### Centro de Estatística Aplicada

### Gustavo Kanno<sup>1</sup> Rodrigo Marcel Araujo<sup>2</sup> Victor Ribeiro Baião Decanini<sup>3</sup>

### Maio de 2021

### Sumário

| Análise Descritiva         | 2  |
|----------------------------|----|
| Funções de Autocorrelações | 10 |
| Análise Correlação Cruzada | 16 |
| Regressão LASSO            | 22 |
| Regressão RIDGE            | 24 |

 $<sup>^{1}</sup>$ Número USP: 9795810  $^{2}$ Número USP: 9299208  $^{3}$ Número USP: 9790502

### Análise Descritiva

```
\#setwd("C:\\Near \\Acount \\Near \\Near \\Acount \\Near \Near \\Near \
#data = read_xlsx("IPCA_DADOS_AGRUPADOS.xlsx", sheet = 1)
setwd("C:\\Users\\Rodrigo Araujo\\Documents\\IME-USP\\CEA 1\\dados")
data = read_xlsx("IPCA_DADOS_AGRUPADOS.xlsx", sheet = 1)
data$Data <- as.Date(data$Data)</pre>
head(data)
## # A tibble: 6 x 24
         Data
                              Arroz 'Avicultura de ~ 'Avicultura de ~ Banana Batata
##
                                                                                            <dbl> <dbl> <dbl>
         <date>
                              <dbl>
                                                             <dbl>
## 1 2007-01-01 0.01
                                                             0.295
                                                                                              3.43 -2.86
                                                                                                                     0.75
## 2 2007-02-01 -0.68
                                                             1.71
                                                                                              2.82 -1.62 -3.83
## 3 2007-03-01 -0.635
                                                             2.26
                                                                                            10.1
                                                                                                          1.05
                                                                                                                     7.61
## 4 2007-04-01 -0.635
                                                            -0.56
                                                                                             1.31 -2.65 36.4
## 5 2007-05-01 0.13
                                                            -0.13
                                                                                            -1.11 -1.46 11.6
## 6 2007-06-01 0.230
                                                             0.27
                                                                                             4.93 -1.07 -5.17
## # ... with 18 more variables: Bovinocultura <dbl>, 'Cacau e produtos' <dbl>,
         Café <dbl>, Cebola <dbl>, 'Complexo soja' <dbl>, 'Complexo
            sucroalc.' <dbl>, Feijão <dbl>, Frutas <dbl>, Hortícolas <dbl>,
            Indefinido <dbl>, 'Laranja e citros' <dbl>, Lácteos <dbl>, Mandioca <dbl>,
## #
            Milho <dbl>, Pescado <dbl>, Suinocultura <dbl>, Tomate <dbl>, Trigo <dbl>
zt0 <- ts(data[,2], frequency = 12, start = 2007, end = 2019)
zt1 <- ts(data[,3], frequency = 12, start = 2007, end = 2019)
zt2 <- ts(data[,4], frequency = 12, start = 2007, end = 2019)
zt3 <- ts(data[,5], frequency = 12, start = 2007, end = 2019)
zt4 <- ts(data[,6], frequency = 12, start = 2007, end = 2019)
zt5 <- ts(data[,7], frequency = 12, start = 2007, end = 2019)
zt6 <- ts(data[,8], frequency = 12, start = 2007, end = 2019)
zt7 <- ts(data[,9], frequency = 12, start = 2007, end = 2019)
zt8 <- ts(data[,10], frequency = 12, start = 2007, end = 2019)
zt9 <- ts(data[,11], frequency = 12, start = 2007, end = 2019)
zt10 <- ts(data[,12], frequency = 12, start = 2007, end = 2019)
zt11 <- ts(data[,13], frequency = 12, start = 2007, end = 2019)
zt12 <- ts(data[,14], frequency = 12, start = 2007, end = 2019)
zt13 <- ts(data[,15], frequency = 12, start = 2007, end = 2019)
zt14 <- ts(data[,16], frequency = 12, start = 2007, end = 2019)
zt15 <- ts(data[,17], frequency = 12, start = 2007, end = 2019)
zt16 <- ts(data[,18], frequency = 12, start = 2007, end = 2019)
zt17 <- ts(data[,19], frequency = 12, start = 2007, end = 2019)
zt18 <- ts(data[,20], frequency = 12, start = 2007, end = 2019)
zt19 <- ts(data[,21], frequency = 12, start = 2007, end = 2019)
zt20 <- ts(data[,22], frequency = 12, start = 2007, end = 2019)
zt21 <- ts(data[,23], frequency = 12, start = 2007, end = 2019)
zt22 <- ts(data[,24], frequency = 12, start = 2007, end = 2019)
```

### Série Temporal do Arroz



```
par(mfrow = c(2, 2))
plot(zt1,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt2,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
plot(zt3,main="Série Temporal da Banana", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal da Batata", xlab= "Anos", ylab="IPCA")
```

### Série Temporal de Avicultura de Corte

### Série Temporal de Avicultura de Postura





### Série Temporal da Banana

### Série Temporal da Batata





```
par(mfrow = c(3, 2))

plot(zt5,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt6,main="Série Temporal do Cacau e Produtos", xlab= "Anos", ylab="IPCA")
plot(zt7,main="Série Temporal do Café", xlab= "Anos", ylab="IPCA")
plot(zt8,main="Série Temporal da Cebola", xlab= "Anos", ylab="IPCA")
plot(zt9,main="Série Temporal do Complexo Soja", xlab= "Anos", ylab="IPCA")
plot(zt10,main="Série Temporal do Complexo Sucroalc.", xlab= "Anos", ylab="IPCA")
```

### Série Temporal da Bovinocultura

# 2008 2010 2012 2014 2016 2018 Anos

### Série Temporal do Cacau e Produtos



### Série Temporal do Café



### Série Temporal da Cebola



### Série Temporal do Complexo Soja



### Série Temporal do Complexo Sucroalc.



```
par(mfrow = c(3, 2))

plot(zt11,main="Série Temporal do Feijão", xlab= "Anos", ylab="IPCA")
plot(zt12,main="Série Temporal das Frutas", xlab= "Anos", ylab="IPCA")
plot(zt13,main="Série Temporal das Horticulas", xlab= "Anos", ylab="IPCA")
plot(zt14,main="Série Temporal de Indefinido", xlab= "Anos", ylab="IPCA")
plot(zt15,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
plot(zt16,main="Série Temporal da Laranja e Citrus", xlab= "Anos", ylab="IPCA")
```

### Série Temporal do Feijão

# 2008 2010 2012 2014 2016 2018 Anos

### Série Temporal das Frutas



### Série Temporal das Horticulas



### Série Temporal de Indefinido



### Série Temporal do Lácteos



### Série Temporal da Laranja e Citrus



```
par(mfrow = c(3, 2))

plot(zt17,main="Série Temporal da Mandioca", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal do Milho", xlab= "Anos", ylab="IPCA")
plot(zt19,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt20,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
plot(zt21,main="Série Temporal do Tomate", xlab= "Anos", ylab="IPCA")
plot(zt22,main="Série Temporal do Trigo", xlab= "Anos", ylab="IPCA")
```

### Série Temporal da Mandioca



### Série Temporal do Milho



### Série Temporal do Pescado



### Série Temporal da Suínocultura



### Série Temporal do Tomate



### Série Temporal do Trigo



```
par(mfrow = c(2, 1))
plot(zt19,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt15,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
```

### Série Temporal do Pescado



### Série Temporal do Lácteos



### #900#650

```
par(mfrow = c(2, 1))
plot(zt5,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt20,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
```

### Série Temporal da Bovinocultura



### Série Temporal da Suínocultura



```
par(mfrow = c(2, 1))
plot(zt1,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt2,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
```

### Série Temporal de Avicultura de Corte



### Série Temporal de Avicultura de Postura



### Funções de Autocorrelações

```
par(mfrow = c(1, 2))
acf(zt1, main="ACF Avicultura de Corte")
pacf(zt1, main="PACF Avicultura de Corte")
```

### **ACF Avicultura de Corte**

### **PACF Avicultura de Corte**





```
par(mfrow = c(1, 2))
acf(zt2, main="ACF Avicultura de Postura")
pacf(zt2, main="PACF Avicultura de Postura")
```

### **ACF Avicultura de Postura**

### **PACF** Avicultura de Postura





```
par(mfrow = c(1, 2))
acf(zt20, main="ACF Suinocultura")
pacf(zt20, main="PACF Suinocultura")
```

### **ACF Suínocultura**

### **PACF Suínocultura**





```
par(mfrow = c(1, 2))
acf(zt19, main="ACF Pescado")
pacf(zt19, main="PACF Pescado")
```

### **ACF Pescado**

# ACF -0.2 0.0 0.2 0.4 -0.5 1.0 1.5 Fag

### **PACF Pescado**



```
par(mfrow = c(1, 2))
acf(zt15, main="ACF Lácteos")
pacf(zt15, main="PACF Lácteos")
```

### **ACF Lácteos**

# 0.0 0.2 0.4 0.6

ACF

-0.2

### **PACF Lácteos**



```
par(mfrow = c(1, 2))
acf(zt5, main="ACF Bovinocultura")
pacf(zt5, main="PACF Bovinocultura")
```

0.5

1.0

Lag

1.5

### **ACF Bovinocultura**

### **PACF** Bovinocultura





### Análise Correlação Cruzada

```
#Correlaões cruzadas da Bovincultura
par(mfrow = c(3,2))
acf(zt5,main="ACF Bovinocultura")
ccf(zt5,zt1,main="Bovinocultura e Avicultura de Corte")
ccf(zt5,zt2,main="Bovinocultura e Avicultura de Postura")
ccf(zt5,zt15,main="Bovinocultura e Lácteos")
ccf(zt5,zt19,main="Bovinocultura e Pescados")
ccf(zt0,zt20,main="Bovinocultura e Suinocultura")
```

### **ACF Bovinocultura**

### **Bovinocultura e Avicultura de Corte**





### Bovinocultura e Avicultura de Postura

### Bovinocultura e Lácteos





### **Bovinocultura e Pescados**

### **Bovinocultura e Suinocultura**





```
#Correlações cruzadas da Avicultura de Corte
par(mfrow = c(3,2))
acf(zt1,main="ACF Avicultura de Corte")
ccf(zt1,zt2,main="Avivultura de Corte e Avicultura de Postura")
ccf(zt1,zt3,main="Avicultura de Corte e Bovinocultura")
ccf(zt1,zt5,main="Avicultura de Corte e Lácteos")
ccf(zt1,zt19,main="Avicultura de Corte e Pescados")
ccf(zt1,zt20,main="Avicultura de Corte e Suinocultura")
```

### **ACF Avicultura de Corte**

## 0.5 1.0 1.5

### Avivultura de Corte e Avicultura de Postura



### Avicultura de Corte e Bovinocultura



### Avicultura de Corte e Lácteos



### Avicultura de Corte e Pescados



### Avicultura de Corte e Suinocultura



```
#Correlações cruzadas da Avicultura de Postura
par(mfrow = c(3,2))
acf(zt2,main="ACF Avicultura de Postura")
ccf(zt2,zt1,main="Avicultura de Postura e Avicultura de Corte")
ccf(zt2,zt5,main="Avicultura de Postura e Bovinocultura")
ccf(zt2,zt15,main="Avicultura de Postura e Lácteos")
ccf(zt2,zt19,main="Avicultura de Postura e Pescados")
ccf(zt2,zt20,main="Avicultura de Postura e Suinocultura")
```

### **ACF Avicultura de Postura**

# 0.5 1.0 1.5

### Avicultura de Postura e Avicultura de Corte



### Avicultura de Postura e Bovinocultura



### Avicultura de Postura e Lácteos



### Avicultura de Postura e Pescados



### Avicultura de Postura e Suinocultura



```
#Correlações cruzadas dos Lácteos
par(mfrow = c(3,2))
acf(zt15,main="ACF Lácteos")
ccf(zt15,zt1,main="Lácteos e Avicultura de Corte")
ccf(zt15,zt2,main="Lácteos e Avicultura de Postura ")
ccf(zt15,zt5,main="Lácteos e Bovinocultura")
ccf(zt15,zt19,main="Lácteos e Pescados")
ccf(zt15,zt20,main="Lácteos e Suinocultura")
```

### **ACF Lácteos**

### Lácteos e Avicultura de Corte





### Lácteos e Avicultura de Postura

### Lácteos e Bovinocultura





### Lácteos e Pescados

### Lácteos e Suinocultura





```
# Correlaões cruzadas dos Pescados
par(mfrow = c(3,2))
acf(zt19,main="ACF Pescados")
ccf(zt19,zt1,main="Pescados e Avicultura de Corte")
ccf(zt19,zt2,main="Pescados e Avicultura de Postura")
ccf(zt19,zt5,main="Pescados e Bovinocultura")
ccf(zt19,zt15,main="Pescados e Lácteos")
ccf(zt19,zt20,main="Pescados e Suinocultura")
```

### **ACF Pescados**

### Pescados e Avicultura de Corte





### Pescados e Avicultura de Postura

### Pescados e Bovinocultura





### Pescados e Lácteos

### Pescados e Suinocultura





```
#Correlações cruzadas da Suinocultura
par(mfrow = c(3,2))
acf(zt20,main="ACF Suinocultura")
ccf(zt20,zt1,main="Suinocultura e Avicultura de Corte")
ccf(zt20,zt2,main="Suinocultura e Avicultura de Postura")
ccf(zt20,zt5,main="Suinocultura e Bovinocultura")
ccf(zt20,zt15,main="Suinocultura e Lacteos")
ccf(zt20,zt19,main="Suinocultura e Pescados")
```

### **ACF Suinocultura**

### Suinocultura e Avicultura de Corte





### Suinocultura e Avicultura de Postura

### Suinocultura e Bovinocultura





### Suinocultura e Lacteos

### Suinocultura e Pescados





### Regressão LASSO

print(cv.lasso)

```
library(glmnet)

## Loading required package: Matrix

## ## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':

## expand, pack, unpack

## Loaded glmnet 4.0-2

set.seed(123)

x <-subset(data, select = c("Lacteos", "Pescado", "Suinocultura", "Avicultura de Postura", "Avicultura expande de
```

```
##
## Call: cv.glmnet(x = x, y = y, alpha = 1, family = "gaussian")
##
## Measure: Mean-Squared Error
##
## Lambda Measure SE Nonzero
## min 0.0496 3.170 1.047 4
## 1se 0.9736 4.162 1.257 0
```

plot(cv.lasso)



```
cv.lasso$lambda.min
```

## [1] 0.04959573

cv.lasso\$lambda.1se

## [1] 0.9735844

coef(cv.lasso, cv.lasso\$lambda.min)

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1
```

```
## (Intercept) 0.38838316
## Lácteos -0.13890259
## Lácteos
                         -0.13890259
## Pescado
## Suinocultura 0.54568069
## 'Avicultura de Postura' -0.02703794
## 'Avicultura de Corte' 0.54637270
coef(cv.lasso, cv.lasso$lambda.1se)
## 6 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept)
                          0.8359205
## Lácteos
## Pescado
## Suinocultura
## 'Avicultura de Postura' .
## 'Avicultura de Corte'
```

### Regressão RIDGE

```
set.seed(1234)

cv.ridge <- cv.glmnet(x, y, alpha = 0, family = "gaussian")
print(cv.ridge)

##

## Call: cv.glmnet(x = x, y = y, alpha = 0, family = "gaussian")
##

## Measure: Mean-Squared Error
##

## Lambda Measure SE Nonzero
## min 0.52 3.283 0.8596 5
## 1se 138.00 4.142 1.0986 5

plot(cv.ridge)</pre>
```

### 



### cv.ridge\$lambda.min

## [1] 0.5195727

cv.ridge\$lambda.1se

## [1] 138.0031

coef(cv.ridge, cv.lasso\$lambda.min)

```
## 6 x 1 sparse Matrix of class "dgCMatrix"

## 1

## (Intercept) 0.399987772

## Lácteos -0.167463228

## Pescado -0.009601587

## Suinocultura 0.580323029

## 'Avicultura de Postura' -0.040146275

## Avicultura de Corte' 0.553194015
```

coef(cv.ridge, cv.lasso\$lambda.1se)

```
## 6 x 1 sparse Matrix of class "dgCMatrix" ## 1
```

| ## | (Intercept)      |          | 0.46761294  |
|----|------------------|----------|-------------|
| ## | Lácteos          |          | -0.11667276 |
| ## | Pescado          |          | 0.02047979  |
| ## | Suinocultura     |          | 0.48938974  |
| ## | 'Avicultura de H | Posturaʻ | -0.02783347 |
| ## | 'Avicultura de ( | Corte'   | 0.39777587  |