Package 'R1magic'

August 27, 2023

Title Compressive Sampling: Sparse Signal Recovery Utilities

Type Package

Version 0.3.4

Date 2023-08-27	
Maintainer Mehmet Suzen <mehmet.suzen@physics.org></mehmet.suzen@physics.org>	
Depends stats, utils	
Description Utilities for sparse signal recovery suitable for compressed sensing. L1, L2 and TV penal ties, DFT basis matrix, simple sparse signal generator, mutual cumulative coherence between two matrices and examples, Lp complex norm, scaling back regression coefficients.	l-
License GPL (>= 3)	
LazyLoad yes	
NeedsCompilation no	
Author Mehmet Suzen [aut, cre]	
Repository CRAN	
Date/Publication 2023-08-27 16:20:02 UTC	
R topics documented:	
	2
	2
	э 4
	4
	5
	6
	6
objectiveL2	7
00	8
scaleBack.lm	8
	9
solveL1	
solveL2	0

2 DFTMatrix0

 sparseSignal
 11

 TV1
 11

Index 13

CompareL1_L2_TV1

Compare L1, L2 and TV on a sparse signal.

Description

Compare L1, L2 and TV on a sparse signal.

Usage

```
CompareL1_L2_TV1(N, M, per)
```

Arguments

N Size of the sparse signal to generate, integer.

M Number of measurements.

per Percentage of spikes.

Author(s)

Mehmet Suzen

DFTMatrix0

Generate Discrete Fourier Transform Matrix using DFTMatrixPlain.

Description

Generate Discrete Fourier Transform Matrix (NxN).

Usage

DFTMatrix0(N)

Arguments

N Integer value determines the dimension of the square matrix.

Value

It returns a NxN square matrix.

DFTMatrixPlain 3

Author(s)

Mehmet Suzen

See Also

DFTMatrixPlain

Examples

DFTMatrix0(2)

DFTMatrixPlain

Generate Plain Discrete Fourier Transform Matrix without the coefficient

Description

Generate plain Discrete Fourier Transform Matrix (NxN) without a coefficient.

Usage

DFTMatrixPlain(N)

Arguments

Ν

Integer value defines the dimension of the square plain DFT matrix.

Value

It returns a NxN square matrix.

Author(s)

Mehmet Suzen

Examples

DFTMatrixPlain(2)

4 Lnorm

GaussianMatrix

Generate Gaussian Random Matrix

Description

Generate Gaussian Random Matrix (zero mean and standard deviation one.)

Usage

```
GaussianMatrix(N, M)
```

Arguments

N Integer value determines number of rows.

M Integer value determines number of columns.

Value

Returns MxN matrix.

Author(s)

Mehmet Suzen

Examples

GaussianMatrix(3,2)

Lnorm

L-p norm of a given complex vector

Description

L-p norm of a given complex vector

Usage

```
Lnorm(X, p)
```

Arguments

X, a complex vector, can be real too.

p, norm value

mutualCoherence 5

Value

L-p norm of the complex vector

Author(s)

Mehmet Suzen

mutualCoherence

Cumulative mutual coherence

Description

Generate vector of cumulative mutual coherence of a given matrix up to a given order. \ Mutual Cumulative Coherence of a Matrix A at order k is defined as $M(A,k) = max_p max_{p \neq q, q \in \Omega} \sum_q |< a_p, a_q > |/(|a_p||a_q|)$

Usage

```
mutualCoherence(A, k)
```

Arguments

A A matrix.

k Integer value determines number of columns or the order of mutual coherence

function to.

Value

Returns k-vector

Author(s)

Mehmet Suzen

References

Compressed sensing in diffuse optical tomography \ M. Suzen, A.Giannoula and T. Durduran, \ Opt. Express 18, 23676-23690 (2010) \ J. A. Tropp \ Greed is good: algorithmic results for sparse approximation, \IEEE Trans. Inf. Theory 50, 2231-2242 (2004)

Examples

```
set.seed(42)
B <- matrix(rnorm(100), 10, 10) # Gaussian Random Matrix
mutualCoherence(B, 3) # mutual coherence up to order k</pre>
```

6 objectiveL1

			_	
ob ⁻	iect	1 V	61	ΙV
UU		. T V	CI	1 1

1-D Total Variation Penalized Objective Function

Description

1-D Total Variation Penalized Objective Function

Usage

```
objective1TV(x, T, phi, y, lambda)
```

Arguments

Initia	ıl value	of the	vector	to be	e recovered	. Sparse	representation	of the	vector (
Initia	ıl value	of the	vector	to be	e recovered	. Sparse	representation		of the	of the vector (

N x 1 matrix) X=Tx, where X is the original vector

T sparsity bases ($N \times N$ matrix) phi Measurement matrix ($M \times N$). y Measurement vector ($M \times 1$).

lambda Penalty coefficient.

Value

Returns a vector.

Author(s)

Mehmet Suzen

objectiveL1

Objective function for ridge L1 penalty

Description

Objective function for ridge L1 penalty

Usage

```
objectiveL1(x, T, phi, y, lambda)
```

Arguments

x, unknown vector
T, transform bases
phi, measurement matrix
y, measurement vector
lambda, penalty term

objectiveL2 7

Note

Thank you Jason Xu of Washington University for pointing out complex number handling

Author(s)

Mehmet Suzen

objectiveL2

Objective function for Tikhinov L2 penalty

Description

Objective function for Tikhinov L2 penalty

Usage

```
objectiveL2(x, T, phi, y, lambda)
```

Arguments

x, unknown vector

T, transform bases

phi, measurement matrix

y, measurement vector

lambda, penalty term

Note

Thank you Jason Xu of Washington University for pointing out complex number handling

Author(s)

Mehmet Suzen

8 scaleBack.lm

00

Frequency expression for DFT

Description

Frequency expression for DFT

Usage

```
oo(p, omega)
```

Arguments

p Exponent

omega Omega expression for DFT

Author(s)

Mehmet Suzen

scaleBack.lm

Transform back multiple regression coefficients to unscaled regression coefficients Original question posed by Mark Seeto on the R mailing list.

Description

Transform back multiple regression coefficients to unscaled regression coefficients Original question posed by Mark Seeto on the R mailing list.

Usage

```
scaleBack.lm(X, Y, betas.scaled)
```

Arguments

X, unscaled design matrix without the intercept, m by n matrix

Y, unscaled response, m by 1 matrix

betas.scaled, coefficients vector of multiple regression, first term is the intercept

Note

2015-04-10

solve1TV 9

Author(s)

M.Suzen

Examples

solve1TV

1-D Total Variation Penalized Nonlinear Minimization

Description

1-D Total Variation Penalized Nonlinear Minimization

Usage

```
solve1TV(phi,y,T,x0,lambda=0.1)
```

Arguments

Initial value of the vector to be recovered. Sparse representation of the vector (N x 1 matrix) X =Tx, where X is the original vector
sparsity bases (N x N matrix)
Measurement matrix (M x N).
Measurement vector (Mx1).
Penalty coefficient. Defaults 0.1

Value

Returns nlm object.

Author(s)

Mehmet Suzen

10 solveL2

solveL1	l1 Penalized Nonlinear Minimization
---------	-------------------------------------

Description

11 Penalized Nonlinear Minimization

Usage

```
solveL1(phi,y,T,x0,lambda=0.1)
```

Arguments

Tillial value of the vector to be recovered. Sparse representation of the vect	x0	Initial value of the vector to be recovered. Sparse representation of the ve	ctor (
--	----	--	--------

N x 1 matrix) X=Tx, where X is the original vector

T sparsity bases ($N \times N = 1$ matrix)

phi Measurement matrix ($M \times N$).

y Measurement vector ($M \times 1$).

lambda Penalty coefficient. Defaults 0.1

Value

Returns nlm object.

Author(s)

Mehmet Suzen

solveL2	12 Penalized Nonlinear Minimization	

Description

12 Penalized Nonlinear Minimization

Usage

```
solveL2(phi,y,T,x0,lambda=0.1)
```

Arguments

x0	Initial value of the vector to be recovered. Sparse representation of the vector (
	N x 1 matrix) $X=Tx$, where X is the original vector
T	sparsity bases (N x N matrix)
phi	Measurement matrix (M x N).
У	Measurement vector (Mx1).
lambda	Penalty coefficient. Defaults 0.1

sparseSignal 11

Value

Returns nlm object.

Author(s)

Mehmet Suzen

sparseSignal

Sparse digital signal Generator.

Description

Sparse digital signal Generator with given thresholds.

Usage

```
sparseSignal(N, s, b = 1, delta = 1e-07, nlev = 0.05, slev = 0.9)
```

Arguments

N Number of signal	components, vector size.
--------------------	--------------------------

s Number of spikes, significatn components

b Signal bandwidth, defaults 1.

delta Length of discrete distances among components, defaults 1e-7.

nlev Maximum value of insignificant component, relative to b, defaults to 0.05 slev Maximum value of significant component, relative to b, defaults to 0.9

Author(s)

Mehmet Suzen

TV1

1-D total variation of a vector.

Description

1-D total variation of a vector.

Usage

TV1(x)

Arguments

Χ

A vector.

12 TV1

Author(s)

Mehmet Suzen

Index

```
CompareL1_L2_TV1, 2
DFTMatrix0, 2
DFTMatrixPlain, 3
{\it Gaussian Matrix}, {\it 4}
{\tt Lnorm, 4}
{\it mutualCoherence}, {\it 5}
objective1TV, 6
{\tt objectiveL1, \color{red} 6}
objectiveL2, 7
00, 8
scaleBack.lm, 8
solve1TV, 9
solveL1, 10
solveL2, 10
sparseSignal, 11
TV1, 11
```