1 pohybová rovnice diskretizované soustavy

"Zapište pohybovou rovnici diskretizované soustavy (analogicky rovnici rovnováhy ze statiky ve tvaru KU = F. Vysvětlete význam jednotlivých členů."

$$M\ddot{\delta} + C\dot{\delta} + K\delta - F = 0 \tag{1}$$

 δ - vektor uzlových posuvů

 $oldsymbol{M}$ - matice hmotnosti

 $oldsymbol{C}$ - matice tlumení

 $oldsymbol{K}$ - matice tuhosti

 ${m F}$ - vektor vnějších sil

2 diferenční operátor

"Vysvětlete pojem **diferenční operátor** (diferenční schéma). Jako příklad navrhněte diferenční schéma pro diferenciální operátory $\frac{dU}{dt}, \frac{d^2U}{dt^2}$."

Diferenční operátor je takový operátor, kterým dokážeme aproximovat derivaci funkce v daném bodě pomocí hodnot funkce v jeho okolí (moje definice).

Vychází z taylorova rozvoje

$$U(t_0 + \Delta t) \approx U(t_0) + \frac{dU(t_0)}{dt} \Delta t + \frac{1}{2} \frac{d^2 U(t_0)}{dt^2} \Delta t^2 + \dots$$
 (2)

kde první derivaci lze tímpádem aproximovat jako

$$\frac{d\mathbf{U}(t_0)}{dt} \approx \frac{\mathbf{U}(t_0 + \Delta t) - \mathbf{U}(t_0)}{\Delta t} \tag{3}$$

Dopředná diference prvního řádu

$$\frac{d\boldsymbol{U}_{t_0^+}}{dt} = \frac{\boldsymbol{U}_{t_0 + \Delta t} - \boldsymbol{U}_{t_0}}{\Delta t} \tag{4}$$

Zpětná diference prvního řádu

$$\frac{d\mathbf{U}_{t_0^-}}{dt} = \frac{\mathbf{U}_{t_0} - \mathbf{U}_{t_0 - \Delta t}}{\Delta t} \tag{5}$$

Centrální diference druhého řádu

$$\frac{d^2 U_{t_0}}{dt^2} = \frac{\frac{d U_{t_0^+}}{dt} - \frac{d U_{t_0^-}}{dt}}{\Delta t} = \frac{U_{t_0 + \Delta t} - 2U_{t_0} + U_{t_0 - \Delta t}}{\Delta t^2}$$
(6)

3 Konzistence matice hmotnosti

[&]quot;Vysvětlete pojmy konzistentní a nekonzistentní matice hmotnosti a vztah k explicitnímu integračnímu schématu. Jakou výhodu přináší užití nekonzistentní matice a za jakou cenu?"

Konzistentní matice hmotnosti vzniká sestavením z matic hmotnosti elementů ve tvaru $\mathbf{M}^e = \int_{(V_e)} \mathbf{N}^T \rho \, dV$ (konzistentním s energetickým přístupem), které obsahují i mimo diagonální prvky. Pak se rovnice netlumeného systému řeší rozkladem matice \mathbf{M} do diagonálního tvaru.

Existuje přístup ke konstrukci matice hmotnosti, který rozdělí hmotu elementu do uzlů (aproximace). Pak má matice hmotnosti systému (stejně jako jednotlivé matice elementů) pouze diagonální členy a názýváme ji nekonzistentní.

4 Modální transformace

"Definujte operátor (matici) modální transformace Φ , popište jeho vlastnosti a naznačte transformaci rovnice (*) do modálních souřadnic."

Je-li matice Φ řešením problému vlastních čísel

$$K\Phi = \Omega^2 M\Phi \tag{7}$$

kde ϕ_i jsou vlastní vektory a ω_i vlastní frekvence tvořící matice Φ a Ω

$$\mathbf{\Phi} = \begin{bmatrix} \boldsymbol{\phi}_i & \dots & \boldsymbol{\phi}_N \end{bmatrix}, \ \mathbf{\Omega}^2 = \operatorname{diag}(\omega_i^2), \quad i \in \langle 1, N \rangle$$
 (8)

platí

$$\mathbf{\Phi}^T M \mathbf{\Phi} = \mathbf{1} , \quad \mathbf{\Phi}^T K \mathbf{\Phi} = \mathbf{\Omega}^2$$
 (9)

Soustavu pohybovných rovnic systému s proporčním tlumením

$$M\ddot{\delta} + C\dot{\delta} + K\delta = F \tag{10}$$

lze zavedením modální souřadnice $q=\Phi\delta$ a vynásobením transponovanou maticí modální transformace Φ^T zleva, převést do tvaru

$$\ddot{\mathbf{q}} + \mathbf{\Gamma}\dot{\mathbf{q}} + \mathbf{\Omega}^2 \mathbf{q} = \mathbf{\Phi}^T \mathbf{F} , \quad \mathbf{\Gamma} = \operatorname{diag}(2\,\omega_i \xi_i) , \quad i \in \langle 1, N \rangle$$
(11)

kde ξ_i jsou poměrné útlumy.

Soustava se pak rozpadá na rovnice ve tvaru

$$\ddot{q}_i + 2\omega_i \xi_i \dot{q} + \omega_i^2 q = f_i , \quad f_i = \boldsymbol{\phi}_i \cdot \boldsymbol{F} , \quad i \in \langle 1, N \rangle$$
 (12)

5

$$dx = F dX \tag{13}$$

přičemž F je regulární tzn. det(F) > 0 a dále platí

$$F = 1 + Z$$
, $Z = \frac{\partial u}{\partial X}$ (14)

6

[&]quot;Popište princip Newton-Raphsonova iteračního schématu v přírůstkové metodě. Využijte grafické znázornění pro jeden stupeň volnosti a pro soustavu s mnoha stupni volnosti naznačte vývojový diagram."

u

1.
$$u = u_0$$

2.
$$\mathbf{F}^I = \mathbf{K}_T(\mathbf{u}) \mathbf{u}$$

3.
$$\mathbf{F}^N = \mathbf{F}^E - \mathbf{F}^I$$

4.
$$\|\mathbf{F}^N\| < \varepsilon$$
? return: nothing

5.
$$\Delta \boldsymbol{u} = \boldsymbol{K}_T(\boldsymbol{u})^{-1} \boldsymbol{F}^N$$

6.
$$\boldsymbol{u} = \boldsymbol{u} + \Delta \boldsymbol{u}$$

$$7.$$
 zpět na $2.$