Amazon EC2 – Instance Storage

What's an EBS Volume?

- An EBS (Elastic Block Store) Volume is a network drive you can attach to your instances while they run.
- It allows your instances to **persist data**, even after their termination.
- They can only be mounted to one instance at a time (at the CCP level).
- They are bound to a specific Availability Zone (AZ).

Analogy

• Think of them as a "network USB stick".

Free Tier

• 30 GB of free EBS storage per month (General Purpose SSD or Magnetic).

EBS Volume

It's a network drive (i.e. not a physical drive)

- It uses the **network** to communicate with the instance, so **latency** may be present.
- It can be **detached** from one EC2 instance and **re-attached** to another one quickly.

It's locked to an Availability Zone (AZ)

- An EBS Volume in us-east-1a cannot be attached to us-east-1b.
- To move a volume across AZs, you must first snapshot it.

Have a provisioned capacity (size in GBs and IOPS)

- You are **billed** for all provisioned capacity.
- Capacity can be increased over time.

EBS – Delete on Termination attribute

- Controls the EBS behaviour when an EC2 instance terminates:
 - By default, the root EBS volume is deleted (attribute enabled).
 - By default, any other attached EBS volume is not deleted (attribute disabled).
- This attribute can be controlled via:
 - AWS Console
 - o AWS CLI

Use case:

• Preserve the root volume after an EC2 instance is terminated, e.g. for data recovery or forensic purposes.

EBS Snapshots

- You can make a backup (snapshot) of your EBS volume at a specific point in time.
- **Detaching the volume is not necessary** to perform a snapshot, but it is recommended for data consistency.
- Snapshots can be copied across:
 - o Availability Zones (AZ)

o Regions

Example

An EBS volume in us-east-1a (50 GB) is snapshotted and the snapshot can be used to **restore** the volume in another AZ or Region (e.g., us-east-1b).

EBS Snapshots Features

EBS Snapshot Archive

- Move a snapshot to an archive tier that is up to 75% cheaper.
- Restore time from archive: 24 to 72 hours.

Recycle Bin for EBS Snapshots

- You can configure retention rules to keep deleted snapshots, allowing recovery after accidental deletion.
- Retention period can be set from 1 day to 1 year.

Fast Snapshot Restore (FSR)

- Forces full initialization of a snapshot to ensure zero latency on first use.
- This feature has an additional cost.

Example

- You can **archive** a snapshot to reduce costs (but with slower restore).
- Deleted snapshots can be sent to a **recycle bin** for recovery within the configured retention period.

AMI Overview

- AMI = Amazon Machine Image
- AMIs are a **customization** of an EC2 instance:
 - You add your own software, configuration, operating system, monitoring, etc.
 - Faster boot/configuration time since all your software is pre-packaged.
- AMIs are built for a **specific region** (but can be copied across regions).
- You can launch EC2 instances from:
 - A Public AMI: provided by AWS
 - Your own AMI: created and maintained by you
 - An AWS Marketplace AMI: created by someone else and possibly sold

AMI Process (from an EC2 instance)

- Start an EC2 instance and customize it
- **Stop** the instance (for data integrity)
- Build an AMI this will also create EBS snapshots
- Launch instances from other AMIs

EC2 Instance Store

- EBS volumes are **network drives** with good but *limited* performance
- If you need a high-performance hardware disk, use EC2 Instance Store

Characteristics:

- Better I/O performance
- EC2 Instance Store loses its storage if the instance is stopped (ephemeral)
- Good for buffer / cache / scratch data / temporary content
- Risk of data loss if hardware fails
- Backups and Replication are your responsibility

Local EC2 Instance Store – Very High IOPS

Performance by Instance Size

Instance Size	100% Random Read IOPS	Write IOPS	
i3.large*	100,125	35,000	
i3.xlarge*	206,250	70,000	
i3.2xlarge	412,500	180,000	
i3.4xlarge	825,000	360,000	
i3.8xlarge	1.65 million	720,000	
i3.16xlarge	3.3 million	1.4 million	
i3.metal	3.3 million	1.4 million	
i3en.large*	42,500	32,500	
i3en.xlarge*	85,000	65,000	
i3en.2xlarge*	170,000	130,000	
i3en.3xlarge	250,000	200,000	
i3en.6xlarge	500,000	400,000	
i3en.12xlarge	1 million	800,000	
i3en.24xlarge	2 million	1.6 million	
i3en.metal	2 million	1.6 million	

EBS Volume Types

- EBS Volumes come in 6 types:
 - gp2 / gp3 (SSD): General purpose SSD volume that balances price and performance for a wide variety of workloads
 - io1 / io2 Block Express (SSD): Highest-performance SSD volume for mission-critical, low-latency or high-throughput workloads
 - **st1 (HDD)**: Low cost HDD volume designed for frequently accessed, throughput-intensive workloads
 - o sc1 (HDD): Lowest cost HDD volume designed for less frequently accessed workloads

