Resol els exercicis autoavaluables del tema i respon la consulta a moodle especificant quants d'ells has fet bé i quants malament. Respondre aquesta consulta és obligatori per poder accedir a propers lliuraments dins l'assignatura.

Les respostes als exercicis es poden trobar a https://biocomputing-teaching.github.io/WebQuimicaAutomocio/pdf/Exercise.pdf

Exercici Autoavaluable I. Pressió pneumàtics

Un conductor comprova la pressió dels pneumàtics pel matí aviat, quan la temperatura és de 15°C, i és de 1.3×10⁵ Pa. Al migdia la temperatura és 15 graus més elevada. Quina és la pressió dels pneumàtics ara?.

Exercici Autoavaluable II. Gas ideal en CN

Calcular el volum molar d'un gas ideal a condicions normals (1 atm i 0°C).

Exercici Autoavaluable III. Comparativa TCG per a H₂ i He

Es prepara una mescla de gasos d'hidrogen (H_2) i heli (He) tal que les molècules de cada gas produeixin el mateix nombre de col·lisions amb la paret per unitat de temps. Determinem quin gas té la concentració més alta.

Exercici Autoavaluable IV. Pressions parcials aire

La composició percentual, en massa, de l'aire sec al nivell del mar és, aproximadament, $N_2/O_2/Ar=75.5/23.2/1.3$. Quina és la pressió parcial de cada component quan la pressió total és 1.20 atm?.

Exercici Autoavaluable V. Fracció metà en una mescla

Una barreja de metà $\mathrm{CH_4}$ i d'acetilè $\mathrm{C_2H_2}$ ocupava un cert volum a una pressió total de 63 mmHg. La mostra es va cremar a $\mathrm{CO_2}$ i $\mathrm{H_2O}$. Se'n va recollir el $\mathrm{CO_2}$ en el mateix volum inicial i la mateixa temperatura inicial, i es va veure que la seva pressió era de 96 mmHg. Quina era la fracció de metà a la mescla de gasos inicials?

Exercici Autoavaluable VI. Fòrmula molecular d'un compost gasós

Un compost gasós que se sap que conté només carboni, hidrogen i nitrogen es barreja amb el volum d'oxigen exactament necessari per a la seva combustió completa a $\rm CO_2,\ H_{20}$ i $\rm N_2.$ La combustió de 9 volums de la mescla gasosa produeix 4 volums de $\rm CO_2,\ 6$ volums de vapor d'aigua i 2 volums de $\rm N_2,\ tots$ a la mateixa temperatura i pressió.

Quants volums d'oxigen es necessiten per a la combustió? Quina és la fórmula molecular del compost?

Exercici Autoavaluable VII. Pressió parcial PCl₅ en una mescla

Una mostra de PCl_5 , que pesa 2.69 g, es va col·locar en un flascó d'1.00 L i es va evaporar completament a una temperatura de 250 °C. La pressió observada a aquesta temperatura va ser 1.00 atm. Existeix la possibilitat que una part del PCl_5 s'hagi dissociat d'acord amb l'equació:

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$
 [R1]

Quines són les pressions parcials del PCl₅, PCl₃ i Cl₂ en aquestes condicions experimentals? (Adaptat de [2])

Exercici Autoavaluable VIII. Airbag

Els coixins de seguretat (airbag) dels cotxes s'inflen mitjançant una sèrie de reaccions químiques ràpides que produeixen gas en menys de $0.04\,\mathrm{s}$. En les seves primeres versions, la reacció es basava en la descomposició de NaN₃ (extremadament tòxic), seguida de dues reaccions addicionals per neutralitzar els subproductes perillosos. Les equacions químiques d'aquest procés són:

$$2 \operatorname{NaN}_3 \longrightarrow 2 \operatorname{Na} + 3 \operatorname{N}_2(g)$$
 [R2]

$$10 \text{ Na} + 2 \text{ KNO}_3 \longrightarrow \text{K}_2\text{O} + 5 \text{ Na}_2\text{O} + \text{N}_2(g)$$
 [R3]

$$K_2O + Na_2O + 2SiO_2 \longrightarrow K_2SiO_3 + Na_2SiO_3$$
 [R4]

Un coixí de seguretat de conductor té un volum aproximat de $65\,\mathrm{L}$ i la pressió final dins del coixí és de $1.35\,\mathrm{atm}$. La temperatura dins del coixí just després de la reacció és $300\,^{\circ}\mathrm{C}$ ($573\,\mathrm{K}$). Suposem que s'utilitzen $65\,\mathrm{g}$ de $\mathrm{NaN_3}$.

- 1. Quina quantitat de nitrogen gas (N_2) es genera en mols només en la primera reacció?
- 2. Quin volum ocuparà aquest gas dins del coixí de seguretat segons la llei dels gasos ideals? És suficient aquest volum per inflar completament el coixí de seguretat?
- 3. Si considerem també la segona reacció, que genera més nitrogen gas, com afectaria això el volum total de gas produït?
- 4. Quan el gas s'expandeix a l'exterior a través dels orificis del coixí, la seva pressió baixa de 1.35 atm a 1.00 atm. Quin percentatge de reducció de temperatura es produeix durant aquesta expansió?

(Adaptat de [1]).

Exercici Autoavaluable IX. Relació $\frac{C_P}{C_V}$ Perquè hi ha diferències entre els quocients de capacitat calorífica (C_P/C_V) de gasos monoatòmics respecte els diatòmics? (Adona't que si un gas monoatòmic ideal, pel fet d'estar només augmentant la seva energia cinètica translacional té una $C_V = \frac{3}{2}R$, es pot entendre que per a cada component (eix) necessita $\frac{1}{2}R$)

Exercici Autoavaluable X. Comportament no ideal d'un gas

Perquè CO₂ i O₂ tenen una desviació negativa respecte al comportament del gas ideal a pressions i temperatures moderades, mentres que l'He i el ${\rm H}_2$ presenten una deviació positiva en les mateixes condicions?

Bibliografia

- [1] Geoffrey M. Bowers i Ruth A. Bowers. *Understanding Chemistry through Cars*. en. CRC Press, nov. de 2014. ISBN: 978-1-4665-7184-6. DOI: 10.1201/b17581. URL: https://www.taylorfrancis.com/books/9781466571846.
- [2] Bruce H. Mahan. QUIMICA Curso Universitario. Español. 1977.