Graph Learning SD212 3. Graph Clustering

Thomas Bonald

2023 - 2024

Motivation

How to identify relevant groups of nodes in a graph?

This is the problem of **graph clustering**, also known as **community detection** in the context of social networks

Characters of Les Miserables

Graph clustering

The clustering of a graph G = (V, E) is any function $C: V \to \{1, \dots, K\}$

In general, K is unknown (unlike K-means) and we look for the best clustering **irrespective** of the value of K

Outline

- 1. Modularity
- 2. The Louvain algorithm
- 3. Cluster strengths
- 4. Resolution
- 5. Extensions

Fitness of a clustering

Let G = (V, E) be an undirected graph with adjacency matrix A. The **fitness** of clustering C is the fraction of edges within clusters:

$$F(C) = \frac{1}{v} \sum_{i,j \in V} A_{ij} \delta_{C(i),C(j)}$$

where $v = 1^T A1$ is the volume of the graph

Modularity

The **modularity** of clustering *C* is defined by:

$$Q(C) = \frac{1}{v} \sum_{i,j \in V} \left(A_{ij} - \frac{d_i d_j}{v} \right) \delta_{C(i),C(j)}$$

Cluster-level expression

In the absence of self-loops, the modularity can be written:

$$Q(C) = \sum_{k} \frac{m_{k}}{m} - \sum_{k} \left(\frac{v_{k}}{v}\right)^{2}$$

with m_k the **size** (number of edges) and v_k the **volume** (total degree) of cluster k

The Simpson index (1949)

Let p_1, \ldots, p_K be any probability distribution over $\{1, \ldots, K\}$ Simpson's index is a measure of **concentration** of this distribution:

$$S = \sum_{k=1}^{K} p_k^2$$

Aggregation

The modularity is preserved by ${\bf aggregation}$ Edges within clusters $\rightarrow {\bf self\text{-}loops}$ in the aggregate graph

Random walk

Let X_t, Y_t be two independent random walks in the graph The modularity can be written:

$$Q(C) = P(C(X_{t+1}) = C(X_t)) - P(C(X_t) = C(Y_t))$$

Outline

- 1. Modularity
- 2. The Louvain algorithm
- 3. Cluster strengths
- 4. Resolution
- 5. Extensions

Maximizing modularity

Consider the following problem:

$$\max_{C} Q(C)$$

- ► This problem is combinatorial!
- NP-hard

The Louvain algorithm¹

Greedy algorithm:

- 1. (Initialization) $C \leftarrow identity$
- 2. (Maximization) Consider each node sequentially and change its cluster if the modularity Q(C) increases
- 3. (Aggregation) Aggregate the graph and go to step 2

¹Blondel, Guillaume, Lambiotte & Lefebvre 2008

Some observations

- ➤ The outcome depends on the **order** in which nodes are considered in the maximization
- ► The time complexity of the maximization is O(m) per iteration, where m is the number of edges
- ▶ A **tolerance** parameter can added to speed up the algorithm
- Some variants exist (e.g., Leiden algorithm¹)

¹Traag, Waltman & Van Eck 2019

Example

Clustering of Openflights by Louvain (3,097 nodes, 36,386 edges)

Outline

- 1. Modularity
- 2. The Louvain algorithm
- 3. Cluster strengths
- 4. Resolution
- 5. Extensions

Cluster strength

The **strength** of cluster *k* is defined by:

$$\sigma_k = \frac{\text{total internal degree}}{\text{total degree}} = \frac{2m_k}{v_k}$$

Link with modularity

$$Q(C) = \sum_{k} \pi_{k} (\sigma_{k} - \pi_{k})$$

 $\sigma_k =$ probability of staying in cluster k after one move $\pi_k =$ probability of being in cluster k

Example

Cluster strengths of Openflights (3,097 nodes, 36,386 edges)

Outline

- 1. Modularity
- 2. The Louvain algorithm
- 3. Cluster strengths
- 4. Resolution
- 5. Extensions

The resolution limit of modularity

Recall that

$$Q(C) = \sum_{k} \frac{m_{k}}{m} - \sum_{k} \left(\frac{v_{k}}{v}\right)^{2}$$

For a large number of clusters of (approximately) equal weights,

$$\sum_{k} \left(\frac{v_k}{v}\right)^2 \approx \frac{1}{K} \approx 0$$

Modularity is not able to detect small clusters!

Modularity with resolution

Parameter $\gamma > 0$ that controls the **fit-diversity** trade-off:

$$Q_{\gamma}(C) = \frac{1}{v} \sum_{i,j \in V} \left(A_{ij} - \gamma \frac{d_i d_j}{v} \right) \delta_{C(i),C(j)}$$

$$\gamma = 2$$

Outline

- 1. Modularity
- 2. The Louvain algorithm
- 3. Cluster strengths
- 4. Resolution
- 5. Extensions

Case of weighted graphs

Let G = (V, E) be a **weighted** graph with adjacency matrix A Let w = A1 be the vector of node weights The **modularity** of clustering C is defined by:

$$Q(C) = \frac{1}{v} \sum_{i,j \in V} \left(A_{ij} - \frac{w_i w_j}{v} \right) \delta_{C(i),C(j)}$$

Case of directed graphs

Let G = (V, E) be a **directed** graph with adjacency matrix A. The **modularity** of clustering C is defined by²:

$$Q(C) = \frac{1}{v} \sum_{i,j \in V} \left(A_{ij} - \frac{d_i^+ d_j^-}{v} \right) \delta_{C(i),C(j)}$$

Cluster-level expression

The modularity can be written:

$$Q(C) = \sum_{k} \frac{m_k}{m} - \sum_{k} \frac{v_k^+ v_k^-}{v}$$

with m_k the **size** (number of edges) and v_k^+, v_k^- the total out-degrees and in-degrees of cluster k

Cluster strength

The **strength** of cluster k is defined by:

$$\sigma_k = \frac{\text{total internal degree}}{\text{total out-degree}} = \frac{m_k}{v_k^+}$$

= probability of staying in cluster k after one move

Link with modularity

The modularity can be written:

$$Q(C) = \sum_{k} \pi_{k}^{+} (\sigma_{k} - \pi_{k}^{-})$$

 σ_k = probability of staying in cluster k after one move π_k^+, π_k^- = probability of sampling cluster k from out/in-degrees

Bipartite graphs

Seen as undirected...

$$A = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

or directed³...

$$A = \begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix}$$

Co-clustering!

³Barber 2007

Summary

Graph clustering

- ▶ Notion of **modularity** → quality metric
- ightharpoonup The **Louvain** algorithm ightharpoonup applicable to massive graphs
- lacktriangle The **resolution** parameter ightarrow to explore different scales
- Applicable to weighted, directed and bipartite graphs

