# RÓWNANIA RÓŻNICZKOWE I RÓŹNICOWE – SPRAWOZDANIE METODA RÓŻNIC SKOŃCZONYCH Imię i nazwisko: Alicja Salamon Data: 15 października 2011 r.

# 1. Wyniki i opracowanie – tabele, wykresy

W każdym przypadku badamy otoczenie funkcji w punkcie x = 1.

### a) Wielomiany

# • WIELOMIAN STOPNIA 3-go

Dla funkcji  $f(x) = 2x^3 + 3x^2 + 4x + 5$  pierwsza pochodna wynosi  $f'(x) = 6x^2 + 6x + 4$ , czyli w punkcie x = 1 jest równa f'(1) = 16. Druga pochodna wynosi f''(x) = 12x + 6, czyli w punkcie x = 1 jest równa f''(1) = 18.

|          |             |          |              |          |           |          | Druga     |          |
|----------|-------------|----------|--------------|----------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |          | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd     | centralna | błąd     | centralna | błąd     |
| 1        | 27          | 11       | 9            | 7        | 18        | 2        | 18        | 0        |
| 0,1      | 16,92       | 0,92     | 15,12        | 0,88     | 16,02     | 0,02     | 18        | 3,23E-13 |
| 0,01     | 16,0902     | 0,0902   | 15,9102      | 0,0898   | 16,0002   | 0,0002   | 18        | 6,42E-12 |
| 0,001    | 16,009      | 0,009002 | 15,991       | 0,008998 | 16        | 2,00E-06 | 18        | 2,81E-09 |
| 0,0001   | 16,0009     | 0,0009   | 15,9991      | 0,0009   | 16        | 2,00E-08 | 18        | 6,82E-08 |
| 1,00E-05 | 16,0001     | 9,00E-05 | 15,9999      | 9,00E-05 | 16        | 2,09E-10 | 18        | 1,49E-06 |

# • WIELOMIAN STOPNIA 4-go

Dla funkcji  $f(x) = x^4 + 2x^3 + 3x^2 + 4x + 5$  pierwsza pochodna wynosi  $f'(x) = 4x^3 + 6x^2 + 6x + 4$ , czyli w punkcie x = 1 jest równa f'(1) = 20. Druga pochodna wynosi  $f''(x) = 12x^2 + 12x + 6$ , czyli w punkcie x = 1 jest równa f''(1) = 30.

|          |             |          |              |          |           |          | Druga     |          |
|----------|-------------|----------|--------------|----------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |          | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd     | centralna | błąd     | centralna | błąd     |
| 1        | 42          | 22       | 10           | 10       | 26        | 6        | 32        | 2        |
| 0,1      | 21,561      | 1,561    | 18,559       | 1,441    | 20,06     | 0,06     | 30,02     | 0,02     |
| 0,01     | 20,1506     | 0,150601 | 19,8506      | 0,149401 | 20,0006   | 0,0006   | 30,0002   | 0,0002   |
| 0,001    | 20,015      | 0,015006 | 19,985       | 0,014994 | 20        | 6,00E-06 | 30        | 2,00E-06 |
| 0,0001   | 20,0015     | 0,0015   | 19,9985      | 0,0015   | 20        | 6,00E-08 | 30        | 4,69E-09 |
| 1,00E-05 | 20,0002     | 0,00015  | 19,9999      | 0,00015  | 20        | 5,93E-10 | 30        | 2,48E-06 |

# • WIELOMIAN STOPNIA 5-go

Dla funkcji  $f(x) = 6x^5 + x^4 + 2x^3 + 3x^2 + 4x + 5$  pierwsza pochodna wynosi  $f'(x) = 30x^4 + 4x^3 + 6x^2 + 6x + 4$ , czyli w punkcie x = 1 jest równa f'(1) = 50. Druga pochodna wynosi  $f''(x) = 120x^3 + 12x^2 + 12x + 6$ , czyli w punkcie x = 1 jest równa f''(1) = 150.

