A 28nm 64kb Bit-Rotated Hybrid-CIM Macro with an Embedded Sign-Bit-Processing Array and a Multi-Bit-Fusion Dual-Granularity Cooperative Quantizer

B11901027 王仁軒

Motivation & Challenge

- Hybrid CIM
 - ■Balance between DCIM and ACIM
 - □Challenge1: definition problem of boundary between digital and analog part

- □Challenge2: more expensive overhead of sign-bit processing on digital part
- □Challenge3: energy wasted on low-accuracycontributed quantization on analog part

CIM Macro

□ Hybrid CIM macro

- Bit-rotated feature-in scheme
 - Low hardware overhead as bit-serial
 - □High accuracy as bit-parallel

Embedded sign-bit-processing hybrid array

Multi-bit-fusion

□ Period1 : $V_{c0} = \frac{C}{C+C_1}$ Period2 : $V_{c0} = \frac{C}{C+2C_1}$ Period3 : $V_{c0} = \frac{C}{C+4C_1}$

Coarse/fine-grained quantizer

- Low accuracy loss but great energy reduction
 - □4-times readout combination incurs almost no accuracy loss and outperforms 5/6-times readout combinations regarding energy consumption

Readout times	Label	Readout combinations	
3	31	(06+05), (04+03), (02+01+00)	
	32	(O6), (O5+O4+O3), (O2+O1+O0)	
	33	(O6), (O5+O4), (O3+O2+O1+O0)	
	34	(O6), (O5), (O4+O3+O2+O1+O0)	
4	41	(O6), (O5), (O4+O3), (O2+O1+O0)	
5	51	(O6), (O5), (O4), (O3+O2), (O1+O0)	
	52	(06), (05), (04), (03), (02+01+00)	
6	61	(O6), (O5), (O4), (O3), (O2), (O1+O0)	

MF-DGCQ achieves 24% performance enhancement and 4.27x power reduction with relative error of 3.57% in TT corner

■ This design outperforms typical bit-parallel / serial work on the FoM (area efficiency × energy efficiency) by 15.7× and 3.38×.

FoM = Area Efficiency × Energy Efficiency						
	☑ Area Efficiency	☑ Energy Efficiency	y □ FoM			
1.2						
1	1.06× 15.7× 15.7×	3.03×1.11×3.38×				
0.8 g						
Normalized 90						
0.4						
0.2						
0	Bit-parallel[1]	Bit-serial[2]	Proposed			

Model	ResNet-18	ViT	GPT-2
Dataset	ImageNet	ImageNet	Wikitext-102
Data precision	INT8	INT8	INT8
Task	Classification	Classification	NLP
Metric	Accuracy	Accuracy	Perplexity
Baseline	69.54%	80.24%	48.39
Proposed	68.48%	78.49%	48.58

Accuracy loss -1.06% for ResNet-18@ImageNet, -1.75% for ViT@ImageNet, 0.19 for GPT-2@Wikitext-102.

- 21.04TOPS/W@0.9V, 1.57TOPS/mm2@0.9V.
- Access time is 12ns@0.9V, 8bIN-8bW-21bOUT.

FoM = Memory Density \times Area Efficiency \times Energy Efficiency