SASTRA DEEMED UNIVERSITY

(A University under section 3 of the UGC Act, 1956)

End Semester Examinations

June 2019

Course Code: BECCEC 702R01 / MCSCEC 702R01

Course: VLSI DESIGN

Question Paper No.: **B0658** Duration: 3 hours

Max. Marks: 100

PART - A

Answer all the questions

 $10 \times 2 = 20 \text{ Marks}$

1. Define Moore's law.

2. Give a CMOS implementation of the following logic function.

$$out = (A+B).(C+D)$$

- 3. If a depletion NMOS transistor has a threshold voltage of -0.5 V when constructed using a 200 $\overset{\circ}{A}$ oxide, will this threshold voltage increase or decrease if the oxide is thickened to $400\overset{\circ}{A}$?
- 4. Distinguish between the bulk CMOS technology with the SoI technology fabrications.
- 5. A resistor body has the following dimensions as drawn: length = 95 microns, width = 12 microns. The material has a sheet resistance of 65 Ω /square. When fabricated, the above resistor width measures 0.2 microns smaller than drawn. What is its resistance value?

- 6. Find out the scaling factor of gate capacitance per unit area (C_{ox}) in all the three models.
- 7. Provide a truth table that described the functionality of the circuit in figure 1.

- 8. The PMOS transistors in a SRAM memory cell generally do not affect read or write speed. State True or False.
- 9. Consider the combinational logic circuit in figure. How many possible single stuck-at faults does this circuit have.

10. Find the set of all test vectors which detect the stuck-at-0 fault in line B in figure.

PART - B

Answer all the questions

 $4 \times 15 = 60 \text{ Marks}$

- 11. (a) An nMOS transistor with W = 10 μ m and L = 0.35 μ m is built in a process where k_n = 110 μ A/V² and V_{Tn} = 0.70 V. Assume V_{SBn} = 0 V.
 - (i) Find the current if the voltages are set to $V_{GSn} = 2V$, $V_{DSn} = 1.0 \text{ V}$. (2 ½)
 - (ii) Find the current if the voltages are set to $V_{GSn} = 2V$, $V_{DSn} = 2 V$. (2)
 - (b) What is the logic function of circuits A and B in figure? Which one is a dual network and which one is not? Is the nondual network still a valid static logic gate? Explain. List out any 2 advantages of one configuration over the other.

(10)

12. Draw the pseudo-nMOS circuits that provide the following logic operations.

(a)
$$f = \overline{a.b + c}$$
 (4)

(b)
$$h = (a+b+c).x + y.z$$
 (5)

(c)
$$F = a + \left(c \cdot \left[x + \left(y \cdot z\right)\right]\right)$$
 (6)

13. Explain with neat diagrams of N-well cMOS fabrication process.

(OR)

14. Size the transistors in the circuit of figure that implements a function $z = \overline{A + B(C + D)}$ so that its worst case current driving capability is equivalent to that of an inverter with $\frac{L_p}{W_p} = \frac{2\lambda}{10\lambda} = 0.2 \text{ and } \frac{L_n}{W_n} = \frac{2\lambda}{4\lambda} = 0.5. \text{ Assume that the channel length of all transistors is fixed at 2 } \lambda.$

15. Using transmission gates, design a circuit whose output is $Out = \left(\frac{\overline{A} + B + \overline{C} + \overline{A}\overline{B}}{A}\right).$ Then remove the transistors and switches that are not necessary.
(OR)

- 16. Draw and explain the operation of 4T SRAM cell and 6T SRAM cell.
- 17. Using the circuit shown in figure, compute the set of all vectors that can detect each of the following faults using Boolean difference.
 - (a) e/o. (7) (b) e/1. (8)

(OR)

18. Assume a fault-free output response $R_0 = \{1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\}$ and a faulty response $R_1 = \{1\ 1\ 0\ 0\ 0\ 1\ 1\ 0\}$. Compute the ones-count and transition-count signatures; indicate which compaction scheme can detect the faulty response, and show the aliasing probability using either compaction scheme.

PART - C

Answer the following

 $1 \times 20 = 20 \text{ Marks}$

19. Fill in the truth tables at bottom for the following circuit. Also name the circuit.

Address	Data			
	d_3	d_2	d_1	d_0
0				
1				
2				
3			-	
4				
5				
6				
7				

* * * * *