ЦИФРОВА ОБРОБКА СИГНАЛІВ ЛАБОРАТОРНІ РОБОТИ

Львів ЛНУ ім.І.Франка 2024

3MICT

Вступ	.4
Мета та основні завдання лабораторних робіт	.5
Лабораторна робота №1 Дискретне перетворення Фур'є	.8
Лабораторна робота №2 Проектування цифрових фільтрів	.13
Лабораторна робота №3 Проектування цифрових фільтрів в Filter and Analysis Tool	_
Лабораторна робота №4 Фільтрація сигналів	.32
Список рекомендованої літератури	.39

ЛАБОРАТОРНА РОБОТА №1

Дискретне перетворення Фур'є

Мета роботи

Розрахувати та порівняти спектри аналогового та дискретного сигналів Дослідити дискретне перетворення Φ ур'є (ДП Φ) одиночного імпульсу.

Короткі теоретичні відомості

<u>Спектр неперервного сигналу знаходиться за допомогою</u> перетворення Фур'є:

• пряме перетворення

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
 (1.1)

• зворотне перетворення

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
 (1.2)

1.1.1 Дискретизацію сигналу необхідно виконати за допомогою підстановки t=nT ($T=\frac{1}{f_c}$) у виразі для заданого неперервного сигналу.

У відповідності із теоремою про дискретизацію неперервних сигналів, частота дискретизації вибирається не менше чим в два рази більшою за верхню частоту у спектрі неперервного сигналу $\omega_{\delta} \geq 2\omega_{B}$ ($f_{\delta} \geq 2f_{B}$).

Оскільки спектр неперервного сигналу нескінченний та нічим при виконанні лабораторної роботи не обмежується (відсутній антиелайсинговий фільтр), то необхідно мати на увазі, що після дискретизації сигналу буде існувати явище накладання спектрів.

1.1.2 Дискретне перетворення Фур'є (ДПФ) — різновидність перетворення Фур'є, призначене для роботи з дискретними сигналами.

 $Д\Pi\Phi$ може бути використане як для періодичних послідовностей з періодом N, так і для послідовностей скінченної довжини N.

- 1.1.3 ДПФ називається пара взаємно однозначних перетворень:
- пряме перетворення

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}, \quad k = 0,1,...,N-1;$$
(1.3)

• зворотне перетворення

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk}, \quad n = 0, 1, ..., N-1, \dots, N-1, \dots$$

де x(n) - послідовність в часовій області (дійсна або комплексна);

X(k) - дискретні коефіцієнти Фур'є (дійсні або комплексні);

k - номер відліку послідовності $\chi(k)$, що відповідає частоті $k \Delta \omega$ ($\Delta \omega$ - період дискретизації по частоті);

 $W_N^{nk} = e^{-j\frac{2\pi}{nk}}$ - повертаючий множник, що отримав свою назву тому, що аргумент експоненти $e^{-j\frac{2\pi}{nk}}$ відображує кут повороту на одиничному колі комплексної плошини.

Послідовності x(n) та X(k), що мають N відліків, називають N- точковими.

Відліки послідовності X(k) називають відліками ДПФ.

- **1.1.4** З точністю до постійного коефіцієнту, ДПФ являє собою дискретні відліки спектральної функції дискретного сигналу, що відповідають частотам $\omega_k = \omega_{\partial} k / N$ ($f_k = f_{\partial} k / N$). Тому значення ДПФ інколи називають *спектральними* відліками.
- **1.1.5** Властивості ДПФ ϵ прямим наслідком властивостей спектрів дискретних сигналів: періодичність, лінійність, зміщення N- точкового ДПФ, затримка N- точкової послідовності, теорема Парсеваля, властивість симетрії [1, 2].
- **1.1.6** ДПФ ϵ лінійним перетворенням, що трансформу ϵ вектор часових відліків в вектор *такої ж довжини*, що містить відліки спектральні. Таке

перетворення може бути реалізоване як перемноження певної квадратної матриці на вхідний вектор-стовпчик:

y = F x, де F - матриця перетворення.

Для ДПФ матриця **F** має вигляд

$$\mathbf{F} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{4\pi}{N}} & e^{-j\frac{6\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}(N-1)} \\ 1 & e^{-j\frac{4\pi}{N}} & e^{-j\frac{8\pi}{N}} & e^{-j\frac{12\pi}{N}} & e^{-j\frac{2\pi}{N}2(N-1)} \\ 1 & e^{-j\frac{6\pi}{N}} & e^{-j\frac{12\pi}{N}} & -j\frac{18\pi}{N} & -j\frac{2\pi}{N}3(N-1) \\ 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{12\pi}{N}} & e^{-j\frac{2\pi}{N}3(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -j\frac{2\pi}{N}(N-1) & -j\frac{2\pi}{N}2(N-1) & -j\frac{2\pi}{N}3(N-1) & -j\frac{2\pi}{N}(N-1)^2 \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}}(N-1)^2 \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1 & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots & e^{-j\frac{2\pi}{N}} & \dots \\ | 1$$

Домашне завдання

1.2.1 Для виконання роботи студенту необхідно вибрати неперервний одиночний імпульс у відповідності із своїм варіантом (номер у списку групи):

• прямокутний імпульс

$$s(t) = \begin{cases} A, & 0 \le t \le \tau, \\ 0, & t < 0, t > \tau. \end{cases}$$

Варіант	1	5	9	13	17	21
A , B	1,5	2	1,5	1,2	2,5	2
τ, мс	4	3	2	5	6	7
Інтервал аналізу	2,5τ	3τ	2,5τ	3τ	2,5τ	2τ

• імпульс Гауса

$$-\frac{\left(\frac{T-c}{2}\right)^2}{\left(\frac{\tau}{2}\right)^2}$$

$$s(t) = A e$$

Варіант	2	6	10	14	18	22
A , B	0,5	2,5	1,5	2	1,2	2
τ _{, MC}	2	3,5	4	4,5	2,5	5
Інтервал аналізу T_{c} , мс	10	15	20	25	15	30

• несиметричний трикутний імпульс

$$s(t) = \begin{cases} t \\ A_{-}, & 0 \le t \le \tau, \\ 0, & t < 0, t > \tau. \end{cases}$$

Варіант	3	7	11	15	19	23
A , B	0,5	2	2,5	3	3,5	1,5
τ, MC	2	3	4	5	6	7
Інтервал аналізу, мс	10	15	20	25	15	30

• симетричний трикутний імпульс

$$s(t) = \begin{cases} A \left(1 - \frac{|t - \tau|}{\tau}\right), & 0 \le t \le 2\tau, \\ 0, & t < 0, t > 2\tau. \end{cases}$$

Варіант	4	8	12	16	20	24
A, B	0,5	2	2,5	3	3,5	1,5
т, мс	2	3	4	7	6	5
Інтервал аналізу, мс	10	15	20	25	15	30

^{*} Інтервал аналізу задає часовий відрізок від 0 до вказаного в таблиці значення.

Записати вираз для спектру заданого неперервного сигналу.

<u>Лабораторне завдання</u>

1.3.1 Провести дискретизацію неперервного сигналу. Вибрати кількість відліків N = 128. Розрахувати частоту дискретизації f_s .

Вивести графіки неперервного та дискретного сигналів.

- **1.3.2** Розрахувати та побудувати амплітудний спектр неперервного сигналу. Результати вивести в діапазоні частот $0...f_s$.
- **1.3.3** Розрахувати та побудувати амплітудний спектр дискретного сигналу, використовуючи дискретизоване в часі перетворення Фур'є. Результати вивести в діапазоні частот $0 \dots f_s$.
- **1.3.4** Скласти програму, що реалізує алгоритм ДПФ дискретного сигналу. Результати вивести в діапазоні частот $0...f_s$.
- **1.3.5** Розрахувати та побудувати амплітудний спектр дискретного сигналу, використовуючи команду MATHEMATIC fft.
- **1.3.6** Порівняти отримані спектри неперервного та дискретного сигналів.

Необхідно вивести на одне графічне поле всі графіки.

Контрольні питання

- **1.4.1** Порівняти спектри сигналів: неперервного аперіодичного, неперервного періодичного та дискретного аперіодичного.
- 1.4.2 Схематично зобразити спектр дискретного сигналу.
- 1.4.3. Перелічити властивості спектрів дискретних сигналів.
- 1.4.4. Описати алгоритм ДПФ.
- **1.4.5.** Властивості ДПФ.

ЛАБОРАТОРНА РОБОТА №2

Проектування цифрових фільтрів

Мета роботи

Ознайомитися з методами побудови цифрових фільтрів, порівняти різні типи ап-роксимації АЧХ та дослідити параметри цифрових фільтрів..

Короткі теоретичні відомості

При проектуванні цифрового фільтру (для цифрового фільтру 0 < Wn < 1); ftype — параметр, який вказує на тип фільтру. По замовчуванню ФНЧ, також може приймати значення:

high — синтез фільтра високих частот;

stop — синтез режекторного фільтру, порядок фільтру 2*n. При цьому параметр Wn повинен бути двохелементним вектором $Wn=[w1\ w2]$, де w1 та w2 — верхня та нижня частота смуги загородження.

s — параметр, який вказує, що проектується аналоговий фільтр.

[b, a] – дійсні коефіцієнти передавальної функції фільтру

Приклад. Синтез фільтру Баттерворта

✓ ФНЧ фільтр Баттерворта 6-го порядку з частотою зрізу 300 Гц, частотою дискретизації 1 кГц. Побудувати АЧХ та ФЧХ фільтру.

```
fn = 300;

fs = 1000;

[b,a] = butter(6,fn/(fs/2));

freqz(b,a,[],fs)

subplot(2,1,1)

ylim([-100 20])
```


Рисунок 2.1 — АЧХ та ФЧХ ФНЧ

✓ Режекторний фільтр Баттерворта 3-го порядку з нормалізованими[а2] нижньою та верхньою частотами смуги загородження 0.2π та 0.6π . Побудувати АЧХ та ФЧХ фільтру.

Рисунок 2.2 — АЧХ та ФЧХ режекторного фільтру

Синтез фільтру Чебишева 1 роду

Синтаксис:

[b, a] = cheby1(n, Rp, Wn) [b, a] = cheby1(n, Rp, Wn, 'ftype') [b, a] = cheby1(n, Rp, Wn, 's') [b, a] = cheby1(n, Rp, Wn, 'ftype', 's')

Rp — величина пульсацій в смузі пропускання.

Приклад. Синтез фільтру Чебишева 1 роду

✓ ФНЧ фільтр Чебишева І роду 6-го порядку з пульсаціями в смузі пропускання 10 дБ, частотою зрізу 300 Гц, частотою дискретизації 1 кГц. Побудуйте графік його амплітуди та фази. Побудувати АЧХ та ФЧХ фільтру.

```
fc = 300;
fs = 1000;
[b,a] = cheby1(6,10,fc/(fs/2));
freqz(b,a,[],fs)
subplot(2,1,1)
ylim([-100 20])
```


Рисунок 2.3 — АЧХ та ФЧХ ФНЧ Чебишева I роду

Синтез еліптичного фільтру

[b, a] = ellip(n, Rp, Rs, Wn)
[b, a] = ellip(n, Rp, Rs, Wn, 'ftype')
[b, a] = ellip(n, Rp, Rs, Wn, 's')
[b, a] = ellip(n, Rp, Rs, Wn, 'ftype', 's')
Rs — величина подавлення в смузі пропускання.

Приклад. Синтез еліптичного фільтру

Режекторний еліптичний фільтр 6-го порядку з нормалізованими нижньою та верхньою частотами смуги загородження 0.2π та 0.6π з рівнем пульсацій 5 дБ в смузі пропускання та 50 дБ в смузі придушення. Побудувати АЧХ та ФЧХ фільтру.

```
[b,a] = ellip(3,5,50,[0.2\ 0.6],'stop');

freqz(b,a)

subplot(2,1,1)

ylim([-100\ 20])
```


Рисунок 2.4 — АЧХ та ФЧХ режекторного еліптичного фільтру

Розрахунок передавальної функції

Наведені вище функції повертають коефіцієнти поліномів b та a, які формують передавальну функцію фільтру (ПФ). Для отримання ПФ можна скористатися функцією freqz (для цифрового фільтру) та freqs (для аналогового):

```
h = freqs(b, a, w)
[h, w] = freqs(b, a)
[h, w] = freqs(b, a, l)
h — комплексна передавальна характеристика фільтру.
```

п — комплексна передавальна характеристика фільтру.

w — вектор частот, для яких проводиться розрахунок в рад/с (1 випадок) або вектор частот для яких функція провела розрахунок (2 та 3 випадок);

l — кількість точок вектора частот.

```
[h, w] = freqz(b, a, l)
h = freqz(b, a, w)
[h, f] = freqz(b, a, l, fs)
fs — частота дискретизації;
f — вектор частот довжиною f, та діапазоном 0 до fs/2 \Gammaц.
```

Визначення параметрів фільтру

Для визначення мінімального порядку фільтру та частоти зрізу фільтра для отримання потрібної передавальної характеристики існують функції: buttord, cheb1ord, ellipord:

```
[n, Wn] = buttord(Wp, Ws, Rp, Rs)
[n, Wn] = buttord(Wp, Ws, Rp, Rs, 's')
```

Приклад. Розрахувати мінімальний порядок фільтру Баттерворта

✓ Розрахувати мінімальний порядок фільтру та частоту зрізу ФНЧ з рівнем пульсацій не більше 3 дБ та смугою пропускання від 0 до 40 Гц та загасанням щонайменше 60 дБ, частота дискретизації 1 кГц.

```
Wp = 40/500; [a3] [S4]
Ws = 150/500;
[n, Wn] = buttord(Wp, Ws, 3,60)
n=5, Wn=0.081
[n, Wn] = cheb1ord(Wp, Ws, Rp, Rs)
[n, Wn] = cheb1ord(Wp, Ws, Rp, Rs, 's')
[n, Wn] = ellipord(Wp, Ws, Rp, Rs, 's')
[n, Wn] = ellipord(Wp, Ws, Rp, Rs, 's')
Wp — границя смуги пропускання Wp=2*fp/Fs;
Ws — границя смуги загородження Ws=2*fs/Fs;
Rp — пульсація АЧХ в смузі пропускання;
Rs — затухання АЧХ в смузі загородження.
```

Побудова АЧХ та ФЧХ фільтру

Для побудови АЧХ (fr) та ФЧХ (phase) фільтру за його передавальною характеристикою (h) доречно скористатися наступними функціями:

```
fr = 20*log10(abs(h));

phase = angle(h)*180/pi;
```

Розрахунок імпульсної характеристики фільтру

Імпульсною характеристикою лінійної дискретної системи h(nT) називають її реакцію на цифровий одиничний імпульс δ (nT) при нульових початкових умовах. (Перехідною характеристикою g (nT) називають реакцію системи на цифровий одиничний скачок $u_1(nT)$ при нульових початкових умовах.)

Імпульсну характеристику ЦФ (при виконанні даної лабораторної роботи) знаходять за допомогою зворотного z — перетворення ПФ. Аналітичний вираз для імпульсної характеристики ЦФ рекомендується знаходити методом розкладання ПФ на прості дроби.

Для базових ланок першого порядку необхідно використовувати властивості \mathcal{Z} - перетворення:

$$H(z) = \frac{1}{1 - az^{-1}} \longleftrightarrow h(n) = a^n u(n)$$
(2.1)

Якщо порядок чисельника ПФ менше порядку знаменника N-1 < M-1, то її можна подати у вигляді суми простих дробів

$$H(z) = \sum_{k=1}^{M-1} \left(\frac{A_k}{1 - p_k z^{-1}} \right)$$
 (2.2)

 p_k — простий k —й полюс $\Pi\Phi$; A_k — коефіцієнт розкладання при k —му полюсі $A_k = \left(1 - p_k z^{-1}\right) H\left(z\right)_{\left|z=p_k\right|}$.

