CMIP6 Model Documentation

Institute: NOAA-GFDL Model: GFDL-AM4

Topic: Atmospheric Chemistry

Doc. Generated: 2018-10-04

Doc. Seeded From: cmip5:gfdl-cm3

Specialization Version: 1.0.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	1
	1.1 Key Properties	1
	1.2 Software Properties	2
	1.3 Timestep Framework	2
	1.4 Split Operator Order	4
	1.5 Tuning Applied	5
2	Grid	7
	2.1 Grid	7
	2.2 Resolution	7
3	Transport	9
	3.1 Transport	9
4	Emissions Concentrations	10
	4.1 Emissions Concentrations	10
	4.2 Surface Emissions	10
	4.3 Atmospheric Emissions	11
	4.4 Concentrations	12
5	Gas Phase Chemistry	13
	5.1 Gas Phase Chemistry	13
6	Stratospheric Heterogeneous Chemistry	15
	6.1 Stratospheric Heterogeneous Chemistry	15
7	Tropospheric Heterogeneous Chemistry	17
	7.1 Tropospheric Heterogeneous Chemistry	17
8	Photo Chemistry	19
	8.1 Photo Chemistry	19
	8.2 Photolysis	19

1 Key Properties

Key properties of the atmospheric chemistry

1.1 Key 1 topethe	1.1	\mathbf{Key}	Propertie	S
-------------------	-----	----------------	-----------	---

Key properties of the atmospheric chemistry

1.1.1 Name *

 $Name\ of\ atmoschem\ model\ code$

1.1.2 Keywords *

 $Keywords\ associated\ with\ atmoschem\ model\ code$

Enter COMMA SEPERATED list:

1.1.3 Overview *

Overview of atmoschem model.

Enter TEXT:

1.1.4 Chemistry Scheme Scope *

Atmospheric domains covered by the atmospheric chemistry model

Troposhere
Stratosphere
Mesosphere
Mesosphere
Whole atmosphere

1.1.5 Basic Approximations *

Other - please specify:

 $Basic\ approximations\ made\ in\ the\ atmospheric\ chemistry\ model$

1.1.6 Prognostic Variables Form *

Form of prognostic variables in the atmospheric chemistry component.

Selec	t MULTIPLE options:
	3D mass/mixing ratio for gas
	Other - please specify:

1.1.7 Number Of Tracers *
Number of advected tracers in the atmospheric chemistry model
82
1.1.8 Family Approach *
Atmospheric chemistry calculations (not advection) generalized into families of species?
Select either TRUE or FALSE:
☐ True ☐ False
1.1.9 Coupling With Chemical Reactivity *
Atmospheric chemistry transport scheme turbulence is couple with chemical reactivity?
☐ False
Inde Lase
10 C C D
1.2 Software Properties
Software properties of aerosol code
1.2.1 Repository
- 0
Location of code for this component.
Enter TEXT:
1.2.2 Code Version
Code version identifier.
Enter TEXT:
Enter IEAI.
1.2.3 Code Languages
$Code\ language(s).$
Enter COMMA SEPERATED list:
1.3 Timestep Framework
Timestepping in the atmospheric chemistry model
1.3.1 Overview

Enter TEXT:

1.3.2	Method *
Mathem	atical method deployed to solve the evolution of a given variable
\boxtimes	Operator splitting
	Integrated
	Other - please specify:
1.3.3	Split Operator Advection Timestep of for chemical species advection (in seconds)
30	o for chemical species advection (in seconds)
1.3.4	Split Operator Physical Timestep
$Timeste_{I}$	o for physics (in seconds).
30	
1.3.5	Split Operator Chemistry Timestep
$Timeste_{I}$	o for chemistry (in seconds).
Ente	er INTEGER value:
1.3.6	Split Operator Alternate Order
Sele	ct either TRUE or FALSE:
	True
1.3.7	Integrated Timestep *
$Timeste_{I}$	o for the atmospheric chemistry model (in seconds)
Ente	er INTEGER value:
1.3.8	Integrated Scheme Type *
Specify t	he type of timestep scheme
Sele	ct SINGLE option:
	Explicit
	Implicit
	Semi-implicit
	Semi-analytic

Impact solver
Back Euler
Newton Raphson
Rosenbrock
Other - please specify:

1.4 Split Operator Order

1.4.1 Turbulence

Call order for turbulence scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.2 Convection

Call order for convection scheme This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.3 Precipitation

Call order for precipitation scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.4 Emissions

Call order for emissions scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.5 Deposition

Call order for deposition scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

1.4.6 Gas Phase Chemistry

Call order for gas phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.7 Tropospheric Heterogeneous Phase Chemistry

Call order for tropospheric heterogeneous phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.8 Stratospheric Heterogeneous Phase Chemistry

Call order for stratospheric heterogeneous phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.9 Photo Chemistry

Call order for photo chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.10 Aerosols

Call order for aerosols scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.5 Tuning Applied

Tuning methodology for atmospheric chemistry component

1.5.1 Overview

 $Overview\ of\ tuning\ methodology\ for\ atmospheric\ chemistry\ component\ in\ atmoschem\ model.$

Enter TEXT:

1.5.2 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.3 Global Mean Metrics Used

 $List\ set\ of\ metrics\ of\ the\ global\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

1.5.4 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

1.5.5 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPERATED list:

2 Grid

Atmospheric chemistry grid

2.1 Grid

Atmospheric chemistry grid

2.1.1 Name

Name of grid in atmoschem model.

Enter TEXT:

2.1.2 Overview

Overview of grid in atmoschem model.

Enter TEXT:

2.1.3 Matches Atmosphere Grid *

Does the atmospheric chemistry grid match the atmosphere grid?

Select either TRUE or FALSE:

______ True _____ False

2.2 Resolution

Resolution in the atmospheric chemistry grid

2.2.1 Overview

Overview of resolution in the atmospheric chemistry grid in atmoschem model.

Enter TEXT:

2.2.2 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

Enter TEXT:

2.2.3 Canonical Horizontal Resolution

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

Enter TEXT:

2.2.4 Number Of Horizontal Gridpoints

 $Total\ number\ of\ horizontal\ (XY)\ points\ (or\ degrees\ of\ freedom)\ on\ computational\ grid.$

2.2.5 Number Of Vertical Levels

 $Number\ of\ vertical\ levels\ resolved\ on\ computational\ grid.$

2.2.6	Is Ad	aptive Gri	\mathbf{d}			
Default a	is False.	Set true if gr	rid resolution o	changes	during	execution.
Sele	ct eithe	er TRUE or	FALSE:			
	True		False			

3 Transport

 $Atmospheric\ chemistry\ transport$

3.1 Transport

 $Atmospheric\ chemistry\ transport$

3.1.1 Name

Commonly used name for the transport in atmoschem model.

Enter TEXT:

3.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ transport\ in\ atmoschem\ model.$

Enter TEXT:

3.1.3 Use Atmospheric Transport *

 ${\it Is\ transport\ handled\ by\ the\ atmosphere,\ rather\ than\ within\ atmospheric\ cehmistry?}$

Select either TRUE or FALSE:

______ True ______ False

3.1.4 Transport Details

If transport is handled within the atmospheric chemistry scheme, describe it.

Enter TEXT:

4 Emissions Concentrations

Atmospheric chemistry emissions

4.1 Emissions Concentrations

 $Atmospheric\ chemistry\ emissions$

4.1.1 Name

Commonly used name for the emissions concentrations in atmoschem model.

Enter TEXT:

4.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ emissions\ in\ atmoschem\ model.$

Enter TEXT:

4.2 Surface Emissions

4.2.1 Overview

Overview of in atmoschem model.

Enter TEXT:

4.2.2 Sources

 $Sources\ of\ the\ chemical\ species\ emitted\ at\ the\ surface\ that\ are\ taken\ into\ account\ in\ the\ emissions\ scheme$

\boxtimes	Vegetation
	Soil
\boxtimes	Sea surface
\boxtimes	Anthropogenic
	Biomass burning
	Other - please specify:

4.2.3 Method

Methods used to define chemical species emitted directly into model layers above the surface (several methods allowed because the different species may not use the same method).

