For each of the following relations, determine which of the properties reflexive, antireflexive, transitive, symmetric, and anti-symmetric it satisfies. If the property is not satisfied, give a counterexample; if it's satisfied provide a proof.

- (a) Let S be a collection of non-empty subsets of a set X and let R be the relation on S with pairs (R) consisting of all pairs $(S,T) \in S \times S$ satisfying $S \cap T = \emptyset$.
 - Proof of anti-reflexivity. Suppose $S \in X$. We must show that $S \cap S \neq \emptyset$. By definition of set intersection, $S \cap S = S$. Therefore since S is non-empty, then $S \cap S \neq \emptyset$.
 - Proof of symmetry. Suppose $S, T \in X, S \cap T = \emptyset$. We must show that $T \cap S = \emptyset$. By the definition of set intersection $S \cap T = \{x : x \in S \land x \in T\}$. By the definition of and commutativity $\{x : x \in T \land x \in S\}$. By the definition of set intersection $S \cap T = T \cap S$. Therefore since $S \cap T = \emptyset$, then $T \cap S = \emptyset$.
 - Counterexample to transitivity. Suppose $A = \{1\}, B = \{2\}, C = \{1,3\}$. $A \cap B = \emptyset$ and $B \cap C = \emptyset$. However, $A \cap C = \{1\}$, therefore the relation is not transitive.
- (b) Let S be a collection of non-empty subsets of a set X and let R be the relation on S with pairs (R) consisting of all pairs $(S,T) \in S \times S$ satisfying $S \cap T \neq \emptyset$.
 - Proof of reflexivity. Suppose $S \in X$. We must show that $S \cap S \neq \emptyset$. By definition of set intersection, $S \cap S = S$. Therefore since S is non-empty, then $S \cap S \neq \emptyset$.
 - Proof of symmetry. Suppose $S, T \in X, S \cap T \neq \emptyset$. We must show that $T \cap S \neq \emptyset$. By the definition of set intersection $S \cap T = \{x : x \in S \land x \in T\}$. By the definition of and commutativity $\{x : x \in T \land x \in S\}$. By the definition of set intersection $S \cap T = T \cap S$. Therefore since $S \cap T \neq \emptyset$, then $T \cap S \neq \emptyset$.
 - Counterexample to transitivity. Suppose $A = \{1\}, B = \{1, 2\}, C = \{2\}$. Therefore $A \cap B \neq \emptyset, B \cap C \neq \emptyset$. However $A \cap C = \{1\} \cap \{2\} = \emptyset$.
- (c) Let R be a relation on \mathbb{Z} defined so that for $m, n \in \mathbb{Z}$, $(m, n) \in R$ provided there are odd integer r and s so that mr = ns.
 - Proof of reflexivity. Suppose $m \in \mathbb{Z}$ We must show that there exist odd integers r, s so that mr = ms. Suppose r = s = 1. Then m = m.
 - Proof of symmetry. Suppose $m, n \in \mathbb{Z}$, and there exist odd integers mr = ns. We must show that there exist odd integers t, u such that nt = mu. Let t = s, u = r. Therefore ns = mr.
 - Proof of transitivity. Suppose $l, m, n \in \mathbb{Z}$ and there exist odd integers r, s, t, u such that lr = ms and mt = nu. We must show that there exist odd integers v, w such that lv = nw. Since lr = ms, then by definition $\frac{lr}{s} = m$. Substituting that definition of m into mt = nu yields $\frac{lr}{s}t = nu$. Multiplying both sides by s yields lrt = nus. Since the product of two odd numbers is odd, then v = rt and w = us. Thus lv = nw.

- (d) Let $S = \mathbb{R} \times \mathbb{R}$ and let R be the relation defined as follows for $(x_1, x_2) \in S$ and $(y_1, y_2) \in S$, we have $(x_1, x_2) R(y_1, y_2)$ if $x_1 \leq y_1$ and $x_2 > y_2$. (Careful, this one may be confusing because the set S consists of ordered pairs, so pairs(R) is a set of ordered pairs, and for each ordered pair in pairs (R) each of its coordinates is an ordered pair.)
 - Proof of anti-reflexivity. Suppose $(x,y) \in \mathbb{R}^2$. We must show for all $(x,y) \in \mathbb{R}^2$ that $(x,y)\mathbb{R}(x,y)$. By definition we must show that $x \leq x \wedge y > y$ is false. Since by the definition of greater than y > y is always false, R is anti-reflexive.
 - Proof of anti-symmetry. Suppose $(x,y), (a,b) \in \mathbb{R}^2, (x,y)R(a,b)$. We must show $(a,b)\cancel{R}(x,y)$, and $(a,b) \neq (x,y)$. Since the relation is anti-reflexive, we can assume $(x,y) \neq (a,b)$. By definition of this relation, $x \leq a$ and y > b. Therefore by definition of the relation we must show that $\neg (a \leq x \land b > y)$. Therefore we must show a > x or $y \leq b$. Choose a > x. Since we already have $(a,b) \neq (x,y)$, then by definition of ordered pair $a \neq x$. Therefore since we already have $a \geq x$ and $a \neq x$, then by definition a > x.
 - Transitivity proof. Suppose $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2, (x_1, x_2)R(y_1, y_2), (y_1, y_2)R(z_1, z_2)$. We must show for all $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2$ that $(x_1, x_2)R(z_1, z_2)$. By definition of the relation we must show $x_1 \leq z_1$ and $x_2 > z_2$. By definition of the relation we have $x_1 \leq y_1, x_2 > y_2, y_1 \leq z_1, y_2 > z_2$. By the composition of inequalities we have $x_2 > y_2 > z_2$ and $x_1 \leq y_1 \leq z_1$. Therefore by the transitivity of greater than and less than or equal to $x_2 > z_2$ and $x_1 \leq z_1$.