Probabilistic classifiers

CE-477: Machine Learning - CS-828: Theory of Machine Learning Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

Topics

- Probabilistic approach
 - Bayes decision theory
 - Generative models
 - Gaussian Bayes classifier
 - Naïve Bayes
 - Discriminative models
 - Logistic regression

Classification problem: probabilistic view

Each feature as a random variable

Class label also as a random variable

- We observe the feature values for a random sample and we intend to find its class label
 - \triangleright Evidence: feature vector x
 - Query: class label

Definitions

- Posterior probability: $p(C_k|x)$
- Likelihood or class conditional probability: $p(x|\mathcal{C}_k)$
- Prior probability: $p(\mathcal{C}_k)$

```
p(x): pdf of feature vector x (p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k))
```

 $p(x|\mathcal{C}_k)$: pdf of feature vector x for samples of class \mathcal{C}_k

 $p(\mathcal{C}_k)$: probability of the label be \mathcal{C}_k

Bayes decision rule

K = 2

If $P(C_1|x) > P(C_2|x)$ decide C_1 otherwise decide C_2

$$p(error|\mathbf{x}) = \begin{cases} p(C_2|\mathbf{x}) & \text{if we decide } C_1 \\ P(C_1|\mathbf{x}) & \text{if we decide } C_2 \end{cases}$$

▶ If we use Bayes decision rule:

$$P(error|\mathbf{x}) = \min\{P(\mathcal{C}_1|\mathbf{x}), P(\mathcal{C}_2|\mathbf{x})\}\$$

Using Bayes rule, for each x, P(error|x) is as small as possible and thus this rule minimizes the probability of error

Optimal classifier

The optimal decision is the one that minimizes the expected number of mistakes

We show that Bayes classifier is an optimal classifier

Bayes decision rule Minimizing misclassification rate

K=2

- ▶ Decision regions: $\mathcal{R}_k = \{x | \alpha(x) = k\}$
 - All points in \mathcal{R}_k are assigned to class \mathcal{C}_k

$$p(error) = E_{x,y}[I(\alpha(x) \neq y)]$$

$$= p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$$

$$= \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) dx + \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) dx$$

$$= \int_{\mathcal{R}_1} p(\mathcal{C}_2|x)p(x) dx + \int_{\mathcal{R}_2} p(\mathcal{C}_1|x)p(x) dx$$

Choose class with highest $p(C_k|x)$ as $\alpha(x)$

Bayes minimum error

Bayes minimum error classifier:

$$\min_{\alpha(.)} E_{x,y}[I(\alpha(x) \neq y)]$$
 Zero-one loss

If we know the probabilities in advance then the above optimization problem will be solved easily.

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$

In practice, we can estimate p(y|x) based on a set of training samples $\mathcal D$

Bayes theorem

Bayes' theorem

- Posterior probability: $p(C_k|x)$
- Likelihood or class conditional probability: $p(x|\mathcal{C}_k)$
- Prior probability: $p(\mathcal{C}_k)$

p(x): pdf of feature vector x ($p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k)$) $p(x|\mathcal{C}_k)$: pdf of feature vector x for samples of class \mathcal{C}_k $p(\mathcal{C}_k)$: probability of the label be \mathcal{C}_k

Bayes decision rule: example

▶ Bayes decision: Choose the class with highest $p(C_k|x)$

Bayesian decision rule

If $P(C_1|x) > P(C_2|x)$ decide C_1 otherwise decide C_2 Equivalent

If
$$\frac{p(x|\mathcal{C}_1)P(\mathcal{C}_1)}{p(x)} > \frac{p(x|\mathcal{C}_2)P(\mathcal{C}_2)}{p(x)}$$
 decide \mathcal{C}_1 otherwise decide \mathcal{C}_2 Equivalent

If $p(x|\mathcal{C}_1)P(\mathcal{C}_1) > p(x|\mathcal{C}_2)P(\mathcal{C}_2)$ decide \mathcal{C}_1 otherwise decide \mathcal{C}_2

