Vat "-" terminal is Vs because we have an op-amp with regative feedback.

KCL at "-"terminal:

$$\frac{(V_s-o)}{R_1}=\frac{V_o-V_s}{R_2}$$

Solvery His Ser Vs:

$$\frac{\mathcal{V}_{o}}{R_{z}} = \frac{\mathcal{V}_{s}}{R_{1}} + \frac{\mathcal{V}_{s}}{R_{L}} \Longrightarrow \mathcal{V}_{o} = \frac{\mathcal{V}_{s}}{R_{1}} + \frac{\mathcal{V}_{s}}{R_{1}} + \frac{\mathcal{V}_{s}}{R_{1}}$$

$$(\mathcal{V}_{o} = \mathcal{V}_{s} \left(\frac{R_{z}}{R_{1}} + 1\right))$$

b)
$$\frac{v_s}{is} = Res$$
 By $KCL@"+" terminal!$

$$i_s = \frac{v_s - v_o}{R}$$

Substituting above for Vo

$$i_{s} = \frac{V_{s}}{R} - \frac{V_{s}\left(\frac{R_{i}+1}{K_{i}+1}\right)}{\left(\frac{R_{i}}{R_{i}}-1\right)}$$

$$= \frac{V_{s}}{R}\left(1-\frac{R_{i}}{R_{i}}-1\right)$$

$$= V_{s}\left(\frac{-R_{i}}{R_{i}}\right)$$

$$\frac{S_{o}, \frac{V_{s}}{i_{s}} = \frac{V_{s}}{V_{s}\left(-\frac{R_{l}}{K h_{l}}\right)} = -\frac{R R_{l}}{R_{l}}$$

FORE 2.33
a) Find
$$v_0$$
.

 v_1
 v_2
 v_3
 v_4
 v_5
 $v_$

3.9 For the op-amp circuit shown in Fig. P3.9, suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $i_R(t)$, (c) $v_R(t)$, (d) $v_s(t)$, and (e) $v_o(t)$.

a)
$$i(t) = \frac{dv}{dt} = 2 \cdot \frac{dv}{dt}$$

d
$$V_s(t) = V_R(t) \longrightarrow \rho lot same as (c)$$

$$C) \, \mathcal{V}_{o}(t) = - \, \mathcal{V}_{c}(t) = - \, \mathcal{V}(t) \, \mathcal{V}_{o}(t)$$

The chart for #1 is shown below:

	t=0"	t=0*	t=∞
i _L (t)	OA	OA	0.4 A
i _c (t)	OA	2 A	0 A
i _{R1} (t)	OA	0 A	0.4 A
i _{fi2} (t)	0 A	0 A	1.6 A
v _L (t)	0 V	OV	0 v
v _c (t)	-10 v	-10 v	6 v
v _{Ri} (t)	0 4	DV	16 v
v ₀₂ (t)	OV	0 v	16 v

7 (0 points) FoEE 2.28 For the op-amp circuit shown in Fig. P2.28, find (a)
$$v_{c}$$
, and (b) i_{c} k_{1} V_{2} k_{2} k_{3} k_{4} k_{5} k_{5}

2.45 Find the Thévenin equivalent of the op-amp circuit shown in Fig. P2.45. (*Hint:* To find R_n , apply a current source i_o and calculate the resulting voltage v_o .)

To find Reg:

Therein:

. (0 points) FoEE 3.7

3.7 For the circuit shown in Fig. P3.7a, suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $w_c(t)$, (c) $p_R(t)$, (d) $v_R(t)$, and (e) $v_t(t)$.

KCLat
$$V_{-}: \frac{V_{s}}{R_{1}} = \frac{V_{o} - V_{s}}{R_{2}}$$

So, $V_{o} \in V_{s} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) R_{2}$
 $V_{o} c = V_{s} \left(1 + \frac{R_{2}}{R_{1}}\right)$
 $V_{-} = 0 V_{so}, \ c_{1} = 0$.

 $V_{-}=0$ $V_{-}=0$. Since $i_{-}=0$ $i_{2}=0$. $V_{2}=0$ $V_{0}=0$ $V_{0}=0$.

a)
$$i(t) = 2\frac{dv}{dt} = \begin{cases} 0 & t \le 0 \\ 2 & 0 < t \le 1 \end{cases}$$

