Pimpri Chinchwad College of Engineering, Nigdi, Pune Department of Information Technology

TYBTECH BIT5508 Foundations of Data Science

Question Bank AY 2024-25

UNIT –I Introduction to Data Science

Sr. No	Questions	Bloom's Level	CO Mapped
1	Model the primary differences between structured, semi-structured, and unstructured data? Provide examples of each and discuss how they are typically stored and processed.	L3	CO1
2	In the context of big data analytics, explain the concept of "data variety." How does the presence of different data types (e.g., text, images, audio) impact the selection of analytical techniques and tools?	L2	CO1
3	Illustrate the role of metadata in big data systems. How does metadata help in managing and interpreting different types of data within a large-scale data environment?	L3	CO1
4	Implement data science techniques be used to convert unstructured data into a structured format suitable for analysis? Discuss at least two methods and their implications for data processing.	L3	CO1
5	Interpret challenges arise when integrating data from multiple sources with different types of data (e.g., sensor data, social media data, transactional data)? How can data scientists address these challenges to ensure cohesive data analysis?	L2	CO1
6	Explain the fundamental definition of Machine Learning and how it differentiates from traditional programming methods.	L2	CO1
7	Illustrate the potential risks and challenges associated with data collection in a large-scale survey, and how can these be mitigated?	L3	CO1
8	Describe a scenario where data collection biases could significantly impact the results of a data science project. How would you address these biases?	L3	CO1
9	How can you integrate data collected from multiple sources with varying formats and structures into a cohesive dataset?	L3	CO1
10	Discuss the ethical considerations and privacy concerns when collecting sensitive personal data for a data science project.	L3	CO1
11	Demonstrate the difference between training error, validation error, and test error. Why is it important to evaluate a model on a separate test set, and how does it contribute to assessing model performance?	L3	CO1
12	Illustrate some advanced techniques for evaluating model performance on imbalanced datasets, such as precision-recall curves or stratified sampling? How do these techniques provide a more comprehensive assessment compared to traditional metrics?	L3	CO1
13	Discuss the trade-offs between using a heat map versus a scatter plot for visualizing large datasets. In what scenarios might one be preferred over the other?	L2	CO1
14	Explain how interactive dashboards can enhance data visualization. What are the key elements to consider when designing an interactive dashboard?	L3	CO1
15	Describe the principles of effective color use in data visualization. How can poor color choices impact data interpretation and decision-making?	L2	CO1

16	Demonstrate how do you determine the most appropriate type of chart or graph for visualizing time-series data? Provide examples of different types and their applications.	L3	CO1
17	Discuss the role of data aggregation in data visualization. How does aggregating data affect the clarity and usability of the visualization?	L2	CO1
18	Evaluate the effectiveness of using 3D charts for complex data sets. What are the potential advantages and disadvantages compared to 2D charts?	L3	CO1
19	Investigate How can data normalization techniques impact the visualization of comparative data? Provide examples of techniques used to normalize data and their effect on visualization.	L4	CO1
20	Analyze the use of heat maps in identifying patterns and anomalies in large datasets. What are some best practices for creating and interpreting heat maps?	L4	CO1
21	Explain the concept of visual encoding in data visualization. How does visual encoding affect the accuracy and ease of interpreting data?	L4	CO1
22	Discuss the impact of data visualization on storytelling and communication. How can visualizations be used effectively to convey a narrative or make a persuasive argument?	L4	CO1
23	Using a dataset of sales figures across different regions, create a bar chart to visualize the sales distribution by region. Explain how this visualization helps in identifying patterns or trends in sales performance and suggest potential business decisions that could be informed by this data.	L3	CO1
24	Given a dataset containing information on customer demographics and purchase behavior, use a scatter plot to visualize the relationship between age and spending amount. Describe how this visualization can help in understanding customer behavior and identifying target segments for marketing.	L3	CO1
25	Create a line chart to visualize the trend of website traffic over a year. Analyze the chart to identify peak periods of traffic and discuss potential factors that could have influenced these trends. How can this information guide future marketing strategies	L3	CO1
26	Using a dataset with multiple categorical variables, apply a stacked bar chart to visualize the distribution of categories within each variable. Explain how this visualization provides insights into the relationships between the categories and suggest how these insights could inform business decisions.	L3	CO1
27	Given a dataset of test scores from students in different classes, create a box plot to visualize the distribution of scores. Explain how this visualization helps in identifying outliers and understanding the spread of scores within each class. Discuss how this information could be used to improve educational outcomes.	L3	CO1
28	Given a dataset containing customer purchase histories, outline the steps you would take to clean and preprocess the data before analysis. Explain how each step (e.g., handling missing values, data normalization, and encoding categorical variables) contributes to the overall quality of the analysis.	L3	CO1
29	Using a dataset related to housing prices, apply exploratory data analysis (EDA) techniques to summarize the main characteristics of the data. Create visualizations (e.g., histograms, scatter plots) to identify relationships between features and the target variable. Discuss the insights gained from your analysis.	L3	CO1
30	After developing a machine learning model to predict customer churn, describe the steps you would take to evaluate its performance. Include metrics you would use (e.g., accuracy, precision, recall) and explain why these metrics are important for assessing model effectiveness."	L3	CO1
31	Explain Data Science process with suitable example	L3	CO1
32	Explain why the data is divided in to training and testing sets	L3	CO1

UNIT –II Mathematical foundation for Data Science

Sr.	Questions	Bloom's	CO
No		Level	Mapped
	Interpret the Mean: Given a dataset representing the scores of students in a math	L3	CO ₂
	exam, calculate the mean score. Explain what this value indicates about the		
	overall performance of the students.		
	Analyze the Median: For a dataset of ages of participants in a community event,	L3	CO ₂
	calculate the median age. Discuss how the median provides a better		
	understanding of the age distribution compared to the mean in this context.		
	Evaluate the Mode: Examine the frequency distribution of colors preferred by a	L3	CO2
	group of respondents. Identify the mode and explain its significance in		
	understanding group preferences.		
	Explain the concept of correlation. What does a correlation coefficient indicate	L2	CO2
	about the relationship between two variables?		
	If a financial analyst observes a high positive covariance between the returns of	L3	CO ₂
	two stocks, how can this information be applied to a portfolio management		
	strategy?		
	Given two sets of data representing the monthly sales of two products, calculate	L3	CO ₂
	the covariance. What does this value suggest about the relationship between the		
	sales of the two products?		
	Discuss the significance of the units of covariance and how they can affect the	L3	CO ₂
	interpretation of its value.		
	What does a positive covariance indicate about two variables, and how does it	L2	CO ₂
	relate to their movement in relation to each other		
	Define covariance. How does it differ from correlation in measuring the	L2	CO ₂
	relationship between two variables?		
	What are the differences between positive, negative, and zero correlation?	L2	CO ₂
	Provide examples of each.		
	Describe how a scatter plot can be used to visualize the correlation between two	L2	CO ₂
	variables.		
	If a researcher finds a strong negative correlation between hours spent on social	L3	CO ₂
	media and academic performance, how might they apply this finding to develop		
	strategies for improving student performance?		
	Given a dataset of students' study hours and their exam scores, calculate the	L3	CO ₂
	correlation coefficient and interpret its meaning in context.		
	Apply Range Calculation: A teacher recorded the number of books read by each	L3	CO2
	student in a class. Calculate the range of this dataset and describe what this		
	range reveals about the variability in reading habits among the students.		
	Assess Standard Deviation: Given the daily temperatures recorded over a week,	L3	CO ₂
	compute the standard deviation. Discuss how this measure helps in		
	understanding the consistency of temperatures during that week.		
	Construct a Box Plot: Create a box plot for a set of exam scores. Use the plot to	L3	CO ₂
	explain the interquartile range and what it reveals about the score distribution.		
	Interpret Quartiles: For a dataset representing household incomes, calculate the	L3	CO2
	first and third quartiles. Explain how these quartiles can help identify income		
	disparities within the dataset.		
	Utilize Skewness: Given a dataset of monthly expenses for households, analyze	L3	CO ₂
	the skewness of the data. Discuss what the direction of the skewness indicates		

	about spending behavior.		
1.	Apply Percentiles: Calculate the 90th percentile of a dataset representing the	L3	CO2
	number of hours students spend studying each week. Discuss the implications of		
	this percentile for understanding study habits among high-performing students.		
2.	Evaluate Data Visualization: Given a histogram of sales data for a product over	L3	CO2
	several months, interpret the shape of the histogram. Discuss what insights can		
	be drawn regarding trends in product sales from the visualization.		
3.	Interpret the Mean: Given a dataset representing the scores of students in	L3	CO2
	a math exam, calculate the mean score. Explain what this value indicates		
	about the overall performance of the students.		
4.	Analyze the Median: For a dataset of ages of participants in a community	L3	CO2
	event, calculate the median age. Discuss how the median provides a		
	better understanding of the age distribution compared to the mean in this		
	context,		
5.	Evaluate the Mode: Examine the frequency distribution of colors	L3	CO2
	preferred by a group of respondents. Identify the mode and explain its		
	significance in understanding group preferences.		
6.	Apply Range Calculation: A teacher recorded the number of books read	L3	CO2
	by each student in a class. Calculate the range of this dataset and describe		
	what this range reveals about the variability in reading habits among the		
	students.		
7.	Assess Standard Deviation: Given the daily temperatures recorded over a	L3	CO2
	week, compute the standard deviation. Discuss how this measure helps in		
	understanding the consistency of temperatures during that week.		
8.	Construct a Box Plot: Create a box plot for a set of exam scores. Use the	L3	CO2
	plot to explain the interquartile range and what it reveals about the score		
	distribution.		G0.4
9.	Interpret Quartiles: For a dataset representing household incomes,	L3	CO2
	calculate the first and third quartiles. Explain how these quartiles can		
4.0	help identify income disparities within the dataset.		G0.4
10.	Utilize Skewness: Given a dataset of monthly expenses for households,	L3	CO2
	analyze the skewness of the data. Discuss what the direction of the		
4.4	skewness indicates about spending behavior.		G0.4
11.	Apply Percentiles: Calculate the 90th percentile of a dataset representing	L3	CO2
	the number of hours students spend studying each week. Discuss the		
	implications of this percentile for understanding study habits among		
10	high-performing students.	T 2	GO2
12.	Evaluate Data Visualization: Given a histogram of sales data for a	L3	CO2
	product over several months, interpret the shape of the histogram.		
	Discuss what insights can be drawn regarding trends in product sales		
12	from the visualization.	T 2	CO1
13.	Given two events, A and B, where $P(A) = 0.4$, $P(B) = 0.5$, and	L3	CO2
	$P(A \cap B) = 0.2$, determine whether A and B are independent.		
	Provide a detailed explanation of your calculations and		
	reasoning.		
14.	Evaluate Independence in Context: Consider a study that examines the	L3	CO2
	relationship between smoking and lung cancer. Analyze the data		
	provided to determine if smoking and lung cancer are independent		
	events. Discuss the implications of your findings on public health		
			1

