1. 클라우드와 인공지능 서비스 1강. 인공지능의 이해

학습목표

- 인공지능의 짧은 역사를 열거할 수 있다.
- 인공지능, 머신러닝, 딥러닝의 개념과 관계를 설명할 수 있다.
- 인공지능을 구분하여 설명할 수 있다.

학습내용

- 인공지능의 짧은 역사
- 인공지능, 머신러닝, 딥러닝
- 인공지능의 구분

■ 세상을 잇(IT)다!

• 인간의 지능과 기계의 지능을 비교하기 어려움

사람이만든 컴퓨터,기계

계산능력? 인간다움? 공감능력? 기억능력?

• 기억력은 인간에게 지능의 척도로 여겨지기도 하지만, 컴퓨터의 입장에서는 전혀 의미가 없음

원주율

"3.14159565359....."

사람

원주율 백자리까지 외울 수 있음

컴퓨터

AI의 기초를 다진 존 매카시

"Intelligence"를 목표를 성취하는 능력에서 계산적인 부분이라고 정의

[출처] https://news.skhynix.co.kr/1103

A.I의 궁극적인 목표

- 인간을 흉내 내는 것이 아니라, 과제를 효과적으로 합리적으로 해결하는데 중점
- 이를 위해 인간의 방식을 참고(뇌과학,심리학,수학/통계/경제학, 언어학, 컴퓨터 과학)

1. 인공지능의 짧은 역사

- 1950-1980년대 : "논리와 규칙 기반의 전문가 시스템
 - ✔ 현실의 문제는 명확하게 정의되지 않는 경우가 대부분
- 1980년 이후 : 인공신경망(Neural Network), 머신러닝(Machine Learning)
 - ✓ 스스로 새로운 것을 학습하고 해답을 찾아 실행하는 능력을 원함
 - ✓ 컴퓨팅 파워와 데이터의 부족으로 스스로 학습시킬 수준이 안됨

- 1980년 이후 : 딥러닝의 등장
 - ✓ 사람이 사전 작업을 하지 않아도, 기계가 데이터를 분석해서 이미지 속의 사물을 구별하게 하는 것이 가능해짐
- 머신러닝(Machine Learning)

입력	특징 추출	분류	출력
고양이	귀의 형태 입의 구조 수염 유무 털의 형태 ·	학습	분류
	"인간의 개입"		

• 딥러닝(Deep Learning)

• 과거에는 어려웠던 일이 현재는 어떻게 가능할까?

- 2. 인공지능, 머신러닝, 딥러닝
 - 인공지능
 - ✔ 인간이 가진 지능능력을 컴퓨터를 통해 구현함으로써 문제해결
 - ✓ 학습 능력, 추론 능력, 지각 능력, 자연어의 이해 능력

₫ 생각해보기

• 인공지능, 머신러닝, 딥러닝의 관계

• 머신러닝과 딥러닝

[출처] Mathworks

	머신러닝	딥러닝
훈련 데이터 셋의 크기	Small	Large
사람의개입필요 특징점 추출	Yes	No
사용 가능한 분류기의 수	Many	Few
훈련 시간	Short	Long

3. 인공지능의 구분

약한 인공지능(Weak AI)	강한 인공지능(Strong AI)
• 특정 문제의 해결	• 사람처럼 사고
• 지능이 있는 것처럼 프로그래밍	• 지능을 가질 수 있도록 프로그래밍
• 인간의 두뇌의 특정한 일부 기능을 모사 하여 특정 목적에 유용한 제한된 지능	• 인간두뇌의 대체 가능한 수준으로 다목 적 과제 수행가능한 범용적 지능
• 데이터 패턴의 해독	• 빅데이터 기반의 분석 및 자체 딥러닝
• 프로그래밍 기반의 로봇 제어	• 인간과의 게임(바둑 등 수준) 수행

• 현재

[출처] DARPA

- ✔ 왜 이런 결론이 났을까?
- ✔ 다른 것은 왜 안되는 걸까?
- ✓ 어떻게 성공한 건가?
- ✔ 어떻게 실패한 건가?
- ✓ 이를 신뢰해도 되는가?
- ✓ 에러를 어떻게 수정하는가?

• 미래

[출처] DARPA

- ✓ 결론 과정을 이해할 수 있음
- ✓ 성공한 이유를 이해할 수 있음
- ✓ 실패한 원인을 파악할 수 있음
- ✔ 신뢰할 수 있음

클라우드 기반의 AI 서비스 개발 01-1

- ✓ 에러가 난 이유를 알 수 있음
- 설명 가능한 AI(eXplainable AI, XAI)
 - ✓ XAI는 의사 결정과 결론, 예측을 하는 모델이 제대로 판단하고 있는지 증 빙
 - ✔ 딥러닝의 윤리, 규정, 신뢰성 요소와 관련

평가하기

- 1. 인공지능의 성공(발전) 요인으로 볼 수 없는 것은?
 - ① 컴퓨팅 파워
 - ② 빅데이터의 대중화
 - ③ 딥러닝의 등장
 - ④ 사람의 개입이 증가
 - 정답 : ④번

해설: 인공지능의 성공요인은 컴퓨팅 파워, 빅데이터, 인공지능(딥러닝) 기술의 발전 등이며, 사람의 개입은 최소화되었습니다.

2	당러닝과	머신러닝을	비교하여	비카에	전적하	다어르	고르시오
۷.	머디어퍼		-175-01-1	1'1'-	721	1' 1 =	<u></u>

1	은	보다	훈련	시간(Training	time)o]	짧다.

- ② 은 보다 고성능의 컴퓨터와 많은 데이터가 필요하다.
- 정답 : ① 머신러닝/딥러닝 ② 딥러닝/머신러닝. ③ 딥러닝/머신러닝

학습정리

- 1. 인공지능의 짧은 역사
 - 1950 : 전문가 시스템
 - 1980 : 인공신경망과 머신러닝
 - 2012 : 딥러닝 등장
- 2. 인공지능, 머신러닝, 딥러닝
 - 인공지능은 인간이 가진 지적 능력을 컴퓨터를 통해 구현함으로써 문제 해결
 - 머신러닝과 딥러닝의 차이 : 훈련 데이터 셋의 크기, 특징점 추출 유무, 훈련 시간, 정확도 등
- 3. 인공지능의 구분
 - 약한 인공지능과 강한 인공지능
 - 설명 가능한 인공지능(XAI)

