Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Mod	ıle			Fin Plate
MainMe	odule			Shear Connection
Connec	tivity			Column flange-Beam web
Shear(l	κN)*			70.0
	,	Supporting Se	ection	
	_	ng Section		PBP 300X78.4
	Mate	erial *		E 250 (Fe 410 W)A
т Ү	Ultimate strei	ngth, fu (MPa)		410
	Yield Streng	th , fy (MPa)		250
α	Mass	78.42	Iz(cm4)	163312000.0
ZZ D	Area(cm2) - A	9990.0	Iy(cm4)	52774900.0
	D(mm)	299.3	rz(cm)	127.899999999999
R ₁	B(mm)	306.4	ry(cm)	72.6999999999999
R ₂	t(mm)	11.0	Zz(cm3)	1091300.0
Y	T(mm)	11	Zy(cm3)	344480.0
•	FlangeSlope	90	Zpz(cm3)	1209970.0
	R1(mm)	1.52	Zpy(cm3)	344480.0
	R2(mm)	0.0		
		Supported Se	ction	
		ed Section		MB 225
_ Y	Material *		E 250 (Fe 410 W)A	
		ngth, fu (MPa)	410	
		th , fy (MPa)	250	
(B-t)	Mass	31.1	Iz(cm4)	34340000.0
ZZ D	Area(cm2) -	3960.0	Iy(cm4)	2100000.0
	D(mm)	225.0	rz(cm)	93.10000000000001
-R ₁	B(mm)	110.0	ry(cm)	23.0
В	t(mm)	6.5	Zz(cm3)	305300.0
Y	T(mm)	11.8	Zy(cm3)	38000.0
	FlangeSlope	98	Zpz(cm3)	347500.0
	R1(mm)	12.0	Zpy(cm3)	38000.0
	R2(mm)	6.0		
D	()*	Bolt Deta	lls	[10.0, 16.0, 00.0]
Diameter	· /		[0.0.4.0	[12.0, 16.0, 20.0]
Grad			[3.6, 4.6]	, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Туре				Bearing Bolt
Bolt hole				Standard
~				
Slip facto	r (μ_f)			0.3

Type of edges

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		16.0	
Grade *		5.8	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{500.0 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 36.26$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.49 * 16.0 * 6.5 * 410}{1.25}$ $= 41.79$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (36.26, 41.79)$ = 36.26	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{70.0^{2} + 50.0^{2}}}{36.26}$ $= 3$	4	
No of Columns		2	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	40	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 6.5, \ 300 \ mm)$ $= 300$	40	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	105	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 6.5, \ 300 \ mm)$ $= 300$	105	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	35	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$	35	Pass
Min. Eage Distance (min)	= 1.7 * 18.0 = 30.6	30	1 6655
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	35	Pass
Capacity (kN)	39.97	41.79	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 225.0 = 135.0$	175	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 225.0 - 2 * (11.8 + 12.0 + 10)	175	Pass
	= 177.4		
	$2*e_{min} + (n \ c - 1)*p_{min}$	120.0	D
Min. Plate Length (mm)	= 2 * 30.6 + (2 - 1) * 40.0	120.0	Pass
Min Dlata Thickness	= 111.2	8.0	Dagg
Min.Plate Thickness (mm)	$t_w = 6.5$	8.0	Pass
()		$V = A_v * f_y$	
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity		$= \frac{175 * 8.0 * 250}{\sqrt{3} * 1.1}$	
(V_dy) (kN)			
		=183.7	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (175 - (2 * 18.0)) * 8.0 * 410))
(V_dn) (kN)		= 341.94	,
Block Shear Capacity in		260.32	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	70.0	= Min(183.7, 341.94, 260.32)	Pass
(kN)		= 183.7	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tension Yielding Capacity		7mo $175 * 8.0 * 250$	
(kN)		$=\frac{175*8.0*250}{1.1}$	
. ,		= 318.18	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
ш : р , с ;			
Tension Rupture Capacity (kN)		$= \frac{0.9 * (175 - 2 * 18.0) * 8.0 * 410}{1.25}$	<u>)</u>
(1111)		= 328.26	
Block Shear Capacity in		336.94	
Tension (T_db) (kN)			
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	50.0	= Min(318.18, 328.26, 336.94)	Pass
		= 318.18	
Moment Capacity (kN-m)	4.55	13.92	Pass
Interaction Ratio	≤ 1	$\frac{4.55}{13.92} + \frac{50.0}{318.18} = 0.48$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part$ $= max(11, 8.0)$ $= 11$ $IS800: 2007 cl.10.5.2.3 Table 21,$ $t_{w_{min}} = 5$	6	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(11, 8.0) = 8.0$ $t_{w_{max}} = 8.0$	6	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{4550000.0 * 82.5}{748687.5}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{4550000.0 * 0.0}{748687.5}$ $V_{wv} = \frac{V}{l_{w}} = \frac{70000.0}{330}$ $A_{wh} = \frac{A}{l_{w}} = \frac{50000.0}{330}$ $R_{w} = \sqrt{(501.38 + 151.52)^{2} + (0.0 + 212.12)^{2}}$ $= 729.41$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{4.2 * 410}{\sqrt{3} * 1.25}$ $= 795.36$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View