| 0.1 |  |
|-----|--|
|     |  |
| 原表  |  |

| 序号 | 年龄 | 是否有车 | 收入情况 | 信用情况 | 是否同意贷款 |
|----|----|------|------|------|--------|
| 1  | 19 | 否    | 一般   | 非常好  | 否      |
| 2  | 32 | 否    | 一般   | 一般   | 否      |
| 3  | 75 | 否    | 良好   | 一般   | 否      |
| 4  | 21 | 否    | 一般   | 好    | 否      |
| 5  | 36 | 否    | 一般   | 一般   | 否      |
| 6  | 40 | 否    | 一般   | 好    | 否      |
| 7  | 69 | 是    | 一般   | 好    | 是      |
| 8  | 45 | 是    | 良好   | 好    | 是      |
| 9  | 61 | 是    | 一般   | 非常好  | 是      |
| 10 | 66 | 是    | 一般   | 非常好  | 是      |
| 11 | 25 | 否    | 良好   | 好    | 是      |
| 12 | 42 | 是    | 一般   | 非常好  | 是      |
| 13 | 62 | 否    | 良好   | 好    | 是      |
| 14 | 63 | 否    | 良好   | 非常好  | 是      |
| 15 | 29 | 是    | 良好   | 一般   | 是      |

对训练集 D, 首先计算划分前样本的信息熵:

$$I(D) = -\frac{6}{15}\log_2\frac{6}{15} - \frac{9}{15}\log_2\frac{9}{15} = 0.9710$$

关于年龄:

$$\begin{split} &\Delta I(D,A_1) = I(D) - \left[\frac{4}{15}I(D_1) + \frac{5}{15}I(D_2) + \frac{6}{15}I(D_3)\right] \\ &= 0.9710 - \left[\frac{4}{15}\left(-\frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4}\right) + \frac{5}{15}\left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right) + \frac{6}{15}\left(-\frac{5}{6}\log_2\frac{5}{6} - \frac{1}{6}\log_2\frac{1}{6}\right)\right] \\ &= 0.9710 - \left[\frac{4}{15}\times1 + \frac{5}{15}\times0.9710 + \frac{6}{15}\times0.6500\right] = 0.1207 \end{split}$$

关于收入情况:

$$\Delta I(D, A_2) = I(D) - \left[ \frac{6}{15} I(D_1) + \frac{9}{15} I(D_2) \right]$$

$$= 0.9710 - \left[ \frac{6}{15} \left( -\frac{1}{6} \log_2 \frac{1}{6} - \frac{5}{6} \log_2 \frac{5}{6} \right) + \frac{9}{15} \left( -\frac{5}{9} \log_2 \frac{5}{9} - \frac{4}{9} \log_2 \frac{4}{9} \right) \right]$$

$$= 0.9710 - \left[ \frac{6}{15} \times 0.6500 + \frac{9}{15} \times 0.9911 \right] = 0.1163$$

关于是否有车:

$$\Delta I(D, A_3) = I(D) - \left[\frac{6}{15}I(D_1) + \frac{9}{15}I(D_2)\right]$$

$$= 0.9710 - \left[\frac{6}{15} \times 0 + \frac{9}{15}\left(-\frac{3}{9}\log_2\frac{3}{9} - \frac{6}{9}\log_2\frac{6}{9}\right)\right] = 0.4200$$
关于信贷情况:

$$\Delta I(D, A_4) = I(D) - \left[ \frac{5}{15} I(D_1) + \frac{6}{15} I(D_2) + \frac{4}{15} I(D_3) \right]$$

$$= 0.9710 - \left[ \frac{5}{15} \left( -\frac{4}{5} log_2 \frac{4}{5} - \frac{1}{5} log_2 \frac{1}{5} \right) + \frac{6}{15} \left( -\frac{4}{6} log_2 \frac{4}{6} - \frac{2}{6} log_2 \frac{2}{6} \right) + \frac{4}{15} \left( -\frac{3}{4} log_2 \frac{3}{4} - \frac{1}{4} log_2 \frac{1}{4} \right) \right]$$

$$= 0.9710 - \left[ \frac{5}{15} \times 0.7219 + \frac{6}{15} \times 0.9183 + \frac{4}{15} \times 0.8113 \right] = 0.1467$$

