Introducción: Álgebra de Boole

Fundamento de Diseño Digital

Algebra de Boole binaria

En 1860 George Boole desarrolló un Algebra en la que los valores de A y B sólo podían ser "verdadero" o "falso" (1 ó 0). Se llama *Algebra de Boole* y se utiliza en Electrónica Digital

Elementos: {0,1}

Operadores:

Suma Booleana: es la función lógica OR

$$X=A+B$$

Producto Booleano: es la función lógica AND

$$X = AB$$

<u>Axiomas</u>

Axioma: Propiedad Conmutativa

$$A+B=B+A$$

El orden en la OR no importa

$$AB = BA$$

El orden en la AND no importa

$$\begin{array}{c|c}
A & & \\
B & & \\
\end{array}$$

$$AB = \begin{bmatrix}
B & & \\
A & & \\
\end{array}$$

$$BA$$

Axioma: Propiedad asociativa

$$A + (B + C) = (A + B) + C$$

Agrupar variables en la OR no importa

$$A(BC) = (AB)C$$

Agrupar variables en la AND no importa

$$\begin{array}{c|c}
A & & & \\
B & & & \\
C & & & \\
\end{array}$$

$$= \begin{array}{c|c}
A & & \\
B & & \\
C & & \\
\end{array}$$

$$AB \\
C & (AB)C$$

Axioma: Propiedad distributiva I

Axioma: Propiedad distributiva II

Axioma: Elemento identidad (0 para +)

A+0=A

Hacer una operación OR con 0 no cambia nada.

X=A

Axioma: Elemento identidad (1 para •)

Hacer una operación AND con 1 no cambia nada

Axioma: Elemento complemento

$$A+A=1$$

O bien A o A serán 1, luego la salida será 1

X=1

Axioma: Elemento complemento

$\mathbf{A} \cdot \overline{\mathbf{A}} = \mathbf{0}$

Bien A o \overline{A} son 0 luego la salida será 0.

Teorema: A+1=1 (T. Complementación)

Hacer una operación OR con 1 da siempre 1.

X=1

Teorema: A•0=0 (T. Complementación)

Hacer una operación AND con 0 siempre da 0

Teorema: A+A=A (T. Idempotencia)

Hacer una operación OR consigo mismo da el mismo resultado

A=A

Teorema: $A \cdot A = A$ (T. Idempotencia)

Hacer una operación AND consigo mismo da el mismo resultado

Teorema: $\overline{A} = A$ (T. Involución)

Si negamos algo dos veces volvemos al principio

X=A

Teorema: A + AB = A (T. Absorción I)

$Teorema\ A + AB = A + B\ {\tiny (T.\ Absorción\ II)}$

Leyes de De Morgan (2 variables)

De Morgan ayuda a simplificar circuitos digitales usando NORs y NANDs.

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

Igual para n variables

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Leyes de De Morgan (más de 2 variables)

$$A + B + C + D = A \cdot B \cdot C \cdot D$$

Análisis Booleano de Funciones Lógicas

El propósito de este apartado es obtener expresiones booleanas simplificadas a partir de un circuito

Se examina puerta a puerta a partir de sus entradas

Se simplifica usando las leyes y propiedades booleanas.

Cálculo de la expresión algebraica de salida (ejemplo 1)

$$(A + B) (CD) = (A + B) + (CD) = A + B + CD$$

X e Y son iguales

Cálculo de la expresión algebraica de salida (ejemplo 2)

$$X = \overline{(A+B)} \, \overline{C} + \overline{CD} + \overline{B}$$

$$= \overline{(A+B)} \, \overline{C} \cdot \overline{CD} + \overline{B}$$

$$= \overline{(A+B)} \, C \cdot (\overline{CD} + \overline{B})$$

$$= \overline{A} \, \overline{B} \, C \cdot (\overline{C} + \overline{D} + \overline{B})$$

$$= \overline{A} \, \overline{B} \, C \cdot (\overline{C} + \overline{D} + \overline{B})$$

