COMPARISON CNN

June 21, 2025

```
[1]: import tensorflow as tf
     from tensorflow.keras.utils import to_categorical
     import os
     from PIL import Image, UnidentifiedImageError
     import shutil
     # Configuration
     IMG SIZE = (28, 28)
     BATCH_SIZE = 32
     VALIDATION_SPLIT = 0.4
     SEED = 42
     ROOT_PATH = ''
     DATASET_PATH = os.path.join(ROOT_PATH,"raw_data")
     CORRUPT_PATH = os.path.join(ROOT_PATH,"corrupt_images")
     os.makedirs(CORRUPT_PATH, exist_ok=True)
     for root, dirs, files in os.walk(DATASET_PATH):
         for file in files:
             ext = os.path.splitext(file)[1].lower()
             if ext in [".jpg", ".jpeg", ".png", ".bmp", ".gif"]:
                 path = os.path.join(root, file)
                 try:
                     with Image.open(path) as img:
                         img.verify() # Check integrity
                 except (UnidentifiedImageError, OSError, IOError) as e:
                     # Move the corrupt image
                     print(f"Corrupt image found: {path} - moving to {CORRUPT_PATH}")
                     dest_path = os.path.join(CORRUPT_PATH, os.path.relpath(path,_
      →DATASET_PATH))
                     os.makedirs(os.path.dirname(dest_path), exist_ok=True)
                     shutil.move(path, dest_path)
     LANDMARK_DIR = os.path.join(ROOT_PATH,"data")
     RAW IMAGE DIR = os.path.join(ROOT PATH, "raw data")
     FILTERED_IMAGE_DIR = os.path.join(ROOT_PATH,"filtered_raw_data")
     DATASET PATH = FILTERED IMAGE DIR
     # Supported image extensions
```

```
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp']
# Create filtered output structure
os.makedirs(FILTERED_IMAGE_DIR, exist_ok=True)
for class_name in os.listdir(LANDMARK_DIR):
   if class name == 'debug':
        continue
   landmark class dir = os.path.join(LANDMARK DIR, class name)
   raw_class_dir = os.path.join(RAW_IMAGE_DIR, class_name)
   filtered class dir = os.path.join(FILTERED IMAGE DIR, class name)
   os.makedirs(filtered_class_dir, exist_ok=True)
   for file in os.listdir(landmark_class_dir):
        if not file.endswith("_landmarks.json"):
            continue
        # Get base filename without "_landmarks.json"
       base_name = file.replace("_landmarks.json", "")
        # Look for corresponding image in raw directory
       for ext in IMAGE EXTENSIONS:
            image_file = os.path.join(raw_class_dir, base_name + ext)
            if os.path.exists(image file):
                # Copy to filtered folder
                shutil.copy(image_file, os.path.join(filtered_class_dir, os.
 →path.basename(image_file)))
                break
# Load training dataset with validation split
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET PATH,
   validation_split=VALIDATION_SPLIT,
   subset="training",
   seed=SEED,
   color_mode="grayscale",
    image_size=IMG_SIZE,
   batch_size=BATCH_SIZE
num_classes = len(train_ds.class_names)
label_map = train_ds.class_names
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET_PATH,
   validation_split=VALIDATION_SPLIT,
    subset="validation",
   seed=SEED,
```

```
color_mode="grayscale",
         image_size=IMG_SIZE,
         batch_size=BATCH_SIZE
     test_ds = val_ds.shard(2,0)
     val ds = val ds.shard(2,1)
     # Normalize pixel values to [0, 1]
     normalization layer = tf.keras.layers.Rescaling(1./255)
     train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
     val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
     test_ds = test_ds.map(lambda x, y: (normalization_layer(x), y))
     # Cache and prefetch for performance
     AUTOTUNE = tf.data.AUTOTUNE
     train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
     val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
     test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
    Found 3413 files belonging to 51 classes.
    Using 2048 files for training.
    Found 3413 files belonging to 51 classes.
    Using 1365 files for validation.
[2]: from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, U
      →BatchNormalization, Input
     from tensorflow.keras.layers import Flatten, Dense, GlobalAveragePooling2D
     from tensorflow.keras.optimizers import Adam
     model = Sequential([
         Input((28, 28, 1)),
         Conv2D(16, (3, 3), activation='relu'),
         BatchNormalization(),
         MaxPooling2D(pool_size=(2, 2)),
         Dropout(0.1),
         Conv2D(32, (3, 3), activation='relu'),
         BatchNormalization(),
         MaxPooling2D(pool_size=(2, 2)),
         Dropout(0.2),
         GlobalAveragePooling2D(),
         Flatten(),
         Dense(128, activation='relu'),
         Dropout(0.2),
         Dense(num_classes, activation='softmax')
```

```
])
     model.compile(optimizer=Adam(1e-3),
                   loss='sparse_categorical_crossentropy',
                   metrics=['accuracy'])
[3]: history = model.fit(train_ds, validation_data=val_ds, epochs=50)
    Epoch 1/50
    64/64
                      12s 66ms/step -
    accuracy: 0.0291 - loss: 3.9148 - val_accuracy: 0.0283 - val_loss: 3.8983
    Epoch 2/50
    64/64
                      0s 7ms/step -
    accuracy: 0.0739 - loss: 3.4691 - val_accuracy: 0.0312 - val_loss: 3.9690
    Epoch 3/50
    64/64
                      Os 7ms/step -
    accuracy: 0.0885 - loss: 3.2448 - val_accuracy: 0.0342 - val_loss: 4.1611
    Epoch 4/50
    64/64
                      Os 7ms/step -
    accuracy: 0.1019 - loss: 3.1518 - val_accuracy: 0.0327 - val_loss: 4.2911
    Epoch 5/50
                      Os 7ms/step -
    64/64
    accuracy: 0.1232 - loss: 2.9983 - val_accuracy: 0.0283 - val_loss: 4.3891
    Epoch 6/50
    64/64
                      0s 7ms/step -
    accuracy: 0.1406 - loss: 2.9476 - val_accuracy: 0.0298 - val_loss: 4.3673
    Epoch 7/50
    64/64
                      0s 7ms/step -
    accuracy: 0.1614 - loss: 2.8477 - val_accuracy: 0.0268 - val_loss: 3.9981
    Epoch 8/50
    64/64
                      Os 7ms/step -
    accuracy: 0.1785 - loss: 2.7901 - val_accuracy: 0.0238 - val_loss: 3.9778
    Epoch 9/50
    64/64
                      Os 8ms/step -
    accuracy: 0.2282 - loss: 2.6664 - val_accuracy: 0.1533 - val_loss: 3.1297
    Epoch 10/50
                      Os 7ms/step -
    accuracy: 0.2433 - loss: 2.6476 - val_accuracy: 0.1652 - val_loss: 3.0007
    Epoch 11/50
                      Os 7ms/step -
    accuracy: 0.2553 - loss: 2.5648 - val_accuracy: 0.2679 - val_loss: 2.7729
    Epoch 12/50
    64/64
                      Os 7ms/step -
    accuracy: 0.2484 - loss: 2.5006 - val_accuracy: 0.1786 - val_loss: 2.8793
    Epoch 13/50
    64/64
                      Os 8ms/step -
    accuracy: 0.2863 - loss: 2.4378 - val_accuracy: 0.2530 - val_loss: 2.6473
    Epoch 14/50
```

```
64/64
                 0s 7ms/step -
accuracy: 0.3062 - loss: 2.3813 - val_accuracy: 0.1458 - val_loss: 3.0356
Epoch 15/50
64/64
                 Os 7ms/step -
accuracy: 0.3170 - loss: 2.3353 - val accuracy: 0.2485 - val loss: 2.5999
Epoch 16/50
64/64
                 Os 7ms/step -
accuracy: 0.3181 - loss: 2.3354 - val_accuracy: 0.2857 - val_loss: 2.4830
Epoch 17/50
64/64
                 Os 7ms/step -
accuracy: 0.3285 - loss: 2.2751 - val_accuracy: 0.3006 - val_loss: 2.4481
Epoch 18/50
64/64
                 Os 7ms/step -
accuracy: 0.3242 - loss: 2.2067 - val_accuracy: 0.3333 - val_loss: 2.3466
Epoch 19/50
64/64
                 0s 7ms/step -
accuracy: 0.3539 - loss: 2.1365 - val_accuracy: 0.3170 - val_loss: 2.4240
Epoch 20/50
64/64
                 0s 7ms/step -
accuracy: 0.3646 - loss: 2.1836 - val_accuracy: 0.2991 - val_loss: 2.3726
Epoch 21/50
64/64
                 Os 7ms/step -
accuracy: 0.3792 - loss: 2.0903 - val_accuracy: 0.2812 - val_loss: 2.4256
Epoch 22/50
64/64
                 Os 7ms/step -
accuracy: 0.4028 - loss: 2.0472 - val accuracy: 0.3646 - val loss: 2.1623
Epoch 23/50
64/64
                 Os 7ms/step -
accuracy: 0.3948 - loss: 2.0149 - val_accuracy: 0.3393 - val_loss: 2.2211
Epoch 24/50
64/64
                 0s 7ms/step -
accuracy: 0.4132 - loss: 2.0069 - val_accuracy: 0.3512 - val_loss: 2.2401
Epoch 25/50
64/64
                 0s 7ms/step -
accuracy: 0.3904 - loss: 2.0454 - val accuracy: 0.3304 - val loss: 2.2851
Epoch 26/50
64/64
                 Os 7ms/step -
accuracy: 0.4307 - loss: 1.9510 - val_accuracy: 0.3661 - val_loss: 2.2174
Epoch 27/50
                 0s 7ms/step -
64/64
accuracy: 0.4220 - loss: 1.9560 - val_accuracy: 0.3705 - val_loss: 2.1760
Epoch 28/50
64/64
                 1s 8ms/step -
accuracy: 0.4523 - loss: 1.8791 - val_accuracy: 0.3482 - val_loss: 2.2106
Epoch 29/50
64/64
                 0s 7ms/step -
accuracy: 0.4453 - loss: 1.8819 - val_accuracy: 0.3452 - val_loss: 2.1968
Epoch 30/50
```

```
64/64
                 Os 7ms/step -
accuracy: 0.4520 - loss: 1.8477 - val_accuracy: 0.3765 - val_loss: 2.1629
Epoch 31/50
64/64
                 Os 7ms/step -
accuracy: 0.4347 - loss: 1.8650 - val accuracy: 0.3854 - val loss: 2.0757
Epoch 32/50
64/64
                 Os 7ms/step -
accuracy: 0.4503 - loss: 1.8200 - val_accuracy: 0.3810 - val_loss: 2.1927
Epoch 33/50
64/64
                 Os 7ms/step -
accuracy: 0.4655 - loss: 1.7853 - val accuracy: 0.3125 - val loss: 2.3682
Epoch 34/50
64/64
                 Os 7ms/step -
accuracy: 0.4765 - loss: 1.7456 - val_accuracy: 0.3929 - val_loss: 2.0664
Epoch 35/50
64/64
                 Os 7ms/step -
accuracy: 0.4916 - loss: 1.7083 - val_accuracy: 0.3497 - val_loss: 2.1840
Epoch 36/50
64/64
                 0s 7ms/step -
accuracy: 0.4986 - loss: 1.7002 - val_accuracy: 0.3676 - val_loss: 2.2507
Epoch 37/50
64/64
                 Os 7ms/step -
accuracy: 0.4835 - loss: 1.7310 - val_accuracy: 0.3914 - val_loss: 2.1696
Epoch 38/50
64/64
                 Os 7ms/step -
accuracy: 0.4799 - loss: 1.7522 - val accuracy: 0.4048 - val loss: 2.0658
Epoch 39/50
64/64
                 Os 7ms/step -
accuracy: 0.5071 - loss: 1.6724 - val_accuracy: 0.4062 - val_loss: 2.0165
Epoch 40/50
                 Os 7ms/step -
64/64
accuracy: 0.5237 - loss: 1.6141 - val_accuracy: 0.3988 - val_loss: 2.0732
Epoch 41/50
64/64
                 Os 8ms/step -
accuracy: 0.5276 - loss: 1.5672 - val accuracy: 0.3170 - val loss: 2.3418
Epoch 42/50
64/64
                 Os 7ms/step -
accuracy: 0.4836 - loss: 1.6447 - val_accuracy: 0.3929 - val_loss: 2.0333
Epoch 43/50
                 1s 8ms/step -
64/64
accuracy: 0.5172 - loss: 1.6043 - val_accuracy: 0.4003 - val_loss: 2.0836
Epoch 44/50
64/64
                 Os 7ms/step -
accuracy: 0.5183 - loss: 1.6361 - val_accuracy: 0.3690 - val_loss: 2.1583
Epoch 45/50
                 Os 7ms/step -
64/64
accuracy: 0.4937 - loss: 1.6420 - val_accuracy: 0.4241 - val_loss: 2.0176
Epoch 46/50
```

```
64/64
                      1s 8ms/step -
    accuracy: 0.5389 - loss: 1.5580 - val_accuracy: 0.4048 - val_loss: 2.1232
    Epoch 47/50
    64/64
                      0s 7ms/step -
    accuracy: 0.5182 - loss: 1.5634 - val accuracy: 0.3750 - val loss: 2.2071
    Epoch 48/50
    64/64
                      0s 7ms/step -
    accuracy: 0.5255 - loss: 1.5538 - val_accuracy: 0.4211 - val_loss: 1.9964
    Epoch 49/50
    64/64
