Eksamensnoter - Computational Geometry

André Oskar Andersen (wpr684)

March 31, 2020

33 Computational Geometry

- Computational geometry is the branch of computer science that studies algorithms, for solving geometric problems
- The input to a computational-geometry problem is typically a description of a set of geometric objects, such as a set of points, a set of line segments, or the vertices of a polygon in counterclockwise order
- The output is often a response to a query about the objects, such as whether any of the lines intersect, or perhaps a new geometric object, such as the convex hull of the set of points
- In this chapter, we look at a few computational-geometry algorithms in two dimensions. We represent each input object by a set of points $\{p_1, p_2, p_3, ...\}$, where $p_i = (x_i, y_i)$ and $x_i, y_i \in \mathbb{R}$

33.1 Line-segment properties

- A convex combination of two distinct points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ is any point $p_3 = (x_3, y_3)$ such that for some α in the range $0 \le \alpha \le 1$, we have $x_3 = \alpha x_1 + (1 \alpha)x_2$ and $y_3 = \alpha y_1 + (1 \alpha)y_2$. We also write that $p_3 = \alpha p_1 + (1 \alpha)p_2$. Intuitively, p_3 is any point that is on the line passing through p_1 and p_2 and is on or between p_1 and p_2 on the line.
- Given two distinct points p_1 and p_2 , the line segment $p_1\bar{p}_2$ is the set of convex combinations of p_1 and p_2
- We call p_1 and p_2 the endpoints of segment $p_1\bar{p}_2$.
- Sometimes the ordering of p_1 and p_2 matters, and we speak of the *directed* segment $\overrightarrow{p_1p_2}$
- If p_1 is the origin, then we can treat the directed segment $\overrightarrow{p_1p_2}$ as the vector p_2

Cross products

• We can interpret the cross product $p_1 \times p_2$ as the signed area of the parallelogram formed by the points (0,0), p_1 , p_2 and $p_1 + p_2 = (x_1 + x_2, y_1 + y_2)$. An equivalent definition gives the cross product as the determinant of a matrix:

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = -p_2 \times p_1$$

• if $p_1 \times p_2$ is positive, then p_1 is clockwise from p_2 , with respect to the origin (0,0); if this cross product is negative, then p_1 is counterclockwise from p_2 . A boundary condition arises if the cross product is 0; in this case, the vectors are *colinear*, pointing in either the same or opposite directions

• To determine whether a directed segment $\overline{p_0p_1}$ is closer to a directed segment $\overline{p_0p_2}$ in a clockwise direction or in a counterclockwise direction with respect to their common endpoint p_0 , we simply translate to use p_0 as the origin. That is, we let $p_1 - p_0$ denote the vector $p'_1 = (x'_1, y'_1)$, where $x'_1 = x_1 - x_0$ and $y'_1 = y_1 - y_0$, and we define $p_2 - p_0$ similarly. We then compute the cross product $(p_1 - p_0) \times (p_2 - p_0) = (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)$. If this cross product is positive, then $\overline{p_0p_1}$ is clockwise from $\overline{p_0p_2}$; if negative, it is counterclockwise.

Determining whether consecutive segments turn left or right

- Our next question is whether two line segments $\overline{p_0p_1}$ and $\overline{p_1p_2}$ turn left or right at point p_1 . Equivalently, we want a method to determine which way a given angle $\angle p_0p_1p_2$ turns.
- We simply check whether directed segment $\overline{p_0p_2}$ is clockwise or counterclockwise relative to directed segment $\overline{p_0p_1}$. To do so, we compute the cross product $(p_2 - p_0) \times (p_1 - p_0)$. If the sign of this cross product is negative, then $\overline{p_0p_2}$ is counterclockwise with respect to $\overline{p_0p_1}$, and thus we make a left turn at p_1 . A positive cross product indicates a clockwise orientation and a right turn. A cross product of 0 emeans that points p_0, p_1 , and p_2 are colinear.

Determining whether two lines segments intersect

- To determine whether two line segments intersect, we check whether each segment straddles the line containing the other. A segment $\overline{p_1p_2}$ straddles a line if point p_1 lies on one side of the line and point p_2 lies on the other side. A boundary case arises if p_1 or p_2 lies directly on the line. Two line segments intersect if and only if either (or both) of the following conditions holds:
 - 1. Each segment straddles the line containing the other
 - 2. An endpoint of one segment lies on the other segment (comes from the boundary case)

Determining whether any pair of segments intersects

- This section presents an algorithm for determining whether any two line segments in a set of segments intersect
- The algorithm runs in $O(n \lg n)$ time, where n is the number of segments we are given. It determines only whether or not any intersection exists; it does not print all the intersections.
- In *sweeping*, an imaginary vertical *sweep line* passes through the given set of geometric objects, usually from left to right. The line-segment-intersection algorithm in thi ssection considers all the line-segment endpoints in the left-to-right order and checks for an intersection each time it encounters an endpoint.

Ordering segments

- We can order the segments that intersect a verical sweep line according to the y-coordinates of the points of intersection
- Consider two segments s_1 and s_2 . We say that these segments are *comparable* at x if the vertical sweep line with x-coordinate x intersects both of them. We say that s_1 is *above* s_2 at x, written $s_1 \succeq s_2$, if s_1 and s_2 are comparable at x and the intersection of s_1 with the sweep line at x is higher than the intersection of s_2 with the same sweep line, or if s_1 and s_2 intersect at the sweep line.
- For a given x, the relation " \succeq_x " is a total preorder for all segments that intersect the sweep line at x. That is, if segments s_1 and s_2 each intersect the sweep line at x, then either $s_1 \succeq s_2$ or $s_2 \succeq s_1$, or both

Moving the sweep line

- Sweeping algorithms typically manage two sets of data:
 - 1. The *sweep-line status* gives the relationships among the objects that the sweep line intersects
 - 2. The event-point schedule is a sequence of points, called event points, which we order from left to right according to their x-coordinates. As the sweep progresses from left to right, wehnever the sweep line reaches the x-coordinate of an event point, the sweep halts, processes the event point, and the resumes. Changes to the sweep-line status occur only at event points
- Each segment endpoint is an event point. We sort the segment endpoints by increasing x-coordinate and proceed from left to right. When we encounter a segment's left endpoint, we insert the segment into the sweep-line status, and we delete the segment from the sweep-line status upon encountering its right endpoint. Whenever two segments first become consecutive in the total preorder, we check whether they intersect

33.4 Finding the closest pair of points

- Consider the problem of finding the closest pair of points in a set Q of $n \ge 2$ points.
- The divide-and-conquer algorithm for this problem, has a running time described by T(n) = 2T(n/2) + O(n)

The divide-and-conquer algorithm

- Each recursive invocation of the algorithm takes as input a subset $P \subseteq Q$ and arrrays X and Y, each of which contains all the points of the input subset P. The points in array X are sorted so that their x-coordinates are monotonically increasing. Similarly, array Y is sorted by monotonically increasing y-coordinate.
- A given recursive invocation with inputs P, X, and Y first checks whether $|P| \leq 3$. If so, the invocation simply performs the brute-force method: try all $\binom{|P|}{2}$ pairs of points and return the closest pair. If |P| > 3, the recursive invocation carries out the divide-and-conquer paradigm as follows:
 - **Divide**: Find a line l that bisects the point set P into two equally sized sets P_L and P_R . Divide the array X into arrays X_L and X_R , which contain the points of P_L and P_R respectively, sorted by monotonically increasing x-coordinate. Similarly, divide the array Y into arrays Y_L and Y_R , which contain the points of P_L and P_R respectively, sorted by monotonically increasing y-coordinate.
 - Conquer: Having divided P into P_L and P_R , make two recursive calls, one to find the closest pair of points in P_L and the other to find the closest pair of points in P_R . The input to the first call are the subset P_L and arrays X_L and Y_L ; the second call receives the inputs P_R , X_R and Y_R . Let the closest-pair distances returned for P_L and P_R be δ_L and δ_R , respectively, and let $\delta = \min(\delta_L, \delta_R)$
 - Combine: The closest pair is either the pair with distance δ found by one of the recursive calls, or it is a pair of points with one point in P_L and the other in P_R . If a pair of points has distance less than δ , both points of the pair must be within δ units of line l. Thus, they both must reside in the 2δ -wide vertical strip centered at line l. To find such a pair, we do the following:
 - 1. Create an array Y', which is the array Y with all points not in the 2δ -wide vertical strip removed. The array Y' is sorted by y-coordinate, just as Y is.
 - 2. For each point p in the array Y', try to find points in Y' that are within δ units of p. Only the 7 points in Y' that follow p need to

- be considered. Compute the distance from p to each of these 7 points, and keep track of the closest-pair distance δ' found over all pairs of points in Y'
- 3. If $\delta' < \delta$, then the verical strip does indeed contain a closer pair than the recursive calls found. Return this pair and its distance δ' . Otherwise, return the closest pair and its distance δ found by the recursive calls.

Correctness

- By bottoming out the recursion when $|P| \leq 3$, we ensure that we never try to solve a subproblem consisting of only one point.
- We need only to check the 7 points following each point p in array Y'; suppose that at some level of the recursion, the closest pair of points is $p_L \in P_L$ and $p_R \in P_R$. Thus, the distance δ' between p_L and p_R is strictly less than δ . Point p_L must be on or to the left of line l and less than δ units away. Similarly, p_R is on or to the right of l and less than δ units away. Moreover, p_L and p_R are within δ units of each other vertically. Thus, p_L and p_R are within a $\delta \times 2\delta$ rectangle centered at l.
- We next show that at most 8 points of P can reside within this $\delta \times 2\delta$ rectangle. Consider the $\delta \times \delta$ square forming the left half of this rectangle. Since all points within P_L are at least δ units apart, at most 4 points can reside within this square. Similarly, at most 4 points in P_R can reside within the δ square forming the right half of the rectangle. Thus, at most 8 points of P can reside within $\delta \times 2\delta$ rectangle.
- Now, we can see why we need to check only the 7 points following each point in the array Y'. Still assuming that the closest pair is p_L and p_R , let us assume that p_L precedes p_R in array Y'. Then, p_R is in one of the 7 positions following p_L . Thus, we have shown the correctness of the closest-pair algorithm.