

SUBJECT INDEX

A

- Acholeplasma axanthum*, 347
laidlawii, 347
Actin filaments, 59–61
Acylianiidies, 312
biological activity, 314–17
subclasses, 314
Aerobactin, 188
Agaricus bisporus
melanins, 419
Agrobacterium tumefaciens,
150–51, 153
Agrobactin, 207
Alanine, 121
Alcaligenes sp.
strain MFA1, 194
Alfalfa mosaic virus, 289
conserved proteins functions,
299–300
evolutionary group, 301–3
homology between plant
viruses
conserved sequences in
nonstructural proteins,
295–96
Sindbis virus
genomic RNA, 297
protein homology, 298
Alteichin, 435
Alternaria
alternata, 167
alternata f. sp. *lycopersici*,
168
eichhorniae, 435
solani, 324
1-Aminocyclopropane-1-
carboxylic acid synthase,
367
 α -Aminoxyacetic acid, 324–25
Ammonia, 97
Anthroquinones, 427
Appressoria, 504
melanin
deposition, 414
effect, 435
host penetration, 433–34
Arabinose, 123–25 132
Arthrobotrys robusta, 455
Ascochyta pisi, 394
Aspergillus
funigatus
melanin degradation, 440
melanin utilization, 432
nidulans, 432, 436–37
benomyl effect, 43

- benzimidazole fungicides
and spindle formation,
46
benzimidazole fungicides
and tubulin binding,
44, 48
genetic analysis of mutants,
53
mutants, 47–49, 52
sensitivity to benzimidazole
fungicides, 45
tubulin genes study, 53–55
niger
melanin conjugation, 428
Aster-yellow agent, 348
survival, 346
Avenalamain I, 236–37
Avermectins, 474
Avocado sun blotch
control by cross protection,
76
Azetidine-carboxylic acid, 177

B

- Bacillus thuringiensis*, 474
Bacterial penetration in plants,
141–57
conclusions, 152
introduction, 141
penetration through injuries
and wounds
broken trichomes, 148
emergence of lateral roots,
149
penetration through intact sur-
faces, 151–52
penetration through natural
openings
avenue of entry, 143
hydathodes, 144–45
lenticels, 147–48
nectarholes, 145–47
stomata, 141–44
Baker, Kenneth F., 4
Banana industry
disease management strategies
and survival, 83–91
Bardin, Roy E., 27
Barley stripe mosaic virus, 363
de Bary, A., 35
Bdellovibrio, 225
Bean golden mosaic virus, 363
Benalaxyl, 315
Benomyl, 43, 52–53
resistant mutants, 49–50
structure, 46
- Benzimidazole fungicides, 43–
65
chemical structures, 46
conclusions, 61–62
fungal cell biology and tubu-
lin genetics tools, 52–55
Aspergillus nidulans, 52–
55
Physarum polycephalum,
57–59
Saccharomyces cerevisiae,
55–56
fungal cytoskeleton as fungi-
cide target, 59–61
introduction, 43
mode of action
binding to tubulin, 44–45
microtubule assembly in-
hibition in vitro, 44–
45
nuclear division inhibition,
43–44
selectivity, 47
resistance mechanism and re-
sistant strains properties
decreased binding affinity,
47
mutant sensitivity to phen-
ylcarbamates and di-
phenylamine, 50
pleiotrophic effects of
mutations to resist-
ance, 49
tubulin structure changes,
48
- Benzoquinones, 125
Bergapten, 251
Biflaviovin, 422
Biological control of nematodes,
453–89
conclusions, 483–84
inhibitory and stimulatory
metabolites, 473
actinomycetes producing in-
hibitors, 474
bacteria producing in-
hibitors, 474
fungi producing inhibitors,
474–78
harmful effect on embryo
development, 476
organisms with inhibitory
metabolites, 473–77
organisms with stimulatory
metabolites, 477
introduction, 453–55
definition, 453

- parasitic organisms
bacteria, 458-59
fungal parasites of eggs, 462-73
fungal parasites of sedentary females, 461-62
fungal parasites of vermiform nematodes, 460
fungi, 460-73
parasites of eggs, sedentary females, and vermiform nematodes, 473
viruses and rickettsia, 457-58
- predacious organisms
fungi, 455-56
nematodes, 456
other organisms, 456-57
- successful biocontrol agent attributes, 480-83
- Black Sigatoka disease, 85, 87, 89
- Bos, Ritzenma, 33
- Botrytis*
cinerea, 392, 394
laccase role in pathogenicity, 436
fabae, 392
- Bremia lactucae*, 316
- Brome mosaic virus, 289, 291, 358
conserved proteins functions, 299-300
evolutionary group, 301-3
homology to other viruses
conserved sequences in nonstructural proteins, 295-96
- Sindbis virus, 296-98
- Buller, A. H. R., 17-25
assistants, 21-22
lectures, 22
leisure, 22-23
retirement, 24
rust studies, 18-20
teaching, 21
- Bunschoten, Gerda, 35
- C
- Cacao swollen shoot control by cross protection, 75
- Calcium
phytoalexin synthesis, 246
- Callose, 367-68
- Capsidol, 325
- Carbazendiazim, 44, 51, 53
binding affinity to tubulin, 47-48
- effect
on microtubules, 46
on tubulin, 45
selectivity, 47
structure, 46
- Carnation mottle virus, 298, 300
- Casbene, 244, 253, 396
- Casbene synthase, 253, 256
- Catechol, 432, 437
- Catechol melanin, 419-21, 427, 430
biosynthesis, 420
- Catenaria auxiliaris*, 461
- Cauliflower mosaic virus, 78, 299
cross-protection, 370
hypersensitive reaction, 364
recombinant, 355-56
- Cellulose, 99, 108
- Central Bureau voor Schimmelcultures, 35, 37, 39
- Ceratocystis fimbriata*
phytoalexins, 252, 256
- Cercosporin, 168-69, 435
- Chaetomium globosum*, 245
- Chalcone isomerase, 249
- Chalcone synthase, 257
- Chamaecyparis lawsoniana*, 327
- Chlamydospore walls, 412
melanins, 414
- Chitinase, 239, 243, 432, 466
- Chlorogenic acid, 395
- Citrus tristeza
control by cross protection, 69-71
- Cladosporium fulvum*, 247
- Clostridium butyricum*, 474
- Clover-phylloidy agent, 349
- Cochliobolus maydis*, 392
- Colchicine, 44
effect on tubulin, 45
- Colletotrichum lindemuthianum*, 255, 392, 394, 433
- lagenarium*, 433, 439
host penetration, 434-35
- Concave gum of citrus, 77
- Condensation, 494
- Corn stunt spiroplasma, 341, 343
lipid metabolism, 343-44, 347
osmotic potential effect, 345
pH effect, 345
temperature relationships, 345
- Coryneform bacteria taxonomy, 115-40
characterization, 116, 118
cell-wall composition, 120-22
cellular proteins, 123
- DNA-base composition, 126-27
- DNA homology, 127-28
- DNA-rRNA hybridization, 128-29
- fatty acids, 124
- isoprenoid quinones, 125-26
- morphology and staining characteristics, 118-19
- mycolic acids, 123
- physiology, 119-20
- pigmentation, 119
polar lipids, 124-25
- classification, 130-34
- introduction, 115
- nomenclature, 116
synonyms, 117
- numerical taxonomy, 129-30
- summary, 134-35
- terminology, 115-16
- Coulson, J., 22, 24
- Coumarin, 249
- Cowpea chlorotic mosaic virus, 358
- Cowpea mosaic virus, 289, 291, 303, 362
concurrent protection, 372-73
conserved proteins functions, 299-300
divided genome advantage, 304
evolutionary relationship to picornaviruses, 301-2
genomic organization and translation strategy, 294
homology with picornaviruses
genome similarities, 292-93
nonstructural proteins, 293
hypersensitive reaction, 365-66
- operational immunity, 360-61
satellite RNA effect, 374
- Cowpea severe mosaic virus
concurrent protection, 372-73
operational immunity, 360
- Craigie, J. H., 19-20
- Cresorsellinic acid, 427
- Cross protection
see Virus disease control through cross protection
- Cryptococcus neoformans*, 438
- Cucumber mosaic virus, 289, 291, 355
cross protection, 371
evolutionary group, 301-3
homology to other viruses
conserved sequences in nonstructural proteins, 295-96
- Sindbis virus, 298
hypersensitive reaction, 365

- Cymoxanil, 312, 328
 biological activity, 313–14
 half-life in soil, 321
 structure, 313
- Cyprofuram, 315
- D**
- Dactyloctena oviparasitica*, 462
- Danish Government Institute of Seed Pathology for Developing Countries, 12–13, 15
- Desulfobivrio desulfuricans*, 474
- de Vries, Hugo, 33
- Diaminobutyric acid, 121, 133
- Diaminopimelic acid, 121, 123–25
- N*-(3,5-Dichlorophenyl)-carbamate, 50–51
- Digalacturonate, 390
- 1,8-Dihydroxynaphthalene melanin, 430, 433
 biosynthesis, 421–27
 mutants, 424
 oxidase, 425–26
 shunt products, 422, 425–26
 demonstration, 425
 function, 437
 host penetration, 433
 occurrence in fungi, 418, 425
 properties, 428
 shunt products and phytotoxicity, 435
 toxicity, 432
- Dihydroxyphenylalanine, 434, 437–38
- Dihydroxyphenylalanine melanin, 416–18, 438
 biosynthesis, 417
 degradation, 440
 properties, 428–29
- Diphenylamine, 51–52
- Diplodia natalensis*, 394
- Disease management strategies and banana industry survival, 83–91
 banana breeding strategies, 89–90
 cultivation systems, 84
 Fusarium wilt, 87–89
 introduction, 83–84
 Cavendish varieties, 83
 major diseases and disorders, 85
 diseases, 86
 disorders, 87
 strategies for the future, 90–91
- sustained high yields and low costs, 84–85
- Diterpenes biosynthesis, 253–54
- DNA
- coryneform bacteria
 - base composition, 126–27
 - homology, 127–28
 - rRNA hybridization, 128–29
- Dothiorella gregaria*, 394
- E**
- Endopolysaccharonase, 244–45
- Ergosterol, 60
- Erwinia*
- amylovora*, 145–46, 150
 - carotovora*, 189–90, 202, 244, 389, 391, 393, 398–99
 - cloning and characterization of pectic enzyme genes, 388
 - host defense, 395
 - pectate lyase, 396
 - pectic enzymes, 386
 - pectic enzyme genes, 387–88
 - carotovora* var. *atroseptica*, 147, 150, 395
 - chrysanthemi*, 147, 389
 - cloning and characterization of pectic enzyme genes, 386–88
 - pectate lyase isozymes, 386, 395
 - pectate lyase regulation, 389–91
 - pectate lyase role in pathogenesis, 398–99
 - pectic enzyme export, 393
 - phytoalexin elicitation, 397
 - chrysanthemi* sp. *di-effenbachiae*, 149, 151
 - rubrifaciens*, 400
- Erwinia* spp.
- pectic enzymes complexes, 384–86
- Erysiphe*
- graminis*
 - increased host resistance, 503–4
 - graminis* f. sp. *hordei*, 504, 506
 - epidemics and microclimate, 496–500
- Escherichia coli*, 400
- clones
- pectic enzyme export, 393
 - pectic enzyme expression, 384, 386–87, 390–91
- tissue maceration, 399
- Ethylene, 246, 367
- Evapotranspiration, 494
- Evolution
- see RNA viruses evolution
- F**
- FAO Model Certificate, 8
- FAO-Phytosanitary Certificate, 3
- Ferdinandsen, Carl, 2
- Flavescence doré of grapevine, 347
- Flaviolin, 422, 425, 435
- Flavobacterium balustinum*, 105, 107
- Fluorescent pseudomonads see Siderophore biochemistry and biocontrol role
- Fomes annosus*, 436
- Fosetyl-aluminum, 312, 316–17, 325–26
 biological activity, 319–21
 indirect mode of action, 324–25
 mixtures, 328
 movement in plants, 323
 resistance, 327–28, 331
 use in soil, 321
- Fungal cytoskeleton
- fungicide target, 59–61
- Fungal melanins, biosynthesis and functions, 411–51
 applications and needs
- disease control, 439–40
 - identification and classification, 438–39
 - other pigments and functions, 437–38
- biosynthesis, 416
- catechol melanin, 419–21
- cytology of synthesis, 412
- deposition in microsclerita, 413
 - extracellular melanin, 415
 - wall-bound melanin, 412, 414–15
- DHN melanin, 421–27
- mutants, 423–24
 - reductase and dehydratase enzymes, 424
- DOPA melanin, 416–18
- GDHB melanin, 419
- heterogeneous melanins, 427–28
- introduction, 411–12
- properties and functions
- cellular differentiation, 436–37
 - chemical and physical, 428–30

- pathogenicity and virulence, 433-36
 resistance to environmental stress, 430-31
 resistance to microbial stress, 431-33
- Fusarium*
culmorum, 324
oxysporum f. sp. *cepae*, 392
oxysporum f. sp. *conglutinans*, 194
oxysporum f. sp. *cucumerinum*, 194-95
oxysporum f. sp. *dianthi* biocontrol, 194
oxysporum f. sp. *lini* biocontrol, 191-94
oxysporum f. sp. *lycopersici*, 392
oxysporum f. sp. *medicaginis*, 164
sambucinum, 324
- Fusarium brown rot of Chinese yam control by composts, 94
- Fusarium wilt of bananas history, 87-88 known races of pathogen, 88 threat to banana industry, 87-89
- G**
- Gabrielson, R. L., 4
- Gaeumannomyces graminis*, 225
graminis var. *tritici*, 192
 biocontrol, 190, 192
 selective medium, 438
- Galactose, 123-25
- Geotrichum candidum*, 395
- Globodera pallida*, 463, 475, 477
 fungal metabolites effect, 479-81
 ultrastructure of egg cuticle, 469
rostochiensis, 477, 479-80
solanacearum, 472
- Glomerella cingulata*, 394
- β -Glucan
 phytoalexin elicitor, 241-46
 β -Glucanase, 239, 243, 432
 hepta- β -Glucosidase elicitor, 241, 243
- Glutamine, 121
- Glutaminyl-3,4-dihydroxybenzene melanin, 419
 absorbance peak, 429
 biosynthesis, 420
- Glutaminyl-4-hydroxybenzene, 439
- Glycobilin, 239-40, 245, 254-55, 324
 biosynthesis, 249-51
- Glycinol, 238, 250
- Glycosylhydrolases, 244
- Griseofulvin resistance, 50
- H**
- Hansen, Hans Nicholas, 11, 27-31
- Hansen, Stormly, 4-5
- Harrison, D. E., 4
- Hartig, Robert, 17
- Helminthosporium maydis* race T toxin, 166
- Heterodera*
avenae, 461, 472
cruciferae, 457
glycines, 473
schachtii, 461
- Hirsutella rhossiliensis*, 460
- Humic acid, 433
- Humidity relationship to microclimate, 493-94
- Hydathodes bacterial entry, 144-45
- Hypersensitive reaction pectic enzyme elicitation, 400 virus, 363-68
 characteristics, 363
 cytotoxicity, 367
 oxidative enzymes, 368
 pathogens-related proteins, 368
 strain specificity, 364
 virion accumulation reduction, 366
- Hypersensitivity, 238, 247
- I**
- Indole melanin, 427
- Insects sources of ancestral RNA viruses, 305-6
- Ipomeamarone, 252
- Iron see Siderophore biochemistry and biocontrol role
- Isoflavonoids biosynthesis, 249
- Isonicotinic acid hydrazide, 177
- Isopimpinellin, 251
- Isoprenoid quinones, 125-26
- Isopropyl-N-(3-chlorophenyl)carbamate, 51
- J**
- Jensen, Carlos, 2
- K**
- Kristensen, H. Rønde, 5
- L**
- Laccase, 415, 417, 428, 438
