Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. (original) A compound of formula I:

wherein

n is 1 or 2;

m is 1 or 2;

 R^1 is H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, wherein each of said (C_{1-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl are optionally substituted with from one to three halogen atoms;

 R^2 is selected from -CH₂- R^{20} , -NH- R^{20} , -O- R^{20} , -S- R^{20} , -SO- R^{20} , -SO₂- R^{20} , -CH₂O- R^{20} , and -O-X- R^{20} , wherein

X is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (C_{1-3}) alkyl; and

 R^{20} is (C₆ or C₁₀)aryl or **Het**, wherein said (C₆ or C₁₀)aryl or **Het** is optionally substituted with R^{200} ; wherein

 R^{200} is one to four substituents each independently selected from H, halogen, cyano, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl- (C_{1-6}) alkyl-, aryl, **Het**, oxo, thioxo, $-OR^{201}$, $-SR^{201}$, $-SOR^{201}$, $-SO_2R^{201}$, $-N(R^{202})R^{201}$, and $-CON(R^{202})R^{201}$; wherein each of said alkyl, cycloalkyl, aryl and **Het** is optionally further substituted with R^{2000} ;

 R^{201} in each case is independently selected from H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, aryl, -CO-(C₁₋₆)alkyl and -CO-O-(C₁₋₆)alkyl, wherein each of said alkyl and aryl is optionally further substituted with R^{2000} ;

R²⁰² in each case is independently selected from H and (C₁₋₆)alkyl;

R²⁰⁰⁰ in each case is one to three substituents each independently selected from halogen, aryl, **Het**, -OR²⁰⁰¹, -SR²⁰⁰¹, -SOR²⁰⁰¹, -SO₂R²⁰⁰¹, cyano,

-N(R^{2002})(R^{2001}), and R^{2003} , wherein said aryl and **Het** are optionally substituted with one, two or three substituents each independently selected from (C_{1-6})alkyl and -O-(C_{1-6})alkyl;

 R^{2001} in each case is independently selected from aryl, aryl-(C_{1-6})alkyl-, -C(O)- R^{2003} , -C(O)O- R^{2003} , -CON(R^{2002})(R^{2004}) and R^{2004} ;

 \mathbb{R}^{2002} in each case is independently selected from H and (C_{1-6}) alkyl;

- ${\sf R^{2003}}$ in each case is independently selected from (C₁₋₈)alkyl, (C₃₋₇)cycloalkyl and (C₃₋₇)cycloalkyl-(C₁₋₄)alkyl-, wherein said (C₃₋₇)cycloalkyl and (C₃₋₇)cycloalkyl-(C₁₋₄)alkyl- are each optionally substituted with one to three substituents each independently selected from (C₁₋₃)alkyl; and ${\sf R^{2004}}$ in each case is independently selected from H and ${\sf R^{2003}}$:
- R³ is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl-, each optionally substituted with one or more substituents each independently selected from (C_{1-6}) alkyl, (C_{2-6}) alkenyl, halogen, cyano, $-OR^{30}$, $-SR^{30}$, $-C(=O)OR^{30}$, $-C(=O)NH_2$, $-C(=O)NH(C_{1-6})$ alkyl, $-C(=O)N((C_{1-6})$ alkyl)₂, $-NH_2$, $-NH(C_{1-6})$ alkyl, $-N((C_{1-6})$ alkyl)₂, aryl, and aryl (C_{1-6}) alkyl-, wherein R^{30} is H, (C_{1-6}) alkyl, aryl, or aryl (C_{1-6}) alkyl-;
- R⁵ is selected from B, B-C(=O)-, B-O-C(=O)-, B-N(R⁵¹)-C(=O)-; B-N(R⁵¹)-C(=S)-, B-SO₂- and B-N(R⁵¹)-SO₂-; wherein B is selected from:
 - (i) (C_{1-10}) alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C_{1-6})alkyl, -OH, halogen, -OC(=O)(C_{1-6})alkyl, -O(C_{1-6})alkyl, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and -C(=O)N((C_{1-6})alkyl)₂;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, halogen, -COOH, -COO (C_{1-6}) alkyl, -OH, -O (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-6}) alkyl, -N $((C_{1-6})$ alkyl) $_2$, -C(=O)NH $_2$, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N $((C_{1-6})$ alkyl) $_2$;
 - (iii) aryl or aryl(C_{1-6})alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6})alkyl, -OH, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and -C(=O)N((C_{1-6})alkyl)₂;
 - (iv) Het or Het- (C_{1-6}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, -OH, -NH₂, -NH (C_{1-6}) alkyl, -N((C_{1-6}) alkyl)₂, -C(=O)NH₂, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N((C_{1-6}) alkyl)₂; and

(v) (C₂₋₆)alkenyl, or (C₂₋₆)alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

R⁵¹ is selected from H and (C₁₋₆)alkyl;

Y is H or (C_{1-6}) alkyl;

 $\mathbf{R^4}$ and $\mathbf{R^6}$ are each independently selected from H, (C₁₋₆)alkyl, -O-(C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)cycloalkyl-(C₁₋₆)alkyl-, aryl, **Het**, and aryl-(C₁₋₆)alkyl-; wherein said (C₁₋₆)alkyl, -O-(C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)cycloalkyl-(C₁₋₆)alkyl-, aryl and aryl-(C₁₋₆)alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl, -CO-N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl; or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl, -CO-N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl;

with the proviso that when:

 R^{5} is B-O-C(=O)- or B-N(R^{51})-C(=O)-, wherein R^{51} is H: and

B is selected from (C₁₋₁₀)alkyl, (C₃₋₇)cycloalkyl, and (C₃₋₇)cycloalkyl-(C₁₋₄)alkyl,

- a) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-, dior tri-substituted with (C₁₋₃)alkyl; and
- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono- or di-substituted with substituents selected from hydroxy and O-(C₁₋₄)alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or tri-substituted with halogen; and
- d) wherein in each of said cycloalkyl groups being 4-, 5-, 6- or 7-membered, one (for the 4-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered) -CH₂-groups not directly linked to each other may be replaced

by -O- to provide a heterocycle, such that the O-atom is linked to the -O-C(=O) or -N(R⁵¹)-C(=O) group via at least two carbon atoms; and

R2 is O-R20; then

R²⁰ cannot be

wherein

 R^{200a} is H, halogen, (C_{1-4}) alkyl, -OH, $-O-(C_{1-4})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl or $-N((C_{1-4})$ alkyl)₂;

 R^{200b} , R^{200c} are each independently halogen, cyano, (C_{1-4}) alkyl, $-O-(C_{1-4})$ alkyl, $-S-(C_{1-4})$ alkyl, $-SO-(C_{1-4})$ alkyl, or $-SO_2-(C_{1-4})$ alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either R^{200b} or R^{200c} (but not both at the same time) may also be H; or

 R^{200a} and R^{200b} or

R^{200a} and R^{200c} may be covalently bonded to form, together with the two Catoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH₂-groups not being directly linked to each other may be replaced each independently by -O- or NR^a wherein R^a is H or (C₁₋₄)alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or di-substituted with (C₁₋₄)alkyl; and

 R^{2000a} is R^{2003} , $-N(R^{2002})COR^{2003}$, $-N(R^{2002})COOR^{2003}$, $-N(R^{2002})(R^{2004})$, or $-N(R^{2002})CON(R^{2002})(R^{2004})$, wherein

R²⁰⁰² is H or methyl;

 R^{2003} is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are optionally mono-, di-, or tri-substituted with (C_{1-3}) alkyl; and

 R^{2004} is H or R^{2003} .

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated,

unsaturated or aromatic; or a diastereomer thereof or a salt thereof.

- 2. (original) The compound according to claim 1 wherein
 - **n** is 1 or 2;
 - **m** is 1 or 2;
 - R^1 is H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, wherein each of said (C_{1-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl are optionally substituted with from one to three halogen atoms;
 - R^2 is selected from -CH₂- R^{20} , -NH- R^{20} , -O- R^{20} , -S- R^{20} , -SO- R^{20} , -SO₂- R^{20} , -CH₂O- R^{20} , and -O-X- R^{20} , wherein
 - **X** is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (C_{1-3}) alkyl; and
 - R^{20} is (C₆ or C₁₀)aryl or **Het**, wherein said (C₆ or C₁₀)aryl or **Het** is optionally substituted with R^{200} ; wherein
 - R^{200} is one to four substituents each independently selected from H, halogen, cyano, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl- (C_{1-6}) alkyl-, aryl, Het, oxo, thioxo, $-OR^{201}$, $-SR^{201}$, $-SOR^{201}$, $-SO_2R^{201}$, $-N(R^{202})R^{201}$, and $-CON(R^{202})R^{201}$; wherein each of said alkyl, cycloalkyl, aryl and Het is optionally further substituted with R^{2000} ;
 - R^{201} in each case is independently selected from H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, aryl, -CO-(C₁₋₆)alkyl and -CO-O-(C₁₋₆)alkyl, wherein each of said alkyl and aryl is optionally further substituted with R^{2000} :
 - R^{202} in each case is independently selected from H and (C_{1.6})alkyl;
 - R^{2000} in each case is one to three substituents each independently selected from halogen, aryl, Het, $-OR^{2001}$, $-SR^{2001}$, $-SOR^{2001}$, $-SO_2R^{2001}$, cyano, $-N(R^{2002})(R^{2001})$, and R^{2003} , wherein said aryl and Het are optionally substituted with one, two or three substituents each independently selected from (C_{1-6}) alkyl and $-O-(C_{1-6})$ alkyl;
 - R^{2001} in each case is independently selected from aryl, aryl-(C₁₋₆)alkyl-, -C(O)- R^{2003} , -C(O)O- R^{2003} , -CON(R^{2002})(R^{2004}) and R^{2004} ;
 - R^{2002} in each case is independently selected from H and (C₁₋₆)alkyl;
 - R^{2003} in each case is independently selected from (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are each optionally substituted with one to three substituents each independently selected from (C_{1-3}) alkyl; and
 - R²⁰⁰⁴ in each case is independently selected from H and R²⁰⁰³;

- R³ is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-3}) alkyl-, each optionally substituted with one or more substituents each independently selected from (C_{1-6}) alkyl, (C_{2-6}) alkenyl, halogen, cyano, $-OR^{30}$, $-SR^{30}$, $-C(=O)OR^{30}$, $-C(=O)NH_2$, $-C(=O)NH(C_{1-6})$ alkyl, $-C(=O)N((C_{1-6})$ alkyl)₂, $-NH_2$, $-NH(C_{1-6})$ alkyl, $-N((C_{1-6})$ alkyl)₂, aryl, and aryl (C_{1-6}) alkyl-, wherein R^{30} is H, (C_{1-6}) alkyl, aryl, or aryl (C_{1-6}) alkyl-;
- R⁵ is selected from B, B-C(=O)-, B-O-C(=O)-, B-N(R⁵¹)-C(=O)-; B-N(R⁵¹)-C(=S)-, B-SO₂- and B-N(R⁵¹)-SO₂-; wherein B is selected from:
 - (i) (C_{1-10}) alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C_{1-6})alkyl, -OH, halogen, -OC(=O)(C_{1-6})alkyl, -O(C_{1-6})alkyl, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and -C(=O)N((C_{1-6})alkyl)₂;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, halogen, -COOH, -COO (C_{1-6}) alkyl, -OH, -O (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-6}) alkyl, -N $((C_{1-6})$ alkyl) $_2$, -C(=O)NH $_2$, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N $((C_{1-6})$ alkyl) $_2$;
 - (iii) aryl or aryl(C₁₋₆)alkyl-, each optionally substituted with one or more substituents each selected independently from (C₁₋₆)alkyl, -OH, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂;
 - (iv) Het or Het- (C_{1-6}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, -OH, -NH₂, -NH (C_{1-6}) alkyl, -N $((C_{1-6})$ alkyl)₂, -C(=O)NH₂, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N $((C_{1-6})$ alkyl)₂; and
 - (v) (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

R⁵¹ is selected from H and (C₁₋₆)alkyl;

Y is H or (C_{1-6}) alkyl;

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, (C_{1-6}) alkyl, -O- (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl, ${f Het}$, and aryl- (C_{1-6}) alkyl-; wherein said (C_{1-6}) alkyl, -O- (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-4}) alkyl, -CO-NH $_2$, -CO-NH $_2$, -CO-NH $_2$, -CO-NH $_3$, -CO-NH $_4$, -CO-N((C_{1-4}) alkyl) $_2$, -COOH, and

-COO(C₁₋₆)alkyl; or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl, -CO-N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl;

with the proviso that when:

R⁵¹ is H; and

B is selected from (C₁₋₁₀)alkyl, (C₃₋₇)cycloalkyl, and (C₃₋₇)cycloalkyl-(C₁₋₄)alkyl,

- a) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-, dior tri-substituted with (C_{1-3}) alkyl; and
- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono- or di-substituted with substituents selected from hydroxy and O-(C₁₋₄)alkyl; and
- c) wherein each of said alkyl groups may be mono-, di- or tri-substituted with halogen; and
- d) wherein in each of said cycloalkyl groups being 4-, 5-, 6- or 7-membered, one (for the 4-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered) -CH₂-groups not directly linked to each other may be replaced by -O- to provide a heterocycle, such that the O-atom is linked to the -O-C(=O) or -N(R⁵¹)-C(=O) group via at least two carbon atoms; and

R² is O-R²⁰: then

R²⁰ cannot be

wherein

 $\mathbf{R}^{\mathbf{200a}}$ is H, halogen, (C_{1-4}) alkyl, -OH, $-O-(C_{1-4})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl or

-N((C_{1-4})alkyl)₂;

 R^{200b} , R^{200c} are each independently halogen, cyano, (C_{1-4}) alkyl, -O- (C_{1-4}) alkyl, -S- (C_{1-4}) alkyl, or -SO₂- (C_{1-4}) alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either R^{200b} or R^{200c} (but not both at the same time) may also be H: or

 R^{200a} and R^{200b} or

R^{200a} and R^{200c} may be covalently bonded to form, together with the two Catoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH₂-groups not being directly linked to each other may be replaced each independently by -O- or NR^a wherein R^a is H or (C₁₋₄)alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or di-substituted with (C₁₋₄)alkyl; and

 R^{2000a} is R^{2003} , $-N(R^{2002})COR^{2003}$, $-N(R^{2002})COOR^{2003}$, $-N(R^{2002})(R^{2004})$, or $-N(R^{2002})CON(R^{2002})(R^{2004})$, wherein

R²⁰⁰² is H or methyl;

 R^{2003} is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are optionally mono-, di-, or tri-substituted with (C_{1-3}) alkyl; and

 R^{2004} is H or R^{2003} :

and with the further proviso that when:

R⁵ is **B**-O-C(=O)- and **B** is selected from methyl and 1,1-dimethylethyl; and **R**³ is 1.1-dimethylethyl; and

R1 is ethenvl; and

the group $-N(\mathbf{R}^4)\mathbf{R}^6$ is selected from:

$$\begin{array}{c|c} & & & & \\ & & & \\ & & \\ & & \\ & & \\ \end{array}, \begin{array}{c} & & \\ & \\ \end{array}, \begin{array}{c} & \\ & \\$$

R² is not selected from:

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

- 3. (currently amended) The compound according to one or more of the preceding claims claim 1 wherein R⁵ is selected from B-C(=O)-, B-O-C(=O)-, and B-N(R⁵¹)-C(=O)-; wherein B and R⁵¹ are defined as in claim 1.
- **4.** (original) The compound according to claim 3 wherein **R**⁵¹ is H and **B** is selected from:
 - (i) (C₁₋₇)alkyl optionally substituted with one or two or three substituents each independently selected from fluoro, chloro, bromo, hydroxy, methoxy and ethoxy; or optionally substituted with -COOCH₃;
 - (ii) (C₃₋₇)cycloalkyl, or (C₃₋₇)cycloalkyl-methyl-, each optionally substituted with one or two substituents each independently selected from methyl, ethyl, hydroxy, methoxy and ethoxy;
 - (iii) benzyl; and
 - (iv) Het, wherein Het comprises a 3-, 4-, 5-, 6-, or 7-membered heterocyle having one to four heteroatoms each independently selected from O, N, and S, which may be saturated or unsaturated or aromatic.
- (currently amended) The compound according to one or more of the preceding claims claim 1 wherein Y is H.
- 6. (currently amended) The compound according to claim 1 one or more of the preceding claims wherein \mathbf{R}^3 is (C_{1-8}) alkyl or (C_{3-7}) cycloalkyl, the (C_{1-8}) alkyl being optionally substituted with hydroxy, (C_{1-6}) alkoxy or $-C(=O)O\mathbf{R}^{30}$, wherein \mathbf{R}^{30} is (C_{1-6}) alkyl or aryl (C_{1-6}) alkyl-.

- 7. (currently amended) The compound according to <u>claim 1 one or more of the preceding claims</u> wherein R² is selected from -O-R²⁰, -S-R²⁰, and -O-X-R²⁰, wherein R²⁰ and X are defined as in claim 1.
- 8. (original) The compound according to claim 7 wherein \mathbb{R}^2 is -O-X- \mathbb{R}^{20} , wherein X is (C_3) alkynyl and \mathbb{R}^{20} is $(C_6$ or $C_{10})$ aryl.
- 9. (original) The compound according to claim 7 wherein R^2 is -O- R^{20} , wherein R^{20} is

wherein

 R^{200d} is $-OR^{201}$, wherein R^{201} is (C_{1-6}) alkyl;

 R^{200e} is H or -OR²⁰¹, wherein R^{201} is (C₁₋₆)alkyl; and

 R^{200f} is (C_{1-6}) alkyl, halogen, $-SR^{201}$, $-SO_2R^{201}$, or $-OR^{201}$, wherein R^{201} is (C_{1-6}) alkyl optionally further substituted with (C_{3-7}) cycloalkyl or phenyl.

- 10. (original) The compound according to claim 9 wherein R^{200d} is $-OR^{201}$ wherein R^{201} is ethyl.
- 11. (original) The compound according to claim 7 wherein \mathbb{R}^2 is -O- \mathbb{R}^{20} , wherein \mathbb{R}^{20} is

wherein

one of **A**, **D**, and **E** represents a S atom and the other two of **A**, **D**, and **E** represent C atoms;

---- represents a single bond between a C atom and an S atom, and represents a single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond;

 R^{200g} is H or -OR 201 , wherein R^{201} is (C₁₋₆)alkyl or (C₂₋₆)alkenyl; and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and R^{200h} is one or two substituents each independently selected from H, cyano, (C₁₋₁) and (C₁) and (C₁)

₆)alkyl and $-SO_2$ -(C_{1-6})alkyl; wherein each \mathbb{R}^{200h} is bonded to a C atom which would otherwise bear a hydrogen atom.

- 12. (currently amended) The compound according to <u>claim 1</u> one or more of the <u>preceding claims</u> wherein n is 1.
- 13. (currently amended) The compound according to claim 1 one or more of the preceding claims-wherein R¹ is (C₂₋₆)alkenyl or (C₂₋₆)alkyl.
- **14.** (currently amended) The compound according to <u>claim 1 one or more of the preceding claims</u> wherein **m** is 2.
- **15.** (currently amended) The compound according to <u>claim 1 one or more of the preceding claims</u>-wherein:
 - (i) $\mathbf{R^4}$ and $\mathbf{R^6}$ are each independently selected from H, (C_{1-6}) alkyl, $-O-(C_{1-6})$ alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl-; wherein said (C_{1-6}) alkyl, $-O-(C_{1-6})$ alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are each optionally substituted with one to three substituents each independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, $O-(C_{1-6})$ alkyl, -COOH, and $-COO(C_{1-6})$ alkyl; or
 - (ii) R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl.
- **16.** (original) The compound according to claim 1 wherein:
 - **n** is 1 or 2;
 - **m** is 1 or 2;
 - R^1 is H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, wherein said (C_{1-6}) alkyl, (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl are optionally substituted with from one to three halogen atoms;
 - R² is selected from -CH₂-R²⁰, -NH-R²⁰, -O-R²⁰, -S-R²⁰, -SO-R²⁰, -SO₂-R²⁰, -CH₂O-R²⁰, and -O-X-R²⁰, wherein

 X is (C₂₋₃)alkenyl, (C₂₋₃)alkynyl, or (C₁₋₃)alkyl; and

- R^{20} is $(C_6$ or $C_{10})$ aryl or Het, wherein said $(C_6$ or $C_{10})$ aryl or Het is optionally mono-, di-, tri- or tetra-substituted with R^{200} , wherein each R^{200} is independently selected from H, halogen, cyano, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl- (C_{1-6}) alkyl-, aryl, Het, oxo, thioxo, $-OR^{201}$, $-SR^{201}$, $-SO_2R^{201}$, $-N(R^{202})R^{201}$, and $-CON(R^{202})R^{201}$; wherein each of said alkyl, cycloalkyl, aryl and Het is optionally further substituted with R^{2000} :
- R^{201} in each case is independently selected from H, (C_{1-6}) alkyl, aryl, $-CO-(C_{1-6})$ alkyl and $-CO-O-(C_{1-6})$ alkyl, wherein each of said alkyl and aryl is optionally further substituted with R^{2000} :

 \mathbf{R}^{202} is H or (C_{1-6}) alkyl;

- R^{2000} is one to three substituents each independently selected from halogen, aryl, Het, $-OR^{2001}$, $-SR^{2001}$, $-SOR^{2001}$, $-SO_2R^{2001}$, cyano, $-N(R^{2002})(R^{2001})$, and R^{2003} , wherein said aryl and Het are optionally substituted with one, two or three substituents selected from (C_{1-6}) alkyl and $-O-(C_{1-6})$ alkyl;
- R^{2001} in each case is independently selected from aryl, aryl-(C₁₋₆)alkyl-, -C(O)- R^{2003} , -C(O)O- R^{2003} , -CON(R^{2002})(R^{2004}) and R^{2004} ;

 R^{2002} is H or (C_{1-6}) alkyl;

 R^{2003} is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are optionally mono-, di-, or tri-substituted with (C_{1-3}) alkyl; and

 R^{2004} is H or R^{2003} :

- $$\begin{split} \textbf{R}^3 & \text{is } (C_{1\text{-8}})\text{alkyl, } (C_{3\text{-7}})\text{cycloalkyl or } (C_{3\text{-7}})\text{cycloalkyl-}(C_{1\text{-3}})\text{alkyl-, each optionally} \\ & \text{substituted with one or more substituents independently selected from} \\ & (C_{1\text{-6}})\text{alkyl, } (C_{2\text{-6}})\text{alkenyl, halogen, cyano, } -\textbf{OR}^{30}, -\textbf{SR}^{30}, -\textbf{C}(=\textbf{O})\textbf{OR}^{30}, \\ & -\textbf{C}(=\textbf{O})\textbf{NH}_2, -\textbf{C}(=\textbf{O})\textbf{NH}(\textbf{C}_{1\text{-6}})\text{alkyl, } \textbf{C}(=\textbf{O})\textbf{N}((\textbf{C}_{1\text{-6}})\text{alkyl})_2, -\textbf{NH}_2, -\textbf{NH}(\textbf{C}_{1\text{-6}})\text{alkyl,} \\ & -\textbf{N}((\textbf{C}_{1\text{-6}})\text{alkyl})_2, \text{ aryl, and aryl}(\textbf{C}_{1\text{-6}})\text{alkyl-, wherein } \textbf{R}^{30} \text{ is H, } (\textbf{C}_{1\text{-6}})\text{alkyl, aryl, or aryl}(\textbf{C}_{1\text{-6}})\text{alkyl-;} \end{split}$$
- R⁵ is selected from B, B-C(=O)-, B-O-C(=O)-, B-N(R⁵¹)-C(=O)-; B-N(R⁵¹)-C(=S)-, B-SO₂- and B-N(R⁵¹)-SO₂-; wherein B is selected from:
 - (i) (C₁₋₁₀)alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C₁₋₆)alkyl, -OH, halogen, -OC(=O)(C₁₋₆)alkyl, -O(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally

substituted with one or more substituents each selected independently from (C_{1-6})alkyl, halogen, -COOH, -COO(C_{1-6})alkyl, -OH, -O(C_{1-6})alkyl, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and C(=O)N((C_{1-6})alkyl)₂;

- (iii) aryl or aryl(C_{1-6})alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6})alkyl, -OH, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and C(=O)N((C_{1-6})alkyl)₂;
- (iv) Het or Het- (C_{1-6}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, -OH, -NH₂, -NH (C_{1-6}) alkyl, -N $((C_{1-6})$ alkyl)₂, -C(=O)NH₂, -C(=O)NH (C_{1-6}) alkyl and C(=O)N $((C_{1-6})$ alkyl)₂; and
- (v) (C_{2-6}) alkenyl, or (C_{2-6}) alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

R⁵¹ is selected from H and (C₁₋₆)alkyl;

Y is H or (C_{1-6}) alkyl;

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl, ${f Het}$, and aryl- (C_{1-6}) alkyl-; wherein said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are optionally substituted with one or more substituents independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, O- (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-4}) alkyl, -N((C_{1-4}) alkyl) $_2$, -CO-NH $_2$, -CO-NH (C_{1-4}) alkyl, -CO-N((C_{1-4}) alkyl) $_2$, -COH, and -COO((C_{1-6}) alkyl; or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, said heterocycle and heteropolycycle optionally containing from one to three further heteroatoms independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one or more substituents independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl, -CO-N((C₁₋₆)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl;

with the proviso that when:

 R^5 is B-O-C(=O)- or B-N(R^{51})-C(=O)-, wherein R^{51} is H; and

B is selected from (C₁₋₁₀)alkyl, (C₃₋₇)cycloalkyl, and (C₃₋₇)cycloalkyl-(C₁₋₄)alkyl,

- a) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono-, dior tri-substituted with (C₁₋₃)alkyl; and
- b) wherein said alkyl, cycloalkyl, and cycloalkyl-alkyl are optionally mono- or di-substituted with substituents selected from hydroxy and O-(C₁₋₄)alkyl;
 and
- c) wherein each of said alkyl groups may be mono-, di- or tri-substituted with halogen; and
- d) wherein in each of said cycloalkyl groups being 4-, 5-, 6- or 7-membered, one (for the 4-, 5-, 6-, or 7-membered) or two (for the 5-, 6- or 7-membered) -CH₂-groups not directly linked to each other may be replaced by -O- to provide a heterocycle, such that the O-atom is linked to the -O-C(=O) or -N(R⁵¹)-C(=O) group via at least two carbon atoms; and

R2 is O-R20; then

R²⁰ cannot be

wherein

 R^{200a} is H, halogen, (C_{1-4}) alkyl, -OH, $-O-(C_{1-4})$ alkyl, $-NH_2$, $-NH(C_{1-4})$ alkyl or $-N((C_{1-4})$ alkyl)₂;

 R^{200b} , R^{200c} are each independently halogen, cyano, (C_{1-4}) alkyl, -O- (C_{1-4}) alkyl, -S- (C_{1-4}) alkyl, -SO- (C_{1-4}) alkyl, or -SO₂- (C_{1-4}) alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either R^{200b} or R^{200c} (but not both at the same time) may also be H; or

R^{200a} and R^{200b} or

R^{200a} and R^{200c} may be covalently bonded to form, together with the two Catoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH₂-groups not being directly linked to each other may be replaced each independently by -O- or NR^a wherein R^a is H or (C₁₋₄)alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or di-substituted with (C₁₋₄)alkyl; and

 $R^{2000a} \text{ is } R^{2003}, \ -N(R^{2002}) \text{COR}^{2003}, \ -N(R^{2002}) \text{COOR}^{2003}, \ -N(R^{2002}) \text{(} R^{2004}), \ \text{or } R^{2000} \text{(} R^{2000}) \text$

-N(R²⁰⁰²)CON(R²⁰⁰²)(R²⁰⁰⁴), wherein

R²⁰⁰² is H or methyl;

 R^{2003} is (C_{1-8}) alkyl, (C_{3-7}) cycloalkyl or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, wherein said (C_{3-7}) cycloalkyl and (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl- are optionally mono-, di-, or tri-substituted with (C_{1-3}) alkyl; and

R²⁰⁰⁴ is H or R²⁰⁰³:

wherein **Het** is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

- **17.** (original) The compound according to claim 1 wherein:
 - **R**⁵ is selected from **B**-C(=O)-, **B**-O-C(=O)-, and **B**-NH-C(=O)-; wherein **B** is selected from:
 - $\label{eq:continuous} \begin{tabular}{ll} (i) & (C_{1-10}) alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(<math>C_{1-6}$) alkyl, -OH, halogen, -OC(=O)(C_{1-6}) alkyl, -O(C_{1-6}) alkyl, -NH(C_{1-6}) alkyl, -NH(C_{1-6}) alkyl, -N((C_{1-6}) alkyl)2, -C(=O)NH2, -C(=O)NH(C_{1-6}) alkyl and -C(=O)N((C_{1-6}) alkyl)2;
 - (ii) (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl- (C_{1-4}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, halogen, -COOH, -COO (C_{1-6}) alkyl, -OH, -O (C_{1-6}) alkyl, -NH $_2$, -NH (C_{1-6}) alkyl, -N((C_{1-6}) alkyl) $_2$, -C(=O)NH $_2$, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N((C_{1-6}) alkyl) $_2$;
 - (iii) aryl or aryl(C_{1-6})alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6})alkyl, -OH, -NH₂, -NH(C_{1-6})alkyl, -N((C_{1-6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1-6})alkyl and -C(=O)N((C_{1-6})alkyl)₂;
 - (iv) Het or Het- (C_{1-6}) alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1-6}) alkyl, -OH, -NH₂, -NH (C_{1-6}) alkyl, -N((C_{1-6}) alkyl)₂, -C(=O)NH₂, -C(=O)NH (C_{1-6}) alkyl and -C(=O)N((C_{1-6}) alkyl)₂;
 - Y is H;
 - R^3 is (C_{1-8}) alkyl or (C_{3-7}) cycloalkyl, each of which are optionally substituted with one or more substituents each independently selected from (C_{1-6}) alkyl, $-OR^{30}$,

and -C(=O)OR 30 , wherein R 30 is H, (C₁₋₆)alkyl, or aryl(C₁₋₆)alkyl-;

 R^2 is -O-X- R^{20} , wherein X is (C₃)alkynyl and R^{20} is (C₆ or C₁₀)aryl; or

R² is -O-R²⁰ wherein R²⁰ is

wherein

or R20 is

 R^{200d} is $-OR^{201}$, wherein R^{201} is (C_{1-6}) alkyl;

 R^{200e} is H or -O R^{201} , wherein R^{201} is (C₁₋₆)alkyl; and

 R^{200f} is (C_{1-6}) alkyl, halogen, $-SR^{201}$, $-SO_2R^{201}$, or $-OR^{201}$, wherein R^{201} is (C_{1-6}) alkyl optionally further substituted with (C_{3-7}) cycloalkyl or phenyl;

wherein

one of **A**, **D**, and **E** represents a S atom and the other two of **A**, **D**, and **E** represent C atoms;

---- represents a single bond between a C atom and an S atom, and represents a single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond;

 R^{200g} is H or -OR 201 , wherein R^{201} is (C_{1-6}) alkyl or (C_{2-6}) alkenyl; and R^{200h} is one or two substituents each independently selected from H, cyano, (C_{1-6}) alkyl and $-SO_2$ - (C_{1-6}) alkyl; wherein each R^{200h} is bonded to a C atom which would otherwise bear a hydrogen atom;

 R^1 is (C_{2-6}) alkenyl or (C_{2-6}) alkyl;

n is 1;

m is 2; and

 ${f R}^4$ and ${f R}^6$ are each independently selected from H, (C_{1-6}) alkyl, -O- (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl-; wherein said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl- (C_{1-6}) alkyl-, aryl and aryl- (C_{1-6}) alkyl- are optionally substituted with one to three substituents independently selected from halogen, (C_{1-6}) alkyl, hydroxy, cyano, (C_{1-6}) alkyl, -COOH, and -COO((C_{1-6}) alkyl; or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three further heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂,-COOH, and -COO(C₁₋₆)alkyl;

or a diastereomer thereof or a salt thereof.

- 18. (currently amended) A pharmaceutical composition comprising an anti-hepatitis C virally effective amount of a compound according to <u>claim 1 one or more of claims 1 to 17</u>, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.
- 19. (original) The pharmaceutical composition according to claim 18 additionally comprising a therapeutically effective amount of at least one other antiviral agent.
- 20. (currently amended) A method of treating or preventing a hepatitis C viral infection in a mammal by-comprising administering to the mammal an anti-hepatitis C virally effective amount of a compound according to claim 1 one or more of claims 1 to 17, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof comprising said compound or pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.

Claims 21-22. (cancelled)

- 23. (currently amended) A method of inhibiting the replication of hepatitis C virus by exposing the virus to a hepatitis C viral NS3 protease inhibiting amount of the compound according to <u>claim 1 one or more of claims 1 to 17</u>, or a pharmaceutically acceptable salt thereof.
- 24. (cancelled)
- 25. (currently amended) An article of manufacture comprising a composition effective to treat an HCV infection or to inhibit the NS3 protease of HCV; and packaging material

comprising a label which indicates that the composition can be used to treat infection by the hepatitis C virus; wherein the composition comprises a compound according to <u>claim 1</u> one or more of claims 1 to 17 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier medium or auxiliary agent.

- 26. (currently amended) A process for the preparation of a compound according to <u>claim</u>
 1 one or more of claims 1 to 17, comprising:
 - a) reacting a compound of formula (II):

$$H_2N$$
 SO_m R^6 (II)

wherein \mathbf{R}^4 , \mathbf{R}^6 and \mathbf{m} are defined as in claim 1, with a strong base so as to form the corresponding amide anion and

b) reacting an azalactone of formula (III):

$$\mathbb{R}^{5}$$
 \mathbb{N}
 $\mathbb{N$

wherein R^1 , R^2 , R^3 , R^5 , Y and n are defined as in claim 1, with the amide anion formed in step a).

27. An azalactone intermediate compound of formula (III):

$$\mathbb{R}^{5}$$
 \mathbb{N}
 $\mathbb{N$

wherein \mathbf{R}^1 , \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{R}^5 , \mathbf{Y} and \mathbf{n} are defined as in claim 1.

28. (cancelled)