Review on Statistics

Probability Spaces

A probability space is a triple (Ω, \mathcal{F}, P) where Ω is a set of "outcomes," \mathcal{F} is a set of "events," and $P : \mathcal{F} \to [0, 1]$ is a function that assigns probabilities to events.

Definition. Let Ω be a set. A nonempty collection \mathcal{F} of subsets of Ω is called σ -algebra (or field) if

- (i) if $A \in \mathcal{F}$ then $\Omega \backslash A \in \mathcal{F}$, and
- (ii) if $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Example. $\mathcal{F} = \{\phi, \Omega\}$ trivial σ -field

$$\mathcal{F} = 2^{\Omega} = \{A \mid A \subset \Omega\} : \text{power set} \Longrightarrow \sigma - \text{field}$$

Without P, (Ω, \mathcal{F}) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an σ -algebra \mathcal{F} , a function $\mu: \mathcal{F} \to \mathbb{R}$ is a measure if

- (i) $\mu(A) \ge \mu(\phi) = 0$ for all $A \in \mathcal{F}$, and
- (iii) For $A_1, A_2, \dots \in \mathcal{F}$ with $A_i \cap A_j = \phi$ for any $i \neq j$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Definition. (1) $\mu(\Omega) < \infty$ \Longrightarrow finite measure

- (2) $\mu(\Omega) = 1 \Longrightarrow \text{probability measure}$
- (3) \exists a partition A_1, A_2, \cdots with $\bigcup_{i=1}^{\infty} A_i = \Omega$ and $\mu(A_i) < \infty \Longrightarrow \sigma$ -finite measure

Theorem ([Durrett(2010), Theorem 1.1.4]). Let μ be a measure on (Ω, \mathcal{F}) .

- (i) Monotonicity. If $A \subset B$ then $\mu(A) \leq \mu(B)$.
- (ii) Subadditivity. If $A \subset \bigcup_{i=1}^{\infty} A_i$ then $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$.

(iii) Continuity from below.
$$A_n \uparrow A$$
 (i.e. $A_1 \subset A_2 \subset \cdots$ and $A = \bigcup_{i=1}^{\infty} A_i$) then $\mu(A_i) \uparrow \mu(A)$.
(iv) Continuity from above. $A_n \downarrow A$ (i.e. $A_1 \supset A_2 \supset \cdots$ and $A = \bigcap_{i=1}^{\infty} A_i$) with $\mu(A_1) < \infty$ then $\mu(A_i) \downarrow \mu(A)$.

Definition. Let \mathcal{A} be a class of subsets of Ω . Then $\sigma(\mathcal{A})$ denotes the smallest σ -algebra that contains \mathcal{A} .

For any any \mathcal{A} , such $\sigma(\mathcal{A})$ exists and is unique: [Durrett(2010), Exercise 1.1.1].

Definition. Borel σ -field on \mathbb{R}^d , denoted by \mathcal{R}^d , is the smallest σ -field containing all open sets.

Theorem ([Durrett(2010), Theorem 1.1.2]). There is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with

$$\mu((a,b]) = b - a.$$

Such measure is called Lebesque measure.

Example ([Durrett(2010), Example 1.1.3]). Product space

 $(\Omega_i, \mathcal{F}_i, \mathcal{P}_i)$: sequence of probability spaces

Let
$$\Omega = \Omega_1 \times \cdots \times \Omega_n = \{(\omega_1, \cdots, \omega_n) | \omega_i \in \Omega_i\}$$

 $\mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_n$ =the σ -field generated by $A_1 \times \cdots \times A_n$, where $A_i \in \mathcal{F}_i$

$$P = P_1 \times \cdots \times P_n$$
 (i.e. $P(A_1 \times \cdots \times A_n) = P_1(A_1) \cdots P_n(A_n)$

Distribution and Random Variables

Definition. Let (Ω, \mathcal{F}) and (S, \mathcal{S}) are measurable spaces. A mapping $X : \Omega \to S$ is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}) if

for all
$$B \in \mathcal{S}$$
, $X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{F}$.

If $(S, S) = (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 1_A of a set $A \in \mathcal{F}$:

$$1_A(\omega) = \begin{cases} 1 & \omega \in A, \\ 0 & \omega \notin A. \end{cases}$$

If X is a random variable, then X induces a probability measure on \mathbb{R} .

Definition. The probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined as $\mu(A) = P(X \in A)$ for all $A \in \mathcal{B}(\mathbb{R})$ is called the distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.

Definition. The distribution function F(x) of a random variable X is defined as $F(x) = P(X \le x)$.

Theorem ([Durrett(2010), Theorem 1.2.1]). Any distribution function F has the following properties:

- (i) F is nondecreasing.
- (ii) $\lim_{n\to\infty} F(x) = 1$, $\lim_{n\to-\infty} F(x) = 0$.
- (iii) F is right continuous. i.e. $\lim_{y\downarrow x} F(y) = F(x)$.
- (iv) $P(X < x) = F(x-) = \lim_{y \uparrow x} F(x)$.
- (v) P(X = x) = F(x) F(x-).

Theorem ([Durrett(2010), Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [Durrett(2010), Theorem 1.2.1], then it is the distribution function of some random variable. That is, there exists a triple (Ω, \mathcal{F}, P) and a random variable X such that $F(x) = P(X \leq x)$.

Theorem. If F satisfies (i) (ii) (iii), then \exists ! probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for all a < b, $\mu((a,b]) = F(b) - F(a)$

Definition. If X and Y induce the same distribution μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we say X and Y are equal in distribution. We write

$$X \stackrel{d}{=} Y$$
.

Definition. When the distribution function $F(x) = P(X \le x)$ has the form $F(x) = \int_{-\infty}^{x} f(y) dy$, then we say X has the density function f.

Remark. f is not unique, but unique up to Lebesque measure 0.

Theorem ([Durrett(2010), Theorem 1.3.2]). If $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $f : (S, \mathcal{S}) \to (T, \mathcal{T})$ are measurable maps, then f(X) is measurable.

Theorem. $f:(S,S)\to (T,T)$ and suppose $S=\sigma(open\ sets),\ \mathcal{T}=\sigma(open\ sets).$ Then, if f is continuous then f is measurable.

Theorem ([Durrett(2010), Theorem 1.3.3]). If X_1, \dots, X_n are random variables and $f: (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \dots, X_n)$ is a random variable.

Theorem ([Durrett(2010), Theorem 1.3.4]). If X_1, \dots, X_n are random variables then $X_1 + \dots + X_n$ is a random variable.

Remark. If X, Y are random variables, then

$$cX$$
 (c is scalar), $X \pm Y$, XY , $\sin(X)$, X^2 , \cdots ,

are all random variables.

Theorem ([Durrett(2010), Theorem 1.3.5]). $\inf_{n} X_n$, $\sup_{n} X_n$, $\lim_{n} \sup_{n} X_n$, $\lim_{n} \inf_{n} X_n$ are random variables.

Integration

Let μ be a σ -finite measure on (Ω, \mathcal{F}) .

Definition. For any predicate $Q(\omega)$ defined on Ω , we say Q is true $(\mu-)$ almost everywhere (or a.e.) if $\mu(\{\omega: Q(\omega) \text{ is } false\}) = 0$

Step 1.

Definition. φ is a simple function if $\varphi(\omega) = \sum_{i=1}^{n} a_i 1_{A_i}$ with $A_i \in \mathcal{F}$ If φ is a simple function and $\varphi \geq 0$, we let

$$\int \varphi d\mu = \sum_{i=1}^{n} a_i \mu(A_i)$$

Step 2.

Definition. If f is measurable and $f \geq 0$ then we let

$$\int f d\mu = \sup \{ \int h d\mu : \ 0 \le h \le f \ and \ h \ simple \}$$

Step 3.

Definition. We say measurable f is integrable if $\int |f| d\mu < \infty$

let
$$f^+(x) := f(x) \vee 0$$
, $f^-(x) := (-f)(x) \vee 0$ where $a \vee b = \max(a, b)$

We define the integral of f by

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

we can also define $\int f d\mu$ if $\int f^+ d\mu = \infty$ and $\int f^- d\mu < \infty$, or $\int f^+ d\mu < \infty$ and $\int f^- d\mu = \infty$

Theorem. (1.4.7) Suppose f and q are integrable.

(i) If
$$f \ge 0$$
 a.e. then $\int f d\mu \ge 0$

(ii)
$$\forall a \in \mathbb{R}, \ \int afd\mu = a \int fd\mu$$

(iii)
$$\int f + g d\mu = \int f d\mu + \int g d\mu$$

(iv) If
$$g \leq f$$
 a.e. then $\int g d\mu \leq \int f d\mu$

(v) If
$$g = f$$
 a.e. then $\int g d\mu = \int f d\mu$

$$(vi) \mid \int f d\mu \mid \leq \int |f| d\mu$$

Independence

Definition. Let (Ω, \mathcal{F}, P) be probability space. Two events $A, B \in \mathcal{F}$ are independent if

$$P(A \cap B) = P(A) \times P(B)$$

Two random variables X and Y are independent if

$$\forall C, D \in \mathcal{R}, \ P(X \in C, \ Y \in D) = P(X \in C)P(Y \in D)$$

Two σ -fields \mathcal{F}_1 and $\mathcal{F}_2(\subset \mathcal{F})$ are independent if

 $\forall A \in \mathcal{F}_1, \ \forall B \in \mathcal{F}_2, A \text{ and } B \text{ are independent.}$

Remark. An infinite collection of objects (σ -fields, random variables, or sets) is said to be independent if every finite subcollection is.

Definition. σ -fields $\mathcal{F}_1, \dots, \mathcal{F}_n$ are independent if

$$P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i), \ \forall A_i \in \mathcal{F}_i$$

random variables X_1, \cdots, X_n are independent if

P(
$$\bigcap_{i=1}^{n} \{X_i \in B_i\}$$
) = $\prod_{i=1}^{n} P(X_i \in B_i)$, $\forall B_i \in \mathcal{R}$

Sets A_1, \dots, A_n are independent if

$$P(\bigcap_{i\in I} A_i) = \prod_{i\in I} P(A_i)$$
 for all $I\subset \{1,\cdots,n\}$

Remark. the definition of independent events is not enough to assume pairwise independent, which is $P(A_i \cap A_j) = P(A_i)P(A_j)$, $i \neq j$. It is clear that independent events are pairwise independent, but converse is not true.

Example. Let X_1, X_2, X_3 be independent random variables with $P(X_i = 0) = P(X_i = 1) = \frac{1}{2}$

Let $A_1 = \{X_2 = X_3\}$, $A_2 = \{X_3 = X_1\}$ and $A_3 = \{X_1 = X_2\}$. These events are pairwise independent but not independent.

Weak laws of large numbers

Various modes of convergence

 $\{X_n\}$ and X are random variables defined on (Ω, \mathcal{F}, P)

Definition. $X_n \to X$ almost surely (a.s.) (with probability 1(w.p. 1), almost everywhere (a.e.)) if $P\{\omega : X_n(\omega) \to X(\omega)\} = 1$

Equivalent definition :
$$\forall \epsilon, \lim_{m \to \infty} P\{\omega : |X_n(\omega) - X(\omega)| \le \epsilon \ \forall n \ge m\} = 1$$
 or $\forall \epsilon, \lim_{m \to \infty} P\{\omega : |X_n(\omega) - X(\omega)| > \epsilon \ \forall n \ge m\} = 0$

Definition. $X_n \to X$ in probability (in pr, \xrightarrow{p}) if $\lim_{n \to \infty} P\{|X_n - X| > \epsilon\} = 0$

Theorem. $X_n \to X$ a.s. $\Longrightarrow X_n \stackrel{p}{\longrightarrow} X$

Remark. $X_n \xrightarrow{p} X \not\Rightarrow X_n \to X$ a.s.

Definition.
$$X_n \to X$$
 in L_p , $0 if $\lim_{n \to \infty} E(|X_n - X|^p) = 0$ provided $E|X_n|^p < \infty$, $E|X|^p < \infty$.$

Theorem. $X_n \to X$ in $L_p \implies X_n \stackrel{p}{\longrightarrow} X$

Theorem. (Chebyshev inequality)

$$P(|X| \ge \epsilon) \le \frac{E|X|^p}{\epsilon^p}$$

Remark. $X_n \stackrel{p}{\longrightarrow} X \not\Rightarrow X_n \to X$ in L_p

Example.
$$\Omega = [0, 1], \ \mathcal{F} = \mathcal{B}[0, 1], \ P = Unif[0, 1]$$

 $X(\omega) = 0, \ X_n(\omega) = nI(0 \le \omega \le \frac{1}{n})$
Then $P\{|X_n(\omega) - X(\omega)| > \epsilon\} = P\{0 \le \omega \le \frac{1}{n}\} = \frac{1}{n} \to 0$
But $E|X_n - X| = E|X_n| = 1$

Theorem. $X_n \stackrel{p}{\longrightarrow} X$ and there exists a random variables Z s.t. $|X_n| \le Z$ and $E|Z|^p < \infty$

Then
$$X_n \to X$$
 in L_p .

Remark. If
$$E|X|<\infty$$
, then
$$\lim_{n\to\infty}\int_{A_n}|X|dP\to 0 \text{ whenever } P(A_n)\to 0$$

2..2.1. L_2 weak law

Theorem. (2.2.3) Let X_1, X_2, \cdots be uncorrelated random variables with $EX_i = \mu$ and $Var(X_i) \leq C < \infty$ Let $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to \mu$ in L_2 and so in pr.

Weak Convergence

Definition. A sequence of distribution function F_n converges weakly to a limit F $(F_n \Rightarrow F, F_n \xrightarrow{w} F)$ if $F_n(y) \to F(y) \ \forall y$ that are continuity points of F.

Definition. A sequence of random variables $\{X_n\}$ converges weakly or converges in distribution to a limit X $(X_n \Rightarrow X, \ X_n \xrightarrow{w} X, \ X_n \xrightarrow{d} X)$

If the distribution function F_n of X_n converges weakly to the distribution of X.

Example. (3.2.1) Let
$$X_1, X_2, \cdots$$
 be iid with $P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$.
 Let $S_n = X_1 + \cdots + X_n$.
 Then $F_n(y) = P(S_n/\sqrt{n} \le y) \to \int_{-\infty}^y \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \ \forall y$
 That is, $F_n \Rightarrow N(0, 1)$

Example ([Durrett(2010), Example 3.2.3]). Let
$$X \sim F$$
 and $X_n = X + \frac{1}{n}$
Then $F_n(x) = P(X_n \le x) = F(x - \frac{1}{n}) \to F(x-)$
Hence $F_n(x) \to F(x)$ only when $F(x) = F(x-)$
(i.e. x is a continuity point of F)
so $X_n \to X$

Example ([Durrett(2010), Example 3.2.4]). (3.2.4)
$$X_p \sim Geo(p)$$
 (i.e. $P(X_p \ge m) = (1-p)^{m-1}$)
Then $P(X_p > \frac{x}{p}) = (1-p)^{\frac{x}{p}} \to e^{-x}$ as $p \to 0$

Central Limit Theorem

Theorem ([Durrett(2010), Theorem 3.4.1]). Let X_1, X_2, \cdots be iid with $EX_i = \mu$ and $Var(X_i) = \sigma^2 > 0$.

If
$$S_n = X_1 + \cdots + X_n$$
, then

$$(S_n - n\mu)/(\sqrt{n}\sigma) \stackrel{d}{\longrightarrow} N(0,1)$$

Theorem ([Durrett(2010), Theorem 3.4.9]). Berry-Essen theorem

Let
$$X_1, X_2, \cdots$$
 be i.i.d. with $EX_i = 0$, $EX_i^2 = \sigma^2$ and $E|X_1|^3 = \rho < \infty$

Let $F_n(x)$ be the distribution function of $(X_1 + \cdots + X_n)/(\sigma \sqrt{n})$ and $\Phi(x)$ be the standard normal distribution.

Then
$$\sup_{x} |F_n(x) - \Phi(x)| \le 3\rho/(\sigma^3 \sqrt{n})$$

Stochastic Order Notation

The classical order notation should be familiar to you already.

- 1. We say that a sequence $a_n = o(1)$ if $a_n \to 0$ as $n \to \infty$. Similarly, $a_n = o(b_n)$ if $a_n/b_n = o(1)$.
- 2. We say that a sequence $a_n = O(1)$ if the sequence is eventually bounded, i.e. for all n large, $|a_n| \leq C$ for some constant $C \geq 0$. Similarly, $a_n = O(b_n)$ if $a_n/b_n = O(1)$.
- 3. If $a_n = O(b_n)$ and $b_n = O(a_n)$ then we use either $a_n = \Theta(b_n)$ or $a_n \times b_n$.

When we are dealing with random variables we use stochastic order notation.

1. We say that $X_n = o_P(1)$ if for every $\epsilon > 0$, as $n \to \infty$

$$\mathbb{P}\left(|X_n| \ge \epsilon\right) \to 0$$
,

i.e. X_n converges to zero in probability.

2. We say that $X_n = O_P(1)$ if for every $\epsilon > 0$ there is a finite $C(\epsilon) > 0$ such that, for all n large enough:

$$\mathbb{P}\left(|X_n| \ge C(\epsilon)\right) \le \epsilon.$$

The typical use case: suppose we have X_1, \ldots, X_n which are i.i.d. and have finite variance, and we define:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- 1. $\hat{\mu} \mu = o_P(1)$ (Weak Law of Large Number)
- 2. $\hat{\mu} \mu = O_P(1/\sqrt{n})$ (Central Limit Theorem)

As with the classical order notation, we can do some simple "calculus" with stochastic order notation and observe that for instance: $o_P(1) + O_P(1) = O_P(1)$, $o_P(1)O_P(1) = o_P(1)$ and so on.

Asymptotic Theory

We suppose that we obtain a sample $X_1, \ldots, X_n \sim P$. Let $\theta(P)$ be a parameter, which is some function of P. Let $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ denote an estimator for $\hat{\theta}$, which is a function of a sample. We are interested in two questions:

- 1. Consistency: Does the estimator $\hat{\theta}$ converge in probability to θ , i.e. does $\hat{\theta} \stackrel{P}{\to} \theta$? More precisely, can we find some function f(n) of the sample size n such that $d(\hat{\theta}, \theta) = O_P(f(n))$? This is analogous to the Law of Large Number.
- 2. Asymptotic distribution: What can we say about the distribution of $\sqrt{n}(\hat{\theta} \theta)$? This is analogous to the Central Limit Theorem.

Confidence Set

Suppose we have a statistical model (i.e. a collection of distributions) \mathcal{P} . Let $C_n(X_1, \ldots, X_n)$ be a set constructed using the observed data X_1, \ldots, X_n . This is a random set. C_n is a $1-\alpha$ confidence set for a parameter θ if:

$$P(\theta \in C_n(X_1, \dots, X_n)) \ge 1 - \alpha$$
, for all $P \in \mathcal{P}$.

This means that no matter which distribution in \mathcal{P} generated the data, the interval guarantees the coverage property described above.

Bootstrap

The bootstrap is a method for estimating standard errors and computing confidence intervals. Let $X_1, \ldots, X_n \sim P$, and $T_n = g(X_1, \ldots, X_n)$ be a statistic, that is, T_n is any function of the data. Suppose we want to know $\mathbb{V}_P(T_n)$, the variance of T_n , where the notation \mathbb{V}_P emphasizes the dependence on the unknown distribution P. For example, if $T_n = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ then $\mathbb{V}_P(T_n) = \sigma^2/n$ where $\sigma^2 = \int (x - \mu)^2 dP(x)$ and $\mu = \int x dP(x)$. Let P_n be the empirical measure that puts mass 1/n at each data point, thus

$$P_n(A) = \frac{1}{n} \sum_{i=1}^n I(X_i \in A).$$

The bootstrap idea has two steps:

Step 1: Estimate $\mathbb{V}_P(T_n)$ with $\mathbb{V}_{P_n}(T_n)$.

