Homework 5

1. Cascode Stage. Design a Cascode amplifier shown in figure below to achieve a gain of VDD=1V, $V_{th} = 0.3V$, $\lambda_n = 0.2V^{-1}$, $\gamma = 0$, $\mu_n C_{ox} = \frac{100\mu \bar{A}}{V^2}$, $I_1 =$ 1600. Assume 1mA, $g_m r_o \gg 1$.

- a) Find bias point (V_{GS}-V_{th} of transistors) to achieve the target gain such that we achieve maximum swing at Vout.
- b) Find W/L for each transistor.
- c) Calculate optimal V_b and V_{IN} DC bias to maximize output swing. What is this maximum/minimum voltage levels at the output? What is the maximum swing?
- d) Notice you must generate a specific V_b externally to maximize the swing. If a lazy designer decides to connect V_b to VDD instead, what would be the swing in this case?
- e) To realize the current source load, we will use a PMOS active load. For PMOS, use the same parameters with $\lambda_n =$ $0.2V^{-1}$, $\mu_p C_{ox} = \frac{50\mu A}{V^2}$. Assume the bias current will remain at 1mA, find the new
 - gain value. What would be the W/L for PMOS if we want to have a V_{OD} (V_{GS}-V_{th}) of 0.1V for this device.
- f) Repeat part (e) for a PMOS load with 2L gate length.
- g) It seems like making the PMOS load very large (large W) is beneficial to reduce V_{OD} and consequently improving the voltage swing. What do you think is the drawback?

For this HW assume: VDD=1V, Vth=0.3V, $\mu_n C_{ox} = \frac{200\mu A}{V^2}$, $\lambda = 0.2V^{-1}$, $\gamma = 0$. *All the differential amplifiers are symmetric unless we are interested in analyzing mismatch effects in the problem.

- 2. Consider the following differential amplifier with $R_{D1}=R_{D2}=R_D$:
 - a) If the power consumption is limited to 2mW, what should be R_D to achieve a differential peak-to-peak swing of 1V?
 - b) Draw the small-signal half-circuits for differential-mode (DM) and common-Clearly mode (CM). determine differential and CM input sources as a result of V_{in1} and V_{in2}. (For CM, assume tail current source has an output impedance of R_{SS})

c) If we need a differential gain of 5, what should be g_m , $V_{OD}(V_{OD} = V_{GS} - V_{TH})$, and W/L for input devices $(M_{1,2})$? Use R_D determined in part a.

- d) What is the maximum tolerable differential input voltage range for the circuit to operate in the linear region? (i.e. $\Delta V_{in1} = ?$)
- e) For a CM gain of 0.05, what should be the value of $R_{\rm SS}$? ignore output resistance of $M_{1,2}$ in this part.
- f) If we decide to realize the tail current source with an NMOS, what should be the L for that device? (Assume that $\lambda = 0.2V^{-1}$ for L= L₀=65nm)
- g) What would be W for this device (tail current NMOS) in order to set its V_{OD} to 0.2V?
- h) What is the acceptable input common-mode range to keep the amplifier linear after adding the tail device?
- **3.** For the differential pair amplifier circuit shown below: (Write down final answers in terms of key circuit parameters g_m , r_o , etc.)
 - a) Draw the differential and common mode half-circuits. (*Hint:* how can you replace R₁ with two elements such that circuit will be still symmetric to use half-circuit techniques?)
 - b) Find the differential and CM small-signal gains.
 - c) What's the single-ended and differential output peak-to-peak swings?
 - d) What is the CM input range?

- **4.** For a basic differential amplifier (shown in Problem 1), suppose that there are some fluctuations/noise sources on the supply, namely, V_{dd} that can be modeled as an AC voltage source.
 - a) Does this supply cause the differential output to change? How about the CM at each output?
 - b) Draw the half-circuit model to find the impact of such a supply noise source at the output.
 - c) Calculate the resultant output CM voltage due to the supply noise (in terms of circuit parameters, no need for numerical answers!)
 - d) If the R_D s have ΔR_D mismatch, what would be the impact of this noise source on the differential output voltage?
- 5. We can make a differential pair amplifier with PMOS input devices as shown below. Suppose circuits are completely symmetric (R_{DS} are equal, $M_{1,2}$ are similar, and each tail current source requires minimum of V_{od} to operate)
 - a) What is the single-ended and differential output swing?

- b) Draw DM and CM half-circuits. (assume that the tail current source has an output impendence of $R_{\rm SS}$)
- c) Calculate DM and CM gains.
- d) What is the acceptable input CM range?
- e) Compare the results from (d) with the NMOS diff pair we studied in the class.

