- 1. **Uniform Convergence.** A sequence of functions $f_n:\Omega\to\mathbb{C}$ converges uniformly to a function $f:\Omega\to\mathbb{C}$ if for all $\varepsilon>0$ there exists an $N\in\mathbb{N}$ such that if $n\geq N$, then $|f_n(z)-f(z)|<\varepsilon$ for all $z\in\Omega$.
- 2. **Real Differentiable.** f is real differentiable at z_0 if the following limit exists: $\lim_{h\to 0} \frac{f(z+h)-f(z)-D(f'(z))h}{h}$, where D(f'(z)) is the Jacobian matrix.
- 3. **Derivative.** Let $f: \Omega \to \mathbb{C}$, where Ω is a neighborhood of z_0 . The derivative of f at z_0 is the limit $f'(z_0) = \lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$. We call f **complex differentiable** at z_0 if this limit exists. If $f'(z_0)$ exists for all $z_0 \in \Omega$, we call f **holomorphic** on Ω .
- 4. **Principal Branch of the Logarithm.** Pick a branch $[a,a+2\pi)$. Then, $\log:\mathbb{C}\setminus\{0\}\to\mathbb{R}\times i[a,a+2\pi)$ is defined by $\log z=\log|z|+i\arg z$, where $\arg z\in[a,a+2\pi)$. We call the branch $[-\pi,\pi)$ the principal branch.
- Exponentiation of complex numbers a, b. Choose a branch of log, with log: Ω → C and a, b ∈ C. Then, define a^b := e^{b log a}.
- 6. **Contour Integral.** Suppose f is continuous on an open set Ω and $\gamma: [a,b] \to \Omega$ is a smooth curve. Then the contour integral of f along γ is defined to be $\int_{\gamma} f := \int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$.
- 7. **Re-parametrization of** γ . A piecewise smooth $\tilde{\gamma}: [\tilde{a}, \tilde{b}] \to \mathbb{C}$ is called a re-parametrization of γ if there exists a continuously differentiable $\alpha: [a,b] \to [\tilde{a},\tilde{b}]$ such that $\alpha(a) = \tilde{a}$ and $\alpha(b) = \tilde{b}$, and $\alpha'(t) > 0$ with $\gamma(t) = \tilde{\gamma}(\alpha(t))$.
- 8. **Path-connected.** We say an open set $\Omega \subseteq \mathbb{C}$ is path-connected if for any pair of points $z_0, z_1 \in \Omega$ there exists a continuous path $\gamma \colon [0,1) \to \mathbb{C}$ such that $z_0 = \gamma(0)$ and $z_1 = \gamma(1)$, with $\gamma([0,1)) \subseteq \Omega$.
- 9. **Path-independence.** If $z_0, z_1 \in \Omega$, then any paths $\gamma, \tilde{\gamma}$ (with shared endpoints $\gamma(0) = \tilde{\gamma}(0), \ \gamma(1) = \tilde{\gamma}(1)$) have $\int_{\gamma} f(z) dz = \int_{\tilde{\gamma}} f(z) dz$.
- Simply-connected. A set A is called simply-connected if every closed curve (loop) is homotopic to a point in A, with H_S(t) ∈ A for all s,t. (Note: a point in A is a constant loop).
- 11. **Winding Number.** Let γ be a loop in $\mathbb C$ and $z_0 \in \mathbb C$ but not on γ . Then the winding number of γ (with respect to z_0) is $I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-z_0} dz$.
- 12. **Reflection:** $\tilde{z} = \frac{R^2}{\overline{z}}$. $\tilde{z} = \frac{R^2}{\overline{z}}$ is the reflection over the line the circle $|\xi| = R$.
- 13. **Analytic.** A function $f: \Omega \to \mathbb{C}$ is analytic at $z_0 \in \Omega$ if there is a neighborhood \mathscr{U} of z_0 on which $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$ (for all $z \in \mathscr{U}$) where the RHS is a convergent power series.
- 14. Pole of Order m. If f is holomorphic on a deleted neighborhood W \ z₀, we say f has a pole of order m if ¹/_f has a zero of order m.
- Meromorphic. A function f: Ω → C is meromorphic if it is holomorphic on all of Ω except at a discrete set of poles.
- 16. Alternative Definition of Essential Singularity. Let f be holomorphic except possibly at a point z₀. Let C₁ = {z₀} and C₂ = ∂D_r(z₀). Then, z₀ is an essential singularity if there are infinitely many a_{-n} in the Laurent series of f, where still Res_{z₀}(f) = a₋₁.
- 17. **Holomorphic at Infinity.** Let $\mathscr{U}\subseteq\mathbb{C}$ be an open set containing $\mathbb{C}\setminus\overline{D_R(0)}$. A function $f:\mathscr{U}\to\mathbb{C}$ is holomorphic at infinity if g(z)=f(1/z) has a removable singularity at 0, which in that case, we define $f(\infty)=g(0)$.
- 18. **Zero** (respectively, pole) of order at Infinity. Let $\mathscr{U} \subseteq \mathbb{C}$ be an open set containing $\mathbb{C} \setminus \overline{D_R(0)}$. We say that $f: \mathscr{U} \to \mathbb{C}$ has a zero (respectively, pole) of order at ∞ if g(z) = f(1/z) has a zero (respectively, pole) at z = 0 (of order m).
- 19. **Logarithmic Derivative.** Let $f: \Omega \to \mathbb{C}$ be meromorphic. Then, the logarithmic derivative of f is f'/f.
- Locally injective. We call a function f: Ω → C locally injective near z₀ if there exists a neighborhood W of z₀ such that f: W → C is injective.
- 21. **Conformal Maps.** Smooth, invertible maps $f: \mathbb{R}^2 \to \mathbb{R}^2$ whose Jacobian at a point can be factored as (scaling) · (rotation) are called conformal maps. (note: by Cauchy-Riemann equations, we have that $\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = |a+bi|^2 \cdot \frac{1}{|a+bi|^2} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}, \text{ where the } |a+bi|^2 \text{ factor represents scaling and the other factors together represent the orthogonal scaling matrix).}$
- 22. **Conformal Maps (2nd definition).** Let Ω and Ω' be open connected regions in \mathbb{C} . We say that a map $g:\Omega\to\Omega'$ is conformal if it is holomorphic and invertible with g^{-1} holomorphic.
- 23. **Conformal Automorphisms.** We call a conformal map $g:\Omega \to \Omega$ a conformal automorphism and write $Aut(\Omega)$ to denote the collection of automorphisms (strictly conformal) on Ω .
- 24. **De Moivre's Formula.** If $z = r(\cos \theta + i \sin \theta)$ and $n \in \mathbb{Z}_{>0}$, then $z^n = r^n(\cos n\theta + i \sin n\theta)$.
- 25. **Theorem (Extreme Value Theorem).** If K is compact and $f: K \to \mathbb{R}$ is continuous, then f attains its minimum and maximum.
- 26. **Stereographic Projection / Riemann Sphere.** Identify the plane $\overline{\mathbb{C}} = S^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$. If $f: \mathbb{C} \to S^2 \setminus \{N\}$, then we have $(u,v) \mapsto \frac{1}{1+u^2+v^2}(2u,2v,-1+u^2+v^2)$ is a homeomorphism (is continuous with continuous inverse) $f^{-1}: S^2 \setminus \{N\} \to \mathbb{C}$ with $(x,y,z) \mapsto \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$.
- 27. **Prop.** (Uniform Convergence). If $f_n \to f$ uniformly and each f_n is continuous, then f is continuous.
- 28. **Theorem.** $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ and $\sin z = \frac{e^{iz} e^{-iz}}{2i}$.
- 29. **Properties of** e. Let $x, y \in \mathbb{R}$ and $z, w \in \mathbb{C}$. Then:
 - (a) $e^{z+w} = e^z e^w$.