|          |             |          |              |          |           |          | Druga     |          |
|----------|-------------|----------|--------------|----------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |          | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd     | centralna | błąd     | centralna | błąd     |
| 1        | 228         | 178      | 16           | 34       | 122       | 72       | 212       | 62       |
| 0,1      | 58,1916     | 8,1916   | 43,1296      | 6,8704   | 50,6606   | 0,6606   | 150,62    | 0,62     |
| 0,01     | 50,7566     | 0,756631 | 49,2566      | 0,743431 | 50,0066   | 0,0066   | 150,006   | 0,0062   |
| 0,001    | 50,0751     | 0,075066 | 49,9251      | 0,074934 | 50,0001   | 6,60E-05 | 150       | 6,20E-05 |
| 0,0001   | 50,0075     | 0,007501 | 49,9925      | 0,007499 | 50        | 6,60E-07 | 150       | 3,32E-07 |
| 1,00E-05 | 50,0008     | 0,00075  | 49,9993      | 0,00075  | 50        | 6,62E-09 | 150       | 4,79E-05 |

Wykresy zależności wartości błędu od h (skala logarytmiczna na osi x) przedstawiają się następująco:



## b) Sinusoidy

### • SIN(x)

Dla funkcji  $f(x)=\sin(x)$  pierwsza pochodna wynosi  $f'(x)=\cos(x)$ , czyli w punkcie x=1 jest równa  $f'(1)=\cos(1)$ . Druga pochodna wynosi  $f''(x)=-\sin(x)$  czyli w punkcie x=1 jest równa  $f''=-\sin(1)$ .

|          |             |          |              |          |           |          | Druga     |          |
|----------|-------------|----------|--------------|----------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |          | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd     | centralna | błąd     | centralna | błąd     |
| 1        | 0,067826    | 0,472476 | 0,841471     | 0,301169 | 0,454649  | 0,085654 | -0,77365  | 0,067826 |
| 0,1      | 0,497364    | 0,042939 | 0,581441     | 0,041138 | 0,539402  | 0,0009   | -0,84077  | 0,000701 |
| 0,01     | 0,536086    | 0,004216 | 0,544501     | 0,004198 | 0,540293  | 9,00E-06 | -0,84146  | 7,01E-06 |
| 0,001    | 0,539881    | 0,000421 | 0,540723     | 0,000421 | 0,540302  | 9,01E-08 | -0,84147  | 7,01E-08 |
| 0,0001   | 0,54026     | 4,21E-05 | 0,540344     | 4,21E-05 | 0,540302  | 9,00E-10 | -0,84147  | 3,03E-09 |
| 1,00E-05 | 0,540298    | 4,21E-06 | 0,540307     | 4,21E-06 | 0,540302  | 1,11E-11 | -0,84147  | 1,87E-06 |

### • SIN(2x)

Dla funkcji  $f(x) = \sin(2x)$  pierwsza pochodna wynosi  $f'(x) = 2\cos(2x)$ , czyli w punkcie x = 1 jest równa  $f'(1) = 2\cos(2)$ . Druga pochodna wynosi  $f''(x) = -4\sin(2x)$  czyli w punkcie x = 1 jest równa  $f'' = -4\sin(2)$ .

|          |             |          |              |          |           |          | Druga     |          |
|----------|-------------|----------|--------------|----------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |          | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd     | centralna | błąd     | centralna | błąd     |
| 1        | -1,6661     | 0,833806 | 0,909297     | 1,74159  | -0,3784   | 0,453892 | -2,5754   | 1,06179  |
| 0,1      | -1,00801    | 0,175717 | -0,6455      | 0,186792 | -0,82676  | 0,005538 | -3,62508  | 0,012108 |
| 0,01     | -0,85042    | 0,01813  | -0,81405     | 0,018241 | -0,83224  | 5,55E-05 | -3,63707  | 0,000121 |
| 0,001    | -0,83411    | 0,001818 | -0,83048     | 0,001819 | -0,83229  | 5,55E-07 | -3,63719  | 1,21E-06 |
| 0,0001   | -0,83248    | 0,000182 | -0,83211     | 0,000182 | -0,83229  | 5,55E-09 | -3,63719  | 2,33E-09 |
| 1,00E-05 | -0,83231    | 1,82E-05 | -0,83228     | 1,82E-05 | -0,83229  | 5,78E-11 | -3,63719  | 8,41E-07 |

### • SIN(10x)

Dla funkcji  $f(x) = \sin(10x)$  pierwsza pochodna wynosi  $f'(x) = 10\cos(10x)$ , czyli w punkcie x = 1 jest równa  $f'(1) = 10\cos(10)$ . Druga pochodna wynosi  $f''(x) = -100\sin(10x)$  czyli w punkcie x = 1 jest równa  $f'' = -100\sin(10)$ .

|          |             |          |              |          |           |          | Druga     |          |
|----------|-------------|----------|--------------|----------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |          | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd     | centralna | błąd     | centralna | błąd     |
| 1        | 1,45697     | 9,84768  | -0,54402     | 7,84669  | 0,456473  | 8,84719  | 2,00099   | 52,4011  |
| 0,1      | -4,55969    | 3,83102  | -9,5614      | 1,17068  | -7,06054  | 1,33017  | 50,0171   | 4,38506  |
| 0,01     | -8,10495    | 0,285761 | -8,64852     | 0,257806 | -8,37674  | 0,013978 | 54,3568   | 0,04532  |
| 0,001    | -8,36337    | 0,027341 | -8,41778     | 0,027061 | -8,39058  | 0,00014  | 54,4017   | 0,000453 |
| 0,0001   | -8,38799    | 0,002722 | -8,39343     | 0,002719 | -8,39071  | 1,40E-06 | 54,4021   | 4,54E-06 |
| 1,00E-05 | -8,39044    | 0,000272 | -8,39099     | 0,000272 | -8,39072  | 1,40E-08 | 54,4021   | 1,61E-06 |

Wykresy zależności wartości błędu od h (skala logarytmiczna na osi x) przedstawiają się następująco:



# c) Funkcje eksponencjalne

# • EXP(0.1x)

Dla funkcji  $f(x)=\mathrm{e}^{0.1\mathrm{x}}$  pierwsza pochodna wynosi  $f'(x)=0.1\mathrm{e}^{0.1\mathrm{x}}$ , czyli w punkcie x=1 jest równa  $f'(1)=0.1\mathrm{e}^{0.1}$ . Druga pochodna wynosi  $f''(x)=0.01\mathrm{e}^{0.1\mathrm{x}}$  czyli w punkcie x=1 jest równa  $f''=0.01\mathrm{e}^{0.1}$ 

|          |             |          |              |          |           |          | Druga     |          |
|----------|-------------|----------|--------------|----------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |          | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd     | centralna | błąd     | centralna | błąd     |
| 1        | 0,116232    | 0,005715 | 0,105171     | 0,005346 | 0,110701  | 0,000184 | 0,011061  | 9,21E-06 |
| 0,1      | 0,111072    | 0,000554 | 0,109966     | 0,000551 | 0,110519  | 1,84E-06 | 0,011052  | 9,21E-08 |
| 0,01     | 0,110572    | 5,53E-05 | 0,110462     | 5,52E-05 | 0,110517  | 1,84E-08 | 0,011052  | 9,19E-10 |
| 0,001    | 0,110523    | 5,53E-06 | 0,110512     | 5,53E-06 | 0,110517  | 1,84E-10 | 0,011052  | 1,36E-10 |
| 0,0001   | 0,110518    | 5,53E-07 | 0,110517     | 5,53E-07 | 0,110517  | 1,72E-12 | 0,011052  | 1,98E-11 |
| 1,00E-05 | 0,110517    | 5,53E-08 | 0,110517     | 5,53E-08 | 0,110517  | 8,57E-13 | 0,011051  | 1,14E-06 |

# EXP(x)Dla funkcji $f(x) = e^x$ pierwsza i druga pochodna wynosi $f'(x) = e^x$ , czyli w punkcie x = 1jest równa f'(1) = e, f''(x) = e.

|          |             |          |              |          |           |          | Druga     |          |
|----------|-------------|----------|--------------|----------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |          | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd     | centralna | błąd     | centralna | błąd     |
| 1        | 4,67077     | 1,95249  | 1,71828      | 1        | 3,19453   | 0,476246 | 2,95249   | 0,234211 |
| 0,1      | 2,85884     | 0,14056  | 2,58679      | 0,131495 | 2,72281   | 0,004533 | 2,72055   | 0,002266 |
| 0,01     | 2,73192     | 0,013637 | 2,70474      | 0,013546 | 2,71833   | 4,53E-05 | 2,7183    | 2,27E-05 |
| 0,001    | 2,71964     | 0,00136  | 2,71692      | 0,001359 | 2,71828   | 4,53E-07 | 2,71828   | 2,26E-07 |
| 0,0001   | 2,71842     | 0,000136 | 2,71815      | 0,000136 | 2,71828   | 4,53E-09 | 2,71828   | 8,88E-09 |
| 1,00E-05 | 2,7183      | 1,36E-05 | 2,71827      | 1,36E-05 | 2,71828   | 5,35E-11 | 2,71828   | 3,10E-06 |

## **EXP(10x)**

Dla funkcji  $f(x)={\rm e}^{10{\rm x}}$  pierwsza pochodna wynosi  $f'(x)=10{\rm e}^{10{\rm x}}$ , czyli w punkcie x=1 jest równa  $f'(1)=10{\rm e}^{10}$ . Druga pochodna wynosi  $f''(x)=100{\rm e}^{10{\rm x}}$  czyli w punkcie x=1 jest równa  $f''=100{\rm e}^{10}$ 

|          |             |          |              |         |           |          | Druga     |          |
|----------|-------------|----------|--------------|---------|-----------|----------|-----------|----------|
|          | Różnica     |          | Różnica      |         | Różnica   |          | różnica   |          |
| h        | lewostronna | błąd     | prawostronna | błąd    | centralna | błąd     | centralna | błąd     |
| 1        | 4,85E+08    | 4,85E+08 | 22025,5      | 198239  | 2,43E+08  | 2,42E+08 | 4,85E+08  | 4,83E+08 |
| 0,1      | 378477      | 158212   | 139234       | 81030,8 | 258855    | 38590,6  | 2,39E+06  | 189783   |
| 0,01     | 231654      | 11389,7  | 209610       | 10655,1 | 220632    | 367,291  | 2,20E+06  | 1836,15  |
| 0,001    | 221370      | 1105     | 219167       | 1097,66 | 220268    | 3,6711   | 2,20E+06  | 18,3554  |
| 0,0001   | 220375      | 110,169  | 220155       | 110,096 | 220265    | 0,036711 | 2,20E+06  | 0,183247 |
| 1,00E-05 | 220276      | 11,0136  | 220254       | 11,0129 | 220265    | 0,000367 | 2,20E+06  | 0,021987 |

Wykresy zależności wartości błędu od h (skala logarytmiczna na osi x) przedstawiają się następująco:





### 2. Wnioski:

- Dla wszystkich rodzajów badanych funkcji (wielomiany, sinusoidy, funkcje eksponencjalne) kształt wykresu dokładności aproksymacji od h jest bardzo podobny.
- Im mniejsze h, tym wynik dokładniejszy. W przybliżeniu można powiedzieć, że z każdym zmniejszeniem h o rząd wielkości, dokładność zwiększa się również o rząd wielkości.
- Dla funkcji przyjmujących większe wartości, wartość błędu również wydaje się dużo większa, ale biorąc pod uwagę błąd względny zamiast bezwzględnego, stosunek błędu do wartości pochodnej jest podobny.
- W aproksymacji pierwszej pochodnej zawsze najlepsze wyniki daje metoda różnic centralnych, niezależnie od kształtu wykresu funkcji.