

CIRCUITOS DIGITAIS ÁLGEBRA BOOLEANA

Marco A. Zanata Alves

UMA ÁLGEBRA DIFERENTE

Álgebra booleana [Boole, 1854]

Álgebra onde há apenas dois valores válidos: falso e verdadeiro.

George Boole (Lincoln, 02/11/1815 - Ballintemple, 08/12/1864) foi um **filósofo** britânico, criador da álgebra booleana, fundamental para o desenvolvimento da computação moderna

http://pt.wikipedia.org/wiki/George Boole

UMA ÁLGEBRA DIFERENTE

Álgebra booleana [Boole, 1854]

Álgebra onde há apenas dois valores válidos: falso e verdadeiro.

Estamos falando de **lógica de Aristóteles**, que discute o uso de raciocínio em alguma atividade

George Boole (Lincoln, 02/11/1815 - Ballintemple, 08/12/1864) foi um **filósofo** britânico, criador da álgebra booliana, fundamental para o desenvolvimento da computação moderna

http://pt.wikipedia.org/wiki/George Boole

UMA ÁLGEBRA DIFERENTE

Variável booleana: pode assumir um dos dois valores válidos.

Os valores são denotados:

- F e V;
- false e true (ou F e T);
- desligado e ligado;
- nível baixo e nível alto de um sinal;
- 0 e 1, etc.

As **variáveis** são geralmente denotadas por uma letra maiúscula: A, B, C, X, Y, Z, ...

PRINCIPIOS BÁSICOS DA ÁLGEBRA BOOLEANA

A álgebra boolena se assenta em dois princípios fundamentais:

Princípio da não contradição: Uma proposição não pode ser, simultaneamente, verdadeira e falsa;

Princípio do terceiro excluído: Uma proposição só pode assumir um dos dois valores possíveis: ou é verdadeira ou é falsa, excluindo-se uma terceira hipótese.

As operações básicas da álgebra booleana são:

As operações básicas da álgebra booleana são:

Conjunção ou multiplicação booleana:			
X e Y	X and Y	$X \wedge Y$	$X \cdot Y$
Disjunção ou produto booleano:			
X ou Y	X or Y	$X \vee Y$	X + Y

As operações básicas da álgebra booleana são:

Conjunção ou multiplicação booleana:			
X e Y	X and Y	$X \wedge Y$	$X \cdot Y$
Disjunção ou produto booleano:			
X ou Y	X or Y	$X \vee Y$	X + Y
Negação ou complemento:			
não X	not X	$\neg X$	\overline{X}

As operações básicas da álgebra booleana são:

Em linguagens C e Java

Conjunção ou multiplicação booleana:				
X e Y	X and Y	$X \wedge Y$	$X \cdot Y$	X&&Y
Disjunção ou pr				
X ou Y	X or Y	$X \vee Y$	X + Y	X Y
Negação ou co				
não X	not X	$\neg X$	\overline{X}	!X

TABELAS VERDADE

Assim como na álgebra comum, o resultado de uma operação booleana é obtido através de uma tabuada.

Na álgebra booleana, as tabuadas são chamadas tabelas verdade.

Podemos construir as tabelas verdade usando raciocínio lógico...

Exemplo, considerando V=Vento, N=Nuvens e C=Chuva.

Vamos dizer que **Chove** se **Ventar** <u>e</u> houver **Nuvens**.

Vento	Nuvens	Chuva

Podemos construir as tabelas verdade usando raciocínio lógico...

Exemplo, considerando V=Vento, N=Nuvens e C=Chuva.

Vamos dizer que **Chove** se **Ventar** <u>e</u> houver **Nuvens**.

Vento	Nuvens	Chuva
٧	V	V
V	F	F
F	V	F
F	F	F

Temos nossa primeira tabela verdade da operação "E"

Assim como na álgebra comum, o resultado de uma operação booleana é obtido através de uma tabuada.

Na álgebra booleana, as tabuadas são chamadas tabelas verdade.

Tabela verdade da conjunção (e)

X	Y	$X \cdot Y$
V	V	V
V	F	F
F	V	F
F	F	F

Tabela verdade da disjunção (ou)

X	Y	X + Y
V	٧	V
V	F	V
F	٧	V
F	F	F

Tabela verdade da negação (não)

X	\overline{X}
V	F
F	V

Tabela verdade da conjunção (e)

X	Y	$X \cdot Y$
V	V	V
V	F	F
F	٧	F
F	F	F

Tabela verdade da disjunção (ou)

X	Y	X + Y
V	٧	V
V	F	V
F	V	V
F	F	F

Tabela verdade da negação (não)

X	\overline{X}
V	F
F	V

Conjunção (e): resultado verdadeiro apenas se x e y forem verdadeiros.

Disjunção (ou): resultado verdadeiro apenas se x ou y forem verdadeiros.

Negação (não): resultado só será verdadeiro se x não for verdadeiro.

Tabela verdade da conjunção (e)

X	Y	$X \cdot Y$
1	1	1
1	0	0
0	1	0
0	0	0

Tabela verdade da disjunção (ou)

X	Y	X + Y
1	1	1
1	0	1
0	1	1
0	0	0

Tabela verdade da negação (não)

X	\overline{X}
1	0
0	1

Equivalências: F = 0, V = 1

Cuidado! Não confunda tabelas verdade com tabuadas da aritmética na base 2.

EXPRESSÕES LÓGICAS

18

EXPRESSÕES LÓGICAS

Como na álgebra comum, podemos combinar as operações, formando expressões lógicas.

O resultado de uma expressão lógica pode ser calculado aplicandose cada operação lógica, consultando-se as tabelas verdade correspondentes.

Para indicar a ordem de aplicação das operações, usam-se parênteses como na álgebra comum.

Ex 1.: calcule o resultado da expressão abaixo:

$$\overline{1} + (0 \cdot 1) =$$

EXPRESSÕES LÓGICAS

Como na álgebra comum, podemos combinar as operações, formando expressões lógicas.

O resultado de uma expressão lógica pode ser calculado aplicando-se cada operação lógica, consultando-se as tabelas verdade correspondentes.

Para indicar a ordem de aplicação das operações, usam-se parênteses como na álgebra comum.

Ex 1.: calcule o resultado da expressão abaixo:

$$\overline{1} + (0 \cdot 1) = 0 + (0 \cdot 1) = 0 + (0) = 0$$

Se não houver parênteses, a **operação "·" tem precedência** sobre a operação "+"

Ou seja, $\overline{1} + 0 \cdot 1$ significa o mesmo que $\overline{1} + (0 \cdot 1)$

Como na álgebra comum, também podemos deixar valores a determinar em expressões lógicas.

Esses valores indeterminados são chamados variáveis booleanas.

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Qual o seu valor quando X = 1 e Y = 0?

Solução: substitua os valores de X e Y na expressão e calcule usando as tabelas verdade.

Como na álgebra comum, também podemos deixar valores a determinar em expressões lógicas.

Esses valores indeterminados são chamados variáveis booleanas.

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Qual o seu valor quando X = 1 e Y = 0?

Solução
$$\overline{1} \cdot 0 + 1 \cdot \overline{0} = 0 \cdot 0 + 1 \cdot 1 = 0 + 1 = 1$$

Podemos determinar tabelas verdade para expressões lógicas atribuindo todos as combinações de valores possíveis às variáveis.

TABELAS VERDADE

23

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Podemos determinar tabelas verdade para expressões lógicas atribuindo todos as combinações de valores possíveis às variáveis.

X	Y			$\overline{X} \cdot Y + X \cdot \overline{Y}$

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Podemos determinar tabelas verdade para expressões lógicas atribuindo todos as combinações de valores possíveis às variáveis.

X	Y	\overline{X}	\overline{Y}	$\overline{X} \cdot Y$	$X\cdot \overline{Y}$	$\overline{X} \cdot Y + X \cdot \overline{Y}$
0	0	1	1	$1 \cdot 0 = 0$	$0 \cdot 1 = 0$	0 + 0 = 0

Ex 2.: considere a expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$

Podemos determinar tabelas verdade para expressões lógicas atribuindo todos as combinações de valores possíveis às variáveis.

