Fundamentos Matemáticos e Computacionais de Machine Learning

Especialização em Machine Learning e Big Data

Profa. Dra. Juliana Felix
jufelix16@uel.br

Bibliotecas

Scikit-Learn

- Scikit-learn (Sklearn) é uma biblioteca útil e robusta para aprendizado de máquina em Python.
- É a biblioteca mais famosa também.

- Esta biblioteca fornece uma seleção de ferramentas eficientes para aprendizado de máquina e modelagem estatística, incluindo:
 - classificação;
 - regressão;
 - o agrupamento e redução de dimensionalidade.
- Esta biblioteca, que é amplamente escrita em Python, é construída sobre NumPy, SciPy e Matplotlib.

Chamava-se originalmente scikits.learn e foi inicialmente desenvolvido por David Cournapeau como um projeto Google Summer of Code em 2007.

Em 2010, Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort e Vincent Michel, do FIRCA (French Institute for Research in Ciência da Computação e Automação), levaram este projeto a outro nível:

 O primeiro lançamento público (v0.1 beta) ocorreu em 1º de fevereiro de 2010.

- A versão estável mais atual do Sci-kit learn é a 1.2.2 de março de 2023
 - Version 1.2.2 scikit-learn 1.2.2 documentation
- A próxima versão está em desenvolvimento e é a 1.3
 - Version 1.3.0 scikit-learn 1.3.dev0 documentation

- Os principais requisitos para o Scikit-Learn são
 - Python (>=3.8)
 - NumPy (>= 1.14.0)
 - Scipy (>= 1.1.0)
 - o Joblib (>= 1.1.1)
 - Matplotlib (>= 3.1.3)
 - Pandas (>= 1.0.5)
- Mais detalhes em
 - <u>Installing scikit-learn</u>

Instalação

Para a instalação do Scikit Learn você pode usar:

- o PIP
 - pip install -U scikit-learn
- Conda (recomendável caso esteja usando distribuições como o Anaconda).
 - conda install scikit-learn

- Muitas bibliotecas concentram-se em carregamento, manipulação e resumo de dados, já a biblioteca Scikit-learn se concentra na modelagem dos dados.
- Alguns dos grupos de modelos de Machine Learning mais populares são fornecidos pelo Sklearn.

- Algoritmos de Aprendizagem Supervisionada
 - Quase todos os algoritmos populares de aprendizagem supervisionada fazem parte do scikit-learn, como:
 - Regressão Linear
 - Máquina de Vetor de Suporte (SVM)
 - Árvore de Decisão
 - etc.

- Algoritmos de aprendizado n\u00e3o supervisionado
 - Também possui todos os algoritmos populares de aprendizado n\u00e3o supervisionado desde
 - Clustering
 - Análise fatorial
 - PCA (Análise de Componentes Principais) até
 - Redes neurais não supervisionadas

Clustering

usado para agrupar dados não rotulados.

Validação Cruzada

 usado para verificar a precisão de modelos supervisionados em dados não vistos.

Redução de dimensionalidade

 usado para reduzir o número de atributos em dados que podem ser usados posteriormente para resumo, visualização e seleção de recursos.

Métodos de conjunto

 usado para combinar as previsões de vários modelos supervisionados.

Extração de recursos

 usado para extrair os recursos dos dados para definir os atributos em dados de imagem e texto.

• Seleção de recursos

 É usado para identificar atributos úteis para criar modelos supervisionados.

Open Source

 É uma biblioteca de código aberto e também utilizável comercialmente sob a licença BSD¹.

¹Licenças BSD e GPL – Wikipédia, a enciclopédia livre.

- Uma coleção de dados é chamada de conjunto de dados.
- Datasets em Scikit-Learn possui dois componentes:
 - Features (Características)
 - Response (Resposta)

Features (Características)

- As variáveis dos dados são chamadas de suas características.
- Elas também são conhecidas como
 - Preditores,
 - Entradas, ou
 - Atributos.

Response (Resposta)

- É a variável de saída que depende basicamente das variáveis de característica.
- Ela também é conhecida como
 - Destino,
 - Rótulo, ou
 - Saída.

- Features (características) podem ser divididas em
 - Matriz de características
 - É o conjunto de características, caso haja mais de uma.
 - Rótulos de recursos
 - É a lista de todos os nomes dos recursos.

- Response (resposta) pode ser dividida em
 - Vetor de resposta
 - É usado para representar a coluna de resposta.
 - Geralmente, temos apenas uma coluna de resposta.
 - Target Names (Nomes Alvo)
 - Representam os possíveis valores tomados por um vetor de resposta.

- O Scikit-learn tem poucos conjuntos de dados de exemplo, como
 - Regressão: preços das casas de Boston
 - Classificação: íris e dígitos

- O primeiro conjunto de dados que você verá em um tutorial introdutório sobre aprendizado de máquina é o "conjunto de dados Iris".
- Este é o "hello world!" do machine learning.

Dataset Exemplo para Classificação Iris Dataset

- O Dataset Iris contém as medições de 150 flores de íris de 3 espécies diferentes (50 de cada espécie):
 - Iris-Setosa,
 - Iris-Versicolor, e
 - Iris-Virginica.

- O conjunto de dados da íris é frequentemente usado por sua simplicidade.
- Esse conjunto de dados está contido no scikit-learn.

Dataset Exemplo para Classificação Iris Dataset

- Features no conjunto de dados Iris:
 - o comprimento da sépala em cm
 - o largura da sépala em cm
 - o comprimento da pétala em cm
 - o largura da pétala em cm
- Classes alvo para prever:
 - Iris Setosa
 - Iris Versicolor
 - Iris Virgínia

 O scikit-learn incorpora uma cópia do arquivo CSV da íris junto com uma função auxiliar para carregá-lo em arrays numpy.

```
from sklearn.datasets import load_iris
iris = load_iris()
```

O resultado é um objeto do tipo Bunch:

```
type(iris)
```

```
sklearn.utils.Bunch
```


Dataset Exemplo para Classificação Iris Dataset

 Você pode ver o que está disponível para este tipo de dados usando o método keys():

```
iris.keys()
```

```
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR',
  'feature_names', 'filename'])
```


 Um objeto Bunch é semelhante a um dicionário, mas adicionalmente permite acessar as chaves em um estilo de atributo:

```
print(iris["target_names"])
print(iris.target_names)
```

```
['setosa' 'versicolor' 'virginica']
['setosa' 'versicolor' 'virginica']
```


 As características de cada flor de amostra são armazenadas no atributo de dados do conjunto de dados:

```
n_samples, n_features = iris.data.shape
print('Number of samples:', n_samples)
print('Number of features:', n_features)
print(iris.data[0])
```

```
Number of samples: 150

Number of features: 4

[5.1 3.5 1.4 0.2]
```


Dataset Exemplo para Classificação Iris Dataset

 As características de cada flor são armazenadas no atributo de dados do conjunto de dados.

```
iris.data[[12, 26, 89, 114]]
```


Dataset Exemplo para Classificação Iris Dataset

 As informações sobre a classe de cada amostra do nosso conjunto de dados Iris são armazenadas no atributo target do conjunto de dados:

```
print(iris.target)
```


 bincount de NumPy conta o número de ocorrências de cada valor em uma matriz de inteiros não negativos.

Podemos usar isso para verificar a distribuição das classes no conjunto de dados:

```
import numpy as np
np.bincount(iris.target)
Saída:
array([50, 50, 50])
```

 Podemos ver que as classes estão distribuídas uniformemente - são 50 flores de cada espécie, ou seja,

classe 0: Iris-Setosa
 classe 1: Íris-Versicolor
 classe 2: Iris-Virginica

 Esses nomes de classe s\u00e3o armazenados no \u00faltimo atributo, ou seja, target_names:

```
print(iris.target_names)
```

```
['setosa' 'versicolor' 'virginica']
```


Dataset Exemplo para Classificação Iris Dataset

 Além da forma dos dados, também podemos verificar a forma dos rótulos, ou seja, o target.shape

```
print(iris.data.shape)
print(iris.target.shape)
```

```
(150, 4)
(150,)
```


- Cada amostra de flor é uma linha na matriz de dados e as colunas (características) representam as medidas da flor em centímetros.
- Por exemplo, podemos representar este conjunto de dados Iris, consistindo de 150 amostras e 4 características, uma matriz bidimensional ou matriz R^{150 x 4} no seguinte formato:

$$\mathbf{X} = egin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_4^{(1)} \ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & x_4^{(2)} \ dots & dots & dots & dots \ x_1^{(150)} & x_2^{(150)} & x_3^{(150)} & x_4^{(150)} \end{bmatrix}.$$

O sobrescrito denota a i-ésima linha e o subscrito denota o j-ésimo recurso, respectivamente.

Geralmente, temos n linhas e k colunas:

$$\mathbf{X} = egin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & \dots & x_k^{(1)} \ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & \dots & x_k^{(2)} \ dots & dots & dots & dots & dots \ x_1^{(n)} & x_2^{(n)} & x_3^{(n)} & \dots & x_k^{(n)} \end{bmatrix}.$$

Geralmente, temos n linhas e k colunas:

$$\mathbf{X} = egin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & \dots & x_k^{(1)} \ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & \dots & x_k^{(2)} \ dots & dots & dots & dots & dots \ x_1^{(n)} & x_2^{(n)} & x_3^{(n)} & \dots & x_k^{(n)} \end{bmatrix}.$$

```
print(iris.data.shape)
print(iris.target.shape)
```

Saída:

```
(150, 4)
(150,)
```

Visualizando o íris dataset

 Os dados (features) são quadridimensionais, mas podemos visualizar uma ou duas das dimensões de cada vez usando um simples histograma ou gráfico de dispersão.

```
from sklearn.datasets import load_iris
iris = load_iris()
print(iris.data[iris.target==1][:5])
print(iris.data[iris.target==1, 0][:5])
```

Saída:

```
[[7. 3.2 4.7 1.4]

[6.4 3.2 4.5 1.5]

[6.9 3.1 4.9 1.5]

[5.5 2.3 4. 1.3]

[6.5 2.8 4.6 1.5]]

[7. 6.4 6.9 5.5 6.5]
```

Histograma de features

Gráfico de dispersão com dois recursos


```
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
x index = 3
v index = 0
colors = ['blue', 'red', 'green']
for label, color in zip(range(len(iris.target_names)), colors):
     ax.scatter(iris.data[iris.target==label, x_index],
                iris.data[iris.target==label, y index],
                label=iris.target_names[label],
                c=color)
ax.set_xlabel(iris.feature_names[x_index])
ax.set_ylabel(iris.feature_names[y_index])
ax.legend(loc='upper left')
plt.show()
```


Visualização 3-D


```
import matplotlib.pyplot as plt
from sklearn.datasets import load iris
from mpl toolkits.mplot3d import Axes3D
iris = load iris()
X = \Gamma \gamma
for iclass in range(3):
      X.append([[], [], []])
      for i in range(len(iris.data)):
      if iris.target[i] == iclass:
            X[iclass][0].append(iris.data[i][0])
            X[iclass][1].append(iris.data[i][1])
            X[iclass][2].append(sum(iris.data[i][2:]))
colours = ("r", "q", "y")
fig = plt.figure()
ax = fig.add subplot(111, projection='3d')
for iclass in range(3):
      ax.scatter(X[iclass][0], X[iclass][1], X[iclass][2], c=colours[iclass])
plt.show()
```


Classificando com o SKLearn

- Para classificar com o Scikit learn há duas funções básicas:
 - o Fit ajusta os parâmetros do modelo
 - Para a regressão logística, significa ajustar os Thetas
 - Predict realiza a entrada no modelo e coleta a saída
 - Para a regressão logística, significa efetuar a classificação
- Há também funções úteis para verificar o comportamento do modelo ajustado
 - Score Classifica, compara com a saída esperada e calcula a taxa de acerto

Classificando com o SKLearn


```
from sklearn.datasets import load iris
from sklearn.linear model import LogisticRegression
import numpy as np
                                                        # Carrega o Iris dataset
X, y = load_iris(return_X_y=True)
clf = LogisticRegression(random_state=0, max_iter=1000) # Carrega o algoritmo de regressão logística
                                                         # Ajusta os parâmetros do modelo
clf.fit(X, y)
                                                  # Realiza a classificação
r = clf.predict(X)
print(np.column stack((r,y)))
                                                         # Calcula a taxa de acerto
sc = clf.score(X, y)
print(sc)
```


 Para exemplificar a Regressão linear vamos utilizar o Dataset California Housing

Número de Amostras	20640
Número de Atributos	8 atributos preditores numéricos e 1 atributo alvo
Descrição dos atributos	 MedInc - Renda mediana do grupo de quarteirões HouseAge - Idade mediana da casa no grupo de quarteirões AveRooms - número médio de cômodos por domicílio AveBedrms número médio de quartos por domicílio Population - População do grupo de quarteirões AveOccup - número médio de membros da família Latitude - latitude do grupo de quarteirões Longitude - longitude do grupo de quarteirões

 A variável-alvo é o valor médio das casas nos distritos da Califórnia, expresso em centenas de milhares de dólares (US\$ 100.000).

Carregando o dataset California Housing

```
from sklearn.datasets import fetch california housing
housing data = fetch california housing()
descr = housing data['DESCR']
feature names = housing data['feature names']
data = housing data['data']
target = housing data['target']
print(descr)
print(feature names)
```


- Para ajustar funções com o Scikit learn há duas funções básicas:
 - Fit ajusta os parâmetros do modelo
 - Para a regressão linear, significa ajustar os Thetas
 - Predict realiza a entrada no modelo e coleta a saída
 - Para a regressão linear, significa efetuar a estimativa da saída da função
- Há também funções úteis para verificar o comportamento do modelo ajustado
 - Score Apresenta as entradas, compara com a saída esperada e calcula a taxa de acerto


```
from sklearn.datasets import fetch california housing
from sklearn.linear model import LinearRegression
import numpy as np
housing data = fetch_california_housing()
                                                     # Carrega o dataset california housing
                                                     # Extrai variáveis de entrada
data = housing data['data']
                                                     # Extrai a variável de saída
target = housing data['target']
                                                     # Carrega o algoritmo de regressão linear
linreg = LinearRegression()
                                               # Ajusta os parâmetros do modelo
linreq.fit(data, target)
                                               # Realiza a estimativa com a função ajustada
r = linreq.predict(data)
print(np.column stack((r, target, r-target)))
                                                     # Calcula a taxa de acerto
sc = linreq.score(data, target)
print(sc)
```


Bibliotecas

- Statsmodels é um módulo Python que fornece classes e funções para a estimativa de muitos modelos estatísticos diferentes, bem como para a realização de testes estatísticos e exploração de dados estatísticos.
- Podemos explorar os dados, estimar vários modelos estatísticos e até mesmo testar os modelos estatisticamente usando o pacote do Python chamado statsmodels.

- Statsmodels é um pacote de programação Python e pertence à pilha de módulos que trata do domínio científico e tem sua implementação em tecnologias futuras, incluindo análise de dados, estatística e ciência de dados.
- Pode ser considerado o pacote complementar ao módulo de estatísticas denominado SciPy.

- Essa biblioteca ou pacote é criado em cima dos pacotes SciPy e NumPy e também faz a manipulação de dados usando pandas e possui a interface patsy para a fórmula que se assemelha ao R-like.
- O matplotlib é a biblioteca da qual as funções gráficas são usadas.
- Muitos outros pacotes Python consideram este a base para criar bibliotecas de estatísticas.

- Scipy.stats era o módulo do pacote scipy e foi escrito inicialmente por Jonathan Taylor, mas depois foi removido e um pacote completamente novo foi criado.
- Muitas melhorias, testes rigorosos e correções foram feitas no Google Summer of Code 2009 e, finalmente, o pacote com os statsmodels foi lançado.

 Mesmo hoje em dia, muitos dos modelos estatísticos, ferramentas para plotagem e novos modelos estão surgindo e introduzidos no mercado com desenvolvimento contínuo pela equipe do statsmodel.

- Podemos trabalhar com estatísticas de uma forma que nenhuma outra plataforma nos permite pois o próprio statsmodel é feito tendo em mente o propósito das estatísticas hardcore.
- Tem mais inclinação para R e é uma ótima ferramenta para analisar dados estatísticos.
- A maioria dos desenvolvedores que programam em R podem fazer uso disso e podem facilmente mudar para Python usando este pacote.

Requisitos para instalação

- Python >= 3.8
- NumPy >= 1.18
- SciPy >= 1.4
- Pandas >= 1.0
- Patsy >= 0.5.2

Dependências opcionais

- O cvxopt é necessário para o ajuste regularizado de alguns modelos.
- Matplotlib >= 3 é necessário para plotar funções e executar muitos dos exemplos.
- Se instalado, o X-12-ARIMA ou X-13ARIMA-SEATS pode ser usado para análise de séries temporais.
- pytest é necessário para executar o conjunto de testes.
- IPython >= 6.0 é necessário para construir os documentos localmente ou para usar os notebooks.
- joblib >= 1.0 pode ser usado para acelerar a estimativa distribuída para determinados modelos.

Instalação

- Para a instalação do statsmodel você pode usar:
- o PIP

```
pip install statsmodel
```

 Conda (recomendável caso esteja usando distribuições como o Anaconda).

```
conda install statsmodel
```

Usando StatsModels

 Depois que o statsmodel estiver instalado, você poderá usar o pacote statsmodel dentro do seu programa Python simplesmente importando o pacote.

import statsmodel

Dataset de exemplo

Alcool e Tabaco

Este dataset visa avaliar se as pessoas que usam produtos de tabaco são mais propensas a consumir álcool.

Link: Tobacco_and_alcohol | DASL

Dataset de exemplo

- Nesta base estão os dados sobre os gastos das famílias (em libras) obtidos pelo governo britânico em 11 regiões da Grã-Bretanha.
- Assim, visava-se analisar se:
 - Os gastos com tabaco e álcool parecem estar relacionados?
 - Que perguntas você tem sobre esses dados?
 - Que conclusões você pode tirar?

Regressão Linear com Statsmodels


```
import statsmodels.api as sm
import numpy as np
data str = '''Region;Alcohol;Tobacco
     North; 6.47; 4.03
     Yorkshire: 6.13:3.76
     Northeast: 6.19:3.77
     East Midlands; 4.89; 3.34
     West Midlands; 5.63; 3.47
     East Anglia; 4.52; 2.92
     Southeast; 5.89; 3.20
     Southwest: 4.79:2.71
     Wales; 5.27; 3.53
     Scotland; 6.08; 4.51
     Northern Ireland: 4.02: 4.56'''
d = data str.split('\n')
d = [ i.split(';') for i in d ]
rea = [7
dados = []
```

```
for r in d:
     reg.append(r[0])
     dados.append(r[1:])
req = np.array(req[1:])
dados = np.array(dados[1:],dtype=np.float32)
X = dados[:,0]
Y = dados[:,1]
X = sm.add constant(X)
model = sm.OLS(Y, X)
results = model.fit()
print(results.summary())
print(results.params)
print(np.column stack((results.fittedvalues, Y)))
```

Regressão Linear com Statsmodels


```
import statsmodels.api as sm
                                                     # Sklearn foi usado apenas para
from sklearn.datasets import load iris
                                                     # carregar a base Iris
                                                     # Carregando a base Iris
X, y = load iris(return X y=True)
                                                     # Adiciona o Theta_0
X = sm.add constant(X)
                                                     # Ajusta o modelo
model = sm.OLS(y, X).fit()
                                                     # Imprime o relatório
print(model.summary())
                                                     # Imprime os thetas
print(results.params)
print(np.column stack((results.fittedvalues, Y))) # Imprime dados preditos e
                                                     # dados esperados lado a lado
```

Regressão Logística com Statsmodels


```
# importing libraries
import statsmodels.api as sm
import pandas as pd
# loading the training dataset
df = pd.read csv('logit train1.csv', index col = 0)
# defining the dependent and independent variables
Xtrain = df[['qmat', 'qpa', 'work experience']]
vtrain = df[['admitted']]
# building the model and fitting the data
log reg = sm.Logit(ytrain, Xtrain).fit()
# printing the summary table
print(log reg.summary())
# loading the testing dataset
df = pd.read csv('logit test1.csv', index col = 0)
# defining the dependent and independent variables
Xtest = df[['qmat', 'qpa', 'work experience']]
vtest = df['admitted']
```

```
# performing predictions on the test dataset
yhat = log reg.predict(Xtest)
prediction = list(map(round, yhat))
# comparing original and predicted values of y
print('Actual values', list(ytest.values))
print('Predictions :', prediction)
from sklearn.metrics import (confusion matrix,
                                    accuracy score
# confusion matrix
cm = confusion matrix(ytest, prediction)
print ("Confusion Matrix : \n", cm)
# accuracy score of the model
print('Test accuracy = ', accuracy score(vtest.
prediction))
```

Link: https://www.geeksforgeeks.org/logistic-regression-using-statsmodels/

Considerações Finais

- Esta aula cobriu uma introdução ao Scikit-Learn e ao Statsmodels
- O Scikit-learn é largamente mais usado que o Statsmodels, trazendo muito mais funcionalidades, e sendo uma biblioteca mais madura

Considerações Finais

- O Statsmodels é uma biblioteca com bastante funcionalidades para fins estatíticos
- Ambas bibliotecas são bastante ricas e trazem muitas funcionalidades semelhantes