ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ 2024

ΠΕΤΡΟΣ ΑΓΓΕΛΑΤΟΣ - 03108133

Θ EMA 1

Ερώτημα 1

Θεώρημα: Το \mathcal{F} δεν είναι αριθμήσιμο.

 $A\pi\delta\delta\epsilon$ ιξη. Αρχεί να δείξουμε ότι $|2^\mathbb{N}|\leq |\mathcal{F}|$. Γνωρίζουμε ότι το $2^\mathbb{N}$ δεν είναι αριθμήσιμο άρα αν $|2^\mathbb{N}|\leq |\mathcal{F}|$ τότε και το \mathcal{F} δεν είναι αριθμήσιμο.

Αρχεί να δείξουμε ότι υπάρχει ένα προς ένα συνάρτηση $M: 2^\mathbb{N} \to \mathcal{F}$. Ορίζουμε την συνάρτηση αντιστοίχισης $M(S) = f_S$ όπου:

$$f_S(x) = \begin{cases} 1 \text{ if } x \in S \\ 0 \text{ otherwise} \end{cases}$$

Θα δείξουμε ότι η M είναι ένα προς ένα, δηλαδή ότι $S_1 \neq S_2 \Rightarrow M(S_1) \neq M(S_2).$

- 1. Έστω ότι υπήρχαν σύνολα $S_1, S_2 \in 2^{\mathbb{N}}: S_1 \neq S_2 \wedge M(S_1) = M(S_2)$
- 2. Από την υπόθεση ότι $S_1 \neq S_2$ υπάρχει $w \in \mathbb{N}: w \in S_1 \wedge w \not \in S_2.$
- 3. Από την υπόθεση ότι $M(S_1)=M(S_2)$ ισχύει ότι $\forall x\in\mathbb{N}: f_{S_1}(x)=f_{S_2}(x)$
- 4. Όμως $f_{S_1}(w) = 1$ και $f_{S_2}(w) = 0$
- 5. Άτοπο, άρα η M είναι ένα προς ένα.

Ερώτημα 2

Λήμμα 1: Η σχέση E είναι ανακλαστική: $\forall a \in \mathcal{F}: E(a,a)$

Απόδειξη. Έστω αυθαίρετο $a \in \mathcal{F}$ και m=0. Ισχύει ότι $\forall n \geq m : a(n)=a(n)$. Άρα ισχύει ότι E(a,a).

П

Λήμμα 2: H σχέση E είναι συμμετρική: $\forall a,b \in \mathcal{F}: E(a,b) \Leftrightarrow E(b,a)$

Aπόδειξη. Αρχεί να δείξουμε ότι $E(a,b) \Rightarrow E(b,a).$

- 1. Έστω αυθαίρετα $a, b \in \mathcal{F}$.
- 2. Από την υπόθεση ότι E(a,b) ισχύει ότι $\exists m: \forall n \geq m: a(n) = b(n)$
- 3. Όμως το = είναι συμμετρικό, άρα $\exists m: \forall n \geq m: b(n) = a(n)$
- 4. Άρα ισχύει ότι E(b,a)

Λήμμα 3: Η σχέση E είναι μεταβατική: $\forall a,b,c\in\mathcal{F}: E(a,b)\wedge E(b,c)\Rightarrow E(a,c)$

Aπόδειξη.

- 1. Έστω αυθαίρετα $a, b, c \in \mathcal{F}$.
- 2. Από την υπόθεση ότι $\mathbf{E}(a,b)$ ισχύει ότι $\exists m_1: \forall n \geq m_1: a(n) = b(n)$
- 3. Από την υπόθεση ότι $\mathbf{E}(b,c)$ ισχύει ότι $\exists m_2: \forall n \geq m_2: b(n) = c(n)$
- 4. Θέτουμε $m = \max(m_1, m_2)$
- 5. Ισχύει ότι $\forall n \geq m : a(n) = b(n) \land b(n) = c(n)$
- 6. Όμως το = είναι μεταβατικό άρα $\forall n \geq m : a(n) = c(n),$ άρα E(a,c)

Θεώρημα: H σχέση E είναι σχέση ισοδυναμίας στο \mathcal{F} .

Aπόδειξη. Από τα λήμματα 1, 2, 3 έχουμε ότι η σχέση E είναι ανακλαστική, συμμετρική, και μεταβατική. Άρα είναι σχέση ισοδυναμίας στο $\mathcal F$.

Ερώτημα 3

Θεώρημα 1: Κάθε κλάση ισοδυναμίας \mathcal{E}_f είναι αριθμήσιμη.

Aπόδειξη. Ορίζουμε μία απαρίθμηση του συνόλου \mathcal{E}_f με εποχές όπου η i-οστή εποχή περιέχει τις συνάρτησεις $g\in\mathcal{E}_f$ που το ελάχιστο σημείο από το οποίο και μετά είναι αυτόσημες με την f ισούται με i.

$$S_i = \left\{g \in \mathcal{E}_f : \mathop{\mathrm{argmin}}_i \{ \forall n \geq i : f(i) = g(i) \} \right\}$$

Ακεί να δείξουμε ότι κάθε εποχή έχει πεπερασμένα στοιχεία και ότι κάθε στοιχείο του συνόλου \mathcal{E}_f αντίστοιχεί σε κάποια εποχή. \Box

Λήμμα: Κάθε εποχή S_i είναι πεπερασμένη

Aπόδειξη. Μία αυθαίρετη εποχή i περιέχει συναρτήσεις οι οποίες διαφέρουν με την f σε το πολύ i σημεία. Άρα κάθε εποχή περιέχει το πολύ 2^i συναρτήσεις. \Box

Λήμμα: Κάθε συνάρτηση $g \in \mathcal{E}_f$ ανήκει σε κάποια εποχή

Aπόδειξη. Γνωρίζουμε ότι $\exists m: \forall n \geq m: f(n) = g(n).$ Άρα το σύνολο $\{i \in [0,m]: \forall n \geq i: f(i) = g(i)\}$ είναι μη κενό και πεπερασμένο, άρα έχει ελάχιστο στοιχείο $i_{\min}.$ Άρα η συνάρτηση g θα απαριθμηθεί στην εποχή $S_{i_{\min}}.$

Θεώρημα 2: Το σύνολο των κλάσεων ισοδυναμίας \mathcal{F}/E δεν είναι αριθμήσιμο.

Απόδειξη. Έστω προς άτοπο ότι το \mathcal{F}/E είναι αριθμήσιμο. Κάθε συνάρτηση $g\in\mathcal{F}$ θα ανήχει σε κάποια κλάση ισοδυναμίας \mathcal{E}_f η οποία εμφανίζεται σε κάποια θέση i της απαρίθμησης. Όμως και κάθε κλάση ισοδυναμίας είναι αριθμήσιμη άρα η συνάρτηση g θα εμφανίζεται σε κάποια θέση j της απαρίθμησής της. Αντιστοιχούμε σε κάθε συνάρτηση $g\in\mathcal{F}$ το ζεύγος (i,j). Όμως το σύνολο $\mathbb{N}\times\mathbb{N}$ είναι αριθμήσιμο, άρα και το σύνολο \mathcal{F} είναι αριθμήσιμο.

Ερώτημα 4

Οι κρατούμενοι προτού παραταχθούν πρέπει να συμφωνήσουν και να απομνημονεύσουν τον αντιπρόσωπο f για κάθε κλάση ισοδυναμίας του $\mathcal F$. Επίσης συμφωνούν ότι το πράσινο καπέλο αντιστοιχεί στην τιμή 0 και το κόκκινο καπέλο στην τιμή 1.

Έστω ότι φρουροί φορούν καπέλα στους κρατούμενους σύμφωνα με μία αυθαίρετη συνάρτηση $h\in\mathcal{F}$. Την ημέρα που παρατάσσονται ο i-οστός κρατούμενος παρατηρεί τα h(x) για x>i και κατασκευάζει την συνάρτηση

$$g_i(x) = \begin{cases} 0 & \text{if } x \le i \\ h(x) & \text{otherwise} \end{cases}$$

Στη συνέχεια υπολογίζει τον αντιπρόσωπο f της κλάσης ισοδυναμίας στην οποία ανήκει η g_i και μαντεύει ότι το καπέλο που φοράει έχει χρώμα f(i).

Παρατηρούμε ότι κάθε συνάρτηση g_i αλλά και η συνάρτηση h ανήκει στην ίδια κλάση ισοδυναμίας. Από τον ορισμό της κλάσης ισοδυναμίας ισχύει ότι $\exists m: \forall n \geq m: f(n) = h(n)$. Άρα κάθε κρατούμενος με $\mathrm{AM} \geq m$ θα μαντέψει σωστά το καπέλο του και θα απελευθερωθούν.

Εφόσον το σύνολο των κλάσεων ισοδυναμίας δεν είναι αριθμήσιμο ο κάθε κρατούμενος θα πρέπει να απομνημονεύσει μη αριθμήσιμο όγκο πληροφορίας.

Θ EMA 2

Ερώτημα 1

Ορίζουμε εποχές E_i όπου κάθε εποχή περιέχει όλες τις συμβολοσειρές με μήκος i. Κάθε εποχή είναι πεπερασμένη επειδή υπάρχουν 2^i διαφορετικές συμβολοσειρές.

$$E_i = \{x \in \{0, 1\}^* : |x| = i\}$$

Συνεπώς μπορούμε να ορίσουμε μία διαδικασία απαρίθμησης του E_S ως εξής:

Και ομοίως για το σύνολο $E_{\overline{S}}$ ως εξής:

```
\begin{array}{lll} 1 & \mathbf{let} \ i \leftarrow 0 \\ \\ 2 & \mathbf{while} \ \mathbf{true} \\ \\ 3 & \mathbf{for} \ \mathbf{x} \ \mathbf{in} \ E_i \mathbf{:} \\ \\ 4 & \mathbf{if} \ A_S(x) = 0 \mathbf{:} \\ \\ 5 & \mathbf{yield} \ \mathbf{x} \\ \\ 6 & i \leftarrow i+1 \end{array}
```

Ερώτημα 2

Ορίζουμε ως P(i) το i-οστό στοιχείο που απαριθμεί μία διαδικασία απαρίθμησης P. Ο υπολογισμός κάποιου P(i) γίνεται σε πεπερασμένα βήματα. Κάθε στοιχείο x ανήκει είτε στο σύνολο S είτε στο \overline{S} . Άρα για κάθε στοιχείο x θα υπάρχει κάποιος φυσικός αριθμός k τέτοιος ώστε $E_S(k)=x$ V $E_{\overline{S}}(k)=x$. Συνεπώς μπορούμε να κατασκευάσουμε ένα μαντείο $A_S(x)$ ως εξής:

```
\begin{array}{c|c} \underline{As}(\mathbf{x}) \colon \\ 1 & \mathbf{let} \ i \leftarrow 0 \\ 2 & \mathbf{while} \ \mathbf{true:} \\ 3 & \mathbf{if} \ E_S(i) = x \mathbf{:} \\ 4 & \mathbf{return} \ 1 \\ 5 & \mathbf{if} \ E_{\overline{S}}(i) = x \mathbf{:} \\ 6 & \mathbf{return} \ 0 \\ 7 & i \leftarrow i+1 \end{array}
```

Θ EMA 3

Σημείωση: Υποθέτουμε ότι όταν λέμε "υπάρχουν δύο μουσικοί" εννοούμε δύο διαφορετικοί μουσικοί. Στην περίπτωση που θέλουμε να εννοούμε δύο μουσικούς που θα μπορούσαν να είναι και ο ίδιος μπορούμε να αγνοήσουμε τον όρο $m_1 \neq m_2$ στις παρακάτω προτάσεις.

1. Το ελάχιστο πλήθος οργάνων που παίζει κάποιος μουσικός είναι δύο.

$$\forall m(M(m) \Rightarrow \exists i_1 \exists i_2 (i_1 \neq i_2 \land I(i_1) \land I(i_2) \land P(m, i_1) \land P(m, i_2)))$$

2. Υπάρχουν δύο μουσικοί που δεν συμπαθεί ο ένας τον άλλο και υπάρχει όργανο που παίζουν και οι δύο.

$$\exists m_1 \exists m_2 (\quad m_1 \neq m_2 \land M(m_1) \land M(m_2) \land \neg L(m_1, m_2) \\ \land \exists i (I(i) \land P(m_1, i) \land P(m_2, i)))$$

3. Αν δύο μουσιχοί παίζουν αχριβώς τα ίδια όργανα, τότε συμπαθεί ο ένας τον άλλο.

$$\forall m_1 \forall m_2 (\quad m_1 \neq m_2 \land M(m_1) \land M(m_2)$$
$$\land \forall i (I(i) \Rightarrow P(m_1, i) \Leftrightarrow P(m_2, i)) \Rightarrow L(m_1, m_2))$$

4. Υπάρχουν δύο μουσικοί που συμπαθεί ο ένας τον άλλο και υπάρχει ένα όργανο που παίζουν και οι δύο, αλλά δεν παίζουν ακριβώς τα ίδια όργανα.

