Lecture 04c - Affine Arithmetic

. pull-left[

@luk036

2022-10-12

 $] \ . pull-right[$

Figure 1: image

]

class: center, middle

A simple example: the area of a triangle

-

A Simple Area Problem

- Suppose the points p, q and r vary within the region of 3 given rectangles.
- Q: What is the upper and lower bound on the area of $\triangle pqr$?

. pull-right[

Figure 2: triangle

Method 1: Corner-based

- Calculate all the areas of triangles with different corners.
- Problems:
 - In practical applications, there may be many corners.

 What's more, in practical applications, the worst-case scenario may not be at the corners at all.

Method 2: Monte Carlo

- Monte-Carlo or Quasi Monte-Carlo:
 - Calculate the area of triangles for different sampling points.
- Advantage: more accurate when there are more sampling points.
- Disadvantage: time consuming

class: center, middle

Interval Arithmetic vs. Affine Arithmetic

Method 3: Interval Arithmetic

• Interval arithmetic (IA) estimation:

- Let
$$px = [2, 3]$$
, $py = [3, 4]$
- Let $qx = [-5, -4]$, $qy = [-6, -5]$
- Let $rx = [6, 7]$, $ry = [-5, -4]$

- Let rx = [6, 7], ry :
• Area of triangle:

$$- = ((qx - px)(ry - py) - (qy - py)(rx - px))/2$$

- = [33 .. 61] (actually [36.5 .. 56.5])

• Problem: cannot handle *correlation* between variables.

Method 4: Affine Arithmetic

- (Definition to be given shortly)
- More accurate estimation than IA:
 - Area = [35 ... 57] in the previous example.
- Take care of first-order correlation.
- Usually faster than Monte-Carlo, but
 - becomes inaccurate if the variations are large.
- libaffa.a/YALAA package is publicly available:
 - Provides functuins like +, -, *, /, $\sin()$, $\cos()$, pow() etc.

Analog Circuit Example

- Unit Gain bandwidth
 - GBW = sqrt(A*Kp*Ib*(W2/L2)/(2*pi*Cc) where some parameters are varying

Enabling Technologies

- C++ template and operator overloading features greatly simplify the coding effort:
- E.g., the following code can be applied to both <double> and <AAF>:

• In other words, some existing code can be reused with minimal modification.

Applications of AA

- Analog Circuit Sizing
- Worst-Case Timing Analysis
- Statistical Static Timing Analysis
- Parameter Variation Interconnect Model Order Reduction [CMU02]
- Clock Skew Analysis
- Bounded Skew Clock Tree Synthesis

Limitations of AA

- Something AA can't replace <double>:
 - Iterative methods (no fixed point in AA)
 - No Multiplicative inverse operation (no LU decomposition)
 - Not total ordering, can't sort (???)
- AA can only handle linear correlation, which means you can't expect an accurate approximation of abs(x) near zero.
- Fortunately the ellipsoid method is one of the few algorithms that works with AA.

Circuit Sizing for Op. Amp.

- Geometric Programming formulation for CMOS Op. Amp.
- Min-max convex programming under Parametric variations (PVT)
- Ellipsoid Method

What is Affine Arithmetic?

• Represents a quantity x with an affine form (AAF):

$$\hat{x} = x_0 + x_1 \epsilon_1 + \dots + x_n \epsilon_n$$

where

- noise symbols $\epsilon_i \in [-1, 1]$
- central value $x_0 \in \mathbb{R}$
- partial deviations $x_i \in \mathbb{R}$
- -n is not fixed new noise symbols are generated during the computation process.
- IA -> AA : $[3..4] \rightarrow 3.5 + 0.5\epsilon_1$

Geometry of AA

.pull-left70[

- Affine forms that share noise symbols are dependent:
 - $-\hat{x} = x_0 + x_1 \epsilon_1 + \dots + x_n \epsilon_n$
 - $-\hat{y} = y_0 + y_1 \epsilon_1 + \dots + y_m \epsilon_m$
- The region containing (x, y) is:
 - $-~Z=\{(x,y):\epsilon_i\in[-1,1]\}$
 - This region is a centrally symmetric convex polygon called "zonotope".

```
].pull-right30[
```

Affine Arithmetic

How to find $\sup_{q\in\mathbb{Q}}f_j(x,q)$ efficiently?

- $\sup_{q\in\mathbb{Q}} f_j(x,q)$ is in general difficult to obtain.
- Provided that variations are small or nearly linear, we propose using Affine Arithmetic (AA) to solve this problem.
- Features of AA:

Figure 3: zonotope

- Handle correlation of variations by sharing *noise symbols*.
- Enabling technology: template and operator overloading features of C++.
- A C++ package "YALAA" is publicly available.

Affine Arithmetic for Worst Case Analysis

• An uncertain quantity is represented in an affine form (AAF):

$$\hat{a} = a_0 + a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_k \varepsilon_k = a_0 + \sum_{i=1}^k a_i \varepsilon_i,$$

where

 $-\varepsilon_i \in [-1,1]$ is called *noise symbol*.

- Exact results for affine operations $(\hat{a}+\hat{b},\,\hat{a}-\hat{b}$ and $\alpha\cdot\hat{a})$
- Results of non-affine operations (such as $\hat{a} \cdot \hat{b}$, \hat{a}/\hat{b} , $\max(\hat{a}, \hat{b})$, $\log(\hat{a})$) are approximated in an affine form.
- AA has been applied to a wide range of applications recently when process variations are considered.

Affine Arithmetic for Optimization

In our robust GP problem:

- First, represent every elements in q in affine forms.
- For each ellipsoid iteration, $f(x_c,q)$ is obtained by approximating $f(x_c,\hat{q})$ in an affine form:

$$\hat{f} = f_0 + f_1 \varepsilon_1 + f_2 \varepsilon_2 + \dots + f_k \varepsilon_k.$$

• Then the maximum of \hat{f} is determined by:

$$\varepsilon_j = \left\{ \begin{array}{ll} +1 & \qquad \text{if } f_j > 0 \\ -1 & \qquad \text{if } f_j < 0 \end{array} \right. \quad j = 1, \cdots, k.$$

.pull-left70[

Figure 4: img

]

Performance Specification

. column-2. font-sm.mb-xs[

Constraint	Spec.	Units
Device Width	≥ 2.0	$\mu \mathrm{m}$
Device Length	≥ 1.0	$\mu\mathrm{m}$
Estimated Area	minimize	$\mu\mathrm{m}^2$
Input CM Voltage	[0.45, 0.55]	$\ge V_{DD}$
Output Range	[0.1, 0.9]	$\times V_{DD}$
Gain	≥ 80	dB

Spec.	Units
≥ 50	MHz
≥ 60	degree
≥ 50	${ m V}/\mu{ m s}$
≥ 75	dB
≥ 80	dB
≤ 3	mW
≤ 800	$\mathrm{nV/Hz^{0.5}}$
	≥ 50 ≥ 60 ≥ 50 ≥ 75 ≥ 80 ≤ 3

]

Open-Loop Gain (Example)

- Open-loop gain ${\cal A}_v$ can be approximated as a monomial function:

$$A_{v} = \frac{2C_{ox}}{(\lambda_{n} + \lambda_{p})^{2}} \sqrt{\mu_{n}\mu_{p} \frac{W_{1}W_{6}}{L_{1}L_{6}I_{1}I_{6}}}$$

where I_1 and I_6 are monomial functions.

• Corresponding C++ code fragment:

Results of Design Variables

.column-2.font-sm.mb-xs[

Variable	Units	GGPLAB	Our	Robust
$\overline{W_1}$	$\mu \mathrm{m}$	44.8	44.9	45.4
W_8	$\mu\mathrm{m}$	3.94	3.98	3.8
W_{10}	$\mu\mathrm{m}$	2.0	2.0	2.0
W_{13}	$\mu\mathrm{m}$	2.0	2.0	2.1
L_1	$\mu\mathrm{m}$	1.0	1.0	1.0
L_8	$\mu\mathrm{m}$	1.0	1.0	1.0
L_{10}	$\mu\mathrm{m}$	1.0	1.0	1.0
L_{13}	$\mu\mathrm{m}$	1.0	1.0	1.0
A	N/A	10.4	10.3	12.0
B	N/A	61.9	61.3	69.1

Variable	Units	GGPLAB	Our	Robust
$\overline{C_c}$	pF	1.0	1.0	1.0
I_{bias}	μA	6.12	6.19	5.54

]

Performances

.font-sm.mb-xs[

Spec.	Std.	Robust
minimize	5678.4	6119.2
[0.1, 0.9]	[0.07, 0.92]	[0.07, 0.92]
[0.45, 0.55]	[0.41, 0.59]	[0.39, 0.61]
≥ 80	80	[80.0, 81.1]
≥ 50	50	[50.0, 53.1]
≥ 60	86.5	[86.1, 86.6]
≥ 50	64	[66.7, 66.7]
≥ 75	77.5	[77.5, 78.6]
≥ 80	83.5	[83.5, 84.6]
≤ 3	1.5	[1.5, 1.5]
≤ 800	600	[578, 616]
	minimize $[0.1, 0.9]$ $[0.45, 0.55]$ ≥ 80 ≥ 50 ≥ 60 ≥ 50 ≥ 75 ≥ 80 ≤ 3	$\begin{array}{llll} & & & & \\ & & & \\ \text{minimize} & & 5678.4 \\ & & [0.1, \ 0.9] & [0.07, \ 0.92] \\ & [0.45, \ 0.55] & [0.41, \ 0.59] \\ & \geq 80 & 80 \\ & \geq 50 & 50 \\ & \geq 60 & 86.5 \\ & \geq 50 & 64 \\ & \geq 75 & 77.5 \\ & \geq 80 & 83.5 \\ & \leq 3 & 1.5 \end{array}$

]

Conclusions

- Our ellipsoid method is fast enough for practical analog circuit sizing (take < 1 sec. running on a 3GHz Intel CPU for our example).
- Our method is reliable, in the sense that the solution, once produced, always satisfies the specification requirement in the worst case.

Comments

- The marriage of AA (algebra) and Zonotope (geometry) has the potential to provide us with a powerful tool for algorithm design.
- AA does not solve all problems. E.g. Iterative method does not apply to AA because AA is not in the Banach space (the fixed-point theorem does not hold).

- AA * and + do not obey the laws of distribution (c.f. floating-point arithmetic)
- AA can only perform first-order approximations. In other words, it can only be applied to nearly linear variations.
- In practice, we still need to combine AA with other methods, such as statistical method or the (quasi-) Monte Carlo method.