У цьому випадку імпульсна характеристика, як результат зворотного z - перетворення $\Pi\Phi$, буде мати вигляд

$$h(n) = \sum_{k=1}^{M-1} A_k p_k^n$$
 (2.3)

Якщо порядки чисельника та знаменника ПФ рівні N-1=M-1 :

$$H(z) = A_0 + \sum_{k=1}^{M-1} \left(\frac{A_k}{1 - p_k z^{-1}} \right), \text{ All } A_0 = \frac{b}{a_{M-1}}$$
(2.4)

$$h(n) = A_0 \delta(n) + \sum_{k=1}^{M-1} A_k p_k^n$$
 (2.5)

Побудова карти нулів та полюсів фільтру zplane(b,a)[a5]

Побудова структури фільтру в середовищі Simulink

Дослідження роботи фільтру можна провести за допомогою різних типів структурних схем даного пристрою[а6].

Для побудови використовуються такі елементи:

- Затримка сигналу (Simulink Library Browser Simulink Unit Delay)
- Суматор (Simulink Library Browser Simulink Math Operations Sum)
- (Simulink Library Browser Simulink Math Помножувач Operations – Gain) [3]

Приклад. Пряма структура визначається ПФ H(z), зображеній в дрібно-раціональному вигляді (в загальному вигляді):

$$H(z) = \frac{\sum_{i=0}^{N-1} b_i z^{-i}}{1 + \sum_{k=1}^{M-1} a_k z^{-k}}$$
(2.6)

та відображає різницеве рівняння

$$y(n) = \sum_{i=0}^{N-1} b_i x(n-i) - \sum_{k=1}^{M-1} a_k y(n-k)$$
 (2.7)

На рис. 1 приведена пряма структура ланки 2-го порядку,
$$\binom{b}{z} = \frac{b + b z^{-1} + b z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) - a_1 y(n-1) - a_2 y(n-2)$$

Рисунок 2.5 — Пряма структура фільтру 2-го порядку

Пряма канонічна структура визначається еквівалентним поданням ПФ у вигляді добутку двох ПФ (зменшується кількість ліній затримки)

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{\sum_{k=1}^{M-1} a_k z^{-k}} \sum_{i=0}^{N-1} b_i z^{-i} = \frac{V(z) Y(z)}{X(z) V(z)} = H_1(z) H_2(z)$$

$$(2.8)$$

одна із яких описує рекурсивну частину ЦФ.
$$H_1(z) = \frac{V(z)}{X(z)} = \frac{1}{1 + \sum_{k=1}^{M-1} a_k z^{-k}}$$
 (2.9)

а друга – нерекурсивну

$$H_{2}(z) = \frac{Y(z)}{V(z)} = \sum_{i=0}^{N-1} b z^{-i}$$
(2.10)

$$\Pi\Phi^{H_1(z)}$$
 та $H_2(z)$, відповідно із визначенням, відповідають РР $v(n) = x(n) - \sum_{k=1}^{M-1} a_k v(n-k)$, $y(n) = \sum_{i=0}^{N-1} b_k v(n-i)$, що відображується у

вигляді прямої структури [1].

ПФ та РР ланки 2-го порядку мають вигляд

$$H(z) = H_1(z)H_2(z) = \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}} (b_0 + b_1 z^{-1} + b_2 z^{-2})$$

$$v(n) = x(n) - a_1 v(n-1) - a_2 v(n-2) ; y(n) = b_0 v(n) + b_1 v(n-1) + b_2 v(n-2)$$

Рисунок 2.6 — Пряма канонічна структура фільтру другого порядку.

Рисунок 2.7 — Імпульсна характеристика фільтру рис.10.

Частотна характеристика ЦФ

Частотна характеристика ЦФ $H(e^{j\omega})$ співпадає з його передавальною функцією H(z), якщо область значень змінної z на комплексній z – площині обмежена точками на одиничному колі $e^{j\omega}$ [4]:

$$H\left(e^{j\omega}\right) = H\left(z\right)\Big|_{z=e^{j\omega}}.$$

Цей зв'язок дозволяє при відомій ПФ шляхом підстановки $z=e^{j\varpi}$ отримати аналітичний вираз для КЧХ у вигляді:

$$H\left(e^{j\omega}\right) = \frac{\sum_{i=0}^{N-1} b_i e^{-ji\omega}}{1 + \sum_{k=1}^{M-1} a_k e^{-jk\omega}}$$

$$(2.11)$$

.

Порядок виконання роботи

- 1. Отримати номер індивідуального завдання;
- 2. Розрахувати мінімальні параметри аналогових та цифрових фільтрів Баттерворта, Чебишева та еліптичних фільтрів та занести їх до таблиці.
- 3. Побудувати АЧХ та ФЧХ розрахованих фільтрів. Порівняти характеристики для різних типів апроксимації. Зробити висновки.
- 4. Побудувати карту нулів та полюсів фільтрів та зробити висновки шодо його стійкості.

