Experiment: Common Source Amplifier

Aim:

To implement a common source amplifier of gain 10 and analyze its transient and ac characteristics.

Tool Used:

LTspice

Theory:

The common-source (CS) amplifier for MOSFET is the analogue of the common emitter amplifier for BJT. Its popularity arises from its high gain, and that by cascading a number of them, larger amplification of the signal can be achieved.

For a Level 3 NMOS let's assume

 $V_{GS} = 0.6V$

 $V_{T} = 0.4V$

 $V_{DD} = 1.8V$

 $K_n = 120 \mu A/V^2,$

Which gives a value of (W/L) = 416 for $1mA I_D$.

Also, for these values g_m is attained as $10m\Omega^{-1}$, therefore for gain 10, R_D is taken as $1K\Omega$.

The value of V_{DS} should be maintained above (V_{GS} - V_{T} = 0.6 - 0.4 = 0.2V) for the transistor to stay in saturation region.

As W/L is 416, the width is taken as 416 μ m and the length is taken as 1 μ m.

Circuit Schematic:

Output Waveforms:

DC operating Point

```
--- Operating Point ---
```

```
V(n001):
                     1.8
                                    voltage
V(drain):
                     0.299922
                                    voltage
V(gate):
                     0.6
                                    voltage
V(n002):
                                    voltage
V(out):
                     2.99922e-008
                                    voltage
                     0.00150011
Id(M1):
                                    device_current
Ig(M1):
                                    device current
Ib (M1):
                     -3.09921e-013 device current
Is (M1):
                     -0.00150011
                                    device current
                     6e-020
I(C1):
                                    device current
I(C2):
                     -2.99922e-020 device current
I(R2):
                     6e-006
                                    device_current
I(R1):
                     6e-006
                                    device_current
I(Rd):
                     0.00150008
                                    device_current
I(Vdd):
                     -0.00150608
                                    device current
I(Vin):
                     6e-020
                                    device current
```


AC Analysis

Result:

The circuit is designed for a gain of 10 and the output is verified to be correct. The transient and AC characteristics are visualized.