Engineering Ultrasound Waves

What do you want to do?

- Imeging
- Levitation
- Microparticle manipulation

1)

Ultresound imaging

- Pulse-echo (PE)
- Continuous were (CW)

PE CW

Focused ultrasound

Pulsed waves

$$\nabla^2 p + k^2 p = 0$$
(Works for a single)
(frequency wave.)
$$p(\vec{r},t) = p(\vec{r}) e^{-i\omega t}$$
Finding the wave equation
$$i\omega \Leftrightarrow \partial t$$

$$-\frac{\omega^2}{\cos^2} - K^2 \Leftrightarrow \cos^2 \partial t^2$$

$$K^2 \Leftrightarrow -\cos^2 \partial t^2$$

4

The weve equation

$$\nabla^2 p - \frac{1}{C_0^2} \partial_t^2 p = 0$$

1 Boundary conditions

PE: velocity at the transducer surface is specified

Vo= Vo(t) (a pulse)

Reading: Ch. 6 T. L. Szabo

(5)

Acoustafluidics

Produce Acoustic Landscapes of energy to manipulate microparticles.

Basic ingridients

- Submillimeter cavities

- Hard and soft materials PDMJ

 - Resin

- Host liquid

- Silicon
- Gless, etc.

- Piezoelectric ectvators (all and microprogramisms)

7

Lab-on-a-chip Tecnology

- Fabrication
 3D printing
 Clean room
 Owen, etc
- Tests
 Microfluidics
 Optics
 Electronics & computers

Chip design

- Model equations
- Finite-element simulations
- Acoustic landscapes
- Forces, tarques (maps)
 Villain: streaming

Cylindrical Cevity

Lossless model

is = wp

ipcok

(A) Boudery conditions

- Hard walls } $v_n = 0$ - Soft walls } p = 0- Actuation $v_b = v_0 e^{-i\omega t}$

Solution

- Acoustic modes

$$P(S, \ell, Z) = p_0 J_n(K_P) cos(n\ell + \ell_0) cosK_Z$$

$$K = \frac{w}{c_0} = \sqrt{k_p^2 + k_z^2}$$

Boudary conditions

Hard:
$$Vz|_{z=-H/2} = Vz|_{z=H/2} = 0$$

thand: $Vz|_{z=-H/2} = Vz|_{z=H/2} = 0$
 $Vp|_{p=R} = 0$ $Sin(\frac{kzH}{2}) = 0$
 $Soft: p(p=R) = 0$ $Jn'(k_pR) = 0$

soft:
$$p(p=R)=0$$

Jn(
$$k_pR$$
)=0

Zeros, ξ_{ol}

Were mumbers:
$$\begin{cases} k_2 = \frac{m_z \pi}{2} \\ k_p = \frac{n_n m}{R} \text{ (hord)}; \quad \xi_{nm} \text{ (soft)} \end{cases}$$

Allowed and a seros of the seros of th

Allowed frequencies:

$$f = \frac{KC_0}{2\pi} = \frac{C_0}{H} \sqrt{m_z^2 + \left(\frac{x_{nm}H}{2R}\right)^2}$$