Neural representation of linguistic feature hierarchy reflects language proficiency

Giovanni Di Liberto

Jinping Nie

Jeremy Yeaton, Bahar Khalighinejad, Shihab Shamma,
*Nima Mesgarani

Speech processing hierarchy

- Learning a new language requires learning new sounds (phonemes), new sound combinations (phonotactics), and new words (semantic)
- Language acquisition is cumulative; proficiency can be quantified (e.g., Basic, Independent, Proficient)
- How does language proficiency change the neural representation of linguistic feature hierarchy?

Native (L1) and non-native (L2) English speaking subjects

- L1: 22 Native English speakers
- L2: 49 Native Mandarin speaker with instructed English acquisition
- No significant difference between age and time in the US

Experimental procedure

1.5 hours **continuous speech** stories, divided into 24 blocks, alternating male and female speakers (4 speakers total)

... suddenly, there was a loud noise. The dog <u>dog</u> ran outside the house ...

Behavioral measures

After each experiment block

Check the words that were spoken.

✓ Dog □ Room ✓ Noise □ Water

2) Gender identification:

Check the gender of the last speaker.

✓ Male ☐ Female

2) Gender identification

3) 1-back repetition detection

Similar task engagement

Regression weights (a.k.a TRF) show the contribution of each feature to the response

Hypotheses

With increased language proficiency in L2 subjects, the neural representation of:

- 1. Low-level acoustic attributes will not change
- 2. English phonemes will be more similar to L1 (learned phonetics)
- 3. Phonotactics will approach L1, but not entirely to preserve L2 phonotactics (learned phonotactics)
- 4. Semantic dissimilarity becomes more pronounced (learned words)

Envelope TRF

- Reflects the processing of basic acoustic features
- No significant change with proficiency

Phoneme TRF

Proficiency shifts the neural representation of phonemes toward L1

Increased phoneme similarity to L1 is higher for English-only phonemic contrasts

Learning new phoneme sequences: phonotactic TRFs

- Early negative in all L2 subjects, but not in L1 (~240 ms)
- Late Negative for L1 & C (~360ms), and even later for A & B (~ 480 ms)

Semantic dissimilarity TRF

- Early negative in **L1** subjects (~240 ms), Later in **C** (~360 ms)
- Weaker in A & B

Predicting language proficiency from TRFs

Language proficiency is highly predictable from EEG High classification accuracy for L1 vs. L2, but also L1 vs. C

Proficiency changes the encoding of linguistic hierarchy in EEG responses to continous speech

- Objective measure of proficiency & nativeness
- Age of acquisition, frequency of exposure, etc.