MATH 314 Fall 2011

Practice Final Exam

The final exam covers:	
Chapter 5	5.2, 5.3, 5.4
Chapter 6	6.1, 6.2
Chapter 7	7.1
all the basic concepts from earlier chapters	

Things you need to know:

(a) Concepts:

- linear independence, spanning set, basis, dimension, coordinates
- rank, nullity, the four fundamental spaces
- inner product, norm, distance
- orthogonal vectors, orthogonal basis, orthonormal basis

(b) Procedures:

- $\bullet\,$ solving equations by Gaussian elimination/Gauss-Jordan/inverse matrix
- \bullet finding bases for the four fundamental spaces
- finding othogonal/orthonormal bases by Gramm-Schmidt
- \bullet deciding if a set is linearly dependent/independent/basis
- \bullet computing coordinates with respect to a basis/orthogonal basis

You are allowed to bring 1 sheet of notes to the exam. The final is in 110 Avery Hall, 10-12 Thursday 12/14.

	1. Fill in the following definitions:
(a)	Let V be a vector space. A basis of V is a set \mathcal{B} such that
	•
(b)	Let W be a subspace of \mathbb{R}^n . The orthogonal complement W^{\perp} is
(c)	Let A be a matrix. The nullspace $Null(A)$ is
(d)	Let V be a vector space. An inner product \langle , \rangle on V has the following
	properties:
	•
	•

Note: Throughout \mathcal{P}_2 denotes the set of polynomials of the form $ax^2 + bx + c$ with a, b, c any real numbers and $M_{2,2}$ denotes the set of all 2×2 matrices.

2. Give examples of:

(a) Four different vector spaces each having dimension 10.

(b) A set of linearly independent polynomials in \mathcal{P}_2 which is not a basis.

(c) A basis of \mathcal{P}_2 obtained by extending the set in part (b).

(d) A set of matrices that span $M_{2,2}$ but do not form a basis.

(e) A subspace W of $M_{2,2}$ of such that the dimension of W is 2.

3. Let
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -3 & 1 & -1 \\ 5 & 2 & 4 \\ 0 & -2 & -1 \\ 5 & 3 & 5 \end{bmatrix}$$
.

(a) Find bases for Row(A) and Null(A).

(b) Find bases for $\operatorname{Col}(A)$ and $\operatorname{Null}(A^T).$

(c) Find the rank of A and the nullity of A. Check the rank theorem.

(d) Find the rank and the nullity of A^T . Check the rank theorem for A^T .

4. Consider $W = Span \left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-2 \end{bmatrix} \right\}$ as a subspace of \mathbb{R}^3 .

- (a) Find dim(W) and say what W is as a geometric object.
- (b) Find and **orthonormal** basis for W.

(c) Find the projection of the vector $\vec{\mathbf{v}} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ onto W.

(d) Find the distance from the point (1,2,0) to the subspace W.

(e) Describe W^{\perp} (the orthogonal complement of W) by giving a basis for W^{\perp} and describing what it is as a geometric object.

(f) Write the linear equation for which the solution set is W.

- **5.** For this problem we work in the vector space \mathcal{P}_2 with the inner product $\langle P(x), Q(x) \rangle = \int_0^1 P(x)Q(x)dx$.
 - (a) Show that the polynomials P(x) = 1 + x, Q(x) = 1 x, $R(x) = x^2$ are linearly independent.

(b) Show that $Span(P, Q, R) = \mathcal{P}_2$. (Use the same P, Q, R as in part (a)).

- (c) Explain why $\{P, Q, R\}$ is a basis of \mathcal{P}_2 .
- (d) Find an orthogonal basis of \mathcal{P}_2 with respect to the inner product described in the beginning of the problem.

(e) Find the coordinates of the polynomial $T(x) = x^2 + x + 1$ with respect to the orthogonal basis in (d).

- 6. True or false? If true give a proof if false say why it fails to be true.
 - (a) $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ with } a + c = b + d \right\}$ is a subspace of $\mathcal{M}_{2\times 2}$ with the usual addition and scalar multiplication.
 - (b) $W = \{A \in \mathcal{M}_{2\times 2} \text{ with } det(A) = 1\}$ is a subspace of $\mathcal{M}_{2\times 2}$ with the usual addition and scalar multiplication.
 - (c) $\mathcal{B} = \{1 + x, 2 x + x^2, 3x 2x^2, -1 + 3x + x^2\}$ is a basis for \mathcal{P}_2 .
 - (d) If V and W are subspaces of \mathbb{R}^3 then

 $V\cap W=$ the set of vectors that are both in V and in W is a subspace of $\mathbb{R}^3.$

(e) If V and W are subspaces of \mathbb{R}^3 then

$$V + W = {\vec{\mathbf{v}} + \vec{\mathbf{w}} \text{ with } \vec{\mathbf{v}} \in V, \vec{\mathbf{w}} \in W}$$

is a subspace of \mathbb{R}^3 .