P-adic Limits of Combinatorial Sequences

Alexandra Michel, Andrew Miller, Joseph Rennie

MSRI-UP Summer 2014

July 24th, 2014

Welcome

Introduction

Our Questions

Results

Conclusion

Introduction to the *p*-adics: \mathbb{Q}_p

 \mathbb{Q}_p is a completion of \mathbb{Q} analogous to the real numbers \mathbb{R} .

Instead of the familiar absolute value, we use the p-adic norm.

Introduction to the *p*-adics: \mathbb{Q}_p

 \mathbb{Q}_p is a completion of \mathbb{Q} analogous to the real numbers \mathbb{R} .

Instead of the familiar absolute value, we use the p-adic norm.

Define the *p-adic valuation* of an integer n to be the greatest power of p that divides n: $\nu_p(n)=k$

Then the *p-adic norm* of *n* is defined as $|n|_p = p^{-k}$.

Definition of p-adic convergence

$$\forall k \geq 1 \; \exists N \geq 1 \; \text{such that} \; \forall m,n \geq N,$$

$$|C(f(n)) - C(f(m))|_p \leq p^{-k}.$$

Example ($\{3^{2^n}\}$ converges to 1, 2-adically.)

Example from a paper written by Eric Rowland (2009).

The Catalan Numbers

What are the Catalan Numbers?

$$C(n) = \tfrac{1}{n+1} \tbinom{2n}{n}$$

The Catalan Numbers

What are the Catalan Numbers?

$$C(n) = \tfrac{1}{n+1} \tbinom{2n}{n}$$

Convergence of $\{C(2^n)\}$

We used Mathematica to investigate the sequence $\{C(2^n)\}$.

Convergence of $\{C(2^n)\}$

We used Mathematica to investigate the sequence $\{C(2^n)\}$.

Unfortunately, we couldn't collect enough data to make a conjecture about what the limit of the sequence is.

Questions

When does a subsequence of the Catalan numbers converge p-adically?

Questions

When does a subsequence of the Catalan numbers converge p-adically?

What are the limits of these subsequences?

Finding p-adic Convergent Sequences

 $\forall k \geq 1, \exists N \geq 1 \text{ such that } \forall n, m > N,$

$$||C(f(m)) - C(f(n))||_p \le p^{-k}$$

if and only if

$$\nu_p(C(f(m)) - C(f(n))) \ge k$$

if and only if

$$C(f(m)) - C(f(n)) \equiv 0 \pmod{p^k}$$

if and only if

$$C(f(m)) \equiv C(f(n)) \pmod{p^k}.$$

In words, $\{C(f(n))\}\$ converges p-adically if it is eventually constant modulo all powers of p.

Finding p-adic Convergent Sequences

We used this equivalent definition of p-adic convergence and a formula for the Catalan numbers modulo a prime power (derived from a 1997 paper by Granville) to prove that the following class of sequences converges.

Theorem

For all primes p and all $a \in \mathbb{N}$, $\{C(ap^n)\}_{n\geq 0}$ converges p-adically.

The p-adic Gamma Function

Definition (p-adic Gamma Function)

For a prime p and integer n, the p-adic Gamma function is defined to be

$$\Gamma_p(n) = (-1)^n \prod_{\substack{k=1 \ p \nmid k}}^{n-1} k \text{ where } \Gamma_p(0) = 1$$

The p-adic Gamma Function

Definition (p-adic Gamma Function)

For a prime p and integer n, the p-adic Gamma function is defined to be

$$\Gamma_p(n) = (-1)^n \prod_{\substack{k=1 \ p \nmid k}}^{n-1} k \text{ where } \Gamma_p(0) = 1$$

$$\Gamma_2(n) = \begin{cases} 1 \cdot 3 \cdot 5 \cdots (n-1) & \text{even n} \end{cases}$$

The p-adic Gamma Function

Definition (p-adic Gamma Function)

For a prime p and integer n, the p-adic Gamma function is defined to be

$$\Gamma_p(n) = (-1)^n \prod_{\substack{k=1 \ p \nmid k}}^{n-1} k \text{ where } \Gamma_p(0) = 1$$

$$\Gamma_2(n) = \begin{cases} 1 \cdot 3 \cdot 5 \cdots (n-1) & \text{even n} \\ (-1) \cdot 1 \cdot 3 \cdot 5 \cdots (n-2) & \text{odd n} \end{cases}$$