 melanin synthesis, 418, 426
 roles cellular differentiation, 436-37
 pathogenicity, 436
- Lagenidium giganteum*, 317
- Laser-induced fluorescence, 279
- Lenticels bacterial penetration, 147-48
- Leptosphaerula briosiana* laccase localization, 426
- Lettuce drop control by compost, 95
- Lignin, 99
- Lipids spiroplasma metabolism, 343
- Lipoxygenase, 367
- Lubimin, 253
- Lysine, 121
- M**
- Maackia, 249-50
- MacRae, R., 23
- Manczob, 314, 316, 327-29
- Medicarpin, 249
- Melanins see Fungal melanins, biosynthesis and functions
- Meloidogyne arenaria*, 472
hapla, 472
incognita, 172-73, 457-59, 462, 472, 474
 control, 470
 egg infection, 463-68
 fungal metabolites effect on eggs, 474-77
 ultrastructure of cuticle, 469
- Metalaxyl, 312, 316-17, 319, 321, 325
 half-life in soils, 322-23
 mixtures, 328-29
 mobility in soil, 322-23
 mode of action, 314-15
 phytoalexin increase, 324
 resistance, 326-28
 structure, 315
 transport in plants, 323

- Mevalonate, 252
 Microclimates
 see Powdery mildew
 epidemics and microclimate
 Microtubule assembly
 inhibition *in vitro*, 44–45
 inhibition *in vivo*, 45–47
 destabilizers, 52
 poisons as research tools, 52
 Aspergillus, 52–55
 stability
 restoration by benzimidazoles, 50
 Morel, George, 4
 Mucigel, 213
 Mulberry-dwarf agents, 348
 Mycolaminaran, 245
 Mycolic acids
 coryneforms, 123–26, 131
Mycoplasma
 fermentans, 347
 gallisepticum, 347
 Mycoplasmalike organisms, in *vitro* culture, 339–54
 conclusions, 349–50
 current status
 cell-free media, 346–47
 isolated sieve elements, 349
 tissue or organ culture, 347–49
 introduction, 339–40
 spiroplasma cultivation concepts and procedures
 isolation methods, 341–42
 media, 342–44
 physical and chemical environments, 345–46
 tissues for isolation, 340–41
 Mycorrhiza, 223
- N
- Nacobbus aberrans*
 egg cuticle structure, 466, 469
 NAD oxidoreductase, 321
 1-Naphthol, 426, 428
 Naphthoquinones, 125
 Nectarthodes
 bacterial penetration, 145–47
Nectria haematococca
 phytoalexins, 240
 Nematodes
 see Biological control of nematodes
Nematophthora gynophila, 461
 Newton, R., 22, 24
- Nocodazole, 44
 effect
 on cell division, 47
 on tubulin, 45
 resistant mutants, 49–50
 selectivity, 47
 structure, 46
- O
- Oidiopsis taurica*, 501
 Orange International Seed Lot Certificate, 2
 Ornithine, 132
 Orsellinic acid, 427
 Osmotic potential
 spiroplasma growth, 345
 Oxadixyl, 314, 317, 328–29
 structure, 315
- P
- Paecilomyces lilacinus*, 462–63
 biocontrol of nematodes, 470–72
 infection of *Meloidogyne* eggs, 463–68
 metabolites effect on eggs, 474–75, 479
 pH and temperature effects on growth, 470
 Papaya ringspot control by cross protection, 75–76
 Papilla, 503–5
 Parquat, 169
 Passion fruit woodiness, 76
Pasturia penetrans
 nematode control, 459
 Peanut mottle virus, 360
 Pectate lyase, 384, 388, 397, 400
 export, 393
 isozymes, 386, 395
 phytoalexin accumulation, 396
 production by erwinias, 389–91
 regulation 390–91
 role in pathogenesis, 398–99
 Pectic enzymes role in pathogenesis, 383–409
 conclusions, 400–1
 effect on pectic polymers in plant, 395–96
 enzyme export, 393
 enzyme products and host defense reactions, 396–98
 host defenses directed against pectic enzymes, 393–95
 introduction, 383–84
 other erwinias, 400
- pectic enzymes and encoding genes, 384
 cloning and characterization of *erwinia* genes, 386–88
 complexes of soft-rot erwinias, 384–86
 pseudomonads, 400
 regulation
 fungal pathogens, 392–93
 soft-rot erwinias, 389–91
 soft-rot erwinias, 398–400
 xanthomonads, 400
 Pectin lyase, 384, 391, 396
Penicillium
 anatum, 475, 477, 479
 digitatum, 395
 expansum, 394
 Peroxidase, 228, 368, 433
 Pfeffer, Wilhelm, 17
 pH
 effect on *Phytophthora*, 100
 sphagnum peat, 103
 spiroplasma growth, 345–46
 Phaeomelanins, 416
 solubility, 428
 Phaseolin, 237, 251
 Phenol oxidase, 419, 428, 433, 436
 Phenylalanine, 248, 251
 Phenylalanine ammonia-lyase, 367
N-Phenylcarbamates
 resistance, 50–51
 structure, 51
 Phenylpropanoids
