Yahoo's Tumblr Failed Forecasts

Oriental Mix / Data Hustler 6/7/2018

We decided to use a single environment to directly compute the NPV from R in order to avoid having to export the data to excel.

Problems linked to Yahoo's model:

- Estimated number of users in $2022 \sim 800M$ UNREALISTIC
- Financial estimation based on FB data instead of current Yahoo's advertising revenue per user.

Assumptions

• We only focus on the forecast aspect of visitors (Not on the Financial Model itself)

Load initial data

Our initial step is to load the data from our csv. We started by cleaning up the excel file and created two csv containing:

- previous website visits history for WORLD
- previous website visits history for US
- yahoo's forecast leading to 1.2Bn valuation

Additional problems that we noticed on Yahoo's forecasts: * Actual growth rate in the US Vs Rest of World is different. * We would also argue that their model doesn't reflect that trend.

```
data_monthly_audience <- read.csv("tumblr_worldwide_monthly_direct_audience.csv", header = TRUE)
data_us_audience <- read.csv("tumblr_us_monthly_direct_audience.csv", header = TRUE)
# Load yahoo's forecast to compare valuation models - Not used for predictions
data_yahoo_forecast <-read.csv("model_pop_forecasts.csv", header = FALSE)

ts_world_audience <- ts(data_monthly_audience, start=c(2010, 4), frequency=12)
ts_us_audience <- ts(data_us_audience, start=c(2010, 4), frequency=12)
ts_yahoo_forecast <- ts(data_yahoo_forecast, start=c(2010, 4), frequency=12)
summary(data_monthly_audience)</pre>
```

```
##
      Uniques
                            People
                                                Visits
##
          : 25349036
                               : 19020118
                       Min.
                                            Min.
                                                   : 69837544
   1st Qu.: 59974119
                        1st Qu.: 42795006
                                            1st Qu.:193688420
                                            Median :348446480
  Median :112207072
                        Median: 80234848
##
##
   Mean
           :115313295
                        Mean
                               : 83600104
                                            Mean
                                                   :333771114
##
   3rd Qu.:165071420
                        3rd Qu.:119131732
                                            3rd Qu.:471823920
##
   Max.
           :201892656
                        Max.
                               :147525568
                                            Max.
                                                   :543773824
##
##
                          Mobile.Web
     Page.Views
           :1.016e+09
                        Min.
                              : 8937000
## 1st Qu.:4.205e+09
                        1st Qu.:15359716
## Median :1.254e+10
                        Median: 22140054
```

```
## Mean :1.006e+10 Mean :24543727
## 3rd Qu.:1.489e+10 3rd Qu.:35082936
## Max. :1.672e+10 Max. :39517752
## NA's :19
```

Visualize Data

You can also embed plots, for example:

```
autoplot(ts_world_audience, facets = TRUE) +
  autolayer(ts_us_audience) +
  scale_y_continuous(labels=comma)
```

Warning: Removed 19 rows containing missing values (geom_path).

We also look at the mont ** We can see an upward trend and similar trajectory for both World visits and US visits. **

Based on the initial plotting, we cannot find sign of seasonality. Let's investigate.

Monthly Breakdown + Timeserie decomposition

```
ts_world_data<-ts_world_audience[,"People"] # For worldwide data
ts_us_data<-ts_us_audience[,"People"] # For US data

data_world <- data.frame(Y=as.matrix(ts_world_audience), date=time(ts_world_audience))</pre>
```

```
data_us <- data.frame(Y=as.matrix(ts_us_audience), date=time(ts_world_audience))
ggplot() +
  geom_line(data = data_world, aes(y=Y.People, x=date, color="World")) +
  geom_line(data = data_us, aes(y=Y.People, x=date, color="US")) +
  scale_y_continuous(labels=comma) +
  ggtitle("People Worldwide unsing Tumblr") + xlab("") + ylab("")</pre>
```

People Worldwide unsing Tumblr

plot_world_monthly_break <- ggsubseriesplot(ts_world_data) + ggtitle("People Worldwide using Tumblr") +
plot_us_monthly_break <- ggsubseriesplot(ts_us_data) + ggtitle("People US using Tumblr") + xlab("Month"
grid.arrange(grobs=list(plot_world_monthly_break, plot_us_monthly_break), ncol=1)</pre>

People Worldwide using Tumblr

People US using Tumblr

We can see a repetitive pattern across the years and visits seem to always diminush during the summer.

We plot 3 differents decomposition method to have a better overview.

fit_classical_additive <- decompose(ts_world_data, type="additive") #decompose using "classical" method plot_additive <- autoplot(fit_classical_additive) + scale_y_continuous(labels=comma) + ggtitle("Classic fit_classical_multiplicative <- decompose(ts_world_data, type="multiplicative") #decompose using "class plot_multiplicative <- autoplot(fit_classical_multiplicative) + scale_y_continuous(labels=comma) + ggtifit_stl <- stl(ts_world_data, t.window=12, s.window="periodic", robust=TRUE) #decompose using STL (Seas plot_stl <- autoplot(fit_stl) + scale_y_continuous(labels=comma) + scale_y_continuous(labels=comma) + grid.arrange(grobs=list(plot_multiplicative, plot_additive, plot_stl), ncol=3)

The decomposition and monthly breakdown seem to indicate seasonality

Analyze Monthly Growth

We then looked at the monthly growth in order to compare it with Yahoo's forecast of 1.

```
monthly_growth_world <- ts(data_monthly_audience$People, start = c(2010, 4), frequency = 12)
monthly_growth_world <- (lag(monthly_growth_world)/monthly_growth_world - 1) * 100
monthly_growth_us <- ts(data_us_audience$People, start = c(2010, 4), frequency = 12)
monthly_growth_us <- (lag(monthly_growth_us)/monthly_growth_us - 1) * 100

growth_last_year_world <- window(ts_world_audience, start = c(2012,5), end=c(2013,5))
growth_last_year_world <- (lag(growth_last_year_world)/growth_last_year_world - 1) * 100
growth_last_year_us <- window(ts_us_audience, start = c(2012,5), end=c(2013,5))
growth_last_year_us <- (lag(growth_last_year_us)/growth_last_year_us - 1) * 100

average_world_growth <- mean(monthly_growth_world) # 5.6%
average_us_growth <- mean(monthly_growth_last_year_world) # 2.2%
average_lastyear_growth_world <- mean(growth_last_year_us) # 1.05%

ts_average_growth <- ma(monthly_growth_world, order=2)
autoplot(ts_average_growth)</pre>
```



```
plot_growth_world <- autoplot(monthly_growth_world, ts.geom = 'bar') + ggtitle("Monthly Growth (World)"
plot_growth_us <- autoplot(monthly_growth_us, ts.geom = 'bar') + ggtitle("Monthly Growth (US)") + geom_
grid.arrange(grobs=list(plot_growth_world, plot_growth_us))</pre>
```


Monthly Growth (US)

We can see that yearly growth trend is already 'dampening'

fit_MAZ_damped <- ets(ts_world_data, model="MAZ", damped=TRUE)</pre>

- Average growth World 5.6% VS Last Year growth 2.2%
- Average growth US 4.8% VS Last Year growth 1.05%

Fitting + Forecasting

We use 115 months horizon (until 2022) and forecast with confidence Intervals of 80% and 95%.

```
horizon <- 7 + 9*12 # 7months in 2013 + 9 years from 2014 to 2022
level<-c(0.8,0.95) # Confidence Interval 80%, 95%
```

We create a lot of different fitting models to test if any of them confirms Yahoo's predictions.

```
fit_drift <- rwf(ts_world_data, drift=TRUE, h=horizon)

# several exponential smoothing models to forecast the increase in the traffic

fit_ZZZ <- ets(ts_world_data, model="ZZZ", damped=FALSE)

fit_ZZZ_damped <- ets(ts_world_data, model="ZZZ", damped=TRUE)

fit_AAN <- ets(ts_world_data, model="AAN", damped=FALSE) # Additive noise, Additive Trend, No seasonali

fit_AAN_damped <- ets(ts_world_data, model="AAN", damped=TRUE) # Additive noise, Additive Trend, No sea

fit_AAZ <- ets(ts_world_data, model="AAZ", damped=FALSE) # Additive Noise, Additive Trend, Automatic Se

fit_AAZ_damped <- ets(ts_world_data, model="AAZ", damped=TRUE) # Additive Noise, Additive Trend, Automatic Se

fit_us_AAZ <- ets(ts_us_data, model="AAZ", damped=FALSE) # Additive Noise, Additive Trend, Automatic Se

fit_us_AAZ_damped <- ets(ts_us_data, model="AAZ", damped=TRUE) # Additive Noise, Additive Trend, Automatic Se

fit_us_AAZ_damped <- ets(ts_us_data, model="AAZ", damped=TRUE) # Additive Noise, Additive Trend, Automa

fit_MAZ <- ets(ts_world_data, model="MAZ", damped=FALSE)
```

```
fit_MMN <- ets(ts_world_data, model="MMN", damped=FALSE)
fit_MMN_damped <- ets(ts_world_data, model="MMN", damped=TRUE)
fit_us_MMN <- ets(ts_us_data, model="MMN", damped=FALSE)
fit_us_MMN_damped <- ets(ts_us_data, model="MMN", damped=TRUE)

fit_MMM <- ets(ts_world_data, model="MMM", damped=FALSE)
fit_MMM_damped <- ets(ts_world_data, model="MMM", damped=TRUE)

fit_MMZ <- ets(ts_world_data, model="MMZ", damped=FALSE)
fit_MMZ_damped <- ets(ts_world_data, model="MMZ", damped=TRUE)
fit_TBATS <- tbats(ts_world_data)

fit_arima <- auto.arima(ts_world_data) #automatically fits the ARIMA model (auto-regressive integrated fit_arima <- auto.arima(ts_world_data, seasonal = TRUE)</pre>
```

Based on our previous analysis, we have confirmation that our final model should use multiplicative decomposition.

Let's look at the valuation for each of the forecasts.

```
valuation(ts_yahoo_forecast, debug=TRUE) # 1230
```

```
## ########### 2013 ###########
## people Worldwide=145.024025428571
## Percentage US People=33%
## usPeoplePerYear=47.8579283914286
## rowPeoplePerYear=97.1660970371429
## usRevenuePerUser=13.58
## rowRevenuePerUser=3.21
## usUsers=23.9289641957143
## rowUsers=48.5830485185714
## Revenue=62.3397858640167
## Operating Cash Flows = 19.7617121188933
## Terminal Value = 0
## Total Cash Flows = 19.7617121188933
## ########### 2014 ###########
## people Worldwide=167.49760325
## Percentage US People=31%
## usPeoplePerYear=52.476999098225
## rowPeoplePerYear=115.020604151775
## usRevenuePerUser=13.88
## rowRevenuePerUser=3.24
## usUsers=26.2384995491125
## rowUsers=57.5103020758875
## Revenue=122.338611659457
## Operating Cash Flows = 38.7813398960479
## Terminal Value = 0
## Total Cash Flows = 38.7813398960479
## ########### 2015 ###########
## people Worldwide=200.701055916667
## Percentage US People=30%
## usPeoplePerYear=59.5279331848833
## rowPeoplePerYear=141.173122731783
## usRevenuePerUser=14.18
```

```
## rowRevenuePerUser=3.27
```

- ## usUsers=29.7639665924417
- ## rowUsers=70.5865613658917
- ## Revenue=145.082467099397
- ## Operating Cash Flows = 45.991142070509
- ## Terminal Value = 0
- ## Total Cash Flows = 45.991142070509
- ## ############ 2016 ###########
- ## people Worldwide=240.486508833333
- ## Percentage US People=28%
- ## usPeoplePerYear=67.31217382245
- ## rowPeoplePerYear=173.174335010883
- ## usRevenuePerUser=14.48
- ## rowRevenuePerUser=3.3
- ## usUsers=33.656086911225
- ## rowUsers=86.5871675054417
- ## Revenue=171.795064720555
- ## Operating Cash Flows = 54.4590355164158
- ## Terminal Value = 0
- ## Total Cash Flows = 54.4590355164158
- ## ########### 2017 ############
- ## people Worldwide=288.158727833333
- ## Percentage US People=26%
- ## usPeoplePerYear=75.8433771657333
- ## rowPeoplePerYear=212.3153506676
- ## usRevenuePerUser=14.78
- ## rowRevenuePerUser=3.33
- ## usUsers=37.9216885828667
- ## rowUsers=106.1576753338
- ## Revenue=203.108359136961
- ## Operating Cash Flows = 64.3853498464166
- ## Terminal Value = 0
- ## Total Cash Flows = 64.3853498464166
- ## ########### 2018 ###########
- ## people Worldwide=345.28112525
- ## Percentage US People=25%
- ## usPeoplePerYear=85.111797374125
- ## rowPeoplePerYear=260.169327875875
- ## usRevenuePerUser=15.08
- ## rowRevenuePerUser=3.36
- ## usUsers=42.5558986870625
- ## rowUsers=130.084663937937
- ## Revenue=239.739427340527
- ## Operating Cash Flows = 75.9973984669471
- ## Terminal Value = 0
- ## Total Cash Flows = 75.9973984669471
- ## ########### 2019 ###########
- ## people Worldwide=413.727032666667
- ## Percentage US People=23%
- ## usPeoplePerYear=95.0744721068
- ## rowPeoplePerYear=318.652560559867
- ## usRevenuePerUser=15.38
- ## rowRevenuePerUser=3.39
- ## usUsers=47.5372360534

```
##
   rowUsers=159.326280279933
   Revenue=282.49750681117
## Operating Cash Flows = 89.551709659141
## Terminal Value = 0
   Total Cash Flows = 89.551709659141
## ########### 2020 ###########
## people Worldwide=495.741137333333
## Percentage US People=21%
## usPeoplePerYear=105.642436365733
## rowPeoplePerYear=390.0987009676
## usRevenuePerUser=15.68
## rowRevenuePerUser=3.42
## usUsers=52.8212181828667
## rowUsers=195.0493504838
## Revenue=332.290106613766
## Operating Cash Flows = 105.335963796564
## Terminal Value = 0
## Total Cash Flows = 105.335963796564
## ############ 2021 ###########
## people Worldwide=594.013095083333
## Percentage US People=20%
## usPeoplePerYear=116.664171874367
## rowPeoplePerYear=477.348923208967
## usRevenuePerUser=15.98
## rowRevenuePerUser=3.45
## usUsers=58.3320859371834
## rowUsers=238.674461604483
## Revenue=390.127472402591
## Operating Cash Flows = 123.670408751621
## Terminal Value = 0
## Total Cash Flows = 123.670408751621
## ########### 2022 ###########
## people Worldwide=711.765739
## Percentage US People=18%
## usPeoplePerYear=127.9043032983
## rowPeoplePerYear=583.8614357017
## usRevenuePerUser=16.28
## rowRevenuePerUser=3.48
## usUsers=63.95215164915
## rowUsers=291.93071785085
## Revenue=457.12442821536
## Operating Cash Flows = 144.908443744269
## Terminal Value = 2132.22424366567
## Total Cash Flows = 2277.13268740994
##
       firmValue
## [1,] 1230.118
valuation(pred_drift$mean) # 930
##
       firmValue
## [1,] 929.6908
valuation(pred_ZZZ$mean) # 703
```

10

##

firmValue

```
## [1,] 702.8438
valuation(pred_ZZZ_damped$mean) # 351
##
       firmValue
## [1,] 350.6712
valuation(pred_AAN$mean) # 1004
       firmValue
## [1,] 1004.333
valuation(pred_AAN_damped$mean) # 485
##
       firmValue
## [1,]
           485.1
valuation(pred_AAZ$mean) # 1004
       firmValue
##
## [1.] 1004.333
valuation(pred_AAZ_damped$mean) # 485
##
       firmValue
## [1,]
           485.1
valuationAdvanced(pred_AAZ$mean, pred_us_AAZ$mean, debug=TRUE) # 1338
## ########### 2013 ############
## people Worldwide=151
## Percentage US People=33%
## usPeoplePerYear=50
## rowPeoplePerYear=101
## usRevenuePerUser=13.58
## rowRevenuePerUser=3.21
## Revenue=64.75
## Operating Cash Flows = 21
## Terminal Value = 0
## Total Cash Flows = 21
## ########### 2014 ###########
## people Worldwide=185
## Percentage US People=34%
## usPeoplePerYear=63
## rowPeoplePerYear=122
## usRevenuePerUser=13.88
## rowRevenuePerUser=3.24
## Revenue=141
## Operating Cash Flows = 45
## Terminal Value = 0
## Total Cash Flows = 45
## ########### 2015 ############
## people Worldwide=228
## Percentage US People=34%
## usPeoplePerYear=78
## rowPeoplePerYear=150
## usRevenuePerUser=14.18
## rowRevenuePerUser=3.27
```

- ## Revenue=177
- ## Operating Cash Flows = 56
- ## Terminal Value = 0
- ## Total Cash Flows = 56
- ## ########### 2016 ###########
- ## people Worldwide=270
- ## Percentage US People=35%
- ## usPeoplePerYear=94
- ## rowPeoplePerYear=176
- ## usRevenuePerUser=14.48
- ## rowRevenuePerUser=3.3
- ## Revenue=216
- ## Operating Cash Flows = 68
- ## Terminal Value = 0
- ## Total Cash Flows = 68
- ## ########### 2017 ###########
- ## people Worldwide=313
- ## Percentage US People=35%
- ## usPeoplePerYear=110
- ## rowPeoplePerYear=203
- ## usRevenuePerUser=14.78
- ## rowRevenuePerUser=3.33
- ## Revenue=256
- ## Operating Cash Flows = 81
- ## Terminal Value = 0
- ## Total Cash Flows = 81
- ## ########### 2018 ###########
- ## people Worldwide=356
- ## Percentage US People=35%
- ## usPeoplePerYear=126
- ## rowPeoplePerYear=230
- ## usRevenuePerUser=15.08
- ## rowRevenuePerUser=3.36
- ## Revenue=297
- ## Operating Cash Flows = 94
- ## Terminal Value = 0
- ## Total Cash Flows = 94
- ## ############ 2019 ###########
- ## people Worldwide=399
- ## Percentage US People=36%
- ## usPeoplePerYear=142
- ## rowPeoplePerYear=257
- ## usRevenuePerUser=15.38
- ## rowRevenuePerUser=3.39
- ## Revenue=339
- ## Operating Cash Flows = 107
- ## Terminal Value = 0
- ## Total Cash Flows = 107
- ## ########### 2020 ###########
- ## people Worldwide=442
- ## Percentage US People=36%
- ## usPeoplePerYear=158
- ## rowPeoplePerYear=284
- ## usRevenuePerUser=15.68

```
rowRevenuePerUser=3.42
##
   Revenue=383
## Operating Cash Flows = 121
## Terminal Value = 0
   Total Cash Flows = 121
## ########### 2021 ###########
## people Worldwide=485
## Percentage US People=36%
## usPeoplePerYear=174
## rowPeoplePerYear=311
## usRevenuePerUser=15.98
## rowRevenuePerUser=3.45
## Revenue=428
## Operating Cash Flows = 136
## Terminal Value = 0
## Total Cash Flows = 136
## ########### 2022 ############
## people Worldwide=528
## Percentage US People=36%
## usPeoplePerYear=189
## rowPeoplePerYear=339
## usRevenuePerUser=16.28
## rowRevenuePerUser=3.48
## Revenue=473
## Operating Cash Flows = 150
## Terminal Value = 2207.14285714286
## Total Cash Flows = 2357.14285714286
       firmValue
##
## [1,] 1325.968
valuation(pred_MAZ$mean) # 702
       firmValue
##
## [1,] 702.8438
valuation(pred_MAZ_damped$mean) # 350
##
       firmValue
## [1,] 350.6712
valuation(pred_MMN$mean) # 546
##
       firmValue
## [1,] 546.3178
valuation(pred_MMN_damped$mean) # 513
##
       firmValue
## [1,] 512.6945
valuationAdvanced(pred_MMN$mean, pred_us_MMN$mean) # 515
##
       firmValue
## [1,] 515.8731
valuationAdvanced(pred_MMN$mean, pred_us_MMN_damped$mean) # 620
       firmValue
```

##

```
## [1,] 620.0876
valuation(pred_MMM$mean) # 55.23
##
       firmValue
## [1,] 55.23726
valuation(pred_MMM_damped$mean) # 251
       firmValue
## [1,] 251.6808
valuation(pred_arima$mean) # 515
##
       firmValue
## [1,] 929.6908
valuation(pred_tbats$mean) # 454
##
        firmValue
## [1,] 454.2923
```

Visualize our Models

We plot our models together using a common scale on Y-axis.

```
limits<-c(0,1000000000)

ts_yahoo_small <- window(ts_yahoo_forecast, start=c(2013,6))
plot_yahoo <- autoplot(ts_yahoo_forecast, ylab="Yahoo - 1,200M") + scale_y_continuous(labels=comma, lim plot_yahoo</pre>
```


plot_drift<-autoplot(fit_drift, xlab="Year", ylab="Drift Benchmark - 930M") + scale_y_continuous(labels plot_zzz<-autoplot(pred_ZZZ, xlab="Year", ylab="ZZZ - 703M") + scale_y_continuous(labels=comma, limits plot_zzz_damped<-autoplot(pred_ZZZ_damped, xlab="Year", ylab="ZZZ+damped - 351M") + scale_y_continuous(labels=comma, limit plot_AAN<-autoplot(pred_AAN, xlab="Year", ylab="AAN - 1,004M") + scale_y_continuous(labels=comma, limit plot_AAN_damped<-autoplot(pred_AAN_damped, xlab="Year", ylab="AAN+damped - 485M") + scale_y_continuous(labels=comma, limit plot_AAZ<-autoplot(pred_AAZ, xlab="Year", ylab="AAZ - 1,004M") + scale_y_continuous(labels=comma, limit plot_AAZ

Forecasts from ETS(A,A,N)


```
plot AAZ damped<-autoplot(pred AAZ damped, xlab="Year", ylab="AAZ+damped - 485M") + scale y continuous(
plot_MAZ<-autoplot(pred_MAZ, xlab="Year", ylab="MAZ - 702M") + scale_y_continuous(labels=comma)
plot_MAZ_damped<-autoplot(pred_MAZ_damped, xlab="Year", ylab="MAZ+damped - 350M") + scale_y_continuous(
plot_MMN<-autoplot(pred_MMN, xlab="Year", ylab="MMN - 546M") + scale_y_continuous(labels=comma, limits =
plot_MMN_damped<-autoplot(pred_MMN_damped, xlab="Year", ylab="MMN+damped - 514M") + scale_y_continuous(
plot_MMM<-autoplot(pred_MMN, xlab="Year", ylab="MMM - 55M") + scale_y_continuous(labels=comma, limits =
plot_MMM_damped<-autoplot(pred_MMN_damped, xlab="Year", ylab="MMM+damped - 251M") + scale_y_continuous(
plot_tbats <- autoplot(pred_tbats, xlab="Year", ylab="TBATS - 515M") + scale_y_continuous(labels=comma,
plot_arima <- autoplot(pred_arima, xlab="Year", ylab="ARIMA - 414M") + scale_y_continuous(labels=comma,
# Global view of our models
lay \leftarrow rbind(c(1,2),
             c(3,4), #zzz
             c(5,6), # aaz
             c(7,8), \# maz
             c(9,10), # mmn
             c(11,12), # mmm
             c(13,14) ) # arima, tbats
grid.arrange(grobs=list(plot_yahoo, plot_drift, plot_zzz,plot_zzz_damped, plot_AAZ,plot_AAZ_damped,plot
```


Summary forecasts

We select the few models that we believe fit best the visits and compare them to Yahoo's predictions.

```
# Arrange the data for plotting
data <- data.frame(Date=time(ts_world_audience), People=data_monthly_audience$People)
ts_yahoo_small <- window(ts_yahoo_forecast, start=c(2013,6))
yahoo <- data.frame(Date=time(ts_yahoo_small), People=ts_yahoo_small[,1])</pre>
drift <- data.frame(Date=time(pred_drift$mean), People=fit_drift$mean)</pre>
mmn_damped <- data.frame(Date=time(pred_MMN_damped$mean), People=pred_MMN_damped$mean)
arima = data.frame(Date=time(pred_arima$mean), People=pred_arima$mean)
tbats = data.frame(Date=time(pred_tbats$mean), People=pred_tbats$mean)
ggplot() +
  geom_line(data = data, aes(y=People, x=Date)) +
  geom_line(data=yahoo, aes(y=People, x=Date, color="Yahoo - DCF=1,230 Million")) +
  geom_line(data=drift, aes(y=People, x=Date, color="Drift - DCF=930 Million")) +
  geom_line(data=mmn_damped, aes(y=People, x=Date, color="MMNd - DCF=513 Million")) +
  geom_line(data=arima, aes(y=People, x=Date, color="ARIMA - DCF=515 Million")) +
  geom_line(data=tbats, aes(y=People, x=Date, color="TBATS - DCF=454 Million")) +
  scale_y_continuous(labels=comma) +
  ggtitle("Tumblr Valuation Scenarios") + xlab("") + ylab("")
```

Don't know how to automatically pick scale for object of type ts. Defaulting to continuous.

We conclude that Yahoo overpaid for Tumblr using inaccurate forecasts

We would instead recommend using "MMMd" model for a valuation of ${f 513M}$.