Step 2: Approximate $\mathbb{V}_{P_n}(T_n)$ using Monte Carlo.

Monte Carlo

Suppose we draw an iid sample $Y_1, \ldots, Y_B \sim P$, and h is any function with finite mean, i.e., $\mathbb{E}[h(Y)] < \infty$, then by the weak law of large numbers,

$$\frac{1}{B} \sum_{j=1}^{B} h(Y_j) \stackrel{P}{\to} \int h(y) dP(y) = \mathbb{E} [h(Y)],$$

as $B \to \infty$. In particular,

$$\frac{1}{B} \sum_{j=1}^{B} (Y_j - \bar{Y})^2 = \frac{1}{B} \sum_{j=1}^{B} Y_j^2 - \left(\frac{1}{B} \sum_{j=1}^{B} Y_j\right)^2$$

$$\stackrel{P}{\to} \int y^2 dP(y) - \left(\int y dP(y)\right)^2 = \mathbb{V}_P(Y).$$

Hence, we can use the sample variance of the simulated values to approximate $\mathbb{V}_{P}(Y)$.

Bootstrap Variance Estimation

Now, $V_{P_n}(T_n)$ means "the variance of T_n if the distribution of the data is P_n ". To compute this, we simulate X_1^*, \ldots, X_n^* from P_n and then compute $T_n^* = g(X_1^*, \ldots, X_n^*)$. This constitutes one draw from the distribution of T_n . The idea is illustrated in the following diagram:

How do we simulate X_1^*, \ldots, X_n^* from P_n ? Notice that P_n puts mass 1/n at each data point X_1, \ldots, X_n . Therefore

drawing an observation from P_n is equivalent to drawing one point at random from the original data set.

Thus, to simulate $X_1^*, \ldots, X_n^* \sim P_n$, it suffices to draw n observations with replacement from X_1, \ldots, X_n . The algorithm for bootstrap variance estimation is below:

- 1. Draw $X_1^*, ..., X_n^* \sim P_n$.
- 2. Compute $T_n^* = g(X_1^*, \dots, X_n^*)$.
- 3. Repeat step 1 and 2, B times, to get $T_{n,1}^*, \ldots, T_{n,B}^*$.
- 4. Let

$$v_{boot} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* \right)^2.$$

Notice that we are using two approximations:

$$\mathbb{V}_P(T_n) \stackrel{\text{not so samll}}{\approx} \mathbb{V}_{P_n}(T_n) \stackrel{\text{small}}{\approx} v_{boot}.$$

Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence intervals. We suggest one way here, Pivotal Intervals. Let $\theta = T(P)$ and $\hat{\theta}_n = T(P_n)$ and define the pivot $R_n = \hat{\theta}_n - \theta$. Let $\hat{\theta}_{n,1}^*, \dots, \hat{\theta}_{n,B}^*$ denote bootstrap replications of $\hat{\theta}_n$. Let H(r) denote the cdf of the pivot:

$$H(r) = \mathbb{P}(R_n \le r).$$

Define

$$C_n^* = \left(\hat{\theta}_n - H^{-1}\left(1 - \frac{\alpha}{2}\right), \hat{\theta}_n - H^{-1}\left(\frac{\alpha}{2}\right)\right).$$

Then it follows that

$$\mathbb{P}\left(\theta \in C_n^*\right) = \mathbb{P}\left(\hat{\theta}_n - H^{-1}\left(1 - \frac{\alpha}{2}\right) \le \theta \le \hat{\theta}_n - H^{-1}\left(\frac{\alpha}{2}\right)\right)$$

$$= \mathbb{P}\left(H^{-1}\left(\frac{\alpha}{2}\right) \le \hat{\theta}_n - \theta \le H^{-1}\left(1 - \frac{\alpha}{2}\right)\right)$$

$$= \mathbb{P}\left(H^{-1}\left(\frac{\alpha}{2}\right) \le R_n \le H^{-1}\left(1 - \frac{\alpha}{2}\right)\right)$$

$$= H\left(H^{-1}\left(1 - \frac{\alpha}{2}\right)\right) - H\left(H^{-1}\left(\frac{\alpha}{2}\right)\right)$$

$$= 1 - \alpha.$$

Hence, C_n^* is an exact $1 - \alpha$ confidence interval for θ . Unfortunately, computing C_n^* depends on the unknown distribution H but we can form a bootstrap estimate of H:

$$\hat{H}(r) = \frac{1}{n} \sum_{b=1}^{B} I(R_{n,b}^* \le r),$$

where $R_{n,b}^* = \hat{\theta}_{n,b}^* - \hat{\theta}_n$. Let r_{β}^* denote the β sample quantile of $(R_{n,1}^*, \dots, R_{n,B}^*)$. It follows that the $1-\alpha$ bootstrap confidence interval is

$$C_n = (\hat{\theta}_n - r_{1-\alpha/2}^*, \hat{\theta}_n - r_{\alpha/2}^*).$$

Minimax

When solving a statistical learning problem, there are often many procedures to choose from. This leads to the following question: how can we tell if one statistical learning procedure is better than another? One answer is provided by *minimax theory* which is a set of techniques for finding the minimum, worst case behavior of a procedure.

Definition. Let \mathcal{P} be a set of distributions and let X_1, \ldots, X_n be a sample from some distribution $P \in \mathcal{P}$. Let $\theta(P)$ be a parameter, which is some function of P. Let $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ denote an estimator, which is a function of a sample. Given a metric d, the *minimax risk* is

$$R_n \equiv R_n(\mathcal{P}) = \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P[d(\hat{\theta}, \theta(P))] \tag{1}$$

where the infimum is over all estimators.

For example, $\theta(P)$ could be the mean of P, the variance of P or the density of P. $\hat{\theta}(X_1, \ldots, X_n)$ can be the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, the sample variance $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$, the kernel density estimator \hat{p}_h , etc.

Definition. (i) An estimator $\hat{\theta}$ is a minimax estimator if $\sup_{P \in \mathcal{P}} \mathbb{E}_P[d(\hat{\theta}, \theta(P))] = R_n$.

(ii) An estimator $\hat{\theta}$ is a (asymptotic) minimax estimator if $\sup_{P \in \mathcal{P}} \mathbb{E}_P[d(\hat{\theta}, \theta(P))] = O(R_n)$.

Example. Suppose that $\mathcal{P} = \{N(\theta, 1) : \theta \in \mathbb{R}\}$ where $N(\theta, 1)$ denotes a Gaussian with mean θ and variance 1. Consider estimating θ with the metric $d(a, b) = (a - b)^2$. The minimax risk is

$$R_n = \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P[(\hat{\theta} - \theta)^2]. \tag{2}$$

In this example, θ is a scalar.

The minimax risk is $R_n = 1/n$ and \bar{X}_n is a minimax estimator.

Example. Suppose that \mathcal{P} is the set of densities with uniformly bounded second derivatives. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a sample from a distribution P. Let $m(x) = \mathbb{E}_P(Y|X=x) = \int y \, dP(y|X=x)$ be the regression function. In this case, we might use the metric $d(m_1, m_2) = \int (m_1(x) - m_2(x))^2 dx$ in which case the minimax risk is

$$R_n = \inf_{\hat{m}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\int (\hat{m}(x) - m(x))^2 \right]. \tag{3}$$

In this example, θ is a function.

The minimax risk is $R_n = \Theta(n^{-4/(4+d)})$ and the kernel density estimator is a minimax estimator.

Kernel Density Estimation

Definition. A kernel function $K: \mathbb{R}^d \to \mathbb{R}$ is a function satisfying $\int K(x)dx = 1$.

Remark. It is usually assumed that $K(x) \ge 0$ for all $x \in \mathbb{R}^d$, i.e., nonnegative, which makes the computation much cleaner. However, for faster rate of convergence, it is inevitable to allow negative values to the kernel function.

For 1-dimension, some commonly used kernels are the following:

Boxcar:
$$K(x) = \frac{1}{2}I(x)$$
 Gaussian: $K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ **Epanechnikov:** $K(x) = \frac{3}{4}(1-x^2)I(x)$ **Tricube:** $K(x) = \frac{1}{81}(1-|x|^3)^3I(x)$

where I(x) = 1 if $|x| \le 1$ and I(x) = 0 otherwise. These kernels are plotted in Figure 1. Two commonly used multivariate kernels are $\prod_{j=1}^{d} K(x_j)$ and K(||x||).

Figure 1: Examples of smoothing kernels: boxcar (top left), Gaussian (top right), Epanechnikov (bottom left), and tricube (bottom right).

Definition. Suppose that $X_1, \ldots, X_n \in \mathbb{R}^d$. Given a kernel K and a positive number h, called the bandwidth, the kernel density estimator is defined to be

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^d} K\left(\frac{\|x - X_i\|}{h}\right). \tag{4}$$

More generally, we define

$$\hat{p}_H(x) = \frac{1}{n} \sum_{i=1}^n K_H(x - X_i),$$

where H is a positive definite bandwidth matrix and $K_H(x) = |H|^{-1/2}K(H^{-1/2}x)$.

For simplicity, we will take $H = h^2 I$ and we get back the previous formula.

Sometimes we write the estimator as \hat{p}_h to emphasize the dependence on h. In the multivariate case the coordinates of X_i should be standardized so that each has the same variance, since the norm $||x - X_i||$ treats all coordinates as if they are on the same scale.

The kernel estimator places a smoothed out lump of mass of size 1/n over each data point X_i ; see Figure 2. The choice of kernel K is not crucial, but the choice of bandwidth h is important. Small bandwidths give very rough estimates while larger bandwidths give smoother estimates.

0.1 Confidence Bands

To get a confidence band we use the bootstrap. Let P_n be the empirical distribution of X_1, \ldots, X_n . The idea is to estimate the distribution

$$F_n(t) = \mathbb{P}\left(\sqrt{nh^d}||\hat{p}_h(x) - p_h(x)||_{\infty} \le t\right)$$

with the bootstrap estimator

$$\hat{F}_n(t) = \mathbb{P}\left(\sqrt{nh^d}||\hat{p}_h^*(x) - \hat{p}_h(x)||_{\infty} \le t \mid X_1, \dots, X_n\right)$$

where \hat{p}_h^* is constructed from the bootstrap sample $X_1^*, \dots, X_n^* \sim P_n$. Then

$$\sup_{t} |F_n(t) - \hat{F}_n(t)| \stackrel{P}{\to} 0.$$

Here is the algorithm.

- 1. Let P_n be the empirical distribution that puts mass 1/n at each data point X_i .
- 2. Draw $X_1^*, \ldots, X_n^* \sim P_n$. This is called a bootstrap sample.

Figure 2: A kernel density estimator \hat{p} . At each point x, $\hat{p}(x)$ is the average of the kernels centered over the data points X_i . The data points are indicated by short vertical bars. The kernels are not drawn to scale.

- 3. Compute the density estimator \hat{p}_h^* based on the bootstrap sample.
- 4. Compute $R = \sup_x \sqrt{nh^d} ||\hat{p}_h^* \hat{p}_h||_{\infty}$.
- 5. Repeat steps 2-4 B times. This gives R_1, \ldots, R_B .
- 6. Let z_{α} be the upper α quantile of the R_{j} 's. Thus

$$\frac{1}{B} \sum_{j=1}^{B} I(R_j > z_\alpha) \approx \alpha.$$

7. Let

$$\ell_n(x) = \hat{p}_h(x) - \frac{z_\alpha}{\sqrt{nh^d}}, \quad u_n(x) = \hat{p}_h(x) + \frac{z_\alpha}{\sqrt{nh^d}}.$$

Theorem. Under appropriate (very weak) conditions, we have

$$\liminf_{n \to \infty} \mathbb{P}(\ell_n(x) \le p_h(x) \le u(x) \text{ for all } x) \ge 1 - \alpha.$$

See Figure 3.

References

[Durrett(2010)] Rick Durrett. Probability: theory and examples, volume 31 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010. ISBN 978-0-521-76539-8. doi: 10.1017/CBO9780511779398. URL https://doi.org/10.1017/CBO9780511779398.

Figure 3: 95 percent bootstrap confidence bands using various bandwidths.