General form of divide and conquer algorithm runtime: T(n) = aT(n/b) + f(n), where a is the number of subproblems, b is how much the problem is reduced by and f(n) is the time to divide and combine.

Theorem 1 (Master Theorem). Let $a \ge 1$ and b > 1 be constants and let T(n) be the recurrence defined by

$$T(n) = aT(n/b) + f(n).$$

Then T(n) has the following bounds:

1. If $f(n) = O(n^{\log_b(a) - \epsilon})$ for some constant $\epsilon > 0$, then

$$T(n) = \Theta(n^{\log_b(a)}).$$

2. If $f(n) = \Theta(n^{\log_b(a)})$, then

$$T(n) = \Theta(n^{\log_b(a)} \log n).$$

3. If $f(n) = \Omega(n^{\log_b(a)+\epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then

$$T(n) = \Theta(f(n)).$$

Example 1. The runtime of MergeSort is given by the following recurrence

$$T(n) = 2T(n/2) + cn.$$

Using the Master Theorem, give a bound for T(n).

Proof. We first show that $cn = \Theta(n^{\log_2(2)}) = \Theta(n)$.

Then we may apply the Master Theorem case 2, so we see that

$$T(n) = \Theta(n \log n).$$

Example 2. Let T(n) = 9T(n/3) + n. Give bounds on the recurrence T(n) using the Master Theorem.

Proof. We see that a = 9 and b = 3, and therefore

$$log_b(a) = log_3(9) = 2.$$

Let $\epsilon = 1$, then

$$n = O(n^{2-\epsilon}) = O(n^{2-1}) = O(n).$$

Therefore we may apply the first case of the Master Theorem, and so

$$T(n) = \Theta(n^{\log_3(9)}) = \Theta(n^2).$$

Example 3. Let $T(n) = 3T(n/4) + n \log(n)$. Give bounds on the recurrence T(n) using the Master Theorem.

Proof. We see that a = 3, b = 4 and $f(n) = n \log n$. Let $\epsilon = .0075$. Then

1

$$n^{(\log_4(3)+\epsilon)} \le n^{(.7925+\epsilon)} = n.$$

Therefore

$$n \log(n) = \Omega(n^{(\log_4(3) + \epsilon)}).$$

Let c = 3/4. Then

$$af(n/b) = 3\left(\frac{n}{4}\log(n/4)\right)$$
$$= \frac{3}{4}n\log(n) - \frac{3}{4}n\log(4)$$
$$\le cf(n).$$

Therefore we may apply case three of the Master Theorem, and so

$$T(n) = \Theta(n \log(n)).$$