 metabolism, 248–49
 isoflavonoids, 249–51
 other phenyl propanoids, 251–52
 Phleochrome, 435
Phoma lingam, 164
 Phosphate, 322–23
 Phosphonates
 biological activity, 317–21
 structures, 318
 Phosphorous acid, 317–19, 322, 324–25
 biological activity, 319–20
 properties, 319
 resistance, 327
Physarum polycephalum
 tubulin studies, 57–59
 Phytoalexins, 367
 elicitation, 396–98
 Phytoalexin synthesis, 235–64
 characteristics of induced compounds, 236–38
 distribution, 236–37
 structures, 237
 control, 254–57
 introduction, 235–36

- mechanisms
biological considerations, 238-41
elicitors, 241-42
elicitors from fungal cell walls, 241, 243-44
elicitors from plant cell walls, 244-45
elicitors mode of action, 245-46
elicitors physiological significance, 246-47
hypersensitivity, 238
other defense mechanisms, 239
pathways, 247-48
diterpenes, 253-54
general phenylpropanoid metabolism, 248-49
isoflavonoids, 249-51
other phenylpropanoids, 251-52
sesquiterpenes, 252-53
terpenoids, 252
- Phytopathological Laboratory**
Willie Commelin Scholten, 33, 36-37
- Phytophthora**
capsici, 324-26, 328, 396
cinnamomi, 100-1, 104, 225, 317, 319-20, 325, 327, 331
citrincola, 315, 319-20, 326
citrophthora, 320
fragariae, 175
heveae, 319
infestans, 164, 245, 315-17, 319, 327-28
megasperma, 315-16, 324
megasperma f. sp. glycines, 398
phytoalexin biosynthesis, 254-55
phytoalexin elicitors, 241, 243-45, 256
phytoalexin role, 239-40
palmivora, 320
parasitica, 317, 320, 328
parasitica var. nicotianae, 172, 325
- Phytophthora root rot of rhododendrons, 100**
- Picornaviruses**
cowpea mosaic viruses
evolutionary relationship, 301-2
homology, 292-93
- Pisatin, 237, 240, 250-51, 255
Pisatin demethylase, 240
- Pistils, 146
- Plant health screening, 1-16**
certification programs, 3-6
Denmark, 5-6
introduction, 1-2
- policy, 9-11
procedures and interpretation, 8-9
interceptions, 8-9
quarantine, 6-8
tolerances, 7
- reasons for screening, 2-3
- Taxonomy, 11-12**
- Technology introduction to Third World, 12-16**
- Plasmopara viticola*, 315-16, 328
- Podosphaera leucotricha*
epidemics and microclimate, 500-1
- Poliiovirus, 291
polyproteins
cowpea mosaic virus comparison, 296
- Polyethylene glycol, 177
- Polygalacturonase, 384, 388, 392-93, 399-400
inhibitors, 394
phytoalexin accumulation, 396
- Polygalacturonate lyase, 388
- Polygalacturonosidase, 384, 386, 391
- Polymethylgalacturonase, 400
- Polyphenoloxidase, 324, 368
- Potato virus X, 161, 357, 363
- Potato virus Y, 69
- Powdery mildew epidemics and microclimate, 491-510
conclusions, 506-7
introduction, 491
meteorological factors and microclimate, 492
evapotranspiration and condensation, 494
humidity, 493-94
precipitation, 494-95
radiation, 492
temperature, 492-93
wind, 495
- microclimate factors in relation to epidemics, 495-501
- apple powdery mildew, 500-1
barley powdery mildew, 496-500
- disease progress curves, 496-98
- epidemic phases, 496-99
- precipitation effect, 499-500
- microclimate influence on host
effects on pathogen, 501-6
papilla, 503-5
- Pratylenchus brachyurus*, 459
- Precipitation**
powdery mildew epidemic, 499-500
- relationship to microclimate, 494-95
- Proline, 177
- Propamocarb, 312, 316, 321
biological activity, 313-14
structure, 313
- Proteinase inhibitor-inducing factor, 397
- Prothiocarb, 312
biological activity, 313
mobility in soil, 321
structure, 313
- Pseudobacterin, 191, 207
biocontrol, 192-93
biosynthesis genes, 195-97
complementation analysis, 196
- deleterious bacteria, 199-200
effect on plant growth, 190-91
- gene for outer-membrane receptor protein, 200-3
structure, 195
A214, 205
from deleterious bacteria, 204-5
- Pseudomonas**
cichorii, 148-49
denitrificans, 458
fluorescens, 105, 108
maceration factor, 396
NAD oxidoreductase, 321
root colonization, 224
putida, 190
strain A12, 194
strain WCS358, 197
solanacearum, 149
syringae, 146
syringae *pv. avanae*, 142
syringae *pv. glycinea*, 150, 153
avirulence gene, 240
syringae *pv. lachrymans* 142
