Interrogation écrite n°03

NOM: Prénom: Note:

1. Déterminer la nature de l'intégrale $I = \int_0^{\frac{1}{e}} \frac{\ln t}{\sqrt{t}} dt$.

Tout d'abord $f: t \mapsto \frac{\ln t}{\sqrt{t}}$ est continue par morceaux sur $\left]0, \frac{1}{e}\right]$. De plus, par croissances comparées, $\frac{\ln t}{\sqrt{t}} \underset{t \to 0^+}{=} o\left(\frac{1}{t^{3/4}}\right)$. Comme $3/4 < 1, t \mapsto \frac{1}{t^{3/4}}$ est intégrable en 0^+ . Il en est donc de même de f. A fortiori, l'intégrale I converge.

2. Déterminer la nature de l'intégrale I = $\int_{e}^{+\infty} \frac{1}{\sqrt{t \ln t}} dt$.

Tout d'abord $f: t \mapsto \frac{1}{\sqrt{t \ln t}}$ est continue par morceaux sur $[e, +\infty[$. De plus, par croissances comparées, $\frac{1}{t} = o\left(\frac{1}{\sqrt{t \ln t}}\right)$.

Comme $t \mapsto \frac{1}{t}$ n'est pas intégrable en $+\infty$, f non plus. Comme f est positive sur $[e, +\infty[$, l'intégrale I diverge.

3. Déterminer un équivalent simple de $f: x \mapsto \int_{x}^{1} \frac{\sinh t}{t^2 + t^3} dt$ en 0^+ .

Remarquons que $\frac{\sinh t}{t^2+t^3} \underset{t\to 0^+}{\sim} \frac{t}{t^2} = \frac{1}{t}$. Or $\int_0^1 \frac{\mathrm{d}t}{t}$ diverge et $t\mapsto \frac{1}{t}$ est positive au voisinage de 0^+ . Ainsi, $f(x)\underset{x\to 0^+}{\sim} \int_0^x \frac{\mathrm{d}t}{t} = \frac{1}{t}$

4. Montrer que l'intégrale $I = \int_0^{+\infty} \frac{\arctan t}{\operatorname{ch} t} dt$ converge et déterminer un équivalent simple de $f: x \mapsto \int_x^{+\infty} \frac{\arctan t}{\operatorname{ch} t} dt$ en $+\infty$.

Tout d'abord, $g: t \mapsto \frac{\arctan t}{\operatorname{ch} t}$ est continue par morceaux sur $[0, +\infty[$. De plus, $g(t) \underset{\to +\infty}{\sim} \frac{\pi/2}{e^t/2} = \pi e^{-t}$. Comme $t \mapsto \pi e^{-t}$ est intégrable en $+\infty$, g l'est aussi. A fortiori, I converge. Comme $t \mapsto \pi e^{-t}$ est positive au voisinage de $+\infty$, on peut de plus affirmer

que
$$f(x) \underset{x \to +\infty}{\sim} \int_{x}^{+\infty} \pi e^{-t} dt = \pi e^{-x}$$
.

5. Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. On pose $N(f) = |f(0)| + ||f + f'||_{\infty}$ pour $f \in E$. Montrer que f est une norme sur E.

L'homogénéité et l'inégalité triangulaire sont trivialement vérifiées (à faire néanmoins). Seule la séparation peut éventuellement poser problème. Soit donc $f \in E$ telle que N(f) = 0. Comme N(f) est la somme de deux termes positifs, ces deux termes son nuls i.e. $|f(0)| = ||f + f'||_{\infty} = 0$. Comme $||\cdot||_{\infty}$ est une norme, on a donc f(0) = 0 et f + f' = 0. Ainsi f est solution sur [0,1] du problème de Cauchy $\begin{cases} y' + y = 0 \\ y(0) = 0 \end{cases}$. La fonction nulle est clairement solution de ce problème de Cauchy donc, par unicité de la solution d'un problème de Cauchy, f est nulle.

Remarque. On aurait pu également résoudre explicitement ce problème de Cauchy.

6. Pour $P = \sum_{n=0}^{+\infty} a_n X^n \in \mathbb{K}[X]$, on pose $N_1(P) = \sum_{n=0}^{+\infty} |a_n|$ et $N_{\infty}(P) = \max_{n \in \mathbb{N}} |a_n|$. On admet que N_1 et N_{∞} sont des normes sur $\mathbb{K}[X]$. Montrer qu'elles ne sont pas équivalentes.

On pose $P_n = \sum_{k=0}^n X^k$ pour $n \in \mathbb{N}$. On a clairement $N_1(P_n) = n+1$ et $N_\infty(P_n) = 1$. Ainsi $\frac{N_1(P_n)}{N_2(P_n)} \xrightarrow[n \to +\infty]{} +\infty$. On en déduit que N_1 et N_2 ne sont pas équivalentes.