

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
df = nd read csv("Housing dataset csv
```

df = pd.read_csv("Housing dataset.csv")
df

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0	
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0	
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0	
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0	
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0	
21608	263000018	20140521T000000	360000.0	3	2.50	1530	1131	3.0	0	0	
21609	6600060120	20150223T000000	400000.0	4	2.50	2310	5813	2.0	0	0	
21610	1523300141	20140623T000000	402101.0	2	0.75	1020	1350	2.0	0	0	
21611	291310100	20150116T000000	400000.0	3	2.50	1600	2388	2.0	0	0	
21612	1523300157	20141015T000000	325000.0	2	0.75	1020	1076	2.0	0	0	
	.										

21613 rows × 21 columns

Y = df[['price']]
X = df.drop(['price', 'id', 'date'], axis=1)
X.head()

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement
0	3	1.00	1180	5650	1.0	0	0	3	7	1180	0
1	3	2.25	2570	7242	2.0	0	0	3	7	2170	400
2	2	1.00	770	10000	1.0	0	0	3	6	770	0
3	4	3.00	1960	5000	1.0	0	0	5	7	1050	910
4	3	2.00	1680	8080	1.0	0	0	3	8	1680	0

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 18 columns):

		/ -	
#	Column	Non-Null Count	Dtype
0	bedrooms	21613 non-null	int64
1	bathrooms	21613 non-null	float64
2	sqft living	21613 non-null	int64

3	sqft_lot	21613	non-null	int64	
4	floors	21613	non-null	float64	
5	waterfront	21613	non-null	int64	
6	view	21613	non-null	int64	
7	condition	21613	non-null	int64	
8	grade	21613	non-null	int64	
9	sqft_above	21613	non-null	int64	
10	sqft_basement	21613	non-null	int64	
11	yr_built	21613	non-null	int64	
12	yr_renovated	21613	non-null	int64	
13	zipcode	21613	non-null	int64	
14	lat	21613	non-null	float64	
15	long	21613	non-null	float64	
16	sqft_living15	21613	non-null	int64	
17	sqft_lot15	21613	non-null	int64	
ltype	es: float64(4),	int64	(14)		

memory usage: 3.0 MB

df = df.drop(['id', 'date'], axis=1) df.head()

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_
0	221900.0	3	1.00	1180	5650	1.0	0	0	3	7	1180	
1	538000.0	3	2.25	2570	7242	2.0	0	0	3	7	2170	
2	180000.0	2	1.00	770	10000	1.0	0	0	3	6	770	
3	604000.0	4	3.00	1960	5000	1.0	0	0	5	7	1050	
4	510000.0	3	2.00	1680	8080	1.0	0	0	3	8	1680	

plt.subplots(figsize=(10,8)) sns.heatmap(df.corr())

<matplotlib.axes._subplots.AxesSubplot at 0x7fd36d631990>

<matplotlib.legend.Legend at 0x7fd36a817850>

Linear Regression Implementation using Scikit-Learn.

```
x = X[['sqft_living']]
y = Y

xsl = x.values.reshape(-1,1)
ysl = y.values.reshape(-1,1)
xsl = np.concatenate((np.ones(len(xsl)).reshape(-1,1), xsl), axis=1)

from sklearn.linear_model import LinearRegression

slr = LinearRegression()
slr.fit(xsl[:,1].reshape(-1,1), ysl.reshape(-1,1))
y_hat = slr.predict(xsl[:,1].reshape(-1,1))

print('theta[0] = ', slr.intercept_)
print('theta[1] = ', slr.coef_)

thetas = np.array((slr.intercept_, slr.coef_)).squeeze()

theta[0] = [-43580.74309447]
    theta[1] = [[280.6235679]]
    //usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:14: VisibleDeprecationWarning: Creating an ndarray from note that the slower content is the s
```

```
plt.figure(figsize=(10,6))
plt.title('$\\theta_0$ = {} , $\\theta_1$ = {}'.format(thetas[0], thetas[1]))
plt.scatter(xsl[:,1],y, marker='x', color='g')
plt.plot(xsl[:,1], np.dot(xsl, thetas), 'r')
```

[<matplotlib.lines.Line2D at 0x7fd367aa9410>]


```
print("Slope = ", slope, "\nIntercept = ",intercept)
```

Slope = 280.6235678974483 Intercept = -43580.74309447408

print("Standard Error = ",std_err)

Standard Error = 1.9363985519989133