Spectraltheory

Prof. Dr. Tobias Lamm

Sommersemester 2017

Karlsruher Institut für Technologie

Contents

Ι	Unbounded operators, adjoint and self-adjoint operators	2
\mathbf{A}	Exercises	5

Chapter I

Unbounded operators, adjoint and self-adjoint operators

Let H be a separable Hilbert space, $\langle \cdot, \cdot \rangle$ denote the scalar product on H.

A linear operator T in H is a linear map $u \mapsto Tu$ defined on a subspace $\mathcal{D}(T)$ of H, and we call $\mathcal{D}(T)$ the domain of T.

For $T: \mathcal{D}(T) \to H$ we denote the range of T with

$$\mathcal{R}(T) := \operatorname{Image}(T)$$
.

We say that T is **bounded** if it is continuous from $\mathcal{D}(T)$ into H, with respect to the topology induced by H.

If $\mathcal{D}(T) = H$ we recall the definition of bounded operators from the functional analysis course.

From now on, if $\mathcal{D}(T) \neq H$ we will assume that $\mathcal{D}(T)$ is **dense** in H, i.e. $\overline{\mathcal{D}(T)} = H$. In this case, if T is bounded then T has a unique continuous extension to all of H.

$$\Rightarrow T$$
 bounded is boring!

Recall: An operator is called **closed** if the graph

$$G(T) := \{(x, y) \in H \times H : x \in \mathcal{D}(T), y = Tx\}$$

is closed in $H \times H$.

Definition I.1: Let $T: \mathcal{D}(T) \to H$ be a (linear) operator with $\mathcal{D}(T)$ dense in H. Then T is called **closed** if the conditions

$$\left. \begin{array}{l} u_n \in \mathcal{D}\left(T\right) \\ u_n \to u \ in \ H \\ Tu_n \to v \ in \ H \end{array} \right\} \Rightarrow u \in \mathcal{D}\left(T\right), v = Tu$$

hold.

Example:

a) Let $T_0 = -\Delta$, $H = \ell^2(\mathbb{R}^n)$ and $\mathcal{D}(T_0) = C_c^{\infty}(\mathbb{R}^n)$ dense in H. Take $u \in W^{2,2}(\mathbb{R}^n) \setminus C_c^{\infty}(\mathbb{R}^n)$

$$\stackrel{\text{densly}}{\Longrightarrow} \exists (u_n)_{n \in \mathbb{N}} \in C_c^{\infty}(\mathbb{R}^n) \colon u_n \to u \text{ in } W^{2,2}(\mathbb{R}^n)$$

 $(u_n, -\Delta u_n) \in G(T_0)$ converges in $\ell^2 \times L^2$ to $(u, -\Delta u) \notin G(T_0)$.

b) Let $T_1 = -\Delta$, $\mathcal{D}(T_1) = W^{2,2}(\mathbb{R}^n)$ and $H = L^2(\mathbb{R}^n)$. For $u_n \in \mathcal{D}(T_1)$ with

$$u_n \to u$$
 in H and $(-\Delta u_n) \to u$ in L^2

follows that $-\Delta u = v \in L^2(\mathbb{R}^n)$ weakly, i.e. $\forall \varphi \in C_c^{\infty}(\mathbb{R}^n)$:

$$\int_{\mathbb{R}^n} v\varphi \leftarrow \int_{\mathbb{R}^n} (-\Delta u_n) \varphi = \int_{\mathbb{R}^n} u_n (-\Delta \varphi) \rightarrow \int_{\mathbb{R}^n} u (-\Delta \varphi).$$

$$\xrightarrow{PDE} u \in W^{2,2}(\mathbb{R}^n), \mathcal{D}(T_1) \Rightarrow T_1 \text{ is closed}$$

Definition I.2: An operator T is called **closable** $\iff \overline{G(T)}$ is a graph.

