1.3: Common Classes of Graphs

21. Draw the graph $3P_4 \cup 2C_4 \cup K_4$.

22. Let G be a disconnected graph. By Theorem 1.11, \overline{G} is connected. Prove that if u and v are any two vertices of \overline{G} , then $d_{\overline{G}}(u,v)=1$ or $d_{\overline{G}}(u,v)=2$. Therefore, if G is a disconnected graph, then $\operatorname{diam}(\overline{G})\leq 2$.

Proof. Assume $u, v \in V(G)$.

Case 1: $uv \notin E(G)$

 $\therefore uv \in E(\overline{G})$ and thus $d_{\overline{G}}(u,v) = 1$.

Case 2: $uv \in E(G)$

This means that u and v are in the same component in G. Furthermore, $uv \notin E(\overline{G})$. However, since G is disconnected, there exists a distinct vertex w in a different component in G, and so $uw, vw \in E(\overline{G})$. Consider the path (u, w, v). This is a u-v path in \overline{G} of length 2.

 \overline{G}

$$\therefore d_{\overline{G}}(u,v) = 2$$

$$\therefore \operatorname{diam}(\overline{G}) \leq 2$$

- 23. Consider the following question: For a given positive integer k, does there exist a connected graph G whose complement \overline{G} is also connected and contains four distinct vertices u,v,x,y for which $d_G(u,v)=k=d_{\overline{G}}(x,y)$?
 - (a) Show that the answer to this question is yes if k = 1 or k = 2.

For k = 1:

For k=2:

(b) Find the largest value of k for with the answer to this question is yes.

For $k\geq 3$, it must be the case that $uv\notin E(G)$. Furthermore, it must be the case that $xy\in E(G)$; otherwise, $xy\in E(\overline{G})$ and $d_{\overline{G}}(x,y)=1$. If G contains any vertex w such that $wx,wy\notin E(G)$ then there is always a (x,w,y) path of length 2 in \overline{G} . Thus u and v must be adjacent to x and y, but neither can be adjacent to both, which would mean that $d_G(u,v)=2$. So G must contain a 4-path as follows:

In \overline{G} , this path would become:

Thus, $d_{\overline{G}}(x,y) \leq 3$.

Therefore, the maximum such k = 3.

24. Determine whether the graphs G_1 and G_2 of Figure 1.34 are bipartite. If a graph is bipartite, then redraw it indicating the partite sets; if not, then give an explanation as to why the graph is not bipartite.

 G_1 is bipartite:

 G_2 is not bipartite since it contains an odd cycle: (u, v, w, r, x, u).

25. Let G be a graph of order 5 or more. Prove that at most one of G and \overline{G} is bipartite.

 $\textit{Proof.} \ \ \mathsf{AWLOG} \text{:} \ G \ \text{is bipartite}.$

Since n=5, there must be at least 3 vertices in at least one of the partite sets. Since these vertices are not adjacent in G, they will all be adjacent in \overline{G} , thus forming a 3-cycle.

 G_1

darphi is not bipartite.

26. Suppose that the vertex set of a graph G is a (finite) set of integers. Two vertices x and y are adjacent if x+y is odd. To which well-known class of graphs is G a member?

Such a graph would be a bipartite graph, partitioning the vertices into even and odd partite sets. This is because: E+E=E (not adjacent), O+O=E (not adjacent), and O+E=E+O=O (adjacent).

27. For the following pairs G, H of graphs, draw G + H and $G \times H$.

(a)
$$G = K_5$$
 and $H = K_2$

$$K_5 + K_2 = K_7$$

$$K_5 \times K_2$$

(b)
$$G = \overline{K_5}$$
 and $H = \overline{K_3}$

$$\overline{K_5} + \overline{K_3} = K_{5,3}$$

$$\overline{K_5} \times \overline{K_3} = E_{15}$$

(c)
$$G = C_5$$
 and $H = K_1$

 $C_5 + K_1$

$$C_5 \times K_1 = C_5$$

28. We have seen that for $n \ge 1$, the n-cube Q_n is that graph whose vertex set is the set of n-bit strings, where two vertices of Q_n are adjacent if they differ in exactly one coordinate.

(a) For $n \geq 2$, define the graph R_n to be that graph whose vertex set is the set of n-bit strings, where two vertices of R_n are adjacent if they differ in exactly two coordinates. Draw R_2 and R_3 .

(b) For $n \geq 3$, define the graph S_n to be that graph whose vertex set is the set of n-bit strings, where two vertices of S_n are adjacent if they differ in exactly three coordinates. Draw S_3 and S_4 .

