Jaime Fabián Nieto Castellanos Facultad de Ciencias. UNAM

March 12, 2021

Results for $\beta = 2.0$ are shown. Everything was obtained with simulations using the parameters of the following table:

Ntime	64
Ntherm	1000
Nmeasure	1000
Trajectory Steps	10
Nsteps	10
β	2

Table 1: All the simulations were performed with this parameters.

The residual pion mass is extrapolated with two different methods. From the plots of m_{π}^2 vs. m_{pcac} on acan fit a parabola

$$y = a + bx^2. (1)$$

Meanwhile, from the plots of m_{π} vs. $(gm_{pcac}^2)^{1/3}$ one can fit a function of the form

$$y = \sqrt{a + bx^3}. (2)$$

$\beta = 2.0$ results

6x64

(a) Fermion mass using PCAC relation, $\kappa_c = 0.27824 \pm 0.00307$

(b) Pion mass as a function of κ

(c) m_{π}^2 vs. m_{pcac} . m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ (d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ was fitted, the coefficients are a =0.29377 \pm 0.00403, b =4.96973 \pm 0.11092, m_{π} =0.54201 \pm 0.00372 for variance and a =0.30172 ± 0.00672 , $b = 4.93474 \pm 0.16813$, $m_{\pi} = 0.54929 \pm 0.00612$ for chi squared.

is considered. $a = 0.29312 \pm 0.00239$, $b = 7.04747 \pm 0.09194$, $m_{\pi} = 0.54141 \pm 0.00221$ for variance and $a = 0.303 \pm 0.00769$, $b = 6.94703 \pm 0.26847$, $m_{\pi} = 0.55045 \pm 0.00698$ for chi squared.

Figure 1: Number of configurations vs. topological charge on a 6×64 lattice.

(b) Pion mass as a function of κ

(c) m_{π}^2 vs. m_{pcac} . m_{π}^2 vs. m_{pcac} . m_{π}^2 vs. m_{pcac} . A function (d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ of the form $a + bx^2$ was fitted, the coefficients are $a = 0.20986 \pm 0.00000$ $0.00523, b = 5.7568 \pm 0.15985, m_{\pi} = 0.45811 \pm 0.00571$ for variance and $a = 0.2147 \pm 0.00684, b = 5.72429 \pm 0.19724, m_{\pi} = 0.46336 \pm$ 0.00738 for chi squared.

is considered. $a = 0.20749 \pm 0.00464$, $b = 8.21704 \pm 0.19521$, $m_{\pi} = 0.45551 \pm 0.0051$ for variance and $a = 0.21579 \pm 0.00667$, b =8.06097 \pm 0.26745, m_{π} =0.46453 \pm 0.00718 for chi squared.

(g) Autocorrelation of the topological charge

Figure 2: Number of configurations vs. topological charge on a 7×64 lattice.

(b) Pion mass as a function of κ

 N_t =64, N_{space} = 8, β = 2.0, Plateau points=14

0.8 0.6 m 0.4 2.008... 0.2 2.1633... * Variance Chi squared 0.0 0.0 0.1 0.2 0.4 0.3 $(m_{pcac}^2g)^{1/3}$

(c) m_{π}^2 vs. m_{pcac} . m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ (d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ was fitted, the coefficients are $a=0.16902\pm0.00391,\ b=6.07619$ \pm 0.13206, m_{π} =0.41112 \pm 0.00475 for variance and a =0.16587 \pm 0.00337, b =6.13639 \pm 0.10268, m_{π} =0.40727 \pm 0.00413 for chi squared

is considered. $a = 0.16636 \pm 0.00355$, $b = 8.67422 \pm 0.16583$, $m_{\pi} = 0.40787 \pm 0.00435$ for variance and $a = 0.16505 \pm 0.00366$, $b = 8.70103 \pm 0.15485, m_{\pi} = 0.40627 \pm 0.0045$ for chi squared.

1.0

(e) m_{π} vs. m_{pcac}

Figure 3: Number of configurations vs. topological charge on a 8×64 lattice.

(b) Pion mass as a function of κ

cients are $a = 0.1399 \pm 0.00274$, $b = 6.44178 \pm 0.11343$, $m_{\pi} = 0.37403 \pm 0.00274$ 0.00366 for variance and $a = 0.14015 \pm 0.00305$, $b = 6.42378 \pm 0.11876$, $m_{\pi} = 0.37436 \pm 0.00408$ for chi squared.

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficient (d) A function of the form $y=\sqrt{a+bx^3}$ was fitted. Only $m_{pcac}>0$ is considered. $a = 0.13913 \pm 0.00312$, $b = 9.1345 \pm 0.17585$, $m_{\pi} = 0.373 \pm 0.00418$ for variance and $a = 0.14058 \pm 0.0035$, b =9.06774 \pm 0.18662, m_{π} =0.37494 \pm 0.00466 for chi squared.

(e) m_{π} vs. m_{pcac}

Figure 4: Number of configurations vs. topological charge on a 9×64 lattice.

(b) Pion mass as a function of κ

(c) m_π^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficients are $a=0.11777\pm0.0032,\,b=6.78654\pm0.16208,\,m_\pi=0.34317\pm0.00466$ for variance and $a=0.12042\pm0.0038,\,b=6.75557\pm0.18446,\,m_\pi=0.34702\pm0.00547$ for chi squared.

(d) A function of the form $y=\sqrt{a+bx^3}$ was fitted. Only $m_{pcac}>0$ is considered. $a=0.11927\pm0.00336,\ b=9.52723\pm0.22213,$ $m_\pi=0.34536\pm0.00486$ for variance and $a=0.12283\pm0.00406,$ $b=9.45064\pm0.25607,\ m_\pi=0.35048\pm0.00579$ for chi squared

(e) m_{π} vs. m_{pcac}

(g) Autocorrelation of the topological charge

Figure 5: Number of configurations vs. topological charge on a 10×64 lattice.

(b) Pion mass as a function of κ

 N_t =64, N_{space} = 11, β = 2.0, Plateau points=14 1.0 0.8 0.6 т 0.4 2.008... 2.1633... 0.2 * Variance Chi squared 0.0 0.0 0.1 0.2 0.4 0.3 $(m_{pcac}^2g)^{1/3}$

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a + bx^2$ was fitted, the coef- (d) A function of the form $y = \sqrt{a + bx^3}$ was fitted. Only $m_{pcac} > 0$ ficients are a =0.09948 \pm 0.003, b =7.1086 \pm 0.16062, m_{π} =0.31541 \pm 0.00476 for variance and $a = 0.09989 \pm 0.00334$, $b = 7.06439 \pm 0.16118$, $m_{\pi} = 0.31605 \pm 0.00528$ for chi squared.

is considered. $a = 0.09902 \pm 0.00337$, $b = 10.06628 \pm 0.24085$, $m_{\pi} = 0.31467 \pm 0.00535$ for variance and $a = 0.10005 \pm 0.00374$, $b = 9.97696 \pm 0.23947, m_{\pi} = 0.3163 \pm 0.00591$ for chi squared.

(e) m_{π} vs. m_{pcac}

(g) Autocorrelation of the topological charge

Figure 6: Number of configurations vs. topological charge on a 11×64 lattice.

(a) Fermion mass using PCAC relation, $\kappa_c = 0.27747 \pm 0.00246$

(b) Pion mass as a function of κ

cients are $a = 0.08988 \pm 0.00293$, $b = 7.32002 \pm 0.16239$, $m_{\pi} = 0.29981$ \pm 0.00489 for variance and a =0.09219 \pm 0.00308, b =7.24626 \pm $0.15345, m_{\pi} = 0.30362 \pm 0.00507$ for chi squared.

(c) m_{π}^2 vs. m_{pcac} . A function of the form $a+bx^2$ was fitted, the coefficient (d) A function of the form $y=\sqrt{a+bx^3}$ was fitted. Only $m_{pcac}>0$ is considered. $a = 0.09014 \pm 0.00296$, $b = 10.335 \pm 0.22912$, $m_{\pi} = 0.30023 \pm 0.00492$ for variance and $a = 0.09241 \pm 0.00311$, b =10.23365 \pm 0.21701, m_{π} =0.30398 \pm 0.00511 for chi squared.

(e) m_{π} vs. m_{pcac}

Figure 7: Number of configurations vs. topological charge on a 12×64 lattice.

Figure 8: M_{π}^{R} vs. L. A curve of the form a/L was fitted. For variance the fit parameter is $a=3.3190\pm0.0418$, while for Chi squared $a=3.3519\pm0.0463$.

For $\beta=4.0$, the fit constant is $a=3.36547\pm0.01812$ for variance, while for Chi squared $a=3.31621\pm0.01044$.

Figure 9: Kappa critical as a function of the volume size