Meta učenje

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za upravo Institut Jožef Stefan, Odsek za tehnologije znanja (E8)

Marec 2019

Zakaj meta učenje?

Ker se učimo kako se učiti

Učimo se iz izkušenj strojnega učenja iz prejšnjih podatkovnih množic.

Kaj je rezultat meta učenja?

Izkušnje posplošimo v model za

- napovedovanje: Kateri algoritem naj uporabim na novi množici?
- pojasnjevanje: Kateri algoritem deluje kje oz. kdaj?

Pojasnjevanje

Vprašanje 4W: What Works Where and When (under what circumstances)?

Je vprašanje 4W smiselno?

Ni, če obstaja univerzalno superioren algoritem

- A univerzalno superiornega algoritma za strojno učenje ni!
- Izrek o neobstoju brezplačnega kosila (no free lunch theorem)

Pregled vsebine

Izrek o neobstoju brezplačnega kosila

- Pričakovana testna napaka algoritma
- Dokaz in posledice za strojno in meta učenje
- Zakon o ohranjanju posplošitvene zmogljivosti

Splošni okvir za meta učenje

- Meta podatki: meta primeri in meta spremenljivke
- Naloge meta učenja

Meta spremenljivke

Opis podatkovnih množic

Notacija

- $L: D_Y \times D_Y \rightarrow \{0,1\}$ je funkcija izgube 0-1
- S: učna množica primerov e = (x, y = f(x)), f je ciljna funkcija
- ullet \mathcal{H} : množica vseh možnih hipotez (modelov) h učnega algoritma
- \mathcal{F} : množica vseh možnih ciljnih funkcij $f: D_{\boldsymbol{X}} \to D_{\boldsymbol{Y}}$, $D_{\boldsymbol{X}} = D_{X_1} \times D_{X_2} \times \ldots \times D_{X_p}$
- P(h|S): posteriorna porazdelitev hipotez $h \in \mathcal{H}$, pravzaprav rezultat učnega algoritma na podatkovni množici S
- P(f|S): posteriorna porazdelitev ciljnih funkcij $f \in \mathcal{F}$
- Ali obstaja algoritem, ki je superioren čez vse $f \in \mathcal{F}$?

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q (^)

Zmogljivost algoritma: pričakovana testna napaka

$$E[L|S] = \sum_{h \in \mathcal{H}, f \in \mathcal{F}} \sum_{(\mathbf{x}, \mathbf{y}) \notin S} P(\mathbf{x}) \, \mathbb{I}(f(\mathbf{x}) \neq h(\mathbf{x})) \, P(h|S)P(f|S)$$

- vsota čez vse možne pare (hipoteza h, ciljna funkcija f)
- in čez vse možne testne primere $(x, y) \notin S : f(x) \neq h(x)$
- $\mathbb{I}: \{\top, \bot\} \to 0, 1, \ \mathbb{I}(\top) = 1, \ \mathbb{I}(\bot) = 0$
- P(x): apriorna porazdelitev vhodnega prostora $x \in D_X$
- Pozor: poznati moramo posteriorno porazdelitev ciljnih funkcij!

Predpostavka: deterministični algoritem

Deterministični učni algoritem vrne en model h^*

- za njega velja $P(h^*|S) = 1$ in $\forall h, h \neq h^* : P(h|S) = 0$
- zato poenostavitev formule, kjer namesto h^* uporabljamo h, P(h(x)|S) je posteriorna porazdelitev vrednosti ciljne spremenljivke

$$E[L|S] = \sum_{f \in \mathcal{F}} \sum_{(\mathbf{x}, \mathbf{y}) \notin S} P(\mathbf{x}) \, \mathbb{I}(f(\mathbf{x}) \neq h(\mathbf{x})) \, P(h(\mathbf{x})|S) P(f|S)$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Pričakovana testna napaka za znano ciljno funkcijo f

$$E[L|f,S] = \sum_{(\mathbf{x},\mathbf{y})\notin S} P(\mathbf{x}) \, \mathbb{I}(f(\mathbf{x}) \neq h(\mathbf{x})) \, P(h(\mathbf{x})|S)$$

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 2 9 9 9 0 0

Ena možna verzija izreka NBK

Za poljuben par algoritmov A_1 in A_2 velja

$$\sum_{f \in \mathcal{F}} (E_{A_1}[L|f,S] - E_{A_2}[L|f,S]) = 0$$

- Pogosta formulacija: vsoto zamenjamo s povprečjem
- Alternativna verzija: povprečje čez vse apriorne porazdelitve P(f)

Omejitev splošnosti dokaza

Predpostavka: Boolove ciljne funkcije

$$f: \{0,1\}^p \to \{0,1\}$$

- $D_X = \{0,1\}^p, |D_X| = 2^p$
- $|\mathcal{F}| = 2^{2^p}$

Izbor algoritmov A_1 in A_2 (brez škode za splošnost)

- A₁ vedno napoveduje 0, razen če se nauči drugače
- A₂ vedno napoveduje 1, razen če se nauči drugače

Poglejmo si primer Boolove ciljne funkcije f

	x	∈ {0	$,1\}^{3}$	f	h_1	h_2
učni primeri $(x,y) \in S$	0	0	0	1	1	1
	0	0	1	0	0	0
	0	1	0	1	1	1
testni primeri $(x,y) \notin S$	0	1	1	0	1	0
	1	0	0	1	1	0
	1	0	1	0	1	0
	1	1	0	1	1	0
	1	1	1	1	1	0

•
$$Err(h_1|f) = 2/5 = 0.4$$
, $Err(h_2|f) = 3/5 = 0.6$

•
$$Err(h_1|f) - Err(h_2|f) = -0.2$$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

In poglejmo še komplementarno funkcijo $\overline{f} = \neg f$

	x	∈ {0	$,1\}^{3}$	\overline{f}	h_1	h_2
učni primeri $(x,y) \in S$	0	0	0	0	0	0
	0	0	1	1	1	1
	0	1	0	0	0	0
testni primeri $(x,y) \notin S$	0	1	1	1	1	0
	1	0	0	0	1	0
	1	0	1	1	1	0
	1	1	0	0	1	0
	1	1	1	0	1	0

•
$$Err(h_1|\overline{f}) = 3/5 = 0.6$$
, $Err(h_2|\overline{f}) = 2/5 = 0.4$

•
$$Err(h_1|\overline{f}) - Err(h_2|\overline{f}) = 0.2$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Todorovski, UL-FU, IJS-E8

Za poljubno hipotezo h torej velja

$$Err(h|f) + Err(h|\overline{f}) = 1$$

→ロト → □ ト → 重 ト → 重 → りへで

Zato velja tudi

$$(Err(h_1|f) - Err(h_2|f)) + (Err(h_1|\overline{f}) - Err(h_2|\overline{f})) = 0$$

- ullet za poljubno (Boolovo) ciljno funkcijo f in njen komplement $\overline{f} = \neg f$
- za poljubni hipotezi h_1 in h_2 (algoritma A_1 in A_2)

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 2 9 9 9 0 0

Če seštejemo za vse možne $f \in \mathcal{F}$

$$0 = \sum_{f \in \mathcal{F}} ((Err(h_1|f) - Err(h_2|f)) + (Err(h_1|\overline{f}) - Err(h_2|\overline{f})))$$
$$= 2\sum_{f \in \mathcal{F}} (Err(h_1|f) - Err(h_2|f))$$

V prvi vsoti smo vsako ciljno funkcijo f upoštevali dva krat.

Če upoštevamo arbitrarni izbor A_1 in A_2 , smo dokazali NBK

$$\sum_{f \in \mathcal{F}} (E_{A_1}[L|f,S] - E_{A_2}[L|f,S]) = 0$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

Todorovski, UL-FU, IJS-E8

Zakon o ohranitvi posplošitvene zmogljivosti

Za vsak učni algoritem je vsota zmogljivosti čez vse možne ciljne funkcije $f \in \mathcal{F}$ nespremenljiva.

Za primerjavo algoritmov

Izjave oblike A_1 je bolj zmogljiv od A_2

- ullet oziroma A_1 ima manjšo pričakovano napako od A_2
- ullet morajo vedno sloneti na predpostavki o ciljni funkciji $f\in\mathcal{F}$
- ali predpostavki o apriorni in posteriorni porazdelitvi p(f) in p(f|S)

Za teorijo strojnega učenja

- Ne obstaja "ultimativni" algoritem strojnega učenja
- Večina teoretičnih rezultatov o možnosti učenja je negativnih

◆ロト ◆個ト ◆注ト ◆注ト 注 りへの

Za prakso strojnega učenja

- Ne glede na popularnost ali teoretično-podprtost algoritma za strojno učenje, lahko najdemo ciljno funkcijo, za katero bo njegova napaka velika (in zmogljivost majhna)
- Ekspertiza omejena na en razred algoritmov, čeprav zelo močnih, ne zadostuje za uspešno napovedno modeliranje
- Izkušnje z uporabo širokega nabora algoritmov so zelo pomembne pri reševanju novega problema

Šibka predpostavka

Proces nastajanja problemov strojnega učenja ustvarja neenakomerno porazdelitev ciljnih funkcij P(f) čez \mathcal{F} .

Močna predpostavka in posledica

Porazdelitev P(f) čez $f \in \mathcal{F}$ je znana vsaj v obliki uporabnega približka.

Posledica, izpeljava na tabli

Poznavanje P(f), t.j., verjetnosti ciljne funkcije f, je ekvivalentno poznavanju posteriorne porazdelitve vrednosti ciljne spremenljivke P(Y = y|e) za podan primer $e = (\mathbf{x}, y)$.

Meta primeri

Meta primer ustreza podatkovni množici

- Množica podatkovnih množic $\mathcal{S} = \{S_1, S_2, \dots S_n\}, \; S_i \in \mathcal{E}_i$
- $\bullet \ \mathcal{E}_i = D_{X_{1i}} \times D_{X_{2i}} \times \dots D_{X_{p_ii}} \times D_{Y_i} = D_{\boldsymbol{X}_i} \times D_{Y_i}$
- Običajna omejitev: vse ciljne spremenljivke Y_i primerljivega tipa; vse numerične ali vse diskretne

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ りへで

Meta spremenljivke

- Opis podatkovnih množic
- $oldsymbol{@}$ Obnašanje algoritmov: zmogljivost na podatkovnih množicah iz ${\mathcal S}$
 - Množica algoritmov $\mathcal{A} = \{A_1, A_2, \dots A_m\}$
 - Množica konfiguracij algoritmov Θ

Konfiguracija algoritma $\theta_j = (A_j, \phi_j)$

- Opredelitev algoritma A_j
- ullet Nastavitev vrednosti njegovih parametrov ϕ_j

4□ > 4□ > 4 = > 4 = > = 90

Meta spremenljivke: opis podatkovnih množic

$$s_{meta}: \mathcal{S}
ightarrow \mathbb{R}$$

Kategorije

- Osnovne: število primerov, spremenljivk in podobno
- 2 Statistične: statistike izmerjene na spremenljivkah
- Informacijske: količina informacije v spremenljivkah
- Modelske: opis modela naučenega na podatkovni množici
- Salgoritmične: zmogljivost preprostih algoritmov

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Meta spremenljivke: obnašanje algoritmov

$$a_{meta}: \Psi imes \mathcal{S}
ightarrow \mathbb{R}$$

Zmogljivost algoritma $\Psi=\mathcal{A}$

Metoda za merjenje zmogljivosti $p:\mathcal{A} imes\mathcal{S} o\mathbb{R}$

Zmogljivost konfiguracije algoritma $\Psi = \Theta$

Metoda za merjenje zmogljivosti $p:\Theta imes\mathcal{S} o\mathbb{R}$

Todorovski, UL-FU, IJS-E8

Napovedovanje zmogljivosti algoritma A

Spremenljivke

- Vhodne: opis podatkovne množice S, D_{meta}
- Izhodna: zmogljivost algoritma A na S, p(A, S)

Meta model (regresijski)

$$m: D_{\mathbf{meta}} \to \mathbb{R}$$

Več-ciljna regresija, če napovedujemo zmogljivost več algoritmov iz ${\mathcal A}$.

Izbira najbolj zmogljivega algoritma

Spremenljivke

- Vhodne: opis podatkovne množice S, D_{meta}
- Izhodna: najbolj zmogljiv algoritem na S, $A^* = \arg \max_{A \in \mathcal{A}} p(A, S)$

Meta model (klasifikacijski)

$$m: D_{\mathbf{meta}} \to \mathcal{A}$$

Lahko bi uporabili tudi meta modele za napovedovanje zmogljivosti.

4□ > 4□ > 4 = > 4 = > □
9

Priporočanje/rangiranje algoritmov

Spremenljivke

- Vhodne: opis podatkovne množice S, D_{meta}
- Izhodna: rangiranje algoritmov glede na zmogljivost na S, $A_{j_1} > A_{j_2} > A_{j_m}$, kjer velja $p(A_{j_1}, S) \ge p(A_{j_2}, S) \ge \dots p(A_{j_m}, S)$

Meta model

$$m: D_{\mathbf{meta}} \to \mathcal{S}(\mathcal{A})$$

Rabimo učni algoritem, ki lahko napoveduje rangiranje; lahko bi uporabili tudi meta modele za napovedovanje zmogljivosti. S(A) je množica vseh permutacij elementov množice A.

Učenje iz prejšnjih modelov naučenih z algoritmom A

Učenje prenosa (Transfer Learning)

- Prejšnje modele $\{A(S): S \in \mathcal{S}\}$ uporabimo pri gradnji modela $A(S_{new})$ na novi (podobni) množici $S_{new} \notin \mathcal{S}$
- A lahko nastavimo tako, da bo nov model podoben prejšnjim
- Umetne nevronske mreže: strukturo in uteži mreže prej naučene na podobni množici S uporabimo za učenje iz S_{new}

Večopravilno učenje (Multi-Task Learning)

Učenje iz množice podobnih podatkovnih množic, kjer prej naučene modele uporabimo kot pristranskost pri učenju novih modelov.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

Optimalna konfiguracija algoritma A

$$\max_{(A,\phi)\in\Theta}p((A,\phi),S_{new})$$

Problem numerične optimizacije

Pri reševanju problema si pomagamo s podatki o optimalnih nastavitvah parametrov algoritma A na množicah $S \in \mathcal{S}$.

(ロ) (部) (意) (意) (意) (の)

Optimalna konfiguracija

$$\max_{\theta \in \Theta} p(\theta, S_{new})$$

Problem numerične in celoštevilčne optimizacije

- Pri tem si pomagamo s podatkih o optimalnih konfiguracijah θ na množicah $S \in \mathcal{S}$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Osnovne meta spremenljivke

Primeri

|S|: število primerov v podatkovni množici

Atributi (vhodne spremenljivke)

- p: število atributov
- $p_n = |\{D_i : D_i = \mathbb{R}\}|$: število numeričnih atributov
- $p_d = p p_n$: število diskretnih atributov
- $p_b = |\{D_i : |D_i| = 2\}|$: število binarnih atributov
- ullet |S|/p, p/|S|: število primerov na atribut, število atributov na primer

Razredi, le za klasifikacijske probleme

 $|D_Y|$: število razredov, za klasifikacijske probleme

→□▶→□▶→□▶→□▶●●●○

Posamezni atributi

- median, mean: lokacijski parametri porazdelitev
- min, max, Q₁, Q₃: parametri razpona
- $max min, Q_3 Q_1, \sigma$: statistike razpona
- kurtosis, skewness: statistike oblike porazdelitve
- $na = |\{e \in S : X_i(e) = NA\}|, na/|S|$: število, delež neznanih vrednosti

Agregati: min, max, mean, σ , histogrami

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Dva ali več atributov

- $corr(X_i, X_j), cov(X_i, X_j)$: korelacija in kovarianca
- $ncorr = \sum_{i=1}^{p} \sum_{j=i+1}^{p} \mathbb{I}(|corr(X_i, X_j)| > 0.5), \ ncorr/(p(p-1)/2)$: število, delež paroma koreliranih atributov
- $nn = \sum_{i=1}^{p} \mathbb{I}(isN(X_i)), nn/p$: število/delež normalno porazdeljenih atributov, eno vzorčni test Kolmogorov-Smirnov
- PCA-λ: lastne vrednosti kovariančne matrike za numerične atribute
- PCA-95%: število glavnih komponent, ki pojasni vsaj 95% variance

Za klasifikacijo

Center gravitacije za vsako vrednost $v \in D_Y$

• Centroid x_v primerov iz $S_v = \{(x, y) \in S : y = v\}$

$$\boldsymbol{x}_{v} = \frac{1}{|S_{v}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in S_{v}} \boldsymbol{x}$$

• Opazujemo Evklidske razdalje med centri x_v in x_u za $u, v \in D_Y, u \neq v$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Za regresijo

• Vse statistike za posamezne atribute uporabimo na ciljni spremenljivki

- $corr(X_i, Y), cov(X_i, Y)$: korelacija/kovarianca s ciljno spremenljivko
- učinkovitost atributa X_i : število/delež primerov, ki jih moram izbrisati, da bi $corr(X_i, Y) > 0.9$
- kolektivna učinkovitost atributov: število preostalih primerov po iterativnem brisanje primerov, ki imajo ostanke večje od 0.1

Za posamezne atribute

- $H(X_i) = -\sum_{v \in D_{X_i}} P(v) \log_2 P(v)$: entropija (nečistost)
- $H(X_i)/\log_2 |S|$: količina informacije

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

Za klasifikacijo

 \bullet H(Y): entropija ciljne spremenljivke

$$MI(X, Y) = H(X) + H(Y) - H(X, Y)$$

$$H(X, Y) = -\sum_{(v_x, v_y) \in (D_X, D_Y)} p(v_x, v_y) \log_2 p(v_x, v_y)$$

- $MI(X_i, Y), MI(X_i, Y)/H(Y)$: vzajemna informacija
- $H(X_i, Y), H(X_i, Y)/H(Y)$: skupna entropija
- $H(Y)/(\sum_{i=1}^{p} MI(X_i, Y)/p)$: lastna dimenzionalnost

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q (^)

Osnovna ideja

Opazujemo lastnosti napovednega modela A(S)

- In ne lastnosti množice S
- Za izbrani algoritem A

Pogosto uporabljeni algoritmi

- Odločitvena drevesa
- Linearni modeli

Odločitvena drevesa

Zgradimo odločitveno drevo brez predhodnega ali naknadnega rezanja.

Opazovane lastnosti

- število vseh, notranjih ali končnih vozlišč v drevesu
- globina drevesa
- povprečna globina končnih vozlišč
- zmanjševanje nečistosti v korenskem vozlišč
- število učnih primerov v končnih vozliščih
- ullet število končnih vozlišč za posamezno vrednost iz D_Y (klasifikacija)
- število vozlišč v posameznem nivoju drevesa

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 - 夕 Q ()

Drugi modeli

Metoda podpornih vektorjev

- Izbrano jedro običajno polinomsko
- Število podpornih vektorjev

Linearni modeli

Število koeficientov značilno različnih od 0

Osnovna ideja: orientirji (landmarks)

Meta spremenljivke p(A, S)

- Izbor A: hitri, preprosti algoritmi (orientirji)
- Izbor p: prečno preverjanje za merjenje napake/točnosti

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 2 9 9 9 0 0

Enostavni algoritmi

Najbližji sosed

k=1: metoda najbližjega soseda

Linearni model

Linearna oziroma logistična regresija

Odločitvena drevesa

- Štor: odločitveno drevo z enim notranjim vozliščem
- Naključni štor: Odločitveno drevo z naključno izbranim enim notranjim vozliščem.

Relativni orientirji

$$p(A_1, S) - p(A_2, S)$$

za dva izbrana orientirja A_1 in A_2 .

(4日) (個) (注) (注) (注) (200)

Vzorčni orientirji

- Izbor algoritmov A lahko širši (ne le preprosti)
- ullet Hitrost zagotovimo tako, da jemljemo majhne vzorce $S_{
 u}$: $|S_{
 u}| \ll |S|$
- ullet Zaporedje vzorcev naraščajoče velikosti $|S_{
 u}|$

Literatura in praktični napotki

Priporočena literatura

- (Wolpert 1996): izrek o neobstoju zastonjskega kosila
- (Vanschoren 2018): Splošni okvir za meta učenje
- (Rivolli in ost. 2018, Lorena in ost. 2018): meta spremenljivke

Programska oprema in viri za meta učenje

- R-paket mfe za izračun meta spremenljivk in pripadajoča vadnica cran.r-project.org/web/packages/mfe/vignettes/mfe-vignette.html
- Spletni repozitorij openml.org in R-paket OpenML