Boltzmann Machine

Deep Computational model

- 1. Deep neural network
- 2. Probabilistic graphical model

Boltzmann machine is a fully-connected undirected graphical model.

For a restricted Boltzmann Machine (RBM), it consists of weights, biases, and nodes.

Energy function

For two nodes v_i , h_i in visible layer and hidden layer respectively.

$$E(v_i, h_j) = -a_i v_i - b_j h_j - v_i w_{ij} h_j$$

For all the nodes,

$$E(v,h) = -\sum_{i} a_{i}v_{i} - \sum_{j} b_{j}h_{j} - \sum_{i} \sum_{j} v_{i}w_{ij}h_{j}$$

Map energy function to potential function

$$\psi_O(X_O) = e^{-E(X_Q)}$$

For any clique,

$$\psi_O(v_i, h_i) = e^{a_i v_i + b_j h_j + v_i w_{ij} h_j}$$

From potential function to probability distribution

For any clique in Set C

$$p(v,h) = \frac{1}{z} \prod_{Q \in C} \psi_Q(X_Q)$$

$$z = \sum_{v \in \{0,1\}} \sum_{h \in \{0,1\}} \left(\prod_{Q = \{v,h\} \in C} \psi_Q(X_Q) \right)$$

$$\psi_{\mathcal{Q}}(X_{\mathcal{Q}}) = \prod_{\mathcal{Q} = \{v_i, h_j\}}^{n} e^{a_i v_i + b_j h_j + v_i w_{ij} h_j} = \prod_{i=1}^{n} \prod_{j=1}^{m} e^{a_i v_i + b_j h_j + v_i w_{ij} h_j}$$

$$= e^{\sum_{i} a_{i}v_{i} + \sum_{j} b_{j}h_{j} + \sum_{i} \sum_{j} v_{i}w_{ij}h_{j}} = e^{-E(v,h)}$$

$$p(v,h) = \frac{1}{z} \prod_{Q \in C} \psi_Q(X_Q) = \frac{e^{-E(v,h)}}{z}$$

Inference

Set

$$h = (h_1, h_2, ..., h_m)$$

 $v = (v_1, v_2, ..., v_m)$

Now we derive the formula for p(v)

$$p(v) = \sum_{h} p(v,h) = \sum_{h \in \{0,1\}^m} \frac{e^{-E(v,h)}}{z}$$

$$\sum_{h \in \{0,1\}^m} e^{-E(v,h)} = \sum_{h \in \{0,1\}^m} e^{\sum_{i} a_i v_i + \sum_{j} b_j h_j + \sum_{i} \sum_{j} v_i w_{ij} h_j} =$$

$$= e^{a^T v} \sum_{h \in \{0,1\}^m} e^{\sum_{j} b_j h_j + \sum_{i} \sum_{j} v_i w_{ij} h_j}$$

$$= e^{a^T v} \left(\sum_{h_1 \in \{0,1\}} e^{b_1 h_1 + \sum_{i} v_i w_{ij} h_1}\right) ... \left(\sum_{h_m \in \{0,1\}} e^{b_m h_m + \sum_{i} v_i w_{ij} h_m}\right)$$

Take a close look at one term

$$\sum_{h_j \in \{0,1\}} e^{b_j h_j + \sum_i v_i w_{ij} h_j} = 1 + e^{b_j + v^T_{W*_j}}$$

Hence,

$$e^{a^{T}v} \left(\sum_{h_{1} \in \{0,1\}} e^{b_{1}h_{1} + \sum_{i} v_{i}w_{ij}h_{1}} \right) \dots \left(\sum_{h_{m} \in \{0,1\}} e^{b_{m}h_{m} + \sum_{i} v_{i}w_{ij}h_{m}} \right)$$

$$= e^{a^{T}v} \prod_{j=1}^{m} \left(1 + e^{b_{j} + v^{T}w_{*j}} \right)$$

$$= e^{a^{T}v + \sum_{j=1}^{m} In \left(1 + e^{b_{j} + v^{T}w_{*j}} \right)}$$

$$= e^{a^{T}v + \sum_{j=1}^{m} In \left(1 + e^{b_{j} + v^{T}w_{*j}} \right)}$$

Hence, we get p(v)

$$p(v) = \frac{e^{a^{T}v + \sum_{j=1}^{m} In\left(1 + e^{b_{j} + v^{T}w + j}\right)}}{z} = \frac{e^{-F(v)}}{z}$$

And similarly, we get

$$p(h) = \frac{e^{b^T h + \sum_{i=1}^{n} In\left(1 + e^{a_i + h^T w_i^*}\right)}}{Z}$$

The conditional probability p(h|v)
According to Markov Independence,

$$p(h \mid v) = \frac{p(h, v)}{p(v)} = \prod_{j=1}^{m} p(h_j \mid v)$$

$$=\frac{e^{\sum\limits_{i}^{}a_{i}v_{i}+\sum\limits_{j}^{}b_{j}h_{j}+\sum\limits_{i}^{}\sum\limits_{j}^{}v_{i}w_{ij}h_{j}}/z}{e^{z^{T}v+\sum\limits_{j=1}^{}mIn\left(1+e^{b_{j}+v^{T}w*_{j}}\right)}/z}=\frac{e^{\sum\limits_{i}^{}a_{i}v_{i}+\sum\limits_{j}^{}b_{j}h_{j}+\sum\limits_{i}^{}\sum\limits_{j}^{}v_{i}w_{ij}h_{j}}}{e^{z^{T}v+\sum\limits_{j=1}^{}mIn\left(1+e^{b_{j}+v^{T}w*_{j}}\right)}}$$

$$=\frac{e^{\sum b_{j}h_{j}+\sum \sum v_{i}w_{ij}h_{j}}}{e^{\sum \sum j=1} ln \left(1+e^{b_{j}+v^{T}w*_{j}}\right)}=\frac{e^{\sum b_{j}h_{j}+\sum \sum v_{i}w_{ij}h_{j}}}{\prod j=1} \left(1+e^{b_{j}+v^{T}w_{*_{j}}}\right)$$

$$= \frac{\prod_{j=1}^{m} e^{b_{j}h_{j} + v^{T}w_{*j}h_{j}}}{\prod_{j=1}^{m} \left(1 + e^{b_{j} + v^{T}w_{*j}}\right)} = \prod_{j=1}^{m} \frac{e^{b_{j}h_{j} + v^{T}w_{*j}h_{j}}}{1 + e^{b_{j} + v^{T}w_{*j}}}$$

$$p(h_j \mid v) = \frac{e^{b_j h_j + v^T w_* j h_j}}{1 + e^{b_j + v^T w_* j}}$$

Hence,

$$p(h_j \mid v) = \begin{cases} \frac{1}{1 + e^{b_j + v^T w_{*_j}}} h_j = 0\\ \frac{1}{1 + e^{-b_j - v^T w_{*_j}}} h_j = 1 \end{cases}$$

Similarly,

$$p(v_i \mid h) = \begin{cases} \frac{1}{1 + e^{a_j + w_{*j}h}} & v_j = 0\\ \frac{1}{1 + e^{-b_j - w_{i*}h}} & v_j = 1 \end{cases}$$

Cost function

$$\max_{\theta} \left(\prod_{i=1}^{s} p(v^{i}) \right) = \min_{\theta} - In \left(\prod_{i=1}^{s} p(v^{i}) \right)$$
$$= \min_{\theta} - \sum_{i=1}^{s} In(p(v^{i}))$$

Gradient

$$In(p(v)) = -F(v) - In(z)$$

$$\frac{\partial In(p(v))}{\partial \theta} = \frac{\partial (-F(v))}{\partial \theta} - \frac{\partial (In(z))}{\partial \theta}$$

$$\frac{\partial \left(-F(v)\right)}{\partial \theta} = \frac{\partial \left(-a^T v - \sum_{j=1}^m In\left(1 + e^{b_j + v^T w_{*_j}}\right)\right)}{\partial \theta}$$

$$\frac{\partial(-F(v))}{\partial\theta} = \begin{cases}
\frac{e^{b_j + v^T w_{s_j}}}{1 + e^{b_j + v^T w_{s_j}}} v_i & \theta = w_{ij} \\
v_i & \theta = a_i \\
\frac{e^{b_j + v^T w_{s_j}}}{1 + e^{b_j + v^T w_{s_j}}} & \theta = b_j
\end{cases}$$

$$\frac{\partial(In(z))}{\partial\theta} = \frac{\partial\left(In\left(\sum_{v}\sum_{h}e^{-E(v,h)}\right)\right)}{\partial\theta}$$

