

1 主存与cache地址映射概述

- •主存数据如何迁至Cache才能实现快速查找?
- •常见的三种映射方式

全相联 (fully-associated)

直接相联 (direct mapped)

组相联 (set-associated)

2 全相联映射的工作原理

主存

B_0
В ₀ В ₁
B _{n-1}
B _n
B_{n+1}
B _{2n-1}
B _{2n}
B _{2n+1}
B _{3n-1}
•••
B _{mn}

- •主存分块, Cache行(Line), 两者大小相同;
- •设每块4个字,主存大小为1024个字,则第61 个字的主存地址为:

00001111 01 (块号 块内地址)

- •主存分块后地址就从一维变成二维;
- •映射算法:主存的数据块可映射到Cache任意行,同时将该数据块地址对应行的标记存储体中保存。

2 全相联映射的工作原理

2

全相联映射的工作原理

工程观视图

2 全相联映射的工作原理

全相联映射的特点

- Cache利用率高
- 块冲突率低
- ■淘汰算法复杂

应用场合

■小容量Cache

3 直接映射的工作原理

- •主存分块, Cache行(Line), 两者大小相同;
- •主存分块后还将以Cache行数为标准进行分区,
- •设每块4个字,主存大小为1024个字, Cache分为4行,第61个字的主存地址为:
- 000011 11 01 (区号,区内块号,块内地址) 主存地址从一维变成三维;
- •映射算法:

Cache共n行,主存第j块号映射到Cache 的行号为: i=j mod n

即主存的数据块映射到Cache特定行

3 直接映射的工作原理

3 直接映射的工作原理

工程观视图

3 直接映射的工作原理

全相联映射的特点

- Cache利用率高
- 块冲突率低
- ■淘汰算法复杂

应用场合

■小容量Cache

直接映射的特点

- Cache利用率低
- ■块冲突率高
- ■淘汰算法简单

应用场合

▶大容量Cache

4

组相联映射的工作原理

- •主存分块, Cache行(Line), 两者大小相同;
- Cache分组(每组中包k行),本例假定K=4
- 主存分块后还将以Cache组数为标准进行分组;
- •设每块4个字,主存大小为1024个字, Cache分为4行,第61个字的主存地址为:
 - 0000111 1 01 (组号,组内块号,块内地址) 主存地址从一维变成三维;
- •映射算法:

Cache共n组,主存第j块号映射到Cache 的组号为: i=j mod n

即主存的数据块映射到Cache特定组的任意行

4 组相联映射的工作原理

第四章

4.9 Cache地址映射与变换方法

4 组相联映射的工作原理

4 组相联映射的工作原理

全相联映射的特点

- Cache利用率高
- 块冲突率低
- ■淘汰算法复杂

应用场合

■小容量Cache

直接映射的特点

- Cache利用率低
- 块冲突率高
- ■淘汰算法简单

应用场合

■ 大容量Cache