Selec	et MULTIPLE options:
	Climatology
П	Spatially uniform mixing ratio

	Spatially uniform concentration
	Interactive
	Other - please specify:
1.2.4 F	Prescribed Climatology Emitted Species
-	mical species emitted at the surface and prescribed via a climatology, and the nature of the climatology (monthly), C2H6 (constant))
4.2.5 F	Prescribed Spatially Uniform Emitted Species
List of che	mical species emitted at the surface and prescribed as spatially uniform
Enter	COMMA SEPERATED list:
4.2.6 I	nteractive Emitted Species
List of che	mical species emitted at the surface and specified via an interactive method
1.2.7 (Other Emitted Species
	mical species emitted at the surface and specified via any other method
Enter	COMMA SEPERATED list:
4.3 A	tmospheric Emissions
TO DO	
2020	
4.3.1	Overview
Overview o	of to do in atmoschem model.
Enter	TEXT:
4.3.2 S	fources
Sources of	chemical species emitted in the atmosphere that are taken into account in the emissions scheme.
\boxtimes	Aircraft
\boxtimes	Biomass burning
\boxtimes	Lightning
	Volcanos
	Other - please specify:

4.3.3 Method

Methods used to define the chemical species emitted in the atmosphere (several methods allowed because the different species may not use the same method).

Select	Select MULTIPLE options:		
	Climatology		
	Spatially uniform mixing ratio		
	Spatially uniform concentration		
	Interactive		
	Other - please specify:		

4.3.4 Prescribed Climatology Emitted Species

List of chemical species emitted in the atmosphere and prescribed via a climatology (E.g. CO (monthly), C2H6 (constant))

4.3.5 Prescribed Spatially Uniform Emitted Species

List of chemical species emitted in the atmosphere and prescribed as spatially uniform

Enter COMMA SEPERATED list:

4.3.6 Interactive Emitted Species

 $List\ of\ chemical\ species\ emitted\ in\ the\ atmosphere\ and\ specified\ via\ an\ interactive\ method$

Enter COMMA SEPERATED list:

4.3.7 Other Emitted Species

List of chemical species emitted in the atmosphere and specified via an "other method"

Enter COMMA SEPERATED list:

4.4 Concentrations

TO DO

4.4.1 Overview

 $Overview\ of\ to\ do\ in\ atmoschem\ model.$

Enter TEXT:

4.4.2 Prescribed Lower Boundary

List of species prescribed at the lower boundary.

4.4.3 Prescribed Upper Boundary

List of species prescribed at the upper boundary.

Enter COMMA SEPERATED list:

5 Gas Phase Chemistry

Atmospheric gas phase chemistry transport

5.1 Gas Phase Chemistry

 $Atmospheric\ gas\ phase\ chemistry\ transport$

5.1.1 Name

Commonly used name for the gas phase chemistry in atmoschem model.

Enter TEXT:

5.1.2 Overview

 $Overview\ of\ atmospheric\ gas\ phase\ chemistry\ transport\ in\ atmoschem\ model.$

Enter TEXT:

5.1.3 Species

Species included in the gas phase chemistry scheme.

MOx

NOy

 \bigcirc Ox

Cly

☐ HSOx

Bry

VOCs

M H2O

Other - please specify:

5.1.4 Number Of Bimolecular Reactions *

The number of bi-molecular reactions in the gas phase chemistry scheme.

157

5.1.5 Number Of Termolecular Reactions *

The number of ter-molecular reactions in the gas phase chemistry scheme.

21

5.1.6	Number	Of Tropos	pheric	Heterogenous	Reactions	*

The number of reactions in the tropospheric heterogeneous chemistry scheme.

Enter INTEGER value:

5.1.7 Number Of Stratospheric Heterogenous Reactions *

The number of reactions in the stratospheric heterogeneous chemistry scheme.

Enter INTEGER value:

5.1.8 Number Of Advected Species *

The number of advected species in the gas phase chemistry scheme.

Enter INTEGER value:

5.1.9 Number Of Steady State Species *

 $The \ number \ of \ gas \ phase \ species \ for \ which \ the \ concentration \ is \ updated \ in \ the \ chemical \ solver \ assuming \ photochemical \ steady \ state$

19

5.1.10 Interactive Dry Deposition *

Is dry deposition interactive (as opposed to prescribed)? Dry deposition describes the dry processes by which gaseous species deposit themselves on solid surfaces thus decreasing their concentration in the air.

