Part A

i)
$$V_1$$
 V_2
 V_3
 V_4
 V_4
 V_4
 V_4
 V_4
 V_4
 V_4
 V_5
 V_7
 V_8
 V_9
 V

Nodal Analyms
$$V_1 = 24 V$$

$$V_2 = -12 V$$

At node-3 (V3)

$$\frac{1}{2+\frac{\sqrt{3}}{6}} + \frac{\sqrt{3}}{36} = 0$$

Mesh Analysis

W

Jon Loop-1

for 60p-2

for loop-3

from superment

$$f_1 = -\frac{1}{3} = -0.33A$$

$$f_2 = \frac{5}{3} = 1.667 A$$

$$f_3 = \frac{5}{3} = 1.667 A$$

$$P = VI$$
= -(\(\frac{1}{2} - \frac{1}{3} \) \times 2
= -\(\{ 28 - (-12) \} \) \times 2
= -80 \times 5 upplying

$$\frac{\sqrt{2}}{\sqrt{2}} = -12V$$

$$+ V -$$

<u>Q.2</u>

wooded Analynis

$$\int \frac{V_1-5}{10K} + I - 5I_{\alpha} = 0$$

$$\Rightarrow \frac{\sqrt{-5}}{10K} + I - 5 \times \frac{\sqrt{2}}{15K} = 0$$

$$\frac{V_1-5}{10K}+1-\frac{V_2}{3K}>0$$

Ix = V2

$$\frac{V_1-5}{10K} - \frac{V_2}{3K} + \frac{V_2}{15K} + \frac{V_2-V_3}{10K} > 6$$

$$\int +5 I_{2} + \frac{V_{3}}{5K} - \frac{V_{2}-V_{3}}{10K} = 0$$

$$\frac{3}{5}$$
 $\frac{\sqrt{2}}{15K}$ $+\frac{\sqrt{3}}{5K}$ $-\frac{\sqrt{2}-\sqrt{3}}{10K}$ $\frac{3}{20}$

$$V_{1} = -35V$$
 $V_{2} = -45V$
 $V_{3} = 35V$

(M) (M)

fore loop- 3

