Context Encoders: Feature Learning by Inpainting

7107053114 沈佳詠

Abstract

• Approach :

• An unsupervised visual feature learning algorithm driven by context-based pixel prediction.

• Models:

- Convolutional Neural Network
- Conditional Generative Adversarial Network

Context Encoder

• CNNs that predict missing parts of a scene from their surroundings.

Framework

Adversarial Loss

Original Adversarial Loss

•
$$\min_{G} \max_{D} \mathbb{E}_{x \in \mathcal{X}} \left[\log(D(x)) \right] + \mathbb{E}_{z \in \mathcal{Z}} \left[\log(1 - D(G(z))) \right]$$

• *G* : Generator

• D: Discriminator

- x: real image
- *z* : noise
- \mathcal{X} : data distribution
- \mathcal{Z} : noise distribution

Alternate Adversarial Loss

•
$$\mathcal{L}_{adv} = \max_{D} \mathbb{E}_{x \in \mathcal{X}} \left[\log(D(x)) + \log\left(1 - D\left(F\left((1 - \widehat{M}) \odot x\right)\right)\right) \right]$$

- D: Discriminator
- $F: G \triangleq F$
- \widehat{M} : input and mask , $\begin{cases} 0, \text{ for missing pixels} \\ 1, \text{ for elsewhere} \end{cases}$

Generator Loss

- Generator Loss Reconstruction Adversarial $\mathcal{L} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}$
 - λ_{rec} · λ_{adv} : weights
- Reconstruction Loss (L2)

•
$$\mathcal{L}_{rec}(x) = \|\widehat{M} \odot (x - F((1 - \widehat{M}) \odot x))\|_{2}^{2}$$

- \widehat{M} : input and mask , $\begin{cases} 0, \text{ for missing pixels} \\ 1, \text{ for elsewhere} \end{cases}$
- x: real image
- *F* : Generator

Expected Results

• Expected Results

