Measures and Their Random Reals

Jan Reimann (joint work with Theodore Slaman)

January 9, 2008

Algorithmic Randomness

Introduction

Algorithmic Randomness

Investigates individual random objects. Objects are usually infinite binary sequences (reals).

- Randomness: Obey statistical laws.
- Algorithmic: Only effective laws. (There are only countably many, so their intersection describes an almost sure event, hence random objects exist.)

Algorithmic Randomness

Introduction

Randomness and Computability

Recently a lot of progress in understanding the relation between two kinds of complexities for reals:

information theoretic randomness properties

computability theoretic degrees of unsolvability

Schnorr's Theorem

A real x is Martin-Löf random (with respect to the uniform distribution) iff

$$(\forall n) K(x \upharpoonright_n) \geq^+ n,$$

where K denotes prefix-free Kolmogorov complexity.

Algorithmic Randomness

Motivation

However, investigations mostly fixed the underlying measure, Lebesgue measure, and studied different notions of randomness by varying the effectiveness conditions.

Question

What is the relation between logical and measure theoretic complexity if one allows arbitrary (continuous) probability measures?

The answer to this question took an unexpected turn.

Effective Randomness

Probability Measures on Cantor Space

Measures and cylinders

(Borel) probability measures are uniquely determined by their values on basic clopen cylinders

$$N_{\sigma} := \{x \in 2^{\omega} : \ \sigma \subset x\}.$$

where $\sigma \in 2^{<\omega}$.

Representation of measures

The space $\mathfrak{P}(2^{\omega})$ of all probability measures on 2^{ω} is compact Polish. Furthermore, there is a computable surjection

$$\pi: 2^{\omega} \to \mathcal{P}(2^{\omega}).$$

Effective Randomness

Effective G_{δ} sets

A test for randomness is an effectively presented G_{δ} nullset.

Definition

Let μ be a probability measure on 2^{ω} .

• A μ -test relative to $z \in 2^{\omega}$ is a set $W \subseteq \mathbb{N} \times 2^{<\omega}$ which is c.e. (Σ_1^0) in z such that

$$\sum_{\sigma\in W_n}\mu(N_\sigma)\leq 2^{-n},$$

where
$$W_n = \{ \sigma : (n, \sigma) \in W \}$$

• A real x passes a test W if $x \notin \bigcap_n N(W_n)$, i.e. if it is not in the G_{δ} -set represented by W.

Effective Randomness

Definition of randomness

Definition

Suppose μ is a measure and $z \in 2^{\omega}$. A real x is μ -random relative to z if there exists a representation ρ_{μ} of μ such that x passes all μ -tests relative to $\rho_{\mu} \oplus z$.

- *n*-randomness: tests c.e. in $\rho_{\mu}^{(n-1)}$.
- Accordingly, define arithmetical randomness.

Randomness and Computability

The atomic case

Trivial Randomness

Obviously, every real x is trivially random with respect to μ if $\mu(\{x\}) > 0$, i.e. if x is an atom of μ .

If we rule out trivial randomness, then being random means being non-computable.

Theorem

For any real x, the following are equivalent.

- There exists a measure μ such that $\mu(\{x\}) = 0$ and x is μ -random.
- x is not computable.

Non-trivial Randomness

Making reals random

Features of the proof

- Conservation of randomness. If y is random for Lebesgue measure \mathcal{L} , and $f: 2^{\omega} \to 2^{\omega}$ is computable, then f(y) is random for \mathcal{L}_f , the image measure.
- A cone of L-random reals.
 By the Kucera-Gacs Theorem, every real above 0' is Turing equivalent to a L-random real.
- Relativization using the Posner-Robinson Theorem.
 If a real is not computable, then it is above the jump relative to some G.
- A compactness argument for measures measures.

Randomness for Continuous Measures

In the proof we have little control over the measure that makes \boldsymbol{x} random.

 In particular, atoms cannot be avoided (due to the use of Turing reducibilities).

Question

What if one admits only continuous (i.e. non-atomic) probability measures?.

The Class NCR

Let NCR_n be the set of all reals which are not n-random with respect to any continuous measure.

Question

What is the structure/size of NCR_n ?

- Is there a level of logical complexity that guarantees continuous randomness?
- Can we reproduce the proof that a non-computable real is random at a higher level?

Easy upper bound

 NCR_n is a Π_1^1 set.

- NCR_n does not have a perfect subset.
- Solovay, Mansfield: Every Π_1^1 set of reals without a perfect subset must be contained in L.

Randomness for Continuous Measures

Characterizing randomness for continuous measures

One can analyze the proof of the previous theorem to obtain a more recursion theoretic characterization of continuous randomness.

Theorem

Let x be a real. For any $z \in 2^{\omega}$, the following are equivalent.

- x is random for a continuous measure computable in z.
- There exists a functional Φ computable in z which is an order-preserving homeomorphism of 2^{ω} such that $\Phi(x)$ is \mathcal{L} -z-random.
- x is truth-table equivalent (relative to z) to a \(\mathcal{L}\)-z-random

This is an effective version of the classical isomorphism theorem for continuous probability measures.

Continuously Random Reals

An upper cone of random reals

An upper cone of continuously random reals

- Show that the complement of NCR_n contains a Turing invariant and cofinal (in the Turing degrees) Borel set.
- We can use the set of all x that are Turing equivalent to some $z \oplus R$, where R is (n+1)-random relative to a given z.
- These x will be n-random relative to some continuous measure and are T-above z.
- Use Martin's result on Borel Turing determinacy to infer that the complement of NCR_n contains a cone.
- The base of the cone is given by the Turing degree of a winning strategy in the corresponding game.

Continuously Random Reals

Location inside the constructible hierarchy

Martin's proof is constructive

- The direct nature of Martin's proof implies that the winning strategy for that game belongs to the smallest L_{β} such that L_{β} is a model of (a sufficiently large subset of) ZFC (plus relativization).
- The more complicated the game is in the Borel hierarchy, the more iterates of the power set of the continuum are used in producing the winning strategy – trees, trees of trees, etc.
- More precisely, the winning strategy (for Borel complexity n) is contained in

$$L_{\beta_n} \vDash \mathsf{ZFC}_n^-$$

where ZFC_n^- is Zermelo-Fraenkel set theory without the Power Set Axiom + "there exist n many iterates of the power set of $\mathfrak{P}(\omega)$ ".

Continuously Random Reals

Relativization via forcing

Posner-Robinson-style relativization

• Given $x \notin L_{\beta_n}$, using forcing we construct a set G such that $L_{\beta_n}[G] \models \mathsf{ZFC}_n^-$ and

$$y \in L_{\beta_n}[G] \cap 2^{\omega}$$
 implies $y \leq_T x \oplus G$

(independently by Woodin).

• If x is not in L_{β_n} , it will belong to every cone with base in the accordant $L_{\beta_n}[G]$, in particular, it will belong to the cone avoiding NCR_n. (Use absoluteness)

Corollary

For all n, NCR_n is countable.

NCR_n is Countable

Metamathematics necessary?

Question

Do we really need the existence of iterates of the power set of the reals to prove the countability of NCR_n , a set of reals?

We make fundamental use of Borel determinacy; this suggests to analyze the metamathematics in this context.

Borel Determinacy and Iterates of the Power Set

Friedman's result

Necessity of power sets - Friedman's result

Friedman showed

$$ZFC^- \not\vdash \Sigma_5^0$$
-determinacy.

(Martin improved this to Σ_4^0 .)

 The proof works by showing that there is a model of ZFC⁻ for which Σ₄⁰-determinacy does not hold. This model is L_{β0}.

We can proof a similar result concerning the countability of NCR_n .

Theorem

For every k,

 $\mathsf{ZFC}_k^- \nvdash$ "For every n, NCR_n is countable".

Features of the proof

NCR_n is not countable in L_{β_0}

- Show that there is an n such that NCR $_n$ is cofinal in the Turing degrees of L_{β_0} . (The approach does not change essentially for higher k.)
- The non-random witnesses will be the reals which code the full inductive constructions of the initial segments of L_{β_0} .

Randomness does not accelerate defining reals

Suppose that $n \geq 2$, $y \in 2^{\omega}$, and x is n-random for μ . Then, for i < n,

$$y \leq_{\mathsf{T}} x \oplus \mu$$
 and $y \leq_{\mathsf{T}} \mu^{(i)}$ implies $y \leq_{\mathsf{T}} \mu$.

Features of the proof

Example

For all k, $0^{(k)}$ is not 3-random for any μ .

Proof

- Suppose $0^{(k)}$ is 3-random relative to μ .
- 0' is computably enumerable relative to μ and computable in the supposedly 3-random $0^{(k)}$. Hence, 0' is computable in μ and so 0" is computablely enumerable relative to μ .
- Use induction to conclude $0^{(k)}$ is computable in μ , a contradiction.

 L_{α} 's and their master codes

Master codes

- L_{α} , $\alpha < \beta_0$, is a countable structure obtained by iterating first order definability over smaller L_{γ} 's and taking unions.
- Jensen's master codes are a sequence $M_{\alpha} \in 2^{\omega} \cap L_{\beta_0}$, for $\alpha < \beta_0$, of representations of these countable structures.
- M_{α} is obtained from smaller M_{γ} 's by iterating the Turing jump and taking arithmetically definable limits.
- Every $x \in 2^{\omega} \cap L_{\beta_0}$ is computable in some M_{α} .

Master codes as witnesses for NCR

- An inductive argument similar to the example $0^{(k)} \in NCR_3$ can be applied transfinitely to these master-codes.
- There is an n such that for all limit λ , if $\lambda < \beta_0$ then $M_\beta \in NCR_n$.

Question

What is the structure of NCR_1 ?

NCR_1 and Δ_1^1

By analyzing the complexity of a the winning strategy for (effectively) closed games we obtain that every member of NCR_1 is hyperarithmetic.

Countable Π_1^0 classes

- Kjos-Hanssen and Montalban: Every member of a countable Π_1^0 class is contained in NCR₁.
- It follows that NCR₁ is cofinal in the hyperarithmetical Turing degrees. (Kreisel, Cenzer et al.)

Looking for a rank function

The Kjos-Hanssen-Montalban result suggests that the complexity of NCR_1 could be studied by means of a Cantor-Bendixson analysis.

However, this is not possible:

Theorem

There exists an $x \in NCR_1$ that is not a member of any countable Π^0_1 class.

Non-ranked examples

Lemma 1

If a computable tree T does not contain a computable path, then no member of [T] can be an element of a countable Π_1^0 set.

Lemma 2

There exists a computable tree T such that T has no computable path and for all $\sigma \in T_{\infty}$, if there exist n branches along σ , then $0' \upharpoonright_n$ is settled by stage $|\sigma|$.

Lemma 3

If a recusive tree T contains a μ -random path, then $\mu[T] > 0$.

Non-ranked examples

Proof of the Theorem

- Suppose every infinite path in T is continuously random.
- Let x be a Δ_2^0 path in T. Suppose x is μ -random.
- Recursively in μ , we can compute a function $h: \mathbb{N} \to \mathbb{N}$ such that some element in [T] must have n-many branchings in T_{∞} by level h(n).
- Hence, by construction of T, μ computes 0', hence computes x, contradiction!

 Δ_2^0 reals

We can exploit the splitting behavior of continuous measures further to obtain more information of Δ_2^0 members of NCR₁.

Settling and splitting

• Let x be Δ^0_2 and let $c_x:\omega\to\omega$ be defined by

$$c_x(n) = \min\{s : x(n) \text{ is settled by stage } s\}$$

x can be computed from any function g which dominates c_x pointwise.

• When μ is a continuous measure, we can extract a granularity function $g_{\mu}:\omega\to\omega$ with the following property:

For all
$$\sigma$$
 of length $g_{\mu}(n)$, $\mu([\sigma]) < 1/2^n$.

The Structure of NCR $_1$ Δ_2^0 reals

Dominating the settling function

- If g_{μ} dominates c_{x} pointwise, then x is recursive in μ and hence not μ -random.
- An argument along this line shows, if g_{μ} is not eventually dominated by c_x , then x can be approximated in measure and is not μ -random.

Theorem

For each $\Delta_2^0 x$, there is an arithmetically defined sequence of compact sets H_n of continuous measures, such that if x is random for some continuous measure, then it is random for some μ in one of the H_n .

Other examples

This technique can be used to obtain examples in NCR₁

- Δ_2^0 and sufficiently generic,
- of minimal degree.
- of packing dimension 1.

On the other hand, reals cannot be in NCR₁ if they have a computable nontrivial lower bound on their Kolmogorov complexity.