ES704 – Instrumentação Básica

04 – Medições elétricas

Eric Fujiwara

Unicamp - FEM - DSI

Índice

Índice:

- 1) Medições elétricas;
- 2) Medições magnéticas;
- 3) Aquisição e condicionamento de sinais;
- Questionário;
- Referências;
- Exercícios.

- 1.1. Medição de corrente:
 - Medidor de D'Arsonval:
 - Baseado na Lei de Força de Lorentz:

$$T \approx liB$$
 (4.1)

 A corrente medida é conduzida através do enrolamento de comprimento l. A interação entre corrente DC i e campo magnético B constante produz um torque T que deflete o indicador sobre a escala.

1.1. Medição de corrente:

- Eletrodinamômetro:
 - Variação do medidor de D'Arsonval onde os ímãs permanentes são substituídos por eletroímãs conectados em série com o enrolamento de armadura;
 - Permite medir correntes AC.

- 1.1. Medição de corrente:
 - Sensor de efeito Hall:
 - Baseado no efeito Hall:

$$\Delta V_H \approx dv B$$
 (4.2)

 Uma tensão ΔV_H é produzida quando uma corrente i (cargas elétricas q com velocidade v) é conduzida por um condutor de dimensões finitas d, submetido a um campo magnético ortogonal B.

- 1.1. Medição de corrente:
 - Sensor de efeito Hall:
 - Em um alicate amperímetro,
 o anel é excitado com corrente
 DC i₀, sendo que a corrente a ser
 medida i produz um campo
 magnético B pela Lei de Ampère.
 A interação entre i₀ e B produz
 a tensão de saída ΔV_H;
 - Método não-invasivo.

1.1. Medição de corrente:

- Outros métodos:
 - Impedância: estimar a corrente pela queda de tensão proporcionada por um condutor;
 - Semicondutor: estimar a corrente pela queda de tensão proporcionada pela resistência intrínseca de um semicondutor;
 - Óptico: baseado no Efeito Faraday, onde o campo magnético causa rotação do estado de polarização da luz. Aplicado na medição de correntes elevadas (kA) de forma não-invasiva.

Obs:

- Amperímetro: modo de deflexão;
- Galvanômetro: modo nulo.

1.2. Medição de tensão:

- Divisor de tensões:
 - Compara uma tensão de referência E_i com a e tensão medida E_m ;
 - Modo nulo: o potenciômetro é ajustado até que a corrente no amperímetro seja nula.
 - Modo de deflexão: a corrente do amperímetro é calibrada para obter E_m;
 - A tensão AC de entrada pode ser retificada em DC antes da medição.

1.2. Medição de tensão:

- Voltímetros digitais:
 - Realizam conversão A/D da tensão medida e determinam o seu valor através de comparadores de aproximação sucessivas;
 - Utilizados em osciloscópios digitais.

1.3. Medição de impedância:

- Resistência:
 - Ohmímetro: medição de resistência elétrica por divisor de tensões;
 - Medição indireta por tensão e corrente;
- Capacitância:
 - Caracterização do dielétrico;
 - Resposta ao degrau ou em frequência;

Indutância:

- Caracterização eletromagnética;
- Resposta ao degrau ou em frequência.

1.3. Medição de impedância:

- Ponte de Wheatstone:
 - Circuito para medição de variação de resistência elétrica com alta sensibilidade;
 - A corrente conduzida pelo gavanômetro i_G depende da tensão de excitação E_i e das resistências da ponte R_n ;
 - Geralmente, formada por 1 resistor variável e 2 fixos, além do resistor desconhecido.

- 1.3. Medição de impedância:
 - Ponte de Wheatstone:
 - **Modo nulo:** os resistores variáveis são ajustados para $i_G = 0$, equilibrando a saída da ponte. Nesta condição,

$$\frac{R_2}{R_1} = \frac{R_4}{R_3} \tag{4.3}$$

 Modo de deflexão: tensão de saída sobre o galvanômetro E_o é medida diretamente:

$$\frac{E_o}{E_i} = \frac{R_1}{R_1 + R_2} - \frac{R_3}{R_3 + R_4} \tag{4.4}$$

Saída

- 1.3. Medição de impedância:
 - Ponte de Wheatstone:

- 1.3. Medição de impedância:
 - Ponte de Wheatstone:
 - Modo de deflexão: considerando que a ponte está equilibrada $(R_1 = R_2 = R_3 = R_4 = R \text{ e } E_o = 0)$, uma variação na resistência $R_1 = R + \Delta R$ produz variação na tensão de saída ΔE_o . Assim,

$$\frac{\Delta E_o}{E_i} = \frac{\Delta R/R}{4 + 2\Delta R/R} \tag{4.5}$$

1.3. Medição de impedância:

Ponte de Maxwell:

• Modificação da ponte de Wheatsone para medir R, L ou C. Note que E_i e E_o são tensões AC.

$$Z_u = Z_v \frac{R_2}{R_1} \ \ \, (4.5)$$

$$Z_u = R_u + j\omega L = R_2 R_3 \left(\frac{1}{R_1} + j\omega C\right)$$
 (4.6)

2. Medições magnéticas

2.1. Magnetômetro de indução:

 Utiliza antenas para capturar o campo (fluxo) magnético de interesse, produzindo uma força eletromotriz de saída pela Lei de Faraday de indução.

FIGURE 39.4 Induction or search coil sensors consist of a loop of wire (or a solenoid), which may or may not surround a ferromagnetic core: (a) Air-core loop antenna and (b) solenoid induction coil antenna with ferromagnetic core.

2. Medições magnéticas

2.2. Gaussímetro de efeito Hall:

 A tensão Hall é gerada pelo condutor/semicondutor retangular quando submetido a um campo magnético externo. Pode ser configurado para medir a magnitude e a direção do campo.

FIGURE 39.14 Hall effect sensor. A magnetic field H applied normal to the surface of the sensor, which is conducting current along the x-direction, will generate a voltage along the y-direction. E_x is the applied electric field along the x-direction, and E_y is the Hall effect electric field along the y-direction.

2. Medições magnéticas

2.3. Outros dispositivos:

- Fluxgate: transdutor toroidal com dois enrolamentos (excitação e medição). Campo magnético externo gera variação nos ciclos de saturação magnética do núcleo, detectada a forma de tensão (Lei de Faraday);
- SQUID: baseado na produção de uma corrente supercondutora à baixas temperaturas, onde a magnitude da corrente varia com o fluxo magnético sobre a junção;
- Gaussímetro magnetorresistivo: dispositivo cuja resistência elétrica varia com o campo magnético aplicado;
- Transdutor magnetostritivo: material que sofre contração mecânica sob aplicação de um campo magnético.

3.1. Sistema de aquisição de sinais:

3.2. Proteção de sinais:

- Aterramento:
 - Utilizado como referência (zero) de tensão;
 - Loops de terra: causados pela presença de referenciais diferentes no circuito, gerando diferença de potencial -> ruído e interferência;
 - Separar os terras de alimentação e sensoriamento.

3.2. Proteção de sinais:

Blindagem:

- Fios longos funcionam como antenas, causando ruído AC;
- Blindagem: utilização de material metálico aterrado para envolver os fios condutores;
- A blindagem intercepta os campos elétricos externos, enviando-os de volta ao terra;
- No caso de campos magnéticos, os fios devem ser trançados em pares para cancelar as tensões induzidas sobre os condutores;
- Tensões baixas (~mV) podem ser transmitidas em loops de corrente (4-20 mA) sem amplificação de ruído.

3.2. Proteção de sinais:

- Cabeamento:
 - Cabo simples: fio condutor envolvido em camada isolante, baixo custo e alta vulnerabilidade;
 - Cabo de par-trançado: cabos simples trançados para cancelamento de ruído eletromagnético;
 - Cabo coaxial: condutor simples envolto de um condutor externo e de uma camada de blindagem. As correntes nos condutores interno e externo são conduzidas em sentidos diferentes, cancelando os campos eletromagnéticos;
 - Cabo de fibra óptica: transmissão de sinal por pulsos de luz, feita de vidro ou polímero. Imune à interferência eletromagnética.

- 3.2. Proteção de sinais:
 - Cabeamento:

- 3.3. Aquisição de sinais:
 - Amostragem: conversão de um sinal analógico em um sinal discretizado a uma taxa de amostragem $\Delta f = \frac{1}{\Delta t}$;
 - Teorema de Nyquist: para evitar aliasing, $\Delta f \geq 2f_{\rm max}$, onde $f_{\rm max}$ é a maior frequência do sinal amostrado;
 - Quantização: conversão de um sinal analógico em um sinal digital;
 - Sistemas TTL consideram < 0,8 V como nível lógico baixo (0) e de 2 a 5,5 V como nível lógico alto (1);

3.3. Aquisição de sinais:

- Conversor A/D de aproximações sucessivas:
 - Determina a tensão digital de saída por tentativa-e-erro;
 - A relação entre tensão e código binário é tabelada para a faixa de aplicação do sistema.

- 3.3. Aquisição de sinais:
 - Protocolos de comunicação digital:
 - Serial RS-232C: comunicação bidirecional cabeada bit a bit, utilizado em sistemas de telefonia e computadores;
 - Paralelo GPIB: comunicação de alta velocidade, com transmissão de dados simultânea em grupos de bits (byte a byte). Utilizado em instrumentos científicos e computadores;
 - Universal serial bus (USB): comunicação de alta velocidade com expansão para até 128 dispositivos. Os cabos são limitados a 5 m. Utilizado em comunicação de periféricos;
 - Bluetooth: comunicação sem fio (wireless) entre dispositivos por meio de ondas de rádio. Não requer alinhamento físico entre emissor e receptor. Limitado a distâncias de até 10 m.

- 3.4. Condicionamento de sinais:
 - Amplificação: Ganho de potência no sinal;
 - Amplificadores operacionais (OPAMP) são dispositivos semicondutores com alta impedância de entrada e baixa impedância de saída;
 - Função de transferência: $V_o = G(\omega)(V_1 V_2)$

3.4. Condicionamento de sinais:

Amplificação: circuitos com OPAMP.

(b) Inverting amplifier

 $E_{i_1} \longrightarrow R_2$ $R_1 \qquad G = \frac{-1}{R_2 C} \int E_i \, dt$

(e) Integrator

 $E_{i} \stackrel{R_{i} \quad C}{\longleftarrow} E_{o} = -R_{2}C\dot{E}_{i}$

(f) Differentiator

- 3.4. Condicionamento de sinais:
 - Filtragem: supressão de componentes espectrais do sinal.
 - Filtros analógicos: implementados eletronicamente sobre o sinal analógico;
 - Passivo: circuitos RLC em cascata (Bessel e Butterworth);
 - Ativos: baseados na função de transferência de OPAMPs;
 - Filtros digitais: implementados computacionalmente sobre o sinal digital.
 - Projeto de filtros analógicos: <u>www.analog.com</u> → Analog filter wizard
 - Projeto de filtros digitais: fdatool → Signal processing toolbox / MATLAB

3.4. Condicionamento de sinais:

- Filtragem: características desejáveis em frequência
 - 1) Comportamento plano na banda de passagem;
 - 2) Resposta de fase linear na banda de passagem;
 - 3) Transição rápida entre as bandas de passagem e corte.

3.4. Condicionamento de sinais:

- Filtragem: tipos de filtros;
 - Filtro passa-alta: permite passagem de frequências maiores do que a frequência de corte f_c (cut-off);
 - Filtro passa-baixa: permite passagem de frequências menores do que a frequência de corte;
 - Filtro passa-banda: permite a passagem de sinal em apenas uma certa faixa de frequências (entre f_{c1} e f_{c2});
 - Filtro rejeita-banda: bloqueia a passagem de sinal em uma banda de frequências;
 - Filtro notch: bloqueia somente uma frequência.

- 3.4. Condicionamento de sinais:
 - Filtragem: tipos de filtros;

Questionário

Questionário:

- 1) O que é melhor: medir corrente em série com um amperímetro ou estimar a corrente pela tensão paralela uma carga? Justifique.
- 2) Como funciona um osciloscópio?
- 3) Como funciona a medição de fase de um sinal?
- 4) Quais são as vantagens e desvantagens das transmissões analógica e digital?
- 5) Qual é a diferença entre campo, densidade de fluxo, e fluxo magnético? A informação espacial importa em medições magnéticas?

