$ au_{1}^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}\!\!\!\!\!+\!\alpha\beta$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12k^2}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$-\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+2k^2)^2t_1}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#^2} + ^{\alpha}$

2	,
ū	2
4	5
	5
מ	5
Grandi	ת
הַ	5
כֿ	
— —	7

 $-t_{1}\;\omega_{'}^{\alpha'}\;\omega_{\kappa\alpha}^{\;\;\kappa}-\tfrac{1}{3}\,t_{1}\;\omega_{'}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+\tfrac{1}{3}\,t_{1}\;\omega_{\kappa\lambda}^{\;\;\prime}\;\omega^{\kappa\lambda}^{\;\prime}+f^{\alpha\beta}\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}+$ $2t_{1} \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{\ \prime} - t_{1} \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f'_{\ \prime} + \frac{1}{3} t_{1} \ \omega_{\beta\kappa} \partial^{\kappa} f^{\beta} + \frac{4}{3} t_{1} \ \omega_{\kappa\beta} \partial^{\kappa} f^{\beta}.$ $\frac{1}{3} t_{1} \ \omega_{\beta\kappa} \partial^{\kappa} f'^{\beta} + \frac{2}{3} t_{1} \ \omega_{\beta\kappa} \partial^{\kappa} f'^{\beta} - t_{1} \ \omega_{\alpha} \partial^{\kappa} f'_{\ \kappa} - t_{1} \ \omega_{\lambda}^{\lambda} \partial^{\kappa} f'_{\ \kappa} +$ $_{\kappa}^{}\partial^{\kappa}f_{\alpha\lambda}+t_{1}\;\omega_{\kappa\alpha}^{\alpha}\;\partial^{\kappa}f^{\prime}_{}+t_{1}\;\omega_{\kappa\lambda}^{\lambda}\;\partial^{\kappa}f^{\prime}_{}$ $\frac{2}{3}r_{1}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_{1}\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial^{\beta}\omega_{\alpha}^{\ \alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\ \prime} - \frac{8}{3}r_{1}\partial^{\beta}\omega_{\lambda}^{\ \lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\ \prime} - 2r_{1}\partial_{\alpha}\omega_{\lambda}^{\ \alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\ \kappa} + 2r_{1}\partial_{\theta}\omega_{\lambda}^{\ \alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\ \kappa}$ $_{\kappa}^{'}\partial_{\theta}\omega_{\alpha\beta}^{}{}^{\prime}-\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\alpha\beta\theta}+$ $\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{} + 2\kappa_{\alpha}^{} + 2\kappa_{\alpha}^{\phantom{$ $_{\theta}\partial^{\kappa}f_{\lambda}^{\theta}$ - $t_{1}\,\partial^{\alpha}f^{\lambda}_{}$ $_{\alpha}^{\prime}\partial_{\kappa}\omega^{\kappa\lambda\theta} - \frac{1}{3}t_{1}\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta} \frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{3}t_1\partial_{\kappa}f_{\lambda}^{}\partial^{\kappa}f_{\lambda}^{} + \frac{2}{3}t_1\partial_{\kappa}f^{\lambda}_{\kappa}$ $2\,r_1\,\partial_{lpha}\omega_{\lambda}^{lpha}\,\partial_{\kappa}\omega^{\kappa\lambda\theta}$ - $4\,r_1\,\partial_{ heta}\omega_{\lambda}^{lpha}$ $2 r_1 \partial_i \omega^{\kappa \lambda}_{\kappa} \partial^i \omega_{\lambda}^{\alpha}_{\alpha} - \frac{2}{3} r_1 \partial^\beta \omega^{\theta \alpha}_{\kappa}$ $a^{\theta} - \frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}$ $\frac{2}{3}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\quad \theta}.$

Source constraint	$\sigma_{0}^{#1} == 0$	$\tau_{0}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$ $-\#2\alpha + 2 i k - \#2\alpha = 0$	$\frac{l_1^{-}}{r_1^{\#1}\alpha} = 0$	$\frac{1}{t_{1}^{\#1}\alpha\beta}$ - 2 \vec{l} k $\sigma_{1}^{\#1}\alpha\beta$	$\frac{1}{2 \sigma_{1}^{\#1} \alpha \beta} + \sigma_{1}^{\#2} \alpha \beta = 0$	$\frac{1}{t_{\perp}^{\#1}\alpha\beta} - 2ik \sigma_{\perp}^{\#1}\alpha\beta$. 7
$f_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	ikt_1	0	0	0	
$\omega_{1}^{\#2}{}_{lpha}f_{1}^{\#1}{}_{lpha}f_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0	
$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{l} k t_1$	
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{3\sqrt{2}}$	<u>i k t 1</u> 3	$\frac{k^2 t_1}{3}$	0	0	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta} \;\; \omega_{1}^{\#2}{}_{\alpha\beta} \;\; f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{3\sqrt{2}}$	17 3	$-\frac{1}{3}ikt_1$	0	0	0	0	
$\omega_1^{\#1}{}_+\alpha\beta$	9 <u>T</u> 7	$-\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$	0	0	0	0	

 \vdash

 $\omega_1^{\#1} +^{lphaeta}$

 $\omega_1^{\#2} \dagger^{\alpha\beta}$

 $f_1^{\#1} + ^{\alpha\beta}$

 $\omega_{1}^{\#1} \uparrow^{\alpha}$

 $f_1^{\#1} \dagger^{\alpha}$

 $\omega_1^{\#2} \uparrow^{\alpha}$

 $f_1^{\#2} + \alpha$

 $\boldsymbol{\vdash}$

 \sim

0 ::

 \mathfrak{C}

 $^{\circ}$

0 ==

 \sim

0 ::

2

0 ==

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	0	
$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	$i\sqrt{2}\ kt_1$	$-2 k^2 t_1$	0	0	
$\omega_{0}^{\#1}$	-t ₁	$-i\sqrt{2}\ kt_1$	0	0	
	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ †	$\omega_{0}^{\#1} \dotplus$	

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\sharp 1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

 $k^2 r_1 + \frac{t_1}{2}$

0

0

 $\omega_{2}^{#1} +^{\alpha\beta\chi}$

0

 $k^2 t_1$

 $\frac{i\,k\,t_1}{\sqrt{2}}$

 $f_2^{\#1} +^{\alpha\beta}$

 $\omega_{2}^{\#1}$ $^{\#}$

0

 $-\frac{ikt_1}{\sqrt{2}}$

<u>t</u>1

 $\omega_2^{\#1} +^{\alpha \beta}$

_	$\sigma_0^{\#1}$	$ au_{0}^{\#1}$	$\tau_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$ au_{0^{+}}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	0

Massive particle				
Pole residue:	$-\frac{1}{r_1} > 0$			
Polarisations:	5			
Square mass:	$-\frac{t_1}{2r_1} > 0$			
Spin:	2			
Parity:	Odd			
	Pole residue: Polarisations: Square mass: Spin:			

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$

(No massless particles)