Testo della prova scritta di Geometria ed Algebra

(prof. Flavio Bonetti)

del 9 - 9 - 2002

- 1. Si consideri la seguente funzione: $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $\mathbf{f}((1;1;0)) = (1;1;0), \ \mathbf{f}((0;1;1)) = (0;1;1), \ \mathbf{f}((1;-1;-1)) = (0;0;0).$
- i) Determinare la dimensione ed una base di Ker f e di Im f
- ii) Studiare la diagonalizzabilà di f.
- 2. E' data la seguente forma bilineare ϕ su \mathbb{R}^3

$$\phi((x;y;z);(x';y';z')) = 3xx' - 2yx' - 2xy' + 3yy' + zz';$$

- a) si verifichi che φ è un prodotto scalare;
- b) Determinare una base di R³ ortonormale rispetto a φ;
- c) si consideri il sottospazio vettoriale di R³

$$W = \{(h; h+k; k) \text{ tale che } h,k \in \mathbb{R} \};$$

si trovi una base del sottospazio di \mathbb{R}^3 coniugato di W rispetto al prodotto scalare ϕ .

2. Nello spazio euclideo di dimensione 3 si consideri il sottospazio S di equazione x - y = 0. Trovare la proiezione ortogonale di v = (1;2;1) su S e la distanza di v da S:

Corso di Laurea in Ingegneria Meccanica Testo della prova scritta di Geometria e Algebra

(prof. Flavio Bonetti)

del 9 - 6 - 2001

- 1. Data in EG(2;) \mathbb{R} la conica \mathbb{C} di equazione $x^2 + y^2 2xy 2x 2y = 0$:
 - i) la si classifichi e si porti la sua equazione in forma canonica;
 - si determini il fascio **F** di coniche tangenti in O (0;0) a **C** e aventi con **C** due interseziomi A e B tali che il triangolo AOB abbia circocentro in C (0;0);
 - iii) dopo aver classificato il fascio \mathbb{F} , si scelga arbitrariamente una conica del fascio che sia un ellisse e si porti la sua equazione in forma canonica.
- 2. In EG(3; \mathbb{R}) sia data la quadrica Ω di equazione:

$$25x^2 - 3y^2 - 10xy - 10xz - 6yz - 3z^2 - 50z = 0$$
:

- i) si classifichi la quadrica Ω ;
- ii) si scrivano le equazioni delle rette (generatrici) di Ω passanti per O (0;0;0);
- iii) si fornisca la clssificazione (proiettiva) della conica all'infinito di Ω .
- 3. Data la matrice

$$A = [4, -2, 12, -8, -4, 6, -12, 16, -1, 0, -3, 1, 2, -2, 6, -6]$$

i) sia f l'endomorfismo di \mathbb{R}^4 associato alla matrice A rispetto la base canonica; si trovino gli autospazi di f, basi ortonormali per gli autospazi di f e per i loro complementi ortogonali,

si dica se A è diagonalizzabile;

ii) sia U il sottospazio di \mathbb{R}^4 di equazioni $x_2 + 6x_3 = 0.3x_3 - x_4 = 0$

si trovi una base ortonormale, per il prodotto scalare canonico, di U, f(U) e U \cap Kerf;

iii) si trovi infine un prodotto scalare (non canonico) tale che scelta, arbitrariamente, una base di U + Kerf questa risulti ortonormale.

Testo della prova scritta di Geometria ed Algebra

(prof. Flavio Bonetti)

del 24 - 7 - 2002

1. Si consideri la seguente funzione:

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f((x, y, z)) = (x+2y+z, y, z)$.

- a) Dimostrare che fè lineare.
- b) Determinare la dimensione di Ker f; f è suriettiva?
- c) l'endomorfismo f è diagonalizzabile su R? Motivare la risposta..

2. Nello spazio vettoriale R³ sono dati i sottospazi

$$\mathbf{U} = \mathbf{Span}(\{(1; 2; 0), (0; 1; 1)\}, \mathbf{W} = \mathbf{Span}(\{(1; 1; -1), (1; 0; 1)\}.$$

- a) Rappresentare in forma parametrica e cartesiana l'intersezione dei due sottospazi.
- b) Determinare la dimensione della loro somma.
- c) Determinare un sottospazio V di \mathbb{R}^3 tale che $V \oplus (U \cap W) = \mathbb{R}^3$.

3.

a) Fornire l'equazione cartesiana della retta r, rappresentata in forma parametrica nel modo seguente:

$$x = 2t+3, y = 4t-1$$

b) Nel fascio di rette di equazione

$$-6ax + (a-1)y + 1 = 0$$

determinare l'equazione della retta:

- i) parallela ad r;
- ii) perpendicolare ad r.

Testo della prova scritta di Geometria ed Algebra

(prof. Flavio Bonetti)

del 18 - 6 - 2002

- 1. Sia $\mathbf{f} : \mathbb{R}^4 \to \mathbb{R}^4$ l'endomorfismo di \mathbb{R}^4 definito da f(x; y; z; t) = (4x y 3z + 2t; 3y; x + t; y + 2t):
 - i) si dica se **f** è diagonalizzabile e si determini una base ortonormale per ciascun autospazio di **f**;
 - ii) detto U il sottospazio di di equazioni y = 0 e 2x 3z = 0 e posto V=f(U), si trovi una base per i sottospazi V, U + V e $U \cap V$;
 - si trovino una rappresentazione cartesiana ed un base ortonormale del complemento ortogonale di U.
- 2. Si consideri la seguente forma quadratica su \mathbb{R}^4 :

$$\mathbf{q}(x;y;z;t) = 2xy - 2xz + 4yt 4zt.$$

- i) Determinare rango, indice e segnatura di q,
- ii) determinare una base di \mathbb{R}^4 rispetto alla quale la matrice di Gram della forma quadratica coincida con la sua forma canonica rispetto la congruenza

Testo della prova scritta di Geometria ed Algebra (prof. Flavio Bonetti)

del 23 - 3 - 2002

- 1. Siano $(e_1; e_2; e_3)$ la base canonica di \mathbb{R}^3 ed $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da $f(e_1) = 2e_1 + 4e_3$, $f(e_2) = 3e_1 + 6e_3$, $f(e_1) = 5e_1 + 10e_3$:
 - i) ricavare una base ortonormale di rispetto al prodotto scalare ϕ definito da ϕ ((x;y;z);(x`;y`;z`)) = 2xx' + 2yy' + zz';
 - ii) dopo aver diagonalizzato f/Kerf (i.e. la restrizione f di al Kerf vista come endomorfismo da Kerf a Kerf), si scriva una base ortonormale, rispetto a φ, degli autospazi di f/Kerf.
- 2. Si classifichino le quadriche della famiglia Q definita dall'equazione $(4 \beta)x^2 + 2y^2 + 2\beta z^2 + 2y + 1 = 0.$
- 3. Dati i piani di equazioni:

$$x + ky + kz = 2$$
, $y + z = k$, $x - 2ky - 3z = k$, $3x + z = -1$

- i) se ne discuta il sistema lineare al variare del parametro $k \in \mathbb{R}$ e si interpretino geometricamente i risultati ottenuti;
- ii) si scrivano le equazioni delle rette, parallela ed ortogonale, alla retta rappresentata nello spazio euclideo dalle prime due equazioni del sistema dopo aver posto k = 2.

2. Date le trsformazioni lineari

$$f:=\{ \mathbb{R}^3 \to \mathbb{R}^4, (x;y;z) \to (x+y;-y-z;x-z;2x+y-z) \quad e \qquad g:=\{ \mathbb{R}^4 \to \mathbb{R}^2, (x;y;z;t) \to (3x-z+t;y-t) :$$

- i) determinare la dimensione ed una base per i sottospazi Imf ∩ Kerg e Img + Kerf,
- ii) determinare, se possibile, sottospazi complementar (rispetto al prodotto scalare canonico) sia di che di che contengano il vettore $\mathbf{v} = (0;0;0;1)$;
- iii) si discuta la suriettività di g o f

3. Dati i piani di equazioni:

$$x + ky + kz = 2$$
, $y + z = k$, $x - 2ky - 3z = k$, $3x + z = -1$

- i) se ne discuta il sistema lineare al variare del parametro $k \in \mathbb{R}$ e si interpretino geometricamente i risultati ottenuti;
- si scrivano le equazioni delle rette, parallela ed ortogonale, alla retta rappresentata nello spazio euclideo dalle prime due equazioni del sistema dopo aver posto k=2.
- 2. Si consideri la seguente forma bilineare ϕ su \mathbb{R}^3 :

$$\phi((x;y;z);(x^*;y^*;z^*)) = xx' + xy' - xz' + yx' + 2yy' - x'z + 3zz'.$$

- i) Verifícare che ϕ e' un prodotto scalare;
- ii) si determini una base di \mathbb{R}^3 orto rispetto a ϕ ;
- iii) si consideri il sottospazio vettoriale di \mathbb{R}^3

$$W = Span (\{(1,-1,1), (3,1,1)\})$$

si tdetermini una base ortonormale, rispetto al prodotto scalare $\varphi,$ sia di $\mathbf W$ che del sottospazio ortogonale a $\mathbf W$.

Dopo aver determinato l'equazione della parabola, \mathbf{F} , avente il punto O (0;0) come vertice e tale che la retta, \mathbf{s} , di equazione $-2\mathbf{x} + \mathbf{y} - 30 = 0$ sia il diametro coniugato alla direzione della retta, \mathbf{r} , d equazione $-\mathbf{x} + \mathbf{y} = 0$, si porti l'equazione di \mathbf{F} in forma canonica.

Testo della prova scritta di Geometria ed Algebra

(prof. Flavio Bonetti)

del 16 - 2 - 2002

1. Dati i piani di equazioni:

$$x - ky + kz = 2,3x - 2y + 2z = 2,-x - ky + 2z = k, x - 2y + kz = 2$$

i) se ne discuta il sistema lineare al variare del parametro $k \in \mathbb{R}$ e si interpretino geometricamente i risultati ottenuti;

- ii) si scrivano le equazioni delle rette, parallela ed ortogonale, alla retta che si ottiene sostituendo nel sistema il valore k = 2.
- 2. Si consideri la seguente forma bilineare ϕ su \mathbb{R}^3 :

$$\phi((x;y;z);(x^*;y^*;z^*)) = xx' + xy' - xz' + yx' + 2yy' - x'z + 3zz'.$$

- i) Verificare che ϕ e' un prodotto scalare;
- ii) si determini una base di \mathbb{R}^3 orto rispetto a ϕ ;
- iii) si consideri il sottospazio vettoriale di \mathbb{R}^3

$$W = Span (\{(1;-1;1), (3;1;1)\})$$

si tdetermini una base ortonormale, rispetto al prodotto scalare ϕ , sia di ${\bf W}$ che del sottospazio ortogonale a ${\bf W}$.

Dopo aver determinato l'equazione della parabola, \mathbf{F} , avente il punto O (0;0) come vertice e tale che la retta, \mathbf{s} , di equazione $-2\mathbf{x} + \mathbf{y} - 30 = 0$ sia il diametro coniugato alla direzione della retta, \mathbf{r} , d equazione $-\mathbf{x} + \mathbf{y} = 0$, si porti l'equazione di \mathbf{F} in forma canonica.

Testo della prova scritta di Geometria ed Algebra

(prof. Flavio Bonetti)

del 7 - 1 - 2002

1. Dati i piani di equazioni:

$$-3x - 3z = k$$
, $-3x + (k + 9)y = 0$, $kx + kz = -3$, $(k - 3)x + 6y - 3z = k$

i) se ne discuta il sistema lineare al variare del parametro $k \in \mathbb{R}$ e si interpretino geometricamente i risultati ottenuti.

2. Si consideri la seguente forma bilineare ϕ su \mathbb{R}^3 : $\phi((x;y;z);(x^*;y^*;z^*)) = 3xx' - 2xy' - 2yx' + 3yy' + zz'.$

i) Verificare che φ e' un prodotto scalare;

- ii) si determini ona base di \mathbb{R}^3 ortogonale rispetto a ϕ ;
- iii) si consideri il sottospazio vettoriale di \mathbb{R}^3 $W = \{(h; h+k;k) \in \mathbb{R}^3 | h,k \in \mathbb{R} \}$

si trovi ona base del sottospazio ortogonale a W rispetto al prodotto scalare φ.

3. Sono assegnati i due sottospazi U, V di \mathbb{R}^4 , il primo rappresentato in forma cartesiana dal sistema

$$x_1 - x_2 = 0, 2x_1 + x_3 = 0$$

ed il secondo definito in forma parametrica da $V = \{(h + k; h + k; h; k) \in \mathbb{R}^4 | h, k \in \mathbb{R} \}$. Determinare una base per i seguenti due sottospazi U + V ed $U \cap V$.

Corsi di Laurea in Ingegneria Elettrica, Ingegneria Informatica ed Ingegneria Meccanica Testo della prova scritta di Geometria ed Algebra (prof. Flavio Bonetti)

del 10 - 12 - 2001

1. Dati i piani di equazioni:

$$2x + 3y + z = 0, y + (2\alpha - 1)z = -1, (\alpha + 1)x + 2y = 1, 2\alpha x + 4y + 4z = -1$$

i) se ne discuta il sistema lineare al variare del parametro $\alpha \in \mathbb{R}$ e si interpretino geometricamente i risultati ottenuti:

- dette $r(\alpha)$ ed $s(\alpha)$ le rette rappresentate rispettivamente dalle prime due e dalle ultime due equazioni del sistema, si determinino gli eventuali valori di α per cui $r(\alpha)$ ed $s(\alpha)$ sono parallele, incidenti , sghembe ed ortogonali.
- In EG(2; \mathbb{R}) sia data la conica di equazione $7x^2 + 7y^2 18xy + 2x + 2y = 0$: 2.

i) si porti l'equazione della conica in forma canonica sia attraverso una matrice di passaggio che si ortogonale positiva sia attraverso una matrice di passaggio che sia ortogonale negativa;

- si trovino i vertici della conica e si scrivano l'equazioni delle tangenti alla conica nei vertici. ii)
- 3. Sia A una matrice quadrata di ordine 3. con autovalori 0, 1, 2:
 - i) A è diagonalizzabile? Motivare la risposta;
 - ii) determinare il rango di A:
 - determinate de($A^T \times A$). iii)

Corsi di Diploma in Ingegneria Aerospaziale ed Ingegneria Meccanica Testo della prova scritta di Istituzioni di Matematica

(prof. Flavio Bonetti)

del 27 - 10 - 2001

1. Dati i piani di equazioni:

$$\alpha x + 9y = 0, (\alpha 1)x - \alpha y + 2z = -1, (2 \alpha)x - (\alpha 2)3z = \alpha + 1, x + \alpha y = 0$$

i) se ne discuta il sistema lineare al variare ddel parametro $\alpha \in \mathbb{R}$ e si interpretino geometricamente i risultati ottenuti:

- ii) dette $r(\alpha)$ ed $s(\alpha)$ le rette rappresentate rispettivamente dalle prime due e dalle ultime due equazioni del sistema, si determinino gli eventuali valori di α per cui $r(\alpha)$ ed $s(\alpha)$ sono parallele, incidenti e sghembe.
- In EG(2;) \mathbb{R} si determini il fascio di coniche passanti per O (0;0) e per il punto improprio della retta r di equazione 2x y = 0, e tali che r sia il diametro coniugato alla direzione della retta s di equazione x + 2y = 0:
 - i) si classifichino le coniche di ${\mathbb F}$ e si portino in forma canonica l'equazione delle coniche non degeneri di ${\mathbb F}$
- 3. Data la matrice

$$A = [8, 0, 4, -6, 6, 4, 6, -18, -2, 0, 2, 6, 0, 0, 0, 6]$$

i) sia f l'endomorfismo di \mathbb{R}^4 associato alla matrice A rispetto la base canonica; si trovino gli autospazi di f, basi ortonormali per gli autospazi di f e per i loro complementi ortogonali,

si dica se A è diagonalizzabile;

ii) sia U il sottospazio di \mathbb{R}^4 di equazioni

$$x_2 + x_3 = 0, x_3 - x_4 = 0$$

si trovi una base ortonormale, per il prodotto scalare canonico, di U, f(U) e U ∩ Kerf;

si trovi infine un prodotto scalare (non canonico) tale che scelta, arbitrariamente, una base di
U + Kerf questa risulti ortonormale.

Corsi di Diploma in Ingegneria Aerospaziale ed Ingegneria Meccanica Testo della prova scritta di Istituzioni di Matematica

(prof. Flavio Bonetti) del 19 - 9 - 2001

1. In EG(3; \mathbb{R}) e' data la famiglia, \mathbf{F} , di quadriche di equazione; - (3k + 1) x^2 + 3(1 - k) y^2 - (1 + k) z^2 + 2 (k + 1)xz + 4 (2k - 1)y + 1 - 5k = 0;

- i) si classifichino le quadriche di **F**;
- ii) si classifichino proiettivamente le coniche improprie delle eventuali quadriche specializzate di \mathbf{F} ;
- iii) scelto un valore di k per cui la quadrica di f risulti a punti iperbolici si scrivano le equazini delle generatrici passanti per un suo punto scelto a piacere.
- 2. Si consideri il seguente prodotto interno su \mathbb{R}^3 : $\phi((x;y;z);(x^*;y^*;z^*)) = xx' + xy' xz' + yx' + 2yy' x'z + 3zz'.$
 - i) Verificare che ϕ e' un prodotto scalare;
 - ii) determinare basi ortonormali, rispetto a ϕ , di $S = Span\left(\left\{(1;-1;1),(3;1;1)\right\}\right)$ e del complemento ϕ -ortogonale di S.
- Dopo aver dimostrato che esiste uno ed un solo endomorfismo f di \mathbb{R}^3 tale che f((1;0;0)) = (0;0;1) e f((0;1;0)) = (0;0;5) e $f^2 = \theta$:
 - i) si determini la matrice, A, associata ad f rispetto alla base ((1;0;0); (1;1;0); (0;1;1))
 - ii) determinare la dimensione ed una base ortonormale per i sottospazi Imf e Kerf,
 - iii) determinare il sottospazio f(W), dove W è lo spazio generato da (1;0;1) e (0;0:3);
 - iv) si discuta la diagonalizzabilità di f e si trovino basi ortonormali, rispetto a φ (vedi l'esercizio 2), degli eventuali autospazi di f.

