Test 3 Formulas

• z-score in R:

$$z_{\alpha/2} = \text{qnorm}(1 - \alpha/2)$$

 $z_{\alpha} = \text{qnorm}(1 - \alpha)$

• t-score in R:

$$t_{\alpha/2} = \operatorname{qt}(1 - \alpha/2, \operatorname{df})$$

 $t_{\alpha} = \operatorname{qt}(1 - \alpha, \operatorname{df})$

• The confidence interval for **population mean** with known σ :

$$\overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = \left[\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right]$$

• The confidence interval for the difference between **two population means**:

$$(\overline{X} - \overline{Y}) \pm z_{\alpha/2} \cdot \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$$

• Sample size needed for a given precision for **population mean**:

In order to attain a margin of error Δ for estimating a **population mean** with a confidence level $(1 - \alpha)$, a sample size is required:

$$n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{\Delta}\right)^2$$

• Sample size needed for a given precision for **population proportion**:

In order to attain a margin of error Δ for estimating a **population proportion** with a confidence level $(1 - \alpha)$, a sample size is required:

$$n \ge 0.25 \left(\frac{z_{\alpha/2}}{\Delta}\right)^2$$

Alternatively, we can generate to any proportion if the proportion p is given:

$$n \ge p(1-p) \left(\frac{z_{\alpha/2}}{\Delta}\right)^2$$

• The confidence interval for **population proportion**:

$$\widehat{p}\pm z_{lpha/2}\cdot\sqrt{rac{\widehat{p}(1-\widehat{p})}{n}}$$

• The confidence interval for the difference of **population proportions**:

$$(\widehat{p}_1 - \widehat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}}$$

* The confidence interval for the **population Mean** using t-value:

$$\overline{X} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

where s is the sample standard deviation and $t_{\alpha/2}$ is a critical value from t-distribution with n-1 degrees of freedom.

* Possible Errors:

	Result of the test		
	Reject H_0	Accept H_0	
H_0 is true	Type I error	correct	
H_0 is false	correct	Type II error	

* Rejection Regions:

 \ast Z-tests are summarized in the table below.

Null hypothesis	Parameter, estimator	If H_0 is true:		Test statistic		
H_0	$ heta,\widehat{ heta}$	$\mathbf{E}(\widehat{ heta})$	$\operatorname{Var}(\widehat{\theta})$	$Z = \frac{\widehat{\theta} - \theta_0}{\sqrt{\operatorname{Var}(\widehat{\theta})}}$		
One-sample Z-tests for means and proportions, based on a sample of size n						
$\mu = \mu_0$	μ, \overline{X}	μ_0	$\frac{\sigma^2}{n}$	$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$		
$p = p_0$	p,\widehat{p}	p_0	$\frac{p_0(1-p_0)}{n}$	$\frac{\widehat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$		
Two-sample Z-tests comparing means and proportions of two populations, based on independent samples of size n and m						
$\mu_X - \mu_Y = D$	$\frac{\mu_X - \mu_Y}{\overline{X} - \overline{Y}},$	D	$\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}$	$\frac{\overline{X} - \overline{Y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$		
$p_1 - p_2 = D$	$p_1 - p_2,$ $\widehat{p}_1 - \widehat{p}_2$	D	$\frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}$	$\frac{\widehat{p}_1 - \widehat{p}_2 - D}{\sqrt{\frac{\widehat{p}_1(1 - \widehat{p}_1)}{n} + \frac{\widehat{p}_2(1 - \widehat{p}_2)}{m}}}$		
$p_1 = p_2$	$p_1 - p_2,$ $\widehat{p}_1 - \widehat{p}_2$	0	$p(1-p)\left(\frac{1}{n} + \frac{1}{m}\right),$ where $p = p_1 = p_2$	$\frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}}$ where $\widehat{p} = \frac{n\widehat{p}_1 + m\widehat{p}_2}{n+m}$		

* T-tests are summarized in the table below.

Hypothesis H_0	Conditions	Test statistic t	Degrees of freedom
$\mu = \mu_0$	Sample size n ; unknown σ	$t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$	n-1
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown but equal standard deviations, $\sigma_X = \sigma_Y$	$t = \frac{\overline{X} - \overline{Y} - D}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$	n+m-2
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown, unequal standard deviations, $\sigma_X \neq \sigma_Y$	$t = \frac{\overline{X} - \overline{Y} - D}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$	Satterthwaite approximation, formula (9.12)

* R code for 95% Confidence Intervals for one Proportion:

$$prop.test(c(x,0), c(n,n), conf.level = 0.95, correct = F)$$

* R code for 95% Confidence Intervals for two Proportions:

$$prop.test(c(x1,x2), c(n1,n2), conf.level = 0.95, correct = F)$$

* R code to find the critical $t_{\alpha/2}$:

$$t_{\alpha/2} = \operatorname{qt}(1 - \frac{\alpha}{2}, df)$$

* R code for 95% Confidence Intervals when sample standard deviation (s) is given:

$$t.test(x, conf.level = 0.95)$$

where, x=c(x1, x2, x3, ..., xn).

* R code to perform a hypothesis test for one proportion:

$$prop.test(x, n, p, alternative = "greater" (or "less", or "two.sided"), correct = F)$$

* R code to perform a hypothesis test for two proportions:

$$prop.test(c(x1,\!x2),\,c(n1,\!n2),\,alternative = "greater" \,(or \,\,"less",\,or \,\,"two.sided"),\\correct = F)$$

* R code to perform a hypothesis test for one mean if we have the full data set:

* R code to find the probability using t-test:

$$\mathbf{P}\{t < a\} = \operatorname{pt}(\mathbf{a}, \, \operatorname{df})$$

$$\mathbf{P}\{t>b\}=1$$
- pt(b, df)