Calculus A(2) Spring 2021 Midterm Exam

Name and Student ID:			

- 1. (40 points) For each of the following questions choose **one answer** from A to D.
 - (a) A sequence $\{a_n\}_{n=1}^{\infty}$ converges to L. Which of the following statements is true?
 - A. There is always n such that $a_n = L$.
 - B. There is always n such that $a_n < L$ or $a_n > L$.
 - C. There is always n such that $L-1 < a_n < L+1$.
 - D. None of the above
 - (b) Which of the following statements is true about the infinite series $\sum_{n=1}^{\infty} (-1)^n/(n^2+n)$?
 - A. The series converges absolutely.
 - B. The series converges conditionally.
 - C. The series diverges.
 - D. The convergence of the series depends on how the summation is performed.
 - (c) What is the coefficient of the second (nonvanishing) term in the Taylor series generated by $\sin x$ at $x = \pi/4$?
 - A. 1
 - B. $1/\sqrt{2}$
 - C. -1/3!
 - D. None of the above
 - (d) Halley's Comet has an orbital period of 75.32 years. Which of the following best describes its orbit?
 - A. A circle
 - B. An ellipse
 - C. A parabola
 - D. A hyperbola
 - (e) A point in a plane has polar coordinates $(r, \theta) = (1, 125\pi/2)$. What is the Cartesian coordinate (x, y) of this point?
 - A. (1,0)
 - B. (0,1)
 - C. (-1,0)
 - D. (0, -1)
 - (f) What is the dot product $\mathbf{u} \cdot \mathbf{v}$ of $\mathbf{u} = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = -(\sin t)\mathbf{i} + (\cos t)\mathbf{j}$?
 - A. 0
 - B. 1
 - C. $-(2\cos t)i (2\sin t)j + k$
 - D. None of the above

- (g) What is the cross product $\mathbf{u} \times \mathbf{v}$ of $\mathbf{u} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{j}$ and $\mathbf{v} = 3\mathbf{i} + 6\mathbf{j} + 9\mathbf{j}$?
 - A. 0 (scalar)
 - B. **0** (vector)
 - C. 42
 - D. None of the above
- (h) Which of the following equations describes the line in space that is parallel to the vector $\mathbf{i} + \mathbf{j}$ and goes through point (x, y, z) = (1, 1, 1)?

A.
$$\mathbf{r}(t) = (1+2t)\mathbf{i} + (1+2t)\mathbf{j} + \mathbf{k}, -\infty < t < \infty$$

B.
$$\mathbf{r}(t) = (1+t)\mathbf{i} + (1+t)\mathbf{j} + (1+2t)\mathbf{k}, -\infty < t < \infty$$

C.
$$\mathbf{r}(t) = (1+t)\mathbf{i} + (1+t)\mathbf{j} + t\mathbf{k}, -\infty < t < \infty$$

- D. None of the above
- (i) A point P_0 lies in a plane in space, and two different vectors \mathbf{n}_1 and \mathbf{n}_2 are both perpendicular to this plane. Which of the following equations describes this plane (as the set of points P satisfying it)?

$$\begin{array}{ll} \text{A. } \mathbf{n}_1 \cdot \overrightarrow{P_0P} = \mathbf{n}_2 \cdot \overrightarrow{P_0P}. \\ \text{B. } \mathbf{n}_1 \times \overrightarrow{P_0P} = \mathbf{n}_2 \times \overrightarrow{P_0P}. \\ \text{C. } (\mathbf{n}_1 \times \mathbf{n}_2) \cdot \overrightarrow{P_0P} = 0. \end{array}$$

- D. None of the above
- (j) A particle is moving with constant acceleration along the circle $x^2 + y^2 = 1$ in space. Which of the following statements is true about the position vector \mathbf{r} and the velocity **v** of the particle?

A.
$$\mathbf{r} \cdot \mathbf{v} = 0$$
.

- B. $\mathbf{r} \times \mathbf{v} = 0$.
- C. $|\mathbf{v}|$ is constant.
- D. None of the above is true.

2. (18 points) Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{\sqrt{2n} - \sqrt{n-1}}{n} x^n.$$

3. (12 points) Calculate

$$\lim_{x \to 0} \frac{1}{7!} \cdot \frac{[\ln(1+x)]^7}{\sin x - x + \frac{x^3}{6} - \frac{x^5}{120}}.$$

- 4. (12 points) Consider the infinite series $\sum_{n=0}^{\infty} 3(-2\cos\theta)^n.$
 - (a) For what values of θ does the series converge?

(b) For the values of θ found in (a), let $f(\theta)$ be the sum of the series. Sketch the graph of the equation $r = f(\theta)$ in polar coordinates (r, θ) .

- 5. (18 points) Alice is in a spaceship that is moving with velocity $\mathbf{v}(t) = -2\sin(2t)\mathbf{i} + \mathbf{j} + 4\cos(2t)\mathbf{k}$ at time t.
 - (a) Alice is at point (x, y, z) = (1, 1, 1) at t = 0. Find the acceleration $\mathbf{a}(t)$ and the position $\mathbf{r}(t)$ of Alice at time t.

(b) Sketch the trajectory of Alice, and sketch its projection to the xz-plane.

(c) Bob observes Alice from another spaceship moving with velocity $\mathbf{w}(t) = \sin(2t)\mathbf{i} + \cos(2t)\mathbf{k}$. Find the arc length that Alice travels from t = 0 to t = 1, as measured by Bob (that is, measured in a coordinate system whose origin is Bob's location).