Axiomatiques des matrices

Marc SAGE

29 novembre 2007

On se donne un ensemble A (non vide) muni de deux lois internes : un + associatif supposé régulier et un \times sans aucune autre hypothèse.

Pour $n \geq 1$, on munit $M_n(A) := A^{[1,n]^2}$ (abrégé M_n) du produit

$$\begin{array}{cccc} M_{n}\left(A\right)^{2} & \longrightarrow & M_{n}\left(A\right) \\ (U,V) & \longmapsto & \left\{ \begin{array}{ccc} \left[1,n\right]^{2} & \longrightarrow & A \\ (i,j) & \longmapsto & \sum_{x=1,\dots,n} U\left(i,x\right) V\left(x,y\right) \end{array} \right. \end{array}.$$

C'est une application \mathbb{N} -bilinéaire et l'on peut remplacer \mathbb{N} par tout ensemble agissant distributivement sur A (a fortiori sur $A^{[1,n]^2}$ coordonnée par coordonnée).

On se demande quelle structure possède les "ensembles matriciels" M_n muni de l'addition produit et de la multiplication sus-définie et réciproquement comment la structure des M_n influe sur celle de A.

(Toutes les distributivités exprimées par la suite concerneront les multiplications sur les additions.)

- 1. Rappeler pourquoi, lorsque × se distribue sur +, d'une part la présence d'un neutre multiplicatif implique la commutativité de l'addition, d'autre part les neutres additifs sont exactement les absorbants multiplicatifs.
- 2. Étant donné un élément $o \in A$, montrer que les injections

$$\begin{cases}
A & \hookrightarrow & M_n \\
& & \\
a & \longmapsto & \begin{pmatrix}
a & o & \cdots & o \\
o & o & \cdots & o \\
\vdots & \vdots & \ddots & \vdots \\
o & o & \cdots & o
\end{pmatrix}$$

sont des morphismes multiplicatifs pour tout $n \ge 1$ ssi c'en sont pour n = 2 et ssi o est un neutre additif et un absorbant multiplicatif. Que récolte-t-on au passage?

- 3. Montrer que \times_{M_n} est commutatif ssi \times_A est constant ou si n=1 et \times_A commute.
- 4. Montrer que M_n a un absorbant ssi A possède un élément ω tel que $\omega = n\omega^2$ et dont les (deux) multiplications associées sont constantes.
- 5. Montrer que \times_{M_n} a un neutre pour tout entier $n \ge 1$ ssi \times possède un neutre et un absorbant additivement neutre.
- 6. Montrer que \times_{M_n} est distributif pour tout entier $n \geq 1$ ssi \times est distributif et si + commute sur AA. Que se passe-t-il quand A est unifère?
- 7. Montrer que \times_{M_n} est associative pour tout entier $n \geq 1$ ssi

$$\forall \overrightarrow{\lambda}, \overrightarrow{\mu}, \overrightarrow{\nu} \in A^{(\mathbb{N})} \times A^{\left(\mathbb{N}^2\right)} \times A^{(\mathbb{N})}, \ \sum_{x \geq 1} \lambda_x \left(\sum_{y \geq 1} \mu_{x,y} \nu_y \right) = \sum_{y \geq 1} \left(\sum_{x \geq 1} \lambda_x \mu_{x,y} \right) \nu_y.$$

En supposant A muni d'un neutre additif idempotent (penser $0^2 = 0$), montrer que \times_{M_2} est associative pour tout $n \ge 1$ ssi

- (a) \times est associative;
- (b) \times est distributive sur AA;
- (c) $+ comm \ sur \ AAA$.

Que se passe-t-il quand A est unifère?

- 8. On suppose que \times_A possède un absorbant additivement neutre, ce qui permet de plonger A dans tous les M_n ainsi que ces derniers dans $M(A) := A^{\left(\mathbb{N}^{*2}\right)}$ (abrégé M) à l'aide des morphismes évidents $M_p \overset{p \leq q}{\hookrightarrow} M_q \hookrightarrow M$ (implicités à la question 2).
 - Définir le produit dans M suivant une condition raisonnable, puis passer en revue les points abordés ci-dessus : commutativité, absorbant, neutre, distributivité, associativité. Commenter.

Solution proposée.

1. On procède comme dans les espaces vectoriels en simplifiant l'égalité

$$a + b + a + b = (1+1)\overline{a+b} = \overline{1+1}(a+b) = a+a+b+b.$$

Par ailleurs, si 0 est un neutre additif, on peut à $a \in A$ fixé écrire 0a = (0+0)a = 0a+0a, d'où en simplifiant par 0a dans l'égalité 0 + 0a = 0 + 0a + 0a l'identité 0 = 0a + 0 = 0a. En procédant de même de l'autre côté, on voit que 0 est un absorbant multiplicatif.

Réciproquement, si o est un absorbant pour \times , alors

$$o = oo = o(o + o) = oo + oo = o + o;$$

prenant un $a \in A$, il vient a + 2o = a + o, d'où par régularité a + o = a. On procèderait de même de l'autre côté pour finir de montrer que o est un neutre additif.

2. Le sens \Leftarrow est clair. Pour l'autre, on regarde le cas n=2. On peut alors écrire

$$\forall a,b \in A, \ \left(\begin{array}{cc} ab & o \\ o & o \end{array} \right) = \left(\begin{array}{cc} a & o \\ o & o \end{array} \right) \left(\begin{array}{cc} b & o \\ o & o \end{array} \right) = \left(\begin{array}{cc} ab + o^2 & ao + o^2 \\ ob + o^2 & o^2 + o^2 \end{array} \right).$$

Le coefficient (1,1) nous dit que o^2 neutralise à droite les éléments de AA, puis les coefficients (1,2) et (2,1) montrent que o est absorbant pour \times , d'où $o = o^2$

Pour conclure que o est neutre additif, on invoque la régularité de l'addition : à x fixé dans A, simplifier par ab l'égalité ab + o + x = ab + x donne o + x = x, d'où en ajoutant x à gauche x + o + x = x + x et la conclusion x + o = x en simplifiant par x à droite.

Lorsque les conditions ci-dessus sont réunies, nos injections sont automatiquement des morphismes additifs.

3. Lorsque n = 1, le produit de $M_n(A)$ est celui de A.

Lorsque $n \ge 2$, prenons deux éléments a et b et regardons le produit de la matrice ne contenant que des a par la même matrice où le coefficient (1,1) est un b. Les coefficients (1,1) et (2,1) donnent l'égalité

$$ab + (n-1)a^2 = ba + (n-1)a^2 = a^2 + (n-1)a^2$$

d'où par régularité $ab = ba = a^2 = b^2$, ce qui montre que ab est constant.

4. Soit Ω absorbant de M_n . Lisons les lignes de l'égalité $\Omega = \Omega A$ pour une matrice $A \in M_n$ quelconque :

$$\forall i, j, \ \omega_{i,j} = \left[\Omega\right]_{i,j} = \left[\Omega A\right]_{i,j} = \sum_{x} \omega_{i,x} a_{x,j}.$$

On voit que toutes les multiplications $\omega_{i,x}$ sont constantes, mettons $\omega_{i,x} = w_{i,x}$; mais alors $\omega_{i,j} = \sum_x w_{i,x}$ ne dépend pas de j. En lisant les colonnes de l'égalité $\Omega = A\Omega$, on montrerait de même que $\omega_{i,j}$ ne dépend pas de i, disons $\omega_{i,j} = \omega$ pour tous i,j. On en déduit $w_{i,j} = \omega^2$ pour tous i,j, de sorte que l'égalité ci-dessus se réécrit $\omega = n\omega^2$.

Réciproquement, supposant les multiplications ω et ω constantes (nécessairement à leur valeur ω^2 commune en ω) ainsi que l'identité $\omega = n\omega^2$, le calcul ci-dessus montre que la matrice remplie de ω est absorbante dans M_n .

5. Le sens \Leftarrow est aisé : mettre que des 1 la diagonale et 0 partout ailleurs.

Les structures A et $M_1(A)$ étant isomorphes, le neutre de \times_{M_1} donne un neutre pour A. Considérons à présent $\begin{pmatrix} u & o \\ \omega & v \end{pmatrix}$ un neutre dans M_2 . On va le multiplier par des matrices simples pour avoir de l'information. Commençons par ne mettre que des 1:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \left\{ \begin{array}{c} \begin{pmatrix} u & o \\ \omega & v \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} u+o & ? \\ \omega+v & ? \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u & o \\ \omega & v \end{pmatrix} = \begin{pmatrix} u+\omega & ? \\ u+\omega & o+v \end{pmatrix} \right..$$

Les coefficients (1,1) et (1,2) donnent $1=u+\omega=u+o=o+v$, d'où après simplification $\omega=o$ et u+o=1. Ensuite, on introduit un u:

$$\begin{pmatrix} u & 1 \\ 1 & 1 \end{pmatrix} = \left\{ \begin{array}{cc} \begin{pmatrix} u & o \\ o & v \end{pmatrix} \begin{pmatrix} u & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} ? & ? \\ ou + v & ? \end{pmatrix} \\ \begin{pmatrix} u & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u & o \\ o & v \end{pmatrix} = \begin{pmatrix} uo + v \\ ? \end{pmatrix} \right.,$$

Les coefficients (1,2) et (2,1) montre (avec l'égalité 1=o+v) que o absorbe u. De même, multiplier par $\begin{pmatrix} v & 1 \\ 1 & 1 \end{pmatrix}$ donnerait l'égalité de cette dernière avec $\begin{pmatrix} ? & ? \\ ov+v & ? \end{pmatrix}$ et $\begin{pmatrix} ? & vo+v \\ ? & ? \end{pmatrix}$, d'où il suivrait que o aborbe aussi v. Poursuivons en prenant le carré de notre neutre :

$$\left(\begin{array}{cc} u & o \\ o & v \end{array}\right) = \left(\begin{array}{cc} u & o \\ o & v \end{array}\right) \left(\begin{array}{cc} u & o \\ o & v \end{array}\right) = \left(\begin{array}{cc} ? & ? \\ ou + vo & ? \end{array}\right) = \left(\begin{array}{cc} ? & ? \\ 2o & ? \end{array}\right).$$

Il en sort 2o = o, de sorte que o est un neutre additif : à x fixé dans A, simplifier par o l'égalité o + o + x = o + x (idem de l'autre côté). On en déduit 1 = u + o = u et 1 = o + v = v. Par conséquent, notre neutre vaut nécessairement $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Pour montrer enfin que 0 est absorbant, on écrit (pour a fixé dans A)

$$\begin{pmatrix} a & 1 \\ 1 & 1 \end{pmatrix} = \begin{cases} \begin{pmatrix} a & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ? & a0+1 \\ ? & ? \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} ? & ? \\ 0a+1 & ? \end{pmatrix} ,$$

d'où le résultat en lisant les coefficients (1,2) et (2,1).

6. Le cas n=1 donne la distributivité dans $A\cong M_1(A)$. Le cas n=2 donne alors l'égalité des matrices suivantes pour tous a,b,u,v,λ,μ dans A:

$$\begin{pmatrix} a & b \\ \cdot & \cdot \end{pmatrix} \begin{bmatrix} \begin{pmatrix} u & v \\ \cdot & \cdot \end{pmatrix} + \begin{pmatrix} \lambda & \mu \\ \cdot & \cdot \end{pmatrix} \end{bmatrix} \quad = \quad \begin{pmatrix} a & b \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} u + \lambda & \cdot \\ \gamma + \nu & \cdot \end{pmatrix} = \begin{pmatrix} au + a\lambda + b\gamma + b\nu & \cdot \\ \cdot & \cdot \end{pmatrix},$$

$$\begin{pmatrix} a & b \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} u & \cdot \\ \gamma & \cdot \end{pmatrix} + \begin{pmatrix} a & b \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} \lambda & \cdot \\ \nu & \cdot \end{pmatrix} \quad = \quad \begin{pmatrix} au + b\gamma + a\lambda + b\nu & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}.$$

En simplifiant par au et bv, on tombe sur la commutativité de + sur AA.

Lorsque A possède un 1, ces conditions reviennent tout simplement à la distributivité de \times (la régularité de + entraı̂nant sa commutativité sur $AA \subset A1 = A$).

