Затухающие колебания в RLC контуре

Николай Грузинов

22 января 2021

Поскольку работа предполагала следование методичке, буду краток.

1 Задачи

- 1. измерить периоды колебаний при нулевом сопротивлении реостата, проверить формулу $T=2\pi\sqrt{LC}$
- 2. выбрав конкретный конденсатор, подобрать с помощью реостата критическое сопротивление для данного контура
- 3. для этого конденсатора измерить добротность колебаний для разных сопротивлений с помощью амплитуд на пиках затухающей синусоиды
- 4. то же самое, только в ХҮ-режиме осциллографа.

2 Результаты

Значения емкостей конденсаторов измерены в методичке правильно, я проверил. Катушку использовал на 400 витков.

ёмкость, нФ	период, мкс
21.86	77
33.23	92
50.72	110
70.83	130
100.3	160
223.6	240
477.5	340
927.7	480

Для дальнейших измерений выбрал пятый конденсатор, потому что для конденсаторов с меньшей емкостью нельзя было подобрать критическое сопротивление (сопротивления реостата не хватало), а поскольку в дальнейшем нужны были доли критического сопротивления, то хотелось, чтобы оно составляло большую часть от сопротивления реостата, и конденсаторы с большей емкостью не подходили.

Далее C=100.3 нФ. Характеристическая частота для 400-витковой катушки и этого конденсатора: $\frac{1}{T}=6.4$ кГц. Индуктивность и сопротивление катушки при маленьких частотах: 5.841 мГн, 3.5 Ом. На частоте 10 кГц: 6.139 мГн, 8.3 Ом. На характеристической частоте: 5.97 мГн, 6.7 Ом.

Критическое сопротивление peocmama для данного контура: 440 ± 10 Ом при полном сопротивлении реостата 466 Ом. Погрешность оценил по чувствительности пика на картинке осциллографа к изменениям — при меньших изменениях не видел разницы.

Измерение амплитуд по пикам для сопротивления реостата 23, 34, 44, 55 и 65 Ом:

23	Ом	Номер пика	Амплитуда, дел.
		1	7.9
		2	5.5
		3	3.8
		4	2.6
		5	1.8
44	Ом	Номер пика	Амплитуда, дел.
		1	8.2
		2	4.4
		3	2.4
		4	1.3
		5	0.7
65	Ом	Номер пика	Амплитуда, дел.
		1	11.6
		2	4.8
		3	1.9
		4	0.75

	Номер пика	Амплитуда, дел.
	1	9.75
34 Ом	2	5.9
34 OM	3	3.6
	4	2.2
	5	1.4

	Номер пика	Амплитуда, дел.
	1	7.0
55 Ом	2	3.25
	3	1.4
	4	0.65

Измерение амплитуд по спирали:

измерение шинлитуд по спирали.					
Номер пика	Амплитуда при 23 Ом, дел.	При 34 Ом	При 44 Ом	При 55 Ом	
1	9	10.4	8.2	7.6	
2	6.6	7.0	4.7	3.7	
3	4.8	4.5	2.6	1.7	
4	3.4	2.8	1.4	0.8	
5	2.4	1.8			
6	1.6				

Из графиков можно достать зависимость углового коэффициента – Θ (декремент затухания) от сопротивления реостата r. Теоретически, должно получаться $\Theta = \frac{2\pi r}{R_{\rm cr}}$

3 Выводы