2021 年度

修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性

―低階数・低次元の場合―

学生証番号 45-196010

フリガナ オクダ タカコ

氏名 奥田 堯子

目次

導力	.		2
1	設定とり	射影の基本的な性質および問題 1.3 の観察	7
	1.1	設定と h 射影の定義	7
	1.2	問題 1.3 の基本性質	9
	1.3	問題 1.3 の観察: $G = SU(1,1)$, $H = SO(1,1)$ の場合	13
	1.4	問題 1.3 の観察: 問題 1.3 の条件が落とせないことを示すいくつ	
		かの例	17
2 <i>G</i> の実階数が 1 の場合			22
	2.1	具体例: 実階数 1 の古典型単純 Lie 群の場合	22
	2.2	G の実階数が 1 の場合 \dots	27
	2.2	.1 補足: 定理 2.6 の微分幾何的側面	36
	2.3	G が実階数 1 の実半単純 Lie 群の直積の場合	38
謝話	锌		39
太 孝立 武			

導入

G を非コンパクトな実線型半単純 Lie 群, K を G の極大コンパクト部分群で G の Cartan 対合 Θ に対して $K=\Theta K$ なるものとする. $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ を Θ の微分 $d\Theta$ による \mathfrak{g} の Cartan 分解とするとき, G/K は \mathfrak{p} と \mathfrak{p} \ni $X\mapsto e^XK\in G/K$ により微分同相である.

H を G の非コンパクトかつ連結成分有限個の閉部分群で, $H=\Theta H$ を満たすものとする。 \mathfrak{g} の Killing 形式を B とし, $\mathfrak{h}^{\perp}:=\{W\in\mathfrak{g}\mid B(W,\mathfrak{h})=\{0\}\}$ とするとき,G/K と \mathfrak{p} の微分同相についてより強い次の構造定理が知られている.

定理 ([Kob89, Lemma 6.1]) π : $(\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^Y e^Z K \in G/K$ は上への微分同相である.

この定理を用いて $X \in \mathfrak{p}$ に対し, $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する.

G/K に $\mathfrak g$ の Killing 形式 B から定まる Riemann 計量によって Riemann 多様体 の構造を定める.このとき G の単位元の G/K での像 eK を通る G/K 上の任意 の極大測地線は B(X,X)=1 なる $X\in\mathfrak p$ と $t\in\mathbf R$ によって $e^{tX}K$ と書ける.定理 1.2 より任意の $t\in\mathbf R$ に対して $e^{tX}K=e^{Y(tX)}e^{Z(tX)}K$ である.

 $t\in\mathbf{R}$ に対し $e^{Y(tX)}K$ は $e^{tX}K$ から eK の H 軌道に下ろした垂線の足であるという幾何学的な捉え方ができる.図 1 は具体的に G=SU(1,1), H=SO(1,1) としたとき,Poincaré 円板 G/K における $e^{Y(X)}K$ などの位置関係を示したものである.図 1 において測地線 $e^{\mathbf{R}X}K$ (赤色の斜め線) とその上の一点 $e^{tX}K$ から eK の H 軌道 (中央の直線) に下ろした垂線の足 (緑の丸) が $e^{Y(tX)}K$ である.

図 1: Poincaré 円板における Y(tX) の幾何学的意味

本論文では小林俊行氏による次の問題 (後述の問題 1.3) について考察し、G が実階数 1 の実線型半単純 Lie 群、 $\dim\mathfrak{h}\cap\mathfrak{p}=1$ の場合に肯定的な結果を得た.

問題 (小林俊行氏による) $X \in \mathfrak{p}$ に対して, $Y(\mathbf{R} X)$ が $\mathfrak{h} \cap \mathfrak{p}$ の有界な部分集合であることと次の条件は同値であるか?

条件

- $X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ • $\mathsf{L} \mathsf{L} \mathsf{L} \mathsf{L}$
- $[X_1, X_2] \neq 0$ かつ $X \in \mathfrak{g}'_s$, もしくは
- $[X_1,X_2] \neq 0$ かつ $\mathfrak{p} \cap \mathfrak{z}(\mathfrak{g}') \not\subset \mathfrak{h}$

である.

記号は次のとおりとする.

- $X = X_1 + X_2$ はベクトル空間としての分解 $\mathfrak{p} = (\mathfrak{p} \cap \mathfrak{h}) \oplus (\mathfrak{p} \cap \mathfrak{h}^{\perp})$ に対応する $X \in \mathfrak{p}$ の分解とする.
- \mathfrak{g}' は \mathfrak{h} と X が生成する \mathfrak{g} の部分 Lie 環とする. $\mathfrak{h}=\theta\mathfrak{h}$ より $\theta\mathfrak{g}'=\mathfrak{g}'$ である

から $\mathfrak{g}'_s\coloneqq [\mathfrak{g}',\mathfrak{g}']$, $\mathfrak{z}(\mathfrak{g}')$ を \mathfrak{g}' の中心とすると $\mathfrak{g}'=\mathfrak{z}(\mathfrak{g}')\oplus \mathfrak{g}'_s$ である.

ここで G が実階数 1 のとき,上の条件と $X \in \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ は同値である (後述する命題 1.6 の 3).

問題 1.3 に関連する話題として [Ber88] の内容についてふれる.

まずいくつか用語と命題を準備する.以下では G を実簡約 Lie 群,H を G の閉部分群とし,G/H には左 Haar 測度 $\mu_{G/H}$ が存在すると仮定する.

定義 ([Ber88])

- 局所有界関数 $r: G \to \mathbf{R}_{\geq 0}$ が proper な radial function であるとは, r が次 0.4 条件を満たすことである.
 - 1. $e \in G$ を単位元とするとき r(e) = 0 である.
 - 2. 任意の $g \in G$ に対し $r(g) = r(g^{-1}) \ge 0$ である.
 - 3. 任意の $g_1, g_2 \in G$ に対し $r(g_1g_2) \le r(g_1) + r(g_2)$ である.
 - 4. 任意の $R \ge 0$ に対し, $B(R) \coloneqq \{g \in G \mid r(g) \le R\}$ は G の相対コンパクト集合である.
- proper な radial function $r: G \to \mathbf{R}_{\geq 0}$ から $r_{G/H}(gH) \coloneqq \inf_{h \in H} \{r(gh)\}$ により定まる $r_{G/H}: G/H \to \mathbf{R}_{\geq 0}$ を G/H 上の radial function という.
- $d = \inf\{d' \ge 0 \mid$ ある C > 0 が存在して $m_X(B(r)) \le C(1+r)^{d'}\}$ であるとき,G/H のランクは d であると言う.
- G の連続表現 V の smooth vector 全体の集合を V^{∞} とする.

定理と定義 ([Ber88, p. 683]) G/H には次の条件を満たす非自明な正則 Borel 測度 m_X (standard measure) が定数倍を除いて一意的に存在する.

単位元のコンパクトな近傍で $B=B^{-1}$ なる任意の $B\subset G$ と任意の $g\in B$, $x\in G/H$ に対し, ある定数 $C_B\geq 0$ が存在して $g\cdot m_X\leq C_Bm_X$, $C_B^{-1}< m_X(Bx)< C_B$ である.

定理と定義 ([Ber88, p. 678]) G/H の左 Haar 測度 $\mu_{G/H}$ を 1 つ固定する. 次の同型写像が存在する. $\operatorname{Hom}_G((C_c(G/H))^\infty, V) \xrightarrow{\sim} \operatorname{Hom}_G(V^\infty, C(G/H)^\infty),$ $\alpha_V \mapsto \beta_V$ ただし任意の $v \in V$, $\varphi \in (C_c(G/H))^\infty$ に対し $\langle v, \alpha_V(\varphi) \rangle_V = \int_{G/H} \beta_V(v) \varphi d\mu_X$ である.

定理 ([Ber88, pp. 665-6]) G/H のランクが d であるとき,G の既約ユニタリ表現 V が G の正則表現 $L^2(G/H)$ の既約分解に出現する必要条件は,非自明な G 絡作用素 $\alpha_V: (C_c(G/H))^\infty \to V$ が存在し,かつ任意の $v \in V^\infty$,d' > d に対して

$$\int_{G/H} \left| \beta_V(v)(x)(1+r(x))^{-d/2} \right|^2 dx < \infty \tag{*\bigstar}$$

なることである.

 $L^2(G/H)$ の既約分解に現れる表現を (\bigstar) を用いて分析するためにはまず G/H のランクを知る必要がある.

(G,H) が対称対の場合に G/H のランクと $Y(\mathbf{R}|X)$ の有界性の関係を述べる.

設定 H を実線型簡約 Lie 群 G の非コンパクトかつ連結成分有限個の閉部分群で,G の Cartan 対合 Θ に対して $\Theta H = H$ なるものとする.今さらに Θ と可換な G の対合 σ に対して $G_{\sigma} \coloneqq \{g \in G \mid \sigma g = g\}$ とし,H は G_{σ} の開部分群であると仮定する. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}$ を $d\sigma$ が \mathfrak{h} 上 1, \mathfrak{g} 上 -1 であるような $d\sigma$ の固有空間分解とする.

以上の設定のもとで極大可換部分空間 $\mathfrak{b} \subset \mathfrak{p} \cap \mathfrak{q}$ と正ルートの集合 $\Sigma^+((\mathfrak{k} \cap \mathfrak{h}) \oplus (\mathfrak{p} \cap \mathfrak{q}), \mathfrak{b})$ を固定し, $\overline{\mathfrak{b}^+}$ を対応する positive Weyl chamber とする.

定理と定義 ([KK16, p. 151]) 任意の $g \in G$ に対して,ある $k \in K$, $h \in H$ と一意的な $b_g \in \exp \overline{\mathfrak{b}^+}$ が存在して $g = kb_gh$ である.この事実を用いて $\nu \colon G \to \overline{\mathfrak{b}^+}$ を $\nu(g) = \log b_g$ と定める.

 ν は右 H 不変であるから $\overline{\nu}$: $G/H \to \overline{\mathfrak{b}^+}$, $\overline{\nu}(gH) \coloneqq \nu(g)$ は well-defined である. 以上の設定と定義のもとで,次の条件は G/H のランクが $\dim \mathfrak{b}$ である可能性を与える.

条件 ある C が存在し、任意の $X \in \mathfrak{b}$ に対し

$$\inf\{d_{G/K}(eK, he^{-X}K) \mid h \in H\}$$
$$\inf\{d_{G/K}(h^{-1}K, e^{-X}K) \mid h \in H\}$$
$$= \|\nu(he^{-X})\|$$
$$\leq C$$

である.

ここで次の補題より

$$\inf\{d_{G/K}(h^{-1}K, e^{-X}K) \mid h \in H\} = d_{G/K}(e^{Y(-X)}K, e^{-X}K)$$

であることがわかる.

補題 ([Lee18, p. 190])

M を連結な完備 Riemann 多様体, $S \subset M$ を正則な閉部分多様体とする.任意の $p \in M \setminus S$ に対し,ある $q_0 \in S$ で, $\inf\{d_M(p,q) \mid q \in S\} = d_M(p,q_0)$ なるものが存在し,p から q_0 への最短測地線は q_0 で S に直交する.

したがって任意の $X \in \mathfrak{b}$ で $\|X\| = 1$ なるものに対して $Y(\mathbf{R} X)$ が有界ならば

$$C \coloneqq \max\{\max\{d_{G/K}(h^{-1}K, e^{-X}K) \mid h \in \overline{e^{Y(\mathbf{R}X)}}\} \mid X \in \mathfrak{b}$$
 かつ $\|X\| = 1\}$

が存在して

$$\inf\{d_{G/K}(h^{-1}K, e^{-X}K) \mid h \in H\} = d_{G/K}(e^{Y(-X)}K, e^{-X}K)$$

$$\leq \max\{d_{G/K}(h^{-1}K, e^{-X}K) \mid h \in \overline{e^{Y(\mathbf{R}X)}}\}$$

$$\leq C$$

を得る.

以上のように G/H のランクを求めることと $Y(\mathbf{R}\ X)$ の有界性の判定には関係がある.

1 設定と f 射影の基本的な性質および問題 1.3 の観察

1.1 設定とり射影の定義

本論文の基本的な設定は次のとおりであり、この他に必要な条件は都度明示することとする.

記号と定義 1.1

- **N**, **R**, **C**, **H** をそれぞれ 0 以上の整数全体, 実数全体, 複素数全体, 四元数全体の集合とする.
- G を非コンパクト実線型簡約 Lie 群,K は G の Cartan 対合 Θ に対して $\Theta K = K$ なる G の極大コンパクト部分群とする.H は G の非コンパクトか つ連結成分有限個の閉部分群で $H = \Theta H$ を満たすものとする.
 - 後述する補足 2.20 より, G の線型性の仮定は外すことができる.
- $\mathfrak{g} \coloneqq \operatorname{Lie} G$, $\mathfrak{h} \coloneqq \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta \coloneqq d\Theta$ による Cartan 分解とする.
- $\mathfrak{z}(\mathfrak{h}) := \{Y \in \mathfrak{h} \mid [Y, \mathfrak{h}] = \{0\}\} \ \text{ξ-$$}$
- e を G の単位元とし, $o_K := eK \in G/K$ とする.
- $\langle -, \rangle$ を, \mathfrak{g} 上の G-不変な非退化対称双線型形式で, \mathfrak{t} 上負定値, \mathfrak{p} 上正定値 で \mathfrak{t} と \mathfrak{p} が直交するものとする.
- $\mathfrak{h}^{\perp} := \{W \in \mathfrak{g} \mid \langle W, \mathfrak{h} \rangle = \{0\}\} \ \text{$\mbox{$\mbox{$\mbox{$\mbox{$}$}$}$} \ \text{$\mbox{$\mbox{$}$}$} \ \text{$\mbox{$\mbox{$}$}$} \ \text{$\mbox{$\mbox{$}$}$} \ \text{$\mbox{$}$} \ \text{$\mbox{$\mbox{$}$}$} \ \text{$\mbox{$}$} \$
- $X \in \mathfrak{p}$ に対し、ベクトル空間としての分解 $\mathfrak{p} = (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ に対応した 分解を $X = X_1 + X_2$, $X_1 \in \mathfrak{h} \cap \mathfrak{p}$, $X_2 \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ とする.
- Riemann 多様体 M を M 上の任意の 2 点に対しその 2 点をつなぐ一意的な 測地線が存在するものとし, d_M を M 上の Riemann 計量から定まる距離と する.相異なる 3 点 $p,q,r\in M$ に対し,
 - $-\gamma_{p,q}\colon [0,d_M(p,q)] \to M$ を、 $\gamma(0)=p$ 、 $\gamma(d_M(p,q))=q$ なる unit speed の測地線とする.
 - $\angle_p(q,r)$ を $\gamma_{p,q}$ と $\gamma_{p,r}$ が p においてなす角とする.

以下の定理 1.2 を用いて, $X \in \mathfrak{p}$ に対し,

$$(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$$

と定義し、本稿ではこの $Y: \mathfrak{p} \to \mathfrak{h} \cap \mathfrak{p}$ を " \mathfrak{h} 射影" と呼ぶことにする.

定理 1.2 ([Kob89, Lemma 6.1]) H を G の非コンパクトかつ連結成分有限個の閉部分群で, G の Cartan 対合 Θ に対して $\Theta H = H$ なるものとする. このとき

$$\pi : (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$$

は上への微分同相である.

ここで、 $Y(\mathbf{R} X)$ の有界性について、次の問題 1.3 が小林俊行氏によって提起された.

問題 1.3 (小林俊行氏による) $\mathfrak{p}_{H,\mathrm{bdd}}\coloneqq\{X\in\mathfrak{p}\mid Y(\mathbf{R}\,X)\$ が $\mathfrak{h}\cap\mathfrak{p}$ の有界集合である.} と定めるとき,

- 1. G が実線型半単純 Lie 群ならば $\mathfrak{p} \setminus \mathfrak{p}_{H,\mathrm{bdd}}$ は Lebesgue 測度に対して測度 0 であるか?
- 2. $X \in \mathfrak{p}_{H,\mathrm{bdd}}$ であることと次の条件 1.4 は同値であるか?

条件 1.4 $X \in \mathfrak{p}$ は次のいずれかを満たす.

- 1 $X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$
- $[X_1, X_2] \neq 0$ かつ $X \in \mathfrak{g}'_s$ である.
- (3) $[X_1, X_2] \neq 0$ かつ $\mathfrak{p} \cap \mathfrak{z}(\mathfrak{g}') \not\subset \mathfrak{h}$ である.

ただし \mathfrak{g}' は \mathfrak{h} と X により生成される \mathfrak{g} の部分 Lie 環とする. \mathfrak{g}' は θ 不変であるから $\mathfrak{g}'_{\mathfrak{s}} \coloneqq [\mathfrak{g}',\mathfrak{g}']$ とすると $\mathfrak{g}' = \mathfrak{z}(\mathfrak{g}') \oplus \mathfrak{g}'_{\mathfrak{s}}$ である.

条件 1.4 で定めた \mathfrak{g}' の元 X に対して次の記法を導入する.

定義 1.5 $X \in \mathfrak{g}'$ に対し、ベクトル空間としての分解 $\mathfrak{g}' = \mathfrak{z}(\mathfrak{g}') \oplus \mathfrak{g}'_s$ に対応した分解を $X = X_c + X_s$, $X_c \in \mathfrak{z}(\mathfrak{g}')$, $X_s \in \mathfrak{g}'_s$ とする.

1.2 問題 1.3 の基本性質

問題 1.3 についての基本的な事項を挙げる.

命題 1.6

- 1. $X \in \mathfrak{p}_{H.\mathrm{bdd}}$ ならば X は条件 1.4 を満たす.
- **2.** $X \in \mathfrak{p}$ が $X_1 = 0$ を満たすならば $X \in \mathfrak{p}_{H,\mathrm{bdd}}$ である.
- **3.** G が実階数 1 ならば, $X \in \mathfrak{p}$ が条件 1.4 を満たすことと $X \in \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ であることは同値である.

いくつか補題を用意してから命題 1.6 を示す. 以下 $\mathfrak{h}_s \coloneqq \mathfrak{g}_s' \cap \mathfrak{h}$ とする.

補題 $1.7 \mathfrak{p} \cap \mathfrak{z}(\mathfrak{g}') \subset \mathfrak{h}$ ならば $\mathfrak{g}'_s \cap \mathfrak{p}$ における $\mathfrak{h}_s \cap \mathfrak{p}$ の直交補空間は $\mathfrak{h}^\perp \cap \mathfrak{p}$ に含まれる.

補題 1.7 の証明 $\mathfrak{h} \subset \mathfrak{g}'$ であり、両者とも θ 不変であるから、

$$\mathfrak{h} = (\mathfrak{g}'_s \cap \mathfrak{h}) \oplus (\mathfrak{z}(\mathfrak{g}') \cap \mathfrak{h})
= \mathfrak{h}_s \oplus (\mathfrak{z}(\mathfrak{g}') \cap \mathfrak{h} \cap \mathfrak{k}) \oplus (\mathfrak{z}(\mathfrak{g}') \cap \mathfrak{h} \cap \mathfrak{p})
= \mathfrak{h}_s \oplus (\mathfrak{z}(\mathfrak{g}') \cap \mathfrak{h} \cap \mathfrak{k}) \oplus (\mathfrak{z}(\mathfrak{g}') \cap \mathfrak{p})$$
(1.1)

である. 最後の等式には $\mathfrak{p} \cap \mathfrak{z}(\mathfrak{g}') \subset \mathfrak{h}$ を用いた.

任意の $X \in \mathfrak{h}_s^{\perp} \cap \mathfrak{g}_s' \cap \mathfrak{p}$ と $Y \in \mathfrak{h} \cap \mathfrak{p}$ の元を取る. Y を (1.1) の分解に対応して $Y = Y_s + Y_{\mathfrak{k}} + Y_c$ と分解する.

$$\langle X, Y \rangle = \langle X, Y_s + Y_{\mathfrak{k}} + Y_c \rangle = \langle X, Y_c \rangle$$

である. $X\in\mathfrak{g}_s'=[\mathfrak{g}',\mathfrak{g}']$ より,ある $T,\ S\in\mathfrak{g}'$ が存在して X=[T,S] である. $\langle -,-\rangle$ は G 不変であるから

$$\langle X, Y \rangle = \langle X, Y_c \rangle = \langle [T, S], Y_c \rangle = -\langle S, [T, Y_c] \rangle$$
 (1.2)

である.ここで $Y_c \in \mathfrak{z}(\mathfrak{g}')$ より $[T,Y_c]=0$ であるから (1.2) の左辺は 0 となり,補題 1.7 の主張を得る.

補題 1.8 G_s を \mathfrak{g}'_s の G における解析的部分群, H_s を \mathfrak{h}_s の G における解析的部分群とする.このとき G_s , H_s はともに G の閉部分群であり, $\Theta H_s = H_s$ である.

補題 **1.8** の証明 \mathfrak{g}'_s , \mathfrak{h}_s は実半単純 Lie 環であり, G は線型 Lie 群であるから, 後述の定理 2.17 より G_s , H_s は G の閉部分群である.

 \mathfrak{g}_s' と \mathfrak{h} はともに θ 不変より $\theta \mathfrak{h}_s = \mathfrak{h}_s$ であるから補題 1.8,特に H_s の非コンパクト性を除いて記号と定義 1.1 の条件すべてが成り立つ.

定義 1.9 補題 1.7 の仮定のもとで $G_s \supset H_s$, $X \in \mathfrak{p} \cap \mathfrak{g}'_s$ に対し, $Y_s(X) \in \mathfrak{h}_s \cap \mathfrak{p} \subset \mathfrak{h} \cap \mathfrak{p}$ と $Z_s(X) \in \mathfrak{h}_s^{\perp} \cap \mathfrak{p} \subset \mathfrak{h}^{\perp} \cap \mathfrak{p}$ を次のように定める.

 H_s が非コンパクトならば補題 1.8 により, $K_s := G_s \cap K$, $(G_s, H_s, G_s/K_s)$ に対して定理 1.2 を用いて, $X \in \mathfrak{p} \cap \mathfrak{g}_s'$ に対し

$$(Y_s(X), Z_s(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h}_s \cap \mathfrak{p}) \oplus (\mathfrak{h}_s^{\perp} \cap \mathfrak{p})$$

と定義する.

 H_s がコンパクトな場合は $\mathfrak{h}_s=\theta\,\mathfrak{h}_s$ より $\mathfrak{h}_s\subset\mathfrak{k}$, したがって $H_s\subset K$ であるから, $X\in\mathfrak{p}\cap\mathfrak{g}_s'$ に対し, $Y_s(X)=0$, $Z_s(X)=X$ と定義する.

補題 1.10 補題 1.7 の仮定のもとで任意の $X=X_c+X_s\in \mathfrak{g}'\cap \mathfrak{p}$ に対し $Y(X)=X_c+Y_s(X_s)$ である.

補題 1.10 の証明

補助補題1

指数写像によって $G_s/K_s\simeq \mathfrak{g}_s'\cap \mathfrak{p}$ であるから、任意の $X,X'\in \mathfrak{g}_s'\cap \mathfrak{p}$ に対し、ある $\widetilde{X}\in \mathfrak{g}_s'\cap \mathfrak{p}$ が存在して、 $e^Xe^{X'}K_s=e^{\widetilde{X}}K_s$ である. $K_s\subset K$ であるから $e^Xe^{X'}\cdot o_K=e^{\widetilde{X}}\cdot o_K$ である.

- 補助補題 2 -

 $X, \ X' \in \mathfrak{g}' \cap \mathfrak{p}$ に対し $\exp(X_c) \exp(X_s) \cdot o_K = \exp(X_c') \exp(X_s') \cdot o_K$ ならば $\exp(X_c - X_c' + X_s) \cdot o_K = \exp(X_s') \cdot o_K$ であることと $\mathfrak{z}(\mathfrak{g}') \cap \mathfrak{g}_s' = \{0\}$ より $X_c = X_c', \ \exp(X_s) \cdot o_K = \exp(X_s') \cdot o_K$ である.

 $Y(X) \,\in\, \mathfrak{h} \cap \mathfrak{p} \,\subset\, \mathfrak{g}', \ Z(X) \,\in\, \mathfrak{h}^{\perp} \cap \mathfrak{p} \,\subset\, \mathfrak{g}' \,\, \, \sharp \,\, \mathfrak{h} \,\, \, Y(X) \,=\, Y(X)_c \,+\, Y(X)_s,$

 $Z(X)=Z(X)_c+Z(X)_s$, $Y(X)_c$, $Z(X)_c\in\mathfrak{z}(\mathfrak{g}')\cap\mathfrak{p}$, $Y(X)_s$, $Z(X)_s\in\mathfrak{h}_s\cap\mathfrak{p}$ と分解できる.

このとき, $[X_c,X_s]=0$, $[X_c',X_s']=0$ より $\exp(X)\cdot o_K=\exp(X_c)\exp(X_s)\cdot o_K$ であるから

$$\begin{split} e^{X_c} e^{X_s} \cdot o_K &= e^X \cdot o_K \\ &= e^{Y(X)} e^{Z(X)} \cdot o_K \\ &= e^{Y(X)_c + Y(X)_s} e^{Z(X)_c + Z(X)_s} \cdot o_K \\ &= e^{Y(X)_c + Z(X)_c} e^{Y(X)_s} e^{Z(X)_s} \cdot o_K \end{split}$$

であるから、補助補題1と2より

$$X_c = Y(X)_c + Z(X)_c,$$
 (1.3)

$$e^{X_s} \cdot o_K = e^{Y(X)_s} e^{Z(X)_s} \cdot o_K$$
 (1.4)

である.

(1.3) より $e^{X_c} \cdot o_K = e^{Y(X)_c} e^{Z(X)_c} \cdot o_K$ であり、補題 1.7 の仮定より $Y(X)_c \in \mathfrak{h} \cap \mathfrak{p}$, $Z(X)_c \in \mathfrak{h}^\perp \cap \mathfrak{p}$ であるから $Y(X_c) = Y(X)_c$ を得る.さらに補題 1.7 の仮定より $X_c \in \mathfrak{z}(\mathfrak{g}') \cap \mathfrak{p} \subset \mathfrak{h} \cap \mathfrak{p}$ であるから $Y(X_c) = X_c = Y(X)_c$ を得る.

また (1.4) と Y_s の定義より $Y_s(X_s) = Y(X)_s$ を得る.

以上より $Y(X) = Y(X)_c + Y(X)_s = Y(X_c) + Y_s(X_s) = X_c + Y_s(X_s)$ を得,補題 1.10 が示された.

命題 1.6 の証明

1. $X \in \mathfrak{p}$ が条件 1.4 を満たさないとき, $X \in \mathfrak{p} \setminus \mathfrak{p}_{H,\mathrm{bdd}}$ であることを示せば良い.

 $X \in \mathfrak{p}$ が条件 1.4 の 1 を満たさないことから $X \in \mathfrak{p} \setminus \mathfrak{h}^{\perp}$ である.

 $X \in \mathfrak{p} \setminus \mathfrak{h}^{\perp}$ なる X に対し $[X_1, X_2] = 0$ ならば $e^{tX_1}e^{tX_2} \cdot o_K = e^{t(X_1 + X_2)} \cdot o_K = e^{tX} \cdot o_K$ である.したがって定理 1.2 より $Y(tX) = tX_1$, $Z(tX) = tX_2$ であることから $Y(\mathbf{R}\,X) = \mathbf{R}\,X_1$ となり, $X_1 \neq 0$ より $Y(\mathbf{R}\,X)$ は有界集合 とならない.つまり $X \notin \mathfrak{p}_{H, \mathrm{bdd}}$ である.

次に $X \in \mathfrak{p} \setminus \mathfrak{h}^{\perp}$ かつ $[X_1, X_2] \neq 0$ なる X を考える.

このとき条件 1.4 の 2 、3 が成り立たないことから $X \notin \mathfrak{g}'_s$ かつ $\mathfrak{p} \cap \mathfrak{z}(\mathfrak{g}')$ \subset

 \mathfrak{h} である。このとき $X=X_c+X_s$ に対し $X_c\neq 0$ であるから補題 1.10 より $Y(\mathbf{R}\,X)$ は非有界であり, $X\notin \mathfrak{p}_{H,\mathrm{bdd}}$ である。 以上より主張が従う。

- **2.** $X_1 = 0$ であることと $X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ であることが同値であり $X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ ならば定理 1.2 より Y(X) = 0 であることから主張が従う.
- **3.** G が実階数 1 のときに $X \in \mathfrak{p}$ に対して $X \in \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ であることと条件 1.4 を満たすことが同値であることを示せば良い. G の実階数が 1 かつ H が非コンパクトで $\mathfrak{h} = \theta \mathfrak{h}$ であるから $\mathfrak{h} \cap \mathfrak{p}$ は極大分裂可換部分代数である.

 $X \in (\mathfrak{h} \cap \mathfrak{p}) \setminus \{0\}$ ならば条件 1.4 を満たさないことは明らかであるから,条件 1.4 を満たさないならば $X \in (\mathfrak{h} \cap \mathfrak{p}) \setminus \{0\}$ であることを示せば良い.

条件 1.4 を満たさない $X \in \mathfrak{p}$ を任意に 1 つ固定する.条件 1.4 の 1 が成り立たないことから $X \in \mathfrak{p} \setminus \mathfrak{h}^{\perp}$ である.また X は条件 1.4 の 2 , 3 を満たさない.もし $[X_1, X_2] = 0$ ならば $\mathfrak{h} \cap \mathfrak{p}$ が極大分裂可換部分代数であることから $X \in \mathfrak{h} \cap \mathfrak{p}$ であるから, $X \in \mathfrak{h} \setminus \{0\}$ が言える.

以上より $[X_1,X_2] \neq 0$ かつ $X \in \mathfrak{p} \setminus \mathfrak{h}^{\perp}$ なる X のみを考えれば十分である. このとき X は条件 1.4 の 2 、 3 を満たさないことからさらに $X \notin \mathfrak{g}'_s$ かつ $\mathfrak{p} \cap \mathfrak{z}(\mathfrak{g}') \subset \mathfrak{h}$ である. $X = X_c + X_s$ に対し,前者より $X_c \neq 0$ を得る.後者 より $X_c \in \mathfrak{p} \cap \mathfrak{z}(\mathfrak{g}') \subset \mathfrak{z}_{\mathfrak{h} \cap \mathfrak{p}}(X)$ である.しかし $\mathfrak{h} \cap \mathfrak{p}$ は極大分裂可換部分代数であるから, $X \notin \mathfrak{h} \setminus \{0\}$ ならば $[X,\mathfrak{h} \cap \mathfrak{p}] \neq \{0\}$ より, $0 = X_c \in \mathfrak{z}_{\mathfrak{h} \cap \mathfrak{p}}(X)$ とならざるを得ない.これは $X_c \neq 0$ に矛盾するから $X \in \mathfrak{h} \setminus \{0\}$ である.以上の議論から命題 1.6 が示された.

 $Y(\mathbf{R}\,X)$ の有界性は $k\in K$ に対して $\mathrm{Ad}(k)$ 不変な性質である. 具体的には補題 1.11 が成り立つ.

補題 1.11 任意の $k \in K$, $X \in \mathfrak{p}$ に対し, $X' \coloneqq \operatorname{Ad}(k)X$, $\mathfrak{h}' \coloneqq \operatorname{Ad}(k)\mathfrak{h}$ とする. 微分同相 $\pi' \colon (\mathfrak{h}' \cap \mathfrak{p}) \oplus (\mathfrak{h}'^{\perp} \cap \mathfrak{p}) \ni (Y', Z') \mapsto e^{Y'}e^{Z'} \cdot o_K$ を用いて, $X' \in \mathfrak{p}$ に対し, $(Y'(X'), Z'(X')) = \pi'^{-1}(e^{X'} \cdot o_K)$ と定める. このとき $Y(\mathbf{R}X)$ が有界であることと $Y'(\mathbf{R}X')$ が有界であることは同値である.

補題 1.11 の証明 主張は (X,\mathfrak{h}) と (X',\mathfrak{h}') に対して対称的であるから, $Y(\mathbf{R} X)$ が有界ならば $Y'(\mathbf{R} X')$ が有界であることのみを示せば十分である.

任意に $r \in \mathbf{R}$ を取る.定義より $e^{rX'} \cdot o_K = e^{Y'(rX')} e^{Z'(rX')} \cdot o_K$ であり,両 辺に左から k^{-1} を掛けると, $e^{rX} = e^{\operatorname{Ad}(k^{-1})(Y'(rX'))} e^{\operatorname{Ad}(k^{-1})(Z'(rX'))} \cdot o_K$ を得る. $Y'(rX') \in \mathfrak{h}' \cap \mathfrak{p}$, $Z'(rX') \in \mathfrak{h}'^{\perp} \cap \mathfrak{p}$ であるから $\operatorname{Ad}(k^{-1})(Y'(rX')) \in \mathfrak{h} \cap \mathfrak{p}$, $\operatorname{Ad}(k^{-1})(Z'(rX')) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ である.

定理 1.2 により π は微分同相であるから,任意の $r\in \mathbf{R}$ に対して $\mathrm{Ad}(k^{-1})(Y'(rX'))=Y(rX)$ である.したがって $Y'(\mathbf{R}\,X)=\mathrm{Ad}(k)(Y(\mathbf{R}\,X))$ であり, $\mathrm{Ad}(k)$ は有限次元空間の間の線型写像であるから有界性を保つ.

以上から補題 1.11 が示された.

 $Y(\mathbf{R} X)$ の有界性を判定しようとする問題 1.3 と比較して $Z(\mathbf{R} X)$ の有界性については次の定理が知られており、有界性の判定は Lie 環の言葉のみで行える.

定理 1.12 ([Kob97, Lemma 5.4]) $X \in \mathfrak{p}$ に対し、 $\|X\| \geq \|Z(X)\| \geq \|X\| \sin \varphi(X, \mathfrak{h} \cap \mathfrak{p})$ が成り立つ. ここに $\varphi(X, \mathfrak{h} \cap \mathfrak{p})$ は X と $\mathfrak{h} \cap \mathfrak{p}$ の 0 でない元が \mathfrak{p} においてなす角度の最小値 $0 \leq \varphi(X, \mathfrak{h} \cap \mathfrak{p}) \leq \frac{\pi}{2}$ であり, $X \in \mathfrak{p} \setminus \mathfrak{h}$ と $\varphi(X, \mathfrak{h} \cap \mathfrak{p}) \neq 0$ は同値である.

定理 1.12 より, $X \in \mathfrak{h} \cap \mathfrak{p}$ であることと $Z(\mathbf{R} X)$ が有界であることが同値である.

1.3 問題 1.3 の観察: G = SU(1,1), H = SO(1,1) の場合

 $G=SU(1,1),\ H=SO(1,1)\coloneqq\left\{egin{pmatrix}\cosh t&\sinh t\\sinh t&\cosh t\end{pmatrix}\ \mid t\in\mathbf{R}
ight\}$ は問題 1.3 の肯定的な例である.具体的には $\mathfrak{p}_{H,\mathrm{bdd}}=\{0\}\cup\mathfrak{p}\setminus\mathfrak{h}$ である.

命題 **1.13** G = SU(1,1), H = SO(1,1) のとき $\mathfrak{p}_{H \text{ bdd}} = \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ である.

命題 1.13 を示すために補題を 1 つ用意する.

補題 **1.14** Poincaré 円板 $G/K = \{x + \sqrt{-1}y \mid x^2 + y^2 < 1\}$ の $\mathfrak{g} \coloneqq \mathfrak{su}(1,1)$ の Killing 形式から定まる Riemann 計量 g は $\frac{8(dx^2 + dy^2)}{(1 - x^2 - y^2)^2}$ である.

補題 1.14 の証明 \mathfrak{p} の元を G/K 上の左不変ベクトル場と同一視すると

$$X' := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{\partial}{\partial x},$$
$$Y' := \begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix} = \frac{\partial}{\partial y}$$

である. $\mathfrak g$ の Killing 形式 B から定まる $\mathfrak p$ 上のノルム $\|-\|$ に対して $\|X'\|^2=\|Y'\|^2=8$, B(X',Y')=0 であるから $0\in G/K=\{x+\sqrt{-1}y\mid x^2+y^2<1\}$ において主張が成り立つ.

したがって
$$k_{\theta} \coloneqq \operatorname{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}), \ a_r \coloneqq \begin{pmatrix} \cosh r & \sinh r \\ \sinh r & \cosh r \end{pmatrix}$$
 とすると、
$$g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'))$$
$$= g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y'))$$
$$= 8,$$
$$g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y')) = 0$$

なるような計量 g が Killing 形式から誘導される計量である. g が主張の形であることを示す (図 2 参照).

t=0 での接ベクトルが $d au(k_{ heta/2}a_r)d au(k_{- heta/2})X'$ を与える曲線として

$$\gamma_x(t) := e^{\sqrt{-1}\theta} \frac{\cosh r \cdot e^{-\sqrt{-1}\theta} \tanh t + \sinh r}{\sinh r \cdot e^{-\sqrt{-1}\theta} \tanh t + \cosh r}$$

が考えられるから

$$\frac{d}{dt}\bigg|_{t=0}\gamma_x(t)=d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})X'=(1-\tanh^2r)\frac{\partial}{\partial x}=(1-x^2-y^2)\frac{\partial}{\partial x}$$
 ීනී.

同様に t=0 での接ベクトルが $d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})Y'$ を与える曲線として

$$\gamma_y(t) := e^{\sqrt{-1}\theta} \frac{\cosh r \cdot e^{-\sqrt{-1}\theta} \sqrt{-1} \tanh t + \sinh r}{\sinh r \cdot e^{-\sqrt{-1}\theta} \sqrt{-1} \tanh t + \cosh r}$$

が考えられるから

$$\frac{d}{dt}\Big|_{t=0}\gamma_y(t) = d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})Y' = (1-\tanh^2 r)\frac{\partial}{\partial y} = (1-x^2-y^2)\frac{\partial}{\partial y}$$

である.

以上より
$$g = \frac{8(dx^2 + dy^2)}{(1 - x^2 - y^2)^2}$$
 が得られる.

命題 1.13 の証明 $k_{\theta} \coloneqq \operatorname{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}), \ X_{\theta} \coloneqq k_{\theta/2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} k_{-\theta/2}$ とすると、 $\mathfrak{p}\setminus\{0\} = \{tX_{\theta} \mid t\in\mathbf{R}_{>0},\ 0\leq\theta\leq\pi\}$ である.この X_{θ} と $t\in\mathbf{R}$ に対して $Y(tX_{\theta}) = s\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ なる $s\in\mathbf{R}$ を以下で求める.

図 3 では,左の円が Poincaré 円板 G/K,右の円は $e^{tX_{\theta}} \cdot o_K$ を通り $H \cdot o_K$ に垂直に交わる測地線を延長した円を描いた.G/K の測地線は境界に直交する円弧であるから,この 2 つの円は境界で直交している.

右の円の Euclid 距離での半径を R とし, $e^{tX_{\theta}}\cdot o_{K}$ から $H\cdot o_{K}$ への垂線の足の o_{K} からの Euclid 距離を h とするとき,外側の青色の直角三角形に対して三平方の 定理を用いて $(h+R)^{2}=R^{2}+1$ より $R=\frac{1-h^{2}}{2h}$, $R+h=\frac{1+h^{2}}{2h}$ を得る.

さらに下の紫色の三角形に対して余弦定理を用いて

$$R^2 = (R+h)^2 + r^2 - 2r(R+h)\cos\theta$$

を得,

$$R^{2} = (R+h)^{2} + r^{2} - 2(R+h)\cos\theta$$
$$= R^{2} + 1 + r^{2} - 2r(R+h)\cos\theta$$
$$= R^{2} + 1 + r^{2} - 2r\frac{1+h^{2}}{2h}\cos\theta$$

より

$$\frac{2r\cos\theta}{r^2 + 1} = \frac{2h}{h^2 + 1} \tag{1.5}$$

を得る.

 $r=\tanh t,\ h=\tanh s$ であるから (1.5) は $\cos \theta \tanh 2t=\tanh 2t$ と書き直せる. したがって X_{θ} に対して $Y(\mathbf{R}\,X)$ が有界であることと $|\cos \theta| \neq 1$ であること, あるいは $X \notin \mathfrak{h}$ であることが同値である.

補足 1.15 命題 1.13 は角度を用いた議論によっても示すことができる. 具体的には、座標を用いた計算により次の補題 1.16 が示せる (計算は省略する).

