Countable and Uncountable Se	Countable	and	1)ncountable	Sets
------------------------------	-----------	-----	--------------	------

	Countries of Otton marion
Def":	Two sets A and B are said to be equivalent if there is a function.
	f: A→B such that
	f is one-to-one and onto
	Notation: A ~ B.
HW:	Show that A~B in the above sense is an equivalence relation on the
	collection of all sets.
Def":	If ANB then we say that A and B have the same number of elements.
	That is, A and B have the same cardinality.
	· · · · · · · · · · · · · · · · · · ·
Def":	A set X is called a finite set if either A= p or A ~ {1,2,,n} for
	some nEM.
	Otherwise, X is called an infinite set.
Dets:	The number of elements in a set X is called its cardinal number.
	erg. If X is a finite set, then the cardinal number of X is n (if X ~ &1,,n's).
	Finit sets have finit cardinal numbers.
	Infinit sets and infinit Cardinal numbers
Detn.	Any set X which is equivalent to IN is said to be a countably infinite set.
	Any set X which is equivalent to IN is said to be a countably infinite set. A set X is countable if either X is a finite set or X is countably infinite.
Def":	À set which is not countable is called an uncountable set.
	In other words, if X is a countably infinite set, then one can enumerate the
	elements X , i.e., $X = \{x_1, x_2, \dots \}$.
	for example, although X= {2,4,6,} C N= {1,2,3,},
	IN ~ X (moreover, IN numerically equiv. X)
	via the bijection $f: N \rightarrow X$ defined as $f(n) := 2n$.

	Example: $\mathbb{Z} \sim \mathbb{N}$ f: $\mathbb{Z} \rightarrow \mathbb{N}$ as $f(n) = \int_{-\infty}^{\infty} 2n$, $n \geq 1$
	Example: $\mathbb{Z} \sim \mathbb{N}$ f: $\mathbb{Z} \rightarrow \mathbb{N}$ as $f(n) = \begin{cases} 2n, & n \geq 1 \\ -2n+1, & n \leq 0 \end{cases}$
•	$N \times N \sim N$ Use the fact that every REN is uniquely written as $k = 2(2n-1)$
	for some m, n E IN.
Orestion:	What can ve say about infinite subsets of M?
	An infinite subset of M is countably infinite.
Pf.	Make we of the well ordering property of IN. Let A be an infinite subset of M.
	Since $A \neq \emptyset$, there is a smallest element in A , say, a_i .
	Then consider A\3a14. Again A\3a14 has a smallest element, say, 92.
	Continuing this way, we obtain a collection \(\gamma_{1}, a_{2}, a_{3}, \dots \) such that
	$a_{n} = \min A \setminus \{a_{1},, a_{n-1}\} $ for $n > 1$.
	Claim: $A = \{a_1, a_2, \dots, \}$
	Pf of claim: Suppose A\{a1, a2,} } ≠ \$. Let a ∈ A\{a1, a2, }.
	Consider Zk: ak > a g.
	If {k: qk >a}= p, then a < a, (why?)
	This implies that a = min A contradiction to a, = min A.
	So, {k: an > a & + & Hence {k: an > a & has a smallest element,
	say, n. That is, a < a < an . Note also that a < a2 <an-1.< th=""></an-1.<>
	note that any ta ble at Ean, &
	This contradicts $a_n = \min A \setminus \{a_1,, a_{n-1}\}$. Therefore, $A = \{a_1, a_2,\}$.
	Hw. Show that Ear, az, I is equivalent to IN (implying that A is a countable set).

Thm: Every sequence of real ros has a monotone subsequence. of Let (an) be a seq. of real nos. Consider S= {n | am > an + m>n} Suppose S is an infinite set. Then, by previous Thm, S= { n1, n2, n3, ----} with ny < n2 <n3 < -- ... This implies that an < an < an < an < subseq.) Suppose S is a finit set. Then M/S + p. Hence there is a smallest element ni EM/S s.t. 4 n>n, n&S. Since $n_1 \notin S$, $\frac{1}{2} n_2 > n_1$ such that $a_{n_2} \leq a_{n_1}$. Since $n_2 \notin S$, so $\frac{1}{2} n_3 > n_2$ such that $a_{n_3} \leq a_{n_2}$. Continuing this way, one obtains ---- < ank < ank < ank < --- < anz < an (monotone & subseque) Prove the Bolzono-Weierstrass than for sequences: Corollary: Lit (xn) be a bold. seq. By the above thrm, I a monotone 1 or I subseque (2nk). Then by Monotone bounded convergent thrm, conclusion holds. HWi Cill in the Corollary: Every Cauchy sequence of real nos converges. Pf: Hints. . (2m): Cauchy seq. = (xn) is bounded. a 3 (2 mm) monotono subseque which is convergent. · Combine there two facts to conclude the full cog! (xn) converges! The vext goal is to show Q is countable and R is uncountable. (snff. conditions to show equivalence of countable sets)

(i) X is a countable set.

(i) >> ii) HW. Tim: TFAE: (ii) \exists a surjection $f: M \longrightarrow X$. $(ii) \Rightarrow (iii)$ i Define $g: X \to M$ as $(1ii) \exists$ an injective map $g: X \longrightarrow M$. $g(x) := \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (iii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (iii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \} \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$ $(1ii) \Rightarrow (1ii) = \min \{ n \in M \mid f(n) = x \}$

	This way we construct monempty closed and bounded intervals set.
	I DIZ DIZ DIZ D s.t. 2n & In \to n.2.
	By the Nested Introd Property of IR, OIn # 4.
	761
	Let y ∈ NIn. Then, y ≠ xn, + n>1. (why?)
	Therefore, [0,1] is not countable.
HW:	The set of irrational nos. IR/Q is an uncountable set!
─ ₹	For a set A, let P(A) denote the set of all subsets of A.
(HW) Question:	Is ANX for some XCP(A)?
	•
Question:	ls A ~ (P(A) ?
Anc.	No!
Thm:	(Cantor's Thm.) There is no surjective map F: A -> P(A).
	Consider $B := \{z \in A \mid z \notin F(x)\} \in \mathcal{P}(A)$.
	we will show that B does not have a preimage in A.
	Suppose B=F(b) for some b = A.
	Either $b \in F(b)$ or $b \notin F(b)$
	V
	ρ ≰ Ł(P)
	In either case, no get contradiction.

The Cation set

 $C_{0} := [0,1]$ $C_{1} := [0,\frac{1}{3}] \cup [\frac{2}{3},1]$ $C_{2} := [0,\frac{1}{3}] \cup [\frac{2}{3},\frac{1}{3}] \cup [\frac{2}{3},\frac{1}{4}] \cup [\frac{8}{9},1]$

Define the Canton set C:= OCn,

where $C_n = \frac{1}{2} \alpha \in [0,1] \setminus \alpha = 0.d_1 d_2 d_3 - has d_j \in \frac{1}{2} \cdot a_j \in$

So, C = { ze [0,1] | x has the tennary expansion containing only o's and 2's }.

- The Contor set is uncountable.

Use the Cantov's diagonal argument:

Suppose C is a countable set. Let C= {21, x2, x3, --- }.

21 = 0. 21,1 21,2 21,3

 $\chi_2 = 0 \cdot \chi_{2|1} \chi_{2|2} \chi_{2|3} \cdots$

 $\chi_3 = 0, \chi_{3,1} \chi_{3,2} \chi_{3,3} \dots$

Consider a seq. $(d_1, d_2, d_3, d_4, \ldots)$ such that $d_j = \begin{cases} 0, & \text{if } x_{j,j} = 2 \\ 2, & \text{if } x_{j,j} = 0 \end{cases}$

Then the real no. $x := 0 \cdot d_1 d_2 d_3 \cdots \in \mathbb{C}$, but $x \neq x_n + n \geqslant 1$ $\left(as \ d_j \neq x_{j,j} + j \geqslant 1\right)$

Onestion: Show that every infinite set is equivalent to a proper subset of itself, but a finite set is never equivalent to any proper subset of itself.