## Homework Assignment 6 Solution

## Prob 1:

Textbook 3.39 (inputs =  $\{ X4 X3 ... X1 X0 \}$ ; Decoder inputs  $\{ C B A \} C = msb \}$ 

**3.39** Design a 5-to-32 decoder using 3-to-8 decoder modules as building blocks. Assume each 3-to-8 decoder has one active-low enable input,  $\overline{E}_1$ , and one active-high enable input,  $E_2$ .



## Prob 2:

## Textbook 3.40

3.40 Realize each of the following sets of functions using a 4-to-16 decoder module and output logic gates (choose NAND or AND gates to minimize the fan-in of the output gates).

(a) 
$$f_1(a,b,c,d) = \sum m(2,4,10,11,12,13)$$
  
 $f_2(a,b,c,d) = \prod M(0-3,6-9,12,14,15) = \sum m(4,5,10,11,13)$   
 $f_3(a,b,c,d) = \bar{b}c + \bar{a}\bar{b}d = \sum m(1,2,3,10,11)$ 



(b)  $f_1(a, b, c, d) = \sum m(0,1,7,13)$   $f_2(a, b, c, d) = ab\bar{c} + acd = \sum m(11,12,13,15)$  $f_3(a, b, c, d) = \prod M(0,1,2,5,6,7,8,9,11,12,15) = \sum m(3,4,10,13,14)$ 



(c) Repeat part (a) for the complements of the three functions.



(d) Repeat part (b) for the complements of the three functions.



3.61 Realize each of the following functions with a 4-to-1 multiplexer module.

(a) 
$$f_1(a, b, c) = \sum m(2,4,5,7)$$
  

$$= \bar{a}b\bar{c} + a\bar{b}\bar{c} + a\bar{b}c + abc$$

$$= (\bar{a}\bar{b}) \cdot 0 + (\bar{a}b)\bar{c} + (a\bar{b}) \cdot 1 + (ab)c$$

| а          | b          | с             | $f_{l}$ |                      |
|------------|------------|---------------|---------|----------------------|
| $_{0}^{0}$ | $_{0}^{0}$ | <b>0</b><br>1 | 0       | $D_0 = 0$            |
| 0          | 1          | <b>0</b><br>1 | 0       | $D_1 = \overline{c}$ |
| 1<br>1     | 0          | 0<br>1        | 1<br>1  | $D_2 = 1$            |
| 1          | 1<br>1     | 0<br>1        | 0<br>1  | $D_3 = c$            |



(b) 
$$f_2(a, b, c) = \prod M(0,6,7) = \sum m(1,2,3,4,5)$$
  
=  $\bar{a}\bar{b}c + \bar{a}b\bar{c} + \bar{a}bc + a\bar{b}\bar{c} + a\bar{b}c$   
=  $(\bar{a}\bar{b})c + (\bar{a}b) \cdot 1 + (a\bar{b}) \cdot 1 + (ab) \cdot 0$ 

| а | b      | c             | $f_{l}$ |                |
|---|--------|---------------|---------|----------------|
|   | 0      | <b>0</b><br>1 | 0       | $D_0 = c$      |
| 0 | 1<br>1 | <b>0</b><br>1 | 0       | $D_1 \equiv 1$ |
| 1 | 0      | 0<br>1        | 1<br>1  | $D_2 = 1$      |
| 1 | 1<br>1 | 0             | 0<br>1  | $D_3 = 0$      |



(c) 
$$f_3(a, b, c) = (a + \bar{b})(\bar{b} + c)$$
  
=  $(a + \bar{b} + \bar{c})(a + \bar{b} + c)(\bar{a} + \bar{b} + c)(a + \bar{b} + c)$   
=  $\prod M(2,3,6,) = \sum m(0,1,4,5,7)$   
=  $\bar{a}\bar{b}\bar{c} + \bar{a}\bar{b}c + a\bar{b}\bar{c} + a\bar{b}c + abc$   
=  $(\bar{a}\bar{b}) \cdot 1 + (\bar{a}b) \cdot 0 + (a\bar{b}) \cdot 1 + (ab)c$ 

| a | b | c | $f_{l}$ |             |
|---|---|---|---------|-------------|
| 0 | 0 | 0 | 0       | D = 1       |
| 0 | 0 | 1 | 0       | $D_0 = 1$   |
| 0 | 1 | 0 | 1       | D 0         |
| 0 | 1 | 1 | 0       | $D_1 = 0$   |
| 1 | 0 | 0 | 1       | D = 1       |
| 1 | 0 | 1 | 1       | $D_2 = 1$   |
| 1 | 1 | 0 | 0       | $D_{r} = c$ |
| 1 | 1 | 1 | 1       | $D_3 = c$   |



3.62 Realize each of the following functions with an 8-to-1 multiplexer module.

(a) 
$$f(b, c, d) = \sum m(0,2,3,5,7)$$

| I           | С | В | A |   | Y         |
|-------------|---|---|---|---|-----------|
|             | b | С | d | f |           |
| 0           | 0 | 0 | 0 | 1 | $D_0 = 1$ |
| 1           | 0 | 0 | 1 | 0 | $D_1 = 0$ |
| 2           | 0 | 1 | 0 | 1 | $D_2 = 1$ |
| 3           | 0 | 1 | 1 | 1 | $D_3 = 1$ |
| 4           | 1 | 0 | 0 | 0 | $D_4 = 0$ |
| 4<br>5<br>6 | 1 | 0 | 1 | 1 | $D_5 = 1$ |
| 6           | 1 | 1 | 0 | 0 | $D_6 = 0$ |
| 7           | 1 | 1 | 1 | 1 | $D_7 = 1$ |



(b)
$$f(b,c,d) = \bar{c} + b = (b + \bar{c} + \bar{d})(b + \bar{c} + d)$$
  
=  $\prod M(2,3) = \sum m(0,1,4,5,7)$ 

| i           | C | В | A |    | Y         |
|-------------|---|---|---|----|-----------|
|             | b | С | d | f  |           |
| 0           | 0 | 0 | 0 | 1  | $D_0 = 1$ |
| 1           | 0 | 0 | 1 | 1  | $D_1 = 0$ |
| 1<br>2<br>3 | 0 | 1 | 0 | 0  | $D_2 = 1$ |
| 3           | 0 | 1 | 1 | -0 | $D_3 = 1$ |
| 4<br>5      | 1 | 0 | 0 | 1  | $D_4 = 0$ |
| 5           | 1 | 0 | 1 | 1  | $D_5 = 1$ |
| 6           | 1 | 1 | 0 | 0  | $D_6 = 0$ |
| 7           | 1 | 1 | 1 | 1  | $D_7 = 1$ |





Prob 5: Texttbook 3.68

11

13 14 1 0

1 0

1 1 1

1 1 1

0

0

0 0

1 0

0

 $D_7 = 0$ 

**3.68** Design a full adder module with data inputs A and B, carry input C<sub>in</sub>, sum output S, and carry output C<sub>out</sub>.

| A B Cin | $C_{out}S$ |
|---------|------------|
| 000     | 0 0        |
| 001     | 0 1        |
| 010     | 0 1        |
| 011     | 1 0        |
| 100     | 0 1        |
| 101     | 1 0        |
| 110     | 1 0        |
| 111     | 1 1        |
|         |            |

(a) Use a 3-to-8 decoder and NAND gates (b) Use a four-input, 2-bit multiplexer