$$= \overline{A} \, \overline{B} \, C \cdot (\overline{C} + \overline{D} + \overline{A} \, \overline{B} \, C \, \overline{D} + \overline{A} \, \overline{B} \, C \, \overline{D}$$

$$= \overline{A} \, \overline{B} \, C \, \overline{D}$$

Ejemplo 3

Puerta a puerta a partir de sus entradas

$$X = AB + (C+D)$$

$$X = AB + C + D$$

$$X = (AB)(CD)$$

$$X = ABCD$$

Ejemplo 5

Ejemplo 6

$$X = (AB + \overline{B})BC$$

Usando la propiedad distributiva:

$$X = (AB + \overline{B})BC$$

Usando la propiedad distributiva:

$$X = ABBC + BBC$$

$$X = ABC + \overline{B}BC$$

$$X = ABC + 0 \cdot C$$

$$X = ABC + 0$$

$$X = ABC$$

Ejemplo 7

$$X = (\overline{A} + AB) + (\overline{B}(C + D))$$

$$X = (\overline{A} + B) + (\overline{B}(C + D))$$

$$X = (A + B) + (BC + BD)$$

$$X = \overline{A} + B + \overline{B}C + \overline{B}D$$

$$X = \overline{A} + B + C + \overline{B}D$$

$$X = \overline{A} + B + C + D$$

Expresiones booleanas desde tablas de verdad

■ Un **minterm** (o **minitérmino**) es una expresión algebraica booleana de *n* variables booleanas (ej: bits) que solamente se evalúa como verdadera (1) para una única combinación de esas variables.

x_1	x_2	Coincidencia
0	0	1
0	1	0
1	0	0
1	1	1
esto	es	
$\Sigma m($	[0, 3])

Expresiones booleanas desde tablas de verdad

- Es aquella constituida exclusivamente por términos canónicos productos (minterminos) sumados que
- aparecen una sola vez.
- Por ejemplo $F(X, Y, Z) = \overline{X} \cdot \overline{Y} \cdot Z + X \cdot \overline{Y} \cdot \overline{Z} + X \cdot \overline{Y} \cdot Z + X \cdot Y \cdot \overline{Z} + X \cdot \overline{Z} + X$
- De esta forma, la función:

$$F(X,Y,Z) = \overline{X} \cdot \overline{Y} \cdot Z + X \cdot \overline{Y} \cdot \overline{Z} + X \cdot \overline{Y} \cdot Z + X \cdot Y \cdot \overline{Z} + X \cdot Y \cdot Z$$

Se puede expresar como: $F(X,YZ) = \Sigma m(1,4,5,6,7)$ que quiere decir la sumatoria de los

min términos 1,4,5,6,7.

Х	Υ	Z	$F = X + \overline{Y} \cdot Z$	Mintermino
0	0	0	0	
0	0	-	1	$\longleftarrow \overline{X} \cdot \overline{Y} \cdot Z = m_1$
0	1	0	0	
0	1	-	0	
1	0	0	1	$\leftarrow X \cdot \overline{Y} \cdot \overline{Z} = m_4$
1	0	-	1	$\longleftarrow X \cdot \overline{Y} \cdot Z = m_5$
1	1	0	1	$\longleftarrow X \cdot Y \cdot \overline{Z} = m_6$
1	1	1	1	$\leftarrow X \cdot Y \cdot Z = m_7$

Expresiones booleanas desde tablas de verdad

Suma de productos

$$Y = A \cdot \overline{B} \cdot C + B \cdot \overline{C} \cdot D + A \cdot \overline{C} \cdot D$$
 o directamente

$$Y = A\overline{B}C + B\overline{C}D + A\overline{C}D$$

Producto de sumas

$$Y=(A+B+C)\cdot(D+C)\cdot(E+F)$$

Sumas de Productos (SP)

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Sea una función F(ABCD) que sólo es 1 para los casos: 0011, 1011, 1110, 1111

Cuando ABCD=0011, únicamente la expresión producto ABCD es 1.