Bayes decision rule: example

▶ Bayes decision: Choose the class with highest $p(C_k|x)$

Bayes Classier

Simple Bayes classifier: estimate posterior probability of each class

- What should the decision criterion be?
 - ightharpoonup Choose class with highest $p(\mathcal{C}_k|x)$
- ▶ The optimal decision is the one that minimizes the expected number of mistakes

white blood cell count

- ▶ Doctor has a prior p(y = 1) = 0.2
 - Prior: In the absence of any observation, what do I know about the probability of the classes?
- A patient comes in with white blood cell count x
- ▶ Does the patient have diabetes p(y = 1|x)?
 - given a new observation, we still need to compute the posterior

$$p(x = 40|y = 0)P(y = 0) > p(x = 40|y = 1)P(y = 1)$$

Estimate probability densities from data

If we assume Gaussian distributions for p(x|y=0) and p(x|y=1)

Recall that for samples $\{x^{(1)}, ..., x^{(N)}\}$, if we assume a Gaussian distribution, the MLE estimates will be

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$\sigma^{2} = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \mu)^{2}$$

Add a second observation: Plasma glucose value

Generative approach for this example

Multivariate Gaussian distributions for $p(x|\mathcal{C}_k)$:

$$p(\mathbf{x}|\mathbf{y} = k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\}$$

$$k = 1,2$$

- Prior distribution p(y):
 - $p(y = 1) = \pi, \quad p(y = 0) = 1 \pi$

MLE for multivariate Gaussian

For samples $\{x^{(1)}, ..., x^{(N)}\}$, if we assume a multivariate Gaussian distribution, the MLE estimates will be:

$$\boldsymbol{\mu} = \frac{\sum_{n=1}^{N} \boldsymbol{x}^{(n)}}{N}$$

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{T}$$

Generative approach: example

 $y \in \{0,1\}$

Maximum likelihood estimation $(D = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N})$:

$$\pi = \frac{N_1}{N}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} y^{(n)} x^{(n)}}{N_1}, \, \mu_2 = \frac{\sum_{n=1}^{N} (1 - y^{(n)}) x^{(n)}}{N_2}$$

$$\Sigma_1 = \frac{1}{N_1} \sum_{n=1}^{N} y^{(n)} (x^{(n)} - \mu) (x^{(n)} - \mu)^T$$

$$\Sigma_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - y^{(n)}) (x^{(n)} - \mu) (x^{(n)} - \mu)^T$$

$$N_1 = \sum_{n=1}^N y^{(n)}$$

$$N_2 = N - N_1$$

Decision boundary for Gaussian Bayes classifier

$$p(\mathcal{C}_1|\mathbf{x}) = p(\mathcal{C}_2|\mathbf{x})$$

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$$

$$\ln p(\mathcal{C}_1|\mathbf{x}) = \ln p(\mathcal{C}_2|\mathbf{x})$$

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) - \ln p(\mathbf{x})$$

= \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2) - \ln p(\mathbf{x})

Decision boundary for Gaussian Bayes classifier

$$p(\mathcal{C}_1|\mathbf{x}) = p(\mathcal{C}_2|\mathbf{x})$$

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$$

$$\ln p(\mathcal{C}_1|\mathbf{x}) = \ln p(\mathcal{C}_2|\mathbf{x})$$

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) - \ln p(\mathbf{x})$$

= \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2) - \ln p(\mathbf{x})

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) = \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2)$$

$$\ln p(\mathbf{x}|\mathcal{C}_k)$$

$$= -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln \left|\boldsymbol{\Sigma}_k\right| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)$$

Decision boundary

25

- When the likelihood probability is distributed according to a multivariate normal distribution.
- The general model is:

$$C_k \sim Bernouli(\phi) = \phi^{y}(1-\phi)^{(1-y)}$$

$$p(\mathbf{x}|y=k) \sim N(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$= \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\}$$

The log-likelihood of the data:

$$k = 2$$

$$\ell(\phi, \boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \log \prod_{i=1}^N p(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}; \phi, \boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2)$$

By maximizing with respect to the parameters

$$\phi = \frac{N_1}{N}$$

$$\mu_1 = \frac{\sum_{i=1}^{N_1} y^{(i)} x^{(i)}}{N_1}, \mu_2 = \frac{\sum_{i=1}^{N_2} (1 - y^{(i)}) x^{(i)}}{N_2}$$

$$\Sigma_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} y^{(i)} (x^{(i)} - \mu) (x^{(i)} - \mu)^T$$

$$\Sigma_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} (1 - y^{(i)}) (x^{(i)} - \mu) (x^{(i)} - \mu)^T$$

- A special case: $\Sigma_k = \sigma^2 I$
 - The decision boundary is a Hyperplane which is orthogonal to the line between the means.

- A special case: $\Sigma_k = \sigma^2 I$
 - Features are independent random variables

[3]

- A special case: $\Sigma_k = \Sigma$
 - Shared covariance matrix
 - Equivalent to LDA decision boundary
 - ▶ The decision surface is a Hyperplane, but is not necessarily orthogonal to the line between the means.

[3]

Class conditional densities vs. posterior

[1]

$$\sigma(z) = \frac{1}{1 + \exp(z)}$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

$$\mathbf{w}_0 = -\frac{1}{2}\boldsymbol{\mu}_1^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}$$

- A special case: $\Sigma_k = arbitrary$
 - Decision boundaries are hyperquadrics

Naïve Bayes classifier

- Generative methods
 - High number of parameters
- ▶ Naïve Bayes assumption: Conditional independence of features

$$p(\mathbf{x}|C_k) = p(x_1|C_k) \times p(x_2|C_k) \times \dots \times p(x_d|C_k)$$

Naïve Bayes classifier

 \blacktriangleright In the decision phase, it finds the label of x according to:

$$\underset{k=1,...,K}{\operatorname{argmax}} p(C_k | \mathbf{x})$$

$$\underset{k=1,...,K}{\operatorname{argmax}} p(C_k) \prod_{i=1}^{N} p(x_i | C_k)$$

$$p(\mathbf{x}|C_k) = p(x_1|C_k) \times p(x_2|C_k) \times \dots \times p(x_d|C_k)$$
$$p(C_k|\mathbf{x}) \propto p(C_k) \prod_{i=1}^n p(x_i|C_k)$$

Naïve Bayes: discrete example

$$p(h) = 0.3$$

$$H = Yes \equiv h$$

 $H = No \equiv \bar{h}$

$$p(d|h) = \frac{1}{3}$$

$$p(s|h) = \frac{2}{3}$$

$$p(s|h) = \frac{2}{3}$$

$$p(d|\bar{h}) = \frac{2}{7}$$

$$p(s|\bar{h}) = \frac{2}{7}$$

Diabetes (D)	Smoke (S)	Heart Disease (H)
Υ	Ν	Y
Υ	Ν	N
N	Y	N
N	Y	N
N	Ν	N
N	Y	Y
N	Ν	N
N	Y	Y
N	Ν	N
Υ	Z	N

- Decision on $x = [d, \bar{s}]$ (a person that has diabetes but does not smoke):
 - $p(h|\mathbf{x}) \propto p(h)p(d|h)p(\bar{s}|h) = 1/14$
 - $p(\bar{h}|x) \propto p(\bar{h})p(d|\bar{h})p(\bar{s}|\bar{h}) = 1/6$
 - Thus decide H = No

Naïve Bayes classifier

- Finds d univariate distributions $p(x_1|C_k), \cdots, p(x_d|C_k)$ instead of finding one multi-variate distribution $p(x|C_k)$
 - Example 1: For Gaussian class-conditional density $p(x|\mathcal{C}_k)$, it finds d+d (mean and sigma parameters on different dimensions) instead of $d+\frac{d(d+1)}{2}$ parameters
 - Example 2: For Bernoulli class-conditional density $p(x|C_k)$, it finds d (mean parameters on different dimensions) instead of 2^d-1 parameters
- It first estimates the class conditional densities $p(x_1|C_k), \cdots, p(x_d|C_k)$ and the prior probability $p(C_k)$ for each class $(k=1,\ldots,K)$ based on the training set.

Probabilistic classifiers

Probabilistic classification approaches can be divided in two main categories:

Generative

- Estimate pdf $p(x, C_k)$ for each class C_k and then use it to find $p(C_k|x)$
 - \square Or alternatively estimate both pdf $p(x|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$ to find $p(\mathcal{C}_k|x)$

Discriminative

 \triangleright Directly estimate $p(\mathcal{C}_k|x)$ for each class \mathcal{C}_k

Discriminative vs. generative approach

Discriminative approach: logistic regression

h(x; w) predicts posterior probabilities P(y = 1|x)

$$h(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$\mathbf{x} = [1, x_1, ..., x_d]$$

$$\mathbf{w} = [w_0, w_1, ..., w_d]$$

Sigmoid (logistic) function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic regression

h(x; w): probability that y = 1 given x (parameterized by w)

▶
$$0 \le h(x; w) \le 1$$

$$P(y = 1 | x; w) = h(x; w)$$

$$P(y = 0 | x; w) = 1 - h(x; w)$$

Decision surface

$$h(x; w) = \sigma(w^T x) = \frac{1}{1 + e^{-(w^T x)}} = 0.5$$

Logistic regression: ML estimation

Maximum (conditional) log likelihood:

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmax}} \log \prod_{i=1}^{n} p(y^{(i)} | \boldsymbol{w}, \boldsymbol{x}^{(i)})$$

$$p(y^{(i)}|\mathbf{w}, \mathbf{x}^{(i)}) = h(\mathbf{x}^{(i)}; \mathbf{w})^{y^{(i)}} (1 - h(\mathbf{x}^{(i)}; \mathbf{w}))^{(1-y^{(i)})}$$

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \sum_{i=1}^{n} \left[y^{(i)} \log \left(h(\mathbf{x}^{(i)};\mathbf{w}) \right) + (1 - y^{(i)}) \log \left(1 - h(\mathbf{x}^{(i)};\mathbf{w}) \right) \right]$$

Logistic regression: cost function

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

$$J(\mathbf{w}) = -\sum_{i=1}^{N} \log p(y^{(i)}|\mathbf{w}, \mathbf{x}^{(i)})$$

$$= \sum_{i=1}^{N} -y^{(i)} \log (h(\mathbf{x}^{(i)}; \mathbf{w})) - (1 - y^{(i)}) \log (1 - h(\mathbf{x}^{(i)}; \mathbf{w}))$$

No closed form solution for

$$\nabla_{w} J(w) = 0$$

- However J(w) is convex.
 - Global optimum can be found by gradient ascent

Logistic regression: Gradient descent

The gradient descent update

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\mathbf{w}} J(\mathbf{w}^t)$$

$$\nabla_{w}J(w) = \sum_{i=1}^{N} (h(x^{(i)}; w) - y^{(i)})x^{(i)}$$

▶ Is it similar to gradient of SSE for linear regression?

$$\nabla_{w}J(w) = \sum_{i=1}^{N} (w^{T}x^{(i)} - y^{(i)})x^{(i)}$$

Posterior probabilities

Two-class LR

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(a(\mathbf{x})) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x})}}$$

Multi-class: $p(\mathcal{C}_k|\mathbf{x})$ can be written as a soft-max function

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{e^{-(\mathbf{w}_k^T \mathbf{x})}}{\sum_{j=1}^K e^{-(\mathbf{w}_j^T \mathbf{x})}}$$

▶ To make a prediction:

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{k=1,\dots,K} h_k(\mathbf{x})$$

Logistic regression: multi-class

The gradient descent update

$$\widehat{W} = \underset{W}{\operatorname{argmin}} J(W) \qquad W = [w_1 \quad \cdots \quad w_K]$$

$$J(W) = -\log \prod_{i=1}^{n} p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}, \mathbf{W})$$

$$= -\log \prod_{i=1}^{n} \prod_{k=1}^{K} h_k(\mathbf{x}^{(i)}; \mathbf{W})^{y_k^{(i)}}$$

$$= -\sum_{i=1}^{n} \sum_{k=1}^{K} y_k^{(i)} \log (h_k(\mathbf{x}^{(i)}; \mathbf{W}))$$

y is a vector of length K (1-of-K coding) e.g., $y = [0,0,1,0]^T$ when the target class is C_3

