Overview of Computers

Dr. Piyush Joshi Assistant Professor IIIT Sri City

System Bus in Computer Architecture

- The CPU sends various data values, instructions and information to all the devices and components inside the computer.
- If you look at the bottom of a motherboard you'll see a whole network of lines or electronic pathways that join the different components together.
- This network of wires or electronic pathways is called the 'Bus'

- A bus is a communication pathway connecting two or more devices.
- A key characteristic of a bus is that it is a shared transmission medium.
- Multiple devices connect to the bus, and a signal transmitted by any one device is available for reception by all other devices attached to the bus.
- If two devices transmit during the same time period, their signals will overlap and become garbled. Thus, only one device at a time can successfully transmit.

- Typically, a bus consists of multiple communication pathways, or lines.
- ☐ Each line is capable of transmitting signals representing binary 1 and binary 0.
- Several lines of a bus can be used to transmit binary digits simultaneously (in parallel).
- For example, an 8-bit unit of data can be transmitted over eight bus lines.
- Computer systems contain a number of different buses that provide pathways between components at various levels of the computer system hierarchy.

System Bus

- A bus that connects major computer components (processor, memory, I/O) is called a system bus.
- A system bus consists, typically, of from about fifty to hundreds of separate lines. Each line is assigned a particular meaning or function.
- System bus usually is separated into three functional groups.
 - 1. Data Bus
 - 2. Address Bus
 - ☐ 3. Control Bus
- ☐ In addition, there may be power distribution lines that supply power to the attached modules.

System Bus Architecture

Data Bus

- A collection of wires through which data is transmitted from one part of a computer to another.
- Data Bus can be thought of as a highway on which data travels within a computer.
- This bus connects all the computer components to the CPU and main memory.
- ☐ The data bus may consist of 32, 64, 128, or even more separate lines.
- The number of lines being referred to as the width of the data bus. Because each line can carry only 1 bit at a time, the number of lines determines how many bits can be transferred at a time.

Data Bus

- Bidirectional bus connects with memory.
- ☐ The size (width) of bus determines how much data can be transmitted at one time.
- A 16-bit bus can transmit 16 bits (2 bytes)of data at a time.
- □ 32-bit bus can transmit 32 bits(4 bytes) at a time.
- The size (width) of bus is a critical parameter in determining system performance.
- ☐ The wider the data bus, the better, but they are expensive.

Address Bus

- A collection of wires used to identify particular location in main memory is called Address Bus.
- Or in other words, the information used to describe the memory locations travels along the address bus.
- ☐ Clearly, the width of the address bus determines the maximum possible memory capacity of the system.
- \square N address lines directly address 2 N memory locations.

Address Bus

☐ It is an unidirectional bus.

☐ The CPU sends address to a particular memory locations and I/O ports.

☐ The address bus consists of 16, 20, 24 or more parallel signal lines.

Control Bus

- Because the data and address lines are shared by all components, there must be a means of controlling their use.
- ☐ The control lines regulates the activity on the bus.
- ☐ Control signals transmit both command and timing information among system modules.
- ☐ The control bus carries signals that report the status of various devices.

Control Bus

- Typical control bus signals are:
- ☐ Memory Read : causes data from the addressed location to be placed on the data bus.
- ☐ Memory Write: causes data on the bus to be written into the addressed location
- ☐ I/O write: causes data on the bus to be output to the addressed I/O port
- ☐ I/O read: causes data from the addressed I/O port to be placed on the bus

I/O Interface

- Direct Communication b/w processor and devices is not possible.
- It is due to:
- Different manner of operation
- Data transfer rate
- ☐ Difference in word format
- ☐ Difference in operating modes of peripherals

I/O Interface

Ports

- The point at which a peripheral attaches to.
- Communicates with a system unit so that the peripheral can send data to or receive information from the computer.
- ☐ The term JACK is sometimes is used to identify audio and video ports.
- ☐ The front and back of system unit on desktop personal computer contain many ports.

Connectors

- ☐ Joins a cable and a port.
- A connector at one end of the a cable attaches to a port on the **system unit.**
- A connector at the other end of the cable attaches to a port on the **peripheral**.

Motherboard

A motherboard sometimes called the "Mobo" is the main circuit board found in computers and other advanced electronic devices.

Motherboard

The motherboard gets its name because it is like a mother to all of the other circuit boards.

The motherboard is the largest circuit board in the computer case and may have many smaller boards plugged into it.

☐ It's the glue that holds all of the most important parts of the computer together.

Motherboard

Form factor sizes of Motherboards

Motherboard cards

On the motherboard, you will find several expansion cards. Each of these cards has a special purpose

Video card

- A video card is an type of card which generates a feed of images to a monitor or display.
- Cheaper computer systems may have integrated video capabilities. These built in video capabilities are less powerful than stand alone video cards.

Network card

Jumpers

- Jumpers allow the computer to close an electrical circuit, allowing the electricity to flow on a circuit board and perform a function.
- ☐ Jumpers consist of small pins that can be covered with a small plastic box (jumper block).

- For example, if a jumpe Open 1-2 Jumped 2-3 Jumped it may mean that the hard drive is to be the primary hard drive on the system.
- If the jumper is in "Position B" it may mean that the hard drive is to be the secondary hard drive in the computer.
- Jumpers are rare on most newer hardware today because of automatic configurations and software-controlled settings.