```
# Sample Machine Learning Project
# Dataset: wine_new.csv
# steps
# 1. data import
# 2. Data Cleaning - Missing values
# 3. Exploratory Data Analysis
# 4. Outlier Detection and Removal
# 5. Data Balancing / Resampling
# 6. Feature Scaling
# 7. Feature selection / Dimentionality Reduction
# 8. Cross Validation
# 9. Algorithm, Hyperparameter Tuning
# 10. Model Building
# 11. Predictions, Performance Monitoring
# 12. Deployment
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# 1. data import
df = pd.read csv('wine-new.csv')
df.shape
     (178, 14)
# 2. Data Cleaning - Missing values
df.isnull().sum()
     class
                                      0
```

```
alcohol
                                 0
malic_acid
ash
alcalinity_of_ash
magnesium
total phenols
flavanoids
nonflavanoid_phenols
proanthocyanins
color_intensity
                                 2
 hue
od280/od315_of_diluted_wines
proline
dtype: int64
```

check the data form, if string values then encoding you have to do

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	class	178 non-null	int64
1	alcohol	178 non-null	float64
2	malic_acid	178 non-null	float64
3	ash	178 non-null	float64
4	alcalinity_of_ash	178 non-null	float64
5	magnesium	175 non-null	float64
6	total_phenols	178 non-null	float64
7	flavanoids	178 non-null	float64
8	nonflavanoid_phenols	178 non-null	float64
9	proanthocyanins	178 non-null	float64
10	color_intensity	178 non-null	float64
11	hue	176 non-null	float64
12	od280/od315_of_diluted_wines	171 non-null	float64
13	proline	178 non-null	int64

dtypes: float64(12), int64(2)

memory usage: 19.6 KB

```
df.columns = df.columns.str.strip()
# space is thter infrom of clumnname
df.columns
     Index(['class', 'alcohol', 'malic acid', 'ash', 'alcalinity of ash',
            'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols',
            'proanthocyanins', 'color intensity', 'hue',
            'od280/od315_of_diluted_wines', 'proline'],
           dtype='object')
# 2. Data Cleaning
df.fillna(method='pad', inplace=True)
df.isnull().sum()
     class
     alcohol
     malic acid
     ash
     alcalinity of ash
     magnesium
     total phenols
     flavanoids
     nonflavanoid phenols
     proanthocyanins
     color_intensity
     hue
     od280/od315 of diluted wines
     proline
     dtype: int64
# seperate the input output data
x = df.drop('class', axis = 1)
y = df['class']
```

```
x.shape
```

(178, 13)

3. Exploratory Data Analysis

x.columns

x.describe()

alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenol
178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.00000
13.000618	2.336348	2.366517	19.494944	99.511236	2.295112	2.029270	0.36185
0.811827	1.117146	0.274344	3.339564	14.125842	0.625851	0.998859	0.12445
11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.13000
12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.27000
13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.34000
13.677500	3.082500	2.557500	21.500000	106.750000	2.800000	2.875000	0.43750
14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.66000
	178.000000 13.000618 0.811827 11.030000 12.362500 13.050000 13.677500	178.000000 178.000000 13.000618 2.336348 0.811827 1.117146 11.030000 0.740000 12.362500 1.602500 13.050000 1.865000 13.677500 3.082500	178.000000 178.000000 178.000000 13.000618 2.336348 2.366517 0.811827 1.117146 0.274344 11.030000 0.740000 1.360000 12.362500 1.602500 2.210000 13.050000 1.865000 2.360000 13.677500 3.082500 2.557500	178.000000 178.000000 178.000000 13.000618 2.336348 2.366517 19.494944 0.811827 1.117146 0.274344 3.339564 11.030000 0.740000 1.360000 10.600000 12.362500 1.602500 2.210000 17.200000 13.050000 1.865000 2.360000 19.500000 13.677500 3.082500 2.557500 21.500000	178.000000 178.000000 178.000000 178.000000 178.000000 13.000618 2.336348 2.366517 19.494944 99.511236 0.811827 1.117146 0.274344 3.339564 14.125842 11.030000 0.740000 1.360000 10.600000 70.000000 12.362500 1.602500 2.210000 17.200000 88.000000 13.050000 1.865000 2.360000 19.500000 98.000000 13.677500 3.082500 2.557500 21.500000 106.750000	178.000000 178.000000 178.000000 178.000000 178.000000 178.000000 13.000618 2.336348 2.366517 19.494944 99.511236 2.295112 0.811827 1.117146 0.274344 3.339564 14.125842 0.625851 11.030000 0.740000 1.360000 10.600000 70.000000 0.980000 12.362500 1.602500 2.210000 17.200000 88.000000 1.742500 13.050000 1.865000 2.360000 19.500000 98.000000 2.355000 13.677500 3.082500 2.557500 21.500000 106.750000 2.800000	178.000000 178.000000

sns.kdeplot(df['alcohol'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f0748512690>

sns.kdeplot(df['ash'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f0746435750>

with the help of pairplot we can check for the clusters
check for grouping

sns.pairplot(df, hue='class',palette='tab10')

<seaborn.axisgrid.JointGrid at 0x7f07409c93d0>

sns.countplot(x = y)

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f07409b09d0>
        70
y.value_counts()
          71
          59
          48
     Name: class, dtype: int64
# 4. Outlier Detection and Removal
from sklearn.ensemble import IsolationForest
iso = IsolationForest(random_state=0, contamination=0.05)
clean = iso.fit_predict(x, y)
     /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not have valid feature names, but Isola
       "X does not have valid feature names, but"
x = x[clean == 1]
y = y[clean == 1]
x.shape
     (169, 13)
# 5. Data Balancing / Resampling
y.value counts()
          66
          57
          46
     Name: class, dtype: int64
```

https://colab.research.google.com/drive/1igYXmXc5XRAkXwRZ623YRNurgR2Ka0Th#scrollTo=IzcyagpyhF9D&printMode=true

random sampling match with original data

```
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler(random_state=0)
x_res, y_res = ros.fit_resample(x, y)
x_res.shape
     (198, 13)
y_res.value_counts()
     1
          66
          66
          66
     Name: class, dtype: int64
# 6. Feature Scaling
# it required when, all features are not in similar range
x_res.describe()
```

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenol
count	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.00000

```
x_new=x_res.drop('proline' , axis=1)
plt.figure(figsize=(16,9))
plt.boxplot(x_new, labels=x_new.columns);
```

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenol
count	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.00000
mean	0.528057	0.342137	0.449595	0.452181	0.422266	0.410653	0.421484	0.45292
std	0.200547	0.230430	0.164130	0.165589	0.182239	0.219753	0.289037	0.23875
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000
25%	0.365789	0.177866	0.356908	0.336436	0.275362	0.215827	0.112717	0.26415
50%	0.538158	0.245059	0.434211	0.444149	0.405797	0.395683	0.450867	0.39622
75%	0.681579	0.497036	0.565789	0.547872	0.521739	0.607014	0.667630	0.64150
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00000

from sklearn.feature_selection import SelectKBest, chi2 skf = SelectKBest(score_func=chi2, k=5) # we are selecting top 5 features x_new = skf.fit_transform(x_scaled, y_res) x_new.shape (198, 5)skf.get_support() # true means feature are selected array([False, False, False, False, True, True, False, False, True, False, True, True]) x_new = x_scaled.iloc[:,skf.get_support()] x_new # based on skf top 5 features are selected

7. Feature selection / Dimentionality Reduction

	total_phenols	flavanoids	color_intensity	od280/od315_of_diluted_wines	proline	•
0	0.611511	0.748555	0.416428	0.970696	0.561341	
1	0.557554	0.661850	0.296084	0.780220	0.550642	
2	0.611511	0.800578	0.420248	0.695971	0.646933	
3	0.611511	0.641618	0.290353	0.608059	0.325963	
4	0.780576	0.843931	0.522445	0.578755	0.835949	
193	0.323741	0.095376	0.297994	0.285714	0.194009	
194	0.187050	0.002890	0.422159	0.201465	0.215407	
195	0.438849	0.037572	0.347660	0.322344	0.222539	

8. cross validation
from sklearn.model_selection import train_test_split

x_train, ·x_test, ·y_train, ·y_test ·= ·train_test_split(
····x_new, ·y_res, ·random_state=0, ·stratify=y_res
)

x_train.shape

(148, 5)

x_test.shape

(50, 5)

y_train.value_counts()

- 3 50
- 2 49

1

49

```
Name: class, dtype: int64
# 9. Algorithm, Hyperparameter Tuning
# we can try diffirent different algorithm for more accuracy
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score, classification report
from sklearn.metrics import plot confusion matrix
from sklearn.model selection import GridSearchCV
params = {
    'random state': [0,1,2,3,4,5],
    'n estimators': [10,20,30,40,50,100],
    'criterion': ['gini', 'entropy']
# # identify the best paramenter for random forest
rf = RandomForestClassifier()
grid = GridSearchCV(rf, param_grid=params, cv=5,
                    scoring='accuracy')
grid.fit(x_train, ·y_train)
y_pred·=·grid.predict(x_test)
accuracy_score(y_test, y_pred)
     0.94
grid.best_estimator_
```

RandomForestClassifier(n_estimators=10, random_state=4)

```
#select the best feature for that algo
from sklearn.feature_selection import RFE
rfe = RFE(rf, n_features_to_select=5)
rfe.fit(x_scaled, y_res)
     RFE(estimator=RandomForestClassifier(), n_features_to_select=5)
rfe.get_support()
     array([False, False, False, False, False, True, False, False,
            True, True, True])
x new = x scaled.iloc[:,rfe.get support()]
x_train, x_test, y_train, y_test = train_test_split(
   x_new, y_res, random_state=0, stratify=y_res
rf.fit(x train,y train)
y_pred = rf.predict(x_test)
accuracy_score(y_test, y_pred)
# we change the features thats why accuracy change
     0.96
```

```
7/3/22, 3:54 PM
   # using grid same accuracy we are gettting
   # hence model is ready
   rf = RandomForestClassifier()
   grid = GridSearchCV(rf, param_grid=params, cv=5,
                        scoring='accuracy')
   grid.fit(x_train, y_train)
   y_pred = grid.predict(x_test)
   accuracy_score(y_test, y_pred)
        0.96
   # Serialization
   import joblib
   joblib.dump(grid, 'classifier.model')
   # this model save in current directory
         ['classifier.model']
```

x_new.columns

'proline'],
dtype='object')

```
https://colab.research.google.com/drive/1igYXmXc5XRAkXwRZ623YRNurgR2Ka0Th#scrollTo=IzcyagpyhF9D&printMode=true
```

Index(['flavanoids', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines',

✓ 0s completed at 3:34 PM

×