

Technical Report JSR-77-21

November 1977

SCATTERING OF SOUND BY INTERNAL WAVES: THE ROLE OF PARTICLE VELOCITIES

By: W. H. MUNK

F. ZACHARIASEN

Contract No. DAHC15-73-C-0370 ARPA Order No. 2504

Program Code No. 3K10
Date of Contract: 2 April 1973

Contract Expiration Date: 30 November 1977

Amount of Contract \$3,176,255

Approved for public release; distribution unlimited.

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY 1400 WILSON BOULEVARD ARLINGTON, VIRGINIA 22209 ARPA ORDER NO. 2504

STANFORD RESEARCH INSTITUTE Menlo Park, California 94025 · U.S.A.

Copy No.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION I	
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
SCATTERING OF SOUND BY INTF NAL WAVES :	Technical Kepat,
7. AUTHOR(s)	6. PERFORMING ORG. REPORT NUMBER JSR-77-21
	8. CONTRACT OR GRANT NUMBER(s)
W.H. Munk F. Zachariasen	DAHC15-73-C-Ø37Ø
PERFORMING ORGANIZATION NAME AND ADDRESS SRI, International 1611 North Kent Street	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Arlington, VA 22209 1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE 13. NO. OF PAGES
Advanced Research Projects Agency	Nov 36 12
1400 Wilson Boulevard Arlington, VA 22209	UNCLASSIFIED
4. MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Offi	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited in Block 20, if difference of the abstract entered in Bl	
B. SUPPLEMENTARY NOTES	
ACOUSTICS INTERNAL WAVES SOUND TRANSMISSION	
with vertical particle displacements (x,y,z,t) ir ient of (potential) sound speed: (x) = (7) (2) c; (2) particle velocities u(x,y,z,t). The combined pertock to the vertical particle u(x,y,z,t). The combined pertock to the velocities u(x,y,z,t) in the combined pertock to the velocities u(x,y,z,t). The combined pertock to the velocities u(x,y,z,t) in the difference between the velocities u(x,y,z,t) in the velo	the presence of a vertical grad- those associated with horizontal curbations in refractive index are tally neglected, does become impor- n sound transmission along a deep

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

KEY WORDS (Continued)	GE (When Data Entered)
20 ABSTRACT (Continued)	
20 ABSTRACT (Communicati	

DD1 FORM 1473 (BACK)
EDITION OF 1 NOV 65 IS OBSOLETE

3

0

ABSTRACT

Internal waves scatter sound by two related perturbations: (1) those associated with vertical particle displacements $\zeta(x,y,z,t)$ in the presence of a vertical gradient of (potential) sound speed: $\delta c = \zeta \cdot \partial_z c_p$; (2) those associated with horizontal particle velocities u(x,y,z,t). The combined perturbations in refractive index are $\delta c/c + u/c$. The second term, which has been generally neglected, does become important under two rather special circumstances: (a) in sound transmission along a deep downward loop, and (b) in the difference between transmission from a source at point A to a receiver at point B and transmission from a source at B to a receiver at A.

¥550 €01913	Tarrion 💆
608 68-700 108-7-20	100 D
DISTRIB	HIGH AVAILABILITY CODES
DISTRIE Dist.	TIDM AVAILABILITY CODES

CONTENTS

ABSTRACT	1
I PROPAGATION VELOCITY	1
II SPECTRA	3
A. The uζ Variance for Internal Waves	5
III MEAN SQUARE PHASE	9
A. The Axial Approximation	10
B. The Turning Point Approximation	11
C. Reciprocal Transmissions	11
D. Worcester's Reciprocal Experiment	12
IV RECIPROCAL COVARIANCES	13
V MOMENTUM FLUX	15
REFERENCES	20
APPENDIX	21

I. PROPAGATION VELOCITY

Let $\zeta(x,y,z,t)$ designate the upward particle displacement due to internal wave motion, and

$$u, v, w = \partial_t \zeta$$
 (1)

the three components of internal wave particle velocities. The perturbation in sound velocity arising from the vertical displacement is

$$\delta c = \partial_z c_p \cdot \zeta \tag{2}$$

where $\frac{\vartheta}{z} \frac{c}{p}$ is the potential sound velocity gradient. Thus

$$\delta c \pm u$$
 (3)

is the i.w. perturbation in propagation velocity in the \pm x-direction, ignoring the small tilt of sound rays. The refraction parameter is

$$\mu^{\pm} = \frac{\delta c}{c} \pm \frac{u}{c} \qquad (4)$$

For a canonical ocean, 1 Eq. (2) can be written

$$\frac{\delta c}{c} = 24.5 \text{ g}^{-1} \text{ n}^2(z) \zeta$$
 (5)

where

$$n = n_0 e^{z/b} \tag{6}$$

is the Brunt-Väisälä (or buoyancy) frequency. Constancy of i. w. energy flux requires

rms
$$6 \sim n^{-\frac{1}{2}}$$
, rms $u \sim n^{\frac{1}{2}}$,

hence

$$\delta c/c \sim n^{3/2}$$
.

For orientation, with a sound axis at z = -b = -1 km, the following numerical values obtain:²

	z	ñ	rm ζ	rms u	rms δc/c	rms u/c ×10 ⁵
	km	cph	m	cm/sec	×10 ⁵	×10°
Thermocline	0	3	7.3	4.70	49	3.1
Sound axis	-1	1.1	12.0	2.85	11	1.9
	-2	.406	19.8	1.73	2.4	1.1
bottom	-4.5	.094	41.2	0.83	0.3	0.6

Thus δc and u contributions from i.w. are comparable beneath 2 km.

II. SPECTRA

*

0

We first refer to the previous results for the effects of vertical particle displacements. From MZ (115) and MZ (118) we have $\langle \phi^2 \rangle = \langle |X|^2 \rangle$. Then from (MZ66)

$$\langle \phi \phi \rangle = \frac{2}{\pi} q^2 n_0 b \int_0^R dx \sec^2 \theta \sum_j j^{-1} \int_{\omega_L}^n d\omega (\omega^2 - \omega_L^2)^{-\frac{1}{2}} S(\omega, j; z)$$
 (1)

with

$$\sum_{j} \int_{\omega_{in}}^{n} d\omega \ S(\omega,j) = \langle \left(\frac{\delta c}{c}\right)^{2} \rangle \qquad (2)$$

We now generalize (2.1) to

$$\langle \phi^{\dagger} \phi^{\dagger} \rangle = \dots \int \dots \sum \dots \int \dots S^{\dagger \dagger} (\omega, j; z)$$
 (3)

and similarly for $\langle \phi^{\dagger} \phi^{-} \rangle$, $\langle \phi^{\dagger} \phi^{-} \rangle$, where

$$\sum_{\mathbf{j}} \int_{\omega_{\mathbf{i}n}}^{\mathbf{n}} d\omega \begin{bmatrix} S^{++}(\omega,\mathbf{j}) \\ S^{--}(\omega,\mathbf{j}) \\ S^{+-}(\omega,\mathbf{j}) \end{bmatrix} = \langle \mu^{+}\mu^{+} \rangle = \langle \frac{\delta c}{c} \frac{\delta c}{c} \rangle + \langle \frac{u}{c} \frac{u}{c} \rangle + 2 \langle \frac{\delta c}{c} \frac{u}{c} \rangle$$

$$= \langle \mu^{-}\mu^{-} \rangle = \langle \rangle + \langle \rangle - 2 \langle \rangle$$

$$= \langle \mu^{+}\mu^{-} \rangle = \langle \rangle - \langle \rangle .$$

$$(4)$$

It is convenient to denote the contributions to the spectrum by

$$s\left(\frac{\delta c}{c} \frac{\delta c}{c}\right), \quad s\left(\frac{u}{c} \frac{u}{c}\right), \quad s\left(\frac{\delta c}{c} \frac{u}{c}\right)$$
 (5)

so that

$$S^{++} \equiv S(\mu^{+}\mu^{+}) = S\left(\frac{\delta c}{c} \frac{\delta c}{c}\right) + S\left(\frac{u}{c} \frac{u}{c}\right) + 2S\left(\frac{\delta c}{c} \frac{u}{c}\right)$$

