Condition-based Low-Degree Approximation of Real Polynomial Systems

> Josué TONELLI- CUETO UT San Antonio

Elias TSIGARIDAS

Invia Paris & IMJ-PRG

Slides at: https://tonellicueto.xyz/pdf/JMM2023_slides.pdf

WARNING

There will be one result on Eigenvalue Computations, the talk will focus on real polynomial systems

PROBLEM

Given a real polynomial system $g_1(x) = \dots = g_4(x) = 0$

in n variables,

- 1) what can we say about the conditioning of solving?
- 2) what does the condition say about the zero set?

Conditioning

- · The condition number depends on the metric — how we measure errors—
- · The condition number depends on the encoding how we write the problem-

Framework à la Renegar

— conic Framework

Z input space

2 input space E CI ill-posed inputs $C(i):=\frac{1}{d(i, \Sigma)}$

WEYL Setting

- projective

Set
$$Mp$$

$$\mathcal{H}_d := \prod_{i=1}^n \mathbb{R}[X_0, \dots, X_n]_d$$

Projective Space

= { & E Hd | & has a singular zaro}

$$|8||_{W}:=\sqrt{\sum_{i=1}^{n}\sum_{|\alpha|=d_{i}}^{n}\left(\frac{d_{i}}{\alpha}\right)^{-1}|8_{i,\alpha}|^{2}}$$

$$\frac{8}{8} = \frac{2}{3} \cdot \frac{2}{3} \times \frac{2}$$

$$\left(\begin{array}{c}di\\ \\ \\ \\ \\ \end{array}\right) = \frac{di}{\left(\begin{array}{c}di\\ \\ \\ \\ \end{array}\right)}$$

Weyl Condition Number (Cacker, Krick, Malajovish, Wschebor)

$$\mathcal{H}_{W}(8):=\frac{||8||_{W}}{dist_{W}(8,\Sigma)}$$

$$= \sup_{x \in S^{N}} \frac{||\mathbf{3}||_{W}}{\sqrt{||\mathbf{3}||^{2} + ||D_{x}\mathbf{3}^{-1}\Delta^{1/2}||^{-2}}}$$
where $\Delta = \operatorname{diag}(d_{i})$ & $D_{x}\mathbf{3}: T_{x}\mathbf{5}^{N} \rightarrow \mathbb{R}^{N}$

Main Theorem (Simple Form)

$$\leq D^{N/2} poly(N, lig D)^{N} log^{N}(2X_{W}(3))$$

where D= max d;

MAIN THEOREM (COMPLEX FORM) There is a cover $\{B(x, 1/c\sqrt{D})\}_{x \in G} \text{ of size } O(D^{1/2})$ of 5 s.t. For all x E g & d EHd, there is $\Phi_{xs} \in \mathbb{R}[x_0, x_0]^n$ of degree Spoly(u, log D) log (2 xw(3)) 5. †. # Z(8, Tx 5" ∩ B(x, 1/c√)) ≤ # Z((\(\overline{\psi}_{x\mathbb{s}}, \overline{\psi}_x \sigma^n\).

s.t. # Z(8, Tx5" ∩ B(x, 1/c√)) ≤ # Z(⊕x, 1×5").

Moreover, for all g ∈ Z(8, Tx5" ∩ B(x, 1/c√))

there is Z ∈ Z(⊕x, Tx5") converging quadratically

under Newton's method.

Corollary 1 of MAIN RESULT.

If
$$\#Z(8) \ge D^n$$
, then

 $\chi_{w}(8) \ge 2^{n/2/poly(n,\log D)^n}$

Real systems with many zeros

Real systems with many zeros are badly-conditioned

COROLALLY 2 OF MAIN THEOREM

Let FEHL be random

such that for all × E Sh,

the F:(x) are independent, subgaussian
and with anti-concentration. Then:

$$\left(\mathbb{E}\#\mathcal{Z}(F,P^n)^e\right)^{1/e} \leq D^{n/2} \operatorname{poly}(n,\log D)^n e^n$$

COROLALLY 2 OF MAIN THEOREM

Let FEHd. Under very general random hypotheses,
#2(f, Ph)1/n

is subexponential with constant

D^{1/2} poly(n, log D)

I.e. $\mathbb{P}(\# 2(F,\mathbb{P}^n)^{1/n} \geq t) \leq e^{-\frac{1}{p^{1/2}} pdy(n,\log D)}$

OROLALLY 2 OF MAIN THEOREM A KSS random polynomial system F E H(D,...,D) has its number of real zeros

has its number of real Zeros concentrated around

COMPARISSON WITH LERARID ET. AL.

Our Approach
Taylor Approx.

Many local approx.

Coutrol the moments

Robust Exploits analycity! LERARIO'S APPROACH

S. Harmonic Approx.

A global approx.

Control only probability

only KSS

(Levario, Diatta; 22) (Breiding, Keneshlou, Levario; 22)

1-Norm Setting

Set
$$Up$$

$$P_A := \{8 \in \mathbb{R}[x_0, ..., x_n] \mid 0 \in Supp \$ \subseteq A\}^n$$

Weyl Norm

where

$$\left(\begin{array}{c} \times := \times_{1}^{\alpha} ... \times_{N}^{\alpha} \right)$$

Cubic Condition Number (TC, Tsignidas)

$$(8): = \sup_{x \in I^{n}} \frac{||8||_{1}}{||8||_{2}}$$

where $\Delta = diag(di) & D_{x} & : \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Main Theorem (Simple Form)

$$Z(\S, T') \leq poly(n)^n log^2 n(2D) log(2C_1(\S))$$

where D= max d;

MAIN THEOREM (COMPLEX FORM) There is a partition into boxes {B}
REB of size O(log"(2D)) of I's.t. For all BEB & JEHd, there is $\Phi_{B,S} \in \mathbb{R}[X_0, X_0]^N$ of degree poly(n) log D log (2 C, (2)) s.t. #2(8,B) ≤ #2(₫_{8,8}). Moreover, for all & EZ(3,8), there is ZEZ(5,8),

converging quadratically under Newton's method.

