# "JUST THE MATHS"

# **UNIT NUMBER**

# 11.3

# DIFFERENTIATION APPLICATIONS 3 (Curvature)

by

# A.J.Hobson

- 11.3.1 Introduction
- 11.3.2 Curvature in cartesian co-ordinates
- 11.3.3 Exercises
- 11.3.4 Answers to exercises

# UNIT 11.3 - DIFFERENTIATION APPLICATIONS 3

#### **CURVATURE**

#### 11.3.1 INTRODUCTION

In the discussion which follows, consideration will be given to a method of measuring the "tightness of bends" on a curve. This measure will be called "curvature" and its definition will imply that very tight bends have large curvature.

We shall also need to distinguish between curves which are "concave upwards"  $(\cup)$ , having positive curvature, and curves which are "concave downwards"  $(\cap)$ , having negative curvature.

# **DEFINITION**

Suppose we are given a curve whose equation is y = f(x); and suppose that  $\theta$  is the angle made with the positive x-axis by the tangent to the curve at a point, P(x, y), on it. If s is the distance to P, measured along the curve from some fixed point, F, on it then the curvature,  $\kappa$ , at P, is defined as the rate of increase of  $\theta$  with respect to s.



$$\kappa = \frac{\mathrm{d}\theta}{\mathrm{d}s}.$$

#### **EXAMPLE**

Determine the curvature at any point of a circle with radius a.

# Solution



We shall let A be a point on the circle at which the tangent is inclined to the positive x-axis at an angle,  $\theta$ , and let B be a point (close to A) at which the tangent is inclined to the positive x-axis at an angle,  $\theta + \delta\theta$ . The length of the arc, AB, will be called  $\delta s$ , where we shall assume that distances, s, are measured along the circle in a counter-clockwise sense from the fixed point, F.

The diagram shows that  $\delta\theta$  is both the angle between the two tangents **and** the angle subtended at the centre of the circle by the arc, AB.

Thus,  $\delta s = a\delta\theta$  which can be written

$$\frac{\delta\theta}{\delta s} = \frac{1}{a}.$$

Allowing  $\delta\theta$ , and hence  $\delta s$ , to approach zero, we conclude that

$$\kappa = \frac{\mathrm{d}\theta}{\mathrm{d}s} = \frac{1}{a}.$$

We note, however, that, for the lower half of the circle,  $\theta$  increases as s increases, while, in the upper half of the circle,  $\theta$  decreases as s increases. The curvature will therefore be positive for the lower half (which is concave upwards) and negative for the upper half (which is concave downwards).

# Summary

The curvature at any point of a circle is numerically equal to the reciprocal of the radius.

# 11.3.2 CURVATURE IN CARTESIAN CO-ORDINATES

Given a curve whose equation is y = f(x), suppose P(x, y) and  $Q(x + \delta x, y + \delta y)$  are two neighbouring points on it which are separated by a distance of  $\delta s$  along the curve.



In this diagram, we may observe that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \tan \theta$$

and also that

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \lim_{\delta s \to 0} \frac{\delta x}{\delta s} = \cos \theta.$$

The curvature may therefore be evaluated as follows:

$$\frac{\mathrm{d}\theta}{\mathrm{d}s} = \frac{\mathrm{d}\theta}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}s} = \frac{\mathrm{d}\theta}{\mathrm{d}x} \cdot \cos\theta.$$

But,

$$\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left[ \tan^{-1} \frac{\mathrm{d}y}{\mathrm{d}x} \right] = \frac{1}{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \cdot \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.$$

Finally,

$$\cos \theta = \frac{1}{\sec \theta} = \pm \frac{1}{\sqrt{1 + \tan^2 \theta}} = \pm \frac{1}{\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}};$$

and so,

$$\kappa = \pm \frac{\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}}{\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{\frac{3}{2}}}.$$

#### Notes:

- (i) For a curve which is concave upwards at a particular point, the gradient,  $\frac{dy}{dx}$ , will **increase** as x increases through the point. Hence,  $\frac{d^2y}{dx^2}$  will be positive at the point.
- (ii) For a curve which is concave downwards at a particular point, the gradient,  $\frac{dy}{dx}$ , will **decrease** as x increases through the point. Hence,  $\frac{d^2y}{dx^2}$  will be negative at the point.
- (ii) In future, therefore, we may allow the value of the curvature to take the same sign as  $\frac{d^2y}{dx^2}$ , giving the formula

$$\kappa = \frac{\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}}{\left[1 + \frac{\mathrm{d}y}{\mathrm{d}x}^2\right]^{\frac{3}{2}}}.$$

#### **EXAMPLE**

Use the cartesian formula to determine the curvature at any point on the circle, centre (0,0) with radius a.

#### Solution

The equation of the circle is

$$x^2 + y^2 = a^2,$$

which means that, for the upper half,

$$y = \sqrt{a^2 - x^2}$$

and, for the lower half,

$$y = -\sqrt{a^2 - x^2}.$$

Considering, firstly, the upper half,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{\sqrt{a^2 - x^2}}$$

and

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{\sqrt{a^2 - x^2} + \frac{x^2}{\sqrt{a^2 - x^2}}}{a^2 - x^2} = -\frac{a^2}{(a^2 - x^2)^{\frac{3}{2}}}.$$

Therefore,

$$\kappa = \frac{-\frac{a^2}{(a^2 - x^2)^{\frac{3}{2}}}}{\left(1 + \frac{x^2}{a^2 - x^2}\right)^{\frac{3}{2}}} = -\frac{a^2}{a^3} = -\frac{1}{a}.$$

For the lower half of the circle,

$$\kappa = \frac{1}{a}.$$

# 11.3.3 EXERCISES

In the following questions, state your answer in decimals correct to three places of decimals:

1. Calculate the curvature at the point (-1,3) on the curve whose equation is

$$y = x + 3x^2 - x^3.$$

2. Calculate the curvature at the origin on the curve whose equation is

$$y = \frac{x - x^2}{1 + x^2}.$$

3. Calculate the curvature at the point (1,1) on the curve whose equation is

$$x^3 - 2xy + y^3 = 0.$$

4. Calculate the curvature at the point for which  $\theta=30^\circ$  on the curve whose parametric equations are

$$x = 1 + \sin \theta$$
 and  $y = \sin \theta - \frac{1}{2}\cos 2\theta$ .

# 11.3.4 ANSWERS TO EXERCISES

- 1.  $\kappa = 0.023$
- 2.  $\kappa = -0.707$
- 3.  $\kappa = -5.650$
- 4.  $\kappa = 0.179$