

Problem 1 (a) Calculate the image of the sequence $\langle 3, 0, 2 \rangle$ under Gödel numbering and show your work. If this image does not exist, prove it.

Answer:

$$2^{3+1} \cdot 3^{0+1} \cdot 5^{2+1} =$$

$$2^4 \cdot 3^1 \cdot 5^3 = 10^3 \cdot 6 =$$

16000

(b) Calculate the pre-image of the number 2940 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

$$2940 = 10 \cdot 294 =$$

$$10 \cdot 3 \cdot 98 =$$

$$2 \cdot 3 \cdot 5 \cdot 2 \cdot 49 =$$

$$2^2 \cdot 3^1 \cdot 5^1 \cdot 7^2$$

Answer:

1 < 1, 0, 0, 1 >

(c) Calculate the pre-image of the number 3850 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

$$3850 = 385 \cdot 10 =$$

$$2 \cdot 5 \cdot 7 \cdot 55 =$$

$$2 \cdot 5^2 \cdot 7 \cdot 11$$

not a Gödel number,
misses 3, no
pre-image.

LAST NAME: _____

FIRST NAME: _____

(d) Let m be the image of the sequence

$$s = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$

$$2 \ 3 \ 5 \ 7 \ 11 \ 13$$

under Gödel numbering. Represent the pre-image of the number $78m$ as a function of the (components of) sequence s . If such a representation does not exist, prove it.

Answer:

$$78m = 6 \cdot 13 =$$

$$= 2 \cdot 3 \cdot 13$$

Answer:

1 < $x_1+1, x_2+1, x_3, x_4, x_5, x_6+1$ >

(e) Let n be the image of the sequence

$$\langle x_1, x_2, x_3, x_4 \rangle$$

under Gödel numbering. Represent the image of the sequence

$$2 \ 3 \ 5 \ 7 \ 11$$

$$\langle x_1+2, x_2+1, x_3, x_4, 1 \rangle$$

as a function of n . If such a representation does not exist, prove it.

Answer:

Answer

$$n \cdot 2^2 \cdot 3^1 \cdot 11^2 =$$

$$= 12 \cdot 121n$$

= 1452n

Problem 1 (a) Calculate the image of the sequence $\langle 5, 0, 1 \rangle$ under Gödel numbering and show your work. If this image does not exist, prove it.

Answer:

$$2^{5+1} \cdot 3^{0+1} \cdot 5^{1+1} =$$

$$2^6 \cdot 3^1 \cdot 5^2 = 10^2 \cdot 3 \cdot 16$$

$$= \underline{\underline{48001}}$$

(b) Calculate the pre-image of the number 2730 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

$$2730 = 10 \cdot 273 =$$

$$2 \cdot 5 \cdot 3 \cdot 91 = 2 \cdot 5 \cdot 7 \cdot 13$$

$2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$
 misses 11, not a Gödel
 number, no pre-
 image

(c) Calculate the pre-image of the number 6930 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

$$6930 = 10 \cdot 693 =$$

$$= 10 \cdot 9 \cdot 77 =$$

$$= 2 \cdot 5 \cdot 3^2 \cdot 7 \cdot 11 =$$

$$= 2^1 \cdot 3^2 \cdot 5^1 \cdot 7 \cdot 11^1$$

$$\text{answer: } \underline{\underline{\langle 0, 1, 0, 0, 1, 0 \rangle}}$$

LAST NAME: _____

FIRST NAME: _____

(d) Let n be the image of the sequence

$$\langle x_1, x_2, x_3, x_4 \rangle$$

under Gödel numbering. Represent the image of the sequence $\langle x_1+1, x_2, x_3+1, x_4, 2 \rangle$

as a function of n . If such a representation does not exist, prove it.

Answer:

$$n = 2 \cdot 5 \cdot 11^3$$

$$= 10n \cdot 11 \cdot 121$$

$$= 10n \cdot 1331$$

$$= \underline{\underline{13310n}}$$

(e) Let m be the image of the sequence

$$s = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$

under Gödel numbering. Represent the pre-image of the number $143m$ as a function of the (components of) sequence s . If such a representation does not exist, prove it.

