controller
2 device, the method comprises:

3 issuing an operation code to a memory device synchronously with
4 respect to an external clock signal, wherein the operation code
5 instructs the memory device to input first and second portions of data;

6 outputting the first portion of data synchronously with respect
7 to a rising edge transition of the external clock signal; and

8 outputting the second portion of data synchronously with respect
9 to a falling edge transition of the external clock signal.

31
1 ~~166~~. The method of claim ~~165~~ wherein the controller device outputs
2 the first portion of data after a delay time transpires.

32
1 ~~167~~. (Amended) The method of claim ~~165~~ further including providing
2 to the memory device information that represents an amount of time
3 which lapses before data is input by the memory device.

33
1 ~~168~~. (Amended) The method of claim ~~167~~ wherein the information is
2 provided in the form of a value and wherein the value is representative
3 of a number of clock cycles of the external clock signal.

34 *30*
1 ~~169~~. The method of claim ~~165~~ wherein the first and second edge
2 transitions of the external clock signal include voltage swings of less
3 than one volt.

35 *30*
1 ~~170~~. The method of claim ~~165~~ wherein the first portion of data and
2 second portion of data include voltage swings of less than one
3 volt.

36 *30*
1 ~~171~~. (Amended) The method of claim ~~165~~ further including providing
2 address information to the memory device synchronously with respect to
3 the external clock signal.

37 *30*
1 ~~172~~. (Amended) The method of claim ~~165~~ further including providing
2 block size information to the memory device, wherein the block size
3 information is representative of an amount of data to be input by the
4 memory device in response to the operation code.

38 *37*
1 ~~173~~. (Amended) The method of claim ~~172~~ further including
2 outputting the amount of data to the memory device during a plurality
3 of clock cycles of the external clock signal.

39 *38*
1 ~~174~~. (Amended) The method of claim ~~173~~ further including providing
2 address information to the memory device synchronously with respect to
3 the rising and falling edges of the external clock signal.

3 1 *40* 175. (Amended) The method of claim *174* wherein the block size
2 information, the address information and the operation code are
3 included in a write request packet.

1 *8* 176. (New) The method of claim *151* further including providing
2 address information to the memory device synchronously with respect to
3 the external clock signal.

2 1 *9* 177. (New) The method of claim *176* wherein the address information
2 is provided synchronously with respect to rising and falling edges of
3 the external clock signal.

6 1 *10* 178. (New) The method of claim *176* wherein the address information
2 and the first operation code are provided in a request packet.

1 *11* 179. (New) The method of claim *178* wherein the address information
2 and the first operation code are provided in the same request
3 packet.

1 *12* 180. (New) The method of claim *176* wherein the address information
2 and the first operation code are output onto an external bus, wherein
3 the external bus includes a set of signal lines to multiplex data,
4 control information, and address information.

1 *13* 181. (New) The method of claim *151* wherein the rising edge
2 transition of the external clock signal and the falling edge transition

3 of the external clock signal transpire in the same clock cycle of the
4 external clock signal.

1 14
1 182. (New) The method of claim ~~151~~ wherein the first operation
2 code is issued synchronously with respect to the external clock signal.

1 15
1 183. (New) The method of claim ~~182~~ wherein the first operation
2 code is output onto an external bus.

1 16 15
1 184. (New) The method of claim ~~183~~ wherein the external bus
2 includes a set of signal lines to multiplex data, control information,
3 and address information.

1 17 4
1 185. (New) The method of claim ~~154~~ wherein the access time
2 information is representative of a number of clock cycles of the
3 external clock signal to transpire before the second portion of data is
4 output by the memory device.

1 18
1 186. (New) The method of claim ~~151~~ wherein the first operation
2 code includes precharge information.

1 26 18
1 187. (New) The controller device of claim ~~157~~ wherein the input
2 receiver circuitry samples the first portion of data from an external
3 bus.

b2

27
188. (New) The controller device of claim 187 wherein the external
2 bus includes a set of signal lines to transmit multiplexed address
3 information, data and control information.

28
189. (New) The controller device of claim 187 wherein the output
2 driver circuitry and the input receiver circuitry are connected to a
3 common pad.

29
18
190. (New) The controller device of claim 187 wherein the output
5 driver circuitry provides the operation code synchronously with respect
6 to the external clock signal.