Számítógépes Hálózatok

5. Előadás: Adatkapcsolati réteg III.

Réselt ALOHA

- A csatornát azonos időrésekre bontjuk, melyek hossza pont egy keret átviteléhez szükséges idő.
- Átvitel csak az időrések határán lehetséges

- Algoritmus:
 - Amikor egy új A keret küldésre kész:
 - Az A keret kiküldésre kerül a (következő) időrés-határon

A réselt ALOHA vizsgálata

- A sebezhetőségi idő a felére csökken!!!
- Tudjuk, hogy:

$$P_k(t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

Ez esetben $t = T_f$ és továbbra is k = 0, amiből kapjuk, hogy:

$$P_0(T_f) = \frac{(\lambda \cdot T_f)^0 e^{-\lambda T_f}}{0!} = e^{-G}$$
 because $\lambda = \frac{G}{T_f}$. Thus, $S = G \cdot e^{-G}$

Réselt ALOHA

Adatszóró (Broadcast) Ethernet

Eredetileg az Ethernet egy adatszóró technológia volt

Vivőjel érzékelés Carrier Sense Multiple Access (CSMA)

- További feltételezés
 - Minden állomás képes belehallgatni a csatornába és így el tudja dönteni, hogy azt más állomás használja-e átvitelre

7

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Folytonos időmodellt használ a protokoll

Algoritmus

- Keret leadása előtt belehallgat a csatornába:
 - Ha foglalt, akkor addig vár, amíg fel nem szabadul. Szabad csatorna esetén azonnal küld. (perzisztens)
 - b) Ha szabad, akkor küld.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

Tulajdonságok

- A terjedési késleltetés nagymértékben befolyásolhatja a teljesítményét.
- Jobb teljesítményt mutat, mint az ALOHA protokollok.

8

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Folytonos időmodellt használ a protokoll
- Mohóság kerülése

Algoritmus

- Keret leadása előtt belehallgat a csatornába:
 - Ha foglalt, akkor véletlen ideig vár (nem figyeli a forgalmat), majd kezdi előröl a küldési algoritmust. (nem-perzisztens)
 - b) Ha szabad, akkor küld.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

Tulajdonságok

Jobb teljesítményt mutat, mint az 1-perzisztens CSMA protokoll. (intuitív)

Ģ

- Vivőjel érzékelés van, azaz minden állomás belehallgathat a csatornába.
- Diszkrét időmodellt használ a protokoll

Algoritmus

- Adás kész állapotban az állomás belehallgat a csatornába:
 - a) Ha foglalt, akkor vár a következő időrésig, majd megismétli az algoritmust.
 - b) Ha szabad, akkor p valószínűséggel küld, illetve 1-p valószínűséggel visszalép a szándékától a következő időrésig. Várakozás esetén a következő időrésben megismétli az algoritmust. Ez addig folytatódik, amíg el nem küldi a keretet, vagy amíg egy másik állomás el nem kezd küldeni, mert ilyenkor úgy viselkedik, mintha ütközés történt volna.
- Ha ütközés történik, akkor az állomás véletlen hosszú ideig vár, majd újrakezdi a keret leadását.

CSMA áttekintés

Nem-perzisztens
 1-perzisztens

P-perzisztens

Atvitel ha szabad

Könstans v. változó

Késleltetés

Foglalt csatorna

Kész

Nem-perzisztens:

Átvitel ha szabad

Különben: késleltetés, újrapróbáljuk

1-perzisztens:

Átvitel amint a csatorna szabad Ütközés esetén visszalépés, majd újrapróbáljuk

p-perzisztens:

Átvitel p valószínűséggel, ha a csatorna szabad Különben: várunk 1 időegységet és újrapróbáljuk

CSMA és ALOHA protokollok összehasonlítása

CSMA/CD - CSMA ütközés detektálással (CD = Collision Detection)

- Ütközés érzékelés esetén meg lehessen szakítani az adást.
 ("Collision Detection")
 - Minden állomás küldés közben megfigyeli a csatornát,
 - ha ütközést tapasztal, akkor megszakítja az adást, és véletlen ideig várakozik, majd újra elkezdi leadni a keretét.

