B: MAJORITY ELEMENT

Given an array of size N, feture if there

Amazon emists a majority element.

Perecutable

Sc: O(1)

Sc: O(1)

En: A: 1, 6, 1, 1, 2, 1 N=6

Me = (1)

Quiz A: 3, 4, 3, 6, 1, 3, 2, 5, 3, 3, 3

Me = 3.

Me = 3.

Mindrey = 4

Mindrey = 6

Quiz A: 4,6,5,3,4,5,6,4,4,4

freq (4) = 5 > 5 \times N=10

mingreg = 6

Minfreg = 6

A: 4,6,5,3,4,5,6,4,4,4 int majority (int Al), int N) 1

for (i = 0; i(N; i++) 1 freg = 0 for(j= D; j (N; j++) { if(alig = = alig) x frig ++; 3
if (frq > N/2)

 $TC: O(N^2)$

Quiz A	tt mar	n Horray ?	s m	any	M.E	Ca	n 1	De	Hrer	e in
		<u> </u>								M=10
W	un fr	eg =	6							
	<u>K</u>		7 <u>N</u> -		\rightarrow	4	一く	2	\longrightarrow	
⇒ Then	e ca	u be	2 α	sing	re	M·E		2 Ug.		
Grand Property Learning Control of the Brand Contro		7	2			*			v 8 √ 6	1 6 7 5 7 7 7 3 7 d
<u>Obs</u> :-	I de la	- mai fightiv	jorit	y &	I N ME	on r . Ил	najo von 't	71-11		

Obs: If 2 non ME's one fighting then ME mon't

A: 3, 4, 3, 6, 1, 5, 6, 5, 8, 9, 10

N= 11 freq > 11 = 5

ME = 3

MEI MEI 6 + 5 + 4 + 4 2 11 + 9 + 7 + 4 5

A: 3, 4, 3, 6, 1, 3, 2, 5, 3, 3, 3

ME = \$ X X Z 3 freg = Y D X D X D X X X Z 3

freg = X Ø X Ø X & I

$$1234 | \frac{1}{En} | 1123$$

$$4 = 4 \times 40$$

$$4 = 4 \times 40$$

$$4 = 4 \times 40$$

MODRE'S VOTING ALGORITHM

TC: O(N) SC: D(1) Cole

int me = a[o] freq = 1 for(i= 1; i< N; i++) 1 if(ali) == me) { freq ++ 3 else { if (freg == 0) (forg = 1; elle i freg--; حم]] 3 Court = 0 for (i=0; i(N; i++)(if (ali) == me) Count + + if (count > N/2) weturn me; Mtrom - 1;

Bi Given an array & 8 queries

s, e, o >> sum ef all odd indened elements from (s, e)

s, e, e => sum of all even indeved elements from (s, e)

$$PS_{E}[0] = A[0]$$

 $PS_{E}[i] = \begin{cases} PS_{E}[i-1] + A[i] & i.j. 2 = 0 \\ PS_{E}[i-1] & \text{Use} \end{cases}$

950: 0 3 3 9 9 14

$$PS_{0}[0] = 0$$
 $PS_{0}[i] = \begin{cases} PS_{0}[i-1] + A[i] & i > 2 \\ PS_{0}[i-1] & \text{the} \end{cases}$

Sum et even indened elements from 8 to e >
$$95_{E}[E] - 95_{E}[S-1]$$

TC:
$$O(N) + O(N) + O(8) : O(N+8)$$

SC: $O(N)$

Amazon In Pirecti	en an Array, denes in the Special Inden Which Sum of a ODD inden elements	Array. : An inc !! = 81		removing
	in the	vesutan	t array.	
A :	0 1 2 4 3 2	5 4 7 6	5 - 2	
	<i>L J</i>	Se	90	
0	3276-2	8	8	
1	4276-	2 9	8	\times
2	4376		9	
3	0 1 2 3 4 3 2 6	- 2 4	9	X
	•	•		

$$S_0 = S_0 = S_0[0-1] + S_0[3-5]$$

$$= L + 7 = 8$$

$$S_0 = S_0[0-2] + S_E[4-9]$$

$$8_{E} = S_{E}[0-2] + S_{0}[4-4]$$

$$= 3+5 = 8$$

$$S_0 = S_0[0,i-1] + S_0[i+1,N-1]$$

$$= PS_0[i-1] + (PS_0[i-1] - PS_0[i])$$

Sum og Even in dered Urments after removing inden = i

$$S_{E} = S_{E}[0,i-1] + S_{0}[i+1,N-1]$$

$$= PS_{E}[i-1] + PS_{0}[N-1] - PS_{0}[i]$$

$$(1-41.108 = 38 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.0000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.00000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000 < 200.0000$$

$$i = N-1$$

 $S_0 = S_0[0, N-2] = PS_0[N-2]$
 $S_E = S_E[0, N-2] = PS_E[N-2]$

1º Build PS.

2. Build PSE

SC: D(N)

3: for (i=0; i(N; i++) (
if (8 = = 50)

Count++

3 return count;

—— * ——