TABLE 1-1 Basic Identities of Boolean Algebra

(1) x + 0 = x	$(2) x \cdot 0 = 0$
(3) x + 1 = 1	$(4) x \cdot 1 = x$
(5) x + x = x	$(6) x \cdot x = x$
(7) x + x' = 1	$(8) x \cdot x' = 0$
(9) x + y = y + x	(10) xy = yx
(11) x + (y + z) = (x + y) + z	(12) x(yz) = (xy)z
(13) x(y+z) = xy + xz	(14) x + yx = (x + y)(x + z)
(15) (x + y)' = x'y'	(16) (xy)' = x' + y'
(17) (x')' = x	

The identities listed in the table apply to single variables or to Boolean functions expressed in terms of binary variables. For example, consider the following Boolean algebra expression:

$$AB' + C'D + AB' + C'D$$

By letting x = AB' + C'D the expression can be written as x + x. From identity 5 in Table 1-1 we find that x + x = x. Thus the expression can be reduced to only two terms:

$$AB' + C'D + A'B + C'D = AB' + C'D$$