PRÁCTICAS DE ELECTRÓNICA DIGITAL

PRÁCTICAS DE ELECTRÓNICA DIGITAL				
AIN	Nombres y apellidos:	Curso:		
8		Fecha:		

PRÁCTICA 1: PUERTA NOT (INVERSORA)

OBJETIVO: Comprobar el comportamiento de la función lógica Inversora (puerta NOT) utilizando el C.I. 7404

MATERIAL:

- 4 pilas 1.5 v
- 1 Portapilas
- C.I. 7404
- 1 Resistencia 360 Ω
- 1 Resistencia 1.5 ΚΩ
- 1 Led
- 1 Pulsador NA

FUNDAMENTOS TEÓRICOS: La puerta inversora o puerta NOT es aquella invierte la entrada, es decir, si introducimos un 1 lógico (5 v) obtenemos a la salida un 0 lógico (0 v) y viceversa.

Simbología

Símbolo MIL Símbolo CEI

Tabla de Verdad

Entrada (a)	F = Salida (ā)
0	1
1	0

SIMULACIÓN: Mediante el programa Cocodrile, simular el siguiente circuito y completar la tabla de verdad

Pulsador	LED	
ruisauoi	(Encendido = 1 ; Apagado = 0)	
Pulsado = 1		
En reposo = 0		

- Conectar la alimentación (6 v) a la patilla 14 (Vcc)
- Conectar la patilla 7 (GND) al negativo
- Conectar el pulsador NA entre el positivo y la patilla 9 (Entrada de una de las puertas inversoras)
- Conectar la resistencia de 1.5 K entre la salida del pulsador y tierra.
- Conectar la patilla 8 (salida puerta inversora) con la resistencia y el led.
- Cerrar el circuito conectando el led al negativo de la protoboard
- Actuar sobre el pulsador y comprobar los resultados de la simulación

7404

CONEXIONADO REAL

PRÁCTICAS DE ELECTRÓNICA DIGITAL				
AIN	Nombres y apellidos:	Curso:		
		Fecha:		

PRÁCTICA 2: PUERTA OR (SUMA LÓGICA)

OBJETIVO: Comprobar el comportamiento de la función suma lógica (puerta OR) utilizando el C.I. 7432

MATERIAL:

- 4 pilas 1.5 v
- C.I. 7432
- Resistencia 360 Ω
- 1 Led
- 2 Pulsadores NA
- 1 Portapilas
- 2 Resistencia 1.5 KΩ

FUNDAMENTOS TEÓRICOS: La puerta SUMA LÓGICA o puerta OR es aquella en la que la salida está a 0, sólo cuando todas las entradas están a cero.

Simbología

Símbolo MIL Símbolo CEI

Tabla de Verdad

Entrada (a)	Entrada (b)	Salida f = a + b
0	0	0
0	1	1
1	0	1
1	1	1

SIMULACIÓN: Mediante el programa Cocodrile, simular el siguiente circuito y completar la tabla de verdad

Pulsador 1	Pulsador 2	LED (Encendido =1 ; Apagado = 0)
En reposo = 0	En reposo = 0	
En reposo = 0	Pulsado1 = 1	
Pulsado1 = 1	En reposo = 0	
Pulsado1 = 1	Pulsado1 = 1	

Mediante el programa WinBreadboard simular el circuito y completar la tabla de verdad

- Conectar la alimentación (6 v) a la patilla 14 (Vcc)
- · Conectar la patilla 7 (GND) al negativo
- Conectar el pulsador 1 NA entre el positivo y la patilla 9 (Entrada "a" de una de las puertas OR)
- Conectar el pulsador 2 NA entre el positivo y la patilla 10 (Entrada "b" de una de las puertas OR)
- Conectar las resistencias de 1.5 K entre la salida de cada pulsador y tierra.
- Conectar la patilla 8 (salida puerta OR) con la resistencia y el led.
- Cerrar el circuito conectando el led al negativo de la protoboard
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en la protoboard, con los colores apropiados, la conexiones y componentes

7432

OBSERVACIONES				

PRÁCTICAS DE ELECTRÓNICA DIGITAL				
A D	Nombres y apellidos:	Curso:		
a 📮		Fecha:		

PRÁCTICA 3: PUERTA AND (PRODUCTO LÓGICO)

OBJETIVO: Comprobar el comportamiento de la función producto lógico (puerta AND) utilizando el C.I. 7408

MATERIAL:

- 4 Pilas 1,5 v
- 1 Portapilas
- C.I. 7408
- 1 Resistencia 360 Ω
- 1 Led
- 2 Pulsadores NA
- 2 Resistencia 1.5 KΩ

FUNDAMENTOS TEÓRICOS: La puerta PRODUCTO LÓGICO o puerta AND es aquella en la que la salida está a 1, sólo cuando todas las entradas están a 1.

Simbología

Símbolo MIL Símbolo CEI

Tabla de Verdad

Entrada (a)	Entrada (b)	Salida f = a ⋅ b
0	0	0
U	U	U
0	1	0
1	0	0
1	1	1

SIMULACIÓN: Mediante el programa Cocodrile, simular el siguiente circuito y completar la tabla de verdad

Pulsador 1	Pulsador 2	LED (Encendido =1; Apagado = 0)
En reposo = 0	En reposo = 0	
En reposo = 0	Pulsado1 = 1	
Pulsado1 = 1	En reposo = 0	
Pulsado1 = 1	Pulsado1 = 1	

Mediante el programa WinBreadboard simular el circuito y completar la tabla de verdad

- Conectar la alimentación (6 v) a la patilla 14 (Vcc)
- · Conectar la patilla 7 (GND) al negativo
- Conectar el pulsador 1 NA entre el positivo y la patilla 9 (Entrada "a" de una de las puertas AND)
- Conectar el pulsador 2 NA entre el positivo y la patilla 10 (Entrada "b" de una de las puertas AND)
- Conectar las resistencias de 1.5 K entre la salida de cada pulsador y tierra.
- Conectar la patilla 8 (salida puerta AND) con la resistencia y el led.
- Cerrar el circuito conectando el led al negativo de la protoboard
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en la protoboard, con los colores apropiados, la conexiones y componentes

7408

OBSERVACIONES						

PRÁCTICAS DE ELECTRÓNICA DIGITAL				
SIA	Nombres y apellidos:	Curso:		
8		Fecha:		

PRÁCTICA 4: PUERTA NOR (SUMA LÓGICA INVERTIDA)

OBJETIVO: Comprobar el comportamiento de la función suma lógica invertida (puerta NOR) utilizando el C.I. 7402

MATERIAL:

- 4 Pilas 1,5 v
- 1 Portapilas
- C.I. 7402
- 1 Resistencia 360 Ω
- 1 Led
- 2 Pulsadores NA
- 2 Resistencia 1.5 ΚΩ

FUNDAMENTOS TEÓRICOS: La puerta SUMA LÓGICA INVERTIDA o puerta NOR es una puerta OR a la que se le ha colocado a la salida un inversor, por tanto, la salida está a 1 sólo cuando todas las entradas están a 0. Suma las entradas e invierte el resultado

Simbología

Tabla de Verdad

Entrada (a)	Entrada (b)	Salida f = a + b
0	0	1
0	1	0
1	0	0
1	1	0

SIMULACIÓN: Mediante el programa Cocodrile, simular el siguiente circuito y completar la tabla de verdad

Pulsador 1	Pulsador 2	LED (Encendido =1; Apagado = 0)
En reposo = 0	En reposo = 0	
En reposo = 0	Pulsado1 = 1	
Pulsado1 = 1	En reposo = 0	
Pulsado1 = 1	Pulsado1 = 1	

Mediante el programa WinBreadboard simular el circuito y completar la tabla de verdad

- Conectar la alimentación (6 v) a la patilla 14 (Vcc)
- · Conectar la patilla 7 (GND) al negativo
- Conectar el pulsador 1 NA entre el positivo y la patilla 8 (Entrada "a" de una de las puertas NOR)
- Conectar el pulsador 2 NA entre el positivo y la patilla 9 (Entrada "b" de una de las puertas NOR)
- Conectar las resistencias de 1.5 K entre la salida de cada pulsador y tierra.
- Conectar la patilla 10 (salida puerta NOR) con la resistencia y el led.
- Cerrar el circuito conectando el led al negativo de la protoboard
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en la protoboard, con los colores apropiados, la conexiones y componentes

7402

OBSERVACIONES	BSERVACIONES									

PRÁC	TICAS DE ELECTRÓN	ICA DIGITAL
A	Nombres y apellidos:	Curso:
		Fecha:

PRÁCTICA 5: PUERTA NAND (PRODUCTO LÓGICO **INVERTIDO)**

OBJETIVO: Comprobar el comportamiento de la función producto lógico invertido (puerta NAND) utilizando el C.I. 7400

MATERIAL:

- 4 Pilas 1,5 v
- 1 Portapilas
- C.I. 7400
- Resistencia 360 Ω
- Led
- 2 Pulsadores NA
- 2 Resistencia 1.5 KΩ

FUNDAMENTOS TEÓRICOS: La puerta PRODUCTO LÓGICO INVERTIDO o puerta NAND es una puerta AND a la que se le ha colocado a la salida un inversor, por tanto, la salida está a 0 sólo cuando todas las entradas están a 1. Multiplica las entradas e invierte el resultado.

Simbología

Tabla de Verdad

Símbolo MIL

Entrada (a)	Entrada (b)	Salida f = a · b
0	0	1
0	1	1
1	0	1
1	1	0

SIMULACIÓN: Mediante el programa Cocodrile, simular el siguiente circuito y completar la tabla de verdad

Pulsador 1	Pulsador 2	LED (Encendido =1; Apagado = 0)
En reposo = 0	En reposo = 0	
En reposo = 0	Pulsado1 = 1	
Pulsado1 = 1	En reposo = 0	
Pulsado1 = 1	Pulsado1 = 1	

Mediante el programa WinBreadboard simular el circuito y completar la tabla de verdad

- Conectar la alimentación (6 v) a la patilla 14 (Vcc)
- Conectar la patilla 7 (GND) al negativo
- Conectar el pulsador 1 NA entre el positivo y la patilla 9 (Entrada "a" de una de las puertas NAND)
- Conectar el pulsador 2 NA entre el positivo y la patilla 10 (Entrada "b" de una de las puertas NAND)
- Conectar las resistencias de 1.5 K entre la salida de cada pulsador y tierra.
- Conectar la patilla 8 (salida puerta NAND) con la resistencia y el led.
- Cerrar el circuito conectando el led al negativo de la protoboard
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en la protoboard, con los colores apropiados, la conexiones y componentes

7400

OBSERVACIONES

															•											 																			
															•											 																			
_	_	_	_	_		_	_	_	_	_	_	_	_					_	_	_	_				_					_	_	_		_		_		_	_	_	_	_	_	_	_
	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•		 		•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•

PRÁCTICAS DE ELECTRÓNICA DIGITAL									
SIA	Nombres y apellidos:	Curso:							
		Fecha:							

PRÁCTICA 6: PUERTA X-OR (SUMA LÓGICA EXCLUSIVA)

OBJETIVO: Comprobar el comportamiento de la función suma lógica exclusiva (puerta X-OR) utilizando el C.I. 7486

MATERIAL:

- 4 Pilas 1,5 v
- C.I. 7486
- 1 Resistencia 360 Ω
- 1 Led
- 2 Pulsadores NA
- 1 Portapilas
- 2 Resistencia 1.5 KΩ

FUNDAMENTOS TEÓRICOS: La puerta SUMA LÓGICA EXCLUSIVA o puerta EXOR es una puerta en la que la salida está a 0 sólo cuando todas las entradas están a igual nivel lógico. La salida está a 1 siempre que una sola de las entradas está a 1.

Simbología

Tabla de Verdad

	Future de (b)	Salida							
Entrada (a)	Entrada (b)	f = a⊕b							
0	0	0							
0	1	1							
1	0	1							
1	1	0							

SIMULACIÓN: Mediante el programa Cocodrile, simular el siguiente circuito y completar la tabla de verdad

Pulsador 1	Pulsador 2	LED (Encendido =1; Apagado = 0)
En reposo = 0	En reposo = 0	
En reposo = 0	Pulsado1 = 1	
Pulsado1 = 1	En reposo = 0	
Pulsado1 = 1	Pulsado1 = 1	

Mediante el programa WinBreadboard simular el circuito y completar la tabla de verdad

- Conectar la alimentación (6v) a la patilla 14 (Vcc)
- Conectar la patilla 7 (GND) al negativo
- Conectar el pulsador 1 NA entre el positivo y la patilla 9 (Entrada "a" de una de las puertas EXOR)
- Conectar el pulsador 2 NA entre el positivo y la patilla 10 (Entrada "b" de una de las puertas EXOR)
- Conectar las resistencias de 1.5 K entre la salida de cada pulsador y tierra.
- Conectar la patilla 8 (salida puerta EXOR) con la resistencia y el led.
- Cerrar el circuito conectando el led al negativo de la protoboard
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en la protoboard, con los colores apropiados, la conexiones y componentes

7486	
14 13 12 11 10 9 8	
Voc	
7486 Quad two-input ExOr gate	
1234567	
OBSERVACIONES	
OBSERVACIONES	

PRÁCTICAS DE ELECTRÓNICA DIGITAL										
	Nombres y apellidos:	Curso:								
8		Fecha:								

PRÁCTICA 7: POSTULADOS Y TEOREMAS DEL ÁLGEBRA DE BOOLE

OBJETIVO: Comprobar que se cumplen los postulados más importantes del Algebra de Boole

MATERIAL:

- 4 Pilas 1,5 v
- C.I. 7404, 7408, 7432
- 1 Resistencia 360 Ω
- 1 Led
- 1 Pulsador NA
- 1 Portapilas
- 1 resistencia de 1.5Κω

FUNDAMENTOS TEÓRICOS

Un álgebra de Boole es un conjunto de elementos denominados variables booleanas, las cuales sólo pueden adoptar dos valores o estados perfectamente diferenciados. Estos dos estados, que pueden notarse simbólicamente por 0 y 1, están relacionados por dos operaciones binarias denominadas Suma Lógica (+) y Producto Lógico (•), de modo que se cumplen los siguientes postulados:

1. Ambas operaciones son *conmutativas*:

$$a+b=b+a$$

2. Existen dos elementos pertenecientes al álgebra, denominados *elementos neutros* para cada operación, tales que:

$$a + 0 = a$$

$$a \cdot 1 = a$$

3. Cada operación es *distributiva* respecto de la otra:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
$$a + (b \cdot c) = (a+b) \cdot (a+c)$$

4. Existencia del elemento neutro

$$a + \overline{a} = 1$$

$$a \cdot \overline{a} = 0$$

Este postulado lleva implícita la existencia de una nueva operación llamada Inversión o Complementación

Nota: El elemento complementario o invertido es el estado contrario del dado.

Teoremas fundamentales de un Álgebra de Boole

1. Teorema de idempotencia

$$a + a = a$$

$$a \cdot a = a$$

2. Teorema de las constantes

$$a + 1 = 1$$

$$a \cdot 0 = 0$$

3. Teorema del doble complemento

$$\overline{\overline{a}} = a$$

SIMULACIÓN: Mediante el programa Cocodrile, vamos a simular algunos de los postulados y teoremas anteriores.

