

PVRTexTool

User Manual

Copyright © Imagination Technologies Ltd. All Rights Reserved.

This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind. Imagination Technologies and the Imagination Technologies logo are trademarks or registered trademarks of Imagination Technologies Limited. All other logos, products, trademarks and registered trademarks are the property of their respective owners.

Filename : PVRTexTool.User Manual.1.0.8.External.doc

Version : 1.0.8 External Issue (Package: POWERVR SDK REL_2.10@905358)

Issue Date : 12 Apr 2012

Author : Imagination Technologies Ltd

PVRTexTool 1 Revision.

Contents

1.	Introd	luction	4
	1.1.	Software Overview	4
	1.1.1.		
	1.1.2.		4
	1.1.3.	5	
	1.2.	Document Overview	4
2.	PVRT	exTool GUI	5
	2.1.	Installation	
	2.1.1.		
	2.1.2.		
	2.2.	Main Interface	
	2.2.1.		
		Texture View Window	
	2.3.1.		
	2.3.2.		
	2.3.3.		8
	2.3.4.		
	2.3.5.		
	2.4.	Toolbars	
	2.4.1.	Quick Access Toolbar	
	2.4.2.	T	
		Menus	
	2.5.1. 2.5.2.	File Menu	
	2.5.2. 2.5.3.		
	2.5.3. 2.5.4.		
	2.5.5.	Help Menu	
	2.6.	Dialogs	
	2.6.1.	Wrap Raw Data	
	2.6.2.	Compose Cube Map	
	2.6.3.	Load Separate Channels	
	2.6.4.	Options	
	2.6.5.	Pre-Process Texture	
	2.6.6.	Transform	
	2.6.7.	Encode Texture	
	2.6.8.	Properties	
	2.6.9.	Encoding Statistics	
	2.6.10). Generate Font	24
3.	PVRT	exTool Command-Line	25
	3.1.	Installation	25
	3.1.1.	From Installer	
	3.1.2.	From GZIP	
	3.1.	Usage Instructions	25
	3.2.	Examples	
	3.3.	Command-Line Options	26
4.	PVRT	exTool Plug-ins	28
••	4.1.	Adobe Photoshop	
	4.1. 4.2.	Autodesk 3D Studio MAX	
	4.2.	Autodesk Maya	
_		·	
5.	Relate	ed Materials	29
6.	Conta	act Details	30
Δn	pendix A	. Texture Format Reference	21
-	-	DirectX 10 Formats	
	A.1.	Directx 10 Formats	33

A.2.	OpenVG	35
· ··		

List of Figures

Figure 2-1 PVRTexToolGUI Main Interface	6
Figure 2-2 View Panels	7
Figure 2-3 Status Bar	7
Figure 2-4 Display Tab	8
Figure 2-5 MIP-Map Tab	9
Figure 2-6 Info Tab	
Figure 2-7 Open	10
Figure 2-8 Close	10
Figure 2-9 Save	10
Figure 2-10 Save All	10
Figure 2-11 Undo	10
Figure 2-12 Redo	10
Figure 2-13 Encode	10
Figure 2-14 Pre-Process	10
Figure 2-15 Transform	10
Figure 2-16 Image Properties	
Figure 2-17 Encoding Statistics	11
Figure 2-18 Load Level	
Figure 2-19 Load Channel	12
Figure 2-20 Save Level	12
Figure 2-21 Generate MIP-Maps	
Figure 2-22 File Menu	
Figure 2-23 View Menu	
Figure 2-24 Edit Menu	
Figure 2-25 Window Menu	
Figure 2-26 Help Menu	
Figure 2-27 Wrap Raw Data Dialog	
Figure 2-28 Compose Cube Map Dialog	
Figure 2-29 Load Separate Channels Dialog	
Figure 2-30 Options Dialog	
Figure 2-31 Pre-Process Texture Dialog	
Figure 2-32 Transform Dialog	
Figure 2-33 Encode Texture Dialog	
Figure 2-34 Properties Dialog	
Figure 2-35 Encoding Statistics Dialog	
Figure 2-36 Generate Font Dialog	24

1. Introduction

1.1. Software Overview

PVRTexTool is a utility designed to convert image files into hardware-friendly texture files. PVRTexTool is also able to perform some simple pre-processing effects on textures such as normal map and cube map generation, colour bleeding and more. It comes in three forms; PVRTexTool GUI, a graphical application; PVRTexTool Command-Line, a command-line tool; and a series of plug-ins for Adobe Photoshop, Autodesk 3D Studio Max, and Autodesk Maya.

1.1.1. PVRTexToolGUI

PVRTexToolGUI is the graphical version of PVRTexTool; it is available for Windows, Linux and Mac OS. Only the executable is required to run on Windows, Linux and Mac OS require X11.

1.1.2. PVRTexTool Command-Line

PVRTexToolCL is the command-line version of PVRTexTool; it is available for Windows, Linux, and MacOS; only the executable is required. Its purpose is to allow the easy batching of texture conversion and compression operations via call from script or batch file.

1.1.3. PVRTexTool Plug-ins

The PVRTexTool plugins are designed to give various programs access to the functionality of PVRTexTool. Photoshop gains the ability to load and save .pvr files; 3D Studio Max and Maya gain the ability to use .pvr files when applying materials and the ability to save rendered images in .pvr format (at 32 bits per pixel only).

1.2. Document Overview

The purpose of this document is to serve as a complete user manual for PVRTexTool. It includes installation instructions, a guide to the functionality of the application, a complete listing of all interface options and preferences for the GUI, as well as a listing of all command-line options available for PVRTexToolCL.

Revision . 4 User Manual

2. PVRTexTool GUI

2.1. Installation

2.1.1. From Installer

Download either the PowerVR Insider SDK or the individual PVRTexTool package and follow the on screen instructions. Once the package has successfully installed the application will be available in:

<SDK_ROOT>\Utilities\PVRTexTool\PVRTexToolGUI\<PLATFORM>\

2.1.2. From **GZIP**

Download either the PowerVR Insider SDK or the individual PVRTexTool package. Unzip the .tar.gz file, and then untar the .tar file. From the ensuing folder browse to:

<SDK_ROOT>\Utilities\PVRTexTool\PVRTexToolGUI\<PLATFORM>\

PVRTexTool 5 Revision.

2.2. Main Interface

2.2.1. Multiple Document Interface

The main interface of PVRTexToolGUI contains the Texture View Window. As an MDI (multiple document interface) application PVRTexToolGUI may have multiple files open simultaneously displaying a Texture View Window for each. In these instances any action performed will be performed on the Texture View Window that currently has focus.

2.3. Texture View Window

This window can display the currently selected MIP-map level of a texture in a number of different ways, along with a variety of useful information.

2.3.1. View Panels

Each image viewing window shows the current image data before (Input) and after (Output) encoding or one of each state via tab selection.

The Input view panel shows the loaded texture data before the encoding step.

The Output image is a decoded version of the encoded data to allow by-eye assessment, and is analogous to how the image will look when displayed on hardware.

If the images have transparency, they will be alpha blended with a background. The images can be moved by clicking and dragging if they are not fully visible.

2.3.2. Status Bar

At the bottom of the window is a status bar detailing basic information about the current status of the texture.

Position

As the cursor moves over the image, this details the mouse position within each texture.

Size

For quick reference the size of the texture being viewed is displayed here.

Zoom

Use this slider to zoom in and out of an image. The zoom feature can also be operated using the mouse wheel on any of the view panels, and is specific to each Texture View Window.

PVRTexTool 7 Revision.

2.3.3. Display Tab

This tab shows information and options for the current display windows.

Display Mode

This dropdown menu is used to select how the image should be displayed. If the file is a normal 2D texture, you can choose between a single and a tiled view. If you are viewing a cube map, you can choose between a single view of the current face and a 3D preview.

Channels

Each channel provides an output value for the pixel that the mouse is currently situated above, its corresponding output pixel, and a difference value. Un-checking each channel will prevent this channel from drawing.

Difference

Activating the 'Difference' checkbox displays a representation of the difference between the original image and the image after encoding (multiplied by the value set with the scale slider), to highlight possible encoding and compression artifacts.

Figure 2-4 Display Tab

2.3.4. **MIP-Map Tab**

This tab shows information and options for MIP-Map levels present in the current texture.

MIP-Map Browser

This collapsible menu shows a list of all MIP-map levels in the texture. When a cube map is loaded each face of the cube map appears as a separate collapsible menu with its own MIP-map levels.

Click on a MIP-map to view it in the Texture View Window. Right clicking on a MIP-map will bring up a menu displaying the following options:

- 'Load Into MIP Level...' See Section 2.4.2 MIP-Map Toolbar – Load Level.
- 'Save from MIP Level...' See Section 2.4.2 MIP-Map Toolbar - Save Level.
- 'Generate MIP Levels from here...' See Section 2.4.2 MIP-Map Toolbar – Generate MIP-Maps.

2.3.5. Info Tab

This tab displays some basic information about the textures in the view panels. Further information can be viewed in the full properties dialog found in 'View -> Get Properties...'

Texture Name

This area displays the filename of the current texture.

Original Image

'Original Image' displays information about the image being converted. The data shown includes the original dimensions of the image, the file size, how many MIP-map levels were originally present and the pixel format (for more information see Appendix A. Texture Format Reference).

Encoded Texture

This area displays information about the encoded image. The data shown includes the dimensions of the converted image, the new file size, how many MIP-map levels are now present, and the pixel format (for more information see Appendix A. Texture Format Reference).

PVRTexTool 9 Revision.

2.4. Toolbars

2.4.1. Quick Access Toolbar

Open

'Open' opens a texture for editing.

Close

'Close' closes the texture.

Save

'Save' saves the texture.

Save All

'Save All' saves all the textures currently open in PVRTexToolGUI.

Undo

'Undo' undoes the last performed action.

Redo

'Redo' redoes the last undone action.

Encode

'Encode' launches the Encode Texture dialog.

Pre-Process

'Pre-Process' launches the Pre-Process Texture dialog.

Transform

'Transform' launches the Transform dialog.

Image Properties

'Image Properties' launches the Properties dialog.

Encoding Statistics

'Encoding Statistics' launches the Encoding Statistics dialog.

2.4.2. MIP-Map Toolbar

Load Level

<code>`Load Level'</code> loads an image into the currently selected MIP-map level. This image must have the same dimensions as the selected MIP level.

Load Channel

`Load Channel' loads one or more images into colour channels for the currently selected MIP-map level. Images must be the same size as the selected MIP-map level.

Save Level

This option saves an image file of the current MIP-map level.

Generate MIP-Maps

 $\lq \texttt{Generate}$ $\texttt{MIP-Maps}\, \lq$ uses the currently selected MIP-map to generate all smaller MIP-maps.

2.5. Menus

2.5.1. File Menu

Open

'Open...' opens a texture or image file. PVRTexTool supports the texture formats:

- .pvr PowerVR texture files
- .ktx Khronos texture files
- .dds Microsoft Direct Draw Surface files

It can also read the following image formats: BMP, TGA, GIF, PCX, JPG, and PNG.

Open Recent

This shows a list of up to 10 recently opened files for quick access.

Compose Cube Map...

Use this option to create a cube map texture by combining existing images. It allows you to specify image files from which to load each of the six faces of the cube.

Generate Font...

This option launches the dialog, used to generate texture atlases for use as fonts with Print3D.

Open to Separate Channels...

This menu option opens the Load Separate Channels dialog; it allows several image files to be combined into a single texture with different channels being taken from different images. Integer values can also be used instead of filenames to set an image-wide value for a given channel.

Wrap Raw Data

This option opens the 'Wrap Raw Data' dialog; a dialog used to load raw image data from a bitmap file or a corrupt texture file.

Reload From File

'Reload From File...' reloads the current texture from disk reverting any pre-processing already carried out. If the file has been updated in some way by another program since being opened this also allows the texture in memory to be updated to that which is currently stored on disk. Any encoded data produced is discarded by this operation.

In instances where multiple files have been used, or the file has been processed from raw data, the relevant dialog box will be launched instead of the file automatically reloading. This allows for channels to be rearranged and options to be adjusted etc. in the case of a mistake being made.

Save/Save As

These options will save encoded data to a texture file, and can be saved in one of the following formats:

- .pvr PowerVR texture files
- .ktx Khronos Texture files
- .dds Microsoft Direct Draw Surface files
- .h C/C++ Header file storing PVR data in an array of type 'unsigned long'

If the texture has not yet been encoded, PVRTexTool will prompt the user to select an encoding method from the Encode Texture dialog (see Section 2.6.7 Encode Texture)

PVRTexTool 13 Revision.

Save Image

This option allows the user to save the currently displayed image to an image file, rather than a texture file. Note that it will save out the current MIP-map level if a lower level is being displayed and all other MIP-map data will be lost. This can be used to save out each MIP-map level individually if needed. This will automatically append the dimensions of the image to the end of the filename.

Images can be saved as the following formats:

- .bmp
- .tga
- .gif
- .pcx
- .jpg
- .png

Save Cube Map Faces

This option is similar to Save Image with the exception that it will ask to save each face of the cube map individually for the currently selected MIP-Map level. This will automatically append the name of each face to the image file, as well as the image dimensions.

Save All

This option performs the same operation as Save, but for all open textures.

Close

'Close' closes the current texture

Close All

'Close All' closes all the currently open textures.

Quit

'Quit' closes the application.

2.5.2. View Menu

This Menu shows options for displaying information or changing the appearance of some elements.

View Grid

This option will overlay a grid onto the current Texture View Window. The size of this grid is determined via the Options dialog.

Get Properties...

This option opens the Properties dialog.

Get Encoding Statistics...

This option opens the Encoding Statistics dialog.

Options...

'Options...' opens the Options dialog.

2.5.3. Edit Menu

Undo

'Undo' undoes the last performed action.

Redo

'Redo' redoes the last undone action.

Encode Texture...

This option opens the Encode Texture dialog.

Pre-process...

This option opens the Pre-Process Texture dialog.

Transform...

'Transform...' opens the Transform dialog.

Load/Swap Channels

'Load/Swap Channels' opens the Load Separate Channels dialog.

MIP-Map Level

`MIP-Map Level' is an additional sub-menu containing operations which apply solely to the currently selected MIP-map level. These are:

- Load MIP-level... Load an image into a specific MIP-map level; the image must be the same height and width as the MIP-map level being replaced.
- Save MIP-level... Save an image from a specific MIP-map level; the filename will have the dimensions of the level appended to it.

PVRTexTool 15 Revision.

2.5.4. Window Menu

The window menu contains options pertaining to the displaying of multiple Texture View Windows.

Tile Horizontally

'Tile Horizontally' tiles the currently open Texture View Windows horizontally.

Tile Vertically

`Tile Vertically' tiles the currently open Texture $View\ Windows\ vertically.$

Cascade

'Cascade' displays all the open Texture View Windows in a cascade style.

Currently Open

The bottom of the menu lists all the currently open Texture View Windows.

2.5.5. Help Menu

Help

'Help...' opens this document.

About

'About...' opens an about page containing version information, contact details etc.

Feedback

'Feedback' opens a panel for giving feedback on the application.

2.6. Dialogs

2.6.1. Wrap Raw Data

	Data File	
Browse		Clear
Width: Height:	Offset (bytes): 0	Assume header size
Format: RGB 888	▼ MIP-Maps:	0 ☐ Cube Map?
Please choose a file to read.		<u>C</u> ancel <u>O</u> K
Figure 2	-27 Wrap Raw Data	a Dialog

This dialog is used to load raw image data from a bitmap file or a corrupt texture file. The user must input the size of the image, pixel format, number of MIP-maps, and whether or not it is a cube map (6 surfaces).

If there is a header, the user can either specify the size or let PVRTexTool calculate it based on the file size. This header data will then be skipped when the image is loaded. It should be noted that automatic calculation will not work correctly if there is additional data at the end of the file.

2.6.2. Compose Cube Map

This dialog is used to create a cube map texture by combining existing images. It allows you to specify image files from which to load each of the six faces of the cube. All of these source images must be of identical, square dimensions.

PVRTexTool 17 Revision.

2.6.3. Load Separate Channels

Figure 2-29 Load Separate Channels Dialog

For each channel a source ('Current', 'File' or 'Value') can be selected from the first drop down. The second drop down indicates which channel from the source you wish to load into the destination. The final entry box can contain either an integer value in the range 0 to 255 (if 'Value' is selected from the first drop down), or a file path (if 'File' is selected from the first drop down) either entered manually or selected using the 'Browse...' button. The 'Current' option is only available when a file is open and allows channels to be swapped within the current image.

Finally, it is possible for the red, green and blue channels to all be loaded from the same file, this can be done by changing the value in the 'Output RGB from:' drop down.

2.6.4. Options

These options allow the user to set some basic GUI options: the background colour in the Texture View Windows and the size of the grid displayed in the View Panels when it is activated from the View Menu.

2.6.5. Pre-Process Texture

Create Normal Map

A normal map is a texture that stores normal vectors instead of colours. The X component of the normal vector is stored in the red channel of the texture, the Y component in the green channel and the Z component in the blue channel. Normal maps are commonly used with Dot3 bump mapping. The normal map is calculated from a grey scale height map that indicates the roughness of the surface (or the red channel of the height map if the height map is not grey scale). Large values in the map mean taller heights, while small values mean lower heights. The values come from the red channel of the input texture.

A normal vector is calculated per pixel using the difference between the intensity of adjacent pixels and then is compressed into the format selected. The scale value modifies how it interprets the difference between

the pixels; the higher the scale, the bigger the difference in normal values. This is analogous to the scale used by a height map to generate terrain. Note that internally, the format of normal maps is automatically raised to 32-bit floating point precision.

Once the top MIP-map level has been converted to a normal map, lower MIP-map levels are regenerated from this image using the standard 2 by 2 averaging algorithm. This will give physically correct results for per pixel lighting on matte surfaces.

Make Square

Checking this option will take the shortest dimension of the image and resize it to equal the longest side of the image. In short, it will scale up the image to be square. The resize operation will use the rescaling method set in the drop down menu above.

Expand to Power of 2

This function will expand any size of texture so that its dimensions have values of powers of two, although the dimensions may not necessarily be equal (unless the Make Square option is chosen). Again, the resize operation uses the rescaling method set in the drop down menu above.

Colour MIP-maps

Sometimes, for testing purposes, it's useful to mark each MIP-map in a MIP-map chain by giving it a colour. This option goes through the existing MIP-map chain and colours the levels green, red, yellow, pink, cyan, and blue in descending order. It leaves the top MIP-map level unchanged.

Generate MIP-maps

In most cases, PVRTexTool automatically generates MIP-maps upon loading an image, however if they are not present or corrupt, this option can be checked to regenerate them.

Alpha Bleed

When mapping certain parts of a texture on an object, the texture may contain an invisible void between useful parts. This void creates discontinuities around the textured parts that can impair the texture compression with certain formats. Uncompressed textures can also benefit from this bleeding operation as texture filtering (bilinear and/or MIP-mapping) can cause undesired adjacent texels to contribute to the final colour being sampled. To avoid this issue, the bleeding process transforms these frontiers by filling the void with a mix from nearby pixels.

PVRTexTool 19 Revision.

Add Border

PVRTC texture data is assumed to be continuous across texture edges, which is a common case in graphic applications where various material textures like rock, brick, grass etc. are tiled to represent high texture detail for a larger area than the texture itself. However, this can occasionally result in minor compression artefacts along the edges of texture data that does not tile.

Whenever results are deemed unsatisfactory, this issue can be resolved by adding a border around the original texture data. This border will absorb any possible artefacts related to tiling.

This option has two possible functions depending on the width and height of the texture:

- Width and height are a power of 2 In this case the user can select one of two options. The algorithm will scale the texture down by 8 pixels in the vertical direction (4 on each side) and either 8 or 16 pixels in the horizontal direction, and then add mirrored borders.
- Width and/or height are not a power of 2 In this case the border is directly added so as to expand the image dimensions to their nearest respected powers of 2.

A texture pre-processed in this way will have an edge of 4x4 pixels for the PVRTC 4bpp case and an edge of 8x4 for the PVRTC 2bpp case. This texture has to be remapped correctly to restore it to its original size. This remapping can be calculated as follows:

- PVRTC 4bpp:
 - \circ u = ((4+1)/ResX)+u*(1-(2*(4+1)/ResX)
 - \circ v = ((4+1)/ResY)+v*(1-(2*(4+1)/ResY)
- PVRTC 2bpp:
 - \circ u = ((8+1)/ResX)+u*(1-(2*(8+1)/ResX)
 - o $v = ((4+1)/ResY) + v^*(1-(2^*(4+1)/ResY))$

(Note that 1 is added to the border size to avoid bilinear bleeding. ResX and ResY are the original texture resolution)

Pre-Multiply Alpha

For alpha-blended rendering it is sometimes useful to have the other, opaque channels of a texture encoded with their value pre-multiplied by the alpha value for each pixel. Checking this option will carry this out.

2.6.6. **Transform**

The transform dialog allows basic geometric transformations to be applied to the current texture.

Resize

Enter the desired dimensions, in pixels, into the Width and Height boxes, choose the scaling algorithm you desire and click 'Go'. 'Nearest Neighbour', 'Bilinear' or 'Bicubic' scaling is available.

Mirror

Basic reversal in the horizontal and vertical axis is available through this section.

Rotate

Click the options in this section to rotate the current texture by 90 degrees in a clockwise or anti-clockwise direction.

For cube map textures, only the mirror and rotate options are available; these may be applied to the currently selected surface in the MIP-Map Tab or all surfaces at once.

Figure 2-32 Transform Dialog

2.6.7. Encode Texture

Vertically Flip For This API ✓ Options:		RGB Formats RGB 888 RGB 565 RGB+Alpha RGBA 8888 BGRA 8888 RGBA 4444 RGBA 5551 High Precision ABGR 16161616F ABGR 32323232F	Luminance/Alpha C L8 C A8 C LA 88 Compressed C PVRTC 2bpp C PVRTC 4bpp C PVRTCII 2bpp C PVRTCII 4bpp C ETC1	
	Options:			Vertically Flip For This API

Figure 2-33 Encode Texture Dialog

APIs

The several tabs along the top allow selection of the target API.

Pixel Formats

This area lists the formats that can be encoded for each API.

MIP-Map Levels

It is possible to choose the number of MIP-maps to be encoded within a texture. This can be selected from the 'MIP-maps:' drop down.

Vertical Flip

For each API you can set whether the texture is flipped vertically or not. By default in the PowerVR SDK OpenGL, OpenGL ES 1.x and OpenGL ES 2.0 textures are flipped.

OpenVG textures should be correctly orientated for use with this API and do not have a flip option. NB: This option will not change how the texture appears visually, merely the ordering of data.

PVRTC Quality

Four compression methods are available for PVRTC: `Fast (Medium Quality)', `Normal (High Quality)', `High (Very High Quality)' and `Best (Best Quality)'. Fast compression is generally considered the most useful for development, as it combines reasonable quality with high speed and is useful for quick asset iteration. Normal quality is recommended for general use as it takes a short amount of time and provides great quality images. High and Best should only be used if textures are particularly prone to artefacts, as these are much slower compression methods.

ETC Quality

This option varies the setting used by the ETC compressor. Note that Medium and Slow settings may produce higher quality results, but can take very long periods to complete encoding, even on modern hardware.

PVRTexTool 21 Revision.

Dithering

When encoding to non-compressed formats that have channel precision of less than 8 bits, a dithering option is available; this can be activated or deactivated by ticking or un-ticking the 'Dithering' tick box.

2.6.8. Properties

This option displays information about the currently active texture in a floating dialog. More information is presented here than in the Info Tab of the Texture View Window.

2.6.9. Encoding Statistics

This shows some error statistics concerning the difference between input and output images of the current texture, the mean error, the standard deviation, the mean square error, the maximum difference and the peak signal-to-noise ratio.

PVRTexTool 23 Revision.

2.6.10. **Generate Font**

The 'Generate Font' dialog is used to generate texture atlases for use with Print3D; part of the PVRTools found within the PowerVR Insider SDK for displaying text within an application. It uses a font from a TTF or OTF to generate the texture and atlas data required for this purpose.

