Announcements

- The Alternate Online Request Form for Exam 2 closes tomorrow, Tuesday, March 5th at 5pm;
- Today we will cover section 9.1 Sequences, and possibly start on 9.2
 - Geometric Series.
- Thursday's the quiz will cover sections 8.5 and 9.1.
- Exam 2 is next week, Wednesday, 03/13, 6:30-8:00 pm.

Sequences

Definition A **sequence** with parameter n, written (a_n) , is a function from the index set $I = \{n_0, n_0 + 1, n_0 + 2, n_0 + 3, \ldots\}$, beginning with some integer n_0 , into \mathbb{R} .

Examples of sequences:

- with direct definition: for $n \ge 1$ define $a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$ So $a_1 = 0$, $a_2 = 1/2$, $a_3 = 0$, $a_4 = 1/4$, $a_5 = 0$, ...
- Recursive definition: $a_0 = 0$, $a_1 = 1$, and for $n \ge 2$ take

$$a_n = a_{n-1} + a_{n-2}$$

This is the Fibonacci sequence with terms

$$a_0 = 0$$
, $a_1 = 1$, $a_2 = 1$, $a_3 = 2$, $a_4 = 3$, $a_5 = 5$, $a_6 = 8$, $a_7 = 13$, ...

A. Larios (UNL) Lecture 16 2/10

Limits of sequences

- The number that the sequence a_n approaches as n becomes unbounded (i.e. very, very large) is called **the limit of** a_n and is denoted by $\lim_{n\to\infty} a_n$.
- If $\lim_{n\to\infty} a_n$ exists (is a real number) we say a sequence **converges**. Otherwise we say it **diverges**.

Limits of sequences - Examples

Determine if the following sequences converge or diverge. If they converge, find the limit

- $\lim_{n\to\infty}\frac{1}{n}$
- $\lim_{n\to\infty} (-1)^n$
- $\bullet \lim_{n\to\infty} (-1)^n \frac{1}{n}$
- $\lim_{n\to\infty} n!$
- $\lim_{n\to\infty}\sin(n)$

Clicker question #1

$$\lim_{n\to\infty} (-1)^n n =$$

- \bullet $+\infty$ (diverges)
- \bullet $-\infty$ (diverges)
- 1
- it does not exist (diverges)

Properties for limits of sequences

- Limit of sum/multiple/product/ratio = sum/multiple/product/ratio of the limits (no division by 0).
- ① If g is continuous at L and $\lim_{n\to\infty}a_n=L$, then $\lim_{n\to\infty}g(a_n)=g(L)$.
- Case: "Bounded \times convergent to 0"

 If sequence (b_n) is <u>bounded</u> and $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} (b_n a_n) = 0$
 - **Example:** $\lim_{n\to\infty} \sin(n) \frac{1}{n^2} = 0$ since $|\sin(n)| \le 1$ and $\lim_{n\to\infty} \frac{1}{n^2} = 0$
- lacktriangledown If there is f(x) such that $f(n)=a_n$ and $\lim_{x\to\infty}f(x)=L$, then $\lim_{n\to\infty}a_n=L$

Properties for limits of sequences

(V) The "sandwich theorem" applies: If $a_n \le b_n \le c_n$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ then

$$\lim_{n\to\infty}b_n=L$$

(VI) Important limits (here x is fixed)

(i)
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$
,

$$(ii) \lim_{n \to \infty} x^{1/n} = 1, \quad (x > 0),$$

(iii)
$$\lim_{n\to\infty} x^n = 0$$
 if $|x| < 1$

$$(iv)\lim_{n\to\infty}\frac{x^n}{n^n}=0, \quad x>0$$

$$(V)\lim_{n\to\infty}\frac{n!}{n^n}=0$$

Clicker question #2

$$\lim_{n\to\infty}\frac{(n-1)!+3^n}{n!}=$$

- \bullet $+\infty$ (diverges)
- 0
- **9** 3
- 1
- Not sure how to justify the answer

More examples of limits

$$\lim_{n\to\infty}\frac{2^n-1}{3^n}$$

$$\lim_{n\to\infty}\frac{n+7n^3+1}{2n^3-9}$$

$$\lim_{n\to\infty}\frac{(n-1)!+3^n}{n!}$$

Wrapping up:

- For next time read section 9.2; solve the problems from section 9.1.
- The Alternate Online Request Form for Exam 2 closes tomorrow, Tuesday, March 5th at 5pm;
- Today we will cover section 9.1 Sequences, and possibly start on 9.2 - Geometric Series.
- Thursday's the quiz will cover sections 8.5 and 9.1.
- Exam 2 is next week, Wednesday, 03/13, 6:30–8:00 pm.

A. Larios (UNL) Lecture 16 10 / 10