# Physics-Informed Neural ODEs (PINODE)

Aleksei Sholokhov, Steven Brunton, J. Nathan Kutz, Hassan Mansour, Saleh Nabi

Wednesday 17<sup>th</sup> May, 2023

### Plan of the Defense

Show topics and published papers. Mention covid

### Feature Selection for Mixed-Effect Models

#### Mixed-effect models

- Used for analyzing combined data across a range of groups.
- ▶ Use covariates to separate the **population variability** from the **group variability**.
- **Borrow strength** across groups to estimate key statistics.



### Feature Selection for Mixed-Effect Models

#### Practitioners:

- Often seek sparse models that select most informative covariates.
- ▶ Want to be **flexible but efficient** in using various sparsity-promoting terms.
- Want a library to be universal and compatible with e.g. sklearn.

Sparse Relaxed Regularized Regression (SR3) [9] showed great results for t linear models:



**Goal**: create a feature selection library that uses a relaxation approach for feature-selection in mixed-effect models.

## Linear Mixed-Effect (LME) Models

Dataset: m groups  $(X_i, Z_i, y_i)$ , i = 1, ... m, each has  $n_i$  observations

- $X_i \in \mathbb{R}^{n_i \times p}$  group *i* design matrix for fixed features
- ▶  $Z_i \in \mathbb{R}^{n_i \times q}$  group *i* design matrix for random features
- $y_i \in \mathbb{R}^{n_i}$  group i observations

#### Model:

$$y_i = X_i \beta + Z_i u_i + \varepsilon_i$$
  

$$\varepsilon_i \sim \mathcal{N}(0, \Lambda_i)$$
  

$$u_i \sim \mathcal{N}(0, \Gamma)$$

#### Equivalently:

$$y_i = X_i \beta + \omega_i$$
  
$$\omega_i \sim \mathcal{N}(0, Z_i \Gamma Z_i^T + \Lambda_i)$$

### Simplifying assumption:

$$\Gamma = \operatorname{diag}\left(\left(\right)\gamma\right)$$



### Notation

$$\begin{aligned} y_i &= X_i \beta + Z_i u_i + \varepsilon_i & i = 1 \dots m \\ \varepsilon_i &\sim \mathcal{N}(0, \Lambda_i) \\ u_i &\sim \mathcal{N}(0, \Gamma) \end{aligned} \tag{1}$$

- ▶ p number of fixed features, q number of random effects.
- $\beta \in \mathbb{R}^p$  fixed effects, or mean effects
- $\mathbf{v}_i \in \mathbb{R}^q$  random effects
- ▶ Γ ∈  $\mathbb{R}^{q \times q}$  covariance matrix of random effects, often Γ = diag (( $\gamma$ ))
- $ightharpoonup arepsilon_i \in \mathbb{R}^{n_i}$  observation noise
- ▶  $\Lambda_i \in R^{n_i \times n_i}$  covariance matrix for noise

Unknowns:  $\beta$ ,  $u_i$ ,  $\gamma$ , sometimes  $\Lambda_i$ .

### Likelihood for Mixed Models

Optimization problem:

$$\mathcal{FS} - \mathcal{LME} \quad \min_{\beta \in \mathbb{R}^{p}, \ \gamma \in \mathbb{R}^{q}_{+}} \mathcal{L}(\beta, \gamma) + R(\beta, \gamma) \tag{2}$$

Where  $\mathcal{L}$ :

$$\mathcal{L}(\beta, \gamma) = \sum_{i=1}^{m} \frac{1}{2} (y_i - X_i \beta)^T (Z_i \Gamma Z_i^T + \Lambda_i)^{-1} (y_i - X_i \beta) +$$

$$+ \frac{1}{2} \log \det (Z_i \Gamma Z_i^T + \Lambda_i), \quad \Gamma = \operatorname{diag} ((\gamma))$$
(3)

- $ightharpoonup \mathcal{L}(eta,\gamma)$  is smooth on its domain, quadratic w.r.t. eta and  $ar{\eta}$ -weakly-convex w.r.t.  $\gamma$ .
- $ightharpoonup R(\beta, \gamma)$  is closed, proper, with easily computed prox operator

### Regularization

 $ightharpoonup R(\beta, \gamma)$  is closed, proper, with easily computed prox operator

$$\begin{aligned} \operatorname{prox}_{\alpha R + \delta_{\mathcal{C}}}(\tilde{\beta}, \tilde{\gamma}) &:= \operatorname*{argmin}_{(\beta, \gamma) \in \mathcal{C}} R(\beta, \gamma) + \frac{1}{2\alpha} \| (\beta, \gamma) - (\tilde{\beta}, \tilde{\gamma}) \|_2^2, \\ & \text{where } \mathcal{C} := \mathbb{R}^p \times R_+^q \end{aligned} \tag{4}$$

#### Examples:

- $ightharpoonup R(x) = \lambda \sum_{i=1}^{p} w_i ||x_j||_1 \text{LASSO}$  and Adaptive LASSO penalties [1, 6]
- ►  $R(x) = \lambda ||x||_0 \ell_0$  penalty [8, 5]
- ightharpoonup R(x) SCAD penalty ([2, 3])



Figure: Four commonly-used regularizers which promote sparsity

## SR3-Relaxation for Mixed-Effect Models ( $\mathcal{MSR}3$ )

Original problem  $FS - \mathcal{LME}$ :

$$\min_{\beta \in \mathbb{R}^p, \ \gamma \in \mathbb{R}^q_+} \mathcal{L}(\beta, \gamma) + R(\beta, \gamma) \tag{5}$$

Relaxed problem MSR3:

$$\min_{\beta,\tilde{\beta}\in\mathbb{R}^{p},\,\gamma,\tilde{\gamma}\in\mathbb{R}^{q}_{+}} \mathcal{L}(\beta,\gamma) + \phi_{\mu}(\gamma) + \kappa_{\eta}(\beta-\tilde{\beta},\gamma-\tilde{\gamma}) + R(\tilde{\beta},\tilde{\gamma})$$
(6)

where the  $\emph{relaxation}$   $\kappa_{\eta}$  decouples the likelihood and the regularizer

$$\kappa_{\eta}(\beta - \tilde{\beta}, \gamma - \tilde{\gamma}) := \frac{\eta}{2} \|\beta - \tilde{\beta}\|_{2}^{2} + \frac{\eta}{2} \|\gamma - \tilde{\gamma}\|_{2}^{2}, \quad \eta > \bar{\eta}$$
 (7)

and the perspective mapping  $\phi_{\mu}$  replaces  $\gamma \geq$  0 with a log-barrier

$$\phi_{\mu}(\gamma) := \begin{cases} -\mu \sum_{i=1}^{q} \ln(\gamma_i/\mu), & \mu > 0\\ \delta_{\mathbb{R}^q_+}(\gamma), & \mu = 0\\ +\infty, & \mu < 0 \end{cases}$$
(8)

### Value Function Reformulation

 $\mathcal{MSR}3$ -relaxation replaces the original likelihood  $\mathcal L$  with a value function  $u_{\eta,\mu}$ :

$$v_{\eta,\mu}(\tilde{\beta},\tilde{\gamma}) := \min_{(\beta,\gamma)} \mathcal{L}_{\eta,\mu}((\beta,\gamma),(\tilde{\beta},\tilde{\gamma})) 
 := \min_{(\beta,\gamma)} \mathcal{L}(\beta,\gamma) + \phi_{\mu}(\gamma) + \kappa_{\eta}(\beta - \tilde{\beta},\gamma - \tilde{\gamma})$$
(9)

so MSR3-formulation (6) becomes

$$\min_{\beta \in \mathbb{R}^p, \ \gamma \in \mathbb{R}^q_+} \nu_{\eta,\mu}(\tilde{\beta},\tilde{\gamma}) + R(\tilde{\beta},\tilde{\gamma}) \tag{10}$$

When  $\eta$  is larger than the weak-convexity constant

- $\triangleright$   $v_{\eta,\mu}$  is well-defined and continuously differentiable.
- As  $\mu \to 0$  and  $\eta \to \infty$ , cluster points of solutions to  $\mathcal{MSR}3$  are first-order stationary points for  $\mathcal{FS} \mathcal{LME}$
- $\triangleright$   $v_{\eta,\mu}$  don't need to be evaluated precisely.

### Value Function Reformulation



Figure: Comparison of the level-sets for the original likelihood (left) and  $\mathcal{MSR}3$ -likelihood (right), for fixed (top) and random (bottom) effects.

