2022 年普通高等学校招生全国统一考试

理科数学

注意事项:

- 1. 答卷前, 考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
- 2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑。如需改动, 用橡皮擦干净后, 再选涂其他答案标号。回答非选择题时, 将答案写在答题卡上。写在本试卷上无效。
- 3. 考试结束后, 将本试卷和答题卡一并交回。

1 单项选择题

1. " $0 < \theta < \frac{\pi}{3}$ " 是 " $0 < \sin \theta < \frac{\sqrt{3}}{2}$ "的

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

2. 已知 $z = \frac{2i}{1-i} - 1 + 2i$, 则复数 z 在复平面内对应的点位于

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限

3. 设 a, b 为非零向量, $\lambda, \mu \in \mathbb{R}$, 则下列命题为真命题的是

A. 若 $\mathbf{a} \cdot (\mathbf{a} - \mathbf{b}) = 0$, 则 $\mathbf{a} = \mathbf{b}$

B. 若 $b = \lambda a$, 则 |a| + |b| = |a + b|.

C. 若 $\lambda \boldsymbol{a} = \mu \boldsymbol{b}$, 则 $\lambda = \mu = 0$

D. 若 |a| > |b|, 则 $(a + b) \cdot (a - b) > 0$

4. 已知函数 y = f(x) 的图象与函数 $y = 2^x$ 的图象关于直线 y = x 对称, g(x) 为奇函数, 且当 x > 0 时, g(x) = f(x) - x, 则 g(-8) =

A. -5

В. -6

C. 5

D. 6

5. 如图, 抛物线 $C:y^2=4x$ 的焦点为 F, 直线 l 与 C 相交于 A,B 两点,l 与 y 轴相交于 E 点. 已知 |AF|=7, |BF|=3,记 $\triangle AEF$ 的面积为 S_1 , $\triangle BEF$ 的面积为 S_2 ,则 S_1 和 S_2 之间满足的关系是

A. $S_1 = 2S_2$

B. $2S_1 = 3S_2$

C. $3S_1 = 4S_2$

D. $S_1 = 3S_2$

 $\begin{array}{c|c}
D_1 & G \\
C_1 \\
B_1 \\
B_1
\end{array}$ $\begin{array}{c|c}
E \\
C
\end{array}$ $\begin{array}{c|c}
E \\
C
\end{array}$

图 1: 第 6 题图

图 2: 第7题图

图 3: 第 8 题图

6. 已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2})$ 的部分图像如图 1所示,则

A.
$$f\left(x+\frac{\pi}{6}\right)$$
 是偶函数

B.
$$f\left(x-\frac{\pi}{6}\right)$$
 是偶函数

C.
$$f\left(x + \frac{2\pi}{3}\right)$$
 是奇函数

D.
$$f\left(x-\frac{2\pi}{3}\right)$$
 是奇函数

- 7. 如图 2,已知四棱柱 $ABCD-A_1B_1C_1D_1$ 的底面为平行四边形,E,F,G 分别为棱 AA_1,CC_1,C_1D_1 的中点,则
 - A. 直线 BC_1 与平面 EFG 平行, 直线 BD_1 与平面 EFG 相交
 - B. 直线 BC_1 与平面 EFG 相交, 直线 BD_1 与平面 EFG 平行
 - C. 直线 BC_1 、 BD_1 都与平面 EFG 平行
 - D. 直线 BC_1 、 BD_1 都与平面 EFG 相交
- 8. 某中学在学校艺术节举行"三独"比赛(独唱、独奏、独舞),由于疫情防控原因,比赛现场只有9名教师评委给每位参赛选手评分,全校4000名学生通过在线直播观看并网络评分,比赛评分采取10分制.某选手比赛后,现场9名教师原始评分中去掉一个最高分和一个最低分,得到7个有效评分如下表.对学生网络评分按[7,8),[8,9),[9,10]分成三组,其频率分布直方图如图3所示.则下列说法错误的是

教师评委	A	В	С	D	Е	F	G
有效评分	9.6	9.1	9.4	8.9	9.2	9.3	9.5

- A. 现场教师评委 7 个有效评分与 9 个原始评分的中位数相同
- B. 估计全校有 1200 名学生的网络评分在区间 [8,9) 内
- C. 在去掉最高分和最低分之前, 9 名教师评委原始评分的极差一定大于 0.7
- D. 从学生观众中随机抽取 10 人, 用频率估计概率, X 表示评分不小于 9 分的人数, 则 E(X) = 5
- 9. 已知 $\sqrt{3} \tan 20^\circ + \lambda \cos 70^\circ = 3$,则 λ 的值为

A. $\sqrt{3}$

B. $2\sqrt{3}$

C. $3\sqrt{3}$

D. $4\sqrt{3}$

10. 双曲线 C 的左、右焦点在 x 轴上,且分别为 F_1, F_2 . 点 P 在 C 的右支上,且不与 C 的顶点重合. 若 $|PF_1|=3\,|PF_2|$ 且 $PF_1\perp PF_2$,双曲线 C 的焦距为 2,则双曲线 C 的虚半轴长为

A. $\frac{3\sqrt{10}}{5}$

B. $\frac{\sqrt{15}}{5}$

C. $\frac{6\sqrt{10}}{5}$

D. $\frac{2\sqrt{15}}{5}$

11. 设 a, b 都为正数, e 为自然对数的底数, 若 $ae^{a+1} + b < b \ln b$, 则

A. ab > e

B. $b > e^{a+1}$

C. ab < e

D. $b < e^{a+1}$

12. 在矩形 ABCD 中,AB=2, $AD=2\sqrt{3}$,沿对角线 AC 将矩形折成一个大小为 θ 的二面角 B-AC-D. 若 $\cos\theta=\frac{1}{3}$,则点 B 与点 D 之间的距离是

A. $\sqrt{2}$

B. $2\sqrt{2}$

C. $2\sqrt{3}$

D. 4

2 填空题

- 13. 设函数 $f(x) = e^{x-1} + x^3$ 的图象在点 (1, f(1)) 处的切线为 l, 则直线 l 在 y 轴上的截距为____.
- 14. 已知 $\left(\sqrt{x} \frac{2}{x}\right)^n$ 的展开式中第 3 项为常数项, 则这个展开式中各项系数的绝对值之和为____.
- 15. 数列 $\{a_n\} = 1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots$,称为斐波那契数列 (Fibonacci sequence),该数列是由十三世纪意大利数学家莱昂纳多·斐波那契 (Leonardo Fibonacci) 以兔子繁殖为例子而引入,故又称为"兔子数列". 在数学上,斐波那契数列可表述为 $a_1 = a_2 = 1$, $a_n = a_{n-1} + a_{n-2} (n \geqslant 3, n \in \mathbf{N}^*)$. 设该数列的前 n 项和为 S_n ,记 $a_{2023} = m$,则 $S_{2021} = \underline{\hspace{1cm}}$.(用含 m 的代数式表示).
- 16. 设 $\triangle ABC$ 的内角 A, B, C 所对的边分别为 a, b, c, D 为 BC 边的中点. 定义函数 $f(x) = \sqrt{3} \sin \frac{x}{2} \cos \frac{x}{2} \cos^2 \frac{x}{2} + \frac{1}{2}$,若 $f(A) = \frac{1}{2}$, $a = \sqrt{3}$,则线段 AD 的长的取值范围是______.

3 解答题

3.1 必做题

17. (本题满分 12 分) 某公司为了解用户对其产品的满意度,从 A, B 两地区分别随机调查了 20 个用户,得到用户对产品的满意度评分如下:

 A 地区:
 62
 73
 81
 92
 95
 85
 74
 64
 53
 76

 78
 86
 95
 66
 97
 78
 88
 82
 76
 89

 B 地区:
 73
 83
 62
 51
 91
 46
 53
 73
 64
 82

 93
 48
 65
 81
 74
 56
 54
 76
 65
 79

- (I) 根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的 平均值及分散程度(不要求计算出具体值,给出结论即可);
- (II) 根据用户满意度评分,将用户的满意度从低到高分为三个等级:

满意度评分	低于 70 分	70 分到 89 分	不低于 90 分	
满意度等级	不满意	满意	非常满意	

记事件 C: "A 地区用户的满意度等级高于 B 地区用户的满意度等级",假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求 C 的概率.

- 18. (本题满分 12 分) 设等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 已知 $a_1 = 3$, $S_3 = 5a_1$.
 - (I) 求数列 $\{a_n\}$ 的通项公式.
 - (II) 定义 [x] 为不超过 x 的最大整数,例如 [0.3] = 0, [1.5] = 1. 设 $b_n = 1 + \frac{2}{S_n}$,数列 $\{b_n\}$ 的前 n 项和为 T_n ,当 $[T_1] + [T_2] + \cdots + [T_n] = 63$ 时,求 n 的值.
- 19. (本题满分 12 分) 如图 4,四棱锥 P-ABCD 的底面是正方形,平面 $PAB \perp$ 平面 ABCD, PB=AB, E 为 BC 的中点.
 - (I) 若 $\angle PBA = 60^{\circ}$, 证明: $AE \perp PD$;
 - (II) 求直线 AE 与平面 PAD 所成角的余弦值的取值范围.

图 4: 第 19 题图

20. (本题满分 12 分) 设椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,圆 $C: (x-2m)^2 + (y-4m)^2 = 1(m \neq 0)$,点 F_1, F_2 分别为 E 的左、右焦点,点 C 为圆心,O 为原点,线段 OC 的垂直平分线为 l. 已知 E 的 离心率为 $\frac{1}{2}$,点 F_1, F_2 关于直线 l 的对称点都在圆 C 上.

- (I) 求椭圆 E 的方程.
- (II) 设直线 l 与椭圆 E 相交于 A,B 两点,问:是否存在实数 m,使直线 AC 与 BC 的斜率之和为 $\frac{2}{3}$? 若存在,求实数 m 的值;若不存在,说明理由.
- 21. (本题满分 12 分) 已知函数 $f(x) = a \ln x \sin x + x$, 其中 a 为非零常数.
 - (I) 若函数 f(x) 在 $(0,+\infty)$ 上单调递增,求 a 的取值范围;
 - (II) 证明: 存在 $x_0 \in \left(\pi, \frac{3\pi}{2}\right)$, 使得 $\cos x_0 1 x_0 \sin x_0 = 0$, 且当 $x_0^2 \cdot \sin x_0 < a < 0$ 时, 函数 f(x) 在 $(0, 2\pi)$ 上恰有两个极值点.

3.2 选做题

- 22. [选修 4-4: 极坐标与参数方程](本题满分 10 分) 在直角坐标 xOy 中,圆 $C_1: x^2+y^2=4$,圆 $C_2: (x-2)^2+y^2=4$.
 - (I) 在以 O 为极点,以 x 轴正半轴为极轴的极坐标系中,分别写出圆 C_1, C_2 的极坐标方程,并求出圆 C_1, C_2 的交点坐标 (用极坐标表示);
 - (II) 求圆 C_1 与 C_2 的公共弦的参数方程.
- 23. [选修 4-5: 不等式选讲](本题满分 10 分) 已知 a > 0, b > 0, c > 0, 函数 f(x) = |x + a| + |x b| + c 的最小值为 4.
 - (I) 求 a+b+c 的值.
 - (II) 求 $\frac{1}{4}a^2 + \frac{1}{9}b^2 + c^2$ 的最小值.