УДК 007.52+519.854 Кудинов А.А. ИССЛЕДОВАНИЕ РОБОТА-МАНИПУЛЯТОРА

Особое место в лесной промышленности занимают машины, оснащенные манипуляторами. Манипуляторы, промышленные роботы, позволяют заменить руки человека на трудоёмких работах и обеспечить возможность выходить на новые уровни в области механизации и автоматизации работ.

Рассмотрим дискретное чувствительное поле (ДЧП) в применении к роботам лесной промышленности.

Вертикальное поле 1 (рис.1) разбито на участки. О каждом из участков может быть снята информация с помощью рычагов 2, оснащенных датчиками 6, например, конечными выключателями или герконами. Рычаги отклоняются вокруг оси 3 при прохождении бревен, поданных транспортером 5 к манипулятору. При этом формируется КОД площади прошедшими лесоматериалами, например 00001111100000111... (рис.1).

Рис. 1. Дискретно чувствительное поле

На рисунке 2 показана схема использования ДЧП для учета и транспортировки круглых лесоматериалов автоматическим манипулятором. Сортимент 2 с буферной площадки 1 перемещается через ДЧП 3. Система преобразования кода 4 и ЭВМ б вырабатывает управляющее воздействие и определяет параметры бревен. Манипулятор 5 по команде системы преобразования кода 4 производит сортировку и транспортирует сортименты на транспортеры 8. Траектория 7 перемещения бревен может быть заранее запрограммирована на ЭВМ 6.

Рис. 2. Схема разгрузки бревен

Работа робота начинается с команды пуск-блок 1 (см. рис.3). Блок 2, датчик дискретно чувствительного поля, при надвигании лесоматериалов меняет своё состояние. Одно состояние примем за «1» - блок 3, другое «О» - блок 4. Далее система преобразования кода блок 5 и ЭВМ блок 6 вырабатывает управляющее воздействие и определяет параметры брёвен. Манипулятор блок 7 по команде системы преобразования кода производит сортировку и транспортирует сортимент на транспортёры блоки 8 и 9.

Рис. 3. Диаграмма последовательности операций при работе робота-манипулятора

На рисунке 4 представлена циклограмма фрагмента функционирования робота-манипулятора, разработанная на основе перечня операций, описанных выше.

В циклограмме на рисунке 6 сохраняются те же операции и обозначения элементов управления и контроля, что и в модели,

изображенной на рисунке 3, но без детализации и описания технических параметров этих элементов, поскольку на этом этапе важны лишь функциональные, внешние параметры процедуры управления. Временные параметры работы представлены так же чисто качественно, в виде условных циклов времени, без привязки к конкретной продолжительности этих циклов. Каждый цикл привязан либо к операции управления, либо операции контроля и графически обозначен в виде отрезка прямой линии. Последовательные функциональные связи операций изображены на циклограмме в виде дуг со стрелками, расположенными в нижней части цепочки циклов. Дуги, расположенные сверху цепочки циклов, показывают функциональные связи в различных вариантах неправильной работы или аварийных ситуациях. Резюмируя проведенный анализ функциональности представления процессов управления объектами, можно отметить следующие характерные особенности:

- типичными и широко применяемыми в практике прикладными процессами, которые оснащаются системами управления, являются циклические процессы;
- средства отображения функциональности процесса управления объектами дают лишь качественную оценку процессам управления, и это обстоятельство доказывается, в частности, на примере использования циклограмм;
- необходимость расширения для представления функциональных свойств процесса управления требует применения более эффективного аппарата анализа и синтеза аппарата моделирования процессов управления;
- рассмотрение функциональных характеристик системы управления является методологической основой для следующего этапа этапа моделирования процессов управления.

Наименование Наименование используемых элементов устройств и управления и механизмов контроля	Пуск робота	Движение леса 2	Контроль разм. леса		Код	Управл. воздейст вие	Движение манипул.	Движение леса	
	in Unit		3	4	5	6	7	8	9
Пусковое устройство	35								
Пуск									
Привод движения лесоматериалов			<u>)</u>		$\sqrt{}$				
Датчик дискретно чувствительное поле									
Состояние 1									
Состояние 0					4.				
Система преобразования кода					4				
ЭВМ						4-			
Манипулятор							Jash		
Транспортёр 1								(Hall	
Транспортёр 2								\sim	

Рис. 4. Циклограмма функционирования робота манипулятора

Аппарат сетей Петри достаточно широко известен и описан во многих источниках, поэтому здесь будут приведены краткие ссылки на некоторые положения этого аппарата.

В сети Петри представлены состояния объектов, которые отображаются позициями сети и действия, которые отображаются переходами. Позиции графически представляются в виде кружочков, а переходы в виде планок. Позиции и переходы связаны между собой направленными дугами, которые обозначают функциональную связь между ними. Простое изображение совокупности позиций и переходов в виде сети отображает лишь статическую компоненту сети. Для определения динамической составляющей применяется правило маркировки сети. Суть ее в том, что вводятся специальные правила срабатывания переходов при соблюдении определенных условий.

Рис. 5. Сети Петри для моделирования процесса управления Позиции к рисунку 5:

 P_{I} – начальное состояние робота-манипулятора;

 P_2 – состояние пуска робота-манипулятора;

 P_3 – анализ включение привода робота-манипулятора;

 P_4 – анализ размеров лесоматериалов;

 P_5 – анализ преобразования кода;

 P_6 – анализ вырабатывания управляющего воздействия;

 P_7 – анализ транспортировки на транспортёр;

Переходы к рисунку 5:

 t_1 – команда пуска робота-манипулятора;

 t_2 – команда включения привода движения роботаманипулятора после пуска;

 t_3 – сообщение о включении привода движения роботаманипулятора;

 t_4 – состояние 1;

 t_5 — состояние 0;

 t_6 – преобразование кода;

*t*₇ – команда сортировки сортимента;

 t_8 – команда манипулятора на транспортер 1;

*t*₉ – команда манипулятора на транспортер 2;

Циклограмма и сеть Петри как модели робота-манипулятора дают возможность проектирования оптимальных систем управления манипулятором робота.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кудинов, А.А. Проектирование систем автоматизированного управления манипуляторами лесных машин / А.А. Кудинов Учебное пособие../ДальГАУ Благовещенск, 2002 312с.
- 2. Кудинов, А.А. Дискретное чувствительное устройство для обмера объемных предметов./ А.А. Кудинов А.А. -авт. свид. №137 3568 н. кл В25Ј 19/00, Бюл №6 от 15.02.82 c7.

УДК 684.630*:621.865.8

Кудинов А.А.

ИНФОРМАЦИОННО-ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ РОБОТИЗАЦИИ ПРОИЗВОДСТВЕННЫХ ОПЕРАЦИЙ ЛЕСОРАЗРАБОТОК

Предпосылками создания роботизированных производств являются комплексная механизация и первичная автоматизация производственных процессов. В лесной промышленности созданию таких предпосылок препятствует исключительная изменчивость характеристик древесного сырья. Широкое разнообразие природно-климатических условий усугубляет трудности, возникающие при создании лесозаготовительного оборудования, особенно лесосечных машин с различной степенью автоматизации управления.

Роботизация, решая только некоторые социальные задачи, улучшающие условия труда, не может дать большого эффекта, так как используемые при этом частные критерии оптимизации не всегда совместимы, а иногда вступают в противоречие друг с другом. Такие ситуации особенно часто встречаются на комплексных предприятиях, имеющих в своем составе цеха первичной обработки древесины, лесопиления, цеха по производству древесностружечных и древесноволокнистых плит, мебельного производства с отделочными цехами.