

Materials Genome Foundation

Zi-Kui Liu

https://materialsgenomefoundation.org/

Materials Genome Foundation

• A nonprofit organization incorporated in 2018 in Pennsylvania, USA

Goals

- Promote computational approaches in science and engineering
- Support the development of computational tools and databases

Actions

- Organize workshops
- Provide the cloud-based services for your workshops
- Develop Open-Source Ecosystem for Materials Science (OSEMatS)

Materials and civilization

- Prehistory and protohistory of humanity
 - Stone Age (~3.4 million years, until 8700–2000 BC), natural materials
 - Bronze Age (3500–300 BC), human-made Cu-12 wt%Sn alloy
 - Iron Age (1200 BC-800 AD), human-made Fe-C alloys
- Industry/Manufacturing/Materials 1.0-3.0
 - Steam power, electricity, and computerization
- Industry/Manufacturing/Materials 4.0
 - Digitization

Digitization of knowledge

Manufacturing

- Process of materials to form products that serve one or multiple functions
- Properties of materials closely related to phases

Knowledge of phase stability and functionality

- 1870s: Thermodynamics by Gibbs
- 1970s: Digitization of thermodynamics by Kaufman
- 2020s: CALPHAD-based materials design
- 2070s: Next 50 years

Is thermodynamics for equilibrium only?

- No by 1st Law: $dU = dQ + dW + \sum_{i=1}^{c} U_i dN_i$
- Yes by Gibbs: $dU = TdS PdV + \sum (U_i TS_i)dN_i = TdS PdV + \sum \mu_i dN_i$
- Difference 2nd law

$$dU = TdS - PdV + \sum \mu_i dN_i - \sum D_j d\xi_j = \sum Y^a dX^a - \sum D_j d\xi_j$$

• Gibbs energy for non-equilibrium: $dG = -SdT + VdP + \sum \mu_i dN_i - \sum D_j d\xi_j$

$$G(T, P, N_i, \xi_i) \leftarrow CALPHAD$$

 ξ_i : Internal state variables

- Nonstable crystal structure
 - BCC Cu in BCC solid solution between Fe and Cu

- Ordering: Mole fraction in each sublattice
 - $L1_2$: $(Ni, Al)_3(Al, Ni)_1$
- Polarizations: Magnetic spin / Electric dipole configurations
- Defects: Vacancies, dislocations, twins, stacking faults, grain boundaries, phase interfaces, surfaces

CALPHAD

- Model properties of individual phases
 - Gibbs energy: $G_m^{\alpha}(T, P, x_i, \xi_i)$ and its 1st and 2nd derivatives
 - Atomic mobility: $M_k^{\alpha}(T, P, x_i, \xi_i)$ and tracer/intrinsic/chemical diffusivity
 - Other properties
 - Interfaces between phases?
- Community: <u>www.calphad.org</u>
 - Annual conference: Gordon conference style since 1973, Plan decade-ahead
 - CALPHAD, Inc.: Private foundation since 1975, Scholarships and awards
 - CALPHAD Journal since 1977
- Tools and databases: CALPHAD, Vol. 26 (2)
 - Commercial: ThermoCalc, Factsage, ComputTherm/Pandat, JMatPro, Matcalc
 - Open Source: OpenCALPHAD, Thermochimica, PyCalphad/ESPEI (High throughput CALPHAD modeling with uncertainty quantification)

CALPHAD Modeling: Individual phases

Materials Design: Equilibrium, driving force, physical/chemical properties (1st, 2nd derivatives)

Pure elements → **Binary** → **Ternary** → **Multicomponent**

Kaufman & Bernstein: Computer Calculation of Phase Diagram. 1970

Challenges and Opportunities

Otis, PhD Thesis(2016)

Scr. Mater. **70**, 7(2014)

Tool and data: from Penn State

- Data generation
 - DFT Tool Kit for free energy: https://www.dfttk.org
 - Machine learning: SIPFENN https://phaseslab.com/sipfenn
 - Materials Property Descriptor Database: https://phaseslab.com/mpdd, http://mpdd.phaseslab.com/mpdd,
 - Compiled experimental data
 - https://phaseslab.com/ultera, for HEA refractory alloys
 - https://github.com/PhasesResearchLab/ESPEI-datasets, ESPEI examples
- Data processing
 - <u>pycalphad.org</u>: Thermodynamic and property models
 - <u>espei.org</u>: Evaluation of model parameters & Uncertainty quantification
 - https://pduq.readthedocs.io/: Uncertainty quantification
- Workshops: https://materialsgenomefoundation.org/
 - July 13/14, 2022; October 4, 2022; March 18-19, 2023

JPED, 39 (2018) 635

MGF Actions

- Open-Source Ecosystem for Materials Science (OSEMatS)
 - Connect and promote community tools and databases: ASCENDS
 - Build OSEMatS as a Cloud Native Computing Foundation (CNCF) for materials science

 Provide the cloud-based services for your workshops

DFTTK

Ecosystem

- Theoretical predictions
 - Machine Learning
 - DFT/AIMD: Density functional theory
 - CPFEM: Mechanical properties
- Experimental measurements

PHASES

J. Phase Equilib. Diffus. https://doi.org/10.1007/s11669-018-0654-z

39 (2018) 635

A Data Ecosystem

MATER. RES 2022, VOL. https://doi.

PERSPE(

Zi-Kui

Theo

Zi-Kui L

Departme

Overview article

Computational th

