SI120 Discussion 10 homework 10

- 1. (10 points) Let P(x) = "x is a person", L(x, y) = "x likes y" and E(x, y) = "x = y". Translate the following statements into formulas:
 - (a) "Every person likes some other person."
 - (b) "There is a person who is liked by every other person."

1. (a)
$$\forall \chi(P(X) \rightarrow \exists y(P(y) \land \neg E(\chi,y) \land L(\chi,y)))$$

(b) $\exists \chi(P(\chi) \land \forall y(P(y) \land \neg E(\chi,y) \rightarrow L(y,\chi)))$

一般存在∃后面跟∧,任意∀后面跟→。

- 2. (10 points) Let A be the formula $\forall x (\forall y ((x \neq y) \rightarrow \forall z ((z = x) \lor (z = y))))$
 - (a) Find a domain $D_1 \neq \emptyset$ such that A is true when x, y, z are taken over D_1 .
 - (b) Find a domain D_2 such that A is false when x, y, z are taken over D_2 .

(a)
$$D_1 = \{0,1\}$$

(b) $D_2 = \{0,1,2\}$

3. (10 points) Determine if the following formulas are logically valid, satisfiable or unsatisfiable.

(a)
$$(\exists x P(x) \leftrightarrow \exists x Q(x)) \rightarrow \exists x (P(x) \leftrightarrow Q(x))$$

(b)
$$\exists x (\mathbf{T} \lor P(x) \to \mathbf{F})$$

(c)
$$\forall x (P(x) \lor \neg \exists y (Q(y) \land \neg Q(y)))$$

(3) 136- (3) 1 1-9(4(9) 1 1 4(9)))
3. (a) satisfiable D: X & N
T: P(X): X is an even number
0.(x): $2 x$
F: p(x): 2 x
$\frac{3\chi P(x) = T}{3\chi P(x)} \Rightarrow 3\chi P(x) \Leftrightarrow 3\chi P(x)$
$\exists \chi Q(\chi) = T$
$\exists \chi (P(\chi) \hookrightarrow Q(\chi)) = F$
(b) Unsatisfiable
$\exists \chi (TVY(x) \rightarrow F) = \exists \chi (T \rightarrow F) = \exists \chi (T \rightarrow F) = \exists \chi F$
(c) logically valid
∀χ(P(x) V 7∃y(Q(y) Λ7Q(y))) = ∀χ(P(x) V7∃yF)
,
= YX (P(X) V YYT) = YX (YYT)

- 4. (20 points) Show the following statements with interpretations of the formulas.
 - (a) $\forall x(P(x) \lor Q(x))$ and $\forall xP(x) \lor \forall xQ(x)$ are not logically equivalent.
 - (b) $\exists x(P(x) \land Q(x))$ and $\exists xP(x) \land \exists xQ(x)$ are not logically equivalent.

4. (a)
$$\chi \in \mathbb{R}$$
 $P(\chi): \chi \gg 0$ $Q(\chi): \chi < 0$
 $\forall \chi (P(\chi) \lor Q(\chi) = T$ $\forall \chi P(\chi) \lor \forall \chi Q(\chi) = F$
(b) $\chi \in \mathbb{R}$ $P(\chi): \chi \gg 0$ $Q(\chi): \chi < 0$
 $\exists \chi P(\chi) \land \exists \chi Q(\chi) = T$. $\exists \chi (P(\chi) \land Q(\chi)) = F$

5. (10 points) Show that $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$.

5.
$$\Rightarrow$$
: Let χ_0 satisfy $P(\chi_0) \vee Q(\chi_0)$,

Then $P(\chi_0)$ is right, or $Q(\chi_0)$ is right

When $P(\chi_0) = T$, $\exists \chi P(\chi) = T$

When $Q(\chi_0) = T$, $\exists \chi Q(\chi) = T$

50 $\exists \chi P(\chi) \vee \exists \chi Q(\chi) = T$
 \Rightarrow : when $\exists \chi P(\chi)$, Let χ_1 satisfy $P(\chi_1)$,

50 χ_1 satisfies $P(\chi_1) \vee Q(\chi_1)$,

50 $\exists \chi (P(\chi) \vee Q(\chi)) = T$

when $\exists \chi Q(\chi)$, same

6. (20 points) Show that $\forall x (P(x) \rightarrow Q(x)) \Rightarrow \forall x P(x) \rightarrow \forall x Q(x)$.

```
\forall x \ P(x) \Rightarrow Q(x) = \forall x \Rightarrow P(x) \lor Q(x)
if yxp(x) -> yxQ(x)=F.
  i.e. 7 ( 4x PLx )) U (4xQ(x)) = F.
    i.e uxP(x)=T and UXQ(x)=F
   for \chi_0, \gamma(\chi_0) = \gamma, Q(\chi_0) = F
    =) 7P(Xo) VQ(Xo)=F. controdict
```

7. (20 points) Show that $\exists x P(x) \land \forall x Q(x) \Rightarrow \exists x (P(x) \land Q(x))$.

suppose to satisfy
$$P(x_0)$$
as $\forall x \circ (x) = 7$

$$50 \quad P(x_0) \land \Omega(x_0) = 7$$

$$50 \quad \exists x (P(x) \land \Omega(x))$$