Lecture 5

Lecturer: Assoc. Prof. M. Mert Ankarali

5.1 Functions of a Matrix

In linear systems theory course, we are interested in matrix polynomials, specifically

• Matrix Exponential in CT Systems: e^{At}

• Matrix Power in DT Systems: A^k

which arise on the solution of state-space equations in their respective domains. Obviously A^k in DT systems is "easier" to analyze and understand compared to matrix exponential. Let's first review the matrix exponential, e^{At} . Let $t \in \mathbb{R}$ and $A \in \mathbb{R}^{nxn}$, then e^{At} defined as

$$e^{At} := I + At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 + \cdots$$
$$e^{At} := \sum_{k=0}^{\infty} \frac{t^k}{k!}A^k$$

which converges for all $t \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$.

Now let's review some properties

• Claim: $\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A$ Proof:

$$\begin{split} \frac{d}{dt}e^{At} &= \frac{d}{dt}\left(\sum_{k=0}^{\infty}\frac{t^k}{k!}A^k\right) = \sum_{k=0}^{\infty}k\frac{t^{k-1}}{k!}A^k = \sum_{k=1}^{\infty}\frac{t^{k-1}}{(k-1)!}A^k \\ &= \sum_{n=0}^{\infty}\frac{t^n}{n!}A^{n+1} = A\sum_{n=0}^{\infty}\frac{t^n}{n!}A^n = \left(\sum_{n=0}^{\infty}\frac{t^n}{n!}A^n\right)A \\ \frac{d}{dt}e^{At} &= Ae^{At} = e^{At}A \end{split}$$

• Claim: Let $A, B \in \mathbb{R}^{n \times n}$ and AB = BA, then

$$e^A e^B = e^B e^A = e^{(A+B)}$$

Proof:

$$e^{A}e^{B} = \left(\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}\right) \left(\sum_{j=0}^{\infty} \frac{1}{j!} B^{j}\right) = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{A^{k}}{k!} \frac{B^{j}}{j!}$$

5-2 Lecture 5

Let n = k + j and j = n - k, then

$$e^A e^B = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \frac{A^k \ B^{n-k}}{k!(n-k)!} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{A^k \ B^{n-k}}{n!} \frac{n!}{k!(n-k)!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} A^k \ B^{n-k} \left(\begin{array}{c} n \\ k \end{array} \right)$$

Note that if $AB \neq BA$ we has to stop at this point. However, since AB = BA, we can adopt binomial theorem

$$e^{A}e^{B} = \sum_{n=0}^{\infty} \frac{1}{n!} (A+B)^{n} = e^{A+B} = e^{B}e^{A}$$

• Claim: Let $t_1, t_2 \in \mathbb{R}$ then

$$e^{At_1}e^{At_2} = e^{At_2}e^{At_1} = e^{A(t_1+t_2)}$$

Proof: Let $A := At_1$ and $B := At_2$, obviously $(At_1)(At_2) = (At_2)(At_1)$ hence we can use the previous property, i.e.

$$e^{At_1}e^{At_2} = e^{(At_1)+(At_2)} = e^{A(t_1+t_2)} = e^{At_2}e^{At_1}$$

Now let $t_1 = t$ and $t_2 = -t$, then we have

$$e^{At}e^{-At} = e^{A(t-t)} = I \quad \to \quad (e^{At})^{-1} = e^{-At}$$

• Claim: Let $P \in \mathbb{R}^{n \times n}$ and $\det(P) \neq 0$, then

$$e^{\left(P^{-1}AP\right)t} = P^{-1}e^{At}P$$

Proof: Let's firs show that $(P^{-1}AP)^k = P^{-1}A^kP$

$$(P^{-1}AP)^k = (P^{-1}AP) (P^{-1}AP) \cdots (P^{-1}AP) (P^{-1}AP)$$
$$= P^{-1}APP^{-1}APP^{-1} \cdots PP^{-1}APP^{-1}AP$$
$$= P^{-1}AIAI \cdots IAIAP$$
$$= A^k$$

Now let's expand

$$e^{\left(P^{-1}AP\right)t} = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left(P^{-1}AP\right)^k$$
$$= \sum_{k=0}^{\infty} \frac{t^k}{k!} P^{-1}A^k P$$
$$= P^{-1} \left(\sum_{k=0}^{\infty} \frac{t^k}{k!} A^k\right) P$$
$$= P^{-1}e^{At}P$$

Lecture 5 5-3

5.1.1 Computation of e^{At} and A^k

5.1.2 Computation via Solution of State-Space Equations and Frequency Domain Expressions

An LTI CT state-space representation of an autonomous system has the form

$$\dot{x}(t) = Ax(t)$$
, where $x(t) \in \mathbb{R}^n$

Let's test if $x(t) = e^{At}x_0$ is a solution of the homogeneous equation

$$x(0) = e^{A \cdot 0} x_0 = x_0$$
$$\dot{x}(t) - Ax(t) = (Ae^{At}) x_0 - Ae^{At} x_0 = 0$$

Now let's remember Laplace domain solution of the same equation

$$\mathcal{L} [\dot{x}(t)] = \mathcal{L} [Ax(t)]$$

$$sX(s) - x(0) = AX(s)$$

$$[sI - A]X(s) = x(0)$$

$$X(s) = [sI - A]^{-1}x_0$$

If we connect time and s-domain solutions we obtain

$$e^{At} = \mathcal{L}^{-1} \left[[sI - A]^{-1} \right]$$

Now let's focus on A^k . An LTI DT state-space representation of an autonomous system has the form

$$x[k+1] = Ax[k]$$

Unlike CT systems we can compute the response iteratively easily

$$x[1] = Gx[0]$$

$$x[2] = Gx[1] = G^{2}x[0]$$

$$x[3] = Gx[2] = G^{3}x[0]$$

$$\vdots$$

$$x[k] = Gx[k-1] = G^{k}x[0]$$

Now let's remember form of the response in Z-domain.

$$\mathcal{Z}[x[k+1]] = \mathcal{Z}[Gx[k]]$$

$$zX(z) - zx[0] = GX(z)$$

$$(zI - G)X(z) = zX(z)$$

$$X(z) = z(zI - G)^{-1}x[0]$$

If we connect time and s-domain solutions we obtain

$$G^{k} = \mathcal{Z}^{-1} \{ z (zI - G)^{-1} \}$$

5-4 Lecture 5

5.1.3 Computation via Diagonalization

Theorem: $A \in \mathbb{C}^{n \times n}$ is diagonalizable, if and only if there exists a (nonsingular) similarity transformation, $V \in \mathbb{C}^{n \times n}$, such that $A = V^{-1}\Lambda V$ where Λ is a diagonal matrix,

$$\Lambda = \left[\begin{array}{cccc} \lambda_1 & & & & \\ & \lambda_2 & & 0 & \\ & & \ddots & & \\ & 0 & & \ddots & \\ & & & & \lambda_n \end{array} \right]$$

where $\lambda_i \in \mathbb{C}$'s are the eigenvalues of A, which are the roots of the characteristic equation $d(\lambda) = \det(\lambda I - A)$. Now let's compute A^k and e^{At} for a diagonalizable matrix

$$A^{k} = (V^{-1}\Lambda V)^{k} = V^{-1}\Lambda^{k}V = V^{-1}\begin{bmatrix} \lambda_{1}^{k} & & \\ & \ddots & \\ & & \lambda_{n}^{k} \end{bmatrix}V$$

$$e^{At} = e^{V^{-1}\Lambda Vt} = V^{-1}e^{\Lambda t}V = V^{-1}\begin{bmatrix} e^{\lambda_{1}t} & & \\ & \ddots & \\ & & e^{\lambda_{n}t} \end{bmatrix}V$$

A sufficient but not necessary condition that A will have n distinct eigenvalues in such a case characteristic equation will have the following form

$$d(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$$
, where $\lambda_i \neq \lambda_j$, if $i \neq j$

In this case, we also have the following properties associated with A

- A has n linearly independent eigenvectors
- For each λ_i there exists an eigenvector, v_i , such that $Av_i = \lambda v_i$ and $Span\{v_1, \dots, v_n\} = \mathbb{C}^n$
- $\forall \lambda_i$, geometric multiplicity is equal to algebraic multiplicity and they are both equal to 1, i.e. $GM(\lambda_i) = AM(\lambda_i) = 1$
- Minimal polynomial is equal to the characteristic equation, $m(\lambda) = d(\lambda)$
- For each λ_i , $\mathcal{N}(\lambda_i I A) = \operatorname{Span}\{v_i\}$ and $\dim[\mathcal{N}(\lambda_i I A)] = 1$

Let's remember some concepts from EE501, to better understand and generalize diagonalizable and non-diagonalizable square matrices.

Definition: Given a matrix $A \in \mathbb{C}^{n \times n}$, the characteristic polynomial $d(\lambda)$ is defined as

$$d(\lambda) = (\lambda - \lambda_1)^{r_1} \cdots (\lambda - \lambda_n)^k$$

k: # distinct eigenvalues where $k \le n$

$$r_i = AM(\lambda_i)$$
 : # algebraic multiplicty λ_i , where $n = \sum_{i=1}^{\kappa} r_i$

Lecture 5 5-5

Theorem: Every $n \times n$ matrix satisfies its characteristic equation (Cayley-Hamilton Theorem)

$$d(\lambda) = (\lambda - \lambda_1)^{r_1} \cdots (\lambda - \lambda_n)^k = \lambda^n + d_{n-1}\lambda^{n-1} + \cdots + d_0$$

$$d(A) = A^n + d_{n-1}A^{n-1} + \cdots + d_1A + d_0I = 0_{n \times n}$$

Remark: Any power of a matrix $A \in \mathbb{C}^{n \times n}$ can be written as a liner combination of $\{I, A, A^2, \cdots, A^{n-1}\}$