Chapter 3

马氏链的遍历理论

3.1 状态的分类

之前我们已经定义了从一个状态"可到达"另一个: $i \to j$, 意思是从状态 i 经过若干步,马氏链可以走到状态 j, 或者等价地,对于某个 $n \ge 0$, $(\mathbf{P}^n)_{ij} > 0$ 。状态间的可到达性满足直观的性质(证明作为习题):

$$i \to j$$
, $j \to k \implies i \to k$.

如果 $i \to j$ 并且 $j \to i$,我们说 i,j 这两个状态互通,记作 $i \leftrightarrow j$ 。不难发现,互通是一种等价关系,因为(1)对任意状态 $i,i \leftrightarrow i$,(2)如果 $i \leftrightarrow j$,则 $j \leftrightarrow i$,以及(3)由 $i \leftrightarrow j$, $j \leftrightarrow k$ 可得 $i \leftrightarrow k$ 。于是,根据这个等价关系,可以把状态空间 $\mathbb S$ 划分成互不相交的等价类: $[i] = \{j \in \mathbb S: j \leftrightarrow i\}$ 。如果整个状态空间就是一个等价类(也就是说,所有状态都两两互通),则我们称这个马氏链为不可约的。

3.1.1 状态分类: 常返和瞬时

我们在这一节证明,如果一个状态 i 是常返或瞬时的,则所有于它互通的状态也是。也就是说,常返/瞬时状态是定义在等价类上的。

定理 3.1.1. 如果 i 是常返态, $j \neq i$ 是另一个状态, 则

- $1. i \rightarrow j$ 当且仅当 $\mathbb{P}(\rho_i < \rho_i \mid X_0 = i) > 0.$
- 2. 如果 $i \rightarrow j$, 则

$$\mathbb{P}(\rho_j < \infty \mid X_0 = i) = \mathbb{P}(\rho_i < \infty \mid X_0 = j) = \mathbb{P}(\rho_j < \infty \mid X_0 = j) = 1,$$

尤其是 $i \leftrightarrow j$ 且 j 是常返的。

证明. 我们首先证明第1部分。由 $\mathbb{P}(\rho_j < \rho_i \mid X_0 = i) > 0$ 推出 $i \to j$ 是显然的。下面我们证明如果 $\mathbb{P}(\rho_i > \rho_j \mid X_0 = i) = 0$,则 $i \not\to j$,思路大体是:如果 i 返回前一定走不到 j,则第二次,第三次,——返回前都到不了 j。我们使用之前引进的 $F_{N,i}(k_0,\ldots,k_N)$ 记号。定义

$$G_n(k_0,\ldots,k_n) = \underbrace{[F_{n-1,i}(k_0,\ldots,k_{n-1}) - F_{n,i}(k_0,\ldots,k_n)]F_{n,j}(k_0,\ldots,k_n)}_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{$$

我们跟之前一样定义 $\{\rho_{i}^{(m)}: m \geq 0\}$, 于是

$$\mathbb{P}(\rho_{i}^{(m+1)} < \rho_{j} \mid X_{0} = i)
= \sum_{l=1}^{\infty} \mathbb{P}(\rho_{i}^{(m)} = l \& \rho_{i}^{(m+1)} < \rho_{j} \mid X_{0} = i)
= \sum_{l=1}^{\infty} \sum_{n=1}^{\infty} \mathbb{P}(\rho_{i}^{(m)} = l, \rho_{i}^{(m+1)} = l + n < \rho_{j} \mid X_{0} = i)
= \sum_{l,n=1}^{\infty} \mathbb{E}[G_{n}(X_{l}, \dots, X_{l+n}), \rho_{i}^{(m)} = l < \rho_{j} \mid X_{0} = i]
= \sum_{l,n=1}^{\infty} \mathbb{E}[G_{n}(X_{l}, \dots, X_{l+n}) \mid \rho_{i}^{(m)} = l < \rho_{j}, X_{0} = i]
\times \mathbb{P}(\rho_{i}^{m)} = l < \rho_{j} \mid X_{0} = i)
= \sum_{l,n=1}^{\infty} \mathbb{E}[G_{n}(X_{0}, \dots, X_{n}) \mid X_{0} = i] \mathbb{P}(\rho_{i}^{m)} = l < \rho_{j} \mid X_{0} = i)
= \sum_{l,n=1}^{\infty} \mathbb{P}(\rho_{i} = n < \rho_{j} \mid X_{0} = i) \mathbb{P}(\rho_{i}^{(m)} = l < \rho_{j} \mid X_{0} = 0)
= \mathbb{P}(\rho_{i} < \rho_{j} \mid X_{0} = i) \mathbb{P}(\rho_{i}^{(m)} < \rho_{j} \mid X_{0} = i).$$

所以,对于任意 $j \neq i$,我们有

$$\mathbb{P}(\rho_i^{(m)} < \rho_i \mid X_0 = i) = \mathbb{P}(\rho_i < \rho_i \mid X_0 = i)^m.$$

因为我们假设了 $\mathbb{P}(\rho_j < \rho_i \mid X_0 = i) = 0$,对于所有的 $m \ge 1$, $\mathbb{P}(\rho_i^{(m)} < \rho_j \mid X_0 = i) = 1$ 。因为 $\rho^{(m)} \ge m$,我们得到 $\mathbb{P}(\rho_j = \infty \mid X_0 = i) = 1$,也就是 $i \ne j$ 。

3.1. 状态的分类 39

接着考虑定理的第2部分。如果 $i \rightarrow j$,

$$\mathbb{P}(\rho_{j} < \rho_{i} < \infty \mid X_{0} = i)$$

$$= \lim_{n \to \infty} \sum_{m=1}^{\infty} \mathbb{P}(\rho_{j} = m < \rho_{i} \leq m + n \mid X_{0} = i)$$

$$= \lim_{n \to \infty} \sum_{m=1}^{\infty} \mathbb{E}[\underbrace{1 - F_{n,i}(X_{m}, \dots, X_{m+n})}_{X_{m}, \dots, X_{m+n}}, \rho_{j} = m < \rho_{i} \mid X_{0} = i]$$

$$= \lim_{n \to \infty} \sum_{m=1}^{\infty} \mathbb{P}(\rho_{j} = m < \rho_{i} \mid X_{0} = i)\mathbb{E}[1 - F_{n,i}(X_{0}, \dots, X_{n}) \mid X_{0} = j]$$

$$= \sum_{m=1}^{\infty} \mathbb{P}(\rho_{j} = m < \rho_{i} \mid X_{0} = i)\mathbb{P}(\rho_{i} < \infty \mid X_{0} = j)$$

$$= \mathbb{P}(\rho_{j} < \rho_{i} \mid X_{0} = i)\mathbb{P}(\rho_{i} < \infty \mid X_{0} = j).$$

利用已知的 $\mathbb{P}(\rho_i < \infty \mid X_0 = i) = 1$,可得

$$\underbrace{\mathbb{P}(\rho_j < \rho_i \mid X_0 = i)}_{>0} = \underbrace{\mathbb{P}(\rho_j < \rho_i \mid X_0 = i)}_{>0} \mathbb{P}(\rho_i < \infty \mid X_0 = j),$$

所以 $\mathbb{P}(\rho_i < \infty \mid X_0 = j) = 1$ 。由此可知, $j \to i$,也就是 $i \leftrightarrow j$ 。 类似地,

$$\mathbb{P}(\rho_{j} < \infty \mid X_{0} = i)$$

$$= \underbrace{\mathbb{P}(\rho_{j} < \rho_{i} \mid X_{0} = i)}_{\rho_{i}$$
 + $\mathbb{P}(\rho_{i} < \rho_{j} < \infty \mid X_{0} = i)$

$$= \underbrace{\mathbb{P}(\rho_{j} < \rho_{i} \mid X_{0} = i)}_{\text{和}=1} + \mathbb{P}(\rho_{i} < \rho_{j} \mid X_{0} = i)$$
 $\mathbb{P}(\rho_{j} < \infty \mid X_{0} = i)$.

可以推导出

$$\mathbb{P}(\rho_j < \infty \mid X_0 = i) \underbrace{\mathbb{P}(\rho_j < \rho_i \mid X_0 = i)}_{>0} = \mathbb{P}(\rho_j < \rho_i \mid X_0 = i).$$

 $\mathbb{P}(\rho_i < \rho_i < \infty \mid X_0 = j) = \mathbb{P}(\rho_i < \infty \mid X_0 = i) \mathbb{P}(\rho_i < \rho_j \mid X_0 = j)$

所以 $i \to j$ 可以推出 $\mathbb{P}(\rho_j < \infty \mid X_0 = i) = 1$ 。 最后,我们应用

和 (因为 $i \leftrightarrow j$) $\mathbb{P}(\rho_i < \infty \mid X_0 = j) = 1$, $\mathbb{P}(\rho_i = \rho_j \mid X_0 = j) \leq \mathbb{P}(\rho_i = \infty \mid X_0 = j) = 0$,

$$\mathbb{P}(\rho_{j} < \infty \mid X_{0} = j)$$

$$\stackrel{\rho_{i} 凡 乎 \underline{\psi} \psi < \infty}{=} \mathbb{P}(\rho_{j} < \rho_{i} \mid X_{0} = j) + \mathbb{P}(\rho_{i} < \rho_{j} < \infty \mid X_{0} = j)$$

$$\mathbb{P}(\rho_{i} = \rho_{j} \mid X_{0} = j) = 0$$

$$\mathbb{P}(\rho_{j} < \rho_{i} \mid X_{0} = j) + \mathbb{P}(\rho_{j} < \infty \mid X_{0} = i)\mathbb{P}(\rho_{i} < \rho_{j} \mid X_{0} = j)$$

$$= 1$$

推论 3.1.1. 如果 $i \leftrightarrow j$,则 j 是常返/瞬时,当且仅当 i 是常返/瞬时。如果 $i \leftrightarrow j$ 且 i 是常返的, $\mathbb{P}(\rho_j < \infty \mid X_0 = i) = 1$,如果 $i \not \mapsto j$ (即 $i \not \mapsto j$ 或 $i \not \vdash j$) 且 i 是常返的,则 $\mathbb{P}(\rho_j < \infty \mid X_0 = i) = 0$,也就是说,对于所有 $n \ge 0$,(\mathbf{P}^n) $_{ij} = 0$,或者说 $i \not \mapsto j$ 。

因为常返/瞬时性只与状态所在的互通类有关,所以,如果一个马氏连 是可约的,则它的所有状态或者全部常返,或者全部瞬时。这时,我们就称 这个马氏连为常返的或者瞬时的。

3.1.2 常返性/瞬时性的判别法则

定义状态空间 \mathbb{S} 上的一个函数 $u: \mathbb{S} \to \mathbb{R}$,在 $\mathbb{S} \subseteq \mathbb{Z}_+$ 这个假定下,我们记 $u_i = u(i)$,并且用列向量 $\vec{u} = (u_i)$ 来表示 u 这个函数。

首先我们介绍一个技术性结果:

定理 3.1.2. 如果 u 是一个 \mathbb{S} 上的非负函数,且对所有 $i \in \mathbb{S}$,($\mathbf{P}\vec{u}$) $_i \leq u_i$ 。则如果对某个 $j \in \mathbb{S}$,($\mathbf{P}\vec{u}$) $_i < u_i$,则 j 是瞬时的。

证明. 令 $\vec{f} = \vec{u} - \mathbf{P}\vec{u}$ 。则 $f_j > 0$ 。我们有,对于所有 $n \ge 1$,

$$u_{j} \geq u_{j} - (\mathbf{P}^{n}\vec{u})_{j}$$

$$= \sum_{m=0}^{n-1} (\mathbf{P}^{m}\vec{u})_{j} - (\mathbf{P}^{m+1}\vec{u})_{j} = (\mathbf{P}^{m}(\vec{u} - \mathbf{P}\vec{u}))_{j}$$

$$= \sum_{m=0}^{n-1} (\mathbf{P}^{m}\vec{f})_{j}$$

$$\geq \sum_{m=0}^{n-1} (\mathbf{P}^{m})_{jj} f_{j}.$$
利用 f_{i} 的非负性 $\sum_{m=0}^{n-1} (\mathbf{P}^{m})_{jj} f_{j}.$

3.1. 状态的分类 41

于是, $\sum_{m=0}^{\infty} (\mathbf{P}^m)_{jj} \leq u_j/f_j < \infty$ 。注意到 $\sum_{m=0}^{\infty} (\mathbf{P}^m)_{jj} = \mathbb{E}[T_j \mid T_0 = j]$,由已知结论(2.11),状态 j 是瞬时的。

下面我们介绍一个更有概率意义的结果。首先我们介绍一个杜布停时 (Doob stoping time) 定理的特例:

引理 3.1.1. 假设 $u: \mathbb{S} \to \mathbb{R}$ 是下有界函数 (即存在 $C > -\infty$ 使对所有 $i \in \mathbb{S}$, $u_i > C$), Γ 是 \mathbb{S} 的非空子集,并且定义停时 $\rho_{\Gamma} = \inf\{n \geq 1: X_n \in \Gamma\}$ 。如果对所有 $i \notin \Gamma$,($\mathbf{P}\vec{u}$) $_i \leq u_i$,则对所有 $n \geq 0$ 和所有 $i \in \mathbb{S} \setminus \Gamma$,

$$\mathbb{E}[u(X_{n \wedge \rho_{\Gamma}}) \mid X_0 = i] \le u_i.$$

另外,如果假设中的不等式改为 $(\mathbf{P}\vec{u})_i \leq u_i$,则结论变为 $\mathbb{E}[u(X_{n \wedge \rho_{\Gamma}} \mid X_0 = i] \leq u_i$ 。

证明此引理之前,我们先介绍一下:引理中不等式(等式)满足的情况下, $\{u(X_n)\}$ 是一列下鞅(鞅)。

证明. 我们只证明不等式情况,因为等式情况同理。令 $A_n = \{\rho_{\Gamma} > n\}$ 为一个事件,则 A_n 可以用 X_0, \ldots, X_n 表示(或者说, A_n 在 X_0, \ldots, X_n 生成的 σ -代数中)。对任意 $i \notin \Gamma$,

$$\mathbb{E}[u(X_{(n+1)\wedge\rho_{\Gamma}}) \mid X_{0} = i]$$

$$= \mathbb{E}[\underbrace{u(X_{n\wedge\rho_{\Gamma}})}_{\text{在 }A_{n}^{c} \mid L, \ (n+1)\wedge\rho_{\Gamma} = n\wedge\rho_{\Gamma}}, A_{n}^{c} \mid X_{0} = i]$$

$$+ \sum_{k\notin\Gamma} \mathbb{E}[u(X_{n+1}, A_{n} \cap \{X_{n} = k\} \mid X_{0} = i]$$

$$= \mathbb{E}[u(X_{n\wedge\rho_{\Gamma}}), A_{n}^{c} \mid X_{0} = i]$$

$$+ \sum_{k\notin\Gamma} \underbrace{(\mathbf{P}\vec{u})_{k}}_{\text{H}} \mathbb{P}(A_{n} \cap \{X_{n} = k\} \mid X_{0} = i)$$

$$\leq \mathbb{E}[u(X_{n\wedge\rho_{\Gamma}}), A_{n}^{c} \mid X_{0} = i] + \sum_{k\notin\Gamma} \underbrace{u_{k}\mathbb{P}(A_{n} \cap \{X_{n} = k\} \mid X_{0} = i)}_{=\mathbb{E}[u(X_{n}), A_{n} \cap \{X_{n} = k\} \mid X_{0} = i)}$$

$$= \mathbb{E}[u(X_{n\wedge\rho_{\Gamma}}) \mid X_{0} = i].$$

定理 3.1.3. 令 $j \in \mathbb{S}$ 且令 $C = \{i : i \leftrightarrow j\}$ 。

- 1. 假设 j 是常返的。如果 $u: \mathbb{R}_+$ 是有界函数,且对任意 $i \in C \setminus \{j\}$,
 - (i) $u_i = (\mathbf{P}\vec{u})_i$ 或者
 - (ii) $u_i \geq u_i \geq (\mathbf{P}\vec{u})_i$,

则 u 在 C 上为常数。

2. 假设 j 是瞬时的。则对任意 $i \in \mathbb{S} \setminus \{j\}$,由

$$u(i) = \begin{cases} 1, & i = j, \\ \mathbb{P}(\rho_j < \infty \mid X_0 = i), & i \neq j \end{cases}$$

是方程 $u(i) = (\mathbf{P}\vec{u})_i = \sum_{k \in \mathbb{S}} (\mathbf{P})_{ik} u(k)$ 的有界非常数解。

证明. 首先我们证明第1部分。我们应用引理3.1.1,并令 $\Gamma = \{j\} \cup (\mathbb{S} \setminus C)$ 。根据推论3.1.1,由 $X_0 = i \in C$ 出发的马氏链到达 $\mathbb{S} \setminus C$ 的概率为 0。如果条件(i)成立,则对于 $i \in C \setminus \{j\}$ 和任意 n > 0,

$$u(i) = u(j)\mathbb{P}(\rho_i \le n \mid X_0 = i) + \mathbb{E}[u(X_n), \rho_i > n \mid X_0 = i].$$

因为随着 $n \to \infty$, $\mathbb{P}(\rho_j \le n \mid X_0 = i) \to 1$, 并且因为 u 是有界的, 上式取 $n \to \infty$ 极限后得到 u(i) = u(j)。如果条件(ii)成立,则有

$$u(j) \geq u(i) \geq u(j) \mathbb{P}(\rho_j \leq n \mid X_0 = i) + \mathbb{E}[u(X_0), \rho_j > 0 \mid X_0 = i],$$

取 $n \to \infty$ 极限后得到 $u(j) \ge u(i) \ge u(j)$, 也得到 u(i) = u(j)。

然后我们证明2部分。因为 j 是瞬时的,我们有 $\mathbf{P}_{jj} < 1$ 。如果 u 是由定理中表达式给出的,则

長达式给出的,则
$$1 > \mathbb{P}(\rho_j < \infty \mid X_0 = j) = (\mathbf{P})_{jj} + \underbrace{\sum_{i \neq j} (\mathbf{P})_{j,i} u(i)}_{=\sum_{i \neq j} \mathbb{P}(X_1 = i, \rho_j < \infty \mid X_0 = j)}$$

$$\geq (\mathbf{P})_{jj} + (1 - \mathbf{P}_{jj}) \inf_{i \neq j} u(i).$$

于是可以看出, $\inf_{i\neq j}u(i)<1$,所以 u(i) 作为 i 的函数,不是平凡的。接着可以验证

$$u(i) = \mathbb{P}(\rho_j < \infty \mid X_0 = i) = \mathbf{P}_{ij} + \underbrace{\sum_{k \neq j} \mathbf{P}_{ik} \mathbb{P}(\rho_j < \infty \mid X_0 = k)}_{=\sum_{k \neq j} \mathbb{P}(X_1 = k, \rho_j < \infty \mid X_0 = i)} = (\mathbf{P}\vec{u})_i.$$

3.1. 状态的分类 43

定理 3.1.4. 令 $\{B_m : m \ge 0\}$ 为 S 的一列子集,且 $B_0 \subseteq B_1 \subseteq \cdots \subseteq B_n \subseteq \cdots$ 。假设存在 $j \in B_0$,使得对所有 $m \ge 0$,

$$\mathbb{P}(\exists n \in \mathbb{N} \ X_n \notin B_m \mid X_0 = j) = 1.$$

假设存在一个非负函数 u, 满足对所有 $(\mathbf{P}\vec{u})_i \leq u_i$ 且随着 $m \to \infty$ 我们有 $a_m := \inf_{i \notin B_m} u_i \to \infty$, 则 j 为常返态。

证明. 对任意 $m \geq 0$,令 $\Gamma_m = \{j\} \cup B_m^c$, $\tau_m = \inf\{n \geq 1 : X_n \notin B_m\}$ 。(我们注意到,在 $X_0 = j$ 条件下, τ_m 几乎处处有限。) 然后令 $\rho_{\Gamma_m} = \inf\{X_n \in \Gamma_m\} = \rho_j \wedge \tau_m$ 。由引理3.1.1,对任意 n, m,

取 $n \to \infty$ 的极限,我们得到对任意 m, $u_j \ge a_m \mathbb{P}(\tau_m \le \rho_j \mid X_0 = j)$ 。于是,再取 $m \to \infty$ 的极限,我们得到 $\lim_{m \to \infty} \mathbb{P}(\tau_m \le \rho_j \mid X_0 = j) = 0$ 。最后,因为

$$\mathbb{P}(\rho_j < \infty \mid X_0 = j) \ge \mathbb{P}(\rho_j < \tau_m \mid X_0 = j) = 1 - \underbrace{\mathbb{P}(\tau_m \le \rho_j \mid X_0 = j)}_{\text{ idf } m \text{ if } t \nearrow 1}$$

可得 j 为常返态。

推论 3.1.2. 假设 **P** 是不可约的。令 $\{F_m: m \geq 0\}$ 为 $\mathbb S$ 中一列非空、有限子集,且 $F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots$ 。如果 $j \in F_0$ 且存在 $\mathbb S$ 上的非负函数 u,使得对不等于 j 的状态 i,都有 $(\mathbf{P}\vec{u})_i \leq u_i$ 以及 $\inf_{i \notin F_m} u_i \to \infty$,则 j 是常返的。

证明.根据上面定理3.1.4,我们只需要证明对于任意 m, $\mathbb{P}(\exists n \in \mathbb{N} \ X_n \notin F_m \mid X_0 = j) = 1$ 。为此,令 $\tau_m = \inf\{n \geq 1 : X_n \notin F_m\}$ 。因为此马氏链是不可约的,从 j 总能到达 F_m^c ,对任意 m 和 $i \in \mathbb{S}$, $\mathbb{P}(\tau_m < \infty \mid X_0 = i) > 0$ 。因为 F_m 是个有限集合,存在 $\theta_m \in (0,1)$ 和 $N_m \geq 1$ 使得对于任意 $i \in F_m$, $\mathbb{P}(\tau_m > N_m \mid X_0 = i) \leq \theta_m$ 。这个意味着

$$\begin{split} & \mathbb{P}(\tau_{m} > (l+1)N_{m} \mid X_{0} = j) \\ & = \sum_{i \in F_{m}} \mathbb{P}(\tau_{m} > (l+1)N_{m} \& X_{lN_{m}} = i \mid X_{0} = j) \\ & = \sum_{i \in F_{m}} \mathbb{P}(\tau_{m} > N_{m} \mid X_{0} = i) \underbrace{\mathbb{P}(\tau_{m} > lN_{m} \& X_{lN_{m}} = i \mid X_{0} = j)}_{\text{iff } lN_{m} \not \oplus} \\ & \leq \theta_{m} \mathbb{P}(\tau_{m} > lN_{m} \mid X_{0} = j). \end{split}$$

于是, $\mathbb{P}(\tau_m > lN_m \mid X_0 = j) \leq \theta_m^l$,也就意味着 $\mathbb{P}(\tau_m = \infty \mid X_0 = j) = 0$,与之前的假设矛盾。

本节给出的结果只是一些零散的例子。他们的共同特征是,找到一个 \mathbb{S} 上的函数 u,使得某种意义下 $\mathbf{P}\vec{u} = \vec{u}$ 或者 $(\mathbf{P}\vec{u})_i \leq u_i$,也就是说, $\{u(X_n)\}$ 构成鞅或者上鞅。本节中结果的证明在学了鞅论之后可以简化。

3.1.3 周期性

对任意一个状态 $i \in \mathbb{S}$, 令

$$S(i) = \{n \ge 0 : (\mathbf{P}^n)_{ii} > 0\}$$
 $\forall \lambda \not \supset d(i) = \gcd(S(i)).$

d(i) 是状态 i 的周期。如果 d(i) = 1,这个状态是非周期的。(周期可以为 ∞ ,当且仅当 $S(i) = \{0\}$ 时。)

周期是互通类的性质: 如果 $i \leftrightarrow j$,则 d(i) = d(j)。对此我们只要证明 $d(i) \leq d(j)$ 同时 $d(j) \leq d(i)$ 。假设 d(i) = k,且 $\min\{n \geq 1: (\mathbf{P}^n)_{i,j} > 0\} = a$, $\min\{n \geq 1: (\mathbf{P}^n)_{j,i} > 0\} = b$ 。则 $(\mathbf{P}^{a+b})_{i,i} \geq (\mathbf{P}^a)_{i,j}(\mathbf{P}^b)_{j,i} > 0$,所以 $a+b \in S(i)$ 。于是 $k \mid (a+b)$ 。对每个 $m \in S(i)$,我们有 $(\mathbf{P}^{b+m+a})_{j,j} \geq (\mathbf{P}^b)_{j,i}(\mathbf{P}^m)_{i,i}(\mathbf{P}^n)_{i,j} > 0$,所以 $(a+b)+m \in S(j)$ 。我们有 $\gcd((a+b)+S(i)) = \gcd(S(i)) = k$,而 (a+b)+S(i) 是 S(j) 的一个子集,所以 $\gcd(S(j)) \leq k = \gcd(S(i))$ 。一个不等式得证。另一个不等式的证明完全平行,这里略去。

一个比较难的结果是:如果状态 i 的周期有限,则对所有充分大的 $n \in \mathbb{Z}^+$,($\mathbf{P}^{nd(i)}$) $_{ii} > 0$ 。特别地,如果 i 是非周期的,则对所有充分大的 n,有(\mathbf{P}^n) $_{ii} > 0$ 。这个结果依赖于一个数论定理:

定理 3.1.5. 给定 $\emptyset \neq S \subseteq \mathbb{Z}^+$,则 $\gcd(S) \leq \min(S)$,且等式成立当且 仅当 $\gcd(S) \in S$ 。即使等式不成立,也可以找到有限个 $s_1, \ldots, s_n \in S$ 以 及 $a_1, \ldots, a_n \in \mathbb{Z}$ 使得 $\gcd(S) = a_1s_1 + \cdots + a_ns_n$ 。最后,如果 S 满足以下条件:如果 $a,b \in S$,则 $a+b \in S$,那么存在一个 $M \in \mathbb{Z}^+$,使得 $\{s \in S : s \geq M \gcd(S)\} = \{m \gcd(S) : m \geq M\}$ 。

因为此定理为纯粹数论命题,证明从略。因为对任意状态 i,我们有:如果 $a,b \in S(i)$,则 (\mathbf{P}^a) $_{ii} > 0$, (\mathbf{P}^b) $_{ii} > 0$,于是 (\mathbf{P}^{a+b}) $_ii \geq (\mathbf{P}^a)_{ii}(\mathbf{P}^b)_{ii} > 0$,也即 $a+b \in S(i)$ 。所以可以应用上述定理,证明之前陈述的结论。

推论 3.1.3. 假设 **P** 是一个有限状态空间 S 上的转移概率矩阵。如果有一个状态 $j_0 \in S$ 是非周期的,且其他所有状态 $i \in S$ 都满足 $i \to j_0$,则存在

 $M \in \mathbb{Z}^+$ 和 $\epsilon > 0$,使得对所有 i,(\mathbf{P}^M) $_{i,j_0} \geq \epsilon$ 。这样,对任意初始分布 μ ,

$$\|\vec{\mu}\mathbf{P}^n - \pi\|_1 \le 2(1-\epsilon)^{\lfloor \frac{n}{M} \rfloor}.$$

证明. 因为 j_0 是非周期的,存在一个 $M_0 \in \mathbb{Z}^+$ 使得对于所有的 $n \geq M$, $(\mathbf{P}^n)_{ii} > 0$ 。有因为每个 i 都可到达 j_0 ,所以存在 m(i) 使得 $(\mathbf{P}^{m(i)})_{i,j_0} > 0$ 。于是,可以看出来如果取 $M = M_0 + \max_{i \neq j} m(i)$,则对所有 $i \in \mathbb{S}$, $(\mathbf{P})_{i,j_0} > 0$ 。这样的话,取 $\epsilon = \min_{i \in \mathbb{S}} (\mathbf{P})_{i,j_0}$,就可以证明结论(最后的不等式需要(2.4))。

3.2 没有德布林条件的遍历论

3.2.1 矩阵的范数与收敛性

我们以前使用了两个向量范数 $\|\cdot\|_1$ 与 $\|\cdot\|_{\infty}$,并且前一个只用于行向量 (用来代表分布),后一个只用于列向量 (用来代表 $\mathbb S$ 上的函数)。下面我们介绍一种(有限或无限维)矩阵的算子范数:

$$||M||_{\infty,\infty} = \sup\{||Mf||_{\infty} : ||f||_{\infty} \le 1\}.$$

如果在 $S \subseteq \{1,2,\ldots\}$ 上,M 表示为 $M_{i,j}$,则可以看到

$$||M||_{\infty,\infty} = \sup_{\|f\|_{\infty} \le 1} ||Mf|| = \sup_{\|f\|_{\infty} \le 1} \sup_{i \in \mathbb{S}} \left| \sum_{j \in \mathbb{S}} M_{ij} f_j \right|$$

$$\leq \sup_{\|f\|_{\infty} \le 1} \sup_{i \in \mathbb{S}} ||M_{ij}||_1 ||f_j|_{\infty} = \sup_{i \in \mathbb{S}} ||M_{ij}||_1$$

$$= \sup_{i \in \mathbb{S}} \sum_{j \in \mathbb{S}} |M_{ij}|.$$

另一方面,可以证明 $\|M\|_{\infty,\infty} \ge \sum_{j\in\mathbb{S}} |M_{ij}|$ (作为习题),所以我们有

$$||M||_{\infty,\infty} = \sup_{i \in \mathbb{S}} \sum_{j \in \mathbb{S}} |M_{ij}|.$$

最后,任意一个抽象的,把 $\ell^{\infty}(\mathbb{S})$ 映射到自身上的有界算子 M,都可以表示为 M_{ij} 形式,且

所以,把 $\ell^{\infty}(\mathbb{S})$ 映射到自身上的有界算子的线性空间,就是满足 $\sup_{i\in\mathbb{S}}\sum_{j\in\mathbb{S}}|M_{ij}|<\infty$ 的矩阵空间。

对于算子范数,我们有从反函分析得来的性质,比如这个有界算子空间的完备性,以及 $\|MM'\|_{\infty,\infty} \le \|M\|_{\infty,\infty} \|M'\|_{\infty,\infty}$ 。

3.2.2 阿贝尔收敛性

我们考虑过 $(\mathbf{P}^n)_{ij}$ 在 $n \to \infty$ 时的收敛性,也考虑过比它更弱的 $\mathbf{A}_n = \frac{1}{n} \sum_{m=0}^{n-1} (\mathbf{P}^m)_{ij}$ 的收敛性。 $(\mathbf{A}_n \ \mathbf{v})_{ij}$ 的切萨罗(Césaro)收敛。)下面我们介绍一种更弱的收敛性:阿贝尔(Abel)收敛。

如果一个有界数列 $\{x_n\}_0^\infty$ 满足

$$\lim_{s \nearrow 1} (1-s) \sum_{n=1}^{\infty} s^n x_n = x,$$

我们称 $\{x_n\}_0^\infty$ 阿贝尔收敛到极限 x。容易证明,如果 $\{x_n\}_1^\infty$ 收敛到极限 x,则其阿贝尔极限也为 x,反之,阿贝尔极限存在,数列极限,甚至切萨罗极限,不见得存在。(举例作为习题。)

对于S上的概率转移矩阵P,我们定义

$$\mathbf{R}(s) = (1-s) \sum_{n=0}^{\infty} s^n \mathbf{P}^n, \quad s \in [0,1).$$

对于 $s \in [0,1)$, $\mathbf{R}(s)$ 存在且唯一。因为 $\|\mathbf{P}\|_{\infty,\infty} = 1$,所以 $\sum_{n=0}^{\infty} s^n \mathbf{P}^n$ 显然在 $\|\cdot\|_{\infty,\infty}$ 有界算子空间中收敛。于是,由(3.1), $\mathbf{R}(s)_{ij}$ 也存在且唯一。

本节将要证明

$$\lim_{s \nearrow 1} \mathbf{R}(s)_{ij} = \pi_{ij} := \begin{cases} 1/\mathbb{E}[\rho_j \mid X_0 = j], & i = j, \\ \mathbb{P}(\rho_j < \infty \mid X_0 = i)/\mathbb{E}[\rho_j \mid X_0 = j], & i \neq j. \end{cases}$$
(3.2)

证明的关键步骤是更新方程:对于 $n \ge 1$,

$$(\mathbf{P}^n)_{ij} = \sum_{m=1}^n \mathbb{P}(\rho_j = m \mid X_0 = i)(\mathbf{P}^{n-m})_{jj}.$$

这个方程的证明如下:

$$(\mathbf{P}^{n})_{ij} = \sum_{m=1}^{n} \mathbb{P}(X_{n} = j \& \rho_{j} = m \mid X_{0} = i)$$

$$= \sum_{m=1}^{n} \mathbb{P}(X_{n} = j \mid \rho_{j} = m, X_{0} = i) \mathbb{P}(\rho_{j} = m \mid X_{0} = i)$$

$$= \sum_{m=1}^{n} \mathbb{P}(X_{n-m} = j \mid X_{0} = j) \mathbb{P}(\rho_{j} = m \mid X_{0} = j).$$

定义

$$f(s)_{ij} = \sum_{m=1}^{\infty} s^m \mathbb{P}(\rho_j = m \mid X_0 = i) = \mathbb{E}[s^{\rho_j} \mid X_0 = i].$$

于是

$$\mathbf{R}(s)_{ij} = (1 - s)\delta_{i,j} + (1 - s)\sum_{n=1}^{\infty} s^n \sum_{m=1}^n \mathbb{P}(\rho_j = m \mid X_0 = i)(\mathbf{P}^{n-m})_{jj}$$

$$= (1 - s)\delta_{i,j} + (1 - s)\sum_{m=1}^{\infty} s^n \mathbb{P}(\rho_j = m \mid X_0 = i)\sum_{n=m}^{\infty} s^{n-m}(\mathbf{P}^{n-m})_{jj}$$

$$= (1 - s)\delta_{i,j} + f(s)_{ij}\mathbf{R}(s)_{jj}.$$

当 i = j,得到

$$\mathbf{R}(s)_{jj} = (1-s) + f(s)_{jj}\mathbf{R}(s)_{jj} \iff \mathbf{R}(s) = \frac{1-s}{1-f(s)_{jj}},$$

当 $i \neq j$, 得到

$$\mathbf{R}(s)_{ij} = f(s)_{ij}\mathbf{R}(s)_{jj}.$$

如果 j 是瞬时的,则 $\mathbb{E}[\rho_j \mid X_0 = j] = \infty$,并且

$$\lim_{s \nearrow 1} \mathbf{R}(s)_{jj} = \frac{\lim_{s \nearrow 1} (1 - s)}{\lim_{s \nearrow 1} (1 - f(s)_{jj})} = \frac{0}{\mathbb{P}(\rho_j = \infty \mid X_0 = j)} = 0, \quad (3.3)$$

于是我们证明(3.2), 并且所有 $\pi_{ij} = 0$ 。如果 j 是常返的, 利用单调收敛定理, 以及当 $s \nearrow 1$ 则 $(1-s^m)/(1-s) \nearrow m$ 的事实, 我们得到当 $s \nearrow 1$ 时,

$$\lim_{s \nearrow 1} \frac{1 - f(s)_{jj}}{1 - s} = \lim_{s \nearrow 1} \sum_{m=1}^{\infty} \frac{1 - s^m}{1 - s} \mathbb{P}(\rho_j = m \mid X_0 = i)$$
这里用单调收敛定理
$$\sum_{m=1}^{\infty} m \mathbb{P}(\rho_j = m \mid X_0 = i) = \mathbb{E}[\rho_j \mid X_0 = j],$$
(3.4)

$$\lim_{s \nearrow 1} f(s)_{jj} = \lim_{s \nearrow 1} \sum_{m=1}^{\infty} s^m \mathbb{P}(\rho_j = m \mid X_0 = i)$$
$$= \sum_{m=1}^{\infty} \mathbb{P}(\rho_j = m \mid X_0 = i) = \mathbb{P}(\rho_j < \infty \mid X_0 = i).$$

所以 $\lim_{s \nearrow 1} \mathbf{R}(s)_{jj} = \mathbb{E}[\rho_j \mid X_0 = j]^{-1}$ 以及如果 $i \neq j$ 则 $\lim_{s \nearrow 1} \mathbf{R}(s)_{ij} = \mathbb{P}(\rho_j < \infty \mid X_0 = i)\mathbb{E}[\rho_j \mid X_0 = j]^{-1}$ 。

3.2.3 平稳概率分布的结构

如果一个(S 上的)概率分布向量 $\vec{\mu}$ 满足 $\mu = \mu \mathbf{P}$,则称为 \mathbf{P} -平稳,记为 $\vec{\mu} \in \mathrm{Stat}(\mathbf{P})$ 。显然,如果 $\vec{\mu} \in \mathrm{Stat}(\mathbf{P})$,则 $\vec{\mu} = \vec{\mu} \mathbf{R}(s)$ $(s \in [0,1))$ 。于是,根据(3.2),(令 $s \in [0,1)$)

$$\mu_j = (\vec{\mu} \mathbf{R}(s))_j = \sum_{i \in \mathbb{S}} \mu_i \mathbf{R}(s)_{ij} = \lim_{s \nearrow 1} \mu_i \mathbf{R}(s)_{ij} = \sum_{i \in \mathbb{S}} \mu_i \pi_{ij}.$$

一方面,如果 j 是瞬时的,则 $\pi_{ij}=0$ 。另一方面,如果 j 是常返的,则 当 $i \leftrightarrow j$ 时,因为由推论3.1.1, $\mathbb{P}(\rho_j < \infty \mid X_0 = i) = 1$,我们根据(3.2)有 $\pi_{ij} = \pi_{jj}$;当 $i \nleftrightarrow j$ 时,同样理由我们有 $\mathbb{P}(\rho_j < \infty \mid X_0 = i) = 0$ 和 $\pi_{ij} = 0$ 。 在两种情况下,对于 $\mathrm{Stat}(\mathbf{P})$ 中的分布向量 $\vec{\mu}$,我们都有

$$\mu_j = \left(\sum_{i \in \mathbb{S} \coprod i \leftrightarrow j} \mu_i\right) \pi_{jj}. \tag{3.5}$$

下面,我们要证明,如果对某个状态 j,定义 $C=C_j$ 以及 $\mathbb{R}^{\mathbb{S}}$ 上的行向量 π^C 如下:

$$C = \{i : i \leftrightarrow j\}, \quad (\pi^C)_i = \begin{cases} 0, & i \notin C, \\ \pi_{ii}, & i \in C. \end{cases}$$
(3.6)

则只要 $\pi_{jj} > 0$, π^C 就是 **P**-平稳的。

要证明上述结果,我们先注意到, $\pi_{jj} > 0$ 时,j 常返,于是所有的状态 $i \in C$ 都常返并且根据定理3.1.1, $\mathbb{P}(\rho_i < \infty \mid X_0 = j) = 1$ 。而对于 $i \notin C$,则同样由定理3.1.1, $j \to i$ (而不是 $j \to i$ 且 $i \to j$),所以对于 $s \in (0,1)$,我们有 $(\mathbf{R})_{ii} = 0$ 。所以综合上文,对任意 i,

$$(\pi^C)_i = \lim_{s \nearrow 1} \mathbf{R}(s)_{j,i}. \tag{3.7}$$

根据法都 (Fatou) 引理¹,

$$\sum_{i \in \mathbb{S}} (\pi^C)_i = \sum_{i \in \mathbb{S}} \liminf_{s \nearrow 1} \mathbf{R}(s)_{ji} \le \liminf_{s \nearrow 1} \sum_{i \in \mathbb{S}} \mathbf{R}(s)_{ji} = \liminf_{s \nearrow 1} 1 = 1.$$

同样,对于任意i,

$$(\pi^C \mathbf{P})_i = \sum_{k \in C} \pi_{kk}(\mathbf{P})_{ki} \le \liminf_{s \nearrow 1} \sum_{k \in C} (\mathbf{R}(s))_{jk}(\mathbf{P})_{ki} = \liminf_{s \nearrow 1} s(\mathbf{R}(s))_{ji} = (\pi^C)_i.$$

我们只要证明,在上面两个不等式中,实际上成立的是等式。假设第二个不 是,则

$$\sum_{k \in \mathbb{S}} (\pi^C)_k = \sum_{k \in \mathbb{S}} (\pi^C)_k \left(\sum_{i \in \mathbb{S}} (\mathbf{P})_{ki} \right)$$

富比尼 (Fubini) 定理
$$\sum_{i \in \mathbb{S}} \left(\sum_{k \in \mathbb{S}} (\pi^C)_k (\mathbf{P})_{ki} \right) < \sum_i (\pi^C)_i.$$

导出矛盾。这样,我们有了 $\pi^C = \pi^C \mathbf{P}$,也就有了 $\pi^C = \pi^C \mathbf{R}(s)$ $(s \in [0,1))$ 。 所以

$$\lim_{s \nearrow 1} \sum_{i \in \mathbb{S}} (\pi^C)_i(\mathbf{R}(s))_{ij} = \lim_{s \nearrow 1} (\pi^C)_j = (\pi^C)_j.$$

另一方面,上面的极限也等价于(利用勒贝格(Lebesgue)控制收敛定理,以及 $(\mathbf{R}(s))_{ij} \leq 1$)

$$\lim_{s \nearrow 1} \sum_{i \in C} (\pi^C)_i (\mathbf{R}(s))_{ij} = \sum_{i \in C} (\pi^C)_i \underbrace{\lim_{s \nearrow 1} (\mathbf{R}(s))_{ij}}_{=\mathbb{P}(\rho_j < \infty | X_0 = i)\pi_{jj}}$$

$$= \sum_{i \in C} (\pi^C)_i (\pi^C)_j = \left(\sum_{i \in C} (\pi^C)_i\right) (\pi^C)_j.$$

这样, 我们有 $\sum_{i \in C} (\pi^C)_i = 1$ 。于是完成了证明。

下面,我们引入两个概念: 首先是凸性这个概念。令 A 为某线性空间的一个子集,如果对于任意 $a,a'\in A$ 以及 $\theta\in[0,1]$,都有 $(1-\theta)a+\theta a'\in A$,则我们称 A 为凸集。如果 $b\in A$ 且对任意 $\theta\in(0,1)$ 和 $a,a'\in A,b=(1-\theta)a+\theta a'$ 只在 a=a'=b 时成立,则我们称 b 为 A 的一个极点。对一个凸集来说,知道了它所有的极点,也就唯一确定了它。其次是正常返这个概念。如果在某个马氏链里,状态 $j\in \mathbb{S}$ 满足 $\mathbb{E}[\rho_j\mid X_0=j]<\infty$,则我们称 i 为正常返态。如果状态 $i\in$ 常返但是 $\mathbb{E}[\rho_i\mid X_0=i]=\infty$,则我们称 i 为零常返态。

¹法都引理是关于积分的结果。这里,我们把在 S 上求和理解为积分。

定理 3.2.1. 1. Stat(**P**) 是 $\mathbb{R}^{\mathbb{S}}$ 的凸子集。

- 2. 对任意 $\mu \in \text{Stat}(\mathbf{P})$, 等式(3.5)成立。
- 3. Stat(P) 非空的充分必要条件是,至少有一个状态是正常返状态。
- 4. μ 为 $Stat(\mathbf{P})$ 的极点的充分必要条件为,存在某个正常返态 j 以及 由(3.6)定义的 C 以及 π^C 并且 $\pi^C = \mu$ 。
- 5. 如果 j 是个瞬时态,则对任意 $\mu \in \text{Stat}(\mathbf{P})$, $\mu_j = 0$ 。如果 j 是个常返 态且 $\mu_j = 0$ (或 $\mu_j > 0$),则对于所有与 j 互通的状态 i,都有 $\mu_i = 0$ (或 $\mu_i > 0$)。

证明. 第1部分, Stat(P) 的凸性是显然的。

第2部分前面已经证明。

第3部分,如果 $\mu \in \text{Stat}(\mathbf{P})$ 且 $\mu_j > 0$,则根据(3.5), $\pi_{jj} > 0$,也就是说 j 是正常返态。相反地,如果 j 是正常返态,则由(3.6)定义的 π^C 是非平凡平稳分布。

下面证明第4部分。假设 μ 是非零 **P**-平稳概率分布向量,且对任意常返态 j 以及由 j 定义的 $C=C_j$,都有 $\mu \neq \pi^C$ 。我们首先看到,令 $u_i \neq 0$ 的 i 不可能包含在一个互通类中。不然,所有这样的 i 都在某个 $C=C_j$ 中,于是 $\sum_{i \in \mathbb{S} \coprod i \leftrightarrow j} \mu_i = 1$ 。这样的话,根据(3.5),这个 μ 就等于 π^C ,跟假设矛盾。

所以,存在不互通的两个状态 j 和 j',使得 $\mu_j > 0$ 且 $\mu_{j'} > 0$ 。这时,根据(3.5),我们可以把 μ 写成

$$\mu = \theta \pi^C + (1 - \theta)\nu, \quad C = C_j = \{i : i \leftrightarrow j\} \coprod \theta = \sum_{i \in C} \mu_i \in (0, 1).$$

这里当 $i \in C$ 时 $\nu_i = 0$,否则 $\nu_i = (1 - \theta)^{-1}\mu_i$ 。显然, $\nu \in \operatorname{Stat}(\mathbf{P})$,且 $\nu \neq \pi^C$ 。所以 μ 不是 $\operatorname{Stat}(\mathbf{P})$ 的极点。如上我们证明 $\operatorname{Stat}(\mathbf{P})$ 的极点都是 π^C 形式的。

反之,如果某个 π^C 不是极点,而是可以写成 $(1-\theta)\mu + \theta\nu$ 形式,(这里 $\mu, \nu \in \operatorname{Stat}(\mathbf{P})$),则对所有 $i \notin C$,我们有 $\mu_i = 0$ 。由之前"不等于 π^C 的 μ 一定不能只对属于 C 的 i 有 $\mu_i > 0$ "的论证,我们知道 $\mu = \pi^C$ 。这样的话, ν 也等于 π^C ,我们证明 π^C 是个极点。

下面证明第5部分。首先我们说明,当 j 为一个瞬时态或零常返态时,对任意 $\mu \in \text{Stat}(\mathbf{P})$, $\mu_j = 0$ 。这是因为 $\pi_{jj} = 0$ (瞬时态情况见(3.3),零常返态情况见(3.4)),我们根据(3.5)有 $\mu_j = 0$ 。

如果 j 是一个正常返态,则由(3.6)至少 $(\pi^C)_j > 0$ 。对于任意 $\mu \in \operatorname{Stat}(\mathbf{P})$,如果 $i \to j$,也就是存在 m > 0 使得 $(\mathbf{P}^m)_{ij} > 0$,则 $\mu_i > 0$ 可以推出 $\mu_j = (\mu \mathbf{P}^m)_j \ge \mu_i(\mathbf{P}^m)_{ij} > 0$ 。所以,在 $C = C_j = \{i : i \leftrightarrow j\}$ 上, μ_i 或者都等于 0,或者都大于 0。

由定理3.2.1的证明看,我们知道正常返性是关于状态等价类的函数:如果 $i \leftrightarrow j$,则两者都为正常返态,或者两者都不是。

3.2.4 由阿贝尔求和到切萨罗求和

我们刚才得到的最重要的结论是(3.7)。但是,(3.7)的左边是 (\mathbf{P}^n)_{j,i} 关于 n 的阿贝尔极限,没有什么概率意义。我们准备把它替换成 (\mathbf{P}^n)_{j,i} 的切萨罗极限 $\lim_{n\to\infty} (\mathbf{A}_n)_{j,i} = \lim_{n\to\infty} n^{-1} \sum_{m=0}^{n-1} (\mathbf{P}^m)_{j,i} = \pi_{j,i}$ 。这个极限有概率意义(按时间平均)。

我们需要一个技术引理: 如果 $\{a_m\}_0^\infty$ 是一列实数且 $0 \le a_m \le 1$,且 $A_n = n^{-1} \sum_{m=0}^{n-1} a_m$ 是此数列前 n 项的平均,则

$$|A_n - A_{n-m}| \le \frac{m}{n}, \quad 0 \le m < n.$$

(证明留作练习。)

引理 3.2.1. 对所有的 $i, j \in \mathbb{S}$, $\limsup_{n \to \infty} (\mathbf{A}_n)_{ij} \le e\pi_{ij}$ 。 对任意 $j \in \mathbb{S}$ 以及任意 $\{n_1 < n_2 < \cdots\} \subseteq \mathbb{N}$, 如果 $\lim_{l \to \infty} (\mathbf{A}_{n_l})_{ij} = \alpha$, 则对另外 $i \in \mathbb{S}$

$$\lim_{l\to\infty} (\mathbf{A}_{n_l})_{ij} = \mathbb{P}(\rho_j < \infty \mid X_0 = i)\alpha.$$

证明. 第一部分,可以用如下不等式去估计 $\limsup_{n\to\infty} (\mathbf{A}_n)_{ij}$:

$$(\mathbf{A}_n)_{ij} \le \frac{1}{n} (1 - \frac{1}{n})^{-n} \sum_{m=0}^{n-1} (1 - \frac{1}{n})^m (\mathbf{P}^m)_{ij} \le (1 - \frac{1}{n})^{-n} (\mathbf{R}(1 - \frac{1}{n}))_{ij}.$$

然后用已经证得的阿贝尔极限公式,在不等式两边取上极限,就得到了结论。 第二部分,我们利用

$$(\mathbf{A}_n)_{ij} = \sum_{m=1}^{n-1} \mathbb{P}(\rho_j = m \mid X_0 = i)(1 - \frac{m}{n})(\mathbf{A}_{n-m})_{jj},$$

得到(应用上面的不等式结果 $(\mathbf{A}_{n-m})_{jj} \leq \frac{m}{n} + (\mathbf{A}_n)_{jj}$)

$$\begin{aligned} &|(\mathbf{A}_n)_{ij} - \mathbb{P}(\rho_j < n \mid X_0 = i)\alpha| \\ &= \left| \sum_{m=1}^{n-1} \mathbb{P}(\rho_j = m \mid X_0 = i) \left[(1 - \frac{m}{n})(\mathbf{A}_{n-m})_{jj} - \alpha \right] \right| \\ &\leq \sum_{m=1}^{n-1} \mathbb{P}(\rho_j = m \mid X_0 = i) \left| ((\mathbf{A}_n)_{jj} - \alpha) + (\frac{m}{n} - \frac{m^2}{n^2} - \frac{m}{n}(\mathbf{A}_n)_{jj}) \right| \\ &\leq \left(2 \sum_{m=1}^{n-1} \frac{m}{n} \mathbb{P}(\rho_j = m \mid X_0 = i) \right) + |(\mathbf{A}_n)_{jj} - \alpha|. \end{aligned}$$

因为右边的两项都随着 $n \to \infty$ 趋近 0 (第一项需要一点证明),我们得到结论。

现在我们可以证明

$$\lim_{n\to\infty} (\mathbf{A}_n)_{ij} = \pi_{ij}.$$

如果 $\pi_{jj} = 0$,则 $\pi_{ij} = 0$,用上面引理的第一部分,我们就知道 $\lim_{n\to\infty} (\mathbf{A}_n)_{ij} = 0$,证明完毕。如果 $\pi_{jj} > 0$,根据定理3.2.1,j 是个正常返态,并且,如果 $C = C_j = \{i : i \leftrightarrow j\}$,则 $\pi^C \in \mathrm{Stat}(\mathbf{P})$ 。于是,根据(3.6),对于任意 n, $\pi_{jj} = (\pi^C)_j = \sum_{i \in C} (\pi^C)_i (\mathbf{A}_n)_{ij}$ 。令 $\alpha \in [0,1]$ 为 $\{(\mathbf{A}_n)_{jj} : n \in \mathbb{N}\}$ 的一个聚点,且 $\{n_l\} \subseteq \mathbb{N}$ 为 \mathbb{N} 的子序列使 $\lim_{l\to\infty} (\mathbf{A}_{n_l})_{jj} = \alpha$ 。于是,根据上面引理的第二部分,如果 $i \in C$,则

$$\lim_{l \to \infty} (\mathbf{A}_{n_l})_{ij} = \mathbb{P}(\rho_j < \infty \mid X_0 = i)\alpha = \alpha.$$

