Modelos de Computação CC1004

2015/2016

Exame – 04.07.2016

duração: 3h

N.º	Nome
	Seja L a linguagem de alfabeto $\Sigma = \{a,b\}$ constituída pelas palavras que têm ba como subpalavra, ninam em b e têm número par de b's antes do a mais à esquerda na palavra.
	Apresente as regras de uma GIC G que gere L , não seja linear à direita nem à esquerda e tenha símbolo sial K . Explique sucintamente, partindo da descrição de L .
b)	Indique uma expressão regular (abreviada) que deserve I
c)	Indique uma expressão regular (abreviada) que descreva L . Desenhe o diagrama do AFD mínimo que reconhece L e descreva $\mathcal{L}_s = \{x \mid x \in \Sigma^* \text{ e } \hat{\delta}(s_0, x) = s\}$ por a expressão regular (abreviada), para cada estado s , sendo s_0 o estado inicial.
d)	Usando o corolário do Teorema de Myhill-Nerode, prove a correção do AFD que apresentou em 1c).

N.º	Nome	
	Sejam $r=(((\mathtt{aa})+\mathtt{b})^\star)$ e $s=(((\mathtt{aa})^\star)+\mathtt{ba})^\star$ Apresente uma GIC não ambígua gere $\mathcal{L}((\mathtt{ab})^\star)$	(r) . b) Apresente uma GIC não ambígua gere $\mathcal{L}(s)$.
a)	Apresente uma OTC nao amoigua gere £(Apresente unia Gre nao ambigua gere £(s).
c)	Desenhe o AFD mínimo que aceita $\mathcal{L}(r)$.	d) Desenhe o AFD mínimo que aceita $\Sigma^* \setminus \mathcal{L}(s)$.
	Desenhe os diagrama de transição dos auto às expressões regulares r e s , segundo a	ómatos finitos que resultam da aplicação do método de Thomp- construção dada nas aulas.
		um AFD que reconhece L . Apresente a prova de que $\mathcal{C}_x \subseteq [x]$, e equivalência de x para a relação R_A e R_L definidas nas aulas.

(Continua)

Resolva apenas um dos problemas 4. e 5.

4. Desenhe o diagrama de transição do AFD equivalente ao AFND representado à esquerda que resulta da aplicação do método de conversão (baseado em subconjuntos). Os estados devem ser **obrigatoriamente** designados por subconjuntos. Crie apenas os que são acessíveis do estado inicial.

5. Considere novamente o AFND representado em **4.** Suponha que se aplica o método de eliminação de estados e que na fase de eliminação se começa por remover s_0 e a seguir s_3 . Apresente o diagrama após a remoção de s_0 e de s_3 (não simplifique as expressões intermédias).

6. Considere a GIC $G = (\{X, T\}, \{0, 1, 2\}, P, X)$, com P dado por:

$$X \ \rightarrow \ X \texttt{0} X \ | \ \texttt{0} T \qquad \qquad T \ \rightarrow \ \texttt{2} T \texttt{1} \ | \ \texttt{2} T \ | \ \texttt{1} \ | \ \texttt{22} \ | \ \varepsilon$$

a) Prove que $02002 \in \mathcal{L}(G)$, indicando uma derivação e a árvore de derivação correspondente, e complete a frase "02002 admite derivações e árvores de derivações distintas".

b) Indique a forma das palavras de $\{X, T, 0, 1, 2\}^*$ que se podem derivar a partir de T em G, numa derivação com n passos, para $n \ge 1$, se a regra $T \to 2T11$ for aplicada k vezes, com $0 \le k \le n$. Explique.

derivação com n passos, para $n \ge 1$, se a regra $T \to 2T11$ for aplicada k vezes, com $0 \le k \le n$. Explique.					

N.º		Nome					
	Indique uma GIC G' n		d) Prove que $02002 \in \mathcal{L}(G')$, aplicando o algoritmo CYK.				
de (Chomsky tal que $\mathcal{L}(G)$	$\underline{) = \mathcal{L}(G').}$					
e) I	Explique em detalhe o	como se obtém a	a <i>primeira</i> e a <i>última</i> linha da tabela que apresentou em 6d).				
f) F	Prove que G é ambígu	a.	g) Use o teorema de Myhill-Nerode ou o lema da repetição. para				
			mostrar que $\mathcal{L}(G)$ não é regular.				
D	Resolva anenas uma das alíneas seguintes						

Resolva apenas uma das alíneas seguintes

- **h)** Prove que a linguagem $\mathcal{L}(G)$ não é ambígua. Justifique sucintamente a correção da resposta.
- i) Apresente um autómato de pilha que reconheça $\mathcal{L}(G)$ por pilha vazia. Justifique sucintamente a correção.

Use o verso da folha para responder à questão.