Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Grundgleichungen hydraulischer Wandler Translatorische Energiewandlung

Grundgleichungen hydraulischer Wandler Mathematisches Modell des Schubmotors

Grundgleichungen hydraulischer Wandler Rotatorische Energiewandlung

V1 = t (Tta-UA) = tu (Nat Mi) (ta-Mi) = II (tatti) A1 = lAII tu R 2

€ 360°

V1: theoretisches brus
geometrisches
Fordervolung
odes
Schlosvolunen

 $\frac{dV_1 = A_1 + u_1 dV_1}{V_1 = A_1 + u_1 dv_1 + v_2} = A_1 + u_1 dv_1 dv_1$ $\frac{\dot{V}_1 = u_1 V_1}{V_1 = u_2 V_2}$ this $\dot{V}_1 = \dot{V}_2$ folgot

Docher lrydo

Indrostet. Getreles

Grundgleichungen hydraulischer Wandler Rotatorische Energiewandlung

Grundgleichungen hydraulischer Wandler Rotatorische Energiewandlung

Grundgleichungen hydraulischer Wandler Mathematisches Modell des Drehmotors

Grundgleichungen hydraulischer Wandler Wirkungsgrad der rotator. Energiewandlung

Gleit- und Flussigheitsreibung

Melf > Meleo = ΔPV = Dhui Meleo

Auf Plus Meleo

decrafe

Very < Vineo = V N => Vv = Very

Vienes

distungsbraux Pumpe

Grundgleichungen hydraulischer Wandler Kompressibilität des Fluids (hydr. Kapazität)

Det. Roupressibilitant 28 FR

Def Kompressionsmodert

Fire eine Volumen Exceptession giet F
EFE brus
$$\Delta l = \frac{U_0}{E_{FE}} \frac{\Delta p}{A^2}$$

Grundgleichungen hydraulischer Wandler Kompressibilität des Fluids

Grundgleichungen hydraulischer Steller Durchflussgesetz bei Ventilquerschnitten

Beispiel: Schieberventil

Prof. Dr.-Ing. S. Müller

Seite 12

Grundgleichungen hydraulischer Steller Durchflussgesetz der Blende

Nacer Bernoulli gier £ 1/2 + pr = £ v2 + pr - v2 « v2

Sount

Grundgleichungen hydraulischer Steller Durchflussgesetz der Drossel

.

Noseits

y - Visosi bad

Exercis

$$V = \frac{\pi d^4}{128} 4 P$$

Ausführungsformen hydraulischer Wandler Pumpen / Motoren (Verdrängereinheiten)

Schematische Darstellung	Merkmale	Ausfüh- rung	Schluck- volumen in cm ³	Drehzahl- bereich in min ⁻¹	Arbeits- druck in bar
Schrägscheiben- motor	universell einsetzbar, sehr guter Wirkungsgrad, Wirkungsgrad in weiten Bereichen, von Druck, Drehzahl und Drehmoment wenig abhängig, für hohe Anforderungen geeignet, typischer Schnellläufer	Konstant- motor Verstell- motor	25 – 800	750 – 8000	400
Schrägachsenmotor	wie Schrägscheibenmotor, für niedrige Drehzahlen geeignet, hohes Anfahrmoment	Konstant- motor Verstell- motor	25 – 800	- 8000	400
Taumelscheiben- motor	universell einsetzbar, sehr guter Wirkungsgrad, nicht so hohe Drehzahlen wegen der Unwucht der Taumelscheibe möglich	Konstant- motor	- 100	- 3000	100
Radialkolbenmotor (innenbeaufschlagt)	universell einsetzbar, sehr guter Wirkungsgrad, für hohe Anforderungen geeignet	Konstant- motor Verstell- motor	5 – 7000	500 – 3000	350

Schrägachsenmotor

Taumelscheibenmotor

Ausführungsformen hydraulischer Wandler Pumpen / Motoren (Verdrängereinheiten)

Ausführungsformen hydraulischer Wandler Pumpen / Motoren (Verdrängereinheiten)

Schematische Darstellung	Merkmale	Ausfüh- rung	Schluck- volumen in cm ³	Drehzahl- bereich in min ⁻¹	Arbeits- druck in bar
Radialkolbenmotor (außenbeaufschlagt)	universell einsetzbar, sehr guter Wirkungsgrad, besonders für kleine Drehzahlen und hohe Drehmomente geeignet, typischer Langsamläufer	Konstant- motor Verstell- motor	5 – 7000	- 2000	200
Flügelzellenmotor	mittlerer Leistungsbereich, geräuscharm	Konstant- motor Verstell- motor	5 – 2000	- 3000	200
Zahnradmotor	mittlerer Leistungsbereich, einfache Bauweise, Wirkungsgrad in weiten Bereichen von Druck, Drehzahl und Drehmoment unabhängig	Konstant- motor	5 – 300	200 – 3000	280
Zahnringmotor	geräuscharm, mittlerer Leistungsbereich, für kleine Drehzahlen und hohe Drehmomente geeignet	Konstant- motor	50 – 900	10 – 1000	250

Flügelzellenmotor

Zahnringmotor

Ausführungsformen hydraulischer Steller Ventile

Prof. Dr.-Ing. S. Müller

Seite 18

Ausführungsformen hydraulischer Steller Ventile

Beispiel: 3/2-Wegeventil

Prof. Dr.-Ing. S. Müller

Seite 19

Ausführungsformen hydraulischer Steller Ventile

Beispiel: 4/3-Wegeventil

Ausführungsformen hydraulischer Steller Ventile

Prof. Dr.-Ing. S. Müller

Seite 21

Vielen Dank für Ihre Aufmerksamkeit!