Name: Tneu Zhen Yang

ID: 22081192

WQD7005 Alternative Assessment 1

Case Study - E-Commerce Customer Behavior Analysis

Github link: https://github.com/zyang1611/WQD7005 AA

SAS link: SAS

Case Study Objective and Data Source

The objective of this case study is to apply machine learning techniques such as decision trees and ensemble learning techniques to predict if e-commerce customers will churn and investigate what factors are more likely to cause a customer to churn. Insights gained from such a case study can provide useful insights to e-commerces businesses and help them retain customers which is essential for the businesses continued growth and profitability.

The dataset used as a starting point for this case study in this was sourced from Kaggle.

https://www.kaggle.com/datasets/shriyashjagtap/e-commerce-customer-for-behavior-analysis/data?select=ecommerce-customer-data-large.csv

However, the dataset was slightly modified and adapted to suit the objectives of this case study. All manipulations and transformations that were conducted on the dataset are documented below.

Part 1: Data Import and Preprocessing

The unedited dataset from Kaggle was first imported into Talend Data Preparation. The goal of this was to explore and gain an understanding of the dataset.

Figure 1: Screenshot of Talend Data Preparation on Kaggle Dataset.

It was found that the dataset consisted of a list of transactions with the attributes listed below.

Table 1: Attributes found in the Kaggle Dataset.

Customer ID	A unique identifier for each customer
Customer Name	The name of the customer
Customer Age	The age of the customer
Gender	The gender of the customer
Age	The age of the customer
Purchase Date	The date of each purchase made by the customer.
Product Category	The category or type of the purchased product.
Product Price	The price of the purchased product.
Quantity	The quantity of the product purchased.
Total Purchase Amount	The total amount spent by the customer in each transaction
Payment Method	The method of payment used by the customer (e.g., credit card, PayPal)
Returns	Whether the customer returned any products from the order (binary: 0 for no return, 1 for return)
Churn	A binary column indicating whether the customer has churned (0 for retained, 1 for churned)

The first thing we notice is that there are two columns that represent the age of the customer. Also we see that the dataset is a list of transactions but also contains details such as customer name, age and gender which in a real-world scenario would belong in another table that represents customer data. Furthermore, the dataset is aimed at predicting customer churn but does not contain typical features used for churn prediction such as Customer Lifetime Value (CLTV), Rate of Returns, Average Transaction Value or Tenure. The next steps will detail how the dataset is adjusted to reflect a real world e-commerce customer and transaction database as well as how a churn prediction dataset is created.

The Kaggle dataset was first split into two separate tables of *customers* and *transactions* to better reflect real-world operating conditions. *customers* is a table representing a list of customers and has a unique identifier for each customer while *transactions* is a table representing a list of transactions and has a unique identifier for each transaction.

Both tables were then imported into Talend Data Preparation for data profiling, data cleaning and data validation.

<u>Data Profiling and Validation</u> customers

≡	Customer ID ≡ fr_postal_code	Customer Name ≡ text	Customer Age ≡ integer	Age ≡ integer	Gender ≡ gender	Churn ≡ integer
1	44605	John Rivera	31	31	Female	0
2	13738	Lauren Johnson	27	27	Female	0
3	33969	Carol Allen	27	27	Male	0
4	42650	Curtis Smith	20	20	Female	0
5	24053	Jose Green	53	53	Male	0
6	19676	Linda Lee	57	57	Male	0
7	19917	Joshua Davis	34	34	Male	1
8	16051	Ellen Kent	45	45	Male	0
9	23734	Cheryl Espinoza	18	18	Male	0
10	16921	Cheyenne James	54	54	Male	0
11	7796	Lisa Dennis	21	21	Male	0
12	21035	Peter Watson	50	50	Female	1
13	37125	Terry Campos	24	24	Female	0
14	41840	Ronald Berger	48	48	Male	0
15	2642	Ian Kelley	67	67	Female	0
16	1254	Mr. David Morgan	70	70	Male	0
17	13389	Monica Ramos	51	51	Male	0
18	24473	Nicole Lewis	38	38	Female	0
19	11230	Rebecca Boyer	23	23	Male	0
20	24741	Steven Mcmillan	50	50	Female	0
21	10191	Walter Griffin	66	66	Male	0
22	6829	Chelsea Williams	43	43	Male	0
23	16825	Melissa Cabrera	37	37	Male	1
24	18467	Terri Carter	23	23	Male	0
25	34857	Alexander Morse	57	57	Male	1
26	21801	Anne Leblanc	19	19	Female	0
4 h						-

Gender column was checked for spelling errors as well as distribution between males and females.

There are two columns that represent age, they were checked for equality then Customer Age was dropped.

