The Fractional Knapsack

Capacity of knapsack: K = 4

Capacity of knapsack: K = 4

Fractional Knapsack Problem:

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

Solution:

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

0-1 Knapsack Problem: Can only take or leave item. You can't take a fraction.

Solution:

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

0-1 Knapsack Problem: Can only take or leave item. You can't take a fraction.

Solution:

2 pd	2 pd
Ā	C
\$100	\$80

Solution:

The Fractional Knapsack Problem: Formal Definition

Given K and a set of n items:

weight	w_1	<i>W</i> ₂	 Wn
value	v_1	<i>V</i> ₂	 Vn

Find: $0 \le x_i \le 1$, i = 1, 2, ..., n such that

$$\sum_{i=1}^n x_i w_i \le K$$

and the following is maximized:

$$\sum_{i=1}^{n} x_i v_i$$

Outline

The Knapsack problem.

Algorithm for the fractional knapsack problem?

Sort items by decreasing value-per-pound

If knapsack holds K = 5 pd, solution is:

1	pd	Α
3	pd	В
1	pd	С

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \dots, n$.

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n. Sort the items by decreasing ρ_i .

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n. Sort the items by decreasing ρ_i . Let the sorted item sequence be 1, 2, ..., i, ..., n,

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i=1,2,\ldots,n$. Sort the items by decreasing ρ_i . Let the sorted item sequence be $1,2,\ldots,i,\ldots n$, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \ldots, n$. Sort the items by decreasing ρ_i . Let the sorted item sequence be $1, 2, \ldots, i, \ldots, n$, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

Let k be the current weight limit (Initially, k = K).

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n.

Sort the items by decreasing ρ_i .

Let the sorted item sequence be 1, 2, ..., i, ..., n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for i = 1, 2, ..., n. Sort the items by decreasing ρ_i .

Let the sorted item sequence be $1, 2, \ldots, i, \ldots n$, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

Let k be the current weight limit (Initially, k = K). In each iteration, we choose item i from the head of the unselected list.

• If $k \geq w_i$,

Calculate the value-per-pound $ho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \dots, n$.

Sort the items by decreasing ρ_i .

Let the sorted item sequence be 1, 2, ..., i, ..., n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

Let k be the current weight limit (Initially, k = K). In each iteration, we choose item i from the head of the unselected list.

• If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k - w_i$, then consider the next unselected item.

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \dots, n$.

Sort the items by decreasing ρ_i .

Let the sorted item sequence be 1, 2, ..., i, ..., n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

- If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k w_i$, then consider the next unselected item.
- If $k < w_i$,

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \dots, n$.

Sort the items by decreasing ρ_i .

Let the sorted item sequence be 1, 2, ..., i, ..., n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

- If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k w_i$, then consider the next unselected item.
- If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i),

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \dots, n$.

Sort the items by decreasing ρ_i .

Let the sorted item sequence be 1, 2, ..., i, ..., n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

- If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k w_i$, then consider the next unselected item.
- If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i), Then the algorithm terminates.

Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \dots, n$.

Sort the items by decreasing ρ_i .

Let the sorted item sequence be 1, 2, ..., i, ..., n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.

Let k be the current weight limit (Initially, k = K). In each iteration, we choose item i from the head of the unselected list.

- If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k w_i$, then consider the next unselected item.
- If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i), Then the algorithm terminates.

Running time: $O(n \log n)$.

Observe that the algorithm may take a fraction of an item.

Observe that the algorithm may take a fraction of an item. This can only be the last selected item.

Observe that the algorithm may take a fraction of an item. This can only be the last selected item.

We claim that the total value for this set of items is the optimal value.

Outline

Introduction

The Knapsack problem.

Algorithm for the fractional knapsack problem

Correctness

Given a set of n items $\{1, 2, ..., n\}$.

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

```
Given a set of n items \{1, 2, ..., n\}.
```

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

 x_i indicates fraction of item i taken

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

 x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

 x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

```
Given a set of n items \{1,2,...,n\}.

Assume items sorted by per-pound values: \rho_1 \geq \rho_2 \geq ... \geq \rho_n.

Let the greedy solution be G = \langle x_1, x_2, ..., x_k \rangle

x_i indicates fraction of item i taken (all x_i = 1, except possibly for i = k).

Consider any optimal solution O = \langle y_1, y_2, ..., y_n \rangle

y_i indicates fraction of item i taken in O
```

```
Given a set of n items \{1, 2, ..., n\}.
Assume items sorted by per-pound values: \rho_1 \ge \rho_2 \ge ... \ge \rho_n.
```

Let the greedy solution be
$$G = \langle x_1, x_2, ..., x_k \rangle$$

 x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

 y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

 x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

 y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).

Knapsack must be full in both G and O:

$$\sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} y_i w_i = K.$$

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

 x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

 y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).

Knapsack must be full in both *G* and *O*:

$$\sum_{i=1}^{n} x_{i} w_{i} = \sum_{i=1}^{n} y_{i} w_{i} = K.$$

Consider the first item i where the two selections differ.

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

 x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

 y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).

Knapsack must be full in both G and O:

$$\sum_{i=1}^{n} x_{i} w_{i} = \sum_{i=1}^{n} y_{i} w_{i} = K.$$

Consider the first item i where the two selections differ.

By definition, solution G takes a greater amount of item i than solution O

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

 x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

 y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).

Knapsack must be full in both G and O:

$$\sum_{i=1}^{n} x_{i} w_{i} = \sum_{i=1}^{n} y_{i} w_{i} = K.$$

Consider the first item *i* where the two selections differ.

By definition, solution G takes a greater amount of item i than solution O (because the greedy solution always takes as much as it can).

Given a set of n items $\{1, 2, ..., n\}$.

Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

 x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

 y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).

Knapsack must be full in both G and O:

$$\sum_{i=1}^{n} x_{i} w_{i} = \sum_{i=1}^{n} y_{i} w_{i} = K.$$

Consider the first item *i* where the two selections differ.

By definition, solution G takes a greater amount of item i than solution O (because the greedy solution always takes as much as it can). Let $x = x_i - y_i$.

Consider the following new solution O' constructed from O:

Consider the following new solution O' constructed from O:

For
$$j < i$$
, keep $y'_j = y_j$.
Set $y'_i = x_i$.

In O, remove items of total weight xw_i from items i+1 to n, resetting the y_i' appropriately.

Consider the following new solution O' constructed from O:

For
$$j < i$$
, keep $y'_j = y_j$.

Set
$$y_i' = x_i$$
.

In O, remove items of total weight xw_i from items i+1 to n, resetting the y_j' appropriately.

This is always doable because
$$\sum_{j=1}^{n} x_j w_j = \sum_{j=1}^{n} y_j w_j = K$$

The total value of solution O' is greater than or equal to the total value of solution O (why?)

Consider the following new solution O' constructed from O:

For
$$j < i$$
, keep $y'_j = y_j$.

Set
$$y_i' = x_i$$
.

In O, remove items of total weight xw_i from items i+1 to n, resetting the y_j' appropriately.

This is always doable because
$$\sum_{j=1} x_j w_j = \sum_{j=1} y_j w_j = K$$

The total value of solution O' is greater than or equal to the total value of solution O (why?)

Since O is largest possible solution and value of O' cannot be smaller than that of O, O and O' must be equal.

Consider the following new solution O' constructed from O:

For
$$j < i$$
, keep $y'_j = y_j$.

Set
$$y_i' = x_i$$
.

In O, remove items of total weight xw_i from items i+1 to n, resetting the y_j' appropriately.

This is always doable because
$$\sum_{j=1}^{n} x_j w_j = \sum_{j=1}^{n} y_j w_j = K$$

The total value of solution O' is greater than or equal to the total value of solution O (why?)

Since O is largest possible solution and value of O' cannot be smaller than that of O, O and O' must be equal.

Thus solution O' is also optimal.

Consider the following new solution O' constructed from O:

For
$$j < i$$
, keep $y'_j = y_j$.

Set
$$y_i' = x_i$$
.

In O, remove items of total weight xw_i from items i+1 to n, resetting the y_i' appropriately.

This is always doable because
$$\sum_{j=1} x_j w_j = \sum_{j=1} y_j w_j = K$$

The total value of solution O' is greater than or equal to the total value of solution O (why?)

Since O is largest possible solution and value of O' cannot be smaller than that of O, O and O' must be equal.

Thus solution O' is also optimal.

By repeating this process, we will eventually convert O into G, without changing the total value of the selection.

Consider the following new solution O' constructed from O:

For
$$j < i$$
, keep $y'_j = y_j$.
Set $y'_i = x_i$.

In O, remove items of total weight xw_i from items i+1 to n, resetting the y_i' appropriately.

This is always doable because $\sum_{j=1}^{n} x_j w_j = \sum_{j=1}^{n} y_j w_j = K$

The total value of solution O' is greater than or equal to the total value of solution O (why?)

Since O is largest possible solution and value of O' cannot be smaller than that of O, O and O' must be equal.

Thus solution O' is also optimal.

By repeating this process, we will eventually convert O into G, without changing the total value of the selection.

Therefore *G* is also optimal!