syringae *pv. mors-prunorum*, 142
syringae *pv. pisi*, 397
syringae *pv. syringae*, 142, 197
syringae *pv. tabaci*, 397
syringae *pv. tomato*, 148-49, 400
tolaasi, 109
- Pseudomonas**
strain B10, 190-93, 198, 201, 207
pseudobacterin, 195-97
pseudobacterin transport gene, 201-3
strain 346, 194-95
- Pseudoperonospora cubensis**, 326-28, 330
- Psoralen, 251
- Psoriasis of citrus, 77
- Pterocarpin, 396

- Puccinia*
graminis f. sp. *tritici*, 280
striformis, 280
- Pymatotrichum omnivorum*, 280
- Pyrenopezia*
lycopersici, 392-93
terrestris, 393
- Pyrenophora graminea*, 281
- Pyrenophora teres*, 164
- Pyricularia oryzae*, 414, 424,
 435
 control, 439
 host penetration, 433-34
 melanin effect on appressoria,
 435
- Pythium aphanidermatum*, 280,
 329-30
- Pythiopsis cymosa*, 317
- Q**
- Quack**, F., 4
- R**
- Radiation
 relation to microclimate, 492
 see also Remote sensing of
 plant stress
- Remote sensing of plant stress,
 265-97
 aspects of remote sensing of
 vegetation, 267
 canopy temperature in relation
 to air temperature, 271-72
 leaf and canopy reflectance
 characteristics, 270-71
 reflectance spectra of
 vegetation, 268-69
 spectral reflectance and
 emittance from vegetation,
 267
 future, 282-83
 instrumentation and tech-
 niques, 272-76
 color-IR film, 272
 radiometer, 275
 thermal-infrared imaging
 devices, 274
 video cameras, 274
 introduction, 265-66
 stress detection, 276
 critique, 282
 disease-caused stress, 279-
 81
 insect-caused stress, 281-82
 nutrient stress, 278-79
 salinity stress, 278
 water stress, 276-78
- Rhizobium trifolii*, 151
- Rhizoctonia solani*, 101-5, 107
- Rhizoplane and rhizosphere ultrastructure, 211-34
- changes with age
 cell extension zone, 218
 cortical lysis zone, 221-23
 mature rhizodermal cells,
 220-21
 meristematic zone, 217-18
 root cap, 216-17
 root effect on soil fabric,
 226
- concurrent changes in root ex-
 udation, 215
- future directions, 229
- introduction, 211-12
 limitations of traditional
 methods, 211-12
- methods
 instruments, 212
 specimen preparation, 212-
 13
- microbial cover, 223-25
- mycorrhizospheres, 223
- predation in rhizosphere, 225
- radial zonation in rhizosphere,
 215-16
- rhizodermis surface ultra-
 structure models, 213-
 14
- rhizoplane ultrastructure varia-
 tion, 214
- ontogeny, 214
- origins, 214
- preparation techniques, 215
- rhizodermis differentiation
 and maturation, 214
- surface erosion extent,
 214-15
- root effect on soil fabric, 226
- ultrastructure of rhizosphere,
 226
- differences in bacteria, 227
- waterlogged soils, 228
- Rhizophagus stolonifer*, 244, 256,
 396
- Rishitin, 237, 353
- RNA
 homology among viruses, 297
 virus satellites, 373-74
- rRNA
 DNA hybridization, 128-29
 RNA virus evolution, 289-310
 evolutionary implications of
 interviral homologies
 advantages of genome
 segmentation, 304
 divided vs nondivided
 genomes, 303-5
 evolutionary pathways, 301
 insects as sources of an-
 cestral viruses, 305-6
 possible evolutionary mech-
 anisms, 300-1
 super groups, 301-3
 functions of conserved viral
 proteins, 299-300
- glossary, 306-7
- homology between cowpea
 mosaic virus and picor-
 naviruses
- nonstructural proteins, 293,
 295
- similarities in genome,
 292-93
- homology between Sindbis
 virus and plant viruses
 conserved sequences in
 nonstructural proteins,
 295-96
- genomic RNA, 297
- protein homology, 296, 298
- introduction, 289
- genome types, 290
- protein homology among
 other viruses, 298-99
- translation strategies, 291
- genomic organization and
 translation strategy,
 292
- RNA-polymerase
 inhibition by fungicides, 315-
 16
- Roots
 cuticle, 213, 220-21
- Root hair gel, 219
- Royal 350, 455-56
- S**
- Saccharomyces cerevisiae*
 actin, 60
 tubulin studies, 55-56, 60
- Satellite tobacco ringspot virus,
 374
- Schinz, H., 34
- Schistocerca gregaria*, 281
- Schizosaccharomyces pombe*
 tubulin studies, 56-57
- Sclerotinia*
fructigena, 392
trifoliorum, 392
- Sclerotium rolfsii*, 99
- Scytalone, 422-23, 425, 431,
 434, 438
- Selenium, 177
- Sesquiterpene
 synthesis, 252
- Sieve elements
 spiroplasmas
 growth, 349
 isolation, 340-41
- Sindbis virus
 homology to plant viruses
 carnation mottle virus, 298
 conserved sequences in
 nonstructural proteins,
 295-96
- genomic RNA, 297
- protein homology, 296, 298

- Snyder, William C., 11, 27-31
 collaboration with H. N. Hansen, 28-30
 teaching, 29-30
- Solavetivone, 253
- Soil
 see Rhizoplane and rhizosphere ultrastructure
- Soilborne pathogen control with composts, 93-114
 addition to peat media, 104
 antagonist-amended composts, 108-9
 composting process, 96-98
 phases, 96
 products, 97
 sour composts, 97
 conclusions, 109-10
 examples, 94-96
 Fusarium diseases, 94
 lettuce drop, 95
 miscellaneous diseases, 95
 nematode diseases, 95
 strawberry red stele, 94-95
- factors affecting antagonist activity, 107-8
 factors affecting compost suppressiveness
 biological factors, 102-5
 chemical and physical factors, 99-102
 effect of heat, 104
 incorporation rates and suppressiveness spectra, 106
 introduction, 93-94
 microflora and fauna associated with suppressive composts, 105, 107
 pathogen fate during composting, 98-99
- Somaclonal variation, 170-71
 disease resistance, 171-73
- Sphaerotilus fuliginea*, 501
- Spiroplasma citri*, 341-42, 347-48
 culture media, 343-44
 lipid metabolism, 343
 osmotic potential effect, 345
 pH effect, 345
 temperature relationships, 345
- Spiroplasma* spp.
 procedures and concepts for cultivation
 isolation methods, 341-42
 media, 342-44
 physical and chemical environments, 345-46
 tissue for isolation, 340-41
- Stachybotrys alternans*, 435
- Stakman, E. C., 19
- Stilbene synthase, 252
- Stilbenoids
 synthesis, 251-52
- Stomata
 bacterial penetration, 141-44
- Stone and pome fruit virus diseases
 control by cross protection, 77-78
- Strawberry red stele
 control by composts, 94-95
- Streptomyces*
avermitilis, 474
scabies, 438
- Swales, Dorothy, 20-21
- Systemic fungicides and Oomycete control, 311-38
 biological activity
 acylanilides, 314-17
 cymoxanil, 313-14
 phosphonates, 317
 propamocarb, 313-14
 prothiocarb, 313-14
 conclusions, 330-31
 fungicide mixtures, 326
 antiresistance strategies, 329-30
 fungicide resistance and fitness, 326-28
 models for control, 329
 synergistic interactions, 328-29
- indirect effects
 host physiology, 324-25
 rhizosphere effects, 325-26
- introduction, 311-12
 mobility and metabolism
 behavior in plants, 323-24
 behavior in soils, 321-23
- T
- Teliospore
 melanin, 419
- Temperature
 compost preparation, 96-97
 pathogen survival, 98-99
 disease detection, 280-81
 leaf and canopy in relation to air, 271-72
 relationship to microclimate, 492
 spiroplasma growth, 345
 vapor-pressure deficit, 273
 water stress detection, 276-78
- Tenuazonic acid, 167
- Terpenoid
 synthesis pathways, 252-57
- Thiabendazole
 binding affinity to tubulin, 48
 resistant mutants, 49
 structure, 46
- Tissue culture and resistance to pathogens selection, 159-86
 introduction, 159-61
 considerations, 160
 gene transfer, 160
- resistance isolation in absence of selection
 advantages/disadvantages of screening unselected regenerants, 174-76
 cultivars released, 173-74
 disease-resistant lines from unselected in vitro cultures, 172-73
 future prospects, 178-80
 new selection schemes development, 176-78
 somaclonal variation, 170-71
 somaclonal variation and disease resistance, 171-73
- use of pathogen as selecting agent, 161-64
 resistance expression, 163
 use of pathogen metabolites as selecting agent
 examples of toxin use, 165
 lack of characterized toxin, 166-67
 problems with toxins, 164, 166
 resistance not expressed at single-cell level, 167
 resistant lines cannot be isolated, 168-70
 toxin selections, 164
- Tobacco mosaic virus, 162, 172-73, 289, 291, 357-58
- concurrent protection, 372
 conserved proteins functions, 500
 conserved sequences in non-structural proteins, 295-96
- cross protection, 68-69, 78, 369-72
- evolutionary group, 301-3
 genomic organization and translation strategy, 293
 genomic RNA comparison to Sindbis virus, 297
 highly localized infections, 362
 homology to carnation mottle virus, 298
 homology to Sindbis virus proteins, 296, 298
- hypersensitive reaction, 364-67
- movement control in host, 362-63
- restricted systemic accumulation, 359-60
- Tobacco rattle virus
 cross protection, 371
- Tobacco ringspot virus, 358, 374

- Tobacco streak virus, 358
cross protection, 369, 371
- Tomato aspermy virus, 78
- Tomato mosaic
control by cross protection, 71–73
cross protection and genetic resistance interaction, 74–75
drawbacks in use, 73
- Trichoderma*
hamatum, 107
harzianum, 107
- Trichomes
bacterial penetration, 148–49
- Tricyclazole, 424–25, 433–35, 437, 439
- 2,4,5-Trihydroxytoluene, 427
- Tristeza
control through cross protection, 69–71
- Tuberculostearic acid, 124, 131
- Tubulin, 51
benzimidazole fungicides, 43–44
binding affinity, 47–49
mutants as tools for study, 52–59
molecular genetics tools, 52
structure changes of mutants, 49
- Tylenchorhynchus martini*, 458, 474
- Tylenchulus semipenetrans*
biocontrol, 470–71
- Tyrosinase, 415–17, 426, 428
role in cellular differentiation, 436
- U**
- Ulocladium botrytes*, 477
- Ustilago maydis*
melanin in teliospores, 419, 421
- V**
- van Hall, C. J. J., 33
- van Luijk, A., 35–36
- van Vloten, Odo, 35
- Vapor-pressure deficit, 273
- Venturia inaequalis*, 436
- Vermelone, 423, 434, 430
- Verticillium*
albo-atrum, 175, 392
chlamydosporium, 461–62
dahliae, 280, 437
melanin desposition, 413
- melanin-deficiency mutations, 423–24
- melanin formation, 420–21
- microsclerotia survival and melanins, 431
- 1-naphthol conversion, 426
subtype identification, 438
toxin, 435
- Vesicular arbuscular mycorrhiza effects on nematodes, 472
- Viruses**
see RNA viruses evolution
- Viruses, plant resistance mechanisms, 355–81
introduction, 355
restriction and symptom induction, 355–56
systemic infections as reference points, 356–57
- multiagent phenomena, 368–69
- acquired resistance 374–75
concurrent protection, 372–73
- cross protection, 369–72
- direct interference, 369
- direct-interference mechanisms, 370–71
- indirect interference, 374–75
- protection by satellites, 373–74
- single-virus phenomena, 359
highly localized infections, 362
- hypersensitive reaction, 363–68
- operational immunity, 360–61
- reduced systemic accumulation, 359–60
- restricted replication or accumulation, 359–62
- restriction due to localization, 362
- virus accumulation reduced and localized, 363
- virus and host control overspread, 362–63
- Virus disease control through cross protection, 67–68
candidates for control
avocado sun blotch, 76
cacao swollen shoot, 75
concave gum of citrus, 77
papaya ringspot, 75–76
passion fruit woodiness, 76
psoriasis of citrus, 77
stone and pome fruit virus diseases, 77–78
- virus diseases of annual crops, 78
conclusions, 78
introduction, 67–68
precautions, 68
cost, 69
incomplete protection, 68
mutation to severe form, 69
synergism with other viruses, 69
- successful applications
cross protection and genetic resistance interaction, 74–75
drawbacks in use against tomato mosaic, 73
tomato mosaic, 71–73
tristeza, 69–71
- W**
- Walker, J. C., 31
- Water
stress detection, 276–78
- Went, F. A. F. C., 34–35
- Westerdijk, Johanna, 33–41
Centraal Bureau voor Schimmelmultiples, 35, 37, 39
music, 39
- Phytopathological Laboratory
Willie Commelin Scholten, 33, 36–37
research, 36
teaching, 37–39
travel, 37
- Western X-disease agent, 348
- Wind
relationship to microclimate, 495
- Wollenweber, H. W., 1
- Wright, Kirk, 20
- X**
- Xanthomonas*
campestris pv. *campestris*, 144–45, 400
campestris pv. *citri*, 142
campestris pv. *hyacinthi*, 142
campestris pv. *malvaeearum*, 400
campestris pv. *oryzae*, 144–45
campestris pv. *pruni*, 142, 178
maltophilica, 105–6
- Xanthotoxin, 251
- Xiphinema*
americanum, 458
index, 458