Mastery Homework 8

Rafael Laya

Fall 2018

Section 6.1

Problem 26

Statement: Let $\vec{u} = \begin{bmatrix} 5 \\ -6 \\ 7 \end{bmatrix}$, and let W be the set of all $\vec{x} \in \mathbb{R}^3$ such that $\vec{u} \cdot \vec{x} = 0$.

What theorem in Chapter 4 can be used to show that W is a subspace of \mathbb{R}^3 ? Describe W in geometric language.

Solution: The geometric place of all vectors perpendicular to the vector \vec{u} in \mathbb{R}^3 is the plane P that is perpendicular to \vec{u} that goes through the origin. That is, the plane 5x - 6y + 7z = 0. A plane in \mathbb{R}^3 is spanned by two vectors. The span of any set of vectors in a vector space V is a subspace of V by theorem 1 in chapter 4. Therefore W has to be subspace of \mathbb{R}^3 . For instance, solve for z in the equation for the plane and find two vectors in the plane that are not parallel: $z = \frac{-5x + 6y}{7}$. When x = y = 1 we have $z = \frac{-5 + 6}{7} = \frac{1}{7}$ and x = 2y = 2 we have $z = \frac{-10 + 6}{7} = -\frac{4}{7}$ And so

the plane and find two vectors in the plane that are not parallel:
$$z = \frac{-5x + 6y}{7}$$
. When $x = y = 1$ we have $z = \frac{-5 + 6}{7} = \frac{1}{7}$ and $x = 2y = 2$ we have $z = \frac{-10 + 6}{7} = -\frac{4}{7}$ And so $W = \operatorname{Span}\left(\left\{\begin{bmatrix}1\\1\\\frac{1}{7}\end{bmatrix},\begin{bmatrix}2\\1\\-\frac{4}{7}\end{bmatrix}\right\}\right)$.

Problem 28

Statement: Suppose a vector \vec{y} is orthogonal to vectors \vec{u} and \vec{v} . Show that \vec{y} is orthogonal to the vector $\vec{u} + \vec{v}$.

Solution: Suppose \vec{y} is orthogonal to \vec{u} and \vec{v} in some vector space V with an inner product. Then $\vec{y} \cdot \vec{u} = 0$ and $\vec{y} \cdot \vec{v} = 0$. Now consider the following:

$$\vec{y} \cdot (\vec{u} + \vec{v}) = \vec{y} \cdot \vec{u} + \vec{y} \cdot \vec{v}$$
$$= 0 + 0$$
$$= 0$$

Therefore \vec{y} is orthogonal to the vector $\vec{u} + \vec{v}$.

6.2

Problem 32

Statement: Let $\{\vec{v_1}, \vec{v_2}\}$ be an orthogonal set of nonzero vectors, and let c_1, c_2 be any nonzero scalars. Show that $\{c_1\vec{v_2}, c_2\vec{v_2}\}$ is also an orthogonal set. Since orthogonality of a set is defined in terms of pairs of vectors, this shows that if the vectors in an orthogonal set are normalized, the new set will still be orthogonal.

Solution: Suppose $\{\vec{v_1}, \vec{v_2}\}$ is an orthogonal set of nonzero vectors in a vector space V with inner product. Let c_1, c_2 be any nonzero scalars. Then $\vec{v_1} \cdot \vec{v_2} = 0$. Now consider the following:

$$(c_1 \vec{v_1}) \cdot (c_2 \vec{v_2}) = (c_1)(c_2)(\vec{v_1} \cdot \vec{v_2})$$

= $(c_1 c_2)(0)$
= 0

Then $c_1\vec{v_1}$ is orthogonal to $c_2\vec{v_2}$ and the set $\{c_1\vec{v_1}, c_2\vec{v_2}\}$ is an orthogonal set.

Problem 33

Statement: Given $\vec{u} \neq \vec{0}$ in \mathbb{R}^n , let $L = \text{Span}\{\vec{u}\}$. Show that the mapping $\vec{x} \mapsto \text{proj}_L(\vec{x})$ is a linear transformation.

Solution: Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be the transformation such that $T(\vec{x}) = \operatorname{proj}_L(\vec{x})$ for some $\vec{u} \neq \vec{0}$ in \mathbb{R}^n . Where $L = \operatorname{Span}(\vec{u})$. Since L contains one vector, we find an equation for T:

$$T(\vec{x}) = \frac{\vec{x} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$$

Now consider any two vectors $\vec{x_1}, \vec{x_2} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then:

$$T(\vec{x_1} + \vec{x_2}) = \frac{(\vec{x_1} + \vec{x_2}) \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$$

$$= \frac{\vec{x_1} \cdot \vec{u} + \vec{x_2} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$$

$$= \left(\frac{\vec{x_1} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} + \frac{\vec{x_2} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}\right) \vec{u}$$

$$= \frac{\vec{x_1} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} + \frac{\vec{x_2} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$$

$$= T(\vec{x_1}) + T(x_2)$$

And,

$$T(c\vec{x_1}) = \frac{(c\vec{x_1}) \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$$

$$= \frac{c(\vec{x_1} \cdot \vec{u})}{\vec{u} \cdot \vec{u}} \vec{u}$$

$$= c \left(\frac{\vec{x_1} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} \right)$$

$$= c T(\vec{x})$$

Therefore T is a linear transformation.