Neural Nets - Backpropagation

Aprendizagem Automática Avançada

Luís Correia

Ciências - ULisboa

MLP example

forward; complete connection

the additive model of artificial neuron

MLP

- multi layer perceptron (MLP)
- general designation of feedforward Artificial Neural Nets (ANN)
- nets with several (> 1) layers of neurons (without feedback)
- signals propagate layer by layer from input to output
- most common learning model:
 - error backpropagation algorithm, or
 - backpropagation, or
 - backprop
 - errors propagate layer by layer from output to input
- backprop is a generalisation of LMS

MLP learning

before learning

after learning

source: https://borgelt.net/mlpd.html

to solve in 1st TP

backprop in two words

two steps:

- forward step input vector presented and output is computed
 - by forward propagation
 - with constant weights
- backward step weights are adjusted from an error signal
 - error = difference between real output and desired output
 - error is propagated backwards adjusting weights layer by layer

backprop in MLP - activation function I/II

requirements

non linear and differentiable activation function

• typically sigmoid, such as the logistic function

$$y_j = rac{1}{1 + \exp(-av_j)}$$
 with $a > 0$ y_j - neuron j output v_j - induced local field (weighted sum of all inputs)

$$y_i = a \tanh(bv_i)$$
 with $a, b > 0$

backprop in MLP - activation function II/II

relaxing the differentiable requirement (in a single point)

• introducing the rectified linear unit (ReLU) function

$$y_j = \begin{cases} 0, & \text{if } v_j < 0 \\ v_j, & \text{if } v_j \ge 0 \end{cases}$$

notes on backprop in MLP

- if activation function was linear, a MLP would reduce to a single neuron(!)
- hidden layers (neither input nor output layers)
 - allow to increase complexity of processing/classification
 - ... and also increase difficulty of analysis
- backprop is a computationally efficient learning algorithm

notation

to formalise backprop

```
n iteration \mathscr{E}(n) error energy (1/2\sum_j e_j^2(n)) e_j(n) error of neuron j y_j(n) real output d_j(n) desired output w_{ji}(n) synapse weight: output of i to input of j \Delta w_{ji}(n) learning correction \varphi(\cdot) activation function
```

```
v_j(n) induced local field (\sum_i w_{ji} x_i) x_{ji}(n) i-th input of neuron j o_k(n) k-th output of the network \eta learning rate L network depth; l=0,1,\ldots,L layer m_l number of neurons in layer l m_0 input size; m_L output size; usually m_L=M
```

learning goal in MLP

supposing a neuron j in the output layer

$$e_j(n) = d_j(n) - y_j(n)$$

error energy:

$$\mathscr{E}(n) = \frac{1}{2} \sum_{j \in C} e_j^2(n)$$

with C as the set of neurons in the output layer designating N as the number of examples in the training set, the average error energy is:

$$\mathscr{E}_{av} = \frac{1}{N} \sum_{n=1}^{N} \mathscr{E}(n)$$

learning: minimise \mathscr{E}_{av} by adjusting weights

backprop algorithm

introduction

- weights adjusted for each input vector as a function of the error
 - repeat for all examples of the training set: 1 epoch
- repeat for several epochs until stopping criteria
- the average individual weight change is an *estimate* of the change needed to minimise the cost function over the training set, \mathscr{E}_{av}

part I/III

the induced local field of output neuron j is

$$v_j(n) = \sum_{i=0}^m w_{ji}(n)y_i(n)$$

its output:

$$y_j(n) = \varphi_j(v_j(n))$$

alike LMS, backprop applies a correction $\Delta w_{ji}(n)$ to the weights, proportional to the partial derivative $\partial \mathscr{E}(n)/\partial w_{ji}(n)$ applying the chain rule:

$$\frac{\partial \mathscr{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathscr{E}(n)}{\partial e_{j}(n)} \frac{\partial e_{j}(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{j}(n)} \frac{\partial v_{j}(n)}{\partial w_{ji}(n)}$$

part II/III

these hold:

$$\frac{\partial \mathscr{E}(n)}{\partial e_j(n)} = e_j(n) \qquad \qquad \frac{\partial y_j(n)}{\partial v_j(n)} = \varphi'_j(v_j(n))$$

$$\frac{\partial e_j(n)}{\partial y_j(n)} = -1 \qquad \qquad \frac{\partial v_j(n)}{\partial w_{ij}(n)} = y_i(n)$$

replacing in the equation of $\partial \mathscr{E}(n)/\partial w_{ji}(n)$, we obtain:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = -e_j(n)\varphi'_j(v_j(n))y_i(n)$$

part III/III

the weight correction is (delta rule):

$$\Delta w_{ji}(n) = -\eta \frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$$

or, by replacing the error derivative equation:

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_i(n)$$

in which $\delta_i(n)$ is the local gradient defined by:

$$\delta_{j}(n) = -\frac{\partial \mathscr{E}(n)}{\partial v_{j}(n)} = \frac{\partial \mathscr{E}(n)}{\partial e_{j}(n)} \frac{\partial e_{j}(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{j}(n)}$$
$$= e_{j}(n)\varphi'_{j}(v_{j}(n))$$

part III/III

the weight correction is (delta rule):

$$\Delta w_{ji}(n) = -\eta \frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)}$$

notice: correction is contrary to the gradient

or, by replacing the error derivative equation:

$$\Delta w_{ji}(n) = \eta \delta_j(n) y_i(n) \left[\begin{array}{c} \text{notice:} \\ w_{ji}(n+1) = w_{ji}(n) + \Delta w_{ji}(n) \end{array} \right]$$

in which $\delta_i(n)$ is the local gradient defined by:

$$\delta_{j}(n) = -\frac{\partial \mathscr{E}(n)}{\partial v_{j}(n)} = \frac{\partial \mathscr{E}(n)}{\partial e_{j}(n)} \frac{\partial e_{j}(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{j}(n)}$$
$$= e_{j}(n)\varphi'_{j}(v_{j}(n))$$

backprop comments

output layer

- local gradient provides sign and magnitude of corrections to do in synaptic weights
- corrections only depend on local error and activation function derivative
 - · usually activation function is identical in all neurons of the network
- output error computation is immediate

introduction

- error computation in hidden neuron is harder than in output layer
 - its influence in any single output neuron is shared with other hidden neurons
- to determine how to change weights of a hidden neuron according to its share of influence in the result is a credit-assignment problem

local gradient calculus I/V

given

k an output neuron

j an hidden layer (just before output) neuron the local gradient may be rewritten:

$$\delta_{j}(n) = -\frac{\partial \mathscr{E}(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{j}(n)}$$
$$= -\frac{\partial \mathscr{E}(n)}{\partial y_{j}(n)} \varphi'_{j}(v_{j}(n))$$

local gradient calculus II/V

since:

$$\mathscr{E}(n) = \frac{1}{2} \sum_{k \in C} e_k^2(n) \quad (k \text{ is an output neuron})$$

we obtain:

$$\frac{\partial \mathscr{E}(n)}{\partial y_j(n)} = \sum_k e_k \frac{\partial e_k(n)}{\partial y_j(n)}$$

notice indexes j and k

hidden layer neuron error contributions

to obtain the error derivative of a hidden layer neuron we need to take into account the contributions of all the output neurons to which it is connected

local gradient calculus III/V

by the chain rule:

$$\frac{\partial \mathscr{E}(n)}{\partial y_j(n)} = \sum_k e_k \frac{\partial e_k(n)}{\partial v_k(n)} \frac{\partial v_k(n)}{\partial y_j(n)}$$

given that:

$$e_k(n) = d_k(n) - y_k(n) = d_k(n) - \varphi_k(v_k(n))$$

we obtain:

$$\frac{\partial e_k(n)}{\partial v_k(n)} = -\varphi'_k(v_k(n))$$

local gradient calculus IV/V

noting that:

$$v_k(n) = \sum_{j=0}^m w_{kj}(n) y_j(n)$$
 with m as $\#$ inputs of neuron k

the derivative in order to $y_i(n)$ becomes:

$$\frac{\partial v_k(n)}{\partial y_j(n)} = w_{kj}(n)$$

local gradient calculus V/V

replacing in $\partial \mathscr{E}(n)/\partial y_j(n)$ we get:

$$\frac{\partial \mathscr{E}(n)}{\partial y_j(n)} = -\sum_k e_k(n)\varphi'_k(v_k(n))w_{kj}(n)$$
$$= -\sum_k \delta_k(n)w_{kj}(n)$$

where:

$$\delta_k(n) = e_k(n)\varphi'_k(v_k(n))$$

finally, replacing this in the rewritten $\delta_j(n)$ equation:

$$\delta_j(n) = \varphi'_j(v_j(n)) \sum_k \delta_k(n) w_{kj}(n)$$

further hidden...

