Canonical Form of Answered Modal Logic

by Sven Nilsen, 2020

In this paper I introduce the canonical form of Answered Modal Logic.

The canonical form of Answered Modal Logic is the following syntax:

$$(a_0 \wedge a_1 \wedge \ldots a_n) \vee (b_0 \wedge b_1 \wedge \ldots b_n) \vee \ldots$$

For brevity, the parantheses can be omitted.

Each term is prefixed with one of members of the modal set $\{! \diamond, \neg! \diamond, \Box\}$.

The inversion rule $\neg \Box = \{! \diamond, \neg! \diamond, \Box\}$ can be used with $\{! \diamond, \neg! \diamond, \Box\}X = ! \diamond X \lor \neg! \diamond X \lor \Box X$.

This form is used to reduce an expression into one that can be compared with other expressions.

For example:

- \therefore $\Box A \neg = \Box B$ Notice that $\neg = `uses `not`$
- \therefore (not . eq)($\square A$, $\square B$)
- \therefore (eq[not] . (not . fst, not . snd))($\Box A$, $\Box B$)
- \therefore eq[not](not(\Box A), not(\Box B))
- \therefore xor(! \Diamond A, ! \Diamond B)
- $\therefore \qquad (! \diamond A \land not(! \diamond B)) \lor (not(! \diamond A) \land ! \diamond B)$
- \therefore (! \Diamond A \land \Box B) \lor (\Box A \land ! \Diamond B)

After normalizing to the canonical form, the expressions can be extracted to a table:

$$\begin{array}{cccc} & !\diamondsuit A & \neg !\diamondsuit A & \Box A \\ !\diamondsuit B & 0 & 0 & 1 \\ \neg !\diamondsuit B & 0 & 0 & 0 \\ \Box B & 1 & 0 & 0 \end{array}$$

Another example:

When a variable is unmentioned, e.g. `B` is not mentioned in `!\phi A`, one can fill out the row/column.