Proof. We know that $\binom{n}{k}$ is the number of binary words of length n with exactly k digits 1. There are two kinds of words like that: those that start with 1 and those that start with 0. How many words of each kind are there?

When we delete the first digit, we are left with a word of length n-1. For the words of the first kind, this word of length n-1 must contain k-1 digits 1. Thus there are $\binom{n-1}{k-1}$ words of the first kind.

Similarly, for a word of second kind we are left with a word of length n-1 that contains k digits 1. Thus there are $\binom{n-1}{k}$ words of the second kind.

Since every word is either of the first kind or of the second kind but not both, identity (??) holds.

Proof of Theorem ??. Let us write the numbers $\binom{n}{k}$ in a triangle similar to the Pascal triangle:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 4 \end{pmatrix} \\ \begin{pmatrix} 5 \\ 5 \end{pmatrix} \\ \begin{pmatrix} 5$$

The top-left neighbor of the number $\binom{n}{k}$ is $\binom{n-1}{k-1}$, the top-right neighbor is $\binom{n-1}{k}$. By Lemma ??, the numbers in the $\binom{n}{k}$ -triangle satisfy the same rule that the numbers in the Pascal triangle: each number is the sum of its top-left and top-right neighbors. The outermost numbers $\binom{n}{0}$ and $\binom{n}{n}$ are also the same as in the Pascal triangle:

 $\binom{n}{0} = \binom{n}{n} = 1.$

It follows that the $\binom{n}{k}$ -triangle coincides with the Pascal triangle. (The formal argument here is proof by induction: if the n-th line of the $\binom{n}{k}$ -triangle coincides with the n-th line of the Pascal triangle, then their (n+1)-st lines also coincide.)