CSC373

Week 2: Greedy Algorithms

Announcements

First tutorial tomorrow!

- Details on Piazza
- First Assignment to be posted tomorrow (May 19) after tutorial

• Due June 1

Recap

Divide & Conquer

- > Master theorem
- \triangleright Counting inversions in $O(n \log n)$
- > Finding closest pair of points in \mathbb{R}^2 in $O(n \log n)$
- > Fast integer multiplication in $O(n^{\log_2 3})$
- > Fast matrix multiplication in $O(n^{\log_2 7})$
- \succ Finding k^{th} smallest element (in particular, median) in O(n)

Greedy Algorithms

- Greedy/myopic algorithm outline
 - \triangleright Goal: find a solution x maximizing/minimizing objective function f
 - \triangleright Challenge: space of possible solutions x is too large
 - Insight: x is composed of several parts (e.g., x is a set or a sequence)
 - Approach: Instead of computing x directly...
 - Compute it one part at a time
 - Select the next part "greedily" to get the most immediate "benefit" (this needs to be defined carefully for each problem)
 - Polynomial running time is typically guaranteed
 - Need to prove that this will always return an optimal solution despite having no foresight

- Problem
 - \triangleright Job j starts at time s_j and finishes at time f_j
 - \succ Two jobs i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ don't overlap
 - Note: we allow a job to start right when another finishes
 - Goal: find maximum-size subset of mutually compatible jobs

Greedy template

- Consider jobs in some "natural" order
- > Take a job if it's compatible with the ones already chosen

What order?

- Earliest start time: ascending order of s_i
- \triangleright Earliest finish time: ascending order of f_i
- \triangleright Shortest interval: ascending order of $f_i s_i$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

Example

- Earliest start time: ascending order of s_i
- Earliest finish time: ascending order of f_i
- Shortest interval: ascending order of $f_i s_i$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

Does it work?

Counterexamples for

earliest start time

shortest interval

fewest conflicts

- Implementing greedy with earliest finish time (EFT)
 - > Sort jobs by finish time, say $f_1 \le f_2 \le \cdots \le f_n$
 - $\circ O(n \log n)$
 - > For each job *j*, we need to check if it's compatible with *all* previously added jobs
 - \circ Naively, this can take O(n) time per job j, so $O(n^2)$ total time
 - \circ We only need to check if $s_i \geq f_{i^*}$, where i^* is the *last added job*
 - For any jobs i added before i^* , $f_i \leq f_{i^*}$
 - By keeping track of f_{i^*} , we can check job j in O(1) time
 - > Running time: $O(n \log n)$

- Proof of optimality by contradiction
 - > Suppose for contradiction that greedy is not optimal
 - > Say greedy selects jobs $i_1, i_2, ..., i_k$ sorted by finish time
 - > Consider an optimal solution $j_1, j_2, ..., j_m$ (also sorted by finish time) which matches greedy for as many indices as possible
 - \circ That is, we want $j_1 = i_1, ..., j_r = i_r$ for the greatest possible r
 - > Both i_{r+1} and j_{r+1} must be compatible with the previous selection $(i_1=j_1,\ldots,i_r=j_r)$

- Proof of optimality by contradiction
 - \triangleright Consider a new solution $i_1, i_2, \dots, i_r, i_{r+1}, j_{r+2}, \dots, j_m$
 - \circ We have replaced j_{r+1} by i_{r+1} in our reference optimal solution
 - \circ This is still feasible because $f_{i_{r+1}} \le f_{j_{r+1}} \le s_{j_t}$ for $t \ge r+2$
 - o This is still optimal because m jobs are selected
 - \circ But it matches the greedy solution in r+1 indices
 - This is the desired contradiction

- Proof of optimality by induction
 - \triangleright Let S_j be the subset of jobs picked by greedy after considering the first j jobs in the increasing order of finish time
 - \circ Define $S_0 = \emptyset$
 - > We call this partial solution *promising* if there is a way to extend it to an optimal solution by picking some subset of jobs j + 1, ..., n
 - $\circ \exists T \subseteq \{j+1,...,n\}$ such that $O_j = S_j \cup T$ is optimal
 - ▶ Inductive claim: For all $t \in \{0,1,...,n\}$, S_t is promising
 - > If we prove this, then we are done!
 - \circ For t = n, if S_n is promising, then it must be optimal (Why?)
 - \circ We chose t=0 as our base case since it is "trivial"

- Proof of optimality by induction
 - $\succ S_i$ is *promising* if $\exists T \subseteq \{j+1,...,n\}$ such that $O_j = S_i \cup T$ is optimal
 - ▶ Inductive claim: For all $t \in \{0,1,...,n\}$, S_t is promising
 - **Base case:** For t = 0, $S_0 = \emptyset$ is clearly promising
 - Any optimal solution extends it
 - > Induction hypothesis: Suppose the claim holds for t=j-1 and optimal solution \mathcal{O}_{j-1} extends \mathcal{S}_{j-1}
 - ▶ Induction step: At t = j, we have two possibilities:
 - 1) Greedy did not select job j, so $S_j = S_{j-1}$
 - Job j must conflict with some job in S_{j-1}
 - Since $S_{i-1} \subseteq O_{i-1}$, O_{i-1} also cannot include job j
 - $O_j = O_{j-1}$ also extends $S_j = S_{j-1}$

- Proof of optimality by induction
 - ▶ Induction step: At t = j, we have two possibilities:
 - 2) Greedy selected job j, so $S_i = S_{i-1} \cup \{j\}$
 - Consider the earliest job r in $O_{j-1} \setminus S_{j-1}$
 - Consider O_j obtained by replacing r with j in O_{j-1}
 - Prove that O_i is still feasible
 - O_i extends S_i , as desired!

Contradiction vs Induction

- Both methods make the same claim
 - \succ "The greedy solution after j iterations can be extended to an optimal solution, $\forall j$ "
- They also use the same key argument
 - \succ "If the greedy solution after j iterations can be extended to an optimal solution, then the greedy solution after j+1 iterations can be extended to an optimal solution as well"
 - For proof by induction, this is the key induction step
 - > For proof by contradiction, we take the greatest j for which the greedy solution can be extended to an optimal solution, and derive a contradiction by extending the greedy solution after j+1 iterations

Problem

- \triangleright Job j starts at time s_j and finishes at time f_j
- > Two jobs are compatible if they don't overlap
- Goal: group jobs into fewest partitions such that jobs in the same partition are compatible

One idea

- > Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
- Doesn't work (check by yourselves)

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures

373S22 - Deepanshu Kush

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures

- Let's go back to the greedy template!
 - > Go through lectures in some "natural" order
 - Assign each lecture to an (arbitrary?) compatible classroom, and create a new classroom if the lecture conflicts with every existing classroom
- Order of lectures?
 - \triangleright Earliest start time: ascending order of s_i
 - \triangleright Earliest finish time: ascending order of f_i
 - \triangleright Shortest interval: ascending order of $f_i s_i$
 - > Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

- At least when you
 assign each lecture to
 an arbitrary compatible
 classroom, three of
 these heuristics do not
 work.
- The fourth one works! (next slide)

EARLIESTSTARTTIMEFIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$ SORT lectures by start time so that $s_1 \le s_2 \le ... \le s_n$. $d \leftarrow 0$ — number of allocated classrooms For j = 1 to nIF lecture *j* is compatible with some classroom Schedule lecture *j* in any such classroom *k*. FLSE Allocate a new classroom d + 1Schedule lecture j in classroom d + 1. $d \leftarrow d + 1$ RETURN schedule.

Running time

- Key step: check if the next lecture can be scheduled at some classroom
- > Store classrooms in a priority queue
 - o key = latest finish time of any lecture in the classroom
- > Is lecture *j* compatible with some classroom?
 - \circ Same as "Is s_i at least as large as the minimum key?"
 - \circ If yes: add lecture j to classroom k with minimum key, and increase its key to f_i
 - \circ Otherwise: create a new classroom, add lecture j, set key to f_i
- > O(n) priority queue operations, $O(n \log n)$ time

- Proof of optimality (lower bound)
 - > # classrooms needed ≥ "depth"
 - depth = maximum number of lectures running at any time
 - \circ Recall, as before, that job *i* runs in $[s_i, f_i)$
 - > Claim: our greedy algorithm uses only these many classrooms!

- Proof of optimality (upper bound)
 - > Let d = # classrooms used by greedy
 - > Classroom d was opened because there was a lecture j which was incompatible with some lectures already scheduled in each of d-1 other classrooms
 - \triangleright All these d lectures end after s_i
 - \triangleright Since we sorted by start time, they all start at/before s_i
 - \triangleright So, at time s_i , we have d mutually overlapping lectures
 - \triangleright Hence, depth $\ge d = \#$ classrooms used by greedy
 - Note: before we proved that #classrooms used by any algorithm (including greedy) ≥ depth, so greedy uses exactly as many classrooms as the depth.

Interval Graphs

 Interval scheduling and interval partitioning can be seen as graph problems

Input

- \rightarrow Graph G = (V, E)
- Vertices V = jobs/lectures
- \triangleright Edge $(i, j) \in E$ if jobs i and j are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph coloring

Interval Graphs

- MIS and graph coloring are NP-hard for general graphs
- But they're efficiently solvable for "interval graphs"
 - > Graphs which can be obtained from incompatibility of intervals
 - In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
 - > Yes! Chordal graphs
 - Every cycle with 4 or more vertices has a chord

