FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

TIN Teoretická informatika

1. domáca úloha

Obsah

1	Príklad číslo 1 1.1 (a) 1.2 (b) 1.3 (c)	
2	Príklad číslo 2	•
3	Príklad číslo 3	4
4	Príklad číslo 4	4
5	Príklad číslo 5	Ę
6	Literatúra	ę

1 Príklad číslo 1

1.1 (a)

Vyjadríme si rozdiel množín ekvivalentným vzťahom pomocou prieniku a doplnku (komplementu), aby sme mohli využiť vetu zo študijného textu.

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Podľa $Vety~3.23~[1](str.~\check{c}.~50)$ platí, že trieda regulárnych jazykov \mathcal{L}_3 je uzavretá voči prieniku a doplnku (komplementu).

$$L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \cap \overline{L_2} \in \mathcal{L}_3$$

Využitím hore uvedenej Vety 3.23 a vzťahov možeme stanoviť, že nasledujúci vzťah je platný.

$$L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_3$$

1.2 (b)

Vyjadríme si rozdiel množín ekvivalentným vzťahom pomocou prieniku a doplnku (komplementu), aby sme mohli využiť vetu zo študijného textu.

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Podľa Vety 4.27 [1](str. č. 96) platí, že trieda deterministických bezkontextových jazykov \mathcal{L}_2^D je uzavretá voči prieniku a doplnku (komplementu).

$$L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \cap \overline{L_2} \in \mathcal{L}_2^D$$

Využitím hore uvedenej Vety 4.27 a vzťahov možeme stanoviť, že nasledujúci vzťah je platný.

$$L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2^D$$

1.3 (c)

Predpokladajme, že $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2$ je pravdivý vzťah.

Ak berieme v úvahu, že $L_1 = \Sigma^*$ (regulárny jazyk), tak musí platiť:

$$\Sigma^* \setminus L_2 \in \mathcal{L}_2 \Rightarrow \overline{L_2} \in \mathcal{L}_2 \Rightarrow \underline{\mathbf{SPOR}}$$

Vznikol nám spor pri $\overline{L_2} \in \mathcal{L}_2$ z toho dôvodu, že podľa *Vety 4.24* [1](str. č. 95) platí, že bezkontextové jazyky nie sú uzavreté voči prieniku a doplnku.

Takže $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2$ nie je pravdivý vzťah.

2 Príklad číslo 2

 $M_L = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{\#, 0, 1, 2\}$$

$$\Gamma = \{Z_0, 1\}$$

$$F = \{q_3\}$$

$$\delta: \quad \delta(q_0, 0, Z_0) = (q_0, Z_0)$$

$$\delta(q_0, 1, Z_0) = (q_0, 1Z_0)$$

$$\delta(q_0, 2, Z_0) = (q_0, 11Z_0)$$

$$\delta(q_0, 0, 1) = (q_0, 1)$$

$$\delta(q_0, 1, 1) = (q_0, 11)$$

$$\delta(q_0, 2, 1) = (q_0, 111)$$

3 Príklad číslo 3

$$L = \{ w_1 \# w_2 \mid w_1, w_2 \in \Sigma^*, \#_1(w_1) + (2 * \#_2(w_1)) = \#_1(w_2) + (2 * \#_2(w_2)) \}$$

 $Veta \ 3.18 \ [1]$ (str. č. 46): Nechť L je nekonečný regulární jazyk. Pak existuje celočíselná konstanta p>0 taková, že platí: $w\in L \land |w|\geq p \Rightarrow w=xyz\land y\neq \varepsilon \land |xy|\leq p \land xy^iz\in L$ pro $i\geq 0$

Predpokladáme že jazyk L je regulárny jazyk a tak tento jazyk musí spĺňať hore uvedenú Vetu 3.18.

Pre $w \in L : w = 1^p \# 1^p$ pre ktoré platí podmienka $|w| \ge p$ pretože platí 2p + 1 > p, pričom z dôvodu podmienky $|xy| \le p$ nastane jediný prípad a to:

$$x=1^l \wedge y=1^m \wedge z=1^{p-l-m}\#1^p$$
kde $l \geq 0$ a $m>0 \wedge l+m \leq p$ pre $l,m \in N$

$$xy^iz = 1^l(1^m)^i1^{p-l-m}\#1^p = 1^{l+(i*m)+p-l-m}\#1^p = 1^{(i*m)+p-m}\#1^p \notin L \text{ pre všetky } i \geq 0 \land i \neq 1 \land i \in N$$

Z predošlého vzťahu vyplýva, že jazyk L nie je regulárny.

4 Príklad číslo 4

ALGORITMUS

Vstup: Pravá lineárna gramatika $G_P = (N, \Sigma, P, S)$

 $\mathbf{V}\hat{\mathbf{y}}\mathbf{stup}$: L'avá lineárna gramatika $G_L=(N',\Sigma',P',S')$ taká, že $L(G_P)=L(G_L)$

Metóda:

1.)
$$N' = N \cup \{S'\} \text{ kde } S' \notin N$$

2.)
$$\Sigma' = \Sigma$$

3.)
$$P'$$
: $\forall A, B, S \in N, \ w \in \Sigma^*$:
$$I. \mid (S \to \varepsilon) \in P'$$

$$II. \mid (B \to Aw) \in P' \iff (A \to wB) \in P$$

$$III. \mid (S' \to Aw) \in P' \iff (A \to w) \in P$$

DEMONŠTRÁCIA

Vstup: Pravá lineárna gramatika $G = (\{S, A, B\}, \{a, b\}, P, S)$

P:
$$S \to abA \mid bS$$

 $A \to bB \mid S \mid ab$
 $B \to \varepsilon \mid aA$

Realizácia:

1.)
$$N' = N \cup \{S'\}$$

2.)
$$\Sigma' = \Sigma$$

3.)
$$P'$$
: $S \to abA$ sa transformuje na $A \to Sab$ podľa II . $S \to bS$ sa transformuje na $S \to Sb$ podľa II . $A \to bB$ sa transformuje na $B \to Ab$ podľa II . $A \to S$ sa transformuje na $S \to A$ podľa II . $A \to ab$ sa transformuje na $S' \to Aab$ podľa III . $B \to \varepsilon$ sa transformuje na $S' \to B$ podľa III . $B \to aA$ sa transformuje na $A \to Ba$ podľa III . $B \to aA$ sa transformuje na $A \to Ba$ podľa II . $B \to aA$ sa transformuje na $A \to Ba$ podľa II .

 $\mathbf{V\acute{y}stup}$: L'avá lineárna gramatika $G_L = (N', \Sigma', P', S')$ taká, že $L(G) = L(G_L)$

Overenie:

Pravá lineárna gramatika G_P derivuje reťazec babbaabb.

$$S \Rightarrow bS \Rightarrow babA \Rightarrow babbB \Rightarrow babbaA \Rightarrow babbaA \Rightarrow babbaAbB \Rightarrow babbaabB$$

Ľavá lineárna gramatika G_L musí tiež derivovať reťazec babbaabb, keďže platí $L(G_P) = L(G_L)$.

$$S' \Rightarrow B \Rightarrow Ab \Rightarrow Sabb \Rightarrow Aabb \Rightarrow Baabb \Rightarrow Abaabb \Rightarrow Sabbaabb \Rightarrow Sabbaabb \Rightarrow babbaabb$$

5 Príklad číslo 5

Definícia \sim_L pre jazyk L:

$$u \sim_L v \overset{\text{def}}{\Longleftrightarrow} \left(\#_a(u) mod \ 3 = \#_a(v) mod \ 3 \wedge \left(\left(\#_b(u) > 0 \wedge \#_b(v) > 0\right) \vee \left(\#_b(u) = 0 \wedge \#_b(v) = 0\right)\right)\right)$$

Vychádzajme z Vety 3.21 [1](str. č. 49), že počet stavov ľubovoľného minimálneho DKA prijímajúci jazyk L je rovný indexu \sim_L .

Vytvorme si úplne definovaný DKA bez nedosiahnuteľných stavov ktorý prijíma jazyk L:

S využitím Algoritmu 3.5 [1](str. č. 34) minimalizujme predošlý automat:

	\equiv^0	a	b
	X	A(I)	B(I)
	A	AA(I)	AB(II)
Ι	AA	AAA(I)	AAB(II)
1	AAA	A(I)	AAAB(I)
	В	AB(II)	B(I)
	AAAB	AB(II)	AAAB(I)
тт	AB	AAB(II)	AB(II)
II	AAB	AAAB(I)	AAB(II)

	\equiv^1	a	b
	X	A(II)	B(III)
1	AAA	A(II)	AAAB(III)
II	A	AA(II)	AB(IV)
11	AA	AAA(I)	AAB(V)
III	В	AB(IV)	B(III)
111	AAAB	AB(IV)	AAAB(III)
IV	AB	AAB(V)	AB(IV)
V	AAB	AAAB(I)	AAB(V)

	\equiv^2	a	b
ī	X	A(II)	B(IV)
1	AAA	A(II)	AAAB(IV)
II	A	AA(III)	AB(V)
III	AA	AAA(I)	AAB(VI)
IV	В	AB(V)	B(IV)
1 V	AAAB	AB(V)	AAAB(IV)
V	AB	AAB(VI)	AB(V)
VI	AAB	AAAB(IV)	AAB(VI)

$$\equiv^2 = \equiv^3 = \equiv$$

Zakreslíme si náš minimalizovaný DKA:

Premenujeme si jednotlivé stavy automatu ktoré znázorňujú jednotlivé ekvivalenčné triedy:

$$\begin{split} & I \rightarrow q_0 \\ & II \rightarrow q_1 \\ & III \rightarrow q_2 \\ & IV \rightarrow q_3 \\ & V \rightarrow q_4 \\ & VI \rightarrow q_5 \end{split}$$

Znovu zakreslíme automat s premenovanými stavmi:

Rozklad Σ^*/\sim_L je tvorený nasledujúcimi šiestimi triedami:

$$\begin{split} L^{-1}(q_0) &= \{ w \mid \#_a(w) mod \ 3 = 0 \land \#_b(w) = 0 \} \\ L^{-1}(q_1) &= \{ w \mid \#_a(w) mod \ 3 = 1 \land \#_b(w) = 0 \} \\ L^{-1}(q_2) &= \{ w \mid \#_a(w) mod \ 3 = 2 \land \#_b(w) = 0 \} \\ L^{-1}(q_3) &= \{ w \mid \#_a(w) mod \ 3 = 0 \land \#_b(w) > 0 \} \\ L^{-1}(q_4) &= \{ w \mid \#_a(w) mod \ 3 = 1 \land \#_b(w) > 0 \} \\ L^{-1}(q_5) &= \{ w \mid \#_a(w) mod \ 3 = 2 \land \#_b(w) > 0 \} \end{split}$$

Rozklad Σ^*/\sim_L má tak konečný počet tried (šesť tried t.j. relácia \sim_L má index 6) z čoho vyplýva podľa Vety~3.20~[1](str.~č.~48), že sa jedná o regulárny jazyk t.j. platí Veta~3.21~[1](str.~č.~48), keďže sme vedeli zostrojiť minimálny konečný automat.

Jazyk L je tvorený zjednotením dvoch predošlých tried:

$$L = L^{-1}(q_4) \cup L^{-1}(q_5)$$

6 Literatúra

[1] M. Češka, T. Vojnar, A. Smrčka, A. Rogalewicz: Teoretická informatika - Studijní text.
 2018-08-23, [Online; Accessed: 2018-10-15].
 URL: http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf