PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-201922

(43)Date of publication of application: 05.08.1997

(51)Int.CI.

B32B 27/32 B32B 7/02 B32B 27/00 B32B 27/20 B32B 27/34 B32B 27/36 B65D 73/02 B65D 85/86

// CO8L 23/04

(21)Application number: 08-304489

-304489

(71)Applicant: SUMITOMO BAKELITE CO LTD

(22)Date of filing:

15.11.1996

(72)Inventor: NAKANISHI HISAO

(30)Priority

Priority number: 07304612

Priority date: 22.11.1995

Priority country: JP

(54) COVER TAPE FOR PACKAGING ELECTRONIC PART

(57)Abstract:

PROBLEM TO BE SOLVED: To eliminate seal temp. dependency of peel-off strength by forming a heat-sealing cover tape with a specified biaxially drawn film, a heat sealant layer contg. a specified amt. of a filler with a specified particle diameter in a thermoplastic resin with a specified softening temp. and a polyethylene intermediate layer.

SOLUTION: The outer layer 2 of a cover tape 1 is a biaxially drawn film made of either a polyester, a polypropylene or a nylon. The intermediate layer 3 is made of a polyethylene, a polystyrene or a mixture of a polyethylene, a polystyrene and a hydrogenated styrene block copolymer and the heat sealant layer 4 consists of a mixture of a thermoplastic resin and a filler. The thickness of the heat sealant layer 4 is pref. 0.2–3µm and it consists of a mixture contg. 1–60 pts.wt. filler with a particle diameter of 0.2–20µm to 100 pts.wt. polymethacrylate or vinyl chloride–vinyl acetate copolymer with a softening temp. of 40–130° C.

LEGAL STATUS

[Date of request for examination]

19.06.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3192380

[Date of registration]

25.05.2001

[Number of appeal against examiner's decision of

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-201922

(43)公開日 平成9年(1997)8月5日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	ΡI						技術表示簡別
B 3 2 B	27/32			B 3 2	В 2	7/32			Z	
	7/02	105	•			7/02		105		
	27/00				2	7/00			Н	
	27/20				2	7/20			Z	
	27/34	•	•		2	7/34				
			審查請求	未請求	請求項	頁の数8	OL	(全 6	頁)	最終頁に続く
(21)出願番号		特顯平8-304489		(71)日	人願 と	000002	141			· · · · · · · · · · · · · · · · · · ·
						住友べ	ークラ	イト株式会	会社	
(22)出廢日		平成8年(1996)11)	₹15日	1				東品川 2		番8号
				(72)多	明者	中西	久雄			-
(31)優先権主張番号		特願平7-304612				東京都	品川区)	東品川 2	7目5	番8号 住友
(32)優先日		平7 (1995)11月22日	∄					朱式会社内		
(33)優先権主	張国	日本(JP)								
				i						
				ļ						
						,				

(54) 【発明の名称】 電子部品包装用カパーテープ

(57)【要約】

【課題】 ビールオフ強度のシール条件に対する依存性が大きいという問題、保管環境により経時的に変化する問題、デラミ問題、凝集物問題、透明性問題を解決し、安定したビールオフ強度を有する電子部品包装用カバーテープを得る。

【解決手段】 外層はポリエステル、ポリプロピレン、ナイロンのいずれかである二軸延伸フィルムであり、中間層はポリエチレンを主成分とした混合物であり、ヒートシーラント層は熱可塑性樹脂とフィラーの混合物から成る電子部品包装用カバーテーブである。

【特許請求の範囲】

【請求項1】 プラスチック製キャリアテープに、熱シールしうるカバーテープであって、該カバーテープは、ボリエステル、ポリプロピレン、ナイロンのいずれかである二軸延伸フィルムと、軟化温度が40℃~130℃である熱可塑性樹脂100重量部に対して0.2~20μmの粒径であるフィラーを1~60重量部含んだ混合物からなるヒートシーラント層と、前記二軸延伸フィルムと前記ヒートシーラント層との間にボリエチレンを主成分とする中間層を備えることを特徴とする電子部品包10装用カバーテープ。

【請求項2】 前記中間層がメルトフローレートが10~30g/10分であるボリエチレン100重量部に対して、メルトフローレートが10~30g/10分であるボリスチレンが5~100重量部添加された樹脂組成物からなることを特徴とする請求項1記載の電子部品包装用カバーテープ。

【請求項3】 前記中間層がメルトフローレートが10~30g/10分であるポリエチレン100重量部に対して、メルトフローレートが10~30g/10分であるポリスチレンが5~100重量部、メルトフローレートが30~250g/10分である水素添加スチレン系ブロック共重合体が1~50重量部添加された樹脂組成物からなることを特徴とする請求項1記載の電子部品包装用カバーテープ。

【請求項4】 前記水素添加スチレン系ブロック共重合体が水素添加スチレンーブタジエンースチレンブロック共重合体、水素添加スチレンーイソプレンースチレンブロック共重合体のうちの少なくとも一種であることを特徴とする請求項3記載の電子部品包装用カバーテープ。 【請求項5】 前記熱可塑性樹脂がポリメタクリレート或いは塩化ビニルー酢酸ビニル共重合体であることを特徴とする請求項1、2、3又は4記載の電子部品包装用カバーテープ。

【請求項6】 前記フィラーが珪素、マグネシウム、カルシウムの何れかを主成分とする酸化物粒子、或いは、ポリエチレン粒子、ポリアクリレート粒子、ポリスチレン粒子の内、何れか一種或いはこれらの混合物であることを特徴とする請求項1、2、3、4又は5記載の電子部品包装用カバーテープ。

【請求項7 】 前記二軸延伸フィルムの厚みが $5\sim30$ μ mであり、前記中間層の厚みが $5\sim50$ μ mであり、前記ヒートシーラント層の厚みが $0.2\sim3$ μ mであることを特徴とする請求項1.2.3.4.5 又は6記載の電子部品包装用カバーテープ。

【請求項8】 該カバーテープとキャリアテープとの剥離強度がシール幅1mm当り10~120grになるよう中間層の樹脂が形成されていることを特徴とする請求項1、2、3、4、5、6又は7記載の電子部品包装用カバーテープ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は電子部品の保管、輸送、装着に際し、電子部品を汚染から保護し、電子回路基板に実装するために整列させ、取り出せる機能を有する包装体のうち、収納ポケットを形成したプラスチック製キャリアテープに熱シールされ得るカバーテープに関するものである。

2

[0002]

【従来の技術】近年、ICを始めとして、トランジスタ ー、ダイオード、コンデンサー、圧電素子レジスター等 の表面実装用電子部品は、電子部品の形状に合わせて、 収納しうるエンボス成形されたポケットを連続的に形成 したプラスチック製キャリアテープとキャリアテープに 熱シールしうるカバーテープとからなる包装体に包装さ れて供給されている。内容物の電子部品は包装体のカバ ーテープを剥離した後、自動的に取り出され電子回路基 板に表面実装される。カバーテーブがキャリアテーブか ら剥離される際の強度をピールオフ強度と呼ぶが、この 強度が低すぎると包装体移送時に、カバーテープが外 れ、内容物である電子部品が脱落するという問題があっ た。逆に、強すぎると、カバーテープを剥離する際キャ リアテープが振動し、電子部品が装着される直前に収納 ボケットから飛び出す現象、即ちジャンピングトラブル が発生していた。現在、上市されているカバーテープの キャリアテープから剥離される時の機構は、界面剥離タ イブ、転写剥離タイプ、凝集破壊タイプの3つに分類さ れる。界面剥離タイプとは、カバーテープとキャリアテ ープのシール面が剥離されるものであり、転写剥離タイ 30 プとは剥離時に接着層自身がキャリアテープに転写され るものであり、凝集破壊タイプとは接着層とは異なる別 の層或いは接着層自身(以後、凝集破壊層と呼ぶ)が破 れることにより剥離されるタイプのものである。それぞ れのタイプで一長一短があるが、キャリアテープにシー ルされたカバーテープを剥離する際の状態だけを比較す ると、界面剥離タイプはシール面と剥離面が同一の為、 キャリアテープの形状、材質、性状の影響を受けやす く、ピールオフ強度が不安定になり易い。

【0003】転写剥離タイプは機構上、接着層が薄膜である必要があり、いわゆる、ヒートシール用ラッカーを用いなければならず、ビールオフ強度がシール温度に敏感になりがちで適当なビールオフ強度を得難い。凝集破壊タイプはシール面と剥離層が異なる為、ビールオフ強度のシール条件依存性は少なく、キャリアテープの形状、材質、性状の影響を受けないという大きな長所を有する。しかし、剥離時、接着層、凝集破壊層以外の層の影響を受け、凝集破壊が起こらずに界面剥離が起こる場合がある。また、凝集破壊層が破壊する位置を設定し難く、剥離時に凝集破壊層がキャリアテープの表面に残

り り、内容物を取り出す事が出来なくなる状態(以後、デ

ラミと呼ぶ)が起こる可能性がある。凝集破壊層自身破 れやすく設計されている為、混ざり難い複数の樹脂の混 合物である場合が多く、それらは均一に混合されていな い場合があり、この事がカバーテープの透明性を悪化さ せたり、凝集物による欠点を作る場合がある。また、と の様な用途の場合、混合物中の樹脂の内、耐熱性の劣る ものが含まれている場合がある。これらの理由の為、凝 集破壊層製膜時、これらの凝集物あるいは劣化物が現 れ、生産性を落とす場合が多々ある。例えば、日本特許 1347759号(出願人ユセベ・ソシエテ・アノニム)の請求 項5に示されている、ポリエチレン、ポリスチレン、エ ラストマー状スチレンーブタジエンースチレンまたはス チレン-イソプレン-スチレンのプロックコポリマーの 配合を用いて凝集破壊層の形成を試み、加工温度が20 0℃を越すとブタジエン或いはイソプレン成分が重合反 応を起こし、凝集物を作り、生産歩留が著しく悪くな る。

[0004]

【発明が解決しようとする課題】本発明の目的は凝集剥離を利用することにより、カバーテープがキャリアテープから剥離される際のピールオフ強度のシール温度依存性がなく、諸性能の保管環境による経時変化が小さくシール性の安定したカバーテープを得る。

[0005]

【課題を解決するための手段】本発明は、電子部品を収 納するポケットを連続的に形成したプラスチック製キャ リアテープに、熱シールし得るカバーテープであって、 該カバーテープは、外層はポリエステル、ポリプロピレ ン、ナイロンのいずれかである二軸延伸フィルムであ り、中間層は、ポリエチレン、ポリスチレン、或いはポ 30 リエチレン、ポリスチレン、水素添加スチレンブロック 共重合体の混合物であり、ヒートシーラント層は熱可塑 性樹脂とフィラーの混合物から成る電子部品包装用カバ ーテープである。本発明の好ましい態様は、外層である 二軸延伸フィルムの厚みが5~30μmであり、中間層 は厚みが5~50μmで、メルトフローレートが10~ 30g/10分であるポリエチレン100重量部に対し て、メルトフローレートが10~30g/10分である ポリスチレンが5~100重量部である混合物である か、或いは、前記混合物にメルトフローレートが30~ 40 250g/10分である水素添加スチレンブロック共重 合体が1~50重量部を添加してなる混合物であって、 好ましくは水素添加スチレンブロック共重合体は水素添 加スチレンーブタジエンースチレンブロック共重合体、 水素添加スチレンーイソプレンースチレンプロック共重 合体から選ばれる少なくとも一種である。ヒートシーラ ント層の厚みは $0.2\sim3\mu m$ で、軟化温度が $40\sim1$ 30℃であるポリメタクリレート或いは塩化ビニルー酢 酸ピニル共重合体100重量部に対して、粒子径が0.

から成り、好ましくは珪素、マグネシウム、カルシウムの何れかを主成分とする酸化物粒子、或いは、ポリエチレン粒子、ポリアクリレート粒子、ポリスチレン粒子の内、何れか一種或いはこれらの混合物であり、カバーテープとキャリアテープの剥離強度がシール幅1mm当り10~120grである電子部品包装用カバーテープである。

[0006]

【発明の実施の形態】本発明のカバーテーブ1の構成要素を図1で説明すると、外層2がポリエステル、ポリプロピレン、ナイロンのいずれかである二軸延伸フィルムであり、厚みが5~30μmの透明で剛性の高いフィルムである。厚みが5μm以下では剛性がなくなり、カバーテーブが切れやすくなる。30μmを越えると硬すぎてシールが不安定となる。

【0007】中間層3は凝集破壊が起こるようにメルト フローレートが10~30g/10分であるポリエチレ ン100重量部に対して、メルトフローレートが10~ 30g/10分であるポリスチレンが5~100重量部 である混合物であるか、或いは、メルトフローレートが 10~30g/10分であるポリエチレン100重量部 に対して、メルトフローレートが10~30g/10分 であるポリスチレンが5~100重量部、メルトフロー レートが30~250g/10分である水素添加スチレ ンブロック共重合体が1~50重量部である混合物から 成り、厚みが5~50μmであるフィルムである。中間 層の形成方法については押出ラミネート法が安価で衛生 面から見て最も望ましい。水素添加スチレンブロック共 重合体としては特に限定されないが、水素添加スチレン - ブタジエン-スチレンブロック共重合体、水素添加ス チレンーイソプレンースチレンブロック共重合体が好ま しい。ポリエチレンのメルトフローレートが10g/1 0分以下、或いは、ポリスチレンのメルトフローレート が10g/10分以下、或いは、水素添加スチレンブロ ック共重合体のメルトフローレートが30g/10分以 下である場合、加工法として押出ラミネート法を用いる とフィルムの延展性が小さく適当な製膜ができない。ま た、ポリエチレンのメルトフローレートが30g/10 分以上、或いは、ポリスチレンのメルトフローレートが 30g/10分以上、或いは、水素添加スチレンブロッ ク共重合体のメルトフローレートが250g/10分以 上である場合、ネッキングが激しくやはり適当な製膜が できない。

加スチレン-ブタジエン-スチレンブロック共重合体、 水素添加スチレン-イソプレン-スチレンブロック共重 合体から選ばれる少なくとも一種である。ヒートシーラ ント層の厚みは0.2~3μmで、軟化温度が40~1 30℃であるポリメタクリレート或いは塩化ビニル-酢 酸ビニル共重合体100重量部に対して、粒子径が0. 2~20μmのフィラーを1~60重量部含んだ混合物 50 以下になる。50重量部以上であると押出ラミネートの 際にフィルムの厚みバラツキが生じる。中間層の厚みを押出ラミネート法で5μm以下にすると厚みのバラツキが大きくシール時、適当なピールオフ強度が得られなくなる。50μm以上ではピール時、デラミが起き易くなる。外層と中間層とのラミネート強度を向上させる目的でイソシアネート系、イミン系等の熱硬化型、ポリエチレン等の熱可塑型の接着層を介して両者をラミネートしてもよい。

【0009】ヒートシーラント層4はポリメタクリレー ト或いは塩化ビニルー酢酸ビニル共重合体100重量部 10 に対して0.2~20μmの粒径であるフィラーを1~ 60重量部含んだ混合物から成り、厚みが0.2~3 μ mである。フィラーとしては特に限定されないが、珪 素、マグネシウム、カルシウムの何れかを主成分とする 酸化物粒子、例えば、シリカ、タルク等、或いは、ポリ エチレン粒子、ポリアクリレート粒子、ポリスチレン粒 子の内、何れか一種或いはこれらの混合物が好ましい。 該層の形成方法としては非常に薄膜である為、グラビュ アコーティング法が最も望ましい。ポリメタクリレート としては、例えばメチルメタクリレート-ブチルメタク 20 リレート共重合体が挙げられる。これは共重合比率を変 えることにより軟化温度を40~130℃の範囲で変え ることができる。塩化ビニル-酢酸ビニル共重合体とし ては、例えばディックシールA-1002シリーズ (大 日本インキ化学工業(株)製)のようなものがある。と れも品番により軟化温度を調節できる。軟化温度が40 ℃未満の場合、カバーテープの保管時にブロッキングす る可能性があり、130℃を越えるとヒートシール時の 温度条件を高くする必要があり、その場合キャリアーテ ープ自体が破損する恐れがある。

【0010】フィラーの粒径が 0.2μ m以下或いは添加部数が1重量部以下であれば、カバーテープを60 C以上の高温環境で保管した場合、巻きだしができなくなるいわゆるブロッキング現象が起こる。また、フィラーの粒径が 20μ m以上或いは添加部数が60重量部以上であれば透明性が悪化し、光線透過率が75%以下となる。ヒートシーラント層の厚みが 0.2μ m以下であれば厚みを一定にするのが極めて困難であり安定したピー

ルオフ強度を得ることができなくなり、3 μm以上であればヒートシーラント層で凝集破壊が生じ、やはりビールオフ強度が不安定になる。静電防止効果を付与するために外層側つまり二軸延伸フィルムの表裏面に帯電防止処理層あるいは導電層を設けてもよい。

【0011】該カバーテープ1と該キャリアテープ6との接着力はシール幅1mm当り10~120gr、好ましくは10~70grになるように中間層の樹脂が形成される。ピールオフ強度が10grより低いと包装体移送時に、カバーテーブが外れ、内容物である電子部品が脱落するという問題がある。逆に、120grよりも高いと、カバーテープを剥離する際キャリアテーブが振動し、電子部品が装着される直前に収納ポケットから飛び出す現象、即ちジャンピングトラブルを起こす。本発明により、シール条件の依存性が低く、且つ、保管環境によるピールオフ強度の経時変化が少ないという性能を得ることが出来る。

【0012】本発明によれば、カバーテープの可視光線透過率は75%以上、好ましくは80%以上になるように構成されているために、キャリアテーブに封入された内部の電子部品が目視あるいは機械によって確認できる。75%より低いと内の電子部品の確認が難しい。【0013】

【実施例】本発明の実施例を以下に示すがこれらの実施例によって本発明は何ら限定されるものではない。膜厚25μmの二軸延伸ポリエステルフィルムに、表1及び表2に示す配合処方により、中間層を押出ラミネート法(押出温度:280℃)により膜厚30μmに製膜し、ヒートシーラント層をグラビュアコーティング法により膜厚1μmに製膜し、図1に示した層構成のカバーテープを得た。得られたカバーテープを5.3mm幅にスリット後、8mm幅のPET製キャリアテープとヒートシールを行い、剥離機構、ビールオフ強度、可視光線透過率及び60℃の環境でカバーテープを保管した場合のブロッキングの状態を測定した。その特性評価結果を実施例については表1に、比較例については表2に示した。【0014】

【表1】

	·							
		実施例 1	実施例2	実施例3	実施例4	実施例5	実施例 8	実施例7
#	ポリエチレン	100	100	100	100	100	100	100
[4]	ポリスチレン	10	30	90	80	80	80	80
間配入	SEBS	0	0	D	4.5	4 5	7	0
÷	SEPS	0	0	D	0	0	7	30
بر ارد	熱可微性樹脂	塩酢ビ 100	アクリル 100	塩酢ビ 100	アクリル 100	塩酢ビ 100	アクリル 100	アクリル 100
トト 脚シ 配 eラ	フィラー (粒径μm)	タルク 30 (3)	シリカ 3 (1.4)	ワックス 4 (10)	架锚7796 5 5 (7)	シリカ 30 (3)	架橋スチレン 2 (12)	架橋799a 5 5 (7)
मृह्	見光線透過率	87	86	88	77	76	87	78
t"-fd7強度 初期値(g/lss中)		48	51	62	4 5	30	54	4.9
プロ・	ッキングの状態	0	ο.	0	0	0	0	0
剑雕旗情		凝集磁镀	摄集破壊	凝集破壊	凝集破壞	原集破迹	凝集破壊	凝集破壞

[0015]

* *【表2】

		比較例1	比較例2	比較例3	比較例4	比较例5	比較例6
中岡	ポリエチレン	ioo	100	100	100	100	100
漫记	ポリスチレン	4	110	80	80	4	110
合	SEBS	0	0	70	7	7	7
ار ا د	熱可塑性樹脂	塩酢ビ 100	アクリル 100	塩酢ビ	アクリル 生酢ビ 100 100		アクリル 100
ド層シ 配り	フィラー (粒径µm)	タルク 70 (3)	シリカ 0.5 (1.4)	ワックス 40 (10)	架概7777) 0.5 (30)	シリカ 30 (0.1)	架機ズルン 2 (12)
घ≉	民共和进退率	64	70	71	64	84	72
1	-M7強度 値(g/lunft)	10	72	12	55	8	67
プロ・	・キングの状態	0	×	0	×	×	0
	剝離機構	界面針離	夜集破壞	界面對離	资集破镍	界面纠離	泰集破 壞

【0016】各条件、樹脂の略称及び内容等は次のとお れである

- ・ヒートシール条件: 160 C/1kg/cm²/0.1sec., シール幅 0.4mm×2
- ・ピール条件 : 180 ピール, ピールスピード 300 mm/min. n=3
- ・中間層配合の数字はポリエチレン100重量部に対する各樹脂の重量部を示す。
- ・ヒートシーラント層配合の数字は熱可塑性樹脂100 重量部に対するフィラーの重量部を示す。

- ・ブロッキングの状態:○;ブロッキングしていない、 ×;ブロッキングしていて実用的でない。
- ・塩酢ビ:塩化ビニルー酢酸ビニル共重合体(軟化温度: 45°C)(ディックシールA-100Z-5A:大日本インキ化学工業(株)製)
- ・アクリル: メチルメタクリレートープチルメタクリレート共重合体 (軟化温度: 60℃) (大阪印刷インキ製造 (株) 製)
- ・タルク:マグネシウムの含水ケイ酸塩鉱物を主成分とする無機フィラー(ミクロエースL-1:日本タルク (株) 製)
- 50 ・ワックス:ポリエチレンワックス

・架橋アクリル、架橋スチレン:各々の樹脂を架橋したもの(綜 研化学(株)製)

・シリカ:二酸化ケイ素を主成分とする無機フィラー

・ポリエチレンのメルトフローレート:20g/10分

・ポリスチレンのメルトフローレート:22g/10分

・SEBS:水素添加スチレンーブタジエンースチレン ブロック共重合体(メルトフローレート:120g/1 0分)

・SEPS:水素添加スチレン-イソプレン-スチレン ブロック共重合体(メルトフローレート: 150g/1 10 1:カバーテープ 0分)

[0017]

【発明の効果】本発明に従うと、ピールオフ強度を1 m m当り10~120grの範囲で任意に設定でき、従来 の問題点であるピールオフ強度のシール条件に対する依 存性が大きいという問題、諸機能の保管環境により経時* * 的に変化する問題、デラミ問題、凝集物問題、透明性問 題を解決することができ、安定したピールオフ強度を得 るととが出来る。

10

【図面の簡単な説明】

【図1】本発明のカバーテープの層構成を示す断面図で ある。

【図2】本発明のカバーテーブをキャリアテーブに接着 し、その使用状態を示す断面図である。

【符号の説明】

2:二軸延伸フィルム

3:中間層

4:ヒートシーラント層

5:ヒートシールされる部分

6:キャリアテープ

[図1]

フロントページの続き

. (51)Int.Cl.		識別記号	庁内整理番号	FΙ			技術表示簡所
B 3 2 B	27/36			B32B	27/36		OCTION CONTENTS
B65D	73/02			B65D	73/02	В	
• •	85/86		•	C08L	23/04	LCD	
// C08L	23/04	LCD	0333-3E	B65D	85/38	N	