Structural estimation of a multi-agent model

Discrete choice within Nash-Bertrand competition

Agenda

We will return to the discrete choice model between car models A and B (from weekly problems) only this time without knowing the model parameters!

- You will estimate demand and supply models jointly using GMM
- · Using estimated parameters, you will predict marginal costs
- Then, using marginal costs, you will quantify market power in this industry

Research problem

Question: How much market power do car brands A and B have?

We have data from a random sample from N=300 local markets (indexed by $\it j$) for car models A and B

- Shares: s_k
- Prices: p_k
- Local steel prices: t_k
- Average local labor costs: l_i

We want to estimate the mean Lerner index for each firm

$$L_k = rac{1}{N}\sum_{j=1}^N rac{p_{k,j}-c_{k,j}}{p_{k,j}}$$

Demand: theoretical model

In a given market, consumers have 3 options:

- Buy one car of model a with price p_a
- Buy one car of model b with price p_b
- Not to buy a car, i.e., the outside option

If consumer i buys car k, they get utility

$$u_{i,k} = \beta_0 - \alpha p_k + \beta_1 B_k^D + \beta_2 \xi_k^D + \nu_{ik} \equiv V_k + \nu_{ik}$$

- α and β s are model parameters
- ullet B_k^D is a vector of **observed** product characteristics that consumers care about
- ullet ξ_k^D is a vector of **unobserved** product characteristics that consumers care about
- ν_{ik} is the (mean zero) idiosyncratic taste of consumer i for product k
- V_k is the mean utility for product k

If they do not buy a car, they get zero utility. Consumers are utility maximizers, so they pick the option that yields the highest utility.

Demand: theoretical model

Assuming ν_{ik} is distributed in the population following a Type I Extreme Value distribution, we can derive a closed-form expression for expected market shares of products a and b:

$$s_a = rac{e^{V_a}}{1 + e^{V_a} + e^{V_b}}, \; s_b = rac{e^{V_b}}{1 + e^{V_a} + e^{V_b}}$$

The demand for the outside option is given by $s_0=1-s_A-s_B=rac{1}{1+e^{V_a}+e^{V_b}}$

Useful trick. Note that $\frac{s_k}{s_0} = e^{V_k}$. Take logs on both sides:

$$\log(s_k) - \log(s_0) = V_k$$

Demand: statistical model

$$\log(s_k) - \log(s_0) = V_k$$

The expression above refers to expected shares and does not fit the data exactly. For this reason, we add a idiosyncratic demand shock $\epsilon_{k,j}^D$ to obtain

$$\log(s_{k,j}) - \log(s_{0,j}) = V_{k,j} + \epsilon_{k,j} = \beta_0 - \alpha p_{k,j} + \beta_1 B_{k,j}^D + \beta_2 \xi_{k,j}^D + \epsilon_{k,j}^D \quad (1)$$

We assume $\epsilon^D_{k,j}$ has mean zero and is uncorrelated with $p_{k,j'}$ $B^D_{k,j'}$ and $\xi^D_{k,j'}$

Supply: theoretical model

Since this market is a duopoly, firms anticipate that their pricing decisions affect their demands mutually

• Firms then choose the price that maximizes their expected profits given the price their competitor has chosen: Bertrand competition

We assume that the outcome of this process is a Nash equilibrium: firms do the best they can given what others are doing and no firm has an incentive to unilaterally deviate

Hence, each market is in a Nash-Bertrand equilibrium

Let c_k be the constant marginal cost. Then in each market each firm solves:

$$\max_{p_k} \pi(p_k, p_{-k}) = p_k s_k(p_k, p_{-k}) - c_k s_k(p_k, p_{-k})$$

The first-order condition is

$$\partial \pi_k/\partial p_k = 0 \Rightarrow s_k(p_k,p_{-k}) + (p_k-c_k)rac{\partial s_k(p_k,p_{-k})}{\partial p_k} = 0$$

