

Digital Video & Image Processing

Xilinx Solutions for the Broadcast Chain

What Makes up Digital Images or Digital Video?

Anatomy of a Pixel

 Each pixel comprised of three color producing sub-pixel elements: Red, Green, and Blue (RGB)

Combining RGB

Sub-pixel RGB intensity controls overall pixel colour

Bandwidth/Quality Tradeoffs

- Typical high definition (HD) system needs high bandwidth
 - 1920 x 1080 resolution, 24-bit pixels (8-bit Red, Green and Blue values), 30 progressive frames per second

Bandwidth = $1920 \times 1080 \times 24 \times 30 = 1.49$ Gbps

- Techniques for memory/bandwidth reduction have varying effect on picture quality
- Continuous improvements in compression techniques and filtering to reduce effects on picture quality but allow more data "down the pipe"

Reduce Pixel Levels

- 24-bit image
 - 8 bits each for RGB
 - Over 16 million levels/pixel
- 4-bit image
 - Only 16 levels/pixel

Reduced bandwidth/memory requirements but reduced quality

Reduce Spatial Resolution

- Original image
- 1 pixel/unit area

64 pixels/unit area

Reduced bandwidth/memory requirements but reduced quality

Compression

Original uncompressed image

Compressed image with block artifacts

Reduced bandwidth/memory requirements but reduced quality

MPEG Compression

- Spatial Processing
 - Uses DCT within a single picture to enable removal of high frequencies not discernable to human eye

- Temporal Processing
 - Seeking out and removing redundancy between successive images/frames

- Variable Length Coding (VLC)
 - Use shortest codes for most common samples
- Run Length Encoding (RLE)
 - Replace long strings of zeros with single command code

Spatial Redundancy

DCT

- Returns the discrete cosine transform of 'video/audio input'
- Can be referred to as the even part of the Fourier series
- Converts an image or audio block into its equivalent frequency coefficients

IDCT

- Inverse of the DCT function
- IDCT reconstructs a sequence from its discrete cosine transform (DCT) coefficients

DCT in MPEG Compression

Scan picture using 16x16 pixel "macroblock"

Scan macroblock in 8x8 blocks

Determine luma & chroma pixel values

Luma samples shown here (Chroma processed separately)

Compress using zigzag scan and run length encoding for zero values (in blue) Further compression with Huffman encoding (VLC)

920	15	28	18	14	5	1	0
17	10	9	10	4	1	0	0
10	14	9	5	1	0	0	1
6	5	4	4	2	1	0	0
2	4	7	1	0	0	0	0
2	3	2	1	1	0	0	0
1	3	2	1	0	0	0	0
0	1	0	0	0	0	0	0

Quantize higher frequencies with less bits (weighting) Zero values for frequencies below perception threshold

Human eye less sensitive to high frequencies

•							
6981	245	500	364	331	139	35	21
205	168	192	278	55	40	12	4
152	288	207	99	26	85	29	10
109	142	166	111	77	66	38	2
55	84	212	56	10	4	11	5
61	136	61	43	47	13	3	2
32	119	61	26	32	1	0	2
24	26	4	31	23	52	49	25

Output DCT coefficients

Convert to frequency components (DCT)

Temporal Redundancy

I - Intra coded (spatially coded) pictures

GOP (Group Of Pictures)

- Forms the anchor for a GOP
- P Forward Predicted pictures
 - Predicted from previous I or P pictures
 - P picture made up of vectors showing where to get pixel data from in previous pictures and/or values that must be added to previous picture to get current pixel value
- B Bi-directional Predicted pictures
 - Predicted from previous or later I or P pictures (never from other B pictures)
 - Made up of vectors showing where to get pixel data from in previous pictures

Picture Difference

- Difference between successive pictures easy to calculate using subtractor
- Picture difference can also be spatially compressed
 - DCT, VLC, RLE etc. as before

Motion Estimation

- Estimation predicts next picture by shifting data from previous picture along a calculated motion vector
- In encoder, predicted picture is compared to actual picture and any prediction errors calculated
- Transmitting motion vectors and prediction errors takes much less bandwidth than coding entire picture

Processing Challenges

- Variable resolutions and refresh rates
- Variable scan mode characteristics
- High performance requirements
- Variable file encoding formats
- Variable content security formats

Video System Challenges A Range of Resolutions

Video System Challenges Video Scanning Formats

Definition	Lines/Frame	Pixels/Line	Aspect Ratios	Frame Rates
High (HD)	1080	1920	16:9	23.976p, 24p, 29.97p, 29.97i, 30p, 30i
High (HD)	720	1280	16:9	23.976p, 24p, 29.97p 30p, 59.94p, 60p
Standard (SD)	480	704	4:3, 16:9	23.976p, 24p, 29.97p, 29.97i, 30p, 30i, 59.94p, 60p
Standard (SD)	480	640	16:9	23.976p, 24p, 29.97p, 29.97i, 30p, 30i, 59.94p, 60p

- Table III well known in the broadcast industry
- List of standard formats from ATSC A.53 DTV standard
- 36 different formats available!
- Doesn't take into account line doubling etc.

Video System Challenges Interlace/Progressive Scan

Interlace

Progressive

Experimenting with Tradeoffs

- It would be nice to have a fully flexible device to use for video processing designs
 - Allows changing of parameters like colour depth, bit accuracy (truncation)
 - Allows exploration of new compression techniques or acceleration of existing algorithms to improve throughput
 - Supports various frame rates and resolutions
 - Implements a wide range of new or existing filters for enhancement or noise reduction

Welcome to Xilinx FPGAs

- FPGAs are a key enabling technology for digital video processing
- Allow experimentation for prototypes leading to differentiation for production
- And still enable a higher level of system integration with support for:
 - video interfaces, LAN/WAN technologies, other DSP, simple glue, memory control and state machines, backplane protocols...... the list is only limited by the imagination

Basic Image and Video Processing

Image Processing Functions

- Pixel processing
 - Scaling
 - Rotation
 - Color/Gamma correction
 - Brightness
 - More colors through dithering

- Frame buffer processing
 - Contrast enhancement
 - Shadow enhancement
 - Sharpness enhancement
 - Chroma key composition
 - Graphic overlay

Basic Image Processing Scaling

- Fractionally enlarges the incoming data stream as necessary to match the target display resolution
- Pixel processing on-the-fly during image input without frame buffer

Real-Time Image Resizing

With Low Memory Requirements 2 Dimensional Architecture Upscaling by 2, Downscaling by 4

- Example: 512 x 512 x 8 60 f/s
 - Upscaling by 2, Downscaling by 4
 - 16 pixel resolution
 - 8 Block RAMs for Line Buffers and Coefficient Bank
 - 4 vertical multipliers
 - 4 horizontal multipliers
 - Adder trees
 - Control

Real-Time Image Rotation

- Non-real time typically implemented using processor and frame store
- Real-time image rotation performed using bi-cubic function in FPGA
 - Pixels remapped to rotational co-ordinates

Real-Time Image Rotation

- Example:
 - Medical imaging system
 - 1024 x 1024 x 12 @ 30 f/s
 - 40 MHz Pixel Clock
 - 160 MHz Core Clock
 - Xilinx XC2S300E FPGA
 - 12 Block RAMs for line buffers
 - 2 Block RAMs for RC lookup tables
 - 5 multiplier pixel calculation
 - Sine/Cosine, 2 Block RAMs
 - Dx, Dy calculation
 - Sx, Sy calculation
 - Control

Basic Image Processing Colour/Gamma Correction

- Adjusts RGB intensities through correction tables
- Required to account for technology specific RGB characteristics (CRT vs. LCD vs. PDP etc.)

Basic Image Processing Brightness

Increases the RGB intensity to the viewer's taste

Advanced Image Processing Contrast Enhancement

 Adjusts RGB intensities to control the degree of difference between light and dark image areas

Advanced Image Processing Shadow Enhancement

 Selectively adjusts RGB intensities in order to lighten dark grayscale regions

Advanced Image Processing Sharpness Enhancement

 Adjusts RGB intensities to sharpen the transition between adjacent color regions

00 = BLACK SCREEN Picture Enhancement = BLUE SCREEN = COLOR BARS 11 = NORMAL VIDEO CONTRAST BRIGHTNESS VALUE VALUE 16 MUX COLOR BAR Y SATURATION VALUE HUE VALUE HUE CONTROL 128 128 MUX COLOR BAR CR MUX COLOR BAR CB **Easily implemented in FPGA**

Spatial Enhancement Illustration Medical Image Enhancement

Basic Image Processing More Colors Through Dithering

- Smoothes out color transitions/banding in bit-depth limited displays
 - Achieve full color with sub 24-bit display technologies like LCD and PDP
- Generates patterns of pixels which the eye blends together into colors the display cannot generate

Advanced Image Processing Chroma Keyed Compositing

 Composites 2 images together, replacing a specific RGB value in one image (chroma) with the data pixel from the other

Advanced Image Processing Graphic Overlay

Mixer Functions in Virtex-II Pro FPGA

- Fade
- Mix
- Wipe
- Chromakey
- Logo Insertion

 MicroBlaze & Multimedia Demonstration Board demonstrates many mixer capabilities in FPGA

Multimedia Demo Board

Multimedia Platform

Video Bypass

Video Ping-Pong (1)

Video Ping-Pong (2)

Video Chromakey

Noise Reduction & Filtering

FIR Filters for Xilinx FPGAS

- Most image filtering can be done based on twodimensional FIR filters
 - Programmability allows experimentation with different coefficients, filter windows etc to get the best picture

	Provider	
Reference DESIGN	Xilinx Inc.	XILINX [®]
<u>LogiCX</u> P.E	Xilinx Inc.	XILINX [®]
<u>Logi CXP</u> F	Xilinx Inc.	XILINX [®]
Alliance	Xilinx Inc.	XILINX [®]
Alliance	Xilinx Inc.	XILINX [®]
	logiCXPF logiCXPF Alliance	Xilinx Inc. Alliance Xilinx Inc. Xilinx Inc. Xilinx Inc.

See http://www.xilinx.com/ipcenter for more details

Noise Removal

- Removal of impulsive noise
 - e.g. Scratches on film

Noise Removal

Removal of Gaussian noise

Noise Removal

Salt and Pepper noise removal

Noise Reduction

 Noise reduction using temporal filtering across multiple video frames

200

Temporal Filter

Image Enhancement Algorithms

- The list in endless, but these are a few examples of image enhancement algorithms
 - Spatial Filter Unsharp Masking
 - Digital Max-Detail
 - Laplacian of Gaussian Filter
 - Adaptive Histogram Equalization
 - Adaptive Kalman Temporal Filter
 - Non-Linear Median Filter
 - Non-Linear Fuzzy Filter
 - Wavelet Decomposition
- Or you may have a better version of your own
 - Is there an ASSP to support your idea?

FPGAs for Spatial Enhancement

15 Pixels
Vertical

15 Pixels

+ User selectable kernels

Horizon tal

+ Experiment to find the filter that gives the best results (on-the-fly)

+ Parameterisable filter coefficients and windows

Effective

+ No sacrifice in performance with real-time calculations possible

Spatial Enhancement

Spatial Enhancement

Original, 33%, 66%, 100% Boost

Coherence Domains

Scene Coherence

Notice high frequencies have gone

Coherence Exploited

- Horizontal coherence to generate missing data
- FFs & SRL16s look at data in a horizontal stripe

Coherence Exploited

- Vertical coherence to generate missing data
- Line buffers (Block RAM) looks at data in a vertical stripe

Coherence Exploited

- Spatial coherence to generate grey edge data
- Requires external frame buffers to look at data in a spatial area

Edge Anti-Aliasing Example

Coherence & Memory Options

Shift Register LUT - SRL16E

- Reading of flip-flop contents is completely independent
 - Address selects which flipflop is read
- Read process is asynchronous, but dedicated flip-flop is available for synchronization

Xilinx FIR Filter Solution

- Virtex logic slice utilization for
 - FIR filter configurations
 - Half-band filter configurations
 - Hilbert transformer configurations
 - Interpolated filter FIR filter configurations
 - Partial to full parallel implementation

- 2D FIR example
 - 1Kx1K image size
 - 8-12 bit pixel data
 - 64x64 kernel size
 - 128 multipliers
 - 64 Line buffers (1024 in length)
 - Summation tree in distributed logic
 - Single-chip solution

Benefits using Xilinx FPGAs

High Performance

Exploit parallelism and can reach sample rate from 1 Mega
 Sample Per Second (MSPS) up to over 180 MSPS

Flexibility

Highly parameterizable, area efficient high-performance FIR Filter

Highly Optimized

- Optimized filters for single rate, half-band, Hilbert transform and interpolated FIR Filters
- Also takes advantage of symmetry

