算法分析与设计

Analysis and Design of Algorithm

Lesson 14

第五章小结

- 回溯法适用条件: 多米诺性质
- 回溯法设计步骤
 - 1. 定义解向量和每个分量的取值范围
 - 2. 确定搜索策略:深度优先/宽度优先,...
 - 3. 确定每结点分支的约束条件,判断是否满足多米诺性质
 - 4. 确定存储搜索路径的数据结构
- 通过应用范例学习回溯法的设计策略
 - *n*后问题、0-1背包问题、旅行售货员问题
 - 装载问题
 - 图的着色问题

课程内容

NP完全性理论与近似算法

算法高级理论

随机化算法

线性规划与网络流

高级算法

递归 分治 动态 规划 贪心 算法 回溯与 分支限界

基础算法

算法分析与问题的计算复杂性

算法基础理论

第六章 分支限界法

学习要点

- 理解分支限界法的剪枝搜索策略
- 掌握分支限界法的算法框架
 - 队列式分支限界法
 - 优先队列式分支限界法
- 通过应用范例学习分支限界法的设计策略
 - 背包问题
 - 0-1背包问题
 - 非对称旅行商问题
 - 单源最短路径问题
 - 装载问题
 - 最大团问题

分支限界法概述

一分支限界法与回溯法的区别

■ 求解目标:

一般情况下,回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解(可以理解为更细粒度的回溯法)。

■ 搜索策略:

回溯法更多地以深度优先的方式搜索解空间树,而分支限 界法则更多地以广度优先或以最小耗费优先(函数优先) 的方式搜索解空间树。

各自特点:

回溯法空间效率高;分支限界法往往更快。

- 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
- ■对已处理的各结点根据限界函数估算目标函数的可能取值,从中选取使目标函数取得极值(极大/极小)的结点优先进行广度优先搜索→不断调整搜索方向,尽快找到解。
- 特点:限界函数常基于问题的目标函数,适用于求解最优化问题。

- 队列式分支限界法
 - 按照队列先进先出原则选取下一个结点为扩展结点。
- 优先队列式分支限界法
 - 按照规定的结点费用最小原则选取下一个结点为扩展结点(常采用优先队列实现)。
- 栈式分支限界法
 - 按照栈后进先出原则选取下一个结点为扩展结点。

组合优化问题的分支限界法

组合优化问题

■ 组合优化问题的相关概念

- 目标函数(极大化或极小化)
- 约束条件(解满足的条件)
- 可行解: 搜索空间满足约束条件的解
- 最优解: 使得目标函数达到极大(极小)的可行解

■背包问题

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$

s.t.
$$\begin{cases} 2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10 \\ x_i \in \mathbb{N}, i = 1, 2, 3, 4 \end{cases}$$

- 计算位置: 搜索树的结点
- 估值:极大化问题是以该点为根的子树所有可行 解的值的上界(极小化问题则为下界)
- 性质:对极大化问题父节点代价不小于子结点的 代价(极小化问题则相反)

界

- 含义: 当前得到可行解的目标函数最大值 (极小化问题则相反)
- 初值: 极大化问题初值为0(极小化问题则 为最大值)
- 更新: 得到更好的可行解时

界 \subset 代价函数,即: F ≥ B

- 停止分支回溯父节点的依据
 - 1. 不满足约束条件
 - 2. 对于极大化问题,代价函数值小于当前界(对于极小化问题是大于界)

■ 界的更新

对极大化问题,如果一个新的可行解的优化函数值大于(极小化问题为小于)当前的界,则把界更新为该可行解的值

实例

■背包问题

背包限重为10

物品i 属性	1	2	3	4
价值v _i	1	3	5	9
重量 w_i	2	3	4	7

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$

s.t.
$$\begin{cases} 2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10 \\ x_i \in \mathbb{N}, i = 1, 2, 3, 4 \end{cases}$$

4

代价函数的设定

- 对结点 $\langle x_1, x_2, ..., x_k \rangle$,估计以该结点为根的子树中可行解的上界
- 按单位重量的价值v_i/ w_i从大到小排序
- 代价函数=已装入价值+△
 - Δ: 还可以继续装入最大价值的上界
 - Δ =背包剩余重量 $\times v_{k+1}/w_{k+1}$ (可装)
 - △=0 (不可装)

实例: 背包问题

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$

$$s.t. \begin{cases} 2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10 \\ x_i \in \mathbb{N}, i = 1, 2, 3, 4 \end{cases}$$

