Introduction Un premier algorithme Formules closes et algorithmes SPS Hauteur A(n) des polynômes cyclotomiques Démonstration

TER - Calcul rapide des polynômes cyclotomiques

Jean-Philippe Merx

M1 Mathématiques - Sorbonne Université

Mai 2025

Contenu du TER

- Analyser l'article d'Andrew Arnold et Michael Monagan sur le calcul rapide des polynômes cyclotomiques
- Expliquer les méthodes et algorithmes utilisés
- Éventuellement réaliser une mise en œuvre et utiliser des logiciels de calcul formel

Définition des polynômes cyclotomiques

• Si U_n est le groupe cyclique des racines n-ième complexes de l'unité, le polynôme cyclotomique Φ_n est :

$$\Phi_n(X) = \prod_{\zeta \in U_n^*} (X - \zeta) = \prod_{\substack{j=1 \\ \text{pg cd}(j,n)=1}}^n (X - e^{\frac{2\pi i}{n}j})$$

où $U_n^* \subseteq U_n$ est l'ensemble des générateurs de U_n .

Polynôme cyclotomique inverse :

$$\Psi_n(x) = \prod_{\zeta \in U_n \setminus U_n^*} (X - \zeta) = \prod_{\substack{j=1 \\ \text{pgcd}(j,n) > 1}}^n (X - e^{\frac{2\pi i}{n}j}) = \frac{X^n - 1}{\Phi_n(X)}.$$

De l'importance des diviseurs de *n*

• $\Phi_n \in \mathbb{Z}[X]$ de degré $\varphi(n)$ où φ est l'indicatrice d'Euler et :

$$P_n(X) = X^n - 1 = \prod_{d|n} \Phi_d(X)$$

Pour p premier ne divisant pas n :

$$\Phi_{np}(X) = \frac{\Phi_n(X^p)}{\Phi_n(X)}$$
 et $\Psi_{np}(X) = \Psi_n(X^p)\Phi_n(X)$

et pour q premier divisant n

$$\Phi_{nq}(X) = \Phi_n(X^q)$$
 et $\Psi_{nq}(X) = \Psi_n(X^q)$

Restriction à n produit de premiers impairs distincts

Comme on a aussi :

$$\Phi_{2n}(X) = \Phi_n(X^2)$$
 si $2 \mid n$ et $\Phi_{2n}(X) = \Phi_n(-X)$ sinon

 \implies il suffit de considérer n produit de premiers impairs distincts.

- ullet D'où un premier algorithme possible pour $n=p_1^{e_1}\cdots p_k^{e_k}$:
 - Itérations pour calculer $\Phi_m(X) = \Phi_{p_1 \cdots p_k}(X)$
 - Calcul de $\Phi_{n/m}(X)$
- Les divisions de polynômes sont la base de l'algorithme
- Utilisation d'une division rapide avec Newton sur séries formelles et FFT

Formules closes

Si $\mu:\mathbb{N}^* \to \{-1,0,1\}\}$ est la fonction de Möbius :

$$\mu(n) =: egin{cases} 1 & ext{si } n = 1 \ 0 & ext{si } n ext{ a un facteur premier carr\'e} \ (-1)^r & ext{où r est le nombre de facteurs premiers de n} \end{cases}$$

on a:

$$\Phi_n(X) = \prod_{d \mid n} (1 - X^{\frac{n}{d}})^{\mu(d)}$$
 (2.4)

$$\Psi_n(X) = -\prod_{d|n,d < n} (1 - X^d)^{-\mu(\frac{n}{d})}$$
 (2.5)

Points critiques pour l'implémentation

- RAPIDITÉ ⇒ type d'algorithme
- Taille mémoire: pour n = 3·5·7·11·13·17·19·23·29, deg Φ_n = 1,021,870,080 et on obtient un polynôme nécessitant au moins 8 Go de mémoire.
- Hauteur A(n) : quel type de données manipuler?
 Un sujet en soi sur lequel on revient plus loin

Algorithmes SPS et SPS-Psi

- Application des formules closes :
 - Multiplication par $1-X^d: \varphi(n)$ soustractions
 - Division par $1 X^d$... ATTENTION!!! Seules $\varphi(n)$ additions sont nécessaires et non $(\varphi(n))^2$
- ullet Algorithme simple avec une allocation mémoire unique pour Φ_n
- ullet ... mais tous les calculs sont effectués sur un tableau de taille arphi(n)

Algorithme SPS4

Utilisation de la localité des formules initiales et de l'efficacité des formules closes

Formules récursives de calcul des polynômes cyclotomiques :

$$\Phi_n(X) = \prod_{j=2}^k -\Psi_{m_j}(X^{e_j}) \prod_{j=1}^k (1 - X^{n/p_j})^{-1} (1 - X^n)$$
 (3.17)

$$\Psi_n(X) = \prod_{j=1}^k \Phi_{m_j}(X^{e_j})$$
 (3.25)

où
$$n=p_1\cdots p_k$$
 et pour $1\leq j\leq k$, $e_j=p_{j+1}\cdots p_k$ et $m_j=p_1\cdots p_{j-1}$

Calcul sur des polynômes de degrés inférieurs au degré total

Implémentations SPS4

Implémentations étudiées

- SAGE implémente directement les formules closes en Python
 + C pour le cœur des calculs
- SYMPY(très lent) en reste aux divisions
- Arnold et Monagan implémentent SPS4 en C (je n'ai pas testé leur programme)
- "La mienne" implémente SPS4 en Python avec allocation mémoire pour chaque polynôme

Importance dans un algorithme

Choix à effectuer :

- Entiers de taille fixe ou pas?
- Pré-calcul ou pas par un algorithme plus lent des n qui obligent à changer de format d'entiers?
- Et quand est-il des calculs intermédiaires?
- Test possible dans les calculs de l'overflow

Options possibles :

- Limiter *n*...
- Changer de représentation en cours de calculs
- Calculs modulo des premiers et reconstitution
- Entiers de longueur infinie

Résultats théoriques sur A(n)

- Pour p < q premiers A(pq) = 1
- $\limsup_{n \to \infty} A(n) = \infty$ et les polynômes cyclotomiques ternaires suffisent
- Tout entier est le coefficient d'un polynôme cyclotomique
- $\limsup_{n \to \infty} A(n) \le \exp(n^{\log 2/\log \log n})$
- Pour une infinité d'entiers n, $A(n) > \exp(n^{\log 2/\log \log n})$

Démonstration

Notebooks Python SAGE & module Python