MONITOROVANIE OKAMŽITEJ POLOHY ĎALEKOHĽADU

Mikuláš Zelenák, Ivana Zeleňáková, Ján Radovan Zubo, Mariia Lementa

Fakulta Matematiky, Fyziky a Informatiky , Univerzita Komenského v Bratislave Katedra aplikovanej informatiky

Obsah

1.	Úvod	J	2
1	1	Účel dokumentu	. 2
1	2	Rozsah produktu	
	3	Slovník pojmov	
	4		
		Odkazy	
	5	Prehľad nasledujúcich kapitol	
2. Všeobecný opis			. 4
2	2.1	Perspektíva	. 2
2	2.2	Funkcionalita	
2	2.3	Používateľské roly	
2	2.4	Všeobecné obmedzenia	
2	2.5	Predpoklady a závislosti	
3.	_	rrétne požiadavky	
٥.	NOTIF	Conc politically	•
3	3.1	Požiadavky na funkcionalitu	6
3	3.2	Doplnkové požiadavky*	. 7

1. Úvod

1.1 Účel dokumentu

Tento dokument popisuje presné požiadavky na systém kontroly polohy teleskopu. Systém je vyvíjaný pre Astronomické a geofyzikálne observatórium (ďalej iba AGO) Modra-Piesok Fakulty matematiky, fyziky a informatiky Univerzity Komenského v Bratislave (ďalej iba FMFI UK). Tento dokument je záväznou dohodou medzi zadávateľom a riešiteľmi projektu.

1.2 Rozsah produktu

Cieľom projektu je vyvinúť systém na monitorovanie a zabezpečenie polohy teleskopu v AGO Modra-Piesok, ktorý bude fungovať nezávisle od existujúceho systému. Systém bude pomocou snímačov sledovať polohu teleskopu a zabezpečí, aby sa nedostal do nebezpečných polôh. Pri prekročení stanovených limitov automaticky spustí varovné signály/alarm.

1.3 Slovník pojmov

SW - software

HW - hardware

Riadiaca jednotka – mikropočítač, ktorý rádiovo komunikuje s jednočipovým mikropočítačom namontovanom na teleskope a snímajúcom IMU, má jednoduchý displej a riadiaci panel a zároveň komunikuje s PC buď cez sériovú linku, alebo ethernet

Relé – súčiastka, ktorá v jednom obvode zapne alebo preruší elektrický prúd v druhom elektrickom obvode

Tubus – trubica ďalekohľadu alebo mikroskopu

Akcelerometer – súčiastka, ktorá meria lineárne zrýchlenie vrátane tiažového

Gyroskop – zariadenie na meranie uhlového zrýchlenia

IMU – inerciálna jednotka, ktorá kombinuje snímanie z akcelerometra, gyroskopu a prípadne kompasu a vypočítava relatívnu orientáciu voči Zemi a iniciálnej polohe

Eulerove uhly – všeobecný pojem pre možné druhy reprezentácie otočenia v 3D priestore - sú buď "intrinsic" - osi sa otáčajú spolu s objektom v každom kroku, alebo "extrinsic" - osi sa neotáčajú, zostávajú stále rovnaké (world coordinate system)

Roll-Pitch-Yaw – konkrétny prípad Eulerovských uhlov v danom poradí (Roll – os v smere pohybu lietadla, Pitch - vodorovná os kolmá na smer pohybu lietadla, Yaw - zvislá os)

Gimbal lock – strata jedného stupňa voľnosti v niektorých uhlových súradnicových systémoch pri zarovnaní dvoch osí otáčania

Kvaterniony - najvšeobecnejšia reprezentácia otočenia v 3D priestore, ktorá netrpí gimbal lockom vo forme $a + b^*i + c^*j + d^*k$

1.4 Odkazy

Github repozitár projektu: https://github.com/TIS2024-FMFI/telescope-safety
Inerciálna jednotka ICM20948, https://www.waveshare.com/wiki/10 DOF IMU Sensor (C)
Inerciálna jednotka s MPU9255 a BMP280, https://www.waveshare.com/wiki/10 DOF IMU Sensor (C)

Inerciálna jednotka ISM330DHCX, https://www.elecom.sk/sparkfun-6dof-imu-breakout-ism330dhcx-qwiic--2/

Inerciálna jednotka s ICM20948, https://www.elecom.sk/sparkfun-9dof-imu-breakout-icm-20948--qwiic-2/

Inerciálna jednotka s MPU6050, https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

Inerciálna jednotka DFfRobot Fermion s Adxl345, ITG3200 a HMC5883L, https://techfun.sk/produkt/dfrobot-fermion-10-dof-imu-senzor/
Interciálna jednotka s BNO055, https://www.aliexpress.com/item/1005005494956365.html
Frekvencie používané na rádiové spojenie pre IoT a ich vlastnosti, https://www.data-alliance.net/blog/iot-internet-of-things-wireless-protocols-and-their-frequency-bands/
Obojsmerný komunikačný rádiový modem 868 MHz LoRa, https://techfun.sk/produkt/komunikacny-modul-sx1276-lora-433-868-915-mhz/?attribute_pa_variant=868mhz-rfm95w
Modul s relé, https://techfun.sk/produkt/rele-modul-1-kanal-5v/

1.5 Prehľad nasledujúcich kapitol

Kapitola číslo 2 opisuje vyvíjaný systém. Popisuje jeho funkcionalitu, všeobecné vlastnosti a správanie. Kapitola číslo 3 obsahuje podrobné požiadavky, ktoré boli stanovené zadávateľom.

2. Všeobecný opis

2.1 Perspektíva

Systém bude slúžiť na kontrolu a bezpečnosť teleskopu. Na základe jeho aktuálnych priestorových a fyzikálnych parametrov bude vyhodnocovať, či by bol ďalší jeho pohyb bezpečný a nehrozí riziko havarijného stavu. Tento systém bude úplne nezávislý od softvérových programov, siete a napájania, čo zabezpečí jeho nepretržitú prevádzku aj v prípade výpadkov týchto zdrojov. V prípade vyhodnotenia rizika havárie systém podnikne kroky k jej zabráneniu.

2.2 Funkcionalita

Základom funkčnosti systému je monitorovanie polohy tubusu ďalekohľadu pomocou snímačov (inerciálna jednotka), ktoré sú prepojené s riadiacou jednotkou prostredníctvom rádiovej komunikácie. Systém nielenže sleduje polohu, ale umožňuje aj automatické vypnutie pohonu ďalekohľadu pri prekročení zakázaných polôh a zobrazuje výstražné signály (akustické, vizuálne) pre operátora. Medzi kľúčové vlastnosti patrí možnosť konfigurácie zakázaných polôh, ako aj pripojenie systému k lokálnej sieti, čím sa zabezpečí vzdialený prístup k údajom o polohe a konfigurácii systému. Tieto funkcie sú navrhnuté s dôrazom na spoľahlivosť a možnosť ďalšej rozšíriteľnosti systému. Systém bude monitorovať polohu a pohyb teleskopu. Bude neustále sledovať a zbierať dáta ohľadom aktuálnej polohy tubusu ďalekohľadu, jeho orientácie a parametrov ako sú rýchlosť otáčania či sklon, azimut, aby sa v prípade potreby včas zistili nežiadúce potenciálne odchýlky od očakávaných/povolených hodnôt. Systém bude analyzovať monitorované dáta a umožní porovnávať aktuálne údaje s predošlými a predpokladanými, ak tie budú k dispozícii a detegovať odchýlky na základe tejto analýzy. Systém sa bude dať nastaviť tak, aby na potenciálne riziko reagoval niektorým z nasledujúcich spôsobov (alebo ich kombináciou): akustickým signálom, vizuálnym signálom, výstupom na rozpínací kontakt relé - vypnutie napájania motorov ďalekohľadu, notifikáciou e-mailovou správou kompetentným. Po signalizovaní rizika je systém možné znovu aktivovať a obnoviť prerušené napájanie, či na mieste, alebo softvérovo na diaľku. Systém bude vytvárať podrobné záznamy o pohyboch teleskopu a bude sa snažiť priebežne diagnostikovať svoj vlastný stav, aby sa zabezpečila kontrola funkčnosti samotného systému - včasné odhaľovanie softvérových a hardvérových problémov, ktoré by mohli viesť k opačnému efektu systému. Systém bude vedieť zobraziť vizualizáciu aktuálnej polohy teleskopu v 3D zobrazení, v ktorom je možné pohybovať virtuálnou kamerou, t.j zobrazovať teleskop z ľubovoľnej strany (bude realizované iba v prípade dostatku ľudských zdrojov a času).

