8.2.1b If p is an odd prime, then the congruence $x^{p-2} + \cdots + x^2 + x + 1 \equiv 0 \pmod{p}$ has exactly p-2 incongruent solutions, and they are the integers $2, 3, \cdots, p-1$

Proof. Notice, as p is an odd prime and for $1 \le x \le p-1$, we have $\gcd(x,p) = 1$. Then by Fermat's Theorem we have $x^{p-1} \equiv 1 \pmod{p} \Rightarrow x^{p-1} - 1 \equiv 0 \pmod{p}$ has exactly p-1 solutions. Notice,

$$x^{p-1} = (x-1)(x^{p-2} + x^{p-3} + \dots + x^2 + x + 1)$$

Then $x-1\equiv 0\pmod p$ has exactly 1 solution. Also, we then have $x^{p-2}+\cdots+x+1$ has exactly (p-1)-1=p-2 solutions. As $x\not\equiv 1\pmod p$ for $2\le x\le p-1$ and $x^{p-1}-1\equiv 0$ for $2\le x\le p-1$. Then, $x^{p-2}+\cdots+x+1\equiv 0$

Therefore, the congruence $x^{p-2} + \cdots + x^2 + x + 1 \equiv 0 \pmod{p}$ has exactly p-2 incongruent solutions, and they are the integers $2, 3, \cdots, p-1$

8.2.2b Verify the congruence $x^2 \equiv -1 \pmod{65}$ has four incongruent solutions; hence, Lagrange's theorem need not hold if the modulus is a composite number. Note, $65 = 5 \cdot 13$. Then

$$x^2 \equiv -1 \pmod{5}$$
 $x^2 \equiv -1 \pmod{13}$
 $x^2 \equiv 4 \pmod{5}$ $x^2 \equiv 12, x^2 \equiv 25 \pmod{13}$
 $(x+2)(x-2) \equiv 0 \pmod{5}$ $(x+5)(x-5) \equiv 0 \pmod{13}$

Thus, $x \equiv 8, 18, 47, 57 \pmod{65}$

8.2.3b Determine the roots of the prime p = 19 expressing p as a power of some one of the roots.

Notice, $\phi(p-1) = \phi(18) = 6$. Then we have $x^{18} \equiv 1 \pmod{19}$. We then have x = 2 being a primitive root. Determining the rest we have 2^k where $k \in \mathbb{Z}$ and $\gcd(k, 18) = 1$. Thus, k = 1, 5, 7, 11, 13, 17

Therefore, the primitive roots are $2^1, 2^5, 2^7, 2^{11}, 2^{13}, 2^{17}$

8.2.6a Assuming that r is primitive root of the odd prime p, establish: The congruence $r^{(p-1)/2} \equiv -1 \pmod{p}$ holds.

Proof. Note, that by Fermat's Theorem we have $r^{p-1} \equiv 1 \pmod{p}$. Then,

$$p|r^{p-1} - 1 = (r^{(p-1)/2} - 1)(r^{(p-1)/2} + 1)$$

Notice, that $p \not| r^{(p-1)/2} - 1$, as then $r^{(p-1)/2} \equiv 1 \pmod{p}$, which implies that r is not a primitive root.

Therefore, we must have $r^{(p-1)/2} \equiv -1 \pmod{p}$.