

Heart Failure Analysis and Prediction

By: Aldimeola Alfarisy

Business Background and Objectives

Business Background and Objectives

Background

Cardiovascular diseases (CVDs) are the leading cause of death globally with taking an estimated 17.9 million lives each year. More than four out of five CVD deaths are due to heart attacks and one third of these deaths occur prematurely in people under 70 years of age. Heart failure is a common event caused by CVDs. Early detection and management wherein a machine learning model can be of great help.

Objectives

- What factors affect heart failure?
- What is the best machine learning algorithm model to predict heart failure?

Image source:

https://news.harvard.edu/gazette/story/ 2022/04/infertility-history-linked-withincreased-risk-of-heart-failure/

Dataset Information

918 rows

11 features

	Numerical Feature	Categorical Feature
•	Age	• Sex
•	RestingBP	• ChestPainType
•	Cholesterol	• RestingECG
•	FastingBS	• ExerciseAngina
•	MaxHR	ST_Slope
•	Oldpeak	

1 target

Heart

Disease

Dataset source: kaagle.com

Dataset Attribute Information

Column name

Age

MaxHR

ExerciseAngina

Oldpeak

ST_Slope

HeartDisease

Sex	Sex of the patient [M: Male, F: Female]	
ChestPainType	Chest pain type [TA: Typical Angina, ATA: Atypical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic]	
RestingBP	Resting blood pressure [mm Hg]	
Cholesterol	Serum cholesterol [mm/dl]	
FastingBS	Fasting blood sugar [1: if FastingBS > 120 mg/dl, 0: otherwise]	
RestingECG	Resting electrocardiogram results [Normal: Normal, ST: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), LVH: showing probable or definite left	

Description Age of the patient [years]

ventricular hypertrophy by Estes' criteria]

Maximum heart rate achieved [Numeric value between 60 and 202]

Exercise-induced angina [Y: Yes, N: No]

ST [Numeric value measured in depression]

The slope of the peak exercise ST segment [Up: upsloping, Flat: flat, Down: downsloping]

Output class [1: heart disease, 0: Normal]

General Info

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 918 entries, 0 to 917
Data columns (total 12 columns):
    Column
                   Non-Null Count
#
                                  Dtype
                   918 non-null
                                   int64
0
    Age
    Sex
                   918 non-null
                                  object
    ChestPainType
                   918 non-null
                                  object
 3
    RestingBP
                918 non-null
                                  int64
    Cholesterol 918 non-null
                                  int64
    FastingBS
                918 non-null
                                  int64
    RestingECG
                918 non-null
                                  object
    MaxHR
                   918 non-null
                                  int64
    ExerciseAngina 918 non-null
                                  object
9
    Oldpeak
                   918 non-null
                                  float64
                                  object
 10
    ST Slope 918 non-null
    HeartDisease 918 non-null
                                  int64
dtypes: float64(1), int64(6), object(5)
memory usage: 86.2+ KB
```

```
In [8]: data.duplicated().sum()
```

Result

No Missing Value

Out[8]:

No Duplicated Value

After filtering row becomes 902 before 918

Exploratory Data Analysis (EDA) Insights

Numerical Data

- There is no redundant feature(s)
- Oldpeak has highest correlation to heart disease (41%)
- Meanwhile MaxHR has high correlation to heart disease, but in negative way (-40%)
- The higher Oldpeak and the lower MaxHR tend have heart disease and heart failure

Exploratory Data Analysis (EDA) Insights

Categorical Data

The highest category that risky have heart disease:

Sex : Male

ChestPainType : ASY (Asymptomatic)

RestingECG : Normal

ExcerciseAngina : Yes

ST_Slope : Flat

• Those condition needs to be proven by further check other aspects (ex. Lifestyle)

Feature Engineering

Label Encoding

Sex	М	F
ExerciseAngina	N	Υ

Sex	0	1
ExerciseAngina	0	1

One Hot Encoding

C	ChestPainType	ChestPainType_ASY	FChestPainType_ATA	ChestPainType_NAP	ChestPainType_TA
	RestingECG	RestingECG_LVH	RestingECG_Normal	RestingECG_ST	
	ST_Slope	ST_Slope_Down	ST_Slope_Flat	ST_Slope_Up	

Imbalance Data Training

Model Training with Hyper Parameter Tuning and Evaluation

Logistic Regression

```
logreg = LogisticRegression(random_state=42)

# Hyperparameter Tuning
parameters = {
    'penalty': ('l2','none'),
    'C': (1,2,5),
    'fit_intercept': [0],
    'solver': ('newton-cg', 'sag', 'lbfgs'),
    'max_iter': (2,9)
}

# note: I use recall
logreg_gridcv = GridSearchCV(logreg, parameters, cv=5, scoring='recall')
logreg_gridcv.fit(x train, y train)
```

Random Forest

Recal

Precis

RF = RandomForestClassifier(random state=42)

Hyperparameter Tuning
parameters = {
 'max_depth': (1,3,5,7),
 'min_samples_split':(2, 5, 10),
 'min_samples_leaf': (1, 2, 4)
}

note: I use recall
RF_gridcv = GridSearchCV(RF, parameters, cv=5, scoring='recall')
RF_gridcv.fit(x_train, y_train)

Recall	91%
F-1 Score	85%
Precision	88%

I	93%
core	80%
sion	86%

The Best Algorithm

Logistic Regression

Random Forest

False positive in these confusion metric: Model predicts people have heart disease, but they don't

Logistic Regression is suitable algorithm to predict the tendetion of heart failure

Feature Importance

The slope of the peak exercise ST segment become the highest factor that cause heart failure

Conclusion and Recommendation

- All features in the dataset are used to analysing (no redundant features)
- Individual ST_Slope become the highest factor that can cause heart failure.
- Best algorithm to use is logistic regression

Adding more features about lifestyle. Example:

- Smoker status
- Daily food

