ECE 133A HW 1

Lawrence Liu

October 12, 2022

Exercise A1.7

For the optimal coefficients we have:

$$J = \frac{1}{n} ||c_{1}\mathbf{1} + c_{2}a - b||^{2}$$

$$= \frac{1}{n} ||(m_{b} - m_{a}c_{2})\mathbf{1} + c_{2}a - b||^{2}$$

$$= \frac{1}{n} \sum_{k=1}^{n} ((m_{b} - m_{a}c_{2}) + c_{2}a_{k} - b_{k})^{2}$$

$$= \frac{1}{n} \sum_{k=1}^{n} (c_{2}(a_{k} - m_{a}) - (b_{k} - m_{b}))^{2}$$

$$= \frac{1}{n} \left(c_{2}^{2} \sum_{k=1}^{n} (a_{k} - m_{a})^{2} - c_{2} \sum_{k=1}^{n} (a_{k} - m_{a})(b_{k} - m_{b}) + \sum_{k=1}^{n} (b_{k} - m_{b})^{2} \right)$$

$$= c_{2}^{2} s_{a}^{2} - \frac{2c_{2}}{n} (a - m_{a}\mathbf{1})^{T} (b - m_{b}\mathbf{1}) + s_{b}^{2}$$

$$= \rho^{2} s_{b}^{2} - 2 \frac{\rho s_{b}}{s_{a}} \rho s_{a} s_{b} + s_{b}^{2}$$

$$= s_{b}^{2} - \rho^{2} s_{b}^{2}$$

$$= \left[(1 - \rho^{2}) s_{b}^{2} \right]$$

Exercise A1.8

(a)

We want to maximize J with respect to c_1 , so we take the derivative of J with respect to c_1 and find the value of c_1 that makes the derivative equal to zero:

$$\frac{\partial J}{\partial c_1} = \frac{2}{n} \sum_{k=1}^n \frac{c_1 + c_2 a_k - b_k}{1 + c^2} = 0$$

$$\frac{1}{n} \sum_{k=1}^n (c_1 + c_2 a_k - b_k) = 0$$

$$c_1 + \frac{1}{n} \sum_{k=1}^n (c_2 a_k - b_k) = 0$$

$$c_1 + c_2 m_a - m_b = 0$$

$$c_1 = m_b - c_2 m_a$$

(b)

We have for the optimal c_1 ,

$$J = \frac{||c_2(a - m_a \mathbf{1}) - (b - m_b \mathbf{1})||^2}{n(1 + c_2^2)}$$

$$= \frac{1}{n(1 + c_2^2)} \left(\sum_{k=1}^n (c_2 a_k - m_a c_2 - b_k + m_b)^2 \right)$$

$$= \frac{1}{(1 + c_2^2)} \left(c_2^2 s_a^2 + s_b^2 - 2\rho s_a s_b c_2 \right)$$

Taking the derivative with respect to c_2 , we get

$$\frac{\partial J}{\partial c_2} = \frac{1}{(1+c_2^2)^2} \left((2c_2s_a^2 - 2\rho s_a s_b)(1+c_2^2) - 2c_2(c_2^2s_a^2 + s_b^2 - 2\rho s_a s_b c_2) \right)$$

Setting this equal to 0 to mimimize J with respect to c_2 we get

$$\frac{1}{(1+c_2^2)^2} \left((2c_2s_a^2 - 2\rho s_a s_b)(1+c_2^2) - 2c_2(c_2^2s_a^2 + s_b^2 - 2\rho s_a s_b c_2) \right) = 0$$

$$2c_2s_a^2 - 2\rho s_a s_b - 2\rho s_a s_b c_2^2 - 2c_2s_b^2 + 4\rho s_a s_b c_2^2 = 0$$

$$\rho s_a s_b c_2^2 + 2c_2(s_a^2 - s_b^2) - 2\rho s_a s_b = 0$$

$$\rho c_2^2 + \left(\frac{s_a}{s_b} - \frac{s_b}{s_a}\right) c_2 - \rho = 0$$

When $\rho \neq 0$ the optimal solution is one with the same sign as ρ , since that makes $-2\rho s_a s_b c_2$ negative, which will minimize J, since all the other terms of J involves squares, which are always nonnegative

(c)

With the following code in Julia

```
return 0

else

b=(s_a/s_b-s_b/s_a)
c_21=(-b+sqrt(b^2+4*(rho^2)))/(2*rho)
c_22=(-b-sqrt(b^2+4*(rho^2)))/(2*rho)
if sign(c_21)==sign(rho)
return c_21
else
return c_22
end
end

end

end

end

function main()
include("orthregdata.m")
#print(size(a))
m_a=calculate_mean(a)
m_b=calculate_mean(b)
s_a=calculate_std(a,m_a)
#println("--")
s_b=calculate_std(b,m_b)
rho=calculate_rho(a,m_a,s_a,b,m_b,s_b)
#println(rho)
#println("plotting")
plot(a,b,"o",label="data")
#least squares solution
c_2=rho*s_b/s_a
#println(c_2)
c_1=m_b-m_a*c_2
#println(c_2)
r_1=m_b-m_a*c_2
#println(rho)
c_2=ortho_c2(rho,s_a,s_b)
c_1=m_b-m_a*c_2
#println(rho)
c_2=ortho_c2(rho,s_a,s_b)
c_1=m_b-m_a*c_2
#println(rho)
c_1=m_b-m_a*c_2
#println(rho)
c_1=m_b-m_a*c_2
#println(rho*c_2-2)+(s_a/s_b-s_b/s_a)*c_2-rho)
#println(rho)
plot(x,x.*c_2.+c_1,label="orthogonal regression")
legend()
xlabel("a")
ylabel("a")
ylabel("b")
savefig("test.png")

end

main()
```

We get the following regression:

Exercise A2.4

Expanding $(1+A)^{n-1}$, we get

$$(1+A)^{n-1} = \sum_{k=0}^{n-1} \binom{n-1}{k} A^k$$

Since $(A^k)_{i,j}$ represents whether a path of length exists from j to i, (with $(A^k_{i,j} > 0)$ representing that such a path exitst) we can see that the sum of the A^k matrices for $0 \le k \le n-1$ represents all the paths that can possibly exists. Therefore A is irreducible if it possible to travel to one node to any other node, ie that G_A is strongly connected.

Exercise A2.8

) We can start by multiplying each x_i subvectors with B, each of these operations takes (2n-1)n flops, so for the n subvectors it will cost us $(2n-1)n^2$ flops.

Now we get that for the ith output subvector $y_i = \sum_{j=1}^n A_{i,j} B x_j$. Multiplying Ai, j with Bx_j costs us n flops, therefore repeating this n times for $1 \le i \le n$ results in n^2 flops. Summing these vectors $A_{i,j} B x_j$ costs n(n-1) flops. So in total computing this subvector costs us 2n(n-1) flops. We will need to repeat this for each of the n output subvectors, so it will cost use $2n^2(n-1)$.

Therefore in total, this algorithm will cost us $2n^2(n-1)+(2n-1)n^2$ flops, so approximately $4n^3$ flops for large n. In comparison the algorithm for computing (n^2, n^2) matrix multiplied with an n^2 vector will take $(2n^2 - 1)n^2$ flops, or $2n^4$ flops approximately for large n.

Exercise A2.10

(a)

For any k that satisfy $i \leq k < j$, we have that we can rearange the multiplication of $A_i A_{i+1} ... A_j$ to $(A_i ... A_k)(A_{k+1} ... A_j)$.

We have that multiplying the matrices from i to k will cost us $c_{i,k}$ flops and result in a matrix of size (n_{i-1}, n_k) , likewise multiplying the matrices from k+1 to j will cost us $c_{k+1,j}$ flops and result in a matrix of size (n_k, n_j) .

Multiplying these two matrices together will cost us $2n_{i-1}n_kn_j$. Therefore if we split up the computation of $A_iA_{i+1}...A_j$ into two parts, one from i to k the other from k+1 to j, we will have that the total cost of computing $A_iA_{i+1}...A_j$ is:

$$c_{i,k} + c_{k+1,i} + 2n_{i-1}n_kn_i$$

Therefore the minimum of the cost of computing $A_iA_{i+1}...A_j$ is when k is the value that minimizes the above expression. In otherwords:

$$c_{i,j} = \min_{k=i,i+1,\dots,j-1} (c_{i,k} + c_{k+1,j} + 2n_{i-1}n_k n_j)$$

(b)

We have that the triangular table of $c_{i,j}$ for $A_1A_2A_3A_4$ is:

$$\begin{array}{ccccc} 0 & 1.00 \cdot 10^{10} & 1.20 \cdot 10^{10} & 1.21 \cdot 10^{9} \\ & 0 & 1.00 \cdot 10^{11} & 1.20 \cdot 10^{9} \\ & & 0 & 2.00 \cdot 10^{8} \\ & & & 0 \end{array}$$

Therefore the optimal cost of computing $A_1A_2A_3A_4$ is multiply A_1 with the product of A_2 multiplied with the product of A_3 and A_4 , which takes us $1.21 \cdot 10^9$ flops.

Likewise since the triangular table of $c_{i,j}$ for $A_1A_2A_3$ is:

$$\begin{array}{ccc} 0 & 1.00 \cdot 10^{10} & 1.20 \cdot 10^{10} \\ & 0 & 1.00 \cdot 10^{11} \\ & & 0 \end{array}$$

The optimal cost of $A_1A_2A_3$ is to multiply (A_1A_2) with A_3 , which takes us $1.20 \cdot 10^{10}$ flops. So interestingly the optimal flops to compute $A_1A_2A_3A_4$ less than the optimal flops to compute $A_1A_2A_3$, despite the fact that $A_1A_2A_3A_4$ involves one more matrix multiplication. Likewise the optimal order for the multiplication also changes when we try to compute $A_1A_2A_3A_4$ compared to $A_1A_2A_3$.