BERNSTEIN CENTER AND SCHOLZE'S BASE CHANGE

ROBIN ZHANG

1. Bernstein center

We review the basics of the Bernstein center as given in Chapter 2 of [Sch10] with some additional material from [Ber84]. Note that Bernstein uses G to be any reductive group over F.

Notation

- \bullet F := a non-archimedean local field.
- $G := GL_n(F)$.
- K := a compact open subgroup of G.
- $e_K := \frac{\chi_K}{\operatorname{vol}(K)}$, the characteristic function of K divided by volume of K (idempotent associated to K).
- $\hat{\mathsf{G}} := \mathsf{the} \ \mathsf{set} \ \mathsf{of} \ \mathsf{irreducible} \ \mathsf{smooth} \ \mathsf{representations} \ \mathsf{of} \ \mathsf{G} \ \mathsf{over} \ \mathbb{C}.$

The Hecke algebra $\mathcal{H}(G)$ of G is the convolution algebra of locally constant \mathbb{C} -valued functions on G with constant support. The Hecke algebra $\mathcal{H}(G,K)$ consist of $f \in \mathcal{H}(G)$ that are bi-invariant under K.

Fact 1.1.

$$\mathcal{H}(G) = \lim_{\stackrel{\rightarrow}{K}} \mathcal{H}(G,K).$$

Definition 1.2. We can define $\mathcal{Z}(G)$ abstractly as the endomorphism ring of the identity functor of the category of smooth complex representations of G.

Date: February 12, 2019.

Then $\mathcal{Z}(G)$ acts on any smooth representation and this action commutes with any G-morphism.

Goal 1.3. Describe the Bernstein center $\mathcal{Z}(\mathsf{G})$.

Definition 1.4. Denote the center of $\mathcal{H}(G,K)$ by $\mathcal{Z}(G,K)$ and let

$$\widehat{\mathcal{H}}(G) := \lim_{\stackrel{\leftarrow}{K}} \mathcal{H}(G,K)$$

$$\mathcal{Z}(\mathsf{G}) := \lim_{\stackrel{\leftarrow}{\mathsf{K}}} \mathcal{Z}(\mathsf{G},\mathsf{K}),$$

where transition maps are given by applying idempotents (i.e. $f \in \mathcal{H}(G,K) \mapsto e_{K'} * f * e_{K'}$ for $K' \subset K$). $\mathcal{Z}(G)$ is the *Bernstein center*.

Remark 1.5. To move from the abstract definition to the projective limit definition, the action of $\mathcal{Z}(G)$ on the permutation representation $\mathbb{C}[G/K]$ gives a morphism to Z(G,K).

Remark 1.6. In fact, $\mathcal{Z}(\mathsf{G}) \not\subset \mathcal{H}(\mathsf{G})$, but

$$\mathcal{Z}(\mathsf{G}) \subset \hat{\mathcal{H}}(\mathsf{G}) \supset \mathcal{H}(\mathsf{G}).$$

Using $\mathcal{H}(G) = \lim_{K \to K} \mathcal{H}(G, K)$, we know

$$\mathcal{H}(\mathsf{G})^\vee = \lim_{\stackrel{\longleftarrow}{\mathsf{K}}} \mathcal{H}(\mathsf{G},\mathsf{K})^\vee \supset \lim_{\stackrel{\longleftarrow}{\mathsf{K}}} \mathcal{H}(\mathsf{G},\mathsf{K}) = \hat{\mathcal{H}}(\mathsf{G}),$$

so we can define $\langle f, \{\varphi_K\}_K \rangle$ for any $f \in \mathcal{H}G$ and $\{\varphi_K\}_K \in \hat{\mathcal{H}}(G)$, and therefore identify $\hat{\mathcal{H}}(G)$ with the space of distributions T of G such that $T * e_K$ is of compact support for all compact open subgroups K (after choosing a Haar measure).

In fact, $\mathcal{Z}(G)$ is the center of $\hat{\mathcal{H}}(G)$ and is the space of such distributions that are conjugation-invariant.

Fact 1.7. $\mathcal{H}(G)$ has an algebra structure through convolutions of distributions and has center $\mathcal{Z}(G)$, which consists of the conjugation-invariant distributions in $\mathcal{H}(G)$ ("geometrical realization of the Bernstein center").

By Schur's lemma, we have a map $(\hat{G} = irred. smooth repns of G)$.

$$egin{aligned} \varphi: \mathcal{Z}(\mathsf{G}) & o \mathrm{Map}(\hat{\mathsf{G}}, \mathbb{C}^{ imes}) \ & z \mapsto \omega_{(\cdot)}(z) \end{aligned}$$

giving an action of $\mathcal{Z}(G)$ on irreducible smooth representations of G via the central character. We may alternatively describe this as $\mathcal{Z}(G)$ acting on π via the "infinitesimal character" $\omega_{\pi}: \mathcal{Z}(G) \to \mathbb{C}$ of π .

Definition 1.8. Let P be a parabolic subgroup of G with Levi subgroup $L \cong \prod_{i=1}^k \operatorname{GL}_{n_i}$ and fix a supercuspidal representation σ of L.

Let $D = \mathbb{G}_{\mathfrak{m}}^{k}$. Then we have a universal unramified character

$$\begin{split} \chi: L &\to \Gamma(D, \mathcal{O}_D) \cong \mathbb{C}[T_1^{\pm 1}, \dots, T_k^{\pm 1}] \\ (g_i) &\mapsto \prod_{i=1}^k T_i^{\nu_p(\det(g_i))}. \end{split}$$

We get a corresponding family of representations $n\text{-Ind}_P^G(\sigma_X)$ (normalized induction) of G parametrized by D. We also write D for the set of representations of G obtained by specializing to a closed point of D (In Bernstein's language, D is a connected component of the set of isomorphism classes of irreducible cuspidal representations of L).

Let $\operatorname{Rep} G$ be the category of smooth admissible representations of G and let $(\operatorname{Rep} G)(L,D)$ be the full subcategory of $\operatorname{Rep} G$ consisting of those representations that can be embedded into a direct sum of representations in D.

Theorem 1.9 ([Ber84, Proposition 2.10]). As categories,

$$\operatorname{Rep} G = \bigoplus_{(L,D) \text{ up to conj.}} (\operatorname{Rep} G)(L,D).$$

This is a decomposition into a product of indecomposable abelian subcategories ("blocks").

Example 1.10. For a compact G,

$$\operatorname{Rep} G = \bigoplus_{\hat{G}} \mathbb{C}.$$

Definition 1.11. Let W(L, D) be the subgroup of $N_G(L)/L$ ($N_G(L)$ is the normalizer of L in G) consisting of the n such that D (as a set of representations) coincides with its conjugate via n.

Remark 1.12. W(L, D) is a finite group acting on D.

Theorem 1.13 ([Ber84, Theorem 2.13]). For any $z \in \mathcal{Z}(G)$, z acts by a scalar $c_{z,\pi}$ on $\pi := n\text{-Ind}_P^G(\sigma\chi_0)$ for any character χ_0 . The corresponding function on D is a W(L,D)-invariant regular function, inducing an isomorphism

$$\mathcal{Z}(G) \cong \mathit{algebra} \ \mathit{of} \ \mathit{regular} \ \mathit{functions} \ \mathit{on} \ \bigcup_{(L,D)} D/W(L,D)$$

("spectral realization of the Bernstein center").

Remark 1.14. Theorem 1.13 is independent of P. We also really should replace D by D/Stab(σ), quotienting out the σ -invariant elements of D.

Proof. Page 21 for proving first two sentences. Using the decomposition of Theorem 1.9, one only needs to show that $z \mapsto c_{z,\pi}$ identifies the center of the abelian category (Rep G)(L, D) with the ring of regular functions on D/W(L, D). Injectivity follows from every irreducible of (Rep G)(L, D) being

a subquotient of some $n-\operatorname{Ind}_{P}^{G}(\tau)$ for some $\tau\in D$. Surjectivity follows from Lemma 1.15.

Lemma 1.15. For every element z_L in the center of $(\operatorname{Rep} L)(D)$ invariant with respect to W(L,D), there exists an element z in the center of $(\operatorname{Rep} G)(L,D)$ which acts on every induced representation $\operatorname{n-Ind}_P^G(\tau)$ for $\tau \in (\operatorname{Rep} L)(D)$ like $\operatorname{n-Ind}_P^G(\rho)$ where ρ is the endomorphism of τ defined by z_L .

