Лекция 3

Ilya Yaroshevskiy

22 февраля 2021 г.

Содержание

1 Интеграл 1.1 Предельный переход под щнаком интеграла	1 4
1 Интеграл	
1. $f \geq 0$, ступенчатые $f = \sum_{\text{кон.}} \alpha_k \chi_{E_k}, E_k$ — измеримое $\int_X f = \sum \alpha_k \mu E_k$	
2. $f \geq 0$, измеримая $\int_X f d\mu = \sup_{\substack{0 \leq g \leq g \\ f - \text{ступ.}}} \int_X g d\mu$	
3. f — измерима, $f^+, f^- \ge 0$ — измеримые Пусть $\int_X f^+$ или $\int_X f^-$ — конечные Тогда $\int_X f = \int_X f^+ - \int_X f^-$	
Определение. Если $\int_x f^+,\ \int_X f^-$ — оба конечные, то f назывется суммируемой	
$\mathit{Примечаниe}.\ f$ — измеримая, ≥ 0 , интеграл $3=$ интеграл 2	
4.	
Определение. $E\subset X$ — измкримое, f — измерима на X $\int_E f d\mu = \int_X f\cdot \chi_E$	
Примечание. $f = \sum \alpha_k \chi_{E_k} \int_E f = \sum \alpha_k \mu(E_k \cap E)$	
Π римечание. $\int_E f d\mu = \sup\{fg:\ 0 \le g \le f \ { m Ha}\ E, g$ — ступенчатые $\}$, можно считать что g — тожд ственный 0 вне множества E	ιe-
$\mathit{\Pi}\mathit{pume}$ чание. $\int_E f$ не зависит от значений f вне E	
$\mathit{Примечаниe}.\ (X,\mathfrak{A},\mu)\ E\subset X$ — измеримое, g,f — измеримые. Свойства:	
1. Монотонность $f \leq g \int_E f \leq \int_E g$	
Доказательство.	

- (a) $f, g \ge 0$ очевидно
- (b) f,g произвольные $f^+ \leq g^+ \ f^- \leq g^- \\ \int_E f^+ \leq \int_E g^+ \ \int_E f^- \leq \int_E g^- \Rightarrow \text{OK}$

$$2. \int_E Ad\mu = \mu E \int_E 0d\mu = 0$$

3.
$$\mu E = 0$$
 $\int_{E} f = 0$

Доказательство. (a) f — ступенчатая

(b)
$$f \ge 0$$
 — измеримая

Змечание:

f — измеримая. Тогда f — суммируемая $\Leftrightarrow \int |f| < +\infty$

- (\Leftarrow) следует из свойства 1. $f^+,f^-\leq |f|$
- (\Rightarrow) позже

4.
$$\int_E (-f) = -\int_E f$$
, $\forall c \in \mathbb{R}$ $\int_E cf = c \int_E f$

(a)
$$(-f)^+ = f^- (-f)^- = f^+$$

- (b) можно считать c>0 для $f\geq 0$ тривиально
- 5. $\exists \int_E f d\mu$ Тогда $|\int_E f d\mu| \le \int_E |f| d\mu$

6. $\mu E \leq +\infty,\ a \leq f \leq b$ Тогда $a\mu E \leq \int_E f \leq b\mu E\ a\chi_E \leq f \leq b\chi_E$ Следствие 1.0.1. f — измерима на $E,\ f$ — ограничена на $E,\ \mu E < +\infty$ Тогда f — суммируемая на E

7. f — суммируемая на E. Тогда f — почти везде конечная

Доказательство.

(а)
$$f \geq 0$$
 $f = +\infty$ на $A \subset E \ \forall n \in \mathbb{N} \ \int_E f \geq n \mu A$

(b)
$$f = f^+ - f^-$$

Лемма 1.

$$A = \bigsqcup_{i=1}^{+\infty} A_i$$

— измеримые, g — ступенчатая, $g \ge 0$ Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_i} g d\mu$$

Доказательство. $\int_A g d\mu = \sum_{\text{кон.}} \alpha_k \mu(E_k \cap A) = \sum_k \sum_i \underbrace{\alpha_k \mu(E_k \cap A_i)}_{>0} = \sum_i \sum_k \dots = \sum_i \int_{A_i} g d\mu$ \square

Теорема 1.1. $A=\bigsqcup_{i=1}^+A_i$ — измеримые, $f:X\to\overline{\mathbb{R}}$ — измеримая на $A,\,f\ge 0$ <u>Тогда</u> $\int_A f d\mu=\sum_{i=1}^{+\infty}\int_{A_i} f d\mu$

Доказательство.

- (\leq) ступенчатая $g:\ 0\leq g\leq f\ \int_a g=\sum\int_{A_i}gd\mu\leq \sum\int_{A_i}f$ по Лемме
- (\geq) 1. $A = A_1 \cup A_2$ $0 \leq g_1 \leq f \chi_{A_1} \ 0 \leq g_2 \leq f \chi_{A_2}$

$$g_1 = \sum \alpha_k \chi_{E_k} \ g_2 = \sum \beta_k \chi_{E_k}$$

Считаем что E_k – совместное разбиение

$$0 \le g_1 + g_2 \le f\chi_A$$

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_A g_1 + g_2 \le \int_A f$$

Перейдем к супремуму

$$\int_{A_1} f + \int_{A_2} g_2 \le \int_A f$$

$$\int_{A_1} f + \int_{A_2} f \le \int_A f$$

2. $\forall n \in \mathbb{N}$ — индукция по n

3.

$$A = \bigsqcup_{i=1}^{n} A_i \sqcup B_n$$

, где

$$B_n = \bigsqcup_{i>n} A_i$$

$$\int_A f = \sum_{i=1}^n \int_{A_i} f + \int_{B_n} f \ge \sum_{i=1}^n \int_{A_i} f$$

Cледствие 1.1.2.• $f \ge 0$ — измеримая

- $\nu: \mathfrak{A} \to \overline{\mathbb{R}}_+$
- $\nu E := \int_E f d\mu$

Тогда ν — мера

Cледствие 1.1.3 (аддитивности интеграла). f — суммируема на $A = \bigsqcup A_i$ — измеримые Тогда

$$\int_A f = \sum \int_{A_i} f$$

Доказательство. $f^+, f^- \dots ???$

Предельный переход под щнаком интеграла

 $f_n \to f$. Можно ли утверждать $\int_E f_n \to \int_E f$?

Пример. $f_n, f: \mathbb{R} \to \mathbb{R}$

 $f_n = \frac{1}{n} \cdot \chi_{[0,n]} \ f \equiv 0 \ f_n \to f$ (даже $f_n \rightrightarrows f$ на $\mathbb R$)

$$\int_{\mathbb{R}} f_n = \frac{1}{n} \lambda[0, n] = 1 \not\xrightarrow[n \to +\infty]{} 0 = \int_{\mathbb{R}} f$$

Теорема 1.2 (Леви). $(X, \mathfrak{A}, \mu), f_n$ — измеримая

 $\forall n \ 0 \leq f_n \leq f_{n+1}$ почти везде $f(x) := \lim_{n \to +\infty} f_n(x)$ почти везде

Тогда $\lim_{n\to+\infty} \int_X f_n d\mu = \int_x f d\mu$

 $\Pi puмечание. \ f$ — задана всюду, кроме множества меры 0. Считаем, что f=0 на eTогда f — измерима на X.

Доказательство.

 (\leq) очевидно. $f_n \leq f$ почти везде $\int f_n \leq \int f$

$$\int_X f_n = \int_{X \setminus e} f_n + \int_e f_n = \int_{X \setminus e} f_n \le \int_{X \setminus e} f \le \int_X f$$

 (\geq) Достаточно: $\forall g$ — ступенчатая $0 \leq g \leq f$

$$\lim \int_X f_n \ge \int_X g$$

Достаточно: $\forall c \in (0,1)$

$$\lim \int_X f_n \ge c \int_X g$$

$$E_n := X(f_n \le cg) \cdots \subset E_n \subset E_{n+1} \subset \dots$$

 $\bigcup E = X$ т.к. c < 1

$$\int_x f_n \ge \int_{E_n} f_n \ge c \int_{E_n} g$$

Тогда $\lim \int_X f_n \ge c \lim \int_{E_n} g = c \int_X g$

Последнее равентсво справедливо в силу непрерывности мнизу меры $\nu: E \mapsto \int_E g$

Теорема 1.3. $f, g \ge 0$ измерима на E

Тогда

$$\int_{E} f + g = \int_{E} f + \int_{E} g$$

Доказательство.

1. f, q — ступенчатые

$$f = \sum \alpha_k \chi_{E_k}, \ g = \sum \beta_k \chi_{E_k}$$

$$\int_E f + g = \sum (\alpha_k + \beta_k) \mu(E_k \cap E) = \sum \alpha_k \mu(E_k \cap E) + \sum \beta_l \mu(E_k \cap E) = \int_E f + \int_E g$$

2.
$$f \geq 0$$
 — измерима $\Rightarrow \exists$ стпенчатая $f_n: 0 \leq f_n \leq f_{n+1} \leq \ldots \lim f_n = f$ $g \geq 0$ — измерима $\Rightarrow \exists$ стпенчатая $g_n: 0 \leq g_n \leq g_{n+1} \leq \ldots \lim g_n = g$ $f_n + g_n \rightarrow f + g$ $\int_E f_n + g_n \rightarrow \int_E f + g$ $\int_E f_n + g_n = \int_E f_n + \int_E g_n \rightarrow \int_E f + \int_E g = \int_E f + g$

Следствие 1.3.4. f,g — суммируемы на E Тогда f+g — суммируема и $\int_E f+g=\int_E f+\int_E g$

Примечание. Свойство 3 доказано

Доказательство. Суммируемость $|f+g| \le |f| + |g|$ h=f+g. Тогда:

$$h^{+} - h^{-} = f^{+} - f^{-} + g^{+} - g^{-} \Leftrightarrow h^{+} + f^{-} + g^{-} = h^{-} + f^{+} + g^{+}$$

$$\Rightarrow \int_{E} h^{+} + \int_{E} f^{-} + \int_{E} g^{-} = \int_{E} h^{-} + \int_{E} f^{+} + \int_{E} g^{+}$$

$$\int_{E} h^{+} - \int_{E} h^{-} = \int_{E} f^{+} - \int_{E} f^{-} + \int_{E} g^{+} - \int_{E} g^{-}$$

$$\int_{E} h = \int_{E} f + \int_{E} g$$

Определение. $\mathcal{L}(X) =$ множество функций суммируемых на X

Cледствие 1.3.5. $\mathcal{L}(X)$ — линейное пространство, а отображение $f\mapsto \int_X f$ — это линейный функционал на $\mathcal{L}(X)$, т.е. $\forall f_1,\dots,f_n\in\mathcal{L}(X)\ \forall \alpha_1,\dots,\alpha_k\in\mathbb{R}$

$$\sum_{k=1}^{n} \alpha_k f_k \in \mathcal{L}(X); \ \int_X \sum \alpha_k f_k = \sum_{k=1}^{n} \alpha_k \int_X f_k$$

Теорема 1.4 (об интегрировании положительных рядов). (X,\mathfrak{A},μ) $E\in\mathfrak{A}$ $u_n:X\to\overline{\mathbb{R}}$ $u_n\geq 0$ почти везде

Тогда

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n(x)\right) d\mu(x) = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu$$

Доказательство. по т. Леви: $S_n:=\sum_{k=1}^n u_k\ 0\leq S_n\leq S_{n+1}\leq\dots\ S_n\to S$ — сумма ряда $\sum u_n$ Тогда $\int_E S_n\to \int_E S,\ \int_E S_n=\sum_{k=1}^n \int_E u_k\to \int_E S$

Cледствие 1.4.6. u_n — измеримые $\sum_{n=1}^{+\infty} \int_E |u_n| < +\infty$ — Тогда ряд $\sum u_n(x)$ — абсолютно сходится при почти всех x

Доказательство. $S(x) := \sum |u_n(x)| \ge 0$ — измеримая

$$\int_{E} S(x) = \sum \int_{E} |u_n| < +\infty$$

 $\Rightarrow S$ — сумиируема $\Rightarrow S$ почти везде конечена

 Π ример. $x_n \in \mathbb{R}$ — произведение последовательности; $\sum a_n$ — абсолютно сходится $\frac{\text{Тогда}}{\sqrt{|x-x_n|}}$ — абсолютно сходится при почти всех x

Доказательство. Достаточно проверить абсолютную сходимость на [-N,N] почти везде

$$\int_{[-N,N]} \frac{|a_n|}{\sqrt{|x-x_n|}} = \int_{-N}^{N} \frac{|a_n|}{\sqrt{|x-x_n|}} dx = |a_n| \int_{-N-x_n}^{N-x_n} \frac{dx}{\sqrt{|x|}} \le$$

$$\leq |a_n| \int_{-N}^{N} \frac{dx}{\sqrt{|x|}} = 4\sqrt{N} \cdot |a_n|$$

$$\sum_{n} \int_{[-N,N]} \frac{|a_n|}{\sqrt{|x-x_n|}} \le 4 \int_{N} \sum_{n} |a_n| < +\infty$$