Распознание капчи (captcha) с помощью свёрточной нейронной сети (CNN)

Volkoshkursk © 2017

Постановка задачи:

Распознать буквенно-цифровой чёрно - белый код на картинке, получаемый с помощью генератора от автора Piotr Kuszaj (https://github.com/kuszaj/claptcha) защищённого лицензией MIT License с помощью свёрточной нейросети, написанной на python 3 с использованием Keras, Tensorflow, PIL (pillow) и некоторых вспомогательных библиотек

Свёрточная нейросеть (СЛЛ)

Свёрточная нейронная сеть (convolutional neural network, CNN, LeNet) была представлена в 1998 году французским исследователем Яном Лекуном (Yann LeCun) [1], как развитие модели неокогнитрон (neocognitron).

Свёрточный слой

Имея двумерное изображение \mathbf{I} и небольшую матрицу \mathbf{K} размерности (так называемое ядро свертки), построенную таким образом, что она графически кодирует какой-либо признак, можно вычислить свернутое изображение $\mathbf{I} * \mathbf{K}$, накладывая ядро на изображение всеми возможными способами и записывая сумму произведений элементов исходного изображения и ядра:

$$(I * K)_{xy} = \sum_{i=1}^{h} \sum_{j=1}^{w} K_{ij} \times I_{x+i-1,y+j-1}$$

схема работы свёрточного слоя

(https://habrahabr.ru/company/wunderfund/blog/314872/)

Оператор свертки составляет основу сверточного слоя (convolutional layer) в CNN. Слой состоит из определенного количества ядер (с аддитивными составляющими смещения для каждого ядра) и вычисляет свертку выходного изображения предыдущего слоя с помощью каждого из ядер, каждый раз прибавляя составляющую смещения. В конце концов ко всему выходному изображению может быть применена функция активации .

Субдискретизирующий слой

В этом разделе мы поговорим про субдискретизирующий (subsampling) слой. Слои этого типа выполняют уменьшение размера входной карты признаков (обычно в 2 раза). Это можно делать разными способами, в данном случае мы рассмотрим метод выбора максимального элемента (max-pooling) - вся карта признаков разделяется на ячейки 2x2 элемента, из которых выбираются максимальные по значению.

Использование этого слоя позволяет улучшить распознавание образцов с изменённым масштабом (уменьшенных или увеличенных).

Здесь применяются слои свёртки и подборки ещё раз (но меньшего размера и с большим количеством карт признаков)

Слой MLP

Последний из типов слоёв это слой "обычного" многослойного перцептрона (MLP) (500/562) [1*] нейрона с функцией активации A(x) = max(0,x)(relu)[2]

¹⁾ здесь и далее первое значение для числовой, а второе для букв и цифр

И, наконец, последний слой состоит из 10/36 нейронов с функцией активации softmax [3](MLP)

$$p_i = \frac{\exp(q_i)}{\sum_{j=1}^n \exp(q_j)},$$

Общую схему сети можно представить так: (фото взято с http://deeplearning.net)

Kanua (captcha)

Данный генератор создаёт капчу со следующими защитами:

- фоновый шум
- буквы на разной высоте
- буквы наклонены
- толщина линий букв меняется в большом диапазоне
- поперечные линии имеют тот же диапазон изменения толщины, что и буквы

пример капчи

Π одготовительные операции

- Картинка приводится к чёрно-белому виду (что удаляет фоновый шум)
- Картинка делится на 6 частей
- Символы выравниваются по высоте

Зависимость параметров сети и точности работы на буквенно-числовых множествах

Зависимость количества нейронов в слое MLP и точности можно представить в виде таблицы (обучающее и тестовое множества для всех примеров одинаковые, количество эпох и другие параметры также не менялись):

количество нейронов в слое MLP	точность на тестовых данных
500	79,25 %
524	78,95 %
525	79,91 %
526	80,19 %
527	79,38 %
528	79,67 %
550	79,70 %
561	79,42 %
562	<u>81,32 %</u>
563	77,91 %
575	79,66 %
600	78,66 %

Зависимость количества нейронов во 2 свёрточном слое и точности можно представить в виде таблицы (обучающее и тестовое множества для всех примеров одинаковые, количество эпох и другие параметры также не менялись, в слое MLP 562 нейрона):

количество нейронов во 2 свёрточном слое	точность на тестовых данных
100	<u>81,32 %</u>
110	78,08 %
120	79,84 %
130	74,37 %

Зависимость размера ядра в 1 субдискретизирующем слое и точности можно представить в виде таблицы (обучающее и тестовое множества для всех примеров одинаковые, количество эпох и другие параметры также не менялись, в слое MLP 562 нейрона, во 2 свёрточном - 100):

размер ядра в 1 субдискретизирующем слое	точность на тестовых данных
2x2	81,32 %
2x5	72,77 %
1x1	76,30 %
3x3	68,54 %

Если у свёрточных слоёв и основного персептрона поменять функцию активации на softmax (остальные параметры прежние) результат 2.74%, а если у персептрона, выдающего результат - то 5.33%

Если у варианта с максимальным результатом (81,32 %) увеличить количество эпох до 36, то результат увеличится до 83.56%

Однако если изменять размер ядра во 2 субдискретизирующем слое, то зависимость его и точности будет представлять более интересный результат. Их также можно представить в виде таблицы (обучающее и тестовое множества для всех примеров одинаковые, количество эпох и другие параметры также не менялись, в слое MLP 562 нейрона, во 2 свёрточном - 100):

размер ядра в 2 субдискретизирующем слое	точность на тестовых данных
2x2	81,32 %
2 x 5	81,28 %
1x1	74,41 %
3x3	78,40 %
2x6	79,94 %
3x5	79,34 %

А если при этом ещё менять размер ядра свёртки во 2 слое то результат будет следующим:

размер ядра в 2 субдискретизирующем слое	размер ядра свёртки во 2 слое	точность на тестовых данных
2 x 5	3x3	<u>81,91 %</u>
2x6	3x3	81,45 %

размер ядра в 2 субдискретизирующем слое	размер ядра свёртки во 2 слое	точность на тестовых данных
2 x 5	2x3	79,45 %
2 x 5	2 x 5	79,75 %

Опять можно изменить количество нейронов во 2 сверхточном слое:

количество нейронов во 2 свёрточном слое	точность на тестовых данных
100	81,91 %
105	79,11 %
109	81,39 %
110	81,85 %
111	<u>82,18 %</u>
112	81,60 %

Если посмотреть на отчёт при обучении (графа точность на множестве подтверждения), можно построить таблицу зависимости этой точности и номера эпохи обучения:

номер эпохи	точность на данных подтверждения (validate acc)
1	54,68 %
2	68,18 %
3	73,70 %
4	76,11 %
5	78,62 %
6	79,27 %
7	79,58 %
8	79,89 %
9	81,60 %
10	81,85 %
11	81,87 %
12	82,03 %

номер эпохи	точность на данных подтверждения (validate acc)
13	82,25 %
14	83,33 %
15	83,22 %
16	83,07 %
17	83,17 %
18	82,98 %
19	83,28 %
20	83,67 %
21	83,87 %
22	83,50 %
23	83,17 %
24	83,71 %
25	<u>83,88 %</u>
26	83,55 %
27	83,81 %
28	83,67 %
29	83,83 %
30	83,82 %
31	83,83 %
32	83,84 %
33	83,87 %
34	83,67 %
35	<u>83,92 %</u>
36	83,78 %

Итог при такой конфигурации (за 36 эпох) - 84,36%

Если же количество эпох уменьшить до 25, то **83,80%**

А если до 35, то**84,45%**

Итоговые параметры для буквенно-цифровой капчи

- 1. Слой свертки, 75 карт признаков, размер ядра свертки: 5х5, функция активации relu.
- 2. Слой подвыборки, размер пула 2х2.
- 3. Слой свертки, 111 карт признаков, размер ядра свертки 3х3, функция активации relu.

- 4. Слой подвыборки, размер пула 2х5.
- 5. Полносвязный слой, 562 нейронов, функция активации relu.
- 6. Полносвязный выходной слой, 36 нейронов, которые соответствуют классам букв и цифр 0 9 A-Z, функция активации softmax.

Оптимизатор Адама, обучение с помощью обратного распространения ошибки, которая вычисляется с помощью перекрестной энтропии

Обучение длится 35 эпох, результат работы на тестовом множестве составил **84,45%**

Файл с программой - z1/z1.py

Параметры сети для цифровой капчи

Для неё подошли параметры из примера распознавания цифр mnist [4]

- 1. Слой свертки, 75 карт признаков, размер ядра свертки: 5х5.
- 2. Слой подвыборки, размер пула 2х2.
- 3. Слой свертки, 100 карт признаков, размер ядра свертки 5х5.
- 4. Слой подвыборки, размер пула 2х2.
- 5. Полносвязный слой, 500 нейронов.
- 6. Полносвязный выходной слой, 10 нейронов, которые соответствуют классам цифр от 0 до 9.

Оптимизатор Адама, обучение с помощью обратного распространения ошибки, которая вычисляется с помощью перекрестной энтропии

Обучение длится 10 эпох

Результат работы на тестовом множестве составил **98.04%**

Файл с программой - z0/z0.py

Содержимое архива

В папке «z0» помимо «z0.py» лежит ещё бинарный файл с весовыми коэффициентами «weight.npy», скрипт, генерирующий капчу и ответ на неё «test.py», бинарные файлы с подготовленным представлением обучающего/тестового (после обучения создавались новые) множества картинок «save.npy» и ответов к ним «ans_save.npy»

В папке «z1» помимо «z1.py» лежит ещё бинарный файл с весовыми коэффициентами «weight.npy», скрипт, генерирующий капчу и ответ на неё «test.py», бинарные файлы с подготовленным представлением обучающего множества картинок «save.npy» и ответов к ним «ans_save.npy», а также бинарные файлы с подготовленным представлением тестового множества картинок «save_test.npy» и ответов к ним «ans_save_test.npy»

Список литературы

- LeCun, Yann. «LeNet-5, convolutional neural networks» http://yann.lecun.com/exdb/lenet/
- Е.С.Борисов «Классификатор изображений на основе свёрточной сети». http://mechanoid.kiev.ua/ml-lenet.html
- А. Созыкин «Сверточная нейронная сеть для распознавания рукописных цифр MNIST» https://www.asozykin.ru/deep_learning/2017/05/08/CNN-for-MNIST.html
- Keras Documentation https://keras.io/
- Claptcha documentation https://github.com/kuszaj/claptcha
- python 3 documentation https://docs.python.org/3/