This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

Google books

https://books.google.com

Y3, A+7. 22/USNRIL-TR-127

Copy No. 229

A FALLOUT PLOTTING DEVICE

Research and Development Technical Report USNRDL-TR-127

NS 081-001 and U.S. Army

30 November 1956

by

E.A. Schuert

U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY

SAN

FRANCISCO

2 4

CALIFORNIA

APR 1 - 1957
U. OF W. LIBRARY
Digitized by

Reproduction of this document in any form by other than activities of the Department of Defense is not authorized unless specifically approved by the Secretary of the Navy or the Chief of Naval Operations as appropriate.

A FALLOUT PLOTTING DEVICE

Research and Development Technical Report USNRDL-TR-127 NS 081-001 and U.S. Army

30 November 1956

by

E.A. Schuert

Physics

Technical Objective AW-7

Radiological Capabilities Branch L.B. Werner, Head

Chemical Technology Division E.R. Tompkins, Head

Scientific Director P.G. Tompkins

Commanding Officer and Director Captain Richard S. Mandelkorn, USN

U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY
San Francisco 24, California

ABSTRACT

A fallout plotting device was developed. The method requires no drafting equipment and is ideally suited for field use. At Operation REDWING it was found that untrained personnel could quickly become proficient in its employment.

U.S. DEPOSITORY COPY

SUMMARY

The Problem

A plotting device is needed to speed up forecasting where fallout will fall in the field. Such a device should require no drafting equipment but still accurately plot the required data in a manner compatible with the latest fallout model theories. It should be so constructed that untrained personnel can quickly become proficient with it.

Findings

Such a device was developed and tested at Operation REDWING. It proved to be satisfactory, and suitable for field operations.

ADMINISTRATIVE INFORMATION

This work was done under Bureau of Ships Project No. NS 081-001, Subtask 1, Technical Objective AW-7. The work is described in U.S. Naval Radiological Defense Laboratory Annual Progress Report to the Bureau of Ships, DD Form 613, of July 1956 (Encl (1) to CO and Dir, USNRDL Secr ltr 3-905-471 EHC:dlc Ser 0014921 of 31 Aug 1956). The plotter was tested at Operation REDWING, Project 2.6.3, as described in Subtask 4B of NS 088-001 of February 1956.

The work also is part of the technical program for the Department of the Army established between Department of the Army, Office, Chief of Research and Development and Bureau of Ships (Joint Agreement, 23 November 1955).

UNCLASSIFIED

Digitized by GOOSIC

INTRODUCTION

This paper describes a rapid technique for plotting "particle-size" and "height" lines in mapping fallout from a nuclear detonation. Since this method, one of hand computation, uses a fallout plotting device that requires no drafting equipment, it is ideally suited for field use. It was employed successfully at Operation REDWING where it was found that untrained personnel could quickly become proficient in its employment.

The use of particle-size and height lines in mapping fallout is a standard technique employed in most analytical methods now in use. It simply describes a grid (Fig.1) on the earth's surface indicating where certain sizes of fallout particles, originating along a line source through the axis of symmetry of the cloud, will arrive and from what altitude they will come. These parameters are the basic data for describing the fallout pattern.

There are three requirements for determining this grid: the initial distribution of material in the atmosphere; the falling or settling rate of the material from its initial elevation; and the wind field through which the material is falling and by which it is being displaçed.

The fallout plotting device computes the points of arrival on the earth's surface of a given particle size that originates at various altitudes within the mushroom cloud and its stem. Particles originating at elevations of every 5000 ft, from the surface to 120,000 ft, are considered. In the construction of the device, account is taken of the variable speed of the settling particles due to changes in the vertical distribution of the atmosphere's density and viscosity. Aerodynamic falling equations were employed in its design. However, selection of particle falling speeds and altitude increments is arbitrary and not a fixed factor in the basic design of the plotter.

If the average wind speed and direction within a given altitude increment and the time required for a particle to fall through it are known, then the

- Particle-size lines are often referred to as hodographs or weighted hodographs.
- A USNRDL report which will describe the detailed techniques of forecasting used at Operation REDWING and how the employment of the plotter was adapted to consider time variation of the winds is in preparation.

horizontal displacement of the particle can be computed for that altitude layer. Knowledge of the particle's point of arrival on the surface may be deduced from tracing a settling particle as it is displaced by each wind in each altitude increment. Plotting trajectories for each particle size at every starting elevation is the first step in determining the resultant fallout pattern; however, the drafting involved is tedious and time consuming. This effort can be reduced greatly by plotting from the ground up, as is done in the construction of a hodograph. Such a plot is made by starting at ground zero and working up through the altitude increments to the desired elevation. Although this technique does not plot the trajectory of the particle, it does define the arrival points on the surface of the earth of particles starting at each altitude increment. (Fig. 2).

DESCRIPTION AND USE OF DEVICE

To plot these size-lines one must make the preliminary computations of particle falling times through each altitude increment to obtain the displacement for various wind velocities. The plotter was designed with these computations built in, thereby speeding up the plotting process significantly.

The plotter consists of two parts, a base for direction or azimuth orientation and a wheel for distance or displacement. Since both of its parts are constructed of clear plastic, the plotter does not obscure the map over which it is placed. The base consists of a wind-rose having a radial line at each 10-degree interval on the compass. The base (Fig.3) has a narrow slot along the 180-degree line. If a given wind direction (in degrees from which the wind is blowing) is selected and its radial line oriented to north on the map (parallel to the north-south grids), the 180-degree slot becomes oriented in that direction in which a falling particle will be displaced. Thus by orienting the base of the plotter as described for any measured wind direction, the vector azimuth for the particle can be drawn through the slot of the plotter base.

The wheel (Fig.4) is pivoted at the center of the base. It has 24 equi-spaced radial slots. Each slot represents an altitude increment of 5000 ft. Concentric circles intersect the radial slots to form a scale of wind speeds in knots. Since the particle falling speed is a function of the atmosphere's density and viscosity and since these factors vary with altitude, the wind speed scales are so weighted that the indicated length of the scale actually represents the horizontal displacement of the particle through the altitude layer of interest.

To obtain the distance the particle is displaced along its azimuth, the wheel is rotated until the proper altitude layer is aligned with the 180-degree slot in the base and a line is plotted on the map.

It should be remembered that the weighted scales of wind speed fix the map scale, which in this case was 1:970,000 or 1 in. = 13.2 nautical miles. Different wind speed wheels have been constructed for several particle sizes; at present four wheels have been made.*

In plotting a size-line with the fallout plotter (Fig. 5) one uses the same technique as one does when employing a drafting machine. However, all computations of horizontal displaced distance the particle experiences when falling through a given altitude layer are eliminated.

To plot a size-line or a trajectory, the following steps are necessary:

- 1. Rotate the wheel until the desired altitude increment coincides with the 180-degree slot in the base.
- 2. Place the plotter with the zero value of the wind speed scale over the given point and orient the base so that the radial line, showing the direction from which the wind blows, parallels the north-south grids of the map.
- 3. Draw a wind speed vector through the coincident slots.
- 4. Continue the process using the tip of the vector just drawn as the next point.

In constructing the prototype plotters certain specialized parameters were used in making the computations; for example, atmospheric density and viscosity were computed for a Marshall Island atmosphere, particle parameters were typical of coral fallout and special aerodynamic falling speed equations were used. Any of these variables as well as altitude increments may be so selected that a similar plotter for specialized or more general input data becomes possible. Also if one wished to assume a constant falling rate for a given size particle the wheel could be eliminated and the single wind speed scale laid out along the 180-degree slot on the base.

Figures 6A, 6B, 6C and 7A, 7B, 7C are reproductions of the component parts of the four plotters that have been constructed. These

These wheels are for irregular-shaped particles of density 2.36 g/cc and having diameters of 75, 100, 200 and 350 µ. A plotter may be adapted for more than one particle size by adding parallel scales to each radial slot on the wheel.

figures can be used to construct a set of plotting devices. A reference scale has been added on each figure to relate the reduced drawings to their original size wherein the scale relationship was 1:970,000.

Approved by:

EUGENE P. COOPER

Associate Scientific Director

Fig. 2 Comparison of Plotting Techniques Either by Use of Trajectories or by Use of a Size Line

Fig. 1 Basic Fallout Plot Showing Grid of Size Lines and Height Lines

UNCLASSIFIED
Digitized by GOOSIC

Fig. 3 Plotter Base, for Determining Direction

Fig. 4 Plotter Wheel for Determining Displacement of 75-µ Particles

Fig. 5 Plotting Device Being Used.

Fig. 6A Plotter Base for 75- and 100-µ Particles

UNCLASSIFIED

Digitized by GOOSIC

Fig. 6B Plotter Wheel for 75- μ Particle

Fig. 6C Plotter Wheel for 100-µ Particle

Fig. 7A Plotter Base for 200- and 350- μ Particles

Fig. 7B Plotter Wheel for 200-µ Particle

Fig. 7C Plotter Wheel for 350-µ Particle

UNCLASSIFIED

Digitized by GOOGLE

DISTRIBUTION

COPIES

NAVY

1-9	Chief, Bureau of Ships (Code 233)
10	Chief, Bureau of Medicine and Surgery
11	Chief, Bureau of Aeronautics (Code AE40)
12	Chief, Bureau of Supplies and Accounts (Code W)
13-14	Chief, Bureau of Yards and Docks (D-440)
15	Chief of Naval Research (Code 811)
16	Chief of Naval Operations (Op-36)
17	Commander, New York Naval Shipyard (Material Lab.)
18-20	Director, Naval Research Laboratory (Code 2021)
21-22	CO, Office of Naval Research, New York
23	Naval Medical Research Institute
24	CO, Naval Unit, Army Chemical Center
25	CO, Naval Unit, CmlC Training Command
26	CO, U.S. Naval Civil Engineering (Res. and Eval. Lab.)
27	U.S. Naval School (CEC Officers)
28	Commander, Naval Air Material Center, Philadelphia
29	CO, Naval Schools Command, Treasure Island
30	CO, Naval Damage Control Training Center, Philadelphia
31	U.S. Naval Postgraduate School, Monterey
32	CO, Fleet Training Center, Norfolk
33-34	CO, Fleet Training Center, San Diego
35	Commandant, Twelfth Naval District
36	Office of Patent Counsel, Mare Island
37	Office of Naval Research Branch Office, SF
38	Commander Air Force, Atlantic Fleet (Code 16F)
39	CO, Fleet Airborne Electronics Training Unit, Atlantic
40	Commandant, U.S. Marine Corps
41	Commandant, Marine Corps Schools, Quantico (Library)
42	Commandant, Marine Corps Schools, Quantico (Dev. Center)
	<u>-</u>

ARMY 43 Chief of Engineers (ENGEB, Dhein) 44 Chief of Engineers (ENGNB) 45-46 Chief of Research and Development (Atomic Division) 47 Chief of Transportation (TC Technical Committee) 48 Chief of Ordnance (ORDTB) 49 Chief Chemical Officer 50 Deputy Chief of Staff for Military Operations 51 CG, Chemical Research and Development Command 52 CO, Chemical Corps Materiel Command 53-54 Chemical and Radiological Laboratories, ACm1C 55 CO, Chemical Corps Medical Laboratories 56 President, Chemical Corps Board 57-58 Ordnance Department, Aberdeen Proving Ground 59 CO, Chemical Corps Training Command (Library) 60 · CO, Chemical Field Requirements Agency 61-62 CO, Chemical Warfare Laboratories 63 Office of Chief Signal Officer (SIGRD-8B) 64 CO, Army Medical Research Laboratory 65 Director, Walter Reed Army Medical Center 66 CG, Continental Army Command, Fort Monroe (ATDEV-1) Army Medical Service Graduate School (Dept. of Biophysics) 67 CG, Quartermaster Res. and Dev. Command 68 69 Director, Operations Research Office (Librarian) 70 CO, Dugway Proving Ground 71 Director, Evans Signal Laboratory (Nucleonics Section) 72 CG, Engineer Res. and Dev. Laboratory (Library) 73 CO, Transportation Res. and Dev. Command, Fort Eustis 74 Commandant, Army Aviation School, Fort Rucker 75 President, Board No. 6, CONARC, Fort Rucker CO, CONARC, Ft. Monroe 76 77 Director, Office of Special Weapons Development 78 CG, Redstone Arsenal 79 CO, Ordnance Materials Research Office, Watertown 80 CO, Watertown Arsenal 81 CO, Frankford Arsenal 82 Signal Corps Center, Fort Monmouth 83 Director, Jet Propulsion Laboratory 84 Tokyo Army Hospital AIR FORCE

85	Commander, Air Materiel Command (MCMTM)
86	Commander, Wright Air Development Center (WCRTY)
87	Commander, Wright Air Development Center (WCRTH-1)
88	Commander, Air Res. and Dev. Command (RDTDA)

89 90 91 92 93 94 95 96 97-98	Director, USAF Project RAND (WEAPD) Commandant, School of Aviation Medicine USAF, SAM, Randolph Field (Brooks) CG, Strategic Air Command, Offutt Air Force Base (IGABD) CG, Strategic Air Command (Operations Analysis Office) Commander, Kirtland Air Force Base Office of Surgeon General Director, Air University Library, Maxwell Air Force Base Commander, Technical Training Wing, 3415th TTG CG, Cambridge Research Center (CRHTM)
,,	OTHER DOD ACTIVITIES
	Chief, Armed Forces Special Weapons Project AFSWP, SWTG, Sandia Base (Library) AFSWP, Hq., Field Command, Sandia Base Assistant Secretary of Defense (Res. and Dev.) Assistant Secretary of Defense (Civil Defense Division) Armed Services Technical Information Agency
	AEC ACTIVITIES AND OTHERS
113	Alco Products, Inc.
114	Argonne Cancer Research Hospital
115-120	•
121	Atomic Bomb Casualty Commission
122-124	5, · · · · · · · · · · · · · · · · · · ·
	Atomics International
	Battelle Memorial Institute
	Bettis Plant
133	Boeing Airplane Company
	Brookhaven National Laboratory
138	Brush Beryllium Company
139	Carnegie Institute of Technology
140	- · · · · · · · · · · · · · · · · · · ·
141	
142-143	
144	Combustion Engineering, Inc.
145-146	Consolidated Vultee Aircraft Corporation
147-148	Convair-General Dynamics Corporation (Helms)
149-150	Division of Raw Materials, Denver
151 152-155	Dow Chemical Company, Rocky Flats
154-155	duPont Company, Aiken
157-158	duPont Company, Wilmington
	General Electric Company (ANPP)
159-162	General Electric Company, Richland
163-165	Goodyear Atomic Corporation

166-167	Iowa State College
168-170	Knolls Atomic Power Laboratory
171-172	, · · · · · · · · · · · · · · · · · · ·
173	Lockheed Aircraft Corporation, Marietta
174-175	
176	Massachusetts Institute of Technology (Hardy)
177	Mound Laboratory
178	National Advisory Committee for Aeronautics
179	National Bureau of Standards (Library)
180-181	
182	National Lead Company of Ohio
183	New Brunswick Laboratory
184	New York Operations Office
185	New York University
186	Nuclear Development Corporation of America
187	Nuclear Metals, Inc. (Kaufmann)
188	Oak Ridge Institute of Nuclear Studies
189-194	Oak Ridge National Laboratory
195	Patent Branch, Washington
196	Patent Office, Department of Commerce
197	Pennsylvania State University (Blanchard)
198-203	Phillips Petroleum Company
204	Princeton University (White)
205-206	Public Health Service, Washington
207	RAND Corporation
208	Sandia Corporation
209	Technical Operations, Inc. (Hudson)
210	Union Carbide Nuclear Company (C-31 Plant)
211-212	• • • • • • • • • • • • • • • • • • • •
213	United Aircraft Corporation
214	U.S. Geological Survey, Denver
215	U.S. Geological Survey, Menlo Park
216	U.S. Geological Survey, Naval Gun Factory
217	U.S. Geological Survey, Washington
218	UCLA Medical Research Laboratory
	University of Galifornia Radiation Laboratory, Berkeley
221-224	University of California Radiation Laboratory, Livermore
225	University of Rochester (Technical Report Unit)
226-227	University of Rochester (Marshak)
228	University of Utah (Stoner)
229	University of Washington (Manley)
230	Vitro Engineering Division
231	Weil, Dr. George L.
232-233	Western Reserve University
234	Yale University (Breit)
235	Yale University (Wadey)
236-260	Technical Information Service Extension Oak Ridge