对变元重新排序使得
$$\frac{v_i}{w_i} \ge \frac{v_{i+1}}{w_{i+1}}$$

排序后

$$\max 9x_1 + 5x_2 + 3x_3 + x_4$$

$$s.t. \begin{cases} 7x_1 + 4x_2 + 3x_3 + 2x_4 \le 10 \\ x_i \in \mathbb{N}, i = 1, 2, 3, 4 \end{cases}$$

代价函数与分支策略

• 结点 $\langle x_1, x_2, ..., x_k \rangle$ 的代价函数F

若对某个
$$j > k$$
有 $b - \sum_{i=1}^{k} w_i x_i \ge w_j$

$$\mathbf{F} = \sum_{i=1}^{k} v_i x_i + (b - \sum_{i=1}^{k} w_i x_i) \frac{v_{k+1}}{w_{k+1}}$$

否则
$$\mathbf{F} = \sum_{i=1}^{k} v_i x_i$$

分支策略——深度优先+代价函数优先

0-1背包问题

■ 实例

- 4种物品,重量 w_i 和价值 v_i 分别为
- $v_1 = 1, v_2 = 3, v_3 = 5, v_4 = 10$
- $w_1 = 2, w_2 = 3, w_3 = 6, w_4 = 7$
- 背包重量限制为10

■ 建模:

最大化
$$x_1 + 3x_2 + 5x_3 + 10x_4$$

满足约束条件
$$\begin{cases} 2x_1 + 3x_2 + 6x_3 + 7x_4 \le 10 \\ x_i \in \{0,1\}, i = 1,2,3,4 \end{cases}$$

4

0-1背包问题—代价函数

• 按 v_i/w_i 从大到小排序, $i=1,2,\cdots,n$

■ 假设位于结点 $\langle x_1, x_2, \cdots, x_k \rangle$

- 代价函数=已装入价值+Δ
 - Δ: 还可继续装入最大价值的上界
 - Δ =背包剩余重量 $\times v_{k+1}/w_{k+1}$ (可装)
 - ∆=0 (不可装)

0-1背包问题—分支限界法

■基本思想

- 1. 将物品按 v_i/w_i 从大到小排序,确定解空间树
- 2. 从空集Ø和仅含空集Ø的优先队列开始
- 3. 选择计算节点队列中代价值最高的节点并扩展
- 4. 若扩展出节点不被剪枝,将节点插入节点队列
- 5. 反复2~3步,直到优先队列为空时为止
- 代价函数
 - ■已装入价值+A
- ■剪枝函数
 - ■与回溯法相同

0-1背包问题—分支限界法

最大化 $10x_1 + 3x_2 + 5x_3 + x_4$

代价函数计算的值

满足 $7x_1 + 3x_2 + 6x_3 + 2x_4 \le 10$; $x_i \in \{0,1\}$, i = [1, 2, 3, 4]

一个关于巡回演唱会的例子

- 薛之谦2018演唱会
 - 地点:北京、上海、广州、深圳、南京、杭州、武汉、成都、重庆、雄安
 - 线路:从北京出发,跑遍 各大城市,回到北京
- 目标:考虑机票价格, 确定票价最少的线路

票价	北京	上海	广州	•••••
北京	0	500	600	••••
上海	100	0	800	•••••
广州	1000	200	0	•••••

非对称旅行商问题

■ 问题定义

■ 城市集合: $C = \{c_1, c_2, \dots c_n\}$

■ 城市距离: $d(c_i, c_j)$

■ 距离不对称: $d(c_i, c_j) \neq d(c_j, c_i)$

■ 目标: 求遍历所有城市(不重复)的最短路径

道路拥堵情况下 的送快递问题

考虑城市单行线 的送快递问题

全国巡回演唱会的路线安排问题

■ 实例

票价	北京	上海	广州	南京
北京	0	500	600	100
上海	100	0	800	500
广州	1000	200	0	2000
南京	400	400	100	0

最优解

■ 解的表示: ⟨1,4,3,2⟩

■ 路线:北京→南京→广州→上海→北京

■ 总票价: 100+100+200+100=500

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

■ 回溯法

■ 深度优先遍历解空间树

■ 剪枝函数:比较当前解与当前最优解

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

■ 如何尽快寻找最优解

- 不用深度优先搜索
- 优先访问更靠近最优解的节点
- 设置代价函数计算优先级
- 利用优先级队列管理节点

- 如何设计代价函数
 - 当前解的值 + 未来的最优解估计值

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

红色: 优先级队列中的节点

绿色:未被访问的节点

白色:已经完成访问的节点

未来最优解估计值=

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
A	0	500	500
	查表		

(100+200+100+100) + 0

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

红色: 优先级队列中的节点

绿色:未被访问的节点

白色:已经完成访问的节点

未来最优解估计值=

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
В	0	500	500
	 查表	1	

(100+200+100) +100

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

红色: 优先级队列中的节点

绿色:未被访问的节点

白色:已经完成访问的节点

未来最优解估计值=

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
C	500	400	900
D	600	400	1000
Е	100	400	500

查表

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

红色: 优先级队列中的节点

绿色:未被访问的节点

白色:已经完成访问的节点

未来最优解估计值=

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
C	500	400	900
D	600	400	1000
J	500	300	800
K	200	300	500

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

红色: 优先级队列中的节点

绿色:未被访问的节点

白色:已经完成访问的节点

未来最优解估计值=

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
C	500	400	900
D	600	400	1000
J	500	300	800
Q	400	100	500

	1	2	3	4
1	0	500	600	100
2	100	0	800	500
3	1000	200	0	2000
4	400	400	100	0

节点颜色

红色: 优先级队列中的节点

绿色:未被访问的节点

白色:已经完成访问的节点

未来最优解估计值=

每一个未选城市最低出发票价之和 + 当前选中城市的最低出发票价

节点	当前值	未来最优值	总代价
C	500	400	900
D	600	400	1000
J	500	300	800
Q	400	100	500

最短路径问题是图论研究中的一个经典问题,旨在寻找图(由结点和路径组成的)中两结点之间的最近。

短路径。

地图导航

网络路由

极速外卖

单源最短路径(回顾)

• 给定带权有向图G = (V, E),其中每条边的权是非负实数。给定V中的一个顶点作为源点,求源点到所有其他各顶点的最短路长度。

计算距离(A,F)的解空间树

-

计算距离(A,F)—分支限界法

■基本思想

- 从源顶点s和仅含s的优先队列开始
- 节点队列中选择一节点,并扩展
- 若节点不被剪枝,将节点插入节点队列
- 反复2~3步,直到优先队列为空时为止

■剪枝函数

- 节点i代表顶点v的一个距离dist(v)
- 若 $dist(v) \ge$ 源点到终点最短距离,则剪枝
- 若 $dist(v) \ge dist_best(v)$,则剪枝

■ 节点选择方法

- 先入先出(FIFO队列)
- 当前路长最短(优先级队列)

-

dist

8

9

计算距离(A,F)—FIFO队列

计算距离(A,F)—FIFO队列

	$\mathbf{c_2}$	\mathbf{d}_1		
dist	8	9		

	В	C	D	E	F
dist	5	8	9		17

计算距离(A,F)—FIFO队列

	\mathbf{d}_1	$\mathbf{e_2}$		
dist	9	14		

	В	C	D	E	F
dist	5	8	9	14	15

计算距离(A,F)—FIFO队列

	$\mathbf{e_2}$	e_3		
dist	14	13		

	В	C	D	E	F
dist	5	8	9	13	15

计算距离(A,F)—FIFO队列

	$\mathbf{e_3}$		
dist	13		

	В	C	D	E	F
dist	5	8	9	13	15

-

计算距离(A,F)—FIFO队列

dist			

当前最短距离

	В	C	D	E	F
dist	5	8	9	13	14

当FIF0队列空时, 停止分支限界法

dist

计算距离(A,F)—优先级队列

计算距离(A,F)—优先级队列

	$\mathbf{c_2}$	\mathbf{d}_1		
dist	8	9		

	В	C	D	E	F
dist	5	8	9		17

-

计算距离(A,F)—优先级队列

	\mathbf{d}_1	$\mathbf{e_2}$		
dist	9	14		

	В	C	D	E	F
dist	5	8	9	14	15

计算距离(A,F)—优先级队列

	$\mathbf{e_3}$	$\mathbf{e_2}$		
dist	13	14		

当前最短距离

	В	C	D	E	F
dist	5	8	9	13	15

与FIF0队列区别在于先扩展e3

计算距离(A,F)—优先级队列

优先级队列

	$\mathbf{e_2}$		
dist	14		

	В	C	D	E	F
dist	5	8	9	13	14

-

计算距离(A,F)—优先级队列

优先级队列

dist			

当前最短距离

	В	C	D	E	F
dist	5	8	9	13	14

当优先级队列空时, 停止分支限界法

最短路径问题—算法的比较

遍历解空间树的方法,如何选择下一个节点

- Dijakstra算法
 - 当前步的最优,复杂度为O(n²)
 - 不适合设计分布式算法
- ■回溯法
 - 当前路径的下一跳(深度优先搜索)
- 分支限界算法
 - 当前图中跳数的最优(FIFO队列,广度优先搜索)
 - 当前距离的最优(优先级队列,优先级搜索)

