COSC 3337 : Data Science I

N. Rizk

College of Natural and Applied Sciences

Department of Computer Science

University of Houston

Entropy and Information Grain

Probability of winning using independents events

- What is the probability to draw the same sequence
- Set1=AAAA 1 1 1 1 → P(winning)1*1*1*1=1
- Set2=AAAB 0.75 0.75 0.75 0.25

 → P(winning)0.75*0.75*0.75*0.25=0.105

- Set3=AABB 0.5 0.5 0.5 0.5
- \rightarrow P(winning)0.5*0.5*0.5*0.5=0.0625

AAAABBB → Entropy formula?

 $=-5/8\log_2(5/8) -3/8\log_2(3/8)$

What if we have more than 2?

N.Rizk (University of Houston)

Probability of winning using MORE classes

	P(Winning)	-log ₂ p(Winning)	E
AAAAAAA	1*1*1*1*1*1*1	0+0+0+0+0+0+0	0
AAAABBCD	0.5*0.5*0.5*0.5*0.25*0.25*0.125 *0.125	-1/2log0.5-1/4log0.25- 1/8log0.125-1/8log0.125	1.75
AABBCCDD	0.25*0.25*0.25*0.25* 0.25*0.25	-8/8log0.25	2

Shannon → Entropy is the average number of questions needed to get an answer (Bits)

The entropy concept in information theory first time coined by Claude Shannon (1850).

N.Rizk (University of Houston)

DNA sequencing

Gel:

N.Rizk (University of Houston)

COSC 3337:DS 1

Entropy & Bits

- You are watching a set of independent random sample of X
- X has 4 possible values:

$$P(X=A)=1/4$$
, $P(X=B)=1/4$, $P(X=C)=1/4$, $P(X=D)=1/4$

- You get a string of symbols ACBABBCDADDC...
- To transmit the data over binary link you can encode each symbol with bits (A=00, B=01, C=10, D=11)
- You need 2 bits per symbol

Fewer Bits – example 1

Now someone tells you the probabilities are not equal

$$P(X=A)=1/2$$
, $P(X=B)=1/4$, $P(X=C)=1/8$, $P(X=D)=1/8$

• Now, it is possible to find coding that uses only 1.75 bits on the average. How?

Fewer bits – example 2

Suppose there are three equally likely values

$$P(X=A)=1/3, P(X=B)=1/3, P(X=C)=1/3$$

- Naïve coding: A = 00, B = 01, C=10
- Uses 2 bits per symbol
- Can you find coding that uses 1.6 bits per symbol?

• In theory it can be done with 1.58496 bits

Entropy – General Case

• Suppose X takes n values, V_1 , V_2 ,... V_n , and

$$P(X=V_1)=p_1, P(X=V_2)=p_2, \dots P(X=V_n)=p_n$$

 What is the smallest number of bits, on average, per symbol, needed to transmit the symbols drawn from distribution of X? It's

$$H(X) = p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots p_n \log_2 p_n$$
$$= -\sum_{i=1}^n p_i \log_2(p_i)$$

• H(X) = the entropy of X

High, Low Entropy

"High Entropy"

- X is from a uniform like distribution
- Flat histogram
- Values sampled from it are less predictable

"Low Entropy"

- X is from a varied (peaks and valleys) distribution
- Histogram has many lows and highs
- Values sampled from it are more predictable

Specific Conditional Entropy, H(Y|X=v)

X = College Major Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

- I have input X and want to predict Y
- From data we estimate probabilities

$$P(LikeG = Yes) = 0.5$$

$$P(Major=Math \& LikeG=No) = 0.25$$

$$P(Major=Math) = 0.5$$

Note

$$H(X) = 1.5$$

$$H(Y) = 1$$

Specific Conditional Entropy, H(Y|X=v)

X = College Major

Y = Likes "Gladiator"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

- Definition of Specific Conditional Entropy
- H(Y|X=v) = entropy of Y among only those records in which X has value v
- Example:

$$H(Y|X=Math)=1$$

$$H(Y|X=History) = 0$$

$$H(Y|X=CS)=0$$

Conditional Entropy, H(Y|X)

X = College Major

Y = Likes "Gladiator"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy

H(Y|X) = the average conditional entropy of Y

$$= \Sigma_i P(X=v_i) H(Y/X=v_i)$$

• Example:

V _i	P(X=v _i)	H(Y X=v _i)
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(Y|X) = 0.5*1+0.25*0+0.25*0 = 0.5$$

Information Gain

X = College Major

Y = Likes "Gladiator"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

- Definition of Information Gain
- IG(Y|X) = I must transmit Y.

How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

• Example:

$$H(Y) = 1$$

$$H(Y|X) = 0.5$$

Thus:

$$IG(Y|X) = 1 - 0.5 = 0.5$$

Example what IG tells us about the target

- Predict whether someone is going to live more than 80 years
- From consensus data →
 Ig(Longlife|haircolor)=0.01 (tells nothing!)
 IG (Longlife|Smoker)=0.2
 IG (Longlife|Gender)=0.25
 IG (Longlife|last4digitsSSn)=0.00001
- If $IG(y|x) \rightarrow x$ is a good attribute to spilt on