Once all options are set as required and 'Generate' has been clicked a 'Save File' dialog will appear. The file saved from this dialog contains the texture and header information needed by Print3D.

Font

Font File

A file path representing the location of the font file to be used in the texture atlas can be entered here, either manually, or through the use of the 'Browse...' option.

Size

This dropdown box allows the user to select the font size that is to be written into the texture atlas.

Figure 2-36 Generate Font Dialog

Border

'Border' represents the size of the border that should be left around each character within the texture atlas.

Grid Fitting

'Grid Fitting' is a form of font hinting that may produce a more desirable output font, varying from font to font, and by user preference.

Character Set

The three options in this section detail the character set that is to be placed into the texture atlas. By default the 7-bit ASCII character set is used, a text file containing a list of the characters may also be used, or the desired characters (including non-English characters) may be pasted into the 'Input' box.

Texture

Generate MIP-maps

With 'Yes' ticked, a full MIP-map chain will be generated for the output file.

3. PVRTexTool Command-Line

3.1. Installation

3.1.1. From Installer

Download either the PowerVR Insider SDK or the individual PVRTexTool package and follow the on screen instructions. Once the package has successfully installed the application will be available in:

<SDK_ROOT>\Utilities\PVRTexTool\PVRTexToolCL\<PLATFORM>\

3.1.2. From GZIP

Download either the PowerVR Insider SDK or the individual PVRTexTool package. Unzip the .tar.gz file, and then untar the .tar file. From the ensuing folder browse to:

<SDK_ROOT>\Utilities\PVRTexTool\PVRTexToolCL\<PLATFORM>\

3.1. Usage Instructions

PVRTexTool can be used from the command-line to be able to process and compress textures using a batch file. The syntax for the command-line is as follows:

```
PVRTexTool -f<format> -i<inputfilename> [-a<alphafilename>] [-b<factor>] [-border] [-d] [-dds*] [-dither] [-e] [-h] [-help] [-ktx] [-1] [-m] [-nt] [-ngt] [-o<outputfilename>] [-ob<channelorder>][-p] [-premultalpha] [-pvrlegacy] [-pvrtcmethod] [-pvrtcfast] [-pvrtcnormal] [-pvrtchigh] [-pvrtcbest] [-q<level>] [-r<algorithm>] [-silent] [-square] [-s<filename>] [-x<width>] [-y<height>] [-yflip<0,1>]
```

*dds is only available in the Windows version of PVRTexTool.

PVRTexTool allows the following three methods of option input:

No space (-f<format>), spaced (-f <format>) or equality (-f=<format>).

It should be noted that using a filename value for –i or –o which begins with '=' will work only with the last two options, e.g. '–i=Example.bmp' will read the filename as "Example.bmp" even if the file is called '=Example.bmp'. In this case '-i =Example.bmp' or '-i==Example.bmp' will work correctly.

3.2. Examples

To encode the file Example.bmp as a binary PVR file with pre-generated MIP-maps in ARGB 1555 format.

```
PVRTexTool -m -f1555 -iExample.bmp
```

To encode a sky box from files named $skybox_n.bmp$ as an include header in OpenGL PVRTC 4bpp format:

PVRTexTool -h -s -m -foglpvrtc4 -iskybox1.bmp

PVRTexTool 25 Revision.

3.3. Command-Line Options

Option	Notes			
-a	Input alpha filename (.pvr also BMP, JPG, PNG, GIF or TGA file).			
-b[factor]	Bump/Normal map. This option calculates the normal map from a height map passed as input. [factor] is a multiplication factor for the normal map. Default value is 2.0.			
-border	Pre-processes texture with a mirrored border around the texture. Works the same as the GUI option. A texture with dimensions that are non-power of two will be expanded to power of two dimensions. For power of two input images the border will be of 4 pixels all round, unless the chosen format is PVRTC2 or OGLPVRTC2 in which case the border generated is 4 pixels at top and bottom and 8 pixels at the sides of the texture.			
-d	Create output file(s) with decompressed texture data.			
-dds	Create a Microsoft Direct Draw Surface file. This option is only available on the Windows version of PVRTexTool.			
-dither	When encoding to non-compressed formats that have channel precision of less than 8 bits, this option enables dithering			
-e	Creates false colour MIP-map levels rather than true levels. The –m must also be set or no MIP-map levels will be generated for false colouring.			
-f	Output file format. For example –f PVRTC4			
-h	Create include file with texture data.			
-help	Displays information about PVRTexTool similar to that presented here.			
-i	Input filename (BMP, JPG, PNG, GIF or TGA file, or DDS on Windows).			
-ktx	Output a Khronos Texture file.			
-I	Apply a bleed filter to the texture and its MIP-maps based on the alpha channel.			
-m	Automatically generate all MIP-map levels.			
-nt	No twiddle. Using this option whilst compressing to a PVRTC format will have no effect as PVRTC compressed textures are always twiddled.			
-0	Output filename. If this option is not used the output filename will be the same as the input filename with the extension .pvr or .h depending on the relevant options also passed. PVRTexTool will override an incorrect extension.			
-ob[channelorder]	Used in conjunction with the '-b' flag, this flags allows the channel order to be set. E.g. yzx.			
-р	Create binary PVR file with texture data. This is the default setting if the output type is not specified.			
-premultalpha	Multiplies the RGB values in the texture by the alpha values in the pre- processing phase of texture encoding.			
-pvrlegacy	Outputs a legacy PVR2 file rather than the current PVR3 files.			
-pvrtcmethod	Values 0-3 choose a mode for PVRTC compression. The default value is 0, which is Normal compression. 1=Fast Compression, 2=High Quality Compression and 3=Best Quality Compression.			
-pvrtcfast	Uses the fast, medium quality PVRTC compressor.			
-pvrtcnormal	Uses the normal, high quality PVRTC compressor. This is the default.			
-pvrtchigh	Uses the very high quality PVRTC compressor.			

