1) Calcule o valor dos seguintes logaritmos:

c)
$$\log_5(0,000064)$$
 d) $\log_{49}\sqrt[3]{7}$

e)
$$\log_{(\sqrt[5]{2})} 128$$
 f) $\log_{9}(3\sqrt{3})$

f)
$$\log_{0}(3\sqrt{3})$$

g)
$$\log_2(\sqrt[8]{64})$$
 h) $\log_2 0.25$

2) Calcule o valor da incógnita "N" em cada exercício, aplicando a equivalência fundamental:

a)
$$\log_{\kappa} N = 3$$

$$\mathbf{b})\log_2 N = 8$$

a)
$$\log_5 N = 3$$
 b) $\log_2 N = 8$ c) $\log_2 N = -9$ d) $\log_{\sqrt{3}} N = 2$

$$\mathbf{d})\log_{\sqrt{3}}N=2$$

3) Calcule o valor da incógnita "a" em cada exercício, aplicando a equivalência fundamental:

a)
$$\log_{\alpha} 81 = 4$$

b)
$$\log_a 1024 = 20$$
 c) $\log_a 10 = 2$

c)
$$\log_{\alpha} 10 = 2$$

d)
$$\log_{9a} \sqrt{27} = \frac{1}{2}$$

- 4) O número real x, tal que $\log_{x} \left(\frac{9}{4}\right) = \frac{1}{2}$, é
 - (A) 81/16
 - (B) 3/2
 - (C)1/2
 - (D)3/2
 - (E)-81/16
- 5) (PUCRS) Escrever $b^{\log_b a} = b^{-2}$, equivale a escrever

(A)
$$a = \frac{1}{b^2}$$

(B)
$$b = a^2$$

(C)
$$a = b^2$$

(D)
$$b^2 = -a$$

(D)
$$b^2 = -a$$

(E) $b = \frac{1}{a^2}$

(UCS) Se $\log 2 = a$ e $\log 3 = b$, então $\log 12$ vale

(A)
$$a+b$$

(B)
$$2a+b$$

$$(C)a+2b$$

(D)
$$a \cdot b$$

(E) $\frac{a}{b}$

1) (UCS) O valor de $(\sqrt{2})^{\log \sqrt{2}}$

2) (UFRGS) Se $\log(2) = 0$ e $\log(3) = 1+0$, então $\log \sqrt[3]{54}$ é

$$4a + b$$

$$(C)\frac{\alpha+4b}{3}$$

(D)
$$\frac{4a+3b}{3}$$

(E)
$$\frac{4\alpha+b}{3}$$

5) Dado $\log 5 = P$, calcule o valor de $\log 200$ em função de P

$$_{\scriptscriptstyle (A)} \mathbf{5P}$$

$$_{\scriptscriptstyle (B)}200P$$

$$_{(c)} P - 3$$

$$_{_{(D)}}3-P$$

$$_{\scriptscriptstyle{(E)}}5-P$$

6) (UFRGS) Sabendo que $\log a = L$ e $\log b \equiv M$, então o logaritmo de a na base b é

(A)
$$L+M$$

$$\stackrel{(B)}{}L-M$$

(C)
$$L \cdot M$$

- (D) $\frac{M}{L}$
- (E) $\frac{L}{M}$

(CAJU) Sendo $\log_7 27 = a$ calcule o valor de $\log_2 7$.

(CAJU)Calcule o valor da expressão $\log_5 8 \cdot \log_6 7 \cdot \log_8 36 \cdot \log_7 5$.

- 01) O conjunto solução da equação logaritmica $\log_4(x+x^2)=\frac{1}{2}$ é:
 - (A) {-1; 2}
 - (B) {-2; 1} (C) {-2}

 - (D) {1}
 - (E) { }
- 2) O número real x que satisfaz a equação $\log_2(12-2)$ = 2x é:
 - (A) log₂5
 - (B) $\log_2 \sqrt{3}$

 - (E) log₂3
- 3) A equação $\log_3 x = 1 + \log_x 9$ tem duas raízes reais. O produto dessas raízes é:
 - (A) 0
 - (B) $\frac{1}{3}$ (C) $\frac{1}{9}$

 - (D) 6 (E)3
- 4) (UFRGS) A solução da equação $\log_2(4-x) = \log_2(x+1) + 1$ está no intervalo:
 - (A) [-2; -1]
 - (B) (-1; 0]
 - (C)(0;1]
 - (D)(1;2]
 - (E) (2; 3]