# panel-Copy1

# May 23, 2023

#### Tarea 2

#### Instrucciones

Los resultados de los ejericicios propuestos se deben entregar como un notebook por correo electronico a juancaros@udec.cl el dia 9/5 hasta las 21:00.

Es importante considerar que el código debe poder ejecutarse en cualquier computadora con la data original del repositorio. Recordar la convencion para el nombre de archivo ademas de incluir en su documento titulos y encabezados por seccion. La data a utilizar es **enia.csv**.

Las variables tienen la siguiente descripcion:

- *ID*: firm unique identifier
- year: survey year
- tamano: 1 large, 2 medium, 3 small, 4 micro (funcion de las ventas y el numero de trabajadores)
- sales: sales (in log of 1,000 CLP)
- age: firm age at time of survey
- foreign: non-domestic firm (binary)
- export: production for export (binary)
- workers: log of number of workers
- fomento: firm receives public incentives (binary)
- *iyd*: firm does I+D (binary)
- impuestos: taxes (in million US)
- utilidades: firm revenue (in million US)

Para este analisis consideraremos tamaño como una variable continua, que identifica el tamaño de la empresa.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import sklearn
import scipy
import linearmodels.panel as lmp
import pytwoway as tw
import bipartitepandas as bpd
import seaborn as sns
from linearmodels.iv import IV2SLS

//matplotlib inline
```

## Preguntas:

1. Cargar la base de datos *enia.csv* en el ambiente. Identifique los tipos de datos que se encuentran en la base, realice estadisticas descriptivas sobre las variables importantes (Hint: Revisar la distribuciones, datos faltantes, outliers, etc.) y limpie las variables cuando sea necesario. Para las preguntas 2-8 **EXCLUYA LA VARIABLE FOMENTO DE SU ANALISIS**.

R: El panel cuenta con 10,213 observaciones en el primer periodo, cayendo a 6,480. Sin embargo, existen 24,130 ID unicos de empresa, lo que implica que existe una cantidad importante de empresas que han entrado al panel en periodos subsiguientes para mantener el numero total. Las empresas en el panel tienen importante variacion en el total de ventas, edad y numero de trabajadores. Un 8% de las empresas son extranjeras, 11% exporta y 22% hace alguna actividad de IyD.

```
[2]: enia=pd.read_csv('../data/enia.csv')
    enia.dropna(inplace=True)
    enia.export = enia.export.astype(int)
    Xa = enia
    bycount = enia['year'].groupby(enia['year']).count()
    bIDcount = enia['ID'].groupby(enia['ID']).count()
    enia['yr'] = enia['year'].astype(object)
    enia = pd.get_dummies(enia)
    enia = enia.set_index(["ID","year"])
    enia['utilidades']=np.log(enia['utilidades']-enia['utilidades'].min()+0.1)
    enia = enia[enia["utilidades"] < 10000]
    enia.describe()</pre>
```

C:\Users\juanc\AppData\Local\Temp\ipykernel\_4208\38379287.py:8: FutureWarning:
In a future version, the Index constructor will not infer numeric dtypes when
passed object-dtype sequences (matching Series behavior)
 enia = pd.get\_dummies(enia)

```
[2]:
                  tamano
                                 sales
                                                            foreign
                                                                            export
                                                  age
           39104.000000
                          39104.000000
                                        39104.000000 39104.000000
                                                                     39104.000000
     count
                2.248773
                              3.574172
                                            15.305084
                                                           0.081859
                                                                         0.111191
     mean
```

| std   | 1.153089     | 1.692742     | 12.488330    | 0.274153     | 0.314372     |   |
|-------|--------------|--------------|--------------|--------------|--------------|---|
| min   | 1.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     |   |
| 25%   | 1.000000     | 2.337643     | 7.000000     | 0.000000     | 0.000000     |   |
| 50%   | 2.000000     | 3.553321     | 14.000000    | 0.000000     | 0.000000     |   |
| 75%   | 3.000000     | 4.539098     | 20.000000    | 0.000000     | 0.000000     |   |
| max   | 4.000000     | 10.309005    | 190.000000   | 1.000000     | 1.000000     |   |
|       |              |              |              |              |              |   |
|       | workers      | fomento      | iyd          | impuestos    | utilidades   | \ |
| count | 39104.000000 | 39104.000000 | 39104.000000 | 39104.000000 | 39104.000000 |   |
| mean  | 1.757726     | 0.076105     | 0.224887     | 0.203856     | 5.500845     |   |
| std   | 1.186507     | 0.265169     | 0.417514     | 15.869466    | 0.060706     |   |
| min   | 0.000000     | 0.000000     | 0.000000     | -180.992528  | -2.302585    |   |
| 25%   | 0.778151     | 0.000000     | 0.000000     | 0.000000     | 5.499092     |   |
| 50%   | 1.785330     | 0.000000     | 0.000000     | 0.000007     | 5.499092     |   |
| 75%   | 2.661813     | 0.000000     | 0.000000     | 0.000167     | 5.499097     |   |
| max   | 5.845915     | 1.000000     | 1.000000     | 2981.494528  | 10.729529    |   |
|       |              |              |              |              |              |   |
|       | yr_2007      | yr_2009      | yr_2013      | yr_2015      | yr_2017      |   |
| count | 39104.000000 | 39104.000000 | 39104.000000 | 39104.000000 | 39104.000000 |   |
| mean  | 0.261124     | 0.180595     | 0.185838     | 0.206731     | 0.165712     |   |
| std   | 0.439253     | 0.384687     | 0.388981     | 0.404966     | 0.371827     |   |
| min   | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     |   |
| 25%   | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     |   |
| 50%   | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     |   |
| 75%   | 1.000000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     |   |
| max   | 1.000000     | 1.000000     | 1.000000     | 1.000000     | 1.000000     |   |
|       |              |              |              |              |              |   |

2. Ejecute un modelo Pooled OLS para explicar el numero de trabajadores. Seleccione las variables independientes a incluir en el modelo final e interprete su significado.

R: Segun el modelo inicial, todas las variables son significativas para explicar el numero de trabajadores excepto los impuestos, la cual es excluida en lo que continua. Los resultados muestran una correlacion positiva entre todos los factores excepto las utilidades. En particular, empresas que exportan, y aquellas que son extrajeras, tienen un numero de trabajadores promedio mayor.

