

	États	Opérations entre registres (RTL)
	Init	$PC \leftarrow 0x0$
	Waitfetch	$mem[PC]^a$
	Fetch	$IR \leftarrow mem_datain$
/	Decode	$PC \leftarrow PC + 4$
)	ORI	$RT \leftarrow 0^{16} IR_{150} \text{ OR } RS \text{ ; } mem[PC]$
/	LUI	$RT \leftarrow IR_{15-0} 0^{16}:mem[PC] $

 a Un accès mémoire nécessite un cycle. On demande un accès à la valeur mem[PC] qui sera fournit au cycle suivant sur le bus mem_datain .

0.1 Interface à la PO

Les signaux de commandes de la PO sont regroupés dans une structure de type MMIPS_PO_cmd, définie dans le fichier MMIPS_pkg.vhd. Voici les différents champs de cette structure :

Champ	Type VHDL	Rôle
ALU_X_Sel	UXS_type	Sélection de l'opérande X sur l'ALU
ALU_Y_Sel	UYS_type	Sélection de l'opérande Y sur l'ALU
ALU_OP	AO_type	Sélection de l'opération effectuée par l'ALU
ALU_extension_signe	std_logic	'1' si les opérations arithmétiques sont effectuées avec
		extension de signe sur 33 bits, '0' sinon.
RF_Sel	RF_sel_type	Sélection du numéro de registre destination
RF_we	boolean	Valide l'écriture dans RF
EPC_we	boolean	Valide l'écriture dans EPC
PC_we	boolean	Valide l'écriture dans PC
AD_we	boolean	Valide l'écriture dans AD
DT_we	boolean	Valide l'écriture dans DT
IR_we	boolean	Valide l'écriture dans IR
ADDR_sel	ADDR_select	Sélection de l'adresse vers la mémoire
mem_we	boolean	Valide une écriture dans la mémoire
mem_ce	boolean	Valide une transaction vers la mémoire (lecture ou écri-
		ture)

Les types utilisés dans cette structure sont également définis dans le fichier MMIPS_pkg.vhd comme spécifié ci-dessous :

 ${\tt UXS_type} \ {\tt est} \ {\tt le} \ {\tt type} \ {\tt \'enum\'er\'e} \ {\tt utilis\'e} \ {\tt pour} \\ {\tt s\'electionner} \ {\tt la} \ {\tt valeur} \ {\tt \`a} \ {\tt fournir} \ {\tt sur} \ {\tt l'op\'erande} \ {\tt X} \ {\tt de} \\$

TUAL.					
Valeur	Sémantique				
UXS_RF_RS	Port A du banc de registre				
	pointé par IR ₂₅₂₁ (RS)				
UXS_PC	Registre PC				
UXS_EPC	Registre EPC				
UXS_DT	Registre DT				
UXS_cst_x00	Constante 0x00000000				
UXS_cst_x01	Constante 0x00000001				
UXS_cst_x10	Constante 0x00000010				
UXS_IT_vec	Constante 0x00001FFC				
UXS_PC_up	$PC_{3128} \parallel 0^{28}$				
UXS_IR_SH	$0^{27} \parallel IR_{106}$				

RF_sel_type est le type énuméré utilisé pour sélectionner le registre de destination.

C	cuonner le régistre de déstina						
	Valeur	Sémantique					
	RFS_RD	IR ₁₅₁₁ (RD)					
	RFS_RT	IR ₂₀₁₆ (RT)					
	RFS_31	registre R31					

ADDR_select est le type énuméré utilisé pour la sélection de l'origine de l'adresse vers la mémoire.

Sémantique
Registre PC
Registre AD

UYS_type est le type énuméré utilisé pour sélectionner la valeur à fournir sur l'opérande Y de

I'UAL.						
Sémantique						
$0^{16} \parallel IR_{150}$						
IR ₁₅ IR ₁₅₀						
$ IR_{15}^{14} IR_{150} 0^2 $						
$0^4 \ IR_{250} \ 0^2$						
Port B du banc de registre						
pointé par IR ₂₀₁₆ (RT)						
Constante 0x00000000						
Constante 0x00000004						

AO_type est le type énuméré utilisé pour sélectionner l'opération à réaliser par l'UAL.

Valeur	Sémantique
AO_plus	$RES \Leftarrow (ext(X) \parallel X) + (ext(Y) \parallel Y)$
AO_moins	$RES \Leftarrow (ext(X) \parallel X) - (ext(Y) \parallel Y)$
AO_and	$RES \Leftarrow XandY$
AO_or	$RES \Leftarrow XorY$
AO_xor	$RES \Leftarrow X \oplus Y$
AO_nor	$RES \Leftarrow XnorY$
AO_SLL	$RES \Leftarrow Y << X_{40}$ (logique)
AO_SRL	$RES \Leftarrow Y >> X_{40}$ (logique)
AO_SRA	$RES \Leftarrow Y >>> X_{40}$ (arithmétique)

La fonction ext(a) étend le bit de signe ou non selon le signal ALU_extension_signe.

La PO retourne un ensemble de signaux d'états (status), regroupés dans la structure status de type MMIPS_PO_status. Les différents champs sont les suivants :

Champ	Type VHDL	Valeur
IR	w32	L'instruction en cours
s	boolean	Le bit de signe du résultat de l'ALU (bit 31)
С	boolean	Le bit de retenue du résultat de l'ALU (bit 32)
z	boolean	true si le résultat de l'ALU vaut 0, false sinon

Le type w32 est un vecteur de 32 bits.

0.2 Codage des instructions

	31	2625	2120 16	15 11	10 6	0
	Format R : opcode	RS	RT	RD	SH	FUNC
Les 3 formats d'instruction	Format I : opcode	RS	RT		IMM16	
	Format J : opcode			IMM26		

Champ opcode

Champ opeoue									
2826	000	001	010	011	100	101	110	111	
000	special	regimm	J	JAL	BEQ	BNE	BLEZ	BGTZ	
001	ADDI	ADDIU	SLTI	SLTIU	ANDI	ORI	XORI	LUI	
010	cop0	-	-	-	-	-	-	-	
011	-	-	-	-	-	-	-	-	
100	LB	LH	-	LW	LBU	LHU	-	-	
101	SB	SH	-	SW	-	-	-	-	
11X	-	-	-	-	-	-	-	-	

Champ FUNC, lorsque l'opcode vaut special.

Champ Ports, forsque ropeoue vaut special.									
53	000	001	010	011	100	101	110	111	
000	SLL	-	SRL	SRA	SLLV	-	SRLV	SRAV	
001	JR	JALR	-	-	SYSCALL	BREAK	-	-	
010	MFHI	MTHI	MFLO	MTLO	-	-	-	-	
011	MULT	MULTU	DIV	DIVU	-	-	-	-	
100	ADD	ADDU	SUB	SUBU	AND	OR	XOR	NOR	
101	-	-	SLT	SLTU	-	-	-	-	
11X	-	-	-	-	-	-	-	-	

Champ RT, lorsque l'opcode vaut regimm.

1816	000	001	010	011	100	101	110	111
00	BLTZ	BGEZ	-	-	-	-	-	-
10	BLTZAL	BGEZAL	-	-	-	-	-	-
X1	-	-	-	-	-	-	-	-

Champ RS, lorsque l'opcode vaut cop0. 00000 : MFCO , 00100 : MTCO Champ FUNC, lorsque l'opcode vaut cop0. 011000 : ERET