Problem 1 (22). Prove by induction on dimension the following facts about the homology of a finite-dimensional CW complex X, using the observation that X^n/X^{n-1} is a wedge sum of n-spheres.

- (a) If X has dimension n then $H_i(X) = 0$ for i > n and $H_n(X)$ is free.
- (b) $H_n(X)$ is free with basis in bijective correspondence with the n-cells if there are no cells of dimension n-1 or n+1.
- (c) If X has k n-cells then $H_n(X)$ is generated by at most k elements.

Proof.

Problem 2 (26). Show that $H_1(X, A)$ is not isomorphic to $\widetilde{H}_1(X/A)$ if X = [0, 1] and A is the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots$ together with its limit 0. [See Example 1.25.]

 \square

Problem 3 (27). Let f:(X,A)(Y,B) be a map that both $f:X\to Y$ and the restriction $f:A\to B$ are homotopy equivalences.

- (a) Show that $f_*: H_n(X,A) \to H_n(Y,B)$ is an isomorphism for all n.
- (b) For the inclusion $f:(D^n,S^{n-1})\to (D^n,D^n-\{0\})$, show that f is not a homotopy equivalence of pairs —there is no $g:(D^n,D^n-\{0\})\to (D^n,S^{n-1})$ such that fg and gf are homotopic to the identity through maps of pairs. [Observe that a homotopy equivalence of pairs $(X,A)\to (Y,B)$ is also a homotopy equivalence for the pairs obtained by replacing A and B by their closures.]

 \square