Activités Mentales

24 Août 2023

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = -0.16u_n^2 + 1.16u_n \\ u_0 = 0.54 \end{cases}.$$

On pose pour tout $x \in [0; 1]$, $f(x) = -0.16x^2 + 1.16x$.

- 1 Étudier les variations de f sur [0;1].
- **2** Démontrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.
- 3 Démontrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- **4** En déduire finalement que $(u_n)_{n \in \mathbb{N}}$ est une suite convergente.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = -0.32u_n^2 + 1.32u_n \\ u_0 = 0.69 \end{cases}$$

On pose pour tout $x \in [0; 1]$, $f(x) = -0.32x^2 + 1.32x$.

- Étudier les variations de f sur [0;1].
- **2** Démontrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.
- **3** Démontrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- **4** En déduire finalement que $(u_n)_{n \in \mathbb{N}}$ est une suite convergente.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = -0.73 u_n^2 + 1.73 u_n \\ u_0 = 0.52 \end{cases}$$

On pose pour tout $x \in [0; 1]$, $f(x) = -0.73x^2 + 1.73x$.

- ① Étudier les variations de f sur [0;1].
- **2** Démontrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.
- 3 Démontrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- **4** En déduire finalement que $(u_n)_{n \in \mathbb{N}}$ est une suite convergente.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = u_n^2 u_n \\ u_0 = 0.21 \end{cases} .$$

On pose pour tout $x \in [0;1]$, $f(x) = x^2x$.

- ① Étudier les variations de f sur [0;1].
- **2** Démontrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.
- **3** Démontrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- **4** En déduire finalement que $(u_n)_{n \in \mathbb{N}}$ est une suite convergente.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_{n+1} = 0.21 u_n^2 + 0.79 u_n \\ u_0 = 0.5 \end{cases}.$$

On pose pour tout $x \in [0;1]$, $f(x) = 0.21x^2 + 0.79x$.

- ① Étudier les variations de f sur [0;1].
- **2** Démontrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.
- **3** Démontrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- **4** En déduire finalement que $(u_n)_{n \in \mathbb{N}}$ est une suite convergente.

Correction 1

On a
$$\begin{cases} u_{n+1} = -0.16u_n^2 + 1.16u_n \\ u_0 = 0.54 \end{cases}$$
 et $f(x) = -0.16x^2 + 1.16x$.

 $oldsymbol{0}$ f est une fonction définie et dérivable sur [0;1]. On a

$$\forall x \in [0; 1], f'(x) = -0.32x + 1.16$$

Or $f'(x) \ge 0$ sur [0;1] (étude du signe à réaliser). La fonction f est donc croissante sur [0;1].

On a
$$\begin{cases} u_{n+1} = -0.16u_n^2 + 1.16u_n \\ u_0 = 0.54 \end{cases}$$
 et $f(x) = -0.16x^2 + 1.16x$.

2 On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $0 \le u_n \le 1$ ".

Initialisation : On a $u_0 = 0.54 \in [0;1]$, donc H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $0 \le u_k \le 1$ alors $0 \le u_{k+1} \le 1$. Par croissance de la fonction f sur l'intervalle [0;1], on a

$$0 \le u_k \le 1 \quad \Rightarrow \quad f(0) \le f(u_k) \le f(1).$$

Or f(0)=0, $f(1)=-0.16\times 1^2+1.16=1$ et $f(u_k)=u_{k+1}$. Finalement $0\leq u_k\leq 1\Rightarrow 0\leq u_{k+1}\leq 1$. Donc $H_k\Rightarrow H_{k+1}$. On a finalement démontré par récurrence que pour tout $n\in\mathbb{N},\ 0\leq u_n\leq 1$.

◆□▶◆□▶◆■▶◆■▶ ■ 900

Activités Mentales 24 Août 2023

On a
$$\begin{cases} u_{n+1} = -0.16u_n^2 + 1.16u_n \\ u_0 = 0.54 \end{cases}$$
 et $f(x) = -0.16x^2 + 1.16x$.

3 On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $u_n \le u_{n+1}$ ".

Initialisation : On a $u_0=0.54$ et $u_1=-0.16\times0.54^2+1.16\times0.54=0.5797439999999999\ge0.54 \text{ , donc } H_0 \text{ est vraie.}$

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \le u_{k+1}$ alors $u_{k+1} \le u_{k+2}$. Par croissance de la fonction f sur l'intervalle [0;1] et puisque les termes en jeu sont dans [0;1], on a

$$u_k \le u_{k+1} \quad \Rightarrow \quad f(u_k) \le f(u_{k+1}) \quad \Rightarrow \quad u_{k+1} \le u_{k+2}.$$

Donc $H_k \Rightarrow H_{k+1}$.

On a finalement démontré par récurrence que pour tout $n \in \mathbb{N}$, $u_n \le u_{n+1}$ et donc $(u_n)_{n \in \mathbb{N}}$ est croissante .

4 D'après les questions 3) et 2) , $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée. Donc d'après le théorème de convergence monotone, $(u_n)_{n\in\mathbb{N}}$ converge.

Correction 2

On a
$$\begin{cases} u_{n+1} = -0.32u_n^2 + 1.32u_n \\ u_0 = 0.69 \end{cases}$$
 et $f(x) = -0.32x^2 + 1.32x$.

 $oldsymbol{0}$ f est une fonction définie et dérivable sur [0;1]. On a

$$\forall x \in [0; 1], f'(x) = -0.64x + 1.32$$

Or $f'(x) \ge 0$ sur [0;1] (étude du signe à réaliser). La fonction f est donc croissante sur [0;1].

Activités Mentales

24 Août 2023

On a
$$\begin{cases} u_{n+1} = -0.32u_n^2 + 1.32u_n \\ u_0 = 0.69 \end{cases}$$
 et $f(x) = -0.32x^2 + 1.32x$.

2 On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $0 \le u_n \le 1$ ".

Initialisation : On a $u_0 = 0.69 \in [0;1]$, donc H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $0 \le u_k \le 1$ alors $0 \le u_{k+1} \le 1$. Par croissance de la fonction f sur l'intervalle [0;1], on a

$$0 \le u_k \le 1 \quad \Rightarrow \quad f(0) \le f(u_k) \le f(1).$$

Or f(0) = 0, $f(1) = -0.32 \times 1^2 + 1.32 = 1$ et $f(u_k) = u_{k+1}$. Finalement $0 \le u_k \le 1 \Rightarrow 0 \le u_{k+1} \le 1$. Donc $H_k \Rightarrow H_{k+1}$. On a finalement démontré par récurrence que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□P

Activités Mentales 24 Août 2023 12 / 1

On a
$$\begin{cases} u_{n+1} = -0.32u_n^2 + 1.32u_n \\ u_0 = 0.69 \end{cases}$$
 et $f(x) = -0.32x^2 + 1.32x$.

3 On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $u_n \le u_{n+1}$ ".

Initialisation : On a $u_0=0.69$ et $u_1=-0.32\times 0.69^2+1.32\times 0.69=0.758448 \ge 0.69$, donc H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \le u_{k+1}$ alors $u_{k+1} \le u_{k+2}$. Par croissance de la fonction f sur l'intervalle [0;1] et puisque les termes en jeu sont dans [0;1], on a

$$u_k \le u_{k+1} \quad \Rightarrow \quad f(u_k) \le f(u_{k+1}) \quad \Rightarrow \quad u_{k+1} \le u_{k+2}.$$

Donc $H_k \Rightarrow H_{k+1}$.

On a finalement démontré par récurrence que pour tout $n \in \mathbb{N}$, $u_n \le u_{n+1}$ et donc $(u_n)_{n \in \mathbb{N}}$ est croissante .

4 D'après les questions 3) et 2) , $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée. Donc d'après le théorème de convergence monotone, $(u_n)_{n\in\mathbb{N}}$ converge.

Correction 3

On a
$$\begin{cases} u_{n+1} = -0.73 u_n^2 + 1.73 u_n \\ u_0 = 0.52 \end{cases}$$
 et $f(x) = -0.73 x^2 + 1.73 x$.

 $oldsymbol{0}$ f est une fonction définie et dérivable sur [0;1]. On a

$$\forall x \in [0; 1], f'(x) = -1.46x + 1.73$$

Or $f'(x) \ge 0$ sur [0;1] (étude du signe à réaliser). La fonction f est donc croissante sur [0;1].

On a
$$\begin{cases} u_{n+1} = -0.73 u_n^2 + 1.73 u_n \\ u_0 = 0.52 \end{cases}$$
 et $f(x) = -0.73 x^2 + 1.73 x$.

2 On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $0 \le u_n \le 1$ ".

Initialisation : On a $u_0 = 0.52 \in [0;1]$, donc H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $0 \le u_k \le 1$ alors $0 \le u_{k+1} \le 1$. Par croissance de la fonction f sur l'intervalle [0;1], on a

$$0 \le u_k \le 1 \quad \Rightarrow \quad f(0) \le f(u_k) \le f(1).$$

Or f(0)=0, $f(1)=-0.73\times 1^2+1.73=1$ et $f(u_k)=u_{k+1}$. Finalement $0\leq u_k\leq 1\Rightarrow 0\leq u_{k+1}\leq 1$. Donc $H_k\Rightarrow H_{k+1}$. On a finalement démontré par récurrence que pour tout $n\in\mathbb{N},\ 0\leq u_n\leq 1$.

16/1

Activités Mentales 24 Août 2023

On a
$$\begin{cases} u_{n+1} = -0.73u_n^2 + 1.73u_n \\ u_0 = 0.52 \end{cases}$$
 et $f(x) = -0.73x^2 + 1.73x$.

3 On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $u_n \le u_{n+1}$ ".

Initialisation : On a $u_0=0.52$ et $u_1=-0.73\times 0.52^2+1.73\times 0.52=0.702208 \ge 0.52$, donc H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \le u_{k+1}$ alors $u_{k+1} \le u_{k+2}$. Par croissance de la fonction f sur l'intervalle [0;1] et puisque les termes en jeu sont dans [0;1], on a

$$u_k \le u_{k+1} \quad \Rightarrow \quad f(u_k) \le f(u_{k+1}) \quad \Rightarrow \quad u_{k+1} \le u_{k+2}.$$

Donc $H_k \Rightarrow H_{k+1}$.

On a finalement démontré par récurrence que pour tout $n \in \mathbb{N}$, $u_n \le u_{n+1}$ et donc $(u_n)_{n \in \mathbb{N}}$ est croissante .

◆□▶◆□▶◆■▶◆■▶ ■ 900

4 D'après les questions 3) et 2) , $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée. Donc d'après le théorème de convergence monotone, $(u_n)_{n\in\mathbb{N}}$ converge.

Correction 4

On a
$$\begin{cases} u_{n+1} = u_n^2 u_n \\ u_0 = 0.21 \end{cases}$$
 et $f(x) = x^2 x$.

 $oldsymbol{0}$ f est une fonction définie et dérivable sur [0;1]. On a

$$\forall x \in [0; 1], f'(x) = 2.0x$$

Or $f'(x) \ge 0$ sur [0;1] (étude du signe à réaliser). La fonction f est donc croissante sur [0;1].

On a
$$\begin{cases} u_{n+1} = u_n^2 u_n \\ u_0 = 0.21 \end{cases}$$
 et $f(x) = x^2 x$.

② On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $0 \le u_n \le 1$ ".

Initialisation : On a $u_0 = 0.21 \in [0;1]$, donc H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $0 \le u_k \le 1$ alors $0 \le u_{k+1} \le 1$. Par croissance de la fonction f sur l'intervalle [0;1], on a

$$0 \le u_k \le 1 \quad \Rightarrow \quad f(0) \le f(u_k) \le f(1).$$

Or f(0)=0, $f(1)=1.0\times 1^2=1$ et $f(u_k)=u_{k+1}$. Finalement $0\leq u_k\leq 1\Rightarrow 0\leq u_{k+1}\leq 1$. Donc $H_k\Rightarrow H_{k+1}$. On a finalement démontré par récurrence que pour tout $n\in\mathbb{N},\ 0\leq u_n\leq 1$.

20 / 1

Activités Mentales 24 Août 2023

On a
$$\begin{cases} u_{n+1} = u_n^2 u_n \\ u_0 = 0.21 \end{cases}$$
 et $f(x) = x^2 x$.

3 On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence $H_n: "u_n \ge u_{n+1}".$

Initialisation : On a $u_0 = 0.21$ et est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \ge u_{k+1}$ alors $u_{k+1} \ge u_{k+2}$. Par croissance de la fonction f sur l'intervalle [0;1] et puisque les termes en jeu sont dans [0;1], on a

$$u_k \ge u_{k+1} \quad \Rightarrow \quad f(u_k) \ge f(u_{k+1}) \quad \Rightarrow \quad u_{k+1} \ge u_{k+2}.$$

Donc $H_k \Rightarrow H_{k+1}$.

On a finalement démontré par récurrence que pour tout $n \in \mathbb{N}$, $u_n \ge u_{n+1}$ et donc $(u_n)_{n \in \mathbb{N}}$ est décroissante_.

21/1

4 D'après les questions 3) et 2) , $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée. Donc d'après le théorème de convergence monotone, $(u_n)_{n\in\mathbb{N}}$ converge.

Correction 5

On a
$$\begin{cases} u_{n+1} = 0.21u_n^2 + 0.79u_n \\ u_0 = 0.5 \end{cases}$$
 et $f(x) = 0.21x^2 + 0.79x$.

 $oldsymbol{0}$ f est une fonction définie et dérivable sur [0;1]. On a

$$\forall x \in [0;1], \ f'(x) = 0.42x + 0.79$$

Or $f'(x) \ge 0$ sur [0;1] (étude du signe à réaliser). La fonction f est donc croissante sur [0;1].

Activités Mentales

24 Août 2023

On a
$$\begin{cases} u_{n+1} = 0.21 u_n^2 + 0.79 u_n \\ u_0 = 0.5 \end{cases} \quad \text{et } f(x) = 0.21 x^2 + 0.79 x.$$

② On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence H_n : " $0 \le u_n \le 1$ ".

Initialisation : On a $u_0 = 0.5 \in [0; 1]$, donc H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $0 \le u_k \le 1$ alors $0 \le u_{k+1} \le 1$. Par croissance de la fonction f sur l'intervalle [0;1], on a

$$0 \le u_k \le 1 \quad \Rightarrow \quad f(0) \le f(u_k) \le f(1).$$

Or f(0) = 0, $f(1) = 0.21 \times 1^2 + 0.79 = 1$ et $f(u_k) = u_{k+1}$. Finalement $0 \le u_k \le 1 \Rightarrow 0 \le u_{k+1} \le 1$. Donc $H_k \Rightarrow H_{k+1}$. On a finalement démontré par récurrence que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$.

◆□▶◆□▶◆■▶◆■▶ ■ 900

24 / 1

Activités Mentales 24 Août 2023

On a
$$\begin{cases} u_{n+1} = 0.21u_n^2 + 0.79u_n \\ u_0 = 0.5 \end{cases}$$
 et $f(x) = 0.21x^2 + 0.79x$.

3 On pose pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence $H_n: "u_n \geq u_{n+1}".$

Initialisation : On a $u_0 = 0.5$ et $u_1 = 0.21 \times 0.5^2 + 0.79 \times 0.5 = 0.4475 \le 0.5$, donc H_0 est vraie.

Hérédité : Supposons H_k vraie pour k fixé et montrons que H_{k+1} est vraie. C'est-à-dire, montrons que si $u_k \ge u_{k+1}$ alors $u_{k+1} \ge u_{k+2}$. Par croissance de la fonction f sur l'intervalle [0;1] et puisque les termes en jeu sont dans [0;1], on a

$$u_k \ge u_{k+1} \quad \Rightarrow \quad f(u_k) \ge f(u_{k+1}) \quad \Rightarrow \quad u_{k+1} \ge u_{k+2}.$$

Donc $H_k \Rightarrow H_{k+1}$.

On a finalement démontré par récurrence que pour tout $n \in \mathbb{N}$, $u_n \ge u_{n+1}$ et donc $(u_n)_{n \in \mathbb{N}}$ est décroissante.

25/1

4 D'après les questions 3) et 2) , $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée. Donc d'après le théorème de convergence monotone, $(u_n)_{n\in\mathbb{N}}$ converge.