Supplemental Table 1. Visual and Ecological Comparative Mammalian Dataset.

								Sources				
Species	AD	VA	BM	MT	MRS	AP	\mathbf{D}^1	VA	AD, BM	D,AP	MRS	
Artiodactyla												
Bos taurus	30.78	10.31	679.05	A				this study: [1,2]	[2]	[3,4]		
Camelus bactrianus	40	10	400	В	60	D	Н	[5]	[6,7]	[3,6]	[8]	
Camelus dromedarius	33	10.4	415	A				[5]	[5,9]			
Capra hircus	25.84	8.43	27.66	A				this study: [10,11]	[2]			
Dama dama	34	18.48	80	A				this study: [6,12]	[6,13]			
Giraffa camelopardalis	42.26	25.46	1000	A				[14]	[13]			
Ovis aries	26.11	5.61	52.1	В		C	Н	[15]	[2]	[3,4]		
Sus scrofa	24.8	9.92	86.78	A				this study: [16,17]	[2,9]			
Carnivora												
Acinonyx jubatus	36.7	23.02	45.6	A				this study: [6,12]	[6,9]			
Canis lupus	22.5	14.57	31.65	A				this study: [18,19]	[6,9]			
Crocuta crocuta	28.68	8.4	64.23	A				[20]	[2,9]			
Enhydra lutris	14	4.2	27.05	A				[21]	[2,9]			
Felis catus	21.94	8.85	3.05	В		C	P	[22]	[2]	[23,24]		
Lynx lynx	26.82	8	17.8					[25]	[2,9]			
Mustela nivalis	5.4	2.2	0.08					[26]	[2,9]			
Mustela putorius furo	7.5	3.57	0.83	В		C	P	[27]	[2,9]	[3,28]		
Odobenus rosmarus	24.96	3.8	1060	A				[29]	[2,9]			
Suricata suricatta	10.5	6.3	0.62	В		D	P	[30]	[6,9]	[6,31]		
<u>Chiroptera</u>												
Artibeus cinereus	4.4	1.4	0.07	A				[32]	[9,32]			
Artibeus jamaicensis	3.9	0.167	0.05	В		N		[33]	[9,34]	[35,36]		
Carollia perspicillata	2.62	0.94	0.02	A				[37]	[9,38]			
Desmodus rotundus	2.5	0.625	0.03	В		N		[39]	[9,34]	[36,40]		
Eptesicus fuscus	1.481	0.5	0.03	В		N		[41]	[9,42]	[43]		
Macroderma gigas	7	1.9	0.15	A				[32]	[9,32]			
Megaderma lyra	4.2	1.5	0.05	A				[32]	[9,32]			

Myotis dabentonii	1.25	0.1	0.007	В		N		[34]	[9,34]	[44]	
Myotis mystacinus	0.95	0.1	0.004	В		N		[34]	[9,34]		
Nyctophilus gouldi	1.9	0.6	0.01	Α				[32]	[9,32]		
Phyllostomus hastatus	3.94	0.167	0.11	В		N		[33]	[9,38]	[45]	
Plecotus auritus	1.8	1	0.007	В		N		[34]	[9,34]	[3]	
Pteropus giganteus	9.65	1.7	0.90	В		N	Η	[46]	[2,9]	[3]	
Pteropus poliocephalus	13.3	5.5	0.68	A				[32]	[2,9]		
Pteropus scapulatus	11	4	0.36	A				[32]	[2,9]		
Rhinolophus rouxi	1.8	0.4	0.014	A				[32]	[9,34]		
Rousettus madagascariensis	5.72	3	0.07	A				[32]	[2,47]		
Taphozous georgianus	3.7	1.3	0.03	A				[32]	[9,32]		
Dasyuromorphia											
Dasyurus hallucatus	10	2.8	0.40	В		N	P	[48]	[9,48]	[3,49]	
Myrmecobius fasciatus	11.70	5.2	0.46	В	33	D		[50]	[9,50]	[51,52]	[53]
Sarcrophilus harrisii	14.5	4.75	6.37	A				this study: [6,54]	[6,9]		
Sminthopsis crassicaudata	5.088	2.36	0.015	В	10.9	C	P	[55]	[9,55]	[3,55]	[53]
<u>Didelphimorphia</u>											
Didelphis marsupialis	8.7	1.25	1.48	A				[56]	[6,9]		
Didelphis virginiana	10	2.49	2.19	A				this study: [6,57]	[2,9]		
<u>Diprotodontia</u>											
Macropus eugenii	16.18	2.7	6.50	В	40	C	Н	[58]	[9,58]**	[3]	[53]
Macropus fulginosus	23.1	11.23	62.63	A				this study: [6,59]	[6,9]		
Phascolarctos cinereus	12.6	2.4	6.96	A				[60]	[9,61]		
Setonyx brachyurus	10.4	4.00	3.25	A				this study: [55,62]	[9,62]		
Tarsipes rostratus	1.6	0.63	0.009	В		C	Н	[63]	[9,64]	[3,65]	
Trichosurus vulpecula	13.7	4.8	2.93	A				[66]	[6,9]		
Lagomorpha											
Oryctolagus cuniculus	18.04	3	1.52	В	56	C	Н	[67]	[6,9]	[3,68]	[69]
Monotremata											
Tachyglossus aculeatus	8	1.69	3.55	A				[2,70]	[2,9]		

<u>Perissodactyla</u>											
Diceros bicornis	27.6	6	985	A				[71]	[6,9]		
Equus caballus	42	23.3	350	В	70	C	Н	[72]	[6,13]	[6,73]	[69]
Primates- Haplorhines*											
Alouatta caraya	16.2	59.61	5.63	A				this study: $[6,74]^2$	[6,9]		
Aotus azarae	19.9	8.3	1.06	A				[75]	[6,9]		
Aotus trivirgatus	19.9	10	0.85	В				[76]	[6,9]		
Callithrix jacchus	11.3	30	0.31	A				[77]	[6,9]		
Cebus apella	14.1	54.75	2.77	A				[78]	[6,9]		
Chlorocebus aethiops	21.5	55.23	4.17	A				this study: $[79,80]^2$	[9,80]		
Homo sapiens	24	64	60.21	В				[32]	[38,81]		
Macaca fascicularis	18.4	46	4.30	В				[82]	[6,9]		
Macaca mulatta	20	53.6	5.30	В				[83,84]	[6,9]		
Macaca nemestrina	19.9	46	7.47	В				[82]	[6,9]		
Pan troglodytes	20.9	64.28	49.21	В				[85]	[6,9]		
Saguinus midas	12.2	24.87	0.43	A				this study: $[6,74]^2$	[6,9]		
Saimiri sciureus	15	40.5	0.79	В				[83]	[6,9]		
Tarsius syrichta	17	8.89	0.10	A				[86]	[6,9]		
Primates- Strepsirrhines											
Cheirogaleus medius	10.3	2.84	0.18	A				[86]	[6,9]		
Eulemur macaco	15.3	5.14	2.40	В		C	Н	[86]	[6,87]	[87]	
Galago senegalensis	12.9	6.7	0.18	В		N	P	[88]	[6,9]	[89]	
Lemur catta	15.6	6.7	1.96	В		D	Н	[90]	[6,9]	[87]	
Microcebus murinus	9.2	4.2	0.06	A				[91]	[6,9]		
Otolemur crassicaudatus	16.3	4.8	1.27	В		N		[92]	[6,9]	[93]	
Proboscidea											
Loxodonta africana	39.6	13.16	2420	A				[94]	[6,9]		
Rodentia											
Agouti paca	18.46	2.8	8.0	A				[95]	[9,96]		
Dasyprocta leoporina	15.68	6.21	2.61	A				[95]	[9,96]		
Ellobius lutescens	2.2	0.4	0.12	A				[97]	[97,98]		

Ellobius talpinus	2.9	0.9	0.04	A				[97]	[9,97]		
Heterocephalus glaber	1.6	0.44	0.06	A				[99]	[9,100]		
Hydrochoerus hydrochaeris	21.04	5.8	39.13	A				[95]	[9,95]		
Lemmus lemmus	2.40	0.83	0.05	В		C	Н	[101]	[2,9]	[3]	
Meriones unguiculatus	6.11	1.8	0.06	В	14.5	C	Н	[102,103]	[9,104]	[3,105]	[106]
Mesocricetus auratus	6.32	0.5	0.10	В				[107]	[9,108]		
Mus musculus	5.28	0.5	0.02	В	13.1	N		[109]	[2,9]	[3]	[110]
Peromyscus maniculatus	4.9	0.56	0.03	В	15.9	N		[111]	[6,13]	[6,112]	[113]
Rattus norvegicus	5.58	1.6	0.29	В	9.7	N		[114]	[2,9]	[3,6]	[69]
Sciurus caroliniensis	11.8	3.9	0.49	В	27	D		[115]	[6,9]	[6,116]	[69]
Sciurus niger	12	3.9	0.76	В	24	D		[115]	[6,9]	[6,117]	[13]
Spermophilus beecheyi	9.54	4	0.60	В		D		[112]	[9,12]	[3]	
<u>Scandentia</u>											
Tupaia belangeri	7.60	2.4	0.16	В		D		[119]	[6,9]	[120]	
Tupaia glis	8.7	4.7	0.13	В		D		[121]	[6,9]	[3,120]	
Xenarthra											
Choloepus didactylus	10.2	1.54	4.66	A	(T.T.A	1) 1		this study: [6,122]	[6,9]		1 (1)

Abbreviations: eye length/axial diameter (AD, mm); visual acuity (VA, cpd); body mass (BM, kg); measurement type (MT)- anatomical (A), behavioral (B); maximum running speed (MRS, kph); activity pattern (AP)- diurnal (D), cathemeral/arrhythmic (C), nocturnal (N); Diet - herbivorous (H), active predator (P).

¹Species were categorized as "active predators" if they were reported in the literature as actively catching moving prey.

² for haplorhine primates, which exhibit no retinal summation, acuity was calculated from peak retinal cone cell density rather than ganglion cell density.

^{*} All haplorhines were excluded from ecological comparisons.

^{**} eye length estimated from anatomically measured retinal magnification factor using Pettigrew et al.'s [32]formula.

Data Sources:

- Hebel R (1976): Distribution of retinal ganglion cells in five mammalian species (pig, sheep, ox, horse, dog). Anat Embryol 150:45–51.
- 2 Howland HC, Merola S, Basarab JR (2004): The allometry and scaling of the size of vertebrate eyes. Vision Res 44:2043–2065.
- 3 Nowak RM (1999): Walker's Mammals of the World. 6th edn. Baltimore, Johns Hopkins University Press.
- 4. Betteridge K, Costall D, Balladur S, Upsdell M, Umemura K (2010): Urine distribution and grazing behaviour of female sheep and cattle grazing a steep New Zealand hill pasture. Anim Prod Sci 50:624–629.
- Harman A, Dann J, Ahmat A, Macuda T, Johnston K, Timney B (2001): The retinal ganglion cell layer and visual acuity of the camel. Brain Behav Evol 58:15–27.
- 6 Ross CF, Kirk EC (2007): Evolution of eye size and shape in primates. J Hum Evol 52:294–313.
- Pérez-Barbería FJ, Shultz S, Dunbar RIM (2007): Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution 61:2811–2821.
- 8 Christiansen P (2002): Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed. Zool J Linn Soc 136:685–714.
- 9 Silva M, Downing JA (1995): CRC Handbook of Mammalian Body Masses. New York, CRC Press.
- 10 Ribeiro AP, Santos NL, Silva VC, Campos AF, Teixeira IAM, Laus JL (2010): Ultrasonographic and ecobiometric findings in the eyes of adult goats. Ciência Rural 40:568–573.
- 11 Gonzalez-Soriano J, Mayayo-Vicente S, Martinez-Sainz P, Contreras-Rodriguez J, Rodriguez-Veiga E (1997): A quantitative study of ganglion cells in the goat retina. Anat Histol Embryol 26:39–44.
- 12 Hughes A (1977): The topography of vision in mammals of contrasting lifestyle: comparative optics and retinal organisation; in F Crescitelli (ed): Handbook of Sensory Physiology. Berlin, Springer-Verlag, pp. 613–756.
- 13 Heard-Booth AN, Kirk EC (2012): The influence of maximum running speed on eye size: a test of Leuckart's Law in mammals. Anat Rec 295:1053–1062.
- 14 Coimbra JP, Hart NS, Collin SP, Manger PR (2013): Scene from above: retinal ganglion cell topography and spatial resolving power in the giraffe (*Giraffa camelopardalis*). J Comp Neurol 521:2042-2057.
- 15 Tanaka T, Hashimoto A, Tanida H, Yoshimoto T (1995): Studies on the visual acuity of sheep using shape discrimination learning. J Ethol 13:69–75.

- 16 Garcá M, Ruiz-Ederra J, Hernández-Barbáchano H, Vecino E (2005): Topography of pig retinal ganglion cells. J Comp Neurol 486:361–372.
- 17 Guthoff R, Berger R, Draeger, J (1987): Ultrasonographic measurement of the posterior coats of the eye and their relation to axial length. Graefes Arch Clin Exp Ophthalmol 225:374–376.
- 18 Peichl L (1992): Morphological types of ganglion cells in the dog and wolf retina. J Comp Neurol 324:590–602.
- 19 Peichl L (1992): Topography of ganglion cells in the dog and wolf retina. J Comp Neurol 324:603–620.
- 20 Calderone JB, Reese BE, Jacobs GH (2003: Topography of photoreceptors and retinal ganglion cells in the spotted hyena (*Crocuta crocuta*). Brain Behav Evol 62:182–192.
- 21 Mass AM, Supin AY (2000): Ganglion cells density and retinal resolution in the sea otter, *Enhydra lutris*. Brain Behav Evol 55:111–119.
- 22 Jacobson SG, Franklin KBJ, McDonald WI (1976): Visual acuity of the cat. Vision Res 16:1141–1143.
- 23 Pellis SM, Officer RCE (1987) An analysis of some predatory behaviour patterns in four species of carnivorous marsupials (Dasyuridae), with comparative notes on the eutherian cat *Felis catus*. Ethology 75:177–196.
- 24 Gittleman JL (1985): Carnivore body size: Ecological and taxonomic correlates. Oecologia 67:540–554.
- 25 Maffei L, Fiorentini A, Bisti S (1990): The visual acuity of the lynx. Vision Res 30:527–528.
- 26 Heffner RS, Heffner HE. (1992): Visual factors in sound localization in mammals. J Comp Neurol 317:219–232.
- 27 Pontenagel VT, Schmidt U (1980): Untersuchungen zur Leistungsfähigkeit des Gesichtssinnes beim Frettchen, *Mustela putorius f. furo* L. Z. Säugetierkunde 45:376–383.
- 28 Marcelli M, Fusillo R, Boitani L (2003): Sexual segregation in the activity patterns of European polecats (*Mustela putorius*). J Zool 261:249–255.
- 29 Mass AM (1992) Retinal topography in the walrus (*Odobenus rosmarus divergence*) and fur seal (*Callorhinus ursinus*); in Thomas JA, Kastelein RA, Supin YA (eds): Marine Mammal Sensory Systems. New York, Plenum, pp. 119–135.
- 30 Moran G, Timney B, Sorensen L, Desrochers B (1983): Binocular depth perception in the meerkat (*Suricata suricatta*). Vision Res 23:965–969.
- 31 van Staaden MJ (1994): Suricata suricatta. Mammalian Species 483:1–8.

- 32 Pettigrew JD, Dreher B, Hopkins CS, McCall MJ, Brown M (1988): Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. Brain Behav Evol 32:39–56.
- 33 Suthers RA (1966): Optomotor responses by echolocating bats. Science 152:1102–1104.
- 34 Eklöf J (2003): Vision in echolocating bats [PhD thesis]. Göteborg, Sweden, Göteborg University.
- 35 Ortega J, Castro-Arellano I (2001): Artibeus jamaicensis. Mammalian Species 662:1–9.
- 36 Hall MI, Kamilar J, Kirk EC (2012): Eye shape and the nocturnal bottleneck of mammals. Proc R Soc Lond B 279:4962–4968.
- 37 Heffner RS, Koay G, Heffner HE (2007): Sound-localization acuity and its relation to vision in large and small fruit-eating bats: I. Echolocating species, *Phyllostomus hastatus* and *Carollia perspicillata*. Hear Res 234:1–9.
- 38 Suthers RA, Wallis NE (1970): Optics of the eyes of echolocating bats. Vision Res 10:1165–1173.
- 39 Manske U, Schmidt, U (1976): Visual acuity of the vampire bat, *Desmodus rotundus*, and its dependence upon light intensity. Zeit Tierpsychol 42:215–221.
- 40 Greenhall AM, Joermann G, Schmidt U, Seidel MR (1983): *Desmodus rotundus*. Mammalian Species 202:1–6.
- 41 Bell GP, Fenton MB (1986): Visual acuity, sensitivity and binocularity in a gleaning insectivorous bat, *Macrotus californicus* (Chiroptera: Phyllostomidae). Anim Behav 34:409–414.
- 42 Koay G, Kearns D, Heffner HE, Heffner RS (1998): Passive sound-localization ability of the big brown bat (*Eptesicus fuscus*). Hear Res 119:37–48.
- 43 Kurta A, Baker RH (1990): Eptesicus fuscus. Mammalian Species 356: 1–10.
- 44 Bogdanowicz W (1994): Myotis daubentonii. Mammalian Species 475:1–9.
- 45 Santos M, Aguirre LF, Vázquez LB, Ortega J (2003): *Phyllostomus hastatus*. Mammalian Species 722: 1–6.
- 46 Müller B, Goodman SM, Peichl L (2007): Cone photoreceptor diversity in the retinas of fruit bats (Megachiroptera). Brain Behav Evol 70:90–104.
- 47 MacKinnon JL, Hawkins CE, Racey PA (2003): Pteropididae; in Goodman SM, Benstead J (eds): In The Natural History of Madagascar. Chicago, University of Chicago Press, pp 1299–1302
- 48 Harman AM, Nelson JE, Crewther SG, Crewther DP (1986): Visual acuity of the northern native cat (*Dasyurus hallucatus*) Behavioural and anatomical estimates. Behav Brain Res 22:211–216.

- 49. Oakwood M (2002): Spatial and social organization of a carnivorous marsupial *Dasyurus hallucatus* (Marsupialia: Dasyuridae). J Zool 257:237–248.
- 50 Arrese C, Archer M, Runham P, Dunlop SA, Beazley LD (2000): Visual system in a diurnal marsupial, the numbat (*Myrmecobius fasciatus*): retinal organization, visual acuity and visual fields. Brain Behav Evol 55:163–175.
- 51 Cooper CE (2011): *Myrmecobius fasciatus* (Dasyuromorphia: Myrmecobiidae). Mammalian Species 43:129–140.
- 52 Cooper CE, Withers PC (2004): Influence of season and weather on activity patterns of the numbat (*Myrmecobius fasciatus*) in captivity. Aust J Zool 52:475–485.
- 53 Garland T, Geiser F, Baudinette RV: (1988) Comparative locomotor performance of marsupial and placental mammals. J Zool 215:505–522.
- 54 Tancred E (1981): The distribution and sizes of ganglion cells in the retinas of five Australian marsupials. J Comp Neurol 196:585–603.
- 55 Arrese C, Dunlop SA, Harman AM, Braekevelt CR, Ross WM, Shand J, Beazley LD (1999): Retinal structure and visual acuity in a polyprotodont marsupial, the fat-tailed dunnart (*Sminthopsis crassicaudata*). Brain Behav Evol 53:111–126.
- 56 Silveira LC, Picanço-Diniz CW, Oswaldo-Cruz E (1982): Contrast sensitivity function and visual acuity of the opossum. Vision Res 22:1371–1377.
- 57 Kolb H, Wang HH (1985): The distribution of photoreceptors, dopaminergic amacrine cells and ganglion cells in the retina of the north american opossum (*Didelphis virginiana*). Vision Res 25:1207–1221.
- 58 Hemmi JM, Mark RF (1998): Visual acuity, contrast sensitivity and retinal magnification in a marsupial, the tammar wallaby (*Macropus eugenii*). J Comp Physiol A 183:379–387.
- 59 Dunlop SA, Longley WA, Beazley LD (1987): Development of the area centralis and visual streak in the grey kangaroo *Macropus fuliginosus*. Vision Res 27:151–164.
- 60 Schmid KL, Schmid LM, Wildsoet CF, Pettigrew JD (1992): Retinal topography in the koala (*Phascolarctos cinereus*). Brain Behav Evol 39:8–16.
- 61 Hirst LW, Brown AS, Kempster R, Winney N (1992): Ophthalmologic examination of the normal eye of the koala. J Wildl Dis 28:419–423.
- 62 Fleming PA, Harman AM, Beazley LD (1997): Changing topography of the RPE resulting from experimentally induced rapid eye growth. Vis Neurosci 14:449–461.
- 63 Arrese C, Archer M, Beazley LD (2002): Visual capabilities in a crepuscular marsupial, the honey possum (*Tarsipes rostratus*): a visual approach to ecology. J Zool 256:151–158.
- 64 Dunlop SA, Ross WM, Beazley LD (1994): The retinal ganglion cell layer and optic nerve in a marsupial, the honey possum (*Tarsipes rostratus*). Brain Behav Evol 44:307–323.

- 65 Bradshaw SD, Bradshaw FJ (2002): Short-term movements and habitat use of the marsupial honey possum (*Tarsipes rostratus*). J Zool 258:343–348.
- 66 Freeman B, Tancred E (1978): The number and distribution of ganglion cells in the retina of the brush-tailed possum, *Trichosurus vulpecula*. J Comp Neurol 177:557–567.
- 67 Van Hof MW (1967): Visual acuity in the rabbit. Vision Res 7:749–751.
- 68 Lombardi L, Fernández N, Moreno S, Villafuerte R (2003): Habitat-related differences in rabbit (*Oryctolagus cuniculus*) abundance, distribution, and activity. J Mammal 84:26–36.
- 69 Garland T (1983): The relation between maximal running speed and body mass in terrestrial mammals. J Zool 199:157–170.
- 70 Stone J (1983): Topographical organisation of the retina in a monotreme: Australian spiny anteater *Tachyglossus aculeatus*. Brain Behav Evol 22:175–184.
- 71 Pettigrew JD, Manger PR (2008): Retinal ganglion cell density of the black rhinoceros (*Diceros bicornis*): calculating visual resolution. Vis Neurosci 25:215–220.
- 72 Timney B, Keil K (1992): Visual acuity in the horse. Vision Res 32:2289–2293.
- 73 Bennett D, Hoffmann RS (1999): Equus caballus. Mammalian Species 628:1–14.
- 74 Franco ECS, Finlay BL, Silveira LCL, Yamada ES, Crowley JC (2000): Conservation of absolute foveal area in New World monkeys. Brain Behav Evol 56:276–286.
- 75 Yamada ES, Silveira LCL, Perry VH, Franco ECS (2001): M and P retinal ganglion cells of the owl monkey: morphology, size and photoreceptor convergence. Vision Res 41:119–131.
- 76 Jacobs GH (1977): Visual capacities of the owl monkey (*Aotus trivirgatus*)--II. Spatial contrast sensitivity. Vision Res 17:821–825.
- 77 Troilo D, Howland HC, Judge SJ (1993): Visual optics and retinal cone topography in the common marmoset (*Callithrix jacchus*). Vision Res 33:1301–1310.
- 78 Andrade da Costa BL, Hokoç JN (2000): Photoreceptor topography of the retina in the New World monkey *Cebus apella*. Vision Res 40:2395–2409.
- 79 Perry VH, Cowey A (1985): The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors. Vision Res 25:1795–1810.
- 80 Herbin M, Boire D, Ptito M (1997): Size and distribution of retinal ganglion cells in the St. Kitts green monkey (*Cercopithecus aethiops sabeus*). J Comp Neurol 383:459–472.
- 81 Smith RJ, Jungers WL (1997): Body mass in comparative primatology. J Hum Evol 32:523–559.
- 82 De Valois RL, Morgan H, Snodderly DM (1974): Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Res 14:75–81.

- 83 Cowey A, Ellis CM (1967): Visual acuity of rhesus and squirrel monkeys. J Comp Physiol Psychol 64:80–84.
- 84 Cavonius CR, Robbins DO (1973): Relationship between luminance and visual acuity in the rhesus monkey. J. Physiol (Lond.) 232:239–246.
- 85 Spence KW (1934): Visual acuity and its relation to brightness in chimpanzee and man. J Comp Psychol 18:333–361.
- 86 Veilleux CC, Kirk EC (2009): Visual acuity in the cathemeral strepsirrhine *Eulemur macaco flavifrons*. Am J Primatol 71:343–352.
- 87 Gould L, Sauther M, Cameron A (2011): Lemuriformes; in Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds): Primates in Perspective. Oxford, Oxford University Press, pp 55–79.
- 88 Treff HA (1967) Tiefensehscharfe und sehscharfe beim galago (*Galago senegalensis*). Z. vergl Physiol 54:26–57.
- 89 Larson CF, Dodson DL, Ward JP (1989): Hand preferences and Whole (*Galago senegalensis*). Brain Behav Evol 33:261–267.
- 90 Neuringer M, Kosobud A, Cochrane G. (1981): Visual acuity of *Lemur catta*, a diurnal prosimian. Invest Ophthal Vis Sci 20:49.
- 91 Dkhissi-Benyahya O, Szel A, Degrip WJ, Cooper HM (2001): Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (*Microcebus murinus*). J Comp Neurol 438:490–504.
- 92 Langston A, Casagrande VA, Fox R (1986): Spatial resolution of the Galago. Vision Res 26:791–796.
- 93 Nekaris KAI, Bearder SK (2011): Lorisiform primates of Asia and Africa; in Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds): Primates in Perspective. Oxford, Oxford University Press, pp 34–54.
- 94 Pettigrew JD, Bhagwandin A, Haagensen M, Manger PR (2010): Visual acuity and heterogeneities of retinal ganglion cell densities and the tapetum lucidum of the African elephant (*Loxodonta africana*). Brain Behav Evol 75:251–261.
- 95 104 Silveira LCL, Picanço-Diniz CW, Oswaldo-Cruz E (1989): Distribution and size of ganglion cells in the retinae of large Amazon rodents. Visual Neurosci 2:221–235.
- 96 Oswaldo-Cruz E, Picanço-Diniz CW, Silveira LCL (1985): Physiological optics of some Amazon rodents with contrasting life style. J Physiol (Lond) 267:18P.
- 97 Herbin M, Repérant J, Cooper HM (1994): Visual system of the fossorial mole-lemmings, *Ellobius talpinus* and *Ellobius lutescens*. J Comp Neurol 346:253–275.
- Oskun Y, Ulutürk S (2003): Observations on the mole vole, *Ellobius lutescens* Thomas 1897, (Mammalia: Rodentia) in Turkey. Turk J Zool 27:81–87.

- 99 Heffner RS, Heffner HE (1993): Degenerate hearing and sound localization in naked mole rats (*Heterocephalus glaber*), with an overview of central auditory structures. J Comp Neurol 331:418–433.
- 100 Hetling JR, Baig-Silva MS, Comer CM, Pardue MT, Samaan DY, Qtaishat NM, Pepperberg DR, Park TJ (2005): Features of visual function in the naked mole-rat *Heterocephalus glaber*. J Comp Physiol A 191:317–330.
- 101 Rahmann VH, Esser M (1965): Bestimmung der Sehschärfe (Minimum separabile) sowie Dressurverhalten des skandinavischen Berglemmings (*Lemmus lemmus* L.). Z Saugetierkunde 30:47–53.
- 102 Wilkinson F (1984): The development of visual acuity in the mongolian gerbil (*Meriones unguiculatus*). Behav Brain Res 13:83–94.
- 103 Baker AG, Emerson VF (1983): Grating acuity of the Mongolian gerbil (*Meriones unguiculatus*). Behav Brain Res 8:195–209.
- 104 Wilkinson F (1986): Eye and brain growth in the mongolian gerbil (*Meriones unguiculatus*). Behav Brain Res 19:59–69.
- 105 Gulotta EF (1971): Meriones unguiculatus. Mammalian Species 3:1–5.
- 106 Chappell MA, Garland T, Robertson GF, Saltzman W (2007): Relationships among running performance, aerobic physiology and organ mass in male Mongolian gerbils. J Exp Biol 210:4179–4197.
- 107 Emerson VF (1980): Grating acuity of the golden hamster. The effects of stimulus orientation and luminance. Exp Brain Res 38:43–52.
- 108 Lin H-J, Wan L, Chen W-C, Lin J-M, Lin C-J, Tsai F-J (2012): Muscarinic acetylcholine receptor 3 is dominant in myopia progression. Invest Ophthalmol Vis Sci 53:6519-6525.
- 109 Prusky GT, West PW, Douglas RM (2000): Behavioral assessment of visual acuity in mice and rats. Vision Res 40:2201–2209..
- 110 Layne JN, Benton AH (1954): Some speeds of small mammals. J Mammal 35:103–104.
- 111 Rahmann H, Rahmann M, King JA (1968): Comparative visual acuity (minimum separable) in five species and subspecies of deermice (*Peromyscus*). Physiol Zool 41:298–312.
- 112 Drickamer LC (1970): Seed preferences in wild caught *Peromyscus maniculatus bairdii* and *Peromyscus leucopus noveboracensis*. J Mammal 51:191-194.
- 113 Djawdan M, Garland T (1988): Maximal running speeds of bipedal and quadrupedal rodents. J Mammal 69:765-772.
- 114 Seymoure P, Juraska JM (1997): Vernier and grating acuity in adult hooded rats: the influence of sex. Behav Neurosci 111:792–800.

- 115 Jacobs GH, Birch DG, Blakeslee B (1982): Visual acuity and spatial contrast sensitivity in tree squirrels. Behav Proc 7:367–375.
- 116 Koprowski JL (1994): Sciurus carolinensis. Mammalian Species 480:1–9.
- 117 Koprowski JL (1994): Sciurus niger. Mammalian Species 479:1–9.
- 118 Jacobs GH, Blakeslee B, McCourt ME, Tootell RBH (1980): Visual sensitivity of ground squirrels to spatial and temporal luminance variations. J Comp Physiol A 136:291–299.
- 119 Petry HM, Fox R, Casagrande VA (1984): Spatial contrast sensitivity of the tree shrew. Vision Res 24:1037–1042.
- 120 Kawamichi T, Kawamichi M (1981): Social organization of tree shrews; in Chiarelli AB, Corruccini RS (eds): Primate Behavior and Sociobiology. Berlin, Springer-Verlag, pp 1–17.
- 121 Schäfer D (1969): Untersuchungen zur Sehphysiologie des Spitzhönchens *Tupaia glis* (Diard 1820). Z vergl Physiologie 63:204–226.
- 122 Andrade-da-Costa BL, Pessoa VF, Bousfield JD, Clarke RJ (1989): Ganglion cell size and distribution in the retina of the two-toed sloth (*Choloepus didactylus*). Braz J Med Biol Res 22:233–236.