Chapter 1

Fundamental Concepts

Definition 1.1

If $U \subset \mathbb{R}^2$ is open and $f: U \to \mathbb{R}$ is a continuous function, then f is called C^1 on U if $\partial f/\partial x, \partial f/\partial y$ exist and are continuous on U.

Definition 1.2

We define for $f = u + iv : U \to \mathbb{C}$ a C_1 function

$$\frac{\partial}{\partial z}f := \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})f$$
$$\frac{\partial}{\partial \bar{z}}f := \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})f$$

which is easy to be checked linear and the chain rules.

where we may check let z = x + iy, $\bar{z} = x - iy$, we have

$$\begin{split} \frac{\partial}{\partial z}z &= 1, \quad \frac{\partial}{\partial z}\bar{z} = 0 \\ \frac{\partial}{\partial \bar{z}}z &= 0, \quad \frac{\partial}{\partial \bar{z}}\bar{z} = 1 \end{split}$$

Proposition 1.1

(The Leibniz Rules) We have for any $F, G \in C^1$

$$\frac{\partial}{\partial z}(F \cdot G) = \frac{\partial F}{\partial z} \cdot G + F \cdot \frac{\partial G}{\partial z}$$
$$\frac{\partial}{\partial \overline{z}}(F \cdot G) = \frac{\partial F}{\partial \overline{z}} \cdot G + F \cdot \frac{\partial G}{\partial \overline{z}}$$

Proposition 1.2

We have for $l \le j, m \le k$ nonnegative integers and then

$$(\frac{\partial^l}{\partial z^l})(\frac{\partial^m}{\partial \bar{z}^m})(z^j\bar{z}^k) = \frac{j!}{l!}\frac{k!}{m!}z^{j-l}\bar{z}^{k-m}$$

Proposition 1.3

If $p(z,\bar{z}) = \sum a_{lm} z^l \bar{z}^m$ is a polynomial, then p contains no term with m > 0 iff $\frac{\partial p}{\partial \bar{z}} \equiv 0$.

Corollary 1.1

If $p(z, \bar{z}) = qz, \bar{z}$ are polynomials, then they have same coefficients.

Definition 1.3

A C_1 function $f: U \mapsto \mathbb{C}$ is said to be holomorphic if

$$\frac{\partial f}{\partial \bar{z}} = 0$$

at every point of U.

Definition 1.4

A C^1 function $f = u(x,y) + iv(x,y) : U \to \mathbb{C}$ is holomorphic if

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

at every point of U, which is called the Cauchy-Riemann equations.

Proposition 1.4

If $f: U \to \mathbb{C}$ is C^1 and if f satisfies the C-R equations, then

$$\frac{\partial}{\partial z}f = \frac{\partial}{\partial x}f = -i\frac{\partial}{\partial y}f$$

on U.

Proof

We have

$$\begin{split} \frac{\partial}{\partial x}f &= \frac{\partial}{\partial x}u + i\frac{\partial}{\partial x}v = (\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})u = 2\frac{\partial}{\partial z}u \\ \frac{\partial}{\partial x}f &= \frac{\partial}{\partial x}u + i\frac{\partial}{\partial x}v = i(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})v = 2\frac{\partial}{\partial z}iv \\ -i\frac{\partial}{\partial y}f &= -i\frac{\partial}{\partial y}u + \frac{\partial}{\partial y}v = (\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})u = 2\frac{\partial}{\partial z}u \\ -i\frac{\partial}{\partial y}f &= -i\frac{\partial}{\partial y}u + \frac{\partial}{\partial y}v = i(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})v = 2\frac{\partial}{\partial z}iv \end{split}$$

on U.

Definition 1.5

If $U \subset \mathbb{C}$ is open and $u \in C^2(U)$, then u is called harmonic if

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

where we also denote it as

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

where the operator is called the Laplace operator.

Here we have

$$4\frac{\partial}{\partial \bar{z}}\frac{\partial}{\partial z}u = 4\frac{\partial}{\partial z}\frac{\partial}{\partial \bar{z}} = \Delta u$$

Proposition 1.5

The real and imaginary parts of a holomorphic C^2 function are harmonic.

Proof

Assume f = u + iv and then according to C-R equations, we have

$$\frac{\partial^2}{\partial x^2}u = \frac{\partial^2}{\partial x \partial y}v = \frac{\partial^2}{\partial y \partial x}v = -\frac{\partial^2}{\partial y^2}u$$

and

$$\frac{\partial^2}{\partial x^2}v = -\frac{\partial^2}{\partial x \partial y}u = -\frac{\partial^2}{\partial y \partial x}u = -\frac{\partial^2}{\partial y^2}v$$

Lemma 1.1

It u(x,y) is a real-valued polynomial with $\Delta u=0$, then there exists a (holomorphic) Q(z) such that ReQ=u.

Proof

Consider $u(x,y)=u(\frac{z+\bar{z}}{2},\frac{z-\bar{z}}{2})=P(z,\bar{z})=\sum a_{lm}z^{l}\bar{z}^{m}$, we know $\Delta u=0$ and hence

$$P(z,\bar{z}) = a_0 0 + \sum_{k=0}^{m} a_k z^k + \sum_{k=0}^{n} b_k \bar{z}^k$$

P is real-valued and we know

$$a_0 0 + \sum_{k=0}^{m} a_k z^k + \sum_{k=0}^{n} b_k \bar{z}^k = \bar{a_0} 0 + \sum_{k=0}^{m} \bar{a_k} \bar{z}^k + \sum_{k=0}^{n} \bar{b_k} z^k$$

and hence $a_00\in\mathbb{R}, a_k=ar{b_k}$ and hence

$$u(z) = c + \sum_{k=0}^{n} a_k z^k + \sum_{k=0}^{n} \bar{a_k} \bar{z}^k = Re(c + 2\sum_{k=0}^{n} a_k z^k) = Re(Q)$$

where Q is obviously holomorphic.

Theorem 1.1

If f, g are C^1 functions on the rectangle

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : |x - a| < \delta, |y - b| < \epsilon\}$$

and if

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x} \text{ on } \mathcal{R}$$

then there is a function $h \in C^{(\mathcal{R})}$ such that

$$\frac{\partial}{\partial x}h = f, \frac{\partial}{\partial y}h = g$$

on R. If f, g are real-valued, then we may take h to be real-valued also.

\Diamond

Proof

For $(x, y) \in \mathcal{R}$, define

$$h(x,y) = \int_{a}^{x} f(t,b)dt + \int_{b}^{y} g(x,s)ds$$

and we know

$$\frac{\partial}{\partial y}h(x,y) = g(x,y)$$

and

$$\frac{\partial}{\partial x}h(x,y) = f(x,b) + \frac{\partial}{\partial x}\int_b^y g(x,s)ds = f(x,b) + \int_b^y \frac{\partial}{\partial y}f(x,s) = f(x,b) + f(x,y) - f(x,b) = f(x,y)$$

and hence $h \in C^2(\mathcal{R})$ and real-valued if f, g are.

Corollary 1.2

If \mathcal{R} is an open rectangle (or open disc) and if u is a real-valued harmonic function on \mathbb{R} , then there is a holomorphic function F on \mathbb{R} such that ReF = u.

Proof

We know

$$\frac{\partial^2}{\partial x^2}u + \frac{\partial^2}{\partial y^2}u = 0$$

and hence there exists v real-valued such taht

$$\frac{\partial}{\partial x}v=-\frac{\partial}{\partial y}u, \frac{\partial}{\partial y}v=\frac{\partial}{\partial x}u$$

and hence F = u + iv is a holomorphic function with Re(F) = u.

Theorem 1.2

If $U \subset \mathbb{C}$ is either an open rectangle or an open disc and if F is holomorphic on U, then there is a holomorphic function H on U such that $\partial H/\partial z = F$ on U.

Proof

Consider $H = h_1 + ih_2$ and we have F = u(z) + iv(z), then we let f = u, g = -v and we will have

$$\frac{\partial}{\partial y}f = \frac{\partial}{\partial x}g$$

and hence we have a real C^2 function h_1 such that

$$\frac{\partial}{\partial x}h_1 = u, \frac{\partial}{\partial y}h_1 = -v$$

and $h_2 \in C^2$ with

$$\frac{\partial}{\partial x}h_2 = v, \frac{\partial}{\partial y}h_2 = u$$

Then

$$\frac{\partial}{\partial z}H = \frac{1}{2}(\frac{\partial}{\partial x}h_1 + \frac{\partial}{\partial y}h_2) + \frac{i}{2}(\frac{\partial}{\partial x}h_2 - \frac{\partial}{\partial y}h_1) = u + iv = F$$

Definition 1.6

A function $\phi:[a,b]\to\mathbb{R}$ is called continuously differentiable and we write $\phi\in C^1([a,b])$ if

- (a) ϕ is continous on [a, b]
- (b) ϕ' exists on (a,b)
- (c) ϕ' has a continuous extension to [a,b], i.e.

$$\lim_{t \to a^+} \phi'(t)$$
 and $\lim_{t \to b^-} \phi'(t)$

both exists. Then $\phi(b) - \phi(a) = \int_a^b \phi'(t) dt$.

Proof

Here notice that ϕ is absolutely continuous on [a,b] respect to m, then we know $\phi(b-\epsilon)-\phi(a+\epsilon)=\int_{a+\epsilon}^{b-\epsilon}\phi'(t)dt$ for any epsilon>0, and hence

$$\phi(b) - \phi(a) = \int_{a}^{b} \phi'(t)dt$$

Definition 1.7

A curve $\gamma:[a,b]\to\mathbb{C}$ is said to be continuous on [a,b] if both γ_1 and γ_2 are, $\gamma=\gamma_1+i\gamma_2$. The curve is C_1 on [a,b] if γ_1,γ_2 are C_1 on [a,b] and then we may denote

$$\frac{d\gamma}{dt} = \frac{d\gamma_1}{dt} + i\frac{d\gamma_2}{dt}$$

Definition 1.8

Let $\varphi:[a,b]\to\mathbb{C}$ be continuous on [a,b]. Write $\varphi(t)=\varphi_1(t)+i\varphi_2(t)$. Then we define

$$\int_{a}^{b} \varphi(t)dt = \int_{a}^{b} \varphi_{1}(t)dt + i \int_{a}^{b} \varphi_{2}(t)dt$$

Proposition 1.6

Let $U \subset \mathbb{C}$ be open and let $\gamma : [a,b] \to U$ be a C_1 curve. If $f: U \to \mathbb{R}$ and $f \in C^1(U)$, then

$$f(\gamma(b)) - f(\gamma(a)) = \int_{a}^{b} \left(\frac{\partial}{\partial x} f(\gamma(t)) \frac{d\gamma_{1}}{dt} + \frac{\partial}{\partial y} f(\gamma(t)) \frac{d\gamma_{2}}{dt} \right) dt$$

This is due to the chain rule.

Proposition 1.7

Repalce f above as complex-valued and holomorphic, then we have

$$f(\gamma(b)) - f(\gamma(a)) = \int_a^b \frac{\partial}{\partial z} f(\gamma(t)) \cdot \frac{d\gamma}{dt}(t) dt$$

Proof

Notice

$$\begin{split} f(\gamma(b)) - f(\gamma(a)) &= \int_a^b \left(\frac{\partial}{\partial x} u(\gamma(t)) \frac{d\gamma_1}{dt}(t) + \frac{\partial}{\partial y} u(\gamma(t)) \frac{d\gamma_2}{dt}(t) \right) + i \left(\frac{\partial}{\partial x} v(\gamma(t)) \frac{d\gamma_1}{dt}(t) + \frac{\partial}{\partial y} v(\gamma(t)) \frac{d\gamma_2}{dt}(t) \right) dt \\ &= \frac{\partial}{\partial x} f(\gamma(t)) \frac{d\gamma}{dt}(t) = \int_a^b \frac{\partial}{\partial z} f(\gamma(t)) \frac{d\gamma}{dt}(t) dt \end{split}$$

Definition 1.9

If $U \subset \mathbb{C}$ open and $F: U \to \mathbb{C}$ is continuous on U and $\gamma: [a,b] \to U$ is a C_1 curve, then we define the complex line integral

$$\int_{\gamma} F(z)dz = \int_{a}^{b} F(\gamma(t)) \frac{d\gamma}{dt} dt$$

Proposition 1.8

Let $U \subset \mathbb{C}$ be open and let $\gamma: [a,b] \to U$ be a C^1 curve. If f is a holomorphic function on U, then

$$f(\gamma(b)) - f(\gamma(a)) = \int_{\gamma} \frac{\partial}{\partial z} f(z) dz$$

Proposition 1.9

If ϕ : $[a,b] \to \mathbb{C}$ *is continuous, then*

$$\left| \int_{a}^{b} \phi(t)dt \right| \leq \int_{a}^{b} |\phi(t)|dt$$

Proposition 1.10

Let $U \subset \mathbb{C}$ be open and $f \in C^0(U)$. If $\gamma : [a,b] \to U$ is a C^1 curve, then

$$\left| \int_{\gamma} f(z)dz \right| \le \left(\sup_{t \in [a,b]} \left| f(\gamma(t)) \right| \right) \cdot l(\gamma)$$

where

$$l(\gamma) = \int_{a}^{b} \left| \frac{d\gamma}{dt}(t) \right| dt$$

Proposition 1.11

Let $U \subset \mathbb{C}$ be an open set and $F: U \to \mathbb{C}$ a continuous function. Let $\gamma: [a,b] \to U$ be a C^1 curve. Suppose that $\theta: [c,d] \to [a,b]$ is a one-to-one, onto, increasing C^1 function with a C^1 inverse. Let $\tilde{\gamma} = \gamma \circ \phi$. Then

$$\int_{\tilde{\gamma}} f dz = \int_{\gamma} f dz$$

Proof

We have

$$\int_{\tilde{\gamma}}fdz=\int_{c}^{d}f(\gamma(\phi(t)))\frac{d\gamma(\phi(t))}{dt}dt=\int_{a}^{b}f(\gamma(s))\frac{\gamma(s)}{ds}\phi'(\phi^{-1}(s))(\phi^{-1})'(s)ds=\int_{\gamma}fdz$$
 since $\phi'(\phi^{-1}(s))(\phi^{-1})'=1$.

Definition 1.10

Let f be a function on the open set U in \mathbb{C} and consider if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists then we say that f has a complex derivative at z_0 . We denote the complex derivative by $f'(z_0)$.

*

Theorem 1.3

Let $U \subset \mathbb{C}$ be an open set and let f be holomorphic on U. Then f' exists at each point of U and

$$f'(z) = \frac{\partial}{\partial z} f$$

for all $z \in U$.

Proof

Consider

$$\gamma(t) = (1 - t)z_0 + tz$$

and then we know

$$f(z) - f(z_0) = f(\gamma(1)) - f(\gamma_0) = \int_{\gamma} \frac{\partial}{\partial z} f dz = (z - z_0) \int_0^1 \frac{\partial}{\partial z} f(\gamma(t)) dt = \frac{\partial}{\partial z} f(z_0) + \int_0^1 (\frac{\partial}{\partial z} f(\gamma(t)) - \frac{\partial}{\partial z} f(z_0)) dt$$

and hence

$$\left|\frac{f(z) - f(z_0)}{z - z_0} - \frac{\partial}{\partial z} f(z_0)\right| \le \int \left|\frac{\partial}{\partial z} f(\gamma(t)) - \frac{\partial}{\partial z} f(z_0)\right| dt \to 0$$

when $z \to z_0$.

Theorem 1.4

If $f \in C^1(U)$ and f has a complex derivative at each point of U, then f is holomorphic on U. In particular, if a continuous, complex-valued function f on U has a complex derivative at each point and if f' is continuous on U, then f is holomorphic on U.

Proof

It is easy to check

$$\lim_{h \to 0, h \in \mathbb{R}} \frac{f(z_0 + h) - f(z_0)}{h} = \frac{\partial}{\partial x} u(x_0, y_0) + i \frac{\partial}{\partial x} v(x_0, y_0)$$

and

$$\lim_{h \to 0, h \in \mathbb{R}} \frac{f(z_0 + ih) - f(z_0)}{h} = -i \frac{\partial}{\partial y} u(x_0, y_0) + \frac{\partial}{\partial y} v(x_0, y_0)$$

and hence f satisfies the C-R equations so holomorphic.

Notice the continuity of f' may implies that $f \in C^1(U)$ and hence the problem goes.

Theorem 1.5

Let f be holomorphic in a neighborhood of $P \in \mathbb{C}$. Let ω_1, ω_2 be complex numbers of unit modulus. Consider the directional derivatives

$$D_{\omega_1} f(P) = \lim_{t \to 0} \frac{f(P + t\omega_1) - f(P)}{t}$$

and

$$D_{\omega_2} f(P) = \lim_{t \to 0} \frac{f(P + t\omega_2) - f(P)}{t}$$

then

a.
$$|D_{\omega_1} f(P)| = |D_{\omega_2} f(P)|$$

b. If $f'(P) \neq 0$, then the directed angle from ω_1 to ω_2 equals the directed angle from $D_{\omega_1} f(P)$ to $D_{\omega_2} f(P)$.

 \Diamond

Proof

Notice that

$$D_{\omega_j} = f'(P)\omega_j, j = 1, 2$$

and then the conclusions go.

Lemma 1.2

Let $(\alpha, \beta) \subset \mathbb{R}$ be an open interval and let $H: (\alpha, \beta) \to \mathbb{R}$, $F: (\alpha, \beta) \to \mathbb{R}$ be continuous functions. Let $p \in (\alpha, \beta)$ and suppose that dH/dx exists and equals F(x) for all $x \in (\alpha, \beta) - \{p\}$. Then (dH/dx)(p) exists and (dH/dx)(x) = F(x) for all $x \in (\alpha, \beta)$.

Proof

Assume $[a,b] \subset (\alpha,\beta)$ and then $K(x) = H(a) + \int_a^x F(t)dt$ on [a,b], so we know K-H is continuous on [a,b] and constant on $[a,p) \cup (p,b]$, which means K=H on [a,b].

Theorem 1.6

Let $U \subset \mathbb{C}$ be either an open rectangle or an open disc and let $P \in U$. Let f and g be continuous, real-valued functions on U which are continuously differentiable on $U - \{P\}$. Suppose further that

$$\frac{\partial}{\partial y}f = \frac{\partial}{\partial x}g \ on \ U - \{P\}$$

Then there exists a C^1 function $h: U \to \mathbb{R}$ such that

$$\frac{\partial}{\partial x} = f, \frac{\partial}{\partial y} = g$$

at every point of U.

Consider a closed rectangle containing p inside in U and define $h(x,y)=\int_a^x f(t,b)dt+\int_b^y g(x,s)ds$ and we know that $\frac{\partial}{\partial y}h=g(x,y)$ and $\frac{\partial}{\partial x}h=f(x,y)$ for any $x\neq P_x$, then for a fixed y, we know dh(x,y)/dx=f(x,y) exists for all points in U except for (p_x,y) and hence dh(x,y)/dx=f(x,y) at (p_x,y) . Then we know $\frac{\partial}{\partial x}h=f,\frac{\partial}{\partial y}h=g$ on U.

Theorem 1.7

Let $U \subset \mathbb{C}$ be either an open rectangle or an open disc. Let $P \in U$ be fixed. Suppose that F is continuous on U and holomorphic on $U - \{P\}$. Then there is a holomorphic H on U such that U such that $\frac{\partial}{\partial z}H = F$.

Proof

Proof

Consider F = u + iv, then we have

$$\frac{\partial}{\partial y}v=\frac{\partial}{\partial x}u$$
 and $\frac{\partial}{\partial y}u=\frac{\partial}{\partial x}(-v)$

on $U-\{P\}$, then we know there exists h_1,h_2 on U such that $\frac{\partial}{\partial x}h_1=u,\frac{\partial}{\partial y}h_1=(-v),\frac{\partial}{\partial x}h_2=v,\frac{\partial}{\partial y}h_2=u$ and let $H=h_1+ih_2$, we have

$$\frac{\partial}{\partial z}H = \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})(h_1 + ih_2) = (u + u) + i(v + v) = F$$

Definition 1.11

The boundary $\partial D(P,r)$ of the disc D(P,r) can be parametrized as a simple closed curve $\gamma:[0,1]\to\mathbb{C}$ by setting

$$\gamma(t) = P + re^{2\pi it}$$

we call it counterclockwise orientation.

Lemma 1.3

Let γ be the boundary of a disc $D(z_0, r)$ in the complex plane, equipped with counterclockwise orientation. Let z be a point inside the circle $\partial D(z_0, \gamma)$. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - z} d\xi = 1$$

 \Diamond

Proof

Consider
$$I(z) = \int_{\gamma} \frac{1}{\xi - z} d\xi = \int_{0}^{1} \frac{1}{(z_0 + e^{2\pi i t}) - z} (2\pi i) e^{2\pi i t} dt$$
 and since
$$\frac{\partial}{\partial x} \frac{1}{\xi - z} = \frac{1}{(\xi - z)^2}, \quad \frac{\partial}{\partial y} \frac{1}{\xi - z} = i \frac{1}{(\xi - z)^2}$$

and hence we have

$$\frac{\partial}{\partial \bar{z}}I(z) = \int_{\gamma} \frac{\partial}{\partial \bar{z}} (\frac{1}{\xi - z}) d\xi = 0 \quad \frac{\partial}{\partial z}I(z) = \int_{\gamma} \frac{\partial}{\partial z} (\frac{1}{\xi - z}) d\xi = \int_{\gamma} \frac{1}{(\xi - z)^2} d\xi$$

where $\frac{1}{(\xi-z)^2}$ is the complex derivative of the holomorphic function $\frac{-1}{\xi-z}$ and hence

$$\frac{\partial}{\partial z}I(z) = \int_{\gamma} \frac{1}{(\xi - z)^2} d\xi = 0$$

Therefore, I(z) is holomorphic on $D(z_0,r)$ and $\frac{\partial}{\partial z}I=0$ which means I is constant on $D(z_0,r)$ and notice $I(z_0)=2\pi i$

and hence the equation holds.

Theorem 1.8

(The Cauchy integral fomula) Suppose that U is an open set in $\mathbb C$ and that f is a holomorphic function on U. Let $z_0 \in U$ and let r > 0 be such that $\overline{D}(z_0, r) \subset U$. Let $\gamma : [0, 1] \to \mathbb C$ be the C^1 curve $\gamma(t) = z_0 + r\cos(2\pi t) + ir\sin(2\pi t)$. Then for each $z \in D(z_0, r)$,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

 \sim

Proof By theorem 1.7, there is H such that

$$\frac{\partial}{\partial z}H = \frac{f(\xi) - f(z)}{\xi - z}$$

if $\xi \neq z$ and $\frac{\partial}{\partial z} H(z) = f'(z)$ holomorphic on $D(z_0, r + \epsilon)$ and hence

$$\int_{\gamma} \frac{f(\xi) - f(z)}{\xi - z} d\xi = 0$$

and the equation holds by the lemma 1.3.

Theorem 1.9

(The Cauchy integral theorem) If f is a holomorphic function on an open disc U in the complex plane, and if $\gamma: [a,b] \to U$ is a C^1 curve in U with $\gamma(a) = \gamma(b)$, then

$$\int_{\gamma} f(z)dz = 0$$

 \odot

Proof Only need to pick G such that $\frac{\partial}{\partial z}G = f$ on U is fine.

Definition 1.12

A piecewise C^1 curve $\gamma:[a,b]\to\mathbb{C}, a< b, a,b\in\mathbb{R}$ is a continuous function such that there exists a finite set of numbers $a_1\leq a_2\leq \cdots \leq a_k$ satisfying $a_1=a$ and $a_k=b$ and with the property that for every $1\leq j\leq k-1$,

 $\gamma|_{[a_j,a_{j+1}]}$ is a C^1 curve. As before, γ is a piecewise C^1 curve in an open set U if $\gamma_{[a,b]} \subset U$.

Definition 1.13

If $U \subset \mathbb{C}$ is open and $\gamma : [a,b] \to U$ is a piecewise C^1 curve in U and if $f: U \to \mathbb{C}$ is a continuous, complex-valued function on U, then

$$\int_{\gamma} f(z)dz = \sum_{j=1}^{k} \int_{\gamma|_{[a_j, a_{j+1}]}} f(z)dz$$

and the definition is well-defined.

Proof

We need to show for any $\{a_j\}_{1}^k, \{b_i\}_{1}^m$, the RHS determined by the chosen sequence is the same. Assume $a_{j_t} = b_{i_t}, 1 \leq t \leq q$, with $\{a_j\}_{j_t+1}^{j_{t+1}-1} \cap \{b_i\}_{i_t+1}^{j_{i+1}-1} = \emptyset$, then we know $\gamma|_{a_{j_t}, a_{j_{t+1}}}$ is a C_1 curve and hence the integral over the curve is the same.

Lemma 1.4

Let $\gamma:[a,b]\to U$ open in $\mathbb C$ to be a piece wise C^1 curve. Let $\phi:[c,d]\to[a.b]$ be a piecewise C^1 strictly monotone increasing function with $\phi(c)=a,\phi(d)=b$. Let $f:U\to\mathbb C$ be a continuous function on U. Then the function $\gamma\circ\phi:[c,d]\to U$ is a piecewise C^1 curve and

$$\int_{\gamma} f(z)dz = \int_{\gamma \circ \phi} f(z)dz$$

Proof Use the proposition 1.11.

Lemma 1.5

If $f: U \to \mathbb{C}$ is a holomorphic function and if $\gamma: [a,b] \to U$ is a piecewise C^1 curve, then

$$f(\gamma(b)) - f(\gamma(a)) = \int_{\gamma} f'dz$$

Proof Use the proposition 1.7.

Proposition 1.12

If $f: \mathbb{C} - \{0\} \to \mathbb{C}$ is a holomorphic function, and if γ_r describes the circle of radius r around 0, traversed once around counter-clockwise, then, for any two positive numbers $r_1 < r_2$,

$$\int_{\gamma_{r_1}} f(z)dz = \int_{\gamma_{r_2}} f(z)dz$$

Proposition 1.13

Let $0 < r < R < \infty$ and define the annulus $\mathcal{A} = \{z \in \mathbb{C} : r < |z| < R\}$. Let $f; \mathcal{A} \to \mathbb{C}$ be a holomorphic function. If $r < r_1 < r_2 < R$ and if for each j the curve γ_{r_j} describes the circle pf radius r_j around 0, traversed once counter clockwise, then we have

$$\int_{\gamma_{r_1}} f dz = \int_{\gamma_{r_2}} f dz$$

Applications of the Cauchy integral

Theorem 1.10

Let $U \subset \mathbb{C}$ be an open set and let f be holomorphic on U. Then $f \in C^{\infty}(U)$. Moreover, if $\overline{D}(P,r) \subset U$ and $z \in D(P,r)$, then

$$\left(\frac{\partial}{\partial z}\right)^k f(z) = \frac{k!}{2\pi i} \int_{|\xi - P| = r} \frac{f(\xi)}{(\xi - z)^{k+1}} d\xi$$

for any integer k.

 \Diamond

Proof

Use the induction to f, assume

$$\left(\frac{\partial}{\partial z}\right)^{k} f(z) = \frac{k!}{2\pi i} \int_{|\xi - P| = r} \frac{f(\xi)}{(\xi - z)^{k+1}} d\xi$$

and $(\frac{\partial}{\partial z})^k f(z)$ is holomorphic, then we gonna prove that

$$\left(\frac{\partial}{\partial z}\right)^{k+1} f(z) = \frac{(k+1)!}{2\pi i} \int_{|\xi-P|=r} \frac{f(\xi)}{(\xi-z)^{k+2}} d\xi$$

and $(\frac{\partial}{\partial z})^{k+1}f(z)$ is holomorphic. Consider

$$\left| \frac{f(\xi)}{(\xi - \omega)^{k+1}} - \frac{f(\xi)}{(\xi - z)^{k+1}} \right| \le \sup_{\xi \in \partial D(P, r)} |f(\xi)| e^{-2k-2} \left| \sum_{i=1}^{k+1} C_{k+1}^{i} (2r)^{k+1-i} (\omega - z)^{i} \right|$$

$$\le |\omega - z| (k+1) \left(\sup_{\xi \in \partial D(P, r)} |f(\xi)| e^{-2k-2} \right| \sum_{i=0}^{k} C_{k}^{i} (2r)^{k-i} (\omega - z)^{i} \right|$$

$$\le |\omega - z| (k+1) \left(\sup_{\xi \in \partial D(P, r)} |f(\xi)| e^{-2k-2} (2r+1)^{k} \right)$$

for all $|\omega - z|$ small enough and hence

$$\frac{f(\xi)}{(\xi - \omega)^{k+1}} \to \frac{f(\xi)}{(\xi - z)^{k+1}}$$

uniformly when $\omega \to z$, so may know

$$\lim_{\omega \to z} \frac{\left(\frac{\partial}{\partial z}\right)^{k+1} f(\omega) - \left(\frac{\partial}{\partial z}\right)^{k+1} f(z)}{\omega - z} = \lim_{\omega \to z} \frac{k!}{2\pi i} \int_{|\xi - P| = r} \frac{\frac{f(\xi)}{(\xi - \omega)^{k+1}} - \frac{f(\xi)}{(\xi - z)^{k+1}}}{\omega - z} d\xi$$

and we know that

$$\lim_{\omega \to z} \frac{k!}{2\pi i} \int_{|\xi - P| = r} \frac{\frac{f(\xi)}{(\xi - z)^{k+1}} - \frac{f(\xi)}{(\xi - z)^{k+1}}}{\omega - z} d\xi = \frac{k!}{2\pi i} \int_{|\xi - P| = r} \lim_{\omega \to z} \frac{\frac{f(\xi)}{(\xi - \omega)^{k+1}} - \frac{f(\xi)}{(\xi - z)^{k+1}}}{\omega - z} d\xi$$

by the DCT and hence

$$\lim_{\omega \to z} \frac{\big(\frac{\partial}{\partial z}\big)^{k+1} f(\omega) - \big(\frac{\partial}{\partial z}\big)^{k+1} f(z)}{\omega - z} = \frac{(k+1)!}{2\pi i} \int_{|\xi - P| = r} \frac{f(\xi)}{(\xi - z)^{k+2}} d\xi$$

which means $(\frac{\partial}{\partial z})^k f(z)$ is holomorphic and the equality holds. Then we use the induction, and the conclusion goes.

Corollary 1.3

If $f: U \to \mathbb{C}$ is holomorphic, then $f': U \to \mathbb{C}$ is holomorphic.

 \sim

Theorem 1.11

If ϕ is a continuous function on $\{\xi : |\xi - P| = r\}$, then the function f given by

$$f(z) = \frac{1}{2\pi i} \int_{|\xi - P| = r} \frac{\phi(\xi)}{\xi - z} d\xi$$

is defined and holomorphic on D(P, r).

\Diamond

Theorem 1.12

(Morera) Suppose that $f: U \to \mathbb{C}$ is a continuous function on a connected open subset U of \mathbb{C} . Assume that for every closed, piecewise C^1 curve $\gamma: [0,1] \to U$, $\gamma(0) = \gamma(1)$, it holds that

$$\int_{\gamma} f(\xi)d\xi = 0$$

Then f is holomorphic on U.

Proof Consider $x \in U$ and define $F(y) = \int_{\phi} f dz$ for any $y \in U$ where ϕ is a picewise C^1 curve from x to y, where we know the integral is well-defined since any integral of f on a closed, piece wise C^1 curve is 0. Then for any $y \in U$, consider a segment from y + h where |h| is small enough and we know

$$\lim_{|h| \to 0} \frac{F(y+h) - F(y)}{h} = \lim_{|h| \to 0} \frac{1}{h} \int_0^h f(y+z) dz = f(y)$$

which means F is holomorphic on U and F' = f on U, and hence f is holomorphic on U.

Definition 1.14

let $P \in \mathbb{C}$ be fixed. A complex power series centered at P is an expression of the form

$$\sum a_k (z - P)^k$$

where a_k is complex valued.

Lemma 1.6

(Abel) If $\sum a_k(z-P)^k$ converges at some z, then the series converges at each $\omega \in D(P,r)$, where r=|z-P|.

Proof

Since $\sum a_k(z-P)^k$ converges, we know $a_k(z-P)^k \to 0$ and hence bounded, then we know

$$|a_k| \le Mr^{-k}$$

for some M > 0 and then for any $\omega \in D(P, r)$, assume $|\omega - P| = \delta < r$, then we know

$$|a_k(\omega - P)^k| \le |a_k|\delta^k \le M(\delta/r)^{-k}$$

and hence

$$\sum |a_k(\omega - P)^k| \le M \sum (\delta/r)^{-k} < \infty$$

which means $\sum a_k(\omega - P)^k$ converges.

Definition 1.15

Let $\sum a_k(z-P)^k$ be a power series. Then

$$r = \sup\{|\omega - P| : \sum a_k(\omega - P)^k \text{ converges}\}$$

is called the radius of convergence of the power series.

Lemma 1.7

If $\sum a_k(z-P)^k$ is a power series with radius of convergence r, then the series converges for each $\omega \in D(P,r)$ and diverges for each ω such that $|\omega - P| > r$.

Lemma 1.8

(The root test) The radius of convergence of the power series $\sum a_k(z-P)^k$ is

$$\frac{1}{\limsup |a_k|^{1/k}}$$

if $\limsup |a_k|^{1/k} > 0$ or

 ∞

if $\limsup |a_k|^{1/k} = 0$.

 \Diamond

Proof

Assume $\alpha = \limsup |a_k|^{1/k}$, if $|\omega - P| > 1/\alpha$, then denote $|\omega - P| = c/\alpha$, c > 1 and we know

$$|a_k(z-P)^k| = (c|a_k|^{1/k}/\alpha)^k$$

and we know there are infinitly many a_k such that $|a_k|^{1/k}/\alpha > 1/c$ and hence the series diverge.

For $|\omega - P| < 1/\alpha$, we denote $|\omega - P| = d/\alpha$, $d < 1 - \epsilon$ for some $\epsilon > 0$ and we have

$$|a_k(\omega - P)^k| \le (|a_k|^{1/k} d/\alpha)^k \le (1 - \epsilon)^k$$

when k is sufficiently large and hence the series is absolutely convergent and the condition for $\alpha = 0$ is similar.

Definition 1.16

Let $\sum f_k(z)$ be a series of functions on a set E. The series is said to be uniformly Cauchy if for any $\epsilon > 0$, these is an integer N such that

$$|\sum_{k=m}^{n} f_k(z)| < \epsilon$$

on E for any $n \ge m \ge N$.

Proposition 1.14

Let $\sum a_k(z-P)^k$ be a power series with radius of convergence r. Then, for any number R with $0 \le R < r$, the series $\sum |a_k(z-P)|^k$ converges uniformly on $\overline{D}(P,R)$ and hence $\sum a_k(z-P)^k$ converges uniformly and absolutely on $\overline{D}(P,R)$.

Proof We know

$$\lim_{k \to \infty} |a_k r^k| \to 0$$

and hence there exists M>0 such that

$$|a_k| \le \frac{M}{r^k}$$

then we know

$$\sum_{k=0}^{n} |a_k(z-P)^k| \le \sum_{k=0}^{n} M(r/R)^k$$

on $\overline{D}(P,R)$ and hence the series converges uniformly.

Lemma 1.9

If a power series

$$\sum_{j=0}^{\infty} a_j (z - P)^j$$

has radius of convergence r>0, then the series defines a C^{∞} function f(z) on D(P,r). The function f is

holomorphic on D(P, r). The series obtained by termwise differentiation k times of the original power series,

$$\sum_{j=k}^{\infty} \frac{j!}{k!} a_j (z - P)^{j-k}$$

converges on D(P, r) and its sum is $(\partial/\partial z)^k f(z)$ for each $z \in D(P, r)$.

\Diamond

Proof

For any $z \in D(P, r)$, we know the series is abosolutely convergent at z, and hence

$$D_h f(z) = \lim_{d \to 0} \sum_{j=0}^{\infty} a_j \frac{(z + dh - P)^j - (z - P)^j}{d} = \sum_{j=0}^{\infty} a_j j (z - P)^{j-1}$$

since

$$\sum_{j=0}^{\infty} j |a_j r'^{j-1}| \le C + \sum_{j=m}^{\infty} |a_j (r' + \epsilon)^{j-1} / (r' + \epsilon)^j|$$

for some $\epsilon>0$ and integer m big sufficiently, and hence we may exchange the summation and the limit. Then we know f is holomorphic and hence in C^{∞} and we may use the induction to $\frac{\partial}{\partial z}^k f$.

Proposition 1.15

If both series $\sum_{j=0}^{\infty} a_j(z-P)^j$ and $\sum_{j=0}^{\infty} b_j(z-P)^j$ converge on a disc D(P,r), r>0 and if $\sum_{j=0}^{\infty} a_j(z-P)^j=\sum_{j=0}^{\infty} b_j(z-P)^j$ on D(P,r), then $a_j=b_j$ for every j.

Proof

Use the lemma 1.9. directly.

Theorem 1.13

Let $U \subset \mathbb{C}$ be an open set and let f be holomorphic on U. Let $P \in U$ and suppose that $D(P,r) \subset U$. Then the complex power series

$$\sum_{k=0}^{\infty} \frac{\left(\frac{\partial}{\partial z}\right)^k f(P)}{k!} (z - P)^k$$

has radius of convergence at least r. It converges to f(z) on D(P, r).

Proof

For $z \in D(P, r)$, we know

$$f(z) = \frac{1}{2\pi i} \int_{|\xi - P| = r'} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_{|\xi - P| = r'} \frac{f(\xi)}{\xi - P} \sum_{n \ge 0} ((z - P)(\xi - P)^{-1})^n d\xi$$

for r' > |z - P| and $D(z, r') \subset D(P, r)$ and then we know

$$f(z) = \lim_{N \to \infty} \frac{1}{2\pi i} \int_{|\xi - P| = r'} \frac{f(\xi)}{\xi - P} \sum_{n=0}^{N} ((z - P)(\xi - P)^{-1})^n d\xi$$

since the series converges uniformly. Then

$$f(z) = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{2\pi i} \int_{|\xi - P| = r'} \frac{f(\xi)}{(\xi - P)^{n+1}} (z - P)^n = \sum_{k=0}^{\infty} \frac{(\frac{\partial}{\partial z})^k f(P)}{k!} (z - P)^k$$

Theorem 1.14

(The Cauchy estimates) Let $f:U\to\mathbb{C}$ be a holomorphic function on an open set $U,P\in U$ and assume that the

closed disc $\overline{D}(P,r), r>0$ is contained in U. Set $M=\sup_{z\in \overline{D}(P,r)}|f(z)|$, then for $k\geq 1$ we have

$$\left|\frac{\partial^k f}{\partial z^k}(P)\right| \leq \frac{Mk!}{r^k}$$

 \Diamond

Proof

We know

$$\left|\frac{\partial^k f}{\partial z^k}(P)\right| = \left|\frac{k!}{2\pi i} \int_{|\xi-P|=r} \frac{f(\xi)}{(\xi-z)^{k+1}} d\xi\right| \leq \frac{Mk!}{r^k}$$

Lemma 1.10

Suppose that f is a holomorphic function on a connected open set $U \subset \mathbb{C}$. If $\partial f/\partial z = 0$ on U, then f is constant on U.

Definition 1.17

A function f is said to be entire if it is defined and holomorphic on all of \mathbb{C} , that is, $f:\mathbb{C}\to\mathbb{C}$ is holomorphic.

Theorem 1.15

(Liouville's theorem) A bounded entire function is constant.

Proof For any $P \in \mathbb{C}$, we may know

$$\left| \frac{\partial}{\partial z} f(P) \right| \le M/r$$

for any r>0 and hence $\frac{\partial}{\partial z}f=0$ on $\mathbb C$ and hence it is a constant on $\mathbb C.$

Theorem 1.16

If $f: \mathbb{C} \to \mathbb{C}$ is an entire function and if for some real number C and some positive integer k it holds that

$$|f(z)| < C|z|^k$$

for all z with |z| > 1, then f is a polynomial in z of degree at most k.

Proof We know

$$\left| \left(\frac{\partial}{\partial z} \right)^{k+l} f(0) \right| \le C(k+l)!/r^l$$

for any $r \geq 0$ and hence $\left(\frac{\partial}{\partial z}\right)^{k+l} f(0) = 0$.

Theorem 1.17

Let p(z) be a nonconstant polynomial. Then p has a root.

Proof

If not, we know g(z)=1/p(z) is holomorphic on $\mathbb C$ and bounded since $|p(z)|\to\infty, |z|\to\infty$, so by the Liouville's theorem, we know p(z) is constant and hence a contradiction.

Corollary 1.4

If p(z) is a holomorphic polynomial of $\deg k$, then there are k complex numbers $\alpha_1, \dots, \alpha_k$ and a constant C such

that

$$p(z) = C \prod_{i=1}^{k} (z - \alpha_i)$$

Theorem 1.18

Le $f_j: U \to \mathbb{C}, j \geq 1$ be a sequence of holomorphic functions on an open set U in \mathbb{C} . Suppose that there is a function $f: U \to \mathbb{C}$ such that, for each compact subset E of U, the sequence $f_j|_E$ converges uniformly to $f|_E$. Then f is holomorphic on U.

Proof

Firstly, it is easy to check f is continuous on U.

For $z \in U$, we may consider $D_z = \overline{D}(z,r) \subset U$ is a compact set, and we know $f_j \to f$ uniformly on D_z , then

$$f(z+d) = \lim_{n \to \infty} f_n(z+d) = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{|\xi-z|=r} \frac{f_n(\xi)}{\xi - (z+d)} d\xi = \frac{1}{2\pi i} \int_{|\xi-z|=r} \frac{f(\xi)}{\xi - (z+d)} d\xi$$

then we know

$$f'(z) = \lim_{|d| \to 0} \frac{1}{2\pi i} \int_{|\xi - z| = r} f(\xi) \left(\left| \frac{1}{\xi - (z + d)} - \frac{1}{\xi - z} \right| / d \right) d\xi = \frac{1}{2\pi i} \int_{|\xi - z| = r} \frac{f(\xi)}{(\xi - z)^2} d\xi$$

and hence f is holomorphic on U.

Corollary 1.5

If f_j, f, U are as in the theorem above, then for any integer $k \geq 0$, we have

$$\left(\frac{\partial}{\partial z}\right)^k f_j(z) \to \left(\frac{\partial}{\partial z}\right)^k f(z)$$

uniformly on compact sets.

Proof We have

$$\left| \left(\frac{\partial}{\partial z} \right)^k f_j(z) - \left(\frac{\partial}{\partial z} \right)^k f(z) \right| \le \frac{k!}{r^k} \sup_{\overline{D}(z,r)} |f(z) - f_j(z)|$$

if $\overline{D}(z,r) \subset U$ and the rest is easy to be checked.

Theorem 1.19

Let $U \subset \mathbb{C}$ be a connected open set and let $f: U \to \mathbb{C}$ be holomorphic. Let $Z = \{z \in U, f(z) = 0\}$. If there are $a z_0 \in Z$ and $\{z_j\}_{j=1}^{\infty} \in Z - \{z_0\}$ such that $z_j \to z_0$, then f = 0 on U.

Proof

Consider

$$E = \{z, \left(\frac{\partial}{\partial z}\right)^k f(z) = 0 \text{ for any interger } k \ge 0\}$$

and we claim $z_0 \in E$, if not there exists n_0 such that

$$\left(\frac{\partial}{\partial z}\right)_0^n f(z_0) \neq 0$$

and hence

$$g(z) = \sum_{i=n_0}^{\infty} \left(\frac{\partial}{\partial z}\right)^i f(z) \frac{(z-z_0)^{i-n_0}}{i!}$$

is not 0 at z_0 but $g(z_j)=0$ for any z_j , and hence $g(z_0)=0$ by the continuity, which is a contradiction and hence $z_0 \in E$. Now it is easy to check E is closed about U and also E is open since for any $z \in E$, we we know

$$f(z+d) = \sum \partial^j f(z)/j!d^j$$

for any d in some open call centered at z and hence the ball is in E. Notice U is connected and we know E=U and theorem is proved.

Corollary 1.6

Let $U \subset \mathbb{C}$ be a connected open set and $D(P,r) \subset U$. If f is holomorphic on U and $f|_{D(P,r)} = 0$, then f = 0 on U.

Corollary 1.7

Let $U \subset \mathbb{C}$ be a connected open set and $D(P,r) \subset U$. Let f,g be holomorphic on U. If $\{z, f(z) = g(z)\}$ has an accumulation in U, then f = g on U.

Corollary 1.8

Let $U \subset \mathbb{C}$ be a connected open set and $D(P,r) \subset U$. Let f,g be holomorphic on U. If fg = 0 on U, then either f = 0 on U or g = 0 on U.

Proof Choose a point $z, f(z) \neq 0$ is fine.

Corollary 1.9

Let $U \subset \mathbb{C}$ be connected and open and let f be holomorphic on U. If there is a $P \in U$ such that

$$\left(\frac{\partial}{\partial z}\right)^j f(P) = 0$$

for every j, then f = 0 on U.

Corollary 1.10

If f and g are entire holomorphic functions and if f = g for all $x \in \mathbb{R} \subset \mathbb{C}$, then f = g.

Definition 1.18

Let $U \subset \mathbb{C}$ be an open set and $P \in U$. Suppose that $f: U - \{P\} \to \mathbb{C}$ is holomorphic. In this situation we say that f has an isolated singular point ar P

Definition 1.19

If $\lim_{z\to P} |f(z)| = +\infty$, then we call f has a pole at P. If P is not a pole or a removable singularity, we call f has an essential singularity at P.

Theorem 1.20

(The Riemann removable singularities theorem) Let $f:D(P,r)-\{P\}\to\mathbb{C}$ be holomorphic and bounded. Then $a.\lim_{z\to P}f(z)$ exists

b. the function $\hat{f}: D(P,r) \to \mathbb{C}$ defined by

$$\hat{f}(z) = \begin{cases} f(z) & \text{if } z \neq P \\ \lim_{\xi \to P} f(\xi) & \text{if } z = P \end{cases}$$

Proof

Consider

$$g(z) = \begin{cases} (z - P)^2 f(z) & \text{if } z \in D(P, r) - \{P\} \\ 0 & \text{if } z = P \end{cases}$$

we claim that $g \in C^1(D(P,r))$. Since we know

$$\frac{\partial g}{\partial \bar{z}} = 0$$

on $D(P,r)-\{P\}$ and if $g\in C^1(D(P,r))$, then g is holomorphic. Notice

$$g'(z) = 2(z - P)f(z) + (z - P)^{2}f'(z)$$

on $D(P,r) \to \mathbb{C}$ and

$$\frac{\partial g}{\partial x}(P) = \lim_{h \to 0} h f(P + h) = 0$$

and similarly $\partial g/\partial y(P)=0$ and it suffices to show

$$\lim_{z \to P} g'(z) = \lim_{z \to P} 2(z - P)f(z) + (z - P)^2 f'(z)$$

equals to 0, which can be implied by the Cauchy estimation. Now we know g is C^1 and hence homorphic on D(P,r). Then let

$$H(z) = \sum_{n=2}^{\infty} \left(\frac{\partial}{\partial z}\right)^n g(P)/n!(z-P)^2$$

which has radius convergence at least r and holomorphic on D(P,r), which equals to f(z) on $D(P,r)-\{P\}$ and satisfies the requirements.

Theorem 1.21

(Casorati-Weierstrass) If $f: D(P, r_0) - \{P\}$ is holomorphic and P is an essential singularity of f, then $f(D(P, r) - \{P\})$ is dense in \mathbb{C} for any $0 < r < r_0$.

Proof

It suffices to show $r=r_0$, then there is $\lambda\in\mathbb{C}$ and an $\epsilon>0$ such that

$$|f(z) - \lambda| > \epsilon$$

for all $z \in D(P, r_0) - \{P\}$. Consider the function $g: D(P, r_0) - \{P\} \to \mathbb{C}$ defined by

$$g(z) = \frac{1}{f(z) - \lambda}$$

then P is a removable singularity for g with

$$f(z) = \lambda + \frac{1}{\hat{g}(z)}$$

on $D(P,r)-\{P\}$ where $\hat{g}\neq 0$, so if $\hat{g}(P)=0$, then it is easy to check that P is a pole of f, which is a contradiction, so $\lim_{z\to P}f(z)$ exists and finite, which means P is a removable singularity of f and hence contradictory.

Definition 1.20

A Laurent series on D(P,r) is a expression of the form

$$\sum_{-\infty}^{\infty} a_j (z - P)^j$$

and when we say a series with double infinities converges, we mean $\sum_{n\geq 0} \alpha_n$ and $\sum_{n\leq 0} \alpha_n$ converge both.

Lemma 1.11

If $\sum_{-\infty}^{\infty} a_j(z-P)^j$ converges at $z_1 \neq P$ and $z_2 \neq P$ with $|z_1-P| < |z_2-P|$, then the series converges for all z such that $|z_1-P| < |z-P| < |z_2-P|$.

Proof

Assume $S_n(z)=\sum\limits_{j=0}^n a_j(z-P)^j$ and $W_n(z)=\sum\limits_{j=-1}^n a_j(z-P)^j$ and we know $S_n(z_2),W_n(z_1)$ converges and hence there exists M such that

$$|a_{-i}||z_1 - P|^{-j}, |a_i||z_2 - P|^j < M$$

then for any z in the annulus, we know

$$\sum_{j=0}^{n} |a_j| |z - P|^j \le M \sum_{j=0}^{n} \left(\frac{|z - P|}{|z_2 - P|} \right)^j$$

and

$$\sum_{j=1}^{n} |a_{-j}| |z - P|^{-j} \le M \sum_{j=1}^{n} \left(\frac{|z - P|}{|z_1 - P|} \right)^{-j}$$

which means $S_n(z)$, $W_n(z)$ are both absolutely convergent and the conclusion holds.

Proposition 1.16

Let $0 \le r_1 < r_2 \le \infty$. If the Laurent series $\sum_{-\infty}^{\infty} a_j (z-P)^j$ converges on $D(P,r_2) - \overline{D}(P,r_1)$ to a function f, then for any r satisfying $r_1 < r < r_2$, and each $j \in \mathbb{Z}$,

$$a_j = \frac{1}{2\pi i} \int_{|\xi - P| = r} \frac{f(\xi)}{(\xi - P)^{j+1}} d\xi$$

Proof

We know since the series converges uniformly on the circle |z - P| = r, then

$$\int_{|\xi-P|=r} \frac{f(\xi)}{(\xi-P)^{j+1}} d\xi = \int_{|\xi-P|=r} \sum_{-\infty}^{\infty} a_k (\xi-P)^{k-j-1} d\xi = \sum_{-\infty}^{\infty} a_k \int_{|\xi-P|=r} (\xi-P)^{k-j-1} d\xi$$

and then we know

$$\int_{|\xi-P|=r} (\xi-P)^{k-j-1} d\xi = \begin{cases} 0 & \text{if } k-j-1 \neq -1\\ 2\pi i & \text{if } k-j-1 = -1 \end{cases}$$

and hence

$$\int_{|\xi-P|=r} \frac{f(\xi)}{(\xi-P)^{j+1}} d\xi = 2\pi i a_j$$

Theorem 1.22

(The Cauchy integral formula for an annulus) Suppose that $0 \le r_1 < r_2 \le +\infty$ and that $f: D(P, r_2) - \overline{D}(P, r_1) \to \mathbb{C}$ is holomorphic. Then for each s_1, s_2 such that $r_1 < s_1 < s_2 < r_2$ and each $z \in D(P, s_2) - \overline{D}(P, r_1)$, it holds that

$$f(z) = \frac{1}{2\pi i} \int_{|\xi - P| = s_2} \frac{f(\xi)}{\xi - z} d\xi - \frac{1}{2\pi i} \int_{|\xi - P| = s_1} \frac{f(\xi)}{\xi - z} d\xi$$

Theorem 1.23

(The existence of Laurent expansions) If $0 \le r_1 < r_2 \le \infty$ and $f: D(P, r_2) - \overline{D}(P, r_1) \to \mathbb{C}$ is holomorphic, then there exist complex numbers a_j such that

$$\sum_{-\infty}^{\infty} a_j (z - P)^j$$

converges on $D(P, r_2) - \overline{D}(P, r_1)$ to f. If $r_1 < s_1 < s_2 < r_2$, then the series converges absolutely and uniformly on $D(P, s_2) - \overline{D}(P, s_1)$.

Proof

Notice

$$\int_{|\xi-P|=s_2} \frac{f(\xi)}{\xi-z} d\xi = \int_{|\xi-P|=s_2} \frac{f(\xi)}{\xi-P} \frac{1}{1-\frac{z-P}{\xi-P}} = \frac{1}{2\pi i} \int_{|\xi-P|=s_2} \sum_{n\geq 0} \left(\frac{f(\xi)(z-P)^n}{(\xi-P)^{n+1}}\right) d\xi$$

and notice the series converge uniformly on $|\xi - P| = s_2$, so we know

$$\int_{|\xi-P|=s_2} \frac{f(\xi)}{\xi-z} d\xi = \sum_{n\geq 0} \left(\int_{|\xi-P|=s_2} \frac{f(\xi)}{(\xi-P)^{n+1}} d\xi \right) (z-P)^n$$

and similarly, we may know

$$\int_{|\xi-P|=s_1} \frac{f(\xi)}{\xi-z} d\xi = \sum_{n>1} \left(\int_{|\xi-P|=s_1} \frac{f(\xi)}{(\xi-P)^{-n+1}} d\xi \right) (z-P)^{-n}$$

and the rest is by the theorem 1.22.

Proposition 1.17

If $f: \overline{D(P,r)-\{P\}} \to \mathbb{C}$ is holomorphic, then f has a unique Laurent series expansion

$$f(z) = \sum_{-\infty}^{\infty} a_j (z - P)^j$$

which converges absolutely for $z \in D(P, r) - \{P\}$. The convergence is uniform on compact subsets of $D(P, r) - \{P\}$.

Proposition 1.18

There are three possibilities for the Laurent series of a holomorphic function f,

a. $a_j = 0$ for all j < 0;

b. for some k > 0, $a_j = 0$ for all $-\infty < j < -k$;

c. neither (a) or (b).

Proof

(a) implies P is removable is obviously, conversely, consider the series expansion of the holomorphic expansion \hat{f} .

(b) implies P is a pole can be seen by

$$|f(z)| \ge (z-P)^{-k} \Big(|a_{-k}| - \sum_{j=-k+1} + \infty |a_j| (z-P)^{j+k} \Big)$$

and hence $f(z) \to \infty, z \to P$.

For the other direction, we may consider there exists D(P,r) such that f(z) is nonzero there and let g(z) = 1/f(z) which is holomorphic on D(P,r) and P is a removable singularity of g, hence we may find \hat{g} is holomorphic on D(P,r) and hence

$$H(z) = (z - P)^m Q(z)$$

for some integer Q and some function Q nonzero at P, which means Q(z) is nonzero on D(P,r) and we may find 1/Q(z) holomorphic on D(P,r), then we will find a series of f.

Definition 1.21

If a function f has a Laurent expansion

$$f(z) = \sum_{j=-k}^{\infty} a_j (z - P)^j$$

for some k > 0 and $a_{-k} \neq 0$, then we say that f has a pole of order k at P.

Proposition 1.19

Let f be holomorphic on $D(P, r) - \{P\}$ and suppose that f has a pole of order k at P. Then the Laurent serves coefficients a_j of f expanded about the point P, for $j = -k, -k+1, -k+2, \cdots$ are given by the formula

$$a_j = \frac{1}{(k+j)!} \left(\frac{\partial}{\partial z}\right)^{k+j} ((z-P)^k f)|_{z=P}$$

Definition 1.22

An open set $U \subset \mathbb{C}$ is holomorphically simply connected if U is connected and if, for each holomorphic function $f: U \to \mathbb{C}$, there is a holomorphic function $F: U \to \mathbb{C}$ such that F' = f.

Lemma 1.12

A connected open set U is holomorphically simply connected if and only if for each holomorphic function $f:U\to\mathbb{C}$ and each piecewise C^1 closed curve γ in U,

$$\int_{\gamma} f = 0$$

 \Diamond

Definition 1.23

If $\gamma:[a,b]\to\mathbb{C}$ is a piecewise C^1 curve and if $P\notin\tilde{\gamma}=\gamma([a,b])$, then the index of γ with respect to P, witten $Ind_{\gamma}(P)$ is defined to be the number

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - P} d\xi$$

*

Lemma 1.13

If $\gamma: [a,b] \to \mathbb{C} - \{P\}$ is a piecewise C^1 closed curve and if P is a point not on that curvem then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - P} = \frac{1}{2\pi i} \int_{a}^{b} \frac{\gamma'(t)}{\gamma(t) - P} dt$$

is an integer.

 \Diamond

Proof

Consider

$$g(t) = (\gamma(t) - P) \exp\left(-\int_a^t \gamma'(s)/[\gamma(s) - P]ds\right)$$

then g is continuous and we also have

$$g'(t) = \gamma'(t) \exp\left(-\int_a^t \frac{\gamma'(s)}{\gamma(s) - P} ds\right) + (\gamma(t) - P) \frac{-\gamma'(t)}{\gamma(t) - P} \exp\left(-\int_a^t \frac{\gamma'(s)}{\gamma(s) - P} ds\right) = 0$$

and it is easy to check g(a) = g(b) and hence

$$-\int_{a}^{b} \frac{\gamma'(s)}{\gamma(s) - P} ds$$

must be and integer multiple of $2\pi i$.

Definition 1.24

The residue of f at P, written as $Res_f(P)$ is define by the coefficient of $(z - P)^{-1}$ in the Laurent expansion of f about P.

4

Theorem 1.24

(The residue theorem) Suppose that $U \subset \mathbb{C}$ is an h.s.c. open set in C and that P_1, \dots, P_n are distinct points of U. Suppose that $f: U - \{P_1, \dots, P_n\} \to \mathbb{C}$ is a holomorphic function and γ is a closed, piecewise C^1 curve in $U - \{P_1, \dots, P_n\}$. Then

$$\int_{\gamma} f = \sum_{j=1}^{n} Res_{f}(P_{j}) \left(\int_{\gamma} \frac{1}{\xi - P_{j}} d\xi \right)$$

 \Diamond

Proof

Let s_j be the negative part of the Laurent series of f at P_j and we know $f - s_j$ is holomorphic on some neighbourhood of P_j and hence we may know

$$\int_{\gamma} (f - \sum s_j) = 0$$

and hence

$$\int_{\gamma} f = \int_{\gamma} s_j$$

where

$$\int_{\gamma} s_j(\xi) d\xi = \sum_{k=1}^{\infty} a_{-k}^{(j)} \int_{\gamma} (\xi - P_j)^{-k} d\xi = 2\pi i a_{-1}^{(j)} Ind_{\gamma}(P_j)$$

Proposition 1.20

Let f be a function with a pole of order k at P. Then

$$Res_f(P) = \frac{1}{(k-1)!} \left(\frac{\partial}{\partial z}\right)^{k-1} ((z-P)^k f(z))|_{z=P}$$

Definition 1.25

A set S in $\mathbb C$ is discrete iff for each $z \in S$ there is a positive number r such that $S \cap D(z,r) = \{z\}$

Definition 1.26

A meromorphic function f on an open set U with singular set S is a function $f: U - \{S\} \to \mathbb{C}$ such that a, the set S is closed in U and is discrete.

b. the function F is holomorphic on $U - \{S\}$.

c. for each $z \in S$ and r > 0 such that $D(z.r) \subset U$ and $S \cap D(z,r) = \{z\}$, the function $f|_{D(z,r)-\{z\}}$ has a pole at z.

Lemma 1.14

If U is a connected open set in \mathbb{C} and if $f:U\to\mathbb{C}$ is a holomorphic function with $f\neq 0$, then the function

$$F: U - \{z : f(z) = - \to C\}$$

define by F(z) = 1/f(z), $z \in U - \{z, f(z) = 0\}$ is a meromorphic function on U with singular set equal to $\{z \in U, f(z) = 0\}$.

Proof It is easy to check $S = \{z, f(z) = 0\}$ is closed and discrete by theorem 1.19 and F is obviously holomorphicon U - S. The rest is easy to check.(connected open set is for the theorem 1.19)

Definition 1.27

Suppose that $f:U\to\mathbb{C}$ is a holomorphic function on an open set $U\subset\mathbb{C}$ and that for some $R>0,U\supset\{z:$

|z| > R}. Define $G: \{z: 0 > |z| < 1/R \to \mathbb{C}$ } by G(z) = f(1/z), then we say that

- a. f has a removable singularity at ∞ if G has a removable singularity at 0.
- b. f has a pole at ∞ if G has a pole at 0.
- c. f has an essential singularity at ∞ if G has an essential singularity at 0.

Theorem 1.25

Suppose that $f: \mathbb{C} \to \mathbb{C}$ is an entire function. Then $\lim_{|z| \to + infty} iff f$ is a non constant polynomial.

Proof

Consider the series expansion of f which is exactly the Laurent expansion of G and we are done.

Definition 1.28

Suppose that f is a meromorphic function defined on an open set $U \subset \mathbb{C}$ such that for some R > 0, we have $U \supset \{z, |z| > R\}$. We say that f is a meromorphic at ∞ at ∞ if the function G(z) = f(1/z) is meromorphic in the usual sense on $\{z, |z| < 1/R\}$.

Theorem 1.26

A meromorphic function f on $\mathbb C$ which is also meromorphic at ∞ must be a rational function, i.e. a quotient of polynomials in z. Conversely, every rational function is meromorphic on $\mathbb C$ and at ∞ .

Proof

We know there has to be R>0 such that all finite poles of f is in $\overline{D}(0,R)$, denoted as P_1,P_2,\cdots,P_k and we may know

$$F(z) = (z - P_1)^{n_1} \cdots (z - P_k)^{n_k} f(z)$$

has removable singularities on $\mathbb C$ and then it suffices to show that F is rational. If ∞ is a removable singularity or pole of F, then the problem goes. If not, we know F(1/z) has an essential singularity at 0 and then we may find G(1/z) has infinitly many negative items, which is a contradiction.

Definition 1.29

Let $f: U \to \mathbb{C}$ be holomorphic and has zeros but not identically zero, then we know f has the series expansion and call the first nonzero term determined by the least positive integer n as the order of z_0 as a zero of f.

Lemma 1.15

If f is holomorphic on a neighborhood of a disc $\overline{D}(z_0,r)$ and has a zero of order n at z_0 and no other zeros in the closed disc, then

$$\frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f'(\xi)}{f(\xi)} d\xi = n$$

 \bigcirc

Proof We know

$$f(z) = (z - z_0)^n \sum_{j=n}^{\infty} \left[\sum_{j=n}^{\infty} \frac{1}{j!} \frac{\partial^j f}{\partial z^j} (z_0) (z - z_0)^{j-n} \right]$$

where we define

$$H(z) = \sum_{j=n}^{\infty} \frac{1}{j!} \frac{\partial^{j} f}{\partial z^{j}} (z_{0}) (z - z_{0})^{j-n}$$

which is holomorphic on an open disc containing $\overline{D}(z_0, r)$ and nonzero on the closed disc, so we may know that H'/H is holomorphic on some neighbourhood of the closed disc and since

$$\frac{f'(\xi)}{f(\xi)} = \frac{H'(\xi)}{H(\xi)} + \frac{n}{\xi - z_0}$$

we may know that the integral equals to n.

