CS 3313 Foundations of Computing:

Closure Properties of RE & Recursive Languages

http://gw-cs3313-2021.github.io

Problems

- Informally, a (decision) "problem" is a yes/no question about an infinite set of possible instances.
- Example 1: "Does graph G have a Hamilton cycle (cycle that touches each node exactly once)?
 - Each undirected graph is an instance of the "Hamilton-cycle problem."
- Example 2: "Is graph G k-colorable?
 - Each undirected graph, and value k, is an instance of the "graph coloring problem."

Problems – (2)

- Formally, a problem is a language.
- Each string encodes some instance.
- The string is in the language if and only if the answer to this instance of the problem is "yes."

Recall Definitions

 Recursive Language: A language L is recursive language if there is a Turing machine that accepts the language and halts on all inputs

- Recursively Enumerable Language: if there is a Turing machine that accepts the language by halting when the input string is in the language
 - The machine may or may not halt if the string is not in the language

Decidable Problems

- A problem is decidable if there is an algorithm to answer it.
 - Recall: An "algorithm," formally, is a TM that halts on all inputs, accepted or not.
 - Put another way, "decidable problem" = "recursive language."
- Otherwise, the problem is undecidable.

Bullseye Picture

Closure Properties of Recursive and RE Languages

- Next topic is Decidability
 - Review Lab notes on Math review diagonalization etc.
- First let's look at closure properties of these classes of languages
- Both closed under union, concatenation, star, reversal, intersection, inverse homomorphism.
- Recursive closed under difference, complementation.
- RE closed under homomorphism.

Proving Closure Properties...methodology

- Observe: To prove the closure properties we have to construct a Turing machine, i.e., an algorithm (!!!), to accept the language
 - Construction shown using a flowchart & combining other "algorithms"
 - Getting more and more like programming!
- To prove a language L (constructed from other recursive languages) is recursive, provide an algorithm described by a 'flowchart' below
 - To show it is RE, the machine halts only if w is in the language

Closure under Union

- Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$.
- Assume M_1 and M_2 are single-semi-infinite-tape TM's.
- Construct 2-tape TM M to copy its input onto the second tape and simulate the two TM's M₁ and M₂ each on one of the two tapes, "in parallel."
- Recursive languages: If M₁ and M₂ are both algorithms, then
 M will always halt in both simulations.
- RE languages: accept if either accepts, but you may find both TM's run forever without halting or accepting.

Algorithm/Picture of Union for Recursive Sets

M must halt on all inputs: accepts if w is in either, rejects if w not in either

Picture of Union of RE Sets

M must halt and accept if w is in either language, else it may reject and halt or may not halt

Closure under other set operations

- Recursive Languages are closed under
 - Union, Intersection, Concatenation, Star Closure
 - Complementation. Set difference
 - Reversal
 - Inverse Homomorphism
- Recursively Enumerable (RE) languages are closed under
 - Union, Intersection, Concatenation, Star Closure
 - Reversal
 - Homomorphism
 - Inverse Homomorphism

Intersection of Recursive Sets – Same Idea

Intersection of RE Sets

Observe: if w is in the intersection then both machines will accept and halt on w =>

This machine M will halt and accept w

Complement of Recursive Languages

Set Difference, Complement

- Recursive languages: both TM's will eventually halt.
- Accept if M₁ accepts and M₂ does not.
 - Corollary: Recursive languages are closed under complementation.
- RE Languages: can't do it; M₂ may never halt, so you can't be sure input is in the difference.

Concatenation of RE Languages

- Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$.
- Assume M_1 and M_2 are single-semi-infinite-tape TM's.
- Construct 2-tape Nondeterministic TM M:
 - 1. Guess a break in input w = xy
 - 2. Move *y* to second tape.
 - 3. Simulate M_1 on x, M_2 on y.
 - 4. Accept if both accept.

Concatenation of Recursive Languages

- Can't use a NTM.
- Systematically try each break w = xy.
- M₁ and M₂ will eventually halt for each break.
- Accept if both accept for any one break.
- Reject if all breaks tried and none lead to acceptance.

Star Closure

- Same ideas work for each case.
- RE: guess many breaks, accept if M₁ accepts each piece.
- Recursive: systematically try all ways to break input into some number of pieces.

Reversal

- Start by reversing the input.
- Then simulate TM for L to accept w if and only w^R is in L.
- Works for either Recursive or RE languages.

Inverse Homomorphism

- Apply h to input w.
- Simulate TM for L on h(w).
- Accept w iff h(w) is in L.
- Works for Recursive or RE.

Homomorphism/RE

- Let L = L(M₁).
- Design NTM M to take input w and guess an x such that h(x) = w.
- M accepts whenever M₁ accepts x.
- Note: won't work for Recursive languages.