Well-defined formulation of the stone puzzle:

States:

square content - 5 variables, 3 values each: white (O), black (X), empty (-)

position of each stone? not good

Initial state:

(OO-XX)

Goal test:

state equal to (X X - O O)

Well-defined formulation of the stone puzzle:

Operators:

To define every step? $(O O - X X) \rightarrow (O - O X X)$ => too many! Need to be abstract:

• MoveToRight: $(O-) \rightarrow (-O)$

• MoveToLeft: $(-X) \rightarrow (X-)$

• JumpToRight: $(OX-) \rightarrow (-XO)$

• JumpToLeft: $(-OX) \rightarrow (XO-)$

Path cost:

Number of operators used (1 for all ops)

Problem search tree and solution:

To define a search tree:

- valid, reachable states only (subset of the state space)
- · symmetric portion of the search tree not shown

Initial state: (O O - X X)

Operators:

- $-MR:(O-) \rightarrow (-O)$
- ML: $(-X) \rightarrow (X-)$
- $-JR:(OX-) \rightarrow (-XO)$ $-JL:(-OX) \rightarrow (XO-)$

Problem search tree and solution:

Problem search tree and solution:

Characteristics of the search space:

Number of branches:

15 X 2 = 30

Non-terminal nodes:

1 + 2 * 10 = 21

- Average branching factor: 30 / 21 ≈ 1.43
- Depth of the 2 solutions:

XX-00

- Space complexity (memory to store the nodes):
 - Actual space required = 31 nodes
 - Theoretical space required = $1 + 1.43 + 1.43^2 + ... + 1.43^8 \approx 55$

Note: "average" is not very relevant if search space is small, based on a *uniform* search tree; here d=8 for solution path and only 5 otherwise!

Most suitable search algorithm:

- Heuristic function?
 - No → uninformed search (else A*)
- Optimal solution?
 - low branching factor & equal cost → BFS, (else IDS)
 - variable operator cost? → UCS
- Any solution ok?
 - DFS (else IDS)

Note: for small problems, any algorithm will do!

Q2.2

2.2 The chain problem consists of re-arranging a set of chains of various lengths into another set as required. In the example shown below, the initial set comprises four non-circular chains of three links each, while the final set consists of a single circular chain of twelve links. The two possible operations consist of opening a closed link and closing an open link, respectively, as illustrated. Open links can be added to a non-circular chain at either end or else join both ends into a circular chain. Closed links can be removed without restriction.

Provide a suitable definition of *states* and *operators* for the chain problem, which could be used by a problem-solving agent. Show a sequence of operators yielding a possible solution (without using a search algorithm...)

Formulation of the chain problem:

States:

- set of n chains (start n=4, goal n =1)
- chains of k links, circular or not (l = 0 or 1)
- links open or closed (open: c = 1 or closed: c = 0)
 → { ... (k, l, c) ... } (note: c=0 for k>1)

Initial state:

{ (3,0,0) (3,0,0) (3,0,0) (3,0,0) }

Goal state:

 $\{(12,1,0)\}$

Formulation of the chain problem:

Operators: "open"

- OS: open a single link $(1,0,0) \rightarrow (1,0,1)$
- OE: open a link at the end of a chain

$$(k,1,0) \rightarrow (1,0,1) + (k-1,0,0)$$
 for $k > 1$

OM(m): open a link in the middle of a chain

$$(k,0,0) \rightarrow (1,0,1) + (m,0,0)$$
 for $k > 2$
+ $(k-m-1,0,0)$ for $k-1>m>0$

✓ Example: $\{(3,0,0)\}$ \rightarrow $\{(1,0,0),(1,0,1),(1,0,0)\}$

Formulation of the chain problem:

Operators: "close"

• CS: close a single link $(1,0,1) \rightarrow (1,0,0)$

CE: close a link at the end of a chain

$$(1,0,1) + (k,0,0) \Rightarrow (k+1,l,0)$$

CM: close a link in between two chains

$$(k,0,0) + (m,0,0) + (1,0,1) \rightarrow (k+m+1,0,0)$$

note: symbols can be abstracted to O() and C() only

Path cost:

Number of operators applied (1 for all ops)

Optimal solution to the chain problem:

- Initial: { (3,0,0), (3,0,0), (3,0,0), (3,0,0) }
- OM(1): { (3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,0), (1,0,0) }

Optimal solution to the chain problem:

- Initial: { (3,0,0), (3,0,0), (3,0,0), (3,0,0) }
- OM(1): { (3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,0), (1,0,0) }
- OS(): { (3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,1), (1,0,0) }
- OS(): { (3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,1), (1,0,1) }

Optimal solution to the chain problem:

```
Initial: { (3,0,0), (3,0,0), (3,0,0), (3,0,0) }
OM(1): { (3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,0), (1,0,0) }
OS(): { (3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,1), (1,0,0) }
OS(): { (3,0,0), (3,0,0), (3,0,0), (1,0,1), (1,0,1), (1,0,1) }
CM(): { (7,0,0), (3,0,0), (1,0,1), (1,0,1) }
CM(): { (11,0,0), (1,0,1) }
CE(1): { (12,1,0) }
```