```
31.10.25 EBK/UA
3AA. 4 113 A3
HOA (a,b)=HOA (a-b,b)
HOA (9, b) = d <
d= K, d
                                       TIPOTUBODE 44
b = K2d
0 - b = (\kappa_1 - \kappa_2) d => 0 - b : d
 MORAX, 4TO $ D > d: HOA, (α-b, b) = D
PPEAN. PP., T.E. \alpha-b = m_1 D
                     b = m_2 D
                     a - b + b = m_1 D + m_2 D = (m_1 + m_2) D = \alpha
N5 43 43
 and all an
 MOA(a1, ..., an) = d
 \alpha_1 = m_1 d
                                 HA KAXA. WATE HOOHE
 O_2 = M_2 d
                                  MEHAETCA
 On = mnd
  m_1^i d, m_2^i d, \ldots
ANTOPUTM EBKNUAA
BXOA: a, b \in \mathbb{N}; a, b > 0; len(max(a, b)) = n
BOIXOL: HOL (a, b)
```

BO MPOCH!

1) KOPPEKTHOCTD

2) CLOXHOCTD

O) ANTOPUTM

def euclid (a, b):

if (a == b):

return a

$$a, b = max(a, b), min(a, b)$$

return euclid (a-b, b)

PABOTAET! HO 3A $O(2^n)$
 $a = 2^n - 1$
 $b = 1$
 $a = 2^n - 1$
 $a = 2^n - 1$
 $a = 1$
 $a = 1$
 $a = 1$

$$e(15, 9)$$

$$e(6, 9)$$

$$e(3, 6)$$
 $e(3, 3)$
 $e(3, 3)$

KAR CAENATO BOICTPEE? 3AMEHUTO BOILUTAHUE HA OCT. NO MOA.

$$\begin{array}{c}
11/_{3} = 3 \\
11_{2} = 1011 \\
3_{2} = 11
\end{array}$$

divide (1011, 11) vet(10, 1)

divide (101, 11) vet(0, 11)

divide (10, 11) vet(0, 1)

divide (1, 11) ret(0, 1)

divide (0, 11); vet(0, 0)

YP, PEK.	X (1)	i yi i	9	V	ret vals
1	1011	11	2011	100 10	(11,10)
2	101	. 11	81	100	(1,10)
3	10	11	0	10	(0, 10)
: : : 4 : : :	1	111		1 1 1 1	(0, 1)
· · · · · · · · · · · · · · · · · · ·	O	11			(0,0)

$$x = y \cdot q_{fin} + r_{fin}$$

$$O(n^2)$$

ΠΥ(ΤΟ 0>b- HE GONEE YEM N- BUT YUCAA α=11010...

b = 1100

a mod b BY SET UMETO D HA N-M BUTE

$$T(n) = T(n-1) + (n^2 \le n \cdot Cn^2 = O(n^3)$$

7 mod 167

7 mod 167

 $\bar{A}^{1} \cdot A = \mathbb{I}$

 $\alpha \cdot \bar{\alpha}^1 = 1$

AFAUTEAU HYAA

 $7^{-1} = x \mod 17$

7x = 1 mod 17 // 7x = 167 K+1

$$5 \equiv 5^{-1} \mod 6$$

$$1 \equiv 1^{-1} \mod 6$$

• • •	0	1.1	12	3	1 4	5. 5.
0	0	Ð	0	0	0	0
1		: 1	2	3	. 4	5
2		2.	4:		: 2 :	4
3		3		3		3:
. 4	· (5) ·	.4.	2		: Y :	2 .
5	0	5	. 4	3	2	1

1/2 5

$3.2 \equiv 1 \mod 5$

		1	2	3	4
0	0	O	0		
: 11:	0	11	2:	3	4 1
2	0	2	4:	1	3
3	0	3	1		2::
: Y:	0.	4	3		1 1

 $7^{1} = x \mod 17$ $7x = 1 \mod 17$ $17x + 7x = 1 \mod 17$ $24x = 18 \mod 17$ $4x = 3 \mod 17$ $4x = 20 \mod 17$ $x = 5 \mod 17$

$$2400 = K \cdot 17 + 18$$

 $6(400 - 3) = K \cdot 17$
 $4000 - 3 = \frac{1}{6} \cdot 17$
 $4000 - 3 = \frac{1}{6} \cdot 17$

$$7.5 = 35 = 1 \mod 17$$

 $7^{1} = 5 \mod 17$

PACMUPENHOIŪ ANTOPUTM EBKNUAU

$$\alpha \times + by = d$$
; $\alpha, b - ?$

$$y p. \ b = 3 \ p = 1 : 2x + 4y = 3 : 2 : 2 : 2 : 2 : 0, b \in \emptyset$$

$$\chi_{\kappa} \longrightarrow \chi_{\kappa+1} = y_{\kappa}$$

$$y_{\kappa} \longrightarrow y_{\kappa+1} = \chi_{\kappa} \mod y_{\kappa}$$

$$y_{k+1} = x_k - \left[\frac{x_k}{y_k}\right] y_k \quad x_k = \left[\frac{x_k}{y_k}\right] \cdot y_k + y_{k+1}$$

$$x_{k} = \begin{bmatrix} x_{k} \\ y_{k} \end{bmatrix} \cdot y_{k} + y_{k+1}$$

$$A_n \times_n + b_n y_n = d$$

$$\alpha_{k+1} y_k + b_{k+1} \left(x_k - \lfloor \frac{x_k}{y_k} \rfloor y_k \right) = d$$

$$b_{k+1} x_k + \left(a_{k+1} - b_{k+1} \left\lfloor \frac{x_k}{y_k} \right\rfloor \right) y_k = d$$

$$Q_{K} = b_{K+1}$$

$$b_{K} = Q_{K+1} - b_{K+1} \left\lfloor \frac{x_{K}}{y_{K}} \right\rfloor x_{K} = 0.75 \pm 4.7 \text{ KA}$$

		· · · MTZ	FT		
	i	i o i	1 J b	$\begin{bmatrix} x \\ y \end{bmatrix}$] d
9: :	1. 1.5.	22 2	-1-2:0 =-1	, , , , , , , ,	3
15	9 : :	: - 1: :	1-1-1)-1 = 2	1 1	3
9.	6	1 1 1	0-1:1=-1	1 1 1	3
6. 6.	3		1-0: : 1	2 2	3
3	0	1 1	O		3

$$[0] \cdot [x + b] \cdot y = d$$

$$[2.9] + (-1).15 = 3$$