Fondamenti di Elettronica - Ingegneria Automatica e Informatica

Note: Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) ...

Es. 1

Si consideri il circuito in figura.

- a) Calcolare il guadagno ideale G_{id}(s) del circuito e disegnare il diagramma di Bode quotato del modulo di G_{id}(s).
- b) Assumendo che l'A.O.abbia un GBWP = 1 MHz, trovare il limite superiore di banda del guadagno reale $G_{reale}(s)=V_{out}(s)/V_i(s)$.
- c) Se l'A.O. ha uno SR = $0.1 \text{ V/}\mu\text{s}$ e $V_i(t) = 0.1 \text{V} \cdot \sin(2\pi \cdot 10 \text{kHz} \cdot t)$, il segnale di uscita viene distorto? Giustificare la risposta.
- d) Assumendo correnti di polarizzazione dell'A.O. uscenti e pari a 100 nA, scegliere R₊ in modo da minimizzare l'errore dovuto alle correnti di polarizzazione.
- e) Calcolare il margine di fase dell'amplificatore.
- f) Assumendo $R_{id} = 100 \text{ k}\Omega$, calcolare la resistenza R_i in continua vista dal generatore V_i .

Es. 2

Si consideri il circuito di conversione analogico-digitale in figura in cui il segnale V_{in} ha un'ampiezza picco-picco di 100 mV (intorno a 0V) ed una frequenza massima di 20 kHz.

- a) Dimensionare R₂ e la tensione V_{POL} in modo da sfruttare correttamente la dinamica dell'ADC.
- b) Determinare i livelli di tensione di V_G che permettano un corretto funzionamento del circuito sia in fase di sample che in fase di hold.
- c) Se il MOSFET ha una capacità parassita C_{gd} = 5 pF e l'escursione della tensione V_G è di 15V, che effetto si ha sulla conversione in termini di LSB?
- d) Sapendo che il guadagno in continua dell'operazionale OP1 è $A_0 = 5 \cdot 10^5$, calcolare (in LSB) il massimo errore di guadagno del primo stadio di amplificazione.
- e) Qual è la frequenza minima a cui si deve campionare il segnale di ingresso?
- f) Sapendo che l'amplificatore OP2 ha una corrente di bias $I_{bias} = 100$ nA (entrante), qual è la massima durata della fase di hold che garantisce un errore massimo inferiore a ½ LSB?
- g) Avendo a disposizione per l'ADC una frequenza di clock f_{CK} = 1 MHz e volendo convertire un campione in T_{CONV} = 15 μ s, si deve scegliere un ADC di tipo a gradinata o uno di tipo SAR? Calcolare i tempi di conversione e giustificare la risposta.
- h) Si disegni l'architettura interna dell'ADC scelto nel punto g) e se ne illustri sinteticamente il funzionamento (max 10 righe).

