Support Vector Machines

Emmanuel Jakobowicz

Goal of SVM

- SVM is a binary classifier
- Example:
 - Classify patients
 - Classify customers
- SVM is a supervised learning algorithm
- The dependent variable is binary

Linear Separators

 Binary classification can be viewed as the task of separating classes in feature space:

Linear Discriminant Function

• g(x) is a linear function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

• A hyper-plane in the feature space

 (Unit-length) normal vector of the hyper-plane:

$$\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

Linear Discriminant Function

- How would you classify these points using a linear discriminant function in order to minimize the error rate?
- Infinite number of answers!

denotes +1denotes -1

denotes +1

Linear Discriminant Function

 How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

Linear Discriminant Function

- How would you classify these points using a linear discriminant function in order to minimize the error rate?
- Infinite number of answers!

denotes +1

denotes +1

Linear Discriminant Function

 How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

Which one is the best?

Large Margin Linear Classifier

- The linear discriminant function (classifier) with the maximum margin is the best
- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
 - Robust to outliners and thus strong generalization ability

Classification Margin

- Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are support vectors.
- Margin ρ of the separator is the distance between support vectors.

Maximum Margin Classification

- Maximizing the margin is good according to intuition.
- Implies that only support vectors matter; other training examples are ignorable.

1

Large Margin Linear Classifier

We know that

$$\mathbf{w}^T \mathbf{x}^+ + b = 1$$
$$\mathbf{w}^T \mathbf{x}^- + b = -1$$

The margin width is:

$$M = (\mathbf{x}^{+} - \mathbf{x}^{-}) \cdot \mathbf{n}$$
$$= (\mathbf{x}^{+} - \mathbf{x}^{-}) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

Linear SVMs Mathematically

• Then we can formulate the quadratic optimization problem:

Find **w** and *b* such that $\rho = \frac{2}{\|\mathbf{w}\|} \text{ is maximized}$ and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find w and b such that

 $\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$ is minimized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Solving the Optimization Problem

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all $(\mathbf{x}_{i}, y_{i}), i=1..n$: $y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) \ge 1$

- Need to optimize a *quadratic* function subject to *linear* constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- The solution involves constructing a *dual problem* where a *Lagrange multiplier* α_i is associated with every inequality constraint in the primal (original) problem:

Find $\alpha_1...\alpha_n$ such that

 $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i \mathbf{x}_i^T \mathbf{x}_j$ is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i

The Optimization Problem Solution

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need **w** explicitly):

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point x and the support vectors x_i
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^T \mathbf{x}_i$ between all training points.

15

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.

C is an hyper-parameter

Soft Margin Classification Mathematically

• The old formulation:

Find **w** and **b** such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all $(\mathbf{x}_{i}, y_{i}), i=1..n$: $y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) \ge 1$

Modified formulation incorporates slack variables:

Find \mathbf{w} and \mathbf{b} such that $\mathbf{\Phi}(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} + C\Sigma \xi_{i} \quad \text{is minimized}$ and for all $(\mathbf{x}_{i}, y_{i}), i=1..n$: $y_{i} (\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}, \quad \xi_{i} \geq 0$

 Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

17

Non-linear SVMs

 Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

19

The "Kernel Trick"

- The linear classifier relies on inner product between vectors K(x_i,x_i)=x_i^Tx_i
- If every datapoint is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \to \phi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{\Phi}(\mathbf{x}_i)^{\mathsf{T}} \mathbf{\Phi}(\mathbf{x}_i)$$

- A *kernel function* is a function that is equivalent to an inner product in some feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^\mathsf{T} \mathbf{x}_j)^2$

Need to show that $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{\Phi}(\mathbf{x}_i)^T \mathbf{\Phi}(\mathbf{x}_i)$:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j})^{2} = 1 + x_{i1}^{2}x_{j1}^{2} + 2x_{i1}x_{j1}x_{i2}x_{j2} + x_{i2}^{2}x_{j2}^{2} + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} = 1 + x_{i1}^{2} \sqrt{2} x_{j1}^{2} x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2}$$

$$= [1 \ x_{i1}^{2} \sqrt{2} x_{i2}x_{i2}^{2} \ x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{i2}^{2}]^{\mathsf{T}} [1 \ x_{j1}^{2} \sqrt{2} x_{j1}x_{j2}^{2} \ x_{j2}^{2} \sqrt{2}x_{j1}^{2} \sqrt{2}x_{j2}^{2}] = \Phi(\mathbf{x}_{i})^{\mathsf{T}} \Phi(\mathbf{x}_{i}), \quad \text{where } \Phi(\mathbf{x}) = [1 \ x_{i1}^{2} \sqrt{2} x_{i1}x_{i2}^{2} \ x_{i2}^{2} \sqrt{2}x_{i1}^{2} \sqrt{2}x_{j2}^{2}]$$

• Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\phi(x)$ explicitly).

What Functions are Kernels?

- For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^\mathsf{T} \phi(\mathbf{x}_j)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

 Semi-positive definite symmetric functions correspond to a semipositive definite symmetric Gram matrix:

K=	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$	 $K(\mathbf{x}_1,\mathbf{x}_n)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$	$K(\mathbf{x}_2,\mathbf{x}_n)$
	$K(\mathbf{x}_n, \mathbf{x}_1)$	$K(\mathbf{x}_n, \mathbf{x}_2)$	$K(\mathbf{x}_n, \mathbf{x}_3)$	 $K(\mathbf{x}_n, \mathbf{x}_n)$

For any non-zero vector x, $x^TKx>0$

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^p$
- Gaussian (radial-basis function network):

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

• Sigmoid: $K(\mathbf{x}_i, \mathbf{x}_i) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_i + \beta_1)$

22

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for *C* (soft)
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

23

Some Issues

- Choice of kernel
 - Gaussian or polynomial kernel are the mostly used non-linear kernels
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Why Is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- The support vectors are the essential or critical training examples —
 they lie closest to the decision boundary
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

Weakness of SVM

- It is sensitive to noise
 - A relatively small number of mislabeled examples can dramatically decrease the performance
- It only considers two classes
 - how to do multi-class classification with SVM?
 - Answer:
 - 1) with output arity m, learn m SVM's
 - SVM 1 learns "Output==1" vs "Output != 1"
 - SVM 2 learns "Output==2" vs "Output != 2"
 - •
 - SVM m learns "Output==m" vs "Output != m"

2)To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97], principal component analysis [Schölkopf et al. '99], etc.
- Most popular optimization algorithms for SVMs use *decomposition* to hill-climb over a subset of α_i 's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

Summary: Support Vector Machine

- 1. Large Margin Classifier
 - Better generalization ability & less over-fitting
- 2. The Kernel Trick
 - Map data points to higher dimensional space in order to make them linearly separable.
 - Since only dot product is used, we do not need to represent the mapping explicitly.

SVM resources

- Many references here: http://www.kernel-machines.org
- One of the first SVM software: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- SVM are available in R and python
 - In R: package e1071
 - In python: library scikit-learn

29

WORKSHOP

- We work on the titanic dataset
- Either with R or python, run a SVM model on the training set and test it with the testing set
- The dependent variable is the survival variable

WORKSHOP – Parameters tuning

- Using python scikit-learn or R e1071, use a grid search to obtain the best parameters for your SVM model
- Choose an apropriate metric to fit parameters
- Obtain the ROC curve

31

How to tune Parameters of SVM?

- Here is the list of parameters
- sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None)
- Important parameters are C, kernel and gamma
- C is the regularization parameter
 - Penalty parameter C of the error term. It also controls the trade off between smooth decision boundary and classifying the training points correctly.
- Kernel is the type of kernel
- Gamma is kernel parameter
 - Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. Higher the value of gamma, will try to exact fit the as per training data set i.e. generalization error and cause over-fitting problem.

Use np.meshgrid to build a grid and project the predicted classes

Try to modify the 3 main parameters to understand what happens

Work with the iris dataset

Pros and cons

Pros:

- It works really well with clear margin of separation
- It is effective in high dimensional spaces.
- It is effective in cases where number of dimensions is greater than the number of samples.
- It uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

Cons:

- It doesn't perform well, when we have large data set because the required training time is higher
- It also doesn't perform very well, when the data set has more noise i.e. target classes are overlapping
- SVM doesn't directly provide probability estimates, these are calculated using an expensive five-fold cross-validation. It is related SVC method of Python scikit-learn library.