THE UNIVERSITY OF NEW SOUTH WALES

DEPARTMENT OF STATISTICS

Additional Exercises for MATH5905, Statistical Inference

Part two: Data reduction. Sufficient statistics. Classical estimation

Sufficiency

- 1. Use the factorization criterion to find a sufficient statistic for the parameter when X_1, X_2, \ldots, X_n are independent random variables each with distribution
 - a) $N(\mu, 1)$,
 - b) $N(0, \sigma^2)$,
 - c) Uniform $(\theta, \theta + 1)$,
 - d) Poisson (λ) .

Check your answer in (d) using the definition of sufficiency.

- 2. Let X_1, X_2, X_3 be a sample of size 3 from the Bernoulli (p) distribution. Consider the 2 statistics $S = X_1 + X_2 + X_3$ and $T = X_1X_2 + X_3$. Show that S is sufficient for p and T is not.
- 3. A random variable $X = (X_1, X_2)$ has the following distribution (with $1 < \theta < 3$):

(x_1,x_2)	(0,0)	(0,1)	(1,0)	(1,1)
$P(X_1 = x_1, X_2 = x_2)$	$\frac{1}{12}(12-7\theta+\theta^2)$	$\frac{\theta}{12}(4-\theta)$	$\frac{\theta}{12}(4-\theta)$	$\frac{\theta}{12}(\theta-1)$

Check whether $X_1 + X_2$ or X_1X_2 is sufficient for θ .

- 4. If X_1, X_2, \dots, X_n are independent Bernoulli (p) random variables, prove that X_1 is not sufficient for p.
- 5. Given that θ is an integer and that X_1 and X_2 are independent random variables which are Uniformly distributed on the integers $1, 2, \ldots, \theta$, prove that $X_1 + X_2$ is not sufficient for θ .
- 6. Suppose X_1, X_2, \ldots, X_n are independent discrete random variables each with probability function $f(x;\theta), \theta$ unknown. Prove that $(X_1, X_2, \ldots, X_{n-1})$ is not sufficient for θ .
- 7. Find a minimal sufficient statistic for the parameter when X_1, X_2, \ldots, X_n are independent random variables each with distribution
 - a) Poisson (λ) ,
 - b) $N(0, \sigma^2)$,
 - c) Gamma (α), (With a density $f(x,\alpha) = \frac{1}{\Gamma(\alpha)} \exp(-x) x^{\alpha-1}, x > 0$. (Here the Gamma function is defined as $\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha-1} dx$ and has the property $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$. In particular, for a natural number $n : \Gamma(n+1) = n!$ holds).
 - d) Uniform $(0, \theta)$.
 - e) Uniform $(\theta, \theta + 1)$.
 - f) Uniform (θ_1, θ_2) .

- 8. If X_1, X_2, \ldots, X_n are i.i.d. random variables with densities $f(x; \theta)$ given below, find a sufficient statistics for θ .
 - a) $f(x;\theta) = \theta x^{\theta-1} I_{(0,1)}(x), \theta \in (0,\infty).$
 - b) $f(x;\theta) = \frac{1}{6\theta^4} x^3 e^{-x/\theta} I_{(0,\infty)}(x), \theta \in (0,\infty).$
- 9. Show that the minimal sufficient statistic T_n for the parameter σ of the Scale-Cauchy family $f(x,\sigma) = \frac{\sigma}{\pi(x^2 + \sigma^2)}$ has dimension n and is equal to $T_n = (X_{(1)}^2, X_{(2)}^2, \dots, X_{(n)}^2)$ where $X_{(1)} < X_{(2)} < \dots < X_{(n)}$ is the variation sequence.
- 10. Let X_1, X_2, \ldots, X_n be i.i.d. observations from a scale parameter family $\{F_{\sigma}(X)\}, \sigma > 0$ with $F_{\sigma}(x) = F(x/\sigma), \sigma > 0$ (F(.)- a given continuous cumulative distribution function.) Show that any statistic that depends on the sample through the n-1 values $X_1/X_n, X_2/X_n, \ldots, X_{n-1}/X_n$ is an ancillary statistic.

Cramer-Rao Bound. UMVUE

- 11. Calculate the Cramer-Rao lower bound for the variance of an unbiased estimator of θ and find a statistic with variance equal to the bound when X_1, X_2, \ldots, X_n are independent random variables each with distribution
 - a) $f(x,\theta) = \frac{1}{\theta}e^{-x/\theta}, x > 0$,
 - b) Bernoulli (θ) ,
 - c) $N(\theta, 1)$,
 - d) $N(0, \theta)$.
 - e) Prove that no unbiased estimator of θ has variance equal to the bound when the distribution is $N(0, \theta^2)$.
- 12. If X_1, X_2, \ldots, X_n are independent Poisson (λ) random variables, find the *umvue* of $e^{-2\lambda}$. Check that the estimator has mean $e^{-2\lambda}$ and compare the variance of the estimator with the Cramer-Rao lower bound for the variance of an unbiased estimator of $e^{-2\lambda}$.
- 13. Suppose random variables X and Y have joint density

$$f_{X,Y}(x,y) = 8xy, 0 < y < x, 0 < x < 1.$$

For this pair of random variables, verify directly the lemma which states that if $a(x) = \mathbf{E}(Y|X=x)$, then $\mathbf{E}a(X) = \mathbf{E}(Y)$ and $Var\{a(X)\} \leq Var(Y)$.

- 14. Find the *umvue* of θ^2 when X_1, X_2, \dots, X_n are independent Bernoulli (θ) random variables. Check that your estimator does have mean θ^2 .
- 15. Find the *umvue* of θ^2 when X_1, X_2, \dots, X_n are independent random variables each with density

$$f(x;\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0; \theta > 0.$$

Hint: consider \bar{X}^2 .

- 16. Suppose X_1, X_2, \dots, X_n are independent Uniform $(0, \theta)$ random variables.
 - a) Find the *umvue* of θ^2 and calculate its variance.
 - b) Find the *umvue* of $\frac{1}{\theta}$.

17. Suppose X_1, X_2, \ldots, X_n are independent random variables, each with density

$$f(x;\theta) = \theta e^{-\theta x}, x > 0, \theta > 0.$$
 Let $T = \sum_{i=1}^{n} X_{i}$.

- a) Prove (*) that the density of T is given by $f(t;\theta) = \frac{1}{\Gamma(n)} \theta^n t^{n-1} e^{-\theta t}, t > 0.$
- b) Prove that the indicator function of the event $\{X_1 > k\}$ is an unbiased estimator of $e^{-k\theta}$, where k is a known constant.
- c) If $T = \sum_{i=1}^{n} X_i$, take for granted (or try to prove using a) (*)) that the conditional density of

$$f(x_1|t) = \frac{(n-1)}{t} (1 - \frac{x_1}{t})^{n-2}, 0 < x_1 < t < \infty.$$

Then find the *umvue* of $e^{-k\theta}$.

18. The random variable X takes values 0,1,2,3 with probabilities

P(X=0)	P(X=1)	P(X=2)	P(X=3)
$2\theta^2$	$\theta - 2\theta^3$	θ^2	$1 + 2\theta^3 - 3\theta^2 - \theta$

The range of the parameter θ is $\theta \in \Theta = (0, \frac{1}{5})$. Is the family of distributions $\{P_{\theta}(X)\}, \theta \in \Theta$, complete? Give reasons for your answer.

- 19. Is the following statistic complete:
 - a) $T = \bar{X}$ when the random variables $\mathbf{X} = (X_1, X_2, \dots, X_n)$ are i.i.d. $N(0, \theta)$.
 - b) $T = \sum_{i=1}^{n} X_i$ when the random variables $\mathbf{X} = (X_1, X_2, \dots, X_n)$ are i.i.d. Bernoulli (θ) .
 - c) $T = \sum_{i=1}^{n} X_i$ when the random variables $\mathbf{X} = (X_1, X_2, \dots, X_n)$ are i.i.d. Poisson (θ)
 - d) $T = X_{(n)}$ when the random variables $\mathbf{X} = (X_1, X_2, \dots, X_n)$ are i.i.d. Uniform $(0, \theta)$.

Answers:

- 11. a) bound: $\frac{\theta^2}{n}$, UMVUE: \bar{X} ; b) bound: $\frac{\theta(1-\theta)}{n}$, UMVUE: \bar{X} ; c) bound: $\frac{1}{n}$, UMVUE: \bar{X} ; d) bound: $\frac{2\theta^2}{n}$, UMVUE: $\frac{\sum_{i=1}^n X_i^2}{n}$;
- e) bound: $\frac{\theta^2}{2n}$ the score is $-\frac{n}{\theta} + \frac{\sum_{i=1}^2 X_i^2}{\theta^3}$ and can not be written as $K(\theta, n)(T \theta)$.
- 12. $(1-\frac{2}{n})^{\sum_{i=1}^{n}X_{i}}$, CR bound: $\frac{4\lambda e^{-4\lambda}}{n}$ and is smaller than the variance of the UMVUE. 13. $Var(a(X)) = \frac{8}{675}, Var(Y) = \frac{11}{225}$.
- 14. $\frac{T(T-1)}{n(n-1)}, T = \sum_{i=1}^{n} X_i.$ 15. $\frac{T^2}{n(n+1)}, T = \sum_{i=1}^{n} X_i.$
- 16. a) $\frac{(n+2)T^2}{n}$, $T = X_{(n)}$.
- 17. UMVUE: $\left\{\frac{T-k}{T}\right\}^{n-1}I_{(k,\infty)}(T), T = \sum_{i=1}^{n} X_i$.
- 18. Not complete.
- 19. a) Not complete; b) Complete; c) Complete; d) Complete.

