Ex 1 - Pour chacune des expressions ci-dessous :

- Donner la table de vérité.
- La vérifier avec https://logic.modulo-info.ch/.
- En déduire si on peut simplifier l'expression.
- 1) $A = a + a \cdot b$
- 2) $B = a \cdot (a + b)$
- 3) $C = a + (\bar{a} \cdot b)$
- 4) $D = \overline{a} \cdot b + a \cdot \overline{b} + a \cdot b$
- 5) $E = (a + b) \cdot (\overline{a} + b)$
- 6) $F = a + \overline{a \cdot b}$

Ex 2 - Pour chacun des circuits ci-dessous, écrire la table de vérité du circuit, puis en déduire une expression logique simplifiée du circuit :

1) Circuit 1

2) Circuit 2

Ex 3 - On considère le schéma ci-dessous :

- 1) Écrire la table de vérité de ce circuit.
- 2) Simplifier si possible les expressions logiques s_1 et s_2 .
- 3) Peut-on faire un circuit équivalent avec une seule des portes logiques usuelles ?

Ex 4 - Voici la table de vérité de la fonction booléenne « si et seulement si ».

а	b	a ssi b
0	0	1
0	1	0
1	0	0
1	1	1

Proposer un schéma permettant de réaliser cette fonction avec le moins de portes usuelles possibles

Ex 5 - Écrire la table de vérité des circuits ci-dessous :

1) Circuit 1

2) Circuit 2

a

b

c

Ex 6 - Démontrer les deux lois de Morgan à l'aide de tables de vérité

Ex 7 - En utilisant uniquement des portes « non-et » :

- 1) Faire un schéma de porte « non ».
- 2) Faire un schéma de porte « et ».
- 3) Faire un schéma de porte « ou ».

Ex 8 - Porte « non-et » à 3 entrées.

- 1) Donner la table de vérité du « non-et » à 3 entrées.
- 2) Faire un schéma de porte « non-et » à 3 entrées en n'utilisant que des portes « ou » à 2 entrées et des inverseurs.

Construire la table de vérité de ce schéma pour vérifier qu'il est correct.

Ex 9 - Additionneur 1 bit.

- Dans le tableau ci-contre, u et d représentent les deux chiffres de la somme de a et b (u est le chiffre des unités). Compléter ce tableau.
- 2) Proposer un schéma permettant d'obtenir *u* et *d* à partir de portes logiques.

	enti	rees	somme	
:	а	b	d	и
	0	0		
	0	1		
	1	0		
	1	1		

- 1) Écrire la table de vérité du circuit ci-dessus.
- 2) Que penser du tableau ci-dessous?

С	S
0	e_1
1	e_2

Ex 11 - Dans un script Python, x et y sont deux variables valant respectivement 4 et 7. Compléter le tableau ci-dessous :

condition	X = = A	x < y	x <= y	not(x-y>0)
valeur				