On the front of your bluebook, please write: a grading key, your name, and instructor's name (Chang or Rubio). This exam is worth 100 points and has 7 questions. Show all work! Simplify all answers. Answers with no justification will receive no points. Please begin each problem on a new page. No notes, calculators, or electronic devices are permitted.

1. (12 points) Consider the function y = f(x) shown at right. Use transformations to match the following functions to the graphs shown below. No explanation is necessary.

(a)
$$y = f(x+1)$$

(a)
$$y = f(x+1)$$
 (c) $y = f(-x) - 1$

(b)
$$y = f(2x)$$

(b)
$$y = f(2x)$$
 (d) $y = |-f(x) - 1|$

- 2. (10 points) Let $f(x) = \sin x$ and $g(x) = \frac{x}{x^2 + 2}$.
 - (a) Find $(g \circ f)(x)$.
 - (b) What is the domain of $g \circ f$?
 - (c) Is $g \circ f$ even, odd, or neither? Justify your answer.

- 3. (14 points) Let $f(x) = \sqrt{5-4x}$.
 - (a) Use the definition of the derivative to find f'(x).
 - (b) Find an equation of the normal line to the curve y = f(x) at x = -1.
- 4. (32 points) Evaluate the following limits. (Note that you may not use l'Hospital's Rule.)

(a)
$$\lim_{x \to 3^{-}} \frac{x^2 + x - 12}{9 - x^2}$$

(a)
$$\lim_{x \to 3^{-}} \frac{x^2 + x - 12}{9 - x^2}$$
 (b) $\lim_{x \to 0^{-}} \sqrt[3]{\frac{5x^3 - 3|x|}{x}}$ (c) $\lim_{x \to 0^{+}} \sqrt{x} \cos \frac{\pi}{x}$

(c)
$$\lim_{x\to 0+} \sqrt{x} \cos \frac{\pi}{x}$$

(d)
$$\lim_{x \to -\infty} \frac{7x - \sqrt{49x^2 - 8x}}{7x + \sqrt{x^2 - 6x}}$$

- 5. (10 points) Show that the equation $\sqrt{x} = \sin x + \frac{1}{2}$ has at least one real root.
- 6. (12 points) Use the definition of continuity to determine whether the following function g is continuous at x = 0.

$$g(x) = \begin{cases} 6\tan(2x)\csc(3x), & x < 0\\ \sec^4(x + \frac{\pi}{4}), & x \ge 0 \end{cases}$$

7. (10 points) Find a parabola with equation $y = ax^2 + bx + c$ that has slope 1 at x = 6, slope -3 at x = -2, and passes through the point (0, 5).