Theory of Automata and Formal Language

Lecture-39

Dharmendra Kumar
(Associate Professor)
Department of Computer Science and
Engineering United College of Engineering and
Research, Prayagraj March 30, 2021

Variations or types of TM

- Non-deterministic Turing Machine(TM)
- 2) Multi-tape Turing Machine(TM)
- 3) Multi-head Turing Machine(TM)
- 4) Multi-directional Turing Machine(TM)

Non-deterministic Turing Machine (TM)

- A non-deterministic TM is a Turing machine which, like nondeterministic finite automata, at any state it is in and for the tape symbol it is reading, can take any action selecting from a set of specified actions rather than taking one definite predetermined action.
- Even in the same situation it may take different actions at different times.
- It differs from deterministic TM only by transition function.
- The transition function of non-deterministic TM is defined as following:-

$$\delta: \mathbb{Q} \times \Gamma \rightarrow 2^{\mathbb{Q} \times \Gamma \times \{L, R\}}$$

Multi-tape Turing Machine(TM)

Model of TM

Finite State
Control

Multi-tape Turing Machine (TM)

This type of machine consists of n number of tapes. Since number of tapes is n, therefore the number of heads will also be n.

Transition function will be

$$\delta: Q \times \Gamma^n \rightarrow Q \times \Gamma^n \times \{L, R\}^n$$

Where

$$\Gamma^{n} = \Gamma \times \Gamma \times \Gamma \times \dots \times \Gamma \text{(upto n times)}$$

$$\{L, R\}^{n} = \{L, R\} \times \{L, R\} \times \{L, R\} \times \dots \times \{L, R\}$$

$$\text{(upto n times)}$$

Multi-head Turing Machine(TM)

Model of TM

Multi-head Turing Machine(TM)

This type of machine consists of one tape with n heads.

Transition function will be

$$\delta: Q \times \Gamma^n \rightarrow Q \times \Gamma^n \times \{L, R\}^n$$

Where

$$\Gamma^{n} = \Gamma \times \Gamma \times \Gamma \times \dots \times \Gamma \text{(upto n times)}$$

$$\{L, R\}^{n} = \{L, R\} \times \{L, R\} \times \{L, R\} \times \dots \times \{L, R\}$$

$$\text{(upto n times)}$$

Multi-dimensional Turing Machine(TM)

Multi-dimensional Turing Machine (TM)

- This type of machine consists of one multi-dimensional tape with one heads.
- The head of machine move in many directions.
- If tape is n-dimensional then head move in 2ⁿ directions.
- Transition function of two-dimensional TM is defined as

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\}$$

Where

L→ Left direction

R→ Right direction

 $U \rightarrow Up direction$

 $D \rightarrow$ Down direction

Recursive and Recursive Enumerable language

Recursive language:

A language L is said to be recursive if there exists a Turing machine M which accepts all the strings w belong into L and rejects all the strings which do not belong into L.

RE

Recursive Enumerable language:

A language L is said to be recursive enumerable if there exists a Turing machine M which accepts all the strings w belong into L and rejects or goes into an infinite loop for all the strings which do not belong into L.

Properties of Recursive and Recursive Enumerable languages

- If L is recursive language then \overline{L} is also recursive language.
- 2) If L and \overline{L} are recursive enumerable languages then L will be recursive language.
- 3) The union of two recursive languages is also recursive i.e. if L1 and L2 are recursive then L1U L2 will be also recursive.
- 4) The union of two recursive enumerable languages is also recursive enumerable i.e. if L1 and L2 are recursive enumerable then L1U L2 will be also recursive enumerable.
- The intersection of two recursive languages is also recursive i.e. if L₁ and L₂ are recursive then L₁∩ L2will be also recursive.
- 6) The intersection of two recursive enumerable languages is also recursive enumerablei.e. if L₁ and L₂ are recursive enumerablethen L₁∩ L₂ will be also recursive enumerable.

Theorem:If L is recursive language then complement of L i.e. \overline{L} is also recursive language.

Proof: Since L is recursive language, therefore there exists a TM which accepts all strings belong into L and rejects all strings which do not belong into L. Let this TM is M. Therefore M will be

Now, we construct a TM M' using M as above.

Clearly, if w is accepted by M then w is rejected by M' and if w is rejected by M then w is accepted by M'. Since L is accepted by M, therefore complement of L i.e. L is accepted by M'.

Since there exists a TM M' corresponding to \overline{L} , therefore \overline{L} is recursive language.

Theorem: If L and \overline{L} are recursive enumerable languages then L will be recursive language.

Proof: Since L and \bar{L} are recursive enumerable language, therefore there exists TM M1 and M2 corresponding to L and \bar{L} respectively. M1 accepts all strings belong into L and M2 accepts all strings belong into and \bar{L} . These are

Now, we construct a TM M using M1 and M2 as above.

Clearly, if w is accepted by M1 then w is also accepted by M and if w is accepted by M2 then w is rejected by M. That is, if $w \in L$ then it is accepted by M and if $w \notin L$ then it is rejected by M.

Therefore, M is a TM which accepts all strings of L and rejects all strings which are not belong into L.

Hence L is recursive language.

Theorem: The union of two recursive languages is also recursive i.e. if L1 and L2 are recursive then L1U L2 will be also recursive.

Proof: Since L1 and L2 are recursive languages then there exists TM M1 and M2 corresponding to L1 and L2 respectively are of the form:

Consider a string $w \in L_1 \cup L_2$. Then $w \in L_1$ or $w \in L_2$.

If $w \in L_1$ then it is accepted by M_1 . therefore it is also accepted by M. If $w \in L_2$ then it is accepted by M_2 . therefore it is also accepted by M.

But if $w \notin L_1 \cup L_2$ then w is neither accepted by M_1 nor M_2 . therefore it is also not accepted by M.

Hence M is a machine which accepts all strings belong into L₁U L₂ and rejects all strings which do not belong into L₁U L₂.

Therefore L₁U L₂ is recursive language.

Theorem: The union of two recursive enumerable languages is also recursive enumerable i.e. if L₁ and L₂ are recursive enumerable then L₁U L₂ will be also recursive enumerable.

Proof: Since L1 and L2 are recursive enumerable languages then there exists TM M1 and M2 corresponding to L1 and L2 respectively are of the form:

Consider a string $w \in L_1 \cup L_2$. Then $w \in L_1$ or $w \in L_2$.

If $w \in L_1$ then it is accepted by M_1 . therefore it is also accepted by M. If $w \in L_2$ then it is accepted by M_2 . therefore it is also accepted by M.

But if $w \notin L_1 \cup L_2$ then w is neither accepted by M_1 nor M_2 . therefore it is also not accepted by M.

Hence M is a machine which accepts all strings belong into L₁U L₂ and rejects all strings which do not belong into L₁U L₂.

Therefore L₁U L₂ is recursive language.

Theorem: The intersection of two recursive languages is also recursive i.e. if L₁ and L₂ are recursive then L₁ \cap L₂ will be also recursive.

Proof: Since L₁ and L₂ are recursive languages then there exists TM M₁ and M₂ corresponding to L₁ and L₂ respectively are of the form:

Consider a string w∈ $L_1 \cap L_2$. Then w ∈ L_1 and w ∈ L_2 .

Since $w \in L_1$ therefore it is accepted by M_1 . therefore it is also accepted by M. Since $w \in L_2$ therefore it is accepted by M_2 . Clearly, therefore it is also accepted by M.

But if $w \notin L_1 \cap L_2$ then w is either not belong into L1 or not belong into L2. therefore it is either not accepted by M_1 or not accepted by M_2 . Clearly, therefore w is not accepted by M.

Hence M is a machine which accepts all strings belong into $L_1 \cap L_2$ and rejects all strings which do not belong into $L_1 \cap L_2$.

Therefore $L_1 \cap L_2$ is recursive language.

Theorem: The intersection of two recursive enumerable languages is also recursive enumerablei.e. if L₁ and L₂ are recursive enumerablethen L₁ \cap L₂ will be also recursive enumerable.

Proof: Since L₁ and L₂ are recursive enumerable languages then there exists TM M₁ and M₂ corresponding to L₁ and L₂ respectively are of the form:

Consider a string $w \in L_1 \cap L_2$. Then $w \in L_1$ and $w \in L_2$.

Since $w \in L_1$ and $w \in L_2$, therefore it is accepted by both M_1 and M_2 . Clearly, therefore it is also accepted by M.

But if $w \notin L_1 \cap L_2$ then w is either not belong into L_1 or not belong into L_2 . In this case, we can not say that w is accepted or not accepted by M_1 or M_2 . Clearly, therefore we can also say that w is accepted or not by M.

Hence M is a machine which accepts all strings belong into $L_1 \cap L_2$ and rejects or goes into infinite loop for all strings which do not belong into $L_1 \cap L_2$.

Therefore $L_1 \cap L_2$ is recursive enumerable language.