EM Lyon 2020, voie S

PROBLÈME 1

On note, pour tout n de \mathbb{N} , P_n la fonction polynomiale définie par :

$$\forall x \in \mathbb{R}, \ P_n(x) = \sum_{k=0}^{2n+1} \frac{(-x)^k}{k!}.$$

PARTIE A : Étude de la suite des racines des polynômes P_n

- (1) (a) Calculer, pour tout n de \mathbb{N} , les limites de P_n en $+\infty$ et $-\infty$.
 - (b) En déduire que, pour tout n de \mathbb{N} , le polynôme P_n admet au moins une racine réelle.
- (2) (a) Montrer: $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ P'_n(x) = -P_n(x) \frac{x^{2n+1}}{(2n+1)!}$
 - (b) En déduire que, pour tout n de \mathbb{N} , les racines de P_n sont toutes simples.
- (3) (a) Vérifier: $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ P_n(x) = \sum_{k=0}^n \frac{x^{2k}}{(2k)!} \left(1 \frac{x}{2k+1}\right).$
 - (b) En déduire que, pour tout n de \mathbb{N} , les racines réelles de P_n appartiennent nécessairement à l'intervalle [1; 2n+1].
- (4) (a) Montrer les relations :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \begin{cases} P'_{n+1}(x) = -P_n(x) - \frac{x^{2n+2}}{(2n+2)!}, \\ P''_{n+1}(x) = P_n(x). \end{cases}$$

- (b) Montrer par récurrence que, pour tout n de \mathbb{N} , la fonction P_n est strictement décroissante sur \mathbb{R} et ne s'annule qu'une seule fois, en un réel noté u_n .
- (5) (a) Écrire une fonction Scilab d'en-tête function y = P(n,x) qui prend pour arguments un entier n de \mathbb{N} et un réel x, et qui renvoie la valeur de $P_n(x)$.

 On rappelle qu'en langage Scilab, l'instruction factorial (k) renvoie une valeur de k!.
 - (b) Recopier et compléter la fonction Scilab suivante afin que, prenant pour argument un entier n de \mathbb{N} , elle renvoie une valeur approchée de u_n à 10^{-3} près à l'aide de la méthode par dichotomie.

```
function u = suite(n)
1.
2.
        a = ......
3.
        b = ......
        c = (a+b)/2
5.
        while .....
6.
             if ..... then
7.
                 a = c
8.
             else
9.
10.
            end
11.
12.
       end
13.
       . . . . . . . . .
14. endfunction
```

(c) On utilise la fonction précédente pour représenter les premiers termes de la suite $\left(\frac{u_n}{n}\right)_{n\in\mathbb{N}^*}$. Conjecturer un équivalent de u_n lorsque n tend vers $+\infty$ et la limite éventuelle de $(u_n)_{n\in\mathbb{N}}$.

(6) (a) Montrer:
$$\forall n \in \mathbb{N}, \ P_{n+1}(u_n) = \frac{u_n^{2n+2}}{(2n+2)!} \left(1 - \frac{u_n}{2n+3}\right).$$

- (b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- (7) On suppose dans cette question que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente de limite ℓ .
 - (a) Montrer: $\forall n \in \mathbb{N}, |P_n(u_n) P_n(\ell)| \leq e^{\ell} |u_n \ell|.$
 - (b) Déterminer $\lim_{n\to+\infty} P_n(\ell)$. En déduire : $\lim_{n\to+\infty} P_n(u_n) = e^{-\ell}$.
 - (c) Aboutir à une contradiction.
- (8) En déduire la nature et la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

PARTIE B : Quelques résultats intermédiaires

Les deux questions de cette partie sont indépendantes entre elles et indépendantes de la partie A.

- (9) On note f la fonction définie sur]0;1] par : $\forall t \in]0;1], f(t) = -\ln(t).$
 - (a) Montrer que l'intégrale $\int_0^1 f(t)dt$ converge et préciser sa valeur.
 - (b) Soit n un entier supérieur ou égal à 2. Justifier, pour tout k de [1; n+1]: $\frac{1}{n} f\left(\frac{k+1}{n}\right) \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt \leqslant \frac{1}{n} f\left(\frac{k}{n}\right).$ En déduire : $\int_{\frac{1}{n}}^{1} f(t)dt \leqslant \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \leqslant \int_{\frac{1}{n}}^{1} f(t)dt + \frac{\ln(n)}{n}.$
 - (c) En déduire la limite de $\frac{1}{n}\sum_{k=1}^{n}\ln\left(\frac{k}{n}\right)$ lorsque n tend vers $+\infty$.
 - (d) Montrer finalement : $\lim_{n \to +\infty} \frac{(n!)^{\frac{1}{n}}}{n} = e^{-1}.$

(10) On note g la fonction définie sur $]0; +\infty[$ par : $\forall t \in]0; +\infty[$, $g(t) = t + \ln(t) + 1$. Montrer qu'il existe un unique α appartenant à $]0; +\infty[$ tel que $g(\alpha) = 0$ et justifier :

$$e^{-2} < \alpha < e^{-1}$$
.

PARTIE C : Équivalent de la suite $(u_n)_{n\in\mathbb{N}}$

(11) (a) Montrer:
$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ e^{-x} = \sum_{k=0}^{2n} \frac{(-x)^k}{k!} - \int_0^x \frac{(x-t)^{2n}}{(2n)!} e^{-t} dt.$$

(b) Justifier:
$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}^+, \ 0 \leqslant \int_0^x \frac{(x-t)^{2n}}{(2n)!} e^{-t} dt \leqslant \frac{x^{2n+1}}{(2n+1)!}.$$

(c) En déduire :
$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}^+, \ P_n(x) \leqslant e^{-x} \leqslant P_n(x) + \frac{x^{2n+1}}{(2n+1)!}$$

(12) Soit n un entier de \mathbb{N} .

(a) Montrer:
$$P_{n+1}(u_n) \le e^{-u_n} \le \frac{(u_n)^{2n+1}}{(2n+1)!}$$
.

(b) En utilisant le résultat des questions (3)(b) et (6)(a), obtenir : $\frac{2(u_n)^{2n}}{(2n+3)!} \le e^{-u_n} \le \frac{(u_n)^{2n}}{(2n)!}$, puis :

$$(2n)! \le (u_n)^{2n} e^{u_n} \le \frac{(2n+3)!}{2}.$$

- (13) On pose, pour tout n de \mathbb{N}^* : $w_n = \frac{u_n}{2n}$.
 - (a) Montrer:

$$\forall n \in \mathbb{N}^{\star}, \ \frac{((2n)!)^{\frac{1}{2n}}}{2n} \leq w_n e^{w_n} \leq \left(\frac{(2n+3)^3}{2}\right)^{\frac{1}{2n}} \frac{((2n)!)^{\frac{1}{2n}}}{2n}.$$

- (b) En déduire que la suite $(g(w_n))_{n\in\mathbb{N}^*}$ converge vers 0 puis que la suite $(w_n)_{n\in\mathbb{N}^*}$ converge vers α , la fonction q et le réel α étant définis dans la question (10).
- (14) En déduire un équivalent simple de u_n lorsque n tend vers $+\infty$.

PROBLÈME 2

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 1. On note $\mathcal{B}_n = (1, X, \dots, X^n)$ la base canonique de $\mathbb{R}_n[X]$.

PARTIE A: Etude d'un produit scalaire

- (1) Montrer que, pour tout polynôme P de $\mathbb{R}[X]$, l'intégrale $\int_0^{+\infty} P(t)e^{-t}dt$ converge.
- (2) Pour tout k de \mathbb{N} , on pose $I_k = \int_0^{+\infty} t^k e^{-t} dt$.
 - (a) Pour tout k de \mathbb{N} , déterminer à l'aide d'une intégration par parties une relation entre les intégrales I_{k+1} et I_k .
 - (b) En déduire : $\forall k \in \mathbb{N}, I_k = k!$

Pour tout couple (P,Q) de $\mathbb{R}[X]^2$, on pose : $\langle P,Q\rangle = \int_0^{+\infty} P(t)Q(t)e^{-t}dt$.

(3) Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.

Dans toute la suite du problème, on munit $\mathbb{R}[X]$ de ce produit scalaire et on note $\|\cdot\|$ la norme associée.

(4) Calculer, pour tout (i,j) de \mathbb{N}^2 , $\langle X^i, X^j \rangle$ et, pour tout i de \mathbb{N} , $||X^i||$.

On admet qu'il existe une unique suite de polynômes $(Q_k)_{k\in\mathbb{N}}$ définie par :

- pour tout k de \mathbb{N} , le polynôme Q_k est de degré k et de coefficient dominant strictement positif,
- pour tout k de \mathbb{N} , la famille (Q_0, \ldots, Q_k) est une famille orthonormale.
- (5) (a) Déterminer Q_0 et Q_1 et vérifier que $Q_2 = \frac{1}{2}X^2 2X + 1$.
 - (b) Montrer que, pour tout k de \mathbb{N} , la famille $\mathcal{C}_k = (Q_0, \dots, Q_k)$ est une base de $\mathbb{R}_k[X]$.

