1 Affine and Convex Sets

1. Line

Definition 1.1 (Line and line segment) Suppose $x_1 \neq x_2$ are two points $\in \mathbb{R}^n$, Points of the form $y = \theta x_1 + (1 - \theta)x_2$ is called a line.

If we restrict $\theta \in [0, 1]$, call it a line segment.

Remark Also we write it as

$$y = \theta x_1 + (1 - \theta)x_2$$

$$= \underbrace{x_2}_{\text{base point}} + \theta \underbrace{(x_1 - x_2)}_{(x_2 \to x_1) \text{ direction scale by factor } \theta}.$$

2. Affine sets

Definition 1.2 A set of points $C \subseteq \mathbb{R}^n$ is affine if the line through any two distinct points in C lies in C.

Example 1.1 The set of line is a affine set.

Definition 1.3 (Affine Combination) *Call a point of the form* $\theta_1 x_1 + \cdots + \theta_k x_k$ *as an affine combination where* $\theta_1 + \cdots + \theta_k = 1$.

Remark • Affine Combination is the special form of linear combination, with each coeffs summing up to
1. This will be provided with some useful scenarios.

• Each θ s has no restrictions as $\theta > 0$.

Proposition 1.1 (An affine set contains every affine combination of its points) *If* C *is an affine set,* $x_1, x_2, \dots, x_k \in C$, and $\theta_1 + \dots + \theta_k = 1$, then $\theta_1 x_1 + \dots + \theta_k x_k \in C$.

Proof. (rough idea): by induction, i.e. as n=3, and $\theta_1x_1+\theta_2x_2+(1-\theta_1-\theta_2)x_3\in C$, recombining the terms, getting $(\theta_1x_1+(1-\theta_1)x_3)+\theta_2x_2-\theta_2x_3\in C$. The first term is a point on C, and this forms the form in the remark.

Definition 1.4 (Subspace) If C is an affine set and $x_0 \in C$, then the set

$$V = C - x_0 = \{x - x_0 \mid x \in C\}$$

is a subspace.

Proposition 1.2 It is closed under addition and scalar multiplication.

Proof. Done in *Advanced Algebra II*.

Hence we use the notation

$$C = V + x_0 = \{v + x_0 \mid v \in V\}.$$

Analogy:

• V: null space of a matrix/linear eq

- x_0 : special solution of a matrix/linear eq.
- $V + x_0 \Rightarrow$ General solution.

Definition 1.5 (Affine Hull) Affine hull The set of all affine combination of points in some set (not possibly affine) $C \subseteq \mathbb{R}^n$ is called the affine hull of C, and denoted as of C.

Formally, aff
$$C = \{\theta_1 x_1 + \cdots + \theta_k x_k \mid x_1, \cdots, x_k \in C, \theta_1 + \cdots + \theta_k = 1\}$$

Proposition 1.3 (Affine hull is the smallest affine set that contains C.) If S is any affine set with $C \subseteq S$, then aff $C \subseteq S$.

3. Affine dimension, Relative interior

Definition 1.6 (Affine dimension, Relative interior) Affine Dimension: The Affine dimension of a set C as the dimension of its affine hull.

Remark Not possibly consistent with other definition of dimensions.

Example 1.2 The dimension of unit circle is 2, for its affine hull (\mathbb{R}^2) is 2 dimension.

Definition 1.7 (Relative interior) If affine dimension of a set $C \subseteq \mathbb{R}^n$ is less than n, then the set lies in the affine set of $C \neq \mathbb{R}^n$. We define relative interior of set C, denoted as reliant C, as its interior relative to of C.

$$\mathbf{relint}C = \{ x \in C \mid (B(x, r) \cap \mathbf{aff}C) \subseteq C \quad (\exists r > 0) \}$$

.

where $B(x,r) = \{y \mid ||y-x|| < r\}$, a sphere with radius r.

Definition 1.8 (Relative Boundary) *Define relative boundary of a set* C *as* $clC \setminus relintC$, *where* cl C *is the closure (all combination mentioned above) of* C,

Example 1.3 Consider a square in (x_1, x_2) plane in \mathbb{R}^3 , defined as $C = \{x \in \mathbb{R}^3 \mid -1 \leqslant x_1 \leqslant 1, -1 \leqslant x_2 \leqslant 1, x_3 = 0\}$

- relint $C = \{x \in \mathbb{R}^3 \mid -1 < x_1 < 1, -1 < x_2 < 1, x_3 = 0\}$, the boundary is filtered.
- reason: at boundary, no ball can satisfy the condition.
- Affine hull of this is \mathbb{R}^2 .

4. Convex sets

Definition 1.9 (Convex) A set C is convex if the line segment between any two points in C lies in C. That is, if for any $x_1, x_2 \in C$, and any θ with $0 \le \theta \le 1$, we have

$$\theta x_1 + (1 - \theta)x_2 \in C$$

Remark • Every affine set is convex;

• Note the restriction here for θ is greater than 0.

Definition 1.10 (Convex hull) The convex mull of a set C, denoted $\mathbf{conv}C$, is the set of all convex combinations of points in C.

$$\mathbf{conv}C = \left\{ \begin{array}{l} \theta_1 x_1 + \dots + \theta_k x_k & x_i \in C, \theta_i \geqslant 0, \\ i = 1, 2, \dots, k. \\ \theta_1 + \dots + \theta_k = 1 \end{array} \right\}$$

Remark We can generalize it to infinite case: Suppose $\theta_1, \theta_2, \cdots$ satisfies $\theta_i \geqslant 0, i = 1, 2, \cdots$, and $\sum_{i=1}^{\infty} \theta_i = 1$, and $x_1, x_2, \cdots \in C$, where $C \subseteq \mathbb{R}^n$ is convex, then $\sum_{i=1}^{\infty} \theta_i x_i \in C$, if the series converges.

We can also replace sum with intergal: Suppose $p: \mathbb{R}^n \to \mathbb{R}$, satisfies $p(x) \geqslant 0$ for all $x \in C$ and $\int_C P(x) dx = 1$, where $C \subseteq \mathbb{R}^n$ is convex, then $\int_C P(x) x dx \in C$, if the internal exists.

The most general form is: Suppose $C \subseteq \mathbb{R}^n$ is convex and x is a random vector with $x \in C$ with probability 1. Then $\mathbb{E}x \in C$.

5. Cones

Definition 1.11 (Cones(nonnegative homogeneous)) A set C is called Cones(nonnegative homogeneous) if $\forall x \in C, \theta \geqslant 0$, we have $\theta x \in C$.

Definition 1.12 (Convex cone) A set C is a convex cone, if it is a convex and a cone, which means that for any $x_1, x_2 \in C$ and $\theta_1, \theta_2 \geqslant 0$, we have $\theta_1 x_1 + \theta_2 x_2 \in C$.

Definition 1.13 (Conic combination) A point of the form $\theta_1 x_1 + \cdots + \theta_k x_k$ with $\theta_1, \cdots, \theta_k \geqslant 0$ is called a conic combination (nonnegative linear combination). of x_1, \ldots, x_k . (This can also generalize to infinite cases). **Definition 1.14 (Convex hull)** The Convex hull of set C is the set of all conic combinations of points in C, ice, $\{\theta_1 x_1 + \cdots + \theta_k x_k \ (x_i \in C, \theta_i \geqslant 0, i = 1, k\}$.

2 Some important examples

0. Some simple examples:

- \varnothing , any single point $\{x_0\}$, whole space \mathbb{R}^n affine, convex subsets of \mathbb{R}^n
- Line affine. + pass O convex.

- Line segment convex, not affine.
- Ray. $\{x_0 + \theta v \mid \theta > 0\}$, $v \neq 0$, convex, not affine convex cone if $x_0 = 0$.
- ∀ subspace affine, convex cone.

1. Hyperplane and halfplane

Definition 2.1 (Hyperplane) A hyperplane is a set of the form $\{x \mid a^{\top}x = b\}$ where $a \in \mathbb{R}^n, b \in \mathbb{R}$.

Remark The meaning of a and b:

- a set of points with a cont inner prod to a given vector a.
- ullet $b \in \mathbb{R}$: how far it is from the origin. Hence can write as

$$\{x \mid a^{\top}(x - x_0) = 0\}.$$

Remark We define $\{x \mid a^{\top}(x - x_0) = 0\} =: x_0 + a^{\perp}$.

- a^{\perp} : the orthogonal complement of a.
- i.e. (the set of all vectors orthogonal to it $a^{\perp} := \{ v \mid a^{\top}v = 0 \}$.)

Definition 2.2 (Half planes) A hyperplane divides \mathbb{R}^n into 2 halfspaces. A closed(or open) form of halfspace is by the form $\{x \mid a^{\top}x \leq b\}$ (or $\{x \mid a^{\top}x < b\}$) where $a \neq 0$.

There is a property that it is convex but not affine.

Remark Alternative form: $\{x \mid a^{\top} (x - x_0) \leq 0\}.$

2. Euclidean balls and ellipsoids

Definition 2.3 ((Euclidean balls)) Euclidean balls in \mathbb{R}^n has the form

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$

= $\{x \mid (x - x_c)^{\top} (x - x_c) \le r^2\}$

. where r > 0, $||u||_2 = \sqrt{u^\top u} \cdot x_c \in \mathbb{R}^n$ is the center of the ball, scalar r is its radius.

Remark Another common repr for ball is

$$B(x_c, r) = \{x_c + r \underbrace{u}_{\text{normalize to 1}} | \|u\|_2 \le 1\}$$

Proposition 2.1 (A Euclidean ball is a convex set) If $||x_1 - x_c||_2 \le r$, $||x_2 - x_c|| \le r$, and $0 \le \theta \le 1$, then $||\theta x_1 + (1 - \theta)x_2 - x_c||_2 \le r$.

Proof.

$$\|\theta x_1 + (1 - \theta)x_2 - x_c\|_2$$

$$= \|\theta (x_1 - x_c) + (1 - \theta) (x_2 - x_c)\|_2$$

$$\leq \theta \|x_1 - x_c\|_2 + (1 - \theta) \|x_2 - x_c\|_2$$

$$\leq r.$$

Definition 2.4 (Ellipsoid) Ellipsoid is a set of points that $\varepsilon = \{x \mid (x - x_c)^T P^{-1} (x - x_c) \leq 1\}$, where $P = P^\top \succ 0$, i.e. symmetric and positive definite.

Remark Each parameter in the formula:

- The vector $x_c \in \mathbb{R}^n$ is the center of ellipsoid.
- The matrix P determines how far the ellipsoid extends in every direction from x_c .
- The lengths of semi-axes of $\mathcal E$ are given by $\sqrt{\lambda_i}, \lambda_i$: eigenvalues of P.

Remark A ball in the form is $P = r^2 I$.

Remark We may also represent as

$$\varepsilon = \{x_c + Au \mid ||u||_2 \leqslant 1\}.$$

where A is square and nonsingular. still symmetric and pos. def.

And If sym. pos. semidef, singular, it is called a degenerlized ellipsoid.

The affine dimension is defined as r(A), and it is convex.

3. Norm balls and Norm cones Suppose $\|\cdot\|$ is any norm on \mathbb{R}^n ,

Definition 2.5 (Norm balls & Norm Cones) A norm ball of radius r and centre x_c is given by

$$\{x \mid ||x - x_d|| \leqslant r\}.$$

A norm cone associated with the norm ||1|| is the set

$$C = \{(x, t) \mid ||x|| \le t\} \subseteq \mathbb{R}^{n+1}.$$

Proposition 2.2 Norm balls and Norm cone are convex.

Example 2.1 The 2nd order cone is the norm cone of the Euclidean norm, i.e.

$$C = \left\{ (x, t) \in \mathbb{R}^{n+1} \mid ||x||_2 \leqslant t \right\}$$

$$= \left\{ \begin{bmatrix} x \\ t \end{bmatrix} \mid \begin{bmatrix} x \\ t \end{bmatrix}^{\top} \begin{bmatrix} I & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \leqslant 0, t \geqslant 0 \right\}.$$

4. Polyhedra

Definition 2.6 (Polyhedron) A polyhedron is defined as the solution set of a finite number of linear equalities and inequalities.

$$\mathscr{P} = \left\{ x \mid \begin{array}{ll} a_j^\top x \leqslant b_j, & c_j^\top x = d_j \\ (1 \leqslant j \leqslant m), & (1 \leqslant j \leqslant p) \end{array} \right\}$$

Remark a more compact notation looks like

$$Q = \{x \mid Ax \leq b, C_x = d\}$$

$$A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}, \quad C = \begin{bmatrix} c_1^T \\ \vdots \\ c_m^T \end{bmatrix}$$

where $u \leq v$ means $u_i \leq v_i$ for $i = 1, \dots, m$. We will see how this come into effect later.

We take a look at important series of poly hedra:

Definition 2.7 Suppose k+1 points $v_0, \dots, v_k \in \mathbb{R}^n$ are affinely independent: (meaning $v_i - v_0, \dots, v_k - v_0$ are linearly independent) The simplex determined by

$$C = \text{conv}\{v_0, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \ge 0, 1^{\top} \theta = 1\}$$

where 1 means vector with all entries 1. The affine dimension of this simplex is k.

Remark This is sometimes referred to as a R-dimensional simplex in \mathbb{R}^n .

- Unit simplex: n dimensional simplex determined by zero vector & unit vectors, that is $0, \underbrace{e_1, \cdots, e_n}_{\text{Unit vectors}} \in \mathbb{R}^n$. satisfying $x \geq 0, 1^{\top} x \leqslant 1$.
- Probability simplex: (n-1) dimensional simplex determined by unit vector $e_1, \dots, e_n \in \mathbb{R}^n$. It is set of vecs:

$$x \ge 0, \quad I^{\top} x = 1$$

Example 2.2 Describe the simplex in form of polyhedron.

- Write the form of Polyhedron: $\mathcal{P} = \{x \mid Ax \leq b, Cx = d\}$
- Write the form of simplex: $x \in C \Leftrightarrow x = \theta_0 v_0 + \dots + \theta_k v_k, \exists \theta \geq 0, 1^\top \theta = 1.$
- Define

$$y = (\theta_1, \theta_2, \dots, \theta_k)$$

$$B = [v_1 - v_0, v_2 - v_0, \dots, v_k - v_0] \in \mathbb{R}^{n \times k} \quad (\operatorname{rank} B = k)$$

• $x \in C \Leftrightarrow \underbrace{x = v_0 + By}_{(*_1)}, \exists y \ge 0, 1^\top y \leqslant 1.$

Hence \exists ivertable matrix $A := (A_1, A_2) \in \mathbb{R}^{n \times n}$, s.t.

$$AB = \left[\begin{array}{c} A_1 \\ A_2 \end{array} \right] B = \left[\begin{array}{c} I \\ 0 \end{array} \right]$$

Multiply $*_1$ left on A, getting

$$A_1x = A_1v_0 + y$$

$$A_2x = A_2v_0 + \underbrace{A_2B_y}_{\text{here is }0}$$

Hence we see that

$$x \in C \Leftrightarrow (A_2 x = A_2 v_0) \land$$

$$(y = A_1 x - A_1 v_0, y \ge 0, 1^\top y \le 1)$$

Conclusion: $x \in C$ iff

$$A_2x = A_2v_0 \quad A_1x \succeq A_1v_0 \quad I^{\top}A_1x \leqslant 1 + I^{\top}A_1v_0$$

Example 2.3 Convex hull description of polynedra.

First we Generlize convex hull's definition. $\operatorname{conv} \{v_1 \cdots v_k\} = \{\theta_1 v_1 + \cdots + \theta_k v_k \mid \theta \succeq 0, 1^T \theta = 1\}$ We make only first m values add up to 1, i.e.

$$\{\theta_1 v_1 + \dots + \theta_k v_k \mid \theta_1 + \dots + \theta_m = 1, \quad \theta_i \geqslant 0, \quad i = 1 \dots k\}.$$

as m < k.

Example 2.4 Unit ball in l_{∞} -norm in \mathbb{R}^n .

$$C = \{x | |x_i| \leq 1, i = 1, 2, \dots, n\}.$$

= $\{x \mid \pm e_i^{\top} x \leq 1\}, e_i = i_{th} \text{ unit vector }$

To describe it in convex nl form needs 2^n points, each of them chooses from $\{-1,1\}$.

$$C = \{v_1, \cdots, v_{2^n}\}.$$

5. The pos. def. cone. We use \mathbb{S}^n to denote set of sym $n \times n$ mats. and $\mathbb{S}^n_+ = \{X \in \mathbb{S}^n (X \succeq 0)\}$

$$\mathbb{S}_{++}^n = \{ X \in \mathbb{S}^n \mid X \succ 0 \} .$$

Proposition 2.3 The set \mathbb{S}^n_+ is a cone: if $\theta_1, \theta_2 \geqslant 0$ and $A, B \in \mathbb{S}^n_+$, then $\theta_1 A + \theta_2 B \in \mathbb{S}^n_+$.

Proof. $\forall x \in \mathbb{R}^n$, we have

$$x^{\top} (\theta_1 A + \theta_2 B) x = \theta_1 x^{\top} A x + \theta_2 x^{\top} B x$$

if $A > 0, B \succ 0, \theta_1, \theta_2 > 0$.

3 Ops that preserve convexity

1. Intersection

Theorem 3.1 If S_1 and S_2 convex, then $S_1 \cap S_2$ convex. So is infinite set.

Idea. This is trivial. Let two points chosen in $S_1 \cap S_2$.

Example 3.1 • Positive semidefinite cone $\mathbb{S}^n_+:\bigcap_{z\neq 0}\underbrace{\left\{x\in\mathbb{S}^n\mid z^\top xz\geqslant 0\right\}}_{\text{half planes }\in\mathbb{S}^n}$

- Consider $S = \{x \in \mathbb{R}^m | |p(t)| \leq 1 \text{ for } |t| \leq \frac{\pi}{3} \}$ where $p(t) = \sum_{k=1}^m x_k \cos kt$, $S = \bigcap_{|t| \leq \frac{\pi}{3}} S_t$, $S_t := \{x \mid -1 \leq (\cos t, \cdots, \cos mt)^\top x\}$ $t, S = \bigcap \{H \mid \mathcal{H} \text{ Halfspace, } S \subseteq \mathcal{H}\}.$
- **2. Affine Functions** Recall. Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine if it is a sum of linear transform and a constant

• Linear transform: has the form $f(x) = Ax + b b \in \mathbb{R}^m$

Theorem 3.2 Suppose $S \subseteq \mathbb{R}^n$ is convex and $f : \mathbb{R}^n \to \mathbb{R}^m$ is affine function. Then the image of S under f $f(s) = \{f(x) \mid x \in S\}$ is convex. If $f : \mathbb{R}^k \to \mathbb{R}^n$ is an affine function, the inverse image of S under f:

$$f^{-1}(s) = \{ x \mid f(x) \in S \}$$

Reason. We may cancel out the difference between the croodinates.

Theorem 3.3 The projection of a convex set onto some of its croodinates is convex, ie. if $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ is convex, then $T = \{x_1 \in \mathbb{R}^m | (x_1, x_2) \in S \text{ for some } x_2 \in \mathbb{R}^n \}.$

i.e. if $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ is convex, then $T = \{x_1 \in \mathbb{R}^m | (x_1, x_2) \in S \text{ for some } x_2 \in \mathbb{R}^n \}$.

Reason[**proj-v**]: Affine map preserves convexity. Suppose $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, then given some point $P = (x_1, y_1) \in \mathbb{R}^{n+m}$, if you wanted to project P onto the X-space, you can simply obtain the projection of P i.e. $(\operatorname{Proj}_X(P))$ by multiplying $[I_n; [0]_{n \times m}] P$, where I_n is the $n \times n$ identity matrix, and $[0]_{n \times m}$ is the $n \times m0$ matrix. The $n \times (n+m)$ matrix $[I_n; [0]_{n \times m}]$ can be thought of as the affine map.

Definition 3.1 (Sum of sets) The sum of 2 sets is defined as $S_1 + S_2 = \{x + y \mid x \in S_1, y \in S_2\}$.

Theorem 3.4 If S_1, S_2 convex, then $S_1 + S_2$ is convex.

Proof. If S_1 and S_2 convex, so is the direct Cartesian product $S_1 \times S_2$. It follows directly Let linear function $f(x_1, x_2) = x_1 + x_2$. From the definition we see the case.

Definition 3.2 (Partial Sum) If $S_1 \in \mathbb{R}^n$, $S_2 \in \mathbb{R}^m$, the partial sum of S_1 and $S_2 \in \mathbb{R}^n \times \mathbb{R}^m$ defined as

$$S = \{(x, y_1 + y_2) \mid (x, y_1) \in S_1, (x, y_2) \in S_2\}.$$

Example 3.2 a) Polyhedron $\{x \mid Ax \leq b, C_x = d\}$ can be expressed as inv ing of Cartesian product of the nonnegative orthant and the origin under Affine function f(x) = (b - Ax, d - Cx)

$$\{x \mid Ax \le b, Cx = d\} = \{x \mid f(x) \in \mathbb{R}^m_{\downarrow} \times \{0\}\}.$$

b) Solution set of a linear matrix inequality in x

$$A(x) = x_1 A_1 + \dots + x_n A_n \le B$$

where $B, A_i \in \mathbb{S}^m$, Denoted as $\{x \mid A(x) \leq B\}$. is convex. for it is the inverse ing of positive semidefinite cone under affine transf. $f : \mathbb{R}^n \to \mathbb{S}^m$ by f(x) = B - A(x).

c) Hyperbolic cone. The set

$$\left\{ x \mid x^{\top} p_{n \times n} x \leqslant \left(c^{\top} x \right)^{2}, c^{\top} x \geqslant 0 \right\}$$

where $P \in \mathbb{S}^n_+$, and $c \in \mathbb{R}^n$ is convex, for it's inverse ing of second order cone $\{(z,t) \mid z^\top z \leq t^2, t \geqslant 0\}$ under affine function $f(x) = ((P^{1/2}x, C^Tx)$

d) Ellipsoid. The ellipsoid

$$\varepsilon = \left\{ x \mid (x - x_c)^\top P^{-1} (x - x_c) \le 1 \right\}$$

as $P \in \mathbb{S}^n_{++}$, is the ing of Euclidean ball $\{u \mid ||u||_2 \leqslant 1\}$ under affine mapping

$$f(u) = p^{1/2}u + x_c.$$

3. Linear fractional and persp funcs

Definition 3.3 (The persp func). $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ with domain dom $P = \mathbb{R}^n \times \mathbb{R}_{++}$ as P(z,t) = z/t

• \mathbb{R}_{++} – Set of positive int.

Remark • The perspective function scales or normalizes vectors s.t. last component is 1 , then drops the last component.

• This is actually describing a pin-hole camera.

Theorem 3.5 If $C \subseteq dom\ P$ is convex, then its ing

$$P(C) = \{ P(x) \mid x \in C \}$$

is convex.

Proof. Suppose $x = (\tilde{x}, x_{n+1}), y = (\tilde{y}, y_{n+1}) \in \mathbb{R}^{n+1}$ with $x_{n+1} > 0, y_{n+1} > 0$. Then for $\theta \in [0, 1]$

$$P(\underbrace{\theta x + (1 - \theta)y}_{\text{def of convex}}) = \frac{\theta \tilde{x} + (1 - \theta)\tilde{y}}{\theta x_{n+1} + (1 - \theta)y_{n+1}}$$

as $\mu = \frac{\theta x_{n+1}}{\theta x_{n+1} + (r-\theta)y_{n+1}} \in [0,1]$. and the corrspondance of θ and μ is monotonic.

Remark This Thm's converse

Th 2's converse. The inv ing of a convex set under the perse funct, is also convex. if $C \subseteq \mathbb{R}^n$ is convex, then

$$P^{-1}(c) = \left\{ (x,t) \in \mathbb{R}^{n+1} \left(\frac{x}{t} = c, t > 0 \right) \right\}$$

Definition 3.4 (Linear fractional functions) A linear fractional function is formed by composing persp. f_n . and affine f_n . Suppose $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$

$$g(x) = \begin{bmatrix} A \\ c^{\top} \end{bmatrix} x + \begin{bmatrix} b \\ d \end{bmatrix}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$.

Remark a) linear-fractional function as a matrix

$$Q = \begin{bmatrix} A & b \\ C^{\top} & d \end{bmatrix} \in \mathbb{R}^{(m+1)x(n+1)}$$

b) It's persp. func plus an affine transf.

4 Generlized inequalities

1. Proper cones and General inequalities

Definition 4.1 a convex cone $K \subseteq \mathbb{R}^n$ is a proper cone if

- *K* is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line) $x \in K$, – $x \in K \Longrightarrow x = 0$

Example 4.1 a) nonnegative orthant $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$

- b) positive semidefinite cone $K = \mathbf{S}^n_+$
- c) nonnegative polynomials on [0, 1]:

$$K = \left\{ x \in \mathbf{R}^n \mid x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1} \ge 0 \text{ for } t \in [0, 1] \right\}$$

Definition 4.2 (Generalized inequalities)(nonstrict and strict) generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \quad x \prec_K y \iff y - x \in int K$$

Example 4.2 • componentwise inequality $(K = \mathbf{R}_{+}^{n}) : x\mathbf{R}_{+}^{n}y \iff x_{i} \leq y_{i}, \quad i = 1, \dots, n$

• matrix inequality $(K = \mathbf{S}^n_+) : X \leq^n_+ Y \iff Y - X$ positive semidefinite

these two types are so common that we drop the subscript in \leq_K

Many properties are similar to < on \mathbb{R} .

2. Minimum and minimal elements

Definition 4.3 A point $x \in S$ is the minimum element of S if and only if

$$S \subseteq x + K$$

where x + K denotes all the points that are comparable to x and greater than or equal to x (according to \preceq_K). A point $x \in S$ is a minimal element if and only if

$$(x - K) \cap S = \{x\}.$$

Here x-K denotes all the points that are comparable to x and less than or equal to x (according to \leq_K); the only point in common with S is x.

5 Separating and supporting hyperplanes

1. Separating hyperplane theorem Idea: the use of hyperplanes or affine functions to separate convex sets that do not intersect

Theorem 5.1 if C and D are nonempty disjoint (i.e., $C \cap D = \emptyset$) convex sets, there exist $a \neq 0, b$ s.t.

$$a^T x \le b \text{ for } x \in C, \quad a^T x \ge b \text{ for } x \in D$$