

PATENTS

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
)
)
Ashish M. Sukhadia et al.)
)
)
Serial No.: **10/797,673**) Examiner: **Lee, Rip A.**
)
)
Filed: **March 10, 2004**) Art Unit: **1713**
)
For: **Ethylene Polymers and Copolymers**)
 with High Optical Opacity and)
 Methods of Making the Same)

AMENDMENT AND RESPONSE

Mail Stop: Amendment
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

In response to the outstanding Office Action mailed October 3, 2005, Applicants respectfully request reconsideration and further examination in view of the following amendments and remarks.

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims are reflected in the Listing of Claims which begins on page 3 of this paper.

Remarks begin on page 18 of this paper.

Conclusion is on page 26 of this paper.

I hereby certify that this correspondence is being deposited with the United States Postal Service as First Class mail with sufficient postage in an envelope addressed to: Mail Stop Amendment, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on January 3, 2006.

Leslie Maisano

Amendments to the Written Description

Please delete Table 6 on page 88, beginning on line 6 through the end of the page, in order to correct the typographical error in column "C", row "HLMI"; substitute therefore the following amended Table 6:

-- **Table 6.** Resin and Film Properties for Polymers Prepared According to this Invention.

PARAMETER ^A	RESIN					
	A	B	C	D	E	F
ρ (density, g/cm ³)	0.918	0.916	0.926	0.917	0.917	0.917
M_w/M_n	5.55	5.52	4.00	6.81	9.71	9.68
HLMI (dg/min)	55.7	56.8	811.9 81.2	12.36	23.0	35.1
MI (dg/min)	1.01	1.15	2.22-	0.14	0.3	0.58
HLMI/MI	55	49	37-	88	77	61
H (Haze, %, 1 mil)	87.6	87.2	86.2	83.1	93.1	92.4
C (Clarity, %, 1 mil)	10.3	10.4	8.7	10.7	6.6	7.0
H/C	8.50	8.38	9.87	7.77	14.17	13.14
H+H/C	96.1	95.6	96.1	90.9	107.3	105.5
H-(ρ -0.870)×1000	39	41	30	40	46	46
H+(H/C)-(ρ -0.870)×1400	28.5	30.9	17.7	30.3	41.2	41.6
$\eta_0 = \eta_0, \text{obs}$ (Pa•s)	1.59E+05	1.79E+05	7.96E+03	1.48E+13	9.77E+04	1.29E+07
η_0, lin	1.12E+04	1.25E+04	3.47E+03	5.75E+04	8.31E+03	2.36E+04
$[(\eta_0, \text{lin} - \eta_0, \text{obs}) / \eta_0, \text{lin}] \times 100$	1,323	1,335	129	25,646,566,889	1,076	54,500

^A Standard exponential abbreviations, for example, 1E+03 = 1E3 = 1×10³ --