

Laboratório de Princípios de Comunicação

Aulas Remotas - 2020.1

Experimento 05 - Modulação Angular

Data: 05/10/2020

Pré-requisitos

- 1. Uso de sinais complexos no GRC e do bloco VCO
- 2. Uso de filtro passa alta, defasador e ponte retificadora

Instruções gerais

 Organize os arquivos em um diretório específico para o laboratório em seu computador. Em caso de necessidade, os arquivos serão usados como evidência da participação em sala. Use nomes de arquivos do GRC com o formato

Matricula_ExpXX_ARYY.grc → Exemplo: 12345678_Exp01_AR03.grc

• O relatório será enviado em formato ".pdf" usando a nomenclatura

Matricula_ExpXX_Rel.pdf → Exemplo: 12345678_Exp03_Rel.pdf

• Quando solicitado, envie um arquivo compactado com o formato ".zip" com todos os arquivos relacionados ao experimento, contendo os arquivos ".grc" e ".pdf".

Matricula_ExpXX.zip → Exemplo: 12345678_Exp03.zip

- Preferencialmente (mas não obrigatoriamente) use GUI do tipo "QT".
- Apresente no início do relatório todos os cálculos teóricos solicitados ao longo do roteiro, e coloque as tabelas no final.

Atividade 01 - Modulador FM

Conceitos preliminares

Na modulação angular seja ela em frequência (frequency modulation – FM) ou em fase (phase modulation - PM), uma onda portadora cossenoidal tem sua frequência (ou fase) alterada (modulada) pelo sinal-mensagem m(t). Considerando um sinal modulante m(t) que varie linearmente com o ângulo $\theta(t)$, o sinal modulado

$$s(t) = A_c \cos(\theta \{ m(t) \}) \tag{1}$$

não varia linearmente com m(t) devido à natureza da função cosseno. A relação entre o ângulo e a frequência instantâneas de s(t) é dada por $f_i(t) = \frac{1}{2\pi} \frac{d}{dt} \theta\{m(t)\}$, sendo

$$\theta_{PM}(t) = 2\pi f_c t + k_p m(t), \tag{2}$$

para modulação PM, com k_p em rads/Volts, e

$$\theta_{FM}(t) = 2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau, \tag{3}$$

para modulação FM, com k_f em Hz/Volts. A forma de onda do sinal FM e sua frequência instantânea são dados, respectivamente, por:

$$s_{FM}(t) = A_c \cos\left(2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau\right),\tag{4}$$

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} \, \theta_{FM}(t) = f_c + k_f m(t).$$
 (5)

A Figura 1 mostra um exemplo ilustrativo de modulação FM. Note que uma variação de V volts no sinal modulante m(t) produzirá uma variação k_fV (em Hz) na frequência instantânea de s(t).

A função do tempo dada por

$$f_d(t) = f_i(t) - f_c = k_f m(t)$$
 (6)

é denominada desvio instantâneo de frequência e

$$\Delta f = \max|f_d(t)| = k_f \max|m(t)| \tag{7}$$

é denominado desvio máximo (ou de pico) de frequência ou, simplesmente, desvio de frequência. Define-se, ainda, a razão de desvio de frequência como sendo a seguinte razão:

$$\beta_f = \frac{\Delta f}{B_{m'}} \tag{8}$$

onde B_m é a largura de banda do sinal modulante m(t). Os parâmetros β_f e Δf são usados para indicar a intensidade (ou profundidade) da modulação de frequência. Quanto maior β_f e Δf , para uma dada B_m , maior é a intensidade da modulação e a largura de banda do sinal FM.

Uma estimativa prática usual para a largura de banda do sinal FM, B_{FM} , é dada pela regra de Carson, segundo a qual

$$B_{FM} \approx B_{Carson} = 2(\Delta f + B_m) = 2B_m (1 + \beta_f). \tag{9}$$

A banda de largura B_{Carson} centrada em f_c contém, geralmente, mais de 98% da potência do sinal FM.

Figura 1 - Exemplo de modulação de frequência: (a) sinal modulante, (b) sinal FM (modulado), e (c) frequência instantânea do sinal FM.

Construção do modulador

A Figura 2 do roteiro do Experimento 4 pode inspirar a construção do modulador FM ou outro esquema que preferir, como o modulador de Armstrong.

O sinal FM modulado por sinais periódicos deverá ser observador nos domínios do tempo, frequência (FFT) e no espectrograma (Waterfall Sink), variando-se frequência e amplitude dos modulantes.

Utilizando uma caixa de som (Audio Sink), escute o sinal FM variando f_c , Δf e o tipo de função do sinal modulante.

Calcule e meça o desvio de frequência Δf seguido da banda de Carson B_{carson} . Use um filtro passa faixa de largura de banda variável e um medidor de tensão RMS (ou potência) para encontrar a largura de banda que concentre 98% da potência de s(t) e compare com B_{carson} .

Atividade 02 - Modulação PM

Conceitos preliminares e construção do modulador

A partir de (1) e (2) podemos encontrar a forma de onda e a frequência instantânea do sinal PM:

$$s_{PM}(t) = A_c \cos(2\pi f_c t + k_p m(t)), \tag{10}$$

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} \theta_{PM}(t) = f_c + \frac{k_p}{2\pi} \frac{d}{dt} m(t),$$
 (11)

com k_p em rads/Volts. Um sinal PM pode ser claramente obtido através de um modulador FM com o auxílio de diferenciador sobre o sinal modulante m(t) antes dos blocos de modulação. A diferenciação será feita com o auxílio dos blocos <Delay> e <Substract>. Basta subtrair de m(t) sua versão atrasada de 1 amostra. Deduzindo o desvio máximo de frequência do sinal PM como:

$$\Delta f = \frac{k_p}{2\pi} \max \left| \frac{d}{dt} m(t) \right|,\tag{12}$$

temos que a sensibilidade do VCO deve ser $k_{VCO} = \frac{k_p}{2\pi}$. Como esta é considerada em rads/s no GRC, pode-se ignorar a divisão por 2π no preenchimento do campo.

Modulação PSK

Para sinais modulantes em que $\frac{d}{dt}m(t) \to \infty$, a solução de sinais PM se dá de forma direta. Considere m(t) uma onda quadrada de média nula variando entre -1 e +1 modulando em fase uma portadora:

$$s_{PM}(t) = A_c \cos(2\pi f_c t + k_p m(t)), \tag{13}$$

$$s_{PM}(t) = A_c \cos(2\pi f_c t + k_p), \text{ quando } m(t) > 0, \text{ e}$$
(14)

$$s_{PM}(t) = A_c \cos(2\pi f_c t - k_p), \text{ quando } m(t) < 0.$$
(15)

A modulação cuja portadora é chaveada em fase é chamada de PSK (Phase Shift Keying), muito usada em comunicação digital e, para $k_p = \frac{\pi}{2}$, o chaveamento é de 180 graus (Figura 2) e o sinal modulado dado por:

Figura 2 – (a) sinal mensagem digital. (b) sinal modulado digital PSK.

$$s_{PSK}(t) = \pm A_c \sin(2\pi f_c t). \tag{16}$$

O sinal pode ser produzido por um modulador AM-DSB-SC, e possui largura de banda duas vezes a do sinal mensagem.

Atividade 03 - Demodulação FM

Conceitos preliminares

Um demodulador (ou detector) ideal de sinais FM é um dispositivo que produz um sinal de saída cuja amplitude é linearmente proporcional à frequência instantânea do sinal de entrada. Existem muitas formas de construir um detector FM, uma delas é um discriminador de frequência construído com um circuito cujo ganho varia linearmente com a frequência, na faixa ocupada pelo sinal FM: ou seja, um circuito cuja resposta de amplitude nessa faixa é idealmente uma reta, como ilustrado na Figura 3. Este circuito converte as variações de frequência do sinal FM também em variações de amplitude, convertendo o sinal FM em um sinal híbrido FM-AM, que pode ser demodulado por um detector de envoltória. Esta combinação de circuitos é denominada detector de inclinação.

$$\frac{d}{dt} s_{FM}(t) = -2\pi A_c \left(f_c + k_f m(t) \right) \operatorname{sen} \left(2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau \right). \tag{17}$$

Figura 3 - Resposta de amplitude de um discriminador de frequência ideal.

Construção do demodulador

Um bloco de filtro passa altas (FPA) de primeira ordem de frequência de corte $f_{corte} \gg f_c$ pode ser usado como discriminador de frequência. Para definir um filtro de primeira ordem, use o bloco <Decimating FIR Filter> com um vetor de Taps definido em AR3.

Um detector de envoltória pode ser usado para a recuperação de $\widetilde{m}(t)$ a partir do sinal em (17). Se inspire na ponte retificadora do roteiro do Experimento 2 para extrair $\widetilde{m}(t)$ de $\frac{d}{dt} s_{FM}(t)$.