Supply: theoretical model

Using the closed-form expression for the derivative $rac{\partial s_k(p_k,p_{-k})}{\partial p_k}=-lpha s_k(1-s_k)$, it follows that

$$s_k(p_k,p_{-k}) - lpha(p_k-c_k)s_k(p_k,p_{-k})(1-s_k(p_k,p_{-k})) = 0$$
 $c_k = p_k - rac{1}{lpha(1-s_k)}$

Thus, given parameter α , we can calculate marginal costs that rationalize equilibrium prices and shares

Supply: statistical model

With parameter estimate $\hat{\alpha}$ and using the expression for rationalized marginal costs based on the FOC, we can write predict expected marginal costs

$$\hat{c}_{k,j} = p_{k,j} - rac{1}{\hat{lpha}(1 - s_{k,j})} \quad (2)$$

We parameterize marginal cost using observable input costs and add an idiosyncratic cost shock $\epsilon_{k,j}^S$ to accommodate for differences from the expectation

$$\hat{c}_{k,j} = \gamma_0 + \gamma_1 B_{k,j}^S + \gamma_2 t_{k,j} + \gamma_3 l_{k,j} + \gamma_4 \xi_k^S + \epsilon_{k,j}^S \quad (3)$$

where

- γ s are parameters to be estimated
- ullet $t_{k,j}$ and $l_{k,j}$ are local input costs for steel and labor
- ullet B_k^S is a vector of **observed** product characteristics that affect costs
- ξ_k^S is a vector of **unobserved** product characteristics that affect costs

We assume $\epsilon_{k,j}^S$ to be uncorrelated with $t_{k,j}$, $l_{k,j}$, $l_{k,j}$, and ξ_k^S

Estimation: demand moment conditions

$$\log(s_{k,j}) - \log(s_{0,j}) = eta_0 - lpha p_{k,j} + eta_1 B_{k,j}^D + eta_2 \xi_{k,j}^D + \epsilon_{k,j}^D \quad (1)$$

Do we have a problem to estimate this equation?

Very likely, YES! Unobserved product characteristics affect willingness to pay: $E[p_{k,j}\xi_{k,i}^D]
eq 0$

Since we can't include $\xi_{k,j}^D$, we have that $E[p_{k,j}(\beta_2\xi_{k,j}^D+\epsilon_{k,j}^D)]
eq 0 \Rightarrow$ ENDOGENEITY!

How can we solve this?

With instruments

- ullet We can use input costs $t_{k,j}, l_{k,j}$ to instrument for price
- Key idea: with fixed product characteristics, higher costs lead to higher prices without affecting demand

Estimation: demand moment conditions

So, we rewrite the demand estimating equation as

$$\log(s_{k,j}) - \log(s_{0,j}) = eta_0 - lpha p_{k,j} + eta_1 B_{k,j}^D + \epsilon_{k,j}^D = X_{k,j}^D heta^D + \epsilon_{k,j}^D \quad (4)$$

where

- θ^D is the parameter column vector $[eta_0 \ lpha \ eta_1]^T$
- X^D is the row vector $[1 \ p_{k,j} \ B^D_{k,j}]$, with $B^D_{k,j}$ being a dummy variable receiving 1 for product b (k=b) or 0 otherwise
 - $lacksquare B^D_{k,j}$ will pick up all the perceived product characteristics that are constant across markets

Denote the instrument vector $Z_{k,j} = [1 \; B^D_{k,j} \; l_{k,j} \; l_{k,j}]$. Then, we can form moment conditions

$$E\left[Z_{k,j}^T\epsilon_{k,j}^D
ight]=0$$

Q: How many moment conditions do we have here?

Estimation: demand moment conditions

A: We have **four moment** conditions from the demand side

$$egin{aligned} E\left[\epsilon_{k,j}^D
ight] &= 0 \ E\left[B_{k,j}^D\epsilon_{k,j}^D
ight] &= 0 \ E\left[t_{k,j}\epsilon_{k,j}^D
ight] &= 0 \ E\left[l_{k,j}\epsilon_{k,j}^D
ight] &= 0 \end{aligned}$$

Estimation: supply moment conditions

$$\hat{c}_{k,j} = \gamma_0 + \gamma_1 B_{k,j}^S + \gamma_2 t_{k,j} + \gamma_3 l_{k,j} + \gamma_4 \xi_k^S + \epsilon_{k,j}^S$$
 (3)

Again, we have unobserved characteristics that affect cost. However, endogeneity is less of a concern here if we consider this sector to be a small part of the economy:

 Prices for steel and labor clear on much bigger markets, thus decisions of product characteristics are unlikely to affect their prices

For this reason, we can more reasonably assume that $E[t_{k,j}\epsilon_{k,j}^S]=0$, $E[l_{k,j}\epsilon_{k,j}^S]=0$, and $E[B_{k,j}^S\epsilon_{k,j}^S]=0$

Estimation: supply moment conditions

So we rewrite our supply estimating equation as

$$\hat{c}_{k,j} = \gamma_0 + \gamma_1 B_{k,j}^S + \gamma_2 t_{k,j} + \gamma_3 l_{k,j} + \epsilon_{k,j}^S = \theta^S X_{k,j}^S + \epsilon_{k,j}^S$$
 (5)

where

- θ^S is the parameter column vector $[\gamma_0 \ \gamma_1 \ \gamma_2 \ \gamma_3]^T$
- X^S is the row vector $[1\ B^S_{k,j}\ t_{k,j}\ l_{k,j}]$, with $B^S_{k,j}$ being a dummy variable receiving 1 for product b (k=b) or 0 otherwise

Since X^S are instruments for themselves (and note that $X_{k,j}^S=Z_{k,j}$, we can construct supply moment conditions

$$E\left[Z_{k,j}^T\epsilon_{k,j}^S
ight]=0$$

Q: How many moment conditions do we have here?

Estimation: demand moment conditions

A: Again, we have four moment conditions, now from the supply side

$$egin{aligned} E\left[\epsilon_{k,j}^S
ight] &= 0 \ E\left[B_{k,j}^S\epsilon_{k,j}^S
ight] &= 0 \ E\left[t_{k,j}\epsilon_{k,j}^S
ight] &= 0 \ E\left[l_{k,j}\epsilon_{k,j}^S
ight] &= 0 \end{aligned}$$

Your turn!

Enough talk, let's work! The data for this exercise are in file shares data.csv

1. Using these 8 moment conditions, joinly estimate parameter vector $\theta = [\theta^D, \theta^S]$ with GMM

2. Using your estimate $\hat{\alpha}$, predict marginal costs (equation 2) and calculate the average Lerner index for each model: $\hat{L}_k = \frac{1}{N} \sum_{j=1}^N \frac{p_{k,j} - \hat{c}_{k,j}}{p_{k,j}}$

Here are a few steps to get you started

Loading and preparing the data

```
In [ ]:
    using DataFrames, CSV
    df = CSV.read("shares_data.csv", DataFrame)
```

	MarketID	s_k	p_k	s_0	steel	labor	product
	Int64	Float64	Float64	Float64	Float64	Float64	String1
1	1	0.0485396	33.96	0.878173	8.95	20.68	а
2	1	0.0732874	33.53	0.878173	8.95	20.68	b
3	2	0.0492018	34.06	0.866904	8.45	22.02	а
4	2	0.0838941	33.18	0.866904	8.45	22.02	b
5	3	0.0566908	33.2689	0.850551	7.43	21.96	а
6	3	0.0927581	33.6889	0.850551	7.43	21.96	b
7	4	0.0590058	33.8089	0.858772	7.93	21.73	а
8	4	0.0822226	33.5989	0.858772	7.93	21.73	b
9	5	0.0742836	31.94	0.831041	7.61	21.9	а
10	5	0.0946749	32.92	0.831041	7.61	21.9	b
11	6	0.0705296	32.79	0.845203	7.07	22.43	а
12	6	0.0842672	32.89	0.845203	7.07	22.43	b
13	7	0.0551974	32.49	0.88366	8.07	21.25	а
14	7	0.0611427	32.97	0.88366	8.07	21.25	b
15	8	0.0489004	34.26	0.872733	8.38	22.36	а
16	8	0.0783665	33.92	0.872733	8.38	22.36	b
17	9	0.0573168	33.7994	0.861865	7.97	22.49	а
18	9	0.0808183	34.5494	0.861865	7.97	22.49	b
19	10	0.0477127	34.03	0.894306	9.27	21.15	а
20	10	0.0579813	33.77	0.894306	9.27	21.15	b
21	11	0.0777428	34.65	0.87268	8.95	22.36	а
22	11	0.0495767	35.2	0.87268	8.95	22.36	b
23	12	0.0531182	32.74	0.875014	7.56	22.92	а
24	12	0.0718681	33.33	0.875014	7.56	22.92	b
:	:	:	:	:	:	:	:

Loading and preparing the data

This data set already includes s_0 calculated for you. Let's get N and generate

$$\bullet \ \ log(s_{k,j}) - log(s_{0,j})$$

[•] $B_{k,j}$

```
In [ ]:
    N = nrow(df)
    df.logsk_logs0 = log.(df.s_k) - log.(df.s_0);
    df.is_B = (df.product .== "b");
    df
```

600 rows × 9 columns (omitted printing of 1 columns)

	MarketID		p_k	s_0	steel	labor	product	logsk_logs0
	Int64	Float64	Float64	Float64	Float64	Float64	String1	Float64
1	1	0.0485396	33.96	0.878173	8.95	20.68	а	-2.89546
2	1	0.0732874	33.53	0.878173	8.95	20.68	b	-2.48346
3	2	0.0492018	34.06	0.866904	8.45	22.02	а	-2.869
4	2	0.0838941	33.18	0.866904	8.45	22.02	b	-2.33537
5	3	0.0566908	33.2689	0.850551	7.43	21.96	а	-2.70827
6	3	0.0927581	33.6889	0.850551	7.43	21.96	b	-2.21589
7	4	0.0590058	33.8089	0.858772	7.93	21.73	а	-2.67787
8	4	0.0822226	33.5989	0.858772	7.93	21.73	b	-2.34607
9	5	0.0742836	31.94	0.831041	7.61	21.9	а	-2.41479
10	5	0.0946749	32.92	0.831041	7.61	21.9	b	-2.17223
11	6	0.0705296	32.79	0.845203	7.07	22.43	а	-2.48354
12	6	0.0842672	32.89	0.845203	7.07	22.43	b	-2.30558
13	7	0.0551974	32.49	0.88366	8.07	21.25	а	-2.77316
14	7	0.0611427	32.97	0.88366	8.07	21.25	b	-2.67086
15	8	0.0489004	34.26	0.872733	8.38	22.36	а	-2.88184
16	8	0.0783665	33.92	0.872733	8.38	22.36	b	-2.41023
17	9	0.0573168	33.7994	0.861865	7.97	22.49	а	-2.7105
18	9	0.0808183	34.5494	0.861865	7.97	22.49	b	-2.36689
19	10	0.0477127	34.03	0.894306	9.27	21.15	a	-2.93085
20	10	0.0579813	33.77	0.894306	9.27	21.15	b	-2.73593
21	11	0.0777428	34.65	0.87268	8.95	22.36	а	-2.41816
22	11	0.0495767	35.2	0.87268	8.95	22.36	b	-2.86805
23	12	0.0531182	32.74	0.875014	7.56	22.92	а	-2.80172
24	12	0.0718681	33.33	0.875014	7.56	22.92	b	-2.49941
:	:	:	:	÷	:	:	:	:

Loading and preparing the data

```
In [ ]:
    X = [ones(N) df.p_k df.is_B];
    Z = [ones(N) df.is_B df.steel df.labor];
```