Entrada (a)	Salida f
0	
1	

Entrada (a)	Salida f
0	
1	

Entrada (a)	Salida f
0	
1	

Entrada (a)	Salida f
0	
1	

Entrada (a)	Salida f
0	
1	

Entrada (a)	Salida f
0	
1	

a+1=1	$a \cdot 0 = 0$	
a 6V 0	, o o o	

Entrada (a)	Salida f
0	
1	

Entrada (a)	Salida f
0	
1	

Entrada (a)	Salida f
0	
1	

Mediante el programa WinBreadboard simular los circuitos y completar las tablas de verdad

Ejemplo del postulado $a \cdot 1 = a$

MONTAJE:

- Conectar los C.I. necesarios en la protoboard e ir probando los diferentes postulados y teoremas
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en la protoboard, con los colores apropiados, la conexiones y componentes

PRÁCTICAS DE ELECTRÓNICA DIGITAL		
	Nombres y apellidos:	Curso:
	Fecha:	

PRÁCTICA 8: TEOREMAS de DE MORGAN

<u>OBJETIVO</u>: Verificar que se cumplen los Teoremas de DE MORGAN

MATERIAL:

- 4 Pilas 1,5 v
- C.I. 7402 y 7486
- Resistencia 360 Ω
- 1 Led
- 2 Pulsadores NA
- 1 Portapilas
- 2 resistencias de 1.5 kΩ

FUNDAMENTOS TEÓRICOS

Para dos variables de entrada, se cumple que:

- $f = \overline{a+b} = \overline{a} \cdot \overline{b}$

SIMULACIÓN: Mediante el programa Cocodrile, simula los siguientes circuitos y completa las tablas de verdad

Tablas de Verdad

Circuito 1

Entrada (a)	Entrada (b)	Salida f
0	0	
0	1	
1	0	
1	1	

Circuito 2

Entrada (a)	Entrada (b)	Salida f
0	0	
0	1	
1	0	
1	1	

Circuito 1

Entrada (a)	Entrada (b)	Salida f
0	0	
0	1	
1	0	
1	1	

Circuito 2

Entrada (a)	Entrada (b)	Salida f
0	0	
0	1	
1	0	
1	1	

Mediante el programa WinBreadboard simula los circuitos para comprobar que se cumplen las igualdades de DE MORGAN.

MONTAJE:

- Conectar los C.I. necesarios en la protoboard e ir probando los dos circuitos
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en cada protoboard, con los colores apropiados, las conexiones y componentes

Circuito 1

Circuito 2

ODCEDVACIONEC.

OBSERVACIONE	23.	

PRÁCTICAS DE ELECTRÓNICA DIGITAL				
SIN	Nombres y apellidos:	Curso:		
8		Fecha:		

PRÁCTICA 9: OBTENCIÓN DE LA FUNCIÓN DE SALIDA

OBJETIVO: Manejar circuitos con puertas lógicas para obtener la función de salida de un circuito lógico.

DESARROLLO:

<u>1ª parte</u>: Obtener la función de salida del siguiente circuito

	=			ar Ios Ci		

SIMULACIÓN: Mediante el programa Cocodrile, simula el circuito anterior y completa la tabla de verdad.

Entrada (a)	Entrada (b)	Entrada (c)	Salida f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Mediante el programa WinBreadboard simular el circuito y verificar la tabla de verdad obtenida con anterioridad

MONTAJE:

- Conectar los C.I. necesarios en la protoboard e ir probando el circuito
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en cada protoboard, con los colores apropiados, las conexiones y componentes

OBSERVACIONES		

PRÁC	TICAS DE ELECTRÓN	ICA DIGITAL
	Nombres y apellidos:	Curso:
		Fecha:

PRÁCTICA 10: OBTENCIÓN DE UN CIRCUITO

OBJETIVO: Obtener e implementar el circuito con puertas lógicas a partir de una función algebraica

DESARROLLO:

<u>1^a parte</u>: Obtener el circuito lógico de la siguiente función:

$$f(a,b) = \overline{(\overline{a} + a \cdot \overline{b})} \cdot \overline{(\overline{a} \cdot (a + \overline{b}))}$$

2ª parte: Indica el material necesario para montar los circuitos:

SIMULACIÓN: Mediante el programa Cocodrile, simula el circuito anterior y completa la tabla de verdad.

