ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Усилитель на биполярных транзисторах

Работу выполнили: Державин Андрей Хайдари Фарид Шурыгин Антон группа Б01-909

Долгопрудный, 2021

Содержание

1	Основные формулы	3
2	Нестабилизированный усилитель	3
	2.1	3
	2.2	4
3	Стабилизированный усилитель	4
	3.1	4
	3.2	5
4	Результаты измерений	5

1 Основные формулы

$$K_u = \frac{U_{\text{bmx}}}{U_{\text{bx}}} \quad K_e = \frac{U_{\text{bmx}}}{\epsilon_{\text{reh}}}$$

$$R_{\scriptscriptstyle \rm BX} = \frac{U_{\scriptscriptstyle \rm BX}}{I_{\scriptscriptstyle \rm BX}} = \frac{U_{\scriptscriptstyle \rm BX}R_{\rm II}}{\varepsilon_{\scriptscriptstyle \rm PBH}-U_{\scriptscriptstyle \rm BX}}$$

2 Нестабилизированный усилитель

2.1

Верём радиотехнические элементы:

- R_k = 2,4 кОм
- R_b = 540 кОм
- $R_{\text{BX}} = R_k$

Измеряем, получаем:

$$U_{\kappa 9} \approx 5 \text{ B}, U_{69} \approx 0,64 \text{ B} \Rightarrow$$

$$I_{\kappa}=rac{U_{{\scriptscriptstyle {
m K}}{
m 9}}}{R_{k}}pprox 2$$
 мА, $I_{6}=rac{U_{{\scriptscriptstyle {
m BX}}}-U_{6{
m 9}}}{R_{b}}pprox$ 17,3 мкА \Rightarrow

$$h_{21e}\approx 115$$

2.2

Добавлем к уже имеющимся элементам:

- C = 0,47 mkΦ
- $R_{\nu} = R_{k}$

Для определения $f_{\scriptscriptstyle H}$ фиксируем уменьшение $U_{\scriptscriptstyle \rm BMX}$ в $\sqrt{2}$ раз при переходе из области средних частот ($\approx 1~{\rm к\Gamma LL}$) в область низких частот. По аналогии измеряем $f_{\scriptscriptstyle B}$ при переходе из средних в высокие.

Результаты всех расчетов и измерений вносим в таблицу 1.

3 Стабилизированный усилитель

3.1

В данном пункте считаем $h_{219} \approx 100$. Верём радиотехнические элементы:

- R_k = 2,4 кОм
- R₁ = 39 кОм
- R₂ = 8,2 кОм
- $R_{\text{\tiny M}} = R_{\text{\tiny k}}$
- R_∋ = 540 O_M

Измеряем относительно земли напряжения, получаем:

$$U_{\rm B} \approx 0,65~{\rm B}~U_{\rm B} \approx 1,15~{\rm B}~U_{\rm K} \approx 5,75~{\rm B}$$

Измеряем оставшиеся величины, заносим в таблицу.

3.2

$$r_{
m 9} = rac{U_{
m T}}{I_{
m 9}} pprox$$
 12 Ом

В случае $C_{\ni}=0$ выполняется соотношение:

$$K_{u}\approx\frac{R_{k}}{R_{9}+r_{9}}$$

$$h_{11\mathfrak{d}}\approx (h_{21\mathfrak{d}}+1)r_{\mathfrak{d}}\approx 1200$$

$$R_{\rm B} = R_1 \| R_2 \approx 6.7 \; {
m kOm}$$

$$R_{BX} = R_{B} || (h_{119} + R_{9}(h_{219} + 1)) \Rightarrow$$

$$R_{\text{bx}} = \frac{R_{\text{B}} \cdot (h_{11\text{-}} + R_{\text{-}}(h_{21\text{-}} + 1)}{R_{\text{B}} + (h_{11\text{-}} + R_{\text{-}}(h_{21\text{-}} + 1)} \approx 6,8 \text{ кОм}$$

Результаты всех расчетов и измерений вносим в таблицу 1.

4 Результаты измерений

$N_{\overline{0}}$	$U_{\text{вых макс}}$, В	K _e	K _u	$R_{\rm BX}$, кОм	$f_{\scriptscriptstyle \mathrm{H}}, \Gamma$ ц	$f_{\scriptscriptstyle B}, M\Gamma$ ц
1.2	7,5	71,43	150	2,4	95	0,98
2.1	5,75	4,42	3,23	6,5	38	1,1
2.2	0,04	4,59	4,75	6,8	107	0, 12

Таблица 1