Sets

Dhruva Sambrani

20 January, 2020

Sets

Set is a well defined collection of objects. Well defined here means that an element of the Domain x should be unambigiously belong to or not belong to set S.

 $x \in A \equiv "x \text{ belongs to set } A"$

 $x \notin A \equiv "x \text{ does not belong to set A"}$

Properties

- · All elements unique.
- Unordered.

Types

Sets need not be of a particular "type" - $\{\{1,2,3\},6,7\}$ May also be infinite. $\{1,2,3,4...\}$ Null/Empty set = $\{\} = \emptyset$

Operations on sets

- Subset: $A \subseteq B$. "A is a subset of B." $x \in A \Longrightarrow x \in B$.
- Equality: $A=B \text{ iff } A\subseteq B \land B\subseteq A$. "A is equal to B." $x\in A \Longrightarrow x\in B \land x\notin A \Longrightarrow x\notin B$
- Proper Subset: $A \subseteq B \times A \implies x \in B \land A \neq B$.
- Complement: U\A OR Ac. Exactly all x's in U NOT in A.
- Union: A∪B. "A union B". Exactly all elements in A V B.
 - If $\{A\alpha\}$ is a collection of sets indexed by I, then $UA\alpha = set$ of x st $x \in \alpha 0$ for some $\alpha \in I$.
- Intersection: $A \cap B$ "A intersection B". Contains exactly all elements in A AND B.
 - x∈ \bigcap Aα iff x \forall α∈I, x∈Aα
- Cartesian Product: A×B "Cartesian Product of A and B". Its the collection of all 2 element sequences (a,b) st a∈A, b∈B
 - A1×A2×...×An is the collection of all n element sequences (ai) st ai∈Ai
- Relation operator: aRb "a is related to b". A relation is a subset of A×B.
- Function: $f: A \rightarrow B$. It is a relation such that

- 1. ∀a∈A, ∃b st aRb.
- 2. aRb and aRc \Rightarrow b=c.
- Equality of functions $f=g \Rightarrow f\subseteq g \land g\subseteq f$.

Languages

 $\boldsymbol{\Sigma}$ is a finite set called an "alphabet".

The finite sequence is called a string.

A language over $\boldsymbol{\Sigma}$ is a set of strings.