Proposition 1.21

Suppose that $f: U \to \mathbb{C}$ is a holomorphic on an open set $U \subset \mathbb{C}$ and that $\overline{D}(P,r) \subset U$. Suppose that f is nonvanishing on $\partial D(P,r)$ and that z_1, z_2, \dots, z_k are the zeros of f in the interior of the disc. Let n_l be the order of the zero of f at z_l , then

$$\frac{1}{2\pi i} \int_{|\xi - P| = r} \frac{f'(\xi)}{f(\xi)} d\xi = \sum_{l=1}^{k} n_l$$

Proof Let

$$H(z) = \frac{f(z)}{(z - z_1)^{n_1} (z - z_2)^{n_2} \cdots (z - z_k)^{n_k}}$$

and the rest is easy to be checked.

Lemma 1.16

If $f: U - \{Q\} \to \mathbb{C}$ is a nowhere zero holomorphic function on $U - \{Q\}$ wutg a pole of order n at Q and if $\overline{D}(Q,r) \subset U$, then

$$\frac{1}{2\pi i} \int_{\partial D(Q,r)} \frac{f'(\xi)}{f(\xi)} d\xi = -n$$

 \odot

Proof We know $H(z) = (z - Q)^n f(z)$ has a removable singularity at Q where

$$\frac{H'(\xi)}{H(\xi)} = \frac{n}{\xi - Q} + \frac{f'(\xi)}{f(\xi)}$$

and the rest is easy to be checked.

Theorem 1.27

Suppose that f is a meromorphic function on an open set $U \subset \mathbb{C}$, that $\overline{D}(P,r) \subset U$ and that f has neither poles nor zeros on $\partial D(P,r)$. Then

$$\frac{1}{2\pi i} \frac{f'(\xi)}{f(\xi)} d\xi = \sum_{j=1}^{p} n_j - \sum_{k=1}^{q} m_k$$

where n_1, n_2, \dots, n_p are the multiplicities of the zeros z_1, z_2, \dots, z_p of f in D(P, r) and m_1, m_2, \dots, m_p are the orders of the poles w_1, w_2, \dots, w_q of f in D(P, r).

Proof Multiplying $(z - P_k)^{m_k}$ for the poles and dividing $(z - z_i)^{n_i}$ for the zeros.

Theorem 1.28

(The open mapping theorem) If $f: U \to \mathbb{C}$ is a nonconstant holomorphic function on a connected open set U, then f(U) is an open set in \mathbb{C} .

(

Proof It suffices to show for any $Q \in f(U)$, there exists $\epsilon > 0$ such that $D(Q, \epsilon) \subset f(U)$. Assume that f(P) = Q let let g(z) = f(z) - Q and we know there exists an r > 0 such that g can not be zero on $\overline{D}(P, r) - \{P\}$ by considering the series expansion and we know

$$\frac{1}{2\pi i} \frac{f'(\xi)}{f(\xi) - Q} d\xi = n$$

where n is the order of P as a zero of g, so we know there exists $\epsilon>0$ such that $|g(\xi)|>\epsilon$ on $\partial D(P,r)$ by the compactness and we claim that $D(Q,\epsilon)$ is in f(U). Define

$$N(z) = \frac{1}{2\pi i} \int_{\partial D(P,r)} \frac{f'(\xi)}{f(\xi) - z} d\xi$$

for $z \in D(Q, \epsilon)$ and it is well-defined since

$$|f(\xi) - z| \ge |g(\xi)| - |z - Q| > \epsilon - |z - Q| > 0$$

and then it is easy to check N is continuous on $D(Q, \epsilon)$, but it is interger-valued and hence it has to be n on $D(Q, \epsilon)$, which means there exists zeros for $f(\xi) - z$ inside the D(P, r) and hence $D(Q, \epsilon) \subset f(D(P, r)) \subset f(U)$.

Lemma 1.17

Let $f: U \to \mathbb{C}$ be a noncanstant holomorphic function on a connected open set $U \subset \mathbb{C}$. Then the multiple points of f in U are isolated.

Proof Since f is noncanstant, the holomorphic function f' is not identically zero, and then we know the zeros of f' is isolated by theorem.1.19. And any multiple point of f is a zero of f' and hence the lemma holds.

Theorem 1.29

Suppose that $f: U \to \mathbb{C}$ be a nonconstant holomorphic function on a connected open set U such that $P \in U$ and f(P) = Q with order k. Then there are numbers $\delta, \epsilon > 0$ such that each $q \in D(Q, \epsilon) - \{Q\}$ has exactly k distinct

preimages in $D(P, \delta)$ and each preimage is a simple point of f.

C

Proof There exist δ_1 such that $D(P, \delta_1) - \{P\}$ is a simple point of f. Then let $\delta, \epsilon > 0$ such that $Q \in f(D(P, \delta) - \{P\})$ and $D(Q, \epsilon) \subset f(D(P, \delta))$ without meeting $f\partial(D(P, \delta))$ since $f(D(P, \delta))$ is open, then for any $q \in D(Q, \epsilon) - \{Q\}$, we know

$$\frac{1}{2\pi i} \int_{\partial D(P,\delta)} \frac{f'(\xi)}{f(\xi) - q} d\xi = k$$

since the integral is continuous as a function of q and the problem goes.

Theorem 1.30

(Rouche's theorem) Suppose that $f,g:U\to\mathbb{C}$ are holomorphic functions on an open set $U\subset\mathbb{C}$. Suppose also that $\overline{D}(P,r)\subset\mathbb{C}$ and that, for each $\xi\in\partial D(P,r)$,

$$f(\xi) - g(\xi) < |f(\xi)| + |g(\xi)|$$

Then

$$\frac{1}{2\pi i} \int_{\partial D(P,r)} \frac{f'(\xi)}{f(\xi)} d\xi = \frac{1}{2\pi i} \int_{\partial D(P,r)} \frac{g'(\xi)}{g(\xi)}$$

Proof Define

$$f_t:U\to\mathbb{C}$$

by $f_t = tf + (1-t)g$ and we know f_t is nonzero for $t \in [0,1], \xi \in \partial(P,r)$ since if $f_t(\xi) = 0$ for some t, we have

$$t(f(\xi) - g(\xi)) = -g(\xi), (1 - t)(f(\xi) - g(\xi)) = f(\xi)$$

and hence

$$|f(\xi) - g(\xi)| = |f(\xi)| + |g(\xi)|$$

which is a contradiction, then

$$I_{t} = \frac{1}{2\pi i} \frac{f'_{t}(\xi)}{f_{t}(\xi)} d\xi, t \in [0, 1]$$

will be continuous to t, however, it takes values in the integers, so I_t has to be constant and hence $I_0 = I_1$.

Theorem 1.31

(Hurwitz's theorem) Suppose that $U \subset \mathbb{C}$ is a connected open set and that $\{f_j\}$ is a sequence of nowhere vanishing holomorphic functions on U. If the sequence of nowhere vanishing holomorphic functions on U. If the sequence $\{f_j\}$ converges uniformly on compact subsets of U to a limit function f_0 , then either f_0 is nowhere vanishing or $f_0 = 0$.

Proof Consider a contradiction, we supose f_0 is not constant 0 but $f_0(P) = 0$ for some $P \in U$. Then there has to be an r > 0 such f_0 is nonzero on $\overline{D(P,r)} - \{P\}$, then

$$I = \frac{1}{2\pi i} \int_{|\xi - P| = r} \frac{f_0'(\xi)}{f_0(\xi)} d\xi$$

is a positive integer, equal to the order of the zero of f at P.

However,

$$I_{j} = \frac{1}{2\pi i} \int_{|\xi - P| = r} \frac{f_{j}'(\xi)}{f_{j}(\xi)} d\xi$$

equals to 0 since f_j is nonzero everywhere, but $I_j \to I$ and there will be a contradiction.

Definition 1.30

A domain in $\mathbb C$ is a connected open set. A boundeddomain is a connected open set U such that there is an R>0 with |z|< R for all $z\in U$.

Theorem 1.32

(The maximum modulus principle) Let $U \subset \mathbb{C}$ be a domain. Let f be a holomorphic function on U. If there is a point $P \in U$ such that $|f(P)| \ge |f(z)|$ for all $z \in U$, then f is constant.

Proof Assume there is such a P and then if f is not constant, we know f(U) is open and hence there have to be some $\zeta \in f(U)$ such that $|\zeta| \ge |f(P)|$.

Corollary 1.11

(Maximum modulus theorem) Let $U \subset \mathbb{C}$ be a bounded domain. Let f be a continuous function on \overline{U} that is holomorphic on U. Then the maximum value of |f| on \overline{U} must occur on ∂U .

Theorem 1.33

Let $U \subset \mathbb{C}$ be a domain and let f be a holomorphic function on U. If there is a point $P \in U$ at which |f| has a local maximum, then f is constant.

Proof If |f| do have a local maximum, then we know f is constant on an open ball in U and hence f has to be constant since U is connected.

Proposition 1.22

Let f be holomorphic on a domain $U \subset \mathbb{C}$. Assume that f never vanishes. If there is a point $P \in U$ such that $|f(P)| \leq |f(z)|$ for all $z \in U$, then f is constant.

Proposition 1.23

(Schwarz's lemma) Let f be holomorphic on the unit disc, assume that $f(z) \leq 1$ on \mathbb{C} and f(0) = 0, then $|f(z)| \leq |z|$ and $|f'(0)| \leq 1$. If either |f(z)| = |z| for some $z \neq 0$ or if |f'(0)| = 1, then f is a rotation, i.e. $f(z) = \alpha z$ for some complex constant α of unit modulus.

Proof Consider g(z) = f(z)/z, where g have a removable singularity at 0 and hence we may consider it as a holomorphic function on unit disc, then notice $g(z) \le 1/(1-\epsilon)$ on $D(0,1-\epsilon)$ by the maximum modulus theorem and hence we know $g \le 1$ on D, and hence $|f'(0)| \le 1$.

If |f(z)| = |z| for some $z \neq 0$, we know |g(z)| = 1 with g constant on D, and it is the same when |g(0)| = 1.

Theorem 1.34

(Schwarz-Pick) Let f be holomorphic on the unitdisc with $|f(z)| \le 1$ for all $z \in D$. Then for any $a \in D(0,1)$ and with f(a) = b, we have

$$|f'(a)| \le \frac{1 - |b|^2}{1 - |a|^2}$$

Moreover, if $f(a_1) = b_1, f(a_2 = b_2), then$

$$\left| \frac{b_2 - b_1}{1 - \bar{b}_1 b_2} \right| \le \left| \frac{a_2 - a_1}{1 - \bar{a}_1 a_2} \right|$$

if either the equalies above can be reached, then f is a conformal self-mapping to itself.

Proof If $c \in D(0,1)$, define

$$\phi_c(z) = \frac{z - c}{1 - \bar{c}z}$$

and notice that

$$\left|\frac{z-c}{1-\bar{c}z}\right|<1$$

, iff |z| < 1 and it follows that ϕ_c is a holomorphic mapping from D(0,1) to itself with inverse ϕ_{-c} , then consider

$$g(z) = \phi_b \circ f \circ \phi_{-a}$$

and we know

$$|g(z)| \le 1, g(0) = 0$$

and hence

$$g'(0) \le 1, |g(z)| \le z$$

For the second conlusion, let

$$h = \phi_{b_1} \circ f \circ \phi_{-a_1}(z) \le |z|$$

and then we know

$$\phi_{b_1}(b_2) \le |\phi_{a_1}(a_2)|$$

Definition 1.31

A real-valued function $u:U\to\mathbb{R}$ on an open set $U\subset\mathbb{C}$ is harmonic if it is C^2 on U and

$$\Delta u = 0$$

Lemma 1.18

If $u:D\to\mathbb{R}$ is a harmonic function on a disc D, then there is a holomorphic function $F:D\to\mathbb{C}$ such that ReF=u on D.

Definition 1.32

Any function v such that u + iv is holomorphic is called a harmonic conjugate of u.

4

Corollary 1.12

If $u: U \to \mathbb{R}$ is a harmonic function on an open set $U \subset \mathbb{C}$, then $u \in C^{\infty}$.

Lemma 1.19

If U is a holomorphically simply connected open set and if $u:U\to\mathbb{R}$ is a harmonic function, then there is a C^2 harmonic function v such that $u+iv:U\to\mathbb{C}$ is holomorphic.

Proof Let

$$H = \frac{\partial}{\partial x} u - i \frac{\partial}{\partial y} u$$

and we know H is holomorphic on U and hence there exists F' such that F' = H, and it is easy to check that (ReF)' = u + c for some constant c and then we know F - C = u + iv' is the required function.

Theorem 1.35

(The maximum principle for harmonic functions) If $u: U \to \mathbb{R}$ is harmonic on a connected open set U and if there is a point $P_0 \in U$ with the property that $u(P_0) = \sup_{Q \in U} u(Q)$, then u is constant on U.

Proof We may show that $\{z, u(z) = u(P_0)\}$ is open by considering ReH = u on $D(P_0, r)$ for H holomorphic and use the maxium modulus principle to e^H . And the set is closed in U is easy to be checked.

Corollary 1.13

(Minimum principle for harmonic functions) If $u: U \to \mathbb{R}$ is harmonic on a connected open set U and if there is a point $P_0 \in U$ with the property that $u(P_0) = \inf_{Q \in U} u(Q)$, then u is constant on U.

Corollary 1.14

Let $U \subset \mathbb{C}$ be a bounded, connected open set and let u be a continuous, real-valued function on the closure \overline{U} of

U that is harmonic on U. Then

$$\max_{\overline{U}} u = \max_{\partial U} u(\min_{\overline{U}} u = \min_{\partial U} u)$$

\bigcirc

Theorem 1.36

(The mean value property) Suppose that $u:U\to\mathbb{R}$ is a harmonic function on an open set $U\subset\mathbb{C}$ and that $\overline{D}(P,r)\subset U$ for some r>0. Then

$$u(P) = \frac{1}{2\pi} \int_0^{2\pi} u(P + re^{i\theta}) d\theta$$

Proof Choose s>r such that $D(P,s)\subset U$ and we may find $H:D(P,s)\to\mathbb{C}$ such that H=u+iv holomorphic and

$$H(P) = \frac{1}{2\pi i} \int_{\gamma} \frac{H(\xi)}{\xi - P} = \frac{1}{2\pi i} \int_{0}^{2\pi} H(P + re^{i\theta}) d\theta$$

and the rest is easy to be checked.

Lemma 1.20

Let $a \in D(0,1)$, then the holomorphic function $\phi_a(z) = \frac{z-a}{1-\bar{a}(z)}$ has the following properties:

a. ϕ_a is holomorphic and invertible on a neighborhood of $\overline{D}(0,1)$

b. $\phi_a:D(0,1)\to D(0,1)$ is one-to-one and onto

c. $(\phi_a)^{-1} = \phi_{-a}$

 $d. \ \phi_a(a) = 0$

 \odot

Lemma 1.21

If $u: U \to \mathbb{R}$ is harmonic and if $H: V \to U$ is holomorphic, then $u \circ H$ is harmonic.

 \heartsuit

Proof We prove a chain rule for complex functions:

$$\begin{split} \frac{\partial}{\partial z}(f\circ g) &= \frac{1}{2}\Big(\frac{\partial}{\partial x}f(g_1,g_2)\frac{\partial}{\partial x}g_1 + \frac{\partial}{\partial y}f(g_1,g_2)\frac{\partial}{\partial x}g_2\Big) - \frac{i}{2}\Big(\frac{\partial}{\partial x}f(g_1,g_2)\frac{\partial}{\partial y}g_1 + \frac{\partial}{\partial y}f(g_1,g_2)\frac{\partial}{\partial y}g_2\Big) \\ &= \frac{1}{2}\Big(\frac{\partial}{\partial z}f(g_1,g_2)\frac{\partial}{\partial x}g_1 + \frac{\partial}{\partial \overline{z}}f(g_1,g_2)\frac{\partial}{\partial x}g_1 - i^{-1}\frac{\partial}{\partial z}f(g_1,g_2)\frac{\partial}{\partial x}g_2 + i^{-1}\frac{\partial}{\partial \overline{z}}f(g_1,g_2)\frac{\partial}{\partial x}g_2\Big) \\ &- \frac{1}{2}\Big(i\frac{\partial}{\partial z}f(g_1,g_2)\frac{\partial}{\partial y}g_1 + i\frac{\partial}{\partial \overline{z}}f(g_1,g_2)\frac{\partial}{\partial y}g_1 - \frac{\partial}{\partial z}f(g_1,g_2)\frac{\partial}{\partial y}g_2 + \frac{\partial}{\partial \overline{z}}f(g_1,g_2)\frac{\partial}{\partial y}g_2\Big) \\ &= \frac{\partial}{\partial z}f(g)\frac{\partial}{\partial z}g_1 + \frac{\partial}{\partial \overline{z}}f(g)\frac{\partial}{\partial z}g_1 - i^{-1}\frac{\partial}{\partial z}f(g)\frac{\partial}{\partial z}g_2 + i^{-1}\frac{\partial}{\partial \overline{z}}f(g)\frac{\partial}{\partial z}g_2 \\ &= \frac{\partial}{\partial z}f(g)\frac{\partial}{\partial z}g + \frac{\partial}{\partial \overline{z}}f(g)\frac{\partial}{\partial z}\overline{g} \end{split}$$

and similarly we know

$$\begin{split} \frac{\partial}{\partial \bar{z}}(f\circ g) &= \frac{1}{2}\Big(\frac{\partial}{\partial x}f(g_1,g_2)\frac{\partial}{\partial x}g_1 + \frac{\partial}{\partial y}f(g_1,g_2)\frac{\partial}{\partial x}g_2\Big) + \frac{i}{2}\Big(\frac{\partial}{\partial x}f(g_1,g_2)\frac{\partial}{\partial y}g_1 + \frac{\partial}{\partial y}f(g_1,g_2)\frac{\partial}{\partial y}g_2\Big) \\ &= \frac{1}{2}\Big(\frac{\partial}{\partial z}f(g_1,g_2)\frac{\partial}{\partial x}g_1 + \frac{\partial}{\partial \bar{z}}f(g_1,g_2)\frac{\partial}{\partial x}g_1 - i^{-1}\frac{\partial}{\partial z}f(g_1,g_2)\frac{\partial}{\partial x}g_2 + i^{-1}\frac{\partial}{\partial \bar{z}}f(g_1,g_2)\frac{\partial}{\partial x}g_2\Big) \\ &+ \frac{1}{2}\Big(i\frac{\partial}{\partial z}f(g_1,g_2)\frac{\partial}{\partial y}g_1 + i\frac{\partial}{\partial \bar{z}}f(g_1,g_2)\frac{\partial}{\partial y}g_1 - \frac{\partial}{\partial z}f(g_1,g_2)\frac{\partial}{\partial y}g_2 + \frac{\partial}{\partial \bar{z}}f(g_1,g_2)\frac{\partial}{\partial y}g_2\Big) \\ &= \frac{\partial}{\partial z}f(g)\frac{\partial}{\partial \bar{z}}g_1 + \frac{\partial}{\partial \bar{z}}f(g)\frac{\partial}{\partial \bar{z}}g_1 - i^{-1}\frac{\partial}{\partial z}f(g)\frac{\partial}{\partial \bar{z}}g_2 + i^{-1}\frac{\partial}{\partial \bar{z}}f(g)\frac{\partial}{\partial \bar{z}}g_2 \\ &= \frac{\partial}{\partial z}f(g)\frac{\partial}{\partial \bar{z}}g + \frac{\partial}{\partial \bar{z}}f(g)\frac{\partial}{\partial \bar{z}}\bar{g} \end{split}$$

so

$$\Delta u(H) = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} u(H) = 4 \frac{\partial}{\partial z} \left(\frac{\partial}{\partial \bar{z}} u(H) \frac{\partial}{\partial \bar{z}} \bar{H} \right) = \frac{\partial}{\partial \bar{z}} (u(H)) \Delta \bar{H} = 0$$

Theorem 1.37

(The Poisson integral formula) Let $u: U \to \mathbb{R}$ ba a harmonic function on a neighbourhood of $\overline{D(0,1)}$. Then for any $a \in D(0,1)$,

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u^{e^{i\phi}} \frac{1 - |a|^2}{|a - e^{i\theta}|^2} d\phi$$

Proof Consider $u(\phi_a)$ is fine.

Theorem 1.38

Let f be a continuous function on $\partial D(0,1)$. Define

$$u(z) = \begin{cases} \frac{1}{2\pi} \int_0^{2\pi} f(e^{\theta}) \frac{1 - |z|^2}{|z - e^{i\theta}|^2} d\theta & \text{if } z \in D(0, 1) \\ f(z) & \text{if } z \in \partial D(0, 1) \end{cases}$$

then u is continuous on $\overline{D}(0,1)$ and harmonic on D(0,1).

Definition 1.33

A continuous function $h:U\to\mathbb{R}$ on an open set $U\subset\mathbb{C}$ has the samll circle mean value property if, for each point $P\in U$ there is an $\epsilon_P>0$ such that $\overline{D}(P,\epsilon_p)\subset U$ and for every $0<\epsilon<\epsilon_P$

$$h(P) = \frac{1}{2\pi} \int_0^{2\pi} h(P + \epsilon e^{i\theta}) d\theta$$

Theorem 1.39

If $h: U \to \mathbb{R}$ is a continuous function on an open set U with the SCMV property, then h is harmonic.

Corollary 1.15

If $\{h_j\}$ is a sequence of real-valued harmonic functions that converges uniformly on compact subsets of U to a function $h: U \to \mathbb{R}$, then h is harmonic on U.

Proof By theorem 7.4.2, it is easy to check that h has the SCMV property.