and similarly for S^{-} and S^{+} , using the sign convention in (2.4). In accordance with the Garrett and Munk internal wave model we write (in the notation of MZ)

$$S\left(\frac{\delta c}{c} \frac{\delta c}{c}\right) = \left\langle \frac{\delta c}{c} \frac{\delta c}{c} \right\rangle G_{\zeta\zeta}(\omega) H(j)$$

$$S\left(\frac{u}{c} \frac{u}{c}\right) = \left\langle \frac{u}{c} \frac{u}{c} \right\rangle G_{uu}(\omega) H(j)$$

$$S\left(\frac{\delta c}{c} \frac{u}{c}\right) = \left\langle \frac{\delta c}{c} \frac{u}{c} \right\rangle G_{u\zeta}(\omega) H(j)$$
(6)

with
$$G_{\zeta,\zeta} = \frac{4\omega_{\text{in}} (\omega^2 - \omega_{\text{in}}^2)^{\frac{1}{2}}}{\pi\omega^3}$$
, $G_{\text{uu}} = \frac{4\omega_{\text{in}} (\omega^2 + \omega_{\text{in}}^2)}{3\pi\omega^3(\omega^2 - \omega_{\text{in}}^2)^{\frac{1}{2}}}$ (7)
$$G_{\text{u}\zeta} = 2\omega_{\text{in}}^2 \omega^{-3} \qquad , \qquad H(j) = (j^2 + j_{\frac{1}{2}}^2)^{-1} / \sum_{1}^{\infty} (j^2 + j_{\frac{1}{2}}^2)^{-1}$$
such that
$$\int_{\omega_{\text{in}}}^{n} d\omega \ G(\omega) = 1 \qquad \sum_{j=1}^{\infty} H(j) = 1 \qquad .$$

Further,

$$\langle \frac{\delta c}{c} \frac{\delta c}{c} \rangle = \langle \frac{\delta c}{c} \frac{\delta c}{c} \rangle_{o} \left(\frac{n}{n_{o}} \right)^{3}, \qquad \langle \frac{\delta c}{c} \frac{\delta c}{c} \rangle_{o} = \left(\frac{24.5 n_{o}^{2}}{g} \right)^{2} \langle \zeta_{o}^{2} \rangle = 24.0 \times 10^{-8}$$

$$\langle \frac{u}{c} \frac{u}{c} \rangle = \langle \frac{u}{c} \frac{u}{c} \rangle_{o} \frac{n}{n_{o}}, \qquad \langle \frac{u}{c} \frac{u}{c} \rangle_{o} = \frac{3n_{o}^{2}}{2c^{2}} \langle \zeta_{o}^{2} \rangle = 0.10 \times 10^{-8}$$

$$\langle \frac{\delta c}{c} \frac{u}{c} \rangle = \langle \frac{\delta c}{c} \frac{u}{c} \rangle_{o} \left(\frac{n}{n_{o}} \right)^{2}, \qquad \langle \frac{\delta c}{c} \frac{u}{c} \rangle_{o} = I \frac{24.5 n_{o}^{2}}{g} \sqrt{\frac{3}{2} \frac{n_{o}}{c}} \langle \zeta_{o}^{2} \rangle = 1.55 \times 10^{-8} I$$

A. The us variance for internal waves

0

0

0

.

The function I is to allow for the phase relation between u and ζ . We shall demonstrate that for free internal waves u and ζ are in fact in quadrature, hence I=0. But it is to be expected that for forced (growing) internal waves this is not the case, and then $0 \le I \le 1$. In the latter case there would be much interest in *measuring* the u ζ and u $\dot{\zeta}$ = uw covariances, as a possible indication of the vertical transfer of horizontal momentum associated with internal waves.

 $\underline{\text{Constant }}\underline{\text{ n.}}$ The simplest demonstration is for this case; the progressive wave solution gives 3

$$\frac{\mathbf{u}}{\omega \mathbf{a}} = \sin\theta \, \cos\phi \, \cos(\mathbf{k}_{\mathbf{x}} \mathbf{x} + \mathbf{k}_{\mathbf{z}} \mathbf{z} - \omega \mathbf{t}) + \frac{\omega}{\omega} \, \sin\theta \, \sin(\mathbf{k}_{\mathbf{x}} \mathbf{x} + \mathbf{k}_{\mathbf{z}} \mathbf{z} - \omega \mathbf{t})$$

$$\zeta = \mathbf{a} \, \cos\theta \, \sin(\mathbf{k}_{\mathbf{x}} \mathbf{x} + \mathbf{k}_{\mathbf{z}} \mathbf{z} - \omega \mathbf{t})$$

where
$$k_x = k_H \cos \phi$$
, $k_y = k_H \sin \phi$, $k_z = k_H \tan \theta$.

But there is evidence that the waves are very nearly standing waves (equal energy flux up and down); furthermore, McComas⁴ has demonstrated that if this is not the case there is strong nonlinear interaction to make it so. To obtain the standing wave solution we reverse the sign of both θ and k_Z and add:

$$\frac{\mathbf{u}}{\omega \mathbf{a}} = -2 \sin\theta \cos\phi \sin\mathbf{k}_{\mathbf{z}} \mathbf{z} \sin(\mathbf{k}_{\mathbf{x}} \mathbf{x} + \omega \mathbf{t})$$

$$+2 \frac{\omega_{\mathbf{i}\mathbf{n}}}{\omega} \sin\theta \sin\phi \sin\mathbf{k}_{\mathbf{z}} \mathbf{z} \cos(\mathbf{k}_{\mathbf{x}} \mathbf{x} - \omega \mathbf{t}) ,$$

$$\zeta = 2\mathbf{a} \cos\theta \cos\mathbf{k}_{\mathbf{z}} \mathbf{z} \sin(\mathbf{k}_{\mathbf{x}} \mathbf{x} - \omega \mathbf{t})$$

For progressive waves

0

0

0

0

(uζ) =
$$\frac{1}{2} a^2 \omega_{in} \sin \theta \cos \theta \sin \phi$$

and this vanishes for a horizontally isotropic field, as assumed $GM75\frac{1}{2}$, since $(\sin\phi) = 0$. For standing waves $(u\zeta)$ is proportional to $(\sin\phi)$ and $(\cos\phi)$ and so again vanishes for a horizontally isotropic field. But in addition, u and ζ are in quadrature vertically, and this again leads to cancellation.

Suppose the upward traveling waves (downward energy) have an amplitude a, and the downward traveling waves ra. Then it follows that

which vanishes in the case of vertical and horizontal isotropy.

General case. One might imagine that the foregoing result is a consequence of the assumption that n is constant, or of the WKB approximation in which n varies only slowly. It is, however, quite general. Let $\zeta(\vec{k},\omega;z)$ be the Fourier component of vertical displacement corresponding to an internal wave with horizontal wavenumber \vec{k} and frequency ω . Thus

$$\zeta(\vec{k},\omega;z) = \int d^2\vec{x} \int dt \ e^{-i(\vec{k}\vec{x}-\omega t)} \ \zeta(\vec{x},t)$$

and (the complex quantity) $\zeta(k,\omega;z)$ satisfies the equation

0

$$\left(\partial_{\mathbf{z}}^{2} + k^{2} \frac{n^{2}(\mathbf{z}) - \omega^{2}}{\omega^{2} - \omega_{in}^{2}}\right) \zeta(k, \omega; \mathbf{z}) = 0$$
 (9)

for any buoyancy frequency n(z). The boundary conditions normally used are that ζ should vanish at the surface and on the bottom of the ocean. The quantity of interest to us is $\langle \dot{u}\zeta \rangle$. From the equations of motion, we have

$$u(\vec{k}, \omega; z) = \left(\frac{\omega}{k^2} \vec{k} - i \frac{\omega_{in}}{k^2} \hat{e}_z \vec{x} \vec{k}\right) \partial_z \zeta(\vec{k}, \omega; z)$$

where $\hat{\mathbf{e}}_z$ is a unit vector pointed vertically upward. It is then easy to show that

$$\langle \vec{u}\zeta \rangle = \frac{1}{4} \langle \frac{\omega}{k^2} \vec{k} \partial_z |\zeta(\vec{k}, \omega; z)|^2 \rangle$$

$$+ \frac{1}{4} \langle \frac{\omega_{1n}}{k^2} \hat{e}_z \vec{x} \vec{k} \operatorname{Im}(\zeta^{\hat{n}}(\vec{k}, \omega; z) \partial_z \zeta(\vec{k}, \omega; z)) \rangle$$

Now when averaged over a vertical distance small compared to the distance over which $\zeta(\vec{k},\omega;z)$ varias appreciably, the first term is zero. And from the differential equation (9) we can readily derive the "conservation law" that

$Im(\vec{x}, \vec{k}, \omega; z) \partial_z(\vec{k}, \omega; z))$

is a constant independent of depth. Since in particular it vanishes on the bottom, it vanishes everywhere. Thus $\langle u\xi \rangle$ is zero for any buoyancy frequency n(z), without approximation, provided only that (9) holds.

3. MEAN-SQUARE PHASE

Substitution of (2.6) into (2.1) leads to

$$\langle \phi \phi \rangle = 2\pi^{-1} \frac{n}{\omega_{\text{in}}} q^2 b \langle j^{-1} \rangle \int_0^R dx \sec^2 \theta \left(\left(\frac{\delta c}{c} \right)^2 \right) \int_{\omega_{\text{in}}}^n d\omega (\omega^2 - \omega_L^2)^{-\frac{1}{2}} \omega_{\text{in}} G_{\zeta\zeta}(\omega)$$
 (1)

plus two other terms involving $\langle (u/c)^2 \rangle$ and G_{uu} , and $\langle (\delta c/c)(u/c) \rangle$ and $G_{u\zeta}$. Here $\langle j^{-1} \rangle = \Sigma j^{-1} H(j)$ is the i.w. weighted average of j^{-1} . The ω -integrations can be carried out explicitly. Writing

$$\omega_{L}^{2} \equiv \omega_{in}^{2} + n^{2} \tan^{2}\theta \equiv \omega_{in}^{2} D^{2}$$
, $y = \omega_{in}^{2}/\omega^{2}$

we have for the three ω -integrals

$$\frac{2}{\pi} \int_{\omega_{\text{in}}/n^2}^{dy} \sqrt{\frac{1-y}{1-Dy}} = \frac{2}{\pi} \left(\frac{1}{D^2} + \frac{D^2-1}{2D^3} \log \frac{D+1}{D-1} \right)$$

$$\frac{2}{3\pi} \int_{\omega_{\text{in}}/n^2}^{1+y} dy \frac{1+y}{\sqrt{(1-y)(1-Dy)}} = \frac{2}{3\pi} \left(-\frac{1}{D^2} + \frac{3D^2+1}{2D^3} \log \frac{D+1}{D-1} \right)$$

$$\int_{\omega_{\text{in}}/n^2}^{1+y} dy \sqrt{\frac{y}{1-Dy}} = \frac{\pi}{2} \frac{1}{D^3}$$
(2)

The x-integration in Eq. (3.1) has in general been done numerically by integration along the ray path. It can be done analytically in two special cases, as follows.

A. The axial approximation

Here D=1, θ =0, n= n_1 . We note that the second integral (involving (uu)) becomes logarithmically infinite. This is treated in the Appendix. The result then is

$$\langle \phi^{\dagger} \phi^{\dagger} \rangle = \frac{2}{\pi} \frac{n_{o}}{\omega_{in}} \langle j^{-1} \rangle q^{2} b R \left[\frac{2}{\pi} \langle \left(\frac{\delta c}{c} \right)_{1}^{2} \rangle + \frac{8}{3\pi} \log \frac{0.43 R_{o}}{R - R_{o}} \langle \left(\frac{u}{c} \right)_{1}^{2} \rangle + 2 \frac{\pi}{2} \langle \left(\frac{\delta c}{c} \frac{u}{c} \right)_{1}^{2} \rangle \right]$$
(3)

where the subscript 1 denotes the sound axis value, and similarly for $\langle \phi^{\dagger} \phi^{\dagger} \rangle$ and $\langle \phi^{\dagger} \phi^{\dagger} \rangle$. Here $R_{_{\rm O}}$ = 21 km is the range of an axial loop. The logarithmic singularity is weak, and unless we are within 100 m of an axial loop, the relative contributions of the three terms are determined by the averages $\langle (\)_1 \rangle$. From Eq. (2.8), setting $n_1/n_{_{\rm O}}$ = e^{-1} , the relative magnitudes are

$$24 \times 10^{-8} \cdot e^{-3} = 1.2 \times 10^{-8}$$

 $0.10 \times 10^{-8} \cdot e^{-1} = .04 \times 10^{-8}$
 $4\pi^{-2}I \ 0.06 \times 10^{-8} = .02 \times 10^{-8} I$

The first term, involving $\delta c/c$, clearly dominates.

B. The turning point approximation

Next we discuss the apex approximation. For steep rays we note that the major contributions to the ray integrals in $\langle \phi^{\dagger} \phi^{\dagger} \rangle$ come from the (upper and lower) apexes of the ray. Near an apex located at (\hat{x},\hat{z}) , the equation of the ray is

$$z(x) = \hat{z} - (x-\hat{x})^2/2$$

where
$$\gamma_A^{-1} = \gamma_A |1-\exp(z-z_1)/b|$$
, $\gamma_A = 1.14 \times 10^{-2} \text{ km}^{-1}$ (MZ85)

is the radius of curvature of the ray at the turning point. With this expression, we may approximately evaluate the ray integrals and obtain for the contribution of each apex

$$\langle \phi^{\dagger} \phi^{\dagger} \rangle_{\text{apex}} = 2q^2 b \hat{\omega} \langle j^{-1} \rangle \left[\langle \left(\frac{\delta c}{c} \right)_0^2 \rangle \left(\frac{\hat{n}}{n_o} \right)^2 + \langle \left(\frac{u}{c} \right)_0^2 \rangle + 2 \langle \left(\frac{\delta c}{c} \frac{u}{c} \right)_0^2 \rangle \left(\frac{\hat{n}}{n_o} \right) \right]$$
 (4)

where \hat{n} denotes the value of n(z) at the apex: $\hat{n} = n(\hat{z})$. Thus the $(\delta c/c)^2_0$ and $(\delta c/c \cdot u/c)_0$ terms get their major contributions from upper turning points, while the $(u/c)^2_0$ has comparable contributions from both (in fact somewhat larger from the lower turning point since the radius of curvature $\mathcal K$ is larger there).

C. Reciprocal transmissions

Thus in any one-way experiment other than for a ray with a single deep loop) the effect of particle velocities can be ignored. If, however,

we simultaneously transmit in opposite directions, then the three terms can be separately evaluated by constructing the three combinations

$$\frac{1}{4} \left[\left\langle \phi^{+} \phi^{+} \right\rangle + \left\langle \phi^{-} \phi^{-} \right\rangle + 2 \left\langle \phi^{+} \phi^{-} \right\rangle \right]$$

$$\frac{1}{4} \left[\left\langle \phi^{+} \phi^{+} \right\rangle + \left\langle \phi^{-} \phi^{-} \right\rangle - 2 \left\langle \phi^{+} \phi^{-} \right\rangle \right]$$

$$\frac{1}{4} \left[\left\langle \phi^{+} \phi^{+} \right\rangle + \left\langle \phi^{-} \phi^{-} \right\rangle \right] , \qquad (5)$$

respectively. The implications of this are considered in Section IV.

D. Worcester's reciprocal experiment⁶

This corresponds to a lower turning point at 1.5 km, and a rather small scale-depth, $B\approx 0.75$ km. Thus $\hat{n}/n_o=e^{-2}$, and the three terms in Eq. 3.4 are of a magnitude

$$\langle \phi^{\dagger} \phi^{\dagger} \rangle \sim \{0.44 + 0.10 + 0.42 \text{ I}\} \times 10^{-8}$$

Suppose that I=0, then we have

$$(\phi^+ \phi^+) \sim 0.54$$

 $(\phi^- \phi^-) \sim 0.54$
 $(\phi^+ \phi^-) \sim 0.34$
 $((\phi^+ \phi^-)^2) \sim 0.40$

This is consistent with some preliminary results that $\langle \phi^{\dagger} \phi^{\dagger} \rangle$, $\langle \phi^{-} \phi^{-} \rangle$ and $\langle (\phi^{\dagger} - \phi^{-})^2 \rangle$ have comparable magnitudes.

IV. RECIPROCAL COVARIANCES

An experiment involving reciprocal shooting will yield not only the mean-square quantities, but also the frequency content. To interpret such a spectrum we shall want to reverse the integration order, and do the x-integration first. Let

$$\langle \phi^{\dagger} \phi^{\dagger} \rangle = \int d\omega E^{\dagger\dagger}(\omega)$$

etc. Then the last term of the Eq. (3.1) can be written

$$\begin{array}{l} \frac{1}{4\pi} \int d\omega \; \left[E^{++}(\omega) - E^{--}(\omega) \right] \; & = \; E(\omega) \; = \; \frac{4\pi}{\pi} \; \left\langle j^{-1} \right\rangle \; q^2 B \overline{R} \; \frac{n^2}{\omega_{\text{in}}^{n_0}} \; \left\langle \left(\frac{\delta_C}{c} \; \frac{u}{c} \right) \right\rangle_0 \\ \\ \cdot \; & \frac{1}{\overline{R}} \int_0^R dx \; \sec^2\theta \; \left(\omega^2 - \omega_L^2 \right)^{-\frac{1}{2}} \; G_{u\zeta}(\omega) \; \theta(n-\omega) \; \theta(\omega - \omega_L) \end{array}$$

where $\theta(x)$ is a step function, $\theta(x) = 1$ for x > 0 and $\theta(x) = 0$ for x < 0. These θ functions restrict the part of the integral on the ray which can contribute to the spectrum for any given frequency. At any position x along the ray, the only frequencies which can interact with the ray (within the stationary phase approximation) are those satisfying

$$n(z(x)) > \omega > \sqrt{\omega_{in}^2 + n^2(z(x)) \tan^2\theta(x)}$$

Thus when the ray is steep (0 is large) frequencies near ω_{in} are excluded. But when one is near the ray apex (n large and 0 small) all frequencies between ω_{in} and $\hat{n} = n(\hat{z})$ are allowed.

One may, if one wishes, pick out different parts of the ray by forming the difference between the spectrum at two nearby frequencies. If $\Delta\omega << \omega$ is a small frequency difference, then for frequencies well above ω in we have

$$\Delta E(\omega) = E(\omega + \Delta \omega) - E(\omega) = -\frac{8}{\pi} \left\langle \left(\frac{\delta_c}{c} \frac{u}{c}\right)_o \right\rangle \left\langle \frac{1}{j} \right\rangle \frac{q^2 B \omega_{in}^2 n^2}{n_o^4 \omega} \cdot \Delta \omega \left(1/\frac{\partial n}{\partial x}\right)_{\omega = n};$$

thus $\Delta E(\omega)$ receives all of its contributions from that part of the ray where $n(z)x)) \approx \omega$.

V. MOMENTUM FLUX

0

G

0

O

.

We may wish to interpret the results of reciprocal transmission without relying so heavily on internal waves. To this end let us express the measured quantities in terms of the spectrum of momentum flux in the ocean without making any assumptions regarding the origin of this spectrum.

Let $^{\circ}$ designate averages along a ray. Thus 7

$$\hat{\mathbf{u}}(\mathsf{t}) = \mathsf{R}^{-1} \int ds \ \mathsf{u}(\mathsf{s},\mathsf{t})$$

$$\hat{\zeta}(t) = R^{-1} \int ds \, \zeta(s,t)$$

We may regard \hat{u} and $\hat{\zeta}$ as the measured quantities for they are so closely related to the measured travel times; let

$$T^{\pm} = - (R/\bar{c}) \hat{\mu}^{\pm} = - (R/\bar{c}^2) [\delta \hat{c}^{\pm} \hat{u}]$$

designate the departures from the mean travel time (averaged over several inertial periods). Then

$$\delta \hat{c} = \partial_{\mathbf{Z}} c_{\mathbf{p}} \cdot \hat{\zeta} = - (\bar{c}^2/R)^{\frac{1}{2}} (T^{+} + T^{-})$$

$$\hat{u} = - (\bar{c}^2/R)^{\frac{1}{2}} (T^{+} - T^{-})$$

(Actually the vertical gradient of potential sound velocity should be properly depth weighted.)

Consider the time-lagged covariance

0

:

1

0

17

0

0

$$\hat{c}_{u\zeta}(\tau) = \langle \hat{u}(t) | \hat{\zeta}(t-\tau) \rangle .$$

Can we manipulate \hat{C} to get some measure of the momentum flux (uw) ? First we note that

$$\begin{split} \partial_{\tau} \; \hat{C}_{u\zeta}(\tau) &= \; \langle \hat{u}(t) \; \partial_{\tau} \hat{\ell}(t-\tau) \rangle \\ &= - \langle \hat{u}(t) \; \partial_{t} \hat{\ell}(t-\tau) \rangle = -\hat{C}_{uw} \; (\tau) \quad . \end{split}$$

Now $\hat{C}_{u\zeta}(\tau) = R^{-2} \int ds' \int ds'' C_{u\zeta}(s,s';\tau)$

where $C_{u\zeta}(s',s'';\tau) = (u(s',t) \zeta(s'',t-\tau))$

At this point let us simplify the geometry to horizontal rays. Then switching to center of mass and relative coordinates

$$s = \frac{1}{2}(s'-s''), \quad \sigma = s'-s''$$

We have

$$\int_{0}^{R} ds' \int_{0}^{R} ds'' = \int_{0}^{R} d\sigma \int_{0}^{R-\sigma/2} ds + \int_{0}^{R+\sigma/2} d\sigma \int_{0}^{R+\sigma/2} ds$$

$$= \int_{0}^{R} d\sigma (R-\sigma) + \int_{-R}^{0} d\sigma (R+\sigma) .$$

The second line follows if the integrand is a function only of σ , not of s. Under these conditions

$$C_{u\zeta}(\sigma,\tau) = \langle u(s,t) \zeta(s-\sigma,t-\tau) \rangle$$

$$\hat{C}_{u\zeta}(\tau) = R^{-2} \int_{-R}^{R} d\sigma (R - |\sigma|) C_{u\zeta}(\sigma, \tau)$$

$$\hat{C}_{uw}(0) = R^{-2} \int_{-R}^{R} d\sigma (R - |\sigma|) C_{uw}(\sigma, 0)$$

$$= -2R^{-2} \int_{0}^{R} d\sigma \ \sigma \ c_{uw}(\sigma, 0)$$

<u>Flux spectrum.</u> The more general question is to interpret the covariance of the "measured" quantities:

Let

$${}^{C}_{\hat{\mathbf{u}}\hat{\boldsymbol{\zeta}}}(\tau) = \langle \hat{\mathbf{u}}(\mathsf{t}) \ \hat{\boldsymbol{\zeta}}(\mathsf{t-}\tau) \rangle$$

$$F_{\hat{u}\hat{\xi}}(\omega) = \int_{-\infty}^{\infty} d\tau e^{i\omega\tau} C_{\hat{u}\hat{\xi}}(\tau)$$
.

Further

$$C_{u\zeta}(\sigma,\tau) = \langle u(s,t) \zeta(s-\sigma, t-\tau) \rangle$$

$$= \int_{-\infty}^{\infty} \frac{dk}{2\pi} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{i(k\sigma - \omega\tau)} F_{u\zeta}(k,\omega)$$

so that

0

3

$$F_{u\zeta}(k,\omega) = \int_{-\infty}^{\infty} d\sigma \int_{-\infty}^{\infty} d\tau e^{-i(k\sigma-\omega\tau)} C_{u\zeta}(\sigma,\tau)$$

Hence

.

$$F_{\hat{\mathbf{u}}\hat{\boldsymbol{\zeta}}}(\omega) = R^{-2} \int_{0}^{R} ds' \int_{0}^{R} ds'' \int_{-\infty}^{\infty} d\tau \ e^{\mathbf{i}\omega\tau} \int_{-\infty}^{\infty} \frac{dk}{2\pi} \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \ e^{\mathbf{i}(k\sigma-\omega\tau)} \ F_{\mathbf{u}\boldsymbol{\zeta}}(k,\omega')$$

$$= R^{-2} \int_{0}^{R} ds' \int_{0}^{R} ds'' \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ik\sigma} F_{u\zeta}(k,\omega)$$

$$= R^{-2} \int_{-\infty}^{\infty} \frac{dk}{2\pi} F_{u\zeta}(k,\omega) \left[\int_{-R}^{0} d\sigma (R+\sigma) e^{ik\sigma} + \int_{0}^{R} d\sigma (R-\sigma) e^{-ik\sigma} \right]$$

$$= R^{-2} \int_{-\infty}^{\infty} \frac{dk}{2\pi} F_{u\zeta}(k,\omega) 2 \int_{0}^{R} d\sigma (R-\sigma) \cos k\sigma$$

$$= \int_{-\infty}^{\infty} \frac{dk}{2\pi} \frac{2}{k^2 R^2} (1-\cos kR) F_{u\zeta}(k,\omega)$$

The Reynolds spectrum $F_{uw}(k,\omega)=i\omega F_{u\zeta}(k,\omega)$, and so will be related to the quadrature spectrum of the measured quantities.

REFERENCES

1

3

- W. Munk, "Sound Channel in an Exponentially Stratified Ocean; With Application to SOFAR," J. Acoust. Soc. Am. 55, 220-226 (1974).
- ²W. H. Munk and F. Zachariasen, "Sound Propagation Through a Fluctuating Stratified Ocean: Theory and Observation," J. Acoust. Soc. Am. 59, 818-838 (1976), to be referred to as MZ. Table 1 of MZ is in error with regard to u/c.
- ³For example, O. M. Phillips, *The Dynamics of the Upper Ocean* (Cambridge University Press, 1966), Eq. 5.4.6.
- ⁴C. H. McComas III, "Equilibrium Mechanisms Within the Oceanic Internal Wave Field," J. Phys. Oceanogr. (in press).
- 51. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and

 Products (Academic Press, 1965). Formula 2.264 is helpful. For
 the first integral set x = 1-y and multiply numerator and
 denominator by √x.
- ⁶P. F. Worcester, "Reciprocal Transmission in a Mid-ocean Environment,"

 J. Acoust. Soc. Am. (in press).
- 7 For the time being we are sloppy about distinguishing between projections and arc lengths along the tilted ray.
- ⁸W. Munk, J. Acoust. Soc. Am. (1974) Eq. 24.

APPENDIX

-

*

2

*

0

The second integral in (3.2) diverges as $D \rightarrow 1$. Set

$$\Delta^2 = D^2 - 1 = (n/\omega_{in})^2 \tan^2\theta$$
.

Then the integral approaches

$$I = \frac{8}{3\pi} \log \frac{2}{\Delta} . \tag{1}$$

We can express Δ as a function of range. Let source and receiver be on the axis at $x = \frac{1}{2} R$. Then with

$$\delta z = A \cos \pi x/R$$

designating the distance of the ray above the sound axis, we find8

$$A = -\frac{3\pi}{4} B \frac{R-R_0}{R_0}$$

where $R_0 = \frac{1}{2}\pi B \epsilon^{-\frac{1}{2}} = 21$ km refer to the axial loop (R < R of powerd loops). It follows that

$$\theta = \frac{\delta z}{\delta x} = \frac{3\pi^2}{4} \frac{B}{R} \frac{R - R_0}{R_0} \sin \frac{\pi x}{R}$$

$$\Delta \approx \frac{n_1 \theta}{\omega_{in}} = \frac{3\pi^2}{4} \frac{n_1}{\omega_{in}} \frac{B}{R} \frac{R - R_0}{R_0} \sin \frac{\pi x}{R}$$

Setting B = 1 km, $n_1 = 1.9 \times 10^{-3} \text{ sec}^{-1}$, $\omega_{in} = 7.3 \times 10^{-5} \text{ sec}^{-1}$, $R_o = 21 \text{ km}$, we have

$$\Delta = 9.2 \, \frac{R - R_0}{R_0} \sin \frac{\pi x}{R} \quad .$$

We now require

T

0

0

0

$$\frac{1}{R} \int_{2R}^{1} dx I = \frac{8}{3\pi R} \int_{2R}^{1} dx \left[\log \frac{2R_0}{9.2(R-R_0)} + \log 2 \right]$$

$$\frac{1}{R} \int_{2R}^{1} dx I = \frac{8}{3\pi R} \int_{2R}^{1} dx \left[\log \frac{2R_0}{9.2(R-R_0)} + \log 2 \right]$$

$$= \frac{8}{3\pi} \log \left[\frac{4R_0}{9.2(R-R_0)} \right] .$$

Thus even if we are within 0.1 km of the convergence distance, $R-R_0 = 0.1$ km, the effect of currents is still relatively small. So the logarithmic singularity is of no practical interest.

As an aside, the singularity arises because $(\omega^2 - \omega_L^2)^{-\frac{1}{2}} \rightarrow (\omega^2 - \omega_{in}^2)^{-\frac{1}{2}}$ and $G_{uu} \sim (\omega^2 - \omega_{in}^2)^{-\frac{1}{2}}$, so that the integrand of $I_{uu} \sim (\omega^2 - \omega_{in}^2)^{-1}$, and I_{uu} is logarithmically infinity. This depends then on the fact that GM-spectrum for u has a $(\omega^2 - \omega_{in}^2)^{-\frac{1}{2}}$ cusp (but, of course, the integral of the spectrum and hence (u^2) are finite). If the GM-spectrum had a $(\omega^2 - \omega_{in}^2)^{-S}$ cusp, with $s < \frac{1}{2}$, then the logarithmic infinity for I'_{uu} does not arise. The evidence for the $-\frac{1}{2}$ exponent is very weak. Observational evidence clearly shows a cusp (see for example Carl Wunsch, 1975, JGR 80, 339-343, Fig. 1) and for an integrable cusp "... we require 0 < s < 1. We arbitrarily choose the mid-point $s = \frac{1}{2}$." (GM72, p. 249). But

subsequently Cairns and Williams (Part II, Fig. 5) find the vertical displacement spectrum (which is a less critical test than a u-spectrum) in better accord with s = 0.5 than s = 0.1 and s = 0.9. The conclusion is that the singularity is probably too weak to be observable; otherwise, it would suggest an acceptable modification of the GM-spectrum.

DISTRIBUTION LIST

ORGANIZATION	NO. OF COPIES	NO. OF COPIES
Dr. Henry D.I. Abarbanel	1	Mr. C. Bartberger 1
National Accelerator Laboratory		Naval Air Development Center
P.O. Box 500		Warminster, Pennsylvania 18974
Batavia, Illinois 60510		
		Bell Telephone Laboratories 2
Mr. Bob Adams	1	Whippany Road
Naval Research Laboratory		Whippany, New Jersey 07981
4555 Overlook Avenue, SW		
Washington, D.C. 20375		Dr. Joel Bengston 1
		Institute for Defense Analysis
Dr. V.C. Anderson	1	400 Army Navy Drive
Scripps Institution of Oceanogra		Arlington, Virginia 22202
University of California	15	g,g
	2037	Dr. A. Berman 1
		Naval Research Laboratory
Dr. Alf Andreassen	1	4555 Overlook Avenue, SW
OP-095T		Washington, D.C. 20375
The Pentagon, Room 5D560		madiffically broth 20075
Washington, D.C. 20350		Mr. Ange V. Bernard, Jr. 1
mashington, prot 20000		Manager
Mr. F. Andrews	1	Anti-Submarine Warfare Systems
Catholic University	-	Project Wallare Systems
620 Michigan Avenue, NE		Department of the Navy
Washington, D.C. 20017		Washington, D.C. 20360
washington, D.o. 20017		washington, b.c. 20000
Mr. H.S. Aurand, Jr.	1	Dr. H.F. Bezdek 1
Ocean Acoustics Division	•	Program Director
Naval Ocean Systems Center		CODE 460
San Diego, CA 92152		NORDA
San Diego, CA 92132		
Mr. James Austin	1	Bay St. Louis, MS 39529
Johns Hopkins University	-	Prof. T.G. Birdsall
Applied Physics Laboratory		Cooley Electronics Laboratory
Johns Hopkins Road		
Laurel, Maryland 20810		Cooley Bldg., North Campus
Laurer, Maryland 20010		University of Michigan Ann Arbor, Michigan 48105
Cdr. J. Ballou		Ann Arbor, Michigan 48105
Office of Naval Research	1	Mr. Connec I Power 1
		Mr. George L. Boyer 1
800 N. Quincy Street Arlington, VA 22217		Office of Naval Research
Arlington, VA 22217		800 N. Quincy Street
Dr. Lamas F. Banasa		Arlington, VA 22217
Dr. James E. Barger	1	W- D C B
Bolt, Baranek & Newman, Inc.		Mr. D.G. Browning 1
50 Moulton Street		New London Laboratory
Cambridge, MA 02138		Naval Underwater Systems Center
		New London, Connecticut 06320

	NO. OF	ORGANIZATION COPIE	
Mr. R. Buchal Office of Naval Research Acoustic Environmental Support Detachment	1	Dr. Kenneth M. Case 2-11037-230 The Rockefeller University New York, New York 10021	1
Arlington, Virginia 22217		Dr. Joseph W. Chamberlain	1
Mr. B.M. Buck Polar Research Laboratory, Inc. 123 Santa Barbara Street	1	18622 Carriage Court Houston, Texas 77058	
Santa Barbara, California 93101		Mr. Robert M. Chapman Special Assistant Marine System	1 ms
Dr. H. Bucker Naval Ocean Systems Center San Diego, California 92152	1	Garrett Corporation 9851 Sepulveda Boulevard P.O. Box 92248	
		Los Angeles, California 9000	09
Dr. Peter J. Cable Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320	1	Dr. J.G. Clark Institute for Acoustical Resear University of Miami 615 SW Second Avenue	1 rch
Mr. D. Cacchione Office of Naval Research	1		130
495 Summer Street Boston, MA 02210		Dr. R.H. Clarke Imperial College of Science & Technology	1
Dr. Curtis G. Callan, Jr. Department of Physics Princeton University	1	Department of Electrical Engine Exhibition Road London SW7 2BT ENGLAND	eering
Princeton, NJ 08540		Dr. Bernard F. Cole	1
Lt. Col. G. Canavan Advanced Research Projects Agency	1	Naval Underwater Systems Center New London Laboratory	r
Strategic Technology Office 1400 Wilson Boulevard		New London, Connecticut 06320	0
Arlington, Virginia 22209		Dr. W.J. Condell Office of Naval Research	1
Mr. G. Cann ODDR&E The Pentagon, Room 3D1048	1	800 N. Quincy Street Arlington, VA 22217	
Washington, D.C. 20301		Mr. Randall G. Cook Advanced Research Projects Agen	1 ncy
Dr. Gerald Carruthers P.O. Box 1925 Main Post Office	1	Tactical Technology Office 1400 Wilson Boulevard Arlington, VA 22209	
Washington, D.C. 20013		Mr. R. Cooper	1
Dr. Peter Carruthers Lauretson Lab. for High Energy Phy California Institute of Technology Pasadena, California 9110	y	Office of Naval Research 800 N. Quincy Street Arlington, VA 22217	

	O. OF OPIES	ORGANIZATION NO. OF COPIES
Courant Institute 251 Mercer Street New York, NY 10012	2	Dr. Alvin M. Despain 1 1192 Grizzly Peak Boulevard Berkeley, California 94708
Dr. C. Cox University of California/San Diego 9530 La Jolla Shores Drive La Jolla, California 92037	1	Dr. John M. Deutsch 1 Dept. of Chemistry, Rm. 18-399 Massachusetts Institute of Technology Cambridga, Massachusetts 02139
Capt. Henry Cox Advanced Research Projects Agency Tactical Technology Office 1400 Wilson Boulevard Arlington, VA 22209	1	Mr. Ferdinand P. Diemer 1 Office of Naval Research 800 N. Quincy Street Arlington, VA 22217
Mr. J.M. D'Albora Naval Underwater Systems Center Newport, Rhode Island 02840	1	Mr. F. Dinapoli Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320
Dr. Roger F. Dashen Institute for Advanced Study Princeton, New Jersey 08540	1	Mr. J. Dugan 1 Naval Research Laboratory 4555 Overlook Avenue, SW Washington, D.C. 20375
Dr. S.C. Daubin Rosential School of Marine and Atmospheric Science University of Miami Miami, Florida 33149	1	Prof. I. Dyer 1 Massachusetts Institute of Technology Department of Ocean Engineering Cambridge, Massachusetts 02139
Dr. Ruth Davis ODDR&E The Pentagon, Room 3E114 Washington, D.C. 20301	2	Prof. Freeman J. Dyson 1 Institute for Advanced Study Princeton, New Jersey 08540 Mr. L. Einstein 1
Dr. H. DeFarrari Rosentiel School of Marine and Atmospheric Science University of Miami	1	Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320
Miami, Florida 33149 Defense Documentation Center Cameron Station Alexandria, Virginia 22314	12	Mr. A. Ellinthorpe 1 Naval Underwater Systems Center Code TE New London, Connecticut 06320
Mr. John A. DeSanto Naval Research Laboratory Code 8160 Washington, D.C. 20375	1	Dr. David Elliott 1 SRI, International 333 Ravenswood Avenue Menlo Park, California 94025

ORGANIZATION	NO. OF COPIES	ORGANIZATION NO. OF COPIES
Dr. J.O. Elliott Naval Research Laboratory 4555 Overlook Avenue, SW Washington, D.C. 20375	1	Dr. Eugene G. Fubini 1 E.G. Fubini Consultants, Ltd. 1901 N. Fort Meyer Dr., Ste. 1200 Arlington, Virginia 22209
Dr. Terry Ewart Applied Physics Laboratory University of Washington 1013 Northeast Fortieth Street Seattle, Washington 98195	1	Dr. Richard L. Garwin 1 IBM, TJWatson Research Center P.O. Box 218 Yorktown Heights, NY 10598
Mr. J.I. Ewing Lamont-Doherty Geological Observ Columbia University Palisades, New York	1 vatory	Dr. Roy Gaul, Director 1 Code 600 NORDA Bay St. Louis, MS 39529
Dr. A.G. Fabula Naval Ocean Systems Center San Diego, California 92132	1	Mr. A.A. Gerlach 1 Naval Research Laboratory 4555 Overlook Avenue, SW Washington, D.C. 20375
Dr. F. Fisher Scripps Institution of Oceanogra University of California/San Die La Jolla, California		Dr. C. Gibson 1 University of California/San Diego P.O. Box 119 La Jolla, California 92038
Dr. R.M. Fitzgerald Naval Research Laboratory Department of the Navy Washington, D.C. 20375	1	Dr. Marvin L. Goldberger Department of Physics Princeton University Princeton, NJ 08540
Dr. Stanley M. Flatte 360 Moore Street Santa Cruz, CA 95060	1	Dr. Ralph Goodman Technical Director NORDA, CODE 110 Bay St. Louis, MS 39529
Mr. E. Floyd Naval Ocean Systems Center San Diego, California 92132	1	Dr. D. Gordon 1 Naval Ocean Systems Center San Diego, CA 92132
Dr. Henry M. Foley Columbia University Department of Physics New York, NY 10027	1	Mr. O.D. Grace 1 Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320
Mr. H. Freese Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320	1	Dr. Richard Gustafson 1 Advanced Research Projects Agency Tactical Technology Office 1400 Wilson Boulevard Arlington, VA 22209

ORGANIZATION	NO. OF	ORGANIZATION	NO. OF COPIES
Mr. H. Guthart SRI, International 404B 333 Ravenswood Avenue Menlo Park, CA 94025 Mr. G.R. Hamilton	1	Dr. C.W. Horton, Sr. Applied Research Laboratory University of Texas P.O. Drawer 8029 Austin, Texas 78712	
Director, Ocean Research Office NORDA, CODE 400 Bay St. Louis, MS 39529		Dr. T. Horwath Office of Naval Research 800 N. Quincy Street Arlington, VA 22217	1
Dr. J.S. Hanna Science Applications, Inc. 8400 Westpark Drive McLean, Virginia 22101	1	Dr. Benjamin Huberman Asst. Director for National International & Space Affai Office of Science & Technic	rs
Mr. R. Hardin Bell Telephone Laboratories Chester, New Jersey 07930	1	New Executive Office Bldg., Washington, D.C.	20506
Mr. Raymond W. Hasse Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320	1	Mr. B. Hurdle Naval Research Laboratory 4555 Overlook Avenue, SW Washington, D.C. 20375	1
Cdr. R.K. Hastie NAVMAT-031 Washington, D.C. 20360	1	Dr. William J. Hurley Center for Naval Analysis 1401 Wilson Boulevard Arlington, VA 22209	1
Dr. E.E. Hays Woods Hole Oceanographic Institut Woods Hole, Massachusetts Dr. George H. Heilmeier	1 tion 2543	Dr. David Hyde OASN (RE&S) The Pentagon, Room 4E741 Washington, D.C. 20350	1
Director Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209		Dr. Francis J. Jackson Bolt, Beranek, & Newman, In- 1701 N. Fort Myer Drive Arlington, Virginia 2220	
Dr. John Brackett Hersey Deputy Asst. Oceanographer for Ocean Science Chief of Naval Research Naval Research Laboratory	1		12181
Mr. Robert L. Himbarger ORNICON Corporation P.O. Box 22113 San Diego, CA 92122	1	Mr. L. Bruce James Advanced Research Projects A Tactical Technology Office 1400 Wilson Boulevard Arlington, VA 22209	1 Agency
Dr. Richard Hoglund Operations Research 1400 Spring Street Silver Spring, MD 20910	1	Mr. James Janke Headquarters USAF (SAMI) Bolling AFB Washington, D.C. 20332	1

ORGANIZATION	NO. OF		NO. OF
Mr. Finn Jensen	1	Cdr. Alan H. Krulish	1
Saclant ASW		Department of the Navy	
Research Centre		Office of the Chief of	
Viale San Bartolomeo 400		Naval Operations	
I-19026		Washington, D.C. 20350	
La Spezia, ITALY		washington, b.c. 20000	
na spezia, iimi		Dr. Richard Kurth	1
Mr. William John Jobst	1	Sperry Research Center	1
Research Scientist	•	100 North Road	
Palisades Geophysical Institute			
615 SW Second Avenue		Sudbury, MA 01776	
		De F Johnson	1
Miami, Florida 33130		Dr. F. Labianca	1
De Jameshan Vata		Bell Telephone Laboratories	
Dr. Jonathan Katz	1	Whippany Road	
Department of Astronomy		Whippany, New Jersey 07881	
University of California			
Los Angeles, CA 90024		Mr. R. Lauer	1
		Naval Underwater Systems Cen	iter
Dr. A.I. Kaufman	1	New London Laboratory	
Center for Naval Analyses		New London, Connecticut 06	320
1401 Wilson Boulevard			
Arlington, VA 22209		Dr. Ray Leadabrand	1
		SRI, International, L1053	
Dr. Roger N. Keeler	1	333 Ravenswood Avenue	
Director of Navy Technology		Menlo Park, CA 94025	
Department of the Navy			
Washington, D.C. 20360		Mr. Barry Levin	1
		Naval Intelligence Supply Ce	nter
Mr. J. Keller	1	4301 Suitland Road	
Courant Institute		Washington, D.C. 20390	
251 Mercer Street			
New York, NY 10012		Dr. Harold W. Lewis	1
		Department of Physics	
Mr. Theo Kooij	1	University of California	
ARC Director		Santa Barbara, CA 93106	
Advanced Research Projects Agency	1		
ARPA Research Center, Unit 1		Dr. Bernard Lippmann	1
Moffett Field, California 94035	5	Department of Physics	
		New York University	
Dr. Norman Kroll	1	4 Washington Place	
University of California/San Dieg	30	New York, NY 10003	
P.O. Box 119			
La Jolla, California 9203	38	Mr. Jeff Lipscomb	1
		NFOIO	
Dr. Martin Kronengold, Director	1	4301 Suitland Road	
Institute for Acoustical Research	1	Washington, D.C. 20390	
University of Miami			
615 SW Second Avenue		Dr. Donald J. Looft	1
Miami, Florida 33130)	Advanced Research Projects A 1400 Wilson Boulevard Arlington, VA 22209	gency
		merangeon, in ELLO	

ORGANIZATION	NO. OF	ORGANIZATION COPIES
Cdr. Terry J. McCloskey Director, CODE 200 NORDA Bay St. Louis, MS 39529	1	Dr. M. Milder 1 ARETE Associates 2120 Wilshire Boulevard Santa Monica, CA 90903
Dr. J. McCoy Naval Research Laboratory 4555 Overlook Avenue Washington, D.C. 20375	1	Dr. J. Miles 1 University of California/San Diego P.O. Box 119 La Jolla, California 92038
Mr. S. McDaniel Applied Research Laboratory Pennsylvania State University P.O. Box 30 State College, PA 16801	1	Cdr. A.R. Miller Naval Electronic System Command PME-124 Washington, D.C. 20360
Mr. Mike McKisic Scientific Officer NORDA, CODE 460 Bay St. Louis, MS 39529	1	Mr. Robert A. Moore 1 Advanced Research Projects Agency Tactical Technology Office 1400 Wilson Boulevard Arlington, VA 22209
Dr. G. Maidanik Naval Ship Research and Development Center Washington, D.C. 20007	1	Dr. Paul H. Moose 1 Naval Ocean Systems Center San Diego, CA 92132
Dr. David E. Mann Asst. Secretary of the Navy (RE&S The Pentagon, Room 4E732 Washington, D.C. 20350)	Mr. John Morfit 1 Main Post Office Box 1925 Washington, D.C. 20013 Dr. G.B. Morris 1
Dr. S.W. Marshall NORDA, CODE 340 Bay St. Louis, MS 39529	1	University of California Scripps Institution of Oceanography Marine Physical Laboratory San Diego, California 92152
Mr. R.L. Martin Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320	1	Mrs. H. Morris Naval Ocean Systems Center San Diego, CA 92132
Prof. H. Medwin Naval Postgraduate School Department of Physics Monetery, CA 93940	1	Dr. William A. Moseley 1 Supervisor, Research Physics Naval Research Laboratory 4555 Overlook Avenue, SW Washington, D.C. 20375
Mr. R.H. Mellen Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320	1	Dr. Richard A. Muller 1 2831 Garber Berkeley, CA 94705
Dr. David Middleton 127 East 91st Street New York, New York 10028	1	Dr. Walter H. Munk 1 9530 La Jolla Shores Drive La Jolla, CA 92037

