Announcements (Week 2- Sept 11th to 15th)

Quiz 1 is open and due on Friday – all details posted on myCourses. 1 attempt; 5 questions. The quiz will cover Concept Videos 1, 2, and 3 (i.e. last week's content)

Office Hours with Prof. Sirjoosingh:

Thursday 3 to 4:30 PM (Location TBA)

Peer Collab with TAs/TEAM Mentors:

Monday and Wednesday 3 to 5 pm (2001 McGill College Avenue)

For any questions related to the course – please email chem110-120.chem15try@mcgill.ca

Optical Smoke Detectors

Chemistry around us!

- Use the principles of photoelectric effect
- Contains source of light, a lens and a photoelectric receiver.

In some optical smoke detectors: light being produced by a light source, detected by the photosensor.

In the presence of smoke, the light intensity being detected is reduced (scattering due to smoke) generating an alarm, if the intensity is below a certain threshold.

Lena Simine (Department of Chemistry)

This is what a Chemist looks like

- Development of computational models to describe behavior of molecules at atomic level
- Adaptation/development of machine learning to understand and predict properties of materials
- Research on development of organic polymers

https://www.siminegroup.ca/research

Bohr's Model

Figure 6.10 Chemistry: The Molecular Nature of Matter and Change Silberberg, 2e

Bohr's model explains the data for 1-electron species well

Practice Problem 1 (Atomic Spectra)

Calculate the energy required to completely remove an electron (ionize the atom) from the ground state (n = 1) of a hydrogen atom?

Practice Problem 1 (Atomic Spectra)

Calculate the energy required to completely remove an electron from the ground state (n = 1) of a hydrogen atom and ionize it?

What do we know?

$$E = -2.18 \times 10^{-18} \left(\frac{Z^2}{n^2}\right)$$
 Z = 1; for H-atom (Atomic Number)

 n_{final} is ∞ The electron has been completely removed from the atom; so the orbit number is an infinitely large number

n_{initial} is 1 Ground state that electron is in the lowest energy level – most stable

Calculate E_{final}

$$E_{final} = -2.18 \times 10^{-18} \left(\frac{1^2}{\infty^2} \right)$$

$$E_{\text{final}} = 0 \text{ J}$$

Calculate E_{initial}

$$E_{initial} = -2.18 \times 10^{-18} \left(\frac{1^2}{1^2} \right)$$

$$E_{\text{initial}} = -2.18 \times 10^{-18} \,\text{J}$$

Calculate ΔE for 1 H atom

$$\Delta E = E_{\text{final}} - E_{\text{initial}} = 0 - (-2.18 \times 10^{-18}) = 2.18 \times 10^{-18} \text{ J}$$

In the 2007 US Open, Venus Williams hit a serve at 207 km/hr. Calculate the deBroglie wavelength of the tennis ball if it weighed 57.0 g? (3 significant figures)

In the 2007 US Open, Venus Williams hit a serve at 207 km/hr. Calculate the deBroglie wavelength of the tennis ball if it weighed 57.0 g? (3 significant figures)

$$h = 6.626 \times 10^{-34} \text{ Js} = 6.626 \times 10^{-34} \text{ kgm}^2\text{s}^{-2}\text{s}$$

$$\lambda = \frac{6.626 \times 10^{-34} \text{ kgm}^2\text{s}^{-2}\text{s}}{(57.0 \times 10^{-3} \text{ kg}) \times (57.5 \text{ ms}^{-1})}$$

$$= (207 \text{ km/hr}) \times (1000 \text{ m/km}) \times (1 \text{ hr}/3600 \text{ s})$$

$$= 57.5 \text{ m/s}$$

 $\lambda = 2.02 \times 10^{-34} \text{ m}$

An electron is moving near an atomic nucleus has a speed of 3×10^6 m/s $\pm 1\%$. What is the **minimum** uncertainty in its position (Δx)?

An electron is moving near an atomic nucleus has a speed of 3×10^6 m/s $\pm 1\%$. What is the **minimum** uncertainty in its position (Δx)?

Equation: $(\Delta x) \times (\Delta p) \ge h/4\pi$ $\Delta p = m \Delta u$ $(\Delta x) \times (m\Delta u) \ge h/4\pi$

$$m_{\rm e}$$
 = 9.109 ×10⁻³¹ kg

$$h = 6.62606876 \times 10^{-34} \,\text{J} \cdot \text{s}$$

1. Calculate the uncertainty in speed:

$$\Delta u = 1\%$$
 of $u = 0.01$ (3 x 10^6) m/s = 3 x 10^4 m/s

2. Calculate the uncertainty in position:

$$\Delta x \ge 2 \times 10^{-9} \,\mathrm{m}$$

$$\Delta x \times m\Delta u \geq h/4\pi$$

$$\Delta x \ge h/4\pi (m\Delta u) =$$

 $(4 \times \pi) \times (9.109 \times 10^{-31} \text{ kg}) \times (3 \times 10^{4} \text{ ms}^{-1})$

Experiments show that matter has wave-like nature!.....

de Broglie's hypothesis was confirmed by experiments by Davisson and Germer

Electrons indeed had wave-like properties

Diffraction pattern of aluminum using X Rays Light with wave-like properties

Diffraction pattern of aluminum using electrons

Electrons (which make up all matter) with wave-like properties

Quantum Mechanics

Atom can be described in terms of specific quantities of energy depending upon the allowed frequencies of its electrons' wave-like function

Described electron distribution as a *standing wave* and provided solutions for it

Erwin Schrödinger 1887-1961 Schrödinger Equation

 $\hat{H}\psi = E\psi$

Ĥ: Hamiltonian Operator

E: Binding Energy

Ψ: Wave Function

Wave Function (Ψ; pronounced "sai")

A mathematical function that relates the location of an electron at a given point in space to its energy

Chem 110 13

Wavefunctions

A mathematical function that relates the location of an electron at a given point in space to its energy.

Contains a radial (r) and angular component (θ, ϕ)

$$\Psi_{n,l,m}(r,\theta,\varphi) = R(r) \times Y_{l,m}(\theta,\varphi)$$

Each wavefunction is defined by characteristic quantum numbers (n, l, m)

The square of the wave function Ψ^2 lets us calculate the **probability of finding an electron** at a given point

Orbitals: Mathematically derived regions of space with different *probabilities* of containing an electron.

Chem 110 14

Quantum Mechanics

QUANTUM NUMBERS (describing orbitals)

1. Principal Quantum Number (n)

- 1. Positive integer (1,2,3....)
- 2. Indicates the relative size of the orbital relative distance
- 3. Specifies the energy level (higher n indicated higher energy)

2. Angular Quantum Number (*l*)

- 1. Positive Integer (0 to n-1)
- 2. Shape of the orbital
- 3. The value of n limits $\it l$

if n=1, l can only have the value 0; if n=2, l can have the values 0 and 1 When l=0 (s orbital); l=1 (p orbital); l=2 (d orbital); l=3 (f orbital)

3. Magnetic Quantum Number (m_l)

- 1. Integer (-l to + l)
- Orientation of the orbital around the nucleus
- 3. The value of I limits m_i ; For I=1, values of m_i can be -1,0, and 1

Probability Density and Radial Probability (1s orbital)

IMAGE COURTESY: UCDAVIS CHEMWIKI, CC BY-NC-SA 3.0 US

The probability density can be multiple by volume to obtain the probability of finding an electron at a certain distance from the nucleus

Quantum Mechanics

Atom can be described in terms of specific quantities of energy depending upon the allowed frequencies of its electrons' wave-like function

Described electron distribution as a *standing wave* and provided solutions for it

Erwin Schrödinger 1887-1961 Schrödinger Equation

 $\hat{H}\psi = E\psi$

Ĥ: Hamiltonian Operator

E: Binding Energy

Ψ: Wave Function

Wave Function (Ψ; pronounced "sai")

A mathematical function that relates the location of an electron at a given point in space to its energy

Chem 110 17

Wavefunctions

A mathematical function that relates the location of an electron at a given point in space to its energy.

Contains a radial (r) and angular component (θ, ϕ)

$$\Psi_{n,l,m}(r,\theta,\varphi) = R(r) \times Y_{l,m}(\theta,\varphi)$$

Each wavefunction is defined by characteristic quantum numbers (n, l, m)

The square of the wave function Ψ^2 lets us calculate the **probability of finding an electron** at a given point

Orbitals: Mathematically derived regions of space with different *probabilities* of containing an electron.

Chem 110 18

Shapes of Atomic Orbital (1s, 2s, 3s orbitals)

IMAGE COURTESY: UCDAVIS CHEMWIKI, CC BY-NC-SA 3.0 US

1s orbital: 0 radial nodes 2s orbital: 1 radial node

What are nodes?

Regions where there is no probability of finding an electron

What is a radial node?

Depends on quantum numbers n and l

Radial node = n-1-l

Shapes of Atomic Orbitals; p orbital

How many p orbitals will there be in a shell? Which is the first shell to have p orbitals?

What are nodes?

Regions where there is no probability of finding an electron

What is an angular node?

1s orbital: 0 angular nodes 2p orbital: 1 angular node

Nodal plane

 $2p_x$

Depends on quantum number l Angular node = l

What does the radial distribution of a 2p orbital look like?

Quantum Mechanics

QUANTUM NUMBERS (describing orbitals)

1. Principal Quantum Number (n)

- 1. Positive integer (1,2,3....)
- 2. Indicates the relative size of the orbital relative distance
- 3. Specifies the energy level (higher n indicated higher energy)

2. Angular Quantum Number (*l*)

- 1. Positive Integer (0 to n-1)
- 2. Shape of the orbital
- 3. The value of n limits l

if n=1, l can only have the value 0; if n=2, l can have the values 0 and 1 When l=0 (s orbital); l=1 (p orbital); l=2 (d orbital); l=3 (f orbital)

3. Magnetic Quantum Number (m_l)

- 1. Integer (-l to + l)
- Orientation of the orbital around the nucleus
- 3. The value of I limits m_i ; For I=1, values of m_i can be -1,0, and 1

Practice Problem 4 - Fill the table for n=1, 2, 3, and 4

n	1	m _l	Subshell	Number of	Number of
	(0 to n-1)	(-I to + I)	Designation	orbitals in	orbitals in shell
				subshell	

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0			

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1 s		

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1 s	1	1

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1 s	1	1
2	0				
	1				

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1 s	1	1
2	0	0			
	1	-1, 0, 1			

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1 s	1	1
2	0	0	2 s		
	1	-1, 0, 1	2 p		

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1 s	1	1
2	0	0	2 s	1	
	1	-1, 0, 1	2 p	3	

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1 s	1	1
2	0	0	2 s	1	4
	1	-1, 0, 1	2 p	3	= 1 (2s) + 3 (2p)

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1 s	1	1
2	0	0	2 s	1	4
	1	-1, 0, 1	2 p	3	= 1 (2s) + 3 (2p)
3	0	0	3s	1	9
	1	-1, 0, 1	3p	3	= 1(3s) + 3(3p)
	2	-21. 0. 1. 2	3d	5	+ 5 (3d)

l=0; s orbital l=1; p orbital l=2; d orbital l=3; f orbital

n (shell)	(0 to n-1)	m _I (-I to + I)	Subshell Designation	Number of orbitals in subshell	Number of orbitals in shell
1	0	0	1s	1	1
2	0	0	2 s	1	4
	1	-1, 0, 1	2 p	3	= 1 (2s) + 3 (2p)
3	0	0	3 s	1	9
	1	-1, 0, 1	3p	3	= 1(3s) + 3 (3p) + 5 (3d)
	2	-2, -1, 0, 1, 2	3d	5	
4	0	0	4s	1	16
	1	-1, 0, 1	4р	3	= 1(4s) + 3
	2	-2, -1, 0, 1, 2	4d	5	(4p) + 5 (4d) + 7 (4f)
	3	-3, -2, -1, 0, 1, 2, 3	4f	7	

Practice Problem 5: Quantum Numbers

Practice: Give the name, magnetic quantum numbers, and number of orbitals for each subshell with the given n and I quantum numbers:

(a)
$$n = 2$$
, $l = 1$

(b)
$$n = 1$$
, $l = 0$

(c)
$$n = 5$$
, $l = 2$

(d)
$$n = 3$$
, $l = 3$

Practice Problem 4: Quantum Numbers

Practice: Give the name, magnetic quantum numbers, and number of orbitals for each subshell with the given n and I quantum numbers:

(a)
$$n = 2$$
, $l = 1$: 2p subshell; $m_l = -1$, 0, +1; 3 total orbitals

(b)
$$n = 1$$
, $l = 0$: 1s subshell; $m_l = 0$; 1 total orbital

(c)
$$n = 5$$
, $l = 2$: 5d subshell; $m_l = -2$, -1 , 0 , $+1$, $+2$; 5 total orbitals

(d) n = 3, l = 3: IMPOSSIBLE! (The highest value of l is n-1)

Sketch the radial probability distribution for a 2p orbital

(For questions like these, you should be able to roughly determine the shape of the curve, keeping in mind the radial nodes. You are not expected to sketch a precise radial probability distribution chart.)

2p orbital - 0 radial nodes (n - 1 - l = 2 - 1 - 1 = 0)

Why did Bohr's Model work for hydrogen atom?

Bohr's model correctly predicted the radius of the H-atom – even though Bohr's atomic theory is incorrect. It cannot be applied to multi-electron species.

Why does it work for H?
Hydrogen is special – only one
electron but there is more but there is
more.....

Why did Bohr's Model work for hydrogen atom?

Hydrogen is special – only one electron but there is more....

Can you draw the energy levels (energy of different orbitals based on increasing energy) for a H-atom?

Energy Levels of Hydrogen Atom

From Schrodinger Equation, we obtain the solution for the hydrogen atom

$$E_n=-rac{m_e e^4}{8\epsilon_0{}^2h^2n^2}$$

slido

Which of these following transitions in a Hydrogen atom, will result in the highest amount of energy released? Explain your reason. (Assume all are allowed transitions)

39

Which of these following transitions in a Hydrogen atom, will result in the highest amount of energy *released*? Explain your reason. (Assume all are allowed transitions)

- A. From 1s to 2p
- B. From 3p to 2s
- C. From 5f to 2p
- D. From 3p to 1s
- E. From 1s to 5p
- F. From 2p to 1s

We are looking for energy being released: So the transition must correspond to an electron going from a *higher n* to *lower n*

In hydrogen atom any transition to n = 1 will be higher in energy than a transition to any other n value.

The energy gap (for consecutive n values in hydrogen atom) between n=1 and n=2 is much larger as compared to that between n=2 and n=3, so on and so forth.