Análisis de Tendencias de Compra

Proyecto de Ciencia de Datos

Introducción

Este proyecto tiene como objetivo analizar el comportamiento de compra de los consumidores utilizando un dataset de transacciones. Buscamos descubrir patrones clave que puedan ayudar a mejorar estrategias de ventas, marketing y atención al cliente en el sector minorista.

A través de la exploración de datos, limpieza, análisis y visualización, extraeremos información valiosa para la toma de decisiones estratégicas.

Objetivos del Proyecto

- ✓ Identificar qué categorías de productos tienen mayor demanda.
- ✓ Analizar las diferencias en el comportamiento de compra según el género.
- ✓ Evaluar el impacto de las estaciones del año en los montos de compra.
- ✓ Determinar los métodos de pago más utilizados.
- ✓ Extraer insights para mejorar estrategias de venta y marketing.

Preguntas Clave

- ☆ ¿Cuál es la categoría de productos más comprada?
- ☆ ¿Existe diferencia en el comportamiento de compra entre géneros?
- ☆ ¿Durante qué temporada del año se gasta más dinero?
- ☆ ¿Cuál es el método de pago preferido por los clientes?
- ☆ ¿En qué rango de precios se concentran la mayoría de las compras?

Público Objetivo

- ★ Empresas de Retail y E-commerce: Para optimizar estrategias de ventas y promociones.
- ★ Departamentos de Marketing: Para diseñar campañas dirigidas según el comportamiento del consumidor.
- Analistas de Datos: Para identificar tendencias y mejorar la toma de decisiones basada en datos.
- ***** Equipos Financieros: Para mejorar la gestión de ingresos y previsiones de ventas.

Metodología y Herramientas Utilizadas

- Lenguaje de Programación: Python
- **Bibliotecas Utilizadas:** Pandas, Seaborn, Matplotlib
- **☆** Procesos Realizados:
 - Carga y exploración de datos.
 - Limpieza y transformación de datos.
 - Análisis exploratorio con visualización de datos.
 - Generación de conclusiones basadas en hallazgos.

Conclusiones Principales

- Categoría más comprada: 'Clothing' es la categoría con mayor número de compras, indicando una alta demanda en ese segmento.
- impliferencias de compra por género: 'Male' es el género que realiza más compras, lo que sugiere estrategias de marketing específicas.
- Temporada de mayor gasto: 'Fall' es la estación del año con el gasto promedio más alto, clave para campañas promocionales.
- Método de pago más utilizado: 'Credit Card' es la forma de pago preferida por los consumidores, lo que destaca su importancia en plataformas de venta.
- S Rango de montos de compra: La mayoría de las compras están entre \$20.00 a \$100.00 USD, lo que sugiere el rango óptimo para promociones y descuentos.

Q Análisis Avanzado:

Enfoque del Análisis: Supervisado y No Supervisado

En este trabajo se propone realizar dos tipos de análisis de datos complementarios, utilizando técnicas de Machine Learning:

1. Análisis No Supervisado

También se aplicará un análisis no supervisado, específicamente **clustering** (agrupamiento), para identificar patrones naturales o grupos de clientes con características similares, sin necesidad de una variable objetivo.

- **Objetivo:** explorar la estructura subyacente de los datos y segmentar a los clientes en grupos homogéneos.
- Algoritmo utilizado: K-Means.
- Utilidad: descubrir perfiles de usuarios y mejorar la personalización de estrategias comerciales o de fidelización.

2. Q Análisis Supervisado

Se aplicarán modelos de aprendizaje supervisado con el objetivo de **predecir si un cliente utilizará un código promocional**, basándonos en sus características (edad, método de pago, temporada, etc.).

- **Objetivo:** construir un modelo predictivo que permita anticipar comportamientos de los clientes.
- Algoritmos utilizados: Árbol de Decisión
- **Utilidad:** identificar segmentos con mayor propensión a usar promociones, lo que puede guiar campañas de marketing más efectivas.

1)Segmentación de Clientes

Con el objetivo de obtener una comprensión más profunda del comportamiento de los clientes, se aplicó un modelo de clustering no supervisado (K-Means) sobre los datos de compra. Este enfoque permitió identificar grupos de clientes con características y patrones de consumo similares, lo cual aporta valor para diseñar estrategias de marketing personalizadas.

Metodología

Se seleccionaron las siguientes variables para construir los perfiles de cliente:

Género

Temporada de compra

Método de pago

Categoría del producto

Monto de compra

Las variables categóricas fueron transformadas con One-Hot Encoding y todos los datos fueron estandarizados antes del entrenamiento. Se eligió un valor de k = 4 para segmentar a los clientes en cuatro grupos distintos.

Resultados del Modelo

Cluster	Género Predominante	Temporada Más Común	Método de Pago Principal	Gasto Promedio (USD)
0	Female	Fall	Credit Card	61.18
1	Male	Winter	Cash	59.93
2	Female	Spring	Venmo	58.94
3	Female	Summer	Bank Transfer	59.87

Conclusiones Estratégicas por Cluster

Cluster 0: Mujeres que compran principalmente en otoño y prefieren pagar con tarjeta de crédito. Ideal para promociones de temporada con descuentos bancarios.

Cluster 1: Hombres que compran en invierno y prefieren pagar en efectivo. Potenciales compradores tradicionales o de tiendas físicas.

Cluster 2: Mujeres que compran en primavera y pagan con Venmo. Perfil joven o digital, ideal para campañas por redes sociales.

Cluster 3: Mujeres que compran en verano y usan transferencias bancarias. Potencialmente más planificadas; pueden responder a ofertas anticipadas o exclusivas.

2) Análisis con Árbol de Decisión

En este proyecto se abordó la tarea de clasificar si un cliente usará un código promocional o no, a partir de variables demográficas y de comportamiento de compra. El proceso incluyó las siguientes etapas:

1. Preparación de datos:

- Se seleccionaron variables predictoras relevantes y la variable objetivo, la cual fue codificada binariamente (1 = usa código promocional, 0 = no usa).
- Las variables categóricas fueron codificadas mediante one-hot encoding para ser compatibles con el modelo.

2. Entrenamiento inicial y evaluación:

- Se entrenó un árbol de decisión con profundidad máxima limitada para evitar sobreajuste.
- Se evaluó el modelo usando un split de entrenamiento y prueba, obteniendo una accuracy cercana al 74%, con un buen desempeño en identificar clientes que usaron código, pero cierta dificultad en discriminar quienes no lo usaron.

3. Validación cruzada:

- Se implementó validación cruzada 5-fold para obtener una evaluación más estable y robusta del modelo.
- Se observó que el rendimiento promedio fue similar (aprox. 74-75%), pero con alta variabilidad entre folds, indicando cierta inestabilidad.

4. Ajuste de hiperparámetros:

- Se aplicó Grid Search para explorar combinaciones de parámetros del árbol (profundidad, criterio, tamaño mínimo de splits y hojas).
- Los mejores parámetros encontrados fueron coincidentes con la configuración inicial, sin mejora significativa en la métrica de accuracy.

5. Conclusiones:

- El modelo de árbol de decisión simple es capaz de identificar bien los clientes que usan código promocional, pero presenta un número considerable de falsos positivos.
- La inestabilidad observada sugiere que el modelo es sensible a la partición de los datos.
- Para mejorar el desempeño, se recomienda explorar modelos más complejos como Random Forest, aplicar técnicas de balanceo de clases o realizar ingeniería adicional de variables.

- Q Conclusiones clave:
- Método de pago y preferencia influyen en el comportamiento:
 - Los clientes que no utilizan PayPal y prefieren medios como Venmo o tarjetas de crédito/débito presentan una mayor probabilidad de usar un código promocional.
 - Este comportamiento puede asociarse a un perfil más **familiarizado con herramientas digitales** y **beneficios online**, como promociones y cupones.
- 🖒 La edad es un factor relevante:
 - El modelo detectó que los usuarios menores a 35 años son más propensos a utilizar códigos promocionales.
 - Esto puede deberse a una **mayor sensibilidad al precio**, hábito de buscar descuentos o mayor interacción con canales promocionales digitales.
- - Gracias a la interpretación del árbol de decisión, es posible **identificar segmentos ideales para campañas promocionales**, como:
 - o Jóvenes adultos (menos de 35 años),
 - Que no utilizan PayPal,
 - o Y que tienen preferencia por medios digitales de pago.

✓ Valor del modelo:

 Más allá del rendimiento (accuracy ~76%), este modelo permite interpretar fácilmente las reglas de decisión, lo que lo convierte en una herramienta útil para áreas de marketing, fidelización o planificación de campañas.