

02450: Introduction to Machine Learning and Data Mining

Overfitting and performance evaluation

DTU Compute

Department of Applied Mathematics and Computer Science

Reading Material

Reading material:

C9

Feedback Groups of the day:

- Christian Tarning-Andersen, Mirrin Snel
- Ulrika Boulund, Kristin J. Lillekjendlie
- Niklas Hansson, Mathias Sondrup, Mallory Maline
- Jannick Lønver, Emilie Lildholdt
- Oliver Brandt, Martin Johnsen, Jonas Waaben
- Ioulia Markou, Jacob Jon Hansen, Sebastiano Piccolo
- Ioannis Kavadakis, Athina Tsagkari
- DTU Compute
 Helga Svala Sigurðardóttir, Anna

Tue Herlau, Mikkel N. Schmidt and Morten Mørup

Introduction to Machine Learning and Data Mining

Course notes fall 2016, version 1

August 29, 2016

Technical University of Denmark

02450: Introduction to Machine Learning and Data Mining

Lecture Schedule

Introduction

30 August: C1

Data: Feature extraction, and visualization

2 Data and feature extraction

6 September: C2, C3

3 Measures of similarity and summary statistics

13 September: C4

4 Data Visualization and probability

Supervised learning: Classification and regression

Decision trees and linear regression 27 September: C7, C8 (Project 1 due before 13:00)

Overfitting and performance evaluation

4 October: C9

Nearest Neighbor, Bayes and Naive Bayes

11 October: C10, C11 3 DTU Compute 8 Artificial Neural Networks and Bias/Variance

25 October: C12, C13

AUC and ensemble methods

1 November: C14, C15

Unsupervised learning: Clustering and density estimation

K-means and hierarchical clustering

8 November: C16 (Project 2 due before 13:00)

Mixture models and association mining 15 November: C17, C18

Density estimation and anomaly detection

22 November: C19

Recap

Recap and discussion of the exam
November: C1-C19 (Project 3 due before 13:00)

Data modeling framework

After today you should be able to:

Explain the difference between training, test and generalization error Explain how cross-validation can be used for (i) performance evaluation (ii) model selection Apply forward and backward selection Test the significance of classifiers

Supervised learning

- Mapping between domains
 - Classification: Discrete output
 - Regression: Continuous output

Roadmap for today:

- Introduce errors:
 - training error
 - test error
 - generalization error
- · Introduce cross-validation techniques
 - basic cross-validation for performance evaluation
 - cross-validation for model selection
 - two-layer cross-validation for model selection AND performance evaluation
- Statistical evaluation of the performance of classifiers
 - Evaluation of a single classifier
 - Comparing two classifiers

Why are there "multiple models"? Example: Linear regression

- · Bad fit
- Too simple model

Why are there "multiple models"? **Example: Linear regression**

- · Reasonable fit
- Reasonable model

$$f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

Why are there "multiple models"? Example: Linear regression

- · Perfect fit
- Too complex model

Why are there "multiple models"? Example: Classification tree

- Bad fit
- Too simple model

Why are there "multiple models"? Example: Classification tree

- · Reasonable fit
- Reasonable model

Why are there "multiple models"? Example: Classification tree

Model overfitting

Control the model complexity

 Find parameter or mechanism in model that controls complexity

Lex Parsimoniae, Law of parsimony

Given two models with same predictive performance, the simpler model is preferred over the more complex model - William of Ockham (1288-1347) (paraphrased)

e

"Everything should be made as simple as possible, but not simpler" - Einstein

https://commons.wikimedia.org/wiki/File:William of Ockham.png

Decision trees

- Hunts algorithm
 - Continue splitting until each node is pure
 - Results in a very complex tree (overfitting)
- Control complexity
 - Pre-pruning: Stop splitting if
 - There is less than **K** objects on the branch
 - Impurity gain is below some predefined threshold, a
 - Post-pruning: Generate full tree
 - Cut off branches to a given pruning level, **c**
- K, a, and/or c determine model complexity
 - How should we choose them?

Linear regression

• Linear regression on non-linearly transformed inputs (polynomials)

$$f(x) = w_0 + w_1 x + \dots + w_8 x^8$$

- **Control complexity**: Choose a suitable value for *K*

Solution:

Assess model performance correctly and select best model

Training error

 Suppose we train 3 models on a dataset of 9 observations $\mathcal{M}_1 = \{1\text{'st order polynomial}\}\$ $\mathcal{M}_2 = \{2\text{'nd order polynomial}\}\$ $\mathcal{M}_3 = \{6\text{'th order polynomial}\}\$

Test error error

• Test error is obtaining by testing the trained models on new data

Overfitting

- Overfitting is that the training error usually decreases for overly complex models while the test error increases
- Test error is the more true error
- Never, ever validate a model on the same data is was trained upon

- The generalization error is the test error evaluated over infinitely many test sets
- The generalization error is the "true performance" of our model

$$E_{\mathcal{M}}^{\text{gen}} = \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim p} \left[L(\boldsymbol{y}, \boldsymbol{f}_{\mathcal{M}}(\boldsymbol{x})) \right]$$
$$= \int d\boldsymbol{x} d\boldsymbol{y} \ p(\boldsymbol{x}, \boldsymbol{y}) L(\boldsymbol{y}, \boldsymbol{f}_{\mathcal{M}}(\boldsymbol{x}))$$

• Purpose: Estimate the generalization error

DTU

- Purpose: Estimate the generalization error
- 3 variants:
 - Holdout: Partitions dataset in two (training, test), approximate the generalization error based on the generated test set

$$\mathcal{D} = \mathcal{D}^{\text{train}} \cup \mathcal{D}^{\text{test}}$$
$$E_{\mathcal{M}}^{\text{gen}} \approx E_{\mathcal{M}}^{\text{test}}$$

DTU

- Purpose: Estimate the generalization error
- 3 variants:
 - Holdout: Partitions dataset in two (training, test), approximate the generalization error based on the generated test set

$$\mathcal{D} = \mathcal{D}^{\text{train}} \cup \mathcal{D}^{\text{test}}$$
$$E_{\mathcal{M}}^{\text{gen}} \approx E_{\mathcal{M}}^{\text{test}}$$

 K-fold: Partitions dataset in K parts. Each part is a test set and the other K-1 training sets

$$\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \dots \cup \mathcal{D}_K$$
$$E_{\mathcal{M}}^{\text{gen}} \approx \frac{1}{K} \sum_{k=1}^K E_{\mathcal{M},k}^{\text{test}}$$

- Purpose: Estimate the generalization error
- 3 variants:
 - Holdout: Partitions dataset in two (training, test), approximate the generalization error based on the generated test set

$$\mathcal{D} = \mathcal{D}^{\text{train}} \cup \mathcal{D}^{\text{test}}$$
$$E_{\mathcal{M}}^{\text{gen}} \approx E_{\mathcal{M}}^{\text{test}}$$

 K-fold: Partitions dataset in K parts. Each part is a test set and the other K-1 training sets

$$\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \dots \cup \mathcal{D}_K$$
$$E_{\mathcal{M}}^{\text{gen}} \approx \frac{1}{K} \sum_{k=1}^K E_{\mathcal{M},k}^{\text{test}}$$

 Leave-one-out: Partitions dataset into N parts. Let each observation be a test set and the other N-1 training sets (K-fold with K=N)

$$\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \dots \cup \mathcal{D}_N$$

$$E_{\mathcal{M}}^{\text{gen}} \approx \frac{1}{N} \sum_{k=1}^{N} E_{\mathcal{M},k}^{\text{test}}$$

Cross-validation (1-layer)

 K=3 fold cross-validation for the three Linear-regression models Vertically: The three models Horizontally: The three cross-validation folds

DTU

Cross-validation for model selection (1-layer)

- Purpose: Select the best of S models
- The idea:
- For each model, estimate the cross-validation error $\hat{E}_{\mathcal{M}_1}^{\mathrm{gen}}, \dots, \hat{E}_{\mathcal{M}_S}^{\mathrm{gen}}$ using basic cross-validation.
- Select the optimal model \mathcal{M}_{s^*} as that with the lowest error:

K-fold cross-validation for model selection, the algorithm

```
Algorithm 3: K-fold cross-validation for model selection
  Require: K, the number of folds in the cross-validation loop
  Require: \mathcal{M}_1, \ldots, \mathcal{M}_S. The S different models to select between
  Ensure: \mathcal{M}_{s^*} the optimal model suggested by cross-validation
      for k = 1, \dots, K splits do
         Let \mathcal{D}_k^{\text{train}}, \mathcal{D}_k^{\text{test}} the k'th split of \mathcal{D}
         for s = 1, \ldots, S models do
             Train model \mathcal{M}_s on the data \mathcal{D}_k^{\text{train}}
             Let E_{\mathcal{M}_{s},k}^{\text{test}} be the test error of the model \mathcal{M}_{s} when it is tested on \mathcal{D}_{s}^{\text{test}}
         end for
      end for
     For each s compute: \hat{E}_{\mathcal{M}_s}^{\text{gen}} = \frac{1}{K} \sum_{k=1}^{K} E_{\mathcal{M}_s,k}^{\text{test}}
      Select the optimal model: s^* = \arg \min_s \hat{E}_{\mathcal{M}_s}^{\text{gen}}
```

 \mathcal{M}_{s^*} is now the optimal model suggested by cross-validation

Holdout method

- Randomly choose a subset of data points to be in a test set
 For example choose 1/3 of the points
- The rest is the training set

Holdout method

- Randomly choose a subset of data point to be in a test set
 For example choose 1/3 of the points
- The rest is the training set

- Using the **training set**
 - Train the model for different complexities
- Using the test set
 - Compute the test error
- Choose the model with lowest test error

- Using the training set
 - Train the model for different complexities
- Using the test set
 - Compute the test error
- · Choose the model with lowest test error

Leave-one-out

- Choose the first data point as a **test set**
- The rest is the **training set**

Leave-one-out

- Choose the first data point as a **test set**
- The rest is the **training set**

- Using the training set
 - Train the model for different complexities
- · Using the test set
 - Compute the test error
- · Repeat for all data points
 - All data points get to be test set
 - Compute average test error

Leave-one-out cross-validation

Leave-one-out

- Using the training set
 - Train the model for different complexities
- · Using the test set
 - Compute the test error
- Repeat for all data points
 - All data points get to be test set
 - Compute average test error

Cross-validation methods

- Compare these three methodsWhat are their pros and cons?
- 10-fold cross-validation is very often used in pratice
 - Why do you think?

DTU

Cross-validation (1-layer, a problem?)

- For each model, estimate the cross-validation error $\hat{E}_{\mathcal{M}_1}^{\mathrm{gen}}, \dots, \hat{E}_{\mathcal{M}_S}^{\mathrm{gen}}$ using basic cross-validation.
- Select the optimal model \mathcal{M}_{s^*} as that with the lowest error:

Is the generalization error the selected model (k=2) about 0.007?

Cross-validation (1-layer, a problem?)

 Same as before, just with more models. Is the error of the red dot a fair estimate of the generalization error?

 Purpose: Select optimal model and estimate generalization error of optimal model

- Purpose: Select optimal model and estimate generalization error of optimal model
- How?
 - Recall "one layer cross-validation for model selection"
 - This method returns a model (the best model)
 - We can consider "one-layer cross-validation for model selection" as a single model

- Purpose: Select optimal model and estimate generalization error of optimal model
- How?
 - Recall "one layer cross-validation for model selection"
 - This method returns a model (the best model)
 - We can consider "one-layer cross-validation for model selection" as a single model
- Recall:
 - "Basic cross-validation for performance evaluation" estimates the generalization error of a model

- Purpose: Select optimal model and estimate generalization error of optimal model
- How?
 - Recall "one layer cross-validation for model selection"
 - This method returns a model (the best model)
 - We can consider "one-layer cross-validation for model selection" as a single model
- · Recall:
 - "Basic cross-validation for performance evaluation" estimates the generalization error of a model
- Idea: Apply "basic cross-validation for performance evaluation" on the "one-layer cross-validation for model selection"-model to estimate it's generalization error

DTU

Cross-validation (2-layer)

• Two-layer cross-validation, the algorithm

Algorithm 4: Two-level cross-validation

Require: K_1, K_2 , folds in outer,inner cross-validation loop

Require: $\mathcal{M}_1, \dots, \mathcal{M}_S$: The S different models to cross-validate

Ensure: \hat{E}^{gen} , the estimate of the generalization error

for $i = 1, \dots, K_1$ do

Outer cross-validation loop. First make the outer split into K_1 folds

Let $\mathcal{D}_i^{\mathrm{par}}$, $\mathcal{D}_i^{\mathrm{val}}$ the *i*'th split of \mathcal{D}

for $j=1,\ldots,K_2$ do

Inner cross-validation loop. Use cross-validation to select optimal model Let $\mathcal{D}_{j}^{\text{train}}$, $\mathcal{D}_{j}^{\text{test}}$ by the j'th split of $\mathcal{D}_{j}^{\text{par}}$

for $s = 1, \ldots, S$ do

Train \mathcal{M}_s on $\mathcal{D}_i^{\text{train}}$

Let $E_{\mathcal{M}_s,j}^{\text{test}}$ be the test error of the model \mathcal{M}_s when it is tested on $\mathcal{D}_j^{\text{test}}$ end for

end for

For each s compute: $\hat{E}_s^{\text{gen}} = \frac{1}{K_2} \sum_{i=1}^{K_2} E_{\mathcal{M}_s,j}^{\text{test}}$

Select the optimal model $\mathcal{M}^* = \mathcal{M}_{s^*}$ where $s^* = \arg\min_s \hat{E}_s^{\text{gen}}$

Train \mathcal{M}^* on $\mathcal{D}_i^{\mathrm{par}}$

Let E_i^{test} be the test error of the model \mathcal{M}^* when it is tested on $\mathcal{D}_i^{\text{val}}$

end for

Compute the estimate of the generalization error: $\hat{E}^{\text{gen}} = \frac{1}{K_1} \sum_{i=1}^{K_1} E_i^{\text{test}}$

Feature subset selection

- · Let's say we want to do linear regression
 - We have a large number of attributes

$$x_1, x_2, \ldots, x_M$$

- Using all attributes results in a too complex model
 - Control complexity: Choose a subset of attributes
 - Small subset = Simple model
 - Large subset = Complex model
- How many different ways can we choose a subset?
 - How many models must be compared for
 - M=4
- \mathcal{L}
- M=10
- M=100

$$f(x) = w_0$$

$$f(x) = w_0 + w_1x_1 + w_2x_{27} + w_3x_{88}$$

$$f(x) = w_0 + w_1x_{19} + w_2x_{76}$$

$$f(x) = w_0 + w_1x_{19} + w_2x_{76} + w_3x_{88}$$

$$f(x) = w_0 + w_1x_1 + w_2x_{27} + w_3x_{19}$$

$$f(x) = w_0 + w_1x_{27} + w_2x_{88}$$

Sequential feature selection

Forward selection

- · Start with no features
- · Compute cross-validation error for
 - Current feature subset
 - All subsets equal to the current
 - + one added feature
- Choose best subset
- Repeat until no further improvement

Sequential feature selection

$$f(x) = w_0$$

$$f(x) = w_0 + w_1 x_1$$
$$f(x) = w_0 + w_1 x_2$$

 $f(x) = w_0 + w_1 x_3$

 $f(x) = w_0 + w_1 x_4$

Forward selection

- Start with no features
- Compute cross-validation error for
 - Current feature subset
 - All subsets equal to the current
 - + one added feature
- Choose best subset

$$f(x) = w_0 + w_1 x_3$$

Repeat until no further improvement

$$f(x) = w_0 + w_1 x_3 + w_2 x_1$$
$$f(x) = w_0 + w_1 x_3 + w_2 x_2$$

$$f(x) = w_0 + w_1 x_3 + w_2 x_4$$

$$f(x) = w_0 + w_1 x_3 + w_2 x_1$$

$$f(x) = w_0 + w_1 x_3 + w_2 x_1 + w_3 x_2$$

$$f(x) = w_0 + w_1 x_3 + w_2 x_1 + w_3 x_4$$

Sequential feature selection

Backward selection

- · Start with all features
- · Compute cross-validation error for
 - Current feature subset
 - All subsets equal to the current
 - one removed feature
- · Choose best subset
- Repeat until no further improvement

Feature subset selection

 How many models do we maximally have to evaluate by forward or backward selection?

$$x_1, x_2, \ldots, x_M$$

- M=4
- \bigcirc
- M=10M=100

Statistical comparisons of classifiers

- Credibility intervals
- Evaluation of a single classifier
 - i.e., evaluate how significantly the classifier performs relative to random guessing
- Comparing two classifiers
 - i.e., is one classifier significantly better than another classifier

Credibility interval

Evaluation of a single classifier

$$p(\theta|m,N) = \frac{p(m|\theta,N)p(\theta)}{p(m|N)} = \frac{\theta^m (1-\theta)^{N-m} p(\theta)}{p(m|N)}$$

Beta distribution: Beta
$$(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}$$

Jeffrey prior:
$$p(\theta) = \text{Beta}\left(\theta | \frac{1}{2}, \frac{1}{2}\right) = \frac{1}{\Gamma(\frac{1}{2})^2} \theta^{-\frac{1}{2}} (1 - \theta)^{-\frac{1}{2}}$$

Evaluation of a single classifier

$$p(\theta|m,N) = \frac{\theta^m (1-\theta)^{N-m} p(\theta)}{p(m|N)} = \frac{1}{\Gamma(\frac{1}{2})^2} \frac{\theta^{m+\frac{1}{2}-1} (1-\theta)^{N-m+\frac{1}{2}-1}}{p(m|N)}$$
$$= \text{Beta}(\theta|a,b), \quad a = m + \frac{1}{2}, \text{ and } b = N - m + \frac{1}{2}.$$

$$\theta_L = \operatorname{cdf}_B^{-1} \left(\frac{\alpha}{2} | a, b \right),$$

$$\theta_U = \operatorname{cdf}_B^{-1} \left(1 - \frac{\alpha}{2} | a, b \right)$$

	N	m	a	b	$ heta_L$	θ_U
Case 1 Case 2	8	6	6.5	2.5	0.41	0.94
Case 2	100	67	67.5	33.5	0.57	0.76

Comparing two classifiers

$$E_A^{\text{gen}} - E_B^{\text{gen}} = \sum_{k=1}^{K} \frac{1}{K} z_k, \quad z_k = E_{A,k}^{\text{test}} - E_{A,k}^{\text{test}}$$

$$p(z_1, \dots, z_K | u, \sigma^2) = \prod_{k=1}^K \mathcal{N}(z_k | u, \sigma^2)$$

$$p(u, \tau | \mathbf{z}) = \frac{p(\mathbf{z} | u, \tau)p(u, \tau)}{p(\mathbf{z})}$$

$$p(u, \tau | \mathbf{z}) \propto p(\mathbf{z} | u, \tau) p(u, \tau) = \left[\prod_{k=1}^{K} \mathcal{N}(z_k | u, \tau) \right] \frac{1}{\tau}$$

Comparing two classifiers

$$p(u|z) = \int p(u,\tau|z)d\tau \propto \int \frac{1}{\tau} \prod_{k=1}^{K} \mathcal{N}(z_k|u,\tau)d\tau \propto \left(1 + \frac{1}{\nu} \left[\frac{u - \bar{x}}{\tilde{\sigma}}\right]^2\right)^{-\frac{\nu+1}{2}}$$
$$p_{\text{stud}-t}(x|\nu,\mu,\sigma) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu\sigma^2}} \left(1 + \frac{1}{\nu} \left[\frac{x - \mu}{\sigma}\right]^2\right)^{-\frac{\nu+1}{2}}$$

$$\bar{z} = \frac{1}{K} \sum_{k=1}^{K} z_k, \ \nu = K - 1 \text{ and } \tilde{\sigma} = \sqrt{\sum_{k=1}^{K} \frac{(z_k - \bar{z})^2}{K(K - 1)}}$$

$$z_L = \operatorname{cdf}_{st}^{-1}(\frac{\alpha}{2}|\nu, \bar{z}, \tilde{\sigma}),$$

$$z_U = \operatorname{cdf}_{st}^{-1}(1 - \frac{\alpha}{2}|\nu, \bar{z}, \tilde{\sigma})$$

		K	ν	\bar{z}	$\tilde{\sigma}$	$ heta_L$	$ heta_U$
Case	1	5	4	0.7340	0.46	-0.55	2.02
Case	2	10	9	0.7340 1.4960	0.40	0.60	2.40