Relatório - Entregar até 08/10/2020

Faça um relatório descrevendo as sequencias de passos e análises pertinentes para chegar aos resultados das atividades remotas (ARs). Ilustre com as telas do GRC.

Apresente no início do relatório todos os cálculos e respostas a questões teóricas solicitadas e as tabelas no final.

AR 01 – Modulação FM	
	Setup da simulação AR01
Taxa de amostragem	254 ksps
Instrumentos virtuais	Osciloscópio com FFT size de 4096
	Analisador de Espectro com FFT size de 4096
	Espectrograma (<waterfall sink="">)</waterfall>
	Caixa de som (<audio sink="">)</audio>
	VCO
Observações adicionais	Utilizar bloco "Throttle"

Implemente o modulador FM com as configurações detalhadas a seguir:

Sinal / bloco	Descrição
m(t)	Ondas quadrada $^{\scriptscriptstyle 1}$, triangular e senoidal de média nula, frequência f_m
	igual a 10, 100 e 1000 Hz; Amplitude m_p (pico) igual 0.25, 1 e 5 V
f_c	30 kHz
VCO	Sensibilidade de frequência: $k_f = k_{VCO} = 2 \text{ kHz/V}^2$

Considerando inicialmente a onda quadrada no gerador com $f_m = 1$ Hz e $m_p = 5$ V, faça um *print* do diagrama (**Fig. 1.1**) e apresente os gráficos no tempo (**Fig. 1.2**) e na frequência (**Fig. 1.3**) simultaneamente para os sinais modulante e modulado, sempre ajustando as escalas em X e Y para melhor observar as curvas. E observe, apenas para $s_{FM}(t)$, o espectro variando com o tempo no espectrograma (**Fig. 1.4**).

E1a) Meça o valor do desvio de frequência e compare com o valor esperado na teoria. Use "Max Hold" na interface da FFT para facilitar a medida.

E1b) Encontre o valor experimental da sensibilidade k_f e compare com o ajustado no VCO. Use este valor para calcular Δf experimental quando pedido nas tabelas.

Observe o espectro FFT para todas as combinações apresentadas na tabela descrição acima, e complete as tabelas 1.1 a 1.3. Para a medida da largura de banda $B_{98\%}$, use um filtro passa faixa comum com banda de transição de 100 Hz.

A1a) Analise os resultados a partir da variação dos parâmetros e tipos de sinais, comparando os valores de β_f e refletindo sobre o conceito de sinais FM banda estreita e banda larga.

¹ Para ondas quadradas ou triangulares a voltagem do bloco <Signal Source> varia de 0 a Amplitude + offset, enquanto que para ondas senoidais de –Amplitude a +Amplitude + offset.

² Converter para rads/(s Volts) no campo do VCO do GRC.

Para fins didáticos, utilize uma caixa de som (Audio Sink) e escute o sinal FM. Use uma senoide como m(t), e varie f_c (entre 1 e 5 kHz), m_p (entre 0 e 2V) e f_m (entre 0.5 e 5 Hz). Salve este esquema .grc num arquivo à parte e analise o efeito (A1b).

- T1) Um sinal FM transmitido com portadora de frequência f_c = 96,3 MHz e amplitude A_c = 100 V tem m(t) como sinal modulante de largura de banda B_m = 8 kHz e m_p = max[m(t)] = -min[m(t)] = 7,5 V. O sinal FM transmitido deverá ter desvio máximo de frequência (Δf) igual a 75 kHz.
- **T1a)** Determine qual deverá ser a sensibilidade k_f do modulador, em Hz/V.
- **T1b)** Determine a valor mínimo (f_{\min}) e o máximo (f_{\max}) da frequência instantânea do sinal FM que será transmitido.
- **T1c)** Determine, utilizando a regra de Carson, um valor prático aproximado para a largura B_{Carson} da banda ocupada pelo sinal FM que será transmitido. Determine as frequências extremas ($f_{inferior}$ e $f_{superior}$) dessa banda ocupada.

AR 02 a – Modulação PM	
	Setup da simulação AR02a
Taxa de amostragem	254 ksps
Instrumentos virtuais	Osciloscópio
	Analisador de Espectro
	VCO
	Defasador e Subtrator
	Misturador

Implemente o modulador PM com as configurações detalhadas a seguir:

Sinal / bloco	Descrição
m(t)	Onda triangular de média nula, frequência f_m de 500 Hz; Amplitude
	$m_p ext{ de 5 V}$
f_c	30 kHz
VCO	Sensibilidade de frequência: $k_p = 2\pi k_{VCO} = 2\pi$

T2a) Calcule a função $\frac{d}{dt}m(t)$, e os valores de Δf , β_f e B_{PM} .

Monte o diagrama utilizando o Defasador (bloco <Delay> com atraso de 1 amostra), o Subtrator e o modulador FM. Faça um *print* do esquema do modulador (**Fig. 2.1**) e apresente os gráficos no tempo (**Fig. 2.2**) e na frequência (**Fig. 2.3**) simultaneamente para os sinais modulante e modulado, sempre ajustando as escalas em X e Y para melhor observar as curvas.

AR 02 b – Modulação PSK

Setup da simulação AR02b

Taxa de amostragem	254 ksps
Instrumentos virtuais	Osciloscópio
	Analisador de Espectro
	Oscilador e Misturador

Implemente o modulador PSK utilizando um modulador AM-DSB-SC, tendo uma onda quadrada como sinal modulante, simulando uma sequência de pulsos de um sinal digital.

Sinal / bloco	Descrição
m(t)	Onda quadrada de média nula, frequência f_m de 1000 Hz; Amplitude
	m_p de 1 V
f_c	30 kHz

Faça um *print* do esquema do modulador PSK (**Fig. 2.4**) e apresente os gráficos no tempo (**Fig. 2.5**) e na frequência (**Fig. 2.6**). Perceba que o padrão de modulação observado no tempo e frequência difere daquela vista anteriormente em PM e FM. Apesar de ser modulado em fase, o sinal $s_{PSK}(t)$ varia linearmente com m(t).

AR 03 – Demodulação FM	
	Setup da simulação AR03
Taxa de amostragem	254 ksps
Instrumentos virtuais	Osciloscópio
	Analisador de Espectro
	VCO
	Filtros
	Ponte retificadora

Implemente o demodulador FM com as configurações detalhadas a seguir:

Sinal / bloco	Descrição
m(t)	Onda dente de serra de média nula, frequência f_m de 500 Hz;
	Amplitude m_p de 5 V
f_c	30 kHz
VCO	Sensibilidade de frequência: $k_f = k_{VCO} = 1000 \text{ Hz/Volts}$
Taps do	[-0.1044, -0.2268, 0.7116, -0.2268, -0.1044]
Filtro FIR	

Para a construção do discriminador de frequência, utilize o bloco <Decimating FIR Filter> como um filtro passa alta de primeira ordem capaz de funcionar como um diferenciador, seguido da ponte retificadora, filtro passa baixos e bloqueador DC, usados no Experimento 2.

Faça um *print* do esquema (**Fig. 3.1**) e apresente os gráficos no tempo dos sinais $s_{FM}(t)$ e $\frac{d}{dt}s_{FM}(t)$ (**Fig. 3.2**), simultaneamente, e dos sinais m(t) e $\widetilde{m}(t)$ recuperado (**Fig. 3.3**). Compare também os espectros de m(t) e $\widetilde{m}(t)$ (**Fig. 3.4**).

A3a) Analise os resultados e justifique a diferença entre m(t) e $\widetilde{m}(t)$.

Forneça conclusões gerais do trabalho.

Experimento 5: Modulação Angular

Identificação

Turma	Matrícula	Nome

Tabela 1.1 – Parâmetros da modulação FM para m(t) senoidal

f_m [Hz]	m_p [V]	$\Delta f [kHz]^3$	$B_m [Hz]^4$	$oldsymbol{eta}_f$	B_{Cars} [kHz]	$B_{98\%}$ [kHz]
	0.25					
10	1					
	5					
	0.25					
100	1					
	5					
	0.25					
1000	1					
	5					

Tabela 1.2 – Parâmetros da modulação FM para m(t) triangular

f_m [Hz]	m_p [V]	Δf [kHz]	B_m [Hz]	$oldsymbol{eta_f}$	B_{cars} [kHz]	$B_{98\%}$ [kHz]
	0.25					
10	1					
	5					
	0.25					
100	1					
	5					
	0.25					
1000	1					
	5					

Tabela 1.3 – Parâmetros da modulação FM para m(t) quadrada

f_m [Hz]	m_p [V]	Δf [kHz]	B_m [Hz]	$oldsymbol{eta_f}$	B_{Cars} [kHz]	$B_{98\%}$ [kHz]
	0.25					
10	1					
	5					
	0.25					
100	1					
	5					
1000	0.25					
	1					
	5					

³ Valor experimental

⁴ Valor teórico