

NOTE ON THE SPECTRUM OF DISCRETE SCHRÖDINGER OPERATORS

Fumio Hiroshima

Faculty of Mathematics, Kyushu University
Fukuoka, 819-0395, Japan

Itaru Sasaki

Fiber-Nanotech Young Researcher Empowerment Center,
Shinshu University, Matsumoto 390-8621, Japan

Tomoyuki Shirai

Faculty of Mathematics, Kyushu University
Fukuoka, 819-0395, Japan

and

Akito Suzuki

Department of Mathematics, Faculty of Engineering,
Shinshu University, Nagano 380-8553, Japan

Abstract

The spectrum of discrete Schrödinger operator $L + V$ on the d -dimensional lattice is considered, where L denotes the discrete Laplacian and V a delta function with mass at a single point. Eigenvalues of $L + V$ are specified and the absence of singular continuous spectrum is proven. In particular it is shown that an embedded eigenvalue does appear for $d \geq 5$ but does not for $1 \leq d \leq 4$.

1 Introduction

In this paper we are concerned with the spectrum of d -dimensional discrete Schrödinger operators on square lattices. Let $\ell^2(\mathbb{Z}^d)$ be the set of ℓ^2 sequences on the d -dimensional lattice \mathbb{Z}^d . We consider the spectral property of a bounded self-adjoint operator defined on $\ell^2(\mathbb{Z}^d)$:

$$L + V, \tag{1.1}$$

where the d -dimensional discrete Laplacian L is defined by

$$L\psi(x) = \frac{1}{2d} \sum_{|x-y|=1} \psi(y) \quad (1.2)$$

and the interaction V by

$$V\psi(x) = v\delta_0(x)\psi(x). \quad (1.3)$$

Here $v > 0$ is a non-negative coupling constant and $\delta_0(x)$ denotes the delta function with mass at $0 \in \mathbb{Z}^d$, i.e., $\delta_0(x) = \begin{cases} 1, & x = 0 \\ 0, & x \neq 0. \end{cases}$ To study the spectrum of $L + V$ we form $L + V$ by the Fourier transformation. Let $\mathbb{T}^d = [-\pi, \pi]^d$ be the d -dimensional torus, and $F : \ell^2(\mathbb{Z}^d) \rightarrow L^2(\mathbb{T}^d)$ be the Fourier transformation defined by

$$(F\psi)(\theta) = \sum_{x \in \mathbb{Z}^d} \psi(n)e^{-ix \cdot \theta},$$

where $\theta = (\theta_1, \dots, \theta_d) \in \mathbb{T}^d$. The inverse Fourier transformation is then given by

$$(F^{-1}\psi)(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} \psi(\theta)e^{ix \cdot \theta} d\theta.$$

Hence $L + V$ is transformed to a self-adjoint operator on $L^2(\mathbb{T}^d)$:

$$F(L + V)F^{-1}\psi(\theta) = \left(\frac{1}{d} \sum_{j=1}^d \cos \theta_j \right) \psi(\theta) + \frac{v}{(2\pi)^d} \int_{\mathbb{T}^d} \psi(\theta) d\theta. \quad (1.4)$$

In what follows we denote the right-hand side of (1.4) by $H = H(v)$, and we set $H(0) = H_0$. Thus

$$H = g + v(\varphi, \cdot)_{L^2(\mathbb{T}^d)} \varphi, \quad \varphi = (2\pi)^{-d/2} \mathbb{1}, \quad (1.5)$$

where $(\cdot, \cdot)_{L^2(\mathbb{T}^d)}$ denotes the scalar product on $L^2(\mathbb{T}^d)$, which is linear in the right-component and anti-linear in the left-component, and g is the multiplication by the real-valued function:

$$g(\theta) = \frac{1}{d} \sum_{j=1}^d \cos \theta_j. \quad (1.6)$$

Hence H can be realized as a rank-one perturbation of the discrete Laplacian g . We study the spectrum of H . We denote the spectrum (resp. point spectrum, discrete spectrum, absolutely continuous spectrum, singular continuous spectrum, essential spectrum) of self-adjoint operator T by $\sigma(T)$ (resp. $\sigma_p(T), \sigma_d(T), \sigma_{ac}(T), \sigma_{sc}(T), \sigma_{ess}(H)$).

2 Results

In the continuous case the Schrödinger operator is defined by $H_S = -\Delta + vV$ in $L^2(\mathbb{R}^d)$. Let $V \geq 0$ and $V \in L^1_{loc}(\mathbb{R}^d)$. Let N denote the number of strictly negative eigenvalues of H_S . It is known that $N \geq 1$ for all values of $v > 0$ for $d = 1, 2$ [Sim05]. However in the case of $d \geq 3$, by the Lieb-Thirring bound [Lie76] $N \leq a \int |vV(x)|^{d/2} dx$ follows with some constant a independent of V . In particular for sufficiently small v , it follows that $N = 0$. For the discrete case similar results to those of the continuous version may be expected. We summarize the result obtained in this paper below.

Theorem 2.1 *The spectrum of H is as follows:*

$(\sigma_{ac}(H) \text{ and } \sigma_{ess}(H))$ $\sigma_{ac}(H) = \sigma_{ess}(H) = [-1, 1]$ for all $v \geq 0$ and $d \geq 1$.

$(\sigma_{sc}(H))$ $\sigma_{sc}(H) = \emptyset$ for all $v \geq 0$ and $d \geq 1$.

$(\sigma_p(H))$

$(d = 1, 2)$ For each $v > 0$, there exists $E > 1$ such that $\sigma_p(H) = \sigma_d(H) = \{E\}$. In particular $E = \sqrt{1 + v^2}$ in the case of $d = 1$.

$(d = 3, 4)$

$(v > v_c)$ There exists $E > 1$ such that $\sigma_p(H) = \sigma_d(H) = \{E\}$.

$(v \leq v_c)$ $\sigma_p(H) = \emptyset$.

$(d \geq 5)$

$(v > v_c)$ There exists $E > 1$ such that $\sigma_p(H) = \sigma_d(H) = \{E\}$.

$(v = v_c)$ $\sigma_p(H) = \{1\}$.

$(v < v_c)$ $\sigma_p(H) = \emptyset$.

We give the proof of Theorem 2.1 in Section 3 below. The absolutely continuous spectrum $\sigma_{ac}(H)$ and essential spectrum $\sigma_{ess}(H)$ are discussed in Section 3.1, eigenvalues $\sigma_p(H)$ in Theorem 3.4 and Theorem 3.2, and singular continuous spectrum $\sigma_{sc}(H)$ in Theorem 3.6.

3 Spectrum

3.1 Absolutely continuous spectrum and essential spectrum

It is known and fundamental to show that $\sigma_{ac}(H) = \sigma_{ess}(H) = [-1, 1]$. Note that $\sigma(H_0) = \sigma_{ac}(H_0) = \sigma_{ess}(H) = [-1, 1]$ is purely absolutely continuous spectrum and purely essential spectrum. Since the perturbation $v(\varphi, \cdot)\varphi$ is a rank-one operator, the essential spectrum leaves invariant. Then $\sigma_{ess}(H) = [-1, 1]$. Let \mathcal{H}_{ac} denote the absolutely continuous part of H . The self-adjoint operator H is a rank-one perturbation of g . Then the wave operator $W_\pm = \lim_{t \rightarrow \pm\infty} e^{itH(v)} e^{-itH_0}$ exists and is complete, which implies that H_0 and $H(v)|_{\mathcal{H}_{ac}}$ are unitarily equivalent by $W_\pm^{-1} H_0 W_\pm = H(v)|_{\mathcal{H}_{ac}}$. In particular $\sigma_{ac}(H) = \sigma_{ac}(H_0) = [-1, 1]$ follows.

3.2 Eigenvalues

3.2.1 Absence of embedded eigenvalues in $[-1, 1]$

In this section we discuss eigenvalues of H . Namely we study the eigenvalue problem $H\psi = E\psi$, i.e.,

$$v(\varphi, \psi)\varphi = (E - g)\psi. \quad (3.1)$$

The key lemma is as follows.

Lemma 3.1 $E \in \sigma_p(H)$ if and only if

$$\frac{1}{E - g} \in L^2(\mathbb{T}^d) \quad \text{and} \quad v = (2\pi)^d \left(\int_{\mathbb{T}^d} \frac{1}{E - g(\theta)} d\theta \right)^{-1}. \quad (3.2)$$

Furthermore when $E \in \sigma_p(H)$, it follows that

$$H \frac{1}{E - g} = E \frac{1}{E - g},$$

i.e., $\frac{1}{E-g}$ is the eigenvector associated with E . In particular every eigenvalue is simple.

