Pivotal.

Intro to Cloud Native Buildpacks

Anand Rao, Platform Architect Scott Deeg, Platform Architect

May 2019

Agenda

- What are CN Buildpacks?
- Current Solutions
- How they work (+demo)
- Decomposition (+demo)
- Build Services

What are Cloud Native Buildpacks?

Pluggable, modular tools that translate source code into OCI images.

- Portability via the OCI standard
- Greater modularity
- Faster builds
- Reproducible image builds
- Unprivileged containers
- Developed in partnership with Heroku
- CNCF project

The Goal

Write code

Run apps

Minimal fuss

This has been the goal of app dev teams for a long (long) time.

Containers to the Rescue?

While container technology has been around, Docker brought them to the masses. Having standardized containers is super useful, but they not the magic bullet they've been hyped to be.

- Creating non-trivial, production grade Dockerfiles is actually really hard and requires a very low level understanding what's happening
- Choosing the right image to start with has many implications (security, upgrades, etc.)
- Build images not the same as what you want for runtime
- Teams create variations which is error prone, results in inconsistent quality
- Composability was a challenge
 - o Don't follow symlinks, copying files manually, no environment
- Ensuring security was a challenge
- Even if you do a good job, they drift (rot?) over time requiring constant maintenance
 - Another great source of errors
- Day 2 ops became a nightmare

"Writing a quality Dockerfile is still my users' biggest point of friction"

- David Dollar - CEO, Convox (a k8s/Docker PaaS)

"Containers are not always a good abstraction for developers - they force you to learn about and think about very low level concerns"

- Dave Syer

CN Buildpack Features

Buildpacks provide a variety of services to create an appropriate build and run environment

- Application detection/validation
- Vend dependant components (eg: middleware stack)
- Put application in a "Stack" (OS base)
- Create a configuration
- Define how the application starts
- Output the container
- Use smart caching to enable builds and runtime images

- Application Binary Interface
- Cross repository blob mounting
- Fast is a feature!

Local development

New Buildpack API

Detect

where an optimal selection of compatible buildpacks is chosen and a build plan is created

Analysis

where metadata about OCI layers generated during a previous build are made available to buildpacks

Build

where buildpacks use that metadata to generate only the OCI layers that need to be replaced

Export

where the remote layers are replaced by the generated layers

Components

- Platform
 - pack Local CLI for CNB
 - knative-integration template for using CNB with knative/tekton
- Implementation
 - lifecycle Implementation of the Buildpack API v3
 - libbuildpack Go language binding for the CNB API
- Core
 - spec Buildpack API v3 specification
 - rfcs RFCs for changes to CNB

Demo

Decomposition

Cloud Foundry Buildpacks as modular, transparent, source code processors

Cloud Foundry Node.js Buildpack (v2)

Build Configuration (for detection step)

Group #1 Cloud Foundry Node.js Engine Buildpack Cloud Foundry Yarn Buildpack

Group #2 Cloud Foundry Node.js Engine Buildpack

Cloud Foundry NPM Buildpack

Buildpack Detection

A mechanism for automated <u>buildpack</u>, <u>tool</u>, and <u>dependency</u> selection

Cloud Foundry Node.js Engine Buildpack

Cloud Foundry Yarn Buildpack

One job: provide Node.js if the app or subsequent buildpacks need it.

/package.json /app.js Source Code /package-lock.json Cloud Foundry Node.js Engine Buildpack Cloud Foundry Yarn Buildpack

One job: use Yarn to install and validate node modules.

Fails: Missing yarn.lock

/package.json /app.js Source Code /package-lock.json

Build Configuration (for detection step)

Group #1 Cloud Foundry Node.js Engine Buildpack Cloud Foundry Yarn Buildpack

Group #2 Cloud Foundry Node.js Engine Buildpack

Cloud Foundry NPM
Buildpack

Cloud Foundry Node.js Engine Buildpack

Cloud Foundry NPM Buildpack

One job: provide Node.js if the app or subsequent buildpacks need it.

/package.json /app.js Source Code /package-lock.json

Cloud Foundry Node.js Engine Buildpack

Cloud Foundry NPM Buildpack

One job: use NPM to install and validate node modules.


```
package.json has:
        "engine": "10.3.1",
so we add
        [nodejs]
        version =
"10.3.1"
to the build plan.
```

/package.json /app.js Source Code /package-lock.json

Build Configuration (for detection step)

Group #1 Cloud Foundry Node.js Engine Buildpack Cloud Foundry Yarn Buildpack

Group #2 Cloud Foundry Node.js Engine Buildpack

Cloud Foundry NPM
Buildpack

Demo

Updating OS Layer

A mechanism for fast updates

buildpack: nodejs-buildpack

rootfs: cflinuxfs3 (with OpenSSL)

ABI Compatibility?

- ABI = Application Binary Interface
- Operating System vendors (ex. Canonical for Ubuntu) guarantee a degree of compatibility when patching
- cflinuxfs3 is based on Ubuntu 18.04 LTS

buildpack: nodejs-buildpack

rootfs: cflinuxfs3
(with OpenSSL)

Diego Cell #1

Diego Cell #1

Diego Cell #1

Diego Cell #1

ETA to mitigation: Time roll cells, usually a few hours

Buildpacks.io

buildpack: nodejs-buildpack

rootfs: cflinuxfs3

Cloud Native Buildpacks

Pivotal Build Service

Pivotal Build Service: CNB + Enterprise Features

Image Promotion—No Rebuild Required

- A more intelligent approach to image updating.
- Developers can to promote images through environments, and eventually, across PCF foundations.

Automated Image Updates

- Declarative configuration model
- New images are delivered to your registry whenever this configuration falls out of sync.
- Consistent and up to date container images.

Operator Control

- Restricting buildpack usage in the apps they supervise.
- Create build configurations for different groups of developers within the org.
- These configs would govern the buildpacks that any given dev is allowed to use.

Pivotal

Try out pack and Buildpacks

- Second Public Beta v0.2.1
 - pack CLI
 - Cloud Foundry and Heroku Buildpacks
 - Ubuntu-based Operating System Image
- Join us on Slack:
 - slack.buildpacks.io
- Join our Mailing List:
 - lists.cncf.io/g/cncf-buildpacks

Pivotal

Transforming How The World Builds Software