the factor

$$\sum_{k} \delta_k(n) w_{kj}(n)$$

can be considered as the error of a hidden layer neuron

• it is easy to see that this analysis can be recursively applied to neurons of previous hidden layers. . .

logistic I/III

$$y_j(n) = \varphi_j(v_j(n)) = \frac{1}{1 + \exp(-av_j(n))}$$

with a>0 and $-\infty < v_j(n) < \infty$ resulting in $0 \le y_j \le 1$ the derivative in order to $v_j(n)$ is:

$$\varphi'_j(v_j(n)) = \frac{a \exp(-av_j(n))}{[1 + \exp(-av_j(n))]^2}$$

since $y_j(n) = \varphi_j(v_j(n))$ the derivative can be written as

$$\varphi_j'(v_j(n)) = ay_j(n)[1 - y_j(n)]$$

logistic II/III

analysing

$$\varphi_j'(v_j(n)) = ay_j(n)[1 - y_j(n)]$$

- maximum when $y_i(n) = 0, 5$
- minimum when $y_i(n) = 0$ or $y_i(n) = 1$
- since $\Delta w \propto \varphi_i'(v_j(n))$
 - max variation in the intermediate zone of the sigmoid
 - least variation with a saturated neuron

• this feature provides stability to the backprop learning algorithm

logistic III/III - simplifications

for an output neuron, $y_k(n) = o_k(n)$, therefore the local gradient is:

$$\delta_k(n) = \varphi'_k(v_k(n))e_k(n)$$
$$= ao_k(n)[1 - o_k(n)][d_k(n) - o_k(n)]$$

for a hidden layer neuron:

$$\delta_{j}(n) = \varphi'_{j}(v_{j}(n)) \sum_{k} \delta_{k}(n) w_{kj}(n)$$
$$= ay_{j}(n) [1 - y_{j}(n)] \sum_{k} \delta_{k}(n) w_{kj}(n)$$

hyperbolic tangent I/II

general form:

$$\varphi_j(v_j(n)) = a \tanh(bv_j(n))$$

- with a, b > 0 constants
- similar to the logistic function, with a different scale and a bias

its derivative is:

$$\varphi_j'(v_j(n)) = ab \operatorname{sech}^2(bv_j(n))$$

$$= ab(1 - \tanh^2(bv_j(n)))$$

$$= \frac{b}{a}[a - y_j(n)][a + y_j(n)]$$

hyperbolic tangent II/II

for an output neuron:

$$\begin{split} \delta_k(n) &= e_k(n)\varphi_k'(v_k(n)) \\ &= \frac{b}{a}[d_k(n) - o_k(n)][a - o_k(n)][a + o_k(n)] \end{split}$$

for a hidden layer neuron:

$$\delta_{j}(n) = \varphi'_{j}(v_{j}(n)) \sum_{k} \delta_{k}(n) w_{kj}(n)$$

$$= \frac{b}{a} [a - y_{j}(n)] [a + y_{j}(n)] \sum_{k} \delta_{k}(n) w_{kj}(n)$$

rectified linear unit (ReLU) I/II

general form:

$$\varphi_j(v_j(n)) = \begin{cases} 0, & \text{if } v_j(n) < 0 \\ v_j(n), & \text{if } v_j(n) \ge 0 \end{cases}$$

ReLu(v)

very simple piecewise linear function

its derivative is:

$$\varphi_j'(v_j(n)) = \begin{cases} 0, & \text{if } v_j(n) < 0\\ 1, & \text{if } v_j(n) \ge 0 \end{cases}$$

enters the activation function ReLU II/II

for an output neuron:

$$\begin{split} \delta_k(n) &= e_k(n)\varphi_k'(v_k(n)) \\ &= \begin{cases} 0, & \text{if } v_k(n) < 0 \\ d_k(n) - o_k(n), & \text{if } v_k(n) \ge 0 \end{cases} \end{split}$$

for a hidden layer neuron:

$$\begin{split} \delta_j(n) &=& \varphi_j'(v_j(n)) \sum_k \delta_k(n) w_{kj}(n) \\ &=& \begin{cases} 0, & \text{if } v_j(n) < 0 \\ \sum_k \delta_k(n) w_{kj}(n), & \text{if } v_j(n) \geq 0 \end{cases} \end{split}$$

backpropagation happy ending

with both logistic, hyperbolic tangent and ReLU:

backprop does not need to compute

- the activation function
- nor its derivative!

learning config I/IV

ullet η controls learning rate

$$\eta$$
 << smooth trajectory but slow learning η >> quick learning, but unstable (possible oscillations)

workaround with a momentum parameter α :

$$\Delta w_{ji}(n) = \alpha \Delta w_{ji}(n-1) + \eta \delta_j(n) y_i(n)$$

generalised delta rule - delta rule as a particular case when $\alpha = 0$

learning config II/IV

generalised delta rule alternative formulation:

$$\Delta w_{ji}(n) = \eta \sum_{t=0}^{n} \alpha^{n-t} \delta_j(t) y_i(t)$$

but

$$\delta_j(t)y_i(t) = -\partial \mathscr{E}(t)/\partial w_{ji}(t)$$

therefore:

$$\Delta w_{ji}(n) = -\eta \sum_{t=0}^{n} \alpha^{n-t} \frac{\partial \mathscr{E}(t)}{\partial w_{ji}(t)}$$

learning config III/IV

- $\Delta w_{ji}(n)$ is the sum of a series
 - to converge we need $0 \le |\alpha| < 1$ (usually $\alpha > 0$)
- momentum tends to accelerate descend in a downward segment
 - $\partial \mathscr{E}(n)/\partial w_{ji}(n)$ with identical signs in consecutive iterations makes $\Delta w_{ji}(n)$ grow (i.e. $w_{ji}(n)$ adjustment grows)
- momentum tends to stabilise trajectories with signal changes
 - $\partial \mathscr{E}(n)/\partial w_{ji}(n)$ with opposed signs in successive iterations produces small $\Delta w_{ji}(n)$ (i.e. small $w_{ji}(n)$ adjustments)

learning config IV/IV

- momentum may contribute to better learning and to avoid local minima
- η may not be constant and we may have as many instances η_{ji} as synapses
- with $\eta_{ii} = 0$ there is no learning in that synapse

improved momentum

adaptive momentum estimation (ADAM)

computes exponentially decaying average of past gradients similar to a heavy ball with friction instead just heavy (momentum)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \partial \mathcal{E}(t) / \partial w_{ji}(t)$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) (\partial \mathcal{E}(t) / \partial w_{ji}(t))^2$$

 m_t : estimate of 1st moment (mean), corrected for bias: $\hat{m}_t = m_t/(1-\beta_1)$ v_t : estimate of second moment (variance), corrected: $\hat{v}_t = v_t/(1-\beta_2)$

$$\Delta w_{ji}(n) = -\frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

with suggested values of $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$

sequential training

an epoch is the presentation of all the set of training examples

$$(\mathbf{x}(1),\mathbf{d}(1)),\ldots,(\mathbf{x}(N),\mathbf{d}(N))$$

- $oldsymbol{0}$ first example $\mathbf{x}(1)$ presented at the input and a learning cycle is performed: forward signal propagation and given $\mathbf{d}(1)$, the error backpropagation
- ② the process is repeated to complete the epoch $(\mathbf{x}(N), \mathbf{d}(N))$
 - if error not low enough the epoch is repeated in a different (random) order of examples
 - randomisation order makes learning stochastic and avoids limit cycles (around local minima)

batch training

all weights are updated only once given epoch examples

cost function for an epoch as the average square error

$$\mathscr{E}_{av} = \frac{1}{2N} \sum_{n=1}^{N} N \sum_{i \in C} e_j^2(n)$$

adjustment of synaptic weights according to delta rule:

$$\Delta w_{ji} = -\eta \frac{\partial \mathcal{E}_{av}}{\partial w_{ji}} = -\frac{\eta}{N} \sum_{n=1}^{N} e_j(n) \frac{\partial e_j(n)}{\partial w_{ji}}$$

with $\partial e_j(n)/\partial w_{ji}$ as before

• Δw_{ji} adjustment is done once incorporating all the individual errors of the epoch

sequential vs. batch

sequential training

- + simple implementation
- being stochastic may avoid local minima
- + in general good results
 - hard to model theoretically

batch training

- + easy to determine convergence conditions
- + easy to parallelise
 - doesn't take advantage of redundant examples

stopping criteria

- backprop has converged when the absolute variation of the average squared error per epoch is small enough
 - "small" maybe from 1% downto 0,1%, or even 0,01%...

better alternative:

test generalisation capability and (early) stop when it peaks

backprop heuristics I/IX

- sequential vs. batch
 - sequential simpler and more robust
- maximise the information content of each example in the training set:
 - use an example producing a large error
 - use an example radically different from others

possible problems:

distorted example distribution learning of extreme cases may worsen backprop behaviour

backprop heuristics II/IX

activation function

learning is faster with antisymmetric (odd) activation function:

$$\varphi(-v) = -\varphi(v)$$

logistic is not, but hyperbolic tangent $\varphi(v)=a \tanh(bv)$ yes! suggested parameter values:

$$a = 1,7159$$
 $b = \frac{2}{3}$

which result in:

$$\varphi(1) = 1$$
, $\varphi(-1) = -1$

$$\varphi'(0) = ab = 1,1424 \simeq 1$$

and max $\varphi''(v)$ at v=1

backprop heuristics III/IX

• desired outputs (d_k) should fall within and at some distance (ϵ) of the limiting values of φ for the case of the hyperbolic tangent in the positive value +a:

$$d_k = a - \epsilon$$

in the negative value -a:

$$d_k = -a + \epsilon$$

if a=1,7159 then with $\epsilon=0,7159$ we obtain d_j as ± 1 well in the linear zone of φ

backprop heuristics IV/IX

- input normalisation
 - each input should have average null or close to it supposing all inputs positive, all weights in the input layer would tend to vary together
 - input variables should not be correlated PCA may be useful for this
 - scale variables so that their **covariances** $(\sigma_{X_iX_j})^{\dagger}$ are **similar** \Rightarrow learning speed of synaptic weights is similar

backprop heuristics V/IX

• initialisation initial weight values not very large (saturation) nor very small (saddle point in antisymmetric φ)

assuming null average inputs and unit variance:

$$\mu_X = E[X_i] = 0 \quad \land \quad \sigma_X^2 = E[(X_i - \mu_{X_i})^2] = E[X_i^2] = 1 \quad \forall i$$

an supposing non correlated inputs:

$$E[X_i X_j] = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

backprop heuristics VI/IX

initialisation (cont.)

supposing initial random uniform synaptic weights with null average

$$\mu_w = E[w_{ji}] = 0 \quad \text{for all } (j, i)$$

and variance

$$\sigma_w^2 = E[(w_{ji} - \mu_w)^2] = E[w_{ji}^2]$$

the induced local field average is

$$\mu_v = E[v_j] = E\left[\sum_{i=1}^m w_{ji} x_i\right] = \sum_{i=1}^m E[w_{ji}] E[x_i] = 0$$

(assuming null bias $v_j = \sum_{i=1}^m w_{ji} x_i$)

backprop heuristics VII/IX

initialisation (cont.) and the induced local field variance is

$$\sigma_{v}^{2} = E[(V_{j} - \mu_{v})^{2}] = E[V_{j}^{2}]$$

$$= E\left[\sum_{i=1}^{m} \sum_{k=1}^{m} w_{ji}w_{jk}x_{i}x_{k}\right]$$

$$= \sum_{i=1}^{m} \sum_{k=1}^{m} E[w_{ji}w_{jk}]E[x_{i}x_{k}]$$

$$= \sum_{i=1}^{m} E[w_{ji}^{2}]$$

$$= m\sigma_{w}^{2}$$

backprop heuristics VIII/IX

for $\varphi=\tanh$ a good strategy for initialisation of the synaptic weights is

$$\sigma_v = 1$$

so that, with a and b as previously defined weights will fall along the linear zone of the sigmoid and therefore

$$\sigma_w = m^{-1/2}$$

weight variance reciprocal of the number of synapses of a neuron

backprop heuristics IX/IX

- learning clues
 - use information about the function to learn to accelerate backprop ex: invariance, symmetry properties
- learning rate
 - for learning to occur at the same rhythm in all neurons, η should be smaller in the last layers (usually with higher local gradients) neurons with more inputs should have smaller η (inversely proportional to the square root of the nr. of synapses) adjustment

backprop summary

- initialisation if no information available, choose synaptic weights with random uniform distribution, null average and adequate variance to be in the linear zone of the sigmoid
- training present an epoch while performing the learning steps for each example
- ullet iterations repeat epoch presentation with a different random order until stopping criterium adjust lpha and η (decreasing their values) with the number of iterations

pros & cons of backprop I/II

connectionism (local computation)

- + metaphor for biological networks
- + (potential) graceful degradation
- + easy to parallelise
- unrealistic in face of natural neurons
- + universal approximator of functions
- + computationally efficient (linear with W)

pros & cons of backprop II/II

- + **robustness** small perturbations only produce small estimate variations
- slow convergence
 - stochastic algorithm local gradient may not point to the minimum of the error surface
 - possible overshoot with high gradient in a single weight, or
 - small adjustments in flat error surfaces
- local minima backprop can get stuck
- scaling time may grow exponentially with nr. inputs
 - try to simplify connections (and avoid fully connected MLP in complex problems)

final comments to backprop

- advantages stem from:
 - local learning method
 - efficient in computing local error derivatives
- sequential (stochastic) mode vastly more used for simplicity

non-linear neurons

- each one establishes a separation hyperplane
- the combination of all hyperplanes is iteratively adjusted to separate example patterns minimising classification error on average

references

Haykin, S. S. (2009). Neural networks and learning machines.
 Pearson Education.

heuristics to adjust η

to accelerate convergence

- lacktriangle one η for each parameter
- $oldsymbol{2}$ each η should be allowed to change in each iteration
- ullet when error derivative in order to one parameter maintains sign in consecutive iterations, increase respective η
- \bullet when error derivative in order to one parameter alternates sign in consecutive iterations, decrease respective η

```
... meta-learning...
```

∢ Back

generalisation I/III

an ANN generalises if, for an input vector not used in training the result is correct (or nearly so...)

generalisation II/III

3 main factors influence generalisation capability:

- size and representativity of the training set
- network architecture
- problem complexity

the last is not controllable! about the others:

- define the architecture and try to obtain a good training set
- define the training set and try to obtain a good architecture

generalisation III/III

maintaining the architecture...

rule of thumb:

$$N = O\left(\frac{W}{\epsilon}\right)$$

where

N size of the training set

W total of free parameters

 ϵ admissible error

to determine the architecture we need to go deeper...

cross-validation I/II

- statistics technique very used in machine learning data set divided into:
 - training sets
 - training set
 - used to fit the model
 - validation set
 - used to estimate generalisation, or prediction error of the model to avoid overfit
 - test set
 - used to assess the generalisation error of the obtained model

test set is not used for training!

cross-validation II/II

early stop method

- perform a few epochs of training
- 2 with parameters fixed, present the validation set and measure the error for each of its examples
- repeat from 1, until validation error increases

average

squared

error

function approximation I/IV

universal approximation theorem (UAP)

let $\varphi(\cdot)$ be a non constant, bounded and monotonous-increasing function. Let I_{m_0} be the m_0 -dimensional unit hypercube $[0,1]^{m_0}$. The space of the continuous functions in I_{m_0} is denoted by $C(I_{m_0})$. Then, given any function $f \in C(I_{m_0})$ and $\epsilon > 0$, exists an integer m_1 and sets of real constants α_i , β_i and w_{ij} , where $i=1,\ldots,m_1$ and $j=1,\ldots,m_0$, such that we may define

$$F(x_1, ..., x_{m_0}) = \sum_{i=1}^{m_1} \alpha_i \varphi \left(\sum_{j=1}^{m_0} w_{ij} x_j + b_i \right)$$

as an approximation of function $f(\cdot)$; meaning,

$$|F(x_1,\ldots,x_{m_0})-f(x_1,\ldots,x_{m_0})|<\epsilon$$

for all x_1,x_2,\ldots,x_{m_0} within the input space

function approximation II/IV

• the universal approximation theorem says that a single hidden layer is sufficient for a MLP to compute a ϵ approximation to a given training set $x_1, x_2, \ldots, x_{m_0}$ and the corresponding desired output $f(x_1, \ldots, x_{m_0})$

however,

• it does not guarantee optimality of training time, or generalisation

function approximation III/IV

an error risk bound of using a MLP with m_0 input nodes and m_1 hidden layer neurons is [Barron, 1992]:

$$R \le O\left(\frac{C_f^2}{m_1}\right) + O\left(\frac{m_0 m_1}{N} \log N\right)$$

where $C_f \approx$ smoothness of function to learn f expresses a tradeoff between

- ullet accuracy of best approximation (1st term) $\mathbf{m_1}$ must be large (see also UAP)
- accuracy of empirical fit to the approximation (2nd term) ratio $\mathbf{m_1/N}$ must be small (for N constant m_1 should be small)

function approximation IV/IV

with 2 hidden layers learning is more manageable:

- the first hidden layer extracts local features partition of input and learning of local features to each one
- the second hidden layer extracts global features learns global features combining outputs of neurons in the first hidden layer for a particular region of the output space

