Open-Circuit Time Constant Analysis

General Form
$$\begin{cases} H(s) = K \frac{1 + a_1 s + a_2 s^2 + \cdots + a_m s^m}{1 + b_1 s + b_2 s^2 + \cdots + b_n s^n} \end{cases}$$

When the poles and zeros are easily found, then it is relatively easy to determine a dominant pole, if one exists. But sometimes it is not easy to determine the dominant pole.

The coefficient b_1 in the transfer function is especially important

$$b_1 = \frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} + \frac{1}{\omega_{p3}} + \dots + \frac{1}{\omega_{pn}} = \tau_{p1} + \tau_{p2} + \tau_{p3} + \dots + \tau_{pn}$$

How do we determine the ω_{pi} or τ_{pi} values? We next examine all of the capacitors in the overall circuit individually.

Open-Circuit Time Constant Analysis

We consider each capacitor in the overall circuit one at a time by setting every other small capacitor to an open circuit and letting independent voltage sources be short circuits.

The value of b_1 is computed by summing the individual time constants, called the "sum of the open-circuit time constants."

$$b_1 = \sum_{i=1}^n R_{io}C_i$$
 RC is a time constant

And the pole frequency ω_H is given by

$$\omega_{H} = \frac{1}{b_{1}} = \frac{1}{\sum_{i=1}^{n} R_{io}C_{i}}$$

Open-Circuit Time Constant (OCTC) Description

The method of open-circuit time constants provides a simple and powerful way to obtain a reasonably good estimate of the upper 3-dB frequency, f_H . The capacitors that contribute to the high-frequency response are considered one at a time, with independent source V_s turned off (set to zero), and all other capacitances set to zero (that is, open-circuited). The Thévenin resistance presented to each capacitance is then determined, and the time constants (τ_{pi}) are summed to find the overall cutoff frequency f_H is found from $1/(2\pi \sum \tau_{pi})$.

Open-Circuit Time Constant (OCTC) Computation Rules

- For each "small" capacitor C_i in the circuit:
 - Open-circuit all other "small" capacitors
 - Short circuit all "big" capacitors (e.g., coupling capacitors)
 - Turn off all independent sources (but not dependent sources)
 - Replace the capacitor under consideration (C_j) with a current or voltage source for resistance calculation (or determine by inspection)
 - Find the Thévenin equivalent input resistance R_j as seen by the capacitor C_i
 - $-R_iC_i$ is the open-circuit time constant for the j^{th} capacitor
- Procedure is best illustrated with an example . . .

Open-Circuit Time Constant (OCTC) Example 1

Doing the full analysis gives

$$\frac{V_{O}}{V_{S}} = \frac{1}{1 + s[R_{1}C_{1} + (R_{1} + R_{2})C_{2}] + s^{2}(R_{1}R_{2}C_{1}C_{2})} = \underbrace{\frac{1}{1 + b_{1}s + b_{2}s^{2}}}_{\text{Standard format}}$$

Remember: $b_1 = \tau_1 + \tau_2$ and $b_2 = \tau_1 \tau_2$

Open-Circuit Time Constant (OCTC) Example 1

Circuit

Determining τ_2

Set C_1 to open, & replace capacitor C_2 with voltage source V_x & determine Thévenin resistance through which current I_x flows.

$$V_x = I_x (R_1 + R_2)$$
, so
Then $\tau_2 = (R_1 + R_2)C_2$

Determining τ_1

Set C_3 to open, & replace capacitor C_1 with voltage source V_x & determine Thévenin resistance through which current I_x flows.

$$V_x = I_x (R_1)$$
, so
Then $\tau_1 = R_1C_2$

Open-Circuit Time Constant (OCTC) Example 1

Recalling the expression for the transfer function,

$$\frac{V_{O}}{V_{S}} = \frac{1}{1 + s[R_{1}C_{1} + (R_{1} + R_{2})C_{2}] + s^{2}(R_{1}R_{2}C_{1}C_{2})} = \frac{1}{1 + b_{1}s + b_{2}s^{2}}$$

$$\tau_{1} \qquad \tau_{2}$$

Let's put in some numbers:

Suppose $R_1 = R_2 = 10 \text{ k}\Omega$ and $C_1 = C_2 = 100 \text{ pF}$. What are the pole frequencies?

$$\tau_1 = R_1 C_1 = (10^4) 100 \times 10^{-12} \text{ sec} = 1 \,\mu \text{ sec} \implies \omega_{p1} = 1 \text{ MHz}$$

$$\tau_2 = (R_1 + R_2) C_2 = (10^4 + 10^4) 100 \times 10^{-12} \text{ sec} = 2 \,\mu \text{ sec} \implies \omega_{p2} = 0.5 \text{ MHz}$$

Open-Circuit Time Constant (OCTC)

Why does the Open-Circuit Time Constant method work?

Answer:

Common-gate MOSFET Amplifier

$$C_{in} = C_{gs}$$

$$C'_{L} = C_{gd} + C_{L}$$

$$C_{ds} \cong 0$$

$$R_{sig} \qquad V_{i}$$

$$R_{L} = r_{O} \| R_{L}$$

Common-gate MOSFET Amplifier – Focus on C_{in}

Common-gate MOSFET Amplifier – Focus on C'_L

Common-gate MOSFET Amplifier – Conclusion

The midband voltage gain of the CG stage is

$$A_{V} = + \frac{(r_{O} + R_{L}^{'})}{(r_{O} + R_{L}^{'}) + g_{m} r_{O} R_{sig}} \cdot [g_{m}(r_{O} | R_{L}^{'})]$$

The two time constants are

$$\tau_{1} = C_{in} \left[R_{sig} \left\| \left(\frac{r_{O} + R_{L}}{1 + g_{m} r_{O}} \right) \right\| \right] \qquad \tau_{2} = C_{L} \left[R_{L} \left\| r_{O} \left(1 + g_{m} R_{sig} \right) \right\| \right]$$

$$f_H = \frac{1}{2\pi b_1} = \frac{1}{2\pi (\tau_1 + \tau_2)}$$

Miller's Theorem vs. Miller's Approximation

For Miller Theorem to work, ratio of V_2/V_1 (amplifier gain) must be calculated in the presence of the impedance Z being transformed.

Most books use the mid-band gain of the amplifier and ignore changes in the gain due to the feedback capacitor, C_{gd} . This is called "Miller's Approximation."

The amplifier gain in the presence of C_{gd} is smaller than the midband gain (i.e., high-frequency portion of the Bode gain plot), so Miller's approximation overestimates the $C_{gd,input}$ term and it underestimates the capacitor $C_{gd,output}$.

Note: But the OCTC method using b_1 and f_H does better.

Also, Miller's Approximation "misses" the zero introduced by the feedback capacitor C_{gd} or C_{μ} (important for analyzing stability of feedback amplifiers as it affects both gain and phase margins).

The origin of the zero in the CS MOSFET amplifier

- 1) Definition of a zero: $V_o(s = s_z) = 0$
- 2) Because $V_{out} = 0$, zero current will flow in r_o , C_L and R_L
- 3) Using KCL, a current of $g_m v_{qs}$ flows in C_{qd} .
- 4) Ohm's law for C_{qd} gives:

$$\left| sC_{gd}v_{gs} \right| = g_m v_{gs}$$

$$s_Z = \frac{g_m}{C_{gd}} \text{ and } f_H = \frac{g_m}{2\pi C_{gd}}$$

Comparison of CS and CG MOSFET Amplifiers

- 1) Both CS and CG amplifiers have high gain $|g_m(r_O || R_L)|$
- 2) CS amplifier has an \approx infinite input resistance whereas CG amplifier has a low input resistance ($\approx 1/g_m$).
 - CG amplifier has a much better high-frequency response.
 - CS amplifier has a large capacitor at the input due to the Miller's effect: $C_{in} = C_{gs} + C_{gd}[1 + g_m(r_O || R_L)]$ compared to that of a CG amplifier: $C_{in} = C_{gs}$
 - In addition, a CS amplifier has a zero.

Note: The Cascode amplifier combines the desirable properties of high input impedance with a reasonably high-frequency response. (It has a better high-frequency response than a two-stage CS amplifier.)

Caution: Miller's Approximation

The main value of Miller's Theorem is to demonstrate that a large capacitance will appear at the input of a CS amplifier (Miller's capacitor).

Whereas, Miller's Approximation gives a reasonable approximation to f_H , it fails to provide accurate values for each pole and misses the zero in the transfer function.

- Miller's approximation should be used only as a first guess in analysis. Simulation can be used to more accurately find the amplifier response.
- Stability analysis (i.e., gain and phase margins) should utilize simulations unless a dominant pole exists in the expression for f_H .

Miller's approximation breaks down when the gain is close to unity.

Common-Drain (Source Follower) Stage Example

Time constant τ_1 from C_{gs}

Common-Drain (Source Follower) Stage (2)

Time constant τ_2 from C_L

$$\tau_2 = \left(\frac{1}{g_m} \| R_L \right) C_L$$

Common-Drain (Source Follower) Stage (3)

Time constant τ_3 from C_{gs}

Common-Drain (Source Follower) Stage (4)

Note: $v_x = v_{gs}$, using KVL gives

$$v_{x} = i_{x}R_{sig} + (r_{O} \| R_{L}^{'})(i_{x} - g_{m}v_{gs})$$

$$v_{x} = i_{x}R_{sig} + (r_{O} \| R_{L}^{'})i_{x} - g_{m}(r_{O} \| R_{L}^{'})v_{x}$$

$$v_{x} \left[1 + g_{m}(r_{O} \| R_{L}^{'})\right] = \left[R_{sig} + (r_{O} \| R_{L}^{'})\right]i_{x}$$

$$\tau_{3} = \left(\frac{R_{sig} + (r_{O} \| R_{L}^{'})}{1 + g_{m}(r_{O} \| R_{L}^{'})}\right)C_{gs}$$

$$\therefore R_{gs} = \frac{v_x}{i_x} = \frac{R_{sig} + (r_O \| R_L')}{\left\lceil 1 + g_m(r_O \| R_L') \right\rceil}$$

Common-Drain (Source Follower) Stage (5)

$$\frac{1}{2\pi f_H} = b_1 = \tau_1 + \tau_2 + \tau_3$$

$$\frac{1}{2\pi f_{H}} = R_{sig}C_{gd} + \left(\frac{1}{g_{m}} \| R_{L}^{'}\right)C_{L} + \frac{R_{sig} + (r_{O} \| R_{L}^{'})}{\left[1 + g_{m}(r_{O} \| R_{L}^{'})\right]}C_{gs}$$

Selected comments on high-frequency response in MOSFET amplifiers

- Include internal-capacitances of MOSFETs and simplify the circuit as much as possible.
- Use Miller's approximation for Miller capacitance in configurations with a large (and negative) voltage gain A_V .
- Use the open-circuit time constant method to find f_H .
- Do not neglect zeros in the CS and CD configurations.

Common-source stage with active load example

Dominant Pole Compensation

- Sometimes we must purposely introduce an additional "pole" in a circuit (such as to control gain or phase margin in feedback amplifiers for stability). This is called "dominant pole compensation."
- This pole must be a "dominant pole" (that is, several octaves below any zero or other pole).
- In this case, we can ignore transistor internal capacitances in the analysis because the poles introduced by these capacitances are at higher frequencies and do not significantly impact the "dominant pole."
 - 1. Dominant pole is introduce by capacitor between output & ground
 - 2. Capacitor between input and output of a stage (*i.e.*, uses Miller Effect).

Dominant pole created by adding large capacitance C_i at the output .