Customers PREPARATION 🥒

Next, the distribution of variables Age and Churn were investigated.

Age distribution.

Churn distribution is quite imbalanced.

Cleaned data was exported to a csv file.

transactions

Data Imputation

It was found that the Returns column contained missing values, values were imputed with 0 using the procedure below. Decimal data type was also converted to integer type for the Return column.

Returns distribution.

Explore Total Purchase Amount by Product Category.

Explore Total Purchase Amount by Payment Method.

Cleaned data was exported to a csv file.

Talend Open Studio for Data Integration

The two separate tables customers and transactions were joined using Talend Open Studio to create a raw combined dataset. The output was saved to a csv file.

Define tMap schema to join both tables.

Job design diagram.

Feature engineering for churn analysis

Python was used to conduct feature engineering and create the final churn_analysis dataset with attributes as below.

Customer_ID	A unique identifier for each customer.
Age	The age of the customer
Gender	The gender of the customer
Days_Since_Last_ Purchase	The number of days since the customer last made a purchase
CLTV	Customer Lifetime Value. Estimated as the total amount spent by the customer to date.
Avg_Txn_Value	The average spend per transaction for each customer.
Fav_Category	The customer's most frequently purchased category.
Fav_Payment_Met hod	The customer's most frequently used payment method.
Return Rate	The ratio of transactions with returns to total transactions made by the customer

Churn A binary column indicating whether the customer has churned (0 for retained, 1 for churned)

Part 2: SAS Enterprise Miner

The diagram used in SAS EM is shown above. Each node including decision trees, underfitting and overfitting demonstrations, bagging and boosting will be shown and discussed below.

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
Age	Input	Interval	No		No		
Avg_Txn_Value	Input	Interval	No		No		
CLTV	Input	Interval	No		No		
Churn	Target	Interval	No		No		
Customer_ID	Rejected	Nominal	No		No		
Days_Since_Las	Input	Interval	No		No		
Fav_Category	Input	Nominal	No		No		
Fav_Payment_M	Input	Nominal	No		No		
Gender	Input	Nominal	No		No		
Return_Rate	Input	Interval	No		No		

Define roles and levels for input and target variables.

Part 3: Decision Tree Analysis

Decision trees are a supervising learning algorithm that makes decisions by splitting data into branches resembling a tree. Each branch is then further split recursively, until a stopping criteria is met. Decision trees have the advantage of being easily interpretable but are prone to overfitting and tend to low overall performance. For the purpose of this case study, both overfitting and underfitting will be demonstrated.

Decision Tree Underfitting

Decision trees underfit data when the model is too simple to learn complex patterns in the data, in a similar way to overfitting, this results in poor model performance. Underfitting commonly occurs when decision trees are too shallow or pruning is conducted too aggressively. To demonstrate underfitting, the maximum depth of 3 was set in SAS EM. Since this dataset is imbalanced as demonstrated in the Data Profiling stage earlier, we investigate the performance of the decision tree at predicting both outcomes for Churn as shown in the confusion matrix and report below. The accuracy of the model at predicting churn is poor as seen by the low percentage values achieved.

Event Classification Table

Data Role=TRAIN Target=Churn Target Label=' '

False True False True
Negative Negative Positive Positive

7938 31784 1 4

Data Role=TRAIN Target Variable=Churn Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	80.0161	99.9969	31784	80.0060
1	0	19.9839	99.9496	7938	19.9814
0	1	20.0000	0.0031	1	0.0025
1	1	80.0000	0.0504	4	0.0101

Decision Tree Overfitting

Decision overfit the data when the tree becomes too complex, the model learns to "memorize" the training data including noise that is present in the data. This causes the model to perform worse on the test data than on the training data. In decision trees, overfitting commonly occurs when the tree is allowed to grow to excessive tree depths. To demonstrate this, a maximum tree depth of 20 was set in SAS EM. Target criterion was set to Gini for this Nominal classification task. The results show that the decision tree's performance on the test set is lower than on the training set.

	_
Splitting Rule	
Interval Target Criterion	ProbF
Nominal Target Criterion	Gini
Ordinal Target Criterion	Entropy
Significance Level	0.5
Missing Values	Use in search
Use Input Once	No
Maximum Branch	2
Maximum Depth	20
Minimum Categorical Size	5

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Churn		_NOBS_	Sum of Frequencies	39727		9934
Churn		_MISC_	Misclassification Rate	0.175397		0.236863
Churn		_MAX_	Maximum Absolute Err	0.983333		. 1
Churn		_SSE_	Sum of Squared Errors	10973.3		3634.348
Churn		_ASE_	Average Squared Error	0.138109		0.182925
Churn		_RASE_	Root Average Squared	0.37163		0.427697
Churn		_DIV_	Divisor for ASE	79454		19868
Churn		_DFT_	Total Degrees of Free	39727		

Classification Table

Data Role=TRAIN Target Variable=Churn Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	85.6783	96.3851	30636	77.1163
1	0	14.3217	64.4800	5121	12.8905
0	1	28.9421	3.6149	1149	2.8922
1	1	71.0579	35.5200	2821	7.1010

Event Classification Table

Data Role=TRAIN Target=Churn Target Label=' '

False	True	False	True
Negative	Negative	Positive	Positive
5121	30636	1149	2821

Partial screenshot showing excessively deep trees.

