CSE428: Image Processing

Problem Set 1

Lecture 1: Intro to Image Processing

Question 1

Mention what type of image (Reflection/Emission/Absorption) each of the following are based on the image given in the left column.

Image	Image Type

You are given a **grayscale** image with an **aspect ratio of 5:3** and **pixel resolution of 960000 pixels** in total. Calculate the dimensions of the image (**#columns**, **#rows**). Also, calculate the **size** of the image (Each pixel = 8 bit).

Question 3

Differentiate between 1D, 2D and 3D signals (data).

Question 4

Observe image f(x,y) below. What is the Pixel value for f(1,3)?

6	2	1	9
2	0	2	4
1	9	9	5
2	0	1	2

Question 5

The shape below represents a 3*3 4-bit image. Assign intensity values (tentatively) to each of its pixels. Write your answer in the form of a matrix.

Lecture 2: HVS, Image Sensing & Digitization

Question 1

Suppose, a camera captures an intensity f(x,y) = 490 for a particular pixel. The source illumination i(x,y) was 700. Calculate the reflectance r(x, y). Also mention the ranges of possible values for r(x,y) and f(x,y).

Question 2

X-ray images are often "inverted" in appearance compared to traditional photographs. Explain why this **inversion** is done using the concepts of the **power of brightness discrimination** & **Weber Ratio**.

Question 3

Discuss the stages of a typical pipeline of digital image acquisition using a camera.

Question 4

What is **Dynamic Range**? Explain why High Dynamic Range is usually desirable for digital images. Also, which of the following images represent a higher dynamic range? Discuss.

Question 5

Discuss how Image Sensing is done in a camera. What kind of signal (response) is generated when light falls on the surface of a sensor?

Question 6

Discuss the two steps of **Image Digitization** with examples. Why is Digitization necessary?

For each of the images shown below, explain what went wrong. What could've been done to avoid the deterioration in image quality?

a

b

Question 8

Upsample the following image to make it **8*8**. Also, **downsample** it to make it **2*2**. Show both upsampled and downsampled versions in your script. Use an interpolation method of your choice for upsampling.

6	2	1	9
2	0	2	4
1	9	9	5
2	0	1	2

Question 9

Match the components of a camera (left column) with their equivalent parts in the human eye (right column).

Camera Components	Eye Parts	
Sensor	Iris & Pupil	
Lens	Retina	
Shutter	Ciliary Body	
Focusing Region	Fovea	
Autofocus System/Focus Ring	Optical Lens	

Lecture 3: Point Processing (Part 1)

Question 1

Plot the approximate mapping functions for each of the intensity transformations shown below. Plot input intensity along the X-axis and output intensity along the Y-axis. Use [0, 1] range for simplicity.

Input Image, r	Transformed Image, s	Plot of Mapping func. From r to s
		\$♠ 1- 1 r
		s ↑ 1
		S 1 1 1 r

Suppose, for an intensity transformation of an image, the following transformation mapping function is used:

$$s = (2 * r + 6)/255$$

State and explain what will happen to the following:

i. Brightness

ii. Contrast

iii. Whether there will be any data loss

Question 3

A histogram (PDF) is depicted for an image, I, below. Answer the questions:

- a) Draw the CDF of the image with proper labeling.
- b) You have been tasked to contrast-stretch this image from 0.0 to 1.0 range and use the mapping function S = C1(I-C2). Calculate the correct values of C1 and C2.
- c) You are asked to perform a logarithmic transformation: S = log(1+3I). Draw the new histogram after this type of transformation.
- d) Draw the histogram of the **negative** image of **I**.

Three images are given in Figs. (a-c), three *approximate* histograms are given in Figs. (d-f), and three transformations for contrast enhancement are given in Figs. (g-i). For each image, specify which histogram corresponds to that image, and which transformation is best to enhance its contrast. (*Complete the table in your script with short explanations*.)

Image	Histogram	Transformation	Explanation
(a)			
(b)			
(c)			

Consider the following 11 \times 16 image with 16-level quantization ($L_{min} = 0, L_{max} = 15$)

The histogram of the image is given in the following table (r denotes intensity level, n_r denotes total number of pixels with intensity r):

r	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n_r	0	0	0	13	20	13	11	0	0	0	10	26	28	25	21	9

- (a) Plot the histogram and mark the **region of interest** in the histogram (i.e. the relevant intensity levels) assuming that you want to clearly identify the "428" from the image background using some image processing algorithms.
- **(b)** Apply contrast stretching in the **region of interest** of the histogram and calculate the coefficients c_1 and c_2 of the mapping function T(r) which has the following form:

$$T(r) = c_1 \times (r - c_2)$$

Plot the T(r) vs r curve.

(c) Assume that a power law transformation $s = A r^{\gamma}$ (s: output intensity, r: input intensity) has been applied to the image and the transformation yields the following image:

By inspection, explain which value of gamma ($\gamma > 1$, $\gamma = 1$, or $\gamma < 1$) will yield the image below:

(d) Imagine using some other intensity transformation on our input image we derive the following binary image:

Plot the output-input intensity map that yields this output image.

- (e) Refer to the same image given before question a and consider $(\mathbf{r_1}, \mathbf{r_2})$ as (9, 13) and $(\mathbf{s_1}, \mathbf{s_2})$ as (2, 14) respectively. Suppose you are going to apply piecewise linear transformation for contrast stretching as shown in the figure below.
 - a. Determine the values of the gradients (slopes) of your plot for each linear region $(0 \to r_1, r_1 \to r_2, r_2 \to 1)$.
 - **b**. Use these slopes to derive the equations for each region to represent your mapping function. {Hint: y = mx + c}
 - c. Use the equations to complete the mapping from input pixels to output pixels (make a table with all 16 input pixels and the corresponding output pixels).

Lecture 4: Histogram Equalization

Question 1

Consider the following 4×4 image where each pixel are 2-bit (or 4-level) quantized:

1	2	0	0
1	0	1	3
0	1	0	1
2	0	1	1

(a) Calculate the histogram and PDF of the image by filling out the following table:

r_k	$h(r_k)$	$f_r(r_k)$

(b) Calculate the cumulative histogram and the CDF of the image, i.e. add the following two columns to the table of part a and fill out the values:

$H(r_k)$	$F(r_{k})$

- (c) Find a mapping $s_k = T(r_k)$ that will equalize the histogram of the image.
- (d) Draw the equalized 4x4 image.
- (e) Draw the Histogram of the Equalized image.

Consider a 14*14*1 image with quantization level = 3 bit.

r	h(r _k)	f(r _k) [PDF]	H(r _k)	F(r _k) [CDF]	HE Pixels
0	6				
1	0				
2	41				
3	66				
4	42				
5	23				
6	X				
7	7				

- a. Calculate x.
- **b.** Determine the values of $f(r_k)$, $H(r_k)$, $F(r_k)$, and Histogram Equalized Pixels.
- **c. Draw** the CDF of the original image and the Histogram equalized image on your script. What kind of change do you notice? Discuss from the POV of Entropy.

Question 3

Consider the following image and its histogram equalized version given below.

- a. Which Histogram Equalization technique was used here? Global Histogram Equalization or AHE or CLAHE? Discuss.
- **b.** Also, What would happen if the other techniques were used?
- c. How does Contrast Limited Adaptive Histogram Equalization (CLAHE) improve over Adaptive Histogram Equalization (AHE)?