* In apsk System, information is cossied by 4 phase of the Sinusoidal cossies in 1/4, 31/4, 51/4 & 71/4.

* A Opsk Signal can be represented in time domain as:

$$S_{\underline{1}}(\underline{+}) = \begin{cases} \sqrt{\frac{3E}{T}} \cos \left[\frac{3\pi F_c \pm + (2\underline{i} - 1)\pi |_{\underline{+}}}{T} \right] & 0 \leq \pm \leq T_b \\ 0 & \text{observe} \end{cases} \longrightarrow 0$$

Where i=1,2,3,4 and $E \rightarrow Signal enough per Symbol <math>T \rightarrow Symbol$ dissotion.

* There are form mettage points & attociated Signal rectter are defined by

$$S_{\pm}(\pm) = \left\{ \begin{array}{c} \sqrt{\frac{3E}{T}} & \text{Cos} \left[3\pi i f_c \pm + \theta_{\pm} \right] \\ 0 & \text{; otherwise} \end{array} \right. \Rightarrow \text{@}$$

We can White eq @ at

* Eq 10 can be written at

θ; =(&:-i)π/4

께4

37/4

5मा4 7मा4

$$S_{\pm}(\pm) = \begin{cases} \sqrt{\frac{2E}{T}} \cos 2\pi f_c \pm \cdot \cos \left[(2i-1)\pi f_{\pm} \right] - \sqrt{\frac{2E}{T}} \sin 2\pi f_c \pm \cdot \sin \left[(2i-1)\pi f_{\pm} \right]; 0 \leqslant \pm \leqslant T \\ 0 ; & \text{the wise} \end{cases}$$

* from ear 3, we observe that there are two dithondimal basis functions $\phi_1(\pm)$ & $\phi_2(\pm)$ defined by

$$\phi_{\bullet}(\pm) = \sqrt{\frac{2}{T}} \operatorname{Cos}(2\pi f_c \pm) ; 0 \leq \pm \leq T \longrightarrow \bigoplus$$

$$\phi_{\bullet}(\pm) = \sqrt{\frac{2}{T}} \operatorname{Sin}(2\pi f_c \pm) ; 0 \leq \pm \leq T$$

The elements of the Signal rector, namely Sis & Sis.

i	S [‡] (Ŧ)	I P dibit	Phote of Bapsk Signal	Ca-Brainates of message points	
				Sia	Sia
١	\$,(±)	10	11/4	+ 1E 3	- \E 2
3	2 ³ (Ŧ)	00	उत्तीक	- VEID	- \E 2
-3	\$ ₃ (±)	01	Sπ 4	-1E 2	+1 <u>E</u> 2
4	2 ^{rt} (7)	11	7114	+\E 2	+/E/3

Figure Signal space diagram for coherent QPSK system.

Opsk Transmitter:

- * The IP binary Sequence b(t) represented in polar form is divided into odd [b,(t)] & even [b_2(t)] numbered bits by using demultiplexer. They are denoted at b_1(t) & b_2(t).
- * These two Sequences, phase modulate two carrier Signal of Same frequency but quadrature in phase.
- * Since each Symbol carrier two bits, the Signalling hate decreased.

 .: Bu treajured is half the bandwidth treajured Compared to BPSK

apsk Receiver: -

- * The opsk receives Consists of a pair of Cohelator with Locally generated carrier Signals $\phi_i(\pm)$ of $\phi_2(\pm)$.
- \star The olp of the two Cobelator are x, ξx_2 are compared with a threshold '0'.
- If x,>0 → decision is made in fareous of Symbol 1.
- If $x, < 0 \rightarrow$ decision is made in farence of Symbol 0.
- of x2>0 -> decision is made in favoror of Symbol 1.
- of x2<0 -> decision is made in favores of Symbol 0.
- * The two olps one combined in a multiplier to reproduce diginal binary Sequence.

* The Signal points Si, Sz, Sz & Sy one located Symmetrically in two dimensional Signal Space diagram as Shown in below Figure.

- ... Computing probability for one message point, is hemains Same for other three points.
- * Consider thankmission of Symbol $S_4(t)$ then received Signal x(t) will be

$$\chi(\pm) = S_{\mu}(\pm) + \omega(\pm)$$
 $0 \le \pm \le T$

The Samples x, & x2 obe computed as follows

$$x' = \int_{\Delta} \mathcal{E}^{\dagger}(t) \phi'(t) \, qt + \int_{\Delta} m(t) \phi'(t) \, qt$$

$$x^{T} = \int_{\Delta} x(t) \phi'(t) \, qt + \int_{\Delta} m(t) \phi'(t) \, qt$$

$$x_1 = S_{44} + \omega_1$$

$$x^{3} = \int_{\underline{x}} \frac{1}{2} + M^{3}$$

$$x^{3} = \int_{\underline{x}} 2^{t}(x) \phi^{3}(x) dx + \int_{\underline{x}} m(x) \phi^{3}(x) dx$$

$$x^{3} = \int_{\underline{x}} 2^{t}(x) \phi^{3}(x) dx + \int_{\underline{x}} m(x) \phi^{3}(x) dx$$

$$x^{3} = \int_{\underline{x}} 2^{t}(x) \phi^{3}(x) dx + \int_{\underline{x}} m(x) \phi^{3}(x) dx$$

$$x^{3} = \int_{\underline{x}} 2^{t}(x) \phi^{3}(x) dx + \int_{\underline{x}} m(x) \phi^{3}(x) dx$$

- * X, 4 X2 are gauttion handom variables with mean it = \=
- * W_1 & W_2 ore also gaussian Francism voliables with voliance $\frac{1}{2} = \frac{N_0}{2}$
- * When Signal $S_{4}(t)$ is than mitted, the received Signal point lies in the decision region Z_{4}' .

 If $x_{1}>0$ & $x_{2}>0$, leading to Correct decision.

The conditional PDF is given by
$$f_{X1}(x,|S_{ij}(\pm)) = \frac{1}{\sqrt{\sin \sigma^{3}}} e^{-\frac{(x_{1}-y_{2}^{3})}{3\sigma^{2}}}$$

$$f_{X2}(x_{3}|S_{ij}(\pm)) = \frac{1}{\sqrt{\sin \sigma^{3}}} e^{-\frac{(x_{2}-y_{2}^{3})}{3\sigma^{2}}}$$

$$f_{X1}(x_{1}|S_{ij}(\pm)) = \frac{1}{\sqrt{\sin \frac{N_{0}}{x}}} e^{-\frac{(x_{2}-y_{2}^{3})}{2\sqrt{N_{0}}}} \text{ and}$$

$$f_{X2}(x_{3}|S_{ij}(\pm)) = \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{(x_{2}-y_{2}^{3})^{2}}{2\sqrt{N_{0}}}}$$

$$f_{X3}(x_{3}|S_{ij}(\pm)) = \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{(x_{2}-y_{2}^{3})^{2}}{\sqrt{N_{0}}}}$$

X Let us assume $S_4(t)$ is thansmitted. If the teceined Signal x' Should Pall in Jugion Z_4 i.e. both x, & x_2 Should be +ve.

Figure Illustrating the region of correct decisions and the region of erroneous decisions, given that signal $s_4(t)$ was transmitted.

 χ probability of carect decision P_c is equal to the product of conditional probabilities of events $x_1>0$ & $x_2>0$, both given that $S_{ij}(t)$ was then mitted.

Region
$$Z_{+}$$
: $0 \leqslant x_{1} \leqslant \infty$

$$0 \leqslant x_{2} \leqslant \infty$$

$$P_{c} = \int_{0}^{\infty} P_{x_{1}}(x_{1}|s_{+}(\pm)) dx_{1} \times \int_{0}^{\infty} P_{x_{2}}(x_{2}|s_{+}(\pm)) dx_{2} \longrightarrow 3$$

$$P_{c} = \int_{0}^{\infty} \frac{1}{\sqrt{\pi N_{o}}} e^{\left[\frac{x_{1} - \sqrt{\frac{E}{2}}}{\sqrt{N_{o}}}\right]^{2}} dx_{1} \cdot \int_{0}^{\infty} \frac{1}{\sqrt{\pi N_{o}}} e^{\left[\frac{x_{2} - \sqrt{\frac{E}{2}}}{\sqrt{N_{o}}}\right]} dx_{2}$$

$$dz = \frac{\alpha_{1} - \sqrt{\frac{E}{2}}}{\sqrt{N_{o}}}$$

$$dz = \frac{\alpha_{1} - \sqrt{\frac{E}{2}}}{\sqrt{N_{o}}}$$

$$dz = \frac{\alpha_{2} - \sqrt{\frac{E}{2}}}{\sqrt{N_{o}}}$$

$$dz = \frac{\alpha_{3} - \sqrt{\frac{E}{2}}}{\sqrt{N_{o}}}$$

$$dz = \frac{\sqrt{N_{o}} + \sqrt{N_{o}}}{\sqrt{N_{o}}}$$

$$dz = \sqrt{N_{o}} + \sqrt{N_{o}} + \sqrt{N_{o}}$$

$$dz = \sqrt{N_{o}} + \sqrt{N_{o}} + \sqrt{N_{o}} + \sqrt{N_{o}}$$

$$dz = \sqrt{N_{o}} + \sqrt{N_{o}} + \sqrt{N_{o}} + \sqrt{N_{o}} + \sqrt{N_{o}}$$

$$dz = \sqrt{N_{o}} + \sqrt{N_{o}$$

$$Z_{1}=0, \quad Z = \frac{x_{1}-\sqrt{\frac{E}{2}}}{\sqrt{N_{0}}}$$

$$Z = \frac{0-\sqrt{\frac{E}{2}}}{\sqrt{N_{0}}}$$

$$Z = \frac{0-\sqrt{\frac{E}{2}}}{\sqrt{N_{0}}}$$

$$Z = -\sqrt{\frac{E}{2N_{0}}}$$

$$Z = -\sqrt{\frac{E}{2N_{0}}}$$

$$P_{c} = \int_{\frac{E}{3N_{o}}}^{\infty} \frac{1}{\sqrt{\pi}} \cdot e^{-Z^{2}} \cdot \sqrt{N} dZ \cdot \int_{\frac{E}{3N_{o}}}^{\infty} \frac{1}{\sqrt{\pi}} \cdot e^{-Z^{2}} dZ \cdot dZ$$

$$P_{c} = \begin{bmatrix} \frac{1}{\sqrt{\pi}} & \int_{\frac{E}{aN_{o}}}^{\infty} e^{-Z^{a}} dz \end{bmatrix}^{\frac{a}{2}} \longrightarrow \bigoplus \begin{bmatrix} P_{e} = \frac{1}{2} e^{a} \psi_{e} \left(\sqrt{\frac{E}{aN_{o}}} \right) \\ \frac{1}{\sqrt{2}} e^{-Z^{a}} + \frac{1}{2} e^{a} \psi_{e} \left(\sqrt{\frac{E}{aN_{o}}} \right) \end{bmatrix}$$

From the definition of the complementary early function we have $\frac{1}{\sqrt{11}} \int_{-\sqrt{\frac{E}{2N_0}}}^{E} e^{-Z^2} dz = 1 - \frac{1}{2} \exp\left(\sqrt{\frac{E}{2N_0}}\right) \longrightarrow \text{(5)}$

Substituting eq (5) in eq (1)
$$\therefore P_{c} = \left[1 - \frac{1}{a} \text{ en}_{c} \left(\sqrt{\frac{E}{aN_{o}}} \right) \right]^{a} \qquad (a \cdot b)^{2} = a^{2} + b^{2} - aab$$

$$a = 1, b = \frac{1}{a} \text{ en}_{c} \left(\sqrt{\frac{E}{aN_{o}}} \right)$$

$$P_{c} = 1 + \frac{1}{4} \text{ en}_{c}^{2} \left(\sqrt{\frac{E}{aN_{o}}} \right) - 2(1) \cdot \frac{1}{2} \text{ en}_{c} \left(\sqrt{\frac{E}{aN_{o}}} \right)$$

$$P_{e} = 1 - P_{c}$$

$$P_{e} = 1 - \left[1 + \frac{1}{4} \text{ ord}_{c}^{2} \left(\sqrt{\frac{E}{aN_{o}}} \right) - \text{ord}_{c} \left(\sqrt{\frac{E}{aN_{o}}} \right) \right]$$

$$= \chi - \chi - \frac{1}{4} \text{ ord}_{c}^{2} \left(\sqrt{\frac{E}{aN_{o}}} \right) + \text{ord}_{c} \left(\sqrt{\frac{E}{aN_{o}}} \right)$$

 \star In the region $Z_4:\left(\frac{E}{a_{N_0}}\right)\gg 1$, hence we can ignore Second term

$$P_e \approx e M_c \left(\sqrt{\frac{E}{a N_o}} \right)$$

* In apsk two bits are thansmitted per Symbol

$$P_{e} \approx e^{4} \sqrt{\frac{2E_{b}}{2N_{e}}}$$

$$P_e \approx e v_{k} \left(\sqrt{\frac{E_b}{N_e}} \right)$$

ių.	Consent detector	Non Coherent detects
Psk	$P_e = \frac{1}{2} + 10 \text{ fc} \left(\sqrt{\frac{E_b}{N_o}} \right)$	
F\$K	Pe = 1 enc (\(\frac{E_b}{2N_0} \)	Pe = 1 e (Eb/an.)
Ask	Pe = \frac{1}{2} enfc \left[\frac{1}{2} \sqrt{\frac{E_b}{N_o}} \right]	Pe = 1 e (-Eb/4No)
OPSK		Pe = 1 e (-Eh)
өрѕк	Pe = eoufc (\(\frac{\mathbb{E}_b}{N_o} \)	
MFSK	Pe = expc (\(\frac{\overline{Eb}}{N_o} \)	<u> </u>

$$*$$
 $P = \frac{A_c^a}{a}$

Earner Function Table:

	Table	Error Function	
u	erf(u)	u	erf(u)
0.00	0.00000	1.10	0.88021
0.05	0.05637	1.15	0.89612
0.10	0.11246	1.20	0.91031
0.15	0.16800	1.25	0.92290
0.20	0.22270	1.30	0.93401
0.25	0.27633	1.35	0.94376
0.30	0.32863	1.40	0.95229
0.35	0.37938	1.45	0.95970
0.40	0.42839	1.50	0.96611
0.45	0.47548	1.55	0.97162
0.50	0.52050	1.60	0.97635
0.55	0.56332	1.65	0.98038
0.60	0.60386	1.70	0.98379
0.65	0.64203	. 1.75	0.98667
0.70	0.67780	1.80	0.98909
0.75	0.71116	1.85	0.99111
0.80	0.74210	1.90	0.99279
0.85	0.77067	1.95	0.99418
0.90	0.79691	2.00	0.99532
0.95	0.82089	2.50	0.99959
1.00	0.84270	3.00	0.99998
1.05	0.86244	3.30	0.999998