

Packet Tracer - 设计和实施 VLSM 编址方案

拓扑

您将收到三种可能的拓扑之一。

地址分配表

设备	接口	IP 地址	子网掩码	默认网关
	G0/0			N/A
	G0/1			N/A
	S0/0/0			N/A
	G0/0			N/A
	G0/1			N/A
	S0/0/0			N/A
	VLAN 1			
	网卡			

目标

第1部分:检查网络要求

第 2 部分:设计 VLSM 编址方案

第3部分:为设备分配 IP 地址并检验连接

背景信息

在本练习中, 您将使用给定的 /24 网络地址来设计 VLSM 编址方案。根据一组要求, 您将分配子网和编址、配置设备和检验连接。

第1部分:分析网络要求

第 1 步: 确定所需子网的数量。

您将对网络地址	进行子网划分。	该网络的要求如下:
心付入了內分百七匹紅	たし し かんりり 。	以附近山安小州下

	•	LAN 要求使用			主机 IP 地址
	•	LAN 要求使用			主机 IP 地址
	•	LAN 要求使用			主机 IP 地址
	•	LAN 要求使用			主机 IP 地址
	网络	各拓扑中需要多少子网?			_
第	2 步	·: 确定每个子网的子网掩码信息。			
	a.	哪个子网掩码能够满足	所需的 IP	地址数量?	
		该子网支持多少可用主机地址?			
	b.	哪个子网掩码能够满足	所需的 IP	地址数量?	
		该子网支持多少可用主机地址?			
	C.	哪个子网掩码能够满足	所需的 IP	地址数量?	
		该子网支持多少可用主机地址?			
	d.	哪个子网掩码能够满足	所需的 IP	地址数量?	
		该子网支持多少可用主机地址?			
	e.	哪个子网掩码能够满足 IP 地址数量?	和		之 间 的 连 接 所 需 的
第	2	部分:设计 VLSM 编址方案			
第	1 步	。 :根据每个子网的主机数量划分网络		o	
	a.	使用第一个子网容纳最大的 LAN。			
	b.	使用第二个子网容纳第二大 LAN。			
	C.	使用第三个子网容纳第三大 LAN。			
	d.	使用第四个子网容纳第四大 LAN。			
	e.	使用第五个子网支持	_ 和		之间的连接。
笙	2 北	。 示: 记录 VLSM 子网。			
713	_)、所需主机数	数、然后是子网的网络地址、
	第-	成 子网表 ,列出子网说明(例如 一个可用主机地址以及广播地址。重复此操作,፤	直到列出所有:	<u></u> 也址。	2

子网表

子网说明	所需主机数量	网络地址/CIDR	第一个可用 主机地址	广播地址

第	3 步	步: 记录编址方案。	
	a.	将第一个可用 IP 地址分配给用于两个 LAN 链路和 WAN 链路的。	
	b.	将第一个可用 IP 地址分配给用于两个 LAN 链路的。为 WAN分配最后一个可用 IP 地址。	链路
	C.	为交换机分配第二个可用 IP 地址。	
	d.	为主机分配最后一个可用 IP 地址。	
第	3	部分: 为设备分配 IP 地址并检验连接	

第1步:	在	_ LAN 接口上配置 IP 编址。
第 2 步:	在	_ 上配置 IP 编址,包括默认网关。
第 3 步:	在	_ 上配置 IP 编址,包括默认网关。
第 4 步:	检验连通性。	
只能从	ι	和和
检验证	连接。但是,您应该能够对 地址分配 Ϡ	表 中列出的每个 IP 地址执行 ping 操作。

该网络上的大多数 IP 编址已配置。实施以下步骤以完成编址配置。

推荐评分规则

练习部分	存在问题的 地方	可能的 得分点	实际得分		
第 1 部分: 检查网络要求	第1步	1			
	第2步	4			
	第 1 部分总得分	5			
第 2 部分:设计 VLSM 编址方案					
	25				
	40				
	65				
Pac	30				
	100				

ID: