Artificial Intelligence CSE 4617

Ahnaf Munir
Assistant Professor
Islamic University of Technology

Cost: Number of pancakes flipped

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2-1 \leq g(n) \leq 2n+3$.

State space graph with costs as weights¹

¹Slide does not contain entire state space graph

General Search Tree

```
function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting node to the search tree end
```


Informed Search

Video: ContoursPacmanSmallMaze-UCS

Search Heuristics

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Example: Manhatten distance, Euclidean distance for pathing

Straight-line distance to Bucharest

Ducharese	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnieu Vileea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Bad heuristic: The number of correctly positioned pancakes

h(x) = The ID of the largest pancake that is still out of place

h(x) = The ID of the largest pancake that is still out of place $h^{j}(x)$ = The number of the incorrectly placed pancakes

Greedy Search

Greedy Search

Expand the node that seems closest

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS

Video: Empty-greedy, ContoursPacmanSmallMaze-greedy

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)
- A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

■ Should we stop when we enqueue a goal?

No: only stop when you dequeue the goal

Is A* optimal?

- What went wrong?
 - Actual bad goal cost < estimated good goal cost
- We need estimates to be less than the actual cost

Admissible Heuristics

Admissible Heuristics

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Inadmissible (pessimistic) heuristics breaks optimality by trapping good plans on the fringe

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of what's involved in using A* in practice

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

- Imagine B is on the fringe
- Some ancestor n of A is also on the fringe, too (maybe A)
- Claim: n will be expanded before B

- Imagine B is on the fringe
- Some ancestor n of A is also on the fringe, too (maybe A)
- Claim: n will be expanded before B
 - 1. $f(n) \leq f(A)$
 - f(n) = g(n) + h(n) [Definition of f-cost]
 - f(n) ≤ g(A) [Admissiblity of heuristics]
 - g(A) = f(A) [h(A)=0 at goal]

- Imagine B is on the fringe
- Some ancestor n of A is also on the fringe, too (maybe A)
- Claim: n will be expanded before B
 - 1. $f(n) \leq f(A)$
 - f(n) = g(n) + h(n) [Definition of f-cost]
 - ► $f(n) \le g(A)$ [Admissiblity of heuristics]
 - ightharpoonup g(A) = f(A) [h(A)=0 at goal]
 - 2. f(A) < f(B)

- Imagine B is on the fringe
- Some ancestor n of A is also on the fringe, too (maybe A)
- Claim: n will be expanded before B
 - 1. $f(n) \leq f(A)$
 - f(n) = g(n) + h(n) [Definition of f-cost]
 - ► $f(n) \le g(A)$ [Admissiblity of heuristics]
 - ightharpoonup g(A) = f(A) [h(A)=0 at goal]
 - 2. f(A) < f(B)
 - g(A) < g(B) [B is suboptimal]
 - f(A) < f(B) [h=0 at goal]
 - 3. $f(n) \le f(A) < f(B) \to n$ expands before B

- Imagine B is on the fringe
- Some ancestor n of A is also on the fringe, too (maybe A)
- Claim: n will be expanded before B
 - $1. f(n) \leq f(A)$
 - f(n) = g(n) + h(n) [Definition of f-cost]
 - f(n) ≤ g(A) [Admissibility of heuristics]
 - ightharpoonup g(A) = f(A) [h(A)=0 at goal]
 - **2.** f(A) < f(B)
 - ► g(A) < g(B) [B is suboptimal]
 - ightharpoonup f(A) < f(B) [h=0 at goal]
 - 3. $f(n) \le f(A) < f(B) \to n$ expands before B
- All ancestor of A expand before B
- A expands before $B \to A^*$ search is optimal

UCS vs A*

Video: Empty-UCS, Empty-astar, ContoursPacmanSmallMaze-astar.mp4

UCS vs A*

A* Applications

- Video games
- Pathing/routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ..

Video: tinyMaze, guessAlgorithm

Creating Admissible Heuristics

Creating Admissible Heuristics

 Most of the work in solving hard search problems optimally is in coming up with admissible heuristics

Example: 8 Puzzle

- What are the states? → Puzzle configurations
- How many states? \rightarrow 9!
- What are the actions? → Move the empty piece in four directions
- How many successors are there from the start state? $\rightarrow 4$
- What should the cost be? → Number of moves

Example: 8 Puzzle

Attempt 1:

- Number of misplaced tiles
- Why is it admissible?
- h(start) = 8
- Relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

Example: 8 Puzzle

Attempt 2:

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total *Manhatten* distance
- Why is it admissible?
- $h(start) = 3 + 1 + 2 + \cdots = 18$

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

Example: 8 Puzzle

Attempt 3?

- What if we use the actual costs as heuristics?
 - Would it be admissible?
 - W ould we save on nodes expanded?
 - What's wrong with it?

 As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

- Trivial heuristics
 - Bottom of lattice is the zero heuristic
 - Top of lattice is the exact heuristic
- Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) \ge h_c(n)$
- Heuristics can form a semi-lattice:
 - Max of admissible heuristics is admissible $h(n) = \max(h_a(n), h_b(n))$

Graph Search

Graph Search

■ Tree search requires extra work: Failure to detect repeated states can cause exponentially more work

Idea: never expand a state twice

Graph Search

- Idea: never expand a state twice
- How to implement?
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

State space graph

State space graph

State space graph

State space graph

Consistency of Heuristics

- Main idea: estimated heuristics cost ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ Actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc
 h(A) h(C) ≤ cost(A to C)
 h(A) ≤ h(C) + cost(A to C)
- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A \text{ to } C) + h(C)$$

$$f(A) = g(A) + h(A) \le g(A) + cost(A \text{ to } C) + h(C) = f(C)$$

A* graph search is optimal

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissiblity
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A* Search: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

```
function TREE-SEARCH(problem, fringe) returns a solution, or failure
  fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
  loop do
     if fringe is empty then return failure
     node ← REMOVE-FRONT(fringe)
     if GOAL-TEST(problem, STATE[noole]) then return node
     for child-node in EXPAND(STATE[node], problem) do
        fringe ← INSERT(child-node, fringe)
     end
  end
```

Graph Search Pseudo-Code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
  closed ← an empty set
  fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
  loop do
     if fringe is empty then return failure
     node ← REMOVE-FRONT(fringe)
     if GOAL-TEST(problem, STATE[node]) then return node
     if SME[node] is not in closed then
       add SMEInodel to closed
       for child-node in EXPAND(STATE[node], problem) do
          fringe ← INSERT(child-node, fringe)
       end
  end
```

Suggested Reading

- Russell & Norvig: Chapter 3.5-3.6
- Poole & Mackworth: Chapter: 3.6-3.7