$$\begin{split} \exists m_1 \exists m_2 (& m_1 \neq m_2 \land M(m_1) \land M(m_2) \land L(m_1, m_2) \\ & \land \exists i (I(i) \land P(m_1, i) \land P(m_2, i)) \\ & \land \exists i (I(i) \land P(m_1, i) \Leftrightarrow \neg P(m_2, i))) \end{split}$$

5. Αν ένας μουσικός παίζει όλα τα όργανα, εκτός ίσως από ένα, τότε τον συμπαθούν όλοι οι άλλοι μουσικοί.

$$\begin{split} \forall m_1 (\\ (M(m_1) \wedge \forall i_1 \forall i_2 (I(i_1) \wedge I(i_2) \wedge i_1 \neq i_2 \Rightarrow P(m_1, i_1) \vee P(m_1, i_2))) \\ \Rightarrow \forall m_2 (M(m_2) \wedge m_1 \neq m_2 \Rightarrow L(m_2, m_1))) \end{split}$$

Θ EMA 4

Ερώτημα α.1

Έστω ένα σύμπαν έξι στοιχείων $U=\{a,b,c,d,e,f\}$. Για να αληθεύει η πρόταση ψ αρχεί να μην αληθεύει η φ_1 . Για να μην αληθεύει η φ_1 αρχεί να υπάρχει χάποιο στοιχείο που να μην σχετίζεται με χανένα στοιχείο διαφορετιχό από εχείνο. Για παράδειγμα η παραχάτω ερμηνεία όπου τα χενά μπορεί να πάρουν οποιαδήποτε τιμή:

P	a	b	c	d	е	f
a						
b	F					
c	F					
d	F					
е	F					
f	F					

Για να μην αληθεύει η πρόταση ψ αρχεί να μην αληθεύει η φ_4 . Για να μην αληθεύει η φ_4 αρχεί να υπάρχουν δύο διαφορετικά στοιχεία που σχετίζονται και προς τις δύο κατευθύνσεις. Για παράδειγμα η παρακάτω ερμηνεία όπου τα κενά μπορεί να πάρουν οποιαδήποτε τιμή:

P	a	b	c	d	е	f
a		Т				
b	Т					
c						
d						
е						
f						

Ερώτημα α.2

Αρχεί να δείξουμε ότι $\exists x\exists y(P(x,y)\land P(y,x)\land x\neq y)$ υποθέτοντας ότι ισχύει ότι $\varphi_1\land\varphi_2\land\varphi_3$. Έστω ένα αυθαίρετο στοιχείο του σύμπαντος $x\in U$ και μία ακολουθία $S:S_n\in U$ για την οποία ισχύει ότι

$$(S_0 = x) \land \forall n \in \mathbb{N} : (S_n \neq S_{n+1} \land P(S_n, S_{n+1}))$$

Μία τέτοια αχολουθία υπάρχει γιατί $S_n \in U$ και από φ_1 υπάρχει επόμενο στοιχείο.

Λήμμα: $\forall n \in \mathbb{N} \ \forall k \in \mathbb{N}^+ : P(S_n, S_{n+k})$

Aπόδειξη. Έστω αυθαίρετο $a \in \mathbb{N}$. Θα το δείξουμε ότι ισχύει η πρόταση με επαγωγή στο k.

- Για k=1 έχουμε $P(S_a,S_{a+1})$ που ισχύει από τον ορισμό του S.
- Έστω ότι ισχύει $P(S_a,S_{a+k})$. Από τον ορισμό του S ισχύει ότι $P(S_{a+k},S_{a+k+1})$ και από φ_3 έχουμε ότι $P(S_a,S_{a+k+1})$.

Λήμμα: $\exists a,b \in [0,|U|]: a \neq b \land S_a = S_b$

Απόδειξη. Από την αρχή του περιστερώνα.

Χωρίς βλάβη της γενικότητας έστω ότι a < b. Λόγω του ορισμού της S δεν μπορεί να ισχύει ότι b = a + 1. Άρα $b = a + \kappa$ όπου $\kappa \ge 2$.

Από τον ορισμό της S έχουμε ότι $P(S_a,S_{a+1})$ και από το προηγούμενο λήμμα έχουμε ότι $P(S_{a+1},S_{a+\kappa})$. Όμως $S_{a+\kappa}=S_b=S_a$ άρα $P(S_{a+1},S_a)$.

Ερώτημα β.1

Αν υποθέσουμε ότι το σύμπαν πρόχειται για έναν κατευθυνόμενο γράφο τότε η πρόταση λέει:

Αν για κάθε ζεύγος διαφορετικών κορυφών υπάρχει μεταξύ τους ακμή προς τη μία ή την άλλη κατεύθυνση τότε υπάρχει κάποια κορυφή στην οποία συνδέεται κάθε άλλη κορυφή είτε απευθείας εύτε μέσω κάποιας ενδιάμεσης κορυφής.

Ερώτημα β.2

Θεώρημα: Ο φ αλθηθεύει σε κάθε ερμηνεία με πεπερασμένο σύμπαν.

Aπόδειξη. Θα εργαστούμε επαγωγικά με επαγωγή στον πληθάριθμο του σύμπαντος. Για χάρην συντομίας στην απόδειξη όταν ένα στοιχείο x του σύμπαντος έχει την ιδιότητα $\forall y(x\neq y\Rightarrow P(y,x) \vee \exists z(P(y,z) \wedge P(z,x)))$ θα λέμε ότι το x είναι κομβικό στοιχείο.

Βάση επαγωγής

Έστω ένα σύμπαν με ένα στοιχείο a. Τότε με αντικατάσαση των ποσοδεικτών έχουμε:

$$\varphi = (a \neq a \rightarrow P(a, a) \lor P(a, a)) \rightarrow (a \neq a \rightarrow P(a, a) \lor (P(a, a) \land P(a, a)))$$

Όμως $a \neq a \equiv F$ και από ιδιότητα συνεπαγωγής $F \to T \equiv T$, άρα ο φ ισχύει σε κάθε σύμπαν με ένα στοιχείο.

Επαγωγικό βήμα

- a. Έστω αυθαίρετο σύμπαν $U=U'\cup\{s\}$ με $s\notin U',\ |U'|=n$ και |U|=n+1.
- b. Έστω ότι $\forall x \forall y (x \neq y \Rightarrow P(x,y) \lor P(y,x))).$
- c. Από επαγωγική υπόθεση και (b) υπάρχει κομβικό στοιχείο $t \in U'$ για το οποίο ισχύει ότι:

$$\forall y(y \neq s \land y \neq t \Rightarrow P(y,t) \lor \exists z(z \neq s \land P(y,z) \land P(z,t))))$$

d. Αρχεί να δείξουμε ότι υπάρχει κομβικό στοιχείο του U.

Περίπτωση Α $P(s,t) \vee \exists z (P(s,z) \wedge P(z,t))$. Θα δείξουμε ότι το t είναι χομβικό στοιχείο του U.

- 1. Ισχύει ότι $\forall y(t \neq y \Rightarrow P(y,t) \vee \exists z(P(y,z) \wedge P(z,t))))$ από (c) και υπόθεση περίπτωσης Α.
- 2. Άρα το t είναι κομβικό στοιχείο του U.

Περίπτωση Β $\neg P(s,t) \wedge \forall z (\neg P(s,z) \vee \neg P(z,t))$. Θα δείξουμε ότι το s είναι κομβικό στοιχείο του U.

- 1. Έστω αυθαίρετο στοιχείο $y \neq s$.
- 2. Περίπτωση y=t
 - 2.1. Ισχύει ότι $\neg P(s,y)$ από υπόθεση περίπτωσης B και (2).
 - 2.2. Ισχύει ότι P(y,s) από (b), (1) και (2.1).
- 3. Περίπτωση $y \neq t$
 - 3.1. Ισχύει ότι $P(y,t) \vee \exists w(w \neq s \wedge P(y,w) \wedge P(w,t)))$ από (c), (1), και (3)
 - 3.2. Περίπτωση P(y,t)
 - 3.2.1. Ισχύει ότι $\neg P(s,y)$ από υπόθεση περίπτωσης B και P(y,t) 3.2.1.1. Ισχύει ότι P(y,s) από (b) και (1)
 - 3.3. Περίπτωση $\exists w(w \neq s \land P(y,w) \land P(w,t))$
 - 3.3.1. Ισχύει ότι $\neg P(s,w)$ από υπόθεση περίπτωσης $\mathbf B$ και P(w,t).

