10 класс

Первый день

10.1. Найдите все пары натуральных чисел (a, b), для которых выполняется равенство

$$(3^a - 1)^b = 3^b + a! + 3,$$

где через a! обозначено произведение всех натуральных чисел от 1 до a.

- **10.2.** Пусть n натуральное число. На доске записана дробь $\frac{1}{2^n-1}$. За ход можно увеличить либо уменьшить числитель или знаменатель записанной на доске дроби ровно на 1 так, чтобы числитель и знаменатель полученной дроби остались натуральными числами. Если числитель и знаменатель полученной дроби не взаимно просты, то можно сократить их на любой общий делитель, не потратив при этом хода. Для каждого натурального n найдите наименьшее возможное количество ходов, за которое можно получить дробь, равную единице.
- **10.3.** Каждой паре (x, y) целых чисел сопоставили некоторое целое число и обозначили его через $x \circ y$. При этом числа $x \circ y$ и $y \circ x$ могут быть различными. Оказалось, что для любых целых чисел a, b, c и d выполняется равенство

$$(a \circ b + d) \circ c = (a - b) \circ (c - d) + 1.$$

Найдите значение 2025 ∘ 1991.

10.4. Вписанная окружность треугольника ABC касается сторон AB, BC и CA в точках C_1 , A_1 и B_1 , соответственно. Точки D и E — середины отрезков A_1B_1 и A_1C_1 , соответственно. Прямые B_1E и C_1D пересекают вписанную окружность во второй раз в точках F и G, соответственно. Докажите, что точки B, F, G и C лежат на одной окружности.

10 класс

Второй день

- **10.5.** В треугольнике ABC точка O центр описанной окружности, а M середина стороны AC. На стороне BC отметили произвольную внутреннюю точку D. Прямая DM повторно пересекла описанную окружность треугольника ABD в точке N. Докажите, что угол ANO прямой.
- **10.6.** Два квадратных трёхчлена f(x) и h(x) с целыми коэффициентами таковы, что

$$f(\sqrt{3}) = h(-\sqrt{3})$$
 и $f(2) - h(-2) = 44$

Найдите все возможные значения разности f(7) - h(-7).

- **10.7.** Будем называть *певым сапогом высоты* n фигуру, получаемую присоединением квадрата 1×1 слева к нижней клеточке вертикального прямоугольника $n \times 1$. Аналогично определим *правый сапог высоты* n. Лесенкой высоты n будем называть фигуру, i-ая сверху строка которой состоит из i клеток, причём последние клетки всех строк образуют вертикальный прямоугольник $n \times 1$.
 - а) Найдите все такие n, что лесенку высоты n можно по сторонам клеток разрезать на сапоги (любых высот и видов).
 - **б)** Для всех таких n найдите наименьшее необходимое для разрезания число левых сапогов.
- **10.8.** Дана бесконечная последовательность a_1, a_2, \ldots натуральных чисел. Конечное множество $S = \{n_1, n_2, \ldots, n_k\}$ натуральных чисел назовём *квадратным*, если число $a_{n_1} + a_{n_2} + \cdots + a_{n_k}$ является полным квадратом. Может ли оказаться так, что для данной последовательности a_1, a_2, \ldots

 - а) квадратных множеств нет?
 - **б)** множество является квадратным, если и только если оно имеет вид $\{1, 2, \dots, n\}$ для некоторого натурального n?