Remark: We call \overline{T} the **closure** of T and we have

$$\mathcal{D}\left(\overline{T}\right) \coloneqq \left\{x \in H \colon \exists y \text{ such that } (x,y) \in \overline{G(R)}\right\}$$

For any $x \in \mathcal{D}(\overline{T})$ the assumption that $\overline{G(T)}$ is a graph implies that y is unique and hence

$$\Rightarrow G(\overline{T}) = \overline{G(T)}, \ \overline{T}x \coloneqq y$$

Equivalently, $\mathcal{D}\left(\overline{T}\right)$ is the set of all $x \in H$ such that there exists a sequence $x_n \in \mathcal{D}\left(T\right)$ with $x_n \to x$ in H and Tx_n is a cauchy sequence. For such x we define

$$\overline{Tx} := \lim_{n \to \infty} Tx_n$$

Example: Let $T_0 := -\Delta$, $\mathcal{D}(T_0) = C_c^{\infty}(\mathbb{R}^n)$ is closable with $\overline{T_0} = T_1$.

Proof: Let $u \in L^2(\mathbb{R}^n)$ such that there exists $(u_n)_{n \in \mathbb{N}} \in C_c^{\infty}(\mathbb{R}^n)$ with $u_n \to u$ in L^2 and $-\Delta u_n \to u$ in L^2 , as above:

$$-\Delta u = v \in L^2$$

For a given u the function u is unique $\Rightarrow T_0$ is closable. Let $\overline{T_0}$ be the closure with domain $\mathcal{D}\left(\overline{T_0}\right)$ and $u \in \mathcal{D}\left(T_0\right)$

$$\Rightarrow \Delta u \in L^2 \Rightarrow u \in W^{2,2}(\mathbb{R}^n) = \mathcal{D}(T_1) \Rightarrow \mathcal{D}(\overline{T_0}) \subseteq \mathcal{D}(T_1)$$

but $C_c^{\infty}(\mathbb{R}^n)$ is dense in $\mathcal{D}(T_1) = W_{2,2}(\mathbb{R}^n)$

$$\Rightarrow W^{2,2}(\mathbb{R}^n) \subseteq \mathcal{D}\left(\overline{T_0}\right) \Rightarrow \mathcal{D}\left(\overline{T_0}\right) = \mathcal{D}\left(T_1\right) \Rightarrow T_1 = \overline{T_0},$$

Assumption:

$$W^{2,2} \not\subseteq \mathcal{D}(T_0) \Rightarrow \exists u \in W^{2,2} \setminus \mathcal{D}(\overline{T_0}), \ \exists (u_n)_{n \in \mathbb{N}} \in C_c^{\infty}(\mathbb{R}^n) : u_n \to u \text{ in } W^{2,2}$$

same argument as in example 1) $\Rightarrow \overline{T_0}$ not closed!

Recall: If $T: H \to H$ is bounded then T^* is defined through

$$\langle u, T^*v \rangle = \langle Tu, v \rangle, \ \forall u, v \in H$$

In the ... $u \mapsto \langle Tu, v \rangle$ deines a continuous linear map on $H \in H'$, Riesz' representation theorem then ensures the existence of T^* .

Definition I.3: If T is an unbounded operator on H with dense domain, we defined

 $\mathcal{D}\left(T^{*}\right) := \left\{v \in H \colon \mathcal{D}\left(T\right) \ni u \mapsto \left\langle Tu, v \right\rangle \text{ can be extended as a linear continuous form on } H\right\}$

Appendix A

Exercises

Exercise 1

a) H separable $\Rightarrow \exists (e_n)_{n \in \mathbb{N}} \subseteq H$ orthonormal basis of H.

Proof: H seperable $\Rightarrow \exists (u_n)_{n \in \mathbb{N}} \subseteq H$: $\overline{\{u_n | n \in \mathbb{N}\}} = H$. Define:

$$H_n := \lim \{u_1, \dots, u_n\}, \text{ for } n \in \mathbb{N}$$

 $H_n \subseteq H$ closed subspace of H as dim $H_n \le n < \infty$. By Projektionssatz there exists an orthogonal projection P_n on H_n . Set

$$g_n := u_n - P_{n-1}un \in H_n \cap H_{n-1}^{\perp}, N := \{n \in \mathbb{N} | g_n \neq 0\}$$

Now we define

$$e_n \coloneqq \begin{cases} \frac{g_n}{\|g_n\}}, & n \in N \\ 0, & n \notin N \end{cases}$$

 $\Rightarrow e_n \in H_n \cap H_{n-1}^{\perp}$, $\lim\{.e_1, \ldots, e_n\} = H_n \Rightarrow (e_n)_{n \in \mathbb{N}}$ is an orthonormal basis of H.

b) $H = L^2(0,1), \mathcal{D}(()T) = W^{1,2}(0,1) \eqqcolon H^1(0,1), Tf = if'.$

Proof: T abgeschlossen: $(x_n)_{n\in\mathbb{N}}\subseteq\mathcal{D}(T)$ Cauchyfolge bezüglich $\|\cdot\|_{W^{1,2}}$. $\xrightarrow{L^2}$ vollständig $\exists x,y\in L^2(0,1): x_n\to x, x_n'\to y \text{ in } L^2(0,1)$

$$\Rightarrow \int_0^1 x\varphi'dt = \lim_{n\to\infty} \int_0^1 x_n\varphi'dt = -\lim_{n\to\infty} \int_0^1 x_n''\varphi dt = -\int_0^1 y\varphi dt \ \forall \varphi \in C_c^\infty(0,1)$$

 $\Rightarrow x \in \mathcal{D}(T), x' = y, Tx = ix' \Rightarrow T \text{ abgeschlossen.}$

We still have to show that T isn't symmetric:

$$\langle Tx,y\rangle_{L^2}=\int_0^1 ix'\overline{y}dt\stackrel{P.I.}{=} [ixy]_0^1-\int_0^1 ix\overline{y}'dt=\underbrace{[ixy]_0^1}_{\neq 0 \text{ i. g.}}+\langle x,Ty\rangle_{L^2},$$

d.h. T is not symmetrich $\Rightarrow t$ nicht self-adjoint. T isn't halb-beschränkt nach unten;: siehe (iii).

c)
$$\mathcal{D}(T) = W_0^{1,2}(0,1), H = L^2(0,1), Tf = if'.$$

Proof: T closed: as in (ii),

T symmetrisch:

$$\langle Tx, y \rangle_{L^2} = \dots = \underbrace{[ixy]_0^1}_{-0} + \langle x, Ty \rangle_{L^2} = \langle x, Ty \rangle \ \forall x, y \in \mathcal{D}(T)$$

T not self-adjoint:

$$\mathcal{D}\left(T^{*}\right)=\left\{ y\in L^{2}(0,1)\colon x\mapsto \langle Tx,y\rangle_{L^{2}}\text{ continuous on }\mathcal{D}\left(T\right)\right\}$$

Vermutung: $W^{1,2}(0,10) \subseteq \mathcal{D}(T^*)$ (even "="). Let $x \in \mathcal{D}(T), y \in W^{1,2}(0,1)$:

$$\langle Tx, y \rangle_{L^2} = \dots = \underbrace{[ixy]_0^1}_{=0} + \langle x, iy' \rangle_{L^2} = \langle x, iy' \rangle_{L^2}$$

continuous on $\mathcal{D}(T)$, i.e. $W^{1,2}(0,1) \subseteq \mathcal{D}(T^*)$, however $W^{1,2}(0,1) \not\subseteq W_0^{1,2}(0,1)$, i.e. $\mathcal{D}(T) \neq \mathcal{D}(T^*) \Rightarrow T \neq T^*$.

T is not halb-beschränkt nach unten:

Consider the comment:
$$\langle Tx, x \rangle_{L^2} = -2 \int_0^2 1 (\operatorname{Im} x)' \operatorname{Re} x dt \stackrel{\text{"q}"}{\geq} c \langle x, x \rangle_{L^2}$$

For $f_0 \in W_0^{1,2}(0,1)$ with $\langle f_0, f_0 \rangle_{L^2} = 1$, $w \in \mathbb{R}$, $f_w(t) := e^{iwt} f_0(t) \Rightarrow \langle f_w, f_w \rangle_{L^2} = 1$

$$f'_w(t) = iwe^{iwt} f_0(t) + e^{iwt} f'_0(t)$$
$$= iwf_w(t) + e^{iwt} f'_0(t).$$

$$\langle Tf_w, f_w \rangle = \int_0^1 \left(-w f_w(t) + i e^{iwt} f_0'(t) \right) e^{-iwt} \overline{f_0(t)} dt$$

$$= \underbrace{\int_0^1 -w |f_0|^2 dt}_{=-w} + \underbrace{\int_0^1 i f_0'(t) \overline{f_0(t)} dt}_{\langle Tf_0, f_0 \rangle_{L^2}} = -w + \underbrace{\langle Tf_0, f_0 \rangle_{L^2}}_{\in \mathbb{R}} \to \pm \infty$$

for $w \to \pm \infty \Rightarrow T$ ist not halb-beschränkt. In (iii) T has a self-adjoint Er-

weitunerung S:

$$\mathcal{D}(S) = \left\{ x \in W^{1,2}(0,1) \colon x(0) = x(1) \right\}, \ Sf = if'$$

Definition A.1: Sei $\Omega \subseteq \mathbb{C}$ offen, $r: \Omega \to X$ eine Funktion. Man definiert

- a) r ist schwach analytisch $\iff \forall \varphi \in X^* \colon \varphi \circ r$ analytisch auf Ω
- b) r ist analytisch $\iff \frac{d}{dz}r(z_0) \coloneqq r'(z_0) \coloneqq \lim_{z\to z_0} (z-z_0)^{-1} [r(z)-r(z_0)]$ existiert in $X \ \forall z_0 \in \Omega$
- c) Kurvenintegrale: Sein $\Gamma := \{ \gamma(t) : t \in [a, b] \}$ endlich-stückweise glatte Kurve in Ω , r stetig, dann:

$$\int_{\Gamma} r(\lambda)d\lambda := \int_{a}^{b} r(\gamma(t)) \cdot \gamma'(t)dt \in X$$

Satz (Lemma von Dunford): $r \colon \Omega \to X$ schwach analytisch $\iff r$ analytisch

Satz (Cuachy's Integralsatz und Formel): Sei $\Omega \subseteq \mathbb{C}$ offen und konvex, $r \colon \Omega \to X$ analytisch. Dann gilt:

- a) $\gamma \subseteq \Omega$ stückweise glatt und geschlossen $\Rightarrow \int_{\Gamma} r(\lambda) d\lambda 0$.
- b) $\forall \lambda_0 \in \Omega, \ a > 0 \text{ mit } \overline{B(\lambda_0, a)} \subseteq \Omega$:

$$r(\lambda) = \frac{1}{2\pi i} \int_{|\mu - \lambda_0| = a} \frac{1}{\mu - \lambda} r(\mu) d\mu \in X.$$

Proof: Sei $x^* \in X^*$, dann ist $x^* \circ r$ analytisch auf Ω . Nach Integralsatz bzw. -formel aus der Funktionentheorie folgt:

$$0 = \int_{\Gamma} x^* \left(r(\lambda) \right) d\lambda = x^* \left(\underbrace{\int_{\Gamma} r(\lambda) d\lambda}_{=:x_1} \right),$$

$$x^* \left(r(\lambda) \right) = \frac{1}{2\pi i} \int_{|\mu - \lambda_0| = a} \frac{1}{\mu - \lambda} x^* \left(r(\mu) \right) d\mu = x^* \left(\frac{1}{2\pi i} \int_{|\mu - \lambda_0| = a} \frac{1}{\mu - \lambda} r(\mu) d\mu \right)$$

$$\iff x^* \left(\underbrace{r(\lambda) - \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{\mu - \lambda} r(\mu) d\mu}_{=:x_2} \right) = 0$$

$$\Rightarrow x^*(x_1) = 0, \ x^*(x_2) = 0 \ \forall x^* \in X^* \xrightarrow{\frac{Hahn^-}{Banach}} x_1 = 0, \ x_2 = 0.$$

Das Dunford-Kalkül

Definition A.2 (Kalkül für Polynome): Sei $A \in L(X)$, $p: \lambda \mapsto \sum_{k=0}^{n} a_k \lambda^k$ Polynom, $a_k \in \mathbb{C}$ für k = 0, ..., n. Dann definiert man:

$$p(A) = \sum_{k=0}^{n} a_k A^k \in L(X).$$

P Vektorraum aller Polynome.

Satz (Eigenschaften): $p_1, p_2, p \in \mathcal{P}, p(\lambda) = \sum_{k=0}^n a_k \lambda^k, A \in L(X), \alpha, \beta \in \mathbb{C}.$ Dann gilt:

- (1) Linearität: $(\alpha p_1 + \beta p_2)(A) = \alpha p_1(A) + \beta p_2(A)$.
- (2) Multiplikativität:: $(p_1 \cdot p_2)(A) = p_1(A)p_2(A) = p_2(A) \cdot p_1(A)$.
- (3) Beschränktheit: $||p(A)||_{L(X)} \le \sum_{k=0}^{n} |a_k| ||A||_{L(X)}^k$.
- (4) Spektrale Abbildungseigenschaft: $\sigma(p(A)) = p(\sigma(A))$.

Proof:

- (1) (3): klar.
- (4) "\(\text{\text{"}}\)": Sei $\mu \in \sigma(A)$, dann hat das Polynom $\lambda \mapsto p(\mu) p(\lambda) \in \mathcal{P}$ eine Nullstelle in $\lambda = \mu$. Somit folgt:

$$p(\mu) - p(\lambda) = (\mu - \lambda) q(\lambda),$$

für ein $q \in \mathcal{P}$ für alle $\lambda \in \mathbb{C}$.

$$\xrightarrow[\lambda=A]{(1),(2)} p(\mu) - p(A) = (\mu - A) q(A) = q(A) (\mu - A)$$

Da $\mu \in \sigma(A)$ ist $\mu - A$ nicht injektiv oder nicht surjektiv.

$$\Rightarrow p(\mu) - p(A)$$

kann nicht injektiv oder nicht surjektiv sein $\Rightarrow p(\mu) \subseteq \sigma(p(A))$. " \subseteq ": Sei $\mu \in \sigma(p(A))$. Wähle Nullstellen $\lambda_1, \dots, \lambda_m \in \mathbb{C}$ von $\lambda \mapsto \mu - p(\mu)$, d.h.

$$\mu - p(\lambda) = a(\lambda - \lambda_1) \cdot \ldots \cdot (\lambda - \lambda_m),$$

$$a \neq 0 \xrightarrow[\lambda]{(1),(2)} \mu - p(A) = a (A - \lambda_1) \cdot \dots \cdot (A - \lambda_m)$$
. Angenommen: $\lambda_1, \dots, \lambda_m \notin \sigma(A)$

$$\Rightarrow L(X) \ni (A - \lambda_m)^{-1} \cdot \dots \cdot (A - \lambda_1)^{-1} a^{-1} = (\mu - p(A))^{-1},$$

was einen Widerspruch zu $\mu \in \sigma(p(A))$ darstellt $\Rightarrow \exists j_0 \in \{1, \dots, m\}: \lambda_{j_0} \in \sigma(A).$

$$\mu - p(\lambda_{j_0}) = 0 \iff \mu = p(\lambda_{j_0}),$$

d.h. $\mu \in p(\sigma(A))$.

Bemerkung:

Kalkül für Polynome

	•
Verallgemeinerte	Approximiere:
Polynome = Potenzreihen	Satz von Weierstraß
	$\overline{\mathcal{P}}^{\ \cdot\ _{C^0[0,1]}} = C^0[0,1]$
$A \mapsto \sum_{k=0}^{\infty} a_k A^k$	
"Konvergenzradius"?	\Rightarrow Kalkül für $C^0[0,1]$
\Rightarrow analytische Funktionen	Stetige Funktionalkalkül
\Rightarrow Dunford-Kalkül	

Definition A.3 (Kalkül für Potenzreihen): Sei $f(\lambda) = \sum_{k=0}^{\infty} a_k \lambda^k$, $(a_k)_{k \in \mathbb{N}_0} \subseteq \mathbb{C}$, Potenzreihe mit Konvergenzradius R > 0. Zu $A \in L(X)$, r(A) < R definieren wir:

$$f(A) := \lim_{n \to \infty} \left(\sum_{k=0}^{n} a_k A^k \right) =: \sum_{k=0}^{\infty} a_k A^k$$

in L(X).

Stichwortverzeichnis

```
bounded, 2
closable, 3
closed, 3
closure, 3
dense, 2
Operator
bounded, 2
closable, 3
closed, 3
closure of, 3
```