Software Engineering Process

Topic: Final Deliverables Prof. P. Kamthan

Amit Sachdeva 40084627

Due Date: 19/July/2019

Gamma Function

Problem 1

1 Introduction

Gamma Function: It is commonly referred as factorial function for complex numbers. It is derived by Daniel Bernoulli. The gamma function $\gamma(z)$ is defined for all complex values of z larger than zero. Complex number can be consist of real and imaginary number, like z = a + ib in which a and b can real numbers. A complex number is typically written in the form where sigma a is the real part and it is the imaginary part.

Figure 1: Gamma Function

2 Overall Description

This is a project based on gamma function in which we are making calculator for gamma value. User can insert any real value and expect real value except on boundary conditions.

3 Stakeholders

Users 1: This function is mostly used in physics calculations. So, most important stakeholders are scientists for their calculations.

Users 2: This function is also used in basic maths calculations or any analytically field.

4 Related to Function

4.1 Formulas

• Formula1: $\Gamma(x) = \int_{0}^{\infty} s^{x-1}e^{-s}ds \ \forall \ Re(x) > 0$

• **Formula2:** $\Gamma(1/2) = \sqrt{\pi}$

• Formula3: n! = n * (n-1)!

• Formula4: $\Gamma(x) = x\Gamma(x-1)$

• Formula5: $\Gamma(0) = undefined$

4.2 Popular Constant Values of Function

• Constant 1: $\Gamma(0) = undefined$

• **Constant 2:** $\Gamma(1) = 1$

• Constant 3: $\Gamma(2) = 1$

• Constant 4: $\Gamma(3) = 6$

• Constant 5: $\Gamma(3/2) = 0.886$

• Constant 6: $\Gamma(-3/2) = 2.36$

• Constant 7: $\Gamma(-1/2) = -3.54$

4.3 Domain of Function

 \forall Real numbers excluding negative values $[0,\infty)$

4.4 Co domain of Function

- It ranges from $(0, \infty)$
- For positive integers, we returns integer value as normal factorial
- For other real numbers, we use integral function.

Problem 2

5 Requirements/Constraints of Function

5.1 Requirements

- Req1: For Large input in positive value, it will return infinity as Const3.
- Req2: For negative input $\forall x < 0$, Function will return input error, keeping in mind Const1 and Const2
- Req3: For x = 0, Function will return undefined, keeping in mind Const1
- Req4: For Re(x) > 0, Function will return positive real value, keeping in mind Const1

5.2 Constraints

- Constraint 1: For Input, types must be Integer, Double, Float data types
- Constraint 2: We cannot input value of non negative values
- Constraint 3: We cannot input the value large positive number as it will return infinity as a programming language constraint

Problem 3

6 Algorithms

6.1 Pseudo Code 1

6.1.1 Algorithm

```
1) function yAxisValue(Argument x, Argument s) {
       Calculate the value using value = s^{x-1}e^{-s}
3)
       return value
4) end
5) }
6) function gammaFunction(Argument x) {
      if x < 0
7)
8)
           then raise Input Error
9)
      if x > 170
10)
            then return "Infinity"
       Initialize finalData with 0
11)
12)
       Set Interval for gap = 10^{-3}
13)
       while loop i for range(0,Infinity)
14)
            Add the finalData by using formula of trapezium using
15)
            1/2 * gap * (yAxisValue(i) + yAxisValue(i - gap))
16)
            increment i with gap value
17)
        return finalData
18) end
19) }
20) {
21) In main function
22)
        Take a input of x
23)
        Call gammaFunction with input x-1 as a argument
24) }
```

6.1.2 Advantages

- Get More Precise Values for input as tested with existing results
- Using basic core approach of integration

6.1.3 Disadvantages

• We are iterating the loop at a large value so it takes time

6.2 Pseudo Code 2

6.2.1 Algorithm

6.2.2 Advantages

- We are using constant pre-calculated value which increase the speed of algorithm
- This algorithm has less calculation which reduce complexity of code

${\bf 6.2.3}\quad {\bf Disadvantages}$

 \bullet We have generated constant value which not always give accurate value

7 References

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247832/
- $\bullet \ \ https://medium.com/cantors-paradise/the-riemann-hypothesis-explained-fa01c1f75d3f$