

AMENDMENTS TO THE CLAIMS

In the Claims:

1. (Currently Amended) A compound of formula (I)

or a salt, ~~or solvate~~ thereof, wherein:

n is an integer of from 2 to 8;

m is an integer of from 3 to 11, with the proviso that the sum of n + m is from 5 to 19;

R¹ is -XSO₂NR⁶R⁷;

wherein X is -(CH₂)_p- or C₂₋₆ alkenylene;

p is an integer from 0 to 6;

R⁶ and R⁷ are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, CONR⁸R⁹, phenyl and phenyl(C₁₋₄alkyl)-,

or R⁶ and R⁷, together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7- membered nitrogen – containing ring;

and R⁶ and R⁷ are each independently optionally substituted by 1 or 2 groups independently selected from halo, C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy-substituted C₁₋₆alkoxy,

C₁₋₆haloalkyl, CO₂R⁸, SO₂R⁸R⁹, -CONR⁸R⁹, -NR⁸C(O)R⁹ or a 5-, 6- or 7-membered heterocyclic ring;

R⁸ and R⁹ are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, phenyl and phenyl(C₁₋₆alkyl)-;

R² and R³ are independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, halo, phenyl and C₁₋₆haloalkyl;

R⁴ and R⁵ are independently selected from hydrogen and C₁₋₄ alkyl with the proviso that the total number of carbon atoms in R⁴ and R⁵ is not more than 4,

and

Ar is a group selected from the group consisting of:

(a)

(b)

(c)

and

(d)

wherein R¹¹ represents hydrogen, halogen, -(CH₂)_qOR¹⁴, -NR¹⁴C(O)R¹⁵, -NR¹⁴SO₂R¹⁵, -SO₂NR¹⁴R¹⁵, -NR¹⁴R¹⁵, -OC(O)R¹⁶ or OC(O)NR¹⁴R¹⁵, and R¹⁰ represents hydrogen, halogen or C₁₋₄ alkyl;

or R¹¹ represents -NHR¹⁷ and R¹⁰ and -NHR¹⁷ together form a 5- or 6-membered heterocyclic ring;

R¹² represents hydrogen, halogen, -OR¹⁴ or -NR¹⁴R¹⁵; -OC(O)R¹⁶ or -OC(O)NR¹⁴R¹⁵;

R¹³ represents hydrogen, halogen, haloC₁₋₄ alkyl, -OR¹⁴ or -NR¹⁴R¹⁵;

R^{14} and R^{15} each independently represents hydrogen or C_{1-4} alkyl, or in the groups

$-NR^{14}R^{15}$, $-SO_2NR^{14}R^{15}$ and $-OC(O)NR^{14}R^{15}$, R^{14} and R^{15} independently represent hydrogen or C_{1-4} alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring,

R^{16} represents an aryl (eg phenyl or naphthyl) group which may be unsubstituted or substituted by one or more substituents selected from halogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy or halo C_{1-4} alkyl; and

q is zero or an integer from 1 to 4;

provided that when R^1 is hydrogen

~~Ar is not a group (a) wherein;~~

~~R^{14} is $-(CH_2)_qOR^{14}$, q is zero or 1 and R^{12} is OR^{14} ,~~

~~or R^{14} is $-(CH_2)_qOR^{14}$, q is zero and R^{13} is OR^{14} ,~~

~~or R^{14} is $NR^{14}SO_2R^{15}$ or $NR^{14}COR^{15}$ and R^{12} is OR^{14} ,~~

~~or R^{14} and R^{13} both represent halogen and R^{12} is $NR^{14}R^{15}$;~~

~~Ar is not a group (b) wherein R^{14} is $-(CH_2)_qOR^{14}$ and R^{12} is OR^{14} ;~~

~~Ar is not a group (c),~~

and when R^1 is $XSO_2NR^6R^7$, Ar is not a group (a) wherein

R^{11} is $(CH_2)_qOR^{14}$ or $NR^{14}COR^{15}$, and R^{12} is OR^{14} .

