

Prof^a Priscilla Abreu priscilla.abreu@ime.uerj.br 2022.1

Roteiro da aula

- Árvores
 - Genéricas
 - Bináriasee

LISTAS

Listas Linear

Estrutura que permite representar um conjunto de dados de forma a preservar a relação de ordem existente entre eles.

Uma lista é um exemplo de uma estrutura de dados linear, pois cada elemento tem:

- um predecessor único, exceto o primeiro elemento da lista;
- um sucessor único, exceto o último elemento.

As pilhas e filas são outros exemplos.

Listas Linear

Listas lineares

Listas lineares gerais

SEM restrição de inserção e remoção de elementos

Listas particulares

COM restrição de inserção e remoção de elementos

Listas Não Lineares

Em uma estrutura de dados não linear, os elementos, designados por nós, podem ter mais de um predecessor ou mais de um sucessor.

Grafos e árvores

ÁRVORES

ÁRVORE

Um estrutura de dados do tipo árvore permite que dados sejam organizados de forma hierárquica.

Árvores – conceitos

Cada elemento de uma árvore é denominado nó;

Filhos de A \rightarrow B \rightarrow B \rightarrow B \rightarrow B \rightarrow B \rightarrow C \rightarrow E

- Toda árvore tem um elemento inicial que chamamos de raiz da árvore; Folhas
- Cada elemento da árvore pode ou não possuir nós abaixo dele hierarquicamente, denominados filhos.
- Os nós que não possuem filhos são denominados folha ou nó externo.
- Grau de um nó: número de filhos que ele possui.
- Grau da árvore: definido pelo nó de maior grau da árvore.

Árvores – conceitos

- Subárvore: conjunto de nós formado a partir de um determinado nó.
- Ancestral: nó que antecede um determinado nó.
- Descendente: nó que sucede um determinado nó.
- Floresta: o conjunto de árvores disjuntas.

Árvores – conceitos

Árvores – representação

Hierarquia

Árvores – representação

Diagrama de Venn

Árvores – representação

Gráfico de Barras

Árvores – representação

Expressão com parênteses

(A(B(D()E()))(C(F())))

Árvores Binárias

Estrutura de dados que é constituída por um conjunto finito de nós, em que cada nó pode ter no máximo **dois** filhos, ou sub-árvores: a sub-árvore da **direita** (sad) e a sub-árvore da **esquerda** (sae).

Árvore X Árvore Binária

В

Árvore Estritamente Binária

Árvore binária em que cada nó tem 0 ou 2 filhos.

Árvore Binária Cheia

Árvore estritamente binária em que se um nó tem alguma subárvore vazia então ele está no último nível.

Árvore Binária Completa

Árvore binária completa: árvore em que se n é um nó com algumas de suas subárvores vazias, então n se localiza no penúltimo ou no último nível. Portanto, toda árvore cheia é completa e estritamente binária.

Árvore Binária – Percurso

- PRÉ ORDEM
- EM ORDEM
- PÓS ORDEM

Árvore Binária – Percurso

PRÉ ORDEM

No percurso em pré-ordem, primeiramente a raiz é visitada; depois, a subárvore esquerda; e finalmente, a sub-árvore direita.

No exemplo, o percurso seria feito na seguinte ordem: 2, 7, 2, 6, 5, 11, 5, 9 e 4.

Árvore Binária – Percurso

EM ORDEM (SIMÉTRICO)

No percurso simétrico (em ordem), primeiro é visitada a sub-árvore esquerda; logo após, a raiz; por final, a sub-árvore direita.

No exemplo, o percurso seria feito na seguinte ordem: 2, 7, 5, 6, 11, 2, 5, 4 e 9.

Árvore Binária – Percurso

PÓS ORDEM

percurso em pós-ordem inicia-se visitando a sub-árvore esquerda; em seguida, a sub-árvore direita; encerrando, a raiz é visitada.

No exemplo, o percurso seria feito na seguinte ordem: 2, 5, 11, 6, 7, 4, 9, 5 e 2.

Árvore Binária – Percurso

EXERCÍCIO

Qual a ordem do percurso da árvore abaixo se utilizarmos o percurso simétrico?

ÁRVORE BINÁRIA DE BUSCA

Árvore Binária de Busca

Árvore binária baseada em nós, onde todos os nós da subárvore esquerda possuem um valor numérico inferior ao nó raiz e todos os nós da subárvore direita possuem um valor superior ao nó raiz.

Árvore Binária de Busca

Busca

Árvore Binária de Busca

Inserção

Considere que iremos inserir os seguintes elementos nessa ordem:

50 60 30 40 70 20

Árvore Binária de Busca

Inserção

Considere que iremos inserir os seguintes elementos nessa ordem:

50 60 30 40 70 20

Nó Raiz

50

Árvore Binária de Busca

Inserção

Considere que iremos inserir os seguintes elementos nessa ordem:

50 60 30 40 70 20

Árvore Binária de Busca

Inserção

Considere que iremos inserir os seguintes elementos nessa ordem:

50 60 30 40 70 20 Nó Raiz 30 > 50 = Não50 A esquerda 30 60

Árvore Binária de Busca

Inserção

Considere que iremos inserir os seguintes elementos nessa ordem:

50 60 30 40 70 20

Árvore Binária de Busca

Inserção

Considere que iremos inserir os seguintes elementos nessa ordem:

50 60 30 40 70 20

Árvore Binária de Busca

Inserção

Considere que iremos inserir os seguintes elementos nessa ordem:

Como podemos definir uma struct para representar uma árvore binária?

Alguma semelhança???


```
#include <stdio.h>
#include <stdlib.h>
typedef struct no{
       int info;
       struct no *esq, *dir;
}no;
no *raiz;
int main(){
```


Mais informações na próxima aula...

EXERCÍCIOS

Considere a árvore ao lado:

- Quantos nós folha a árvore têm?
- Qual o grau da árvore?
- Qual sua altura?
- Dê um exemplo de uma subárvore
- dessa árvore.

EXERCÍCIOS

Para a árvore a seguir, você deve apresentar como ocorrerá cada um dos percursos abaixo.

- Pré-ordem
- Em ordem (Simétrico)
- Pós-ordem

EXERCÍCIOS

Determine:

- a) A altura da árvore.
- b) Altura do nó G.
- c) Nível do nó G.
- d) Nível do nó A.
- e) Altura do nó E.
- f) Mostre as subárvores do nó F.
- g) Essa é uma árvore binária de busca? Justifique sua resposta.

DÚVIDAS???

