PROGRAMMING HANDHELD SYSTEMS

SENSORS

TODAY'S TOPICS

SENSORMANAGER & SENSOR

SENSOREVENT & SENSOREVENTLISTENER

FILTERING SENSOR VALUES

EXAMPLE APPLICATIONS

SENSORS

HARDWARE DEVICES THAT MEASURE THE PHYSICAL ENVIRONMENT

MOTION

Position

ENVIRONMENT

SOME EXAMPLE SENSORS

MOTION - 3-AXIS ACCELEROMETER

POSITION - 3-AXIS MAGNETIC FIELD

ENVIRONMENT - PRESSURE

SENSORMANAGER

SYSTEM SERVICE THAT MANAGES SENSORS
GET INSTANCE WITH

getSystemService(
 Context.SENSOR_SERVICE)

ACCESS A SPECIFIC SENSOR WITH

SensorManager.
getDefaultSensor(int type)

SOME SENSOR TYPE CONSTANTS

- Accelerometer Sensor.TYPE_ACCELEROMETER
- MAGNETIC FIELD Sensor.TYPE_MAGNETIC_FIELD
- Pressure Sensor.TYPE_PRESSURE

SENSOREVENTLISTENER

INTERFACE FOR SENSOREVENT CALLBACKS

SENSOREVENTLISTENER

CALLED WHEN THE ACCURACY OF A SENSOR HAS CHANGED

void onAccuracyChanged(
Sensor sensor, int accuracy)

SENSOREVENTLISTENER

CALLED WHEN SENSOR VALUES HAVE CHANGED

void onSensorChanged(
SensorEvent event)

REGISTERING FOR SENSOREVENTS

USE THE SENSORMANAGER TO REGISTER/ UNREGISTER FOR SENSOREVENTS

REGISTERING FOR SENSOREVENTS

TO REGISTER A SENSOREVENTLISTENER FOR A GIVEN SENSOR

public boolean registerListener (
SensorEventListener listener,
Sensor sensor, int rate)

REGISTERING FOR SENSOREVENTS

UNREGISTERS A LISTENER FOR THE SENSORS WITH WHICH IT IS REGISTERED

public void unregisterListener (
SensorEventListener listener,
Sensor sensor)

SENSOREVENT

REPRESENTS A SENSOR EVENT

DATA IS SENSOR-SPECIFIC

SENSOR TYPE

TIME-STAMP

ACCURACY

MEASUREMENT DATA

SENSOR COORDINATE SYSTEM

WHEN DEFAULT ORIENTATION IS PORTRAIT & THE DEVICE IS LYING FLAT, FACE-UP ON A TABLE, AXES RUN

X - RIGHT TO LEFT

Y - TOP TO BOTTOM

Z - DOWN TO UP

SENSOR COORDINATE SYSTEM

COORDINATE SYSTEM DOES NOT CHANGE WHEN DEVICE

ORIENTATION CHANGES

SENSORRAWACCELEROMETER

DISPLAYS THE RAW VALUES READ FROM THE DEVICE'S ACCELEROMETER

Demonstration of the SensorRawAccelerometer project in the IDE

ACCELEROMETER VALUES

IF THE DEVICE WERE
STANDING STRAIGHT UP, THE
ACCELEROMETER WOULD
IDEALLY REPORT:

 $X \approx 0 \text{ m/s}^2$

 $Y \approx 9.81 \text{ m/s}^2$

 $Z \approx 0 \text{ m/s}^2$

ACCELEROMETER VALUES

BUT THESE VALUES WILL VARY
DUE TO NATURAL MOVEMENTS,
NON-FLAT SURFACES, NOISE,
ETC.

FILTERING ACCELEROMETER VALUES

Two common transforms

LOW-PASS FILTER

HIGH-PASS FILTER

LOW-PASS FILTERS

DEEMPHASIZE TRANSIENT FORCE CHANGES
EMPHASIZE CONSTANT FORCE COMPONENTS

CARPENTER'S LEVEL

HIGH-PASS FILTERS

EMPHASIZE TRANSIENT FORCE CHANGES

DEEMPHASIZE CONSTANT FORCE COMPONENTS

SENSORFILTEREDACCELEROMETER

APPLIES BOTH A LOW-PASS AND A HIGH-PASS FILTER TO RAW ACCELEROMETER
VALUES

DISPLAYS THE FILTERED VALUES

Demonstration of the SensorFilteredAccelerometer project in the IDE

SENSORCOMPASS

USES THE DEVICE'S ACCELEROMETER AND MAGNETOMETER TO ORIENT A COMPASS

Demonstration of the SensorCompass project in the IDE

NEXT TIME

MAPS & LOCATION