Pontifícia Universidade Católica de Minas Gerais

Otimização de Sistemas

Construção dos Modelos Matemáticos

Aluno Geovane Fonseca de Sousa Santos

Professor Dorirley Rodrigo Alves

Belo Horizonte, 18 de Fevereiro de 2019

Conteúdo

1	Pro	blema 1	1
	1.1	Descrição	1
	1.2	Requisições	1
		Modelo Matemático	
2	Pro	blema 2	1
	2.1	Descrição	1
	2.2	Requisições	2
		Modelo Matemático	
3	Pro	blema 3	2
	3.1	Descrição	2
	3.2	Requisições	3
	3.3	Modelo Matemático	3

1 Problema 1

1.1 Descrição

Uma empresa que trabalha com mármores e granitos fabrica soleiras e peitoris. Ela repassa para os revendedores tendo um lucro de R\$7,00 por soleira e R\$8,50 por peitoril. Cada soleira tem 0,6m 2 de área e cada peitoril tem área de 0,8m 2 . A empresa dispõe de 16m 2 de granito diariamente para fazer as peças e tem 5 funcionários que trabalham 6 horas por dia. Na confecção de uma soleira gastam-se 24 minutos e na confecção do peitoril, 20. Sabendo que toda a produção é absorvida pelo mercado, construa o modelo matemático de produção diária que maximiza o lucro da empresa.

	Soleira	Peitoril	Disponibilidade
Lucro	R\$7,00	R\$8,50	-
Área	$0,6m^{2}$	$0,8m^2$	$16m^{2}$
Tempo Gasto	24 min	20 min	1800 min

1.2 Requisições

• Objetivo: Maximizar o lucro da empresa;

• Variáveis de Decisão: soleira (x), peitoril (y);

• Restrições: Disponibilidade de granito em m^2 e de horas de trabalho em min.

1.3 Modelo Matemático

• Função Objetivo (F.O): max(Z) = 7x + 8,5y

• A F.O está sujeita a:

- (R1) Granito: $0,6x+0,8y \le 16$

- (R2) Horas de Trabalho: 24x + 20y < 1800

2 Problema 2

2.1 Descrição

A empresa Ciclo S.A. faz montagem de dois tipos de bicicletas: a do tipo Padrão e a do tipo Clássico. Ela recebe as peças de outras empresas e a

montagem passa por duas oficinas. A montagem de uma bicicleta tipo Padrão requer uma hora na oficina I e duas horas e meia na oficina II. A montagem de uma bicicleta modelo Clássico requer uma hora e meia na oficina I e duas horas e meia na oficina II. A oficina I tem disponibilidade de 20 funcionários que trabalham 8 horas por dia, e a oficina II tem disponibilidade de 32 funcionários que trabalham, também, as mesmas 8 horas diariamente cada um. A demanda diária de bicicleta tipo :Clássico é de 40 peças. Sabendo que a bicicleta modelo padrão Padrão dá uma contribuição para o lucro de R\$38,00 e a modelo Clássico dá R\$49,00, determine o modelo de programação linear que maximiza o lucro da empresa.

	Oficina I	Oficina II	Lucro	Demanda
Padrão	60 min	150 min	R\$38,00	-
Clássica	90 min	150 min	R\$49,00	40 unid.
Horas de Trabalho	9600 min	15360 min	-	-

2.2 Requisições

- Objetivo: Maximizar o lucro da empresa;
- Variáveis de Decisão: bicicletas(padrão) (x), bicicletas(clássico) (y);
- Restrições: Disponibilidade de bicicletas(clássico) e horas de trabalho.

2.3 Modelo Matemático

- Função Objetivo (F.O): max(Z) = 38x + 49y
- A F.O está sujeita a:
 - (R1) Bicicleta(clássico): $y \le 40$
 - (R2) Horas de Trabalho Oficina I: $60x + 90y \le 9600$
 - (R3) Horas de Trabalho Oficina II: $150x + 150y \le 15360$

3 Problema 3

3.1 Descrição

Uma fábrica de móveis para escritórios produz estantes e mesas para computadores. Cada estante gasta 2,5m 2 de madeira, 14 parafusos, 0,40

kg de cola, 8 puxadores e 6 dobradiças e cada mesa para computador gasta 2,0m 2 de madeira, 18 parafusos, 0,22 kg de cola, 2 puxadores e 4 dobradiças. A empresa tem 18 empregados que trabalham oito horas por dia e sabe-se que uma estante gasta entre corte de madeira e o seu término quatro horas e meia e a mesa para computador, três horas. A loja dispõe, diariamente, de 90m 2 de madeira, 7 caixas de parafusos contendo, cada uma, 100 parafusos, 12 quilos de cola, 15 caixas de puxadores, cada uma contendo 12 peças e 17 caixas de dobradiças, cada uma contendo 12 peças. No mercado a empresa obtém um lucro de R\$45,00 por cada estante vendida e R\$36,00 por cada mesa para computador. O mercado impõe uma demanda máxima de 16 estantes e 25 mesas. Determine o modelo matemático para esse problema que maximiza o lucro da empresa.

	Estante	Mesa	Disponibilidade
Madeira	$2,5m^{2}$	$2m^2$	$90m^{2}$
Parafusos	14 unid.	18 unid.	700 unid.
Cola	0,4 kg	0,22 kg	12 kg
Puxadores	8 unid.	2 unid.	180 unid.
Dobradiças	6 unid.	4 unid.	204 unid.
Tempo Gasto	270 min	180 min	8640 min
Lucro	R\$45,00	R\$36,00	-
Demanda	16 unid.	25 unid.	-

3.2 Requisições

• Objetivo: Maximizar o lucro da empresa;

• Variáveis de Decisão: estante (x), mesa (y);

• Restrições: Disponibilidade de madeira, parafusos, cola, puxadores, dobradiças e horas de trabalho.

3.3 Modelo Matemático

• Função Objetivo (F.O): max(Z) = 45x + 36y

• A F.O está sujeita a:

- (R1) Madeira: $2,6x + 2y \le 90$

- (R2) Parafusos: 14x + 18y < 700

- (R3) Cola: 0, 4x + 0, 22y < 12

- (R4) Puxadores: $8x + 2y \le 180$
- (R5) Dobradiças: $6x + 4y \le 204$
- (R6) Demanda (Estante): $x \le 16$
- (R7) Demanda (Mesa): $y \le 25$
- (R8) Horas de Trabalho: $270x + 180y \le 8640$