- 1. Aflați $m \in \mathbb{R}$ astfel încât vectorii $\bar{u} = m\bar{i} + 2\bar{j}$ și $\bar{v} = 2\bar{i} + 4\bar{j}$ să fie coliniari. (5 pct.)
 - a) $m = \frac{5}{4}$; b) m = 0; c) $m = \frac{3}{2}$; d) m = 1; e) m = 3; f) m = -1.
- 2. Un triunghi isoscel are unghiurile egale de mărime $\frac{\pi}{8}$ și laturile egale de lungime 1. Atunci înălțimea corespunzătoare uneia dintre laturile egale este de lungime: (5 pct.)
 - a) $\frac{\sqrt{2}}{2}$; b) 2; c) $\sqrt{2}$; d) $\frac{1}{2}$; e) 1; f) $\frac{\sqrt{3}}{2}$.
- 3. Numărul soluțiilor ecuației $\sin x = \frac{1}{2}$ din intervalul $[0, 2\pi]$, care verifică inegalitatea $\cos x < 0$ este: (5 pct.)
 - a) 4; b) 1; c) 5; d) 2; e) 0; f) 3.
- 4. Se dau vectorii \bar{u} și \bar{v} . Aflați produsul scalar al celor doi vectori știind că $||\bar{u}|| = 2$, $||\bar{v}|| = 3$ și unghiul format de cei doi vectori este $\frac{\pi}{2}$. (5 pct.)
 - a) 2; b) -2; c) -1; d) 0; e) 1; f) 4.
- 5. Distanța dintre punctele A(2,0) și B(1,3) este: (5 pct.)
 - a) $\sqrt{11}$; b) $\sqrt{5}$; c) 2; d) $\sqrt{10}$; e) 3; f) $\sqrt{7}$.
- 6. Calculați expresia $E = \frac{\sin 30^{\circ} \cdot \cos 30^{\circ}}{\cos 45^{\circ}}$. (5 pct.)
 - a) E = 0; b) $E = \frac{\sqrt{3}}{4}$; c) $E = \frac{\sqrt{2}}{2}$; d) E = -1; e) $E = \frac{1}{\sqrt{3}}$; f) $E = \frac{1}{2}$.
- 7. Se dă triunghiul ABC în care $\widehat{A}=60^{\circ}$, $\widehat{B}=75^{\circ}$ și AB=2. Atunci raza R a cercului circumscris triunghiului este: (5 pct.)
 - a) $R = 2\sqrt{2}$; b) $R = 3\sqrt{2}$; c) R = 4; d) R = 2; e) R = 1; f) $R = \sqrt{2}$.
- 8. Aflați $\sin x$ știind că $x \in (0, \frac{\pi}{2})$ și $\cos x = \frac{\sqrt{2}}{2}$. (5 pct.)
 - a) -1; b) 2; c) 1; d) 0; e) $\frac{\sqrt{5}}{4}$; f) $\frac{\sqrt{2}}{2}$.
- 9. Se dau vectorii $\bar{u}=3\bar{i}+4\bar{j}, \ \bar{v}=\bar{i}+2\bar{j}, \ \bar{w}=2\bar{i}+2\bar{j}$. Aflați parametrii reali a și b astfel încât $a\bar{u}+b\bar{v}=\bar{w}$. (5 pct.)
 - a) a = 2, b = 0; b) a = b = 1; c) a = b = -1; d) a = 0, b = 1; e) a = -2, b = -1; f) a = 1, b = -1.
- 10. Fie M mulţimea soluţiilor ecuaţiei $1 + \cos x \sin^2 x = 0$, care aparţin intervalului $[0, \frac{\pi}{2}]$. Atunci: **(5 pct.)** a) $M = \{0\}$; b) $M = \{\frac{\pi}{2}\}$; c) $M = \{\frac{3\pi}{4}\}$; d) $M = \{\frac{\pi}{3}, \frac{\pi}{6}\}$; e) $M = \{\frac{\pi}{6}\}$; f) $M = \{\frac{\pi}{3}\}$.
- 11. Dacă $m = \sin 105^{\circ} + \sin 75^{\circ}$, atunci: (5 pct.)
 - a) m = 1; b) m = -2; c) $m = \frac{\sqrt{6} \sqrt{2}}{2}$; d) $m = \frac{\sqrt{6} + \sqrt{2}}{2}$; e) $m = \frac{\sqrt{6}}{2}$; f) $m = \frac{\sqrt{2}}{2}$.
- 12. Calculați cateta unui triunghi dreptunghic isoscel a cărui arie este 18. (5 pct.)
 - a) 4; b) 2; c) $4\sqrt{2}$; d) 6; e) $2\sqrt{2}$; f) 1.
- 13. Fie A(2,1), B(0,3) şi C(3,4). Atunci aria triunghiului ABC este: (5 pct.)
 - a) $\sqrt{2}$; b) 8; c) $2\sqrt{2}$; d) 1; e) 4; f) 2.
- 14. Aflați valoarea lui $m \in \mathbb{R}$ pentru care punctul A(1,m) aparține dreptei de ecuație 2x + y = 1. (5 pct.)
 - a) m = -1; b) $m = \frac{1}{2}$; c) m = -2; d) m = 0; e) $m = \frac{3}{2}$; f) m = 1.
- 15. Distanța de la punctul A(1,2) la dreapta de ecuație x-y-2=0 este: (5 pct.)
 - a) 1; b) $\frac{1}{2}$; c) $\frac{3\sqrt{2}}{2}$; d) $\frac{\sqrt{2}}{2}$; e) $\sqrt{3}$; f) $\frac{7}{2}$.
- 16. Să se determine valoarea lui $m \in \mathbb{R}$ astfel încât dreapta de ecuație mx + 2y + 4 = 0 să fie paralelă cu dreapta 9x + 6y 1 = 0. (5 pct.)
 - a) m = 1; b) m = 3; c) $m = -\frac{3}{2}$; d) $m = \frac{3}{4}$; e) m = 4; f) m = -1.

- 17. Aflați simetricul B al punctului A(1,2) față de dreapta de ecuație x-y=0. (5 pct.)
 - a) B(-1,-5); b) B(3,4); c) B(2,1); d) B(1,0); e) B(2,2); f) B(0,1).
- 18. Se consideră triunghiul ABC cu laturile $AC=5,\,BC=10$ și $\widehat{C}=60^{\circ}.$ Atunci mărimea laturii AB este: (5 pct.)
 - a) $5\sqrt{3}$; b) $3\sqrt{3}$; c) $\sqrt{3}$; d) 5; e) $2\sqrt{3}$; f) $4\sqrt{3}$.