3. Plotting for Exploratory data analysis (EDA)

(3.12) Exercise:

- Download Haberman Cancer Survival dataset from Kaggle. You may have to create a Kaggle account to donwload data. (https://www.kaggle.com/gilsousa/habermans-survival-data-set)
- 2. Perform a similar alanlaysis as above on this dataset with the following sections:
- High level statistics of the dataset: number of points, numer of features, number of classes, data-points per class.
- · Explain our objective.
- Perform Univaraite analysis(PDF, CDF, Boxplot, Voilin plots) to understand which features are useful towards classification.
- Perform Bi-variate analysis (scatter plots, pair-plots) to see if combinations of features are useful in classfication.
- Write your observations in english as crisply and unambigously as possible. Always quantify your results.

In [2]:

```
#Importing Libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
```

In [3]:

```
# Loading our dataset
df = pd.read_csv('haberman.csv')
df
```

Out[3]:

	age	year	nodes	status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
304	78	65	1	2
305	83	58	2	2

306 rows × 4 columns

Description, shape and feature-size of the dataset

There are 4 columns in the dataset.

Age - Age of the person during operation

Year - Year during the operation

Nodes - No. of positive auxillary nodes

Status - Survived (1) and Dead (2)

In [4]:

```
# Description of columns of dataset
df.describe()
```

Out[4]:

	age	year	nodes	status
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

In [5]:

```
#Shape of the dataset
df.shape
```

Out[5]:

(306, 4)

In [6]:

```
# No. of patients in each class
df['status'].value_counts()
```

Out[6]:

225
 81

Name: status, dtype: int64

The data is imbalance, as there are unequal datapoints for each class.

Of total 306 patients, 225 survived and 81 were dead.

Objective:

To classify patients if they survived or were dead based on the features.

2D Scatterplot

In [10]:

```
plt.scatter(df['age'].where(df['status']==1).tolist(),df['nodes'].where(df['status']==1
).tolist(),color='red',label='Survived')
plt.scatter(df['age'].where(df['status']==2).tolist(),df['nodes'].where(df['status']==2
).tolist(),color='blue',label='Dead')
plt.xlabel('Age')
plt.ylabel('Nodes')
plt.ylabel('Nodes')
plt.title('2D Scatter Plot')
plt.legend(loc='right')
plt.show()
```


Observations:

The features age and nodes are plotted based on the status of survival but we can't see some pattern in data.

2D Pairplots

In [34]:

```
sns.pairplot(df, hue='status')
plt.show()
```


Observations:

Pairplots shows the scatterplots of the features and also the PDFs but directly we can't find any pattern in it.

3D Scatterplot

In [36]:

Observation:

3d scatterplot also doesn't provide us any significant information.

Histogram and PDF

In [16]:

```
sns.FacetGrid(df, hue="status", size=5) \
    .map(sns.distplot, "age") \
    .add_legend();
plt.ylabel('PDF')
plt.title('Histogram and PDF of fetaure- Age')
plt.show();
```


In [17]:

```
sns.FacetGrid(df, hue="status", size=5) \
   .map(sns.distplot, "nodes") \
   .add_legend();
plt.ylabel('PDF')
plt.title('Histogram and PDF of fetaure- Nodes')
plt.show();
```


nodes

In [18]:

```
sns.FacetGrid(df, hue="status", size=5) \
   .map(sns.distplot, "year") \
   .add_legend();
plt.ylabel('PDF')
plt.title('Histogram and PDF of fetaure- Year')
plt.show();
```


CDF

In [15]:

```
[0.05228758 0.08823529 0.1503268 0.17320261 0.17973856 0.13398693 0.13398693 0.05882353 0.02287582 0.00653595]
[30. 35.3 40.6 45.9 51.2 56.5 61.8 67.1 72.4 77.7 83.]
```


Box plots

In [19]:

```
fig = px.box(df,x='status', y="age",title='Box plot of feature-Age')
fig.show()
```

Box plot of feature-Age

In [20]:

```
fig = px.box(df,x='status', y="nodes",title='Box plot of feature-Nodes')
fig.show()
```

Box plot of feature-Nodes

Observations:

Boxplots seem to show slightly some pattern in feature node like overlapping but, patient dead tend to contain more no. of nodes

In [21]:

```
fig = px.box(df,x='status', y="year",title='Box plot of feature-Year')
fig.show()
```

Box plot of feature-Year

Violin Plots

In [22]:

```
fig = px.violin(df,x='status', y="year",title='Box plot of feature-Year')
fig.show()
```

Box plot of feature-Year

In [23]:

```
fig = px.violin(df,x='status', y="age",title='Box plot of feature-Age')
fig.show()
```

Box plot of feature-Age


```
In [24]:
```

```
fig = px.violin(df,x='status', y="nodes",title='Box plot of feature-Nodes')
fig.show()
```

Box plot of feature-Nodes

Final Observations

- 1. We perform the EDA over Haberman's dataset and tried to find out insights of data
- 2. We also tried to check patterns through univariate and bivariate analysis but couldn't find any useful insights from it

In []: