Aula 15 Integrais Triplas em Coordenadas Esféricas

MA211 - Cálculo II

Marcos Eduardo Valle

Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Coordenadas Esféricas

No sistema de coordenadas esféricas, um ponto P é representado pela tripla ordenada (ρ,θ,ϕ) , em que ρ é a distância da origem O ao ponto P, θ é mesmo ângulo das coordenadas cilíndricas e ϕ é o ângulo entre o eixo z e o seguimento de reta OP.

Conversão entre sistemas de coordenadas

Esféricas para cartesianas

A conversão de coordenadas esféricas (ρ, θ, ϕ) para coordenadas cartesianas (x, y, z) é dada pelas equações

$$\mathbf{x} = \rho \operatorname{sen} \phi \cos \theta, \quad \mathbf{y} = \rho \operatorname{sen} \phi \operatorname{sen} \theta \quad \mathbf{e} \quad \mathbf{z} = \rho \cos \phi.$$

Cartesianas para esféricas

A conversão de coordenadas cartesianas (x, y, z) para esféricas (ρ, θ, ϕ) é dada através das equações

$$\rho^2 = x^2 + y^2 + z^2, \quad \tan \theta = \frac{y}{x} \quad \text{e} \quad \tan \phi = \frac{r}{z},$$

em que $r = \sqrt{x^2 + y^2}$ (ou $r = \rho \operatorname{sen} \phi$).

Cunha Esférica

Em coordenadas esféricas, uma cunha esférica é dada por

$$E = \{(\rho, \theta, \phi) : a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d\},\$$

em que
$$0 \le a$$
, $\beta - \alpha \le 2\pi$, $0 \le c$ e $d \le \pi$.

Integrais Triplas em Coordenadas Esféricas

Suponha que desejamos calcular a integral tripla $\iiint_E f(x, y, z) dV$ em que f é uma função contínua e E é uma cunha esférica.

Primeiramente dividimos E em pequenas cunhas esféricas E_{ijk} , igualmente espaçadas, com volume V_{ijk} .

O volume V_{ijk} pode ser aproximado pelo volume de uma caixa retangular com dimensões

$$\Delta \rho \times \rho_{ijk} \Delta \phi \times \rho_{ijk} \operatorname{sen} \phi_{ijk} \Delta \theta$$
,

pois $\rho_{ijk}\Delta\phi$ representa o arco de circunferência de raio ρ_{ijk} e ângulo $\Delta\phi$ enquanto que ρ_{ijk} sen $\phi_{ijk}\Delta\theta$ corresponde ao arco de circunferência de raio $r_{ijk}=\rho_{ijk}$ sen ϕ_{ijk} e ângulo $\Delta\theta$.

De fato, com o auxílio do Teorema do Valor Médio, pode-se mostrar que

$$V_{ijk} = \rho_{ijk}^* \operatorname{sen} \phi_{ijk}^* \Delta \rho \Delta \theta \Delta \phi,$$

em que $(\rho_{ijk}^*, \theta_{ijk}^*, \phi_{ijk}^*)$ é um ponto no interior de E_{ijK} . Finalmente, análogo as integrais triplas, definimos

$$\iiint_{E} f(x, y, z) dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V_{ijk},$$

$$= \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \rho_{ijk}^{*} \operatorname{sen} \phi_{ijk}^{*} \Delta \rho \Delta \theta \Delta \phi,$$

em que (x_i^*, y_j^*, z_k^*) as coordenadas retangulares do ponto $(\rho_{iik}^*, \theta_{iik}^*, \phi_{iik}^*)$ no interior de E_{iiK} .

Integrais triplas em coordenadas esféricas

Em resumo, a fórmula para integração tripla em coordenadas esféricas é:

Teorema 1

Seja f é uma função contínua e $E \subseteq \mathbb{R}^3$ a cunha esférica

$$E = \{(\rho, \theta, \phi) : \mathbf{a} \le \rho \le \mathbf{b}, \alpha \le \theta \le \beta, \mathbf{c} \le \phi \le \mathbf{d}\},\$$

em que $0 \le a$, $\beta - \alpha \le 2\pi$, $0 \le c$ e $d \le \pi$. A integral tripla de f sobre E em coordenadas esféricas é calculada através da equação:

$$\iiint_E f(x,y,z)dV = \int_c^d \int_\alpha^\beta \int_a^b f(x,y,z)\rho^2 \sin \phi d\rho d\theta d\phi,$$

 $com x = \rho sen \phi cos \theta$, $y = \rho sen \phi sen \theta$ e $z = \rho cos \phi$.

Integrais triplas em coordenadas esféricas

No caso mais geral, tem-se:

Teorema 2

Seja f é uma função contínua e $E \subseteq \mathbb{R}^3$ uma região descrita por

$$E = \{(\rho, \theta, \phi) : \alpha \le \theta \le \beta, c \le \phi \le d, g_1(\theta, \phi) \le \rho \le g_2(\theta, \phi)\},\$$

em que $0 \le g_1(\theta, \phi)$, $\beta - \alpha \le 2\pi$, $0 \le c$ e $d \le \pi$. A integral tripla de f sobre E em coordenadas esféricas é calculada através da equação:

$$\iiint_E f(x,y,z)dV = \int_c^d \int_\alpha^\beta \int_{g_1(\theta,\phi)}^{g_2(\theta,\phi)} f(x,y,z) \rho^2 \sin\phi d\rho d\theta d\phi,$$

 $com x = \rho sen \phi cos \theta$, $y = \rho sen \phi sen \theta$ e $z = \rho cos \phi$.

Calcule

$$I = \iiint_{R} e^{(x^2+y^2+z^2)(3/2)} dV,$$

em que B é a bola unitária

$$B = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}.$$

Calcule

$$I = \iiint_{R} e^{(x^2+y^2+z^2)(3/2)} dV,$$

em que B é a bola unitária

$$B = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}.$$

Resposta:

$$I=\frac{4}{3}\pi(e-1).$$

Utilize coordenadas esféricas para determinar o volume do sólido delimitado pelo cone $z=\sqrt{x^2+y^2}$ e pela esfera $x^2+y^2+z^2=z$.

Utilize coordenadas esféricas para determinar o volume do sólido delimitado pelo cone $z=\sqrt{x^2+y^2}$ e pela esfera $x^2+y^2+z^2=z$.

Resposta: Em coordenadas esféricas, o sólido é descrito por

$$E = \{(\rho, \theta, \phi) : 0 \le \theta \le 2\pi, 0 \le \phi \le \pi/4, 0 \le \rho \le \cos \phi\}.$$

Assim,

$$V(E) = \iiint_E dV = \int_0^{2\pi} \int_0^{\pi/4} \int_0^{\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta = \frac{\pi}{8}.$$

