Tema VII: Определители

§3. Приложения определителей

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Определители и обращение матриц

Мы доказали теорему об определителе произведения матриц: если A и B — $n \times n$ -матрицы, то $\det AB = \det A \cdot \det B$.

Следствие

Если матрица A обратима, то ее определитель отличен от $\mathbf{0}.$

Доказательство. Если матрица B обратна к матрице A, то AB=E. «Детерминируя» это равенство, т.е. записывая равенство определителей его левой и правой частей, получим $\det AB = \det E = 1$. По теореме $\det AB = \det A \cdot \det B$, откуда $\det A \cdot \det B = 1$, что влечет $\det A \neq 0$.

Докажем, что верно и обратное: если $\det A \neq 0$, то матрица A обратима. Для этого понадобится следующая лемма:

Лемма «свой среди чужих»

Сумма произведений элементов некоторой строки матрицы на алгебраические дополнения соответствующих элементов другой строки равна нулю.

В символах: если
$$A=(a_{ij})_{n\times n}$$
, то $\sum\limits_{k=1}^n a_{ik}A_{jk}=0$ при всех $i\neq j$.

Определители и обращение матриц (2)

Доказательство леммы. Рассмотрим матрицу A', которая получается из матрицы A заменой ее j-й строки на i-ю.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1\,n-1} & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{i\,n-1} & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{j\,n-1} & a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{n\,n-1} & a_{nn} \end{pmatrix} \quad \Rightarrow \quad A' = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1\,n-1} & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{i\,n-1} & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{n\,n-1} & a_{nn} \end{pmatrix}.$$

Ясно, что $\det A'=0$, поскольку в матрице A' есть две равные строки. С другой стороны, разложение $\det A'$ по j-й строке дает $\det A'=\sum_{k=1}^n a_{ik}A'_{jk}.$

Остается заметить, что $A'_{jk}=A_{jk}$ для всех $k=1,\dots,n$, так как матрицы A' и A различаются лишь j-й строкой. Поэтому

$$\sum_{k=1}^{n} a_{ik} A_{jk} = \sum_{k=1}^{n} a_{ik} A'_{jk} = \det A' = 0.$$

Определители и обращение матриц (3)

Определение

Пусть $A=(a_{ij})_{n\times n}$ — матрица порядка n>1. Матрица $\widehat{A}:=(A_{ij})^T$ называется присоединенной к матрице A.

Таким образом, присоединенная матрица получается, если заменить каждый элемент матрицы его алгебраическим дополнением, а потом транспонировать получившуюся матрицу.

Предложение (основное свойство присоединенной матрицы)

$$A\widehat{A} = \widehat{A}A = \det A \cdot E.$$

Доказательство. Элемент произведения $A\widehat{A}$, стоящий на месте (i,j), равен сумме произведений элементов i-й строки матрицы A на элементы j-го столбца матрицы \widehat{A} . По определению, элементы j-го столбца матрицы \widehat{A} – это алгебраические дополнения элементов j-й строки матрицы A. Сумма произведений элементов i-й строки на алгебраические дополнения элементов j-й строки равна $\det A$ при j=i (формула разложения по строке) и равна 0 при $j\neq i$ (лемма «свой среди чужих»). Поэтому у $A\widehat{A}$ элементы главной диагонали равны $\det A$, а прочие элементы нулевые, т.е. $A\widehat{A}=\det A\cdot E$. В силу равноправия строк и столбцов $\widehat{A}A=\det A\cdot E$. \square

Определители и обращение матриц (4)

Из основного свойства присоединенной матрицы немедленно вытекает, что в случае, когда $\det A \neq 0$, матрица A обратима и ее обратная матрица может быть вычислена по формуле

$$A^{-1} = \frac{1}{\det A}\widehat{A}.\tag{*}$$

Формулой (*) удобно пользоваться для 2×2 -матриц, где она принимает вид

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Для матриц более высокого порядка формула (*) вычислительно неэффективна по сравнению с методом Гаусса. Тем не менее, она полезна: например, из нее следует, что элементы матрицы A^{-1} непрерывно зависят от элементов матрицы A.

Определители и обращение матриц (5)

Матрицу с ненулевым определителем называют *невырожденной*. Подытожим наши рассмотрения следующим утверждением:

Теорема (критерий невырожденности)

Для любой квадратной матрицы A следующие условия эквивалентны:

- А обратима слева;
- $oldsymbol{Q}$ A обратима справа;
- ullet A обратима и слева, и справа;
- $oldsymbol{0}$ строки A линейно независимы;
- ullet столбцы A линейно независимы;

Доказательство получается комбинированием фактов, доказанных в этой лекции и в лекции 4 темы V.

