```
import pandas as pd
import numpy as np
pd.set_option('display.max_columns',None)
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import seaborn as sns
from scipy.stats import spearmanr
from scipy.stats import norm
from statsmodels.stats.weightstats import ztest
from scipy.stats import ttest_1samp, ttest_ind
from scipy.stats import f_oneway
from scipy.stats import chi2_contingency
```

df= pd.read\_csv('https://d2beiqkhq929f0.cloudfront.net/public\_assets/assets/000/001/551/original/delhivery\_data.csv?1642751181')
df.head(5)

```
data trip_creation_time
                                  route_schedule_uuid route_type
                                  thanos::sroute:eb7bfc78-
                     2018-09-20
                                                               Carting 153741090
0 training
                                         b351-4c0e-a951-
                 02:35:36.476840
                                               fa3d5c3...
                                  thanos::sroute:eb7bfc78-
                     2018-09-20
  training
                                         b351-4c0e-a951-
                                                               Carting
                02:35:36.476840
                                                                       153741090
                                               fa3d5c3...
                                  thanos::sroute:eb7bfc78-
                     2018-09-20
                                                               Carting 153741090
2 training
                                         b351-4c0e-a951-
                 02:35:36.476840
                                               fa3d5c3...
                                  thanos::sroute:eb7bfc78-
                     2018-09-20
                                                               Carting
3 training
                                         b351-4c0e-a951-
                 02:35:36.476840
                                                                       153741090
                                               fa3d5c3...
                                  thanos::sroute:eb7bfc78-
                     2018-09-20
                                                               Carting 15071100
4 training
                                         b351-4c0e-a951-
```

```
# Droping unnecessary columns
df.drop(columns=['is_cutoff','cutoff_factor','cutoff_timestamp','factor','segment_factor'],inplace=True)
df.shape
     (144867, 19)
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 144867 entries, 0 to 144866
    Data columns (total 19 columns):
     # Column
                                         Non-Null Count
                                                          Dtype
     ---
     0
         data
                                         144867 non-null object
     1
         trip_creation_time
                                         144867 non-null
                                                          object
         route_schedule_uuid
                                         144867 non-null object
     2
      3
         route_type
                                         144867 non-null
                                                          object
      4
                                         144867 non-null
         trip_uuid
                                                          object
                                         144867 non-null
         source center
                                                          object
                                         144574 non-null
     6
         source_name
                                                          object
     7
         {\tt destination\_center}
                                         144867 non-null
                                                          object
         destination_name
                                         144606 non-null
                                                          object
                                         144867 non-null
         od_start_time
                                                          object
     10 od_end_time
                                         144867 non-null
                                                          obiect
      11 start_scan_to_end_scan
                                         144867 non-null
                                                          float64
     12 actual_distance_to_destination
                                         144867 non-null
                                                          float64
     13 actual time
                                         144867 non-null
                                                          float64
     14 osrm_time
                                         144867 non-null
                                                          float64
     15 osrm distance
                                         144867 non-null
                                                          float64
                                         144867 non-null
         segment_actual_time
                                                          float64
     16
     17
         segment_osrm_time
                                         144867 non-null float64
                                         144867 non-null float64
     18 segment_osrm_distance
    dtypes: float64(8), object(11)
    memory usage: 21.0+ MB
```

# Statistical summary
df.describe()

# Missing value detection

|       | start_scan_to_end_scan | ${\tt actual\_distance\_to\_destination}$ | actual_time   | osrm_time     | osrm_distance | segment_actual_time | segment_ |
|-------|------------------------|-------------------------------------------|---------------|---------------|---------------|---------------------|----------|
| count | 144867.000000          | 144867.000000                             | 144867.000000 | 144867.000000 | 144867.000000 | 144867.000000       | 144      |
| mean  | 961.262986             | 234.073372                                | 416.927527    | 213.868272    | 284.771297    | 36.196111           |          |
| std   | 1037.012769            | 344.990009                                | 598.103621    | 308.011085    | 421.119294    | 53.571158           |          |
| min   | 20.000000              | 9.000045                                  | 9.000000      | 6.000000      | 9.008200      | -244.000000         |          |
| 25%   | 161.000000             | 23.355874                                 | 51.000000     | 27.000000     | 29.914700     | 20.000000           |          |
| 50%   | 449.000000             | 66.126571                                 | 132.000000    | 64.000000     | 78.525800     | 29.000000           |          |
| 75%   | 1634.000000            | 286.708875                                | 513.000000    | 257.000000    | 343.193250    | 40.000000           |          |
| max   | 7898.000000            | 1927.447705                               | 4532.000000   | 1686.000000   | 2326.199100   | 3051.000000         | 1        |
| 4     |                        |                                           |               |               |               |                     | <b>•</b> |

```
df.isnull().sum()
    trip_creation_time
    route_schedule_uuid
    route_type
                                        0
    trip_uuid
                                        0
    source_center
                                        0
    source_name
                                      293
    destination_center
    destination_name
                                      261
    od_start_time
                                        0
    od_end_time
    start_scan_to_end_scan
                                        0
    actual_distance_to_destination
                                        0
    actual_time
    osrm_time
                                        0
    osrm_distance
    segment_actual_time
                                        0
    segment_osrm_time
                                        0
    segment_osrm_distance
                                        0
    dtype: int64
# Missing values Treatment
df = df.dropna(how='any')
df = df.reset_index(drop=True)
# conversion of columns
df['od_start_time'] = pd.to_datetime(df['od_start_time'])
df['od end time'] = pd.to datetime(df['od end time'])
```

### Merging of rows

```
# Merge based on Trip_uuid, Source_ID, and Destination_ID
df['segment_key'] = df['trip_uuid'] + df['source_center'] + df['destination_center']
segment_cols = ['segment_actual_time', 'segment_osrm_distance', 'segment_osrm_time']
for col in segment_cols:
    df[col + '_sum'] = df.groupby('segment_key')[col].cumsum()

df[[col + '_sum' for col in segment_cols]]
```

```
segment_actual_time_sum segment_osrm_distance_sum segment_osrm_time_sum
        0
                                  14.0
                                                          11.9653
        1
                                  24.0
                                                          21.7243
                                                                                     20.0
        2
                                  40.0
                                                          32.5395
                                                                                     27.0
        3
                                  61.0
                                                          45.5619
                                                                                     39.0
                                  67.0
                                                          49.4772
                                                                                     44.0
create_segment_dict = {
    'data' : 'first',
    'trip_creation_time' : 'first',
    'route_schedule_uuid' : 'first',
    'route_type' : 'first',
    'trip uuid' : 'first',
    'source_center' : 'first',
    'source_name' : 'first',
    'destination_center' : 'last',
    'destination_name' : 'last',
    'od start time' : 'first',
    'od_end_time' : 'first',
    'start_scan_to_end_scan' : 'first',
    'actual_distance_to_destination' : 'last',
    'actual_time' : 'last',
    'osrm_time' : 'last',
    'osrm distance' : 'last',
    'segment_actual_time_sum' : 'last',
    'segment_osrm_distance_sum' : 'last',
    'segment_osrm_time_sum' : 'last',
}
# segment_key conatins "Trip_uuid, Source_ID, and Destination_ID"
segment = df.groupby('segment_key').agg(create_segment_dict).reset_index()
segment = segment.sort_values(by=['segment_key','od_end_time'], ascending=True).reset_index()
# time taken between od_start_time and od_end_time
segment['od_time_diff_hour'] = (segment['od_end_time'] - segment['od_start_time']).dt.total_seconds() /(60)
segment['od_time_diff_hour']
              1260.604421
    0
               999.505379
    1
    2
                58.832388
               122.779486
    3
    4
               834.638929
    26217
                62.115193
                91.087797
    26218
                44.174403
    26219
     26220
               287.474007
    26221
                66.933565
    Name: od_time_diff_hour, Length: 26222, dtype: float64
segment.head(5)
```

|       | index      | segment_k                                                                                      | y data             | trip_creation_time            | route_schedule_uuid                                                | route_type | trip_uui                              |
|-------|------------|------------------------------------------------------------------------------------------------|--------------------|-------------------------------|--------------------------------------------------------------------|------------|---------------------------------------|
|       | <b>0</b> 0 | tr<br>153671041653548748IND209304AAAIND000000AC                                                | trip- , 2018-09-12 |                               | thanos::sroute:d7c989ba-<br>a29b-4a0b-b2f4-<br>288cdc6             | FTL        | triţ<br>15367104165354874             |
| segme | <b>1</b> 1 | tr<br>153671041653548748IND462022AAAIND209304A/<br>t['trip uuid'] == 'trip-153671041653548748' | A training         | 2018-09-12<br>00:00:16.535741 | thanos::sroute:d7c989ba-<br>a29b-4a0b-b2f4-<br>288cdc6             | FTL        | triµ<br>15367104165354874             |
|       | e[se8e     | c[ c. 1p_dd1d ]                                                                                |                    |                               |                                                                    |            |                                       |
| _     |            |                                                                                                |                    |                               |                                                                    |            |                                       |
|       | index      | segment_k                                                                                      | y data             | trip_creation_time            | route_schedule_uuid                                                | route_type | trip_uui                              |
|       | index 0 0  | segment_k<br>tr<br>153671041653548748IND209304AAAIND000000AC                                   | )-<br>training     | 2018-09-12<br>00:00:16.535741 | route_schedule_uuid thanos::sroute:d7c989ba-a29b-4a0b-b2f4-288cdc6 | route_type | trip_uui<br>trip<br>15367104165354874 |
| -     |            | tr                                                                                             | training           | 2018-09-12                    | thanos::sroute:d7c989ba-<br>a29b-4a0b-b2f4-                        |            | triç                                  |

### ▼ Further aggregation of fields based on Trip\_uuid

```
create_trip_dict = {
    'data' : 'first',
    'trip_creation_time' : 'first',
    'route_schedule_uuid' : 'first',
    'route_type' : 'first',
'trip_uuid' : 'first',
    'source_center' : 'first',
    'source_name' : 'first',
    'destination_center' : 'last',
    'destination_name' : 'last',
    'start_scan_to_end_scan' : 'sum',
    'od_time_diff_hour' : 'sum',
    'actual_distance_to_destination' : 'sum',
    'actual_time' : 'sum',
    'osrm_time' : 'sum',
    'osrm_distance' : 'sum',
    'segment_actual_time_sum' : 'sum',
    'segment_osrm_distance_sum' : 'sum',
    'segment_osrm_time_sum' : 'sum',
}
trip = segment.groupby('trip_uuid').agg(create_trip_dict).reset_index(drop = True)
trip.shape
     (14787, 18)
#come back later
trip[['actual_time', 'segment_actual_time_sum']]
```

|   | actual_time | segment_actual_time_sum |
|---|-------------|-------------------------|
| 0 | 1562.0      | 1548.0                  |
| 1 | 143.0       | 141.0                   |
| 2 | 3347.0      | 3308.0                  |
| 3 | 59.0        | 59.0                    |
| 4 | 341.0       | 340.0                   |

#### ▼ Feature Creation

```
trip['source_name'] = trip['source_name'].str.lower() # lowering all columns
trip['destination_name'] = trip['destination_name']
      . .---
def place2state(x):
   # transform "gurgaon_bilaspur_hb (haryana)" into "haryana"
    state = x.split('(')[1]
    return state[:-1] #removing ')' from ending
def place2city(x):
    #we will remove state
   city = x.split(' (')[0]
   city = city.split('_')[0]
   # Now daling with edge cases
   if city == 'pnq vadgaon sheri dpc': return 'vadgaonsheri'
   # ['PNQ Pashan DPC', 'Bhopal MP Nagar', 'HBR Layout PC',
# 'PNQ Rahatani DPC', 'Pune Balaji Nagar', 'Mumbai Antop Hill']
   if city in ['pnq pashan dpc','pnq rahatani dpc', 'pune balaji nagar']:
        return 'pune'
    if city == 'hbr layout pc' :
       return 'bengaluru'
    if city == 'bhopal mp nagar':
       return 'bhopal'
    if city == 'mumbai antop hill':
       return 'mumbai'
    return city
def place2city_place(x):
    # we will remove state
    x = x.split('(')[0]
   len_ = len(x.split('_'))
   if len_ >= 3:
       return x.split('_')[1]
   # small cities have same city and place name
    if len_ == 2:
        return x.split('_')[0]
   \mbox{\tt\#} now we need to deal with edge cases or imporper name convention
    # if len(x.split('_')) == 2:
   return x.split(' ')[0]
def place2code(x):
    # we will remove state
   x = x.split('(')[0]
    if len(x.split('_')) >= 3:
        return x.split('_')[-1]
    return 'none'
```

```
trip['source_state'] = trip['source_name'].apply(lambda x: place2state(x))
trip['source_city'] = trip['source_name'].apply(lambda x: place2city(x))
trip['source_place'] = trip['source_name'].apply(lambda x: place2city_place(x))
trip['source_code'] = trip['source_name'].apply(lambda x: place2code(x))

trip[['source_state', 'source_city', 'source_place', 'source_code']]
ChatGPT
```

|       | source_state  | source_city | source_place | source_code |
|-------|---------------|-------------|--------------|-------------|
| 0     | Uttar Pradesh | Kanpur      | Central      | 6           |
| 1     | Karnataka     | Doddablpur  | ChikaDPP     | D           |
| 2     | Haryana       | Gurgaon     | Bilaspur     | НВ          |
| 3     | Maharashtra   | Mumbai Hub  | Mumbai       | none        |
| 4     | Karnataka     | Bellary     | Bellary      | none        |
|       |               |             |              |             |
| 14782 | Punjab        | Chandigarh  | Mehmdpur     | Н           |
| 14783 | Haryana       | FBD         | Balabhgarh   | DPC         |
| 14784 | Uttar Pradesh | Kanpur      | GovndNgr     | DC          |
| 14785 | Tamil Nadu    | Tirunelveli | VdkkuSrt     | 1           |
| 14786 | Karnataka     | Sandur      | WrdN1DPP     | D           |

14787 rows × 4 columns

```
trip['trip_creation_time'] = pd.to_datetime(trip['trip_creation_time'])
trip['trip_year'] = trip['trip_creation_time'].dt.year
trip['trip_month'] = trip['trip_creation_time'].dt.month
trip['trip_hour'] = trip['trip_creation_time'].dt.hour
trip['trip_day'] = trip['trip_creation_time'].dt.day
trip['trip_week'] = trip['trip_creation_time'].dt.isocalendar().week
trip['trip_dayofweek'] = trip['trip_creation_time'].dt.dayofweek
```

trip[['trip\_year','trip\_month','trip\_hour','trip\_day','trip\_week','trip\_dayofweek']]

|       | trip_year | trip_month | trip_hour | trip_day | trip_week | trip_dayofweek |
|-------|-----------|------------|-----------|----------|-----------|----------------|
| 0     | 2018      | 9          | 0         | 12       | 37        | 2              |
| 1     | 2018      | 9          | 0         | 12       | 37        | 2              |
| 2     | 2018      | 9          | 0         | 12       | 37        | 2              |
| 3     | 2018      | 9          | 0         | 12       | 37        | 2              |
| 4     | 2018      | 9          | 0         | 12       | 37        | 2              |
|       |           |            |           |          |           |                |
| 14782 | 2018      | 10         | 23        | 3        | 40        | 2              |
| 14783 | 2018      | 10         | 23        | 3        | 40        | 2              |
| 14784 | 2018      | 10         | 23        | 3        | 40        | 2              |
| 14785 | 2018      | 10         | 23        | 3        | 40        | 2              |
| 14786 | 2018      | 10         | 23        | 3        | 40        | 2              |

14787 rows × 6 columns

## Outlier detection & treatment

# ▼ > Handling categorical values

#### Visual Analysis (distribution plots of all the continuous variable(s), boxplots of all the categorical variables)

trip.head(5)

|   | data     | trip_creation_time            | route_schedule_uuid                                    | route_type | trip_uuid                   | source_center | source_name                          | destination_ce        |
|---|----------|-------------------------------|--------------------------------------------------------|------------|-----------------------------|---------------|--------------------------------------|-----------------------|
| 0 | training | 2018-09-12<br>00:00:22.886430 | thanos::sroute:3a1b0ab2-<br>bb0b-4c53-8c59-<br>eb2a2c0 | 1          | trip-<br>153671042288605164 | IND561203AAB  | doddablpur_chikadpp_d<br>(karnataka) | IND56120;             |
| 1 | training | 2018-09-12<br>00:01:00.113710 | thanos::sroute:f0176492-<br>a679-4597-8332-<br>bbd1c7f | 1          | trip-<br>153671046011330457 | IND400072AAB  | mumbai hub<br>(maharashtra)          | IND40110 <sub>4</sub> |
| 2 | training | 2018-09-12<br>00:02:09.740725 | thanos::sroute:d9f07b12-<br>65e0-4f3b-bec8-<br>df06134 | 0          | trip-<br>153671052974046625 | IND583101AAA  | bellary_dc (karnataka)               | IND58311!             |
| 3 | training | 2018-09-12<br>00:02:34.161600 | thanos::sroute:9bf03170-<br>d0a2-4a3f-aa4d-<br>9aaab3d | 1          | trip-<br>153671055416136166 | IND600056AAA  | chennai_poonamallee<br>(tamil nadu)  | IND60005(             |
| 4 | training | 2018-09-12<br>00:04:22.011653 | thanos::sroute:a97698cc-<br>846e-41a7-916b-<br>88b1741 | 1          | trip-<br>153671066201138152 | IND600044AAD  | chennai_chrompet_dpc<br>(tamil nadu) | IND60004              |
|   |          |                               |                                                        |            |                             |               |                                      |                       |

```
# Count of types of Route type
sns.countplot(data=trip,x='route_type')
plt.xticks(ticks=[0, 1], labels=['FTP', 'Carring'])
plt.show()
```

```
# Month in which most orders were created
sns.countplot(data=trip,x='trip_month')
plt.xlabel('Trip month')
plt.ylabel('Count')
plt.title('No of orders in month')
plt.show()
```



trip.value\_counts('trip\_month')

trip\_month
9 11172
10 1551
dtype: int64

# Hour which most orders placed
sns.countplot(data=trip,x='trip\_hour')
plt.title('No of orders in specfic hour')
plt.show()





trip[num\_cols].boxplot(rot=25, figsize=(25,8))
plt.title('outlier detection of all numeric columns')
plt.show()



sns.histplot(trip['actual\_distance\_to\_destination'], kde=True)
plt.show()



sns.displot(trip, x="actual\_time", hue="route\_type", kind="kde", multiple="stack")
plt.show()



# distribution plots of all the continuous variable

```
plt.figure(figsize=(12, 8))

# Distribution plots for continuous variables
continuous_vars = ["osrm_time", "segment_osrm_time_sum", "osrm_distance", "segment_osrm_distance_sum"]
for var in continuous_vars:
    plt.subplot(2, 2, continuous_vars.index(var) + 1)
    sns.histplot(trip[var], kde=True)
    plt.title(f"Distribution of {var}")

plt.tight_layout()
plt.show()
```



## > Checking relationship between aggregated fields

```
# Create a scatter plot to visualize the relationship between actual_time and OSRM_time
sns.scatterplot(data=trip, x="actual_time", y="osrm_time")
plt.xlabel('Actual Time')
plt.ylabel('OSRM Time')
plt.title('Actual Time vs OSRM Time')
plt.show()
```



# Perform a two-sample t-test

# HO : Means are not significantly different.
# HA : Means are significantly different.

```
test_stat, p_value = ttest_ind(trip['actual_time'], trip['osrm_time'])
print(f'P-Value: {p_value}')

# Set the significance level
alpha = 0.05

# Check if the p-value is less than the significance level
if p_value < alpha:
    print('Reject the null hypothesis: Means are significantly different.')
else:
    print('Fail to reject the null hypothesis: Means are not significantly different.')
    P-Value: 0.0
    Reject the null hypothesis: Means are significantly different.

sns.scatterplot(data=trip, x="osrm_distance", y="actual_distance_to_destination")
plt.show()</pre>
```



```
# actual_distance_to_destination VS osrm_distance
# H0 : Means are not significantly different.
# HA : Means are significantly different.

test_stat, p_value = ttest_ind(trip['actual_distance_to_destination'], trip['osrm_distance'])
print(f'P-Value: {p_value}')

# Set the significance level
alpha = 0.05

# Check if the p-value is less than the significance level
if p_value < alpha:
    print('Reject the null hypothesis: Means are significantly different.')
else:
    print('Fail to reject the null hypothesis: Means are not significantly different.')
    P-Value: 2.3652203422426466e-80
    Reject the null hypothesis: Means are significantly different.</pre>
```

# perform ANOVA

```
# H0 : Means are not significantly different.
# HA : Means are significantly different.

f_oneway(trip['actual_distance_to_destination'], trip['start_scan_to_end_scan'],trip['actual_time'] ,trip['osrm_time'])

alpha = 0.05
if p_value < alpha:
    print('Reject the null hypothesis: Means are significantly different.')
else:
    print('Fail to reject the null hypothesis: Means are not significantly different.')
    Reject the null hypothesis: Means are significantly different.

# perform chi2_contingency

time = pd.crosstab(index=trip['actual_distance_to_destination'],columns=trip['start_scan_to_end_scan'])

time</pre>
```

| start_scan_to_end_scan                    | 23.0 | 26.0 | 27.0 | 28.0 | 29.0 | 30.0 | 31.0 | 32.0 | 33.0 | 34.0 | 35.0 | 36.0 | 37.0 | 38.0 | 39.0 | 40.0 | 41.0 | 42.0 |
|-------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| ${\tt actual\_distance\_to\_destination}$ |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 9.002461                                  | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | О    |
| 9.003578                                  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | О    |
| 9.004038                                  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | О    |
| 9.006255                                  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | О    |
| 9.006827                                  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | С    |
|                                           |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 362.783667                                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | О    |
| 362.886493                                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | О    |
| 365.945343                                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | О    |
| 366.454138                                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | С    |
| 373.441224                                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | С    |
| 12707 rows × 1171 columns                 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

```
# H0 : No association.
# HA : Association btw actual_distance_to_destination and start_scan_to_end_scan.

chi2_contingency(time)
print(p_value)

alpha = 0.05
if p_value < alpha:
    print('No association.')
else:
    print('Association btw actual_distance_to_destination and start_scan_to_end_scan')</pre>
```

### ▼ Normalize/Standarize the numerical features

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(trip[num_cols])
```

2.3652203422426466e-80 No association.

4

|          | start_scan_to_end_scan | actual_distance_to_destination | actual_time | osrm_time | • |
|----------|------------------------|--------------------------------|-------------|-----------|---|
| 0        | -0.548546              | 0.012060                       | -0.217856   | -0.144341 |   |
| 1        | -0.861602              | -0.765152                      | -0.749015   | -0.877085 |   |
| 2        | 1.552838               | 0.764988                       | 1.034163    | 0.533102  |   |
| 3        | -0.513328              | -0.662169                      | -0.736369   | -0.766482 |   |
| 4        | -0.869428              | -0.877197                      | -0.970332   | -0.904736 |   |
|          |                        |                                |             |           |   |
| 12718    | -0.247231              | -0.201970                      | -0.597255   | -0.227293 |   |
| 12719    | -1.018130              | -0.788207                      | -0.989302   | -0.918561 |   |
| 12720    | 0.394533               | -0.466688                      | 0.661086    | -0.420848 |   |
| 12721    | 0.104957               | 0.865940                       | 0.547267    | 1.390274  |   |
| 12722    | 0.128436               | -0.086534                      | 0.616823    | -0.144341 |   |
| 12723 rd | ows × 9 columns        |                                |             |           |   |
| 4        |                        |                                |             | •         | • |

# Insights:

- The estimated time shows less time when compared to actual time.
- There are more Carting orders(small carts) comapared to FTL(full truck load)
- Most no of orders were placed in the 9th month(september)
- The pleak hrs where most orders placed are between 8pm to 12am
- Maharastra & Karnataka are the top 2 states where Delhivery is most active

## Recommendations:

- We could show " Delivery time might be affected due to traffic " to show increase in estimated time.
- We could have more riders in peak states to deliver more with ease and increase our presence for more business.
- We require more data, not just 2 months (9th & 10th of 2018) to get more accurate findings and insights.

Colab paid products - Cancel contracts here