

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General) Degree

Third Year-Semester I Examination-September/October 2014 MAT 3213-Graph Theory

Answer four Questions including Qu.No.1 Time allowed: 2 hours								
1.	For q	uestion i to	kv, Find the m	ost suitable an	swer tha	t you think correc	et.	
	i.	A Hamilton	ian cycle in a H	amiltonian graj	ph of orde	r 24 has		
		a) 12 edges	b) 24 edges	c) 23 edges	d) none	e of the above		
	ii.	A simple gr 4 and 6 vert	aph G with 13crices of degree 1	vertices has 4 v .The graph G	ertices of must be a	degree 3, 3 vertices	s of degree	
		a) True		b) Fa	lse			
	iii.	A spanning	tree for a simple	e graph of orde	r 24 has			
		a) 12 edges	b) 6 edges	c) 23 edges	d) non	e of the above		
	iv.	The graph given below is bipartite.						
				a) True	9	b) false		
	v.	If G is a sim exactly 3 ed	ple connected 3 ges, then the siz	-regular planar e of G is	graph wh	ere every face is bo	ounded by	
		a) 3	b) 4	c) 5	d) none	of the above		
	vi.	Consider a s which of the	imple connected following state	I graph G with ments are TRU	n vertices E?	and n edges (n>2).	Then	

c) The graph obtained by removing any edge from G is not connected.

d) G has at least one cycle and The graph obtained by removing any edge from G

a) G has atleast one cycle

is not connected.

b) G has no cycles

03

vii.	The number of distinct simple graphs with up to three nodes is						
	a) 9 b) 7 c) 10 d) 15						
viii.	Consider the graph G where $V(G)=\{A,B,C,D\}$ and $E(G)=[\{A,B\},\{B,C\},\{C,D\}]$. The degree of each vertices A,B,C,D respectively in G are						
	a) 1,2,3,2 b) 1,3,2,2 c) 1,1,1,1 d) 1,2,2,3						
ix.	Let G be a graph with 100 vertices numbered 1 to 100. Two vertices i and j are adjacent if i-j =8 or i-j =12. The number of connected components in G is						
	a) 8 b)12 c) 25 d) 4						
x.	A graph in which all nodes are of equal degree is known as						
	a) complete graph b) multi graph c) regular graph d) non regular grap						
xi.	The minimum number of spanning trees in a connected graph with "n" nodes is						
	a) n-1 b) n/2 c) 2 d) 1						
xii.	The minimum number of edges in a connected cyclic graph on 'n' vertices is						
	a) n-1 b) n c) n+1 d) none of these						
xiii.	The order of the 4-cube graph Q ₄ is:						
	a) 16 b) 4 c) 8 d) 32						
xiv.	$H=(V,E)$ is a graph, where $V=\{a,b,c,d,e,f\}$ and $E=\{ab,ad,ac,bc,be,cd,cf,de,df\}$. The edge set for the complement of H is:						
	a) {ab, be, de, be, cf, cd} b) {af, ad, ac, bc, be, cd, cf, ae, df}						
	c){ af, fb, bd, dc, ce, ea) d) {ac, fb, ba, dc, fe, ea}						
xv.	If G is a connected plane graph of oder v , size e and with f faces, then						
	a) $v-e+f=2$ b) $e-v+f=2$ c) $e+v-f=2$ d) none of the above						

2.

- a. Let G be a graph with $V(G) = \{1, 2, \dots, n\}$, where $n \ge 5$, such that two numbers i and j in V(G) are adjacent if and only if |i-j| = 5. How many components does G have?
- b. The graph G be a disconnected graph with n vertices where n is even. If G has 2 components each of which is complete, prove that G has a minimum of $\frac{n(n-2)}{4}$ edges.
- c. Find the incidence matrix of the graph G where Adjacency matrix of a graph G is given below.

$$\begin{pmatrix} 0 & 2 & 1 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

- d. What is the largest number of vertices in a graph with;
 - i. 35 edges if all vertices are of degree at least 3
 - ii. 24 edges and all vertices of the same degree

3.

- i. Let G = (V;E) and H = (W;B) be two graphs. Prove that G and H are isomorphic if and only if, G^c and H^c are isomorphic.
- ii. Define isomorphic graph. Draw three isomorphic graph of the following graph.

iii. Determine whether the following two graphs are isomorphic. Justify your answer.

4.

- State Euler's formula for the planar graph.
- ii.
- Using above formula show that k_5 and $k_{3,3}$ are non-planar. Determine which of the following graphs are planar.if so, find the number of iii. regions of each planar graph.

5.

Draw all the spanning trees of this graph: i.

Solve the following by applying Kruskal's Algorithm. ii.

Solve the following by applying Prim's algorithm. iii.