Decision Tree Optimized

To balance overfitting and underfitting, a decision tree depth of 10 was used. Even so, performance of the model is poor

Classification Table

Data Role=TRAIN Target Variable=Churn Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	80.0539	99.9560	31771	79.9733
1	0	19.9461	99.6726	7916	19.9260
0	1	35.0000	0.0440	14	0.0352
1	1	65.0000	0.3274	26	0.0654

Data Role=VALIDATE Target Variable=Churn Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	80.0343	99.9748	7945	79.9779
1	0	19.9657	99.7484	1982	19.9517
0	1	28.5714	0.0252	2	0.0201
1	1	71.4286	0.2516	5	0.0503

The variable importances were also extracted to inform the business decisions of the e-commerce company. In this decision tree, it showed that average transaction value was the most important variable followed by the age of the user.

Variable Name	Label	Number of Splitting Rules	Importance
Avg_Txn_Value		2	1.0000
Age		1	0.6225
Return_Rate		0	0.0000
CLTV		0	0.0000
Days_Since_Last_Purchase		0	0.0000
Fav_Payment_Method		0	0.0000
Fav_Category		0	0.0000
Gender		0	0.0000

Part 4: Ensemble Methods

Bagging and Boosting are both examples of ensemble machine learning algorithms. To apply bagging in this case study, the HP Forest Node in SAS EM was used. For Boosting, the Gradient Boosting node was used.

Bagging: HP Forest

The Random Forests algorithm applies the bagging by creating multiple decision trees from different bootstrap samples of the dataset, where each sample is generated by randomly selecting data points with replacement. Each tree is built using a random subset of features at each split. The final prediction of the Random Forest model is obtained by aggregating the predictions of all individual trees built previously.

The HP Forest results are shown below. It can be seen that performance on the training data is good while performance on the test set is poor, indicating that the model is overfitting on the training data.

Classification Table

Data Role=TRAIN Target Variable=Churn Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	99.975	100.000	27811	80.0063
1	0	0.025	0.101	7	0.0201
1	1	100.000	99.899	6943	19.9735

Data Role=VALIDATE Target Variable=Churn Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	80.0121	99.6476	7918	79.7301
1	0	19.9879	99.6474	1978	19.9174
0	1	80.0000	0.3524	28	0.2819
1	1	20.0000	0.3526	7	0.0705

Fit Statistics						
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Churn		_ASE_	Average Squa	0.030754	0.165996	0.165769
Churn		_DIV_	Divisor for ASE	69522	19862	9938
Churn		_MAX_	Maximum Abs	0.529111	0.99	0.956667
Churn		_NOBS_	Sum of Frequ	34761	9931	4969
Churn		_RASE_	Root Average	0.175367	0.407426	0.407148
Churn		_SSE_	Sum of Squar	2138.047	3297.013	1647.416
Churn		_DISF_	Frequency of	34761	9931	4969
Churn		_MISC_	Misclassificati	.0002014	0.201994	0.202053
Churn		_WRONG_	Number of Wr	7	2006	1004

HP Forest - Sampled

Sampling was conducted to try and address the poor performance achieved in all models by balancing the distribution of the original dataset. Using the Sample node in SAS EM. Results show the Churn variable now has a distribution of 50:50 distribution. The HP Forest node was then applied to this sampled data. It can be seen that although the HP Forest algorithm is still overfitting on the training data, performance on the test data has improved when compared to the HP Forest node trained on imbalanced data.

_		r Class Targe ions printed)			
Data=DATA					
Wassiah la	Numeric	Formatted	Frequency	D	T = 1 = 1
Variable	Value	Value	Count	Percent	Label
Churn	0	0	39732	80.0064	
Churn	1	1	9929	19.9936	
Data=SAMPL	Æ				
	Numeric	Formatted	Frequency		
Variable	Value	Value	Count	Percent	Label
Churn	0	0	9929	50	
Churn	1	1	9929	50	

Classification Table

Data Role=TRAIN Target Variable=Churn Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	100	100	31784.80	80.0085
1	1	100	100	7942.00	19.9915

Data Role=VALIDATE Target Variable=Churn Target Label=' '

Target	Outcome	Target Percentage	Outcome Percentage	Frequency Count	Total Percentage
0	0	79.3395	44.3102	3521.42	35.4474
1	0	20.6605	46.1500	917.00	9.2307
0	1	80.5305	55.6898	4425.78	44.5510
1	1	19.4695	53.8500	1070.00	10.7709

Boosting: Gradient Boosting

Event Classification Table

SAS EM applies gradient boosting to decision trees by building trees sequentially, where each subsequent tree improves on the previous tree by fitting each new tree on the residual errors made by the previous trees. The final prediction is made by aggregating the predictions of all trees, which, when combined, provide a more accurate and generalized model than any single decision tree.

The gradient boosting results are shown below. Poor performance was seen in both the training and validation results. Indicating that the model is underfitting.

Data Role=TRAIN Target=Churn Target Label=' '

False True False True
Negative Negative Positive Positive

7942 31785 0 0

Data Role=VALIDATE Target=Churn Target Label='

False True False True
Negative Negative Positive

1987 7947 0

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
Churn		_NOBS_	Sum of Frequencies	39727	9934	
Churn		_SUMW_	Sum of Case Weights	79454	19868	
Churn		_MISC_	Misclassification Rate	0.199914	0.20002	
Churn		_MAX_	Maximum Absolute Err	0.81933	0.81933	
Churn		_SSE_	Sum of Squared Errors	12696.18	3178.67	
Churn		_ASE_	Average Squared Error	0.159793	0.159989	
Churn		_RASE_	Root Average Squared	0.399741	0.399987	
Churn		_DIV_	Divisor for ASE	79454	19868	
Churn		_DFT_	Total Degrees of Free	39727		

Part 5: Conclusion

In this case study, data was sourced from Kaggle to attempt to study and gain insights on e-commerce customer churn. In particular, the goal was to develop decision trees, random forests and gradient boosting models to predict if e-commerce customers will churn and then use insights gained from the model to inform business decisions for the e-commerce company. The data sourced from Kaggle was first cleaned, checked for errors, missing values were imputed in Talend Data Preparation. Talend Open Studio used to demonstrate how an e-commerce company would ingest data from two separate tables (transactions and customers) and join them into a single table before analysis. Feature engineering was then conducted using Python to create features necessary for a churn classification model. Finally SAS was used to create the prediction models.

Based on the results obtained from SAS, the HP Forest - Sampled model showed the best performance although the model still experienced a high degree of overfitting. Variable importance for the HP Forest model was extracted to give some insights on what factors affect customer churn. Compared to decision tree variable importance which come only from a single tree, variable importance outputs calculated from a random forest model are aggregated across all trees in the random forest, increasing consistency and reducing variability in the outcome. Based on this output, Days_Since_Last_Purchase is the most influential variable followed by CLTV and Avg_Txn_Size. The e-commerce company could reduce customer churn by sending discounts or promotions to customers that have made a purchase in a long time, especially customers who frequently make large purchases or those who have made many purchases over time. The least important variables are Fav_Payment_Method and Gender. This could inform the company that gender-specific marketing is not necessary as gender does not affect churn as much as other variables.

Variable Name	Number of Splitting Rules	Train: Gini Reduction	Train: Margin Reduction	OOB: Gini Reduction	OOB: Margin Reduction	Valid: Gini Reduction	Valid: Margin Reduction	Label
Days_Sinc	91226	0.080654	0.161309	-0.17891	-0.09691	-0.17450	-0.09277	
CLTV	73450	0.069281	0.138562	-0.15380	-0.08371	-0.15383	-0.08311	
Avg_Txn_V	66962	0.063316	0.126633	-0.14032	-0.07691	-0.14112	-0.07768	
Age	53043	0.044937	0.089873	-0.10232	-0.05788	-0.10307	-0.05860	
Return_Rate	52971	0.038374	0.076748	-0.09071	-0.05021	-0.09141	-0.05103	
Fav_Categ	7216	0.005007	0.010014	-0.00817	-0.00501	-0.00836	-0.00564	
Gender	5083	0.002964	0.005928	-0.00577	-0.00380	-0.00554	-0.00347	
Fav_Payme	4039	0.002676	0.005351	-0.00438	-0.00245	-0.00477	-0.00282	

Other models such as decision trees and gradient boosting were unable to find good performance on this dataset with models either overfitting or underfitting. Furthermore, performance of all models suggest that a better dataset is required for the e-commerce company to address the issue of customer churn. To improve on this in the future, the company could embark on a data collection initiative by sending surveys or feedback forms to customers.