X	Y	\overline{X}	\overline{Y}	$\overline{X} \cdot Y$	$X \cdot \overline{Y}$	$\overline{X} \cdot Y + X \cdot \overline{Y}$
0	0	1	1	$1 \cdot 0 = 0$	$0 \cdot 1 = 0$	0+0=0
0	1	1	0	$1 \cdot 1 = 1$	$0 \cdot 1 = 0$	1 + 0 = 1
1	0	0	1	$0 \cdot 0 = 0$	$1 \cdot 1 = 1$	0 + 1 = 1
1	1	0	0	$0 \cdot 1 = 0$	$1 \cdot 0 = 0$	0+0=0

Interpretação: o resultado será verdadeiro se apenas uma das variáveis for verdadeira; será falso, caso contrário.

NOVA OPERAÇÃO: DISJUNÇÃO EXCLUSIVA

A expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$ costuma aparecer com muita frequência em álgebra booleana.

Daremos um nome para ela: disjunção exclusiva.

NOVA OPERAÇÃO: DISJUNÇÃO EXCLUSIVA

A expressão $\overline{X} \cdot Y + X \cdot \overline{Y}$ costuma aparecer com muita frequência em álgebra booleana.

Daremos um nome para ela: disjunção exclusiva.

Também conhecida como "ou exclusivo", ou "xor".

Denotada pelo símbolo \oplus :

$$X \bigoplus Y = \overline{X} \cdot Y + X \cdot \overline{Y}$$

em C: X^Y , em Java: $X^{\Lambda}Y$.

X	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

PRECEDÊNCIA DOS OPERADORES

A precedência das operações booleanas é sempre:

l. Parênteses "()"

2. Negação "não"

3. Conjunção "e"

4. Disjunção "ou"

5. Disjunção exclusiva "ou-exclusivo"

EXERCÍCIO

Construa a tabela verdade para as seguintes expressões:

$$A + (A \cdot B)$$

$$A \cdot (A + B)$$

$$(A + B) \cdot (A + C)$$

Em quais condições a saída será "verdadeira"?

Função lógica: trata-se da associação que "leva/mapeia" de um conjunto de n variáveis booleanas ao conjunto $\{0,1\}$.

$$F: \{0,1\}^n \to \{0,1\}$$

$$X_1, X_2, ..., X_n \to Y = F(X_1, X_2, ..., X_n)$$

Podemos descrever uma função lógica por uma expressão booleana ou pela sua tabela verdade.

Ex. 4: Construa a tabela verdade da função $F(A,B,C)=A+\overline{B}\cdot C$

Ex. 4: Construa a tabela verdade da função $F(A, B, C) = A + \overline{B} \cdot C$

A	В	С	$\overline{B} \cdot C$	$F(A,B,C)=A+\overline{B}\cdot C$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Depois de pronta, tente encontrar padrões nos resultados.

Ex. 4: Construa a tabela verdade da função $F(A, B, C) = A + \overline{B} \cdot C$

A	В	С	$\overline{B} \cdot C$	$F(A,B,C)=A+\overline{B}\cdot C$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

Tente encontrar padrões nos resultados.

Ex. 4: Construa a tabela verdade da função $F(A,B,\mathcal{C})=A+\overline{B}\cdot\mathcal{C}$

A	В	С	$\overline{B} \cdot C$	$F(A, B, C) = A + \overline{B} \cdot C$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1
\top				\top

Ex. 4: Construa a tabela verdade da função $F(A,B,C)=A+\overline{B}\cdot C$

A	B	C	$\overline{B} \cdot C$	$F(A,B,C)=A+\overline{B}\cdot C$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0=X	1
1	0	1	1=X	1
1	1	0	0=X	1
1	1	1	0=X	1

Onde há "X" não importa o valor de $\overline{B} \cdot C$, pois nos quatro casos, como A=1, então $A+\overline{B} \cdot C=1$

Ex. 5: Determine, se possível, uma expressão para a função F dada pela seguinte tabela verdade.

X	Y	F(X,Y)
0	0	1
0	1	0
1	0	0
1	1	1

Ex. 5: Determine, se possível, uma expressão para a função F dada pela seguinte tabela verdade.

X	Y	F(X,Y)	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Note que o resultado de F(X,Y) é sempre o "contrário" do resultado de $X \oplus Y$.

Ou seja, o resultado da operação **ou-exclusivo** é verdadeiro se, e somente se, F(X,Y) é falso.

Ex. 5: Determine, se possível, uma expressão para a função F dada pela seguinte tabela verdade.

X	Y	F(X,Y)	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Note que o resultado de F(X,Y) é sempre o "contrário" do resultado de $X \oplus Y$.

Ou seja, o resultado da operação **ou-exclusivo** é verdadeiro se, e somente se, F(X,Y) é falso.

Da observação anterior, e conhecendo as tabelas verdade das operações lógicas, uma expressão possível para F(X,Y) é:

$$F(X,Y) = \overline{X \oplus Y}$$

EXERCÍCIOS

Ex. 6: Construa a tabela verdade e simplifique as seguintes funções:

$$F(A) = A + \overline{A}$$

$$F(B) = B \cdot \overline{B}$$

Ex. 7: Construa a tabela verdade para as funções

$$F(X,Y,Z) = X \cdot (Y+Z)$$

$$F(X,Y,Z) = X \cdot (Y+Z)$$
 e $G(X,Y,Z) = X \cdot Y + X \cdot Z$,

compare-as e interprete os resultados.

Ex. 7: Construa a tabela verdade para as funções

$$F(X,Y,Z) = X \cdot (Y+Z)$$

$$F(X,Y,Z) = X \cdot (Y+Z)$$
 e $G(X,Y,Z) = X \cdot Y + X \cdot Z$,

compare-as e interprete os resultados.

X	Y	Z	Y + Z	$X \cdot (Y + Z)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Duas funções lógicas são equivalentes se suas tabelas verdade são iguais.

Ex. 7: Construa a tabela verdade para as funções

$$F(X,Y,Z) = X \cdot (Y+Z)$$
 e $G(X,Y,Z) = X \cdot Y + X \cdot Z$,

$$G(X,Y,Z) = X \cdot Y + X \cdot Z_{A}$$

compare-as e interprete os resultados.

X	Y	Z	Y + Z	$X\cdot (Y+Z)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

X	Y	Z	X·Y	$X \cdot Z$	$X \cdot Y + X \cdot Z$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Pela tabela, nota-se que

$$F(X,Y,Z) = G(X,Y,Z)$$

$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$

Acabamos de demonstrar que a conjunção é distributiva!

REGRAS DA ÁLGEBRA BOOLEANA

REGRAS BÁSICAS DA ÁLGEBRA BOOLEANA

Usando a álgebra booleana é possível simplificar expressões

Todas as regras básicas da álgebra booleana podem ser demonstradas construindo-se as duas tabelas verdade das expressões em ambos os lados das equivalências.

Considere X, Y, Z variáveis booleanas.

REGRAS BÁSICAS DA ÁLGEBRA BOOLEANA

	Propriedade	OU	E
P1	Identidade	X + 1 =	$X \cdot 0 =$
P2	Elemento Neutro	X + 0 =	$X \cdot 1 =$
Р3	Idempotência	X + X =	$X \cdot X =$
P4	Involução	$\overline{\overline{X}} =$	$\overline{\overline{X}} =$
P5	Complemento	$X + \overline{X} =$	$X \cdot \overline{X} =$

REGRAS BÁSICAS DA ÁLGEBRA BOOLEANA

Propriedade OU E

P6	Comutatividade	X + Y =	$X \cdot Y =$
P7	Associatividade	(X+Y)+Z=	$(X \cdot Y) \cdot Z =$
Р8	Distributividade	$X + (Y \cdot Z) =$	$X \cdot (Y + Z) =$

REGRAS BÁSICAS DA ÁLGEBRA BOOLEANA

	KEUKAS	DASICAS DA ALGEDI	A DUULEANA
	Propriedade	OU	E
P1	Identidade	X + 1 = 1	$X \cdot 0 = 0$
P2	Elemento Neutro	X + 0 = X	$X \cdot 1 = X$
Р3	Idempotência	X + X = X	$X \cdot X = X$
P4	Involução	$\overline{\overline{X}} = X$	$\overline{\overline{X}} = X$
P5	Complemento	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$

X + Y = Y + X

(X+Y)+Z=X+(Y+Z)

 $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

 $X \cdot (X + Z) = X$

 $(X \cdot Y) + (X \cdot \overline{Y}) = X$

 $(X \cdot Y) + (\overline{X} \cdot Z) + (Y \cdot Z)$

 $= (X \cdot Y) + (\overline{X} \cdot Z)$

 $X \cdot Y = Y \cdot X$

 $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

 $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$

 $X + (X \cdot Y) = X$

 $(X+Y)\cdot \left(X+\overline{Y}\right)=X$

 $(X+Y)\cdot (\overline{X}+Z)\cdot (Y+Z)$

CIRCUITOS DIGITAIS

50

 $= (X + Y) \cdot (\overline{X} + Z)$

P6

P7

P8

P9

P10

P11

Comutatividade

Associatividade

Distributividade

Cobertura

Consenso

Combinação

Lei de Morgan

MAIS PROPRIEDADES

Lei De Morgan:

$$\frac{\overline{(X+Y)} = \overline{X} \cdot \overline{Y}}{\overline{(X\cdot Y)} = \overline{X} + \overline{Y}}$$

As Leis De Morgan são muito importantes para simplificar expressões envolvendo negações.

MAIS PROPRIEDADES

Lei De Morgan:

$$\frac{\overline{(X+Y)} = \overline{X} \cdot \overline{Y}}{(X \cdot Y)} = \overline{X} + \overline{Y}$$

As Leis De Morgan são muito importantes para simplificar expressões envolvendo negações.

Augustus De Morgan (Madura, Índia, 27/06/1806 - Londres, 18/03/1871) foi um matemático e lógico britânico. Formulou as Leis de De Morgan e foi o primeiro a introduzir o termo e tornar rigorosa a ideia da indução matemática.

https://pt.wikipedia.org/wiki/Augustus_De_Morgan

Ex. 8: Usando as propriedades algébricas e indução, demonstre que:

$$X + \overline{X} \cdot Y = X + Y$$

Ex. 8: Usando as propriedades algébricas e indução, demonstre que:

$$X + \overline{X} \cdot Y = X + Y$$

$$X + \overline{X} \cdot Y = X + \left(\overline{X} \cdot Y\right)$$

$$X + (\overline{X} \cdot Y) = (X + \overline{X}) \cdot (X + Y)$$

$$(X + \overline{X}) \cdot (X + Y) = (1) \cdot (X + Y)$$

$$(1) \cdot (X + Y) = (X + Y)$$

DISTRIBUTIVA

COMPLEMENTO

ELEMENTO NEUTRO

Ex. 9: Usando as propriedades algébricas e indução, demonstre que:

$$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C = \overline{B} \overline{C} + A \overline{B} C$$

Atenção:

$$\overline{A} \overline{B} \overline{C} \neq \overline{ABC}$$

Ex. 10: Usando indução, demonstre que:

$$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C = \overline{B} \overline{C} + A \overline{B}$$

PARA MALHAR OS NEURÔNIOS

Simplifique as seguintes equações booleanas usando os teoremas/propriedades. Verifique a corretude usando tabela verdade.

$$Y = AC + \overline{A} \, \overline{B}C$$

$$Y = \overline{A} \, \overline{B} + \overline{A} B \overline{C} + (\overline{A + \overline{C}})$$

$$Y = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + A \overline{B} \, \overline{C} + A \overline{B} C \overline{D} + A B D + \overline{A} \, \overline{B} C \overline{D} + B \overline{C} D + \overline{A}$$

$$Y = \overline{A}BC + \overline{A}B\overline{C}$$

$$Y = \overline{ABC} + A\overline{B}$$

$$Y = ABC\overline{D} + A\overline{BCD} + (\overline{A+B+C+D})$$