Prep: bring ID, water, pen and the handwritten version of this set of notes

You got this!

Logic and Function

Implies: $P \Longrightarrow Q \equiv \neg (P \land \neg Q) \equiv \neg P \lor Q$

Converse: $Q \Rightarrow P$ Inverse: $\neg P \Rightarrow \neg Q$

Contrapositive: $\neg Q \Rightarrow \neg P$

De Morgan's Law:

$$\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$$

$$\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$$

$$\neg (\forall x P) \equiv \exists x (\neg P)$$

$$\neg (\exists x P) \equiv \forall x (\neg P)$$

Final Checks

- Check if it is Stable Matching or Proposeand-Reject problem.
- Polynomials in *GF* must mod coefficients
- RSA: write N, e, d explicitly to avoid errors
- $0 \in \mathbb{N}$ for this class
- Be careful of the bound in vertex coloring
- · Be careful of base cases for graph
- Counting: rotations / inversions included?

Graph Theory (Definition)

Path: a sequence of edges, vertices distinct. **Cycle**: a path (distinct vertices) with $v_1 = v_n$ **Walk**: a path without distinct vertices condition

Tour: a walk with $v_1 = v_n$

A cycle is a walk. A tour is a walk.

Eulerian walk: uses all edge exactly once. Eulerian tour: walk that ends at start vertex Hamiltonian walk/cycle: a walk/cycle that visits all vertices exactly once.

Hypercube (dim N): $2^{\tilde{N}}$ nodes, $N2^{N-1}$ edges

Function

$$f(X) = \{ y \mid \exists x \in X \text{ s. t. } y = f(x) \}$$

$$f^{-1}(Y) = \{ x \mid f(x) \in Y \}$$

Stable Matching

When a candidate does not immediately reject a job, the job is still assumed to "propose" to the candidate on the next day.

[Improvement Lemma] Candidate's matching can only improve. (exchange argument)

Job-Propose and Reject always terminate with matching (contradiction), gives job-optimal and candidate-pessimal (contradiction).

Job			Ш	С		II	Ш
Α	1	2	3	1	В	С	Α
В	2	3	1	2	С	Α	В
С	3	1	2	3	Α	В	С

$$\{(A,1), (B,2), (C,3)\}, \{(A,3), (B,1), (C,2)\}, \{(A,2), (B,3), (C,1)\}$$
 are all stable.

Graph Theory

Lines of Attack: Induction on |V|, |E|, tree-shaving (removal of leaf node), Eulerian tours, pigeonhole,

Euler's Theorem: Planar graphs with $v \ge 3$ satisfy v + f = e + 2

Corollary: All planar graphs satisfy $e \le 3v - 6$ $K_{3,3}$ **Variant**: $e \le 2v - 4$

Kuratowski's Theorem: A graph is planar iff it doesn't contain K_5 or $K_{3,3}$

Coloring

- A graph with max degree k is k+1 colorable. (induct on |V|)
- A connected graph of max degree $d \ge 2$ can be vertex colored with d colors so long as \exists vertex with degree < d. (|V|)
- Graph with max degree $d \ge 1$ can be edge colored in 2d 1 colors. (induct |E|)

Stable Matching Trivia

- Always exists a candidate who is not proposed to until the last day.
- Propose-and-reject algorithm must terminate in at most $(n-1)^2 + 1$ days.
- For even $n \ge 2$, exists instance of stable matching of n jobs and candidates with at

Error Correcting Codes

Message of n packets $(m_1, m_2, ..., m_n)$ where $m_i = P(i)$ for some polynomial P of at most degree n-1.

Bounding of GF(q), q prime:

$$q \geq \max\left(m_i+1,n+k\right)$$

$$q \ge \max(m_i + 1, n + 2k)$$

least $2^{n/2}$ distinct stable matching. (induct on n)

- In a job propose algorithm, jobs can't lie to improve their own outcomes, but can to improve others.
- If candidate rejects a job in JPA, there is no stable matching in which the candidate and job is paired.
- If a candidate misbehaves (rejects falsely), then it is the only candidate that can be in a rogue couple.

Error Correction:

$$Q(x) = P(x)E(x)$$

$$Q(x_i) = r_i E(x_i)$$

$$E(x) = (x - e_1) \dots (x - e_k)$$

Fractional variant:

$$n'(1-\alpha) = n \Longrightarrow n' = \frac{n}{1-\alpha}$$

 $n'(1-2\alpha) = n \Longrightarrow n' = \frac{n}{1-2\alpha}$

RSA

Key (N, e, d). (N, e) is public. d is private. N = pq where p, q are large primes.

p,q must be secret, but if forgotten it's fine. Only requires d to decode.

$$(e, (p-1)(q-1)) = 1$$

$$d^{-1} \equiv e \pmod{(p-1)(q-1)}$$

$$E(x) = x^e \pmod{N}$$

$$D(x) = x^d \pmod{N}$$

Security relies on the computational intractability of obtaining x in $y = x^e \pmod{N}$

Secret Sharing

Bounding of GF(q), q prime:

Secret sharing among m people (the +1 comes from the secret):

$$q \ge \max(s+1, m+1)$$

Can delegate sub-polynomials for hierarchy.

Spy variants: spies can corrupt messages.