Homeostasis

PROF. AYYAZ MEHMOOD PGC SIALKOT

Homeostasis

MCQs

<u>_</u>				
Q1 A		ed solution compared to cell concentration termed as		
		Hypertonic	c.	Isotonic
		Hypotonic	d.	Paratonic
Q2 Th	e mo	ost concentrated external environment is called as		
	a.	Hypertonic	c.	Isotonic
	b.	Hypotonic	d.	Peritonic
Q3 Hy	/drop	hyte possesses		
	a.	Small leaves	c.	Stomata in depression of epidermis
	b.	Large leaves	d.	Less water
Q4 Ar	ı exa	mple of mesophyte plant is		
	a.	Cactus	c.	Brassica
	b.	Hydrilla	d.	Water lily
Q5 Th	e sto	mata are located on the upper surface(epidermis) only in		M/ N/
	a.	Hydrophytes	c.	Xerophytes
	b.	Mesophytes	d.	Epiphytes
Q6 Fis	sh ret	ain which chemical that protect against urea	VA	/
	a.	Creatine	c.	Hypoxanthine
	b.	Xanthine	d.	Trimethylamine oxide
Q7 N	/lost	cartilaginous fishes possess salt secreting organs known as		
	a.	Foetal glands	c.	Rectal gland
	b.	Caecal glands	d.	Sebaceous gland
Q8 Th	e ani	mal which can survive without drinking water is		
	a.	Camel	c.	Kangaroo rat
	b.	Kangaroo	d.	Rat
Q9 Or	ne of	the following parts of the plant is / (serves as) excretophor	e	
	a.		c.	Leaves
	b.	Root	d.	Flower
Q10		Metabolism of purines and pyrimidines produces		
	a.	Creatinine	c.	Xanthine
	b.	Creatine	d.	Trimethlamine oxide
Q11		Sharks excrete nitrogen wase in the form of		
	a.	Ammonia	c.	Urea
	b.	Uric acid	d.	Allantoin
Q12		Uric acid is produced from		
	a.	Amino acid	c.	Fatty acid
		Nucleic acid	d.	Protein
Q13	1	The excretory product that require minimum amount of w	vate	
-,	a.	Urea	С.	Ammonia
	-	Uric acid	d.	
Q14	~.	Which nitrogen waste is very toxic and dissolves quickly in	-	
~-·	a.	CO ₂		Uric acid
		Urea	d.	
Q15	٠.	How much water is required to excrete 1g of ammonia nit		
Q13	2	400 ml		600 ml
	a. b.	500 ml	d.	700 ml
	υ.	JOO IIII	u.	7 00 IIII

Q16		Which one is least toxic		
	a.	Urea	c.	Ammonia
	b.	Uric acid	d.	Both a and b
Q17		The excretory product that require maximum amount of	wate	er for its removal
	a.	Urea	c.	Ammonia
	b.	Uric acid	d.	Creatinine
Q18		The most toxic nitrogen waste is		
	a.		c.	Urea
	b.	Uric acid	d.	Creatinine
Q19		Flame cells are part of excretory system of		
•	a.	Cockroach	c.	Hydra
	b.	Earthworm	d.	, Planaria
Q20		Animals that excrete ammonia are		
-	a.	Ureotelic	c.	Uricotelic
	b.	Ammonotelic	d.	Excretotelic
Q21		Protonephridium is found in		N/O
	a.		c.	Hydra
	b.	Earthworm	d.	, Planaria
Q22		Earthworm has tubular excretory system called		A N'
	a.	Protonephridium	c.	Metanephridium
	b.	Prenephridium	d.	Mesonephridium
Q23		Uric acid secreted out as solid excreta in		1 1 1 2
	a.	Starfish	c.	Planaria
	b.	Earthworm	d.	Cockroach
Q24		In cockroach, most of the reabsorption of water and salt	take	s place in the
	a.	Intestine	c.	Rectum
	b.	Midgut	d.	Malpighian tubules
Q25		Structural and functional relationship between nutritive t	ract	
	a.	Planaria	c.	Earthworm
	b.	Cnidarians	d.	Insects
Q26		Which organs is central station for metabolism		
	a.	Liver	c.	Spleen
	b.	Kidney	d.	Skin
Q27		In urea cycle the detoxified form of ammonia is		
	a.	Urea	c.	Ammonium ion
	b.	Uric acid	d.	Nitrates
Q28		The arginine is split by arginase to form urea and precurs	or	
	a.	Ornithine	c.	Alanine
	b.	Citrulline	d.	Arginine
Q29		Number of molecules to produce one molecule of urea is		
	a.	1 c. 3		
	b.	2 d. 4		
Q30		Major homeostatic function of liver is storage of		
	a.	Bile	c.	Urea
	b.	Cholesterol	d.	Iron
Q31		Production of sweat and sebum is related to		
	a.	Skin	c.	Lungs
	b.	Liver	d.	Gills
Q32		The central station of metabolism and body's metabolic of	lear	ing agent is
	a.	Stomach	c.	Liver
	b.	Kidney	d.	Gut