Proof. For each $W \in (\text{Rep }G)(L,D)$ there is an injection

$$\phi: W \hookrightarrow \bigoplus_{P} \operatorname{n-Ind}_P^G \left((\operatorname{Res}{}_P^G W)(D) \right).$$

The endomorphism $\bigoplus_{P} \operatorname{n-Ind}_{P}^{G}(z_{L})$ induces a functorial endomorphism on W, which is the element z that we want. Then it reduces to showing that the image $\varphi(W)$ is stable under $\bigoplus_{P} \operatorname{n-Ind}_{P}^{G}(z_{L})$.

Example 1.16 ([Ber84, Example 2.18]). Let $G = \operatorname{GL}_n(H)$ where H is a division algebra over F. The conjugation classes of parabolic subgroups correspond to ordered partitions of n, the Levi subgroups correspond to $(n_i)_{1 \leq i \leq m}$ in the product of $\operatorname{GL}_{n_i}(H)$ and $\operatorname{N}_G(L)/L$ corresponds to the subgroup of S_m preserving the function $i \mapsto n_i$, which is a product of symmetric groups.

Let π_i be an isomorphism class of cuspidal representations of $\mathrm{GL}_{n_i}(H)$ and let D_i be the orbit of π_i under twisting by an unramified character $\chi_T:g_i\mapsto T^{\nu_p(\det(g_i))}$. If F_i is the subgroup of the $(n_i\sqrt{[H:F]})$ -th roots of unity such that $\pi_1\cong\pi_i\chi_T$, then $D_i\cong\mathbb{C}^\times/F_i^\times$. Here, F_i corresponds to pieces of the Stab σ .

Let $D = \prod_i D_i$. Then W(L, D) is the subgroup of S_m preserving $i \mapsto (n_i, D_i)$ and D/W(L, D) is a nonsingular algebraic variety.

Example 1.17 ([Ber84, Example 2.19]). Let $G = \mathrm{SL}_n(F)$, $L = \{ \text{ diagonal matrices } \}$, and $D = \{ \text{characters of } L/L^{\circ} \}$. Then $D \cong (\mathbb{C}^{\times})^n/\Delta\mathbb{C}^{\times}$ and W(L, D) is the permutation group of the indices.

The image of $(1, \zeta, \ldots, \zeta^{n-1})$ in D, where ζ is a primitive n-th root of unity, has stabilizer $\langle (1, 2, \ldots, n) \rangle$ in $W(L, D) \cong S_n$. For n > 2, that is an isolated singularity of D/W(L, D).

2. Base change

This section closely follows the material from Chapter 3 of [Sch10] where we shift attention to establish a base change identity.

Definition 2.1. Let $G := \mathrm{GL}_2(\mathbb{Q}_p)$ and $G_r := \mathrm{GL}_2(\mathbb{Q}_{p^r})$.

Let σ be the Frobenius lift on G_r .

For $\delta \in G_r$, let $N\delta := \delta \delta^{\sigma} \cdots \delta^{\sigma^{r-1}}$.

Fact 2.2. The conjugacy class of $N\delta$ always contains an element of G.

Definition 2.3. For $\gamma \in G$, define the centralizer

$$G_{\gamma}(R) := \{g \in \operatorname{GL}_{2}(R) \mid g^{-1}\gamma g = \gamma\},\$$

and for $\delta \in G_r$, define the twisted centralizer

$$G_{\delta,\sigma}(R) := \{h \in \operatorname{GL}_2(R \otimes G_r) \mid h^{-1}\gamma h^\sigma = \delta\}.$$

Fact 2.4. It is known that $G_{\delta,\sigma}$ is an inner form of $G_{N\delta}$.

Definition 2.5. We choose Haar measures on $G_{N\delta}(\mathbb{Q}_p)$ and $G_{\delta,\sigma}(\mathbb{Q}_p)$. Define the orbital integral

$$O_{\gamma}(f) = \int_{G_{\gamma}(\mathbb{Q}_{p})^{\backslash G}} f(g^{-1}\gamma g) dg$$

for any smooth function f with compact support on G.

Define the twisted orbital integral

$$TO_{\delta,\sigma}(\varphi) = \int_{G_{\delta,\sigma}(\mathbb{O}_p)^{\backslash G_r}} \varphi(h^{-1}\delta h^{\sigma})dh$$

for any smooth function ϕ with compact support on G_r .

Definition 2.6. The functions $f \in C_c^{\infty}(G), \varphi \in C_c^{\infty}(G_r)$ have matching (twisted) orbital integrals (or are "associated") if for all semisimple $\gamma \in \mathbb{G}$,

$$O_{\gamma}(f) = \begin{cases} \pm TO_{\delta,\sigma}(\varphi) & \text{if γ is conjugate to $N\delta$ for some δ} \\ 0 & \text{else.} \end{cases}$$

The sign is always positive unless both $N\delta$ is a central element and δ is not σ -conjugate to a central element.

Remark 2.7. This definition depends on the choice of Haar measures on G and G_r (which we do not yet fix) but does not depend on the choice of Haar measures on $G_{N\delta}(\mathbb{Q}_p)$ and $G_{\delta,\sigma}(\mathbb{Q}_p)$ as long as they are chosen compatibly.

Proposition 2.8. Let $\delta \in \operatorname{GL}_2(\mathbb{Z}_{p^r}/p^n\mathbb{Z}_{p^r})$. Then

$$G_{N\delta}(\mathbb{Z}/\mathfrak{p}^n\mathbb{Z}) = \{ g \in \operatorname{GL}_2(\mathbb{Z}_p/\mathfrak{p}^n\mathbb{Z}_p \mid g^{-1}N\delta g = N\delta \}$$

has the same number of elements as

$$G_{\delta,\sigma}(\mathbb{Z}/p^n\mathbb{Z})=\{h\in\operatorname{GL}_2(\mathbb{Z}_{\mathfrak{p}^r}/p^n\mathbb{Z}_{\mathfrak{p}^r}\mid h^{-1}\delta h^\sigma=\delta\}.$$

Furthermore, σ -conjugacy classes in $\operatorname{GL}_2(\mathbb{Z}_{p^r}/p^n\mathbb{Z}_{p^r})$ are mapped bijectively to conjugacy classes in $\operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$ via the norm map.

Corollary 2.9. Define the principal congruence subgroups

$$\Gamma(\mathfrak{p}^{\mathfrak{n}})_{\mathbb{Q}_{\mathfrak{p}}^{\mathfrak{r}}} := \{g \in \operatorname{GL}_{2}(Z_{\mathfrak{p}^{\mathfrak{r}}}) \mid g \equiv 1 \pmod{\mathfrak{p}}^{\mathfrak{n}}\}.$$

Let f be a conjugation-invariant locally integrable function on $\mathrm{GL}_2(\mathbb{Z}_p)$.

Then the function $\varphi := f \circ (N * \cdot)$ on $\operatorname{GL}_2(\mathbb{Z}_{p^r})$, i.e. $\varphi(\delta) = f(N\delta)$, is locally integrable. Furthermore for all $\delta \in \operatorname{GL}_2(\mathbb{Z}_{p^r})$,

$$(e_{\Gamma(p^k)_{\mathbb{Q}_{\mathbf{n}^r}}}*\varphi)(\delta)=(e_{\Gamma(p^k)_{\mathbb{Q}_{\mathbf{n}}}}*f)(N\delta).$$

Proof. Assume that f is locally constant, say invariant by $\Gamma(p^n)_{\mathbb{Q}_{p^r}}$. Then ϕ is also invariant by $\Gamma(p^n)_{\mathbb{Q}_{p^r}}$ and locally integrable. The identity follows from combining Proposition 2.8 for k and \mathfrak{n} .

The corollary follows in general by approximating f by locally constant functions.

Definition 2.10 (Shintani). Let π and Π be tempered representations of G and G_r respectively. Π is called a "base-change lift" of π if Π is $Gal(G_r/G)$ -invariant and for all $g \in G_r$ such that the conjugacy class of Ng is regular semisimple,

$$\operatorname{tr}(\mathsf{N}g \mid \pi) := \operatorname{tr}\pi(\mathsf{N}g) = \operatorname{tr}(\Pi(g)\mathsf{I}_{\sigma}) =: \operatorname{tr}((g,\sigma) \mid \Pi)$$

where I_{σ} is the canonical intertwining operator $\Pi \mapsto \Pi^{\sigma}$ where $\Pi^{\sigma}(g) := \Pi(\sigma g)$ (we are basically extending Π to a representation of $G_r \rtimes \operatorname{Gal}(G_r/G)$).

Remark 2.11. These are not actual traces, but an integration \acute{a} $l\acute{a}$ Weyl integration formula.

Base-change lifts are known to exist by [Lan80] and more generally by [AC89, Theorem 6.2].

Theorem 2.12. Assume $f \in \mathcal{Z}(G)$, $\phi \in \mathcal{Z}(G_r)$ such that for every tempered irreducible smooth representation π of G with base-change lift Π , the scalars $c_{f,\pi} = c_{\phi,\Pi}$ by which they act agree.

Then for any $h \in C_c^\infty(G)$ and $h' \in C_c^\infty(G_r)$ with matching (twisted) orbital integrals, f * h and $\varphi * h'$ also have matching (twisted) orbital integrals.

Furthermore, $e_{\Gamma(p^n)_{\mathbb{Q}_p}}$ and $e_{\Gamma(p^n)_{\mathbb{Q}_{p^r}}}$ have matching (twisted) orbital integrals.

Remark 2.13. Here, $c_{f,\pi} = \omega_{\pi}(f)$ and $c_{\phi,\Pi} = \omega_{\Pi}(\phi)$.

Proof. Using that h and h' have matching (twisted) orbital integrals, we know $\operatorname{tr}(h \mid \pi) = \operatorname{tr}((h', \sigma) \mid \Pi)$ if Π is a base-change lift of π (consequence of Weyl integration formula and twisted version by [Lan80]).

Then

$$\operatorname{tr}(f * h \mid \pi) = c_{f,\pi} \operatorname{tr}(h \mid \pi) = c_{\phi,\Pi} \operatorname{tr}((h', \sigma) \mid \Pi) = \operatorname{tr}((\phi * h', \sigma) \mid \Pi).$$

Per [Lan80], we can find a function $f' \in \mathcal{H}(G)$ that has matching (twisted) orbital integrals with $\phi * h'$, so $\operatorname{tr}((\phi * h', \sigma \mid \Pi) = \operatorname{tr}(f' \mid \pi)$. Hence, $\operatorname{tr}(f * h - f' \mid \pi) = 0$ for all tempered irreducible smooth representations π of G. By Kazhdan's density theorem (1986), all regular semi-simple orbital integrals of f * h - f' vanish. This is the only difference between the regular semisimple (twisted) orbital integrals of f * h and $\phi * h'$ so they match. By Clozel (1990), all of their semisimple (twisted) orbital integrals match (not just regular).

The last statement is to check

$$\operatorname{tr}(e_{\Gamma(p^{\mathfrak{n}})_{\mathbb{Q}_{p}}}\mid \pi) = \operatorname{tr}((e_{\Gamma(p^{\mathfrak{n}})_{\mathbb{Q}_{n^{\mathfrak{r}}}}}, \sigma)\mid \Pi),$$

which follows from the same argument and Corollary 2.9 using the restriction of the character of π to $\mathrm{GL}_2(\mathbb{Z}_p$ (characters are locally integrable) as f, k = n, and $\delta = 1$.

References

- [AC89] J. Arthur and L. Clozel. Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. Annals of mathematics studies. Princeton University Press, 1989.
- [Ber84] J.-N. Bernstein. Le "centre" de Bernstein. In J.-N. Bernstein, P. Deligne, D. Kazhdan, and M.-F. Vigneras, editors, Représentations des groupes réductifs sur un corps local, Travaux en Cours, pages 1–32. Hermann, Paris, 1984. Edited by P. Deligne.

- [Lan80] R.P. Langlands. Base Change for GL(2). Annals of Mathematics Studies. Princeton University Press, 1980.
- [Sch10] Peter Scholze. The Langlands–Kottwitz approach for the modular curve. International Mathematics Research Notices, 2011(15):3368-3425, $10\ 2010$.

(Robin Zhang) Department of Mathematics, Columbia University $Email\ address: \verb|rzhang@math.columbia.edu|$