Não determinismo (parte 2)

Universidade Federal de Campina Grande – UFCG

Centro de Engenharia Elétrica e Informática – CEEI

Departamento de Sistemas e Computação – DSC

Professor: Andrey Brito Período: 2023.2

Execução de um AFND

- Considere a entrada 01011
 - Essa entrada é aceita?
 - Como é a execução de N_{2?}

Consome um símbolo e avança (dividindo a execução).

Avança sem consumir (dividindo a execução).

Revisitando o teorema sobre a união

- Se A_1 e A_2 são linguagens regulares, $A_1 \cup A_2$ é regular
- Será que o mesmo vale para AFNDs?
 - $L(N_1)=A_1 e L(N_2)=A_2$
 - Deve existir um AFND N que reconheça, quando N₁ ou N₂ reconheceria

Revisitando o teorema sobre a união

Revisitando o teorema sobre a união

• Seja

•
$$N_1 = \langle Q_1, \sum, \delta_1, q_1, F_1 \rangle$$

•
$$N_2 = \langle Q_2, \sum, \delta_2, q_2, F_2 \rangle$$

- N = <Q, \sum , δ , q₀, F>, onde
 - $Q = \{q_0\} \cup Q_1 \cup Q_2$
 - $F = F_1 \cup F_2$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \\ \delta_2(q,a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ e } a = \lambda \end{cases}$$

E a concatenação?

Provando o teorema 2

- A classe das linguagens regulares é fechada pela operação de concatenação
 - Se A₁ e A₂ são linguagem regulares, então A₁ A₂ também é regular...
 - E existem dois AFs, M_1 e M_2 , que reconhecem A_1 e A_2 , respectivamente
- O problema
 - A palavra de entrada é composta de duas partes
 - A primeira tem que pertencer a A₁ e, portanto, reconhecida por M₁
 - A segunda tem que pertencer a A₂ e, portanto, reconhecida por M₂
- A dificuldade: onde quebrar a palavra?

Revendo o teorema 2

Observações

- Uma palavra da nova linguagem é uma concatenação de duas palavras, uma vinda de cada linguagem
- O novo autômato precisa aceitar palavras que foram construídas desse jeito
- Mas algumas palavras poderiam ter sido criadas de diferentes formas, isso não é importa para o autômato, basta saber se ela pertence ou não à nova linguagem

Formalmente...

- Seja
 - $N_1 = \langle Q_1, \sum, \delta_1, q_1, F_1 \rangle$
 - $N_2 = \langle Q_2, \sum, \delta_2, q_2, F_2 \rangle$
- N = $\langle Q, \Sigma, \delta, q_0, F \rangle$, onde
 - $Q = Q_1 \cup Q_2$
 - $q_0 = q_1$
 - F = F₂

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \ e \ q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \ e \ a \neq \lambda \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \ e \ a = \lambda \\ \delta_2(q,a) & q \in Q_2 \end{cases}$$

E a operação estrela?

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \end{cases}$$

$$\emptyset \qquad q \in Q_1 \text{ and } q \notin F_1 \text{ and } q$$

Qual a alternativa correta:

a) AFNDs conseguem resolver mais problemas que AFDs;

b) AFDs conseguem resolver mais problemas que AFNDs;

c) Nenhuma das anteriores.

Qual a alternativa correta:

a) AFNDs conseguem resolver mais problemas que AFDs;

b) AFDs conseguem resolver mais problemas que AFNDs;

c) Nenhuma das anteriores.

Equivalência entre AFNDs e AFDs

AFNDs vs. AFDs

- AFNDs são mais fáceis de construir
 - Não precisam ter todas as transições
 - Podem estar em dois estados ("isso ou isso pode acontecer")
 - Ex.: um pacote válido de dados tem um prefixo "010101..." e conteúdo de tamanho N, com paridade par e um sufixo "000111", ou tem um sufixo "010111" e neste caso, não tem comprimento N/2 e não tem sufixo...
- AFNDs são menos eficientes para execução (manter vários estados, procurar redundâncias)
- Resumo: Faça o AFND e depois converta (mecanicamente) para um AFD

Equivalência entre AFD e AFND

- Teorema 3: todo AFND tem um AFD equivalente
 - Equivalência: reconhecer a mesma linguagem
 - Como provar?
 - Cada estado do AFD será um registro de todos os possíveis estados do AFND para aquela entrada
 - Se um dos possíveis estados do AFND for final o estado do AFD também será
 - Prova: a partir de uma especificação de N construir um M que reconhece a mesma linguagem

Ponto de partida: lembrar do procedimento de união para dois autômatos determinísticos.

Equivalência

- Duas formas de fazer (como na união de dois AFDs)
- - E quando o AFND não tem uma transição para um símbolo?
- Segunda: exaustiva
 - Em quantos estados "um" autômato ND poderia estar ao mesmo tempo?
 - Quais são as possibilidades?
 - Como ele muda de um para o outro?

E se tiver transições com λ ?

E se tiver transições com λ ?

