MAT 2777 Probabilités et statistique pour ingénieur.e.s

Chapitre 5
L'estimation et les intervalles de confiance

P. Boily (uOttawa)

Hiver 2023

Aperçu

- 5.1 L'inférence statistique (p.2)
 - Les statistiques (p.4)
 - La variance d'estimation et l'erreur-type (p.5)
- 5.2 L'intervalle de confiance de μ lorsque σ est connu (p.8)
 - La règle du 68 96 99.7 et les intervalles de confiance (p.9)
 - L'intervalle de confiance de μ lorsque σ est connu (reprise) (p.14)
- 5.3 Le choix de la taille de l'échantillon (p.26)
- 5.4 L'intervalle de confiance de μ lorsque σ est inconnu (p.30)
- 5.5 L'intervalle de confiance d'une proportion (p.35)
- Annexe Résumé (p.39)

5.1 – L'inférence statistique

L'un des objectifs de l'inférence statistique est de pouvoir tirer des conclusions sur une **population** à partir d'un échantillon aléatoire de cette population.

Exemples:

- Peut-on évaluer la fiabilité du processus de fabrication d'un produit en sélectionnant au hasard un échantillon du produit final et en déterminant combien d'entre eux sont conformes à un certain schéma d'évaluation de la qualité ?
- Peut-on déterminer qui va remporter une élection en interrogeant un petit échantillon de répondants ?

Plus précisément, nous cherchons à estimer un **paramètre** θ inconnu, disons, à l'aide d'une seule quantité, l'estimé ponctuel $\hat{\theta}$.

Cette estimation ponctuelle est obtenue à l'aide d'une **statistique**, une fonction d'un échantillon aléatoire. La distribution de probabilité de la statistique est sa **distribution d'échantillonnage**. Leur description est une des principales voies de recherche.

Exemple : Considérons un processus qui fabrique des roues dentées (dans un certain calibre). Soit X la v.a. qui enregistre le poids d'une roue dentée choisie au hasard. Quelle est la moyenne de la population $\mu_X = \mathrm{E}[X]$?

Solution : en l'absence d'une f.d.p. f(x), nous pouvons estimer μ_X à l'aide d'un échantillon aléatoire X_1, \ldots, X_n de mesures du poids, via la statistique de la moyenne de l'échantillon :

$$\overline{X} = \frac{X_1 + \dots + X_n}{n} \approx \mathcal{N}\left(\mu, \sigma^2/n\right)$$
 selon le TLC.

Les statistiques

Voici quelques exemples de statistiques :

- la moyenne et la médiane de l'échantillon
- la variance et l'écart-type d'échantillon
- les quantiles de l'échantillon (médiane, quartiles, percentiles)
- les statistiques de test $(t, \chi^2, f, \text{ etc.})$
- les statistiques d'ordre (le max./min. et l'étendue de l'échantillon, etc.)
- les moments de l'échantillon et leurs fonctions (l'asymétrie, l'aplatissement, etc.)

La variance d'estimation et l'erreur-type

L'erreur-type d'une statistique est l'écart-type de sa distribution d'échantillonnage.

Par exemple, si les observations X_1, \ldots, X_n proviennent d'une population de moyenne inconnue μ et de variance connue σ^2 , alors $\mathrm{Var}(\overline{X}) = \sigma^2/n$ et l'erreur-type de \overline{X} est

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}.$$

Si la variance de la population d'origine est inconnue, alors elle s'approche de la variance de l'échantillon S^2 et l'erreur-type approximative de \overline{X} est

$$\hat{\sigma}_{\overline{X}} = rac{S}{\sqrt{n}}$$
, où $S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

Exemples:

1. Voici un échantillon de 20 tailles de joueurs de baseball (en pouces) :

Soit \overline{X} la moyenne d'échantillon. Alors ,

$$\overline{X} = \frac{X_1 + \dots + X_{20}}{20} = 72.6$$

et la variance d'échantillon S^2 est

$$S^{2} = \frac{1}{20 - 1} \sum_{i=1}^{20} (X_{i} - 72.6)^{2} \approx 5.6211.$$

L'erreur-type de \overline{X} est donc

$$\hat{\sigma}_{\overline{X}} = \frac{S}{\sqrt{20}} \approx \sqrt{\frac{5.6211}{20}} \approx 0.5301.$$

2. Considérons un échantillon $\{X_1,\ldots,X_{100}\}$ d'observations indépendantes prélevées d'une population normale $\mathcal{N}(\mu,\sigma^2)$, où $\sigma=50$ est connu mais μ ne l'est pas. Quelle est la meilleure estimation de μ ? Quelle est la distribution d'échantillonnage de cette estimation ?

Solution : la moyenne d'échantillon $\overline{X} = \frac{X_1 + \dots + X_{100}}{100}$ fournit la meilleure estimation de $\mu_X = \mu_{\overline{X}}$.

L'erreur-type de \overline{X} est $\sigma_{\overline{X}} = \frac{50}{\sqrt{100}} = 5$. Étant donné que les observations sont prélevées indépendamment d'une population normale avec une moyenne de μ et un écart-type de 50, $\overline{X} \sim \mathcal{N}(\mu, 5^2) = \mathcal{N}(\mu, 25)$, selon le TLC.

5.2 – L'intervalle de confiance de μ lorsque σ est connu

Soit un échantillon $\{x_1, \ldots, x_n\}$ prélevé d'une population normale dont la variance σ^2 est **connue** et dont la moyenne μ est **inconnue**. La moyenne de l'échantillon

$$\overline{x} = \frac{x_1 + \dots + x_n}{n}$$

est une estimation ponctuelle de μ .

Bien sûr, cette estimation n'est sans doute pas exacte, car \overline{x} est une valeur observée de \overline{X} ; il est peu probable que la valeur observée \overline{x} coïncide avec μ .

Mais nous savons que $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, et donc que

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

La règle du 68 - 96 - 99.7 et les intervalles de confiance

$$P(-1 < Z < 1) \approx 0.683$$

$$P(-2 < Z < 2) \approx 0.955$$

$$P(-3 < Z < 3) \approx 0.997.$$

Chaque fois que nous observons une moyenne d'échantillon \overline{X} en provenance d'une population normale de moyenne μ , nous nous attendons à ce que l'inégalité

$$-k < Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < k$$

se vérifie approximativement

$$g(k) = \begin{cases} 68.3\% \text{ du temps} & \text{si } k = 1\\ 95.5\% \text{ du temps} & \text{si } k = 2\\ 99.7\% \text{ du temps} & \text{si } k = 3 \end{cases}$$

De manière équivalente, l'intervalle de confiance (symétrique) de μ à g(k) est

$$\overline{X} - k \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + k \frac{\sigma}{\sqrt{n}} \implies \mathsf{IC}(\mu; g(k)) \equiv \overline{X} \pm k \frac{\sigma}{\sqrt{n}}.$$

Exemples:

1. Soit $\{X_1,\ldots,X_{64}\}$ un échantillon aléatoire prélevé d'une population normale avec un écart-type de $\sigma=72$ et une moyenne μ inconnue. La moyenne de l'échantillon est $\overline{X}=375.2$. Construisez un intervalle de confiance de μ à 68.3%.

Solution: c'est le cas k=1. Selon la formule, $IC(\mu;68.3\%)$ est

$$375.2 \pm 1 \cdot \frac{72}{\sqrt{64}} \implies \mathsf{IC}(\mu; 68.3\%) \equiv (366.2, 384.2).$$

TRÈS IMPORTANT: ceci ne dit pas que nous sommes certains à 68.3% que μ se situe entre 366.2 et 384.2 – lorsqu'un échantillon de taille 64 est prélevé dans une population normale $\mathcal{N}(\mu,72^2)$ et qu'on construit l'intervalle $IC(\mu;68.3\%)$, μ se retrouve entre les extrémités de l'intervalle environ 68.3% du temps.

Dans un IC à 95%, nous nous attendons à ce que 19 échantillons sur 20, prélevés d'une population unique, produisent des intervalles de confiance qui contiennent le paramètre de population d'intérêt, en moyenne.

2. Construisez $IC(\mu; 95.5\%)$ avec les données du problème précédent.

Solution: c'est le cas k = 2, alors

$$375.2 \pm 2 \cdot \frac{72}{\sqrt{64}} \implies \mathsf{IC}(\mu; 95.5\%) \equiv (357.2, 393.2).$$

3. Construisez $IC(\mu; 99.7\%)$ avec les données du problème précédent.

Solution : c'est le cas k = 3, alors

$$375.2 \pm 3 \cdot \frac{72}{\sqrt{64}} \implies \mathsf{IC}(\mu; 99.7\%) \equiv (348.2, 402.2).$$

L'IC de μ lorsque σ est connu (reprise)

Une autre approche de construction de l'IC consiste à spécifier la proportion d'intérêt de l'aire sous la f.d.p. $\phi(z)$, puis à déterminer les valeurs critiques correspondantes (les extrémités de l'intervalle).

Soit $\{X_1,\ldots,X_n\}$ un échantillon prélevé de $\mathcal{N}(\mu,\sigma^2)$; on rappelle que $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)$.

Pour un IC à 95%, disons, on doit trouver la **valeur critique** $z^* > 0$ telle que $P(-z^* < Z < z^*) = 0.95$.

Mais le côté gauche peut être ré-écrit comme suit :

$$P(-z^* < Z < z^*) = \Phi(z^*) - \Phi(-z^*)$$
$$= \Phi(z^*) - (1 - \Phi(z^*)) = 2\Phi(z^*) - 1.$$

Nous cherchons donc un $z^* > 0$ tel que

$$0.95 = 2\Phi(z^*) - 1 \Longrightarrow \Phi(z^*) = \frac{0.95 + 1}{2} = 0.975.$$

D'après la table de la f.d.p. $\phi(z)$, nous voyons que $\Phi(1.96) \approx 0.9750$, d'où

$$P(-1.96 < Z < 1.96) = P\left(-1.96 < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < 1.96\right) \approx 0.95.$$

Autrement dit, l'inégalité

$$-1.96 < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < 1.96$$

est valide avec une probabilité de 0.95 (sous l'interprétation préalable).

De façon équivalente,

$$\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \implies \mathsf{IC}(\mu; 95\%) \equiv \overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

forme un intervalle de confiance de μ à 95% lorsque σ est connu.

On peut aussi montrer que

$$\overline{X} - 2.575 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 2.575 \frac{\sigma}{\sqrt{n}} \implies \mathsf{IC}(\mu; 99\%) \equiv \overline{X} \pm 2.575 \frac{\sigma}{\sqrt{n}}$$

forme un intervalle de confiance de μ à 99% lorsque σ est connu.

Le **niveau de confiance** $1-\alpha$ est généralement exprimé en termes de **petits** α , par exemple, $\alpha=0.05\Longrightarrow 1-\alpha=0.95$.

Pour $\alpha = 0.01, 0.02, \dots, 0.98, 0.99$, les z_{α} correspondants sont appelés les **pourcentiles** (ou tout simplement les **centiles**) de la loi normale centrée résuite. En général,

$$P(Z>z_{\alpha})=\alpha \implies z_{\alpha}$$
 est le $100(1-\alpha)$ centile.

Pour les intervalles de confiance symmétriques (à 2 côtés), on trouve les valeurs appropriées en résolvant $P(|Z|>z^*)=\alpha$ pour z^* . Par les propriétés de $\mathcal{N}(0,1)$,

$$\alpha = P(|Z| > z^*) = 1 - P(-z^* < Z < z^*) = 1 - (2\Phi(z^*) - 1) = 2(1 - \Phi(z^*)),$$

de sorte que

$$\Phi(z^*) = 1 - \alpha/2 \implies z^* = z_{\alpha/2}.$$

P.Boily (uOttawa)

Par exemple,

$$P(|Z| > z_{0.025}) = 0.05 \implies z_{0.025} = 1.96$$

 $P(|Z| > z_{0.005}) = 0.01 \implies z_{0.005} = 2.575.$

Dans ce même contexte $(X_i \sim \mathcal{N}(\mu, \sigma^2), \sigma \text{ connu})$, l'intervalle de confiance de μ pour un α donné prend généralement la forme

$$\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \implies \mathsf{IC}(\mu; 100(1-\alpha)\%) \equiv \overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

Il importe alors de savoir calculer les centiles $z_{\alpha/2}$ (soit à l'aide de tables, soit à l'aide d'un logiciel).

P.Boily (uOttawa)

Pour un niveau de confiance α donné, les intervalles de confiance plus étroits sont primés par rapport à l'estimation de la moyenne :

- les estimations deviennent "meilleures" lorsque la taille n de l'échantillon augmente;
- les estimations deviennent "meilleures" lorsque σ diminue.

