Microsoft Azure Machine learning Algorithms

Our Sponsors

Speaker info

- BI Developer (MSSQL Server, C#, SAS, R, SAP, Py)
- 15+ ys experience MSSQL Server
- 15+ ys experience data analysis and DM
- Working: Spar ICS Österreich, Spar Slovenija
- MCT, MCPT, MCSE SQL Server
- Min tomaz.kastrun@gmail.com
- **y** @tomaz_tsql
- https://tomaztsql.wordpress.com
- Publishing articles, speaking at SQL events, conferences
- Coffee Lover, Bicycle junkie

Agenda

- Focus on explanation of algorithms available for predictive analytics in Azure Machine Learning service.
- Algorithms
- 1) regression algorithms,
- 2) Two-Class classifications,
- 3) Multi-class classification,
- 4) Clustering
- Explore algorithm
- which algorithm is used and useful for what kind of empirical problem
- which is suitable for particular data-set.

Before start... Why this session?!

- Machine learning is suddenly very popular
- All non-scientists and non-statisticians are now data wranglers and data scientists
- Very easy to accomplish "something"
- No knowledge needed for "something" that does "something" and returns "something"

First things first

- Statisticst! (with "something" you will get "something")
- Variables (columns/data) by type:
- Variables (columns/data) by input and ouput:
 - Dependent (outcome)
 - Independent (experimental or predictor)

First things "something"

gender (male/ Female), eye colour (blue, green, black,...), marital status (S, M, D,V,...), Buyer | Nonbuyer (0 | 1)

No inherited order; all values are the "same" and all values equal in representation

education (primary, secondary, high school,...),
Salary (<101€,101-200€, 201-300€,..)

Ordering can be applied; values can be compared with =,>,< and recoded with numbers / classes.

Height (173cm, 196cm), Invoice Value (24.4€, 42.6€,..)

Ordering can be applied; values can be compared with =,>,< and expressed 2 is 2x times bigger..

Temperature: Celsius vs. Fahrenheit

For warmup...regression

$$y_i = a + bx_i + e_i$$

y_i = specific y value (dependent variable)

a = intercept

b = slope

 x_i = specific x value (independent variable)

e_i = random variance or the residual

\longrightarrow a + bx

continuous predictors

x = a set of continuous data points

> a = the value of y when x is 0

b = the change in y for one change in x

categorical predictors

x = a set of **binary/categorical** data points

a = the value of y when the x is the **default level**

b = the change in y when x is the non-default level

$$log[p/(1-p)]_i = a + bx_i$$

- Distribution (normal, poission, bernoulli,...)
- Data normalization
- Linear vs. Non-linear problem
- Supervised vs. Unsupervised

When <u>choosing algorithm</u> for ML Azure *keep in mind*:

- Accuracy of algorithm
- Training Time
- Linearity
- Number of parameters in algorithm (module: Parameter sweeping)
- Number of data variables / features
- Data distribution
- Biased Training data (SMOTE)

■ Sample and Split

Sample Data

rows	columns
200	8

	id	Gender	Favorite_ice_cream	Score_video_game	Score_puzzle_game	Buyer	Salary	Salary_recoded
view as		1	r I r	adh.	.atllli.		thall	thit
	70	0	1	47	57	1	94.470686	5
	121	1	2	63	61	0	49.534943	3
	86	0	3	58	31	1	89.581054	5
	141	0	3	53	56	0	33.229919	2
	172	0	2	53	61	0	21.44842	2
	113	0	2	63	61	0	2.85406	1
	50	0	2	53	61	0	13.096278	1
	11	0	2	39	36	1	62.648952	4
	84	0	2	58	51	0	32.936928	2
	48	0	2	50	51	0	15.021996	1
	75	0	2	53	61	0	39.03202	2
	60	0	2	63	61	1	68.371854	4
	95	0	3	61	71	0	25.211896	2
	104	0	3	55	46	1	57.073408	3
	38	0	1	31	56	1	64.52152	4
	115	0	1	50	56	0	6.542734	1
	76	0	3	50	56	0	27.236401	2
	195	0	2	58	56	1	79.242704	4
	114	0	3	55	61	1	65.905424	4
	85	0	2	53	46	0	8.46832	1

saturday

Statistical Functions

<u>Apply Math Operation</u> -> Applies a mathematical operation to column values <u>Compute Elementary Statistics</u> -> Calculates specified summary statistics for selected dataset columns

<u>Compute Linear Correlation</u> -> Calculates the linear correlation between column values in a dataset

<u>Descriptive Statistics</u> -> Generates a basic descriptive statistics report for the columns in a dataset

<u>Evaluate Probability Function</u> -> Fits a specified probability distribution function to a dataset

<u>Replace Discrete Values</u> -> Replaces discrete values from one column with numeric values based on another column

<u>Test Hypothesis Using t-Test</u> -> Compares means from two datasets using a t-test

Source: https://msdn.microsoft.com/en-us/library/azure/dn905867.aspx

1 General Statistics

Short DEMO

1 Spliting data

Spliting data

Splitting Mode:

- Split rows
- Recommender split
- Regular / Relative expression

Random seed Stratified split

Jackknife, cross validation, n-fold cross validation,

1 Spliting data

Short DEMO

1 Initializing Model

Microsoft Azure Machine Learning: Algorithm Cheat Sheet

This cheat sheet helps you choose the best Azure Machine Learning Studio algorithm for your predictive analytics solution. Your decision is driven by both the nature of your data and the question you're trying to answer.

A

Making list of algorithms more transparent

	D	Classif	ication
	Regresssion	Two-class	Multiclass
Average Perceptron		4	
Bayes Point Machine		4	
Decision Forest	4	4	4
Decision Jungle		4	4
Decision Tree	4	4	
Fast Forest	4		
Linear Regression	4		
Bayes Linear Regression	✓		
Log Regression		4	4
Neural Network	4	4	4
Ordinal Regression	4		
Poisson Regression	4		
SVM		4	
SVM Deep Support		4	

A

Regression

Azure ML: Linear Regression

Logistic

Azure ML: <u>Two-class Classification</u> Logistic Regression Multiclass classification Logistic Regression

Decision Tree, Decision Forests, Decision Jungles

Decision tree **Decision Forest** income < 61K? no income < 61K? age < 27? yes no income < 61K? age < 38? income < 61K? yes no no age < 27? yes no age < 38? Azure ML: Regression boosted decision tree yes no Two-class classification boosted decision tree

Decision Jungle

Azure ML: <u>Regression</u> decision forrest <u>Two-class classification</u> decision forrest Multi classification decision forrest

Azure ML: <u>Multi-class</u> decision jungle <u>Two-class classification</u> decision jungle

A

Naive Bayes

	13	GRAS	SWEI
SPRINKLER	RAIN	T	F
F	F	0.0	1.0
F	T	0.8	0.2
T	F	0.9	0.1
I	T	0.99	0.01

Azure ML: <u>Regression</u> Bayes linear <u>Two Class classification</u> Bayes' point machine

A

Neural networks and perceptrons

35.0

34.8

34.6
(sg) 34.4
34.0
33.8
Towns reporting rain
33.6
Towns reporting snow
-107.0
-106.5
-106.0
Longitude (in degrees)

Azure ML: <u>Regression</u> Neural networks <u>Two Class classification</u> Neural networks Multi Class classification Neural networks

Two Class Classification averaged perceptrons

SVM

Azure ML: <u>Two Class classification</u> SVM <u>Two Class classification</u> locally deep SVM

Anomaly detection SVM

- Regression is method for estimating relations among parameters/varibles.
- Linear vs. Logistic (linear combination of parameters vs. Logistic combination of parameters)
- Typical Problem would be predicting Y; a numeric value.
- Typical Azure Algorithms
 - Boosted <u>Decision Tree</u> Regression
 - <u>Decision Forest</u> Regression
 - <u>Linear</u> Regression
 - <u>Bayesian Linear</u> Regression

1 Regression Algorithms Parameter

▲ Linear Regression Solution method Ordinary Least Squares L2 regularization weight 0.001 ✓ Include intercept term Random number seed Allow unknown categ... ■ Bayesian Linear Regression

Regularization weight

Allow unknown categ...

■ Neural Network Regression Create trainer mode Single Parameter Hidden layer specification Fully-connected case Number of hidden nodes 100 Learning rate 0.005 Number of learning iterat... 100 The initial learning weight... 0.1 The momentum The type of normalizer Min-Max normalizer ✓ Shuffle examples Random number seed

1 Regression Algorithms

Short DEMO

Evaluating Regression Algorithms

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |f_i - y_i|$$

Metrics to measure how close predictions are to eventual outcomes

Root Mean Square Error:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (f_i - y_i)^2}{n}}$$

Metrics of differences between predicted values and actual values.

Relative square Error:

$$RSE = \frac{\sum_{i=1}^{n} (f_i - y_i)^2}{\sum_{i=1}^{n} (\overline{y} - y_i)^2}$$

Coeff. of Determination:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Summarization of regression model how well fits a statistical model; R^2 = 1 model is perfect, respectively

Predicting Salary

columns

Neural Networl

Regression

rows

03_Regression_algorithm_R

14.588252

03_Regression_algorithm_R > Add Rows > Results dataset

5	6					
	Algorithm	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
view as	IIII	n d		n d		11
	Linear Regression	12.29696	14.58386	0.489833	0.26734	0.73266
	Decision Forest Regression	14.426837	17.068578	0.574674	0.366196	0.633804
	Bayesian Linear Regression	12.627958	14.970776	0.503018	0.281714	0.718286
	Boosted Decision Tree Regression	14.829949	17.810291	0.590732	0.398714	0.601286

0.581104

17.217506

0.627385

0.372615

Regression Algorithm	Accuracy	Training time	Linearity	Customization	Predicting Variable	Type of independant variable(s)	Data Quantity
linear	Good	Fast	Excellent	Good	Interval	Any	small to big
Bayesian linear	Good	Fast	Excellent	Moderate	Interval	Any	big
decision forest	Excellent	Moderate	Good	Good	Interval	Any	
boosted decision tree	Excellent	Fast	Good	Good	Interval	Any	big
fast forest quantile	Excellent	Moderate	Moderate	Excellent	Distribution (Interval)	Any	
neural network	Excellent	Slow	Moderate	Excellent	Interval	Any	smaller
Poisson	Good	Moderate	Excellent* (log linear)	Good	Interval (counts)	Any	small to big
ordinal	Good	Moderate	Excellent	None	Ordinal (order)	Any	small to big

Scale:

Excellent Good Moderate
Fast Moderate Slow

2 Two-class Classification

- Creates classification estimates for label / prediction variable with dichotomious values
- Typical Problem would be predicting a binary class for label variable
- Typical Azure Algorithms
 - Boosted <u>Decision Tree</u> two-class
 - <u>Decision Forest</u> two-class
 - <u>Decision Jungle</u> two-class
 - <u>Logistic Regression</u> two-class
 - Neural Network two-class
 - Averaged Perceptron two-class
 - <u>SVM</u> two-class

2 Two-class Classification parameters

Create trainer mode Single Parameter Maximum number of leav... 20 Minimum number of sam... 10 Learning rate 0.2 Number of trees construc... 100 Random number seed

Resampling method
Bagging ~
Create trainer mode
Single Parameter
Number of decision DAGs
8
Maximum depth of the d
32
Maximum width of the de
128
Number of optimization s
2048

■ Two-Class Averaged Perceptron

Create trainer mode	
Single Parameter	~
Learning rate	
1	
Maximum number of iter	
10	
Random number seed	
✓ Allow unknown categ	_

▲ Two-Class Bayes Point Machine

✓ Allow unknown categ...

Number of training iterati 🚃	
30	■ Two-Class Logistic Regression
✓ Include bias	Create trainer mode
	Single Parameter
🗹 Allow unknown value 🚃	Optimization tolerance
	1E-07
▲ Two-Class Support Vector Mac	
Create trainer mode	L1 regularization weight
Single Parameter	1
Number of iterations	L2 regularization weight
1	1
	Memory size for L-BFGS
Lambda	20
0.001	
✓ Normalize features	Random number seed
Project to the unit-sp	
	🗹 Allow unknown categ 🗏
Random number seed	

Regularization weight

- Used for avoiding overfitting.
- L1, L2 penalized estimation methods shrink the estimates of regre. coefficient towards zero in relation to maximize likelihood of estimates.
- L1 for sparse, high-dimensional model
- L2 for dense (or smaller) model and computationally efficient

2 Two-class Classification

Short DEMO

2 Evaluating two-class Classificatio

ROC (AUC) Curve / Precision / Lift Chart

AUC/ROC:

$$0.7 - 0.8 - \odot$$

$$0.9 - 1 - WTF$$
?

Classification Matrix / Confussion matrix / Metrics

True Positive	False Negative	Accuracy	Precision	Threshold		AUC
46	4	0.900	0.885	0.5		0.988
False Positive	True Negative	Recall	F1 Score			
6	44	0.920	0.902			
Positive Label	Negative Label					
1	0					

2 Evaluating two-class Classificatio

True Positive (TP) – correctly identified: Buyes is classified as Buyer False Positive (FP) – Incorrectly identified: Buyes is classified as non-buyer True Negative (TN) - correctly identified: Non-buyes is classified as non-buyer False Negative (FN) - Incorrectly identified: Non-buyes is classified as buyer

Accuracy (TP + TN) / (TP + TN + FP + FN) – Proportion of correctly classified Precision TP / (TP+FP) – Proportion of positive cases classified correctly Sensitivity* TP / (TP + TN) - Proportion of actual positive cases classified correctly Score 2TP / (2TP + FP + FN) – Harmonic mean of precision and Sensitivity

Sensitivity is also known as Recall

Comparison of Two-class Classification Algorithms

Two-class classification	Accuracy	Training time	Linearity	Customization	Predicting Variable	Type of independant variable(s)	Data Quantity
logistic regression	Good	Fast	Excellent	Good	dichotomous / binary	Any	small-big
decision forest	Excellent	Moderate	Good	Good	dichotomous / binary	Any	small-big
decision jungle	Excellent	Moderate	Good	Good	dichotomous / binary	Any	big
boosted decision tree	Excellent	Moderate	Good	Good	dichotomous / binary	Any	big
neural network	Excellent	Slow	Moderate	Excellent	dichotomous / binary	Any	
averaged perceptron	Good	Moderate	Excellent	Moderate	dichotomous / binary	Any	
support vector machine	Excellent	Moderate	Excellent	Good	dichotomous / binary	Any	big
locally deep support vector machine	Good	Slow	Good	Excellent	dichotomous / binary	Any	big
Bayes' point machine	Moderate	Moderate	Excellent	Moderate	dichotomous / binary	Any	

Scale:

Excellent Good Moderate
Fast Moderate Slow

- Creates classification estimates for label / prediction variable with 2+ classes
- Decision trees vs. Logistic Regression vs. Neural Network
- Typical Problem would be predicting a class for label variable
- Typical Azure Algorithms
 - <u>Decision Forest</u> Multiclass
 - <u>Decision Jungle</u> Multiclass
 - <u>Logistic Regression</u> Multiclass
 - Neural Network Multiclass

3 Multi-class Classification parameters 4

▲ Multiclass Decision Forest

▲ Multiclass Decision Jungle

Bagging	
	~
Create trainer mode	
Single Parameter	~
Number of decision DAGs	
8	
Maximum depth of the d	
32	
Maximum width of the de	
128	
Number of optimization s	
2048	
✓ Allow unknown value	

▲ Multiclass Logistic Regression

Create trainer mode	
Single Parameter	~
Optimization tolerance	
1E-07	
L1 regularization weight	
1	
L2 regularization weight	
1	
Memory size for L-BFGS	
20	
Random number seed	
✓ Allow unknown categ	_

3 Multi-class Classification

Short DEMO

3 Evaluating multi-class Classificati

Actual Class

Metrics

■ Metrics

Overall accuracy 0.42

Average accuracy 0.613333

Micro-averaged precision 0.42

Macro-averaged precision 0.408059

Micro-averaged recall 0.42

Macro-averaged recall 0.427369

Confusion Matrix

Predicted Class

1 2 3

8.0%

34.6%

47.8%

1 40.0% 52.0%
2 25.0% 40.4%
3 21.7% 30.4%

3 Evaluating multi-class Classification

12	7						
	Class	Predicted as "1"	Predicted as "2"	Predicted as "3"	Average Log Loss	Precision	Recall
view as		M ii		latti.	L	li tala	i ili
	1	10	13	2	4.614802	0.357143	0.4
	2	13	21	18	5.49525	0.512195	0.403846
	3	5	7	11	2.129248	0.354839	0.478261
	1	4	14	7	2.766719	0.444444	0.16
	2	2	25	25	2.397737	0.581395	0.480769
	3	3	4	16	0.980574	0.333333	0.695652
	1	2	19	4	1.354347	0.5	0.08
	2	2	35	15	0.842228	0.530303	0.673077
	3	0	12	11	0.92375	0.366667	0.478261
	1	3	19	3	1.32618	0.375	0.12
	2	4	34	14	0.760755	0.548387	0.653846
	3	1	9	13	0.951068	0.433333	0.565217

columns

rows

3 Comparison of Multi-class Classification

Multi-class classification	Accuracy	Training time	Linearity	Customization	Predicting Variable	Type of independant variable(s)	Data Quantity
logistic regression	Good	Fast	Excellent	Good	Nominal / ordinal (with 2+ classes)	any	small-big
decision forest	Excellent	Moderate	Good	Good	Nominal / ordinal (with 2+ classes)	any	big
decision jungle	Excellent	Moderate	Good	Good	Nominal / ordinal (with 2+ classes)	any	big
neural network	Excellent	Slow	Moderate	Excellent	Nominal / ordinal (with 2+ classes)	any	small

Scale:

Excellent Good Moderate
Fast Moderate Slow

4 Using Sweeping and SMOTE

Sweep helps automatically finds the best parameter setting.

■ Sweep Parameters

Specify parameter sweeping
Random sweep
Maximum number of run
Random seed
0
Label column
Selected columns:
Launch the selector tool
to make a selection
Launch column selector
Metric for measuring perf
Accuracy
Metric for measuring perf
Mean absolute error

SMOTE helps with imbalanded datasets.

■ SMOTE

Label column Selected columns: All labels Launch column selector SMOTE percentage 100 Number of nearest neigh... 1 Random seed

4 Using Sweeping and SMOTE

Short DEMO

5 Clustering

- Assigns value to a given centroid/cluster based on similarity/dissimilarity of values
- Unsupervised machine learning algorithm
- Typical Azure Algorithms
 - K-means Clustering

▲ K-Means Clustering

Create trainer mode	
Single Parameter	~
Number of Centroids	=
2	
Initialization	
K-Means++	~
Random number seed	
Metric	
Metric Euclidean	-
	>
Euclidean	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Euclidean	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

5 Clustering

Short DEMO

145 F

Cluster 0 Cluster 2

Cluster 1

Gender	Favorite_ice_cream	Score_video_game	Score_puzzle_game	Buyer	Salary_recoded	Assignments	DistancesToClusterCenter no.0	DistancesToCluste no.1
П	ili	adda.		1.1	dat	ll.	Muh	ullu
0	3	61	66	1	5	0	4.516345	34.428277
0	2	58	51	0	2	2	12.023479	22.491586
0	2	39	46	1	4	1	25.931697	5.941905
0	1	42	26	1	4	1	40.539523	14.764887
0	2	58	51	0	2	2	12.023479	22.491586
1	2	51	58	1	4	2	9.147412	21.880151
0	2	50	51	0	1	2	14.858878	16.057023
1	1	53	37	0	2	2	26.597987	15.125624
1	2	61	56	0	2	0	7.450402	27.673597

Key takeaways

- Knowing your data-sets and data-types
- Knowing group of algorithms
- Correct algorithms for suitable data
- Use Azure ML cheat-sheet diagram when in doubt (https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-cheat-sheet/)
- A-Z list of Modules (https://msdn.microsoft.com/en-us/library/azure/dn906033.aspx)
- Play with algorithms
- Always double check your Azure ML Algorithms in R or Python (!!)

How did you like it?

Please give feedback

to the event:

http://www.sqlsaturday.com/494/eventeval.aspx

to me as a speaker:

http://www.sqlsaturday.com/494/sessions/sessionevaluation.aspx

THANKS!

