

The effect of temporal jitter on single photon indistinguishability

THESIS

submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in PHYSICS

Author:
Student ID:
Andrea Maccarinelli
4535286
Supervisor:
Dr. Wolfgang Loeffler
Second corrector:
Dr. Evert van Nieuwenburg

Leiden, The Netherlands, June 27, 2025

The effect of temporal jitter on single photon indistinguishability

Andrea Maccarinelli

Huygens-Kamerlingh Onnes Laboratory, Leiden University P.O. Box 9500, 2300 RA Leiden, The Netherlands

June 27, 2025

Abstract

Please use $\abstract{\dots}$ to define an abstract in the document preamble.

Contents

1	Intr	Introduction				
	1.1	Context	1			
	1.2	Guide through the chapters	1			
2	The	ory	3			
	2.1	Timing Jitter of an Electronic Signal	3			
	2.2	Electro Optic Modulators	3			
	2.3	Group Velocity Dispersion and Time Broadening effect on				
		Optical Pulses	3			
	2.4	Second Order Correlation function	3			
	2.5	Single Photon Sources	3			
	2.6	Hong Ou Mandel Interference	3			
3	TCS	SPC Measurements on pulses from cascaded EoMs	5			
	3.1	Description of the experimental setup	5			
	3.2	Coincidence counts and normalization routine	5			
	3.3	Analysis of the resuting intensity correlation function	5			
		3.3.1 Identification of the central peak	5			
		3.3.2 Study of the temporal jitter	5			
4	Ti:S	a Pulse Characterization	7			
	4.1	TCSPC and HBT measurement analysis	7			
	4.2	GVD Effect on the optical pulses	7			
		4.2.1 SNSPD's Detector Response function not solvable	7			
	4.3	Troubleshooting: Practices to obtain a better set of measure-				
		ments	7			

 \mathbf{V}

vi CONTENTS

5	Sin	gle Photon Source Experiments	9
	5.1	QD excitation with cascaded EoMs shaped light	9
	5.2	QD excitation using Ti:Sa light pulses	9
6	Cor	nclusions and outlook	11

Introduction

- 1.1 Context
- 1.2 Guide through the chapters

Chapter 2

Theory

- 2.1 Timing Jitter of an Electronic Signal
- 2.2 Electro Optic Modulators
- 2.3 Group Velocity Dispersion and Time Broadening effect on Optical Pulses
- 2.4 Second Order Correlation function
- 2.5 Single Photon Sources
- 2.6 Hong Ou Mandel Interference

TCSPC Measurements on pulses from cascaded EoMs

- 3.1 Description of the experimental setup
- 3.2 Coincidence counts and normalization routine
- 3.3 Analysis of the resuting intensity correlation function
- 3.3.1 Identification of the central peak
- 3.3.2 Study of the temporal jitter

Ti:Sa Pulse Characterization

- 4.1 TCSPC and HBT measurement analysis
- 4.2 GVD Effect on the optical pulses
- 4.2.1 SNSPD's Detector Response function not solvable
- 4.3 Troubleshooting: Practices to obtain a better set of measurements

Single Photon Source Experiments

- 5.1 QD excitation with cascaded EoMs shaped light
- 5.2 QD excitation using Ti:Sa light pulses

Conclusions and outlook