補題 **1.16**
$$e^{sY}e^{rZ} \cdot o_K = \begin{pmatrix} \cosh s & \sinh s \\ \sinh s & \cosh s \end{pmatrix} \sqrt{-1} \tanh r \in SU(1,1)/U(1), \ s > 0,$$
 $r \in \mathbf{R}$ に対し, $\varphi_{s,r} \coloneqq \measuredangle_{o_K} (e^{sY}e^{rZ} \cdot o_K, \ e^{sY} \cdot o_K)$ は, $\tan \varphi_{s,r} = \frac{\tanh 2r}{\sinh 2s}$ を満たす.ただし $Y \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Z \coloneqq \begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix}$ とし,角度 $\varphi_{s,t}$ は $0 \le \varphi_{s,r} \le \frac{\pi}{2}$ の範囲に取ることとする.

補題 1.16 により命題 1.13 は次のように証明できる.任意の $0 \neq s \in \mathbf{R}, r \in \mathbf{R}$ に対し,

$$0 \le |\tan \varphi_{s,r}| \le \lim_{r \to \infty} \tan \varphi_{|s|,r} = \frac{1}{\sinh 2|s|}$$
 (1.6)

である. $X \notin \mathbf{R}Y$ の元に対して $Y(\mathbf{R}X)$ が非有界であるとすると, $0 < \varepsilon < \varphi(X,\mathfrak{h}\cap\mathfrak{p})$ なる ε に対し,ある $t \in \mathbf{R}$ が存在して, $Y(tX) = s_tY$, $\sinh 2|s_t| > \frac{1}{\tan \varepsilon}$ である. $Z(tX) = r_tZ$ とすると (1.6) より $|\tan \varphi_{s_t,r_t}| < \tan \varepsilon$, したがって

$$0 \leq \measuredangle_{o_K}(e^{s_t Y}e^{r_t Z} \cdot o_K, e^{s_t Y} \cdot o_K) < \varepsilon < \varphi(X, \mathfrak{h} \cap \mathfrak{p})$$

となる. しかし定義より $\angle_{o_K}(e^{s_tY}e^{r_tZ}\cdot o_K,e^{s_tY}\cdot o_K)=\angle_{o_K}(e^{tX}\cdot o_K,e^{Y(tX)}\cdot o_K)$ であり, $\angle_{o_K}(e^{tX}\cdot o_K,e^{Y(tX)}\cdot o_K)=\varphi(X,\mathfrak{h}\cap\mathfrak{p})$ であるから矛盾する.

1.4 問題 1.3 の観察: 問題 1.3 の条件が落とせないことを示すいくつ かの例

命題 1.6 より問題 1.3 は G の実階数が 1 の場合には次の問と同値であった.

問 1.17

$$\begin{split} \mathfrak{p}_{H,\mathrm{bdd}} &= \{0\} \cup \mathfrak{p} \setminus \mathfrak{h} \\ &= \{X \in \mathfrak{p} \mid [X_1, X_2] \neq 0 \text{ bsout } X \in \mathfrak{h}^{\perp} \cap \mathfrak{p} \text{ cbso.} \} \\ &= \{X \in \mathfrak{p} \mid [X, (\mathfrak{h} \cap \mathfrak{p})] \neq 0 \text{ bsout } X \in \mathfrak{h}^{\perp} \cap \mathfrak{p} \text{ cbso.} \} \end{split} \tag{1.7}$$

となるか?

ここで G の実階数が 2 の場合には一般的には (1.7) は成り立たないことがわかっている.

命題 **1.18**
$$G = SL(3, \mathbf{R}), \ H = \{\operatorname{diag}(e^a, e^b, e^c) \mid a, b, c \in \mathbf{R}, \ a+b+c=0\},$$
 $X \coloneqq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & \sqrt{2} & -1 \end{pmatrix}$ に対し $Y(\mathbf{R} X)$ は非有界であり、(1.7) は成り立たない.

命題 1.18 を示す前にこの例が (1.7) の右辺に属することを見る.

$$\mathfrak{h} = \{ \operatorname{diag}(a,b,c) \mid a,b,c \in \mathbf{R}, \ a+b+c=0 \} \ \text{であるから} \ X_1 = \operatorname{diag}(1,0,-1),$$

$$X_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{pmatrix} \text{であり,} \ [X_1,X_2] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & -\sqrt{2} & 0 \end{pmatrix} \neq 0 \text{ より } X \text{ は (1.7)}$$

1つ補題を用意してから命題 1.18 を証明する.

補題 1.19 任意の $t \in \mathbf{R}$ に対し

$$\exp\left(2t\begin{pmatrix}0&\sqrt{2}\\\sqrt{2}&-1\end{pmatrix}\right) = \begin{pmatrix}\frac{2e^{2t} + e^{-4t}}{3} & \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3}\\ \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3} & \frac{e^{2t} + 2e^{-4t}}{3}\end{pmatrix}$$

である.

補題 1.19 の証明 θ を $\cos 2\theta = \frac{1}{3}$, $\sin 2\theta = \frac{-2\sqrt{2}}{3}$ を満たす実数として任意に 1 つ

固定する. このとき

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2} = \frac{2}{3},$$
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2} = \frac{1}{3}$$

である.
$$k \coloneqq \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 とすると,

$$k \begin{pmatrix} 0 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix} k^{-1} = \begin{pmatrix} -2\sqrt{2}\sin\theta\cos\theta - \sin^2\theta & \sqrt{2}(\cos^2\theta - \sin^2\theta) + \cos\theta\sin\theta \\ \sqrt{2}(\cos^2\theta - \sin^2\theta) + \cos\theta\sin\theta & 2\sqrt{2}\sin\theta\cos\theta - \cos^2\theta \end{pmatrix}$$

$$= \begin{pmatrix} -\sqrt{2}\sin2\theta - \sin^2\theta & \sqrt{2}\cos2\theta + \frac{\sin2\theta}{2} \\ \sqrt{2}\cos2\theta + \frac{\sin2\theta}{2} & \sqrt{2}\sin2\theta - \cos^2\theta \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

である.

したがって

$$k \exp\left(2t \begin{pmatrix} 0 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix}\right) k^{-1} = \exp\left(2t & 0 \\ 0 & -4t \end{pmatrix}$$

であるから,

$$\exp\left(2t \begin{pmatrix} 0 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix}\right) = k^{-1} \exp\left(\begin{pmatrix} 2t & 0 \\ 0 & -4t \end{pmatrix}\right) k$$

$$= \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} e^{2t} & 0 \\ 0 & e^{-4t} \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$= \begin{pmatrix} e^{2t} \cos^2 \theta + e^{-4t} \sin^2 \theta & (e^{-4t} - e^{2t}) \sin \theta \cos \theta \\ (e^{-4t} - e^{2t}) \sin \theta \cos \theta & e^{2t} \sin^2 \theta + e^{-4t} \cos^2 \theta \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2e^{2t} + e^{-4t}}{3} & \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3} \\ \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3} & \frac{e^{2t} + 2e^{-4t}}{3} \end{pmatrix}$$

を得る.

命題 1.18 の証明 G/K と行列式 1 の 3×3 正定値実対称行列全体の集合 $\operatorname{Symm}^+(3)$ は $gK\mapsto g\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}{}^tg$ により微分同相である.以下, $\operatorname{Symm}^+(3)$ の元と G/K の元をこの写像により同一視する.

補題 1.19 より

$$e^{tX} \cdot o_K = e^{tX} \stackrel{t}{} (e^{tX}) = e^{2tX}$$

$$= \begin{pmatrix} e^{2t} & 0 & 0 \\ 0 & \frac{2e^{2t} + e^{-4t}}{3} & \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3} \\ 0 & \frac{\sqrt{2}(e^{2t} - e^{-4t})}{3} & \frac{e^{2t} + 2e^{-4t}}{3} \end{pmatrix}$$

$$(1.9)$$

である.

$$Y\coloneqq\operatorname{diag}(a,b,c)$$
 (ただし $a+b+c=0$), $Z\coloneqq\begin{pmatrix}0&0&0\\0&0&1\\0&1&0\end{pmatrix}$ とすると, $r\in\mathbf{R}$ に

対し,

$$e^{Y}e^{rZ} \cdot o_{K} = e^{Y}e^{2rZ}e^{Y}$$

$$= \begin{pmatrix} e^{a} & 0 & 0 \\ 0 & e^{b} & 0 \\ 0 & 0 & e^{c} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cosh 2r & \sinh 2r \\ 0 & \sinh 2r & \cosh 2r \end{pmatrix} \begin{pmatrix} e^{a} & 0 & 0 \\ 0 & e^{b} & 0 \\ 0 & 0 & e^{c} \end{pmatrix}$$

$$= \begin{pmatrix} e^{2a} & 0 & 0 \\ 0 & e^{2b}\cosh 2r & e^{b+c}\sinh 2r \\ 0 & e^{b+c}\sinh 2r & e^{2c}\cosh 2r \end{pmatrix}$$

$$= \begin{pmatrix} e^{2a} & 0 & 0 \\ 0 & e^{2b}\cosh 2r & e^{-a}\sinh 2r \\ 0 & e^{-a}\sinh 2r & e^{-2a-2b}\cosh 2r \end{pmatrix}$$

$$(1.10)$$

である. ただし最後の変形にはa+b+c=0を用いた.

(1.9) と (1.10) を比較すると,

$$a = t,$$

$$\sinh 2r = \frac{2\sqrt{2}}{3} \sinh 3t,$$

$$e^{2b} = \frac{2e^{2t} + e^{-4t}}{\sqrt{9 + 8\sinh^2 3t}}$$

を得, このとき $e^Y e^{rZ} \cdot o_K = e^{tX} \cdot o_K$ である. つまり任意の $t \in \mathbf{R}$ に対し

•
$$Z(tX) = r(t)Z$$
 ただし $r(t) = \frac{1}{2}\sinh^{-1}\left(\frac{2\sqrt{2}}{3}\sinh 3t\right)$

であるから, $Y(\mathbf{R} X)$ は非有界である.

G が実階数 1 の場合に限っても問 1.17 と類似の問題はいくつか考えられる. 例え ば (1.8) において $\mathfrak{h} \cap \mathfrak{p}$ を \mathfrak{h} に置き換えた次の問が立てられる.

問 1.20 $\mathfrak{p}_{H,\mathrm{bdd}} = \{X \in \mathfrak{p} \mid [X,\mathfrak{h}] \neq \{0\}$ あるいは $X \perp \mathfrak{h}$ である. $\}$ となるか?

しかし問 1.20 にも主張が成り立たない実階数 2 の例が存在する.

補題 **1.21**
$$G = SL(3, \mathbf{R})$$
, $Y_1 \coloneqq \operatorname{diag}(1, 1, -2)$, $Y_2 \coloneqq \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

 $\mathbf{R}Y_1$ であり、非有界である。

補題 1.21 の証明 \mathfrak{h} は可換 Lie 環であり、 $\mathfrak{g} = \mathfrak{sl}(3, \mathbf{R})$ の Cartan 対合 $\theta W := -{}^t W$ に対し $\mathfrak{h} = \theta \mathfrak{h}$ である.

 $[X, \mathfrak{h}] \neq \{0\}$ は, $[X, Y_2] \neq 0$ より従う.

ここで $Z_1 := \operatorname{diag}(1,-1,0) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ であり、任意の $t \in \mathbf{R}$ に対し、 $e^{2tX} =$ $e^{tY_1}e^{tZ_1}$ であるから, $Y(\mathbf{R}\,X)=\mathbf{R}\,Y_1$ となり, 補題 1.21 が示された.

補題 1.21 において X と \mathfrak{h} は, $[X,\mathfrak{h}] \neq \{0\}$ だが $[X,(\mathfrak{h} \cap \mathfrak{p})] = \{0\}$ かつ $X \not\perp$ $(\mathfrak{h} \cap \mathfrak{p})$ となるように取った. したがって問 1.20 の右辺を次の問 1.22 のように少し 弱めても補題 1.21 は問 1.22 が成り立たないような例になっている.

問 $\mathbf{1.22}\;\mathfrak{p}_{H.\mathrm{bdd}}=\{X\in\mathfrak{p}\;|\;[X,\mathfrak{h}]\neq\{0\}\;$ あるいは $X\perp(\mathfrak{h}\cap\mathfrak{p})\;$ である. $\}$ とな るか?

2 Gの実階数が1の場合

2.1 具体例: 実階数1の古典型単純 Lie 群の場合

命題 **2.1** G = SO(1,n), SU(1,n), Sp(1,n), H = SO(1,1), $n \ge 2$ に対して問題 1.3 は正しい.

$$G=Sp(1,2),\ \mathfrak{h}=\mathbf{R}egin{pmatrix} 0&1&0\\1&0&0\\0&0&0 \end{pmatrix}$$
の場合にのみ示す.その他の場合も全く同様

の議論である。

命題 **2.2** $G = Sp(1,2), \ H = SO(1,1), \ X \in \mathfrak{p}$ に対し、 $Y(\mathbf{R} \ X)$ が有界であること と $X \in \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ であることは同値である.

ただし、
$$H$$
 は G の左上に入っている。すなわち、 $\mathfrak{h}=\mathbf{R}\,Y,\;Y:=\begin{pmatrix}0&1&0\\1&0&0\\0&0&0\end{pmatrix}$ とする。

記号と定義 2.3 H を四元数体とする. $Sp(1,2)\coloneqq\{g\in GL(3,\mathbf{H})\mid \overline{tg}\ I_{1,2}g=I_{1,2}\}$, $I_{1,2}\coloneqq\operatorname{diag}(-1,1,1)$ とし,Sp(1,2) の \mathbf{H}^3 への自然表現を,任意の $\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \in Sp(1,2)$ と任意の $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbf{H}^3$ に対し

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x_{11}a + x_{12}b + x_{13}c \\ x_{21}a + x_{22}b + x_{23}c \\ x_{31}a + x_{32}b + x_{33}c \end{pmatrix}$$

により定める.

 $Sp(1,2)/(Sp(1)\times Sp(2))\simeq\{(z_1,z_2)\mid z_1,z_2\in\mathbf{H},\; |z_1|^2+|z_2|^2<1\}=:\mathbf{H}\,\mathbb{H}^2$ である.この $Sp(1,2)/(Sp(1)\times Sp(2))$ と $\mathbf{H}\,\mathbb{H}^2$ の間の微分同相は $^t(1,0,0)$ の Sp(1,2)

軌道上の点 $\begin{pmatrix} \zeta_0 \\ \zeta_1 \\ \zeta_2 \end{pmatrix} \in \mathbf{H}^3$ に対して \mathbf{H} \mathbb{H}^2 の点 $\begin{pmatrix} \zeta_1 \zeta_0^{-1} \\ \zeta_2 \zeta_0^{-1} \end{pmatrix}$ を対応させることで得られる. $^t(1,0,0) \text{ o } Sp(1,2) \text{ 軌道上の点} \begin{pmatrix} \zeta_0 \\ \zeta_1 \\ \zeta_2 \end{pmatrix} \in \mathbf{H}^3 \text{ に対応する } \mathbf{H} \mathbb{H}^2 \text{ の点を}$

$$t(1,0,0)$$
 の $Sp(1,2)$ 軌道上の点 $\begin{pmatrix} \zeta_0 \\ \zeta_1 \\ \zeta_2 \end{pmatrix} \in \mathbf{H}^3$ に対応する $\mathbf{H} \mathbb{H}^2$ の点を $\left[\begin{pmatrix} 1 \\ \zeta_1\zeta_0^{-1} \\ \zeta_2^{-1} \end{pmatrix}\right]$ とも書く.

行列計算により,次が示される.

補題 **2.4** 任意の $z, w \in \mathbf{H}$ に対し,

$$\exp\begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cosh r & \frac{z}{r} \sinh r & \frac{w}{r} \sinh r \\ \frac{\overline{z}}{r} \sinh r & \frac{|w|^2 + |z|^2 \cosh r}{r^2} & \frac{\overline{z}w(\cosh r - 1)}{r^2} \\ \frac{\overline{w}}{r} \sinh r & \frac{\overline{w}z(\cosh r - 1)}{r^2} & \frac{|z|^2 + |w|^2 \cosh r}{r^2} \end{pmatrix}$$

である. ただし $r := \sqrt{|z|^2 + |w|^2}$ とする.

命題 **2.2** の証明 X=0 ならば $Y(\mathbf{R} X)=\{0\}$ である. また $X\in\mathfrak{h}\setminus\{0\}$ のとき に $Y(\mathbf{R} X)$ が非有界であることは明らかであるから、 $X \notin \mathfrak{h}$ の場合にのみ議論す ればよい. したがって $|z_0|^2 + |w_0|^2 = 1$ かつ $z_0 \neq \pm 1$ を満たす $z_0, w_0 \in \mathbf{H}$ により

$$X = \begin{pmatrix} 0 & z_0 & w_0 \\ \overline{z_0} & 0 & 0 \\ \overline{w_0} & 0 & 0 \end{pmatrix}$$
 と書かれている X に対して $Y(\mathbf{R}\,X)$ の有界性を議論して一

 $(x^2+|w_0|^2=1$ を仮定したとき $X
otin\mathfrak{h}$ であることと $z_0
eq\pm 1$ で あることは同値である). 以下,Xはこのように書ける元とする.

G の Cartan 対合を $\Theta(g) = (g^*)^{-1} \ (g^*$ は g の共役転置) とするとき, $\Theta(e^{Y(tX)}e^{Z(tX)})\cdot o_K = e^{-Y(tX)}e^{-Z(tX)}\cdot o_K = \Theta(e^{tX})\cdot o_K = e^{-tX}\cdot o_K \ \sharp \ \emptyset \ ,$ $Y(\mathbf{R} X)$ が非有界であることと $Y(\mathbf{R} X) \subset \mathbf{R} Y$ が上に非有界であることは同値で ある.

したがって、 $Y(\mathbf{R}X)$ が非有界であるとき、必要なら部分列を取り、Y の符号を入れ替えて、列 $\{t_n \in \mathbf{R}_{\geq 0}\}_{n \in \mathbf{N}}$ で、 $t_n \to \infty$ かつ $s_n \to \infty$ 、 $n \to \infty$ 、ただし $Y(t_nX) = s_nY$ 、なるものが存在する.

任意の
$$\mathfrak{h}^{\perp} \cap \mathfrak{p}$$
 の元はある $Z = \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ (ただし $z, w \in \mathbf{H}$ は

 $|z|^2 + |w|^2 = 1$ を満たす) と $r \in \mathbf{R}$ により rZ と表せる. よって $Z(t_n X) = r_n Z_n$

$$Z_n \coloneqq egin{pmatrix} 0 & z_n & w_n \ \overline{z_n} & 0 & 0 \ \overline{w_n} & 0 & 0 \end{pmatrix}$$
 (ただし $z_n, w_n \in \mathbf{H}$ は $|z_n|^2 + |w_n|^2 = 1$ を満たし, $r_n \in \mathbf{R}$

とする) の形で表わせる. $X \notin \mathfrak{h}$ であるから定理 1.12 より $|r_n| \to \infty$, $n \to \infty$ である. $z_n, w_n \in \mathbf{H}$ は $|z_n|^2 + |w_n|^2 = 1$ を満たすから, $\{t_n\}$ の部分列を取ると

ある
$$z_{\infty}, w_{\infty} \in \quad$$
 が存在して $Z_{\infty} \coloneqq \lim_{n \to \infty} Z_n = \begin{pmatrix} 0 & z_{\infty} & w_{\infty} \\ \overline{z_{\infty}} & 0 & 0 \\ \overline{w_{\infty}} & 0 & 0 \end{pmatrix} \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$,

 $|z_{\infty}|^2 + |w_{\infty}|^2 = 1$ なるようにできる. $Z_{\infty} \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$, 特に $Z_{\infty} \in \mathfrak{p} \setminus \mathfrak{h}$ より $\operatorname{Re} z_{\infty} \neq \pm 1$ であることに注意する (Re: $\mathbf{H} \ni a + bi + cj + dk \mapsto a \in \mathbf{R}$ とする). 補題 2.4 より,

$$e^{s_n Y} e^{r_n Z_n} \cdot o_K = \begin{pmatrix} \cosh s_n & \sinh s_n & 0 \\ \sinh s_n & \cosh s_n & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} 1 \\ \pm \overline{z_n} \tanh |r_n| \\ \pm \overline{w_n} \tanh |r_n| \end{pmatrix}$$

$$= \begin{bmatrix} \cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n \\ \sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n \\ \pm \overline{w_n} \tanh |r_n| \end{bmatrix}$$

である. ただし複号は r_n の符号 \pm と同順である. このとき $\lim_{n\to\infty} \tanh s_n = 1 = \lim_{n\to\infty} \tanh |r_n|$ と $\lim_{n\to\infty} \operatorname{Re} z_n = \operatorname{Re} z_\infty \neq \pm 1$ に注意すると次を得る.

 $\lim_{n \to \infty} (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} = 1. \quad (2.1)$

(2.1)を得るための具体的な計算は後述する。

(2.1) より
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$$
から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$ へのベクトルと, $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$ から

$$\begin{pmatrix} (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n)(\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} \\ * \end{pmatrix} \in \mathbf{H} \mathbb{H}^2 \wedge \mathcal{O}$$

$$\left((\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} \right) \in \mathbf{H} \mathbb{H}^2 \wedge \mathcal{O}$$
 * ベクトルがなす Euclid 内積の値を I_n とすると、 $\lim_{n \to \infty} I_n = 1$ である。 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ から $e^{t_n X} \cdot o_K \in \mathbf{H}$ * このベクトルと、 $e^{t_n X} \cdot o_K \in \mathbf{H}$ * このなり * このべり * このべり * このなり * このなり

$$(0)$$
 (0) (0) H \mathbb{H}^2 へのベクトルがなす Euclid 内積の値 J_n を計算する. $X = \begin{pmatrix} 0 & z_0 & w_0 \\ \overline{z_0} & 0 & 0 \\ \overline{w_0} & 0 & 0 \end{pmatrix}$

(ただし $|z_0|^2 + |w_0|^2 = 1$ かつ $z_0 \neq \pm 1$) と設定したことを思い出すと, り $J_n=\overline{z_0} \tanh t_n$ である. $X
otin \mathfrak{h}$ であることと $z_0
otin \pm 1$ であることは同値である ことと $t_n \to \infty$, $n \to \infty$ より $\lim_{n \to \infty} J_n = \overline{z_0} \neq 1$ である.

 $e^{s_n Y} e^{r_n Z_n} \cdot o_K = e^{t_n X} \cdot o_K$ より $\lim_{n \to \infty} I_n = \lim_{n \to \infty} J_n$ であるが、以上 2 つ の議論を合わせると $\lim_{n\to\infty}I_n=1$, $\lim_{n\to\infty}J_n\neq 1$ となり矛盾する.

以上より
$$X \in \mathfrak{p} \setminus \mathfrak{h}$$
 ならば $Y(\mathbf{R} X)$ は有界であり、命題 2.2 を得る.

命題 2.2, (2.1) の計算

 $\lim_{n\to\infty} |(\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n)(\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} - 1| = 0$

を示せば主張が得られる. 具体的に計算すると,

$$\lim_{n \to \infty} \left| (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} - 1 \right|$$

$$= \lim_{n \to \infty} \left| \frac{(\tanh s_n \pm \overline{z_n} \tanh |r_n|) (1 \pm z_n \tanh |r_n| \tanh s_n)}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2} - 1 \right| \tag{*}$$

である. ここで $z'_n := 1 \pm z_n \tanh |r_n| \tanh s_n$ とおくと,

$$(*) = \lim_{n \to \infty} \frac{|(\tanh s_n \pm \overline{z_n} \tanh |r_n|) z'_n - (1 \pm \overline{z_n} \tanh |r_n| \tanh s_n) z'_n|}{|\overline{z'_n}|^2}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|) z'_n|}{|\overline{z'_n}|^2}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|)|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|}$$

である. $\lim_{n\to\infty} \operatorname{Re} z_n = \operatorname{Re} z_\infty \neq \pm 1$ より, $0 < \min |1 \pm \operatorname{Re} z_n| \leq |(1 \pm 1)|$ $\overline{z_n} \tanh |r_n| \tanh s_n)| \le \sqrt{2^2 + 1^2} = \sqrt{5} \ge 0 < \min\{|-1 \pm \text{Re } z_n|\} \le |-1 \pm 1|$ $\overline{z_n} \tanh |r_n|| \leq \sqrt{5}$ であることより,

$$0 = \lim_{n \to \infty} (1 - \tanh s_n) \frac{\min\{|-1 \pm \operatorname{Re} z_n|\}}{\sqrt{5}}$$

$$\leq \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|)|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|}$$

$$\leq \lim_{n \to \infty} (1 - \tanh s_n) \frac{\sqrt{5}}{\min\{|1 \pm \operatorname{Re} z_n|\}} = 0$$

を得, (2.1) が成り立つ.

系 $2.5~G=SO(1,n),~H=SO(1,l),~1\leq l\leq n-1$ は問題 1.3 の肯定的な例である. 具体的には $\mathfrak{p}_{H,\mathrm{bdd}}=\{0\}\cup\mathfrak{p}\setminus\mathfrak{h}$ である. ただし H は G の左上にブロック行列として実現する.

系 2.5 の証明 補題 1.11 より X を任意の $k \in K = SO(n)$ で $\mathrm{Ad}(k)\mathfrak{h} = \mathfrak{h}$ なる k に対し $\mathrm{Ad}(k)X$ に取り替えて $Y(\mathbf{R}\,X)$ の有界性を判定すれば良い. $k \in SO(1,l) \cap SO(n)$ を適当に取ることにより

$$X = \begin{pmatrix} 0 & p_1 & 0 & \cdots & 0 & p_{l+2} & \cdots & p_n \\ p_1 & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \\ p_{l+2} & & & & & \\ \vdots & & & & & \\ p_n & & & & & \end{pmatrix}, p_1, p_{l+2}, \dots, p_n \in \mathbf{R}$$
 (2.2)

(空白部分はすべて 0) としてよい. さらに適当な $A \in SO(n-l)$ に対し,

(空白部分はすべて 0) を (2.2) の X に作用させることにより X の形を

$$X = \begin{pmatrix} 0 & p_1 & 0 & \cdots & 0 & p_{l+2} & 0 & \cdots & 0 \\ p_1 & & & & & & & \\ 0 & & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & & \\ p_{l+2} & & & & & & \\ 0 & & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \\ \end{pmatrix}, \ p_1, p_{l+2} \in \mathbf{R}$$
 (2.3)

(空白部分はすべて0)と仮定して良い.

したがって

(2つ目の行列の 1 は (1, l+2) と (l+2, 1) 成分,2つ目の行列の ± 1 は (1, l+2) と (l+2, 2) 成分である) が生成する $\mathfrak g$ の部分 Lie 環は $\mathfrak{so}(1, 2)$ に同型である.

したがって G = SO(1,2), H = SO(1,1) の場合に $\mathfrak{p}_{H,\mathrm{bdd}} = \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ を示した命題 2.1 と後述の定理 2.17 により, $Y(\mathbf{R} X)$ が非有界であることと (2.3) において $p_{l+2} = 0$ かつ $p_1 \neq 0$ であること,つまり $X \in \mathfrak{h} \setminus \{0\}$ であることが同値である.よって系 2.5 が示された.

2.2 Gの実階数が1の場合

定理 **2.6** G を実階数 1 の実線型半単純 Lie 群,H を G の非コンパクトかつ連結成分有限個の閉部分群で,G の Cartan 対合 Θ に対して $\Theta H = H$ なるものとする. さらに $\dim \mathfrak{h} \cap \mathfrak{p} = 1$ なるとき, $\mathfrak{p}_{H.\mathrm{bdd}} = \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ である.

定理 2.7 ([Hel01, p. 409, Theorem 3.1], SU(2,1)-reduction) $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を実 半単純 Lie 環 \mathfrak{g} の Cartan 対合 θ に対する Cartan 分解とし,ある $\alpha \in \mathfrak{a}^* \setminus \{0\}$ に対 して $\alpha, 2\alpha \in \Sigma(\mathfrak{g}, \mathfrak{a})$ と仮定する. $0 \neq X_{\alpha} \in \mathfrak{g}_{\alpha}$, $0 \neq X_{2\alpha} \in \mathfrak{g}_{2\alpha}$ を任意に固定した とき, $X_{\alpha}, X_{2\alpha}, \theta X_{\alpha}, \theta X_{2\alpha}$ から生成される Lie 環 \mathfrak{g}^* は $\mathfrak{su}(2,1)$ と同型である.

以下で定理 2.7 を示すための補題や記号を設定し、定理 2.7 を示す.

記号と定義 2.8

- $\mathfrak{a} \subset \mathfrak{g}$ を極大分裂可換部分代数, $\mathfrak{m} \coloneqq \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \coloneqq \{W \in \mathfrak{k} \mid [W,\mathfrak{a}] = \{0\}\}$ とする. B を \mathfrak{g} の Killing 形式とする.
- $\Sigma(\mathfrak{g},\mathfrak{a})$ を \mathfrak{a} に関する制限ルート系とする. \mathfrak{g}_{λ} を $\lambda \in \mathfrak{a}^*$ に対応するルート空間とする.
- $A_{\alpha} \in \mathfrak{a}$ を、任意の $H \in \mathfrak{a}$ に対して $B(H, A_{\alpha}) = \alpha(H)$ を満たす元とする. このとき、任意の $H \in \mathfrak{a}$ に対して $B(H, [X_{\alpha}, \theta X_{\alpha}]) = \alpha(H)B(X_{\alpha}, \theta X_{\alpha})$ である.したがって

$$[X_{\alpha}, \theta X_{\alpha}] = B(X_{\alpha}, \theta X_{\alpha}) A_{\alpha},$$

$$[Y_{\alpha}, \theta Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha}) A_{\alpha},$$

$$[X_{2\alpha}, \theta X_{2\alpha}] = 2B(X_{2\alpha}, \theta X_{2\alpha}) A_{\alpha}$$

である。
$$c_{\alpha} \coloneqq \sqrt{\frac{-2}{\alpha(A_{\alpha})B(X_{\alpha},\theta X_{\alpha})}}, \quad c_{2\alpha} \coloneqq \sqrt{\frac{-2}{\alpha(A_{\alpha})B(X_{2\alpha},\theta X_{2\alpha})}} \ \ \text{とし,}$$

$$X_{\alpha}^* \coloneqq c_{\alpha}X_{\alpha},$$

$$X_{2\alpha}^* \coloneqq c_{2\alpha}X_{2\alpha},$$

$$Y_{\alpha}^* \coloneqq [\theta X_{\alpha}^*, X_{2\alpha}^*] = c_{\alpha}c_{2\alpha}Y_{\alpha},$$

$$A_{\alpha}^* \coloneqq \frac{1}{12\alpha(A_{\alpha})}A_{\alpha}$$

とする.

補題 **2.9** $c:=2\alpha(A_{\alpha})B(X_{\alpha},\theta X_{\alpha})$ とすると, $[X_{\alpha},Y_{\alpha}]=cX_{2\alpha}$ である.特に $0\neq Y_{\alpha}$, $Y_{\alpha}\neq X_{\alpha}$ である.

補題 $\mathbf{2.9}$ の証明 Jacobi 恒等式と Y_{α} の定義より

$$0 = [X_{\alpha}, [\theta X_{\alpha}, X_{2\alpha}]] + [\theta X_{\alpha}, [X_{2\alpha}, X_{\alpha}]] + [X_{2\alpha}, [X_{\alpha}, \theta X_{\alpha}]]$$
$$= [X_{\alpha}, Y_{\alpha}] + [\theta X_{\alpha}, [X_{2\alpha}, X_{\alpha}]] + [X_{2\alpha}, B(X_{\alpha}, \theta X_{\alpha})A_{\alpha}]$$

であり、 $3\alpha \notin \Sigma(\mathfrak{g},\mathfrak{a})$ より第二項が 0 となることから補題 2.9 が従う.

補題 **2.10** $[X_{\alpha},\theta Y_{\alpha}]\in\mathfrak{m}\setminus\{0\}$ である.また $[[X_{\alpha},\theta Y_{\alpha}],X_{\alpha}]=-3\alpha(A_{\alpha})B(X_{\alpha},\theta X_{\alpha})Y_{\alpha}$ である.

補題 **2.10** の証明 $Y_{\alpha} \in \mathfrak{g}_{\alpha}$ より $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m} + \mathfrak{a}$ であり、任意の $H \in \mathfrak{a}$ に対して

$$B(H, [X_{\alpha}, \theta Y_{\alpha}]) = B([H, X_{\alpha}], Y_{\alpha}) = \alpha(H)B(X_{\alpha}, [X_{\alpha}, \theta X_{2\alpha}])$$
$$= \alpha(H)B([X_{\alpha}, X_{\alpha}], X_{2\alpha})$$
$$= 0$$

であることより $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m}$ である. さらに、

$$\begin{aligned} [[\theta X_{\alpha}, Y_{\alpha}], X_{\alpha}] &= -[[Y_{\alpha}, X_{\alpha}], \theta X_{\alpha}] - [[X_{\alpha}, \theta X_{\alpha}], Y_{\alpha}] \\ &= c[X_{2\alpha}, \theta X_{\alpha}] - B(X_{\alpha}, \theta X_{\alpha})\alpha(A_{\alpha})Y_{\alpha} \\ &= -cY_{\alpha} - B(X_{\alpha}, \theta X_{\alpha})\alpha(A_{\alpha})Y_{\alpha} \\ &= -3\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})Y_{\alpha} \neq 0 \end{aligned}$$

より, $\theta[\theta X_{\alpha},Y_{\alpha}]=[X_{\alpha},\theta Y_{\alpha}]\in\mathfrak{m}\setminus\{0\}$ である.

補題 2.11 R $X_{\alpha}+$ R Y_{α} は $\mathrm{ad}_{\mathfrak{g}}([X_{\alpha},\theta Y_{\alpha}])$ で不変である. さらに

$$[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = -6\alpha (A_{\alpha})^{2} B(X_{\alpha}, \theta X_{\alpha}) B(X_{2\alpha}, \theta X_{2\alpha}) X_{\alpha},$$
$$[Y_{\alpha}, \theta Y_{\alpha}] = -2\alpha (A_{\alpha}) B(X_{\alpha}, \theta X_{\alpha}) B(X_{2\alpha}, \theta X_{2\alpha}) A_{\alpha}$$

である.

補題 2.11 の証明 $[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] \in \mathbf{R} X_{\alpha}$ を示せば、補題 2.10 と併せて補題 2.11 が従う.

$$\begin{split} [[X_{\alpha},\theta Y_{\alpha}],Y_{\alpha}] &= -[[\theta Y_{\alpha},Y_{\alpha}],X_{\alpha}] - [[Y_{\alpha},X_{\alpha}],\theta Y_{\alpha}] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} + c[X_{2\alpha},[X_{\alpha},\theta X_{2\alpha}]] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - c[X_{\alpha},[\theta X_{2\alpha},X_{2\alpha}]] - c[\theta X_{2\alpha},[X_{2\alpha},X_{\alpha}]] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - cB(X_{2\alpha},\theta X_{2\alpha})\alpha(A_{2\alpha})X_{\alpha} \end{split}$$

であり $(\mathfrak{g}_{3\alpha} = \{0\}$ による), $A_{2\alpha} = 2A_{\alpha}$ であるから,

$$[[X_{\alpha},\theta Y_{\alpha}],Y_{\alpha}]=B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha}-4\alpha(A_{\alpha})^{2}B(X_{\alpha},\theta X_{\alpha})B(X_{2\alpha},\theta X_{2\alpha})X_{\alpha}$$
を得る.

さらに,

$$B(Y_{\alpha}, \theta Y_{\alpha}) = B(Y_{\alpha}, [X_{\alpha}, \theta X_{2\alpha}]) = -B([X_{\alpha}, Y_{\alpha}], \theta X_{2\alpha})$$
$$= -2\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})$$

であるから, 最終的に

$$[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - 4\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$$
$$= -6\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$$

補題 **2.12** $[[X_{\alpha}, \theta Y_{\alpha}], X_{2\alpha}] = 0$ である.

補題 2.12 の証明 補題 2.9—2.11 と Jacobi 恒等式による. 具体的には, $T:=[X_{\alpha},\theta Y_{\alpha}]$ とすると、補題 2.10 と補題 2.11 よりそれぞれ

$$[T, X_{\alpha}] \in \mathbf{R} Y_{\alpha}, \ [T, Y_{\alpha}] \in \mathbf{R} X_{\alpha}$$
 (2.4)

である. Jacobi 恒等式より

$$[T, [X_{\alpha}, Y_{\alpha}]] = -[X_{\alpha}, [Y_{\alpha}, T]] - [Y_{\alpha}, [X_{\alpha}, T]]$$
(2.5)

であり、(2.4) より (2.5) の右辺は 0 となる.補題 2.9 より $[X_{\alpha},Y_{\alpha}]=cX_{2\alpha}$ であり、これを用いることで補題 2.12 の主張を得る.

補題 **2.13** $[Y_{\alpha}, \theta X_{2\alpha}] = 2\alpha(A_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})\theta X_{\alpha}$ である.

補題 2.13 の証明 Jacobi 恒等式を用いて与式を変形し計算することにより主張が示せる.
■

定理 2.7 の証明

$$\mathfrak{g}_{0}^{*} \coloneqq \mathbf{R} A_{\alpha} \oplus \mathbf{R}[X_{\alpha}, \theta Y_{\alpha}],
\mathfrak{g}_{\alpha}^{*} \coloneqq \mathbf{R} X_{\alpha} \oplus \mathbf{R} Y_{\alpha},
\mathfrak{g}_{-\alpha}^{*} \coloneqq \mathbf{R} \theta X_{\alpha} \oplus \mathbf{R} \theta Y_{\alpha},
\mathfrak{g}_{2\alpha}^{*} \coloneqq \mathbf{R} X_{2\alpha},
\mathfrak{g}_{-2\alpha}^{*} \coloneqq \mathbf{R} \theta X_{2\alpha}$$

とすると、補題 2.9-2.13 より、 $\mathfrak{g}^*=\mathfrak{g}_0^*\oplus\mathfrak{g}_\alpha^*\oplus\mathfrak{g}_{-\alpha}^*\oplus\mathfrak{g}_{2\alpha}^*\oplus\mathfrak{g}_{-2\alpha}^*$ が得られる.

非自明な \mathfrak{g}^* の Lie 括弧の関係は以下の通りである (残りの関係式はこの両辺に θ をつけることで得られる).

$[X_{\alpha}^*, Y_{\alpha}^*] = -4X_{2\alpha}^*,$	(補題 2.9 による),
$[X_{\alpha}^*, [X_{\alpha}^*, \theta Y_{\alpha}^*]] = -6Y_{\alpha}^*,$	(補題 2.10 による),
$[X_{\alpha}^*, \theta X_{\alpha}^*] = -24A_{\alpha}^*,$	(定義による),
$[X_{\alpha}^*, X_{2\alpha}^*] = 0,$	$(\mathfrak{g}_{3\alpha}=0$ による),
$[X_{\alpha}^*, \theta X_{2\alpha}^*] = \theta Y_{\alpha}^*,$	(定義による)
$[Y_{\alpha}^*, X_{2\alpha}^*] = 0,$	(補題 2.12 による),
$[Y_{\alpha}^*, \theta X_{2\alpha}^*] = -4\theta X_{\alpha}^*,$	(補題 2.13 による),
$[Y_{\alpha}^*, \theta Y_{\alpha}^*] = -96A_{\alpha}^*,$	(補題 2.11 による),
$[Y_{\alpha}^*, [X_{\alpha}^*, \theta Y_{\alpha}^*]] = 24X_{\alpha}^*,$	(補題 2.11 による),
$[[X_{\alpha}^*,\theta Y_{\alpha}],X_{2\alpha}^*]=[[X_{\alpha}^*,\theta Y_{\alpha}],\theta X_{2\alpha}^*]=0,$	(補題 2.13 による),
$[X_{2\alpha}^*, \theta X_{2\alpha}^*] = -48A_{\alpha}^*,$	(定義による)

これらを踏まえて \mathfrak{g}^* と $\mathfrak{su}(2,1)$ の対応を,

$$\begin{split} X_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & X_{2\alpha}^* \leftrightarrow \begin{pmatrix} \sqrt{-1} & 0 & -\sqrt{-1} \\ 0 & 0 & 0 \\ \sqrt{-1} & 0 & -\sqrt{-1} \end{pmatrix}, \\ \theta X_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, & \theta X_{2\alpha}^* \leftrightarrow \begin{pmatrix} \sqrt{-1} & 0 & \sqrt{-1} \\ 0 & 0 & 0 \\ -\sqrt{-1} & 0 & -\sqrt{-1} \end{pmatrix}, \\ Y_{\alpha}^* \leftrightarrow -2 \begin{pmatrix} 0 & \sqrt{-1} & 0 \\ \sqrt{-1} & 0 & -\sqrt{-1} \\ 0 & \sqrt{-1} & 0 \end{pmatrix}, & \theta Y_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & \sqrt{-1} & 0 \\ \sqrt{-1} & 0 & \sqrt{-1} \\ 0 & -\sqrt{-1} & -0 \end{pmatrix}, \\ A_{\alpha}^* \leftrightarrow \frac{1}{12} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & [X_{\alpha}, \theta Y_{\alpha}^*] \leftrightarrow -4 \begin{pmatrix} \sqrt{-1} & 0 & 0 \\ 0 & -2\sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{pmatrix} \end{split}$$

でつける. この対応が Lie 環としての同型であること (上の関係式が満たされること) は計算することにより従う.

