# Cálculo de pH

#### **Gabriel Braun**

Colégio e Curso Pensi, Coordenação de Química



### Sumário

| 1 | Ácidos e Bases Fracos1.1 Habilidades | 1 |
|---|--------------------------------------|---|
| 2 | Ácidos e Bases Polipróticos          | 1 |
|   | 2.1 Habilidades                      |   |

# 1 Ácidos e Bases Fracos

- 1. Constante de ionização.
- 2. Grau de ionização.
- 3. pH de soluções de ácidos e bases fracos.
- 4. Hidrólise.
- 5. pH de soluções salinas.

# 1.1 Habilidades

- Calcular o pH de soluções de ácidos e bases fracos.
- Calcular o grau de ionização de ácidos e bases fracos.
- Calcular a constante de ionização em função do pH.
- Calcular o pH de soluções salinas de hidrólise ácida ou básica.

# 2 Ácidos e Bases Polipróticos

- 1. pH de soluções de ácidos polipróticos.
- 2. Soluções de sais de ácidos polipróticos.
- 3. Curva de distribuição de espécies em função do pH.

#### 2.1 Habilidades

- Calcular o pH de soluções de ácidos polipróticos.
- Calcular o pH de soluções de sais anfipróticos.
- Calcular a concentração de todos os íons em solução em função do pH.

# **Problemas**

#### **PROBLEMA 1**

O pH de uma solução  $0.2 \text{ mol L}^{-1}$  de ácido crotônico,  $C_3H_5COOH$ , em água é 2.7.

Assinale a alternativa que mais se aproxima do pKa do ácido.

**A** 2,0

**B** 2,6

**c** 3,5

**D** 4,7

**E** 6,3

#### **PROBLEMA 2**

O pH de uma solução 0,12 mol $\rm L^{-1}$  de ácido cloroso,  $\rm HClO_2,$  em água é 1,5.

Assinale a alternativa que mais se aproxima do pKa do ácido.

**A** 0,79

**B** 1,0

**c** 1,3

**D** 1,6

**E** 2,0

#### **PROBLEMA 3**

O pH de uma solução de ácido nitroso, HNO2, em água é 2,5.

**Assinale** a alternativa que mais se aproxima da concentração inicial do ácido.

**A**  $0,026 \, \text{mol} \, L^{-1}$ 

**B**  $0.039 \, \text{mol} \, \text{L}^{-1}$ 

**c**  $0,060 \, \text{mol} \, \text{L}^{-1}$ 

**D**  $0,091 \, \text{mol} \, L^{-1}$ 

**E**  $0,14 \, \text{mol} \, \text{L}^{-1}$ 

#### **Dados**

•  $K_a(HNO_2) = 4.3 \times 10^{-4}$ 

#### **PROBLEMA 4**

O pH de uma solução de metilamina, CH<sub>3</sub>NH<sub>2</sub>, em água é 12.

**Assinale** a alternativa que mais se aproxima da concentração inicial da base.

**A**  $0,18 \, \text{mol} \, L^{-1}$ 

**B**  $0,23 \, \text{mol} \, L^{-1}$ 

**c**  $0.30 \, \text{mol} \, \text{L}^{-1}$ 

**D**  $0.39 \, \text{mol} \, \text{L}^{-1}$ 

**E**  $0.51 \, \text{mol} \, \text{L}^{-1}$ 

#### **Dados**

•  $K_b(CH_3NH_2) = 3.6 \times 10^{-4}$ 

#### **PROBLEMA 5**

Considere uma solução 0,2 mol  ${\rm L}^{-1}$  em ácido acético, CH3COOH.

**Assinale** a alternativa que mais se aproxima do grau de desprotonação do ácido acético na solução.

**A** 0,79%

**B** 0,95%

**c** 1,1%

**D** 1,4%

**E** 1,7%

<sup>\*</sup>Contato: gabriel.braun@pensi.com.br, (21) 99848-4949

#### **Dados**

•  $K_a(CH_3COOH) = 1.8 \times 10^{-5}$ 

#### **PROBLEMA 6**

Considere uma solução 3,7  $\times$   $10^{-3}\, mol\, L^{-1}$  em ácido lático, CH<sub>3</sub>CH(OH)COOH.

**Assinale** a alternativa que mais se aproxima do grau de desprotonação do ácido acético na solução.

A 11%

**B** 17%

**c** 25 %

**D** 38 %

**E** 58%

#### **Dados**

•  $K_a(CH_3CH(OH)COOH) = 8,4 \times 10^{-4}$ 

#### **PROBLEMA 7**

**Assinale** a alternativa que mais se aproxima do pH de uma solução  $0.08 \text{ mol } L^{-1}$  em ácido acético.

**A** 3,2

**B** 4,2

**c** 5,4

**D** 7,0

**E** 9,2

#### Dados

•  $K_a(CH_3COOH) = 1.8 \times 10^{-5}$ 

#### **PROBLEMA 8**

**Assinale** a alternativa que mais se aproxima do pH de uma solução  $0.1~{\rm mol\,L^{-1}}$  em ácido tricloroacético.

**A** 0,52

**B** 0,62

**c** 0,75

**D** 0,91

**E** 1,1

# Dados

•  $K_a(CCl_3COOH) = 0.3$ 

# PROBLEMA 9

Considere uma solução  $0,06 \, \text{mol} \, L^{-1}$  em amônia,  $NH_3$ .

**Assinale** a alternativa que mais se aproxima do grau de protonação da amônia na solução.

A 1,4%

**B** 1,7 %

**c** 2,1 %

**D** 2,6 %

**E** 3,3 %

#### Dados

•  $K_b(NH_3) = 1.8 \times 10^{-5}$ 

## PROBLEMA 10

Considere uma solução  $0.012 \, \text{mol} \, L^{-1}$  em nicotina,  $C_{10} H_{14} N_2$ .

**Assinale** a alternativa que mais se aproxima do grau de protonação da amônia na solução.

**A** 0,88%

**B** 1,1%

**c** 1,4%

**D** 1,7%

**E** 2,1%

#### **Dados**

•  $K_b(C_{10}H_{14}N_2) = 1 \times 10^{-6}$ 

#### **PROBLEMA 11**

 $\bf Assinale$  a alternativa que mais se aproxima do pH de uma solução 0,1 mol  $\bf L^{-1}$  em metilamina.

A 2,9

**B** 4,2

**c** 5,9

**D** 8,3

**E** 12

#### **Dados**

• Kb(metilamina).

#### **PROBLEMA 12**

**Assinale** a alternativa que mais se aproxima da concentração de hidróxido de uma solução  $0.02 \text{ mol L}^{-1}$  em trietilamina.

A  $1.7 \,\mathrm{mmol}\,\mathrm{L}^{-1}$ 

 $\mathbf{B}$  2,3 mmol L<sup>-1</sup>

**c** 3,0 mmol L

 $\mathbf{D}$  4,0 mmol L<sup>-1</sup>

 $\mathbf{E}$  5,3 mmol L<sup>-1</sup>

#### **Dados**

•  $K_b((C_2H_5)_3N) = 1 \times 10^{-3}$ 

#### **PROBLEMA 13**

Considere as soluções.

1.  $HCl\ 1\times 10^{-5}\ mol\ L^{-1}$ 

2. CH<sub>3</sub>NH<sub>2</sub> 0,2 mol L<sup>-1</sup>

3.  $CH_3COOH 0,2 mol L^{-1}$ 

4.  $C_6H_5NH_2$  0,2 mol  $L^{-1}$ 

**Assinale** a alternativa que relaciona as soluções em ordem *crescente* de pH.

A 3; 1; 2; 4.

B 1; 3; 2; 4.

C 4; 2; 1; 3.

D 4; 3; 1; 2.

E 2; 3; 1; 4.

#### **PROBLEMA 14**

Considere as soluções.

1. NaOH  $1 \times 10^{-5} \, mol \, L^{-1}$ 

2. NaNO<sub>2</sub> 0,2 mol  $L^{-1}$ 

3.  $NH_3 0,2 \text{ mol } L^{-1}$ 

4. NaCN  $0,2 \text{ mol } L^{-1}$ 

**Assinale** a alternativa que relaciona as soluções em ordem *crescente* de pH.

A 2; 4; 1; 3.

B 3; 2; 1; 4.

c 1; 4; 2; 3.

D 4; 2; 3; 1.

E 2; 1; 3; 4.

| PROBLEMA 15 |
|-------------|
| PROBLEMA 16 |
| PROBLEMA 17 |
| PROBLEMA 18 |
| PROBLEMA 19 |
| PROBLEMA 20 |
| PROBLEMA 21 |
| PROBLEMA 22 |
| PROBLEMA 23 |
| PROBLEMA 24 |
| PROBLEMA 25 |
| PROBLEMA 26 |
| PROBLEMA 27 |
| PROBLEMA 28 |
| PROBLEMA 29 |
| PROBLEMA 30 |
| PROBLEMA 31 |
| PROBLEMA 32 |
| PROBLEMA 33 |
| PROBLEMA 34 |
| PROBLEMA 35 |
| PROBLEMA 36 |
| PROBLEMA 37 |
| PROBLEMA 38 |
| PROBLEMA 39 |
| PROBLEMA 40 |
| PROBLEMA 41 |
| PROBLEMA 42 |
| PROBLEMA 43 |
| PROBLEMA 44 |
| PROBLEMA 45 |

**PROBLEMA 46** 

**Problemas cumulativos** 

| 1      | PROBLEMA 47 |
|--------|-------------|
| i<br>i |             |
| 1      | PROBLEMA 48 |
|        | PROBLEMA 49 |
| 1      | PROBLEMA 50 |
| 1      | PROBLEMA 51 |
|        | PROBLEMA 52 |
|        | PROBLEMA 53 |
|        | PROBLEMA 54 |
| i<br>I | Cabarita    |
| 1      | Gabarito    |
| 1      | Problemas   |
| l<br>l | 1. D        |
| <br>   |             |
| i      | 2. E        |
| I<br>I | 3. A        |
| <br>   | 4. C        |
| i      | 5. <b>B</b> |
| l<br>l | 6. D        |
| 1      | 7. A        |
| i      | 8. E        |
| l<br>l | 9. B        |
| <br>   | 10. D       |
| i      | 11. E       |
| l<br>l | 12. D       |
| 1      | 13. A       |
| 1      | 14. E       |
| i<br>i | 15          |
| 1      | 16          |
| <br>   | 17          |
| i<br>i | 18          |
| 1      | 19          |
| <br>   | 20          |
| i      | 21          |
| l<br>l | 22          |
| 1      | 23          |
| i      | 24          |
| l<br>l | 25          |
| <br>   | 26          |
| i      | 27          |
| I<br>I | 28          |
| 1      | 29          |
|        | 30<br>31    |
| 1      | 32          |
| 1      | 33          |
| i      |             |

35. -

38. -

- 39. -
- 40. -
- 41. -
- 42. -
- 43. -
- 44. -
- 45. -
- 46. -

# **Problemas cumulativos**

- 47. -
- 48. -
- 49. -
- 50. -
- 51. -
- 52. -
- 53. -
- 54. -