2.3 Používateľské roly

Používatelia budú astronomickí pracovníci a odborníci, obsluhujúci ďalekohľad. Môžu to byť astronómovia, astrofyzici alebo technici so špecializáciou na prácu s pokročilými optickými a elektronickými systémami. Okrem vedeckých pracovníkov budú súčasťou používateľov aj technickí operátori a údržbári zodpovední za správnu funkčnosť a kalibráciu prístrojov.

Používatelia sa budú líšiť v úrovni skúseností a znalostí softvérových nástrojov, pričom je dôležité zabezpečiť prístupné rozhranie, ktoré zjednoduší ich prácu a podporí efektívnu spoluprácu medzi vedeckými tímami. Očakáva sa, že väčšina používateľov bude pracovať s dátami v reálnom čase, analyzovať ich a optimalizovať pozorovacie metódy v závislosti od aktuálnych potrieb výskumu.

Okrem iného to budú aj študenti, ktorí budú ovládať menší ďalekohľad, kde budú využívať dáta systému.

2.4 Všeobecné obmedzenia

Kvôli obmedzenej dostupnosti ďalekohľadu sa predpokladá, že sa na testovanie využije model, ktorý si tím zostrojí.

Potenciálnemu vzájomnému vlnovému narúšaniu sa medzi rádiovou komunikáciou a inými zdrojmi vlnenia (wifi, senzory pohybu,...) z dôvodu podobných vlnových frekvencií sa zamedzí využitím odlišných frekvencií (868 MHz), ale aj tak je potrebné skontrolovať, či prenos signálu je v danom priestore spoľahlivý.

Exaktnosť gyroskopov a akcelerometrov – je tu možnosť že sa nebudú kontrolovať len odchýlky ktoré má systém riešiť, ale aj odchýlky zariadení ktoré tieto odchýlky zisťujú – potrebná kvalitná kalibrácia systémových zariadení ako aj ich správny výber.

2.5 Predpoklady a závislosti

Predpokladá sa, že vývojový tím sa hladko adaptuje na všetky výzvy, hardvérové a softvérové prostriedky. Predpokladá sa, že zariadenia budú napájané cez powerbanku, ktorá bude fungovať ako záložný zdroj v prípade výpadku napájania a nepretržite bude pripojená na externý zdroj. Softvér bude navrhnutý tak, aby bol jednoducho modifikovateľný pre pripojenie viac ako jednej inerciálnej jednotky súčasne.

3. Konkrétne požiadavky

- 3.1 Požiadavky na funkcionalitu
- 1. Systém musí fungovať nezávisle. Nezávisle na elektrickej sieti, internetovej sieti, internetovej infraštruktúre, existujúcich programoch.
- 2. Systém bude tvorený nasledujúcimi komponentami: 1) modulom s inerciálnou jednotkou; 2) riadiacou jednotkou; 3) softvérom na PC.
- 3. Modul s inerciálnou jednotkou bude primontovaný priamo na teleskope a bude pozostávať z inerciálnej jednotky, jednoduchého jednočipového mikropočítača a rádiového modemu, ktorý tento modul bude spájať s riadiacou jednotkou.
- 4. K riadiacej jednotke bude pripojený jednoduchý displej, jednoduchý riadiaci panel (tlačidlá), vizuálny a zvukový alarm, HW rozhranie pre odpojenie napájania (relé) a bude ju možné pripojiť cez ethernet na softvér na PC.
- 5. Softvér na PC dokáže vizualizovať údaje prenášané z modulu z inerciálnej jednotky v reálnom čase a konfigurovať celý systém.
- 6. Systém (modul s inerciálnou jednotkou) bude neustále snímať okamžitú polohu teleskopu v priestore.
- 7. Po vstúpení teleskopu do súradníc, ktoré sú predkonfigurované ako "nebezpečné", systém spustí konfigurovateľný alarm.
- 8. Spustenie alarmu môže (podľa jeho konfigurácie) spôsobiť nasledujúce akcie (alebo ich kombináciu):
 - a. Odpojenie systému ovládania polohy ďalekohľadu od elektrickej siete, pre zabránenie zrážke ďalekohľadu s inou časťou prostredia
 - b. Audiovizuálnu signalizáciu problému
- 9. Používateľ môže nakonfigurovať súradnice pre spustenie alarmu z administratívneho rozhrania softvéru na PC prostredníctvom nahratia konfiguračného súboru, alebo ručného zadania súradníc.
- 10. Súradnice konkrétnej polohy (jedného bodu) teleskopu sa vyjadrujú dvojicou azimut (0° 360°), elevácia $(-90^{\circ} 90^{\circ})$ (sklon, výška).
- 11. Hodnota súradnice azimut sa dá nastaviť ručne cez displej na riadiacej jednotke.
- 12. Jedna zakázaná oblasť je definovaná ako postupnosť bodov b_i =(azimut_i, elevácia_i), ktoré tvoria uzavretý "polygón" na guľovej ploche v smere hodinových ručičiek pri pohľade zo stredu guľovej plochy.
- 13. Súradnice, ktoré sú predkonfigurované ako nebezpečné (pozri 9) tvorí zoznam zakázaných oblastí (pozri 14).
- 14. Hodnoty azimutu a elevácie, predkonfigurované nebezpečné súradnice a akákoľvek iná konfigurácia sa bude ukladať do permanentnej pamäte riadiacej jednotky.
- 15. Používateľské rozhranie pre zobrazenie okamžitých súradníc teleskopu zobrazuje okamžitý azimut a eleváciu tubusu a to aj na riadiacej jednotke aj v softvéri na PC.
- 16. Systém bude pracovať aj keď softvér na PC nie je práve k riadiacej jednotke pripojený.
- 17. Riadiaca jednotka a modul s inerciálnou jednotkou budú pracovať ďalej aj pri výpadku/odpojení od siete s rozvodom napätia.
- 18. Systém bude v nejakom dobre definovanom softvérovom rozhraní poskytovať informácie o polohe teleskopu pre ďalší externý softvér, ktorý ich bude môcť napr. porovnávať s aktuálnou želanou polohou teleskopu v riadiacom softvéri.
- 19. Systém bude zaznamenávať aktuálnu polohu teleskopu a všetky mimoriadne i konfiguračné udalosti do záznamu s frekvenciou, ktorú bude možné nejakým spôsobom nastaviť.

- 20. Softvér na PC umožní získať súbor so záznamami (pozri 21) do súborového systému na PC.
- 21. Softvér automaticky zabezpečí, aby bol z hľadiska miesta na svojom lokálnom úložisku bezúdržbový, t.j. staré záznamy sa môžu automaticky vymazať.

3.2 Doplnkové požiadavky*

- 1. Systém bude vedieť zobrazovať/zaznamenávať aktuálnu polohu v rôznych súradnicových systémoch: Eulerove uhly, Roll-Pitch-Yaw, kvaterniony.
- 2. Zobrazenie polohy teleskopu v softvéri na PC bude aj grafickej podobe v 3D zobrazení, ktoré sa dá otáčať posúvaním/otáčaním virtuálnej kamery.

^{*} budú realizované iba v prípade dostatku ľudských zdrojov