- Mikor lehet egy állomás biztos abban, hogy megszerezte magának a csatornát?
 - Az ütközés detektálás minimális ideje az az idő, ami egy jelnek a két legtávolabbi állomás közötti átviteléhez szükséges.

CSMA/CD

 Egy állomás megszerezte a csatornát, ha minden más állomás érzékeli az átvitelét.

 Az ütközés detektálás működéséhez szükséges a keretek hosszára egy alsó korlátot adnunk

Ethernet a CSMA/CD-t használja

- Carrier sense multiple access with collision detection
- Alapvetés: a közeg lehetőséget ad a csatornába hallgatásra
- Algoritmus
 - Használjuk valamely CSMA variánst
 - A keret kiküldése után, figyeljük a közeget, hogy történik-e ütközés
 - 3. Ha nem volt ütközés, akkor a keretet leszállítottuk
 - 4. Ha ütközés történt, akkor azonnal megszakítjuk a küldést
 - Miért is folytatnánk hisz a keret már sérült...
 - 5. Alkalmazzuk az bináris exponenciális hátralék módszert az újraküldés során (binary exponential backoff)

CSMA/CD Ütközések

1.5

- □ Ütközések történhetnek
- Az ütközéseket gyorsan észleljük és felfüggesztjük az átvitelt
- Mi a szerepe a távolságnak, propagációs időnek és a keret méretének?

- Ütközés érzékelésekor a küldő egy ún. "jam" jelet küld
 - Minden állomás tudomást szerezzen az ütközésről
- Binary exponential backoff működése:
 - □ Válasszunk egy $k \in [0, 2^n 1]$ egyenletes eloszlás szerint, ahol n = az ütközések száma
 - □ Várjunk k időegységet (keretidőt) az újraküldésig
 - n felső határa 10, 16 sikertelen próbálkozás után pedig eldobjuk a keretet
- A hátralék idő versengési résekre van osztva

Binary Exponential Backoff

Tekintsünk két állomást, melyek üzenetei ütköztek

- Első ütközés után: válasszunk egyet a két időrés közül
 - □ A siker esélye az első ütközés után: 50%
 - Átlagos várakozási idő: 1,5 időrés
- Második ütközés után: válasszunk egyet a négy rés közül
 - □ Sikeres átvitel esélye ekkor: 75%
 - Átlagos várakozási idő: 2,5 rés
- Általában az m. ütközés után:
 - A sikeres átvitel esélye: 1-2^{-m}
 - Average delay (in slots): $0.5 + 2^{(m-1)}$

- Miért 64 bájt a minimális keretméret?
 - Az állomásoknak elég időre van szüksége az ütközés detektálásához
- Mi a kapcsolat a keretméret és a kábelhossz között?
- t időpont: Az A állomás megkezdi az átvitelt
- t + d időpont: A B állomás is megkezdi az átvitelt
- t + 2*d időpont: A érzékeli az ütközést

Alapötlet: Az A állomásnak 2*d ideig kell küldenie!

CSMA/CD

CSMA/CD három állapota:
 versengés, átvitel és szabad.

 Ahhoz, hogy minden ütközést észleljünk szükséges:

$$T_f \ge 2T_{pg}$$

- ahol T_f egy keret elküldéséhez szükséges idő
- és T_{pg} a propagációs késés A
 és B állomások között

- Az A küldésének 2*d ideig kell tartania
 - Min_keret = ráta (b/s) * 2 * d(s)
 - 10 Mbps Ethernet
 - Pr
 A keretméret és a kábelhossz változik
 Aza a gyorsabb szabványokkal...
 - Min_keret = \(\bar{\text{N}} \)
- □ Azaz a kábel össx
 - Távolság = min_ke

* 2 * távolság (m) / fényseb. (m/s)

sség

- **....**
- * fénysebesség /(2 * ráta)

 $(64B*8)*(2*10^8 \text{mps})/(2*10^7 \text{bps}) = 5120 \text{ méter}$

Minimális keretméret

- Az A küldésének 2*d ideig kell tartania
 - Min_keret = ráta (b/s) * 2 * d (s)
 - ... de mi az a d? propagációs késés, melyet a fénysebesség ismeretében ki tudunk számolni
 - Propagációs késés (d) = távolság (m) / fénysebesség (m/s)
 - Azaz:
 - Min_keret = ráta (b/s) * 2 * távolság (m) / fényseb. (m/s)
- Azaz a kábel összhossza
 - □ Távolság = min_keret * fénysebesség /(2 * ráta)

$$(64B*8)*(2*10^8 \text{mps})/(2*10^7 \text{bps}) = 5120 \text{ méter}$$

Kábelhossz példa

```
min_keret*fénysebesség/(2*ráta) = max_kábelhossz
(64B*8)*(2*108mps)/(2*10Mbps) = 5120 méter
```

- Mi a maximális kábelhossz, ha a minimális keretméret 1024 bájtra változik?
 - 81,9 kilométer
- Mi a maximális kábelhossz, ha a ráta 1 Gbps-ra változik?
 - □ 51 méter
- Mi történik, ha mindkettő változik egyszerre?
 - □ 819 méter

Maximális keretméret

- □ Maximum Transmission Unit (MTU): 1500 bájt
- □ Pro:
 - Hosszú csomagokban levő biz hibák jelentős javítási költséget okozhatnak (pl. túl sok adatot kell újraküldeni)
- □ Kontra:
 - Több bájtot vesztegetünk el a fejlécekben
 - Összességében nagyobb csomag feldolgozási idő
- Adatközpontokban Jumbo keretek
 - 9000 bájtos keretek

MOTIVÁCIÓ

- az ütközések hátrányosan hatnak a rendszer teljesítményére
 - hosszú kábel, rövid keret
- a CSMA/CD nem mindenhol alkalmazható

FELTÉTELEZÉSEK

- N állomás van.
- Az állomások 0-ától N-ig egyértelműen sorszámozva vannak.
- Réselt időmodellt feltételezünk.

Egy helyfoglalásos protokoll

alapvető bittérkép eljárás

Működés

- Az ütköztetési periódus N időrés
- Ha az i-edik állomás küldeni szeretne, akkor a i-edik versengési időrésben egy 1-es bit elküldésével jelezheti. (adatszórás)
- A versengési időszak végére minden állomás ismeri a küldőket. A küldés a sorszámok szerinti sorrendben történik meg.

Bináris visszaszámlálás protokoll 1/2

 alapvető bittérkép eljárás hátrány, hogy az állomások számának növekedésével a versengési periódus hossza is nő

Működés

- Minden állomás azonos hosszú bináris azonosítóval rendelkezik.
- A forgalmazni kívánó állomás elkezdi a bináris címét bitenként elküldeni a legnagyobb helyi értékű bittel kezdve. Az azonos pozíciójú bitek logikai VAGY kapcsolatba lépnek ütközés esetén. Ha az állomás nullát küld, de egyet hall vissza, akkor feladja a küldési szándékát, mert van nála nagyobb azonosítóval rendelkező küldő.

```
A HOSZT (0011) 0 - - - -

B HOSZT (0110) 0 - - - -

1 0 1 0

C HOSZT (1010) 1 0 1 1

D HOSZT (1011) 1 0 1 1

D kerete
```

Bináris visszaszámlálás protokoll 2/2

 Következmény: a magasabb címmel rendelkező állomásoknak a prioritásuk is magasabb az alacsonyabb című állomásokénál

MOK ÉS WARD MÓDOSÍTÁSA

- Virtuális állomás címek használata.
- Minden sikeres átvitel után ciklikusan permutáljuk az állomások címét.

	Α	В	С	D	E	F	G	Н
Kezdeti állapot	100	010	111	101	001	000	011	110

Idő

Korlátozott versenyes protokollok

28

- Cél: Ötvözni a versenyhelyzetes és ütközésmentes protokollok jó tulajdonságait.
- korlátozott versenyes protokoll Olyan protokoll, amely kis terhelés esetén versenyhelyzetes technikát használ a kis késleltetés érdekében, illetve nagy terhelés mellett ütközésmentes technikát alkalmaz a csatorna jó kihasználása érdekében.

SZIMMETRIKUS PROTOKOLLOK

Adott résben k állomás verseng, minden állomás p valószínűséggel adhat. A csatorna megszerzésének valószínűsége: $kp(1-p)^{k-1}$.

$$P(\text{siker optimális } p \text{ mellett}) = \left(\frac{k-1}{k}\right)^{k-1}$$

 Azaz a csatorna megszerzésének esélyeit a versenyhelyzetek számának csökkentésével érhetjük el.

Adaptív fabejárási protokoll 1/2

Történeti háttér

- 1943 Dorfman a katonák szifiliszes fertőzöttségét vizsgálta.
- 1979 Capetanakis bináris fa reprezentáció az algoritmus számítógépes változatával.

30

Működés

- 0-adik időrésben mindenki küldhet.
 - Ha ütközés történik, akkor megkezdődik a fa mélységi bejárása.
- A rések a fa egyes csomópontjaihoz vannak rendelve.
- Ütközéskor rekurzívan az adott csomópont bal illetve jobb gyerekcsomópontjánál folytatódik a keresés.
- Ha egy bitrés kihasználatlan marad, vagy pontosan egy állomás küld, akkor a szóban forgó csomópont keresése befejeződik.

Következmény

Minél nagyobb a terhelés, annál mélyebben érdemes kezdeni a keresést.

Adaptív fabejárás példa

Az adatkapcsolati réteg "legtetején"...

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

- □ Bridging, avagy hidak
 - Hogyan kapcsoljunk össze LANokat?
- □ Funkciók:
 - Keretek forgalomirányítása a LANok között
- □ Kihívások:
 - Plug-and-play, önmagát konfiguráló
 - Esetleges hurkok feloldása

Visszatekintés

33

Az Ethernet eredetileg adatszóró technológia volt

□ Több állomás = több ütközés = káosz

LAN-ok összekapcsolása

- Kérdés: lehetne-e az egész Internet egy bridge-ekkel összekötött tartomány?
- Hátrány: a bridge-ek sokkal komplexebb eszközök a hub-oknál
 - Fizikai réteg VS Adatkapcsolati réteg
 - Memória pufferek, csomag feldolgozó hardver és routing (útválasztó) táblák szükségesek

Bridge-ek (magyarul: hidak)

- Az Ethernet switch eredeti formája
- □ Több IEEE 802 LAN-t kapcsol össze a 2. rétegben
- Célok
 - □ Ütközési tartományok számának csökkentése
 - Teljes átlátszóság
 - "Plug-and-play," önmagát konfiguráló
 - Nem szükségesek hw és sw változtatások a hosztokon/hub-okon
 - Nem lehet hatással meglévő LAN operációkra

36

Bridge-ek (magyarul: hidak)

- Az Ethernet switch eredeti formája
 - 1. Keretek továbbítása
 - 2. (MAC) címek tanulása
 - 3. Feszítőfa (Spanning Tree) Algoritmus (a hurkok kezelésére)
 - Nem szükségesek hw és sw változtatások a hosztokon/hub-okon
 - Nem lehet hatással meglévő LAN operációkra

Keret Továbbító Táblák

Minden bridge karbantart egy továbbító táblát (forwarding table)

Címek tanulása

38

- Kézi beállítás is lehetséges, de...
 - Időigényes
 - Potenciális hiba forrás
 - Nem alkalmazkodik a változásokhoz (új hosztok léphetnek be és régiek hagyhatják el a hálózatot)
- □ Ehelyett: tanuljuk meg a címeket
 - Tekintsük a forrás címeit a különböző portoko kereteknek --- képezzünk ebből egy tábláza

Töröljük a régi bejegyzéseket

			MAC cím	Port	Kor		
00:00:00:00:AA			00:00:00:00:AA	1	0 minutes		
			00:00:00:00:00:BB	2	0 minutes		
	Port 1	Port 2					

- Kézi beállítás is lehetséges, de...
 - Időigényes
 - Potenciális hiba forrás
 - Nem alkalmazkodik a változásokhoz (új hosztok léphetnek be és régiek hagyhatják el a hálózatot)
- □ Ehelyett: tanuljuk meg a címeket
 - Tekintsük a forrás címeit a különböző portokon beérkező kereteknek --- képezzünk ebből egy táblázatot

		MAC cím	Port	Kor
00 00 00 00 00 44		00:00:00:00:AA	1	0 minutes
00:00:00:00:AA		00:00:00:00:0BB	2	0 minutes
Port 1	Port 2	00.00.00	00.00.RF	2

Hurkok problémája

40

- <Src=AA, Dest=DD>
- Ez megy a végtelenségig
 - Hogyan állítható meg?
- Távolítsuk el a hurkokat a topológiából
 - A kábelek kihúzása nélkül
- 802.1 (LAN) definiál egy algoritmust feszítőfa fépítéséhez és karbantartásához, mely mentén lehetséges a keretek továbbítása

Feszítőfa

41

- □ Egy gráf éleinek részhalmaza, melyre teljesül:
 - Lefed minden csomópontot

A 802.1 feszítőfa algoritmusa

- 42
 - 1. Az egyik bride-et megválasztjuk a fa gyökerének
 - 2. Minden bridge megkeresi a legrövidebb utat a gyökérhez
- 3. Ezen utak unióját véve megkapjuk a feszítőfát
- A fa építése során a bridge-ek egymás között konfigurációs üzeneteket (Configuration Bridge Protocol Data Units [BPDUs]) cserélnek
 - A gyökér elem megválasztásához
 - A legrövidebb utak meghatározásához
 - A gyökérhez legközelebbi szomszéd (next hop) állomás és a hozzá tartozó port azonosításához
 - A feszítőfához tartozó portok kiválasztása

Gyökér meghatározása

- Kezdetben minden állomás feltételezi magáról, hogy gyökér
- Bridge-ek minden irányba szétküldik a BPDU üzeneteiket:

Bridge ID

Gyökér ID Út költség a gyökérhez

- A fogadott BPDU üzenet alapján, minden switch választ:
 - Egy új gyökér elemet (legkisebb ismert Gyökér ID alapján)
 - Egy új gyökér portot (melyik interfész megy a gyökér irányába)
 - Egy új kijelölt bridge-et (a következő állomás a gyökérhez vezető úton)

Feszítőfa építése

- 45
 - A bridge-ek lehetővé teszik hogy növeljük a LAN-ok kapacitását
 - Csökkentik a sikeres átvitelhez szükséges elküldendő csomagok számát
 - Kezeli a hurkokat
 - A switch-ek a bridge-ek speciális esetei
 - Minden port egyetlen egy hoszthoz kapcsolódik
 - Lehet egy kliens terminál
 - vagy akár egy másik switch
 - Full-duplex link-ek
 - Egyszerűsített hardver: nincs szükség CSMA/CD-re!
 - Különböző sebességű/rátájú portok is lehetségesek

Kapcsoljuk össze az Internetet

- □ Switch-ek képességei:
 - MAC cím alapú útvonalválasztás a hálózatban
 - Automatikusan megtanulja az utakat egy új állomáshoz
 - Feloldja a hurkokat
- Lehetne a teljes internet egy ily módon összekötött tartomány?

NEM

- Nem hatékony
 - Elárasztás ismeretlen állomások megtalálásához
- Gyenge teljesítmény
 - A feszítőfa nem foglalkozik a terhelés elosztással
 - Hot spots
- Nagyon gyenge skálázhatóság
 - Minden switch-nek az Internet összes MAC címét ismerni kellene a továbbító táblájában!
- Az IP fogja ezt a problémát megoldani...

Köszönöm a figyelmet!