Entrada (a)	Entrada (b)	Salida f
0	0	
0	1	
1	0	
1	1	
0	0	
0	1	
1	0	
1	1	

Mediante el programa WinBreadboard simular el circuito y verificar la tabla de verdad obtenida con anterioridad

- Conectar los C.I. necesarios en la protoboard e ir probando el circuito
- Actuar sobre los pulsadores y comprobar los resultados de la simulación
- Dibujar en cada protoboard, con los colores apropiados, las conexiones y componentes

BSERVACIONES	

PRÁCTICAS DE ELECTRÓNICA DIGITAL					
	Nombres y apellidos:	Curso:			
		Fecha:			

PRÁCTICA 11: EL DISPLAY 7 SEGMENTOS

OBJETIVO: Conocer el funcionamiento del decodificador BCD/7segmentos (C.I.7447) y del display 7 segmentos.

MATERIAL:

- 4 Pilas 1,5 v
- 1 Portapilas
- C.I. SN74LS47
- 7 Resistencia 220 Ω
- 1 Display 7 segmentos de ánodo común

cátodos.

- 4 Pulsadores NA
- 4 Resistencia 1.5 KQ

FUNDAMENTO TEÓRICO: El display 7 segmentos consiste en un conjunto de 7

leds encapsulados y conformados de tal manera que, según los que estén luciendo, muestren caracteres alfanuméricos. Pueden ser de ánodo o cátodo común, según estén unidos todos los ánodos o todos los

El 7447 es un decodificador del tipo BCD/7segmentos, el cual tiene entradas en código BCD y salidas en lógica negativa, siendo capaz de excitar, por medio de resistencias limitadoras de corriente, los segmentos de un display de ánodo común.

Prácticas de Electrónica Digital

irdoba

Actividad: Intenta completar la tabla de verdad del decodificador

	ENTRADAS			SALIDAS							
Decimal	D	С	В	Α	а	b	С	d	е	f	g

SIMULACIÓN: Mediante el programa Cocodrile, simular el siguiente circuito

MONTAJE: Implementa el circuito anterior en una protoboard teniendo en cuenta los patillajes de los circuitos integrados que se muestran a continuación

DISPLAY 7 SEGMENTOS

Common Anode 3, 8 a b c d e f g DP Y Y Y Y Y Y Y Y 7 6 4 2 1 9 10 5

Diagrama de Conexiones

Descripción de cada pin

Pin Names	Description
A0-A3	BCD Inputs
RBI	Ripple Blanking Input (Active LOW)
LT	Lamp Test Input (Active LOW)
BI/RBO	Blanking Input (Active LOW) or
	Ripple Blanking Output (Active LOW)
a –g	Segment Outputs (Active LOW) (Note 1)

Note 1: OC-Open Collector

DESCRIPCIÓN DE CADA PIN

Nombre del Pin ("*" significa activa a baja)	Descripción
A0 – A3 ó A - D	Entradas en BCD
RBI*(Ripple Blanking Input)	Inutiliza los ceros de los displays
RBO* (Riple Blanking Output)	Estructura una formación en cascada
	entre varios decodificadores y suprime
	los ceros a la izquierda de los displays
LT* (Lamp Test)	verificación de todas las seciones del
	display. Al excitarse esa entrada, se
	encenderán todos los segmentos al
	mismo tiempo
a* - g*	Salidas a cada segmento

Enlace de la hoja de datos del display

http://www.datasheetcatalog.org/datasheet/vishay/83126.pdf

Enlace de la hoja de datos del decodificador

http://docs-europe.electrocomponents.com/webdocs/002c/0900766b8002cd59.pdf

PRÁCTICAS DE ELECTRÓNICA DIGITAL					
	Nombres y apellidos:	Curso:			
		Fecha:			

PRÁCTICA 12: CIRCUITOS DE APLICACIÓN I

OBJETIVO: Diseñar un circuito digital que maneje la puesta en marcha de un motor bajo ciertas condiciones.

PLANTEAMIENTO DEL PROBLEMA: Para poner en marcha un motor se requieren tres interruptores "a, b, c" de tal forma que el funcionamiento del mismo se produzca únicamente en las siguientes condiciones:

- Cuando esté cerrado solamente "c".
- Cuando estén cerrados simultáneamente "a" y "c" y no lo esté "b".
- Cuando estén cerrados simultáneamente "a" y "b" y no lo esté "c".

- a) Construir la tabla de verdad.
- b) Minimizar la función obtenida mediante Karnaugh
- c) Implementar el circuito con puertas lógicas básicas, indicando los materiales necesarios
- d) Implementar el circuito de control mediante puertas NAND de 2 entradas
- e) Implementar el circuito de mando con puertas NOR de 2 entradas
- f) Simular mediante cocodrilo y winbreadBoard la función obtenida en el aptdo. (b).
- c) Realizar el montaje del circuito simulado.

PRÁCTICAS DE ELECTRÓNICA DIGITAL						
	Nombres y apellidos:	Curso:				
		Fecha:				

PRÁCTICA 13: CIRCUITOS DE APLICACIÓN II

OBJETIVO: Diseñar un circuito digital que controle el funcionamiento de un sistema de aire acondicionado.

<u>PLANTEAMIENTO DEL PROBLEMA</u>: Queremos montar en el aula taller un sistema de aire acondicionado con 3 sensores de temperatura. El sistema debe activarse sólo cuando al menos 2 de los tres sensores alcancen una cierta temperatura.

- a) Construir la tabla de verdad.
- b) Minimizar la función obtenida mediante Karnaugh
- c) Implementar el circuito con puertas lógicas básicas, indicando los materiales necesarios
- d) Implementar el circuito de control mediante puertas NAND de 2 entradas
- e) Implementar el circuito de mando con puertas NOR de 2 entradas
- f) Simular mediante cocodrilo y winbreadBoard la función obtenida en el aptdo (b).
- c) Realizar el montaje del circuito simulado.

PRÁCTICAS DE ELECTRÓNICA DIGITAL					
	Nombres y apellidos:	Curso:			
		Fecha:			

PRÁCTICA 12: CIRCUITOS DE APLICACIÓN I SOLUCIÓN

OBJETIVO: Diseñar un circuito digital que maneje la puesta en marcha de un motor bajo ciertas condiciones.

PLANTEAMIENTO DEL PROBLEMA: Para poner en marcha un motor se requieren tres interruptores "a, b, c" de tal forma que el funcionamiento del mismo se produzca únicamente en las siguientes condiciones:

- Cuando esté cerrado solamente "c".
- Cuando estén cerrados simultáneamente "a" y "c" y no lo esté "b".
- Cuando estén cerrados simultáneamente "a" y "b" y no lo esté "c".

- a) Construir la tabla de verdad.
- b) Minimizar la función obtenida mediante Karnaugh
- c) Implementar el circuito con puertas lógicas básicas, indicando los materiales necesarios
- d) Implementar el circuito de control mediante puertas NAND de 2 entradas
- e) Implementar el circuito de mando con puertas NOR de 2 entradas
- f) Simular mediante cocodrilo y winbreadBoard la función obtenida en el aptdo. (b).
- c) Realizar el montaje del circuito simulado.

SOLUCIÓN

a) Tabla de verdad

Entrada (a)	Entrada (b)	Entrada (c)	Salida f	Decimal
0	0	0	0	0
0	0	1	1	1
0	1	0	0	2
0	1	1	0	3
1	0	0	0	4
1	0	1	1	5
1	1	0	1	6
1	1	1	0	7

La función de salida es:

$$f(a,b,c) = \sum_{3} (1,5,6) = \overline{a} \cdot \overline{b} \cdot c + a \cdot \overline{b} \cdot c + a \cdot b \cdot \overline{c}$$

b) Minimización

Agrupaciones:

$$(1-5) = \overline{b} \cdot c$$

$$(6) = a \cdot b \cdot \overline{c}$$

La función simplificada queda como sigue:

$$f(a,b,c) = \overline{b} \cdot c + a \cdot b \cdot \overline{c}$$

c) Implementación con puertas básicas

d) Implementación con puertas NAND

$$f(a,b,c) = \overline{b} \cdot c + a \cdot b \cdot \overline{c} = \overline{\overline{\overline{b} \cdot c + a \cdot b \cdot \overline{c}}} = (\overline{\overline{\overline{b} \cdot c}) \cdot (\overline{a \cdot b \cdot \overline{c}}})$$

e) Implementación con puertas NOR

$$f(a,b,c) = \overline{b} \cdot c + a \cdot b \cdot \overline{c} = \overline{\overline{b} \cdot c + a \cdot b \cdot \overline{c}} = (\overline{\overline{b} \cdot c}) \cdot (\overline{a \cdot b \cdot \overline{c}}) = (\overline{b} + \overline{c}) + (\overline{a} + \overline{b} + \overline{c}) = (\overline{b} + \overline{c}) + (\overline{a} + \overline{b} + \overline{c})$$

f) Simulación

g) Lista de materiales

- 1 Portapilas
- 4 Pilas 1.5 v tipo AA.
- CI 74HC32
- CI 74HC08
- CI 74HC04
- 1 Resistencia 10 K
- 3 Resistencia 1.5 K
- 3 Pulsadores NA
- 1 Relé de 1 circuito
- 1 Diodo
- 1 Motor de c.c.
- 1 Transistor BD137
- Cable fino

PRA	ÁCTICAS DE ELECTRÓ	NICA DIGITAL
AR	Nombres y apellidos:	Curso:
<u> </u>		Fecha:

PRÁCTICA 13: CIRCUITOS DE APLICACIÓN II SOLUCIÓN

<u>OBJETIVO</u>: Diseñar un circuito digital que controle el funcionamiento de un sistema de aire acondicionado.

<u>PLANTEAMIENTO DEL PROBLEMA</u>: Queremos montar en el aula taller un sistema de aire acondicionado con 3 sensores de temperatura. El sistema debe activarse sólo cuando al menos 2 de los tres sensores alcancen una cierta temperatura.

- a) Construir la tabla de verdad.
- b) Minimizar la función obtenida mediante Karnaugh
- c) Implementar el circuito con puertas lógicas básicas, indicando los materiales necesarios
- d) Implementar el circuito de control mediante puertas NAND de 2 entradas
- e) Implementar el circuito de mando con puertas NOR de 2 entradas
- f) Simular mediante cocodrilo y winbreadBoard la función obtenida en el aptdo (b).
- c) Realizar el montaje del circuito simulado.

SOLUCIÓN

a) Tabla de verdad

Entrada (a)	Entrada (b)	Entrada (c)	Salida f	Decimal
0	0	0	0	0
0	0	1	0	1
0	1	0	0	2
0	1	1	1	3
1	0	0	0	4
1	0	1	1	5
1	1	0	1	6
1	1	1	1	7

La función de salida será:

$$f(a,b,c) = \sum_{3} (3,5,6,7) = \overline{a} \cdot b \cdot c + a \cdot \overline{b} \cdot c + a \cdot b \cdot \overline{c} + a \cdot b \cdot \overline{c}$$

b) Minimización

Agrupaciones:

$$(5-7) = a \cdot c$$

$$(3-7) = b \cdot c$$

$$(6-7) = a \cdot b$$

La función de salida es:

$$f(a,b,c) = ac + bc + ab$$

c) Implementación con puertas básicas

d) Implementación con puertas NAND

$$f(a,b,c) = ac + bc + ab = \overline{ac + bc + ab} = \overline{(a \cdot c) \cdot (\overline{b \cdot c}) \cdot (\overline{a \cdot b})}$$

e) Implementación con puertas NOR

$$f(a,b,c) = ac + bc + ab = \overline{ac + bc + ab} = \overline{(\overline{a \cdot c}) \cdot (\overline{b \cdot c}) \cdot (\overline{a \cdot b})} =$$

$$= (\overline{\overline{a} + \overline{c}}) + (\overline{\overline{b} + \overline{c}}) + (\overline{\overline{a} + \overline{b}}) = (\overline{\overline{a} + \overline{c}}) + (\overline{\overline{b} + \overline{c}}) + (\overline{\overline{a} + \overline{b}})$$

f) Simulación

