# Simulation and Modeling Assignment Testing Random Number Generators

Course No. CSE 412 Simulation and Modeling

Submitted by 1505095 - Jamalia Sultana Jisha

December 12, 2020



Department of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET) Dhaka 1000

Dnaka 1000 December 12, 2020

## Uniformity test

**Parameters:** constant = 65539, seed = 1505095,  $\alpha = 0.1, X^2_{k-1,1-\alpha} = 27.20357$ In this test, we checked whether the  $U_i$ 's generated appear to be uniformly distributed between 0 and 1 or not. We performed the chi-square test with all the given parameters.

We divide [0,1] into k sub-intervals of equal length and generate  $U_1, U_2, \dots, U_n$ . For  $j=1,2,\dots,k$ , we let  $f_j$  be the number of the Ui's that are in the jth sub-interval, and calculated the  $X^2$ . For large n,  $X^2$  will have an approximate chi-square distribution with k-1 degrees of freedom under the null hypothesis  $(H0=U_i)$ 's are IID random variables).

Here in the uniformity test, the value of  $X^2$  for different parameter values are smaller than  $X^2_{k-1,1-\alpha}$ . We know that we reject this hypothesis at level  $\alpha$  if  $X^2 > X^2_{k-1,1-\alpha}$  where  $X^2_{k-1,1-\alpha}$  is the upper  $1-\alpha$  critical point of the chi-square distribution with k-1 degrees of freedom. So, after conducting the test, we decided that this hypothesis is not rejected for different parameters. The results for the given parameters the shown in the Table 1

| N     | K  | Chi   | Rejected |
|-------|----|-------|----------|
| 20    | 10 | 2.0   | No       |
| 20    | 20 | 14.0  | No       |
| 500   | 10 | 13.08 | No       |
| 500   | 20 | 25.28 | No       |
| 4000  | 10 | 7.065 | No       |
| 4000  | 20 | 15.84 | No       |
| 10000 | 10 | 5.402 | No       |
| 10000 | 20 | 16.32 | No       |

Table 1: Uniformity test results for different parameters

## Serial test

**Parameters:** constant = 65539, seed = 1505095,  $\alpha$  = 0.1 The serial test is really just a generalization of the chi-square test to higher dimensions. If the individual  $U_i$ 's are correlated, the distribution of the d-vectors  $U_i$  will deviate from d-dimensional uniformity; thus, the serial test provides an indirect check on the assumption that the individual  $U_i$ 's are independent.

In this test, we calculated d-tuples. We then checked whether d-tuples are uniformly distributed on the d-dimensional unit hyper-cube  $[0,1]^d$ .  $X^2(d)$  will have an approximate chi-square distribution with  $k^d-1$  df. We used this hypothesis as a way to report our test results which differs for different parameters. The results for the given parameters the shown in the Table 2

Table 2: Serial test results for different parameters

| N     | k | d | chi       | $X^2_{k-1,1-\alpha}$ | Rejected |
|-------|---|---|-----------|----------------------|----------|
| 20    | 4 | 2 | 16.0      | 22.307               | No       |
| 20    | 8 | 2 | 44.8      | 77.745               | No       |
| 20    | 4 | 3 | 27.2      | 77.745               | No       |
| 20    | 8 | 3 | 161.6     | 552.374              | No       |
| 500   | 4 | 2 | 134.272   | 22.307               | Yes      |
| 500   | 8 | 2 | 155.392   | 77.745               | Yes      |
| 500   | 4 | 3 | 250.176   | 77.745               | Yes      |
| 500   | 8 | 3 | 403.52    | 552.374              | No       |
| 4000  | 4 | 2 | 1008.112  | 22.307               | Yes      |
| 4000  | 8 | 2 | 1035.52   | 77.745               | Yes      |
| 4000  | 4 | 3 | 1799.776  | 77.745               | Yes      |
| 4000  | 8 | 3 | 1958.0    | 552.374              | Yes      |
| 10000 | 4 | 2 | 2508.384  | 22.307               | Yes      |
| 10000 | 8 | 2 | 2529.4848 | 77.745               | Yes      |
| 10000 | 4 | 3 | 4469.0976 | 77.745               | Yes      |
| 10000 | 8 | 3 | 4621.526  | 552.374              | Yes      |

#### Runs test

**Parameters:**  $constant = 65539, seed = 1505095, \alpha = 0.1, X^2_{6,1-\alpha} = 10.644$  In this runs test, we evaluated the independence assumption of the random number generator.

We examined the  $U_i$  sequence (or, equivalently, the  $Z_i$  sequence) for unbroken sub-sequences of maximal length within which the  $U_i$ 's increase monotonically; such a sub-sequence is called a run up. For large n, R will have an approximate chi-square distribution with 6 df. We calculated if  $R \geq X^2_{6,1-\alpha}$  and if so, then we rejected the null hypothesis as in previous test. The results for the given parameters the shown in the Table 3

Since runs tests look solely for independence (and not specifically for uniformity), it would probably be a good idea to apply a runs test before performing the chi-square or serial tests, since the last two tests implicitly assume independence.

Table 3: Runs test results for different parameters

| N     | ri[1-6]                        | Run(ri) | Rejected |
|-------|--------------------------------|---------|----------|
| 20    | [7, 5, 1, 0, 0, 0]             | 6.049   | No       |
| 500   | [84, 103, 50, 11, 2, 1]        | 1.57    | No       |
| 4000  | [652, 849, 369, 98, 18, 10]    | 8.58    | No       |
| 10000 | [1687, 2116, 913, 244, 49, 20] | 11.461  | Yes      |

## Correlation test

**Parameters:** constant = 65539, seed = 1505095,  $\alpha = 0.1, Z_{1-\alpha/2} = 1.645$  In this test, we directly assessed whether the generated  $U_i$ 's exhibit discernible correlation at lag j. Under the assumption that there is no correlation (that is  $\rho_j = 0$ ) and assuming n is large  $A_j$  should have an approximate standard normal distribution.

After testing the null hypothesis ( $H0: U_i$ 's have zero lag j correlation) at level  $\alpha$ , we rejected the hypothesis if  $|A_j| > Z_{1-\alpha/2}$ . The results for the given parameters the shown in the Table 4

Table 4: Correlation test results for different parameters

| N     | j | Corr   | Rejected |
|-------|---|--------|----------|
| 20    | 1 | 0.119  | No       |
| 20    | 3 | 0.728  | No       |
| 20    | 5 | 1.259  | No       |
| 500   | 1 | 1.398  | No       |
| 500   | 3 | 0.65   | No       |
| 500   | 5 | 2.605  | Yes      |
| 4000  | 1 | 0.27   | No       |
| 4000  | 3 | 1.158  | No       |
| 4000  | 5 | 0.0671 | No       |
| 10000 | 1 | 0.383  | No       |
| 10000 | 3 | 0.343  | No       |
| 10000 | 5 | 0.251  | No       |