$$= \frac{\sum_{v}\sum_{h}\left(e^{-E(v,h)}\frac{\partial(-E(v,h))}{\partial\theta}\right)}{\sum_{v}\sum_{h}e^{-E(v,h)}}$$

$$= \sum_{v}\sum_{h}\left(\frac{e^{-E(v,h)}}{\sum_{v}\sum_{h}e^{-E(v,h)}}\frac{\partial(-E(v,h))}{\partial\theta}\right)$$

$$= \sum_{v}\sum_{h}\left(p(v,h)\frac{\partial(-E(v,h))}{\partial\theta}\right)$$

$$= \sum_{v}p(v)\left(\sum_{h}\left(p(h|v)\frac{\partial(-E(v,h))}{\partial\theta}\right)\right)$$

$$= \sum_{v}p(v)\frac{\sum_{h}\left(e^{-E(v,h)}\frac{\partial(-E(v,h))}{\partial\theta}\right)}{\sum_{h}e^{-E(v,h)}}$$

$$= \sum_{v}p(v)\frac{\partial(-F(v))}{\partial\theta}$$

$$= \sum_{v}p(v)\frac{\partial(-F(v))}{\partial\theta}$$

$$\frac{\partial (In(z))}{\partial \theta} = \begin{cases} \sum_{v} p(v) \frac{e^{b_{j} + v^{T} w_{*_{j}}}}{1 + e^{b_{j} + v^{T} w_{*_{j}}}} v_{i} \ \theta = w_{ij} \\ \sum_{v} p(v) v_{i} \ \theta = a_{i} \end{cases}$$

$$\sum_{v} p(v) \frac{e^{b_{j} + v^{T} w_{*_{j}}}}{1 + e^{b_{j} + v^{T} w_{*_{j}}}} \ \theta = b_{j}$$

Hence, the gradient

$$\frac{\partial In(p(v))}{\partial \theta} = \begin{cases} p(h_j = 1 \mid v)v_i - \sum_{v} p(v)p(h_j = 1 \mid v)v_i & \theta = w_{ij} \\ v_i - \sum_{v} p(v)v_i & \theta = a_i \\ p(h_j = 1 \mid v) - \sum_{v} p(v)p(h_j = 1 \mid v) & \theta = b_j \end{cases}$$

Sampling

$$h^{t+1} \sim p(h^{t+1} \mid v^t) = sigmoid(Wv^t + b)$$

$$v^{t+1} \sim p(v^{t+1} \mid h^{t+1}) = sigmoid(Wh^{t+1} + a)$$

Contrast Divergence

Input: training data D, iteration_steps, sample_steps cd_k

Output: update weights, biases

2. for i = 1, 2,..., n_steps
$$v0 = v$$
 for k = 0, 2, ..., cd_k
$$h^{t+1} \sim p(h^{t+1} | v^t) = sigmoid(Wv^t + b)$$

$$v^{t+1} \sim p(v^{t+1} | h^{t+1}) = sigmoid(Wh^{t+1} + a)$$
 for i = 1, 2,..., n, j = 1, 2,..., m
$$w_{ij} \leftarrow w_{ij} + (p(h_j = 1 | v)v_i - p(h_j = 1 | v^{cd_-k})v_i^{cd_-k})$$
 for j = 1, 2,..., n
$$a_i \leftarrow a_i + (v_i - v_i^{cd_-k})$$
 for j = 1,2,..., m
$$b_i \leftarrow b_i + (p(h_i = 1 | v) - p(h_i = 1 | v^{cd_-k}))$$

Optimization

Gradient Descent

Consider a multivariate function

$$f(x_1, x_2, ..., x_n)$$

The gradient at any given point will be

$$\nabla = \left(\frac{\partial f}{\partial x_1} \quad \frac{\partial f}{\partial x_2} \quad \cdots \quad \frac{\partial f}{\partial x_n}\right)^T$$

There are three gradient descent: Batch Gradient Descent (BGD), Stochastic Gradient Descent (SGD), MiniBatch Gradient Descent (MBGD).

Algorithm	Advantage	Disadvantage
BGD	Consider all the errors	Slow convergence due to
		large dataset
		Can not update online
		Costly
SGD	Fast convergence	Data Redundancy
	Update online	Loss function fluctuates
MBGD	Suitable for matrix	Limited number of
	computation (GPU)	samples n (10 ~ 500)
	Steady results	
	Update online	

Update Strategy

Vanilla strategy

$$\theta = \theta - lr \times d\theta$$

Momentum strategy

$$v_{i} = mu \times v_{i-1} + lr \times d(\theta^{i-1})$$

$$\theta^{i} = \theta^{i-1} - v_{i}$$

Nesterov Accelerated Gradient

$$(\theta^{i-1})' = \theta^{i-1} - mu \times v_{i-1}$$

$$v_i = mu \times v_{i-1} + lr \times d(\theta^{i-1})'$$

$$\theta^i = \theta^{i-1} - v.$$

Derivation

$$\begin{split} \left(\theta^{i-1}\right)' &= \theta^{i-1} - mu \times v_{i-1} \\ v_i &= mu \times v_{i-1} + lr \times d\left(\left(\theta^{i-1}\right)'\right) \\ \theta^i - mu \times v_i &= \theta^{i-1} - v_i - mu \times v_i \\ &= \theta^{i-1} - \left(1 + mu\right) \times \left(mu \times v_{i-1} + lr \times d\left(\theta^{i-1} - mu \times v_{i-1}\right)\right) \\ &= \theta^{i-1} - mu\left(1 + mu\right) \times v_{i-1} - lr\left(1 + mu\right)d\left(\theta^{i-1} - mu \times v_{i-1}\right) \end{split}$$

Let

$$\hat{\theta}^{i} = \theta^{i} - mu \times v_{i}$$

$$\hat{\theta}^{i-1} = \theta^{i-1} - mu \times v_{i-1}$$

$$\hat{v}_{i} = \hat{\theta}^{i-1} - \hat{\theta}^{i}$$

Hence,

$$\hat{v}_{i} = lr(1 + mu)d(\hat{\theta}^{i-1}) + mu^{2} \times v_{i-1}$$

$$= lr(1 + mu)d(\hat{\theta}^{i-1}) + lr \times mu^{2} \times d(\hat{\theta}^{i-2}) + mu^{3}v_{i-2}$$

$$= \cdots$$

$$= lr(1 + mu)d(\hat{\theta}^{i-1}) + lr \times mu^{2} \times d(\hat{\theta}^{i-2}) + \dots + lr \times mu^{k} \times d(\hat{\theta}^{i-k}) + mu^{k+1}v_{i-k}$$

$$\hat{v}_{i-1} = lr(1 + mu)d(\hat{\theta}^{i-2}) + lr \times mu^{2} \times d(\hat{\theta}^{i-3}) + \dots + lr \times mu^{k} \times d(\hat{\theta}^{i-k-1}) + mu^{k+1}v_{i-k-1}$$

$$mu \times \hat{v}_{i-1} = lr \times mu(1 + mu) \times d(\hat{\theta}^{i-2}) + lr \times mu^{3} \times d(\hat{\theta}^{i-3}) + \dots + lr \times mu^{k+1} \times d(\hat{\theta}^{i-k-1}) + mu^{k+2}v_{i-k-1}$$

$$\hat{v}_{i} - mu \times \hat{v}_{i-1} = lr(1 + mu)d(\hat{\theta}^{i-1}) - lr \times mu \times d(\hat{\theta}^{i-2})$$

$$= lr \times d(\hat{\theta}^{i-1}) + lr \times mu \times d(\hat{\theta}^{i-1} - \hat{\theta}^{i-2})$$

$$\hat{v}_{i} = mu \times \hat{v}_{i-1} + lr \times d(\hat{\theta}^{i-1}) + lr \times mu \times d(\hat{\theta}^{i-1} - \hat{\theta}^{i-2})$$

Adaptive gradient algorithm

$$acc_{i} = acc_{i-1} + (d(\theta_{i-1}))^{2}$$

$$\theta_{i} = \theta_{i-1} - \frac{lr}{\sqrt{acc_{i} + \varepsilon}} \times d(\theta_{i-1})$$

Conjugate gradient

Consider a quadratic optimization problem

$$f(x) = \frac{1}{2}x^{T}Qx + b^{T}x + c$$

If we can transform the function into

$$f(x) = f_1(x_1) + f_2(x_2) + ... + f_n(x_n)$$

If we can find P = {p1, p2,..., pn} that satisfies the following

$$p_i^T Q p_i = 0, i \neq j$$

Then we can separate the function. That is

$$f(Px) = \frac{1}{2} (Px)^T Q(Px) + b^T Px + c$$

$$= \sum_{i=1}^{n} \left(\frac{1}{2} x_{i}^{T} p_{i}^{T} Q p_{i} x_{i} + b^{T} p_{i} x_{i} \right) + c$$

Find the derivative with respect to x

$$\nabla f(x) = Qx + b$$

Let

$$p_1 = -\nabla f(x_1)$$

And

$$(x^2, p_2), (x^3, p_3), ..., (x^k, p_k)$$

Let

$$x^{k+1} = x^k + a_k p_k$$

$$a_k = \arg\min(f(x^k + a_k p_k))$$

$$\frac{df(x^k + a_k p_k)}{da}\Big|_{a=a_k} = p_k^T \nabla f(x^{k+1}) = 0$$

$$\Leftrightarrow p_k^T (Qa_k p_k + \nabla f(x^k)) = 0$$

$$\Leftrightarrow a_k = \frac{-p_k^T \nabla f(x^k)}{p_k^T Q p_k}$$

$$\nabla f(x^{k+1}) - \nabla f(x^{j+1}) = Q(x^{k+1} - x^{j+1})$$

$$\Leftrightarrow p_j^T \nabla f(x^{k+1}) = p_j^T \nabla f(x^{j+1}) + p_j^T Q(x^{k+1} - x^{j+1})$$

$$\Leftrightarrow p_j^T \nabla f(x^{k+1}) = p_j^T Q(x^{k+1} - x^k + x^{k-1} - x^{k-2} + \dots + x^{j+2} - x^{j+1})$$

$$\Leftrightarrow p_j^T \nabla f(x^{k+1}) = p_j^T Q\left(\sum_{i=j+1}^k a_i p_i\right)$$

$$\Leftrightarrow p_j^T \nabla f(x^{k+1}) = \left(\sum_{i=j+1}^k a_i p_j^T Q p_i\right)$$

$$\Leftrightarrow p_j^T \nabla f(x^{k+1}) = 0$$
Let
$$p_{k+1} = -\nabla f(x^{k+1}) + \lambda_k p_k$$

$$\Leftrightarrow p_k^T Q p_{k+1} = p_k^T Q\left(-\nabla f(x^{k+1})\right) + p_k^T Q \lambda_k p_k = 0$$

$$\Leftrightarrow \lambda_k = \frac{p_k^T Q(\nabla f(x^{k+1}))}{p_j^T Q p_j}$$

Conjugate Gradient

$$\min f(x), \frac{1}{2}x^TQx + b^Tx + c$$

1. choose
$$x^1$$
, let $p_1 = \nabla f(x^1)$

2. if
$$\nabla f(x^{1}) = 0$$
, stop, otherwise $x^{k+1} = x^{k} + a_{k} p_{k}$

$$a_{k} = \frac{-p_{k}^{T} \nabla f(x^{k})}{p_{k}^{T} Q p_{k}}$$

$$p_{k+1} = -\nabla f(x^{k+1}) + \lambda_{k} p_{k}$$

$$\lambda_{k} = \frac{p_{k}^{T} Q(\nabla f(x^{k+1}))}{p_{k}^{T} Q p_{k}}$$

3.
$$k = k+1$$
, return to step 2

For non-quadratic equation

$$f(x) \approx f(x^k) + \nabla f(x^k)(x - x^k) + \frac{1}{2}(x - x^k)^T \nabla^2 f(x^k)(x - x^k)$$

$$\begin{split} & \lambda_{k} = \frac{p_{k}^{T} Q \left(\nabla f \left(x^{k+1} \right) \right)}{p_{k}^{T} Q p_{k}} = \frac{a_{k} p_{k}^{T} Q \left(\nabla f \left(x^{k+1} \right) \right)}{a_{k} p_{k}^{T} Q p_{k}} \\ & = \frac{\left(Q p_{k} a_{k} \right)^{T} \left(\nabla f \left(x^{k+1} \right) \right)}{\left(Q p_{k} a_{k} \right)^{T} p_{k}} = \frac{\left(Q \left(x^{k+1} - x^{k} \right) \right)^{T} \left(\nabla f \left(x^{k+1} \right) \right)}{\left(Q \left(x^{k+1} - x^{j+1} \right) \right)^{T} p_{k}} \\ & = \frac{\left(\nabla f \left(x^{k+1} \right) - \nabla f \left(x^{k} \right) \right)^{T} \left(\nabla f \left(x^{k+1} \right) \right)}{\left(\nabla f \left(x^{k+1} \right) - \nabla f \left(x^{k} \right) \right)^{T} p_{k}} \\ & = \frac{\left\| \nabla f \left(x^{k+1} \right) \right\|^{2}}{\left\| \nabla f \left(x^{k} \right) \right\|^{2}} \end{split}$$

Non-quadratic equation

 $\min f(x)$

1. choose
$$x^1$$
, let $p_1 = \nabla f(x^1)$

2. if
$$\nabla f(x^{1}) = 0$$
, stop, otherwise $x^{k+1} = x^{k} + a_{k} p_{k}$

$$a_{k} = \arg\min(f(x^{k} + a_{k} p_{k}))$$

$$p_{k+1} = -\nabla f(x^{k+1}) + \lambda_{k} p_{k}$$

$$\lambda_{k} = \frac{\|\nabla f(x^{k+1})\|^{2}}{\|\nabla f(x^{k})\|^{2}}$$

3.
$$k = k + 1$$
, return to step 2

Newton Method

$$f(x) \approx f(x^k) + \nabla f(x^k)(x - x^k) + \frac{1}{2}(x - x^k)^T \nabla^2 f(x^k)(x - x^k)$$

The first derivative

$$\nabla f(x^*) = \nabla f(x^k) + \nabla^2 f(x^k)(x^* - x^k)$$

$$\Leftrightarrow x^* = x^k - \frac{\nabla f(x^k)}{\nabla^2 f(x^k)}$$

Quasi-Newton Method

$$d_{k} = H_{k} \nabla f(x^{k})$$
$$x^{k+1} = x^{k} - a_{k} d_{k}$$

After k+1 iterations, we use Taylor Expansion

$$f(x) \approx f(x^{k+1}) + \nabla f(x^{k+1})(x - x^{k+1}) + \frac{1}{2}(x - x^{k+1})^T \nabla^2 f(x^{k+1})(x - x^{k+1})$$

Find the derivative of f(x)

$$\nabla f(x) - \nabla f(x^{k+1}) = \nabla^2 f(x^{k+1})(x - x^{k+1})$$

Let

$$x = x^{k}, g_{k} = \nabla f(x^{k})$$

$$\nabla f(x^{k+1}) - \nabla f(x^{k}) = \nabla^{2} f(x^{k+1})(x^{k+1} - x^{k})$$

$$\Leftrightarrow g_{k+1} - g_{k} = \nabla^{2} f(x^{k+1})(x^{k+1} - x^{k})$$

$$s_{k} = x^{k+1} - x^{k}$$

$$y_{k} = g_{k+1} - g_{k}$$

$$H_{k+1} = (\nabla^{2} f(x^{k+1}))^{-1}$$

$$B_{k+1} = (H_{k+1})^{-1} = \nabla^{2} f(x^{k+1})$$

$$y_{k} = B_{k+1} s_{k}$$

$$s_{k} = H_{k+1} y_{k}$$

DFP

$$H_{k+1} = H_k + E_k$$

$$E_k = a_k U_k U_k^T + b_k V_k V_k^T$$

$$s_k = (H_k + a_k U_k U_k^T + b_k V_k V_k^T) y_k$$

$$\Leftrightarrow s_k - H_k y_k = a_k U_k U_k^T y_k + b_k V_k V_k^T y_k$$
let
$$s_k = a_k U_k U_k^T y_k$$

$$-H_k y_k = b_k V_k V_k^T y_k$$

$$U_k = s_k \Rightarrow a_k = \frac{1}{U_k^T y_k} = \frac{1}{s_k^T y_k}$$

$$V_k = -H_k y_k \Rightarrow b_k = \frac{1}{V_k^T y_k} = \frac{1}{(-H_k y_k)^T y_k} = \frac{-1}{y_k^T H_k y_k}$$

$$H_{k+1} = H_k + \frac{s_k s_k^T}{s_k^T y_k} - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k}$$

BFGS

$$\begin{split} B_{k+1} &= B_k + E_k \\ E_k &= a_k U_k U_k^T + b_k V_k V_k^T \\ y_k &= \left(B_k + a_k U_k U_k^T + b_k V_k V_k^T \right) s_k \\ \Leftrightarrow y_k - B_k s_k &= a_k U_k U_k^T s_k + b_k V_k V_k^T s_k \\ let \\ y_k &= a_k U_k U_k^T s_k \\ - B_k s_k &= b_k V_k V_k^T s_k \\ U_k &= y_k \Rightarrow a_k = \frac{1}{U_k^T s_k} = \frac{1}{y_k^T s_k} \\ V_k &= -B_k s_k \Rightarrow b_k = \frac{1}{V_k^T s_k} = \frac{1}{\left(-B_k s_k \right)^T s_k} = \frac{-1}{s_k^T B_k s_k} \\ B_{k+1} &= B_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k y_k y_k^T B_k}{s_k^T B_k s_k} \\ H_{k+1} &= \left(B_{k+1} \right)^{-1} = \left(B_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k y_k y_k^T B_k}{s_k^T B_k s_k} \right)^{-1} \\ H_{k+1} &= \left(I - \frac{s_k y_k^T}{y_k^T s_k} \right) H_k \left(I - \frac{y_k s_k^T}{y_k^T s_k} \right) + \frac{s_k s_k^T}{y_k^T s_k} \end{split}$$

L-BFGS

$$\rho_{k} = \frac{1}{y_{k}^{T} S_{k}}, V_{k} = 1 - \rho_{k} y_{k} S_{k}^{T}$$

$$H_{k+1} = V_{k}^{T} H_{k} V_{k} + \rho_{k} S_{k} S_{k}^{T}$$

$$H_{k} = \left(V_{k-1}^{T} V_{k-2}^{T} ... V_{0}^{T}\right) H_{0} \left(V_{0} V_{1} ... V_{k-1}\right) + \left(V_{k-1}^{T} V_{k-2}^{T} ... V_{0}^{T}\right) \rho_{0} S_{0} S_{0}^{T} \left(V_{0} V_{1} ... V_{k-1}\right) + \cdots$$

$$\left(V_{k-1}^{T}\right) \rho_{k-2} S_{k-2} S_{k-2}^{T} \left(V_{k-1}\right) + \rho_{k-1} S_{k-1} S_{k-1}^{T}$$

For m elements,

$$\begin{split} \boldsymbol{H}_{k} &= \begin{pmatrix} \boldsymbol{V}_{k-1}^T \boldsymbol{V}_{k-2}^T \dots \boldsymbol{V}_{k-m}^T \end{pmatrix} \boldsymbol{H}_{k-m} \begin{pmatrix} \boldsymbol{V}_{k-m} \boldsymbol{V}_{k-m+1} \dots \boldsymbol{V}_{k-1} \end{pmatrix} + \\ & \begin{pmatrix} \boldsymbol{V}_{k-1}^T \boldsymbol{V}_{k-2}^T \dots \boldsymbol{V}_{k-m+1}^T \end{pmatrix} \boldsymbol{\rho}_{k-m} \boldsymbol{S}_{k-m} \boldsymbol{S}_{k-m}^T \begin{pmatrix} \boldsymbol{V}_{k-m+1} \boldsymbol{V}_{k-m} \dots \boldsymbol{V}_{k-1} \end{pmatrix} + \\ & \begin{pmatrix} \boldsymbol{V}_{k-1}^T \boldsymbol{V}_{k-2}^T \dots \boldsymbol{V}_{k-m+2}^T \end{pmatrix} \boldsymbol{\rho}_{k-m+1} \boldsymbol{S}_{k-m+1} \boldsymbol{S}_{k-m+1}^T \begin{pmatrix} \boldsymbol{V}_{k-m+2} \boldsymbol{V}_{k-m} \dots \boldsymbol{V}_{k-1} \end{pmatrix} + \\ & & + \dots \\ & \begin{pmatrix} \boldsymbol{V}_{k-1}^T \end{pmatrix} \boldsymbol{\rho}_{k-2} \boldsymbol{S}_{k-2} \boldsymbol{S}_{k-2}^T \begin{pmatrix} \boldsymbol{V}_{k-1} \end{pmatrix} + \boldsymbol{\rho}_{k-1} \boldsymbol{S}_{k-1} \boldsymbol{S}_{k-1}^T \end{split}$$

L-BFGS

let
$$q = \nabla f(x^{k+1})$$

for $i = 1, 2, ..., m$ do
 $a_i = \rho_{k-i} S_{k-i}^T q$
 $q = q - a_i y_{k-i}$
end
 $r = H_{k-m} q$
for $i = m, m-1, ..., 1$ do
 $\beta = \rho_{k-i} y_{k-i}^T r$
 $r = r + s_{k-i} (a_i - \beta)$
end