CLASSIFICATION OF COVERING SPACES

{ based covers of
$$X$$
} \iff {subgroups of $\pi_i(X)$ }
$$(\tilde{X}, \tilde{X}_{\circ}) \longmapsto p_*(\pi_i(\tilde{X}, \tilde{X}_{\circ}))$$

First step: find a cover corresponding to. trivial subgroup.

Theorem: X = CW-complex (or any path conn, locally path conn, Semilocally Simply conn.)

Then X has a universal cover X.

Proof: We construct \tilde{X} directly.

Points in $\tilde{X} \iff homotopy classes of paths from {\tilde{X}}_o$ (simple connectivity) $\iff homotopy classes of paths from X_o$ (homotopy lifting)

So define: $\widetilde{X} = \{ [\lambda] : j \text{ a path in } X \text{ at } X_o \}$ $p: \widetilde{X} \longrightarrow X$ $[\lambda] \longmapsto j(1)$

Topology on \widetilde{X}

 $\mathcal{U} = \{ \mathcal{U} \subseteq X : \mathcal{U} \text{ path conn.}, \mathcal{V}_1(\mathcal{U}) \rightarrow \mathcal{V}_1(X) \text{ trivial} \}$ For $\mathcal{U} \in \mathcal{U}$, $\mathcal{J} \text{ with } \mathcal{J}(1) \in \mathcal{U}$, $\mathcal{J} \text{ define}$ $\mathcal{U}_{[\mathcal{J}]} = \{ [\mathcal{J} \cdot \eta] : \mathcal{H} \text{ a path in } \mathcal{U}, \, \eta(0) = \mathcal{J}(1) \}$ $= \text{ open reighborhood of } [\mathcal{J}] \text{ in } X.$ exercise: The $\mathcal{U}_{[\mathcal{J}]}$ form a basis.

We now check the properties of a covering space.

- · Continuity. $p^{-1}(U)$ is a union of U[1]
- · Both connectivity. Let $[J] \in X$. $\int_t^t = \begin{cases} J \text{ on } [0,t] \\ \text{const. on } [t,1] \end{cases}$ is a path from [const] to [J].
- Simple connectivity. p_* injective, so suffices to show $p_* \mathcal{M}(\tilde{X}) = 1$.

 Let $j \in \text{Im } p_* \implies j$ lifts to a loop. The lift of j is $\{[jt]\}$ $|oop \implies [ji] = [fo]$ or [ji] = [const] $\implies j=1$ in $\mathcal{T}_i(X)$.

· Covening Space.

Note: If [j'] & U[j] then U[n] = U[j']
Thus, for fixed U & U, the U[j]
partition p-1(U)

 $p: U[3] \longrightarrow U$ homeomorphism since it gives a bijection of open sets $V[3] \subseteq U[7] \iff V \subseteq U$ for $V \in U$.

Theorem: For every $H \leq TL_1(X)$ there is a covering space $p: \tilde{X}_H \to X$ with $p_* \Upsilon_1(\tilde{X}_H, \tilde{X}_0) = 1-1$.

Proof: We realize \widetilde{X}_H as a quotient $\widetilde{X}_H = \widetilde{X}/\sim$: $[f] \sim [f']$ if f(1) = f'(1)and $[f, \overline{f'}] \in H$.

exercise: \sim is an equivalence relation.

Check XH a covering space:

Say [f]~[f'] with f(1)=f'(1) \in U \in U.

Then [f.n]~[f'.n] for any path \eta in U.

\Rightarrow U[f] identified with U[f']

Check $p_* \mathcal{T}_1(\tilde{X}_H) = H :$ Let $\tilde{X}_0 = [const].$ $f \in Im p_* \iff \{[ft]\} \text{ a loop in } \tilde{X}_H$ $\iff [f_0] \sim [f_1]$ i.e. $[const] \sim [f]$ $\iff f \in I_1.$

网

To finish classification, need to show XH unique.

Def: Covering spaces $p_1: \tilde{X}_1 - X$ and $p_2: \tilde{X}_2 \to X$ are isomorphic if there is a homeomorphism $f: \tilde{X}_1 \to \tilde{X}_2$ with $p_1 = p_2 f$ (i.e. f preserves fibers).

Prop: Two path connected covering spaces $p_i: (\tilde{X}_i, \tilde{X}_i) \to X$ and $p_2: (\tilde{X}_2, \tilde{X}_2) \to X$ are isomorphic if and only if $|m(p_i)_*| = |m(p_2)_*$.

Proof: \Rightarrow easy. \Leftarrow Lifting criterion \longrightarrow Lift p_1 to $\widetilde{p}_1: (\widetilde{X}_1,\widetilde{X}_1) \longrightarrow (\widetilde{X}_2,\widetilde{X}_2)$ with $p_2\widetilde{p}_1=p_1$ By symmetry \longrightarrow \widetilde{p}_2 with $p_1\widetilde{p}_2=p_2$. Note $\widetilde{p}_1\widetilde{p}_2$ is a lift of p_2 : $p_2\widetilde{p}_1\widetilde{p}_2=p_1\widetilde{p}_2=p_2$ Unique lifting $+\widetilde{p}_1\widetilde{p}_2(\widetilde{X}_2)=\widetilde{X}_2 \Longrightarrow \widetilde{p}_1\widetilde{p}_2=id$. Symmetry: $\widetilde{p}_2\widetilde{p}_1=id$. \Longrightarrow \widetilde{p}_1 a homeo.

Cor: Every subgroup of a free group is free.

SOME EXAMPLES OF GOVERING SPACES

$$T^2 \xrightarrow{(xm,xn)} T^2$$

Annulus - Möbius strip

$$5^2 \rightarrow \mathbb{RP}^2$$

$$\mathbb{C}^* \stackrel{\mathcal{Z}^*}{\longrightarrow} \mathbb{C}^*$$

THE FUNDAMENTAL THEOREM

Fix
$$p: (\tilde{X}, \tilde{X}_o) \rightarrow (X, x_o)$$

 $H = p_* \pi_1(\tilde{X}, \tilde{X}_o)$
 $N(H) = \text{normalizer in } \pi_1(X, x_o)$
 $G(\tilde{X}) = \text{group of deck transformations.}$

Say p is regular if $G(\tilde{X})$ acts transitively on $p^{-1}(x_0)$.

Regard
$$\tilde{X}_0$$
 as $[const]$
Then $p^1(X_0) = \{[f]: faloop\}$
By lifting criterion, T_1
 $\exists deck trans taking [const] to [f]$
 $\Leftrightarrow p_* \mathcal{N}_1(\tilde{X}, [f]) = p_* \mathcal{N}_1(\tilde{X}, [const])$
or $f p_* \mathcal{N}_1(\tilde{X}, [const]) f' = p_* \mathcal{N}_1(\tilde{X}, [const])$
i.e. $f \in N(H)$.

We thus have:

$$N(H) \to G(\tilde{X})$$

$$\uparrow \mapsto \tau_{\uparrow}$$

Note: well-defined by uniqueness of lifts.

Prop: X regular \iff H normal.

Both are exercises.

COVERING SPACES VIA ACTIONS

An action of a group G on a space Y is a homom: $G \rightarrow Homeo(Y)$

This is a covering space action if $\forall y \in Y \in A$ neighborhood U with $\{g(U): g \in G\}$ all distinct, disjoint.

Fact: The action of $G(\tilde{X})$ on \tilde{X} is a covering space action.

Prop: Y = connected CW-complex(or any path conn, locally path conn) $G \hookrightarrow Y \text{ via covering space action.}$ Then: (i) $p: Y \rightarrow Y/G$ a regular covering space. (ii) $G \cong G(Y)$

In particular $G \cong \pi_1(Y|G)/p_*\pi_1(Y)$ $Y = \pi_1(Y|G)/p_*\pi_1(Y)$ $Y = \pi_1(Y|G) \cong G$

Examples. I Z G R ~ S¹
Z G R × I ~ Mobius strip
Z² G R² ~ T²

Klein bottle
Z/2Z G S° ~ RP°
Z/mZ G M_{mk+1} ~ M_{k+1}

K(G,1) Spaces

Goal: groups \iff spaces (up to homotopy equiv.) homomorphisms \iff continuous maps (up to homotopy)

A K(G,1) space is a space with fundamental group G and contractible universal cover.

Examples. S^1, T^2 in general $\mathbb{Z}^n \leftrightarrow \mathbb{T}^n$

What about G= Z/mZ?

 $\mathbb{Z}/m\mathbb{Z}$ acts on $S^{\infty} = \text{unit sphere in } \mathbb{C}^{\infty}$ via $(\mathbb{Z}_{i}) \longmapsto e^{2\pi i m} (\mathbb{Z}_{i})$ which is a covering space action. (When m=2, quotient is $\mathbb{R}P^{\infty}$).

Why is S^{∞} contractible? Step 1: $f_{t}(x_{1},x_{2},...) = (1-t)(x_{i}) + t(0,x_{1},x_{2},...)$ Step 2: Straight line projection to (1,0,0,...).

Later: Any K(Z/mZ) is so-dim!

CONSTRUCTION OF K(G,1) spaces

Prop: Every group G has a K(G,1)

 P_{roof} : Define a Δ -complex EG with:

ordered n-simplices \iff (n+1)-tuples $[g_0,...,g_n]$ $g_i \in G$

To see EG contractible, slide each $x \in [g_0, ..., g_n]$ along line segment in $[e, g_0, ..., g_n]$ from x to [e]

(Note: This is not a deformation retraction since it moves [e] around [e,e].)

G G EG by left multiplication. exercise: This is a covering space action.

 \rightarrow BG = EG/G is a K(G,1).

This gives one K(G,1), and it is always so-dim. To study a group G, need a good K(G,1), e.g. $K(PBn,1) = G^n \setminus \Delta$.

HOMOMORPHISMS AS MAPS

Prop: X = connected CW - complex Y = K(G, 1)Every homomorphism $TL_1(X, x_0) \longrightarrow G$ is induced by a map $(X, x_0) \longrightarrow (Y, Y_0)$. The map is unique up to homotopy fixing Y_0 .

This implies:

Prop: The homotopy type of a CW-complex K(G,1) is uniquely determined by G.

Proof of 1st Prop: Assume first X has one O-cell, Xo.

Let $\varphi: \Pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$. Want $f: X \rightarrow Y$.

Step 0. f(x0) = 40

Step 1. Each edge of X is an element of $T_1(X, x_0)$. Define f(e) via φ .

Step 2. Let $\Delta = 2$ -cell with $\gamma: \partial \Delta \to X^{(1)}$ $f \gamma$ null-homotopic, since φ a homom. \longrightarrow can extend f to Δ .