Vamsi Kurakula

Topics In Algorithmic Game Theory Final

Defending from the Invader:

How the behaviors of humans affect their chances of survival

Modeling the Scenario

		Invader				
		Passive		Active		
		Human 2				
		Collaborate	Self-Interest	Collaborate	Self-Interest	
Human 1	Collaborate	a1, b1, c1	a2, b2, c2	a3, b3, c3	a4, b4, c4	
	Self-Interest	a5, b5, c5	a6, b6, c6	a7, b7, c7	a8, b8, c8	

a# - Payoff for Human 1

b# - Payoff for Human 2

c# - Payoff for invader

Items of Note:

- Human payoffs should be symmetrical
 - Payoff for Collaborative Self Interested =
 Self Interested Collaborative
- Invader actions are independent, can view the game as 2 matrices, passive and active matrix

Goals:

- Come up with simple list of variables that characterize the scenario
- Determine formulas using those variables to determine payoffs

Humanity Focused Variables

- V Resource to strengthen humanity to defend from the invader
- **C** Cost of self interest
- S Synergistic Factor of Collaboration.
 - The assumption here being that when more people collaborate, the better they can do to defend from the invader

Invader Focused Variables

- D Damage from an aggressive Invader
- A Cost of an Invader's Attack
- B How much Damaged is Reduced in Attack against a collaborative humanity

```
Collaborative - Collaborative - Passive
                                          Collaborative - Collaborative - Active
  Human 1 V/2 * S
                                            Human 1 (V/2 * S) - B
  Human 2 V/2 * S
                                            Human 2 (V/2 * S) - B
  Invader
         -VS
                                            Invader
                                                     -(VS - 2B + \Lambda)
Collaborative - Self Interested - Passive
                                          Collaborative - Self Interested - Active
  Human 1 0
                                            Human 1 -D
  Human 2 V
                                            Human 2 V-D
  Invader -V
                                            Invader
                                                     -(V-2D+Λ)
Self Interested - Collaborative - Passive
                                          Self Interested - Collaborative - Active
  Human 1 V
                                            Human 1 V-D
  Human 2 0
                                            Human 2
            -V
                                                      -(V-2D+A)
  Invader
                                            Invader
Self Interested - Self Interested - Passive
                                         Self Interested - Self Interested - Active
  Human 1 (V-C)/2
                                            Human 1 V/2 -C -D
  Human 2 (V-C)/2
                                            Human 2 V/2 -C -D
  Invader
            -(V-C)
                                            Invader -(V - 2C - 2D + A)
```

Collaborative - Collaborative - Passive Human 1 V/2 * S Human 2 V/2 * S Invader -VS Collaborative - Self Interested - Passive Human 1 0 Human 2 V

Invader -V Self Interested - Collaborative - Passive Human 1 V Human 2 0 Invader -V Self Interested - Self Interested - Passive

```
Invader -V

Self Interested - Self Interested - Passive
Human 1 (V-C)/2
Human 2 (V-C)/2
Invader -(V-C)
```

$\begin{array}{ll} \textbf{Collaborative - Collaborative - Active} \\ \textbf{Human 1} & (V/2 * S) - B \\ \textbf{Human 2} & (V/2 * S) - B \\ \textbf{Invader} & -(VS - 2B + \Lambda) \end{array}$

$\begin{array}{cccc} \textbf{Collaborative - Self Interested - Active} \\ \textbf{Human 1} & \textbf{-D} \\ \textbf{Human 2} & \textbf{V-D} \\ \textbf{Invader} & \textbf{-(V-2D+A)} \end{array}$

Self Interested - Collaborative - Active Human 1 V-D Human 2 -D Invader -(V-2D+ Λ)

```
Self Interested - Self Interested - Active Human 1 V/2 -C -D Human 2 V/2 -C -D Invader -(V - 2C - 2D +\Lambda)
```

Collaborative - Collaborative - Passive Human 1 V/2 * S Human 2 V/2 * S Invader -VS

Collaborative - Self Interested - Passive Human 1 0 Human 2 V Invader -V

Self Interested - Collaborative - Passive Human 1 V Human 2 0 Invader -V

```
Self Interested - Self Interested - Passive
Human 1 (V-C)/2
Human 2 (V-C)/2
Invader -(V-C)
```

Human 1 (V/2 * S) - BHuman 2 (V/2 * S) - B Invader $-(VS - 2B + \Lambda)$ Collaborative - Self Interested - Active Human 1 -D Human 2 V-D Invader -(V-2D+Λ) Self Interested - Collaborative - Active Human 1 V-D Human 2 -(V-2D+A) Invader Self Interested - Self Interested - Active

-(V - 2C - 2D + A)

Human 1 V/2 -C -D

Human 2 V/2 -C -D

Invader

Collaborative - Collaborative - Active

Specific Payoffs

Collaborate Self-Interest

Variables:

V-15 **D**-20 **C**-10 **A**-5

S-1.5 **B**-2

1 1011	Inv	ader				
Pass	ive	Active				
Human 2						
Collaborate	Self-Interest	Collaborate	Self-Interest			
11.25, 11.25, -22.5	0, 15, -15	9.25, 9.25, -23.5	-20, -5, 20			
15, 0, -15	2.5, 2.5, -5	-5, -20, 20	-22.5, -22.5, 40			

Human	1
	-

Analyzing the Scenario

- Modeling the strategy evolution between 2 Humans and 1 Invader through iterative games
- Modeling population dynamics of Humans and Invaders

Analyzing the Scenario

- Modeling the strategy evolution between 2 Humans and 1 Invader through iterative games
- Modeling population dynamics of Humans and Invaders

Iterative Game

- Players play game 10,000 times
- Humans:
 - Probability P of being collaborative
 - (1-P) of being self-Interested
- Invaders:
 - Probability P of being Passive
 - o (1-P) of being Active

- Probabilities update after every game
 - Each Agent can update their probabilities at different Learning Rates (Low, Medium, and High LRs)

Iterative Game

Collaborative Human - Initially 90% of being collaborative

Self Interested Human - Initially 10% of being collaborative

Invader - Initially 90% of being passive

Iterative Game

Analyzing the Scenario

- Modeling the strategy evolution between 2 Humans and 1 Invader through iterative games
- Modeling population dynamics of Humans and Invaders

- Envision a population which consists of:
 - H_C Proportion of collaborative Humans
 - H_S Proportion of Self-Interested Humans
 - I_P Proportion of Passive Invaders
 - I_A Proportion of Active Invaders
- H_C + H_S + I_P + I_A = 1

Given initial conditions of all populations. The change in the population can be defined by:

$$\frac{dx_i}{dt} = x_i(f_i - \phi).$$

f_i: The average fitness of population i, given the current proportions of the population

Phi: Overall average fitness of all populations

Initial State:

- Collaborative Human 1 Part
- Self Interested Human 1 Part
- Passive Invader 1 Part
- Active Invader 1 Part

Future Potential Work

Assumptions that can be adjusted

- Variable values
- Payoff Functions
- Is matrix approach even appropriate

Game Gimmicks additions

- Different types of Humans/Invaders
- Invaders not being able to repeatedly attack/having limited attacks
- Payoff Matrix changing over time

Future Potential Work

Assumptions that can be adjusted

- Variable values
- Payoff Functions
- Is matrix approach even appropriate

Game Gimmicks additions

- Different types of Humans/Invaders
- Invaders not being able to repeatedly attack/having limited attacks
- Payoff Matrix changing over time

Applications to other domains with multi-group dynamics

- Companies
- Sport teams
- Political Parties

Q&A