

Cartesian coordinate spaces

```
Model [GCode] centered at (0,0) for Wally preprocessor gX gY gZ [mm]

Extruder Plane XY ... [mm]

eX = ...

eY = ...

eZ defined by bed

Bed moves in YZ plane

bX = eX

bY = f(eY, bZ) can vary by up to 20+ mm

ShbZ (0..150) [mm]

Bed tilt compensated Z

btX =

btY =

btY =

btZ = f(btX, btZ)
```

Polar coordinates

```
LR big pulley angle straight arms is 180° ($\frac{1}{\pi}$)
```

Stepper scaling

```
degrees_per_motor_step = 1.8 #UI depends on your stepper motor motor_steps_per_rev = 360.0 / degrees_per_motor_step motor_micro_steps = 16 #UI set on motor drive board micro_steps_per_rev = motor_micro_steps * motor_steps_per_rev steps_per_gcode_unit = 8 #UI set in repetier gunits_per_rotation = micro_steps_per_rev / steps_per_gcode_unit rads_per_step = 2*math.pi / gunits_per_rotation
```


Model Origin

- · GCode origin at center of bed at most raised
- GCode (x,y,z) variables (gX, gY, gZ)

baseline_hy_diff = sqrt(double_arm_length**2 (motor_to_motor_baseline/2.0)**2)

272.71 mm

Extruder Plane Home Geometry defines small pulleys

defines small pulleys' zero radian angle

Constants

```
home_y_baseline =
sqrt( double_arm_length**2 -
( motor_to_motor_baseline / 2.0 )**2 )
# 272.71mm

home_angle = asin( home_y_baseline /
double_arm_length ) # 65.37°

sq_adj_angle = math.pi / 2 - home_angle
# 1280
```

home_angle is needed for calculating xy_arm's change from home is needed to adjust the small pulley angles effect on the big pulley angles.

sq_adjust_angle is needed for adjusting pulley calculations at arms squared position

Extruder Plane Geometry

Pythagorean Theorem $a^{**}2 + b^{**}2 = c^{**}2$

left_leg is c in Pythagorean Theorem

$$left_leg = sqrt(ex^{**}2 + ey^{**}2)$$

right_leg is c in Pythagorean Theorem

right_leg = sqrt(
$$dex^*2 + ey^*2$$
)

Z Geometry

Pulley Calibration Geometry

These constants **may** help map LR motor angles to big pulley angles. Little to big pulley mechanical advantage should be 10:100 (10) with possible deviations from theory due to imperfections.

At pulley calibration we've moved big pulley's angle from π (180°) to ref_angle (70.52°) using cal_steps but the arm above the motor moved from home position thru little_pulley_rad_offset. So R little pulley turns are not linearly related to the big pulley turns but depend on the arm angle above the motors and L pulley turns. The right pulleys moved CW while the arm moved CCW subtracting little pulley rad offset to little pulley's work.

Constants

s_base = (2 * arm_length) - motor_to_motor_baseline s_angle = math.asin(s_base / arm_length) # about 19.5° ref_angle = math.pi / 2 - s_angle # about 70.52° little_pulley_rad_offset = sq_adj_angle + s_angle

```
big_cal_rads = ref_angle
little_cal_rads = ( cal_steps * rads_per_step ) - little_pulley_rad_offset
little_to_big_cal_rads_ratio = little_cal_rads / big_cal_rads
```