Lemma

 $\lim_{n\to\infty} \Gamma_2(2^n)) = 1 \text{ in the 2-adics.}$

Want to show: given n > m,

$$\|\Gamma_2(2^n) - \Gamma_2(2^m)\|_2 \le \frac{1}{2^{m-1}},$$

Lemma

 $\lim_{n\to\infty} \Gamma_2(2^n)) = 1 \text{ in the 2-adics.}$

Want to show: given n > m,

$$\|\Gamma_2(2^n) - \Gamma_2(2^m)\|_2 \le \frac{1}{2^{m-1}},$$

or, equivalently,

$$\nu_2(\Gamma_2(2^n) - \Gamma_2(2^m)) \ge m - 1.$$

Lemma

$$\lim_{n\to\infty} \Gamma_2(2^n)) = 1 \text{ in the 2-adics.}$$

Want to show: given n > m,

$$\|\Gamma_2(2^n) - \Gamma_2(2^m)\|_2 \le \frac{1}{2^{m-1}},$$

or, equivalently,

$$\nu_2(\Gamma_2(2^n) - \Gamma_2(2^m)) \ge m - 1.$$

or, equivalently,

$$\Gamma_2(2^n) - \Gamma_2(2^m) \equiv 0 \pmod{2^{m-1}}.$$

$$\Gamma_{2}(2^{n}) - \Gamma_{2}(2^{m}) = \prod_{\substack{k=1\\2\nmid k}}^{n} k - \prod_{\substack{k=1\\2\nmid k}}^{n} k$$
$$= (\prod_{\substack{k=1\\2\nmid k}}^{2^{m}-1} k)((\prod_{\substack{k=2\\2\nmid k}}^{n} k) - 1).$$

$$\Gamma_{2}(2^{n}) - \Gamma_{2}(2^{m}) = \prod_{\substack{k=1\\2\nmid k}} k - \prod_{\substack{k=1\\2\nmid k}} k$$

$$= (\prod_{\substack{k=1\\2\nmid k}}^{2^{m}-1} k)((\prod_{\substack{k=2^{m}\\2\nmid k}}^{2^{n}-1} k) - 1).$$

It suffices to show

$$\prod_{\substack{k=2^m\\2\nmid k}}^{2^n-1} k \equiv 1 \pmod{2^{m-1}}.$$

Want to show:
$$\prod_{k=2^m} k \equiv 1 \pmod{2^{m-1}}.$$

 $2 \nmid \bar{k}$

$$\prod_{\substack{k=2^m\\2\nmid k}}^{2^n-1} k = (2^m+1)(2^m+3)\dots(2^n-1)$$

$$\equiv \prod_{\substack{2^{n-1}-1-2^{m-1}\\(2k+1) \pmod{2^{m-1}}}}^{2^{n-1}} (2k+1) \pmod{2^{m-1}}$$

k=0

Want to show:
$$\prod_{k=2^{m} \atop \text{obs}}^{-1} k \equiv 1 \pmod{2^{m-1}}.$$

$$\prod_{k=2^{m} \atop 2\nmid k}^{2^{n}-1} k = (2^{m}+1)(2^{m}+3)\dots(2^{n}-1)$$

$$\equiv \prod_{k=0}^{2^{n-1}-1-2^{m-1}} (2k+1) \pmod{2^{m-1}}$$

$$= (1) \qquad (3) \qquad \cdots \qquad (2^{m-1}-1)$$

$$= (2^{m-1}+1) \qquad (2^{m-1}+3) \qquad \cdots \qquad (2^{m}-1)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(2^{n-1}+2^{m-1}+1) \qquad \cdots \qquad \cdots \qquad (2^{n}-2^{m}-1)$$

Want to show:
$$\prod_{\substack{k=2^m\\2lk}}^{-1} k \equiv 1 \pmod{2^{m-1}}.$$

$$\prod_{\substack{k=2^m\\2\nmid k}}^{2^n-1} k = (2^m+1)(2^m+3)\dots(2^n-1)$$

$$\equiv \prod_{\substack{k=0\\k=0}}^{2^{n-1}-1-2^{m-1}} (2k+1) \pmod{2^{m-1}}$$

$$= (1) \qquad (3) \qquad \cdots \qquad (2^{m-1}-1)$$

$$= (2^{m-1}+1) \qquad (2^{m-1}+3) \qquad \cdots \qquad (2^m-1)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(2^{n-1}+2^{m-1}+1) \qquad \cdots \qquad \cdots \qquad (2^n-2^m-1)$$

$$\equiv [(1)(3)\cdots(2^{m-1}-1)]^{2(2^{n-m}-1)} \pmod{2^{m-1}}.$$

Want to show:
$$\prod_{\substack{k=2^m\\2\nmid k}}^{-1} k \equiv 1 \pmod{2^{m-1}}.$$

$$\prod_{\substack{k=2^m\\2\nmid k}}^{2^n-1} k \equiv [(1)(3)\cdots(2^{m-1}-1)]^{2(2^{n-m}-1)} \pmod{2^{m-1}}.$$

Want to show:
$$\prod_{\substack{k=2^m\\2\nmid k}}^{2^{m-1}} k \equiv 1 \pmod{2^{m-1}}.$$

$$\prod_{\substack{k=2^m\\2lk}}^{2^n-1} k \equiv [(1)(3)\cdots(2^{m-1}-1)]^{2(2^{n-m}-1)} \pmod{2^{m-1}}.$$

This expression contains precisely the elements of $(\mathbb{Z} \setminus 2^{m-1}\mathbb{Z})^{\times}$.

Want to show:
$$\prod_{\substack{k=2^m \\ 2 \nmid k}}^{2^{m-1}} k \equiv 1 \pmod{2^{m-1}}$$
.

$$\prod_{\substack{k=2^m\\2lk}}^{2^n-1} k \equiv [(1)(3)\cdots(2^{m-1}-1)]^{2(2^{n-m}-1)} \pmod{2^{m-1}}.$$

This expression contains precisely the elements of $(\mathbb{Z} \setminus 2^{m-1}\mathbb{Z})^{\times}$.

$$\prod_{\substack{k=2^m\\2k}}^{2^{m-1}} k \equiv 1 \pmod{2^{m-1}}.$$

$$\|\Gamma_2(2^n) - \Gamma_2(2^m)\|_2 \le \frac{1}{2^{m-1}} \iff \Gamma_2(2^n) - \Gamma_2(2^m) \equiv 0 \pmod{2^{m-1}}.$$

$$\|\Gamma_2(2^n) - \Gamma_2(2^m)\|_2 \le \frac{1}{2^{m-1}} \iff \Gamma_2(2^n) - \Gamma_2(2^m) \equiv 0 \pmod{2^{m-1}}.$$

$$\Gamma_2(2^n) - \Gamma_2(2^m) = (\prod_{\substack{k=1\\2 \neq k}}^{n-1} k)((\prod_{\substack{k=2^m\\2 \neq k}}^{n-1} k) - 1).$$

$$\|\Gamma_2(2^n) - \Gamma_2(2^m)\|_2 \le \frac{1}{2^{m-1}} \iff \Gamma_2(2^n) - \Gamma_2(2^m) \equiv 0 \pmod{2^{m-1}}.$$

$$\Gamma_2(2^n) - \Gamma_2(2^m) = (\prod_{\substack{k=1\\2\nmid k}} k)((\prod_{\substack{k=2^m\\2\nmid k}} k) - 1).$$

$$\prod_{\substack{k=2^m\\2k}} k \equiv 1 \pmod{2^{m-1}}.$$

$$\|\Gamma_2(2^n) - \Gamma_2(2^m)\|_2 \le \frac{1}{2^{m-1}} \iff \Gamma_2(2^n) - \Gamma_2(2^m) \equiv 0 \pmod{2^{m-1}}.$$

$$\Gamma_2(2^n) - \Gamma_2(2^m) = \left(\prod_{\substack{k=1\\2\nmid k}}^{2^m-1} k\right) \left(\left(\prod_{\substack{k=2^m\\2\nmid k}}^{2^n-1} k\right) - 1\right).$$

$$\prod_{\substack{k=2^m\\2\neq k}}^{2^n-1} k \equiv 1 \pmod{2^{m-1}}.$$

This proof strategy generalizes to all p.

Slick Proof of $\lim \Gamma_2(2^n) = 1$

Using the fact that $\Gamma_2(n)$ is continuous on \mathbb{Z}_2 ,

Slick Proof of $\lim \Gamma_2(2^n) = 1$

Using the fact that $\Gamma_2(n)$ is continuous on \mathbb{Z}_2 ,

$$\lim_{n\to\infty}\Gamma_2(2^n)=\Gamma_2(\lim_{n\to\infty}2^n)=\Gamma_2(0)=1.$$

Slick Proof of $\lim \Gamma_2(2^n) = 1$

Using the fact that $\Gamma_2(n)$ is continuous on \mathbb{Z}_2 ,

$$\lim_{n\to\infty}\Gamma_2(2^n)=\Gamma_2(\lim_{n\to\infty}2^n)=\Gamma_2(0)=1.$$

This proof (clearly) also generalizes to all p.

What is the limit of $C(ap^n)$?

Remember the formula for Catalan numbers:

$$C(ap^n) = \frac{1}{ap^n + 1} \binom{2ap^n}{ap^n} = \frac{(2ap^n)!}{(ap^n + 1)!(ap^n)!}$$

What is the limit of $C(ap^n)$?

Remember the formula for Catalan numbers:

$$C(ap^n) = \frac{1}{ap^n + 1} \binom{2ap^n}{ap^n} = \frac{(2ap^n)!}{(ap^n + 1)!(ap^n)!}$$

We have shown that $\binom{2p^n}{p^n}$ and $\frac{1}{p^n+1}\binom{2p^n}{p^n}$ converge to the same limit p-adically. This doesn't change when we add a constant a.

To find this limit, we want to express $\binom{2ap^n}{ap^n}$ in terms of the p-adic gamma function.

$$\Gamma_p(n+1) = (-1)^{n+1} \prod_{\substack{k=1 \ p \nmid k}}^n k = \frac{(-1)^{n+1}(n)!}{\prod_{\substack{k=1 \ p \mid k}}^{n-1} k} = \frac{(-1)^{n+1}(n)!}{p^{\left\lfloor \frac{n}{p} \right\rfloor} \left\lfloor \frac{n}{p} \right\rfloor!}$$

To find this limit, we want to express $\binom{2ap^n}{ap^n}$ in terms of the p-adic gamma function.

$$\Gamma_p(n+1) = (-1)^{n+1} \prod_{\substack{k=1 \ p \nmid k}}^n k = \frac{(-1)^{n+1}(n)!}{\prod_{\substack{k=1 \ p \mid k}}^{n-1} k} = \frac{(-1)^{n+1}(n)!}{p^{\left\lfloor \frac{n}{p} \right\rfloor} \left\lfloor \frac{n}{p} \right\rfloor!}$$

$$\Rightarrow n! = \left| \frac{n}{p} \right| ! \Gamma_p(n+1)(-1)^{n+1} p^{\left\lfloor \frac{n}{p} \right\rfloor}$$

To find this limit, we want to express $\binom{2ap^n}{ap^n}$ in terms of the p-adic gamma function.

$$\Gamma_p(n+1) = (-1)^{n+1} \prod_{\substack{k=1 \ p \nmid k}}^n k = \frac{(-1)^{n+1}(n)!}{\prod_{\substack{k=1 \ p \mid k}}^{n-1} k} = \frac{(-1)^{n+1}(n)!}{p^{\left\lfloor \frac{n}{p} \right\rfloor} \left\lfloor \frac{n}{p} \right\rfloor!}$$

$$\Rightarrow n! = \left\lfloor \frac{n}{p} \right\rfloor ! \Gamma_p(n+1)(-1)^{n+1} p^{\left\lfloor \frac{n}{p} \right\rfloor}$$

$$\Rightarrow (ap^{n})! = (ap^{n-1})! \Gamma_{p}(ap^{n} + 1)(-1)^{ap^{n} + 1} p^{ap^{n-1}}$$
$$= a! p^{\frac{ap^{n} - a}{p-1}} (-1)^{ap^{n} + 1} \prod_{i=1}^{n} \Gamma_{p}(ap^{i})$$

Using the above equation, we get

$$\frac{(2ap^n)!}{(ap^n)!^2} = \frac{(2a)! p^{\frac{2ap^n}{p-1}}}{(a!)^2 p^{\frac{2(ap^n)}{p-1}}} \prod_{i=1}^n \frac{\Gamma_p(2ap^i)}{\Gamma_p(ap^i)^2} = \frac{(2a)!}{(a!)^2} \prod_{i=1}^n \frac{\Gamma_p(2ap^i)}{\Gamma_p(ap^i)^2}$$

Using the above equation, we get

$$\frac{(2ap^n)!}{(ap^n)!^2} = \frac{(2a)! p^{\frac{2ap^n-2a}{p-1}}}{(a!)^2 p^{\frac{2(ap^n-a)}{p-1}}} \prod_{i=1}^n \frac{\Gamma_p(2ap^i)}{\Gamma_p(ap^i)^2} = \frac{(2a)!}{(a!)^2} \prod_{i=1}^n \frac{\Gamma_p(2ap^i)}{\Gamma_p(ap^i)^2}$$

New problem: look at $\lim_{n\to\infty} \frac{(2a)!}{(a!)^2} \prod_{i=1}^n \frac{\Gamma_p(2ap^i)}{\Gamma_p(ap^i)^2}$ p-adically.

We found a very special case of this limit when p = 2.

We found a very *special* case of this limit when p = 2.

$$\binom{2a2^n}{a2^n} = \binom{a2^{n+1}}{a2^n} = \frac{(a2^{n+1})!}{(a2^n)!^2} = \frac{(2a)!}{(a!)^2} \prod_{i=1}^n \frac{\Gamma_2(a2^{i+1})}{\Gamma_2(a2^i)^2}$$

$$\prod_{i=1}^{n} \frac{\Gamma_2(a2^{i+1})}{\Gamma_2(a2^i)^2} = \frac{\Gamma_2(4a) \cdot \Gamma_2(8a) \cdot \Gamma_2(16a) \cdots \Gamma_2(2^n a) \cdot \Gamma_2(2^{n+1} a)}{\Gamma_2(2a)^2 \cdot \Gamma_2(4a)^2 \cdot \Gamma_2(8a)^2 \cdot \Gamma_2(16a)^2 \cdots \Gamma_2(2^n a)^2}$$

We found a very *special* case of this limit when p = 2.