Moment conditions function

Program function g_i(theta) that receives parameter vector θ and returns the eight moment conditions for all observations ($N \times 8$ matrix). Here is a way to structure it

```
In [ ]:
         function g_i(theta::AbstractVector{T}) where T
             # DEMAND SIDE
             theta_d = theta[1:3] # demand parameters
             # Epsilons for demand side
             e d = df.logsk logs0 - (X * theta d)
             # Moment conditions for demand side
             # REPLACE THIS LINE <m di = ... >
             # SUPPLY SIDE
             # Costs
             alpha = -theta[2] # we need it to estimate marginal costs
             c_k = df.p_k - 1/alpha .* 1 ./(1 .- df.s_k)
             theta s = theta[4:7] # supply parameters
             # Epsilons for supply side
             e_s = c_k - (Z * theta_s)
             # Moment conditions for supply side
             # # REPLACE THIS LINE <m si = ...>
             # Return matrices side by side (N \times M)
             return([m_di m_si])
         end
```

g i (generic function with 1 method)

GMM estimation

With function $g_i(theta)$, you can use Optim package to minimize objective function Q(theta)

```
In []:
    using LinearAlgebra
    M = 8
    W = I(M) # Identity Matrix
    function Q(theta)
        # Get moment vectors
        m_i = g_i(theta)
        # Take means of each column
        G = [sum(m_i[:, k]) for k in 1:M] ./ N
        # Calculate Q
        # REPLACE THIS LINE <...>
end
```

Q (generic function with 1 method)

GMM estimation

- ullet For the first step, use W as the identity matrix and find estimate \t theta_1
- ullet For the second step, $\hat{W}=(\hat{S})^{-1}.$ So, you will need to calculate

$$\hat{S} = E[g_i(\hat{ heta}_1)^T g_i(\hat{ heta}_1)]$$

GMM estimation: initial guess

Given the dimensionality of the problem it's a good idea to start with a reasonable initial guess

- Let's use OLS to get an initial guess for θ^D
- Let's guess γ_0 as the minimum price and set 0.1 for the other parameters (we expect them to be positive)

```
In []:
    using GLM
    ols_reg = lm(@formula(logsk_logs0 ~ 1 + p_k + is_B), df)
    theta_0 = [coef(ols_reg); minimum(df.p_k); ones(3)./10]

7-element Vector{Float64}:
    0.31506305791962314
    -0.0928458769023904
    0.3630065729084741
    30.53116385673067
    0.1
    0.1
    0.1
```

GMM estimation: first step

```
In []: # Step 1
    using Optim
    res = Optim.optimize(Q, theta_0, Newton(), Optim.Options(f_abstol=1e-10, g_abstol=0.0)
    theta_1 = res.minimizer

7-element Vector{Float64}:
        1.3167934612005487
        -0.1228198715837184
        0.3726111117323415
        6.90249208813232
        0.15417544082557208
        0.9851256773142594
        0.45457665443993567
In []: # Calculate W_hat
    # REPLACE THIS LINE <W = inv(... >
```

```
8×8 Matrix{Float64}:
22262.9 -9.34389 -315.713 ... -40.593 -1.72596
                                                     22.5192
   -9.34389 139.505 -6.33642
                                -5.44452
                                          0.276477 0.435557
 -315.713 -6.33642
                     34.9919
                                  1.64377 -0.623417 0.197342
 -893.464
                      1.81941
           -0.556555
                                  1.24632
                                           0.298785 -1.09934
                      0.257378
 -472.364 -11.7318
                                  2.28337 -5.31538 -29.8727
  -40.593 -5.44452 1.64377 ... 5.88747 -0.14891
                                                   -0.166385
   -1.72596 0.276477
                      -0.623417
                                  -0.14891 1.2495
                                                     -0.185561
   22.5192
            0.435557
                       0.197342
                                  -0.166385 -0.185561
                                                      1.4342
```

GMM estimation: second step

```
In []: # Use step 1 estimates as initial guess
    res = Optim.optimize(Q, theta_1, Newton(), Optim.Options(f_abstol=1e-10, g_abstol=0.0 theta_GMM = res.minimizer

7-element Vector{Float64}:
    1.0199256974273108
    -0.11397815604348306
    0.3710074786956938
    6.290279356119901
    0.14020424544797908
    0.9924727694197776
    0.4493242201423294
```

GMM estimation: standard errors

Recall

$$Var(\hat{ heta}_{GMM}) = rac{1}{N} (\hat{D}'\hat{S}^{-1}\hat{D})^{-1}$$

where:

$$egin{aligned} ullet & \hat{D} = E\left[rac{\partial g_i(z_i;\hat{ heta})}{\partial \hat{ heta}'}
ight] \ ullet & \hat{S} = E\left[g_i(z_i;\hat{ heta})g_i(z_i;\hat{ heta})'
ight] \end{aligned}$$

```
function Eg(theta_GMM)
    gi = g_i(theta_GMM)
    Eg = [sum(gi[:, k]) for k in 1:M] ./ N; # This take means of each column
    return Eg
end;
```

GMM estimation: standard errors

So we calculate

$$ullet \hat{D} = E\left[rac{\partial g_i(z_i;\hat{ heta})}{\partial \hat{ heta}'}
ight]$$

```
• \hat{S} = E\left[g_i(z_i; \hat{\theta})g_i(z_i; \hat{\theta})'\right]

• Var(\hat{\theta}_{GMM}) = \frac{1}{N}(\hat{D}'\hat{S}^{-1}\hat{D})^{-1}
In [ ]:
         using ForwardDiff
         D_GMM = ForwardDiff.jacobian(Eg, theta_GMM);
         S_GMM = g_i(theta_GMM)' * g_i(theta_GMM) ./N;
         V_{GMM} = inv(D_{GMM}' * inv(S_{GMM}) * D_{GMM}) ./N
         7×7 Matrix{Float64}:
Out[ ]:
          0.0636808 -0.00190122 0.000430357 ... -0.00155039 -0.000665075
          -0.00190122 5.68441e-5 -1.56312e-5
                                                        4.65384e-5 2.00545e-5
           0.000430357 -1.56312e-5 0.000206462
                                                        -6.79124e-5 -4.0683e-5
                       -0.00543615 0.00274163
                                                        -0.0302212 -0.0483084
           0.181612
           0.00562975 -0.000167422 0.000175138 0.000148558 0.000160716
          -0.00155039 4.65384e-5 -6.79124e-5 ... 0.00209994 0.000403963
          -0.000665075 2.00545e-5 -4.0683e-5
                                                           0.000403963 0.00195862
```

GMM estimation: standard errors

Having the estimated variance-covariance matrix \hat{V} , we can easily calculate the standard errors of our estimates and 95% confidence intervals

Marginal cost estimation

Now that we have estimated all model parameters, we can pick α to calculate implied marginal costs

```
In [ ]:
    alpha_hat = -theta_GMM[2]
    df.c_k = df.p_k - 1/alpha_hat .* 1 ./(1 .- df.s_k)
```

```
600-element Vector{Float64}:
 24.738795623135914
 24.062544181471655
 24.832373516777842
 23.60292920868719
 23.96804478334333
 24.01828910485132
 24.48508967353134
 24.039228021894246
 22.46235534622872
 23.228883020499666
 24.4522919411026
 24.9708247087463
 24.684056116326747
 23.57304222168553
 23.753233362550105
 23.03024376005476
 23.29227139103517
 23.255258601242673
 23.956042729733415
```

Marginal cost estimation

Let's take a look at the distribution of costs per firm

```
In [ ]:
          using Plots, LaTeXStrings
          plot(histogram(df.c_k[.!df.is_B], label=L"Pred. $c_a$", bins=30), histogram(df.c_k[df
                                                       50
                                                                                        Pred. c_b
                                          Pred. c_a
          40
                                                       40
          30
                                                       30
          20
                                                       20
          10
                                                       10
           0
                                                        0
                   22
                             24
                                                                 22
                                                                          24
                                                                                    26
                                       26
                                                28
                                                                                              28
```

Lerner index

We are now ready to calculate the average Lerner index per firm

0.2818733881583978

So about 28% of the price is due to market power

ullet Firm B has slightly higher market power due to its perceived higher quality ($eta_1=0.37>0$)