Particules et noyaux

Examen de 2^e session

Jeudi 2 juillet 2020 17 h — 18 h 30

Seules les calculatrices sont autorisées.

1 Énergie de liaison de l'actinium-227

On considère les trois premiers maillons de la chaîne de désintégration naturelle de l'uranium-235 :

$${}^{235}_{92}U \xrightarrow{\alpha} {}^{231}_{90}Th \xrightarrow{\beta^{-}} {}^{231}_{91}Pa \xrightarrow{\alpha} {}^{227}_{89}Ac. \tag{1.1}$$

Calculer l'énergie de liaison de l'actinium-227 à l'aide des données suivantes :

- Énergie libérée lors de la première désintégration $\alpha: Q_{\alpha,1} \simeq 7.7 \text{ MeV}$.
- Énergie libérée lors de la désintégration $\beta^-:Q_{\beta^-}\simeq 0{,}4$ MeV.
- Énergie libérée lors de la seconde désintégration $\alpha: Q_{\alpha,2} \simeq 5.1$ MeV.
- Ordonnée du point repérant l'uranium-235 sur la courbe d'Aston : $y_{235} \simeq 7,6$ MeV.
- Ordonnée du point repérant la particule α sur la courbe d'Aston : $y_4 \simeq 7.1$ MeV.
- Énergie de masse du proton : $m_{\rm p} c^2 \simeq 938.3 \; {\rm MeV}$.
- Énergie de masse du neutron : $m_{\rm n} c^2 \simeq 939.6 \ {\rm MeV}.$
- Énergie de masse de l'électron : $m_e c^2 \simeq 0.5 \text{ MeV}$.

D'après le cours,

$$Q_{\alpha,1} = B(231, 90) - B(235, 92) + B(4, 2)^{1},$$

$$Q_{\beta^{-}} = B(231, 91) - B(231, 90) - m_{\rm p} c^{2} + m_{\rm n} c^{2} - m_{\rm e} c^{21} \quad \text{et}$$

$$Q_{\alpha,2} = B(227, 89) - B(231, 91) + B(4, 2)^{1}.$$

En sommant ces trois équations membre-à-membre, on obtient une équation dont la seule inconnue est $B(227,89)^{\mathbf{1}}$. Sachant que $B(235,92)=235\,y_{235}$ et que $B(4,2)=4\,y_4^{\mathbf{1}}$, on trouve finalement que $B(227,89)\simeq 1741,6$ MeV¹.

2 Section efficace d'interaction neutron-proton

Un faisceau de neutrons traverse une enceinte puis atteint un détecteur. Ce dernier compte 5×10^5 neutrons par seconde lorsque l'enceinte est vide et $4,6 \times 10^5$ neutrons par seconde lorsqu'elle est remplie d'hydrogène à raison de 4×10^{22} atomes par centimètre cube. Sachant que l'enceinte fait un mètre de long, calculer la section efficace d'interaction neutron-proton.

Lorsque l'enceinte est remplie d'hydrogène, le flux $\Phi(x)$ de neutrons décroît exponentiellement avec la distance x parcourue dans l'enceinte :

$$\Phi(x) = \Phi(0) e^{-x/\ell \mathbf{1}}, \quad \text{où} \quad \ell = \frac{1}{d\sigma} \mathbf{1}$$

est le libre parcours moyen des neutrons, exprimé en fonction de la densité d d'hydrogène et de la section efficace σ d'interaction entre les neutrons et les noyaux d'hydrogène (protons). Si L dénote la longueur de l'enceinte, on a donc

$$\sigma = \frac{1}{dL} \ln \left[\frac{\Phi(0)}{\Phi(L)} \right]^{1}.$$

Lorsque l'enceinte est vide, le flux détecté n'est rien d'autre que $\Phi(0)$ (pas d'atténuation)¹. L'application numérique donne $\sigma \simeq 2.1 \times 10^{-10} \text{ m}^{21}$.

3 Temps de vie du neutron

Le neutron se désintègre en un proton par radioactivité β^- :

$$n \longrightarrow p + e + \bar{\nu}_e.$$
 (3.1)

On se place dans le référentiel du neutron, dans une grande boîte cubique de côté L munie des conditions aux bords périodiques. La règle d'or de Fermi et l'approximation de l'interaction de contact de Fermi permet de calculer le temps de vie τ du neutron sous la forme

$$\frac{1}{\tau} = \int \left(\frac{L}{2\pi \,\hbar}\right)^9 d^3 p_{\rm p} d^3 p_{\rm e} d^3 p_{\bar{\nu}_{\rm e}} \frac{2\pi}{\hbar} \left(\frac{G_{\rm F}}{L^3}\right)^2 \left(\frac{2\pi \,\hbar}{L}\right)^3 \delta^{(3)}(\mathbf{p}_{\rm p} + \mathbf{p}_{\rm e} + \mathbf{p}_{\bar{\nu}_{\rm e}}) \,\delta(E_{\rm p} + E_{\rm e} + E_{\bar{\nu}_{\rm e}} - m_{\rm n} \,c^2). \tag{3.2}$$

On donne:

- Énergie de masse du neutron : $m_{\rm n} c^2 \simeq 939,6 \text{ MeV}.$
- Énergie de masse du proton : $m_{\rm p} c^2 \simeq 938.3~{\rm MeV}.$
- Recul du proton : négligeable.
- Énergie de masse de l'électron : $m_e c^2 \simeq 0.5 \text{ MeV}$.
- Énergie de masse de l'antineutrino électronique : négligeable.
- Constante de couplage de Fermi divisée par $(\hbar c)^3 : G_F/(\hbar c)^3 \simeq 10^{-11} \text{ MeV}^{-2}$.
- **3.1** Expliquer brièvement l'équation (3.2).

Dans le référentiel du neutron, $\mathbf{p}_{\rm n}=0$ et $E_{\rm n}=m_{\rm n}\,c^{21}$, d'où

Règle d'or de Fermi¹

$$\frac{1}{\tau} = \underbrace{\int \left(\frac{L}{2\pi \,\hbar}\right)^9 d^3 p_{\rm p} d^3 p_{\rm e} d^3 p_{\bar{\nu}_{\rm e}}}^{2\pi} \underbrace{\frac{2\pi}{\hbar} \left(\frac{G_{\rm F}}{L^3}\right)^2 \left(\frac{2\pi \,\hbar}{L}\right)^3 \delta^{(3)}(\mathbf{p}_{\rm p} + \mathbf{p}_{\rm e} + \mathbf{p}_{\bar{\nu}_{\rm e}}) \delta(E_{\rm p} + E_{\rm e} + E_{\bar{\nu}_{\rm e}} - m_{\rm n} \, c^2)}_{|\langle \psi_f | \hat{H}^{(1)} | \psi_i \rangle|^2 \text{ dans l'approximation}} \delta(E_f - E_i)^{\mathbf{1}} de \text{ l'interaction de contact de Fermi}^{\mathbf{1}}$$

3.2 Intégrer sur \mathbf{p}_{p} puis sur les directions angulaires de \mathbf{p}_{e} et $\mathbf{p}_{\bar{\nu}_{e}}$ pour établir que

$$\frac{1}{\tau} = \frac{G_{\rm F}^2}{2\pi^3 \hbar^7} \int dp_{\rm e} \, p_{\rm e}^2 \, dp_{\bar{\nu}_{\rm e}} \, p_{\bar{\nu}_{\rm e}}^2 \, \delta(c \, p_{\bar{\nu}_{\rm e}} + E_{\rm e} + m_{\rm p} \, c^2 - m_{\rm n} \, c^2). \tag{3.3}$$

Le recul du proton est négligeable : $E_{\rm p} \simeq m_{\rm p} \, c^{21}$. La masse de l'antineutrino électronique l'est aussi : $E_{\bar{\nu}_{\rm e}} \simeq c \, p_{\bar{\nu}_{\rm e}}^{1}$. L'intégrale sur ${\bf p}_{\rm p}$ vaut 1 et la transformation de ${\bf p}_{\rm e}$ et ${\bf p}_{\bar{\nu}_{\rm e}}$ en coordonnées sphériques fait apparaître un $(4 \, \pi)^2$ au numérateur, d'où le résultat.

3.3 Vérifier que

$$\delta(c \, p_{\bar{\nu}_{e}} + E_{e} + m_{p} \, c^{2} - m_{n} \, c^{2}) = \frac{1}{c} \, \delta\left(p_{\bar{\nu}_{e}} + \frac{E_{e} + m_{p} \, c^{2} - m_{n} \, c^{2}}{c}\right)$$
(3.4)

et en déduire que

$$\frac{1}{\tau} = \frac{G_{\rm F}^2}{2\pi^3 \,\hbar^7 \,c^3} \int \mathrm{d}p_{\rm e} \,p_{\rm e}^2 \,(E_{\rm e} + m_{\rm p} \,c^2 - m_{\rm n} \,c^2)^2. \tag{3.5}$$

Il faut utiliser les propriétés suivantes de la distribution de Dirac :

$$\delta(a x) = \frac{\delta(x)_1}{|a|}$$
 et $\int dx f(x) \delta(x - a) = f(a)_1$,

d'où le résultat¹.

3.4 Montrer que

$$dp_e p_e^2 = dE_e \frac{E_e \sqrt{E_e^2 - (m_e c^2)^2}}{c^3}$$
(3.6)

et en déduire que

$$\frac{1}{\tau} = \frac{[G_{\rm F}/(\hbar c)^3]^2}{2\pi^3 \hbar} \int dE_{\rm e} E_{\rm e} \sqrt{E_{\rm e}^2 - (m_{\rm e} c^2)^2} (E_{\rm e} + m_{\rm p} c^2 - m_{\rm n} c^2)^2.$$
 (3.7)

Pour obtenir ce résultat¹, il suffit de différencier $E_e^2 = (m_e c^2)^2 + c^2 p_e^{21}$ membre-à-membre et d'utiliser $p_e = \sqrt{E_e^2 - (m_e c^2)^2}/c^1$.

3.5 Évaluer τ en minutes en faisant fi du $2\pi^3$ dans l'équation (3.7) et en approximant l'intégrale par l'aire d'un rectangle dont la base, centrée en $E_{\rm e}=1$ MeV, est de largeur $\Delta E_{\rm e}=0.1$ MeV.

On évalue τ comme

$$\tau \sim \left\{ \frac{[G_{\rm F}/(\hbar \, c)^3]^2}{\hbar} \, \Delta E_{\rm e} \, E_{\rm e} \, \sqrt{E_{\rm e}^2 - (m_{\rm e} \, c^2)^2} \, (E_{\rm e} + m_{\rm p} \, c^2 - m_{\rm n} \, c^2)^2 \right\}^{-1} \mathbf{1},$$

ce qui donne $\tau \sim 15 \text{ min}^{1}$.