Etude de la suite 
$$(u_n)$$
 définie par  $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n - 6}{u_n - 4}$ .

## 1. Généralités

La fonction  $f: x \mapsto \frac{x-6}{x-4} = 1 - \frac{2}{x-4}$  est strictement croissante sur  $]-\infty, 4[$  et  $]4, +\infty[$  Elle réalise une bijection de  $\mathbb{R}\setminus\{4\}$  dans  $\mathbb{R}\setminus\{1\}$ , et sa réciproque est  $f^{-1}: x \mapsto \frac{4x-6}{x-1}$ 



La fonction  $g: x \mapsto f(x) - x$  a pour expression,  $\forall x \neq 4$ 

$$g(x) = -\frac{x^2 - 5x + 6}{x - 4} = -\frac{(x - 2)(x - 3)}{x - 4}$$

et pour signe

| x    |   | 2 |   | 3 |   | 4 |   |
|------|---|---|---|---|---|---|---|
| g(x) | + | 0 | _ | 0 | + |   | _ |

f admet ainsi 2 points fixes : 2 et 3

<u>Intervalles stables</u>: les intervalles  $]-\infty, 2[, ]2, 3[$  sont stables par f

## 2. <u>Discussion</u>

- $1^{\text{er}}$  cas :  $u_0 \in \{2,3\}$  : alors  $(u_n)$  est constante.
- $\underline{2^{\text{ème}} \text{ cas} : u_0 < 2}$ : alors  $\forall n \in \mathbb{N}, \ u_n < 2$  (stabilité de ] $-\infty$ , 2[), et donc  $g(u_n) > 0$ . Croissante et majorée par 2,  $(u_n)$  converge vers son unique point fixe dans cet intervalle : 2
- $\begin{array}{ll} & \underline{3^{\mathrm{\grave{e}me}}} \; \mathrm{cas} : 2 < u_0 < \underline{3} : \mathrm{alors} \; \forall n \in \mathbb{N}, \; 2 < u_n < 3, \, \mathrm{et} \; \mathrm{donc} \; g \left(u_n\right) < 0 \\ & \mathrm{D\acute{e}croissante} \; \mathrm{et} \; \mathrm{minor\acute{e}e} \; \mathrm{par} \; 2, \left(u_n\right) \; \mathrm{converge} \; \mathrm{vers} \; \mathrm{un} \; \mathrm{point} \; \mathrm{fixe} \; \ell \; \mathrm{de} \; f. \\ & \mathrm{Mais} \; \forall n \in \mathbb{N}, \; u_n \leqslant u_0 < 3 \; \mathrm{donc} \; \ell < 3 : \left(u_n\right) \; \mathrm{converge} \; \mathrm{vers} \; 2. \end{array}$
- $4^{\text{ème}}$  cas :  $u_0 > 4$  : alors  $u_1 < 1$  : on est ramené au  $2^{\text{ème}}$  cas :  $(u_n)$  converge vers 2.
- $\underline{5^{\text{ème}}}$  cas:  $3 < u_0 < \underline{4}$ : montrons qu'il existe  $n_0 \in \mathbb{N}$  tel que  $u_{n_0} \geqslant 4$ Par l'absurde, sinon, on aurait  $\forall n \in \mathbb{N}, \ u_n < 4$ . On montre par récurrence que  $\forall n \in \mathbb{N}, \ 3 < u_n < 4$ . Mais alors  $g(u_n) > 0$ , donc  $(u_n)$  croissante et majorée, converge vers un réel supérieur à  $u_0$ . Mais il n'y a pas de point fixe supérieur à  $u_0$  contradiction.
  - \* Si  $u_{n_0}=4$ , l'a suite n'est plus définie au delà de  $n_0$
  - \* si  $u_{n_0} > 4$ , alors  $u_{n_0+1} < 1$ , et on est ramené au  $2^{\text{ème}}$  cas :  $(u_n)$  converge vers 2.

## **Conclusion**:

$$(u_n)$$
 converge vers  $2$  sauf dans deux cas :  $u_0=3$  ou  $u_0\in ]3,4[$  et  $\exists n_0\in \mathbb{N}\ /\ u_{n_0}=4$ 

**3.** Une autre approche : si  $u_0 \neq 3$ , alors  $\forall n \in \mathbb{N}, \ u_n \neq 3$ En effet si  $u_n=3$  alors  $u_0=\left(f^{-1}\right)^n(u_n)=\left(f^{-1}\right)^n(3)=3$  contradiction. Supposons donc  $u_0\neq 3$  et posons pour tout  $n\in\mathbb{N}$ 

$$v_n = \frac{u_n - 2}{u_n - 3}$$

Si  $v_n \neq 1$ , on a donc

$$u_n = \frac{3v_n - 2}{v_n - 1}$$

De plus  $\forall n \in \mathbb{N}$ ,

$$v_{n+1} = \frac{\frac{u_n - 6}{u_n - 4} - 2}{\frac{u_n - 6}{u_n - 4} - 3} = \frac{u_n - 6 - 2(u_n - 4)}{u_n - 6 - 3(u_n - 4)} = \frac{2 - u_n}{6 - 2u_n} = \frac{1}{3}v_n$$

Ainsi (suite géométrique)

$$\forall n \in \mathbb{N}, \ v_n = \frac{1}{3^n} v_0$$

Alors pour  $n \ge 1$ , on a

$$v_n = 1 \iff v_0 = 3^n \iff u_0 = \frac{3^{n+1} - 2}{3^n - 1}$$

- $v_n = 1 \Longleftrightarrow v_0 = 3^n \Longleftrightarrow u_0 = \frac{3^{n+1}-2}{3^n-1}$  Supposons qu'il existe  $n_0 \in \mathbb{N}^* \ / \ u_0 = \frac{3^{n+1}-2}{3^n-1}$ : alors la suite  $(u_n)$  n'est définie que pour  $n < n_0$
- Sinon, on a  $\forall n \in \mathbb{N}$

$$u_n = \frac{2 - v_0/3^{n-1}}{1 - v_0/3^n}$$
, où  $v_0 = \frac{u_0 - 2}{u_0 - 3}$ 

On en déduit que

 $(u_n)$  converge vers 2

## Etude de la suite $(u_n)$ définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \cos u_n$ .

**1.** Généralités : l'intervalle [0,1] est stable par  $\cos$ , donc  $\forall n \in \mathbb{N}, u_n \in [0,1]$ .

Soit 
$$g: x \mapsto \cos(x) - x$$
 de dérivée  $g': x \mapsto -\sin x - 1 < 0$  sur  $[0, 1]$ .

Donc g continue strictement décroissante réalise une bijection de [0,1] dans  $[\cos(1)-1,1]$ 

Or  $\cos 1 - 1 < 0$ : donc  $0 \in [\cos(1) - 1, 1]$ : il en résulte l'existence d'un unique point fixe  $\alpha$  de  $\cos \sin[0, 1]$ .

$$\exists!\alpha\in[0,1]\ /\ \cos\alpha=\alpha$$

**2.** Pour  $n \in \mathbb{N}$ , posons  $v_n = u_{2n}$ ,  $w_n = u_{2n+1}$  et  $h = \cos \circ \cos$ . On a pour tout entier n:

$$\begin{cases} v_{n+1} = u_{2n+2} = \cos(u_{2n+1}) = \cos\cos(u_{2n}) = h(v_n) \\ w_{n+1} = u_{2n+3} = \cos(u_{2n+2}) = \cos\cos(u_{2n+1}) = h(w_n) \end{cases}$$

Or h est croissante sur [0,1] (stable par h) donc  $(v_n)$  et  $(w_n)$  sont monotones.

Comme 
$$\begin{cases} v_1 = \cos 1 > 0 = v_0 \\ w_1 = \cos (\cos 1) < 1 = w_0 \end{cases}, (v_n) \text{ croit et } (w_n) \text{ décroit. Elles convergent donc toutes les deux.}$$

De plus, la fonction  $\varphi: x \mapsto h(x) - x$  admet pour dérivée  $\varphi': x \mapsto \sin(x)\sin(\cos(x)) - 1$ 

Donc  $\varphi' < 0$  sur [0,1] et  $\varphi$  est injective. Comme  $\varphi(\alpha) = \cos(\cos(\alpha)) = \cos(\alpha) = \alpha$ , on en déduit que h admet  $\alpha$  pour unique point fixe sur [0,1]. Nécessairement  $(v_n)$  et  $(w_n)$  convergent vers  $\alpha$ , et on conclut :

$$(u_n)$$
 converge vers  $\alpha$ 

**Remarque:** on a  $u_{10} \leqslant \alpha \leqslant u_{11}$ .

Une calculatrice donne  $u_{10} \simeq 0.731$  et  $u_{11} \simeq 0.745$  à  $10^{-3}$  d'où  $u_{11} - u_{10} < 0.015$ 

On en déduit que  $\boxed{\alpha \simeq 0.731 \ \mathrm{par} \ \mathrm{défaut} \ \mathrm{a} \ 1.5.10^{-2} \ \mathrm{près}}$ 

**3.** Une autre approche : soit  $k = \sin 1 \simeq 0.84 \in ]0,1[$  : montrons que  $\cos$  est k-contractante sur [0,1] :

Soient  $0 \leqslant x \leqslant y \leqslant 1$ . Alors

$$\left|\cos y - \cos x\right| = \left|\int_{y}^{x} \sin t \, dt\right| \leqslant \int_{x}^{y} \left|\sin t\right| \, dt \leqslant k \int_{x}^{y} dt = k \left(y - x\right) = k \left|y - x\right| \text{ CQFD.}$$

On a vu que  $\forall n \in \mathbb{N}, \ u_n \in [0,1]$ . On applique l'inégalité précédente à  $u_n$  et  $\alpha \in [0,1]$ :

$$\left|\cos u_{n+1} - \cos \alpha\right| \leqslant k \left|u_n - \alpha\right|$$

i.e.

$$|u_{n+1} - \alpha| \leqslant k |u_n - \alpha|$$

Par récurrence, on montre alors que

$$\forall n \in \mathbb{N}, \quad |u_n - \alpha| \leqslant k^n |u_0 - \alpha| = k^n \alpha$$

<u>Conclusion</u>: d'après le théorème des gendarmes  $(u_n)$  converge vers  $\alpha$ 

**Remarque:** cela fournit une majoration de l'erreur: par exemple en prenant k < 0,85, et  $\alpha < \frac{3}{4}$ ,

$$\forall n \in \mathbb{N}, |u_n - \alpha| < 0.85^n$$

Avec n = 10, on a  $|u_{10} - \alpha| < (0.75) \times (0.85)^{10} < 0.15$ . Une calculatrice donne:  $u_{10} \simeq 0.7$  à  $1.5.10^{-1}$ 

Mieux : on est sûr d'avoir  $|u_n-\alpha|<10^{-10}$  pour  $0.85^n\leqslant \frac{10^{-10}}{0.75},$  soit

$$n\geqslant\frac{-10-\log_{10}\left(0.75\right)}{\log_{10}\left(0.85\right)}\quad:\quad\underline{n=140\text{ convient}}$$

 $u_{140} \simeq 0.7390851332 \quad \mbox{est une approximation de } \alpha \ \mbox{à } 10^{-10} \ \mbox{près}.$ 

En fait n = 52 suffit!..