RELATÓRIO 1 PILHAS/CÉLULAS GALVÂNICAS

Alunos:

Lucas Chen Alba

Professor:

Fernando Rodrigues da Silva

Camila Oliveira

Técnica:

Francine Bento

INTRODUÇÃO	3
PROCEDIMENTOS EXPERIMENTAIS	3
Materiais e reagentes	3
Montagem da pilha	3
Equações Red-Oxi	3
RESULTADOS E DISCUSSÕES	4
Efeito da concentração	4
Experimento da eletrólise	5
REFERÊNCIAS BIBLIOGRÁFICAS	6

INTRODUÇÃO

Neste experimento foi construída uma pilha primária de Daniell com o principal objetivo de analisar como a energia armazenada na forma química se transforma em elétrica. Adicionalmente foram analisados como os efeitos diversos, como temperatura, concentração e tipo de solução, influenciam na reação, consequentemente, na tensão da pilha.

PROCEDIMENTOS EXPERIMENTAIS

Materiais e reagentes

- Placas de metal: Cobre e Zinco;
- Vidraria: 2 Béqueres, Proveta 40ml;
- Ponte salina de KCl;
- Multimetro;
- Sais: NaCl, CuSO₄, ZnSO₄;
- Soluções dos sais acima, todas 1mol/L;

Montagem da pilha

O processo de montagem se iniciou com a ligação das duas soluções ($ZNSO_4$ e $CuSO_4$) através de uma Ponte salina, a qual possibilita a movimentação dos elétrons no circuito. Em seguida, as placas são lixadas com o intuito de remover a camada oxidada, e inseridas nas soluções dos seus metais. Por fim, os dois terminais do multímetro são ligados às duas placas.

Equações Red-Oxi

Equação parcial do Zinco:

$$Zn_{(s)} \rightarrow Zn^{2+} + 2e^{-}$$
 (Pot. red.: -0,76) (Eq.1)

Equação parcial do Cobre:

$$Cu_{(s)} \rightarrow Cu^{2+} + 2e^{-}$$
 (Pot. red.: 0,34) (Eq.2)

Equação geral:

$$Cu^{2+}$$
 + $Zn_{(s)}$ \rightarrow Zn^{2+} + $Cu_{(s)}$ (Eq.3)

RESULTADOS E DISCUSSÕES

Efeito da concentração

Com a pilha pronta foi realizado o seguinte teste: Aumentar a concentração da solução de um dos eletrodos, e verificar se houveram mudanças na medição da tensão. Para este experimento, foi adicionado mais $ZnSO_4$ à sua respectiva solução. Foi notada uma leve redução na tensão medida $(1,095V\rightarrow1,094V\rightarrow1,091V)$. Pode-se explicar isso através da análise do deslocamento da reação, como a reação se dá no sentido indicado na Eq.3, quando foi adicionado o $ZnSO_4$, a reação é levemente deslocada para esquerda, o sentido contrário do que gera a tensão, fazendo com que a mesma diminua levemente.

Efeito da temperatura

O segundo teste realizado foi o de temperatura, o qual consistiu em alterar a temperatura de uma das soluções, no caso, a solução do eletrodo oxidante (Zn). Foi observado que a tensão aumentou ligeiramente (Tabela 1). Este fenômeno pode ser explicado através da entalpia da reação, como o aumento de temperatura causou um aumento na tensão, podemos concluir que o deslocamento da reação para a direita consiste em uma reação endotérmica, pois quando "adicionamos" calor ao sistema, a reação é deslocada para a direita, resultando em um aumento da tensão.

Temperatura (°C)	Tensão (V)
20	1,077
25	1,073
30	1,070
35	1,069
40	1,067

45	1,062
50	1,072
55	1,082
60	1,078

Tabela 1 - Relação empírica de temperatura e tensão da pilha

Efeito da solução

O último teste se deu na troca da solução de um dos eletrodos. No experimento, foi trocada a solução do eletrodo oxidante (Zn) ZnSO₄ por uma solução de NaCl de mesma concentração (1mol/L). Foi observado também, um ligeiro aumento na tensão (de 1,109V para 1,152V). Pode-se explicar este fenômeno analisando o potencial de redução padrão do Na, como é diferente do potencial do Zn, causa a tensão a ser d