相关参数

表 1卫星轨道六根数

轨道参数	符号	
轨道半长轴(km)	α	6862.036
轨道偏心率	e	0.0012178
轨道倾角(deg)	i	97.3615
升交点赤经(deg)	Ω	82.1176
近地点幅角(deg)	ω	213.6645
平近点角(deg)	M	286.3617

地面站参数: 经度(117.27), 纬度(31.86), 海拔高度(0.5km)

表 2 卫星轨道计算参数

参数	符号	数值
卫星速度(km/s)	v	7.6215
卫星轨道周期(s)	T	5657.1
日周期数	N	15.273
平均角速度(rad/s)	n	0.0011

卫星平面轨道方程计算

卫星平近点角M

$$M = n(t - t_0) \tag{1}$$

其中n为卫星运动的平均角速度,t为观测时刻, t_0 为卫星过近地点时刻卫星偏近点角E:

$$E = M + e\sin(E) \tag{2}$$

卫星真近点角:

$$f = \arctan\left(\frac{\sqrt{1 - e^2}\sin(E)}{\cos(E) - e}\right) \tag{3}$$

利用级数展开,可得到卫星真近点角与平近点角的关系为:

$$f = M + \left(2e - \frac{1}{4}e^3\right)\sin(M) + \frac{5}{4}e^2\sin(2M) + \frac{13}{12}e^3\sin(3M) \cdot \cdot \cdot$$
 (4)

卫星轨道方程:

$$r_{s} = \frac{a(1-e^{2})}{1+e\cos(f)}$$

$$x_{s} = r_{s}\cos(f)$$

$$y_{s} = r_{s}\sin(f)$$
(5)

坐标变换

轨道坐标系(Orbital Coordinate System, OCS)到地心惯性坐标系(Earth-Centered Inertial Coordinate System, ECI)

$$R_{\Omega} = \begin{bmatrix} \cos(\Omega) & -\sin(\Omega) & 0 \\ \sin(\Omega) & \cos(\Omega) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{\omega} = \begin{bmatrix} \cos(\omega) & -\sin(\omega) & 0 \\ \sin(\omega) & \cos(\omega) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{i} = \begin{bmatrix} \cos(i) & -\sin(i) & 0 \\ \sin(i) & \cos(i) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$r_{ECI} = R_{\Omega} R_{\omega} R_{i} \begin{bmatrix} x_{s} \\ y_{s} \\ 0 \end{bmatrix}$$

$$(6)$$

地心惯性坐标系到大地测量系统(Latitude Longitude Altitude Measurement System, LLA)

$$\theta = \arctan\left(\frac{z_{ECI}}{x_{ECI}^2 + y_{ECI}^2}\right)$$

$$if \ x_{ECI} < 0$$

$$\varphi = 180^\circ + \arctan\left(\frac{y_{ECI}}{x_{ECI}}\right)$$

$$if \ x_{ECI} > 0$$

$$\varphi = \arctan\left(\frac{y_{ECI}}{x_{ECI}}\right)$$

$$else$$

$$(y_{ECI})$$

 $\varphi = 360^{\circ} + \arctan\left(\frac{y_{ECI}}{x_{ECI}}\right)$

其中 θ 为卫星纬度, φ 为卫星经度

卫星与地面站可见范围及相对位置计算

卫星中心角:

$$\cos(\gamma) = \cos(L_e)\cos(L_s)\cos(l_s - l_e) + \sin(L_e)\sin(L_s) \tag{9}$$

其中 γ 为卫星中心角, L_s 为地面站北纬, L_s 为地面站西经, L_s 为星下点北纬, L_s 为星下点西 经。

可见性测定:

若地面站要观察到某个卫星,则该地面站的仰角 El 必须大于 0,要使 $El > 0^{\circ}$,则必须满足:

$$r_s > \frac{r_e}{\cos(\gamma)} \tag{10}$$

其中, r_s 为卫星轨道半径, r_e 为地面站距地心距离。

地面站仰角 El 计算公式:

$$\cos(El) = \frac{r_s \sin(\gamma)}{d} = \frac{\sin(\gamma)}{\left[1 + \left(\frac{r_e}{r_s}\right)^2 - 2\left(\frac{r_e}{r_s}\right)\cos(\gamma)\right]^{1/2}}$$
(11)

地面站方位角计算

地面站方位角计算
为了计算地面站方位角,需要先定义一个中间角
$$\beta = \arctan\left(\frac{\tan|l_s - l_e|}{\sin(L_e)}\right) \tag{12}$$

求出中间角后, 地面站方位角 Az 可按如下方法求得:

情况 1: 地面站位于北半球

(a) 卫星位于地面站东侧: $Az = 180^{\circ} - \beta$

(b) 卫星位于地面站西侧: $Az = 180^{\circ} + \beta$

情况 2: 地面站位于南半球

(a) 卫星位于地面站东侧: $Az = \beta$

(b) 卫星位于地面站西侧: $Az = 360^{\circ} - \beta$

仿真实验结果图

图 1 量子卫星星下点轨迹及可观测区间

图 2量子卫星星下点轨迹及可观测区间三维视图

图 4 地面站 ATP 系统方位角与俯仰角联合变化曲线