GEO 309 – Intro to GIS

Joe Blankenship Department of Geography University of Kentucky

Topics

- Discussion Kelso
- Projection
 - Distortion
 - Selecting a Projection
- Coordinate reference systems
 - Geographic and projected coordinate systems
 - Global vs Local
 - Coordinate transformations
 - Permanent vs on-the-fly

Discussion – Kelso

• Kelso, C. 1999. Ideology of mapping in apartheid South Africa. South African Geographical Journal 81(1): 15-21.

- From globe to map
 - Geodesy study of size/shape of planet
 - Geometric (Euclidean) space
 - Relationships between objects
 - Geoid actual size/shape of the planet
 - Oblate Ellipsoid geometric shape of planet
 - Spheroidal reference surface at sea level

- Great Circles
 - Divide sphere in half
 - Hemispheres
 - Measuring long distances
- Small Circles
 - Less than a great circle

- Modeling a projection based on light source
 - Gnomonic azimuthal
 - Light at center, distorts area and shape
 - Great circle routes as straight lines
 - Stereographic azimuthal
 - Light at antipode, true shape, distorts area
 - Orthographic azimuthal
 - Light at infinite distance, distorts shape and area

- Modeling a Projection using simple geometric shapes
 - Classes (Cylinder, Cone, Plane)
 - Cases (Tangent, Secant)
 - Aspects (Polar, Equatorial, Transverse, Oblique)
 - Can also use more advanced mathematical projections
 - The underlying geodetic reference system
 - Better known as a Datum (e.g., WGS 84, NAD 83)
 - Must maintain link to a coordinate reference system

Map Projection Surfaces Cylindrical **Azimuthal** Conic Orientation Transverse Oblique Tangent Secant R. Dodson, 8/97

Three Map Projections Centered at 39 N and 96 W

Peter H. Dana 6/23/97

- Distortion
 - Direction
 - Distance
 - Size (Area)
 - Shape
- Levels of distortion
 - Scale of map
 - Purpose of map

- Azimuthal (true direction)
 - Can occur in an equidistant, equivalent, or conformal map
 - Direction from point of tangency true
- Equidistant (true distance/scale)
 - Can occur in a azimuthal, equivalent, or conformal map
- Equivalent (equal area)
 - Distorts shape
- Conformal (true shape)
 - Distorts area
- Compromise

- Overcoming distortion
 - Mathematically-combined projections
 - Compression
 - Warps area without changing shape
 - Shearing
 - Warp features without changing area
 - Tearing
 - Cut down on shearing and compression

- Selecting projections
 - What aspect(s) of a spatial phenomena do you want to analyze?
 - Accuracy of location, size, or shape?
 - Large scale or small scale?
 - Where is the center of the map?
- Snyder's Hierarchical Selection Guideline

- Selecting projections
 - General guidelines
 - Cylindrical for equatorial regions
 - Conical for temperate zones
 - Planar/azimuthal for polar regions
 - You will never be able to get rid of 100% distortion
 - Projections just minimize aspects of distortion
 - From center of map outward

- Reference system (Cartesian) consisting of a point of origin and units of measurement
 - Latitude & Longitude
 - Geographic coordinate system
 - Related to geodetic datum
 - Projected coordinate system
 - Easting (generally x) and Northing (generally y)
 - But there are exceptions
 - UTM
 - State Plane
 - Township and Range

- Relationship between Projection and CRS
 - Projections convert globes to planes
 - Coordinate systems reference locations
- Which CRS to use?
 - Level of accuracy and precision
 - Limits of software
 - Coordinate system of original & existing data

Graticules

Produced by the Cartographic Research Lab at the University of Alabama for Robert J. Norrell's *The Alabama Journey*. It is used here with his permission.

Wilson, GEO109, 2018

- Latitude
 - Parallels or Y-axis
 - Equator at 0° ($^{\circ}$ = degrees)
 - To 90° North and South
- Longitude
 - Meridians of X-axis
 - Prime Meridian at 0°
 - To 180° East and West

- 1 degree = 60 minutes (')
 - 1 minute = 60
 seconds (")
- dd°mm'ss"
- dd.mmss.xx

- Universal Transverse Mercator (UTM)
 - Projected coordinate system
 - 60 North/South zones
 - Number increases west to east
 - Each zone is a 6 degree longitudinal strip
 - With a North and South half each with their own origin
 - Measurements in meters (Easting and Northing)

UTM Zone Numbers

Peter H. Dana 9/7/94

- Universal Transverse Mercator (UTM)
 - Based on Mercator
 - Popular with US DoD
 - Meant to minimize distortion between
 - 84N and 80S
 - Example
 - 14 R 621160.98 3349893.53
 - Zone 14 R, Easting in meters, Northing in meters

- State Plane Coordinate System (SPCS)
 - Tailored for a small portion of an ellipsoid covering all or part of a state
 - Originally based on North American Datum 1927
 - NAD 27
 - SPCS 83 was later based on NAD 83
 - Developed to provide
 - Local reference systems tied to a national datum
 - Managed by US National Geodetic Survey

- State Plane Coordinate System (SPCS)
 - Simple Cartesian coordinate system
 - 124 geographic zones
 - Each state has more than one zone
 - At county lines
 - Used for "plane surveying" methods
 - Each zones coordinate system is highly accurate

Projected Coordinate Systems

KENTUCKY PROJECTIONS
North and South State Plane
Lambert Conformal Conic (Secant Cone)

State Plane North Zone

- Township and Range
 - A means of surveying for a PLSS
 - Public Land Survey System
 - Also known as Rectangular Survey System
 - Surveying, sale, settlement of new lands
 - Established in 1785 in what is now Ohio
 - Managed by US Bureau of Land Management
 - Not used in all parts of US

- Township and Range
 - Township
 - A 6 mile square parcel containing 36 sections
 - A measure North or South of 6 miles
 - Range
 - A measure East or West of 6 miles
 - Baseline
 - Latitude on initial point of survey
 - Principal Meridian
 - Longitude on initial point of survey

- Transformations
 - GIS software will allow you to change
 - Projections
 - Coordinate Systems
 - It can do this:
 - Permanently
 - Creation of a new layer with target projection
 - "On-the-fly"
 - GIS software alters layer in memory

This is fine for data exploration or testing elements of map design

