京大理特数学

1962

			50/12			
1			15	国2	総	
回	99. 多数	4	С	B	С	,0 ,0
凹	夠変数		В	A	В	
回	図形	*	A	Þ	Þ	
[4]	外被 (関数)	*	C	C	С	
[5]	的变数		В	В	B	
[6]	的数		β	A	В	

[解] 座標平面で、A(0.0) B(b.0) C(c.0) (a70, b70, C<0) として良い。PQの中点の中セトで考える。まず、P.O.が、AC, BC上を飲い時

P(ct, all+1) Q(S.O) (0≤t≤1, C≤S≤b) とおける。PQの中点 R(X-Y) とすると

$$\begin{pmatrix} \ddot{\lambda} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} ct \\ \alpha(1-1) \end{pmatrix} + \frac{1}{2} \begin{pmatrix} S \\ 0 \end{pmatrix}$$

$$=\frac{1}{2} \pm \begin{pmatrix} c \\ -\alpha \end{pmatrix} + \frac{1}{2} \stackrel{\circ}{S} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 \\ \alpha \end{pmatrix}$$

たから Rottetは右図を手稿部のおである。(境界は).P.Q.th.

11° AC, AB上の時

12° AB, BCINE

も、対称性からRotetは以下のはいする。(境界与た)

lytまとめて、AB.BC、CAの中点をは、B,かとして、Ly下のすろい方る。

[解2] (解10最後の図を肌は3)

Adt, A BPa, A PCか (正Bt, ta, dPEntY)の用すび内部をTi

I Bt. td. dB

₹ T:

L & Btの内部

7 T

とする。Mが各々の領域をかく時の線伽本数をしられる。まずTarmで

AM EBC, BMEAC, CMEABO交流下各文

A, B', C'Eta, PEANS, QEA'MS.反時计例に

Patr Mt高まらにろごかす.(PはA→c'→B→A',

QIJ A' - C -> B' -> A)

[MA|-|MA'[70, |Mc|-|Mc|<0 奶. Pが A→ C'とうご時、

IMPI-IMQI

けしいかれた値をいたから正→質と変化なので、|MP|-|Ma|=0かる(P,Q)の組が少なくともし、存在する、いかな相が2つ以上配と何定すると、これらを(P,Q)(P,Q)として、の4点は平行回は形なカナガ、ABをBCが予備。あて|MP|-|Ma|=0かる(P,Q)が下やり存在する。同様にPがC一角、B→A'と新く時にもしってっ、計るつお。

同様に石のとまけるっ、木の時はりあるので、「解17のするに打る。

[\widehat{M}] (1) (\widehat{T} 7) \Leftrightarrow \widehat{K} (\widehat{X} 4 \widehat{Y} - \widehat{L} 9) + (\widehat{X} 4 \widehat{Y} - αX)=0 \widehat{E} \widehat{D} 5, \widehat{D} 7 \widehat{D} 7 \widehat{D} 8.

(b) \$NM(X.Y) E\$32

Q\$0013 X \$ 0 7.

$$\frac{X}{\lambda} = \frac{a}{p}k \qquad \forall k = \frac{a}{a}\frac{X}{\lambda} \quad (\therefore p \neq 0)$$

だがら、付えして

$$\lambda = \frac{\Omega}{2(\frac{\alpha Y}{b X} + 1)} = \frac{\alpha b X}{2(\alpha Y + b X)}$$

X=0 trb

$$2(\alpha'' + b' \chi) = \alpha b$$
 $(\chi \neq 0)$

7). 齐约7

(リカラ、これが)定点 ABとして、ABの季直2物でなる

OKTET

$$y = -\frac{b}{a} \left(\chi - \frac{ab^{2}}{2(a^{2}b^{2})} \right) + \frac{a^{2}b}{2(a^{2}b^{2})}$$

$$y = -\frac{b}{a} \chi + \frac{b(a^{2}b^{2})}{2(a^{2}b^{2})}$$

第 3 問

「大沙」、菌源 SR12 Pon位置におす、定点CE面3 国

SREABO文意CYTIC.POOLITER \$77.以下のZ直YON4かかがありうる

2° 1 旅的多

「*の時. PRとQSの交点 Dとすると、内接回角形の対角の和がたて あることから角度が図のようにおけ、(:: A8//Qs)

△ PAB O A CRB

2°n時、同じくDをいると円周角の定理からLOPR=LQSRで、あることかう角度が図のおれまり(: AB//QS)

△PAB ∞ △ CRB

以上P. 2° から、いずい場合も APAB ~ ACRBであり、

PB=DL, BR=YETKE

$$\beta C = \frac{AB}{AB}$$

で弱.一方. 道線BC と阿兹卡汗以 方人知定理から

19

「所」 方向= 2(2-0)しる) - かけないに対し、コミロで学に 方の2でをかる「アル」とまかだけれるコーローで

がら= -301°+2(Q+b-p)スーのより、この でで、こつの理像の所はスニッ、Q、b とスニの、量(アッ)たかちかっていたのようになるしたかで、こつかスニので 注意することが必要で、

x		0		3(01)-1	
fr	-	O	+	0	-
f	1	U	7		1

D C < 2(a+b) n时. (

C ≤ 元(C+16-P)と方ろなり(アッ)がとれて、この時 チのカフレンのでいなりをそろから、歌葉のおちりなか存存する。

- (atb-p)くくからfm)は、11=0×17入=CでMれをとる。

$$f(c) = -c(c-a)(c-b)-pc^{2}+abc$$

$$= c\left[-(c-a)(c-b)-pc+ab\right]$$

$$= c^{2}(-c+(atb-p))$$

1-75

1° (くなけるの目ますで)かられて。 題意のようなり、り、かが在する

2° CZathang foxxxx殖

一方。 a+b-p≤0と方3 t3 pを4.たとき1 0≤21でfの口単的成化. かっ f(0)=0から、これは不道、作て、フタエロ C<0thn時。(P.2)付有右右 C20thn時 1 1711

/9

[M] (1)
$$f(x) = \frac{1}{2} \cot x + \cot x + \sin x$$

= $\frac{1}{2} \cot x + \cot + \cot (t = \frac{1}{2}x) = g(t)$

2732

gitl = 12a+cot-snt たからでの前後でgitln符号が変化なななた たの存在部に右回から

-12< 12a< 12

(11)
5(17)	50-71
15(1-1)	150-71
15(1-1)	150-71
15(1-1)	150-71
15(1-1)	150-71
15(1-1)	150-71
15(1-1)	150-71
15(1-1)	150-71
15(1-1)	150-71
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-1)	15(1-1)
15(1-	

がけか河朝2大の河朝門へあてあるとから、05たく2たでらいかの符号がたの前後で正から負に力るける方はかあて、 た=た+2NT (NEZ)かかいては、9はりは狂大に力る、 作品で、手型大と力る点の座標(XY)とするとも三下以から

[解] Y=4-x2 Lのス=t ての接線(1) (0<t<2)

$$0 = T^2 - 20t + 4$$

 $t = 0 - \left[\frac{0^2 + 4}{2} \right] (1 + 2, 0.72)$

てあるこれでもとおくて、右回から

本的不動情S17

$$= \int_{t_{-}}^{2} \left(f(x) - (4-x^{2}) dx + \frac{1}{2} (6-2)^{2} \cdot 2 f_{0} \right)$$

$$= \int_{t_0}^{2} (x-t_0)^2 dx + t_0 (\alpha-2)^2$$

$$=\frac{1}{3}(-8^2+AB)^3+(0-AB)B^4$$

$$= \frac{1}{3} B^{3} \left(A^{3} - 3A^{2}B + 3AB^{2} - B^{3} \right) + CB^{4} - AB^{5}$$

$$= \frac{1}{3} \beta^{3} (A^{9} - B^{3}) - A^{2} B^{4} + \alpha B^{4}$$

$$=\frac{1}{3}(0^{2}-4)^{\frac{3}{2}}-\frac{1}{3}(0+4)(0-2)^{2}$$

图本的大爱松夫. 他的意思和

$$= \frac{1}{2} (\alpha - t_0)^2 2 t_0 - \int_{t_0}^{2} (4 - x^2) dx$$

$$= \frac{1}{3} \left(\sqrt{3^2 + 4} \right)^3 - \frac{16}{3} + 4 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$$

$$= \int_0^1 \left(4 - \frac{1}{3} \int_0^2 + 0^4 - 4 \right) - \frac{16}{3}$$

$$=\frac{1}{3}\left[\alpha\left(\alpha^{2}+4\right)-2\alpha\left(\alpha^{2}+4\right)+\left(\alpha^{2}+4\right)^{\frac{3}{2}}\right]-\frac{16}{3}$$

$$= \frac{1}{3} \left(\zeta^{3} - 4 \right)^{\frac{3}{2}} - \frac{1}{3} \left(0 + 4 \right) \left(0 - 2 \right)^{2}$$