Actividades en la web para el aprendizaje en química

Xavier Prat-Resina
Universidad Andrés Bello

http://chem.r.umn.edu/unab2.pptx

University of Minnesota

Objetivos

 Crear un diálogo sobre cuestiones claves de educación en química y tecnología http://chem.r.umn.edu/loteria.php
 https://www.google.com/webhp?#safe=off&q=countdown+timer

- Aspectos visuales de la química en la web
 - Cheminformatics
 - Estructuras 3D y simulaciones dinámicas
- Aprender a navegar, seleccionar y analizar grandes cantidades de datos físicos y químicos de compuestos

NIVERSITY OF MINNESOTA

Pasiones científicas y pedagógicas

Física

Molecular Simulations of Proteins

Biología

Química

Informática

Pasiones científicas y pedagógicas

Models 360 ChemEd DL

www.chemeddl.org/resources/models360/

Cálculos teóricos de 600 moléculas para mostrar

- Orbitales molecules
- Espectro IR y vibraciones
- Elementos Simetría
- Cargas, MEP y dípolos

Pasiones científicas y pedagógicas

ChemEd X Data

http://chemdata.r.umn.edu/

Cientos de datos de compuestos para buscar, representar y relacionar

Tecnología en la enseñanza

Información molecular en la web

- Cheminformatics
 - Identificadores: Smiles, Inchi
 http://en.wikipedia.org/wiki/Acetic_acid
- Convertir compuestos en diferentes formatos
 - Open Babel
 http://www.chemspider.com/WebServices/WSOpenBabelDemo.aspx
 - CIR: http://cactus.nci.nih.gov/chemical/structure

Cheminformatics

Geometría y confórmeros

Identificadores: InChi, smiles

OpenBabel CIR, Opsin (Otros...)

> Subestructuras (smarts), Grupos funcionales

Cargas parciales MEP, Dipolo

Indices en bases de datos CAS, Pubchem...

Nombres

Espectro RMN

NIVERSITY OF MINNESOTA

Usar JSmol interactivo

VSEPR/Gillespie

- BF₃ y NH₃
 http://chemdata.r.umn.edu/jmol/#bh3/ammonia
- SO₂, SO₃⁽²⁻⁾ y SO₃
 http://chemdata.r.umn.edu/jmol/#so2/sulfite/7446-11-9

Para qué otros conceptos de química o tipo de moléculas se podría usar esta plataforma?

Usar JSmol con otros software

- Predicción de espectros RMN
 - http://www.ch.ic.ac.uk/local/nmrs/
- Conexión con datos experimentales NIST
 - http://chemagic.com/JSmolVMK2.htm

Para qué otros conceptos de química se podría usar estas plataformas?

Chemical reactions:

Balance between kinetic and potential energy

http://chemdata.umr.umn.edu/chem2331/explosion/

Brownian movement:

Randomness of molecular motion to explain diffusion and mixtures

http://chemdata.umr.umn.edu/chem2331/brownian

Por qué el NaCl tiene un punto de ebullición mucho mayor que el agua?

Ebullición de sólidos iónicos

http://chemdata.umr.umn.edu/chem2331/i

Ebullición de solidos moleculares

http://chemdata.umr.umn.edu/chem2331/waterphasechange

Mundo Cuántico

Orbitales y funciones de onda

Link3

Link4

Link1

Link2

Otras simulaciones

Visión cuántica del electrón http://chemdata.umr.umn.edu/chem2331/electron/

Como el radio atómico cambia con la composición del núcleo http://chemdata.umr.umn.edu/chem2331/nucleus/

Como los fosfolípidos forman miscelas en agua http://chemdata.umr.umn.edu/chem2331/hydrophobic/

Como la compresibilidad cambia en diferentes estados de la materia http://chemdata.umr.umn.edu/chem2331/compressibility/

Laboratorios virtuales

http://chemdata.umr.umn.edu/chem2332/gases/gases1.html http://chemdata.umr.umn.edu/chem2332/nuclear/nuclear1.html http://chemdata.umr.umn.edu/chem2332/vlab/index.html

Química: aprendiendo conflictos

"...we should teach them to judge between conflicting influences. That is the essence of our subject, for it is rare that a single property governs the outcome of a reaction. We need to train our students to judge the likely outcome of conflict" P. Atkins. Pure Appl. Chem., Vol. 71, No. 6, pp. 927-929, 1999.

"... Creo que va a haber excepcones a esta ley porqué en este curso hay excepciones para todas las leyes" Esutiante Química General

Que linea es más larga?

A menudo, recordamos viejos problemas y aplicamos soluciones viejas a los nuevos problemas.

En un mundo que cambia constantemente las soluciones viejas quizás no sirven

Memorizando leyes...