$$\binom{a2^{n+1}}{a2^n} = \frac{(a2^{n+1})!}{(a2^n)!^2} = \frac{(2a)!}{(a!)^2} \prod_{i=1}^n \frac{\Gamma_2(a2^{i+1})}{\Gamma_2(a2^i)^2}$$

$$\prod_{i=1}^{n} \frac{\Gamma_{2}(a2^{i+1})}{\Gamma_{2}(a2^{i})^{2}} = \frac{\Gamma_{2}(4a) \cdot \Gamma_{2}(8a) \cdot \Gamma_{2}(16a) \cdots \Gamma_{2}(2^{n}a) \cdot \Gamma_{2}(2^{n+1}a)}{\Gamma_{2}(2a)^{2} \cdot \Gamma_{2}(4a)^{2} \cdot \Gamma_{2}(8a)^{2} \cdot \Gamma_{2}(16a)^{2} \cdots \Gamma_{2}(2^{n}a)^{2}}$$

$$= \frac{\Gamma_{2}(2^{n+1}a)}{\Gamma_{2}(2a)} \prod_{i=1}^{n} \frac{1}{\Gamma_{2}(a2^{i})}$$

So far we have,

$$\binom{a2^{n+1}}{a2^n} = \frac{(a2^{n+1})!}{(a2^n)!^2} = \frac{(2a)!\Gamma_2(2^{n+1}a)}{(a!)^2\Gamma_2(2a)} \prod_{i=1}^n \frac{1}{\Gamma_2(a2^i)}$$

So far we have,

$$\binom{a2^{n+1}}{a2^n} = \frac{(a2^{n+1})!}{(a2^n)!^2} = \frac{(2a)!\Gamma_2(2^{n+1}a)}{(a!)^2\Gamma_2(2a)} \prod_{i=1}^n \frac{1}{\Gamma_2(a2^i)}$$

By the previous Lemma, $\Gamma_2(2^{n+1}a) \to 1$, 2-adically. The only *mystery* now is what $\lim_{n\to\infty} \prod_{i=1}^{n} \frac{1}{\Gamma_2(a2^i)}$ is.

$$\frac{1}{(1\cdot 3\cdot 5\cdots (2a-1))(1\cdot 3\cdot 5\cdots (2a-1)\cdots (4a-1))\cdots \cdots (1\cdot 3\cdot 5\cdots (2a-1)\cdots (4a-1)\cdots (2^na-1))}$$

$$\frac{1}{(1 \cdot 3 \cdot 5 \cdots (2a-1))(1 \cdot 3 \cdot 5 \cdots (2a-1) \cdots (4a-1)) \cdots \cdots (1 \cdot 3 \cdot 5 \cdots (2a-1) \cdots (4a-1) \cdots (2^n a-1))}$$

$$\frac{1}{(1\cdot 3\cdot 5\cdots (2a-1))^n((2a+1)\cdots (4a-1))^{n-1}((4a+1)\cdots (8a-1))^{n-2}\cdots ((2^{n-1}a+1)\cdots (2^na-1))}$$

$$\frac{1}{(1\cdot 3\cdot 5\cdots (2a-1))(1\cdot 3\cdot 5\cdots (2a-1)\cdots (4a-1))\cdots (1\cdot 3\cdot 5\cdots (2a-1)\cdots (4a-1)\cdots (2^na-1))}$$

$$\frac{1}{(1\cdot 3\cdot 5\cdots (2a-1))^n((2a+1)\cdots (4a-1))^{n-1}((4a+1)\cdots (8a-1))^{n-2}\cdots ((2^{n-1}a+1)\cdots (2^na-1))}$$

$$\frac{((2a+1)\cdots(4a-1))((4a+1)\cdots(8a-1))^2\cdots\cdots((2^{n-1}a+1)\cdots(2^na-1))^n}{(1\cdot3\cdot5\cdots(2a-1)(2a+1)\cdots(4a-1)(4a+1)\cdots(8a-1)(8a+1)\cdots\cdots(2^na-1))^n}$$

$$\frac{1}{(1\cdot 3\cdot 5\cdots (2a-1))(1\cdot 3\cdot 5\cdots (2a-1)\cdots (4a-1))\cdots (1\cdot 3\cdot 5\cdots (2a-1)\cdots (4a-1)\cdots (2^na-1))}$$

$$\frac{1}{(1\cdot 3\cdot 5\cdots (2a-1))^n((2a+1)\cdots (4a-1))^{n-1}((4a+1)\cdots (8a-1))^{n-2}\cdots ((2^{n-1}a+1)\cdots (2^na-1))}$$

$$\frac{((2a+1)\cdots (4a-1))((4a+1)\cdots (8a-1))^2\cdots ((2^{n-1}a+1)\cdots (2^na-1))^n}{(1\cdot 3\cdot 5\cdots (2a-1)(2a+1)\cdots (4a-1)(4a+1)\cdots (8a-1)(8a+1)\cdots (2^na-1))^n}$$

$$\frac{((2a+1)\cdots (4a-1))((4a+1)\cdots (8a-1))^2\cdots ((2^{n-1}a+1)\cdots (2^na-1))^n}{\Gamma_2(2^na)^n}$$

$$\frac{((2a+1)\cdots(4a-1))((4a+1)\cdots(8a-1))^2\cdots\cdots((2^{n-1}a+1)\cdots(2^na-1))^n}{\Gamma_2(2^na)^n}$$

If we take the limit as $n \to \infty$, the denominator is 1 by our lemma, and the numerator becomes an infinite product of powers of odd numbers. i.e.

$$\lim_{n \to \infty} \binom{a2^{n+1}}{a2^n} = \frac{(2a)!}{\Gamma_2(2a)(a!)^2} \prod_{j=0}^{\infty} (2j+1)^{\lfloor \log_2(\frac{2j+1}{a}) \rfloor}$$

$$p=2$$
 and $a=1$

Looking at the simplest case, we have

$$\lim_{n \to \infty} {2^{n+1} \choose 2^n} = \frac{2}{\Gamma_2(2)} \prod_{j=0}^{\infty} (2j+1)^{\lfloor \log_2(2j+1) \rfloor}$$
$$= 2 \cdot 3 \cdot (5 \cdot 7)^2 (9 \cdot 11 \cdot 13 \cdot 15)^3 \cdots$$

Simplifying
$$\lim_{n\to\infty} C(ap^n)$$

One should always generalize
-Carl Jacobi

$$\lim_{n \to \infty} {2a \choose a} \prod_{i=1}^{n} \frac{\Gamma_p(2ap^i)}{\Gamma_p(ap^i)^2} = ?$$

Simplifying $\prod_{i=1}^n \Gamma_p(ap^i)$

$$\prod_{i=1}^{n} \Gamma_p(ap^i) \text{ is given by }$$

$$(1\cdots(ap-1))^n((ap+1)\cdots(ap^2-1))^{n-1}\cdots((ap^{n-1}+1)\cdots(ap^n-1))$$

which is simply:

$$\Gamma_p(ap^n)^n \prod_{i=ap+1 \text{ and } p\nmid i}^{ap^n-1} (i^{-\lfloor \log_p(i/2a) \rfloor})$$

$$\binom{2a}{a} \prod_{i=1}^{n} \frac{\Gamma_p(2ap^i)}{\Gamma_p(ap^i)^2}$$

$$\begin{pmatrix} 2a \\ a \end{pmatrix} \prod_{i=1}^{n} \frac{\Gamma_{p}(2ap^{i})}{\Gamma_{p}(ap^{i})^{2}}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n}}{\Gamma_{p}(ap^{n})^{2n}} \frac{\prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor})}{\prod_{i=ap+1 \text{ and } p\nmid i}^{2ap^{n}-1} (i^{\lfloor \log_{p}(i/2a) \rfloor})}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n}}{\Gamma_{p}(ap^{n})^{2n}} \frac{\prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}{\prod_{i=ap^{n}+1 \text{ and } p\nmid i}^{2ap^{n}-1} (i^{\lfloor \log_{p}(i/2a) \rfloor})}$$

$$\begin{pmatrix} 2a \\ a \end{pmatrix} \prod_{i=1}^{n} \frac{\Gamma_{p}(2ap^{i})}{\Gamma_{p}(ap^{i})^{2}}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n}}{\Gamma_{p}(ap^{n})^{2n}} \frac{\prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor})}{\prod_{i=ap+1 \text{ and } p\nmid i}^{2ap^{n}-1} (i^{\lfloor \log_{p}(i/2a) \rfloor})}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n}}{\Gamma_{p}(ap^{n})^{2n}} \frac{\prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}{\prod_{i=ap^{n}+1 \text{ and } p\nmid i}^{2ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n}}{\Gamma_{p}(ap^{n})^{2n}} \frac{\prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}{\prod_{i=ap^{n}+1 \text{ and } p\nmid i}^{2ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}$$

$$\begin{pmatrix} 2a \\ a \end{pmatrix} \prod_{i=1}^{n} \frac{\Gamma_{p}(2ap^{i})}{\Gamma_{p}(ap^{i})^{2}}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n}}{\Gamma_{p}(ap^{n})^{2n}} \frac{\prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor})}{\prod_{i=ap+1 \text{ and } p\nmid i}^{2ap^{n}-1} (i^{\lfloor \log_{p}(i/2a) \rfloor})}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n}}{\Gamma_{p}(ap^{n})^{2n}} \frac{\prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}{\prod_{i=ap+1 \text{ and } p\nmid i}^{2ap^{n}-1} (i^{\lfloor \log_{p}(i/2a) \rfloor})}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n}}{\Gamma_{p}(ap^{n})^{2n}} \frac{\prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}{\prod_{i=ap+1 \text{ and } p\nmid i}^{2ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}$$

$$= \begin{pmatrix} 2a \\ a \end{pmatrix} \frac{\Gamma_{p}(2ap^{n})^{n} \prod_{i=ap+1 \text{ and } p\nmid i}^{ap^{n}-1} (i^{2\lfloor \log_{p}(i/a) \rfloor - \lfloor \log_{p}(i/2a) \rfloor})}{\Gamma_{p}(2ap^{n})^{n-1} \Gamma_{p}(ap^{n})^{n+1}}$$

Simplifying $\lim_{n\to\infty}\binom{2ap^n}{ap^n}$

$$\lim_{n \to \infty} \binom{2ap^n}{ap^n}$$

Simplifying $\lim_{n\to\infty} \binom{2ap^n}{ap^n}$

$$\lim_{n \to \infty} \binom{2ap^n}{ap^n}$$

$$= \lim_{n \to \infty} \binom{2a}{a} \frac{\Gamma_p(2ap^n)^n \prod_{i=ap+1 \text{ and } p \nmid i}^{ap^n - 1} (i^2 \lfloor \log_p(i/a) \rfloor - \lfloor \log_p(i/2a) \rfloor)}{\Gamma_p(2ap^n)^{n-1} \Gamma_p(ap^n)^{n+1}}$$

Simplifying $\lim_{n\to\infty} \binom{2ap^n}{ap^n}$

$$\lim_{n \to \infty} \binom{2ap^n}{ap^n}$$

$$= \lim_{n \to \infty} \binom{2a}{a} \frac{\Gamma_p(2ap^n)^n \prod_{i=ap+1 \text{ and } p \nmid i}^{ap^n - 1} (i^2 \lfloor \log_p(i/a) \rfloor - \lfloor \log_p(i/2a) \rfloor)}{\Gamma_p(2ap^n)^{n-1} \Gamma_p(ap^n)^{n+1}}$$

$$= \binom{2a}{a} \lim_{n \to \infty} \prod_{i=ap+1 \text{ and } p \nmid i}^{ap^n - 1} (i^2 \lfloor \log_p(i/a) \rfloor - \lfloor \log_p(i/2a) \rfloor)$$

Simplifying $\lim_{n\to\infty} \binom{2ap^n}{ap^n}$

$$\lim_{n \to \infty} \binom{2ap^n}{ap^n}$$

$$= \lim_{n \to \infty} \binom{2a}{a} \frac{\Gamma_p(2ap^n)^n \prod_{i=ap+1 \text{ and } p \nmid i}^{ap^n-1} (i^2 \lfloor \log_p(i/a) \rfloor - \lfloor \log_p(i/2a) \rfloor)}{\Gamma_p(2ap^n)^{n-1} \Gamma_p(ap^n)^{n+1}}$$

$$= \binom{2a}{a} \lim_{n \to \infty} \prod_{i=ap+1 \text{ and } p \nmid i}^{ap^n-1} (i^2 \lfloor \log_p(i/a) \rfloor - \lfloor \log_p(i/2a) \rfloor)$$

Question: When does this limit exist?

$$\lim_{n\to\infty} C(a2^n) \ = \ \binom{2a}{a} \lim_{n\to\infty} \prod_{i=2a+1 \text{ and i odd}}^{a2^n-1} (i^{2\lfloor \log_2(i/a)\rfloor - \lfloor \log_2(i/2a)\rfloor})$$

$$\lim_{n \to \infty} C(a2^n) = \binom{2a}{a} \lim_{n \to \infty} \prod_{i=2a+1 \text{ and i odd}}^{a2^n - 1} (i^{2\lfloor \log_2(i/a) \rfloor - \lfloor \log_2(i/2a) \rfloor})$$

$$= \binom{2a}{a} \lim_{n \to \infty} \prod_{i=2a+1 \text{ and i odd}}^{a2^n - 1} (i^{\lfloor \log_2(i/a) \rfloor + 1})$$

$$\begin{split} \lim_{n \to \infty} C(a2^n) &= \binom{2a}{a} \lim_{n \to \infty} \prod_{i=2a+1 \text{ and i odd}}^{a2^n-1} (i^{2\lfloor \log_2(i/a) \rfloor - \lfloor \log_2(i/2a) \rfloor}) \\ &= \binom{2a}{a} \lim_{n \to \infty} \prod_{i=2a+1 \text{ and i odd}}^{a2^n-1} (i^{\lfloor \log_2(i/a) \rfloor + 1}) \\ &= \binom{2a}{a} \lim_{n \to \infty} \frac{\Gamma_2(a2^n)}{\Gamma_2(2a)} \prod_{i=2a+1 \text{ and i odd}}^{a2^n-1} (i^{\lfloor \log_2(i/a) \rfloor}) \end{split}$$

$$\lim_{n \to \infty} C(a2^n) = \binom{2a}{a} \lim_{n \to \infty} \prod_{i=2a+1 \text{ and i odd}}^{a2^n - 1} (i^{2\lfloor \log_2(i/a) \rfloor - \lfloor \log_2(i/2a) \rfloor})$$

$$= \binom{2a}{a} \lim_{n \to \infty} \prod_{i=2a+1 \text{ and i odd}}^{a2^n - 1} (i^{\lfloor \log_2(i/a) \rfloor + 1})$$

$$= \binom{2a}{a} \lim_{n \to \infty} \frac{\Gamma_2(a2^n)}{\Gamma_2(2a)} \prod_{i=2a+1 \text{ and i odd}}^{a2^n - 1} (i^{\lfloor \log_2(i/a) \rfloor})$$

$$= \binom{2a}{a} \frac{1}{\Gamma_2(2a)} \lim_{n \to \infty} \prod_{i=2a+1 \text{ and i odd}}^{a2^n - 1} (i^{\lfloor \log_2(i/a) \rfloor})$$

Proof of Convergence of $C(ap^n)$

We first reduce to the problem of determining the disk of convergence for

$$\lim_{n \to \infty} \prod_{i=ap+1 \text{ and } p \nmid i}^{ap^n - 1} (i^{2\lfloor \log_p(i/a) \rfloor - \lfloor \log_p(i/2a) \rfloor})$$

Proof of Convergence of $C(ap^n)$

We first reduce to the problem of determining the disk of convergence for

$$\lim_{n \to \infty} \prod_{i=ap+1 \text{ and } p \nmid i}^{ap^{r}-1} \left(i^{2\lfloor \log_p(i/a) \rfloor - \lfloor \log_p(i/2a) \rfloor} \right)$$

Taking the difference of consecutive terms in the sequence,

$$K_n\left(\prod_{i=ap^{n-1}+1 \text{ and } p\nmid i}^{ap^n-1} \left(i^{2\lfloor \log_p(i/a)\rfloor - \lfloor \log_p(i/2a)\rfloor}\right) - 1\right)$$

Proof of Convergence of $C(ap^n)$

We first reduce to the problem of determining the disk of convergence for

$$\lim_{n \to \infty} \prod_{i=ap+1 \text{ and } p \nmid i}^{ap^n - 1} \left(i^{2 \lfloor \log_p(i/a) \rfloor - \lfloor \log_p(i/2a) \rfloor} \right)$$

Taking the difference of consecutive terms in the sequence,

$$K_n\left(\prod_{i=ap^{n-1}+1 \text{ and } p\nmid i}^{ap^n-1} \left(i^{2\left\lfloor \log_p(i/a)\right\rfloor - \left\lfloor \log_p(i/2a)\right\rfloor}\right) - 1\right)$$

The product can be written as

$$\left(\frac{\Gamma_p(ap^n)}{\Gamma_p(ap^{n-1})}\right)^{n-2} \frac{\Gamma_p(a(p-1)p^{n-1})}{\Gamma_p(ap^{n-1})}$$

which converges to 1.

Summary

 $C(ap^n)$ can be "solved" by expressing its limit in terms of p-adic gamma functions. Γ_p

Summary

 $C(ap^n)$ can be "solved" by expressing its limit in terms of p-adic gamma functions. Γ_p

All of these sequence converge and can be written as a product of integers coprime with p to powers ascending logarithmically.

Summary

 $C(ap^n)$ can be "solved" by expressing its limit in terms of p-adic gamma functions. Γ_p

All of these sequence converge and can be written as a product of integers coprime with p to powers ascending logarithmically.

Similar methods should work for other combinatorial sequences which are factorials of multiples of prime powers.

Acknowledgements

We would like to thank Dr. Victor Moll, Dr. Herbert Medina, Dr. Eric Rowland, Asia Wyatt and our peers in MSRI-UP 2014 for their support throughout our research process.

This work was carried out during the 2014 Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP) which is funded by the National Science Foundation (grant No. DMS-1156499) and the National Security Agency (grant No. H-98230-13-1-0262).

Questions for us?

Alexandra Michel, Mills College, amichel@mills.edu Andrew Miller, Amherst College, admiller15@amherst.edu Joseph Rennie, Reed College, jrennie@reed.edu

Citations

- [1] Rowland, Eric. "Regularity Versus Complexity in the Binary Representation of 3^n ". Complex Systems 18 (2009) p. 367-377.
- [2] Granville, Andrew. "Binomial coefficients modulo prime powers". Canadian Mathematical Society Conference Proceedings, Vol 20, pages 253-275. 1997.
- [3] Gouvea, Fernando Q. p-adic Numbers: An Introduction. Second Edition. Springer, 2003.
- [4] Koblitz, Neal. p-adic Numbers, p-adic Analysis, and Zeta-Functions. Second Edition. Springer, 1984
- [5] Stanley, Richard. *Enumerative Combinatorics*. Vol 1. Second Edition. Cambridge University Press, 2011.