

Ways to prevent overfitting

Decision trees are easy to overfit

- **Early Stopping**
- Pruning
- Ensembling

Decision Tree Pruning

Issue: Sometimes a good split can happen later

Idea: Grow the tree fully then prune

How: Minimal Cost-Complexity Pruning

Pruning option is available since sklearn 0.22

 $R_{\alpha}(T) = R(T) + \alpha |T|$

 α : complexity parameter

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

 α : complexity parameter

|T|: number of leaf nodes of the subtree

Impurity at the node *t*

$$\underline{R(T_t)} < \underline{R(t)}$$

Sum of the impurities at the leaf nodes of the subtree T_t

Iteratively removes the weakest link

When does it stop pruning?

Stop when min(α_{eff}) > α_{ccp}

α_{ccp}: cost complexity parameter, "ccp_alpha"

Decision Tree Pros and Cons

Trees are easy to understand

Trees don't suffer collinearity

Trees are good for non-linear features

Trees handle categorical variables easily

Trees are weak-learner

Trees have high variance in general

Trees can overfit easily

Linear regression is a better choice if features are linear

Tree's performance can be greatly improved when ensembled