Unit 6 Review (Kernel Methods)

- Extending models into high dimensional feature spaces through $\phi(x_1)$
 - Example: Ridge Regression $\min_{\mathbf{w}} \|\mathbf{y} \mathbf{\Phi}\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|^2$ where $\mathbf{\Phi} = [\phi(\mathbf{x}_1) \cdots \phi(\mathbf{x}_N)]^T$ $\mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^T \mathbf{y} = \mathbf{\Phi}^T (\mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I})^{-1} \mathbf{y}$
- Kernel methods compute the kernel function $K(x, x_i) = \phi(x)^T \phi(x_i)$ without explicitly evaluating $\phi(x)$.

$$\hat{y}(\mathbf{x}) = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{w}^* = \phi(\mathbf{x})^{\mathrm{T}} \mathbf{\Phi}^{\mathrm{T}} (\mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} + \lambda \mathbf{I})^{-1} \mathbf{y} = \sum_{i=1}^{i=1} \alpha_i K(\mathbf{x}, \mathbf{x}_i)$$
$$\alpha_i = \left[(\mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} + \lambda \mathbf{I})^{-1} \mathbf{y} \right]_i = \left[(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} \right]_i$$

- Popular Kernels:
 - Linear Kerner: $K(u,v) = u^T v$ Polynomials of degree q: $K(u,v) = (1+u^T v)^q$
 - Monomials of degree q: $K(u, v) = (u^T v)^q$ Gaussian Radial Kerner: $K(u, v) = \exp\left(-\frac{\|u-v\|^2}{2\sigma^2}\right)$
- Kernel SVMs introduces high-dimensional feature spaces in SVMs using Kernels.

$$\min_{\mathbf{w}} \sum_{i} (1 - d_{i} \phi(\mathbf{x}_{i})^{T} \mathbf{w})_{+} + \lambda \|\mathbf{w}\|^{2} = \min_{\alpha} \sum_{i=1}^{N} \left(1 - d_{i} \sum_{j=1}^{N} \alpha_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \right)_{+} + \lambda \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

• Kernel SVMs optimize for α using gradient descent. They search for a max-margin classifier in the high-dimensional feature space.

Unit 6 Review (Neural Networks)

The artificial neuron:

Common activation functions:

ReLU:
$$\sigma(z) = \max(0, z)$$
 Logistic: $\sigma(z) = \frac{1}{1 + \exp(-z)}$ **Sign**: $\sigma(z) = sign(z)$

- Neural networks f(x) are networks of neurons Neurons can be both in parallel and in sequence.
- Training a neural network means finding the optimal set of weights that minimize a specified loss L.

Example ridge regression:
$$\min_{\{\boldsymbol{w}\}} \sum_i (f(x_i; \{\boldsymbol{w}\}) - d_i)^2 - \lambda \|\boldsymbol{P}\|^2$$

Solved by gradient descent:
$$\mathbf{w}^{k+1} = \mathbf{w}^k - \tau \nabla_w L$$

Back-propagation allows us to efficient compute the gradients of the loss w.r.t. the parameters.

