CSE435 – Robotics

Lab 3 – RobotBASIC Remote Control

Introduction

- The main goal of robotics is to make robots autonomous, allowing them to make decisions based on sensor data
- Before achieving autonomy, it's important to **manually control the robot** to understand its behavior and motion commands.
- This lab focuses on remote control programming using RobotBASIC.

Remote Control Styles

There are three general control modes:

- 1. Momentary Control (Hold-to-Move)
 - The robot moves **only while a button is pressed**.
 - Releasing the button stops motion.
- 2. Toggle Control (Press-to-Start/Stop)
 - Pressing a button starts movement, and pressing again stops it.
- 3. Command Execution Mode
 - The robot **executes a full instruction sequence** (like moving to a location) before waiting for the next command.

Programming Constructs in RobotBASIC

Variables

- Store numeric or text values.
- Names must begin with a letter and are case sensitive. Example: Distance, distance, and DISTANCE are different.

Keyboard Functions

- GetKey Var: Reads if any key is pressed (returns ASCII code).
- WaitKey "msg", Var: Pauses execution until a key is pressed.
- Ascii("A") → 65, Char(65) → "A"
- Input ExprS, Var: Lets user type input (string or number).

Mouse Function

- ReadMouse Var1, Var2, Var3
 - Gets the **cursor position** and **button status** (without pausing execution).

Random Numbers

• Random(n) → generates number from 0 to n–1.

Loops

Used to continuously check input and control robot motion.

For Loop

```
for I = 1 to 10
// code
next
```

While Loop

```
while <conditional expression, repeat if true>
  // code
wend
```

repeat .. until

```
repeat
// code
until <conditional expression, repeat if false>
```

Simple Remote Control Programs

Style 1 - Hold-to-Move Control

Manual control using keyboard keys:

```
rLocate 400, 300

while true
    waitKey "h: foward, n:right, v: left, b: back", key

if key = ascii("h")
    rForward 5
    elseif key = ascii("n")
    rTurn 5
    elseif key = ascii("v")
    rTurn -5
    elseif key = ascii("b")
    rForward -5
    endif
```

With sensors included (for obstacle detection):

- Uses rGpsX(), rGpsY(), and rCompass() for location display.
- Uses rBumper() to avoid collisions before moving.

Style 2 - Toggle Control

Robot starts/stops with repeated key presses:

```
rLocate 400, 300
prevKey = 0
lastValidKey = 0
status = 0
while true
   getKey key
   if key <> 0 and key <> prevKey
     if key = ascii("h") or key = ascii("n") or key = ascii("v") or key = ascii("b")
       lastValidKey = key
       status = 1 - status
     endif
   endif
    prevKey = key
   if status
     if lastValidKey = ascii("h")
       rForward 5
     elseif lastValidKey = ascii("n")
       rTurn 5
     elseif lastValidKey = ascii("v")
       rTurn -5
     elseif lastValidKey = ascii("b")
       rForward -5
     endif
    endif
   delay 10
wend
```

Complex Remote Control (Using Mouse)

- Combines mouse input, robot motion, and display updates.
- Allows moving to a clicked point or drawing paths.

Main Structure

- 1. Main Program calls subroutines:
 - Draw_Obstacles
 - RemoteControl

2. RemoteControl Subroutine

- Uses ReadMouse x,y,b to detect:
 - **Left-click:** Move robot to point (GotoPoint)
 - **Right-click:** Toggle pen up/down (drawing)
- o Displays position and compass data.
- 3. GotoPoint Subroutine

- Calculates direction and distance using:
 - PolarA(dx, dy) for angle
 - PolarR(dx, dy) for distance
- Uses rTurn and rForward commands for movement.
- Stops if a bumper sensor detects a collision.

Key RobotBASIC Functions Used

Function	Description
rForward(n)	Moves robot forward (negative = backward)
rTurn(angle)	Rotates robot
rGpsX(), rGpsY()	Current robot coordinates
rCompass()	Current heading
rBumper()	Detects collisions
rpen up/down	Controls drawing mode
rlnvisible	Makes robot body invisible for visual clarity