

Microcontrolador ESP32

Introducción

Contenido

- ► Introducción
- ▶ Caracerísticas
- ► Diagrama de bloques
- ▶ Terminales
- ▶ Periféricos y Sensores
- ► Caracteristicas Eléctricas

Introducción

- ESP32 es un chip que combina Wi-Fi y Bluetooth de 2.4 GHz diseñado con la tecnología de 40 nm de ultra bajo consumo de TSMC¹.
- Está diseñado para lograr el mejor desempeño en potencia y radio frecuencia (RF), mostrando robustez, versatilidad y confiabilidad en una amplia variedad de aplicaciones y escenarios.
- ESP32 está diseñado para aplicaciones móviles, dispositivos electrónicos portátiles e Internet de las cosas (IoT).
- Cuenta con todas las características de vanguardia de los chips de bajo consumo, incluida la activación de reloj de granularidad fina, múltiples modos de alimentación y escalado dinámico de alimentación. Por ejemplo, en un escenario de aplicación de diversos de sensores IoT de baja potencia, ESP32 se puede activarse periódicamente solo cuando se detecta una condición específica.

Introducción

- Puede operar en un ciclo de trabajo bajo el cual usa para minimizar la cantidad de energía que consume el chip.
- La salida del amplificador de potencia también es ajustable, lo que contribuye a un equilibrio óptimo entre el rango de comunicación, la velocidad de datos y el consumo de energía.

¹ TSMC Taiwan Semiconductor Manufacturing Company

► CPU

- Xtensa® single-/dual-core 32-bit LX6 microprocessor(s)
- CoreMark² score:
 - 1 core at 240 MHz: 504.85 CoreMark; 2.10 Core Mark/MHz
 - 2 cores at 240 MHz: 994.26 CoreMark; 4.14 CoreMark/MHz
- 448 KB ROM
- 520 KB SRAM
- 16 KB SRAM en RTC (Real Time Clock)
- Soporta múltiples chips flash/SRAM tipo con interface QSPI QSPI (Quad SPI), SPI (Serial Peripheral Interface)

² CoreMark es un punto de referencia que mide el rendimiento de CPUs utilizadas en los sistemas embebidos desarrollado en 2009 y que pretende convertirse en un estándar de la industria, reemplazando el punto de referencia *Dhrystone*.

Reloj y Temporizadores

- Oscilador interno de 8 MHz con calibración
- Oscilador RC interno con calibración
- Oscilador de cristal externo de 2 MHz ~ 60 MHz
 (40 MHz solo para funcionalidad Wi-Fi/Bluetooth)
- Oscilador de cristal externo de 32 kHz para RTC con calibración
- 2 grupos de temporizadores, incluye 2 × temporizadores de 64 bits y
 1 × watchdog principal en cada grupo
- 1 temporizador RTC (Real Time Clock)
- RTC watchdog

- Interfaces a periféricos avanzadas
 - 34 GPIOs programables
 - 1 ADC de 12-bit con 8 canales
 - 2 DACs de 8 bits
 - 10 touch sensors

- 4 SPI (Serial Peripheral Interface)
- 2 I2S (Inter-IC Sound)
- 2 I2C (Inter-Integrated Circuit)
- 3 UART (Universal Asynchronous Receiver-Transmitter)
- RMT (TX/RX) Infrared Remote Controller
- PWM para motores, PWM (Pulse Width Modulation)
- PWM para LEDs hasta 16 canales
- Sensor Hall
- Interfaz Ethernet MAC con DMA dedicada (IEEE 1588)
 MAC (Media Access Control), DMA (Direct Memory Access)
- TWAI compatible con ISO 11898-1 (CAN 2.0)
 TWAI (Two Wire Automotive Interface), CAN (Controller Areal Network)

