Qn	Solution
Qn 1	$\frac{dx}{dt} = 2 + \frac{1}{t^2}, \frac{dy}{dt} = 1 - \frac{1}{t^2}$ $\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{dy}{dx}$
	$= \frac{1 - \frac{1}{t^2}}{2 + \frac{1}{t^2}}$ $= \frac{t^2 - 1}{2t^2 + 1}$ $= \frac{\frac{1}{2}(2t^2 + 1) - \frac{3}{2}}{2t^2 + 1}$ $= \frac{1}{2} - \frac{3}{2(2t^2 + 1)}$ $2t^2 + 1$ $t^2 + \frac{1}{2}$
	$= \frac{1}{2} - \frac{3}{2(2t^2 + 1)}$ $-\frac{3}{2}$
(ii)	since $t \neq 0$ $2t^{2} + 1 > 1$ $0 < \frac{1}{2(2t^{2} + 1)} < \frac{1}{2}$ $3 \qquad 3$
	$-\frac{3}{2} < -\frac{3}{2(2t^2 + 1)} < 0$ $-1 < \frac{1}{2} - \frac{3}{2(2t^2 + 1)} < \frac{1}{2}$ $dv = 1$
	$\therefore -1 < \frac{\mathrm{d}y}{\mathrm{d}x} < \frac{1}{2}$

Qn 2	Solution
2	1
	$(2+ax)^3$
	$=(2+ax)^{-3}$
	$\frac{1}{(2+ax)^5}$ = $(2+ax)^{-5}$ = $2^{-5} \left[1 + \frac{ax}{2} \right]^{-5}$
	$= \frac{1}{32} \left[1 - \frac{5ax}{2} + \frac{(-5)(-6)}{2!} \left(\frac{ax}{2} \right)^2 + \frac{(-5)(-6)(-7)}{3!} \left(\frac{ax}{2} \right)^3 + \dots \right]$
	Coefficient of $x^3 = \frac{1}{32} \times \frac{(-5)(-6)(-7)}{3!} \left(\frac{a}{2}\right)^3 = -\frac{35}{256}a^3$
	$\sqrt{4-ax}$
	$=2\left(1-\frac{ax}{4}\right)^{\frac{1}{2}}$
	$= 2\left[1 + \frac{1}{2}\left(-\frac{ax}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{ax}{4}\right)^{2} + \dots\right]$
	Coefficient of $x^2 = -\frac{1}{64}a^2$
	$-\frac{35}{256}a^3 = 5\left(-\frac{1}{64}a^2\right)$
	$35a^3 = 20a^2$
	$7a = 4$, since $a \neq 0$
	$a = \frac{4}{7}$

Qn	Solution
3(i)	y = f(x) $(1,0)$ $x = 3$ $(5,16)$ $y = 2x + 2$ $x = 3$
	$ \frac{2x+2}{x-3} = 2x+2 + \frac{8}{x-3} $ $ 2x^2 - 6x $ $ 2x+2 $ $ 2x-6 $ $ 8 $ The segrentetes are $y = 2x + 2$ and $y = 3$
3(ii)	The asymptotes are $y = 2x + 2$ and $x = 3$. $y = f(x)$ $(0,k)$ $x^{2} + (y-k)^{2} = a^{2}$ $\Rightarrow x$

Qn	Solution		
	To have an odd number of roots, there are 7 points of intersection between the two curves,		
	hence $a = k + \frac{2}{3}$		
	Thence $u = k + 3$		
4(a)	Algebraic Method:		
	$2x+1-(x^2-1)$		
	$\frac{2x+1-(x^2-1)}{x^2-1} \le 0$		
	$\frac{-x^2 + 2x + 2}{x^2 - 1} \le 0$		
	· · ·		
	$\frac{x^2 - 2x - 2}{x^2 - 1} \ge 0$		
	,		
	$\frac{(x-1)^2-3}{(x-1)(x+1)} \ge 0$		
	$\frac{\left[(x-1)-\sqrt{3}\right]\left[(x-1)+\sqrt{3}\right]}{(x-1)(x+1)} \ge 0$		
	(x-1)(x+1)		
	$\left[(x-1) - \sqrt{3} \right] \left[(x-1) + \sqrt{3} \right] (x-1)(x+1) \ge 0$		
	+ - + - +		
	-1 $1-\sqrt{3}$ 1 $1+\sqrt{3}$		
	$x < -1 \text{ or } 1 - \sqrt{3} \le x < 1 \text{ or } x \ge 1 + \sqrt{3}$		
4(b)			
4(b)	$ay^{2} + bx^{3} + cx = 2$ Differentiate wrt x,		
	$2ay\frac{\mathrm{d}y}{\mathrm{d}x} + 3bx^2 + c = 0\dots (*)$		
	Sub $(1, \sqrt{3})$ into eq C and obtain		
	3a+b+c=2(1)		
	Sub $(-1,1)$ into eq C and obtain		
	a-b-c=2(2)		
	Sub $(-1,1)$ into eq * and obtain		
	$-3a + 3b + c = 0 \dots (3)$		

