Homework #7

Sang Doan 10/16/2020

Pitcher Salaries and ERAs Over Time

Although mean salary for pitchers quite consistently grew from 1985 to 2014, their mean ERA increased by 25% during 1985 and 2000, before decreasing back to near the 1985 level. An average pitcher is paid 3.5 times higher in 2014 than in 1985, despite their slightly worse ERA.

Relationship between Salary and ERA

```
pp <- sal_era(dat, 1985:2014)
ggarrange(pp, legend = 'none')</pre>
```


We can see from the blue trendline that during the considered time 1985—2014, a player's ERA quantile is a bad predictor of their salary. Highest paid players of a particular season (highlighted datapoints) did not necessarily have a really low ERA. In fact, they were in very different ERA quantiles of their respective season. In recent years, the correlation between salary and ERA has become almost non-existent. As the graph below shows, from 2010-2014, none of the highest-paid players were among the top 20% regarding ERAs; one of them fell far below the median (2012).

ERA Quantile (0 = Best, 1 = Worst)

```
pp <- sal_era(dat, 2010:2014)
ggarrange(pp, legend = 'top')</pre>
```

Pay and Performance during 2010 – 2014

Salaries for Different ERA Quantiles

The Median Pitcher

```
pp <- qtile_pitcher(dat, 1985:2014, .5)
ggarrange(pp, legend = 'top')</pre>
```

0.5 quantile Pitchers 1985 - 2014

.01 Quantile (The very top players) and .25 Quantile (who surprisingly earned more than the 0.01 quantile group)

.95 Quantile (The very bottom players)

Their ERAs went down by around 10%, but their salaries still increased, though not as dramatically as those of top players.

```
pp <- qtile_pitcher(dat, 1985:2014, .95)
ggarrange(pp, legend = 'bottom')</pre>
```


Code

```
data_munge.R
salaries <- read.csv('../raw_data/Salaries.csv', header = T, stringsAsFactors = F) %>%
  dplyr::select(yearID, playerID, teamID, salary) %>% filter_dat()
inflation <- read.csv('../raw_data/Inflation.csv', header = T, stringsAsFactors = F)
salaries <- adjust_salaries(salaries, inflation)</pre>
pitch <- read.csv('../raw_data/Pitching.csv', header = T, stringsAsFactors = F) %>%
  dplyr::select(yearID, playerID, teamID, ERA) %>% filter_dat()
pitch <- adjust_ERAs(pitch)</pre>
processed <- dplyr::left_join(pitch, salaries,</pre>
                               by = c('year' = 'year', 'player' = 'player', 'team' = 'team'))
write.csv(drop_na(processed), '../processed_data/processed.csv', row.names = F)
data.R
get_processed_data <- function() {</pre>
  d <- read.csv('.../processed_data/processed.csv', header = T, stringsAsFactors = F)</pre>
  return(d)
}
analysis.R
#Pay for Pitcher at qth tile over Time
```

mp <- dat %>% filter(year %in% duration, between(adjERA, qtile - 0.01, qtile + 0.01)) %>%

qtile_pitcher <- function(dat, duration, qtile) {</pre>

```
group_by(year) %>% summarize (adjSal = mean(adjSal), ERA = mean(ERA))
  out <- ggplot(data = mp, aes(x = year, y = adjSal)) +
   geom_point() +
   geom_line(aes(x = year, y = ERA * 1000000, color = 'Mean ERA')) +
    geom_smooth(method = lm, se = F, aes(color = 'Salary Trendline')) +
      title = paste(qtile, 'quantile Pitchers', duration[1], '-', dplyr::last(duration)),
     x = 'Year',
      y = 'Salary (2015 dollar)',
      color = ''
   ) + theme_minimal() +
   scale_y_continuous(
     labels = scales::comma,
     sec.axis = sec_axis(trans = ~./1000000, name = 'Mean ERA')) +
   scale_color_viridis(discrete = T)
 return(out)
#Salary and ERA
sal_era <- function(dat, duration) {</pre>
 d <- filter(dat, year %in% duration)</pre>
 highest_paid <- d %>% group_by(year) %>% filter(row_number(desc(adjSal)) == 1)
 highest_paid$year[1] <- paste('Highest-Paid Player in', highest_paid$year[1])
  out <- ggplot(data = d, aes(x = adjERA, y = adjSal)) +
   geom_point(aes(color = factor(year))) +
   labs(
      title = paste('Pay and Performance during', duration[1], '-', dplyr::last(duration)),
      x = 'ERA Quantile (0 = Best, 1 = Worst)',
      y = 'Salary (2015 dollar)',
      color = ''
   ) + theme_minimal() +
    scale_y_continuous(labels = scales::comma) +
    scale_color_viridis(discrete = T) +
    geom_point(data = highest_paid, size = 3, shape = 1) +
   ggrepel::geom_label_repel(data = highest_paid, aes(label = year)) +
    geom_smooth(method = lm, se = F)
 return(out)
}
#Pitcher Salaries over Time
salera_over_time <- function(dat, salera) {</pre>
 d <- mean_salera_by_year(dat, 1985:2014, salera)
 out <- ggplot(data = d, aes(x = yr, y = meanSE)) +</pre>
    geom_line(aes(color = paste('Mean', salera))) + theme_minimal() +
      subtitle = paste("Pitchers' Mean", salera, '(1985-2014)'),
     x = 'Year',
     y = paste('Mean', salera),
```

```
color = ''
    ) +
  geom_smooth(se = F, size = 0.5, aes(color = 'Trendline')) +
    scale_color_viridis(discrete = T) +
    scale_y_continuous(labels = scales::comma_format(accuracy = 0.5))
  return(out)
}
mean salera by year <- function(dat, duration, salera) {</pre>
  SE <- paste('filter(dat, year == i)$', ifelse(salera == 'Salary', 'adjSal', 'ERA'))
  d <- data.frame(yr = duration, meanSE = rep(NA, length(duration)), stringsAsFactors = F)</pre>
  for(i in duration)
    d$meanSE[d$yr == i] <- mean(eval(parse(text = SE)))</pre>
  return(d)
}
#Data Munging Functions
filter_dat <- function(dat) {</pre>
  return(dplyr::filter(dat, yearID %in% 1985:2014))
}
adjust_salaries <- function(salaries, inflation) {</pre>
  for(i in 1985:2014) {
    thesePlayers <- which(salaries$yearID %in% i)</pre>
    salaries$salary[thesePlayers] <- salaries$salary[thesePlayers] *</pre>
      inflation$inflation2015[inflation$year == i]
  names(salaries) <- c('year', 'player', 'team', 'adjSal')</pre>
  return(salaries)
}
adjust_ERAs <- function(pitch) {</pre>
  pitch$adjERA <- NA
  for(i in 1985:2014) {
    thisYear <- pitch$ERA[pitch$yearID == i]</pre>
    pitch$adjERA[pitch$yearID == i] <- thisYear %>%
      dplyr::cume_dist() #Cumulative distribution transformation
  names(pitch) <- c('year', 'player', 'team', 'ERA', 'adjERA')</pre>
  return(pitch)
}
config.R
source('data.R')
source('analysis.R')
library(tidyverse)
library(magrittr)
library(viridis)
library(ggrepel)
library(ggpubr)
```