Procedimiento Justificado: Recristalización

Recristalización

Recristanzacion	T		
Paso	Justificación		
 Llenar medio Erlenmeyer con agua y 	Calentar el agua ayuda a que se de la		
calentar suavemente.	disolución con mayor facilidad.		
Agregar el soluto.			
Pesar en tres grupos separados, 1.5g de la	Para probar con diferentes temperaturas y ver		
muestra y poner en diferentes Erlenmeyers.	las diferencias en los resultados.		
 Agregar 1mL de la solución caliente a los Erlenmeyer 			
Añadir carbón ativado a y remover los	El carbón activado quita las impurezas.		
Erlenmeyer a su tiempo.	El carbon activado quita las impurezas.		
 Enfriar el primer Erlenmeyer a temperatura 	Sacar los Erlenmeyer a diferente tiempo y		
ambiente y agitar.	enfriarlos de diferente forma hará que se		
	generan los resultados a diferentes		
	temperaturas.		
Enfriar el segundo con agua y el tercero	Cada uno debe ser tapado con un vidrio de		
con hielo.	reloj respectivo.		
Luego de realizar los 3 enfriamientos	Deja que los cristales se formen y se		
diferentes, dejar reposar a T ambiente por	recolecten.		
5min			
Realizar filtración al vacio para c/u.			
Lavar el recoelctado con solvente frio y	Para remover impurezas restantes y luego se		
dejar en el embudo por 10min.	debe permitir que se seque.		
 Se filtra por gravedad a cada uno y luego 	Encontrar el punto de fusión nuevo permitirá		
se realiza una prueba de punto de fusión.	identificar el compuesto y determinar que tan		
	eficiente fue la purifiación.		

(Pavia et al., 2011)

Referencias

 Pavia, D; Lampman, G; Kriz, G; Engel, R; Organic laboratory techniques, a small –scale approach; 2005; 2da edición; Thomson; Técnica 11, Cristalización y purificación de solidos (pag 679).