Primer Conjunto de Ejercicios - Compiladores

David Ricardo Pedraza Silva

November 25, 2021

Ejercicio 3.3.1

Lenguaje de Programación C

- Caracteres: ascii, UFT-8 en algunos compiladores.
- Enteros: números comunes como se les entiende usualmente. Hay soporte para números octales (empiezan pro 0) y números hexadecimales (empiezan por 0x) que incluyen como dígitos a las letras de la A (o a) a la F (o f). Si termina en l o L, pasa a ser de tipo long.

Flotantes: constan de un entero, un punto, y otro entero. En ocasiones pueden contar con exponentes. Esto se escribe como un E seguida de un signo y un entero.

• Identificadores: no pueden empezar por un número, incluyen caracteres alfanuméricos y guiones bajos. Son sensibles a la diferencia entre minúsculas y mayúsculas.

Lenguaje de Programación C++

• Caracteres: igual que en C.

• Numeros: igual que en C.

• Identificadores: igual que en C.

Lenguaje C#

• Caracteres: UTF-16 (Por Microsoft), Unicode.

- Igual que en C, pero pueden terminar en f, o m. estos indican flotantes o decimales.
- Identificadores: Igual que en C.

Lenguaje Fortran

- Alfabeto inglés con todos sus signos de puntuación, números comunes y corrientes, así como símbolos adicionales (\$,&,<,>,+,=,../).
- Digitos con + al principio de forma opcional en el caso de los enteros. En el caso de los flotantes e ssimilar a C: una parte entera, otra fraccionaria, y opcionalmente un exponente.
- No mas de 31 caracteres. No pueden comenzar por _ o un número. Por lo demás pueden usar tanto números, como guiones bajos, como letras.

Java

- Igual que en C#
- Igual que en C + +
- Igual que en C

Lisp

- Unicode
- Secuecnias de dígitos como se esperarían normalmente. Números arabigos en el caso de enteros, caso contrario un entero seguido de punto y un fraccionario (una cadena arbitraria de números arábigos)
- Una secuencia de numeros y letas.

\mathbf{SQL}

- Unicode, UFT-8
- enteros de no más de 128 dígitos y reales como en C
- Como en C, de no más de 128 caracteres.

Ejercicio 3.3.2

- **d.** Lenguajes en el alfabeto $\{a, b\}$ con exactamente tres b's.
- **e.** El lenguaje sobre $\{a, b\}$ con un número par de a's y b's.

Ejercicio 3.3.4

$$select \rightarrow (S|s)(E|e)(L|l)(E|e)(C|c)(T|t)$$

Ejercicio 3.3.5

A.

$$S \to \Sigma - \{a, e, i, o, u\}$$

$$T \to S^* a(S|a)^* e(S|e)^* i(S|i)^* o(S|o)^* u(S|u)^*$$
(1)

В.

$$S \to a^* \cdots z^*$$

 $\mathbf{C}.$

$$S \to [a - zA - Z]$$

 $T \to /^*(S|^{"*}/")^*S(S)^* * /$ (2)

D.

$$S \to [\land ([0-9]^*0[0-9]^*0[0-9]^*] \cdot \cdot \cdot \cdot [0-9]^*9[0-9]^*9[0-9]^*)^*]$$

E.
$$S \to ([0-9]^*0[0-9]^*0[0-9]^*| \cdots [0-9]^*9[0-9]^*9[0-9]^*)^*$$

 $\mathbf{F}.$

$$S \to (aa|bb)^*((ab|ba)(aa|bb)^*(ab|ba)(aa|bb)^*)^*$$

G.

$$S \rightarrow [kqrbnp0 - 8]?[-x][kqrbnp0 - 8]?$$

Η.

$$S \rightarrow b^*(ab?)^*$$

I.

$$S \rightarrow b^* a^* b? a^*$$

Ejercicio 3.3.7

\"\\

Ejercicio 3.3.8 Suponga el lenguaje regular $L \subset \Sigma$. Existe un autómata cone estados Q y estados de aceptación F que acepta a L. Para aceptar a su complemento basta con tomar el mismo autómata, pero tomando como estados de aceptación a Q - F. Luego $\Sigma - L$ es un lenguaje regular, por lo que existe una expresión regular (de las cláicas, sin ningún \wedge) representa a este lenguaje. Como la concatenación de lenguajes regulares es regular, es claro que cualquier expresión regular con \wedge en sus entradas tiene un equivalente sin \wedge .

3.3.10

Α.

Si \wedge está ala derecha de un paréntesis cuadrado, es complemento de algo. Caso contrario es inicio de cadena.

3.3.11 EL primero y segundo caso se quedan igual. * se reemplaza por .*, ? se reemplaza por '.' y [s] por [s] o, en el caso clásico, si $s=s_1\cdots s_n$, entonces $(s_1\cdots s_n)$

 $\bf 3.3.12$ _ se reemplaza por '.', % se reemplaza por '.*' y y se puede reemplazar e por .n.

3.4.1

3.4.3

Α.

X	1	2	3	4	5	6	7	8	9
f(x)	0	0	1	2	3	4	5	1	2

В.

X	1	2	3	4	5	6
f(x)	0	1	2	3	4	5

 $\mathbf{C}.$

X	1	2	3	4	5	6	7
f(x)	0	0	0	1	1	2	3

3.4.4 Es claro que f(1) = 0, por lo que se cumple para este caso particular. Suponga que se cumple para n. Es decir: f(n) es el índice más grande para el que $b_1 \cdots b_{f(n)}$ es tanto prefijo como subfijo propio. Esto es: $b_1 \cdots b_{f(n)} = b_{n-f(n)} \cdots b_{f(n)}$. t empieza como t = f(n). Si $b_{t+1} = b_{f(n)+1}$ entonces f(n+1) = f(n)+1. De lo contrario hay que encontrar un prefijo que sea subfijo tan grande como sea posible: así t = f(f(n)). Claramente este procedimiento debe llegar a cero y se detiene cuando $b_{t+1} = b_{n+1}$, en cuyo caso t+1 será el índice del prefijo más grande: es decir f(n+1) = t+1. Por lo que el algoritmo sirve para todo natural.

- **3.4.5** Cuando se asigna t = f(t), t disminuye así sea en 1 unidad. EL número de veces que peude disminuir de esta forma es s-1. En la siguiente operación (para s+1) t sólo podrá aumentar, y el bucle se ejecuta 0 veces, si tomamos el peor caso para s. Para s+2 sólo podrá disminuir en 1 o aumentar 1, y así sucesivamente. POr este motivo la cantidad total de iteraciones para t=f(t) es s+(n-s), a los sumo n veces.
- **3.4.6** Para ababaab verdadero, para abababbaa es falso.

3.4.9

A.

El numero de fibonacci f_n

- **B.** ver archivo colab
- C. ver archivo colab
- **D.** Esta fórmula se cumple para s_1 y s_2 . Suponga que se cumple para s_n . En s_{n+1} f(j) se cumple para $j \leq |s_n|$. Para $j > |s_n|$ observamos que el s_k más grande tal que $|s_k| \leq j+1$ no es otro que s_n . Sea $j=j'+|s_n|$. Entre $|s_n|$ y $j'+|s_n|$ están los primeros j' caracteres de s_{n-3} . $j'+|s_n|-|s_{n-1}|=j'+|s_{n-2}|$. Vea que entre $|s_{n-2}|$ y $j'+|s_{n-2}|$ están los primeros j' caracteres de s_{n-3} . Como los últimos $|s_{n-2}|$ caracteres de s_n no son otros que s_{n-2} y como los primeros $|s_{n-2}|$ caracteres de s_{n+1} son s_{n-2} , entonces $f(j)=j-|s_{n-1}|$.