ORGANIZATION	NO. OF	ORGANIZATION COPIES
		The Honorable William Perry 1
Naval Electronic Systems Command Headquarters	2	Director, DDR&E
Code PME-124	2	Office of the Secretary of Defense
		The Pentagon, Room 3E1006
Washington, D.C. 20300		Washington, D.C. 20301
Naval Underwater Systems Center	1	washington, D.C. 20301
ATTN: Technical Library		Dr. O.M. Phillips 1
New London Laboratories		Dr. O.M. Phillips 1 Hydronautics, Inc.
New London, Connecticut 06320		Pindell School Road
new Bondon, connecticut costs		Howard County
Dr. J. Neubert	1	Laruel, MD 20810
Naval Ocean Systems Center		Larder, Fib 20010
San Diego, CA 92132		Dr. R. Porter
oun prege, on		Woods Hole Oceanographic
Dr. William A. Nierenberg	1	Institution
Scripps Institution of Oceanograp		Woods Hold, MA 02543
University of California		110000 11010, 111
La Jolla, California 920	037	Mr. James Probus
		Director of Navy Laboratories
Mr. J.C. Nolen	1	The Pentagon
Institute for Defense Analyses		Washington, D.C. 20350
400 Army Navy Drive		
Arlington, VA 22202		Dr. Gordon Raisbeck 1
		Arthur D. Little, Inc.
Operations Research, Inc.	1	Cambridge, MA 02140
1400 Spring Street		
Silver Spring, MD 20910		Mr. D.J. Ramsdale 1
		Acoustics Division
Dr. David Palmer	1	Code 8170
Code 8172		Naval Research Laboratory
Naval Research Laboratory		Washington, D.C. 20375
Department of the Navy		
Washington, D.C. 20375		Dr. Burton Richter
		Stanford Linear Accelerator Center
Mr. J. Papadakis	1	P.O. Box 4349
Naval Underwater Systems Center		Stanford, California 94305
New London Laboratory		
New London, Connecticut 06320		Mr. W.I. Roderick
W- W A D-1		Naval Underwater Systems Center
Mr. M.A. Pedersen	1	New London Laboratory
Naval Ocean Systems Center San Diego, CA 92132		New London, Connecticut 06320
		Mr. Richard R. Rojas 1
Dr. Francis W. Perkins, Jr.	1	Assoc. Director of Research
Plasma Physics Laboratory		for Oceanography
Princeton University		Naval Research Laboratory
P.O. Box 451		Washington, D.C. 20390
Princeton, New Jersey 08540		
		Dr. Marshall Rosenbluth 1 Institute for Advanced Study
		Princeton, New Jersey 08540

ORGANIZATION	NO. OF COPIES	ORGANIZATION	NO. OF COPIES
Dr. R. Ruffine	1	Mr. Edward L. Smith	1
ODDR&E		Advanced Research Projects	Agency
The Pentagon		ARPA Research Center	
Washington, D.C. 20301		Unit 1 Moffett Field, California	94035
Capt. Kenneth W. Ruggles	1	,	
Office of the Deputy Director fo	or	Dr. Gary L. Smith	1
Research and Engineering (DDR8		Johns Hopkins University	
The Pentagon		Applied Physics Laboratory	
Washington, D.C. 2030	01	Johns Hopkins Road	
		Laurel, Maryland 20810	
Dr. R. Saenger	1		
Naval Underwater Systems Center		Dr. Preston W. Smith	1
New London Laboratory		Bolt, Beranek and Newman,	Inc.
		50 Moulton Street	
Dr. H. Schenk	1	Cambridge, MA 02	138
Naval Ocean Systems Center			
San Diego, CA 92132		Mr. H. Sonneman	1
D V 0.1.11.1		Office of the Assistant Sec	cretary
Dr. M. Schulkin	1	of the Navy	
Naval Oceanographic Office Suitland, Maryland 20373		The Pentagon	
Suffiand, Maryland 20373		Washington, D.C. 20360	
Prof. Peter Schultheiss	1	Mr. Glenn R. Spaulding	1
Yale University		Headquarters, Naval Materia	al Command
New Haven, CT 16520		(MAT034), Room 1044	
		Washington, D.C. 20360	
Dr. Phil Selwyn	1		
Advanced Research Projects Agenc	y	Dr. F. Spiess	1
Tactical Technology Office 1400 Wilson Boulevard		University of California	
Arlington, VA 22209		Scripps Institution of Ocea Marine Physical Laboratory	anography
Allington, VA 22209		San Diego, California	92152
Capt. J. Shilling	1	San Diego, California	72132
Strategic Systems Project Office	_	Dr. R. Spindel	1
Department of the Navy		Woods Hole Oceanographic In	
Washington, D.C. 20390		Woods Hole, Massachusetts	02543
Dr. Morris Schulkin	1	Mr. C.W. Spofford	1
9325 Orchard Drive		Science Applications, Inc.	
Potomac, MD 20854		8400 Westpark Drive	
W 0 -		McLean, VA 22101	
Mr. Carey D. Smith	1	W- D C Cod-1-1-1	
Commander, Naval Sea Systems Command Headquarters		Mr. D.C. Stickler	. 1
Department of the Navy		Applied Research Laboratory	
Code 06H1		Pennsylvania State University P.O. Box 30	LLY
Washington, D.C. 20360			301

ORGANIZATION	NO. OF	ORGANIZATION COP	-
Dr. M. Strassberg Naval Ship Research & Developmen	t 1	Capt. Robert E. Vaughn, USN OP-095T	1
Center		The Pentagon, Room 5D560	
Washington, D.C. 2000	7	Washington, D.C. 20350	
Mr. A.O. Sykes Office of Naval Research Code 412 800 N. Quincy Street Arlington, VA 22217	1	Dr. John F. Vesecky Center for Radar Astronomy Stanford University Stanford, California 94305	1
		Dr. William A. Von Winkle	1
Mr. T.E. Talpey Bell Telephone Laboratories Whippany Road Whippany, New Jersey 07981	1	Assoc. Technical Director for Technology Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320	
Dr. Frederick Tappert	1	New Bolldon, Confeccience 00320	
Courant Institute 251 Mercer Street New York, NY 10012	•	Dr. Kenneth Watson Lawrence Berkeley Laboratory University of California Berkeley, California 94720	1
Capt. Peter R. Tatro, USN	1		
Office of the Oceanographer of the Navy 200 Stovall Street Alexandria, Virginia		Mr. J. Weileman Courant Institute 251 Mercer Street New York, NY 10012	1
Dr. Alex Thompson Physical Dynamics, Inc. Berkeley, California	1	Dr. H. Weinberg Naval Underwater Systems Center New London Laboratory New London, Connecticut 06320	1
Mr. Richard D. Trueblood	1		
Commander Naval Ocean Systems Center San Diego, CA 92152		Dr. M.S. Weinstein Underwater Systems, Inc. 8121 Georgia Avenue, Ste. 700 Silver Spring, MD 20910	1
Dr. H. Uberall Catholic University 620 Michigan Avenue, NE Washington, D.C. 20017	1	Maj. Gen. J.A. Welch, Jr. AFSA 1E 388 The Pentagon Washington, D.C. 20330	1
University of Texas Applied Research Laboratory Austin, Texas 78712	2	Capt. J.B. Wheeler Naval Electronic System Command Code 103 Washington, D.C. 20360	1
Mr. R.J. Urick	1	20000	
TRACOR, Inc.		LTC. William Whitaker	1
1601 Research Blvd. Rockville, MD 20850		Advanced Research Projects Agend 1400 Wilson Boulevard Arlington, VA 22209	

ORGANIZATION	NO. OF COPIES	ORGANIZATION	NO. OF COPIES
Mr. H. Wilson Science Applications, Inc. P.O. Box 351 La Jolla, CA 92037	1		
Dr. J.M. Witting Naval Research Laboratory 4555 Overlook Avenue, SW Washington, D.C. 20375	1		
Mr. Peter Worcester University of California/San E-25			
La Jolla, California	92093		
Dr. J.L. Worzel Marine Science Institute Geophysics Laboratory 700 Thestrand Galveston, Texas 77550	1		
Dr. Carl Wunsch Massachusetts Institute of Te Room 54-1324	1 chnology		
Cambridge, Massachusetts	02139		
Dr. H. Yura Aerospace Corporation P.O. Box 92956 Los Angeles, CA 90009	1		
Dr. Frederik Zachariasen 452-48 Department of Physics California Institute of Techn Pasadena, California	1 ology 91109		

O