# Практикум 6. Численное решение задачи Дирихле для уравнения Пуассона

# Теория

Необходимые теоретические сведения и примеры решения задач: сайт – Лекции 7-8, жизнь – §6-7 для задач 1-11, §8-10 для задач 13-14 и литература.

# Задачи

#### Задача №1

Поставлена задача Дирихле в прямоугольнике:

$$\Delta u(x,y) = -f(x,y)$$
 при  $x \in (a,b), y \in (c,d),$   $u(a,y) = \mu_1(y), u(b,y) = \mu_2(y), y \in (c,d),$   $u(x,c) = \mu_3(x), u(x,d) = \mu_4(x), x \in (a,b).$ 

Здесь  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \text{ оператор Лапласа. Числа } a, b, c, d$  и функции  $f(x,y), \mu_1(y), \mu_2(y), \mu_3(x), \mu_4(x)$  считаем заданными.

Используя сетку (n,m) и операторы  $u_{x\overline{x}}$ ,  $u_{y\overline{y}}$ , опишите сетку задачи  $\Omega_{hk}$  и запишите разностную схему как систему уравнений на  $\Omega_{hk}$  .

Полагая, что: 1) вектор  $\mathcal{V}$  не содержит компонент соответственно граничным узлам; 2) его компоненты упорядочены «слева направо» по x и затем «снизу вверх» по y; 3) уравнения схемы упорядочены также, запишите схему в матричном виде:

- а) для случая (n, m) = (2, 2)
- б) для случая (n, m) = (3, 3).
- в) для конкретного случая, когда n > 3, m > 3.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части. В каждом случае укажите размерность матрицы и вектора.

Что можно сказать о блочной структуре, симметрии и собственных числах этих трех матриц?

В условиях задачи №1 полагаем, что: 1) вектор  $\mathcal{V}$  не содержит компонент, соответствующих граничным узлам; 2) его компоненты упорядочены «снизу вверх» по y и затем «слева направо» по x; 3) уравнения схемы упорядочены также. Запишите разностную схему в матричном виде:

- а) для случая (n, m) = (2, 2)
- б) для случая (n, m) = (3, 3).
- в) для конкретного случая, когда n > 3, m > 3.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части. В каждом случае укажите размерность матрицы и вектора. Что можно сказать о блочной структуре, симметрии и собственных числах этих трех матриц?

Сравните результат с задачей №1.

### Задача №3

В условиях задачи №1 полагаем, что 1) вектор  $\mathcal{V}$  не содержит компонент, соответствующих граничным узлам; 2) его компоненты упорядочены «слева направо» по x и затем «снизу вверх» по y; 3) уравнения схемы упорядочены «снизу вверх» по y и затем «слева направо» по x. Запишите разностную схему g матричном gude:

- а) для случая (n, m) = (2, 2)
- б) для случая (n, m) = (3, 3).
- в) для конкретного случая, когда n > 3, m > 3.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части. В каждом случае укажите размерность матрицы и вектора. Что можно сказать о блочной структуре, симметрии и собственных числах этих трех матриц?

Сравните результат с задачей №1.

#### Задача №4

В условиях задачи №1 полагаем, что 1) вектор  $\mathcal{V}$  содержит компоненты, соответствующих граничным узлам сетки  $\Omega_{hk}$ ; 2) компоненты упорядочены «слева направо» по x и затем «снизу вверх» по y; 3) уравнения схемы упорядочены также. Запишите схему в матричном виде:

- а) для случая (n, m) = (2, 2)
- б) для случая (n, m) = (3, 3).
- в) для конкретного случая, когда n > 3, m > 3.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части. В каждом случае укажите размерность матрицы и вектора. Что можно сказать о блочной структуре, симметрии и собственных числах этих трех матриц? Сравните результат с задачей №1.

Поставлена задача Дирихле на прямоугольнике  $x \in [a, b], y \in [c, d]$  с изъятой «четвертью» (см. рис. 1):

$$\Delta u(x,y) = -f(x,y)$$
 при  $(x,y) \in G$ ,

$$u(x, y) = \mu(x, y)$$
при $(x, y) \in \partial G$ .

(например, на рис. 1а область  $G \subset \mathbb{R}^2$  вместе со своей границей  $\partial G$  есть прямоугольник  $x \in [a, b], \ y \in [c, d]$  с изъятым множеством  $x \in (\frac{1}{2}(a+b), b], \ y \in (\frac{1}{2}(c+d), d]$ ; на рис. 1б изъяты  $x \in [a, \frac{1}{2}(a+b)), \ y \in [c, \frac{1}{2}(c+d))$  и т.д.). Числа a, b, c, d и функции  $f(x,y), \mu(x,y)$  считаем заданными.



Рис. 1

Как основу для построения схемы используйте сетку (n, m), натянутую на  $x \in [a, b], y \in [c, d]$ , и операторы  $u_{x\overline{x}}$ ,  $u_{y\overline{y}}$ . Используйте четные n, m.

Нарисуйте конкретную сетку (n,m) и покажите на том же рисунке сетку  $\Omega_{hk}$ . Запишите схему как систему уравнений на  $\Omega_{hk}$ . Полагая, что: 1) вектор  $\mathcal V$  не содержит компонент, соответствующих граничным узлам; 2) компоненты упорядочены «слева направо» по x и затем «снизу вверх» по

2) компоненты упорядочены «слева направо» по x и затем «снизу вверх» по y; 3) уравнения схемы упорядочены также, запишите схему b матричном b виде.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части  $\mathcal{F}$ . Укажите размерность матрицы и вектора, обведите блоки. Обобщите результат на другие подходящие (n, m).

Поставлена задача Дирихле на прямоугольнике  $x \in [a, b], y \in [c, d]$  с изъятым «центром» (см. рис. 2):

$$\Delta u(x,y) = -f(x,y)$$
 при  $(x,y) \in G$ ,

$$u(x,y) = \mu(x,y)$$
 при  $(x,y) \in \partial G$ .

(область  $G \subset \mathbb{R}^2$  вместе со своей границей  $\partial G$  есть прямоугольник  $x \in [a, b]$ ,  $y \in [c, d]$  с изъятым множеством  $x \in (\frac{1}{4}(a+b), \frac{3}{4}(a+b)), y \in (\frac{1}{4}(c+d), \frac{3}{4}(c+d))$  Числа a, b, c, d и функции f(x,y),  $\mu(x,y)$  считаем заданными.



Рис. 2

Как основу для построения схемы используйте сетку (n, m), натянутую на  $x \in [a, b], y \in [c, d]$ , и операторы  $u_{x\overline{x}}, u_{y\overline{y}}$ . Используйте n, m, кратные 4.

Нарисуйте конкретную сетку (n,m) и покажите на том же рисунке сетку  $\Omega_{hk}$  . Запишите схему как систему уравнений на  $\Omega_{hk}$  . Полагая, что:

- 1) вектор  $\, \mathcal{V} \,$  не содержит компонент, соответствующих граничным узлам;
- 2) компоненты упорядочены «слева направо» по x и затем «снизу вверх» по y; 3) уравнения схемы упорядочены также, запишите схему  $\theta$  матричном  $\theta$  виде.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части  $\mathcal{F}$ .

Укажите размерность матрицы и вектора, обведите блоки.

Обобщите результат на другие подходящие (n, m).

Поставлена задача Дирихле на прямоугольнике  $x \in [a, b], y \in [c, d]$  с закругленным краем (см. рис. 3):

$$\Delta u(x,y) = -f(x,y)$$
 при  $(x,y) \in G$ ,

$$u(x,y) = \mu(x,y)$$
 при  $(x,y) \in \partial G$ .

Числа a, b, c, d, функции f(x,y),  $\mu(x,y)$  и уравнение, описывающее «закругленный» край, считаем заданными (например, дуга окружности).



Рис. 3

Как основу для построения схемы используйте сетку (n, m), натянутую на  $x \in [a, b], y \in [c, d]$ , и операторы  $u_{x\overline{x}}, u_{y\overline{y}}$ . Для аппроксимации оператора Лапласа на неравномерном участке сетки используйте операторы численного дифференцирования  $\hat{u}_{x\overline{x}}, \hat{u}_{y\overline{y}}$ , построенные на основе интерполяционных полиномов 2-й степени на неравномерных сетках.

Предложите какое-либо уравнение, описывающее закругленный край, нарисуйте конкретную сетку (n,m) и покажите на том же рисунке сетку  $\Omega_{hk}$ . Запишите схему как систему уравнений на  $\Omega_{hk}$ .

Полагая, что: 1) вектор  $\mathcal{V}$  не содержит компонент, соответствующих граничным узлам; 2) компоненты упорядочены «слева направо» по x и затем «снизу вверх» по y; 3) уравнения схемы упорядочены также, запишите схему в матричном виде.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части F.

Укажите размерность матрицы и вектора, обведите блоки. Что можно сказать о симметрии матрицы  $\mathcal{A}$ ?

Обобщите результат на другие значения (n, m).

Поставлена задача Дирихле в «кубе» (см. рис. 4):

$$\Delta u(x,y,z) = -f(x,y,z)$$
 при  $(x,y,z) \in G$ ,

$$u(x,y,z) = \mu(x,y,z)$$
при $(x,y,z) \in \partial G$ .

Здесь 
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} -$$
оператор Лапласа.

Область  $G \subset \mathbb{R}^3$  с границей  $\partial G$  есть параллелепипед  $x \in [a, b], y \in [c, d],$   $z \in [p, q]$ . Числа a, b, c, d, p, q и функции  $f(x,y,z), \mu(x,y,z)$  считаем заданными.



Используя сетку (n,m,r) и операторы  $u_{x\overline{x}}$ ,  $u_{y\overline{y}}$ ,  $u_{z\overline{z}}$ , опишите сетку задачи  $\Omega_{hks}$  и запишите разностную схему как систему уравнений на  $\Omega_{hks}$ .

Нарисуйте конкретную сетку (n, m, r) и покажите на том же рисунке сетку  $\Omega_{hks}$  . Укажите, какие узлы сетки (n, m, r) не допущены на сетку  $\Omega_{hks}$  .

Затем сформулируйте правило обхода и запишите схему для конкретных (n, m, r) в матричном виде.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части  $\mathcal{F}$ . Укажите размерность матрицы и вектора, обведите блоки.

Обобщите результаты на другие (n, m, r).

Поставлена задача Дирихле на прямоугольнике  $x \in [a, b], y \in [c, d]$  с изъятыми фрагментами (см. рис. 5):

$$\Delta u(x, y) = -f(x, y)$$
 при  $(x, y) \in G$ ,

$$u(x, y) = \mu(x, y)$$
 при  $(x, y) \in \partial G$ .

Числа a, b, c, d, функции f(x,y),  $\mu(x,y)$  и параметры изъятых фрагментов считаем заданными.



Как основу для построения схемы используйте сетку (n, m), натянутую на  $x \in [a, b], \ y \in [c, d],$  и операторы  $u_{x\overline{x}}, u_{y\overline{y}}$ . Используйте n, m нужной кратности.

Нарисуйте конкретную сетку (n,m) и покажите на том же рисунке сетку  $\Omega_{hk}$ . Укажите, какие узлы сетки (n,m) не допущены на сетку  $\Omega_{hk}$ . Запишите схему. Затем определите правило обхода и запишите схему  $\epsilon$  матричном виде.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части  $\mathcal{F}$ . Укажите размерность матрицы и вектора, обведите блоки. Если можно, обобщите результат на другие (n, m).

Поставлена задача Дирихле в «кубе»  $x \in [a, b], y \in [c, d], z \in [p, q]$  с изъятым фрагментом (рис. 6):

$$\Delta u(x,y,z) = -f(x,y,z) \text{ при } (x,yz) \in G,$$
 
$$u(x,y,z) = \mu(x,y,z) \text{ при } (x,y,z) \in \partial G.$$
 Здесь  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \text{ оператор Лапласа.}$ 

Числа a, b, c, d, p, q, функции f(x,y,z),  $\mu(x,y,z)$  и параметры изъятого фрагмента считайте заданными.



Используя сетку (n, m, r) и операторы  $u_{x\overline{x}}, u_{y\overline{y}}, u_{z\overline{z}}$ , опишите сетку задачи  $\Omega_{hks}$  и запишите разностную схему как систему уравнений на  $\Omega_{hks}$ . Укажите необходимую кратность n, m, r.

Нарисуйте конкретную сетку (n, m, r) и покажите на том же рисунке сетку  $\Omega_{hks}$  . Укажите, какие узлы сетки (n, m, r) не допущены на сетку  $\Omega_{hks}$  .

Затем сформулируйте правило обхода и запишите схему для конкретных (n, m, r) в матричном виде.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal{V}$  и все компоненты правой части  $\mathcal{F}$ . Укажите размерность матрицы и вектора, обведите блоки.

Если можно, обобщите результаты на другие (n, m, r).

Поставлена задача Дирихле в «кубе»  $x \in [a, b], y \in [c, d], z \in [p, q]$  с изъятым фрагментом (рис. 6):

$$\Delta u(x,y,z) = -f(x,y,z)$$
 при  $(x,y,z) \in G$ ,  $u(x,y,z) = \mu(x,y,z)$  при  $(x,y,z) \in \partial G$ .

Здесь 
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 — оператор Лапласа.

Числа a, b, c, d, p, q, функции f(x,y,z),  $\mu(x, y,z)$  и параметры изъятого фрагмента считайте заданными.



Используя сетку (n,m,r) и операторы  $u_{x\overline{x}}$  ,  $u_{y\overline{y}}$  ,  $u_{z\overline{z}}$  , опишите сетку задачи  $\Omega_{hks}$  и запишите разностную схему как систему уравнений на  $\Omega_{hks}$  . Укажите необходимую кратность n, m, r.

Нарисуйте конкретную сетку (n, m, r) и покажите на том же рисунке сетку  $\Omega_{hks}$  . Укажите, какие узлы сетки (n, m, r) не допущены на сетку  $\Omega_{hks}$  .

Затем сформулируйте правило обхода и запишите схему для конкретных (n, m, r) в матричном виде.

Укажите явно все элементы матрицы  $\mathcal{A}$ , все компоненты вектора  $\mathcal V$  и все компоненты правой части Г. Укажите размерность матрицы и вектора, обведите блоки.

Если можно, обобщите результаты на другие (n, m, r).

Для «своей» задачи из числа задач №5, №6, №7, №8:

- 1) сформулируйте и докажите «Принцип максимума»;
- 2) проверьте существование и единственность решения схемы;
- 3) проверьте симметричность  $\mathcal{A}$  (в общем случае);
- 4) постройте круги Гершгорина;
- 5) сформулируйте результат о знакоопределенности  $\mathcal{A}$ , докажите.

Результаты формулировать и доказывать для сеток с любым подходящим (n, m) ((n, m, r)).

#### Задача №13

Для «своей» задачи из числа задач №5, №6, №7, №8:

- 1) проверьте выполнение условий сходимости методов Зейделя и верхней релаксации для решения схемы  $\mathcal{AV}\!\!=\!\!F$  ;
- 2) если условия выполнены, получите формулы и запишите код одного из методов (либо Зейдель, либо верхняя релаксация); при составлении кода нужно обратить внимание на выбранное вами правило обхода вектора  $\mathcal V$  и соответствующий порядок и индексы циклов);
- 3) если гарантий сходимости нет, проверьте условия сходимости других итерационных методов, запишите формулы и код для метода, который сходится.

## Задача №14

Для «своей» задачи из числа задач №5, №6, №7, №8:

- 1) запишите определения погрешности и погрешности аппроксимации;
- 2) запишите определения устойчивости и сходимости;
- 3) оцените погрешность аппроксимации, определите ее порядок;
- 4) установите связь двух погрешностей;
- 5) докажите *сходимость* схемы (то есть сходимость решения разностной схемы к решению исходной задачи), получите *оценку сходимости*, определите *порядок сходимости*;
  - 6) укажите, в какой норме доказана сходимость;
- 7) запишите определение *общей погрешности*, определения ее *основных компонент*. Оцените их и приведите *рекомендации по управлению счетом* (с учетом решения схемы итерационными методами).

## Примечания

Если №12-14 не получаются, их нужно сделать в условиях задачи №1. Если №12-14 слишком просты, их делают в условиях задач №9-11

# Примерные задачи на экзамен

#### Задача

 $\Delta u(x,y) = -f(x,y)$  при  $(x,y) \in G$ ,  $u(x,y) = \mu(x,y)$  при  $(x,y) \in \partial G$ ., f(x,y),  $\mu(x,y)$ , a,b,c,d заданы,  $G \subset \mathbb{R}^2$  вместе с  $\partial G$  вложена в  $x \in [a,b]$ ,  $y \in [c,d]$ . Запишите разностную схему в матричном виде на сетке (n,m) = (8,8). Покажите применимость метода Зейделя, получите его формулы, оцените погрешность на 1-м шаге. Проведите анализ структуры погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка). Укажите назначение ПА. Исследуйте устойчивость схемы.



# Задача

 $\Delta u(x,y) = -f(x,y)$  при  $(x,y) \in G$ ,  $u(x,y) = \mu(x,y)$  при  $(x,y) \in \partial G$ , f(x,y),  $\mu(x,y)$ , a,b,c,d заданы,  $G \subset \mathbb{R}^2$  вместе с  $\partial G$  вложена в  $x \in [a,b]$ ,  $y \in [c,d]$ . Запишите разностную схему в матричном виде на сетке (n,m) = (8,8). Покажите применимость метода Якоби, получите его формулы, оцените погрешность на 1-м шаге. Проведите анализ структуры погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка). Укажите назначение ПА. Исследуйте устойчивость схемы.



 $\Delta u(x,y) = -f(x,y)$  при  $(x,y) \in G$ ,  $u(x,y) = \mu(x,y)$  при  $(x,y) \in \partial G$ , f(x,y),  $\mu(x,y)$ , a, b, c, d заданы,  $G \subset R^2$  вместе с  $\partial G$  вложена в  $x \in [a,b]$ ,  $y \in [c,d]$ . Запишите разностную схему в матричном виде на сетке (n,m) = (8,8). Покажите применимость метода верхней релаксации, получите его формулы, оцените погрешность на 1-м шаге. Проведите полный анализ погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка). Укажите назначение ПА. Исследуйте устойчивость схемы.



### Задача

 $\Delta u(x,y) = -f(x,y)$  при  $(x,y) \in G$ ,  $u(x,y) = \mu(x,y)$  при  $(x,y) \in \partial G$ ., f(x,y),  $\mu(x,y)$ , a, b, c, d заданы, G вместе с  $\partial G$  есть прямоугольник  $x \in [a,b]$ ,  $y \in [c,d]$ . Запишите разностную схему в матричном виде, (n,m) = (8,8). Покажите применимость метода простой итерации, получите его формулы, оцените погрешность на 1-м шаге. Проведите полный анализ погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка), укажите ее назначение, исследуйте устойчивость схемы.

 $\Delta u(x,y) = -f(x,y)$  при  $(x,y) \in G$ ,  $u(x,y) = \mu(x,y)$  при  $(x,y) \in \partial G$ , f(x,y),  $\mu(x,y)$ , a, b, c, d заданы, G вместе с  $\partial G$  есть прямоугольник  $x \in [a,b]$ ,  $y \in [c,d]$ . Запишите разностную схему в матричном виде, (n,m) = (8,8). Покажите применимость метода минимальных невязок, получите его формулы, оцените погрешность на 1-м шаге. Проведите полный анализ погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка), укажите ее назначение, исследуйте устойчивость схемы.

Задача

 $\Delta u(x,y) = -f(x,y)$  при  $(x,y) \in G$ ,  $u(x,y) = \mu(x,y)$  при  $(x,y) \in \partial G$ , f(x,y),  $\mu(x,y)$ , a, b, c, d заданы, G вместе с  $\partial G$  есть прямоугольник  $x \in [a,b]$ ,  $y \in [c,d]$ . Запишите разностную схему в матричном виде, (n,m) = (8,8). Покажите применимость **чебышевского метода**, получите его формулы (k = 10), оцените погрешность метода. Проведите полный анализ погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка), укажите ее назначение, исследуйте устойчивость схемы.

 $\Delta u(x,y) = -f(x,y)$  при  $(x,y) \in G$ ,  $u(x,y) = \mu(x,y)$  при  $(x,y) \in \partial G$ ., f(x,y),  $\mu(x,y)$ , a, b, c, d заданы,  $G \subset R^2$  вместе с  $\partial G$  вложена в  $x \in [a,b]$ ,  $y \in [c,d]$ . Запишите разностную схему в матричном виде на сетке (n,m) = (8,8). Покажите применимость метода простой итерации, получите его расчетные формулы. Проведите полный анализ погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка), укажите ее назначение, исследуйте устойчивость схемы.



#### Задача

$$\Delta u(x, y, z) = -f(x, y, z) \operatorname{при}(x, y, z) \in G,$$
  

$$u(x, y, z) = \mu(x, y, z) \operatorname{прu}(x, y, z) \in \partial G.$$

 $f(x,y,z),\ \mu(x,y,z),\ a,\ b,\ c,\ d,,\ p,\ q$  заданы, G вместе с  $\partial G$  есть параллелепипед  $x\in [a,\ b],\ y\in [c,\ d],\ z\in [p,\ q].$  Используя операторы  $u_{x\overline{x}},\ u_{y\overline{y}},u_{z\overline{z}}$ , запишите разностную схему в матрич-

ном виде на сетке (n, m, l) = (5, 6, 8). Покажите применимость метода верхней релаксации, получите его формулы, оцените погрешность на 1-м шаге. Проведите полный анализ погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка), укажите ее назначение, исследуйте устойчивость схемы.

#### Задача

$$\Delta u(x, y, z) = -f(x, y, z)$$
 при  $(x, y, z) \in G$ ,  $u(x, y, z) = \mu(x, y, z)$  при  $(x, y, z) \in \partial G$ .

 $f(x,y,z), \mu(x,y,z), a, b, c, d,, p, q$  заданы,  $G \subset \mathbb{R}^3$  вместе с  $\partial G$  есть параллелепипед  $x \in [a,b], y \in [c,d], z \in [p,q]$ . Используя операторы  $u_{x\overline{x}}, u_{y\overline{y}}, u_{z\overline{z}}$ , запишите разностную схему в матричном виде на сетке (n,m,l)=(5,6,8). Покажите применимость метода простой итерации, получите расчетные формулы, оцените погрешность на 1-м шаге. Проведите полный анализ погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка), укажите ее назначение, исследуйте устойчивость схемы.

$$\Delta u(x, y, z) = -f(x, y, z)$$
 при  $(x, y, z) \in G$ ,  $u(x, y, z) = \mu(x, y, z)$  при  $(x, y, z) \in \partial G$ .

f(x,y,z),  $\mu(x,y,z)$ , a, b, c, d, p, q заданы, G вместе с  $\partial G$  есть параллеленинед  $x \in [a,b]$ ,  $y \in [c,d]$ ,  $z \in [p,q]$ . Используя операторы  $u_{x\overline{x}}$ ,  $u_{y\overline{y}}$ ,  $u_{z\overline{z}}$ , запишите разностную схему в матрич-

ном виде на сетке (n, m, l) = (5, 6, 8). Покажите применимость явного метода с чебышевским набором параметров (k = 10), получите его расчетные формулы, оцените погрешность метода. Проведите полный анализ погрешности. Исследуйте погрешность аппроксимации (ПА) (порядок, главный член, оценка), укажите ее назначение, исследуйте устойчивость схемы.

# Демонстрационные материалы

Для просмотра используйте кнопку **«Режимы»**, расположенную в правом нижнем углу, на обрамлении Окна просмотра основных материалов.