

Advanced Space Transportation Systems

**Space Station Evolution
Beyond the Baseline 1991
(2nd Symposium Evolution of SSF)**

66

**Robert J. Davies
Chief, Advanced Transportation Branch
Advanced Program Development
Office of Space Flight**

2348

NASA-1991-
N92-19104
56-16
3387
20

Agenda

- Heavy Lift Launch Vehicle
- Cargo Transfer Vehicle
- Space Transfer Vehicle Concepts
- Two-Way Personnel Transport
- Transportation Node Requirements
- Technology Needs

National Space Launch Strategy

a. The National Space Launch Strategy is composed of four elements:

- (1) Ensuring that existing space launch capabilities, including support facilities, are sufficient to meet U.S. Government manned and unmanned space launch needs.
- (2) Developing a new unmanned, but man-rateable, space launch system to greatly improve national launch capability with reductions in operating costs and improvements in launch system reliability, responsiveness, and mission performance.
- (3) Sustaining a vigorous space launch technology program to provide cost effective improvements to current launch systems, and to support development of advanced launch capabilities, complementary to the new launch system.
- (4) Actively considering commercial space launch needs and factoring them into decisions on improvements in launch facilities and launch vehicles.

b. These strategy elements will be implemented within the overall resource and policy guidance provided by the President.

Heavy Lift Launch Vehicle Requirements/Needs

- High Reliability
- Good Availability/Operability
- Payload Capability 50–80k and 100–200k
- Modular and Evolvable
- Available in Late 1990 ~ to Early 2000
- Potential Applications
 - Space Station
 - Space Exploration (Lunar and Mars)
 - Low and High Orbit DoD Applications

Basic Heavy Lift Vehicle Options

Future Launch Vehicle Concept

External Tank Application Potential

Std ET

Modifications/Changes

- Add Avionics/Payload Adapter
- Add Forward Skirt
- Add Fwd Dome (Same as LH₂ Fwd Dome)
- Add Barrel Section
- Modify Feedline Outlet
- Stiffen Panels
- Add Feedline
- Stiffen Barrels 1, 2, 3, & 4
- Modify Aft Dome Frame for Engine Module Attach
- Modify Feedline Outlet
- Add Aft Skirt
- Add Engine Module

Common Core

1.5 Stage Driven

HLLV Driven

Applicable to Both Vehicles

Representative NLS Reference Vehicle Performance

Vehicles	Payload ~ Klbs			
	SSF Mission		80 x 150 N.M. Orbit	
	Eng. Out	No Eng. Out	Eng. Out	No Eng. Out
	STME	STME	STME	STME
HLLV (2 ASRMs)				
– Core w 3 Engines	-	117	-	-
– Core w 4 Engines	101	109	-	-
1.5 Stage (6 Engines)	14	-	49	~65
1.5 Stage (5 Engines)	-	-	-	64

Cargo Transfer Vehicle (CTV)

In-LEO Transportation Functions

Cargo Transfer Vehicle Concept

Cargo Transfer Vehicle (CTV)

Existing Stage Candidates

Features

- Performs Circularization & Phasing Burns
- Controls During Prox Ops
- Deorbits Strongback & Recovers
- Independent Return Flight to SSF
- Returns on STS

Evolution Flow

Space Transfer Vehicle Concepts

Lunar Transportation Options

Lunar Transfer

Chemical/Aerobrake
Single Stage

Chemical/Aerobrake
1 1/2 Stage

Chemical/Aerobrake
Single P/A

Chemical - All Propulsive
Module w/Recoverable P/A

Chemical - All Propulsive
Expendable

Lunar Lander

Single Stage

Two Stage

Single P/A

* Not to Scale *

Mars Transportation Options

Cryogenic/Aerobrake Reference Configuration

Cryogenic/All Propulsive Configuration

Nuclear Thermal Propulsion Configuration

Nuclear Electric Propulsion Configuration

Solar Electric Propulsion Configuration

Gas Core Nuclear Reactor Configuration

Augustine Committee Recommendation

"That NASA initiate design effort so that manned activity in the Space Station could be supported in the absence of the Space Shuttle. Crew recovery capability must be available immediately, and *provision made for the relatively rapid introduction of a two-way personnel transport module* on a selected expendable launch vehicle.

ACRV-D Baseline Concept

Summary of Design Deltas from ACRV-CERV

Crew Module

(12,000 to 15,000 lbm)

New Components

- External Structure for LES Support
- 2 string laser docking system
- Hand controllers

Replaced Components

- Berthing with docking mechanism

Increased Components

- 2 more battery modules
- 1 more EPDC string
- ECLSS LiOH expendables
- 2 more RCS jet drivers
- S-band data capability
- UHF voice comm capability
- 1 more multi-function display
- 2 more GPS strings
- Parachute size
- 33% more wiring

Service Module

(2900 to 7400 lbm)

New Components

- Cold gas RCS

Replaced Components

- Hydrazine with MMH/NTO
- Integrated OMS/RCS system

Increased Components

- 5 more battery modules
- 1 more EPDC string
- ECLSS consumables
- 33% more wiring

Additional Elements

- Launch Escape System (4750 lbm)
- Launch Shroud (900 lbm)
- Launch Vehicle Adapter (160 lbm)

Liftoff Mass

28,210 lbm

Two-way Transportation System Options

**ACRV-derived
(ACRV-D)**

- JSC Inhouse Design
- SCRAM Based with more robust Service Module

Biconic

**HL-20
Lifting Body**

- LaRC Preferred Concept

SEI Transportation Nodes Options

	PRO's	CON's
 SSF Based	<ul style="list-style-type: none"> • Enhanced SSF Utilization • No New Major SSF Elements • No Crew Transfer For Operations 	<ul style="list-style-type: none"> • Additional Free Flying Science Platforms • Dynamic μ-g environment may Interfere With Science • Assembly Intensive Philosophy • Increased SSF Resource Requirements • SSF Hooks And Scars
 Free Flying Node	<ul style="list-style-type: none"> • No Interference With Science Programs • Removes Potentially Hazardous Systems (Nuclear, Etc.) • Reduced Schedule Risk • No Propellant Venting at SSF • Node Utilizes SSF Hardware 	<ul style="list-style-type: none"> • Man Tended System • New Platform Required • Crew Transport for EVA Contingencies • Additional Logistics Operations

Technology Needs

- Launch Vehicles
 - Propulsion
 - Avionics
 - Materials
 - Operations

- Space Transfer Vehicles
 - Propulsion
 - Avionics
 - Aerobraking
 - Cryogenic Fluid Storage and Transfer