

Travaux pratiques – Fabrication d'un câble Ethernet croisé

Topologie

Table d'adressage

Périphérique	Interface	Adresse IP	Masque de sous-réseau	Passerelle par défaut
PC-A	Carte réseau	192.168.10.1	255.255.255.0	N/A
РС-В	Carte réseau	192.168.10.2	255.255.255.0	N/A

Objectifs

Partie 1 : Analyser les normes et le brochage des câbles Ethernet

Partie 2 : Fabriquer un câble Ethernet croisé

Partie 3 : Tester un câble Ethernet croisé

Contexte/Scénario

Au cours de ces travaux pratiques, vous fabriquerez et sertirez un câble Ethernet croisé. Ensuite, vous le testerez en reliant deux ordinateurs ensemble et en envoyant des requêtes ping de l'un à l'autre. Vous analyserez d'abord les normes TIA/EIA (Telecommunications Industry Association/Electronic Industries Association) 568-A et 568-B, et la façon dont elles s'appliquent aux câbles Ethernet. Ensuite, vous fabriquerez un câble Ethernet croisé et vous le testerez. Enfin, vous utiliserez le câble que vous venez de créer pour connecter deux ordinateurs et vous le testerez en envoyant des requêtes ping de l'un à l'autre.

Remarque : avec les fonctions de détection automatique disponibles sur de nombreux périphériques, tels que le commutateur ISR (routeur à services intégrés) Cisco 1941, vous pouvez voir des câbles droits connectant des périphériques similaires.

Ressources requises

- Un câble, de catégorie 5 ou 5e. La longueur du câble doit être comprise entre 0,6 et 0,9 m
- 2 connecteurs RJ-45
- Pince à sertir RJ-45
- Coupe-câble
- Pince à dénuder
- Testeur de câble Ethernet (facultatif)
- 2 ordinateurs (Windows 7 ou 8)

Partie 1: Analyser les normes et le brochage des câbles Ethernet

La TIA et l'EIA ont spécifié des normes relatives aux câbles à paire torsadée non blindée (UTP) à utiliser dans les environnements de câblage pour réseau local (LAN). Les normes TIA/EIA 568-A et 568-B stipulent les exigences en matière de câblage commercial pour les installations LAN. Ce sont les normes les plus couramment utilisées dans les câblages LAN en entreprise, elles déterminent la couleur de câble à utiliser pour chaque broche.

Pour un câble croisé, les deuxième et troisième paires du connecteur RJ-45 à une extrémité du câble sont inversées à l'autre extrémité, ce qui inverse les paires d'envoi et de réception. Le brochage du câble est conforme à la norme 568-A à une extrémité et à la norme 568-B à l'autre extrémité. Les câbles croisés servent généralement à relier des concentrateurs ou des commutateurs entre eux, mais ils peuvent également être utilisés pour connecter directement deux hôtes afin de créer un réseau simple.

Remarque: avec les périphériques réseau modernes, un câble droit peut souvent être utilisé même lorsque vous connectez des périphériques similaires grâce à leur fonction de détection automatique. Avec la détection automatique, les interfaces détectent si les paires de circuits d'envoi et de réception sont connectées correctement. Dans le cas contraire, les interfaces inversent une extrémité de la connexion. La détection automatique modifie également la vitesse des interfaces afin de correspondre à la plus lente. Par exemple, si vous connectez une interface de routeur Gigabit Ethernet (1 000 Mbit/s) à une interface de commutateur Fast Ethernet (100 Mbit/s), la connexion utilise Fast Ethernet.

Par défaut, la détection automatique est activée sur le commutateur Cisco 2960 ; par conséquent, la connexion de deux commutateurs 2960 fonctionne avec un câble croisé ou un câble droit. Avec certains anciens commutateurs, ce n'est pas le cas et un câble croisé doit être utilisé.

En outre, les interfaces Gigabit Ethernet du routeur Cisco 1941 sont à détection automatique et un câble droit peut être utilisé pour connecter un ordinateur directement à l'interface du routeur (sans passer par le commutateur). Avec certains anciens routeurs, ce n'est pas le cas et un câble croisé doit être utilisé.

Lorsque vous connectez directement deux hôtes, il est généralement recommandé d'utiliser un câble croisé.

Étape 1: Analysez les schémas et les tableaux du câble Ethernet conforme à la norme TIA/EIA 568-A.

Le tableau et les schémas ci-dessous présentent les jeux de couleurs et les brochages ainsi que la fonction des quatre paires de fils utilisés pour la norme 568-A.

Remarque : dans les installations LAN utilisant la norme 100Base-T (100 Mbit/s), seules deux paires sur quatre sont utilisées.

Numéro de Signal 10BaseT broche Numéro de paire Couleur du fil Signal 100Base-TX Signal 1000Base-T 1 2 Blanc/vert **Transmission** BI DA+ 2 2 Vert **Transmission** BI_DA-3 3 Blanc/orange Réception BI_DB+ 4 1 Bleu Non utilisé BI DC+ 5 1 Blanc/bleu Non utilisé BI DC-6 3 **Orange** Réception BI DB-7 4 Blanc/brun Non utilisé BI_DD+ 8 4 Brun Non utilisé BI DD-

Ethernet 568-A 10/100/1000Base-TX

Les schémas suivants montrent comment les couleurs et les brochages de câble sont alignés avec une prise RJ-45 pour la norme 568-A.

Étape 2: Analysez les schémas et les tableaux du câble Ethernet conforme à la norme TIA/EIA 568-B.

Le tableau et le schéma ci-dessous présentent le jeu de couleurs et les brochages pour la norme 568-B.

Ethernet 568-B 10/100/1000-BaseTX

Numéro de broche	Numéro de paire	Couleur du fil	Signal 10BaseT Signal 100Base-TX	Signal 1000Base-T
1	2	Blanc/orange	Transmission	BI_DA+
2	2	Orange	Transmission	BI_DA-
3	3	Blanc/vert	Réception	BI_DB+
4	1	Bleu	Non utilisé	BI_DC+
5	1	Blanc/bleu	Non utilisé	BI_DC-
6	3	Vert	Réception	BI_DB-
7	4	Blanc/brun	Non utilisé	BI_DD+
8	4	Brun	Non utilisé	BI_DD-

T-568B

1 2 3 4 5 6 7 8

Connecteur RJ-45

Partie 2: Fabriquer un câble Ethernet croisé

Sur un câble croisé, les deuxième et troisième paires sur le connecteur RJ-45 situé à une extrémité sont inversées à l'autre extrémité (voir le tableau dans la partie 1, étape 2). Le brochage du câble est conforme à la norme 568-A à une extrémité et à la norme 568-B à l'autre extrémité. Les deux schémas suivants illustrent ce concept.

Câble Ethernet croisé RJ-45

Étape 1: Fabriquez et sertissez un câble TIA/EIA 568-A.

- a. Déterminez la longueur de câble nécessaire. (Votre formateur vous indiquera quelle longueur utiliser pour le câble.)
 - **Remarque** : si vous fabriquez un câble dans un environnement de production, il est généralement recommandé d'ajouter 30,48 cm supplémentaires à la longueur.
- b. Coupez la longueur de câble nécessaire. À l'aide d'une pince à dénuder, enlevez 5,08 cm de gaine à chaque extrémité du câble.
- c. Tenez fermement les quatre paires de câble torsadé à l'endroit où vous les avez dénudées. Réorganisez les paires de câbles dans l'ordre de la norme de câblage 568-A. Si nécessaire, reportez-vous aux schémas. Veillez autant que possible à maintenir les torsades dans le câble, car cela permet de supprimer les interférences.
- d. Aplatissez, redressez et alignez les fils à l'aide du pouce et de l'index.
- e. Assurez-vous que les fils sont toujours dans l'ordre spécifié dans la norme 568-A. En utilisant votre coupe-câbles, coupez les quatre paires en ligne droite à une distance comprise entre 1,25 et 1,9 cm de l'extrémité du câble.

- f. Placez un connecteur RJ-45 sur l'extrémité de votre câble, avec la broche en dessous pointant vers le bas. Insérez fermement les câbles dans le connecteur RJ-45. Tous les câbles doivent être visibles à l'extrémité du connecteur aux endroits appropriés. Si les fils ne vont pas jusqu'à l'extrémité du connecteur, retirez le câble, réorganisez les fils le cas échéant, puis réinsérez les fils dans le connecteur RJ-45.
- g. Si tout est correct, insérez le connecteur RJ-45 avec le câble dans la pince à sertir. Pressez assez fermement pour forcer les contacts du connecteur RJ-45 à travers l'isolant des fils, de façon à établir un chemin conducteur. Reportez-vous au schéma suivant pour voir un exemple.

Étape 2: Fabriquez et sertissez un câble TIA/EIA 568-B.

Répétez les étapes 1a à 1g en utilisant le jeu de câbles de couleur 568-B pour l'autre extrémité.

Partie 3: Tester un câble Ethernet croisé

Étape 1: Testez le câble.

De nombreux testeurs de câbles vérifient la longueur et le mappage des fils. Si le testeur de câble comprend une fonction de schéma de câblage, il vérifie quelles broches à une extrémité du câble sont connectées aux broches de l'autre extrémité.

Si votre formateur dispose d'un testeur de câble, vérifiez si le câble croisé fonctionne. Si ce n'est pas le cas, consultez votre formateur pour savoir si vous devez recâbler les extrémités et testez à nouveau.

Étape 2: Connectez deux ordinateurs au moyen des cartes réseau en utilisant le câble Ethernet croisé.

- a. Si vous travaillez avec un partenaire, utilisez l'une des adresses IP affichées dans la table d'adressage (voir page 1) comme adresse IP pour votre PC. Par exemple, si votre ordinateur est le PC-A, votre adresse IP doit être définie sur 192.168.10.1 avec un masque de sous-réseau 24 bits. L'adresse IP de votre partenaire doit être 192.168.10.2. L'adresse de la passerelle par défaut peut rester vide.
- b. À l'aide du câble croisé que vous avez fabriqué, connectez les deux ordinateurs via leurs cartes réseau.
- c. Depuis l'invite de commandes de PC-A, envoyez une requête ping à l'adresse IP de PC-B.

Remarque : le pare-feu Windows doit être momentanément désactivé pour que les requêtes ping aboutissent. Si le pare-feu est désactivé, veillez à le réactiver à la fin de ces travaux pratiques.

d. Répétez la procédure et envoyez une requête ping de PC-B vers PC-A.

À supposer que l'adressage IP et le pare-feu ne soient pas des problèmes, vos requêtes ping devraient réussir si les câbles ont été fabriqués correctement.

Remarques générales

1. Quelle partie de la réalisation de ces câbles vous a semblé la plus difficile ?

2. Pourquoi devez-vous apprendre à fabriquer un câble si vous pouvez facilement acheter des câbles déjà prêts ?