Answer:

$$143 = 13 \cdot 11$$

answer: _____

$$| \langle x_1, x_2, x_3, x_4, x_5+1, x_6+1 \rangle$$

Problem 2 Let L be the language defined by the regular expression:

LAST NAME: _____

FIRST NAME: _____

$$(cd \cup baa \cup (c(c \cup d)c)^*) (c(da)^* \cup bd^*a)^*$$

(a) Draw a state-transition graph of a finite automaton that accepts the language L . If such an automaton does not exist, state it and explain why.

Answer:

(c) State the cardinality of the set L . (If L is a finite set, state the exact number of elements of L . Otherwise, state that L is infinite and specify whether it is countable or not.)

Answer:

Answer: L is infinite and countable.

(b) Write a complete formal definition of a context-free grammar that generates the language L . If such a grammar does not exist, state it and explain why.

Answer:

$$G = \left(\Sigma, \mathcal{F}, \mathcal{P}, \mathcal{S} \right)$$

$$V^+ = \{S, \{A, D, S\}, \{B, E, F\}\}, \quad S = \{a, b, c, d\}$$

Q: $S + AB$

A → cd | ba | D

D → A | DD | ccc | cdc

B → a | BB | cE | bFa

$$E \rightarrow daE' \mid a$$

Feb 19

Problem 2 Let L be the language defined by the regular expression:

$$(a(b \cup c)^* \cup db^*c)^* (ab \cup dcc \cup (abaa)^*)$$

(a) Write a complete formal definition of a context-free grammar that generates the language L . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \mathcal{F}, P, S)$$

$$V = \{S, A, B, D, E, H\}$$

$$\mathcal{L} = \{a, b, c, d\}$$

$$P: S \rightarrow AB$$

$$A \rightarrow a \mid AA \mid aD \mid dEc$$

$$D \rightarrow a \mid bD \mid b$$

$$E \rightarrow bE \mid a$$

$$B \rightarrow ab \mid dcc \mid H$$

(b) Draw a state-transition graph of a finite automaton that accepts the language L . If such an automaton does not exist, state it and explain why.

Answer:

LAST NAME: _____

FIRST NAME: _____

(c) State the cardinality of the set L . (If L is a finite set, state the exact number of elements of L . Otherwise, state that L is infinite and specify whether it is countable or not.)

Answer:

L is infinite and countable

H → a | H H H | abac

LAST NAME: _____

FIRST NAME: _____

Problem 3 Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c\}$ whose length is not greater than 3.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c\}$ where the number of a 's is not less than 2.

(a) Write a regular expression that represents the language L_1 . If such a regular expression does not exist, state it and explain why.

Answer:

$$(aubucu\lambda)(aubucu\lambda)(aubucu\lambda)$$

(b) Write a regular expression that represents the language L_2 . If such a regular expression does not exist, state it and explain why.

Answer:

$$(buc)^*a(buc)^*a(aubuc)^*$$

(c) Write a regular expression that represents the language $L_1 \cup L_2$. If such a regular expression does not exist, state it and explain why.

Answer:

$$(aubucu\lambda)(aubucu\lambda)(aubucu\lambda) \cup (buc)^*a(buc)^*a(aubuc)^*$$

(d) Write a regular expression that represents the language $L_1 L_1$. If such a regular expression does not exist, state it and explain why.

Answer:

$$(aubucu\lambda)(aubucu\lambda)(aubucu\lambda)(aubucu\lambda) \cup (bubucu\lambda)(aubucu\lambda)$$

(e) State the cardinality of the set L_1 . (If L_1 is finite set, state the exact number of elements of L_1 . Otherwise, state that L_1 is infinite and specify whether it is countable or not.)

Answer:

$$1 + 3 + 9 + 27 = \boxed{40}$$

(f) State the cardinality of the set L_2 . (If L_2 is a finite set, state the exact number of elements of L_2 . Otherwise, state that L_2 is infinite and specify whether it is countable or not.)

Answer:

infinite and countable

(g) State the cardinality of the set L_1^* . (If L_1^* is a finite set, state the exact number of elements of L_1^* . Otherwise, state that L_1^* is infinite and specify whether it is countable or not.)

Answer:

infinite and countable

(h) State the cardinality of the set $\mathcal{P}(L_2)$ (set of subsets of L_2). (If $\mathcal{P}(L_2)$ is a finite set, state the exact number of its elements. Otherwise, state that $\mathcal{P}(L_2)$ is infinite and specify whether it is countable or not.)

Answer:

infinite and uncountable

LAST NAME: _____

FIRST NAME: _____

Problem 3 Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c\}$ whose length is equal to 3 or 4.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c\}$ where the number of c 's is not less than 3.

(a) Write a regular expression that represents the language L_1 . If such a regular expression does not exist, state it and explain why.

Answer:

$$(aubuc)(aubuc)(aubuc)(aubucua)$$

(b) Write a regular expression that represents the language L_2 . If such a regular expression does not exist, state it and explain why.

Answer:

$$(aub)^*c(aub)^*c(aub)^*c(aubuc)^*$$

(c) Write a regular expression that represents the language $L_1 L_1$. If such a regular expression does not exist, state it and explain why.

Answer:

$$(aubuc)(aubuc)(aubuc)(aubucua)(aubuc)(aubuc)(aubucua)$$

(d) Write a regular expression that represents the language $L_1 \cup L_2$. If such a regular expression does not exist, state it and explain why.

Answer:

$$(aubuc)(aubuc)(aubuc)(aubucua) \cup (aub)^*c(aub)^*c(aub)^*c(aubuc)^*$$

(e) State the cardinality of the set L_1 . (If L_1 is finite set, state the exact number of elements of L_1 . Otherwise, state that L_1 is infinite and specify whether it is countable or not.)

Answer:

$$3^3 + 3^4 = 27 + 81 = \boxed{108}$$

(f) State the cardinality of the set L_2 . (If L_2 is a finite set, state the exact number of elements of L_2 . Otherwise, state that L_2 is infinite and specify whether it is countable or not.)

Answer:

infinite and countable

(g) State the cardinality of the set $\mathcal{P}(L_2)$ (set of subsets of L_2). (If $\mathcal{P}(L_2)$ is a finite set, state the exact number of its elements. Otherwise, state that $\mathcal{P}(L_2)$ is infinite and specify whether it is countable or not.)

Answer:

infinite and uncountable

(h) State the cardinality of the set L_1^* . (If L_1^* is a finite set, state the exact number of elements of L_1^* . Otherwise, state that L_1^* is infinite and specify whether it is countable or not.)

Answer:

infinite and countable

Problem 4 Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ whose length is divisible by 3.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ where the total number of c 's and d 's (together) is odd.

(a) Draw a state-transition graph of a finite automaton that accepts the language L_1 . If such an automaton does not exist, state it and explain why.

Answer:

(b) Draw a state-transition graph of a finite automaton that accepts the language L_2 . If such an automaton does not exist, state it and explain why.

Answer:

(c) Draw a state-transition graph of a finite automaton that accepts the language $L_1 \cap L_2$. If such an automaton does not exist, state it and explain why.

Answer:

LAST NAME: _____

FIRST NAME: _____

(d) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_1}$ (the complement of L_1 .) If such an automaton does not exist, state it and explain why.

Answer:

(e) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_2}$ (the complement of L_2 .) If such an automaton does not exist, state it and explain why.

Answer:

Problem 4 Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ whose length is odd.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ where the total number of a 's and c 's (together) is divisible by 3.

(a) Draw a state-transition graph of a finite automaton that accepts the language L_1 . If such an automaton does not exist, state it and explain why.

Answer:

(b) Draw a state-transition graph of a finite automaton that accepts the language L_2 . If such an automaton does not exist, state it and explain why.

Answer:

(c) Draw a state-transition graph of a finite automaton that accepts the language $L_1 \cap L_2$. If such an automaton does not exist, state it and explain why.

Answer:

LAST NAME: _____

FIRST NAME: _____

(d) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_1}$ (the complement of L_1 .) If such an automaton does not exist, state it and explain why.

Answer:

(e) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_2}$ (the complement of L_2 .) If such an automaton does not exist, state it and explain why.

Answer:

Problem 5 Let L be the set of exactly those strings over the alphabet $\{a, b, c\}$ which satisfy all of the following properties:

1. begins and ends with the same letter;
2. contains exactly two c 's.

(a) Write a regular expression that represents the language L . If such a regular expression does not exist, state it and explain why.

Answer:

$$a(aub)^*c(aub)^*c(aub)^*a$$

v

$$b(aub)^*c(aub)^*c(aub)^*b$$

v

$$c(aub)^*c$$

(b) Draw a state-transition graph of a finite automaton that accepts the language L . If such an automaton does not exist, state it and explain why.

Answer:

LAST NAME: _____

FIRST NAME: _____

(c) Write a complete formal definition of a context-free grammar that generates the language L . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, S, P, S)$$

$$S = \{a, b, c\}$$

$$V = \{S, A, B, C, D\}$$

$$P: S \rightarrow A \mid B \mid C$$

$$A \rightarrow aDcDcDca$$

$$B \rightarrow bDcDcDb$$

$$C \rightarrow cDc$$

$$D \rightarrow a \mid b \mid ab$$

(d) Draw a state-transition graph of a finite automaton that accepts the language $L \cap c^*$. If such an automaton does not exist, state it and explain why.

Answer:

Problem 5 Let L be the set of exactly those strings over the alphabet $\{a, b, c\}$ which satisfy all of the following properties:

1. first letter is either a or b ;
2. last letter is either b or c ;
3. first letter is different from the last letter;
4. contains exactly two c 's.

(a) Write a regular expression that represents the language L . If such a regular expression does not exist, state it and explain why.

Answer:

Answer: $a(a+b)^*c(a+b)^*c(a+b)^*b$

$$a(a \cup b)^* c (a \cup b)^* c$$

$$b(a^nb)^*c(a^nb)^*c$$

(b) Draw a state-transition graph of a finite automaton that accepts the language L . If such an automaton does not exist, state it and explain why.

Answer:

LAST NAME:

FIRST NAME:

(c) Write a complete formal definition of a context-free grammar that generates the language L . If such a grammar does not exist, state it and explain why.

Answer:

$$\text{nswe}r: G = (V, \mathcal{E}, P_1, S)$$

$$g = [a, b, c]$$

$$V = \{S, A, B, D, E\}$$

See A/B/D

$\Delta t^{\alpha E} e^F e^E b$

A \rightarrow aE c E c

D eb E c F b

FREE

E - 651.111

(d) Draw a state-transition graph of a finite automaton that accepts the language $L \cap a c^*$. If such an automaton does not exist, state it and explain why.

Answer:

Problem 6 Let L_1, L_2 be languages over the alphabet $\{a, b, c, d, g, e\}$, defined as follows:

$$L_1 = \{ \underbrace{g^{3k}}_{\text{where } m, j, n, p, i, k, \ell, t \geq 0.}, \underbrace{e^{2i+3}}_{\text{where } m, j, n, p, i, k, \ell, t \geq 0.}, \underbrace{d^{2\ell}}_{\text{where } m, j, n, p, i, k, \ell, t \geq 0.}, \underbrace{c^{2t+1}}_{\text{where } m, j, n, p, i, k, \ell, t \geq 0.}, \underbrace{b^{\ell}}_{\text{where } m, j, n, p, i, k, \ell, t \geq 0.}, \underbrace{a^k}_{\text{where } m, j, n, p, i, k, \ell, t \geq 0.} \}$$

where $m, j, n, p, i, k, \ell, t \geq 0$.

(a) Write a complete formal definition of a context-free grammar that generates L_1 . If such a grammar does not exist, state it and explain why.

Answer:

$$\begin{aligned} G &= (V, S, P, T_1) \\ S &= \{a, b, c, d, g\} \\ V &= \{T_1, A, B, D\} \\ P: T_1 &\rightarrow ggg T_1 a \\ A &\rightarrow eeA | eee \\ B &\rightarrow ddBb | D \\ D &\rightarrow ccD | C \end{aligned}$$

(b) Write a complete formal definition of a context-free grammar that generates L_2 . If such a grammar does not exist, state it and explain why.

Answer:

$$\begin{aligned} G &= (V, S, P, T_2) \\ V &= \{T_2, E, F, H, J\} \\ S &= \{a, b, c, d, g\} \\ P: T_2 &\rightarrow E F H \\ E &\rightarrow ccEaaa | cccca \\ F &\rightarrow ddF | A \\ H &\rightarrow g^H b | ggJb \\ J &\rightarrow eeeJ | A \end{aligned}$$

LAST NAME: _____

FIRST NAME: _____

(c) Write a complete formal definition of a context-free grammar that generates $(L_1 \cup L_2)^*$. If such a grammar does not exist, state it and explain why.

Answer:

$$\begin{aligned} G &= (V, S, P, S) \\ V &= \{S, T_1, A, B, D, T_2, F, H, J\} \\ S &= \{a, b, c, d\} \\ P: S &\rightarrow S | S S | T_1 | T_2 \\ T_1 &\rightarrow ggg T_1 a | AB \\ A &\rightarrow eeA | eee | FeddF | A \\ B &\rightarrow ddBb | D | H \rightarrow g^H b \\ D &\rightarrow ccD | C | H \rightarrow ggJb \\ T_2 &\rightarrow E F H | J \rightarrow eeeJ | J \\ E &\rightarrow ccEaaa | cccca \end{aligned}$$

(d) Write a complete formal definition of a context-free grammar that generates $L_1^* \cup L_2^*$. If such a grammar does not exist, state it and explain why.

Answer:

$$\begin{aligned} G &= (V, S, P, S) \\ V &= \{S, S_1, S_2, T_1, T_2, A, B, D, E, F, H, J\} \\ P: S &\rightarrow S_1 | S_2 | T_1 | T_2 \\ S_1 &\rightarrow S_1 S_1 | T_1 \\ S_2 &\rightarrow S_2 S_2 | T_2 \\ T_1 &\rightarrow ggg T_1 a | AB \\ A &\rightarrow eeA | eee | FeddF | A \\ B &\rightarrow ddBb | D | H \rightarrow g^H b \\ D &\rightarrow ccD | C | H \rightarrow ggJb \\ T_2 &\rightarrow E F H | J \rightarrow eeeJ | J \\ E &\rightarrow ccEaaa | cccca \end{aligned}$$

Problem 6 Let L_1, L_2 be languages over the alphabet $\{a, b, c, d, g, e\}$, defined as follows:

$$L_1 = \{a^{\underbrace{3m+2}} c^{\underbrace{2m+1}} e^{\underbrace{2n}} b^{\underbrace{j+3}} g^{\underbrace{3p}} d^{\underbrace{j+2}}\}$$

$$L_2 = \{b^k g^{\underbrace{2i+1}} a^{\ell} e^{\underbrace{2t+3}} d^{\underbrace{2\ell}} c^{\underbrace{3k}}\}$$

where $m, j, n, p, i, k, \ell, t \geq 0$.

(a) Write a complete formal definition of a context-free grammar that generates L_1 . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, S, P, S)$$

$$S = \{a, b, c, d, g\}$$

$$V = \{S, A, B, D, E\}$$

q. $S \rightarrow ABD$

$$A \rightarrow \underbrace{aaa}_{A} \underbrace{Acc}_{c} \mid \underbrace{aac}_{c}$$

$$B \rightarrow \underbrace{eeB}_{e} \mid \underbrace{A}_{A}$$

$$D \rightarrow \underbrace{bDd}_{b} \mid \underbrace{bbb}_{b} \underbrace{Edd}_{d}$$

$$E \rightarrow \underbrace{ggg}_{g} \mid \underbrace{E}_{E}$$

(b) Write a complete formal definition of a context-free grammar that generates L_2 . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, S, P, T)$$

$$V = \{T, F, H, J\}$$

$$S = \{a, b, c, d, g\}$$

q. $T \rightarrow \underbrace{bT}_{b} \underbrace{ccc}_{c} \mid F+$

$$F \rightarrow \underbrace{ggF}_{g} \mid g$$

$$H \rightarrow \underbrace{aHdd}_{a} \mid J$$

$$J \rightarrow \underbrace{eeJ}_{e} \mid eee$$

LAST NAME: _____

FIRST NAME: _____

(c) Write a complete formal definition of a context-free grammar that generates $L_1^* \cup L_2^*$. If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, S, P, Q)$$

$$V = \{Q, Q_1, Q_2, S, A, B, D, E, T, F, H, J\}$$

$$S = \{c, b, c, d, g\}$$

q. $Q \rightarrow Q_1 \mid Q_2$

$$Q_1 \rightarrow \underbrace{S \mid Q_1}_{S} \mid Q_2 \mid S$$

$$S \rightarrow ABD$$

$$A \rightarrow \underbrace{aaa}_{A} \underbrace{Acc}_{c} \mid \underbrace{aac}_{c}$$

$$B \rightarrow \underbrace{eeB}_{e} \mid \underbrace{A}_{A}$$

$$D \rightarrow \underbrace{bDd}_{b} \mid \underbrace{bbb}_{b} \underbrace{Edd}_{d}$$

$$E \rightarrow \underbrace{ggg}_{g} \mid \underbrace{E}_{E}$$

$$T \rightarrow \underbrace{bTccc}_{b} \mid F+$$

(d) Write a complete formal definition of a context-free grammar that generates $(L_1 \cup L_2)^*$. If such a grammar does not exist, state it and explain why.

Answer: $F \rightarrow \underbrace{ggF}_{g} \mid g$

$$H \rightarrow \underbrace{aHdd}_{a} \mid J$$

$$J \rightarrow \underbrace{eeJ}_{e} \mid eee$$

$$G = (V, S, P, Q)$$

$$S = \{a, b, c, d, g\}$$

$$V = \{Q, S, A, B, D, E, T, F, H, J\}$$

q. $Q \rightarrow \underbrace{S \mid Q_1}_{S} \mid S$

$$S \rightarrow ABD$$

$$A \rightarrow \underbrace{aaa}_{A} \underbrace{Acc}_{c} \mid \underbrace{aac}_{c}$$

$$B \rightarrow \underbrace{eeB}_{e} \mid \underbrace{A}_{A}$$

$$D \rightarrow \underbrace{bDd}_{b} \mid \underbrace{bbb}_{b} \underbrace{Edd}_{d}$$

$$E \rightarrow \underbrace{ggg}_{g} \mid \underbrace{E}_{E}$$

$$T \rightarrow \underbrace{bTccc}_{b} \mid F+$$

Problem 7 Let L be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ which satisfy all of the following properties.

1. the string is a concatenation of four non-empty palindromes;
2. three of the four palindromes have an odd length;
3. one of the four palindromes has an even length;
4. the four palindromes may appear in any order;
5. the middle symbol of each of the three odd-length palindromes is different from d ;
6. the middle two symbols of the even-length palindrome are different from a .

Write a complete formal definition of a context-free grammar that generates the language L . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S)$$

$$\Sigma = \{a, b, c, d\}$$

$$V = \{S, E, D\}$$

$$\begin{aligned}
 P: \quad S &\rightarrow E D D D \mid D E D D \mid D D E D \mid D D D E \\
 E &\rightarrow a E a \mid b E b \mid c E c \mid d E d \mid b b \mid c c \mid d d \\
 D &\rightarrow a D a \mid b D b \mid c D c \mid a b \mid b c \mid c a \mid a c
 \end{aligned}$$

LAST NAME: _____

FIRST NAME: _____

Problem 7 Let L be the set of exactly those strings over the alphabet $\{a, b, c\}$ which satisfy all of the following properties.

1. the string is a concatenation of four non-empty palindromes;
2. three of the four palindromes have an even length;
3. one of the four palindromes has an odd length;
4. the four palindromes may appear in any order;
5. the middle symbol of the odd-length palindrome is different from a ;
6. the middle two symbols of each of the three even-length palindromes are different from d .

Write a complete formal definition of a context-free grammar that generates the language L . If such a grammar does not exist, state it and explain why.

Answer:

$$\begin{aligned}
 G &= (V, \Sigma, P, S) \\
 \Sigma &= \{a, b, c\} \\
 V &= \{S, E, D\} \\
 P : S &\rightarrow D E E E \mid E D E E \mid E E D E \mid E E E D \\
 &\quad E \rightarrow a A a \mid b B b \mid c C c \mid a a \mid b b \mid c c \\
 &\quad D \rightarrow a A a \mid b B b \mid c C c \mid b \mid c
 \end{aligned}$$

LAST NAME: _____

FIRST NAME: _____