Modelación y Computación Gráfica para Ingenieros

Dr. Ivan Sipiran

https://www.youtube.com/watch?v=g65Cp_pakM0

Computación Gráfica

- Simular el mundo real usando computadoras
- Especial énfasis en modelos físicos para añadir realismo
 - Geometría 3D
 - Iluminación
 - Cinemática
 - Dinámica de fluidos

Computación Gráfica

- Generación de imágenes foto-realistas desde escenas computacionales
- Escena es una representación 2D o 3D (geometría)
- Proceso de convertir una escena en una imagen se llama Rendering

Videojuegos

Videojuegos

- Industria cinematográfica
 - Estudios Dreamworks, Pixar-Disney
 - 800 millones de dólares por película en promedio (taquilla)

Medicina

https://www.healthcareitnews.com/news/apac/nuhs-demonstrates-use-holographic-tech-brain-surgery

• Diseño e Ingeniería

Nuestro curso

Propósito

- Introducir a las y los estudiantes en la disciplina de computación gráfica.
- Al término del curso, se espera que las y los estudiantes modelen, solucionen y visualicen computacionalmente problemas aplicados que involucren datos, geometrías y escenas complejas en 2D y 3D.
- A modo de ejemplo se pueden desarrollar aplicaciones gráficas interactivas funcionales como videojuegos, simulaciones físicas, sistemas CAD, visualización arquitectónica, modelación de terrenos, entre otras aplicaciones posibles.

Nuestro curso

Metodología

Cátedras

- Visión amplia y fundamentos
- Estrategias para resolver problemas
- Análisis de código de ejemplo

Material de Apoyo

- Diapositivas
- Enlaces
- Bibliografía
- Código fuente de ejemplo
- Lecturas complementarias

Clases auxiliares

- Expositivas e interactivas resolviendo problemas tanto teóricos como prácticos
- Apoyo a tareas computacionales
- Participar activamente!
- No se puede explicar nuevamente toda la materia
- Se requiere conocimiento básico de contenidos vistos en cátedra

Carga Académica

- Evaluaciones
 - Cinco tareas computacionales
 - Dos controles y un examen
- Nota final del curso
 - TA: promedio de tareas
 - PC: 25%C1 + 25%C2 + 50%E
 - FINAL: 50% TA + 50% PC
- Detalles sobre evaluaciones en documento "Reglas del Juego" en U-Cursos.

Bibliografía

Códigos de ejemplo (fork del Prof. Daniel Calderón)

https://github.com/ivansipiran/grafica

- Instalar Git
 - Windows: https://git-scm.com/download/win
 - Ubuntu: sudo apt install git
- Descargar el repositorio
 - Ejecutar el comando:
 - >> git clone https://github.com/ivansipiran/grafica
 - Para actualizar el contenido de su carpeta, ejecutar:
 - >> git pull

Bibliografía - Teoría

- Mathematics for 3D Game Programming and Computer Graphics
 - Third Edition
 - Eric Lengyel
 - 2012
- Advanced Methods in Computer Graphics with examples in OpenGL
 - Ramakrishnan Mukudan
 - 2012
 - (Disponible digitalmente en catálogo de Bello)
- Real-time rendering
 - Fourth edition
 - Tomas Akenine Muller, Eric Haines, Naty Hoffman

Bibliografía - OpenGL

- OpenGL SuperBible
 - Seventh Edition
 - Graham Seller, Richard S. Wriht, Nicholas Haemel
 - 2016
- OpenGL Programming Guide
 - Ninth edition
 - John Kessenich, Graham Sellers, Dave Shreiner
 - 2017

Bibliografía - OpenGL

- 3D Math Premier for Computer Graphics and Game Development
 - Second Edition
 - Fletcher Dunn, Ian Parbery
 - 2011
 - https://gamemath.com/
- Computer Graphics from Scratch
 - Gabriel Gambetta
 - 2020
 - https://gabrielgambetta.com/compu ter-graphics-from-scratch

CC3501 Roadmap

- Introducción a la Computación Gráfica
 - Computación gráfica en 2D
 - Pipeline de rendering
- Modelación geométrica
 - Transformación y jerarquías
 - Curvas, superficies y sólidos
- Computación gráfica en 3D
 - Proyecciones
 - Iluminación y sombreado
 - Texturas
- Visualización científica y simulaciones físicas
 - Visualización de campos escalares y vectoriales
 - Sistemas lineales y colisiones

Recursos

- http://www.opengl.org
- http://www.tomdalling.com/blog/category/modern-opengl/
- http://www.opengl-tutorial.org/
- https://en.wikibooks.org/wiki/OpenGL Programming

Quién soy?

- Profesor asistente en el DCC
 - Dr. En Ciencias de la Computación Universidad de Chile- 2014
 - Post-doc en la Universidad de Konstanz Alemania hasta junio 2015
 - En la PUCP de julio del 2015 a julio del 2020
 - En el DCC desde agosto 2020

Investigación

• Proyecto para reconstruir material arqueológico de manera computacional.

Investigación

Preguntas?