Representation Theory and its Applications in Physics

Max Varverakis

May 7, 2024

Contents

1	Intr	oducti	ion	4
2	An	Introd	luction to Representation Theory	5
	2.1	Irredu	acibility and Invariant Subspaces	7
3	Exa	mples	in Physics	11
	3.1	Rotati	ions in a plane and the group $SO(2)$	11
		3.1.1	The rotation group	11
		3.1.2	Infinitesimal rotations	13
		3.1.3	Irreducible representations of $SO(2)$	14
		3.1.4	Multivalued representations	16
		3.1.5	State vector decomposition	17
	3.2	Contin	nuous 1-dimensional translations	19
		3.2.1	Irreducible representations of T_1	20
		3.2.2	Explicit form of P	21
		3.2.3	Generalization to 3-dimensional space	22
	3.3	Symm	netry, invariance, and conserved quantities	23
		3.3.1	Conservation of linear momentum	24
		3.3.2	Conservation of angular momentum	25
	3.4	3D rot	tations and the group $SO(3)$	26
		3.4.1	Explicit form of J	27
		3.4.2		28
		3.4.3	Irreducible representations of $SO(3)$	29
	3.5	Physic	cal implications of $SO(3)$	32
		3.5.1	Quantization of observables	34
		3.5.2	Additional applications	35

4	The	Braid Group	37				
	4.1	Visualization of pure braids	37				
	4.2	General braids					
	4.3	Standard generators of the braid group	40				
	4.4	Automorphisms of the free group	41				
	4.5	One-dimensional representations of B_n	46				
	4.6	The Burau Representation	47				
	4.7	The Reduced Burau Representation	53				
	4.8	Unitary Representation Matrices	56				
5	Anyons: A Consequence of Braiding Particles						
	5.1	Braiding action on a quantum system	59				
	5.2	Two Non-Interacting Anyons	61				
	5.3	Anyons in Harmonic Potential	64				
	5.4	Nontrivial braiding effects	66				
	5.5	Conclusion	68				
6	To-	Do List	70				
Bi	bliog	graphy	73				
\mathbf{A}	Rele	evant Topological Definitions	7 4				
В	Physics Background						
	B.1	Physics conventions and Dirac notation					
	B.2	Commutator Identities	80				
	B.3	Commutation relations for $SO(3)$	80				
	B.4	Conserved quantities in quantum mechanics	81				
\mathbf{C}	Mul	lti-anyon system with harmonic potential	83				
	C.1	Deriving the additional Hamiltonian terms	83				

List of Figures

4.1	Pure braid	38
4.2	General braid	40
4.3	Artin generators	41
4.4	Fundamental group of the punctured disk	42
4.5	Artin generators realized on the punctured disk	43
4.6	Graphical verification of Eqn. 4.3	44
4.7	Graphical verification of Eqn. 4.6	46
4.8	Punctured disk covering space	49
4.9	Covering space loop	51
		a -
5.1	Anyon trajectories	67

Abstract

Representation theory, which encodes the elements of a group as linear operators on a vector space, has far-reaching implications in physics. Fundamental results in quantum physics emerge directly from the representations describing physical symmetries. We first examine the connections between specific representations and the principles of quantum mechanics. Then, we shift our focus to the braid group, which describes the algebraic structure of braids. We apply representations of the braid group to physical systems in order to investigate quasiparticles known as anyons. Finally, we obtain governing equations of anyonic systems to highlight the physical differences between braiding statistics and Bose-Einstein/Fermi-Dirac statistics.

Chapter 6

To-Do List

Potential committee members:

- Anton Kaul
- Patrick Orson
- Eric Brussel
- Rob Easton

Questions for grad ed formatting

- Bold figure captions.
- Short figure captions.
- Compressed citations.
- Make sure every citation is used in the document?
- Weird matrices.
- Beefy captions?
- Okay to just state $\psi_n^{\mathbf{r}}(\sigma_i)$ matrices?
- Show $\psi_n^{\mathbf{r}}(\sigma_i)$ invertible?

- Do? Anyon fusion rules. τ anyon/Fibonacci anyon example. Relate to singlet/triplet states in spin-1/2 system.
- Spend some time on MATLAB thing?

✓ Gauge theory background, QM background.

- \checkmark Go over Appendix A and see if it needs more examples, maybe push to appendix.
- \checkmark Do the stuff above listed for Chapter 4.
- ✓ Concluding paragraph on first section of Chapter 5 to lead into the more physics-y stuff.
- ✓ Conclusion/future of anyons/braid group in physics.
- \checkmark Go over Chapter 2 with the relevant bullets above in mind.
- X Note the Lie algebra vs Lie group distinction in Chapter 3.
- \checkmark Intro paragraphs for Chapter 3 and sections.
- \checkmark Comment on faithfulness of the Burau representation.
- ✓ Introduction "chapter".
- ✓ Abstract.
- \checkmark Acknowledgements.

Bibliography

- [1] E. Artin. Theory of braids. *The Annals of Mathematics*, 48(1):101, January 1947.
- [2] Kirill I. Bolotin, Fereshte Ghahari, Michael D. Shulman, Horst L. Stormer, and Philip Kim. Observation of the fractional quantum hall effect in graphene. *Nature*, 462(7270):196–199, November 2009.
- [3] G. Date, M. V. N. Murthy, and Radhika Vathsan. Classical and quantum mechanics of anyons, 2003.
- [4] Amitesh Datta. A strong characterization of the entries of the burau matrices of 4-braids: The burau representation of the braid group b_4 is faithful almost everywhere, 2022.
- [5] Colleen Delaney, Eric C. Rowell, and Zhenghan Wang. Local unitary representations of the braid group and their applications to quantum computing, 2016.
- [6] Avinash Deshmukh. An introduction to anyons.
- [7] Bernard Field and Tapio Simula. Introduction to topological quantum computation with non-abelian anyons. 2018.
- [8] W. Fulton. Algebraic Topology: A First Course. Graduate Texts in Mathematics. Springer New York, 1997.
- [9] Juan Gonzalez-Meneses. Basic results on braid groups, 2010.
- [10] David J. Griffiths. *Introduction to Electrodynamics*. Cambridge University Press, June 2017.

- [11] David J. Griffiths and Darrell F. Schroeter. *Introduction to Quantum Mechanics*. Cambridge University Press, August 2018.
- [12] Brian C. Hall. Quantum Theory for Mathematicians. Springer New York, 2013.
- [13] Christian Kassel and Vladimir Turaev. *Homological Representations of the Braid Groups*, page 93–150. Springer New York, 2008.
- [14] Avinash Khare. Fractional Statistics and Quantum Theory. WORLD SCIENTIFIC, February 2005.
- [15] K Moriyasu. An Elementary Primer for Gauge Theory. WORLD SCI-ENTIFIC, October 1983.
- [16] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3):1083–1159, September 2008.
- [17] Martin Palmer and Arthur Soulié. The burau representations of loop braid groups. 2021.
- [18] Dale Rolfsen. Tutorial on the braid groups, 2010.
- [19] Craig C. Squier. The burau representation is unitary. *Proceedings of the American Mathematical Society*, 90(2):199–202, 1984.
- [20] John R. Taylor. *Classical Mechanics*. University Science Books, board book edition, 1 2005.
- [21] Jean-Luc Thiffeault. The burau representation of the braid group and its application to dynamics. Presentation given at Topological Methods in Mathematical Physics 2022, Seminar GEOTOP-A, September 2022.
- [22] Wu-Ki Tung. Group theory in physics: An introduction to symmetry principles, group representations, and special functions in classical and quantum physics. World Scientific Publishing, Singapore, Singapore, January 1985.
- [23] Frank Wilczek. Quantum mechanics of fractional-spin particles. *Physical Review Letters*, 49(14):957–959, October 1982.