Matheus S. D'Andrea Alves

Recognition of (r,ℓ) -partite Graphs

Abstract

The complexity to recognize if a graph has an (r, ℓ) -partition, i.e. if it can be partitioned into r cliques and ℓ independent sets, is well defined(1). However, as we will demonstrate, the literature-stabilished values for those on the P class can be improved. The following work provides a set of strategies and algorithms that pushes the previous results for the (2,1)-partite (from n^4 to n*m), (1,2)-partite (from n^4 to n*m) and (2,2)-partite (from n^{12} to n^2*m) recognition.

Keywords— (r, ℓ) -graphs, (r, ℓ) -partitions

List of Figures

List of Tables

Table 1	Incomplete complexity analysis of the (r,ℓ) -partite recognition problem	٠
Table 2	Incomplete complexity analysis of the (r, ℓ) -partite recognition problem	3
Table 3	Incomplete complexity analysis of the (r, ℓ) -partite recognition problem	4
Table 4	– Current complexity analysis of the (r,ℓ) -partite recognition problem	4
	Contents	
	Contents	2
1	INTRODUCTION	3
1.1	Current results	3
1.1.1	m-bounded results	3
1.1.2	$NP ext{-}Complete$ results	3
1.1.3	Frontier results	4
	BIBLIOGRAPHY	5

1 Introduction

1.1 Current results

In this section we will explore the current state of the complexity analysis as r and ℓ grows. As we fullfill the following table we expose the strategies and how those can be used to enlight the more complex results.

The most trivial result is the recognition of the (1,0)-graphs, as in order to recognize it we just need to know if |E(G)| > 0. Therefore it's complexity is $\mathcal{O}(1)$.

r	0	1	2	3	4	
0	_	?	?	?	?	
1	$\mathcal{O}(1)$?	?	?	?	
2	?	?	?	?	?	
3	?	?	?	?	?	
4	?	?	?	?	?	
:	:	:	:	:	:	٠.,

Table 1 – Incomplete complexity analysis of the (r, ℓ) -partite recognition problem

1.1.1 *m*-bounded results

r	0	1	2	3	4	
0	_	$\mathcal{O}(m)$	$\mathcal{O}(m)$?	?	
1	$\mathcal{O}(1)$	$\mathcal{O}(m)$?	?	?	
2	$\mathcal{O}(m)$?	?	?	?	
3	?	?	?	?	?	
4	?	?	?	?	?	
÷	:	÷	÷	:	:	٠

Table 2 – Incomplete complexity analysis of the (r, ℓ) -partite recognition problem

1.1.2 NP-Complete results

asdjkashjfasdhgdjasd asdjkasfakjh asdjkasfakjhasda asdjkashjfasdhgdjasd asdjkashjfasdhgdjasd

r	0	1	2	3	4	
0	_	$\mathcal{O}(m)$	$\mathcal{O}(m)$	NPc	NPc	
1	$\mathcal{O}(1)$	$\mathcal{O}(m)$?	NPc	NPc	
2	$\mathcal{O}(m)$?	?	NPc	NPc	
3	NPc	NPc	NPc	NPc	NPc	
4	NPc	NPc	NPc	NPc	NPc	
:	:	:	:	:	÷	٠

Table 3 – Incomplete complexity analysis of the (r, ℓ) -partite recognition problem

1.1.3 Frontier results

r	0	1	2	3	4	
0	-	$\mathcal{O}(m)$	$\mathcal{O}(m)$	NPc	NPc	
1	$\mathcal{O}(1)$	$\mathcal{O}(m)$	$\mathcal{O}(n^4)$	NPc	NPc	
2	$\mathcal{O}(m)$	$\mathcal{O}(n^4)$	$\mathcal{O}(n^{12})$	NPc	NPc	
3	NPc	NPc	NPc	NPc	NPc	
4	NPc	NPc	NPc	NPc	NPc	
:	:	÷	÷	:	:	٠

Table 4 – Current complexity analysis of the (r, ℓ) -partite recognition problem

Bibliography

1 BRANDSTÄDT, A. Partitions of graphs into one or two independent sets and cliques. 1984.