                      0s 7ms/step -
    accuracy: 0.5236 - loss: 1.5418 - val accuracy: 0.3884 - val loss: 2.1845
    Epoch 50/50
    64/64
                      Os 8ms/step -
    accuracy: 0.5273 - loss: 1.5547 - val_accuracy: 0.4182 - val_loss: 2.0673
[4]: test_loss, test_accuracy = model.evaluate(test_ds)
     print(f"Test Accuracy: {test_accuracy:.4f}")
     print(f"Test Loss: {test_loss:.4f}")
    22/22
                      3s 111ms/step -
    accuracy: 0.4134 - loss: 2.1195
    Test Accuracy: 0.4185
    Test Loss: 2.1381
[5]: import matplotlib.pyplot as plt
     from sklearn.metrics import classification_report, confusion_matrix
     import seaborn as sns
     import numpy as np
[6]: plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
     plt.plot(history.history['accuracy'])
     plt.plot(history.history['val_accuracy'])
     plt.title('Model accuracy')
     plt.ylabel('Accuracy')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     # Plot training & validation loss values
     plt.subplot(1, 2, 2)
     plt.plot(history.history['loss'])
     plt.plot(history.history['val_loss'])
     plt.title('Model loss')
     plt.ylabel('Loss')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     plt.show()
```



```
[7]: y_true, y_pred = [], []
     target_names = [label_map[i] for i in range(len(label_map))]
     for X_batch, y_batch in test_ds:
         y_true.append(y_batch.numpy())
         batch pred = model.predict(X batch, verbose=0)
         y_pred.append(np.argmax(batch_pred, axis=1))
     y_true = np.concatenate(y_true)
     y_pred = np.concatenate(y_pred)
     print(classification_report(
         y_true, y_pred,
         digits=3,
         target_names=target_names
     ))
     cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
     labels = [label_map[i] for i in range(len(label_map))]
     plt.figure(figsize=(10, 8))
     sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
                 xticklabels=labels, yticklabels=labels)
     plt.xlabel("Predicted Label")
     plt.ylabel("True Label")
     plt.title("Confusion Matrix - Test Set")
     plt.show()
```

c:\Users\chris\.conda\envs\ASLR\Lib\sitepackages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

A 0.000 0.000 0.00	0 7
B 0.000 0.000 0.00	0 6
C 0.143 0.100 0.1	8 20
D 0.143 0.100 0.11	8 10
E 0.113 0.800 0.19	8 10
F 0.000 0.000 0.00	0 9
G 0.000 0.000 0.00	0 11
Н 0.000 0.000 0.00	0 10
I 0.167 0.100 0.12	5 20
J 0.222 0.182 0.20	0 22
K 0.167 0.100 0.12	5 10
L 0.000 0.000 0.00	0 17
M 0.000 0.000 0.00	0 6
N 0.125 0.111 0.13	8 9
0 0.059 0.053 0.08	6 19
P 0.000 0.000 0.00	0 9
Q 0.167 0.091 0.13	8 11
R 0.087 0.087 0.08	7 23
S 0.186 0.533 0.27	
T 0.071 0.100 0.08	
U 0.000 0.000 0.00	0 19
V 0.235 0.190 0.23	1 21
W 0.200 0.071 0.10	
X 0.200 0.167 0.18	
Y 0.000 0.000 0.00	
Z 0.321 0.409 0.36	
baca 0.167 0.091 0.13	
bantu 0.462 0.600 0.52	
bapak 0.667 0.923 0.77	
buangairkecil 1.000 0.889 0.94	
buat 1.000 0.300 0.46	
halo 0.889 0.500 0.64	
ibu 1.000 0.167 0.28	
kamu 0.455 0.652 0.53	6 23

maaf	0.773	0.944	0.850	18
makan	0.857	0.400	0.545	15
mau	0.833	0.833	0.833	12
nama	0.500	0.778	0.609	18
pagi	0.706	0.800	0.750	15
paham	0.783	0.857	0.818	21
sakit	0.000	0.000	0.000	2
sama-sama	0.567	0.708	0.630	24
saya	0.500	0.286	0.364	7
selamat	0.885	0.767	0.821	30
siapa	0.750	0.562	0.643	16
tanya	0.929	0.867	0.897	15
tempat	0.833	1.000	0.909	5
terima-kasih	0.545	0.818	0.655	22
terlambat	0.643	0.750	0.692	12
tidak	0.571	0.444	0.500	9
tolong	0.800	0.923	0.857	13
accuracy			0.418	693
macro avg	0.387	0.374	0.355	693
weighted avg	0.415	0.418	0.396	693

