
BUGGER

FW = Folge Wand W = Warte

FaW = Finde andere Wand

zb_u_ns = Zielfeld belegt u. nicht Start?

zf = Zielfeld frei? zb = Zielfeld belegt?

zf_u_ns = Zielfeld frei u. nicht Start?

zs = Zielfeld Start? zw = Zielfeld Wand? znw*1) = Zielfeld nicht Wand?

	zb_u_ns	zf	zb	zf_u_ns	zs	ZW	znw
→ FW*	W	-	-	FW	FaW	-	-
W	-	FW	W	-	-	-	-
FaW*)	-	-	-	-	-	FW	FaW

^{*)} Bei Zustand nochmal Event prüfen um richtiges Zielfeld gespeichert zu haben

.-----

Pusher¹

HB = Horizontale Bewegung

VB = Vertikale Bewegung

Z = Zerstört

zf = Zielfeld frei (Oder Roboter, aber

verschiebbar)?

zw_o_pbb = Zielfeld Wand (o. block. Rob.) o.

Patchbot-Breite erreicht?

zw_o_pbh = Zielfeld Wand (o. block. Rob.) o.

Patchbot-Höhe erreicht? = Zielfeld gefährlich?

	zf	zw_o_pbb	zw_o_pbh	zg
→ HB	НВ	VB	-	Z
VB	VB	-	НВ	Z
Z	-	-	-	-

zg

DIGGER1

HB = Horizontale Bewegung

VB = Vertikale Bewegung

Z = Zerstört

zf = Zielfeld frei (Oder Roboter, aber

verschiebbar)?

zw_o_pbb = Zielfeld Wand (o. block. Rob.) o.

Patchbot-Breite erreicht?

zw_o_pbh = Zielfeld Wand (o. block. Rob.) o.

Patchbot-Höhe erreicht?

zg = Zielfeld gefährlich?

zf zw_o_pbb zw_o_pbh zg

¹ Hier gibt es weitere Events, die auf den gleichen Zustand zeigen, z.B. Bewegung oder Verschieben (lt. Aufgabenstellung). Es werden hier zur Vereinfachung und zur Kompakthaltung der States und Events etwaige Nebeneffekte (z.B. Verschieben oder Graben) mit der Bewegung an sich zusammengefasst. Das v.a., da die Aufgabenstellung meiner Meinung nach sehr inkonsistent formuliert ist.

^{*1)} Da die Graphen in der Aufgabenstellung so schlecht durchdacht sind, findet der Check, ob das Zielfeld frei ist in der state_func zu FaW statt

→ HB	НВ	VB	-	Z
VB	VB	-	НВ	Z
Z	-	-	-	-

SWIMMER²

zf_o_w = Zielfeld frei (Oder Roboter, aber HB = Horizontale Bewegung VB

= Vertikale Bewegung verschiebbar) o. Wasser?

Ζ = Zerstört zw_o_pbb = Zielfeld Wand (o. block. Rob.) o.

Patchbot-Breite erreicht?

= Zielfeld Wand (o. block. Rob.) o. zw_o_pbh

Patchbot-Höhe erreicht?

= Zielfeld gefährlich? zg

	zf_o_w	zw_o_pbb	zw_o_pbh	zg
→ HB	НВ	VB	-	Z
VB	VB	-	НВ	Z
Z	-	_	-	-

Pushing Robot²

(Pushing Robot sind alle "pushing robots" zusammengefasst. So wurden sie auch implementiert. Roboter-spezifische Aktionen (z.B. schwimmen und graben, wurden dort konditional mit eingebaut.)

HB = Horizontale Bewegung zf = Zielfeld frei (Oder Roboter, aber

VΒ = Vertikale Bewegung verschiebbar) o. Wasser?

Ζ = Zerstört = Zielfeld Wand (o. block. Rob.) o. zw_o_pbb

Patchbot-Breite erreicht?

= Zielfeld Wand (o. block. Rob.) o. zw_o_pbh

Patchbot-Höhe erreicht?

= Zielfeld gefährlich? zg

	zf_o_w	zw_o_pbb	zw_o_pbh	zg
→ HB	НВ	VB	-	Z
VB	VB	-	НВ	Z
Z	-	-	ı	-

² s. Fußnote 1

FOLLOWER³

V = Verfolge pb_is = Patchbot in Sicht und erreichbar?
W = Warte pb_as = Patchbot außer Sicht oder nicht erreichbar?

	pb_is	pb_as
→ W	V	W
V	V	W

HUNTER³

V = Verfolge pb_is = Patchbot in Sicht und erreichbar?
W = Warte pb_as = Patchbot außer Sicht oder nicht
J = Jage erreichbar?

	pb_is	pb_as
→ W	V	-
V	V	J
J	V	J

SNIFFER

V = Verfolge pe = Patchbot erreichbar? W = Warte pne = Patchbot nicht erreichbar?

	pe	pne
→ W	V	W
V	V	W

Follower, Hunter und Sniffer zusammenzufassen gestaltet sich etwas schwieriger, zumindest als Tabelle hier. Bei der Implementierung bietet es sich an, um trotzdem alle drei FSMs in einer Klasse umzusetzen, eine map<robot_type, fsm-table> zu verwalten.

$$\text{mit x und y: } x_t : x_{pb} \leq x_t \leq x_g \ \land \ y_t : y_t = \frac{y_g - y_{pb}}{x_g - x_{pb}} x_t + y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g \lor x_t : x_t = \frac{\left(y_t - y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_g - y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t : y_{pb} \leq y_t \leq y_g \text{ nicht vom } x_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t = \frac{\left(y_t - y_g - \frac{y_{pb}}{x_g - x_{pb}} x_g\right)}{\frac{y_g - y_{pb}}{x_g - x_{pb}}} \land y_t = \frac{\left(y_t - y_g - \frac{y_{pb$$

Typ Wand ist. Typ Wand sei hier terrain::CONCRETE_WALL, terrain::ROCK_WALL, terrain::AUTOMATIC_DOOR, terrain::MANUAL_DOOR oder terrain::SERET_PASSAGE. Wohl gemerkt sind die Türen geschlossen. Wenn das Ergebnis der o.g. Funktionen direkt auf ein Tile fällt, d.h. $y_t = \lfloor y_t \rfloor \ \lor \ x_t = \lfloor x_t \rfloor$, je nachdem ob $\Delta x > \Delta y$, werden auch die diagonale nächsten Tiles mit geprüft (also x-1, y und x, y-1).

³ Dass sich Patchbot "in Sicht" befindet, heißt hier, dass jedes Tile t mit x und y zwischen Patchbot pb mit x und y und Gegener g