MLE and their properties. Asymptotic properties of estimators

- 20. A sample of size n_1 is to be drawn from a normal population with mean μ_1 and variance σ_1^2 . A second sample of size n_2 is to be drawn from a normal population with mean μ_2 and variance σ_2^2 . What is the MLE of $\theta = \mu_1 - \mu_2$? If we assume that the total sample size $n = n_1 + n_2$ is fixed, how should the n observations be divided between the two populations in order to minimize the variance
- 21. Let X_1, X_2, \ldots, X_n be a sample from the density $f(x; \theta) = \theta x^{-2} I_{[\theta, \infty)}(x)$ where $\theta > 0$.

- a) Find the MLE of θ .
- b) Is $Y = X_{(1)}$ a sufficient statistic?
- 22. Let X_1, X_2, \ldots, X_n be a sample from the density function $f(x; \theta) = \theta x^{\theta-1} I_{(0,1)}(x)$ where $\theta > 0$.
 - a) Find the MLE of $\tau(\theta) = \frac{\theta}{1+\theta}$.
 - b) State the asymptotic distribution of the MLE of $\tau(\theta)$ in a).
 - c) Find a sufficient statistic, and check completeness. Is $\sum_{i=1}^{n} X_i$ a sufficient statistic?
 - d) Is there a function of θ for which there exists an unbiased estimator whose variance coincides with the Cramer-Rao lower Bound? What is the Cramer-Rao lower bound?
- 23. Let X_1, X_2, \ldots, X_n be a sample from normal distribution $N(\mu, \sigma^2)$ where μ is known and σ^2 is the parameter to be estimated.
 - a) Find the MLE and state its asymptotic distribution.
 - b) Assume now that σ is to be estimated. Find the MLE and state its asymptotic distribution.
- 24. Consider n i.i.d. observations from a Poisson (λ) distribution.
 - a) Suppose the parameter of interest is $\tau(\lambda) = \frac{1}{\lambda}$.
 - i) What is the MLE of $\tau(\lambda)$?
 - ii) What is its variance?
 - iii) What is its asymptotic variance?
 - b) Assume that the parameter of interest is $\tau(\lambda) = \sqrt{\lambda}$.
 - i) State the asymptotic distribution of the MLE of $\sqrt{\lambda}$. In particular, show that the asymptotic variance does not depend on λ (we say in that case that $\sqrt{\lambda}$ is a *variance stabilising transformation*).
 - ii) For a given small value of $\alpha \in (0,1)$ and using the result in i), how would you construct a confidence interval for λ that asymptotically has a level $1-\alpha$.

Answers:

20. MLE:
$$\bar{X}_{n_1} - \bar{Y}_{n_2}$$
; $n_1 = \frac{\sigma_1}{\sigma_1 + \sigma_2} n$

21.
$$\hat{\theta}_{mle} = X_{(1)}$$
, sufficient.

22. a)
$$\frac{n}{n-\sum_{i=1}^{n} \log X_i}$$
; b) $N(0, \frac{\theta^2}{(1+\theta)^4})$

- c) $\sum_{i=1}^{n} \log X_i$ is sufficient and complete; $\sum_{i=1}^{n} X_i$ is **not** sufficient.
- d) $\tau(\theta) = \frac{1}{\theta}$ is such a function. The attainable bound in this case is $\frac{1}{n\theta^2}$.
- 23. a) MLE of σ^2 is $\frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$. The asymptotic distribution : $N(0, 2\sigma^4)$.
- b) MLE is $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2}$. The asymptotic distribution is $N(0,\frac{1}{2}\sigma^2)$.
- 24. a) Variance of MLE is infinite but **asymptotic** variance of MLE is finite and equals $\frac{1}{\lambda^3}$.
- b) Asymptotic variance is 0.25.