Serie de td n°:2 Compilation Analyse Syntaxique: Introduction, Rappels et Complements

Exercice 1

```
1) Soit la grammaire G = (\{a, b\}, \{S, A, B, C\}, S, P) où P est défini par :
```

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

Analyser la chaîne **babaab** de manière descendante puis ascendante, en construisant, à chaque fois, son arbre de dérivation.

Exercice 2

1) Soit la grammaire des expressions arithmétiques $G = (\{+, -, *, /, a, b, c, (,)\}, \{E\}, E, P)$ où P est défini par :

$$E \rightarrow E + E \mid E - E \mid E * E \mid E \mid E \mid (E) \mid -E \mid a \mid b \mid c$$

Donner l'arbre de dérivation de la chaîne b + a * b - c ? Que peut-on en déduire ?

2) Soit la grammaire $G' = \{\{+, -, *, /, a, b, (,)\}, \{E, T, F, L\}, E, P\}$ où P est défini par :

```
E \rightarrow E + T \mid E - T \mid T

T \rightarrow T * F \mid T / F \mid F

F \rightarrow -F \mid L

L \rightarrow (E) \mid a \mid b \mid c
```

- a) Donner l'arbre de dérivation de la chaîne **b + a * b c**. Que peut-on en déduire ?
- b) Donner l'arbre abstrait correspondant à la chaîne **b + a * b c**.
- c) Donner les arbres syntaxiques concret et abstrait de la chaîne **b a + c**.

Exercice 3

1) Soit la grammaire des expressions booléennes $G = (\{ou, et, non, vrai, faux, (,)\}, \{A\}, A, P)$ où P est défini par :

 $A \rightarrow A$ ou $A \mid A$ et $A \mid non A \mid (A) \mid vrai \mid faux$

Donner l'arbre de dérivation de la chaîne **non faux ou vrai et vrai** ? Que peut-on en déduire ?

- 2) Proposer une grammaire G' pour éliminer le problème posé par la grammaire G.
- 3) Donner l'arbre de dérivation de la chaîne **non faux ou vrai et vrai** en utilisant la grammaire G'.

Exercice 4

Soit la grammaire G d'un langage proche de Pascal, exprimée sous forme EBNF de la manière suivante, exprimer la grammaire G sous forme de diagrammes syntaxiques.

```
<Programme> ::= <u>Program</u> ident ; <Bloc>.
<Bloc>
               ::= [ Const <SuitConst> ; ] [ Var <SuitVar> ; ] { Procedure ident ; <Bloc> ;}
                   Begin <Inst> {; <Inst> } End
<SuitConst>
               ::= <DecConst> { , < DecConst>}
<DecConst>
               ::= ident = nbEnt
<SuitVar>
               ::= ident {, ident}
<Inst>
               ::= ident := <Exp> | <u>If</u> <Cond> <u>Then</u> <Inst> [<u>Else</u> <Inst>]
                  | Repeat <Inst> Until <Cond> | While <Cond> Do <Inst> | Begin <Inst> {; <Inst> } End
               ::= <Exp> ( = | <> | < | > | <= | >= ) <Exp>
<Cond>
               ::= <Terme> { (+ | -) <Terme>}
<Exp>
               ::= <Facteur> { (* | /) <Facteur>}
<Terme>
               ::= ident | nbEnt | ( <Exp> )
<Facteur>
```

CORRECTION DE LA SERIE DE TD N°:2 COMPILATION

Exercice 1

1) Soit la grammaire $G = (\{a, b\}, \{S, A, B, C\}, S, P)$ où P est défini par :

 $\mathsf{S} \to \mathsf{AB} \mid \mathsf{BC}$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

Analyser la chaîne **babaab** de manière descendante puis ascendante, en construisant, à chaque fois, son arbre de dérivation.

Solution:

- 1) $S \rightarrow AB$
- 2) $S \rightarrow BC$
- 3) $A \rightarrow BA$
- 4) $A \rightarrow a$
- 5) $B \rightarrow CC$
- 6) $B \rightarrow b$
- 7) $C \rightarrow AB$
- 8) $C \rightarrow a$

Analyser la chaîne **babaab** de manière descendante :

Analyser la chaîne **babaab** de manière ascendante :

Exercice 2

1) Soit la grammaire des expressions arithmétiques $G = (\{+, -, *, /, a, b, c, (,)\}, \{E\}, E, P)$ où P est défini par :

$$E \rightarrow E + E \mid E - E \mid E * E \mid E \mid E \mid (E) \mid -E \mid a \mid b \mid c$$

Donner l'arbre de dérivation de la chaîne **b + a * b - c** ? Que peut-on en déduire ?

Solution:

Vu l'existence de plusieurs arbres de dérivation, ont conclu que cette grammaire est **ambigüe**.

2) Soit la grammaire
$$G' = \{\{+, -, *, /, a, b, (,)\}, \{E, T, F, L\}, E, P\}$$
 où P est défini par :

$$\mathsf{E} \to \mathsf{E} + \mathsf{T} \mid \mathsf{E} - \mathsf{T} \mid \mathsf{T}$$

$$T \rightarrow T * F | T / F | F$$

$$\mathsf{F}\to\mathsf{-F}\mid\mathsf{L}$$

$$L \rightarrow (E) \mid a \mid b \mid c$$

a) Donner l'arbre de dérivation de la chaîne **b + a * b - c**. Que peut-on en déduire ?

Solution:

Vu qu'il n'existence pas plusieurs arbres de dérivation, ont conclu que cette grammaire n'est pas **ambigüe**.

b) Donner l'arbre abstrait correspondant à la chaîne **b + a * b - c**.

Solution:

c) Donner les arbres syntaxiques concret et abstrait de la chaîne ${\bf b}$ - ${\bf a}$ + ${\bf c}$.

Solution:

Exercice 3

- 1) Soit la grammaire des expressions booléennes $G = (\{ou, et, non, vrai, faux, (,)\}, \{A\}, A, P)$ où P est défini par :
- $A \rightarrow A$ ou $A \mid A$ et $A \mid$ non $A \mid (A) \mid$ vrai \mid faux

Donner l'arbre de dérivation de la chaîne non faux ou vrai et vrai ? Que peut-on en déduire ?

Solution:

Vu l'existence de plusieurs arbres de dérivation, ont conclu que cette grammaire est **ambigüe**.

2) Proposer une grammaire G' pour éliminer le problème posé par la grammaire G.

Solution :

G':

 $A \rightarrow A \text{ ou } B \mid B$

 $B \to B$ et $C \mid C$

 $C \rightarrow non C \mid D$

 $D \rightarrow (A) \mid vrai \mid faux$

3) Donner l'arbre de dérivation de la chaîne **non faux ou vrai et vrai** en utilisant la grammaire G'.

Solution :

