Air Quality Prediction

Predicting AQI based on pollutant levels (CO, O3, NO2, SO2, PM10, PM2.5)

Arman Ghaziaskari Naeini

December 2024

What is Air Quality?

Air quality is crucial for public health due to its direct impact on respiratory and cardiovascular conditions.

AQI (Air Quality Index):

A common measure used to indicate air pollution levels.

Key Pollutants:

The primary pollutants affecting air quality include

CO (Carbon Monoxide)

O₃ (Ozone)

NO₂ (Nitrogen Dioxide)

SO₂ (Sulfur Dioxide)

PM10 (Particulate Matter 10)

PM2.5 (Particulate Matter 2.5)

Understanding air quality is essential for developing effective pollution management strategies.

Key Features Affecting Air Quality

SO2 (Sulfur Dioxide):

Volcanic gas or sulfufric burning in fossil fuel

PM10 (Particulate Matter 10):

Particles can penetrate the lungs. produced by Dust, wildfires and brush/waste burning, industrial sources.

PM2.5 (Particulate Matter 2.5):

Industry and fuel oil, construction site, transboundary, industry, open burning or Traffic

Key Features Affecting Air Quality

Nitrogen Dioxide (NO2)

formed during the process of nitride combustion. Nitride is the product of nitrogen oxide photochemical reaction.

Ozone (O3)

Secondary pollutants from nitrogen oxide, reactive hydrocarbons, or photochemical reaction.

Carbon Monoxide (CO)

Forest fire, methane nitridation, biological activity or incomplete combustion of fuel.

Data Source

• Dataset from Iranian Environmental Organizaion

2 444 24 44 44 44 44 44 44 44 44 44 44 4	•••••••••			
• 2123 Air polution stations		Air Pollution	Air Pollution	Health Implications
• Metrics included:		Level	Category	
CO (Carbon Monoxide)	0-50	Level 1	Excellent	No health implications.
O3 (Ozone) NO2 (Nitrogen Dioxide)	51-100	Level 2	Good	Some pollutants may slightly affect very few hypersensitive individuals.
SO2 (Sulfur Dioxide) PM10 (Particulate Matter 10) PM2.5 (Particulate Matter 2.5)	101-150	Level 3	Lightly Polluted	Healthy people may experience slight irritations and sensitive individuals will be slightly affected to a larger extent because
Target:				the air is slightly polluted.
AQI (Air Quality Index)	151-200	Level 4	Moderately Polluted	Sensitive individuals will experience more serious conditions because the air is moderately polluted. The hearts and respiratory systems of healthy people may

201-500

Creating 2 targets:

- AQI Description
- AQI Average

Level 5

Heavily Polluted

Hea

be affected.

Problems in the data

• Missing Values: Resolved using the median.

• Duplicated Rows: Removed.

• Column Names and Contents: Originally written in Persian; converted to English.

	DateTime	Province	co	О3	NO2	SO2	PM10	PM2.5	AQI	AQI Average	AQI Description
0	1396/06/01 11:00:00	Alborz	25.0	50.0	52.0	29.0	19.0	48.0	50	25	Excellent
1	1396/06/01 11:00:00	Alborz	42.0	54.0	52.0	21.0	80.0	105.0	105	125	Lightly Polluted
2	1396/06/01 11:00:00	Alborz	40.0	50.0	38.0	27.0	52.0	59.0	59	75	Good
3	1396/06/01 11:00:00	Alborz	11.0	50.0	45.0	26.0	54.0	91.0	54	75	Good
4	1396/06/01 11:00:00	Alborz	46.0	50.0	37.0	27.0	52.0	54.0	54	75	Good

AQI

Heatmap

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Rank	Model	MAE	R ²	Hyperparametrs
1	Gradient Boosting	4.576557	0.909186	learning_rate: 0.05, max_depth: 10, min_samples_split: 10, n_estimators: 300, subsample: 0.8
2	Random Forest	4.947887	0.905484	<pre>max_depth : None, max_features : None, min_samples_leaf : 1, min_samples_split : 2, n_estimators : 300</pre>
3	XGBoost	4.962615	0.905852	learning_rate: 0.1, max_depth: 7, n_estimators: 150, subsample: 0.8
4	KNN	5.127256	0.873260	metric: manhattan, n_neighbors: 2, weights: distance
5	Decision Tree	5.332536	0.857144	<pre>criterion : squared_error , max_depth : None, max_features : None, min_samples_leaf : 1, min_samples_split : 2</pre>
6	SVR	6.478604	0.813697	C:100, degree:1, gamma: auto, kernel: rbf
7	ElasticNet	13.003160	0.693486	alpha: 0.7543120063354622, l1_ratio: 1.
8	Lasso	13.003974	0.693382	alpha: 0.774263682681127
9	Linear Regression	13.018671	0.691836	-

Gradient Boosting

Controlling PM2.5 emissions should be the primary focus for improving air quality.

