WEEK 1: Entailment and other concepts

ENTAILMENT IN CONCEPT HIERARCHIES

Lion subclassOf Mammals

Everything that is true for mammals must be true for all lions, but not everything true for lions is true for all mammals.

Not a model (and not a counterexample):

snakeNamedY subclassOf Mammals

This statement is not true; therefore, it is not a model. If it was true, then it would have been a counterexample, but it is not.

TRUTH TABLE

Not all lines in a truth table make sense. Establishing validity is to ascertain which ones do.

	p	q	r	$\neg q$	$p \vee \neg q$	$p \vee \neg q \rightarrow r$	
	Т	Т	Т	F	Т	T	
	T	Т	F	F	T	F	
П	T	F	Τ	T	T	T	
I	T	F	F	T	T	F	
Ì	F	T	T	F	F	T	
	F	T	F	F	F	T	
	F	F	T	T	T	T	
	F	F	F	T	T	F	

e.g., Train is late (p), and there are no taxis (-q), but in one case Jane is late (r) and in the other she is not late.

EQUIVALENCE

EXCLUSIVE 'OR'

ф	ψ	φ?ψ
T	Т	F
Т	F	T
F	T	T
F	F	F

ф	ψ	φ?ψ
T	T	T
Т	F	T

DISJUNCTION ('OR')

TAUTOLOGY

Irrelevant, as premise is F

p	q	$q \rightarrow p$	$p \rightarrow (q \rightarrow p)$
T	Т	T	T
T	F	T	T
F	Т	F	T
F	F	T	T

IMPLICATION

If you start out with a true premise, then the implication should be true only when , the conclusion is also true. (This corresponds to the scenario in when $oldsymbol{\phi}$ is true, the truth of the implication is the same as the truth of ψ .)

If you start out with a false premise, then, as far as implication is concerned, you are free to conclude anything. (This corresponds to the scenario in when $oldsymbol{\phi}$ is false, the implication $\pmb{\varphi} \rightarrow \pmb{\psi}$ is true no matter what $\pmb{\varphi}$ is.)

CONTRADICTION

P	9	$p \rightarrow q$	$\neg q$	$p \land \neg q$	$(p \rightarrow q) \land (p \land \neg q)$
T	T	T	F	F	F
T	F	F	T	T	F
F	T	T	F	F	F
F	F	T	T	F	F

Interpretation(hasCapital)={Netherlands, Den Haag} This statement establishes a relationship between Netherland's name and Amsterdam, and therefore, it is not a model

of the knowledge base.