Computability and Complexity

Lecture 9

More examples of problems in P Closure properties of the class P The class NP

given by Jiri Srba

Example: Relatively Prime

Definition

Natural numbers x and y are relatively prime iff gcd(x, y) = 1.

$$gcd(x,y)$$
 ... the greatest common divisor of x and y
$$RELPRIME \stackrel{\text{def}}{=} \{\langle x,y\rangle \mid x \text{ and } y \text{ are relatively prime numbers } \}$$

Remember our agreement about encoding of numbers:

- x and y are encoded in binary,
- so the length of $\langle x, y \rangle$ is $O(\log(x + y))$.

Brute-Force Algorithm is Exponential

Given an input $\langle x,y\rangle$ of length $n=|\langle x,y\rangle|$, going through all numbers between 2 and $\min\{x,y\}$ and checking whether some of them divide both x and y takes time exponential in n.

Solving RELPRIME in P

Euclidean algorithm for finding gcd(x, y):

```
function gcd(\langle x, y \rangle) \stackrel{\text{def}}{=}
if (y == 0) return x else return gcd(\langle y, x \mod y \rangle)
```

Solving *RELPRIME* in P

Euclidean algorithm for finding gcd(x, y):

```
function gcd(\langle x, y \rangle) \stackrel{\text{def}}{=}
if (y == 0) return x else return gcd(\langle y, x \mod y \rangle)
```

Theorem

- The Euclidean algorithm called on input $\langle x, y \rangle$ runs in time $O(\log(x+y))$.
- Hence its running time is O(n) (its input is encoded in binary).

Solving RELPRIME in P

Euclidean algorithm for finding gcd(x, y):

function
$$gcd(\langle x, y \rangle) \stackrel{\text{def}}{=}$$

if $(y == 0)$ return x else return $gcd(\langle y, x \mod y \rangle)$

Theorem

- The Euclidean algorithm called on input $\langle x, y \rangle$ runs in time $O(\log(x+y))$.
- Hence its running time is O(n) (its input is encoded in binary).

Conclusion

 $RELPRIME \in P$

Example: Context-Free Languages

Theorem

Every context-free language is in P.

Proof:

- Let L be a CFL. Then there is CFG G in Chomsky normal form s.t. L(G) = L.
- For any given string $w = w_1 w_2 \dots w_n$ we want to decide in polynomial time whether $w \in L(G)$ or not.

Example: Context-Free Languages

Theorem

Every context-free language is in P.

Proof:

- Let L be a CFL. Then there is CFG G in Chomsky normal form s.t. L(G) = L.
- For any given string $w = w_1 w_2 \dots w_n$ we want to decide in polynomial time whether $w \in L(G)$ or not.

Problem of the naive approach:

Brute-force algorithm (i.e. enumerating all derivations of the length 2n-1) takes exponential time!

Example: Context-Free Languages

Theorem

Every context-free language is in P.

Proof:

- Let L be a CFL. Then there is CFG G in Chomsky normal form s.t. L(G) = L.
- For any given string $w = w_1 w_2 \dots w_n$ we want to decide in polynomial time whether $w \in L(G)$ or not.

Problem of the naive approach:

Brute-force algorithm (i.e. enumerating all derivations of the length 2n-1) takes exponential time!

Solution:

We use dynamic programming instead.

Checking whether $w \in L(G)$ using Dynamic Programming

Idea (for a given grammar *G* in Chomsky normal form):

On input $w = w_1 w_2 \dots w_n$ create temporary sets of nonterminals called table(i,j) for $1 \le i \le j \le n$ such that

• $A \in table(i, j)$ if and only if $A \Rightarrow^* w_i w_{i+1} \dots w_i$.

Checking whether $w \in L(G)$ using Dynamic Programming

Idea (for a given grammar *G* in Chomsky normal form):

On input $w = w_1 w_2 \dots w_n$ create temporary sets of nonterminals called table(i,j) for $1 \le i \le j \le n$ such that

• $A \in table(i, j)$ if and only if $A \Rightarrow^* w_i w_{i+1} \dots w_i$.

```
"On input w = w_1 w_2 \dots w_n:
```

- 1. If $w = \epsilon$ then accept if $S \to \epsilon$ is a rule in G, else reject.
- 2. For i:=1 to n do: if $A \rightarrow w_i$ is a rule in G, add A to table(i, i).
- 3. For ℓ :=2 to n do:

```
for all i, k such that 1 \le i \le k < \underbrace{i + \ell - 1}_{j} \le n do:
for all rules A \to BC in G do:
if B \in table(i, k) and C \in table(k + 1, j) then
add A to table(i, j).
```

4. If $S \in table(1, n)$ then accept, else reject."

The algorithm runs in $O(n^3)$.

Closure Properties of the Class P

Theorem (Closure Properties of the Class P)

The class P is closed under intersection, union, complement, concatenation and Kleene star.

In other words:

If L_1 and L_2 are decidable in deterministic polynomial time, then

ullet $L_1 \cap L_2$, $L_1 \cup L_2$, $\overline{L_1}$, $L_1.L_2$, and L_1^*

are decidable in deterministic polynomial time too.

Proof: Closure of Decidable Languages under Union

Let $L_1, L_2 \in P$. We want to show that $L_1 \cup L_2 \in P$.

Because $L_1, L_2 \in P$ then there is

- a decider M_1 for L_1 running in time $O(n^k)$ for some k, and
- a decider M_2 for L_2 running in time $O(n^{\ell})$ for some ℓ .

The following 2-tape TM M is a decider for $L_1 \cup L_2$:

```
"On input x:
```

- 1. copy x on the second tape
- 2. on the first tape run M_1 on x

M=

- 3. if M_1 accepted then accept else goto step 4
- 4. on the second tape run M_2 on x
- 5. if M_2 accepted then accept else reject."

Proof: Closure of Decidable Languages under Union

Let $L_1, L_2 \in P$. We want to show that $L_1 \cup L_2 \in P$.

Because $L_1, L_2 \in P$ then there is

- a decider M_1 for L_1 running in time $O(n^k)$ for some k, and
- a decider M_2 for L_2 running in time $O(n^{\ell})$ for some ℓ .

The following 2-tape TM M is a decider for $L_1 \cup L_2$:

"On input x:

1. copy x on the second tape

2. on the first tape run M_1 on x

M=

- 3. if M_1 accepted then accept else goto step 4
- 4. on the second tape run M_2 on x
- 5. if M_2 accepted then accept else reject."

M runs in time $O(n^k) + O(n^\ell) = O(n^c)$ where $c = \max\{k, \ell\}$.

Proof: Closure of Decidable Languages under Union

Let $L_1, L_2 \in P$. We want to show that $L_1 \cup L_2 \in P$.

Because $L_1, L_2 \in P$ then there is

- a decider M_1 for L_1 running in time $O(n^k)$ for some k, and
- a decider M_2 for L_2 running in time $O(n^{\ell})$ for some ℓ .

The following 2-tape TM M is a decider for $L_1 \cup L_2$:

```
"On input x:
```

- 1. copy x on the second tape
- 2. on the first tape run M_1 on x

M=

- 3. if M_1 accepted then accept else goto step 4
- 4. on the second tape run M_2 on x
- 5. if M_2 accepted then accept else reject."

M runs in time $O(n^k) + O(n^\ell) = O(n^c)$ where $c = \max\{k, \ell\}$. M can be simulated by a single-tape TM running in time $O((n^c)^2) = O(n^{2c})$, hence $L(M) \in P$ because 2c is a constant.

Running Time of a Nondeterministic TM

Definition (Running Time of a Nondeterministic TM)

Let M be a nondeterministic decider. The running time or (worst-case) time complexity of M is a function

$$f: \mathbb{N} \to \mathbb{N}$$

where f(n) is the maximum number of steps that M uses on any branch of its computation tree for any input of length n.

Running Time of a Nondeterministic TM

Definition (Running Time of a Nondeterministic TM)

Let M be a nondeterministic decider. The running time or (worst-case) time complexity of M is a function

$$f: \mathbb{N} \to \mathbb{N}$$

where f(n) is the maximum number of steps that M uses on any branch of its computation tree for any input of length n.

Theorem

Let t(n) be a function s.t. $t(n) \ge n$.

Every nondeterministic TM running in time t(n) has an equivalent deterministic TM running in time $2^{O(t(n))}$.

Proof: Simulate a nondeterministic TM M by a deterministic TM M' (from Lecture 2) and analyze the running time of M'.

The Complexity Class NTIME(t(n))

Definition (Time Complexity Class NTIME(t(n)))

Let $t : \mathbb{N} \to \mathbb{R}^{>0}$ be a function.

$$\begin{aligned} & \mathsf{NTIME}(t(n)) \stackrel{\mathrm{def}}{=} \\ & \{ L(M) \mid M \text{ is a nondeterministic decider running in time } O(t(n)) \} \end{aligned}$$

The Complexity Class NTIME(t(n))

Definition (Time Complexity Class NTIME(t(n)))

Let $t : \mathbb{N} \to \mathbb{R}^{>0}$ be a function.

$$\begin{aligned} & \mathsf{NTIME}(t(n)) \stackrel{\mathrm{def}}{=} \\ & \{ L(M) \mid M \text{ is a nondeterministic decider running in time } O(t(n)) \} \end{aligned}$$

In other words: NTIME(t(n)) is the class (collection) of languages that are decidable by nondeterministic TMs in time O(t(n)).

Example:

- $HAMPATH \stackrel{\mathrm{def}}{=} \{\langle G, s, t \rangle \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}$
- $HAMPATH \in NTIME(n^2)$

$HAMPATH \in NTIME(n^2)$

Consider the following nondeterministic decider for HAMPATH:

"On input $\langle G, s, t \rangle$:

- 1. Nondeterministically select a sequence of nodes v_1, v_2, \ldots, v_m where m is the number of nodes in G.
- 2. Verify that every node appears in the sequence exactly once. If not then reject.
- 3. Verify that $v_1 = s$ and $v_m = t$. If not then reject.
- 4. For each i = 1 to m-1 verify if there is an edge from v_i to v_{i+1} . If not then reject.
- 5. All test passed so accept."

$HAMPATH \in NTIME(n^2)$

Consider the following nondeterministic decider for *HAMPATH*:

"On input $\langle G, s, t \rangle$:

- 1. Nondeterministically select a sequence of nodes v_1, v_2, \ldots, v_m where m is the number of nodes in G.
- 2. Verify that every node appears in the sequence exactly once. If not then reject.
- 3. Verify that $v_1 = s$ and $v_m = t$. If not then reject.
- 4. For each i = 1 to m-1 verify if there is an edge from v_i to v_{i+1} . If not then reject.
- 5. All test passed so accept."

The nondeterministic decider runs in time $O(n^2)$.

The Class NP

Definition

The class NP is the class of languages decidable in polynomial time on nondeterministic single-tape Turing machine, i.e.,

$$\mathsf{NP} \stackrel{\mathrm{def}}{=} \bigcup_{k>0} \mathsf{NTIME}(n^k) \; .$$

The Class NP

Definition

The class NP is the class of languages decidable in polynomial time on nondeterministic single-tape Turing machine, i.e.,

$$\mathsf{NP} \stackrel{\mathrm{def}}{=} \bigcup_{k \geq 0} \mathsf{NTIME}(n^k) \ .$$

Example: $HAMPATH \in NP$

The Class NP

Definition

The class NP is the class of languages decidable in polynomial time on nondeterministic single-tape Turing machine, i.e.,

$$\mathsf{NP} \stackrel{\mathrm{def}}{=} \bigcup_{k \geq 0} \mathsf{NTIME}(n^k) \ .$$

Example: $HAMPATH \in NP$

Discussion:

- The class NP is robust (the class remains the same even if we choose some other nondeterministic model of computation).
- Every problem from NP can be solved in exponential time on a deterministic TM.
- $P \subseteq NP$ (every determin. TM is a nondetermin. TM too)
- The question whether P=NP is open.

Exam Questions

- RELPRIME and any context-free language are in P.
- Closure properties of the class P.
- Nondeterministic time complexity, the classes NTIME(t(n)) and NP.
- Simulation of nondeterministic TM by a deterministic one with exponential increase in a running time.