Spoken Utterances Guiding Chef's Assistant Robots SUGAR

Maria Di Maro, Antonio Origlia, Francesco Cutugno Università degli Studi di Napoli 'Federico II'

Outline to the task

- SUGAR at Evalita 2018
 - Introduction to the task
 - Corpus Collection
 - Corpus Annotation
- Participants
- Evaluation
 - Metrics
 - Results
- Conclusion

Introduction to the task

- Spoken Language Understanding:
 - Grammars (McGlashan et al., 1992)
 - Frame semantics (Wang, 2010)
 - Bag of words (Yao et al., 2013)
 - Semantic-syntactic trees (Miller et al., 1966)
 - Intent classification (Tur and Deng, 2011)

Introduction to the task

- Intent Classification-based task to train systems to understand spoken commands
 - Authentic spoken data collected in a simulated natural context
 - Manual Annotations for training purposes
 - Automatic extraction of semantic predicates to enable a (robotic) system to perform an action (cooking context)
- Development of a suitable baseline

Corpus Collection

- 3D virtual kitchen with Bastian "the interactive chef"
- Silent video frames showing actions
- Recording of user utterances in accomplishing recipes

Corpus Collection

Corpus Annotation

• Generic predicates + open domain-dependent set of parameters

```
put(pot, fire)
put(egg, bowl)
```

Training set: 1721 actions

Test set: 572 actions

- Transcriptions were not provided
- Data could be extended with external ontologies

Corpus Annotation: Action Templates

Predicate	Arguments		
prendere	quantità, [ingredienti]/recipiente		
aprire	quantità, [ingredienti], recipiente		
mettere	quantità, utensile/[ingredienti],		
	elettrodomestico, modalità		
sbucciare	quantità, [ingredienti], utensile		
schiacciare	[ingredienti, utensile		
passare	[ingredienti], utensile		
grattare	[ingredienti], utensile		
girare	[ingredienti], utensile		
togliere	utensile/prodotto, elettrodomestico		
aggiungere	quantità, [ingredienti], utensile/recipiente/		
	elettrodomestico/[ingredienti], modalità		
mescolare	[ingredienti], utensile, modalità		
impastare	[ingredienti]		
separare	parte/[ingredienti],ingrediente/utensile		
coprire	recipiente/[ingredienti], strumento		
scoprire	recipiente/[ingredienti]		
controllare	temperatura, ingrediente		
cuocere	quantità, [ingredienti], utensile, modalità		

Training set - Example

```
1; prendere(uovo, ciotola)
2; aprire(uovo, ciotola)
3; aggiungere(30 g, latte, ciotola)
4; aggiungere(pizzico, sale, *ciotola*)
5; mettere(pentola, fuoco)
6; mescolare(uova)
7; aggiungere(filo, olio, pentola)
8; aggiungere(uova, pentola)
9; girare(frittata)
10; togliere(padella, fuoco)
```


Corpus Annotation

Challenging Scenarios:

- Implicit arguments
- Co-reference
- Arguments expressed within the verb (i.e. instrumental verbs)
- Generalization of actions (i.e. sciogliere(lievito, acqua) => mescolare([lievito, acqua]))

Participants

FBK-HLT-NLP	Anonymous System
System 1	Deep Neural Network System:
Encoder-Decoder approach with memory of previous sentences • System 2 Sequence to sequence modelling with synthetic data generation	 Word embeddings lexicon trained on a corpus of recipes (4.5 million words) as features Two Bi-LSTM layers for the encoder (the first for the token sequences, the second to embed arguments in a vector) Two Bi-LSTM layers for the decoder (the first in charge of decoding the sequence of arguments and the second of decoding the sequence of tokens) Multi-task neural network to classify the actions, detect the implicitness and predict the arguments.

Evaluation

Metrics

- The proposed system correctly detects the requested action and all its parameters
- The proposed system asks for repetition
- The proposed system correctly detects the requested action but it assigns wrong parameters
- The proposed system misses the action

Evaluation

Metrics: Output

- Action id (listing number of predicate + number of action)
- Boolean Value indicating if the predicate has been recognized
- Number of expected arguments
- Distance between expected arguments and system outputted arguments (Levensthein distance)
- Number of arguments for which the system asked for repetition

Reference File: prendere(500 g, panna)

Output File: prendere(500 g, latte)

Evaluation Output: 1_1 (1, 2, 1, 0)

Evaluation

Results

	Correct Actions	Correct Arguments	Incorrect Actions	Incorrect Arguments
FBK System 1	50,16	28,31	49,83	71.68
FBK System 2	66,36	46,22	33,64	53,78
Anonymous System	55,89	17,46	46,11	82,54

Conclusion

- Further analysis should be carried out to efficiently solve semantic recognition tasks
- Errors analysis is needed
- Enlargement of the corpus
- Rule-based module?
- Multilingualism and Multimodality

Spoken Utterances Guiding Chef's Assistant Robots SUGAR

Maria Di Maro, Antonio Origlia, Francesco Cutugno Università degli Studi di Napoli 'Federico II'

