

TEST REPORT

FCC ID: 2AJJR-MINI

Product: SPECTRA

Model No.: Mini

Additional Model No.: N/A

Trade Mark: WALNUTT, SPECTRA

Report No.: TCT171102E020

Issued Date: Nov. 07, 2017

Issued for:

Walnut Technology (Dongguan) Limited B502, 17A, ZongBuYiHao, XinZhu Road, Songshan Lake, Dongguan, Guangdong, P. R. China

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. Te	est Certific	cation				 3
2. Te	est Result	Summar	'V		 (6)	 4
	UT Descri		•			
4.1	enera Info . Test Enviro	NMENT AND	MODE		 	 7
5. Fa 5.1 5.2	Acilities ar . Facilities Location Measureme	nd Accre	ditations	<u>(6)</u>	<u>(6)</u>	9 9
	est Result					
6.2 6.3 6.4 Appe r	. ANTENNA RE 2. CONDUCTED 3. RADIATED EI 4. 20DB OCCUI 6 ndix A: Ph 6 ndix B: Ph	EMISSION MISSION MEAS PIED BANDWID NOTOGRAP	SUREMENT OTH hs of Tes	st Setup	(0)	11 15

1. Test Certification

Product:	SPECTRA
Model No.:	Mini
Additional Model:	N/A
Trade Mark:	WALNUTT, SPECTRA
Applicant:	Walnut Technology (Dongguan) Limited
Address:	B502, 17A, ZongBuYiHao, XinZhu Road, Songshan Lake, Dongguan, Guangdong, P. R. China
Manufacturer:	Walnut Technology (Dongguan) Limited
Address:	B502, 17A, ZongBuYiHao, XinZhu Road, Songshan Lake, Dongguan, Guangdong, P. R. China
Date of Test:	Oct. 18 - Oct. 23, 2017
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.249

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Beryl where

Tomsin

Date:

Oct. 23, 2017

Reviewed By:

Date:

Nov. 07, 2017

Approved By:

Date:

Nov. 07, 2017

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§2.1053 §15.249 (a) (d)/ §15.209	PASS
Band Edge	§2.1053 §15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§2.1049 §15.215 (c)	PASS

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	SPECTRA				
Model No.:	Mini				
Additional Model:	N/A				
Trade Mark:	WALNUTT, SPECTRA				
Operation Frequency:	2402MHz - 2480MHz				
Number of Channel:	40				
Modulation Technology:	GFSK				
Antenna Type:	Integral antenna				
Antenna Gain:	0dBi (Declared by Applicant)				
Power Supply:	Rechargeable battery: DC19.2V 1550mAh 29.76Wh SWITCHING POWER SUPPLY MODEL: FY0422251500 INPUT: AC100-240V, 50/60Hz, 1.5A OUTPUT: DC 22.5V, 1.5A				

Operation Frequency each of channel

		,							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
	🖔	<i>9</i>	<	<u> </u>	<	<u> </u>	🖔		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		
Remark:	Channel 0, 1	9 & 39 ha	Remark: Channel 0, 19 & 39 have been tested.						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4. Genera Information

4.1. Test Environment and Mode

Operating Environment:							
Temperature:	25.0 °C						
Humidity:	54 % RH						
Atmospheric Pressure:	1010 mbar						
Test Mode:							
Engineering mode:	Keep the EUT in continuous transmitting by select channel						

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Y	Z
Field Strength(dBuV/m)	86.23	87.79	85.46

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1) /	(6) 1	(0)

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2.Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
(1)	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1GHz)	±3.92dB
5	All emissions, radiated(>1GHz)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna Requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is integral antenna which permanently attached, and the best case gain of the antenna is 0dBi.

Page 10 of 39

6.2.Conducted Emission

6.2.1. Test Specification

<u> </u>		(-C.)			
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Refere	nce Plane			
Test Setup:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Result:	Pass				

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018			
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 27, 2018			
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 27, 2018			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Freq MHz	Reading level dBuV	factor dB	loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0. 185 0. 185 0. 242 0. 242 0. 426 0. 426 0. 679 0. 679 4. 772 4. 772 11. 317	50. 62 38. 41 45. 70 27. 24 34. 05 16. 03 26. 05 13. 89 26. 09 17. 36 31. 45 23. 96	0. 42 0. 42 0. 44 0. 44 0. 41 0. 41 0. 29 0. 29 0. 21 0. 21 0. 22	0. 13 0. 13 0. 12 0. 12 0. 11 0. 11 0. 13 0. 13 0. 15 0. 15 0. 20	51. 17 38. 96 46. 26 27. 80 34. 57 16. 55 26. 47 14. 31 26. 45 17. 72 31. 87 24. 38	64. 24 54. 24 62. 04 52. 04 57. 33 47. 33 56. 00 46. 00 56. 00 46. 00 50. 00	-13.07 -15.28 -15.78 -24.24 -22.76 -30.78 -29.53 -31.69 -29.55 -28.28 -28.13 -25.62	QP Average

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Freq MHz	Reading level dBuV	1ISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.180	56.44	0.41	0.13	56.98	64.50	-7.52	QP
0.180	34.64	0.41	0.13	35.18	54.50	-19.32	Average
0.239	46.96	0.42	0.12	47.50	62.13	-14.63	QP
0.239	25.33	0.42	0.12	25.87	52.13	-26.26	Average
0.307	39.37	0.42	0.10	39.89	60.06	-20.17	QP
0.307	19.56	0.42	0.10	20.08	50.06	-29.98	Average
0.369	36.22	0.40	0.10	36.72	58.52	-21.80	QP
0.369	21.03	0.40	0.10	21.53	48.52	-26.99	Average
0.440	34.38	0.38	0.11	34.87	57.07	-22.20	QP
0.440	18.56	0.38	0.11	19.05	47.07	-28.02	Average
15.552	30.06	0.24	0.22	30.52	60.00	-29.48	QP
15.552	24.25	0.24	0.22	24.71	50.00	-25.29	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

6.3. Radiated Emission Measurement

6.3.1. Test Specification

To at Do suring ways	E00 D: 145		45.000/	David O. 1	04 0. 4050					
Test Requirement:			า 15.209/	Part 2 J	Section 2.1053					
Test Method:	ANSI C63.10:2013 9 kHz to 25 GHz									
Frequency Range:	9 kHz to 25	GHz	(6)							
Measurement Distance:	3 m									
Antenna Polarization:	Horizontal 8	& Vertical								
	Frequency 9kHz- 150kHz	Detector Oussi pask	RBW 200Hz	VBW 1kHz	Remark Value					
Receiver Setup:	150kHz- 30MHz	Quasi-peak Quasi-peak	9kHz	30kHz	Quasi-peak Value Quasi-peak Value					
,	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above 1G112	Peak	1MHz	10Hz	Average Value					
	Freque	encv	Limit (dBu\	//m @3m\	Remark					
Limit(Field strength of the	2400MHz-2483 5MHz 94.00 Avera									
fundamental signal):	2400MHz-24	483.5MHz	114.00		Peak Value					
	Freque		Limit (dBuV/m @3m) 2400/F(KHz)		Remark					
	0.009-0.490 0.490-1.705		2400/F(KHz)		Quasi-peak Value Quasi-peak Value					
	1.705-30		30		Quasi-peak Value					
	30MHz-8		40		Quasi-peak Value					
Limit(Spurious Emissions):	88MHz-2	1	43		Quasi-peak Value					
	216MHz-960MHz		46		Quasi-peak Value					
	960MHz-1GHz		54	.0	Quasi-peak Value					
	Above 1GHz		54.0		Average Value					
			74.0		Peak Value					
Limit (band edge) :	bands, exce least 50 dB general rac whichever is	ept for har below the diated em s the lesse	monics, so level of the lission liner attenua	shall be a he funda nits in S tion.	cified frequency attenuated by at mental or to the Section 15.209,					
Test Procedure:	meters a below 1 1GHz. determing 2. The Element on the to 3. The anteres a value of the second secon	above the IGHz, 1.5 The table he the position of a varence the grown above the field of the Idea of the Idea of the Idea of the Idea of Idea of the Idea of Id	ground a om above was ro ition of the set 3 n ving anter iable-heig to is varied ground to d strengt	at a 3 me the grotated 3 e highest neters a nna, whice the anten d from or determinent.	eter chamber in cound in above 60 degrees to radiation. away from the ch was mounted na tower. The meter to four horizontal and are set to make					

the measurement.

- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

For radiated emissions below 30MHz

30MHz to 1GHz

Test setup:

Above 1GHz

(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

6.3.2. Test Instruments

	Radiated Em	ission Test Si	te (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018	
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018	
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018	
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018	
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018	
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018	
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018	
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

2.1.1 Field Strength of Fundamental

Frequency (MHz)	Emission PK/AV (dBuV/m)	Horizontal /Vertical	Limits PK/AV (dBuV/m)	Margin (dB)
2402	87.36 (PK)	V	114	-26.64
2402	82.91 (PK)	Н	114	-31.09
2440	87.79 (PK)	V	114	-26.21
2440	82.00 (PK)	H	114	-32.00
2480	87.38 (PK)	V	114	-26.62
2480	81.70 (PK)	н (с	114	-32.30
2402	78.00 (AV)	V	94	-16.00
2402	73.13 (AV)	Н	94	-20.87
2440	77.70 (AV)	V	94	-16.30
2440	71.36 (AV)	н 🜾	94	-22.64
2480	76.77 (AV)	V	94	-17.23
2480	71.56 (AV)	V	94	-22.44

Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
(3)		(3
60	(2)	(C) (C)

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Radiated Emission In Horizontal (30MHz----1000MHz)

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
41.422	27.07	12.27	0.68	30.10	9.92	40.00	-30.08	QP
67.913	34.78	7.40	0.92	29.99	13.11	40.00	-26.89	QP
101.644	27.98	12.10	1.21	29.79	11.50	43.50	-32.00	QP
147.404	32.23	7.50	1.55	29.61	11.67	43.50	-31.83	QP
192.419	33.32	9.87	1.80	29.44	15.55	43.50	-27.95	QP
839.182	25.71	21.64	4.62	29.18	22.79	46.00	-23.21	QP

Remarks:level = Reading level + Antenna factor + Cable loss - Preamp Factor

Radiated Emission In Vertical (30MHz----1000MHz)

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark	
34.037	37. 19	11.25	0.60	30.10	18.94	40.00	-21.06	QP	_
54.643	33.06	11.93	0.81	30.06	15.74	40.00	-24.26	QΡ	
88.342	34.17	10.60	1.10	29.87	16.00	43.50	-27.50	QP	
100.581	31.64	12.10	1.19	29.80	15.13	43.50	-28.37	QP	
162.611	35.49	8.27	1.65	29.55	15.86	43.50	-27.64	QP	
768.748	26.22	20.85	4.35	29.13	22.29	46.00	-23.71	QP	

Remarks:level = Reading level + Antenna factor + Cable loss - Preamp Factor

Band Edge Requirement

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channel: Lowest channel

Peak value:

/								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	38.32	27.59	5.38	30.18	41.11	74.00	-32.89	Horizontal
2400.00	54.46	27.58	5.39	30.18	57.25	74.00	-16.75	Horizontal
2390.00	38.44	27.59	5.38	30.18	41.23	74.00	-32.77	Vertical
2400.00	56.01	27.58	5.39	30.18	58.80	74.00	-15.20	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	29.90	27.59	5.38	30.18	32.69	54.00	-21.31	Horizontal
2400.00	40.87	27.58	5.39	30.18	43.66	54.00	-10.34	Horizontal
2390.00	29.52	27.59	5.38	30.18	32.31	54.00	-21.69	Vertical
2400.00	42.08	27.58	5.39	30.18	44.87	54.00	-9.13	Vertical

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	39.88	27.53	5.47	29.93	42.95	74.00	-31.05	Horizontal
2500.00	39.92	27.55	5.49	29.93	43.03	74.00	-30.97	Horizontal
2483.50	39.96	27.53	5.47	29.93	43.03	74.00	-30.97	Vertical
2500.00	40.49	27.55	5.49	29.93	43.60	74.00	-30.40	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	32.67	27.53	5.47	29.93	35.74	54.00	-18.26	Horizontal
2500.00	31.33	27.55	5.49	29.93	34.44	54.00	-19.56	Horizontal
2483.50	33.51	27.53	5.47	29.93	36.58	54.00	-17.42	Vertical
2500.00	30.87	27.55	5.49	29.93	33.98	54.00	-20.02	Vertical

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (dB\mu V/m) limit (dB\mu V/m)$

Above 1GHz

Test channel: Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.72	31.78	8.60	32.09	45.01	74.00	-28.99	Vertical
7206.00	31.44	36.15	11.65	32.00	47.24	74.00	-26.76	Vertical
9608.00	31.12	37.95	14.14	31.62	51.59	74.00	-22.41	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	40.89	31.78	8.60	32.09	49.18	74.00	-24.82	Horizontal
7206.00	33.15	36.15	11.65	32.00	48.95	74.00	-25.05	Horizontal
9608.00	30.49	37.95	14.14	31.62	50.96	74.00	-23.04	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*		(0)		(0)	74.00	(0)	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.65	31.78	8.60	32.09	33.94	54.00	-20.06	Vertical
7206.00	20.20	36.15	11.65	32.00	36.00	54.00	-18.00	Vertical
9608.00	19.31	37.95	14.14	31.62	39.78	54.00	-14.22	Vertical
12010.00	*		(S)			54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	29.81	31.78	8.60	32.09	38.10	54.00	-15.90	Horizontal
7206.00	22.33	36.15	11.65	32.00	38.13	54.00	-15.87	Horizontal
9608.00	18.99	37.95	14.14	31.62	39.46	54.00	-14.54	Horizontal
12010.00	*					54.00		Horizontal
14412.00	(*)					54.00		Horizontal

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (dB\mu V/m) limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown " * "in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 23 of 39

Test channel: Middle

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	35.94	31.85	8.67	32.12	44.34	74.00	-29.66	Vertical
7320.00	30.92	36.37	11.72	31.89	47.12	74.00	-26.88	Vertical
9760.00	30.66	38.35	14.25	31.62	51.64	74.00	-22.36	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	39.94	31.85	8.67	32.12	48.34	74.00	-25.66	Horizontal
7320.00	32.56	36.37	11.72	31.89	48.76	74.00	-25.24	Horizontal
9760.00	29.95	38.35	14.25	31.62	50.93	74.00	-23.07	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*		(C)		(¿C)	74.00		Horizontal

Average value:

Average val	uc.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	25.02	31.85	8.67	32.12	33.42	54.00	-20.58	Vertical
7320.00	19.77	36.37	11.72	31.89	35.97	54.00	-18.03	Vertical
9760.00	18.93	38.35	14.25	31.62	39.91	54.00	-14.09	Vertical
12200.00	*		(0)		(0)	54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	29.09	31.85	8.67	32.12	37.49	54.00	-16.51	Horizontal
7320.00	21.85	36.37	11.72	31.89	38.05	54.00	-15.95	Horizontal
9760.00	18.55	38.35	14.25	31.62	39.53	54.00	-14.47	Horizontal
12200.00	*					54.00		Horizontal
14640.00	*					54.00		Horizontal

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (dB\mu V/m) limit (dB\mu V/m)$
- 3.—The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown " * "in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 24 of 39

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.42	31.93	8.73	32.16	44.92	74.00	-29.08	Vertical
7440.00	31.24	36.59	11.79	31.78	47.84	74.00	-26.16	Vertical
9920.00	30.94	38.81	14.38	31.88	52.25	74.00	-21.75	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	40.52	31.93	8.73	32.16	49.02	74.00	-24.98	Horizontal
7440.00	32.92	36.59	11.79	31.78	49.52	74.00	-24.48	Horizontal
9920.00	30.28	38.81	14.38	31.88	51.59	74.00	-22.41	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*		(c)		(20)	74.00	(,0)	Horizontal

Average value:

Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.46	31.93	8.73	32.16	33.96	54.00	-20.04	Vertical
7440.00	20.07	36.59	11.79	31.78	36.67	54.00	-17.33	Vertical
9920.00	19.20	38.81	14.38	31.88	40.51	54.00	-13.49	Vertical
12400.00	(*)		(C_{i})		((C))	54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.59	31.93	8.73	32.16	38.09	54.00	-15.91	Horizontal
7440.00	22.19	36.59	11.79	31.78	38.79	54.00	-15.21	Horizontal
9920.00	18.86	38.81	14.38	31.88	40.17	54.00	-13.83	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (dB\mu V/m) limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown " * "in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 25 of 39

6.4.20dB Occupied Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)/ Part 2 J Section 2.1049				
Test Method:	ANSI C63.10: 2013				
Limit:	N/A				
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test results:	PASS				

6.4.2. Test Instruments

RF Test Room						
Equipment Manufacturer		Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

Test Channel	20dB Occupy Bandwidth (kHz)	Limit	Conclusion	
Lowest	1.199		PASS	
Middle	1.193		PASS	
Highest	1.197	(S)	PASS	

Test plots as follows:

Lowest channel

Middle channel

Highest channel

Appendix A: Photographs of Test Setup Product: SPECTRA

Product: SPECTRA
Model: Mini
Radiated Emission

Appendix B: Photographs of EUT Product: SPECTRA

Model: Mini
External Photos

Product: SPECTRA Model: Mini Internal Photos

TCT通测检测 TESTING CENTRE TECHNOLOGY

