In the tetrahedron OABC, let $\angle BOC = \alpha$, $\angle COA = \beta$ and $\angle AOB = \gamma$. Let σ be the angle between the faces OAB and OAC, and let τ be the angle between the faces OBA and OBC. Prove that

$$\gamma > \beta \cdot \cos \sigma + \alpha \cdot \cos \tau.$$