Corsi di Diploma in Ingegneria Aerospaziale ed Ingegneria Meccanica Testo della prova scritta di Istituzioni di Matematica

(prof. Flavio Bonetti) del 18 - 7 - 2001

-

1. Dati i piani di equazioni:

$$\{x - \alpha y - z = -2, \alpha x - 2y + z = -\alpha, 2x - y - 3z = -2, 2\alpha x - (2 + \alpha)y + z = -(2 + \alpha)\}$$

- i) se ne discuta il sistema lineare al variare ddel parametro $\alpha \in \mathbb{R}$ e si interpretino geometricamente i risultati ottenuti;
- ii) per gli eventuali valori di α, per cui i piani abbiano come intersezione punti propri, si determinino tali punti;
- iii) fissato $\alpha = 0$, siano r la retta rappresentata dalle prime due equazioni del sistema e π il piano descritto dalla terza equazione del sistema. Si determini la retta passante per A (1; 0; -2), parallela a π ed ortogonale a r.

2. Data la matrice reale

$$A = [15, -4, 34, 0, -5, 0, -10, 0, -5, 2, -12, 0, 5, 6, 4, 0]$$

sia f l'endomorfismo di \mathbb{R}^4 associato alla matrice A rispetto la base canonica; si trovino gli autospazi di f, basi ortonormali per gli autospazi di f e per i loro complementi ortogonali, si dica se A è diagonalizzabile trovando una matrice diagonale D simile alla matrice A e la relativa matrice di passaggio.

3. In EG(2; \mathbb{R}) dopo aver determinato il fascio \mathbf{G} di coniche passanti per O (0;0), rispetto alle quali la retta x di equazione y = 0 sia la polare del punto X (1; -1) e rispetto alle quali il diametro coniugato alla direzione della retta x sia parallelo alla retta di equazione y = x, si classifichino le coniche del fascio \mathbf{G} .

Corso di Laurea in Ingegneria Meccanica Testo della prova scritta di Geometria e Algebra

(prof. Flavio Bonetti)

del 19 - 1 - 2001

- 1. Data in EG(2;) \mathbb{R} la conica \mathbb{C} di equazione $5x^2 + 5y^2 + 6xy 4x + 4y = 0$: i) la si classifichi e si porti la sua equazione in forma canonica;
 - ii) dopo aver determinato l'equazione della conica \mathbf{Q} passante per i tre punti di intersezione di \mathbf{C} con gli assi coordinati, tale che \mathbf{Q} e \mathbf{C} abbiano la stessa retta come diametro passante per O (0;0) e tale che questo diametro sia coniugato alla stessa direzione rispetto ad entrambe, la si porti in forma canonica.
- 2. In EG(3; \mathbb{R}) siano dati i piani di equazioni: $(\cos(\pi\alpha))x + 2y + 10^{\beta}z = \beta$, $x + 2y + (\cos(\pi\alpha))z = 0$, $x + y + (\cos(\pi\alpha))z = 0$:
 - i) si discuta il sistema al variare dei parametri $\alpha \in \mathbb{Z}$ e $\beta \in \mathbb{R}$ interpretando geometricamente i risultati ottenuti;
 - ii) sia \mathbf{F} il fascio (iproprio) di piani paralleli al piano rappresentato dalla terza equazione in cui si è posto $\alpha = 0$; si determini il piano di \mathbf{F} tale che le sue intersezioni con gli assi coordinati e l'origine del riferimento siano vertici di un tetraedro di volume 36.
- 3. Dato lo spazio vettoriale reale \mathbb{R}^3 ed una sua base generica $\mathfrak{B} := (\mathbf{u}; \mathbf{v}; \mathbf{w})$, si considerale reale orden l'endomorfismo f di tale che

$$f(u) = v,$$
 $f(u - w) = u - v,$ $f(u + v - w) = u$:

- ii) si discuta la diagonalizzabilità di f;
- iii) si scriva una rappresentazione cartesiana degli autospazi di f ed una loro base ortonormale (rispetto il prodotto scalare canonico).