CS2102 02 Digital Logic Design Midterm 2 (1:20pm-3:10pm, May 11th)

Name:	ID:	(Return this with your answer sheet
Truth or False (33%):		
(Write down T or F on you	r answer sheet! You don'	't need to give the reason.)
1 Connecting the out		he input of a 2^n : n encoder, the n -bit output
policy of finding the least sig	gnificant 1, the priority encod	the arbiter to its binary value. Therefore, for the ler will output '3' when its input is 01011000.
 Arbitrary n-input co MUX. 	mbinational logic function car	n be implemented using a one-hot-select 2^{n-1} :1
4. For a 3-bit vector {x	$\{y, z\}$, the even parity P can	be generated by $P = x \oplus y \oplus z$. To check if
there is an error, one can us	e $C = P \oplus x \oplus y \oplus z$, when	re $C = 1$ indicates even number of errors.
(Hint: is an XOR operato	or.)	2 16
5 An n-bit 2's comple	ment number can represent	2^n different numbers, from -2^{n-1} to
$2^{n-1}-1$.	C. S. 1	
6. For the <i>n</i> -bit signed	2's complement addition ({C	$\{S_n, S_{n-1}, S_{n-2}, \dots, S_1, S_0\} = \{A_{n-1}, A_{n-2}, \dots, S_n, S_n\}$
A_1, A_0 + { $B_{n-1}, B_{n-2},, B_{n-2}$	B_1, B_0 + C_0), overflow occurs	when the carry signals $C_{n-1} \oplus C_{n-2} = 1$. If two positive integers with binary
representation, you can have	e iterative design to compare t	the two numbers bit by bit iteratively, only
from LSB to MSB, but not fro		
8. The result of multiple number.	ying an <i>n</i> -bit number and an	m-bit number will be (at most) an $(n+m)$ -bit
	e of NAND gate and OR gate is	the same.
10. The setup time of a f	lip-flop defines the time that o	data input must be maintained at a constant
11 In a Moore machine,	the outputs depend on the pr	resent state only; the next-state
combinational logic, on the o	ther hand, is a function of bot	th the present state and primary inputs.
Answer the following quest	ions: (72%)	
(Write down your intermed	iate results with the final	answer to get the scores.)
 (8%) [Conversion] Convert (3 You should show the interme 	5.71875) ₁₀ to binary represent diate results by using the proc	edures in the lecture.
		following additions with 7-bit binary
	A AL Variable III	translate the requitte decimal - 1: 1:

- how you determine if there is an overflow in hardware's viewpoint. (a) (4%) (+50) (-13);
 - (b) (4%) (-26) (+50).
- 3. (16%) [Combinational Block] Design a 3-input function $f(a_2, a_1, a_0) = \sum_{m} (0, 1, 2, 5, 6, 7)$.

- (a) (8%) [MUX] Use three 2:1 MUXes to design the circuit. Draw the logic diagram given that the select
- (b) (8%) [Decoder] Use a 2:4 decoder, AND gates and one NOR gate to design the circuit. The decoder's input is $\{a_2, a_1\}$. Hint: Use the 2:4 decoder with AND gates to build up the 3:8 decoder. Then use the 3:8 decoder. 3:8 decoder and one NOR gate to implement the function. You may skip the unused outputs of the
- 4. (5%) For the *n*-bit addition ($\{C_n, S_{n-1}, S_{n-2}, \dots, S_1, S_0\} = \{A_{n-1}, A_{n-2}, \dots, A_1, A_0\} + \{B_{n-1}, B_{n-2}, \dots, S_n, S_n\}$ $\{B_1, B_0\} + C_0\}$, consider the carry lookahead adder (CLA) with carry-propagate $P_i = A_i \oplus B_i$ and carry-generate $G_i = A_i B_i$. Derive the Boolean function for $C_3 = f(P_2, G_2, P_1, G_1, P_0, G_0, C_0)$ in sum-of products form. (The Boolean function only depend on the carry-in C_0 , carry-propagate P_i and carry-generate G_i .) Hint: The carry $C_{i+1} = G_i \vee P_i C_i$.
- 5. (5%) [Latch] Complete the following timing diagram for the RS latch with two NOR gates. Assume q=0(q'=1) initially. Assume the timing is ideal without any delay (that is, the delay of all the gates is zero). There is also the gate-level logic diagram of RS latch for your reference. You may draw the answer directly on the problem sheet.

r=1 5=0 reset

6. (10%) [DFF] Consider the following D flip-flop of two gated D latches with NAND gates. There is also the gate-level logic diagram of D latch for your reference.

Complete the following timing diagram. Assume Y=Q=0 at time 0, and there is no delay of the circuit. You may draw the answer directly on the problem sheet.

- 7. (20%) [sequential design] Design a binary up-down counter. The counter has three 1-bit inputs (dir, rst_n and clk). The outputs include the 2-bit out and a 1-bit carry out co. Initially the output is 00 after the reset. When dir==1, the counter up-counts from 00 to 01, to 10, to 11, then back to 00, and repeats. The co is equal to 1 when the out transits from 11 to 00, otherwise it is 0. When dir==0, the counter down-counts from 00 to 11, to 10 to 01, back to 00, and repeats. The co is equal to 1 when the out transits from 00 to 11, otherwise it is 0.
 - (a) (5%) Draw the state diagram of this finite-state machine (FSM) design. (The state $\{s_1, s_0\}$ can be the same as the output **out**.)
 - (b) (5%) Draw the state table.
 - (c) (10%) Derive the logic to compute the next-state and output using K-map. Draw the gate-level diagram of this counter. You may use AND, NAND, OR, NOR, INV, XOR, or XNOR gates. Hint: A three-input XOR function is x \(\phi\) y \(\phi\) z = \(\overline{x}\) \(\overline{y}\) z \(\nabla\) x \(\overline{y}\) \(\overline{z}\) v x y z. The block diagram of DFF is also shown in the following. The reset is skipped for the simplicity.

For those who forgot what K-map is, here is also a hint for you:

Good Luck!!

If you have too much time left, there is still a joke for you:

A professor experienced a serious headache in the classroom. And he went to see a doctor.

After medical examination, doctor told him:

"Mr. professor, after my detailed examination, we found out that your brain has two parts: one is left, and the art is left, and the other is right."

"Your left brain has nothing right. And your right brain has nothing left!"