陽明交大NYCU

Inferencing Cyber Attack Causal Relationship Using Cyber Threat Intelligence

Student:

Chih-Chien Cheng (Anson)

Advisor:

Professor Ying-Dar Lin

High Speed Network Lab National Yang Ming Chiao Tung University, Taiwan

Outline

- Motivation
- Background
- Issues
 - Automated inference causal relationship with CTI
- Problem statements
 - Node expansion
 - Status evaluation
 - Result analysis

- Related work
 - Generate and use CTI
- Solution approach
 - Evaluate the current status
 - infer causal relationship

Motivation

- · CTI
 - · knowledge, skills and experience-based information
 - help mitigate potential attacks and harmful events
- Forensics with CTI
 - manual, time consuming
 - · large amount of data
- · Automatic use of CTI
 - · Search, analyze and infer
 - Automation produces results

Background — CTI

- · Has become an important issue for organizations[1]
- There are three overarching
 - Tactical: technical intelligence (IoC) which can be used to identify threat actors
 - Operational: details of the threat actors, including their tools, techniques and procedures
 - Strategic: intelligence about the overarching risks associated with cyber threats
- CTI application scenarios
 - Forensics and inference using CTI[5]

Background — CTI Unit

Issues – Automated inference causal relationship with CTI

- · Basic vs. Expand steps
- · Basic vs. Analyze result
- · Basic vs. Inference
- Degree of automation
- · Inference result

Approach	manual vs. automatic expand node	automatic analysis	manual vs. semi- automatic
basic	manual	No	manual
Expand steps	automatic	No	semi-automatic
Analyze result	manual	Yes	semi-automatic
Inference	automatic	Yes	automatic

Problem – Overview

Subproblem 0 – Node Expansion (development track)

- · Subproblem
 - Input
 - target IoC to expand
 - Output
 - this node's children (other expandable IoCs)
 - information about target IoC
 - · Objective
 - explore the profile of the target node
 - · maintain all queried data on dynamic table
 - Constraint
 - None

Subproblem 1 – Status Evaluation

- · Subproblem
 - Input
 - all queried data so far (current status)
 - Output
 - Determines the next node to be expanded
 - Objective
 - Analyze the results with the least number of expands
 - Constraint
 - None

Subproblem 2 – Result Analysis

- Subproblem
 - Input
 - all queried data so far (current status)
 - Output
 - Infection path
 - Infection time / location
 - Adversary group
 - Activity
 - Severity
 - Confidence
 - Objective
 - get inferences from the queried data
 - automate the inference process
 - Constraint
 - None

Related work — Generate and use CTI

Input			Objective			
paper	paper Structured CTI Outp		Extract Information	Automation	efficiency	Method
[6]	X	threat action & TTPs	0	0	Х	context aware analyticsNLPIR (Information Retrieval)
[7]	0	· standard CTI · detected threat	X	0	Х	· automated threat detection tools · antivirus software
[8]	х	analyze result	0	х	х	· Open-CyKG : CTI KG
[9]	0	Maximum Entropy Model	Х	0	Х	 · automatically label text · by leveraging related, domain-specific, structured data
[10]	Х	automation CTI service platform	х	0	0	machine learning-based integrated framework
Ours	0	causal relationshipconfidence score	0	0	0	 search contacted IoCs Infer from all queried data

Solution Approach

There are two **sections** in this solution:

- Evaluate the current status
 - Find the next node to expand
 - more than two input IoCs
 - AI solution
 - infer causal relationship

Sub-Solution 1 — Status Evaluation Method

- Find the next node to expand
 - more than two input IoCs
 - bidirectional depth limit search
 - AI solution
 - Use the expanded data as dataset
 - Train the model to output predicted high-value nodes

Algorithm	AI	Off-line learning	On-line learning
Calculation	-	-	-
Off-line learning	V	V	-
On-line learning	V	-	V
Off-line + On-line learning	V	V	V

Sub-Solution 2 — Result Analysis Method

- Infer causal relationship
 - Find the intersection of attack types
 - PageRank calculation
 - Betweenness centrality calculation
- The above method is currently used to find important nodes in graph.

Algorithm	intersection of attack types	PageRank	Betweenness
Description	SERVICE STATE OF THE PROPERTY	33.316 33.456 34.356 3.356 3.356 3.356 8.156 1.659	$g(v) = \sum_{s eq v eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$

Reference

[1] 2021 SANS Cyber Threat Intelligence (CTI) Survey Rebekah Brown and Robert M. Lee, SANS Institute 2021

https://assets.contentstack.io/v3/assets/blt36c2e63521272fdc/blt43a990b140efaa96/6112a525f0c97e39497dc96d/40080.pdf

[2] TIMiner: Automatically extracting and analyzing categorized cyber threat intelligence from social data, Jun Zhao, Qiben Yan, Jianxin Li, Minglai Shao, Zuti He, Bo Li, Computers & Security Volume 95, August 2020, 101867

https://www.ciencedirect.com/science/article/pii/S0167404820301395

[3] A Framework for Cyber Threat Intelligence Extraction from Raw Log Data, Max Landauer; Florian Skopik; Markus Wurzenberger; Wolfgang Hotwagner; Andreas Rauber, 2019 IEEE International Conference on Big Data (Big Data)

https://ieeexplore.ieee.org/abstract/document/9006328

[4] A Supervised Machine Learning Based Approach for Automatically Extracting High-Level Threat Intelligence from Unstructured Sources, Yumna Ghazi; Zahid Anwar; Rafia Mumtaz; Shahzad Saleem; Ali Tahir, 2018 International Conference on Frontiers of Information Technology (FIT)

https://ieeexplore.ieee.org/abstract/document/8616979

Reference

[5] Ontology-based Cyber Risk Monitoring Using Cyber Threat Intelligence, Yazid Merah, Tayeb Kenaza, ARES 2021: The 16th International Conference on Availability, Reliability and Security

https://dl.acm.org/doi/abs/10.1145/3465481.3470024

- [6] TTPDrill: Automatic and Accurate Extraction of Threat Actions from Unstructured Text of CTI Sources, Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed, Bill Chu, Xi Niu, ACSAC 2017: Proceedings of the 33rd Annual Computer Security Applications ConferenceDecember 2017 Pages 103–115
- [7] Toward Automated Cyber Defense with Secure Sharing of Structured Cyber Threat Intelligence, Md. Farhan Haque & Ram Krishnan, Information Systems Frontiers volume 23, pages883–896 (2021)
- [8] Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph, Injy Sarhanab, Marco Spruitbcd, Knowledge-Based Systems, Volume 233, 5 December 2021, 107524

Reference

- [9] Automatic Labeling for Entity Extraction in Cyber Security, Bridges, Robert A; Jones, Corinne L; Iannacone, Michael D; Testa, Kelly M; Goodall, John R, Conference: 2014 ASE International Conference on Cyber Security, Stanford, CA, USA, 20140527, 20140331
- [10] inTIME: A Machine Learning-Based Framework for Gathering and Leveraging Web Data to Cyber-Threat Intelligence, Paris Koloveas, Sofia Alevizopoulou, Christos
- [11] Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence, Peng Gao; Fei Shao; Xiaoyuan Liu; Xusheng Xiao; Zheng Qin; Fengyuan Xu, 2021 IEEE 37th International Conference on Data Engineering (ICDE)
- [12] Generating Fake Cyber Threat Intelligence Using Transformer-Based Models, Priyanka Ranade; Aritran Piplai; Sudip Mittal; Anupam Joshi, 2021 International Joint

陽明交大 NYCU

High Speed Network Lab National Yang-Ming Chiao-Tung University, Taiwan