18) IV Probit

Vitor Kamada

August 2018

Neglected Heterogeneity

"In probit analysis, neglected heterogeneity is a much more serious problem than in linear models because, even if the omitted heterogeneity is independent of x, the probit coeficients are inconsistent."

$$P(y=1|x,c) = \Phi(x\beta + \gamma c)$$
 $y^* = x\beta + \gamma c + e$
 $c \perp x \text{ and } c \sim N(0, \tau^2)$
 $(\gamma c + e) \sim N(0, \gamma^2 \tau^2 + 1)$

Attenuation Bias

$$P(y = 1|x) = P(\gamma c + e > -x\beta|x) = \Phi(x\beta/\sigma)$$

$$plim\hat{eta}_j=rac{eta_j}{\sigma}$$
 $\sigma=\sqrt{\gamma^2 au^2+1}>1$

$$\frac{\partial P(y=1|x,c)}{\partial x_j} = \beta_j \phi(x\beta + \gamma c)$$

$$E[\beta_j \phi(\mathbf{x}\beta + \gamma \mathbf{c})] = \frac{\beta_j}{\sigma} \phi(\frac{\mathbf{x}\beta}{\sigma})$$

Probit of y on x consistently estimates the APE

Continuous Endogenous Explanatory Variables

$$y_1^* = z_1\delta_1 + lpha_1y_2 + u_1$$
 $y_2 = z_1\delta_{21} + z_2\delta_{22} + v_2 = z\delta_2 + v_2$
 $y_1 = 1[y_1^* > 0]$
 $z \perp (u_1, v_2) \sim N(0, \Sigma)$
 $Var(u_1, v_2) = \Sigma = \begin{bmatrix} 1 & \Sigma'_{21} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$

As $v_2 \sim N(0, \Sigma_{22})$, y_2 should not be Dummy

Vitor Kamada ECO 7110 Econometrics II August 2018

Rivers and Vuong (1988): Control Function Approach

$$u_1 = heta_1 v_2 + e_1$$
 $heta_1 = rac{\eta_1}{ au_2^2}$
 $\eta_1 = extit{Cov}(v_2, u_1) ext{ and } au_2^2 = extit{Var}(v_2)$
 $extit{Var}(e_1) = extit{Var}(u_1) - rac{\eta_1^2}{ au_2^2} = 1 -
ho_1^2$
 $heta_1 = extit{Corr}(v_2, u_1)$

$$e_1|z, y_2, v_2 \sim N(0, 1 - \rho_1^2)$$

Vitor Kamada ECO 7110 Econometrics II August 2018 5/14

Two-Step Approach

$$\mathbf{y}_1^* = \mathbf{z}_1 \delta_1 + \alpha_1 \mathbf{y}_2 + \theta_1 \mathbf{v}_2 + \mathbf{e}_1$$

$$P(y_1 = 1 | z, y_2, v_2) = \Phi[(\frac{z_1\delta_1 + \alpha_1y_2 + \theta_1v_2}{\sqrt{1 - \rho_1^2}})]$$

- 1) Run OLS regression y_2 on z and get the \hat{v}_2
 - 2) Run the probit y_1 on z_1, y_2, \hat{v}_2 to get:

$$\delta_{\rho 1} = \frac{\delta_1}{\sqrt{1-\rho_1^2}}, \ \alpha_{\rho 1} = \frac{\alpha_1}{\sqrt{1-\rho_1^2}}, \ \theta_{\rho 1} = \frac{\theta_1}{\sqrt{1-\rho_1^2}}$$

Vitor Kamada ECO 7110 Econometrics II August 2018 6/14

Conditional Maximum Likelihood Estimation (CMLE)

$$f(y_1, y_2|z) = f(y_1|y_2, z)f(y_2|z)$$
 $P(y_1 = 1|y_2, z) = \Phi[(\frac{z_1\delta_1 + \alpha_1y_2 + (\rho_1/\tau_2)(y_2 - z\delta_2)}{\sqrt{1 - \rho_1^2}})]$
 $[\{\Phi(w)\}^{y_1}\{1 - \Phi(w)\}^{1-y_1}]\frac{1}{\tau_2}\phi[\frac{y_2 - z\delta_2}{\tau_2}]$

$$\ell_i(\delta_1, \alpha_1, \rho_1, \delta_2, au_2) = \ y_{i1}log\Phi(w_i) + (1 - y_{i1})log[1 - \Phi(w_i)] \ - rac{1}{2}log(au_2^2) - rac{1}{2}(rac{y_{i2} - z_i\delta_2}{ au_2})^2$$

Vitor Kamada ECO 7110 Econometrics II August 2018 7 / 14

Sample is restricted to Medicare

ins: supplementary insurance

linc: log household income

hstatusg: health status is good

adl: # of limitations on activities of daily

living

sretire: spouse retirement

probit ins linc \$xlist2, vce(robust) nolog

		Robust				
ins	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
linc	.3466893	.0402173	8.62	0.000	.2678648	. 4255137
female	0815374	.0508549	-1.60	0.109	1812112	.0181364
age	.1162879	.1151924	1.01	0.313	109485	.342060
age2	0009395	.0008568	-1.10	0.273	0026187	.000739
educyear	.0464387	.0089917	5.16	0.000	.0288153	.064062
married	.1044152	.0636879	1.64	0.101	0204108	.229241
hisp	3977334	.1080935	-3.68	0.000	6095927	185874
white	0418296	.0644391	-0.65	0.516	168128	.084468
chronic	.0472903	.0186231	2.54	0.011	.0107897	.083790
adl	0945039	.0353534	-2.67	0.008	1637953	025212
hstatusg	.1138708	.0629071	1.81	0.070	0094248	.237166
_cons	-5.744548	3.871615	-1.48	0.138	-13.33277	1.84367
_	-5.744548	3.871615	-1.48	0.138	-13.33277	

ivprobit ins \$xlist2 (linc = \$ivlist2), twostep first

linc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
retire	0909581	.0288119	-3.16	0.002	1474499	0344663
sretire	0443106	.0317252	-1.40	0.163	1065145	.0178932
female	0936494	.0297304	-3.15	0.002	151942	0353569
age	.2669284	.0627794	4.25	0.000	.1438361	.3900206
age2	0019065	.0004648	-4.10	0.000	0028178	0009952
educyear	.094801	.0043535	21.78	0.000	.0862651	.1033369
married	.7918411	.0367275	21.56	0.000	.7198291	.8638531
hisp	2372014	.0523874	-4.53	0.000	3399179	134485
white	.2324672	.0347744	6.69	0.000	.1642847	.3006496
chronic	0388345	.0100852	-3.85	0.000	0586086	0190604
adl	0739895	.0173458	-4.27	0.000	1079995	0399795
hstatusq	.1748137	.0338519	5.16	0.000	.10844	.2411875
_cons	-7.702456	2.118657	-3.64	0.000	-11.85653	-3.548385
	1					

Vitor Kamada ECO 7110 Econometrics II August 2018 10 / 14

ivprobit ins xlist2 (linc = ivlist2), twostep

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
linc	6109088	.5723054	-1.07	0.286	-1.732607	.5107893
female	167917	.0773839	-2.17	0.030	3195867	0162473
age	.3422526	.1915485	1.79	0.074	0331756	.7176808
age2	0025708	.0014021	-1.83	0.067	0053188	.0001773
educyear	.13596	.0543047	2.50	0.012	.0295249	.2423952
married	.8351517	.441743	1.89	0.059	0306487	1.700952
hisp	6184546	.181427	-3.41	0.001	9740451	2628642
white	.1818279	.1528281	1.19	0.234	1177098	.4813655
chronic	.0095837	.0309618	0.31	0.757	0511004	.0702678
adl	1630884	.0568288	-2.87	0.004	2744709	0517059
hstatusg	.2809463	.1228386	2.29	0.022	.0401871	.5217055
cons	-12.04848	5.928158	-2.03	0.042	-23.66746	4295071

Instrumented: linc Instruments:

female age age2 educyear married hisp white chronic adl hstatusg retire sretire

Wald test of exogeneity: chi2(1) = 3.57

Prob > chi2 = 0.0588

ivprobit ins \$xlist2 (linc = \$ivlist2), vce(robust) mle

	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
linc	5338252	.3852132	-1.39	0.166	-1.288829	.2211788
female	1394072	.0494471	-2.82	0.005	2363218	0424926
age	.2862293	.1280821	2.23	0.025	.0351929	.5372656
age2	0021472	.0009318	-2.30	0.021	0039735	0003209
educyear	.1136881	.0237914	4.78	0.000	.0670579	.1603183
married	.7058309	.2377594	2.97	0.003	.239831	1.171831
hisp	5094514	.1049487	-4.85	0.000	715147	3037558
white	.1563454	.1035674	1.51	0.131	0466429	.3593338
chronic	.0061939	.027525	0.23	0.822	0477542	.060142
adl	1347664	.0349799	-3.85	0.000	2033258	0662071
hstatusg	.2341789	.0709755	3.30	0.001	.0950694	.3732883
_cons	-10.00787	4.065771	-2.46	0.014	-17.97664	-2.039107
corr(e.linc,						
e.ins)	.5879559	.2355329			0309872	.8809669
sd(e.linc)	.7177787	.0167816			.6856296	.7514352

Instrumented: linc

Instruments: female age age2 educyear married hisp white chronic adl

hstatusg retire sretire

Wald test of exogeneity (corr = 0): chi2(1) = 3.51

Prob > chi2 = 0.0610

Angrist and Evans (1998)

Married women in the United States who have at least two children

 $y_1 = worked$: 59 % of the women report being in the labor force

 $y_2 = morekids$: 1 if a woman has three or more children (49% of the sample)

samesex: 1 if first two children are of the same sex

Controls: "non-momi" income, educ, age, black, and hispanic

Estimated Effect of Having Three or More Children on Women's Labor Force Participation

Dependent Variable: worked

	(1)	(2)	(3)	(4)	(5)
Model	LPM	Probit	LPM	Bivariate probit	Bivariate probit
Estimation method	OLS	MLE	2SLS: samesex as IV	MLE: samesex as IV	MLE: no IV
Coefficient on morekids	109(.006)	299(.015)	201(.096)	703(.204)	966 (.243)
APE for morekids	109(.006)	109 (.006)	201 (.096)	256 (.072)	349 (*)
$\hat{ ho}$	_	_	_	.254 (.131)	.426 (.162)
Number of observations	31,857	31,857	31,857	31,857	31,857

14 / 14

Vitor Kamada ECO 7110 Econometrics II August 2018