On définit la matrice $H_n = (h_{i,j})_{1 \le i,j \le n+1}$ de $\mathcal{M}_{n+1}(\mathbb{R})$ par :

$$\forall (i,j) \in [1; n+1]^2, \ h_{i,j} = \langle X^{i-1}, X^{j-1} \rangle.$$

On note également A_n la matrice de la famille $\mathcal{B}_n = (1, X, \dots, X^n)$ dans la base \mathcal{C}_n .

- (6) Étude du cas n = 2:
 - (a) Expliciter la matrice H_2 .

Montrer que la matrice H_2 est inversible et vérifier que $H_2^{-1} = \begin{pmatrix} 3 & -3 & \frac{1}{2} \\ -3 & 5 & -1 \\ \frac{1}{2} & -1 & \frac{1}{4} \end{pmatrix}$.

- (b) Expliciter la matrice A_2 et calculer tA_2A_2 . Que remarque-t-on?
- (7) On note, pour tout (i,j) de $[1; n+1]^2$, $a_{i,j}$ le coefficient d'indice (i,j) de la matrice A_n .
 - (a) Justifier que la matrice A_n est inversible.
 - (b) Justifier : $\forall j \in \llbracket 1; n+1 \rrbracket, \ X^{j-1} = \sum_{k=1}^{n+1} a_{k,j} Q_{k-1}.$

En déduire : $\forall (i,j) \in [1; n+1]^2, \langle X^{i-1}, X^{j-1} \rangle = \sum_{k=1}^{n+1} a_{k,i} a_{k,j}.$

- (c) Montrer alors la relation : $H_n = {}^tA_nA_n$.
- (8) (a) Montrer que la matrice H_n est inversible.
 - (b) Établir (sans calcul) que la matrice H_n est diagonalisable.
 - (c) Montrer que les valeurs propres de H_n sont strictement positives. (On pourra calculer, pour tout vecteur propre Y de H_n , tYH_nY .)

PARTIE B: Etude d'une projection

Soit P un polynôme de $\mathbb{R}[X]$. On définit la matrice colonne $U = \begin{pmatrix} \langle P, 1 \rangle \\ \langle P, X \rangle \\ \vdots \\ \langle P, X^n \rangle \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbb{R})$.

(1) Soit R un polynôme de $\mathbb{R}_n[X]$.

On note $V = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ la matrice colonne des coordonnées de R dans la base \mathcal{B}_n .

- (a) Montrer, pour tout i de [0; n]: $\langle R, X^i \rangle = \sum_{k=0}^n \alpha_k \langle X^i, X^k \rangle$.
- (b) Montrer : R est le projeté orthogonale de P sur $\mathbb{R}_n[X] \iff \forall i \in [0; n], \langle P, X^i \rangle = \langle R, X^i \rangle$. En déduire : R est le projeté orthogonale de P sur $\mathbb{R}_n[X] \iff V = H_n^{-1}U$.
- (2) **Retour au cas** n = 2: Déterminer le projeté orthogonal du polynôme X^3 sur $\mathbb{R}_2[X]$.
- (3) On souhaite retrouver le résultat précédent par une méthode différente. On définir la fonction f sur \mathbb{R}^3 par :

$$\forall (a,b,c) \in \mathbb{R}^3, \ f(a,b,c) = \int_0^{+\infty} (a+bt+ct^2-t^3)^2 e^{-t} dt.$$

- (a) Vérifier: $\forall (a, b, c) \in \mathbb{R}^3, \ f(a, b, c) = a^2 + 2b^2 + 24c^2 + 2ab + 4ac + 12bc 12a 48b 240c + 720.$
- (b) Montrer que f admet un unique point critique (a_0, b_0, c_0) vérifiant : $H_2 \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} = \begin{pmatrix} 6 \\ 24 \\ 120 \end{pmatrix}$.
- (c) Montrer que la matrice hessienne de f au point (a_0, b_0, c_0) est la matrice $2H_2$.
- (d) En déduire que la fonction f admet au point (a_0, b_0, c_0) un minimum local.
- (e) Justifier : $\inf_{(a,b,c)\in\mathbb{R}^3} f(a,b,c) = \inf_{R\in\mathbb{R}_2[X]} \|X^3 R\|^2$. En déduire que f admet un minimum global sur \mathbb{R}^3 et que ce minimum est atteint en un unique point.
- (f) Retrouver alors l'expression du projeté orthogonal du polynôme X^3 sur $\mathbb{R}_2[X]$.