5. В середовищі Simulink побудувати пряму та канонічну структури фільтрів Баттерворта та побудувати графік імпульсної характеристики (IX).

Для побудови імпульсної характеристики на вхід системи слід подати дискретний одиничний імпульс (Simulink Library Browser – DSP System Toolbox – Sources – Discrete Impulse).

- 6. За визначеними параметрами записати передавальну функцію цифрових фільтрів ФНЧ та ФВЧ (з апроксимацією за Баттервотом) H(z), різницеве рівняння, що описує роботу схеми.
 - 7. Розрахувати нулі та полюси ЦФ.
- 8. Визначити та записати аналітичний вираз імпульсної характеристики. Побудувати ІХ за виразом та порівняти з отриманим результатом в Simulink.

Зміст звіту

- 1. Лістинг програми;
- 2. Таблиця з параметрами фільтрів;
- 3. Графічні побудови;
- 4. Висновки.

Контрольні питання

- 1. Особливості різних типів фільтрів.
- 2. Параметри фільтрів.
- 3. Визначення імпульсної характеристики фільтру, передавальної функції в *z*-області, комплексної частотної характеристики.
 - 4. Визначення стійкості ЦФ.

Таблиця варіантів виконання роботи

	Тип	fp,				
№	фільтрів	Гц	fs, Гц	Rp, дБ	Rs, дБ	Fs, кГц
	ФНЧ	60	120	3	20	1
1	ФВЧ	120	50	3	20	1
	ФНЧ	70	160	3	20	1
2	ФВЧ	110	60	3	20	1
	ФНЧ	70	160	2	20	1
3	ФВЧ	160	70	3	20	1
	ФНЧ	80	160	3	20	1
4	ФВЧ	150	80	3	20	1
	ФНЧ	90	200	3	20	1
5	ФВЧ	200	90	3	20	1
	ФНЧ	100	180	3	20	1
6	ФВЧ	180	100	3	20	1
	ФНЧ	110	240	3	20	1
7	ФВЧ	240	110	3	20	1
	ФНЧ	120	220	3	20	1
8	ФВЧ	220	120	3	20	1
	ФНЧ	130	280	3	20	1
9	ФВЧ	280	130	3	20	1
	ФНЧ	140	240	3	20	1
10	ФВЧ	230	140	3	20	1
	ФНЧ	50	120	3	20	2
11	ФВЧ	120	50	3	20	2

ФНЧ — фільтр низьких частот;

ФВЧ — фільтр високих частот;

ЛАБОРАТОРНА РОБОТА №3

Проектування цифрових фільтрів в Filter Design and Analysis Tool

Мета роботи

Порівняти різні методи апроксимації фільтрів. Ознайомитись з Filter Design and Analysis Tool.

Короткі теоретичні відомості

Для проектування ЦФ в Matlab застосовується графічний інтерфейс Filter Design and Analysis Tool.

Для виклику даного вікна в рядку Command Window необхідно записати функцію fdatool.

Рисунок 3.1 — Графічний інтерфейс Filter Design and Analysis Tool.

Панель інструментів:

1		Filter Specifications – перегляд специфікації фільтру
2		Magnitude Response – АЧХ фільтру
3	[2]	Phase Response – ФЧХ фільтру
4	<u>~</u>	Magnitude and Phase Responses – AЧХ і ФЧХ фільтру
5	***	Group Delay Response – груповий час затримки (середня затримка сигналу як функція частоти)
6	<u>-φ</u>	Phase Delay – затримка по фазі
7	\Box	Impulse Response – імпульсна характеристика фільтру
8		Step Response - перехідна характеристика фільтру
9	488	Pole/Zero Plot – карта нулів та полюсів в z-області
10	[6,0]	Filter Coefficients – коефіцієнти фільтру
11		Magnitude Response Estimate – оцінка АЧХ фільтру

Вибір типу фільтру:

Рисунок 3.2 — Графічний інтерфейс Filter Design and Analysis Tool Вибір типу фільтру за формою АЧХ.

Рисунок 3.3 — АЧХ ідеальних фільтрів: а — Lowpass — ФНЧ, б — Highpass — ФВЧ, в — Bandpass — СФ (смуговий), г — Bandstop — РФ (режекторний).

Вибір методу проектування:

$IIR-\phi$ ільтр з нескінченною IX (рекурсивний Ц Φ)

Передавальна функція якого в z-області ϵ дрібно-раціональною функцією, тобто реакція системи залежить від дії — сигналу на її вході та від попередніх відліків реакції. Може бути нестійкою.

$$H(z) = \frac{\sum_{k=1}^{N-1} b^{i} z^{-i}}{1 + \sum_{k=1}^{M-1} a_{k} z^{-k}}$$
(3.1)

$FIR - \phi$ ільтр зі скінченною IX (нерекурсивний Ц Φ)

Передавальна функція якого в z-області має вигляд:

 $H(z) = \sum_{i=0}^{N-1} b_i z^{-i}$, тобто реакція системи залежить лише від дії – сигналу на її вході. Дані системи ϵ стійкими.

Одним з найбільш поширених методів розрахунку СІХ фільтрів ϵ метод зважування ІХ — метод згладжуючих вікон [3].

Визначення порядку фільтру:

Рисунок 3.4 — Визначення порядку фільтру або мінімального порядку для забезпечення вихідних характеристик.

Визначення частотних характеристик фільтру:

Frequency Specifications										
Units:	Hz									
Fs:	48000									
Fc:	10800									

Рисунок 3.5 — Визначення порядку фільтру або мінімального порядку для забезпечення вихідних характеристик.

 F_s — частота дискретизації

 $F_{\rm c}$ — частота зрізу фільтру

Визначення рівнів пульсації в смузі пропускання та загородження:

При проектуванні фільтру з мінімальним необхідним порядком необхідно задати відповідні рівні пульсації в смузі пропускання та загородження фільтру при відповідних граничних частотах.

Рисунок 3.6 — Визначення рівнів пульсацій A_{pass} в смузі пропускання та A_{stop} в смузі загородження.

Проектування фільтру за заданими параметрами

Проектування фільтру з визначеними вихідними параметрами виконується за допомогою функції Design Filter.

Структурна схема фільтру

File – Export to Simulink Model

Обрати функцію Build model using basic elements – побудувати модель фільтру за допомогою базових елементів.

Обрати Realize model – побудувати модель.

Побудова каскадної структури фільтру

Рисунок 3.7 — Каскадна структура фільтру за експортованими даними в Simulink.

Каскадна структура

Як відомо П Φ можна подати у вигляді добутку

$$H(z) = \frac{\sum_{i=0}^{N-1} b_i z^{-i}}{1 + \sum_{k=1}^{M-1} a_k z^{-k}} = \frac{b_0 \prod_{i=1}^{N-1} (1 - c_i z^{-1})}{a_0 \prod_{k=1}^{M-1} (1 - p_k z^{-1})} = \frac{b_0 \prod_{i=1}^{N-1} (1 - c_i z^{-1})}{\prod_{k=1}^{M-1} (1 - p_k z^{-1})}$$
(3.2)

В загальному випадку як нулі так і полюси є комплексно-спряженими числами. Попарно перемножимо найпростіші множники з комплексно-спряженими нулями в чисельнику, та комплексно-спряженими полюсами в знаменнику. Таким чином ми отримаємо вираз для $\Pi\Phi$, що подана у вигляді добутку множників другого порядку з дійсними коефіцієнтами:

$$H(z) = \prod_{k=1}^{K} H_k(z) = \prod_{k=1}^{K} \left(\frac{b_k + b_k z^{-1} + b_k z^{-2}}{1 + a z^{-1} + a z^{-2}} \right)$$
(3.3)

де b_{0k} , b_{1k} , b_{2k} , a_{1k} , a_{2k} — дійсні коефіцієнти, а K — кількість ланок 2-го порядку.

Якщо N-1 та M-1 — непарні, то один із множників буде найпростішим b+b z^{-1} . $b_{2k}=0$, $a_{2k}=0$: $\frac{0k-1k}{1+a_1z^{-1}}$.

При прямій структурі всіх ланок даному виду ПФ відповідає система РР
$$\begin{cases} v_1(n) = b_{01}x(n) + b_{11}x(n-1) + b_{21}x(n-2) - a_{11}v_1(n-1) - a_{21}v_1(n-2) \\ v_2(n) = b_{02}v_1(n) + b_{02}v_1(n-1) + b_{02}v_1(n-2) - a_{02}v_1(n-1) - a_{02}v_2(n-2) \\ & \Box \\ y(n) = b_{0,K-1}v_{K-1}(n) + b_{1,K-1}v_{K-1}(n-1) + b_{2,K-1}v_{K-1}(n-2) - a_{1,K-1}y(n-1) - a_{2,K-1}y(n-2) \end{cases}$$
 (3.4)

з якої випливає, що реакція k-ї ланки, k=1,2,...,(K-1), є дією для (k+1)-ї ланки, тому дана система зображується каскадним з'єднанням рекурсивних ланок 2-го порядку (біквадратних блоків) — $\underline{\kappa ac \kappa a \partial ho \phi \ cmpy \kappa m y po \phi}$ [5].

Рисунок 3.8 — Каскадна структура з 3-х ланок.

Порядок виконання роботи

1. Отримати номер індивідуального завдання;

Проектування фільтрів з нескінченною імпульсною характеристикою.

2. Розрахувати мінімальні параметри цифрових та аналогових фільтрів Баттерворта / Чебишева та занести їх до таблиці. (Непарні номери варіантів — Баттерворта, парні — Чебишева).

- 3. Побудувати АЧХ та ФЧХ розрахованих цифрових фільтрів.
- 4. Побудувати карту нулів та полюсів фільтру та ІХ та зробити висновки щодо його стійкості.
- 5. Побудувати структуру фільтру та визначити коефіцієнти за каскадною структурою.
- 6. Порівняти отримані результати (АЧХ, ФЧХ, ІХ, нулі та полюси, коефіцієнти фільтру) з результатами аналогічного варіанту ЛР №1. Зробити висновки. Провести розрахунок відповідності коефіцієнтів прямої структури та каскадної.

Проектування фільтрів зі скінченною імпульсною характеристикою.

- 7. Повторити п.2-4. Порівняти порядки фільтрів, їх характеристики та структуру. Зробити висновки.
- 8. Проектування СІХ ЦФ здійснити за допомогою накладання віконної функції (Window).

Зміст звіту

- 1. Лістинг програми;
- 2. Таблиця з параметрами фільтрів;
- 3. Графічні побудови;
- 4. Висновки.

Контрольні питання

- 1. Особливості різних типів фільтрів.
- 2. Параметри фільтрів.
- 3. Визначення імпульсної характеристики фільтру, передавальної функції в z-області, комплексної частотної характеристики.
 - 4. Визначення стійкості ЦФ.

Таблиця варіантів виконання роботи

№	Тип	fp, Гц	fs,	Rp, дБ	Rs, дБ	Fs, кГц
1	ФНЧ	60	120	3	20	1
	ФВЧ	120	50	3	20	1
2	ФНЧ	70	160	3	20	1
	ФВЧ	110	60	3	20	1
3	ФНЧ	70	160	2	20	1
	ФВЧ	160	70	3	20	1
4	ФНЧ	80	160	3	20	1
	ФВЧ	150	80	3	20	1
5	ФНЧ	90	200	3	20	1
	ФВЧ	200	90	3	20	1
6	ФНЧ	100	180	3	20	1
	ФВЧ	180	100	3	20	1
7	ФНЧ	110	240	3	20	1
	ФВЧ	240	110	3	20	1
8	ФНЧ	120	220	3	20	1
	ФВЧ	220	120	3	20	1
9	ФНЧ	130	280	3	20	1
	ФВЧ	280	130	3	20	1
10	ФНЧ	140	240	3	20	1
	ФВЧ	230	140	3	20	1
11	ФНЧ	50	120	3	20	2
	ФВЧ	120	50	3	20	2

ФНЧ — фільтр низьких частот;

ФВЧ — фільтр високих частот;

СФ – смуговий фільтр;

 $P\Phi$ – режекторний фільтр.

ЛАБОРАТОРНА РОБОТА №4

Фільтрація сигналів

Мета роботи

Дослідити вплив цифрового фільтру на сигнал в часовій та частотній області.

Короткі теоретичні відомості

Цифрова фільтрація сигналу

Для фільтрування сигналу за допомогою цифрового фільтру в MATLAB використовується команда *filter*

y = filter(b, a, x)

х — сигнал на вході фільтру;

у — сигнал на виході.

Приклад

ФНЧ з частотою зрізу 50 к Γ ц для фільтрації сигналу суми синусоїд з параметрами Um = [1 0.5 0.2 0.1] (амплітуда складових сигналу) та F = [10 20 80 140] к Γ ц (частоти складових сигналу).

АЧХ та ФЧХ фільтру 5-го порядку

Рисунок 4.1 — АЧХ (а) та ФЧХ (б) ФНЧ.

Вхідний та відфільтровані сигнали

Рисунок 4.2 — Вихідний сигнал як сума синусоїд різної частоти (блакитна крива), сигнал після застосування «ідеального» ФНЧ (червона крива), сигнал після застосування ФНЧ за Чебишевим (жовта крива).

Амплітудний спектр відфільтрованого сигналу

Рисунок 4.3 — Амплітудний спектр сигналу після застосування фільтру Чебишева.

Амплітудний спектр вихідного сигналу

Рисунок 4.4 — Амплітудний спектр вихідного сигналу.

Розрахунок частоти дискретизації

```
N = 512; ts = 100/(min(F)); t = linspace(0, ts, 2*N); Fs = 1/(t(2)-t(1)); % Частота дискретизації
```

Спектральний аналіз

```
f = Fs*(0:N-1)/(2*N-1); % Вектор частот для графіку
```

Для дослідження спектру відфільтрованого сигналу використати алгоритм дискретного перетворення Φ ур' ϵ , для цього можна скористатися наступним кодом:

% Розрахунок спектру сигналу швидким перетворенням Фур'є.

 $sp_1 = abs(fft(y_out));$ % Модуль швидкого перетворення Фур'є, для визначення спектральних амплітуд

```
sp_1 = sp_1/N; % Нормування амплітуд спектру 
 sp_1(1) = sp_1(1)/2; % Нормування постійної складової 
 stem(f, sp_1(1:N)) % Виведення спектральних складових на екран
```

Варто врахувати, що кількість точок для розрахунку повинна бути в два рази більша кількості відліків перетворення Φ ур'є (N) та мати значення рівне степені двійки [3 – 5].

Порядок виконання роботи

- 1. Отримати номер індивідуального завдання;
- 2. Розрахувати мінімальні параметри цифрових та аналогових фільтрів Баттерворта або Чебишева та занести їх до таблиці (частота зрізу та порядок фільтру).
- 3. Побудувати АЧХ та ФЧХ розрахованих фільтрів. Зробити висновки. Розрахувати частоту зрізу фільтру в нормованих величинах та в кГц.
- 4. Згенерувати сигнал, як суму синусоїдальних коливань з параметрами згідно Вашого варіанту. Задати наступні параметри: N = 512 кількість відліків перетворення Фур'є; t = linspace(0, ts, 2*N) вектор часу від 0 до ts

(тривалість 10-100 періодів згенерованого сигналу). Зверніть увагу, згенерований сигнал повинен містити повний період (періоди) за розрахований Вами час ts.

- 5. Пропустити через фільтри ФНЧ/СФ або ФВЧ/РФ згенерований сигнал. Побудувати на одному графіку початковий сигнал, сигнал після фільтру та ідеально відфільтрований сигнал (сума тих синусоїдальних складових, які б залишилися при проходженні через ідеальний фільтр).
- 6. Побудувати графіки амплітудних спектрів вихідного та відфільтрованого сигналів. Зробити висновки.
- 7. Синтезувати фільтри за № варіанту (ФНЧ/ФВЧ) з параметрами n=3 та 5 (порядок фільтру) та частотою зрізу fc, кГц.
 - 8. Для даних фільтрів виконати п.5-6.

Зміст звіту

- 1. Лістинг програми;
- 2. Таблиця з параметрами фільтрів;
- 3. Графічні побудови;
- 4. Висновки по пунктам.

Контрольні питання

- 1. Вплив порядку фільтру на відфільтрований сигнал.
- 2. Що таке спектр сигналу.
- 3. Особливості представлення сигналів в часовій та частотній області.
- 4. Особливості алгоритму швидкого перетворення Фур'є.
- 5. Чому спектр відфільтрованого сигналу містить «зайві» частотні складові.

Таблиця варіантів виконання роботи

	Тип філь т.	fp, кГц	fs, кГц	Rp, дБ	Rs, дБ	Um	F, кГц	fc, кГц	Тип полін.
1	ФНЧ	5	7	3	50	[1 0.5 0.25 0.1]	[20 30 60 100]	50	Чеб
	СФ	[5 6]	[4.5 6.5]	3	20				
2	ФНЧ	9	11	2	30	[1 0.5 0.25 0.1]	[20 30 60 100]	50	Бат
	РΦ	[4.5 6.5]	[5 6]	2	30				
3	ФВЧ	7	5	2	40	[1 1 0.5 0.25]	[10 20 40 80]	30	Чеб
	СФ	[5 7]	[4 8]	2	40				
4	ФВЧ	20	18	3	60	[1 1 0.5 0.25]	[10 20 40 80]	30	Бат
	РΦ	[4 8]	[5 7]	3	50				
5	ФНЧ	12	13	4	80	[1 0.75 0.5 0.25]	[20 40 60 80]	50	Чеб
	СФ	[10 15]	[9 16]	2	50				
6	ФНЧ	9	12	2	50	[1 0.75 0.5 0.25]	[20 40 60 80]	50	Бат
	РФ	[9 16]	[10 15]	1	10				
7	ФВЧ	40	38	2	40	[1 0.5 0.2 0.1]	[10 20 40 100]	30	Чеб
	СФ	[25 35]	[20 40]	4	50				
8	ФВЧ	16	15	3	30	[1 0.5 0.2 0.1]	[10 20 40 100]	30	Бат
	РФ	[10 15]	[9 16]	2	30		_		
9	ФНЧ	5	7	3	50	[1 0.5 0.25 0.1]	[20 30 60 100]	50	Чеб
	СФ	[5 6]	[4.5 6.5]	3	20				

10	ФНЧ	9	11	2	30	[1 0.5	[20 30	50	Бат
	РФ	[4.5 6.5]	[5 6]	2	30	0.25 0.1]	60 100]		
11	ФВЧ	7	5	2	40	[1 1 0.5	[10 20	30	Чеб
	СФ	[5 7]	[4 8]	2	40	0.25]	40 80]		
12	ФВЧ	20	18	3	60	[1 1 0.5	[10 20	30	Бат
	РΦ	[4 8]	[5 7]	3	50	0.25]	40 80]		
13	ФНЧ	12	13	4	80	[1 0.75	[20 40 60	50	Чеб
	СФ	[10 15]	[9 16]	2	50	0.5 0.25]	80]		
14	ФНЧ	9	12	2	50	[1 0.75	[20 40 60	50	Бат
	РΦ	[9 16]	[10 15]	1	10	0.5 0.25]	80]		
15	ФВЧ	40	38	2	40	[1 0.5 0.2	[10 20	30	Чеб
	СФ	[25 35]	[20 40]	4	50	0.1]	40 100]		
16	ФВЧ	16	15	3	30	[1 0.5 0.2	[10 20	30	Бат
	РФ	[10 15]	[9 16]	2	30	0.1]	40 100]		

ФНЧ — фільтр низьких частот;

ФВЧ — фільтр високих частот;

СФ — смуговий фільтр;

РФ — режекторний фільтр.

СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ

- 1. Alan V. Oppenheim. Digital Signal Processing / Alan V. Oppenheim, Ronald W. Schafer Режим доступу: https://ocw.mit.edu/courses/res-6-008-digital-signal-processing-spring-2011/ Назва з екрану.
- 2. Digital Signal Processing. Principles, Algorithms, and Applications. Third Edition. John G. Proakis, Dmitris G. Manolakis. 1996, Prentice Hall, New Jersey, USA.
- 3. Signal Processing Toolbox Режим доступу: https://uk.mathworks.com/help/signal/index.html?s_tid=hc_product_card— Назва з екрану.
- 4. Бортник Г.Г. Цифрова обробка сигналів в телекомунікаційних системах підручник. Г.Г. Бортник / 2014. Вінниця: ВНТУ 2014. 231с.
- 5. Ушенко Ю.О. Основи та методи цифрової обробки сигналів: від теорії до практики навчальний посібник. Ю.О. Ущенко, В.В. Дрожак, М.С. Гавриляк, М.В. Талах / 2021. Чернівці: Чернівецький національний університет імені Юрія Федьковича 2021. 307 с.