# class07QD

# Ilyas Darif A16577084 2024-04-23

today we will start our multi part exploration of some key machine learning methods. we will begin with clustering - finding groupings in data and then dimensionallity reduction

## Clustering

lets start with "k-means" cluttering the main function in base R for the is means()

```
#makeup up some data
hist( rnorm(100000, mean=3))
```

## Histogram of rnorm(1e+05, mean = 3)



```
tmp < -c(rnorm(30, -3), rnorm(30, +3))
  x <- cbind(x=tmp, y=rev(tmp))</pre>
              X
 [1,] -2.6113127 5.1299379
 [2,] -4.1261385 4.4627565
 [3,] -2.5490062 4.0816916
 [4,] -3.8114809 1.9800675
 [5,] -2.8344824 3.0857448
 [6,] -4.0974978 2.9505656
 [7,] -3.3632147 1.3392605
 [8,] -2.3642414 4.1934734
 [9,] -2.8421212 2.8643826
[10,] -2.5066374 3.2811309
[11,] -2.5657316 2.6727083
[12,] -2.2222934 3.5793545
[13,] -1.5879509 2.3166419
[14,] -2.7111841 3.7354913
[15,] -2.2686093 1.7676810
[16,] -3.9412907 2.6022936
[17,] -2.4557176 2.9250352
[18,] -4.1346654 2.8126393
[19,] -4.0804667 3.6907071
[20,] -3.5474158 0.9278268
[21,] -1.8138030 2.2516766
[22,] -3.1880890 4.0844581
[23,] -2.5697118 2.6233017
[24,] -3.2722725 2.4793893
[25,] -3.1490273 4.3870648
[26,] -2.9280196 4.3700703
[27,] -3.5594731 3.9197163
[28,] -2.9141401 4.0696375
[29,] -2.5886518 3.1934598
[30,] -3.6692415 3.8313418
[31,] 3.8313418 -3.6692415
[32,] 3.1934598 -2.5886518
[33,] 4.0696375 -2.9141401
[34,] 3.9197163 -3.5594731
[35,] 4.3700703 -2.9280196
```

[36,] 4.3870648 -3.1490273

```
[37,] 2.4793893 -3.2722725
[38,] 2.6233017 -2.5697118
[39,] 4.0844581 -3.1880890
[40,] 2.2516766 -1.8138030
[41,] 0.9278268 -3.5474158
[42,] 3.6907071 -4.0804667
[43,] 2.8126393 -4.1346654
[44,] 2.9250352 -2.4557176
[45,] 2.6022936 -3.9412907
[46,] 1.7676810 -2.2686093
[47,] 3.7354913 -2.7111841
[48,] 2.3166419 -1.5879509
[49,] 3.5793545 -2.2222934
[50,] 2.6727083 -2.5657316
[51,] 3.2811309 -2.5066374
[52,] 2.8643826 -2.8421212
[53,] 4.1934734 -2.3642414
[54,] 1.3392605 -3.3632147
[55,] 2.9505656 -4.0974978
[56,] 3.0857448 -2.8344824
[57,] 1.9800675 -3.8114809
[58,] 4.0816916 -2.5490062
[59,] 4.4627565 -4.1261385
[60,] 5.1299379 -2.6113127
```

#### plot(x)



now lets try out kmeans()

```
km <- kmeans(x, centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 43.05918 43.05918
(between_SS / total_SS = 93.0 %)
```

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

attributes(km)

\$names

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

\$class

- [1] "kmeans"
  - Q1. how many points in each cluster?

km\$size

- [1] 30 30
  - Q2. what commponant of your result object details cluster assignment/membership

km\$cluster

- - Q3. what are centers/mean values of each cluster

km\$centers

- X
- 1 3.186984 -3.009130 2 -3.009130 3.186984
  - Q4. make a plot of your data showing your clustering results (groupings/clusters and cluster centers)

plot(x, col=c("red", "blue"))



plot(x, col=c(1,2))



```
plot(x, col=km$cluster)
points(km$centers, col="green", pch=15, cex=3)
```



Q5. run kmeans() again and cluster in 4 groups and plot the results.

```
km4 <- kmeans(x, centers = 4)
plot(x, col=km4$cluster)</pre>
```



### hierarchial clustering

this form of clustering aims to reveal the structure in your data by progessively grouping points into a ever smaller number of clusters

the maion function in base R for this called  ${\tt chlust()}$  . this function does not take our input data directly but wants a "distance matrix" that details how (dis)similar our input to each other

```
hc <- hclust( dist(x) )
hc</pre>
```

#### Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

the print out above is not useful (unlike that from kmeans) but there is a useful plot() method

```
plot(hc)
abline(h=10, col="red")
```

## **Cluster Dendrogram**



dist(x)
hclust (\*, "complete")

to get my results (my cluster membership vector) i need to "cut" my tree using the function cutree()

```
grps <- cutree(hc, h=10)
grps</pre>
```

```
plot(x, col=grps)
```



## Principal Component Analysis (PSA)

the goal of PCA is to reduce the dimensionality of a dataset down to some smaller subset of new variables (called PCs) that are a useful bases for further analysis, like visualization, clustering ect

Q1.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

|                | England | Wales | Scotland | N.Ireland |
|----------------|---------|-------|----------|-----------|
| Cheese         | 105     | 103   | 103      | 66        |
| Carcass_meat   | 245     | 227   | 242      | 267       |
| Other_meat     | 685     | 803   | 750      | 586       |
| Fish           | 147     | 160   | 122      | 93        |
| Fats_and_oils  | 193     | 235   | 184      | 209       |
| Sugars         | 156     | 175   | 147      | 139       |
| Fresh_potatoes | 720     | 874   | 566      | 1033      |
| Fresh_Veg      | 253     | 265   | 171      | 143       |

| Other_Veg          | 488  | 570  | 418  | 355  |
|--------------------|------|------|------|------|
| Processed_potatoes | 198  | 203  | 220  | 187  |
| Processed_Veg      | 360  | 365  | 337  | 334  |
| Fresh_fruit        | 1102 | 1137 | 957  | 674  |
| Cereals            | 1472 | 1582 | 1462 | 1494 |
| Beverages          | 57   | 73   | 53   | 47   |
| Soft_drinks        | 1374 | 1256 | 1572 | 1506 |
| Alcoholic_drinks   | 375  | 475  | 458  | 135  |
| Confectionery      | 54   | 64   | 62   | 41   |

dim(x)

## [1] 17 4

Q2. the row.names = 1 way because it was a little more simple to use Q3.

barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))



to make the plot the other bar style you change beside=T to beside=F



Q4(5). it means these are the axis for each plot

```
pairs(x, col=rainbow(nrow(x)), pch=16)
```



so the paris plot is usful for small datasets but it can be lots of work to interpret and gets interactable for longer datasets

So PCA to the rescue... the main function to do PCA in base Ris called  $\tt prcomp()$ . this function wants the transpof our datain this case.

### t(x)

|           | Cheese  | Carcass | _meat | Other  | meat  | Fish | Fats_and  | _oils   | Sugars |
|-----------|---------|---------|-------|--------|-------|------|-----------|---------|--------|
| England   | 105     |         | 245   |        | 685   | 147  |           | 193     | 156    |
| Wales     | 103     |         | 227   |        | 803   | 160  |           | 235     | 175    |
| Scotland  | 103     |         | 242   |        | 750   | 122  |           | 184     | 147    |
| N.Ireland | 66      |         | 267   |        | 586   | 93   |           | 209     | 139    |
|           | Fresh_p | otatoes | Fres  | h_Veg  | Other | _Veg | Processed | d_potat | toes   |
| England   |         | 720     | )     | 253    |       | 488  |           |         | 198    |
| Wales     |         | 874     | 1     | 265    |       | 570  |           |         | 203    |
| Scotland  |         | 566     | 3     | 171    |       | 418  |           |         | 220    |
| N.Ireland |         | 1033    | 3     | 143    |       | 355  |           |         | 187    |
|           | Process | sed_Veg | Fresh | _fruit | Cere  | als  | Beverages | Soft_d  | drinks |
| England   |         | 360     |       | 1102   | 2 :   | 1472 | 57        |         | 1374   |
| Wales     |         | 365     |       | 1137   | 7     | 1582 | 73        |         | 1256   |
| Scotland  |         | 337     |       | 957    | 7     | 1462 | 53        |         | 1572   |

```
N.Ireland
                     334
                                   674
                                           1494
                                                       47
                                                                   1506
          Alcoholic_drinks Confectionery
England
                        375
                                         54
Wales
                        475
                                         64
Scotland
                        458
                                         62
N.Ireland
                        135
                                         41
  pca <- prcomp(t(x))</pre>
  summary(pca)
Importance of components:
                            PC1
                                      PC2
                                               PC3
                                                         PC4
Standard deviation
                       324.1502 212.7478 73.87622 3.176e-14
Proportion of Variance
                         0.6744
                                  0.2905 0.03503 0.000e+00
Cumulative Proportion
                         0.6744
                                   0.9650 1.00000 1.000e+00
  attributes(pca)
$names
[1] "sdev"
               "rotation" "center"
                                                 "x"
                                      "scale"
$class
[1] "prcomp"
  pca$x
                 PC1
                             PC2
                                         PC3
                                                       PC4
          -144.99315
England
                       -2.532999 105.768945 -4.894696e-14
Wales
          -240.52915 -224.646925 -56.475555 5.700024e-13
           -91.86934 286.081786 -44.415495 -7.460785e-13
Scotland
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

A MAJOR pcA result viz is called a "PCA plot" (aka a score plot, biplot, pc1 vs pc2 plot, ordination plot)

```
mycols <- c("orange", "red", "blue", "darkgreen")
plot(pca$x[,1], pca$x[,2], col=mycols, pch=16, xlab="PC1", ylab="PC2")
abline(h=0, col="gray")</pre>
```



another important output from PCA is called the "loadings" vector or the "rotation" component - this tells us how much the original variable (the foods in this case)

### pca\$rotation

|                    | PC1          | PC2          | PC3         | PC4          |
|--------------------|--------------|--------------|-------------|--------------|
| Cheese             | -0.056955380 | 0.016012850  | 0.02394295  | -0.694538519 |
| Carcass_meat       | 0.047927628  | 0.013915823  | 0.06367111  | 0.489884628  |
| Other_meat         | -0.258916658 | -0.015331138 | -0.55384854 | 0.279023718  |
| Fish               | -0.084414983 | -0.050754947 | 0.03906481  | -0.008483145 |
| Fats_and_oils      | -0.005193623 | -0.095388656 | -0.12522257 | 0.076097502  |
| Sugars             | -0.037620983 | -0.043021699 | -0.03605745 | 0.034101334  |
| Fresh_potatoes     | 0.401402060  | -0.715017078 | -0.20668248 | -0.090972715 |
| Fresh_Veg          | -0.151849942 | -0.144900268 | 0.21382237  | -0.039901917 |
| Other_Veg          | -0.243593729 | -0.225450923 | -0.05332841 | 0.016719075  |
| Processed_potatoes | -0.026886233 | 0.042850761  | -0.07364902 | 0.030125166  |
| Processed_Veg      | -0.036488269 | -0.045451802 | 0.05289191  | -0.013969507 |
| Fresh_fruit        | -0.632640898 | -0.177740743 | 0.40012865  | 0.184072217  |
| Cereals            | -0.047702858 | -0.212599678 | -0.35884921 | 0.191926714  |

```
Beverages-0.026187756-0.030560542-0.041358600.004831876Soft_drinks0.2322441400.555124311-0.169426480.103508492Alcoholic_drinks-0.4639681680.113536523-0.49858320-0.316290619Confectionery-0.0296502010.005949921-0.052321640.001847469
```

PCA looks to be a super useful method for gaining some insight into high dimensional data that is difficult to examine in other ways