Ονοματεπώνυμο: Παντελεήμων Μαλέκας

A.M: 1115201600268

3.1

$$x_i^{k+1} = (1-\omega) * x^k + \omega * \frac{1}{bi} * (d_i - a_i * x_{i-1}^{(k)} - ci * x_{i+1}^{(k+1)})$$

$$με i = 0,1,2, ... n, και α1 = 0 και cn = 0$$

3.2

Για τον πίνακα που ακολουθεί, χρειάστηκαν τα αρχεία SOR_iter.m (για την στήλη της βέλτιστης τιμής ωb και του θεωρητικού πλήθους επαναλήψεων) και το SOR_iter_exp.m (για τις πειραματικές τιμές του ω και το πειραματικό πλήθος επαναλήψεων)

Μέθοδος προς τα πίσω SOR

Διάσταση Α	Παράμετροι		Βέλτιστη τιμή ωb SOR	Θεωρητικό πλήθος επαναλήψεων	Βέλτιστη Πειραματική τιμή ω	Πειραματικός πλήθος επαναλήψεων
	α	β				
N = 10	1	2	1.153	11	1.90000	11
	2	1	1.153	14	1.90000	14
N = 100	1	2	1.1713	12	1.90000	12
	2	1	1.1713	29	1.90000	29
N = 1000	1	2	1.1766	12	1.90000	12
	2	1	1.1975	31	1.90000	31
N = 750	1	2	1.1757	12	1.90000	12
	2	1	1.1949	31	1.90000	31

Για τον πίνακα που ακολουθεί, χρειάστηκαν τα αρχεία SOR_iter.m (για την στήλη της βέλτιστης τιμής ωb και της θεωρητικής τιμής φασματικής ακτίνας) και το SOR_sr_exp.m (για τις πειραματικές τιμές του ω και την πειραματική τιμή φασματικής ακτίνας)

Μέθοδος προς τα πίσω SOR

Διάσταση Α	Παράμετροι		Βέλτιστη τιμή ωb SOR	Θεωρητική τιμή φασματικής ακτίνας επαν. πίν. SOR	Βέλτιστη Πειραματική τιμή ω	Πειραματική τιμή φασματικής ακτίνας επαν. πίν. SOR
	α	β				
N = 10	1	2	1.153	0.67846	1.2000	1.000000
	2	1	1.153	0.67846	1.2000	1.000000
N = 100	1	2	1.1713	0.70676	1.2000	1.000000
	2	1	1.1713	0.70676	1.2000	1.002566
N = 1000	1	2	1.1766	0.7144	1.2000	1.717196
	2	1	1.1975	0.74226	1.2000	1.295690
N = 750	1	2	1.1757	0.71308	1.2000	1.607370
	2	1	1.1949	0.73894	1.2000	1.284226

Για τον πίνακα που ακολουθεί, χρειάστηκε το αρχείο SOR_iter.m.

Σύγκριση ε. μ. SOR, GS, Jacobi

Διάσταση Α	Παράμετροι		Βέλτιστη τιμή ωb SOR	Θεωρητική τιμή φασματικής ακτίνας επαν. πίν. SOR	Θεωρητική τιμή φασματικής ακτίνας επαν. πίν. GS	Θεωρητική τιμή φασματικής ακτίνας επαν. πίν. Jacobi
	α	β				
N = 10	1	2	1.1530	0.67846	0.67846	0.67846
	2	1	1.1530	0.67846	0.67846	0.67846
N = 100	1	2	1.1713	0.70676	0.70676	0.70676
	2	1	1.1713	0.70676	0.70676	0.70676
N = 1000	1	2	1.1766	0.71440	0.71440	0.71440
	2	1	1.1975	0.74226	0.74226	0.74226
N = 750	1	2	1.1757	0.71308	0.71308	0.71308
	2	1	1.1949	0.73894	0.73894	0.73894

Για τον πίνακα που ακολουθεί, χρειάστηκε το αρχείο SOR_iter.m.

Σύγκριση ε. μ. SOR, GS, Jacobi

Διάσταση Α	Παράμετροι		Βέλτιστη τιμή ωb SOR	Θεωρητικό πλήθος επαναλήψεων SOR	Θεωρητικό πλήθος επαναλήψε ων GS	Θεωρητικό πλήθος επαναλήψεων Jacobi
	α	β				
N = 10	1	2	1.1530	14	23	41
	2	1	1.1530	11	16	41
N = 100	1	2	1.1713	29	30	47
	2	1	1.1713	12	16	47
N = 1000	1	2	1.1766	29	30	47
	2	1	1.1975	13	16	47
N = 750	1	2	1.1757	29	30	47
	2	1	1.1949	13	16	47

Τα αποτελέσματα για N = 750 είναι δικοί μου έξτρα πειραματισμοί. Δοκίμασα και πενταψήφιους αριθμούς για την διάσταση του πίνακα αλλά τα αποτελέσματα αργούσαν πάρα πολύ ή έτυχαν crashes. Οπότε θεώρησα ενδιαφέρον μια τιμή μεταξύ τριψήφιας και τετραψήφιας διάστασης για ενδιάμεσα αποτελέσματα.

Εκτέλεση και προγράμματα

Χρησιμοποιήθηκαν τα αρχεία SOR_iter.m, SOR_iter_exp.m, SOR_sr_exp.m από το e-class. Έχουν όλα τροποποιηθεί για τον υπολογισμό των ζητούμενων της άσκησης. Συγκεκριμένα ορίζονται ο πίνακας Α, το error, το x της άσκησης κτλ. Επίσης, τα Ν, α και β δίνονται με user input. Στο SOR_iter.m υπάρχει ακόμη ένα input για την επιλογή της μεθόδου (ε.μ. SOR, GS, κτλ). Στα άλλα δύο αρχεία οι υπολογισμοί γίνονται μόνο με την προς τα πίσω SOR. Κάθε αρχείο εκτελείται με το όνομα του. Τέλος, όλα τα αρχεία αναπτύχθηκαν και εκτελέστηκαν με την χρήση του GNU Octave.

Οι γραφικές παραστάσεις που ακολουθούν συλλέχθηκαν από το αρχείο SOR_sr_exp.m

 $\alpha)$ N = 10, α = 1, β = 2

β) N = 100, α = 1, β = 2

γ) N = 1000, α = 1, β = 2

Αποφάσισα να παραδώσω την μεταβολή της γραφικής παράστασης μόνο για α = 1 και β =2. Για α = 2 και β = 1, η συμπεριφορά είναι η ανάλογη.

Σχολιασμός αποτελεσμάτων

Αρχικά παρατηρούμε ότι η σύγκλιση είναι πιο γρήγορη στην SOR μέθοδο. Η GS φαίνεται να είναι πιο αργή από την SOR αλλά πιο γρήγορη από την Jacobi, η οποία φαίνεται να είναι η πιο αργή από όλες τις μεθόδους. Αυτό οφείλεται φυσικά στην παράμετρο ω, η οποία προκαλεί χαλάρωση στον πίνακα και άρα ταχύτερη σύγκλιση.

Επίσης η διάσταση του πίνακα επηρεάζει την συμπεριφορά των μεθόδων. Συγκεκριμένα βλέπουμε και από τις γραφικές παραστάσεις ότι όσο αυξάνεται η διάσταση, τόσο προσεγγίζεται το βέλτιστο ω.