Funzione di trasferimento del controllore









LEAD NETWORK LAG NETWORK
$$K_c = \lim_{s \to 0} s^{\nu} G_c(s) \quad |_2) K_p = \lim_{s \to 0} s^{p} G_p(s)$$



$$r(t) = R_0 \cdot \frac{t^h}{h!} \to r(s) = \frac{R_0}{s^{h+1}}$$

#### Specifiche di progetto - Regime permanente (Robustezza)

Inseguimento di segnali polinomiali in regime permanente



 $v_{max}$  che soddisfa tutte le specifiche  $|K_{\mathcal{C}}|$  relativo a u che soddisfa tutto

where 
$$\beta = 1$$
 (if  $\nu + p = 0$ )

Attenuazione di disturbi sinusoidali

 $G_{d_p y}(s) = S(s)$   $G_{d_a y}(s) = G_p(s) \cdot S(s)$ 

### Attenuazione di disturbi polinomiali in regime permanente

$$\begin{aligned} \left| \boldsymbol{e}_{\infty}^{d_p} \right| &= \left| \lim_{t \to \infty} e_{d_p}(t) \right| = \left| \lim_{t \to \infty} y_{d_p}(t) \right| = \left| \lim_{s \to 0} s G_{d_p y}(s) d_p(s) \right| \\ \left| \boldsymbol{e}_{\infty}^{d_a} \right| &= \left| \lim_{t \to \infty} e_{d_a}(t) \right| = \left| \lim_{t \to \infty} y_{d_a}(t) \right| = \left| \lim_{s \to 0} s G_{d_a y}(s) d_a(s) \right| \end{aligned}$$







# $\left|e_{\infty}^{d_s}\right| = \left|G_{d_s y}(j\omega_s) a_s \sin(\omega t + \varphi_s)\right| \le |T(j\omega_s)| \le \frac{\rho_s G_s}{s}$ $\left|e_{\infty}^{d_p}\right| = \left|G_{d_p y}(j\omega_p) a_p \sin(\omega t + \varphi_p)\right| \le \left|S(j\omega_p)\right| \le \frac{a_p s}{a}$

Prototipo II ordine
$$T(s) = \frac{1}{1 + \frac{2\zeta}{s} + \frac{s^2}{s^2}}$$

[m,p]=bode(S,wc) [m,p]=nichols(L,wc) myngridst(Tp,Sp) nyquist1(num, den)



### Specifiche di progetto - Transitorio (Velocità)



$$rac{t_{s,lpha\%}}{t_{c}} \geq rac{-rac{\lnlpha_{\%}}{\zeta} \cdot \sqrt{\sqrt{1+4\zeta^4}-2\zeta^2}}{t_{s,lpha\%}}$$



LAG



#### Progetto del controllore

 $\omega_c \geq \max(\omega_c^{t_{s,\alpha\%}}, \omega_c^{t_r})$ 

Lin=(Kc/s^nu)\*Gp(s)\*Ga\*Gs\*Gf

#### Studio del segno di $K_c$ e <u>stabilizzabilità</u>

- a. Scelgo un segno e calcolo  $L_{in}(s)$
- Tracciare il diagramma di Nyquist di  $L_{in}(s)$ , calcolo P<sub>cl</sub>=N+P<sub>ol</sub>:
  - $P_{cl}$  pari  $\rightarrow$  Stabilizzabile
- Scelgo  $K_c$  poco più grande del vincolo (se c'è)
- P<sub>cl</sub> dispari → cambio segno di Kc  $h \rightarrow$  Input order

# Pol: poli $Re(p_i) > 0$ (di solito nullo)

 $P_{cl} = N + P_{ol}$ 

Goal:  $P_{cl} = 0$ 

punto critico N: intersezioni semiretta

 $v+p \rightarrow system type$ 

senso orario  $\rightarrow N+1$ senso antiorario  $\rightarrow N-1$ 



### Scelta di $\omega_{c.des}$ rispettando i vincoli imposti

- Plot di  $L_{in}(s)$  sul piano di Nichols e individuo  $\omega_{c.des}$  scegliendo il tipo di azione da fare con le reti di compensazione per:
  - a. portare la  $\omega_{c.des}$  in corrispondenza di 0 dB
  - portare il diagramma fuori dalla regione proibita
- Simulare con step(T/(Gs\*Gf), <#sec>) per assicurarsi di soddisfare le specifiche in transitorio. (Le altre su inseguimento e disturbi sono verificate se  $K_c$  e  $\nu$  sono OK).
- Tracciare i diagrammi di Bode di T ed S per verificare che stiano sotto i relativi spigoli.
  - Taglia spigolo T?  $\rightarrow$  aggiungo un polo  $(1 + s/\omega_s)^{-1}$
  - b. Taglia spigolo  $S? \rightarrow Alzo K_C$
- In caso di specifiche non soddisfatte si procede a compensare con un altro tipo di azione. (Attenzione effetto coda: massima fase usata per la rete zero o  $\omega_{norm} \gg$  nella LAG (alzo un po' alla volta)

| h<br>v+p | order 0<br><b>Step</b>                | order 1<br><b>Ramp</b>          | order 2<br>Parabola             |
|----------|---------------------------------------|---------------------------------|---------------------------------|
| 0        | $\frac{K_d^2 R_0}{K_d + K_p K_c G_a}$ | 8                               | 8                               |
| 1        | 0                                     | $\frac{K_d^2 R_0}{K_p K_c G_a}$ | 8                               |
| 2        | 0                                     | 0                               | $\frac{K_d^2 R_0}{K_p K_c G_a}$ |
|          |                                       |                                 | $\kappa_p \kappa_c \sigma_a$    |

#### Tecniche di sintesi digitale

- $G_p(s) \rightarrow G_c(s) \rightarrow \text{scelta T}_s \rightarrow G_c(z)$  (matched)
  - $G'_p(s) = G_p(s)G_{ZOH}(s) \rightarrow \text{come } (1)$
- $G_n(z)=c2d(Gp, T_s, 'zoh')$  scelta  $T_s$  in base a  $\omega_{cdes}$ 
  - dnichols(Lin\_z) e per ogni rete
  - $R_d(s) \leftrightarrow R_d(z) \ R_i(s) \leftrightarrow R_i(z) \ R_z(s) \leftrightarrow R_z(z)$

| <pre>c2d(Gc, Ts, ['matched' 'zoh'];</pre> | $G_{ZOH}(s) = \frac{1 - e^{-T_s s}}{s} \cong \frac{T}{1 + \frac{sT}{2}}$ | $z = e^{sT_s}$ | $\frac{0.1}{\omega_{\rm c}} < T_{\rm s} < \frac{0.2}{\omega_{\rm c}}$ |
|-------------------------------------------|--------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------|
| 1' ]:                                     |                                                                          |                |                                                                       |

Sistemi di

controllo digitale

#### Principali reti di compensazione

| Soluzione            | Formule utili                                                           | Alternativa                        |                                                                                                                                            |
|----------------------|-------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Rete LEAD            | $\omega_{cdes}$                                                         | Rete ZERO                          | Da usare solo nel caso in cui $v > 0$                                                                                                      |
| aumento di modulo    | $\omega_{norm} = {Z_d}$                                                 |                                    |                                                                                                                                            |
| aumento di fase      |                                                                         |                                    |                                                                                                                                            |
| Rete LAG             | $m_i = 10^{\frac{R_{db}}{20}} \omega_{norm} = \frac{\omega_{cdes}}{20}$ | Diminuzione di $ K_c $             | Solo quando ho $K_c$ libero ( $ K_c  = 1$ )                                                                                                |
| diminuzione modulo ↓ | $m_i = 10^{20}$ $\omega_{norm} = \frac{10^{20}}{p_i}$                   |                                    |                                                                                                                                            |
| Aumento di $ K_c $   | $K_a = K_{a \text{ in }} 10^{\frac{\left K_{c,dB}^{add}\right }{20}}$   | $-\left K_{c,dB}^{sub}\right $     | $G_{ry}(s) = \frac{T(s)}{\text{Controller}} r(t) + S(s) d_p(t) + S(s) G_p d_a(t) - \frac{T(s)}{G_s} d_s(t)$                                |
| aumento di modulo    | $K_c = K_{c,in} 10^{\frac{1-3c-1}{20}}$                                 | $K_c = K_{c,in} 10^{\frac{1}{20}}$ | $ \begin{array}{c} G_{ry}(s) = G_{r}(t) + S(s)a_{p}(t) + S(s)G_{p}a_{a}(t) = \frac{1}{G_{s}}a_{s}(t) \\ \text{\% Controller} \end{array} $ |

%progetto
Lin = minreal(zpk((Kc/s) \* Gp \* Ga \* Gs \* Gf));
%bodeplot(Lin)
flgure(1)
[numLin,denLin] = tfdata(Lin,'v');
nyquist1(numLin,denLin)
flgure(2)
myngridst
nichols(Lii

figure(2) myngridst(Tp,Sp) nichols(Lin);

wc\_des = i.z., %Zero network wnorm\_z = 90; z = wc\_des/wnorm\_z;

%Lead network wnorm\_lead1 = 1.4; md1 = 3; md1 = 3; zd1 = wc\_des/wnorm\_lead1; Rd1 = (1+s/zd1)/(1+s/(md1\*zd1)); % Lag network wnorm\_lag1 = 100; %final 500 pi1 = wc\_des/wnorm\_lag1; mi1 = 10<sup>7</sup>(3/20); % final value 22dB Ri1 = (1+s/(mi1\*pi1))/(1+s/pi1);

hold on L = Lin\*Rz\*Rd1; nichols(L) % Step resonse T = minreal(zpk(L/(1+L))); figure(3) step(T/(Gf\*Gs),15)

figure(4) bodemag(T) S = minreal(zpk(1/(1+L))); figure(5); bodemag(S);

#### Sistemi LTI – Rappresentazione, stabilità, proprietà strutturali

Rappresentazione nello spazio di stato (descrizione completa)

 $y(t) = g(x(t), u(t), t) \stackrel{\text{def}}{=} Cx(t) + Du(t)$ 

 $\dot{x}(k+1) = f(x(k), u(k), k) \stackrel{\triangle}{=} Ax(k) + Bu(k)$  $\underbrace{x(k+1)}_{LTITD} Ax(k) + Bu(k)$  $\underbrace{x(k+1)}_{LTITD} Cx(k) + Du(k)$ 

S = ss(A,B,C,D) s=tf('s') z=tf('z') H = tf(S) phase = angle(z) mod=abs(z)
[num, den] = tfdata(S, 'v') [R, P] = residue(num, den)
minreal(zpk(S))

<u>Funzione di trasferimento</u> (descr parziale: parte completamente osservabile e controllabile)

 $\frac{\text{Terminate two transforms}}{H(s) \triangleq \frac{Y(s)}{U(s)_{x(0)=0}}} = C(sI - A)^{-1}B + D$   $H(z) \triangleq \frac{Y(z)}{U(z)_{x(0)=0}} = C(zI - A)^{-1}B + D$   $A = \frac{1}{2} \text{ polynomio minim}$ Tavole L-transform:
part 3.1 pag 9
Tavole Z-transform: 22.  $(sI - A)^{-1}$ ,  $(zI - A)^{-1}$  polinomio minimo  $y(t) = y_{tr}(t) + y_{ss}(t)$  se il sistema è: <u>asintoticamente stabile</u> o <u>BIBO stabile + condizioni iniziali nulle</u>