Qn	Solution		
	Using GC, $a = 1, b = 2, c = -3$		
	Eq of C is $y^2 + 2x^3 - 3x = 2$		
5	Note that $l^2 = h^2 + r^2$.		
	Total symfood area of come		
	Total surface area of cone, $\pi r \sqrt{h^2 + r^2} + \pi r^2 = k\pi$		
	$ \lambda r \sqrt{h^2 + r^2} = k - r^2$ $ \Rightarrow r \sqrt{h^2 + r^2} = k - r^2$		
	$\Rightarrow r\sqrt{n} + r = k - r$ $\Rightarrow r^2 (h^2 + r^2) = k^2 - 2kr^2 + r^4$		
	$\Rightarrow r^2h^2 + r^4 = k^2 - 2kr^2 + r^4$		
	$\Rightarrow r^2 = \frac{k^2}{\left(h^2 + 2k\right)} \text{(Shown)}$		
	From above equation, $r^2 = \frac{k^2}{h^2 + 2k}$		
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{k^2}{h^2 + 2k}\right) h = \frac{k^2 \pi h}{3(h^2 + 2k)}$		
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{k^2 \pi}{3} \frac{\left(h^2 + 2k\right) - h\left(2h\right)}{\left(h^2 + 2k\right)^2}$		
	$=\frac{k^2\pi (2k-h^2)}{3(h^2+2k)^2}$		
	At stationary point, $\frac{dV}{dh} = 0$		
	$2k - h^2 = 0 \implies h = \sqrt{2k} \ (\because h > 0)$		
	h $\left(\sqrt{2k}\right)^ \left(\sqrt{2k}\right)^+$ $\left(\sqrt{2k}\right)^+$		
	$\frac{\mathrm{d}V}{\mathrm{d}h}$ +ve 0 -ve		
	Alternatively,		
	$d^2V = k^2\pi (h^2 + 2k)^2 (-2h) - (2k - h^2) 2(h^2 + 2k) 2h$		
	$\frac{d^2V}{dh^2} = \frac{k^2\pi}{3} \frac{\left(h^2 + 2k\right)^2 (-2h) - \left(2k - h^2\right) 2\left(h^2 + 2k\right) 2h}{\left(h^2 + 2k\right)^4}$		
	$=\frac{2k^{2}\pi h}{3}\frac{-\left(h^{2}+2k\right)-2\left(2k-h^{2}\right)}{\left(h^{2}+2k\right)^{3}}$		
	$= \frac{2k^2\pi h}{3} \frac{h^2 - 6k}{\left(h^2 + 2k\right)^3} < 0 \text{ when } h = \sqrt{2k}$		
	Volume is maximum when $h = \sqrt{2k}$		

Qn	Solution			
	$V = \frac{k^2 \pi \sqrt{2k}}{3(2k+2k)} = \frac{k\pi \sqrt{2k}}{12} = \frac{\sqrt{2k^{\frac{3}{2}}}\pi}{12} \text{ units}^3$			
	$V = \frac{12}{3(2k+2k)} = \frac{12}{12} - \frac{12}{12}$ units			
6(a)	$\int \frac{3e^x}{5 - 0.3e^x} dx$			
	$= -10 \int \frac{-0.3e^x}{5 - 0.3e^x} \mathrm{d}x$			
	$=-10 \ln 5-0.3e^x + C$			
	where C is an arbitrary constant.			
6(b)	Let $I = \int \cos(\ln x) dx$			
	$u = \cos(\ln x)$			
	$u = \cos(\ln x)$ $v' = 1$ $u' = -\frac{1}{x}\sin(\ln x)$ $v = x$			
	$u' = -\frac{1}{x}\sin(\ln x) \qquad v = x$			
	$I = x \cos(\ln x) - \int -\frac{1}{x} \left[x \sin(\ln x) \right] dx$			
	$= x \cos(\ln x) + \int \sin(\ln x) dx$			
	$u = \sin(\ln x)$ $v' = 1$			
	$u = \sin(\ln x)$ $v' = 1$ $u' = \frac{1}{x}\cos(\ln x)$ $v = x$			
	$I = x\cos(\ln x) + x\sin(\ln x) - \int \frac{1}{x} \left[x\cos(\ln x)\right] dx$			
	$= x \cos(\ln x) + x \sin(\ln x) - \int \cos(\ln x) dx$			
	$2I = x\cos(\ln x) + x\sin(\ln x)$			
	$I = \frac{x}{2} \left[\cos(\ln x) + \sin(\ln x) \right] + C$			
	where C is an arbitrary constant.			
6(c)				
				
	When $2e^x - 5 = 0$, $x = \ln 2.5$			
	$\begin{vmatrix} 2e^{x} - 5 \end{vmatrix} \begin{cases} 2e^{x} - 5, & x \ge \ln 2.5 \\ -(2e^{x} - 5), & x < \ln 2.5 \end{cases}$			
	$\left \begin{array}{cc} ^{2e^{x}-5} & \left(-(2e^{x}-5), x < \ln 2.5 \right) \end{array} \right $			
	$\int_0^3 \left 2e^x - 5 \right dx$			
	30			

Qn	Solution		
	$= -\int_0^{\ln 2.5} 2e^x - 5 dx + \int_{\ln 2.5}^3 2e^x - 5 dx$		
	$= \left[\left(5 \ln 2.5 - 2e^{\ln 2.5} \right) + 2e^{0} \right] +$		
	$= \left[5x - 2e^{x}\right]_{0}^{\ln 2.5} + \left[2e^{x} - 5x\right]_{\ln 2.5}^{3} = \left[\left(5\ln 2.5 - 2e^{\ln 2.5}\right) + 2e^{0}\right] + \left[\left(2e^{3} - 15\right) - \left(2e^{\ln 2.5} - 5\ln 2.5\right)\right]$		
	$= 10 \ln 2.5 - 4e^{\ln 2.5} + 2e^3 - 13$		
	$= 10 \ln 2.5 - 4(2.5) + 2e^3 - 13$		
7 (*)	$= 10 \ln 2.5 + 2e^3 - 23$		
7(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\sin x \cos x$		
	$=-\sin 2x=0$		
	$2x = -\pi$		
	$x = -\frac{\pi}{2}$		
	y = -1		
	Minimum point = $\left(-\frac{\pi}{2}, -1\right)$		
-	2, 1)		
7(ii)			
	-п		
	y = -2		
	$x = -\pi/2$		
	Area = $2 \times \frac{\pi}{2} + \int_{-\pi/2}^{0} -\sin^2 x dx$		
	$= \pi - \int_{-\pi/2}^{0} \frac{1 - \cos 2x}{2} \mathrm{d}x$		
	$=\pi-\left[\frac{x}{2}-\frac{\sin 2x}{4}\right]_{-\pi/2}^{0}$		
	$-\pi - \left[\frac{2}{2} - \frac{4}{4}\right]_{-\pi/2}$		
	$=\pi-\left[0-\left(-rac{\pi}{4} ight) ight]$		
	$=\frac{3\pi}{4}$ units ²		
7(iii)	Volume		
	$= \pi \left(\frac{\pi}{2}\right)^{2} (2-1) + \pi \int_{-1}^{0} \left(\sin^{-1}\left(-\sqrt{-y}\right)\right)^{2} dy$		
	= 7.75156917 + 2.304987524		
	=10.05655669		
	$=10.1 \text{ units}^3 \text{ (to 3 s.f.)}$		

Qn	Solution
8(i)	$(z-w)(z-w^*)$
	$=z^2-(w+w^*)z+ww^*$
	$=z^2-2\operatorname{Re}(w)z+ w ^2$
	$C = D \cdot (-1) \cdot -1 ^2 = D \cdot A \cdot -1 \cdot -1$
	Since $Re(w), w ^2 \in \mathbb{R}$, therefore the product of the factors is a quadratic polynomial with
	real coefficients.
9(::)	
8(ii)	$w = \sqrt{5} \left[\cos \left(-\tan^{-1}(2) \right) + i \sin \left(-\tan^{-1}(2) \right) \right]$
	$=\sqrt{5}\left(\frac{1}{\sqrt{5}}-i\frac{2}{\sqrt{5}}\right)$
	=1-2i
8(iii)	$(z-w)(z-w^*) = z^2 - 2\operatorname{Re}(w)z + w ^2$
	$= z^2 - 2z + 5$
	Method 1
	$z^{4} + az^{3} + 46z^{2} + bz + 125 = (z^{2} - 2z + 5)(z^{2} + kz + 25) = 0$
	Compare coefficient of z^2 : $46 = 25 + 5 - 2k \Rightarrow k = -8$
	Compare coefficient of z^3 : $a = k - 2 \Rightarrow a = -10$
	Compare coefficient of z: $b = -50 + 5k \Rightarrow b = -90$
	Compare coefficient of z : $b = -30 + 3k \rightarrow b = -90$
	Method 2
	Substitute $z = 1 - 2i$ into the equation,
	$(1-2i)^4 + a(1-2i)^3 + 46(1-2i)^2 + b(1-2i) + 125 = 0$
	-7 + 24i + a(-11+2i) + 46(-3-4i) + b(1-2i) + 125 = 0
	-20-11a+b+(-160+2a-2b)i=0
	Comparing Real and Imaginary part respectively,
	$\begin{cases} 11a - b = -20 \\ 2a - 2b = 160 \end{cases} \Rightarrow \begin{cases} a = -10 \\ b = -90 \end{cases}$

Qn	Solution	
	The remaining roots are	
	$\therefore z^2 - 8z + 25 = 0$	
	$(z-4)^2+9=0$	
	$z = 4 \pm 3i$	
	The roots to the equation are $4+3i$, $4-3i$, $1-2i$, $1+2i$.	
9(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{a}{x^2} - bx, \text{ where } a \& b \text{ are positive constants.}$	
	When $x = 0.5$, $\frac{\mathrm{d}x}{\mathrm{d}t} = 0$	
	$4a = \frac{b}{2}$	
	b = 8a	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{a}{x^2} - 8ax = \frac{a\left(1 - 8x^3\right)}{x^2}$	
	$\therefore \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{k\left(1 - 8x^3\right)}{x^2}$	
9(ii)	Method 1:	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = k \left(\frac{1 - 8x^3}{x^2} \right)$	
	$\frac{\mathrm{d}t}{\mathrm{d}x} = \left(\frac{x^2}{k\left(1 - 8x^3\right)}\right)$	
	$k \int 1 \frac{\mathrm{d}t}{\mathrm{d}x} \mathrm{d}x = \int \frac{x^2}{\left(1 - 8x^3\right)} \mathrm{d}x$	
	$kt = -\frac{1}{24} \int \frac{-24x^2}{(1 - 8x^3)} \mathrm{d}x$	
	$kt = -\frac{1}{24} \ln \left 1 - 8x^3 \right + C$	
	$ \left \ln \left 1 - 8x^3 \right = -24kt + 24C $	
	$\left 1 - 8x^3 \right = e^{24C} e^{-24kt}$	
	$1 - 8x^3 = Ae^{-24kt}$ where $A = \pm e^{24C}$	
	When $t = 0$, $x = 3$, $A = -215$	
	$\therefore 1 - 8x^3 = -215e^{-24kt}$	
	When $t = 1$, $x = 2$, $e^{-24k} = \frac{63}{215}$	

Qn	Solution		
	$\therefore 1 - 8x^3 = -215 \left(\frac{63}{215}\right)^t$ When $t = 3$, $x = \frac{1}{2} \left(1 + 215 \left(\frac{63}{215}\right)^3\right)^{\frac{1}{3}} = 0.92877$		
	When $t = 3$, $x = \frac{1}{2} \left(1 + 215 \left(\frac{63}{215} \right)^3 \right)^{\frac{1}{3}} = 0.92877$		
	Number of fish is 929 (nearest integer)		
9(iii)	As $t \to \infty$, $\left(\frac{63}{215}\right)^t \to 0$, $x \to 0.5$		
	In the long run, the number of fish decreases and tends to 500.		
10(i)	NORMAL FLOAT DEC REAL RADIAN MP $ \frac{a}{2} \cdot \frac{a^3}{4} $ $ O_{1}(0,0) \qquad (a,0) \qquad x$		
10 (ii)	When $x \le \frac{a}{2}$, every horizontal line $y = k$ cuts the graph of $y = f(x)$ at most once. Hence f is one-one and therefore f^{-1} exists.		
	The greatest value of k is $\frac{a}{2}$.		
10(iii)	Let $y = a^2x - ax^2 = -a\left(x - \frac{a}{2}\right)^2 + \frac{a^3}{4}$ $\left(x - \frac{a}{2}\right)^2 = \frac{1}{a}\left(\frac{a^3}{4} - y\right)$ $x - \frac{a}{2} = \pm\sqrt{\frac{1}{a}\left(\frac{a^3}{4} - y\right)}$		
	$x = \frac{a}{2} \pm \sqrt{\frac{1}{a} \left(\frac{a^3}{4} - y\right)}$		

Qn	Solution			
	1	$\therefore x = \frac{a}{2} - \sqrt{\frac{1}{a} \left(\frac{a^3}{4} - y \right)} (\because x \le \frac{a}{2})$		
	Hence, $f^{-1}: x - 1$	Hence, $f^{-1}: x \to \frac{a}{2} - \sqrt{\frac{1}{a} \left(\frac{a^3}{4} - x\right)}, \ x \in \mathbb{R}, \ x \le \frac{a^3}{4}$		
	The graph of y	$y = f^{-1}(x)$ is a reflection of the graph of $y = f(x)$ in the line $y = x$.		
10(iv)	Since $R_f = \left(-\infty, \frac{a^3}{4}\right] \subseteq \left(-\infty, a^3\right] = D_g$, the composite function gf exists.			
10(v)	$D_{\rm gf} = D_{\rm f} \xrightarrow{ \text{f} }$	$D_{\rm gf} = D_{\rm f} \xrightarrow{f} R_{\rm f} \xrightarrow{g} \left(-\infty, a^3\right]$		
	$y = e^{x}$ $\frac{\left(\frac{a^{3}}{4}e^{\frac{x^{2}}{4}}\right)}{a}$			
	$R_{\rm gf} = \left(0, e^{\frac{a^3}{4}}\right]$			
11(i)	Amount of dru	g before the 2 nd dose = $\left(\frac{1}{2}\right)^3 D = \frac{1}{8}D$		
11(ii)				
	n th dose	Amount of drug = U_n		
	1	D		
	2	$\left(\frac{1}{2}\right)^3 D + D = \frac{1}{8}D + D$		
	3	$\left(\frac{1}{8}D+D\right)\left(\frac{1}{2}\right)^3+D$		
		$= \left(\frac{1}{8}\right)^2 D + \left(\frac{1}{8}\right) D + D$		
	n	$\left(\frac{1}{8}\right)^{n-1}D + \left(\frac{1}{8}\right)^{n-2}D + \dots + D$		

Qn	Solution		
	$U_{n} = \left(\frac{1}{8}\right)^{n-1} D + \left(\frac{1}{8}\right)^{n-2} D + \dots + D$		
	$=\frac{D\left(1-\left(\frac{1}{8}\right)^n\right)}{1-\frac{1}{8}}$		
	$= \frac{8}{7}D\left(1 - \left(\frac{1}{8}\right)^n\right) $ (Shown)		
11(iii)	As $n \to \infty$, $\left(\frac{1}{8}\right)^n \to 0$. Hence $U_n \to \frac{8}{7}D$.		
	The amount of drug that is present in the bloodstream if the patient continues to take it over		
	a long period of time is $\frac{8}{7}D$ milligrams.		
	Thus, $\frac{8}{7}D \le 60$		
	$D \le 52.5$		
11(iv)			
	$\left \frac{n}{7} (40) \left(1 - \left(\frac{1}{8} \right)^n \right) - 50 \right \le 4.3$		
	3 4.375 > 4.3		
	4 4.2969 < 4.3 5 4.2871 < 4.3		
	The least number of dose is 4. Alternate method		

Qn	Solution
	$\left \frac{8}{7} (40) \left(1 - \left(\frac{1}{8} \right)^n \right) - 50 \right \le 4.3$
	$\left \frac{320}{7} \left(1 - \left(\frac{1}{8} \right)^n \right) - 50 \right \le 4.3$
	$\left -\frac{30}{7} - \frac{320}{7} \left(\frac{1}{8} \right)^n \right \le 4.3$
	$\left \frac{30}{7} + \frac{320}{7} \left(\frac{1}{8} \right)^n \le 4.3 \right $
	$\left(\frac{1}{8}\right)^n \le 3.125 \times 10^{-4}$
	$n \ge \frac{\ln(3.125 \times 10^{-4})}{\ln\left(\frac{1}{8}\right)}$
	$n \ge 3.88$
	Least <i>n</i> is 4. Therefore, the least number of dose is 4.
11(v)	Let t_n mg be the amount of drug taken by the patient on the n^{th} day
	$t_n = 4 + (n-1)(2) \le 20$
	$n \le 9$ The 9 th day after the patient has started to take the medication is the first day in which his medication not exceeding the maximum dose. Total amount of drug taken
	$= \frac{9}{2} [2(4) + 8(2)] + 20 \times 5 = 208 \text{ mg}$
12	Equation of p_1 : $x + y = -3$
(i)	Hence scalar product form of p_1 : $r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = -3$
	$\overrightarrow{OB} = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}$
	Since $\begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = -1 - 2 = -3$

Qn	Solution
	Thus B lies on p_1
12 (ii)	$\overrightarrow{OA} = \begin{pmatrix} -3\\4\\-1 \end{pmatrix}$
	Method 1: $ \overrightarrow{AB} = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} - \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -6 \\ 0 \end{pmatrix} $ $ \stackrel{n}{=} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} $ p_1
	Shortest distance from A to $p_1 = \left \overrightarrow{AB} \cdot \hat{p} \right = \frac{\begin{pmatrix} 2 \\ -6 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2} \text{ metres}$
	Method 2:
	Let N be the foot of perpendicular of point A on plane p_1 $L_{AN}: \underline{r} = \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mu \in \mathbb{R} \qquad A$ $\underline{n} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$
	Since N is a point on line L_{AN} , N $\overrightarrow{ON} = \begin{pmatrix} -3 + \mu \\ 4 + \mu \\ -1 \end{pmatrix} \text{ for some } \mu \in \mathbb{R}$
	Since N is also on plane p_1 ,

Qn	Solution
	$ \begin{pmatrix} -3+\mu \\ 4+\mu \\ -1 \end{pmatrix} \circ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = -3 $
	$-3 + \mu + 4 + \mu + 0 = -3$
	$\mu = -2$
	$-3 + \mu + 4 + \mu + 0 = -3$ $\mu = -2$ $\overrightarrow{AN} = \begin{vmatrix} -2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 2\sqrt{2} \text{units}$
12 (iii)	Let θ be the acute angle the path AB makes with p_1
	$\theta = 90^{\circ} - \cos^{-1} \frac{\begin{vmatrix} 2 \\ -6 \\ 0 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix}}{\sqrt{40}\sqrt{2}}$ $= 90^{\circ} - \cos^{-1} \frac{1}{\sqrt{5}}$
	$= 90^{\circ} - \cos^{-1} \frac{1}{\sqrt{5}}$ $= 26.56505 = 26.6^{\circ} (1 \text{ d.p})$
	OR
	$\sin \theta = \frac{\begin{vmatrix} 2 \\ -6 \\ 0 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix}}{\sqrt{40}\sqrt{2}} = \frac{4}{2\sqrt{20}} = \frac{1}{\sqrt{5}}$ $\theta = 26.56505 = 26.6^{\circ} (1 \text{ d.p})$
	0 - 20.30303 - 20.0 (1 d.p)

