Instance of \rightarrow^+

```
newtype a \rightarrow^+ b = AddFun (a \rightarrow b)
instance Category (\rightarrow^+) where
  type Obj (\rightarrow^+) = Additive
  id = AddFun id
  AddFun g \circ AddFun f = AddFun (g \circ f)
instance Monoidal (\rightarrow^+) where
  AddFun f \times AddFun \ g = AddFun \ (f \times g)
instance Cartesian (\rightarrow^+) where
  exl = AddFun exl
  exr = AddFun exr
  dup = AddFun dup
```

Fork and Join

- ∇ :: Cartesian $k \Rightarrow (a' k' c) \rightarrow (a' k' d) \rightarrow (a' k' (c \times d))$
- \triangle :: Cartesian $k \Rightarrow (c' k' a) \rightarrow (d' k' a) \rightarrow ((c+d)' k' a)$

...Machine Learning...

Artur Ezequiel Nelson

Universidade do Minho

26 de Abril

Indice

- Nelson
- Categorias
- Fork e Join
- Operacoes Numericas
- Generalizing Automatic Differentiation
- 6 Exemplos
- Generalizar

titulo

Uma curta introdução

- Queremos calcular D⁺.
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

Uma curta introdução

- Queremos calcular D⁺.
- Problema: \mathcal{D} não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

Uma curta introdução

- Queremos calcular D⁺.
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

Uma curta introdução

Corolário 1.1

NOTA: adicionar definição do corolário 1.1 aqui

Corolário 2.1

NOTA: adicionar definição do corolário 2.1 aqui

Corolário 3.1

NOTA: adicionar definição do corolário 3.1 aqui

Categorias clássicas

Uma categoria é um conjunto de objetos(conjuntos e tipos) e de morfismos(operações entre objetos), tendo definidas 2 operações básicas, identidade e composição de morfismos, e 2 leis:

• (C.1) —
$$id \circ f = id \circ f = f$$

• (C.2) — $f \circ (g \circ h) = (f \circ g) \circ h$

Para os efeitos deste papel, objetos são tipos de dados e morfismos são funções

class
$$Category \ k$$
 where id :: (a'k'a) (\circ) :: (b'k'c) \rightarrow (a'k'b) \rightarrow (a'k'c) Artur, Ezequiel, Nelson

instance *Category* (
$$\rightarrow$$
) where id = λ a \rightarrow a $\alpha \circ f = \lambda$ a \rightarrow q (f a)

...Machine Learning...

Categorias clássicas

Uma categoria é um conjunto de objetos(conjuntos e tipos) e de morfismos(operações entre objetos), tendo definidas 2 operações básicas, identidade e composição de morfismos, e 2 leis:

• (C.1) —
$$id \circ f = id \circ f = f$$

• (C.2) —
$$f \circ (g \circ h) = (f \circ g) \circ h$$

Para os efeitos deste papel, objetos são tipos de dados e morfismos são funções

Artur, Ezeguiel, Nelson

class *Category k* where id :: (a'k'a)
$$(\circ)$$
 :: (b'k'c) \rightarrow (a'k'b) \rightarrow

instance *Category* (
$$\rightarrow$$
) where id = λ a \rightarrow a $\alpha \circ f = \lambda$ a \rightarrow q (f a)

...Machine Learning...

Functores clássicos

Um functor F entre categorias \mathcal{U} e \mathcal{V} é tal que:

- para qualquer objeto $t \in \mathcal{U}$ temos que F $t \in \mathcal{V}$
- para qualquer morfismo m :: $a \rightarrow b \in \mathcal{U}$ temos que F m :: $F \ a \rightarrow F \ b \in \mathcal{V}$
- F id $(\in \mathcal{U})$ = id $(\in \mathcal{V})$
- $F(f \circ g) = F f \circ F g$

Nota

Devido à definição de categoria deste papel(objetos são tipos de dados) os functores mapeiam tipos neles próprios.

Objetivo

Começamos por definir um novo tipo de dados:

newtype
$$\mathcal{D}$$
 a b = $\mathcal{D}(a \rightarrow b \times (a \multimap b))$

Depois adaptamos \mathcal{D}^+ para usar este tipo de dados:

Generalizar

Definição adaptada

$$\hat{\mathcal{D}}$$
 :: (a \rightarrow b) \rightarrow \mathcal{D} a b

$$\hat{\mathcal{D}} f = \mathcal{D}(\mathcal{D}^+ f)$$

O nosso objetivo é a dedução de uma instância de categoria para $\mathcal D$ onde $\hat{\mathcal D}$ seja functor.

Recordando os corolários 3.1 e 1.1 deduzimos que

• (DP.1) —
$$\mathcal{D}^+id = \lambda a \rightarrow (id \ a,id)$$

• (DP.2) —
$$\mathcal{D}^+(g \circ f) = \lambda a \rightarrow let\{(b, f') = \mathcal{D}^+ \text{ f a; } (c, g') = \mathcal{D}^+ \text{ g b } \} \text{ in } (c, g' \circ f')$$

 $\hat{\mathcal{D}}$ ser functor é equivalente a dizer que, para todas as funções f e g de tipos apropriados:

• id =
$$\hat{\mathcal{D}}$$
 id = $\mathcal{D}(\mathcal{D}^+id)$

•
$$\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \hat{\mathcal{D}} (g \circ f) = \mathcal{D}(\mathcal{D}^+(g \circ f))$$

Com base em (DP.1) e (DP.2) podemos reescrever como sendo:

- id = $\mathcal{D}(\lambda a \rightarrow (id \ a,id))$
- $\hat{\mathcal{D}}$ g \circ $\hat{\mathcal{D}}$ f = \mathcal{D} ($\lambda a \rightarrow let\{(b, f') = \mathcal{D}^+$ f a; $(c, g') = \mathcal{D}^+$ g b } in $(c, g' \circ f')$)

Resolver a primeira equação é trivial(definir id da instância como sendo $\mathcal{D}(\lambda a \to (\text{id a,id})))$.

A segunda equação será resolvida resolvendo uma condição mais geral: $\mathcal{D}g \circ \mathcal{D}f = \mathcal{D}(\lambda a \to let\{(b,f')=f \ a;\ (c,g')=g \ b \ \}$ in $(c,g'\circ f')$, cuja solução é igualmente trivial.

Definição de $\hat{\mathcal{D}}$ para funções lineares

linearD ::
$$(a \rightarrow b) \rightarrow \mathcal{D}$$
 a b linearD f = $\mathcal{D}(\lambda a \rightarrow (f a, f))$

Instância da categoria que deduzimos

instance $Category \mathcal{D}$ where

$$\mathcal{D}g \circ \mathcal{D}f = \mathcal{D}(\lambda a \rightarrow let\{(b,f') = f a; (c,g') = g b \} in (c,g' \circ f'))$$

Prova da instância

Antes de continuarmos devemos verificar se esta instância obedece às leis (C.1) e (C.2).

Se considerarmos apenas morfismos $\hat{f}::\mathcal{D}$ a b tal que $\hat{f}=\mathcal{D}^+$ f para $f::a\to b$ (o que podemos garantir se transformarmos \mathcal{D} a b em tipo abstrato) podemos garantir que \mathcal{D}^+ é functor.

Prova de (C.1)

 $\mathsf{id} \circ \hat{\mathcal{D}}$

- = $\hat{\mathcal{D}}id \circ \hat{\mathcal{D}}$ f -lei functor de id (especificação de $\hat{\mathcal{D}}$)
- = $\hat{\mathcal{D}}$ (id \circ f) lei functor para (\circ)
- = $\hat{\mathcal{D}}$ f lei de categoria

Prova da instância

Prova de (C.2)

$$\hat{\mathcal{D}} \stackrel{h}{h} \circ (\hat{\mathcal{D}} \stackrel{g}{g} \circ \hat{\mathcal{D}} \stackrel{f}{h})$$

- $=\hat{\mathcal{D}} \ \mathsf{h} \circ \hat{\mathcal{D}} \ (\mathsf{g} \circ \mathsf{f}) \mathsf{lei} \ \mathsf{functor} \ \mathsf{para} \ (\circ)$
- = $\hat{\mathcal{D}}$ (h \circ (g \circ f)) lei functor para (\circ)
- = $\hat{\mathcal{D}}$ ((h \circ g) \circ f) lei de categoria
- = $\hat{\mathcal{D}}$ (h \circ g) \circ $\hat{\mathcal{D}}$ f lei functor para (\circ)
- = $(\hat{\mathcal{D}} \ \mathsf{h} \circ \hat{\mathcal{D}} \ \mathsf{g}) \circ \hat{\mathcal{D}} \ \mathsf{f}$ lei functor para (\circ)

Nota

Estas provas não requerem nada de \mathcal{D} e $\hat{\mathcal{D}}$ para além das leis do functor, logo nas próximas instâncias deduzidas de um functor não precisamos de voltar a realizar estas provas.

Categorias e functores monoidais

A versão generalizada da composição paralela será definida através de uma categoria monoidal:

class Category
$$k \Rightarrow Monoidal k$$
 where

instance *Monoidal*
$$(\rightarrow)$$
 where

$$(\times)::(a'k'c)\rightarrow(b'k'd)\rightarrow((a\times b)'k'(c\times d))$$

$$f \times g = \lambda(a,b) \rightarrow (f a,g b)$$

Definição de functor monoidal

Um functor F monoidal entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor clássico
- $F(f \times g) = Ff \times Fg$

A partir do corolário 2.1 deduzimos que:

$$\mathcal{D}^+$$
 (f \times g) = $\lambda(a,b) \rightarrow let\{(c,f') = \mathcal{D}^+$ f a; (d,g') = \mathcal{D}^+ g b } in ((c,d),f'\times g')

Se definirmos o functor F a partir de $\hat{\mathcal{D}}$ chegamos à seguinte condição:

$$\mathcal{D}(\mathcal{D}^+ \mathsf{f}) \times \mathcal{D}(\mathcal{D}^+ \mathsf{g}) = \mathcal{D}(\mathcal{D}^+ \mathsf{(f} \times \mathsf{g}))$$

Substituindo e fortalecendo-a obtemos:

$$\mathcal{D} \ f \times \mathcal{D} \ g = \mathcal{D}(\lambda(a,b) \to \text{let}\{(c,f') = f \ a; \ (d,g') = g \ b \ \} \ \text{in} \ ((c,d),f'\times g'))$$

e esta condição é suficiente para obtermos a nossa instância.

Dedução da instância

Instância da categoria que deduzimos

instance *Monoidal* \mathcal{D} where

$$\mathcal{D}\ f\times\mathcal{D}\ g=\mathcal{D}(\lambda(a,b)\to let\{(c,f')=f\ a;\ (d,g')=g\ b\ \}$$
 in $((c,d),f'\times g'))$

Categorias e funtores cartesianas

class Monoidal $k \Rightarrow Cartesean$ instance $Cartesean (\rightarrow)$

k where where

 $\begin{array}{lll} \text{exl} :: (a \times b)\text{'k'a} & \text{exl} = \lambda(a,b) \rightarrow a \\ \text{exr} :: (a \times b)\text{'k'b} & \text{exr} = \lambda(a,b) \rightarrow b \end{array}$

 $dup :: a'k'(a \times a) \qquad \qquad dup = \lambda a \rightarrow (a,a)$

Um functor F cartesiano entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor monoidal
- F exl = exl
- $F \exp = \exp$
- F dup = dup

Pelo corolário 3.1 e pelo facto que exl, exr e dup são linerares deduzimos que:

$$\mathcal{D}^+$$
 exl $\lambda p \rightarrow (\text{exp p, exl})$
 \mathcal{D}^+ exr $\lambda p \rightarrow (\text{exr p, exr})$

$$\mathcal{D}^+$$
 dup $\lambda a \rightarrow$ (dup a, dup)

Após esta dedução podemos continuar a determinar a instância:

$$exl = \mathcal{D}(\mathcal{D}^+ exl)$$

$$exr = \mathcal{D}(\mathcal{D}^+ exr)$$

$$\mathsf{dup} = \mathcal{D}(\mathcal{D}^+ \, \mathsf{dup})$$

Dedução da instância

Substituindo e usando a definição de linearD obtemos:

exl = linearD exl

exr = linearD exr

dup = linearD dup

E podemos converter a dedução acima diretamente em instância:

Instância da categoria que deduzimos

instance Cartesian \mathcal{D} where

exl = linearD exl

exr = linearD exr

dup = linearD dup

Categorias cocartesianas

São o dual das categorias cartesianas.

Nota

Neste papel os coprodutos correspondem aos produtos das categorias, i.e., categorias de biprodutos.

```
class Category k \Rightarrow Cocartesian k where:
```

```
inl :: a'k'(a \times b)
inlr:: b'k'(a \times b)
jam :: (a \times a)'k'a
```

Functores cocartesianos

Definição de functor cocartesiano

Um functor F cartesiano entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor
- F inl = inl
- F inr = inr
- F jam = jam

Fork e Join

- (Λ) :: Cartesian k \Rightarrow (a 'k' c) \rightarrow (a 'k' d) \rightarrow (a 'k' (c \times d))
- (∇) :: Cartesian $k \Rightarrow (c \ 'k' \ a) \rightarrow (d \ 'k' \ a) \rightarrow ((c \times d) \ 'k' \ a)$

instancia de \rightarrow^+

```
newtype a \rightarrow<sup>+</sup> b = AddFun (a \rightarrow b)
instance Category (\rightarrow^+) where
       type Obj (\rightarrow^+) = Additive
       id = AddFun id
       AddFun g \circ AddFun f = AddFun (g \circ f)
instance Monoidal (\rightarrow^+) where
       AddFun f \times AddFun g = AddFun (f \times g)
instance Cartesian (\rightarrow<sup>+</sup>) where
       exl = AddFun exl
       exr = AddFun exr
       dup = AddFun dup
```

instancia de \rightarrow^+

```
instance Cocartesian (\rightarrow^+) where
          inl = AddFun inlF
          inr = AddFun inrF
          jam = AddFun jamF
in F:: Additive b \Rightarrow a \rightarrow a \times b
inrF :: Additive a \Rightarrow b \rightarrow a \times b
jamF :: Additive a \Rightarrow a \times a \rightarrow a
inlF = \lambda a \rightarrow (a, 0)
inrF = \lambdab \rightarrow (0, b)
jamF = \lambda(a, b) \rightarrow a + b
```

definição de NumCat

```
class NumCat k a where
      negateC :: a 'k' a
      addC :: (a \times a) 'k' a
      mulC :: (a \times a) 'k' a
       . . .
instance Num a \Rightarrow NumCat (\rightarrow) a where
      negateC = negate
      addC = uncurry (+)
      mulC = uncurry(\cdot)
```

$$D (negate u) = negate (D u)$$

$$D (u + v) = D u + D v$$

$$D(u \cdot v) = u \cdot Dv + v \cdot Du$$

- Impreciso na natureza de u e v.
- Algo mais preciso seria defenir a diferenciação das operações em si.

class Scalable k a where

scale :: $a \rightarrow (a 'k' a)$

instance Num a \Rightarrow Scalable (\rightarrow ⁺) a where scale a = AddFun (λ da \rightarrow a \cdot da)

instance NumCat D where

negateC = linearD negateC

addC = linearD addC

 $\mathsf{mulC} = \mathsf{D} \; (\lambda(\mathsf{a}, \mathsf{b}) \to (\mathsf{a} \cdot \mathsf{b}, \, \mathsf{scale} \, \mathsf{b} \, \nabla \, \mathsf{scale} \, \mathsf{a}))$

Generalizing Automatic Differentiation

```
newtype D_k a b = D (a \rightarrow b \times (a 'k' b))
```

linearD ::
$$(a \rightarrow b) \rightarrow (a \ \text{k'} \ b) \rightarrow \textit{D}_k \ a \ b$$

linearD f f'= D (
$$\lambda a \rightarrow$$
 (f a, f'))

instance Category
$$k \Rightarrow$$
 Category D_k where type Obj $D_k =$ Additive \land Obj $k \dots$

instance Monoidal
$$k \Rightarrow$$
 Monoidal D_k where ...

instance Cartesian
$$k \Rightarrow$$
 Cartesian D_k where ...

instance Cocartesian
$$k \Rightarrow$$
 Cocartesian D_k where

instance Scalable k s \Rightarrow NumCat D_k s where negateC = linearD negateC negateC addC = linearD addC addC mulC = D (λ (a, b) \rightarrow (a · b, scale b ∇ scale a))

Exemplos

Generalizar