

Why Constraint-Based Mining?

- Finding all the patterns in a dataset autonomously unrealistic!
 - Too many patterns but not necessarily user-interested!
- Pattern mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: Provides constraints on what to be mined
 - Optimization: Explores such constraints for efficient mining
 - Constraint-based mining: Constraint-pushing, similar to push selection first in DB query processing

Constraints in General Data Mining

A data mining query can be in the form of a meta-rule or with the following language primitives

- Knowledge type constraint
 - Ex.: Classification, association, clustering, outlier finding, ...
- Data constraint using SQL-like queries
 - Ex.: Find products sold together in NY stores this year
- Dimension/level constraint
 - Ex.: In relevance to region, price, brand, customer category
- Rule (or pattern) constraint
 - Ex.: Small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - Ex.: Strong rules: min_sup ≥ 0.02, min_conf ≥ 0.6, min_correlation ≥ 0.7

Meta-Rule Guided Mining

- A meta-rule can contain partially instantiated predicates & constants
- The resulting mined rule can be
 - \square age(X, "15-25") ^ profession(X, "student") \Rightarrow buys(X, "iPad")
- In general, (meta) rules can be in the form of
- Method to find meta-rules
 - Find frequent (I + r) predicates (based on min-support)
 - Push constants deeply when possible into the mining process
 - Using constraint-push techniques introduced in this lecture
 - Also, push min_conf, min_correlation, and other measures as early as possible (measures acting as constraints)

Different Kinds of Constraints Lead to Different Pruning Strategies

- Constraints can be categorized as
 - Pattern space pruning constraints vs. data space pruning constraints
- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - Monotonic: If c is satisfied, no need to check c again
 - Succinct: If the constraint c can be enforced by directly manipulating the data
 - Convertible: c can be converted to monotonic or anti-monotonic if items can be properly ordered in processing
- Data space pruning constraints
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, then t can be pruned to reduce data processing effort

Pattern Space Pruning with Pattern Anti-Monotonicity

- Constraint c is anti-monotone
 - If an itemset S violates constraint c, so does any of its superset
 - That is, mining on itemset S can be terminated
- Ex. 1: c_1 : $sum(S.price) \le v$ is anti-monotone
- Ex. 2: c_2 : range(S.profit) \leq 15 is anti-monotone
 - Itemset *ab* violates c_2 (range(ab) = 40)
 - So does every superset of ab
- Ex. 3. c_3 : $sum(S.Price) \ge v$ is not anti-monotone
- **Ex.** 4. Is c_4 : $support(S) \ge \sigma$ anti-monotone?
 - Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

TID	Transaction	
10	a, b, c, d, f, h	
20	b, c, d, f, g, h	
30	b, c, d, f, g	
40	a, c, e, f, g	
min_sup = 2		
price(item)>0		

ltem	Profit
а	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	5

Pattern Monotonicity and Its Roles

- A constraint c is monotone: If an itemset S satisfies the constraint c, so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c_1 : $sum(S.Price) \ge v$ is monotone
- Ex. 2: c_2 : $min(S.Price) \le v$ is monotone
- Ex. 3: c_3 : range(S.profit) \geq 15 is monotone
 - Itemset *ab* satisfies c_3
 - So does every superset of ab

TID	Transaction	Item	Profit
10	a, b, c, d, f, h	а	40
20 b, c, d, f, g, h		b	0
30	b, c, d, f, g	С	-20
40	a, c, e, f, g	d	-15
min_sup = 2		е	-30
price(item)>0		f	-10
•	,	g	20
		h	5

Data Space Pruning with Data Anti-Monotonicity

- □ A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p's superset either
 - Data space pruning: Data entry t can be pruned
- \square Ex. 1: c_1 : $sum(S.Profit) \ge v$ is data anti-monotone
 - Let constraint c_1 be: sum(S.Profit) ≥ 25
 - □ T_{30} : {b, c, d, f, g} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25

	Ex. 2: c ₂ : min	$(S.Price) \leq v$	is data	anti-monotone
--	-----------------------------	--------------------	---------	---------------

- Consider v = 5 but every item in a transaction, say T_{50} , has a price higher than 10
- \Box Ex. 3: c_3 : range(S.Profit) > 25 is data anti-monotone

TID	Transaction	Item	Profit
10	a, b, c, d, f, h	а	40
20	b, c, d, f, g, h	b	0
30	b, c, d, f, g	С	-20
40	a, c, e, f, g	d	-15
mir	n_sup = 2	е	-30
	price(item) > 0		-10
•	,	g	20
		h	5

Data Space Pruning Should Be Explored Recursively

Example. c_3 : range(S.Profit) > 25

We check b's projected database I

- But item "a" is infrequent (sup = 1)
- After removing "a (40)" from T₁₀
 - \Box T_{10} cannot satisfy c_3 any more
 - □ Since "b (0)" and "c (−20), d (−15), f (−10), h (5)"
 - \square By removing T_{10} , we can also prune "h" in T_{20}

b's-proj. DB TID	Transaction	Recursive	
10	e, c, d, f, h	Data	b's FP-tree
	c, d, f, g,	Pruning	single branch: cdfg: 2
30	c, d, f, g		

	7 5 p. 6, 1
TID	Transaction
10	(a, c, d, f, h
20	c, d, f, g, h
30	c, d, f, g

h's-proj. DB

	TID	Transaction	Item	Profit
	10	a, b, c, d, f, h	a	40
	20	b, c, d, f, g, h	b	0
	30	b, c, d, f, g	С	-20
4	40	a, c, e, f, g	d	-15
	mir	_sup = 2	е	-30
		ce(item) > 0	f	-10
		g	20	
Constraint: range{S.profit} > 25		h	5	
ıaı	11866	.pront / 23		

Only a single branch "cdfg: 2" to be mined in b's projected DB

Note: c_3 prunes T_{10} effectively only after "a" is pruned (by min-sup) in b's projected DB

Succinctness: Pruning Both Data and Pattern Spaces

- Succinctness: If the constraint c can be enforced by directly manipulating the data
- Ex. 1: To find those patterns without item i
 - Remove i from DB and then mine (pattern space pruning)
- Ex. 2: To find those patterns containing item *i*
 - Mine only i-projected DB (data space pruning)
- Ex. 3: c_3 : $min(S.Price) \le v$ is succinct
 - Start with only items whose price \leq v and remove transactions with high-price items only (pattern + data space pruning)
- Ex. 4: c_4 : $sum(S.Price) \ge v$ is not succinct
 - It cannot be determined beforehand since sum of the price of itemset S keeps increasing

Convertible Constraints: Ordering Data in Transactions

- Convert tough constraints into (anti-)monotone by prope ordering of items in transactions
- Examine c_1 : avg(S.profit) > 20
 - Order items in value-descending order
 - <a, g, f, b, h, d, c, e>
 - An itemset *ab* violates c_1 (avg(ab) = 20)
 - So does ab* (i.e., ab-projected DB)
 - C₁: anti-monotone if patterns grow in the right order!
- Can item-reordering work for Apriori?
 - Does not work for level-wise candidate generation!
 - avg(agf) = 23.3 > 20, but avg(gf) = 15 < 20

roper		Item	Profit
min_sup = 2		а	40
		b	0
TID	price(item)>0	С	-20
TID	Transaction	d	-15
10	a, b, c, d, f, h	е	-30
20	b, c, d, f, g, h	f	10
30	b, c, d, f, g	g	20
40	a, c, e, f, g		
	, , , , , ,	h	- 5

How to Handle Multiple Constraints?

- It is beneficial to use multiple constraints in pattern mining
- But different constraints may require potentially conflicting item-ordering
 - If there exists an order R making both c_1 and c_2 convertible, try to sort items in the order that benefits pruning most
 - If there exists conflict ordering between c_1 and c_2
 - Try to sort data and enforce one constraint first (which one?)
 - Then enforce the other when mining the projected databases
- Ex. c_1 : avg(S.profit) > 20, and c_2 : avg(S.price) < 50
 - Sort in profit descending order and use c_1 first (assuming c_1 has more pruning power)
 - For each project DB, sort trans. in price ascending order and use c₂ at mining

Constraint-Based Sequential-Pattern Mining

- Share many similarities with constraint-based itemset mining
- ☐ Anti-monotonic: If S violates *c*, the super-sequences of S also violate *c*
 - □ sum(S.price) < 150; min(S.value) > 10
- ☐ Monotonic: If S satisfies *c*, the super-sequences of S also do so
 - element_count (S) > 5; S \supseteq {PC, digital_camera}
- Data anti-monotonic: If a sequence s_1 with respect to S violates c_3 , s_1 can be removed
 - \Box c₃: sum(S.price) \geq v
- □ Succinct: Enforce constraint c by explicitly manipulating data
 - \square S \supseteq {i-phone, MacAir}
- Convertible: Projection based on the sorted value not sequence order
 - \square value_avg(S) < 25; profit_sum (S) > 160
 - \square max(S)/avg(S) < 2; median(S) min(S) > 5

Timing-Based Constraints in Seq.-Pattern Mining

- Order constraint: Some items must happen before the other
 - \square {algebra, geometry} \rightarrow {calculus} (where " \rightarrow " indicates ordering)
 - Anti-monotonic: Constraint-violating sub-patterns pruned
- Min-gap/max-gap constraint: Confines two elements in a pattern
 - E.g., mingap = 1, maxgap = 4
 - Succinct: Enforced directly during pattern growth
- Max-span constraint: Maximum allowed time difference between the 1st and the last elements in the pattern
 - \Box E.g., maxspan (S) = 60 (days)
 - Succinct: Enforced directly when the 1st element is determined
- Window size constraint: Events in an element do not have to occur at the same time: Enforce max allowed time difference
 - E.g., window-size = 2: Various ways to merge events into elements

Episodes and Episode Pattern Mining

- Episodes and regular expressions: Alternative to seq. patterns
 - \square Serial episodes: A \rightarrow B
 - Parallel episodes: A | B
 Indicating partial order relationships
 - \square Regular expressions: (A|B)C*(D \rightarrow E)
- Methods for episode pattern mining
 - Variations of Apriori/GSP-like algorithms
 - Projection-based pattern growth
 - \square Q₁: Can you work out the details?
 - Q₂: What are the differences between mining episodes and constraint-based pattern mining?