Qn	Solution
12	Let N be the foot of perpendicular of point A on plane p_1
(iv)	$L_{AN}: \underline{r} = \begin{pmatrix} -3\\4\\-1 \end{pmatrix} + \mu \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \mu \in \mathbb{R} \qquad A$ $\underline{n} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$
	Since N is a point on line L_{AN} , N
	$\overrightarrow{ON} = \begin{pmatrix} -3 + \mu \\ 4 + \mu \\ -1 \end{pmatrix} \text{ for some } \mu \in \mathbb{R}$
	$ON = \begin{pmatrix} 4+\mu \\ -1 \end{pmatrix} \text{ for some } \mu \in \mathbb{R}$
	Since N is also on plane p_1 ,
	$\begin{pmatrix} -3 + \mu \\ 4 + \mu \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = -3$
	$\begin{bmatrix} 1 & \mu \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 3$
	$-3 + \mu + 4 + \mu + 0 = -3$
	$\mu = -2$
	$\overrightarrow{ON} = \begin{pmatrix} -3\\4\\-1 \end{pmatrix} - 2 \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} -5\\2\\-1 \end{pmatrix}$
	$\overrightarrow{AN} = \begin{pmatrix} -5\\2\\-1 \end{pmatrix} - \begin{pmatrix} -3\\4\\-1 \end{pmatrix} = \begin{pmatrix} -2\\-2\\0 \end{pmatrix}$
	$2\overrightarrow{AN} = \overrightarrow{AA'}$
	$\overrightarrow{OA'} = 2\overrightarrow{AN} + \overrightarrow{OA} = \begin{pmatrix} -7\\0\\-1 \end{pmatrix}$
	$\overrightarrow{BA'} = \begin{pmatrix} -7\\0\\-1 \end{pmatrix} - \begin{pmatrix} -1\\-2\\-1 \end{pmatrix} = \begin{pmatrix} -6\\2\\0 \end{pmatrix}$
	Vector equation of BA':

Qn	Solution
12	Method 1:
(v)	$p_1 : r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = -3 \implies r \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{-3}{\sqrt{2}}$
	$p_2 \colon \mathcal{L} \stackrel{1}{\underset{0}{=}} k \implies \mathcal{L} \stackrel{1}{\underset{0}{=}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \frac{k}{\sqrt{2}}$
	Since $\frac{k}{\sqrt{2}}$ is positive and $\frac{-3}{\sqrt{2}}$ is negative, the origin is in between p_1 and p_2 , and the
	distance between the planes is $\frac{k}{\sqrt{2}} - \left(\frac{-3}{\sqrt{2}}\right) = \frac{k+3}{\sqrt{2}}$
	Therefore we have p_2
	$\frac{k+3}{\sqrt{2}} = 35\sqrt{2}$ $k+3 = 35\sqrt{2}\sqrt{2}$ $k+3 = 70$ $35\sqrt{2}$ $n = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$
	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ O \uparrow O
	$k+3=35\sqrt{2}\sqrt{2}$ $n=1$
	k = 67
	Hence p_2 : $r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 67$
	$L_{BC}: \underline{r} = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \lambda \in \mathbb{R}$
	Since C is on the line L_{BC} , we have
	$\left(-1+3\lambda\right)$
	$\overrightarrow{OC} = \begin{pmatrix} -1+3\lambda \\ -2+\lambda \\ -1+2\lambda \end{pmatrix} \text{ for some } \lambda \in \mathbb{R}$
	Since C is also on the plane p_2 , we have
	$\left(-1+3\lambda\right)\left(1\right)$
	$\begin{pmatrix} -1+3\lambda \\ -2+\lambda \\ -1+2\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 67$ $-1+3\lambda-2+\lambda=67$
	$-1+3\lambda-2+\lambda=67$
	$\lambda = \frac{35}{2}$

Qn	Solution
	Therefore $\overrightarrow{OC} = \begin{pmatrix} -1+3\left(\frac{35}{2}\right) \\ -2+\frac{35}{2} \\ -1+2\left(\frac{35}{2}\right) \end{pmatrix} = \begin{pmatrix} \frac{103}{2} \\ \frac{31}{2} \\ 34 \end{pmatrix}$, and hence the coordinates of C :
	(51.5, 15.5, 34).
	Since C lies on p_2 :
	$ \begin{pmatrix} 51.5 \\ 15.5 \\ 34 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 67 $
	Cartesian equation: $x + y = 67 \implies k = 67$