	1	

Exam Topics:	
Everything from Exam !	
All material thin Lambert Solver	
Kepler's TOF	
Geouroldracks	
Mareners:	
Tomanhal	
Hon-tayouthal - in plane	
- out of plane	
· · · · · · · · · · · · · · · · · · ·	
Patchel Gmis	
Flylys	
Keples's Dad Red	
lambert's Prol	
Coordante Systems: ECI, PaW, SEZ, Heliscentura Inertal	
(8)	
B	
/ 8	
Grand tracks:	
A Change and I will a change the alfal below a good of the agree	
al Changes pentral of orbit =) Changes the offset between 2 consecutive passes	

e B/c the 5/c speed is changing, the slope of the grandfack an change il max/min ballande reached by 5/c Il longitude of oscending note wif if a = az # e = = 2 \$ W = W =) Change in location (layitude) of the descending make Hw4, prob 3: Charge argument of periapsis from 45° to 30° $Q_1 = Q_2$, $Q_1 = Q_2$ $| d_1 = Q_2$ $| d_2 = Q_2$ $| d_3 = Q_3$ $| d_4 = Q_3$ $| d_5 = Q_4$ $| d_5 = Q_3$ $| d_5 = Q_4$ $| d_5 = Q_4$ $| d_5 = Q_5$ $| d_5 = Q_5$ | dP, = B [= 2 @ fp =) cos v = cos v Note: cos(6) = cos(-6) V1 = - V2 WIT = WET VE 45- V2 = 30 + V2 15= 2 \(\frac{1}{2} = \frac{1}{2} = 7.5° 16 = P2 He2 COS UZ E= 1/2 - 1/2 - 1/2 , 81 -- 82

ΔV2= V,2+U32-2V,U2 Cos θ) ΔV2=2V2(1- Cos(27))

₩ 4,#1 <u>:</u>	
[c = 60,000 km , i= 60°	
a) i ₂ =15°	
$\Delta V^2 = V_1^2 + V_2^2 - 2 v_1 v_2 \cos \theta$	
$V_1 = V_2$ $\Delta V^2 = 2V^2 (1 - \cos \theta)$ $\theta \sim \Delta i$	
Δν=2ν²(1-cos (5))	
b) only @ ascending node or descending nucle	
c) 1p2 = 59,000 km Changey e to i.	
W2=0 € regulary to be 0 or 180 for the 2 orbits to intersect.	
Orbato sutersect @ Paz =) so hum occurs here.	
$V_2 = O(b/c \cdot apoapsis) \rightarrow \theta = Di$ $V_c = O(circle)$	
V ₁ ‡ v ₂ .	
$\Delta V^2 = V_c^2 + V_2^2 - 2V_c V_2 \cos(\Delta i)$	Form!
#W5 #2b: AVM Drital: AV,	Vm _
F V	√y V _∞
Δν°= 2νω (ι-cos δ)	
\(\vec{\pi_{\vec{t}}} \ \left(\vec{v}_{\vec{t}} \ \left(\vec{v}_{\vec{t}} \ \left(\vec{v}_{\vec{t}} \ \vec{v}_{\vec{t}} \ \right)	