Multilayer Perceptron (MLP)

Neural Network Fundamentals

A Comprehensive Introduction

Marc Reyes

Lecturer

March 7, 2025

Multilayer Perceptron (MLP)

The Building Blocks of Deep Learning

```
graph TD
A[Input Layer] --> B[Hidden Layer]
B --> C[Output Layer]
```

- Foundation of modern neural networks
- Versatile architecture for diverse problems
- Combines simplicity with powerful learning capabilities

From Neurons to Networks

```
flowchart TD
  D[Dendrites] --> S[Cell Body]
  S --> A[Axon]
  A --> O[Synapse]
```

- Biological inspiration: Mimics brain's neural structure
 - Neurons receive, process, and transmit information
- Artificial neuron: Weighted sum + activation function
 - Processes inputs through mathematical operations

From Neurons to Networks (cont.)

```
flowchart TD
  D[Dendrites] --> S[Cell Body]
  S --> A[Axon]
  A --> O[Synapse]
```

- Network topology: Input layer → Hidden layers → Output layer
 - Organized structure for information processing
- Information flow: Forward propagation for predictions
 - Data travels from input to output through the network

The Perceptron Journey

- 1958: Rosenblatt's single-layer perceptron
 - First implementation of a neural learning algorithm
- 1969: Minsky & Papert expose limitations (XOR problem)
 - Demonstrated that single-layer networks couldn't solve nonlinear problems

The Perceptron Journey (cont.)

```
dateFormat YYYY
title Perceptron Journey
section Milestones
Rosenblatt's Perceptron
Minsky & Papert (XOR issue)
Backpropagation introduced
Modern Neural Networks

ia1, 1958, 1y
:a2, 1969, 1y
:a3, 1986, 1y
:a4, 2025, 1y
```

- 1986: Rumelhart, Hinton & Williams introduce backpropagation
 - Breakthrough algorithm enabling training of multi-layer networks
- Today: Foundation for advanced architectures (CNNs, RNNs, Transformers)
 - Core concepts extended to specialized network designs

MLP Architecture

```
graph TD
    I[Input Layer] --> H[Hidden Layer]
    H --> O[Output Layer]
    I -.->|Weights| H
    H -.->|Weights| O
```

Key Components:

- Input layer: Raw data reception
 - Receives and standardizes input features
- Hidden layers: Feature extraction and transformation
 - Learns hierarchical representations of data
- Output layer: Final prediction/classification
 - Produces the network's answer to the given problem

MLP Architecture (cont.)

```
graph TD
    I[Input Layer] --> H[Hidden Layer]
    H --> O[Output Layer]
    I -.->|Weights| H
    H -.->|Weights| O
```

Key Components (continued):

- Weights & biases: Learnable parameters
 - Adjusted during training to minimize error
- Activation functions: Introduce non-linearity
 - Enable the network to learn complex patterns

Activation Functions

```
flowchart TD
    AF[Activation Functions]
    AF --> SIG[Sigmoid]
    AF --> TANH[Tanh]
    AF --> RELU[ReLU]
    AF --> LRELU[Leaky ReLU]
```

Function	Formula	Characteristics
Sigmoid	$\sigma(x)=rac{1}{1+e^{-x}}$	Output range [0,1], vanishing gradient
Tanh	$ anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$	Output range [-1,1], zero-centered

Activation Functions (cont.)

```
flowchart TD
   AF[Activation Functions]
   AF --> SIG[Sigmoid]
   AF --> TANH[Tanh]
   AF --> RELU[ReLU]
   AF --> LRELU[Leaky ReLU]
```

Function	Formula	Characteristics
ReLU	$f(x) = \max(0, x)$	Computationally efficient, sparse activation
Leaky ReLU	$f(x) = \max(0.01x, x)$	Prevents dying ReLU problem

Forward Propagation

```
graph LR
   IN[Input]
   WB[Weights & Biases]
   ACT[Activation]
   OUT[Output]
   IN --> WB
   WB --> ACT
   ACT --> OUT
```

For each layer (1):

$$Z^{[l]} = W^{[l]} \cdot A^{[l-1]} + b^{[l]} \ A^{[l]} = g^{[l]}(Z^{[l]})$$

Where:

• (W^{[I]}) = weights matrix

Forward Propagation (cont.)

```
graph LR
   IN[Input]
   WB[Weights & Biases]
   ACT[Activation]
   OUT[Output]
   IN --> WB
   WB --> ACT
   ACT --> OUT
```

Where:

- (g^{[l]}) = activation function
- (A^{[I]}) = activation output

Backpropagation: Learning Process

```
flowchart TD
   FP[Forward Pass]
   EC[Error Calculation]
   BP[Backward Pass]
   UP[Update Parameters]
   FP --> EC
   EC --> BP
   BP --> UP
```

- 1. Forward pass: Compute predictions
 - Process inputs through the network
- 2. Error calculation: Compare with ground truth

Backpropagation: Learning Process (cont.)

```
flowchart TD
   FP[Forward Pass]
   EC[Error Calculation]
   BP[Backward Pass]
   UP[Update Parameters]
   FP --> EC
   EC --> BP
   BP --> UP
```

- 3. Backward pass: Compute gradients
- 4. Parameter update: Adjust weights and biases

$$egin{align} W^{[l]} &= W^{[l]} - lpha rac{\partial J}{\partial W^{[l]}} \ b^{[l]} &= b^{[l]} - lpha rac{\partial J}{\partial b^{[l]}} \end{split}$$

Loss Functions

Task	Loss Function	Formula
Regression	Mean Squared Error	(\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2)
Binary Classification	Binary Cross- Entropy	(-\frac{1}{n}\sum_{i=1}^{n}[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)])

Loss Functions (cont.)

Task	Loss Function	Formula
Multi-class Classification	Categorical Cross- Entropy	(-\frac{1} {n}\sum_{i=1}^{n}\sum_{j=1}^{m}y_{ij}\log(\hat{y}_{ij}))

- Loss guides the learning process
- Different tasks use specialized error measurements
- Optimization aims to minimize loss

Universal Approximation Theorem

```
graph LR
   IN[Input]
   HL[Hidden Layer]
   OUT[Output]
   IN --> HL
   HL --> OUT
   HL --> OUT
```

"A feedforward network with a single hidden layer containing a finite number of neurons can approximate any continuous function, under mild assumptions on the activation function."

• The theoretical foundation for MLP capabilities

Universal Approximation Theorem (cont.)

```
graph LR
   IN[Input]
   HL[Hidden Layer]
   OUT[Output]
   IN --> HL
   HL --> OUT
   HL --> OUT
```

- More complex functions may require more neurons
- Practical implementations must balance capacity and training challenges

Visualizing Decision Boundaries

```
graph LR
   IN[Input]
   WB[Weights & Biases]
   ACT[Activation]
   OUT[Output]
   IN --> WB
   WB --> ACT
   ACT --> OUT
```

- Linear boundaries: Single-layer perceptrons
 - Separate data with straight lines
- Non-linear boundaries: MLPs with hidden layers
 - Can form complex separation surfaces

Visualizing Decision Boundaries (cont.)

```
graph LR
   IN[Input]
   WB[Weights & Biases]
   ACT[Activation]
   OUT[Output]
   IN --> WB
   WB --> ACT
   ACT --> OUT
```

- Complexity increases with deeper architectures
- Explore an interactive demo at perceptron.marcr.xyz

Quick Quiz: Test Your Knowledge!

Which of these problems can a single-layer perceptron solve?

- A) XOR problem
- B) Linear classification
- C) Image recognition
- D) All of the above

Use the poll feature to submit your answer!

Practical Implementation Challenges

Poll: What's your biggest challenge with neural networks?

- [] Understanding the math
- [] Choosing the right architecture
- [] Overfitting/underfitting
- [] Computational resources
- [] Interpreting results

Share your thoughts in the chat!

Practical Implementation

Thank You!

```
graph TD
A[Input Layer] --> B[Hidden Layer]
B --> C[Output Layer]
```

Contact Information

• Email: hi@marcr.xyz

• Website: marcr.xyz

Resources

- Interactive Demo: perceptron.marcr.xyz
- Slides: github.com/mabreyes/dlsu-lecture-slides