Prova tipo D

P3 de Álgebra Linear I – 2003.2

Data: 18 de junho 2003 Horário: 07:00 – 09:50

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.
1	3.0		
2	2.0		
3a	0.5		
3b	0.5		
3c	0.5		
4a	0.5		
4b	0.5		
4c	0.5		
4d	0.5		
$4\mathrm{e}$	0.5		
4f	0.5		
5a	0.5		
5b	0.5		
5c	0.5		
Total	11.0		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando ou rasuradas terá nota zero.
- Nas questões 3, 4 e 5 justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente. Escreva de forma clara e legível.

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃO: resposta errada vale ponto negativo!. A questão pode ter nota negativa!

Para uso exclusivo do professor	****	****
Certas:	$\times 0.3$	
Erradas:	$\times -0.2$	
****	Total	

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use " $\mathbf{N} =$ não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.2, cada resposta \mathbf{N} vale 0. Respostas confusas e/ou rasuradas valerão -0.2.

Itens	\mathbf{V}	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			
1.j			

- **1.a)** Seja A uma matriz simétrica 3×3 cujo determinante é zero e cujo traço é 2, então A representa uma projeção ortogonal em um plano.
 - 1.b) O produto de duas matrizes simétricas é uma matriz simétrica.
 - 1.c) A inversa de uma matriz é uma matriz simétrica.
 - 1.d) A matriz

$$A = \begin{pmatrix} 555555 & 666666 & 777777 \\ 666666 & 888888 & 999999 \\ 777777 & 999999 & 111111111111 \end{pmatrix}$$

é diagonalizável.

1.e) A matriz

$$A = \begin{pmatrix} 2222 & 3333 & 5555 \\ 4444 & 6666 & 11110 \\ 6666 & 9999 & 16665 \end{pmatrix}$$

tem autovalores 0 (de multiplicidade 2) e 2222 + 6666 + 16665 = 25553.

1.f) Seja A uma transformação linear ortogonal de \mathbb{R}^3 , então, para todo par de vetores v e w de \mathbb{R}^3 , se verifica

$$A(v) \times A(w) = v \times w$$
.

- **1.g)** Duas matrizes 2×2 com o mesmo polinômio característico, o mesmo traço e o mesmo determinante são semelhantes.
 - **1.h)** Seja A uma matriz simétrica 3×3 cujo determinante é 15. Suponha

que 1 e 3 são autovalores de A. Então o traço de A é 9.

1.i) Considere a matriz

$$A = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{6} & 0 \end{pmatrix},$$

como os vetores coluna são unitários e o primeiro vetor $(1/\sqrt{3},1/\sqrt{3},1/\sqrt{3})$ é ortogonal aos outros vetores coluna $(1/\sqrt{6},-2/\sqrt{6},1/\sqrt{6})$ e $(1/\sqrt{2},-1/\sqrt{2},0)$ a matriz A é ortogonal.

1.j) Sejam $A, B \in C$ matrizes 3×3 simétricas não nulas tais que os AB = AC, então B = C.

2) Escolha qual das afirmações a seguir é a verdadeira e marque **com caneta** sua resposta nos respetivos quadros. **Atenção:** responda **todos** os itens, use " $\mathbf{N} =$ não sei" caso você não saiba a resposta. Cada resposta certa vale 0.5, cada resposta \mathbf{N} vale 0, cada duas respostas erradas o aluno perde -0.1 pontos. Respostas confusas e/ou rasuradas valerão -0.1.

2.1) A matriz *A*

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

representa

- (a) O espelhamento no plano x + y = 0.
- (b) O espelhamento no plano x y 2z = 0.
- (c) O espelhamento no plano x y + z = 0.
- (d) O espelhamento no plano x y 2z = 0.
- (e) A projeção ortogonal no plano x + y = 0.
- (f) Uma rotação de ângulo $\pi/4$ e eixo de rotação a reta $(t, t, 0), t \in \mathbb{R}$.
- (g) Una rotação de ângulo $\pi/4$ e eixo de rotação a reta $(t,-t,-2t),\,t\in\mathbb{R}$.
- (h) Uma rotação de ângulo $\pi/4$ e eixo de rotação a reta $(t,t,0),\,t\in\mathbb{R}$.
- (i) Uma rotação de ângulo $\pi/4$ e eixo de rotação a reta $(t,-t,t),\,t\in\mathbb{R}$.
- (j) Nenhuma das opções acima é verdadeira.

Itens	a	b	\mathbf{c}	\mathbf{d}	e	f	g	h	i	j	N
2.1											

2.2) A matriz *B*

$$B = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

representa

(a) O espelhamento no plano x + y = 0.

(b) O espelhamento no plano x - y - 2z = 0.

(c) O espelhamento no plano x - y + z = 0.

(d) A projeção ortogonal no plano x - y + z = 0.

(e) A projeção ortogonal no plano x + y = 0.

(f) A projeção ortogonal no plano x - y - 2z = 0.

(g) A projeção ortogonal no plano $\frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{6}}y - \frac{1}{\sqrt{3}}z = 0$.

(h) O espelhamento no plano x+y=0 seguido da projeção ortogonal no plano x-y+z=0.

(i) A transformação $T(u)=u\times v,$ onde $v=(1/\sqrt{2},1/\sqrt{2},0).$

(j) Nenhuma das opções acima é verdadeira.

Itens	a	b	c	d	e	f	g	h	i	j	N
2.2											

2.3) A matriz *C*

$$C = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

representa:

- (a) O espelhamento no plano x + y = 0.
- (b) O espelhamento no plano x y 2z = 0.
- (c) A projeção ortogonal no plano x + y = 0 seguida do espelhamento no plano x y 2z = 0.
- (d) O espelhamento no plano x y 2z = 0.
- (e) A projeção ortogonal no plano x + y = 0.
- (f) A projeção ortogonal no plano x-y+z=0 seguida do espelhamento no plano x-y-2z=0.
- (g) A projeção ortogonal no plano x y + z = 0.
- (h) A projeção ortogonal no plano x-y-2z=0 seguida do espelhamento no plano x+y=0.
- (i) A transformação $T(u) = u \times v$, onde $v = (1/\sqrt{2}, 1/\sqrt{2}, 0)$.
- (j) Nenhuma das opções acima é verdadeira.

Itens	a	b	\mathbf{c}	d	e	f	g	h	i	j	N
2.3											

2.4) A matriz *D*

$$D = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 2 & -1 & -2 \\ 0 & 0 & 1 \end{array}\right)$$

representa:

(a) A projeção ortogonal no plano x + y = 0.

(b) A projeção ortogonal no plano -x - 2y + z = 0.

(c) A projeção ortogonal no plano x+y=0 seguida do espelhamento no plano -x-2y+z=0.

(d) A projeção ortogonal no plano x - y - z = 0.

(e) A projeção no plano x-y-z=0 na direção do vetor (1,2,0).

(f) A projeção no plano x - y - z = 0 na direção do vetor (1, 1, 0).

(g) O espelhamento no plano x - y - z = 0 na direção do vetor (1, 2, 0).

(h) Uma projeção na reta de equações cartesianas x+y=0 e -x-2y+z=0.

(i) A projeção na reta de equações cartesianas $(t,t,0),\,t\in\mathbb{R}$ na direção do vetor (-1,-2,1).

(j) Nenhuma das opções acima é verdadeira.

Itens	a	b	c	d	e	f	g	h	i	j	N
2.4											

- 3) Seja R uma rotação de \mathbb{R}^3 de 45 graus e eixo a reta $(at, bt, ct), t \in \mathbb{R}$, e P uma projeção ortogonal em um plano π contendo o eixo de rotação de R.
- **3.a)** Determine os autovalores da transformação linear $P \circ R$.
- **3.b)** Determine dois autovetores linearmente independentes de $P \circ R$.
- **3.c**) Estude se $P \circ R$ é diagonalizável e em caso afirmativo determine uma forma diagonal de $P \circ R$.

Dica: escreva as tranformações lineares em uma base conveniente, por exemplo, em uma base ortonormal contendo o vetor diretor do eixo de rotação e um vetor do plano de projeção...

4) Considere a matriz

$$A = \begin{pmatrix} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end{pmatrix}.$$

- a) Determine os autovalores de A.
- **b)** Determine uma base β de autovetores de A.
- c) Determine a matriz de A na base β .
- d) Encontre, se possível, uma forma diagonal de A.
- e) Encontre uma matriz P tal que $A = PDP^{-1}$.
- \mathbf{f}) Interprete P.

- 5) Seja A uma transformação linear de \mathbb{R}^2 em \mathbb{R}^2 tal que a matriz de A na base canônica tem determinante zero e traço 2. Sabendo que A(1,1) = (0,0):
 - (5.a) Determine os autovalores de A.
 - (5.b) Determine uma base de autovetores de A.
 - (5.c) Determine a matriz A.