SOMPHONY: Visualizing Symphonies using 3D Self-Organizing Maps

Cruz, Edwardo Dionisio, Jefferson Fukuoka, Kenji Portales, Naomi

Advised by: Fritz Kevin Flores

PRESENTATION OUTLINE

1. Research Description

- a. Introduction
- b. Research Gap
- c. Research Objectives with respective scopes and limitations
- d. Research Significance

2. Research Methodology

- a. Research Activities
- b. Calendar of Activities

Introduction

Musical Eras

Baroque Period (1600 to 1750) Classical Period (1750 to 1820) 19th Century (1814-1914) Romantic Period (1830-1910) 20th Century (1900-2000)

A History of Western Music (Grout, D., Palisca, C. 1996) Nineteenth-Century Music (Dahlhaus, C. 1989)

A Survey on Symbolic Data-Based Music Genre Classification

- Corrêa, D. C., & Rodrigues, F. A., 2016
- Ever-expanding music database
- hard to classify music genre
- Symbolic-based music feature used for training system for genre classification (MIDI, KERN)

Automated Motivic Analysis via Melodic Clustering

- Cambouropoulos, E. and Widmer, G. (2000)
- Finding similarity in music patterns
- Use differences in pitch-intervals and rhythm as basis for splitting one musical motive (small bits of music) from another

Validating the Stable Clustering of Songs in a Structured 3D SOM

- Azcarraga, A., Caronongan, A., Setiono,
 R., & Manalili, S. (2016)
- Construct 2D SOM as 3D SOM using similar learning algorithm (cube)
- Pre-processing (learning and labelling algorithm) and construct into a cube

SOMphony: Visualizing Symphonies Using Self-Organizing Maps

- Azcarraga & Flores (2016)
- Influence of composers to others
- Compare using 2D SOMs to find similarity among symphonies

SOMphony: Visualizing Symphonies Using Self-Organizing Maps

Makes use of **jAudio** for audio feature extraction and feature is used to feed data into machine learning algorithms.

Self-Oragnizing Maps (SOMs) are used to encode the musical trajectory of the different symphonies for visual analysis

K-means Clustering is used to partition similar nodes from the SOM Map

Start End

Fig. 2. SOMphony Trajectories and Color Spectrum to designate time in the SOMphony Map

```
10 15 15
10 10 15
                           18
                     9 18 18 18
```

SOMphony map using k=21

Research Gap

 Using normalized frequency count as a basis for clustering does not consider the notion of time.

 The sequence of music with regard to time is not considered. General Objective

To develop a 3D visualization model that incorporates time series in comparing symphonies using 3D SOM's

Objective #1

To include more symphonies to the data set

- Expand the previous data set to have 5 symphonies per composer
- Composers still the same as previous data set
- Quality of music data is disregarded if limited

Objective #2

To determine optimal features to be used

- Music features that can be extracted from JAudio
- Limit features to top
 20 features based on
 decision tree
 (top-down)

Objective #3

To add the in the time series variable

- 0.5 second overlap
- Each SOM will be assigned to a 1 sec segment

Objective #4

To create a 3D visualization model for the data

- OpenGL for visualization
- Representing each map in a time series

Objective #5

To have participants listen and annotate the musical pieces for qualitative data

- 50 Participants, with musical inclination over a period of 2 months.
- 5 symphonies deemed
 by the algorithm to have
 the highest % of similarity

Objective #6

To verify the results of the 3D SOMphony through the results obtained from the human participants

- Results from the participants will be compared to the results of 3D SOMphony Only music samples
- used in the qualitative data

Machine Learning

Explore possible application of research to existing fields in machine learning

© Aatash Shah

Methodology and Experiments

Serve as basis and reference for future research related to music feature visualization and analysis

Related Systems

Results of this study can be further used to improve systems such as Automatic Playlist Generation or studies on Music Theory

© Rachel Wells

Automatic Playlist Generation (Xingting Gong & Xu Chen, Stanford University)

Fields Outside Computer Science

The findings in this research may be used in almost any field that is time sensitive such as network traffic.

© Jose Lepez

Research Methodology

Research Activities

- Concept Formulation and Review of Related Literature
- Data Gathering
- Pre-processing
- Training
- Visualization Development
- Performance Evaluation and Human Evaluation
- Data Analysis
- Documentation

Data Gathering

- Additional 2 symphonies per composer
- Obtained through online or physical means (Youtube, CD's)
- File type and bitrate are not taken into consideration
- Audio quality is disregarded

Pre-Processing

- Audio files would be converted into wav files in preparation for splitting
- Split audio files into 1 second segments overlapping at 0.5 second using WaveSplitter

Pre-Processing

 Segments will undergo feature extraction using jAudio.

 Run RegEx script on the .xml file to extract the unnecessary text in preparation for labeling.

Convert resulting file to .csv

Pre-Processing

- Label the excel file columns
 - Composer (A)
 - Composition (B)
 - Segment Name (C)

24	А	В	C
1	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 001.wav
2	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 002.wav
3	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 003.wav
4	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 004.wav
5	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 005.wav
6	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 006.wav
7	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 007.wav
8	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 008.wav
9	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 009.wav
10	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 010.wav
11	Beethoven	Beethoven Sym No. 1	[Beethoven] Symphony No. 1 - 1. Adagio molto - Allegro con brio 011.wav

Feature Selection

- Initial feature selection results to at most 600 features.
- Trim down to 20 features using decision tree learning.
- First 20 nodes
 (top-down) would
 be selected as the
 top features.

Visualization

- OpenGL
- Euclidean Distance

Performance Evaluation

- 50 human participants within 2 months
- Knowledgeable in music
- To annotate marked regions in the player.
- Also given the freedom to annotate unmarked regions.

Calendar of Activities for 2017

Activities	JUN	JUL	AUG	SEPT	ост	NOV	DEC
1	תתת	nnn	J	 			
2			Л	תתת	II.		
3	 		 	nn	II.	תתתת	II.
4			 	 		nn	II.
5				I.I.	I.I.	תת	.ī
6			 	 			
7	תת	nnn	I.I.	nn.	תתת	nnn	nn

- 1. Concept formulation and RRL
- 2. Data gathering
- 3. Pre-processing
- 4. Feature Selection
- 5. Visualization Development
- 6. Performance Evaluation and Human Evaluation
- 7. Documentation

Legend: 🎜 - 1 week (10 hours)

Calendar of Activities for 2018

Activities	JAN	FEB	MAR	APR	MAY	JUN	JUL
1			 	 	 	; ; ; ;	
2			 			 	
3			 	 		 	
4	nn,		 	 	 	 	
5	II.	nnn					
6			תתת	תתת	תתת	וות	
7	ıı.	nnn	תתתת	תתת	nnn	תתתת	II.

- 1. Concept formulation and RRL
- 2. Data gathering
- 3. Pre-processing
- 4. Feature Selection
- 5. Visualization Development
- 6. Performance Evaluation and Human Evaluation
- 7. Documentation

Summary of Proposal

- Using normalized frequency count as a basis for clustering does not consider the notion of time.
- To develop 3D visualization method for SOMs

End of Presentation

Thank you for listening!

Self-Organizing Maps (SOM)

- Input space is represented into a2D
- Used to encode the musical trajectory of the different symphonies for visual analysis

K-means Clustering

-) Used to partition similar nodes from the SOM Map
 - Nodes in close proximity get grouped into a cluster
 - Clusters represent similarly sounding segments of music
 - Each music segment will have a Best Matching Unit that assigns where it belongs in a cluster

Time Series

- Serial data that includes equally divided points in time order

Visualization

- 2D to 3D using OpenGL as visualization