Notes on limits: In recitation on Thursday, we will cover some examples of limits. Below I will state some facts about limits that we will use.

- 1. If f(x) is a continuous function and g(x) is any function, then $\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x))$.
- 2. Let us denote the expression:

(a) "
$$\lim_{x\to a} g(x)$$
" by ∞ if $\lim_{x\to a} g(x) = \infty$

(b) "
$$\lim_{x\to a} g(x)$$
" by $-\infty$ if $\lim_{x\to a} g(x) = -\infty$

Then when A is a constant finite number, we have:

(a)
$$A + \infty = \infty + A = \infty$$

(b)
$$A - \infty = -\infty + A = -\infty$$

(c)
$$-A + \infty = \infty - A = \infty$$

(d)
$$-A - \infty = -\infty - A = -\infty$$

(e)
$$\infty + \infty = \infty$$

(f)
$$-\infty - \infty = -\infty$$

(g)
$$A * \infty = \infty * A = \infty$$
 if $A > 0$, and $A * \infty = \infty * A = -\infty$ if $A < 0$

(h)
$$\infty * \infty = \infty$$

(i)
$$\frac{A}{\infty} = 0$$

(j)
$$\frac{\infty}{A} = \infty$$
 if $A > 0$, and $\frac{\infty}{A} = -\infty$ if $A < 0$

There are two special cases that we will study in this course, where simple rules like those above no longer work.

Case: $\infty - \infty$:

Here are three examples showing that $\infty - \infty$ may equal any of $\infty, -\infty$, or a finite constant number A.

(a)
$$\lim_{x \to \infty} [x^2 - x] = \lim_{x \to \infty} [x(x - 1)] = \lim_{x \to \infty} [x] * \lim_{x \to \infty} [(x - 1)] = \infty * \infty = \infty$$

(b)
$$\lim_{x\to\infty} [x - (x - A)] = \lim_{x\to\infty} [A] = A$$

(c)
$$\lim_{x \to \infty} [x^2 - x^3] = \lim_{x \to \infty} [x^2(1-x)] = \lim_{x \to \infty} [x^2] \lim_{x \to \infty} [(1-x)] = \infty * (-\infty) = -\infty$$

Case: ∞/∞ :

Here are four examples showing that ∞/∞ may equal any of $\infty, -\infty, 0$, or a nonzero finite constant number A.

(a)
$$\lim_{x\to\infty} [x^2/x] = \lim_{x\to\infty} [x] = \infty$$

(b)
$$\lim_{x\to\infty} [Ax/x] = \lim_{x\to\infty} [A] = A$$

(c)
$$\lim_{x\to\infty} [x^2/x^3] = \lim_{x\to\infty} [1/x] = 0$$

(d)
$$\lim_{x\to\infty} [-x^2/x] = \lim_{x\to\infty} [-x] = -\infty$$