数学演習2第9回

积形什数

系某形写像 K=R, Cとお。

定義1. K上のベツ川空間で、Vに対し、ひからじへの写像T:ひ→じか"シアの2条件を満EIときひかしへの線形写像という。

- (1) T(U+V)= T(U)+T(V), (U,VET)
- (2) T(cW)=CT(W), (WET, CEK)

例1. Kの元を成分とするmxn分列をmxn K介列という。mxn K介列A に対し、KnがらKmへの写像 T = TA を $T_A(2c) = A2c$ で変数3と T_A は K^n から K^m への緑形写像。

逆に K^n かる K^m への 線形写像 $T: K^n \to K^m$ に対し $m \times n \ k$ 行列 $A \to 1'' \text{ D} \hat{E}$ しっ存在して $T(x) = A \times C \hat{E}$ される。 $A = [T(e_i) - T(e_n)]$ でなるかる。

緑形写像の像と核

定義2.(1) Uか3 Vへの糸泉形写像 $T:U \to V$ に対し Vの食 Im T を $Im T = \{v \in V \mid b \}$ $u \in U$ に対し v = T(u) によって定義 Im T は Vの 部分空間 である。

(2) 上のT に対しての<u>林</u> Ker T を Ker T = {UEU | T(U) = 0} におて定義する。 Ker T は ひの部分空間である。

IX下び、Vは有限次元で7トル空間と弱。 解形写像の階数と退化次数

定義3. 線形写像 T: U→V に対し Tの階数 rank T を rank T=dim(ImT) によって存する。また Tの退化次数 null T を null T = dim(KerT) によって定義程。

線形写像T;U→VI=対L rankT+nullT=dimU が成立2。

KerTの基UI,~~,Up, ImTの基VI,~~, Up をとり W ImT

(k= small T, l= rank T) MKH, --, MK+R EUE

T(MR+1) = V1, --, T(MR+R) = Ve 2232 MI,--, MRte はひの墓。上の国式で、WはMR+1,--、MR+Rで掛けり了の部窓間。

伤12. A=[a1---an] ガ"mxn K行引axt TA(x)=Axt: ドカナ はm に対し、

Im TA = {x, a, + - - + xn an | x1, - -, xn EK} = Aのダイヘックトルマツ生成されるKmの部分空間

#E rank TA = dim (Im TA) \$1

rank TA= Aの引入"7HLの1次独立を最大個数

= rank A

Ker TA = {XEKM | AXE = 0} また = Ax= Oの海空間

mull TA = dim (Ker TA) 59

null TA = n-rank A

問題5.1

2、次の写像は緑形写像かとりが調かよ。

(1)
$$T(x) = \begin{bmatrix} 2x_1 + x_2 \\ x_1 - 5x_2 \end{bmatrix}$$
; $\mathbb{R}^2 \to \mathbb{R}^2$

(2) $T(x) = \begin{bmatrix} x_1 + x_2 + z \\ 2x_1 + 3x_2 - 1 \end{bmatrix} : |\mathbb{R}^2 \to |\mathbb{R}^2$

解)(1) $T(x) = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix} x x 2x25731 A = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix} を用いて表生的るから <math>\mathbb{R}^2$ から \mathbb{R}^2 から \mathbb{R}^2 の

線形写像である。口

(2) $A = \begin{bmatrix} 1 \\ 23 \end{bmatrix} \times \pi \times \nabla T \times D = A \times + \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

$$= \alpha \times \pm T(x + y) = A(x + y) + [-1] = Ax + Ay + [-1] = T(x) + T(y) - [-1] + T(x) + T(y)$$

 $= \alpha \times \pm T(x + y) = A(x + y) + [-1] = Ax + Ay + [-1] = T(x) + T(y) - [-1] + T(x) + T(y)$

3. 次の緑形写像Tについては、間を求めよ。

li) mill T と Ker T の 1組の基 (ii) rank T と Im Tの 1組の基

(3)
$$T(x) = \begin{bmatrix} 0 & 1 & 1 & 3 \\ -1 & -2 & -5 & -1 & -4 \\ 1 & 1 & 4 & 0 & 1 \\ 1 & -1 & 2 & -2 & -5 \end{bmatrix} x : \mathbb{R}^5 \to \mathbb{R}^4$$

$$\sharp_{77}$$
 null $T=3$, $\ker T$ of \sharp_{712} $\left\{\begin{bmatrix} -3\\ 0\\ 0\end{bmatrix},\begin{bmatrix} -1\\ 0\\ 0\end{bmatrix},\begin{bmatrix} 2\\ -3\\ 0\\ 0\end{bmatrix}\right\}$

(ii) ImT はAの列ハ"7トルで性成される R^4 の影の空間 より dim(ImT)=rankA=2よって rankT=2。 Aの 21個の 1:欠独立な列ハ"7トルはImTの基であるかる $\left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$ は ImTの基. \square

緑形写像の表現行列

発現形、写像 T: $U \to V$ 1= 対し Uの基 $\{u_1, --, u_n\}$, Vの基 $\{v_1, --, v_m\}$ をとると $T(u_j) = \sum_{i=1}^{m} \alpha_{ij} v_i$, (j=1,--, h) と - 恵 白 j に たせるから $m \times n$ K 作 P $A = [a_{ij}]$ が v 作 P $A = [a_{ij}]$ の作 P A =

が成立つ。At上の基に関る下の表現行列という。

何13. Aを m×n K/T3·1,
$$T_A(x) = Ax: K^n \to K^m$$
 1=対し

 K^n の標準を $\{e_i = \{ \{ e_j = \{ \{ e_j \} \} \} \}$, $e_2 = \{ \{ e_j \} \} \}$, $e_n = \{ \{ e_j \} \} \}$, $e_n = \{ \{ e_j \} \} \}$, $e_n = \{ \{ e_j \} \} \}$ 1=関する T_A の表現行列 1ま A である。

実際深 $T_A(e_j) = a_j = \{ \{ e_i \} \} \}$ $= \{ \{ a_i \} \} \}$ $= \{ \{ e_i \} \}$ $= \{ e_i \} \}$ $= \{ e_i \}$ $= \{ e_i \} \}$ $= \{ e_i \}$

基の変換行列

ここて" $u_1, --, u_n'$ おはな" $u_1, --, u_n$ か" に対象立より P は正則である。
また $(u_1, --, u_n') = (u_1', --, u_n') P'$ とおくと $P' = P^{-1}$ である。 P を ξ の 変 † 変 ゲテ ξ り といっ。

定理2. 緑形写像T: U→ V に対し U, Vの2組の基を Uの基: {U1,---, Un}, {U1,---, Un}, Vの基: {V,--, Vm}, {V,--, Vm}} とおくとき それそ"れについて変料を行列を

 $(U_1', ---, U_n') = (U_1, ---, U_n)P$, $(V_1', ---, V_n') = (V_1, ---, V_n)Q$ とすると T の $\{U_1, ---, U_n\}$, $\{V_1', ---, U_n'\}$ に関する表現行列 A $\{U_1', ---, U_n'\}$, $\{V_1', ---, V_n'\}$ に関する表現行列 Bに対し $B = Q^{-1}AP$ が成立っ。

線形変換の表現行列

ひからひへの緑形写像をひの緑形変換という。 ひの緑形変換 T:ひ→ひに対し ひの基 {U1,--, Un} をとるとき (T(U1),---, T(U1n))= (U1,--, Un) A を満たす かにア正方行写1 A か1"ロ隹1つ存在する。この行31 A を緑形変換すの 上の基に関する表現行31という。 定理3. T: U→UをUの線形変換とL, Uの2組の基 {U1,--, Un}, {U1,--, Un/t に対し基の変換行列を (U1,--, Un/) = (U1,--, Un)P とおくとき、 Tの {U1,--, Un/t に対し関する表現行列 B に対して B= P-AP かい成立っ。

問5.2 1. 沢の親形写像下のちえられた基に関码を現行列を求めよ

$$(2) T(x) = \begin{bmatrix} 2 & 4 & 3 & 1 \\ 0 & -3 & 1 & 1 \\ 1 & 2 & 1 & 0 \end{bmatrix} x : \mathbb{R}^4 \to \mathbb{R}^3$$

$$\mathbb{R}^4 \circ \stackrel{\mathcal{L}}{=} \left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0$$

$$\begin{array}{ll}
\vdots & \begin{bmatrix} \frac{8}{-1} & \frac{10}{-1} & -1 & -2 \\ \frac{7}{3} & \frac{4}{4} & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} B \\
\vdots & \mathcal{R} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} & 1 = \frac{1}{7} + 1 & |\mathcal{R}| = -1, \quad \widetilde{\mathcal{R}} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & -1 & -1 \end{bmatrix} \quad \exists \mathcal{Y} \quad \mathcal{R} \stackrel{\mathsf{T}}{=} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \\
\vdots \quad \mathcal{B} = \mathcal{R}^{-1} \begin{bmatrix} \frac{8}{10} & 10 & -19 \\ -1 & -1 & -1 & -2 \\ 3 & 4 & 0 & 4 \end{bmatrix} = \begin{bmatrix} \frac{5}{3} & 6 & -1 & 5 \\ 3 & 4 & 0 & 4 \\ -6 & -7 & 0 & -7 \end{bmatrix} \quad \Box
\end{array}$$

2. 次の線形変換の与えられた基に関する表現行列を求めよ。

$$(2) T(x) = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ -2 & 4 & 3 \end{bmatrix} \times \mathbb{R}^3 \rightarrow \mathbb{R}^3, \mathbb{R}^3 \circ \stackrel{\#}{=} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\}$$

解) R3の標準基 {[0], [0], [0]} に関する Tの表現 行列は A= [1-10]

与えられた甚にといかえると 労権が行うけは ([0],[0],[1])=([0],[0],[0])P, P=[012] 未める行うり Bは B=P-IAP == て" P-Iは IPI=2-1=1, $\widetilde{P}=[-102]$ より、 $\widetilde{P}=[-102]$ なり、 $\widetilde{P$