Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашнее задание по теории графов №4

Вариант 92

Выполнил:

Степанов Арсений Алексеевич

Группа:

P3109

Преподаватель:

Поляков Владимир Иванович

Матрица смежности графа

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
e_1				5				4	1	4		1
e_2					4		4		1			
e_3				5		4	3	4		3	3	
e_4	5		5				1					1
e_5		4				4	4					5
e_6			4		4		5		3			2
e_7		4	3	1	4	5		2			5	
e_8	4		4				2				1	
e_9	1	1				3				4	4	
e_{10}	4		3						4		5	5
e_{11}			3				5	1	4	5		2
e_{12}	1			1	5	2				5	2	

Найти гамильтонов цикл

```
Включаем в S вершину x_1.S = \{x_1\}
```

Возможная вершина:
$$x_4.S = \{x_1, x_4\}$$

Возможная вершина:
$$x_3.S = \{x_1, x_4, x_3\}$$

Возможная вершина:
$$x_6.S = \{x_1, x_4, x_3, x_6\}$$

Возможная вершина:
$$x_5.S = \{x_1, x_4, x_3, x_6, x_5\}$$

Возможная вершина:
$$x_2.S = \{x_1, x_4, x_3, x_6, x_5, x_2\}$$

Возможная вершина:
$$x_7.S = \{x_1, x_4, x_3, x_6, x_5, x_2, x_7\}$$

Возможная вершина:
$$x_8.S = \{x_1, x_4, x_3, x_6, x_5, x_2, x_7, x_8\}$$

Возможная вершина:
$$x_{11}.S = \{x_1, x_4, x_3, x_6, x_5, x_2, x_7, x_8, x_{11}\}$$

Возможная вершина:
$$x_9.S = \{x_1, x_4, x_3, x_6, x_5, x_2, x_7, x_8, x_{11}, x_9\}$$

Возможная вершина:
$$x_{10}.S = \{x_1, x_4, x_3, x_6, x_5, x_2, x_7, x_8, x_{11}, x_9, x_{10}\}$$

Возможная вершина:
$$x_{12}.S = \{x_1, x_4, x_3, x_6, x_5, x_2, x_7, x_8, x_{11}, x_9, x_{10}, x_{12}\}$$

Гамильтонов цикл найден.
$$S = \{x_1, x_4, x_3, x_6, x_5, x_2, x_7, x_8, x_{11}, x_9, x_{10}, x_{12}\}$$

Матрица смежности с перенумерованными вершинами

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
e_x		1	0	0	0	0	0	1	0	1	1	1
e_x	1	0	1	0	0	0	1	0	0	0	0	1
e_x		1	0	1	0	0	1	1	1	0	1	0
e_x		0	1	0	1	0	1	0	0	1	0	1
e_x		0	0	1	0	1	1	0	0	0	0	1
e_x		0	0	0	1	0	1	0	0	1	0	0
e_x		1	1	1	1	1	0	1	1	0	0	0
e_x	1	0	1	0	0	0	1	0	1	0	0	0
e_x		0	1	0	0	0	1	1	0	1	1	1
e_x	1	0	0	1	0	1	0	0	1	0	1	0
e_x	1	0	1	0	0	0	0	0	1	1	0	1
e_x	1	1	0	1	1	0	0	0	1	0	1	0

До перенумерации: $\{x_1, x_4, x_3, x_6, x_5, x_2, x_7, x_8, x_{11}, x_9, x_{10}, x_{12}\}$ После перенумерации: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}\}$

Построение графа пересечений G'

Определим p_{212} , для чего в матрице R выделим подматрицу R_{212}

Ребро (x_2x_{12}) пересекается с $(x_1x_8), (x_1x_{10}), (x_1x_{11})$

Определим p_{311} , для чего в матрице R выделим подматрицу R_{311}

Ребро (x_3x_{11}) пересекается с $(x_1x_8), (x_1x_{10}), (x_2x_7)$

Определим p_{39} , для чего в матрице R выделим подматрицу R_{39}

Ребро (x_3x_9) пересекается с $(x_1x_8), (x_2x_7)$

Определим p_{38} , для чего в матрице R выделим подматрицу R_{38}

Ребро (x_3x_8) пересекается с (x_2x_7)

Определим p_{412} , для чего в матрице R выделим подматрицу R_{412}

Ребро (x_4x_{12}) пересекается с (x_1x_8) , (x_1x_{10}) , (x_1x_{11}) , (x_2x_7) , (x_3x_7) , (x_3x_8) , (x_3x_9) , (x_3x_{11})

Определим p_{410} , для чего в матрице R выделим подматрицу R_{410}

Ребро (x_4x_{10}) пересекается с $(x_1x_8), (x_2x_7), (x_3x_7), (x_3x_8), (x_3x_9)$

Определим p_{512} , для чего в матрице R выделим подматрицу R_{512}

Ребро (x_5x_{12}) пересекается с $(x_1x_8), (x_1x_{10}), (x_1x_{11}), (x_2x_7),$

 $(x_3x_7), (x_3x_8), (x_3x_9), (x_3x_{11}), (x_4x_7), (x_4x_{10})$

Определим p_{610} , для чего в матрице R выделим подматрицу R_{610}

Ребро (x_6x_{10}) пересекается с $(x_1x_8), (x_2x_7), (x_3x_7), (x_3x_8), (x_3x_9), (x_4x_7), (x_5x_7)$

	$p_{1 8}$	$p_{2 12}$	$p_{1 10}$	$p_{1 11}$	$p_{3 11}$	$p_{2 7}$	$p_{3 9}$	$p_{3 8}$	$p_{4 12}$	$p_{3 7}$	$p_{4 10}$	$p_{5 12}$	$p_{4 7}$	$p_{6 10}$	$p_{5 7}$
$p_{1 8}$	1	1	0	0	1	0	1	0	1	0	1	1	0	1	0
$p_{2 12}$	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
$p_{1 10}$	0	1	1	0	1	0	0	0	1	0	0	1	0	0	0
$p_{1 11}$	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0
$p_{3 11}$	1	0	1	0	1	1	0	0	1	0	0	1	0	0	0
$p_{2 7}$	0	0	0	0	1	1	1	1	1	0	1	1	0	1	0
$p_{3 9}$	1	0	0	0	0	1	1	0	1	0	1	1	0	1	0
$p_{3 8}$	0	0	0	0	0	1	0	1	1	0	1	1	0	1	0
$p_{4 12}$	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0
$p_{3 7}$	0	0	0	0	0	0	0	0	1	1	1	1	0	1	0
$p_{4 10}$	1	0	0	0	0	1	1	1	0	1	1	1	0	0	0
$p_{5 12}$	1	0	1	1	1	1	1	1	0	1	1	1	1	0	0
$p_{4 7}$	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
$p_{6 10}$	1	0	0	0	0	1	1	1	0	1	0	0	1	1	1
$p_{5 7}$	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