- EBS Volumes are characterized in:
 - Size
 - Throughput
 - o IOPS (I/O Operations Per Second)
- When in doubt, always consult the AWS documentation it's good!
- Only gp2/gp3 and io1/io2 Block Express can be used as boot volumes

EBS Volume Types Use Cases

General Purpose SSD

- Cost effective storage, low-latency
- Suitable for:
 - System boot volumes
 - Virtual desktops
 - Development and test environments
- Volume size range: 1 GiB 16 TiB

gp3:

- Baseline: 3,000 IOPS and 125 MiB/s throughput
- Can increase:
 - IOPS up to **16,000**
 - Throughput up to 1,000 MiB/s
- IOPS and throughput can be configured independently

gp2:

- Small volumes can burst IOPS to 3,000
- Volume size and IOPS are linked:
 - o 3 IOPS per GiB
 - Max IOPS: **16,000**
- At **5,334 GiB**, you reach the **maximum IOPS** $(5,334 \times 3 = 16,002)$

EBS Volume Types Use Cases

Provisioned IOPS (PIOPS) SSD

- Designed for **critical business applications** with sustained IOPS performance
- Suitable for applications that need more than 16,000 IOPS
- Ideal for database workloads, where storage performance and consistency are critical

io1 (4 GiB - 16 TiB):

- Max PIOPS:
 - o 64,000 for Nitro EC2 instances
 - o 32,000 for other instances
- PIOPS can be increased independently from storage size

io2 Block Express (4 GiB - 64 TiB):

• Sub-millisecond latency

- Max PIOPS: **256,000**
 - IOPS:GiB ratio up to 1,000:1
- Supports EBS Multi-Attach

EBS Volume Types Use Cases

Hard Disk Drives (HDD)

- Cannot be used as boot volume
- Volume size range: 125 GiB 16 TiB

Throughput Optimized HDD (st1)

- Use cases:
 - Big Data
 - Data Warehouses
 - Log Processing
- Max throughput: 500 MiB/s
- Max IOPS: 500

Cold HDD (sc1)

- Use cases:
 - o Infrequently accessed data
 - Cost-sensitive scenarios
- Max throughput: 250 MiB/s
- Max IOPS: 250

EBS – Volume Types Summary

Volume Type	Durability	Use Cases	Volume Size	Max IOPS per Volume	Max Throughput per Volume	EBS Multi- Attach	NVN Reserva
gp3 (General Purpose SSD)	99.8% - 99.9% (0.1% - 0.2% AFR)	- Transactional workloads - Virtual desktops - Mediumsized DBs - Low- latency apps - Boot volumes - Dev & test	1 GiB – 16 TiB	16,000	1,000 MiB/s	Not supported	Not support
gp2 (General Purpose SSD)	99.8% - 99.9% (0.1% - 0.2% AFR)	Same as gp3	1 GiB – 16 TiB	16,000 (3 IOPS per GiB)	250 MiB/s	Not supported	Not support

io2 Block Express (PIOPS)	99.999% (0.001% AFR)	- Sub- millisecond latency - Sustained IOPS - > 64,000 IOPS or 1,000 MiB/s	4 GiB – 64 TiB	256,000	4,000 MiB/s	Supported	Support
io1 (PIOPS)	99.8% - 99.9% (0.1% - 0.2% AFR)	- Sustained IOPS - >16,000 IOPS - I/O- intensive DB workloads	4 GiB – 16 TiB	64,000 (Nitro) / 32,000	1,000 MiB/s	Supported	Not support
st1 (Throughput HDD)	99.8% - 99.9% (0.1% - 0.2% AFR)	- Big Data - Data warehouses - Log processing	125 GiB – 16 TiB	500	500 MiB/s	Not supported	-
sc1 (Cold HDD)	99.8% - 99.9% (0.1% - 0.2% AFR)	- Infrequently accessed data - Lowest cost scenarios	125 GiB – 16 TiB	250	250 MiB/s	Not supported	-

AWS Docs Reference

EBS Multi-Attach - io1/io2 Family

- Allows attaching the same EBS volume to multiple EC2 instances within the same Availability Zone
- Each instance has **full read & write permissions** to the high-performance volume

Use Cases

- Achieve higher application availability in clustered Linux applications (e.g. Teradata)
- Applications must handle concurrent write operations

Key Characteristics

- Supports up to 16 EC2 instances simultaneously
- Requires a **cluster-aware file system** (e.g. not XFS, EXT4)

Example: A single io2 volume is shared by up to 16 EC2 instances within the same AZ

EBS Encryption

When you create an encrypted EBS volume, you get:

- Data at rest is encrypted inside the volume
- Data in flight (between the instance and the volume) is encrypted
- All snapshots of the volume are encrypted
- All volumes created from encrypted snapshots are also encrypted

Key Points

- Encryption and decryption are handled transparently (no user action needed)
- Minimal impact on latency
- Uses AWS KMS (AES-256) for encryption keys
- Copying an unencrypted snapshot allows encryption
- Snapshots of encrypted volumes are always encrypted

Encryption: Encrypt an Unencrypted EBS Volume

Steps to encrypt an existing unencrypted EBS volume:

- 1. Create an EBS snapshot of the unencrypted volume
- 2. Encrypt the snapshot using the Copy action
- 3. Create a new EBS volume from the encrypted snapshot
 - The new volume will be **encrypted**
- 4. Attach the encrypted volume to the original EC2 instance (if needed)

Amazon EFS – Elastic File System

- Managed NFS (Network File System) that can be mounted on multiple EC2 instances
- Works with EC2 instances in multi-AZ
- Highly available, scalable, and expensive (approximately 3× gp2)
- Pay-per-use pricing model

Key Characteristics

- Ideal for **shared access** across AZs
- Automatically scales with usage
- EC2 instances access EFS through a Security Group

Example: EC2 instances in us-east-1a, 1b, and 1c are connected to a shared EFS filesystem via a Security Group, supporting multi-AZ shared storage.

Amazon EFS – Elastic File System

Use Cases

- Content management
- Web serving
- Data sharing
- Wordpress hosting

Key Features

- Uses NFSv4.1 protocol
- Access is controlled via Security Groups
- Compatible only with Linux-based AMIs (not Windows)
- Encryption at rest using AWS KMS

File System Characteristics

- POSIX-compliant (standard Linux file API)
- Automatically scales
- Pay-per-use, no need for capacity planning

EFS – Performance & Storage Classes

EFS Scale

- Supports thousands of concurrent NFS clients
- Up to 10 GB/s throughput
- Automatically scales to petabyte-scale file systems

Performance Mode (set at EFS creation time)

- General Purpose (default):
 - Best for **latency-sensitive** use cases (e.g. web server, CMS)
- Max I/O:
 - Higher latency, but optimized for throughput and parallelism
 - Suitable for big data, media processing

Throughput Mode

- Bursting:
 - Baseline: 1 TB = 50 MiB/s
 - Burst capacity: up to 100 MiB/s
- Provisioned:
 - Set fixed throughput, e.g. 1 GiB/s for 1 TB storage, regardless of actual size
- Elastic:
 - Automatically adjusts throughput based on usage
 - Up to 3 GiB/s for reads and 1 GiB/s for writes
 - o Ideal for unpredictable workloads

EFS – Storage Classes

Storage Tiers (Managed via Lifecycle Policies)

- Standard: For frequently accessed files
- Infrequent Access (EFS-IA):
 - Lower storage cost
 - Higher retrieval cost
- Archive:
 - For rarely accessed files (a few times per year)
 - o 50% cheaper than EFS-IA
- You can automatically move files between tiers using lifecycle policies (e.g., after 60 days of no access)

Availability and Durability

- Standard:
 - Multi-AZ (high availability)

• Recommended for production workloads

• One Zone:

- Stored in a single AZ
- o Better for development/test
- o Backup enabled by default
- Compatible with IA → EFS One Zone-IA

Key Benefit

• Over 90% cost savings with EFS lifecycle tiering

EBS vs EFS – Elastic Block Storage

EBS Volumes

- Can be attached to one instance only (except for multi-attach io1/io2)
- Are **AZ-bound** (locked to the same Availability Zone)
- gp2: IOPS increase with volume size
- gp3 / io1: IOPS and throughput can be configured independently

To Migrate an EBS Volume Across AZ

- 1. Take a snapshot of the volume
- 2. Restore the snapshot to a volume in a different AZ
- 3. Note: EBS backups consume I/O, so avoid running during peak traffic

Additional Notes

- Root EBS volumes are deleted by default when the EC2 instance is terminated
 - This setting can be disabled

EBS vs EFS – Elastic File System

EFS Key Features

- Can be mounted to hundreds of instances across multiple AZs
- Commonly used to **share website files** (e.g. WordPress)
- POSIX-compliant, so it works only with Linux instances
- Typically more expensive than EBS
- Can reduce cost using Storage Tiers

Reminder

- Know when to use:
 - **EFS**: Shared, multi-AZ, scalable file system
 - **EBS**: Single-AZ block storage, low-latency
 - o Instance Store: Ephemeral storage tied to instance lifecycle