DiffGeoI: Problem Set I

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set I.

Question 1.

1. Show that a topological manifold M is connected iff M is path-connected.

Solution.

For any topological space, path-connected implies connected. We prove the converse. Suppose X is connected. Let $x \in X$, and set

$$U = \{y \in X \mid \text{ there is a path bewteen } x \text{ and } y\}.$$

Observe that $x \in U$ so U is non-empty. Now, as X is connected, if U and U^c are both open, then U^c is empty, and U = X, so X is path-connected. We show that U is open. Let $y \in U$. Then, there exists an open nbd of y, O, such that O is homeomorphic to an open ball in R^n (this is equivalent to the locally euclidean condition of topological manifold). Since path-connectedness is preserved through homeomorphism, we conclude that O is path connected and $O \subset U$. Therefore, U is open and similarly U^c is open, and we are done.

Question 2.

2. Let $\mathbb{R}P^n$ be the *n*-dimensional projective space, with the atlas given by the following functions

$$\phi_i: U_i \to \mathbb{R}^n, [x_1, \dots x_{n+1}] \mapsto (\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i}),$$

where U_i , i = 1, ..., n + 1 are open subsets $\{[x_1, ..., x_{n+1}], x_i \neq 0\}$.

- (a) Show that (U_i, ϕ_i) is a smooth atlas.
- (b) Show that $\mathbb{R}P^1$ is diffeomorphic to S^1 .
- (c) Let π : S² → ℝP² be a map that sends a point (x, y, z) to a unique line through this point. Show that π is smooth and that π is local diffeomorphism: for any point p ∈ S² there exists an open neighborhood U ⊂ M such that π_U : U → π(U) is a diffeomorphism on an open subset of ℝP².

Solution.

(a) Let $1 \le i < j \le n$. By symmetry, it suffices to show that

$$\phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$$

is smooth. For any $a=(\frac{x_1}{x_i},...,\frac{x_{i+1}}{x_i},...,\frac{x_{n+1}}{x_i})\in\phi_i(U_i\cap U_j)$ with $x_i,x_j\neq 0$,

$$a\mapsto_{\phi_i^{-1}} [x_1,...,x_{n+1}]\mapsto_{\phi_j} (\frac{x_1}{x_j},...,\frac{x_{j-1}}{x_j},\frac{x_{j+1}}{x_j},...,\frac{x_{n+1}}{x_i}).$$

Since each coordinate map is smooth, we see that the transition map is smooth and since the indices were arbitrary, the atlas is smooth. \Box

(b)

(c) We choose the smooth structure of S^2 to be the one that contains the projection charts. Let $p=(x^*,y^*,z^*)\in S^2$ and assume without loss of generality that $z^*>0$. Choose a chart (U_z^+,ψ_z) of p where

$$U_{z^+} = \{ p = (x, y, z) \in S^2 : z > 0 \}$$

with $\psi_z:U_{z^+}\to\mathbb{R}^2$ defined by

$$p = (x, y, z) \in U_{z+} \mapsto (x, y).$$

Now, observe that with $z^* > 0$, $\pi(z^*) \in U_3$, so we can choose (U_3, ϕ_3) for a chart at $\pi(z^*)$. We now claim that

$$\phi_3 \circ \pi \circ \psi_z^{-1} : \psi_z(U_z^+) \to U_3$$

is smooth at $\psi(p)$. For each $(x,y) \in \psi(U_z^+)$, we have

$$\begin{array}{ccc} (x,y) & \mapsto_{\psi_z^{-1}} & (x,y,(1-x^2-y^2)^{\frac{1}{2}}) \mapsto_{\pi} [x,y,(1-x^2-y^2)^{\frac{1}{2}}] \\ & \mapsto_{\phi_3} & (\frac{x}{(1-x^2-y^2)^{\frac{1}{2}}},\frac{y}{(1-x^2-y^2)^{\frac{1}{2}}}) \end{array}$$

which simplifies to

$$(x,y)\mapsto_{\phi_3\circ\pi\circ\psi_z^{-1}}(\frac{x}{(1-x^2-y^2)^{\frac{1}{2}}},\frac{y}{(1-x^2-y^2)^{\frac{1}{2}}}).$$

Therefore, we see that each component is smooth, and $\phi^3 \circ \pi \circ \psi^{-1}$ is smooth, so π is smooth.

Now, it is easy to see that π in fact gives the diffeomorphism as claimed. By symmetry, on any chart, π is a bijection from U to $\pi(U)$, as we have eliminated the 2-1 mapping by only considering positive or negative parts in all dimensions. It is also true that $\pi(U)$ is open. Restricted to $\pi(U)$ by the same computation as above, π^{-1} is smooth, so we see that π is a local diffeomorphism. Formally, fix $p \in S^2$. Choose a chart that contains p, U, then, π restircted to U gives a diffeomorphism as required.

Question 3.

4. Let M be a manifold of class C^k . Let $A, B \subset M$ be closed subsets such that $A \cap B = \emptyset$. Show that there is a function $f \in C^k(M)$ with values in [0,1] and such that f is identically 0 on A and identically 1 on B.

Solution.

This statement corresponds to