Solutions to Dummit and Foote

Joel Sleeba University of Houston joelsleeba1@gmail.com

October 16, 2024

Contents

C	ontents	1
4	Group Actions	3
	4.1 Group Actions and Permutation Representations	 3

2 CONTENTS

Chapter 4

Group Actions

4.1 Group Actions and Permutation Representations

Proposition 4.1.2. If G is a group acting on a set $A \ni a$. Then the cardinality of the orbit of a, $|O_a| = |G : G_a|$.

Proof. Notice that every element of G_a acts trivially on a. Therefore h(g(a)) = h(a) for all $g \in G_a$. Hence the coset hG_a acts on a and gives h(a). Hence we see that $|O_a| \leq |G:G_a|$.

Now conversely if hG_a and kG_a acts on a to give the same output, i.e h(a) = k(a), then $h^{-1}k(a) = a$. Therefore $h^{-1}k \in G_a$ and hence $hG_a = kG_a$. Hence we get $|O_a| = |G: G_a|$.

3 Solution: Show that if $\sigma(a) = a$ for some $\sigma \in G$, then $\sigma \in G_x$ for all $x \in A$ by the Abelianess. This contradicts $G \leq S_A$.

Now for the other one use the above proposition along with $G_a = \{e\}$.