USNRDL

261-300 USNRDL, Technical Information Division

DATE ISSUED: 1 March 1957

1. Fallout - Course mapping 2. Plotters I. Schuert, E.A. II. Title. III. NS 081-001.	UNCLASSIFIED	1. Fallout - Course mapping 2. Plotters I. Schuert, E.A. II. Title. III. NS 081-001.	UNCLASSIFIED
Naval Badiological Defense Laboratory, USNEDL-TR-127. A FALLOUT PLOTTING DEVICE, by E. A. Schuert. 30 Nev. 1956.19 p. illus. UNC.ASSIFIED A fallout plotting device was developed. The method requires no drafting equipment and is ideally suited for field use. At Operation REDWING it was found that untrained personnel could quickly become proficient in its employment.		Naval Radiological Defense Laboratory. USNRDL-TR-127. A FALLOUT PLOTTING DEVICE, by E. A. Schuert. 30 Nov. 1956.19 p. illus. UNCLASSIFIED A fallout plotting device was developed. The method requires no drafting equipment and is ideally suited for field use. At Operation REDWING it was found that untrained personnel could quickly become proficient in its employment.	
1. Fallout - Course mapping 2. Plotters I. Schuert, E.A. II. Title. III. NS 081-001.	UNCLASSIFIED	1. Fallout - Course rapping 2. Plotters I. Scheer, E.A. II. Title. IE. NS 031-001.	UNCLASSIFIED
Naval Radiological Defense Laboratory. USNRDL-TR-127. A FALLOUT PLOTTING DEVICE, by E. A. Schuert. 30 Nov. 1956. 19 p. illus. UNCLASSIFIED A fallout plotting device was developed. The method requires nc drafting equipment and is ideally suited for field use. At Operation REDWING it was found that untrained personnel could quickly become proficient in its employment.		Naval Radiological Defense Labcratory. USNRDL-TR-127. A FALLOUT PLOTTING DEVICE, by E.A. Schuert. 30 Nov. 1956.19 p. illus. UNCLASSIFIED method requires no drafting equipment and is it was found that untrained personnel could quickly become proficient in its employment.	

1. Fallout - Course mapping 2. Plotters I. Schuert, E.A. II. Title. III. NS 081-001.	UNCLASSIFIED	1. Fallout - Course mapping 2. Plotters I. Schuert, E.A. II. Title. III. NS 081-001.	UNCLASSIFIED
Naval Radiological Defense Laboratory, USNRDL-TR-127. A FALLOUT PLOTTING DEVICE, by E.A. Schuert. 30 Nov. 1956.19 p. illus. UNCLASSIFIED A fallout plotting device was developed. The method requires no drafting equipment and is ideally suited for field use. At Operation REDWING it was found that untrained personnel could quickly become proficient in its employment.		Naval Radiological Defense Laboratory. USNRDL-TR-127. A FALLOUT PLOTTING DEVICE, by E. A. Schuert. 30 Nov. 1956.19 p. illus. UNCLASSIFIED A fallout plotting device was developed. The method requires no drafting equipment and is ideally suited for field use. At Operation REDWING it was found that untrained personnel could quickly become proficient in its employment.	•
1. Fallout - Course mapping 2. Plotters I. Schuert, E.A. II. Title. III. NS 081-001.	UNCLASSIFIED	1. Fallout - Course mapping 2. Plotters I. Schuert, E.A. II. Title. III. NS 081-001.	UNCLASSIFIED
Naval Radiological Defense Laboratory. USNRDL-TR-127. A FALLOUT PLOTTING DEVICE, by E. A. Schuert. 30 Nov. 1956. 19 p. illus. UNCLASSIFIED A fallout plotting device was developed. The method requires no drafting equipment and is ideally suited for field use. At Operation REDWING it was found that untrained personnel could quickly become proficient in its employment.		Naval Radiological Defense Laberatory. USNRDL-TR-127. A FALLOUT PLOTTING DEVICE, by E. A. Schuert. 30 Nov. 1956.19 p. illus. UNCLASSIFIED A fallout plotting device was developed. The pine method requires no drafting equipment and is deally suited for field use. At Operation REDWING it was found that untrained personnel could quickly become proficient in its employment.	gle