Exercise sheet 2 CompMeta

By Martin Lundfall and Denis Erfurt

April 27, 2016

Contents

Exa	imple theory file for getting acquainted with Isabelle
1.1	Terms
1.2	Types
1.3	Constants
1.4	Terms and Formulas
	1.4.1 Example formula 1
	1.4.2 Example formula 2
	1.4.3 Example formula 3
1.5	Proofs
	1.5.1 Proofs with handy keywords
	1.5.2 Proofs with labels
	1.5.3 Using the proofs
1.6	Exercise 1
1.7	Exercise 2
A F	Hilbert Proof Calculus for Propositional Logic (PL)
2.1	Logical Connectives for PL
	2.1.1 Primitive Connectives
	2.1.2 Further Defined Connectives
2.2	Hilbert Axioms for PL
	2.2.1 Axiom Schemes
	2.2.2 Inference Rules
2.3	A Proof
	Exercise 3
4.4	Exercise 9
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 A F 2.1

1 Example theory file for getting acquainted with Isabelle

1.1 Terms

We can write logical formulae and terms in the usual notation. Connectives such as \neg, \lor, \land etc. can be typed using the backslash \setminus followed by the name

of the sign. I.e. $\setminus not$ for \neg . Note that during typing $\setminus not$ at some point there will be a pop-up menu offering you certain auto completion suggestions that you can accept by pressing the tab key.

1.2 Types

All terms (and also constant symbols, variables etc.) are associated a type. The type *bool* is the type of all Boolean-values objects (e.g. truth values). New types can be inserted at will.

typedecl i — Create a new type i for the type of individuals

1.3 Constants

New constants can be defined using the *consts* keyword. You need to specify the type of the constant explicitly.

1.4 Terms and Formulas

In higher-order logic (HOL), terms are all well-formed expressions that can be expressed within the logic. A term has a unique type, such as in f A where the term f A has type i. Terms of type bool are called "formulas".

1.4.1 Example formula 1

If it's raining the street will get wet

```
consts raining :: bool — constant symbol for raining consts wet :: i \Rightarrow bool — predicate symbol for wet consts street :: i — constant symbol for the street

prop raining \longrightarrow wet(street) — raining implies street-is-wet prop wet(street) \longrightarrow raining
```

1.4.2 Example formula 2

```
consts good :: i \Rightarrow bool — predicate symbol for being good 
prop good(A) — A is good
```

A is a free variable of the above term, hence it is not closed

1.4.3 Example formula 3

```
prop \forall A. good(A) — everything is good
```

A is a a bound variable of the above term, which is universally qualified.

1.5 Proofs

We will learn how to formalize proofs in Isabelle throughout this course.

1.5.1 Proofs with handy keywords

```
theorem MyFirstTheorem:
   assumes A
   shows B \longrightarrow A

proof -
{
   assume B
   from assms have A by - Iterate the fact that A holds by assumptions using the - sign
}
then have B \longrightarrow A by (rule \ impI)
thus ?thesis.

qed
```

1.5.2 Proofs with labels

```
{\bf theorem}\ {\it Excluded Middle}:
shows A \lor \neg A
proof -
  {
     assume 1: \neg (A \lor \neg A)
     {
      assume 2: \neg A
      from 2 have 3: A \vee \neg A by (rule disj12)
      from 1 3 have 4: False by (rule notE)
     } note 5 = this
     from 5 have 6: A by (rule ccontr)
     from 6 have 7: A \lor \neg A by (rule disjI1)
     from 1 7 have False by (rule notE)
  from this have A \vee \neg A by (rule ccontr)
  thus ?thesis.
\mathbf{qed}
theorem Exm2:
 shows A \lor \neg A
by simp
```

1.5.3 Using the proofs

We can now derive simple facts of the above theorem.

```
corollary ThatFollowsDirectly: assumes A shows P(A) \longrightarrow A
```

1.6 Exercise 1

```
\mathbf{consts}\ ship::i
consts isBlue :: i \Rightarrow bool
consts isHuge :: i \Rightarrow bool
prop isHuge(ship) \land isBlue(ship)
consts I :: i
{f consts} \ SunShining :: bool
\mathbf{consts}\ \mathit{Sad}\ ::\ i\ \Rightarrow\ \mathit{bool}
\operatorname{\mathbf{prop}} \neg SunShining \longrightarrow Sad(I)
consts isRaining :: bool
prop isRaining \land \neg isRaining
consts going :: i \Rightarrow bool
\mathbf{consts}\ she :: i
\mathbf{prop} \ going(I) \longleftrightarrow going(she)
consts lovesIceCream :: i \Rightarrow bool
consts lovesChocolate :: i \Rightarrow bool
\mathbf{prop} \ \forall \ i.(lovesIceCream(i) \lor lovesChocolate(i))
\operatorname{prop} \exists i.(lovesIceCream(i) \land lovesChocolate(i))
consts CanPlayTogether :: i \times i \Rightarrow bool
prop \forall x. \exists y. (CanPlayTogether(x, y))
\mathbf{consts}\ \mathit{isMean}\ ::\ i \ \Rightarrow\ \mathit{bool}
prop \forall x. isMean(x) \longrightarrow \neg (\exists y. CanPlayTogether(x, y))
consts isDog :: i \Rightarrow bool
consts isCat :: i \Rightarrow bool
consts annoying :: (i \Rightarrow bool) \Rightarrow bool
\mathbf{prop} \ \forall \ P. \ annoying(P) \longrightarrow ((\forall \ x. \ isCat(x) \land P(x)) \longleftrightarrow (\forall \ y. \ isDog(y) \land P(y)))
1.7
         Exercise 2
```

```
theorem a: assumes 1: A \wedge B \longrightarrow C and
```

```
2: B \longrightarrow A and
  3: B
 \mathbf{shows}\ \mathit{C}
  proof -
   from 2 3 have 4: A by (rule mp)
   from 4\ 3 have 5: A \wedge B by (rule\ conjI)
   from 1 5 have C by (rule mp)
  thus ?thesis.
qed
theorem b:
 assumes 1: A
 shows B \longrightarrow A
 proof -
   {
     assume B
     from assms have A by -
   from this have B \longrightarrow A by (rule impI)
  thus ?thesis.
qed
theorem c:
  assumes 1: A \longrightarrow (B \longrightarrow C)
 \mathbf{shows}\ B\longrightarrow (A\longrightarrow C)
  proof -
   {
     assume 2: B
       assume 3: A
       from 1 3 have 4: B \longrightarrow C by (rule \ mp)
       from 4 2 have C by (rule mp)
     from this have A \longrightarrow C by (rule impI)
   from this have B \longrightarrow (A \longrightarrow C) by (rule impI)
   thus ?thesis.
qed
theorem d:
  assumes 1: \neg A
 shows A \longrightarrow B
  proof -
   {
     assume 2: A
       assume \beta: \neg B
       from 1 2 have False by (rule notE)
     }
```

```
from this have B by (rule ccontr)
   from this have A \longrightarrow B by (rule \ impI)
 thus ?thesis.
ged
theorem e:
shows A \lor \neg A
proof -
  {
    assume 1: \neg (A \lor \neg A)
      assume 2: \neg A
      from 2 have 3: A \vee \neg A by (rule disj12)
      from 1 3 have 4: False by (rule notE)
     } note 5 = this
     from 5 have 6: A by (rule ccontr)
     from 6 have 7: A \lor \neg A by (rule disjI1)
     from 1 7 have False by (rule notE)
  from this have A \vee \neg A by (rule ccontr)
  thus ?thesis.
qed
```

2 A Hilbert Proof Calculus for Propositional Logic (PL)

2.1 Logical Connectives for PL

2.1.1 Primitive Connectives

```
consts impl :: bool \Rightarrow bool \Rightarrow bool (infixr \rightarrow 49) consts not :: bool \Rightarrow bool (\neg)
```

In philosophy, we often assume that the only two logical connectives are the implication $op \to \text{and}$ the negation \neg . This is handy, since it simplifies proofs to only consider these two cases.

2.1.2 Further Defined Connectives

We can of course add further connectives that are to be understood as abbreviations that are defined in terms of the primitive connectives above.

```
abbreviation disj :: bool \Rightarrow bool (infixr \vee 50) where A \vee B \equiv \neg A \rightarrow B abbreviation conj :: bool \Rightarrow bool (infixr \wedge 51) where A \wedge B \equiv \neg (A \rightarrow \neg B)
```

2.2 Hilbert Axioms for PL

2.2.1 Axiom Schemes

axiomatization where

A2:
$$A \to (B \to A)$$
 and
A3: $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$ and
A4: $(\neg A \to \neg B) \to (B \to A)$

2.2.2 Inference Rules

axiomatization where

```
ModusPonens: (A \rightarrow B) \Longrightarrow A \Longrightarrow B
```

lemma True nitpick [satisfy, user-axioms, expect = genuine] oops

2.3 A Proof

```
thm A3[where A = A and B = (B \rightarrow A) and C = A]
thm A3[of A (B \rightarrow A) A]
```

We show that A1 is redundant

```
theorem A1Redundant:
```

```
shows A \to A
```

proof -

have 1:
$$(A \to ((B \to A) \to A)) \to ((A \to (B \to A)) \to (A \to A))$$
 by (rule $A3$ [where $B = (B \to A)$ and $C = A$])

have $2: A \to ((B \to A) \to A)$ by (rule A2[where $B = B \to A])$

from 1 2 have 3:
$$(A \to (B \to A)) \to (A \to A)$$
 by (rule ModusPonens)

have $4: (A \rightarrow (B \rightarrow A))$ by (rule A2)

from 3 4 have 5: $A \rightarrow A$ by (rule ModusPonens)

thus ?thesis.

qed

 ${\bf theorem}$

shows $A \to A$

 $\mathbf{by}\ (metis\ (full-types)\ A2\ ModusPonens)$ — Sledgehammer even finds a proof without using A3

2.4 Exercise 3

theorem transitivity:

assumes 1:
$$A \rightarrow B$$
 and

$$2: B \to C$$

shows $A \to C$

proof -

have
$$3: (A \to (B \to C)) \to (A \to B) \to (A \to C)$$
 by (rule A3)

```
have 4\colon (B\to C)\to (A\to (B\to C)) by (rule\ A2) from 4\ 2 have 5\colon A\to (B\to C) by (rule\ ModusPonens) from 3\ 5 have 6\colon (A\to B)\to (A\to C) by (rule\ ModusPonens) from 6\ 1 have 7\colon A\to C by (rule\ ModusPonens) thus ?thesis.
```