Ранг по минорам

Вернемся к произвольным (не обязательно квадратным) матрицам. Пусть $A-n\times k$ -матрица и $r\le \min\{n,k\}$. Минором порядка r матрицы A называется определитель $r\times r$ -матрицы, стоящей на пересечении каких-то r строк матрицы A и каких-то ее r столбцов.

$$A = \begin{bmatrix} -1 & 0 & 3 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0 \\ \hline 1 & 0 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad M = \begin{vmatrix} -1 & 3 & 0 \\ 2 & 4 & 1 \\ 1 & -2 & -1 \end{vmatrix}$$

Рангом матрицы по минором называется наибольший порядок ее ненулевых миноров. Так, у матрицы на рисунке ранг по минорам 3.

Ранг по минорам (2)

Теорема (дополнение к теореме о ранге)

Ранг матрицы равен ее рангу по минорам.

Доказательство. Пусть A – матрица ранга r и r_M – ее ранг по минорам. Имеем $r_M \leq r$, так как строки и столбцы, пересечение которых дает ненулевой минор, линейно независимы по критерию невырожденности.

Обратно, возьмем r линейно независимых строк матрицы A и выбросим остальные строки. Ранг получившейся матрицы A' равен r, и по теореме о ранге матрицы в A' есть r линейно независимых столбцов:

$$\begin{pmatrix} a'_{11} & & j_r \\ a'_{1j_1} & \dots & a'_{1j_r} & \dots & a'_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a'_{r1} & \dots & a'_{rj_1} & \dots & a'_{rj_r} & \dots & a'_{rn} \end{pmatrix}$$

Минор порядка r, стоящий в этих столбцах, отличен от 0 по критерию невырожденности, откуда $r_M > r$.

Теорема Крамера

Рассмотрим систему из n линейных уравнений с n неизвестными:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

Основную матрицу этой системы обозначим через A, ее определитель – через Δ , а столбец свободных членов – через ${\bf b}$.

Для $i=1,2,\ldots,n$ обозначим через Δ_i определитель, полученной заменой i-го столбца определителя Δ на столбец $\mathbf b$. Итак,

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}, \quad \Delta_1 = \begin{vmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \dots & a_{nn} \end{vmatrix},$$

$$\Delta_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} & \dots & a_{1n} \\ a_{21} & b_2 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_n & a_{n3} & \dots & a_{nn} \end{vmatrix}, \dots, \Delta_n = \begin{vmatrix} a_{11} & \dots & a_{1n-1} & b_1 \\ a_{21} & \dots & a_{2n-1} & b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn-1} & b_n \end{vmatrix}.$$

Теорема Крамера (2)

Теорема (правило Крамера, 1750)

Если $\Delta \neq 0$, то система

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

имеет единственное решение, которое вычисляется по формулам

$$x_1 = \frac{\Delta_1}{\Delta}, x_2 = \frac{\Delta_2}{\Delta}, \dots, x_n = \frac{\Delta_n}{\Delta}.$$
 (\diamondsuit)

Доказательство. Существование и единственность решения при $\Delta \neq 0$ следуют из известных фактов. Проверим, что решение дается формулами (\diamondsuit) , т.е. проверим равенство $A\mathbf{x} = \mathbf{b}$, где $\mathbf{x} = \left(\frac{\Delta_1}{\Delta}, \frac{\Delta_2}{\Delta}, \dots, \frac{\Delta_n}{\Delta}\right)^T$.

i-я координата столбца $A\mathbf{x}$ равна $\sum_{j=1}^n a_{ij} \frac{\Delta_j}{\Delta}$. В этом выражении разложим определитель Δ_1 по первому столбцу, определитель Δ_2 — по второму столбцу, . . . , определитель Δ_n — по n-му столбцу.

Теорема Крамера (3)

Учитывая, что в определителе Δ_j элемент b_k стоит на месте (k,j), получим

$$\sum_{j=1}^{n} a_{ij} \frac{\Delta_{j}}{\Delta} = \frac{1}{\Delta} \sum_{j=1}^{n} a_{ij} \sum_{k=1}^{n} b_{k} A_{kj} = \frac{1}{\Delta} \sum_{k=1}^{n} b_{k} \sum_{j=1}^{n} a_{ij} A_{kj}.$$

Имеем

$$\sum_{j=1}^n a_{ij} A_{kj} = \begin{cases} \Delta & \text{при } k=i \text{ по формуле разложения по строке,} \\ 0 & \text{при } k \neq i \text{ по лемме «свой среди чужих».} \end{cases}$$

Поэтому сумма $\frac{1}{\Delta}\sum_{k=1}^n b_k \sum_{j=1}^n a_{ij} A_{kj}$ сводится к $\frac{1}{\Delta}b_i \Delta = b_i.$ Итак, i-я координата столбца $A\mathbf{x}$ равна b_i , т.е. $A\mathbf{x} = \mathbf{b}.$

Здесь можно сделать замечание, аналогичное тому, которое делалось по поводу формулы для обратной матрицы: правило Крамера вычислительно неэффективно по сравнению с методом Гаусса, но теорема Крамера имеет важное теоретическое значение.

