Name:
Question 1: Write out the joint probability for the following sentence using the chain rule:
p(There, is, only, one, person, who, is, not, ordinary)
Answer: $p(There, is, only, one, person, who, is, not, ordinary)$ $=p(There)p(is/There)p(only/There,is)p(one/There,is,only)p(person/There,is,only,one)p(who/There,is,only,one,person)p(is/There,is,only,one,person,who)p(not/There,is,only,one,person,who,is)p(ordinary/There,is,only,one,person,who,is,not)$
Write out the probability above using the second-order Markov assumption. Answer:
p(There, is, only, one, person, who, is, not, ordinary) = $p(There)p(is/There)p(only/There,is)p(one/is,only)p(person/only,one)p(who/one,person)p(is/person,who)p(not/who,is)p(ordinary/is,not)$
Question 2: Consider the following training corpus T of sentences:
• START Karlsson is round STOP
• START He lives on the roof STOP
• START He is happy STOP
• START On the roof STOP
• START Karlsson lives happily STOP
(b) Compute the following maximum likelihood parameters:
p(Karlsson START)=count(START,Karlsson)/count(START)=2/5
p(Karlsson lives,happily)=count(lives,happily,Karlsson)/count(lives,happily)=0/1

(c) Compute the probability of the following sentences under the trigram model trained on **T**:

START Karlsson is happy STOP

p(STOP|happy) = count(happy,STOP)/count(happy) = 1/1

Answer:

```
p(START,Karlsson,is,happy,STOP)\\ =p(Karlsson|START)p(is|START,Karlsson)p(happy|Karlsson,is)p(STOP|is,happy)\\ =count(START,Karlsson)/count(START)*count(START,Karlsson,is)/count(START,Karlsson)*\\ count(Karlsson,is,happy)/count(Karlsson,is)*count(is,happy,STOP)/count(is,happy)\\ =2/5*1/2*0/1*1/1=0
```

START Karlsson lives on the roof STOP

Answer:

p(START,Karlsson,lives,on,the,roof,STOP)

=p(Karlsson|START)p(lives|START,Karlsson)p(on|Karlsson,lives)p(the|lives,on)p(roof|on,the)p(STOP|the,roof)

=2/5*1/2*0/1*1/1*2/2*2/2=0

Question 3: We have the following training corpus:

The green book STOP My blue book STOP His green house STOP Book STOP

Assume we have a language model based on this corpus using linear interpolation with $\lambda=1/3$ for all *i*. Compute the value of the parameter p(book|the green) under this model. Assume STOP as part of your unigram model.

Answer:

total_words=14 p(book|the green)

 $= 1/3 * count (the, green, book) / count (the, green) + 1/3 * count (green, book) / count (green) + 1/3 * count (book) / total_words = 1/3 * 1 + 1/3 * 1/2 + 1/3 * 3/14 = 1/3 + 1/6 + 1/14$