- 3.3.2. Ισχύει ότι P(w,s) από (b) και $w \neq s$.
- 3.3.3. Ισχύει ότι $\exists w(P(y,w) \land P(w,s))$ από (3.3) και (3.3.2)
- 4. Ισχύει ότι το s είναι κομβικό στοιχείο του U από (1), (2) και (3).

Άρα σε κάθε περίπτωση το U έχει κομβικό στοιχείο.

Θ EMA 5

Ορίζουμε αρχικά την συνάρτηση για W=0. Επειδή όλα τα w_i είναι θετικά υπάρχει μόνο ένα υποσύνολο του S:w(S)=0, το κενό σύνολο.

$$C(k,0) = 1$$

Στη συνέχεια ορίσουμε τη συνάρτηση για k=1. Σε αυτή την περίπτωση υπάρχουν μόνο δύο υποσύνολα του S, το κενό σύνολο και το μονοσύνολο $\{w_1\}$ με $w(\emptyset)=0$ και $w(\{w_1\})=w_1$ αντίστοιχα. Συνεπώς

$$C(1,W) = \begin{cases} 1 \text{ if } W = 0 \lor W = w_1 \\ 0 \text{ otherwise} \end{cases}$$

Τέλος, ορίζουμε την αναδρομή σχέση. Το πλήθος των υποσυνόλων του $\{w_1,...,w_k\}$ που έχουν άθροισμα W είναι το πλήθως των υποσυνόλων χωρίς το w_k που έχουν άθροισμα W και το πλήθος των υποσυνόλων χωρίς το w_k που έχουν άθροισμα $W-w_k$, όταν η διαφορά δεν είναι αρνητική.

$$C(k,W) = C(k-1,W) + \begin{cases} 0 & \text{if } W < w_k \\ C(k-1,W-w_k) & \text{otherwise} \end{cases}$$

Θ EMA 6

Μεγαλύτερη αλυσίδα

Θεώρημα: Κάθε αλυσίδα του $(2^S,\subseteq)$ έχει μήκος το πολύ |S|+1

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

- 1. Έστω μία αυθαίρετη αλυσίδα $C=\{X_1,X_2,...,X_n\}$ του $\left(2^S,\subseteq\right)$ με |C|=n.
- 2. Έστω χωρίς βλάβη της γενικότητας ότι $X_1\subset X_2\subset \ldots \subset X_n.$
- 3. Έστω προς άτοπο ότι n>|S|+1
- 4. Ισχύει ότι $|X_i| \ge i-1$ από επαγωγή στο i.
 - 1. Για i=1 ισχύει από τον ορισμό του πληθάριθμου

$$2.$$
 Αν $|X_i| \geq i-1$ τότε $X_i \subset X_{i+1} \Rightarrow |X_i| < |X_{i+1}| \Rightarrow |X_{i+1}| \geq i$

- 5. Ισχύει ότι $|X_n|>|S|$ επειδή $|X_n|\geq n-1$ και n>|S|+1.
- 6. Ισχύει ότι $|X_n| \leq |S|$ επειδή $X_n \in 2^S$ και άρα $X_n \subseteq S$
- 7. Άτοπο

Θεώρημα: Υπάρχει αλυσίδα του $(2^S,\subseteq)$ με μήκος |S|+1

Aπόδ ϵ ιξη. Θεωρούμε μία απαρίθμηση $x_1, x_2, ..., x_n$ του S. Ορίζουμε μία ακολουθία υποσυνόλων αναδρομικά.

$$s(n) = \begin{cases} \emptyset & \text{if } n = 0 \\ s(n-1) \cup x_n & \text{otherwise} \end{cases}$$

Ισχύει ότι $i < j \Rightarrow s(i) \subset s(j)$. Άρα υπάρχει αλυσίδα $C = \{s(0), s(1), ..., s(n)\}$ μήχους n+1.

Μεγαλύτερη αντιαλυσίδα

Μία αντιαλυσίδα θα αποτελείται από υποσύνολα του 2^S τα οποία δεν έχουν σχέση υποσυνόλου. Για να υπολογίσουμε τη μέγιστη αντιαλυσίδα μπορούμε να υπολογίσουμε το πλήθος των υποσυνόλων του 2^S για κάθε δυνατό μέγεθος. Αν |S|=n τότε υπάρχουν $\binom{n}{k}$ υποσύνολα μεγέθους k. Η ποσότητα αυτή μεγιστοποιείται για $k=\frac{n}{2}$ άρα η μεγαλύτερη αντιαλυσίδα θα έχει μέγεθος