The following is a derivation of the optimal policy for outputting a certain word as a target P_t given a belief about the the word being picked P_p , about the targets that have been outputted so far being picked P_a , the reward function and the KL penalty coefficient β . The reward function is split into two functions of the number of targets n – an accept reward R_a for when the targets are accepted by the overseer, and a reject reward R_r for when the targets are rejected. We start with the expected reward R_e , the KL divergence KL as a function of the reference policy's probability of outputting a target P_b and the objective function J. We then take the derivative of the objective function with respect to P_t and set it to zero to find the optimal policy.

$$\begin{split} R_e &= P_t \left[P_a P_p R_a(n) + (1 - P_a P_p) R_r(n) \right] \\ &+ (1 - P_t) \left[P_a R_a(n-1) + (1 - P_a) R_r(n-1) \right] \\ KL &= P_t \log \frac{P_t}{P_b} + (1 - P_t) \log \frac{1 - P_t}{1 - P_b} \\ J &= R - \beta KL \\ \frac{dR_e}{dP_t} &= P_a P_p R_a(n) + (1 - P_a P_p) R_r(n) \\ &- P_a R_a(n-1) - (1 - P_a) R_r(n-1) \\ \frac{dJ}{dP_t} &= \frac{dR_e}{dP_t} - \beta \log \frac{P_t(P_b-1)}{P_b(1-P_t)} = 0 \\ \frac{P_t}{1 - P_t} &= \frac{P_b}{1 - P_b} e^{\frac{1}{\beta} \frac{dR_e}{dP_t}} \\ P_t &= 1 - \frac{1}{1 + \frac{P_b}{1 - P_b}} e^{\frac{1}{\beta} \frac{dR_e}{dP_t}} \end{split}$$

In order to design a reasonable reward function, we impose the following heuristics:

- The policy for outputting a specific target should be as independent as possible of the number of targets already outputted. In practice, this means R_a needs to scale exponentially in the number of targets to reflect the geometric nature of the risk of the targets being rejected. We operationalize this by having one calibrated probability P_c for which $P_p = P_c \Rightarrow P_t = P_p$, across all n and P_a .
- On average, the reward for a calibrated policy should be similar to the true game score. We approximate this with $R_a(0) = 0$ and $R_a(1) = 1$.
- It is valid for P_c to change during training to reflect the current ability of the model to give good clues. To implement this, we use an estimate of the real score given the oversight outcomes in the current batch. P_c is the estimated average score divided by the maximum possible score, m.

When the overseer accepted the targets, the true score estimate is $n+P_b(m-n)$, where n is the number of targets. When the overseer rejected the targets, the estimate is $P_c(n-1)+P_b(m-n)$. Setting N as the batch size and using \sum_a and \sum_r to denote summing over accepted outputs and rejected outputs respectively, we get:

$$mNP_{c} = \sum_{a} (n + P_{b}(m - n)) + \sum_{r} (P_{c}(n - 1) + P_{b}(m - n))$$

$$mNP_{c} = \sum_{a} P_{b}(m - n) + \sum_{a} n + \sum_{r} P_{c}(n - 1)$$

$$P_{c} = \frac{\sum_{a} P_{b}(m - n) + \sum_{a} n}{mN - \sum_{a} n - 1}$$

To find $R_r(n)$, we can set P_a to 0:

$$\frac{P_c}{1 - P_c} = \frac{P_b}{1 - P_b} e^{\frac{1}{\beta}(R_r(n) - R_r(n-1))}$$

$$R_r(n) = R_r(n-1) + \beta \log \frac{P_c(1 - P_b)}{P_b(1 - P_c)}$$

$$R_r(n) = R_r(1) + (n-1)\beta \log \frac{P_c(1 - P_b)}{P_b(1 - P_c)}$$

Now set $P_a = 1$:

$$\begin{split} \frac{P_c}{1-P_c} &= \frac{P_b}{1-P_b} e^{\frac{1}{\beta}(P_c R_a(n) + (1-P_c)R_r(n) - R_a(n-1))} \\ R_a(n) &= \frac{R_a(n-1) - (1-P_c)R_r(n) + \beta \log \frac{P_c(1-P_b)}{P_b(1-P_c)}}{P_c} \end{split}$$

With n = 1, we get:

$$R_a(1) = \frac{R_a(0) - (1 - P_c)R_r(1) + \beta \log \frac{P_c(1 - P_b)}{P_b(1 - P_c)}}{P_c}$$

$$P_c = -(1 - P_c)R_r(1) + \beta \log \frac{P_c(1 - P_b)}{P_b(1 - P_c)}$$

$$R_r(1) = \frac{\beta \log \frac{P_c(1 - P_b)}{P_b(1 - P_c)} - P_c}{1 - P_c}$$