Lines & Fields

NTSC Interlaced Scan

NTSC Horizontal Scan Line

PAL Scan Line is Similar

XILINX

Composite NTSC 525 Vertical Timing Detail

Composite NTSC 525 Vertical Timing Detail

Line/Field Decoding

- Simple in a FPGA!
- Find the TRS
 - i.e. The pattern FF 00 00 XY
- Decode XY
 - Gives you H and F
- Format detection is done by counting SAVs during active video

Line Buffering

 Line buffers feed horizontal and vertical FIR filters to do real time image processing without frames store

2D Image Processing Using BlockRAM Line Buffers

- Line buffers provided by Block RAM using cyclic buffer technique
- 768 Pixel Line Buffers (8-bit)
 - 576 per Device
- 1920 Pixel Line Buffers (36-bit = 12-bit RED + 12-bit GREEN + 12-bit BLUE)
 - 51 per Device

Scan Line De-interlacing

- INTERLACE VIDEO (broadcast video)
 - Half the lines of a frame in a single pass (242 lines @ 30 Hz)

- PROGRESSIVE SCAN VIDEO (computer monitors)
 - All lines of a frame in a single pass (484 lines @ 60Hz)
 - MPEG works on progressive scanned images

Scan Line De-interlacing

- De-interlacing (line doubling) is process of converting interlaced video into progressive scan video
- Various techniques
 - Scan line duplication from a single field
 - Field merge
 - 2X resolution but motion problems
 - Scan line interpolation from a single field
 - Only 1X resolution
 - Combination approach, field merge (non-moving), interpolate moving objects but difficult motion detection problem
 - Scan Line Interpolation from a single frame

Scan Line De-interlacing

- Field Merge Problems
- Object in motion will have "double image"

Object with no motion

Object in motion

Alternate lines are displaced by horizontal motion

Scan Line De-interlacing

(Green = Field 2, Yellow = Field 1)

242 1/2 lines

485 total active lines

242 1/2 lines

Scan Line Deinterlacing

Using Line Duplication

Scan Line Deinterlacing

Using Line Interpolation from 2 Lines

(Pixel A + Pixel B) / 2

Scan Line Deinterlacing Using Line Interpolation from 4 Lines

Compression

Video Compression

- Bandwidth is precious!
- MPEG compression helps get the most out of available bandwidth
 - A trade off between amount of data to be sent and acceptable picture quality
- Uncompressed high-definition pictures take too much bandwidth to send down a 6MHz or 8MHz cable channel (up to 40Mbps)
- 1920 x 1080 24-bit pixels @ 30 frames per second = 1.49Gbps!

Definition	Lines/Frame	Pixels/Line	Aspect Ratios	Frame Rates
High (HD)	1080	1920	16:9	23.976p, 24p, 29.97p, 29.97i, 30p, 30i
High (HD)	720	1280	16:9	23.976p, 24p, 29.97p 30p, 59.94p, 60p
Standard (SD)	480	704	4:3, 16:9	23.976p, 24p, 29.97p, 29.97i, 30p, 30i, 59.94p, 60p
Standard (SD)	480	640	16:9	23.976p, 24p, 29.97p, 29.97i, 30p, 30i, 59.94p, 60p

ATSC "Table III"

Storage of content is also much more efficient with video compression

MPEG Compression

- Spatial Processing
 - Uses DCT within a single picture to enable removal of high frequencies not discernable to human eye

- Temporal Processing
 - Seeking out and removing redundancy between successive images/frames

- Variable Length Coding (VLC)
 - Use shortest codes for most common samples
- Run Length Encoding (RLE)
 - Replace long strings of zeros with single command code

Spatial Redundancy

DCT

- Returns the discrete cosine transform of 'video/audio input'
- Can be referred to as the even part of the Fourier series
- Converts an image or audio block into its equivalent frequency coefficients

IDCT

- Inverse of the DCT function
- IDCT reconstructs a sequence from its discrete cosine transform (DCT) coefficients

DCT in MPEG Compression

Scan picture using 16x16 pix el "macroblock"

Scan macroblock in 8x8 blocks

Determine luma & chroma pixel values

6

Luma samples shown here (Chroma processed seperately)

Compress using zigzag scan and run length encoding for zero values (in blue) Further compression with Huffman encoding (VLC)

920	15	28	18	14	5	1	0
17	10	9	10	4	1	0	0
10	14	9	5	1	0	0	1
6	5	4	4	2	1	0	0
2	4	7	1	0	0	0	0
2	3	2	1	1	0	0	0
1	3	2	1	0	0	0	0
0	1	0	0	0	0	0	0

