Einleitung

Der Opel Radio-Display Bus ist ein serieller Bus, der ein Master Gerät, das Radio mit dem Slave Gerät, dem Triple Info Display oder dem Multi Info Display verbindet. Er basiert auf dem I²C Protokoll, zusätzlich gibt es eine Master Request Leitung (MRQ).

Anschlussbelegung

8-stelliges TID aus Opel Astra F und Corsa B/Tigra:

			Farbe	Farbe
Pin	Beschreibung	Klemme	Astra F	Corsa B
1	Dauerplus	KL 30	Rt	Rt
2	Außentemperatur Minus			Bl
3	Masse	KL 31	Br	Br
4	Außentemperatur Plus			BlWs
5	Zündung	KL 15		Sw
6	Auffindbeleuchtung		GrGn	GrGn
7	Auffindbeleuchtung nachts (gedimmt)		GrSw	GrSw
8	Radioanzeige ein / Datum aus (AA)		RtGn	RtGn
9	SCL		BrWs	BrRt
10	MRQ		BrWs	BrGr
11	SDA		BrWs	BrSw
12	SDV (Speed Dependent Volume)			BlRt

10-stelliges TID aus Opel Astra G und Corsa C:

			Farbe	Farbe
Pin	Beschreibung	Klemme	Astra G	Corsa C
1	Zündung	KL 15	Sw	Sw
2	Radioanzeige ein / Datum aus (AA)		WsRt	RtGr
3	Dauerplus	KL 30	Rt	Rt
4	Auffindbeleuchtung nachts (gedimmt)		GrGe	GrSw
5	Außentemperatur Plus		BlWs	BlWs
6	Masse	KL 31	Br	Br
7	Außentemperatur Minus		Bl	Bl
8	Diagnose		BrWs	BrGn
9	SDV (Speed Dependent Volume)		BlRt	BlWs
10	SCL		BrRt	Gn
11	SDA		BrSw	Ws
12	MRQ		BrGr	BrGr

Elektrische Daten

Spannung für High: $4V \text{ (max } 100\mu\text{A)}$ Spannung für Low: $1V \text{ (max } 100\mu\text{A)}$ Pull-Up Widerstände auf Slave Seite

Power on Test

Die folgende Signalfolge muss das Autoradio jedes Mal senden wenn es angeschaltet wird. Das Einschalten des Radios erkennt der Slave an dem Signal Antenna Amplificator (AA). Innerhalb der Zeit T_3 muss die eigentliche Daten-Übertragung dann beginnen.

$$\begin{split} T_{1min} &= 100ms & T_{1max} &= 500ms \\ T_{2min} &= 500\mu s & T_{2max} &= 1ms \\ T_{3min} &= 1ms & T_{3max} &= 2ms \end{split}$$

Durch das Auswerten der Signale kann der Master erkennen, ob eine Leitung defekt ist. Ist beispielsweise eine Leitung ständig Low, dann hat sie einen Kurzschluss nach Masse. Bleibt eine Leitung hingegen immer High, dann liegt ein Kurzschluss nach +Ub vor. Und tritt ein gesendeter Impuls auch auf einer anderen Leitung auf, dann befindet sich ein Kurzschluss zwischen diesen beiden Leitungen.

Datenübertragung

1.	Master	setzt	MRQ	Low
----	--------	-------	-----	-----

2.	Slave antwortrt SDA Low	$T_{1min} = 100 \mu s$	$T_{1max} = 15ms$
3.	Master setzt MRQ High	$T_{2min} = 100 \mu s$	$T_{2max} = 200 \mu s$
4.	Slave setzt SDA High	$T_{3min} = 100 \mu s$	$T_{3\text{max}} = 200 \mu s$
5.	Master setzt SDA Low	$T_{4min} = 100 \mu s$	$T_{4max} = 500 \mu s$
6.	Master setzt SCL Low	$T_{6min} = 100 \mu s$	$T_{6max} = 200 \mu s$
7.	Master sendet Adresse		
8.	Master setzt MRQ Low	$T_{7min} = 100 \mu s$	$T_{7\text{max}} = 500 \mu s$
9.	Master sendet Daten	$T_{5min} = 1ms$	$T_{5max} = 10ms$
10.	Master setzt MRO High	$T_{7min} = 100 \mu s$	$T_{7max} = 500 \mu s$

Format einer Nachricht

Die zu sendende Nachricht setzt sich zusammen aus der Slave Adresse des Displays, den Symbol-Bytes und den Daten-Bytes.

- 1. Start der Übertragung
- 2. Slave Adresse
- 3. Symbol-Bytes
- 4. Daten-Bytes
- 5. Ende der Übertragung

	Symbol-Byte	Daten-Byte	Slave Adresse
8-stelliges TID	2	8	4Ah = 74d
10-stelliges TID	3	10	4Dh = 77d

Bit Synchronisation

1. Master legt Bit an SDA

2. Master wartet $Ts = 5\mu s$

3. Master setzt SCL High

4. Master setzt SCL Low $T_{SCLHmin} = 50\mu s$ $T_{SCLHmax} = 1 ms$

5. Master wartet $T_h = 5\mu s$

6. Master legt neues Bit an SDA

7. Master wartet Rest von T_{SCLL} $T_{SCLLmin} = 50\mu s$ $T_{SCLLmax} = 1ms$

8. Master setzt SCL High

9. Master wartet bis der Slave SCL High setzt $T_{max} = 1 \text{ms}$

10. Ab jetzt muss Master mind. $T_{SCLLmin} = 50\mu s$ SCL auf High lassen

11. Weiter bei Punkt 4

Bestätigung und Ende der Übertragung

Bestätigung am Ende des Bytes:

1. Master setzt SCL High für LSB (Least significant Bit)

Master setzt SCL Low
 Master setzt SDA High
 Daten werden vom Slave übernommen
 Slave setzt SCL Low (Daten übernommen)

4. Master setzt SCL High

5. Slave setzt SDA Low wenn Parität ungerade

6. Slave setzt SCL High
7. Master setzt SCL Low
Master kann Parität auswerten
Master nimmt Bestätigung an

8. Slave setzt SDA High

9. Master sendet MSB vom nächsten Byte oder Ende der Übertragung

Ende der Übertragung:

9. Master setzt SDA Low $T1 = 100 \mu s$

10. Master setzt MRQ High $T2min = 100\mu s$ T2max = 1ms

11. Master setzt SCL High
 12. Master setzt SDA High
 T3 = 100μs
 T4 = 100μs

Fehlerbehandlung

- Bei Paritätsfehlern setzt Slave SDA auf High. Darauf versucht der der Master das Byte erneut zu senden. Nach insgesamt drei Paritätsfehlern sendet der Master "Ende der Übertragung" und das Display zeigt nur Leerzeichen an.
- Nach erfolgreicher Übertragung kann der Master nach 100µs ein erneut Daten senden.

Format eines Bytes

- MSB wird zuerst gesendet, LSB zuletzt.

Zeichen Byte Format: 7 Datenbit, 1 Bit Parität (Ungerade)

Symbol Byte Format: 1. Byte Radio Status

2. Byte Tape Status3. Byte CD Status

Format der Status-Bytes

	1. Byte Radio Status	2. Byte Tape Status	3. Byte CD Status
Bit 7	Komma	Symbol "CD-In"	0
Bit 6	Symbol "RDS"	Symbol "Dolby C"	Symbol "Track"
Bit 5	Symbol "TP"	Symbol "Dolby B"	Symbol "RDM"
Bit 4	Symbol "Stereo"	Symbol "cr"	Symbol "PGM"
Bit 3	0	Symbol "CPS"	Symbol "DISC"
Bit 2	Symbol "AS"	0	0
Bit 1	Klammer um "TP"	0	0
Bit 0	Patität	Patität	Patität

Haftungsausschluss

Alle hier gemachten Angaben habe ich nach bestem Wissen und Gewissen gemacht, selbstverständlich kann ich nicht für deren Richtigkeit garantieren. Wer sich also entschließt an Seinem Display rumzubasteln, der macht das auf eigenes Risiko.