CS711008Z Algorithm Design and Analysis

Lecture 10. Algorithm design technique: Network flow and its applications ¹

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

1/74

¹The slides are made based on Chapter 7 of *Introduction to algorithms*, *Combinatorial optimization algorithm and complexity* by C. H. Papadimitriou and K. Steiglitz, the classical papers by Kuhn, Edmonds, etc. in the book *50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art.*

Outline

- Extensions of MAXIMUMFLOW problem: undirected network;
 CIRCULATION with multiple sources & multiple sinks;
 CIRCULATION with lower bound of capacity; MINIMUM
 COST FLOW;
- Solving practical problems using network flow and primal_dual techniques:
 - Partitioning a set: IMAGESEGMENTATION, PROJECTSELECTION, PROTEINDOMAINPARSING;
 - **②** Finding paths: FLIGHTSCHEDULING, DISJOINT PATHS, BASEBALLELIMINATION;
 - Obecomposing numbers: BaseballElimination;
 - Constructing matches: BIPARTITEMATCHING, SURVEYDESIGN;
- Extensions of matching: BipartiteMatching, WeightedBipartiteMatching, GeneralGraphMatching, WeightedGeneralGraphMatching;
- A brief history of network flow.

Extensions of MAXIMUMFLOW problem

Extensions

Four extensions of $\operatorname{MaximumFlow}$ problem:

- MAXIMUMFLOW for undirected network;
- CIRCULATION with multiple sources and multiple sinks;
- OIRCULATION with lower bound for capacity;
- MINIMUM COST FLOW;

Extension 1: MAXIMUM FLOW for undirected network

Extension 1: MAXIMUM FLOW for undirected network

INPUT:

an **undirected** network $G = \langle V, E \rangle$, each edge e has a capacity C(e) > 0. Two special nodes: **source** s and **sink** t;

OUTPUT:

for each edge e, to assign a flow f(e) to maximize the flow value $\sum_{e=(s,v)} f(e)$.

Flow properties:

- ① (Capacity restriction): $0 \le f(u,v) + f(v,u) \le C(u,v)$ for any $(u,v) \in E$;
- **②** (Conservation restriction): $f^{in}(v) = f^{out}(v)$ for any node $v \in V$ except for s and t.

Example

Note: On the directed network, the maximum flow value is 4; in contrast, on the undirected network, the maximum flow value is 6.

Algorithm

Maximum-flow algorithm for undirected network G

- 1: Transforming the undirected network G to a directed network G';
- 2: Calculating the maximum flow for G' by using Ford-Fulkerson algorithm;
- 3: Revising the flow to meet the capacity restrictions;

Step 1: changing undirected network to directed network

- \bullet Transformation: an undirected network G is transformed into a directed network G' through:
 - ① adding edges: for each edge (u,v) of G, introducing two edges e=(u,v) and e'=(v,u) to G';
 - 2 setting capcities: setting C(e') = C(e).

Step 2: calculating the maximum flow for G'

Note: the only trouble is the violation of capacity restriction: for edge $e=(u,v), \ f(e)+f(e')=4>C(e)=3.$

Step 3: revising flow to meet capacity restriction

Note: for an edge violating capacity restriction, say e=(u,v), the flow f(e) and f(e') were revised.

Correctness of revising flow

Theorem

There exists a maximum flow f for network G, where f(u,v)=0 or f(v,u)=0.

Proof.

- Suppose f' is a maximum flow for undirected network G', where f'(u,v) > 0 and f'(v,u) > 0. We change f' to f as follows:
- Let $\delta = \min\{f'(u, v), f'(v, u)\}.$
- Define $f(u,v)=f'(u,v)-\delta$, and $f(v,u)=f'(v,u)-\delta$. We have f(u,v)=0 or f(v,u)=0.
- It is obvious that both capacity restrictions and conservation restrictions hold.
- ullet f has the same value to f' and thus optimal.

Extension 2: CIRCULATION problem with multiple sources and multiple sinks

Extension 2: CIRCULATION problem with multiple sources and multiple sinks

INPUT:

a network G=< V, E>, where each edge e has a capacity C(e)>0; multi sources s_i and sinks t_j . A sink t_j has demand $d_j>0$, while a source s_i has supply d_i (described as a negative demand $d_i<0$).

OUTPUT:

a **feasible circulation** f to satisfy all demand requirements using the available supply, i.e.,

- Capacity restriction: $0 \le f(e) \le C(e)$;
- ② Demand restriction: $f^{in}(v) f^{out}(v) = d_v$;

Note: For the sake of simplicity, we define $d_v=0$ for any node v except for s_i and t_j . Thus we have $\sum_i d_i=0$, and denote $D=\sum_{d_v>0} d_v$ as the **total demands** .

14 / 74

An example

Note: The differences between CIRCULATION and MULTICOMMODITIES problem:

- CIRCULATION problem: There is ONLY one type of commodity: a sink t_i can accept commodity from any source. In other words, the combination of commodities from all sources constitutes the demand of t_i .
- 2 MULTICOMMODITIES problem: There are multiple commodities, say transferring food and oil in the same network. Here t_i (say demands food) accepts commodity k_i from s_i (say sending food) only. Linear programming is the only known polynomial-time algorithm for the MULTICOMMODITIES problem.

Algorithm

Algorithm for circulation:

- 1: Constructing an expanded network G' via adding super source S^* and super sink T^* ;
- 2: Calculating the maximum flow f for G' by using Ford-Fulkerson algorithm;
- 3: Return flow f if the maximum flow value is equal to $D = \sum_{v:d_v>0} d_v.$

Step 1: constructing an expanded network G'

Transformation: constructing a network G' through adding a super source s^* to connect each s_i with capacity $C(s^*,s_i)=-d_i$. Similarly, adding a super sink t^* to connect to each t_j with capacity $C(t_j,t^*)=d_j$.

Step 2: calculating the maximum flow for G'

Note: a/b means f(e) = a, and capacity C(e) = b.

Step 3: checking the maximum flow for G'

Note: a/b means f(e) = a, and capacity C(e)=b.

The maximum flow value is $6 = \sum_{v,d_v>0} d_v$. Thus, we obtained a feasible solution to the original circulation problem.

Correctness

Theorem

There is a feasible solution to CIRCULATION problem iff the maximum $s^* - t^*$ flow in G' is D.

Proof.

- \Leftarrow Simply removing all (s^*, s_i) and (t_j, t^*) edges. It is obvious that both capacity constraint and conservation constraint still hold for all s_i and t_j .
- \Rightarrow We construct a s^*-t^* flow and prove that it is a maximum flow:
 - **①** Define a flow f as follows: $f(s^*, s_i) = -d_i$ and $f(t_j, t^*) = d_j$.
 - ② Consider a special cut (A, B), where $A = \{s^*\}$, B = V A.
 - **1** We have C(A,B) = D. Thus f is a maximum flow since it reaches the maximum value.

Extension 3: $\operatorname{CIRCULATION}$ with lower bound for capacity

Extension 3: CIRCULATION with lower bound of capacity

INPUT:

a network G=< V, E>, where each edge e has a capacity upper bound C(e) and a lower bound L(e); multi sources s_i and sinks t_j . A sink t_j has demand $d_j>0$, while a source s_i has supply d_i (described as a negative demand $d_i<0$).

OUTPUT:

a feasible circulation f to satisfy all demand requirements using the available supply, i.e.,

- Capacity restriction: $L(e) \le f(e) \le C(e)$;
- 2 Conservation restriction: $f^{in}(v) f^{out}(v) = d_v$;

Note: For the sake of simplicity, we define $d_v=0$ for any node v except for s_i and t_j . Thus we have $\sum_i d_i=0$, and define $D=\sum_{d_v>0} d_v$ be the *total demands* .

An example

Advantages of lower bound: By setting lower bound L(e)>0, we can force edge e to be used by flow, e.g. edge (s_1,s_2) should be used in the flow.

Algorithm

Algorithm for circulation with lower-bound for capacity

- 1: Building an initial flow f_0 by setting $f_0(e) = L(e)$ for e = (u, v);
- 2: Solving a new circulation problem for G' without capacity lower bound. Specifically, G' was made by revising an edge e=(u,v) with lower bound capacity:
 - **1** nodes: $d'_u = d_u + L(e)$, $d'_v = d'_v L(e)$,
 - **2** edge: L(e) = 0, C(e) = C(e) L(e).

Denote f' as a feasible circulation to G'.

3: Return $f = f' + f_0$.

Step 1: Building an initial flow f_0

Note: a/[I,b] means f(e) = a, and capacity L(e)=I, and C(e)=b.

Step 2: Solving the new circulation problem

We found a feasible circulation f' for the network G'.

Step 3: Adding f_0 and f'

We get f to the original problem as: $f = f_0 + f'$.

Correctness

Theorem

There is a circulation f to G (with lower bounds) iff there is a circulation f' to G' (without lower bounds).

Proof.

- Define $f'(e) = f(e) + L_e$.
- It is easy to verify both capacity constraints and conservation constraints hold.

Extension 4: MINIMUM COST FLOW problem

Extension 4: MINIMUM COST FLOW

INPUT:

a network G=< V, E>, where each edge e has a capacity C(e)>0, and a cost w(e) for transferring a unit through edge e. Two special node: source s and sink t. A flow value v_0 .

OUTPUT:

to find a circulation f with flow value v_0 and the cost is minimized.

An example

- Objective: how to transfer $v_0 = 2$ units commodity from s to t with the minimal cost?
- Basic idea: the cost w_e makes it difficult to find the minimal cost flow by simply expanding G to G' as we did for the CIRCULATION problem. Then we return to the primal_dual idea.

Primal_Dual technique: LP formulation

Intuition: y_i denotes the flow on edge i.

Primal_Dual technique: Dual form D

Rewrite the LP into standard DUAL form via:

- Objective function: using max instead of min.
- Constraints: Simply replacing "=" with " \leq ". (Why? Notice that if all inequalities were satisfied, they should be equalities. For example, inequalities (2), (3) and (4) force $y_1+y_2\geq 2$, thus change \leq into = for inequality (1). So do other inequalities.

Finding a valid circulation with value v_0 first.

- We need to find a valid circulation with value $v_0 = 2$ first.
- This is easy: CIRCULATION problem.
- ullet Thus we have a feasible solution to D.

34 / 74

Primal_Dual technique: DRP

Recall the rules to construct DRP from D:

- Replacing the right hand items with 0.
- Removing the constraints not in J (J contains the constraints in D where = holds).
- Adding constraints $y_i \ge -1$ for any arcs.

Solving DRP: combinatorial technique rather than simplex

Definition (Cycle flow)

A flow f is called **cycle flow** if input equal output for any node (including s and t).

- Suppose we have already obtained a flow for network N.
- Solving the corresponding DRP is essentially finding a cycle in a new network N'(f), which is constructed as follows:
 - For each edge e = (u, v) in N, two edges e = (u, v) and e' = (v, u) were introduced to N'(f):
 - 2 The capacities for e and e' in N'(f) are set as C(e) f(e) and -f(e), respectively;
 - **3** The costs are set as w(e') = -w(e);

Minimum cost flow algorithm [M. Klein 1967]

Theorem

f is the minimum cost flow in network $N\Leftrightarrow$ network N'(f) contains no cycle with negative cost.

Proof.

f is the minimum cost flow in network N

- \Leftrightarrow The optimal solution to DRP is 0.
- $\Leftrightarrow N'(f)$ has no cycle flow with negative cost.
- $\Leftrightarrow N'(f)$ has no cycle with negative cost.

Intuition: Suppose that we have obtained a cycle in N'(f). Pushing a unit flow along the cycle leads to a cycle flow (denoted as \overline{f}). Then $f + \overline{f}$ is also a flow for the original network N.

Minimum cost flow algorithm

Klein algorithm

- 1: Finding a flow f with value v_0 using maximum-flow algorithm, say Ford-Fulkerson;
- 2: while N'(f) contains a cycle C with negative cost do
- 3: Denote b as the bottleneck of cycle C.
- 4: Define \overline{f} as the unit flow along C.
- 5: $f = f + b\overline{f}$;
- 6: end while
- 7: **return** f.

Note:

- The cost of flow decreases as iteration proceeds, while the flow value keeps constant.
- 2 The cycle with negative cost can be found using Bellman-Ford algorithm.

Example: Step 1

Initial flow f_0 : flow value 2, flow cost: 17.

New network N'(f):

Example: Step 2

$$f = f + \overline{f}$$
: flow value $2 - 0 = 2$, flow cost: $17 - 5 = 12$.

New network N'(f):

Extension: Hitchcock Transportation problem 1941

INPUT: n sources $s_1, s_2, ..., s_n$ and n sinks $t_1, t_2, ..., t_n$. Source s_i has supply a_i , and a sink t_j has demand b_j . The cost from s_i to t_j is c_{ij} .

OUTPUT: arrange a schedule to minimize cost.

Note:

- Frank L. Hitchcock formulated the Transportation problem in 1941. This problem is equivalent to MINIMUM COST FLOW PROBLEM [Wagner, 1959].
- 2 In 1956, L. R. Ford Jr. and D. R. Fulkerson proposed a "labeling" technique to solve the transportation problem. This algorithm is considerably more efficient than simplex algorithm. See "Solving the Transportation Problem" by L. R. Ford Jr. and D. R. Fulkerson.
- **3** If $c_{ij} = 0/1$, then Hitchcock problem turns into assignment problem.

Applications of $\operatorname{MaximumFlow}$ problem

Applications of MAXIMUMFLOW problem

Formulating a problem into $\operatorname{MAXIMUMFLOW}$ problem:

- We should define a **network** first. Sometimes we need to construct a graph from the very scratch.
- 2 Then we need to define **weight for edges**. Sometimes we need to move the weight on nodes to edges.
- **3** How to define source s and sink t? Sometimes super source s^* and t^* are needed.
- Finally we need to prove that max-flow (finding paths, matching) or min-cut (partition nodes) is what we wanted.

Note: most problems utilize the property that there exists a maximum integer-valued flow iff there exists a maximum flow.

Paradigm 1: Partition a set

Problem 1: IMAGESEGMENTATION problem

INPUT:

Given an image in pixel map format. The pixel $i, i \in P$ has a probability to be foreground f_i and the probability to be background b_i ; in addition, the likelihood that two neighboring pixels i and j are similar is l_{ij} ;

GOAL:

to identify foreground out of background. Mathematically, we want a partition $P=F\cup B$, such that $Q(F,B)=\sum_{i\in F}f_i+\sum_{j\in B}b_i+\sum_{i\in F}\sum_{j\in N(i)\cap F}l_{ij}+\sum_{i\in B}\sum_{j\in N(i)\cap B}l_{ij}$ is maximized.

An example

- Red: the probability f_i for pixel i to be foreground;
- Green: the probability b_i for pixel i to be background;
- Blue: the likelihood that pixel i and j are in the same category;

Converting to network-flow problem

- lacksquare Network: Adding two nodes source s and sink t with connections to all nodes;
- **2** Capacity: $C(s, v) = f_v$, $C(v, t) = b_v$; $C(u, v) = l_{uv}$;
- 3 Cut: a partition. Cut capacity C(F,B)=M-Q(F,B), where $M=\sum_i (b_i+f_i)+\sum_i \sum_j l_{ij}$ is a constant.

Problem 2: PROJECT SELECTION

INPUT:

Given a directed acyclic graph (DAG). A node represents a project associated with a profit (denoted as $p_i>0$) or a cost (denoted as $p_i<0$), and directed edge $u\to v$ represent the prerequisite relationship, i.e. v should be finished before u.

GOAL:

to choose a subset A of projects such that:

- Feasible: if a project was selected, all its prerequisites should also be selected;
- ② Optimal: to maximize profits $\sum_{v \in A} p_v$;

Network construction

- Network: introducing two nodes: s and t, s connecting the nodes with $p_i > 0$, and t connecting the nodes with $p_i < 0$;
- 2 Capacity: moving weights from nodes to edges, and set $C(u,v)=\infty$ for $< u,v>\in E.$
- Out: a partition of nodes.

Minimum cut corresponds to maximum profit

① Cut capacity: $C(A,B)=C-\sum_{i\in A}p_i$, where $C=\sum_{v\in V}p_v$ $(p_v>0)$ is a constant.

- ② In the example, C(A,B) = 5 + 10 + 9, $\sum_{i \in A} p_i = 8 9$, and C = 5 + 10 + 8.
- Min-Cut: corresponding to the maximum profit since the sum of cut capacity and profit is a constant.

Feasibility

- Feasible: The feasibility is implied by the infinite weights on edges, i.e. an invalid selection corresponds to a cut with infinite capacity.
- ullet For example, if a project u was selected while its precursor v was not selected, then the edge < u, v> is a cut edge, leading to an infinite cut.

Paradigm 2: Finding paths

Problem 3: Disjoint paths

INPUT:

Given a graph $G=<{\cal V},{\cal E}>$, two nodes s and t, an integer k.

GOAL:

to identify $k \ s-t$ paths whose edges are disjoint;

Related problem: graph connectivity

Network construction

- Edges: the same to the original graph;
- ② Capacity: C(u, v) = 1;
- Flow: (See extra slides)

Theorem

k disjoint paths in $G \Leftrightarrow$ the maximum s-t flow value is at least k.

Proof.

- ① Note: maximum s-t flow value is k implies an INTEGRAL flow with value k.
- 2 Simply selecting the edges with f(e) = 1.

Time-complexity: O(mn).

Menger theorem 1927

Theorem

The number of maximum disjoint paths is equal to the number of minimal edge removement to separate s from t.

Menger theorem

Proof.

- The number of maximum disjoint paths is equal to the maximum flow;
- ② Then there is a cut (A,B) such that C(A,B) is the number of disjoint paths;
- 3 The cut edges are what we wanted.

Problem 4: Survey design

INPUT:

A set of customers A, and a set of products P. Let $B(i) \subseteq P$ denote the products that customer i bought. An integer k. **GOAL:**

to design a survey with k questions such that for customer i, the number of questions is at least c_i but at most c_i' . On the other hand, for each product, the number of questions is at least p_i but at most p_i' .

Network construction

- Edges: introducing two nodes s and t. Connecting customers with s and products with t.
- 2 Capacity: moving weights from nodes to edges; setting C(i, j) = 1;
- **3** Circulation: is a feasible solution to the original problem.

Paradigm 3: Matching

Problem 5: Matching

INPUT:

A bipartite $G = \langle V, E \rangle$;

GOAL:

to identify the maximal matching;

Constructing a network

- Edges: adding two nodes s and t; connecting s with U and t with V;
- ② Capacity: C(e) = 1 for all $e \in E$;
- Flow: the maximal flow corresponds to a maximal matching;

Time-complexity: O(mn)

Perfect matching: Hall theorem

Definition (Perfect match)

Given a bipartite $G = \langle V, E \rangle$, where $V = X \cup Y$, $X \cap Y = \phi$, |X| = |Y| = n. A match M is a perfect match iff |M| = n.

Hall theorem, Hall 1935, Konig 1931

Theorem

A bipartite has a perfect matching \Leftrightarrow for any $A \subseteq X$, $|\Gamma(A)| \ge |A|$, where $\Gamma(A)$ denotes the partners of nodes in A.

Figure: Konig, Egervary, and Philip Hall

Proof.

Here we only show that if there is no perfect matching, then $|\Gamma(A)|<|A|.$

① Suppose there is no perfect matching, i.e., the maximal match is M, |M| < n;

200

65 / 74

Paradigm 4: Decomposing numbers

Baseball Elimination problem

INPUT:

n teams $T_1, T_2, ..., T_n$. A team T_i has already won w_i games, and for team T_i and T_j , there are g_{ij} games left.

GOAL:

Can we determine whether a team, say T_i , has already been eliminated from the first place? If yes, can we give an evidence?

An example

Four teams: New York, Baltimore, Toronto, Boston

- **1** w_i : NY (90), Balt (88), Tor (87), Bos (79).
- 2 g_{ij} : NY:Balt 1, NY:Tor 6, Balt:Tor 1, Balt:Bos 4, Tor:Bos 4, NY:Bos 4.

It is safe to say that Boston has already been eliminated from the first place since:

- **1** Boston can finish with at most 79 + 12 = 91 wins.
- ② We can find a subset of teams, e.g. $\{NY, Tor\}$, with the total number of wins of 90+87+6=183, thus at least a team finish with $\frac{183}{2}=91.5>91$ wins.

Note that $\{NY, Tor, Balt\}$ cannot serve as an evidence that Bos has already been eliminated.

Baseball Elimination problem

Question: For a specific team z. Can we determine whether there exists a subset of teams $S\subseteq T-\{z\}$ such that

- \bullet z can finish with at most m wins;
- $\frac{1}{|S|}(\sum_{x \in S} w_x + \sum_{x,y \in S} g_{xy}) > m$.

In other word, at least one of the teams in S will have more wins than z.

Network construction: taking z = Boston as an example

- We define $m = w_z + \sum_{x \in T} g_{xz} = 91$, i.e. the total number of possible wins for team z.
- A network is constructed as follows:
 - **1** Define $S = T \{z\}$, and $g^* = \sum_{x,y \in S} g_{xy} = 8$.
 - ② Nodes: For each pair of teams, constructing a node x:y, and for each team x, constructing a node x.
 - 6 Edges:
 - For edge s x : y, set capacity as $g_{x,y}$.
 - For edge x: y-x and x: y-y, set capacity as $g_{x,y}$.
 - For edge x-t, set capacity as $m-w_x$.

Intuition: number decomposition

Intuition: along edge s-x:y, we send $g_{x,y}$ wins, and at node x:y, this number is decomposed into two numbers, i.e. the number of wins of each team.

Case 1: the maximum flow value is q*=8

Theorem

There exist a flow with value $g^* = 8$ iff there is still possibility that z = Boston wins the championship.

Proof.

- =
 - If there is a flow with value g^* , then the capacities on edges x-t guarantees that no team can finish with over m wins.
 - Therefore, z still have chance to win the championship (if z wins all remaining games).
- =
 - ullet If there is possibility for z to win the championship
 - we can define a flow with value g^* .

Case 2: the maximum flow value is less than q*=8

Theorem

If the maximum flow value is strictly smaller than g^* , the minimum cut describes a subset $S\subseteq T-\{z\}$ such that $\frac{1}{|S|}(\sum_{x\in S} w_x + \sum_{x,y\in S} g_{xy}) > m \ .$

Proof.

(See extra slides)

Extensions of matching: Assignment problem, Hungarian algorithm for Weighted Assignment problem, Blossom algorithm.