Lengths and Areas in Triangles

Dennis Chen

GQU

§1 Lengths

There are a couple of important lengths in a triangle. These are the lengths of cevians, the inradius/exradius, and the circumradius.

§ 1.1 Law of Cosines and Stewart's

We discuss how to find the third side of a triangle given two sides and an included angle, and use this to find a general formula for the length of a cevian.

Theorem 1 (Law of Cosines) Given $\triangle ABC$, $a^2 + b^2 - 2ab \cos C = c^2$.

Proof: Let the foot of the altitude from A to BC be H. Then note that $A = b \sin C$, $CH = b \cos C$, and $BH = |a - b \cos C|$. (The absolute value is because $\angle B$ can either be acute or obtuse.) Then note by the Pythagorean Theorem, $(b \sin C)^2 + (a - b \cos C)^2 = a^2 + b^2 - 2ab \cos C = c^2$.

Theorem 2 (Stewart's Theorem) Consider $\triangle ABC$ with cevian AD, and denote BD = m, CD = n, and AD = d. Then man + dad = bmb + cnc.

Proof: We use the Law of Cosines. Note that

$$\cos \angle ADB = \frac{d^2 + m^2 - c^2}{2dm} = -\frac{d^2 + n^2 - b^2}{2dn} = -\cos \angle ADC.$$

Multiplying both sides by 2dmn yields

$$c^2n - d^2n - m^2n = -bm^2 + d^2m + mn^2$$

$$b^2m + c^2n = mn(m+n) + d^2(m+n)$$

bmb + cnc = man + dad.

Here are two corollaries that will save you a lot of time in computational contests.

Fact 1 (Length of Angle Bisector) In $\triangle ABC$ with angle bisector AD, denote BD=x and CD=y. Then

$$AD = \sqrt{bc - xy}.$$

Fact 2 (Length of Median) In $\triangle ABC$ with median AD,

$$AD = \frac{\sqrt{2b^2 + 2c^2 - a^2}}{2}.$$

§ 1.2 Law of Sines and the Circumradius

The Law of Sines is a good way to length chase with a lot of angles.

Theorem 3 (Law of Sines) In $\triangle ABC$ with circumradius R,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$

Proof: We only need to prove that $\frac{a}{\sin A} = 2R$, and the rest will follow. Let the line through B perpendicular to BC intersect (ABC) again at A'. Then note that A'C = 2R by Thale's. By the Inscribed Angle Theorem, $\sin \angle CA'B = \sin A$, so $\frac{a}{\sin A} = \frac{a}{\sin \angle CA'B} = \frac{a}{\frac{a}{2R}} = 2R$.

Other texts will call this the Extended Law of Sines. But the Extended Law of Sines has a better proof than the "normal" Law of Sines, and redundancy is bad.

The Law of Sines gives us the Angle Bisector Theorem.

Theorem 4 (Angle Bisector Theorem) Let D be the point on BC such that $\angle BAD = \angle DAC$. Then $\frac{AB}{BD} = \frac{AC}{CD}.$

Proof: By the Law of Sines, $\frac{\sin \angle ADB}{\sin \angle BAD} = \frac{AB}{BD}$ and $\frac{\sin \angle ADC}{\sin \angle CAD} = \frac{AC}{CD}$. But note that $\angle BAD = \angle ADC$ and $\angle BAD + \angle CAD = 180^{\circ}$, so $\frac{AB}{BD} = \frac{AC}{CD}$.

In fact, the Angle Bisector Theorem can be generalized in what is known as the ratio lemma.

Theorem 5 (Ratio Lemma) Consider $\triangle ABC$ with point P on BC. Then $\frac{BP}{CP} = \frac{c \sin \angle BAP}{b \sin \angle CAP}$.

The proof is pretty much identical to the proof for Angle Bisector Theorem.

Proof: By the Law of Sines, $BP = \frac{c \sin \angle BAP}{\sin \angle APB}$ and $CP = \frac{b \sin \angle CAP}{\sin \angle APC}$. Since $\sin \angle APB = \sin \angle APC$,

$$\frac{BP}{CP} = \frac{c \sin \angle BAP}{b \sin \angle CAP}.$$

Note that this remains true even if P is on the extension of BC.

Here's a classic example that cleverly utilizes the Law of Sines.

Example 1 Show that $\triangle ABC$ is similar to the triangle with side lengths $\sin A$, $\sin B$, $\sin C$.

Solution: Note that $\sin A = \frac{a}{2R}$, so the similarity factor is 2R. We'll utilize this concept further in the next example.

Example 2 Consider $\triangle ABC$ with side lengths AB = 13, BC = 5, and CA = 12. Find the area of the triangle with side lengths $\sin A$, $\sin B$, and $\sin C$.

Solution: Note that [ABC] = 60 and the triangle with lengths $\sin A$, $\sin B$, and $\sin C$ is similar to $\triangle ABC$ with a scale factor of 13. Thus the desired area is $\frac{60}{13^2} = \frac{60}{169}$. It's possible to just directly use the values of $\sin A$, $\sin B$, and $\sin C$, but this will not work for general

triangles.

The Incircle, Excircle, and Tangent Chasing § 1.3

We provide formulas for the inradius, exradii, and take a look at some uses of the Two Tangent Theorem. Recall that the Two Tangent Theorem states that if the tangents from P to ω intersect ω at A, B, then PA = PB.

Theorem 6 (rs) In $\triangle ABC$ with inradius r,

$$[ABC] = rs.$$

Proof: Note that $[ABC] = r \cdot \frac{a+b+c}{2} = rs$.

A useful fact of the incircle is that the length of the tangents from A is s-a. Similar results hold for the B, C tangents to the incircle.

Fact 3 (Tangents to Incircle) Let the incircle of $\triangle ABC$ be tangent to BC, CA, AB at D, E, F. Then

$$AE = AF = s - a$$

$$BF = BD = s - b$$

$$CD = CE = s - c.$$

Proof: Note that by the Two Tangent Theorem, AE = AF = x, BF = BD = y, and CD = CE = z. Also note that

$$BD + CD = y + z = a$$

$$CE + EA = z + x = b$$

$$AF + FB = x + y = c.$$

Adding these equations gives 2x + 2y + 2z = a + b + c = 2s, implying x + y + z = s. Thus

$$x = AE = AF = s - a$$

$$y = BF = BD = s - b$$

$$z = CD = CE = s - c,$$

as desired.

Theorem 7 $(r_a(s-a))$ In $\triangle ABC$ with A exadius r_a ,

$$[ABC] = r_a(s-a).$$

Proof: Let AB, AC be tangent to the A excircle at P, Q, respectively, and let BC be tangent to the A excircle at D. Then note that by the Two Tangent Theorem, PB = BD and DC = CQ. Thus $[ABC] = [API_A] + [AQI_A] - 2[BI_AC] = r_a \cdot \frac{s+s-2a}{2} = r_a(s-a)$.

The proof also implies the following corollary.

Fact 4 (Tangents to Excircle) Let the A excircle of $\triangle ABC$ be tangent to BC at D. Then BD = s - c and CD = s - b.

Analogous equations hold for the B and C excircles.

Proof: Let the A excircle be tangent to line AB at P and line AC at Q. Note that AP = AB + BP = c + BD and AQ = AC + CQ = b + CD by the Two Tangent Theorem. Applying the Two Tangent Theorem again gives AP = AQ, or c + BD = b + CD. Also note that AP + AQ = b + c + BD + DC = 2s, so AP = AQ = s and s = c + BD = b + CD. Thus BD = s - c and CD = s - b.

Keep these area and length conditions in mind when you see incircles and excircles.

§ 2 Areas

There are a variety of methods to find area. For harder problems, computing the area in two different ways can give useful information about the configuration.

Theorem 8 ($\frac{bh}{2}$) The area of a triangle is $\frac{bh}{2}$.

Proof: The area of each right triangle is half of the area of the rectangle it is in.

Theorem 9 (rs) The area of a triangle is rs, where r is the inradius and s is the semiperimeter.

We have already proved this in Length Chasing - but we mention this theorem again because it is useful for area too.

Theorem 10 ($\frac{1}{2}ab\sin C$) The area of a triangle is $\frac{1}{2}ab\sin C$, where a,b are side lengths and C is the included angle.

Proof: Drop an altitude from B to AC and let it have length h. Then note $\frac{1}{2} \cdot a \sin C \cdot b = \frac{1}{2} \cdot hb = \frac{bh}{2}$.

We present a useful corollary of this theorem.

Fact 5 $(\frac{[PAB]}{[PXY]} = \frac{PA \cdot PB}{PX \cdot PY})$ Let P, A, X be on ℓ_1 and P, B, Y be on ℓ_2 . Then $\frac{[PAB]}{[PXY]} = \frac{PA \cdot PB}{PX \cdot PY}$.

Proof: Note
$$\frac{[PAB]}{[PXY]} = \frac{\frac{1}{2} \cdot PA \cdot PB \cdot \sin \theta}{\frac{1}{2} \cdot PX \cdot PY \cdot \sin \theta} = \frac{PA \cdot PB}{PX \cdot PY}$$
, where $\theta = \angle APB$. This works for all configurations since $\sin \theta = \sin(180 - \theta)$.

Here is a very difficult example done with the help of some tricky angle chasing, trig addition formulas, and the sine area formula.

Example 3 (AMC 12A 2021/24) Semicircle Γ has diameter \overline{AB} of length 14. Circle Ω lies tangent to \overline{AB} at a point P and intersects Γ at points Q and R. If $QR = 3\sqrt{3}$ and $\angle QPR = 60^{\circ}$, then the area of $\triangle PQR$ is $\frac{a\sqrt{b}}{c}$, where a and c are relatively prime positive integers, and b is a positive integer not divisible by the square of any prime. What is a+b+c?

Solution: Let S be the center of Ω , and note that by the Law of Sines, the circumradius of $\triangle PQR$ is $\frac{QR}{2\sin RPQ} = \frac{3\sqrt{3}}{\sqrt{3}} = 3$. Also note that by the Pythagorean Theorem, the distance from O to RQ is $\sqrt{7^2 - (\frac{3\sqrt{3}}{2})^2} = \frac{13}{2}$, as $\triangle ORQ$ is isosceles. So $SO = \frac{13}{2} - \frac{3}{2} = 5$ and SP = 4 by the Pythagorean Theorem. Let $\angle OSP = \theta$ and note that $\arccos \theta = \frac{3}{5}$. Now, by the Sine Area Formula,

$$[PQR] = [PSR] + [PSQ] + [RSQ] = \frac{9}{2}(\sin 60^{\circ} + \sin(150^{\circ} - \theta) + \sin(150^{\circ} + \theta))$$

$$= \frac{9}{2}(\frac{\sqrt{3}}{2} + 2\sin 150^{\circ}\cos \theta)$$

$$= \frac{9}{2}(\frac{\sqrt{3}}{2} + \frac{3\sqrt{3}}{5})$$

$$= \frac{99\sqrt{3}}{20}.$$

Thus the answer is 99 + 3 + 20 = 122.

Theorem 11 $(\frac{abc}{4R})$ In $\triangle ABC$ with side lengths a,b,c and circumradius R,

$$[ABC] = \frac{abc}{4R}.$$

Proof: Note that $[ABC] = \frac{1}{2}ab\sin C = \frac{1}{2}ab\cdot \frac{c}{2R} = \frac{abc}{4R}$

Heron's Formula can find the area of a triangle with *only* the side lengths.

Theorem 12 (Heron's Formula) In $\triangle ABC$ with sidelengths a,b,c such that $s=\frac{a+b+c}{2}$,

$$[ABC] = \sqrt{s(s-a)(s-b)(s-c)}.$$

Proof: Since $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$, the Pythagorean Identity gives us

$$\sin C = \sqrt{\frac{4a^2b^2 - (a^2 + b^2 - c^2)^2}{4a^2b^2}} = \sqrt{\frac{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{4a^2b^2}}.$$

So

$$\frac{1}{2}ab\sin C = \sqrt{\left(\frac{a+b+c}{2}\right)\left(\frac{-a+b+c}{2}\right)\left(\frac{a-b+c}{2}\right)\left(\frac{a+b-c}{2}\right)} = \sqrt{s(s-a)(s-b)(s-c)}.$$

Heron's Formula has a reputation for being notoriously tricky to prove, but the proof isn't too bad if you consider what we're actually doing.

- 1. Use the Law of Cosines to find $\cos C$.
- 2. Use the Pythagorean Identity to find $\sin C$.
- 3. Use $\frac{1}{2}ab\sin C$ to find [ABC].
- 4. Clean the expression up.

Fact 6 (Heron's with Altitudes) If x, y, z are the lengths of the altitudes of $\triangle ABC$,

$$\frac{1}{[ABC]} = \sqrt{\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)\left(-\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)\left(\frac{1}{x} - \frac{1}{y} + \frac{1}{z}\right)\left(\frac{1}{x} + \frac{1}{y} - \frac{1}{z}\right)}.$$

To prove this, substitute $x = \frac{[ABC]}{2a}$.

§ 3 Problems

Minimum is $[55 \ \red{s}]$. Problems with the \bigoplus symbol are required.

"Do you know, Poole, that you and I are about to place ourselves in a situation of some peril?"

Strange Case of Dr. Jekyll and Mr. Hyde

[14] Problem 1 Find the inradius of the triangles with the following lengths:

- **♦** 3, 4, 5
- **♦** 5, 12, 13
- **♦** 13, 14, 15
- black 5, 7, 8

(These are arranged by difficulty. All of these are good to know.)

[2] **Problem 2** Prove that in a right triangle with legs of length a, b and hypotenuse with length c, $r = \frac{a+b-c}{2}$.

[2] Problem 3 In $\triangle ABC$, AB = 5, BC = 12, and CA = 13. Points D, E are on BC such that BD = DC and $\angle BAE = \angle CAE$. Find [ADE].

[2] Problem 4 Find the maximum area of a triangle with two of its sides having lengths 10, 11.

[28] **Problem 5** (e-dchen Mock MATHCOUNTS) Consider rectangle ABCD such that AB = 2 and BC = 1. Let X, Y trisect AB. Then let DX and DY intersect AC at P and Q, respectively. What is the area of quadrilateral XYQP?

[2 \bigoplus] Problem 6 (Autumn Mock AMC 10) Equilateral triangle ABC has side length 6. Points D, E, F lie within the lines AB, BC and AC such that BD = 2AD, BE = 2CE, and AF = 2CF. Let N be the numerical value of the area of triangle DEF. Find N^2 .

[2] Problem 7 (AIME I 2019/3) In $\triangle PQR$, PR = 15, QR = 20, and PQ = 25. Points A and B lie on \overline{PQ} , points C and D lie on \overline{QR} , and points E and F lie on \overline{PR} , with PA = QB = QC = RD = RE = PF = 5. Find the area of hexagon ABCDEF.

[3] Problem 8 (AMC 8 2019/24) In triangle ABC, point D divides side \overline{AC} so that AD:DC=1:2. Let E be the midpoint of \overline{BD} and let F be the point of intersection of line BC and line AE. Given that the area of $\triangle ABC$ is 360, what is the area of $\triangle EBF$?

[3] **Problem 9** Consider $\triangle ABC$ such that AB = 8, BC = 5, and CA = 7. Let AB and CA be tangent to the incircle at T_C , T_B , respectively. Find $[AT_BT_C]$.

[3] Problem 10 Consider trapezoid ABCD with bases AB and CD. If AC and BD intersect at P, prove the sum of the areas of $\triangle ABP$ and $\triangle CDP$ is at least half the area of trapezoid ABCD.

[4] Problem 11 (AIME I 2001/4) In triangle ABC, angles A and B measure 60 degrees and 45 degrees, respectively. The bisector of angle A intersects \overline{BC} at T, and AT = 24. The area of triangle ABC can be written in the form $a + b\sqrt{c}$, where a, b, and c are positive integers, and c is not divisible by the square of any prime. Find a + b + c.

[6] Problem 12 (PUMaC 2016) Let ABCD be a cyclic quadrilateral with circumcircle ω and let AC and BD intersect at X. Let the line through A parallel to BD intersect line CD at E and ω at $Y \neq A$. If AB = 10, AD = 24, XA = 17, and XB = 21, then the area of $\triangle DEY$ can be written in simplest form as $\frac{m}{n}$. Find m + n.

[6 \heartsuit] Problem 13 (CIME 2020) An excircle of a triangle is a circle tangent to one of the sides of the triangle and the extensions of the other two sides. Let ABC be a triangle with $\angle ACB = 90^{\circ}$ and let r_A , r_B , r_C denote the radii of the excircles opposite to A, B, C, respectively. If $r_A = 9$ and $r_B = 11$, then r_C can be expressed in the form $m + \sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. Find m + n.

[6] Problem 14 (AIME II 2019/11) Triangle ABC has side lengths AB = 7, BC = 8, and CA = 9. Circle ω_1 passes through B and is tangent to line AC at A. Circle ω_2 passes through C and is tangent to line AB at A. Let K be the intersection of circles ω_1 and ω_2 not equal to A. Then $AK = \frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

[6] Problem 15 (AIME II 2005/14) In triangle ABC, AB = 13, BC = 15, and CA = 14. Point D is on \overline{BC} with CD = 6. Point E is on \overline{BC} such that $\angle BAE = \angle CAD$. Given that $BE = \frac{p}{q}$ where p and q are relatively prime positive integers, find q.

[6] Problem 16 (ART 2019/6) Consider unit circle O with diameter AB. Let T be on the circle such that TA < TB. Let the tangent line through T intersect AB at X and intersect the tangent line through B at Y. Let M be the midpoint of YB, and let XM intersect circle O at P and Q. If XP = MQ, find AT.

[9] Problem 17 (AMC 12A 2017/24) Quadrilateral ABCD is inscribed in circle O and has sides AB = 3, BC = 2, CD = 6, and DA = 8. Let X and Y be points on \overline{BD} such that

$$\frac{DX}{BD} = \frac{1}{4}$$
 and $\frac{BY}{BD} = \frac{11}{36}$.

Let E be the intersection of intersection of line AX and the line through Y parallel to \overline{AD} . Let F be the intersection of line CX and the line through E parallel to \overline{AC} . Let G be the point on circle O other than C that lies on line CX. What is $XF \cdot XG$?

[9] Problem 18 (AIME II 2016/10) Triangle ABC is inscribed in circle ω . Points P and Q are on side \overline{AB} with AP < AQ. Rays CP and CQ meet ω again at S and T (other than C), respectively. If AP = 4, PQ = 3, QB = 6, BT = 5, and AS = 7, then $ST = \frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

[9] Problem 19 (IMO 2003/4) Let ABCD be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with AC.

[9] Problem 20 (AIME I 2019/11) In $\triangle ABC$, the sides have integer lengths and AB = AC. Circle ω has its center at the incenter of $\triangle ABC$. An excircle of $\triangle ABC$ is a circle in the exterior of $\triangle ABC$ that is tangent to one side of the triangle and tangent to the extensions of the other two sides. Suppose that the

excircle tangent to \overline{BC} is internally tangent to ω , and the other two excircles are both externally tangent to ω . Find the minimum possible value of the perimeter of $\triangle ABC$.

[9] Problem 21 (AIME I 2020/13) Point D lies on side BC of $\triangle ABC$ so that \overline{AD} bisects $\angle BAC$. The perpendicular bisector of \overline{AD} intersects the bisectors of $\angle ABC$ and $\angle ACB$ in points E and F, respectively. Given that AB = 4, BC = 5, CA = 6, the area of $\triangle AEF$ can be written as $\frac{m\sqrt{n}}{p}$, where m and p are relatively prime positive integers, and n is a positive integer not divisible by the square of any prime. Find m+n+p.

[13 $ightharpoonup^{\circ}$] **Problem 22** (CIME 2019) Let $\triangle ABC$ be a triangle with circumcenter O and incenter I such that the lengths of the three segments AB, BC and CA form an increasing arithmetic progression in this order. If AO = 60 and AI = 58, then the distance from A to BC can be expressed as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

[13] Problem 23 (AIME I 2020/15) Let ABC be an acute triangle with circumcircle ω and orthocenter H. Suppose the tangent to the circumcircle of $\triangle HBC$ at H intersects ω at points X and Y with HA=3, HX=2, HY=6. The area of $\triangle ABC$ can be written as $m\sqrt{n}$, where m and n are positive integers, and n is not divisible by the square of any prime. Find m+n.