- (b) $|e^{x+iy}| = |e^x e^{iy}| = |e^x||e^{iy}| = e^x$.
- (c) $arg(e^{x+iy}) = y \pmod{2\pi}$.
- (d) $e^z \neq 0$ for all $z \in \mathbb{C}$.
- (e) $e^z = 1$ iff $z = 2\pi i n$ for some $n \in \mathbb{Z}$.
- (f) $e^z = e^{z+2\pi ni}$
- 30. **Prop.** Let $f: \Omega \to \mathbb{C}$ be holomorphic. Then $f: \Omega \to \mathbb{R}^2$ is real differentiable at all $(x,y) \in \Omega$.
- 31. Cauchy-Riemann Equations. Let Ω be an open set in $\mathbb C$ and let $f:\Omega\to\mathbb C$ be given by f(x,y)=u(x,y)+iv(x,y). Then:
 - (a) f'(z) exists at $z \in \Omega$ iff f is real differentiable and $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (these are the Cauchy-Riemann equations).
 - (b) f(z) is holomorphic on Ω iff partials are continuous and satisfy the CR equations.
 - (c) If $f'(z_0)$ exists, then $f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial u}{\partial y} i \frac{\partial v}{\partial y} = \frac{1}{i} \frac{\partial f}{\partial y}$.
- 32. **Inverse Function Theorem for** \mathbb{R}^2 . If $f: \Omega \to \mathbb{R}^2$ is continuously differentiable and the Jacobian $Df(z_0)$ has $\det(Df(z_0)) \neq 0$, then there are neighborhoods $U \ni z_0$ and $V \ni f(z_0)$ such that $f: U \to V$ is bijective with continuously differentiable $f^{-1}: V \to U$ such that $Df^{-1}(z_0) = [Df(z_0)]^{-1}$, which is the inverse matrix of $Df(z_0)$.
- 33. **Inverse Function Theorem for** \mathbb{C} . Let $f:\Omega\to\mathbb{C}$ be holomorphic (with continuous $f'(z_0)$), and $f'(z)\neq 0$ for some $z_0\in\Omega$. Then there exists a neighborhood $U\ni z_0$ and $V\ni f(z_0)$ such that $f:U\to V$ is bijective with holomorphic inverse $f^{-1}:V\to U$ such that for all $z_0\in U, \frac{d}{dw}f^{-1}(w)=\frac{1}{f'(w)}$ with w=f(z).
- 34. **Prop.** Pick a branch $[a,a+2\pi)$. Then $\log z: \mathbb{C}\setminus\{0\}\to\mathbb{R}\times i[a,a+2\pi)$ is the inverse of exp: $\mathbb{R}\times i[a,a+2\pi)\to\mathbb{C}$.
- 35. **Prop.** If $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$, then $\log(z_1 z_2) = \log z_1 + \log z_2 \pmod{2\pi i}$.
- 36. **Prop.** By choosing different branches of log, we have the following:
 - (a) a^b is independent of the branch iff $b \in \mathbb{Z}$.
 - (b) a^b takes on exactly q different values iff $b \in \mathbb{Q}$, so $b = \frac{p}{q}$ (with p, q coprime).
 - (c) a^b takes on infinitely many values iff b is irrational or $Im(b) \neq 0$.
- Cor. Choose a branch of log. Then the nth root function is given by z^{1/n} = e^{log(z/n)}, where the nth root function has n branches.
- 38. **Prop.** Let $a,b\in\mathbb{C}$. Then:
 - (a) For any choice of branch of log, the function $\mapsto a^z$ is holomorphic on \mathbb{C} , and $z \mapsto (\log a)a^z$.
 - (b) Choose a branch of log. Then the function z → z^b is holomorphic on the domain of log with derivative z → bz^{b-1}.
- 39. **Prop.** (Re-parametrization). If $\tilde{\gamma}$ is a re-parametrization of γ , then $\int_{\gamma} f = \int_{\tilde{\gamma}} f$ for any continuous f on Ω .
- 40. **Fundamental Theorem of Line Integrals.** Let $F: \Omega \to \mathbb{C}$ be holomorphic on an open Ω and let $\gamma: [0,1] \to \Omega$ be piecewise smooth. Then, $\int_{\gamma} F'(z) dz = F(\gamma(1)) F(\gamma(0))$.
- 41. **Path-independence and Primitives Theorem.** Let $f: \Omega \to \mathbb{C}$ be continuous and Ω is open and connected. Then, TFAE:
 - (a) (path-independence) if $z_0, z_1 \in \Omega$, then any paths $\gamma, \tilde{\gamma}$ with shared endpoints $\gamma(0) = \tilde{\gamma}(0)$ and $\gamma(1) = \tilde{\gamma}(1)$ have $\int_{\gamma} f(z) dz = \int_{\tilde{\gamma}} f(z) dz$.
 - (b) (integral along loops is 0) if Γ is a loop, with $\Gamma(1) = \Gamma(0)$, then $\int_{\Gamma} f(z)dz = 0$.
 - (c) (f has a primitive) There is a primitive F for f on Ω .
- 42. Cauchy-Goursat Theorem. Let $f:\Omega\to\mathbb{C}$ be holomorphic on Ω , simply connected, and open. Then for any loop $\Gamma\subseteq\Omega$, $\int_\Gamma f(z)dz=0$.
- 43. **Prop.** If f(x+iy) = u(x,y) + iv(x,y), then $\int_{\gamma} f = \int_{\gamma} u dx v dy + i \int_{\gamma} u dx + v dy$.
- 44. Deformation Theorem. Suppose f is holomorphic on an open set Ω and η₀, η₁ are piecewise continuously differentiable. Then there are continuously differentiable curves in Ω. Then:
 - (a) If γ_0, γ_1 are paths from z_0 to z_1 , which are homotopic in Ω , then $\int_{\gamma_0} F = \int_{\gamma_1} F$.
 - (b) If γ_0, γ_1 are loops homotpic in Ω , then $\int_{\gamma_0} F = \int_{\gamma_1} F$.
- 45. Cor. If Ω is simply connected, then every loop γ has $\int_{\gamma} f dz = 0$.
- 46. Cor. Let f: Ω → C be holomorphic on a simply connected oen set Ω. Then, f has a primitive F on Ω (unique up to constants).
- Winding number (as an index). Let γ: [a,b] → C (a piecewise continuous) loop and z ∉ γ([a,b]). Then, the winding number of γ around z₀ is an integer.
- 48. Cauchy's Integral Formula. Let f be holomorphic on Ω and γ a loop in Ω hommotopic to a point. Let $z_0 \in \Omega$ but $z_0 \notin \gamma$. Then,

$$f(z_0) \cdot I(\gamma, z_0) = \frac{1}{2\pi i} \cdot \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

49. **Cauchy's Integral Formula for Derivatives.** Let f be holomorphic on Ω . Then f is infinitely differentiable (complex) and if γ is a loop homotopic to a point (simple loop) $I(\gamma, z_0) = 1$, then:

$$f^{(n)}(z_0) = \frac{n}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi.$$

- 50. **Cor. Cauchy-Type Integrals.** Let γ be a loop $\gamma: [a,b] \to \mathbb{C}$ and g a continuous function on γ . Set $\bar{g}(z) := \int_{\gamma} \frac{g(\bar{z})}{\bar{z}-z} d\bar{z}$. Then, $\bar{g}(z)$ is holomorphic inside γ and so $\bar{g}(z)$ is infinitely differentiable.
- 51. **Prop.** (Cauchy Inequalities). Let f be holomorphic on Ω and let $\overline{D_R(z_0)} \subseteq \Omega$ with boundary γ . Suppose f(z) is bounded above $|f(z)| \le M$ for all $z \in \gamma$. Then for all $k = 1, 2, \ldots$, the kth derivative is also upper bounded with $|f^{(k)}(z_0)| \le \frac{k!}{nk}M$.
- 52. **Louisville's Theorem.** If f is entire and bounded (i.e. there exists an $M \in \mathbb{R}_{>0}$ with $|f(z)| \le M$ for all $z \in \mathbb{C}$), then f is constant.
- 53. Morera's Theorem. (partial converse to Cauchy-Goursat) Let f continuous on an open Ω and suppose that $\int_{\gamma} f = 0$ for every loop in Ω . Then, f is holomorphic on Ω and f has a primitive F on Ω .
- 54. Cor. to Morera's Theorem (Removable Singularities Theorem). Let f be continuous on an open Ω in C and holomorphic on Ω \ {z₀}, with z₀ ∈ C. Then, f is holomorphic on Ω.
- 55. **Another Cor. to Morera's Theorem.** If f is holomorphic on $\Omega \setminus \{z_0\}$ and bounded on a neighborhood of z_0 , there is unique holomorphic extension \tilde{f} of f to γ defined by $\tilde{f}(z) = f(z)$ if $z \neq z_0$ and $\tilde{f}(z) = \lim_{z \to z_0} f(z)$ if $z = z_0$.
- 56. **Mean Value Property.** Let f be holomorphic on $\overline{D_R(z_0)}$. Then $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$.
- 57. Maximum Modulus Principle. Let A be an open, connected, bounded set in C and suppose f: A → C is holomorphic on A and continuous on A. Then |f| has a finite maximum value on A which is achieved on ∂A. IF |f| is attained in A, then f is constant.
- 58. Prop. Let u: Ω → ℝ be an twice-continuous harmonic function on an open set Ω ⊆ ℂ. Then u is infinitely differentiable, so u is C[∞], and in the neighborhood U of z₀ ∈ Ω, there exists a holomorphic function f: U → ℂ such that u = Re(f).
- 59. **Dirichlet Problem.** $\Delta u = 0$, $u \mid_{\partial \Omega} (\theta) = g(\theta)$. Let u, \bar{u} solve the Dirichlet Problem. Then, $u = \bar{u}$, so the solution to the Dirichlet Problem is unique. Solution given by:

$$u(re^{i\phi}) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \cdot \frac{R^2 - r^2}{|Re^{i\theta} - re^{i\theta}|} d\theta.$$

- Analytic Convergence Theorem. Let f_n: Ω → C be a sequence of holomorphic functions. If f_n → f uniformly on every closed disk in Ω, then:
 - (a) f is holomorphic on Ω .
 - (b) f'_n converges to f' uniformly on every closed disk, and pointwise on Ω .
- 61. **Prop.** Let $\gamma:[a,b]\to\Omega$ be a contour and $f_n:\gamma([a,b])\to\mathbb{C}$ be a sequence of continuous functions. If $f_n\to f$ uniformly on $\gamma([a,b])$, then $\int_{\gamma}f_n\to \int_{\gamma}f$.
- 62. **Prop.** If f is holomorphic on an open, connected set Ω and the zero set $\{z \in \Omega \mid f(z) = 0\}$ contains a limit point, then f = 0 on Ω .
- 63. **Cor.** (**Identity Theorem**). Let f, g be holomorphic on an open, connected Ω and f(z) = g(z) for a set of z with a limit point in Ω . Then, f = g on Ω .
- 64. Cor. (Zeros are Isolated). If f is holomorphic on Ω, and not identically zero on Ω, then for any zero z₀ of f, there is a deleted neighborhood U \ {z₀} on which f(z) ≠ 0 for all z ∈ U \ {z₀}.
- 65. Cor. (Analytic Continuation). If f is holomorphic on an open, connected set Ω and f₊ is holomorphic on an open connected Ω₊ ⊇ Ω with f₊ = f on Ω, then f₊ is the unique such extension, i.e. if there exists another such extension, f̄₊, then f̄₊ = f₊.
- 66. Lemma. Let f: Ω → C be holomorphic, not identically 0, with a zero z₀. Then in a neighborhood U of z₀, we may write f(z) = (z z₀)^mg(z) for all z ∈ U, where g(z) ≠ 0 and m is unique.
- 67. **Lemma.** A function f has a pole of order m at z_0 iff there is a neighborhood U of z_0 on which $f(z) = (z-z_0)^{-m}g(z)$ for all $z \in U \setminus \{z_0\}$ with a nonzero g(z) and g holomorphic on U.
- 68. **Theorem.** If f has a pole of order m at z_0 , then it can be represented uniquely as:

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \frac{a_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{a_{-1}}{z - z_0} + G(z)$$

where G(z) is holomorphic on a neighborhood U of z_0 and $a_{-m},\ldots,a_{-1}\in\mathbb{C}$ with $a_{-m}\neq 0$.

- 69. **Residue Theorem, Simple Closed Loops.** Let Ω be open, connected and γ a simple loop homotopic to a point in Ω . Let f be a function $f: \Omega \to \mathbb{C}$ be holomorphic except at a finite set of points z_1, \ldots, z_N inside γ . Then, $\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^N \mathrm{Res}_{z_k}(f)$.
- 70. **Laurent Series Theorem.** Let C_1, C_2 be two circles centered at z_0 (it is fine if $C_1 = \{z_0\}$ and C_2 "encloses" \mathbb{C}). Call R the region the annulus between C_1 and C_2 . Let f be holomorphic on R. Then f can be expanded uniquely as a (absolutely) convergent power series in R by:

$$f(z) = \sum_{n=1}^{\infty} \frac{a_{-n}}{(z - z_0)^n} + \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

where the first infinite series is called the principal part and second one is called the Taylor series / holomorphic part.

- 71. Casorati-Weierstrauss Theorem. If f is holomorphic in a deleted $D_r(z_0) \setminus \{z_0\}$ and has an essential singularity at z_0 , then the image of $f(D_r(z_0) \setminus \{z_0\})$ is dense in \mathbb{C} .
- 72. **Prop.** (Fourier Transform). Let $f: \mathbb{R} \to \mathbb{R}$ be a real function. The Fourier Transform of f is the function $\hat{f}: \mathbb{R} \to \mathbb{R}$ given by $\hat{f}(k) = \int_{-\infty}^{\infty} f(x) \cdot e^{-ikx} dx$.

- 73. **Jordan's Lemma.** $\int_0^{\pi} e^{-R\sin\theta} d\theta \leq \frac{\pi}{R}$.
- 74. **Argument Principle.** Let $f: \Omega \to \mathbb{C}$ be meromorphic and γ a simple loop in Ω bounding a simply connected region R_{γ} , with $\overline{R_{\gamma}} \subseteq \Omega$. Let f have no zeros or poles on γ . Then:

$$\frac{1}{2\pi i} \int_{\mathcal{V}} \frac{f'(z)}{f(z)} dz = N - P$$

where N is the number of zeros of f inside R_{γ} (counting multiplicity) and P is the number of poles of f inside R_{γ} (counting multiplicity).

- 75. Rouche's Theorem. Let f, g: Ω → C be holomorphic and let γ be a simple loop bounding a simply connected open U, with U ⊆ Ω. If |f(z)| > |g(z)| on γ, then f and f + g have the same number of zeros inside U.
- Open-Mapping Theorem. Any nonconstant holomorphic function is an open map, meaning it maps open sets to open sets.
- 77. **Lemma.** (Local Injectivity). Let $f: \Omega \to \mathbb{C}$ be holomorphic and $z_0 \in \Omega$. If $f'(z_0) \neq 0$, then f is locally injective near z.
- 78. **Theorem.** If $g:\Omega\to\mathbb{C}$ is holomorphic and Ω is simply connected, and $g\neq 0$, there exists a holomorphic function $F:\Omega\to\mathbb{C}$ satisfying $e^{F(z)}=g(z)$, where F(z) is unique up to $2\pi ik$, with $k\in\mathbb{Z}$.
- 79. Theorem (Local description of holomorphic). Let f: Ω → C be holomorphic, Ω open. Let z₀ ∈ Ω and let k ≥ 1 denote the order of the zero f(z) − f(z₀) at z₀. Then, there exists an open neighborhood U of z₀ (and r > 0) and a function φ: U → D_r(z₀) such that:
 - (a) ϕ is holomorphic with a holomorphic inverse.
 - (b) $\phi(z_0) = 0$.
 - (c) We have $f(z) = f(z_0) + (\phi(z))^k$ with $z \in U$.
- 80. **Prop.** Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. If $\sum_{n=1}^{\infty} |a_n| < \infty$, then $\prod_{n=1}^{\infty} (1+a_n)$ converges and its value is 0 iff one of the 0 and 0 factors is zero.
- 81. **Prop.** Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of holomorphic functions on Ω . If $\sum_{n=1}^{\infty} |f_n|$ converges uniformly on compact subsets of Ω , then so does $\prod_{n=1}^{\infty} (1+f_n(z))$. Moreover, the limiting function is holomorphic and nonzero everywhere except at points z such that $1+f_n(z)=0$ (for some n).
- 82. Prop. (Partial fractions expansion for log derivatives). Same assumptions as the above proposition. Then, the log derivative of product = sum of log derivatives. i.e.

$$\frac{\left(\prod_{n=1}^{\infty}(1+f_n)\right)'}{\prod_{n=1}^{\infty}(1+f_n)} = \sum_{n=1}^{\infty}\frac{f_n'}{1+f_n}.$$

- 83. **Cor.** $\sin(\pi z) = \pi z \cdot \prod_{n=1}^{\infty} (1 \frac{z}{n})(1 + \frac{z}{n})$ for $z \in \mathbb{C}$, $\cos(\pi z) = \prod_{n=1}^{\infty} \left(1 \frac{z^2}{\left(n \frac{1}{2}\right)^2}\right)$, $e^z 1 = ze^{z/2} \cdot \prod_{n=1}^{\infty} \left(1 + \frac{z^2}{4\pi^2 n^2}\right)$, and $\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 n^2}$ (for the contangent expression, $z \in \mathbb{C} \setminus \mathbb{Z}$).
- 84. **Theorem (Schwarz Reflection Principle).** Let A be a region in the upper-half plane with $\partial A \cap \mathbb{R}$ nonempty and containing $[a,b] \subseteq \mathbb{R}$. Let f be holomorphic on A and continuous on $\partial A \cap [a,b]$ and real on [a,b]. Then f can be uniquely extended to a holomorphic function on $A \cup (a,b) \cup A_{\text{ref}}$, where $A_{\text{ref}} = \{\overline{z} \mid z \in A\}$ with $f(z) = \overline{f(\overline{z})}$ for all $z \in A_{\text{ref}}$.
- 85. **Theorem (Gamma Function).** There is a unique $\Gamma(s)$ with the following:
 - (a) $\Gamma(s)$ is meromorphic.
 - (b) (Factorial). $\Gamma(n+1) = n!$ for n = 0, 1, 2, ...
 - (c) (Special Value). $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
 - (d) (Integral Representation). $\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$ (for Re(s) > 0).
 - (e) (Infinite Product Representation). $\Gamma(s) = s^{-1}e^{\gamma s} \prod_{n=1}^{\infty} \left(1 + \frac{s}{s}\right)^{-1} e^{s/n}$ where $\gamma = \lim_{n \to \infty} \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} \log n\right) \approx 0.58...$ (Euler-Mascheroni constant) (for $s \in \mathbb{C}$, except
 - (f) (Limit of finite products). $\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1)...(s+n)}$ (for $s \in \mathbb{C}$, except poles).
 - (g) (Zeros), $\Gamma(s)$ has no zeros.
 - (h) (Poles). $\Gamma(s)$ has poles at nonpositive integers $s=0,-1,-2,\ldots$ and is holomorphic everywhere else. At s=-n, the pole is simple and $\mathrm{Res}_{-n}(\Gamma)=-\frac{1}{n!}$.
 - (i) (Functional Equation). $\Gamma(s+1) = s\Gamma(s)$ (for $s \in \mathbb{C}$, except at poles).
 - (j) (Reflection Formula). $\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin(\pi s)}$ (for $s\in\mathbb{C}$, except at poles).
- 86. Cor. Holomorphic f is locally injective iff $f'(z_0) \neq 0$.
- 87. Conformal Equivalence Classes. These are the following:
 - (a) Complex plane, C.
 - (b) Punctured plane, $\mathbb{C} \setminus \{0\}$.
 - (c) Unit disk, D₁(0).
 - (d) Upper-half plane, $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}.$
 - (e) Riemann sphere*, Ĉ = ℂ ∪ {∞} (not a subset of ℂ but we can still talk about holomorphic/meromorphic functions on it).
 - (f) The slit plane, $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$
 - (g) Strip (similar to critical region from Riemann hypothesis).

- (h) Rectangle.
- (i) Annulus.
- (j) Blob
- 88. **Prop.** If $g:\Omega\to\Omega'$ is holomorphic and invertible, then g^{-1} is holomorphic (i.e. g is conformal).
- 89. **Lemma.** $\operatorname{Aut}(\Omega)$ is a group, with function composition. In other words, let $f,g,h\in\operatorname{Aut}(\Omega)$. Then:
 - (a) $(g \circ f) \circ h = g \circ (f \circ h)$.

- (b) If $g \in Aut(\Omega)$, then $g^{-1} \in Aut(\Omega)$.
- (c) There is an identity map $\mathrm{id} \in \mathrm{Aut}(\Omega)$ such that $\mathrm{id} \circ g(z) = g(z) = g \circ \mathrm{id}(z) = g(z).$
- 90. **Theorem.** Let $g:\mathbb{C}\to \Omega$ be a conformal map between \mathbb{C} and a region Ω . Then, $\Omega=\mathbb{C}$ and g(z) is a conformal automorphism of the form g(z)=az+b, with $a\neq 0$ and $b\in \mathbb{C}$.
- 91. **Theorem (Riemann Sphere).** Let $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. If $g : \hat{\mathbb{C}} \to \Omega$ is a conformal map, then $\Omega = \hat{\mathbb{C}}$ and g is a conformal automorphism, with $g(z) = \frac{az+b}{cz+d}$ with $a,b,c,d \in \mathbb{C}$ (i.e. g is a Möbius transformation).