Spherical Harmonics and Matrix Elements

January 22, 2020

Problem 1: Let's write a program to visualize the spherical harmonics $Y_l^m(\theta, \phi)$. From lecture, remember that the spherical harmonics are the solutions to the differential equation

$$\hat{L}^2 Y_l^m(\theta, \phi) = \hbar^2 l(l+1) Y_l^m(\theta, \phi). \tag{1}$$

Python already has them included in the scipy.special module as the sph_harmonic function. Please note that θ and ϕ in this function are defined differently from how it is typically used in spherical coordinates, so take care when implementing it.

(a) You can use matplotlib and the 3D-plotting module mpl_toolkits.mplot3d to create 3-dimensional plots. First, note that since the spherical harmonics are complex functions, we can't plot them directly. However, it's possible to find a new and real-valued basis which is a superposition of the complex spherical harmonics. Conventionally, the following substitution is done:

$$Y_l^m \to \begin{cases} \sqrt{2} \text{Re}(Y_l^m) & (m > 0) \\ \sqrt{2} \text{Im}(Y_l^m) & (m < 0) \\ Y_l^m & (m = 0) \end{cases}$$
 (2)

Typically, $|Y_l^m|$ is plotted using Y_l^m or $\operatorname{sign}(Y_l^m)$ as the color (to denote phase). Plot Y_4^4 and Y_4^{-4} in this way. How do they differ from each other? Can you say something general about how Y_l^m and Y_l^{-m} relate?

(b) Plot Y_0^0 , Y_1^0 , Y_2^0 , and Y_3^0 . Describe any patterns you see.

Problem 2: Similar to the radial dipole matrix elements, we will investigate the interaction between the angular parts of atomic states.

(a) What is an expression for:

$$\langle n', l', m' | \hat{f}(r) \hat{g}(\theta, \phi) | n, l, m \rangle$$
, (3)

where \hat{f} and \hat{f} are r- and (θ, ϕ) -dependent operators, resp. Highlight the angular part.

(b) Using the romb function from the scipy.integrate module, write a <u>function</u> that calculates the angular part of this expression for an arbitrary operator \hat{g} . Show that your

function gets the correct results for the case where $\hat{g} = 1$. Why would we use the romb function over the obvious (simpler) alternative? Be quantitative in your comparison.

- (c) Write the position vector operator \hat{r} as a function the spherical harmonics in the Cartesian coordinate system.
- (d) Use the program from Problem 1(a) to visualize the angular parts of \hat{x} , \hat{y} , and \hat{z} . Since these operators are Hermitian (and their representation in coordinate space are therefore already real) you shouldn't have to make any substitutions. The results should make sense to you. Why?
- (e) Write out the following operators as functions of spherical harmonics:

$$\hat{\sigma}_{+} = \frac{1}{\sqrt{2}}(\hat{x} + i\hat{y})$$

$$\hat{\sigma}_{-} = \frac{1}{\sqrt{2}}(\hat{x} - i\hat{y})$$

$$\hat{\sigma}_{0} = \hat{z}$$
(4)

What do these correspond to?

- (f) Calculate the result of Eq. 3 using the operators from Eq. 4 and your program from Problem 2(b). You may choose whatever states you like to illustrate and describe all important behavior.
- (g) The atom-light dipole interaction Hamiltonian is $\hat{H} = -e\,\hat{\mathbf{r}}\cdot\vec{E}$ where \vec{E} is the electric field of the light. Describe how the work you have done in this problem set is relevant to this interaction.