

Jaringan Syaraf Tiruan - Content

1 Jaringan Syaraf Tiruan
2 Neuron
3 Perceptron
4 Supervised Learning
5 Unsupervised Learning
Kecerdasan Komputasional | Jaringan Syaraf Tiruan



**Multi Layer Perceptron**  $X_1 \oplus X_2 \Leftrightarrow (X_1 \land (\neg X_2)) \lor (X_2 \land (\neg X_1))$  $(x_1 \wedge \neg x_2) \mid (x_2 \wedge \neg x_1)$  $X_2 \land \neg X_1$  $X_1 \land \neg X_2$  $X_1$  $X_2$  $\neg X_2$  $\neg X_1$ 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 **Kecerdasan Komputasional** Jaringan Syaraf Tiruan



**Multi Layer Perceptron**  $A = x_1 \wedge (\neg x_2)$  $X_1 \wedge (\neg X_2)$  $X_0 = 1$  $X_1$  $X_2$ -0,1 0 0 0,4  $X_1$ 0 1 0 -0,9 1 0 1  $X_2$ 1 0 1 **Kecerdasan Komputasional** Jaringan Syaraf Tiruan





## **Multi Layer Perceptron**

Model untuk data logika XOR

| <b>x2</b> | Target |
|-----------|--------|
| 0         | 0      |
| 1         | 1      |
| 0         | 1      |
| 1         | 0      |
|           | 0      |



Kecerdasan Komputasional

Jaringan Syaraf Tiruan

a

# **Multi Layer Perceptron**



#### berdasarkan:

- Jumlah Epoch tertentu, atau
- Minimal Error yang ditentukan

#### Jenis Pembelajaran:

- Supervised Learning / Pembelajaran Terawasi
- Unsupervised Learning / Pembelajaran Tidak Terawasi

Kecerdasan Komputasional

## **Supervised Learning**

- Data Training: pasangan Data, yaitu sinyal input dan target output
- Salah satu Algoritma Pembelajaran berdasarkan aturan Gradient **Descent Learning Rule**
- Pencarian nilai bobot dan bias agar didapatkan error minimal

**Kecerdasan Komputasional** | Jaringan Syaraf Tiruan



11

## **Supervised Learning**

$$E = \sum_{p=1}^{n} (t_p - y_p)^2$$

 $t_p$ : data target untuk data ke-p;

 $y_p$ : output yang dihasilkan JST untuk data ke-p,

n : jumlah data pelatihan

Kecerdasan Komputasional

## **Supervised Learning**



$$w_i(t+1) = w_i(t) + \Delta x_i(t)$$

**Aturan Gradient Descent Learning Rule** 

$$\Delta x_i(t) = \eta(-\frac{\partial E}{\partial w_i})$$

$$\frac{\partial E}{\partial w_i} = -2(t_p - y_p) \frac{\partial f}{\partial net_p} x_{i,p}$$

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

13

# **Supervised Learning**

#### **Update Bobot:**

- stochastic/online learning: bobot diupdate pada setiap iterasi
   pembelajaran pada setiap data pelatihan (bobot diupdate pada tiap iterasi pada tiap epoch)
- batch/offline learning: perubahan bobot pada setiap iterasi
   diakumulasi, dan diupdate ketika seluruh data pelatihan sudah
   mengalami proses pembelajaran (bobot diupdate tiap epoch).

**Kecerdasan Komputasional** 



FeedForward Pass

Pemrosesan sinyal input menjadi sinyal output berdasarkan bobot yang diinisialisasi sebelumnya

Mecerdasan Komputasional | Jaringan Syaraf Tiruan

### **Backpropagation – Feedforward Pass**

Hitung nilai aktivasi neuron pada masingmasing lapisan (*layer*) :

Yj adalah nilai aktivasi neuron ke-j pada lapisan tersembunyi Ok adalah nilai aktivasi neuron ke-k pada lapisan output

$$y_{j} = f_{yj}(net_{yj})$$

$$= \frac{1}{1 + e^{-net_{yj}}}$$

$$O_{k} = f_{Ok}(net_{Ok})$$

$$= \frac{1}{1 + e^{-net_{Ok}}}$$

$$net_{yj} = \sum_{i=0}^{d} (x_{i}w_{ij})$$

$$net_{Ok} = \sum_{j=0}^{j} (y_{j}v_{jk})$$

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

17

### **Backpropagation – Feedforward Pass**

#### **Update Bobot berdasarkan Error:**

$$E_p = \frac{1}{2} \left( \frac{\sum_{k=1}^{K} (t_{k,p} - O_{k,p})^2}{K} \right)$$

Κ

: jumlah neuron pada output layer,

tk,p

: target output untuk neuron ke-k pada output

layer dari data pelatihan ke-p,

Ok,p

: output yang dihasilkan oleh neuron ke-k pada

output layer dari data pelatihan ke-p,

**Kecerdasan Komputasional** 

### **Backpropagation – Feedforward Pass**



$$v_{jk}(t) = v_{jk}(t-1) + \Delta v_{jk}(t)$$

Backward Propagation akan mencari  $\Delta v_{jk}$ , yaitu :

$$\Delta v_{jk} = \eta(\frac{-E}{\partial v_{jk}})$$

$$= -\eta \frac{\partial E}{\partial O_k} \frac{\partial O_k}{\partial v_{jk}}$$

$$= -\eta \cdot -(t_k - O_{kp}) f'_{Ok} y_j$$

$$= \eta \delta O k y_j$$

Kecerdasan Komputasional

Jaringan Syaraf Tiruan

19

### **Backpropagation – Feedforward Pass**

Bobot antara hidden dengan output diupdate dengan :

$$w_{ij}(t) = w_{ij}(t-1) + \Delta w_{ij}(t)$$

Backward Propagation akan mencari  $\Delta w_{ij}$ , yaitu :

$$\Delta w_{ij} = \eta(-\frac{\partial E}{\partial w_{ij}})$$

$$= -\eta \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial w_i j}$$

$$= -\eta - \delta O_k v_{jk} f'_{yj} x_i$$

$$= \eta \delta_{yj} x_i$$

**Kecerdasan Komputasional** 

