Name Surname: Aras Güngöre

Student ID: 2018401117

1)

$$E[A] = E[K_1 + K_2 + \dots + K_n] = E[K_1] + E[K_2] + \dots + E[K_n] = E[K] + E[K] + \dots + E[K]$$
$$=> E[A] = n \cdot E[K]$$

$$\begin{aligned} Var[A] &= Var[K_1 + K_2 + \dots + K_n] = Var[K_1] + Var[K_2] + \dots + Var[K_n] \\ &= Var[K] + Var[K] + \dots + Var[K] \\ &=> Var[A] = n \cdot Var[K] \end{aligned}$$

2.1)

As n increases, the PDF of A $f_A(a)$ converges to Gaussian PDF according to Central Limit Theorem. For n=2, the CLT approximation is off; however, for $n\geq 2$ we can observe that the CLT approximations are pretty accurate. As n increases, the approximation becomes more and more accurate; and the graphs are extended on the x-axis since the variance is proportional to n.

2.2)

Increasing the sample size from 10000 to 100000 gives us a better defined Gaussian approximation.

2.3)

By doubling the uniform range, standard deviation σ is doubled according to the formula:

$$Var[A] = \sigma_A^2 = n \cdot \frac{(b-a)^2}{12}$$
 . Consequently, the a values in the x-axis are doubled as well.

As n increases, the PDF of A $f_A(a)$ converges to Gaussian PDF according to Central Limit Theorem. For n=2, the CLT approximation is not even close; even for n=10 the CLT approximation is not accurate as the one in part 2.1. Unlike uniform PDF, exponential PDF doesn't get that close to Gaussian PDF for small values of n.

3.2)

Increasing the sample size from 10000 to 100000 doesn't give a much better Gaussian approximation, since the outline of the exponential PDF and the Gaussian PDF curves are still off.

3.3)

By doubling the lambda, standard deviation σ is cut in half according to the formula:

 $Var[A] = \sigma_A^2 = n \cdot \frac{1}{\lambda^2}$. Consequently, the a values in the x-axis are cut in half as well.

4.1)

As n increases, the CDF of A $F_A(a)$ converges to Gaussian CDF according to Central Limit Theorem. For a = n, $F_A(a) = 1$; and for a = 0, $F_A(a)$ becomes equal to 0 as n increases. The right corners of the bars of the Bernoulli CDF are really close to the Gaussian CDF curve.

4.2)

Increasing the sample size from 10000 to 100000 doesn't significantly change the graph, therefore it doesn't give a much better Gaussian approximation as the graph is also already close enough.

4.3)

Increasing the p value from p = 0.5 to p = 0.75 favors the higher half of the a values so it increases the $F_A(a)$ for values n > 5, whereas it decreases $F_A(a)$ for values n < 5. Hence, the graph got steeper and the $F_A(a)$ for n < 4 is seemingly zero.

5.1)

As n increases, the CDF of A $F_A(a)$ converges to Gaussian CDF according to Central Limit Theorem.

5.2)

Increasing the sample size from 10000 to 100000 gives us a better Gaussian approximation.

5.3)

Since $E[A] = Var[A] = \sigma_A^2 = n \cdot \lambda$, doubling the lambda means doubling the mean and the variance. Consequently, the graph is shifted to the right by an amount of n = 10 and is stretched on the x-axis by a factor that is equal to the increase in the standard deviation which is $\sigma = \sqrt{2} = 1.414$.