Cuando ABCD=1011, únicamente la expresión producto ABCD es 1

...y así sucesivamente... resultando que

 $F = \overline{ABCD} + ABCD + ABCD + ABCD \Rightarrow F \text{ es suma de productos}$

Productos de Sumas (PS) Maxiterminos

Es aquella constituida exclusivamente por términos canónicos sumas (maxterminos) multiplicados que aparecen una sola vez.

Por ejemplo: $F(X,Y,Z) = (X + Y + Z) \cdot (X + Y' + Z) \cdot (X + Y' + Z')$ se puede expresar como:

 $F(X,YZ) = \Pi M(0,2,3)$ que quiere decir el producto de los maxterminos 0,2,3.

Х	Υ	Z	$F = X + \overline{Y} \cdot Z$	Maxtermino
0	0	0	0	$\leftarrow X + Y + Z = M_0$
0	0	7	1	
0	1	0	0	$\longleftarrow X + \overline{Y} + Z = M_2$
0	1	1	0	$\longleftarrow X + \overline{Y} + \overline{Z} = M_3$
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

B C D F

Productos de Sumas (PS)

Sea una función F(ABCD) que

sólo es 0 para los casos:

Cuando ABCD=0010, sólo la suma $A+B+\overline{C}+D$ es 0.

Cuando ABCD=0100, sólo la suma $A+\overline{B}+C+D$ es 0, ...

...y así sucesivamente...

La función F es 0 (o bien F es 1)

cuando ABCD=0010

o cuando ABCD=0100

o cuando ABCD=0111

o cuando ABCD=1010

o cuando ABCD=1101

y en ningún otro caso más.

X	Υ	Z	$F = X + \overline{Y} \cdot Z$	Maxtermino
0	0	0	0	$\leftarrow X + Y + Z = M_0$
0	0	1	1	
0	1	0	0	$\leftarrow X + \overline{Y} + Z = M_2$
0	-	-	0	$\longleftarrow X + \overline{Y} + \overline{Z} = M_3$
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

X	Υ	Z	$F = X + \overline{Y} \cdot Z$	Mintermino
0	0	0	0	
0	0	1	1	$\longleftarrow \overline{X} \cdot \overline{Y} \cdot Z = m_1$
0	-	0	0	
0	-	-	0	
1	0	0	1	$\leftarrow X \cdot \overline{Y} \cdot \overline{Z} = m_4$
1	0	-	1	$\longleftarrow X \cdot \overline{Y} \cdot Z = m_5$
1	1	0	1	$\leftarrow X \cdot Y \cdot \overline{Z} = m_6$
1	1	1	1	$\leftarrow X \cdot Y \cdot Z = m_7$

Valor decimal	XYZ	Mintermino	Maxtermino
0	000	$\overline{X}\cdot\overline{Y}\cdot\overline{Z}=m_0$	$\boldsymbol{X} + \boldsymbol{Y} + \boldsymbol{Z} = \boldsymbol{M} o$
1	001	$\overline{X} \cdot \overline{Y} \cdot Z = m_1$	$X + Y + \overline{Z} = M_1$
2	010	$\overline{X} \cdot Y \cdot \overline{Z} = m_2$	$X + \overline{Y} + Z = M_2$
3	011	$\overline{X} \cdot Y \cdot Z = m_3$	$X + \overline{Y} + \overline{Z} = M_3$
4	100	$X \cdot \overline{Y} \cdot \overline{Z} = m_4$	$\overline{X} + Y + Z = M_4$
5	101	$X \cdot \overline{Y} \cdot Z = ms$	$\overline{X} + Y + \overline{Z} = Ms$
6	110	$X \cdot Y \cdot \overline{Z} = m_6$	$\overline{X} + \overline{Y} + Z = M\epsilon$
7	111	$X\cdot Y\cdot Z=m_7$	$\overline{X} + \overline{Y} + \overline{Z} = M_7$

Minimización de funciones lógicas

Mapa de Karnaugh

• <u>Se usa</u> para minimizar el número de puertas requeridas en un circuito digital. Es adecuado en vez de usar leyes y propiedades cuando el circuito es grande y/o la función es de entre 3 a 6 variables

• <u>Un MK contiene</u> en la misma tabla de verdad de la función pero dispuesta en dos

dimensiones.

- <u>Celdas adyacentes</u>: En direcciones y, dependiendo del tamaño del MK, la adyacencia puede existir doblando el mapa sobre sí mismo o mediante reflexión en ejes verticales y horizontales
- Emplea un código Gray, que se caracteriza porque entre los códigos consecutivos de celdas adyacentes se diferencian en 1 bit.

SIMPLIFICACIÓN POR KARNAUGH

- 1) Realizar agrupaciones de 1's, con sus adyacentes, lo mayor posibles, pero siempre en cantidades <u>potencias de 2</u>.
- 2) No dejar ningún 1 sin agrupar. Puede ocurrir que un 1 pertenezca a más de una agrupación. No se pueden coger agrupaciones totalmente contenidas en otras.
 - 3) Por cada agrupación de 1's resulta un producto de variables. Cuanto más 1's se agrupen, más sencilla resultará la expresión de esa agrupación.
 - 4) En cada agrupación, cada una de las variables puede aparecer en alguno de los siguientes casos:
 - a) Si siempre vale 1 ----> Se pone afirmada.
 - b) Si siempre vale 0 ----> Se pone negada.
 - c) Si cambia de valor (50% de los casos un valor y el otro 50% otro valor) ----> No se pone.
 - 5) La expresión de la función booleana será la suma lógica de todos los productos que hayan salido (expresión como Suma de Productos)

Mapas de Karnaugh de 3 variables

0

0

- Dos celdas adyacentes a 1 implican a 2 variables
- Cuatro celdas adyacentes a 1 implican a 1 variable
- Ocho celdas adyacentes a 1 constituyen función de valor 1

Mapa de Karnaugh de 4 variables

- •Una celda a 1 implica a 4 variables
- •Dos celdas adyacentes a 1 implican a 3 variables
- •Cuatro celdas adyacentes a 1 implican a 2 variables
- •Ocho celdas adyacentes a 1 implican a 1 variable
- •Dieciséis celdas adyacentes a 1 constituyen función de valor 1

Ejemplo 1.

$$X = \overline{A} \overline{B} C D + \overline{A} B C D + \overline{A} \overline{B} C D + \overline{A} B C D + A B C D + A B C D$$

$$A B \overline{C} D + \overline{A} B C \overline{D}$$

Ejemplo 2.

$$Z = \overline{B} \overline{C} D + \overline{B} \overline{C} D + \overline{C} \overline{D} + \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} C$$

Ejemplo 3. Dado un circuito encontrar otro más sencillo usando Mapas de Karnaugh

Primero lo pasamos a Suma de Productos..!

Mini términos

$$Y = \overline{\overline{A} + B} + B\overline{C} + (\overline{\overline{A} + B})(C + D)$$

$$Y = \overline{\overline{A}} \overline{B} + B \overline{C} + \overline{\overline{A}} \overline{B} (C + D)$$

$$Y = A\overline{B} + B\overline{C} + A\overline{B}C + A\overline{B}D$$

$$Y = AB + BC + ABC ABD$$

$$Y = A \overline{B} + B \overline{C} + (\overline{A} + B + \overline{C}) (\overline{A} + B + \overline{D})$$

$$Y = A \overline{B} + B \overline{C} + \overline{A} + \overline{A}B + \overline{A}\overline{D} + \overline{A}B + B + B\overline{D} + \overline{A}\overline{C} + B\overline{C} + \overline{C}\overline{D}$$

Sacando factor común A (en rojo) y B (en azul), queda

$$Y = A \overline{B} + A (1+...) + B(1+...) + CD = A + B + B + CD = 1$$

Representación por MAPA de Karnaugh

Patillaje de los circuitos 7404 y 7454

...Gracias por su Atención...

Final del Tema