2. (Previously Presented) A compound of formula (I) according to claim 1 wherein, in the group Ar, R^{11} represents halogen, $-(CH_2)_qOR^{14}$, $-NR^{14}C(O)R^{15}$, $-NR^{14}SO_2R^{15}$, $-SO_2NR^{14}R^{15}$, $-NR^{14}R^{15}$, $-OC(O)R^{16}$ or $OC(O)NR^{14}R^{15}$,

and R^{10} represents hydrogen,

or R¹¹ represents –NHR¹⁷ and R¹⁰ and –NHR¹⁷ together form a 5- or 6-membered heterocyclic ring;

and

R¹³ represents hydrogen, halogen, halo, C₁₋₄ alkyl, -OR¹⁴, or –NR¹⁴R¹⁵;

3. (Previously Presented) A compound of formula (I) according to claim 1 wherein the group R¹ is attached to the meta-position relative to the –O-(CH₂)_m link.

4. (Previously Presented) A compound of formula (I) according to claim 1 wherein R¹ represents SO₂NR⁶R⁷ wherein R⁶ and R⁷ are independently selected from hydrogen and C₁₋₆alkyl.

5. (Previously Presented) A compound of formula (I) according to claim 1 wherein R⁴ and R⁵ are independently selected from hydrogen and methyl.

6. (Previously Presented) A compound of formula (I) according to claim 1 wherein R² and R³ each represent hydrogen.

7. (Previously Presented) A compound of formula (I) according to claim 1 wherein n is 5 or 6 and m is 3 or 4 such that m + n is 8, 9 or 10.

8. (Previously Presented) A compound of formula (I) according to claim 1 wherein Ar represents a group selected from the group consisting of:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(x_i)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

9. (Cancelled)

10. (Previously Presented) A compound of formula (I) according to claim 8 wherein R^1 is $\text{XSO}_2\text{NR}^6\text{R}^7$ and Ar is selected from the group consisting of (iii), (iv), (xiv), (xv), (xvi) and (xix).

11. (Currently Amended) A compound selected from the group consisting of:

8-Hydroxy-5-((1*R*)-1-hydroxy-2-{{[6-(4-phenylbutoxy)hexyl]amino}ethyl}quinolin-2(1*H*)-one;

3-{4-[(2*R*)-2-Hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino}hexyl oxybutyl}benzenesulfonamide;

5-Hydroxy-8-(1-hydroxy-2-{{[6-(4-phenylbutoxy)hexyl]amino}ethyl}-2*H*-1,4-benzoxazin-3(4*H*)-one;

3-{4-[(6-{{2-hydroxy-2-(5-hydroxy-3-oxo-3,4-dihydro-2*H*-1,4-benzoxazin-8-yl)ethyl}amino}hexyl)oxy]butyl}benzenesulfonamide;
4-Hydroxy-7-((1*R*)-1-hydroxy-2-{{6-(4-phenylbutoxy)hexyl}amino}ethyl)-1,3-benzothiazol-2(3*H*)-one;
4-Hydroxy-7-(1-hydroxy-2-{{6-(4-phenylbutoxy)hexyl}amino}ethyl)-1,3-benzothiazol-2(3*H*)-one;
3-{4-[(6-{{(2*R*)-2-(3-Fluoro-4-hydroxyphenyl)-2-hydroxyethyl}amino}hexyl)oxy]butyl}benzenesulfonamide;
3-(4-{{6-({2-Hydroxy-2-[5-hydroxy-6-(hydroxymethyl)pyridin-2-yl]ethyl}amino}hexyl)oxy]butyl}benzenesulfonamide;
3-[4-{{6-[(2*R*)-2-Hydroxy-2-{4-hydroxy-3-[(methylsulfonyl)amino]phenyl}ethyl}amino}hexyl]oxy]butyl}benzenesulfonamide;
3-{3-[(7-{{(2*R*)-2-(3-Fluoro-4-hydroxyphenyl)-2-hydroxyethyl}amino}heptyl)oxy]propyl}benzenesulfonamide;
3-(3-{{7-({2-Hydroxy-2-[5-hydroxy-6-(hydroxymethyl)pyridin-2-yl]ethyl}amino}heptyl)oxy}propyl)benzenesulfonamide;
3-[3-{{7-[(2*R*)-2-Hydroxy-2-{4-hydroxy-3-[(methylsulfonyl)amino]phenyl}ethyl}amino}heptyl]oxy]propyl}benzenesulfonamide;
3-{3-[(7-{{(2*R*)-2-Hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl}amino}heptyl)oxy]propyl}benzenesulfonamide;
3-(3-{{7-({(2*R*)-2-[3-(Formylamino)-4-hydroxyphenyl]-2-hydroxyethyl}amino}heptyl)oxy}propyl)benzenesulfonamide;

and a salt thereof, and a solvate thereof.

12-13. (Canceled)

14. (Currently Amended) A pharmaceutical formulation comprising a compound of formula (I), according to claim 1, or a pharmaceutically acceptable

salt,~~or solvate~~ thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.

15. (Canceled)

16. (Currently Amended) A process for the preparation of a compound of formula (I), according to claim 1, or a salt,~~or solvate~~ thereof, which comprises:

deprotecting a protected intermediate of formula (II):

or a salt or solvate thereof, wherein R¹, R², R³, R⁴, R⁵, m and n are as defined for the compounds of formula (I) R²⁵ represents an optionally protected form of Ar, and R²⁶ and R²⁷ each independently represent either hydrogen or a protecting group, provided that the compound of formula (II) contains at least one protecting group

wherein said process may further optionally comprise one or more of the following steps in any order:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
- (iii) converting the product to a corresponding salt, ~~solvate~~, or
- (iv) converting a group R¹, R² and/or R³ to another group R¹, R² and/or R³.

17. (Previously Presented) A compound of the formula (I) according to claim 1, wherein m is an integer ranging from 3 to 7.

18. (Previously Presented) A compound of the formula (I) according to claim 1, wherein the sum of n + m ranges from 5 to 12.

19. (Previously Presented) A compound of the formula (I) according to claim 1, wherein p is an integer ranging from 0 to 4.

20-22. (Canceled)

23. (Currently Amended) A process for the preparation of a compound of formula (I), according to claim 1 or a salt, ~~or solvate~~ thereof, which comprises:

reacting a compound of formula (XIII):

Wherein Ar is as defined above with a compound of formula (VI):

wherein L is a leaving group and R¹, R², R³, R⁴, R⁵, n and m are as defined for compounds of formula (I);

wherein said process may further optionally comprise one or more of following steps in any order:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
- (iii) converting the product to a corresponding salt, solvate, or
- (iv) converting a group R¹, R² and/or R³ to another group R¹, R² and/or R³.

24. (Previously Presented) A process according to claim 23, wherein the leaving group comprises a halo group.

25. (Previously Presented) A process according to claim 24, wherein the halo group is selected from the group consisting of chloro, bromo, and iodo.

26. (Previously Presented) A process according to claim 23, wherein the leaving group comprises a sulphonate group.

27. (Previously Presented) A process according to claim 26, wherein the sulphonate group is a methanesulphonate group.

28. (Currently Amended) A process for the preparation of a compound of formula (I), according to claim 1, or a salt or solvate thereof, which comprises:

reacting a compound of formula (XV):

wherein L is a leaving group, with an amine of formula (XVI):

wherein R¹, R², R³, R⁴, R⁵, n and m are as defined for formula (I); and wherein said process may further optionally comprise one or more of the following steps in any order:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
- (iii) converting the product to a corresponding salt, ~~solvate~~, or
- (iv) converting a group R¹, R² and/or R³ to another group R¹, R² and/or R³.

29. (Previously Presented) A process according to claim 28, wherein the leaving group comprises a halo group.

30. (Previously Presented) A process according to claim 28, wherein the halo group is selected from the group consisting of chloro, bromo, and iodo.

31. (Previously Presented) A process according to claim 28, wherein the leaving group comprises a sulphonate group.

32. (Previously Presented) A process according to claim 28, wherein the sulphonate group is a methanesulphonate group.

33. (Currently Amended) A process for the preparation of a compound of formula (I), according to claim 1 or a salt ~~or solvate~~ thereof, wherein said process is selected from the group consisting of (i) and (ii):

- (i) reacting a compound of formula (XIII):

Wherein Ar is as hereinbefore defined and R³⁴ is a chiral auxiliary group,

with a compound of formula (XVII):

wherein R¹, R², R³, R⁴, n and m are as hereinbefore defined;
optionally followed by removing said chiral auxiliary group R³⁴;

and (ii) reacting a compound of formula (XVIII):

wherein Ar is as hereinbefore defined; with an amine of formula (XVI):

under conditions suitable to effect reductive amination,

wherein said process may further optionally comprise one or more of the following steps in any order:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
- (iii) converting the product to a corresponding salt, ~~solvate~~,
- (iv) converting a group R¹, R² and/or R³ to another group R¹, R² and/or R³.