Итого 15 пересечений

Построение семейства ψ_G

В 1 строке ищем первый нулевой элемент $|r_{1|3}|$

Записываем дизъюнкцию $M_{1|3}=r_1 \lor r_3=110010101010101010001001001000=11101010101010101$

В строке $M_{1|3}$ находим номера нулевых элементов, составляем список $J' = \{4, 6, 8, 10, 13, 15\}$

Записываем дизъюнкцию $M_{1|3|4}=M_{1|3}\lor r_4=11101010101010100\lor 010100001001000=1111101010101010$

В строке $M_{1|3|4}$ находим номера нулевых элементов, составляем список $J' = \{6, 8, 10, 13, 15\}$

В строке $M_{1|3|4|6}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

В строке $M_{1|3|4|6|10}$ находим номера нулевых элементов, составляем список $J'=\{13,15\}$

В строке $M_{1|3|4|6|10|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{1|3|4|6|10|13|15}$ все 1 Построено $\psi_1=\{u_{1|8},u_{1|10},u_{1|11},u_{2|7},u_{3|7},u_{4|7},u_{5|7}\}$

В строке $M_{1|3|4|6|10|15}$ остались незакрытые 0

В строке $M_{1|3|4|6|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет ноль на 10 позиции

В строке $M_{1|3|4|6|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{1|3|4|8}=M_{1|3|4}\lor r_8=111110101011010\lor 000001011011010=111111111011010$

В строке $M_{1|3|4|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

В строке $M_{1|3|4|8|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

В строке $M_{1|3|4|8|10|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{1|3|4|8|10|13|15}1\psi_2=\{u_{1|8},u_{1|10},u_{1|11},u_{3|8},u_{3|7},u_{4|7},u_{5|7}\}$

В строке $M_{1|3|4|8|10|15}$ остались незакрытые 0

В строке $M_{1|3|4|8|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет ноль на 10 позиции

В строке $M_{1|3|4|8|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{1|3|4|10}=M_{1|3|4}\lor r_{10}=111110101011010\lor 000000001111010=1111101011111010$

В строке $M_{1|3|4|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 6, 8

Записываем дизъюнкцию $M_{1|3|4|13}=M_{1|3|4}\lor r_{13}=111110101011010\lor 000000000001110=111110101011110$

В строке $M_{1|3|4|13}$ находим номера нулевых элементов, составляем список $J' = \{15\}$

Строка 15 не закроет нули на позициях 6, 8, 10

Записываем дизъюнкцию $M_{1|3|4|15}=M_{1|3|4}\lor r_{15}=111110101011010\lor 000000000000011=111110101011011$

В строке $M_{1|3|4|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{1|3|6}=M_{1|3}\lor r_6=111010101010101010\lor 000011111011010=111011111011010$

В строке $M_{1|3|6}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют ноль на 4 позиции

Записываем дизъюнкцию $M_{1|3|8}=M_{1|3} \lor r_8=111010101011010 \lor 000001011011010=111011111011010$

В строке $M_{1|3|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют ноль на 4 позиции

Записываем дизъюнкцию $M_{1|3|10}=M_{1|3}\lor r_{10}=111010101011010\lor 000000001111010=1110101011111010$

В строке $M_{1|3|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 4, 6, 8

Записываем дизъюнкцию $M_{1|3|13}=M_{1|3} \lor r_{13}=111010101011010 \lor 0000000000001110=1110101010111110$

В строке $M_{1|3|13}$ находим номера нулевых элементов, составляем список $J' = \{15\}$

Строка 15 не закроет нули на позициях 4, 6, 8, 10

Записываем дизъюнкцию $M_{1|3|15}=M_{1|3}\lor r_{15}=111010101011010\lor 000000000000011=11101010101011011$

В строке $M_{1|3|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{1|4}=r_1\lor r_4=11001010101010101000010010000=1101101010101010$

В строке $M_{1|4}$ находим номера нулевых элементов, составляем список $J' = \{6, 8, 10, 13, 15\}$

Строки 6, 8, 10, 13, 15 не закроют ноль на 3 позиции

Записываем дизъюнкцию $M_{1|6}=r_1 \lor r_6=110010101010101010\lor 000011111011010=110011111011010$

В строке $M_{1|6}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют нули на позициях 3, 4

Записываем дизъюнкцию $M_{1|8}=r_1\lor r_8=1100101010101010101011011010=$

В строке $M_{1|8}$ находим номера нулевых элементов, составляем список $J'=\{10,13,15\}$

Строки 10, 13, 15 не закроют нули на позициях 3, 4

Записываем дизъюнкцию $M_{1|10}=r_1\lor r_{10}=110010101010101010\lor 000000001111010=11001010101111010$

В строке $M_{1|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 3, 4, 6, 8

Записываем дизъюнкцию $M_{1|13}=r_1 \lor r_{13}=1100101010101010 \lor 000000000001110=11001010101011110$

В строке $M_{1|13}$ находим номера нулевых элементов, составляем список $J' = \{15\}$

Строка 15 не закроет нули на позициях 3, 4, 6, 8, 10

Записываем дизъюнкцию $M_{1|15}=r_1 \lor r_{15}=1100101010101010101000000000000011=11001010101011$

В строке $M_{1|15}$ остались незакрытые 0

Во 2 строке ищем первый нулевой элемент | $r_{2|5}$

Записываем дизъюнкцию $M_{2|5}=r_2 \lor r_5=111100000000000\lor 101011001001000=111111001001000$

В строке $M_{2|5}$ находим номера нулевых элементов, составляем список $J' = \{7, 8, 10, 11, 13, 14, 15\}$

В строке $M_{2|5|7}$ находим номера нулевых элементов, составляем список $J' = \{8, 10, 13, 15\}$

В строке $M_{2|5|7|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

В строке $M_{2|5|7|8|10}$ находим номера нулевых элементов, составляем список $J'=\{13,15\}$

В строке $M_{2|5|7|8|10|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{2|5|7|8|10|13|15}1\psi_3 = \{u_{2|12}, u_{3|11}, u_{3|9}, u_{3|8}, u_{3|7}, u_{4|7}, u_{5|7}\}$

000000000000011 = 1111111111111111111

В строке $M_{2|5|7|8|10|15}$ остались незакрытые 0

В строке $M_{2|5|7|8|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет ноль на 10 позиции

В строке $M_{2|5|7|8|15}$ остались незакрытые 0

В строке $M_{2|5|7|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют ноль на 8 позиции

Записываем дизъюнкцию $M_{2|5|7|13}=M_{2|5|7}\lor r_{13}=111111101011010\lor 000000000001110=111111101011110$

В строке $M_{2|5|7|13}$ находим номера нулевых элементов, составляем список $J' = \{15\}$

Строка 15 не закроет нули на позициях 8, 10

Записываем дизъюнкцию $M_{2|5|7|15}=M_{2|5|7}\lor r_{15}=111111101011010\lor 000000000000011=111111101011011$

В строке $M_{2|5|7|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{2|5|8}=M_{2|5} \lor r_8=111111001001000 \lor 000001011011010=111111011011010$

В строке $M_{2|5|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют ноль на 7 позиции

Записываем дизъюнкцию $M_{2|5|10}=M_{2|5} \lor r_{10}=111111001001000 \lor 000000001111010=111111001111010$

В строке $M_{2|5|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 7, 8

В строке $M_{2|5|11}$ находим номера нулевых элементов, составляем список $J' = \{13, 14, 15\}$

В строке $M_{2|5|11|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

0000000000000011 = 1111111111111111

B строке $M_{2|5|11|13|15}1\psi_4 = \{u_{2|12}, u_{3|11}, u_{4|10}, u_{4|7}, u_{5|7}\}$

B строке $M_{2|5|11|14}1\psi_5 = \{u_{2|12}, u_{3|11}, u_{4|10}, u_{6|10}\}$

В строке $M_{2|5|11|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{2|5|13}=M_{2|5} \lor r_{13}=111111001001000 \lor 000000000001110=111111001001110$

В строке $M_{2|5|13}$ находим номера нулевых элементов, составляем список $J' = \{15\}$

Строка 15 не закроет нули на позициях 7, 8, 10, 11

В строке $M_{2|5|14}$ остались незакрытые 0

Записываем дизъюнкцию $M_{2|5|15}=M_{2|5} \lor r_{15}=111111001001000 \lor 000000000000011=111111001001011$

В строке $M_{2|5|15}$ остались незакрытые 0

В строке $M_{2|6}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

В строке $M_{2|6|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

В строке $M_{2|6|10|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{2|6|10|13|15}1\psi_6 = \{u_{2|12}, u_{2|7}, u_{3|7}, u_{4|7}, u_{5|7}\}$

В строке $M_{2|6|10|15}$ остались незакрытые 0

В строке $M_{2|6|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет ноль на 10 позиции

В строке $M_{2|6|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{2|7}=r_2 \lor r_7=111100000000000 \lor 100001101011010=1111011011011010$

В строке $M_{2|7}$ находим номера нулевых элементов, составляем список $J' = \{8, 10, 13, 15\}$

Строки 8, 10, 13, 15 не закроют ноль на 5 позиции

В строке $M_{2|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют нули на позициях 5, 7

В строке $M_{2|9}$ находим номера нулевых элементов, составляем список $J' = \{11, 12, 13, 14, 15\}$

В строке $M_{2|9|11}$ находим номера нулевых элементов, составляем список $J' = \{13, 14, 15\}$

В строке $M_{2|9|11|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{2|9|11|13|15}1\psi_7 = \{u_{2|12}, u_{4|12}, u_{4|10}, u_{4|7}, u_{5|7}\}$

В строке $M_{2|9|11|14}1\psi_8 = \{u_{2|12}, u_{4|12}, u_{4|10}, u_{6|10}\}$

В строке $M_{2|9|11|15}$ остались незакрытые 0

В строке $M_{2|9|12}$ находим номера нулевых элементов, составляем список $J' = \{14, 15\}$

В строке $M_{2|9|12|14}1\psi_9 = \{u_{2|12}, u_{4|12}, u_{5|12}, u_{6|10}\}$

B строке $M_{2|9|12|15}1\psi_{10} = \{u_{2|12}, u_{4|12}, u_{5|12}, u_{5|7}\}$

В строке $M_{2|9|13}$ находим номера нулевых элементов, составляем список $J' = \{15\}$

Строка 15 не закроет ноль на 11 позиции

В строке $M_{2|9|14}$ остались незакрытые 0

В строке $M_{2|9|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{2|10}=r_2 \lor r_{10}=11110000000000000000000001111010=111100001111010$

В строке $M_{2|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 5, 6, 7, 8

Записываем дизъюнкцию $M_{2|11}=r_2 \lor r_{11}=1111000000000000\lor 100001110111000=11110111001$

В строке $M_{2|11}$ находим номера нулевых элементов, составляем список $J' = \{13, 14, 15\}$

Строки 13, 14, 15 не закроют нули на позициях 5, 9

В строке $M_{2|12}$ находим номера нулевых элементов, составляем список $J' = \{14, 15\}$

Строки 14, 15 не закроют ноль на 9 позиции

В строке $M_{2|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет нули на позициях 5, 6, 7, 8, 9, 10, 11

Записываем дизъюнкцию $M_{2|14}=r_2 \lor r_{14}=1111000000000000\lor 100001110100111=111101110100111$

В строке $M_{2|14}$ остались незакрытые 0

В строке $M_{2|15}$ остались незакрытые 0

В 3 строке ищем первый нулевой элемент | $r_{3|4}$

В строке $M_{3|4}$ находим номера нулевых элементов, составляем список $J' = \{6,7,8,10,11,13,14,15\}$

Записываем дизъюнкцию $M_{3|4|6}=M_{3|4}\lor r_6=011110001001000\lor 000011111011010=0111111111011010$

В строке $M_{3|4|6}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют ноль на 1 позиции

В строке $M_{3|4|7}$ находим номера нулевых элементов, составляем список $J' = \{8, 10, 13, 15\}$

Записываем дизъюнкцию $M_{3|4|7|8}=M_{3|4|7}\lor r_8=111111101011010\lor 000001011011010=11111111101010$

В строке $M_{3|4|7|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

В строке $M_{3|4|7|8|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

В строке $M_{3|4|7|8|10|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{3|4|7|8|10|13|15}1\psi_{11} = \{u_{1|10}, u_{1|11}, u_{3|9}, u_{3|8}, u_{3|7}, u_{4|7}, u_{5|7}\}$

В строке $M_{3|4|7|8|10|15}$ остались незакрытые 0

В строке $M_{3|4|7|8|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет ноль на 10 позиции

В строке $M_{3|4|7|8|15}$ остались незакрытые 0

В строке $M_{3|4|7|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют ноль на 8 позиции

Записываем дизъюнкцию $M_{3|4|7|13}=M_{3|4|7}\lor r_{13}=111111101011010\lor 0000000000001110=111111101011110$

В строке $M_{3|4|7|13}$ находим номера нулевых элементов, составляем список $J' = \{15\}$

Строка 15 не закроет нули на позициях 8, 10

Записываем дизъюнкцию $M_{3|4|7|15}=M_{3|4|7}\lor r_{15}=111111101011010\lor 0000000000000011=111111101011011$

В строке $M_{3|4|7|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{3|4|8}=M_{3|4}\lor r_8=011110001001000\lor 000001011011010=011111011011010$

В строке $M_{3|4|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют нули на позициях 1, 7

Записываем дизъюнкцию $M_{3|4|10}=M_{3|4} \lor r_{10}=011110001001000 \lor 000000001111010=011110001111010$

В строке $M_{3|4|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 1, 6, 7, 8

В строке $M_{3|4|11}$ находим номера нулевых элементов, составляем список $J' = \{13, 14, 15\}$

В строке $M_{3|4|11|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{3|4|11|13|15}1\psi_{12} = \{u_{1|10}, u_{1|11}, u_{4|10}, u_{4|7}, u_{5|7}\}$

В строке $M_{3|4|11|14}1\psi_{13}=\{u_{1|10},u_{1|11},u_{4|10},u_{6|10}\}$

В строке $M_{3|4|11|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{3|4|13}=M_{3|4}\lor r_{13}=011110001001000\lor 000000000001110=011110001001100$

В строке $M_{3|4|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет нули на позициях 1, 6, 7, 8, 10, 11

Записываем дизъюнкцию $M_{3|4|14}=M_{3|4}\lor r_{14}=011110001001000\lor 100001110100111=$

В строке $M_{3|4|14}$ остались незакрытые 0

Записываем дизъюнкцию $M_{3|4|15}=M_{3|4}\lor r_{15}=011110001001000\lor 000000000000011=0111100010010111$

В строке $M_{3|4|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{3|6}=r_3\lor r_6=011010001001000\lor 000011111011010=011011111011010$

В строке $M_{3|6}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют нули на позициях 1, 4

В строке $M_{3|7}$ находим номера нулевых элементов, составляем список $J' = \{8, 10, 13, 15\}$

Строки 8, 10, 13, 15 не закроют ноль на 4 позиции

Записываем дизъюнкцию $M_{3|8}=r_3\lor r_8=011010001001000\lor 000001011011010=011011011011010$

В строке $M_{3|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют нули на позициях 1, 4, 7

Записываем дизъюнкцию $M_{3|10}=r_3\lor r_{10}=011010001001000\lor 000000001111010=011010001111010$

В строке $M_{3|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 1, 4, 6, 7, 8

Записываем дизъюнкцию $M_{3|11}=r_3\lor r_{11}=011010001001000\lor 100001110111000=111011111111000$

В строке $M_{3|11}$ находим номера нулевых элементов, составляем список $J' = \{13, 14, 15\}$

Строки 13, 14, 15 не закроют ноль на 4 позиции

Записываем дизъюнкцию $M_{3|13}=r_3\lor r_{13}=011010001001000\lor 000000000001110=011010001001110$

В строке $M_{3|13}$ находим номера нулевых элементов, составляем список $J' = \{15\}$

Строка 15 не закроет нули на позициях 1, 4, 6, 7, 8, 10, 11

Записываем дизъюнкцию $M_{3|14}=r_3\lor r_{14}=011010001001000\lor 100001110100111=111011111101111$

В строке $M_{3|14}$ остались незакрытые 0

Записываем дизъюнкцию $M_{3|15}=r_3\lor r_{15}=011010001001000\lor 000000000000011=0110100010010111$

В строке $M_{3|15}$ остались незакрытые 0

В 4 строке ищем первый нулевой элемент $|r_{4|5}|$

Записываем дизъюнкцию $M_{4|5}=r_4 \lor r_5=010100001001000 \lor 101011001001000=111111001001000$

В строке $M_{4|5}$ находим номера нулевых элементов, составляем список $J' = \{7, 8, 10, 11, 13, 14, 15\}$

В строке $M_{4|5|7}$ находим номера нулевых элементов, составляем список $J' = \{8, 10, 13, 15\}$

Записываем дизъюнкцию $M_{4|5|7|8}=M_{4|5|7}\lor r_8=111111101011010\lor 000001011011010=111111111011010$

В строке $M_{4|5|7|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

В строке $M_{4|5|7|8|10}$ находим номера нулевых элементов, составляем список $J'=\{13,15\}$

В строке $M_{4|5|7|8|10|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{4|5|7|8|10|13|15}1\psi_{14} = \{u_{1|11}, u_{3|11}, u_{3|9}, u_{3|8}, u_{3|7}, u_{4|7}, u_{5|7}\}$

В строке $M_{4|5|7|8|10|15}$ остались незакрытые 0

В строке $M_{4|5|7|8|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет ноль на 10 позиции

В строке $M_{4|5|7|8|15}$ остались незакрытые 0

В строке $M_{4|5|7|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют ноль на 8 позиции

Записываем дизъюнкцию $M_{4|5|7|13}=M_{4|5|7}\lor r_{13}=111111101011010\lor 000000000001110=111111101011110$

В строке $M_{4|5|7|13}$ находим номера нулевых элементов, составляем список J'=

{15}

Строка 15 не закроет нули на позициях 8, 10

Записываем дизъюнкцию $M_{4|5|7|15}=M_{4|5|7}\lor r_{15}=111111101011010\lor 0000000000000011=111111101011011$

В строке $M_{4|5|7|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{4|5|8}=M_{4|5} \lor r_8=111111001001000 \lor 000001011011010=111111011011010$

В строке $M_{4|5|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют ноль на 7 позиции

Записываем дизъюнкцию $M_{4|5|10}=M_{4|5} \lor r_{10}=111111001001000 \lor 000000001111010=111111001111010$

В строке $M_{4|5|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 7, 8

В строке $M_{4|5|11}$ находим номера нулевых элементов, составляем список $J' = \{13, 14, 15\}$

В строке $M_{4|5|11|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

В строке $M_{4|5|11|13|15}1\psi_{15} = \{u_{1|11}, u_{3|11}, u_{4|10}, u_{4|7}, u_{5|7}\}$

В строке $M_{4|5|11|14}1\psi_{16} = \{u_{1|11}, u_{3|11}, u_{4|10}, u_{6|10}\}$

В строке $M_{4|5|11|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{4|5|13}=M_{4|5} \lor r_{13}=111111001001000 \lor 000000000001110=111111001001110$

В строке $M_{4|5|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет нули на позициях 7, 8, 10, 11

В строке $M_{4|5|14}$ остались незакрытые 0

Записываем дизъюнкцию $M_{4|5|15}=M_{4|5} \lor r_{15}=111111001001000 \lor 000000000000011=111111001001011$

В строке $M_{4|5|15}$ остались незакрытые 0

Записываем дизъюнкцию $M_{4|6}=r_4 \lor r_6=010100001001000 \lor 000011111011010=010111111011010$

В строке $M_{4|6}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют нули на позициях 1, 3

В строке $M_{4|7}$ находим номера нулевых элементов, составляем список $J' = \{8, 10, 13, 15\}$

Строки 8, 10, 13, 15 не закроют нули на позициях 3, 5

Записываем дизъюнкцию $M_{4|8}=r_4 \lor r_8=010100001001000 \lor 000001011011010=010101011011010$

В строке $M_{4|8}$ находим номера нулевых элементов, составляем список $J' = \{10, 13, 15\}$

Строки 10, 13, 15 не закроют нули на позициях 1, 3, 5, 7

Записываем дизъюнкцию $M_{4|10}=r_4 \lor r_{10}=010100001001000 \lor 000000001111010=010100001111010$

В строке $M_{4|10}$ находим номера нулевых элементов, составляем список $J' = \{13, 15\}$

Строки 13, 15 не закроют нули на позициях 1, 3, 5, 6, 7, 8

Записываем дизъюнкцию $M_{4|11}=r_4\lor r_{11}=010100001001000\lor 100001110111000=110101111111000$

В строке $M_{4|11}$ находим номера нулевых элементов, составляем список $J' = \{13, 14, 15\}$

Строки 13, 14, 15 не закроют нули на позициях 3, 5

Записываем дизъюнкцию $M_{4|13}=r_4 \lor r_{13}=010100001001000 \lor 000000000001110=010100001001110$

В строке $M_{4|13}$ находим номера нулевых элементов, составляем список $J'=\{15\}$

Строка 15 не закроет нули на позициях 1, 3, 5, 6, 7, 8, 10, 11

Записываем дизъюнкцию $M_{4|14}=r_4\lor r_{14}=010100001001000\lor 100001110100111=110101111101111$

В строке $M_{4|14}$ остались незакрытые 0

Записываем дизъюнкцию $M_{4|15}=r_4\lor r_{15}=010100001001000\lor 00000000000011=010100001001011$

В строке $M_{4|15}$ остались незакрытые 0

Из матрицы R(G') видно, что строки с номерами j>4 не смогут закрыть ноль в позиции 2

Семейство максимальных внутрение устойчивых множеств ψ_G построено. Это:

$$\psi_1 = \{u_{1|8}, u_{1|10}, u_{1|11}, u_{2|7}, u_{3|7}, u_{4|7}, u_{5|7}\}$$

 $\psi_2 = \{u_{1|8}, u_{1|10}, u_{1|11}, u_{3|8}, u_{3|7}, u_{4|7}, u_{5|7}\}$

```
\begin{split} &\psi_3 = \{u_{2|12}, u_{3|11}, u_{3|9}, u_{3|8}, u_{3|7}, u_{4|7}, u_{5|7}\} \\ &\psi_4 = \{u_{2|12}, u_{3|11}, u_{4|10}, u_{4|7}, u_{5|7}\} \\ &\psi_5 = \{u_{2|12}, u_{3|11}, u_{4|10}, u_{6|10}\} \\ &\psi_6 = \{u_{2|12}, u_{2|7}, u_{3|7}, u_{4|7}, u_{5|7}\} \\ &\psi_7 = \{u_{2|12}, u_{4|12}, u_{4|10}, u_{4|7}, u_{5|7}\} \\ &\psi_8 = \{u_{2|12}, u_{4|12}, u_{4|10}, u_{6|10}\} \\ &\psi_9 = \{u_{2|12}, u_{4|12}, u_{5|12}, u_{6|10}\} \\ &\psi_{10} = \{u_{2|12}, u_{4|12}, u_{5|12}, u_{5|7}\} \\ &\psi_{11} = \{u_{1|10}, u_{1|11}, u_{3|9}, u_{3|8}, u_{3|7}, u_{4|7}, u_{5|7}\} \\ &\psi_{12} = \{u_{1|10}, u_{1|11}, u_{4|10}, u_{4|7}, u_{5|7}\} \\ &\psi_{13} = \{u_{1|10}, u_{1|11}, u_{4|10}, u_{6|10}\} \\ &\psi_{14} = \{u_{1|11}, u_{3|11}, u_{3|9}, u_{3|8}, u_{3|7}, u_{4|7}, u_{5|7}\} \\ &\psi_{15} = \{u_{1|11}, u_{3|11}, u_{4|10}, u_{4|7}, u_{5|7}\} \\ &\psi_{16} = \{u_{1|11}, u_{3|11}, u_{4|10}, u_{6|10}\} \end{split}
```

Выделение из G' максимального двудольного подграфа H'

Для каждой пары множеств вычислим значение критерия

$$\alpha_{\gamma\beta} = |\psi_{\gamma}| + |\psi_{\beta}| - |\psi_{\gamma} \cap \psi_{\beta}|:$$

$$\alpha_{12} = |\psi_1| + |\psi_2| - |\psi_1 \cap \psi_2| = 7 + 7 - 6 = 8$$

$$\alpha_{13} = |\psi_1| + |\psi_3| - |\psi_1 \cap \psi_3| = 7 + 7 - 3 = 11$$

$$\alpha_{14} = |\psi_1| + |\psi_4| - |\psi_1 \cap \psi_4| = 7 + 5 - 2 = 10$$

$$\alpha_{15} = |\psi_1| + |\psi_5| - |\psi_1 \cap \psi_5| = 7 + 4 = 11$$

$$\alpha_{16} = |\psi_1| + |\psi_6| - |\psi_1 \cap \psi_6| = 7 + 5 - 4 = 8$$

$$\alpha_{17} = |\psi_1| + |\psi_7| - |\psi_1 \cap \psi_7| = 7 + 5 - 2 = 10$$

$$\alpha_{18} = |\psi_1| + |\psi_8| - |\psi_1 \cap \psi_8| = 7 + 4 = 11$$

$$\alpha_{19} = |\psi_1| + |\psi_9| - |\psi_1 \cap \psi_9| = 7 + 4 = 11$$

$$\alpha_{110} = |\psi_1| + |\psi_{10}| - |\psi_1 \cap \psi_{10}| = 7 + 4 - 1 = 10$$

$$\alpha_{111} = |\psi_1| + |\psi_{11}| - |\psi_1 \cap \psi_{11}| = 7 + 7 - 5 = 9$$

$$\alpha_{112} = |\psi_1| + |\psi_{12}| - |\psi_1 \cap \psi_{12}| = 7 + 5 - 4 = 8$$

$$\alpha_{113} = |\psi_1| + |\psi_{13}| - |\psi_1 \cap \psi_{13}| = 7 + 4 - 2 = 9$$

$$\alpha_{114} = |\psi_1| + |\psi_{14}| - |\psi_1 \cap \psi_{15}| = 7 + 5 - 3 = 9$$

$$\alpha_{115} = |\psi_1| + |\psi_{15}| - |\psi_1 \cap \psi_{15}| = 7 + 4 - 1 = 10$$

$$\alpha_{23} = |\psi_2| + |\psi_3| - |\psi_2 \cap \psi_3| = 7 + 7 - 4 = 10$$

$$\alpha_{24} = |\psi_2| + |\psi_4| - |\psi_2 \cap \psi_4| = 7 + 5 - 2 = 10$$

$$\alpha_{25} = |\psi_2| + |\psi_5| - |\psi_2 \cap \psi_5| = 7 + 4 = 11$$

$$\alpha_{26} = |\psi_2| + |\psi_6| - |\psi_2 \cap \psi_6| = 7 + 5 - 3 = 9$$

$$\alpha_{27} = |\psi_2| + |\psi_7| - |\psi_2 \cap \psi_7| = 7 + 5 - 2 = 10$$

$$\alpha_{28} = |\psi_2| + |\psi_8| - |\psi_2 \cap \psi_8| = 7 + 4 = 11$$

$$\begin{aligned} &\alpha_{29} = |\psi_2| + |\psi_9| - |\psi_2 \cap \psi_9| = 7 + 4 = 11 \\ &\alpha_{210} = |\psi_2| + |\psi_{10}| - |\psi_2 \cap \psi_{10}| = 7 + 4 - 1 = 10 \\ &\alpha_{211} = |\psi_2| + |\psi_{11}| - |\psi_2 \cap \psi_{11}| = 7 + 7 - 6 = 8 \\ &\alpha_{212} = |\psi_2| + |\psi_{13}| - |\psi_2 \cap \psi_{13}| = 7 + 4 - 2 = 9 \\ &\alpha_{213} = |\psi_2| + |\psi_{13}| - |\psi_2 \cap \psi_{13}| = 7 + 4 - 2 = 9 \\ &\alpha_{214} = |\psi_2| + |\psi_{14}| - |\psi_2 \cap \psi_{14}| = 7 + 7 - 5 = 9 \\ &\alpha_{215} = |\psi_2| + |\psi_{16}| - |\psi_2 \cap \psi_{16}| = 7 + 4 - 1 = 10 \\ &\alpha_{34} = |\psi_3| + |\psi_4| - |\psi_3 \cap \psi_4| = 7 + 5 - 4 = 8 \\ &\alpha_{35} = |\psi_3| + |\psi_5| - |\psi_3 \cap \psi_5| = 7 + 4 - 2 = 9 \\ &\alpha_{36} = |\psi_3| + |\psi_5| - |\psi_3 \cap \psi_5| = 7 + 4 - 2 = 9 \\ &\alpha_{36} = |\psi_3| + |\psi_6| - |\psi_3 \cap \psi_6| = 7 + 5 - 4 = 8 \\ &\alpha_{37} = |\psi_3| + |\psi_7| - |\psi_3 \cap \psi_7| = 7 + 5 - 3 = 9 \\ &\alpha_{38} = |\psi_3| + |\psi_9| - |\psi_3 \cap \psi_9| = 7 + 4 - 1 = 10 \\ &\alpha_{39} = |\psi_3| + |\psi_9| - |\psi_3 \cap \psi_9| = 7 + 4 - 1 = 10 \\ &\alpha_{310} = |\psi_3| + |\psi_{10}| - |\psi_3 \cap \psi_{11}| = 7 + 7 - 5 = 9 \\ &\alpha_{311} = |\psi_3| + |\psi_{11}| - |\psi_3 \cap \psi_{11}| = 7 + 7 - 5 = 9 \\ &\alpha_{312} = |\psi_3| + |\psi_{13}| - |\psi_3 \cap \psi_{13}| = 7 + 4 = 11 \\ &\alpha_{314} = |\psi_3| + |\psi_{14}| - |\psi_3 \cap \psi_{15}| = 7 + 5 - 3 = 9 \\ &\alpha_{315} = |\psi_3| + |\psi_{15}| - |\psi_3 \cap \psi_{15}| = 7 + 5 - 3 = 9 \\ &\alpha_{316} = |\psi_3| + |\psi_{16}| - |\psi_4 \cap \psi_{16}| = 5 + 4 - 1 = 10 \\ &\alpha_{45} = |\psi_4| + |\psi_5| - |\psi_4 \cap \psi_6| = 5 + 5 - 3 = 7 \\ &\alpha_{47} = |\psi_4| + |\psi_6| - |\psi_4 \cap \psi_6| = 5 + 5 - 3 = 7 \\ &\alpha_{47} = |\psi_4| + |\psi_{10}| - |\psi_4 \cap \psi_{10}| = 5 + 4 - 2 = 7 \\ &\alpha_{411} = |\psi_4| + |\psi_{11}| - |\psi_4 \cap \psi_{11}| = 5 + 7 - 2 = 10 \\ &\alpha_{412} = |\psi_4| + |\psi_{11}| - |\psi_4 \cap \psi_{11}| = 5 + 7 - 2 = 10 \\ &\alpha_{413} = |\psi_4| + |\psi_{14}| - |\psi_4 \cap \psi_{11}| = 5 + 7 - 3 = 9 \\ &\alpha_{415} = |\psi_4| + |\psi_{11}| - |\psi_4 \cap \psi_{11}| = 5 + 7 - 3 = 9 \\ &\alpha_{415} = |\psi_4| + |\psi_{16}| - |\psi_4 \cap \psi_{16}| = 5 + 4 - 2 = 7 \\ &\alpha_{413} = |\psi_4| + |\psi_{16}| - |\psi_4 \cap \psi_{11}| = 5 + 7 - 3 = 9 \\ &\alpha_{415} = |\psi_5| + |\psi_1| - |\psi_5 \cap \psi_1| = 4 + 5 - 1 = 8 \\ &\alpha_{57} = |\psi_5| + |\psi_6| - |\psi_5 \cap \psi_6| = 4 + 5 - 1 = 8 \\ &\alpha_{59} = |\psi_5| + |\psi_6| - |\psi_5 \cap \psi_{11}| = 4 + 7 - 1 = 10 \\ &\alpha_{513} = |\psi_5| + |\psi_{11}| - |\psi_5 \cap \psi_{11}| = 4 + 7 - 1 = 10 \\ &\alpha_{514} = |\psi_5| + |\psi_{11}| - |\psi_5 \cap \psi_{11}| = 4$$