Soluzioni delle equazioni di stato

$$x(t) = x_{zi}(t) + x_{zs}(t)$$
  $x(k) = x_{zi}(k) + x_{zs}(k)$ 

| $X_{zi}(s) = (sI - A)^{-1}x(0)$  | $X_{zs}(s) = (sI - A)^{-1}BU(s)$ |
|----------------------------------|----------------------------------|
| $X_{zi}(z) = (zI - A)^{-1}x(0)$  | $X_{zs}(z) = (zI - A)^{-1}BU(z)$ |
| $y(t) = y_{zi}(t) + y_{zs}(t)$   | $y(k) = y_{zi}(k) + y_{zs}(k)$   |
| $Y_{zi}(s) = C(sI - A)^{-1}x(0)$ | $Y_{zs}(s) = H(s)U(s)$           |
| $Y_{zi}(z) = C(zI - A)^{-1}x(0)$ | $Y_{zs}(z) = H(z)U(z)$           |

formule utili

| jorniaic aini                                                                                |                                                                                               |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| contributo poli complessi e coniugati (TC) $2 R e^{Re(p_i)t} \cdot cos(Im(p_i)t + \angle R)$ | $\mathcal{L}\left\{\frac{t^n e^{-\lambda t}}{n!}\right\} = \frac{1}{(s+\lambda)^{n+1}}$       |
| contributo poli complessi e coniugati (TD) $2 R  a ^k \cdot cos(\angle a \ k + \angle R)$    | $\mathcal{L}\{f(t)\} = sF(s) - f(0)$                                                          |
| $\mathcal{Z}{a^k} = \frac{z}{z-a}, \tilde{F}(z) = \frac{F(z)}{z}$                            | $\mathcal{Z}{f(k+1)} = zF(z) - zf(0)$                                                         |
| $	au_i = \left  \frac{1}{Re(p_i)} \right  $ (costanti di tempo poli)                         | $\mathcal{L}\{\varepsilon(t)\} = \frac{1}{s} \ \mathcal{Z}\{\varepsilon(t)\} = \frac{z}{z-1}$ |

#### <u>Stabilità</u> $Spec(A) = \{\lambda_i \in \mathbb{R} \mid p_A(\lambda_i) = 0\}$ =autovalori A e = eig(A); [V, D]=eig(A)

|                            | TEMPO CONTINU                                                                                | (vedi Criterio di Routh)                                                                                        | TEMPO DISCRETO                                                                              | (vedi Criterio di <u>Jury</u> )                                                                                 |
|----------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| asintoticamente<br>stabile | $\forall x_0 \in \mathbb{R}^n, $ $x_{zi}(t)$ limitata                                        | $Re(\lambda_i) < 0 \ \forall \ i$                                                                               | $\forall x_0 \in \mathbb{R}^n, \\ x_{zi}(k) \ limitata$                                     | $ \lambda_i  < 1  \forall i$                                                                                    |
| internamente<br>stabile    | $\forall x_0 \in \mathbb{R}^n, \\ x_{zi}(t) \ limitata \\ \lim_{t \to \infty} x_{zi}(t) = 0$ | $Re(\lambda_i) \le 0 \ \forall \ i$ $Re(\lambda_i) = 0, \mu_g = 1$                                              | $\forall x_0 \in \mathbb{R}^n, \\ x_{zi}(k)  limitata \\ \lim_{k \to \infty} x_{zi}(k) = 0$ | $\begin{aligned}  \lambda_i  &\leq 1 \ \forall \ i \\  \lambda_i  &= 1 \ , \mu_g = 1 \end{aligned}$             |
| BIBO stabile               | $x_0 = 0$<br>$\forall u(t) \ limitato$<br>$y_{zs}(t) \ limitato$                             | $Re(p_i) < 0 \ \forall i$ $p_i \ poli \ del \ sistema$                                                          | $x_0 = 0$<br>$\forall u(k) \ limitato$<br>$y_{zs}(k) \ limitato$                            | $ p_i  < 1 \forall i$ $p_i  poli  del  sistema$                                                                 |
| instabile                  | $\exists x_0 \in \mathbb{R}^n, \\ x_{zi}(t) \ illimitata$                                    | $\exists \lambda_i \mid Re(\lambda_i) < 0 \ \lor$<br>$\exists \lambda_i \mid Re(\lambda_i) = 0,$<br>$\mu_g > 1$ | $\exists x_0 \in \mathbb{R}^n, \\ x_{zi}(k) \ illimitata$                                   | $ \exists \ \lambda_i \mid  \lambda_i  > 1 \ \lor $ $ \exists \ \lambda_i \mid  \lambda_i  = 1, $ $ \mu_g > 1 $ |

| Trasformata Zeta                      |                |
|---------------------------------------|----------------|
| $X(z) = \sum_{0}^{\infty} x(k)z^{-k}$ | <b>TD</b> x(k) |
| Trasformata di Laplace                |                |
| $X(s) = \int_0^\infty x(t)e^{-st} dt$ | TC x(t)        |
| dominio trasformato                   | dominio        |

#### RAGGIUNGIBILITÀ (Controllabilità)

Possibilità di modificare lo stato a partire dall'ingresso.

 $M_R = [B AB ... A^{n-b}B], b = \rho(B)$ 

 $\dim(X_R) = \rho(M_R) = r \le n$  sottospazio di raggiungibilità  $\dim(X_{NR}) = n - r$  sottospazio di non raggiungibilità

MATIAR®: Mr = ctrb(A.B)

| · · · · · · · · · · · · · · · · · · · |                    |
|---------------------------------------|--------------------|
| $(x) = -Kx(k) + \alpha r(k)$          | 1                  |
| $(t) = -Kx(t) + \alpha r(t)$          | legge di controllo |

Retroazione statica dallo stato (Hp: stato totalmente misurabile)

se  $\rho(M_R) = n \rightarrow \text{sistema completamente raggiungibile} \rightarrow$ posso progettare la legge di controllo in modo da assegnare arbitrariamente gli autovalori.

MATLAB®: K = place (A, B, [...]) autovalori distinti

Problema della regolazione

ranao max

 $\overline{y} = \overline{r} \rightarrow TC \alpha = [-(C - DK)(A - BK)^{-1}B + D]^{-1} = 1/\text{dcgain}(H)$  $\overline{y} = \overline{r} \rightarrow TD \ \alpha = [(C - DK)[I - (A - BK)]^{-1}B + D]^{-1}$ 

### OSSERVABILITÀ (Rilevabilità)

Possibilità di stimare lo stato a partire dagli ingressi e dalle uscite.





#### Osservatore dello stato (Stimatore di Lüemberger)

se  $\rho(M_R) = n \rightarrow \text{sistema } \underline{\text{completamente osservabile}} \rightarrow \text{posso progettare un}$ osservatore asintotico dello stato.

Modello dello stimatore  $\hat{x}'(t) = A\hat{x}(t) + Bu(t) - L(\hat{y}(t) - y(t))$ 

 $\hat{y}(t) = C\hat{x}(t) + Du(t)$ 

Criteri di stabilità LTI

errore di stima  $e(t) = \hat{x}(t) - x(t)$  $\dot{e}(t) = (A-LC)e(t)$ 

 $p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_0$ 

MATLAB®: L = (place (A', C',[...]))

#### Linearizzazione nell'intorno di un punto di equilibrio

 $(\overline{x}, \overline{u}) \mid f(\overline{x}, \overline{u}) = 0$  punto di equilibrio

 $\delta x(t) = x(t) - \overline{x}$  perturbazione  $\delta x(k) = x(k) - \overline{x}$ 

Sistema linearizzato

$$\begin{cases}
\frac{\delta \dot{x}(t)}{\text{TC}} = \underbrace{\delta \dot{x}(k+1)}_{\text{TD}} = \underbrace{\left|\frac{\partial f(x,u)}{\partial x}\right|_{(\bar{x},\bar{u})}}^{\delta A} + \underbrace{\left|\frac{\partial f(x,u)}{\partial u}\right|_{(\bar{x},\bar{u})}}^{\delta B} \\
\underbrace{\delta y(t)}_{\text{TC}} = \underbrace{\delta y(k)}_{\text{TD}} = \underbrace{\left|\frac{\partial g(x,u)}{\partial x}\right|_{(\bar{x},\bar{u})}}^{\delta C} + \underbrace{\left|\frac{\partial g(x,u)}{\partial u}\right|_{(\bar{x},\bar{u})}}^{\delta D}
\end{cases}$$

Grandezze sistema approssimato  $(*) = \overline{(*)} + \delta(*)$ 

$$\boldsymbol{\delta A} = \left| \frac{\partial f(x,u)}{\partial x} \right|_{(\overline{x},\overline{u})} stabile \ TC \ Re(\lambda_{i,\delta A}) < \mathbf{0} \ \forall \ i \ TD \ \left| \lambda_{i,\delta A} \right| < \mathbf{1} \ \forall \ i \qquad b_0 = \left| \begin{matrix} a_0 & a_n \\ a_n & a_0 \end{matrix} \right|, b_1 = \left| \begin{matrix} a_0 & a_{n-1} \\ a_n & a_1 \end{matrix} \right|, \dots, c_0 = \left| \begin{matrix} b_0 & b_{n-1} \\ b_{n-1} & b_0 \end{matrix} \right|, c_1 = \left| \begin{matrix} b_0 & b_{n-2} \\ b_{n-1} & b_1 \end{matrix} \right| \dots$$

Regola dei segni di Cartesio (condizione solo necessaria)

<u>Asintoticamente Stabile</u> ⇒ nessuna variazione di segno tra coefficienti consecutivi non nulli.

Criterio di Routh (cond. necessaria e sufficiente)

Asintot. Stabile TC ⇔ Tutti gli elementi della prima colonna della TdR sono di segno concorde.  $Compil\overline{azi}one\ TdR$ 

$$b_{n-2} = -\begin{vmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix} / a_{n-1}, b_{n-4} = -\begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix} / a_{n-1}, \dots$$

$$c_{n-3} = -\begin{vmatrix} a_{n-1} & a_{n-3} \\ b_{n-2} & b_{n-4} \end{vmatrix} / b_{n-2}, c_{n-5} = -\begin{vmatrix} a_{n-1} & a_{n-5} \\ b_{n-2} & b_{n-6} \end{vmatrix} / b_{n-2}, \dots$$
Criterio di Jury (cond. necessaria e sufficiente)

Asintot. Stabile TD  $\Leftrightarrow p(\lambda = 1) > 0$ ,  $(-1)^n p(\lambda = -1) > 0$ ,  $|a_n| > |a_0|$  (n=2)

 $|b_0| > |b_{n-1}|, |c_0| > |c_{n-2}|, \dots, |z_0| > |z_2|$  (n>2)

$$b_0 = \begin{vmatrix} a_0 & a_n \\ a_n & a_0 \end{vmatrix}, b_1 = \begin{vmatrix} a_0 & a_{n-1} \\ a_n & a_1 \end{vmatrix}, \dots, c_0 = \begin{vmatrix} b_0 & b_{n-1} \\ b_{n-1} & b_0 \end{vmatrix}, c_1 = \begin{vmatrix} b_0 & b_{n-2} \\ b_{n-1} & b_1 \end{vmatrix} \dots$$

## Phase LEAD network



0.



# Phase LAG network





# Zero network



