First-order logic

Review

- Propositional logic
 - Simplest language
 - Its world only consists of <u>facts</u> (and "explicit rules")
- Very weak way to represent knowledge of complex environments with many objects in a concise way
 - Difficult to represent even the Wumpus world

$$B_{1,1} \Rightarrow P_{1,2} \vee P_{2,1}$$

Would like to say, "squares adjacent to pits are breezy" (not enumerate for <u>all</u> possible squares)

First-Order Logic

- Also called <u>first-order predicate calculus</u>
 - FOL, FOPC
- Makes stronger commitments
 - World consists of <u>objects</u>
 - Things with identities
 - e.g., people, houses, colors, ...

First-Order Logic

- Also called <u>first-order predicate calculus</u>
 - FOL, FOPC
- Makes stronger commitments
 - World consists of <u>objects</u>
 - Things with identities
 - e.g., people, houses, colors, ...
 - Objects have <u>properties/relations</u> that distinguish them from each other
 - e.g., Properties: red, round, square, ...
 - e.g., Relations: brother of, bigger than, inside, ...

First-Order Logic

- Also called <u>first-order predicate calculus</u>
 - FOL, FOPC
- Makes stronger commitments
 - World consists of <u>objects</u>
 - Things with identities
 - e.g., people, houses, colors, ...
 - Objects have <u>properties/relations</u> that distinguish them from each other
 - e.g., Properties: red, round, square, ...
 - e.g., Relations: brother of, bigger than, inside, ...
 - Have <u>functional</u> relations
 - Return the object with a certain relation to given "input" object
 - The "inverse" of a (binary) relation
 - e.g., father of, best friend

Examples of Facts as Objects and Properties or Relations

- "Squares neighboring the Wumpus are smelly"
 - Objects
 - Wumpus, squares
 - Property
 - Smelly
 - Relation
 - Neighboring

Syntax of FOL: Basic Elements

• Constant symbols for specific objects KingJohn, 2, OSU, ...

• Predicate (boolean) properties (unary) / relations (binary+) Brother(), Married(), >, ...

Functions (return objects)
 Sqrt(), LeftLegOf(), FatherOf(), ...

Variablesx, y, a, b, ...

Connectives

$$\wedge \vee \neg \Rightarrow \Leftrightarrow$$

Equality

Quantifiers

A 3

Atomic Sentences

- Collection of terms and relation(s) together to state facts
- Atomic sentence
 - predicate(term₁, ..., term_n)
 - Or $term_1 = term_n$
- Examples

```
Brother(Richard, John)
```

Married(FatherOf(Richard), MotherOf(John))

Complex Sentences

• Made from atomic sentences using <u>logical connectives</u>

$$\neg S, \quad S_1 \land S_2, \quad S_1 \lor S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2$$

Examples:

$$Older(John, 30) \Rightarrow \neg Younger(John, 30)$$

>(1,2) v \(\leq(1,2)\)

Quantifiers

- Currently have logic that allows objects
- Now want to express properties of entire collections of objects
 - Rather than enumerate the objects by name
- Two standard quantifiers
 - Universal ∀
 - Existential ∃

- "For all ..." (typically use implication \Rightarrow)
 - Allows for "rules" to be constructed
- ∀ <*variables*> <*sentence*>
 - Everyone at OSU is smart

- "For all ..." (typically use implication \Rightarrow)
 - Allows for "rules" to be constructed
- ∀ <variables> <sentence>
 - Everyone at OSU is smart $\forall x \ At(x, OSU) \Rightarrow Smart(x)$

- "For all ..." (typically use implication \Rightarrow)
 - Allows for "rules" to be constructed
- ∀ <variables> <sentence>
 - Everyone at OSU is smart $\forall x \ At(x, OSU) \Rightarrow Smart(x)$
- $\forall x P$ is equivalent to <u>conjunction</u> of all <u>instantiations</u> of P

- "For all ..." (typically use implication \Rightarrow)
 - Allows for "rules" to be constructed
- ∀ <variables> <sentence>
 - Everyone at OSU is smart $\forall x \ At(x, OSU) \Rightarrow Smart(x)$
- $\forall x \ P$ is equivalent to <u>conjunction</u> of all <u>instantiations</u> of P $(At(John, OSU) \Rightarrow Smart(John))$

- "For all ..." (typically use implication \Rightarrow)
 - Allows for "rules" to be constructed
- ∀ <variables> <sentence>
 - Everyone at OSU is smart $\forall x \ At(x, OSU) \Rightarrow Smart(x)$
- $\forall x \ P$ is equivalent to <u>conjunction</u> of all <u>instantiations</u> of P $(At(John, OSU) \Rightarrow Smart(John))$ $\land (At(Bob, OSU) \Rightarrow Smart(Bob))$

- "For all ..." (typically use implication \Rightarrow)
 - Allows for "rules" to be constructed
- ∀ <variables> <sentence>
 - Everyone at OSU is smart $\forall x \ At(x, OSU) \Rightarrow Smart(x)$
- $\forall x \ P$ is equivalent to <u>conjunction</u> of all <u>instantiations</u> of P $(At(John, OSU) \Rightarrow Smart(John))$ $\land (At(Bob, OSU) \Rightarrow Smart(Bob))$ $\land (At(Mary, OSU) \Rightarrow Smart(Mary)) \land ...$

- "There exists ..." (typically use conjunction Λ)
 - Makes a statement about <u>some</u> object (not all)
- **3** <*variables*> <*sentences*>

- "There exists ..." (typically use conjunction Λ)
 - Makes a statement about <u>some</u> object (not all)
- **3** <*variables*> <*sentences*>
 - Someone at OSU is smart
 - $\exists x \ At(x, OSU) \land Smart(x)$

- "There exists ..." (typically use conjunction Λ)
 - Makes a statement about <u>some</u> object (not all)
- **3** <*variables*> <*sentences*>
 - Someone at OSU is smart $\exists x \ At(x, OSU) \land Smart(x)$
- $\exists x P$ is equivalent to <u>disjunction</u> of all <u>instantiations</u> of P

- "There exists ..." (typically use conjunction Λ)
 - Makes a statement about <u>some</u> object (not all)
- **3** <*variables*> <*sentences*>
 - Someone at OSU is smart $\exists x \ At(x, OSU) \land Smart(x)$
- $\exists x P$ is equivalent to <u>disjunction</u> of all <u>instantiations</u> of P $(At(John, OSU) \land Smart(John))$
 - $\vee (At(Bob, OSU) \wedge Smart(Bob))$
 - \lor (At(Mary, OSU) \land Smart(Mary)) \lor ...

- "There exists ..." (typically use conjunction Λ)
 - Makes a statement about <u>some</u> object (not all)
- **3** <*variables*> <*sentences*>
 - Someone at OSU is smart $\exists x \ At(x, OSU) \land Smart(x)$
- ∃ x P is equivalent to <u>disjunction</u> of all <u>instantiations</u> of P
 (At(John, OSU) ∧ Smart(John))
 ∨ (At(Bob, OSU) ∧ Smart(Bob))
 ∨ (At(Mary, OSU) ∧ Smart(Mary)) ∨ ...
- Uniqueness quantifier
 ∃! x says a unique object exists (i.e. there is exactly one)

• Quantifier duality: Each can be expressed using the other

 $\forall x \ Person(x) \Rightarrow Likes(x, IceCream)$ "Everybody likes ice cream" cream"

• Quantifier duality: Each can be expressed using the other

```
\forall x \ Person(x) \Rightarrow Likes(x, IceCream) "Everybody likes ice cream" cream" \neg \exists x \ Person(x) \land \neg Likes(x, IceCream) "Not exist anyone who does not like ice cream"
```

Quantifier duality: Each can be expressed using the other

 $\forall x \; Person(x) \Rightarrow Likes(x, IceCream)$ "Everybody likes ice cream" cream" $\neg \exists x \; Person(x) \land \neg Likes(x, IceCream)$ "Not exist anyone who does not like

ice cream"

 $\exists x \ Person(x) \land Likes(x, Broccoli)$ "Someone likes broccoli"

Quantifier duality: Each can be expressed using the other

```
\forall x \; Person(x) \Rightarrow Likes(x, IceCream) "Everybody likes ice cream" cream" \neg \exists x \; Person(x) \land \neg Likes(x, IceCream) "Not exist anyone who does not like ice cream"
```

- $\exists x \ Person(x) \land Likes(x, Broccoli)$ "Someone likes broccoli"
- $\neg \forall x \ Person(x) \Rightarrow \neg Likes(x, Broccoli)$ "Not the case that everyone does not like broccoli"

• <u>Important</u> relations

$$\exists x \ P(x) = \neg \forall x \ \neg P(x)$$

$$\forall x \ P(x) = \neg \exists x \, \neg P(x)$$

$$P(x) \Rightarrow Q(x)$$
 is same as $\neg P(x) \lor Q(x)$

$$\neg (P(x) \land Q(x))$$
 is same as $\neg P(x) \lor \neg Q(x)$

Proof

P	Q	$P \Rightarrow Q$
False	False	TRUE
False	True	TRUE
True	False	FALSE
True	True	TRUE

P	Q	$\neg P$	$\neg P \lor Q$
False	False	True	TRUE
False	True	True	TRUE
True	False	False	FALSE
True	True	False	TRUE

$$P(x) \Rightarrow Q(x)$$

is same as
 $\neg P(x) \lor Q(x)$

Proof

P	Q	$P \wedge Q$	$\neg (P \land Q)$
False	False	False	TRUE
False	True	False	TRUE
True	False	False	TRUE
True	True	True	FALSE

$$\neg (P(x) \land Q(x))$$
is same as
$$\neg P(x) \lor \neg Q(x)$$

P	Q	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$
False	False	True	True	TRUE
False	True	True	False	TRUE
True	False	False	True	TRUE
True	True	False	False	FALSE

Proof

P	Q	$P \lor Q$	$\neg (P \lor Q)$
False	False	False	TRUE
False	True	True	FALSE
True	False	True	FALSE
True	True	True	FALSE

$$\neg (P(x) \lor Q(x))$$
is same as
$$\neg P(x) \land \neg Q(x)$$

P	Q	$\neg P$	$\neg Q$	$\neg P \land \neg Q$
False	False	True	True	TRUE
False	True	True	False	FALSE
True	False	False	True	FALSE
True	True	False	False	FALSE

Conversion Example

1. $\forall x \ Person(x) \Rightarrow Likes(x, IceCream)$

[use:
$$\forall x P(x) = \neg \exists x \neg P(x)$$
]

2. $\neg \exists x \neg (Person(x) \Rightarrow Likes(x, IceCream))$

[use:
$$P(x) \Rightarrow Q(x)$$
 is same as $\neg P(x) \lor Q(x)$]

3. $\neg \exists x \neg (\neg Person(x) \lor Likes(x, IceCream))$

[distribute negatives]

4. $\neg \exists x \text{ Person}(x) \land \neg \text{Likes}(x, \text{IceCream})$

Nested Quantifiers

```
\forall y \ \forall x
• \forall x \ \forall y is same as
                                                               (\forall x,y)
• \exists x \exists y is same as \exists y \exists x
                                                               (\exists x,y)
• \exists x \forall y is <u>not same</u> as \forall y \exists x
             \exists y \text{ Person}(y) \land (\forall x \text{ Person}(x) \Rightarrow \text{Loves}(x,y))
                                      "There is someone who is loved by
      everyone"
             \forall x \ Person(x) \Rightarrow \exists y \ Person(y) \land Loves(x,y)
                                      "Everybody loves somebody"
                                      (not guaranteed to be the same person)
```

Equality

- Equality symbol (=)
 - Make statements to the effect that two terms <u>refer to the same object</u>

"Henry is the Father of John"

Father(John) = Henry

"Spot has at least two sisters"

 $\exists x,y \ Sister(x, Spot) \land Sister(y, Spot) \land \neg(x=y)$

More Sentences

"Brothers are siblings"

$$\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$$

"One's mother is one's female parent"

```
\forall x,y \; Mother(x,y) \Rightarrow Female(x) \land Parent(x,y)
```

Kinds of Rules

- For "Squares are breezy near a pit"
 - Diagnostic rule
 - Lead from <u>observed effects</u> to <u>hidden causes</u>
 - "Infer cause from effect"

$$\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x,y)$$

- Causal "model-based" rule
 - Hidden world properties causes certain percepts
 - "Infer effect from cause"

$$\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$$

General Knowledge and Dealing with Categories

- Can we get further using less knowledge or more general knowledge?
- Classic example in AI is about knowledge and generality in sentences about <u>birds and flight</u>

Birds and Flight

Organize facts about birds as listing of facts

```
(robins fly)(gannets fly)(western grebes fly)(crows fly)(penguins don't fly)(ostriches don't fly)(common loons fly)(fulmars fly)(arctic loons fly)
```

- Approximately 8,600 species of birds in world
 - Big list
 - Small in comparison to world <u>population</u> of ~100 billion birds!

Birds and Flight

• Rather than extending table, simpler to represent most facts with single symbol structure representing that birds of *all* species fly

$$\forall x, s \ species(s, bird) \land inst(x, s) \Rightarrow flys(x)$$

• Reasoning about <u>classes</u>

Categorization

- Categorization is very basic cognitive mechanism
 - Treat different things as equivalent
 - Respond in terms of <u>class membership</u> rather than <u>individuality</u>
 - Fundamental to cognition and knowledge engineering
 - Reasoning by classes <u>reduces complexity</u>
- Overgeneralization
 - Treating <u>all</u> birds as equivalent about questions of <u>flying</u>
 - Need to handle exceptions
 - e.g., penguins (and ostriches) do not fly!

Category Exceptions

- How many circumstances determine whether <u>individual</u> birds can fly?
- Minsky, AAAI-85
 - "Cooked birds can't fly"
 - How about a cooked bird served in airline meal?
 - "Stuffed birds, frozen birds, and drowned birds cannot fly"
 - "Birds wearing concrete overcoats, and wooden bird decoys do not fly"
- Amount of special case knowledge increases
- Whether a particular bird can fly is determined by:
 - Its identity, condition, situation

Qualification Problem

- Want to separate <u>typical statements</u> from <u>exceptions</u>
- Qualification problem (McCarthy)
 - Proliferation of number of rules
 - Want to organize knowledge in general statements about <u>usual cases</u>
 - Categories are used to exploit <u>regularities</u> of the world
 - Then qualify statements describing their <u>exceptions</u>

Qualification Problem

- Abnormalcy predicates
 - Lay out qualifications for abnormal conditions
 - Example: "birds fly unless something abnormal about them" $(bird \ x)$ and $(not \ (ab_1 \ x)) \rightarrow (flies \ x)$
 - Classes of birds that are abnormal and conditions
 (disabled-bird x) → (ab₁ x)
 (fake-bird x) → (ab₁ x)
 (wears x concrete-overshoes) → (disabled-bird x)
 (dead x) → (disabled-bird x)
 (drowned x) → (dead x)

(wooden-image x) and (bird x) \rightarrow (fake-bird x)

 $(stuffed x) \rightarrow (dead x)$

 $(cooked x) \rightarrow (dead x)$

Categories and Exceptions

- Benefits of separating knowledge of typical from exceptions
 - Reduces number of sentences
 - Focus on <u>categories</u> of information
 - Guides introduction of new kinds of knowledge into categories to answer questions
- Basic goal to provide framework for <u>assumptions</u>
 - Default statements believed in absence of contradictory information
 - "Unless you know otherwise for a particular bird, assume the bird can fly"
- However, people have much richer model of what's going on for flying

Summary

- First-order logic
 - Increased expressive power over Propositional Logic
 - Objects and relations are semantic primitives
 - Syntax: constants, functions, predicates, equality, quantifiers
 - Two standard quantifiers
 - Universal ∀
 - Existential 3
- Dealing with categories and exceptions
 - Qualification problem