

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Análisis de Algoritmos II

Tinanoie de Fugerianee n							
Clave:	Semestre:	Eje temático:			No. Créditos:		
0801	6-8	Algoritr	10				
Carácter: Optativa			Horas		Horas por semana	Total de Horas	
Tipo: Teóric-Práctica			Teoría:	Práctica:			
			3	4	7	112	
Modalidad: Curso			Duración del programa: Semestral				

Asignatura con seriación indicativa antecedente: Análisis de Algoritmos

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivos generales:

Conocer y aplicar las técnicas de análisis y diseño de algoritmos. Conocer algoritmos de aproximación y algoritmos aleatorios.

Índice te	mático			
Unidad	Tomas	Horas		
	Temas	Teóricas	Prácticas	
	Algoritmos voraces	8000	12	
II	Divide y vencerás	8	10	
Ш	Programación dinámica	11	14	
IV	Análisis amortizado	6	8	
V	Algoritmos de aproximación	8	10	
VI	Algoritmos aleatorios	7	10	
	Total de horas:	48	64	
Suma total de hor		112		

Contenido temático				
Unidad	Tema			
I Algoritmos voraces				
I.1	Estrategia; calendarización de intervalos; cacheo óptimo \emph{off-line}; algoritmo de Dijkstra; árbol generador mínimo; Estrategia.			
Il Divide y vencerás				
II.1	Estrategia.			

11.2	Mergesort.				
II.3	Conteo de inversiones en una permutación.				
11.4	La pareja de puntos más cercanos.				
II.5	Convoluciones y FFT.				
III Progran	nación dinámica				
III.1	Estrategia.				
III.2	Calendarización de intervalos con pesos.				
III.3	Cadena poligonal de mínimos cuadrados.				
111.4	Estructura secundaria de RNA.				
III.5	Alineación de cadenas.				
III.6	Multiplicación de matrices.				
III.7	Distancias entre todas las parejas de vértices.				
	amortizado				
IV.1	Análisis global.				
IV.2	Método contable.				
IV.3	Método del potencial.				
	os de aproximación				
V.1	Algoritmos voraces como algoritmos de aproximación.				
V.2	Cubierta de conjuntos (set cover).				
V.3	Cubierta de vértices (vertex cover).				
V.4	El problema del viajero.				
	nos aleatorios				
VI.1	Probabilidad básica.				
VI.2	Solución a conflictos de acceso.				
VI.3	Corte mínimo; búsqueda de mediana y quicksort.				
VI.4	Pareja de puntos más cercana.				
VI.5	Cacheo aleatorio.				
VI.6	Balanceo de carga.				

Bibliografía básica:

- 1. Jon Kleinberg y Eva Tard, Algorithm design, Addison Wesley, 2005.
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald. L. Rivest y Clifford Stein, *Introduction to algorithms*, MIT press, Third Edition, 2009.

Bibliografía complementaria:

- 1. Steven S. Skiena, *The Algorithm Design Manual*, Springer, 2nd Edition, 2008.
- 2. Sanjoy Dasgupta, Christos Papadimitriou y Umesh Vazirani, Algorithms, McGraw-Hill, 2006.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	(X)	Examen final escrito	(X)
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	()
Seminarios	()	Exposición de seminarios por los alumnos	()
Lecturas obligatorias	(X)	Participación en clase	()
Trabajo de investigación	()	Asistencia	()
Prácticas de taller o laboratorio	()	Proyectos de programación	()
Prácticas de campo	()	Proyecto final	()
-	• •	Seminario	()
Otras:			• • •
		Otras:	

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o matemático con especialidad en Computación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente