REPLICAZIONE

Come la cellula replica il DNA?

Sintetizzando nuovi filamenti e usando i vecchi come stampo

La replicazione del DNA è semiconservativa

ORIGINI DELLA REPLICAZIONE

*Nelle eliche DNA degli eucarioti si ritrovano molte origini della replicazione

*La DNA polimerasi catalizza la sintesi del filamento nuovo di DNA

*Per la sintesi del nuovo filamento la DNA polimerasi utilizza deossiribonucleosidi

trifosfato (dNTPs)

*La sintesi del filamento nuovo procede nella direzione 5'→3'

*Legame fosfodiestere catalizzato dalla DNA polimerasi tra l'estremità 3' della catena in crescita e il gruppo 5' fosfato del nucleotide in arrivo.

*LE FORCELLE REPLICATIVE SONO ASSIMETRICHE

*La DNA polimerasi corregge gli errori di appaiamento delle basi, possiede quindi sia attività polimerasica che esonucleasica

DNA polymerase continues the process of adding nucleotides to the base-paired 3'-OH end of the primer strand

*La DNA primasi crea l'RNA innesco per la DNA polimerasi

Per il filamento guida è sufficiente un innesco mentre per il filamento lento è necessario più di un innesco

Modalità di sintesi del filamento lento

La DNA primasi sintetizza un RNA innesco

La DNA polimerasi aggiunge un frammento di Okazaki all'innesco

L'innesco RNA viene rimosso e sostituito da DNA

La DNA ligasi lega i frammenti di Okazaki

*DNA ligasi forma legami fosfodiestere legando i frammenti di Okazaki e usando ATP

Proteine con elevata affinità di legame per il filamento singolo impediscono il ripiegamento prima del passaggio della DNA polimerasi

cooperative protein binding straightens region of chain

Si generano tensioni dovute a superavvolgimento dell'elica mentre la forcella replicativa si apre

*La DNA topoisomerasi taglia temporaneamente un filamento dell'elica per permettere la rotazione che elimina la tensione

VISIONE COMPLESSIVA DELLA FORCELLA REPLICATIVA

