Simuler les évolutions urbaines à l'aide de données géographiques urbaines 3D

Mickaël Brasebin, Julien Perret, Sébastien Mustière (COGIT) Christiane Weber (LIVE)

Plan

Contexte de la thèse

- Méthode pour simuler les évolutions urbaines
 - Modélisation des contraintes d'urbanisme
 - Stratégies de peuplement

Contexte

- Analyse du tissu urbain,
 - Nombreux phénomènes,
 - Différentes échelles,
 - Dimension tri-dimensionnelle de l'analyse spatiale urbaine

- ... un tissu urbain évolutif
 - Nécessité de connaître ses évolutions pour les comprendre et les maitriser
 - La simulation des évolutions

Simulation des évolutions urbaines

- Principe : tenter de reproduire les phénomènes pour :
 - Analyser et comprendre les phénomènes
 - Tenter de les reproduire
 - Tester différents scénarios

 Projet GeopenSIM [Curie, 2010]

1976

1989

Simulation

Simulation de tissus urbains 3D

- Insertion manuelle de bâtiments dans un tissu
 - Cadre de projets planifiés

- Modélisation de l'apparence urbaine
 - À partir de système cellulaires,
 - Techniques procédurales

[Weber, 2009]

Simulation de tissus urbains 3D

- Insertion manuelle de bâtiments dans un tissu
- Modélisation de l'apparence urbaine
- Optimisation d'indicateurs environnementaux

[Kampf, 2010]

Positionnement des travaux

 Notre objectif : simulation de tissus urbains en 3D à partir de connaissances urbaines

• A priori :

- Règles d'urbanisme,
- Bâtiment LOD 2,
- Peuplement en bâtiments

Scénario

Intérêt de simuler les évolutions en 3D

• Pour le citoyen :

- Compréhension des documents d'urbanisme,

Pour le concepteur :

Détecter des configurations non-souhaitées,

• Pour le planificateur :

- Evaluer l'influence des règles sur un tissu,
- Mise à disposition de terrains

Pour le géographe,

Support de réflexion de la compréhension des comportements

Scénarisation d'un exemple

- Scénario:
 - Construction d'un bâtiment à la place de garages

Scénarisation d'un exemple

- Scénario:
 - Construction d'un bâtiment à la place de garages

Plan

• Contexte de la thèse

- Méthode pour simuler les évolutions urbaines
 - Modélisation des contraintes d'urbanisme
 - Stratégies de constructions

Contraintes issues de la réglementation urbaine

POS/PLU

14 articles pour régir les droits à bâtir

Articles 1, 2: Restrictions d'usage du sol

Articles 6, 7, 8 : Position des bâtiments relativement aux autres bâtiments, aux limites de parcelles ou à la voirie

Article 10: Hauteur maximale

Articles 9, 14: Ratio d'occupation du sol

Article 11 : Aspect extérieur

- Prescriptions
 - Servitudes de vue,
 - Cohérence du tissu

Modélisation du règlement d'urbanisme

• Principe:

- Contraintes volumétriques
 - Définissent un volume d'implantation
- Contraintes non-volumétriques
 - Contraintes sur la génération d'un bâtiment
- ♥ Définit un « potentiel de constructibilité »

Exemple

- Règles d'urbanisme de la zone
 - Dist (Batiment, Parcelle.bordure) > 1m
 - HMax(Batiment) < 15m
 - Hauteur(Batiment.points) < 8m + Dist (Batiment.points)</p>
 - CES(Parcelle) < 0,4
 - Alignement(Batiments)

Plan

• Contexte de la thèse

- Méthode pour simuler les évolutions urbaines
 - Modélisation des contraintes d'urbanisme
 - Stratégies de constructions

Réaliser le « potentiel de construction »

- Hypothèse:
 - L'agent cherche à optimiser des critères
- Stratégie de peuplement
 - Résolution de problème d'optimisation sous contraintes
- Contraintes
 - Pratiques de construction
- Critères d'optimisation
 - Indicateurs à maximiser

Quelle forme de bâti?

- Empreintes 2D + forme de toit
 - Contraintes non-volumique

[Curie, 2010]

[Lafarge, 2007]

Quelle forme de bâti?

	rectangle	escalier	J	L
Plat				
En appentis				
Symétrie gouttereau				
Symétrique pignon				

Exemple

• Formes d'habitats individuels

Quel volume?

- Réfléchir au volume en fonction de ses besoins et de sa stratégie
 - Maximisation volume,
 - Objectif surface construite et surface disponible,
 - Ressembler au voisin etc.

Exemple de stratégie

• 2 stratégies de production de volume

Ressembler au voisin

Plein pied

Quel placement?

- Quelle stratégie de placement ?
 - Positionnement
 - Respect des règles
 - Respect des règles + au milieu de la parcelle
 - Au bord du terrain
 - Etc.....

Illustration des placements

Exemple position

Jardin côté rue

Jardin côté cours

Quel placement?

- Quelle stratégie de placement ?
 - Postionnement
 - Respect des règles
 - Respect des règles + au milieu de la parcelle
 - Au bord du terrain
 - Etc.....
 - Orientations
 - Route,
 - Sud

Illustration d'orientations

Exemple orientation

Sur route ...

Orientation latérale ...

Récapitulatif processus

Actions :

- Choisir une forme,
- Déterminer le volume,
- Fixer une position,
- Proposer une orientation

 Processus adapté en fonction des stratégies de peuplement

Conclusion

Travail dans le cadre de la thèse:

- Automatisation de la méthode par une méta-heuristique,
- Formalisation des stratégies de peuplement
 - Utilisation d'indicateurs 3D, fonction de cout,
 - Tests sur des scénarios proposés par des experts

Perspectives :

- Couplage avec des outils de simulations de phénomènes urbains,
- Études de sensibilités aux données 3D (qualité, modélisation ...)
- Proposition de paramètres de règles d'urbanisme à partir d'objectifs (valeurs d'indicateurs morphologiques) à atteindre,

Merci de votre attention

Mickaël Brasebin, Julien Perret, Sébastien Mustière (COGIT) Christiane Weber (LIVE)

Remerciements pour la Communauté Urbaine de Strasbourg pour la mise à disposition de données 3D dans le cadre de la ZAEU (Zone Atelier en Environnement Urbain)

- Lafarge, F., Oct. 2007. Modèles stochastiques pour la reconstruction tridimensionnelle d'environnements urbains. Ph.D. thesis, Ecoles des Mines de Paris.
- Curie, F., Mas, A., Perret, J., Puissant, A., Ruas, A., Nov. 2010. Simuler la densification du tissu urbain au moyen d'un processus de peuplement. In: Colloque International de Géomatique et d'Analyse Spatile SAGEO'10. Toulouse (France).

Sagéo 2012, Liège