

Tema 1: Conjuntos y conjuntos numéricos: operaciones con números complejos

Marisa Serrano

Universidad de Oviedo

Septiembre de 2020

email: mlserrano@uniovi.es

Tema 1: Conjuntos y conjuntos numéricos: o

09/2020

Conjuntos de Cantor

Definición 1.1

Un conjunto es la reunión en un todo de determinados objetos bien definidos y diferenciables entre sí. ^a A cada uno de los objetos que componen el conjunto lo llamaremos elemento. Si a es un elemento del conjunto A, se escribe $a \in A$ y se lee 'a pertenece a A'. Al símbolo \in se le llama signo de pertenencia.

^aDefinición dada por George Cantor (1845-1918)

Definición 1.2

Dos conjuntos iguales son aquellos que tienen los mismos elementos.

Índice

- Conjuntos

El conjunto vacío

Definición 1.3

Se admite que existe un conjunto, Ø, al que llamaremos conjunto vacío y que carece de elementos.

Subconjuntos

Definición 1.4

Se dice que un conjunto A está contenido en otro conjunto B o también que A es subconjunto de B siempre que todos los elementos de A lo sean también de B, y se denotará como sigue:

 $A \subset B$

Obsérvese que $\emptyset \subset A$ para todo conjunto A

Ejemplo 1.1

Llamando $A = \{2, \pi, e\}$ y $B = \{2, 3, \pi, e, e^2\}$ entonces se verifica que $A \subset B$.

Tema 1: Conjuntos y conjuntos numéricos: o

Unión e intersección

Definición 1.6

Se llama unión de dos conjuntos A y B al conjunto formado por todos los elementos que pertenecen a uno al menos de los dos conjuntos. A dicho conjunto se le denota por $A \cup B$.

Se llama intersección de dos conjuntos A y B al conjunto de los elementos que pertenecen a los dos conjuntos. A dicho conjunto se le denota por $A \cap B$

Pincha aquí para ver una interpretación geométrica de las distintas operaciones con conjuntos.

Complementario

Definición 1.5

Si A es un subconjunto de U llamaremos complementario de A en U al conjunto formado por todos los elementos de U que no están en A y lo denotaremos por $C_{II}A$.

Si A no es subconjunto de U se define diferencia $U \setminus A$ como

$$U \setminus A = \{x \in U \mid x \notin A \}$$

Ejemplo 1.2

Se consideran los conjuntos $A = \{a, b, c, d, e, f, g, h, i\}$, $B = \{a, e, i, o, u\}$, $C = \{a, e, i\}. \ iA \subset B?, \ C \subset A?, \ iC \subset B?. \ Calcula \ A \setminus C, \ B \setminus C \ y \ A \setminus B.$

Ejemplo 1.3

Sean A y B dos conjuntos, compruebe que:

- $A \cap B = A \leftrightarrow A \subset B$

Producto cartesiano

Ejemplos

Definición 1.7

Dados dos conjuntos A y B, se llama conjunto producto cartesiano de A y B al conjunto siguiente:

$$A \times B = \{(a,b) / a \in A, b \in B \}$$

Tema 1: Conjuntos y conjuntos numéricos: o

09/2020

Índice

- Aplicaciones o funciones
- Números complejos

Ejemplo 1.4

Se consideran los conjuntos $A = \{1, 2, 3\}$, $B = \{a, b\}$, $C = \{\triangle, \nabla\}$. Calcula $A \times B$ y $A \times B \times C$.

Tema 1: Conjuntos y conjuntos numéricos: o

09/2020

10 / 61

Correspondencias

Definición 1.8

Dados dos conjuntos A y B, se llama correspondencia a cualquier subconjunto del producto cartesiano $A \times B$. Habitualmente, si (a, b) es un elemento de la correspondencia f, se suele escribir f(a) = b, y se dice que la correspondencia f asocia al elemento a el elemento b.

Aplicaciones

Definición 1.9

Una correspondencia de A en B se llama aplicación si a cada elemento del conjunto A le asocia un elemento y sólo uno del conjunto B, es decir, f es aplicación si y sólo si

a)
$$\forall x \in A$$
, $\exists f(x) \in B$

b) Si
$$x, y \in A$$
 verifican $x = y$ entonces $f(x) = f(y)$

Habitualmente se suele escribir:

$$f: A \longrightarrow B$$

 $a \rightarrow f(a) = b$

Llamaremos conjunto imagen mediante la aplicación f, y lo denotaremos por f(A) o bien $\mathrm{Im} f$ al conjunto

$$f(A) = \operatorname{Im} f = \{ y \in B \ / \ \exists x \in A, \ f(x) = y \}$$

M. Serrano (Universidad de Oviedo

Tema 1: Conjuntos y conjuntos numéricos:

09/2020 13/

13 / 61

Aplicaciones o funciones

Grafo

Definición 1.10

Dada una aplicación $f: A \longrightarrow B$, $\forall a \in A$ existe un único $f(a) \in B$. Al conjunto formado por todos los pares (a, f(a)) le llamaremos grafo de la aplicación f, o también gráfica de f, g se denotará por

$$\operatorname{gr} f = \{(a, f(a)) / a \in A \}$$

Ejemplos

Ejemplo 1.5

Dada la correspondencia $f: A \longrightarrow B$ definida como sigue: $f(x) = \sin x$ $\forall x \in A$, decídase en cual de los siguientes casos la correspondencia es una aplicación:

- \bullet $A = \mathbb{R}^+$, $B = \mathbb{R}^+$

- $A = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], B = [-1, 1]$
- **3** $A = [0, \pi], B = [-1, 1]$
- $A = \left[\pi, \frac{3\pi}{2}\right], B = [0, 1]$

M. Serrano (Universidad de Ovied

ema 1: Conjuntos y conjuntos numéricos:

09/2020 1

Aplicaciones o funcior

Clasificación de las aplicaciones

Definición 1.11

Sea $f: A \to B$ una aplicación. Diremos que f es **inyectiva** si dos elementos distintos no pueden tener la misma imagen, es decir

$$x \neq y \rightarrow f(x) \neq f(y)$$

o, equivalentemente

$$f(x) = f(y) \rightarrow x = y$$

diremos que es **suprayectiva**, sobreyectiva o exhaustiva si todos los elementos del conjunto B son imágenes de algún elemento de A, es decir, si

$$\forall b \in B \quad \exists a \in A \ / \ f(a) = b$$

y diremos que la aplicación f es **biyectiva** cuando sea a la vez inyectiva y suprayectiva.

Ejemplo

Ejemplo 1.6

Dada la correspondencia $f: A \longrightarrow B$ definida como sigue: $f(x) = \operatorname{sen} x$ $\forall x \in A$, decídase en cual de los siguientes casos la correspondencia es una aplicación y en caso de serlo, clasifíquese:

- $A=\mathbb{R},\ B=\mathbb{R}$
- **3** $A = \mathbb{R}$, B = [-1, 1]
- **4** $A = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], B = [-1, 1]$
- **3** $A = [0, \pi], B = [-1, 1]$
- **6** $A = [0, \pi], B = [0, 1]$

M. Serrano (Universidad de Oviedo

Tema 1: Conjuntos y conjuntos numéricos:

09/2020 17/

Aplicaciones o funciones

Ejemplo

Ejemplo 1.7

Dadas las aplicaciones f(x) = 3x + 2, g(x) = x - 5, calcula $f \circ g$ y $g \circ f$.

Composición

Definición 1.12

Dadas dos aplicaciones $f: A \to B$ y $g: C \to D$ tales que $f(A) \subset C$ se puede definir una nueva aplicación a la que llamaremos aplicación composición de f y g y la denotaremos por $g \circ f$ definida como sigue:

$$g \circ f: A \longrightarrow D$$

 $a \rightarrow g \circ f(a) = g(f(a))$

M. Serrano (Universidad de Oviedo

ema 1: Conjuntos y conjuntos numéricos:

09/2020 1

Aplicaciones e funcion

Aplicación identidad

Definición 1.13

Sea A un conjunto, a la aplicación I_A : $A \to A$ definida como sigue: $I_A(x) = x \ \forall x \in A$ la llamaremos aplicación identidad. Si no existe duda sobre el conjunto sobre el que está definida, se la suele denotar por I.

Inversa

Definición 1.14

Sea $f: A \rightarrow B$ una aplicación biyectiva. Se llama inversa de f a la aplicación

$$f^{-1}$$
: $B \longrightarrow A$
 $b \rightarrow a \in A / f(a) = b$

Tema 1: Conjuntos y conjuntos numéricos: o

09/2020 21/61

Índice

- 3 Relaciones de equivalencia y de orden
- Números complejos

Teorema 1.15

Si $f: A \to B$ es biyectiva, entonces $f \circ f^{-1} = I_B$ y $f^{-1} \circ f = I_A$.

Tema 1: Conjuntos y conjuntos numéricos: o

09/2020

Relaciones de equivalencia y de orden

Relación binaria

Definición 1.16

Dado un conjunto A y dado R un subconjunto del producto cartesiano $A \times A$, se dice que un elemento $x \in A$ está relacionado con otro elemento $y \in A$ por \mathcal{R} si $(x, y) \in \mathcal{R}$, lo que se indica poniendo $x\mathcal{R}y$. A la función proposicional $r(x, y) = x \mathcal{R} y$ se le llama relación binaria.

Propiedades

Definición 1.17

Una relación binaria entre elementos del conjunto A, \mathcal{R} se dice que es reflexiva, simétrica, antisimétrica o transitiva si se verifica, respectivamente:

- Reflexiva: xRx $\forall x \in A$
- Simétrica: $xRy \rightarrow yRx \ con \ x, y \in A$
- Antisimétrica: Si xRy y además $yRx \rightarrow x = y$ siendo $x, y \in A$
- Transitiva: $Si \times \mathcal{R}y \ y \ además \ y\mathcal{R}z \to x\mathcal{R}z \ siendo \ x, y, z \in A$

Tema 1: Conjuntos y conjuntos numéricos: o

Relación binaria de equivalencia

Definición 1.18

Una relación binaria entre elementos del conjunto A se dice que es una relación binaria de equivalencia, o de forma abreviada RBE, si verifica las propiedades reflexiva, simétrica y transitiva.

Si \mathcal{R} es una RBE y $a \in A$, al conjunto de todos los elementos de A que están relacionados con a

$$[a] = \{b \in A \mid aRb \}$$

le llamaremos clase de equivalencia de representante a.

Ejemplo

Ejemplo 1.8

Dada la relación binaria en el conjunto de los números naturales: xRy si y sólo si x + y es múltiplo de 6. Estudia cuáles de las propiedades anteriores cumple v cuáles no.

09/2020

Ejemplo

Ejemplo 1.9

Si \mathcal{R} es una RBE en A, y a, $b \in A$, entonces:

- $a \mathcal{R}b \rightarrow [a] \cap [b] = \emptyset$

Conjunto cociente

Definición 1.19

Si R es una RBE definida en A, se llama conjunto cociente al conjunto de las clases de equivalencia definidas en A por \mathcal{R} , es decir:

$$A/\mathcal{R} = \{[a] / a \in A\}$$

Tema 1: Conjuntos y conjuntos numéricos: o

09/2020

Relación de orden

Definición 1.20

Una relación binaria $\mathcal R$ definida en un conjunto A diremos que es una relación de orden si cumple las propiedades reflexiva, antisimétrica y transitiva.

Cuando para todo par de elementos a, $b \in A$ se puede decir que a $\mathcal{R}b$ o bien bRa diremos que la relación es de orden total, en otro caso, es decir, cuando existan a, $b \in A$ tales que a $\Re b$ y b $\Re a$ diremos que se trata de una relación de orden parcial.

Ejemplo 1.10

Ejemplo

Comprobar que la relación definida en $\mathbb{R} \times \mathbb{R}$ por

$$(a,b)\mathcal{R}(c,d)\leftrightarrow a^2+b^2=c^2+d^2$$

es una RBE. Obtener y representar gráficamente el conjunto cociente $\mathbb{R} \times \mathbb{R}/\mathcal{R}$.

Ejemplo

Ejemplo 1.11

En el conjunto de los números naturales se define la siguiente relación binaria:

$$a\mathcal{R}b\leftrightarrow a|b$$

(a|b se lee 'a divide a b'). Demostrar que $\mathcal R$ es una relación de orden. ¿Es total o parcial?

Conjunto de las clases residuales

Recordemos el algoritmo de la división en \mathbb{Z} :

Dados
$$D, d \in \mathbb{Z} \rightarrow \exists q, r \in \mathbb{Z}$$
 / $D = dq + r, 0 \le r < d$.

donde, los valores de q y de r son únicos.

Sea $p \in \mathbb{N}$ y p > 1, se define la relación binaria de 'congruencia módulo p' como sigue:

$$m \equiv n \leftrightarrow m - n = \dot{p}$$

donde \dot{p} se lee 'múltiplo de p'. Esta relación es una RBE.

Llamaremos conjunto de las clases residuales módulo p al conjunto cociente asociado a la relación de congruencia, es decir, al conjunto $\mathbb{Z}/_{\equiv}$ que denotaremos habitualmente por

$$\mathbb{Z}/p\mathbb{Z} = \{[0], [1], [2], \dots, [p-1]\}$$

que es el conjunto de las clases de los posibles restos que se obtienen al dividir un entero por p.

M. Serrano (Universidad de Oviedo) Tema 1: Conjuntos y conjuntos numéricos: o

09/2020

Índice

- Números complejos

Ejemplo

Ejemplo 1.12

Describe el conjunto $\mathbb{Z}/2\mathbb{Z}$. ; A qué clase de equivalencia pertenecen 5 y 6?

Tema 1: Conjuntos y conjuntos numéricos: o

09/2020

Ley de composición interna

Definición 1.21

Dado un conjunto $A \neq \emptyset$ llamaremos operación interna en A, ley de composición interna en A o, de forma abreviada, lci, a cualquier aplicación del producto cartesiano $A \times A$ en A:

*:
$$A \times A \longrightarrow A$$

 $(a,b) \rightarrow a*b=c \in A$

Conjuntos y leyes

Ejemplo 1.13

¿Cuáles de las siguientes operaciones son lci?

- a) Suma de números naturales. 🗸
- b) Resta de números naturales. X
- c) Producto de números racionales. 🗸
- d) Producto de números irracionales. X
- e) Producto de números reales. 🗸
- f) División de números reales. X

M. Serrano (Universidad de Oviedo

Tema 1: Conjuntos y conjuntos numéricos:

09/2020 37/

/61

Números complejos

Algunos grupos

Ejemplo 1.14

¿Cuáles de los siguientes pares son grupos?

- a) (N, +). **×**
- *b*) (ℕ, ·). **×**
- c) $(\mathbb{Z},+)$.
- d) (\mathbb{Z},\cdot) . \times
- e) (ℚ, +). ✓

- f) (ℚ, ·). **X**
- $g) (\mathbb{Q} \setminus \{0\}, \cdot). \checkmark$
- h) $(\mathbb{R},+)$.
- i) (\mathbb{R},\cdot) . \times
- *j*) (ℝ \ {0}, ·). ✓

Grupo

Definición 1.22

Un **grupo** es una estructura algebraica formada por un conjunto G y una I.c.i.*, (G,*) que verifica:

- a) Asociativa: a*(b*c) = (a*b)*c, $\forall a, b, c \in G$
- b) Elemento neutro: $\exists e \in G$ tal que a * e = e * a = a, $\forall a \in G$
- c) Elemento simétrico: $\forall a \in G$, $\exists a' \in G$ tal que a * a' = a' * a = e

 $Si * es conmutativa, (\forall a, b \in G se verifica que a * b = b * a), entonces diremos que se trata de un grupo conmutativo o abeliano.$

M. Serrano (Universidad de Ovie

ema 1: Conjuntos y conjuntos numéricos:

09/2020 3

Números comp

Cuerpo

Definición 1.23

Una estructura algebraica formada por un conjunto y dos lci $(\mathbb{K},+,\circ)$ diremos que es un cuerpo cuando $(\mathbb{K},+)$ es grupo conmutativo cuyo neutro llamaremos 0, $(\mathbb{K}\setminus\{0\},\circ)$ es un grupo, a cuyo neutro llamaremos 1 y además las leyes cumplen la propiedad distributiva:

$$\forall a, b, c \in \mathbb{K}, \quad (a+b) \circ c = a \circ c + b \circ c$$

Cuando la segunda ley es conmutativa diremos que $(\mathbb{K}, +, \circ)$ es un cuerpo conmutativo.

Algunos cuerpos

Ejemplo 1.15

¿Cuáles de las siguientes ternas son cuerpos?

- a) $(\mathbb{N},+,\cdot)$. \times
- b) $(\mathbb{Z},+,\cdot)$.
- c) $(\mathbb{Q},+,\cdot)$.
- d) $(\mathbb{R},+,\cdot)$.
- $e) \ (\mathcal{M}_{n\times n}(\mathbb{R}),+,\cdot). \ \mathsf{X}$

M. Serrano (Universidad de Oviedo

Tema 1: Conjuntos y conjuntos numéricos:

09/2020 41/6

Números complejos

Estructura en C

Teorema 1.25

El conjunto $\mathbb C$ con las operaciones anteriores verifica las propiedades siguientes:

- \bullet (\mathbb{C} , +) es un grupo conmutativo.
- **2** $(\mathbb{C} \{(0,0)\}, \cdot)$ es un grupo conmutativo.
- Oistributiva:

$$\forall z_1, z_2, z_3 \in \mathbb{C}, (z_1 + z_2) \cdot z_3 = z_1 \cdot z_3 + z_2 \cdot z_3.$$

Por lo tanto $(\mathbb{C}, +, \cdot)$ es un cuerpo conmutativo.

El cuerpo de los números complejos

Definición 1.24

Se considera el conjunto \mathbb{R}^2 y en él se definen dos leyes de composición interna suma y producto como sigue

- (a,b)+(c,d)=(a+c,b+d)
- $\bullet (a,b) \cdot (c,d) = (a \cdot c b \cdot d, a \cdot d + b \cdot c)$

Se denota por $\mathbb C$ a la estructura $(\mathbb R^2,+,\cdot)$.

M. Serrano (Universidad de Oviedo

Tema 1: Conjuntos y conjuntos numéricos

09/2020 42

Números comp

 $;\mathbb{R}\subset\mathbb{C}?$

Existe una **biyección** entre el cuerpo \mathbb{R} y el subconjunto de \mathbb{C} formado por los complejos de la forma (a,0).

Dado que (a, b) = (a, 0) + (b, 0)(0, 1), llamando i = (0, 1), se suele escribir (a, b) = a + bi. Esta otra forma de representar los números complejos se denomina forma binómica.

Al complejo i=(0,1) se le denomina unidad imaginaria. Obsérvese que $i^2=i\cdot i=(0,1)\cdot (0,1)=(-1,0)$, que en forma binómica sería $i^2=-1+0i=-1$. Esta propiedad (que su cuadrado sea -1) no la satisface ningún número real y gracias a ella en $\mathbb C$ se pueden calcular raíces cuadradas de números negativos.

Números complejos

Definiciones

Dado $z = a + bi \in \mathbb{C}$, se llama parte real de z a Real(z) = a y parte imaginaria de z a Imag(z) = b. El eje de abscisas se llama eje real y el de ordenadas eje imaginario. Se llama conjugado de z a $\bar{z} = a - bi$, y es el simétrico de z respecto del eje real.

M. Serrano (Universidad de Oviedo

Tema 1: Conjuntos y conjuntos numéricos:

9/2020 45/

Números complejos

Ejemplo 1.16

Halle la parte real y la parte imaginaria de (1-2i)(1-i).

Ejemplo 1.17

Encuentra a, $b \in \mathbb{R}$ tales que $\frac{5-i}{1-i} = a+bi$

Teorema 1.26

Para cualesquiera z, z_1 y z_2 elementos de $\mathbb C$ se verifica que:

$$\mathbf{3} \ \overline{\overline{z}} = z$$

• Real
$$(z) = \frac{z + \overline{z}}{2}$$
; Imag $(z) = \frac{z - \overline{z}}{2i}$

Propiedades de la conjugación

M. Serrano (Universidad de Ovied

ema 1: Conjuntos y conjuntos numéricos:

09/2020

Números comple

Módulo

Dado $z = a + bi \in \mathbb{C}$, se llama **módulo** de z a $|z| = \sqrt{a^2 + b^2}$.

Teorema 1.27

Sean z_1 y z_2 elementos de \mathbb{C} , se verifica que:

$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$

$$2_1 \cdot \overline{z_1} = |z_1|^2$$

$$|z_1 + z_2| \le |z_1| + |z_2|$$
 (designal triangular)

6
$$|z_1| \ge 0$$
. Además, $|z_1| = 0$ si, y sólo si, $z_1 = 0$

Ejemplos

Ejemplo 1.18

Expresa en forma binómica el complejo: $\frac{5-i}{1-i}$ utilizando la propiedad de que $z_1 \cdot \overline{z_1} = |z_1|^2$.

Tema 1: Conjuntos y conjuntos numéricos: o

Argumento

Al único argumento de z que está en el intervalo $(-\pi, \pi]$ le llamaremos argumento principal.

Ejemplo 1.19

Represente gráficamente y halle el módulo de:

- a) 2 + i
- *b*) 2
- c) 3i

09/2020

Forma polar

Forma polar
$$z = r \cdot (\cos(\alpha) + i \sin(\alpha)) = r_{|\alpha|}$$

Ejemplo 1.20

Exprese en forma polar y represente en el plano los números complejos

a)
$$1-i$$

$$b) -1$$

$$c) -i$$
 ,

a)
$$1-i$$
 , b) -1 , c) $-i$, d) $1+\sqrt{3}i$

La función exponencial compleja

Definición 1.28

Sea $z = x + iy \in \mathbb{C}$ llamaremos exponencial compleja, y la denotamos por $e^z = e^{x+iy}$ al número complejo

$$e^z = exp(z) = e^x(cos(y) + isen(y)) = e^x_{|y}$$

Nota 1.29

Si z = 0 + iy, con $y \in \mathbb{R}$, entonces $e^{iy} = \cos(y) + i \sin(y)$, $y |e^{iy}| = 1$.

Nota 1.30

Extiende a la exponencial real: si z = x + 0i, entonces $e^z = e^x$.

Tema 1: Conjuntos y conjuntos numéricos: o

Forma exponencial de un complejo

Sea $z \in \mathbb{C}$, con |z| = r y θ un argumento de z, entonces

$$z = r \cdot e^{i\theta}$$

A esta forma de expresar el complejo se le llama forma exponencial de representación del complejo.

Ejemplo 1.22

Exprese en forma exponencial los números complejos

a)
$$1 - i$$

$$b) -1$$

$$c) -i$$

a)
$$1-i$$
 , b) -1 , c) $-i$, d) $1+\sqrt{3}i$

Ejemplo 1.21

Exprese en forma binómica $e^{i\pi}$, $e^{2+i\pi/2}$ y $e^{i\pi/4}$.

Operaciones con complejos en forma exponencial

Teorema 1.31

Sean $z_1 = r_1 \cdot e^{i\theta_1}$ y $z_2 = r_2 \cdot e^{i\theta_2}$ dos números complejos. Se verifica entonces que $z_1 \cdot z_2 = (r_1 \cdot r_2) \cdot e^{i(\theta_1 + \theta_2)}$. Si además $z_2 \neq 0$, $\frac{z_1}{-} = \frac{r_1}{-} \cdot e^{i(\theta_1 - \theta_2)}$

Como consecuencia se tiene que si $z = r \cdot e^{i\theta} \neq 0$, entonces $\frac{1}{z} = \frac{1}{z} \cdot e^{-i\theta}$

Ejemplos

Ejemplo 1.23

Usando la forma exponencial calcule:

a)
$$(1+i)^2$$

b)
$$\frac{\sqrt{3}+i}{1+i}$$

Ejemplo 1.24

Usando la forma exponencial calcule:

a)
$$(\sqrt{3} + i)(1 + \sqrt{3}i)$$
,
b) $(1 - i)^2$,

c)
$$\frac{-\sqrt{3}+i}{2+2\sqrt{3}i}$$
.

(Universidad de Oviedo) Tema 1: Conjuntos y conjuntos numéricos: o

Números complejos

Ejemplos de potencias

Ejemplo 1.25

Calcule:

(a)
$$(1+i)^9$$

(b)
$$(-1+i)^{17}$$

(c)
$$(1-\sqrt{3}i)^{15}$$

(d)
$$i^{1023}$$

Potencias

Teorema 1.32

Sea $z = r \cdot e^{i\theta} \neq 0$ y $m \in \mathbb{Z}$, se verifica entonces que $z^m = r^m \cdot e^{im\theta}$.

Fórmula de Moivre:

$$(\cos(\theta) + i \sin(\theta))^n = \cos(n\theta) + i \sin(n\theta)$$

Tema 1: Conjuntos y conjuntos numéricos: o

09/2020

Números complejos

Raíces n-ésimas de un complejo

Teorema 1.33

Sean $z = r \cdot e^{i\theta} \neq 0$ y $n \in \mathbb{N}$; se verifica que z tiene exactamente n raíces n-ésimas distintas que son

$$w_k = \sqrt[n]{r} \cdot e^{irac{ heta + 2k\pi}{n}}$$
 para $k \in \{0, \ldots, n-1\}$

Números complejos

Ejemplos

Ejemplo 1.26

Halle y represente gráficamente las raíces siguientes: (a) $\sqrt[4]{i}$, (b) $\sqrt[3]{-1}$, (c) $\sqrt[3]{2i}$, (d) $\sqrt[4]{-16}$

M. Serrano (Universidad de Oviedo) Tema 1: Conjuntos y conjuntos numéricos: o

09/2020 61/61

