周口店中学 2015——2016 学年度第一学期期中试卷

八年级数学

总分: 100分

考试时间: 100 分钟

一、选择题: (本题共30分,每题3分)

题号	1	2	3	4	5	6	7	8	9	10
答』										
案										

- 1、4的平方根是()
- A. $\sqrt{2}$ B. 2 C. $\pm \sqrt{2}$ D. ± 2
- 2、下列运算错误的是()
- A. $(-\sqrt{3})^2 = 3$ B. $\sqrt{3} \times \sqrt{2} = \sqrt{6}$ C. $\sqrt{6} \div \sqrt{3} = \sqrt{2}$ D. $\sqrt{3} + \sqrt{2} = \sqrt{5}$
- 3、下列线段能组成三角形的是()

 - A 1, 1, 3 B 1, 2, 3 C 2, 3, 5
- 4、在实数 $\frac{22}{7}$, $-\sqrt{5}$, $\frac{\pi}{2}$, $\sqrt[3]{8}$, 3.14 中,无理数有(
- A. 1 个 B. 2 个 C. 3 个 D. 4 个
- 5、数学活动课上,小明将一副三角板按图中方式叠放,则∠α等于()

 - A. 30° B. 45° C. 60° D. 75°

- 6、下列根式中,最简二次根式是()
 - A. $\sqrt{\frac{1}{2}}$ B. $\frac{5}{\sqrt{3}}$ C. $\sqrt{8}$ D. $\sqrt{x^2+1}$
- 7、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,,那 么最省事的办法是
 - A. 带①去 B. 带②去
 - C. 带③去 D. 带①和②去

- A. 12 B. 12 或 15 C. 15 D. 15 或 18

9、△ABC中BC边上的高作法正确的是()

10、己知△ABC中,D为BC边上的一点,且

$$S_{\Delta ABD} = S_{\Delta ADC}$$
,则 AD 是 \triangle ABC 的()

- A、高
- B、角平分线
- C、中线
- D、无法确定

二、填空题: (本题共18分,每小题3分)

11、 若 x<3, 则
$$\sqrt{(x-3)^2}$$
 = _______

12、使
$$\sqrt{2x-4}$$
有意义的 x 的取值范围是_____

13、最简二次根式
$$\sqrt{2a+1}$$
与 $\sqrt{3-2a}$ 是同类二次根式,则 $a=$ ______

14、若实数 x,y 满足 $\sqrt{x+3}$ + (y − $\sqrt{2}$) 2 =0,则代数式 xy 的值是_____.

- 15、如图,点 D、E 分别在线段 AB、AC 上,AB=AC,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是______
- 16、已知等腰三角形的一腰上的高与另一腰的夹角为 50°,则这个等腰三角形的顶角为

三、(本题共52分)解答题

17、(本题 30 分,每小题 5 分)计算下列各题

(1)
$$3\sqrt{2} + \sqrt{8} - 5\sqrt{8}$$

(2.)
$$4\sqrt{\frac{1}{2}}$$
: $(-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(3)
$$\sqrt[3]{27} + \left(\frac{1}{2}\right)^{-1} - (\pi - 3)^{0}$$
 (4) $(3\sqrt{5} + 1)(2\sqrt{3} - \sqrt{15})$

(4)
$$(3\sqrt{5}+1)(2\sqrt{3}-\sqrt{15})$$

$$(5) \left(\sqrt{3} + \sqrt{2}\right)^2$$

$$(6) \left(3\sqrt{2} + 2\sqrt{3}\right)\left(3\sqrt{2} - 2\sqrt{3}\right)$$

18、(本题 5 分)

如图, \triangle ABC 的顶点 A、B、C 都在小正方形的顶点上,像这样的三角形叫做格点三角形. 若下列每 个小正方形的边长均为 1, 试在下面 5×5 的方格纸上按要求解决下列问题:

- (1) 填空: AB= , S_{\triangle} ABC=
- (2) 画格点三角形,使所画的三角形与 \triangle ABC 全等且只有一个公共顶点 C (至少画出两个).

19、(本题5分)

已知:如图,点C为AB中点,CD=BE,CD//BE.

求证: ∠D=∠E

20、(本题 5 分)

已知: 如图, 在 \triangle ABC中, 点 D 是 BC的中点, 过点 D 作直线交 AB, CA的延长线于点 E, F. 当 BE=CF 时,求证: AE=AF.

21. (本题7分)

在数学探究课上,老师出示了这样的探究问题,请你一起来探究:

已知: C 是线段 AB 所在平面内任意一点,分别以 AC、BC 为边,在 AB 同侧作等边三角形 ACE 和 BCD,联结.AD、BE 交于点 P.

- (1) 如图 1, 当点 C 在线段 AB 上移动时,线段 AD 与 BE 的数量关系是:
- (2) 如图 2,当点 C 在直线 AB 外,且 \angle ACB < 120°,上面的结论是否还成立?若成立请证明,不成立说明理由. 此时 \angle APE 是否随着 \angle ACB 的大小发 生变化,若变化写出变化规律,若不变,请求出 \angle APE 的度数.
- (3) 如图 3,在(2)的条件下,以 AB 为边在 AB 另一侧作等边三角形 Δ ABF,联结 AD、BE 和 CF 交 于点 P,试猜想 PB+PC+PA 与 BE 的数量关系

周口店中学 2015—2016 学年度第一学期期中试卷

八年级数学 参考答案

一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	D	D	D	В	D	D	С	C	D	С

二、填空题

11, .3-x

12, x≥2

13, $\frac{1}{2}$

$$14 - 3\sqrt{2}$$

15、∠B=∠C(答案不唯一)

16、40° 或 140°

三、解答题

三、(本廳共 52 分)解答题

17、(本题 30 分。每小题 5 分) 计算下列各题

(1)
$$3\sqrt{2} + \sqrt{8} - 5\sqrt{8}$$

 $\int_{0}^{\infty} dt = 3\int_{0}^{\infty} t \int_{0}^{\infty} t^{2} - 10\int_{0}^{\infty} 2t$
 $= -6\int_{0}^{\infty} 2t$

(3)
$$\sqrt[4]{27} + \left(\frac{1}{2}\right)^{-1} - (\Pi - 3)^{0}$$
 (4) $(3\sqrt{5} + 1)(2\sqrt{3} - \sqrt{15})$

$$\boxed{R} = 3 + 2 - 1$$

$$= 4$$

$$= 5 \sqrt{15} - 15 \sqrt{3} + 2 \sqrt{3}$$

$$(5) (\sqrt{3} + \sqrt{2})^{2}$$

$$\text{Rd} = 3 + 2\sqrt{6} + 2$$

$$= 5 + 2\sqrt{6}$$

(1)
$$3\sqrt{2} + \sqrt{8} - 5\sqrt{8}$$
 (2) $4\sqrt{\frac{1}{2}} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(2) $4\sqrt{\frac{1}{2}} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(3) $6\sqrt{12} + \sqrt{8} - 5\sqrt{8}$

(4) $6\sqrt{12} + \sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(5) $6\sqrt{12} + \sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(6) $6\sqrt{12} + \sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(7) $6\sqrt{12} + \sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(8) $6\sqrt{12} + \sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(9) $6\sqrt{12} + \sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(10) $6\sqrt{12} + \sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(11) $6\sqrt{12} + \sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(12) $6\sqrt{12} + (-\sqrt{6}) \times \frac{1}{3}\sqrt{12}$.

(4)
$$(3\sqrt{5}+1)(2\sqrt{3}-\sqrt{15})$$

(6)
$$(3\sqrt{2} + 2\sqrt{3})(3\sqrt{2} - 2\sqrt{3})$$

如图, △ABC 的顶点 A、B、C 都在小正方形的顶点上,像这样的三角形叫做格点三 角形, 若下列每个小正方形的边长均为 1, 试在下面 5×5 的方格纸上按要求解决下列 问题:

(1) 填空: AB= 2. SABC= 1.

(2) 画格点三角形,使所画的三角形与△ABC全等且只有一个公共顶点 C (至少画出 两个).

19、(本题 5 分)

已知: 如图, 点 C 为 AB 中点, CD=BE, CD // BE.

求证 OΔACD MACBE. ② ∠D = LE

证明:"CDIIBE

:. LI=LZ

こ CAAO中で

: AC= CB

在AACO和ACOE中

S AC=CB 21=22 cn=BE

: DACD S D CDE

: LD = LE

20、(本题 5 分)

已知:如图,在ΔABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F. 当BE=CF时,求证:AE=AF.

证明: 延长ED到M,使ED=DM,

连结MC

· DROC中至

-, BD=0C.

在ABED和ACMO中

. A EBD = A MCD

" BE = CF

· · cF = MC

1 /M = 4F

: . LF=L2

: AF=AE

21、(1)<u>AD=BE</u>

(2) AD=BE 成立, ∠ APE 不随着∠ ACB 的大小发生变化,始终是 60°.

证明: ∵ △ ACE 和△BCD 是等边三角形

∴ EC=AC, BC=DC,

∠ ACE=∠ BCD=60°,

 \therefore ∠ ACE+∠ ACB=∠ BCD+∠ ACB, 即∠ ECB=∠ ACD;

在△ECB和△ACD中,

(EC=AC

∠ECB=∠ACD

l BC=DC

∴ △ ECB≌ △ ACD (SAS),

 \therefore \angle CEB= \angle CAD;

设 BE 与 AC 交于 Q,

∴∠APQ=∠ECQ=60°,即∠APE=60°.

(3) PB+PC+PA =BE