Importing the Dependencies

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

loading the dataset to a Pandas DataFrame

credit_card_data = pd.read_csv('<u>/content/creditcard</u>[1].csv')

first 5 rows of the dataset
credit_card_data.head()

	Time		V1	V2	V3	V4	V5	V6	V7	V8	V9	•••	V21	V22	V23	
0	0	-1.35	9807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0.277838	-0.110474	(
1	0	1.19	1857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0.638672	0.101288	-(
2	1	-1.35	3354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998	0.771679	0.909412	-(
3	1	-0.96	6272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0.005274	-0.190321	-1
4	2	-1.15	3233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739		-0.009431	0.798278	-0.137458	(
5 ro	ws ×	31 colur	nns													

credit_card_data.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V21	V22	V2:
9960	14837	1.286884	-0.124610	0.148283	-0.259343	0.248357	0.896718	-0.626627	0.227693	1.618678		-0.381864	-0.904515	-0.027985
9961	14854	1.318742	0.496408	0.114876	0.695262	0.170133	-0.537180	0.025492	-0.272931	1.267298		-0.484943	-1.111176	0.028259
9962	14857	1.241757	0.419587	0.806183	0.894811	-0.507886	-1.118126	0.018908	-0.343335	1.210781		-0.379396	-0.817785	0.18142
9963	14861	1.304800	-0.052885	0.415235	-0.081725	-0.223525	0.097752	-0.561240	0.067228	1.617203		-0.379597	-0.929204	0.02095
9964	14864	-1.747939	3.712444	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN
5 rows	× 31 colu	umns												

dataset informations
credit_card_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9965 entries, 0 to 9964
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	Time	0065 non null	int64
-		9965 non-null	
1	V1	9965 non-null	float64
2	V2	9965 non-null	float64
3	V3	9964 non-null	float64
4	V4	9964 non-null	float64
5	V5	9964 non-null	float64
6	V6	9964 non-null	float64
7	V7	9964 non-null	float64
8	V8	9964 non-null	float64
9	V9	9964 non-null	float64
10	V10	9964 non-null	float64
11	V11	9964 non-null	float64
12	V12	9964 non-null	float64
13	V13	9964 non-null	float64
14	V14	9964 non-null	float64
15	V15	9964 non-null	float64
16	V16	9964 non-null	float64
17	V17	9964 non-null	float64
18	V18	9964 non-null	float64
19	V19	9964 non-null	float64
20	V20	9964 non-null	float64
21	V21	9964 non-null	float64
22	V22	9964 non-null	float64

```
23 V23
                  9964 non-null
                                  float64
      24 V24
                  9964 non-null
                                  float64
      25 V25
                  9964 non-null
                                  float64
      26 V26
                  9964 non-null
                                   float64
      27 V27
                  9964 non-null
                                  float64
                  9964 non-null
      28 V28
                                  float64
      29 Amount
                  9964 non-null
                                  float64
      30 Class
                  9964 non-null float64
     dtypes: float64(30), int64(1)
     memory usage: 2.4 MB
\ensuremath{\text{\#}} checking the number of missing values in each column
credit_card_data.isnull().sum()
     Time
               0
     V1
     V2
               0
     V3
               1
     ٧4
     V5
               1
     V6
               1
     V7
     ٧8
               1
     V9
               1
     V10
               1
     V11
               1
     V12
               1
     V13
               1
     V14
     V15
               1
     V16
               1
     V17
               1
     V18
     V19
               1
     V20
               1
     V21
     V22
               1
     V23
               1
     V24
               1
     V25
               1
     V26
               1
     V27
               1
     V28
     Amount
               1
     Class
               1
     dtype: int64
# distribution of legit transactions & fraudulent transactions
credit_card_data['Class'].value_counts()
          284315
             492
     Name: Class, dtype: int64
This Dataset is highly unblanced
0 --> Normal Transaction
1 --> fraudulent transaction
# separating the data for analysis
legit = credit_card_data[credit_card_data.Class == 0]
fraud = credit_card_data[credit_card_data.Class == 1]
print(legit.shape)
print(fraud.shape)
     (284315, 31)
     (492, 31)
# statistical measures of the data
legit.Amount.describe()
     count
              284315.000000
                  88.291022
     mean
                 250.105092
     std
```

min 0.000000 25% 5.650000 50% 22.000000 75% 77.050000 25691.160000 max

Name: Amount, dtype: float64

fraud.Amount.describe()

count 492.000000 122.211321 mean std 256.683288 min 0.000000 25% 1.000000 9.250000 50% 75% 105.890000 max 2125.870000

Name: Amount, dtype: float64

compare the values for both transactions credit_card_data.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	
Class													
0	94838.202258	0.008258	-0.006271	0.012171	-0.007860	0.005453	0.002419	0.009637	-0.000987	0.004467	0.009824	-0.006576	0.01
1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.568731	0.570636	-2.581123	-5.676883	3.800173	-6.25

Under-Sampling

Build a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions

Number of Fraudulent Transactions --> 492

legit_sample = legit.sample(n=492)

Concatenating two DataFrames

new_dataset = pd.concat([legit_sample, fraud], axis=0)

new_dataset.head()

	Time	V1	V2	V3	V4	V 5	V6	V7	V8	V9	V10	V11	V1:
203131	134666.0	-1.220220	-1.729458	-1.118957	-0.266099	0.823338	-0.098556	-0.407751	0.563010	-1.007790	0.261245	-0.841608	-0.041129
95383	65279.0	-1.295124	0.157326	1.544771	-2.468209	-1.683113	-0.623764	-0.371798	0.505656	-2.243475	0.856381	-0.402158	-1.396842
99706	67246.0	-1.481168	1.226490	1.857550	2.980777	-0.672645	0.581449	-0.143172	0.302713	-0.624670	1.452271	0.940775	0.77886
153895	100541.0	-0.181013	1.395877	1.204669	4.349279	1.330126	1.277520	1.568221	-0.633374	-0.860482	1.483849	-0.040592	-3.11799
249976	154664.0	0.475977	-0.573662	0.480520	-2.524647	-0.616284	-0.361317	-0.347861	-0.108238	-1.876507	0.871271	-1.201188	-0.74124

new_dataset.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945	-5.587794	2.115795	-5.417424
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396	-3.232153	2.858466	-3.096915
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250	-3.463891	1.794969	-2.775022
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333	-5.245984	1.933520	-5.030465
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829	-0.888722	0.491140	0.728903

```
new dataset['Class'].value counts()
     1
          492
          492
     Name: Class, dtype: int64
new_dataset.groupby('Class').mean()
                                           V2
                     Time
                                 ٧1
                                                      V3
                                                                ۷4
                                                                           ۷5
                                                                                     ۷6
                                                                                                          ٧8
                                                                                                                     V9
                                                                                                                              V10
      Class
             96783.638211 -0.053037 0.055150 -0.036786 -0.046439
        0
                                                                     0.077614 -0.023218 -0.000703 -0.057620 -0.053438
                                                                                                                         0.006904 0.003593 -0.013
             80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.568731 0.570636 -2.581123 -5.676883 3.800173 -6.259
        1
Splitting the data into Features & Targets
X = new_dataset.drop(columns='Class', axis=1)
Y = new_dataset['Class']
print(X)
                 Time
                              V1
                                        V2
                                            . . .
                                                       V27
                                                                 V28
                                                                      Amount
                                            ... 0.173995 -0.023852
     203131 134666.0 -1.220220 -1.729458
                                                                       155.00
              65279.0 -1.295124 0.157326 ... 0.317321 0.105345
                                                                        70.00
     95383
     99706
              67246.0 -1.481168 1.226490 ... -0.546577 0.076538
                                                                        40.14
     153895 100541.0 -0.181013 1.395877 ... -0.229857 -0.329608
                                                                       137.04
     249976 154664.0 0.475977 -0.573662 ... 0.058961 0.012816
     279863 169142.0 -1.927883 1.125653
                                            ... 0.292680 0.147968 390.00
     280143
            169347.0 1.378559
                                  1.289381
                                                  0.389152
                                                            0.186637
                                                                         0.76
                                             . . .
     280149 169351.0 -0.676143 1.126366 ... 0.385107 0.194361
                                                                        77.89
     281144 \quad 169966.0 \quad \textbf{-3.113832} \quad \textbf{0.585864} \quad \dots \quad \textbf{0.884876} \quad \textbf{-0.253700} \quad 245.00
     281674 170348.0 1.991976 0.158476 ... 0.002988 -0.015309
                                                                        42.53
     [984 rows x 30 columns]
print(Y)
     203131
               0
     95383
               0
     99706
               0
     153895
               0
     249976
               0
     279863
               1
     280143
               1
     280149
     281144
               1
     281674
     Name: Class, Length: 984, dtype: int64
Split the data into Training data & Testing Data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
     (984, 30) (787, 30) (197, 30)
Model Training
Logistic Regression
model = LogisticRegression()
# training the Logistic Regression Model with Training Data
model.fit(X_train, Y_train)
```

V11

Model Evaluation

Accuracy Score

```
# accuracy on training data
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)

print('Accuracy on Training data : ', training_data_accuracy)
    Accuracy on Training data : 0.9415501905972046

# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

print('Accuracy score on Test Data : ', test_data_accuracy)
    Accuracy score on Test Data : 0.9390862944162437
```