Logistic regression: multi-class

The gradient descent update

$$\boldsymbol{w}_{j}^{t+1} = \boldsymbol{w}_{j}^{t} - \eta \nabla_{\boldsymbol{W}} J(\boldsymbol{W}^{t})$$

$$\nabla_{\mathbf{w}_j} J(\mathbf{W}) = \sum_{i=1}^n \left(h_j(\mathbf{x}^{(i)}; \mathbf{W}) - y_j^{(i)} \right) \mathbf{x}^{(i)}$$

LR vs. GDA

- ▶ *d*-dimensional feature space
 - Logistic regression: d + 1 parameters

$$\boldsymbol{w} = (w_0, w_1, \dots, w_d)$$

- GDA with shared covariance matrix
 - \triangleright 2*d* parameters for means
 - d(d+1)/2 parameters for shared covariance matrix
 - ightharpoonup one parameter for class prior $p(C_1)$
- ▶ LR is more robust, less sensitive to incorrect modeling assumptions

Summary of alternatives

Generative

- Most demanding, because it finds the joint distribution $p(\pmb{x},\mathcal{C}_k)$
- Usually needs a large training set to find $p(x|\mathcal{C}_k)$
- ▶ Can find $p(x) \Rightarrow$ Outlier detection

Discriminative

- Specifies what is really needed (i.e., $p(C_k|x)$)
- More computationally efficient

Generalization of Bayes decision rule Minimizing Bayes risk (expected loss)

$$E_{x,y}[L(\alpha(x), y)]$$

$$= \int \sum_{j=1}^{K} L(\alpha(x), C_j) p(x, C_j) dx$$

$$= \int p(x) \sum_{j=1}^{K} L(\alpha(x), C_j) p(C_j | x) dx$$

for each x minimize it that is called conditional risk

Bayes minimum loss (risk) decision rule: $\hat{\alpha}(x)$

$$\hat{\alpha}(\mathbf{x}) = \underset{i=1,...,K}{\operatorname{argmin}} \sum_{j=1}^{K} \underbrace{L_{ij}}_{p}(\mathcal{C}_{j}|\mathbf{x})$$

The loss of assigning a sample to C_i where the correct class is C_i

Minimizing expected loss: special case (loss = misclassification rate)

- Problem definition for this special case:
 - If action $\alpha(x) = i$ is taken and the true category is C_j , then the decision is correct if i = j and otherwise it is incorrect.
 - Zero-one loss function:

$$L_{ij} = 1 - \delta_{ij} = \begin{cases} 0 & i = j \\ 1 & o.w. \end{cases}$$

$$\hat{\alpha}(\mathbf{x}) = \underset{i=1,...,K}{\operatorname{argmin}} \sum_{j=1}^{K} L_{ij} p(\mathcal{C}_j | \mathbf{x})$$

$$= \underset{i=1,...,K}{\operatorname{argmin}} 0 \times p(\mathcal{C}_i | \mathbf{x}) + \sum_{j \neq i} p(\mathcal{C}_j | \mathbf{x})$$

$$= \underset{i=1,...,K}{\operatorname{argmin}} 1 - p(\mathcal{C}_i | \mathbf{x}) = \underset{i=1,...,K}{\operatorname{argmax}} p(\mathcal{C}_i | \mathbf{x})$$

i=1,...,K

Resources

- ▶ [1] C. Bishop, "Pattern Recognition and Machine Learning", Chapter 4.2-4.3.
- ▶ [2]: Andrew Ng, Machine learning, Stanford
- ▶ [3]: Pattern classification, Duda, Hart & Stork, 2002
- ▶ [4]: Mahdieh Soleymani, Machine learning, Sharif university of technology