Q33		The end product of haemoglobin breakdown is		
	a.	Uric acid	c.	Creatinine
	b.	Bilirubin	d.	Citric acid
Q34		Which one is not part of human urinary system		
	a.	Kidney	c.	Pubis
	b.	•	d.	Renal Pelvis
Q35		Urine leaves the kidney through duct called		
	a.		c.	Renal Pelvis
	b.		d.	Pubis
Q36		Basic unit of excretory system in human is		
-,00	a.	Ureter	c.	Renal pelvis
	b.	Nephron	d.	Urinary bladder
Q37		Glomerulus circulates blood through capsule as it arrives		
ς.	a.		с.	Afferent arteriole
	b.	Peritubular arteries	d.	Efferent arteriole
Q38		Aldosterone plays role in	٠	
QSS	a.		c.	Transport of K ions into kidney
	b.	•	d.	Reabsorption of water
Q39	٥.	Sodium uptake in nephron is promoted by	\	neadsorption of vate.
QJJ	a.		c.	ADH
	b.	Aldosterone	d.	FSH
Q40	٥.	The incidence of calcium oxalate stone of kidney is		. 3
Qio	a.		c.	15 %
	-	60 %	d.	70 %
Q41	υ.	The incidence of calcium phosphate stone in kidney is	١,	70 70
QTI	a.	10 %	c.	20 %
	b.	15 %	d.	30 %
Q42	υ.	The incidence uric acid stone in kidney is	u.	30 %
Q+Z	a.	10 %	c.	15 %
	b.	5 %	d.	70 %
Q43	υ.	Non-surgical removal of kidney stone is called	u.	70 70
Q+3	a.	Lithotripsy	c.	Dialysis
	b.	Kidney transplant	d.	Radiotherapy
Q44	٥.	The high level of renal failure is also called	G.	nadiotile apy
٧.,	a.	Uremia	c.	Sciatica
	b.	Anemia	d.	Death
Q45		Increased plasma level of urea is an indication of	٠	2 3 3 1 1
۷.5	a.	Renal failure	c.	Hypocalcemia
	b.	Kidney stone	d.	Hyperoxaluria
Q46		Abdomen has peritoneal cavity lined by thin epithelium		
	a.	Peritoneum	С.	Scrotal sac
		Pericardium	d.	Pleura
Q47		Which one of the following is heterotherm?	٠	
Ψ	a.	Bat	c.	Snake
	b.	Frog	d.	Man
Q48	~.	Bat does not regulate body temperature in a narrow ran		
٦.٥	a.	Ectotherm	С.	Heterotherm
	b.	Endotherm	d.	Poikilotherm
Q49	~.	Which animal is not poikilotherm?		
	a.	Starfish	c.	Tortoise
	b.	Frog	d.	Parrot
	~.	··-o	۵.	

Q50		Bats and humming birds are called				
	a.	Ectotherm	c.	Heterotherm		
	b.	Endotherm	d.	Poikilotherm		
Q51		The animals that generate own body heat by metabolism				
	a.	Ectotherm	c.	Heterotherm		
	b.	Endotherm	d.	All of these		
Q52		Which of the following is structural adaptation of animals	for	thermogenesis?		
	a.	Pelage	c.	Plumage fluffing		
	b.	Sweating	d.	Urination		
Q53		Lizard bask in sun to gain				
	a.	Heat	c.	Air		
	b.	Cold	d.	Moisture		
Q54		Most of the mammals respond to cold by raising them				
	a.	Tail	c.	Furs		
	b.	Head	d.	Legs		
Q55		The chemical substances responsible for raising human body temperature are				
	a.	Leukocytes	c.	Pyrexia		
	b.	Pyrogens	d.	Pollutants		
Q56		During infection pyrogens are produced in human body b	У	AN'		
	a.	RBCs	c.	Platelets		
	b.	WBCs	d.	Blood plasma		
Q57		In animals carbohydrates and lipids are metabolized to	M			
	a.	NH₃ and H₂O	c.	CO ₂		
	b.	NH ₃ and CO ₂	d.	CO ₂ and H ₂ O		
Q58		The falling of yellow leaves in plants is to get rid of				
	a.	Accumulated waste	c.	Accumulated protein		
	b.	Old chlorophyll	d.	Sap		
Q59		1g of ammonia requireml water for its remova	ıl			
	a.	5	c.	500		
	b.	50	d.	1		
Q60		Trimethylamine oxide is produced in				
	a.	Hag fish				
	b.	Reptiles				
	c.	Amphibians				
	d.	Cartilaginous fish				

Short Questions

Q1 Define homeostasis what are its types

Homeostasis: Protection and maintenance of constant internal environment from harms and fluctuations of external environment e.g. maintenance of body temperature at 37°C It is further divided into two types

- 1. Osmoregulation
- 2. Thermoregulation

Q2 What is difference between positive and negative feedback mechanism?

Positive feedback mechanism	Negative feedback mechanism
Mechanism in which effectors respond by	Mechanism in which effectors show inverse
enhancing original stimulus rather than	response to change in external environment i.e.
reducing it	stimulus
e.g. increase in level of oestrogen stimulates	e.g. receptors sense warmth temperature and
production of LH	effectors show response in form of cooling of
	body

Q3 Differentiate between hypotonic and hypertonic environment

Hypotonic environment / solution	Hypertonic environment
A dilute solution as compared to cell	More concentrated external environment as
concentration	compared to cell
Water moves into the cell from hypotonic	Water moves out of cell to hypertonic
environment	environment
Cell becomes turgid	The cell shrinks & becomes plasmolysed
e.g. freshwater environment like river, lake,	e.g. marine water i.e. sea and ocean water
pond etc.	

Q4 Differentiate between mesophyte and hydrophyte

Mesophyte	Hydrophyte
Plants living in moderate water land	Plants living in aquatic environment
environment	
Moderate number of stomata present on lower	High no. of stomata on upper epidermis of
epidermis	broad leaves
Normal rate of transpiration	Higher rate of transpiration
Cuticle is present on upper epidermis to prevent	Very thin cuticle
excessive water loss	
e.g. Rose, Brassica, Mango etc.	e.g. water lily, hydrilla etc.

Q5 How are xerophytes adapted

These are the plants adapted to low water land environment. Their adaptive features are

- 1. Possess small thick leaves
- 2. Thick cuticle layer to prevent water loss
- 3. Few number stromata present in depression that reduces transpiration rate
- 4. Can store water in fleshy stem

Q6 Differentiate between osmoconformers and osmoregulators

Osmoconformers	Osmoreguators
Animals that do not require actively to adjust	Animals that actively adjust their internal
internal osmotic state	osmotic state to external environment
Animals keep their body fluid isotonic to	Animals are either hypotonic or hypertonic to
external osmotic environment	external environment
e.g. hagfish and marine invertebrates	e.g. bony fish and mammals

Q7 Give four adaptations of marine bony fish in its environment

Four adaptive features of marine bony fish are

- 1. It drinks large amount of sea water
- 2. Salt is actively secreted out by gills
- 3. It excretes concentrated urine
- 4. There is passive loss of water by gills so kidneys reabsorb more water

Q8 Define anhydrobiosis with an example

Anhydrobiosis: Aability of an organism to tolerate dehydration is called anhydrobiosis e.g.

