2022 OECD Hackathon

To what extent are countries' green transition goals, as set out in their strategies, reflected in their STI policies?

Vincent Gu, Yifan Liu, Daniel J. Marchetto, Sergio Pelaez, Matteo Zullo

Georgia Institute of Technology

June 7, 2022

Outline

- Intro
- Neural Network Classification
- Topic Model
- 4 Clustering
- Cross Dataset Mapping
- 6 Conclusion

Intro

IPCC Sixth Assessement Report on Climate Change

Devastating consequences if 1.5°C warming by 2040

Paris Climate Goals: countries pledge ambitious climate action

• How are countries translating ambitions into policies?

Neural Network Classifier

- Classification of strategy documents
 - Created ground truth dataset
 - 2 Split 313 documents into 380,276 sentences
 - Classified sentences using neural network
- Ground truth dataset
 - Manually coded 800 sample senteces: 1 if environment related, 0 if not related

id	text			
1	Within the framework, the design of a Climate Change Observatory is being promoted.	1		
2	Progress is being made towards an open access approach to information and data.	0		
3	MinCiencia assumes leadership in promoting scientific and technological-based innovation.	0		
4	One of the most profound global issues is the sustainability of human life on the planet.	1		

Neural Network Classifier

Bidirectional Encoder Representations Transformer (BERT)

- Handle non-linear classifications
 - E.g., "transition", "sustainable"
- Pre-trained bidirectionally
 - Better understanding of natural language
- Outperform non-deep learning ML classifiers
 - Marchetto et al. (2021), Zullo et al. (2022)

Measures to significantly reduce greenhouse gas emissions with regard to Austria's transition...

 $Figure: \ BERT \ neural \ network \ architecture$

Neural Network Classifier

- Classification output
 - Train model (0.47 ss), predict 380,276 texts (21 mm)
 - Output predictions, smooth them using moving average

doc_id country	text		pred	probability	pred_smooth
ES_B2P2 Spain	Social networks are information channels th		1	0.523	1
ES_B2P2 Spain	Embedded: Sensors that allow to op	timise	0 —	0.594	1
ES_B2P2 Spain	Process improvement using embedde	d sens	1	0.610	1
ES_B2P2 Spain	In addition, it provides reliability and	precis	0	0.641	1
ES_B2P2 Spain	The incorporation of these sensors als	o give	1	0.549	1

- Given a corpus, what latent space can be constructed to explain generative process of text?
- Classical techniques treat text as generated by random
 Dirichlet processes approximating latent word-topic spaces
- What is a latent topic? Latent semantic spaces?

Figure: Model procedure based on BERTopic

- Data Preparation
 - Removed punctuation & words with < 2 characters
 - Increased classification threshold to 0.55
 - Excluded sentences with < 5 words (final n = 13,199)
- Algorithms' Parameters
 - UMAP 10 neighbors & components
 - HDBSCAN 20 minimum cluster size; ℓ_1 distance
 - TF-IDF unigrams & bigrams
- Results
 - 70 topic clusters, 46 clearly relating to green transition

Topic	Count	Name	Green
-1	6195	-1_the_and_of_energy	0
0	706	0_hydrogen_fuel_of hydrogen_for	1
1	622	1_vehicles_transport_electric_road	1
2	457	2_name name_name_emergency_credit	0
3	266	3_climate_climate change_change_extreme	1
4	249	4_waste_recycling_materials_recycled	1
5	247	5_we_there_you_this	0
6	221	6_water_groundwater_irrigation_of water	1
7	208	7_batteries_lithium_battery_storage	1
8	190	8_heat_heating_pumps_heat pumps	1
9	171	9_emissions_greenhouse gas_greenhouse_gas emissions	1
10	168	10_materials_nickel_graphite_minerals	0
11	158	11_quantum_silicon_semiconductor_wafers	0
12	133	12_efficiency_energy efficiency_energy_consumption	1
13	122	13_gas_natural gas_natural_calorific	1
14	120	14_innovation_science_technology_science and	0
15	117	15_power_grid_the_transmission	1
16	115	16_forests_forest_carbon_trees	1
17	115	17_oil_prices_crude oil_crude	1
18	114	18_soil_erosion_the soil_soils	1
19	111	19_nuclear_nuclear power_fuel_spent	1
20	110	20_renewable_renewable energy_of renewable_energy	1
21	101	21_biomass_wood_biomass is_of biomass	1
22	89	22_buildings_energy_building_energy efficiency	1
23	88	23_ecosystems protection_and restoration_and ecosystems_of biodiversity	1
24	87	24_biofuels_biogas_waste_from	1

Figure: Sample Topic Model output

Figure: Counts of sentences by label from topic model

Clustering

Green Intensity Ratio (GIR)

$$GIR = \frac{\text{No. of "green" sentences}}{\text{No. of all sentences}}$$

How aggressively countries describe transition goals

Green Broadness Ratio (GBR)

$$GBR = \frac{\text{No. of "green" topics mentioned}}{\text{No. of all possible green topics}}$$

How broad transition goals are represented in the text

Figure: Green Intensity Ratio (GIR) vs Green Broadness Ratio (GBR): Clusters

Cross Dataset Mapping

Figure: Extent of Green Intensity

Cross Dataset Mapping

Figure: Extent of Green Broadness

Cross Dataset Mapping

Figure: Conditional Extent of Green Broadness

Conclusions

Green Strategy

- Cross-country analysis
 - Depth and breadth of green transition positively related
 - The UK, New Zealand, and Ireland are least committed
 - Slovakia, Japan, and Spain are most committed
- Green transition macrotopics
 - Most prominent green transition topics are alternative energy, energy infrastructure, and buildings, with huge variation across countries

Conclusions

Green Initiative: Cross Dataset Mapping

- Little evidence that intensity of green transition strategies is reflected into intensity of green transition initiatives
- We do not find that broadness of green transition strategies is reflected into broadness of green transition initiatives after conditioning on those having in strategy

End - Thank you for your time!

Any questions or comments?

Appendix

pic	Count	Name	Green	Topic	Count		Green
-1	6195	-1_the_and_of_energy	0		35	58 35_housing_rental_homes_of rental	
0	706	0_hydrogen_fuel_of hydrogen_for	1		36	55 36_solar_solar cells_solar energy_panels	
1	622	1_vehicles_transport_electric_road	1		37	55 37_diseases_virus_infectious_the virus	
2	457	2_name_name_emergency_credit	0		38	52 38_circular_circular economy_economy_the circular	
3	266	3_climate_climate change_change_extreme	1		39	52 39_digital_computing_computing power_consumption	
4	249	4_waste_recycling_materials_recycled	1		40	50 40_tax_energy tax_tax on_fuels	
5	247	5 we there you this	0		41	47 41 agriculture livestock agriculture livestock farms	
6	221	6 water groundwater irrigation of water	1		42	46 42 marine resources marine and marine and protection	
7	208	7_batteries_lithium_battery_storage	1		43	44 43_landscape_protected_protected areas_of	
8	190	8 heat heating pumps heat pumps	1		44	44 44 data the data information of data	
9	171	9 emissions greenhouse gas greenhouse gas emissions	1		45	43 45 jobs skilled workers to attract	
10	168	10 materials nickel graphite minerals	0		46	42 46 manufacturing industries industry services	
11	158	11_quantum_silicon_semiconductor_wafers	0		47	41 47_water quality_been identified_quality and_identified	
12	133	12 efficiency energy efficiency energy consumption	1		48	41 48 carbon carbon dioxide dioxide co2	
13	122	13 gas natural gas natural calorific	1		49	35 49 digital of digital digitization the digital	
14	120	14_innovation_science_technology_science and	0		50	34 50_coastal_preservation_preservation of_water resources	
15	117	15 power grid the transmission	1		51	33 51 smart grids smart grids storage	
16	115	16 forests forest carbon trees	1		52	31 52 effects damage effects are their effect	
17	115	17 oil prices crude oil crude	1		53	31 53 protein proteins products milk	
18	114	18_soil_erosion_the soil_soils	1		54	30 54_air_dust_air quality_pollution	
19	111	19 nuclear nuclear power fuel spent	1		55	29 55 woman man man in standing	
20	110	20 renewable renewable energy of renewable energy	1		56	29 56 tourism of tourism the tourism climate change	
21	101	21 biomass wood biomass is of biomass	1		57	28 57 research needs the research needs what what are	
22	89	22 buildings energy building energy efficiency	1		58	27 58 demand energy demand growth grow	
23	88	23 ecosystems protection and restoration and ecosystems of biodiversity	1		59	27 59 fossil fossil fuels fuels fossil energy	
24	87	24 biofuels biogas waste from	1		60	26 60_structures_cladding_thermal_cladding the	
25	81	25 species biodiversity climate change change	1		61	26 61_energy consumption_consumption_consumption has_decreased	
26	78	26 sustainable environmental environment sustainable consumption	1		62	25 62 heating emissions reduction emissions of	
27	71	27 climate energy energy transition transition	1		63	24 63_the measure_significant greenhouse_to lead_measure	
28	70	28_regions_region_areas_country	0		64	24 64_productivity_labour_employment_growth	
29	66	29 prices growth inflation slowed	0		65	24 65 degradation have no risks environmental degradation risks of	
30		30_offshore_offshore wind_wind_wind power	1		66	23 66_and limitation_limitation_limitation of_pollution to	
31	63	31_final_final energy_energy consumption_consumption	1		67	23 67_health_public health_population_public	
32	62	32 broadband spectrum technologies radio	0		68	23 68 coal coal consumption coal fired power plants	
33	62	33 geothermal geothermal energy geothermal power deep	1		69	21 69 hydropower pumped hydroelectric hydraulic	
34	58	34 digital transitions transitions contribution transitions contribution to	0				