

Théorie des Graphes Rappels

Fabrice Theoleyre

theoleyre@unistra.fr http://www.theoleyre.eu

https://moodle3.unistra.fr/course/view.php?id=10236

ENSEMBLES

Rappels et Notations

Rappel sur les notions ensemblistes

- Ensemble: collection (finie ou infinie) d'objets distincts.
 - Ces objets sont dits des éléments de l'ensemble.
 - **Notations:**
 - ❖ Par convention : x un élément, X un ensemble
 - ❖ {a,b,...,y,z} (énumération) : définition par extension
 - \diamond ou $\{x \mid p(x)\}$ (propriété p caractéristique) : définition par intension (ou compréhénsion)
 - ❖ x ∈ X: x est un élément de X (appartenance)
 - $X \subseteq E$: tous les éléments de X sont dans E (inclusion)
 - $X \subset E : X \text{ est un sous-ensemble strict de } E \text{ (ne peut pas être égal)}$
 - ❖ Ø : ensemble vide (aucun élément)
 - remarque : $\forall E, \emptyset \subseteq E$

Exemples

Ensembles infinis

- Les entiers naturels
- Les réels
- Les graphes complets

Ensembles finis

- Liste des usagers de Facebook
- Les villes de France
- Les rues et routes d'Europe
- Les graphes avec 10 sommets

Union, Intersection

- Soit A et B deux ensembles inclus dans un ensemble E
 - Union : $A \cup B = \{x \in E \mid x \in A \lor x \in B\}$
 - Intersection : $A \cap B = \{x \in E \mid x \in A \land x \in B\}$
- Soit $(X_i)_{i \in I}$, $I \subseteq \mathbb{Z}$ une famille de sous-ensembles de E
 - Union : $\bigcup_{i \in I} X_i = \{x \in E | \exists i \in I, x \in X_i\}$
 - Intersection : $\bigcap_{i \in I} X_i = \{x \in E | \forall i \in I, x \in X_i\}$
 - ❖ si I = {1,2,...,n} alors on note l'union $\bigcup_{i=1}^{n} X_i$
 - et respectivement $\bigcap_{i=1}^{n} X_i$ pour l'intersection
- Soit A et B deux ensembles inclus dans E
 - Complémentaire : $C_F^A = \{x \in E | x \notin A\}$
 - Soustraction : $A \setminus B = \{x \in E | x \in A \land x \notin B\}$
 - Union privée de l'intersection :
 - $A \triangle B = \{x \in E | (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$

Ε

Cardinal et sous-ensemble/partie

- Le cardinal désigne le nombre d'éléments d'un ensemble fini.
 - notation pour un ensemble X : Card(X) ou |X|
- Un sous-ensemble (ou une partie) est un ensemble inclus dans un autre
 - Y est un sous-ensemble de X noté

```
Arr Y \subseteq X
```

- \diamond ou $Y \subset X$ si $Y \neq X$ (sous-ensemble strict)
- On note P(X) l'ensemble des parties de X : $P(X) = \{Z | Z \subseteq X\}$
 - ❖ Tous les sous-ensembles possibles de X
- Propriété : $|P(X)| = 2^{|X|}$
 - Intuition/preuve ?
 - Démonstration par récurrence
 - Vrai pour ensemble vide
 - Si vrai pour k et qu'on ajoute un élément e
 - » Anciens qui ne contiennent pas e 2^k
 - » Nouveaux qui contiennent e : également 2^k

Produit cartésien & Partition

- Produit cartésien
 - Soit A et B deux ensembles, on note leur produit cartésien, A x B, l'ensemble des couples de la forme (a,b) avec $a \in A$, $b \in B$
 - Notation formelle : $A \times B = \{(a, b) | a \in A, b \in B\}$
- Soit $(X_{ij})_{ij\in I}$, $I=\{i_1,\ldots,i_{|I|}\}\subseteq\mathbb{Z}$ une famille de sous-ensemble de E, on note leur produit cartésien
 - $\prod_{ij\in I} X_{ij} = \{(x_{ij})_{j=1}^{|I|} = \{(x_{i1}, x_{i2}, ..., x_{i|I|}) \mid \forall j \in [1, |I|], x_{ij} \in X_{ij}\}$
 - on peut avoir A=B ou tous les Xiégaux
 - on parle de couple pour n=2, de triplet pour n=3, ou de n-uplet si n>3
 - $\prod_{ij\in I}|X_{ij}|=|\prod_{ij\in I}X_{ij}|$
- P est une partition de X si P vérifie les trois conditions suivantes
 - 1. ensemble vide inclus : $\emptyset \in P$
 - 2. Complétude : $X = \bigcup_{Y \in P} Y$
 - 3. sous ensembles disjoints : $\forall (Y,Z) \in P^2, Y \neq Z \Rightarrow Y \cap Z = \emptyset$
 - Intérêt des partitions?