Proof: Suppose that $E \in \sigma_p(H)$. Then $(E - g)\psi = v(\varphi, \psi)\varphi$. Since $\psi \in L^2(\mathbb{T}^d)$ and $(E - g)\psi$ is a constant, $E - g \neq 0$ almost everywhere and $\psi = v(\varphi, \psi)\varphi/(E - g)$ follows. Thus $(E - g)^{-1} \in L^2(\mathbb{T}^d)$. Inserting $\psi = c(E - g)^{-1}$ with some constant c on both sides of $(E - g)\psi = v(\varphi, \psi)\varphi$, we obtain the second identity in (3.2) and then the necessity part follows. The sufficiency part can be easily seen. We state the absence of embedded eigenvalues in the interval $[-1, 1]$. This can be derived from (3.2). We summarize it in the theorem below:

Theorem 3.2 $\sigma_p(H) \cap [-1, 1] = \emptyset$.

Suppose that $-1 \in \sigma_p(H)$. Then there exists a non-zero vector ψ such that $(\psi, (g + 1)\psi) + v(\varphi, \psi)^2 = 0$. Thus $(\psi, (g + 1)\psi) = 0$ and $|(\varphi, \psi)|^2 = 0$ follow. However we see that $(\psi, (g + 1)\psi) \neq 0$, since g has no eigenvalues (has purely absolutely continuous spectrum). Then it is enough to show $\sigma_p(H) \cap (-1, 1) = \emptyset$. We shall check that $\frac{1}{E-g} \notin L^2(\mathbb{T}^d)$ for $-1 < E < 1$. By a direct computation we have

$$\int_{\mathbb{T}^d} \frac{1}{(E - g(\theta))^2} d\theta = \int_{[-1-E, 1-E]^d} \frac{1}{(\frac{1}{d} \sum_{j=1}^d X_j)^2} \prod_{j=1}^d \frac{1}{\sqrt{1 - (X_j + E)^2}} dX.$$

Changing variables by $X_1 = Z_1, \dots, X_{d-1} = Z_{d-1}$ and $\sum_{j=1}^d X_j = Z$. Then we have

$$\begin{aligned} \int_{\mathbb{T}^d} \frac{1}{(E - g(\theta))^2} d\theta &= \int_{\Delta} \frac{1}{\frac{1}{d^2} Z^2} \frac{1}{\sqrt{1 - (Z - Z_1 - \dots - Z_{d-1} + E)^2}} \\ &\quad \times \left(\prod_{j=1}^{d-1} \frac{1}{\sqrt{1 - (Z_j + E)^2}} \right) J dZ \prod_{j=1}^{d-1} dZ_j, \end{aligned}$$

where $J = |\det \frac{\partial(Z_1, \dots, Z_{d-1}, Z)}{\partial(X_1, \dots, X_d)}| = 1$ is a Jacobian and Δ denotes the inside of a d -dimensional convex polygon including the origin, since $-1 < E < 1$, and $\overline{\Delta}$ is the closure of Δ . Then we can take a rectangle such that $[-\delta, \delta]^d \subset \Delta$ for sufficiently small $0 < \delta$. We have the lower bound

$$\int_{\mathbb{T}^d} \frac{1}{(E - g(\theta))^2} d\theta \geq \text{const} \times (2\delta)^{d-1} d^2 \int_{-\delta}^{\delta} \frac{1}{Z^2} dZ$$

and the right-hand side diverges. Then the theorem follows from (3.2). qed

3.2.2 Eigenvalues in $[1, \infty)$

Operator H is bounded by the bound $\|H\| \leq 1 + v/(2\pi)^d$. Then by Theorem 3.2 and $v > 0$, eigenvalues are included in the interval $[1, (2\pi)^d v + 1]$ whenever they exist. We define the critical value v_c by

$$v_c = (2\pi)^d \left(\int_{\mathbb{T}^d} \frac{1}{1 - g(\theta)} d\theta \right)^{-1} \in [0, \infty) \quad (3.3)$$

with convention $\frac{1}{\infty} = 0$.

Lemma 3.3 (1) *The function $[1, \infty) \ni E \mapsto \int_{\mathbb{T}^d} \frac{1}{E - g(\theta)} d\theta$ is continuously decreasing.*

(2) $v_c = 0$ for $d = 1, 2$ and $v_c > 0$ for $d \geq 3$.

(3) $(E - g)^{-1} \in L^2(\mathbb{T}^d)$ for all $d \geq 1$ and $E > 1$.

(4) $(1 - g)^{-1} \in L^2(\mathbb{T}^d)$ for $d \geq 5$ and $(1 - g)^{-1} \notin L^2(\mathbb{T}^d)$ for $1 \leq d \leq 4$.

Proof: (1) and (3) are straightforward. In order to show (2) it is enough to consider a neighborhood U of points where the denominator $1 - g(\theta)$ vanishes. On U , approximately

$$1 - g(\theta) \approx \frac{1}{2d} \sum_{j=1}^d \theta_j^2. \quad (3.4)$$

Then

$$\int_U \frac{1}{1 - g(\theta)} d\theta \approx \int_U \frac{1}{\frac{1}{2d} \sum_{j=1}^d \theta_j^2} d\theta \approx \text{const} \times \int_{U'} \frac{r^{d-1}}{r^2} dr.$$

We have $\int_U \frac{1}{\frac{1}{2d} \sum_{j=1}^d \theta_j^2} d\theta < \infty$ for $d \geq 3$ and $\int_U \frac{1}{\frac{1}{2d} \sum_{j=1}^d \theta_j^2} d\theta = \infty$ for $d = 1, 2$.

Then (2) follows. (4) can be proven in a similar manner to (2). Since

$$\int_U \frac{1}{(1 - g(\theta))^2} d\theta \approx \int_U \frac{1}{(\frac{1}{2d} \sum_{j=1}^d \theta_j^2)^2} d\theta \approx \text{const} \times \int_{U'} \frac{r^{d-1}}{r^4} dr,$$

we have $(1 - g)^{-1} \in L^2(\mathbb{T}^d)$ for $d \geq 5$ and $(1 - g)^{-1} \notin L^2(\mathbb{T}^d)$ for $d = 1, 2, 3, 4$.

From this lemma we can immediately obtain results on eigenvalue problem of

$$v(\varphi, \psi)\varphi = (E - g)\psi. \quad (3.5)$$

Theorem 3.4 ($d = 1, 2$) (3.5) has a unique solution $\psi = \frac{1}{E-g}$ up to a multiplicative constant and $E > 1$ for each $v > 0$. In particular $E = \sqrt{1+v^2}$ for $d = 1$.

($d = 3, 4$) (3.5) has the unique solution $\psi = \frac{1}{E-g}$ up to a multiplicative constant and $E > 1$ for $v > v_c$ and no non-zero solution for $v \leq v_c$. In particular 1 is not eigenvalue for $H(v_c)$.

($d \geq 5$) (3.5) has the unique solution $\psi = \frac{1}{E-g}$ up to a multiplicative constant and $E \geq 1$ for $v \geq v_c$ and no non-zero solution for $v < v_c$. In particular $E = 1$ is eigenvalue for $H(v_c)$.

Proof: In the case of $d = 1, 2$, (3.2) is fulfilled for all $v > 0$, and $\frac{v}{2\pi} \int_{\mathbb{T}^d} \frac{1}{E-g(\theta)} = 1$ follows from $H \frac{1}{E-g} = \frac{E}{E-g}$. Thus $E = \sqrt{1+v^2}$ for $d = 1$. In the case of $d = 3, 4$, (3.2) is fulfilled for $v > v_c$, but not for $v = v_c$. In the case of $d \geq 5$, (3.2) is fulfilled for $v \geq v_c$.

3.3 Absence of singular continuous spectrum

Let $\langle T \rangle_\varphi = (\varphi, T\varphi)$ be the expectation of T with respect to φ . We introduce three subsets in \mathbb{R} . Let

$$\begin{aligned} X &= \left\{ x \in \mathbb{R} \mid \text{Im} \langle (H_0 - (x + i0))^{-1} \rangle_\varphi > 0 \right\} \\ Y &= \left\{ x \in \mathbb{R} \mid \langle (H_0 - x)^{-2} \rangle_\varphi^{-1} > 0 \right\} \\ Z &= \mathbb{R} \setminus (X \cup Y). \end{aligned}$$

Note that $\text{Im} \langle (H_0 - (x + i\epsilon))^{-1} \rangle_\varphi \leq \epsilon \langle (H_0 - x)^{-2} \rangle_\varphi$. Then X, Y and Z are mutually disjoint. Let μ_v^{ac} (resp. μ_v^{sc} and μ_v^{pp}) be the spectral measure of the absolutely continuous spectral part of $H(v)$ (resp. singular continuous part, point spectral part). A key ingredient to prove the absence of singular continuous spectrum of a self-adjoint operator with rank-one perturbation is the result of [SW86, Theorem 1(b) and Theorem 3] and [Aro57]. We say that a measure η is supported on A if $\eta(\mathbb{R} \setminus A) = 0$.

Proposition 3.5 For any $v \neq 0$, μ_v^{ac} is supported on X , μ_v^{pp} is supported on Y and μ_v^{sc} is supported on Z . In particular when $\mathbb{R} \setminus X \cup Y$ is countable, $\sigma_{\text{sc}}(H) = \emptyset$ follows.

Proof: The former result is due to [SW86, Theorem 1(b) and Theorem 3]. Since any countable sets have μ_v^{sc} -zero measure, the latter statement also follows.

Theorem 3.6 $\sigma_{\text{sc}}(H) = \emptyset$.

Proof: We shall show that $\mathbb{R} \setminus X \cup Y$ is countable. Let $E \in \sigma_p(H)$. Then it is shown in (3.2) that $\langle (H_0 - E)^{-2} \rangle_\varphi = \int_{\mathbb{T}^d} \frac{1}{(g(\theta) - E)^2} d\theta < \infty$. Then $E \in Y$. Let $x \in (-\infty, -1) \cup (1, \infty)$. It is clear that $\langle (H_0 - E)^{-2} \rangle_\varphi < \infty$. Then

$$\sigma_p(H) \cup (-\infty, -1) \cup (1, \infty) \subset Y. \quad (3.6)$$

Let $x \in (-1, 1)$. Then $(x - g)^{-1} \notin L^2(\mathbb{T}^d)$ follows from the proof of Theorem 3.2. We have

$$\operatorname{Im} \langle (H_0 - (x + i\epsilon))^{-1} \rangle_\varphi = \int_{\mathbb{T}^d} \frac{\epsilon}{(g(\theta) - x)^2 + \epsilon^2} d\theta.$$

We can compute the right-hand side above in the same way as in the proof of Theorem 3.2:

$$\int_{\mathbb{T}^d} \frac{\epsilon}{(g(\theta) - x)^2 + \epsilon^2} d\theta \geq (2\delta)^{d-1} d^2 \int_{-\delta}^{\delta} dZ \frac{\epsilon}{Z^2 + \epsilon^2}.$$

Then the right-hand side above converges to $(2\delta)^{d-1} d^2 \pi > 0$ as $\epsilon \downarrow 0$. Then

$$(-1, 1) \subset X. \quad (3.7)$$

By (3.6) and (3.7), $\mathbb{R} \setminus X \cup Y \subset \{-1, 1\}$, the theorem follows from Proposition 3.5.

4 Concluding remarks

Our next issue will be to consider the spectral properties of discrete Schrödinger operators with the sum (possibly infinite sum) of delta functions:

$$L + v \sum_{j=1}^n \delta_{a_j} \quad 1 < n \leq \infty. \quad (4.1)$$

This is transformed to

$$H = g + v \sum_{j=1}^n (\varphi_j, \cdot) \varphi_j \quad (4.2)$$

by the Fourier transformation, where $\varphi_j = (2\pi)^{-d/2} e^{-i\theta a_j}$. Note that

$$(\varphi_i, \varphi_j) = (2\pi)^{-d} \int_{\mathbb{T}^d} e^{i(a_i - a_j)\theta} d\theta = \delta_{ij}.$$

When $n < \infty$, H is a finite rank perturbation of g . Then the absolutely continuous spectrum and the essential spectrum of H are $[-1, 1]$. In this case the discrete spectrum is studied in e.g., [HMO11] for $d = 1$. See also [DKS05]. The absence of singular continuous spectrum of H may be shown by an application of the Mourre estimate [Mou80]. In order to study eigenvalues we may need further effort.

Acknowledgments

We thank Yusuke Higuchi for sending the problem to our attention and giving a lot of useful comments. We also thank Hiroshi Isozaki for a helpful comments. FH is financially supported by Grant-in-Aid for Science Research (B) 20340032 from JSPS. TS's work was supported in part by JSPS Grant-in-Aid for Scientific Research (B) 22340020.

References

- [Aro57] N. Aronszajn, On a problem of Weyl in the theory of singular Sturm-Liouville equations, *Am. J. Math.* **79** (1957), 597–610.
- [DKS05] D. Damanik, R. Killip and B. Simon, Schrödinger operators with few bound states, *Commun. Math. Phys.* **258** (2005), 741–750.
- [HMO11] Y. Higuchi, T. Matsumoto and O. Ogurisu, On the spectrum of a discrete Laplacian on \mathbb{Z} with finitely supported potential, *Linear and Multilinear Algebra*, **8** (2011), 917–927.
- [Lie76] E.H. Lieb, Bounds on the eigenvalues of the Laplacian and Schrödinger operators, *Bull. AMS* **82** (1976), 751–753
- [Mou80] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators. *Commun. Math. Phys.* **78** (1981), 391–408.
- [Sim05] B. Simon, *Trace Ideals and Their Applications*, 2nd ed. AMS 2005
- [SW86] B. Simon and T. Worff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, *Commun. Pure, App. Math.* **39** (1986), 75–90.