(80445) מכנים אלגבריים - 09 פתרון מטלה

2024 ביולי

. תהיG חבורה נילפוטנטית

'סעיף א

נוכיח שכל $H \leq G$ תת־חבורה היא אם נילפוטנטית.

הנילפוטנטיים. על־ידי הרכיבים הנורמלית הנוצרת נניח כי $\{e\}=Z_0 \triangleleft Z_1 \triangleleft \cdots \triangleleft Z_r=G$ הנגדיר על־ידי הרכיבים הנילפוטנטיים. ממשפט האיזומורפיזם השני נקבל כי $Z_i \cap H \triangleleft H \triangleleft H$ לכל

'סעיף ב

נוכיח כי לכל איא המנה G/Nהמנה ,
 $N \lhd G$ לכל כי נוכיח נוכיח המנה א

□ הוכחה. לא יודע.

. תהיG חבורהה נילפוטנטית סופית

'סעיף א

. |H| = mיש כך אכך א כך היימת תת־חבורה m | |G

הוכחה. אנו יודעים כי קיימת תת־חבורה p־סילו יחידה ונורמלית לכל p ואנו יודעים כי גם G היא מכפלה ישרה של חבורות אלה. ידוע גם כי קיימת תת־חבורה מכל סדר חזקת p קטן או שווה לחזקה המקסימלית, ולכן אם ניקח את הפירוק של m לראשוניים, מהעובדה שהוא מחלק את |G| נוכל לקבוע כי לכל p קיימת תת־חבורה בגודל זה ל|G|.

נשתמש בעובדה שהיא איזומורפית למכפלה ישרה ונכפול את תת־החבורות האלו בגדלים ראשוניים מקסימליים את ונקבל תת־חבורה בשתמש בעובדה שהיא איזומורפית למכפלה ישרה ונכפול את תת־החבורות האלו בגדלים לא בדיוק M.

'סעיף ב

 $p\mid |Z(G)|$ נוכיח כי לכל $p\mid |G|$ ראשוני, מתקיים גם

 $p\mid |Z(P)|$ כי וידוע ה' של סילו חבורת P חבורת חבורת הוכחה. תהי

 $U_n(\mathbb{F}) \leq B_n(\mathbb{F})$ באשר האלכסון שקול ל-מטריצות המטריצות המטריצות כאשר כאשר כאשר כאשר תהי $B_n(\mathbb{F}) \leq GL_n(\mathbb{F})$ כאשר האלכסון שקול ל-

'סעיף א

 $n\geq 1$ נוכיח שהחבורה $U_n(\mathbb{F})$ היא נילפוטנטית נוכיח

 $MUM^{-1}=I_n$ כך ש־ $M\in GL_n(\mathbb{F})$ נסיק כי קיימת עלכן מין פי זודעים כי זודעים לע, אנו וולכן אנו ער, אניח שולכן ערה עלכן אנו וולכן אנו וולכן אנו וולכן אנו וולכן מתי מתקיימת חילופיות ונקבל

$$AU = UA \iff AM^{-1}M = M^{-1}MA \iff MAM^{-1} = MA \iff U = A$$

. בלבד, ומכאן נוכל מתקיימת כי מתקיימת נוכל בוכל בלבד, בלבד, בלבד, בלבד, בלבד, ולכן ולכן בלבד, ולכן בלבד, ומכאן בלבד, ומכאן בלבד, ומכאן בלבד, וועביים בלבד,

'סעיף ב

 $n\geq 2$ נוכיח כי החבורה איא לא $B_n(\mathbb{F})$ היא לכל

 $L_n(\mathbb{F})=\{\lambda I_n\mid \lambda\in$ נסמן, נסמן המטריצות המטריצות הוא הוא המרכז של כי המרכז נקבל כי הקודם נקבל אילו נעשה האיך אילו נעשה האליך הקודם נקבל כי המרכז של $B_n(\mathbb{F})$ הוא הבורת המטריצות הסקלריות, נסמן הקודם נקבל כי המרכז של $B_n(\mathbb{F})$ הוא הבורת המטריצות הסקלריות, נסמן הקודם נקבל כי המרכז של המטריצות המטריצות הסקלריות, נסמן הקודם נקבל כי המרכז של המטריצות המטריצו

נגדיר הומומורפיזם שדטרמיננטה איז אכן על־ידי $\varphi:B_n(\mathbb F)\to B_n(\mathbb F)\to B_n(\mathbb F)$ נגדיר הומומורפיזם על־ידי על על־ידי $\varphi:B_n(\mathbb F)\to B_n(\mathbb F)\to B_n(\mathbb F)$ נבחין כי $A_n(\mathbb F)$ בחין כי $A_n(\mathbb F)$ ממשפט האיזומורפיזם הראשון נסיק כי $A_n(\mathbb F)$ משנה אני לא יודע.

. הבאות. הטענות או נפריך או נוכיח $x,y\in R$ יהי חוג ויהיו R

'סעיף א

 $x\cdot 0=0\cdot x=0$ נוכיח ש

הוכחה. מפילוג נקבל

$$0 \cdot x = (1-1) \cdot x = 1 \cdot x - 1 \cdot x = 0 = x \cdot 1 - x \cdot 1 = x \cdot 0$$

'סעיף ב

 $(-1) \cdot x = -x$ נוכיח כי

 $0.0 = 0 \cdot x = (1-1) \cdot x = x + (-1) \cdot x = 0 \implies x + (-1) \cdot x - x = -x \implies (-1) \cdot x = -x$ הוכחה.

'סעיף ג

נסתור את הטענה כי $(x+y)^2 = x^2 + 2xy + y^2$ על־ידי דוגמה נגדית.

.xy=yx ההכרח לא ,
 y=yגם וכך לבין לבין חילופי חילופי בעוד כי בעוד נבחין לבין מינו לבין הינו מ

נבחן את חוג המטריצות $M_2(\mathbb{R})$ ונראה כי

$$x = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, y = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad xy = \begin{pmatrix} 1 & 4 \\ 0 & 6 \end{pmatrix}, yx = \begin{pmatrix} 1 & 2 \\ 0 & 6 \end{pmatrix}$$

ולכן נקבל

$$(x+y)^2 = \begin{pmatrix} 2 & 2 \\ 0 & 6 \end{pmatrix}^2 = \begin{pmatrix} 2 & 16 \\ 0 & 36 \end{pmatrix}$$

אבל

$$x^{2} + 2xy + y^{2} = \begin{pmatrix} 1 & 7 \\ 0 & 9 \end{pmatrix} + \begin{pmatrix} 2 & 8 \\ 0 & 12 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 15 \\ 0 & 25 \end{pmatrix}$$

ואלו כמובן מטריצות שונות.

'סעיף ד

נסתור את הטענה $xy=0 \implies x=0 \lor y=0$ נסתור את בסתור את נגדית.

נגדיר

$$x = y = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

זוהי כמובן מטריצה נילפוטנטית וידוע כי

$$xy = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2 = 0$$

 $x, y \neq 0$ אבל

'סעיף ה

נסתור את הטענה $R = \{0\}$ על־ידי דוגמה נגדית.

נגדיר $0\cdot x=x\cdot 0=0$ יחד עם פעולת הכפל הטריוויאלית, דהינו דהינו אין, אין, אין, אין, דהינו דהינו דהינו הכפל הטריוויאלית, דהינו דהינו אין, אין, אין, אין, דהינו דהינו הסונות הסונות החוג.

 $R \neq \{0\}$, לעומת זאת

'סעיף א

. ביזם חוגים. היא הומומורפיזם מההעתקה $\varphi\colon \mathbb{Z} \to \mathbb{Z}_{/n}$ היא שההעתקה נוכיח נוכיח על־ידי

 $0 \le x', y' < n$ ה משתנה ו"ה בא" באשר א משתנה הוכחה. הוכחה. על-ידי הווכל לייצגם על-ידי $x, y \in \mathbb{Z}$ הוכחה. $x, y \in \mathbb{Z}$ הוכחה. $\varphi(x+y) = \varphi(x'+y') = x'+y' \mod n$ בקבל כמובן $\varphi(xy) = \varphi(x'+y') = x'+y' \mod n$ כמו כן נקבל גם $\varphi(xy) = \varphi(x'+y') = \varphi(x'+y') = \varphi(x'+y') = \varphi(x'+y') = \varphi(x'+y') = \varphi(x'+y')$ ששאר לראות $x, y \in \mathbb{Z}$ הגדרה שוויון זה מתקיים לכל $x, y \in \mathbb{Z}$ בשאר לראות $x, y \in \mathbb{Z}$ ונשאר לראות $x, y \in \mathbb{Z}$ הידי הגדרה שוויון או מתקיים לכל ו

'סעיף ב

. ערכי אוס $f:\mathbb{F} \to S$ בוכיח חוגים כל הומומורפיזם אוס אז לא אפס, חוג לא חד־חד ערכי שאם $f:\mathbb{F} \to S$

?S הוכחה. מה זה

'סעיף ג

נוכיח שתת-הקבוצה

$$C = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R})$$

היא תת־חוג שאיזומורפי ל־C.

 $I_2 \in C$ אפס, דהינו למעשה כבר נתקלנו בהרצאה (שיעור 7) בקבוצה זו, שם הוכחנו כי היא סגורה לכפל ותת־חבורה ללא אפס, דהינו הופכי בלבד: נותר אם כן לבדוק כי היא חבורה יחד עם פעולת החיבור, אנו יודעים כי $O_2 \in C$, ולכן נבדוק סגירות לחיבור וקיום הופכי בלבד:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} a' & -b' \\ b' & a' \end{pmatrix} = \begin{pmatrix} a+a' & -(b+b') \\ b+b' & a+a' \end{pmatrix} \in C, \qquad \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} -a & b \\ -b & -a \end{pmatrix} = 0_2$$

ומצאנו כי זהו אכן תת־חוג.

 \mathbb{C} ל ל־ל של איזומורפיה על ל-

נגדיר העתקה $\varphi:C o\mathbb{C}$ המוגדרת על־ידי

$$\varphi(\begin{pmatrix} a & -b \\ b & a \end{pmatrix}) = a + bi$$

ונבדוק סגירות לחיבור, כפל ויחידה:

$$\varphi(\begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} a' & -b' \\ b' & a' \end{pmatrix}) = (a+a') + (b+b')i, \\ \varphi(\begin{pmatrix} a & -b \\ b & a \end{pmatrix}) + \varphi(\begin{pmatrix} a' & -b' \\ b' & a' \end{pmatrix}) = a+bi+a'+b'i = (a+a') + (b+b')i$$

ומצאנו סגירות לחיבור, בגירות לכפל נמצא באותה הדרך בדיוק תוך שימוש בהוכחה שצויינה לעיל מהרצאה 7, וכמובן על־פי הגדרה

$$\varphi(I_2) = 1 + 0i = 1$$

ידי על־ידי $\varphi^{-1}:\mathbb{C}\to C$ נגדיר. נגדיר כי נותר לראות חוגים, מותרפיזם הומומורפיזה ומצאנו כי ומצאנו

$$\varphi^{-1}(a+bi) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

 \mathbb{C} נוכל לבדוק ישירות על־ידי הצבה ונקבל C איזומורפי $arphi\circarphi^{-1}=arphi^{-1}\circarphi^{-1}=arphi^{-1}\circarphi=Id$ איזומורפי ל