Detergentes: Se ha pedido a dos grupos de amas de casa que califiquen dos tipos de detergentes.

Ama de Casa	Grupo A	Grupo B
1	2	4
2	3	3
3	3	2
4	4	2
5	2	1
6	4	3
7	3	2
8	5	3
9	4	4
10	2	2
11	3	2
12	4	2

¿El detergente A es mejor que es detergente B?

Ho: El detergente A es igual de bueno (preferido) que el detergente B.

Vs

Ha: El detergente A es mejor (más preferido) que el detergente B.

A lo que es equivalente decir:

Ho: $P(Xi > Yi) = P(Xi < Yi) = \frac{1}{2}$ (la diferencia de las medias de las dos condiciones es cero)

Vs

Ha: P(Xi>Yi) > P(Xi<Yi)

Todas las pruebas se harán a un nivel de confianza del 95%

A) Utilice la prueba U de Mann y Whitney

Para la prueba U, es necesario organizar ambos grupos en una matriz, de tal forma que el primer grupo (A) esté es la parte superior y el segundo grupo (B) en la parte de la izquierda.

		1	2	3	4	5	6	7	8	9	10	11	12
8	P	2	3	3	4	2	4	3	5	4	2	3	4
1	4												
2	3												
3	2												
4	2												
5	1												
6	3												
7	2												
8	3												
9	4												
10	2												
11	2												
12	2												

Una vez construida la matriz, se llenará cada celda interior de ella respecto a las siguientes condiciones:

- Si el número de la categoría B es mayor al de la categoría A, entonces la celda tendrá el valor 1.
- Si el número de la categoría B es igual al de la categoría A, entonces la celda tendrá el valor 0.5.
- Si el número de la categoría B es menor al de la categoría A, entonces la celda tendrá el valor 0.

Se obtiene la siguiente tabla:

		1	2	3	4	5	6	7	8	9	10	11	12
9	NE	2	3	3	4	2	4	3	5	4	2	3	4
1	4	1	1	1	0.5	1	0.5	1	0	0.5	1	1	0.5
2	3	1	0.5	0.5	0	1	0	0.5	0	0	1	0.5	0
3	2	0.5	0	0	0	0.5	0	0	0	0	0.5	0	0
4	2	0.5	0	0	0	0.5	0	0	0	0	0.5	0	0
5	1	0	0	0	0	0	0	0	0	0	0	0	0
6	3	1	0.5	0.5	0	1	0	0.5	0	0	1	0.5	0
7	2	0.5	0	0	0	0.5	0	0	0	0	0.5	0	0
8	3	1	0.5	0.5	0	1	0	0.5	0	0	1	0.5	0
9	4	1	1	1	0.5	1	0.5	1	0	0.5	1	1	0.5
10	2	0.5	0	0	0	0.5	0	0	0	0	0.5	0	0
11	2	0.5	0	0	0	0.5	0	0	0	0	0.5	0	0
12	2	0.5	0	0	0	0.5	0	0	0	0	0.5	0	0

Se define la variable aleatoria Ux de la siguiente manera:

$$U_{x} = \sum_{i=1}^{n1} \sum_{j=1}^{n2} Wij$$

Esto es, en pocas palabras, sumar todos los valores internos de la matriz y en donde n1 y n2 son el número de datos de ambas categorías. Su esperanza y varianza tienen por valores:

$$E(U_x) = \frac{n_1 n_2}{2}$$
 $V(U_x) = \frac{1}{12} n_1 n_2 (n_1 + n_2 + 1)$

Además, también hace falta el calculo de Uy, que está definida:

$$U_{Y} = n_{1}n_{2} - U_{X}$$

Dicho esto, se proceden a calcular cada uno de estos estadísticos.

Tema: Pruebas No Paramétricas

n1	12
n2	12
n1*n2	144
Ux	42
Uy	102
E(U) =	72
V(U)=	300
EE(U)=	17.320508

Como puede apreciarse, la variable Ux es menor que la Uy y por lo tanto es esta la que se ocupa para calcular el estadístico Z de prueba. De haber sido lo contrario, Uy estaría en su lugar. **EE(U)** no es más que la raíz cuadrada de la varianza.

ESTADÍSTICO Z:

$$Z = \frac{U - n_1 n_2 / 2}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}}$$

Consecuentemente, calculando con una función cuantil el P-value:

P value	0.0416323
P value	0.0832645

Como la prueba es de una cola, se puede concluir que: bajo un nivel de confianza del 95% y utilizando la prueba **U de Mann y Whitney**, se tiene prueba estadística (a mi parecer no tan suficiente) para **rechazar la hipótesis nula**, pues el P-Value es menor a .05. Por lo tanto, el detergente A es mejor (más preferido) que el detergente B.

B) Utilice la prueba T para dos grupos independientes y suponga varianzas iguales.

Se procede a hacer los cálculos de la media, desviación estándar y el número de registros de ambas columnas.

Ama de Casa	Grupo A	Grupo B
1	2	4
2	3	3
3	3	2
4	4	2
5	2	1
6	4	3
7	3	2
8	5	3
9	4	4
10	2	2
11	3	2
12	4	2
Media	3.25	2.5
S ²	0.932	0.8182
n i	12	12

Se define la siguiente variable, junto con los siguientes resultados:

$$\begin{array}{ccc} \text{Sp 2} & & 0.875 \\ \text{Sp} & & 0.935 \end{array} \quad \boldsymbol{S}_p = \sqrt{\frac{(\mathbf{n}_1 - 1)\boldsymbol{S}_{\mathbf{x}}^2 + (\mathbf{n}_2 - 1)\boldsymbol{S}_{\mathbf{y}}^2}{\mathbf{n}_1 + \mathbf{n}_2 - 2}} \end{array}$$

En donde **Sp2** es el cuadrado de Sp. Esta última es necesaria para el cálculo del estadístico de prueba T, cuyo valor obtenido es:

ESTADÍSTICO T
$$T = \frac{(X - Y) - (\mu_{x} - \mu_{y})}{S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \rightarrow t_{n1+n2-2}$$

Con ayuda de una función cuantil para la T cola derecha se obtiene:

P value una cola 0.031
P value una dos colas 0.062

Con lo cual puede concluirse con un nivel del 95% de confianza, que se **rechaza la hipótesis nula** pues el P-Valor es menor que .05 (alfa). Se llegó bajo la prueba no paramétrica como la paramétrica a la misma conclusión: **Se prefieres más el detergente A que el detergente B.**

Extra) Calculo de Excel

Se puede utilizar el complemento de Excel para realizar la misma prueba cuyos resultados son los mismos para la prueba T.

t-Test: Two-Sample Assuming Equal Variances

	Variable 1	Variable 2
Mean	3.25	2.5
Variance	0.93181818	0.818181818
Observations	12	12
Pooled Variance	0.875	
Hypothesized Mean Difference	0	
df	22	
t Stat	1.96396101	
P(T<=t) one-tail	0.03114705	
t Critical one-tail	1.71714437	
P(T<=t) two-tail	0.0622941	
t Critical two-tail	2.07387307	