诚	侩	但	41	Ľ
WJX.	一	TK	и	Γ.

	本人知晓我校考场规则和	中违纪处分条例的有关规定,	保证遵守考场规
则,	诚实做人。	本人签字:	

编号	j.
-/m / /	

西北工业大学考试试题(卷) 2014 -2015 学年第 一 学期

成	
绩	

开课学院 理学院 课程 线性代数 学时<u>40</u>

考试日期 2014年11月14日

考试时间 2 小时

考试形式(开)(A)卷

考生班级			学 号			姓 名		
题 号	_	=	Ξ	四	五	六	七	٨
得分								

- 一、(每小题 3 分共 24 分)选择填空:
- 1. 设 $\alpha_1, \alpha_2, \alpha_3$ 均为3维列向量,记矩阵

$$A = (\alpha_1, \alpha_2, \alpha_3)$$
, $B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$

如果 $\det \mathbf{B} = -10$,则 $\det \mathbf{A} =$.

- 2. 设方阵 A 满足 $2A^2 + 12A 25E = 0$,则 $(A E)^{-1} =$
- 3. 设A为3阶方阵,将A的第1列与第2列交换得到矩阵B,再把B的第2列加到第
- 3 列得到矩阵C,则满足AQ=C 的矩阵Q=
 - 4. 设 $A \in m \times n$ 矩阵, $B \in n \times m$ 矩阵, $E \in n$ 阶单位矩阵. 若BA = E,则

 - (A) $\operatorname{rank} \mathbf{A} = \operatorname{rank} \mathbf{B} = m$. (B) $\operatorname{rank} \mathbf{A} = m$, $\operatorname{rank} \mathbf{B} = n$.

 - (C) $\operatorname{rank} \mathbf{A} = \operatorname{rank} \mathbf{B} = n$. (D) $\operatorname{rank} \mathbf{A} = n$, $\operatorname{rank} \mathbf{B} = m$.
 - 5. 设矩阵 A = b a b, 且 A 的伴随矩阵 A^* 的秩为 1,则必有_____. $(b \ b \ a)$

 - (A) $a \neq b \perp a + 2b = 0$. (B) $a \neq b \perp a + 2b \neq 0$.

 - (C) $a = b \coprod a + 2b = 0$. (D) $a = b \coprod a + 2b \neq 0$.
 - 6. 设向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,则由向量组 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_4$,

 $= \alpha_4 + \alpha_1$ 生成的向量空间的维数为_

7. 设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,n 维列向量 α 是A 的属于特征值 λ 的 特征向量. 则矩阵 $(PAP^{-1})^{T}$ 属于特征值 λ 的特征向量是_____.

- (A) $\mathbf{P}^{-1}\boldsymbol{\alpha}$. (B) $\mathbf{P}\boldsymbol{\alpha}$. (C) $\mathbf{P}^{\mathrm{T}}\boldsymbol{\alpha}$. (D) $(\mathbf{P}^{-1})^{\mathrm{T}}\boldsymbol{\alpha}$.

 $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ 8. 若实对称矩阵 A 与矩阵 $B = \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$ 合同,则二次型 $f = x^T A x$ 通过可逆线性变换 $\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$

x = Pv 化成的规范形为

二、(10 分)计算n 阶行列式

$$D_{n} = \begin{vmatrix} 1 + a_{1} & 2 & 3 & \cdots & n \\ 1 & 2 + a_{2} & 3 & \cdots & n \\ 1 & 2 & 3 + a_{3} & \cdots & n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \cdots & n + a_{n} \end{vmatrix}$$
 (其中 $a_{1}a_{2}\cdots a_{n} \neq 0$)

教务处印制 共8页 第2页 三、(10 分) 设 $A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$,且 $A^*X(\frac{1}{2}A^*)^* = 8A^{-1}X + 4E$,其中 A^* 为 A 的伴随矩阵,E 是 2 阶单位矩阵,求矩阵 X .

教务处印制 共 8 页 第 3 页

四、(15分) λ取何值时,线性方程组

$$\begin{cases} (2\lambda - 2)x_1 - x_2 + (\lambda - 2)x_3 = 2\lambda - 1\\ 3x_1 + (1 - \lambda)x_2 + 3x_3 = -\lambda\\ (\lambda - 2)x_1 + (\lambda - 1)x_2 + (\lambda - 2)x_3 = \lambda \end{cases}$$

有唯一解、无解、无穷多解?在有无穷多解时,求通解.

教务处印制 共 8 页 第 4 页

五、(10 分) 已知 4 维向量空间 \mathbf{R}^4 的两组基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 和 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_4$ 满足 $\boldsymbol{\alpha}_1 = 3\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2, \quad \boldsymbol{\alpha}_2 = 5\boldsymbol{\beta}_1 + 2\boldsymbol{\beta}_2, \quad \boldsymbol{\alpha}_3 = 2\boldsymbol{\beta}_3 - 5\boldsymbol{\beta}_4, \quad \boldsymbol{\alpha}_4 = -3\boldsymbol{\beta}_3 + 8\boldsymbol{\beta}_4$

- 1) 求由基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 到基 $\beta_1, \beta_2, \beta_3, \beta_4$ 的过渡矩阵C;
- 2) 求向量 $\boldsymbol{\beta} = 2\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \boldsymbol{\beta}_3 + 3\boldsymbol{\beta}_4$ 在基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 下的坐标.

教务处印制 共 8 页 第 5 页

西北工业大学命题专用纸

六、 $(10 \mathcal{G})$ 设 α_1 和 α_2 分别是 n 阶方阵 A 对应特征值 1 和 2 的特征向量,又设向量 α_3 满
足 $A\alpha_3 = \alpha_2 + 2\alpha_3$. 证明: 向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

教务处印制 共8页 第6页

西北工业大学命题专用纸 七、(15 分) 已知二次型 $f(x_1,x_2,x_3)=x_1^2+5x_2^2+x_3^2-2x_1x_2+2tx_1x_3+4x_2x_3$.

- 1) 问 t 取何值时,该二次型是正定的;
- 2) 取t=0, 试用正交变换化相应的二次型为标准形,并写出所用的正交变换;
- 3) t=0时, f=1表示何种二次曲面?

共8页 教务处印制 第7页

	H16±	TE/(1 PP/C 4/11×N	
1 (6 公) 设 4 为	m × n 分年1 法 正明 .	$\operatorname{rank}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{A}.$	
$\mathcal{N}(0)$	$m \times n $ 安尼丹, 证明:	$\operatorname{Tallk}(A A) = \operatorname{Tallk} A$.	

教务处印制 共 8 页 第 8 页