Um Estudo sobre Modelos para Volatilidade Estocástica

Dissertação de Mestrado

André Silva de Queiroz Orientadora: Prof.^a Dr.^a Cibele Queiroz da Silva

> Departamento de Estatística Universidade de Brasília

10 de dezembro de 2015

- A importância dos modelos de séries temporais.
- Dados com a variância variável
 - Tradicionalmente: ARCH e GARCH.
 - Nova proposta: Modelos de Volatilidade Estocástica
- Inferência Bayesiana.
- Modelos Dinâmicos.

- A importância dos modelos de séries temporais.
- Dados com a variância variável:
 - Tradicionalmente: ARCH e GARCH.
 - Nova proposta: Modelos de Volatilidade Estocástica.
- Inferência Bayesiana.
- Modelos Dinâmicos.

- A importância dos modelos de séries temporais.
- Dados com a variância variável:
 - Tradicionalmente: ARCH e GARCH.
 - Nova proposta: Modelos de Volatilidade Estocástica.
- Inferência Bayesiana.
- Modelos Dinâmicos.

- A importância dos modelos de séries temporais.
- Dados com a variância variável:
 - Tradicionalmente: ARCH e GARCH.
 - Nova proposta: Modelos de Volatilidade Estocástica.
- Inferência Bayesiana.
- Modelos Dinâmicos.

- A importância dos modelos de séries temporais.
- Dados com a variância variável:
 - Tradicionalmente: ARCH e GARCH.
 - Nova proposta: Modelos de Volatilidade Estocástica.
- Inferência Bayesiana.
- Modelos Dinâmicos.

- A importância dos modelos de séries temporais.
- Dados com a variância variável:
 - Tradicionalmente: ARCH e GARCH.
 - Nova proposta: Modelos de Volatilidade Estocástica.
- Inferência Bayesiana.
- Modelos Dinâmicos.

- Família mais simples dentre os modelos dinâmicos.
- Segundo West e Harrison (1997) a definição do modelo linear dinâmico univariado é:
 - Equação das Observações

$$Y_t = \mathbf{F}_t' \mathbf{\theta}_t + \nu_t, \qquad \nu_t \sim \mathcal{N}(0, V_t),$$
 (1)

Equação do Sistema

$$\boldsymbol{\theta}_t = \boldsymbol{G}_t \boldsymbol{\theta}_{t-1} + \boldsymbol{\omega}_t, \qquad \boldsymbol{\omega}_t \sim \mathcal{N}(\mathbf{0}, \boldsymbol{W}_t).$$
 (2)

- Família mais simples dentre os modelos dinâmicos.
- Segundo West e Harrison (1997) a definição do modelo linear dinâmico univariado é:
 - Equação das Observações:

$$Y_t = \mathbf{F}_t' \boldsymbol{\theta}_t + \nu_t, \qquad \nu_t \sim \mathcal{N}(0, V_t), \tag{1}$$

Equação do Sistema

$$\theta_t = \mathbf{G}_t \theta_{t-1} + \omega_t, \qquad \omega_t \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_t).$$
 (2)

- Família mais simples dentre os modelos dinâmicos.
- Segundo West e Harrison (1997) a definição do modelo linear dinâmico univariado é:
 - Equação das Observações:

$$Y_t = \mathbf{F}_t' \mathbf{\theta}_t + \nu_t, \qquad \nu_t \sim \mathcal{N}(0, V_t),$$
 (1)

Equação do Sistema

$$\theta_t = \mathbf{G}_t \theta_{t-1} + \omega_t, \qquad \omega_t \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_t).$$
 (2)

- Família mais simples dentre os modelos dinâmicos.
- Segundo West e Harrison (1997) a definição do modelo linear dinâmico univariado é:
 - Equação das Observações:

$$Y_t = \mathbf{F}_t' \mathbf{\theta}_t + \nu_t, \qquad \nu_t \sim \mathcal{N}(0, V_t),$$
 (1)

Equação do Sistema:

$$\theta_t = \mathbf{G}_t \theta_{t-1} + \omega_t, \qquad \omega_t \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_t).$$
 (2)

- Família mais simples dentre os modelos dinâmicos.
- Segundo West e Harrison (1997) a definição do modelo linear dinâmico univariado é:
 - Equação das Observações:

$$Y_t = \mathbf{F}_t' \mathbf{\theta}_t + \nu_t, \qquad \nu_t \sim \mathcal{N}(0, V_t),$$
 (1)

Equação do Sistema:

$$\theta_t = \mathbf{G}_t \theta_{t-1} + \omega_t, \qquad \omega_t \sim \mathcal{N}(\mathbf{0}, \mathbf{W}_t).$$
 (2)

- Se $\{F, G, V, W\}$, então o modelo é chamado de constante.
- O modelo linear dinâmico constante engloba essencialmente todos os modelos lineares tradicionais de séries temporais.
- Modelos mais gerais podem ser propostos com ν_t e ω_t correlacionados. Porém esses novos modelos podem sempre ser reescritos satisfazendo as condições de independência, West e Harrison (1997).
- A informação inicial sobre $heta_t$ é representada por
 - Informação Inicial

$$(\boldsymbol{\theta}_0|D_0) \sim \mathcal{N}(\boldsymbol{m}_0, \boldsymbol{C}_0).$$
 (3)

- Se $\{F, G, V, W\}$, então o modelo é chamado de constante.
- O modelo linear dinâmico constante engloba essencialmente todos os modelos lineares tradicionais de séries temporais.
- Modelos mais gerais podem ser propostos com ν_t e ω_t correlacionados. Porém esses novos modelos podem sempre ser reescritos satisfazendo as condições de independência, West e Harrison (1997).
- A informação inicial sobre $heta_t$ é representada por
 - Informação Inicial:

$$(\boldsymbol{\theta}_0|D_0) \sim \mathcal{N}(\boldsymbol{m}_0, \boldsymbol{C}_0).$$
 (3)

- Se {**F**, **G**, **V**, **W**}, então o modelo é chamado de constante.
- O modelo linear dinâmico constante engloba essencialmente todos os modelos lineares tradicionais de séries temporais.
- Modelos mais gerais podem ser propostos com ν_t e ω_t correlacionados. Porém esses novos modelos podem sempre ser reescritos satisfazendo as condições de independência, West e Harrison (1997).
- A informação inicial sobre θ_t é representada por:

 $\theta_0|D_0\rangle \sim \mathcal{N}(\boldsymbol{m}_0, \boldsymbol{C}_0).$ (3)

- Se {**F**, **G**, **V**, **W**}, então o modelo é chamado de constante.
- O modelo linear dinâmico constante engloba essencialmente todos os modelos lineares tradicionais de séries temporais.
- Modelos mais gerais podem ser propostos com ν_t e ω_t correlacionados. Porém esses novos modelos podem sempre ser reescritos satisfazendo as condições de independência, West e Harrison (1997).
- A informação inicial sobre θ_t é representada por:
 - Informação Inicial

$$(\boldsymbol{\theta}_0|D_0) \sim \mathcal{N}(\boldsymbol{m}_0, \boldsymbol{C}_0).$$
 (3)

- Se {**F**, **G**, **V**, **W**}, então o modelo é chamado de constante.
- O modelo linear dinâmico constante engloba essencialmente todos os modelos lineares tradicionais de séries temporais.
- Modelos mais gerais podem ser propostos com ν_t e ω_t correlacionados. Porém esses novos modelos podem sempre ser reescritos satisfazendo as condições de independência, West e Harrison (1997).
- A informação inicial sobre θ_t é representada por:
 - Informação Inicial:

$$(\boldsymbol{\theta}_0|D_0) \sim \mathcal{N}(\boldsymbol{m}_0, \boldsymbol{C}_0).$$
 (3)

O Teorema de Bayes

 A probabilidade de ocorrência conjunta de dois eventos distintos é dada pela regra do produto:

$$P(A,B) = P(A|B)P(B).$$
 (4)

Teorema de Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}. (5)$$

No contexto dos modelos lineares dinâmicos,

$$f(\theta_t|D_t) = f(\theta_t|y_t, D_{t-1}) = \frac{g(y_t|\theta_t, D_{t-1})\pi(\theta_t|D_{t-1})}{h(y_t|D_{t-1})}.$$
 (6)

O Teorema de Bayes

 A probabilidade de ocorrência conjunta de dois eventos distintos é dada pela regra do produto:

$$P(A,B) = P(A|B)P(B).$$
 (4)

Teorema de Bayes:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}. (5)$$

No contexto dos modelos lineares dinâmicos,

$$f(\theta_t|D_t) = f(\theta_t|y_t, D_{t-1}) = \frac{g(y_t|\theta_t, D_{t-1})\pi(\theta_t|D_{t-1})}{h(y_t|D_{t-1})}.$$
 (6)

O Teorema de Bayes

 A probabilidade de ocorrência conjunta de dois eventos distintos é dada pela regra do produto:

$$P(A,B) = P(A|B)P(B). (4)$$

Teorema de Bayes:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$
 (5)

No contexto dos modelos lineares dinâmicos,

$$f(\theta_t|D_t) = f(\theta_t|y_t, D_{t-1}) = \frac{g(y_t|\theta_t, D_{t-1})\pi(\theta_t|D_{t-1})}{h(y_t|D_{t-1})}.$$
 (6)

Equações de Atualização

• Seja, para algum m_t e C_t , a posteriori de θ_t :

$$(\boldsymbol{\theta}_t|D_t) \sim \mathcal{N}(\boldsymbol{m}_t, \boldsymbol{C}_t).$$
 (7)

• As equações (2) e (7) permitem calcular a distribuição *a priori* $(\theta_{t+1}|D_t)$:

$$\theta_{t+1} = \boldsymbol{G}\boldsymbol{\theta}_t + \boldsymbol{\omega}_{t+1},$$

$$(\theta_{t+1}|D_t) \sim \boldsymbol{G}\mathcal{N}_{(\theta_t|D_t)}(\boldsymbol{m}_t, \boldsymbol{C}_t) + \mathcal{N}_{\omega_{t+1}}(\boldsymbol{0}, \boldsymbol{W}),$$

$$(\theta_{t+1}|D_t) \sim \mathcal{N}(\boldsymbol{a}_{t+1}, \boldsymbol{R}_{t+1}),$$
(8)

onde $a_{t+1} = Gm_t$ e $R_{t+1} = GC_tG' + W$

Equações de Atualização

• Seja, para algum m_t e C_t , a posteriori de θ_t :

$$(\boldsymbol{\theta}_t|D_t) \sim \mathcal{N}(\boldsymbol{m}_t, \boldsymbol{C}_t).$$
 (7)

• As equações (2) e (7) permitem calcular a distribuição *a priori* $(\theta_{t+1}|D_t)$:

$$\theta_{t+1} = \boldsymbol{G}\theta_t + \omega_{t+1},$$

$$(\theta_{t+1}|D_t) \sim \boldsymbol{G}\mathcal{N}_{(\theta_t|D_t)}(\boldsymbol{m}_t, \boldsymbol{C}_t) + \mathcal{N}_{\omega_{t+1}}(\boldsymbol{0}, \boldsymbol{W}),$$

$$(\theta_{t+1}|D_t) \sim \mathcal{N}(\boldsymbol{a}_{t+1}, \boldsymbol{R}_{t+1}),$$
(8)

onde $a_{t+1} = Gm_t$ e $R_{t+1} = GC_tG' + W$.

• A equação (1) é utilizada para calcular a distribuição da previsão da observação ($Y_{t+1}|D_t$):

$$Y_{t+1} = \mathbf{F}' \theta_{t+1} + \nu_{t+1},$$

$$(Y_{t+1}|D_t) \sim \mathbf{F}' \mathcal{N}_{(\theta_{t+1}|D_t)}(\mathbf{a}_{t+1}, \mathbf{R}_{t+1}) + \mathcal{N}_{\nu_{t+1}}(0, V),$$

$$(Y_{t+1}|D_t) \sim \mathcal{N}(f_{t+1}, Q_{t+1}),$$
(9)

onde
$$f_{t+1} = \mathbf{F}' \mathbf{a}_{t+1}$$
 e $Q_{t+1} = \mathbf{F}' \mathbf{R}_{t+1} \mathbf{F} + V$.

• A distribuição *a posteriori* $(\theta_{t+1}|D_{t+1})$ é obtida via o Teorema de Bayes:

$$f(\boldsymbol{\theta}_{t+1}|D_{t+1}) \propto g(Y_{t+1}|\boldsymbol{\theta}_{t+1},D_t)\pi(\boldsymbol{\theta}_{t+1}|D_t) \qquad (10)$$

Desse modo:

$$(\boldsymbol{\theta}_{t+1}|D_{t+1}) \sim \mathcal{N}(\boldsymbol{m}_{t+1}, \boldsymbol{C}_{t+1}),$$
 (11)

onde,
$$m_{t+1} = a_{t+1} + A_{t+1}e_{t+1}$$
 e $C_{t+1} = R_{t+1} - A_{t+1}Q_{t+1}A'_{t+1}$, com $A_{t+1} = R_{t+1}FQ_{t+1}^{-1}$ e $e_{t+1} = Y_{t+1} - f_{t+1}$, como mostra West e Harrison (1997).

• A distribuição *a posteriori* $(\theta_{t+1}|D_{t+1})$ é obtida via o Teorema de Bayes:

$$f(\boldsymbol{\theta}_{t+1}|D_{t+1}) \propto g(Y_{t+1}|\boldsymbol{\theta}_{t+1},D_t)\pi(\boldsymbol{\theta}_{t+1}|D_t) \qquad (10)$$

Desse modo:

$$(\boldsymbol{\theta}_{t+1}|D_{t+1}) \sim \mathcal{N}(\boldsymbol{m}_{t+1}, \boldsymbol{C}_{t+1}), \tag{11}$$

onde,
$$m_{t+1} = a_{t+1} + A_{t+1}e_{t+1}$$
 e $C_{t+1} = R_{t+1} - A_{t+1}Q_{t+1}A'_{t+1}$, com $A_{t+1} = R_{t+1}FQ_{t+1}^{-1}$ e $e_{t+1} = Y_{t+1} - f_{t+1}$, como mostra West e Harrison (1997).

Modelo de Volatilidade Estocástica (MVE)

- Modelagem inicialmente proposta por Taylor (1982).
- Kim et al. (1998) define o modelo canônico como:

Modelo Canônico :
$$\begin{cases} Y_t &= e^{\frac{h_t}{2}} \delta_t, \\ h_t &= \mu + \phi(h_{t-1} - \mu) + \eta_t, \\ h_0 &\sim \mathcal{N}\left(\mu, \frac{\sigma_\eta^2}{1 - \phi^2}\right). \end{cases} \tag{12}$$

Modelo de Volatilidade Estocástica (MVE)

- Modelagem inicialmente proposta por Taylor (1982).
- Kim et al. (1998) define o modelo canônico como:

$$\textbf{Modelo Canônico}: \begin{cases} Y_t &= e^{\frac{h_t}{2}} \delta_t, \\ h_t &= \mu + \phi(h_{t-1} - \mu) + \eta_t, \\ h_0 &\sim \mathcal{N}\left(\mu, \frac{\sigma_\eta^2}{1 - \phi^2}\right). \end{cases} \tag{12}$$

Modelo de Volatilidade Estocástica (MVE)

- Modelagem inicialmente proposta por Taylor (1982).
- Kim et al. (1998) define o modelo canônico como:

Modelo Canônico :
$$\begin{cases} Y_t &= e^{\frac{h_t}{2}} \delta_t, \\ h_t &= \mu + \phi(h_{t-1} - \mu) + \eta_t, \\ h_0 &\sim \mathcal{N}\left(\mu, \frac{\sigma_\eta^2}{1 - \phi^2}\right). \end{cases} \tag{12}$$

• Os termos δ_t e η_t são ruídos gaussianos, independentes no tempo e entre si, com distribuições:

$$\delta_t \sim \mathcal{N}(0,1)$$
 e $\eta_t \sim \mathcal{N}\left(0, \sigma_\eta^2\right)$. (13)

- Observe que $(Y_t|h_t) \sim \mathcal{N}\left(0,e^{h_t}\right)$.
- O conjunto de parâmetros do modelo a serem estimados é definido pelo vetor:

$$\psi = (\mu, \phi, \sigma_{\eta}^2). \tag{14}$$

• Os termos δ_t e η_t são ruídos gaussianos, independentes no tempo e entre si, com distribuições:

$$\delta_t \sim \mathcal{N}(0,1)$$
 e $\eta_t \sim \mathcal{N}\left(0,\sigma_\eta^2\right)$. (13)

- Observe que $(Y_t|h_t) \sim \mathcal{N}\left(0,e^{h_t}\right)$.
- O conjunto de parâmetros do modelo a serem estimados é definido pelo vetor:

$$\psi = (\mu, \phi, \sigma_{\eta}^2). \tag{14}$$

Os termos δ_t e η_t são ruídos gaussianos, independentes no tempo e entre si, com distribuições:

$$\delta_t \sim \mathcal{N}(0,1)$$
 e $\eta_t \sim \mathcal{N}\left(0,\sigma_\eta^2\right)$. (13)

- Observe que $(Y_t|h_t) \sim \mathcal{N}\left(0,e^{h_t}\right)$.
- O conjunto de parâmetros do modelo a serem estimados é definido pelo vetor:

$$\psi = (\mu, \phi, \sigma_{\eta}^2). \tag{14}$$

Um Modelo de Espaço-Estado

- Os MVE podem ser reescritos na notação de espaço-estado apresentada por West e Harrison (1997) estendendo-se a proposta de Zivot e Yollin (2012).
- Pela definição em (12):

$$\begin{aligned} Y_t &= e^{\frac{h_t}{2}} \delta_t, \\ \ln Y_t^2 &= h_t + \ln \delta_t^2, \\ \ln Y_t^2 &= h_t + \mathrm{E}(\ln \delta_t^2) + \varepsilon_t. \end{aligned} \tag{15}$$

Assim $\varepsilon_t \sim (0, \text{Var}(\ln \delta_t^2))$ é um ruído em torno de zero.

Um Modelo de Espaço-Estado

- Os MVE podem ser reescritos na notação de espaço-estado apresentada por West e Harrison (1997) estendendo-se a proposta de Zivot e Yollin (2012).
- Pela definição em (12):

$$\begin{aligned} Y_t &= e^{\frac{h_t}{2}} \delta_t, \\ \ln Y_t^2 &= h_t + \ln \delta_t^2, \\ \ln Y_t^2 &= h_t + \mathsf{E}(\ln \delta_t^2) + \varepsilon_t. \end{aligned} \tag{15}$$

Assim $\varepsilon_t \sim (0, \text{Var}(\ln \delta_t^2))$ é um ruído em torno de zero.

- Durbin e Koopman (2012) afirmam que isso não impede a utilização das técnicas associadas aos modelos gaussianos.
- Omori et al. (2007) sugere uma mistura de r = 10 normais que se aproxima da distribuição do erro:

$$\ln \delta_t^2 \approx \xi_t \sim \sum_{j=1}^{10} w_j \mathcal{N}\left(m_j, s_j^2\right). \tag{16}$$

- Durbin e Koopman (2012) afirmam que isso não impede a utilização das técnicas associadas aos modelos gaussianos.
- Omori et al. (2007) sugere uma mistura de r=10 normais que se aproxima da distribuição do erro:

$$\ln \delta_t^2 \approx \xi_t \sim \sum_{j=1}^{10} w_j \mathcal{N}\left(m_j, s_j^2\right). \tag{16}$$

• Comparação entre as distribuições de $\ln \delta_t^2$, que é o verdadeiro erro do modelo, de ε_t , que corresponde à aproximação ingênua, e de ξ_t , que é a mistura de 10 normais sugerida.

Figura: Comparação das distribuições de In δ_t^2 , ε_t e ξ_t .

•0000

 A equação que define a evolução da variável latente, h_t, em (12) pode ser reescrita:

$$h_{t} = \mu + \phi(h_{t-1} - \mu) + \eta_{t},$$

$$h_{t} = (1 - \phi)\mu + \phi h_{t-1} + \eta_{t}.$$
(17)

 Portanto (15) e (17) definem a equação das observações e a equação do sistem, respectivamente.

 A equação que define a evolução da variável latente, h_t, em (12) pode ser reescrita:

$$h_{t} = \mu + \phi(h_{t-1} - \mu) + \eta_{t},$$

$$h_{t} = (1 - \phi)\mu + \phi h_{t-1} + \eta_{t}.$$
(17)

 Portanto (15) e (17) definem a equação das observações e a equação do sistem, respectivamente.

Assim, a equação das observações do MVE será:

$$Z_t = \ln Y_t^2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} h_t \\ \mu \\ \mathsf{E}(\ln \delta_t^2) \end{bmatrix} + \varepsilon_t = \mathbf{F}' \boldsymbol{\theta}_t + \nu_t. \quad (18)$$

A equação do sistema, por sua vez, será

00000

$$\boldsymbol{\theta}_{t} = \begin{bmatrix} h_{t} \\ \mu \\ \mathsf{E}(\ln \delta_{t}^{2}) \end{bmatrix} = \begin{bmatrix} \phi & 1 - \phi & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} h_{t-1} \\ \mu \\ \mathsf{E}(\ln \delta_{t}^{2}) \end{bmatrix} + \begin{bmatrix} \eta_{t} \\ 0 \\ 0 \end{bmatrix} = \boldsymbol{G}\boldsymbol{\theta}_{t-1} + \boldsymbol{\omega}_{t}$$
(19)

Assim, a equação das observações do MVE será:

$$Z_t = \ln Y_t^2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} h_t \\ \mu \\ \mathsf{E}(\ln \delta_t^2) \end{bmatrix} + \varepsilon_t = \mathbf{F}' \mathbf{\theta}_t + \nu_t.$$
 (18)

A equação do sistema, por sua vez, será:

00000

$$\boldsymbol{\theta}_t = \begin{bmatrix} h_t \\ \mu \\ \mathsf{E}(\ln \delta_t^2) \end{bmatrix} = \begin{bmatrix} \phi & 1 - \phi & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} h_{t-1} \\ \mu \\ \mathsf{E}(\ln \delta_t^2) \end{bmatrix} + \begin{bmatrix} \eta_t \\ 0 \\ 0 \end{bmatrix} = \boldsymbol{G}\boldsymbol{\theta}_{t-1} + \boldsymbol{\omega}_t.$$
(19)

 O modelo de volatilidade estocástica é definido como um modelo de espaço-estado constante por:

Modelo de Espaço-Estado :
$$\begin{cases} \ln Y_t^2 = \mathbf{F}' \mathbf{\theta}_t + \varepsilon_t, \\ \mathbf{\theta}_t = \mathbf{G} \mathbf{\theta}_{t-1} + \mathbf{\omega}_t, \\ \mathbf{\theta}_0 \sim \mathcal{N}(\mathbf{m}_0, \mathbf{C}_0), \end{cases}$$
(20)

A quádrupla que caracteriza o modelo é

$$\left\{ \textbf{\textit{F}},\textbf{\textit{G}},V,\textbf{\textit{W}} \right\} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} \phi & 1-\phi & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}, \mathsf{Var}(\varepsilon_t), \begin{bmatrix} \sigma_{\eta}^2 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix} \right\}. \tag{21}$$

 O modelo de volatilidade estocástica é definido como um modelo de espaço-estado constante por:

Modelo de Espaço-Estado :
$$\begin{cases} \ln Y_t^2 = \mathbf{F}' \theta_t + \varepsilon_t, \\ \theta_t = \mathbf{G} \theta_{t-1} + \omega_t, \\ \theta_0 \sim \mathcal{N}(\mathbf{m}_0, \mathbf{C}_0), \end{cases}$$
(20)

A quádrupla que caracteriza o modelo é:

$$\{ \textbf{\textit{F}}, \textbf{\textit{G}}, V, \textbf{\textit{W}} \} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \phi & 1 - \phi & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathsf{Var}(\varepsilon_t), \begin{bmatrix} \sigma_{\eta}^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\}. \tag{21}$$

Modelo Não Centralizado

 Kastner e Frühwirth-Schnatter (2014) propõe uma transformação linear na variável latente, h_t:

$$\tilde{h}_t = \frac{h_t - \mu}{\sigma_\eta}. (22)$$

 É possível, então, reescrever a equação do sistema, que passa a ser:

$$h_{t} = \mu + \phi(h_{t-1} - \mu) + \eta_{t}$$

$$h_{t} - \mu = \phi(h_{t-1} - \mu) + \eta_{t},$$

$$\left(\frac{h_{t} - \mu}{\sigma_{\eta}}\right) = \phi\left(\frac{h_{t-1} - \mu}{\sigma_{\eta}}\right) + \frac{\eta_{t}}{\sigma_{\eta}},$$

$$\tilde{h}_{t} = \phi\tilde{h}_{t-1} + \tilde{\eta}_{t}.$$

Modelo Não Centralizado

 Kastner e Frühwirth-Schnatter (2014) propõe uma transformação linear na variável latente, h_t:

$$\tilde{h}_t = \frac{h_t - \mu}{\sigma_\eta}. (22)$$

 É possível, então, reescrever a equação do sistema, que passa a ser:

$$h_{t} = \mu + \phi(h_{t-1} - \mu) + \eta_{t},$$

$$h_{t} - \mu = \phi(h_{t-1} - \mu) + \eta_{t},$$

$$\left(\frac{h_{t} - \mu}{\sigma_{\eta}}\right) = \phi\left(\frac{h_{t-1} - \mu}{\sigma_{\eta}}\right) + \frac{\eta_{t}}{\sigma_{\eta}},$$

$$\tilde{h}_{t} = \phi\tilde{h}_{t-1} + \tilde{\eta}_{t}.$$

0000

 De modo semelhante, é possível reescrever a equação do sistema e a distribuição inicial da variável latente, o que leva ao modelo:

Modelo
Não Centralizado:
$$\begin{cases} Y_t = e^{\frac{\mu}{2}} e^{\sigma_{\eta} \frac{\tilde{h}_t}{2}} \delta_t, \\ \tilde{h}_t = \phi \tilde{h}_{t-1} + \tilde{\eta}_t, \\ \tilde{h}_0 \sim \mathcal{N}\left(0, \frac{1}{1-\phi^2}\right). \end{cases}$$
(24)

- MVE vs ARCH e GARCH.
- Bos (2012) cita que o MVE é pouco amigável.
 - ARCH e GARCH: Muitas variações do modelo, e basicamente uma maneira de se estimar os parâmetros.
 - MVE: Basicamente uma definição do modelo, e muitas maneiras de se estimar os parâmetros.

Kim et al. (1998)	

- MVE vs ARCH e GARCH.
- Bos (2012) cita que o MVE é pouco amigável.
 - ARCH e GARCH: Muitas variações do modelo, e basicamente uma maneira de se estimar os parâmetros.
 - MVE: Basicamente uma definição do modelo, e muitas maneiras de se estimar os parâmetros.

Método		
	Kim et al. (1998)	

- MVE vs ARCH e GARCH.
- Bos (2012) cita que o MVE é pouco amigável.
 - ARCH e GARCH: Muitas variações do modelo, e basicamente uma maneira de se estimar os parâmetros.
 - MVE: Basicamente uma definição do modelo, e muitas maneiras de se estimar os parâmetros.

Método		
	Kim et al. (1998)	

- MVE vs ARCH e GARCH.
- Bos (2012) cita que o MVE é pouco amigável.
 - ARCH e GARCH: Muitas variações do modelo, e basicamente uma maneira de se estimar os parâmetros.
 - MVE: Basicamente uma definição do modelo, e muitas maneiras de se estimar os parâmetros.

Método		
	Kim et al. (1998)	

- MVE vs ARCH e GARCH.
- Bos (2012) cita que o MVE é pouco amigável.
 - ARCH e GARCH: Muitas variações do modelo, e basicamente uma maneira de se estimar os parâmetros.
 - MVE: Basicamente uma definição do modelo, e muitas maneiras de se estimar os parâmetros.

Método	Referência	Paradigma
Quasi-Maximum Likelihood (QML)	Harvey et al. (1994)	Clássico
Gaussian Mixture Sampling (GMS)	Kim et al. (1998)	Bayesiano
Simulated Method of Moments (SMM)	Gallant e Tauchen (1996)	Clássico
Importance Sampling (IS)	Durbin e Koopman (1997)	Clássico
Efficient Importance Sampling (EIS)	Richard e Zhang (2007)	Clássico
Improved Importance Sampling (IIS)	Nguyen (2007)	Clássico
Single Site Sampler (SSS)	Carter e Kohn (1994)	Bayesiano
MultiMove Sampler (MMS)	Shephard e Pitt (1997)	Bayesiano

 A estimação Bayesiana dos parâmetros do MVE consiste em determinar a distribuição a posteriori conjunta de:

$$\psi = (\mu, \phi, \sigma_{\eta}^2). \tag{25}$$

$$p_{\psi}(\psi) = p_{\mu}(\mu)p_{\phi}(\phi)p_{\sigma_{\eta}^2}(\sigma_{\eta}^2). \tag{26}$$

- Como o paradigma Bayesiano sugere, deve-se definir as distribuições a priori dos parâmetros.
- As distribuições a priori foram definidas conforme Kastner e Frühwirth-Schnatter (2014) e Kim et al. (1998).

 A estimação Bayesiana dos parâmetros do MVE consiste em determinar a distribuição a posteriori conjunta de:

$$\psi = (\mu, \phi, \sigma_{\eta}^2). \tag{25}$$

$$p_{\psi}(\psi) = p_{\mu}(\mu)p_{\phi}(\phi)p_{\sigma_{\eta}^2}(\sigma_{\eta}^2). \tag{26}$$

- Como o paradigma Bayesiano sugere, deve-se definir as distribuições a priori dos parâmetros.
- As distribuições a priori foram definidas conforme Kastner e Frühwirth-Schnatter (2014) e Kim et al. (1998).

 A estimação Bayesiana dos parâmetros do MVE consiste em determinar a distribuição a posteriori conjunta de:

$$\psi = (\mu, \phi, \sigma_{\eta}^2). \tag{25}$$

$$p_{\psi}(\psi) = p_{\mu}(\mu)p_{\phi}(\phi)p_{\sigma_{\eta}^2}(\sigma_{\eta}^2). \tag{26}$$

- Como o paradigma Bayesiano sugere, deve-se definir as distribuições a priori dos parâmetros.
- As distribuições a priori foram definidas conforme Kastner e Frühwirth-Schnatter (2014) e Kim et al. (1998).

 A estimação Bayesiana dos parâmetros do MVE consiste em determinar a distribuição a posteriori conjunta de:

$$\psi = (\mu, \phi, \sigma_{\eta}^2). \tag{25}$$

$$p_{\psi}(\psi) = p_{\mu}(\mu)p_{\phi}(\phi)p_{\sigma_{\eta}^2}(\sigma_{\eta}^2). \tag{26}$$

- Como o paradigma Bayesiano sugere, deve-se definir as distribuições a priori dos parâmetros.
- As distribuições a priori foram definidas conforme Kastner e Frühwirth-Schnatter (2014) e Kim et al. (1998).

• O nível μ da volatilidade tem seu suporte em \mathbb{R} , e será atribuída uma distribuição *a priori*, $\pi(\mu)$, com densidade Gaussiana para esse parâmetro:

$$\mu \sim \mathcal{N}(\mathsf{a}_{\mu}, \mathsf{B}_{\mu}). \tag{27}$$

- O parâmetro ϕ determina a persistência da volatilidade, e $|\phi| < 1$. Seja uma nova variável ϕ_0 cuja distribuição *a priori* é $\mathcal{B}(a_\phi,b_\phi)$.
- A persistência então será $\phi = 2\phi_0 1$ e sua distribuição *a priori* será:

$$\pi(\phi) = \frac{\Gamma(a_{\phi} + b_{\phi})}{2\Gamma(a_{\phi})\Gamma(b_{\phi})} \left(\frac{1+\phi}{2}\right)^{a_{\phi}-1} \left(\frac{1-\phi}{2}\right)^{b_{\phi}-1}.$$
 (28)

• O nível μ da volatilidade tem seu suporte em \mathbb{R} , e será atribuída uma distribuição *a priori*, $\pi(\mu)$, com densidade Gaussiana para esse parâmetro:

$$\mu \sim \mathcal{N}(\mathbf{a}_{\mu}, \mathbf{B}_{\mu}). \tag{27}$$

- O parâmetro ϕ determina a persistência da volatilidade, e $|\phi| < 1$. Seja uma nova variável ϕ_0 cuja distribuição *a priori* é $\mathcal{B}(a_\phi,b_\phi)$.
- A persistência então será $\phi = 2\phi_0 1$ e sua distribuição *a priori* será:

$$\pi(\phi) = \frac{\Gamma(a_{\phi} + b_{\phi})}{2\Gamma(a_{\phi})\Gamma(b_{\phi})} \left(\frac{1+\phi}{2}\right)^{a_{\phi}-1} \left(\frac{1-\phi}{2}\right)^{b_{\phi}-1}.$$
 (28)

• O nível μ da volatilidade tem seu suporte em \mathbb{R} , e será atribuída uma distribuição *a priori*, $\pi(\mu)$, com densidade Gaussiana para esse parâmetro:

$$\mu \sim \mathcal{N}(\mathbf{a}_{\mu}, \mathbf{B}_{\mu}). \tag{27}$$

- O parâmetro ϕ determina a persistência da volatilidade, e $|\phi| < 1$. Seja uma nova variável ϕ_0 cuja distribuição *a priori* é $\mathcal{B}(a_\phi,b_\phi)$.
- A persistência então será $\phi = 2\phi_0 1$ e sua distribuição *a priori* será:

$$\pi(\phi) = \frac{\Gamma(a_{\phi} + b_{\phi})}{2\Gamma(a_{\phi})\Gamma(b_{\phi})} \left(\frac{1+\phi}{2}\right)^{a_{\phi}-1} \left(\frac{1-\phi}{2}\right)^{b_{\phi}-1}.$$
 (28)

• A variância da volatilidade, σ_{η}^2 , tem seus possíveis valores em \mathbb{R}^+ . Sua distribuição *a priori* será:

$$\sigma_{\eta}^2 \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{2B_{\sigma}}\right).$$
 (29)

- A estimação dos parâmetros será feita via MCMC.
- Kastner e Frühwirth-Schnatter (2014) propõe uma estratégia chamada de Ancillarity-Sufficiency Interweaving Strategy (ASIS).
- Algoritmo da ASIS:
 - 1. Iniciar os valores de μ , ϕ e σ_n^2 ;
 - 2. Estimar a série de h_t (modelo canônico)
 - 3. A partir dos valores de h_t , estimar os valores de μ , ϕ e σ_n^2 ;
 - 4. Transformar a série de h_t para o modelo não centralizado, h_t^* ;
 - 5. A partir dos valores de h_t^* , estimar novamente os valores de μ ϕ e σ_η^2 .

- A estimação dos parâmetros será feita via MCMC.
- Kastner e Frühwirth-Schnatter (2014) propõe uma estratégia chamada de Ancillarity-Sufficiency Interweaving Strategy (ASIS).
- Algoritmo da ASIS
 - 1. Iniciar os valores de μ , ϕ e σ_n^2 ;
 - 2. Estimar a série de h_t (modelo canônico);
 - 3. A partir dos valores de h_t , estimar os valores de μ , ϕ e σ_n^2 ;
 - 4. Transformar a série de h_t para o modelo não centralizado, h_t^* ;
 - 5. A partir dos valores de h_t^* , estimar novamente os valores de μ , ϕ e σ^2 .

Estimando μ , ϕ e σ_n^2

- A estimação dos parâmetros será feita via MCMC.
- Kastner e Frühwirth-Schnatter (2014) propõe uma estratégia chamada de Ancillarity-Sufficiency Interweaving Strategy (ASIS).
- Algoritmo da ASIS:

- A estimação dos parâmetros será feita via MCMC.
- Kastner e Frühwirth-Schnatter (2014) propõe uma estratégia chamada de Ancillarity-Sufficiency Interweaving Strategy (ASIS).
- Algoritmo da ASIS:
 - 1. Iniciar os valores de μ , ϕ e σ_{η}^2 ;
 - 2. Estimar a série de h_t (modelo canônico);
 - 3. A partir dos valores de h_t , estimar os valores de μ , ϕ e σ_n^2
 - 4. Transformar a série de h_t para o modelo não centralizado, h_t^* ;
 - 5. A partir dos valores de h_t^* , estimar novamente os valores de μ ϕ e σ_η^2 .

Estimando μ , ϕ e σ_n^2

- A estimação dos parâmetros será feita via MCMC.
- Kastner e Frühwirth-Schnatter (2014) propõe uma estratégia chamada de Ancillarity-Sufficiency Interweaving Strategy (ASIS).
- Algoritmo da ASIS:
 - 1. Iniciar os valores de μ , ϕ e σ_n^2 ;
 - 2. Estimar a série de h_t (modelo canônico);
 - 3. A partir dos valores de h_t , estimar os valores de μ , ϕ e σ_n^2
 - 4. Transformar a série de h_t para o modelo não centralizado, h_t^* ,
 - 5. A partir dos valores de h_t^* , estimar novamente os valores de μ ϕ e σ_η^2 .

- A estimação dos parâmetros será feita via MCMC.
- Kastner e Frühwirth-Schnatter (2014) propõe uma estratégia chamada de Ancillarity-Sufficiency Interweaving Strategy (ASIS).
- Algoritmo da ASIS:
 - 1. Iniciar os valores de μ , ϕ e σ_{η}^2 ;
 - 2. Estimar a série de h_t (modelo canônico);
 - 3. A partir dos valores de h_t , estimar os valores de μ , ϕ e σ_{η}^2 ;
 - 4. Transformar a série de h_t para o modelo não centralizado, h_t^* ;
 - 5. A partir dos valores de h_t^* , estimar novamente os valores de μ ϕ e σ_η^2 .

- A estimação dos parâmetros será feita via MCMC.
- Kastner e Frühwirth-Schnatter (2014) propõe uma estratégia chamada de Ancillarity-Sufficiency Interweaving Strategy (ASIS).
- Algoritmo da ASIS:
 - 1. Iniciar os valores de μ , ϕ e σ_{η}^2 ;
 - 2. Estimar a série de h_t (modelo canônico);
 - 3. A partir dos valores de h_t , estimar os valores de μ , ϕ e σ_{η}^2 ;
 - 4. Transformar a série de h_t para o modelo não centralizado, h_t^* ;
 - 5. A partir dos valores de h_t^* , estimar novamente os valores de μ_t , ϕ e σ_n^2 .

- A estimação dos parâmetros será feita via MCMC.
- Kastner e Frühwirth-Schnatter (2014) propõe uma estratégia chamada de Ancillarity-Sufficiency Interweaving Strategy (ASIS).
- Algoritmo da ASIS:
 - 1. Iniciar os valores de μ , ϕ e σ_{η}^2 ;
 - 2. Estimar a série de h_t (modelo canônico);
 - 3. A partir dos valores de h_t , estimar os valores de μ , ϕ e σ_{η}^2 ;
 - 4. Transformar a série de h_t para o modelo não centralizado, h_t^* ;
 - 5. A partir dos valores de h_t^* , estimar novamente os valores de μ , ϕ e σ_n^2 .

- Baseado em Yu e Meng (2011), Kastner e Frühwirth-Schnatter (2014) diz que a variável latente, no modelo canônico, forma uma estatística suficiente para μ e σ_{η}^2 . E quando h_t é transformada para o modelo não centralizado, forma uma estatística ancilar.
- Alternar entre essas especificações do modelo aumenta a eficiência do amostrador via MCMC.

- Baseado em Yu e Meng (2011), Kastner e Frühwirth-Schnatter (2014) diz que a variável latente, no modelo canônico, forma uma estatística suficiente para μ e σ_{η}^2 . E quando h_t é transformada para o modelo não centralizado, forma uma estatística ancilar.
- Alternar entre essas especificações do modelo aumenta a eficiência do amostrador via MCMC.

- Sob o modelo canônico, os parâmetros são estimados pelo algoritmo de Metropolis-Hastings (Metropolis et al. (1953); Hastings (1970)).
- Geradora de candidatos
 - σ_n^2 : Distribuição Gamma-Inversa;
 - φ: Distribuição Normal truncada
 - = μ : Distribuição Normal (amostrado indiretamente através da variável $\gamma=(1-\phi)\mu$).
- O candidato é aceito com probabilidade min(1, R).

- Sob o modelo canônico, os parâmetros são estimados pelo algoritmo de Metropolis-Hastings (Metropolis et al. (1953); Hastings (1970)).
- Geradora de candidatos:
 - σ_n^2 : Distribuição Gamma-Inversa;
 - φ: Distribuição Normal truncada;
 - μ : Distribuição Normal (amostrado indiretamente através da variável $\gamma = (1 \phi)\mu$).
- O candidato é aceito com probabilidade min(1, R)

- Sob o modelo canônico, os parâmetros são estimados pelo algoritmo de Metropolis-Hastings (Metropolis et al. (1953); Hastings (1970)).
- Geradora de candidatos:
 - σ_n^2 : Distribuição Gamma-Inversa;
 - φ: Distribuição Normal truncada;
 - μ : Distribuição Normal (amostrado indiretamente através da variável $\gamma = (1 \phi)\mu$).
- O candidato é aceito com probabilidade min(1, R)

- Sob o modelo canônico, os parâmetros são estimados pelo algoritmo de Metropolis-Hastings (Metropolis et al. (1953); Hastings (1970)).
- Geradora de candidatos:
 - σ_n^2 : Distribuição Gamma-Inversa;
 - φ: Distribuição Normal truncada;
 - μ : Distribuição Normal (amostrado indiretamente através da variável $\gamma = (1 \phi)\mu$).
- O candidato é aceito com probabilidade min(1, R)

- Sob o modelo canônico, os parâmetros são estimados pelo algoritmo de Metropolis-Hastings (Metropolis et al. (1953); Hastings (1970)).
- Geradora de candidatos:
 - σ_{η}^2 : Distribuição Gamma-Inversa;
 - φ: Distribuição Normal truncada;
 - μ : Distribuição Normal (amostrado indiretamente através da variável $\gamma = (1 \phi)\mu$).
- O candidato é aceito com probabilidade min(1, R)

- Sob o modelo canônico, os parâmetros são estimados pelo algoritmo de Metropolis-Hastings (Metropolis et al. (1953); Hastings (1970)).
- Geradora de candidatos:
 - σ_{η}^2 : Distribuição Gamma-Inversa;
 - φ: Distribuição Normal truncada;
 - μ : Distribuição Normal (amostrado indiretamente através da variável $\gamma = (1 \phi)\mu$).
- O candidato é aceito com probabilidade min(1, R).

$$\tilde{h}_t = \frac{h_t - \mu}{\sigma_\eta}. (30)$$

- Os valores de μ e σ_{η}^2 são reamostrados, agora diretamente, através das novas geradoras de candidatos:
 - σ_n: Distribuição Normal;
 - μ: Distribuição Normal
- O valor de ϕ não precisa ser reamostrado, pois esse parâmetro não é explicitamente envolvido na transformação da variável latente

$$\tilde{h}_t = \frac{h_t - \mu}{\sigma_\eta}. (30)$$

- Os valores de μ e σ_{η}^2 são reamostrados, agora diretamente, através das novas geradoras de candidatos:
 - σ_{η} : Distribuição Normal;
 - μ: Distribuição Normal.
- O valor de ϕ não precisa ser reamostrado, pois esse parâmetro não é explicitamente envolvido na transformação da variável latente.

$$\tilde{h}_t = \frac{h_t - \mu}{\sigma_\eta}. (30)$$

- Os valores de μ e σ_{η}^2 são reamostrados, agora diretamente, através das novas geradoras de candidatos:
 - σ_{η} : Distribuição Normal;
 - μ: Distribuição Normal.
- O valor de ϕ não precisa ser reamostrado, pois esse parâmetro não é explicitamente envolvido na transformação da variável latente

$$\tilde{h}_t = \frac{h_t - \mu}{\sigma_\eta}. (30)$$

- Os valores de μ e σ_{η}^2 são reamostrados, agora diretamente, através das novas geradoras de candidatos:
 - σ_{η} : Distribuição Normal;
 - μ: Distribuição Normal.
- O valor de ϕ não precisa ser reamostrado, pois esse parâmetro não é explicitamente envolvido na transformação da variável latente

$$\tilde{h}_t = \frac{h_t - \mu}{\sigma_\eta}. (30)$$

- Os valores de μ e σ_{η}^2 são reamostrados, agora diretamente, através das novas geradoras de candidatos:
 - σ_{η} : Distribuição Normal;
 - μ: Distribuição Normal.
- O valor de ϕ não precisa ser reamostrado, pois esse parâmetro não é explicitamente envolvido na transformação da variável latente.

normal N-variada.

Kastner e Frühwirth-Schnatter (2014) apresenta uma maneira de se estimar a variável latente através de uma distribuição

Estimando $h_{1:N}$

- Kastner e Frühwirth-Schnatter (2014) apresenta uma maneira de se estimar a variável latente através de uma distribuição normal N-variada.
- A implementação computacional desse algoritmo não é trivial.
- Proposta alternativa: estimar h_t através de um algoritmo inspirado em McCormick et al. (2012).
- Essa proposta é motivada no fato de ser mais simples do que a proposta original em Kastner e Frühwirth-Schnatter (2014).

Estimando $h_{1:N}$

- Kastner e Frühwirth-Schnatter (2014) apresenta uma maneira de se estimar a variável latente através de uma distribuição normal N—variada.
- A implementação computacional desse algoritmo não é trivial.
- Proposta alternativa: estimar h_t através de um algoritmo inspirado em McCormick et al. (2012).
- Essa proposta é motivada no fato de ser mais simples do que a proposta original em Kastner e Frühwirth-Schnatter (2014).

Estimando $h_{1:N}$

- Kastner e Frühwirth-Schnatter (2014) apresenta uma maneira de se estimar a variável latente através de uma distribuição normal N-variada.
- A implementação computacional desse algoritmo não é trivial.
- Proposta alternativa: estimar h_t através de um algoritmo inspirado em McCormick et al. (2012).
- Essa proposta é motivada no fato de ser mais simples do que a proposta original em Kastner e Frühwirth-Schnatter (2014).

O Método de McCormick et al. (2012)

• A estimação recursiva dos estados latentes, θ_t , do modelo começa supondo que:

$$(\boldsymbol{\theta}_{t-1}|D_{t-1}) \sim \mathcal{N}(\hat{\boldsymbol{\theta}}_{t-1}, \hat{\boldsymbol{\Sigma}}_{t-1}). \tag{31}$$

A equação de predição é então descrita por:

$$(\boldsymbol{\theta}_t|D_{t-1}) \sim \mathcal{N}(\boldsymbol{G}\hat{\boldsymbol{\theta}}_{t-1}, \boldsymbol{R}_t),$$
 (32)

em que

$$\mathbf{R}_{t} = \frac{\mathbf{G}\hat{\Sigma}_{t-1}\mathbf{G}^{T}}{\lambda_{t}},\tag{33}$$

• λ_t é um fator de desconto com valores no intervalo (0,1).

O Método de McCormick et al. (2012)

• A estimação recursiva dos estados latentes, θ_t , do modelo começa supondo que:

$$(\boldsymbol{\theta}_{t-1}|D_{t-1}) \sim \mathcal{N}(\hat{\boldsymbol{\theta}}_{t-1}, \hat{\boldsymbol{\Sigma}}_{t-1}). \tag{31}$$

A equação de predição é então descrita por:

$$(\boldsymbol{\theta}_t|D_{t-1}) \sim \mathcal{N}(\boldsymbol{G}\hat{\boldsymbol{\theta}}_{t-1}, \boldsymbol{R}_t),$$
 (32)

em que

$$\mathbf{R}_{t} = \frac{\mathbf{G}\hat{\Sigma}_{t-1}\mathbf{G}^{T}}{\lambda_{t}},\tag{33}$$

• λ_t é um fator de desconto com valores no intervalo (0,1).

O Método de McCormick et al. (2012)

• A estimação recursiva dos estados latentes, θ_t , do modelo começa supondo que:

$$(\boldsymbol{\theta}_{t-1}|D_{t-1}) \sim \mathcal{N}(\hat{\boldsymbol{\theta}}_{t-1}, \hat{\boldsymbol{\Sigma}}_{t-1}). \tag{31}$$

A equação de predição é então descrita por:

$$(\boldsymbol{\theta}_t|D_{t-1}) \sim \mathcal{N}(\boldsymbol{G}\hat{\boldsymbol{\theta}}_{t-1}, \boldsymbol{R}_t),$$
 (32)

em que

$$\mathbf{R}_{t} = \frac{\mathbf{G}\hat{\Sigma}_{t-1}\mathbf{G}^{T}}{\lambda_{t}},\tag{33}$$

• λ_t é um fator de desconto com valores no intervalo (0,1).

• A distribuição a posteriori de $(\theta_t|D_t)$ é obtida aproximadamente usando-se (32) e o Teorema de Bayes:

$$p(\theta_t|D_t) \propto p(y_t|\theta_t) \mathcal{N}(\mathbf{G}\hat{\theta}_{t-1}, \mathbf{R}_t).$$
 (34)

• O lado direito de (34) não possui forma fechada, então a estimativa de θ_t é dada por:

$$\hat{\theta}_t = \hat{\theta}_{t-1} - \left[D^2 I(\hat{\theta}_{t-1}) \right]^{-1} DI(\hat{\theta}_{t-1}),$$
 (35)

onde $DI(\theta_t)$ e $D^2I(\theta_t)$ são a primeira e a segunda derivadas de $I(\theta_t) = \ln p(\theta_t|D_t)$.

A distribuição *a posteriori* de $(\theta_t|D_t)$ é obtida aproximadamente usando-se (32) e o Teorema de Bayes:

$$p(\theta_t|D_t) \propto p(y_t|\theta_t) \mathcal{N}(\mathbf{G}\hat{\theta}_{t-1}, \mathbf{R}_t).$$
 (34)

• O lado direito de (34) não possui forma fechada, então a estimativa de θ_t é dada por:

$$\hat{\theta}_t = \hat{\theta}_{t-1} - \left[D^2 I(\hat{\theta}_{t-1}) \right]^{-1} DI(\hat{\theta}_{t-1}), \tag{35}$$

onde $DI(\theta_t)$ e $D^2I(\theta_t)$ são a primeira e a segunda derivadas de $I(\theta_t) = \ln p(\theta_t|D_t)$.

• Para atualizar a matriz de covariância Σ_t , utiliza-se:

$$\hat{\Sigma}_t = -\left[D^2 I(\hat{\theta}_{t-1})\right]^{-1}. \tag{36}$$

 O valor de λ_t é obtido de forma a maximizar a distribuição preditiva:

$$p(Y_t|D_{t-1},\lambda_t) = \int p(Y_t|\theta_t,D_{t-1})p(\theta_t|D_{t-1},\lambda_t)d\theta_t. \quad (37)$$

 Os autores utilizam aproximações de Laplace (Tierney e Kadane, 1986) para calcular o valor de (37).

• Para atualizar a matriz de covariância Σ_t , utiliza-se:

$$\hat{\Sigma}_t = -\left[D^2 I(\hat{\theta}_{t-1})\right]^{-1}. \tag{36}$$

• O valor de λ_t é obtido de forma a maximizar a distribuição preditiva:

$$p(Y_t|D_{t-1},\lambda_t) = \int p(Y_t|\theta_t,D_{t-1})p(\theta_t|D_{t-1},\lambda_t)d\theta_t. \quad (37)$$

 Os autores utilizam aproximações de Laplace (Tierney e Kadane, 1986) para calcular o valor de (37).

• Para atualizar a matriz de covariância Σ_t , utiliza-se:

$$\hat{\Sigma}_t = -\left[D^2 I(\hat{\theta}_{t-1})\right]^{-1}.$$
 (36)

• O valor de λ_t é obtido de forma a maximizar a distribuição preditiva:

$$p(Y_t|D_{t-1},\lambda_t) = \int p(Y_t|\theta_t,D_{t-1})p(\theta_t|D_{t-1},\lambda_t)d\theta_t. \quad (37)$$

 Os autores utilizam aproximações de Laplace (Tierney e Kadane, 1986) para calcular o valor de (37).

Adaptação do Método de McCormick et al. (2012) ao MVE

Seja, por hipótese:

$$(h_{t-1}|D_{t-1}) \sim \mathcal{N}(\hat{m}_{t-1}, \hat{C}_{t-1}).$$
 (38)

A distribuição de predição $(h_t|D_{t-1})$ é encontrada através da equação do sistema e de (38):

$$(h_t|D_{t-1}) \sim \mathcal{N}(\mu(1-\phi) + \phi \hat{m}_{t-1}, \phi^2 \hat{C}_{t-1} + \sigma_{\eta}^2).$$
 (39)

Nesse caso

$$R_t = \frac{\phi^2 \hat{C}_{t-1}}{\lambda_t}.$$
 (40)

Adaptação do Método de McCormick et al. (2012) ao MVE

Seja, por hipótese:

$$(h_{t-1}|D_{t-1}) \sim \mathcal{N}(\hat{m}_{t-1}, \hat{C}_{t-1}).$$
 (38)

• A distribuição de predição $(h_t|D_{t-1})$ é encontrada através da equação do sistema e de (38):

$$(h_t|D_{t-1}) \sim \mathcal{N}(\mu(1-\phi) + \phi \hat{m}_{t-1}, \phi^2 \hat{C}_{t-1} + \sigma_{\eta}^2).$$
 (39)

Nesse caso

$$R_t = \frac{\phi^2 \hat{C}_{t-1}}{\lambda_t}.$$
 (40)

Adaptação do Método de McCormick et al. (2012) ao MVE

Seja, por hipótese:

$$(h_{t-1}|D_{t-1}) \sim \mathcal{N}(\hat{m}_{t-1}, \hat{C}_{t-1}).$$
 (38)

• A distribuição de predição $(h_t|D_{t-1})$ é encontrada através da equação do sistema e de (38):

$$(h_t|D_{t-1}) \sim \mathcal{N}(\mu(1-\phi) + \phi \hat{m}_{t-1}, \phi^2 \hat{C}_{t-1} + \sigma_{\eta}^2).$$
 (39)

Nesse caso:

$$R_t = \frac{\phi^2 \hat{C}_{t-1}}{\lambda}.$$
 (40)

• Pelo Teorema de Bayes, a distribuição a posteriori $(h_t|D_t)$ será:

$$p(h_t|D_t) \propto p(y_t|h_t)p(h_t|D_{t-1}). \tag{41}$$

O logaritmo do lado direito de (41) é dado por:

$$I(h_t|\mu,\phi) \propto -\frac{h_t}{2} - \frac{y_t^2}{2e^{h_t}} - \frac{1}{2} \ln R_t - \frac{1}{2R_t} \left[h_t - (\mu(1-\phi) + \phi \hat{m}_{t-1}) \right]^2.$$
(42)

 Com isso, iterativamente ao longo das N observações, o estimador, ĥ_t, da variável latente, h_t, será:

$$\hat{h}_t = \hat{m}_t = \hat{m}_{t-1} - \frac{l'(\hat{m}_{t-1})}{l''(\hat{m}_{t-1})}.$$
(43)

• Pelo Teorema de Bayes, a distribuição *a posteriori* $(h_t|D_t)$ será:

$$p(h_t|D_t) \propto p(y_t|h_t)p(h_t|D_{t-1}). \tag{41}$$

O logaritmo do lado direito de (41) é dado por:

$$I(h_t|\mu,\phi) \propto -\frac{h_t}{2} - \frac{y_t^2}{2e^{h_t}} - \frac{1}{2} \ln R_t - \frac{1}{2R_t} \left[h_t - (\mu(1-\phi) + \phi \hat{m}_{t-1}) \right]^2.$$
 (42)

 Com isso, iterativamente ao longo das N observações, o estimador, ĥ_t, da variável latente, h_t, será:

$$\hat{h}_t = \hat{m}_t = \hat{m}_{t-1} - \frac{l'(\hat{m}_{t-1})}{l''(\hat{m}_{t-1})}.$$
(43)

Pelo Teorema de Bayes, a distribuição a posteriori $(h_t|D_t)$ será:

$$p(h_t|D_t) \propto p(y_t|h_t)p(h_t|D_{t-1}). \tag{41}$$

O logaritmo do lado direito de (41) é dado por:

$$I(h_t|\mu,\phi) \propto -\frac{h_t}{2} - \frac{y_t^2}{2e^{h_t}} - \frac{1}{2} \ln R_t - \frac{1}{2R_t} \left[h_t - (\mu(1-\phi) + \phi \hat{m}_{t-1}) \right]^2.$$
 (42)

Com isso, iterativamente ao longo das N observações, o estimador, \hat{h}_t , da variável latente, h_t , será:

$$\hat{h}_t = \hat{m}_t = \hat{m}_{t-1} - \frac{l'(\hat{m}_{t-1})}{l''(\hat{m}_{t-1})}.$$
 (43)

00000000

A primeira derivada é:

$$I'(h_t|\mu,\phi) = -\frac{1}{2} + \frac{y_t^2}{2e^{h_t}} - \frac{1}{R_t} \left[h_t - (\mu(1-\phi) + \phi \hat{m}_{t-1}) \right]. \tag{44}$$

A segunda derivada, por sua vez, és

$$I''(h_t|\mu,\phi) = -\frac{y_t^2}{2e^{h_t}} - \frac{1}{R_t}.$$
 (45)

 A variância da distribuição de h_t ao longo do processo é atualizada por:

$$\hat{C}_t = -\frac{1}{l''(\hat{m}_{t-1})}. (46)$$

00000000

A primeira derivada é:

$$I'(h_t|\mu,\phi) = -\frac{1}{2} + \frac{y_t^2}{2e^{h_t}} - \frac{1}{R_t} \left[h_t - (\mu(1-\phi) + \phi \hat{m}_{t-1}) \right]. \tag{44}$$

A segunda derivada, por sua vez, é:

$$I''(h_t|\mu,\phi) = -\frac{y_t^2}{2e^{h_t}} - \frac{1}{R_t}.$$
 (45)

 A variância da distribuição de h_t ao longo do processo é atualizada por:

$$\hat{C}_t = -\frac{1}{l''(\hat{m}_{t-1})}. (46)$$

A primeira derivada é:

$$I'(h_t|\mu,\phi) = -\frac{1}{2} + \frac{y_t^2}{2e^{h_t}} - \frac{1}{R_t} \left[h_t - (\mu(1-\phi) + \phi \hat{m}_{t-1}) \right]. \tag{44}$$

A segunda derivada, por sua vez, é:

$$I''(h_t|\mu,\phi) = -\frac{y_t^2}{2e^{h_t}} - \frac{1}{R_t}.$$
 (45)

 A variância da distribuição de h_t ao longo do processo é atualizada por:

$$\hat{C}_t = -\frac{1}{l''(\hat{m}_{t-1})}. (46)$$

00000000

• O valor do fator de desconto, λ_t , é calculado de modo a maximizar a distribuição preditiva $(y_t|D_{t-1})$:

$$p(y_t|D_{t-1},\lambda_t) = \int_{h_t} p(y_t|h_t,D_{t-1})p(h_t|D_{t-1},\lambda_t)dh_t. \quad (47)$$

 Como a integral não possui forma fechada, o valor da distribuição preditiva é tomado por uma aproximação de Laplace.

0000000

• O valor do fator de desconto, λ_t , é calculado de modo a maximizar a distribuição preditiva $(y_t|D_{t-1})$:

$$p(y_t|D_{t-1},\lambda_t) = \int_{h_t} p(y_t|h_t,D_{t-1})p(h_t|D_{t-1},\lambda_t)dh_t. \quad (47)$$

 Como a integral não possui forma fechada, o valor da distribuição preditiva é tomado por uma aproximação de Laplace.

- A metodologia proposta foi aplicada num conjunto de dados simulados.
- As séries com 1.461 observações se caracterizam pelo produto cruzado dos possíveis valores predeterminados para μ , ϕ e σ_{η}^2 a seguir:

```
\mu = -5.4
```

- $\phi \in \{0.50; 0.80; 0.90; 0.99\}$
- $\sigma_n^2 \in \{0,1^2;0,3^2;0,5^2\}.$

- A metodologia proposta foi aplicada num conjunto de dados simulados.
- As séries com 1.461 observações se caracterizam pelo produto cruzado dos possíveis valores predeterminados para μ , ϕ e σ_{η}^2 a seguir:

```
 \mu = -5.4, 
 \phi \in \{0.50; 0.80; 0.90; 0.99\} 
 \sigma_n^2 \in \{0.1^2; 0.3^2; 0.5^2\}.
```


- A metodologia proposta foi aplicada num conjunto de dados simulados.
- As séries com 1.461 observações se caracterizam pelo produto cruzado dos possíveis valores predeterminados para μ , ϕ e σ_{η}^2 a seguir:
 - $\mu = -5.4$, • $\phi \in \{0.50; 0.80; 0.90; 0.99\}$, • $\sigma_n^2 \in \{0.1^2; 0.3^2; 0.5^2\}$.

- A metodologia proposta foi aplicada num conjunto de dados simulados.
- As séries com 1.461 observações se caracterizam pelo produto cruzado dos possíveis valores predeterminados para μ , ϕ e σ_{η}^2 a seguir:
 - $\mu = -5.4$,
 - $\phi \in \{0,50; 0,80; 0,90; 0,99\},$
 - $\sigma_n^2 \in \{0,1^2;0,3^2;0,5^2\}.$

- A metodologia proposta foi aplicada num conjunto de dados simulados.
- As séries com 1.461 observações se caracterizam pelo produto cruzado dos possíveis valores predeterminados para μ , ϕ e σ_{η}^2 a seguir:
 - $\mu = -5,4$,
 - $\phi \in \{0.50; 0.80; 0.90; 0.99\},$
 - $\sigma_n^2 \in \{0,1^2;0,3^2;0,5^2\}.$

Figura: Conjunto de dados simulados a partir do modelo canônico em (12), $\mu=-5,4$, $\phi=0,90$ e $\sigma_n^2=0,5^2$.

- O algoritimo de estimação foi implementado em C.
- Em todas as execuções foram tomadas
 - 15.000 iterações
 - burn-in = 5.000
 - = thin = 10.
- As distribuições a priori de μ , ϕ e σ_{η}^2 foram definadas como sugere Kim et al. (1998) e Kastner e Frühwirth-Schnatter (2014):

$$\mu \sim \mathcal{N}(0, 100),$$
 $\phi_0 \sim \mathcal{B}\left(20, \frac{3}{2}\right),$
 $\sigma^2 \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{2}\right)$
(48)

- O algoritimo de estimação foi implementado em C.
- Em todas as execuções foram tomadas:
 - 15.000 iterações:
 - burn-in = 5.000;
 - thin = 10.
- As distribuições a priori de μ , ϕ e σ_{η}^2 foram definadas como sugere Kim et al. (1998) e Kastner e Frühwirth-Schnatter (2014):

$$\mu \sim \mathcal{N}(0, 100),$$
 $\phi_0 \sim \mathcal{B}\left(20, \frac{3}{2}\right),$
 $\sigma_0^2 \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{2}\right).$
(48)

- O algoritimo de estimação foi implementado em C.
- Em todas as execuções foram tomadas:
 - 15.000 iterações;
 - burn-in = 5.000
 - thin = 10.
- As distribuições a priori de μ , ϕ e σ_{η}^2 foram definadas como sugere Kim et al. (1998) e Kastner e Frühwirth-Schnatter (2014):

$$\mu \sim \mathcal{N}(0, 100),$$

$$\phi_0 \sim \mathcal{B}\left(20, \frac{3}{2}\right),$$

$$\sigma_r^2 \sim \mathcal{G}\left(\frac{1}{r}, \frac{1}{r}\right).$$
(48)

- O algoritimo de estimação foi implementado em C.
- Em todas as execuções foram tomadas:
 - 15.000 iterações;
 - burn-in = 5.000;
 - thin = 10
- As distribuições a priori de μ , ϕ e σ_{η}^2 foram definadas como sugere Kim et al. (1998) e Kastner e Frühwirth-Schnatter (2014):

$$\mu \sim \mathcal{N}(0, 100),$$

$$\phi_0 \sim \mathcal{B}\left(20, \frac{3}{2}\right),$$

$$\sigma_p^2 \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{2}\right).$$
(48)

- O algoritimo de estimação foi implementado em C.
- Em todas as execuções foram tomadas:
 - 15.000 iterações;
 - burn-in = 5.000;
 - thin = 10.
- As distribuições a priori de μ , ϕ e σ_{η}^2 foram definadas como sugere Kim et al. (1998) e Kastner e Frühwirth-Schnatter (2014):

$$\mu \sim \mathcal{N}(0, 100),$$
 $\phi_0 \sim \mathcal{B}\left(20, \frac{3}{2}\right),$
 $\sigma_n^2 \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{2}\right).$
(48)

- O algoritimo de estimação foi implementado em C.
- Em todas as execuções foram tomadas:
 - 15.000 iterações;
 - burn-in = 5.000;
 - thin = 10.
- As distribuições a priori de μ , ϕ e σ_{η}^2 foram definadas como sugere Kim et al. (1998) e Kastner e Frühwirth-Schnatter (2014):

$$\mu \sim \mathcal{N}(0, 100),$$
 $\phi_0 \sim \mathcal{B}\left(20, \frac{3}{2}\right),$
 $\sigma_\eta^2 \sim \mathcal{G}\left(\frac{1}{2}, \frac{1}{2}\right).$
(48)

• Primeiro passo foi avaliar a performance do processo de estimação da variável latente. Para isso, os valores reais de h_t foram comparados através de gráficos com os valores médios dos 1.000 valores estimados de \hat{h}_t :

$$\bar{\hat{h}}_t = \frac{\sum_{j=1}^{1000} \hat{h}_{t,j}}{1000}.$$
 (49)

• Os possíveis valores do fator de desconto, λ_t , foram limitados ao intervalo (0,75; 1).

• Primeiro passo foi avaliar a performance do processo de estimação da variável latente. Para isso, os valores reais de h_t foram comparados através de gráficos com os valores médios dos 1.000 valores estimados de \hat{h}_t :

$$\bar{\hat{h}}_t = \frac{\sum_{j=1}^{1000} \hat{h}_{t,j}}{1000}.$$
 (49)

• Os possíveis valores do fator de desconto, λ_t , foram limitados ao intervalo (0,75; 1).

μ , ϕ e σ_{η}^2 conhecidos

Figura: Valores médios estimados de h_t do modelo (12) quando os parâmetros μ , ϕ e σ_{η}^2 são conhecidos ($\mu=-5.4$, $\phi=0.90$ e $\sigma_{\eta}^2=0.5^2$).

Apenas ϕ é conhecido

Figura: Valores médios estimados de h_t do modelo (12) quando apenas o parâmetro ϕ é conhecido ($\mu=-5,4$, $\phi=0,90$ e $\sigma_{\eta}^2=0,5^2$).

ϕ parte do valor real

Figura: Valores médios estimados de h_t do modelo (12) quando o valor inicial de ϕ é igual ao valor verdadeiro do parâmetro ($\mu = -5.4$, $\phi = 0.90$ e $\sigma_n^2 = 0.5^2$).

$$\lambda_t = 0.50$$

Figura: Valores médios estimados de h_t do modelo (12) quando $\lambda_t=0.50$ ($\mu=-5.4$, $\phi=0.90$ e $\sigma_n^2=0.5^2$).

- O algoritmo foi executado para os 12 conjuntos de dados simulados.
- O valor de λ_t foi fixado próximo ao máximo valor possível em cada caso.
- Os valores de μ são bem estimados em todas as circunstâncias.
- Os valores estimados de σ_{η}^2 são aceitáveis quando o valor real não é muito pequeno.
- Os valores estimados de ϕ parecem presos num "poço de potencial".

- O algoritmo foi executado para os 12 conjuntos de dados simulados.
- O valor de λ_t foi fixado próximo ao máximo valor possível em cada caso.
- Os valores de μ são bem estimados em todas as circunstâncias.
- Os valores estimados de σ_{η}^2 são aceitáveis quando o valor real não é muito pequeno.
- Os valores estimados de ϕ parecem presos num "poço de potencial".

- O algoritmo foi executado para os 12 conjuntos de dados simulados.
- O valor de λ_t foi fixado próximo ao máximo valor possível em cada caso.
- Os valores de μ são bem estimados em todas as circunstâncias.
- Os valores estimados de σ_{η}^2 são aceitáveis quando o valor real não é muito pequeno.
- Os valores estimados de ϕ parecem presos num "poço de potencial".

- O algoritmo foi executado para os 12 conjuntos de dados simulados.
- O valor de λ_t foi fixado próximo ao máximo valor possível em cada caso.
- Os valores de μ são bem estimados em todas as circunstâncias.
- Os valores estimados de σ_{η}^2 são aceitáveis quando o valor real não é muito pequeno.
- Os valores estimados de ϕ parecem presos num "poço de potencial".

- O algoritmo foi executado para os 12 conjuntos de dados simulados.
- O valor de λ_t foi fixado próximo ao máximo valor possível em cada caso.
- Os valores de μ são bem estimados em todas as circunstâncias.
- Os valores estimados de σ_{η}^2 são aceitáveis quando o valor real não é muito pequeno.
- Os valores estimados de ϕ parecem presos num "poço de potencial".

Figura: $\mu = -5,4$, $\phi = 0,99$ e $\sigma_{\eta}^2 = 0,5^2$.

Figura: $\mu = -5.4$, $\phi = 0.99$ e $\sigma_{\eta}^2 = 0.5^2$.

Figura: $\mu = -5,4$, $\phi = 0,99$ e $\sigma_{\eta}^2 = 0,5^2$.

Figura: $\mu = -5.4$, $\phi = 0.80$ e $\sigma_{\eta}^2 = 0.3^2$.

Figura: $\mu = -5.4$, $\phi = 0.80$ e $\sigma_n^2 = 0.3^2$.

Figura: $\mu = -5.4$, $\phi = 0.80$ e $\sigma_{\eta}^2 = 0.3^2$.

Comparação dos Resultados com o JAGS

- O modelo de volatilidade estocástica foi implementado em JAGS para comparar com os resultados obtidos a partir da metodologia proposta.
- A escolha do JAGS foi motivada por dois fatores: a) desenvolvimento e manutenção do programa; b) ótima integração com o R.
- Apesar das facilidades computacionais que o JAGS proporciona, os problemas de estimação dos parâmetros persistem e são bem similares.

Comparação dos Resultados com o JAGS

- O modelo de volatilidade estocástica foi implementado em JAGS para comparar com os resultados obtidos a partir da metodologia proposta.
- A escolha do JAGS foi motivada por dois fatores: a) desenvolvimento e manutenção do programa; b) ótima integração com o R.
- Apesar das facilidades computacionais que o JAGS proporciona, os problemas de estimação dos parâmetros persistem e são bem similares.

Comparação dos Resultados com o JAGS

- O modelo de volatilidade estocástica foi implementado em JAGS para comparar com os resultados obtidos a partir da metodologia proposta.
- A escolha do JAGS foi motivada por dois fatores: a) desenvolvimento e manutenção do programa; b) ótima integração com o R.
- Apesar das facilidades computacionais que o JAGS proporciona, os problemas de estimação dos parâmetros persistem e são bem similares.

- De forma semelhante, os valores de μ geraram boas estimativas em todos os casos.
- Os valores estimados de σ_{η}^2 , do mesmo modo, nem sempre foram como esperado. A medida que o valor real de ϕ decresce, o JAGS tende a subestimar os valores da volatilidade.
- Os valores estimados de ϕ não ficaram "presos", como no caso anterior. Porém as estimativas possuem uma dispersão muito alta, e são bastante dependentes da distribuição *a priori* da persistência.

- De forma semelhante, os valores de μ geraram boas estimativas em todos os casos.
- Os valores estimados de σ_{η}^2 , do mesmo modo, nem sempre foram como esperado. A medida que o valor real de ϕ decresce, o JAGS tende a subestimar os valores da volatilidade.
- Os valores estimados de ϕ não ficaram "presos", como no caso anterior. Porém as estimativas possuem uma dispersão muito alta, e são bastante dependentes da distribuição *a priori* da persistência.

- De forma semelhante, os valores de μ geraram boas estimativas em todos os casos.
- Os valores estimados de σ_{η}^2 , do mesmo modo, nem sempre foram como esperado. A medida que o valor real de ϕ decresce, o JAGS tende a subestimar os valores da volatilidade.
- Os valores estimados de ϕ não ficaram "presos", como no caso anterior. Porém as estimativas possuem uma dispersão muito alta, e são bastante dependentes da distribuição *a priori* da persistência.

Figura: $\mu=-5$,4, $\phi=0$,99 e $\sigma_n^2=0$,52.

Figura: $\mu=-5$,4, $\phi=0$,80 e $\sigma_n^2=0$,32.

- Achcar et al. (2011) propõe dois MVE para estudar a concentração de ozônio na Cidade do México.
- Os modelos propostos s\u00e3o multivariados (cinco regi\u00f3es distintas da cidade).
- Os dados se referem a medições da média semanal do níve diário máximo de ozônio nas cinco regiões.
- O algoritmo proposto, bem como a implementação em JAGS foram executados para uma região específica (CE).

- Achcar et al. (2011) propõe dois MVE para estudar a concentração de ozônio na Cidade do México.
- Os modelos propostos são multivariados (cinco regiões distintas da cidade).
- Os dados se referem a medições da média semanal do nível diário máximo de ozônio nas cinco regiões.
- O algoritmo proposto, bem como a implementação em JAGS, foram executados para uma região específica (CE).

- Achcar et al. (2011) propõe dois MVE para estudar a concentração de ozônio na Cidade do México.
- Os modelos propostos são multivariados (cinco regiões distintas da cidade).
- Os dados se referem a medições da média semanal do nível diário máximo de ozônio nas cinco regiões.
- O algoritmo proposto, bem como a implementação em JAGS, foram executados para uma região específica (CE).

- Achcar et al. (2011) propõe dois MVE para estudar a concentração de ozônio na Cidade do México.
- Os modelos propostos são multivariados (cinco regiões distintas da cidade).
- Os dados se referem a medições da média semanal do nível diário máximo de ozônio nas cinco regiões.
- O algoritmo proposto, bem como a implementação em JAGS, foram executados para uma região específica (CE).

Figura: Valores estimados do MVE aplicado aos dados reais.

Figura: Valores estimados do MVE aplicado aos dados reais.

000000000000

Figura: Valores estimados do MVE aplicado aos dados reais.

000000000000

Tabela: Estatísticas dos valores estimados dos parâmetros do MVE aplicado aos dados reais.

Parâmetro	Média	2,5%	Mediana	97,5%
μ	-3,594	-4,232	-3,557	-3,197
ϕ	0,931	0,908	0,931	0,951
σ_n^2	0,194	0,011	0,178	0,478

Figura: Valores estimados via JAGS vs método proposto aplicados aos dados reais.

4日 > 4間 > 4 目 > 4 目 >

Conclusão

Referências Bibliográficas I

- Achcar, J. A., Rodrigues, E. R., e Tzintzun, G. (2011). Using stochastic volatility models to analyse weekly ozone averages in Mexico City. *Environmental and Ecological Statistics*, 18(2):271–290.
- Bos, C. S. (2012). Handbook of Volatility Models and their Applications, chapter Relating Stochastic Volatility Estimation Methods, pages 147–174. John Wiley & Sons.
- Carter, C. K. e Kohn, R. (1994). On Gibbs sampling for state space models. *Biometrika*, 81:541–553.
- Durbin, J. e Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation for non-gaussian state-space models. *Biometrika*, 89:603–615.
- Durbin, J. e Koopman, S. J. (2012). *Time Series Analysis by State Space Methods*. Oxford University Press, Oxford, 2nd edition.

Referências Bibliográficas II

- Gallant, A. R. e Tauchen, G. (1996). Which moments to match? *Econometric Theory*, 12:657–681.
- Harvey, A., Ruiz, E., e Shephard, N. (1994). Multivariate stochastic variance models. *Review of Economic Studies*, 61:247–264.
- Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. *Biometrika*, 57(1):97–109.
- Kastner, G. e Frühwirth-Schnatter, S. (2014).

 Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models.

 Computational Statistics and Data Analysis, 76:408–423.
- Kim, S., Shepard, N., e Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. *The Review of Economic Studies*, 65(3):361–393.

Referências Bibliográficas III

- McCormick, T. H., Raftery, A. E., Madigan, D., e Burd, R. S. (2012). Dynamic logistic regression and dynamic model averaging for binary classification. *Biometrics*, 68(1):23–30.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., e Teller, E. (1953). Equation of state calculations by fast computing machines. *Journal of Chemical Physics*, 21(6):1087–1092.
- Nguyen, T. M. (2007). A new efficient algorithm for the analysis with non-linear and non-gaussian state space models. Master's thesis, VU University Amsterdam.
- Omori, Y., Chib, S., Shephard, N., e Nakajima, J. (2007). Stochastic volatility with leverage: Fast and efficient likelihood inference. *Journal of Econometrics*, 140:425–449.
- Richard, J. F. e Zhang, W. (2007). Efficient high-dimensional importance sampling. *Journal of Econometrics*, 141:1385–1411.

Referências Bibliográficas IV

- Shephard, N. e Pitt, M. K. (1997). Likelihood analysis of non-gaussian measurement time series. *Biometrika*, 84:653–667.
- Taylor, S. (1982). Financial returns modelled by the product of two stochastic processes a study of daily sugar prices 1961-75. *Time Series Analysis: Theory and Practice*, 1:203–226.
- Tierney, L. e Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. *Journal of the American Statistical Association*, 81(393):82–86.
- West, M. e Harrison, J. (1997). *Bayesian Forecasting and Dynamic Models*. Springer, New York, 2nd edition.
- Yu, Y. e Meng, X. (2011). To center or not to center: That is not the question an ancillarity-sufficiency interweaving strategy (asis) for boosting mcmc efficiency. *Journal of Computational and Graphical Statistics*, 20(3):531–570.

Referências Bibliográficas V

Zivot, E. e Yollin, G. (2012). Time series forecasting with state space models. In *R/Finance Workshop, University of Chicago*.

