Estimating the Impact of BGP Prefix Hijacking

Pavlos Sermpezis ¹, Vasileios Kotronis ², Konstantinos Arakadakis ^{2,3}, Athena Vakali ¹

¹ DataLab, Informatics Dept., Aristotle University of Thessaloniki, Greece
² Institute of Computer Science, FORTH, Greece
³ Computer Science Dept., University of Crete, Greece

The Internet

- The Internet is a network of networks or "Autonomous Systems (AS)"
- today ~70k ASes

The Internet

• It's an important problem today! a few facts:

- ~2500 (reported) prefix hijacking events in 2020 ¹
- o examples of affected networks: Google, Amazon, Akamai, Visa, etc.

• service outages & traffic interception

- can last for hours ²
- can cost \$100k (or more) <u>per minute</u>!

no effective (proactive) defence

- RPKI: limited adoption & efficiency ^{2,3}
- defences based upon <u>detection & countermeasures</u> ²

¹ APNIC, "BGP, RPKI, and MANRS: 2020 in review", Feb 2021, https://blog.apnic.net/2021/02/05/bgp-rpki-and-manrs-2020-in-review/

² P. Sermpezis, et. al., "A survey among Network Operators on BGP Prefix Hijacking", in ACM SIGCOMM CCR, Jan 2018.

³ NIST RPKI Monitor, https://rpki-monitor.antd.nist.gov/

How do we defend?

- How do we defend against hijacks? \rightarrow (mostly) reactively:
 - Step 1: detect the hijack
 - Step 2: proceed to mitigation action
 - filtering, deaggregation, outsourcing (e.g., blackholing, anycast from large ISPs)

Detection

- a lot of research the last ~10 years
- public monitoring infrastructure (RIPE RIS, RouteViews, etc.)
- state-of-the-art: near real-time detection (in a few seconds) 1

Mitigation

- different actions \rightarrow different costs... which one to choose?
- ok, I took an action... was it effective? is the problem solved?
- \rightarrow we need to know the impact of the hijack (before/after its mitigation) !!!

¹ARTEMIS, open-source software, https://bgpartemis.org/

In this paper...

- Goal → Estimate the impact of an ongoing hijack through measurements
 - sub-goal 1: understand/characterise the estimation problem
 - types of measurements & public infrastructure
 - challenges & limitations
 - accuracy

- with public infrastructure
- without public infrastructure

Measurements: BGP paths

Measurements: traceroutes

Measurements: pings

Hijack impact estimation with measurements

- Hijack impact == number of infected ASes
 - "infected AS" == an AS that routes its traffic to the hijacker AS

```
actual = # infected ASes | # total ASes
```

- Measurements for hijack impact estimation
 - measure some ASes
 - o measured AS == "monitor"
 - o any measurement type: BGP path (route collector), traceroute (RIPE Atlas probe), ping

- Estimate hijack impact
 - from the number/percentage of "infected monitors"

```
estimated impact = # infected monitors # total monitors
```

Impact estimation: an example

Impact estimation: an example

Sampling in theory...

The estimation error (RMSE) decreases with the number of samples/monitors (M)

Theorem 1. Under a randomly selected set of monitors \mathcal{M} , the bias and root mean square error of NIE are given by

$$Bias_{NIE} = 0$$
 $RMSE_{NIE} = \frac{1}{\sqrt{M}} \cdot c_I$

 $Bias_{NIE} = 0 \qquad \overbrace{RMSE_{NIE} = \frac{1}{\sqrt{M}} \cdot c_I}$ where $c_I = \int_0^1 \sqrt{I \cdot (1-I)} \cdot f(I) \cdot dI$, is a constant that depends on the impact distribution f(I).

- Sampling in theory...
 - The estimation error (RMSE) decreases with the number of samples/monitors (M)
- Sampling in practice...
 - with public infrastructure (Route Collectors, RIPE Atlas probes)

Sampling in theory...

The estimation error (RMSE) decreases with the number of samples/monitors (M)

Sampling in practice...

- with public infrastructure (Route Collectors, RIPE Atlas probes)
- what about ping measurements?

- Sampling in theory...
 - The estimation error (RMSE) decreases with the number of samples/monitors (M)
- Sampling in practice...

Pavlos Sermpezis

- with public infrastructure (Route Collectors, RIPE Atlas probes)
- what about ping measurements?
 - ✓ we can have random sampling!
 - ➤ but... high measurement failures (> 90% non pingable IP addresses)

Theorem 2. *RMSE vs. failure probability p.*

Key findings:

- ping measurements end-up being less accurate than public infrastructure (for p > 20%)
- ▶ we would need at least *p* < 10%

Goal 2: design accurate estimators

- Approach 1: based on ping measurements...
 - Goal: we need to decrease the failure probability p
- Approach 2: based on **public-infrastructure**...
 - Goal: we need to remove the measurement bias

Ping-based impact estimator

- Approach 1: based on ping measurements...
 - Goal: we need to <u>decrease the failure probability</u> p

Ping-based impact estimator

- 1. Find "pingable" IP addresses for every AS [ANT Lab's IP hitlist]
- 2. Ping multiple (N_{IP}) IP addresses per AS
- 3. If at least one ping reply from an AS \rightarrow the AS is not affected by the hijack

N _{IP} (nb of pinged IPs per AS)	1	2	3		10		0.15	#IPs per AS: 1 #IPs per AS: 2
p (failure probability per AS)	12.8%	4.2%	2.1%		0%		RMSE 0.10	#IPs per AS: 10
RMSE (estimation error; M=100)	7.9%	4.7%	4.1%		3.9%		0.05	
				Key findings: → N _{IP} >= 2 for low error → no need for N _{IP} >3			0.00	10 ² 10 ³ #monitors (M)

Public infrastructure based estimator

- Approach 2: based on public-infrastructure...
 - Goal: we need to <u>remove the measurement bias</u>

Linear-regression estimator (LRE)

- 1. Collect past measurements of (public infrastructure) monitors
- 2. Fit a least-square estimator \rightarrow give to each monitor i a weight w_i
- 3. Collect measurements \mathbf{m}_i for the ongoing hijack
- 4. Estimate the impact as: $\Sigma_i m_i * w_i$

Key findings:

- ▶ LRE eliminates the bias in public infrastructure measurements & achieves close-to-theory efficiency
- Only a few past measurements are needed for fitting the LRE (e.g., it worked quite well even with 20 past events in our experiments)

Summarizing...

Estimating the impact of BGP prefix hijacking

- Important for network operations (e.g., mitigation actions)
- Not studied before
- We studied <u>fundamental</u> (limits, trade-offs, etc.) and <u>practical</u> aspects (use of public infrastructure, measurement failures, etc.)
 - theory (insights) & simulations (generality) & experiments (realism/verification)

Future research directions

- ML-based estimators (but... lack of labelled datasets)
- Generality of results beyond BGP prefix hijacking
 - de-bias public infrastructure measurements
 - o identify key locations for expanding public infrastructure