Sele	et either TRUE or FALSE:
	True False
5.1.11	Wet Deposition *
	position included? Wet deposition describes the moist processes by which gaseous species deposit them- solid surfaces thus decreasing their concentration in the air.
	True
5.1.12	Wet Oxidation *
Is wet ox	dation included? Oxidation describes the loss of electrons or an increase in oxidation state by a molecule
\boxtimes	True

6 Stratospheric Heterogeneous Chemistry

 $Atmospheric\ chemistry\ startospheric\ heterogeneous\ chemistry$

6.1 Stratospheric Heterogeneous Chemistry

Atmospheric chemistry startospheric heterogeneous chemistry
6.1.1 Name
Commonly used name for the stratospheric heterogeneous chemistry in atmoschem model.
Enter TEXT:
6.1.2 Overview
$Overview\ of\ atmospheric\ chemistry\ start ospheric\ heterogeneous\ chemistry\ in\ atmoschem\ model.$
Enter TEXT:
6.1.3 Gas Phase Species
Gas phase species included in the stratospheric heterogeneous chemistry scheme.
□ Cly
igstyle Bry
⊠ NOy
6.1.4 Aerosol Species
Aerosol species included in the stratospheric heterogeneous chemistry scheme.
Sulphate
Polar stratospheric ice
NAT (Nitric acid trihydrate)
NAD (Nitric acid dihydrate)
☐ STS (supercooled ternary solution aerosol particule))
6.1.5 Number Of Steady State Species *
The number of steady state species in the stratospheric heterogeneous chemistry scheme.
3
6.1.6 Sedimentation *
Is sedimentation is included in the stratospheric heterogeneous chemistry scheme or not?
☐ False

6.1.7	Coagulation	n *					
$Is\ coagul$	ation is include	d in t	$he\ stratospheric\ heterogeneous$	chemistry	scheme	or	not?
\boxtimes	True		False				

7 Tropospheric Heterogeneous Chemistry

Atmospheric chemistry tropospheric heterogeneous chemistry

7.1 Tropospheric Heterogeneous Chemistry

Atmospheric chemistry tropospheric heterogeneous chemistry

7.1.1 Name

 $Commonly\ used\ name\ for\ the\ tropospheric\ heterogeneous\ chemistry\ in\ atmoschem\ model.$

Enter TEXT:

7.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ tropospheric\ heterogeneous\ chemistry\ in\ atmoschem\ model.$

Enter TEXT:

7.1.3 Gas Phase Species

List of gas phase species included in the tropospheric heterogeneous chemistry scheme.

7.1.4 Aerosol Species

Ae

rosol sp	pecies included in the tropospheric heterogeneous chemistry scheme.
\boxtimes	Sulphate
	Nitrate
	Sea salt
	Dust
	Ice
	Organic
	Black carbon/soot
	Polar stratospheric ice
П	Secondary organic serocole

7.1.5 Number Of Steady State Species *

Particulate organic matter

The number of steady state species in the tropospheric heterogeneous chemistry scheme.

7.1.6 Interactive Dry Deposition *			
Is dry deposition interactive (as opposed to prescribed)? Dry deposition describes the dry processes by which gaseous species deposit themselves on solid surfaces thus decreasing their concentration in the air.			
Select either TRUE or FALSE:			
☐ True ☐ False			

8 Photo Chemistry

Atmospheric chemistry photo chemistry

8.1 Photo Chemistry

Atmospheric chemistry photo chemistry

8.1.1 Name

Commonly used name for the photo chemistry in atmoschem model.

Enter TEXT:

8.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ photo\ chemistry\ in\ atmoschem\ model.$

8.1.3 Number Of Reactions *

The number of reactions in the photo-chemistry scheme.

39

8.2 Photolysis

Photolysis scheme

8.2.1 Overview

Overview of photolysis scheme in atmoschem model.

Enter TEXT:

8.2.2 Method *

 $Photolysis\ scheme$

	Offline (clear sky)
\boxtimes	Offline (with clouds
П	Online

8.2.3 Environmental Conditions

Describe any environmental conditions taken into account by the photolysis scheme (e.g. whether pressure- and temperature-sensitive cross-sections and quantum yields in the photolysis calculations are modified to reflect the modelled conditions.)

Enter TEXT: