Arduino code the signal quality assessment algorithm implemented in Arduino due platform in real-time:

```
#include <LiquidCrystal.h>
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
const int len=500;
const int samples=500;
double max_val1;
double temp_var2;
const uint16_t Smooth_Window=5;
float X1[len];
float X2[len];
int gate[500];
float Pt[500];
float X3[len];
float X[len]; //signal after base line removal
float xnew[len];
float xx[500];
float xx1[500];
float noise2[len-
```

 $1] = \{0.365257344, 0.821042837, 0.385456344, 0.172799924, 0.26316963, 0.712609807, 0.97266208, 0.381173258, 0.350483402, 0.548157168, 0.066693058, 0.763368558, 0.163129827, 0.4340251349, 0.837910848, 0.591062427, 0.046326611, 0.510617042, 0.829463267, 0.448402306, 0.90063149, 0.07212821, 0.968109781, 0.594885029, 0.570797034, 0.752952024, 0.953424444, 0.649768269, 0.509420111, 0.925890606, 0.335985697, 0.942380286, 0.540903089, 0.637997468, 0.791092927, 0.040877132, 0.586145064, 0.626056788, 0.240051892, 0.860745331, 0.333708325, 0.519768168, 0.540896215, 0.249217616, 0.715121023, 0.555422908, 0.923399269, 0.532272387, 0.168532717, 0.087819456, 0.302456341, 0.398624684, 0.832978142, 0.615457028, 0.905585486, 0.782754716, 0.414828111, 0.178711438, 0.951970899, 0.849751872, 0.285327522, 0.842963085, 0.323300181, 0.622263888, 0.119631283, 0.488217985, 0.362073478, 0.229218268, 0.111342182, 0.045331346, 0.651444629, 0.649090654, 0.140272967, 0.694810372, 0.005468558, 0.750253102, 0.617044086, 0.4344891259, 0.883925704, 1, 0.132934287, 0.861936342, 0.684923963, 0.458745821, 0.609600171, 0.0710209799, 0.656408173, 0.256446106, 0.376076331, 0.956382554, 0.767358487, 0.369461897, 0.276122113$

.0.844077087,0.645533636,0.467673132,0.313260856,0.246352331,0.99542461,0.334442188,0. 72435537,0.081653168,0.189231143,0.53155406,0.789215282,0.806369727,0.132192835,0.630 437822,0.933716857,0.006684889,0.776644539,0.621965897,0.961863562,0.488137786,0.4799 33073,0.132509111,0.914106125,0.066510228,0.968053753,0.156915862,0.467057473,0.45559 4717,0.967586288,0.180038472,0.917590456,0.293342451,0.210312173,0.553343043,0.381251 503,0.397350819,0.497595036,0.513928553,0.219377665,0.585552866,0.28408062,0.51552602 7,0.007823467,0.148881618,0.15619391,0.328741494,0.438662568,0.442063752,0.04646976,0. 765028582,0.022448605,0.622895715,0.379995792,0.747660111,0.312793181,0.779729831,0.4 29911412,0.417434661,0.764413607,0.963982272,0.514774266,0.875234868,0.353535481,0.51 2598176,0.392725959,0.626854802,0.433246129,0.421969473,0.092569679,0.115278709,0.813 18318,0.172151679,0.077735277,0.515692382,0.400411833,0.6671033,0.41072699,0.40800552 919891425,0.238489477,0.601876528,0.086713885,0.980141489,0.758511008,0.759731677,0.4 82473769,0.128259852,0.369939816,0.667289832,0.081329918,0.484837873,0.375006379,0.28 9323508,0.787472656,0.379431817,0.55972924,0.127139004,0.040880003,0.542653408,0.2672 5446,0.673819311,0.394480538,0.172407688,0.904452059,0.829902652,0.931245094,0.972343 551,0.981806749,0.754622996,0.569254186,0.991573772,0.994827388,0.034052869,0.9143122 94,0.664526022,0.449980885,0.6599534,0.75975286,0.029126823,0.961361429,0.126695558,0. 592098046,0.898940895,0.290991926,0.279413722,0.248324708,0.685910507,0.210378013,0.9 40978087,0.617933516,0.340296683,0.397438578,0.538777707,0.170212691,0.145550192,0.85 7643145,0.402350543,0.109548,0.342775753,0.249027958,0.001553505,0.834210697,0.703026 093,0.956630824,0.149215201,0.605591726,0.075560487,0.14200149,0.739239314,0.86723637 8,0.235507274,0.059794417,0.918327783,0.288463686,0.902303937,0.133694563,0.872199442 ,0.500326048,0.648726066,0.136737525,0.554740171,0.825304405,0.625865741,0.648907902, 0.465476803, 0.845226206, 0.460017688, 0.627555111, 0.65867875, 0.390492945, 0.575943734, 0.66667875, 0.66667875, 0.66667875, 0.66667875, 0.666785, 0.422763753,0.38386654,0.105361665,0.689442141,0.434831153,0.203734171,0.111823017,0.96 2110305,0.432646626,0.635890635,0.959385324,0.824329854,0.512406882,0.752063563,0.228 081945,0.64712569,0.895639038,0.010569943,0.962684176,0.236774032,0.555497522,0.97216 2646,0.874183065,0.195933614,0.173559829,0.261501122,0.363550308,0.221762426,0.020011 683,0.697359716,0.631610189,0.808813049,0.94380535,0.266061994,0.79707738,0.873739962 0.34285224, 0.437705094, 0.626933431, 0.939902642, 0.679430501, 0.504229968, 0.10931008500085, 0.10931008500085, 0.1093100085, 0.109310085, 0.109310085, 0.1093100085, 0.109310085, 0.109310085, 0.1096692955,0.210820464,0.292013405,0.552391396,0.057415878,0.465124981,0.654999978,0.573 3996,0.072038152,0.221265764,0.772501322,0.966097509,0.10368123,0.659719847,0.8139738 24,0.82870726,0.353426723,0.479581418,0.637711029,0.586550396,0.396365002,0.451252876 ,0.018522078,0.039054149,0.147299398,0.055513705,0.457217573,0.568709507,0.810511647, 0.845183805,0.15359121,0.313499498,0.988148251,0.405142299,0.331981101,0.20314804,0.3 23531791,0.452969908,0.342132439,0.045495817,0.484188234,0.216811327,0.701545698,0.53 6449652.0.091139806, 0.787537171, 0.261359863, 0.118347039, 0.579433733, 0.090151321, 0.258121, 0.25812347509,0.696602989,0.065696205,0.83537958,0.882126622,0.782416224,0.339765394,0.72141 392,0.891769043,0.641549016,0.703953478,0.619297849,0.087547294,0.251609526,0.2653386 39,0.18384179,0.042180437,0.001547875,0.663281883,0.755813644,0.792833252,0.410142605

 $, 0.6911845, 0.905415426, 0.713880366, 0.88208216, 0.356068593, 0.193237149, 0.548363604, 0.38\\ 9949285, 0.144650739, 0.29600002, 0.666283924, 0.898302556, 0.961092149, 0.47053545, 0.61075\\ 0.973, 0.062580335, 0.847112873, 0.780559536, 0.722502075, 0.472755214, 0.663344955, 0.408430\\ 267, 0.577589413, 0.565780481, 0.55623802, 0.507566959, 0.799783041, 0.129393445, 0.84314270\\ 6, 0.720046915, 0.756792585, 0.194217937, 0.753177888, 0.529132177, 0.255347725, 0.075915207\\ 0.140373742, 0.314509411, 0.496676742, 0.17857702, 0.748112152, 0.50604295, 0.662197967, 0.3\\ 50895001, 0.512222816, 0.348333128, 0.724792017, 0.870414625, 0.523852951, 0.377936041, 0.06\\ 2764742, 0.30925843, 0.701014634, 0.370672134, 0.308325853, 0.211161875, 0.409559624, 0.9542\\ 68403, 0.761857589, 0.546796404, 0.100043455, 0.049217508, 0.077156657, 0.425214266, 0.21252\\ 2481, 0.396932467, 0.825183524, 0.402597928, 0.257371835, 0.962113842, 0.271148084, 0.619619\\ 126, 0.57400094, 0.32022254, 0.4663285, 0.053368498, 0.636856848, 0.856534644, 0.351573824, 0.\\ 856989647, 0.881025526, 0.097673277, 0.070655606, 0.36799412, 0.140449997, 0.11583343, 0.756\\ 52705, 0.689522612, 0.527978829, 0.410563257, 0.5028569, 0.799674452, 0.37853262, 0.59013195\\ 7, 0.109428998, 0.040175067, 0.112160971, 0.533763507$

```
}; // normalized random noise of 500 samples
float XN[len-1];
float dX[len-1];
float AA[4];
float BB[4];
float r[4];
float sum;
float P,P1,P2;
double timep,time1, timep1,timep21,timep22;
void setup()
for (int i1 = 0; i1 < \text{samples}; i1++)
 {
   ppgsignal[i1] = 0;
  X[i1]=0;
  X1[i1]=0;
  X2[i1]=0;
  X3[i1]=0;
```

```
dX[i1]=0;
// tempvec[i1] = 0;
  XN[i1]=0;
 Serial.begin(9600); // baud rate for the communication between the compulter and the board
via serial port
 pinMode(A0,INPUT);
 Serial1.begin(9600); // baud rate for the trasmitting the signal via blue tooth.
 lcd.begin(16, 2);
 // Print a message to the LCD.
 lcd.setCursor(0,0);
 lcd.print("SIGNAL QUALITY:");
}
void loop()
{
int i2 = 0;
 while (i2 < 500)
 {
   xx[i2] = analogRead(A0); // to read the sensor data from the pulse sensor which is
connencted to the analog pin A0 of arduion due board
                       // 10 milliseconds given because required sampling frequency (fs) =100
   delay(10);
hz;
   i2=i2+1;
 }
```

```
// -----""sigal smoothing stage""" ------
for (int i3=0; i3<samples-Smooth_Window+1; i3++)
 {
  double temp_var1=0;
  for (int i4=i3; i4<i3+Smooth_Window; i4++)
   {
   temp_var1=temp_var1+xx[i4]/Smooth_Window;
  xx[i3] = temp_var1;
// -----""sigal mean reamoval stage"""
temp_var2 = 0;
for (int i5 = 0; i5 < samples; i5++) // mean caluculation
 {
  temp_var2 = temp_var2 + xx[i5] / samples;
 //Serial.println(temp_var2);
 }
 for (int i6 = 0; i6 < \text{samples}; i6++) // mean reamoval
  xx[i6] = xx[i6] - temp\_var2;
 }
```

```
// "Baseline removal from the signal start here"
BB[0]=0.9850; BB[1]=(-2.9550); BB[2]=2.9550; BB[3]=(-0.9850); // coefficients of the
chebyshew high pass filter with cutt of frequency 0.3 hz of order 3
AA[0]=1.0000; AA[1]=(-2.9698); AA[2]=2.9400; AA[3]=(-0.9702); //coefficients of the
chebyshew high pass filter with cutt of frequency 0.3 hz of order 3
X1[0]=BB[0]*xx[0];
X1[1]=BB[0]*xx[1]+BB[1]*xx[0]-AA[1]*X1[0];
X1[2]=BB[0]*xx[2]+BB[1]*xx[1]+BB[2]*xx[0]-AA[1]*X1[1]-AA[2]*X1[0];
    for(int n=3; n<len; n++)
    {
             X1[n] = BB[0]*xx[n]+BB[1]*xx[n-1] + BB[2]*xx[n-2]+BB[3]*xx[n-3]-AA[1]*X1[n-1]-BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*xx[n-3]+BB[3]*
AA[2]*X1[n-2]- AA[3]*X1[n-3];
   }
  // "Baseline removal from the signal end here"
// smooth the baseline removal signal star here
  int k1=len-1;
for(int i=0;i<len;i++)
    X2[k1]=X1[i];
    k1--;
```

```
}
X3[0]=BB[0]*X2[0];
X3[1]=BB[0]*X2[1]+BB[1]*X2[0]-AA[1]*X3[0];
X3[2]=BB[0]*X2[2]+BB[1]*X2[1]+BB[2]*X2[0]-AA[1]*X3[1]-AA[2]*X3[0];
      for(int n=3; n<len; n++)
        {
                     X3[n] = BB[0]*X2[n] + BB[1]*X2[n-1] + BB[2]*X2[n-2] + BB[3]*X2[n-3] - AA[1]*X3[n-1] - BB[3]*X3[n-3] - AA[1]*X3[n-1] - BB[3]*X3[n-1] - BB[3]*
AA[2]*X3[n-2]- AA[3]*X3[n-3];
        }
   int k2=len-1;
for(int i=0;i<len;i++)
      X[k2]=X3[i];
    k2--;
  }
//// smooth the baseline removal signal end here
```

```
// difference operation start here
 for(int k=1; k<len; k++)
dX[k-1]=X[k]-X[k-1];
}
// difference operation end here
 // -----Signal normalization stage start here"""
 max_val1 = 0;
 for (int i7 = 0; i7 < samples-1; i7++) // maximum value caluculation
  max_val1 = max(max_val1, abs(dX[i7]));
 //Serial.print(ppgsignal[i7]);Serial.print(',');Serial.println(max_val1);
 }
 for (int i8 = 0; i8 < samples-1; i8++) // Signal Normalization
  dX[i8] = dX[i8] / max_val1;
 }
// -----Signal normalization stage end here """
```

```
for(int i=0; i<len-1; i++)
{
 XN[i]=dX[i]+0.1*noise2[i]; // adding random noise of amplitude 0.1 to the normalized
difference signal.
}
//Levinson-Durbin Algorithm to find the the predictor coefficients calculations star here
   for(int i=0; i<3; i++)
   {
     sum=0;
   for(int j=0; j<500-i-1; j++)
   sum=sum+XN[j]*XN[j+i];
   r[i]=sum/(len-i-1);
   }
 P=r[1]/r[0]; //P= predictor coefficients of first order.
//Levinson-Durbin Algorithm to find the the predictor coefficients calculations end here
// thresold settings for Noise Free, Motion Artifact and Pulse Free signal
if(P>0.93)
{
```

```
for(int i=0; i<499; i++)
gate[i]=1; // if signal is NOISE FREE gate =1 is generated
Pt[i]=P;
  lcd.setCursor(0,1);
  lcd.print("NOISE FREE
                               ");
  Serial.print(xx[i]*10+1200);
 Serial.print(',');
 Serial.print(X[i]*10+900);
 Serial.print(',');
 Serial.print(dX[i]*300+600);
 Serial.print(',');
 Serial.print(XN[i]*300+500);
 Serial.print(',');
 Serial.print(Pt[i]);
 Serial.print(',');
 Serial.println(gate[i]*100);
 Serial1.println(X[i]); // to trasmit the signal via blue tooth
}
}
else if(P<0.93 && P>0)
{
```

```
for(int i=0; i<499; i++)
gate[i]=0; // if signal is MOTION ARTIFACT gate =0 is generated
Pt[i]=P;
 lcd.setCursor(0,1);
 lcd.print("MOTION ARTIFACT");
 Serial.print(xx[i]*10+1200);
 Serial.print(',');
 Serial.print(X[i]*10+900);
 Serial.print(',');
 Serial.print(dX[i]*300+600);
 Serial.print(',');
 Serial.print(XN[i]*300+500);
 Serial.print(',');
 Serial.print(Pt[i]);
 Serial.print(',');
 Serial.println(gate[i]*100);
}
}
else
for(int i=0; i<499; i++)
gate[i]=-1; // if signal is PULSE FREE gate =-1 is generated
```

```
Pt[i]=P;
 lcd.setCursor(0,1);
lcd.print("PULSE FREE
                             ");
 Serial.print(xx[i]*10+1200);
 Serial.print(',');
 Serial.print(X[i]*10+900);
 Serial.print(',');
 Serial.print(dX[i]*300+600);
 Serial.print(',');
 Serial.print(XN[i]*300+500);
 Serial.print(',');
 Serial.print(Pt[i]);
 Serial.print(',');
 Serial.println(gate[i]*100);
}
}
```

}