[REVISION] Algebraic Manipulations and Exponents

a) Factoring Out, Compound Fractions, and Simplifications

Factoring Out a Common Term. Factoring out means writing an expression as a product of a common factor and a simpler expression.

$$ax + ay = a(x + y),$$
 $n^2 + 4n = n(n + 4)$

This is especially useful when simplifying limits or fractions.

Simplifying Fractions. When the numerator and denominator share a common factor, it can be cancelled (if nonzero):

$$\frac{3x^2 + 6x}{3x} = \frac{3x(x+2)}{3x} = x+2.$$

Always ensure that the cancelled term is not zero to avoid invalid simplifications.

Compound Fractions. To simplify a compound fraction such as

$$\frac{\frac{a}{b}}{\frac{c}{d}}$$
,

multiply the numerator by the reciprocal of the denominator:

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}.$$

Example:

$$\frac{n^2 + 4n}{10n - 5} = \frac{n(n+4)}{n(10 - 5/n)} = \frac{n+4}{10 - 5/n}.$$

A: Factoring Out, Compound Fractions, Simplifications

- a) Simplify: $\frac{6x^2 + 9x}{3x}$.
- b) Factor and simplify: $n^2 + 5n 6$.
- c) Simplify the compound fraction: $\frac{\frac{2}{3}}{\frac{4}{9}}$.
- d) Factor out the greatest common divisor: $12a^3b^2 18a^2b$.
- e) Simplify: $\frac{n^2+4n}{n(10-5/n)}$ and state for which n the simplification is valid.
- f) Simplify: $\frac{x^2 9}{x^2 6x + 9}$.
- g) Multiply and simplify: $\left(\frac{2x}{3y}\right)\left(\frac{9y^2}{4x^2}\right)$.
- h) Simplify: $\frac{(n+2)^2 (n-3)^2}{n}$.
- i) Reduce the fraction: $\frac{4x^3y 8x^2y^2}{4x^2y}$.
- j) Simplify by factoring: $\frac{3t^2 12}{6t}$.
- k) Simplify the complex fraction: $\frac{\frac{a}{b} + \frac{c}{d}}{\frac{a}{b} \frac{c}{d}}$ (give common-denominator form).

1

- 1) Factor by grouping: $x^3 + 2x^2 x 2$.
- m) Simplify: $\frac{n^2+4n+7}{(n-2)^2-(n+3)^2}$ and determine whether the limit as $n\to\infty$ is finite or infinite (no need to compute numeric limit if infinite).
- n) Simplify and cancel common factors where allowed: $\frac{(3x-6)(x+1)}{3(x-2)}$.
- o) Rewrite with a single fraction: $\frac{1}{x} + \frac{1}{x+1}$.
- p) Simplify: $\frac{x^2-4}{x-2}$ (state any removable singularities).
- q) Simplify: $\frac{(2n+4)(n-1)}{2(n+2)}.$
- r) Factor completely: $8y^3 2y$.
- s) Simplify the rational expression: $\frac{n^3 27}{n^2 + 3n + 9}$.
- t) Given $\frac{p}{q} = \frac{6}{15}$, reduce and rewrite as lowest terms; then multiply numerator and denominator by 7 and simplify.

b) Working with Powers and Exponents

Basic Laws of Exponents. For any real numbers a, b and exponents m, n:

$$a^m \cdot a^n = a^{m+n}, \qquad \frac{a^m}{a^n} = a^{m-n}, \qquad (a^m)^n = a^{mn}.$$

If a, b > 0:

$$(ab)^n = a^n b^n, \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

Negative and Fractional Exponents.

$$a^{-n} = \frac{1}{a^n}, \qquad a^{1/n} = \sqrt[n]{a}.$$

Example:

$$(16)^{3/4} = \left(\sqrt[4]{16}\right)^3 = 2^3 = 8.$$

B: Working with Powers, Exponents, and Roots

a) Simplify: $a^3 \cdot a^5$.

b) Simplify: $\frac{b^7}{b^2}$.

c) Simplify: $(x^2)^4$.

d) Write as a single power: $(2a)(2a^2)(2a^3)$.

e) Simplify and express without negative exponents: x^{-3} .

f) Evaluate: $16^{3/4}$.

g) Simplify: $\left(\frac{3^2}{3^{-1}}\right)$.

h) Simplify: $(ab)^4$ and then expand to show powers of a and b.

i) Simplify: $\frac{(x^3y^{-2})^2}{x^{-1}y}$.

j) Solve for x: $x^{2/3} = 9$ (give real solutions).

k) Compare growth: which grows faster as $n \to \infty$, n^2 or 2^n ? Explain briefly.

l) Simplify: $\sqrt[3]{x^6}$ and state when sign issues matter.

m) Simplify: $\left(\frac{4}{9}\right)^{-3/2}$.

n) Simplify using exponent rules: $\frac{(2x^3)^2}{4x}$.

o) Express as radical: $x^{3/2}$ and simplify for x = 16.

p) Simplify: $(x^{-1}y^2)^{-2}$.

q) Evaluate and simplify: $\frac{(27)^{2/3}}{3^{-1}}$.

r) Prove or simplify: $a^m a^n = a^{m+n}$ by example with integers m, n.

s) Simplify and rationalize if needed: $\frac{1}{\sqrt{x}}$ (write without a radical in the denominator).

t) Simplify the expression for large n: $\frac{n^5 + 2n^3}{n^4}$ and describe leading behaviour as $n \to \infty$ (calculate the limit).

3

Common Mistakes to Avoid

•
$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$

•
$$(a+b)^2 \neq a^2 + b^2$$
 (correct: $(a+b)^2 = a^2 + 2ab + b^2$)

$$\bullet \ \frac{a+b}{c+d} \neq \frac{a}{c} + \frac{b}{d}$$

•
$$a^{m+n} \neq a^m + a^n$$
 (correct: $a^{m+n} = a^m \cdot a^n$)

•
$$(ab)^n \neq a^n + b^n$$
 (correct: $(ab)^n = a^n b^n$)

•
$$(a/b)^n \neq a^n/b$$
 (correct: $(a/b)^n = a^n/b^n$)

•
$$a^{-n} \neq -a^n$$
 (correct: $a^{-n} = 1/a^n$)

$$\bullet \ \frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$$

• When cancelling, do not cancel terms—only factors. For example, $\frac{x+2}{x+3} \neq 1$ even though both have x.

• Remember: you can cancel
$$x$$
 in $\frac{2x}{3x}$, but not in $\frac{x+2}{x+3}$.

•
$$(a+b)/(a) \neq 1+b$$
 (only valid if you factor properly).

• Forgetting domain restrictions: after simplifying $\frac{x^2-4}{x-2}=x+2$, note that $x\neq 2$.

• Taking even roots of negative numbers (e.g.
$$\sqrt{-4}$$
) is not real.

• Mixing addition and multiplication rules for exponents incorrectly.

• Dropping parentheses:
$$-a^2$$
 means $-(a^2)$, not $(-a)^2$.

• Incorrect cancellation across addition or subtraction: $\frac{x^2 + 2x}{x} = x + 2$, not x + 2x.

• Confusing
$$\frac{1}{a+b}$$
 with $\frac{1}{a} + \frac{1}{b}$.

• Forgetting to distribute exponents: $(3x^2)^3 = 27x^6$, not $3x^6$.

• Forgetting that
$$(a^m)^n = a^{mn}$$
, not a^{m+n} .

• Ignoring sign issues: $\sqrt{x^2} = |x|$, not x.