- 1. $ff^{-1}(B) \subseteq B$; $f^{-1}f(A) \supseteq A$.
- 2. Определение счётного множества. Счётность множеств \mathbb{Q} , \mathbb{Z} , \mathbb{N}^k , Seq^f \mathbb{N} . Счётность счётного объединения счётных множеств, декартова произведения счётных множеств.
- 3. $\mathcal{P}(M)$ не равномощно M. Континуальные множества: отрезок, \mathbb{R} , Seq \mathbb{N} . Континуальность E.
- 4. Канторово множество: описание через троичную запись, «длина» 0, замкнутость.
- 5. Топологическое пространство: определение. Примеры: $(\mathbb{R}, \mathcal{O}_{std})$, $(\mathbb{R}, \mathcal{S})$; дискретная и антидискретная топологии. Прямая Зоргенфрея, плоскость Немыцкого построение, почему это не \mathcal{O}_{std} . Окрестность точки, открытое множество содержит каждую свою точку вместе с окрестностью.
- 6. База топологии. Базовое множество в открытом U, содержащее данную $x \in U$. Два свойства базы. Счётная база в $(\mathbb{R}, \mathcal{O}_{std})$, в $(\mathbb{R}, \mathcal{S})$. Базы в дискретных и антидискретных топологиях. Предбаза.
- 7. База в точке. Построение $\mathcal{B} \to \forall x \, \mathcal{B}(x); \, \forall x \, \mathcal{B}(x) \to \mathcal{B}$. Аксиомы счётности; пространство с первой, но без второй аксиомы счётности.
- 8. Топологии Зарисского. Аксиомы счётности в $\mathcal{O}_{cf}^{\mathbb{R}}$, $\mathcal{O}_{cc}^{\mathbb{R}}$, $\mathcal{O}_{cf}^{\mathbb{N}}$, $\mathcal{O}_{cc}^{\mathbb{N}}$.
- 9. Замкнутые множества; их свойства, двойственные открытым. Отрезок замкнут. Замыкание множества. Монотонность замыкания.
- 10. Замыкания \mathbb{Q} и (a,b) в \mathcal{O}_{std} и в \mathcal{S} . Замыкание пустого, замыкание объединения, замыкание замыкания. Критерий принадлежности $x \in \operatorname{Cl} A$.
- 11. Внутренность множества. Монотонность внутренности. Связь внутренности и замыкания $(X \setminus \ldots)$. Внутренность $\mathbb Q$ в $\mathbb O_{std}$.
- 12. Внутренность множества. Int X, Int $(A \cap B)$, Int Int A. Критерий принадлежности $x \in \text{Int } A$.
- 13. Применение операций Cl и Int. Cl Int Cl Int = Cl Int (Int Cl Int Cl = Int Cl). Когда все семь "доступных" множеств различны (на примере \mathcal{O}_{std}).
- 14. \mathcal{O}_{x_0} , почему это топология. База этой топологии, замыкания и внутренности в этой топологии. Стандартная топология окружности, стандартная топология отрезка.
- 15. Индуцированная топология, топология дизъюнктного объединения. Топология на двух отрезках как индуцированная и как дизъюнктное объеднение. Компоненты связности в этой топологии.
- 16. (\mathbb{R}^2 , O_{std}). Она индуцирует O_{std} на \mathbb{R} , замкнутые подмножества прямой сохраняются. Топология и графы: примеры открытых множеств, компоненты связности.
- 17. Граница множества. $\operatorname{Int}(\partial A)$, если A открыто, пуста. Пример $X \subset \mathbb{R}$ такого, что $\partial X = \mathbb{R}$. Критерий принадлежности $x \in \partial A$.
- 18. Граница и теоретико-множественные операции: 9 свойств.
- 19. Равносильность четырёх определений открытого множества на плоскости (через B_r , \tilde{B}_r , открытый и замкнутый прямоугольник). Доказательство кольцом.
- 20. Предельные точки множества. Эквивалентное определение на плоскости (беск. много точек из A). A'' = A'; $(\operatorname{Cl} A)' = A'$.
- 21. $x \in \partial A$, $x \notin A' \Rightarrow x \in A$. $x \in A'$, $x \notin \partial A \Rightarrow x \in A$.
- 22. Всюду плотные, коплотные, нигде не плотные, плотные в себе множества; сепарабельные пространства. Вс.-пл. множество пересекается с любым открытым.
- 23. ℝ сепарабельно. Вторая аксиома счётности ⇒ сепарабельность. Int Cl нигде не плотного множества.
- 24. Непрерывное отображение. Пример: $f(x) = x^2$. Композиция непрерывных непрерывна, непрерывный образ сепарабельного пространства сепарабелен. Определение гомеоморфизма. Гомеоморфность отношение эквивалентности.
- 25. Гомеоморфность двух интервалов, интервала и прямой, № и ℤ. Негомеоморфность отрезка и интервала, прямой и плоскости.
- 26. Определение топологии прямого произведения через базу, проверка свойств базы. (\mathbb{R}^2 , \mathcal{O}_{std}) как топология прямого произведения $\mathbb{R} \times \mathbb{R}$. Определение проекций pr_1 , pr_2 , непрерывность проекций.
- 27. Фактор-топология, факторное отображение: определения. Примеры: прямая с двумя началами, окружность; стягивание в точку, приклеивание по отображению.
- 28. Букет пространств. Склейки квадрата, проективная плоскость.