Revision . 26 User Manual

Option	Notes		
-pvrtcbest	Uses the best quality PVRTC compressor.		
-q	Quality mode for ETC compression. 0 = Fast, 1 = Medium, 2 = Slow, 3 = Fast Perceptual, 4 = Medium Perceptual, 5 = Slow Perceptual. Default is 3.		
-r	Choose a resizing algorithm. 1 = nearest, 2 = bilinear, 3 = bicubic. Default is bicubic.		
-S	Compress a skybox. Files must be named XXXXXn where n=1-6.		
-silent	Force PVRTexTool into "silent" mode.		
-square	Convert the texture into a square texture with power of two dimensions.		
-X	Define a new width for the output texture.		
-у	Define a new height for the output texture.		
-yflip	Flips the texture vertically. Use -yflip 1 to force flipping; -yflip 0 for no flip.		
	NB: This option will not change the texture visually if viewing in an image viewer; it only changes the data ordering.		

PVRTexTool 27 Revision .

4. PVRTexTool Plug-ins

Plugins are available for Adobe Photoshop, Autodesk 3D Studio Max, Autodesk Maya on Windows; 32bit versions are available for all three, 64bit versions are available for Maya and 3DS Max; the 64bit plugins for Maya and 3DS Max only support version 2010 onwards.

4.1. Adobe Photoshop

Copy: <SDK_ROOT>\Utilities\PVRTexTool\Photoshop\<PLATFORM>\PVRFormat.8bi

To: <PHOTOSHOP_DIR>\plug-ins\File Formats\

Once installed .pvr will be available as one of the formats supported for loading and saving images.

4.2. Autodesk 3D Studio MAX

This plug-in will allow 3DSMax to load the .pvr file format. When applying a material, this format will be available in the supported list and it will be displayed properly in the view-ports and final rendered images.

To install this plug-in:

Copy: <SDK ROOT>\Utilities\PVRTexTool\3DSMAX\<PLATFORM>\

PVRTexTool3DSMAX<VERSION>.dle

To: <3DSMAX_DIR>\plug-ins\

4.3. Autodesk Maya

This plug-in will allow Maya to load the .pvr file format. When applying a material, this format will be available in the supported list and it will be displayed properly in the view-ports and final rendered images.

To install this plug-in:

Copy: <SDK_ROOT>\Utilities\PVRTexTool\Maya\<PLATFORM>\

PVRTexToolMAYA<VERSION>.dll

To: <MAYA DIR>\bin\plug-ins\image\

5. Related Materials

Software

PVRTexLib

Documentation

• PVRTexLib User Manual

White Papers

• PVR Texture Compression

PVRTexTool 29 Revision.

6. Contact Details

For further support contact:

devtech@imgtec.com

PowerVR Developer Technology Imagination Technologies Ltd. Home Park Estate Kings Langley Herts, WD4 8LZ United Kingdom

Tel: +44 (0) 1923 260511 Fax: +44 (0) 1923 277463

Alternatively, you can use the PowerVR Insider forums:

www.imgtec.com/forum

For more information about PowerVR or Imagination Technologies Ltd. visit our web pages at:

www.imgtec.com

Appendix A. Texture Format Reference

Although some of the formats below are for use in specific colour spaces, PVRTexTool is not colour space aware and the user must ensure that data in the correct colour space is used with PVRTexTool.

Please note that greyed out formats, while present in the PixelType enum, are not supported by PVRTexTool at this time.

Format	Description	Command-Line Identifier
		e.g. –f4444
ARGB 4444	Good 16-bit format when smooth translucency is needed.	4444
ARGB 1555	Punch-through 16-bit translucent format.	1555
RGB 565	Best quality 16-bit opaque format.	565
RGB 555	As 1555 format but alpha is ignored. Good channel balance.	555
RGB 888	24-bit opaque format with 8 bits for each colour channel.	888
ARGB 8888	Best quality 32-bit format, but size and performance are worse than 16-bit formats.	8888
ARGB 8332	High quality translucency 16-bit format.	8332
18	8-bit intensity only format.	8
AI 88	16-bit alpha and intensity format.	88
1BPP	One bit per pixel.	1_BPP
(V,Y1,U,Y0)	YUV 16-bit format. Used for streaming movies. Good for photographic quality textures.	VY1UY0
(Y1,V,Y0,U)	YUV format.	Y1VY0U
PVRTC2	PVRTC compression format. 2-bit per pixel.	PVRTC2
PVRTC4	PVRTC compression format. 4-bit per pixel.	PVRTC4
OpenGL ARGB 4444	Good 16-bit format when smooth translucency is needed.	OGL4444
OpenGL ARGB 1555	Punch-through 16-bit translucent format.	OGL1555
OpenGL ARGB 8888	Best quality 32-bit format, but size and performance are worse than 16-bit formats.	OGL8888
OpenGL RGB 565	Best quality 16-bit opaque format.	OGL565
OpenGL RGB 555	As 1555 format but alpha is ignored. Good channel balance.	OGL555
OpenGL RGB 888	24-bit opaque format with 8 bits for each colour channel.	OGL888
OpenGL I 8	8-bit intensity only format.	OGL8
OpenGL AI 88	16-bit alpha and intensity format.	OGL88
OpenGL PVRTC2	PVRTC compression format. 2-bit per pixel.	OGLPVRTC2
OpenGL PVRTC4	PVRTC compression format. 4-bit per pixel.	OGLPVRTC4
OpenGL	An OpenGL ES extension-only format which is essentially a reordered RGBA8888	OGLBGRA8888

PVRTexTool 31 Revision.

