

ACM-ICPC 2016

Thailand Central A & B Contest SEPTEMBER 11, 2016

Organization

Time Limit | 1 second

Elb Co., Ltd. has n employees divided into k nonempty teams. Obsessed with team dynamics and numerical metrics, it turns everything into numbers:

- Every employee a has undergone two tests, resulting in two numerical values x_a and y_a .
- The difference between employees a and b is given by $D(a, b) = |x_a x_b| + |y_a y_b|$.
- The company's *strength index* (SI) is measured as

 $SI = min \{ D(a, b) : a \text{ and } b \text{ are in different teams } \}$

Next year, the company will continue to work with k teams but will arrange their employees to maximize the strength index. In this task, you will calculate the **largest-possible strength index** SI from k nonempty teams.

Input

The first line of input contains an integer, **T**, representing the number of test cases. $1 \le \mathbf{T} \le 10$.

Following that are **T** test cases. The first line of a test case contains two numbers: **n** and **k** ($2 \le k \le 10$ and **k** $\le n \le 1000$). Then, for the next **n** lines, each line represents an employee and contains this employee's test results x and y, separated by a single space ($0 \le x$, $y \le 100,000$).

Output

For each test case, print the largest-possible strength index SI, followed by a new line character.

Sample Input	Sample Output
2	4
3 2	3
0 0	
2 2	
3 2	
6 2	
0 1	
0 0	
1 0	
2 2	
2 3	
3 2	

(The examples' explanations are on the next page)

ACM-ICPC 2016

Thailand Central A & B Contest SEPTEMBER 11, 2016

From example 1, we are given 3 people, and k = 2. Note that, there are 3 ways of arranging, since each team must have at least 1 person. All cases are listed below.

```
Case 1: \{(0,0)\}\ \{(2,2),(3,2)\}\, SI_1 = min\{\ D\ ((0,0),(2,2)),\ D\ ((0,0),(3,2))\} = min\{\ 4,5\ \} = 4
Case 2: \{(0,0),(2,2)\}\ \{(3,2)\}\, SI_2 = min\{\ D\ ((0,0),(3,2)),\ D\ ((2,2),(3,2))\} = min\{\ 5,1\ \} = 1
Case 3: \{(0,0),(3,2)\}\ \{(2,2)\}\, SI_3 = min\{\ D\ ((0,0),(2,2)),\ D\ ((3,2),(2,2))\} = min\{\ 5,1\ \} = 1
```

Hence, the largest SI is $SI_1 = 4$.

For example 2, we are given 6 people (0,1), (0,0), (1,0), (2,2), (2,3), (3,2), and k=2. If you try to generate all cases, there will be 31 total possible assignments. If you calculate all the SI values, you will see that, the best team assignment is $\{(0,1), (0,0), (1,0)\}$ and $\{(2,2), (2,3), (3,2)\}$. For this team assignment, its **SI is 3**. This is attained by D((0,1), (2,2)) pair or the D((1,0), (2,2)) pair.