Marketing Campaign Causal Analysis Summary

By Ifeanyi Enekwa

Problem Statement

- Assess the causal impact of a marketing campaign on user spend and churn.
- Use multiple modeling approaches to capture different aspects of user behavior:
- Bayesian Regression for per-user spend modeling
- · CausalImpact (Time Series) for total spend over time
- Survival Analysis (Cox Model) for churn risk analysis

Bayesian Regression Results (Surrogate Model)

Equation:

predicted_spend_i =
$$\beta_0$$
 + β_1 × received_campaign_i + ϵ

Parameter	Estimate	95% Credible Interval	Interpretation
β ₀ (Intercept)	144.34	137.65 to 151.08	Average spend without the campaign
β₁ (Campaign Effect)	+84.32	75.02 to 93.49	Increase in spend when campaign is received

Sigma (Noise / Unexplained variance): 92.49 (87.58 to 97.84)

Interpretation:

- The model estimates that running the campaign increases average spend by \~84 units.
- Without the campaign, users spend around **144 units** on average.
- With the campaign, spend increases to about 228 units.
- The model converged well (**Rhat=1.00**, high effective sample size).

Plain English Summary:

• The marketing campaign significantly increased per-user spend.

Surrogate Labels (Predicted Spend Data)

• The **surrogate_labels.csv** file contains model-generated predictions of user spend based on campaign exposure.

Campaign Group	Predicted Spend (approximate)	
Received (1)	\~300 units	
Not Received (0)	\~101 units	

Why the Difference?

• The surrogate model assigns higher predicted spend to campaign-exposed users:

For non-campaign users: predicted_spend \approx baseline (β_0) For campaign users: predicted_spend \approx baseline + campaign effect ($\beta_0 + \beta_1$)

Note: Some discrepancies between the surrogate model (\sim 101 baseline, \sim 300 with campaign) and the Bayesian regression summary (\sim 144 baseline, +84 uplift) are due to data splits, different models, or noise in predictions.

CausalImpact Analysis (Time-Series Approach)

Script: causal_inference.R

Metric	Value
Observed Avg Spend (Post-Campaign)	298
Predicted Avg Spend (No Campaign)	305 (95% CI: 290 to 321)
Absolute Effect (Avg)	-7.2 units
Relative Effect	-2.3%
Probability of Causal Effect	79%
Bayesian p-value	0.206

Interpretation:

- The time-series model suggests no significant impact on overall spend over time.
- Although the point estimate shows a slight decrease, the 95% credible interval includes zero.

Plain English Summary:

• There is **no strong evidence** that the campaign changed total spend over time.

• The analysis was based on **pre-post time periods**, not campaign vs control groups.

Survival Analysis (Churn Model)

Script: survival_model.R

Metric	Value	
Hazard Ratio	0.913 (≈9% churn reduction)	
p-value	0.152 (not significant)	
95% CI	0.8061 to 1.034	

Interpretation:

- The campaign group had **slightly lower churn risk**, but this effect is **not statistically significant**.
- The **hazard ratio of 0.913** suggests about a **9% reduction in churn**, but the confidence interval includes 1.0.

Plain English Summary:

• The campaign may reduce churn slightly, but we cannot conclude this with confidence.

Summary of All Results

Analysis	Metric	Result
Bayesian Regression	Spend per user	Significant increase (+84 units)
CausalImpact (Time Series)	Spend over time	Small negative estimate, not significant
Survival Analysis (Cox Model)	Churn / retention	Small reduction in churn, not significant

Key Takeaways

- The Bayesian regression shows that the campaign increased individual user spend significantly.
- The CausalImpact time-series analysis suggests no significant change in overall spend over time.
- The survival model shows a small, non-significant reduction in churn risk.

Next Steps

- Use Bayesian regression insights to guide personalized marketing.
- Consider further investigation into **heterogeneous treatment effects** (segment-level analysis).
- Use findings to inform marketing strategy and resource allocation.

End of Summary