

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 11 de agosto de 2022

Nombre y apellido:		Padrón:
Cuatrimestre de cursada:	Turno:	

- El siguiente cuestionario corresponde a la primera parte de la evaluación integradora de la materia Dispositivos Semiconductores. El mismo consta de 5 preguntas y debe ser respondido en una hora, comenzando a las 15:00 y finalizando a las 16:00 sin excepción.
- Se recomienda organizar el tiempo para demorar 10 minutos por pregunta.
- Algunas preguntas pueden ser del tipo multiple choice (MC) y otras pueden ser con respuesta numérica.
- En las preguntas MC existe siempre una única respuesta correcta.
- En las preguntas numéricas debe responderse con unidades siempre y cuando corresponda.
- El cuestionario se aprueba con 3 preguntas correctas.
- La aprobación del cuestionario es necesaria para acceder a la segunda parte de la evaluación, pero no es suficiente para aprobar la evaluación integradora.
- En caso de no aprobar el cuestionario, la evaluación integradora estará desaprobada.

Pregunta	Respuesta	Corrección
1		
2		
3		
4		
5		
Calificación Cuestionario:		
Nota Examen:		
Nota Final:		

Firmar al entregar: _	

Dispositivos Semiconductores Evaluación Final 11 de agosto de 2022

- 1) Dos diodos de juntura PN sólo se diferencian por haber sido fabricados con distinto material semiconductor, manteniendo iguales entre sí su geometría y niveles de dopaje de cada lado de la juntura. Como consecuencia, se obtienen dos corrientes de saturación inversa distintas para cada uno de ellos: $I_{S1} = 10 \, \mathrm{fA}$ y $I_{S2} = 100 \,\mathrm{fA}$. Se disponen en un arreglo serie a temperatura ambiente (300 K) donde el D_1 se encuentra polarizado en inversa y D_2 en directa a través de una fuente de tensión $(V_F = 6.3 \text{ V})$ y un resistor $(1 \text{ k}\Omega)$. ¿Cómo son las caídas de tensión de cada uno de los diodos?
- C) $V_{D1} \simeq 0.7 \,\text{V} \,\text{y} \,V_{D2} \simeq 5.6 \,\text{V}.$
- $\begin{array}{ll} {\rm A)} \ \ V_{D1} \simeq 2.5 \, {\rm mV} \ {\rm y} \ V_{D2} \simeq 6.3 \, {\rm V}. & {\rm B)} \ \ V_{D1} \simeq 62 \, {\rm mV} \ {\rm y} \ V_{D2} \simeq 6.3 \, {\rm V}. \\ {\rm D)} \ \ V_{D1} \simeq 6.3 \, {\rm V} \ {\rm y} \ V_{D2} \simeq 2.5 \, {\rm mV}. & {\rm E)} \ \ V_{D1} \simeq 6.3 \, {\rm V} \ {\rm y} \ V_{D2} \simeq 62 \, {\rm mV}. \end{array}$
- F) $V_{D1} \simeq 5.6 \text{ V y } V_{D2} \simeq 0.7 \text{ V}.$
- 2) Para el circuito de la figura fabricado en un proceso de fabriación CMOS con parámetros $V_{DD}=3.3\,\mathrm{V};\ V_{Tn}=0.7\,\mathrm{V};\ V_{Tp}=-0.8\,\mathrm{V};$ $\mu_n C'_{ox} = 240 \,\mu\text{A V}^{-2}; \; \mu_p C'_{ox} = 70 \,\mu\text{A V}^{-2} \; \text{y} \; \lambda = 0, \; \text{se diseñaron los}$ transistores con las siguientes dimensiones $(W/L)_1 = 20$; $(W/L)_2 =$ 20; $(W/L)_3 = 50$; $(W/L)_4 = 100$. Calcular el valor de $R_{REF}[\Omega]$ para que la corriente de salida sea $I_{OUT} = 700 \,\mu\text{A}$.

3) En la figura se muestra un diagrama de portadores minoritarios para un Transistor Bipolar de Juntura polarizado. Indicar cuál de las afirmaciones es correcta.

- A) Se trata de un transistor NPN polarizado en Modo Activo Directo.
- B) Se trata de un transistor NPN polarizado en Modo Activo Inverso.
- C) Se trata de un transistor NPN polarizado en Saturación.
- D) Se trata de un transistor PNP polarizado en Modo Activo Directo.
- E) Se trata de un transistor PNP polarizado en Modo Activo Inverso.
- F) Se trata de un transistor PNP polarizado en Saturación.
- 4) Se debe diseñar un amplificador emisor común sin realimentación con un transistor PNP con parámetros $\beta = 500 \text{ y } V_A \rightarrow \infty$. La tensión de alimentación es $V_{CC} = 9 \text{ V}$, y el transistor está polarizado con una resistencia de base R_B entre la base del transistor y tierra, y una resistencia de colector, R_C conectada a tierra. El emisor está conectado a la tensión de alimentación. A la entrada del amplificador se conecta una señal senoidal (v_s) de tension pico 15 mV y resistencia serie $R_s = 1 \,\mathrm{k}\Omega$ a través de un capacitor de desacople de valor adecuado. Calcular el punto de polarización del transistor $(I_{CO}; V_{CEO})$ para que la tensión de salida sea $v_{out} = 1 \, \text{V}$ y la ganancia propia del amplificador sea $A_{vo} = -200$. Considerar una temperatura tal que $kT/q = 26\,\mathrm{mV}$. La respuesta se considera correcta si todos los valores están bien calculados. Considerar todas las aproximaciones que considere apropiadas.
- 5) Diodos de potencia: ¿Qué consideraciones constructivas se tienen en cuenta al fabricar un diodo PN de potencia?
 - A) Los dopajes deben ser altos en la juntura para aumentar E_0 y soportar mayores tensiones.
 - B) Los dopajes deben ser altos para aumentar ϕ_B y aumentar $V_{BE(ON)}$.
 - C) Los dopajes en el dispositivo deben ser no uniformes para soportar mayores tensiones de ruptura inversa sin elevar demasiado la resistencia del material.
 - D) Lejos de la juntura metalúrgica, el dopaje debe disminuir para reducir su conductividad.
 - E) El área del diodo debe ser grande para aumentar la capacidad del diodo, y mejorar su tiempo de respuesta.