Credit Card Fraud Detication

The idea of the project is to detict fraud transactions by train classification model that fit this huge data and apply them into multiple transaction to check weather it's fraud or not.

** NOTE ** THE CODE WORK FINE BUT SOME CHARTS WILL NOT WERK BY READING THIS NOTEBOOK BECAUSE I NEED TO RUN IT ALL AT THE SEAM TIME AND MY DEVICE IS NOT CAPABLE OF DOING THAT

DATASET

This dataset contains credit card transactions for fictitious users resident within the United States, but who travel the world in making purchases.

This dataset has a header line followed by transactions -- with one line per transaction. The header describes the fields of each transaction, which are similar to the fields in a monthly credit card statement, e.g. (1) date and time of purchase, (2) merchant name, and (3) merchant location (city, US state, US zipcode -- with US state replaced by country name for purchases made outside the United States). Another field is the MCC (Merchant Category Code) -- a number from 1 - 9999, which describes the broad area of the merchant, e.g. groceries, clothing, hair care, jewelry, etc. These MCC values are standard values from the credit card industry.

The final columns are "Errors" and "Is Fraud". The "Is Fraud" column is the text string Yes when transactions are fraudulent, i.e. made with a stolen card and the text string No when transactions are made by the legitimate owner of the card. This "Is Fraud" baniry values that hold only yes or no, whenever training an unsupervised model to detect fraud, and later when assessing the accuracy of fraud inference.

The "Errors" field enumerates whether a problem like "Technical Glitch", "Bad PIN", "Insufficient Funds", etc occurred. A blank value for "Errors" indicates no errors were present.

The "User" field in the first column is a numeric index from 0 - 1999 indicating which of the 2000 users generated each transactions. The "Card" field in the second column is similarly an index among all of the credit (and debit) cards owned by "User". The transactions in the file are ordered as follows: By User By Card of User

in this notebook after each line of code there are an explonation of it.

Import

Data Cleaning

Out[4]:

	User	Card	Year	Month	Day	Time	Amount	Use Chip	Merchant Name
10585157	885	1	2017	5	12	13:41	\$37.24	Chip Transaction	-3739862438923451178
23720734	1934	3	2019	7	24	13:06	\$80.00	Swipe Transaction	-4282466774399734331
13193150	1081	4	2003	1	12	09:21	\$47.50	Swipe Transaction	6601217045817418951
8693804	751	1	2018	1	23	20:33	\$-77.00	Chip Transaction	-1288082279022882052
9347404	801	2	2015	5	12	09:05	\$20.61	Online Transaction	-2088492411650162548
4									>

Data type of the featuers

df.dtypes.to_frame(name='Type').T In [4]: Out[4]: Use Merchant Merchant Merchant User Card Year Month Day Time Amount Chip Name City State int64 int64 int64 int64 int64 object object object int64 object object **Type**

Typesetting math: 0%

We can see that from the table above that the time is object and we want to extract the hour and

the minuts form it to represent them in numbercal value and use it later in the model and in EDA

Similarly, User and Card features should also be converted to object type as unique User values represent different users, and card values correspond to an index of a card a particular user uses. The card values do not specify a unique card number.

Additionally Merchant Name, Zip and MCC are treated as numeric but should be processed as categorical.

However, since this dataset is large, to work with the kaggle kernel for visualization purposes we will not convert to object/category type. Also, we will downcast all numeric datatypes to reduce memory consumption.

So let's convert these features to the desired datatypes

checking the data type after changing them

The data now looks like this:

We see that the extra decimals in ZipCode no longer exist as the type is converted to object, we have two more columns: Hour and Minute whereas Time doesn't exist

Out[26]:

	User	Card	Year	Month	Day	Amount	Use Chip	Merchant Name	M
9712252	819	0	2016	8	9	9.280000	Chip Transaction	6698459923198770712	San
9411031	805	1	1998	3	21	57.299999	Swipe Transaction	112925206871091074	Phila
20405427	1662	3	2005	11	11	109.099998	Swipe Transaction	2268665024076934393	
13929667	1135	0	2016	3	19	7.210000	Chip Transaction	-4693979874497918566	Jc
9500507	808	0	2018	5	14	75.639999	Chip Transaction	-5162038175624867091	

In [7]: ► df.describe(include='all').fillna("").T.style

C:\anaconda\lib\site-packages\numpy\lib\function_base.py:3961: RuntimeWarni
ng: invalid value encountered in subtract
 diff_b_a = subtract(b, a)

A	r 1
()ut	I / I

	count	unique	top	freq	mean	
User	24386900.000000				1001.019335	
Card	24386900.000000				1.351366	
Year	24386900.000000				2011.955170	
Month	24386900.000000				6.525064	
Day	24386900.000000				15.718123	
Amount	24386900.000000				41.987522	
Use Chip	24386900	3	Swipe Transaction	15386082		
Merchant Name	24386900.000000				-476922962766468352.000000	47589(
Merchant City	24386900	13429	ONLINE	2720821		
Merchant State	21666079	223	CA	2591830		
Zip	21508765.000000					
MCC	24386900.000000				5561.171253	
Errors?	388431	23	Insufficient Balance	242783		
Is Fraud?	24386900	2	No	24357143		
Hour	24386900.000000				12.414200	
Minutes	24386900.000000				29.585951	
4						•

From the basic statistics we can see that the dataset consists of **24386900 transactions**, with **2000 unique users and a user owns at most 9 cards**.

The most common type of transactions are swipe transactions

The median amount is 30\$ which is almost equal to one grocery shopping trip for a single person which coincides with the most common merchant category code: 5411 (Grocery and Supermarkets).

Missing Values and their proportion

Missing Value Analysis

Based on how the data was generated, Merchant State and Zip are not present when a transaction is processed online. Additionally for tranactions which are not US based, Zipcode is missing.

For successful transactions, errors are absent and a mjaority of transactions in this dataset are processed without errors which explains the high missing ratio for the errors column

Out[8]:

	eegeee.u	· orountage
Merchant State	2720821	11.156896
Zip	2878135	11.801972
Errors?	23998469	98.407215

Missing Record Percentage

EDA

Distribution of transactions over the Months

Distribution of transactions over the Hours in a Day

Fraudulent Transactions over the Years

```
In [ ]:
        In df year fraud = df.loc[:,['Year','Is Fraud?']]
            df_year_fraud = df_year_fraud.groupby(['Year'])['Is Fraud?'].value_counts().t
            unique_year_vals = df.Year.unique()
            to plot df = pd.DataFrame(columns=['Year', 'No', 'Yes'])
            for year in unique_year_vals:
                try:
                    no = df_year_fraud.loc[(year,'No')]['Count']
                except:
                    no = 0
                    yes = df_year_fraud.loc[(year, 'Yes')]['Count']
                except:
                    yes = 0
                to_plot_df = to_plot_df.append(pd.DataFrame([[year,no,yes]],columns=["Yea
            to plot df['No'] = to plot df['No'].replace(0, np.nan)
            to_plot_df['Yes'] = to_plot_df['Yes'].replace(0, np.nan)
            to_plot_df['No'] = to_plot_df['No'].apply(lambda x: np.log10(x))
            to plot df['Yes'] = to plot df['Yes'].apply(lambda x: np.log10(x))
            fig = go.Figure(data=[
                go.Bar(name='Non-Fraud', x=to plot df.Year, y=to plot df.No),
                go.Bar(name='Fraud', x=to_plot_df.Year, y=to_plot_df.Yes)
            fig.update layout(barmode='group',title="Logartihmic Count of Fraud and Non-F
            fig.show()
```

Fraudulent and Non fraudulent transactions based on type of card use

```
In [ ]:  plot = sns.catplot("Is Fraud?", col="Use Chip",data=df,kind="count", height=6
plot.fig.suptitle("Card Type and Fraud", size = 20, y=1.05);
```

/opt/conda/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWar
ning:

Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Transactions per state in the US

```
In [13]:

■ us transactions = df[~df['Merchant State'].isna()]

             transactions per state = us transactions.groupby(['Merchant State'],as index=
             fraud count per state = us transactions.groupby(['Merchant State', 'Is Fraud?
             merchant state fraud dict = fraud count per state.to dict()
             merchant plot df = pd.DataFrame(us transactions['Merchant State'].value count
             merchant plot df.rename({'index':"State", 'Merchant State':"Total Transaction
             merchant_plot_df['FraudPercent'] = merchant_plot_df['State'].apply(lambda x:
             merchant plot df['NonFraudPercent'] = merchant plot df['State'].apply(lambda
             merchant plot df['FraudPercent'] = round(100 * (merchant plot df['FraudPercent')
             merchant_plot_df['NonFraudPercent'] = round(100 * (merchant_plot_df['NonFraud
             for col in merchant plot df.columns:
                 merchant_plot_df[col] = merchant_plot_df[col].astype(str)
             merchant_plot_df['text'] = "Fraudulent: " + merchant_plot_df['FraudPercent']
             fig = go.Figure(data=go.Choropleth(
                 locations=merchant plot df['State'],
                 z=merchant plot df['Total Transactions'].astype(float),
                 locationmode='USA-states',
                 colorscale='deep',
                 autocolorscale=False,
                 text=merchant_plot_df['text'], # hover text
                 marker_line_color='white', # line markers between states
                 colorbar title="Credit Card Transactions"
             ))
             fig.update layout(
                 title text='Credit Card Transactions per US state',
                 geo = dict(
                     scope='usa',
                     projection=go.layout.geo.Projection(type = 'albers usa'),
                     showlakes=True, # Lakes
                     lakecolor='rgb(255, 255, 255)'),
             fig.show()
```

Transactions Outside the US

```
df nonusa = df[(df.Zip.isnull()) & (df['Merchant City'] != 'ONLINE')]
In [14]:
             print(f"Transactions not in the United States: {len(df nonusa)}")
             Transactions not in the United States: 157314

    df_usa = df[(~df.Zip.isnull()) & (df['Merchant City'] != 'ONLINE')]

In [15]:
             print(f"Transactions in the United States: {len(df_usa)}")
             Transactions in the United States: 21508765
         checks the correlation of the data to the feature is fraud? since it's the target
In [13]:
            data = []
             for i in range(len(df['Is Fraud?'])):
                 if df['Is Fraud?'][i] == 'No':
                     data.append(0)
                 else:
                     data.append(1)
          ⋈ data
In [14]:
   Out[14]: [0,
              0,
              0,
              0,
              0,
              0,
              0,
              0,
              0,
              0,
              0,
              0,
```

```
▶ df['Is Fraud?']
In [16]:
    Out[16]: 0
                          0
                          0
             2
                          0
             3
             4
                          0
             24386895
                          0
             24386896
                          0
             24386897
             24386898
             24386899
             Name: Is Fraud?, Length: 24386900, dtype: int64
In [22]: ► data = []
             for i in range(len(df['Is Fraud?'])):
                 if df['Is Fraud?'][i] == 0:
                      data.append('No')
                 else:
                      data.append('Yes')
             df['Is Fraud??'] = data
```

the code above is to convert the target feature from object to numbercal values

```
In [17]:  plt.figure(figsize = (16, 12))
sns.heatmap(df.corr(), annot = True, cmap = 'Blues')
```

Out[17]: <AxesSubplot:>


```
Out[18]: Is Fraud?
                            1.000000
          Amount
                            0.027681
          MCC
                            0.012281
                            0.006754
          Card
                            0.004801
          Hour
          Merchant Name
                            0.004400
                            0.002493
          Zip
          Month
                            0.001181
          User
                            0.000615
                            0.000374
          Minutes
          Day
                            0.000267
          Year
                            0.000057
          Name: Is Fraud?, dtype: float64
```

Spliting the data which will be x and the target which will be y and apply the splitting method from sklearn

the conf_matrix is to method applying the confusion matrix that take the actual data and the predication and gives the results

```
In [40]: In [40]
```

use the LightGBM Classifier model for the dataset

uture release of LightGBM. "

apply these methods to checks the model and how does it preform in the traning and the testing datasets

The Training Score: 99.88906449223443

The Accuracy is: 0.9988530851822209

apply the confusion matrix that defiened above

finally apply the Classification Report

In [44]:	M	<pre>print(classification_report(y_test, y_pred))</pre>							
			precision	recall	f1-score	support			
		0	1.00	1.00	1.00	8037857			
		1	0.53	0.47	0.50	9820			
		accuracy			1.00	8047677			
		macro avg	0.77	0.74	0.75	8047677			
		weighted avg	1.00	1.00	1.00	8047677			

From the report we can see that for the minority class, the classifier doesn't perform as well as the majority class in terms of F-1 score.

A high F-1 score indicates a good balance of high precision as well as high recall. In the credit card transactions scenario, to ensure customers use the credit card and are satisfied with the service, it is necessary to detect fraud (have lower false negatives) but also prevent unecessary blocking since if the card is always blocked, then users may be frustated with the service (have lower false positives). Thus F-1 score is a good metric choice.

Additionally, since fraudulent transactions are rare, it would also be interesting to look at other metrics such as Precision-Recall curve and area under this curve along with Matthews Correlation Coefficient.

Conclusion

we train model that got incredible accuracy which is 99.3% and save the model as SAV extrntion for future use, working with huge number of data is so diffcult and hard, you should have a very strong device that can run it and the one that use here is one of the highest dataset that i have ever use approximalty 24.4M records.

Computer Security - CS 3801

Class 2108

Created by:

- Abdulaziz Alkhonain 439051169
- Hamad Alhajlan 439051043
- Moahmmed Banajh 438050064