Si $\alpha_1 > \alpha_2$, l'intervalle de confiance de μ à $100(1 - \alpha_1)\%$ est plus étroit que l'intervalle de confiance de μ à $100(1 - \alpha_2)\%$.

En particulier,

$$IC(\mu; 95\%) \subseteq IC(\mu; 99\%).$$

Si l'échantillon provient d'une population normale, alors l'intervalle de confiance est exact. Autrement, nous pouvons utiliser le TLC afin d'obtenir un intervalle de confiance approximatif, lorsque n est suffisamment élevé.

Exemples:

1. Un échantillon de n=9 observations provenant d'une population normale ayant un écart-type $\sigma=5$ connu a une moyenne d'échantillon $\overline{X}=19.93$. Donnez $IC(\mu;0.95)$ et $IC(\mu;0.99)$ sur la base de cet échantillon.

Solution: l'estimation ponctuelle de μ est $\overline{X}=19.93$, et

$$IC(\mu; 100(1-\alpha)\%) \equiv \overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

Ainsi,

$$95\% : \overline{X} \pm z_{0.025} \frac{\sigma}{\sqrt{n}} \Longrightarrow 19.93 \pm 1.96 \cdot \frac{5}{\sqrt{9}} \Longrightarrow (16.66, 23.20)$$

$$99\% : \overline{X} \pm z_{0.005} \frac{\sigma}{\sqrt{n}} \Longrightarrow 19.93 \pm 2.575 \cdot \frac{5}{\sqrt{9}} \Longrightarrow (15.64, 24.22)$$

2. Un échantillon de 25 observations provenant d'une population normale ayant un écart-type $\sigma=5$ connu a une moyenne d'échantillon $\overline{X}=19.93$. Donnez $IC(\mu;0.95)$ et $IC(\mu;0.99)$ sur la base de cet échantillon.

Solution : l'estimation ponctuelle de μ est toujours $\overline{X}=19.93$; les $IC(\mu;100(1-\alpha)\%)$ recherchés sont

$$95\% : \overline{X} \pm z_{0.025} \frac{\sigma}{\sqrt{n}} \Longrightarrow 19.93 \pm 1.96 \cdot \frac{5}{\sqrt{25}} \Longrightarrow (17.97, 21.89)$$

99%:
$$\overline{X} \pm z_{0.005} \frac{\sigma}{\sqrt{n}} \Longrightarrow 19.93 \pm 2.575 \cdot \frac{5}{\sqrt{25}} \Longrightarrow (17.35, 22.51)$$

3. Un échantillon de 25 observations provenant d'une population normale ayant un écart-type $\sigma=10$ connu a une moyenne d'échantillon $\overline{X}=19.93$. Donnez $\mathsf{IC}(\mu;0.95)$ et $\mathsf{IC}(\mu;0.99)$ sur la base de cet échantillon.

Solution : l'estimation ponctuelle de μ est toujours $\overline{X}=19.93$; les $IC(\mu;100(1-\alpha)\%)$ recherchés sont

$$95\% : \overline{X} \pm z_{0.025} \frac{\sigma}{\sqrt{n}} \Longrightarrow 19.93 \pm 1.96 \cdot \frac{10}{\sqrt{25}} \Longrightarrow (16.01, 23.85)$$

$$99\% : \overline{X} \pm z_{0.005} \frac{\sigma}{\sqrt{n}} \Longrightarrow 19.93 \pm 2.575 \cdot \frac{10}{\sqrt{25}} \Longrightarrow (14.78, 25.08)$$

Notez comment les intervalles de confiance sont affectés par α , n, et σ .

5.3 – Le choix de la taille de l'échantillon

Lorsque l'on prélève un échantillon de taille n d'une population normale dont l'écart-type σ est connu, l'erreur que l'on commet en estimant la moyenne μ à l'aide de la moyenne empirique \overline{X} est en général bornée par $E=z_{\alpha/2}\frac{\sigma}{\sqrt{n}},$ à un niveau de confiance de $100(1-\alpha)\%.$

Afin de contrôler l'erreur, il faut contrôler la taille de l'échantillon :

$$E > \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \implies n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \frac{z_{\alpha/2}^2\sigma^2}{E^2}.$$

Exemples:

1. Un échantillon $\{X_1,\ldots,X_n\}$ est prélevé d'une population normale dont l'écart-type $\sigma=100$ est connu. Quelle taille d'échantillon n est requise afin de s'assurer que l'erreur sur l'estimation est au plus E=10, à un niveau de confiance $\alpha=0.05$?

Solution: tant que

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.025} \cdot 100}{10}\right)^2 = (19.6)^2 = 384.16,$$

alors l'erreur d'estimation commise en utilisant \overline{X} pour approcher μ sera d'au plus E=10, avec une probabilité de 95%.

2. On répète le premier exemple, mais avec $\sigma = 10$.

Solution: on doit avoir

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.025} \cdot 10}{10}\right)^2 = (1.96)^2 = 3.8416.$$

3. On répète le premier exemple, mais avec E=1.

Solution: on doit avoir

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.025} \cdot 100}{1}\right)^2 = (196)^2 = 38416.$$

4. On répète le premier exemple, mais avec $\alpha = 0.01$.

Solution: on doit avoir

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.005} \cdot 100}{10}\right)^2 = (25.75)^2 = 663.0625.$$

5. On répète le premier exemple, mais avec $\sigma=10$, E=1, et $\alpha=0.01$.

Solution: on doit avoir

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.005} \cdot 10}{1}\right)^2 = (25.75)^2 = 663.0625.$$

La relation entre α , σ , E, et n est simple, mais pas toujours intuitive !

5.4 – L'intervalle de confiance de μ lorsque σ est inconnu

Jusqu'à présent, nous nous sommes trouvés dans la situation heureuse d'échantillonner à partir d'une population dont la variance σ^2 est connue.

Que faire lorsque cette dernière est **inconnue** ?

Nous donnons un estimé de σ par l'entremise de la variance d'échantillon

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

(rappelez-vous que la moyenne de la population μ est également inconnue... c'est ce que nous cherchons !) et l'écart-type empirique $S=\sqrt{S^2}$.

Si l'on connaît σ , nous savons grâce au TLC que $\frac{X-\mu}{\sigma/\sqrt{n}}$ est approximativement $\mathcal{N}(0,1)$.

Si σ est inconnu, on peut montrer que $\frac{\overline{X}-\mu}{S/\sqrt{n}}$ suit approximativement une loi t de Student avec n-1 degrés de liberté, t(n-1).

Par conséquent, pour un niveau de confiance α ,

$$P\left(-t_{\alpha/2}(n-1) < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{\alpha/2}(n-1)\right) \approx 1 - \alpha,$$

où $t_{\alpha/2}(n-1)$ est le $100(1-\alpha/2)^{\rm e}$ centile de t(n-1) (on peut les lire dans les tables). L'égalité est atteinte si la population sous-jacente est normale:

$$\mathsf{IC}_S(\mu; 100(1-\alpha)\%) \equiv \overline{X} \pm t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}}.$$

Par exemple, si $\alpha=0.05$ et $\{X_1,X_2,X_3,X_4,X_5\}$ est un échantillon prélevé d'une normale dont la variance σ^2 est inconnue, alors

$$t_{0.025}(5-1) = 2.776$$
 et $P\left(-2.776 < \frac{\overline{X} - \mu}{S/\sqrt{5}} < 2.776\right) = 0.95.$

Exemples:

1. Pour une année donnée, on obtient n=9 mesures de la concentration d'ozone :

En supposant que les concentrations d'ozone mesurées suivent une loi normale avec $\sigma^2=1.21$, construisez ${\rm IC}(\mu;95\%)$. Notez que $\overline{X}=5.01$ et que S=0.97.

Solution: puisque nous connaissons la variance, nous devons utiliser la valeur critique $z_{\alpha/2}=z_{0.025}=1.96$:

$$IC(\mu; 95\%) \equiv \overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 5.01 \pm 1.96 \cdot \frac{\sqrt{1.21}}{\sqrt{9}} \equiv (4.29, 5.73).$$

2. On aborde le même problème, mais en supposant cette fois que la variance de la population sous-jacente est inconnue.

Solution: Comme nous ne connaissons pas la variance, nous devons utiliser valeur critique $t_{\alpha/2}(n-1)=t_{0.025}(8)=2.306$ (assurez-vous de comprendre comment obtenir cette valeur à partir du tableau) :

$$\mathsf{IC}(\mu; 95\%) \equiv \overline{X} \pm t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}} = 5.01 \pm 2.306 \cdot \frac{0.97}{\sqrt{9}} \equiv (4.26, 5.76).$$

Lorsque nous connaissons la variance, l'IC est plus étroit (plus petit), ce qui est naturel puisque nous sommes plus confiants lorsque nous avons plus d'informations.

5.5 – L'intervalle de confiance d'une proportion

Si $X \sim \mathcal{B}(n,p)$ (le nombre de réussites dans n épreuves de Bernouilli), alors l'estimateur ponctuel de p est $\hat{P} = \frac{X}{n}$.

Rappelons que E[X] = np et Var[X] = np(1-p).

Nous pouvons normaliser toute variable aléatoire, normale ou non :

$$Z = \frac{X - \mu}{\sigma} = \frac{n\hat{P} - np}{\sqrt{np(1-p)}} = \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

est approximativement $\mathcal{N}(0,1)$ si n est suffisamment élevé.

Ainsi,

$$P\left(-z_{\alpha/2} < \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}} < z_{\alpha/2}\right) \approx 1 - \alpha.$$

En utilisant l'approche précédente, on construit un $IC(p; 100(1-\alpha)\%)$ approximatif :

$$\hat{P} - z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

mais ce n'est pas bien utile p est inconnu! Au lieu, nous utilisons :

$$\hat{P} - z_{\alpha/2} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$$

Exemples:

1. Deux candidats (A et B) se présentent aux élections. Dans un sondage, 1000 électeurs sont choisis au hasard : 52% soutiennent A, tandis que 48% soutiennent B. Donnez un $\mathsf{IC}(p;0.95)$ pour le soutien de chaque candidat.

Solution : on utilise $\alpha=0.05$ et $\hat{P}=0.52$. L'intervalle de confiance recherché du candidat A est ainsi

$$\hat{P} \pm z_{\alpha/2} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}} = 0.52 \pm 1.96 \sqrt{\frac{0.52 \cdot 0.48}{1000}} \approx 0.52 \pm 0.031.$$

L'intervalle de confiance pour B a la même largeur: 0.48 ± 0.031 .

2. Sur la base de ce résultat de sondage, un quotidien publie la une suivante : "La candidate A devance le candidat B!". Ce titre est-il justifié ?

Solution : bien qu'il y ait un écart de 4 point de pourcentage dans les sondages, le soutien réel pour la candidate A se retrouve dans l'intervalle de confiance

$$(48.9\%, 55.1\%),$$

avec une probabilité de 95%. De même, le soutien réel pour le candidat B se situe dans l'intervalle

$$(44.9\%, 51.1\%),$$

avec la même probabilité.

Puisque les intervalles de confiance se chevauchent, il est probable que la une n'est pas justifiée.

Annexe – Résumé

Échantillon : $\{X_1, \ldots, X_n\}$. **Objectif** : prédire μ avec confiance α .

• Si la population est normale, de variance σ^2 connue, $\mathrm{IC}(\mu;100(1-\alpha)\%)$ est exact et

$$IC(\mu; 100(1-\alpha)\%) \equiv \overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}.$$

• Si la population est non-normale, de variance σ^2 connue, et n est suffisament élevé, alors $IC(\mu; 100(1-\alpha)\%)$ est approximatif et

$$IC(\mu; 100(1-\alpha)\%) \equiv \overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}.$$

• Si la population est normale, de variance inconnue, $IC_S(\mu; 100(1-\alpha)\%)$ est exact et

$$\mathsf{IC}_S(\mu; 100(1-\alpha)\%) \equiv \overline{X} \pm t_{\alpha/2}(n-1) \cdot \frac{S}{\sqrt{n}}.$$

• Si la population est non-normale, de variance inconnue, et n est suffisament élevé, alors $IC_S(\mu; 100(1-\alpha)\%)$ est approximatif et

$$\mathsf{IC}_S(\mu; 100(1-\alpha)\%) \equiv \overline{X} \pm z_{\alpha/2} \cdot \frac{S}{\sqrt{n}}.$$

Si la variance de la population est inconnue et si n est 'trop petit', il n'y a rien à faire...