République Islamique de Mauritanie Ministère d'Etat à l'Education Nationale, à l'Enseignement Supérieur et à la Recherche Scientifique

Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2013

Session complémentaire

Séries: C & TMGM Epreuve: Mathématiques Durée: 4 heures

(0,75 pt)

(0,25 pt)

(1 pt)

(0.5 pt)

1/3

Coefficients: 9 & 6

Honneur - Fraternité - Justice

رمضان 1434 هـ

Exercice 1 (3 points)

Soit la fonction f_n définie sur \mathbb{R} par $f_n(x) = x^3 + 2(n+2)x + 1$.

Le paramètre nest un entier naturel.

Soit C_n la courbe représentative de \mathbf{f}_n dans le plan rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

1.a) Dresser le table au de variation de la fonction $f_0(x) = x^3 + 4x + 1$.

b) Montrer que l'équation $f_0(x) = 0$ admet dans \mathbb{R} une solution unique U_0 et que

 $U_0 \in [-1,0[$.

(0, 5 pt)c) Tracer C₀. (0,25 pt)

2.a) Montrer que toutes les courbes C_n passent par un point fixe A que l'on déterminera.

(0, 5 pt)b) Etudier les positions relatives des courbes C_n et C_{n+1} . (0, 5 pt)

3.a) Prouver que pour tout entier naturel, l'équation $f_n(x) = 0$ possède une unique solution

 U_n et que $U_n \in]-1,0[$

b) On considère la suite de terme général U_n .

(0,25 pt)Montrer que la suite (U_n) est croissante. En déduire qu'elle est convergente.

Exercice 2 (4 points)

Pour tout z de \mathbb{C} on pose: $P(z) = z^3 - (4+6i)z^2 + (-5+18i)z + 18-12i$

1.a) Calculer P(2) et P(3i).

(1 pt) b) En déduire les nombres complexes \mathbf{z}_1 , \mathbf{z}_2 , \mathbf{z}_3 solutions de l'équation $\mathbf{P}(\mathbf{z}) = \mathbf{0}$ tels que

 $|z_1| \le |z_2| \le |z_3|$.

2) Dans le plan complexe rapporté au repère orthonormé direct (O;u,v); on considère les points A,B et C d'affixes respectives z_1, z_2, z_3 et le point G barycentre du système $\{(A,1),(B,-3),(C,4)\}.$

Pour tout point M du plan on pose:

$$\phi_1(M) = MA^2 - 3MB^2 + 4MC^2$$
 et $\phi_2(M) = 4MA^2 - 2MB^2 - 2MC^2$

a) Vérifier que l'affixe du point G est $z_G = 5 + \frac{3}{2}i$.

b) Donner une forme réduite de $\varphi_1(M)$ et de $\varphi_2(M)$. (0,5 pt)

c) Déterminer et construire les ensembles Γ_1 et Γ_2 des points M du plan tels que : (0, 5 pt) $M \in \Gamma_1 \Leftrightarrow \varphi_1(M) = -3$

(0,5 pt) $M \in \Gamma_2 \Leftrightarrow \varphi_2(M) = 44$.

Exercice 3 (4 points)

On considère la fonction f définie sur $[0,+\infty[$ par $\begin{cases} f(x) = \frac{2\ln x}{x^2 - \ln x}; x > 0 \\ f(0) = -2 \end{cases}$

- 1.a) Montrer que f est continue en 0^+ (0, 5 pt)
- b) Etudier la dérivabilité de fen zéro à droite et interpréter graphiquement. (0, 5 pt)
- (0, 5 pt)c) Justifier que $\lim f(x) = 0$ et interpréter graphiquement.
- 2.a) Dresser le tableau de variation de f. (0, 5 pt)
- b) Donner l'équation de la tangente à C au point d'abscisse 1. (0, 5 pt)
- c) Tracer la courbe de f. (0, 25 pt)
- 3) On considère la fonction g définie par : g(t) = tf(t).

Pour tout $x \in [1, +\infty[$, on pose $F(x) = \int_1^x g(t)dt = \int_1^x tf(t)dt$. a) Montrer que F est dérivable sur $\big\lceil 1, +\infty \big\lceil$. Calculer F'(x) et montrer que F est croissante.

- (0, 5 pt)
- b) Vérifier que pour tout t de $[1,+\infty[$, on a : $g(t) \ge \frac{2\ln t}{t}$. En déduire $\lim_{x\to +\infty} F(x)$. (0, 5 pt)(0,25 pt)
- c) Dresser le tableau de variation de F.

Exercice 4 (5 points)

Dans le plan orienté, on considère un los ange direct ABCD de centre O et de coté a (a>0).

tel que $(\overrightarrow{BC}, \overrightarrow{BA}) = \frac{\pi}{4} [2\pi]$. On considère les deux points E et F tels que OEFD soit un carré direct.

- 1) Faire une figure illustrant les données précédentes que l'on complétera au fur et à mesure (On pourra prendre (AC) horizontale).
- 2.a) Montrer qu'il existe une unique rotation r qui transforme A en B et D en A.
- b) Préciser un angle et le centre de cette rotation. 3.a) Montrer qu'il existe une unique similitude directe s qui transforme B en D et D en F.
- b) Déterminer le rapport et un angle de s.
- c) Soit H le projeté orthogonal de D sur (BF). Déterminer les images des droites (BH) et (DH) par s. En déduire que H est le centre de s.
- (0, 5 pt)d) Préciser et placer sur la figure les images des sommets du carré OEFD par la similitude s. (0.5 pt)

(0.5 pt)

(0,5 pt)

(0.5 pt)

(0, 5 pt)

(0.5 pt)

(0, 5 pt)

- 4) On muni le plan d'un repère orthonormé direct $(O; \overrightarrow{OE}, \overrightarrow{OD})$.
- (0,75 pt)a) Déterminer les coordonnées des points E ;D ;B et F dans ce repère. (0, 25 pt)b) Donner l'expression complexe de la similitude s.
- c) En utilisant 3.a) retrouver le rapport et l'angle de s, et calculer les coordonnées de H dans

(0,5 pt)le repère précédent.

Exercice 5 (4 points)

Soit f la fonction de variable réelle x définie par : $f(x) = \frac{e^x - 1}{e^x + 1}$.

Soit C sa courbe représentative dans un repère orthonormé direct (O; i, j).

- 1.a) Vérifier que pour tout réel x on a : $f(x) = -1 + \frac{2e^x}{e^x + 1}$ et $f(x) = 1 \frac{2}{e^x + 1}$
- b) Calculer $\lim f(x)$ et $\lim f(x)$ et interpréter graphiquement.
 - (0, 5 pt)2.a) Dresser le table au de variation de f. (0, 25 pt)

Baccalauréat 2013 Séries C & TMGM 2/3 Session complémentaire Epreuve de Mathématiques

- b) Tracer Cdans le repère (0; i, j). (0, 25 pt)
- c) Soit a un réel strictement supérieur à 1. Calculer en fonction de a, l'aire du domaine plan limité par la courbe C, l'axe des abscisses, l'axe des ordonnées et la droite d'équation $x = \ln a$.

(0, 25 pt)

(0,25 pt)

3) Pour tout entier naturel non nul, on pose $I_n = \int_0^{\ln a} (f(t))^n dt$

a) Vérifier que
$$I_1 = 2\ln\left(\frac{a+1}{2\sqrt{a}}\right)$$
. (0, 25 pt)

- b) Vérifier que pour tout réel x: $f^2(x) = 1 2f'(x)$. En déduire la valeur de I, (0,5 pt)
- c) Montrer que pour tout entier naturel n on a : $0 \le I_n \le \left(\frac{a-1}{a+1}\right)^n \ln a$. En déduire $\lim_{n \to +\infty} I_n$.
- d) Montrer que pour tout entier naturel n on a : $I_n I_{n+2} = \frac{2}{n+1} \left(\frac{a-1}{a+1} \right)^{n+1}$.
- 4) Pour tout entier nature $n \ge 1$, on pose $S_n(a) = \sum_{k=1}^n \frac{1}{k} \left(\frac{a-1}{a+1} \right)^k$.
- a) Ecrire $S_n(a)$ en fonction de certains termes de la suite (I_n) . En déduire $\lim_{n\to+\infty} S_n(a)$.
- b) Pour tout entier naturel $n \ge 1$, on pose:

 $T_{n} = \frac{9}{11} + \frac{1}{2} \left(\frac{9}{11}\right)^{2} + \frac{1}{3} \left(\frac{9}{11}\right)^{3} + \dots + \frac{1}{n} \left(\frac{9}{11}\right)^{n} = \sum_{k=1}^{n} \frac{1}{k} \left(\frac{9}{11}\right)^{k}$

Déterminer $\lim_{n\to +\infty} T_n$.

Fin.