

# CS143 Relational Algebra

Professor Junghoo "John" Cho

### Database Query Language

- What is a "query"?
  - OED: a question, especially one addressed to an official or organization
  - Database jargon for a question
  - Question to get an answer from a database
    - "Who takes a CS class, but no Physics class?"
- Some queries are easy to pose, and some are not

### Relational Query Languages

- Formal: relational algebra, relational calculus, datalog
- Practical: SQL, Quel, QBE
- Both input to and output from a query are relations: makes "piping" possible

- Set semantics: no duplicate tuples. Duplicates are automatically eliminated
  - Multiset semantics for SQL for performance reasons. More on this later

## Example Database: School Information

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(dept, cnum, sec, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

### Q1: All students

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

# Q2: Students with age < 18

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

# Q3: Students with GPA > 3.7 and age < 18

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(dept, cnum, sec, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

# Select Operator $\sigma_{\mathcal{C}}(R)$

- Filters out rows in a relation
- C: filtering condition as a boolean expression
- R can be either a relation or a result from another operator

## Q4: sid and GPA of all students

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

## Q5: All departments offering a class

#### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(dept, cnum, sec, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

# Project Operator $\pi_A(R)$

- Filters out columns in a relation
- A: the set of attributes to keep

## Q6: sid and GPA of students with age < 18

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

### Questions

 Is it every useful to compose two projection operators next to each other?

• Is it ever useful to compose to selection operators next to each other?

## Cross Product (Cartesian Product) Operator

• Example:  $R \times S$ 

$$\begin{array}{c|c} R & S \\ \hline A & B \\ \hline a_1 & \times & b_1 \\ \hline a_2 & & L \end{array}$$

| $\mathcal{H} \wedge \mathcal{G}$ |                |  |  |  |
|----------------------------------|----------------|--|--|--|
| А                                | В              |  |  |  |
| $a_{\scriptscriptstyle 1}$       | b <sub>1</sub> |  |  |  |
| $a_{\scriptscriptstyle 1}$       | b <sub>2</sub> |  |  |  |
| $a_{\scriptscriptstyle 1}$       | b <sub>3</sub> |  |  |  |
| a <sub>2</sub>                   | b <sub>1</sub> |  |  |  |
| a <sub>2</sub>                   | b <sub>2</sub> |  |  |  |
| a <sub>2</sub>                   | b <sub>3</sub> |  |  |  |

 $R \times S$ 

- Concatenate tuples from two relations horizontally
- Create one output per every pair of input tuples
- If column names conflict, prefix with the table name

### Cross Product $R \times S$

- Definition:  $R \times S = \{t \mid t = (r, s) \text{ for } r \in R \text{ and } s \in S\}$
- Q: Concatenating two unrelated tables looks odd. Why use it?

### Q7: Names of students who take CS classes

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

### Question

• If |R| = r and |S| = s, what is  $|R| \times |S|$ ?

### Natural Join Operator ⋈

Join two tables "naturally"

Student(sid, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

Enroll(sid, dept, cnum, sec)

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

| sid | name   | addr         | age | GPA | dept | cnum | sec |
|-----|--------|--------------|-----|-----|------|------|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 | CS   | 112  | 01  |
| 301 | John   | 183 Westwood | 19  | 2.1 | CS   | 143  | 01  |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 | EE   | 143  | 01  |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 | CS   | 112  | 01  |
| 401 | James  | 183 Westwood | 17  | 3.5 | CS   | 112  | 01  |

M

### Natural Join Operator ⋈

- Notation:  $R \bowtie S$ 
  - Concatenate tuples horizontally
  - Enforce equality condition on all common attributes
  - Only one copy of the common attributes are kept in the result
  - Most "natural" way to join two tables

### Q8: Names of students who take CS classes

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

# Q9: Names of students who take classes offered by "Dick Muntz"

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

# Q10: Names of student pairs who live at the same address

### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(dept, cnum, sec, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

# Rename Operator $\rho_{\mathcal{S}}(R)$

- $\rho_S(R)$ : Rename R to S
- $\rho_{S(A1,A2)}(R)$ : Rename R to S(A1,A2) including attribute names

# Q11: All students and instructors' names

#### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(dept, cnum, sec, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

### Union Operator U

- $R \cup S$ : Union of tuples from R and S
- The schemas of R an S should be the same
- No duplicate tuples in the result

### Q12: Courses (dept, cnum, sec) that no one takes

#### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

### Set Difference Operator —

- R S: Tuples in R that do not exist in S
- The schemas of R an S should be the same
- Q13: What if we want to get the titles of previous courses?

# Q14: Instructor names who teach both CS and EE courses

#### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

#### Class(dept, cnum, sec, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

• Q: Can we answer this query without using intersection?

### Intersect Operator \(\cappa\)

- $R \cap S$ : Tuples that exist in both R and S
- The schemas of R and S should be the same
- $R \cap S = R (R S)$

# Q15: Sids of students who did not take any CS class

#### Student(<u>sid</u>, name, addr, age, GPA)

| sid | name   | addr         | age | GPA |
|-----|--------|--------------|-----|-----|
| 301 | John   | 183 Westwood | 19  | 2.1 |
| 303 | Elaine | 301 Wilshire | 17  | 3.9 |
| 401 | James  | 183 Westwood | 17  | 3.5 |
| 208 | Esther | 421 Wilshire | 20  | 3.1 |

### Class(<u>dept</u>, <u>cnum</u>, <u>sec</u>, unit, title, instructor)

| dept | cnum | sec | unit | title      | instructor   |
|------|------|-----|------|------------|--------------|
| CS   | 112  | 01  | 03   | Modeling   | Dick Muntz   |
| CS   | 143  | 01  | 04   | DB Systems | John Cho     |
| EE   | 143  | 01  | 03   | Signal     | Dick Muntz   |
| ME   | 183  | 02  | 05   | Mechanics  | Susan Tracey |

### Enroll(sid, dept, cnum, sec)

| sid | dept | cnum | sec |
|-----|------|------|-----|
| 301 | CS   | 112  | 01  |
| 301 | CS   | 143  | 01  |
| 303 | EE   | 143  | 01  |
| 303 | CS   | 112  | 01  |
| 401 | CS   | 112  | 01  |

Advice: When a query is difficult to write, think of its complement!

### Core Relational Operators

- $\sigma$ ,  $\pi$ ,  $\times$ ,  $\bowtie$ ,  $\rho$ ,  $\cup$ ,  $\cap$ , -
- Q: which ones are "core" and which ones can be expressed with others?

### Summary

- Relational algebra: Formal query language for relational model
  - Theoretical foundation behind SQL
- Both inputs and outputs are relations: "piping" is possible

- Set semantics: duplicates are automatically eliminated
- Operators learned:  $\sigma$ ,  $\pi$ ,  $\times$ ,  $\bowtie$ ,  $\rho$ ,  $\cup$ ,  $\cap$ , -
- Suggestion: If a query is difficult to write, think of its complement!!