Тренировочная работа №3 по МАТЕМАТИКЕ 11 класс

14 февраля 2024 года Вариант MA2310311 (профильный уровень)

Выполнена: ФИС	класс	

Инструкция по выполнению работы

Работа по математике состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 12 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Справочные материалы

 $\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $\sin (\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$ $\cos (\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$

© СтатГрад 2023—2024 уч. г.

Математика. 11 класс. Вариант МА2310311

Часть 1

2

Ответом к каждому из заданий 1–12 является целое число или конечная десятичная дробь. Запишите ответы к заданиям в поле ответа в тексте работы.

1	Найдите площадь ромба, если его диагонали равны 12 и 6.
	Ответ:
2	Длина вектора \vec{a} равна $10\sqrt{2}$, угол между векторами \vec{a} и \vec{b} равен 45° а скалярное произведение $\vec{a}\cdot\vec{b}$ равно 40. Найдите длину вектора \vec{b} .
	Ответ:
3	В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ все рёбра равны 32. Найдите угол между прямыми AE_1 и CC_1 . Ответ дайте в градусах.
	Ответ:
4	При изготовлении подшипников диаметром 60 мм вероятность того, что диаметр будет отличаться от заданного не больше чем на 0,01 мм, равна 0,982. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 59,99 мм или больше чем 60,01 мм.
	Ответ:

3

5 Игральную кость бросают до тех пор, пока сумма всех выпавших очков не превысила число 5. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

Ответ: .

6 Найдите корень уравнения $5^{x-4} = 125$.

Ответ: ______.

 $\frac{7}{\sin 8^{\circ}}$.

Ответ: ______.

8 На рисунке изображён график функции y = f'(x) — производной функции f(x), определённой на интервале (-1;12). В какой точке отрезка [2;7] функция f(x) принимает наименьшее значение?

Ответ:

Ответ: ______.

10 На изготовление 660 деталей первый рабочий тратит на 8 часов меньше, чем второй рабочий на изготовление 780 таких же деталей. Известно, что первый рабочий за час делает на 4 детали больше, чем второй. Сколько деталей за час делает первый рабочий?

Ответ: ______.

11 На рисунке изображён график функции $f(x) = \frac{k}{x} + a$. Найдите f(7,5).

Ответ: .

12 Найдите точку максимума функции $y = \ln(x-7) - 10x + 11$.

Ответ: ______.

Часть 2

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение $\frac{3\cos 2x 5\sqrt{3}\cos x + 6}{3\sin^2 x 2} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lceil \frac{9\pi}{2}; 6\pi \right\rceil$.
- Основание пирамиды SABC прямоугольный треугольник ABC с прямым углом при вершине C. Ребро SA является высотой пирамиды. Точки E и F лежат на рёбрах AC и BS соответственно так, что SF: FB = AE: EC = 2:3
 - а) Докажите, что сечение пирамиды плоскостью α , проходящей через точки E и F перпендикулярно прямой AC, является прямоугольником.
 - б) Точки H и M точки пересечения плоскости α с прямыми AB и CS соответственно. Найдите объём многогранника BCMEHF, если объём пирамиды SABC равен 125.
- Решите неравенство $\log_{\frac{1}{2}}(32-16x) < \log_{\frac{1}{2}}(x^2-7x+10) + \log_{\frac{1}{2}}(x+3)$.

- В июле 2024 года планируется взять кредит в банке на пять лет в размере S млн рублей, где S целое число. Условия его возврата таковы:
 - каждый январь долг увеличивается на 16 % по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить одним платежом часть лолга:
 - в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год	Долг (в млн рублей)
Июль 2024	S
Июль 2025	0,85 <i>S</i>
Июль 2026	0,7S
Июль 2027	0,55S
Июль 2028	0,3S
Июль 2029	0

Найдите наибольшее значение S , при котором каждый платёж будет меньше 3 млн рублей.

- В треугольнике ABC биссектрисы AK и BL пересекаются в точке I. Известно, что около четырёхугольника CKIL можно описать окружность.
 - а) Докажите, что угол BCA равен 60° .
 - б) Найдите площадь треугольника ABC, если его периметр равен 16 и IC=2 .
- **18** Найдите все значения a, при каждом из которых уравнение

$$\log_a \sqrt{6 - a^{2\cos x}} = 2\cos x$$

имеет хотя бы одно решение.

- Пусть \overline{ml} обозначает двузначное число, равное 10m + l, где m и l цифры, $m \neq 0$.
 - а) Существуют ли такие различные ненулевые цифры a, b, c и d, что $\overline{ab\cdot cd} \overline{ba\cdot dc} = 396$?
 - б) Существуют ли такие различные ненулевые цифры a, b, c и d, что $\overline{ab} \cdot \overline{cd} \overline{ba} \cdot \overline{dc} = 1386$, если среди цифр a, b, c и d есть цифра 7?
 - в) Какое наибольшее значение может принимать выражение $\overline{ab} \cdot \overline{cd} \overline{ba} \cdot \overline{dc}$, если цифры a, b, c и d различны и среди них есть цифры 3 и 6?

math100.ru
Ответы на тренировочные варианты 2310309-2310312 (профильный уровень) от 14.02.2024

	1	2	3	4	5	6	7	8	9	10	11	12
2310309	10	2	2	0,35	0,73	11,5	- 8	- 7	32	6	- 25	- 4,8
2310310	8	8	90	0,43	0,24	8,5	- 4	- 5	18	8	- 20	- 10,9
2310311	36	4	60	0,018	0,56	7	14	7	12	30	1,6	7,1
2310312	42	3	60	0,027	0,58	11	25	4	6	25	0,84	5,2

Критерии оценивания заданий с развёрнутым ответом

- 13 а) Решите уравнение $\frac{3\cos 2x 5\sqrt{3}\cos x + 6}{3\sin^2 x 2} = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lceil \frac{9\pi}{2}; 6\pi \right\rceil$.

Решение.

а) Исходное уравнение равносильно системе:

$$\begin{cases} 3\cos 2x - 5\sqrt{3}\cos x + 6 = 0, & \begin{cases} 6\cos^2 x - 5\sqrt{3}\cos x + 3 = 0, \\ 3\sin^2 x - 2 \neq 0; \end{cases} & \begin{cases} \sin^2 x \neq \frac{2}{3}. \end{cases}$$

Получаем:

$$\begin{cases} \cos x = \frac{\sqrt{3}}{3}, \\ \sin x \neq \pm \frac{\sqrt{6}}{3} \end{cases}$$
 или
$$\begin{cases} \cos x = \frac{\sqrt{3}}{2}, \\ \sin x \neq \pm \frac{\sqrt{6}}{3}. \end{cases}$$

Для $\cos x = \frac{\sqrt{3}}{3}$ не выполняется условие $\sin x \neq \pm \frac{\sqrt{6}}{3}$.

Для $\cos x = \frac{\sqrt{3}}{2}$ условие $\sin x \neq \pm \frac{\sqrt{6}}{3}$ выполняется, находим:

$$x = -\frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$, или $x = \frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left\lceil \frac{9\pi}{2}; 6\pi \right\rceil$.

Получим число $\frac{35\pi}{6}$.

© СтатГрад 2023-2024 уч. г.

Ответ: a)
$$-\frac{\pi}{6} + 2\pi k$$
, $k \in \mathbb{Z}$; $\frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{35\pi}{6}$.

$$\begin{array}{c|c}
9\pi \\
\hline
0 \\
\hline
35\pi \\
\hline
6
\end{array}$$

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте а.	1
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих	
пунктов: пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- Основание пирамиды SABC прямоугольный треугольник ABC с прямым углом при вершине C. Ребро SA является высотой пирамиды. Точки E и F лежат на рёбрах AC и BS соответственно так, что SF: FB = AE: EC = 2:3. Плоскость α проходит через точки E и F перпендикулярно прямой AC и пересекает рёбра AB и CS в точках H и M соответственно.
 - а) Докажите, что сечение пирамиды плоскостью α является прямоугольником.
 - б) Найдите объём многогранника BCMEHF, если объём пирамиды SABC равен 125.

Решение.

а) Прямые EH и BC параллельны, так как они лежат в одной плоскости и перпендикулярны прямой AC . Поэтому треугольники AEH и ACB подобны по

двум углам,
$$EH = \frac{2}{5}BC$$
, $AE = \frac{2}{5}AC$.

Плоскость α проходит через прямую EH, параллельную прямой BC. Поэтому линия пересечения плоскостей α и BSC параллельна прямой BC. Следовательно, треугольники BSC и FSM подобны по

двум углам,
$$FM = \frac{2}{5}BC$$
, $SM = \frac{2}{5}SC$.

Прямая EH перпендикулярна прямой AC и лежит в плоскости ABC, перпендикулярной плоскости CSA, поэтому прямая EH перпендикулярна плоскости CSA, значит, отрезок ME перпендикулярен отрезку EH.

Таким образом, в параллелограмме *EHFM* угол *MEH* прямой, поэтому параллелограм является прямоугольником.

© СтатГрад 2023-2024 уч. г.

б) Плоскость α делит пирамиду на два пятигранника *SFMAHE* и *BCMEHF*. Пятигранник *SFMAHE* можно разбить на пирамиду *SFMP* и призму *FMPHEA*, где P — точка пересечения плоскости *FMP*, параллельной плоскости *ABC*, с ребром *SA*.

Обозначим BC = a, AC = b, SA = h. Тогда:

$$\begin{split} V_{SABC} &= \frac{1}{3} SA \cdot \frac{1}{2} AC \cdot BC = \frac{1}{6} abh = 125 \,; \\ V_{SMFP} &= \frac{1}{3} \cdot SP \cdot \frac{1}{2} \cdot MP \cdot MF = \frac{1}{3} \cdot \frac{2}{5} h \cdot \frac{1}{2} \cdot \frac{2}{5} b \cdot \frac{2}{5} a = \frac{8abh}{125 \cdot 6} \,; \\ V_{FMPHEA} &= PA \cdot \frac{1}{2} \cdot MP \cdot MF = \frac{3}{5} h \cdot \frac{1}{2} \cdot \frac{2}{5} b \cdot \frac{2}{5} a = \frac{6abh}{125} \,. \end{split}$$

Следовательно, объём пятигранника SFMAHE:

$$V_{SFMAHE} = V_{SMFP} + V_{FMPHEA} = \frac{8abh}{125 \cdot 6} + \frac{6abh}{125} = \frac{44abh}{125 \cdot 6}$$

Объём пятигранника BCMEHF равен разности объёмов пирамиды SABC и пятигранника SFMAHE:

$$V_{BCMEHF} = V_{SABC} - V_{SFMAHE} = \frac{abh}{6} - \frac{44abh}{125 \cdot 6} = \frac{81}{125} \cdot \frac{abh}{6} = 81.$$

Ответ: б) 81.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Получен обоснованный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта a .	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, приведённых	0
выше	
Максимальный балл	3

Решите неравенство $\log_{\frac{1}{2}} (32-16x) < \log_{\frac{1}{2}} (x^2-7x+10) + \log_{\frac{1}{2}} (x+3)$.

Решение.

3

Запишем исходное неравенство в виде:

$$\log_{\frac{1}{2}} \left(16(2-x) \right) < \log_{\frac{1}{2}} \left((5-x)(2-x) \right) + \log_{\frac{1}{2}} (x+3);$$

$$\log_{\frac{1}{2}} 16 + \log_{\frac{1}{2}} (2-x) < \log_{\frac{1}{2}} (5-x) + \log_{\frac{1}{2}} (2-x) + \log_{\frac{1}{2}} (x+3).$$

Неравенство определено при -3 < x < 2, поэтому при -3 < x < 2 неравенство

$$\log_{\frac{1}{2}} 16 < \log_{\frac{1}{2}} (5 - x) + \log_{\frac{1}{2}} (x + 3)$$

принимает вид:

$$16 > (5-x)(x+3);$$
 $16 > 15 + 2x - x^2;$ $x^2 - 2x + 1 > 0$

откуда следует, что $x \ne 1$. Учитывая ограничение -3 < x < 2, получаем: -3 < x < 1; 1 < x < 2.

Ответ: (-3;1); (1;2).

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Обоснованно получен ответ, отличающийся от верного включением точки 1.	1
или	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных выше	0
	2
Максимальный балл	2

- В июле 2024 года планируется взять кредит в банке на пять лет в размере S млн рублей, где S — целое число. Условия его возврата таковы:
- каждый январь долг увеличивается на 16 % по сравнению с концом предыдущего года:
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга:
- в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год	Долг (в млн рублей)
Июль 2024	S
Июль 2025	0,85 <i>S</i>
Июль 2026	0,7S
Июль 2027	0,55S
Июль 2028	0,3S
Июль 2029	0

Найдите наибольшее значение S, при котором каждый платёж будет меньше 3 млн рублей.

Решение.

В январе 2025 года долг будет составлять 1,16S млн рублей, а в июле 2025 года — 0.85S млн рублей. Значит, платёж в 2025 году составит 0,31*S* млн рублей.

В январе 2026 года долг будет составлять $1,16 \cdot 0,85S = 0,986S$ млн рублей, а в июле 2026 года — 0.7S млн рублей. Значит, платёж в 2026 году составит 0,286S млн рублей.

В январе 2027 года долг будет составлять $1,16 \cdot 0,7S = 0,812S$ млн рублей, а в июле 2027 года — 0,55S млн рублей. Значит, платёж в 2027 году составит 0,262*S* млн рублей.

В январе 2028 года долг будет составлять $1,16 \cdot 0,55S = 0,638S$ млн рублей, а в июле 2028 года — 0.3S млн рублей. Значит, платёж в 2028 году составит 0,338S млн рублей.

В январе 2029 года долг перед банком составит $1.16 \cdot 0.3S = 0.348S$ млн рублей, а в июле — 0 рублей. Значит, платёж в 2029 году составит 0,3485 млн рублей.

Наибольший платёж составляет 0,3485. Решим неравенство

$$0,348S < 3$$
, откуда $S < \frac{3000}{348} = 8\frac{18}{29}$.

Наибольшее целое решение этого неравенства — 8.

Ответ: 8.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Верно построена математическая модель	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

5

- В треугольнике ABC биссектрисы AK и BL пересекаются в точке I. Известно, что около четырёхугольника *СКІ*L можно описать окружность. а) Докажите, что угол BCA равен 60° .
- б) Найдите площадь треугольника АВС, если его периметр равен 16 и IC = 2.

Решение.

а) Обозначим через α и β углы САВ и АВС соответственно. Тогда углы и ABI равны $\frac{\alpha}{2}$ и $\frac{\beta}{2}$ соответственно. По теореме о сумме углов треугольника получаем, что угол *BIA* равен $180^{\circ} - \frac{\alpha}{2} - \frac{\beta}{2}$. Такая же величина вертикального угла LIK.

По условию около четырёхугольника CKIL можно описать окружность. Следовательно, угол BCA дополняет угол LIK до 180° . С другой стороны, по теореме о сумме углов треугольника угол BCA дополняет до 180° сумму углов α и β . Следовательно, $180^{\circ} - \frac{\alpha}{2} - \frac{\beta}{2} = \alpha + \beta$, откуда $\alpha + \beta = 120^{\circ}$. Значит, угол BCA равен 60° .

- б) Поскольку точка I является точкой пересечения биссектрис AK и BL, она также лежит на биссектрисе угла ВСА и является центром вписанной окружности в треугольник АВС. Значит, радиус этой окружности равен длине перпендикуляра IH, опущенного из этой точки на сторону BC.
- По доказанному, угол HCI равен половине угла BCA, то есть он равен 30° . В прямоугольном треугольнике HCI против угла в 30° лежит катет IH.

7

Площадь треугольника ABC равна половине произведения его периметра на радиус вписанной окружности. Значит, эта площадь равна $\frac{1}{2} \cdot 16 \cdot 1 = 8$.

Ответ: б) 8.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Получен обоснованный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта a .	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, приведённых	0
выше	
Максимальный балл	3

10

Найдите все значения a, при каждом из которых уравнение

$$\log_a \sqrt{6 - a^{2\cos x}} = 2\cos x$$

имеет хотя бы одно решение.

Решение

Данное уравнение равносильно системе:

$$\begin{cases} a > 0, \\ a \neq 1, \\ a^{4\cos x} + a^{2\cos x} - 6 = 0. \end{cases}$$

Пусть $a^{2\cos x} = t$, t > 0.

Поскольку $-1 \le \cos x \le 1$, для $t = \left(a^2\right)^{\cos x}$ получаем: $a^2 \le t \le \frac{1}{a^2}$ при 0 < a < 1 и

$$\frac{1}{a^2} \le t \le a^2 \text{ при } a > 1.$$

Тогда уравнение принимает вид $t^2+t-6=0$. Оно имеет корни $t_1=-3$ и $t_2=2$. Поскольку t>0, корень $t_1=-3$ исключаем.

© СтатГрад 2023-2024 уч. г.

Математика. 11 класс. Вариант МА2310311

При 0 < a < 1 должно выполняться условие $a^2 \le 2 \le \frac{1}{a^2}$, получим:

$$\begin{cases} 0 < a < 1, \\ a^2 \le 2, \\ \frac{1}{a^2} \ge 2, \end{cases}$$

откуда $0 < a \le \frac{\sqrt{2}}{2}$.

При a > 1 должно выполняться условие $\frac{1}{a^2} \le 2 \le a^2$, получим:

$$\begin{cases} a > 1, \\ a^2 \ge 2, \\ \frac{1}{a^2} \le 2 \end{cases}$$

откуда $a \ge \sqrt{2}$

При $0 < a \le \frac{\sqrt{2}}{2}$; $a \ge \sqrt{2}$ исходное уравнение имеет хотя бы одно решение.

Ответ: $0 < a \le \frac{\sqrt{2}}{2}$; $a \ge \sqrt{2}$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого только исключением точек $a=\frac{\sqrt{2}}{2}$ и / или $a=\sqrt{2}$	3
С помощью верного рассуждения получено одно из множеств $0 < a \le \frac{\sqrt{2}}{2}$ или $a \ge \sqrt{2}$ множества значений a , возможно, с исключением точек $a = \frac{\sqrt{2}}{2}$ или $a = \sqrt{2}$. ИЛИ Получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	2

Найдены корни уравнения $(a^{2\cos x})^2 + a^{2\cos x} - 6 = 0$ при $a > 0$ и	1
$a \ne 1$: $a^{2\cos x} = -3$, $a^{2\cos x} = 2$, и задача верно сведена к исследованию корней уравнений $a^{2\cos x} = -3$ и / или $a^{2\cos x} = 2$	
при $a > 0$ и $a \ne 1$	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	4

19

Пусть \overline{ml} обозначает двузначное число, равное 10m+l, где m и l — цифры, $m \neq 0$.

- а) Существуют ли такие различные ненулевые цифры a, b, c и d, что $ab \cdot cd ba \cdot dc = 396$?
- б) Существуют ли такие различные ненулевые цифры a, b, c и d, что $\overline{ab}\cdot\overline{cd}-\overline{ba}\cdot\overline{dc}=1386$, если среди цифр a, b, c и d есть цифра 7?
- в) Какое наибольшее значение может принимать выражение $\overline{ab} \cdot \overline{cd} \overline{ba} \cdot \overline{dc}$, если цифры a, b, c и d различны и среди них есть цифры 3 и 6?

Решение.

а) Да. Действительно, поскольку

$$\overline{ab} \cdot \overline{cd} - \overline{ba} \cdot \overline{dc} = (10a+b) \cdot (10c+d) - (10b+a) \cdot (10d+c) = 99 \cdot (ac-bd)$$
, нужно подобрать такие попарно различные ненулевые цифры a, b, c и d , чтобы $ac-bd=4$. Это верно, например, при $a=2$, $b=1$, $c=6$ и $d=8$.

б) Докажем, что это невозможно. Имеем $\overline{ab} \cdot \overline{cd} - \overline{ba} \cdot \overline{dc} = 99 \cdot (ac - bd)$. Значит, если $\overline{ab} \cdot \overline{cd} - \overline{ba} \cdot \overline{dc} = 1386$, то $99 \cdot (ac - bd) = 1386 = 99 \cdot 14$ и ac - bd = 14.

Поскольку одна из цифр a, b, c и d равна 7, то одно из произведений ac или bd делится на 7, а значит, и другое произведение тоже должно делиться на 7. Это невозможно, так как в этом случае среди цифр a, b, c и d есть по крайней мере две цифры 7.

в) Как показано выше, имеем $\overline{ab} \cdot \overline{cd} - \overline{ba} \cdot \overline{dc} = 99 \cdot (ac - bd)$. Рассмотрим все возможные случаи, когда среди цифр a, b, c и d есть цифры 3 и 6.

Если цифры 3 и 6 — это a и c, то $ac - bd \le 3 \cdot 6 - 1 \cdot 2 = 16$.

Если цифры 3 и 6 — это b и d, то $ac - bd \le 8 \cdot 9 - 3 \cdot 6 = 54$.

Если цифра 3 — это a или c, а цифра 6 — это b или d, то

$$ac - bd \le 3 \cdot 9 - 6 \cdot 1 = 21.$$

Если цифра 6 — это a или c, а цифра 3 — это b или d, то $ac-bd \le 6 \cdot 9 - 3 \cdot 1 = 51$.

© СтатГрад 2023-2024 уч. г.

Значит, наибольшее возможное значение выражения $\overline{ab \cdot cd} - \overline{ba} \cdot \overline{dc}$ равно $99 \cdot 54 = 5346$, оно достигается при a = 8, b = 3, c = 9 и d = 6. **Ответ:** а) да: б) нет: в) $99 \cdot 54 = 5346$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в пунктах a , δ и ϵ	4
Обоснованно получен верный ответ в пункте e , и обоснованно получен верный ответ в пункте a или δ	3
Обоснованно получены верные ответы в пунктах a и δ . ИЛИ	2
Обоснованно получен верный ответ в пункте в	
Обоснованно получен верный ответ в пункте а или б	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4