Statistical Modeling for Human Rewardbased Behavioral Task Data

Xingche Guo

Department of Statistics, University of Connecticut

Presented at

The 10th International Forum on Statistics Renmin University of China July 6 2025

Human Behavioral Tasks

Definition: a structured experimental paradigm designed to systematically measure specific aspects of human cognition, perception, emotion, or decision-making through observable behaviors such as choices, reaction times, error rates, or movements.

Key features:

- Controlled environment: Tasks are typically performed in a lab or digital setting where variables can be precisely manipulated.
- Target cognitive process: Each task is designed to probe a particular mental function (e.g., attention, memory, reward processing, inhibitory control).
- Outputs: Behavioral responses (e.g., response time, accuracy, choice patterns) serve as measurable data for analysis.
- Reproducibility: Tasks are standardized to allow replication and comparison across individuals or groups.

Probabilistic reward task (PRT):

A computer-based behavioral experiment that measures the subject's ability to modify behavior in response to rewards. (Pizzagalli et al., 2005)

Participant's goal: learn from the PRT system (to maximize rewards).

Our goal: understand how the participant learns the PRT system (not interested in PRT system).

Probabilistic reward task (PRT):

Demo (single trial)

You are told the task is to identify the correct mouth.

You don't know the reward generating mechanism.

Small difference in mouth size

Rewards are imbalanced

Probabilistic reward task (PRT):

Demo (multiple trials)

A PRT session

Assess decision-making processes relevant to mental disorders via Probabilistic reward task

Observation:

An individual's learning ability and decision-making may be altered by MDD (Pizzagalli, et al. 2005).

Try to Answer:

How does MDD affect the decision-making and reward learning?

- Learn slow?
- Not sensitive to reward?
- Easy to distract?
- etc...

EMBARC Study:

A clinical trial for exploring how biomarkers affect the treatment outcome for MDD (Trivedi et al., 2016).

Data Types

- Demographical and clinical data
- Neuroimaging data:
 - Task EEG/fMRI
 - Resting-state EEG/fMRI
 - etc...
- Human behavioral data:
 - Probabilistic reward task (Pizzagalli et al., 2005)
 - Emotion conflict task (Etkin et al., 2006)
 - etc...

Experimental Design

- MDD group vs Health Control group (Today's focus)
- In MDD group: Treatment vs Placebo

Problem setups for PRT

Problem size: subjects (i = 1, ..., n) from a group, trials (t = 1, ..., T) for each session.

State space (S): $\{0, 1\}$: 0 = long mouth'(lean); 1 = short mouth'(rich).

Action space (A): $\{0, 1\}$: 0 = long mouth'; 1 = short mouth'.

Reward space (R): $\{0, 1\}$: 0 = `no reward'; 1 = `win reward'.

Data for one group: $\{..., S_{it}, A_{it}, R_{it}, ...\}, i = 1, ..., n; t = 1, ..., T.$

Q-learning model

Expected reward (own estimate):

$$Q_{it}(a,s) = \mathbb{E}^{(\text{est})} \left(R_{it} \mid A_{it} = a, S_{it} = s \right)$$

Minimize reward prediction error: $R_{it} - Q_{it}(a, s)$

Update expected reward (gradient descent):

$$Q_{i,t+1}(a,s) = Q_{it}(a,s) + \beta_i \left(R_{it} - Q_{it}(a,s) \right)$$
$$\left(a = A_{it}, \ s = S_{it} \right)$$

Learning rate: $\beta_i \in (0,1)$

Another view (weighted sum):

$$Q_{i,t+1}(a,s) = \left(1 - \beta_i\right) Q_{it}(a,s) + \beta_i R_{it}$$

$$\beta_i \rightarrow 0$$
, no update, $\beta_i \rightarrow 1$, no memory

New observed reward

Current expected reward

Future expected reward

Decision making model

Contrast of expected rewards for action 1 and 0 at

the given state:
$$Z_{it} = Q_{it}(1,S_{it}) - Q_{it}(0,S_{it})$$

Decision making model

Contrast of expected rewards for action 1 and 0 at

the given state: $Z_{it} = Q_{it}(1,S_{it}) - Q_{it}(0,S_{it})$, weighing between two actions State S_{it} Reward **Contrast** Z_{it} R_{it} $1 - \beta_i$ **Future Current** expected reward expected reward

Decision making model

Contrast of expected rewards for action 1 and 0 at

the given state: $Z_{it} = Q_{it}(1,S_{it}) - Q_{it}(0,S_{it})$, weighing between two actions

Conditional probability of taking action 1:

$$logit P(A_{it} = 1 \mid Z_{it}) = \rho_i Z_{it}$$

Reward sensitivity: $\rho_i > 0$:

if
$$\rho_i \to \infty$$
, $P(A_{it} = 1 | Z_{it} = 1) \to 1$,

if
$$\rho_i \to 0$$
, $P(A_{it} = 1 | Z_{it} = 1) \to 0.5$.

Decision making model

Contrast of expected rewards for action 1 and 0 at

the given state: $Z_{it} = Q_{it}(1,S_{it}) - Q_{it}(0,S_{it})$, weighing between two actions

Conditional probability of taking action 1:

$$logit P(A_{it} = 1 \mid Z_{it}) = \rho_i Z_{it}$$

Reward sensitivity: $\rho_i > 0$:

if
$$\rho_i \to \infty$$
, $P(A_{it} = 1 | Z_{it} = 1) \to 1$,

if
$$\rho_i \to 0$$
, $P(A_{it} = 1 | Z_{it} = 1) \to 0.5$.

Reward generating model (from PRT system)

$$P(R_{it} = 1 \mid S_{it} = A_{it} = 1) = 0.75$$

$$P(R_{it} = 1 \mid S_{it} = A_{it} = 0) = 0.3$$

$$P(R_{it} = 1 \mid S_{it} \neq A_{it}) = 0$$

Guo, X., Zeng, D., Wang, Y. (2024). A Semiparametric Inverse Reinforcement Learning Approach to Characterize Decision Making for Mental Disorders. *Journal of the American Statistical Association*.

Decision making model (Our contribution)

Contrast of expected rewards for action 1 and 0 at

the given state:
$$Z_{it} = Q_{it}(1,S_{it}) - Q_{it}(0,S_{it})$$

Conditional probability of taking action 1:

logit
$$P(A_{it} = 1 \mid Z_{it}) = f(\rho_i Z_{it})$$

Reward sensitivity function: $f(\cdot)$

expected reward

Decision making model (Our contribution)

Contrast of expected rewards for action 1 and 0 at

the given state:
$$Z_{it} = Q_{it}(1,S_{it}) - Q_{it}(0,S_{it})$$

Conditional probability of taking action 1:

logit
$$P(A_{it} = 1 \mid Z_{it}) = f(\rho_i Z_{it})$$

Reward sensitivity function: $f(\cdot)$

We further assume:

(i). $f(\cdot)$ non-decreasing; (ii) f(0) = 0

Decision making model (Our contribution)

Contrast of expected rewards for action 1 and 0 at

the given state: $Z_{it} = Q_{it}(1,S_{it}) - Q_{it}(0,S_{it})$

Conditional probability of taking action 1:

logit
$$P(A_{it} = 1 \mid Z_{it}) = f(\rho_i Z_{it})$$

Reward sensitivity function: $f(\cdot)$

We further assume:

(i). $f(\cdot)$ non-decreasing; (ii) f(0) = 0

Properties:

(i).
$$P(A_{it} = 1 | Z_1) \ge P(A_{it} = 1 | Z_2)$$
, if $Z_1 \ge Z_2$

(ii).
$$P(A_{it} = 1 | Z_{it} = 0) = 0.5$$

Results: MDD vs Control

Learning Rate:

The difference of learning rate between MDD group and Control group is not significant.

Reward sensitivity function $f(\cdot)$:

- $f(\cdot)$ difference between MDD and Control
- Output Description of the control o
- Nonlinear (a floor and ceiling effect).
- The Control group has a larger reward sensitivity function compared to the MDD group when the contrast is a large positive value.

What does the floor and ceiling effect of f(.) tell us?

Consider 3 decision-making models:

Visualize $P(A = 1 \mid Z)$

Classical RL:

$$P(A = 1 \mid Z) = \frac{1}{1 + \exp(-Z)}$$

Semiparametric RL:

$$P(A = 1 \mid Z) = \frac{1}{1 + \exp(-f(Z))}$$

Mixture (Classical RL and random):

$$P(A = 1 \mid Z, U = 1) = \frac{1}{1 + \exp(-Z)}$$

$$P(A = 1 \mid Z, U = 0) = 0.5, P(U = 1) = 0.8$$

What does the floor and ceiling effect of f(.) tell us?

Consider 3 decision-making models:

Classical RL:

$$P(A = 1 \mid Z) = \frac{1}{1 + \exp(-Z)}$$

Semiparametric RL:

$$P(A = 1 \mid Z) = \frac{1}{1 + \exp(-f(Z))}$$

Mixture (Classical RL and random):

$$P(A = 1 \mid Z, U = 1) = \frac{1}{1 + \exp(-Z)}$$

$$P(A = 1 \mid Z, U = 0) = 0.5, \quad P(U = 1) = 0.8$$

Visualize $P(A = 1 \mid Z)$

What does the floor and ceiling effect of f(.) tell us?

Consider 3 decision-making models:

Classical RL:

$$P(A = 1 \mid Z) = \frac{1}{1 + \exp(-Z)}$$

Semiparametric RL:

$$P(A = 1 \mid Z) = \frac{1}{1 + \exp(-f(Z))}$$

Mixture (Classical RL and random):

$$P(A = 1 \mid Z, U = 1) = \frac{1}{1 + \exp(-Z)}$$

 $P(A = 1 \mid Z, U = 0) = 0.5, \quad P(U = 1) = 0.8$

Visualize $P(A = 1 \mid Z)$

Question: Is decision-making more complex than a single RL model?

(*Iigaya et al., 2018*; *Ashwood et al., 2022*) provide evidence that subjects employ multiple decisionmaking strategies for decision-making.

Guo, X., Zeng, D., Wang, Y. (2025). HMM for Discovering Decision-Making Dynamics Using Reinforcement Learning Experiments. *Biostatistics*

The hidden Markov model structure for two decision-making phases

lapse

$$U_{i1} = 1 \longrightarrow \cdots \longrightarrow U_{it-1} = 1 \longrightarrow U_{it} = 0 \longrightarrow U_{i,t+1} = 0 \longrightarrow U_{i,t+2} = 0 \longrightarrow A_{i1}$$

$$A_{i1} \longrightarrow \cdots \longrightarrow A_{i,t-1} \longrightarrow A_{it} \longrightarrow A_{i,t+1} \longrightarrow A_{i,t+2}$$

Decisions via expected reward Q.

Random decisions.

engaged vs lapse

RL framework

RL-HMM framework

Learning strategy: engaged

$$U_{it} = 1$$

The same decision-making model as the RL framework.

logit
$$P(A_{it} = 1 | U_{it} = 1, Z_{it}) = \rho Z_{it}$$

engaged vs lapse

RL framework

State S_{it} **Contrast** Reward Z_{it} R_{it} A_{it} Action **Current Future** expected reward expected reward

RL-HMM framework

Learning strategy: lapse

$$U_{it} = 0$$

Random decisions.

$$P(A_{it} = 1 \mid U_{it} = 0) = 0.5$$

Results: MDD vs Control

Individual engaged probability at trial t: $H_i(t) = P\left(U_{it} = 1 \mid A_{i[1:T]}\right)$

Group engaged rate at trial t: $\bar{H}(t) = n^{-1} \sum_{i=1}^{n} H_i(t)$

Group engaged rates (MDD vs Control)

Results: MDD vs Control

Individual engaged probability at trial t: $H_i(t) = P\left(U_{it} = 1 \mid A_{i[1:T]}\right)$

Group engaged rate at trial t: $\bar{H}(t) = n^{-1} \sum_{i=1}^{n} H_i(t)$

Group engaged rates (MDD vs Control)

MDD group potentially experiences greater difficulty in concentration compared to the control group at the second half of the task.

Results: MDD vs Control

Individual engaged probability at trial t: $H_i(t) = P\left(U_{it} = 1 \mid A_{i[1:T]}\right)$

Predict the decision-making strategies: engaged, if $H_i(t) \ge 0.5$ lapse, if $H_i(t) < 0.5$

Response time (decision making time): time between state-showing and action-taking.

Response time vs Trials

Results: MDD vs Control

Individual engaged probability at trial t: $H_i(t) = P\left(U_{it} = 1 \mid A_{i[1:T]}\right)$

Predict the decision-making strategies: engaged, if $H_i(t) \ge 0.5$ lapse, if $H_i(t) < 0.5$

Response time (decision making time): time between state-showing and action-taking.

Response time vs Trials

- 'Engaged' strategy takes more time to make decisions compared to the 'lapse' strategy.
- Control group takes less time to make decisions than the MDD group.

How to incorporate the information of response time?

• The decision-making state (lapse or engaged) is unknown. Simulation studies show a high false positive rate in identifying it.

• Response time may help predict decision-making phases — lapses tend to have shorter response times than engaged states.

Question:

Can we jointly modeling decision-making processes and response times?

RL-HMM-DDM framework

Bian, Y., Guo, X., Wang, Y. (2025+). Joint modeling for learning decision-making dynamics in behavioral experiments. *Revision* at the Annals of Applied Statistics.

Model response time with Drift Diffusion Model (DDM) (Ratcliff, 1978)

- DDM conceptualizes decisionmaking as a continuous evidence accumulation process.
- DDM is a Wiener process with drift

$$\frac{dX(t)}{dt} \sim \text{Normal}(v, \sigma^2), \quad X(0) = b\alpha$$

- The decision is made until he evidence reaches one of two absorbing boundaries corresponding to the decision choices.
- The response time is the total time needed to hit one of the absorbing boundaries.

Reinforcement Learning-Drift-Diffusion Model (RL-DDM) (Pederson et. al., 2017)

• For any DDM the joint distribution of decision and response time follows a Wiener first-passage time (WFPT) distribution.

 $\left(T_{i,j}, A_{i,j}\right) \sim \text{WFPT}\left(\alpha, b, v_{i,j}, \tau\right)$

- For any DDM, the drift rate v characterizes the speed of evidence accumulation. v > 0 favors decision "1", v < 0 favors decision "0".
- In reward tasks, RL-HMM links the drift rate to the contrast of the two expected rewards.

$$v_{i,j} = cZ_{i,j} = c \left\{ Q_{i,j} \left(1, S_{i,j} \right) - Q_{i,j} \left(0, S_{i,j} \right) \right\}$$

RL-HMM-DDM Framework

• 'Engaged' decisions are based on an RL-DDM.

• 'Lapse' decisions are based on an DDM with no initial bias and zero drift, mimicking random guessing.

• Latent state switching is captured by an HMM.

Simulation Results

- RL-DDM performs unsatisfactorily in scenarios involving strategy switching.
- RL-HMM poorly predicts $U_{i,j}$ and $A_{i,j}$.
- RL-HMM-DDM reduces bias and achieves the best accuracy.

Take Home Message

• Enhance reward-based decision modeling by considering multiple strategies and integrating response times.

• MDD patients are less sensitive to reward, harder to concentrate in tasks, and need longer time to make the decisions.

• A promising research direction for statisticians is studying brain-behavior association by jointly analyzing the behavioral data and brain imaging.

Thank you