

Ahsanullah University of Science & Technology

Department of Computer Science & Engineering

LAB REPORT

Course No: CSE 3110
Course Title: Digital System Design Lab

Experiment No: 01

Name of the Experiment: Designing a 4-bit ALU (Arithmetic and Logic Unit)

Submitted By-

Group No: 03

Section: B2

Group Members:

18.01.04.077 Sabrina Mostafij Mumu

18.01.04.084 Safwan Muntasir

18.01.04.096 Purnendu Talukder

18.01.04.097 Arifur Rahman Jawad

Introduction: An Arithmetic Logic Unit (ALU) is used to perform arithmetic such as addition, subtraction, multiplication, division and logic operations such as AND, OR etc. It represents the fundamental building block of the central processing unit (CPU) of a computer. In this experiment, we made a 4-bit Arithmetic Logic Unit (ALU). So, we needed two selector bit S_0 and S_1 . And for selecting arithmetic and logical operation, we used S_2 . So, 3 selector bit were needed in total.

Problem Statement:

S_2	S_0	S_0	Output	Function
0	0	0	$\mathbf{A_i}$	Transfer A
0	0	1	A_i - B_i	Subtraction
0	1	0	A _i -1	Decrement A
0	1	1	A_i+B_i	Add
1	0	X	$A_i.B_i$	AND
1	1	X	$A_i \wedge B_i$	OR

Function Generation:

S_2	S_1	S_0	Cin	X_i	Yi	Output	Function
0	0	0	0	$\mathbf{A_{i}}$	0	$\mathbf{A_{i}}$	Transfer A
0	0	1	1	$\mathbf{A_{i}}$	$\overline{\mathbf{B}}_{\mathbf{i}}$	A _i -B _i	Subtraction
0	1	0	0	$\mathbf{A_{i}}$	All 1	A _i -1	Decrement A
0	1	1	0	$\mathbf{A_{i}}$	$\mathbf{B_{i}}$	A_i+B_i	Add
1	0	X	0	A _i .B _i	0	$A_i.B_i$	AND
1	1	X	0	A_i+B_i	0	$A_i \wedge B_i$	OR

$$X_i = \overline{S}_2 A_i + S_2 \overline{S}_1 (A_i B_i) + S_2 S_1 (A_i + B_i)$$

$$= \overline{S}_{2}A_{i} + S_{2}\overline{S}_{1}A_{i}B_{i} + S_{2}S_{1}A_{i} + S_{2}S_{1}B_{i}$$

$$= \overline{S}_2 A_i + S_2 A_i (\overline{S}_1 B_i + S_1) + S_2 S_1 B_i$$

$$= \overline{S}_2 A_i + S_2 A_i (\overline{S}_1 + S_1) (B_i + S_1) + S_2 S_1 B_i$$

$$= \overline{S}_2 A_i + S_2 A_i B_i + S_2 S_1 A_i + S_2 S_1 B_i$$

$$= A_i(\overline{S}_2 + S_2B_i) + S_2S_1A_i + S_2S_1B_i$$

$$= A_i(\overline{S}_2 + S_2)(\overline{S}_2 + B_i) + S_2S_1A_i + S_2S_1B_i$$

$$= \overline{S}_2 A_i + A_i B_i + S_2 S_1 A_i + S_2 S_1 B_i$$

$$= A_i(\overline{S}_2 + S_2S_1) + A_iB_i + S_2S_1B_i$$

$$= A_i(\overline{S}_2 + S_2)(\overline{S}_2 + S_1) + A_iB_i + S_2S_1B_i$$

$$=A_i\overline{S}_2+S_1A_i+A_iB_i+S_2S_1B_i$$

$$= A_i(\overline{S}_2 + S_1 + B_i) + S_2S_1B_i$$

$$Y_{i} = \overline{S}_{2}\overline{S}_{1}S_{0}\overline{B}i + \overline{S}_{2}S_{1}S_{0}Bi + \overline{S}_{2}S_{1}\overline{S}_{0}.1$$

Now using K-map we get:

S_0B_i/S_2S_1	$\overline{S}_0\overline{B}_i$	\overline{S}_0B_i	S_0B_i	$S_0 \overline{\overline{B}}_i$
$\overline{S}_2\overline{S}_1$				1
\overline{S}_2S_1				
S_2S_1				
$S_2\overline{S}_1$				

$$\begin{split} &So,\ Y = \overline{S}_2 S_1 \overline{S}_0 + \overline{S}_2 S_1 B_i + \overline{S}_2 \overline{S}_1 S_0 \overline{B}_i \\ &= \overline{S}_2 S_1 (\overline{S}_0 + B_i) + \overline{S}_2 \overline{S}_1 S_0 \overline{B}_i \\ &= \overline{S}_2 S_1 (\overline{S}_0 \overline{\overline{B}_i}) \qquad \qquad \left[\text{using De-Morgan's Law} \right] \\ &= \overline{S}_2 \left[S_1 (\overline{S}_0 \overline{\overline{B}_i}) + \overline{S}_1 (S_0 \overline{\overline{B}_i}) \right] \\ &= \overline{S}_2 \left[S_1 \oplus S_0 Bi \right] \end{split}$$

$$C_{in} = \overline{S}_2 \overline{S}_1 S_0$$

Equipment and Budget:

Gate Name	IC	Amount	Price per IC(tk)	Price (tk)
AND	7408	5	30	150
OR	7432	2	29	58
NOT	7404	1	25	25
XOR	4030	1	26	26
4-bit full adder	4008	1	40	40

Total 299(tk)

Simulation:

Result:

i. For Transfer A Operation –

	Input											Output					
S_2	S_1	S_0	A_3	A_2	A_1	A_0	\mathbf{B}_3	\mathbf{B}_2	B_1	B_0	Cout	F_3	F_2	F_1	F_0		
			0	0	0	0	0	0	0	0	0	0	0	0	0		
U	U	U	1	0	1	0	0	0	0	0	0	1	0	1	0		
			1	1	1	1	0	0	0	0	0	1	1	1	1		

ii. For Decrement Operation-

					Input	t					Output				
S_2	S_1	S_0	A_3	A_2	A_1	A_0	B_3	\mathbf{B}_2	B_1	B_0	Cout	F_3	F_2	F_1	F_0
	1	0	0	1	1	1	0	1	0	1	1	0	1	1	0
0	1	0	1	1	0	1	0	0	1	0	1	1	1	0	0

iii. For Subtraction Operation-

	Input											Output				
S_2	S_1	S_0	A_3	A_2	A_1	A_0	\mathbf{B}_3	\mathbf{B}_2	B_1	\mathbf{B}_0	Cout	F_3	F_2	F_1	F_0	
		1	1	1	1	1	1	1	0	1	1	0	0	1	0	
U	U	1	0	1	1	0	0	0	1	0	1	0	1	0	0	

iv. For Addition Operation-

	Input										Output				
S_2	S_1	S_0	A_3	A_2	A_1	A_0	\mathbf{B}_3	B_2	B_1	B_0	Cout	F_3	F_2	F_1	F_0
	1	1	1	1	0	0	0	0	1	1	0	1	1	1	1
0	1	1	1	0	1	0	0	1	0	0	0	1	1	1	0

v. For AND Operation-

	Input										Output				
S_2	S_1	S_0	A_3	A_2	A_1	A_0	\mathbf{B}_3	B_2	B_1	\mathbf{B}_0	Cout	F_3	F_2	F_1	F_0
1		3 7	0	0	1	1	1	1	1	0	0	0	0	1	0
1	U	X	1	0	0	1	1	0	1	1	0	1	0	0	1

vi. For OR Operation-

	Input										Output				
S_2	S_1	S_0	A_3	A_2	A_1	A_0	\mathbf{B}_3	\mathbf{B}_2	B_1	\mathbf{B}_0	Cout	F ₃	F_2	F_1	F_0
1	1	17	1	1	1	1	0	0	0	0	0	1	1	1	1
	1	X	0	1	0	1	1	0	0	0	0	1	1	0	1

Conclusion: To perform the ALU simulation we have used 4 bit full adder.

We solved these 4 bit ALU functions using k-map. The total cost for performing the simulation was reasonable. After completing circuit implementation, it worked perfectly and we faced no error.