

DEPARTAMENTO DE COMPUTAÇÃO

Geração de Dados de Teste

Eduardo Kinder Almentero ekalmentero@gmail.com

Conceitos

Domínio de entrada

- Conjunto de todos os valores possíveis que podem ser utilizados para executar o programa.
- Dado de teste é um elemento do domínio de entrada.

• Domínio de saída

 Conjunto de todos os possíveis resultados que podem ser produzidos pelo programa.

Caso de teste

 Par formado por um dado de teste e o comportamento esperado do software.

- Diante da impossibilidade de executar um software com todos os seus valores possíveis de entrada, a seleção dos casos de teste com maior probabilidade de encontrar erros é muito importante;
 - Para auxiliar nesta seleção, estudamos os critérios de teste, que basicamente, dividem o domínio de entrada em subdomínios (não necessariamente disjuntos).
 - Característica dos subconjuntos:
 - Se um dos elementos do subconjunto permite a descoberta de um erro, os demais também permitirão;
 - De forma similar, se um elemento do subconjunto não permite encontrar um erro, os demais também não permitirão.
 - Neste caso, o teste requer a execução de pelo menos um elemento de cada subconjunto;

Domínio de Entrada (D)

- A geração de caso de testes é uma tarefa complexa, envolve um grau de incerteza, e diversos fatores precisam ser considerados:
 - Facilidade de automatização;
 - Redução de esforço do testador;
 - Requisitos funcionais e não funcionais
 - Custo, tempo de execução, uso de memória e cobertura de elementos necessário por um critério de teste.
- Não há um algoritmo de propósito geral para criar um conjunto de casos de teste que satisfaça um critério;
 - Também não é possível determinar se esse conjunto existe!
- O problema de geração de casos de teste é indecídível;
- Restrições relacionadas a natureza da atividade de teste impossibilitam que a etapa de geração de casos de teste seja totalmente automatizada;

- Problemas que dificultam a automação da geração e casos de teste:
 - Correção coincidente
 - Um caso de teste alcança um defeito do software, um estado de erro é produzido, mas coincidentemente o resultado correto é obtido;
 - Caminho ausente
 - O caminho corresponde a uma funcionalidade do software não existe (por algum motivo não foi implementado);
 - Caminhos não executáveis
 - Não existe um valor de entrada do software que levem à execução de um caminho;
 - Mutantes equivalentes
 - A modificação do programa pode não alterar o comportamento da funcionalidade implementada;

- As diferente **técnicas de geração de dados** são divididas de acordo com suas características:
 - Aleatória ou direcionada
 - Totalmente ao acaso ou há alguma diretriz.
 - Estática ou dinâmica
 - Se envolve ou não a execução de software.
 - Otimização exata
 - Envolvendo programação linear.
 - Baseada em busca.
 - · Por exemplo utilizando algoritmos genéticos.
- Algumas técnicas são mais adequadas a tipos específicos de teste
 - Teste de estresse,
 - Teste de requisitos n\u00e3o funcionais.

Teste Aleatório (TA)

- Na geração aleatória, também conhecida como Teste
 Aleatório (TA), os dados são selecionados de forma
 aleatória do domínio de entrada, a partir de um gerador
 pseudoaleatório;
- Esta seleção é feita de acordo com alguma distribuição estatística, como a distribuição uniforme, onde cada elemento do domínio de entrada tem chance igual de ser selecionado;
- O TA também pode considerar perfil real, que considera como o software será utilizado no contexto real, e pondera as entradas de acordo com as probabilidades destas ocorrerem durante o uso real;

Teste Aleatório (TA)

- O TA é frequentemente comparado com as técnicas baseadas em particionamento;
- Algumas análises empíricas realizadas (olhar livro) tem tido resultado positivo para TA;
 - Considerando custo-benefício e eficácia
- Abordagens baseadas em TA se distinguem através da forma como os dados são utilizados na execução do software
- Neste contexto, duas abordagens são mais comuns:
 - Utilizar os dados aleatoriamente como um conjunto de dados de teste para executar o software e analisar o comportamento resultante em relação ao esperado;
 - A abordagem aleatória é utilizada para gerar dados de teste para critérios baseados em particionamento.

Teste Aleatório Adaptativo (Adaptative Randon Testing (ART) • Esta abordagem utiliza dois conjuntos de casos de

- Esta abordagem utiliza dois conjuntos de casos de teste: o conjunto de testes executados (CTE) e o conjunto de testes candidatos (CTC);
- O CTC contém um conjunto de dados de teste gerado aleatoriamente;
- O CTE é atualizado com elementos selecionados do CTC;
- A cada incremento do CTE, um dado de teste do CTC é selecionado de acordo com as distâncias dos dados de teste do CTC para os dados de teste do CTE;
 - É selecionado o dado de teste que possui o maior valor de distância mínima;
 - Para o cálculo destas distâncias é utilizada a distância euclidiana entre dados;
 - Outra opção é a distância de Levenshtein para strings;

Considerações

- Geração aleatória de dados
 - tem como vantagens o baixo custo para execução e a facilidade de automatização;
 - a principal desvantagem é que ela não considera a execução dos dados relacionados aos critérios de teste, nem promove a seleção dos elementos mais relevantes do domínio de entrada;
 - Outra desvantagem é que não agrega conhecimento sobre o software e não ajuda na identificação de elementos não executáveis e mutantes equivalentes.
- Extensões, como a ART, buscam lidar com estas desvantagens;
- A geração de dados de teste estática, com base em restrições, tem evoluído mecanismos mais sofisticados;
 - A vantagem destas técnicas é que não exigem a execução do software.

Dados Realísticos

- Simulam com maior precisão as condições reais de uso do software;
 - Importante, principalmente no contexto de SI, para estimular o teste.
- Auxiliam na comunicação
 - Demonstração de funcionalidades do software
- Contém características que não foram antevistas
 - Por exemplo, texto com diversos estilos de escrita e pontuação;
- Permitem encontrar lacunas até mesmo na especificação dos requisitos

Dados Realísticos

- Como criar dados realísticos?
 - É preciso considerar a regionalização;
 - Plataformas para geração de dados
 - Mockaroo
 - Generatedata.com
 - Random Data Generator
 - Randon Data API
 - Fake.js
 - ...
 - Expressões Regulares (RegEx)
 - Customização de dados

INSTITUTO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE COMPUTAÇÃO

Perguntas?