## Project: IMDB MOVIE DATA INVESTIGATION

#### Table of Contents

- Introduction
- Exploratory Data Analysis
- Conclusions

import matplotlib.pyplot as plt import numpy as np import pandas as pd

 $\label{eq:df_data_imdb-movies.csv'} $$ df=pd.read_csv('../input/imdb-data/imdb-movies.csv') $$ df.head() $$$ 

#### Out[121]:

|   |          | id  | imdb_id   | popularity | budget    | revenue    | original_title                     | cast                                                        | homepage                                           | director            | tagline                                | 0    | overview                                                         | runtime | genres                                       | production_companies                                 | release_date | vote_count vo | ote_av |
|---|----------|-----|-----------|------------|-----------|------------|------------------------------------|-------------------------------------------------------------|----------------------------------------------------|---------------------|----------------------------------------|------|------------------------------------------------------------------|---------|----------------------------------------------|------------------------------------------------------|--------------|---------------|--------|
|   | 0 1353   | 397 | tt0369610 | 32.985763  | 150000000 | 1513528810 | Jurassic<br>World                  | Chris Pratt Bryce<br>Dallas<br>Howard Irrfan<br>Khan Vi     | http://www.jurassicworld.com/                      | Colin<br>Trevorrow  | The park is open.                      | the  | venty-two<br>ears after<br>ne events<br>Jurassic                 | 124     | Action Adventure Science<br>Fiction Thriller | Universal Studios Amblin<br>Entertainment Legenda    | 6/9/15       | 5562          |        |
|   | 1 763    | 341 | tt1392190 | 28.419936  | 150000000 | 378436354  | Mad Max:<br>Fury Road              | Tom<br>HardylCharlize<br>Theron Hugh<br>Keays-<br>Byrne Nic | http://www.madmaxmovie.com/                        | George<br>Miller    | What a<br>Lovely<br>Day.               | sto  | An<br>localyptic<br>ory set in<br>e furthest<br>reach            | 120     | Action Adventure Science<br>Fiction Thriller | Village Roadshow<br>Pictures Kennedy Miller<br>Produ | 5/13/15      | 6185          |        |
|   | 2 2825   | 500 | tt2908446 | 13.112507  | 110000000 | 295238201  | Insurgent                          | Shailene<br>Woodley Theo<br>James Kate<br>Winslet Ansel     | http://www.thedivergentseries.movie/#insurgent     | Robert<br>Schwentke | One<br>Choice<br>Can<br>Destroy<br>You | <br> | Beatrice<br>rior must<br>confront<br>her inner<br>emons          | 119     | Adventure Science<br>Fiction Thriller        | Summit<br>Entertainment Mandeville<br>Films Red Wago | 3/18/15      | 2480          |        |
|   | 3 1406   | 307 | tt2488496 | 11.173104  | 200000000 | 2088178225 | Star Wars:<br>The Force<br>Awakens | Harrison<br>Ford Mark<br>Hamill Carrie<br>Fisher Adam D     | http://www.starwars.com/films/star-wars-<br>episod | J.J.<br>Abrams      | Every<br>generation<br>has a story.    | d    | Thirty<br>ears after<br>defeating<br>the<br>Galactic<br>Empi     | 138     | Action Adventure Science<br>Fiction Fantasy  | Lucasfilm Truenorth<br>Productions Bad Robot         | 12/15/15     | 5292          |        |
|   | 4 1682   | 259 | tt2820852 | 9.335014   | 190000000 | 1508249380 | Furious 7                          | Vin Diesel Paul<br>Walker Jason<br>Statham Michelle         | http://www.furious7.com/                           | James<br>Wan        | Vengeance<br>Hits Home                 |      | Deckard<br>Shaw<br>seeks<br>revenge<br>against<br>Dominic<br>Tor | 137     | Action Crime Thriller                        | Universal<br>Pictures Original<br>Film Media Rights  | 4/1/15       | 2947          |        |
| ; | 5 rows × | 21  | columns   |            |           |            |                                    |                                                             |                                                    |                     |                                        |      |                                                                  |         |                                              |                                                      |              |               |        |

## Introduction

Imdb dataset included such as movies, directors, genres of moveies, release date and year, budget, production companies etc. I will try to answer 2 questions.

- 1. Which genres are most popular from year to year?
- 2. Does bugdet effect popularity of movie? How?

At this section, I checked dataset information and missing value. I defined my questions accordingly missing value. Budget, release\_date, popularity do not have any missing value but genres column has 23 missing value. So I will only drop 23 rows to complete my study.

