

(https://databricks.com)

Diamond's Pricing model:

Input dataset:

/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv

Using the Apache Spark ML pipeline, build a model to predict the price of a diamond base on the available features. How would you handle non-numerical data?

Information about the dataset:

- http://ggplot2.tidyverse.org/reference/diamonds.html (http://ggplot2.tidyverse.org/reference/diamonds.html)
- You can find plenty of exploratory analysis examples around the web for this particular dataset

Read https://spark.apache.org/docs/latest/ml-features.html (https://spark.apache.org/docs/latest/ml-features.html) to learn more about transforming features, dealing with categorical variables, etc.

dataPath = "/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv"
diamonds = sqlContext.read.format("com.databricks.spark.csv").option("header","true").option("inferSchema", "true").load(dataPath)

display(diamonds)

	_c0	carat	cut		color 📥	clarity 📤	depth 📤	table 📤	price 📤	x 4
1	1	0.23	Ideal		Е	SI2	61.5	55	326	3.95
2	2	0.21	Premium		Е	SI1	59.8	61	326	3.89
3	3	0.23	Good		E	VS1	56.9	65	327	4.05
4	4	0.29	Premium		I	VS2	62.4	58	334	4.2
5	5	0.31	Good		J	SI2	63.3	58	335	4.34
6	6	0.24	Very Good	I	J	VVS2	62.8	57	336	3.94
7	7	0.24	Very Good		ı	VVS1	62.3	57	336	3.95

display(diamonds)

Visualization		

%fs ls /databricks-datasets/Rdatasets/data-001/csv/ggplot2/

	path	name 🔺	size 📤	modificationTime 🔺
1	dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv	diamonds.csv	3192560	1416619980000
2	dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/economics.csv	economics.csv	20731	1416619980000
3	dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/midwest.csv	midwest.csv	100539	1416619980000
4	dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/movies.csv	movies.csv	6000709	1416619980000
5	dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/mpg.csv	mpg.csv	17345	1416619980000
6	dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/msleep.csv	msleep.csv	7182	1416619980000
7	dbfs:/databricks-datasets/Rdatasets/data-001/csv/ggplot2/presidential.csv	presidential.csv	512	1416619981000

Jessie Ma - Assignment 4 - Question 2 Starts Here

display(diamonds)

	_c0 🔺	carat 🔺	cut 📤	color 📤	clarity 📤	depth 📤	table 📤	price 📤	x 🛋
1	1	0.23	Ideal	Е	SI2	61.5	55	326	3.95
2	2	0.21	Premium	Е	SI1	59.8	61	326	3.89
3	3	0.23	Good	E	VS1	56.9	65	327	4.05
4	4	0.29	Premium	I	VS2	62.4	58	334	4.2
5	5	0.31	Good	J	SI2	63.3	58	335	4.34
6	6	0.24	Very Good	J	VVS2	62.8	57	336	3.94
7	7	0.24	Very Good	1	VVS1	62.3	57	336	3.95

diamonds.printSchema()

root

|-- _c0: integer (nullable = true)

|-- carat: double (nullable = true)

|-- cut: string (nullable = true)

|-- color: string (nullable = true)

|-- clarity: string (nullable = true)

```
|-- depth: double (nullable = true)
|-- table: double (nullable = true)
|-- price: integer (nullable = true)
|-- x: double (nullable = true)
|-- y: double (nullable = true)
|-- z: double (nullable = true)
```

```
diamonds.columns
```

```
['_c0',
    'carat',
    'cut',
    'color',
    'clarity',
    'depth',
    'table',
    'price',
    'x',
    'y',
    'z']
```

First treat missing values:

```
# Find count for Null, None, NaN of all columns in df, clean up data if necessary from pyspark.sql.functions import col, isnan, when, count diamonds.select([count(when(isnan(c) | col(c).isNull(), c)).alias(c) for c in diamonds.columns]).show()
```

```
|_c0|carat|cut|color|clarity|depth|table|price| x| y| z|
```

There are none which is great!

Let's rename the x, y and z columns:

```
diamonds = diamonds.withColumnRenamed("depth", "depth_percentage") \
    .withColumnRenamed("x", "length") \
    .withColumnRenamed("y", "width") \
    .withColumnRenamed("z", "depth")
display(diamonds)
```

	_c0		carat 🔺	cut 📤	color	clarity 📤	depth_percentage	table 🔺	price 📤	lengtl
		-				•			•	_
1	1		0.23	Ideal	E	SI2	61.5	55	326	3.95
2	2	- 1	0.21	Premium	E	SI1	59.8	61	326	3.89
3	3		0.23	Good	E	VS1	56.9	65	327	4.05
4	4		0.29	Premium	1	VS2	62.4	58	334	4.2
5	5		0.31	Good	J	SI2	63.3	58	335	4.34
6	6		0.24	Very Good	J	VVS2	62.8	57	336	3.94
7	7		0.24	Very Good	1	VVS1	62.3	57	336	3.95

Convert categorical variables to numerical:

```
data_ml=diamonds.drop("_c0")
from pyspark.ml.feature import StringIndexer
indexer=StringIndexer(inputCol="cut",outputCol="cut_num")
indexed=indexer.fit(data_ml).transform(data_ml)
indexer=StringIndexer(inputCol="color",outputCol="color_num")
indexed=indexer.fit(indexed).transform(indexed)
indexer=StringIndexer(inputCol="clarity",outputCol="clarity_num")
indexed=indexer.fit(indexed).transform(indexed)
```

indexed.show() cut|color|clarity|depth_percentage|table|price|length|width|depth|cut_num|color_num|clarity_num| 0.23 Ideal E SI2 61.5 | 55.0 | 326 | 3.95 | 3.98 | 2.43 59.8 | 61.0 | 326 | 3.89 | 3.84 | 2.31 0.21 Premium E SI1 1.0 1.0 0.01 0.23 Good VS1 56.9 65.0 327 4.05 4.07 2.31 3.0 1.0 3.01 62.4 58.0 334 4.2 4.23 2.63 0.29 Premium Ι VS2 1.0 5.0 1.0 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 3.0 6.0 2.0 0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 2.0 6.0 4.0 62.3 57.0 336 3.95 3.98 2.47 0.24 Very Good VVS1 2.0 5.0 5.0 I 61.9 55.0 337 4.07 4.11 2.53 0.26 Very Good SI1 2.0 3.0 0.0 65.1 | 61.0 | 337 | 3.87 | 3.78 | 2.49 0.22 Fair VS2 4.0 1.0 1.0 0.23 Very Good 59.4 61.0 338 4.0 4.05 2.39 VS1 2.0 3.0 3.0 н 0.3 Good SI1 64.0 55.0 339 4.25 4.28 2.73 3.0 6.0 0.0 Ideal VS1 62.8 | 56.0 | 340 | 3.93 | 3.9 | 2.46 0.23 J 0.0 6.0 3.01 0.22 Premium F SI1 60.4 61.0 342 3.88 3.84 2.33 1.0 2.0 0.0 62.2 54.0 344 4.35 4.37 2.71 0.31 Ideal J SI2 0.0 6.0 2.0 0.2 Premium SI2 60.2 | 62.0 | 345 | 3.79 | 3.75 | 2.27 1.0 2.0 Е 1.0 0.32 Premium I1 60.9 58.0 345 4.38 4.42 2.68 1.0 1.0 7.0 62.0 54.0 348 4.31 4.34 2.68 0.0 1 0.3 Ideal I SI2 5.0 2.01 0.3 Good JΙ SI1 63.4 54.0 351 4.23 4.29 2.7 3.0 6.0 0.0

Assemble columns into one single vector:

```
from pyspark.ml.linalg import Vector
from pyspark.ml.feature import VectorAssembler
assembler=VectorAssembler(inputCols=
['carat','depth_percentage','table','length','width','depth','cut_num','color_num','clarity_num'],outputCol='features')
assembler
```

VectorAssembler_e4c8975b6aaf

```
output=assembler.transform(indexed)
output.show()
```

```
carat
        cut|color|clarity|depth_percentage|table|price|length|width|depth|cut_num|color_num|clarity_num|
es
                           61.5 | 55.0 | 326 | 3.95 | 3.98 | 2.43 | 0.0
0.23
      Ideal E
                SI2
                                                         1.0
                                                                   2.0 [0.23,61.5,55.0,
3...l
                 SI1
                           59.8 | 61.0 | 326 | 3.89 | 3.84 | 2.31
                                                    1.0
                                                           1.0
0.21 Premium
                                                                   0.0 [0.21,59.8,61.0,
```

```
3...
0.23
          Good
                       VS1
                                      56.9 | 65.0 | 327 | 4.05 | 4.07 | 2.31
                                                                          3.0
                                                                                   1.0
                                                                                              3.0 [0.23,56.9,65.0,
4...
                       VS2
                                      62.4 58.0 334 4.2 4.23 2.63
                                                                                   5.0
                                                                                              1.0 [0.29,62.4,58.0,
0.29 Premium
                  Ι
4...|
0.31
                       SI2
                                      63.3 58.0 335 4.34 4.35 2.75
                                                                          3.0
                                                                                   6.0
                                                                                              2.0 [0.31,63.3,58.0,
          Good
4...|
                      VVS2
0.24 Very Good
                                      62.8 57.0 336 3.94 3.96 2.48
                                                                                              4.0 [0.24,62.8,57.0,
                  J
                                                                         2.0
                                                                                   6.0
3...|
                                      62.3 57.0 336 3.95 3.98 2.47
0.24 Very Good
                      VVS1
                                                                        2.0
                                                                                   5.0
                                                                                              5.0 [0.24,62.3,57.0,
3...
  final_data=output.select('features','price')
  final_data.show()
features|price|
[0.23,61.5,55.0,3...] 326
|[0.21,59.8,61.0,3...| 326|
|[0.23,56.9,65.0,4...| 327|
|[0.29,62.4,58.0,4...| 334|
[0.31,63.3,58.0,4...] 335
|[0.24,62.8,57.0,3...| 336|
|[0.24,62.3,57.0,3...| 336|
[0.26,61.9,55.0,4...] 337
|[0.22,65.1,61.0,3...| 337|
[0.23,59.4,61.0,4...] 338
|[0.3,64.0,55.0,4....| 339|
[0.23,62.8,56.0,3...] 340
|[0.22,60.4,61.0,3...| 342|
|[0.31,62.2,54.0,4...| 344|
[0.2,60.2,62.0,3....] 345
|[0.32,60.9,58.0,4...| 345|
|[0.3,62.0,54.0,4....| 348|
|[0.3,63.4,54.0,4....| 351|
```

Split data into training and test:

```
train_data,test_data=final_data.randomSplit([0.7,0.3])
```

test_data.des	escribe().show()		
+	+		
summary	price		
count	16226		

```
| mean|3898.0414766424256|
| stddev|3953.1940505962266|
| min| 334|
| max| 18823|
```

Build and train linear regression model, and evaluate model:

```
from pyspark.ml.regression import LinearRegression
from pyspark.mllib.evaluation import RegressionMetrics
lrobject=LinearRegression(featuresCol='features',labelCol='price')
trained_model=lrobject.fit(train_data)
ship_results=trained_model.evaluate(train_data)
print('Rsquared Error:',ship_results.r2)
```

Rsquared Error: 0.8695507651846006

RSquared error is decently high, indicating the data fits well in the regression model and model accuracy is good and can be used for predictive analysis.

Predictions made by model:

```
pred=trained_model.transform(test_data)
 pred.show()
+----+
         features price prediction
+-----
[0.2,59.0,60.0,3....] 367 144.87623782566334
|[0.2,61.7,60.0,3....| 367| -762.0055068959737|
|[0.2,62.2,57.0,3....| 367| 85.95149292067799|
|[0.2,62.6,59.0,3....| 367| -396.5929130641671|
|[0.21,60.6,60.0,3...| 386| -591.2493325386349|
|[0.21,63.2,54.0,3...| 386|-199.33600023468898|
|[0.22,59.3,62.0,3...| 404| -473.7152740346137|
|[0.23,56.2,60.0,4...| 395| 689.3064364313286|
[0.23,58.1,52.0,4... 458 585.3349642050252]
|[0.23,58.1,59.0,4...| 550| 758.5837886684221|
|[0.23,58.1,63.0,4...| 468| 85.5971494766327|
|[0.23,58.5,61.0,4...| 411| -388.6618723298416|
|[0.23,58.6,61.0,4...| 530| 411.2149448132095|
|[0.23,59.2,61.0,4...| 389|-109.52578348185853|
|[0.23,59.3,57.0,4...| 530| 263.2296663039724|
|[0.23,59.3,60.0,4...| 505| 330.0272893373931|
|[0.23,59.4,61.0,4...| 338|-217.08939751048274|
|[0.23,59.4,61.0,4...| 434| -133.518593736002|
```

Graph showing how well predictions made by the model approximate the original diamond prices:

