Signal Processing and Communications Hands-On Using scikit-dsp-comm Part 3

©2017 Mark Wickert

Communications Theory & Practice

- In this part of the tutorial the focus is on signal processing for communications
- The Labs will involve the use of the RTL-SDR or optionally archived captures found in the tutorial repository

Top Level Block Diagram

- Communication system modeling and simulation are woven throughout all of the scikit-dsp-comm package
- The flavors of communication are *analog* and *digital* modulation
 - The above block diagram is digital as bits flow into the encode block and out the decoder block
 - To analog is a misnomer as the channel is waveform based, which is also analog signal processing too
 - In analog communications the message or information signal is directly *modulated* on to the channel

Use Case: Modeling Satellite Commnunications Systems

Wideband Sat-Comm simulation model

Baseband or Carrier Based

- The signals or waveforms that carry communication information are either baseband or carrier based
- Wired Ethernet is an example of baseband, as are interconnects within our devices
- Wireless communications uses a radio frequency (RF) carrier to allow free space propagation to serve as the channel to carry the signal from the transmitter (tx) to the receiver (rx)
 - There is also free space optical and optical fiber

Carrier Modulation

• A modulated carrier can be represented as

$$x_c(t) = A(t) \cos \left[2\pi f_c t + \phi(t)
ight]$$

where A(t) is linear modulation, f_c the carrier frequency, and $\phi(t)$ is phase modulation

- Amplitude modulation is where radio started, and still is in use today in both analog and digital communications
- Phase modulation encompasses frequency modulation (FM) as well, since the two are related by differentiation/integration, e.g.,

$$\phi(t)= ext{Phase Deviation of the Carrier in radians} \ rac{1}{2\pi}\cdotrac{d\phi(t)}{dt}= ext{Frequency Deviation in Hz of the carrier}$$

Carrier Demodulation in Python with the RTL-SDR

Demodulation: Undoing at the receiver what was done at the transmitter to recover the data bits or analog signal

• As a quick review, an FM modulated carrier applies the message signal m(t) to the carrier signal $x_c(t)$ such that the derivative of the phase deviation, $d\phi(t)/dt$, (also the frequency deviation) is proportional to the message:

$$x_c(t) = A_c \cos \left[2\pi f_c t + \phi(t)
ight] = A_c \cos \left[2\pi f_c t + 2\pi k_d \int^t m(lpha) dlpha
ight],$$

where $\emph{k}_\emph{d}$ is the modulator frequency deviation constant.

ullet To demodulate FM you first consider the ideal discriminator which takes in $x_c(t)$ and operates on the phase deviation to produce

$$y_D(t) = rac{1}{2\pi} K_D rac{d\phi(t)}{dt}$$

where K_D is the discriminator gain constant

• Notice that for FM, that is $\phi(t)=2\pi f_D\int^t m(\alpha)d\alpha$ as defined above,

$$y_D(t) = \underbrace{K_D}_{ ext{v/Hz}} \cdot \underbrace{f_D}_{ ext{v/Hz}} \cdot \underbrace{m(t)}_{ ext{v}}$$

- To demodulate FM, the *complex baseband discriminator*, also known as the *quadricorrelator*, has a convenient DSP implementation
- ullet At complex baseband $x_c(t)$ is of the form

$$ilde{x}_c(t) = \cos[2\pi\Delta f t + \phi(t)] + j\sin[2\pi\Delta f t + \phi(t)] = x_I(t) + jx_Q(t),$$

where I have assumed a small frequency error Δf in the frequency translation of $x_c(t)$ to baseband

ullet The frequency discriminator obtains d heta(t)/dt where in terms of the I and Q signals

$$heta(t) = an^{-1}igg(rac{x_Q(t)}{x_I(t)}igg)$$

• The derivative of $\theta(t)$ is

$$rac{d heta(t)}{dt} = rac{x_I(t)x_Q'(t) - x_I'(t)x_Q(t)}{x_I^2(t) + x_Q^2(t)}$$

• In DSP $x_I(t)\Rightarrow x_I(nT)=x_I[n]$ and $x_Q(t)\to x_Q(nT)=x_Q[n]$, where T is the sample spacing and $1/T=f_s$ is the sampling rate. The derivatives, $x_I'(t)$ and $x_Q'(t)$, are approximated by the backwards difference $x_I[n]-x_I[n-1]$ and $x_Q[n]-x_Q[n-1]$ respectively

• Inside rtlsdr_helper this is implemented in y = discrim(x) as:

RTL-SDR Architecture

Inside the Dongle

Moving the Signal from the Carrier to Complex Baseband

Generic Demodulation Algorithm

Signals Of Interest in the Tutorial

Broadcast FM Mono

Broadcast FM Stereo

Narrowband FM NOAA Reception at 162.400 MHz

• For the tutorial we are interested in Austin, so tune your RTL-SDR to 162.400

A Few of the NOAA Stations in Texas

Sherman	Sherman/Denison	WXK22	162.475	1000	Fort Worth, TX
Lufkin	Lufkin	WXK23	162.550	1000	Shreveport, LA
El Paso	Ranger Peak	WXK25	162.475	300	Santa Teresa, NM
Laredo	Laredo	WXK26	162.550	1000	Corpus Christi, TX
Austin	Austin	WXK27	162.400	1000	New Braunfels, TX
Beaumont	Beaumont	WXK28	162.475	1000	Lake Charles, LA
Abilene	Clyde	WXK29	162.400	1000	San Angelo, TX
Bryan	College Station	WXK30	162.550	1000	Dickinson, TX
Wichita Falls	Wichita Falls	WXK31	162.475	1000	Norman, OK
Midland/Odessa (OUT OF SERVICE)	Odessa	WXK32	162.400	1000	Midland, TX
San Angelo	San Angelo	WXK33	162.550	1000	San Angelo, TX
Victoria	Victoria	WXK34	162.400	1000	Corpus Christi, TX
Waco	Moody	WXK35	162.475	1000	Fort Worth, TX
Tyler	Lindale	WXK36	162.475	1000	Shreveport, LA
Big Spring	Big Spring	WXK37	162.475	1000	Midland, TX
Amarillo	Amarillo	WXK38	162.550	1000	Amarillo, TX

Frequency Shift Keying Demod (Arduino-based FM/FSK Stereo tx)

Move to working with the hardware using various Jupyter notebooks

Single-Sideband Communication Simulation

- Various analog communication systems can be modeled and simulated with scimitar-dsp-comm
- A course project is included in the Part3: <u>Project1</u>

Digital Communications Simulation

- In the realm of digital communication system simulation, there are many building blocks available in scikit-dsp-comm
- A quick walk through of some of this capability can be found in the PDF document Project 2

Figure 1: A top level digital communication system block diagram for both transmitting and receiving.

•	 A corresponding Jupyter notebook, which was not convered during the tutorial is <u>Comm_Systems.ipynb</u> 						