- 1. Some desert animals like kangaroo rat survives without drinking water. It feeds on seed rich in carbohydrate to produce metabolic water.
- 2. Terrestrial animals possess kidneys that help reabsorption of water
- 3. Some animals prevent water loss by having waxy exoskeleton like insects
- 4. Some animals have keratinized multi-layered skin

Q9 What are excetophores?

Exretophores: Excretophore are structures that are used by plants to removes waste. Leaves are used to excrete waste so leaves are called excretophores.

Plants produce certain organic and inorganic waste like pigments and salts which are stored in different organs and transfer it to leaves during autumn. Leaves shed off carrying waste along with. Change of leaf colour is due to stored waste pigments.

Q10 What is ebony and its role?

Ebony: It is dark black portion of the wood that is considered to deposit some waste chemicals. This portion of wood is no longer used for transport of food and water.

Q11 What is benefit of waste of plants?

Benefits of plant waste:

- 1. Some plant may use their waste against other competing plants e.g. conifers
- 2. Rotted autumn leaves are considered good source of minerals.

Q12 Why is ammonia more toxic than other nitrogen compounds?

Ammonia is more toxic than urea and uric acid because

- 1. It dissolves quickly in body fluids.
- 2. It is more reactive than urea and uric acid
- 3. It requires more amount of water for its removal 1g removal of ammonia require 500ml water which is not suitable for terrestrial animals.

Q13 Differentiate between ureotelic and uricotelic animals

Ureotelic	Uricotelic
Animals that excrete urea as major nitrogen	Animals that excrete uric acid as major
waste are called ureotelic	nitrogen waste are celled uricotelic
They have restricted water supply	They have acute shortage of water
These animals require 50ml water for 1g of	These animals require 1ml water for 1g of
urea removal	uric acid removal
Relatively less efficient for water utilization	More efficient for water utilization
e.g. mammals, amphibians, shark, bony fish	Insects, birds, reptiles, land snails etc.
etc.	

What are flame cells and their role? / Why flame cells are called so?

Flame cells are excretory cells in tubular excretory system of Planaria. *Each cell consists of a tuft of cilia whose beating is like flickering flame hence called flame cell.*

Role: Beating of cilia propels/drives interstitial fluids into excretory tubules from where waste is removed through external excretory opening.

Q15 Differentiate between protonephridium and metanephridium

Protonephridium	Metanephridium
Nephridium without internal excretory	Nephridium with both internal and external
opening. Only external opening is present	excretory opening
Flame cell collects body fluids	Nephridiostome collects coelomic fluid
e.g. Planaria	e.g. earthworm

Q16 How Malpighian tubule take part in excretion

Malpighian tubules are suspended excretory tubular structures associated with nutritive tract in insects.

These tubules are adapted to collect excretory products like uric acid and salts from haemolymph in sinuses of insects. Waste is dragged into lumen of Malpighian tubules which is then passed to hindgut and removed along with faces.

Increased surface area of tubules facilitated excretion.

Q17 Draw urea cycle

Q18 Write about urea cycle

The metabolic pathways involved in the production of urea are termed as urea cycle. Two ammonia and one carbon dioxide molecules are shunted into the cycle to generate one molecule of urea. One molecule of ammonia combines with carbon dioxide and **ornithine** (precursor) to form **citrulline**, another ammonia combines with citrulline to form **argininosuccinate** which yields **arginine**. Arginase splits arginine into **urea** and precursor ornithine for next cycle.

Q19 Name three plasma proteins synthesized in liver

Plasma proteins synthesized by liver are

- 1. Prothrombin involved in blood clotting
- 2. Fibrinogen involved in blood clotting
- 3. Albumin maintains osmotic balance of blood

Q20 Write two storage functions of liver

Liver is involved in the storage of

- 1. <u>Iron</u> it is involved in oxygenation of tissue as it is major constituent of haemoglobin
- 2. <u>Glycogen</u> Excess glucose in blood is converted into glycogen in liver which acts as energy reserve

Q21 Differentiate between ureter and urethra

Ureter	Urethra
It is a duct through which urine passes from	It is a duct through which urine leaves body
kidney to urinary bladder	from urinary bladder
Two in number	One in number
Only urine passes through it	It is passage of urine and also passage of
	sperms in males

Internal structure of kidney

Q23 Differentiate between cortical and juxtamedullary nephrons.

Cortical nephron	Juxta-medullary nephron	
Nephrons arranged along renal cortex are	Nephrons arranged along the border of renal	
called cortical nephrons	cortex and renal medulla are juxtamedullary	
\wedge	nephrons	
Form less concentrated or dilute urine	Form more concentrated urine	
Vasa recta is absent	Vasa recta is present	

Q24 Explain briefly Glomerular Filtrate.

Glomerular filtrate: The filtrate appearing in Bowman's capsule is called renal filtrate. It is collected from blood circulating glomerulus. It contains nitrogen waste i.e. urea and uric acid along with some useful substances like glucose, salts, amino acids in aqueous solution.

Q25 Define counter current multiplier/ mechanism.

Counter current multiplier: Mechanism that expends energy to create concentration gradient. It causes gradual osmotic outflow of water from renal filtrate back to kidney tissue as it passes downward in the descending loop of Henle'.

Moreover, ascending loop of Henle do not allow water outflow instead it actively transport out sodium ion into kidney interstitium.

The interstitial fluid of kidney is concentrated with urea from cortical to medullary part through this mechanism

Q26 What is the role of hormones involved in nephrons working

Hormones responsible for the working of nephron are

- 1. **ADH** (Anti Diuretic Hormone) secreted from posterior lobe of pituitary gland Reabsorbs water, in descending loop of Henle and collecting tubule, by Active transport from filtrate back to kidney
- 2. **Aldosterone** secreted from adrenal cortex Reabsorbs salt, in thick portion of ascending loop of Henle, by active uptake of sodium.

Q27 What is hyperoxaluria? How is it caused?

Hyperoxaluria: It is a disorder in which there is higher oxalate level in blood. It contributes to the formation of calsium oxalate stone responsible for 70% of kidney stones.

Cause: It is mostly caused by metabolic defects or excessive intake of food containing oxalates

Q28 What is lithotripsy?

Lithotripsy: non-surgical removal of kidney stones using extracorporeal shock waves like X-rays or laser to break kidney stone into pieces. These broken pieces or sand is passed out of kidney by urine.

Q29 Define dialysis.

Artificial removal of body waste like excess water, urea and other nitrogen waste using dialysing fluid from blood or tissue fluid.

Q30 What is haemodialysis and peritoneal dialysis?

Haemodialysis	Peritoneal dialysis
Cleaning of the blood	It is cleaning of the body fluid
Blood is circulated through artificial	Dialysing fluid is passed through
dialyzer	peritoneum.

Q31 What are symptoms of kidney failure?

Symptoms of renal failure are:

- 1. High level of urea in blood
- 2. Increased blood pressure
- 3. Anaemia

Q32 What is uremia?

Uremia: It is end stage renal failure. At this stage dialysis cannot be done so surgical transplantation is the only option left. (For transplant of kidney donor's blood group and tissue chemistry must be a match to avoid tissue rejection).

Q33 Give two adaptations of plants to low and high temperature conditions.

Low temperature	High temperature
Plant cells secrete unsaturated fatty acid	Plant cells secrete large quantities of special
to prevent crystal formation in membrane	proteins called heat shock proteins . These
	proteins embrace enzymes to prevent
	denaturation of enzymes
Plants bring about changes in their	Plants may also use evaporative cooling by
composition of cell solutes that causes	regulating transpiration
cytosol to supercool that prevent crystal	
formation in cytoplasm	

Q34 What is difference between poikilotherms and homeotherms?

Poikilotherms	Homeotherms
Animals in which body temperature tends to	Animals that maintain their body
fluctuate with environment where air or	temperature against changing temperature
water temperature are changed	of environment
e.g. Invertebrates, fish, amphibians and	e.g. Birds and mammals
reptiles	NIV

Q35 Differentiate between ectotherms and endotherms.

Ectotherms	Endotherms
Animals that produce own body heat at low	Animals that generate own body heat by
level and exchange quickly with	metabolism
environment	
May absorb heat from environment	Usually do not depend on environment for
	heat
Low metabolic organisms	High metabolic organisms
e.g. fish, amphibian and reptiles	e.g. mammals and birds

Q36 What are heterotherms?

Animals that produce own body heat but are capable of varying endothermic heat. These do not regulate body temperature in narrow range e.g. humming bird and bats

Q37 Differentiate between shivering thermogenesis and non-shivering thermogenesis.

These are both low temperature regulatory strategies in mammals

Shivering thermogenesis	Non-shivering thermogenesis
Increase in heat production by increased	Increase in metabolic heat by mechanisms
muscular activity which produces more	other than muscular activity i.e. by
metabolic heat	increased thyroid secretion thyroxin

Q38 How do brown fats and blubber help mammals in thermoregulation?

Brown fat (Brown Adipose Tissue): Some mammals possess specialized fat for rapid heat production called brown fat. Cells of brown fat consists of more mitochondria than white fat e.g. Infants of mammals

Blubber: <u>Marine mammals</u> inhabit much colder water environment than their body temperature so they have a very thick layer of insulating fat called blubber e.g. whales and seals

Q39 Write down thermoregulatory mechanism in bats and dogs.

Other than normal thermoregulatory strategies following animals have specialized mechanisms

Bats: Bats use saliva and urine for evaporative cooling in high temperature regulation **Dogs**: Dogs carry out *evaporative cooling by rapid breathing through respiratory tract* called Panting

Q40 Which structure and Why is called thermostat in man?

Hypothalamus, a part of brain is called thermostat in man.

Reason: It is because hypothalamus like thermostat respond to change in temperature above or below set point i.e. 37^oC and maintain this set point by either increasing or decreasing temperature to normal through different regulatory strategies like

- Shivering and non-shivering at low temperature
- o Evaporative cooling and vasodilation at high temperature.

Q41 What are pyrogens and pyrexia?

Pyrogens: These are the chemicals produced by blood cells and pathogens that displace hypothalamus set point above normal 37°C. It happens during bacterial or viral infections when leucocyte and pathogen count increase

Pyrexia: It is condition that results from set point displacement above normal also called fever. Fever or high temperature helps in stimulating protecting mechanisms like immune response against pathogens.

Long questions

- Q1 Discus osmoregulation in plants
- Q2 Define osmoregulation how do animals osmoregulate in different environments
- Q3 Write note on osmoregulation in bony fishes
- Q4 What are various adaptive features by which terrestrial animals regulate to external osmotic environment
- *Q5 Explain excretion in plants*
- Q6 Give an account of excretory system of cockroach/earthworm
- Q7 Discuss major homeostatic functions of liver
- Q8 Explain urinary system of man with help of a diagram
- Q9 Explain structure of a nephron by drawing labelled diagram
- Q10 Discuss functions of nephron in human body
- Q11 Discuss kidney problems and their cure in human
- Q12 Define dialysis and explain its types
- Q13 Explain adaptations in plants to low and high temperature
- Q14 Explain thermoregulation in mammals