Exame

Nome:

D 4	
$\mathbf{D} \wedge \cdot$	
R.A.:	

- Para o circuito da figura abaixo, as lâmpadas são idênticas. São dados $I_A=5A$, $R_1=1\Omega$, $R_2=0.5\Omega$ e a característica $i \times v$, linearizada por partes, de uma das lâmpadas na convenção de receptor. Obrigatório o uso do gráfico fornecido para determinar:
 - a) A potência dissipada pela associação das três lâmpadas.
 - b) A potência fornecida pela fonte de corrente.

 $P_{3L} \cong 3,5W$

 $P_F \cong 20W$

GREEN Slunda

STOKE SUPERFICIE

2. Obrigatório o uso do grafo associado ao circuito abaixo afim de:

 a) Preencher o espaço fornecido com os ramos da árvore própria, seus ramos de ligações e também indicar o corte fundamental no capacitor.

Árvore: e_A, e_B e C

Co-árvore: R₁, R₂, R₃ e I_B

Corte: C, R₁, R₂, I_B

b) Dados $R_1 = R_2 = 4 \Omega$, $R_3 = 2 \Omega$ C=1F determinar a equação diferencial em v(t).

$$2\dot{v} + v = \frac{e_A}{2} - \frac{e_B}{2} - 2i_B$$

- 3. Dados $I_F=10A$, $E_F=15V$, $R_1=1\Omega$, $R_2=2\Omega$, $R_3=3\Omega$, $R_4=4\Omega$, pede-se:
 - a) Equação matricial do método de nó modificado.

$$\begin{vmatrix}
\mathbf{i}_{4} & \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0,5 & 0 & 0 & -1 & -1 \\
0 & 0 & \frac{10}{3} & -\frac{10}{3} & 1 & 0 \\
0 & 0 & -\frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & -0,5 & 0 & 0
\end{bmatrix} \cdot \begin{bmatrix}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
i_{A} \\
i_{B}
\end{bmatrix} = \begin{bmatrix}
-10 \\
0 \\
0 \\
10 \\
15 \\
0
\end{bmatrix}$$

b) Determine o valor de i4 em R4.

$$i_4 = \frac{78,65}{4} = 19,68A$$

4. Para o circuito dado suponha modelo ideal para o transformador. Considere e(t)= 2 sen t, R₁=0.25Ω, R₂=1Ω, C=0.5F, n=2. Em regime permanente senoidal, pede-se:

a) A solução forçada v(t) no capacitor.

$$v(t) = 2,828 \cos(t-45^{\circ})$$

b)Potência média na carga (R₂ em série com C) entre A e B.

$$P_{média} = 0,998$$
 \rightarrow $P_{média} = 2,23 \cos(116,57^{\circ})$

5. Para $\mathbf{e_A} = \frac{1}{6}e^{-3t}$, $\mathbf{R_1} = 3\Omega$, $\mathbf{R_2} = 2\Omega$, $\mathbf{C_1} = \mathbf{C_2} = \frac{1}{6}$ F, pede-se:

a) Equação diferencial em v₂(t)

$$v_2 + 5v_2 + 6v_2 = 6e_A = e^{-3t}$$

b) $v_2(t)$, t>0 para $v_1(0)=2$ V e $v_2(0)=4$ V

$$v_2(t) = 19 \exp(-2t) - 15 \exp(-3t) - t \exp(-3t), t > 0$$