ЛАБОРАТОРНАЯ РАБОТА 1. ТЕОРИЯ ПОГРЕШНОСТЕЙ И МАШИННАЯ АРИФМЕТИКА

Теоретический материал к данной теме содержится в [1, глава 2]. Варианты к задачам 1.1-1.10 даны в ПРИЛОЖЕНИИ 1.А.

Пример оформления отчета по лабораторной работе приведен в ПРИЛОЖЕНИИ 1.В.

Задача 1.1. Дан ряд
$$\sum_{n=0}^{\infty} a_n$$
 . Найти сумму ряда аналитически. Вычислить значения частичных сумм ряда $S_N = \sum_{n=0}^N a_n$ и найти величину погрешности при значениях N = 10 , 10^2 , 10^3 , 10^4 , 10^5 .

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Найти сумму ряда S аналитически как предел частичных сумм ряда (см. $\Pi P U J O \mathcal{K} E H U E 1.B$).
- 2. Используя функцию $S\left(N\right) = \sum_{n=0}^{N} a_{n}$, вычислить значения частичных сумм ряда при указанных значениях

N.

- 3. Для каждого N вычислить величину абсолютной погрешности |S(N)-S| и определить количество верных цифр в S(N).
- 4. Представить результаты в виде гисте

$$egin{align*} \mathbf{3}$$
адача 1.2. Дана матрица $A = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{pmatrix}$. В каждый из диагональных элементов матрицы A по

очереди внести погрешность в 1%. Как изменился определитель матрицы А? Указать количество верных цифр и вычислить величину относительной погрешности определителя в каждом случае.

- **Задача 1.3.** Для заданной матрицы A найти обратную матрицу (если это возможно). Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную матрицу. Объяснить полученные результаты.
- **Задача 1.4**. Найти ранг заданной матрицы A. Затем внести погрешность в 0.1% а) в элемент a_{11} ; b) во все элементы матрицы и снова найти ранг. Объяснить полученные результаты.
- **Задача 1.5**. Дано квадратное уравнение $x^2 + hx + c = 0$. Предполагается, что один из коэффициентов уравнения (в индивидуальном варианте помечен *) получен в результате округления. Произвести теоретическую оценку погрешностей корней в зависимости от погрешности коэффициента. Вычислить корни уравнения при нескольких различных значениях коэффициента в пределах заданной точности. Сравнить полученные результаты.
- Задача 1.6. Для пакета МАТНСАD найти значения машинного нуля, машинной бесконечности, машинного эпсилон (см. ПРИЛОЖЕНИЕ 1.В).
- Задача 1.7. Вычислить значения машинного нуля, машинной бесконечности, машинного эпсилон в режимах одинарной и двойной точности на алгоритмическом языке. Сравнить результаты с результатами задачи 1.6. УКАЗАНИЕ: при использовании языка Python, вещественные числа ординарной точности можно получить используя библиотеку NumPy, напр. np.float32(1) и т.д.
- Задача 1.8. Составить программу, моделирующую вычисления на ЭВМ с ограниченной разрядностью т. Решить задачу 1.1 для случая N=10000, используя эту программу. Составить график зависимости погрешности от количества разрядов m=4.5.....8.

Задача 1.9. Для матрицы *А* решить вопрос о существовании обратной матрицы в следующих случаях:

- 1) элементы матрицы заданы точно;
- 2) элементы матрицы заданы приближенно с относительной погрешностью a) $\delta = \alpha\%$ и b) $\delta = \beta\%$. Найти относительную погрешность результата.

УКАЗАНИЕ. См. ПРИЛОЖЕНИЕ 1.С.

Задача 1.10. Три вектора a_1 , a_2 , a_3 заданы своими координатами в базисе i, j, k. Что можно сказать о компланарности этих векторов, если:

- 1) координаты векторов заданы точно;
- 2) координаты векторов заданы приближённо с относительной погрешностью a) $\delta = \alpha$ %; б) $\delta = \beta$ %.
- УКАЗАНИЕ. См. ПРИЛОЖЕНИЕ 1.С.

ПРИЛОЖЕНИЕ 1.А. Схема вариантов к лабораторной работе 1.

N	Выполняемые задачи	N	Выполняемые задачи
1	1.1.1, 1.8, 1.2.1, 1.7, 1.6, 1.10.1	16	1.1.16, 1.8, 1.5.4, 1.7, 1.6, 1.10.5
2	1.1.2, 1.8, 1.3.1, 1,7, 1.6, 1.10.2	17	1.1.17, 1.8, 1.2.5, 1.7, 1.6, 1.10.6
3	1.1.3, 1.8, 1.4.1, 1.7, 1.6, 1.10.3	18	1.1.18, 1.8, 1.3.5, 1.7, 1.6, 1.9.1
4	1.1.4, 1.8, 1.5.1, 1.7, 1.6, 1.10.4	19	1.1.19, 1.8, 1.4.5, 1.7, 1.6, 1.9.2
5	1.1.5, 1.8, 1.2.2, 1.7, 1.6, 1.10.5	20	1.1.20, 1.8, 1.5.5, 1.7, 1.6, 1.9.3
6	1.1.6, 1.8, 1.3.2, 1.7, 1.6, 1.10.6	21	1.1.21, 1.8, 1.2.6, 1.7, 1.6, 1.9.4
7	1.1.7, 1.8, 1.4.2, 1.7, 1.6, 1.9.1	22	1.1.22, 1.8, 1.3.6, 1.7, 1.6, 1.9.5
8	1.1.8, 1.8, 1.5.2, 1.7, 1.6, 1.9.2	23	1.1.23, 1.8, 1.4.6, 1.7, 1.6, 1.9.6
9	1.1.9, 1.8, 1.2.3, 1.7, 1.6, 1.9.3	24	1.1.24, 1.8, 1.5.6, 1.7, 1.6, 1.10.1
10	1.1.10, 1.8, 1.3.3, 1.7, 1.6, 1.9.4	25	1.1.25, 1.8, 1.2.1, 1.7, 1.6, 1.10.2
11	1.1.11, 1.8, 1.4.3, 1.7, 1.6, 1.9.5	26	1.1.26, 1.8, 1.3.1, 1.7, 1.6, 1.10.3
12	1.1.12, 1.8, 1.5.3, 1.7, 1.6, 1.10.1	27	1.1.27, 1.8, 1.4.1, 1.7, 1.6, 1.10.4
13	1.1.13, 1.8, 1.2.4, 1.7, 1.6, 1.10.2	28	1.1.28, 1.8, 1.5.1, 1.7, 1.6, 1.10.5
14	1.1.14, 1.8, 1.3.4, 1.7, 1.6, 1.10.3	29	1.1.29, 1.8, 1.2.2, 1.7, 1.6, 1.10.6
15	1.1.15, 1.8, 1.4.4, 1.7, 1.6, 1.10.4	30	1.1.30, 1.8, 1.3.2, 1.7, 1.6, 1.9.6

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 1

Таблица к задаче 1.1

N	a_n	N	a_n	N	a_n
1.1.1	2	1.1.11	60	1.1 21	24
	$n^2 + 5n + 6$		$11(n^2+12n+35)$		$7(n^2 + 8n + 15)$
1.1.2	36	1.1.12	144	1.1.22	36
	$11(n^2+5n+4)$		$\overline{5(n^2+6n+8)}$		$\frac{n^2 + 5n + 4}{}$
1.1.3	9	1.1.13	36	1.1.23	46
	$\overline{n^2 + 7n + 12}$		$\overline{n^2 + 7n + 10}$		$\frac{n^2 + 5n + 6}{n^2 + 6}$
1.1.4	48	1.1.14	48	1.1.24	96
	$\overline{5(n^2+6n+8)}$		$\overline{n^2 + 8n + 15}$		$\overline{n^2 + 9n + 20}$
1.1.5	48	1.1.15	20	1.1.25	60
	$\overline{5(n^2+6n+5)}$		$\overline{n^2 + 4n + 3}$		$\overline{n^2 + 6n + 8}$

1.1.6	72	1.1.16	32	1.1.26	72
	$\overline{5(n^2+6n+8)}$		$\frac{1}{n^2 + 5n + 6}$		$\overline{n^2 + 7n + 10}$
1.1.7	24	1.1.17	144	1.1.27	24
	$\overline{n^2 + 8n + 15}$		$n^2 + 18n + 80$		$\overline{n^2 + 4n + 3}$
1.1.8	32	1.1.18	24	1.1.28	96
	$\overline{n^2 + 9n + 20}$		$\overline{n^2 + 4n + 3}$		$\frac{n^2 + 8n + 15}{n^2 + 8n + 15}$
1.1.9	216	1.1.19	180	1.1.29	72
	$\overline{7(n^2 + 8n + 15)}$		$n^2 + 20n + 99$		$\overline{n^2 + 6n + 8}$
1.1.10	84	1.1.20	112	1.1.30	12
	$\overline{13(n^2 + 14n + 48)}$		$15(n^2 + 16n + 63)$		$\overline{5(n^2+6n+8)}$

Таблица к задаче 1.2

N		A		N		A		N	A			
1.2.1	3	2	2	1.2.2	30	34	19	1.2.3	1.3	1	13	
	33	28	24		314	354	200		3.4	1.4	23	
	360	320	270		2	8	13		5	3	1.5	
1.2.4	9	5	6	1.2.5	-7	-7	-1	1.2.6	3	1	13	
	17	9	11		0	-2	-6		5	3	15	
	7	4	5		5	6	4		11	5	40	

Таблица к задаче 1.3

N	A	N	A	N	A
1.3.1	2 16 -6	1.3.2	2 4.4 -2	1.3.3	3 5 3
	3 24 5		1 2 -1		9 15 9
	1 8 11		3 -5 0		6 7 2
1.3.4	48 3 6	1.3.5	2 0.4 6	1.3.6	5 5.5 5.5
	32 2 4		1.1 0.2 3		1 1 1
	5 -1 2		2.3 1.2 4		5 -1 2

Таблица к задаче 1.4

N	A	N	A	N	A
1.4.1	1.1 0.1 0.8 1.6	1.4.2	0.6 4.5 0.3 3	1.4.3	1.8 4 0 1.9
	1.3 -0.3 1.2 2.1		-2.4 -12 0.9 -7		20.9 37 -25 19.2
	0.9 0.5 0.4 1.1		1.2 9 0.6 6		0.5 3 5 1.1
	-0.4 -3.8 2 1.3		-1.2 3 3.6 4		10.6 16 -20 8.9
1.4.4	2 15 22 7	1.4.5	1.9 9 1.6 0.1	1.4.6	1.2 9 0.6 6
	1 14.1 18.8 2.3		11.3 23 6.8 -3.7		1.6 23 -7.2 9
	2 4 9 9		0.5 10 1.1 1.1		2 4 9 9
	-0.4 2.5 2.1 -2.4		0.9 -11 -0.6 -2.1		2 37 -15 12

Таблица к задаче 1.5

N	Коэффициенты	N	Коэффициенты	N	Коэффициенты
1.5.1	b* = -39.6	1.5.2	b = 27.4	1.5.3	b* = 37.4
	c = -716.85		c* = 187.65		c = 187.65
1.5.4	b = -30.9	1.5.5	$b^* = -3.29$	1.5.6	b = -3.29
	$e^* = 238.7$		c = 2.706		c* = 2.706

N	A	α	β	N	A	α	β
1.9.1	31 27 22 32.2 28.2 24 36 32 27	0.1	0.4	1.9.2	30 34 19 31.4 35.4 20 24 28 13	0.05	0.1
1.9.3	3 1 13 13.4 11.4 23 5 3 15	0.05	0.1	1.9.4	9 5 6 13.5 9.5 11 8 4 5	0.1	0.5
1.9.5	-7 -8 -10 28.6 27.6 25 7 6 4	0.1	0.2	1.9.6	-3 -1 -13 26.8 22.4 46 5 3 15	0.1	0.1

Табли	ша к	зал	аче	1 10
I domin	цик	эид	uic	1.10

N	\mathbf{a}_1	\mathbf{a}_2	a ₃	α	β
1.10.1	(10, 15, 1)	(0.7, 5.7, -9)	(11, 16, 2)	0.05	0.1
1.10.2	(-2, -5, 13)	(14.2, 11.2, 28)	(0, -3, 15)	0.5	0.1
1.10.3	(24, 28, 13)	(21.1, 25.1, 10)	(18, 22, 7)	0.05	0.01
1.10.4	(9, 17, 1)	(27, 35, -18)	(6, 14, 4)	0.5	0.1
1.10.5	(14, 4, 17)	(33.9, 23.9, 38)	(13, 3, 16)	0.05	0.1
1.10.6	(9, 17, 1)	(27, 35, -18)	(6, 14, 4)	0.5	0.1

ПРИЛОЖЕНИЕ 1. В

Отчет по лабораторной работе оформляется на листах формата А4. Первый лист - титульный. На нем указываются фамилия студента, номер группы, тема лабораторной работы, номер варианта и номера выполняемых залач.

Ниже приведен пример оформления содержательной части отчета по лабораторной работе 1.

Задача 1.1.0. Постановка задачи: дан ряд
$$\sum_{n=0}^{\infty} \frac{72}{n^2 + 5n + 4}$$
. Найти сумму ряда S аналитически.

Вычислить значения частичных сумм ряда S $_{N}$ = $\sum_{n=0}^{N} a_{n}$ и найти величину погрешности при значениях N =

10 , 10^2 , 10^3 , 10^4 , 10^5 . Построить гистограмму зависимости числа верных цифр результата от $\,N$.

Аналитическое решение задачи

$$S_{N} = \sum_{n=0}^{N} \frac{72}{n^{2} + 5n + 4} = \sum_{n=0}^{N} \frac{72}{(n+1) \cdot (n+4)} = 72 \cdot \sum_{n=0}^{N} \frac{1}{3} \cdot \left(\frac{1}{n+1} - \frac{1}{n+4}\right) =$$

$$= 24 \cdot \left(1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{N+2} - \frac{1}{N+3} - \frac{1}{N+4}\right),$$

$$S = \lim_{N \to \infty} S_{N} = 44. \quad \text{OTBET: } S = \sum_{n=0}^{\infty} \frac{72}{n^{2} + 5n + 4} = 44.$$

Теоретический материал. Пусть a - точное значение, a^* - приближенное значение некоторой величины.

Абсолютной погрешностью приближенного значения a^* называется величина $\Delta(a^*) = |a - a^*|$.

Относительной погрешностью значения a^* (при $a \neq 0$) называется величина $\delta(a^*) = \frac{\Delta(a^*)}{|a|}$. Так как

значение a как правило неизвестно, чаще получают оценки погрешностей вида: $|a-a^*| \leq \overline{\Delta}(a^*)$;

$$\frac{|a-a^*|}{|a|} \le \overline{\delta}(a^*)$$
. Величины $\overline{\Delta}(a^*)$ и $\overline{\delta}(a^*)$ называют верхними границами (или просто границами)

абсолютной и относительной погрешностей.

Значащую цифру числа a^* называют верной, если абсолютная погрешность числа не превосходит единицы разряда, соответствующего этой цифре.

Введем функцию
$$S(N) = \sum_{n=0}^{N} \frac{72}{n^2 + 5n + 4}$$
. Тогда абсолютную погрешность можно определить с

помощью функции d(N) = |S(N) - S|.

Результаты вычислительного эксперимента: Значение частичной Величина абсолютной К

Значение частичной погрешности	Величина абсолютной верных цифр	Количество	суммы ряда
S(10)=38.439560439	d(10)=5.56	$M_1 = 1$	
S(100)=43.3009269	d(100)=0.699	$M_2 = 2 S$	(1000)=43.9282153
d(1000)=0.072	$M_3 = 3$		
S(10000)=43.992802	d(10000)=0.0072	$M_4 = 4$	
S(100000)=43.999280215995	7 d(100000)=0.00072	$M_5 = 5$	

Вывод: Как видно из приведенного вычислительного эксперимента, увеличение числа членов ряда в 10 раз по сравнению с предыдущим случаем увеличивает число верных цифр в ответе на 1.

Гистограмма

Задача 1.6. Постановка задачи: для пакета MATHCAD найти значения машинного нуля, машинной бесконечности, машинного эпсилон.

Теоретический материал. В ЭВМ для вещественных чисел используется двоичная система счисления и принята форма представления чисел с плавающей точкой $x = \mu \cdot 2^p$,

 $\mu=\pm(\gamma_1\cdot 2^{-1}+\gamma_2\cdot 2^{-2}+...+\gamma_t\cdot 2^{-t})$. Здесь μ - мантисса ; $\gamma_1,\gamma_2,...\gamma_t$ - двоичные цифры, причем всегда γ_1 =1, p-целое число называемое двоичным порядком. Количество t цифр, которое отводится для записи мантиссы, называется разрядностью мантиссы. Диапазон представления числа в ЭВМ ограничен конечной разрядностью мантиссы и значением числа p. Все представимые числа на ЭВМ удовлетворяют неравенствам: $0 < X_0 \le |x| < X_\infty$, где $X_0 = 2^{-(p_{\max}+1)}$, $X_\infty = 2^{p_{\max}}$. Все числа, по модулю большие X_0 , не представимы на ЭВМ и рассматриваются как машинная бесконечность. Все числа, по модулю меньшие X_0 , для ЭВМ не отличаются от нуля и рассматриваются как машинный нуль. Машинным эпсилон \mathcal{E}_M называется относительная точность ЭВМ, то есть граница относительной погрешности представления чисел в ЭВМ. Покажем, что $\mathcal{E}_M \approx 2^{-t}$. Пусть $x^* = \mu \cdot 2^p$, тогда граница абсолютной погрешности представления этого числа равна $\overline{\Delta}(x^*) \approx 2^{-t-1} \cdot 2^p$. Поскольку $\frac{1}{2} \le \mu < 1$, то величина относительной погрешности представления оценивается так:

$$\overline{\delta}(x^*) \approx \frac{\overline{\Delta}(x^*)}{\left|x^*\right|} \approx \frac{2^{-t-1} \cdot 2^p}{\mu \cdot 2^p} = \frac{2^{-t-1}}{\mu} \le \frac{2^{-t-1}}{2^{-1}} = 2^{-t}.$$

Машинное эпсилон определяется разрядностью мантиссы и способом округления чисел, реализованным на конкретной ЭВМ.

Примем следующие способы определения приближенных значений параметров, требуемых в задаче:

- 1. Положим $X_{\infty}=2^n$, где n первое натуральное число, при котором происходит переполнение.
- 2. Положим $X_0 = 2^{-m}$, где m первое натуральное число, при котором 2^{-m} совпадает с нулем.
- 3. Положим $\varepsilon_M = 2^{-k}$, где k наибольшее натуральное число, при котором сумма вычисленного значения $1+2^{-k}$ еще больше 1. Фактически ε_M есть граница относительной погрешности представления числа $x^* \approx 1$.

Результаты вычислительного эксперимента:

Машинная бесконечность $X_{\infty} \approx 10^{307}$

Машинный нуль $X_0 \approx 10^{-306}$

Машинное эпсилон $\varepsilon_M \approx 10^{-15}$

Тексты программ:

ЗАДАЧА 1.1.0 ORIGIN:= 1
$$S(N) := \sum_{n=0}^{N} \frac{72}{n^2 + 5 \cdot n + 4}$$

$$d(N) := |S(N) - 4|$$

Значение частичной суммы ряда	Величина абсолютной погрешности	Количество верны цифр
S(10) = 38.43956043956044	d(10) = 5.56	$\mathbf{M}_1 := 1$
S(100) = 43.30092694284587	d(100) = 0.699	$M_2 := 2$
S(1000) = 43.9282153063675	d(1000) = 0.072	$M_3 := 3$
S(10000) = 43.99280215930432	$d(10000) = 7.19810^{-3}$	$M_4 := 4$

d(N) := |S(N) - 44|

 $M_5 := 5$

ЗАДАЧА 1.6. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ

S(100000) = 43.99928002159933 $d(1000000) = 7.2 \cdot 10^{-5}$

МАШИННАЯ БЕСКОНЕЧНОСТЬ $\inf(n) := 2^n$

 $zero(m) := 2^{-m}$ МАШИННЫЙ НУЛЬ $eps(k) := 2^{-k}$ МАШИННОЕ ЭПСИЛОН

 $\inf(1019) = 5.618 \cdot 10^{306}$ $\inf(1020) = 1.124 \cdot 10^{307}$ $zero(1019) = 1.78 \cdot 10^{-307}$ zero(3020) = 0

res(k) := 1 + eps(k)

res(47) = 1.0000000000000007res(48) = 1.0000000000000004

res(50) = 1.0000000000000001res(51) = 1

 $eps(50) = 8.88178419700125210^{-16}$

ПРИЛОЖЕНИЕ 1.С

В задачах 1.9 и 1.10 исходный вопрос решается путем нахождения определителя и сравнения его с нулем. В случае, когда элементы определителя заданы точно, следует вычислить определитель и правильно ответить на поставленный в задаче вопрос.

В случае, когда элементы определителя заданы приближенно с относительной погрешностью б, дело обстоит сложнее. Пусть элементы матрицы обозначены через a_{ij} . Тогда каждый элемент матрицы a_{ij} теперь уже не равен конкретному значению, а может принимать любое значение из отрезка [a_{ij} (1 - δ) ; a_{ij} ($1+\delta$)] , если $a_{ij}>0$, и из отрезка [a_{ij} ($1+\delta$) ; a_{ij} ($1-\delta$)] , если $a_{ij}<0$. Множество всех возможных значений элементов матрицы представляет собой замкнутое ограниченное множество в 9мерном пространстве. Сам определитель является непрерывной и дифференцируемой функцией 9 переменных - элементов матрицы a_{ij} . По известной теореме Вейерштрасса эта функция достигает на указанном множестве своего наибольшего и наименьшего значений M и m. Если отрезок [m, M] не содержит точку 0 , то это означает, что при всевозможных допустимых значениях элементов матрицы a_{ij}

определитель не обращается в 0. Если же точка 0 принадлежит отрезку [m, M], такое утверждение будет неправомерным. Будет иметь место неопределённость.

Нахождению значений m и M помогают следующие рассуждения. Как функция своих аргументов (элементов матрицы a_{ij}) определитель обладает таким свойством (принцип максимума): эта функция достигает своего наибольшего и наименьшего значений всегда на границе области . Более того, можно доказать, что эти значения достигаются в точках, координаты которых имеют вид a_{ij} ($1\pm\delta$). Таких точек $2^9=512$. В каждой из них следует вычислить определитель, а затем выбрать из полученных значений самое большое и самое маленькое. Это и будут числа M и m.

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.