References:

- 1. Acebrón, Juan A.; Bonilla, L. L.; Vicente, Pérez; Conrad, J.; Ritort, Félix; Spigler, Renato (2005). "The Kuramoto model: A simple paradigm for synchronization phenomena". *Reviews of Modern Physics* **77**: 137–185.
- 2. Strogatz S (2000). "From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators". *Physica D* **143** (1–4): 1–20
- 3. Bullmore, E.T, Sporns, O. "Complex brain networks: graph-theoretical analysis of structural and functional systems." Nature Reviews Neuroscience 10, 186-198
- 4. Newman, Mark. Networks: an introduction. Oxford University Press, 2010.

Outline:

- 1) Motivation
 - My background in Neuroscience
 - Justification/Historical Background of complex network approaches to Neuroscience
- 2) Basic Neuroscience
 - Neurons and Cortical Regions understood as oscillators
 - Cognitive implications of synchronization and noise
 - Justification for Complex/Dynamical Systems view of Neuroscience
 - Time-evolution of functional cortical systems
- 3) Basic Graph Theory
 - Adjacency Matrix
 - · Random, Small-world, and Scale-free graphs
 - Modularity and Hierarchy
- 4) Presentation of Kuramoto Model
 - History of the Model Winfree -> Strogatz -> Now
 - All-to-all coupled case and mean field transformation (and derivation)
 - Extension to various biological principles (complex network topologies, noise, time delays, inhibitory coupling)
- 5) Simulations and Discussions
 - Fully Coupled Net (with/without noise)
 - Random Net
 - Small-world net
 - "Brain-like" net with and without noise, time delay, inhibition
- 6) Future
 - My future
 - Future of the research
 - Some take-away nuggets (TBD)