Energy to GDP per Capita Comparison

Lawrence Haggerty

Agenda

Introduction
Description / Definitions
Initial Comparison
Investigating Change
Technology / Future Growth
Summary

Introduction

- There has been a consistent axiom since the beginning of the industrial revolution that energy drives commerce.
- This project compares how the consumption and production of energy compares to the gross domestic product (GDP) per capita at the state and national level focused on understanding the trajectory for movement away from fossil fuel as our primary energy source and its alignment to the nation's leading fiscal metric.

Description / Definitions

Description

- Analysis utilized energy & economic related data sets from the Bureau of Economic Analysis, US Census Bureau, Energy Information Agency, & International Information Agency.
- Years Reviewed: 1970, 1980, 1990, 2000, 2010, 2020

Definitions

GDP: The total monetary value, or market value, of finished goods and services produced within a country during a period.

GDP per capita: Economic metric that breaks down a country's economic output per person.

Fossil Fuels: Includes Coal, Crude Oil, & Natural Gas

Nuclear: Nuclear electric power production in Btu, which also equals consumption, is the nuclear electricity net generation multiplied by the average heat rate of the nuclear power plants.

Renewables: Includes Biofuels, Geothermal, Hydroelectric, Solar, Wind, Wood, & Biomass Waste

Initial Comparison

Consumption / Production / GDP per Capita

Consumption / Production

The Range of Values for GDP per Capita Appeared to Begin a Wider Dispersion in 2000

- 2020 Outlier for Production: TX
- Outliers for GDP per Capita Included: MA, NY & WA

Energy Mix - Fossil Fuel to Alternatives

- IL, PA, SC Lead the US in Consumption of Nuclear Energy
- As of 2020 Several States Have Not Integrated the Use of Nuclear Energy: IN, MT, OK, SD, WY & VT
- As of 2020 TX, CA, & WA Lead the US in Consumption of Renewable Energy
- Distribution of Values for the Majority of States Remains < 200K (BN Btu) for Renewable Consumption

GDP per Capita – Energy Mix

Review of
 Distribution for
 Individual Energy
 Types Remains
 Generally
 Consistent with
 Initial
 Consolidated View
 for Consumption /
 GDP per Capita

GDP per Capita

- US GDP per Capita Ranged from \$5K in 1970 to \$63.5K in 2020
- MAX GDP per Capita: 2020 NY \$86.2K
- MIN GDP per Capita: 1970 MS \$3.3K
- Overall Increase can be Expected to Continue

Investigating Change

Consumption / Production / GDP per Capita

Amount of Change

- 1980vs1990: Nuclear(+)
- 1990vs2000: Fossil Fuel(+)
- 2010vs2020: Fossil Fuel(-)
- 2010vs2020: Renewables(+)

Significant Changes Production

- 1990vs2000: Fossil Fuel(-)
- 2010vs2020:
 Renewable(+)

Percent of Change

Consumption

- 1970vs1980: Nuclear(+)
- 2000vs2010: Renewable(+)
- 2010vs2020: Fossil Fuel / Nuclear (-), Renewables(+)

Production

- Overall Fossil Fuel(-)
- Overall Renewable(+)

Top 5 / Bottom 5 – Change Consumption

Top 5 Consumption

- MAX: TX 6.9M –
 13.5M(BN Btu)
- Highest Decrease:
 NY 4.3M 3.4M
 (BN Btu)
- NY & OH (-) Overall Consumption

Bottom 5 Consumption

- MIN: VT 113K –
 125K (BN Btu)
- RI (-) Overall Consumption

Top 5 / Bottom 5 – Change Production

Top 5 Production

- MAX: TX 16.5M –23.3M(BN Btu)
- Highest Decrease: LA 9.4M – 3.8M (BN Btu)
- TX, PA, WV, WY(+)
 Overall Production

Bottom 5 Production

- MIN: DE 7K 3.5K
 (BN Btu)
- HI, NV, RI, VT (+)
 Overall Production

Top 5 Energy Mix - Consumption

Top 5 Energy Mix

- Fossil Fuel and
 Nuclear Displays
 Highest Volumes of
 Increases 19702000
- Renewable
 Consumption
 Displays Significant
 Increases After
 2000

Top 5 Energy Mix - Production

Top 5 Energy Mix

- Weakening of Fossil Fuel Production After 2000
- Renewable
 Production
 Displays
 Significant
 Increases After
 2000

Occam's Razor

Occam's Razor: The Simplest Explanation is Usually the Best One.

- Alignment of Population and Consumption Values Indicates a Strong Correlation
- Dispersion of GDP per Capita and Consumption Values Between GDP Indicates Lack of Correlation

Technology / Future Growth

Consumption / Production / GDP per Capita

Advancing Renewable Tech

R&D Investment

- MAX Private Industry: 3B / 2009
- MEDIAN Private Industry: 1.2B
- MAX US Government: 1.9B / 2012
- Median US Government: 786M
- ~15B Invested in R&D 2005-2015

Advancing Renewable Tech

Tech Projections

- Solar Appears to be the Clear Leader in Renewable Advances / New Adoption
- Solar MAX: 1.7M (BN Btu) / 2050
- Solar MIN: 835K (BN Btu) / 2030
- ~16.6M (BN Btu) in Renewables Forecasted Between 2030 & 2050

2050....Heading In The Right Direction

2030

2035

Stated Policies:

- 35% of US Energy Supply Projected for Renewables
- 74% Increase from 2030

Announced Pledges:

- 9 60.9% of US Energy Supply of US Energy Projected for Renewables
- 100% Increase from 2030

GDP per Capita:

83K

2050

30.7% Increase from 2020

2020

2025

2040

2045

Summary

- Population has the Greater Impact on Consumption vs. GDP per Capita (Occam's Razor)
- Fossil Fuel Expected to Continue Declining
 - Continued Usage Expected
- Renewables Expected to Continue Increasing
 - Technological Innovation / Availability
 - Government Policy / Regulation

Thank you

Lawrence Haggerty

lawrence.c.Haggerty@gmail.com

https://www.linkedin.com/in/lawrence-haggerty/

https://github.com/lawrence-haggerty

Closing Notes

Technology:

- Excel: Extract Transform Load, Minor Analysis
- PostgreSQL / pgAdmin: Analysis, Prepare Data for Visualization
- Microsoft Power BI: Analysis, Visualization

Data Sources:

- Energy Information Administration (EIA):
 - State Energy Data System 1960-2020: https://www.eia.gov/state/seds/seds-data-complete.php?sid=ND#StatisticsIndicators
- Bureau of Economic Analysis (BEA):
 - Regional Data Tools: https://apps.bea.gov/regional/
- United States Census Bureau:
 - Historical Population Change Data (1910-2020): https://www.census.gov/data/tables/time-series/dec/popchange-data-text.html
- International Energy Agency (IEA):
 - Energy Technology RD&D Budgets: https://www.iea.org/data-and-statistics/data-product/energy-technology-rd-and-d-budget-database-2#
 - World Energy Investment 2023 Datafile: https://www.iea.org/data-and-statistics/data-product/world-energy-investment-2023-datafile-2
 - World Energy Outlook 2022: https://www.iea.org/data-and-statistics/data-product/world-energy-outlook-2022-free-dataset

