Revisit of Postulate 3

- Previous description
 - If the particle is in a state $|\psi\rangle$, measurement of the variable (corresponding to) Ω will yield one of the eigenvalues ω_i with probability of $P(\omega_i) \propto |\langle \omega_i | \psi \rangle|^2$.
 - Then the state of the system will change from $|\psi\rangle$ to $|\omega_i\rangle$ as a result of measurement.
- Section 2.2.3
 - Quantum measurements are described by a set of *measurement* operators $\{M_m\}$. These operators act on the state space of the system being measured.
 - The index m refers to the measurement outcomes that may occur in the experiment.
 - If the state of the quantum system is $|\psi\rangle$ immediately before the measurement, then the probability that result m occurs is given by

$$p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle ,$$

and the state of the system after the measurement is

$$\frac{M_m|\psi\rangle}{\sqrt{\langle\psi|M_m^{\dagger}M_m|\psi\rangle}} \ .$$

The measurement operators satisfy the completeness equation,

$$\sum_{m} M_{m}^{\dagger} M_{m} = I .$$

Example of revised Postulate 3

- Measurement of a qubit in computational basis
 - $M_0 = |0\rangle\langle 0|$, $M_1 = |1\rangle\langle 1|$: Hermitian
 - $M_0^{\dagger} M_0 = M_0^2 = M_0, M_1^{\dagger} M_1 = M_1^2 = M_1$
 - $\rightarrow M_0^{\dagger} M_0 + M_1^{\dagger} M_1 = |0\rangle\langle 0| + |1\rangle\langle 1| = I$.
 - For the initial state $|\psi\rangle = a|0\rangle + b|1\rangle$
 - $p(0) = \langle \psi | M_0^{\dagger} M_0 | \psi \rangle = \langle \psi | M_0 | \psi \rangle = |a|^2$
 - $p(1) = \langle \psi | M_1^{\dagger} M_1 | \psi \rangle = \langle \psi | M_1 | \psi \rangle = |b|^2$
 - The state after measurement in the two cases:
 - $\frac{M_0|\psi\rangle}{\sqrt{\langle\psi|M_0^{\dagger}M_0|\psi\rangle}} = \frac{M_0|\psi\rangle}{\sqrt{p(0)}} = \frac{M_0|\psi\rangle}{|a|} = \frac{a}{|a|}|0\rangle \implies \frac{a}{|a|} \text{ can be ignored}$
 - $\frac{M_1|\psi\rangle}{\sqrt{\langle\psi|M_1^{\dagger}M_1|\psi\rangle}} = \frac{M_1|\psi\rangle}{\sqrt{p(1)}} = \frac{M_1|\psi\rangle}{|b|} = \frac{b}{|b|}|1\rangle$

Distinguishing quantum states

- Section 2.2.4
- Non-orthogonal quantum states cannot be distinguished with certainty.
 - Example: $|H\rangle$ vs $|D\rangle = \frac{|H\rangle + |V\rangle}{\sqrt{2}}$
- Distinguishability of orthonormal states
 - Suppose $|\psi_i\rangle$ are orthonormal for $i=1\cdots n$
 - Define measurement operators $M_i = |\psi_i\rangle\langle\psi_i|$ for $i = 1 \cdots n$
 - Define additional measurement operator M_0 as the positive square root of the operator $I \sum_{i \neq 0} |\psi_i\rangle\langle\psi_i|$
 - Then M_0, M_1, \dots, M_n satisfies the completeness relation
 - If the state is prepared in $|\psi_i\rangle$ for some i, $p(i) = \langle \psi_i | M_i^{\dagger} M_i | \psi_i \rangle = 1$, so the result i occurs with certainty.

Distinguishing quantum states

- If the states $|\psi_i\rangle$ are not orthonormal, there is *no quantum* measurement capable of distinguishing the states.
- Sketch of proof
 - Assume there are such measurement operators M_j with outcome j capable of distinguishing the states
 - Then we need a mapping that will map outcome j to the index i of quantum state $|\psi_i\rangle$. That is, i = f(j).
 - Assume we want to distinguish non-orthogonal $|\psi_1\rangle$ and $|\psi_2\rangle$ $\Rightarrow |\psi_2\rangle = \alpha |\psi_1\rangle + \beta |\phi\rangle$ where $\alpha \neq 0$.
 - Suppose k is a measurement outcome such that $\langle \psi_1 | M_k^{\dagger} M_k | \psi_1 \rangle \neq 0 \implies f(k) = 1$
 - Because of $\alpha \neq 0$, $\langle \psi_2 | M_k^\dagger M_k | \psi_2 \rangle$ won't be zero in general \rightarrow When measurement outcome is k, we cannot distinguish between $|\psi_1\rangle$ and $|\psi_2\rangle$
- For more complete proof, refer to Box 2.3 on page 87.

Example

Syndrome measurement of 3-qubit repetition code

- Error-detection or syndrome diagnosis
 - $M_0 \equiv |000\rangle\langle 000| + |111\rangle\langle 111| \text{ no error}$
 - $M_1 \equiv |100\rangle\langle100| + |011\rangle\langle011|$ bit flip on qubit one
 - $M_2 \equiv |010\rangle\langle 010| + |101\rangle\langle 101|$ bit flip on qubit two
 - $M_3 \equiv |001\rangle\langle001| + |110\rangle\langle110|$ bit flip on qubit three
 - If the corrupted state is $a|100\rangle + b|011\rangle$, $\langle \psi | M_1^{\dagger} M_1 | \psi \rangle = 1$

Projective measurement

- Section 2.2.5 Projective Measurements
 - Basically projective measurement is what we generally called as quantum measurement in this class up to now.
- A projective measurement is described by an observable, M, a
 Hermitian operator on the state space of the system being observed.
 The observable has a spectral decomposition,

$$M = \sum_{m} m P_m$$

where P_m is the projector onto the eigenspace of M with eigenvalue m. The possible outcomes of the measurement corresponds to the eigenvalues, m, of the observable.

• Upon measuring the state $|\psi\rangle$, the probability of getting result m is given by

$$p(m) = \langle \psi | P_m | \psi \rangle .$$

ullet Given that outcome m occurred, the state of the quantum system immediately after the measurement is

$$rac{P_m|\psi
angle}{\sqrt{p(m)}}$$
 .

POVM measurements

- Postulate 3 provides two types of information
 - Measurement statistics: probability to measure certain outcome
 - Quantum state after the measurement: state collapse
- POVM (Positive Operator-Valued Measure) formalism
 - Cares only about the probability, not about the quantum state after the measurement
 - Suppose measurement (M_m) is performed upon a quantum system in the state $|\psi\rangle \rightarrow p(m) = \langle \psi | M_m^{\dagger} M_m | \psi \rangle$
 - Define $E_m \equiv M_m^{\dagger} M_m \twoheadrightarrow \sum_m E_m = I$ and $p(m) = \langle \psi | E_m | \psi \rangle$
 - E_m is called as POVM element. \rightarrow $\{E_m\}$ vs $\{M_m\}$
 - The complete set of $\{E_m\}$ is known as POVM.
 - Projective measurement P_m can also be considered as an example of POVM.
 - P_m can be considered as either M_m or E_m .

POVM measurements

- Definition of positive operator (section 2.1.6)
 - An operator A such that for any vector $|v\rangle$, $\langle v|A|v\rangle$ is a real, non-negative number.
 - Special case of Hermitian operator
- Note that POVM element E_m is positive operator.
- If $\{E_m\}$ is some arbitrary set of positive operators such that $\sum_m E_m = I$, then there exists a set of measurement operators M_m . (Proof: $M_m \equiv \sqrt{E_m}$)

Example of POVM

- Suppose Alice gives Bob a qubit prepared in one of the two states, $|\psi_1\rangle=|0\rangle$ or $|\psi_2\rangle=(|0\rangle+|1\rangle)/\sqrt{2}$.
- Goal: Bob wants to perform a measurement which distinguishes the states <u>some of the time</u>, but <u>never</u> makes an error of misidentification.
- POVM elements

$$E_1 \equiv \frac{\sqrt{2}}{1+\sqrt{2}} |1\rangle\langle 1|$$

$$E_2 \equiv \frac{\sqrt{2}}{1+\sqrt{2}} \frac{(|0\rangle - |1\rangle)(\langle 0| - \langle 1|)}{2}$$

$$E_3 \equiv I - E_1 - E_2$$

$$\sum_m E_m = I$$

- If $|\psi_1\rangle = |0\rangle$ is given, $\langle \psi_1|E_1|\psi_1\rangle = 0$ so if E_1 is measured, it should be $|\psi_2\rangle$.
- Similarly, if E_2 is measured, it should be $|\psi_1\rangle$.
- If E_3 is measured, Bob doesn't know, but he does not make error.

Revisit of Postulate 2

- Recall Postulate 2: the evolution of a closed quantum system is described by a unitary transformation
 - $\quad |\psi\rangle \ at \ t_1 \ \xrightarrow{unitary \ transformation} |\psi'\rangle \ at \ t_2 \\$
- Postulates of quantum mechanics does not tell us how the open system will evolve → We need to guess from the given postulates. → Density Matrix

Density matrix

- Section 2.4 The density operator
- When two particles are entangled, if we measure one of the particles but don't know the measurement result, how can we represent the quantum state of the other particle?
 - $|\psi^{-}\rangle = [|0\rangle_{A}|1\rangle_{B} |1\rangle_{A}|0\rangle_{B}]/\sqrt{2}$
 - If A measures $|0\rangle_A$, B remains in $|1\rangle_B$ state.
 - If A measures $|1\rangle_A$, B remains in $|0\rangle_B$ state.
 - From the above state $|\psi^-\rangle$, we know that $|0\rangle_B$ or $|1\rangle_B$ will remain with 50% of probability.

$$\rho_B = \frac{1}{2} |0\rangle_{BB} \langle 0| + \frac{1}{2} |1\rangle_{BB} \langle 1| = \begin{bmatrix} 1/2 & 0\\ 0 & 1/2 \end{bmatrix}$$

• What happens if A was measured in $|D\rangle_A \otimes |A\rangle_A$ basis?

$$\rho_B = \frac{1}{2} |A\rangle_{BB} \langle A| + \frac{1}{2} |D\rangle_{BB} \langle D| = \begin{bmatrix} 1/2 & 0\\ 0 & 1/2 \end{bmatrix}$$

• The same result will be obtained with measurements in other basis or even without any measurements.