Knowledge Discovery and Data Mining

Unit # 11

Sajjad Haider Spring 2010

Acknowledgement

- Most of the slides in this presentation are taken from course slides provided by
 - Han and Kimber (Data Mining Concepts and Techniques) and
 - Tan, Steinbach and Kumar (Introduction to Data Mining)

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\begin{aligned} & \{ \text{Diaper} \} \rightarrow \{ \text{Beer} \}, \\ & \{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs,Coke} \}, \\ & \{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \}, \end{aligned}$

Implication means co-occurrence, not causality!

Sajjad Haider Spring 2010

Definition: Frequent Itemset

• Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset

An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Frequent Itemset

Definition: Association Rule

- Association Rule
 - An implication expression of the form X →
 Y, where X and Y are itemsets
 - Example: $\{ \text{Milk, Diaper} \} \rightarrow \{ \text{Beer} \}$

1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

Example:

TID Items

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Sajjad Haider

Spring 2010

5

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Sajjad Haider

Spring 2010

6

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Sajjad Haider Spring 2010

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

d Haider Spring 2010

Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- · Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions

Sajjad Haider Spring 2010 15

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- $e.g., L = {A,B,C,D}:$

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent CD=>AB BD=>AC

• join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC

Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Spring 2010

D=>ABC

19

Effect of Support Distribution

- How to set the appropriate minsup threshold?
 - If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If *minsup* is set too low, it is computationally expensive and the number of itemsets is very large

Saiiad Haider Spring 2010 20

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - − Redundant if $\{A,B,C\} \rightarrow \{D\}$ and $\{A,B\} \rightarrow \{D\}$ have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Sajjad Haider Spring 2010 2

Computing Interestingness Measure

Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Υ	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

Used to define various measures

support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

- ⇒ Although confidence is high, rule is misleading
- \Rightarrow P(Coffee|Tea) = 0.9375

ajjad Haider Spring 2010 23

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - $P(S \land B) = P(S) \times P(B) => Statistical independence$
 - $P(S \land B) > P(S) \times P(B) => Positively correlated$
 - $P(S \land B) < P(S) \times P(B) => Negatively correlated$

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) =
$$0.75$$

but P(Coffee) = 0.9
 \Rightarrow Lift = $0.75/0.9 = 0.8333$ (< 1, therefore is negatively associated)

	#	Measure	Formula
There are lots of	1	ϕ -coefficient	$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
measures propose	ed 2	Goodman-Kruskal's (λ)	$\frac{\sqrt{1}(A_j)(A_j)(A_j)(A_j)}{\sum_j \max_k P(A_j, B_k) + \sum_k \max_j P(A_j, B_k) - \max_j P(A_j) - \max_k P(B_k)}{2 - \max_k P(A_j) - \max_k P(B_k)}$
in the literature	3	Odds ratio (\alpha)	$P(A,B)P(\overline{A},\overline{B})$
in the literature	4	Yule's Q	$\frac{P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A}B)-P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
	5	Yule's Y	$P(A,B)P(AB)+P(A,B)P(A,B) = \alpha+1$ $\sqrt{P(A,B)P(\overline{AB})}-\sqrt{P(A,\overline{B})P(\overline{A},B)} = \sqrt{\alpha}-1$
Some measures a	ro -		$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
good for certain	6	Kappa (κ)	$\frac{\stackrel{\bullet}{P}(A,B) + \stackrel{\bullet}{P}(A,B) - \stackrel{\bullet}{P}(A) \stackrel{\bullet}{P}(B) - \stackrel{\bullet}{P}(A) \stackrel{\bullet}{P}(B)}{1 - \stackrel{\bullet}{P}(A) \stackrel{\bullet}{P}(B) - \stackrel{\bullet}{P}(A) \stackrel{\bullet}{P}(B)}$
applications, but	7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{\sum_{i} \sum_{j} P(B_{j})}{p(A_{i}) P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{i} P(B_{i}) \log P(B_{i}))}$
not for others	8	J-Measure (J)	$\max\left(\frac{P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(B A)}{P(B)})}{P(B)}\right),$
not for others	"	o manara (o)	$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(B)}{P(A)})$
	9	Gini index (G)	
What criteria	9	Gim index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right.$ $\left P(B)^2 - P(\overline{B})^2.$
should we use to			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
determine whether	er		$-P(A)^{3} - P(\overline{A})^{3}$
a measure is good	-	Support (s)	P(A,B)
or bad?	11	Confidence (c)	$\max(P(B A), P(A B))$
or bau:	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2}\right)$
	13	Conviction (V)	$\max \left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})} \right)$
What about	14	Interest (I)	P(A,B)
Apriori-style	15	cosine (IS)	$\frac{\overline{P(A)P(B)}}{P(A,B)}$
support based	16	Piatetsky-Shapiro's (PS)	$ \frac{\sqrt{P(A)P(B)}}{P(A,B) - P(A)P(B)} $
pruning? How doe		Certainty factor (F)	$\max\left(\frac{P(B A) - P(B)P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)}\right)$
it affect these	18	Added Value (AV)	$\max \left(\frac{1-P(B)}{1-P(A)}, \frac{1-P(A)}{1-P(A)}\right)$ $\max \left(P(B A) - P(B), P(A B) - P(A)\right)$
measures?	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(A)P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{A})}$
	20		
Sajjad Haider	21	Klosgen (K) Spring	$2\frac{\overline{P(A)+P(B)}-P(A,B)}{\sqrt{P(A,B)}} \times \sqrt{P(A,B)} \max(P(B A)-P(B),P(A B)-P(A))$ 27
			V - (,-)(* (** **) * (**)** (** **) * (**))

Mining Multi-Dimensional Association

Single-dimensional rules:

```
buys(X, "milk") \Rightarrow buys(X, "bread")
```

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (no repeated predicates)

```
age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X, "coke")
```

- hybrid-dimension assoc. rules (repeated predicates)
 age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes: finite number of possible values, no ordering among values—data cube approach
- Quantitative Attributes: numeric, implicit ordering among values—discretization, clustering, and gradient approaches

Continuous and Categorical Attributes

How to apply association analysis formulation to non-asymmetric binary variables?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	ΙE	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	ΙE	Yes
5	Australia	123	9	Male	Mozilla	No
			•••			

Example of Association Rule:

{Number of Pages \in [5,10) \land (Browser=Mozilla)} \rightarrow {Buy = No}

Sajjad Haider

Spring 2010

29

Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer
 - Browser Type = Mozilla
 - Browser Type = Netscape

Sajjad Haider

Spring 2010

30

Handling Categorical Attributes

- Potential Issues
 - What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values
 - What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items

Sajjad Haider Spring 2010 31

Handling Continuous Attributes

- Different kinds of rules:
 - Age∈ [21,35) \land Salary∈ [70k,120k) \rightarrow Buy
 - − Salary∈ [70k,120k) \land Buy \rightarrow Age: μ =28, σ =4
- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based
 - minApriori

Discretization

- Discretization is the most common approach for handling continuous attributes.
- This approach groups the adjacent values of a continuous attribute into a finite number of intervals.
- The discrete intervals are then mapped into asymmetric binary attributes so that existing association analysis algorithms can be applied.

Sajjad Haider Spring 2010 3

Discretization Issues

Size of the discretized intervals affect support & confidence

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No}
{Refund = No, (60K \leq Income \leq 80K)} \rightarrow {Cheat = No}
{Refund = No, (0K \leq Income \leq 1B)} \rightarrow {Cheat = No}
```

- If intervals too small
 - may not have enough support
- If intervals too large
 - may not have enough confidence
- Potential solution: use all possible intervals

Statistics-based Methods

- Example:
 - Browser=Mozilla \land Buy=Yes \rightarrow Age: μ =23
- Rule consequent consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.
- Approach:
 - Withhold the target variable from the rest of the data
 - Apply existing frequent itemset generation on the rest of the data
 - For each frequent itemset, compute the descriptive statistics for the corresponding target variable
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
 - Apply statistical test to determine interestingness of the rule

Sajjad Haider Spring 2010

Statistics-based Methods

- How to determine whether an association rule interesting?
 - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$A \Rightarrow B: \mu$$
 versus $A \Rightarrow B: \mu'$

 $Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$

- Statistical hypothesis testing:
 - Null hypothesis: H0: $\mu' = \mu + \Delta$
 - Alternative hypothesis: H1: $\mu' > \mu + \Delta$
 - Z has zero mean and variance 1 under null hypothesis

Statistics-based Methods

- Example:
 - r: Browser=Mozilla \land Buy=Yes \rightarrow Age: μ =23
 - Rule is interesting if difference between μ and μ' is greater than 5 years (i.e., Δ = 5)
 - For r, suppose n1 = 50, s1 = 3.5
 - For r' (complement): n2 = 250, s2 = 6.5

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11$$

- For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- Since Z is greater than 1.64, r is an interesting rule

Sajjad Haider Spring 2010

Non-discretization Methods

 There are certain applications in which analysts are more interested in finding associations among the continuous attributes, rather than associations among discrete intervals of the continuous attributes.

Min-Apriori (Han et al)

Document-term matrix:

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Example:

W1 and W2 tends to appear together in the same document

Sajjad Haider Spring 2010

Min-Apriori

- Data contains only continuous attributes of the same "type"
 - e.g., frequency of words in a document

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

- Potential solution:
 - Convert into 0/1 matrix and then apply existing algorithms
 - lose word frequency information
 - Discretization does not apply as users want association among words not ranges of words

Min-Apriori

- How to determine the support of a word?
 - If we simply sum up its frequency, support count will be greater than total number of documents!
 - Normalize the word vectors e.g., using L₁ norm
 - Each word has a support equals to 1.0

TID	W1	W2	W3	W4	W5		TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1		D1	0.40	0.33	0.00	0.00	0.17
D2	0	0	1	2	2	Normalize	D2	0.00	0.00	0.33	1.00	0.33
D3	2	3	0	0	0		D3	0.40	0.50	0.00	0.00	0.00
D4	0	0	1	0	1		D4	0.00	0.00	0.33	0.00	0.17
D5	1	1	1	0	2		D5	0.20	0.17	0.33	0.00	0.33
Sajjad Haider Spring 2010 41												

Min-Apriori

• New definition of support:

$$\sup(C) = \sum_{i \in T} \min_{j \in C} D(i, j)$$

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.00 0.33 0.00 0.33 0.33	0.00	0.33

Example:

Sup(W1,W2,W3)

= 0 + 0 + 0 + 0 + 0.17

= 0.17

Multi-level Association Rules

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - e.g., skim milk \rightarrow white bread, 2% milk \rightarrow wheat bread, skim milk \rightarrow wheat bread, etc. are indicative of association between milk and bread