- Nota: a) V₁ é uma válvula de reactância, isto é, uma válvula que, devido às suas características especiais, faz aparecer, neste caso, entre os pontos A e B uma capacidade C₁ = Smb que fica em paralelo com C₂.

 gm é a transcondutância de V₁.
 - b) Eum oscilador Hartley
 - c) A onda de radiofrequência modulada é determinada pelo tanque L_2 é $(C_1 + C_2)$.
 - d) A onda modulada obtém-se nos pontos 3 e 4;
 nos pontos 1 e 2 aplica-se o sinal de audifrequência (a.f.).
 0 sinal de a.f. faz variar gm; gm faz variar C1 e C1 faz variar a frequência do oscilador Hartley, obtendo-se assim uma onda de frequência variável (modulação de frequência).

3.5.2.8.2 No esquema aqui representado que se utiliza para modular em frequência uma onda de radifrequência

circuitos associados

$\mathbf{a})$	a audifrequência aplica-se aos terminais 3 e 4	
b)	a radifrequência modulada obtém-se nos terminais 1 e 2	
c)	a variação de frequência obtém-se pela variação da capacidade colector -emissor do transistor Q	Ø
á)	o oscilador é constituído pelo transistor \mathbf{Q}_2 e seus	_