Its output is 0 when at least one of its input is 0. What gate is it?

A. NOT

B. OR

AND

b) X=0 requires (either A=0, or B=0, or C=0) and (A=1 or D=1)

c) X=1 requires (A=B=C=1) or (A=D=0)

Possible to draw simpler diagram

$(A \oplus B)' = A \oplus B' = A' \oplus B$ True or false?

- A. True
 - B. False

Construct the truth tables and compare:

Α	В	(A ⊕ B)'	A ⊕ B '	A ' ⊕ B
0	0	1	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	1	1

Or use Boolean algebra:

$$A \oplus B' = A(B')' + A'(B') = AB + A'B'$$

$$A' \oplus B = (A')B' + (A')'B = A'B' + AB$$

Example: Construct the truth table for F:

 $F = W (X \oplus Y \oplus Z \oplus W') + (X \oplus Y \oplus Z)$

\mathbf{W}	X	Y	Z	F
0	0	0	0	
0	0	0	1	1
0	0	1	0	1
0	0	1	1	
0	1	0	0	1
0	1	0	1	
0	1	1	0	
0	1	1	1	1
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Continue:

$$F = W (X \oplus Y \oplus Z \oplus W') + (X \oplus Y \oplus Z) = (X \oplus Y \oplus Z)$$

W	X	Y	Z	F
0	0	0	0	
0	0	0	1	1
0	0	1	0	1
0	0	1	1	
0	1	0	0	1
0	1	0	1	
0	1	1	0	
0	1	1	1	1
1	0	0	0	
1	0	0	1	1
1	0	1	0	1
1	0	1	1	
1	1	0	0	1
1	1	0	1	
1	1	1	0	
1	1	1	1	1

How many 2-input XOR gates are needed to generate the parity bit from an 8-bit data?

- A. 4
- B. 6
- *S*. 8
 - D. 10

An 8-Bit Parity Generator select 1: Odd / 0: Even Din[0] Odd/Even# Din[1] Din[2] ParityBit Din[3] Din[4] Din[5] Din[6] "1" if Din has odd Din[7] number of 1's. "0" otherwise.

For 7-bit parity, tie Din[7] to a '0'

Re-write the following in hexadecimal:

$$9(dec) + 7(dec) = 16(dec)$$

$$9h + 7h = 10h$$

$$21(dec) + 7(dec) = 28(dec)$$

How many units of gate delay in total?

Both are full adders

tpd = 2 units

Give the sign-magnitude/2's complement representation of +20 (dec):

A. 10100

B. 01100

£. 010100

D. 101100

Give the sign-magnitude representation of -20 (dec):

A. 10100

B. 01100

C. 101100

D. 1 10100 magnitude

Give the 2's complement representation of -20 (dec):

A. 10100

B. 01100

C. 101100

D. 110100

Value of
$$-(2)^5 = -32$$
 (0)

 $-32_{10} + 12_{10} = -20_{10}$