Point Set Topology

Emmanuel Flores

January 30, 2025

Problem 1 Recall that \mathbb{R} with the standard topology is a Hausdorff space. A subset $S \subset \mathbb{R}$ is said to be sequentially compact provided that every sequence in S has a subsequence that converges to a point in S.

- 1. Prove that S is sequentially compact if and only if S is closed and bounded. (This is known as the Bolzano-Weierstrass Theorem).
- 2. Prove that if S is compact in the standard topology of \mathbb{R} , then S is closed and bounded, hence sequentially compact. (Note: This has now established the Heine-Borel Theorem on \mathbb{R} with the standard topology: Every closed bounded subset of \mathbb{R} is compact.)
- 3. Prove that if S is sequentially compact, then it is compact in the standard topology of \mathbb{R} .
- **Proof 1** 1. Let's suppose that S is sequentially compact; to prove, S is bounded and closed. Indeed let $\{x_n\}$ be a convergent sequence in S, this is $x_n \to x$, where $\in S$, and because S is sequentially compact, it follows that there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$, such that $\{x_{n_k}\} \to x$, and from this, it follows that S is closed. Let's prove that it's also closed, and let's proceed by contradiction, this is, suppose that S is not bounded, it follows that there exists x_n such that $x_n > n$ for each n. And even more, let's focus on the convergent sequence $\{x_n\}$ because S is not bounded, it follows that every subsequence of $\{x_n\}$ is also unbounded which implies that it does not converge, and we've reached a contradiction. Therefore, it follows that S is also bounded. On the other hand, suppose that S is closed and bounded to prove that S is sequentially compact. Indeed, let $\{x_n\}$ be a bounded sequence, but every bounded sequence has a convergent subsequence. Thus, it follows that $x_n \to x$ with $x \in S$, and thus, S is sequentially compact.
 - 2. Let's prove that compactness implies boundedness. Indeed, let's suppose S is compact, and by contradiction, let's assume that S is unbounded, which means that for every number M>0, there is an element $x\in S$ such that x>M. Now let's consider the family of open intervals (-n,n) for all natural numbers n. This is a collection of intervals that covers the entire real line, in particular S. But because S is unbounded, it follows that for any finite family of these intervals, there will always be elements of S outside the largest interval, but this is a contradiction because we assume that S is compact. Therefore, S is bounded. Now, let's prove that compactness implies closedness, and as before, let's assume that S is compact, and let's proceed by contradiction that S is not closed, which implies that there exists a limit point x of S that is not in S. Now, for each point $s \in S$, let's consider the open interval (s-d(s,x)/2,s+d(s,x)/2), where d(s,x) is the distance between s and s. This collection of intervals covers s. And because s is a limit point, it follows that every neighborhood of s contains infinitely many points of s. Thus, any finite subcollection of these intervals will miss some points of s close to s, which, again, contradicts our assumption of s being compact. Therefore, it follows that s is closed.
 - 3. Let's prove that being sequentially compact implies compactness. And let's proceed by contradiction, let's assume that S is not compact, then there exists an open cover of S that has no finite subcover, and let's call it $\{U_{\alpha}\}$. From this, let's select a sequence as follows for each n let's choose $x_n \in S \setminus \bigcup_{i=1}^n U_i$ where U_i are finitely many open sets in the cover; we can do this because no finite subcover exists. Thus, the sequence $(x_n) \in S$ by construction, S is sequentially compact by assumption. Thus, this sequence must have a convergent sequence (x_{n_k}) with limit $x \in S$. But because $\{U_{\alpha}\}$ is an

open cover of S, it follows that x must belong to some open set in $\{U_{\alpha}\}$, but this is a contradiction because each term in the sequence was chosen to lie outside the finite subcover. Therefore, sequential compactness implies compactness.

Problem 2 For two points $x=(x_k)_{k=1}^n, y=(y_k)_{k=1}^n \in \mathbb{R}$, consider the following three functions:

$$d_1(x,y) = \sum_{k=1}^{n} |x_k - y_k|$$

$$d_2(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

$$d_{\infty}(x,y) = max\{|x_k - y_k|: k = 1, \dots, n.\}$$

- 1. Verify that each of these functions defines a metric on \mathbb{R}^n .
- 2. Prove that the three distances generate the same topology on \mathbb{R}^n .

Proof 2 1. Let's verify that each one is a metric. Indeed

$$d_1(x,y) = \sum_{k=1}^{n} |x_k - y_k| \ge 0,$$

because each one of the terms in the sum is greater or equal to zero. On the other hand

$$d_1(x,y) = \sum_{k=1}^n |x_k - y_k| = 0 \iff x_k = y_k \forall k \implies d_1(x,y) = 0 \iff x = y.$$

The metric is also symmetric, this is

$$d_1(x,y) = \sum_{k=1}^{n} |x_k - y_k| = \sum_{k=1}^{n} |-1||y_k - x_k| = \sum_{k=1}^{n} |y_k - x_k| = d_1(y,x)$$

Now, let's prove the triangle inequality, let $x, y, z \in \mathbb{R}^n$,

$$d_1(x,y) = \sum_{k=1}^n |x_k - y_k| = \sum_{k=1}^n |x_k - z_k + z_k - y_k| \le \sum_{k=1}^n |x_k - z_k| + |z_k - y_k| = d_1(x,z) + d_1(z,y)$$

Let's move to the metric d_2 , and again

$$d_2(x,y) \geq 0$$
 and $d_2(x,y) = 0 \iff x = y$.

 d_2 is also symmetric

$$d_2(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2} = \sqrt{\sum_{k=1}^{n} (y_k - x_k)^2} = d_2(y,x).$$

Finally, for the triangle inequality, we're going to make use of the Minkowsky inequality, which is a consequence of the Cauchy-Schwarz inequality, which in this case reads

$$\sqrt{\sum (x_k + y_k)^2} \le \sqrt{\sum x_k^2} + \sqrt{\sum y_k^2},$$

from this it follows that

$$\sum (x_k + y_k)^2 = \sum (x_k - z_k + z_k + y_k)^2 \le (\sum (x_k - z_k)^2)^{1/2} + (\sum (-z_k + y_i^2)^{1/2},$$

it follows that $d_2(x,y) \leq d_2(x,z) + d_2(z,y)$.

Finally, $d_{\infty}(x,y) = max\{|x_k - y_k|\} \ge 0$, and also $d_{\infty}(x,y) = max\{|x_k - y_k|\} = 0 \iff x = y$. On the other hand $d_{\infty}(x,y) = max\{|x_k - y_k|\} = max\{|y_k - x_k|\}$, which implies that

$$d_{\infty}(x,y) = d_{\infty}(y,x).$$

And finally, let $x, y, z \in \mathbb{R}^n$, thus

$$d_{\infty}(x,y) = \max\{|x_k - y_k|\} = \max\{|x_k - z_k + z_k - y_k|\} \leq \max\{|x_k - z_k|\} + \max\{|z_k - y_k|\},$$

therefore

$$d_{\infty}(x,y) \le d_{\infty}(x,z) + d_{\infty}(z,y)$$

2. In order to prove that they generate the same topology, we need to prove that the basic open sets generated by these topologies are the same.

Problem 3 A topological space (E, \mathcal{T}) is said to be locally compact provided that it is Hausdorff and every point in E has a least one compact neighborhood.

- 1. Prove that every compact space is locally compact.
- 2. Prove that E equipped with the discrete topology is locally compact.
- 3. Every closed subspace of a locally compact space is locally compact.
- **Proof 3** 1. Let's suppose that (E, \mathcal{T}) is compact. By definition, is Hausdorff, and even more, $\forall x \in X$ follows that E is a neighborhood of x, therefore (E, \mathcal{T}) is locally compact.
 - 2. Let's consider the topological space (E, \mathcal{T}) equipped with the discrete topology, to prove that it is compact. Let $x \in E$, and let's consider the singleton $\{x\}$, which is open. Now, in this topology every set is also closed, thus $\{x\}$ is both open and closed, which means that the $\{x\}$ equals to its closure. Finally, we know that any finite set in a topological space is compact, and since $\{x\}$ is finite, it's compact.
 - 3. Let E be a locally compact space and let F be a closed subspace of E. To prove; F is locally compact. Indeed, let $x \in F$, since E is locally compact, there exists a compact neighborhood K of x in E. This implies that there's an open set U in $E \ni x$, such that $U \subset K$. From this, let's consider the set $V = U \cap F$, which is an open set in the subspace topology on F, and it contains x. K is compact in E, and F is closed in E, because the intersection of a compact set and a closed set is always compact. Therefore, $V = U \cap F$ is compact in E. And since it's a subset of F, it's also compact in F.

Problem 4 Let d, d' be two metrics on a set E, and let $\psi:[0,\infty][0,\infty]$ be an increasing function whose derivative $\psi:[0,\infty)\to[0,\infty]$ is also increasing with $\psi(0)=\psi'(0)=0$. Suppose that for all $x,y\in E$

$$d'(x,y) \le \varphi(d(x,y))$$
 and $d(x,y) \le \varphi'(d'(x,y))$

Prove that these two distances generate the same topology on E.

Proof 4 Again, the idea is to show that for any open ball around a point x with respect to the metric d, we can find an open ball around the same point x with respect to the metric d' that is contained within the first ball, and vice-versa. Let $B_d(x,r)$ be the open ball centered at x with radius r with respect to the metric d, and similarly let denote $B_{d'}(x,r)$ the open ball with respect to the other metric.

Let $x \in E$ and r > 0. We want to prove that $B_{d'}(x,r) \subset B_d(x,r)$. Indeed, for any $y \in B_{d'}(x,r)$ we have $d'(x,y) < \epsilon$, ans using the given inequality we have that

$$d(x,y) \le \psi'(d'(x,y)) < \psi'(\epsilon),$$

but because ψ' is an increasing function and $\psi'(0) = 0$ we can choose ϵ small enough such that $\psi'(\epsilon) < r$, which ensures that d(x,y) < r, and from this we have $y \in B_d(x,r)$, therefore $B_{d'}(x,r) \subset B_d(x,r)$.

Now, let's prove the other contention. Let $x \in E$ and r > 0. We want to find a $\delta > 0$ such that $B_d(x,\delta) \subset B_{d'}(x,r)$. Indeed for any $y \in B_d(x,\delta)$ we have $d(x,y) < \delta$, and again, using the given inequality we have

$$d'(x,y) \le \psi(d(x,y)) \implies d'(x,y) \le \psi(d(x,y)) < \psi(\delta),$$

and as before, because ψ is increasing and $\psi(0) = 0$ we can choose δ small enough such that $psi(\delta) < r$, which ensures that d'(x,y) < r, and hence $y \in B_{d'}(x,r)$, and therefore $B_{d}(x,\delta) \subset B_{d'}(x,r)$.

Problem 5 Let (A_n) be a decreasing sequence of subsets of R, each of which is a finite union of pairwise disjoint closed intervals. We also assume that each of the intervals making up A_n contains exactly two of the intervals which make up A_{n+1} , and that the diameter of these intervals tends to 0 with 1/n. Show that the set $A = \bigcap_n A_n$ is a compact set without any isolated points.

Proof 5 Let's prove that A is compact. Indeed, each A_n is a finite union of closed intervals, thus is closed, and even more, the intersection of closed sets is closed, so $A = \cap_n A_n$ is closed. On the other hand, since (A_n) is decreasing, and because A_1 is a finite union of pairwise disjoint closed intervals, it follows that it is bounded, and from this, we have that all A_n and their intersection are bounded. Using Heine-Borel Theorem it follows that the $A = \cap_n A_n$ is compact. Now, let's prove that is has no isolated points. Indeed, let $x \in A$, and we need to show that this is not an isolated point, which means that $\forall \epsilon > 0$ there exists $y \in A$ with $y \neq x$ such that $|x-y| < \epsilon$. Now, since the diameter of A_n tends to 0 as n increases, we can find an n big enough such that the diameter of A_n is less than $\epsilon/2$, and even more, $x \in A$, and hence to A_n , thus there exist some closed interval $I_n \subset A$ such that $x \in I_n$. Now using the condition given I_n contains two disjoint closed intervals, let's call it I'_{n+1} and I''_{n+1} that make up A_{n+1} . Since $x \in I_n$, it follows that it must belong to either I'_{n+1} or I''_{n+1} , let's choose $x \in I'_{n+1}$ and let $y \in I''_{n+1}$. Since both I'_{n+1} and I''_{n+1} are contained in I_n and the diameter of I_n is less than $\epsilon/2$, and from this we have that $y \in A_n + 1 \subset A_n$, $y \neq x$, and even more $|x - y| \leq \delta(I_n) < \epsilon/2$, where δ stands for diameter, and from this we have that $x \in A_n$ not an isolated point, and since x was arbitrary it follows that A has no isolated points.