Seguridad

- Arranque seguro (Secure Boot)
- Cifrado de flash
- OTP de 1024 bits, hasta 768 bits para el cliente (One-Time Pad)
- Aceleración de hardware criptográfico:
 - AES (Advanced Encryption Standard)
 - Hach (SHA-2) (Secure Hash Algorithm 2)
 - RSA (Rivest-Shamir-Adleman)
 - ECC (Elliptic-curve cryptography)
 - Generador de números aleatorios (RNG)

Diagrama de bloques

ESP32 Pin Layout (QFN 6*6, Top View)

ESP32 Pin Layout (QFN 5*5, Top View)

Name	No.	Type	Function							
	Analog									
VDDA	1	Р	Analog power supply (2.3	$V\sim 3.6 V$)						
LNA_IN	2	1/0	RF input and output							
VDD3P3	3	Р	Analog power supply (2.3	$V\sim 3.6 V$)						
VDD3P3	4	Р	Analog power supply (2.3	$V \sim 3.6 V$)						
	VDD3P3_RTC									
SENSOR_VP	5	1	GPIO36, ADC1_CH0,	RTC_GPI00						
SENSOR_CAPP	6	I	GPIO37, ADC1_CH1,	RTC_GPIO1						
SENSOR_CAPN	7	1	GPIO38, ADC1_CH2,	RTC_GPIO2						
SENSOR_VN	8	I	GPIO39, ADC1_CH3,	RTC_GPIO3						
			High: On; enables the chi	р						
CHIP_PU	9	- 1	Low: Off; the chip powers	off						
			Note: Do not leave the Ch	HIP_PU pin floati	ng.					
VDET_1	10	1	GPIO34, ADC1_CH6,	RTC_GPIO4						
VDET_2	11	ı	GPIO35, ADC1_CH7,	RTC_GPIO5						
32K_XP	12	1/0	GPIO32, ADC1_CH4,	RTC_GPIO9,	TOUCH9,	32K_XP (32.768	kHz crystal	oscillator input)		
32K_XN	13	1/0	GPIO33, ADC1_CH5,	RTC_GPIO8,	TOUCH8,	32K_XN (32.768	kHz crystal	oscillator outpu	ut)	
GPIO25	14	1/0	GPIO25, ADC2_CH8,	RTC_GPIO6,	DAC_1,	EMAC_RXD0				
GPIO26	15	1/0	GPIO26, ADC2_CH9,	RTC_GPIO7,	DAC_2,	EMAC_RXD1				
GPIO27	16	1/0	GPIO27, ADC2_CH7,	RTC_GPIO17,	TOUCH7,	EMAC_RX_DV				
MTMS	17	1/0	GPIO14, ADC2_CH6,	RTC_GPIO16,	TOUCH6,	EMAC_TXD2,	HSPICLK,	HS2_CLK,	SD_CLK,	MTMS
MTDI	18	1/0	GPIO12, ADC2_CH5,	RTC_GPIO15,	TOUCH5,	EMAC_TXD3,	HSPIQ,	HS2_DATA2,	SD_DATA2,	MTDI
VDD3P3_RTC	19	Р	Input power supply for RTC IO (2.3 V \sim 3.6 V)							
MTCK	20	1/0	GPIO13, ADC2_CH4,	RTC_GPIO14,	TOUCH4,	EMAC_RX_ER,	HSPID,	HS2_DATA3,	SD_DATA3,	MTCK
MTDO	21	1/0	GPIO15, ADC2_CH3,	RTC_GPIO13,	TOUCH3,	EMAC_RXD3,	HSPICS0,	HS2_CMD,	SD_CMD,	MTDO

Name	No.	Type	Function							
GPIO2	22	I/O	GPIO2,	ADC2_CH2,	RTC_GPIO12,	TOUCH2,		HSPIWP,	HS2_DATA0,	SD_DATA0
GPI00	23	I/O	GPIO0,	ADC2_CH1,	RTC_GPIO11,	TOUCH1,	EMAC_TX_CLK,	CLK_OUT1	,	
GPIO4	24	I/O	GPIO4,	ADC2_CH0,	RTC_GPIO10,	TOUCH0,	EMAC_TX_ER,	HSPIHD,	HS2_DATA1,	SD_DATA1
VDD_SDIO										
GPIO16	25	I/O	GPIO16,	HS1_DATA4,	U2RXD,	EMAC_CLK_	OUT			
VDD_SDIO	26	Р	Output po	ower supply: 1.8	$8\mathrm{V}$ or the same $^{\mathrm{V}}$	oltage as VDD	3P3_RTC			
GPIO17	27	I/O	GPIO17,	HS1_DATA5,	U2TXD,	EMAC_CLK_	OUT_180			
SD_DATA_2	28	I/O	GPIO9,	HS1_DATA2,	U1RXD,	SD_DATA2,	SPIHD			
SD_DATA_3	29	I/O	GPIO10,	HS1_DATA3,	U1TXD,	SD_DATA3,	SPIWP			
SD_CMD	30	I/O	GPIO11,	HS1_CMD,	U1RTS,	SD_CMD,	SPICS0			
SD_CLK	31	I/O	GPIO6,	HS1_CLK,	U1CTS,	SD_CLK,	SPICLK			
SD_DATA_0	32	I/O	GPIO7,	HS1_DATA0,	U2RTS,	SD_DATA0,	SPIQ			
SD_DATA_1	33	I/O	GPIO8,	HS1_DATA1,	U2CTS,	SD_DATA1,	SPID			
					VDD	03P3_CPU				
GPIO5	34	I/O	GPIO5,	HS1_DATA6,	VSPICS0,	EMAC_RX_C	LK			
GPIO18	35	I/O	GPIO18,	HS1_DATA7,	VSPICLK					
GPIO23	36	I/O	GPIO23,	HS1_STROBE	, VSPID					
VDD3P3_CPU	37	Р	Input pow	er supply for CF	PU IO (1.8 V \sim 3	.6 V)				
GPIO19	38	I/O	GPIO19,	U0CTS,	VSPIQ,	EMAC_TXD0				
GPIO22	39	I/O	GPIO22,	U0RTS,	VSPIWP,	EMAC_TXD1				
U0RXD	40	I/O	GPIO3,	U0RXD,	CLK_OUT2					
U0TXD	41	I/O	GPIO1,	U0TXD,	CLK_OUT3,	EMAC_RXD2				
GPIO21	42	I/O	GPI021,		VSPIHD,	EMAC_TX_EN	N			

	Analog						
VDDA	4	43	Р	og power supply (2.3 V \sim 3.6 V)			
XTAL_	N	44	0	External crystal output			
XTAL_	.P	45	I	External crystal input			
VDDA	4	46	Р	Analog power supply (2.3 V \sim 3.6 V)			
CAP2	2	47	I	Connects to a 3.3 nF (10%) capacitor and 20 k Ω resistor in parallel to CAP1			

Name	No.	Type	Function			
CAP1	48	I	Connects to a 10 nF series capacitor to ground			
GND	49	Р	Ground			

Note:

- The pin-pin mapping between ESP32-U4WDH and the embedded flash is as follows: GPIO16 = CS#, GPIO17 = IO1/DO, SD_CMD = IO3/HOLD#, SD_CLK = CLK, SD_DATA_0 = IO2/WP#, SD_DATA_1 = IO0/DI. The pins used for embedded flash are not recommended for other uses.
- In most cases, the data port connection between ESP32 series of chips other than ESP32-U4WDH and external flash is as follows: SD_DATA0/SPIQ = IO1/DO, SD_DATA1/SPID = IO0/DI, SD_DATA2/SPIHD = IO3/HOLD#, SD_DATA3/SPIWP = IO2/WP#.
- For a quick reference guide to using the IO_MUX, Ethernet MAC, and GIPO Matrix pins of ESP32, please refer to Appendix ESP32 Pin Lists.