X. Hausaufgabe im Modul "Berechenbarkeit & Komplexität"

Gruppe XYZ

Aufgabe 1: Turing-Maschinen Analysieren

(a)

z_0abc	\vdash^1_M
az_0bc	\vdash^1_M
abz_1c	\vdash^1_M
$abcz_2\square$	\vdash^1_M
abz_3c	\vdash^1_M
az_3bc	\vdash^1_M
z_3abc	\vdash^1_M
$z_3\Box bbc$	\vdash^1_M
z_4bbc	

(b) Wenn M in z_3 kommt, werden danach alle 'a's mit 'b's ersetzt (von rechts nach links) bis alle buchstaben durgegangen werden, worauf M im zustand z_4 kommt. Dann wird der Buchstabe rechts vom Lesekopf entweder ein 'b' oder ein 'c' sein.

Aus δ folgt offensichtlich: M hält falls $w \in \{a^nb^mc^k \mid n, m, k \in \mathbb{N}\}$. Jedes wort was sich nicht and der Reihenfolge hält, terminiert ohne den Endzustand zu erreichen

(c) Wir betrachten das wort "aaaaaaaaa", also n=9. Die Konfigurationsfolge lautet:

$z_0 aaaaaaaaa$	\vdash_M^9
$aaaaaaaaaz_0$	\vdash^1_M
$aaaaaaaaz_3a$	\vdash^9_M
$z_3\Box bbbbbbbbb$	\vdash^1_M
$z_4bbbbbbbbb$	

Da $9+1+9+1=20>18.5=1, 5\cdot 9+5$ gilt die gegebene Formel nicht immer. Die richtige formel Lautet: 2n+2

Aufgabe 2: Turing-Maschinen Konstruieren

$$M = (Z = \{z_0, z_1, z_2, z_3, z_4, z_e\}, \Sigma = \{a\}, \Gamma = \{a, X, \Box\}, \delta, z_0, \Box, E = \{z_e\})$$

Erklärung:

- Das symbol X wird von der Maschine immer ignoriert (siehe δ für X).
- z_0 : verifiziert, dass das Word mit 'a' anfängt, sonst hält die Maschine ohne den Endzustand zu erreichen.
- z_1 : falls das Wort nur einen 'a' enthält, wird es akzeptiert. Sonst wird das erste 'a' durch 'X' markiert und die Maschine geht in z_2 .
- z_2 und z_3 : halbieren die 'a's in w indem jedes zweite 'a' von z_3 mit 'X' markiert wird. Da das word mit 'a' anfängt, wenn die Maschine im zustand z_3 am Ende des Wortes ankommt (z.B: $aXaXaz_3$), heißt es, dass das Wort eine ungerade Anzahl von 'a's enthält. Somit hält die Maschine ohne den Endzustand zu erreichen. (außer wenn das Wort nur ein 'a' enthält, dann wird es akzeptiert, siehe z_1).
- z_4 : Falls das Wort eine gerade Anzahl von 'a's enthält, kommt die Maschine in z_4 an, was den Lesekopf wieder auf das erste 'a' setzt und die Maschine in z_0 geht.
- Jetzt wird das prozess von halbierung wiederholt, bis das Wort nur ein 'a' enthält. Falls das Wort an einer Iteration eine ungerade Anzahl von 'a's enthält, hält die Maschine ohne den Endzustand zu erreichen.

Dies funktioniert, da:

$$x = 2^n \Leftrightarrow \frac{x}{2} = 2^{n-1} \Leftrightarrow \frac{x}{2^i} = 2^{n-i} \Leftrightarrow \frac{x}{2^n} = 2^{n-n} = 1$$