7. Le cas n=1 donne l'associativité de $A\cong M_1(A)$. L'associativité du produit de trois matrices A,B,C de taille n s'écrit

$$\forall i, j \ge 1, \ \sum_{x \ge 1} a_{i,x} \sum_{y \ge 1} b_{x,y} c_{y,j} = \left[A \left(B C \right) \right]_{i,j} = \left[\left(A B \right) C \right]_{i,j} = \sum_{y \ge 1} \left(\sum_{x \ge 1} a_{i,x} b_{x,y} \right) c_{y,j}.$$

En fixant i et j et faisant varier A, B, C, on tombe sur la condition demandée.

On supposose à présent donné un zéro idempotent. Alors prendre $\overrightarrow{\lambda}$ ayant au plus un élément non nul donne $\lambda \sum_y \mu_y \nu_y = \sum_y \lambda \mu_y \nu_y$, ce qui traduit la distributivité de \times à gauche; pour l'autre côté, prendre $\overrightarrow{\nu}$ réduit à un seul élément afin d'obtenir $\sum_x \lambda_x \mu_x \nu = (\sum_x \lambda_x \mu_x) \nu$. Enfin, prendre $\overrightarrow{\lambda}$ et $\overrightarrow{\nu}$ contenant chacun deux éléments donne l'égalité suivante pour tous scalaires $a, b, c, d, u, v, \lambda, \mu$

$$\lambda (au + bv) + \mu (cu + dv) = (\lambda a + \mu c) u + (\lambda b + \mu d) v.$$

En développant puis simplifiant, il reste la commutativité de λbv et μcu , donc celle de AAA.

Réciproquement, si l'on suppose ces trois conditions, on peut réécrire les deux sommes de l'énoncé caractérisant l'associativité de \times_{M_n} sous la forme $\sum_{x,y} \lambda_x \mu_{x,y} \nu_y$ (la commutativité permet de multidistribuer comme on veut).

Lorsque A possède de plus un neutre multiplicatif, ces conditions se simplifient pour les mêmes raisons qu'à la question précédente en " \times est associatif et distributif" (on récupère au passage la commutativité du +).

8. Toute matrice de M appartient à un certain M_n , il en sera de même pour tout couple de matrices de M. Ainsi, si l'on veut que les injections $M_n \hookrightarrow M$ restent des morphismes multiplicatifs, il faut définir le produit sur M comme celui prolongeant ceux des M_n :

$$\left[UV\right]_{i,j} = \sum_{x>1} \left[U\right]_{i,x} \left[V\right]_{x,y}.$$

D'après la question 3, \times_M commute ssi \times_A est constant.

Vues les conditions pour définir M, ce dernier a automatiquement un absorbant : la matrice nulle.

En revanche, toute matrice de M appartient à un certain M_n , donc sera de produit nul contre toute autre matrice ayant des 0 sur ses n premières lignes et colonnes : puisqu'il existe (si $A \neq 0$) une telle matrice non nulle pour tout $n \geq 0$ (mettre un 1 à la place n+1 sur la diagonale et que des 0 ailleurs), il ne peut y a avoir de neutre pour M. En conclusion, \times_M a un neutre ssi A est nul.

La distribituvité et l'associativité de trois matrices données de M s'exprimant dans un certain M_n , les questions 6 et 7 s'appliquent : \times_M est distributif ssi \times l'est (et alors l'addition est abélienne), \times_M est associatif ssi \times est associatif et distributif.

En commentaire, on voit dans ce qui précède qu'il est très agréable de disposer d'un neutre additif multiplicativement absorbant, ce qui est automatique dans les (semi-)anneaux, avec ou sans unité, lesquelles structures passent de A aux $M_n(A)$ ainsi qu'à M(A) (à l'exception notable de l'unité pour ce dernier).

Il est par ailleurs remarquable que, en se donnant simplement un 0 idempotent et un 1, la seule associativité de \times_M implique non-seulement celle de \times , mais également sa distributivité, ainsi que la commutativité de l'addition. Ces remarques sont à rapprocher de l'axiomatiques des polynômes.