

none

none

none

© EPODOC / EPO

PN - SU1546960 A 19900228
PD - 1990-02-28
PR - SU19884440848 19880614
OPD - 1988-06-14
TI - DEVICE FOR DETERMINING EXTREME VALUES
IN - VASILKEVICH ALEKSANDR V (SU); DMITRIEV ALEKSANDR G (SU); ELMANOV SERGEJ A (SU); MIKHAJLOVICH IGOR V (SU); VASILENKO LARISA I (SU)
PA - VASILKEVICH ALEKSANDR V (SU); DMITRIEV ALEKSANDR G (SU); ELMANOV SERGEJ A (SU); MIKHAJLOVICH IGOR V (SU); VASILENKO LARISA (SU)
IC - G06F7/02

© WPI / DERWENT

TI - Two-dimensional data files extremal values finder - has pairs of comparators processing fragment line values to select max. and min. for memories
PR - SU19884440848 19880614
PN - SU1546960 A 19900228 DW199038 000pp
PA - (VASI-I) VASILKEVICH A V
IC - G06F7/02
IN - DMITRIEV A G; ELMANOV S A; VASILKEVIC A V
AB - SU1546960 Appts. comprises memories (1,2), subtracting counters (3-6), registers (7-14), comparators (15-18), commutators (19,20), AND-gates (21,22), delay elements (23,24), univibrator (25), clock input (26) and data input (27).
- The two-dimensional matrix or frame is split into $L \times H$ rectilinear fragments each having dims. of $N \times M$ elements. The appts. determines the max. and min. elements from each of the fragments, memories (1,2) having a capacity of $L \times H$ cells. The frame values pass sequentially to input (27) and comparators (17,18) find the max. and min. values of the centre of the values of one line before processing the line of for the next fragment.
- USE/ADVANTAGE - Appts. is for use in high-speed specialised computers in processing two-dimensional data e.g. TV images in real time. Appts. can now determine the extrema of two-dimensional signals by rectilinear fragments. Bul. 8/28.2.90 (3pp Dwg.No. 1/1)
OPD - 1988-06-14
AN - 1990-288983 [38]

none

none

none

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (II) 1546960 A1

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГННТ СССР

(51)5 G 06 F 7/02

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4440848/24-24

(22) 14.06.88

(46) 28.02.90, Бюл. № 8

(72) А.В. Васильевич, А.Г. Дмитриев,
С.А. Елманов, И.В. Михайлович
и Л.И. Васilenko

(53) 681.325.5(088.8)

(56) Авторское свидетельство СССР
№ 1287183, кл. G 06 F 15/36. 1985.

Авторское свидетельство СССР
№ 849200, кл. G 06 F 7/00, 1979.

2

(54) УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ
ЭКСТРЕМАЛЬНЫХ ЗНАЧЕНИЙ

(57) Изобретение относится к вычисли-
тельной технике и предназначено для
обработки двумерных массивов данных,
например при обработке телевизионных
изображений. Цель изобретения - рас-
ширение области применения за счет
определения экстремумов двумерных сиг-
налов по прямоугольным фрагментам. Уст-

60 SU (II) 1546960 A1

ройство содержит блоки памяти (БП) 1, 8, вычитывающие счетчики 3-6, регистры 7-14, элементы сравнения (ЭС) 15-18, коммутаторы 19-20, элементы И 21, 22, элементы задержки 23, 24, одновибратор 25, тактовый вход 26, информационный вход 27. Двумерная матрица (кадр) разбивается на $L \times H$ прямоугольных фрагментов, каждый из которых имеет размеры $N \times M$ элементов. Устройство определяет максимальный и минимальный элементы по каждому из фрагмен-

5 10

тов. БП 1 и 2 имеют емкость $L \times H$ ячеек. Значения кадра последовательно поступают по входу 27, ЭС 17 и 18 определяют максимальное и минимальное значения среди значений одной строки. Затем ЭС 17 и 18 обрабатывают строку следующего фрагмента и одновременно из экстремальных значений данной строки и предыдущих строк текущего фрагмента ЭС 15 и 16 выбирают максимальные и минимальные и записывают в БП 1 и 2. 1 ил.

Изобретение относится к вычислительной технике и предназначено для 20 использования в быстродействующих специализированных вычислительных устройствах при обработке двумерных массивов данных, например, при обработке 25 телевизионных изображений в реальном масштабе времени.

Цель изобретения - расширение области применения за счет обеспечения возможности определения экстремумов двумерных сигналов по прямоугольным 30 фрагментам.

На чертеже представлена схема устройства.

Устройство содержит блоки памяти 1 и 2, вычитывающие счетчики 3-6, регистры 7-14, элементы сравнения 15-18, 35 коммутаторы 19 и 20, элементы И 21 и 22, элементы задержки 23 и 24, одновибратор 25, тактовый вход 26, информационный вход 27.

Устройство работает следующим образом.

Двумерная матрица (кадр) разбивается на $L \times H$ прямоугольных фрагментов, каждый из которых имеет размеры $N \times M$ 45 элементов. Устройство определяет максимальный и минимальный элементы по каждому из фрагментов. Блоки памяти 1 и 2 имеют емкость $L \times H$ ячеек, в блоке памяти 1 хранятся текущие максимальные значения по обработанным элементам фрагментов в блоке памяти 2 - минимальные. В регистрах 9, 10, 11, 12 соответственно хранятся значения 50 N, L, M, H . На вход 27 устройства последовательно поступают значения кадра, сопровождаемые тактовым импульсом по входу 26. Это значение сравнивается 55 элементом сравнения 17 (18) с хран-

ящимся в регистре 13 (14) и большее (меньшее) из них записывается в регистр 13 (14). После обработки одной строки фрагмента (N элементов) на выходе здема счетчика 3 формируется импульс, по которому в счетчик 3 из регистра 9 перезаписывается величина N , из содержимого счетчика 4 вычитается единица, содержимое регистров 13 и 14 переписывается в регистры 7 и 8, затем в регистр 13 записывается нуль, а в регистр 14 - максимальное число в принятой разрядной сетке.

Далее устройство продолжает поиск экстремальных значений среди N элементов строки следующего фрагмента, и одновременно из блоков памяти 1 и 2 выбираются соответственно максимальное и минимальное текущие значения обрабатываемого фрагмента, адрес которого определяется значениями счетчиков 4 и 6 (счетчик 4 определяет младшие, а счетчик 6 - старшие адреса блоков памяти). Максимальное (минимальное) значение сравнивается элементом сравнения 15 (16) с хранящимися в регистрах 7 (8) и большее (меньшее) из них записывается в блок памяти 1(2) по тому же адресу. В процессе обработки происходит изменение значений, хранящихся в счетчиках 4 и 6, т.е. адресов фрагментов. После обработки $N \times M \times L \times H$ элементов максимальные и минимальные значения по каждому фрагменту записаны в соответствующие ячейки блоков памяти 1 и 2.

Ф о р м у л а и з о б р е т е н и я

Устройство для определения экстремальных значений, содержащее первый

элемент сравнения, первый коммутатор, блок памяти, шесть регистров, три счетчика, два элемента И, два элемента задержки и одновибратор, причем выходы разрядов первого регистра соединены с информационными входами первой группы первого коммутатора, выходы разрядов второго регистра соединены с входами первой группы первого элемента сравнения, выход первого элемента задержки соединен с входом одновибратора, отличаясь тем, что, с целью расширения области применения за счет обеспечения возможности определения экстремумов двумерных сигналов по прямоугольным фрагментам, в него введены три элемента сравнения, второй коммутатор, второй блок памяти, два регистра и четвертый счетчик, причем выходы разрядов третьего, четвертого, пятого и шестого регистров соединены с информационными входами соответственно первого, второго, третьего и четвертого счетчиков, выход заема каждого счетчика соединен с входом разрешения записи того же счетчика, тактовый вход устройства соединен с первыми входами первого и второго элементов И и вычитающим входом первого счетчика, выход заема которого соединен с входами разрешения записи первого и второго регистров, входами первого и второго элементов задержки и вычитающим входом второго счетчика, выход заема которого соединен с вычитающим входом третьего счетчика, выход заема которого соединен с вычитающим входом четвертого счетчика, выходы разрядов второго и четвертого счетчиков соединены соответственно с младшими и стар-

шими разрядами адресных входов обоих блоков памяти, управляющие входы которых объединены и подключены к выходу второго элемента задержки, выходы разрядов первого и второго регистров соединены соответственно с выходами первой группы второго элемента сравнения и информационными входами первой группы второго коммутатора, информационный вход устройства соединен с информационными входами седьмого и восьмого регистров и с входами первой группы третьего и четвертого элементов сравнения, выходы которых соединены с вторыми входами соответственно первого и второго элементов И, выходы которых соединены с входами разрешения записи соответственно седьмого и восьмого регистров, выходы разрядов которых соединены с информационными входами соответственно первого и второго регистров и с входами второй группы соответственно третьего и четвертого элементов сравнения, выход одновибратора соединен с входом установки всех разрядов первого регистра в нулевое состояние и всех разрядов второго регистра в единичное состояние, информационные выходы первого и второго блоков памяти соединены с информационными входами второй группы соответственно первого и второго коммутаторов и с входами второй группы соответственно второго и первого элементов сравнения, выходы которых соединены с управляющими входами соответственно первого и второго коммутаторов, выходы которых соединены с информационными входами соответственно первого и второго блоков памяти.

Редактор Л.Пчолинская

Составитель В.Горохов
Техред М.Дидык

Корректор О.Кравцова

Заказ 80

Тираж 562

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-издательский комбинат "Патент", г.Ужгород, ул. Гагарина, 101