综上所述,第一层应当按照 $A_3$ 为分类特征,此时按照是否有车划分为"是"和"否"两类,此时有车的一类必然能得到贷款,因此仅对于无车的一类继续划分:

| 序号 | 年龄 | 收入情况 | 信用情况 | 是否同意贷款 |
|----|----|------|------|--------|
| 1  | 19 | 一般   | 非常好  | 否      |
| 2  | 32 | 一般   | 一般   | 否      |
| 3  | 75 | 良好   | 一般   | 否      |
| 4  | 21 | 一般   | 好    | 否      |
| 5  | 36 | 一般   | 一般   | 否      |
| 6  | 40 | 一般   | 好    | 否      |
| 11 | 25 | 良好   | 好    | 是      |
| 13 | 62 | 良好   | 好    | 是      |
| 14 | 63 | 良好   | 非常好  | 是      |

$$I(D_2) = -\frac{3}{9}\log_2\frac{3}{9} - \frac{6}{9}\log_2\frac{6}{9} = 0.9183$$

关于年龄:

$$\Delta I(D_2,A_1) = 0.9183 - \left[\frac{3}{9}\left(-\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3}\right) + 0 + \frac{3}{9}\left(-\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3}\right)\right] = 0.3061$$
 关于收入情况:

$$\Delta I(D_2,A_2) = 0.9183 - \left[0 + \frac{4}{9}\left(-\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4}\right)\right] = 0.5577$$

关干信贷情况:

$$\Delta I(D_2,A_4) = 0.9183 - \left[\frac{2}{9}\left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) + \frac{4}{9}\left(-\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2}\right) + 0\right] = 0.2516$$

因此按照收入情况继续进行划分,收入情况一般的都不予贷款,收入情况良好的继续生长:

| 序号 | 年龄 | 信用情况 | 是否同意贷款 |
|----|----|------|--------|
| 3  | 75 | 一般   | 否      |
| 11 | 25 | 好    | 是      |
| 13 | 62 | 好    | 是      |
| 14 | 63 | 非常好  | 是      |

$$I(D_3) = -\frac{3}{4}\log_2\frac{3}{4} - \frac{1}{4}\log_2\frac{1}{4} = 0.8113$$

此时按照年龄无法划分,按照信用情况可以完成划分综上所述得到三层树为:



6.2

(1) 依题意:

$$E_{COM} = \mathbb{E}_{\boldsymbol{x}} \left\{ \left[ \frac{1}{M} \sum_{m=1}^{M} \epsilon_{m}(\boldsymbol{x}) \right]^{2} \right\} = \frac{1}{M^{2}} \left\{ \sum_{m \neq l} \mathbb{E}_{\boldsymbol{x}} [\epsilon_{m}(\boldsymbol{x}) \epsilon_{l}(\boldsymbol{x})] + \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{x}} \{ [\epsilon_{m}(\boldsymbol{x})]^{2} \} \right\}$$
$$= \frac{1}{M^{2}} \left\{ 0 + \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{x}} \{ [\epsilon_{m}(\boldsymbol{x})]^{2} \} \right\} = \frac{1}{M} E_{AV}$$

(2) 函数 $f(y) = y^2$ 是凸函数,由琴生不等式可知 $\mathbb{E}[f(y)] \ge f(\mathbb{E}[y])$ ,于是:

$$E_{COM} = \mathbb{E}_{\boldsymbol{x}} \left\{ \left[ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\boldsymbol{x}) \right]^2 \right\} \le \mathbb{E}_{\boldsymbol{x}} \left\{ \frac{1}{M} \sum_{m=1}^{M} \left[ \epsilon_m(\boldsymbol{x}) \right]^2 \right\} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{x}} \left\{ \left[ \epsilon_m(\boldsymbol{x}) \right]^2 \right\}$$
$$= E_{AV}$$