2 апреля 2020 года, группа 309

Контрольная работа по теме «Основы финансовой математики» Инструкция по выполнению работы

- На выполнение работы даётся 2 недели: со 2 апреля 2020 г. до 16 апреля 2020 г. Занятие в четверг, 9 апреля, посвящается моим ответам на возможные ТЕХНИЧЕСКИЕ вопросы по работе (но НЕ консультации по темам, которые вы не удосужились разобрать сами).
- 16 апреля, **в 15:00 !!!,** регистрация на лекцию = e-mail с вашей работой (прикреплённый **pdf** файл). На лекции 16 апреля разбираем очередную тему по актуарной математике (детали 16 апреля).
- Мы можете использовать моё пособие: Фалин А.Г., Фалин Г.И. Введение в математику финансов и инвестиций для актуариев: Учебное пособие. Изд. 2-е, перераб. и доп. М.: МАКС Пресс, 2019 359 с., ил. (эл. изд.) ISBN 978-5-317-06167-8 и только это пособие. Вы должны использовать обозначения и термины из этой книги, но вам нельзя копировать теоретические выкладки и текст (если это необходимо, всё излагаете своими словами).
- Вычисления проводить с использованием Microsoft Excel.
- Вы **ДОЛЖНЫ**:

«Излагать и оформлять решение логически правильно, полно и последовательно, с необходимыми пояснениями.»

Иначе говоря, решения задач должны быть очень подробными, с детальным объяснением всех идей, преобразований, с результатами всех промежуточных вычислений, точными ссылками на известные результаты (ссылаться можно только на упомянутую выше мою книгу). Невыполнение этих требований автоматически означает, что задача не решена.

При совпадении в разных работах достаточно длинных фрагментов рассуждений или вычислений решение соответствующей задачи аннулируется у ВСЕХ вовлечённых сторон.

- Решение набираете:
 - о в Microsoft Word, шрифт Times New Roman 12 pt, line spacing 1.15, формулы − с помощью пакета MathType (предпочтительно) или Equation Editor, но сохраняете файл в формате **pdf** − у меня чрезвычайно подробные решения вместе с условиями заняли 18 стр. (минус 4 стр. условия = 14 стр. только!!!)
 - о или в LaTex, но сохраняете файл в формате **pdf**.
- Работу выполняете прямо в этом файле (для LaTeX создаёте аналогичный документ; \documentclass{article}). В таблице на первом листе вашей работы вы указываете: ФИО и ответы ко всем задачам (баллы проставляю я).
- Контрольные высылаете мне на почту <u>MoscowMath@mail.ru</u> с указанием темы по следующему образцу: Иванов_Иван-309.

Напоминаю, что ФГОС среднего образования (приказ Минобрнауки №413 от 17 мая 2012) установил следующие требования к результатам обучения в средней школе:

« II.8.5) умение использовать средства информационных и коммуникационных технологий (далее – ИКТ) в решении когнитивных, коммуникативных и организационных задач ...

II.8.8) владение языковыми средствами - умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;...»

Иванов Иван	Ответ	Баллов
задача 1(і)		
задача 1(іі)		
задача 1(ііі)		
задача 2(і)		
задача 2(іі)		
задача 3(і)(а)		
задача 3(i)(b)		
задача 3(іі)		
задача 4(і)		
задача 4(іі)		
задача 5(і)		
задача 5(іі)		
задача 6(і)		
задача 6(іі)		
задача 6(ііі)(а)		
задача 6(iii)(b)		
задача 7(і)		
задача 7(ii)		
задача 7(ііі)		
задача 8(і)		
задача 8(іі)		
задача 8(ііі)		
задача 8(iv)(a)		
задача 8(iv)(b)		
задача 8(iv)(c)		
задача 9(і)		
задача 9(іі)		
задача 9(ііі)		
	Из 100 возможных баллов всего:	

- **1.** Вычислите в виде процентов с четырьмя знаками после запятой номинальную годовую процентную ставку, начисляемую раз в полугодие, которая эквивалентна:
 - (і) эффективной месячной учётной ставке 0.5%. [2 балла]
- (ii) номинальной годовой учётной ставке 6%, применяемой каждые два года. [2 балла]
- (iii) номинальной годовой процентной ставке 6%, применяемой ежеквартально. [2 балла]

[Всего 6 баллов]

Решение.

- (i)
- (ii)
- (iii)
- **2.** (i) Объясните смысл термина «без дивиденда» («ex-dividend») применительно к продаже ценной бумаги, по которой выплачиваются дивиденды. [1 балл]

Человек купил 10,000 акций 1 декабря 2017. Дивиденды по ним выплачиваются 1 января и 1 июля каждого года; предполагается, что они будут выплачиваться до бесконечности. Очередные дивиденды, которые будут выплачены 1 января 2018 года, составляют \$0.07 на акцию. Ожидается, что для любого календарного года обе дивидендные выплаты будут одинаковы, но от года к году будут расти на 2% в год.

Допустим, что 1 декабря 2017 года эти акции продаются ex-dividend, а для оценки текущей стоимости денежных потоков используется эффективная годовая проценая ставка 7%.

(ii) Вычислите стоимость этого пакета в день покупки, предполагая, что покупатель будет держать его вечно. [5 баллов]

[Всего 6 баллов]

Решение.

- (i)
- (ii)
- **3.** Человек покупает в страховой компании ренту за разовую премию. Рента будет выплачивать £10,000 в конце каждого года на протяжении 15 лет. Страховая компания инвестирует премию в облигацию, которая платит купон раз в год по ставке 6% годовых и будет погашена по номиналу ровно через девять лет.
- (і) (а) Вычислите средний дисконтированный срок выплат для ренты при годовой эффективной процентной ставке 5%. [2 балла]
- (b) Вычислите средний дисконтированный срок выплат для облигации при годовой эффективной процентной ставке 5%. [3 балла]
- (ii) Объясните, получит страховая компания прибыль или понесёт убытки, если процентные ставки слегка уменьшатся для всех сроков. [3 балла]

[Всего 8 баллов]

Решение.

- (i)(a)
- (i)(b)
- (ii)

4. Интенсивность процентов, $\delta(t)$, является функцией времени и в любой момент времени t (лет) даётся формулой:

$$\delta(t) = \begin{cases} 0.03 + 0.005t, & 0 \le t < 2, \\ 0.045 - 0.0025t, & 2 \le t < 10, \\ 0.02, & t \ge 10. \end{cases}$$

- (i) Для инвестиции в размере £15,000, сделанной в момент t=1, вычислите накопление в момент t=9. [4 балла]
- (ii) Вычислите текущую стоимость (в момент t=0) денежного потока, который выплачивается непрерывно с интенсивностью $\rho(t)=60e^{0.02t}$ от момента t=10 до момента t=12. [6 баллов]

[Всего 10 баллов]

Решение.

- (i)
- (ii)
- **5.** 1 февраля 2017 года инвестор обдумывал покупку обычных акций компании Online Education PLC. Дивиденды выплачиваются раз в год, 1 февраля, и только что были выплачены дивиденды в размере £0.40 на акцию. В момент покупки акции ожидалось, что дивиденды будут ежегодно возрастать: на 5% за первый год, на 4% за второй, на 3% за третий и последующие годы. Инвестор не имел права на получение только что выплаченных дивидендов.
- (i) Вычислите максимальную цену, которую мог бы заплатить за акцию инвестор, если он предполагает держать акцию бессрочно и рассчитывает на эффективную годовую доходность от этой операции в размере 9%. [6 баллов]

Инвестор купил пакет акций 1 февраля 2017 года по цене £7.00 за акцию и продал его 1 февраля 2019 года, немедленно после получения причитающихся ему дивидентов, по цене £7.50 за акцию.

(ii) Вычислите эфффективную годовую доходность этой операции для инвестора, используя следующую информацию:

Дата	Индекс	Дивиденды
	инфляции	на одну акцию
1 февраля 2017	211.0	£0.400
1 февраля 2018	215.7	£0.428
1 февраля 2019	221.2	£0.449

[5 баллов]

[Всего 11 баллов]

Решение.

- (i)
- (ii)

- **6.** 1 января 2016 года был выдан заём на сумму £80,000. Он должен быть погашен за 10 лет постоянными ежемесячными платежами 1 числа каждого последующего месяца (вплоть до 1 января 2026 года включительно).
- (і) Вычислите размер этого постоянного ежемесячного платежа используя годовую эффективную процентную ставку 8%. [2 балла]
- (ii) Вычислите размер непогашенной задолженности 1 ноября 2018 года (немедленно после того, как произведён очередной платёж в соответствии с установленным расписанием). [3 балла]
- 1 ноября 2018, немедленно после платежа очередной суммы в счёт погашения долга, заёмщик попросил уменьшить размер ежемесячной выплаты до £900 и продлить промежуток времени, оставшийся до погашения долга (чтобы непогашенную задолженность можно было полностью оплатить уменьшенными ежемесячными платежами). Последний платёж должен быть равен размеру оставшейся задолженности, если она меньше, чем £900.

Кредитор согласился с этими изменениями при следующих дополнительных условиях:

- в будущем будет применяться годовая процентная ставка 9%, начисляемая ежемесячно;
- к непогашенному долгу по состоянию на 1 ноября 2018 года добавляется сбор за оформление документов в размере £250.
 - (iii) (a) Определите новую дату погашения долга. [2 балла]
 - (b) Вычислите размер последней выплаты по долгу. [4 балла] [Всего 11 баллов]

Решение.

(i)

(ii)

(iii)(a)

(iii)(b)

- **7.** Эффективная годовая форвардная ставка для промежутка времени [t;t+r], где t и r измеряются годами, обозначена $f_{t,r}$ (иначе говоря, $f_{t,r}$ это r-летняя форвардная ставка через t лет). Известно, что $f_{0,1}=4\%$, $f_{1,1}=5\%$, $f_{2,1}=6\%$ and $f_{3,1}=7\%$.
- (i) Определите доходность к погашению в момент эмиссии для четырёхлетней облигации, которая гасится по номиналу и платит купон по ставке 4% в конце каждого года. [7 баллов]
 - (ii) Объясните, почему эта доходность меньше, чем $f_{3,1}$. [3 балла]
- (ііі) Как вы могли бы интерпретировать тот факт, что последовательность $f_{0,1}\,$, $f_{1,1}\,$, $f_{2,1}\,$, $f_{3,1}\,$ возрастающая. [4 балла].

[Всего 14 баллов]

Решение.

(i)

(ii)

(iii)

- **8.** Стоимость активов инвестиционного фонда 1 января 2015 года была £100m, но через два года, 1 января 2017 года, он оценивался только в £64. Немедленно после оценки фонда 1 января 2017 года в фонд поступила сумма £16m и к 1 июля 2018 года стоимость фонда выросла до £270m.
- (i) Дайте определение средней по времени эффективной годовой ставки дохода, *TWRR*. В каких случаях её разумно использовать? [2 балла]
- (ii) Вычислите *TWRR* за период с 1 января 2015 года до 1 июля 2018 года; ответ округлите до целого числа базисных пунктов. [4 балла]
- (iii) Дайте определение эквивалентной по финансовому результату ставки дохода, *MWRR*. В каких случаях её разумно использовать? [2 балла]
 - (iv) Докажите, что для рассматриваемого примера
- (а) MWRR за период с 1 января 2015 года до 1 июля 2018 года существует; [4 балла]
 - (b) верно неравенство 29% < MWRR < 30%. [2 балла]
- (c) вычислите MWRR; ответ округлите до целого числа базисных пунктов. [4 балла]

Всего [18 баллов]

Решение.

- (i)
- (ii)
- (iii)
- (iv)(a)
- (iv)(b)
- (iv)(c)
- **9.** Инвестор предполагает вложить сумму $P=\pounds6\,000\,$ в некоторый фонд на $n=10\,$ лет. Он моделирует неопределённость в изменении стоимости активов фонда предположением, что годовая доходность от вложения средств в фонд является случайной величиной. Пусть i_k эта доходность за k-й год. Инвестор предполагает, что случайные величины $i_1,i_2,...,i_n$ независимы в совокупности и одинаково распределены со средним 8% и стандартным отклонением 7%, причём годовые коэффициенты роста $1+i_k$ имеют логнормальное распределение.
- (i) Вычислите ожидаемый размер суммы S_{10} , которую получит в результате инвестор. [2 балла]
 - (ii) По какому закону распределена сумма S_{10} ? [2 балла]
- (iii) На какую минимальную сумму может рассчитывать инвестор через 10 лет практически гарантированно при доверительной вероятности 97.5%? [12 баллов]

Всего [16 баллов]

Решение.

- (i)
- (ii)
- (iii)