Semaine 16 du v3 février 2025 (S6)

XIV - Espérance, variance, covariance etc

Le chapitre XIV est au programme en entier :

1 Espérance

- 1.1 Définition
- 1.2 Propriétés
- 1.3 Formule de transfert
- 1.4 Variables indépendantes
- 1.5 Lois usuelles
- 2 Variance
- 2.1 Définition
- 2.2 Propriétés
- 2.3 Lois usuelles
- 3 Covariance
- 4 Inégalités probabilistes
- 4.1 Inégalité de Markov
- 4.2 Inégalité de Bienaymé-Tchebychev
- 4.3 Loi faible des grands nombres

5 Fonctions génératrices

- 5.1 Fonctions génératrices des lois usuelles
- 5.2 Fonction génératrice, espérance et variance
- 5.3 Fonction génératrice d'une somme de variables aléatoires

6 Exercices à connaître

6.1 Calculs d'espérance et de variance (banque CCINP MP)

Une secrétaire effectue, une première fois, un appel téléphonique vers n correspondants distincts.

On admet que les n appels constituent n expériences indépendantes et que, pour chaque appel, la probabilité d'obtenir le correspondant demandé est p $(p \in]0,1[)$.

Soit X la variable aléatoire représentant le nombre de correspondants obtenus.

- 1) Donner la loi de X. Justifier.
- 2) La secrétaire rappelle une seconde fois, dans les mêmes conditions, chacun des n-X correspondants qu'elle n'a pas pu joindre au cours de la première série d'appels. On note Y la variable aléatoire représentant le nombre de personnes jointes au cours de la seconde série d'appels.
 - a) Soit $i \in [0, n]$. Déterminer, pour $k \in \mathbb{N}$, $P_{(X=i)}(Y = k)$.
 - b) Prouver que Z = X + Y suit une loi binomiale dont on déterminera le paramètre.

Indication : on pourra utiliser, sans la prouver, l'égalité suivante : $\binom{n-i}{k-i}\binom{n}{i}=\binom{k}{i}\binom{n}{k}$.

c) Déterminer l'espérance et la variance de Z.

6.2 Un couple de variables aléatoires (banque CCP MP)

Soient X et Y deux variables aléatoires définies sur un même espace probabilisé (Ω, \mathcal{A}, P) et à valeurs dans \mathbb{N} .

On suppose que la loi du couple (X,Y) est donnée par :

$$\forall (i,j) \in \mathbb{N}^2, \ P((X=i) \cap (Y=j)) = \frac{1}{e^{2^{i+1}j!}}$$

- 1) Déterminer les lois de X et de Y.
- 2) a) Prouver que 1+X suit une loi géométrique et en déduire l'espérance et la variance de X.
 - b) Déterminer l'espérance et la variance de Y.
- 3) Les variables X et Y sont-elles indépendantes?
- 4) Calculer P(X = Y).

6.3 Inégalité de Bienaymé-Tchebychev (banque CCINP MP)

- 1) Rappeler l'inégalité de Bienaymé-Tchebychev.
- 2) Soit (Y_n) une suite de variables aléatoires indépendantes, de même loi et et telle que $\forall n \in \mathbb{N}, Y_n$ admet une variance.

On pose
$$S_n = \sum_{k=1}^n Y_k$$
.

Prouver que :
$$\forall a \in]0, +\infty[, P\left(\left|\frac{S_n}{n} - E(Y_1)\right| \geqslant a\right) \leqslant \frac{V(Y_1)}{na^2}.$$

3) Application: On effectue des tirages successifs, avec remise, d'une boule dans une urne contenant 2 boules rouges et 3 boules noires. À partir de quel nombre de tirages peut-on garantir à plus de 95% que la proportion de boules rouges obtenues restera comprise entre 0,35 et 0,45?

Indication : considérer la suite (Y_i) de variables aléatoires de Bernoulli où Y_i mesure l'issue du $i^{\text{ème}}$ tirage.

6.4 Calculs d'espérance et de variance grâce à la fonction génératrice

Soit X une variable aléatoire à valeurs dans $\mathbb N$ dont la fonction génératrice est

$$G_X(t) = \frac{t}{2 - t^2}$$
 pour tout $t \in]-\sqrt{2}, \sqrt{2}[$

- 1) Calculer la loi de X.
- 2) Reconnaître la loi de $Y = \frac{1}{2}(X+1)$. En déduire l'espérance et la variance de X.

6.5 Détermination d'une fonction génératrice (banque CCINP MP)

Soit X une variable aléatoire à valeurs dans \mathbb{N} , de loi de probabilité donnée par : $\forall n \in \mathbb{N}$, $P(X = n) = p_n$.

La fonction génératrice de X est notée G_X et elle est définie par $G_X(t)$

$$E[t^X] = \sum_{n=0}^{+\infty} p_n t^n.$$

- 1) Prouver que l'intervalle]-1,1[est inclus dans l'ensemble de définition de G_X .
- 2) Soit X_1 et X_2 deux variables aléatoires indépendantes à valeurs dans \mathbb{N} .

On pose
$$S = X_1 + X_2$$
.
Démontrer que $\forall t \in]-1, 1[, G_S(t) = G_{X_1}(t)G_{X_2}(t):$

- a) en utilisant le produit de Cauchy de deux séries entières.
- b) en utilisant uniquement la définition de la fonction génératrice par $G_X(t) = E[t^X]$.

Remarque : on admettra, pour la question suivante, que ce résultat est généralisable à n variables aléatoires indépendantes à valeurs dans \mathbb{N} .

3) Un sac contient quatre boules : une boule numérotée 0, deux boules numérotées 1 et une boule numérotée 2.

Soit $n \in \mathbb{N}^*$. On effectue n tirages successifs, avec remise, d'une boule dans ce sac.

On note S_n la somme des numéros tirés.

Soit $t \in]-1,1[$.

Déterminer $G_{S_n}(t)$ puis en déduire la loi de S_n .

S'y ajoute, en révision, l'intégralité des chapitres suivants :

- II. Rappels et compléments d'élgèbre linéaire
- IV. Espaces vectoriels normés
- V. Valeurs propres et vecteurs propres
- VII. Réduction des endomorphismes

Les exercices à connaître sont les suivants :

2 Rappels et compléments d'élgèbre linéaire

2.1 Image d'une base par un endomorphisme

Soit F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie.

- 1) Déterminer une condition nécessaire et suffisante pour qu'il existe un endomorphisme u tel que Ker(u) = F et Im(u) = G.
- **2)** Construire un tel endomorphisme u avec $E=\mathbb{R}^3$, $F=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}$ dans \mathbb{R}^3 et $G=\{\lambda(2,-1,-1)\mid \lambda\in\mathbb{R}\}.$

2.2 Expression et éléments caractéristiques d'un projecteur ou d'une symétrie

1) Donner les éléments caractéristiques de l'application f définie sur \mathbb{R}^3 par :

$$f: \left\{ \begin{array}{cccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \longmapsto & \frac{1}{4} \begin{pmatrix} 3x & - & y & + & 2z \\ -x & + & 3y & + & 2z \\ x & + & y & + & 2z \end{pmatrix} \right. .$$

2) Donner l'expression de la symétrie par rapport à Vect(1,0,-1) et parallèlement à Vect(1,2,0),(1,1,-1).

2.3 « Inégalité triangulaire » et une autre inégalité autour du rang

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies et $u,v\in \mathscr{L}(E,F).$

- 1) a) Montrer que $rg(u+v) \leq rg(u) + rg(v)$.
 - **b)** En déduire que $|rg(u) rg(v)| \le rg(u+v)$.
- 2) On suppose que E=F, et dim E=n. Montrer l'encadrement :

$$\operatorname{rg}(u) + \operatorname{rg}(v) - n \leqslant \operatorname{rg}(u \circ v) \leqslant \inf(\operatorname{rg}(u), \operatorname{rg}(v)).$$

2.4 Noyaux itérés

Soit f un endomorphisme d'un espace de dimension finie n non nulle. On définit, pour tout entier naturel p:

$$F_p = \operatorname{Ker}(f^p)$$
 et $G_p = \operatorname{Im}(f^p)$

(f^p désigne l'itérée d'ordre p de $f: f^0 = \mathrm{Id}$ et, $f^{p+1} = f \circ f^p$).

- 1) Démontrer que, des deux suites de s.e.v. (F_p) et (G_p) , l'une est croissante et l'autre décroissante (pour l'inclusion).
- 2) Démontrer qu'il existe un plus petit entier naturel r tel que $F_r = F_{r+1}$, et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à r, $F_p = F_{p+1}$.
- 3) Démontrer qu'il existe un plus petit entier naturel s tel que $G_s = G_{s+1}$, et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à s, $G_p = G_{p+1}$. Y-a-t-il un lien entre r et s?
- 4) Démontrer que G_s et F_r sont supplémentaires dans E.

2.5 Endomorphismes nilpotents

Soit E un \mathbb{K} -espace vectoriel de dimension $n \ge 1$. On dit que $f \in \mathcal{L}(E)$ est nilpotent lorsqu'il existe $k \ge 1$ tel que $f^k = 0$.

1) Montrer qu'il existe un unique entier $p \in \mathbb{N}^*$ tel que $f^{p-1} \neq 0$ et $f^p = 0$. Cet entier est appelé *indice de nilpotence* de f.

Dans cet énoncé, on considère $f \in \mathcal{L}(E)$ nilpotent d'indice p.

- 2) Montrer qu'il existe $x \in E$ tel que $\mathscr{F} = (x, f(x), \dots, f^{p-1}(x))$ est une famille libre.
- **3)** En déduire que $p \leq n$.
- 4) On suppose dans cette question que p = n. Déterminer $\operatorname{Mat}_{\mathscr{F}}(f)$ et $\operatorname{rg}(f)$.
- 5) Donner un exemple d'espace vectoriel E de dimension n et d'endomorphisme $f \in \mathcal{L}(E)$ nilpotent d'indice n.

2.6 Endomorphismes de rang 1

Soit $A \in \mathscr{M}_n(\mathbb{K})$ de rang 1.

- 1) Montrer qu'il existe $C \in \mathcal{M}_{n,1}(\mathbb{K})$ et $L \in \mathcal{M}_{1,n}(\mathbb{K})$ vérifiant A = CL.
- 2) Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que pour tout entier naturel non nul n, $A^n = \alpha^{n-1}A$.
- 3) Montrer que $A^2 = \operatorname{tr}(A)A$.
- 4) Après avoir calculé $(1 + \operatorname{tr} A)(A + \operatorname{I}_n) (1 + \operatorname{tr} A)\operatorname{I}_n$, déterminer une condition nécessaire et suffisante pour que $A + \operatorname{I}_n$ soit inversible. Le cas échéant, déterminer $(A + \operatorname{I}_n)^{-1}$.

2.7 Une caractérisation de la trace

Trouver toutes les formes linéaires f sur $\mathcal{M}_n(\mathbb{K})$ vérifiant :

$$\forall A, B \in \mathscr{M}_n(\mathbb{K}), \ f(AB) = f(BA).$$

Indication : pour deux matrices élémentaires $E_{i,j}$ et $E_{k,\ell}$, calculer le produit $E_{i,j}E_{k,\ell}$.

4 Espaces vectoriels normés

4.1 Produit d'espaces vectoriels normés

Soit E_1, \ldots, E_p des K-ev, munis respectivement des normes N_1, \ldots, N_p . On considère l'espace vectoriel produit $E = E_1 \times \ldots \times E_p$. Sur E, on pose l'application

$$N: E \to \mathbb{R}$$

 $(x_1, \dots, x_p) \mapsto \max_{1 \leqslant k \leqslant p} N_k(x_k)$.

Montrer que N est une norme sur E. (E, N) est appelé espace vectoriel normé produit des $(E_k, N_k)_{1 \leq k \leq p}$.

4.2 Comparaison de deux normes

Sur $\mathbb{R}[X]$, on définit N_1 et N_2 par :

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|$$

- 1) Montrer que N_1 et N_2 sont des normes sur $\mathbb{R}[X]$.
- 2) On considère la suite de terme général $P_n = \frac{1}{n}X^n$. Est-elle bornée pour la norme N_1 ? pour la norme N_2 ?
- 3) Les deux normes sont-elles équivalentes?

4.3 Opérations sur les convexes

Une réunion finie de convexes est-elle convexe? Et une intersection? Et pour des réunions et intersections quelconques?

4.4 Norme d'algèbre sur les matrices et convergence d'une suite

Soit $E = \mathscr{M}_n(\mathbb{R})$

- 1) Montrer que $(A, B) \mapsto \operatorname{tr}(A^{\top}B)$ est un produit scalaire sur E.
- 2) Montrer que la norme associée à ce produit scalaire est en fait la norme $\|.\|_2$ de E muni de la base canonique. On l'appelle aussi norme de Frobenius.
- **3)** Montrer que pour tout $A, B \in E, ||AB||_2 \le ||A||_2 ||B||_2$.
- **4)** Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que $||A||_2 < 1$. Montrer que $A^n \xrightarrow[n \to +\infty]{} 0$.

5 Valeurs propres et vecteurs propres

5.1 Spectres de matrices qui commutent

Soit $n \in \mathbb{N}^*$, $A, B \in \mathcal{M}_n(\mathbb{K})$. Montrer que AB et BA on le même spectre.

5.2 Détermination du spectre d'un endomorphisme de polynômes

Soit $E = \mathbb{K}[X]$ et $\varphi \in \mathcal{L}(E)$ défini par $\varphi : P \mapsto XP'(X)$. Déterminer l'ensemble des valeurs propres de φ .

5.3 Éléments propres d'une matrice

Donner les éléments propres de

$$J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \in \mathscr{M}_n(\mathbb{K}).$$

5.4 Matrice compagne

Pour $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ polynôme unitaire, on définit la matrice compagne de P:

$$\mathscr{C}(P) = \begin{pmatrix} 0 & -a_0 \\ 1 & \ddots & \vdots \\ & \ddots & 0 & -a_{n-2} \\ & & 1 & -a_{n-1} \end{pmatrix}.$$

Pour n = 1, P s'écrit $X + a_0$ et $\mathscr{C}(P) = \mathscr{C}(X + a_0) = (-a_0)$.

- 1) Montrer que P est le polynôme caractéristique de $\mathscr{C}(P)$.
- 2) On suppose dans cette question que P est scindé à racines simples, notées $\lambda_1, \ldots, \lambda_n$. Montrer que :

$$\mathscr{C}(P)^{\top} = V \operatorname{diag}(\lambda_1, \dots, \lambda_n) V^{-1}$$

où V désigne la matrice de Vandermonde de $(\lambda_1, \ldots, \lambda_n)$.

7 Réduction des endomorphismes

7.1 Deux diagonalisations – bête et méchante et plus théorique

- 1) Diagonaliser $A = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}$.
- 2) Diagonaliser la matrice J dont tous les coefficients sont égaux à 1. Puis diagonaliser la matrice $A \in \mathscr{M}_n(\mathbb{K})$ telle que $a_{i,j} = \alpha$ si $i = j, a_{i,j} = \beta$ sinon.

7.2 Deux applications de la trigonalisation

- 1) Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente.
 - a) Montrer que A est semblable à une matrice triangulaire supérieure stricte.
 - **b)** Le résultat est-il encore vrai pour $A \in \mathcal{M}_n(\mathbb{R})$?
- 2) Soit E un \mathbb{C} -ev de dimension finie n et $u \in \mathcal{L}(E)$. Montrer que $\operatorname{Sp}(P(u)) = P(\operatorname{Sp}(u))$.

7.3 Diagonalisation simultanée

Dans un espace vectoriel E de dimension finie, on considère deux endomorphismes u et v diagonalisables tels que $u \circ v = v \circ u$.

- 1) Montrer que les sous-espaces propres de v sont stables par u.
- 2) Montrer que l'endomorphisme induit de u à un sous-espace propre de v est diagonalisable.
- 3) Montrer qu'il existe une base de E constituée de vecteurs propres de u et v.

7.4 Racine carrée d'une matrice

- 1) Soit M une matrice diagonale d'ordre n dont les coefficients diagonales sont deux à deux distincts. Montrer que les matrices commutant avec M sont exactement les matrices diagonales.
- **2)** Déterminer les valeurs propres de $A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & -2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.
- **3)** Combien y a-t-il de matrice M telle que $M^2 = A$ dans $\mathscr{M}_n(\mathbb{C})$? dans $\mathscr{M}_n(\mathbb{R})$?