

Description

The VSM80N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =80A

 $R_{DS(ON)}$ <6.5m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 10m Ω @ V_{GS} =5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM80N03-T1	VSM80N03	TO-251	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	80	Α	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	50	А	
Pulsed Drain Current	I _{DM}	170	А	
Maximum Power Dissipation	P _D	83	W	
Derating factor		0.56	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	306	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	R _{eJC}	1.8	°C/W
--	------------------	-----	------

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	0.7	1.1	1.4	V
Prain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =30A	-	5.5	6.5	mΩ
Diani-Source On-State Nesistance	KDS(ON)	V _{GS} =5V, I _D =24A	-	7.5	10	
Forward Transconductance	g FS	V _{DS} =5V,I _D =24A	20	-	-	S
Dynamic Characteristics (Note4)		•	•	•		
Input Capacitance	C _{lss}		-	2330	-	PF
Output Capacitance	C _{oss}	V_{DS} =15V, V_{GS} =0V, F=1.0MHz	-	460	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0IVIHZ	-	230	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V _{DD} =10V,I _D =30A	-	20	-	nS
Turn-on Rise Time	t _r		-	15	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{GEN} =2.7 Ω	-	60	-	nS
Turn-Off Fall Time	t _f		-	10	-	nS
Total Gate Charge	Qg	1/ 401/1 004	-	51	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=10V,I_{D}=30A,$ $V_{GS}=10V$	-	14	-	nC
Gate-Drain Charge	Q _{gd}	VGS-10V	-	11	-	nC
Drain-Source Diode Characteristics		•	•	•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =24A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 30A	-	32	50	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	12	20	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=15V,V_G=10V,L=0.5mH,Rg=25 Ω , I_{AS}=35A

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Qg Gate Charge (nC)
Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Normalized BVdss

 T_J -Junction Temperature($^{\circ}$ C)

Figure 9 BV_{DSS} vs Junction Temperature

T_J-Junction Temperature(°C)

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance