Context:

Target is a globally renowned brand and a prominent retailer in the United States. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This particular business case focuses on the operations of Target in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

By analyzing this extensive dataset, it becomes possible to gain valuable insights into Target's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Dataset: https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd23 8qJCnb

The data is available in 8 csv files:

- 1. customers.csv
- 2. sellers.csv
- 3. order_items.csv
- 4. geolocation.csv
- 5. payments.csv
- 6. reviews.csv
- 7. orders.csv
- 8. products.csv

The column description for these csv files is given below.

The **customers.csv** contain following features:

Features	Description
customer_id	ID of the consumer who made the purchase
customer_unique_id	Unique ID of the consumer
customer_zip_code_prefix	Zip Code of consumer's location
customer_city	Name of the City from where order is made
customer_state	State Code from where order is made (Eg. são paulo - SP)

The **sellers.csv** contains following features:

Features	Description
----------	-------------

seller_id Unique ID of the seller registered seller_zip_code_prefix Zip Code of the seller's location seller_city Name of the City of the seller seller_state State Code (Eg. são paulo - SP)

The **order_items.csv** contain following features:

Features	Description
----------	-------------

order_id A Unique ID of order made by the consumers
order_item_id A Unique ID given to each item ordered in the order
product_id A Unique ID given to each product available on the site
seller_id Unique ID of the seller registered in Target

shipping_limit_date

The date before which the ordered product must be shipped

price Actual price of the products ordered

freight_value Price rate at which a product is delivered from one point to another

The **geolocations.csv** contain following features:

Features Description

geolocation_zip_code_prefix First 5 digits of Zip Code

geolocation_lat Latitude
geolocation_lng Longitude
geolocation_city City
geolocation_state State

The payments.csv contain following features:

Features Description

order_id A Unique ID of order made by the consumers
payment_sequential Sequences of the payments made in case of EMI

payment_type Mode of payment used (Eg. Credit Card)

payment_value Total amount paid for the purchase order

The **orders.csv** contain following features:

Features Description

order_id A Unique ID of order made by the consumers customer_id ID of the consumer who made the purchase

order_status Status of the order made i.e. delivered, shipped, etc.

order_delivered_carrier_date Delivery date at which carrier made the delivery

order_delivered_customer_date Date at which customer got the product order_estimated_delivery_date Estimated delivery date of the products

The **reviews.csv** contain following features:

Features	Description
review_id	ID of the review given on the product ordered by the order id
order_id	A Unique ID of order made by the consumers
review_score	Review score given by the customer for each order on a scale of 1-5
review_comment_title	Title of the review
review_comment_message	Review comments posted by the consumer for each order
review_creation_date	Timestamp of the review when it is created
review_answer_timestamp	Timestamp of the review answered

The **products.csv** contain following features:

Features	Description
product_id	A Unique identifier for the proposed project.
product_category_name	Name of the product category
product_name_lenght	Length of the string which specifies the name given to the products o
product_description_lenght	Length of the description written for each product ordered on the site
product_photos_qty	Number of photos of each product ordered available on the shopping
product_weight_g	Weight of the products ordered in grams
product_length_cm	Length of the products ordered in centimeters
product_height_cm	Height of the products ordered in centimeters
product_width_cm	Width of the product ordered in centimeters

Dataset schema:

Problem Statement:

Assuming you are a data analyst/ scientist at Target, you have been assigned the task of analyzing the given dataset to extract valuable insights and provide actionable recommendations.

- Q1.) Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table

customers:

Field name	Туре
customer_id	STRING
customer_unique_id	STRING
customer_zip_code_prefix	INTEGER
customer_city	STRING
customer_state	STRING

geolocation:

Field name	Туре
geolocation_zip_code_prefix	INTEGER
geolocation_lat	FLOAT
geolocation_lng	FLOAT
geolocation_city	STRING
geolocation_state	STRING

order_items :

Field name	Туре
order_id	STRING
order_item_id	INTEGER
product_id	STRING
seller_id	STRING
shipping_limit_date	TIMESTAMP
price	FLOAT
freight_value	FLOAT

payment:

Field name	Туре
order_id	STRING
payment_sequential	INTEGER
payment_type	STRING
payment_installments	INTEGER
payment_value	FLOAT

reviews:

Field name	Туре
review_id	STRING
order_id	STRING
review_score	INTEGER
review_comment_title	STRING
review_creation_date	TIMESTAMP
review_answer_timestamp	TIMESTAMP

orders:

Field name	Туре
order_id	STRING
customer_id	STRING
order_status	STRING
order_purchase_timestamp	TIMESTAMP
order_approved_at	TIMESTAMP
order_delivered_carrier_date	TIMESTAMP
order_delivered_customer_date	TIMESTAMP
order_estimated_delivery_date	TIMESTAMP

products:

Field name	Туре
product_id	STRING
product_category	STRING
product_name_length	INTEGER
product_description_length	INTEGER
product_photos_qty	INTEGER
product_weight_g	INTEGER
product_length_cm	INTEGER
product_height_cm	INTEGER
product_width_cm	INTEGER

sellers:

Field name	Туре
seller_id	STRING
seller_zip_code_prefix	INTEGER
seller_city	STRING
seller_state	STRING

2. Time period for which the data is given

assumption - \max and \min based on order purchase timestamp .

```
select min(order_purchase_timestamp) start_date ,
max(order_estimated_delivery_date) end_date
from `Target_Data.orders`;
```

Row	start_date	h	end_date	11
1	2016-09-04 21:15:19 UTC		2018-11-12 00:00:00 UTC	

3. Cities and States of customers ordered during the given period

```
SELECT
  DISTINCT customers.customer_state,
  customers.customer_city
FROM
  `Target_Data.customers` customers
JOIN
  `Target_Data.orders` orders
ON
  customers.customer_id = orders.customer_id;
```

1 RJ rio de janeiro 2 RS sao leopoldo 3 SP general salgado 4 DF brasilia 5 PR paranavai 6 MT cuiaba 7 MA sao luis 8 AL maceio 9 SP hortolandia			
1 RJ rio de janeiro 2 RS sao leopoldo 3 SP general salgado 4 DF brasilia 5 PR paranavai 6 MT cuiaba 7 MA sao luis 8 AL maceio 9 SP hortolandia	Row	customer_state	customer_city
3 SP general salgado 4 DF brasilia 5 PR paranavai 6 MT cuiaba 7 MA sao luis 8 AL maceio 9 SP hortolandia	1	RJ	rio de janeiro
4 DF brasilia 5 PR paranavai 6 MT cuiaba 7 MA sao luis 8 AL maceio 9 SP hortolandia	2	RS	sao leopoldo
5 PR paranavai 6 MT cuiaba 7 MA sao luis 8 AL maceio 9 SP hortolandia	3	SP	general salgado
6 MT cuiaba 7 MA sao luis 8 AL maceio 9 SP hortolandia	4	DF	brasilia
7 MA sao luis 8 AL maceio 9 SP hortolandia	5	PR	paranavai
8 AL maceio 9 SP hortolandia	6	MT	cuiaba
9 SP hortolandia	7	MA	sao luis
	8	AL	maceio
10 MT varzea grande	9	SP	hortolandia
Tal Zea grande	10	MT	varzea grande

Q2.) In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Assumption: total sales only on the basis of product status "DELIVERED"

```
EXTRACT(year
FROM
    order_purchase_timestamp) Year,
EXTRACT(month
FROM
    order_purchase_timestamp) Month,
SUM(payment_value) Total_sale
FROM
    `Target_Data.orders` o
JOIN
    `Target_Data.payments` p
ON
    o.order_id = p.order_id
WHERE
    order_status = "delivered"
GROUP BY
    1, 2
ORDER BY
    1, 2;
```

Row	Year //	Month //	Total_sale
1	2016	12	19.62
2	2016	10	46566.7100
3	2017	12	843199.169
4	2017	11	1153528.05
5	2017	10	751140.270
6	2017	9	701169.989
7	2017	8	646000.610
8	2017	7	566403.930
9	2017	6	490225.600
10	2017	5	567066.730

Insights - a) There is a growing trend in sales year on year.

b) NOV , JAN , FEB , MARCH are the months where sudden increase in sales can be seen in above table.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Assumption: Between 0 to 6 - "DAWN"

Between 7 to 12 - "MORNING"

Between 13 to 18 - "AFTERNOON" Between 19 to 23 - "NIGHT"

```
with query1 as(
select
extract(hour from order_purchase_timestamp ) hour ,
count(distinct order_id) all_order
from `Target Data.orders`
group by 1
select sum(case when hour between 0 and 6 then all_order end) DAWN ,
\operatorname{sum}(\operatorname{case} when hour between 7 and 12 then all_order end) MORNING ,
sum(case when hour between 13 and 18 then all_order end) AFTERNOON ,
sum(case when hour between 19 and 23 then all_order end) EVENING
```

from query1

Row /	DAWN	MORNING	AFTERNOON	EVENING
1	5242	27733	38135	28331

Insight- Brazilian customers buy most in the afternoon.

- Q3) Evolution of E-commerce orders in the Brazil region
 - 1. Get month on month orders by states

Assumption - order count with all order status.

```
SELECT
  EXTRACT(month
  FROM
    order_purchase_timestamp) Month,
  customer_state,
  COUNT(order_id) order_count
  `Target_Data.orders` o
JOIN
  `Target Data.customers` c
ON
```

```
o.customer_id = c.customer_id
GROUP BY
1,
2
ORDER BY
1,
3 DESC
```

Row	Month //	customer_state	order_count
1	1	SP	3351
2	1	RJ	990
3	1	MG	971
4	1	PR	443
5	1	RS	427
6	1	SC	345
7	1	BA	264
8	1	GO	164
9	1	ES	159
10	1	DF	151

Insight - maximum order is coming from state "SP" for the month of JAN and for the whole table SP is the state with maximum orders and RR with lowest order.

2. Distribution of customers across the states in Brazil

```
SELECT
  customer_state,
  cOUNT(DISTINCT customer_unique_id) customer_count
FROM
  `Target_Data.customers`
GROUP BY
  1
ORDER BY
  2 DESC;
```

Row	customer_state	customer_count
1	SP	40302
2	RJ	12384
3	MG	11259
4	RS	5277
5	PR	4882
6	SC	3534
7	BA	3277
8	DF	2075
9	ES	1964
10	GO	1952

Insight - "SP" has the highest customer count and "RR" has lowest customer count .

- Q4) Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment value" column in payments table

```
WITH
  query1 AS (
  SELECT
    Year,
    Total_sale,
    LEAD(Total_sale) OVER(ORDER BY year DESC) next_sale
  FROM (
    SELECT
    EXTRACT(year
```

```
FROM
        order_purchase_timestamp) Year,
      SUM(payment_value) Total_sale
      `Target_Data.payments` p
    JOIN
      `Target_Data.orders` o
      p.order_id = o.order_id
    WHERE
      order_status = "delivered"
      AND EXTRACT(month
        order_purchase_timestamp) BETWEEN 1
      AND 8
    GROUP BY
      1 ) tab1 )
SELECT
  round(((Total_sale - next_sale)/next_sale ) * 100 , 2) percent_increase
  query1
ORDER BY
 1 DESC;
```

Row	Year	11	percent_increase
1		2018	143.33
2		2017	nuli

Insight - There is 143.33% increase in sales in 2018 from 2017, so we can also say from this that there is a upward trend in the business.

2. Mean & Sum of price and freight value by customer state

```
SELECT
  customer_state,
  SUM(price) AS price_sum,
  SUM(freight_value) AS freight_sum,
  AVG(price) AS price_avg,
  AVG(freight_value) AS freight_avg
FROM
  `Target_Data.orders` o
JOIN
  `Target_Data.order_items` oi
```

```
ON
    o.order_id = oi.order_id
JOIN
    `Target_Data.customers` c
ON
    c.customer_id = o.customer_id
GROUP BY
    1
ORDER BY
    2 DESC,
    3 DESC
LIMIT
    10;
```

Row	customer_state	price_sum	freight_sum	price_avg	freight_avg
1	SP	5202955.05	718723.069	109.653629	15.1472753
2	RJ	1824092.66	305589.310	125.117818	20.9609239
3	MG	1585308.02	270853.460	120.748574	20.6301668
4	RS	750304.020	135522.740	120.337453	21.7358043
5	PR	683083.760	117851.680	119.004139	20.5316515
6	SC	520553.340	89660.2600	124.653577	21.4703687
7	BA	511349.990	100156.679	134.601208	26.3639589
8	DF	302603.939	50625.4999	125.770548	21.0413549
9	GO	294591.949	53114.9799	126.271731	22.7668152
10	ES	275037.309	49764.5999	121.913701	22.0587765

- Q5) Analysis on sales, freight and delivery time
 - 1. Calculate days between purchasing, delivering and estimated delivery

Assumption - taking delivering date as order delivered customer date and order status as "DELIVERED"

```
SELECT
   order_id,
   DATE_DIFF((order_delivered_customer_date),(order_purchase_timestamp), day) purchasing_del
ivered_datediff,
   DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) delivered_es
timeted_datediff
FROM
```

```
`Target_Data.orders`
WHERE
  order_status = "delivered"
ORDER BY
2 DESC,
3 DESC;
```

Row /	order_id //	purchasing_delivered_datediff //	delivered_estimeted_datediff
1	ca07593549f1816d26a572e06	209	-181
2	1b3190b2dfa9d789e1f14c05b	208	-188
3	440d0d17af552815d15a9e41a	195	-165
4	2fb597c2f772eca01b1f5c561b	194	-155
5	0f4519c5f1c541ddec9f21b3bd	194	-161
6	285ab9426d6982034523a855f	194	-166
7	47b40429ed8cce3aee9199792	191	-175
8	2fe324febf907e3ea3f2aa9650	189	-167
9	2d7561026d542c8dbd8f0daea	188	-159
10	437222e3fd1b07396f1d9ba8c	187	-144

- 2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - time_to_delivery = order_purchase_timestamporder_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

Assumption - taking order status "delivered"

```
SELECT
```

```
DATE_DIFF((order_purchase_timestamp),(order_delivered_customer_date), day) time_to_delive
r,
    DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day) diff_estimet
ed_delivery
FROM
    `Target_Data.orders`
WHERE
    order_status = "delivered"
```

```
ORDER BY
1 DESC,
2 DESC
```

LIMIT 10;

	_		
Row	time_to_deliver	1.	diff_estimeted_delivery
1		0	27
2		0	25
3		0	19
4		0	16
5		0	12
6		0	11
7		0	11
8		0	11
9		0	10
10		0	9

Insight - As it can be seen from above table only few orders got delivered on time and there is a big gap between purchase and

deliver date

Recommendation - company needs to look into there time_to_delivery in order to improve customer relation which will lead to increase

there is a scope of minimizing the delivery time.

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

Assumption - taking order status as "delivered"

```
SELECT
```

customer_state,
AVG(freight_value) avg_freight_value,

```
AVG(DATE_DIFF((order_purchase_timestamp),(order_delivered_customer_date), day)) avg_time_
to_deliver,
 AVG(DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day)) avg_dif
f_estimeted_delivery
  `Target_Data.orders` o
JOIN
  `Target_Data.order_items` oi
 oi.order_id = o.order_id
  `Target_Data.customers` c
ON
  c.customer_id = o.customer_id
 order_status = "delivered"
GROUP BY
 customer_state
ORDER BY
 2 DESC
 limit
 10;
```

Row	customer_state	avg_freight_valu	avg_time_to_deli	avg_diff_estimet
1	PB	43.0916894	-20.1194539	12.1501706
2	RR	43.0880434	-27.8260869	17.4347826
3	RO	41.3305494	-19.2820512	19.0805860
4	AC	40.0479120	-20.3296703	20.0109890
5	PI	39.1150860	-18.9311663	10.6826003
6	MA	38.4927125	-21.2037500	9.10999999
7	TO	37.4350322	-17.0032258	11.4612903
8	SE	36.5731733	-20.9786666	9.16533333
9	AL	35.8706557	-23.9929742	7.97658079
10	RN	35.7180806	-18.8733205	13.0556621

4. Sort the data to get the following:

5. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
SELECT
 customer_state,
 AVG(freight_value) avg_freight_value
FROM
  `Target_Data.orders` o
JOIN
  `Target_Data.order_items` oi
 oi.order_id = o.order_id
  `Target_Data.customers` c
 c.customer_id = o.customer_id
 order_status = "delivered"
GROUP BY
 customer_state
ORDER BY
 2 DESC
 limit 5;
```

Row	customer_state	avg_freight_value
1	PB	43.09168941979
2	RR	43.08804347826
3	RO	41.33054945054
4	AC	40.04791208791
5	PI	39.11508604206

6. Top 5 states with highest/lowest average time to delivery

```
SELECT
   customer_state,
   AVG(DATE_DIFF((order_purchase_timestamp),(order_delivered_customer_date), day)) avg_time_
to_deliver

FROM
   `Target_Data.orders` o

JOIN
   `Target_Data.customers` c

ON
   c.customer_id = o.customer_id
WHERE
   order_status = "delivered"
GROUP BY
   customer_state

ORDER BY
   2 DESC
   limit 5 ;
```

Row	customer_state	avg_time_to_deliver
1	SP	-8.2980935447227022
2	PR	-11.526711354864908
3	MG	-11.54218777523343
4	DF	-12.509134615384616
5	SC	-14.475183305132528

7. Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
SELECT
   customer_state,
   AVG(DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date, day)) avg_dif
f_estimeted_delivery

FROM
   `Target_Data.orders` o

JOIN
   `Target_Data.customers` c
ON
   c.customer_id = o.customer_id
WHERE
   order_status = "delivered"
GROUP BY
   customer_state
ORDER BY
```

```
2 DESC
limit 5;
```

Row	customer_state	1	avg_diff_estimeted_delivery
1	AC		19.762500000000006
2	RO		19.13168724279836
3	AP		18.731343283582088
4	AM		18.60689655172413
5	RR		16.414634146341463

Insights - fastest delivery state as compared to estimated date is "AC" .

Q6) Payment type analysis:

1. Month over Month count of orders for different payment types.

Assumption - 1. order status is delivered .

2. and ignoring similar order id for different payment types

```
SELECT
  EXTRACT(month
FROM
    order_purchase_timestamp) Month,
  payment_type,
  COUNT(o.order_id) order_count
FROM
    `Target_Data.orders` o
JOIN
    `Target_Data.payments` p
ON
    o.order_id = p.order_id
    where order_status = "delivered"
GROUP BY
    1, 2
ORDER BY
    3 DESC
LIMIT
    10;
```

Row	Month	payment_type	order_count
1	5	credit_card	8131
2	8	credit_card	8090
3	7	credit_card	7634
4	3	credit_card	7434
5	6	credit_card	7133
6	4	credit_card	7113
7	2	credit_card	6371
8	1	credit_card	5910
9	11	credit_card	5716
10	12	credit_card	4246

Insight - maximum payments are done by credit card.

2. Count of orders based on the no. of payment installments

Assumption - order status is delivered.

```
SELECT
payment_installments ,
   COUNT(o.order_id) order_count
FROM
   `Target_Data.orders` o
JOIN
   `Target_Data.payments` p
ON
   o.order_id = p.order_id
   where order_status = "delivered"
GROUP BY
   1
ORDER BY
   1 DESC
LIMIT
   10 ;
```

Row	payment_installr	order_count //
1	24	18
2	23	1
3	22	1
4	21	3
5	20	16
6	18	27
7	17	7
8	16	5
9	15	72
10	14	14

Actionable Insights - 1. Although there is an increase in overall sales year on year but states like "SP", "RJ", "MG" are having maximum customers, maximum orders, lowest avg freight value and lowest avg delivery time and doing half of the revenue in Brazil.

2. States like "PB", "RR", "AC" are having lowest customers, lowest orders, highest avg freight value and highest avg delivery time.

Recommendation - 1. In order to improve sales in low performing states we need to decrease freight value and delivery time if possible, in order to acquire more customers. as we have seen in high performing states more number of customers lead to more sales in respective states.