RUL Prediction as Regression

Say we want to define a RUL-based maintenance policy

How would you tackle that problem?

RUL Prediction as Regression

Let's start from the simpler formulation of a RUL-based policy

- We will predict the RUL using a regression approach
- ...And trigger maintenance when the estimated RUL becomes too low, i.e.:

$$f(x,\theta) \le \varepsilon$$

- f is the regressor, with parameter vector θ
- ullet The threshold $oldsymbol{arepsilon}$ must account for possible estimation errors

We will focus on the hardest of the four datasets (to reduce training times):

```
In [3]: data_by_src = util.split_by_field(data, field='src')
dt = data_by_src['train_FD004']
```


We now need to define our training and test data How do we proceed?

We now need to define our training and test data

In a practical setting:

- Some run-to-failure experiments will form the training set
- Others run-to-failure experiments will be used for testing

I.e. we split whole experiments rather than individual examples!

Each run-to-failure experiment in our data is associated to a machine

Let's check how many we have:

```
In [4]: print(f'Number of machines: {len(dt.machine.unique())}')
Number of machines: 249
```

This is actually a very large number

Is most practical setting, much fewer experiments will be available

Let's use 75% of the machine for training, the rest for testing

First, we partition the machine indexes:

```
In [5]: tr_ratio = 0.75
    np.random.seed(42)
    machines = dt.machine.unique()
    np.random.shuffle(machines)

sep = int(tr_ratio * len(machines))
    tr_mcn = machines[:sep]
    ts_mcn = machines[sep:]
```

Then, we partition the dataset itself (via a helper function):

```
In [6]: tr, ts = util.partition_by_machine(dt, tr_mcn)
```


Let's have a look at the training data

In [7]: tr Out[7]: machine cycle s13 p2 p3 s15 **p1 s**1 **s2 s**3 s4 ... s14 train FD004 42.0049 0.8400 100.0 445.00 549.68 1343.43 1112.93 ... 2387.99 8074.83 9.3335 0.0 100.0 train FD004 461 20.0020 0.7002 491.19 606.07 1477.61 1237.50 ... 2387.73 8046.13 9.1913 0.0 train FD004 461 42.0038 0.8409 100.0 445.00 548.95 1343.12 1117.05 ... 2387.97 8066.62 0.0 9.4007 train FD004 0.8400 445.00 548.70 1341.24 2388.02 8076.05 461 42.0000 100.0 1118.03 ... 9.3369 0.0 train FD004 461 25.0063 0.6207 60.0 462.54 1255.23 1033.59 ... 7865.80 10.8366 536.10 2028.08 **60989** train FD004 708 35.0019 0.8409 100.0 449.44 556.28 1377.65 1148.96 ... 2387.77 8048.91 180 0.0 train FD004 0.0023 0.0000 60990 181 100.0 518.67 643.95 1602.98 1429.57 ... 2388.27 8122.44 8.5242 0.0 60991 train FD004 708 182 25.0030 0.6200 60.0 462.54 536.88 1268.01 1067.09 ... 2027.98 7865.18 10.9790 0.0 train FD004 708 60992 183 41.9984 0.8414 100.0 445.00 550.64 1363.76 1145.72 ... 2387.48 8069.84 9.4607 0.0 **60993** train FD004 708 518.67 643.50 1602.12 1430.34 ... 2388.33 8120.43 8.4998 184 0.0013 0.0001 100.0 0.0 45385 rows × 28 columns

...And at the test data

	src	machine	cycle	p1	p2	р3	s1	s2	s3	s4	•••	s13	s14	s15	s1
321	train_FD004	462	1	41.9998	0.8400	100.0	445.00	548.99	1341.82	1113.16		2387.98	8082.37	9.3300	0.0
322	train_FD004	462	2	9.9999	0.2500	100.0	489.05	604.23	1498.00	1299.54		2388.07	8125.46	8.6088	0.0
323	train_FD004	462	3	42.0079	0.8403	100.0	445.00	549.11	1351.47	1126.43		2387.93	8082.11	9.2965	0.0
324	train_FD004	462	4	42.0077	0.8400	100.0	445.00	548.77	1345.81	1116.64	•••	2387.88	8079.41	9.3200	0.0
325	train_FD004	462	5	24.9999	0.6200	60.0	462.54	537.00	1259.55	1043.95		2028.13	7867.08	10.8841	0.0
•••					•••		•••	•••	•••			•••	•••	•••	
61244	train_FD004	709	251	9.9998	0.2500	100.0	489.05	605.33	1516.36	1315.28		2388.73	8185.69	8.4541	0.0
61245	train_FD004	709	252	0.0028	0.0015	100.0	518.67	643.42	1598.92	1426.77		2388.46	8185.47	8.2221	0.0
61246	train_FD004	709	253	0.0029	0.0000	100.0	518.67	643.68	1607.72	1430.56		2388.48	8193.94	8.2525	0.0
61247	train_FD004	709	254	35.0046	0.8400	100.0	449.44	555.77	1381.29	1148.18		2388.83	8125.64	9.0515	0.0
61248	train_FD004	709	255	42.0030	0.8400	100.0	445.00	549.85	1369.75	1147.45		2388.66	8144.33	9.1207	0.0

15864 rows × 28 columns

Standardization/Normalization

We will use a Neural Network regressor

...Therefore, we need to make the range of each columns more uniform

We will standardize all parameters and sensor inputs:

```
In [9]: trmean = tr[dt_in].mean()
    trstd = tr[dt_in].std().replace(to_replace=0, value=1) # handle static fields

    ts_s = ts.copy()
    ts_s[dt_in] = (ts_s[dt_in] - trmean) / trstd
    tr_s = tr.copy()
    tr_s[dt_in] = (tr_s[dt_in] - trmean) / trstd
```

We will normalize the RUL values (i.e. our regression target)

```
In [10]: trmaxrul = tr['rul'].max()

ts_s['rul'] = ts['rul'] / trmaxrul

tr_s['rul'] = tr['rul'] / trmaxrul
```


Standardization/Normalization

Let's check the results

In [11]: tr_s.describe()

Out[11]:

	machine	cycle	p1	p2	р3	s1	s2	s3	
count	45385.000000	45385.000000	4.538500e+04	4.538500e+04	4.538500e+04	4.538500e+04	4.538500e+04	4.538500e+04	
mean	582.490955	133.323896	2.894775e-16	1.302570e-16	1.178889e-16	4.664830e-15	2.522791e-15	1.727041e-15	
std	71.283034	89.568561	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	1.000000e+00	
min	461.000000	1.000000	-1.623164e+00	-1.838222e+00	-2.381839e+00	-1.055641e+00	-1.176507e+00	-1.646830e+00	
25%	521.000000	62.000000	-9.461510e-01	-1.031405e+00	4.198344e-01	-1.055641e+00	-8.055879e-01	-6.341243e-01	
50%	585.000000	123.000000	6.868497e-02	4.154560e-01	4.198344e-01	-3.917563e-01	-6.336530e-01	-4.718540e-01	
75%	639.000000	189.000000	1.218855e+00	8.661917e-01	4.198344e-01	6.926385e-01	7.407549e-01	7.495521e-01	
max	708.000000	543.000000	1.219524e+00	8.726308e-01	4.198344e-01	1.732749e+00	1.741030e+00	1.837978e+00	
8 rows × 27 columns									

Regression Model

We can now define a regression model

We will use a feed-forward neural network (MLP):

```
def build_nn_model(input_shape, output_shape, hidden, output_activation='linear'):
    model_in = keras.Input(shape=input_shape, dtype='float32')
    x = model_in
    for h in hidden:
        x = layers.Dense(h, activation='relu')(x)
    model_out = layers.Dense(output_shape, activation=output_activation)(x)
    model = keras.Model(model_in, model_out)
    return model
```

- The hidden argument is a list of sizes for the hidden layers
- ...E.g. hidden = [64, 32]

Regression Model

We will start with the simplest possible Neural Network

... Meaning a Linear Regressor!

- We just need to specify that there are no hidden layers
- Why the simplest? As usual, due to Occam's razor

It's useful to define a generic training function

As usual, you can find it in the util module:

```
def train_nn_model(model, X, y, loss,
        verbose=0, patience=10,
        validation_split=0.0, **fit_params):
   # Compile the model
    model.compile(optimizer='Adam', loss=loss)
    # Build the early stop callback
    cb = []
    if validation_split > 0:
        cb += [callbacks.EarlyStopping(patience=patience,
            restore best weights=True)]
    # Train the model
    history = model.fit(X, y, callbacks=cb, validation_split=validation_split,
            verbose=verbose, **fit_params)
    return history
```


We can now train our model

```
In [16]: nn1 = util.build_nn_model(input_shape=(len(dt_in), ), output_shape=1, hidden=[])
         history = util.train_nn_model(nn1, tr_s[dt_in], tr_s['rul'], loss='mse', epochs=30, validat:
         util.plot_training_history(history, figsize=figsize)
                                                                                                      val loss
          0.08
          0.06
          0.04
          0.02
                                              10
                                                             15
                                                                            20
                                                                                          25
                                                           epochs
          Final loss: 0.0142 (training), 0.0108 (validation)
```


Let's try with a more complex model

- Now we have two hidden layers
- ...Each with 32 ReLU neurons

Let's check the loss behavior and compare it to Linear Regression

■ There is a modest improvement w.r.t. Linear Regression

Predictions

We can now obtain the predictions and evaluate their quality

```
In [24]: tr_pred = nn2.predict(tr_s[dt_in], verbose=0).ravel() * trmaxrul
         util.plot_pred_scatter(tr_pred, tr['rul'], figsize=figsize)
         print(f'R2 score: {r2_score(tr["rul"], tr_pred)}')
         R2 score: 0.5380727648735046
           500
           100
                                    100
                                                         prediction
```


What do you think of these results?

Predictions

The results so far are not comforting

...But it's worth seeing what is going on over time:

Predictions

The situation is similar on the test set:

```
In [29]: ts_pred = nn2.predict(ts_s[dt_in], verbose=0).ravel() * trmaxrul
          util.plot_rul(ts_pred[:stop], ts['rul'][:stop], figsize=figsize)
                 target
           300
           200
           100
                                                                            1500
                                                        1000
                                                                                                2000
```


Quality Evaluation

Let's try to recap the situation

- Our accuracy is quite poor
- ...Especially for large RUL values

Possible reasons:

- Large RUL value are somewhat scarce on the dataset
- Fault effects become noticeable only after a while

Quality Evaluation

Let's try to recap the situation

- Our accuracy is quite poor
- ...Especially for large RUL values

Possible reasons:

- Large RUL value are somewhat scarce on the dataset
- Fault effects become noticeable only after a while

But perhaps we don't care! Our goal is not a high accuracy

- We just need to stop at the right time
- ...And our model may still be good enough for that

For a proper evaluation, we need a cost model

We will assume that:

We consider one step of operation as our value unit

■ ...So we can express the failure cost in terms of operating steps

We will assume that:

We consider one step of operation as our value unit

...So we can express the failure cost in terms of operating steps

Every run end with either failure or maintenance:

- Assuming that the failure cost is higher than maintenance cost
- ...We can diseregard the maintenance cost

We will assume that:

We consider one step of operation as our value unit

...So we can express the failure cost in terms of operating steps

Every run end with either failure or maintenance:

- Assuming that the failure cost is higher than maintenance cost
- ...We can diseregard the maintenance cost

A traditional preventive maintenance policy is also available

- We will never trigger maintenance ealier that such policy
- We only gain value if we beat such policy

Slighly more formally:

- One step of operation brings 1 unit of profit
- lacktriangle A failure costs C units more than maintenance
- We only count what happens after s steps

Formally, let x_k be the times series for machine k, and I_k its set of time steps

■ The time step when our policy triggers maintenance is given by:

$$\min\{i \in I_k \mid f(x_{ki}) < \varepsilon\}$$

A failure occurs if:

$$f(x_{ki}) \ge \varepsilon \quad \forall i \in I_k$$

The whole cost formula for a single machine will be:

$$cost(f(x_k), \varepsilon) = op_profit(f(x_k), \varepsilon) + fail_cost(f(x_k), \varepsilon)$$

Where:

$$op_profit(f(x_k), \varepsilon) = -\max(0, \min\{i \in I_k \mid f(x_{ki}) < \varepsilon\} - s)$$

$$fail_cost(f(x_k), \varepsilon) = \begin{cases} C \text{ if } f(x_{ki}) \ge \varepsilon & \forall i \in I_k \\ 0 \text{ otherwise} \end{cases}$$

- s units of machine operation are guaranteed
- ...So we gain over the default policy only if we stop after that
- Profit is modeled as a negative cost

For the total cost, we need to sum over all machines

Normally, we would proceed as follows

- s is determined by the preventive maintenance schedule
- C must be determined by discussing with the customer

In our example, we will derive both from data

First, we collect all failure times

Then, we define s and C based on statistics

```
In [31]: print(failtimes.describe())
         safe interval = failtimes.min()
         maintenance cost = failtimes.max()
                  249,00000
         count
                  245,97992
         mean
                   73.11080
         std
                  128.00000
         min
         25%
                  190.00000
                  234.00000
         50%
                  290.00000
         75%
                   543.00000
         max
         Name: cycle, dtype: float64
```

- For the safe interval s, we choose the minimum failure time
- ullet For the maintenance cost $oldsymbol{C}$ we choose the largest failure time

Threshold Choice

We can then choose the threshold θ as usual

```
In [36]: cmodel = util.RULCostModel(maintenance_cost=maintenance_cost, safe_interval=safe_interval)
         th range = np.arange(-2, 50)
         tr_thr = util.opt_threshold_and_plot(tr['machine'].values, tr_pred, th_range, cmodel, figsi
         print(f'Optimal threshold for the training set: {tr_thr}')
          Optimal threshold for the training set: 5
          -11000
           -12000
           -13000
           -14000
           -15000 -
          -16000
          -17000 -
          -18000
                                                       20
```


Evaluation

Let's see how we fare in terms of cost

```
In [37]: tr c, tr f, tr sl = cmodel.cost(tr['machine'].values, tr pred, tr thr, return margin=True)
         ts c, ts f, ts sl = cmodel.cost(ts['machine'].values, ts pred, tr thr, return margin=True)
         print(f'Avg. cost: {tr_c/len(tr_mcn):.2f} (training), {ts_c/len(ts_mcn):.2f} (test)')
         Avg. cost: -96.51 (training), -106.02 (test)
```

We can also evaluate the margin for improvement:

```
In [38]: print(f'Avg. fails: {tr_f/len(tr_mcn)} (training), {ts_f/len(ts_mcn)} (test)')
         print(f'Avg. slack: {tr sl/len(tr mcn):.2f} (training), {ts sl/len(ts mcn):.2f} (test)')
         Avg. fails: 0.0 (training), 0.0 (test)
         Avg. slack: 19.59 (training), 17.79 (test)
```

- Slack = distance between when we stop and the failure
- The results are actually quite good!

Sequence Input in Neural Models

Feeding more time steps to our NN might improve the results

- Intuitively, sequences provide information about the trend
- This may allow a better RUL estimate w.r.t. using only the current state
- E.g. we may gauge how quickly the component is deteriorating

We will try to build a model capable to processing such input

But first, we need to apply a sliding window:

```
In [39]: wlen = 3
    tr_sw, tr_sw_m, tr_sw_r = util.sliding_window_by_machine(tr_s, wlen, dt_in)
    ts_sw, ts_sw_m, ts_sw_r = util.sliding_window_by_machine(ts_s, wlen, dt_in)
```

- This must be done on a per machine basis
- Windows should not mix data belonging to different machines!

Sliding Window for Multivariate Data

The sliding_window_by_machine relies internally on:

```
def sliding_window_2D(data, wlen, stride=1):
    # Get shifted _tables_
    m = len(data)
    lt = [data.iloc[i:m-wlen+i+1:stride, :].values for i in range(wlen)]
    # Reshape to _add a new axis_
    s = lt[0].shape
    for i in range(wlen):
        lt[i] = lt[i].reshape(s[0], 1, s[1])
    # Concatenate
    wdata = np.concatenate(lt, axis=1)
    return wdata
```

- It's similar to our code for the univariate case
- The output is a tensor with shape (n_windows, w_len, n_dims)

Sliding Window for Multivariate Data

Let's look in deeper detail at the returned data structures

tr_sw contain the actual sliding window data:

```
In [42]: tr sw[0]
Out[42]: array([[ 1.21931469,  0.86619169,  0.41983436, -1.05564063, -0.79621447,
                 -0.70080293, -0.74549387, -1.1386061, -1.08249848, -0.99389823,
                -0.11421637, -0.6315044, -0.67586863, -0.36411574, -0.98910425,
                  0.41889575, 0.08700467, 0.05991388, -0.69502688, -0.63793104,
                -0.11268403, 0.41983436, -1.03117521, -1.03187757],
                [-0.26962527, 0.41609996, 0.41983436, 0.6926385, 0.71397375,
                  0.56288953, 0.29808726, 0.36365649, 0.3710279, 0.33249075,
                  0.65388538, 0.56210134, -0.20641916, 0.32893584, 0.33156802,
                  0.41687122, -0.24758681, -0.12925879, -0.69502688, 0.47652818,
                  0.65613725, 0.41983436, 0.35321893, 0.35869109],
                [ 1.21924025, 0.86908928, 0.41983436, -1.05564063, -0.8157647,
                -0.70372248, -0.7109787, -1.1386061, -1.08433606, -0.98831315,
                -0.11380415, -0.64524209, -0.67586863, -0.37335643, -0.99026013,
                 0.41874002, -0.00870947, 0.14931194, -0.69502688, -0.67388133,
                -0.11268403, 0.41983436, -1.04527086, -1.02276728])
```


Sliding Window for Multivariate Data

Let's look in deeper detail at the returned data structures

tr_sw_m contains the corresponding machine values

```
In [43]: tr_sw_m
Out[43]: array([461, 461, 461, ..., 708, 708, 708])
```

■ The structure is a plain numpy array

tr_sw_r contains the RUL values

Again, the structure is a plain numpy array

1D Convolutions in Keras

The chosen format is ideal for 1D convolutions in keras

We have a function to build 1D convolutional model in the util module

```
def build_cnn_model(input_shape, output_shape, wlen, conv=[], hidden=[], output_activati
='linear'):
    model_in = keras.Input(shape=input_shape, dtype='float32')
    x = model_in
    for k in conv:
        x = layers.Conv1D(k, kernel_size=3, activation='relu')(x)
    x = layers.Flatten()(x)
    for k in hidden:
        x = layers.Dense(k, activation='relu')(x)
    x = layers.Dense(output_shape, activation=output_activation)(x)
    model = keras.Model(model_in, x)
    return model
```

Each convolution in our code will consider 3 time steps We need to "flatten" the input before the fully connected layers

1D Convolutions in Keras

Let's build a 1D convolutional model

- We have a single convlution with 32 kernels
- Then a hidden layer with 32 ReLU neurons
- ...And finally the output layer

CNN Training

Let's train our CNN

We obtained a marginal improvement

Threshold Optimization

Now we can proceed by choosing a threshold

```
In [29]: tr_pred3 = nn3.predict(tr_sw, verbose=0).ravel() * trmaxrul
         ts_pred3 = nn3.predict(ts_sw, verbose=0).ravel() * trmaxrul
         tr_thr3 = util.opt_threshold_and_plot(tr_sw_m, tr_pred3, th_range, cmodel, figsize=figsize)
         print(f'Optimal threshold for the training set: {tr_thr3}')
         Optimal threshold for the training set: 17
           60000
           50000
           40000
           30000
           20000 -
           10000
          -10000
           -20000
                                                                                                       100
```


Evaluation

Let's see how the CNN fares in terms of cost

```
In [30]: tr_c3, tr_f3, tr_sl3 = cmodel.cost(tr_sw_m, tr_pred3, tr_thr3, return_margin=True)
    ts_c3, ts_f3, ts_sl3 = cmodel.cost(ts_sw_m, ts_pred3, tr_thr3, return_margin=True)
    print(f'Cost: {tr_c3/len(tr_mcn):.2f} (training), {ts_c3/len(ts_mcn):.2f} (test)')
    print(f'Avg. fails: {tr_f3/len(tr_mcn):.2f} (training), {ts_f3/len(ts_mcn):.2f} (test)')
    print(f'Avg. slack: {tr_sl3/len(tr_mcn):.2f} (training), {ts_sl3/len(ts_mcn):.2f} (test)')

    Cost: -92.10 (training), -105.86 (test)
    Avg. fails: 0.01 (training), 0.00 (test)
    Avg. slack: 18.98 (training), 16.21 (test)
```

Which is (more or less) on par with our MLP approach, for which we had:

```
In [31]: print(f'Cost: {tr_c/len(tr_mcn):.2f} (training), {ts_c/len(ts_mcn):.2f} (test)')
    print(f'Avg. fails: {tr_f/len(tr_mcn):.2f} (training), {ts_f/len(ts_mcn):.2f} (test)')
    print(f'Avg. slack: {tr_sl/len(tr_mcn):.2f} (training), {ts_sl/len(ts_mcn):.2f} (test)')

Cost: -98.37 (training), -109.06 (test)
    Avg. fails: 0.00 (training), 0.00 (test)
    Avg. slack: 17.85 (training), 14.87 (test)
```


Which stresses a simple, but important point.

Time Series and Sequence Input

Just because you are dealing with time series

- ...Do not assume that sequence input is useful!
- Sequences matter only if the output is correlated with patterns
- ...That involve multiple time steps

In many practical problems

- ...A single "state" encodes most of the useful information
- You can think of that as sort of Markov property

Therefore, before using sequences, it makes sense to think

Do you expect sequences to provide useful information?

- E.g. is there seom kind of inertia?
- ...And does it matter for the considered problem?

