MATH 913 : Finance

Examen terminal : durée deux heures.

Les notes personnelles de cours sont autorisées; les exercices sont indépendants.

Mardi 6 janvier 2009.

Exercice 1. Soit $(\xi_i)_{i\geq 0}$ une suite de variables aléatoires indépendantes et identiquement distribuées, de carré intégrable vérifiant : $\mathbb{E}[\xi_0] = 0$, $\mathbb{E}[\xi_0^2] = 1$. On définit les processus X et A par :

$$X_0 = 0$$
, $A_0 = 0$, $X_n = \sum_{i=1}^n \xi_{i-1} \xi_i$, $A_n = \sum_{i=1}^n \xi_{i-1}^2$, $n \ge 1$.

Montrer que $(X_n)_{n\geq 0}$ et $(X_n^2-A_n)_{n\geq 0}$ sont des martingales par rapport à la filtration $\mathcal{F}_n=\sigma(\xi_i:i\leq n).$

Exercice 2. On se place dans le modèle de Cox–Ross–Rubinstein sur une période : le taux d'intérêt sur la période est de 5%, le prix initial de l'action S est de 100 euros. À l'instant 1, l'action peut subir une hausse de 10% ou une baisse de 15%.

On considère une option européenne d'achat de maturité 1, de prix d'exercice K = 105 euros, et de sous-jacent S: la valeur à l'instant 1 de cette option est $X_1 = (S_1 - K)_+$.

Déterminer le prix de vente de cette option ainsi que la stratégie de couverture.

Exercice 3. On considère le modèle de Black–Scholes avec un actif sans risque de taux d'intérêt r dont le cours à l'instant t est noté R_t et un actif risqué dont le cours à l'instant t est noté S_t ; $S_0 = x > 0$ et $R_0 = 1$. On note \tilde{S}_t le cours actualisé.

On se place sous la probabilité risque neutre \mathbb{P}^* et on rappelle que l'évolution de \tilde{S} est donnée par l'équation :

$$d\tilde{S}_t = \sigma \tilde{S}_t dB_t, \quad t \ge 0,$$

où σ est la volatilité du marché et B un mouvement brownien sous \mathbb{P}^* .

- 1. Soient a un réel et $F(t,x) = e^{\sigma^2(T-t)}x^2 2ax + a^2$.
 - (a) En appliquant la formule d'Itô, montrer que $dF(t, \tilde{S}_t)$ est de la forme $\psi_t d\tilde{S}_t$.
 - (b) En déduire que $F(t, \tilde{S}_t)$ est une martingale sous \mathbb{P}^* puis que $F(0, \tilde{S}_0) = \mathbb{E}^*[F(T, \tilde{S}_T)]$.
 - (c) En déduire que, pour tout réel a,

$$\mathbb{E}^* \left[\left(\tilde{S}_T - a \right)^2 \right] = e^{\sigma^2 T} x^2 - 2ax + a^2.$$

- 2. On se propose de calculer le prix de vente P d'une option européenne de maturité T > 0, de sous-jacent S et dont la valeur à l'instant T est $X_T = (S_T K)^2$ où K > 0.
 - (a) Rappeler la formule donnant P sous forme d'une espérance sous \mathbb{P}^* .
 - (b) Exprimer P en fonction σ , r, T, K et x.