Quantize higher frequencies with less bits (weighting) Zero values for frequencies below perception threshold

Human eye less sensitive to high frequencies

6981	245	500	364	331	139	35	21
205	168	192	278	55	40	12	4
152	288	207	99	26	85	29	10
109	142	166	111	77	66	38	2
55	84	212	56	10	4	11	5
61	136	61	43	47	13	3	2
32	119	61	26	32	1	0	2
24	26	4	31	23	52	49	25

Output DCT coefficients

Convert to frequency components (DCT)

Temporal Redundancy

I - Intra coded (spatially coded) pictures

GOP (Group Of Pictures)

- Forms the anchor for a GOP
- P Forward Predicted pictures
 - Predicted from previous I or P pictures
 - P picture made up of vectors showing where to get pixel data from in previous pictures and/or values that must be added to previous picture to get current pixel value
- B Bidirectionally Predicted pictures
 - Predicted from previous or later I or P pictures (never from other B pictures)
 - Made up of vectors showing where to get pixel data from in previous pictures

Motion Estimation

- Estimation predicts next picture by shifting data from previous picture along a calculated motion vector
- In encoder, predicted picture is compared to actual picture and any prediction errors calculated
- Transmitting motion vectors and prediction errors takes much less bandwidth than coding entire picture

Chroma Downsampling

- Most MPEG-2 applications use 8-bit 4:2:0 sampling
- But incoming data usually 10-bit 4:2:2 video
 - Maybe via SDI (Serial Digital Interface) for example
- Conversion therefore needed before MPEG processing
 - This chroma "downsampling" is lossy form of data compression

4:2:2 and 4:2:0 Sampling

Digital Component Video Conversion - 4:4:4 to 4:2:2

Digital Component Video Conversion - 4:4:4 to 4:2:2

Digital Component Video Conversion - 4:4:4 to 4:2:2

Digital Component Video Conversion - 4:2:2 to 4:4:4

XAPP294

How do we get back the missing samples?

Digital Component Video Conversion - 4:2:2 to 4:4:4

- You could just take the average of two values to get the missing one between
- 1/2 (A + C)

Digital Component Video Conversion - 4:2:2 to 4:4:4

- Previous method may need bandwidth limiting, this version is better
- Less multiplies 1/6 (A + D) + 1/3 (B + C)

Digital Colour Images

XILINX

Digital Color Images

Colour Space Converter

x283_01_071101

Colour Space Converter

for eight bit video

R' = 1.164(Y'-16) + 1.596(Cr-128)

G' = 1.164(Y'-16) + .813(Cr-128) - .392(Cb-128)

B' = 1.164(Y'-16) + 2.017(Cb-128)

R' = 1.164(Y'-64) + 1.596(Cr-512)

G' = 1.164(Y'-64) + .813(Cr-512) - .392(Cb-512)

Colour Space Converter Simple Version (5-8%)Colour Error

R' = 1.164(Y'-16) + 1.596(Cr-128)

G' = 1.164(Y'-16) + .813(Cr-128) - .392(Cb-128)

B' = 1.164(Y'-16) + 2.017(Cb-128)

For 10 bit video

R' = 1.164(Y'-64) + 1.596(Cr-512)

G' = 1.164(Y'-64) + .813(Cr-512) - .392(Cb-512)

2-D DCT Operation

1-D DCT on Rows

1-D DCT on Columns

Application Note and Reference Design Available http://www.xilinx.com/xapp/xapp610.pdf

2-D IDCT Operation

1-D IDCT on Rows

1-D IDCT on Columns

Application Note and Reference Design Available http://www.xilinx.com/xapp/xapp611.pdf

Partial MPEG H/W Acceleration

Customized MPEG Implementation

Applications

Digital TV
Plasma displays
LCD displays
Set-top boxes

Multipleprocessor instantiations

Resolution, frame rate, profile, level & QoR dependent

Dedicated H/W acceleration blocks

High Performance MPEG Applications

Applications

Studio applications Digital cinema

Up to 4
PowerPC and
Multiple
MicroBlaze
instantiations

Resolution, frame rate, profile, level & QoR dependent

Pipelined and Parallel Dedicated H/W acceleration blocks

Xilinx Solutions

Performance Limitation of Conventional DSP

- Fixed inflexible architecture
 - Typically 1-4 MAC units
 - Fixed data width
- Serial processing limits data throughput
 - Time-shared MAC unit
 - High clock frequency creates difficult system-challenge

Example

256 Tap FIR Filter = 256 multiply and accumulate (MAC) operations per data sample

FPGA Performance Advantage

- Flexible architecture
 - Distributed DSP resources (LUT, registers, multipliers, & memory)
- Parallel processing maximizes data throughput
 - Support any level of parallelism
 - Optimal performance/cost tradeoff

256 Tap FIR Filter = 256 multiply and accumulate (MAC) operations per data sample

Traditional Processing

C++ Code Stack

Xtreme Processing™

C++ Code Stack

Control Tasks

FIR Filter

Control Tasks

FIR Filter

Control Tasks

MASTA 1875-189 ESTA 2004-1976 MINASTA 1875-189 ES

PowerPC with Application-Specific Hardware Acceleration

Processing time

Area vs. Performance

System Generator for Simulink

- Bridges gap between FPGA and DSP design flows
 - Used with
 Simulink®/MATLAB® from
 The MathWorks
- Automatically generates HDL/optimized algorithms
 - Shortens learning curve
 - HW redesign eliminated
 - Optimal implementation

Video System Design

XILINX

FPGA Standard Features & IP

Xilinx Video IP and Cores

Video and Image Processing IP	Vendor	Sign Once	Comment
1-D Discrete Cosine Transform	Xilinx	✓	
2-D DCT/IDCT Forward and Inverse Discrete Cosine Transform	Xilinx	✓	
YUV2RGB Color Space Converter	Xilinx	✓	
RGB2YCrCb Color Space Converter Core	Xilinx	✓	
RGB2YUV Color Space Converter Core	Xilinx	✓	
YCrCb2RGB Color Space Converter	Xilinx	✓	
logiCVC - Compact Video Controller	Xylon	✓	
Parameterized Symmetrical 2D FIR	Xilinx	N/A	PreLinx
Parameterized Line Buffer	Xilinx	N/A	PreLinx
Video De-Interlace	Xilinx	N/A	PreLinx
Raster To Block / Block To Raster	Xilinx	N/A	PreLinx
2-D Min/Max/Median Filters For MatLAB	Xilinx	N/A	PreLinx
2-D Discrete Wavelet Transform	Xilinx	N/A	PreLinx
2-D Discrete Wavelet Transform (3 Comps)	Xilinx	N/A	PreLinx
2D FIR	Xilinx	N/A	PreLinx
Serial Distributed Arithmetic FIR	Xilinx	N/A	LogiCore
Parallel Distributed Arithmetic FIR	Xilinx	N/A	LogiCore
Distributed Arithmetic FIR	Xilinx	N/A	LogiCore

Up to date info at www.xilinx.com/ipcenter

Video AllianceCOREs

Video and Image Processing IP	Vendor	Sign Once
Motion JPEG Decoder Core V1.0	Amphion	✓
Motion JPEG Codec Core V1.0	Amphion	✓
Motion JPEG Encoder Core V2.0	Amphion	✓
FASTJPEG_C DECODER	Barco Silex	✓
FASTJPEG_BW DECODER	Barco Silex	✓
DCT/IDCT 2D	Barco Silex	✓
HUFFD Huffman Decoder Core	CAST	✓
BB_2DDWT-Block-Based 2D Discrete Wavelet Transform	CAST	✓
LB_2DFDWT - Line-Based Programmable Forward DWT	CAST	✓
IDCT: 2D Inverse Discrete Cosine Transform	CAST	✓
RC_2DDWT: Combine 2D Forward/Inverse Discrete Wavelet Trans	CAST	✓
DCT_FI: Combined 2D Forward / Inverse Discrete Cosine Transfor	CAST	✓
DCT: 2D Forward Discrete Cosine Transform	CAST	✓
Longitudinal Time Code Generator	Deltatec	✓
JPEG CODEC	InSilicon	
YCrCb2RGB Color Space Converter	Perigree	✓
RGB2YCrCb Color Space Converter	Perigree	✓
FIDCT Forward/Inverse Discrete Cosine Transform	TILAB	

www.xilinx.com/ipcenter

Available Application Notes

XAPP248 "Digital Video Test Pattern Generators" v1.0 (01/02)

XAPP288 "Serial Digital Interface (SDI) Video Decoder" v1.0 (10/01)

XAPP298 "Serial Digital Interface (SDI) Video Encoder" v1.0 (10/01)

XAPP172 "The Design of a Video Capture Board Using the Spartan Series" v1.0 (03/99)

XAPP208 "IDCT Implementation in Virtex Devices for MPEG Applications" v1.1 (12/99)

XAPP241 "Virtex-EM FIR Filter for Video Applications" v1.1 (10/00)

XAPP284 "3 x 3 Matrix Multiplier for 3D Graphics and Video" v1.1 (10/01)

XAPP283 "Color Space Conversion" v1.0 (07/01)

XAPP219 "Transposed Form FIR Filters" v1.2 10/01

XAPP270 "High-Speed DES and Triple DES Encryptor/Decryptor" v1.0 (8/01)

support.xilinx.com/apps/appsweb.htm

Key FPGA Features for Video

- For SDTV (13.5 MHz)
 - LUTs, SRL16s and FFs for Distributed Math, pipelines
- For HDTV (74.25 MHz)
 - Inferred MULT_AND 8x8 or 10x10 Multipliers are Efficient.
- Virtex-II embedded multiplier can be used to save other logic or in compression where multiplies need 24 bit accuracy
- Block RAM useful for Line Buffers and Line Fifos
 - SDTV 858 x 24 bits, 858 x 30
 - HDTV 1920 x 24 or 1920 x 30
- High Speed Serial IO (LVDS, LVPECL_EXT, or Rocket IO) for high speed video transmission
- DCM allows easy generation of a bit rate clock for distributed arithmetic
- MicroBlaze and PicoBlaze for protocol layers in compression and other video algorithms

FPGAs for HD Digital Video

Spartan-IIE Silicon Features	Value for Digital Video Applications
FPGA Fabric and Routing, Up to 300,000 System Gates	Performance in excess of 30 billion MACs/second
Delay Locked Loops (DLLs)	Clock multiplication and division, clock mirror, Improve I/O Perf.
SelectIO - HSTL-I, -III, -IV	High-speed SRAM interface
SelectiO - SSTL3-I, -II; SSTL2-I, -II	High-speed DRAM interface
SelectIO - GTL, PCI, AGP	Chip-to-Backplane, Chip-to-Chip interfaces
Differential Signaling - LVDS, Bus LVDS, LVPECL	Bandwidth management (saving the number of pins), reduced power consumption, reduced EMI, high noise immunity
SRL-16	16-bit Shift Register ideal for capturing high-speed or burst- mode data and to store data in DSP applications
Distributed RAM	DSP Coefficients, Small FIFOs
Block RAM	Video Line Buffers, Cache Tag Memory, Scratch-pad Memory, Packet Buffers, Large FIFOs

The Best of Both Worlds

- Off-the-shelf devices
- Faster time-to-market
- Rapid adoption of standards
- Real time prototyping

Flexibility of DSP Processors

- Parallel processing
- Support high data rates
- Optimal bit widths
- No real-time software coding

Performance of Custom ICs

Xilinx DSP Solutions Offer the Best of Both Worlds
With Low Cost!

XtremeDSP for Video

Unrivalled DSP Performance

**Itreme DSP

- TeraMAC/s via FPGA and Embedded Multiplier fabric for:
 - Multimedia compression MPEG2, MPEG4, H.26L, MJPEG, JPEG2000
 - Video processing Integrated line buffers, enhancement, pattern recognition, noise reduction, resizing, rotation, scalability
 - Convergence of emerging technologies in multimedia over IP & wireless
- For Standard Definition Pixel Rates (13.5 MHz pixels)
 - SDTV test equipment, broadcast test equipment, studio effects equipment, scan rate converters, frame rate converters, MPEG-2 codecs
- For High Definition Pixel Rates or Multiple Channels of Standard Definition (74.25 MHz pixels)
 - HDTV test equipment, broadcast test equipment, home theater projection devices, advanced studio effects, conversions from SDTV, MPEG-2 4:2:2 profile codecs

Xilinx Video Solutions

- Enables the designer to add real value to his system.
 - Allows for experimentation in development that leads to differentiation in production
 - Chipsets that support your exact requirements are never available!!
- Supports high definition real-time processing
 - Allows for hardware acceleration of key algorithms
 - More information down the pipe
 - Less memory requirements for off-line processing
- System on a chip integration
 - More channels on less chips
 - Saves valuable board space and can reduce overall BOM cost

Questions?

espteam@xilinx.com