В качестве приложения теоремы Крамера рассмотрим следующую важную задачу. Известны значения (вообще говоря, неизвестной) функции f(x) в точках $x_0,\,x_1,\,\ldots,\,x_n$: $f(x_0)=y_0,\,f(x_1)=y_1,\,\ldots,\,f(x_n)=y_n.$ Нужно интерполировать f(x), т.е. построить многочлен p(x) наименьшей возможной степени, принимающий в данных точках указанные значения.

Будем искать p(x) в виде $a_0+a_1x+a_2x^2+\cdots+a_nx^n$. Условия $p(x_0)=y_0,\ p(x_1)=y_1,\ \ldots,\ p(x_n)=y_n$ дают следующую систему линейных уравнений относительно коэффициентов a_0,a_1,a_2,\ldots,a_n :

$$\begin{cases} a_0 + a_1x_0 + a_2x_0^2 + \dots + a_nx_0^n = y_0 \\ a_0 + a_1x_1 + a_2x_1^2 + \dots + a_nx_1^n = y_1 \\ \dots \\ a_0 + a_1x_n + a_2x_n^2 + \dots + a_nx_n^n = y_n \end{cases} \quad \text{или} \quad \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

Ее основная матрица — это матрица Вандермонда порядка n+1. Так как определитель Вандермонда от x_0, x_1, \ldots, x_n отличен от 0, по теореме Крамера эта система имеет единственное решение.

Мы доказали такой факт:

Теорема об интерполяционном многочлене

Пусть x_0,x_1,\ldots,x_n — попарно различные, а y_0,y_1,\ldots,y_n — произвольные элементы поля F. Существует и притом только один многочлен $p(x)\in F[x]$ степени не выше n, такой, что $p(x_i)=y_i$ для всех $i=0,1,\ldots,n$.

Отметим одно простое, но важное следствие.

В алгебре многочлены рассматривают как формальные выражения, и равенство двух многочленов $p(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ и $q(x)=b_0+b_1x+b_2x^2+\cdots+b_kx^k$ означает, что эти выражения совпадают, т.е. n=k и $a_0=b_0,\ a_1=b_1,\ \ldots,\ a_n=b_n$. В анализе многочлены над полем $\mathbb R$ рассматривают как функции $\mathbb R\to\mathbb R$, и равенство двух многочленов $p(x)\in\mathbb R$ и $q(x)\in\mathbb R$ означает, что $p(\alpha)=q(\alpha)$ для любого $\alpha\in\mathbb R$. Понятно, что для любого поля F каждый многочлен $p(x)\in F[x]$ определяет функцию $F\to F$ по правилу $\alpha\mapsto p(\alpha)$.

Следствие о многочленах как функциях

Многочлены над любым *бесконечным* полем равны тогда и только тогда, когда они равны как функции.

Следствие о многочленах как функциях

Многочлены над любым *бесконечным* полем равны тогда и только тогда, когда они равны как функции.

Доказательство. Ясно, что одинаковые многочлены определяют одну и ту же функцию. Обратно, пусть p(x) и q(x) – многочлены степеней n и k соответственно над бесконечным полем F, которые равны как функции. Без ограничения общности можно считать, что $n \geq k$. Выберем попарно различные элементы $x_0, x_1, \ldots, x_n \in F$ (это можно сделать, поскольку F бесконечно). По условию $p(x_i) = q(x_i)$ для всех $i = 0, 1, \ldots, n$. В силу теоремы многочлен степени не выше n однозначно определяется своими значениями на элементах x_0, x_1, \ldots, x_n , откуда p(x) = q(x).

Отметим, что для многочленов над конечными полями их равенство как функций, вообще говоря, не влечет их равенство как формальных выражений. Например, над двухэлементным полем $\mathbb{F}=\{0,1\}$ многочлены x и x^2 определяют одну и ту же функцию.

Интерполяционный многочлен Лагранжа

В приложениях бывает необходимо явно выписать многочлен p(x) степени не выше n по заданным значениям y_0,y_1,\ldots,y_n в попарно различных точках x_0,x_1,\ldots,x_n . Соответствующую процедуру (как и многие другие алгоритмы в алгебре и анализе) предложил Жозеф Луи Лагранж.

Для каждого $i=0,1,\ldots,n$ положим

$$p_i(x) := \prod_{\substack{j=0 \ j\neq i}}^n \frac{x - x_j}{x_i - x_j} = \frac{x - x_0}{x_i - x_0} \cdots \frac{x - x_{i-1}}{x_i - x_{i-1}} \cdot \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdots \frac{x - x_n}{x_i - x_n}.$$

Видно, что $p_i(x)$ – многочлен степени $n,\ p_i(x_i)=1$ и $p_i(x_j)=0$ при $j\neq i.$ Интерполяционный многочлен Лагранжа – это многочлен

$$p(x) := \sum_{i=1}^{n} y_i \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j} = y_0 p_0(x) + y_1 p_1(x) + \dots + y_n p_n(x).$$

По построению $p(x_i)=y_i$ для всякого $i=0,1,\ldots,n$, а степень многочлена p(x) не превосходит n.