

## RESIDUOS CUADRÁTICOS. ORDEN Y RAÍCES.

ALAN REYES-FIGUEROA CRIPTOGRAFÍA Y CIFRADO DE INFORMACIÓN (AULA 15) 28.SEPTIEMBRE.2021

### Raíces Módulo n

En los enteros módulo n, sabemos cómo resolver ecuaciones lineales:

Si 
$$ax + b \equiv 0 \pmod{n}$$
, con  $(a, n) = 1$ ,  $\Longrightarrow x \equiv -ba^{-1} \pmod{n}$ .

**Pregunta:** ¿Qué ocurre si queremos resolver ecuaciones de mayor grado? Respues: problema difícil.

Por ejemplo:  $x^2 - c \equiv 0 \pmod{n}$ ,  $x^3 - c \equiv \pmod{n}$ ,  $x^{43} \equiv c \pmod{n}$ .

### Definición

Sean  $c,k,n\in\mathbb{Z}$ , k,n> 1. Diremos que x es una **raíz** k-**ésima módulo** n de c si

$$x^k \equiv c \pmod{n}$$
.

Ejemplos: 6 es una raíz cúbica de 8 módulo 13, pues

$$6^3 \equiv 6 \cdot 6^2 \equiv 6 \cdot 36 \equiv 6 \cdot 10 \equiv 60 \equiv 8 \pmod{13}.$$

¿Cuál es la raíz cuadrada de 3 módulo 11? Respuesta: 5.  $5^2 \equiv 25 \equiv 3 \pmod{11}$ .

### Raíces Módulo n

#### **Observaciones:**

- No todos los números tiene raíces k-ésimas módulo n.
- Cuando existe la raíz k-ésima, no siempre es eficiente calcularla.

#### **Casos fáciles:**

• Cuando  $(k, \varphi(n)) = 1$ . En este caso, tomamos  $d = k^{-1} \pmod{\varphi(n)}$ . Afirmamos que la raíz k-ésima de c es  $x = c^d$ .

De hecho, como  $d \cdot k \equiv 1 \pmod{\varphi(n)}$ , esto significa que  $d \cdot k = q\varphi(n) + 1$ . Usando el Teorema de Euler-Fermat, resulta

$$(c^d)^k = c^{dk} = c^{q\varphi(n)+1} = (c^{\varphi}(n))^q \cdot c \equiv (1)^q \cdot c \equiv c \pmod{n}.$$

• Si p es primo  $\varphi(p) = p - 1$ . Supongamos que (k, p - 1) = 1. En este caso, si  $d = k^{-1} \pmod{p-1}$ , entonces la raíz k-ésima de c es  $x = c^d$ , pues  $(c^d)^k = c^{dk} = c^{q(p-1)+1} = (c^{p-1})^q \cdot c \equiv (1)^q \cdot c \equiv c \pmod{n}$ .

### Raíces Módulo n

**Raíces cuadradas**: Vamos a trabajar módulo primo *n*.

En general, la función definida en  $\mathbb{Z}/n\mathbb{Z}$  dada por  $\mathbf{x}\mapsto\mathbf{x}^2$  es 2 a 1:



#### Obs!

- Lo anterior implica que si un número  $c \pmod{n}$  tiene raíz cuadrada x, entonces tiene dos raíces cuadradas:  $x \cdot y x \pmod{n}$  (excepto cuando  $x \equiv -x \pmod{n}$ ).
- c = o sólo tiene una raíz cuadrado, en todo módulo n.
- En módulo n = 2, o y 1 sólo tienen una raíz cuadrada.

**Ejemplo**: Módulo n = 11:



Estamos interesados en encontrar criterios simples que nos permitas saber si un número  $d \pmod{p}$  posee raíz cuadrada. Esto es, si existen soluciones de la ecuación

$$x^2 \equiv d \pmod{p}. \tag{1}$$

#### Definición

Si la ecuación (1) tiene solución, esto es,  $\bar{d}$  es un cuadrado perfecto en  $\mathbb{Z}/p\mathbb{Z}$ , diremos que d es un **residuo cuadrático** módulo p.

Hay exactamente  $\frac{p+1}{2}$  residuos cuadráticos módulo p, p > 2. A saber:

$$O^2, (\pm 1)^2, (\pm 2)^2, (\pm 3)^2, \ldots, \left(\pm \frac{p-1}{2}\right)^2 \pmod{p},$$

ya que  $i^2 \equiv (-i)^2 \pmod{p}$ .

