EE488C Special Topics in EE < Deep Learning and AlphaGo> 1:00-3:00pm, October 24, 2016 EE, KAIST, Fall 2016

Mid-term exam solutions

(10 points) Find an example of two binary random variables X and Y such that X and Y are Bernoulli(1/2) and they are not independent.

Solution) If X = Y is Bernoulli(1/2), then X and Y are not independent since Pr(X = Y)0) $\Pr(Y = 0) = \frac{1}{4} \neq \Pr(X = 0, Y = 0) = \frac{1}{2}$.

(20 points) Consider a neural network given as follows.

$$y = \mathbf{w}^T \mathbf{h}, \ \mathbf{h} = g(\mathbf{W}^T \mathbf{x})$$

where $\mathbf{x} = (x_1, x_2)^T$ is the input vector, y is the output, $\mathbf{W} = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}$, $\mathbf{w} = (w_1, w_2)^T$, and $g(\cdot)$ is an elementwise ReLU. Assume $\mathbf{W} = \begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}$ and $\mathbf{w} = (\gamma, \gamma)^T$ and find conditions on α , β and γ with which this network can perform XOR, i.e., the output is 0 if the input is $(0,0)^T$ or $(1,1)^T$ and the output is 1 if the input is $(0,1)^T$ or $(1,0)^T$.

Solution) As done in lecture notes, let's define
$$\mathbf{X} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$$
. Using this, we get $\mathbf{X}\mathbf{W} = \begin{pmatrix} 0 & 0 \\ \beta & \alpha \\ \alpha & \beta \\ \alpha + \beta & \alpha + \beta \end{pmatrix}$ and thus $g(\mathbf{X}\mathbf{W})\mathbf{w} = \begin{pmatrix} 0 \\ \gamma(g(\alpha) + g(\beta)) \\ \gamma(g(\alpha) + g(\beta)) \\ 2\gamma g(\alpha + \beta) \end{pmatrix}$, which needs to be equal to $\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$.

Since $\gamma(g(\alpha)+g(\beta))=1$ and $g(\cdot)\geq 0$, we need to have $\gamma>0$ and $g(\alpha)+g(\beta)>0$, which implies $\alpha > 0$ or $\beta > 0$. Furthermore, $\alpha + \beta \leq 0$ because $2\gamma g(\alpha + \beta) = 0$ and $\gamma > 0$. Therefore, all possible values for α , β and γ are

$$\alpha > 0, \ \gamma = \frac{1}{\alpha}, \ \beta \le -\alpha$$

or

$$\beta > 0, \ \gamma = \frac{1}{\beta}, \ \alpha \le -\beta.$$

- (20 points) Consider a problem of estimating θ from a random sample x generated according to $Bernoulli(\theta)$, where $0 < \theta < 1$. Let's consider a trivial estimator that always says α regardless of the sample it observes, where $0 \le \alpha \le 1$.
- (a) Calculate the MSE of this estimator.

Solution)
$$\mathbb{E}[(\alpha - \theta)^2] = (\alpha - \theta)^2$$

(b) Find the value of α that minimizes the worst-case MSE, i.e., find α that minimizes the following. What is the minimum worst-case MSE?

$$\max_{0 \le \theta \le 1} \mathbb{E}[(\alpha - \theta)^2]$$

Solution) Since $\mathbb{E}[(\alpha - \theta)^2] = (\alpha - \theta)^2$, it is maximizes either at $\theta = 0$ or $\theta = 1$, i.e.,

$$\max_{0 \le \theta \le 1} \mathbb{E}[(\alpha - \theta)^2] = \max\{\alpha^2, (1 - \alpha)^2\}$$
$$= \begin{cases} \alpha^2 & \text{if } \alpha \ge \frac{1}{2} \\ (1 - \alpha)^2 & \text{otherwise} \end{cases}$$

Therefore, this is minimized if $\alpha = \frac{1}{2}$ and the minimum worst-case MSE is equal to $\frac{1}{4}$. You can see this is higher than $\frac{1}{16}$ achievable by the optimal estimator in Problem 1(b) in Problem Set # 2.

- **4.** (20 points) Let $J(x,y) = (x-2)^2 + 5(y-2)^2$ denote a cost function in terms of $(x,y) \in \mathbb{R}$. Let's add an L^1 regularization term $5||(x,y)||_1 = 5(|x|+|y|)$ and minimize J(x,y) + 5(|x|+|y|). We can minimize this by following the steps below. The case $y \le 0$ can be analyzed similarly, but the minimum of J(x,y) + 5(|x|+|y|) is achieved when $y \ge 0$ and therefore we only need to analyze the following two cases to find the minimum value of J(x,y) + 5(|x|+|y|).
- (a) Assume $x \ge 0$ and $y \ge 0$ and minimize J(x,y) + 5(|x| + |y|). Solution) Since $x \ge 0$ and $y \ge 0$, we have |x| = x and |y| = y. Therefore, we get $J(x,y) + 5(|x| + |y|) = (x-2)^2 + 5(y-2)^2 + 5(x+y) = (x+1/2)^2 + 5(y-3/2)^2 + \text{const}$

This is minimized if $y = \frac{3}{2}$ and x = 0. Note that since $x \ge 0$, $(x + 1/2)^2$ is minimized when x = 0. The minimum value is $J(0, 3/2) + 5(0 + 3/2) = \frac{51}{4}$.

(b) Assume $x \le 0$ and $y \ge 0$ and minimize J(x,y) + 5(|x| + |y|).

Solution) Since $x \leq 0$ and $y \geq 0$, we have |x| = -x and |y| = y. Therefore, we get

$$J(x,y) + 5(|x| + |y|) = (x-2)^2 + 5(y-2)^2 + 5(-x+y) = (x-9/2)^2 + 5(y-3/2)^2 + \text{const}$$

This is minimized if $y=\frac{3}{2}$ and x=0. Note that since $x\leq 0$, $(x-9/2)^2$ is minimized when x=0. The minimum value is $J(0,3/2)+5(0+3/2)=\frac{51}{4}$. Therefore, by combining (a) and (b) we conclude that the minimum of J(x,y)+5(|x|+|y|) achieved when x=0 and $y=\frac{3}{2}$ and its minimum value is $\frac{51}{4}$. You can see this gives a sparse solution.

5. (10 points) Consider the following one-tap IIR filter for averaging u[k], where $0 < \alpha < 1$.

$$x[k] = \alpha x[k-1] + (1-\alpha)u[k]$$

Assume $u[k] = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{otherwise} \end{cases}$ and x[k] = 0 for k < 0. Calculate $\sum_{k=0}^{\infty} kx[k]$, which can be considered as an effective width of the impulse response.

2

Solution) Since $x[k] = (1 - \alpha)\alpha^k$ for $k \ge 0$ and x[k] = 0 for k < 0, we get

$$\sum_{k=0}^{\infty} kx[k] = \sum_{k=0}^{\infty} k(1-\alpha)\alpha^k$$

$$= \alpha(1-\alpha)\sum_{k=0}^{\infty} k\alpha^{k-1}$$

$$= \alpha(1-\alpha)\frac{\partial}{\partial \alpha}\sum_{k=0}^{\infty} \alpha^k$$

$$= \alpha(1-\alpha)\frac{\partial}{\partial \alpha}\frac{1}{1-\alpha}$$

$$= \alpha(1-\alpha)\frac{1}{(1-\alpha)^2}$$

$$= \frac{\alpha}{1-\alpha}.$$

6. (20 points) Design a continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ such that

$$f(x,0) = 0, \ \forall x \in \mathbb{R}$$
$$f(0,y) = 0, \ \forall y \in \mathbb{R}$$
$$f(1,1) = 1$$
$$f(-1,-1) = 1$$

Try to make f(x,y) as simple as you can such that it can generalize well for unseen samples.

Solution) f(x,y) = xy would be a simple solution. You can see this satisfies the conditions given above. Of course, there are infinitely many solutions, e.g., $f(x,y) = xy + (xy - 1)^2$. But, as the function becomes more complex, it tends to overfit and may perform poorly for unseen samples.