SS16: X-ray diffraction and X-ray spectroscopy (mini-project)

Lyubomir Shoylev, shil5377

February 28, 2022

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1 Introduction

X-rays are an important experimental tool and have been for more than a 100 years now — from the first Nobel Prize for their discovery, and still now. In this experiment, we will first verify Moseley's Law, and then use X-ray spectroscopy to analyse several samples of metal as well as coins from various places around the world.finish this intro at the end.

First, we examine some of the background theory behind X-rays and their production.

1.1 X-ray atomic spectra

The emission spectra of atoms is due to energy transition of shell electrons from a higher energy level to a lower energy level. We are interested in X-rays specifically, which are due to transitions in the inner electron levels. These are shielded from the outer electron layers (the higher Z, the better the shielding CHECK) and are mostly unaffected by the chemical structure of the sample i.e. by the surrounding atoms. Therefore, we can take an energy level of an electron to be $E_n = -R(Z)/n^2$ where $R = R_{\infty} (Z - b)^2$ is the modified Rydberg constant for a given Z, b is some parameter, and R_{∞} is the hydrogen Rydberg constant. Then, the energy of an emitted photon by a transition from level n_i to n_f is given by:

$$\varepsilon = R(Z) \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right). \tag{1}$$

We can rewrite this at fixed n_i , n_f (i.e. for a given line) as $\sqrt{\varepsilon} = m \times Z + C$ where m, C are some constants. This relationship is known as 'Moseley's Law'.

The names of the energy levels of low-n in X-ray notation is described in table 1. Usually, the lines which are due to an initial absence in level K1 are referred to K-series; similarly for L-series and so on.

1.2 X-ray production

In practice, we produce X-rays by bombarding a sample of some material with high energy electrons or X-rays which removes one of the inner shell electrons from the sample atom. This produces a vacancy in the shell. The vacancy is filled by some electron of a higher n orbit (see ref fig below here), and

Quantum numbers				Atomic notation	X-ray notation
n	1	s	j	110011110 11000011011	
1	0	1/2	1/2	1S1/2	K1
2	0	1/2	1/2	2S1/2	L1
2	1	1/2	1/2	2P1/2	L2
2	1	1/2	3/2	2P3/2	L3
3	0	1/2	1/2	3S1/2	M1
3	1	1/2	1/2	3P1/2	M2
3	1	1/2	3/2	3P3/2	M3
3	2	1/2	3/2	3D3/2	M4
3	2	1/2	5/2	3D5/2	M5

Table 1: Table describing the connection between X-ray notation and Atomic notation. cite source would be nice.

Maybe add the old Siegbahn notation?

the fall of potential energy of the electron is compensated by an emitted X-ray (ignoring higher order effects like the *Auger effect*). Include a picture to illustrate the effect - similar to lecture picture for Auger effect.

Usually, small laboratory X-ray tubes use an electron source. Because of that, we observe a continuum of X-ray radiation imposed on top of the emission lines. This radiation is called bremsstrahlung ("braking") radiation. Its source is the interaction between decelerating electrons and stationary charges in the sample lattice. The maximal energy of a bremsstrahlung continuum is limited by the energy of the decelerating particle. If electrons accelerated by a potential difference V, then the maximal energy is given by:

$$\varepsilon_{\text{max}} = eV$$
 (2)

Suppose we use one such continuous X-ray source for the production of X-rays form our sample. We will take the K-series as an example. To produce a vacancy, need an X-ray of energy $\varepsilon_{\text{in}} = -E_1 = R(Z)$. The resultant energy of the emitted X-ray will be given by (1). Take for example the K-L transition. Its energy will therefore be (ignoring fine-structure):

$$\varepsilon_{\text{out}} = R(Z) \left(1 - \frac{1}{2^2} \right).$$
 (3)

This is a process in which $\varepsilon_{\rm in} \neq \varepsilon_{\rm out}$, which is called *flourescence*.

