# Балтийский государственный технический универсистет "Военмех" им. Д.Ф. Устинова

Факультет А "Ракетно-космической техники"

Кафедра А4 «Стартовые и технические комплексы ракет и космических аппаратов»



### Расчетно-графическая работа

# Моделирование эжектируемого потока

Студент: Готовцев А.Г А4М6102 Преподаватель: Маштаков А.П.

# Оглавление

| 1 | Введение                                         | ] |
|---|--------------------------------------------------|---|
| 2 | Расчетная модель           2.1 Описание          | 6 |
|   | 2.2 Основные соотношения                         | 2 |
|   | 2.3 Потери на эжекцию                            |   |
|   | 2.4 Потери на местных сопротивлениях             | 4 |
| 3 | Результаты расчета           3.1 Исходные данные | 6 |
| 4 | Заключение                                       | , |

# Принятые обозначения

| $P_{\pi}$                            | давление в приструйной зоне,               | Па                              |
|--------------------------------------|--------------------------------------------|---------------------------------|
| $P_{\scriptscriptstyle \mathrm{B}}$  | внешнее давление,                          | Па                              |
| $h_{\mathfrak{s}}$                   | потери давления на эжекцию воздуха,        | Па                              |
| $h_{\scriptscriptstyle \mathrm{M}}$  | потери давления на местных сопротивлениях, | Па                              |
| $v_{\mathfrak{s}}$                   | скорость эжектируемого воздуха             | м/с                             |
| $\rho$                               | плотность воздуха                          | $\mathrm{K}\Gamma/\mathrm{M}^3$ |
| $h_{ m c}$                           | потери давления при сужении канала         | Па                              |
| $h_{ m p}$                           | потери давления при расширении канала      | Па                              |
| $h_{\pi}$                            | потери давления при повороте канала        | Па                              |
| $C_{\rm cr}$                         | эжекционная способность струи              | $\mathrm{m}^2/\mathrm{c}$       |
| $r_{\rm ct}$                         | радиус границы струи                       | M                               |
| m                                    | расход газа                                | $\mathrm{m}^3/\mathrm{c}$       |
| $Q_{\scriptscriptstyle \mathrm{3B}}$ | расход газа в звуковом сечении             | $\mathrm{M}^3/\mathrm{C}$       |
| $x_{\rm 3B}$                         | осевая координата звукового сечения м      |                                 |
| l                                    | скорость газа в звуковом сечении           | м/с                             |
| $\varphi$                            | коэффициент потерь в сопле Лаваля 1        |                                 |
| $F_{\kappa p}$                       | площадь критического сечения сопла         | $M^2$                           |
| $F_{\rm a}$                          | площадь выходного сечения сопла            | $M^2$                           |
| B                                    | коэффициент потерь в сопле Лаваля 2        |                                 |
| $P_0$                                | начальное давление в камере сгорания       | Па                              |
| $P_{\rm a}$                          | давление в выходном сечении сопла          | Па                              |
| R                                    | универсальная газовая постоянная           | Дж/(моль К)                     |
| T                                    | абсолютная температура торможения          | K                               |
| $\Gamma$                             | показатель адиабаты                        |                                 |
| M                                    | число Маха                                 |                                 |
| $\eta$                               | ???                                        |                                 |
|                                      |                                            |                                 |

# Введение

В работе рассматривается процесс эжекции воздуха из прилегающей к сверхзвуковой струе среды. Процесс истечения происходит в камеру ограниченного диаметра. В качестве результата работы необходимо определить изменение давления в приструйной зоне. При расчете необходимо учесть потери давления на эжекцию воздуха и потери на местные споротивления в эжектируемом потоке, затекающем внутрь камеры.

# Расчетная модель

#### 2.1 Описание

Для расчета изменений давления в приструйной зоне во времени примем расчетный цикл. На каждой его итерации будем рассчитывать величину потерь на эжекцию воздуха и вычитать её из текущего значения давления. Тем самым будет получено новое значение давления в приструйной зоне, которое будет использовано в следующей итерации как текущее. Изменящееся внешние давление будет оказывать влияние на режим истечения струи и её эжектирующую способность, что также повлечет за собой изменение величины потерь.

#### 2.2 Основные соотношения

Основным расчетным соотношением является формула

$$P_{\Pi} = P_{\rm B} - h_{\rm 9} - h_{\rm M},\tag{2.2.1}$$

в которой отражены потери полного давления на эжекцию воздуха и потери давления на местных сопротивлениях. Полное давление приравнено к окружающему. Потери на эжекцию определяеются следующим соотношением

$$h_{\mathfrak{s}} = \frac{\rho v_{\mathfrak{s}}^2}{2}.\tag{2.2.2}$$

Потери на потери давления на местных сопротивлениях определяются в соответствие с расчетной схемой, изображенной на рисунке 2.2.1



Рис. 2.2.1: Схема расчета потерь на местных споротивлениях

По схеме, эти потери выражаются в трех составляющих - потерях на внезапное сужение канала, на участке 1, потерях на внезапное расширение канала, на участке 2, и поворот канала, на участке 3. Соответственно, имеем формулу

$$h_{\rm M} = h_{\rm c} + h_{\rm p} + h_{\rm m}.$$
 (2.2.3)

Таким образом, имея ввиду расчетные соотношения 2.2.2, 2.2.3, требуется определить зависимости потерь от параметров течения струи.

