

Impedance Control, Terminations, Differential Pairs and Buses

Rashad.M.Ramzan, Ph.D FAST-NU, Islamabd

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

Today's Topics

- Impedance
 - Why Zo is important?
 - Basic Definition and Concept
 - Impedance Formula (Dependence on Geometry)
 - Stripline, Microstrip, Embedded Stripline, Embedded Microstrip
 - Even and Odd mode Impedance
- Termination
 - When termination is needed?
 - Types of Termination
 - End Termination, Split Termination, Series and Diode Termination
 - AC biasing
 - Termination of Coupled Differential Lines (Even and Odd Mode Impedance)
 - CASE STUDY (CLK and Bus Termination)

Noise: Cumulative Overview

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

3

Why Z_o So Important?

- If Zo do not change with the length of line life would have been much easier.
- Otherwise change in Zo is source of most of nasty problems in board and IC design.

Impedance Control

Signal moving down transmission line, frozen in time.

Character Impedance is instantaneous impedance the signal sees moving down the

line.

Current paths in a transmission line as the signal propagates. Note that the current returns to the source where ever the signal voltage is changing.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

5

Derivation of Zo

$$j\omega L(\Delta z) + R(\Delta z) = Z\Delta z$$

(series impedance for length of line Δz)

$$j\omega C(\Delta z) + G(\Delta z) = Y\Delta z$$

(parallel admittance for length of line Δz)

$$Z(\text{input}) = Z_o = \frac{(Z_o + Z \Delta z)(1/Y \Delta z)}{Z_o + Z \Delta z + 1/Y \Delta z}$$

(assuming the load is equal to the characteristic impedance)

$$\begin{split} Z_o\left(Z\,\Delta z + Z_o + \frac{1}{Y\,\Delta z}\right) &= (Z_o + Z\,\Delta z)\frac{1}{Y\,\Delta z} \\ \Rightarrow Z_oZ\,\Delta z + Z_o^2 + \frac{Z_o}{Y\,\Delta z} &= \frac{Z_o}{Y\,\Delta z} + \frac{Z\,\Delta z}{Y\,\Delta z} \\ \Rightarrow Z_o(Z\,\Delta z + Z_o) &= \frac{Z}{Y} \\ \Rightarrow Z_oY(Z\,\Delta z + Z_o) &= Z \\ \Rightarrow \lim_{\Delta z \to 0} [Z] &= Z_o^2Y \end{split}$$

Therefore,

$$Z_o = \sqrt{\frac{Z}{Y}} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \tag{2.1}$$

$$V = \frac{C}{\sqrt{\varepsilon_r}} \implies PD = 1/V = \frac{\sqrt{\varepsilon_r}}{C}$$

$$TD = \frac{x\sqrt{\varepsilon_r}}{C} \quad x = Length \ of \ line$$

$$Also \quad TD = \sqrt{LC} \quad and \quad Z_0 = \sqrt{\frac{L}{C}}$$

Zo for PCB Traces

Microstrip

$$Z_0 = \frac{87}{\sqrt{r+1.41}} Ln \left(\frac{5.98 H}{.8W+T} \right)$$

$$C_0 = \frac{.67 (r+1.41)}{Ln [5.98 H/(.8W+T)]}$$

$$t_{pd} = 1.017 \sqrt{.475 r+.67}$$

Embedded Microstrip

First, let:
$$r' = r \left[1 - \exp\left(\frac{-1.55 \, H \, 1}{H}\right) \right]$$

$$Z \circ = \frac{60}{\sqrt{r'}} Ln \left(\frac{5.98 \, H}{.8W + T}\right)$$

$$C \circ = \frac{1.41 \, (r')}{Ln \, [5.98 \, H \, / (.8W + T)]}$$

$$t_{pd} = .08475 \, \sqrt{r'}$$

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

7

Zo for PCB Traces

Stripline

$$Z_0 = \frac{60}{\sqrt{r}} Ln \left(\frac{1.9(2H+T)}{(.8W+T)} \right)$$

$$C_0 = \frac{1.41 r}{Ln[3.81 H/(.8W+T)]}$$

$$t_{pd} = 1.017 \sqrt{r}$$

Dual or Asymmetric Stripline

$$Z_{0} = \frac{80}{\sqrt{r}} Ln \left[\frac{1.9(2H + T)}{(.8W + T)} \right] \left[1 - \frac{H}{4(H1)} \right]$$

$$Z_{0} = \frac{80}{\sqrt{r}} Ln \left[\frac{1.9(2H + T)}{(.8W + T)} \right] \left[1 - \frac{H}{4(H + C + T)} \right]$$

$$C_{0} = \frac{2.82 r}{Ln \left[2(H - T) / (.268W + .335T) \right]}$$

$$t_{pd} = 1.017 \sqrt{r}$$

Zo for PCB Traces

DIMENSIONS FOR 50Ω MICROSTRIP		
Gap (in.)	Width (in.)	
0.005	0.011	
0.01	0.0142	
0.015	0.0158	
0.02	0.0166	
0.025	0.0171	
00	0.0185	

DIMENSIONS FOR 50Ω STRIPLINE			
Gap (in.)	Width (in.)		
0.005	0.0055		
0.01	0.0075		
0.015	0.0083		
0.02	0.0086		
0.025	0.0087		
∞	8800.0		

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

9

Zo for PCB Traces

The following shows the dimensions needed to build transmission lines on a PCB with characteristic impedances of 50 and 75 Ω s.

Note that the tolerance here is +/- 30%!

- Impedance is dependent upon switching pattern
- Odd Mode: When two coupled lines are driven with equal magnitude and 180° out of phase.
 - Effective mutual capacitance will increase by twice the mutual capacitance
 - Equivalent inductance will decrease by mutual inductance
- Even Mode: When two coupled lines are driven with equal magnitude and in same phase.
 - Effective mutual capacitance will decrease by the mutual capacitance
 - Equivalent inductance will increase by mutual inductance

© Rashad.M.Ramzan 2010-11

11

Even and Odd Mode Impedance

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

Even and Odd Mode Impedance

- Odd mode Zo will be lower than single line case.
- Even mode Zo will be higher than the single line case.
- There is velocity variation due to crosstalk in microstrip but not in stripline

Odd- and even-mode electric and magnetic field patterns for a simple two-conductor system.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

13

Even and Odd Mode Impedance

Effect of switching patterns on a three-conductor system.

Dependence of Zo on Different Parameters

PARAMETER	NOMINAL VALUE	3σ VARIATION	3σ Z0
Line width	0.005~	10%	2.5Ω
Dielectric thickness	0.005‴	10%	1.5 Ω
Dk	0.0045~	5%	0.75Ω
Soldermask thickness	0.0004~	10%	0.5Ω
Trace thickness	0.0012~	20%	0.5Ω
Copper height of surface traces	0.0022~	30%	0.5Ω
Dk of material between the traces	0.0035~	10%	0.5Ω
Top to foot width difference	0.0008~	10%	0.2Ω
Soldermask Dk	0.0044~	10%	0.2Ω
Edge-to-edge separation	0.015″	5%	0.1Ω

Based on characteristic impedance for 0.005"-wide traces in stripline and microstrip. Note: The variations in impedance typically add as RMS. Not all these terms would apply to the same specific line.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

15

When we need Termination?

Types of terminations

- **End Terminations**
 - Resistive
 - Split Resistive
 - AC Biased
 - Diode Termination
- Series Terminations
 - Source Series

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

17

End Termination: Resistive

$$\tau = \frac{Z_o}{2}C$$
previously
$$\tau_{10-90\%} = 1.1Z_oC$$

- Characteristics of Far End **Termination**
 - The Driving waveform propagates at full intensity to receiver.
 - All Reflection are damped by terminating resistors.
 - The received voltage is equal to transmitted voltage

- Drawback
 - The driver must supply VCC/R₁ to terminating resistor.
 - For TTL in high state $I = 5V/50\Omega$ =100mA; Just imagine the 64 bit BUS!!
 - This termination scheme rarely appears in TTL, LVTTL and **CMOS** circuits

End Termination: Split Resistive

- The load of heavy current is lifted off the driver.
- R1 and R2 should be chosen such that it do not exceed the I_{OHmax} and I_{OLmax} limits of driving gate.
- For R2>R1, low current exceeds high current.

 $Y_1 = \frac{1}{R_1} \text{ and } Y_2 = \frac{1}{R_2}$ $\Rightarrow Y_1 + Y_2 = \frac{1}{Z_o}$ $V_{ter \min ate} = \frac{R_1 V_{EE} + R_2 V_{CC}}{R_1 + R_2}$

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

19

End Termination: Split Resistive

 All valid combination of R₁ and R₂ lies on the green and blue line.

$$(V_{CC} - V_{OH})Y_1 - (V_{OH} - V_{EE})Y_2 > I_{OH \max}$$

 $(V_{CC} - V_{OL})Y_1 - (V_{OL} - V_{EE})Y_2 < I_{OL \max}$

- The 100Ω line passes the constraint limit and shows the values of R1 and R2 be 100Ω each.
- The 65Ω line do not satisfy the constraints limit at any point.

Bifurcated Lines

- There will reflection from point A.
- Bottom figure solves the problem, Not used due to problems in fabrication.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

21

Multiple Bifurcated Lines

- End termination allows receiver to be placed at any point along the line.
- Keep the connecting stubs short compared to length of rising edge to avoid reflection and bifurcation points.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

- Load dissipation is inversely proportional to termination impedance.
- Also depends upon high and low operating voltages.
- Under assumption that equal time is spend in Low and High states.

$$P_{load} = \begin{bmatrix} \frac{(V_{HI} - V_{EE})^2 + (V_{LO} - V_{EE})^2}{2R_2} + \\ \frac{(V_{CC} - V_{HI})^2 + (V_{CC} - V_{LO})^2}{2R_1} \end{bmatrix}$$

© Rashad.M.Ramzan 2010-11

23

Source Termination

- Characteristics of Source Termination
 - The drive waveform is cut half before it starts propagating.
 - The driving signal propagates at HALF the intensity toward end.
 - At the far end the signal reflects (+1, open circuit) with same intensity.
 - This restores the signal in full intensity.
 - This signal propagates back and damps at the source termination.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

24

Resistance value at Source Termination

- Drivers have very small output impedance i.e ECL \sim 10 Ω in both low and high states. TTL, LVTTL and CMOS both have different impedance for Logic 1 and 0.
- Driver Impedance + Source Termination Impedance = Z_{0} .
- The source terminating impedance is typically less than Z₀.
- So for TTL, LVTTL and CMOS its compromise between both values.
- For capacitive load the RC time constant

$$\tau = Z_o C \implies \tau_{10-90\%} = 2.2 Z_o C$$

previously
$$\tau_{10-90\%} = 1.1Z_oC$$

• Rise time is twice than End Terminated case with same transmission line impedance as load.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

25

Advantage of Source Termination

- It is easier to eliminate reflection at the source than at far end of transmission line in digital circuits.
- While the source has resistive output load (plus a little inductance), the receiver usually has a capacitive load which is usually more difficult to match.
- This is especially true when driving multiple loads.
- Therefore the *reflection coefficient* at the driver is more nearly zero than the coefficient at the receiver under end termination.
- This gives the more overall flatter response.

Power Requirement by Source Termination

- The worse current drive lasts only for round trip line delay.
- The source termination resistor has voltage of $\Delta V/2$ impressed it during the entire round trip delay 2T after switching.
- Energy Dissipated in resistor

$$E = 2T \left(\frac{\Delta V}{2}\right)^2 \frac{1}{R} \quad \because \Delta V \text{ is diffrence between High \& Low}$$

$$\Rightarrow Power \approx \frac{(PulseFrequency)T\Delta V^2}{2R}$$

• This amount of Power is less than power dissipated in End Termination

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

27

Connecting Hair-Ball Network

- Add source termination to every driver.
 - Takes little power, provides a little bit of damping and reduces settling time.
- Add an end termination to each driver.
 - Lot of power and works well in star configuration, reflection are confined to source and middle star point.
- Add shunt termination in middle.
 - Stupid Configuration, looses the impedance of central point.

- Add series resistance between every junction of the branches.
 - Attenuates the signal at every Junction.
 - Middle Termination can improve system step response only at expense of signal attenuation.

© Rashad.M.Ramzan 2010-11

29

AC Biasing of End Termination

• Capacitors reduces Quiescent power dissipation.

AC Biasing of End Termination

$$P_{R1} = \frac{\left(\Delta V/2\right)^2}{Z_o} = \frac{\Delta V^2}{4Z_0} : \Delta V \text{ is diffrence between High & Low}$$

While split resistors

$$P_{R2+R3} = \frac{\left(\Delta V\right)^2}{2Z_o}$$

From perspective of driver, the two terminations are same only dissipation in termination resistors differ.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

31

100na

Clamping diodes at the end of the transmission line absorbe the energy of under- and overshoots and ensure a clean signal waveform.

Input circuits of logic ICs contain these clamping diodes.

Note: The clamping diodes of VLSI circuits are often not capable to handle the high currents generated by line reflections (parasitic transistors!). Provide additional Schottly clamping diodes!

Schottky Diode Arrays: SN74S1050, SN74S1051, SN74S1052, SN74S1053, SN74S1056, SN74F1056, SN74F1016, SN74F1018

High Speed PCB Design: Lecture-7

Bus termination Diode Arrays

Released Functions:

SN74S1050 12-Bit Schottky Diode Array SN74S1051 12-Bit Schottky Diode Network SN74S1052 16-Bit Schottky Diode Array SN74S1053 16-Bit Schottky Diode Network SN74S1056 8-Bit Schottky Diode Array SN74F1056 9-Bit Schottky Diode Array SN74F1016 16-Bit Schottky Diode R-C Bus Termination Array SN74F1018 18-Bit Schottky Diode R-C Bus Termination Array

Applications:

- ★Arrays in TTL systems
- ★ Networks in CMOS systems (positive overshoots)
- ★ Small buses, e.g. Memory Arrays
- ★ System bus in personal computers

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

33

RL Clamping Circuit TL7326

High Speed PCB Design: Lecture-7

End Termination for Differential Circuits

• Combination of RC circuit terminates DC-Balanced lines with no wasted quiescent power.

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

35

Imperfect Termination for Coupled Tx lines

Imperfect termination for a differential transmission line pair: (a) bridged, (b) single-ended (c) AC.

PI Termination for Coupled Tx line

Pi termination configuration for a coupled transmission line pair.

Equivalent of termination seen in the odd mode with the pi termination configuration.

 $R_{1} = R_{2} = Z_{even}$ $R_{3} = \frac{2Z_{even}Z_{odd}}{Z_{even} - Z_{odd}}$

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

37

T- Termination for Coupled Tx line

Equivalent of termination seen in the even mode with the T termination configuration.

Termination: Summery

Parallel

Terminate to either Gnd or Vcc Pros:

R easy to determine

Only one additional component Performs well with distributed loads

Cons: Power dissipated in R_L at all times

Power requirement high

Thevenin

Pros: Properly chosen, pull up/down resisters can improve noise margins

Performs well with distributed loads

Cons: Results in steady flow of current through R's

Optimum selection of R1 and R2 can be complicated

Complicated if used with tri-state devices

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

39

Termination: Summery

AC

Pros: Performs as well as parallel without the dc power drain

Cons: C is difficult to optimize

Requires 2 components

Can lead to timing problems

Series

Pros: One component

No de load

Can be difficult to optimize Rs

There IS a reverse reflection.

Diode

Does not depend on Zo

Little increase in power

Can be placed anywhere on line

Cons: Reflections still exist

Requires 2 devices

Diodes must be FAST with low foreword voltage

High Speed PCB Design: Lecture-7

© Rashad.M.Ramzan 2010-11

40

Details	Logic	Power	Speed
	Level		
End	Good	Bad	Good
Termination		(Static	(Next Switching
Parallel		Power)	at time T)
Source	Good	Good	Bad
Series		(Dynamic	(Next Switching
		Power)	at time 2T)

© Rashad.M.Ramzan 2010-11

41

Clock and Bus Termination (Case Study) Logic View Transmission-line View VIH VMEAS U7 (Driver) VIL U8 (Receiver) VIL U8 (Receiver)

High Speed PCB Design: Lecture-7

Interconnect Delay

Interconnect Delay

- Board Designed by Rashad.M.Ramzan
- CLK Speed 350 MHz
- Bus Speed 110 MHz
- Bus Width 32 Bits (**View in Altium**)

© Rashad.M.Ramzan 2010-11

43

Summary

- Impedance
 - Why Zo is important?
 - Basic Definition and Concept
 - Impedance Formula (Dependence on Geometry)
 - Stripline, Microstrip, Embedded Stripline, Embedded Microstrip
 - Even and Odd mode Impedance
- Termination
 - When termination is ndded
 - Types of Termination
 - End Termination, Split Termination, Series and Diode Termination
 - AC biasing
 - Termination of Coupled Differential Lines (Even and Odd Mode Impedance)
 - CASE STUDY (CLK and Bus Termination)

Wakeup Please lets have Some Food....