RELATIONS

Et lien avec les graphes

Relations

- Relation Binaire ou n-aire
 - Qui lie (de façon n-aire) un élement du premier ensemble à un ensemble d'éléments du second ensemble
 - 2-aire: un enfant est lié à ses deux parents
 - Plusieurs relations : adoption et filiation naturelle

- Même ensemble de départ et d'arrivée
- il s'agit d'une partie R de X²
- un couple (x,y), noté aussi xRy, appartenant à X² est en relation par R dans X si celui-ci appartient à R.

Propriétés des relations

- Soit R une relation sur X, on dit que la relation R est :
 - réflexive ssi $\forall x \in X, xRx$
 - irréflexive ssi $\forall x \in X$, $\neg(xRx)$
 - Pas d'arête de retour sur le sommet
 - transitive ssi $\forall (x, y, z) \in X^3, xRy \land yRz \Rightarrow xRz$
 - symétrique ssi $\forall (x, y) \in X^2, xRy \Rightarrow yRx$

- ❖ Soit d'un côté, soit de l'autre (either / or) sauf pour les arêtes « boucles »
- symétrique et antisymétrique possible ?
 - Non sauf si « relation diagonale » (matrice)
- fortement antisymétrique ssi $\forall (x,y) \in X^2, xRy \Rightarrow \neg(yRx)$
- un graphe pour chaque cas?
 - ❖ à 4 sommets

Relations d'ordre

- Une relation d'ordre R sur X vérifie les trois conditions suivantes :
 - R est réflexive
 - R est transitive
 - R est antisymétrique (faible)
 - → comparaison cohérente des éléments entre eux
- Relation d'ordre stricte (<)
 - Relation d'ordre, mais avec une antisymétrie forte
 - Donc également non réflexive
- Ensemble ordonné
 - Ensemble X muni d'une relation d'ordre
- Ordre total vs. ordre partiel
 - total: $\forall (x,y) \in X^2, xRy \lor yRx$
 - Deux éléments x et y sont toujours comparables
 - partiel si R est une relation d'ordre qui n'est pas total

$$\Rightarrow \exists (x,y) \in X^2, \neg(xRy) \land \neg(yRx)$$

Relations d'équivalence

- Une relation d'équivalence R sur X vérifie les trois conditions suivantes :
 - R est réflexive
 - R est transitive
 - R est symétrique
 - ❖ Une telle relation R se note "~"
- Soit R une relation d'équivalence sur X et x ∈ X
 - La classe d'équivalence de x dans (X,R) se note [x]R
 - Il s'agit d'un sous ensemble de X tel que [x]R = {y ∈ X | yRx}
 - ❖ la notation [x] est aussi utilisé avec ~
- L'ensemble quotient se note $X/R = \{[x]_R \mid x \in X\}$
 - Il s'agit d'une partition de X désignant l'ensemble des classes d'équivalence

Applications

- Soit E et F deux ensembles et R une relation de E vers F
 - On dit que R est une application de E dans F ssi

$$\forall X \in E, \exists! y \in F \mid xRy$$

- ❖ NB : ∃! signifie qu'il existe un unique élément
- On écrit y=R(x) avec y l'image de x par R et x l'antécédent de y par R
- Soit $X \subseteq E$ et $Y \subseteq F$, on note

$$R(X)=\{R(x) \mid x \in X\}, R^{-1}(Y)=\{x \in E \mid R(x) \in Y\}$$

- Exemples?
 - Propriétaires des véhicules immatriculés (cartes grises)
 - ❖ E= véhicules
 - ❖ F = propriétaire (humain ou entreprise)
 - NB : peut avoir plusieurs véhicules
- On note F^E l'ensemble des applications de E dans F

COMPLEXITÉ

Et classes de problèmes

Complexité

- Complexité : temps de calcul ou mémoire d'un algorithme
- $f(n) \in O(g(n))$
 - $\exists N \in \mathbb{N}^*, \exists c \in \mathbb{R}^+ \mid \forall n > N, f(n) < c * g(n)$
 - f est bornée par g (asymptotiquement)
- $f(n) \in o(g(n))$
 - $\exists N \in \mathbb{N}^*, \forall \ \mathcal{E} \in \mathbb{R}^+ \mid \forall n > N, f(n) \leq \mathcal{E} * g(n)$
 - ❖ E petit (mais positif strict)
 - f est négligeable devant g (domination stricte)
- $f(n) \in \Omega(g(n))$
 - $\exists N \in \mathbb{N}^*, \exists c \in \mathbb{R}^+ \mid \forall n > N, f(n) \ge c * g(n)$
 - f est minorée par g
- $f(n) \in \Theta(g(n))$
 - $\exists N \in \mathbb{N}^*, \exists c, d \in \mathbb{R}^+ \mid \forall n > N, c * g(n) \le f(n) \le d * g(n)$
 - $\Theta(g(n)) = \Omega(g(n)) \cup O(g(n))$
 - f est dominée et soumise
- Par abus de langage : $g(n) \in O(f(n)) \rightarrow g(n) = O(f(n))$

for(i=0; i<= n; i++)
 for(j=0; j<= n; j++)
 tab_c[i,j] = tab[i,n-j]
Complexité en O(n^2)</pre>

NP, P, PTAS

Problème décisionnel

- Question dont la réponse est soit positive, soit négative
- Ensemble des instances positives (dont la réponse est oui)
- Le chemin c de la maison à l'école est-il correct?

- Complexité croissante
 - P ⊆ NP (pb de Smale, 1M\$)

Classe NP

- Problème de décision dans NP s'il peut être résolu en temps polynomial par une machine de Turing non déterministe
 - = on peut vérifier en temps polynomial si une solution est correcte
 - On peut autoriser des choix non déterministes en cours de route
- Exemple : un circuit Hamiltonien de longueur inférieure ou égale à k
 - ❖ Somme des arêtes <= k</p>
 - Passe par toutes les villes exactement une fois

 $P \neq NP$

Classe P

- Problèmes de décision résolubles en temps polynomial
 - Trouver (P) vs. vérifier (NP)
- Attention
 - il existe UNE solution en temps polynomial ⇒ Classe P
 - II existe UNE solution en temps non polynomial ⇒ ∉ Classe P
- Exemple :
 - Soit deux entiers (a,b)
 - a et b sont ils premiers entre eux ?
 - Solution naïve
 - ❖ Tester chaque diviseur de 2 à a (a < b)</p>
 - Complexité exponentielle (a sur n bits -> test de 2ⁿ possibilités)
 - Algorithme d'Euclide
 - Chaque division de complexité quadratique
 - O(n^2)
 - Nombre linéaire de divisions
 - pgcd (a,b) = pgcd (b, a mod b) a > b
 - Théorème de Lamé : borné par 5 fois le nombre de chiffres nécessaires pour écrire a en base 10 (a<b)

NP-Complet

- Un problème est NP complet si
 - « Vérification de la solution en temps polynomial (NP) »
 - « Tous les problèmes de la classe NP se ramènent à celui-là en temps polynomial »
 - Au moins aussi difficile
- Complexité
 - Trouver la solution (et non la vérifier)
 - → heuristiques
- De nombreux problèmes NP complets
 - Sac à dos
 - Clique maximale (cf. + loin)
 - Cycle hamiltonien
 - Coloration de graphe (cf. + loin)
 - SAT (assignation de valeurs qui rend la formule vraie)
 - ❖ Soit une expression logique de n variables F(x1, ...,xn)
 - Trouver les valeurs xi pour que F soit satisfaite
 - Dans NP : il suffit de vérifier F (en temps polynomial)
 - Théorème de Cook

 $P \neq NP$

Preuve de NP-complétude

Réduction

- « Un problème A est réductible à un problème B s'il existe un algorithme résolvant A qui utilise un algorithme résolvant B »
 - ❖ A est un cas particulier de B
- Réduction polynomiale : $A \alpha B$
- Preuve de NP-Complétude
 - Prouver que P1 est dans NP
 - Prouver que P1 est au moins aussi difficile que d'autres problèmes NP complets
 - Choisir un problème P2 déjà connu comme NPcomplet
 - ❖ Construire une réduction de P1 à P2
 - $u \in oui(P1) \Leftrightarrow u \in oui(P2)$
 - Si on trouve un algo polynomial pour P2, on en a un aussi pour P1
 - P1 est plus facile que P2 (non strict)

NP-difficile

- Ne remplit que la seconde condition de NPcomplétude
 - « Tous les problèmes de la classe NP se ramènent à celui-là en temps polynomial »
 - NB: On ne vérifie pas qu'il est dans NP
 - ❖ On ne sait pas si le test peut être fait en temps polynomial!
- Au moins aussi difficile que tout problème dans NP

 $P \neq NP$

Schéma d'approximation en temps polynomial

- $(1+\epsilon)$ -approximation
 - Trouve une solution à au plus $(1+\epsilon)$ de l'optimum
 - Exemple : 2-approximation du sac à dos
 - Si somme optimale des importances = M
 - ❖ Trouve une solution d'importance au pire M/2 en temps polynomial
- Polynomial Time Approximation Scheme (PTAS)
 - Classe d'algorithmes d'approximation pour des problèmes d'optimisation combinatoire
 - Souvent NP difficiles
 - Une instance d'un problème d'optimisation + une valeur ϵ strictement positive
 - ❖ Donne une solution $(1+\epsilon)$ optimale en temps polynomial pour ϵ fixé
 - Peut varier en fonction de ϵ
 - Par exemple : complexité en $O\left(n^{\frac{1}{\epsilon}}\right)$