#### 2.3 Потери на эжекцию

В соответствии с формулой 2.2.2 для определения потерь на эжектирующем участке струи необходимо определить скорость эжектируемого потока для каждого сечения. Для этого воспользуемся соотношением

$$v_{\rm s} = \frac{C_{\rm ct}}{2\pi\rho r_{\rm ct}}. (2.3.1)$$

Величина  $C_{\text{ст}}$  - эжекционная способность струи, принимается постоянной по её длине. Для определения введем формулу

$$C_{\rm ct} = \frac{Q_{\rm 3B} - m}{x_{\rm 3B}}. (2.3.2)$$

Формула для расхода

$$m = \varphi(\frac{F_{\rm \kappa p}BP_0}{\sqrt{RT}}),\tag{2.3.3}$$

где  $F_{\rm kp}$  - площадь критического сечения сопла, определяемая как

$$F_{\text{kp}} = \frac{F_{\text{a}}}{\frac{1}{M^2} \left( \left( \frac{2}{\gamma + 1} \right) \left( 1 + M^2 \frac{\gamma - 1}{2} \right) \right)^{\frac{\gamma + 1}{\gamma - 1}}},$$
(2.3.4)

а также B и  $\varphi$ , коэффициенты потерь в сопле Лаваля,

$$B = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}},\tag{2.3.5}$$

$$\varphi = 0.98, \tag{2.3.6}$$

и начальное давление в камере сгорания

$$P_0 = P_{\rm a}(1 + \frac{\gamma - 1}{2}M^2)^{\frac{\gamma}{\gamma - 1}}.$$
 (2.3.7)

Величины  $Q_{3B}$  и  $x_{3B}$  характеризуют звуковое сечение - такое, в котором скорость истечения газа равно скорости звука. Сначала определяется координата сечения на оси струи

$$x_{3B} = (13.28\sqrt{\gamma M^2} + 11.8)\sqrt[3]{\eta} - 23.57.$$
 (2.3.8)

Затем, по данным рассчета геометрии струи определяется радиус этого сечения. С его помощью определяем расход через звуковое сечение

$$Q_{\rm 3B} = 0.217\pi l r_{\rm cr}^2, \tag{2.3.9}$$

где, соответственно

$$l = \sqrt{\frac{\gamma}{RT}} P_{\rm B} \sqrt{\frac{\gamma + 1}{2}}.$$
 (2.3.10)

Таким образом, имеем все необходимые соотношения для определения величины потерь на эжекцию воздуха по формуле 2.2.2.

#### 2.4 Потери на местных сопротивлениях

Из формулы местных потерь 2.2.3 имеем потери при внезапном сужении канала, выраженные формулой

$$h_{\rm c} = \zeta_{\rm c} \frac{v_{12}^2}{2g},$$
 (2.4.1)

потери при внезапном расширении канала, выраженные формулой

$$h_{\rm pB} = \zeta_{\rm p} \frac{v_{23}^2}{2g},\tag{2.4.2}$$

и, потери при повороте, выраженные формулой

$$h_{\rm pb} = \zeta_{\rm II} \frac{v_{\rm 23cp}^2}{2g}.$$
 (2.4.3)

Коэффициент потерь при внезапном сужении постоянен и равен

$$\zeta_c = 0.5 \tag{2.4.4}$$

потерь при внезапном расширении определяется перепадом сечений и равен

$$\zeta_{\rm p} = (1 - \frac{S_2}{S_3})^2. \tag{2.4.5}$$

Коэффициент потерь при повороте канала определяется углом поворота

$$\zeta_{\rm m} = 0.95(\sin(\frac{\alpha}{2}))^2 + 2.05(\sin(\frac{\alpha}{2}))^4.$$
(2.4.6)

Скорости газа во всех случаях определяются из закона постоянства расхода.

### Результаты расчета

#### 3.1 Исходные данные

 $P_{\scriptscriptstyle \mathrm{B}} = 10^5~\Pi \mathrm{a}$  - внешнее давление в начальный момент времени

 $\rho = 1.2041 \; \text{кг/м}^3$  - плотность воздуха

 $F_{\rm a} = 0.5~{\rm m}^2$  - площадь выходного сечения сопла

 $P_{\rm a} = 0.8 \cdot 10^5 \; \Pi {\rm a}$  - давление в выходном сечении сопла в начальный момент времени

R = 287 Дж/(моль K) - универсальная газовая постоянная

 $T = 293 \; {
m K}$  - температура торможения

 $\Gamma=1.4$  - показатель адиабаты

M=3 - число Маха

 $d_{\rm a} = 0.8 \; {\rm M}$  - диаметр выходного сечения сопла

 $d_{\kappa}=1$  м - диаметр кормы

 $d_{ ext{ iny TP}}=1.2$  м - диаметр трубы

 $\alpha=10$  ° - угол полураствора сопла

 $x=5\ \mathrm{m}$  - длина эжектирующего участка

Заключение