## Designing an Algorithm

 $G_{\nu,\eta}$  encodes both gradient of a Lagrangian (lines 1-2) and the complementarity condition (line 3):

$$G_{\nu,\eta}((\beta,\gamma,\nu),(\tilde{\beta},\tilde{\gamma})) := \begin{bmatrix} \nabla_{\beta} \mathcal{L}(\beta,\gamma) + \eta(\beta-\tilde{\beta}) \\ \nabla_{\gamma} \mathcal{L}(\beta,\gamma) + \eta(\gamma-\tilde{\gamma}) - \nu \\ \nu \bigodot \gamma - \mu \mathbf{1} \end{bmatrix}$$
(11)

We apply Newton method to G while geometrically decreasing  $\mu$ . Lemma: For every  $(\mu, \eta) \in \mathbb{R}_+ \times \mathbb{R}_{++}$ ,

$$(\hat{\beta}, \hat{\gamma}) = \underset{(\beta, \gamma)}{\operatorname{argmin}} \mathcal{L}_{\eta, \mu}((\beta, \gamma), (\tilde{\beta}, \tilde{\gamma}))$$

$$\iff \qquad (12)$$

$$\exists \hat{v} \in \mathbb{R}_{+}^{q} \text{ s.t. } G_{\nu, \eta}((\beta, \gamma, \hat{v}), (\tilde{\beta}, \tilde{\gamma})) = 0$$

If  $\mu > 0$ , then  $\hat{\mathbf{v}} = -\nabla \phi_{\mu}(\hat{\gamma})$ , and if  $\mu = 0$ , then  $\hat{\mathbf{v}}$  is the unique KKT multiplier associated with the constraint  $0 \le \gamma$ .

## MSR3-fast Algorithm

```
1 progress ← True; iter = 0;
      2 \beta^+, \tilde{\beta}^+ \leftarrow \beta_0; \quad \gamma^+, \tilde{\gamma}^+ \leftarrow \gamma_0; \quad v^+ \leftarrow 1 \in \mathbb{R}^q; \quad \mu \leftarrow \frac{v^{+'} \gamma^+}{10\pi}
        3 while iter < max_iter and ||G_{\mu}(\beta^+, \gamma^+, \nu^+)|| > \text{tol} and progress
                               do
      \mathbf{4} \mid \ \mid \quad \beta \leftarrow \beta^+; \quad \gamma \leftarrow \gamma^+; \quad \tilde{\beta} \leftarrow \tilde{\beta}^+; \quad \tilde{\gamma} \leftarrow \tilde{\gamma}^+
         5 \mid [dv, d\beta, d\gamma] \leftarrow \nabla G_{\mu}((\beta, \gamma, v), (\tilde{\beta}, \tilde{\gamma}))^{-1} G_{\mu}((\beta, \gamma, v), (\tilde{\beta}, \tilde{\gamma})) 
                                                      \alpha \leftarrow 0.99 \times \min \left(1, -\frac{\gamma_i}{d\alpha_i}, \forall i: d\gamma_i < 0\right)
      6 \beta^+ \leftarrow \beta + \alpha d\beta; \gamma^+ = \gamma + \alpha d\gamma; v^+ \leftarrow v + \alpha dv
                                      if \|\gamma^+ \odot v^+ - q^{-1}\gamma^+^T v^+ \mathbf{1}\| > 0.5 q^{-1} v^{+T} \gamma^+ then continue:
                                                 else
        8
                                                      \tilde{\beta}^+ = \operatorname{prox}_{\alpha R}(\beta^+); \ \tilde{\gamma}^+ = \operatorname{prox}_{\alpha R + \delta_{\mathbb{D}_+}}(\gamma^+); \ \mu = \frac{1}{10} \frac{v^{+} \gamma^+}{\sigma}
                                                 end
 10
                                                   progress = (\|\beta^+ - \beta\| \ge \text{tol or } \|\gamma^+ - \gamma\| \ge \text{tol or } \|\tilde{\beta}^+ - \tilde{\beta}\| \ge \text{tol or } \|\tilde{\beta}^+ - \tilde{\beta}
 11
                                                           \|\tilde{\gamma}^+ - \tilde{\gamma}\| > \mathsf{tol})
 12
                                                   iter += 1
13 end
14 return \tilde{\beta}^+, \tilde{\gamma}^+
```

## Application to Synthetic Problems

- ▶ The number of fixed effects *p* and random effects *q* is 20.
- $\beta = \gamma = \frac{1}{2}[1, 2, 3, \dots, 10, 0 \dots, 0]$
- ▶ 9 groups with sizes [10, 15, 4, 8, 3, 5, 18, 9, 6]
- $\triangleright$   $X_i \sim \mathcal{N}(0, I)^p$ ,  $Z_i = X_i$ ,  $\varepsilon_i \sim \mathcal{N}(0, 0.3^2 I)$
- ► Each experiment is repeated 100 times.
- ▶ Grid-search for  $\eta \in [10^{-4}, 10^2]$ , golden search for  $\lambda \in [0, 10^5]$
- Final model is chosen to maximize BIC



- +  $\mathcal{MSR}3$ -relaxation improves feature selection performance of the original likelihood.
- +  $\mathcal{MSR}3$ -fast optimization accelerates the compute time by  $\sim 10^2$  .
- Initialization of  $\eta$  is problem-specific

# Comparison to Other Libraries

| Algorithm       | MSR3-Fast $(\ell_1)$ | glmmLasso <sup>2</sup> [4] | $lmmLasso^3[7]$ | PGD $(\ell_1)$ |
|-----------------|----------------------|----------------------------|-----------------|----------------|
| Accuracy, %     | 88                   | 48                         | 66              | 73             |
| FE Accuracy, %  | 86                   | 52                         | 47              | 56             |
| RE Accuracy, %  | 91                   | 45                         | 84              | 91             |
| Time, sec       | 0.19                 | 1.37                       | 11.51           | 38.39          |
| Iterations, num | 34                   | 50                         | -               | 7693           |



 $<sup>^2 {\</sup>sf https://rdrr.io/cran/glmmLasso/man/glmmLasso.html}$ 

<sup>&</sup>lt;sup>3</sup>https://rdrr.io/cran/lmmlasso/

## Choice of $\eta$



## $\ell_0$ -based Covariate Selection for Bullying Study from GBD



Figure: Fixed and random covariate selection for Bullying dataset<sup>4</sup>. The model selected 9 covariates, 7 of which were historically significant, and did not select 4 covariates, 1 of which was historically significant.

<sup>&</sup>lt;sup>4</sup>Institute for Health Metrics and Evaluation (IHME). Bullying Victimization Relative Risk Bundle GBD 2020. Seattle, United States of America (USA), 2021.

### Software

The code is available on GitHub: https://github.com/aksholokhov/pysr3

- All estimators are fully compatible to sklearn library.
- Implements SR3 for linear, generalized-linear, and linear mixed-effect models.
- Has tutorials, tests, and documentation.

### Data-Driven Modeling of Physical Systems

- 1) People used to model physical systems with first-principle knowledge 2) Data-Driven modelling of dynamical systems became a big thing 3) However, it requires a lot of data
- 4) Incorporating prior knowledge is a big recent trend, so history does a spiral

## Incorporating Knowledge into Models

1) There are multiple ways of incorporating knowledge into system 4) The overall umbrella term for it is physics-informed machine learning 2) Some use the equations that model phenomena 3) Some take aspects of it, e.g. symmetries and preservation laws, and forces A network to respect those 5) Our work falls into the first category of approaches

$$x \in \mathbb{R}^n$$

$$\frac{dx}{dt} = f(x)$$

$$x_0$$



$$x\in\mathbb{R}^n$$

$$\frac{dx}{dt} = f(x)$$

$$x_T = x_0 + \int_0^T f(x)dt$$











$$\frac{dz}{dt} = \frac{dz}{dx}\frac{dx}{dt} = \nabla \varphi(x)^T f(x)$$

$$\frac{dz}{dt} = \frac{dz}{dx}\frac{dx}{dt} = \nabla \varphi(x)^T f(x) \qquad \frac{dz}{dt} = h(\varphi(x))$$

$$\frac{dz}{dt} = \frac{dz}{dx}\frac{dx}{dt} = \nabla\varphi(x)^T f(x) \qquad \frac{dz}{dt} = h(\varphi(x))$$

$$\mathcal{L}^{physics}(\tilde{x}) = \|\nabla \varphi(\tilde{x})^T f(\tilde{x}) - h(\varphi(\tilde{x}))\|_2^2 + \|\tilde{x} - \psi(\varphi(\tilde{x}))\|_2^2$$

Physics-Informed Loss = Latent Gradient Loss + Collocation Reconstruction Loss

$$\frac{dz}{dt} = \frac{dz}{dx}\frac{dx}{dt} = \nabla\varphi(x)^T f(x) \qquad \frac{dz}{dt} = h(\varphi(x))$$

$$\mathcal{L}^{physics}(\tilde{x}) = \|\nabla\varphi(\tilde{x})^T f(\tilde{x}) - h(\varphi(\tilde{x}))\|_2^2 + \|\tilde{x} - \psi(\varphi(\tilde{x}))\|_2^2$$

Physics-Informed Loss = Latent Gradient Loss + Collocation Reconstruction Loss

$$-u_{t} = u_{xx} + u_{xxxx} + \frac{1}{2}u_{x}^{2} \Rightarrow \dot{x} = f(x)$$

$$u(x) = \frac{a}{1 + e^{-k(x - x_{0})}} - \frac{a}{1 + e^{-k(x - x_{1})}}, \quad x_{0} < x_{1}$$

$$u(x) = \sum_{w=1}^{30} a(w)\sin(2\pi x) + b(w)\cos(2\pi x)$$

$$u(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{\frac{-(x - x_{0})^{2}}{2\sigma^{2}}}$$

$$\frac{dz}{dt} = \frac{dz}{dx}\frac{dx}{dt} = \nabla\varphi(x)^T f(x) \qquad \frac{dz}{dt} = h(\varphi(x))$$

$$\mathbf{2} \qquad \mathbf{3}$$

$$\mathcal{L}^{physics}(\tilde{x}) = \|\nabla\varphi(\tilde{x})^T f(\tilde{x}) - h(\varphi(\tilde{x}))\|_2^2 + \|\tilde{x} - \psi(\varphi(\tilde{x}))\|_2^2$$

Physics-Informed Loss = Latent Gradient Loss + Collocation Reconstruction Loss

1 
$$-u_t = u_{xx} + u_{xxxx} + \frac{1}{2}u_x^2 \Rightarrow \dot{x} = f(x)$$

$$u(x) = \frac{a}{1 + e^{-k(x - x_0)}} - \frac{a}{1 + e^{-k(x - x_1)}}, \quad x_0 < x_1$$

$$u(x) = \sum_{w=1}^{30} a(w) \sin(2\pi x) + b(w) \cos(2\pi x)$$

$$u(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x - x_0)^2}{2\sigma^2}}$$



## Results: Extrapolation to Unknown Regimes

1) We show that network can indeed interpolate between collocations. Moreover, it can fill the whole unknown regimes of behaviour. (Duffing example with explanation)

## Results: Stable Long-Term Predictions

Fig 3.3.7

### Results: Learning From Collocations

1) Finally we show that collocations can be even more useful than the data itself. 2) The difference is especially prominent in low-data regime. 3) It shows that collocations are powerful source of information and that the network can indeed interpolate between them.

# Single-Pixel Imaging



# Single-Pixel Imaging



## Compressive Sensing with Reduced-Order Models

#### Offline Step: Train a Data-Driven Reduced-Order Model



#### Online Step: Reconstruct Complete Observations by Optimizing in Latent Space



## Results: Burger's Equation

### When we capture 32 samples per frame:



## Results: Burger's Equation

### When we capture 32 samples per frame:



#### When we capture 2 samples per frame:



Results: Burger's Equation

 ${\sf Aggregated}\ {\sf results}$ 

Results: Interpretation

Results: Kolmogorov Flow OR Real Example

### Conclusion

Results on Burgers Maybe results on a harder problem

#### References

#### References:

- Howard D. Bondell, Arun Krishna, and Sujit K. Ghosh. Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models. <u>Biometrics</u>, 66(4):1069–1077, dec 2010.
- [2] Jianqing Fan and Runze Li. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. <u>Journal of the American Statistical Association</u>, 96(456):1348–1360, dec 2001.
- [3] Yingying Fan and Runze Li. Variable selection in linear mixed effects models. <u>The Annals of Statistics</u>, 40(4):2043–2068, aug 2012.
- [4] Andreas Groll and Gerhard Tutz. Variable selection for generalized linear mixed models by I 1-penalized estimation. <u>Statistics and Computing</u>, 24(2):137–154, 2014.
- [5] Richard H. Jones. Bayesian information criterion for longitudinal and clustered data. <u>Statistics in Medicine</u>, 30(25):3050–3056, nov 2011.
- [6] Bingqing Lin, Zhen Pang, and Jiming Jiang. Fixed and random effects selection by REML and pathwise coordinate optimization. <u>Journal of Computational and</u> <u>Graphical Statistics</u>, 22(2):341–355, 2013.
- [7] Jürg Schelldorfer, Peter Bühlmann, and SARA VAN DE GEER. Estimation for high-dimensional linear mixed-effects models using I1-penalization. <u>Scandinavian</u> <u>Journal of Statistics</u>, 38(2):197–214, 2011.
- [8] Florin Vaida and Suzette Blanchard. Conditional Akaike information for mixed-effects models. Biometrika, 92(2):351–370, jun 2005.
- [9] Peng Zheng and Aleksandr Aravkin. Relax-and-split method for nonconvex inverse problems. Inverse Problems, 36(9), 2020.