1 EFNMR2 (1.5h)

1.1 Relaxation measurements with paramagnetic ions

Paramters

Shimming values x = 10.11 mA; y = 20.88 mA; z = 20.07 mATuning the probe Kapazität: 13.8 nF; Polarisationsstrom: 6A;

Receiver gain: 2; transmit gain (B1): 2.5

Setting B1 to lamor frequency 1837 Hz

duration 90 and 180 pulse 90 Grad: 1.35 ms; 180 Grad: 2.7ms

Benutze Probe:

CuSO4 doped water $(3000\mu M)$ of CUSO4

Durchführung

1.1	Pulse and Collect (EFNMR menu):
	water sample (FID und Spektrum) Polarisationszeit 4s
1.2	Pulse and Collect (EFNMR menu):
	water sample (FID und Spektrum) kürzere polarisationszeit (500ms)
2.1	Pulse and Collect (EFNMR menu):
	doped water sample 1 (FID und Spektrum) Polaraisationszeit 4s
2.2	Pulse and Collect (EFNMR menu):
	doped water sample 1 (FID und Spektrum) kürzere polarisationszeit (500ms)
2.3	Pulse and Collect (EFNMR menu):
	doped water sample 2 (FID und Spektrum) Polaraisationszeit 4s
2.4	Pulse and Collect (EFNMR menu):
	doped water sample 2 (FID und Spektrum) kürzere polarisationszeit (500ms)
3.1	doped water sample 1: T2 Messung: 250 μ M in 500ml Wasser
3.2	doped water sample 1: T1 Messung (Polarisationsfeld): 250 μ M in 500ml Wasser
4.1	doped water sample 1: T2 Messung: 550 μ M in 500ml Wasser
4.2	doped water sample 1: T1 Messung (Polarisationsfeld): 550 μ M in 500ml Wasser
5.1	doped water sample 1: T2 Messung: 1000 μ M in 500ml Wasser
5.2	doped water sample 1: T1 Messung (Polarisationsfeld): 1000 μ M in 500ml Wasser
6.1	doped water sample 1: T2 Messung: 2000 μ M in 500ml Wasser
6.2	doped water sample 1: T1 Messung (Polarisationsfeld): 2000 μ M in 500ml Wasser
7.1	doped water sample 1: T2 Messung: 4000 μ M in 500ml Wasser
7.2	doped water sample 1: T1 Messung (Polarisationsfeld): 4000 μ M in 500ml Wasser
7.3	doped water sample 1: T2 Messung: 250 μ M in 500ml Wasser
7.4	doped water sample 2: T1 Messung (Polarisationsfeld): 250 μ M in 500ml Wasser
7.5	doped water sample 2: T2 Messung: 550 μ M in 500ml Wasser
7.6	doped water sample 2: T1 Messung (Polarisationsfeld): 550 μ M in 500ml Wasser
7.7	doped water sample 2: T2 Messung: 1000 μ M in 500ml Wasser
7.8	doped water sample 2: T1 Messung (Polarisationsfeld): 1000 μ M in 500ml Wasser
7.9	doped water sample 2: T2 Messung: 2000 μ M in 500ml Wasser
7.10	doped water sample 2: T1 Messung (Polarisationsfeld): 2000 μ M in 500ml Wasser
7.11	doped water sample 2: T2 Messung: 4000 μ M in 500ml Wasser
7.12	doped water sample 2: T1 Messung (Polarisationsfeld): 4000 μ M in 500ml Wasser

1.2 1D Magnetic Resonance Imaging (0.75h)

Paramters

Shimming values $x=10.11 \text{ mA}; \ y=20.88 \text{ mA}; \ z=20.07 \text{ mA}$ Tuning the probe Kapazität: 13.8 nF; Polarisationsstrom: 6A; Receiver gain: 2; transmit gain (B1): 2.5 Polaraisationszeit: 4s; Repetition time: 15s;

Number of scans: 1

Setting B1 to lamor frequency 1837 Hz

duration 90 and 180 pulse 90 Grad: 1.35 ms; 180 Grad: 2.7ms

Durchführung

8.1	Setzte Parameter in "Common Parameters"	
	auf unsere Werte	
9.1	GradEchoImaging: Wähle "1D" in Image parameters;	
	Wähle "X"-Achse; FOV Matrix size startwert 32; FOV: 200mm	
9.2	Wähle Anfangswerte für water tube: phase gradient duration = 270 ms ,	
	band width 64 Hz, number of scans = 4; G = 7.5 $\frac{\mu T}{m}$	
	echo time calculated: $0.54s$ with acquisition delay $0.02s$	
9.3	GradEchoImaging: Wähle "1D" in Image parameters;	
	Wähle "Y"-Achse; FOV Matrix size startwert 32; FOV: 200mm	
9.4	Wähle Anfangswerte für water tube: phase gradient duration = 270 ms ,	
	band width 64 Hz, number of scans = 4; G = 7.5 $\frac{\mu T}{m}$	
	echo time calculated: $0.54s$ with acquisition delay $0.02s$	
9.5	Um mal eine und mal die andere Röhre zu sehen,	
	muss die echo time oder polarisation time varriert werden	

1.3 J-Kopplung (1h)

Paramters

Shimming values x = 10.11 mA; y = 20.88 mA; z = 20.07 mATuning the probe Kapazität: 13.8 nF; Polarisationsstrom: 6A;

Receiver gain: 2; transmit gain (B1): 2.5 Polaraisationszeit: 4s; Repetition time: 15s;

Number of scans: 1

Setting B1 to lamor frequency 1837 Hz

duration 90 and 180 pulse 90 Grad: 1.35 ms; 180 Grad: 2.7ms

Werte

1732.24	Lamorfrequenz für Fluor (Hz)
1841.40	Lamorfrequenz für Wasserstoff (Hz)
20.2	Kapazität getuned für Fluor (theoretisch) (nF)
15.6	Kapazität getuned für Fluor (empirisch) (Kapazität Wasserstoff $13.8\mathrm{nF})$ (nF)
13.8	Kapazität getuned für Wasserstoff (empirisch) (nF)
17.9	Kapazität getuned für Wasserstoff (theoretisch) (nF)
1786.82	Mittelwert Frequenzen
19.05	Kapazität Mittelwert (theoretisch)
14.7	Kapazität Mittelwert (empirisch)

Durchführung

12.1	Tunen Werte auf Mittelwerte von H und F
12.2	Run Pulse and collect experiment
12.3	Tune auf gute Werte der Frequenzen und run pulse and collect

1.4 2D Messung (1.5h)

Durchführung

14.1	T1: Open "GradientEchoImaging": 2D mode; "YZ" Orientation;		
	FOV: 120mm; matrix: 32*16 (zero-filled to 64*64);		
	B1 frequency: 1837 Hz, phase gradient duration: 50ms; echo time: 200ms;		
	bandwidth: 64Hz; number of scans: 4 with filtering;		
14.2	(TR: 50%! Ca. 4s) polarisation time gleich wie kleinste gemessene T1		
14.3	(TR: 50% !) polarisation time Mittelwert aus T1´s		
14.4	(TR: 50% ! Ca 8 s) polarisation time gleich wie größte gemessene T1		
14.5	(TR: 50%!) polarisation time doppelt so lange wie größte T1		
15.1	T2: Open "GradientEchoImaging": 2D mode; "YZ" Orientation;		
	FOV: 120mm; matrix: 32*16 (zero-filled to 64*64);		
B1 frequency: 1837 Hz, phase gradient duration: 50ms; echo t			
	bandwidth: 64Hz; number of scans: 4 with filtering;		
	polarizing duration aus Schritt 14.5		
15.2	kürzest mögliche echo time (ca. 200ms)		
15.3	echo time (ca. 250 ms)		
15.4	echo time (ca. 300ms)		
15.5	echo time (ca. 450ms)		

1.5 PGSE (0.75h)

Durchführung

16.1	Open PGSE dialog

16.2 Paramter einstellen wie auf Abb. 4.1 + pulse width step size 5 ms und Number of steps 10 siehe Abb. 4.2

Abbildung 1.1: 1

Abbildung 1.2: 2