AULA 09: Exercício teórico árvores vermelho-preto

Aluno: Gian Franco Joel Condori Luna

October 30, 2024

Exercices

1 (0,4) Desenhe o passo-a-passo com inserção numa árvore de pesquisa vermelho-preto sobre as chaves 41-38-31-12-19-8-50-1-100-101.

Solução:

1. Inserindo 41:

2. Inserindo 38:

3. Inserindo 31:

4. Inserindo 12:

5. Inserindo 19:

6. Inserindo 8:

7. Inserindo 50:

8. Inserindo 1:

9. Inserindo 100:

10. Inserindo 101:

$\left(0,\!4\right)$ Desenhe o passo-a-passo com remoção dos elementos 50e 8 na árvore anterior.

1. Removendo 50:

2. Removendo 8:

(0,2) Explique as principais diferenças entre árvores AVL e vermelhopreto.

Solução:

Fonte: ChatGPT

Principais Diferenças:

a) Balanceamento:

- As árvores AVL são árvores binárias de busca auto-balanceadas que mantêm um critério de balanceamento mais rigoroso, garantindo que a diferença de altura (fator de balanceamento) entre as subárvores esquerda e direita de qualquer nó não seja maior que 1.
- Em contraste, as árvores vermelho-preto são menos rigorosas no balanceamento, pois permitem que as subárvores de um nó diferenciem em altura em até um fator logarítmico (log n), o que resulta em uma árvore mais relaxada em relação ao balanceamento.

b) Rotações:

- As árvores AVL requerem mais rotações para manter o balanceamento devido ao seu critério mais restritivo. Portanto, operações de inserção e remoção podem demandar mais tempo de reestruturação.
- Em árvores vermelho-preto, o balanceamento menos rígido reduz a necessidade de rotações. Geralmente, essas árvores realizam menos rotações durante as operações, tornando-as mais rápidas em cenários onde são necessárias muitas inserções e deleções.

c) Eficiência de Busca e Atualização::

- As árvores AVL, devido ao seu balanceamento mais rígido, tendem a ser mais eficientes em operações de busca, pois a altura da árvore é mantida menor que nas árvores vermelho-preto.
- As árvores vermelho-preto, por outro lado, podem ser mais eficientes para cenários que exigem inserções e deleções frequentes, já que o balanceamento mais flexível reduz o número de rotações e ajustes.

d) Aplicações:

- Devido à eficiência em busca, as árvores AVL são preferidas em aplicativos onde as operações de leitura (busca) são mais comuns que as operações de escrita (inserção e remoção).
- As árvores vermelho-preto são amplamente usadas em estruturas como tabelas de símbolos e ambientes de compiladores, onde tanto a leitura quanto a escrita ocorrem frequentemente.