```
In [123]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
from sklearn.model selection import train test split
from sklearn import tree
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
warnings.filterwarnings('ignore')
import statsmodels.api as sm
import scipy.stats as stats
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy score, precision score, recall score, f1 score
```

In [2]:

```
loan = pd.read_csv('Loan_Modelling.csv')
```

In [4]:

```
data=loan.copy()
```

In [6]:

data.head(15)

Out[6]:

	ID	Age	Experience	Income	ZIPCode	Family	CCAvg	Education	Mortgage	Personal_Loan	Securities_Account	CD_Ac
0	1	25	1	49	91107	4	1.6	1	0	0	1	
1	2	45	19	34	90089	3	1.5	1	0	0	1	
2	3	39	15	11	94720	1	1.0	1	0	0	0	
3	4	35	9	100	94112	1	2.7	2	0	0	0	
4	5	35	8	45	91330	4	1.0	2	0	0	0	
5	6	37	13	29	92121	4	0.4	2	155	0	0	
6	7	53	27	72	91711	2	1.5	2	0	0	0	
7	8	50	24	22	93943	1	0.3	3	0	0	0	
8	9	35	10	81	90089	3	0.6	2	104	0	0	
9	10	34	9	180	93023	1	8.9	3	0	1	0	
10	11	65	39	105	94710	4	2.4	3	0	0	0	
11	12	29	5	45	90277	3	0.1	2	0	0	0	
12	13	48	23	114	93106	2	3.8	3	0	0	1	
13	14	59	32	40	94920	4	2.5	2	0	0	0	
14	15	67	41	112	91741	1	2.0	1	0	0	1	
4])

In [7]:

data.tail(15)

Out[7]:

4985	4988	Age	Experien <u>eg</u>	Income	ZIPC49de	Family	CCVA	Education 2	Mortgage 2	Personal_Loan	Securities_Account	CI
4986	4987	32	6	78	95825	1	2.90	3	0	0	0	
4987	4988	48	23	43	93943	3	1.70	2	159	0	0	
4988	4989	34	8	85	95134	1	2.50	1	136	0	0	
4989	4990	24	0	38	93555	1	1.00	3	0	0	0	
4990	4991	55	25	58	95023	4	2.00	3	219	0	0	
4991	4992	51	25	92	91330	1	1.90	2	100	0	0	
4992	4993	30	5	13	90037	4	0.50	3	0	0	0	
4993	4994	45	21	218	91801	2	6.67	1	0	0	0	
4994	4995	64	40	75	94588	3	2.00	3	0	0	0	
4995	4996	29	3	40	92697	1	1.90	3	0	0	0	
4996	4997	30	4	15	92037	4	0.40	1	85	0	0	
4997	4998	63	39	24	93023	2	0.30	3	0	0	0	
4998	4999	65	40	49	90034	3	0.50	2	0	0	0	
4999	5000	28	4	83	92612	3	0.80	1	0	0	0	
4												Þ

In [8]:

data.shape

Out[8]:

(5000, 14)

• Dataset has 12330 rows and 18 columns

In [9]:

```
data[data.duplicated()].count()
```

Out[9]:

0 ID Age 0 Experience 0 Income 0 ZIPCode 0 0 Family 0 CCAvg 0 Education 0 Mortgage Personal_Loan 0
Securities_Account 0 CD Account 0 Online 0 CreditCard 0 dtype: int64

In [10]:

data.drop_duplicates(inplace=True)

In [11]:

data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5000 entries, 0 to 4999
Data columns (total 14 columns):

Column Non-Null Count Dtype

```
0
                                 int64
   ID
                     5000 non-null
1 Age
                     5000 non-null int64
2 Experience
                    5000 non-null int64
3 Income
                    5000 non-null int64
                    5000 non-null int64
4 ZIPCode
5 Family
                    5000 non-null int64
                    5000 non-null float64
6 CCAvg
7 Education
                   5000 non-null int64
8 Mortgage
                    5000 non-null int64
9 Personal Loan 5000 non-null int64
10 Securities Account 5000 non-null int64
11 CD_Account
                    5000 non-null int64
                    5000 non-null int64
12 Online
                    5000 non-null int64
13 CreditCard
dtypes: float64(1), int64(13)
```

memory usage: 585.9 KB

• Most of the data-types are either int64 or float64.

Check for missing values

```
In [13]:
```

```
data.isnull().sum()
Out[13]:
ID
                      0
Age
                      0
Experience
                      0
                      0
Income
ZIPCode
                      0
                      0
Family
                      0
CCAvg
Education
                      0
Mortgage
Personal Loan
Securities Account 0
CD Account
                      0
Online
                      0
CreditCard
                      0
dtype: int64
In [14]:
data.isna().apply(pd.value counts) #null value
```

		ID	Age	Experience	Income	ZIPCode	Family	CCAvg	Education	Mortgage	Personal_Loan	Securities_Account	(
ī	False	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	
4													F

- No Null Values
- No Missing Values

In [15]:

Out[14]:

```
data.describe().T
```

Out[15]:

	count	mean	std	min	25%	50%	75%	max
ID	5000.0	2500.500000	1443.520003	1.0	1250.75	2500.5	3750.25	5000.0
Age	5000.0	45.338400	11.463166	23.0	35.00	45.0	55.00	67.0

Experience	£.0000	20.1 64660	11.467 95 4	ழுந்த	185 %	52 9%	375.86	419.8
Income	5000.0	73.774200	46.033729	8.0	39.00	64.0	98.00	224.0
ZIPCode	5000.0	93169.257000	1759.455086	90005.0	91911.00	93437.0	94608.00	96651.0
Family	5000.0	2.396400	1.147663	1.0	1.00	2.0	3.00	4.0
CCAvg	5000.0	1.937938	1.747659	0.0	0.70	1.5	2.50	10.0
Education	5000.0	1.881000	0.839869	1.0	1.00	2.0	3.00	3.0
Mortgage	5000.0	56.498800	101.713802	0.0	0.00	0.0	101.00	635.0
Personal_Loan	5000.0	0.096000	0.294621	0.0	0.00	0.0	0.00	1.0
Securities_Account	5000.0	0.104400	0.305809	0.0	0.00	0.0	0.00	1.0
CD_Account	5000.0	0.060400	0.238250	0.0	0.00	0.0	0.00	1.0
Online	5000.0	0.596800	0.490589	0.0	0.00	1.0	1.00	1.0
CreditCard	5000.0	0.294000	0.455637	0.0	0.00	0.0	1.00	1.0

• Negative value in the *Experience* field (-3.0).

In [16]:

```
# Replacing -ve value with mean of Experience field
any(data['Experience'] < 0)</pre>
```

Out[16]:

True

In [17]:

```
asgn_medn_expn = data.loc[:,"Experience"].median()
data.loc[:, 'Experience'].replace([-1, -2, -3], [asgn_medn_expn, asgn_medn_expn, asgn_medn_expn], inplace=True)
```

In [18]:

```
any(data['Experience'] < 0)</pre>
```

Out[18]:

False

In [19]:

```
data.describe().T
```

Out[19]:

	count	mean	std	min	25%	50%	75%	max
ID	5000.0	2500.500000	1443.520003	1.0	1250.75	2500.5	3750.25	5000.0
Age	5000.0	45.338400	11.463166	23.0	35.00	45.0	55.00	67.0
Experience	5000.0	20.327600	11.253035	0.0	11.00	20.0	30.00	43.0
Income	5000.0	73.774200	46.033729	8.0	39.00	64.0	98.00	224.0
ZIPCode	5000.0	93169.257000	1759.455086	90005.0	91911.00	93437.0	94608.00	96651.0
Family	5000.0	2.396400	1.147663	1.0	1.00	2.0	3.00	4.0
CCAvg	5000.0	1.937938	1.747659	0.0	0.70	1.5	2.50	10.0
Education	5000.0	1.881000	0.839869	1.0	1.00	2.0	3.00	3.0
Mortgage	5000.0	56.498800	101.713802	0.0	0.00	0.0	101.00	635.0
Personal_Loan	5000.0	0.096000	0.294621	0.0	0.00	0.0	0.00	1.0
Securities_Account	5000.0	0.104400	0.305809	0.0	0.00	0.0	0.00	1.0

CD_Account	5000 Q	0.060400 mean	0.238250 \$10	Hill	25%	50 %	75 %	max
Online	5000.0	0.596800	0.490589	0.0	0.00	1.0	1.00	1.0
CreditCard	5000.0	0.294000	0.455637	0.0	0.00	0.0	1.00	1.0

Univariate Analysis for the continuous variables

In [25]:

```
plt.figure(figsize= (18,18))
plt.subplot(3,3,1)
plt.hist(data.Age, edgecolor = 'black')
plt.xlabel('Age')
plt.ylabel('Age Volume')
plt.subplot(3,3,2)
plt.hist(data.Experience, edgecolor = 'black')
plt.xlabel('Experience')
plt.ylabel('Experience Volume')
plt.subplot(3,3,3)
plt.hist(data.Income, edgecolor = 'black')
plt.xlabel('Income')
plt.ylabel('Income Volume')
plt.subplot(3,3,4)
plt.hist(data.CCAvg, edgecolor = 'black')
plt.xlabel('Credit Card Average')
plt.ylabel('CCA Volume')
plt.subplot(3,3,5)
plt.hist(data.Mortgage, edgecolor = 'black')
plt.xlabel('Mortgage')
plt.ylabel('Mortgage Volume')
plt.show()
```


- Age and Experience has normal distribution.
- Income, Credit Card Average and Mortage are highly skewness

In [28]:

Out[28]:

	Skewness
Age	-0.029332
Experience	-0.014096
Income	0.841086
CCAvg	1.597964
Mortgage	2.103371

- Age & Experience has similar skewness
- Income, CCAvg & Mortage has positive value

In [36]:

```
plt.figure(figsize= (10,10))
plt.subplot(3,2,1)
sns.boxplot(x= data.Age)

plt.subplot(3,2,2)
sns.boxplot(x= data.Experience)

plt.subplot(3,2,3)
sns.boxplot(x= data.Income)

plt.subplot(3,2,4)
sns.boxplot(x= data.CCAvg)

plt.subplot(3,2,5)
sns.boxplot(x= data.Mortgage)
```

Out[36]:

<AxesSubplot:xlabel='Mortgage'>

- Age has normally distributed, 35 to 55 age
- Experience has normal distribution, 11 to 30 years
- Remaining field has positive skewness

Univariate Analysis of the descrete variables

In [41]:

```
plt.figure(figsize=(10,10))
plt.subplot(3,2,1)
data['Family'].value counts().plot(kind="bar", edgecolor = 'black')
plt.xlabel("Family")
plt.ylabel("Family Volume")
plt.subplot(3,2,2)
data['Education'].value counts().plot(kind="bar", edgecolor = 'black')
plt.xlabel('Education')
plt.ylabel('Education Volume ')
plt.subplot(3,2,3)
data['Securities Account'].value counts().plot(kind="bar", edgecolor = 'black')
plt.xlabel('Securities Account')
plt.ylabel('SA Volume')
plt.subplot(3,2,4)
data['CD_Account'].value_counts().plot(kind="bar", edgecolor = 'black')
plt.xlabel('CD Account')
plt.ylabel('CDA Volume')
plt.subplot(3,2,5)
data['Online'].value counts().plot(kind="bar", edgecolor = 'black')
plt.xlabel('Online')
plt.ylabel('Online Volume')
plt.subplot(3,2,6)
data['CreditCard'].value counts().plot(kind="bar", edgecolor = 'black')
plt.xlabel('CreditCard')
plt.ylabel('CC Volume')
```

CCAvg

Out[41]:

Text(0, 0.5, 'CC Volume')

- Family and Education has normal distribution
- Variate in the Securities Account and CD Account

In [42]:

pair plot
sns.pairplot(data)

Out[42]:

<seaborn.axisgrid.PairGrid at 0x21c5eb00308>

Checking dependent variable

```
In [45]:
```

```
data["Personal_Loan"].value_counts()

Out[45]:
0     4520
1     480
Name: Personal_Loan, dtype: int64

In [53]:
pd.value_counts(data["Personal_Loan"]).plot(kind="bar")
plt.xlabel("Personal_Loan")
plt.ylabel("PL Volume")
Out[53]:
```

Text(0, 0.5, 'PL Volume')

Comparison charts using different variables by depandent variable

```
In [60]:
```

```
plt.figure(figsize=(18,18))
plt.subplot(3,1,1)
sns.scatterplot(data.CCAvg, data.Income, hue = data['Personal_Loan'], palette= ['blue','
orange'])
plt.subplot(3,1,2)
sns.scatterplot(data.Family, data.Income, hue = data['Personal_Loan'], palette= ['blue', 'orange'])
plt.subplot(3,1,3)
sns.scatterplot(data.Income, data.Mortgage, hue = data['Personal_Loan'], palette= ['blue']
```

```
','orange'])
Out[60]:
<AxesSubplot:xlabel='Income', ylabel='Mortgage'>
  200
  150
100 100
   50
                                                                                                                                 Personal_Loan
                                                                                                                                 0
                                                                       CCAvg
   200
  150
  100
   50
                                                                      Personal_Loan
                                                                       Family
                                                                                                                                 Personal_Loan
  600
  400
Mortgage
  300
  200
```

• Based on CCAvg, Family & Income increases, personal loan also got increasing

100

150

200

50

In [61]:

100

```
plt.figure(figsize=(18,18))

plt.subplot(3,1,1)
sns.scatterplot(data.Age, data.Experience, hue = data['Personal_Loan'], palette= ['blue', 'orange'])

plt.subplot(3,1,2)
sns.scatterplot(data.Education, data.Income, hue = data['Personal_Loan'], palette= ['blue', 'orange'])

plt.subplot(3,1,3)
sns.scatterplot(data.Education, data.Mortgage, hue = data['Personal_Loan'], palette= ['blue', 'orange'])
```

Out[61]:

Comparing Categorical data by Personal Loan

```
In [64]:
```

```
plt.figure(figsize=(18,10))

plt.subplot(2,1,1)
sns.countplot(x="Securities_Account", data=data ,hue="Personal_Loan")

plt.subplot(2,1,2)
sns.countplot(x='CD_Account' ,data=data ,hue='Personal_Loan')
```

Out[64]:

<AxesSubplot:xlabel='CD Account', ylabel='count'>

In [68]:

```
sns.distplot(data[data["Personal_Loan"] == 0]['Income'], color = 'blue')
```

Out[68]:

<AxesSubplot:xlabel='Income'>

In [70]:

```
sns.distplot(data[data["Personal_Loan"] == 1]['Income'], color = 'orange')
```

Out[70]:

<AxesSubplot:xlabel='Income'>

• Above comparison chart, based on income vs personal loan

In [71]:

In [72]:

In [73]:

In [74]:

In [75]:

In [76]:

In [77]:

In [78]:

In [79]:

Income

Bivariate Analysis

In [80]:

```
plt.figure(figsize=(15,7))
sns.heatmap(data.corr(),annot=True)
plt.show()
```


- Income shows the highest correlation with CCAvg (0.65)
- Age and Experience are very highly correlated(0.98) with each other.
- Age and Experience are highly correlated and the correlation is almost 1.
- 'Income' and 'CCAvg' is moderately correlated.
- We can see in above heat map there is association of 'CD Account' with 'Credit Card', 'Securities Account',
 'Online', 'CCAvg' and 'Income'.
- 'Income' influences 'CCAvg', 'Personal Loan', 'CD Account' and 'Mortgage'.

In [83]:

```
data[['Personal_Loan', 'Age', 'Income', 'CCAvg', 'Mortgage', 'Experience']].corr()
Out[83]:
```

	Personal_Loan	Age	Income	CCAvg	Mortgage	Experience
Personal_Loan	1.000000	-0.007726	0.502462	0.366889	0.142095	-0.014013
Age	-0.007726	1.000000	-0.055269	-0.052012	-0.012539	0.977182

Income	Personal 12020	-0.05 5269	1,000000	0. 645/284	M 071989 6	Experience
CCAvg	0.366889	-0.052012	0.645984	1.000000	0.109905	-0.048718
Mortgage	0.142095	-0.012539	0.206806	0.109905	1.000000	-0.013365
Experience	-0.014013	0.977182	-0.049046	-0.048718	-0.013365	1.000000

In [85]:

```
sns.heatmap(data[['Personal_Loan', 'Age', 'Income', 'CCAvg', 'Mortgage', 'Experience']].
corr(), annot = True)
```

Out[85]:

<AxesSubplot:>

In [88]:

```
data[['Personal_Loan', 'Age', 'Income', 'CCAvg', 'Mortgage', 'Experience']].corr()['Personal_Loan'][1:].plot.bar()
```

Out[88]:

<AxesSubplot:>

• Income & CCAvg shows the highest correlation

Model Building - Approach

- 1. Data preparation
- 2. Partition the data into train and test set.
- 3. Built a CART model on the train data.

- 4. Tune the model and prune the tree, if required.
- 5. Test the data on test set.

logmodel.fit(X Train, Y Train)

Out[116]:

LogisticRegression()

```
In [169]:
column names = list(data.columns)
column names.remove('Personal Loan')
#column names.remove('ID')
#column_names.remove('ZIPCode')
feature names = column names
print(feature names)
['Age', 'Experience', 'Income', 'Family', 'CCAvg', 'Education', 'Mortgage', 'Securities A
ccount', 'CD Account', 'Online', 'CreditCard']
In [91]:
train set, test set = train test split(data.drop(['ID', 'Experience'], axis=1), test size
=0.3 , random state=100)
In [93]:
train labels = train set.pop('Personal Loan')
test labels = test set.pop('Personal Loan')
In [95]:
train set indep = data.drop(['Experience' ,'ID'] , axis = 1).drop(labels= "Personal Loan
", axis = 1)
train set dep = data["Personal Loan"]
X = np.array(train set indep)
Y = np.array(train_set dep)
X Train = X[:3500, :]
  _{\text{Test}} = X[3501: , :]
  Train = Y[:3500,]
Y Test = Y[3501:, ]
In [108]:
logmodel = LogisticRegression()
logmodel.fit(X Train, Y Train)
Out[108]:
LogisticRegression()
In [99]:
X = data.drop('Personal Loan',axis=1)
y = data['Personal Loan'].astype('int64')
In [100]:
# Splitting data into training and test set:
X train, X test, y train, y test =train test split(X, y, test size=0.3, random state=1)
print(X train.shape, X test.shape)
(3500, 13) (1500, 13)
Logistic Regression
In [116]:
logmodel = LogisticRegression()
```

In [117]:

```
predict = logmodel.predict(X_Test)
predictProb = logmodel.predict_proba(X_Test)
```

In [361]:

```
# Confusion Matrix
cm = confusion_matrix(Y_Test, predict)

class_label = ["0", "1"]
df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
sns.heatmap(df_cm, annot = True, fmt = "d")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
```


In [121]:

```
# Classification Report
print(classification_report(Y_Test, predict))
```

	precision	recall	f1-score	support
0	0.93 0.43	0.97 0.25	0.95 0.32	1373 126
accuracy macro avg weighted avg	0.68 0.89	0.61 0.91	0.91 0.63 0.90	1499 1499 1499

In [345]:

```
print('Accuracy on train set: {:.2f}'.format(logmodel.score(X_Train, Y_Train)))
print('Accuracy on test set: {:.2f}'.format(logmodel.score(X_Test, Y_Test)))
print('Recall score: {:.2f}'.format(recall_score(Y_Test,predicted)))
print('ROC AUC score: {:.2f}'.format(roc_auc_score(Y_Test,predicted)))
print('Precision score: {:.2f}'.format(precision_score(Y_Test,predicted)))
```

Accuracy on train set: 0.91 Accuracy on test set: 0.91 Recall score: 0.25 ROC AUC score: 0.61 Precision score: 0.43

Insights:

- True Positive (observed=0,predicted=0): Model predicted that 1330 customers shall take Personal loan and they customer took it
- False Positive (observed=0,predicted=1): Model Predicted 43 Personal loan will take and the customer did not take it but bank didn't loose any money

- True Negative (observed=1,predicted=1): Model Predicted 32 Personal loan will not take and the customer did not take it
- False Negative (observed=1,predicted=1): Model Predicted 94 Personal loan will not take and the customer took it This is where model should have done better

Build Decision Tree Model

```
In [145]:
model = DecisionTreeClassifier(criterion='gini', class weight={0:0.15,1:0.85}, random stat
In [147]:
model.fit(X Train, Y Train)
Out[147]:
DecisionTreeClassifier(class weight={0: 0.15, 1: 0.85}, random state=1)
In [362]:
def make confusion matrix(model, y actual, labels=[1, 0]):
    model : classifier to predict values of X
    y actual : ground truth
    y predict = model.predict(X Test)
    cm=metrics.confusion_matrix( y_actual, y_predict, labels=[0, 1])
    df_cm = pd.DataFrame(cm, index = [i for i in ["Actual - 0", "Actual - 1"]],
                  columns = [i for i in ['Predicted - 0', 'Predicted - 1']])
    group counts = ["{0:0.0f}".format(value) for value in
                cm.flatten()]
    group percentages = ["{0:.2%}".format(value) for value in
                         cm.flatten()/np.sum(cm)]
    labels = [f''(v1) \setminus n(v2)]'' for v1, v2 in
             zip(group counts, group percentages)]
    labels = np.asarray(labels).reshape(2,2)
    plt.figure(figsize = (10,7))
    sns.heatmap(df cm, annot=labels,fmt='')
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
```

In [363]:

Predicted - 0 Predicted - 1
Predicted label

```
In [365]:
```

```
y_train.value_counts(1)

Out[365]:

0    0.905429
1    0.094571
Name: Personal_Loan, dtype: float64
```

We have 90.99% of positive.

```
In [160]:
```

In [161]:

```
get_recall_score(model)

Recall on training set : 1.0
Recall on test set : 0.8968253968253969
```

. There is no huge disparity in performance of model on training set and test set

Visualizing the Decision Tree

```
In [165]:
```

```
plt.figure(figsize=(20,30))
out = tree.plot_tree(model, feature_names=feature_names, filled=True, fontsize=9, node_ids=Fa
lse,class_names=None,)
#below code will add arrows to the decision tree split if they are missing
for o in out:
    arrow = o.arrow_patch
    if arrow is not None:
        arrow.set_edgecolor('black')
        arrow.set_linewidth(1)
plt.show()
```


In [170]:

```
# Text report showing the rules of a decision tree
print(tree.export_text(model, feature_names=feature_names, show_weights=True))
|--- Experience <= 98.50
   |--- CCAvg <= 2.95
      |--- weights: [366.30, 0.00] class: 0
   |--- CCAvg > 2.95
       |--- CD Account <= 0.50
          |--- CCAvg <= 4.20
              |--- Experience <= 82.50
                   |--- CCAvg <= 3.15
                       |--- Experience <= 71.00
                           |--- Experience <= 59.50
                           | |--- weights: [0.30, 0.00] class: 0
                           |--- Experience > 59.50
                               |--- Securities_Account <= 0.50
                                   |--- Education <= 1.50
                               | |--- weights: [0.00, 1.70] class: 1
                               |--- Education > 1.50
```

```
| | |--- weights: [U.UU, I./U] Class: I
             | |--- Securities Account > 0.50
           | | | |--- weights: [0.15, 0.00] class: 0
           |--- Experience > 71.00
           | |--- Experience <= 73.50
             | |--- weights: [0.30, 0.00] class: 0
             |--- Experience > 73.50
             | |--- weights: [1.20, 0.00] class: 0
        |--- CCAvg > 3.15
           |--- Experience <= 81.50
           \mid --- \text{ Income} \le 91257.00
          | \quad | \quad | --- \text{ Income} \le 90974.00
          | | | |--- weights: [1.20, 0.00] class: 0
        | | | | |--- weights: [0.00, 0.85] class: 1
        | | | --- Income > 91257.00
        | | | | |--- weights: [0.15, 0.00] class: 0
        | | | | --- Experience > 53.00
             | | |--- weights: [5.10, 0.00] class: 0
     | | |--- Experience > 81.50
     | | | |--- Age <= 48.00
     | | | | |--- weights: [0.60, 0.00] class: 0
     |--- Age > 48.00
          | |--- CCAvg <= 3.75
     | | |--- weights: [0.00, 0.85] class: 1
     | |--- CCAvg > 3.75
| | |--- weights: [0.15, 0.00] class: 0
     |--- Experience > 82.50
        |--- Online <= 0.50
     |--- Age <= 42.00
          | |--- weights: [0.45, 0.00] class: 0
        | --- Age > 42.00
        | | |--- Mortgage <= 148.00
        | | | | | --- CCAvg <= 3.05
        | | | | |--- weights: [0.15, 0.00] class: 0
        | | | | |--- CCAvg > 3.05
           | | | | | --- Income <= 95327.50
          | \ | \ | \ | ---  Family <= 1.50
             | | | | |--- truncated branch of depth 4
          | | | |--- truncated branch of depth 2
              | | |--- weights: [0.15, 0.00] class: 0
              |--- Mortgage > 148.00
           |---| Income <= 92319.50
              | |--- weights: [0.15, 0.00] class: 0
              |--- Income > 92319.50
           |--- weights: [0.15, 0.00] class: 0
        |--- Online > 0.50
        | --- Income <= 93603.00
        | | |--- weights: [1.95, 0.00] class: 0
        |--- Income > 93603.00
        | | |--- CCAvg <= 3.50
        | | | | |--- Mortgage <= 89.00
        | | | | | | --- Income <= 95041.50
        | | | | | | |--- Experience > 88.00
       | | | | |--- Income > 95041.50
     |--- CCAvg > 3.50
        1
             | |--- weights: [0.90, 0.00] class: 0
  | |--- weights: [5.10, 0.00] class: 0
|--- CD Account > 0.50
  |--- CCAvg <= 4.40
  | --- Income <= 94506.00
    | |--- weights: [0.00, 6.80] class: 1
```

```
|--- income > 94506.00
          | |--- Mortgage <= 123.50
             | |--- weights: [0.15, 0.00] class: 0
            |--- Mortgage > 123.50
            | |--- weights: [0.00, 0.85] class: 1
       |--- CCAvg > 4.40
       |---| Family <= 1.50
            |--- weights: [0.15, 0.00] class: 0
          |--- Family > 1.50
            |--- weights: [0.15, 0.00] class: 0
          |--- Experience > 98.50
  |--- Education <= 1.50
    |--- Family <= 2.50
    | |--- Experience <= 104.50
     | | |--- CCAvg <= 3.31
     | | | | --- Family > 1.50
     | | | | |--- weights: [1.95, 0.00] class: 0
      | --- CCAvg > 3.31
       | | | |--- CCAvg <= 4.50
       | | | |--- Mortgage <= 124.50
       | | | | | | --- Age <= 31.50
       |--- Age > 31.50
       | | | |--- Online <= 0.50
          | | |--- CCAvg > 4.50
          | | |--- weights: [0.45, 0.00] class: 0
     | |--- Experience > 104.50
       | |--- Experience <= 106.50
       | | |--- weights: [1.05, 0.00] class: 0
       | |--- Experience > 106.50
       | | |--- weights: [66.15, 0.00] class: 0
     |--- Family > 2.50
       |--- Experience <= 113.50
          |--- CCAvg <= 4.20
          | |--- Age <= 28.50
             | |--- weights: [0.60, 0.00] class: 0
             |--- Age > 28.50
               |--- Mortgage <= 377.50
                  \mid --- Online \leq 0.50
                | | |--- weights: [0.00, 4.25] class: 1
             | | |--- Online > 0.50
             | | | | |--- weights: [0.45, 0.00] class: 0
             | | | | |--- CD Account > 0.50
            | | | | | | | Mortgage > 377.50
             | | |--- weights: [0.15, 0.00] class: 0
          |--- Age <= 55.50
       1 1
       | | | |--- weights: [0.15, 0.00] class: 0
    |--- Age > 55.50
          | | |--- weights: [0.75, 0.00] class: 0
       |--- Experience > 113.50
       | |--- weights: [0.00, 41.65] class: 1
  |--- Education > 1.50
     |--- Experience <= 114.50
        |--- CCAvg <= 2.45
        |--- Experience <= 108.50
       | | |--- weights: [5.10, 0.00] class: 0
         |--- Experience > 108.50
        | | |--- Age <= 33.50
         | | |--- weights: [2.25, 0.00] class: 0
```

```
|--- Age \leq 57.50
             \mid --- \text{ Income} \le 91539.00
               | |--- weights: [0.60, 0.00] class: 0
               |---| Income > 91539.00
               | |--- CCAvg <= 0.30
             | |--- weights: [0.45, 0.00] class: 0
             |--- CCAvg > 0.30
                |--- CreditCard <= 0.50
                | |--- Income <= 93596.00
                | | | | | |--- weights: [0.00, 3.40] class: 1
               | | | |--- Income > 93596.00
             | | | | | |--- truncated branch of depth 3
             | | | | | |--- weights: [0.60, 0.00] class: 0
            | | | | | | | | --- weights: [0.00, 0.85] class: 1
         | --- Age > 57.50
         | | |--- CreditCard <= 0.50
         | | | | |--- weights: [0.60, 0.00] class: 0
   | | --- CreditCard > 0.50
   | | | |--- weights: [0.60, 0.00] class: 0
   |--- CCAvg > 2.45
   |--- Mortgage <= 382.50
      |---| Income <= 90283.00
      | |--- weights: [0.15, 0.00] class: 0
         |--- Income > 90283.00
         | |--- Age <= 42.00
      | |--- Experience <= 104.50
      | | |--- Age <= 29.00
      | | | |--- weights: [0.00, 0.85] class: 1
         | | | |--- Age > 29.00
         | | | | |--- weights: [0.90, 0.00] class: 0
         | | |--- Experience > 104.50
         | | | |--- weights: [0.00, 4.25] class: 1
          | --- Age > 42.00
         | | |--- CCAvg <= 3.85
         | | | |--- Mortgage <= 57.50
            | | | |--- Age <= 58.00
            | | | | |--- Age <= 48.50
               | | |--- Age > 48.50
               | | |--- truncated branch of depth 2
                  | |--- Age > 58.00
| | |--- weights: [0.30, 0.00] class: 0
                | |--- Mortgage >
                                57.50
             | | | |--- weights: [0.00, 3.40] class: 1
          | | |--- CCAvg >
                           3.85
         | | | |--- weights: [0.00, 11.05] class: 1
   | |--- Mortgage > 382.50
      | |--- weights: [0.15, 0.00] class: 0
|--- Experience > 114.50
  |--- Experience <= 116.50
  | |--- Age <= 56.00
  | | |--- CCAvg <= 1.10
   | | | |--- weights: [0.15, 0.00] class: 0
  | | |--- CCAvg > 1.10
   | | | | | --- Income <= 90577.00
  1 1
         |--- Income > 90577.00
         | | |--- weights: [0.00, 4.25] class: 1
      |--- Age > 56.00
         |--- Age <= 63.50
         | |--- weights: [0.15, 0.00] class: 0
      | |--- Age > 63.50
| | |--- weights: [0.15, 0.00] class: 0
   |--- Experience > 116.50
      |--- Education \leq 2.50
   | | |--- weights: [0.00, 96.05] class: 1
     |--- Education > 2.50
   | | |--- weights: [0.00, 100.30] class: 1
```

|--- Age > 33.5U

In [317]:

```
importances = model.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(12,12))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], align='center')
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```


• Experience & Family are at the top two important features to predict

Reducing over fitting

```
In [204]:
```

```
from sklearn.model_selection import GridSearchCV
In [208]:
```

```
# Choose the type of classifier.
estimator = DecisionTreeClassifier(random state=1, class weight = {0:.15,1:.85})
```

Out[208]:

In [367]:

In [210]:

```
get_recall_score(estimator)
```

Recall on training set : 0.9774011299435028 Recall on test set : 0.9920634920634921

Recall has improved for both train and test set after hyperparameter tuning and we have a generalized model.

Visualizing the Decision Tree

In [211]:

```
plt.figure(figsize=(15,10))
out = tree.plot_tree(estimator, feature_names=feature_names, filled=True, fontsize=9, node_id
s=False, class names=None)
```

```
for o in out:
   arrow = o.arrow_patch
   if arrow is not None:
       arrow.set_edgecolor('black')
        arrow.set linewidth(1)
plt.show()
```


In [212]:

```
# Text report showing the rules of a decision tree -
print(tree.export text(estimator, feature names=feature names, show weights=True))
|--- Experience <= 98.50
   |--- Experience <= 82.50
       |--- CCAvg <= 2.95
       | |--- weights: [327.60, 0.00] class: 0
       |--- CCAvg > 2.95
      | |--- weights: [11.10, 6.80] class: 0
   |--- Experience > 82.50
      |--- CCAvg <= 2.95
       | |--- weights: [38.70, 0.00] class: 0
      |--- CCAvg > 2.95
      | |--- weights: [8.25, 14.45] class: 1
  - Experience > 98.50
   |--- Family <= 2.50
      \mid ---  Online \leq 0.50
       | |--- weights: [33.60, 39.10] class: 1
       |--- Online > 0.50
       | |--- weights: [43.50, 79.90] class: 1
   |--- Family > 2.50
       |--- Age <= 25.50
       | |--- weights: [0.90, 0.00] class: 0
       |--- Age > 25.50
          |--- weights: [8.25, 160.65] class: 1
```

In [215]:

```
columns = data.iloc[:1, 3:12].columns
```

In [316]:

```
importances = estimator.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(12,12))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], align='center')
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```


• Experience & Family are at the top two important features to predict

Cost Complexity Pruning

```
In [219]:
```

```
clf = DecisionTreeClassifier(random_state=1,class_weight = {0:0.15,1:0.85})
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities
```

```
In [220]:
```

```
pd.DataFrame(path)
```

Out[220]:

	ccp_alphas	impurities
0	0.000000e+00	-4.911640e-16
1	1.320471e-19	-4.910320e-16
2	4.401571e-19	-4.905918e-16
3	7.482671e-19	-4.898435e-16
4	7.482671e-19	-4.890953e-16
361	2.051615e-03	4.312055e-01
362	2.223356e-03	4.378755e-01
363	2.227902e-03	4.401034e-01
364	2.299737e-03	4.470027e-01
365	2.516616e-03	4.671356e-01

366 rows × 2 columns

In [221]:

```
fig, ax = plt.subplots(figsize=(10,5))
ax.plot(ccp_alphas[:-1], impurities[:-1], marker='o', drawstyle="steps-post")
ax.set_xlabel("effective alpha")
ax.set_ylabel("total impurity of leaves")
ax.set_title("Total Impurity vs effective alpha for training set")
plt.show()
```


In [222]:

```
clfs = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(random_state=1, ccp_alpha=ccp_alpha, class_weight = {0:0
    .15,1:0.85})
    clf.fit(X_train, y_train)
    clfs.append(clf)
print("Number of nodes in the last tree is: {} with ccp_alpha: {}".format(
        clfs[-1].tree_.node_count, ccp_alphas[-1]))
```

Number of nodes in the last tree is: 1 with ccp_alpha: 0.0025166156542417786

For the remainder, we remove the last element in clfs and ccp_alphas

clfs = clfs[:-1]
ccp_alphas = ccp_alphas[:-1]

node_counts = [clf.tree_.node_count for clf in clfs]
depth = [clf.tree_.max_depth for clf in clfs]
fig, ax = plt.subplots(2, 1, figsize=(10,7))
ax[0].plot(ccp_alphas, node_counts, marker='o', drawstyle="steps-post")
ax[0].set_xlabel("alpha")
ax[0].set_ylabel("number of nodes")
ax[0].set_title("Number of nodes vs alpha")
ax[1].plot(ccp_alphas, depth, marker='o', drawstyle="steps-post")
ax[1].set_xlabel("alpha")
ax[1].set_ylabel("depth of tree")
ax[1].set_title("Depth vs alpha")

In [224]:

```
recall_train=[]
for clf in clfs:
    pred_train3=clf.predict(X_train)
    values_train=metrics.recall_score(y_train,pred_train3)
    recall_train.append(values_train)
```

In [231]:

```
train_scores = [clf.score(X_train, y_train) for clf in clfs]
```

In [265]:

In [277]:

```
# creating the model where we get highest train and test recall
index_best_model = np.argmax(recall_train)
best_model = clfs[index_best_model]
print(best_model)
```

DecisionTreeClassifier(class weight={0: 0.15, 1: 0.85}, random state=1)

In [291]:

```
best_model.fit(X_Train, Y_Train)
```

Out[291]:

DecisionTreeClassifier(class weight={0: 0.15, 1: 0.85}, random state=1)

In [368]:

```
make_confusion_matrix(best_model,Y_Test)
```


Visualizing the Decision Tree

In [308]:

```
plt.figure(figsize=(15,15))
```

```
out = tree.plot_tree(best_model, feature_names=feature_names, filled=True, fontsize=9, node_i
ds=False, class_names=None)
for o in out:
    arrow = o.arrow_patch
    if arrow is not None:
        arrow.set_edgecolor('black')
        arrow.set_linewidth(2)
plt.show()
```


In [287]:

Out[287]:

In [369]:

```
make_confusion_matrix(best_model2,Y_Test)
```


• We are able to identify more True positives - 89.99%

In [309]:

```
get_recall_score(best_model2)
```

Recall on training set : 0.9548022598870056 Recall on test set : 0.9285714285714286

Visualizing the Decision Tree

In [310]:

```
plt.figure(figsize=(15,10))

out = tree.plot_tree(best_model2, feature_names=feature_names, filled=True, fontsize=9, node_
ids=False, class_names=None)
for o in out:
    arrow = o.arrow_patch
    if arrow is not None:
        arrow.set_edgecolor('black')
        arrow.set_linewidth(1)
plt.show()
```


In [311]:

```
print(tree.export text(best model2, feature names=feature names, show weights=True))
|--- Experience <= 98.50
   |--- CCAvg <= 2.95
   | |--- weights: [366.30, 0.00] class: 0
   |--- CCAvq > 2.95
      |--- CD Account <= 0.50
         |--- CCAvg| <= 4.20
          | |--- weights: [13.80, 13.60] class: 0
          |--- CCAvg > 4.20
          | |--- weights: [5.10, 0.00] class: 0
       |--- CD Account > 0.50
       | |--- weights: [0.45, 7.65] class: 1
  -- Experience > 98.50
    |--- Education <= 1.50
       |--- Family <= 2.50
           |--- Experience <= 104.50
               |--- CCAvg <= 3.31
              | |--- weights: [3.15, 0.00] class: 0
              |--- CCAvg > 3.31
           | | |--- weights: [0.75, 3.40] class: 1
          |--- Experience > 104.50
          | |--- weights: [67.20, 0.00] class: 0
       |--- Family > 2.50
          |--- weights: [2.10, 47.60] class: 1
    --- Education > 1.50
       |--- Experience <= 114.50
          |---| CCAvq <= 2.45
             |--- Experience <= 108.50
              | |--- weights: [5.10, 0.00] class: 0
              |--- Experience >
                                 108.50
              | |--- weights: [5.55, 5.95] class: 1
           |--- CCAvg > 2.45
              |--- weights: [1.80, 22.10] class: 1
       |--- Experience > 114.50
           |--- weights: [0.60, 200.60] class: 1
```

In [315]:

```
importances = best_model2.feature_importances_
indices = np.argsort(importances)

plt.figure(figsize=(12,12))
plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], align='center')
plt.yticks(range(len(indices)), [feature_names[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```


• Experience & Family are at the top two important features to predict

Comparing all the decision tree models

```
In [319]:
```

Out[319]:

	Model	Train_Recall	Test_Recall
0	Initial decision tree model	1.00	0.89
1	Decision treee with hyperparameter tuning	0.97	0.99
2	Decision tree with post-pruning	0.95	0.93

Decision tree model with hyperparameter tuning has given the best recall score on data.

Conclusion and Recommendations

- I have analyzed the "Personal Loan" using different techniques and used Decision Tree Classifier to build a predictive model for the same.
- The model built can be used to predict which feature is going to contribute to Personal loan generation.
- Visualized different trees and their confusion matrix to get a better understanding of the model. Easy interpretation is one of the key benefits of Decision Trees.
- Verified the fact that how much less data preparation is needed for Decision Trees and such a simple model gave good results even with outliers and imbalanced classes which shows the robustness of Decision Trees.
- Experience, Family, Education, CCAvg and CC_Account are the most important variable in predicting the customers that will contribute to the revenue.

- The aim of the Bank is to convert there liability customers into loan customers.
- It seems like 'Logistic Regression' algorithm & Decision tree model with hyperparameter tuning' have the highest accuracy and we can choose that as our final model

In []: