統計模型與 AI 模型混淆矩陣分析

統計模型基於統計學原理,通常較容易解釋,模型裡的參數和結果具直觀的統計意義。 AI 模型 涵蓋多種人工智慧方法及技術,應用層面廣泛,學習方式包括監督式學習、非監督式學習及強化學習…等,模型複雜性相對統計模型來的高,神經元、隱藏層…等參數設定皆關係到模型訓練的結果,解釋性較困難。

一、神經元種類

(一)、類神經網路(NN)

類神經網路(Neural Network, NN), 又稱為神經網路、人工神經網路(Artificial Neural Network, ANN),屬於非線性的統計模型,是深度學習(Deep learning)的核心概念,而深度學習也是機器學習的一個分支領域,在影像辨識、語音識別與自然語言處理等方面有許多的應用。

- 機器學習
- 具有人腦基本的特性:學習、記憶和歸納
- 非線性統計性資料建模工具

參考網站: https://ithelp.ithome.com.tw/articles/10305927

(二)、循環神經網路(RNN)

語言通常要考慮前言後語,以免斷章取義,也就是說,建立語言的相關模型,如果能額外考慮上下文的關係,準確率就會顯著提高,因此,學者提出『循環神經網路』(Recurrent Neural Network, RNN)演算法,它是『自然語言處理』領域最常使用的 Neural Network 模型額外考慮前文的關係。也就是會把回歸模型的誤差項帶進去,把每一次的錯誤縮小修正。

- 神經網路中的一種
- 可以接受更加廣泛的時間序列結構輸入
- 處理次序資料
- 在隱藏層中會記錄每次處理的結果(權重)

二、 AI模型與統計模型

(一)、AI模型

1. LSTM

- 在 RNN 的基礎上加入了
- 遺忘閘門(forget gate)
- 輸入閘門(input gate)
- 輸出閘門(output gate)
- 防止梯度消失/爆炸的問題

2. BI-LSTM

- 能捕捉前後文
- 從兩個方向理解上下文的任務中特別有用
- 通常用於情緒分析、命名實體識別和機器翻譯等任務

3. GRU

- 在 LSTM 的基礎上將
- 遺忘閘門(forget gate)
- 輸入閘門(input gate)
- 以上兩種整合並命名為 update_gate

(二)、統計模型

- 1. Logistic -統計上的回歸
- 2.Bayesian-樹狀圖分類

(三)、演算法

- NSGA2(多目標非支配排序遺傳算法)
- 本次專題使用此模型參照專題

三、 混淆矩陣

效力檢定(混淆矩陣) 回召率(recall):模型識別正類樣本的能力 $\frac{TP}{TP+FN}$ 精確率(precision):模型預測為正類的樣本中有多少是真正的正類樣 $\frac{TP}{TP+FP}$ 特異性(specificity):模型識別負類樣本的能力 $\frac{TN}{TN+FP}$ 陰性預測值(NPV):模型預測為負類的樣本中有多少是真正的負類樣本= $\frac{TN}{TN+FN}$ F1-score = 2 × <u>(回召率×精確度)</u> (回召率+精確度)

下跌 下跌 虛偽陽性 false 真實陽性 true TP FP positive(FP) positive(TP) (型 I 錯誤) 虛偽陰性 false 真實陰性 true 下跌 FN TN 下跌 negative(FN) negative(TN) (型Ⅱ錯誤)

• 準確度(accuracy): (TP+TN)/(TP+TN+FP+FN)

混淆矩陣常被應用於機器學習的分類領域中。會使用混淆矩陣內的元素加

以計算準確度(Accuracy)、召回率(Recall)、精確度(Precision)...等,用以判

斷該模型的表現。

- 召回率 >>用以衡量模型辨別正類(TP)樣本的比例 , 表示模型能否正確預測股票上漲的比例。
- 準確度(Accuracy) >>表示模型在預測股票上漲或下跌時與現實狀況 是否相符,說明模型是否適合。看全部真實上漲和下跌比例
- 精確度(Precision)>> 衡量模型預測上漲時能否正確對應真實的漲跌。 只看那檔預測下來上漲的比例

四、實驗說明

本實驗中將會使用 3 種 AI 模型(LSTM、Bi_LSTM、GRU),以及 2 種統計模型(Logistic Regression、Bayesian Classifier),針對五檔股票進行隔日股價上漲或下跌的預測,並判斷何種模型在準確度、執行時間…等的數據表現較為優秀。此五檔股票分別為 2330(台積電)、2379(瑞昱)、2412(中華電)、2912(統一超)、1101(台泥)。

五、 實驗結果

表 1-1 到 1-5 分別為五檔股票經過各模型訓練過後產生的數據,將各模型中的數據分別加總平均後的表請參考,表 2。

表 1-1 股票代號:2330 (台積電)

模型		準確度 (Accuracy)	回召率 (Recall)	精確度 (Precision)	執行時間
AI	LSTM	0.67757	0.721649	0.625	0:08:49.572593
模型	Bi-LSTM	0.623932	0.84	0.538462	0:06:56.892865
	GRU	0.714953	0.907216	0.628571	0:06:51.194847
統計 模型	Logistic Regression	0.62963	0.542857	0.904762	0:00:00.029919
	Bayesian Classifier	0.432099	0.432099	1.0	0:00:00.007979

表 1-2 股票代號:2379(瑞昱)

模型		準確度 (Accuracy)	回召率 (Recall)	精確度 (Precision)	執行時間
AI	LSTM	0.67757	0.632812	0.786408	0:09:18.994388
模型	Bi-LSTM	0.58547	0.848485	0.592593	0:07:16.259023
	GRU	0.67757	0.71875	0.736	0:06:53.957752
統計	Logistic Regression	0.658436	0.642487	0.898551	0:00:00.023935
模型	Bayesian Classifier	0.567901	0.567901	1.0	0:00:00.006990

表 1-3 股票:2412(中華電)

模型		準確度 (Accuracy)	回召率 (Recall)	精確度 (Precision)	執行時間
AI	LSTM	0.654206	0.377551	0.74	0:08:45.722578
模型	Bi-LSTM	0.641026	0.625	0.590909	0:07:16.590632
快主	GRU	0.714953	0.602041	0.728395	0:06:41.731589
	Logistic	0.670782	0.813953	0.327103	0:00:00.033868
統計	Regression				
約17日	Bayesian				
模型	Classifier	0.559671	NaN	0.0	0:00:00.007978

表 1-4 股票:2912(統一超)

模型		準確度 (Accuracy)	回召率 (Recall)	精確度 (Precision)	執行時間
AI	LSTM	0.619718	0.410526	0.609375	0:08:49.081475
模型	Bi-LSTM	0.635193	0.524272	0.6	0:07:12.440295
	GRU	0.643192	0.494737	0.626667	0:06:40.902667
統計	Logistic Regression	0.665289	0.694915	0.394231	0:00:00.024932
模型	Bayesian Classifier	0.61157	0.727273	0.153846	0:00:00.007979

表 1-5 股票:1101 (台泥)

模型		準確度 (Accuracy)	回召率 (Recall)	精確度 (Precision)	執行時間
AI	LSTM	0.577465	0.669643	0.585938	0:10:30.610998
模型	Bi-LSTM	0.60515	0.559322	0.622642	0:07:27.346519
	GRU	0.70892	0.848214	0.678571	0:08:05.848098
統計	Logistic Regression	0.640496	0.588235	0.97561	0:00:00.051862

模型	Bayesian Classifier	0.5	0.504167	0.98374	0:00:00.012965	
----	------------------------	-----	----------	---------	----------------	--

透過圖 1、表 2,能看到準確度最高的為 GRU 模型(69%),最差的為 Bayesian(僅有 53%), 此外 LSTM 及 Logistic 模型也有不錯的準確度(介於 65%上下)。另外透過圖 2、表 2,可以看 出兩個統計模型花費的時間少上許多,而在 AI 模型中 GRU 所需的時間相較於另外兩者來的 短,準確度也較高。

● 準確度: GRU > Logistic > LSTM > Bi-LSTM > Bayesian

● 執行速度: Bayesian > Logistic > GRU > Bi-LSTM > LSTM

雖然執行出的結果準確度最高只到 69%,但由於 AI 模型準確度會受到各項參數所影響,因此後續會再嘗試各種參數設定,以期望達到更高的準確度。

圖 1 各模型平均準確度

表 2 各模型平均數據

模型		準確度 (Accuracy)	回召率 (Recall)	精確度 (Precision)	執行時間
AI	LSTM	0.641306	0.562436	0.669344	00:09:14.796406
模型	Bi-LSTM	0.618154	0.679416	0.596073	00:07:13.905867
	GRU	0.691918	0.714192	0.679641	00:07:02.726990
統計	Logistic Regression	0.652927	0.656489	0.700051	00:00:00.032903
模型	Bayesian Classifier	0.534248	0.446288	0.627517	00:00:00.008778