

第五章作业

5-7, 5-8, 5-11, 5-12, 5-15

微机原理及应用

期中测验题解答

一、单项选择题(共15分)

1、n+1位符号数x的补码表示范围为(B)。

A: $-2^n < x < 2^n$

B: $-2^n \le x < 2^n$

C: $-2^n - 1 \le x \le 2^n - 1$

D: $-2^n < x \le 2^n$

2、设SS=2000H, SP=0100H, AX=2107H, 执行 指令PUSH AX后, 数据21H的存放地址是 (B)。

A: 200FEH B: 200FFH

C: 20101H D: 20102H

3、下图表示的是8086系统中的(A)操作。

A: 读存储器

C: 读I/O口

B: 写存储器

D:写I/O口

4、若要使寄存器AL中的高4位不变, 低4位为0, 所用指令为 (B).

A: AND AL, OFH

B: AND AL, OFOH

C: OR AL, 0FH

D: OR AL, 0F0H

5、MIPS用来描述计算机的运算速度,含义是(C)。

A: 每秒处理百万个字符

B: 每分钟处理百万个字符

C: 每秒执行百万条指令 D: 每分钟执行百万条指令

6、用MB表示存储器容量时,4MB等于(C)。

A: 2¹⁰个字节 B: 2¹⁶个字节

C: 2²²个字节 D: 2³²个字节

7、在8086的I/O指令中,端口间接寻址时应使用寄存器(D)。

A: AX

B: BX

C: CX

D: DX

8、条件转移指令JNE的条件是(C)

A: CF=0

B: CF=1

C: ZF=0

D: ZF=1

9、一个具有24根地址线的微机系统中,装有32KB ROM、640KB RAM和3G的硬盘,其可直接访问的内存容量最大为(B)。

A: 496KB

B: 16MB

C: 100.496MB

D: 32M

10、8086 CPU在执行指令IRET时,弹出堆栈的寄存器的先后顺序为(B)。

A: CS, IP, Flag

B: IP, CS, Flag

C: Flag, CS, IP

D: Flag IP CS

11、下列(C)指令执行后AL内容可能会发生变化。

A: STOSB

B: CMP AL, DL

C: AND AL, 01H

D: TEST AL, 01H

12、两个压缩BCD数86、37相加,调整指令DAA完成的是(D)。

A: 加00H调整

B: 加06H调整

C: 加60H调整

D: 加66H调整

13、若显示器的最高分辨率为1280×1024、32位真色彩,所需最小缓存为(C)。

A: 2MB

B: 4MB

C: 5MB

D: 6MB

14、某16位总线的时钟频率为16MHz,若每4个时钟完成一次数据传送,则该总线带宽为(A)。

A: 8MB/S B: 16 MB/S

C: 32MB/S D: 64MB/S

15、8086 CPU中标志寄存器的主要作用是(D)。

A: 检查当前指令的错误

B: 纠正当前指令执行的结果与错误

C: 决定是否停机

D: 产生影响或控制某些后续指令所需的标志

二、填空题题目(共25分)

- 1、1F4H的压缩BCD码为_<u>500H</u>_。
- 2、主程序调用过程时,入口参数和出口参数可以通过_约定寄存器_、_约定存储单元_或_堆栈__来传递。
- 3、8086 CPU使用__16__根地址线访问I/O端口,最多可访问__64K__个字节端口。
- 4、已知AL=01011101B,执行指令NEG AL后再执行CBW后,AX= <u>0FFA3H</u>。

填空题

- 5、设X、Y均为8位二进制数,
 - (1) 若[X]_补=0C8H,则 [X]_原= <u>0B8</u>H, [-X]_补= <u>38</u>H。
 - (2) 若[Y]_补 = 28H,则 [Y]_原= 28 H,[-Y]_反= 0D7 H。
- 6、8086/8088系统启动时,CS=(0FFFFH), IP=(0000H)。若开机后要系统从08000H单元开始执行程序,应在(0FFFF0H)处设置一条跳转指令。
- 7、8086 CPU上ALE引脚信号的作用是<u>用于锁存有效</u> <u>地址信号(地址锁存使能信号),以分离时分复用</u> 的地址信号和数据信号。

填空题

- 8、总线指<u>各系统间、系统各模块间及芯片内部各模块间用来传送信息的公共信号线(公共信息通路)</u>。PC系统中的ISA总线是<u>16</u>位的总线,它最多可访问 1 K个字节端口。
- 9、8086宏汇编上机过程中,用户按编辑、汇编、链接顺序将依次产生_ASM_、_OBJ_和_EXE文件。
- 10、设DS=4500H,AX=0508H,BX=4000H,SI=0320H,8086以最小方式执行

MOV [BX+SI+0100H], AX指令时,

引脚 $M/\overline{IO}=(1)$, $\overline{RD}=(1)$, $\overline{WR}=(0)$,

地址总线上的地址=(49420)H,数据总线传输的数据=(0508)H。

三、判断题(共10分)

- 1、I/O端口与存储器单元独立编址的主要优点是I/O端口不占用存储器单元。(√)
- 2、8086系统中寄存器和存储器都是CPU内部的存储单元。(×)
- 3、8086 CPU的段寄存器之间可以直接传送数据。 (X)
- 4、过程调用和宏调用都发生在程序运行时。(×)
- 5、PCI总线的地址、数据线是引脚复用。(√)

判断题

- 6、指令OUT 21H,AL (√)
- 7、指令ADD AL,10[BX][DX] (×)
- 8、指令MOV AL,[AX] (X)
- 9、指令PUSH WORD PTR 20[BP+SI-2] (√)
- **10**、指令LEA BX,4[BX] (√)

四、简答题(共16分)

- 1、分别指出下列指令的寻址方式,若为存储器操作数请写出有效地址EA和物理地址PA。
 - (1) MOV SI, 2100H
 - ;源操作数为立即数寻址,
 - ;目的源操作数为寄存器寻址。
 - (2) **MOV AX, ES:[BX]**
 - ;目的操作数为寄存器寻址,
 - ;源操作数为存储器寻址,
 - ; EA=BX, PA=ES \times 16 + EA \circ

简答题

- (3) MOV [BX+SI+20H], AX
 - ;源操作数为寄存器寻址,
 - ;目的源操作数为存储器寻址,
 - ; EA=BX+SI+20H, PA=ES \times 16 + EA \circ
- (4) POP AX
 - ;目的操作数为寄存器寻址,
 - ;源操作数为固定寻址,
 - ; EA=SP, $PA=SS\times16 + EA$

简答题

2、写出具有将AX清零功能的指令(5条)、BX增1

的指令(4条).

- ① MOV AX, 0
- 2 SUB AX, AX
- ③ XOR AX, AX
- **4** LEA AX, [0000]
- **⑤** MOV AX, OFFSET[0000]
- **6** LEA AX, ES:[0000]
- **7 LEA AX, SS:[0000]**

ADD BX, 1

INC BX

LEA BX, [BX+1]

SUB BX, 0FFFFH

五、读程序,写结果(共10分)

①、MOV AL, 25H
MOV DATA, 57H
AND AL, DATA
ADD AL, AL

执行上面程序段后:

AL=<u>10</u>H, ZF=<u>0</u>

AF=<u>1</u>

DAA

2 MOV AL, 64H

MOV BL, -1

CMP AL, BL

ADD AL, AL

执行上面程序段后:

AL = 0C8 H, BL = 0FF H

CF= 0

读程序,写结果

③、CLC

MOV CX, 0FFFFH

INC CX

执行上面程序段后:

$$CX = 0 H, ZF = 1$$

4, MOV AX, 1

MOV CX, 3

SHL AX, CL

SHL CX, CL

ADD AX, CX

执行上面程序段后:

$$AX = 20 H$$

$$CX = 18 H$$

读程序,写结果

5、已知: SS=0B2F0H, SP=00D0H, AX=8031H, CX=0F012H

PUSH AX

PUSH CX

POP AX

POP CX

执行上面程序段后:

SS = 0B2F0H, SP = 00D0H,

AX = 0F012 H, CX = 8031 H

六、内存映像(8分)

已知8086系统中某数据段定义如下,标明各内存

单元的偏移地址及内容。

		2000H	07H	A1
DSEG				1
ORG		2001H	41H	
		2002H	42H	
A1	DB 7, 'ABC' EQU \$ - A1 DW CNT DUP (0) ENDS	2003H	43H	1
CNT		2004H	00H	A2
A2		2005H	00H	
DSEG		2006H	00H	
		2007H	00H	
			!	
		200BH	00H	

七、应用编程(16分)

将.TXT文本读入数据库时,常常需要对.TXT文本进行规整,即进行空格过滤,两个字段间保留一个空格作为分隔符。例如: '5523___ABC___765__23' 。 (注: _为空格)

现内存中自DATA1开始存有1K字节的信息,其中包含有个数不等的空格,试编写一个空格过滤程序对此信息进行规整,结果仍存放在自DATA1开始单元。

参考程序:

DATA SEGMENT

DATA1 DB 66H, 88H, 20H, 20H, ...

N EQU \$-DATA1

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, ES:DATA

START: MOV AX, DATA

MOV DS, AX

MOV ES, AX

CLD

MOV DX, N

MOV BX, OFFSET DATA1

AGAIN: MOV SI, BX

MOV DI, BX

MOV CX, DX

参考程序:

LOOP1: MOV AX, [BX]

CMP AX, 2020H

JZ NEXT

INC BX

INC SI

INC DI

LOOP LOOP1

JMP EXIT

NEXT: INC SI

MOV DX, CX

DEC CX

REP MOVSB

JMP AGAIN

EXIT: MOV AH, 4CH

INT 21H

CODE ENDS

END START