```
[3]: y=enia['workers']
X=enia[['sales','age','foreign','export','iyd','utilidades','yr_2009','yr_2013','yr_2015','yr_
X=sm.add_constant(X)
model = lmp.PanelOLS(y, X)
mco = model.fit()
print(mco)
```

# PanelOLS Estimation Summary

| Dep. Variable:    | workers          | R-squared:           | 0.6173     |
|-------------------|------------------|----------------------|------------|
| Estimator:        | PanelOLS         | R-squared (Between): | 0.6323     |
| No. Observations: | 39104            | R-squared (Within):  | 0.4109     |
| Date:             | Tue, May 23 2023 | R-squared (Overall): | 0.6173     |
| Time:             | 14:30:52         | Log-likelihood       | -4.339e+04 |

| Cov. Estimator: | Unadjusted |                       |             |
|-----------------|------------|-----------------------|-------------|
|                 |            | F-statistic:          | 6306.1      |
| Entities:       | 24128      | P-value               | 0.0000      |
| Avg Obs:        | 1.6207     | Distribution:         | F(10,39093) |
| Min Obs:        | 1.0000     |                       |             |
| Max Obs:        | 5.0000     | F-statistic (robust): | 6306.1      |
|                 |            | P-value               | 0.0000      |
| Time periods:   | 5          | Distribution:         | F(10,39093) |
| Avg Obs:        | 7820.8     |                       |             |
| Min Obs:        | 6480.0     |                       |             |
| Max Obs:        | 1.021e+04  |                       |             |

#### Parameter Estimates

| ========   |           | =======   | =======  | ======= | ======== | =======  |
|------------|-----------|-----------|----------|---------|----------|----------|
|            | Parameter | Std. Err. | T-stat   | P-value | Lower CI | Upper CI |
|            |           |           |          |         |          |          |
| const      | 0.7255    | 0.3375    | 2.1498   | 0.0316  | 0.0641   | 1.3870   |
| sales      | 0.4535    | 0.0032    | 143.91   | 0.0000  | 0.4474   | 0.4597   |
| age        | 0.0077    | 0.0003    | 24.809   | 0.0000  | 0.0071   | 0.0083   |
| foreign    | 0.0616    | 0.0144    | 4.2934   | 0.0000  | 0.0335   | 0.0898   |
| export     | 0.0896    | 0.0127    | 7.0463   | 0.0000  | 0.0647   | 0.1145   |
| iyd        | 0.2465    | 0.0094    | 26.109   | 0.0000  | 0.2280   | 0.2650   |
| utilidades | -0.2059   | 0.0614    | -3.3520  | 0.0008  | -0.3262  | -0.0855  |
| yr_2009    | -1.0986   | 0.0157    | -70.199  | 0.0000  | -1.1293  | -1.0679  |
| yr_2013    | 1.0897    | 0.0119    | 91.588   | 0.0000  | 1.0664   | 1.1130   |
| yr_2015    | 1.0346    | 0.0115    | 89.803   | 0.0000  | 1.0121   | 1.0572   |
| yr_2017    | 0.8317    | 0.0120    | 69.275   | 0.0000  | 0.8082   | 0.8552   |
| ========   | ========  | ========  | ======== | ======= |          | ======== |

3. Ejecute un modelo de efectos fijos para explicar el numero de trabajadores. Seleccione las variables independientes a incluir en el modelo final e interprete su significado.

R: El modelo de efectos fijos muestra que las ventas y la actividad de IyD tiene un efecto positivo en el numero de trabajadores (al igual que si la empresa es extranjera), mientras que las utilidades, antiguedad y capacidad de exportar no son significativas. Es importante recordar que el modelo FE considera la variación de las empresas en el tiempo, y por tanto remueve la hetereogeneidad no observada que es fija y puede causar sesgo en OLS.

```
[4]: model=lmp.PanelOLS(y,X, entity_effects=True)
fe=model.fit(cov_type="robust")
print(fe)
```

# PanelOLS Estimation Summary

| Dep. Variable:    | workers  | R-squared:           | 0.5559 |
|-------------------|----------|----------------------|--------|
| Estimator:        | PanelOLS | R-squared (Between): | 0.4194 |
| No. Observations: | 39104    | R-squared (Within):  | 0.5559 |

| Date:           | Tue, May 23 2023 | R-squared (Overall):  | 0.4233      |
|-----------------|------------------|-----------------------|-------------|
| Time:           | 14:31:04         | Log-likelihood        | -3479.8     |
| Cov. Estimator: | Robust           |                       |             |
|                 |                  | F-statistic:          | 1873.0      |
| Entities:       | 24128            | P-value               | 0.0000      |
| Avg Obs:        | 1.6207           | Distribution:         | F(10,14966) |
| Min Obs:        | 1.0000           |                       |             |
| Max Obs:        | 5.0000           | F-statistic (robust): | 892.28      |
|                 |                  | P-value               | 0.0000      |
| Time periods:   | 5                | Distribution:         | F(10,14966) |
| Avg Obs:        | 7820.8           |                       |             |
| Min Obs:        | 6480.0           |                       |             |
| Max Obs:        | 1.021e+04        |                       |             |

#### Parameter Estimates

|            | Parameter | Std. Err. | T-stat  | P-value | Lower CI | Upper CI |
|------------|-----------|-----------|---------|---------|----------|----------|
| const      | 0.6579    | 0.2709    | 2.4284  | 0.0152  | 0.1269   | 1.1890   |
| sales      | 0.1209    | 0.0135    | 8.9257  | 0.0000  | 0.0943   | 0.1474   |
| age        | -0.0011   | 0.0008    | -1.4406 | 0.1497  | -0.0026  | 0.0004   |
| foreign    | 0.0891    | 0.0357    | 2.4963  | 0.0126  | 0.0191   | 0.1591   |
| export     | 0.0295    | 0.0240    | 1.2254  | 0.2205  | -0.0177  | 0.0766   |
| iyd        | 0.0460    | 0.0124    | 3.7064  | 0.0002  | 0.0217   | 0.0704   |
| utilidades | 0.0305    | 0.0491    | 0.6201  | 0.5352  | -0.0658  | 0.1268   |
| yr_2009    | -0.3473   | 0.0404    | -8.5986 | 0.0000  | -0.4265  | -0.2681  |
| yr_2013    | 1.0278    | 0.0152    | 67.827  | 0.0000  | 0.9981   | 1.0575   |
| yr_2015    | 1.0003    | 0.0164    | 61.007  | 0.0000  | 0.9681   | 1.0324   |
| yr_2017    | 0.9704    | 0.0188    | 51.488  | 0.0000  | 0.9335   | 1.0074   |

F-test for Poolability: 4.1567

P-value: 0.0000

Distribution: F(24127,14966)

Included effects: Entity

4. Ejecute un modelo de efectos aleatorios para explicar el numero de trabajadores. Seleccione las variables independientes a incluir en el modelo final e interprete su significado.

R: Los resultados del modelo de efectos aleatorios es comparable a OLS, sin embargo la magnitud es significativamente diferente. Es importante que, al igual que en FE, las diferencias con OLS tambien pueden estar asociadas a la existencia de muchas empresas con una sola observacion (puntos adicionales para realizar el analisis completo excluyendo las empresas que tienen solo una observacion).

```
[5]: model=lmp.RandomEffects(y,X)
re=model.fit(cov_type="robust")
```

# print(re)

#### RandomEffects Estimation Summary

| ======================================= |                  |                       |             |
|-----------------------------------------|------------------|-----------------------|-------------|
| Dep. Variable:                          | workers          | R-squared:            | 0.5343      |
| Estimator:                              | RandomEffects    | R-squared (Between):  | 0.6196      |
| No. Observations:                       | 39104            | R-squared (Within):   | 0.4798      |
| Date:                                   | Tue, May 23 2023 | R-squared (Overall):  | 0.6036      |
| Time:                                   | 14:31:13         | Log-likelihood        | -2.422e+04  |
| Cov. Estimator:                         | Robust           |                       |             |
|                                         |                  | F-statistic:          | 4485.9      |
| Entities:                               | 24128            | P-value               | 0.0000      |
| Avg Obs:                                | 1.6207           | Distribution:         | F(10,39093) |
| Min Obs:                                | 1.0000           |                       |             |
| Max Obs:                                | 5.0000           | F-statistic (robust): | 4874.1      |
|                                         |                  | P-value               | 0.0000      |
| Time periods:                           | 5                | Distribution:         | F(10,39093) |
| Avg Obs:                                | 7820.8           |                       |             |
| Min Obs:                                | 6480.0           |                       |             |
| Max Obs:                                | 1.021e+04        |                       |             |

#### Parameter Estimates

| ========   | =======   | ========  |         |         |          |          |
|------------|-----------|-----------|---------|---------|----------|----------|
|            | Parameter | Std. Err. | T-stat  | P-value | Lower CI | Upper CI |
| const      | 0.3126    | 0.2771    | 1.1281  | 0.2593  | -0.2305  | 0.8557   |
| sales      | 0.3677    | 0.0062    | 59.186  | 0.0000  | 0.3555   | 0.3799   |
| age        | 0.0056    | 0.0003    | 16.187  | 0.0000  | 0.0049   | 0.0062   |
| foreign    | 0.1446    | 0.0164    | 8.8244  | 0.0000  | 0.1125   | 0.1767   |
| export     | 0.1333    | 0.0124    | 10.771  | 0.0000  | 0.1091   | 0.1576   |
| iyd        | 0.1744    | 0.0076    | 23.020  | 0.0000  | 0.1596   | 0.1893   |
| utilidades | -0.0856   | 0.0504    | -1.7001 | 0.0891  | -0.1843  | 0.0131   |
| yr_2009    | -0.9031   | 0.0246    | -36.644 | 0.0000  | -0.9514  | -0.8548  |
| yr_2013    | 1.0897    | 0.0095    | 114.57  | 0.0000  | 1.0710   | 1.1083   |
| yr_2015    | 1.0348    | 0.0094    | 110.09  | 0.0000  | 1.0164   | 1.0532   |
| yr_2017    | 0.9163    | 0.0104    | 88.059  | 0.0000  | 0.8959   | 0.9367   |

<sup>5.</sup> Comente los resultados obtenidos en 2, 3 y 4. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?

R: Los resultados entre modelos son sustancialmente diferentes, y en base al resultado del test de Hausman, se favorece el modelo de efectos fijos. Dado aquello, las utilidades y capacidad de exportacion son irrelevantes, pero los otros aspectos de la empresa son importantes respecto del numero de trabajadores; estos aumentan con las ventas, IyD, y si es extranjera. En otras palabras, empresas que hacen investigacion y aquellas de gran tamano (en ventas) son mas intensivas en numero de trabajadores, todo lo demas constante.

Hausman Test: chi-2 = 816.8930431782032, df = 10, p-value = 4.8141832456423486e-169

```
[6]: print(lmp.compare({"FE": fe, "RE": re, "Pooled": mco}))
```

# Model Comparison

|                                         | FE        | RE            | Pooled     |
|-----------------------------------------|-----------|---------------|------------|
| Dep. Variable                           | workers   | workers       | workers    |
| Estimator                               | PanelOLS  | RandomEffects | PanelOLS   |
| No. Observations                        | 39104     | 39104         | 39104      |
| Cov. Est.                               | Robust    | Robust        | Unadjusted |
| R-squared                               | 0.5559    | 0.5343        | 0.6173     |
| R-Squared (Within)                      | 0.5559    | 0.4798        | 0.4109     |
| R-Squared (Between)                     | 0.4194    | 0.6196        | 0.6323     |
| R-Squared (Overall)                     | 0.4233    | 0.6036        | 0.6173     |
| F-statistic                             | 1873.0    | 4485.9        | 6306.1     |
| P-value (F-stat)                        | 0.0000    | 0.0000        | 0.0000     |
| ======================================= | ========  | =========     | =========  |
| const                                   | 0.6579    | 0.3126        | 0.7255     |
|                                         | (2.4284)  | (1.1281)      | (2.1498)   |
| sales                                   | 0.1209    | 0.3677        | 0.4535     |
|                                         | (8.9257)  | (59.186)      | (143.91)   |
| age                                     | -0.0011   | 0.0056        | 0.0077     |
|                                         | (-1.4406) | (16.187)      | (24.809)   |
| foreign                                 | 0.0891    | 0.1446        | 0.0616     |
|                                         | (2.4963)  | (8.8244)      | (4.2934)   |
| export                                  | 0.0295    | 0.1333        | 0.0896     |
|                                         | (1.2254)  | (10.771)      | (7.0463)   |
| iyd                                     | 0.0460    | 0.1744        | 0.2465     |
|                                         | (3.7064)  | (23.020)      | (26.109)   |
| utilidades                              | 0.0305    | -0.0856       | -0.2059    |

|         | (0.6201)  | (-1.7001)   | (-3.3520)  |
|---------|-----------|-------------|------------|
| yr_2009 | -0.3473   | -0.9031     | -1.0986    |
|         | (-8.5986) | (-36.644)   | (-70.199)  |
| yr_2013 | 1.0278    | 1.0897      | 1.0897     |
|         | (67.827)  | (114.57)    | (91.588)   |
| yr_2015 | 1.0003    | 1.0348      | 1.0346     |
|         | (61.007)  | (110.09)    | (89.803)   |
| yr_2017 | 0.9704    | 0.9163      | 0.8317     |
|         | (51.488)  | (88.059)    | (69.275)   |
|         | ========= | =========== | ========== |
| Effects | Entity    |             |            |
|         |           |             |            |

# T-stats reported in parentheses

6. Ejecute un modelo de efectos aleatorios correlacionados (CRE) para explicar el numero de trabajadores. Seleccione las variables independientes a incluir en el modelo final e interprete su significado. Es este modelo adecuado, dada la data disponible, para modelar el componente no observado?

R: El modelo CRE entrega resultados similares a FE, sin embargo la antiguedad de la empresa ahora es significativa, y el impacto de las ventas es mayor. Todas las variables incluidas para modelar el componente de heterogeneidad no observada son significativos tambien, lo cual es beneficioso para el ajuste del modelo.

#### RandomEffects Estimation Summary

| Dep. Variable:    | workers          | R-squared:           | 0.5622     |
|-------------------|------------------|----------------------|------------|
| Estimator:        | RandomEffects    | R-squared (Between): | 0.6252     |
| No. Observations: | 39104            | R-squared (Within):  | 0.5420     |
| Date:             | Tue, May 23 2023 | R-squared (Overall): | 0.6229     |
| Time:             | 14:31:32         | Log-likelihood       | -2.301e+04 |
| Cov. Estimator:   | Robust           |                      |            |
|                   |                  | F-statistic:         | 3345.9     |

| Entities:     | 24128     | P-value               | 0.0000      |
|---------------|-----------|-----------------------|-------------|
| Avg Obs:      | 1.6207    | Distribution:         | F(15,39088) |
| Min Obs:      | 1.0000    |                       |             |
| Max Obs:      | 5.0000    | F-statistic (robust): | 4340.1      |
|               |           | P-value               | 0.0000      |
| Time periods: | 5         | Distribution:         | F(15,39088) |
| Avg Obs:      | 7820.8    |                       |             |
| Min Obs:      | 6480.0    |                       |             |
| Max Obs:      | 1.021e+04 |                       |             |

## Parameter Estimates

| ========    | Parameter | Std. Err. | T-stat  | P-value | Lower CI | Upper CI |
|-------------|-----------|-----------|---------|---------|----------|----------|
| const       | 2.0545    | 0.8735    | 2.3520  | 0.0187  | 0.3424   | 3.7666   |
| sales       | 0.2164    | 0.0080    | 26.914  | 0.0000  | 0.2006   | 0.2322   |
| age         | -0.0017   | 0.0005    | -3.3925 | 0.0007  | -0.0027  | -0.0007  |
| foreign     | 0.0955    | 0.0159    | 6.0233  | 0.0000  | 0.0645   | 0.1266   |
| export      | 0.0216    | 0.0177    | 1.2228  | 0.2214  | -0.0130  | 0.0562   |
| iyd         | 0.0323    | 0.0094    | 3.4233  | 0.0006  | 0.0138   | 0.0507   |
| utilidades  | 0.0312    | 0.0555    | 0.5611  | 0.5747  | -0.0777  | 0.1400   |
| msales      | 0.1950    | 0.0058    | 33.699  | 0.0000  | 0.1837   | 0.2064   |
| mage        | 0.0106    | 0.0006    | 16.781  | 0.0000  | 0.0094   | 0.0118   |
| mexport     | 0.1316    | 0.0243    | 5.4124  | 0.0000  | 0.0840   | 0.1793   |
| miyd        | 0.3076    | 0.0145    | 21.166  | 0.0000  | 0.2791   | 0.3361   |
| mutilidades | -0.4798   | 0.1763    | -2.7205 | 0.0065  | -0.8254  | -0.1341  |
| yr_2009     | -0.6831   | 0.0240    | -28.453 | 0.0000  | -0.7301  | -0.6360  |
| yr_2013     | 1.0381    | 0.0090    | 115.00  | 0.0000  | 1.0204   | 1.0557   |
| yr_2015     | 1.0154    | 0.0090    | 112.23  | 0.0000  | 0.9976   | 1.0331   |
| yr_2017     | 0.9139    | 0.0101    | 90.440  | 0.0000  | 0.8940   | 0.9337   |

7. Usando el modelo CRE, prediga la distribucion del componente no observado. Que puede inferir respecto de la heterogeneidad fija en el tiempo y su impacto en el numero de trabajadores?

R: La heterogeneidad no observada que se predice del modelo CRE tiene un comportamiento normal, lo cual en principio puede ser inapropiado dado que genera valores negativos en el logworkers, lo cual no deberia ocurrir. Sin embargo, en promedio captura una parte importante de la variacion de las empresas en cuanto a su numero de trabajadores.

```
[9]: Xpred = X
    Xpred['sales']=0
    Xpred['age']=0
    Xpred['export']=0
    Xpred['iyd']=0
    Xpred['utilidades']=0
    Xpred['foreign']=0
```

```
Xpred['yr_2009']=0
Xpred['yr_2013']=0
Xpred['yr_2015']=0
Xpred['yr_2017']=0
yhat = cre.predict(Xpred)
sns.histplot(data=y, color="skyblue", label="log-workers (observed)", kde=True)
sns.histplot(data=yhat, color="red", label="unobserved heterogeneity", kde=True)
plt.legend()
plt.show()
```



8. Usando sus respuestas anteriores, que modelo prefiere? que se puede inferir en general respecto del efecto de las variables explicativas sobre el numero de trabajadores?

R: En vista de los resultados, el ajuste y los coeficientes entregados, se favorece el modelo CRE, siendo este mas preciso que FE y RE, ademas de entregar diferencias importantes en coeficientes que podrian haber estado potencialmente sesgados (como ventas).

```
[11]: print(lmp.compare({"FE": fe, "RE": re, "CRE": cre}))
```

Model Comparison

|                                         | FE        | RE                                      | CRE           |
|-----------------------------------------|-----------|-----------------------------------------|---------------|
| Dep. Variable                           | workers   | workers                                 | workers       |
| Estimator                               | PanelOLS  | ${\tt RandomEffects}$                   | RandomEffects |
| No. Observations                        | 39104     | 39104                                   | 39104         |
| Cov. Est.                               | Robust    | Robust                                  | Robust        |
| R-squared                               | 0.5559    | 0.5343                                  | 0.5622        |
| R-Squared (Within)                      | 0.5559    | 0.4798                                  | 0.5420        |
| R-Squared (Between)                     | 0.4194    | 0.6196                                  | 0.6252        |
| R-Squared (Overall)                     | 0.4233    | 0.6036                                  | 0.6229        |
| F-statistic                             | 1873.0    | 4485.9                                  | 3345.9        |
| P-value (F-stat)                        | 0.0000    | 0.0000                                  | 0.0000        |
| const                                   | 0.6579    | 0.3126                                  | 2.0545        |
|                                         | (2.4284)  | (1.1281)                                | (2.3520)      |
| sales                                   | 0.1209    | 0.3677                                  | 0.2164        |
|                                         | (8.9257)  | (59.186)                                | (26.914)      |
| age                                     | -0.0011   | 0.0056                                  | -0.0017       |
|                                         | (-1.4406) | (16.187)                                | (-3.3925)     |
| foreign                                 | 0.0891    | 0.1446                                  | 0.0955        |
|                                         | (2.4963)  | (8.8244)                                | (6.0233)      |
| export                                  | 0.0295    | 0.1333                                  | 0.0216        |
|                                         | (1.2254)  | (10.771)                                | (1.2228)      |
| iyd                                     | 0.0460    | 0.1744                                  | 0.0323        |
|                                         | (3.7064)  | (23.020)                                | (3.4233)      |
| utilidades                              | 0.0305    | -0.0856                                 | 0.0312        |
|                                         | (0.6201)  | (-1.7001)                               | (0.5611)      |
| yr_2009                                 | -0.3473   | -0.9031                                 | -0.6831       |
|                                         | (-8.5986) | (-36.644)                               | (-28.453)     |
| yr_2013                                 | 1.0278    | 1.0897                                  | 1.0381        |
|                                         | (67.827)  | (114.57)                                | (115.00)      |
| yr_2015                                 | 1.0003    | 1.0348                                  | 1.0154        |
|                                         | (61.007)  | (110.09)                                | (112.23)      |
| yr_2017                                 | 0.9704    | 0.9163                                  | 0.9139        |
|                                         | (51.488)  | (88.059)                                | (90.440)      |
| msales                                  |           |                                         | 0.1950        |
|                                         |           |                                         | (33.699)      |
| mage                                    |           |                                         | 0.0106        |
|                                         |           |                                         | (16.781)      |
| mexport                                 |           |                                         | 0.1316        |
|                                         |           |                                         | (5.4124)      |
| miyd                                    |           |                                         | 0.3076        |
|                                         |           |                                         | (21.166)      |
| mutilidades                             |           |                                         | -0.4798       |
|                                         |           |                                         | (-2.7205)     |
| ======================================= | ========  | ======================================= |               |
| Effects                                 | Entity    |                                         |               |

## T-stats reported in parentheses

- 9. Considere que la variable *fomento* es una politica publica donde aleatoriamente se selecciono un grupo de empresas para recibir recursos financieros dedicados a incentivar I+D. Utilizando fomento como instrumento, estime un modelo en dos etapas para entender el impacto causal de la inversion en I+D sobre el numero de trabajadores, y compare versus el modelo MCO (puntos adicionales para hacerlo en un contexto de panel).
- R: Al comparar los modelos se observa que la relacion entre IyD y numero de trabajadores esta sobre-estimada al usar MCO, mientras que al utilizar el instrumento, la relacion entre las variables baja sustancialmente. Lo que se puede inferir es que aquellas empresas que realizan IyD producto de la politica publica, contratan 12% mas trabajadores respecto de aquellas que no lo hacen, y no 30% como sugiere los resultados de MCO (potencial endogeneidad ya que pueden existir otros factores que inducen un incremento en el potencial de IyD y el numero de trabajadores, como el rubro de la empresa, por ejemplo).

Model Comparison

|                  | OLS        | 2SLS       |
|------------------|------------|------------|
| Dep. Variable    | workers    | workers    |
| Estimator        | OLS        | IV-2SLS    |
| No. Observations | 39104      | 39104      |
| Cov. Est.        | unadjusted | unadjusted |
| R-squared        | 0.2498     | 0.2458     |
| Adj. R-squared   | 0.2497     | 0.2457     |
| F-statistic      | 1.302e+04  | 1.236e+04  |
| P-value (F-stat) | 0.0000     | 0.0000     |
|                  | ========   | =========  |
| sales            | 0.2485     | 0.2505     |
|                  | (78.177)   | (75.422)   |
| age              | 0.0203     | 0.0206     |
|                  | (48.170)   | (46.281)   |

| export      | 0.4179     | 0.4549    |
|-------------|------------|-----------|
|             | (24.237)   | (18.788)  |
| utilidades  | -0.4655    | -0.4442   |
|             | (-5.4171)  | (-5.1224) |
| iyd         | 0.3102     | 0.1257    |
|             | (24.505)   | (1.4715)  |
| const       | 3.0031     | 2.9113    |
|             | (6.3630)   | (6.1276)  |
|             | ========== | ========= |
| Instruments |            | fomento   |
|             |            |           |

T-stats reported in parentheses