Last name		
First name		

LARSON—MATH 511—HOMEWORK WORKSHEET 05 Concepts & Review

Explain your answers. An ideal answer will include appropriate definitions.

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \end{bmatrix}$$
.

1. A represents a function from \mathbb{R}^3 to \mathbb{R}^2 . Let $\hat{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\hat{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\hat{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. $\{\hat{e}_1, \hat{e}_2, \hat{e}_3\}$ is the *standard basis* for \mathbb{R}^3 .

Find $A\hat{e}_1$, $A\hat{e}_2$, $A\hat{e}_3$.

- 2. Find the linearly independent columns of A.
- 3. Show that any other columns can be written as linear combinations of these.
- 4. Find a CR decomposition of A.
- 5. Show that the rows of A can be written as linear combinations of the rows of R.
- 6. Find the column space C(A) of A.
- 7. Find a basis for C(A).
- 8. What is the dimension of C(A)?
- 9. Find the row space $C(A^T)$ of A.
- 10. Find a basis for $C(A^T)$.
- 11. What is the dimension of $C(A^T)$?

- 12. Find the null space N(A) of A.
- 13. Find a basis for N(A).
- 14. What is the dimension of N(A)?
- 15. Is it true that $dim(C(A^T)) + dim(N(A)) = dim(\mathbb{R}^3)$?
- 16. Find the null space $N(A^T)$ of A^T .
- 17. Find a basis for $N(A^T)$.
- 18. What is the dimension of $N(A^T)$?
- 19. Is it true that $dim(C(A)) + dim(N(A^T)) = dim(\mathbb{R}^2)$?
- 20. Show that the basis vectors of $C(A^T)$ and of N(A) are orthogonal.
- 21. Now explain why every vector in $C(A^T)$ and every vector in N(A) are orthogonal.
- 22. Show that the basis vectors of C(A) and of $N(A^T)$ are orthogonal.
- 23. Now explain why every vector in C(A) and every vector in $N(A^T)$ are orthogonal.

More

All of Prof Strang's Intro course Linear Algebra lectures are here:

 $https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/18-06-linear-algebra-spring-2010/video-galleries/video-lectures/18-06-linear-algebra-spring-2010/video-galleries/video-lectures/18-06-linear-algebra-spring-2010/video-galleries/video-lectures/18-06-linear-algebra-spring-2010/video-galleries$