(这里我们利用了推论3.1.1)。这样,我们就有(如果 C 是无穷集,这里需要勒贝格控制收敛定理)

$$\pi_{jj} = \lim_{l \to \infty} \sum_{i \in C} (\pi^C)_i (\mathbf{A}_{n_l})_{ij} = \sum_{i \in C} (\pi^C)_i \alpha = \alpha.$$

于是, π_{jj} 是 $\{(\mathbf{A}_n)_{jj} : n \in \mathbb{N}\}$ 唯一的聚点,也就是 $\lim_{n\to\infty} (\mathbf{A}_n)_{jj} = \pi_{jj}$ 。最后,应用上个引理的第二部分,我们得到 $\lim_{n\to\infty} (\mathbf{A}_n)_{ij} = \mathbb{P}(\rho_j < \infty \mid X_0 = i) \lim_{n\to\infty} (\mathbf{A}_n)_{ij} = \mathbb{P}(\rho_j < \infty \mid X_0 = i) \pi_{jj} = \pi_{ij}$ 。(最后一步用了(3.2)。)

3.2.5 平均遍历定理

定理 3.2.2. 令 C 为一个由正常返态组成的联通类。如果马氏链从 C 里面开始,也就是 $\mathbb{P}(X_0 \in C) = 1$,则

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\frac{1}{n} \sum_{m=0}^{n-1} 1_{\{j\}} (X_m) - \pi_{jj} \right)^2 \right] = 0.$$

证明. 因为这个马氏链走出 C 的概率为零,所以不失一般性,我们假设 $\mathbb{S} = C$ 。(如果有非零概率从 $i \in C$ 走到 $j \notin C$,则 $i \to j$ 且 $j \not\to i$ 。由定 理3.1.1,这与 i 的常返性矛盾。)于是 π^C 是唯一的 **P**-平稳的概率分布向量。 这里,我们记 $\pi = \pi^C$ 。下面,我们认为 $\mathbb{S} = \{0,1,2,\dots\}$ 且 j = 0。

首先,我们把各个初始值拆开考虑: 如果 $\mu_i = \mathbb{P}(X_0 = i)$, 则

$$\mathbb{E}\left[\left(\frac{1}{n}\sum_{m=0}^{n-1}1_{\{0\}}(X_m)-\pi_{00}\right)^2\right] = \sum_{i\in\mathbb{S}}\mu_i\mathbb{E}\left[\left(\frac{1}{n}\sum_{m=0}^{n-1}1_{\{0\}}(X_m)-\pi_{00}\right)^2\bigg|X_0=i\right],$$

所以我们只需要证明对任意 $i \in \mathbb{S}$,

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\frac{1}{n} \sum_{m=0}^{n-1} 1_{\{0\}}(X_m) - \pi_{00} \right)^2 \middle| X_0 = i \right] = 0.$$

反过来,如果初始分布是唯一的平稳概率分布,也就是 $\mathbb{P}(X_0=i)=\pi_i$,则只要证明

$$\lim_{n \to \infty} \mathbb{E} \left[\left(\frac{1}{n} \sum_{m=0}^{n-1} 1_{\{0\}}(X_m) - \pi_{00} \right)^2 \middle| X_0 = Y \right] = 0,$$

这里 Y 是一个分布为 $\mathbb{P}(Y=i)=\pi_i$ 的随机变量。

令 \vec{f} 为一个列向量,其分量为 $f_i = \delta_{0,i} - \pi_{00}$ 。这样,

$$\mathbb{E}\left[\left(\frac{1}{n}\sum_{m=0}^{n-1}1_{\{0\}}(X_m)-\pi_{00}\right)^2\right] \\
= \frac{1}{n^2}\sum_{m=0}^{n-1}\mathbb{E}(1_{\{0\}}(X_m)-\pi_{00})^2 \\
+ \frac{2}{n^2}\sum_{m=0}^{n-2}\mathbb{E}\left[(1_{\{0\}}(X_m)-\pi_{00})\left(\sum_{l=m+1}^{n-1}(1_{\{0\}}(X_l)-\pi_{jj})\right)\right] \\
\leq \frac{2}{n^2}\mathbb{E}\left[\sum_{m=0}^{n-1}(1_{\{0\}}(X_m)-\pi_{00})\left(\sum_{l=m}^{n-1}(1_{\{0\}}(X_l)-\pi_{jj})\right)\right] \\
= \frac{2}{n^2}\sum_{m=0}^{n-1}\mathbb{E}\left[f_{X_m}\sum_{l=m}^{n-1}f_{X_l}\right] \\
= \frac{2}{n^2}\sum_{m=0}^{n-1}(n-m)\mathbb{E}[f_{X_m}(\mathbf{A}_{n-m}\vec{f})_{X_m}].$$

既然我们假定 X_0 服从平稳分布 π , 则所有 X_m 都服从同样的平稳分布 π , 从而

$$\mathbb{E}[f_{x_m}(\mathbf{A}_{n-m}\vec{f})_{X_m}] = \sum_{i \in \mathbb{S}} \pi_i f_i(\mathbf{A}_{n-m}\vec{f})_i.$$

所以, 我们可以把之前的不等式写为

$$\mathbb{E}\left[\left(\frac{1}{n}\sum_{m=0}^{n-1}1_{\{0\}}(X_m)-\pi_{00}\right)^2\right] \leq \frac{2}{n^2}\sum_{k=1}^n k\sum_{i\in\mathbb{S}}\pi_i f_i(\mathbf{A}_k\vec{f})_i.$$

最后,因为

$$\sum_{i \in \mathbb{S}} \pi_i f_i(\mathbf{A}_k \vec{f})_i = \sum_{i \in \mathbb{S}} \pi_i f_i(\underbrace{(\mathbf{A}_k)_{i0} - \pi_{00}}_{k \to \infty}),$$

当 $k \to \infty$ 时趋近于 0,结论证毕。

3.2.6 非周期情况下的更强结论

在本节,我们证明以下结论:

$$\lim_{n \to \infty} (\mathbf{P}^n)_{ij} = \pi_{ij} \quad \text{如果 } j \text{ 是瞬时态或者非周期态.}$$
 (3.8)

如果 j 是瞬时态,结论比较易得: 首先,由(3.2),我们得到对任意 i, $\pi_{ij} = 0$ 。然后,对 n > 0,应用

$$(\mathbf{P}^n)_{ij} = \sum_{m=1}^n \mathbb{P}(\rho_j^{(m)} = n \mid X_0 = i) = \sum_{m=1}^\infty \mathbb{P}(\rho_j^{(m)} = n \mid X_0 = i), \quad (3.9)$$

我们有

$$\sum_{n=0}^{\infty} (\mathbf{P}^n)_{ij} = \delta_{ij} + \sum_{m=1}^{\infty} \mathbb{P}(\rho_j^{(m)} < \infty \mid X_0 = i) < \infty,$$

于是 $\lim_{n\to\infty} (\mathbf{P}^n)_{ij} = 0$,等式得证。下面,我们在非周期情况证明等式。

首先,我们注意到,如果 j 是个非周期态,则存在一个充分大的 $N \in \mathbb{N}$,使得对于所有 $n \ge N$,

$$\max_{1 \le m \le n} \mathbb{P}(\rho_j^{(m)} = n \mid X_0 = j) > 0.$$
 (3.10)

这个结论同样可以用(3.9)证明。

下面我们证明一个比较难的技术引理:

引理 3.2.2. 令 j 为一个非周期的常返态。记 $\alpha_j^- = \liminf_{n \to \infty} (\mathbf{P}^n)_{jj}, \ \alpha_j^+ = \limsup_{n \to \infty} (\mathbf{P}^n)_{jj}$ 。这样的话,就存在 \mathbb{N} 的子序列 $\{n_l^- : l \ge 1\}, \{n_l^+ : l \ge 1\}$,使得对于任意 $r \in \mathbb{Z}_+$,

$$\alpha_j^{\pm} = \lim_{l \to \infty} (\mathbf{P}^{n_l^{\pm} - r})_{jj}.$$

证明. 我们只证明 + 情况, 因为 - 情况类似。

首先,我们取 $\{n_l\}$ 为一个任意的,使 $\lim_{l\to\infty}(\mathbf{P}^{n_l})_{jj}=\alpha_j^+$ 成立的子序列。在此情况下,我们证明引理对充分大的 r 成立。根据(3.10),如果 r 大于等于某个 N,则有依赖于 r 的 $m\in\{1,\ldots,r\}$ 使 $\mathbb{P}(\rho_j^{(m)}=r\mid X_0=j)=\delta>0$ 。然后,我们取 $M\in\mathbb{Z}_+$,且对于任意大于 M+r 的 n_l ,分解

$$(\mathbf{P}^{n_l})_{jj} = \mathbb{P}(X_{n_l} = j \& \rho_j^{(m)} = r \mid X_0 = j) + \mathbb{P}(X_{n_l} = j \& \rho_j^{(m)} \neq r \mid X_0 = j)$$

$$= \delta(\mathbf{P}^{n_l - r})_{jj} + \mathbb{P}(X_{n_l} = j \& \rho_j^{(m)} \geq \rho_j^{(m)} \neq r \mid X_0 = j)$$

$$+ \mathbb{P}(X_{n_l} = j \& \rho_j^{(m)} > n_l - M \mid X_0 = j)$$
(3.11)

对等式右边的三项, 我们有

$$\mathbb{P}(X_{n_{l}} = j \& \rho_{j}^{(m)} \ge \rho_{j}^{(m)} \ne r \mid X_{0} = j)
= \sum_{k \in \{m, m+1, \dots, n_{l} - M\}} \mathbb{P}(\rho_{j}^{(m)} = k \mid X_{0} = j) (\mathbf{P}^{n_{l} - k})_{jj}
\le \left[\sum_{k \in \{m, m+1, \dots, n_{l} - M\}} \mathbb{P}(\rho_{j}^{(m)} = k \mid X_{0} = j) \right] \sup_{n \ge M} (\mathbf{P}^{n})_{jj}
\le (1 - \delta) \sup_{n > M} (\mathbf{P}^{n})_{jj},$$

$$\mathbb{P}(X_{n_l} = j \& \rho_i^{(m)} > n_l - M \mid X_0 = j) \le \mathbb{P}(\rho_i^{(m)} > n_l - M \mid X_0 = j).$$

因为当 $l \to \infty$ 时, $\mathbb{P}(\rho_j^{(m)} > n_l - M \mid X_0 = j) \to \mathbb{P}(\rho_j^{(m)} = \infty \mid X_0 = j) = 0$,我们有,在等式(3.11)取 $l \to \infty$ 的下极限,则

$$\alpha_j^+ \le \liminf_{l \to \infty} \delta(\mathbf{P}^{n_l - r})_{jj} + (1 - \delta) \sup_{n \ge M} (\mathbf{P}^n)_{jj}.$$

又因为当 $M \to \infty$ 时, $\sup_{n \ge M} (\mathbf{P}^n)_{jj} \to \alpha_j^+$,我们可以得到 $\liminf_{l \to \infty} (\mathbf{P}^{n_l - r})_{jj} \ge \alpha_j^+$ 。最后,因为 $\limsup_{l \to \infty} (\mathbf{P}^{n_l - r})_{jj} \le \alpha_j^+$,我们得到

$$\lim_{l \to \infty} (\mathbf{P}^{n_l - r})_{jj} = \alpha_j^+, \quad r \ge N.$$

如果我们吧一开始的收敛于 α_j^+ 的子序列取为 $n_l^+ = n_l - N$ (忽略前几个未负数的项),则定理所需要求完全满足。

引理 3.2.3. 如果 j 是非周期的常返态,则 $\alpha_j^+ := \limsup_{n \to \infty} (\mathbf{P}^n)_{jj} \le \pi_{jj}$ 。 并且对于任何与 j 互通的状态 i,如果 $\{n_l^\pm\}$ 是如引理3.2.2定义的子序列,则 $\lim_{l \to \infty} (\mathbf{P}^{n_l^\pm})_{ij} = \alpha_+^\pm$ 。

证明. 首先证明第二部分。因为 $(\forall i \neq j)$

$$(\mathbf{P}^{n_l^{\pm}})_{ij} = \sum_{r=1}^{n_l^{\pm}} \mathbb{P}(\rho_j = r \mid X_0 = i)(\mathbf{P}^{n_l^{\pm} - r})_{jj},$$

$$\lim_{l \to \infty} (\mathbf{P}^{n_l^{\pm}})_{ij} = \sum_{r=1}^{n_l^{\pm}} \mathbb{P}(\rho_j = r \mid X_0 = i) \alpha_j^{\pm} = \alpha_j^{\pm}.$$

然后证明第二部分。因为 $\pi_{jj}=1/\mathbb{E}[\rho_j\mid X_0=j]$,我们只要证明 $\alpha_j^+\mathbb{E}[\rho_j\mid X_0=j]\leq 1$,也即

$$\alpha_j^+ \sum_{r=1}^{\infty} \mathbb{P}(\rho_j \ge r \mid X_0 = j) \le 1,$$

或者,证明上面不等式把 ∞ 换成任意的N,都成立。又因为

$$\alpha_j^+ \sum_{r=1}^N \mathbb{P}(\rho_j \ge r \mid X_0 = j) = \lim_{l \to \infty} \sum_{r=1}^N \mathbb{P}(\rho_j \ge r \mid X_0 = j) (\mathbf{P}^{n_l^+ - r})_{jj},$$

我们只需要有对所有的 $n \ge N \ge 1$,

$$\sum_{r=1}^{N} \mathbb{P}(\rho_j \ge r \mid X_0 = j)(\mathbf{P}^{n-r})_{jj} \le 1, \tag{3.12}$$

就完成了证明。为了证明此不等式,我们考虑比 $\sum_{r=1}^{N} \mathbb{P}(\rho_j \geq r \mid X_0 = j)(\mathbf{P}^{n-r})_{jj}$ 更大一些的 $\sum_{r=1}^{n} \mathbb{P}(\rho_j \geq r \mid X_0 = j)(\mathbf{P}^{n-r})_{jj}$,并且有

$$\sum_{r=1}^{n} \mathbb{P}(\rho_{j} \ge r \mid X_{0} = j)(\mathbf{P}^{n-r})_{jj}$$

$$= \sum_{r=1}^{n} \left(\sum_{k=0}^{r} (\mathbf{P}^{n-k})_{jj} \right) \mathbb{P}(\rho_{j} = r \mid X_{0} = 0) + \mathbb{P}(\rho_{j} > n \mid X_{0})$$

 $= \mathbb{P}($ 这个马氏链最后去了 $\{n+1, n+2, \dots\}) = 1.$

所以
$$\sum_{r=1}^{N} \mathbb{P}(\rho_i \geq r \mid X_0 = j)(\mathbf{P}^{n-r})_{ij} \leq 1$$
.

最后我们证明(3.8)的非周期常返态情况。首先,如果 $\pi_{jj}=0$ (也就是说 j 是零常返态),根据引理3.2.3,我们有 $\lim_{n\to\infty}(\mathbf{P}^n)_{jj}=0$,且对 $i\neq j$,利用同样的引理以及 $\alpha^\pm=0$ 和 $\{n_i^+\}=\{n_-^-\}=\mathbb{N}$,我们得到

$$\lim_{n\to\infty} (\mathbf{P}^n)_{ij} = 0 = \pi_{ij}.$$

另一方面,如果 j 是正常返态,令 $C = \{i : i \leftrightarrow j\}$,并定义 π^C 如(3.6)。我们有 $\pi^C \in \operatorname{Stat}(\mathbf{P})$ 。因为 $\sum_{i \in C} (\pi^C)_i (\mathbf{P}^{n_l^{\pm}})_{ij} = \pi_i^C = \pi_{jj}$,我们取 $l \to \infty$ 的极限,有

$$\pi_{ij} = \lim_{l \to \infty} \sum_{i \in C} (\pi^C)_i (\mathbf{P}^{n_l^{\pm}})_{ij} = \alpha_j^{\pm} \sum_{i \in C} (\pi^C)_i = \alpha_j^{\pm}.$$

于是 $\alpha_j^+ = \alpha_j^- = \alpha_j$,所以 $\lim_{n \to \infty} (\mathbf{P}^n)_{jj} = \pi_{jj}$ 。最后,对于 $i \neq j$,

$$\lim_{n \to \infty} (\mathbf{P}^n)_{ij} = \lim_{n \to \infty} \sum_{r=1}^n \mathbb{P}(\rho_j = r \mid X_0 = i) \underbrace{(\mathbf{P}^{n-r})_{jj}}_{\text{WR} \not \to \pi_{jj}}$$
$$= \sum_{r=1}^\infty \mathbb{P}(\rho_j = r \mid X_0 = i) \pi_{jj} = \mathbb{P}(\rho_j < \infty \mid X_0 = i) \pi_{jj} = \pi_{ij}.$$