Format	Description	Command-Line Identifier e.gf4444
BGRA 8888		
DXT1	Microsoft S3TC format, 4 bits per pixel with no alpha. (Windows Only)	DXT1
DXT2	Microsoft S3TC format, 8 bits per pixel. Good for sharp alpha transitions. Alpha is considered pre-multiplied. (Windows Only)	DXT2
DXT3	Microsoft S3TC format, 8 bits per pixel. Good for sharp alpha transitions. (Windows Only)	DXT3
DXT4	Microsoft S3TC format, 8 bits per pixel. Good for gradient alpha transitions. Alpha is considered pre-multiplied. (Windows Only)	DXT4
DXT5	Microsoft S3TC format, 8 bits per pixel. Good for gradient alpha transitions. (Windows Only)	DXT5
RGB 332	8-bit opaque format.	332
AL 44	8-bit alpha & luminance format.	AL44
LVU 655	Signed integer luminance and bump map format.	LVU655
XLVU 8888	Signed integer luminance and bump map format.	XLVU8888
QWVU 8888	Signed 8bit format designed for bump mapping.	QWVU8888
ABGR 2101010	10-bit precision format with 2 bits for alpha.	ABGR2101010
ARGB 2101010	Another 10-bit precision format with 2 bits for alpha.	ARGB2101010
AWVU 2101010	10-bit precision signed format with 2 bits for alpha. Designed for bump maps.	AWVU2101010
GR 1616	2-channel 16-bit per channel format.	GR1616
VU 1616	2-channel 16-bit per channel format. Designed for bump maps.	VU1616
ABGR 16161616	64-bit format with alpha.	ABGR16161616
R 16F	Single channel 16-bit floating point format.	R16F
GR 1616F	2-channel 16-bit floating point format.	GR1616F
ABGR 16161616F	64-bit floating point format with transparency.	ABGR16161616F
R 32F	Single channel 32-bit floating point format.	R32F
GR 3232F	2-channel 32-bit floating point format.	GR3232F
ABGR 32323232F	128-bit floating point format with transparency.	ABGR32323232F
ETC	Ericsson Texture Compression, 4 bits per pixel with no alpha.	ETC
	Ericsson Texture Compression, 4 bits per pixel with explicit alpha like DXT3.	
	Ericsson Texture Compression, 4 bits per pixel with interpolated alpha like DXT5.	
A 8	8-bit alpha only format.	A8
VU 88	2-channel 8-bit per channel format. Designed for bump maps.	VU88
L16	16-bit luminance only format.	L16
L8	8-bit luminance only format	L8
AL 88	16-bit alpha and luminance format.	AL88
UYVY	YUV colour space, pixel pair format.	UYVY
YUY2	YUV colour space, pixel pair format.	YUY2

A.1. DirectX 10 Formats

Format	Channel Type	Description	Command-Line Identifier
RGBA 32323232	Float	High precision formats with alpha support	DX10_R32G32B32A32_FLOAT
RGBA 32323232	unsigned int		DX10_R32G32B32A32_UINT
RGBA 32323232	signed int		DX10_R32G32B32A32_SINT
RGB 323232	float	High precision formats with no alpha support	DX10_R32G32B32_FLOAT
RGB 323232	unsigned int		DX10_R32G32B32_UINT
RGB 323232	signed int		DX10_R32G32B32_SINT
RGBA 16161616	float	16-bit precision formats with alpha support	DX10_R16G16B16A16_FLOAT
RGBA 16161616	unsigned normalised int		DX10_R16G16B16A16_UNORM
RGBA 16161616	unsigned int		DX10_R16G16B16A16_UINT
RGBA 16161616	signed normalised int		DX10_R16G16B16A16_SNORM
RGBA 16161616	signed int		DX10_R16G16B16A16_SINT
RG 3232	float	High precision two channel formats	DX10_R32G32_FLOAT
RG 3232	unsigned int		DX10_R32G32_UINT
RG 3232	signed int		DX10_R32G32_SINT
RGBA 1010102	unsigned normalised int	10-bit precision format with 2 bit alpha support.	DX10_R10G10B10A2_UNORM
RGBA 1010102	unsigned int		DX10_R10G10B10A2_UINT
	float		
RGBA 8888	unsigned normalised int	32-bit formats with alpha support	DX10_R8G8B8A8_UNORM
RGBA 8888	unsigned normalised int, sRGB colour space		DX10_R8G8B8A8_UNORM_SRGB
RGBA 8888	unsigned int		DX10_R8G8B8A8_UINT
RGBA 8888	signed normalised int		DX10_R8G8B8A8_SNORM
RGBA 8888	signed int		DX10_R8G8B8A8_SINT
RG 1616	float	16-bit precision two channel formats	DX10_R16G16_FLOAT
RG 1616	unsigned normalised int		DX10_R16G16_UNORM
RG 1616	unsigned int		DX10_R16G16_UINT
RG 1616	signed normalised int		DX10_R16G16_SNORM
RG 1616	signed int		DX10_R16G16_SINT
R 32	float	32-bit single channel formats	DX10_R32_FLOAT
R 32	unsigned int		DX10_R32_UINT
R 32	signed int		DX10_R32_SINT
RG 88	unsigned normalised int	8-bit precision two channel formats	DX10_R8G8_UNORM
RG 88	unsigned int		DX10_R8G8_UINT
RG 88	signed normalised int		DX10_R8G8_SNORM
RG 88	signed int		DX10_R8G8_SINT
R 16	float	16-bit single channel formats	DX10_R16_FLOAT
R 16	unsigned normalised int		DX10_R16_UNORM
R 16	unsigned int		DX10_R16_UINT
R 16	signed normalised int		DX10_R16_SNORM
R 16	signed int		DX10_R16_SINT

Format	Channel Type	Description	Command-Line Identifier
R 8	unsigned normalised int	8-bit single channel formats	DX10_R8_UNORM
R 8	unsigned int		DX10_R8_UINT
R 8	signed normalised int		DX10_R8_SNORM
R 8	signed int		DX10_R8_SINT
A 8	unsigned normalised int	8-bit single channel alpha format	DX10_A8_UNORM
R 1	unsigned normalised int	1-bit per pixel texture format	DX10_R1_UNORM
RGBE 9995			
RGBG 8888	unsigned normalised int		
GRGB 8888	unsigned normalised int		
BC 1	unsigned normalised int	Microsoft S3TC format, 4 bits per pixel with no alpha information. (Windows Only)	DX10_BC1_UNORM
BC 1	unsigned normalised int sRGB colour space	Microsoft S3TC format, 4 bits per pixel with no alpha information. (Windows Only)	DX10_BC1_UNORM_SRGB
BC 2	unsigned normalised int	Microsoft S3TC format, 8 bits per pixel. Good for sharp alpha transitions. (Windows Only)	DX10_BC2_UNORM
BC 2	unsigned normalised int sRGB colour space	Microsoft S3TC format, 8 bits per pixel. Good for sharp alpha transitions. (Windows Only)	DX10_BC2_UNORM_SRGB
BC 3	unsigned normalised int	Microsoft S3TC format, 8 bits per pixel. Good for smooth alpha transitions. (Windows Only)	DX10_BC3_UNORM
BC 3	unsigned normalised int sRGB colour space	Microsoft S3TC format, 8 bits per pixel. Good for smooth alpha transitions. (Windows Only)	DX10_BC3_UNORM_SRGB
BC 4	unsigned normalised int		
BC 4	signed normalised int		
BC 5	unsigned normalised int		
BC 5	signed normalised int		

A.2. OpenVG

All OpenVG formats are treated by PVRTexLib as ePREC_INT8.

Format	Description	Command-Line Identifier
RGBX 8888 sRGB	32 bits per pixel, no alpha support, sRGB colour space	OVG_RGBX_8888_SRGB
RGBA 8888 sRGB	32 bits per pixel, alpha support, sRGB colour space	OVG_RGBA_8888_SRGB
RGBA 8888 sRGB PRE	32 bits per pixel, pre-multiplied alpha support, sRGB colour space	OVG_RGBA_8888_SRGB_PRE
RGB 565 sRGB	16 bits per pixel, no alpha support, sRGB colour space	OVG_RGB_565_SRGB
RGBA 5551 sRGB	16 bits per pixel, punch-through alpha support, sRGB colour space	OVG_RGBA_5551_SRGB
RGBA 4444 sRGB	16 bits per pixel, alpha support, sRGB colour space	OVG_RGBA_4444_SRGB
L 8 sRGB	Single channel 8 bits per pixel format, sRGB colour space	OVG_L_8_SRGB
RGBX 8888 IRGB	32 bits per pixel, no alpha support, IRGB colour space	OVG_RGBX_8888_LRGB
RGBA 8888 IRGB	32 bits per pixel, no alpha support, IRGB colour space	OVG_RGBA_8888_LRGB
RGBA 8888 IRGB PRE	32 bits per pixel, pre-multiplied alpha support, sRGB colour space	OVG_RGBA_8888_LRGB_PRE
L 8 IRGB	Single channel 8 bits per pixel format, IRGB colour space	OVG_L_8_LRGB
A 8	Alpha texture 8 bits per channel	OVG_A_8
1 BPP	Single bit per pixel B&W texture	OVG_1_BPP
XRGB 8888 sRGB	32 bits per pixel, no alpha support, sRGB colour space	OVG_XRGB_8888_SRGB
ARGB 8888 sRGB	32 bits per pixel, alpha support, sRGB colour space	OVG_ARGB_8888_SRGB
ARGB 8888 sRGB PRE	32 bits per pixel, pre-multiplied alpha support, sRGB colour space	OVG_ARGB_8888_SRGB_PRE
ARGB 1555 sRGB	16 bits per pixel, punch-through alpha support, sRGB colour space	OVG_ARGB_1555_SRGB
ARGB 4444 sRGB	16 bits per pixel, alpha support, sRGB colour space	OVG_ARGB_4444_SRGB
XRGB 8888 IRGB	32 bits per pixel, no alpha support, IRGB colour space	OVG_XRGB_8888_LRGB
ARGB 8888 IRGB	32 bits per pixel, alpha support, IRGB colour space	OVG_ARGB_8888_LRGB
ARGB 8888 IRGB PRE	32 bits per pixel, pre-multiplied alpha support, IRGB colour space	OVG_ARGB_8888_LRGB_PRE
BGRX 8888 sRGB	32 bits per pixel, no alpha support, sRGB colour space	OVG_BGRX_8888_SRGB
BGRA 8888 sRGB	32 bits per pixel, alpha support, sRGB colour space	OVG_BGRA_8888_SRGB
BGRA 8888 sRGB PRE	32 bits per pixel, pre-multiplied alpha support, sRGB colour space	OVG_BGRA_8888_SRGB_PRE
BGR 565 sRGB	16 bits per pixel, no alpha support, sRGB colour space	OVG_BGR_565_SRGB
BGR 5551 sRGB	16 bits per pixel, punch-through alpha support, sRGB	OVG_BGR_5551_SRGB

Format	Description	Command-Line Identifier
	colour space	
BGRA 4444 sRGB	16 bits per pixel, alpha support, sRGB colour space	OVG_BGRA_4444_SRGB
BGRX 8888 IRGB	32 bits per pixel, no alpha support, IRGB colour space	OVG_BGRX_8888_LRGB
BGRA 8888 IRGB	32 bits per pixel, alpha support, IRGB colour space	OVG_BGRA_8888_LRGB
BGRA 8888 IRGB PRE	32 bits per pixel, pre-multiplied alpha support, IRGB colour space	OVG_BGRA_8888_LRGB_PRE
XBGR 8888 sRGB	32 bits per pixel, no alpha support, sRGB colour space	OVG_XBGR_8888_SRGB
ABGR 8888 sRGB	32 bits per pixel, alpha support, sRGB colour space	OVG_ABGR_8888_SRGB
ABGR 8888 sRGB PRE	32 bits per pixel, pre-multiplied alpha support, sRGB colour space	OVG_ABGR_8888_SRGB_PRE
ABGR 1555 sRGB	16 bits per pixel, no alpha support, sRGB colour space	OVG_ABGR_1555_SRGB
ABGR 4444 IRGB	16 bits per pixel, alpha support, sRGB colour space	OVG_ABGR_4444_SRGB
XBGR 8888 IRGB	32 bits per pixel, no alpha support, IRGB colour space	OVG_XBGR_8888_LRGB
ABGR 8888 IRGB	32 bits per pixel, alpha support, IRGB colour space	OVG_ABGR_8888_LRGB
ABGR 8888 IRGB PRE	32 bits per pixel, pre-multiplied alpha support, IRGB colour space	OVG_ABGR_8888_LRGB_PRE

ic Ima

Imagination Technologies, the Imagination Technologies logo, AMA, Codescape, Ensigma, IMGworks, I2P, PowerVR, PURE, PURE Digital, MeOS, Meta, MBX, MTX, PDP, SGX, UCC, USSE, VXD and VXE are trademarks or registered trademarks of Imagination Technologies Limited. All other logos, products, trademarks and registered trademarks are the property of their respective owners.