CO's contribution highlights the need to monitor traffic emissions and combustion activities more closely.

NO2 (Nitrogen Dioxide), O3 (Ozone), and PM10 have relatively low importances. These pollutants still influence air quality but are less significant compared to PM2.5.

Feature	Importance
PM2.5	0.697276
со	0.105519
NO2	0.063716
О3	0.053219
PM10	0.053100
SO2	0.027170

Regression

Class	IIICati	OH			
Model	Accuracy	F1-score	ROC AUC	Recall	Best Params
Gradient Boosting	0.9426	0.9840	0.7251	0.7222	learning_rate: 0.1, max_depth: 7, n_estimators: 100, subsample: 0.8}
XGBoost	0.9330	0.9715	0.7285	0.7266	colsample_bytree: 0.8, learning_rate: 0.1, max_depth: 7, n_estimators: 50, subsample: 0.8
Random Forest	0.9282	0.9897	0.7219	0.7103	max_depth : None, max_features : sqrt , min_samples_leaf : 1, min_samples_split : 2, n_estimators : 200
KNN	0.9258	0.9444	0.9268	0.9131	metric: euclidean, n_neighbors:1, weights: uniform
Decision Tree	0.9067	0.8367	0.7081	0.7029	<pre>criterion : entropy , max_depth : None, min_samples_leaf : 1,</pre>
SVC	0.8612	0.9707	0.6777	0.6713	C:10, gamma: scale, kernel: rbf
Logistic	0.7727	0.8662	0.6108	0.5854	C: 11.288378916846883, solver: lbfgs

Feature	Importance
PM2.5	0.596267
NO2	0.112122
со	0.105613
PM10	0.087409
О3	0.055173
SO2	0.043416

Gradient Boosting

Deep Learning-MPLs-Classification

Best Hyperparameters:

- batch_size=16,
- dropout_rate=0.4
- epochs=550
- learning_rate=0.01,
- neurons_layer1=32
- neurons_layer2=16

PM2.5	0.5308
PM10	0.1554
NO2	0.1149
со	0.0918
О3	0.0604
SO2	0.0467

Deep Learning-MPLs-Regressiom

Best Hyperparameters:

• batch_size: 22

epochs: 381

dropout_rate:

0.11060969310248417

learning_rate:

0.0018505523167281056

• neurons: 122

PM2.5	0.6051
СО	0.1024
PM10	0.0872
NO2	0.0818
О3	0.0711
SO2	0.0524

1. Both models agree on the primary role of PM2.5 in AQI prediction, underscoring its generalizability across methods.

1. Health and Policy Implications: The prominence of PM2.5, CO, and PM10 aligns with their known adverse health effects, underscoring their importance in air quality management policies.

1. PM2.5 consistently leads in importance, emphasizing its health and environmental impact.

2. Gradient Boosting models tend to assign higher importance to CO and NO2 compared to MLP models.

3. MLP models capture a slightly higher role of PM10, suggesting sensitivity to non-linear relationships.

Conclusion

• DomPM2.5 is the Most Important Feature

• PM2.5 is consistently the top feature in all models, showing its strong impact on air quality and human health.

Model Performance Highlights

- Gradient Boosting: Best performance with the lowest MAE (4.576557) in regression and the highest accuracy (94.26%) in classification.
- MLP Models: Showed good results and flexibility in analyzing feature importance.

Future Directions

- 1. Focus on an Area and Extend the Dataset
 - By focusing on a specific area, we can identify localized patterns, such as seasonal trends, traffic density, or industrial pollution.
- 2.Extend the Dataset to Include Meteorological Factors e.g., temperature, humidity, wind speed..
- 3. Using Time Series Data to Predict AQI Behavior To predict AQI both over time and space.

Thanks for your attention

Eskerrik asko zure arretagatik