1. Let

$$A = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 3 \end{array} \right]$$

Justify all responses

(a) Is A invertible? No, by theorem 13

(b) Write down the characteristic polynomial $\chi_A(x)$ $\chi_A(x) = x(x-1)(x-2)(x-3)$ by definition.

(c) Write down all eigenvalues of A.By theorem 14 the eigenvalues are 0, 1, 2, 3

(d) Write down the basis vectors for each eigenspace. $\lambda=0$:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

(e) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $D = PAP^{-1}$

2. Let

$$A = \left[\begin{array}{cccccc} 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{array} \right]$$

Justify all responses

(a) Is A invertible? Theorem 13 says, yes

(b) Write down the characteristic polynomial $\chi_A(x)$ $\chi_A(x) = (x-2)^3(x-3)^3$

(c) Write down all eigenvalues of A. By theorem 14 we have eigenvalues of 2, 3

(d) Write down the basis vectors for each eigenspace.

(e) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $D=PAP^{-1}$

3. Let $f(x) \in F[x]$ and let $\lambda \in F$ be an eigenvalue of $T \in \mathcal{A}(F^n)$. Prove the following statements.

- (a) $f(\lambda)$ is an eigenvalue of f(T).
- (b) f(T) = 0 implies $f(\lambda) = 0$.
- (c) f(T) = 0 and $f(\mu) = 0$ does not imply μ is an eigenvalue of T. (Give a counterexample and a careful explanation.)

- 4. Upper triangularity is really needed in theorem 13! Give an example of a square matrix $A \in \mathcal{M}_n$ with the following properites.
 - (a) $\operatorname{ent}_{ii}(A) \neq 0$ for each $i \leq n$ but A is not invertible.

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right]$$

(b) $\operatorname{ent}_{ii}(A) = 0$ for each $i \leq n$ but A is invertible.

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]$$

- 5. Let $S,T\in \mathcal{A}(F^n)$ with S invertible. Given any polynomial $p(x)\in F[x]$, prove that $p(STS^{-1})=Sp(T)S^{-1}$.
- 6. Let $T \in \mathcal{A}(\mathbb{C}^n)$ and $p(x) \in \mathbb{C}[x]$. Prove that $\lambda \in \mathbb{C}$ is an eigenvalue of p(T) if and only if T has an eigenvalue $\mu \in \mathbb{C}$ such that $p(\mu) = \lambda$. Does the result hold if \mathbb{C} is replaced by \mathbb{R} ?
- 7. Let $T \in \mathcal{A}(F^n)$. Prove that for each $k \in \{1, 2, ..., n\}$, there is a T-invariant subspace $U_k \leq F^n$ such that $\dim(U_k) = k$.