Corollary 1 of MAIN RESULT

. If $\# 2(8,I') > D^{K}$, then $C_{1}(8) > 2^{D^{K}/poly(n,log D)^{n}}$

Real systems with many zeros are badly-conditioned

COROLALLY 2 OF MAIN THEOREM

Let $F \in P_A$ be random such that for all $x \in I^h$, the F:(x) are independent, subgaussian and with anti-concentration. Then:

$$\left(\boxed{E\#Z(F,T^n)^e}\right)^{1/e} \leq poly(n)^n \log^2 n(20) e^n$$

COROLALLY 2 OF MAIN THEOREM

Let FEPA. Under very general random hypotheses,

2(F, In) 1/11

is subexponential with constant $\log^2(2D)$ poly(n)

I.e. $P(\# 2(F,P^n)^{1/n} \ge t) \le e^{1-\frac{t}{\log^2(2D)} \operatorname{poly(n)}}$

The Details

Main Tricks

·Smale's a-theory
is stable under analytic truncation

· Well-conditioned polynomials converge fast around zeros — as fast as a geometric series

Smale's a-Theory

$$\alpha(8,x):=\beta(8,x)\gamma(8,x)$$

$$\beta(8,x):=\|D_{x}8^{-1}8(x)\|=\|x-N_{8}(x)\|$$

$$\gamma(8,x):=\max\{1,\sup_{k\geq 2}\|D_{x}8^{-1}\frac{1}{k!}D_{x}^{k}8\|$$

Smales α -Theorem There is absolute x > 0, s.t. if $\alpha(3, x) < \alpha_x$, then the Newton method at x converges quadratically. More concretely, dist $(N_3^{\kappa}(x), 2(3)) = O(2^{-2^{\kappa}})$

runcation Theorem (One version) Let & ER[X1, XN] SEM, XEB & T(3,x;5):= sup | Dx 8-12 Dx 8 | | Dx 8-12 Dx 8 | | Consider $\frac{s}{818(X)} = \frac{1}{\sum_{k=0}^{k} \frac{1}{k!}} D_{o}^{k} \frac{s}{8(X,...,X)}$

Then for $\delta - \log(\delta + 2) \ge \log T(\frac{8}{8}, x; \delta)$, $\delta - \log(\delta + 2) \ge \log T(\frac{8}{8}, x; \delta)$, $d(\frac{8}{8}, x) \le \frac{2 d(\frac{8}{8}, x) + 2^{1-\delta} d(\frac{8}{8}, x) + 2^{1-\delta} d(\frac{8}{8}, x; \delta)}{(1 - 2^{-\delta}(\delta + 2) T(\frac{8}{8}, x; \delta))^2}$

I.e.

approximate zero of & à la Smale

approximate zero of 815 à la Smale

+ reverse & more ineqs.

Moroz's Lemma

W-Lemma: For &ER[X,X]d & (x,x)es, $\left|\frac{1}{k!}\frac{d^{k}}{dt^{k}}\right|_{t=0}^{2}\left\{\left(\left(x_{0},x_{1}\right)+t\left(\left(x_{1},-x_{0}\right)\right)\right\}\leq\left|\left(\frac{d}{k}\right)\right|_{w}^{2}$ 1-Lemma: For &ER[X]ed, aEI
and p>0, if
either 21a1<1-p or p< 1/2d then $\left|\frac{1}{k!}\frac{d^k}{dt^k}\right|_{t=0}^{s(a+pt)} \leq \frac{1}{2^k} \left|\frac{3}{3}\right|_1$

Multivariate Moroz's 1-Lemma Let $g \in \mathbb{R}[X_1,...,X_n] \leq D$, $a \in \mathbb{I}^n \otimes p \in (0,1]^n$ Consider $8a,p:=(8:(a+PX)/||8:||_1)$ where P= diag(p). If for all i, either $2|\alpha_i| \leq 1-\rho$; or $\rho_i \leq 1/2D$ then for all e, $\left\|\frac{2^{\ell}D^{\ell}}{2^{\ell}}\right\|_{\infty,\infty}^{\ell} \leq \left(\frac{D+n-1}{n-1}\right) \leq \left(1+\frac{\ln(n-1)}{n-1}D\right)^{h-1}$

A Theorem about Eigenvalues

Triangle of competition Linearization Ligenvalue 1 Polynomial Problems Systems char polynomials

Eigenvalues/Zevos

Numerical Analist's Rule MEVER USE CHARACTERISTIC POLYNOMIALS TO COMPUTE EIGENVALUES

A Formalization For Hermitian Matrices

THM. Let A E Herma. Then $\chi_{w}(\chi_{A}) > 2^{d/polylog(d)}$

 $2 \left(\frac{\chi_{A}}{2} \right) > 2^{d/polylog(d)}$

I.e. characteristic polynomials of Hermitian matrices are badly conditioned. Future Work

- · Can we make all this
 into fast algorithms?

 avoid condition estimation—
 - · Generalize it beyond zero-dim systems - volume & Betti numbers-