[122]:

```
# Missing value check
df.isnull().sum()
```

```
id
imdb_id
                              10 0 0
popularity
budget
revenue
original_title
                           76
7930
cast
homepage
director
                             44
                            2824
tagline
keywords
                            1493
overview
runtime
genres
production_companies release_date
                            1030
                              0
                               0
vote_count
vote_average
release_year
budget_adj
                               0
revenue_adj
dtype: int64
```

[123]:

# Data info check df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 21 columns):
 # Column
                                   Non-Null Count Dtype
                                    10866 non-null
10856 non-null
10866 non-null
0
1
2
3
4
5
6
7
8
9
10
11
12
      imdb_id
popularity
budget
                                                        object
float64
                                    10866 non-null
                                                         int64
                                    10866 non-null
      revenue
                                                         int64
      original_title
                                    10866 non-null
                                                         object
      cast
                                    10790 non-null
                                                         object
      homepage
director
                                    2936 non-null
                                                         object
                                    10822 non-null
                                                         object
      tagline
keywords
overview
                                    8042 non-null
                                                         object
                                    9373 non-null
                                                         object
                                    10862 non-null
                                                         object
     runtime
                                    10866 non-null
                                                         int64
                                    10843 non-null
                                                         object
      genres
      production_companies
                                    9836 non-null
                                                         object
      release_date
                                    10866 non-null
                                                         object
                                    10866 non-null
10866 non-null
10866 non-null
      vote_count
                                                         int64
      vote_average
                                                         float64
 18
     release_year
                                                         int64
 19 budget_adj
20 revenue_adj
                                    10866 non-null
                                                         float64
```

dtypes: float64(4), int64(6), object(11) memory usage: 1.7+ MB

## **Data Wrangling**

**Duplicated Items** 

```
[124]:
         #duplicated lines check
sum(df.duplicated())
Out[124]
[125]:
         df.drop_duplicates(inplace=True)
```

[126]: #Check is drop\_duplicates function worked - result should be 0

sum(df.duplicated())

10866 non-null

float64

Out[126] 0

```
[127]: # genres column has 23 missing data. Genres is object so we can not fill these empty items with mean. I will drop 23 rows with missing data.
        df = df[df['genres'].notna()]
                                                                                                                                                                 ↑ ↓ 🗓 × :
        #recheck missing value of genres
        #I only dropped missing genres rows but kept other missing values.
#If I would used dropna function, all missing rows will be deleted. In this case, dataset lose lots of data.
#genres has 0 missing value now.
        df.isnull().sum()
Out[128]
        imdb_id
                                     8
0
0
0
        popularity
        budget
        revenue
        original_title
        cast
                                     75
        homepage
        director
                                    42
                                   2806
1475
        tagline
        keywords
       overview
                                     3
0
        runtime
        genres
        production_companies
                                   1016
        release_date
                                      0
0
        vote_count
        vote_average
        release_year
                                      0
        budget_adj
        revenue_adj
        dtype: int64
```

# **Exploratory Data Analysis**

Research Question 1: Which genres are most popular from year to year?

```
#df filtered for question 1
    df_1=df.filter(items=['genres','popularity','release_year'])
    df_1.head()
```

## Out[129]:

|   | geriica                                                             | popularity | reiease_year |
|---|---------------------------------------------------------------------|------------|--------------|
| 0 | Action Adventure Science Fiction Thriller                           | 32.985763  | 2015         |
| 1 | Action Adventure Science Fiction Thriller                           | 28.419936  | 2015         |
| 2 | Adventure Science Fiction Thriller                                  | 13.112507  | 2015         |
| 3 | ${\sf Action} {\sf Adventure} {\sf Science\ Fiction} {\sf Fantasy}$ | 11.173104  | 2015         |
| 4 | Action Crime Thriller                                               | 9.335014   | 2015         |

```
[130]: df_1.info()
```

```
#Checked genres types and counts. There are lots of category for genres but some of them contain only 1 sample. df_1['genres'].value_counts()
```

```
#Checked if a category has over than 200 sample df_1['genres'].value_counts()|200]
```

```
Out[132] Drama
                                 712
                                 712
312
       Comedy
       Documentary
       Drama|Romance
                                 289
                                 280
268
       Comedy|Drama
       Comedy | Romance
                                 259
       Horror|Thriller
                                 253
       Horror
       Comedy | Drama | Romance
                                 222
       Name: genres, dtype: int64
```

```
### Categories are grouped by released year and calculated mean of popularity per year
### Drawed graphic to view popularity mean change per year for categories
drama=df_1.query('genres=='Drama'')_groupby(['release_year'])['popularity']_mean()
comedy-df_1.query('genres=='Comedy'')_groupby(['release_year'])['popularity']_mean()
documentary=df_1.query('genres=='Dromang Momanace'')_groupby(['release_year'])['popularity']_mean()
drama_romance=df_1.query('genres=='Broror'')_groupby(['release_year'])['popularity']_mean()
horror=df_1.query('genres=='Horror'')_groupby(['release_year'])['popularity']_mean()
plt.plot(drama_romane_place_Bel='Drama')
plt.plot(documentary,label='Documentary')
plt.plot(documentary,label='Documentary')
plt.plot(drama_romance_label='Drama and Romance')
plt.plot(thorror_label='Horror')
plt.title('Popularity Mean vs Years', fontsize=24)
plt.vlabel('Year, fontsize=16)
plt.ylabel('Popularity Mean', fontsize=16)
plt.glabel('Popularity Mean', fontsize=16)
plt.glabel('Popularity Mean', fontsize=16)
plt.glabel('Popularity Mean', fontsize=16)
plt.legend()
```

# Out[33] <matplotlib.legend.Legend at 0x7f14f409fa10>



Popularity mean per year for 5 categories is visible on graphic. Graphic shows popularity mean change years by years. For example Drama and Romance category improved popularity later 2010 a lot. My detailed observations are under Conclusions

```
df.1_filtered=df_1.query('genres=="Drama" or genres=="Comedy" or genres=="Documentary" or genres=="Comedy|Drama" or genres=="Comedy|Romance" or genres=="Comedy|Romance" or genres=="Comedy|Romance" or genres=="Comedy|Drama" or genres=="Comedy|Romance" or genres=="Comedy|Romance" or genres=="Comedy|Romance" or genres=="Comedy|Romance" or genres=="Comedy|Romance" or genres=="Comedy|Drama" or genres=="Comedy|Romance" or genres=="Comedy|Drama" or genres=="Comedy|Romance" or genres=="Comedy|Drama" or genres=="Com
```

Out[34] Text(0.5, 1.0, 'Popularity Mean of Genres')

## Popularity Mean of Genres



Pie chart shows that mean of popularity accordingly genres. Comedy and Drama has highest popularity than others. But documentary genre has lowest popularity than others.

## Research Question 2: Does bugdet effect popularity of movie? How?

```
#Created new dataframe to answer question 2
# genres, popularity and budget are included
df_2=df.filter(items=['genres','popularity','budget'])
df_2.head()
```

## Out[135]:

|   | genies                                                              | popularity | buaget    |
|---|---------------------------------------------------------------------|------------|-----------|
| 0 | Action Adventure Science Fiction Thriller                           | 32.985763  | 150000000 |
| 1 | Action Adventure Science Fiction Thriller                           | 28.419936  | 150000000 |
| 2 | Adventure Science Fiction Thriller                                  | 13.112507  | 110000000 |
| 3 | ${\sf Action} {\sf Adventure} {\sf Science\ Fiction} {\sf Fantasy}$ | 11.173104  | 200000000 |
| 4 | Action Crime Thriller                                               | 9 335014   | 190000000 |

```
#Grouped by genres and took mean of budget per genres and sorted
grouped_budget=df_2.groupby(['genres'])['budget'].mean().sort_values(ascending=False).reset_index()
#Filtered budget which are greater than 1900000000
filtered_budget=grouped_budget[grouped_budget['budget']>=190000000.0]
filtered_budget
```

## Out[136]:

|   | genres                                          | buaget      |
|---|-------------------------------------------------|-------------|
| 0 | Adventure Fantasy Action Western Thriller       | 425000000.0 |
| 1 | Thriller Action Adventure Science Fiction       | 209000000.0 |
| 2 | Family Fantasy Adventure                        | 200000000.0 |
| 3 | Adventure Action Fantasy                        | 198000000.0 |
| 4 | Action Family Science Fiction Adventure Mystery | 190000000.0 |

Out[46] Text(0.5, 1.0, 'Budget Distribution of Genres')

## **Budget Distribution of Genres**



Pie chart shows budget mean distribution per genres. Adventure, Fantasy, Action, Western, Thriller category has highest budget. And Action, Family, Science, Advanture, Mystery category has lowest budget.

```
#comedy category have 712 sample
df_2['genres'].value_counts()
```

```
#Only comedy category is filtered
comedy=df_2[df_2['genres']=='Comedy']
comedy['popularity'].sort_values(ascending=False)
```

```
Out[139
       5230
                 6.668990
                 5.701683
4.564549
       646
       653
                 4.105685
                 3.153060
                 0.002838
       6074
       10592
                 0.001567
       3370
                 0.001317
       6961
                 0.001115
       6080
                 0.000620
       Name: popularity, Length: 712, dtype: float64
```

```
#popularity change plotted popularity-comedy['popularity'] budget-comedy[ budget' comedy[ budget', plt.plot(popularity, color='orange')
```

## Out[48] [<matplotlib.lines.Line2D at 0x7f14dfefc710>]



Graphic shows popularity change for comedy category

[41]

#budget change plotted
plt.plot(budget)

## Out[41] [<matplotlib.lines.Line2D at 0x7f14dfe67ed0>]



Graphic shows change of budget for comedy category.

When I checked both graphic, I could not find a similarity to make some comments. Graphics are slightly different than each other.

So I changed my method. I decided to categorize popularity 1,2,3,4,5,6 and find mean of budget for each popularity range.

Please see below research

```
#popularity highest rate is 6.6
comedy['popularity'].sort_values(ascending=False)
```

```
Out[142
      5230
                6.668990
       646
                5.701683
                4.564549
       653
                4.105685
                3.153060
       1397
       6074
                0.002838
       10592
                0.001567
       3370
                0.001317
       6961
                0.001115
       6080
                0.000620
       Name: popularity, Length: 712, dtype: float64
```

```
#samples are grouped by 1,2,3,4,5,6 popularity and taken mean of budget per range
comedy_1=comedy[comedy['popularity']<1]
budget_1=comedy_1['budget'].mean()
comedy_2=comedy[(comedy['popularity']>1) & (comedy['popularity']<2) ]
budget_2=comedy_2['budget'].mean()
comedy_3=comedy[(comedy['popularity']>2) & (comedy['popularity']<3) ]
budget_3=comedy_3['budget'].mean()
comedy_4=comedy[(comedy['popularity']>3) & (comedy['popularity']<4) ]
budget_4=comedy_4['budget'].mean()
comedy_5=comedy[(comedy['popularity']>4) & (comedy['popularity']<5) ]
budget_5=comedy_5['budget'].mean()
comedy_6=comedy[comedy['popularity']>5]
budget_6=comedy_6['budget'].mean()
```

```
#plotted budget vs popularity rate
budget_list=[budget_1,budget_2,budget_4,budget_5,budget_6]
popularity_list=[1,2,3,4,5,6]
plt.plot(popularity_list,budget_list)
plt.title('Popularity vs Budget', fontsize=20)
plt.xisbel('Popularity Nate', fontsize=16)
plt.ylabel('Budget Mean', fontsize=16)
plt.ylabel('Budget Mean', fontsize=16)
plt.gepend()
plt.grid(True)
```



Graphic shows change of budget mean accordingly popularity range (1-6). There is not any linear/non linear relationship between popularity and budget mean for comedy category. You can find my detailed observations and comment under Conclusions

# Conclusions

# Question 1:

## # My observations:

- . Drama and romance movies improved popularity a lot later 2010.
- Drama movies improved popularity between 1970-1980 six times more.
- · Documentary category has lowest popularity
- · Comedy movies was most popular category at beginning of 60s.
- · Horror movies was the most popular category at beginning of 90s.

#### Notes:

- · CSV data is enough to answer this question for some categories.
- Movies mostly labeled with many genres. I first decided to separate categories. For example, If a movie labeled as Drama and Romance, I
  thought I can add 2 line for this movie, first one is Drama, second one is Romance. But that seemed to me complicated and I gave up.
- · Later I decided to use genres which has more samples than others.
- · Some categories has 1 sample. 1 sample is not enough to answer this question.
- · I faced some difficulties when I tried to plot graphics. It was usually lack of practice. Later I overwhelmed.

## Question 2:

#### My observations:

- I tried to observe if budget effects popularity of a movie.
- In this case, I wanted to analysis comedy category because this category had greater sample than others.
- · When I plotted budget vs popularity, I could not observe any logical result.
- $\bullet \ \ \text{So I decided to divide popularity to 1,2,3,4,5,6 category and I took mean of budget for each range.}$
- Latest graphic showed that there is not linear/bounded relationship between this 2 category.
- For example when popularity improved to 2 from 1, mean of budget also increased.
- But when popularity improved to 3 from 2, mean of budget decreased.
- So we can say that mean of budget directly effect to popularity for comedy category

#### Notes:

- I selected comedy category to assess budget effects to popularity.
- When I plotted popularity vs budget with all data, I could not observe a relationship between graphics.
- Later I decided to categorize popularity to 1,2,3,4,5,6. I calculated mean of budget for each popularity category.
- Finally I drawed line chart graphic for mean of budget vs popularity range. In this case I could not observe direct relationship between these
  subjects. We can not say budget increasement improves popularity or opposite.
- Accordingly my opinion, csv data is enough to evaluate this question but accordingly my observation there is not linear/nonlinear relationship between budget and popularity.
- When I drawed popularity vs budget graphics I could not observe a relationship. In this case, I felt stuck because I could not find a solution
  how I can answer this question. Later I thought maybe I can categorize popularity in a range and try to create more clear graphic than first
  one. And it worked for my observation.