Imperial College London

MATH 50006 Winter 2022

Department of Mathematics Lecturer: P.-F. Rodriguez p.rodriguez@imperial.ac.uk

Tutorials Lead (Senior GTA): Yuriy Shulzhenko yuriy.shulzhenko16@imperial.ac.uk

Graduate Teaching Assistants (GTAs):

John McCarthy j.mccarthy18@imperial.ac.uk Riccardo Carini r.carini19@imperial.ac.uk Soham Karwa s.karwa19@imperial.ac.uk William Turner william.turner17@imperial.ac.uk

Exercise Sheet 4

- 1. Let (X, A) be a measurable space.
 - a) Suppose $f, g: X \to \mathbb{R}$ are measurable. Prove that the sets

$${x \in X : f(x) > g(x)}, {x \in X : f(x) = g(x)}$$

are measurable.

- b) Prove that the set of points at which a sequence of measurable real-valued functions converges is measurable.
- 2. For each of the following statements, give a proof or supply a counterexample.
 - a) Any continuous function on \mathbb{R} is integrable with respect to the Lebesgue measure.
 - b) Any continuous function on [0, 1] is integrable with respect to the Lebesgue measure.
 - c) If a Borel measurable function $f: \mathbb{R} \to \mathbb{R}$ is such that $\int_{\mathbb{R}} f d\lambda = 0$, then f = 0 almost-everywhere.
 - **d)** If f_n , f are measurable real-valued functions on a measure space (X, \mathcal{A}, μ) , and $f_n \uparrow f$ as $n \to \infty$, then $\int f_n d\mu \uparrow \int f d\mu$ as $n \to \infty$.
 - e) If $(f_n)_{n\geq 1}$ is a sequence of nonnegative measurable functions on a measure space (X,\mathcal{A},μ) such that $\sup_{n\geq 1}\int f_nd\mu<\infty$, and if $f_n\underset{n\to\infty}{\longrightarrow} f$ pointwise, then $\int fd\mu<\infty$.

- **3.** If f, g are real valued integrable functions on a measure space (X, μ) , show the following statements hold:
 - a) If $\mu(A) = 0$ then $\int_A f d\mu = 0$.
 - b) If $\int_A f \, d\mu = 0$ for every measurable set A then f = 0 μ almost-everywhere.
- **4.** (Markov's inequality). Let (X, \mathcal{A}, μ) be a measure space and let f be a nonnegative, measurable function on X. For all M > 0, show that $\int f d\mu \ge \int f 1_{\{f \ge M\}} d\mu$, and deduce that

$$\mu(\{f \ge M\}) \le \frac{\int f \, d\mu}{M}.$$

5. Let (X, \mathcal{A}, μ) be a measure space. Let $(f_n)_{n\geq 1}$ be a sequence of nonnegative integrable functions converging μ -a.e. to an integrable function f. We assume that

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu.$$

Show that $f_n \to f$ in $L^1(X, \mathcal{A}, \mu)$ (**Hint**: first show that $\lim_{n \to \infty} \int (f - f_n)^+ d\mu = 0$).

6. (Convergence in measure). Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) < \infty$, and let f_n , $n \geq 1$, and f be measurable functions from (X, \mathcal{A}) to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We say that f_n converges to f in measure if, for all $\epsilon > 0$,

$$\mu(\{|f_n - f| > \epsilon\}) \xrightarrow[n \to \infty]{} 0.$$

- a) Using Markov's inequality (Ex.4), show that if $\int |f_n f| d\mu \xrightarrow[n \to \infty]{} 0$, then f_n converges to f in measure. Show, with a counter-example, that the converse is wrong.
- b) Show that if f_n converges to f μ -a.e., then f_n converges to f in measure. Show, with a counter-example, that the converse is wrong.