

DINFK

Linear regression and Optimisation

Introduction to Machine Learning - Tutorial 2

Piersilvio De Bartolomeis

Simplified diagram of supervised learning

Mathematically, convexity is the function property that guarantees local = global minimum

• 0-th order condition (if and only if): $L(\lambda w + (1-\lambda)v) \le \lambda L(w) + (1-\lambda)L(v)$ true function connecting any $w, v \le 1$ linear function connecting two points $x, y \le 1$

Mathematically, convexity is the function property that guarantees local = global minimum

• 0-th order condition (if and only if): $L(\lambda w + (1-\lambda)v) \leq \lambda L(w) + (1-\lambda)L(v)$ true function connecting any $w,v \leq 1$ linear function connecting two points x,y

1st order condition (if and only if): $L(v) \ge L(w) + \nabla L(w)^{\top} (v - w)$ value at any v of tangent line at any $w \le \text{true value at } v$

Mathematically, convexity is the function property that guarantees local = global minimum

• 0-th order condition (if and only if):
$$L(\lambda w + (1 - \lambda)v) \le \lambda L(w) + (1 - \lambda)L(v)$$

true function connecting any $w, v \leq$

linear function connecting two points x, y

1st order condition (if and only if):

$$L(v) \ge L(w) + \nabla L(w)^{\mathsf{T}} (v - w)$$

value at any v of tangent line at any $w \leq true$ value at v

2nd order condition (if and only if):

Hessian
$$\nabla^2 L(w) \geq 0$$

non-negative curvature at every w

(i) Define opt. problem:
$$w^* = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2n} ||y - \Phi w||^2$$

(i) Define opt. problem:
$$w^* = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2n} \|y - \Phi w\|^2$$

(ii) Compute gradient:
$$\nabla_w L(w) = \frac{1}{n} (\Phi^T \Phi w - \Phi^T y)$$

(i) Define opt. problem:
$$w^* = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2n} \|y - \Phi w\|^2$$

(ii) Compute gradient:
$$\nabla_w L(w) = \frac{1}{n} (\Phi^T \Phi w - \Phi^T y)$$

(iii) Show Hessian is positive definite:
$$\nabla_w^2 L(w) = \frac{1}{n} \Phi^T \Phi > 0$$

(i) Define opt. problem:
$$w^* = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2n} \|y - \Phi w\|^2$$

(ii) Compute gradient:
$$\nabla_w L(w) = \frac{1}{n} (\Phi^T \Phi w - \Phi^T y)$$

(iii) Show Hessian is positive definite:
$$\nabla_w^2 L(w) = \frac{1}{n} \Phi^T \Phi > 0$$

(iv) Set gradient to zero:
$$\nabla_w L(w^*) = 0 \implies w^* = (\Phi^T \Phi)^{-1} \Phi^T y$$

This week so far

This week so far

This week so far

Function class

- linear
- polynomial
- trigonometric

Training loss

- squared loss
- mae loss
- huber loss

Optimisation

- gradient descent
- momentum
- adaptive methods

What to do if we want to fit $\hat{f}(x) = w_0 + w_1 x + w_2 x^2$?

(i) Define $\phi(x) = [1 \ x \ x^2]^T$

(i) Define
$$\phi(x) = [1 \ x \ x^2]^{\mathsf{T}}$$

(ii) We can then write:
$$\hat{f}(x) = w^{\mathsf{T}} \phi(x)$$

(i) Define
$$\phi(x) = [1 \ x \ x^2]^{\mathsf{T}}$$

(ii) We can then write:
$$\hat{f}(x) = w^{\mathsf{T}} \phi(x)$$

(iii) The design matrix becomes
$$\Phi = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}$$

(i) Define
$$\phi(x) = [1 \ x \ x^2]^{\mathsf{T}}$$

(ii) We can then write:
$$\hat{f}(x) = w^{\mathsf{T}} \phi(x)$$

(iii) The design matrix becomes
$$\Phi = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}$$

(4) Set gradient to zero (as in the linear case):
$$\nabla_w L(w^*) = 0 \implies w^* = (\Phi^T \Phi)^{-1} \Phi^T y$$

How does our fit look like? $\hat{f}(x) = \phi(x)^{\mathsf{T}} w^*$

What to do if we want to fit $\hat{f}(x) = w_1 \sin(x) + w_2 \cos(x)$?

(i) Define $\phi(x) = [\sin(x) \cos(x)]^T$

(i) Define
$$\phi(x) = [\sin(x) \cos(x)]^{\mathsf{T}}$$

(ii) We can then write:
$$\hat{f}(x) = w^{\mathsf{T}} \phi(x)$$

(i) Define
$$\phi(x) = [\sin(x) \cos(x)]^{\mathsf{T}}$$

(ii) We can then write:
$$\hat{f}(x) = w^{\mathsf{T}} \phi(x)$$

(iii) The design matrix becomes
$$\Phi = \begin{pmatrix} \sin(x_1) & \cos(x_1) \\ \vdots & \vdots \\ \sin(x_n) & \cos(x_n) \end{pmatrix}$$

(i) Define
$$\phi(x) = [\sin(x) \cos(x)]^T$$

(ii) We can then write:
$$\hat{f}(x) = w^{\mathsf{T}} \phi(x)$$

(iii) The design matrix becomes
$$\Phi = \begin{pmatrix} \sin(x_1) & \cos(x_1) \\ \vdots & \vdots \\ \sin(x_n) & \cos(x_n) \end{pmatrix}$$

(4) Set gradient to zero (as in the linear case):
$$\nabla_w L(w^*) = 0 \implies w^* = (\Phi^T \Phi)^{-1} \Phi^T y$$

How does our fit look like? $\hat{f}(x) = \phi(x)^{\mathsf{T}} w^*$

How does our fit look like? $\hat{f}(x) = \phi(x)^{\mathsf{T}} w^*$

Recap from this week: Gradient descent algorithm

Gradient descent algorithm to minimize L(w)

Start at initial w^0

At each step t, $w^{t+1} = w^t + \eta \nabla_w L(w^t)$

Stop e.g. when $|L(w^{t+1}) - L(w^t)| \le \epsilon$

Output $\hat{w} = w^{final}$

Recap from this week: Gradient descent algorithm

Gradient descent algorithm to minimize L(w)

Start at initial w^0

At each step t, $w^{t+1} = w^t + \eta \nabla_w L(w^t)$

Stop e.g. when $|L(w^{t+1}) - L(w^t)| \le \epsilon$

Output $\hat{w} = w^{final}$

Linear approximation for the loss value at step t + 1

$$\underline{L(w^{t+1})} = L(w^t - \eta \ \nabla L(w^t)) \approx L(w^t) - \eta \left\langle \nabla L(w^t), \nabla L(w^t) \right\rangle < \underline{L(w^t)}$$

Recap from this week: Gradient descent algorithm

Gradient descent algorithm to minimize L(w)

Start at initial w^0

At each step t, $w^{t+1} = w^t + \eta \nabla_w L(w^t)$

Stop e.g. when $|L(w^{t+1}) - L(w^t)| \le \epsilon$

Output $\hat{w} = w^{final}$

Linear approximation for the loss value at step t + 1

the negative gradient direction is a descent direction

for small enough stepsize η

- Let's consider a very simple model $f(w) = \frac{1}{2} w^{\mathsf{T}} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$
- Question: when does gradient descent converge and how fast?

- Let's consider a very simple model $f(w) = \frac{1}{2} w^{\top} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$
- Question: when does gradient descent converge and how fast?

- Let's consider a very simple model $f(w) = \frac{1}{2} w^{\top} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$
- Question: when does gradient descent converge and how fast?

- Let's consider a very simple model $f(w) = \frac{1}{2} w^{\mathsf{T}} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$
- Question: when does gradient descent converge and how fast?

$$f(w) = \frac{1}{2} w^{\mathsf{T}} A w$$
, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$

• Let's consider a very simple model $f(w) = \frac{1}{2} w^{\mathsf{T}} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$

- Let's consider a very simple model $f(w) = \frac{1}{2} w^{\mathsf{T}} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$
- Gradient descent converges for learning rate small enough, i.e. $\eta < \frac{2}{\lambda_d}$

- Let's consider a very simple model $f(w) = \frac{1}{2} w^{\mathsf{T}} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$
- Gradient descent converges for learning rate small enough, i.e. $\eta < \frac{2}{\lambda_d}$
- How should we choose the learning rate? $\eta^* = \frac{2}{\lambda_1 + \lambda_d}$

- Let's consider a very simple model $f(w) = \frac{1}{2} w^{\mathsf{T}} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$
- Gradient descent converges for learning rate small enough, i.e. $\eta < \frac{2}{\lambda_d}$
- How should we choose the learning rate? $\eta^* = \frac{2}{\lambda_1 + \lambda_d}$
- How fast we converge with the optimal learning rate? $rate(\eta^*) = \frac{\kappa 1}{\kappa + 1}$

- Let's consider a very simple model $f(w) = \frac{1}{2} w^{\top} A w$, $w \in \mathbb{R}^d$, $A = \operatorname{diag}(\lambda_1, ..., \lambda_d) > 0$
- Gradient descent converges for learning rate small enough, i.e. $\eta < \frac{2}{\lambda_d}$
- How should we choose the learning rate? $\eta^* = \frac{2}{\lambda_1 + \lambda_d}$
- How fast we converge with the optimal learning rate? $rate(\eta^*) = \frac{\kappa 1}{\kappa + 1}$

There's a whole zoo of optimisation methods...

For deep learning, there are many optimisation methods (number of lines) people usually try out (don't have to understand plots in detail)

→ now want to have a brief overview how they differ from gradient descent

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

how it dampens oscillations

19

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

how it dampens oscillations

At time step *t*:

neg. gradient direction at step *t*

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

how it dampens oscillations

At time step *t*:

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

how it dampens oscillations

At time step *t*:

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

how it dampens oscillations

At time step *t*:

19

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

speeds up in flat areas

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

speeds up in flat areas

At time step *t*:

neg. gradient direction at step *t*

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

speeds up in flat areas

At time step *t*:

neg. gradient (scaled) direction direction at step t in step t-1: $(w^t - w^{t-1})$

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

speeds up in flat areas

At time step *t*:

```
neg. gradient (scaled) direction direction at step t in step t-1:
(w^t - w^{t-1})
\text{step } t:
w^{t+1} - w^t
```

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction for some $\alpha \in \mathbb{R}$

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

speeds up in flat areas

At time step *t*:

```
neg. gradient (scaled) direction direction at step t in step t-1:
(w^t - w^{t-1})
\text{step } t:
w^{t+1} - w^t
```

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

• adaptive methods (AdaGrad, RMSProp, Adam etc.): Different stepsize for different elements $w_{[i]}$ intuitively: the elements i which already changed a lot, have smaller stepsize

$$w_{[i]}^{t+1} = w_{[i]}^{t} - \frac{\eta}{\sqrt{\text{previouschange}_{i} + \gamma}} \frac{\partial L}{\partial w_{[i]}}(w^{t})$$

• 2nd order methods (Newton): $w^{t+1} = w^t - [\nabla^2 L(w^t)]^{-1} \nabla L(w^t)$

Goal: Large steps in flat areas, small steps in high curvature ones, dampened oscillations

• momentum/accelerated methods: combine previous direction with neg. gradient direction

$$w^{t+1} - w^t = \alpha \left(w^t - w^{t-1} \right) - \eta \nabla_w L(w^t)$$

(bonus: discrete approximation of dampened harmonic oscillator)

• adaptive methods (AdaGrad, RMSProp, Adam etc.): Different stepsize for different elements $w_{[i]}$ intuitively: the elements i which already changed a lot, have smaller stepsize

$$w_{[i]}^{t+1} = w_{[i]}^{t} - \frac{\eta}{\sqrt{\text{previouschange}_{i} + \gamma}} \frac{\partial L}{\partial w_{[i]}}(w^{t})$$

• 2nd order methods (Newton): $w^{t+1} = w^t - [\nabla^2 L(w^t)]^{-1} \nabla L(w^t)$

```
So far: \ell_{\text{square}}(f(x), y) := (y - f(x))^2
```


So far: $\ell_{\text{square}}(f(x), y) := (y - f(x))^2$

Grows quadratically: huge penalty for large errors!

Instead: $\ell_{abs}(f(x), y) := |y - f(x)|$

Instead: $\ell_{abs}(f(x), y) := |y - f(x)|$

Grows linearly: smaller penalty for large errors!

Mean absolute error is not differentiable

$$\ell_{\mathsf{square}}(f(x), y) := (y - f(x))^2$$

$$\ell_{\mathsf{abs}}(f(x), y) := |y - f(x)||$$

Mean absolute error is not differentiable

$$\ell_{\mathsf{square}}(f(x), y) := (y - f(x))^2$$

Differentiable

$$\ell_{\mathsf{abs}}(f(x), y) := |y - f(x)||$$

Mean absolute error is not differentiable

$$\ell_{\mathsf{square}}(f(x), y) := (y - f(x))^2$$

Differentiable

$$\ell_{\mathsf{abs}}(f(x), y) := |y - f(x))|$$

Not differentiable at f(x) = y

Can we combine $\ell_{
m square}$ and $\ell_{
m abs}$ in a differentiable function?

Can we combine $\ell_{
m square}$ and $\ell_{
m abs}$ in a differentiable function?

Can we combine $\ell_{
m square}$ and $\ell_{
m abs}$ in a differentiable function?

Can we combine $\ell_{ ext{square}}$ and $\ell_{ ext{abs}}$ in a differentiable function?

Can we combine $\ell_{\mbox{square}}$ and $\ell_{\mbox{abs}}$ in a differentiable function?

$$\mathscr{C}_{\mathsf{huber}}(f(x), y) := \begin{cases} (y - f(x))^2 & \text{if } |y - f(x)| \le \delta \\ 2\delta |y - f(x)| - \delta^2 & \text{else} \end{cases}$$

More on iPad and Jupyter!

Can we combine ℓ_{square} and ℓ_{abs} in a differentiable function?

$$\mathcal{E}_{\mathsf{huber}}(f(x), y) := \begin{cases} (y - f(x))^2 & \text{if } |y - f(x)| \le \delta \\ 2\delta |y - f(x)| - \delta^2 & \text{else} \end{cases}$$