Referências

Referências:

- R.S. Figliola, D.E. Beasley, Theory and Design for Mechanical Measurements, Wiley, 2011.
- D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, Willey, 2007.
- A.S. Morris, Measurement & Instrumentation Principles, Butterworth Heinemann, 2001.
- A.S. Sedra, K.C. Smith, Microelectronic Circuits, CRC Press, 2004.
- J.G. Webster, H. Eren (Ed.) Measurement, Instrumentation, and Sensors Handbook, CRC Press, 2014.

Exercícios

Exercícios

- **Ex. 4.1)** Uma ponte de Weatstone alimentada com $E_i = 10$ V possui uma resistência ajustável $R_2 = 100$ Ω e duas resistências fixas $R_3 = R_4 = 200$ Ω. Um sensor resistivo é instalado em R_1 .
 - a) Para uma tensão de saída E_o = 0.56 V, determine R₁;
 - b) Determine o valor de R₂ necessário para "zerar" a saída da ponte;
 - c) Supondo que a resistência do sensor varie de $R = R_1 + \Delta R$, determine a sensibilidade da ponte de Wheatstone equilibrada em modo de deflexão.

- Ex. 4.1.a) Modo de deflexão
 - Tensão de saída da ponte: $E_o = E_i \left(\frac{R_1}{R_1 + R_2} \frac{R_3}{R_3 + R_4} \right)$

•
$$0.56 = 10 \left(\frac{R_1}{R_1 + 100} - \frac{200}{200 + 200} \right) \rightarrow R_1 = 125 \Omega;$$

Note que a ponte está inicialmente desequilibrada.

- Ex. 4.1.b) Modo nulo
 - Relação de resistências: $\frac{R_2}{R_1} = \frac{R_4}{R_3}$;
 - $R_2 = R_1 \frac{R_4}{R_3} = 125 \frac{200}{200} = 125 \Omega;$
 - Ajustando $R_2 = R_1 = 125 \ \Omega \rightarrow E_0 = E_i \left(\frac{R_1}{2R_1} \frac{R_3}{2R_3} \right) = 0 \ \text{V}.$

- Ex. 4.1.c) Sensibilidade, modo de deflexão
 - Para a ponte equilibrada:

$$E_o = E_i \left(\frac{R_1 + \Delta R}{R_1 + R_2 + \Delta R} - \frac{R_3}{R_3 + R_4} \right) = 10 \left(\frac{125 + \Delta R}{250 + \Delta R} - \frac{1}{2} \right);$$

• Sensibilidade:
$$\frac{dE_o}{d\Delta R} = 10 \left[\frac{1}{250 + \Delta R} - \frac{125 + \Delta R}{(250 + \Delta R)^2} \right]$$

■ Ex. 4.1.c) Sensibilidade, modo de deflexão

 A ponte de Wheatstone é altamente sensível para variações pequenas de resistência.

- **Ex. 4.2)** Seja um transdutor de força acoplado na posição R_1 da ponte de Wheatstone. O transdutor possui um resistência inicial de 500 Ω (sem força aplicada) e sensibilidade de 0,5 Ω/N.
 - Para a ponte inicialmente equilibrada e operando em modo de deflexão (E_i = 10 V), calcule a tensão de saída da ponte para excitações de 100, 200 e 350 N.

- **Ex. 4.2)** Ponte de Wheatstone, modo de deflexão:
 - Para uma ponte inicialmente equilibrada, $E_o=0$, $R_1=\cdots=R_4=R=500~\Omega$. A variação da tensão de saída em função da variação da resistência R_1 é dada por

$$\Delta E_o = E_i \frac{\Delta R/R}{4 + 2\Delta R/R}$$

- $F = 100 \text{ N} \rightarrow R_1 = R_0 + KF = 550 \Omega \rightarrow \Delta R = 50 \Omega$;
 - $\Delta E_o = 10 \frac{0.1}{4.2} = 0.24 \text{ V}.$

- **Ex. 4.3)** Seja a ponte de Wheatstone abaixo.
 - a) Determine a tensão de saída para uma alimentação de 5 V;
 - b) Supondo que a resistência R₁ aumentou em 50 Ω, calcule a tensão em modo de deflexão.

Ex. 4.3.a) Tensão de saída (inicial):

$$E_o = E_i \left(\frac{R_1}{R_1 + R_2} - \frac{R_3}{R_3 + R_4} \right)$$

•
$$E_o = 5\left(\frac{200}{200+400} - \frac{500}{500+600}\right) = -0.61 \text{ V};$$

• Note que a ponte está desequilibrada, pois $E_o \neq 0$.

Ex. 4.3.b) Tensão de saída (deflexão):

$$E_o = E_i \left(\frac{R_1 + \Delta R_1}{R_1 + \Delta R_1 + R_2} - \frac{R_3}{R_3 + R_4} \right)$$

•
$$E_o = 5\left(\frac{250}{250+400} - \frac{500}{500+600}\right) = -0.31 \text{ V};$$

• A tensão de saída varia de forma linear com ΔR_1 ?

- Ex. 4.4) Ponte de Maxwell.
 - a) Determine a função de transferência em modo de deflexão;
 - b) Determine a relação de impedâncias em modo nulo.

- **Ex. 4.4.a)** Modo de deflexão:
 - Tensão DB:

•
$$E_o = -Z_1I_1 + Z_3I_3$$
;

•
$$E_o = Z_2 I_2 - Z_4 I_4$$
;

- Tensão AC:
 - $E_i = Z_1 I_1 + Z_2 I_2$;
 - $E_i = Z_3 I_3 + Z_4 I_4$;

- **Ex. 4.4.a)** Modo de deflexão:
 - Seja $I_1 = I_2$ e $I_3 = I_4$:

$$\bullet \ I_1 = \frac{E_i}{Z_1 + Z_2};$$

$$\bullet \quad I_3 = \frac{E_i}{Z_3 + Z_4};$$

Portanto,

•
$$E_o = -Z_1I_1 + Z_3I_3 = E_i\left(\frac{Z_3}{Z_3 + Z_4} - \frac{Z_1}{Z_1 + Z_2}\right)$$

Ex. 4.4.a) Modo de deflexão:

•
$$Z_1 = \left(\frac{1}{R_1} + j\omega C_1\right)^{-1}$$
, $Z_2 = R_2$, $Z_3 = R_3$, $Z_4 = R_4 + j\omega L_4$;

•
$$E_o = E_i \left(\frac{Z_3}{Z_3 + Z_4} - \frac{Z_1}{Z_1 + Z_2} \right)$$

- **Ex. 4.4.b)** Modo nulo:
 - A tensão na saída da ponte é nula:

•
$$E_o = 0$$
;

•
$$\frac{I_1}{I_3} = \frac{Z_3}{Z_1} = \frac{Z_4}{Z_2}$$
;

•
$$Z_4 = R_4 + j\omega L_4 = R_2 R_3 \left(\frac{1}{R_1} + j\omega C_1\right)$$

■ Ex. 4.5) Um sinal periódico composto é formado por componentes espectrais em 10 e 500 Hz. Projete um filtro passa-baixas para eliminar as componentes de alta frequência. Considere que o sinal é adquirido a uma taxa de amostragem de 10 kHz.

- **Ex. 4.5**)
 - Análise no tempo e em frequência.

```
dt = 1e-4;
y = sin(2*pi*10*t)+sin(2*pi*500*t);

w = hann(N);

df = 1/(M*dt)
f = [0:df:(M-1)*df]';

Y = fft(w.*y,M);
```


- **Ex.** 4.5)
 - Projeto de filtro analógico: <u>www.tools.analog.com</u>
 - Banda de passagem: -3 dB@100 Hz;
 - Banda de rejeição: -40 dB@400 Hz.

Frequency (Hz)

- Ex. 4.5)
 - Projeto de filtro analógico:
 - Função de transferência (segundo estágio):

$$H(s) = \frac{\omega_0^2}{s^2 + 2a_0\omega_0 + \omega_0^2} = \frac{3.32 \times 10^5}{s^2 + 187.7s + 3.32 \times 10^5}$$

- Ex. 4.5)
 - Projeto de filtro analógico: implementação.

```
Hs = w0^2/(s^2+2*a0*s+w0^2);

h = lsim(Hs, y, t);

H = fft(h, M);
```


Time (200)

- Ex. 4.5)
 - Projeto de filtro digital: fdatool (MATLAB)

- **Ex. 4.5**)
 - Projeto de filtro digital: implementação.

```
h = filter(Hd,y);
H = fft(h,M);
```