	initiatives.		
15.	Investigate Real-World Dependencies: Examine a dataset showing the correlation between students' study hours and their final exam scores. Analyze whether these two variables can be considered independent or dependent. Justify your analysis with statistical evidence.	L3	CO2
16.	Compare Different Scenarios: Analyze two experiments: one where the outcome of rolling a die is independent of flipping a coin, and another where the outcome of drawing a card from a deck is dependent on the first draw. Compare and contrast the nature of dependence in these scenarios, and discuss how this affects the outcomes.	L3	CO2
17.	Evaluate the Impact of Independence Assumptions: In a marketing analysis, a company assumes that customer purchase decisions are independent of their age group. Analyze the potential risks of this assumption. Discuss how failure to recognize dependence might lead to ineffective marketing strategies.	L4	CO2
18.	Given two events, A and B, where $P(A) = 0.4$, $P(B) = 0.5$, and $P(A \cap B) = 0.2$, determine whether A and B are independent. Provide a detailed explanation of your calculations and reasoning.	L4	CO2
19.	AnalyzeConditional Relationships: Given a medical test with a 95% sensitivity and a 90% specificity for detecting a disease that affects 1% of the population, analyze the likelihood that a person who tests positive actually has the disease. Show your calculations clearly.	L4	CO2
20.	Evaluate Bayes's Theorem Application: In a survey, 70% of respondents prefer Brand A over Brand B. If 80% of Brand A consumers are satisfied with their choice while only 40% of Brand B consumers express satisfaction, analyze the overall satisfaction rate of a randomly selected consumer. Use Bayes's Theorem to justify your findings.	L4	CO2
21.	Investigate Misinterpretations: Analyze a scenario where a lawyer uses conditional probability to argue that a defendant is innocent based on a low probability of a similar crime occurring. Discuss the potential pitfalls in this reasoning, considering prior probabilities and how they affect conclusions.	L4	CO2
22.	Compare Two Conditional Probabilities: You have data on two different events: the likelihood of passing an exam given that a student attended extra classes versus the likelihood of passing without attending. Analyze these probabilities and discuss what factors could influence the differences observed.	L4	CO2
23.	Examine Sequential Events: A bag contains 3 red balls and 2 blue balls. If two balls are drawn sequentially without replacement, analyze the probability that the first ball is red and the second is blue. Clearly outline your reasoning and calculations.	L4	CO2
24.		L4	CO2
25.	Analyze Conditional Relationships: Given a medical test with a 95% sensitivity and a 90% specificity for detecting a disease that affects 1% of the population, analyze the likelihood that a person who tests positive	L4	CO2

	actually has the disease. Show your calculations clearly.		
26.	Evaluate Assumptions in Conditional Probability: Assess the	L5	CO2
	assumptions made when applying conditional probability in a given		
	scenario, such as predicting the likelihood of weather events based on		
	historical data. Discuss the potential consequences of these assumptions		
	on decision-making.		
27.	Critique Bayes's Theorem Application: Critically evaluate the use of	L5	CO2
	Bayes's Theorem in a clinical trial where the prior probabilities of		
	treatment effectiveness are not well established. Discuss how this		
	uncertainty can impact the reliability of the conclusions drawn.		
28.	Assess the Role of Conditional Probability in Risk Management: In a	L5	CO2
	business context, evaluate how conditional probabilities can be used to		
	assess risks in investment decisions. Discuss the potential benefits and		
	drawbacks of relying on these probabilities.		
29.	Evaluate the Impact of Sample Size: In the context of a study evaluating	L5	CO2
	the effectiveness of a new drug, assess how the size of the sample affects		
	the conditional probabilities calculated. Discuss how a small sample size		
	might lead to misleading conclusions.		
30.	Review Ethical Implications of Misusing Bayes's Theorem: Analyze a	L5	CO2
	case where Bayes's Theorem is misapplied in legal contexts, leading to		
	wrongful convictions or acquittals. Discuss the ethical implications and		
	the importance of correct probability assessment in judicial processes.		
31.	Evaluate Assumptions in Conditional Probability: Assess the	L5	CO2
	assumptions made when applying conditional probability in a given		
	scenario, such as predicting the likelihood of weather events based on		
	historical data. Discuss the potential consequences of these assumptions		
	on decision-making.		
32.	Explain the Central Limit Theorem: Describe the Central Limit Theorem	L3	CO2
	and its significance in statistics. Provide an example of its application in		
	a real-world scenario.		
33.	Apply CLT to Sample Means: Given a population with a known mean	L3	CO2
	and standard deviation, calculate the expected mean and standard		
	deviation of the sampling distribution of the sample mean for a specified		
	sample size.		
34.	Use the CLT for Approximation: Apply the Central Limit Theorem to	L3	CO2
	approximate the distribution of sample means when sampling from a		
	population that is not normally distributed.		
35.	Interpret Sampling Distributions: Given a sample mean from a	L3	CO2
	population, explain how the Central Limit Theorem allows for inferences		
	about the population mean.		
36.	Demonstrate CLT with a Simulation: Conduct a simulation to	L3	CO2
	demonstrate the Central Limit Theorem. Describe the process and		
_	analyze the results in terms of convergence to a normal distribution.		
37.	Explain the Central Limit Theorem: Describe the Central Limit Theorem	L3	CO2
	and its significance in statistics. Provide an example of its application in		
	a real-world scenario.		
38.	*	L4	CO2
	Theorem justifies the use of normal approximation in hypothesis testing		
	and confidence intervals, even for non-normally distributed populations.		

39.	Investigate Sample Size Effects: Analyze how varying sample sizes	L4	CO2
	affect the applicability of the Central Limit Theorem. Discuss the		
	minimum sample size required for normal approximation in different		
	contexts.		
40.	Evaluate Limitations of the CLT: Critically analyze the limitations of the	L4	CO2
	Central Limit Theorem in practical applications, particularly regarding		
	skewed distributions and outliers.		
41.	Explore the Role of Independence: Investigate how the assumption of	L4	CO2
	independence among samples affects the validity of the Central Limit		
	Theorem. Provide examples to support your analysis.		
42.	Compare the CLT with Other Theorems: Compare the Central Limit	L4	CO2
	Theorem with other statistical theorems (e.g., law of large numbers) and		
	analyze their implications in statistical inference.		
43.	Analyze the Implications of the CLT: Examine how the Central Limit	L4	CO2
	Theorem justifies the use of normal approximation in hypothesis testing		
	and confidence intervals, even for non-normally distributed populations.		
44.	Evaluate the Practicality of the CLT: Critically assess the practical	L5	CO2
	implications of the Central Limit Theorem in statistical research. Discuss		
	potential biases that may arise from misapplying the theorem.		
45.	Assess the Role of the CLT in Data Science: Evaluate the significance of	L5	CO2
	the Central Limit Theorem in modern data science practices, especially		
	in machine learning and predictive modeling.		
46.	Review Ethical Considerations: Analyze the ethical implications of using	L5	CO2
	the Central Limit Theorem in data analysis, particularly when it comes to		
	generalizing results to broader populations.		
47.	Examine Case Studies: Critique case studies that rely on the Central	L5	CO2
	Limit Theorem for inference. Discuss the strengths and weaknesses of		
	their methodologies and conclusions.		
48.	Critique Research that Misapplies the CLT: Analyze a research study	L5	CO2
	that incorrectly applies the Central Limit Theorem. Discuss how this		
	affects the validity of its findings and potential consequences.		
49.	Identify Properties of the Normal Distribution: Given a dataset, identify	L3	CO2
	whether it approximates a normal distribution based on its shape and		
50	calculate its mean and standard deviation.		002
50.	Calculate Probabilities Using Z-Scores: Given a normally distributed	L3	CO2
	variable with a specified mean and standard deviation, calculate the		
	probability that a randomly selected value falls above a certain threshold using Z-scores.		
51.		L3	CO2
51.	explain the distribution of data points in a normally distributed dataset.	L3	002
52.		L3	CO2
52.	mean of a normally distributed dataset. Interpret what this interval means	L3	002
	in a practical context.		
52	Use Normal Distribution in Quality Control: Apply the concept of	L3	CO2
33.	normal distribution to determine acceptable limits for a manufacturing	LJ	
	process based on given specifications.		
	process cancer on 51, on specifications.		

54.	Identify Properties of the Normal Distribution: Given a dataset, identify	L3	CO2
	whether it approximates a normal distribution based on its shape and		
	calculate its mean and standard deviation.		
55.	Analyze Deviations from Normality: Examine a dataset and determine if	L4	CO2
	it significantly deviates from a normal distribution. Discuss the		
	implications of these deviations for statistical analysis.		
56.	Investigate Real-World Applications: Analyze how the normal	L4	CO2
	distribution is used in various fields, such as psychology or economics,		
	and discuss its relevance in those contexts.		
57.	Evaluate Transformation Effects: Investigate the effects of data	L4	CO2
	transformation (e.g., log transformation) on a non-normally distributed		
	dataset to assess normality. Discuss the outcomes.		
58.	Compare Normal and Other Distributions: Compare the characteristics	L4	CO2
	and applications of the normal distribution with another distribution (e.g.,		
	binomial or Poisson). Discuss their appropriateness in various contexts.		
59.	Examine Statistical Methods for Normality: Analyze the methods used to	L4	CO2
	test for normality in a dataset. Discuss their effectiveness and potential		
	limitations.		
60.	Analyze Deviations from Normality: Examine a dataset and determine if	L4	CO2
	it significantly deviates from a normal distribution. Discuss the		
	implications of these deviations for statistical analysis.		
61.	Investigate Real-World Applications: Analyze how the normal	L4	CO2
	distribution is used in various fields, such as psychology or economics,		
	and discuss its relevance in those contexts.		
62.	Evaluate Assumptions of Normality: Critically evaluate the assumptions	L5	CO2
	made when applying statistical tests that rely on normality, and discuss		
	the implications of violating these assumptions.		
63.	Assess Impact of Non-Normality: Analyze the impact of non-normality	L5	CO2
	on the results of statistical analyses in a given study. Discuss how this		
	can lead to incorrect conclusions.		
64.	Review Ethical Considerations: Evaluate the ethical implications of	L5	CO2
	using normal distribution assumptions in research, particularly in		
	sensitive areas such as healthcare or education.		
65.	Examine Policy Decisions Based on Normal Distribution: Critically	L5	CO2
	assess a policy decision that relies on normal distribution analysis.		
	Discuss the robustness of the conclusions and any potential biases.		
66.	Critique Research Studies Using Normality Assumptions: Analyze a	L5	CO2
	research study that employs normal distribution assumptions. Discuss		
	strengths, weaknesses, and the validity of the conclusions drawn.		
67.	Identify Types of Random Variables: Given a scenario involving the	L3	CO2
	number of heads obtained when flipping three coins, identify whether the		
	random variable is discrete or continuous. Justify your answer.		
68.	Calculate Expected Value: A game involves rolling a fair six-sided die	L3	CO2
	and winning the number of dollars equal to the number shown. Calculate		
	the expected value of the winnings.		
69.	Apply Probability Mass Function: For a discrete random variable	L3	CO2
	representing the number of defective items in a batch of 10, use the		
	provided probability mass function to determine the probability of		

	finding exactly 3 defective items.		
70.	Use Cumulative Distribution Function: Given a cumulative distribution function (CDF) for a discrete random variable, calculate the probability	L3	CO2
	that the variable takes a value less than or equal to a certain number.		
71.	Interpret Random Variable Outcomes: If a random variable represents	L3	CO2
	the height of students in a classroom, describe how this variable can be		
	used to make predictions about the overall height distribution in a larger		
	population.		
72.	Identify Types of Random Variables: Given a scenario involving the	L3	CO2
	number of heads obtained when flipping three coins, identify whether the		
	random variable is discrete or continuous. Justify your answer.		
8	Given the following dataset, calculate the IQR and determine any	L3	CO2
	outliers: [12, 15, 14, 22, 18, 30, 35, 27, 29, 31]. Walk through the steps of		
	finding Q1, Q3, and the IQR, and use the IQR method to detect outliers.		
	Explain the process of calculating the first quartile (Q1), third quartile	L3	CO2
	(Q3), and how the IQR is derived.		
	How can the IQR method be used to detect outliers in a dataset?** -	L3	CO2
	Describe the formula for identifying outliers using IQR and how to apply		
	it to both the lower and upper bounds of a dataset.		
	What are the advantages of using the IQR method for outlier detection	L3	CO2
	compared to other methods like z-scores? - Discuss the robustness of		
	IQR against skewed data and the benefits of using it for non-normal		
	distributions.		
	How would you handle outliers detected using the IQR method in real-	L3	CO2
	world datasets? Explore different approaches such as removing outliers,		
	transforming the data, or using alternative techniques, depending on the		
	context of the analysis.		

UNIT –III Data Pre-Processing

Sr. No	Questions	Bloom's Level	CO Mapped
1.	Identify and remove any outliers from a given dataset using Z-score or IQR (Interquartile Range) methods. Show your process and the resulting cleaned dataset.	L3	CO3
2.	Apply a data transformation technique (e.g., log transformation or Box-Cox transformation) to correct skewness in a given dataset. Demonstrate the steps and explain the effect of the transformation on the data distribution.	L3	CO3
3.	Apply normalization and standardization techniques to a dataset. Show the steps and the resulting transformation for at least two features, and explain when you would choose one technique over the other	L3	CO3
4.	Given a dataset with missing values in multiple columns, demonstrate how you would handle these missing values using appropriate techniques. Explain your reasoning behind choosing each technique	L3	CO3
5.	Using a sample dataset, demonstrate how you would handle categorical variables with more than two categories using encoding techniques such as one-hot encoding or label encoding. Explain your choice of technique.	L3	CO3
6.	Examine a given dataset and identify any patterns or trends using summary statistics (e.g., mean, median, standard deviation). Explain how these statistics help in understanding the data.	L3	CO3
7.	Segment the data based on a categorical variable (e.g., gender, region) and compare the mean and variance of a numerical variable across different groups. Explain how the segmentation helps in understanding the differences within the data.	L3	CO3
8.	Given a dataset with missing values in both numerical and categorical columns, apply appropriate imputation techniques (e.g., mean, median, mode, or most frequent) to handle the missing data. Explain the rationale for choosing each technique.	L3	CO3
9.	Using a dataset where certain rows have multiple missing values, apply the method of row deletion (listwise or pairwise deletion). After cleaning, explain the impact of this technique on the dataset size and analysis results.	L3	CO3
10.	Identify missing patterns in a dataset (e.g., Missing Completely at Random, Missing at Random, or Missing Not at Random). Apply a suitable strategy for each pattern and demonstrate how this improves the dataset's completeness and integrity.	L3	CO3
11.	Implement interpolation methods (e.g., linear, polynomial, or spline interpolation) to fill in missing values for a time-series dataset. Compare the results with other imputation techniques and explain which method yields better results for time-series data.	L3	CO3
12.	Using a dataset that contains redundant symbols (e.g., currency symbols, percentage signs), apply appropriate formatting to remove these symbols and convert the data into plain numerical values. Explain how this formatting makes the data more suitable for statistical analysis.	L3	CO3
13.	Given a dataset where different columns have varying levels of precision for numerical data (e.g., some values have two decimal places, others	L3	CO3

	have five), apply formatting to ensure uniform precision across all		
	numerical columns. Justify why consistent precision is necessary.		
14.	Apply techniques to convert string representations of numerical data	L3	CO3
	(e.g., '10,000', '5.5K') into numerical format for easy computation.		
	Explain how this conversion enables accurate analysis and calculations.		
15.	Using a dataset with text-based categorical values (e.g., 'Male', 'male',	L3	CO3
	'M', 'F', 'Female', 'female'), apply techniques to standardize the categories		
	to a uniform format. Explain why this step is important for further		
	analysis.		
16.	Given a dataset where date fields are in different formats (e.g.,	L3	CO3
	MM/DD/YYYY, DD-MM-YYYY, YYYY.MM.DD), apply the necessary		
	formatting to standardize all date fields to the YYYY-MM-DD format.		
	Explain how this consistency improves data analysis.		
17.	Given a dataset with numerical features that have different ranges, apply	L3	CO3
	min-max normalization to scale the values between 0 and 1. Show the		
	steps and explain how this normalization improves model performance.		
18.	Using a dataset with both large and small magnitude features, apply Z-	L3	CO3
	score normalization (standardization).		
19.	Apply log normalization to a dataset where the distribution of a feature is	L3	CO3
	highly skewed. Compare the original distribution with the log-		
	transformed one and explain how normalization affects skewed data.		
20.	Given a dataset with features measured on different scales (e.g., age in	L3	CO3
	years, income in dollars), apply both min-max and Z-score		
	normalization. Compare the results and discuss when each method would		
	be more appropriate.		
21.	Given a dataset with a continuous variable such as age, apply equal-	L3	CO3
	width binning to divide the data into 5 bins. Show the resulting bin		
	intervals and explain how binning simplifies the analysis of continuous		
	data.		
22.	Using a dataset with a skewed income distribution, apply equal-	L3	CO3
	frequency binning to group the income variable into 4 bins, each		
	containing an equal number of observations. Demonstrate the process		
	and discuss why equal-frequency binning is useful in this context.		
23.	Given a numerical dataset with temperature values, apply custom binning	L3	CO3
	to categorize the data into 'Low', 'Medium', and 'High' based on domain		
	knowledge. Justify your binning strategy and explain how it improves		
	interpretability.		004
24.	Apply both equal-width and equal-frequency binning to a continuous	L3	CO3
	feature in a dataset. Compare the results of the two binning methods and		
	discuss when each method is more appropriate for analysis or model		
25	building.	т 2	002
25.	Using a dataset with a categorical feature such as 'Gender' with values	L3	CO3
	'Male' and 'Female', apply label encoding in Python. Demonstrate how		
	the categorical values are transformed into numerical values and explain		
24	why label encoding might not always be suitable for nominal data	т 2	003
26.	Given a dataset with a categorical feature containing multiple categories	L3	CO3
	(e.g., 'Country'), apply one-hot encoding in Python using		
	pandas.get_dummies(). Show the transformed dataset and explain		
	how one-hot encoding resolves the issue of imposing ordinal		<u> </u>

	relationships on nominal data.		
27.	Using a dataset with an ordinal categorical feature (e.g., 'Education	L3	CO3
	Level' with values 'High School', 'Bachelor', 'Master', 'PhD'), apply		
	ordinal encoding in Python by assigning appropriate numerical values		
	based on order. Justify the assigned numerical values and explain why		
	this method works well for ordinal data		
28.	Given a dataset with multiple categorical features, apply frequency	L3	CO3
	encoding to a feature (e.g., 'Job Title'). Show how frequency encoding is		
	applied using Python and discuss when frequency encoding is more		
	appropriate than one-hot encoding.		
29.	Using a dataset with a categorical feature containing rare categories (e.g.,	L3	CO3
	'Product Type'), apply target encoding to transform the categories based		
	on the average target value. Demonstrate the steps in Python and explain		
	how this method can improve model performance while avoiding		
	overfitting.		
30.	Evaluate a scenario where a dataset contains outliers in numerical	L4	CO3
	features. Discuss how different normalization techniques (min-max, Z-		
	score, log transformation) can be applied in this context. Analyze which		
	method would be most effective in preserving the integrity of the data		
	and why.		
31.	Given a dataset where some features are already normalized while others	L4	CO3
	are not, assess the potential consequences of using this dataset for model		
	training without uniform normalization. Discuss how the lack of		
	consistency in normalization can affect the results and interpretation of		
	the model.		
32.	Analyze a dataset with a wide range of numerical features that exhibit	L4	CO3
	different scales (e.g., height in centimeters and weight in kilograms).		
	Compare the effects of min-max normalization and Z-score		
	normalization on the dataset's distribution. Discuss how each method		
	impacts the performance of a machine learning model trained on this		
	dataset.		
33.	Given a dataset where a categorical variable represents different product	L4	CO3
	types (e.g., 'Electronics', 'Clothing', 'Furniture'), analyze the impact of		
	using one-hot encoding versus label encoding on a machine learning		
	model. Discuss the scenarios in which each encoding technique may lead		
	to better model performance and interpretability.		202
34.	Consider a dataset with an ordinal categorical variable, such as	L4	CO3
	'Customer Satisfaction' rated from 'Poor', 'Average', to 'Excellent'.		
	Analyze how different encoding strategies (e.g., ordinal encoding and		
	target encoding) could influence the outcome of a regression model.		
	Discuss the advantages and disadvantages of each approach in terms of		
25	maintaining the ordinal relationship.	T 4	002
35.	Evaluate a dataset where a categorical variable has a high cardinality	L4	CO3
	(e.g., 'City' names) and is used in a predictive model. Discuss the		
	effectiveness of using target encoding compared to one-hot encoding in		
	this context. Analyze the risks associated with target encoding and		
	suggest strategies to mitigate these risks while retaining useful		
27	information.	T 4	002
36.	Consider a scenario where two different data pre-processing pipelines are	L4	CO3

	applied to the same dataset: one focusing on scaling numerical features		
	(using standardization) and the other on encoding categorical variables		
	(using one-hot encoding).	T 4	002
37.	Analyze a dataset that contains missing values, outliers, and mixed data	L4	CO3
	types. Discuss how the choices made during data pre-processing (e.g.,		
	imputation methods, outlier removal techniques, and data type		
	conversions) can affect the integrity of the dataset and the outcomes of		
	subsequent analysis or machine learning models. Provide specific		
	examples to support your analysis.		
38.	Analyze the impact of data binning on the distribution of a continuous	L4	CO3
	variable, such as income. Compare the results of equal-width binning and		
	equal-frequency binning in terms of information loss, interpretability,		
	and model performance. Discuss scenarios where one method may be		
	preferred over the other		
39.	Given a dataset with a highly skewed feature, evaluate how binning can	L4	CO3
	be used to transform the feature into a more normal-like distribution.		
	Discuss the implications of this transformation on the performance of		
	machine learning models and the potential trade-offs involved in the		
	binning process.		
40.	Consider a dataset where a categorical variable has been converted into	L4	CO3
	bins (e.g., age groups: '0-18', '19-35', '36-50', '51+'). Analyze how this		
	binning affects the overall analysis and interpretation of the data. Discuss		
	the potential benefits and drawbacks of using binning for categorical		
	variables versus continuous variables.		
41.	Evaluate the effects of using custom binning strategies based on domain	L4	CO3
	knowledge compared to automated binning techniques (like k-means		
	binning). Discuss how the choice of binning strategy can influence the		
	insights gained from the data and the performance of predictive models.		
42.	Given a dataset that will be used for a classification task, analyze the	L4	CO3
	trade-offs between retaining continuous variables versus binning them.		
	Discuss how binning can affect model complexity, interpretability, and		
	performance metrics, providing examples of when binning may enhance		

UNIT -IV

Data Science in Business

Sr. No	Questions	Bloom's Level	CO Mapped
1.	How could predictive analytics in data science be applied to prevent	L3	CO4
	potential outbreaks of infectious diseases?		
	(Application of predictive models to real-world health scenarios)		
2.	In what ways could machine learning algorithms be utilized to improve	L3	CO4
۷.	patient diagnosis and treatment plans?		CO4
2	(Exploring practical applications of machine learning in healthcare)	7.0	004
3.		L3	CO4
	How would you apply data from wearable health devices to monitor and		
	improve individual health outcomes?		
	(Using data from health devices in a personalized healthcare context)		
4.	How might data science tools help identify risk factors for chronic	L3	CO4
	diseases such as diabetes or heart disease?		
	(Applying risk factor analysis techniques from data science to healthcare		
	challenges)		
5.	How would you use AI-driven data models to optimize hospital resource	L3	CO4
3.	allocation during an emergency situation?	LS	CO4
	(Applying AI to manage healthcare resources efficiently)		
6.	How would you apply the concept of business problem identification	L3	CO4
	when helping a company decide how to get started in data science?	7.0	GO 4
7.	Imagine you are consulting for a small company new to data science.	L3	CO4
	How would you apply the CRISP-DM methodology to help them launch		
0	their first data science project?	1.2	COA
8.	Based on your knowledge of data infrastructure, how would you	L3	CO4
	recommend a company begin setting up its data systems to support future data science initiatives?		
9.	Given a specific industry (e.g., healthcare or retail), how would you	L3	CO4
7.	suggest a company prioritize the types of data to collect for its first data		004
	science project?		
10.	How would you apply the concept of a data-driven culture to help a	L3	CO4
	company ensure successful adoption of data science practices across its		
	teams?		
11.	Explain how data science techniques can be applied to predict customer	L3	CO4
	behavior in e-commerce.		
12.	Demonstrate how data science can be used in the healthcare sector to	L3	CO4
	predict patient outcomes based on historical data.		
13.	Apply clustering techniques to a real-world business scenario to segment	L3	CO4
	customers into different groups based on purchasing behavior.		
14.	Illustrate the use of machine learning models in financial risk assessment	L3	CO4
	by designing a predictive model for credit scoring.		
15.	Use data science methodologies to optimize a supply chain process,	L3	CO4
	describing the steps and tools you would employ.		
16.	Apply the steps you would take to transition from a different career into	L3	CO4
17.	data science. What resources or learning platforms would you use?	1.3	004
	Given a specific problem in your field, how would you use data science	L3	CO4
	skills to solve it? Which tools or techniques would be most appropriate?	1.2	CO4
18.	Create a learning plan that outlines how you would gain the technical	L3	CO4
4.0	skills necessary to become a data scientist over the next year.	1.2	COA
19.	How would you implement machine learning models to analyze a dataset? What steps would you follow to ensure accuracy and reliability?	L3	CO4

20.	Given your current skill set, what projects could you undertake to build a portfolio showcasing your readiness to work as a data scientist?	L3	CO4
21.	Apply the steps you would take to transition from a different career into data science. What resources or learning platforms would you use?	L3	CO4
22.	Analyze the role of a data scientist in an e-commerce company. How does their work directly impact customer experience and sales growth?	L3	CO4
23.	Demonstrate how a data analyst's skill set can be applied to solving problems in the healthcare sector. What specific tasks would they perform?	L3	CO4
24.	Use your understanding of machine learning models to explain how a data engineer's responsibilities support data scientists in their analysis and modeling work.	L3	CO4
25.	Apply your knowledge of different career paths in data science to outline the steps a person would need to take to transition from a business analyst to a data scientist role.	L3	CO4
26.	Differentiate between the roles of a data scientist, data engineer, and machine learning engineer. How do their responsibilities and skill sets overlap or diverge?	L4	CO4
27.	Examine the potential career growth and opportunities within the field of data science. What factors influence the speed and direction of career progression?	L4	CO4
28.	Analyze the ethical challenges faced by data scientists working in sectors such as social media, healthcare, or finance. How might these challenges shape decision-making in data-driven projects?	L4	CO4
29.	Compare the required skills and educational backgrounds for a data scientist working in academia versus one working in a technology company. How does the application of their skills differ in each setting?	L4	CO4
30.	Break down the steps involved in transitioning from a traditional software engineering career to a data science role. What additional knowledge or experience is necessary to make this shift successful?	L4	CO4