$$\begin{split} &\alpha_{515} = |\psi_{5}| + |\psi_{15}| - |\psi_{5} \cap \psi_{15}| = 4 + 5 - 2 = 7 \\ &\alpha_{516} = |\psi_{5}| + |\psi_{16}| - |\psi_{5} \cap \psi_{16}| = 4 + 4 - 3 = 5 \\ &\alpha_{67} = |\psi_{6}| + |\psi_{7}| - |\psi_{6} \cap \psi_{7}| = 5 + 5 - 3 = 7 \\ &\alpha_{68} = |\psi_{6}| + |\psi_{8}| - |\psi_{6} \cap \psi_{8}| = 5 + 4 - 1 = 8 \\ &\alpha_{69} = |\psi_{6}| + |\psi_{10}| - |\psi_{6} \cap \psi_{10}| = 5 + 4 - 2 = 7 \\ &\alpha_{611} = |\psi_{6}| + |\psi_{11}| - |\psi_{6} \cap \psi_{11}| = 5 + 7 - 3 = 9 \\ &\alpha_{612} = |\psi_{6}| + |\psi_{11}| - |\psi_{6} \cap \psi_{11}| = 5 + 7 - 3 = 9 \\ &\alpha_{612} = |\psi_{6}| + |\psi_{12}| - |\psi_{6} \cap \psi_{11}| = 5 + 7 - 3 = 9 \\ &\alpha_{612} = |\psi_{6}| + |\psi_{13}| - |\psi_{6} \cap \psi_{13}| = 5 + 4 = 9 \\ &\alpha_{613} = |\psi_{6}| + |\psi_{13}| - |\psi_{6} \cap \psi_{14}| = 5 + 7 - 3 = 9 \\ &\alpha_{614} = |\psi_{6}| + |\psi_{15}| - |\psi_{6} \cap \psi_{16}| = 5 + 4 = 9 \\ &\alpha_{615} = |\psi_{6}| + |\psi_{16}| - |\psi_{6} \cap \psi_{16}| = 5 + 4 = 9 \\ &\alpha_{78} = |\psi_{7}| + |\psi_{8}| - |\psi_{7} \cap \psi_{8}| = 5 + 4 - 3 = 6 \\ &\alpha_{79} = |\psi_{7}| + |\psi_{9}| - |\psi_{7} \cap \psi_{9}| = 5 + 4 - 3 = 6 \\ &\alpha_{79} = |\psi_{7}| + |\psi_{10}| - |\psi_{7} \cap \psi_{10}| = 5 + 4 - 3 = 6 \\ &\alpha_{711} = |\psi_{7}| + |\psi_{11}| - |\psi_{7} \cap \psi_{11}| = 5 + 7 - 2 = 10 \\ &\alpha_{712} = |\psi_{7}| + |\psi_{11}| - |\psi_{7} \cap \psi_{11}| = 5 + 7 - 2 = 10 \\ &\alpha_{712} = |\psi_{7}| + |\psi_{13}| - |\psi_{7} \cap \psi_{13}| = 5 + 4 - 1 = 8 \\ &\alpha_{714} = |\psi_{7}| + |\psi_{13}| - |\psi_{7} \cap \psi_{14}| = 5 + 7 - 2 = 10 \\ &\alpha_{715} = |\psi_{7}| + |\psi_{16}| - |\psi_{7} \cap \psi_{16}| = 5 + 4 - 1 = 8 \\ &\alpha_{89} = |\psi_{8}| + |\psi_{10}| - |\psi_{8} \cap \psi_{10}| = 4 + 4 - 2 = 6 \\ &\alpha_{811} = |\psi_{8}| + |\psi_{10}| - |\psi_{8} \cap \psi_{11}| = 4 + 7 = 11 \\ &\alpha_{812} = |\psi_{8}| + |\psi_{11}| - |\psi_{8} \cap \psi_{11}| = 4 + 7 = 11 \\ &\alpha_{813} = |\psi_{8}| + |\psi_{13}| - |\psi_{8} \cap \psi_{13}| = 4 + 4 - 2 = 6 \\ &\alpha_{910} = |\psi_{9}| + |\psi_{11}| - |\psi_{9} \cap \psi_{10}| = 4 + 4 - 2 = 6 \\ &\alpha_{911} = |\psi_{9}| + |\psi_{11}| - |\psi_{9} \cap \psi_{10}| = 4 + 4 - 2 = 6 \\ &\alpha_{911} = |\psi_{9}| + |\psi_{11}| - |\psi_{9} \cap \psi_{10}| = 4 + 5 - 1 = 8 \\ &\alpha_{1014} = |\psi_{9}| + |\psi_{11}| - |\psi_{9} \cap \psi_{10}| = 4 + 7 = 11 \\ &\alpha_{115} = |\psi_{9}| + |\psi_{11}| - |\psi_{9} \cap \psi_{10}| = 4 + 7 = 11 \\ &\alpha_{115} = |\psi_{9}| + |\psi_{11}| - |\psi_{9} \cap \psi_{11}| = 4 + 7 = 11 \\ &\alpha_{1015} = |\psi_{9}| + |\psi_{11}| - |\psi_{10} \cap \psi_{11}| = 4 + 7 = 11 \\ &\alpha_{$$

```
\begin{split} &\alpha_{1112} = |\psi_{11}| + |\psi_{12}| - |\psi_{11} \cap \psi_{12}| = 7 + 5 - 4 = 8 \\ &\alpha_{1113} = |\psi_{11}| + |\psi_{13}| - |\psi_{11} \cap \psi_{13}| = 7 + 4 - 2 = 9 \\ &\alpha_{1114} = |\psi_{11}| + |\psi_{14}| - |\psi_{11} \cap \psi_{14}| = 7 + 7 - 6 = 8 \\ &\alpha_{1115} = |\psi_{11}| + |\psi_{15}| - |\psi_{11} \cap \psi_{15}| = 7 + 5 - 3 = 9 \\ &\alpha_{1116} = |\psi_{11}| + |\psi_{16}| - |\psi_{11} \cap \psi_{16}| = 7 + 4 - 1 = 10 \\ &\alpha_{1213} = |\psi_{12}| + |\psi_{13}| - |\psi_{12} \cap \psi_{13}| = 5 + 4 - 3 = 6 \\ &\alpha_{1214} = |\psi_{12}| + |\psi_{14}| - |\psi_{12} \cap \psi_{14}| = 5 + 7 - 3 = 9 \\ &\alpha_{1215} = |\psi_{12}| + |\psi_{15}| - |\psi_{12} \cap \psi_{15}| = 5 + 5 - 4 = 6 \\ &\alpha_{1216} = |\psi_{12}| + |\psi_{16}| - |\psi_{12} \cap \psi_{16}| = 5 + 4 - 2 = 7 \\ &\alpha_{1314} = |\psi_{13}| + |\psi_{14}| - |\psi_{13} \cap \psi_{14}| = 4 + 7 - 1 = 10 \\ &\alpha_{1315} = |\psi_{13}| + |\psi_{15}| - |\psi_{13} \cap \psi_{15}| = 4 + 5 - 2 = 7 \\ &\alpha_{1316} = |\psi_{13}| + |\psi_{16}| - |\psi_{13} \cap \psi_{16}| = 4 + 4 - 3 = 5 \\ &\alpha_{1415} = |\psi_{14}| + |\psi_{15}| - |\psi_{14} \cap \psi_{15}| = 7 + 5 - 4 = 8 \\ &\alpha_{1416} = |\psi_{14}| + |\psi_{16}| - |\psi_{14} \cap \psi_{16}| = 7 + 4 - 2 = 9 \\ &\alpha_{1516} = |\psi_{15}| + |\psi_{16}| - |\psi_{15} \cap \psi_{16}| = 5 + 4 - 3 = 6 \end{split}
```

На основе полученных данных построим таблицу:

	ψ_1	ψ_2	ψ_3	ψ_4	ψ_5	ψ_6	ψ_7	ψ_8	ψ_9	ψ_{10}	ψ_{11}	ψ_{12}	ψ_{13}	ψ_{14}	ψ_{15}	ψ_{16}
ψ_1	0	8	11	10	11	8	10	11	11	10	9	8	9	10	9	10
ψ_2		0	10	10	11	9	10	11	11	10	8	8	9	9	9	10
ψ_3			0	8	9	8	9	10	10	9	9	10	11	8	9	10
ψ_4				0	6	7	6	7	8	7	10	7	8	9	6	7
ψ_5					0	8	7	5	6	7	11	8	6	10	7	5
ψ_6						0	7	8	8	7	9	8	9	9	8	9
ψ_7							0	6	7	6	10	7	8	10	7	8
ψ_8								0	5	6	11	8	6	11	8	6
ψ_9									0	5	11	9	7	11	9	7
ψ_{10}										0	10	8	8	10	8	8
ψ_{11}											0	8	9	8	9	10
ψ_{12}												0	6	9	6	7
ψ_{13}													0	10	7	5
ψ_{14}										·				0	8	9
ψ_{15}															0	6
ψ_{16}																0

 $\max \alpha_{i-j} = 11$

Этому соответствует пара ψ_1 и ψ_3 , проведём внутри гамильтонова цикла рёбра ψ_1 , а снаружи рёбра ψ_3 :

Удалим из ψ_G рёбра, вошедшие в эти множества:

$$\psi_1 = \{\}$$

$$\psi_2 = \{\}$$

$$\psi_3 = \{\}$$

$$\psi_4 = \{u_{4|10}\}$$

$$\psi_5 = \{u_{4|10}, u_{6|10}\}$$

$$\psi_6 = \{\}$$

$$\psi_7 = \{u_{4|12}, u_{4|10}\}$$

$$\psi_8 = \{u_{4|12}, u_{4|10}, u_{6|10}\}\$$

$$\psi_9 = \{u_{4|12}, u_{5|12}, u_{6|10}\}$$

$$\psi_{10} = \{u_{4|12}, u_{5|12}, \}$$

$$\psi_{11} = \{\}$$

$$\psi_{12} = \{u_{4|10}\}\$$

$$\psi_{13} = \{u_{4|10}, u_{6|10}\}\$$

$$\psi_{14} = \{\}$$

$$\psi_{15} = \{u_{4|10}\}$$

$$\psi_{16} = \{u_{4|10}, u_{6|10}\}\$$

Удалим пустые и объеденим одинаковые множества:

$$\psi_4 = \{u_{4|10}\}$$

$$\psi_5 = \{u_{4|10}, u_{6|10}\}\$$

$$\psi_7 = \{u_{4|12}, u_{4|10}\}$$

$$\psi_8 = \{u_{4|12}, u_{4|10}, u_{6|10}\}$$

$$\psi_9 = \{u_{4|12}, u_{5|12}, u_{6|10}\}$$

$$\psi_{10} = \{u_{4|12}, u_{5|12}, \}$$

Вычислим новые значения критерия:

$$\alpha_{45} = |\psi_4| + |\psi_5| - |\psi_4 \cap \psi_5| = 1 + 2 - 1 = 2$$

$$\alpha_{47} = |\psi_4| + |\psi_7| - |\psi_4 \cap \psi_7| = 1 + 2 - 1 = 2$$

$$\alpha_{48} = |\psi_4| + |\psi_8| - |\psi_4 \cap \psi_8| = 1 + 3 - 1 = 3$$

$$\begin{split} &\alpha_{49} = |\psi_4| + |\psi_9| - |\psi_4 \cap \psi_9| = 1 + 3 = 4 \\ &\alpha_{410} = |\psi_4| + |\psi_{10}| - |\psi_4 \cap \psi_{10}| = 1 + 2 - 1 = 3 \\ &\alpha_{57} = |\psi_5| + |\psi_7| - |\psi_5 \cap \psi_7| = 2 + 2 - 1 = 3 \\ &\alpha_{58} = |\psi_5| + |\psi_8| - |\psi_5 \cap \psi_8| = 2 + 3 - 2 = 3 \\ &\alpha_{59} = |\psi_5| + |\psi_9| - |\psi_5 \cap \psi_9| = 2 + 3 - 1 = 4 \\ &\alpha_{510} = |\psi_5| + |\psi_{10}| - |\psi_5 \cap \psi_{10}| = 2 + 2 = 4 \\ &\alpha_{78} = |\psi_7| + |\psi_8| - |\psi_7 \cap \psi_8| = 2 + 3 - 2 = 3 \\ &\alpha_{79} = |\psi_7| + |\psi_9| - |\psi_7 \cap \psi_9| = 2 + 3 - 1 = 4 \\ &\alpha_{710} = |\psi_7| + |\psi_{10}| - |\psi_7 \cap \psi_{10}| = 2 + 2 - 1 = 3 \\ &\alpha_{89} = |\psi_8| + |\psi_9| - |\psi_8 \cap \psi_9| = 3 + 3 - 2 = 4 \\ &\alpha_{810} = |\psi_8| + |\psi_{10}| - |\psi_8 \cap \psi_{10}| = 3 + 2 - 1 = 4 \\ &\alpha_{910} = |\psi_9| + |\psi_{10}| - |\psi_9 \cap \psi_{10}| = 3 + 2 - 2 = 3 \end{split}$$

	ψ_4	ψ_5	ψ_7	ψ_8	ψ_9	ψ_{10}
ψ_4	0	2	2	3	4	3
ψ_5		0	3	3	4	4
ψ_7			0	3	4	3
ψ_8				0	4	4
ψ_9					0	3
ψ_{10}						0

 $\max \alpha_{i-j} = 4$

Этому соответствует пара ψ_4 и ψ_9 , проведём внутри гамильтонова цикла рёбра ψ_9 , а снаружи рёбра ψ_4 :

Удалим из ψ_G рёбра, вошедшие в эти множества:

$$\psi_9 = \{\}$$

$$\psi_4 = \{\}$$

$$\psi_5 = \{\}$$

$$\psi_7 = \{\}$$

$$\psi_8 = \{\}$$

$$\psi_{10} = \{\}$$

После удаления пустых множеств, $\psi_G = \{\}$, а значит граф планаризован Толщина графа m=2