Higher-order thinking y aprendizaje auto-regulado

Conocimiento estático
Datos preseleccionados

Memorizar → Entender → Aplicar

Unstructured data
No lineal
No secuencial
Open-ended
→ Analizar
Evaluar

- 1. Mira este gráfico
- 2. Observa lo que quiero que observes
- 3. Explica como todo funciona
- 4. No hay excepciones

- 1. Elije datos
- 2. Representalos
- 3. Busca pautas
- 4. Busca excepciones

Skills required: Auto-evaluación Auto-regulación

Encontrando los límites de la teoría

- Ordena los siguientes compuestos en orden decreciente de temperatura de ebullición
 - CH₃F, CH₂F₂, CHF₃, CF₄
- Repite lo mismo con
 - CH₃Cl, CH₂Cl₂, CHCl₃, CCl₄

Unstructured open data

Datos sin estructura pero fácil de buscar, filtrar, representar y analizar

http://chemdata.r.umn.edu/

Elementos, Organica/inorganica, reacciones (Ac/Base, Redox, Solub)

Data	Topic
lonization energies, atomic radius	Atomic structure
Bond energies, bond length	Chemical bond
ΔH_{vap} , T_{boil} , dipoles	Intermolecular interactions
pKa, Ksp	Ionic equilibria
Eº _{red}	Electrochemistry

Moléculas orgánicas

chemdata.r.umn.edu

Ordena y filtra tablas

Fur

Molecular Properties

Alkanes Haloalkanes **Phase Change** Reactions Solubility Alcohols Ethers Aldehydes Carboxylic Boiling point (K) Solubility ΔH_{form} gas (kJ/mol) Melting point (K) ΔH_{form} liq (kJ/mol) Henry's K (mol/kg*bar)) Heat capacity liq(J/mol*K) ΔH_{comb} gas (kJ/mol) Heat capacity gas(J/mol*K) ΔH_{comb} liq (kJ/mol) ΔH_{vaporiz} (kJ/mol)

ΔH_{fusion} (kJ/mol)

Periodic table trends

Basado en "Periodic Table Live" http://www.chemeddl.org/resources/ptl/charts/

Moléculas inorgánicas

Datos de reacciones

Reacciones Redox

Reacciones Acido-Base

chemdata.r.umn.edu

Select all	Select None	Click rows to	select (Shift		
Show 10 + entries					
Reactants	Products	Labels	E _{red} o		
$Li^{(+)}(aq) + e^{(-)}$	Li _(s)	redox	-3.045		
Rb ⁽⁺⁾ (aq) + e ⁽⁻⁾	Rb _(s)	redox	-2.925		
$K^{(+)}_{(aq)} + e^{(-)}$	K _(s)	redox	-2.925		
Ba ⁽²⁺⁾ (aq) + 2 e(-)	Ba _(s)	redox	-2.9		
$Sr^{(2+)}_{(aq)} + 2e^{(-)}$	Sr _(s)	redox	-2.89		
Ca ⁽²⁺⁾ (aq) + 2 e ⁽⁻⁾	Ca _(s)	redox	-2.87		
Na ⁽⁺⁾ (aq) + e ⁽⁻⁾	Na _(s)	redox	-2.714		
Mg ⁽²⁺⁾ (aq) + 2 e ⁽⁻⁾	Mg(s)	redox	-2.37		
$H_{2(g)} + 2 e^{(-)}$	2 H ⁽⁻⁾ (aq)	redox	-2.25		
SiO ₃ ⁽²⁻⁾ (aq) + 3 H ₂ O + 4 e ⁽⁻⁾			-1.7		
Showing 1 to 10 of 11	l5 entries				

Select all Select None Click rows to select (Shift for mult					
Show 10 + entries Search:					
Reactants	Products	Labels	рК		
HPO ₄ ⁽²⁻⁾ + H ₂ O	H ₂ PO ₄ ⁽⁻⁾ + OH ⁽⁻⁾	Weak base	6.80		
SO ₃ ⁽²⁻⁾ + H ₂ O	HSO ₃ ⁽⁻⁾ + OH ⁽⁻⁾	Weak base	6.80		
$H_2S + H_2O$	HS ⁽⁻⁾ + H ₃ O ⁽⁺⁾	Weak acid	7.00		
HS ⁽⁻⁾ + H ₂ O	H ₂ S + OH ⁽⁻⁾	Weak base	7.00		
Cu(H ₂ O) ₅ OH ⁽⁺⁾ + H ₂ O	Cu(H ₂ O) ₆ ⁽²⁺⁾ + OH ⁽⁻⁾	Weak base	7.20		
HSO ₃ ⁽⁻⁾ + H ₂ O	SO ₃ ⁽²⁻⁾ + H ₃ O ⁽⁺⁾	Weak acid	7.20		
H ₂ PO ₄ ⁽⁻⁾ + H ₂ O	HPO ₄ ⁽²⁻⁾ + H ₃ O ⁽⁺⁾	Weak acid	7.21		
H ₂ AsO ₄ ⁽⁻⁾ + H ₂ O	HAsO ₄ ⁽²⁻⁾ + H ₃ O ⁽⁺⁾	Weak acid	7.25		
SeO ₃ ⁽²⁻⁾ + H ₂ O	HSeO ₃ ⁽⁻⁾ + OH ⁽⁻⁾	Weak base	7.40		
HOCl + H ₂ O	OCl ⁽⁻⁾ + H ₃ O ⁽⁺⁾	Weak acid	7.46		
Showing 61 to 70 of 128 entries					

NESOTA

Synchronize mouse Drag and minimize

Show/Hide properties MEP Partial Charges Molecular Dipole Bond Dipoles Symmetry

fluoromethane Show/Hide properties MEP Partial Charges | Molecular Dipole Bond Dipoles Symmetry

difluoromethane Show/Hide properties trifluoromethane MEP Partial Charges Molecular Dipole Bond Dipoles Symmetry

Lithium Cell Size Oisplay Unit Cell Oisplay Lattic ○ Ball & Stick Van der Waals ■ Spin Display distances in the cell

JSmo

Group= C3v

Nitrogen

■ Spin

Display distances

Popup window

Take a picture

Reset

Popup window

Reset

Take a picture

Diferentes preguntas y niveles

Preguntas de explicar (datos preseleccionados una sola respuesta correcta). "Por qué estas moléculas muestran esta tendencia con esta propiedad?"

Resolviendo problemas: (datos preseleccionados una sola respuesta correcta) "Si cuanta más pesada es una molécula mayor es su capacidad calorífica. Por qué la capacidad calorífica decrece en esta secuencia de datos?"

Muestra evidencias: (open-ended)

Elije una serie de datos que muestren que los enlaces hidrógeno son más fuertes que las interacciones dipolo-dipolo, pero más débiles que los comp. iónicos.

Construyendo conocimiento: (open-ended)

Elije una serie de datos para explicar que propiedades moleculares afectan la entalpía de combustión de moléculas orgánicas.

UNIVERSITY OF MINNESOTA

//chemdata.r.umn.edu

Aptitudes a aprender

- Saber implementar un experimento controlado
- Saber interpretar resultados, dejarse guiar por la evidencia más que por prejuicios
- Ejemplos
 - Click the link to see the representation of a set of molecules. Is this a good control test to analyze what intermolecular forces are the strongest?
 http://chemdata.umr.umn.edu/chemedXdata/#stamp=1414702623072
 - Select a set of compounds in order to run a controlled experiment to investigate what intermolecular forces are stronger (H-bonds, dipole-dipole or London forces) and therefore have a higher boiling point

Implementación

Questions with one right answer. Two kinds of skills:

- 1. Skill 1: Design an experiment where you minimize correlation vs causation
- 2. Skill 2: Interpret the experiment without "external interference".

What is the effect of mass on boiling points? Select a set of molecules that is evidence of your statement. (one right answer)

- →100% students gave the correct answer
- 69.8% selected a set of molecules that was "good evidence"
- Out 30.2% who didn't. 12.7% chose a set of molecules that was proving the opposite of what they said. The right answer for the wrong reason.

Implementación

Questions without a right answer. Three kinds of skills:

- 1. Design an experiment where you minimize correlation vs causation
- 2. Interpret the experiment without "external interference".
- 3. Identify the existence of exceptions.

What has a stronger influence? A heavy molecule with a weak intermolecular force or a light molecule with a strong intermolecular force? Are there exceptions?

- 60.3% said mass has a stronger influence
- 39.7% said intermolecular forces have a stronger influence
- 50.8% chose molecules that was evidence of their statement
- Out of the other 49.2%: 39.7% was inconclusive, but 9.5% was evidence of the opposite and didn't acknowledge the existence of exceptions.

- Tamaño y ionización de atomos
 - Identifica en qué casos hay conflicto de influencias

a)Na y Ne b)S y F c)C y Cl

- Tamaño de iones
 - Identifica en qué casos hay conflicto de influencias

- Energía reticular de sólidos iónicos
 - Identifica en qué casos hay conflicto de influencias

- a)CaO y MgS b)NaF y LiCl
- c) KI y NaCl

- En qué casos radio y carga no son suficientes para predecir la energía reticular?
- http://chemdata.umr.umn.edu/chemedXdata/i norganic.html#stamp=1420805381089

Busca ejemplos y excepciones

- Diseña una actividad para que los alumnos sepan:
 - Identificar un buen experimento controlado
 - Diseñar un buen experimento controlado
 - Sacar conclusiones que se infieren de un experimento controlado
 - Identificar conclusiones que no se infieren de un experimento
 - Identificar excepciones

Conclusiones