Así, si x es residuo cuadrático módulo p, debe ser congruente a alguno de estos números.



Ahora, aunque conozcamos la lista completa de residuos cuadráticos módulo p, en la práctica es difícil reconocer si un número d es o no residuo cuadrático módulo p.

#### **Ejemplo:** Módulo 23 tenemos

• 
$$O^2 \equiv O \pmod{23}$$
,

• 
$$1^2 \equiv 1 \pmod{23}$$
,

• 
$$2^2 \equiv 4 \pmod{23}$$
,

• 
$$3^2 \equiv 9 \pmod{23}$$
,

• 
$$4^2 \equiv 16 \pmod{23}$$
,

• 
$$5^2 \equiv 2 \pmod{23}$$
,

• 
$$6^2 \equiv 13 \pmod{23}$$
,

• 
$$7^2 \equiv 3 \pmod{23}$$
,

• 
$$8^2 \equiv 18 \pmod{23}$$
,

• 
$$9^2 \equiv 12 \pmod{23}$$
,

• 
$$10^2 \equiv 8 \pmod{23}$$
,

• 
$$11^2 \equiv 6 \pmod{23}$$
,

Así, los resíduos cuadráticos módulo 23 son:

**Ejemplo:** ¿Es 53 resíduo cuadrático módulo 101? No.

Precisamos de una forma eficiente para determinar si un entero *a* cualquiera es residuo cuadrático módulo *p*.

### Definición

Sea p > 2 un número primo y a  $\in \mathbb{Z}$  un entero cualquiera. Definimos el **símbolo de Legendre** como

$$\binom{a}{p} = \left\{ \begin{array}{ll} 1, & \text{si } p \nmid a \text{ y a es residuo cuadrático módulo } p; \\ 0, & \text{si } p \mid a; \\ -1, & \text{si } p \nmid a \text{ y a no es residuo cuadrático módulo } p. \end{array} \right.$$

## Proposición (Criterio de Euler)

Sea p > 2 un primo impar, y sea  $a \in \mathbb{Z}$ . Entonces

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \pmod{p}.$$

**Ejemplo**: Para 
$$p = 11$$

| a                   |   |   |    |   |   |   |    |    |    |   |    |
|---------------------|---|---|----|---|---|---|----|----|----|---|----|
| $a^{\frac{p-1}{2}}$ | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 |

### Corolario (Euler)

Sea p > 2 primo. Entonces  $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$  si, y sólo si,  $p \equiv 1 \pmod{4}$ .

<u>Prueba</u>: Como p es impar, sólo puede ser de la forma p = 4k + 1 o de la forma p = 4k + 3.

- Si  $p = 4k + 1 \Rightarrow \frac{p-1}{2} = \frac{4k}{2} = 2k$ . Luego,  $(-1)^{(p-1)/2} \equiv (-1)^{2k} \equiv 1 \pmod{p}$ .
- Si  $p = 4k + 3 \Rightarrow \frac{\bar{p-1}}{2} = \frac{\bar{4k+2}}{2} = 2k + 1$ . Luego,  $(-1)^{(p-1)/2} \equiv (-1)^{2k+1} \equiv -1 \pmod{p}$ .

#### Corolario

El símbolo de Legendre satisface las siguientes propiedades:

- 1. Si  $a \equiv b \pmod{p}$ , entonces  $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$ .
- **2.**  $(\frac{a^2}{p}) = 1$ , si  $p \nmid a$ .
- 3.  $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$ . Esto es, -1 es residuo cuadrático módulo  $p \Leftrightarrow p \equiv 1 \pmod{4}$ .
- 4.  $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ .

<u>Prueba</u>: (1) y (2) son inmediatos a partir de la definición, o si lo prefieren, también se deducen a partir de Criterio de Euler:

$$a \equiv b \pmod{p} \Rightarrow \left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \equiv b^{(p-1)/2} \equiv \left(\frac{b}{p}\right) \pmod{p} \Rightarrow , \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right),$$
$$\left(\frac{1}{p}\right) \equiv (1)^{(p-1)/2} \equiv 1 \pmod{p} \Rightarrow \left(\frac{1}{p}\right) = 1.$$

(3) Del Criterio de Euler, junto con el corolario anterior, tenemos

$$\left(\frac{-1}{p}\right) \equiv 1 \pmod{p} \iff (-1)^{(p-1)/2} \equiv 1 \pmod{p}$$
$$\iff p = 4k + 1 \iff p \equiv 1 \pmod{4}.$$

(4) Finalmente, del Criterio de Euler tenemos que

$$\left(\frac{ab}{p}\right) \equiv (ab)^{(p-1)/2} \equiv a^{(p-1)/2} b^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \pmod{p}.$$

lo que muestra que  $(\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p})$ , pues ambos lados son iguales a  $\pm 1$ .  $\Box$ 

El Criterio de Euler ya produce un mecanismo para identificar residuos cuadráticos. Vamos a enunciar ahora un resultado más general.

## Teorema (Ley de Reciprocidad Cuadrática)

1. Sea p un primo impar. Entonces

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1, & \text{si } p \equiv \pm 1 \pmod{8}; \\ -1, & \text{si } p \equiv \pm 3 \pmod{8}. \end{cases}$$

2. Sean p, q primos impares distintos. Entonces

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

- La parte 1 sirve sólo para saber si 2 es residuo cuadrático módulo p.
- La parte 2 sirve para intercambiar de  $(\frac{p}{a})$  a  $(\frac{q}{a})$ , cuando p, q son primos impares.

#### Corolario

Si p y q son primos impares distintos, entonces

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = \begin{cases} 1, & \text{si } p \equiv 1 \pmod{4}, \acute{o} \ q \equiv 1 \pmod{4}; \\ -1, & \text{si } p \equiv q \equiv 3 \pmod{4}. \end{cases}$$

<u>Prueba</u>: Basta ver que si p=4k+1, el exponente  $\frac{p-1}{2}=2k$  es par. Similarmente para el caso q=4k+1. Por el contrario, si p=4k+3 y q=4j+3, ambos exponentes son impares.  $\square$ 

#### Corolario

Si p y q son primos impares distintos, entonces

$$\left(\frac{p}{q}\right) = \begin{cases}
\left(\frac{q}{p}\right), & \text{si } p \equiv 1 \pmod{4}, \acute{o} \ q \equiv 1 \pmod{4}; \\
-\left(\frac{q}{p}\right), & \text{si } p \equiv q \equiv 3 \pmod{4}.
\end{cases}$$

**Ejemplo:** Calcular  $\left(\frac{29}{53}\right)$ .

De la Ley de Reciprocidad Cuadrática, tenemos -o.1cm

Esto muestra que 29 es residuo cuadrático módulo 53.



**Ejemplo:** Determinar si 90 es residuo cuadrático módulo 1019.

Como 90 =  $2 \cdot 3^2 \cdot 5$ , tenemos que

$$\left(\frac{90}{1019}\right) = \left(\frac{2 \cdot 3^2 \cdot 5}{1019}\right) = \left(\frac{2}{1019}\right) \underbrace{\left(\frac{3^2}{1019}\right)}_{=1} \left(\frac{5}{1019}\right) \\
= \left(\frac{2}{1019}\right) \left(\frac{5}{1019}\right) = \left(\frac{2}{1019}\right) \left(\frac{1019}{5}\right) (-1)^{\frac{5-1}{2} \cdot \frac{1019-1}{2}} \\
= \left(\frac{2}{1019}\right) \left(\frac{1019}{5}\right) (-1)^{2 \cdot 509} = \left(\frac{2}{1019}\right) \left(\frac{1019}{5}\right) = \left(\frac{2}{1019}\right) \left(\frac{4}{5}\right) \\
= \left(\frac{2}{1019}\right) \underbrace{\left(\frac{2^2}{5}\right)}_{=1} = \left(\frac{2}{1019}\right) = (-1)^{\frac{1019^2 - 1}{8}} = (-1)^{129,795} \\
= -1$$

Esto muestra que 90 no es residuo cuadrático módulo 1019.



¿Cómo calcular raíces cuadradas módulo p?

• Si  $p \equiv 3 \pmod{4}$ : En este caso, si a es residuo cuadrático módulo p, tenemos que  $\sqrt{a} = a^{\frac{p+1}{4}}$ .

Prueba: 
$$p \equiv 3 \pmod{4} \Rightarrow p+1 \equiv 0 \pmod{4} \Rightarrow 4 \mid p+1$$
. Además, como  $a$  es residuo cuadrático, del criterio de Euler  $a^{\frac{p-1}{2}} = 1$ . Luego  $\left(a^{\frac{p+1}{4}}\right)^2 = a^{\frac{p+1}{2}} = a^{\frac{p-1}{2}} \cdot a \equiv 1 \cdot a \equiv a \pmod{p}$ .

**Ejemplo:** Hallar la raíz de 7 módulo 19: Como  $p = 1019 \equiv 3 \pmod{4}$ , tenemos  $\frac{p+1}{4} = \frac{19+1}{4} = 5$ . Así  $\sqrt{7} = 7^5 = 7^2 \cdot 7^3 \equiv 11 \cdot 77 \equiv 11 \cdot 1 \equiv 11 \pmod{19}$ ,

y las raíces de 7 son 11 y  $8 = -11 \pmod{19}$ .

• Si  $p \equiv 1 \pmod{4}$ : En este caso no tenemos un algoritmo directo. Sin embargo existen algoritmos eficientes (aleatorios) de complejidad  $O(log^3p)$ .

### Definición

Dado  $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^* = U(n)$ , definimos el **orden** de  $\bar{a}$ , denotado  $\operatorname{ord}(\bar{a})$  como el menor entero positivo t > 0 tal que  $\bar{a}^t \equiv 1 \pmod{n}$ .

Si  $a, n \in \mathbb{Z}$ , (a, n) = 1, definimos el **orden** de a módulo n, denotado por  $ord_n(a)$  como el orden de  $\bar{a}$  en  $(\mathbb{Z}/n\mathbb{Z})^*$ .

**Obs!** Por el Teorema de Euler-Fermat, sabemos que  $\operatorname{ord}_n(a) \leq \varphi(n)$ , para todo  $a \in \mathbb{Z}$ , (a,n)=1.

### Definición

Cuando ord<sub>n</sub>  $a = \varphi(n)$ , decimos que a es una **raíz primitiva** módulo n.

#### **Ejemplo:**

2 es raíz primitiva módulo 5, pues 2  $\not\equiv$  1 (mod 5), 2<sup>2</sup>  $\equiv$  4  $\not\equiv$  1 (mod 5), 2<sup>3</sup>  $\equiv$  3  $\not\equiv$  1 (mod 5), y 2<sup>4</sup>  $\equiv$  1 (mod 5); y  $\varphi$ (5) = 4.

**Ejemplo:** ¿Cuáles son las raíces primitivas módulo 15? El grupo de unidades módulo 15,  $U(15) = \{1, 2, 4, 7, 8, 11, 13, 14\}$  tiene la estructura

|                    | 1                           | 2                  | 4         | 7             | 8                  | 11           | 13                          |    |
|--------------------|-----------------------------|--------------------|-----------|---------------|--------------------|--------------|-----------------------------|----|
| <u>1</u>           | 1                           | 2                  | 4         | 7             | 8                  | 11           | 13                          | 14 |
| $\bar{2}$          | 2                           | 4                  | 8         | 14            | ī                  | 1 <u>1</u> 1 | 11                          | 13 |
| 1 2 4 7 8 11 13 14 | 1<br>2<br>4<br>7<br>8<br>11 | 8                  | ī         | 7<br>14<br>13 | 2<br>11<br>4<br>13 | 14           | 7                           | 11 |
| 7                  | 7                           | 14<br>1<br>7<br>11 | 13        | 4             | 11                 | $\bar{2}$    | ī                           | 8  |
| 8                  | 8                           | 1                  | $\bar{2}$ | 11            | 4                  | 13           | 14                          | 7  |
| 11                 | 11                          | 7                  | 14        | 2<br>1        | 13                 | 1            | 8                           | 4  |
| 13                 | 13                          | 11                 | 7         | <u>1</u>      | 1 <u>7</u><br>7    | 8            | 4                           | 2  |
| 14                 | 14                          | 13                 | 11        | 8             | 7                  | 4            | 7<br>1<br>14<br>8<br>4<br>2 | 1  |

Observe que  $1^1 \equiv 2^4 \equiv 4^2 \equiv 7^4 \equiv 8^4 \equiv 11^2 \equiv 13^4 \equiv 14^2 \equiv 1 \pmod{15}$ . Luego ord(1) = 1, ord(4) = ord(11) = ord(14) = 2, ord(2) = ord(7) = ord(8) = ord(13) = 4. No hay raíces primitivas módulo 15.

Otra forma de verlo: En el grupo de unidades módulo 15:

| a <sup>1</sup> | $a^2$ | $a^3$                      | $a^4$                                  | (mod 15)                                                         |
|----------------|-------|----------------------------|----------------------------------------|------------------------------------------------------------------|
| 1              |       |                            |                                        |                                                                  |
| 2              | 4     | 8                          | 1                                      |                                                                  |
| 4              | 1     |                            |                                        |                                                                  |
| 7              | 4     | 13                         | 1                                      |                                                                  |
| 8              | 4     | 2                          | 1                                      |                                                                  |
| 11             | 1     |                            |                                        |                                                                  |
| 13             | 4     | 7                          | 1                                      |                                                                  |
| 14             | 1     |                            |                                        |                                                                  |
|                | 13    | 7 4<br>8 4<br>11 1<br>13 4 | 1 2 4 8 4 1 7 4 13 8 4 2 11 1 1 13 4 7 | 1 2 4 8 1 4 1 7 4 13 1 8 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

Como todas las potencias alcanzan el 1 antes de llegar a la potencia  $\varphi(15)=8$ , no hay raíces primitivas módulo 15.

Ejemplo: Módulo 14

| а        | a <sup>1</sup> | a <sup>2</sup> | $a^3$    | a <sup>4</sup> | $a^5$ | $a^6$ | (mod 14) |
|----------|----------------|----------------|----------|----------------|-------|-------|----------|
| 1        | 1              |                |          |                |       |       |          |
| 3        | 3              | 9              | 13<br>13 | 11             | 5     | 1     |          |
| 5        | 5              | 11             | 13       | 9              | 3     | 1     |          |
| 9        | 9              | 11             | 1        |                |       |       |          |
| 11<br>13 | 11             |                | 1        |                |       |       |          |
| 13       | 13             | 1              |          |                |       |       |          |

Así, 3 y 5 son raíces primitivas módulo 14.

### Definición

Dados  $a, n \in \mathbb{Z}$ , n > 1 y (a, n) = 1, decimos que a es una **raíz primitiva** módulo n si U(n) es cíclico, y a es un generador para el grupo U(n), esto es

$$\langle \bar{a} \rangle = \{ \bar{a}^t : t \in \mathbb{N} \} = U(n).$$

Las raíces primitivas son importantes en varios aspectos computacionales. Ya vimos que no todo módulo posee raíces primitivas. Nos gustaría una caracterización de aquellos módulos que poseen raíces primitivas.

#### **Teorema**

Existe alguna raíz primitiva módulo n si, y sólo si, n=2, n=4,  $n=p^k$  ó  $n=2p^k$ , para algún primo impar p.  $\square$ 

La importancia de las raíces primitivas en teoría de números se deriva de este hecho: Si a es una raíz aprimitiva módulo n, entonces

$$\langle a \rangle = \{ a^k : k = 0, 1, \ldots, \varphi(n) \} = U(n).$$

Es decir, a es una raíz primitiva módulo n, si para cada entero x con (x, n) = 1 existe un entero k para el cual  $a^k \equiv x \pmod{n}$ .

Tal valor k se llama **indice** o **logaritmo discreto** de x en base a módulo n.

Como ya hemos visto, calcular potencias (aún cuando k es grande) módulo n es un problema directo, y se resuelve de forma rápida y simple. Sin embargo, el problema de encontrar el logaritmo discreto de x en base a módulo n es un problema difícil.

**Importante**: Actualmente muchas herramientas criptográfica basan su fortaleza en la dificultad de calcular el logaritmo discreto. Veremos más de este tema en la próxima clase.

### **Problemas Intratables**

#### Problemas simples en aritmética modular:

- Dado un entero n > 1, y dado  $a \in \mathbb{Z}$  con (a, n) = 1, hallar  $a^{-1} \pmod{n}$ . (Se puede calcular con el algoritmo de Euclides extendido).
- Dado un primo p y un polinomio  $f(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ , hallar un  $a \in \mathbb{Z}/p\mathbb{Z}$  tal que  $f(a) \equiv 0 \pmod{p}$  (si existe), (Hay algoritmos en tiempo  $O(\deg f)$  para calcular raíces).

Ahora, no todos los problemas en aritmética modular son simples. Existen problemas para los cuales no hay algoritmos eficientes.

#### **Problemas difíciles:**

• Dado un entero  $a, b \in \mathbb{Z}$ , y enteros k, n > 1, hallar  $b \in \mathbb{Z}$  tal que  $b^k \equiv a \pmod{n}$ . k se llama el **logaritmo discreto** de a con base b módulo n (No existen algoritmos simples para calcular k).