19. Ferilheildi og stigulsvið

Stærðfræðigreining IIB, STÆ205G, 9. mars 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

19.1

Setning 19.1

Látum $\mathbf{F}(x,y)$ vera samfellt stigulsvið skilgreint á svæði D í \mathbb{R}^2 og látum φ vera fall skilgreint á D þannig að $\mathbf{F}(x,y) = \nabla \varphi(x,y)$ fyrir alla punkta $(x,y) \in D$. Látum $\mathbf{r}: [a,b] \to D$ vera stikaferill sem er samfellt diffranlegur á köflum og stikar feril \mathcal{C} í D. Þá er

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \varphi(\mathbf{r}(b)) - \varphi(\mathbf{r}(a)).$$

(Samsvarandi gildir fyrir vigursvið skilgreint á svæði $D \subseteq \mathbb{R}^3$.)

19.2

Fylgisetning 19.2

Látum \mathbf{F} vera samfellt stigulsvið skilgreint á mengi $D \subseteq \mathbb{R}^2$. Látum $\mathbf{r} : [a, b] \to D$ vera stikaferil sem er samfellt diffranlegur á köflum og lokaður (þ.e.a.s. $\mathbf{r}(a) = \mathbf{r}(b)$) og stikar feril \mathcal{C} . Þá er

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0.$$

(Ath. að rithátturinn

 $\oint_{\mathcal{C}}$

er gjarnan notaður þegar heildað er yfir lokaðan feril \mathcal{C} .)

19.3

Fylgisetning 19.3

Látum \mathbf{F} vera samfellt stigulsvið skilgreint á mengi $D \subseteq \mathbb{R}^2$. Látum $\mathbf{r}_1 : [a_1, b_1] \to D$ og $\mathbf{r}_2 : [a_2, b_2] \to D$ vera stikaferla sem eru samfellt diffranlegir á köflum og stika ferlana \mathcal{C}_1 og \mathcal{C}_2 . Gerum ráð fyrir að $\mathbf{r}_1(a_1) = \mathbf{r}_2(a_2)$ og $\mathbf{r}_1(b_1) = \mathbf{r}_2(b_2)$, þ.e.a.s. stikaferlarnir \mathbf{r}_1 og \mathbf{r}_2 hafa sameiginlega upphafs- og endapunkta. Þá er

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r}_1 = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}_2.$$

19.4

Skilgreining 19.4

Segjum að heildi vigursviðs \mathbf{F} sé *óháð stikaferli* ef fyrir sérhverja tvo samfellt diffranlega á köflum stikaferla \mathbf{r}_1 og \mathbf{r}_2 með sameiginlega upphafs- og endapunkta sem stika ferlana \mathcal{C}_1 og \mathcal{C}_2 gildir að

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r}_1 = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}_2.$$

19.5

Setning 19.5

Ferilheildi samfellds vigursviðs \mathbf{F} er óháð stikaferli ef og aðeins ef $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0$ fyrir alla lokaða ferla \mathcal{C} sem eru samfellt diffranlegir á köflum.

19.6

Skilgreining 19.6

Segjum að mengi $D \subseteq \mathbb{R}^2$ sé ferilsamanhangandi (e. connected, path-connected) ef fyrir sérhverja tvo punkta $P, Q \in D$ gildir að til er stikaferill $\mathbf{r} : [0, 1] \to D$ þannig að $\mathbf{r}(0) = P$ og $\mathbf{r}(1) = Q$.

(Athugasemd: Í bók er orðið connected notað fyrir hugtakið ferilsamanhangandi. Venjulega er orðið connected notað yfir annað hugtak, skylt en samt ólíkt.)

19.7

Setning 19.7

Látum D vera opið mengi í \mathbb{R}^2 sem er ferilsamanhangandi. Ef \mathbf{F} er samfellt vigursvið skilgreint á D og ferilheildi \mathbf{F} eru óháð vegi þá er \mathbf{F} stigulsvið.

19.8

Setning 19.8

Fyrir samfellt vigursvið \mathbf{F} skilgreint á opnu ferilsamanhangandi mengi $D\subseteq\mathbb{R}^2$ er eftirfarandi jafngilt:

- (a) F er stigulsvið,
- (b) $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0$ fyrir alla samfellt diffranlega á köflum lokaða stikaferla \mathbf{r} í D,
- (c) ferilheildi **F** er óháð vegi.

Sönnun:

(a) \Rightarrow (b). Fylgisetning 19.2. (b) \Leftrightarrow (c). Setning 19.5. (c) \Rightarrow (a). Setning 19.7.

19.9