Early Evaluation of IBM BlueGene/P

Tyler Allen Clemson University

September 28, 2015

Today we will:

- Discuss IBM's BlueGene/P Architecture
- Discuss the specifications of the hardware
- Examine benchmarks from a BlueGene/P implementation

Background

Early Evaluation

- Goal: Evaluate performance of architecture
- Several metrics:
 - Hardware and Topology Specifications
 - Microbenchmarks and Kernels
 - Target Applications

Power

BlueGene/P Architecture

- Developed by IBM
- Second Generation Architecture
- Successor to BlueGene/L
- Early Evaluation of IBM BlueGene/P by S. Alam et al. in 2008
- Authors from Oak Ridge National Laboratory

System on Chip

- Four PowerPC 450 cores at 850 MHz
- 3.4 GFlop/s per core
- On-chip routing and network protocols
- Low power consumption: 1.8 watts per GFlop/s

Nodes

- 2GB shared RAM per node, soldered
- 13.6 GFlop/s per node
- Connections to 5 networks
- 32K L1 Cache
- 14 Stream Prefetching L2
- 8MB Shared L3

Racks

- 4096 cores per rack
- Standard cooling
- Cores per Rack far exceeds prior architectures
- Possible because of low power consumption
- 72 Racks give 1 PFLOP/s

Racks

Figure: Image from IBM Redbook (2)

Topology

Topology

- 3-D Torus Topology
- Global Collective Tree (Global Broadcasts)
- 10 Gigabit Ethernet (IO)
 - IO requests route through Global Collective Tree
- Global interrupt network
- JTAG control network

Specifications and Hardware

Comparison to BlueGene/L

Feature	BlueGene/L	BlueGene/P
Node		
Cores per node	2	4
Core Clock Speed (MHz)	700	850
Cache Coherence	Software	Hardware
L1 Cache / Private per core	32K	32K
L2 Cache / Private per core	14 stream	14 stream
	prefetching	prefetching
L3 Cache / Shared	4 MB Shared	8 MB Shared
Memory per Node (GB)	0.5 - 1	2
Main Memory Bandwidth (GB/s)	5.6	13.6
Peak Performance (GFlop/s per node)	5.6	13.6
Interconnects		
Torus Injection Bandwidth (GB/s)	2.1	5.1
Tree Bandwidth (MB/s)	700	1700

Specifications and Hardware

Node Hardware

000

Figure: Image from IBM Redbook (2)

Specifications and Hardware

000

Node Modes

- Nodes can be used in different modes:
 - Symmetric Multiprocessor mode 1 MPI Task, 4 threads each
 - Dual Node mode 2 MPI Tasks, 2 threads each
 - Virtual Node mode 4 MPI Tasks, 1 thread each

Benchmarks Overview

- Several types of benchmarks
 - HPCC Challenge Kernels single/parallel performance
 - Halo Benchmark Network and Communication
 - MPI Collective MPI performance
 - Target Scientific Applications Architecture Purpose

Benchmarks

We will look at an implementation of BG/P at Argonne National lab, Intrepid.

- Intrepid is IBM standard configuration.
- Intrepid has 40 racks.
- We will compare Intrepid to the Cray XT system at ORNL.

Cray XT Comparison

Feature	BlueGene/L	BlueGene/P	Cray XT3	Cray XT4/DC	Cray XT4/QC
Node					
Cores per node	2	4	2	2	4
Core Clock Speed (MHz)	700	850	2600	2600	2100
Cache Coherence	Software	Hardware	Hardware	Hardware	Hardware
L1 Cache / Private per core	32K	32K	64K	64K	64K
L2 Cache / Private per core	14 stream	14 stream	1M	1M	512K
	prefetching	prefetching			
L3 Cache / Shared	4 MB Shared	8 MB Shared	n/a	n/a	2 MB Shared
Memory per Node (GB)	0.5 - 1	2	4	4	8
Main Memory Bandwidth (GB/s)	5.6	13.6	6.4	10.6	12.8/10.6
Peak Performance (GFlop/s per node)	5.6	13.6	10.4	10.4	16.8
Interconnects					
Torus Injection Bandwidth (GB/s)	2.1	5.1	6.4	6.4	6.4
Tree Bandwidth (MB/s)	700	1700	n/a	n/a	n/a

HPCC Performance Table

			BGP	XT
		N	468000	937000
		NB	144	168
	Test	Metric		
DGEMM	Star	Avg GFLOP/s	2.4115	7.6004
	Single	GFLOP/s	2.4111	7.6759
STREAM	StarCopy	Avg GB/s	2.0789	2.3672
	StarScale	Avg GB/s	2.4038	1.3260
	StarAdd	Avg GB/s	2.3515	1.5252
	StarTriad	Avg GB/s	2.2441	1.5352
	SingleCopy	GB/s	3.8278	6.5867
	SingleScale	GB/s	3.6152	4.0444
	SingleAdd	GB/s	3.7085	4.4941
	SingleTriad	GB/s	3.7085	4.4742
RA OPT2	Star	Avg GUP/s	0.0042	0.0067
	Single	GUP/s	0.0067	0.0103
FFT	Star	Avg GFLOP/s	0.2729	0.4126
	Single	GFLOP/s	0.2885	0.5870
Comm	Ping-Pong Latency	Min, us	2.7490	6.6310
		Avg, us	3.5346	8.3476
		Max, us	4.1141	9.9391
	Ping-Pong Bandwidth	Min, GB/s	0.3745	1.2996
		Avg, GB/s	0.3852	1.6057
		Max, GB/s	0.3858	1.6792
	NOR Latency	us	5.4215	10.8004
	NOR Bandwidth	GB/s	0.1823	0.4093
	ROR Latency	us	6.0855	32,9361
	ROR Bandwidth	GB/s	0.0212	0.0603

Figure: Results of Single Processor and Embarrassingly Parallel Tests, as well as communication tests.

iviicrobenchmarks and kerneis

HPCC Performance

Comm	Ping-Pong Latency	Min, us	2.7490	6.6310
		Avg, us	3.5346	8.3476
		Max, us	4.1141	9.9391
	Ping-Pong Bandwidth	Min, GB/s	0.3745	1.2996
		Avg, GB/s	0.3852	1.6057
		Max, GB/s	0.3858	1.6792
	NOR Latency	us	5.4215	10.8004
	NOR Bandwidth	GB/s	0.1823	0.4093
	ROR Latency	us	6.0855	32.9361
	ROR Bandwidth	GB/s	0.0212	0.0603

Single Process, Embarassingly Parallel, Communication

- BG/P does not perform as well on single process/embarassingly parallel tests. Why?
- BG/P has a lower clock rate than Cray XT
- Cray XT also has more memory
- Cray XT also has larger problem size to compensate
- BG/P is strong when latency is low

Parallel Tests

Figure: Similar scaling. XT has higher clock rate, larger problem size.

Parallel Tests

Figure: Similar scaling. XT has higher clock rate, larger problem size.

- Communication benchmarks determine how different network parameters effect performance.
- Three parameters for Halo Benchmarks:
 - MPI Protocols
 - Process Mapping
 - Grid Selection
 - Identifies communication strengths/weaknesses

Halo Benchmark: MPI Protocols

Figure: MPI Protocol is largely unimportant.

Halo Benchmark: Process Mappings

Figure: Mapping is unimportant for low volumes, but is important as size grows.

Halo Benchmark: Grid Size

Figure: Performance is largely unrelated to processor grid size.

MPI Collective

- MPI Collective emphasises latency as problem sizes grow.
- Tests performance with MPI_SUM operation.
 - MPI_SUM reduces float values to a single value.
 - Modified version included to add double precision.
- B_CAST, a broadcast function, is also tested.

MPI Collective Performance

Figure: BG/P scales better than XT with double precision values.

MPI Collective Performance

Figure: BG/P scales better than XT thanks to Global Collective Tree.

TOP500 HP

TOP500

- With Linpack HPL Benchmark, BG/P ranked 74 on June 2008 TOP500.
- Ranked 5th overall on on Green500.

Application:

Sample Applications

- Several Department of Energy applications were used as benchmarks.
- Applications represent target domain of BG/P

•00

 Performance in these applications is higher priority than individual metrics. 000

Sample Applications

- BG/P is competitive at tasks with high communication cost.
- One example is the Parallel Ocean Program with load imbalances.

000

Application

Sample Applications cont.

- Some applications do not perform as well on BG/P
- The Community Atmospheric Model (CAM) is one example.
- Issues with CAM's performance are currently inherent to the program.

	BG/P	XT/QC
Cores	8192	30976
Measured Aggregate Power / HPL (kW)	63	1580
Per core (W)	7.7	51.0
Measured Aggregate Power / Normal (kW)	60	1500
Per core (W)	7.3	48.4
Peak Flop/s (Tflops/s)	27.9	260.2
HPL Rmax	21.9	205.0
HPL Flop/s Power Ratio (Mflops/s per W)	347.6	129.7
POP SYD @ 8192 cores	3.6	12.5
Aggregate power required (kW)	60.0	396.7
Approximate Cores for POP SYD of 12	40000	7500
Aggregate power required (kW)	293.0	363.2

- Power consumption is very low on BP/G
- Power consumption/performance can be low for scientific computing.

Summary

- BG/P is an IBM Supercomputer Architecture
- BG/P shows good performance in low latency conditions.
- BG/P scales for most applications.
- BG/P also has low power consumption.
- For some tasks, BG/P may have much lower performance.
- BG/P has very low power usage compared to other clusters for most applications.

References

- (1) S. Alam, R. Barrett, M. Bast, M.R. Fahey, J. Kuehn, C. McCurdy, J. Rogers, P. Roth, R. Sankaran, J.S. Vetter, P. Worley, and W. Yu, Early evaluation of ibm bluegene/p, High performance computing, networking, storage and analysis, 2008. sc 2008. international conference for, 2008Nov, pp. 1–12.
- (2) C. Sosa and B. Knudson, Ibm system blue gene solution: Blue gene/p application development, 2009.
 - http://www.redbooks.ibm.com/redbooks/pdfs/sg247287.pdf, Accessed: 9/26/2015.