Blatt 4: Folgen & Konvergenzprinzipien

1 Kehrwerte von Nullfolgen divergieren.

Beweise Vo. 1 Prop. 2.47. Genauer, sei (a_n) eine Nullfolge mit $a_n > 0$ für alle n, dann gilt

$$\lim \frac{1}{a_n} = \infty.$$

| 2 | Eigenschaften von Folgen?

Kann eine (reelle) Folge (a_n) die folgenden Eigenschaften haben? Wenn ja gib ein Beispiel, wenn nein argumentiere.

- (a) beschränkt und divergent.
- (b) unbeschränkt und konvergent.
- (c) bestimmt divergent und beschränkt.
- (d) bestimmt divergent und nach oben beschränkt.
- (e) unbeschränkt und nicht bestimmt divergent.

3 Teilfolgen.

Betrachte die Folge $a_n = (-1)^n \left(\frac{-1}{n}\right)$ $(n \ge 1)$. Welche der angegeben Folgen sind Teilfolgen von (a_n) ? Begründe!

(d)
$$a_{n_r} = (-1)^{2r} \frac{1}{2r}$$
 $(r \ge 1)$

(b)
$$a_{n_l} = (-1)^l \frac{1}{2l+1}$$
 $(l \ge 1)$

(b)
$$a_{n_l} = (-1)^l \frac{1}{2l+1}$$
 $(l \ge 1)$ (e) $a_{n_s} = \frac{1}{2k+1}$ (für ein $k \in \mathbb{N}, s \ge 1$)

(c)
$$a_{n_m} = \left(-\frac{1}{2m}\right)^m \qquad (m \ge 1)$$

4 Häufungswerte.

Bestimme jeweils alle Häufungswerte der Folge (a_n) . Bestimme weiters Limes inferior und superior von (a_n) und vergleiche diese mit Infimum und Supremum der Menge $A := \{a_n : n \in \mathbb{N}\}.$

(a)
$$a_n = (-1)^n \sqrt{2}$$
 $(n \in \mathbb{N})$

(b)
$$a_{3n-2} = 3 + \frac{1}{n}$$
, $a_{3n-1} = \frac{2}{n}$, $a_{3n} = -\frac{1}{n^2}$ $(n = 1, 2, ...)$

(c)
$$a_n = \frac{(-1)^n}{3 + 2n + n^2}$$
 $(n \in \mathbb{N})$

[5] Approximation von Wurzeln.

Betrachte in Analogie zu Vo. Bsp. $\boxed{1}$ 3.24 folgende Approximation für die Wurzel von a: Sei a>0 und $x_0>0$.

(a) Zeige, dass die durch die Rekursion $(n \in \mathbb{N})$

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

definierte Folge (x_n) nach unten beschränkt ist.

- (b) Zeige, dass (x_n) ab n = 1 monoton fallend ist.
- (c) Zeige, dass $x_n \to \sqrt{a}$.
- 6 Cauchyfolge abstrakt.

Sei (a_n) eine reelle Folge mit der Eigenschaft

$$|a_n - a_{n+1}| \le \frac{1}{2^n}.$$

Zeige, dass (a_n) eine Cauchfolge ist.

Tipp. Für $m \ge n$ ist $a_n - a_m = a_n - a_{n+1} + a_{n+1} - a_{n+2} + \cdots - a_m$. Dann verwende die geometrische Reihe!

7 Cauchyfolge konkreter.

Wir betrachten die durch folgende Rekursion gegebene Folge (a_n)

$$a_0 = 0, \ a_1 = 1, \ a_n = \frac{a_{n-1} + a_{n-2}}{2} \qquad (n = 2, 3, \dots).$$

(a) Zeige, dass a_n eine Cauchyfolge ist.

Tipp. Weise induktiv die Formel $a_{n+1}-a_n=\frac{(-1)^n}{2^n}$ nach. Das erlaubt es Aufgabe 6 zu verwenden.

(b) Berechne den Grenzwert von a_n .

Tipp. Es gilt $a_n = a_0 + (a_1 - a_0) + (a_2 - a_1) + \cdots + (a_n - a_{n-1})$ und dann geometrische Reihe—was sonst?