CIS 700:

"algorithms for Big Data"

Lecture 9: Compressed Sensing

Slides at http://grigory.us/big-data-class.html

Grigory Yaroslavtsev

http://grigory.us

Compressed Sensing

- Given a sparse signal $x \in \mathbb{R}^n$ can we recover it from a small number of measurements?
- Goal: design $A \in \mathbb{R}^{d \times n}$ which allows to recover any s-sparse $x \in \mathbb{R}^n$ from Ax.
- A = matrix of i.i.d. Gaussians N(0,1)
- Application: signals are usually sparse in some Fourier domain

Reconstruction

Reconstruction:

$$\min ||x||_0$$
, subject to: $Ax = b$

• Uniqueness: If there are two s-sparse solutions x_1, x_2 :

$$A(x_1 - x_2) = 0$$

then A has 2s linearly dependent columns

- If $d = \Omega(s^2)$ and A is Gaussian then unlikely to have linearly dependent columns
- $|x|_0$ not convex, NP-hard to reconstruct
- $||x||_0 \rightarrow ||x||_1$: min $||x||_1$, subject to: Ax = b
- When does this give sparse solutions?

Subgradient

- $\min ||x||_1$, subject to: Ax = b
- $||x||_1$ is convex but not differentiable
- Subgradient ∇f :
 - equal to gradient where f is differentiable
 - any linear lower bound where f is not differentiable

$$\forall x_0, \Delta x: f(x_0 + \Delta x) \ge f(x_0) + (\nabla f)^T \Delta x$$

- Subgradient for $|x|_1$:
 - $\nabla \left(\left| |x| \right|_1 \right)_i = sign(x_i) \text{ if } x_i \neq 0$
 - $\nabla \left(\left| |x| \right|_1 \right)_i \in [-1,1] \text{ if } x_i = 0$
- For all Δx such that $A\Delta x = 0$ satisfies $\nabla^T \Delta x \geq 0$
- Sufficient: $\exists w$ such that $\nabla = A^T w$ so $\nabla^T \Delta x = w A \Delta x = 0$

Exact Reconstruction Property

- Subgradient Thm. If $Ax_0 = b$ and there exists a subgradient ∇ for $||x||_1$ such that $\nabla = A^T w$ and columns of A corresponding to x_0 are linearly independent then x_0 minimizes $||x||_1$ and is unique.
- (Minimum): Assume Ay = b. Will show $||y||_1 \ge ||x_0||_1$
- $z = y x_0 \Rightarrow Az = Ay Ax_0 = 0$
- $\nabla^T z = 0 \Rightarrow$ $||y||_1 = ||x_0 + z|| \ge ||x_0|| + \nabla^T z = ||x_0||_1$

Exact Reconstruction Property

- (Uniqueness): assume \tilde{x}_0 is another minimum
- ∇ at x_0 is also a subgradient at \tilde{x}_0
- $\forall \Delta x : A \Delta x = 0$:

$$\begin{aligned} ||\tilde{x}_{0} + \Delta x||_{1} &= ||x_{0} + \tilde{x}_{0} - x_{0} + \Delta x|| \\ &\geq ||x_{0}||_{1} + \nabla^{T} (\tilde{x}_{0} - x_{0} + \Delta x) \\ &= ||x_{0}||_{1} + \nabla^{T} (\tilde{x}_{0} - x_{0}) + \nabla^{T} \Delta x \end{aligned}$$

- $\nabla^T (\widetilde{x_0} x_0) = w^T A (\widetilde{x_0} x_0) = w^T (b b) = 0$
- $\left| \left| \tilde{x}_0 + \Delta x \right| \right|_1 \ge \left| \left| x_0 \right| \right|_1 + \nabla^T \Delta x$
- $(\nabla)_i = \text{sign}((\mathbf{x}_0)_i) = \text{sign}((\tilde{\mathbf{x}}_0)_i)$ if either is non-zero, otherwise equal to 0
- $\Rightarrow x_0$ and \tilde{x}_0 have same sparsity pattern
- By linear independence of columns of $A: x_0 = \widetilde{x_0}$

Restricted Isometry Property

• Matrix A satisfies restricted isometry property (RIP), if for any s-sparse x there exists δ_s :

$$(1 - \delta_s) ||x||_2^2 \le ||Ax||_2^2 \le (1 + \delta_s) ||x||_2^2$$

- Exact isometry:
 - all eigenvalues are ± 1
 - for orthogonal $x, y: x^T A^T A y = 0$
- Let A_S be the set of columns of A in set S
- Lem: If A satisfies RIP and $\delta_{S_1+S_2} \leq \delta_{S_1} + \delta_{S_2}$:
 - For S of size s singular values of A_S in $[1-\delta_s, 1+\delta_s]$
 - For any orthogonal x, y with supports of size s_1 , s_2 :

$$|x^T A^T A y| \le ||x|| ||y|| (\delta_{s_1} + \delta_{s_2})$$

Restricted Isometry Property

- Lem: If A satisfies RIP and $\delta_{s_1+s_2} \leq \delta_{s_1} + \delta_{s_2}$:
 - For S of size s singular values of A_S in $[1 \delta_S, 1 + \delta_S]$
 - For any orthogonal x, y with supports of size s_1 , s_2 :

$$|x^T A^T A y| \le 3/2 ||x|| ||y|| (\delta_{s_1} + \delta_{s_2})$$

- W.I.o.g ||x|| = ||y|| = 1 so $||x + y||^2 = 2$ $2(1 - \delta_{s_1 + s_2}) \le ||A(x + y)||^2 \le 2(1 + \delta_{s_1 + s_2})$ $2(1 - (\delta_{s_1} + \delta_{s_2})) \le ||A(x + y)||^2 \le 2(1 + (\delta_{s_1} + \delta_{s_2}))$
- $(1 \delta_{s_1}) \le ||Ax||^2 \le (1 + \delta_{s_1})$
- $(1 \delta_{s_2}) \le ||Ay||^2 \le (1 + \delta_{s_2})$

Restricted Isometry Property

- $2x^{T}A^{T}Ay$ = $(x + y)^{T} A^{T}A(x + y) - x^{T}A^{T}Ax - y^{T}A^{T}Ay$ = $||A(x + y)||^{2} - ||Ax||^{2} - ||Ay||^{2}$
- $2x^T A^T A y \le 2 \left(1 + \left(\delta_{s_1} + \delta_{s_2} \right) \right) \left(1 \delta_{s_1} \right) \left(1 \delta_{s_2} \right) = 3(\delta_{s_1} + \delta_{s_2})$
- $x^T A^T A y \le \frac{3}{2} ||x|| \cdot ||y|| \cdot (\delta_{s_1} + \delta_{s_2})$

Reconstruction from RIP

- **Thm.** If A satisfies RIP with $\delta_{s+1} \leq \frac{1}{10\sqrt{s}}$ and x_0 is s-sparse and satisfies $Ax_0 = b$. Then a $\nabla(||\cdot||_1)$ exists at x_0 which satisfies conditions of the "subgradient theorem".
- Implies that x_0 is the unique minimum 1-norm solution to Ax = b.
- $S = \{i | (x_0)_i \neq 0\}, \bar{S} = \{i | (x_0)_i = 0\}$
- Find subgradient u search for w: $u = A^T w$
 - for i ∈ S: $u_i = sign(x_0)$
 - 2-norm of the coordinates in \bar{S} is minimized

Reconstruction from RIP

• Let *z* be a vector with support *S*:

$$z_i = \operatorname{sign}((x_0)_i)$$

- Let $w = A_S (A_S^T A_S)^{-1} z$
- A_S has independent columns by RIP
- For coordinates in *S*:

$$(A^T w)_S = A_S^T A_S (A_S^T A_S)^{-1} z = z$$

• For coordinates in \bar{S} :

$$(A^T w)_{\bar{S}} = A_{\bar{S}}^T A_S (A_S^T A_S)^{-1} z$$

- Eigenvalues of $A_S^T A_S$ are in $[(1 \delta_S)^2, (1 + \delta_S)^2]$
- $||(A_S^T A_S)^{-1}|| \le \frac{1}{(1-\delta_S)^2}$, let $p = (A_S^T A_S)^{-1} z$, $||p|| \le \frac{\sqrt{S}}{(1-\delta_S)^2}$
- $A_S p = Aq$ where q has all coordinates in \overline{S} equal 0

• For
$$j \in \bar{S}$$
: $(A^T w)_j = e_j^T A^T A q$ so $|(A^T w)_j| \le \frac{\frac{3}{2}(\delta_S + \delta_1)\sqrt{S}}{(1 - \delta_S)^2} \le \frac{\frac{3}{2}(\delta_{S+1})\sqrt{S}}{(1 - \delta_S)^2} \le \frac{1}{2}$