Tugas Sistem Digital

Aritmatik, Code Converter

Tugas 1 (Aritmatik)

- Rancanglah Full Adder dengan input (A, B, Carry_in) dan output (Sum, Carry_out)
 - Buatlah Tabel Kebenarannya.
 - Tentukan fungsi logika untuk setiap output.
 - Buatlah rangkaian logikanya.
 - Buatlah VHDL nya.
- Rancanglah 4bit Adder dengan input (A, B, Carry_in) dan output (Sum, Carry_out) dan gunakan Full Adder yang telah dirancang sebelumnya.
 - Tentukan input dan output nya.
 - Buatlah rangkaian logikanya.
 - Buatlah VHDL nya.

Tugas 2 (Code Converter)

- Rancanglah decoder biner 5bit ke BCD 2 digit.
 - Input: 5 bit biner; Output: BCD 2 digit (satuan dan puluhan)
 - Buatlah Tabel kebenarannya.
 - Tentukan fungsi logika tiap outputnya.
 - Buatlah VHDL nya.
- Rancanglah decoder BCD 1 digit ke 7 segment.
 - Input: BCD 1 digit; output: 7 segment (A, B, C, D, E, F, G)
 - Buatlah table kebenarannya.
 - Tentukan fungsi logika tiap outputnya.
 - Buatlah VHDL nya.

BCD & 7 Segment

BCD

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

7 Segment

Praktikum Sistem Digital

Percobaan 2

2024

Tujuan

- 1. Mendesain rangkaian kombinasional 4bit Adder dengan 7 Segment menggunakan blok-blok fungsi pembangun.
- 2. Melakukan implementasi rangkaian kombinasional pada FPGA board.
- 3. Mengenal level abstraksi dalam perancangan digital.

Kegiatan Percobaan

- Implementasi BCD-to-7Segment pada FPGA board.
- Merancang BCD-to-7Segment dengan level abstraksi behavioral
- Membuat rangkaian 4bit Adder with 7Segment

f

е

Blok Pembangun

- 5-bit Biner to 2-digit BCD Decoder
- 4-bit Adder with Carry in
- BCD to 7-segment Decoder

Input dan Output

- Input:
 - Slide Switches
- Output:
 - LEDs
 - 7-Segment Displays

