ESTATÍSTICA – Análise Exploratória

Prof. Eng. Rodolfo M. de Paiva

• Um pouco da História da Matemática e da Estatística

- A **Matemática** é uma ciência bem mais antiga do que a **Estatística** formal que conhecemos hoje.
- É fato que só houveram (na origem), descobertas e avanços matemáticos em regiões que tinham a necessidade da **agricultura.**
- Aos poucos, os profissionais das ciências exatas foram surgindo (corda, balança, astros...), e com eles novas necessidades de descobertas junto com o desenvolvimento das cidades.
- A **Matemática Primitiva** teve quatro alicerces: Clima, Agricultura, Comércio e Registro.

A Ciência Estatal

Esteve presente entre os hebreus, chineses, egípcios, maias, romanos, hindus, persas e babilônios, povos que se organizaram ao redor de um Estado, que necessitavam de informações censitárias, informações essas que eram colhidas pelo **estadista**.

A Estatística

1858 – Florence Nightingale, com o trabalho:

"Notas sobre os Assuntos que Afetam a Eficiência da Saúde e Administração Hospitalar do Exército Britânico" Nascida em 12 de Maio de 1820, Florence Nightingale era enfermeira britânica.

Com o passar do tempo a Estatística foi tomando forma, com os avanços de outros conteúdos matemáticos:

Tendo a atenção de estudiosos como: Christian Huygens, Pierre Fermat, Blaise Pascal, John Graunt, Jacques Bernoulli, Thomas Bayes, Poisson, Mary Somerville, entre outros...

No final do século XIX, com Francis Galton, Francis Ysidro Edgeworth, Karl Pearson e George Udny Yule, a Estatística ganhou sua aplicabilidade e operacionalidade, além do visual moderno.

Importância:

- Tomada de decisão;
- Quantificar incerteza;
- Levantamento de dados;
- Entendimento de um fenômeno;
- Etc...

Áreas de aplicação:

- Bioestatística;
- Ciência Atuarial;
- Demografia;
- Econometria;
- Epidemologia;
- Geoestatística;
- Controle da Qualidade;
- Data Science;
- B.I.;
- Etc...

Embora a Estatística Clássica se fez por conta de conteúdos da Matemática, hoje em dia sabemos que são **ciências distintas**, com algumas coisas em interseção.

De volta para a Estatística...

Tipos de Dados

Os dados (variáveis), são classificados em dois grupos:

Quantitativo X Qualitativo

Quantitativo: Discreto = Números inteiros, contagem, é mensurável Contínuo = Conjunto dos Reais, também mensurável

Qualitativo: Ordinal = Apresenta hierarquia Nominal = Não apresenta hierarquia • Gráficos Estatísticos para Variáveis Qualitativas e Quantitativas

Gráficos auxiliam de uma forma rápida e prática que entendamos o comportamento de um fenômeno.

• Gráficos para Variáveis Qualitativas:

Gráfico de Setores ou Circular

Gráfico de Barras

• Gráficos para Variáveis Quantitativas:

Dotplot of Random Values

Dotplot ou **Strip Chart**

Variável

Boxplot

Histograma

• Coleta e Organização de Dados

A coleta de dados é uma parte extremamente importante, pois sem dados não existe a possibilidade de ser feito qualquer tipo de estudo estatístico.

Para obter dados, a Estatística utiliza amostragens, que podem ser **probabilísticas** e **não probabilísticas**.

Tipos de Amostragem

• Probabilística:

- Aleatória Simples;
- Sistemática;
- Estratificada;
- Conglomerados.

• Não Probabilística:

- Intencional;
- Cotas;
- Conveniência.

Uma vez os dados coletados, a forma mais prática de organizálos é por meio de **tabelas**.

Aparelho	Potência (KW)	Tempo de uso diário (horas)
Ar condicionado	1,5	8
Chuveiro elétrico	3,3	1/3
Freezer	0,2	10
Geladeira	0,35	10
Lâmpadas	0,10	6

Nº de pessoas que doaram	Valor Doado	
12	R\$ 5,00	
10	R\$ 7,00	
8	R\$ 10,00	
7	R\$ 12,00	
3	R\$ 15,00	

Com os dados observados, é possível extrair vários tipos de informações!

• Frequência Relativa e Frequência Absoluta

N° de veículos	Frequência Absoluta f _i	Frequência relativa f _{ri} (%)	Frequência acumulada F _{ac}	Frequência Acumulada Relativa F _{Ri} (%)
0	6	30%	6	30%
1	8	40%	14	70%
2	3	15%	17	85%
3	2	10%	19	95%
4	1	5%	20	100%
Total	20	100%		

• Medidas de Tendência Central

Média (Esperança):

$$\overline{X} = \mu = \frac{\sum X_i}{n}$$

• Moda:

Valor ou classe que mais se repete, podendo ser: Amodal, Unimodal, Bimodal, ... Representada por Mo

• Mediana:

Mediana: Elemento central
$$M_e = \begin{bmatrix} X_{(\frac{n+1}{2})}, & \text{se "n" \'e impar} \\ X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)} \\ \hline 2, & \text{se "n" \'e par} \end{bmatrix},$$

Medidas de Dispersão

• Amplitude:

$$R = X_{(n)} - X_{(1)}$$

• Variância:

$$s^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})^{2}}{n-1} \qquad \sigma^{2} = \sum_{i=1}^{N} \frac{(x_{i} - \mu)^{2}}{N}$$

• Desvio Padrão (Desvio Médio):

$$s = \sqrt{s^2}$$
 $\sigma = \sqrt{\sigma^2}$

• Coeficiente de Variação (CV):

$$CV = \frac{\sigma}{\mu} ou \frac{s}{\overline{x}}$$

*Normalmente multiplicamos o resultado por **100** para expressá-lo em %.

Medidas Separatrizes

Valores que dividem os dados em partes iguais:

• Quartis: Dividem os dados em 4 partes iguais

• Decis: Dividem os dados em 10 partes iguais

• Centis: Dividem os dados em 100 partes iguais

Normalmente os quartis são os mais usados.

• Quartis:

n = número total de elementos

$$j(n+1)/4$$
, para $j=1,2 e 3$

 $k = o \text{ maior inteiro } \leq j(n+1)/4$

$$Q_j = X_k + \left(\frac{j(n+1)}{4} - k\right)(X_{k+1} - X_k)$$

1° Quartil:
$$Q_1 = X_1 + \left(\frac{n+1}{4} - k\right)(X_{k+1} - X_k)$$

2º Quartil:
$$Q_2 = X_3 + \left(\frac{2(n+1)}{4} - k\right)(X_{k+1} - X_k)$$

3° Quartil:
$$Q_3 = X_5 + \left(\frac{3(n+1)}{4} - k\right)(X_{k+1} - X_k)$$

• Quartis:

Representação gráfica:

Com essas ferramentas de análise exploratória de dados da **Estatística Descritiva** é possível entender o comportamento de diversos fenômenos do dia a dia, basta **ter** ou **iniciar** a coleta de dados e na sequência:

APLICAR!

