Discrete Fourier transform	If $f: \mathbb{F}_p^n \to \mathbb{C}$, then $\hat{f}(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} f(x) \omega^{x \cdot t}$ where $\omega = e^{\frac{\tau i}{p}}$. More generally, if $f: G \to \mathbb{C}$, then $\hat{f}: \hat{G} \to \mathbb{C}$ is defined by $\hat{f}(\gamma) = \mathbb{E}_{x \in G} f(x) \gamma(x)$
fourier-transform fourier-analysis dft-def	
Inversion formula for the discrete Fourier transform	$f(x) = \sum_{t \in \mathbb{F}_p^n} \hat{f}(t)\omega^{-x \cdot t}$ $Proof.$ $\sum_{t \in \mathbb{F}_p^n} \hat{f}(t)\omega^{-x \cdot t} = \sum_{t \in \mathbb{F}_p^n} \left(\mathbb{E}_y f(y)\omega^{y \cdot t} \right) \omega^{-x \cdot t}$ $= \mathbb{E}_y f(y) \sum_t \omega^{(y-x) \cdot t}$ $= \mathbb{E}_y f(y) 1_{y=x} p^n$ $= f(x)$
fourier-transform fourier-analysis dft-inversion	
Ways to turn a set $A\subseteq \mathbb{F}_p^n$ into a function	• 1_A the characteristic function of A , ie $1_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$ Normalised in the ∞ norm. • μ_A the characteristic measure of A , ie $\mu_A = \alpha^{-1} 1_A$ where $\alpha = \frac{ A }{ G }$. Normalised in the L^1 norm. • f_A the balanced function of A , ie $f_A(x) = 1_A(x) - \alpha$ Normalised to have sum 0 .
Fourier transform of $-A$	$\widehat{1_{-A}} = \overline{1_A}$ Proof. $\widehat{1_{-A}}(t) = \mathbb{E}_x 1_{-A}(x) \omega^{x \cdot t}$ $= \mathbb{E}_x 1_A(-x) \omega^{x \cdot t}$ $= \mathbb{E}_x 1_A(x) \omega^{-x \cdot t}$ $= \widehat{1_A}(t)$
fourier-transform fourier-analysis dft-neg	

Fourier transform of a subspace		If $V \leq \mathbb{F}_p^n$, then $\widehat{\mu_V}(t) = 1_{V^\perp}(t)$ Proof. $\widehat{1_V}(t) = \mathbb{E}_x 1_V(x) \omega^{x \cdot t} = \frac{ V }{ G } 1_{V^\perp}(t)$
fourier-transform fourier-analysis	dft-subspace	
Fourier transform of a random set		Let $R \subseteq \mathbb{F}_p^n$ be such that each x is included with probability $\frac{1}{2}$ independently. Then with high probability $\sup_{t \neq 0} \left \widehat{1_R}(t) \right = O\left(\sqrt{\frac{\log(p^n)}{p^n}}\right)$ Proof. Chernoff
fourier-transform fourier-analysis	dft-random-set	
Inner product, L^p norm		If $f, g : \mathbb{F}_p^n \to \mathbb{C}$, then $ \langle f, g \rangle = \mathbb{E}_x f(x) \overline{g(x)} $ $ \langle \hat{f}, \hat{g} \rangle = \sum_t \hat{f}(t) \overline{\hat{g}(t)} $ $ f _p^p = \mathbb{E}_x f(x) ^p $ $ \hat{f} _p^p = \sum_t \hat{f}(t) ^p $
fourier-analysis	discrete-lp-norm-def	
Plancherel and Parseval's identities		$\langle f,g\rangle = \left\langle \hat{f},\hat{g}\right\rangle \qquad \text{(Plancherel)}$ $\ f\ _2 = \left\ \hat{f}\right\ _2 \qquad \text{(Parseval)}$ $Proof.$ $\left\langle \hat{f},\hat{g}\right\rangle = \sum_t \hat{f}(t)\overline{\hat{g}(t)} = \sum_{t,x,y} f(x)\overline{g(y)}\omega^{(x-y)\cdot t}$ $= \sum_{x,y} f(x)\overline{g(y)}1_{x=y} = \langle f,g\rangle$
fourier-transform fourier-analysis	discrete-plancherel-parseval	