→相较于 Dijakstra算法, 分支限界算法 更适合设计分 布式的单源最 短路径算法

装载问题 (回顾)

- 有一批共n个集装箱要装上2艘载重量分别为 c_1 和 c_2 的轮船,其中集装箱i的重量为 w_i ,且

$$w_1 + w_2 + \dots + w_n \le c_1 + c_2$$

装载问题要求确定是否有一个合理的装载方案 可将这个集装箱装上这2艘轮船。如果有,找 出一种装载方案。

云计算虚拟机调度

操作系统内存管理

物料最优剪裁

集装箱最优装载

装载问题的求解思路(回顾)

- \blacksquare 输入: 集装箱重量W, 轮船载重 c_1, c_2
 - 首先将第一艘轮船尽可能装满;
 - 将剩余的集装箱装上第二艘轮船。
 - 将第一艘轮船尽可能装满⇔选取全体集装箱的一个子集,使该子集中集装箱重量之和与 c_1 最接近。

■ 实例:

- $W = \langle 90,65,40,30,20,12,10 \rangle$
- $c_1 = 152, c_2 = 130$
- 最优解⟨1,0,1,0,0,1,0⟩

$$\max \sum_{i=1}^{n} w_i x_i$$

$$\text{s.t.} \sum_{i=1}^{n} w_i x_i \le c_1$$

$$x_i \in \{0,1\}, 1 \le i \le n$$

装载问题—分支限界法

- 基本思想(与0-1背包问题类似)
 - 从空集∅和仅含空集∅的优先队列开始
 - 选择计算节点队列中代价值最高的节点并扩展
 - 若扩展出节点不被剪枝,将节点插入节点队列
 - 反复2~3步,直到优先队列为空时为止
- 代价函数
 - 当前重量之和+未选 中物品的重量之和
- ■剪枝函数
 - ■与回溯法相同

装载问题—构造最优解

- ■回溯法
 - 采用了深度优先搜索
 - 只需要O(|X|)空间,|X|为解向量长度
- 分支限界法
 - 采用了广度优先搜索
 - 每个活的节点都需要保存解,空间开销大
 - 改进:用指针指向父节点,减少保存公共父 节点的开销(书P169)

算法分析与设计

Analysis and Design of Algorithm

Lesson 15

分支限界法与回溯法的区别

- 搜索方式不同
 - 回溯法:深度优先
 - 分支限界法: FIFO队列式(广度优先)、优先级队列式
- 搜索目标不同
 - 回溯法: 找所有解、可行解、最优解
 - 分支限界法: 找最优解
- 搜索用到的函数不同
 - 回溯法: 约束函数
 - 分支限界: 约束函数、限界函数、优先级函数
- 实例:背包问题、非对称TSP问题、单源最短路 径问题、装载问题、最大团问题、TSP问题

最大团问题

- 问题: 无向图G=<V,E>, 求G的最大团
- G的子图: G'=<V',E'>, V'⊆V,E'⊆E
- G的补图: $\overline{G}=\langle V,E'\rangle,E'\rangle$ 是E关于完全图边集的补集
- G中的团: G的完全子图
- G的最大团: 顶点数最多的团

■ 实例:

团: {1,2,4}, {1,3,4}, {3,4,5}, {1,3,5}, {1,4,5}, {1,3,4,5}

最大团: {1, 3, 4, 5}

独立集与团

- G的点独立集: G的顶点子集A,且 $\forall u, v \in A, \{u, v\} \notin E$
- 最大点独立集: 顶点最多的点独立集
- 命题: U是G的最大团当且仅当U是G的最大点独立集

G的最大团:

$$U=\{1, 3, 6\}$$

补图G的最大点独立集

- 编码、故障诊断、计算机视觉、聚类分析、经济 学、移动通信、VLSI电路设计。。。
- 例子: 噪音使信道传输字符发生混淆
- 混淆图G=<V,E>, V为有穷字符集, {u,v}∈E⇔u和
 v易混淆

编码设计

xy与uv混淆 $\Leftrightarrow x$ 与u混淆且y与v混淆 $\lor x=u$ 且y与v混淆 $\lor x$ 与u混淆且y=v

为减少噪音干扰,设计编码应该找到混淆图中的最大点独立集

最大团问题

- 问题: 给定无向图G=<V,E>, 其中顶点集 $V=\{1,2,...,n\}$, 边集为E, 求G的最大团。
- 解: $\langle x_1, x_2, ..., x_n \rangle$ 为0-1向量, $x_k=1$ 当且仅当顶点k属于最大团
- 穷举法:对每个顶点子集,检查是否构成团,即其中每对顶点之间是否都有边。有2ⁿ个子集,至少需要指数时间。

分支限界算法设计

- 搜索数为子集树
- 结点 $\langle x_1, x_2, ..., x_k \rangle$ 的含义:
 - 已检索顶点1, 2, ..., k, 其中 x_i =1表示顶点i在当前的团内
- 约束条件:该顶点与当前团内每个顶点都有边相连
- 界: 当前已检索到的极大团的顶点数

代价函数:目前的团可能扩张为极大团的 顶点数上界

$$\mathbf{F} = \mathbf{C}_k + n - k$$

其中 C_k 为当前团的顶点数(初始为0),k为结点层数

最坏情况下时间: $O(n2^n)$

实例

- 顶点编号顺序为1, 2, 3, 4, 5
- 对应 x_1, x_2, x_3, x_4, x_5

5

- $x_i = 1$ 当且仅当i在团内
- 分支规定左子树为1,右子树为0
- · B为界, F为代价函数值

搜索树

- a: 极大团{1,2,4},顶点数为3,界为B=3
- b: 代价函数值F=3, 回溯;
- c: 极大团{1,3,4,5}, 顶点 数为4, 界为B=4
- d: 代价函数值F=3,不必搜索;
- e: 代价函数值F=3,不必搜索;

输出最大团{1, 3, 4, 5} 顶点数为4

TSP问题

输入: 城市集 $C=\{c_1,c_2,...,c_n\}$,距离 $d(c_i,c_j)=d(c_j,c_i)$

解: 1,2,...,n的排列 $k_1,k_2,...,k_n$ 使得

$$\min \left\{ \sum_{i=1}^{n-1} d(c_{k_i}, c_{k_{i+1}}) + d(c_{k_n}, c_{k_1}) \right\}$$

算法设计

- **解向量为:** $\langle 1, i_1, i_2, ..., i_{n-1} \rangle$, 其中 $i_1, i_2, ..., i_{n-1} \rangle$, 其中 $i_1, i_2, ..., i_{n-1} \rangle$
- 搜索空间为排列树,结点 $\langle i_1, i_2, ..., i_k \rangle$ 表示 得到 k步路线
- 约束条件: �O= $\{i_1, i_2, ..., i_k\}$ 则 $i_{k+1} \in \{2, 3, ..., n\}$ -O, 即每个结点只能访问一次

- 界: 当前得到的最短巡回路线长度
- 代价函数:设顶点 c_i 出发的最短边长度为 l_i , d_i 为选定巡回路线中第j段的长度

代价函数

$$L = \sum_{j=1}^{k} d_j + l_{i_k} + \sum_{i_j \notin B} l_{i_j}$$

部分路线<1,3,2>

- 9+13为走过的路径长度
- 后两项分别为从结点2及结点4出发的最短边长

搜索树

深度优先遍历搜索树

- 第1个界: <1,2,3,4>, B=29
- 第2个界: <1,2,4,3>, B=23
- 结点<1,3,2>:代价函数值26>23,不再搜索,返回<1,3>, 右子树向下
- 结点<1,3,4>,代价函数值9+7+2+2=20<23,继续,得到可行解<1,3,4,2>,长度23
- 回溯到结点<1>,沿<1,4>向下

・ … →最优解: <1,2,4,3>或<1,3,4,2>,长度23

算法分析

- 搜索树的树叶个数: O((n-1)!), 每片树叶对应1条路径, 每条路径有个n个结点
- 每个结点代价函数计算时间O(1),每条路 径的计算时间O(n)
- 最坏情况下算法的时间O(n!)

第六章小结

- 分支限界: 一种与回溯法类似的算法
 - 将问题建模为解空间树
 - 通常用代价函数估算每个分支的最优值
 - 优先选择当前看来最好的分支
 - 搜索策略一般采用广度优先搜索
 - 搜索过程中剪枝
- 分支限界的剪枝函数
 - 不满足约束条件
 - 代价函数值不优于当前的界