DSP Lab02 Report

ECG 訊號量測與處理

朱雅萱 109101011 簡惠心 112511092 林柏芝 112511103

壹、練習運用 INA128 儀表放大器

(-) R_g 的部分請使用可變電阻,設計放大倍率為 100 倍的放大器基於 Gain 公式:

$$G = 1 + \frac{50k\Omega}{R_G}$$

放大倍率的電阻值 R_G 理論值為 505Ω 。

Simplified Schematic

貳、討論

(一) 第一部份

甲、調整可變電阻 R_g 的阻值(1k、5k、10k),請紀錄 R_g 與 $V_{out}/(V_2-V_1)$ 的放大倍率關係圖。

$R_G(\Omega)$	Measured Gain	
1k	60.86	1000 100

乙、產生不同頻率 $(1Hz\sim100kHz)$ 的 input signal (V_{IN}^+) ,觀察其頻率響應的關係,將結果圖畫出來。

根據 INA128 的 Gain vs. frequency 關係圖,當我們的 Gain 設為 100 時, 100Hz~100kHz 之間的增益皆為定值,直到超過 100kHz 增益才開始下降。實驗結果與 datasheet 關係圖相同,在 100Hz~100kHz 之間的頻率響應皆為定值。

Figure 7-1. Gain vs Frequency

(二) 第二部分:

個人問題:

甲、電壓峰值 Peak-to-peak of Vo =?

乙、R 峰值間隔時間 =?

姓名	R峰值間隔時間	
姓石	(ms)	
柏彣	685	614 FRANK S Filtered ECG Filt Live years, "Time Greater Code File
雅萱	1053	PROUNE 3 Filtered ECO (Fill Lose pass) - Time Domain A A C C C C C C C C C C C C C C C C C

丙、心律 =? (beat per minute)

姓名	心律(beat per minute)
柏彣	(1/0.685)*60 =87.59
雅萱	(1/1.053)*60 = 56.98
惠心	(1/0.941)*60 = 63.76

團體問題:

丁、(量測穩定度): 當身體或手腳稍作移動時以及身體靜止時, ECG 訊號會有什麼變化?造成的電壓改變幅度有多大?

我們分別採計三種動作:手臂在胸前上下揮動、手指重複抓握、來回踢腳。由下圖可見,在肢體有移動中, ECG 訊號的 QRS 波、P 波與 T 波特徵非常不明顯;尤其在手指抓握上,幾乎無法辨認各個波型訊號。

在靜止情況下,經處理後的 QRS 波峰值約為 0.08-0.12V 之間,但在其餘情況下 ecg 訊號的峰值可能只有 0.04-0.06V 之間。 Ecg 訊號谷值中,來回踢腳的谷值比其他組的都大,其電壓來到-0.2V,遠大於其他組-0.04-0.06 之間。

動作

戊、(類比方法):將 Vo 另外外接如右圖之 RC 低通濾波器(可自行決定電阻 阻值與電容大小),觀察心電圖波形有何變化?

我們選用 106k 電阻與 0.05uF 電容,設計一個-3dB 截止頻率為 30Hz 的 RC 低通 濾波器。

由下表可見,無經過低通濾波器的 FFT 頻譜在 30Hz 以上的能量大於經過 RC 低通濾波器的能量。例如在 60Hz 市電的雜訊上,兩者的能量差約為 11.63dB。

己、(數位方法 1):基於取樣率 1kHz 前提下,請設計數位濾波器,或是其他

DSP 方法,是否對 ECG 訊號有較好之辨識度?請完整說明您所採用之 所有 DSP 處理之流程以及結果。

我們分別設計並比較三種數位濾波器:原始訊號濾除 DC 直流、FIR low pass filter、Wavelet transform。

A. Raw signal (減去 DC component)

將 raw signal 減去整個訊號的平均 (DC component),可見幾乎看不到 ECG 波型,都被 noise 淹沒了。從 FFT 中也可觀察到在 60 Hz 附近有很嚴重的 powerline noise。

ECG 原始訊號(Time domain)

ECG 原始訊號(Frequency domain)

B. [Method 1] 單純使用 FIR low pass filter

在 FIR low pass filter 設計上, cutoff frequency 為 40 Hz, order 為 200 階。 經處理過後的波型,雖然可大致辨認 QRS complex、T 波等,但還是有很多 noise,仍影響臨床上的判讀。

在FFT 頻譜中,則可見 60Hz 雜訊已被大幅過濾了。

經 FIR LPF 處理的 ECG 訊號(Time domain)

經 FIR LPF 處理的 ECG 訊號(Frequency domain)

此濾波器的頻率響應

我們將經過低通濾波之後的波型放大來看如下圖, noise 部分的 peak to peak 時間是 1.431-1.397=0.034 秒,也就是大約 29.5 Hz。

為了觀察降低截止頻率與輸出波形的關係,以下分別使用更低的截止頻率的低通濾波器。截止頻率分別為 30 Hz、20 Hz、15 Hz。

可以看到隨著截止頻率越來越低,波型就越平滑。然而我們想看的生理資訊,例如 QRS complex 的高度,也受到影響。在醫學上,QRS complex 的高度是評估某些疾病的依據,所以雖然這樣 filter 掉雜訊,但同時也損害了生理資訊,影響診斷的正確性。

Cut off frequency=30Hz

Cut off frequency=20Hz

Cut off frequency=15Hz

結論是我們所需要的生理資訊跟 noise 的頻率是分不開的,單純的使用 Fourier based 的方法很難兼顧 noise 和生理資訊。

C. [Method 2] 使用 Wavelet transform

在上個方法中,我們發現僅使用 Fourier based 的方法很難兼顧 noise 和生理資訊,故我們基於 Wavelet transform 再次設計濾波器。

Wavelet transform 簡介

小波轉換(Wavelet Transform) 是一種同時在時間域(time domain)與頻率域(frequency domain)分析訊號的方法。它利用可伸縮、可平移的「母小波(mother wavelet)」作為基底,將訊號分解成不同的尺度(scales)或頻帶(frequency bands),以觀察訊號在不同時間與頻率下的特徵。

以上為不同的 wavelet,我們這次使用的是 sym4,常用於處理 ECG 訊號

圖片來源: https://www.continuummechanics.org/wavelets.html

以下為 Wavelet transform formula:

$$\Psi_{s,\tau}\left(t\right) = \frac{1}{\sqrt{s}} \Psi\left(\frac{t-\tau}{s}\right)$$

以下為 Wavelet denoising 的流程:

- 1. 分解 (Decomposition) Multi-resolution analysis 先用低、高通濾波器分出各層頻帶的係數,再與經過 shift 和 scaling 的 basis function 卷積。
- 2. 閾值化 (Thresholding):對細節係數做閾值化去除雜訊
- 3. 重建 (Reconstruction): 由各層反向合成重建出乾淨的訊號。

為何 Wavelet transform 適合處理 ECG 訊號?

1. 心電圖 (Electrocardiogram, ECG) 是一種 non-stationary signal, 其頻率 成分會隨時間變化。

傅立葉轉換 (Fourier Transform) 假設訊號在整個時間窗內是平穩且週期性

的,因此只能提供整體的 頻率譜 (global frequency spectrum),無法指出特定頻率成分「在什麼時間」出現。

而 Wavelet Transform 有時間區域化 (time localization) 的能力,能觀察訊號中發生的瞬時事件 (transient events),例如 ECG 中短暫出現的 QRS 波群。

2. Adaptive thresholding

Low pass filter 需要人工設定固定的 截止頻率 (cutoff frequency)。一旦決定要濾除某一頻段,該頻段在所有時間點都會被去除,即使在某些時間該頻帶中包含有用的生理訊號也會一併損失。

實際上,雜訊通常在特定頻段中呈現連續的背景成分,而真正的生理訊號雖 然位於相同頻段,但在時間上是稀疏的(sparse in time),且振幅較大。

Wavelet Transform 可在每個尺度(即不同的 frequency band)上對係數進行 閾值化(thresholding):將低於閾值的係數設為零,以抑制背景噪音,同時 保留訊號中顯著的峰值。

因此,Wavelet Transform 能有效去除該頻段的背景雜訊,而不影響生理訊號 的強度與形狀。

3. multi-resolution 的特性

Short-Time Fourier Transform (STFT) 可以在不同時間觀察各頻率的能量,但其時間解析度 (time resolution) 與頻率解析度 (frequency resolution) 之間存在無法兼得的權衡。

Wavelet transform 的基底小波 (basis wavelet) 會隨 time scale 伸縮:高頻成分使用較短的時間窗 (time window),以獲得良好的時間解析度;低頻成分則使用較長的時間窗,以獲得更好的頻率解析度。這種可變解析度的特性,使小波轉換特別適合分析像 ECG 這類非平穩且多時間尺度 (multi-time-scale) 的生物醫學訊號。

上圖顯示 wavelet transform 可以在不同的頻段有不同的 time resolution

圖片來源: He, Haibo & Shen, Xiaoping & Starzyk, Janusz. (2009). Power quality disturbances analysis based on EDMRA method. International Journal of Electrical Power & Energy Systems. 31. 258-268. 10.1016/j.ijepes.2009.03.017.

上圖為先經過 40 Hz low pass filter 再經過 Wavelet denoising 得到的波型

上圖為 Continuous Wavelet Transform 的時頻圖,可以看到有些頻率成分會隨心 跳週期有強度的改變

上圖紫色訊號為使用 Low pass filter (cut-off frequency = 20 Hz), 紅色為使用 Low pass filter (cut-off frequency = 40 Hz) 再使用 wavelet transaform, 差異討論如下:

- 1. 雖然看似平滑程度差不多,但使用 wavelet denoising 更能保留原始的 QRS 高度。
- 2. 紫色(使用 20Hz LPF 濾波)有較多 noise 震盪, wavelet denoising 可以將 noise 濾的更乾淨。

3. Wavelet 對於 baseline drift 的修正較佳。

庚、(數位方法 2): 上述為可視為 oversampling (取樣率>>Nyquist rate),請 試試看數位方式的 downsampling (也就是降低取樣率),您會將 downsampling factor 設計為何? 並重複上述數位方法 1 之流程 (因取 樣率不一樣,濾波器需要重新設計),可參考附件兩種不同的 downsampling 方法,亦請討論兩種不同方法之優劣。

由於 ECG 訊號大概落在 0.7Hz-30Hz 之間,nqyuist rate = 30*2=60Hz,故我們將 downsampling factor 設計成 4、取樣率設定在 1000/4=250 Hz。

我們分別設計兩種方法:

A. 按整數倍降低採樣率

在 downsampling 前,我們必須先做 prefiltering 來確保沒有超過 250/2 = 125Hz 的訊號,以避免 aliasing。

此方法的優點是頻帶保真最好,只要 anti-alias 濾波器設計得當,能最大化保留低頻 (0.7-30 Hz) 的 ECG 成分,同時阻擋大於 Nyquist rat 的高頻訊號,混疊最小。缺點則是需要額外設計 prefilter 的 lowpass filter。

B. 使用 Moving Average Filter

以下為 block 的大小為 N 的 Moving Average Filter Frequency Response:

$$|H(\omega)| = \frac{1}{N} \left| \frac{\sin\left(\frac{\omega N}{2}\right)}{\sin\left(\frac{\omega}{2}\right)} \right|$$

從圖中可以發現第一個旁辦(sidelobe)只有約-13dB,這代表對於高頻雜音的抑制表現較差,SNR可能會較低。

Moving Average Filter 的優點是不用再額外做 prefiltering,但缺點是 SNR 比較不好。

辛、討論類比處理與數位處理之間差異。

我們本次使用的類比 RC 低通濾波器為一階濾波器,在濾除上只有 20dB/decade,對於高頻雜音的抑制表現不是很足夠。若要設計更高階的類比濾 波器則又要增加電路設計的複雜度。

而使用數位濾波器,則可輕鬆實踐更高階的濾波器,讓頻率響應截止頻率更陡 峭,可達到比較好的濾波效果。

壬、觀察一下 ECG 波形是否有 drift (i.e., baseline 非為 1.65V),如有,能否用數位方式解決此問題? (hint: 可以用 DSP 解決,或是任何 drift correction 方式)

Base Line Drift 其實是極低頻的雜訊,故我們選使 cutoff frequency = 0.5Hz 的高通濾波器來濾掉低頻的雜訊,藉此解決 ECG 訊號的 drift。

由下圖可見,經由 HPF 的訊號 Base line Drift 的狀況有明顯改善。

Before HPF

After HPF

癸、當所欲量測的生理信號頻譜跟 60Hz 的干擾有所重疊時,該如何解決 這個問題?如您無此問題,不需要解決,但還是需要討論可能的解決 方法。 (hint: 也就是 60Hz 干擾要如何消除)

因為 ECG 所涵蓋資訊的頻率範圍約為 0.5~40 Hz,所以我們在這次實驗中可以直接用 notch 或是 low pass filter。然而,若以後要量測其他種類的生理訊號,而其涵蓋資訊的頻率範圍包含 60 Hz,則可以使用 wavelet transform 或是 Short Time Fourier Transform 將時間局部的頻率變化分離出來,在盡可能對原始訊號影響小下,將雜訊抑制掉。

11、闡述 oversampling (i.e., sampling rate >> Nyquist rate) 之優缺點。 (hint: 可比較上一頁投影片數位方法 1 與數位方法 2 之優缺點)

優點	抗混疊 (anti-alias) 更容易	
	可以透過 downsampling 取平均來提升 SNR	
	時間解析度較高	
缺點	計算功耗、資料量上升	

12、本實驗採用 Lead I 方式,是否其他 Lead II or III 方式較優?可自由發揮討論。

上表格分別為 Lead I, II, III 導程的訊號

以下為三個導程的方向向量示意圖:

圖片來源: https://cvphysiology.com/arrhythmias/a013a

心臟的電活動傳導方向為右上至左下,而 Lead II 幾乎與心臟平均電軸(mean electrical axis,約+59°)平行,因此它通常能捕捉到最大振幅的 P 波、QRS 波群與 T 波。在我們實際測量結果當中也可以發現到,Lead II 量測出來的 QRS 波高度最高,與 noise 的高度差異最大,SNR 最好。在臨床監測中如果只能選擇一個導程,幾乎都選 Lead II。

Reference: https://dsp.stackexchange.com/questions/9966/what-is-the-cut-off-frequency-of-a-moving-average-filter