Docket No.: ART24US

application. No new matter has been added. Various clerical and grammatical errors have also been corrected.

The official action and the citations raised by the Examiner have been carefully considered. In particular, US Patent No's. 5,621,868 and 5,999,190 to Mizutani et al. and Sheasby et al. respectively have been considered.

As a result of the official action, claim 1 has been amended. More particularly, claim I has been amended to clarify that the method of the present invention relates to a method of automatically processing an image in a manner which includes thresholding located features to produce a thresholded binary image; and discarding located features having a size less than a predetermined size. Following the steps of thresholding and discarding, a series of brush strokes are applied. It is noted that the amendments to claim 1 are fully supported by the specification and do not add new matter.

New dependent claims 5 to 7 have also been added, which are fully supported by the specification and do not add new matter.

At item 5, the Examiner rejects claims 1,2 and 4 under 35 U.S.C. 102(b) as being anticipated by US 5,621,868 to Mizutani et al. (hereinafter "Mizutani"). It is submitted that the proposed amendments to claim 1 traverse the Examiner's rejection. Although Mizutani discloses modifying portions of an image to produce a resulting image appearing to contain brush strokes (col 1 line 66 to Col. 2 line2), the manner in which Mizutani achieves this result is significantly different to the method defined in amended claim 1. Mizutani discloses that the brushstrokes are arranged perpendicular to 'a direction of maximum contrast in a blurred version of the initial image' (Col. 2 lines 14 to 22). Mizutani neither discloses nor suggests that the position and orientation of the brushstrokes could be determined by a method which includes the steps of (a) thresholding the original image (for

Docket No.: ART24US

example by applying a Sobel filter to obtain a grey-scale image representing a per-pixel edge-strength of the original image), and (b) discarding edge features having a size less than a predetermined size. Consequently, it is submitted that the invention as defined in amended claim 1 is novel and non-obvious over Mizutani, and that claims 2 and 4 to 7 are novel and non-obvious over Mizutani at least by virtue of dependency on claim 1.

At item 7, the Examiner rejects claim 3 under 35 U.S.C. 103(a) as being unpatentable over Mizutani in view of US 5,999,190 to Sheasby et al (hereinafter "Sheasby"). It is submitted that the proposed amendments to claim 1 traverse the Examiner's rejection. It is noted that Sheasby discloses opacity control for a computer generated brushstroke (Fig 8B, element 246, Col. 7 lines 37, 57) and discloses a paper grain tab allowing texture to be applied to computer-generated brush-strokes (Fig 11B, element 290, Col. 8 lines 62-64). However, it is respectfully submitted that Sheasby does not disclose the method defined in amended claim 1, and in particular does not disclose or suggest the steps of thresholding the original image, and discarding edge features having a size less than a predetermined size. Consequently, it is respectfully submitted that claim 1 is patentably distinguishable over Mizutani in view of Sheasby, and that claims 2 to 7 are patentably distinguishable over Mizutani in view of Sheasby at least by virtue of dependency on claim 1.

United States Patent Application Serial No. 09/112,777 Docket No.: ART24US

CONCLUSION

It is respectfully submitted that all of the Examiner's objections have been successfully traversed. Accordingly, it is submitted that the application is now in condition for allowance. Reconsideration and allowance of the application is courteously solicited.

Very respectfully,

Applicant:

KIA SILVERBROOK

C/o:

Silverbrook Research Pty Ltd

393 Darling Street

Un D

Balmain NSW 2041, Australia

Email:

kia@silverbrook.com.au

Telephone:

+612 9818 6633

Facsimile:

+61 2 9818 6711

TITLE OF INVENTION

"PRODUCING AUTOMATIC "PAINTING" EFFECTS IN IMAGES"

INVENTOR:

CROSS REFERENCES TO RELATED APPLICATIONS

Kia Silverbrook and Paul Lapstun

S REFERENCES TO RELATED APPLICATIONS

The following Australian provisional patent applications are hereby incorporated by cross-respence. For the purposes of location and identification, US patent applications identified by their US patent application serial numbers. (USSN) are listed alongside the Australian applications from which the US patent applications claim the right of priority.

CROSS-REFERENCED	US PATENT APPLICATION	DOCKET NO.
AUSTRALIAN	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	
PROVISIONAL PATENT NO.	PROVISIONAL APPLICATION)	
PO7991	09/113,060	ART01
PO8505	09/113,070	ART02
PO7988	09/113,073	ART03
PO9395	09/112,748	ART04
PO8017	09/112,747	ART06
PO8014	09/112,776	ART07
PO8025	09/112,750	ART08
PO8032	09/112,746	ART09
PO7999	09/112,743	ART10
PO7998	09/112,742	ART11
PO8031	09/112,741	ART12
PO8030	09/112,740	ART13
PO7997	09/112,739	ART15
PO7979	09/113,053	ART16
PO8015	09/112,738	ART17
PO7978	09/113,067	ART18
PO7982	09/113,063	ART19
PO7989	09/113,069	ART20
PO8019	09/112,744	ART21
PO7980	09/113,058	ART22
PO8018	09/112,777	ART24
PO7938	09/113,224	ART25
PO8016	09/112,804	ART26
PO8024	09/112,805	ART27

CROSS-REFERENCED	US PATENT APPLICATION	DOCKET NO.
Australian	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	
PROVISIONAL PATENT NO.	PROVISIONAL APPLICATION)	
PO7940	09/113,072	ART28
PO7939	09/112,785	ART29
PO8501	09/112,797	ART30
PO8500	09/112,796	ART31
PO7987	09/113,071	ART32
PO8022	09/112,824	ART33
PO8497	09/113,090	ART34
PO8020	. 09/112,823	ART38
PO8023	09/113,222	ART39
PO8504	09/112,786	ART42
PO8000	09/113,051	ART43
PO7977	09/112,782	ART44
PO7934	. 09/113,056	ART45
PO7990	09/113,059	ART46
PO8499	09/113,091	ART47
PO8502	09/112,753	ART48
PO7981	09/113,055	ART50
PO7986	09/113,057	ART51
PO7983	09/113,054	ART52
PO8026	09/112,752	ART53
PO8027	09/112,759	ART54
PO8028	09/112,757	ART56
PO9394	09/112,758	ART57
PO9396	09/113,107	ART58
PO9397	09/112,829	ART59
PO9398	09/112,792	ART60
PO9399	09/112,791	ART61
PO9400	09/112,790	ART62
PO9401	09/112,789	ART63
PO9402	09/112,788	ART64
PO9403	09/112,795	ART65
PO9405	09/112,749	ART66
PP0959	09/112,784	ART68
PP1397	09/112,783	ART69
PP2370	09/112,781	DOT01
PP2371	09/113,052	DOT02
PO8003	09/112,834	Fluid01
PO8005	09/113,103	Fluid02
PO9404	09/113,101	Fluid03
PO8066	09/112,751	IJ01
PO8072	09/112,787	IJ02
PO8040	09/112,802	IJ03
PO8071	09/112,803	IJ04

CROSS-REFERENCED	US PATENT APPLICATION	DOCKET No.
AUSTRALIAN	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	
PROVISIONAL PATENT No.	PROVISIONAL APPLICATION)	
PO8047	PO8047 09/113,097	
PO8035	09/113,099	IJ06
PO8044	09/113,084	IJ07
PO8063	09/113,066	IJ08
PO8057	09/112,778	IJ09
PO8056	09/112,779	IJ10
PO8069	09/113,077	IJ11
PO8049	09/113,061	IJ12
PO8036	09/112,818	IJ13
PO8048	09/112,816	IJ14
PO8070	09/112,772	IJ15
PO8067	09/112,819	IJ16
PO8001	09/112,815	IJ17
PO8038	09/113,096	IJ18
PO8033	09/113,068	IJ19
PO8002	09/113,095	IJ20
PO8068	09/112,808	IJ21
PO8062	09/112,809	IJ22
PO8034	09/112,780	IJ23
PO8039	09/113,083	IJ24
PO8041	09/113,121	IJ25
PO8004	09/113,122	IJ26
PO8037	09/112,793	IJ27
PO8043	09/112,794	IJ28
PO8042	09/113,128	IJ29
PO8064	09/113,127	IJ30
PO9389	09/112,756	IJ31
PO9391	09/112,755	IJ32
PP0888	09/112,754	IJ33
PP0891	09/112,811	IJ34
PP0890	09/112,812	IJ35
PP0873	09/112,813	IJ36
PP0993	09/112,814	IJ37
PP0890	09/112,764	IJ38
PP1398	09/112,765	IJ39 ·
PP2592	09/112,767	IJ40
PP2593	09/112,768	IJ41
PP3991	09/112,807	IJ42
PP3987	09/112,806	IJ43
PP3985	09/112,820	IJ44
PP3983	09/112,821	IJ45
PO7935	09/112,822	ІЈМ01
PO7936	09/112,825	IJM02

Cross-Referenced	US PATENT APPLICATION	DOCKET NO.	
AUSTRALIAN	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN		
PROVISIONAL PATENT NO.	PROVISIONAL APPLICATION)		
PO7937	09/112,826	IJM03	
PO8061	09/112,827	ІЈМ04	
PO8054	09/112,828	IJM05	
PO8065	09/113,111	IJM06	
PO8055	09/113,108	IJM07	
PO8053	09/113,109	IJM08	
PO8078	09/113,123	IJM09	
PO7933	09/113,114	IJM10	
PO7950	09/113,115	IJM11	
PO7949	09/113,129	IJM12	
PO8060	09/113,124	IJM13	
PO8059	09/113,125	IJM14	
PO8073	09/113,126	IJM15	
PO8076	09/113,119	IJM16	
PO8075	09/113,120	IJM17	
PO8079	09/113,221	IJM18	
PO8050	09/113,116	IJM19	
PO8052	09/113,118	IJM20	
PO7948	09/113,117	IJM21	
PO7951	09/113,113	IJM22	
PO8074	09/113,130	IJM23	
PO7941	09/113,110	IJM24	
PO8077	09/113,112	IJM25	
PO8058	09/113,087	IJM26	
PO8051	09/113,074	IJM27	
PO8045	09/113,089	IJM28	
PO7952	09/113,088	IJM29	
PO8046	09/112,771	ІЈМ30	
PO9390	09/112,769	ІЈМ31	
PO9392	09/112,770	<u> </u>	
PP0889	09/112,798	IJM35	
PP0887	09/112,801	ІЈМ36	
PP0882	09/112,800	IJM37	
PP0874	. 09/112,799	IJM38	
PP1396	09/113,098	IJM39	
PP3989	09/112,833	IJM40	
PP2591	09/112,832	IJM41	
PP3990	09/112,831	IJM42	
PP3986	09/112,830	IJM43	
PP3984	09/112,836	IJM44	
PP3982	09/112,835	IJM45	
PP0895	09/113,102	IR01	
PP0870	09/113,106	IR02	

CROSS-REFERENCED	US PATENT APPLICATION	DOCKET NO.
AUSTRALIAN	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	
PROVISIONAL PATENT NO.	PROVISIONAL APPLICATION)	
PP0869	09/113,105	IR04
PP0887	09/113,104	IR05
PP0885	09/112,810	IR06
PP0884	09/112,766	IR10
PP0886	09/113,085	IR12
PP0871	09/113,086	IR13
PP0876	09/113,094	IR14
PP0877	09/112,760	IR16
PP0878	09/112,773	IR17
PP0879	09/112,774	IR18
PP0883	09/112,775	IR 19
PP0880	09/112,745	IR20
PP0881	09/113,092	IR21
PO8006	09/113,100	MEMS02
PO8007	09/113,093	MEMS03
PO8008	09/113,062	MEMS04
PO8010	09/113,064	MEMS05
PO8011	09/113,082	MEMS06
PO7947	09/113,081	MEMS07
PO7944	09/113,080	MEMS09
PO7946	09/113,079	MEMS10
PO9393	09/113,065	MEMS11
PP0875	09/113,078	MEMS12
PP0894	09/113,075	MEMS13

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

FIELD OF THE INVENTION

The present invention relates to an image processing method and apparatus and, in particular, discloses <u>a Producing Automatic "Painting" Effects in Images</u> producing automatic painting effects in images.

The present invention further relates to the field of image processing and in particular to producing artistic effects in images.

BACKGROUND OF THE INVENTION

Recently, it has become quite popular to provide filters which produce effects on images similar

34

33

3 0 2000 The would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiment without the present invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.

Ink Jet Technologies

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head printhead, but is a major impediment to the fabrication of pagewide pagewidth print heads printheads with 19,200 nozzles.

Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet technologies have been created. The target features include:

low power (less than 10 Watts)
high resolution capability (1,600 dpi or more)
photographic quality output
low manufacturing cost
small size (pagewidth times minimum cross section)

... coss seed

high speed (< 2 seconds per page).

All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. Forty-five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part

19

18

20

31

of separate applications assigned to the present Assignee as set out in the table below table under the heading Cross References to Related Applications.

2

3

8

9

10

11

14

The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems.

For ease of manufacture using standard process equipment, the print head printhead is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head printhead is 100 mm long, with a width which depends upon the ink jet type. The smallest print head printhead designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads printheads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the print head printhead by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head printhead is connected to the camera circuitry by tape automated bonding.

Tables of Drop-on-Demand Ink Jets

Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of ink jet types.

Actuator mechanism (18 types)

Basic operation mode (7 types)

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

Actuator motion (19 types)

Nozzle refill method (4 types)

Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types)

Drop ejection direction (5 types)

ART24US annotated

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. These are designated IJ01 to IJ45 above which matches the docket numbers in the table under the heading Cross References to Related Applications.

7

8

10

14

Other ink jet configurations can readily be derived from these of forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into ink jet print heads printheads with characteristics superior to any currently available ink jet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, printer print technology may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

ART24US annotated

The overtaken of the tables dove been changed from landscape to partait.

	Description	Advantages	Disadvantages	Examples
Thermal bubble	An electrothermal heater heats the ink to above boiling point, transferring significant heat to the aqueous ink. A bubble nucleates and quickly forms, expelling the ink. The efficiency of the process is low, with typically less than 0.05% of the electrical energy being transformed into kinetic energy of the drop.	 Large force generated Simple construction No moving parts Fast operation Small chip area required for actuator 	 → High power ◆ Ink carrier limited to water ◆ Low efficiency ◆ High temperatures required ◆ High mechanical stress ◆ Unusual materials required ◆ Large drive transistors ◆ Cavitation causes actuator failure ◆ Kogation reduces bubble formation ◆ Large print heads are difficult to fabricate 	 ◆ Canon Bubblejet 1979 Endo et al GB patent 2,007,162 ◆ Xerox heater-in- pit 1990 Hawkins e al USP 4,899,181 ◆ Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728
Piezo- electric	A piezoelectric crystal such as lead lanthanum zirconate (PZT) is electrically activated, and either expands, shears, or bends to apply pressure to the ink, ejecting drops.	 Low power consumption Many ink types can be used Fast operation High efficiency 	 ♦ Very large area required for actuator ♦ Difficult to integrate with electronics ♦ High voltage drive transistors required ♦ Full pagewidth print heads impractical due to actuator size ♦ Requires electrical poling in high field strengths during manufacture 	 ★ Kyser et al USP 3,946,398 ★ Zoltan USP 3,683,212 ★ 1973 Stemme USP 3,747,120 ♦ Epson Stylus ♦ Tektronix ♦ IJ04