Large spectrum	The ρ -large spectrum of f is
	$\operatorname{Spec}_{\rho}(f) = \{ t \mid \hat{f}(t) \ge \rho \ f\ _1 \}$
large-spectrum fourier-analysis large-spectrum-def	
Large spectrum of a subspace	If $V \leq \mathbb{F}_p^n$ and $\rho > 0$, then
	$\operatorname{Spec}_{\rho}(1_V) = V^{\perp}$
large-spectrum fourier-analysis large-spectrum-subspace	
Upper bound on the size of the large spectrum	For all $\rho > 0$,
	$\left \operatorname{Spec}_{\rho}(f) \right \le \rho^{-2} \frac{\ f\ _{2}^{2}}{\ f\ _{1}^{2}}$
	Proof.
	$\left\ f\right\ _{2}^{2}=\left\ \hat{f}\right\ _{2}^{2}\geq\sum_{t\in\operatorname{Spec}_{\rho}(f)}\left \hat{f}(t)\right ^{2}\geq\left \operatorname{Spec}_{\rho}(f)\right (\rho\left\ f\right\ _{1})^{2}$
	$t \in \operatorname{Spec}_{\rho}(f)$
large-spectrum fourier-analysis card-large-spectrum-le	
Convolution of functions	Given $f,g:\mathbb{F}_p^n\to\mathbb{C}$, their convolution $f*g:\mathbb{F}_p^n\to\mathbb{C}$ is given by
	given by $(f*g)(x) = \mathbb{E}_y f(y) g(x-y)$
convolution fourier-analysis convolution-def	

Meaning of 1_A*1_B	$(1_A*1_B)(x) = \mathbb{E}_y 1_A(y) 1_B(x-y)$ $= \frac{1}{p^n} A \cap (x-B) $ $= \frac{\# \text{ ways to write } x = a+b, a \in A, b \in B}{p^n}$ In particular, the support of 1_A*1_B is the sum set $A+B = \{a+b \mid a \in A, b \in B\}$
convolution fourier-analysis convolution-indicators	
Relationship between convolution and Fourier transform	Given $f, g : \mathbb{F}_p^n \to \mathbb{C}$, $\widehat{f * g}(t) = \widehat{f}(t)\widehat{g}(t)$ Proof. $\widehat{f * g}(t) = \mathbb{E}_x \left(\mathbb{E}_y f(y) g(x - y) \right) \omega^{x \cdot t}$ $= \mathbb{E}_y f(y) \mathbb{E}_u g(u) \omega^{(u + y) \cdot t}$ $= \widehat{f}(t) \widehat{g}(t)$
fourier-analysis dft-convolution	
Meaning of the L^4 norm of the Fourier transform	п. п4

 $= \mathbb{E}_{x+y=z+w} f(x) f(y) \overline{f(z)} \overline{f(w)}$ fourier-transform fourier-transform

Bogolyubov's lemma in \mathbb{F}_p^n If $A \subseteq \mathbb{F}_p^n$ has density $\alpha > 0$, then there V of codimension at most $2\alpha^{-2}$ such that (A+A).

Proof. Write $(A+A)-(A+A)=\operatorname{supp}(\underline{1_A})$ set $K=\operatorname{Spec}_\rho(1_A)$ for $\rho=\sqrt{\frac{\alpha}{2}}>0$ and We have $\operatorname{codim} V \leq |K| \leq \rho^{-2}\alpha^{-1}=2\alpha^{-1}$ $g(x)=\alpha^4+\sum_{t\in K\setminus\{0\}}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}+\sum_{t\in K\setminus\{0\}}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}+\sum_{t\in K\setminus\{0\}}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}+\sum_{t\in K\setminus\{0\}}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}+\sum_{t\in K\setminus\{0\}}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}+\sum_{t\in K\setminus\{0\}}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}+\sum_{t\in K\setminus\{0\}}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}$

If $A\subseteq \mathbb{F}_p^n$ has density $\alpha>0$, then there exists a subspace V of codimension at most $2\alpha^{-2}$ such that $V\subseteq (A+A)-(A+A)$.

Proof. Write $(A+A)-(A+A)=\operatorname{supp}(\underbrace{1_A*1_A*1_{-A}*1_{-A}}),$ set $K=\operatorname{Spec}_\rho(1_A)$ for $\rho=\sqrt{\frac{\alpha}{2}}>0$ and define $V=\langle K\rangle^\perp$. We have $\operatorname{codim} V\le |K|\le \rho^{-2}\alpha^{-1}=2\alpha^{-2}$ and $g(x)=\alpha^4+\underbrace{\sum_{t\in K\backslash\{0\}}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}}_{(1)}+\underbrace{\sum_{t\notin K}\left|\widehat{1_A}(t)\right|^4\omega^{-x\cdot t}}_{(2)}$ Now prove $(1)\ge 0$ and $|(2)|\le \rho^2\alpha^3=\frac{\alpha^4}{2}$ so that g(x)>0 whenever $x\in V$.

 $\left\|\hat{f}\right\|_{A}^{4} = \mathbb{E}_{x+y=z+w}f(x)f(y)\overline{f(z)f(w)}$

 $= \mathbb{E}_{a,x,y,z,w} f(x) f(y) 1_{x+y=a} \overline{f(z) f(w) 1_{z+w=a}}$

 $\|\hat{f}\|_{4}^{4} = \|\hat{f}^{2}\|_{2}^{2} = \|\widehat{f*f}\|_{2}^{2} = \|f*f\|_{2}^{2}$

 $= \mathbb{E}_a(f * f)(a)\overline{(f * f)(a)}$

Example of a set A of fixed density such that $A+A$ does not contain any subspace of bounded codimension	The set $A=\{x\in\mathbb{F}_2^n\mid x \geq \frac{n}{2}+\frac{\sqrt{n}}{2}\}$ has density at least $\frac{1}{4}$ but there is no coset C of any subspace of codimension \sqrt{n} such that $C\subseteq A+A$.
fourier-analysis sumset-no-subspace, finite-field-model	
Density increment in \mathbb{F}_p^n	Let $A \subseteq \mathbb{F}_p^n$ of density α . If $t \neq 0$ is in $\operatorname{Spec}_{\rho}(1_A)$, then there exists x such that $ A \cap (x+V) \geq \alpha \left(1 + \frac{\rho}{2}\right) V $ where $V = \langle t \rangle^{\perp}$. $Proof. \text{ For } j = 1, \dots, p, \text{ write } v_j + V \text{ the cosets of } V, \ a_j = \frac{ A \cap (v_j + V) }{ V } - \alpha \text{ the density increment within each } V_j. \text{ Calculate } \sum_j a_j = 0 \text{ and } \widehat{1_A}(t) = \mathbb{E}_j a_j \omega^j, \text{ so that}$ $\rho \alpha \leq \left \widehat{1_A}(t)\right \leq \mathbb{E}_j a_j = \mathbb{E}_j(a_j + a_j)$
large-spectrum, finite-field-model fourier-analysis density-increment-ff	and find j such that $ a_j + a_j \ge \rho \alpha$. Take $x = v_j$.
Definition of T_3	If $f, g, h : \mathbb{F}_p^n \to \mathbb{C}$, then $T_3(f, g, h) = \mathbb{E}_x f(x) g(x+d) h(x+2d) = \langle f * h, \overline{g} \rangle$
convolution fourier-analysis t3-def	
Number of 3APs in a uniform set $A \subseteq \mathbb{F}_p^n$	If $\sup_{t\neq 0}\left \widehat{1_A}(t)\right =o(1)$, then A contains $(\alpha^3+o(1)) G ^2$ 3APs. Proof. The number of 3APs in A is $ G ^2$ times $T_3(1_A,1_A,1_A)=\langle 1_A*1_A,1_{2\cdot A}\rangle=\left\langle \widehat{1_A}^2,\widehat{1_{2\cdot A}}\right\rangle\\ =\alpha^3+\sum_{t\neq 0}\widehat{1_A}(t)^2\overline{1_{2\cdot A}(t)} \text{ by Plancherel}$ In absolute value, the error term is at most $\sup_{t\neq 0}\left \widehat{1_{2\cdot A}}(t)\right \sum_{t}\left \widehat{1_A}(t)\right ^2=\alpha\sup_{t\neq 0}\left \widehat{1_A}(t)\right $
3AP, finite-field-model fourier-analysis 3AP-uniform	

Meshulam's theorem	IF $n > 2$ and $A \subset \mathbb{P}^n$ only contains trivial 3APs, then the
Mediuani 8 mediciii	IF $p \geq 3$ and $A \subseteq \mathbb{F}_p^n$ only contains trivial 3APs, then the density of A is $O(n^{-1})$.
	<i>Proof.</i> By assumption, $T_3(1_A, 1_A, 1_A) = \frac{\alpha}{p^n}$. But
	$\left T_3(1_A, 1_A, 1_A) - \alpha^3\right \le \alpha \sup_{t \ne 0} \left \widehat{1_A}(t)\right $
	Hence, provided that $2\alpha^{-2} \leq p^n$, we find a subspace $V \leq \mathbb{F}_p^n$ of codimension 1 and $x \in \mathbb{F}_p^n$ such that
	$ A \cap (x+V) \ge \alpha \left(1 + \frac{\alpha^2}{4}\right) V $
3AP fourier-analysis meshulam, finite-field-model	Iteratively increase α like this until $2\alpha^{-2} \leq p^n$. Since $\alpha \leq 1$, this takes at most $9\alpha^{-1}$ steps. So $p^{n-9\alpha^{-1}} \leq 2\alpha^{-2}$ which implies $\alpha \leq \frac{18}{n}$, as wanted.
Characters, dual group	Characters of the group G are group homomorphisms $\gamma: G \to \mathbb{C}^{\times}$. They form a group called the Pontryagin dual or dual group of G .
character fourier-analysis character-def	
Duals of $\mathbb{F}_p^n, \mathbb{Z}/n\mathbb{Z}$	• If $G = \mathbb{F}_p^n$, then $\hat{G} = \{ \gamma_t : x \mapsto \omega^{x \cdot t} \mid t \in G \}$
	• If $G = \mathbb{Z}/n\mathbb{Z}$, then $\hat{G} = \{ \gamma_t : x \mapsto \omega^{xt} \mid t \in G \}$
character fourier-analysis dual-ff	
Fourier transform of an interval in $\mathbb{Z}/p\mathbb{Z}$	Let p be a prime, $L < p$ be even and $J = [-\frac{L}{2}, \frac{L}{2}] \subseteq \mathbb{Z}/p\mathbb{Z}$. Then for all $t \neq 0$ we have
	$\widehat{1_J}(t) \le \min\left(\frac{L+1}{p}, \frac{1}{2 t }\right)$

Fourier transform of an interval in $\mathbb{Z}/p\mathbb{Z}$ Let p be a prime, L < p be even and $J = [-\frac{L}{2}]$. Then for all $t \neq 0$ we have $\widehat{1_J}(t) \leq \min\left(\frac{L+1}{p}, \frac{1}{2\,|t|}\right)$

dft-interval

fourier-transform, integer-model fourier-analysis

Density increment or large Fourier coefficient for 3APs in an interval 3AP, integer-model fourier-analysis	Let $A \subseteq [N]$ be of density $\alpha > 0$ with $N > 50\alpha^{-2}$ and containing only trivial 3APs. Let p be a prime in $[\frac{N}{3}, \frac{2N}{3}]$ and write $A' = A \cap [p] \subseteq \mathbb{Z}/p\mathbb{Z}$. Then either 1. $\sup_{t \neq 0} \left \widehat{1_A}(t) \right \geq \frac{\alpha^2}{10}$ 2. or there exists an interval J of length $\geq \frac{N}{3}$ such that $ A \cap J \geq \alpha \left(1 + \frac{\alpha}{400}\right) J $ Proof. There's no non-trivial 3AP with terms in A', A'', A'' where A'' is the middle third of A' . If A' and A'' are both dense enough, then we're in Case 1 by computing $T_3(1_{A'}, 1_{A''}, 1_{A''})$. Else we're in Case 2 by looking at the appropriate complement.
For $t \neq 0, \varepsilon > 0$ and $\phi: [m] \to \mathbb{Z}/p\mathbb{Z}$ multiplication by t , how to partition $[m]$ into progressions of length roughly $\varepsilon \sqrt{m}$ such that $\mathrm{diam}(t \cdot P_i) \leq \varepsilon p$?	Let $u = \lfloor \sqrt{m} \rfloor$ and consider $0, t, \ldots, ut$. By pigeonhole, find $0 \le v < w \le u$ such that $ wt - vt \le \frac{p}{u}$. Set $s = w - v \le u$ so that $ st \le \frac{p}{u}$. Divide $[m]$ into residue classes mod s . Each has size at least $\lfloor \frac{m}{s} \rfloor \ge \lfloor \frac{m}{u} \rfloor$ and can be divided into progressions of the form $a, a + s, \ldots, a + ds$ with $\frac{\varepsilon u}{2} < d \le \varepsilon u$. The diameter of each progression under ϕ is $ dst \le \varepsilon p$.
Density increment from a large Fourier coefficient for 3APs in an interval 3AP, integer-model fourier-analysis density-increment-int	Let $A \subseteq [N]$ be of density $\alpha > 0$. Let p be a prime in $[\frac{N}{3}, \frac{2N}{3}]$ and write $A' = A \cap [p]$. Suppose there exists $t \neq 0$ such that $\left \widehat{1_A}(t)\right \geq \frac{\alpha^2}{10}$. Then there exists a progression p of length at least $\alpha^2 \frac{\sqrt{N}}{500}$ such that $ A \cap P \geq \alpha \left(1 + \frac{\alpha}{50}\right) P $ Proof. Let $\varepsilon = \frac{\alpha^2}{40\pi}$ and partition $[p]$ into progressions P_i of length at least $\frac{\varepsilon\sqrt{p}}{2} \geq \frac{\alpha^2\sqrt{N}}{500}$ and diam $\phi(P_i) \leq \varepsilon p$. Fix one x_i inside each P_i . Write $\left \widehat{f_{A'}}(t)\right = \frac{1}{p}\left \sum_i\sum_{x\in P_i}f_{A'}(x)\omega^{xt}\right $ and use the fact that $\omega^{xt} \approx \omega^{x_it}$ whenever $x \in P_i$ to find some i such that $\sum_{x\in P_i}f_{A'}(x) \geq \frac{\alpha^2 P_i }{40}$.

Roth's theorem $\text{Let } A \subseteq [N] \text{ be a set containing only trivial 3APs. Then } |A| = O(\frac{N}{\log\log N}).$ Proof. Iterate the density increment.

3AP, integer-model fourier-analysis

roth

Behrend's construction		There exists a set $A \subseteq [N]$ containing non nontrivial 3APs of size at least $e^{-O(\sqrt{\log n})}$. See Example Sheet 1.
3AP, integer-model fourier-analysis	behrend	
Bohr set		Let $\Gamma \subseteq \hat{G}$. The Bohr set of frequencies Γ and width ρ is $B(\Gamma,\rho) = \{x \in G \mid \forall \gamma \in \Gamma, \gamma(x)-1 \leq \rho\}$ $ \Gamma \text{ is the rank of the Bohr set.}$
bohr-set fourier-analysis	bohr-set-def	
Bohr set in \mathbb{F}_p^n		When $G = \mathbb{F}_p^n$, $B(\Gamma, \rho) = \langle \Gamma \rangle^{\perp}$ for all small enough ρ (depending only on p , not n).
bohr-set, finite-field-model fourier-analysis	bohr-set-ff	
Lower bound on the size of a Bohr set		If B is a Bohr set of rank d and width ρ , then $ B \geq \left(\frac{\rho}{2\pi}\right)^d G $.
bohr-set fourier-analysis	bohr-set-card-ge	

Bogolyubov's lemma in $\mathbb{Z}/p\mathbb{Z}$	If $A \subseteq \mathbb{Z}/p\mathbb{Z}$ has density $\alpha > 0$, then there exists $\Gamma \subseteq \widehat{\mathbb{Z}/p\mathbb{Z}}$ of size at most $2\alpha^{-2}$ such that $B(\Gamma, \frac{1}{2}) \subseteq (A+A) - (A+A)$.
bohr-set fourier-analysis bogolyubov-int	