以上より定理 2.7 が示された.

補題 **2.14** ある $\alpha \in \mathfrak{a}^* \setminus \{0\}$ が存在して $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha\}$ なる場合,任意に固定した $0 \neq X_{\alpha} \in \mathfrak{g}_{\alpha}$ と θX_{α} により生成される部分 Lie 環 \mathfrak{g}' は $\mathfrak{su}(1,1)$ と同型である.

補題 2.14 の証明 $\mathfrak{g}_{2\alpha}=\mathfrak{g}_{-2\alpha}=\{0\}$ より, $[X_{\alpha},X_{\alpha}]=[X_{-\alpha},X_{-\alpha}]=0$ である. $A_{\alpha}\in\mathfrak{a}$ を任意の $H\in\mathfrak{a}$ に対して $B(H,A_{\alpha})=\alpha(H)$ を満たす元とする.任意の $H\in\mathfrak{a}$ に対して $B(H,[X_{\alpha},\theta X_{\alpha}])=\alpha(H)B(X_{\alpha},\theta X_{\alpha})$ である.任意の $0\neq W\in\mathfrak{g}$ に対し $-B(W,\theta W)>0$ より $[X_{\alpha},\theta X_{\alpha}]=B(X_{\alpha},\theta X_{\alpha})A_{\alpha}\neq 0$ である.

以上より X_{α} と θX_{α} により生成される $\mathfrak g$ の部分 Lie 環 $\mathfrak g'$ は $\mathfrak g'=\mathbf R\,A_{\alpha}\oplus\mathbf R\,X_{\alpha}\oplus\mathbf R\,X_{\alpha}$ である.

$$c_{lpha}\coloneqq rac{2}{lpha(A_{lpha})}$$
 を用いて \mathfrak{g}' と $\mathfrak{su}(1,1)$ の対応を

$$A_{\alpha} \leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad c_{\alpha} X_{\alpha} \leftrightarrow \begin{pmatrix} \sqrt{-1} & -\sqrt{-1} \\ \sqrt{-1} & -\sqrt{-1} \end{pmatrix},$$

$$c_{\alpha} X_{-\alpha} \leftrightarrow \begin{pmatrix} \sqrt{-1} & \sqrt{-1} \\ -\sqrt{-1} & -\sqrt{-1} \end{pmatrix}$$

により与えると、これは \mathfrak{g}' と $\mathfrak{su}(1,1)$ の間の同型になっている.

系 2.15 G を実階数 1 の実半単純 Lie 群とする. 任意の $0 \neq Y \in \mathfrak{p} \cap \mathfrak{h}$ と任意の $X \in \mathfrak{p} \setminus \mathfrak{h}$ を固定したとき, X, Y を含む部分 Lie 環 $\mathfrak{g}_0 \subset \mathfrak{g}$ で, $\mathfrak{g}_0 \simeq \mathfrak{su}(1,1)$ か $\mathfrak{g}_0 \simeq \mathfrak{su}(2,1)$ なるものが存在する.

系 2.15 の証明 G は実階数 1 より,極大分裂可換部分代数 $\mathfrak{a} := \mathbf{R} Y \subset \mathfrak{g}$ に対しある $\alpha \in \mathfrak{a}^* \setminus \{0\}$ が存在して $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha\}$ あるいは $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ であり,それぞれ定理 2.7 と補題 2.14 より系 2.15 の主張が従う.以下で $\Sigma(\mathfrak{g},\mathfrak{a})$ の形で場合分けしてこの議論を確認する.

$\Sigma(\mathfrak{g},\mathfrak{a})=\{\pm\alpha\}$ の場合

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$, $\mathfrak{g}_0 \coloneqq \mathfrak{z}_{\mathfrak{g}}(\mathfrak{a})$ より $X \in \mathfrak{p} \setminus \mathfrak{a}$ をこの分解に対応して $X = X_0 + X_\alpha + X_{-\alpha}$ と分解すると, $X \in \mathfrak{p} \setminus \mathfrak{a}$ より $X_{-\alpha} = -\theta X_\alpha \neq 0$ である. 補題 2.14 の証明より $Y \in \mathbf{R}[X_\alpha, \theta X_\alpha] \neq \{0\}$ であるからこの $X_\alpha \neq 0$ に補題 2.14 を適用することにより $\mathfrak{g}_0 \simeq \mathfrak{su}(1,1)$ で $X,Y \in \mathfrak{g}_0$ なるものが存在する.

$\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ の場合

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{2\alpha} \oplus \mathfrak{g}_{-2\alpha}$, $\mathfrak{g}_0 \coloneqq \mathfrak{z}_{\mathfrak{g}}(\mathfrak{a})$ より $X \in \mathfrak{p} \setminus \mathfrak{a}$ をこの分解に対応して $X = X_0 + X_\alpha + X_{-\alpha} + X_{2\alpha} + X_{-2\alpha}$ と書くと, $X \in \mathfrak{p}$ より $X_{-\alpha} = -\theta X_\alpha$, $X_{-2\alpha} = -\theta X_{2\alpha}$ である.

ここで $X \notin \mathfrak{a}$ より,

- 1. $X_{\alpha} \neq 0$ かつ $X_{2\alpha} \neq 0$
- 2. $X_{\alpha} \neq 0$ かつ $X_{2\alpha} = 0$
- 3. $X_{\alpha}=0$ かつ $X_{2\alpha}\neq 0$

のいずれかである.

- 1 の場合はこの $X_{\alpha}, X_{2\alpha}$ と Y に,
- 2 の場合はこの X_{α} と、適当な $0 \neq X'_{2\alpha} \in \mathfrak{g}_{2\alpha}$ と Y に、
- 3 の場合はこの $X_{2\alpha}$ と、適当な $0 \neq X'_{\alpha} \in \mathfrak{g}_{\alpha}$ と Y に、

定理 2.7 を適用することにより $\mathfrak{g}_0 \simeq \mathfrak{su}(2,1)$ で $X,Y \in \mathfrak{g}_0$ なるものが存在する.

系 2.15 で定めた \mathfrak{g}_0 とその G における解析部分群 G_0 に関係して次の 3 つが成り立つ.

補題 2.16 ([Hel01, p. 409, Lemma 2.2]) \mathfrak{g} の Cartan 対合 θ に対して $\mathfrak{g}_0 = \theta \mathfrak{g}_0$ であり, $\mathfrak{g}_0 \sim \mathfrak{O}$ の制限は \mathfrak{g}_0 の Cartan 分解を与える.

定理 **2.17** ([Yos38, p. 82]) G_L を線型 Lie 群, $\mathfrak{h}_L \subset \mathfrak{g}_L \coloneqq \mathrm{Lie}\,G_L$ は実半単純な部分 Lie 環とする.このとき \mathfrak{h}_L の G_L における解析的部分群は閉部分群である.

 \mathbf{x} 2.18 \mathbf{x} 2.15 の \mathbf{g}_0 の G における解析的部分群を G_0 とする. G_0 は G の閉部分群である.

補題 2.19 ([Hel01, p. 409, Lemma 2.3]) 系 2.15 の \mathfrak{g}_0 の G における解析的部分群を G_0 とする. G = KAN を G の岩澤分解, $G_0 = K_0A_0N_0$ を G の岩澤分解とするとき.

$$K_0 := G_0 \cap K$$
, $A_0 := G_0 \cap A$, $N_0 := G_0 \cap N$,

であり、 $G_0/K_0 \simeq G_0/K$ は G/K の全測地的な部分 Riemann 多様体である.

以上のことを用いて,G が実階数 1 の実線型半単純 Lie 群, $\dim \mathfrak{h} \cap \mathfrak{p} = 1$ の場合を G = SU(1,2) かつ H = SO(1,1) ないし G = SU(1,1) かつ H = SO(1,1) に帰着させることにより定理 2.6 を示す.

定理 2.6 の証明 $\mathfrak g$ の極大分裂可換部分代数 $\mathfrak h \cap \mathfrak p$ の定める制限ルート系を $\Sigma(\mathfrak g,\mathfrak h \cap \mathfrak p)$ とし, $\Sigma(\mathfrak g,\mathfrak h \cap \mathfrak p)$ の形によって 2 通りに場合分けして証明する.

ある $\alpha \in (\mathfrak{h} \cap \mathfrak{p})^* \setminus \{0\}$ が存在して $\Sigma(\mathfrak{g}, \mathfrak{h} \cap \mathfrak{p}) = \{\pm \alpha\}$ なるとき

系 2.15 により X と $\mathfrak{h} \cap \mathfrak{p}$ を含む部分 Lie 環 $\mathfrak{g}' \subset \mathfrak{g}$ で $\mathfrak{su}(1,1)$ に同型なものが存在する. \mathfrak{g}' に対応する G の解析的部分群を G' とし,その岩澤分解を G' = K'A'N' とする. このとき $e^{Z(tX)} \cdot o_K = e^{-Y(tX)}e^{tX} \cdot o_K \in G'/K$ であるから $Z(tX) \in \mathfrak{g}' \cap \mathfrak{h}^{\perp} \cap \mathfrak{p} \subset \mathfrak{g}' \cap \mathfrak{p}$ であり, $Y(\mathbf{R} X)$ の有界性の議論は全測地的的な部分 Riemann 多様体 $G'/K' \subset G/K$ に対して行えば良いことがわかる. したがって命題 1.13 により $X \in \mathfrak{p}_{H,\mathrm{bdd}}$ であることと $X \in \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ が同値であることが言え,定理 2.6 が示された.

ある $\alpha \in (\mathfrak{h} \cap \mathfrak{p})^* \setminus \{0\}$ が存在して $\Sigma(\mathfrak{g}, \mathfrak{h} \cap \mathfrak{p}) = \{\pm \alpha, \pm 2\alpha\}$ なるとき

系 2.15 により X と $\mathfrak{h} \cap \mathfrak{p}$ を含む部分 Lie 環 $\mathfrak{g}^* \subset \mathfrak{g}$ で $\mathfrak{su}(2,1)$ に同型なものが存在する. \mathfrak{g}^* に対応する G の解析的部分群を G^* とし,その岩澤分解を $G^* = K^*A^*N^*$ とする. このとき $e^{Z(tX)} \cdot o_K = e^{-Y(tX)}e^{tX} \cdot o_K \in G^*/K$ であるから $Z(tX) \in \mathfrak{g}^* \cap \mathfrak{h}^\perp \cap \mathfrak{p} \subset \mathfrak{g}^* \cap \mathfrak{p}$ であり, $Y(\mathbf{R} X)$ の有界性の議論は全測地的的な部分 Riemann 多様体 $G^*/K^* \subset G/K$ に対して行えば良いことがわかる. したがって命題 2.1 により $X \in \mathfrak{p}_{H,\mathrm{bdd}}$ であることと $X \in \{0\} \cup \mathfrak{p} \setminus \mathfrak{h}$ が同値であることが言え,定理 2.6 が示された.

補足 2.20 定理 2.6 では G の線型性を仮定したが、この仮定は不要である。つまり、G を線型とは限らない実階数 1 の実半単純 Lie 群としても定理 2.6 が成り立つ。

なぜならば、任意の線型とは限らない実半単純 Lie 群 G に対し、G と次の定義 2.22 の意味で局所同型な実線型半単純 Lie 群 G_L が存在し (補題 2.21)、次の補題 2.24 より G が線型の場合に帰着されるためである.

補題 2.21 任意の実半単純 Lie 環 \mathfrak{g} に対し、ある $n \in \mathbb{N}$ と閉部分群 $G_L \subset GL(n, \mathbb{R})$ で $\mathfrak{g} \simeq \mathrm{Lie}\,G_L$ なるものが存在する.

補題 2.21 の証明 Ado—岩澤の定理([小林—大島,Theorem~5.61])より, $\mathfrak{g}_L\simeq\mathfrak{g}$ なる実半単純部分 Lie 環 $\mathfrak{g}_L\subset\mathfrak{gl}(n,\mathbf{R})$ が存在する.このとき, $GL(n,\mathbf{R})$ における \mathfrak{g}_L の解析的部分群 G_L は定理 2.17 により閉部分群である.したがって補題 2.21 が示された.

定義 2.22 実半単純 Lie 群 G_1 , G_2 が局所同型であることを、それぞれの Lie 環 \mathfrak{g}_1 , \mathfrak{g}_2 の間の同型写像 $\varphi \colon \mathfrak{g}_1 \to \mathfrak{g}_2$ が存在し、Cartan 分解 $\mathfrak{g}_i = \mathfrak{k}_i \oplus \mathfrak{p}_i$, i = 1, 2 に対し、 $\varphi(\mathfrak{k}_1) = \mathfrak{k}_2$, $\varphi(\mathfrak{p}_1) = \mathfrak{p}_2$ かつ $\varphi|_{\mathfrak{p}_1} \colon \mathfrak{p}_1 \to \mathfrak{p}_2$ が Killing 形式の \mathfrak{p}_1 , \mathfrak{p}_2 への制限を保つことを言う.

補足 2.23 実半単純 Lie 群 G_1 , G_2 のそれぞれの Lie 環 \mathfrak{g}_1 , \mathfrak{g}_2 が Lie 環として同型 ならば,必要に応じて Cartan 対合を取り直し,Killing 形式を定数倍することで定義 2.22 の意味でも G_1 , G_2 は局所同型である.この 2 つの操作は $Y(\mathbf{R} X)$ の有界性の判定には影響しない.

補題 $2.24~G_1$, G_2 を定義 2.22 の意味で局所同型な連結実半単純 Lie 群とし,局所

同型を与える同型写像を $\varphi\colon \mathfrak{g}_1 o\mathfrak{g}_2$ とする. $\varphi\colon \mathfrak{g}_1 o\mathfrak{g}_2$ に対応する G_1 と G_2 の準同型を $\Phi\colon G_1 o G_2$ とする.

また G_1 , G_2 の Cartan 対合を Θ_1 , Θ_2 とする。閉部分群 $H_1 \subset G_1$, $H_2 \subset G_2$ は $\Theta_1 H_1 = H_1$, $\Theta_2 H_2 = H_2$, $\Phi(H_1) = H_2$ を満たすとする.

このとき任意の $X \in \mathfrak{p}_1$ に対し、 $Y_1(\mathbf{R}|X)$ が有界であることと、 $Y_2(\mathbf{R}|\varphi(X))$ が有界であることは同値である.

補題 **2.24** の証明 $\varphi(\mathfrak{k}_1) = \mathfrak{k}_2$ より $\Phi(K_1) = K_2$ であるから, $\overline{\Phi}$: $G_1/K_1 \to G_2/K_2$, $\overline{\Phi}(g_1K_1) = \Phi(g_2)K_2$, $g_1 \in G_1$ は well-defined である.

このとき、任意の $X \in \mathfrak{p}_1$ に対し、 $\overline{\Phi}(e^X \cdot o_{K_1}) = e^{\varphi(X)} \cdot o_{K_2}$ であり、 $\overline{\Phi}(e^{Y_1(X)}e^{Z_1(X)} \cdot o_{K_1}) = e^{\varphi(Y_1(X))}e^{\varphi(Z_1(X))} \cdot o_{K_2}$ である.

 $arphi|_{\mathfrak{p}_1}$: $\mathfrak{p}_1 \to \mathfrak{p}_2$ が内積を保つことと $arphi(\mathfrak{h}_1) = \mathfrak{h}_2$ より, $arphi(Y_1(X)) \in \mathfrak{h}_2 \cap \mathfrak{p}_2$, $arphi(Z_1(X)) \in \mathfrak{h}_2^{\perp} \cap \mathfrak{p}_2$ であり,したがって定理 1.2 より $Y_2(X) = arphi(Y_1(X))$, $Z_2(X) = arphi(Z_1(X))$ である.ただし Y_i , Z_i ,i=1,2 は微分同相写像

$$\pi_i : (\mathfrak{h}_i \cap \mathfrak{p}_i) \oplus (\mathfrak{h}_i \cap \mathfrak{p}_i) \to G_i/K_i,$$

$$(Y_i, Z_i) \mapsto e^{Y_i} e^{Z_i} \cdot o_{K_i}$$

により $(Y_i(X_i), Z_i(X_i)) := \pi_i^{-1}(e^{X_i} \cdot o_{X_i}), X_i \in \mathfrak{p}_i$ と定める.

 $\varphi|_{\mathfrak{p}_1}\colon \mathfrak{p}_1 \to \mathfrak{p}_2$ は内積を保つ写像であったから, $X \in \mathfrak{p}$ に対して $Y_1(\mathbf{R}\,X)$ が有界であることと, $Y_2(\mathbf{R}\,\varphi(X))$ が有界であることは同値である.

2.2.1 補足: 定理 2.6 の微分幾何的側面

定義 2.25 ([Ebe72a, Definition 1.3]) M が完備かつ非正の断面曲率をもつ連結 かつ単連結な Riemann 多様体であるとき、M を Hadamard 多様体という.

Hadamard 多様体 M が visibility manifold であるとは、任意の $p \in M$ と任意の $\varepsilon > 0$ に対し、ある $r(p,\varepsilon) > 0$ が存在して、測地線 $\gamma \colon [t_0,t_1] \to X$ が任意の $t \in [t_0,t_1]$ に対し $r(p,\varepsilon) \leq d_M(p,\gamma(t))$ を満たすならば、 $\measuredangle_p(\gamma(t_0),\gamma(t_1)) \leq \varepsilon$ であることである。

後に示すように Poincaré 円板は visibility manifold であるが、補題 1.16 よりその片鱗を見ることはできる. 具体的には $0<\varepsilon<\frac{\pi}{2}$ に対し $t_\varepsilon\coloneqq\frac{1}{2}\sinh^{-1}\frac{1}{|\tan\varepsilon|}$ と

し、測地線 $\gamma_{\varepsilon}(s) = e^{t_{\varepsilon}Y}e^{sZ} \cdot o_{K}$ とすると、補題 1.16 より任意の $s_{0}, s_{1} \in \mathbf{R}$ に対し $\Delta_{o_{K}}(\gamma_{\varepsilon}(s_{0}), \gamma_{\varepsilon}(s_{1})) \leq \varepsilon$ である.この様子を図示すると図 4 のようになる.

図 4: visibility manifold のイメージ

定義 2.26 ([BH99, p. 202]) M を Hadamard 多様体, $\operatorname{Isom}(M)$ は M の等長同型群とする. あるコンパクト集合 $C \subset M$ で $M = \bigcup \{f(C) \mid f \in \operatorname{Isom}(M)\}$ なる C が存在するとき, M は cocompact であるという.

定理 2.27 ([BH99, p. 296, 9.33 Theorem], 原典: [Ebe72b, Theorem 4.1]) cocompact な Hadamard 多様体 M に対し、次は同値である.

- (i) M は visibility manifold である.
- (ii) 全測地的な部分 Riemann 多様体 $M'\subset M$ で ${\bf R}^2$ と等長同型なものが存在しない.

ここで定理 2.28 より Riemann 対称空間 $G/K \simeq \mathfrak{p}$ は cocompact な Hadamard 多様体である.

定理 2.28 ([Hel01, p. 241, Theorem 3.1]) G を非コンパクトな連結実半単純 Lie 群, $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ を $\mathfrak{g}=$ Lie G の Cartan 分解とする. K を \mathfrak{k} を Lie 環に持つ G の 部分 Lie 群とするとき, G/K は \mathfrak{g} の Killing 形式から誘導される Riemann 多様体

の構造を持ち、その断面曲率は至るところ非正である.

次の定理 2.29 より,G/K に対して定理 2.27 の (ii) は G の実階数が 1 以下であることと同値である.

定理 2.29 ([Hel01, p. 245, Proposition 6.1]) G/K を定理 2.28 の設定の通りとする. G の実階数と G/K 内の全測地的で平坦な部分多様体の最大次元は一致する.

定理 2.29 と定理 2.27 より G の実階数が 1 のとき G/K は visibility manifold である. よって定理 2.6 の設定のもとでは,角度を用いた G=SU(1,2),H=SO(1,1) の場合の $\mathfrak{p}_{H,\mathrm{bdd}}=\{0\}\cup\mathfrak{p}\setminus\mathfrak{h}$ の証明である補足 1.15 と全く同様に, $X\in\mathfrak{p}\setminus\mathfrak{h}$ の場合に $Y(\mathbf{R}\,X)$ が非有界であると仮定して矛盾を示す論法で $\mathfrak{p}_{H,\mathrm{bdd}}=\{0\}\cup\mathfrak{p}\setminus\mathfrak{h}$ が示される.

2.3 G が実階数1の実半単純 Lie 群の直積の場合

定理 2.6 の系として次が示される.

系 2.30 $n \in \mathbb{N}$ を固定し、 $\{G_i\}_{1 \leq i \leq n}$ を実階数 1 の実線型半単純 Lie 群の族、 Θ_i を G_i の Cartan 対合とする。 G を $\{G_i\}_{1 \leq i \leq n}$ の直積からなる Lie 群 $G = G_1 \times \cdots \times G_n$ とし、 $H = H_1 \times \cdots \times H_n$ を G の非コンパクトな閉部分群で $\Theta_i H_i = H_i$ かつ $\dim \mathfrak{h}_i \cap \mathfrak{p}_i = 1$ なるものとする。 このとき $X \in \mathfrak{p}_{H,\mathrm{bdd}}$ と任意の $1 \leq i \leq n$ に対して X の \mathfrak{g}_i への射影 $X^{(i)} \in \mathfrak{g}_i$ に対し $X^{(i)} \in \{0\} \cup \mathfrak{p}_i \setminus \mathfrak{h}_i$ なることは同値である。

系 2.30 の証明 各 G_i を G の閉部分群と自然にみなす. K_i を $\Theta K_i = K_i$ なる G_i の極大コンパクト部分群とすると, $K:=K_1\times \cdots \times K_n$ は G の極大コンパクト部分群で, $\{\Theta_i\}_{1\leq i\leq n}$ と整合的な G の G Cartan 対合 G に対して G に対して G を満たす. G (G) G (G) に G

 $G/K \simeq G_1/K_1 \times \cdots \times G_n/K_n$ どめり、足理 1.2 により合 $1 \leq i \leq n$ の $(G_i, H_i, G_i/K_i)$ に対し上への微分同相 $\pi_i \colon (\mathfrak{h}_i \cap \mathfrak{p}_i) \oplus (\mathfrak{h}_i^{\perp} \cap \mathfrak{p}_i) \ni (Y_i, Z_i) \mapsto e^{Y_i}e^{Z_i} \cdot o_K \in G_i/K_i$ が存在する。 $X_i \in \mathfrak{p}_i$ に対し $(Y_i(X_i), Z_i(X_i)) \coloneqq \pi_i^{-1}(e^{X_i}K_i)$ と定める。

 $X\in\mathfrak{p}$ に対し, $X=X^{(1)}+\cdots+X^{(n)}$ を $\mathfrak{p}=\bigoplus_{1\leq i\leq n}\mathfrak{p}_i$ に対応する X の分解とす

ると, $Y(\mathbf{R}\,X)$ が有界であることは各 $Y_i(\mathbf{R}\,X^{(i)})$ が有界であることと同値である.また定理 2.6 より $Y_i(\mathbf{R}\,X^{(i)})$ が有界であることと $[X_1^{(i)},X_2^{(i)}] \neq 0$ あるいは $X_1^{(i)}=0$ であることが同値である.ここで $X^{(i)}=X_1^{(i)}+X_2^{(i)}$ は $\mathfrak{p}_i=(\mathfrak{h}_i\cap\mathfrak{p}_i)\oplus(\mathfrak{h}_i^\perp\cap\mathfrak{p}_i)$ に対応する $X^{(i)}\in\mathfrak{p}_i$ の分解とする.

各 G_i は実階数 1 であるから,上の条件は $X^{(i)} \in \{0\} \cup \mathfrak{p}_i \setminus \mathfrak{h}_i$ と同値であり,系 2.30 が示された.

謝辞

本研究および修士課程全体において常に洞察に富むご助言と丁寧なご指導を賜った指導教員の小林俊行教授に深謝の意を表する.また,文献の情報から数学的な議論にわたり様々なご助言をくださった,修了生も含む小林研究室のみなさまにも心より感謝する.特に小林研究室の田内大渡氏には幾度も議論いただいたことに御礼申し上げたい.

最後に、学部時代からセミナーに付き合ってくださり、ときに精神的にも支えてくださった友人に、特に近藤彪生氏には同じ「修士3年生」として修士論文の締め切り前に多大な励ましをいただいたことに感謝の意を表して謝辞とする.

参考文献

- [Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys., 5, (1988), 663–710.
- [BBE85] W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), 122, (1985), 171–203.
- [BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissensschaften, 319, Springer-Verlag Berlin Heidelberg, 1999.
- [Borel-Ji] A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston,

- 2006.
- [**Ebe72a**] P. Eberlien, Geodesic Flows on Negatively Curved Manifolds I, Ann. of Math. (2), **95**, (1972), 492–510.
- [**Ebe72b**] P. Eberlien, Geodesic Flow in Certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., **167**, (1972), 151–70.
- [EO73] P. Eberlein and B. O'Neill, Visibility Manifolds, Pacific J. Math., 46, (1973), 45–109.
- [Hel84] S. Helgason, Groups and Geometric Analysis—Integral Geometry, Invariant Differential Operators, and Spherical Functions, Mathematical Surveys and Monographs, 83, American Mathematical Society Province, Rhode Island, 1984.
- [Hel01] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001.
- [KK16] F. Kassel and T. Kobayashi, *Poincaré series for non-Riemannian locally symmetric spaces*, Adv. Math., 287, (2016), 123–236.
- [Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., 285, (1989), 249–263.
- [小林 95] 小林俊行, 球等質多様体上の調和解析入門, 第 3 回整数論サマースクール '等質空間と保型形式' 所収, 佐藤文広 編, 長野, (1995), 22–41.
- [Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., 1997, (1997), 37–54.
- [小林-大島] 小林俊行・大島利雄, リー群と表現論, 岩波書店, 2005.
- [Lee18] J. M. Lee, Introduction to Riemannian Manifolds Second Edition, Graduate Texts Mathematics, 176, Springer International Publishing AG, 2018.
- [Yos37] K. Yosida, A problem concerning the second fundamental theorem of Lie, Proc. Imp. Acad., 13, (1937), 152–155.
- [Yos38] K. Yosida, A Theorem concerning the Semi-Simple Lie Groups, Tohoku Mathematical Journal, First Series, 44, (1938), 81–84.