

5. Block Coding and Decoding

- 5.1 Simple Block Coding
- 5.2 Linear block codes
- 5.3 Performance of the Block Coders

5. Block Coding and Decoding

EN 5012223 : Digital Communication 5-2

• The Single Parity Check Bit Coder - Channel coding where one bit is added to create a total sum of 0 is called *even parity*. You can instead add one more bit so that the total when adding all bits is 1, and this is called *odd parity*.

- Consider a block code that maps each incoming set of k bits to an outgoing set of n bits:
 - 1. First, in shorthand notation, this block code will be called an (n,k) code.
 - 2. This block code is said to have a code rate of k/n.
 - 3. This block code is also said to have a redundancy of (n-k)/k.
 - 4. And finally, this code is said to have (n-k) redundant bits (that is, check bits or parity bits), which refer to the added (n-k) bits.

• Rectangular Codes - In rectangular codes, each set of M·N bits are mapped to a set of $(M + 1)\cdot(N + 1)$ bits.

Channel Decoders for Rectangular Codes

• Linear block coders are a group of block coders that follow a special set of rules when choosing which set of outputs to use. The rules are as follows, using a (6,3) code for illustrative purposes:

 V_n = the set of all possible 64 6-bit sequences

U = the set of eight 6-bit sequences output at the channel coder

• Using this notation, the rule is this:

U must be a subspace of V_n .

- This means two very simple things:
 - 1. *U* must contain {000000}
- 2. Adding (modulo 2) any two elements in U must create another element in U.

input bits	output bits	• A linear block code?
0 0	0 0 0 0	
0 1	0 1 0 1	
1 0	1 0 1 0	
1 1	1 1 1 1	

$$= \begin{pmatrix} P_{11} & P_{12} & P_{13} \vdots 1 & 0 & 0 \\ P_{21} & P_{22} & P_{23} \vdots 0 & 1 & 0 \\ P_{31} & P_{32} & P_{33} \vdots 0 & 0 & 1 \end{pmatrix}$$

input bits	output bits	$\mathbf{u}_{\mathbf{m}=(0\ 0)} = \mathbf{m}G = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$
0 0	0 0 0 0	
0 1	0 1 0 1	$\mathbf{u}_{\mathrm{m}=(0\ 1)} = \mathbf{m}G =$
1 0	1 0 1 0	
1 1	1 1 1 1	$\mathbf{u}_{\mathbf{m}=(0 \ 1)} = \mathbf{m}G =$ $\mathbf{u}_{\mathbf{m}=(1 \ 0)} = \mathbf{m}G =$
C –	(1 0 1 0)	
G =	$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$	$\mathbf{u}_{\mathrm{m}=(1\ 1)} = \mathbf{m}G =$

The Decoding

$$GH = \mathbf{0}$$

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{0}{1} & \frac{0}{1} & \frac{1}{1} \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

The Decoding

$$v H = u H = m G H = m 0 = 0$$

$$v = u + e$$
 $v H = u H + e H$
 $= m G H + e H$
 $= m 0 + e H$
 $= 0 + e H$
 $= e H$

• Mapping errors <u>e</u> to syndromes **S**

е	S = e H
0 0 0 0 0	0 0 0
0 0 0 0 0 1	1 0 1
0 0 0 0 1 0	0 1 1
0 0 0 1 0 0	1 1 0
0 0 1 0 0 0	0 0 1
0 1 0 0 0 0	0 1 0
1 0 0 0 0 0	1 0 0
0 1 0 0 0 1	1 1 1

5.3 Performance of the Block Coders

Performances of single parity check bit coders/decoders

$$P_{m} = \sum_{\substack{j=2\\j \in even}}^{n} P(j,n) \qquad P(j,n) = {n \choose j} p^{j} (1-p)^{n-j}$$

Performance of rectangular codes

$$P = \sum_{j=2}^{n} P(j,n)$$

Performance of linear block codes

$$t = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor \qquad P = \sum_{j=t+1}^{n} P(j, n)$$

5.3 Performance of the Block Coders

Benefits and Costs of Block Coders