1.3 Composition analysis

As said above, the X-ray emission is relatively independent of the composition of the sample. We can use this fact to perform a composition analysis on a sample by exposing it to the continuous bremsstrahlung of a source; this will allow the different components to fluoresce. The signal will give us information not only which elements are present (given that the source is high enough to allow fluorescence), but their relative contribution — the intensity of the signal will depend only on the number density n. Suppose we measure the intensity of a two-metal alloy with the peaks in the K-L3 line as $I_{\rm a}$ and $I_{\rm b}$. This tells us that:

$$\frac{I_{\rm a}}{I_{\rm b}} = \frac{n_{\rm a}}{n_{\rm b}},\tag{4}$$

where n_a and n_b are the number densities of materials a and b. From that, we could easily calculate percentage compositions for number densities or mass densities ($\rho = n \times (\text{molar mass})$).

2 Experiment

Our experiment consists of the following setup see fig reference. First, we have an X-ray source with a molybdenum anode, which produces some characteristic K_{α} X-rays that can be used for diffraction

experiments (see the first experiment part of SS16 put reference) and some continuous bremsstrahlung (see section 1.2 for more details). These X-rays are focused through a circular aperture towards a target sample. The incident X-rays excite inner shell electrons, and the targets emit mostly in the characteristic X-rays of K,L, and M series. We detect these via an energy spectrometer that is sensitive in the region of our experiment. The setup parameters are: tube voltage $V=35\,\mathrm{kV}$, emission current 1 A, exposure time t=ask Darryl. This allows us to produce X-rays from samples with atomic numbers calculate. These are a large part of the most commonly used materials in practice, e.g. copper. Picture

The first part of the experiment will test the validity of Moseley's Law with the help of several samples of known substances.

The second part and third part of the experiment will utilise our knowledge about X-rays to learn more about some samples provided for us, and about some metal coins from around the world.

3 Result and Analysis

Before we can do any work that has to do with determining energies or refering to energy values from a database, need to set the scaling of the measurement apparatus. We will do so with two of the labelled provided samples - for Fe and Ag. These cover a wide range of values in the bremsstrahlung spectrum, so they are a good way to set the scaling. The particular lines which we use to calibrate are the Fe K_{α} with $E_{Fe} = 6.40 \,\mathrm{keV}$ and the Ag K_{α} with $E_{Ag} = 22.17 \,\mathrm{keV}$.

put a picture of the settings, maybe screenshot?

3.1 Moseley's Law

We measure the line energy values from the labelled samples. These are mainly in two groups:

- those, whose K_{α} lines lie in the observable range (excluding our two calibration points);
- those, whose L_{α} lines lie in the observable range.

We expect to see a straight line fit for the two groups of lines. (Explain a bit more what and why). Results presented in ref figure.

We see that these both follow our expectations - have good fits to the model. We can deduce that our description of X-ray emission works sufficiently well for our purposes (given experimental accuracy etc), so we can proceed to use X-ray K and L series lines as a signature of a given element in spectral analysis.

3.2 Provided alloys and semiconductors

Now, can move to more interesting analysis. We will use the fluorescence to determine the composition of the semiconductors from the non-MP part and of some unlabelled samples that are provided in the physics lab.

3.2.1 Semiconductors

The semiconductors are part of the non-MP experiment, where we determined their structure by determination of the lattice constant. Here, we provide an independent confirmation of our previous results.

3.2.2 Unlabelled alloys

The lab has two boxes of unlabelled metallic samples - alloys of different metals. We can determine their composition and ratios by using ref 1.3.

3.3 International coins

This is our final task. The lab has a box of various coins from around the world, the content of which we can again interpret using our fluorescence method.

The results can be summarised in the following table: include table for coins We can see that almost all coins are made of an alloy featuring Ni, Ci, or Zn. discuss why

maybe additional analysis based on raw material cost of coins + a deeper inquiry?

4 Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.