A Machine Shop Model

- 150 identical machines:
 - Operate continuously, 8 hr/day, 250 days/yr
 - Operate independently
 - Repaired in the order of failure
 - Income: \$20/hr of operation
- Service technician(s):
 - 2-year contract at \$52,000/yr
 - Each works 230 8-hr days/yr
- How many service technicians should be hired?

System Diagram

Steps in the Study

1) Goals and Objectives:

- Find number of technicians for max profit
- Extremes: one techie, one techie per machine

2) Conceptual Model:

- State of each machine (failed, operational)
- State of each techie (busy, idle)
- Provides a high-level description of the system at any time

3) Specification Model:

- What is known about time between failures?
- What is the distribution of the repair times?
- How will time evolution be simulated?

Steps cont.

4) Computational Model:

- Simulation clock data structure
- Queue of failed machines
- Queue of available techies

5) Verify:

- Software engineering activity
- Usually done via extensive testing

6) Validate:

- Is the computational model a good approximation of the actual machine shop?
- If operational, compare against the real thing
- Otherwise, use consistency checks

Machine Shop Model Applications

7) Design Experiments

- Vary the number of technicians
- What are the initial conditions?
- How many replications are required?

8) Make Production Runs

- Manage output wisely
- Must be able to reproduce results exactly

9) Analyze Output

- Observations are often correlated (not independent)
- Take care not to derive erroneous conclusions

Application cont.

10) Make Decisions

- Graphical display gives optimal number of technicians and sensitivity
- Implement the policy subject to external conditions

11) Document Results

- System diagram
- Assumptions about failure and repair rates
- Description of specification model
- Software
- Tables and figures of output
- Description of output analysis

DES can provide valuable insight about the system

Programming Languages

- General-purpose programming languages
 - Flexible and familiar
 - Well suited for learning DES principles and techniques
 - E.g.: C, C++, Java
- Special-purpose simulation languages
 - Good for building models quickly
 - Provide built-in features (e.g., queue structures)
 - Graphics and animation provided
 - GPSS, SLAM, ...

Simulation Examples

- Three steps:
- Determine the characteristics of each of the inputs (parameters) - usually modeled with discrete or continuous probability distributions
- (2) Construct a simulation table containing the inputs and outputs for the problems at hand.
- (3) Run through the simulation for some number of iterations generating new values for the inputs and then calculating the outputs

Example 1

- Grocery Store Checkout

Interarrival time distribution - uniform

Time betwe	en	Cumulative	Random Digit	
Arrivals	Probability	Probability	Assignment	
1	0.125	0.125	001-125	
2	0.125	0.250	126-250	
3	0.125	0.375	251-375	
4	0.125	0.500	376-500	
5	0.125	0.675	501-625	
6	0.125	0.750	626-750	
7	0.125	0.875	751-875	
8	0.125	1.000	876-000	

Grocery Store Checkout

Service time distribution

Service Time		Cumulative	Random Digit
	Probability	Probability	Assignment
1	0.10	0.10	01-10
2	0.20	0.30	11-30
3	0.30	0.60	31-60
4	0.25	0.85	61-85
5	0.10	0.95	86-95
6	0.05	1.000	96-00

Input and Output

- Input: Arrival Time
 Service Begin Time
 Service End Time
- Output: Delay time (waiting in the queue)
 Time in System
 Idle Time for Server

Simulation Table

Iteration			Output		
	X _{i1}	X_{i2}	X_{i3}	 X_{ip}	Yi
1					
2					
3					
n					

Generate Inputs

Cust	Random	Random Interarrival		Service
	Number	Time	Number	Time
1	-	-	84	4
2	913	8	10	1
3	727		24	
4	015		53	
5	948		17	
6	309		79	
7	922		91	
8	753		67	
9	235		89	
10	302		38	

Simulate for 10 customers

Cust	Random	Interarrival	Random	Service
	Number	Time	Number	Time
1	-	-	84	4
2	913	8	10	1
3	727	6	24	4
4	015	1	53	3
5	948	8	17	2
6	309	3	79	4
7	922	8	91	5
8	753	7	67	4
9	235	2	89	5
10	302	3	38	3 14

Simulation Table

Customer	Interarriv- al Time	Arrival Time	Service Time	Service Begins	Delay Time	Service Ends	Time in System	Idle time of Server
1	0	0	4	0	0	4	4	0
2	8	8	1	8	0	9	1	4
3	6	14	4	14	0	18	4	5
4	1	15	3	18	3	21	6	0
5								