COL703: Logic for Computer Science (Aug-Nov 2022)

Lectures 19, 20, & 21 (Undecidability results, Predicate Resolution)

Kumar Madhukar

madhukar@cse.iitd.ac.in

October 20th, 27th, and 29th, 2022

Compactness

- Compactness of sets of ground formulas A set of ground quantifier-free formulas has a model iff every finite subset of it has a model.
- Compactness of closed formulas A set of first-order sentences has a model iff every finite subset of it has a model.
 - set of 1st order sentences has a model iff every finite subset of it has a model.
- Löwenheim Skolem Theorem If a set of closed formulas has a model, then it has a model with a domain (universe) which is at most countable.
 - if a set of closed formulas has a model, then it has a model with a universe which is at most countable.

Semi-decidability of validity

Validity of first-order formulas is semi-decidable¹.

 $^{^{1}}$ a semi-decision procedure for validity should return "valid" if a valid formula is given as input, but otherwise may compute forever

Semi-decidability of validity

Validity of first-order formulas is semi-decidable¹.

Proof:

compute a skolem form formula G equisat with not F

```
Semi-Decision Procedure for Validity
Input: Closed formula F
Output: Either that F is valid or compute forever
Compute a Skolem-form formula G equisatisfiable with \neg F
Let G_1, G_2, \ldots be an enumeration of the Herbrand expansion E(G)
for n = 1 to \infty do
begin

if \square \in \operatorname{Res}^*(G_1 \cup \ldots \cup G_n) then stop and output "F is valid"
end
```

¹a semi-decision procedure for validity should return "valid" if a valid formula is given as input, but otherwise may compute forever

Let us try this on the formula

$$\exists x \forall y \ P(x,y) \rightarrow \forall y \exists x \ P(x,y)$$

Undecidability results

Post's Correspondence Problem (PCP) is undecidable.

Undecidability of validity follows from undecidability of PCP.

Since F is unsatisfiable iff $\neg F$ is valid, satisfiability must also be undecidable.

Satisfiability is not even semi-decidable (because, for any F, either F is valid or $\neg F$ is satisfiable).

Proof

Reference material:

https://www.cs.ox.ac.uk/people/james.worrell/lecture13-2015.pdf

Closed formula for a general PCP instance

Given a general instance $\mathbf{P} = \{(x_1, y_1), \dots, (x_k, y_k)\}$ of PCP we have the formulas

$$F_1 = \bigwedge_{i=1}^k P(f_{x_i}(e), f_{y_i}(e))$$

$$F_2 = \forall u \,\forall v \, \bigwedge_{i=1}^k (P(u, v) \to P(f_{x_i}(u), f_{y_i}(v)))$$

$$F_3 = \exists u \, P(u, u) .$$

The PCP instance **P** has a solution iff $F_1 \wedge F_2 \rightarrow F_3$ is valid.

Unification

- a substitution is a function θ from the set of σ -terms to itself such that $c\theta = c$ for each constant symbol c, and $f(t_1, \ldots, t_k)\theta = f(t_1\theta, \ldots, t_k\theta)$ for each k-ary function symbol f
- composition of substitutions is written diagrammatically ($\theta.\theta'$ denotes the substitution obtained by applying θ first, and then θ')
- given a set of literals $D=\{L_1,\ldots,L_k\}$ and a substitution θ , define $D\theta=\{L_1\theta,\ldots,L_k\theta\}$
- we say that θ unifies D if $D\theta = \{L\}$ for some literal L

Most General Unifier

- $\theta = [f(a)/x][a/y]$ unifies $\{P(x), P(f(y))\}$
- $\theta' = [f(y)/x]$ also unifies $\{P(x), P(f(y))\}$
- θ' is a more general unifier than θ (because $\theta = \theta'.[a/y]$)
- θ is a most general unifier of a set of literals D if θ is a unifier of D, and for any other unifier θ' , we have that $\theta' = \theta.\theta''$
- most general unifiers are only unique up to renaming variables (why?)

Unification theorem

- a set of literals either has no unifier or it has a most general unifier
- $\{P(f(x)), P(g(x))\}\$ cannot be unified
- $\{P(f(x)), P(x)\}\$ cannot be unified
- we cannot unify a variable x and a term t is x occurs in t
- a unifiable set of literals has a most general unifier
- proof:

Robinson's algorithm

end

```
Unification Algorithm
Input: Set of literals D
Output: Either a most general unifier of D or "fail"
\theta := \text{identity substitution}
while \theta is not a unifier of D do
begin left most
pick two distinct literals in D\theta and find the left-most positions at which they differ

if one of the corresponding sub-terms is a variable x and the other a term t not containing x
then \theta := \theta \cdot [t/x] else output "fail" and halt
```

Termination

variable x is replaced by t that does not contain x, hence number of variables decreases with every iteration

- ullet a variable x is replaced in each iteration with a term t that does not contain x
- ullet the number of different variables occuring in D heta decreases by one in each iteration

Correctness

- for any unifier θ' of D, we have $\theta' = \theta.\theta'$
- argue that this is a loop invariant
- holds initially (θ is identity)
- why does the inductive step work?

Resolution

Definition 3 (Resolution). Let C_1 and C_2 be clauses with no variable in common. We say that a clause R is a resolvent of C_1 and C_2 if there are sets of literals $D_1 \subseteq C_1$ and $D_2 \subseteq C_2$ such that $D_1 \cup \overline{D_2}$ has a most general unifier θ , and

$$R = (C_1 \theta \setminus \{L\}) \cup (C_2 \theta \setminus \{\overline{L}\}), \qquad (1)$$

where $L = D_1\theta$ and $\overline{L} = D_2\theta$. More generally, if C_1 and C_2 are arbitrary clauses, we say that R is a resolvent of C_1 and C_2 if there are variable renamings θ_1 and θ_2 such that $C_1\theta_1$ and $C_2\theta_2$ have no variable in common, and R is a resolvent of $C_1\theta_1$ and $C_2\theta_2$ according to the definition above.

$$\{P(f(x),g(y)),Q(x,y)\}$$

$$\{\neg P(f(f(a)),g(z)),Q(f(a),z)\}$$

$$\{P(f(x),g(y)),Q(x,y)\}$$

$$\{\neg P(f(f(a)),g(z)),Q(f(a),z)\}$$

$$\{P(f(x),g(y)),Q(x,y)\}$$

$$\{\neg P(f(f(a)),g(z)),Q(f(a),z)\}$$

check if there are common variables

pick D_1 and D_2 , and get a most general unifier θ of $D_1 \cup \overline{D_2}$

$$\{P(f(x),g(y)),Q(x,y)\}$$

$$\{\neg P(f(f(a)),g(z)),Q(f(a),z)\}$$

check if there are common variables

pick D_1 and D_2 , and get a most general unifier θ of $D_1 \cup \overline{D_2}$

resolve, to get $\{q(f(a), z)\}$

Another example

$$\{P(x), P(y)\}$$

 $\{\neg P(x), \neg P(y)\}$

Resolution procedure

Input: a set of clauses, S

Output: If the algorithm terminates, report that S is sat or unsat

$$S_0 := S$$

Choose clashing clauses $C_1, C_2 \in S_i$, and let $C = Res(C_1, C_2)$.

If C is \square , terminate and report unsat

$$S_{i+1} = S_i \cup C$$

If $S_{i+1} = S_i$ for all possible pairs of clashing clauses, terminate and report sat

Resolution procedure

Input: a set of clauses, S

Output: If the algorithm terminates, report that S is sat or unsat

$$S_0 := S$$

Choose clashing clauses $C_1, C_2 \in S_i$, and let $C = Res(C_1, C_2)$.

If C is \square , terminate and report unsat

$$S_{i+1} = S_i \cup C$$

If $S_{i+1} = S_i$ for all possible pairs of clashing clauses, terminate and report sat

this may not terminate for a satisfiable set of clauses (because of existence of infinite models); so this is not a decision procedure

- 1. $\{\neg P(x), Q(x), R(x, f(x))\}$
- 2. $\{\neg P(x), Q(x), R'(f(x))\}$
- 3. $\{P'(a)\}$
- 4. $\{P(a)\}$
- 5. $\{\neg R(a, y), P'(y)\}$
- 6. $\{\neg P'(x), \neg Q(x)\}$
- 7. $\{\neg P'(x), \neg R'(x)\}$

given

given given

given

given

given

given

8. $\{\neg Q(a)\}$

1. $\{\neg P(x), Q(x), R(x, f(x))\}$ given 2. $\{\neg P(x), Q(x), R'(f(x))\}$ given 3. $\{P'(a)\}$ given 4. $\{P(a)\}$ given 5. $\{\neg R(a, y), P'(y)\}$ given 6. $\{\neg P'(x), \neg Q(x)\}$ given 7. $\{\neg P'(x), \neg R'(x)\}$

[a/x] 3,6

	1. $\{\neg P(x), Q(x), R(x, f(x))\}\$	given
:	2. $\{\neg P(x), Q(x), R'(f(x))\}$	given
	3. $\{P'(a)\}$	given
	4. $\{P(a)\}$	given
	$5. \left\{ \neg R(a,y), P'(y) \right\}$	given
	6. $\{\neg P'(x), \neg Q(x)\}$	given
	7. $\{\neg P'(x), \neg R'(x)\}$	given
	8. $\{\neg Q(a)\}$	[a/x] 3,6
	9. $\{Q(a), R'(f(a))\}$	[a/x] 2,4

1.	$\{\neg P(x), Q(x), R(x, f(x))\}$	given
2.	$\{\neg P(x), Q(x), R'(f(x))\}$	given
3.	$\{P'(a)\}$	given
4.	$\{P(a)\}$	given
5.	$\{\neg R(a,y), P'(y)\}$	given
6.	$\{\neg P'(x), \neg Q(x)\}$	given
7.	$\{\neg P'(x), \neg R'(x)\}$	given
8.	$\{\neg Q(a)\}$	[a/x] 3,6
9.	$\{Q(a),R'(f(a))\}$	[a/x] 2,4
10.	$\{R'(f(a))\}$	8,9

1.	$\{\neg P(x), Q(x), R(x, f(x))\}$	given
2.	$\{\neg P(x), Q(x), R'(f(x))\}$	given
3.	$\{P'(a)\}$	given
4.	$\{P(a)\}$	given
5.	$\{\neg R(a,y), P'(y)\}$	given
6.	$\{\neg P'(x), \neg Q(x)\}$	given
7.	$\{\neg P'(x), \neg R'(x)\}$	given
8.	$\{\neg Q(a)\}$	[a/x] 3,6
9.	$\{Q(a),R'(f(a))\}$	[a/x] 2,4
10.	$\{R'(f(a))\}$	8,9
11.	$\{Q(a),R(a,f(a))\}$	[a/x] 1,4

1.	$\{\neg P(x), Q(x), R(x, f(x))\}$	given
2.	$\{\neg P(x), Q(x), R'(f(x))\}$	given
3.	$\{P'(a)\}$	given
4.	$\{P(a)\}$	given
5.	$\{\neg R(a,y), P'(y)\}$	given
6.	$\{\neg P'(x), \neg Q(x)\}$	given
7.	$\{\neg P'(x), \neg R'(x)\}$	given
8.	$\{\neg Q(a)\}$	[a/x] 3,6
9.	$\{Q(a),R'(f(a))\}$	[a/x] 2,4
10.	$\{R'(f(a))\}$	8,9
11.	$\{Q(a),R(a,f(a))\}$	[a/x] 1,4
12.	$\{R(a,f(a))\}$	8,11

1.	$\{\neg P(x), Q(x), R(x, f(x))\}$	given
2.	$\{\neg P(x), Q(x), R'(f(x))\}$	given
3.	$\{P'(a)\}$	given
4.	$\{P(a)\}$	given
5.	$\{\neg R(a,y), P'(y)\}$	given
6.	$\{\neg P'(x), \neg Q(x)\}$	given
7.	$\{\neg P'(x), \neg R'(x)\}$	given
8.	$\{\neg Q(a)\}$	[a/x] 3,6
9.	$\{Q(a),R'(f(a))\}$	[a/x] 2,4
10.	$\{R'(f(a))\}$	8,9
11.	$\{Q(a),R(a,f(a))\}$	[a/x] 1,4
12.	$\{R(a,f(a))\}$	8,11
10	$\{P'(f(a))\}$	[f(a)/y] 5,12

1.	$\{\neg P(x), Q(x), R(x, f(x))\}$	given
2.	$\{\neg P(x), Q(x), R'(f(x))\}$	given
3.	$\{P'(a)\}$	given
4.	$\{P(a)\}$	given
5.	$\{\neg R(a,y), P'(y)\}$	given
6.	$\{\neg P'(x), \neg Q(x)\}$	given
7.	$\{\neg P'(x), \neg R'(x)\}$	given
8.	$\{\neg Q(a)\}$	[a/x] 3,6
9.	$\{Q(a),R'(f(a))\}$	[a/x] 2,4
10.	$\{R'(f(a))\}$	8,9
11.	$\{Q(a),R(a,f(a))\}$	[a/x] 1,4
12.	$\{R(a,f(a))\}$	8,11
13.	$\{P'(f(a))\}$	[f(a)/y] 5,12
14.	$\{\neg R'(f(a))\}$	[f(a)/x] 7,13

1.	$\{\neg P(x), Q(x), R(x, f(x))\}$	given
2.	$\{\neg P(x), Q(x), R'(f(x))\}$	given
3.	$\{P'(a)\}$	given
4.	$\{P(a)\}$	given
5.	$\{\neg R(a,y), P'(y)\}$	given
6.	$\{\neg P'(x), \neg Q(x)\}$	given
7.	$\{\neg P'(x), \neg R'(x)\}$	given
8.	$\{\neg Q(a)\}$	[a/x] 3,6
9.	$\{Q(a),R'(f(a))\}$	[a/x] 2,4
10.	$\{R'(f(a))\}$	8,9
11.	$\{Q(a),R(a,f(a))\}$	[a/x] 1,4
12.	$\{R(a,f(a))\}$	8,11
13.	$\{P'(f(a))\}$	[f(a)/y] 5,12
14.	$\{\neg R'(f(a))\}$	[f(a)/x] 7,13
15.	{}	10,14

Another example

1.
$$\{\neg P(x,y), P(y,x)\}$$

2. $\{\neg P(x,y), \neg P(y,z), P(x,z)\}$

3.
$$\{P(x, f(x))\}$$

4. $\{\neg P(x, x)\}$

given

given

given

given

Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a constant symbol e, and a unary function symbol s.

$$F_1: \forall x \ A(e,x,x)$$

$$F_2: \forall x \forall y \forall z \ (\neg A(x,y,z) \lor A(s(x),y,s(z)))$$

$$F_3: \forall x \exists y \ A(s(s(e)), x, y)$$

Use first-order resolution to show that $F_1 \wedge F_2 \vDash F_3$.

F1 \intersect F2 \intersect not F3 is unsat

Exercise

Consider the following sentences over a signature containing a ternary predicate symbol A, a constant symbol e, and a unary function symbol s.

$$F_1: \forall x \ A(e,x,x)$$

$$F_2: \forall x \forall y \forall z \ (\neg A(x, y, z) \lor A(s(x), y, s(z)))$$

$$F_3: \forall x \exists y \ A(s(s(e)), x, y)$$

Use first-order resolution to show that $F_1 \wedge F_2 \vDash F_3$.

In other words, show that $F_1 \wedge F_2 \wedge \neg F_3$ is unsatisfiable.

Resolution Lemma

- Given a formula H with free variables x_1, \ldots, x_n , its universal closure $\forall^* H$ is the sentence $\forall x_1, \ldots, \forall x_n H$.
- Let $F = \forall x_1, \dots, \forall x_n \ G$ be a closed formula in Skolem form, with G quantifier-free. Let R be a resolvent of two clauses in G. Then $F \equiv \forall^* \ (G \cup \{R\})$.
- Soundness follows immediately from this.

Lifting Lemma

Let C_1 and C_2 be clauses with respective ground instances G_1 and G_2 . Suppose that R is a propositional resolvent of G_1 and G_2 . Then C_1 and C_2 have a predicate-logic resolvent R' such that R is a ground instance of R'.

Proof:

Reference material: https://www.cs.ox.ac.uk/people/james.worrell/lecture14-2015.pdf

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

Proof:

ullet by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- C'_i is either a ground instance of a clause in F' or is a resolvent of C'_i and C'_k for j,k < i

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- C'_i is either a ground instance of a clause in F' or is a resolvent of C'_j and C'_k for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- ullet C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i
- if C'_i is a ground instance of $C \in F'$, $C_i = C$

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- ullet C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i
- if C'_i is a ground instance of $C \in F'$, $C_i = C$
- otherwise, C'_i is a resolvent of C'_j and C'_k for j, k < i

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- C'_i is either a ground instance of a clause in F' or is a resolvent of C'_j and C'_k for j, k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i
- if C'_i is a ground instance of $C \in F'$, $C_i = C$
- otherwise, C'_i is a resolvent of C'_i and C'_k for j, k < i
- by induction, we have constructed C_j and C_k ...

Let F be a closed formula in Skolem form with its matrix F' in CNF. If F is unsat, then there is a predicate-logic resolution proof of \square from F'.

- by completeness of ground resolution, there is a proof $C_1', C_2', \ldots, C_n' = \square$
- ullet C_i' is either a ground instance of a clause in F' or is a resolvent of C_j' and C_k' for j,k < i
- we inductively define a corresponding predicate-logic proof $C_1', C_2', \ldots, C_n = \square$ such that C_i' is a ground instance of C_i
- if C'_i is a ground instance of $C \in F'$, $C_i = C$
- otherwise, C'_i is a resolvent of C'_i and C'_k for j, k < i
- by induction, we have constructed C_j and C_k ...
- by the lifting lemma ...

Next week

- Modal Logic
- Binary Decision Diagrams
- FOL: Soundness and Completeness, Decidable Theories

Thank you!