五穀為養:與多酚類的關連

黃帝內經》提出「毒藥攻邪,<mark>五穀為養,五果為助,五畜為益、五菜為充</mark>,氣味合而服之,以補精益氣。此五者,有辛酸甘苦鹹,各有所利,或散或收,或緩或急,或堅或軟,四時五臟,病隨五味所宜也」的膳食配伍原則。

- 五穀有補養的作用,五穀有五味,分別有不同的補養作用。
- 五果有輔助作用。
- 五畜是補益的作用,助長五臟精氣。
- 五菜為充養的作用。
- □ 榖肉果菜都有不同的味,作用也不同,在實踐當中也要調 和這五味。
- □ 稻米、小米、小麥、豆類等五穀雜糧是補養五臟精氣最主要的養分,為諸營養分之首,加上適量水果、肉蛋類、蔬菜的補充,是補養人身體精氣神的主要來源。

Table 3. Correlation Analysis of Phenolics and Total Antioxidant Activity

	free extracts		bound extracts		total	
	total antioxidant activity	phenolics	total antioxidant activity	phenolics	total antioxidant activity	phenolics
phenolics	0.076a	1	0.991**b		0.983**	
ferulic acid	0,0003¢	0.695¢	0.999**	0.994**	0.974*	0.998**
flavonoids	0.517	0.324	0.872	0.865	0.925*	0.933*

90

58

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (2/35)

Antioxidants Activity of Grains (J. Agric. Food Chem., 50:6182-6187, 2002)

綠原酸(ferulic acid)為主要酚類化合物,游離/可溶共軛物/結合態的比率約 0.1:1:100

Table 1. Ferulic Acid Contents of Grains and the Percentage Contribution of Each Fraction to the Total (umol of ferulic acid/100 g of grain)

Figure 1. Phenolic content of grains.

Figure 2. Flavonoid content of grains.

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思慰整理 20180818 (4/35)

Analysis of Phenolic Compounds in White Rice, Brown Rice, and Germinated Brown Rice (J. Agric. Food Chem., 52: 4808-4813, 2004)

Table 2. Soluble Phenolic Acid Content^a of Germinated Brown Rice, Brown Rice, and White Rice (Milligrams per 100 g of Flour)

	白米 white rice	糙米 brown rice	發芽糙米 germinated brown rice
mg protocatechuic acid	0.01 ± 0.00	0.04 ± 0.00	0.05 ± 0.00
bydroxybenzoic acid	0.01 ± 0.00	0.04 ± 0.00	0.00 ± 0.00
vanillic acid	0.02 ± 0.00	0.07 ± 0.00	0.01 ± 0.00
syringic acid	0.01 ± 0.00	0.03 ± 0.00	0.03 ± 0.00
chlorogenic acid	0.03 ± 0.00	0.03 ± 0.00	0.04 ± 0.00
caffeic acid	0.02 ± 0.00	0.02 ± 0.00	0.05 ± 0.00
p-coumaric acid	0.02 ± 0.00	0.10 ± 0.00	0.12 ± 0.00
ferulic acid 綠原酸	0.07 ± 0.01	0.32 ± 0.01	0.48 ± 0.01
sinapinic acid	0.01 ± 0.00	0.02 ± 0.00	0.21 ± 0.01
g+ feruloylsucrose	0.03 ± 0.00	1.09 ± 0.01	0.27 ± 0.01
sinapoylsucrose	0.03 ± 0.00	0.41 ± 0.01	0.13 ± 0.00
total	0.28	2.17	1.45
可溶性酚酸總量	1 :	7.8 :	5.2

^a Mean value \pm SD (n=3).

^a Correlation coefficient R². ^b Significantly different: *, p < 0.05; **, p < 0.01; all others, p > 0.05. ° Total of free and soluble conjugate ferulic acid.

	white rice	brown rice	germinated brown rice
protocatechuic acid	0.17 ± 0.00	0.17 ± 0.00	0.19 ± 0.01
hydroxybenzoic acid	ndb	0.16 ± 0.01	0.28 ± 0.02
vanillic acid	nd ^b	0.17 ± 0.01	0.20 ± 0.01
syringic acid	nd ^b	0.14 ± 0.00	0.16 ± 0.00
chlorogenic acid	ndb	nd ^b	ndb
caffeic acid	ndb	0.22 ± 0.00	0.22 ± 0.00
p-coumaric acid p-杳显酸	0.34 ± 0.01	2.10 ± 0.08	3.05 ± 0.02
ferulic acid 緑原酸	5.26 ± 0.14	15.19 ± 0.52	20.04 ± 0.77
sinapinic acid	nd ^b	0.32 ± 0.01	0.64 ± 0.01
feruloylsucrose	nd^b	ndb	ndb
sinapoylsucrose	nd ^b	nd ^b	ndb
total	5.77	18.47	24.78
	1	: 3.2	: 4.3
s Mean value \pm SD (n =	= 3). ^b Not dete	ctable.	

Table 4. Soluble Phenolic Acid and Insoluble Phenolic Acid Content^g of Marketed Germinated Brown Rice (Milligrams per 100 g of Flour)

市售發芽造米	free	bound	
protocatechuic acid	0.03 ± 0.00	nd ^b	
hydroxybenzoic acid	0.12 ± 0.00	0.26 ± 0.01	
vanillic acid	0.06 ± 0.00	0.18 ± 0.01	
syringic acid	0.05 ± 0.00	0.15 ± 0.00	
chlorogenic acid	0.03 ± 0.00	ndo	
caffeic acid	0.05 ± 0.00	0.20 ± 0.00	
p-coumaric acid	0.34 ± 0.01	3.00 ± 0.00	
ferulic acid	0.28 ± 0.01	16.39 ± 0.65	
sinapinic acid	0.11 ± 0.00	0.77 ± 0.04	
feruloylsucrose	0.22 ± 0.01	ndb	
sinapoylsucrose	0.10 ± 0.00	ndb	
total	1.39	20.95	

^a Mean value \pm SD (n=3). ^b Not detectable.

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (7/35)

Table 3 Mineral composition (mg/kg) of wheat flours and whole cereal grains

Mineral	Hard wheat	Soft wheat	Barley	Millet	Rye	Sorghum
P	3498	977.6	4570	2879	3620	349.9
K	826.2	1225	4572	2798	3570	239.9
Mg	301.2	306.5	1971	1488	1328	187.7
Ca	159.5	202.2	736.2	508.6	348.7	27.3
Na	46.0	38.4	238.4	60.89	67.2	4.6
Zn	30.8	7.6	74.2	65.9	30.6	3.1
Fe	13.2	13.9	128.4	199.8	44.0	10.6
Mn	5.2	8.1	9.2	8.1	24.4	1.2
Cu	1.4	1.6	5.7	3.4	2.9	0.2
Cr	0.1	0.001	0.9	7.7	0.7	0.8

Relative standard deviation of minerals ranged from 1.5% to 4.9%.

Table 4

Total phenols content and antioxidant properties of wheat flours and whole grain cereals

wiffore grains	cicais		
Cereal	Total phenols as gallic acid equivalent (μg/g)	DPPH scavenging capacity at 10 min (μmole/g)	ABTS scavenging capacity at 3 min (µmole/g)
Hard wheat	562 ± 28.8	4.33 ± 0.17	8.8 ± 0.39
Soft wheat	501 ± 25.5	4.17 ± 0.17	8.3 ± 0.31
Barley	879 ± 24.0	21.00 ± 0.83	14.9 ± 0.61
Millet	1387 ± 13.3	23.83 ± 0.67	21.4 ± 0.43
Rye	1026 ± 16.9	12.17 ± 0.50	13.0 ± 0.48
Sorghum	4128 ± 9.3	195.8 ± 8.82	51.7 ± 0.57

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (6/35)

Antioxidant Activity and Nutrient Composition of Selected Cereals for Food Use (Food Chem., 98: 32-38, 2006)

全穀物產品(大麥、小米、裸麥及高粱)、商業全穀小麥粉比較

Table 1 Chemical composition (% dry basis) of wheat flours and whole grain cereals

硬質小麥	Cereal	Starch	Protein $(N \times \text{factor})^a$	Total ash	Crude fat
軟質小麥	Hard wheat	77.4 ± 1.7	13.5 ± 0.3	0.56 ± 0.01	0.98 ± 0.03
大麥	Soft wheat	77.9 ± 1.8	11.0 ± 0.2	0.71 ± 0.01	0.86 ± 0.03
小米	Barley	53.6 ± 1.0	19.4 ± 0.4	2.88 ± 0.04	2.31 ± 0.1
	Millet	67.4 ± 1.3	8.8 ± 0.1	1.82 ± 0.03	4.22 ± 0.2
裸麥	Rye	58.0 ± 1.0	13.3 ± 0.2	1.96 ± 0.03	2.53 ± 0.1
高粱	Sorghum	67.7 ± 1.2	12.1 ± 0.1	1.87 ± 0.03	3.32 ± 0.1

Table 2 Dietary fibers composition (% dry basis) of wheat flours and whole grain cereals

Cereal	Soluble dietary fiber	Resistant starch	Insoluble dietary fiber	Total dietary fibe
Hard wheat	1.61 ± 0.01	0.20 ± 0.02	2.98 ± 0.01	4.59 ± 0.21
Soft wheat	1.78 ± 0.01	0.55 ± 0.01	1.87 ± 0.01	3.65 ± 0.11
Barley	2.56 ± 0.03	0.23 ± 0.01	22.07 ± 0.41	24.63 ± 0.52
Millet	1.45 ± 0.01	1.96 ± 0.01	13.50 ± 0.32	14.95 ± 0.41
Rye	3.70 ± 0.02	0.20 ± 0.01	14.07 ± 0.23	17.77 ± 0.53
Sorghum	1.42 ± 0.01	1.77 ± 0.02	19.59 ± 0.41	21.01 ± 0.41

Fig. 2. Radical cation ABTS scavenging capacity of wheat flour and cereal whole grain extracts at different time.

Phenolic Compounds in Cereal Grains and Their Health Benefits CEREAL FOODS WORLD, 52(3): 105-111, 2007

- ■全穀類食品是酚類的很好來源。
- □黑高粱(black sorghums) 含高量的獨特的酚類:
 - 3-deoxyanthocyanidins •
- □燕麥是 avenanthramides 的唯一來源。
- □在穀物中,單寧高梁(tannin sorghum)和黑米(black rice) 具有最高的抗氧化性(試管試驗)。

Table II. Phenolic acid content in cereal grains

	酚類含量	(μg/g)	x-/
Sample			X
Whole grains: 全勢	設物		17
Barley	450-1346	大麥	
Finger millet //	612	龍爪稷	N.
Foxtail millet *	3907	狐尾栗	狐
Maize	601	玉米	12
Oat	472	燕麥	
Pearl millet	1478	珍珠粟	
Rice	197-376	*	
Rye	1362-1366	裸麥	书
Sorghum	385-746	高粱	
Wheat	1342	小麥	
Brans: 糠			
Oat	651	燕麥	Attended
Ryc	4190	裸麥	4
Wheat	4527	小麥	

Table IV. Anthocyanin content of pigmented cereal grains

Sample Amount (µg/g)

		_
Sample	Amount (μg/g)	
Blue barleya	4	
Maize:a		
Pink	93	
Red	558	
Blue	225	
Purple	965	
Black ricea	2,283	
Black sorghumb	944	
Wheat:a		
Blue	106-153	
Purple	13-139	
1 Date obtained	from Abdel Aal and cowo	Vers

- ^a Data obtained from Abdel-Aal and coworkers (2).
- b Rooney and coworkers (Cereal Quality Lab, Texas A&M University, College Station, TX, unpublished data).

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (11/35)

Table V. Antioxidant activity (ORAC) of sorghum grains and brans compared to common fruits and vegetables^a

Commodity	ORAC (µmol TE/g, dry wt.)		
Tannin sorghum (grain)b	868	高涩穀物與糖	
Tannin sorghum (bran)b	3124		
Black sorghum (grain)	219		
Black sorghum (bran)	1008		
Red sorghum (grain)	140		
Red sorghum (bran)	710		
White sorghum (grain)	22		
White sorghum (bran)	64		
Blueberry, lowbush	842	ル里	
Strawberry	402	ング	
Plum	495		
Watermelon	18		
Apple, red delicious	295		
Orange, navel	137		
Broccoli	173	法芸	
Carrot	108	师 未	
Onion, red	93		
Sweet pepper, green	105		
Radishes	217		
Potatoes, russet	63		

a Adapted from Dykes and Rooney [18].

b Sumac.

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (13/35)

FIGURE 43.2 Percentage of nutrients lost or gained in the refining of wheat. Reprinted from McKeown et al. [62]. Data source: U.S. Department of Agriculture [117]. 小麥精製後營養素損失或增高的比率

食品風味學上課資料 - 國立台灣海洋大學食品科學系: 食品風味學上課資料 - 邱思魁整理 20180818 (15/35)

Fig. 1. Representation of primary cell wall structure of plant material and convoluting between structural components and phemic compounds. (A) Cellulows, relycones are formed after absorption. (E) Esterase and xylamase activities of colon (B) Hemicellulose. (C) Structural proteins. (D) Pectin. (E) Phenolic acids. (F) Lignin.

ig. 2. Absorption pathways of bound phenolic compounds in the gastrointestinal ract. (A) Hydrolysis of bound soluble conjugated forms by mucosa cells cinnamoyl sterases. (B) Soluble conjugated forms transport into enterocytes by the sodiumlependent glucose transporter SGLT1. (C) Lactase phloridzine hydrolase (LPH) (β-(lycosidase) of the brush border hydrolysis soluble conjugated phenolic comounds. (D) Epithelial cells cytosolic β-glucosidase hydrolyzes glycosides, and nicroorganism (e.g. Clostridium spp., Eubacterium spp., and Bifidobacterium idolescentis).

食品風味學上課資料 - 國立台灣海洋大學食品科學系: 食品風味學上課資料 - 邱思魁整理 20180818 (14/35)

常消費的全穀類16克中一些營養素的一般濃度

TABLE 43.1 Approximate Concentration of Selected Nutrients in One Serving (16g) of Commonly Consumed Whole Grains

	Wheat	Rye裸麥	Oal _{燕麥}	Barley, Hulled 大麥脫殼	Corn, yellow	Rice, Long-Grain Brown 紫告米
Carbohydrate (g)	11.9	12.1	10.6	11.8 人多版版	12.3 東玉木	12.4 長粒
Fat (g)	0.3	0.3	1.1	0.4	0.6	0.5
Protein (g)	1.5	1.6	2.7	2.0	1.1	1.3
Total fiber (g)	2.1	2.4	1.7	2.8	1.2	0.6
Total fiber (% dry matter)	13.5	19.9	10.2	15.2	-	-
Arabinoxylan (% dry matter)	5.6	8.9	2.0	5.2	-	-
Cellulose (% dry matter)	2.5	2.9	1.3	1.9	-	-
β-glucan (% dry matter)	0.8	1.5	5.0	4.6	-	-
Fructan (% dry matter)	1.3	4.1	4.1	1.6	-	-
Thiamin (mg)	0.05	0.1	0.1	0.1	0.04	0.1
Riboflavin (mg)	0.03	0.04	0.02	0.05	0.01	0.01
Niacin (mg)	0.9	0.7	0.2	0.7	0.3	0.8
Vitamin B6 (mg)	0.03	0.05	0.02	0.1	0.1	0.1
Vitamin E (mg)	0.1	0.1	0.1	0.1	0.1	0.2
Magnesium (mg)	19	18	28	21	15	23
Iron (mg)	0.6	0.4	0.8	0.6	0.4	0.2

Sources: Frolich et al. [6] and U.S. Department of Agriculture, Agricultural Research Service [117].

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (16/35)

Analyses of Free and Bound Phenolics in Rice: 21品種日本米 (Food Sci Techonl Res., 5: 74-79, 1999)

Table 2. Free phenolics in rice. 游離態酚類

		Total phenolics (mg/100 g)	Ferulic acid (μg/100 g)	p-Coumaric acid (μg/100 g)
米糠	Rice bran coefficient of variation (%) ratios (%)	160.2±195.2 121.8	561.1±575.7 102.6 56.6	429.5±277.9 64.7 43.4
精白米	Polished rice coefficient of variation (%) ratios (%)	8.19±3.05 37.2	65.3±62.2 95.2 73.4	23.7±46.6 196.6 26.6
糙米	Brown rice coefficient of variation (%) ratios (%)	23.39±19.49 83.3	114.9±81.4 70.8 64.1	64.3±53.2 82.7 35.9

Contents are shown as mean±standard deviation (n=21). Ratio is shown as each phenolic in ferulic acid plus p-coumaric acid. Contents in brown rice were calculated from values of rice bran and polished rice. Total phenolics were estimated by Folin-Dennis method and each phenolic was determined by

Table 4. Bound phenolics in rice. 結合態酚類

	Total phenolics (mg/100 g)	Ferulic acid (mg/100 g)	p-Coumaric acid (mg/100 g)	5,5'-Diferulic acid (mg/100 g)
Rice bran	1223±346	154.9±52.6	115.7±46.1	9.80±4.39
coefficient of variation (%)	28.3	34.0	39.8	44.8
ratios (%)	76/00%i	55.2	41.3	3.5
Polished rice	286.2±100.8	7.08±2.63	1.81±0.97	0.261 ± 0.094
coefficient of variation (%)	35.2	37.1	53.6	36.0
ratios (%)	52522	77.4	19.8	2.9
Brown rice	257.7±90.7	21.86±5.87	13.20±4.56	1.21 ± 0.47
coefficient of variation (%)	35.2	26.8	34.5	38.8
ratios (%)	1 1	60.3	36.4	3.3

Contents are shown as mean±standard deviation (n=21). Ratio is shown as each phenolic in ferulic acid plus p-coumaric acid plus 5,5'-diferulic acid. Contents in brown rice were calculated from values of rice bran and polished rice. Total phenolics were estimated by Folin-Dennis method and each phenolic was determined by HPLC.

食品風味學上課資料 - 國立台灣海洋大學食品科學系: 食品風味學上課資料 - 邱思魁整理 20180818 (17/35)

The Distribution of Phenolic Acids in Rice (Food Chem., 87: 401-406, 2004)

Table 3
The contents of bound and total phenolic acids in brown and milled rice cv. Koshihikari 越光米(4及37℃貯藏6個月)

Phenolic acid	Phenoli			g-1 dry grai	in)ª			vi= -				
	Brown	riœ 糙	米				Milled r	Milled rice 精目米				
	Fresh							Stored (six months, 4 °C)		Stored (six months, 37 °C)		
	Bound	Total	Bound	Total	Bound	Total	Bound	Total	Bound	Total	Bound	Total
Ferulic acid	259	289	224	255	202	214	58	71	38	66	36	55
p-Coumaric acid	82	85	70	70	59	62	8.9	9.5	5.9	8.9	5.5	8.0
Gallic acid	16	19	11	16	11	14	3.2	4.0	0.11	3.8	0.2	3.8
Vanillic acid	11	15	2.1	12	3.0	13	0.3	0.6	Tre	0.2	Tr	0.2
Caffeic acid	2.7	3.5	2.1	3.9	2.0	2.2	0.2	0.2	Tr	Tr	Tr	Tr
Syringic acid	2.0	2.8	1.4	2.6	1.5	2.4	Tr	Tr	Tr	Tr	Tr	Tr
Sum	373	415	311	360	279	308	. 71	86	44	79	42	67
Ratiob	0.32		0.31	87	% 0.29	74	% 0.15		0.15	92%	o 0.15	78%

The contents of bound and total phenolic acids in brown and milled rice cv. Kyeema

Phenolic acid	Phenolic	acid cont	ent (mgkg-	¹ dry grair	n)*							
	Brown r	Brown rice						Milled rice				
Fres	Fresh		resh Stored (six months, 4 °C)		Stored (s		Fresh		Stored (six months, 4 °C)		Stored (six months, 37 °C)	
	Bound	Total	Bound	Total	Bound	Total	Bound	Total	Bound	Total	Bound	Total
Ferulic acid	330	362	287	350	270	333	76	84	61	74	60	68
p-Coumaric acid	117	121	107	113	101	103	9.1	10	6.0	8.2	5.7	7.5
Gallic acid	22	30	5.7	27	6.0	23	6.5	7.1	Tre	5.6	Tr	5.0
Vanillic acid	4.3	6.1	3.3	4.9	3.1	5.0	3.0	3.2	Tr	2.5	Tr	1.5
Caffeic acid	5.1	5.8	3.9	4.6	3.1	3.5	0.10	0.10	Tr	0.03	Tr	0.10
Syringic acid	3.7	4.0	1.5	3.1	1.7	2.9	0.10	0.10	Tr	0.10	Tr	0.10
Sum	482	528	408	502	385	470	95	105	67	90	66	82 700
Ratiob	0.35		0.37	959	0.37	80	% 0.12		0.10	869	0.10	789

^aStandard error for measurement of individual acids 5%
^bRatio = p-coumaric acid content/ferulic acid content.

食品風味學上課資料-國立台灣海洋大學食品科學系:食品風味學上課資料-邱思戀整理 20180818 (18/35) Antioxidant activity of methanolic extracts from some grains consumed in Korea (Choi, Y., Jeong, H.S., Lee, J., Food Chem., 103:130-138, 2007)

Table 1 Polyphenolics and total carotenoids contents of the methanolic extracts obtained from the grains and extraction yields

Source	Polyphenolics ^a	Total carotenoids ^b	Yield (%)
白米 White rice	18 ± 0.6	1 ± 0.5	2.3
Black rice 黑米	313 ± 31.5	77 ± 6.3	5.1
高粱 Sorghum	733 ± 48.4	22 ± 1.1	5.3
Brown rice 糙米	54 ± 2.2	14 ± 2.0	3.8
減量 Mungbean	45 ± 1.9	102 ± 3.7	6.1
Foxtail millet ##	$\overline{\oplus}$ 47 ± 1.4	80 ± 5.8	6.8
Prosomillet	29 ± 1.2	74 ± 7.4	4.5
Barley 大麥	50 ± 2.9	15 ± 0.9	2.4
菩仁 Adlay	43 ± 2.0	10 ± 3.1	5.1

Table 2 Tocopherol and tocotrienol contents in the methanolic extracts obtained from the grains

Sample	α-T ^b	β-Т	у-Т	δ-T	α-T3	β-Τ3	γ-T3	δ-T3	Total
White rice	0.07	_e	0.01	-	0.08	-	0.58	-	0.74
Black rice	1.24		0.25	3.86	1.38	2	2.64	-	→ 9.37
Sorghum	0.14	-	1.33	0.02	0.21	**	0.08	0.01	1.79
Brown rice	0.42		0.12	0.00	0.56		1.54	-	2.64
Mungbean	0.05	-	9.78	0.70	0.04		0.32	0.03	→ 10.92
Foxtail millet	0.06		2.62	0.04	0.05	-	0.57	-	3.34
Prosomillet	0.00	- 2	1.33	0.83	0.00	2	0.06	-	2.22
Barley	0.23		0.32	0.02	1.07	0.24		0.04	1.92
Adlay	0.02		1.67	0.16	0.09	0.773241	1.31	0.17	3.42

[&]quot; Mean of duplicate determinations expressed as mg per 100 g of grain (wet weight basis).

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (20/35)

Fig. 5. Inhibition of lipid peroxidation of methanolic extracts (4 mg/ml) from grains.

Standard error for measurement of individual acids 5%.

b Ratio = p-coumaric acid content/ferulic acid content.

Tr, Trace.

b Corresponding tocopherols and tocotrienols.

c Not detected.

Enriching wheat flour adds back five of these nutrients, in amounts different from their original levels in whole wheat flour. All other nutrients stay at the levels shown for refined flour above.

營養強化(enriched)小麥粉:回添5種營養素至全麥麵粉中的原存在量。

to 59% (folate) of the level naturally occurring in whole wheat. Only the calories increase!

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (23/35)

Table 4 Phenolic content of some fruit juices Juice Total phenolics Reference content Commercial juices Gardner et al. (2000) Apple 339 ± 43^{a} Grapefruit 535 ± 11^{a} Gardner et al. (2000) 755 ± 18^{a} Orange Gardner et al. (2000) Pineapple 358 ± 3^{a} Gardner et al., 2000 441 ± 59^{b} Donovan et al. (1998) Prune Fresh juices 1728ª Sánchez-Moreno et al. (1999) Grape (red) Sánchez-Moreno et al. (1999) Grape (white) 519a Orange 382-1147^b Rapisarda et al. (1999)

a mg gallic acid equivalents/ L.

b mg ferulic acid equivalents/L.

Table 5 Phenolic content of teas and coffee

Beverage, type	Total phenolics content ^a	Reference
Tea	**************************************	
Black tea	80.5-134.9	Khokhar and Magnusdottir (2002)
Black tea	154.9-162.9	Lakenbrink et al. (2000)
Black tea	62-107	Luximon-Ramma et al. (2005)
Green tea	65.8-106.2	Khokhar and Magnusdottir (2002
Green tea	117.3	Samman et al. (2001)
Green tea	61-200	Schulz et al. (1999)
Coffee		
Instant coffee	146-151	Lakenbrink et al. (2000)
Ground coffee	52.5-57.0	Lakenbrink et al. (2000)

a mg gallic acid equivalents/g dry matter.

食品風味學上課資料-國立台灣海洋大學食品科學系:食品風味學上課資料-邱思魁整理 20180818 (22/35) Phenolic compounds in plants and agri-industrial by-products: Antioxidant

activity, occurrence, and potential uses. Food Chem., 99 (2006) 191-203

Table 2 Phenolics content of selected fruits			Table 3			
Fruit	Total phenolics content	Reference	Phenolics conten	t of selected vegeta	bles	
Apple Banana	mana 90.4 ± 3.2" Sun et al. (2002)		Vegetable	Total phenolics content	Reference	
Banana Black plum Blackberry Blackberry	$11.8 \pm 0.4^{\circ}$ $143.5 \pm 40.6^{\circ}$ $417-555^{\circ}$ $26.7-452.7^{\circ}$	Luximon-Ramma et al. (2003) Karakaya et al. (2001). Sellappan et al. (2002) Deighton et al. (2000).	Broccoli	101.6 ± 1.24 ^a 87.5 ± 8.1 ^b	Chu et al. (2002) Kaur and Kapoor (2002)	
(Ruhus species) Blueberry (rabbiteye)	270-930"	Sellappan et al. (2002)	Brussel sprouts	68.8 ± 1.3 ^b	Kaur and Kapoor (2002)	
Blueberry (Southern highbush)	261-585"	Sellappan et al. (2002)	Cabbage	$54.6\pm7.0^{\mathrm{a}}$	Chu et al. (2002)	
(Vaccinium species)	171-961"	Moyer et al. (2002)		$92.5 \pm 2.4^{\circ}$	Kaur and Kapoor (2002)	
Cherry Cranberry Guava (pink)	105.4 ± 27.0^{h} 527.2 ± 21.5^{o} 126.4 ± 6.0^{o}	Karakaya et al. (2001). Sun et al. (2002) Luximon-Ramma et al. (2003)	Carrot	56.4 ± 5.1° 55.0 ± 0.9°	Chu et al. (2002) Kaur and Kapoor (2002)	
Guava (white) Litchi (lichee) Litchi (lichee)	$247.3 \pm 4.5^{\circ}$ $3.35 \pm 0.05^{\circ}$ $28.8 \pm 1.7^{\circ}$	Luximon-Ramma et al. (2003)	Cucumber	19.5 ± 1.6ª	Chu et al. (2002)	
Mango Mango	$6.25 \pm 0.05^{\circ}$ $56.0 \pm 2.1^{\circ}$	Gorinstein et al. (1999) Luximon-Ramma et al. (2003)		$48.0\pm0.9^{\rm b}$	Kaur and Kapoor (2002)	
Peach Papaya Persimmon	84.6 ± 0.7° 57.6 ± 4.1° 1.45°	Sun et al. (2002) Luximon-Ramma et al. (2003) Gorinstein et al. (1999)	Mint	399.8 ± 3.2 ^b	Kaur and Kapoor (2002)	
Pincapple Pincapple	94.3 ± 1.5° 2.58 ± 0.05°	Sun et al. (2002) Gorinstein et al. (1999)	Spinach	91.0 ± 8.5^{a}	Chu et al. (2002)	
Plums Prunes (pitted) Raisins	174-375° 184.0 ± 85.5° 399.4 ± 57.6°	Kim et al. (2003) Donovan et al. (1998) Karakaya et al. (2001).	Tomato	$25.9 - 50.0^{\circ}$ $68.0 \pm 1.6^{\circ}$	Martínez-Valverde et al. (2002) Kaur and Kapoor (2002)	
Rambutan Raspberry Red grape	$1.64 \pm 0.04^{\circ}$ $114-178^{\circ}$ $220.6 \pm 61.2^{\circ}$	Gorinstein et al. (1999) de Ancos et al. (2000) Karakaya et al. (2001).	Vidalia onion varieties	73.3-180.8 ^a	Sellappan and Akoh (2002)	
Red grape Starfruit (acidic) Starfruit (sweet)	$201.0 \pm 2.9^{\circ}$ $142.9 \pm 7.1^{\circ}$ $209.9 \pm 10.4^{\circ}$	Sun et al. (2002) Luximon-Ramma et al. (2003) Luximon-Ramma et al. (2003)	Yellow onion	$76.3\pm1.9^{\rm a}$	Chu et al. (2002)	
Strawberry Strawberry	161-290" 160 ± 1.2"	Heinonen et al. (1998) Sun et al. (2002)	a Gallic acid equivalents/100 g fresh weight.			

- b Catechin equivalents/100 g fresh weight.
- c Ferulic acid equivalents/100 g fresh weight.

- Gallic acid equivalents/100 g fresh weight.
- Catechin equivalents/100 g fresh weight.
 Chlorogenic acid equivalents/100 g fresh weight.

食品風味學上課資料-	國立台灣海洋大	學食品科學系:	食品風味學」	課資料	- 邱思魁整理 20180818	(24/35)
bla 6		Table				

Phenolic content of different wines			Phenolic compounds from agricultural by-products					
Colour,	Total phenolics	Reference	By-product	Phenolic compounds	Levels*	Reference		
region, country			Almond [Proms dulcis (Mill.) D.A. Webb] hulls	Chlorogenic acid	$42.52 \pm 4.50 mg/100 g fw$	Takeoka and Dao (2002)		
Red wines Argentine Brazilian	1593–1637 1947–1984	Sánchez-Moreno et al. (2003) Minussi et al. (2003)	DA. HOOJ said	4-O-Caffeoylquinic acid 3-O-Caffeoylquinic acid	7.90 mg/100 g (w 3.04 mg/100 g (w			
Californian Chilean French	1800-4059 2133 1847-2600	Frankel et al. (1995) Minussi et al. (2003) Teissedre and Landrault (2000)	Apple peels	Flavonoids Anthocyanin	2299 mg CE/100 g dw 169 mg CGE/100 g dw	Wolfe and Liu (2003)		
French Greek Italian Japanese Portuguese	1847-2600 1018-3545 1217-3722 3314-4177 1810-2151 1615 1869	resseure and Landrault (2000) Landrault et al. (2001) Arnous et al. (2001) Minussi et al. (2003) Sato et al. (1996) Minussi et al. (2003) Sánchez-Moreno et al. (1999)	Artichoke blanching waters	Nexchlorogenic acid Cryptochlorogenic acid Chlorogenic acid Cynarin Cuffeic acid derivatives	11.3 g phenolics/100 mL	Llorach et al. (2002)		
Spanish White wines Argentine Brazilian Californian Californian French	216 256-353 165-331 220-306 245	Minussi et al. (2003) Minussi et al. (2003) Frankel et al. (1995) Sánchez-Moreno et al. (2003) Teissedre and Landrault (2000)	Bockwheat (Fagopyrum esculentum Môench) hulls	Protocatechuic acid 3,4-Dihydroxybenzaldehyde Hyperin Rutin Quercetin	13.4 mg/100 mg dw 6.1 mg/100 g dw 5.0 mg/100 g dw 4.3 mg/100 g dw 2.5 mg/100 g dw	Watanabe et al. (1997)		
French Italian Italian Japanese Spanish	262-1425 439-854 191-296 295-556 292	Landrault et al. (2001) Minussi et al. (2003) Sánchez-Moreno et al. (2003) Sato et al. (1996) Sánchez-Moreno et al. (1999)	Dried apple pomace	Flavonols Flavanols Dihydrochalcones Hydroxycinnamates	673 mg/kg dw 318 mg/kg dw 861 mg/kg dw 562 mg/kg dw	Schieber et al. (2003)		
Rose wines Italian	1304	Minussi et al. (2003)	Dried coconst bask	4-Hydroxybenzoic acid ferulic acid	13.0 mg phenolics/g dry weight	Dey et al. (2003)		
Japanese	340	Sato et al. (1996)	* Expressed on fresh weight (fw) or a	fry weight (dw) basis.				

a mg gallic acid equivalents/L.

Antioxidant activities of extracts from selected culinary herbs and spices (Food Chem., 97: 122-129)

Table 1
Characterization of the plant material and extraction yield for hydrodistilled extracts フト萃取

Spice 乾燥原料	Botanical family	Extraction yield (mg/g)	Total phenols (mg GA/g)
Basil (Ocimum basilicum) 羅勒(九層塔) Lamiaceae	246	→ 147 ± 1.60a
Parsley (Petroselinum crispum) 荷蘭芹	Apiaceae	196	29.2 ± 0.44 b,c
Laurel (Laurum nobilis) 月桂	Lauraceae	258	→ 92.0 ± 2.45d
Juniper (Juniperus communis) 杜松	Cupressaceae	422	$18.5 \pm 0.62e$
Cardamom (Elettaria cardamomum) 荳蔻	Zingiberaceae	88	24.2 ± 0.29b,f
Ginger (Zingiber officinalis)	Zingiberaceae	302	23.5 ± 1.26b,e
Aniseed (Pimpinella anisum) 八角	Apiaceae	230	20.8 ± 0.62 e,f
Fennel (Foeniculum vulgare) 茴香	Apiaceae	216	$30.3 \pm 0.76c$
Cumin (Carum carvi)	Apiaceae	242	37.4 ± 0.32 g

Lines with the same lowercase letter are not significantly different for total phenols (P > 0.05).

食品風味學上課資料 - 國立台灣海洋大學食品科學系: 食品風味學上課資料 - 邱思魁整理 20180818 (27/35)

Flavors of the future: Health benefits of flavor precursors and volatile compounds in plant foods- Review

(Trends in Food Sci. & Technol., 48: 69-77, 2016)

背景: Consumers' food production requirements have changed considerably during the last decade. This includes growing interest in the use of aroma compounds to develop functional foods for providing health benefits and reducing chemically synthesized additives. More recently, beyond their flavoring properties, various reports have shown the potential role of volatile compounds in human health, including their antioxidant, anti-inflammatory, anti-cancer and anti-obesity activities. Thus, investigation into the pharmacological activities of flavor and volatile compounds has been increased.

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (26/35)

Fig. 1. Antioxidant activity of spice extracts in iron reduction (a), in lipid peroxidation (b), in iron chelation (c), against DPPH (d), in site-specific (e as well as nonsite-specific (f) decoxyribose degradation assay, BA, basil; PA, parsley; LA, laurel; JU, juniper; CA, cardamom; GI, ginger; AN, aniseed FE, fennel; CU, cumin. Bars with the same lowercase letter are not significantly of different (P > 0.05).

食品風味學上課資料 — 國立台灣海洋大學食品科學系:食品風味學上課資料 — 邱思魁整理 20180818 (28/35) Promising health benefits of volatile and non-volatile compounds.

Compounds	Example sources	Taste/odor description	Promising health benefits	References
Chlorogenic acids 緑原酸	Coffee, blueberry, papaya, mango, wine, grape, yerba mate, apple juice, arnica flower	Bitter	Anti-obesity, anti-diabetic, antimicrobial activity, natural phytoestrogen	Allred et al. (2009); Flanagan et al. (2014); Ozçelik et al. (2011); Rempe et al. (2015); Shin et al. (2015); Van Dam (2006)
Trigonelline 葫蘆巴鹼	Coffee, fenugreek 咖啡 葫蘆巴	Bitter	Anti-cancer, memory enhancer, antimicrobial activity	Antonio et al. (2010); Meghwal and Coswami (2012); Ozçelik et al. (2011) Tohda et al. (2005)
6-Gingerol == □5) Ginger 薑	Pungent	Anti-obesity	Tzeng, Chang, and Liu (2014)
8-Prenylnaringenin 8-異戊烯基析	Hops IP 洒花	Bitter	Reducing hot flushes during menapouse	Keiler et al. (2013)
Naringin 柚皮苷	Citrus	Bitter	Inhibits bone loss, improves bone density	Fan, Ji, and Fan (2015)
Picrocrocin 番紅花苦も	Saffron 番紅花	Bitter	Antioxidant, neurodegenerative disease	Akowuah and Htar (2014); Rahaiee et al. (2015)
Resveratrol	Red grape	Astringent	Cardivascular, anti-obesity	Singh, Liu, and Ahmad (2015)
^夏 Geraniol 香葉醇	Rose flowers, apricot, peach, hops, bergamot 佛手柑	Floral	Neurodegenerative disease anti- inflammatory	Rekha et al. (2013)
Raspberry ketone 覆盆子面 稀酮素	Raspberry 覆盆子	Raspberry	Anti-obesity, bone formation, liver protection	Lopez et al. (2013); Park (2015); Taka and Morimoto (2014); Wang, Meng, and Zhang (2012)
Linalol 芳樟醇	Orange, hops	Citrus, floral	Anti-inflammatory	Li et al. (2015)

lue lue 英國科學家最近發現,啤酒中含有一種lue lue lu

食品風味學上課資料 - 國立台灣海洋大學食品科學系: 食品風味學上課資料 - 邱思魁整理 20180818 (29/35) alpha Caramelization SUGARS diketone compounds Furaneol **AMINO ACIDS** Pyridine Pyrazines Maillard, Strecker 1H pyrrole -2-carboxaldehyde TRIGONELLIN Pyridine and pyrrole compounds Reduce risk of obesity **CHLOROGENIC ACIDS** and type-2 diabetes, pyhtoestrogen, antimicrobial activiy Natural food preservative y-Butyrolactone Guaiacol Vanillin

圖1:烘焙咖啡的風味形成與健康益處。風味前驅物如<mark>綠原酸及葫蘆巴鹼</mark>顯著貢獻於咖啡的風味,兩成分的攝取和疾病的低發生率也有關連,譬如第二型糖尿病、癌症、肥胖與其他慢性病。另外,為解決細菌的抵抗性,尋找新抗菌物質愈形重要,有趣的是,綠原酸及葫蘆巴鹼都具有抗菌性。

食品風味學上課資料 - 國立台灣海洋大學食品科學系: 食品風味學上課資料 - 邱思魁整理 20180818 (31/35)

1M2 植物食品中揮發性化合物的氣味描述和抗菌性質

Antimicrobial properties and odor decriptions of volatile compounds in plant foods.

Volatile compounds	Odor descriptions	Example sources	Antimicrobial effect aganist	References
(E)-2-hexenal, hexanal	Green-grass like	Tomato fruit and leaf, hops, raspberry,	B. subtilis, B. ammoniagenes, E.	Belletti et al. (2007); Fadida et al.
		guava, pomegranate	aerogenes, E. coli, C. utilis, P. acnes, P.	(2015); Lanciotti et al. (2004)
			aeruginosa, P. vulgaris, P. chrysogenum,	
			S. aurew, S. mutans, T. mentagrophytes	
Hexyl acetate	Green	Raspberry, tomato	E. coli, L. monocytogenes, S. enteritidis,	Lanciotti et al. (2004)
Neral, geranial	Floral, citrus	Citrus, tomato, hops, lemon balm	E. coli, P. aeruginosa, S. aureus, C.	Belletti et al. (2007); Boulogne et al.
			albicans	(2012)
Vanillin	Vanillin like	Vanilla, coffee, cherry tomato	E. coli, L. plantarum, L. innocua,	Ayala-Zavala et al. (2009); Fitzgerald
				et al. (2004); Xavier et al. (2015)
Terpinen-4-ol	Musty	Hops, ginger, tea tree	E. faecalis, P. aeruginosa, E. coli, H.	Ayala-Zavala et al. (2009); Boulogne
			influenzae, S. pyogenes, S. pneumoniae	et al. (2012); Carson et al. (2006)
Linalool, α-terpineol	Citrus, floral	Hops, beer, tea olive, citrus essential oil,	A. flavus, A. niger, A.	Ayala-Zavala et al. (2009); Boulogne
		raspberry, coffee	actinomycetemcomitans, B. cereus, E.	et al. (2012); Park et al. (2012); Schwab
			faecalis, E. coli, E. faecalis, F. nucleatum,	et al. (2008)
			K. pneumoniae, L. monocytogenes, P.	
			corylophilum, P. aeruginosa, P. gingivalis,	
			P. intermedia, S. aureus,	

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (30/35)

除了營養上的益處,類胡蘿蔔素carotenoids是水果和蔬菜例如

Fig. 3. Overview of aroma compounds formation in tomato and their benefits as natural antimicrobial agents. (Arathi et al., 2015; Davidovich-Rikanati et al., 2007; Keiler et al., 2013; Li et al., 2015; Selli et al., 2014).

食品風味學上課資料 - 國立台灣海洋大學食品科學系: 食品風味學上課資料 - 邱思魁整理 20180818 (32/35)

Trends in Food Science & Technology 16 (2005) 407-415

Review

Not just colors—
carotenoid
degradation as a
link between
pigmentation and
aroma in tomato and
watermelon fruit

Efraim Lewinsohn^a*, Yaron Sitrit^b, Einat Bar^a, Yaniv Azulay^a, Mwafaq Ibdah^a, Ayala Meir^a, Emanuel Yosef^{bc}, Dani Zamir^d and Yaakov Tadmor^a Several lines of evidence indicate that important fruit aroma volatiles are derived from the degradation of carotenoid pigments. One such compound, lycopene, the major pigment in the red varieties of tomato and watermelon, gives rise, to a number of aroma volatiles including geranial, a lemon-scented monoterpene aldehyde. Various tomato and watermelon varieties and transgenic and near-isogenic tomato lines that range in color from yellow through orange to pink and red differ markedly in their carotenoid profiles. These variations are accompanied by differences in the compositions of terpenoid volatiles and hence in their taste.

Fruit color

Carotenoids are among the most important pigments that accessory photosynthetic pigments harvesting light and preventing photo-oxidative damage, carotenoids serve as coloring agents in fruits and flowers. It is now generally accepted that carotenoids, being antioxidants and vitamin A precursors, exhibit many health-promoting activities, including lowering blood pressure and preventing heart disease (Baker & Gunther, 2004; Smidt & Burke, 2004; Zhang, Nara, Ono, & Nagao, 2003). The carotenoid lycopene does not normally accumulate in plant tissues,

Fig. 2. Tomato and watermelon fruit color mutants and their biosynthetic pathways. Adapted from Hirschberg (2001) and Tadmor et al. (submitted).

野生種番茄的類胡蘿蔔素,非環狀的 lycopene 約85%,雙環狀的 β –carotene <10%;植物分類上不同,典型的紅西瓜(類胡蘿蔔素組成 lycopene 95%及 β –carotene 5%) 類似於野生種番茄。

食品風味學上課資料 - 國立台灣海洋大學食品科學系:食品風味學上課資料 - 邱思魁整理 20180818 (35/35)

Fig. 4. Tomato and watermelon norisoprenes and their putative precursors. Genetic evidence indicates that carotenoids (left) are degraded into their respective norisoprene and monoterpene aroma volatiles (right). (Modified from Lewinsohn *et al.*, 2005.)

食品風味學上課資料-國立台灣海洋大學食品科學系:食品風味學上課資料-邱思魁整理 20180818 (34/35)

Fig. 1. Analysis of volatiles from VF36 (wild-type) and ACS-silenced transgenic tomatoes. Tomato fruits were extracted with methyl-tert-butyl ether and analyzed by GC-MS as described in Lewinsohn et al. (2001). The following compounds were identified: (1) cis-3-hexen-1-ol; (2) 1-hexanol; (3) 6 methyl-5-hepten-2-one; (4) furan; (5) limonene; (6) gualacol (7) 2-isobutyl thiazole; (8) phenyl ethyl alcohol; (9) methyl salicylate; (10) 4 vinylphenol; (11) neral; (12) 2,3 epoxy geranial; (13) geranial; (14) 2-methoxy-4-vinylphenol; (15) eugenol; (16) 4-hydroxy benzeneethanol; (17) geranyl acetone; (18) B-inonen; (19) homovanillic acid and (20) farnesyl acetone. ((5) Internal standard-ethyl myristand)

 轉基因番茄:乙烯合成少,保持綠色,無法正常熟成如野生種,香氣亦受影響。 野生種存在的大部分揮發物在轉基因種都不存在,包括 norisoprene 及 monoterpene 化合物,反之,綠色未熟野生種存在的 guaiacol 及 methyl salicylate, 是成熟轉基因種的主要成分。部份歸因於欠缺類胡蘿蔔素。