

DUAL CATV 5MHz to 65MHz CATV AMP IC

Package: SOIC 8

Product Description

RFMD's CGR-0118Z is a high performance 75Ω push-pull InGaP HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process variations. Designed to run over a wide range of supply voltage, from 5V to 12V, the CGR-0118Z does not require a bias resistor as compared to typical Darlington amplifiers. The CGR-0118Z is designed for 75Ω return path applications where linear performance is needed over the frequency range 5MHz to 65MHz.

Amplifier Configuration

Features

■ Flat Gain Response: 25.4 ± 0.3dB

■ Excellent OIP3: 37.5 dBm

Superior Return Loss: >20dB

Extremely Low CSO/CTB: -80/-67 dBc

Low Noise Figure: 3.0dB
Single Supply: 5V to 12V
Low DC Current: 130mA

Applications

■ CATV Return Path Amplifier

■ CATV Line Amplifier

■ Optical RX/TX

Parameter	Specification		Unit	Condition	
Parameter	Min.	Тур.	. Max.		Condition
Electrical Characteristics					V_{CC} =12V, T_A =25°C, 75 Ω System
Gain		25.4		dB	5MHz to 65MHz
Gain Slope		±0.3		dB	5MHz to 65MHz
Input Return Loss		20		dB	5MHz to 65MHz
Output Return Loss		20		dB	5MHz to 65MHz
Noise Figure		3		dBc	5 MHz to 65 MHz
Composite Triple Beat		-60		dBc	T7-T13 50dBmV/Channel
Cross Modulation		-63		dBc	T7-T13 50dBmV/Channel
Composite Second Order		-80		dBc	T7-T13 50dBmV/Channel
1dB Gain Compression Point		73.5		dBmV	65 MHz
Output 3rd Order Intercept Point		37.5		dBm	5MHz, 65MHz (5dBm/tone at output, 1MHz spacing)
Supply Voltage		12		V	See power supply note on page 7
Operating Current		130		mA	

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply (V _{CC})	14	V _{DC}
RF Input Voltage (Single Tone) (V _{IN})	65	dBmV
Operating Case Temperature Range (TC)	-40 to +100	°C
Storage Temperature Range (T _{STG})	-40 to +150	°C
RF Input (RFIN)	+24	dBmV

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Parameter	Specification		Unit	Condition		
Falailletei	Min.	Тур.	Max.	Offic	Condition	
Electrical Characteristics					V _{CC} =8V, T _A =25°C, 75Ω System	
Gain		25.4		dB	5 MHz to 65 MHz	
Gain Slope		±0.3		dB	5 MHz to 65 MHz	
Input Return Loss		20		dB	5MHz to 65MHz	
Output Return Loss		20		dB	5MHz to 65MHz	
Noise Figure		3		dBc	5 MHz to 65 MHz	
Composite Triple Beat		-67		dBc	T7-T13 50dBmV/Channel	
Cross Modulation		-63		dBc	T7-T13 50dBmV/Channel	
Composite Second Order		-80		dBc	T7-T13 50dBmV/Channel	
1dB Gain Compression Point		73.5		dBmV	65MHz	
Output 3rd Order Intercept Point		37.5		dBm	5MHz, 65MHz (5dBm/tone at output, 1MHz spacing)	
Supply Voltage		8		V	See power supply note on page 7	
Operating Current		130		mA		
5V Specification Table					V_{CC} =5V, T_A =25°C, 75 Ω System	
Gain		25.4		dB	5 MHz to 65 MHz	
Gain Slope		±0.3		dB	5 MHz to 65 MHz	
Input Return Loss		20		dB	5MHz to 65MHz	
Output Return Loss		20		dB	5MHz to 65MHz	
Noise Figure		2.7		dBc	5MHz to 65MHz	
Composite Triple Beat		-60		dBc	T7-T13 50dBmV/Channel	
Cross Modulation		-63		dBc	T7-T13 50dBmV/Channel	
Composite Second Order		-80		dBc	T7-T13 50dBmV/Channel	
1dB Gain Compression Point		74		dBmV	65MHz	
Output 3rd Order Intercept Point		40		dBm	m 5MHz, 65MHz (5dBm/tone at output, 1MHz spacing)	
Supply Voltage		5		V		
Operating Current		262		mA		

Typical Performance Curves (T_A=25°C)

Output Return Loss V_{DD}=8V

Input Return Loss V_{DD} =12V

dΒ

dΒ

dBc

Output Return Loss V_{DD} =12V

Noise Figure V_{DD} =12V

${\rm CSO\,V_{DD}}\text{=}\text{12V}$

CTB V_{DD}=12V

dB

Gain V_{DD} =8V

Output Return Loss V_{DD}=8V

Noise Figure V_{DD}=8V

 $CSOV_{DD}=8V$

dB

dB

rfmd.com

Typical Performance Curves (TA=25°C)

$Gain V_{DD} = 5V$

Input Return Loss V_{DD}=5V

Output Return Loss V_{DD}=5V

Noise Figure V_{DD}=5V

dΒ

dB

dB

Typical Performance Curves (TA=25°C)

CTB V_{DD} =5V

dB

$XMOD V_{DD} = 5V$

rfmd.com

Pin	Function	Description
1	RFFB	Feedback pin. External DC-blocking capacitor is required.
2	RFIN	RF input pin. External DC-blocking capacitor is required.
3	RFIN	Same as pin 2.
4	RFFB	Same as pin 1.
5	RFOUT	RF output and bias pin (open collector).
6,7	BYPASS	AC ground/Bypass.
8	RFOUT	Same as pin 5.
EPAD	GND	Exposed area on the bottom side of the package must be soldered to the ground plane of hte board for optimum thermal and RF performance. Several vias should be located under the EPAD as shown in the recommended land pattern.

Important Power Supply Note

The bias circuits used in 12V and 8V applications allow lower overall power consumption but can suffer damage from power supplies with fast turn-on times. To avoid the possibliity of damaging the IC with supplies which ramp faster than 1ms, we recommend slowing the ramp by adding a series resistor and parallel capacitor on the Vdd line. This is not a requirement at 5V operation.

Outline Dimensions

SYMBOL	8 SOIC			
SY	MIN	MAX		
Α	0.054	0.068		
Α1	0.001	0.004		
В	0.014	0.019		
D	0.189	0.196		
Е	0.150	0.157		
Н	0.229	0.244		
е	0.050	BSC		
С	0.0075	0.0098		
L	0.020	0.040		
Χ	0.0215 REF			
Т	0°	8°		
Т	7°	BSC		

NOTE:

1. TOP PACKAGE SURFACE TO BE MATTE FINISH VDI 24~27.

2. BOTTOM PACKAGE SURFACE TO BE MATTE FINISH VDI 8~11.

DIMENSION ARE EXCLUSIVE MOLD FLASH AND GATE BURR.

4. FOOT LENGTH MEASURING IS BASED ON THE GAUGE PLANE METHOD.

12V Application Schematic

8V Application Schematic

5V Application Schematic

12V Evaluation Board Layout

Value	Qty.	Location
2pF	2	C10, C14
3.3pF	1	C1
0.1uF	2	C8, C9
1uF	7	C2, C3, C4, C5, C7, C12, C13
10uF	2	C6, C11
100 Ohms	2	R1, R2
10uH (1008 PS-103 KLB)	2	L1, L2
RFMD™ XFM-0201-1WH	2	T1, T2

8V Evaluation Board Layout

Value	Qty.	Location	
2pF	2	C12, C16	
3.3pF	1	C1	
0.1uF	4	C2, C5, C8, C11	
1uF	7	C3, C4, C6, C7, C9, C14, C15	
10uF	2	C10, C13	
2.7 k Ohms	2	R1, R2	
100 Ohms	2	R3, R4	
10uH (1008 PS-103 KLB)	2	L1, L2	
RFMD™ XFM-0201-1WH	2	T1, T2	

5V Evaluation Board Layout

Value	Qty.	Location
2pF	1	C16
3.3pF	1	C1
0.1uF	3	C2, C5, C8
1uF	7	C3, C4, C6, C7, C9, C14, C15
10uF	1	C10
10 k Ohms	2	R1, R2
100 Ohms	2	R3, R4
10uH (1008 PS-103 KLB)	2	L1, L2
RFMD™ XFM-0201-1WH	2	T1, T2

Ordering Information

Part Number	Description	Reel Size (in)	Devices/Reel
CGR-0118ZSB	5 pcs Sample Bag	N/A	N/A
CGR-0118ZSQ	25 pcs Sample Bag	N/A	N/A
CGR-0118ZSR	Lead Free, RoHS Compliant	7	100
CGR-0118ZTR7	Lead Free, RoHS Compliant	7	750
CGR-0118ZTR13	Lead Free, RoHS Compliant	13	2500
CGR-0118ZPCBA-410	5MHz to 65MHz 12V Evaluation Board	N/A	N/A
CGR-0118ZPCBA-411	5MHz to 65MHz 8V Evaluation Board	N/A	N/A
CGR-0118ZPCBA-412	5MHz to 65MHz 5V Evaluation Board	N/A	N/A

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

CGR0118Z CGR0118ZTR13 CGR0118ZTR7 CGR0118ZSR