$11n_{174} (K11n_{174})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 4.62695 \times 10^{170} u^{68} + 1.38051 \times 10^{170} u^{67} + \dots + 1.85733 \times 10^{172} b - 1.66494 \times 10^{173}, \\ &1.82489 \times 10^{173} u^{68} + 1.22555 \times 10^{173} u^{67} + \dots + 5.55342 \times 10^{174} a + 8.51358 \times 10^{174}, \\ &u^{69} + u^{68} + \dots + 1241 u - 299 \rangle \\ I_2^u &= \langle -169379 u^{20} - 231222 u^{19} + \dots + 944459 b + 1224184, \\ &- 2844830 u^{20} - 1101150 u^{19} + \dots + 2833377 a + 1086592, \ u^{21} - 8 u^{19} + \dots - 5 u + 3 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 90 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 4.63 \times 10^{170} u^{68} + 1.38 \times 10^{170} u^{67} + \dots + 1.86 \times 10^{172} b - 1.66 \times 10^{173}, \ 1.82 \times 10^{173} u^{68} + 1.23 \times 10^{173} u^{67} + \dots + 5.55 \times 10^{174} a + 8.51 \times 10^{174}, \ u^{69} + u^{68} + \dots + 1241 u - 299 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0328607u^{68} - 0.0220684u^{67} + \cdots - 15.5573u - 1.53303 \\ -0.0249118u^{68} - 0.00743278u^{67} + \cdots - 37.1756u + 8.96412 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.028503u^{68} - 0.0263337u^{67} + \cdots - 21.4788u + 0.466293 \\ -0.0129014u^{68} - 0.0116982u^{67} + \cdots - 43.0971u + 10.9635 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0274714u^{68} - 0.0273600u^{67} + \cdots - 29.5143u + 4.20418 \\ -0.00783605u^{68} - 0.0117040u^{67} + \cdots - 22.3092u + 5.77052 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.0933496u^{68} + 0.0340529u^{67} + \cdots + 276.120u - 53.7846 \\ 0.0202620u^{68} - 0.00602140u^{67} + \cdots + 101.166u - 24.4436 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.126494u^{68} - 0.0228619u^{67} + \cdots + 311.080u + 71.5076 \\ -0.0303872u^{68} - 0.00849253u^{67} + \cdots - 125.465u + 30.8477 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0862458u^{68} + 0.0186000u^{67} + \cdots + 59.5111u + 0.630964 \\ 0.176390u^{68} + 0.0257365u^{67} + \cdots + 229.858u - 37.9084 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0862458u^{68} + 0.0186000u^{67} + \cdots + 59.5111u + 0.630964 \\ 0.0922526u^{68} + 0.0308119u^{67} + \cdots + 120.122u - 17.6823 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0862458u^{68} + 0.0186000u^{67} + \cdots + 59.5111u + 0.630964 \\ 0.0922526u^{68} + 0.0308119u^{67} + \cdots + 159.5111u + 0.630964 \\ 0.0922526u^{68} + 0.0308119u^{67} + \cdots + 59.5111u + 0.630964 \\ 0.0922526u^{68} + 0.0308119u^{67} + \cdots + 120.122u - 17.6823 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $1.16602u^{68} + 0.125596u^{67} + \cdots + 2374.59u 461.565$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{69} + u^{68} + \dots - 14400u + 2701$
c_2, c_5	$u^{69} + 23u^{67} + \dots + 26u + 1$
<i>c</i> ₃	$u^{69} - 4u^{68} + \dots - 2u + 1$
c_4, c_{10}	$u^{69} - u^{68} + \dots + 1241u + 299$
	$u^{69} + 5u^{68} + \dots + 41005u - 959$
C ₇	$u^{69} - 3u^{68} + \dots - 1626u - 131$
<i>c</i> ₈	$u^{69} - u^{68} + \dots + 26u - 1$
c_9	$u^{69} + 6u^{68} + \dots - 431u - 77$
c_{11}	$u^{69} + 5u^{68} + \dots - 144u + 13$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{69} + y^{68} + \dots + 37585944y - 7295401$
c_2, c_5	$y^{69} + 46y^{68} + \dots + 142y - 1$
c_3	$y^{69} - 16y^{68} + \dots - 92y - 1$
c_4, c_{10}	$y^{69} - 39y^{68} + \dots + 2462795y - 89401$
c_6	$y^{69} + 5y^{68} + \dots + 1401617939y - 919681$
	$y^{69} + 5y^{68} + \dots + 3046570y - 17161$
c ₈	$y^{69} + 7y^{68} + \dots + 6292y - 1$
<i>c</i> ₉	$y^{69} - 28y^{68} + \dots + 272925y - 5929$
c_{11}	$y^{69} - 9y^{68} + \dots + 42316y - 169$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.646999 + 0.771417I		
a = -0.211192 - 0.326936I	0.416185 + 1.079370I	0
b = 0.896559 - 0.908886I		
u = 0.646999 - 0.771417I		
a = -0.211192 + 0.326936I	0.416185 - 1.079370I	0
b = 0.896559 + 0.908886I		
u = -0.983915 + 0.214466I		
a = 1.212160 + 0.288286I	-4.34006 + 3.63990I	0
b = 1.085450 - 0.882631I		
u = -0.983915 - 0.214466I		
a = 1.212160 - 0.288286I	-4.34006 - 3.63990I	0
b = 1.085450 + 0.882631I		
u = -0.989342		
a = 2.42880	-7.69036	-12.4710
b = 2.35178		
u = 0.544955 + 0.860146I		
a = -0.349532 + 0.618138I	-1.48384 + 3.15855I	0
b = -0.949040 + 0.622220I		
u = 0.544955 - 0.860146I		
a = -0.349532 - 0.618138I	-1.48384 - 3.15855I	0
b = -0.949040 - 0.622220I		
u = 0.937671 + 0.242423I		
a = 1.80821 + 0.79221I	0.065178 - 1.027540I	0
b = 0.998024 - 0.477800I		
u = 0.937671 - 0.242423I		
a = 1.80821 - 0.79221I	0.065178 + 1.027540I	0
b = 0.998024 + 0.477800I		
u = 0.912710 + 0.496042I		
a = 0.030686 + 0.640118I	3.14658 + 2.19858I	0
b = 0.438358 - 1.147020I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.912710 - 0.496042I		
a = 0.030686 - 0.640118I	3.14658 - 2.19858I	0
b = 0.438358 + 1.147020I		
u = -0.879619 + 0.352426I		
a = -0.556829 - 1.277600I	-4.72951 + 5.62545I	-7.00000 - 8.05479I
b = -0.775991 + 0.537886I		
u = -0.879619 - 0.352426I		
a = -0.556829 + 1.277600I	-4.72951 - 5.62545I	-7.00000 + 8.05479I
b = -0.775991 - 0.537886I		
u = -0.992117 + 0.371780I		
a = -0.398508 - 0.958996I	-5.20276 - 2.53834I	0
b = -0.832640 + 0.218514I		
u = -0.992117 - 0.371780I		
a = -0.398508 + 0.958996I	-5.20276 + 2.53834I	0
b = -0.832640 - 0.218514I		
u = -0.551335 + 0.759408I		
a = -1.45706 - 0.66527I	4.60897 + 1.94484I	-7.00000 - 4.19773I
b = -0.848128 + 0.357950I		
u = -0.551335 - 0.759408I		
a = -1.45706 + 0.66527I	4.60897 - 1.94484I	-7.00000 + 4.19773I
b = -0.848128 - 0.357950I		
u = -0.781416 + 0.747040I		
a = -0.845155 + 0.035539I	3.15602 + 2.89631I	0
b = 0.117045 - 0.392685I		
u = -0.781416 - 0.747040I		
a = -0.845155 - 0.035539I	3.15602 - 2.89631I	0
b = 0.117045 + 0.392685I		
u = 0.836552 + 0.355471I		
a = 3.41431 + 0.11009I	3.55336 - 5.75372I	-7.00000 + 11.54806I
b = 0.502414 + 0.462655I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.836552 - 0.355471I		
a = 3.41431 - 0.11009I	3.55336 + 5.75372I	-7.00000 - 11.54806I
b = 0.502414 - 0.462655I		
u = -0.843450 + 0.242120I		
a = 1.26133 + 1.68155I	-3.83982 - 1.81111I	-13.9331 + 2.5659I
b = 1.057060 + 0.267031I		
u = -0.843450 - 0.242120I		
a = 1.26133 - 1.68155I	-3.83982 + 1.81111I	-13.9331 - 2.5659I
b = 1.057060 - 0.267031I		
u = -0.944665 + 0.609755I		
a = -0.642781 - 0.314129I	3.48160 + 3.20310I	0
b = -0.493148 - 0.791344I		
u = -0.944665 - 0.609755I		
a = -0.642781 + 0.314129I	3.48160 - 3.20310I	0
b = -0.493148 + 0.791344I		
u = -0.812640		
a = 3.87743	-6.98195	-37.6100
b = 2.19181		
u = -1.083740 + 0.490953I		
a = -0.337664 - 0.729476I	2.99415 + 8.36107I	0
b = -0.69070 - 1.52502I		
u = -1.083740 - 0.490953I		
a = -0.337664 + 0.729476I	2.99415 - 8.36107I	0
b = -0.69070 + 1.52502I		
u = 1.003500 + 0.664719I		
a = 1.64373 - 0.77917I	-0.66031 - 6.51484I	0
b = 1.29183 + 0.97984I		
u = 1.003500 - 0.664719I		
a = 1.64373 + 0.77917I	-0.66031 + 6.51484I	0
b = 1.29183 - 0.97984I		
-		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.138230 + 0.429957I		
a = -1.47102 + 0.04439I	-0.86519 - 1.56917I	0
b = -0.783779 - 0.565791I		
u = 1.138230 - 0.429957I		
a = -1.47102 - 0.04439I	-0.86519 + 1.56917I	0
b = -0.783779 + 0.565791I		
u = 1.073130 + 0.613211I		
a = -1.71878 + 0.44891I	-3.14777 - 8.57745I	0
b = -1.43565 - 0.67603I		
u = 1.073130 - 0.613211I		
a = -1.71878 - 0.44891I	-3.14777 + 8.57745I	0
b = -1.43565 + 0.67603I		
u = 1.181450 + 0.456884I		
a = 1.69529 + 0.24281I	-1.06984 - 5.59848I	0
b = 1.38781 + 0.83986I		
u = 1.181450 - 0.456884I		
a = 1.69529 - 0.24281I	-1.06984 + 5.59848I	0
b = 1.38781 - 0.83986I		
u = -0.461685 + 0.555961I		
a = -2.67569 - 0.54050I	4.89807 - 4.12724I	-4.69782 + 0.44028I
b = -0.783354 + 0.742055I		
u = -0.461685 - 0.555961I		
a = -2.67569 + 0.54050I	4.89807 + 4.12724I	-4.69782 - 0.44028I
b = -0.783354 - 0.742055I		
u = 0.345763 + 0.592216I		
a = -0.397171 - 0.641878I	-0.99239 - 1.75950I	-5.61831 + 3.16702I
b = 0.759436 + 0.517199I		
u = 0.345763 - 0.592216I		
a = -0.397171 + 0.641878I	-0.99239 + 1.75950I	-5.61831 - 3.16702I
b = 0.759436 - 0.517199I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.303150 + 0.255913I		
a = 1.199260 - 0.077483I	-3.03191 + 4.92813I	0
b = 0.695903 - 0.824477I		
u = -1.303150 - 0.255913I		
a = 1.199260 + 0.077483I	-3.03191 - 4.92813I	0
b = 0.695903 + 0.824477I		
u = -0.264694 + 1.302280I		
a = -0.276135 - 0.075262I	5.46533 - 1.95793I	0
b = -0.628096 - 0.543055I		
u = -0.264694 - 1.302280I		
a = -0.276135 + 0.075262I	5.46533 + 1.95793I	0
b = -0.628096 + 0.543055I		
u = -1.34209		
a = 1.52954	-6.44945	0
b = 1.24410		
u = -0.284379 + 1.314310I		
a = -0.186188 - 0.177334I	4.22642 - 9.68925I	0
b = -0.982920 - 0.710312I		
u = -0.284379 - 1.314310I		
a = -0.186188 + 0.177334I	4.22642 + 9.68925I	0
b = -0.982920 + 0.710312I		
u = 1.009230 + 0.891812I		
a = 0.469205 - 0.687863I	-0.78649 - 3.40776I	0
b = 1.228300 + 0.212557I		
u = 1.009230 - 0.891812I		
a = 0.469205 + 0.687863I	-0.78649 + 3.40776I	0
b = 1.228300 - 0.212557I		
u = 1.386720 + 0.203029I		
a = -1.67954 + 0.82158I	-1.67434 - 4.68821I	0
b = -0.652595 - 0.295438I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.386720 - 0.203029I		
a = -1.67954 - 0.82158I	-1.67434 + 4.68821I	0
b = -0.652595 + 0.295438I		
u = 0.263199 + 0.512655I		
a = 0.314251 - 0.278779I	1.46946 - 2.23986I	-4.09553 + 5.07809I
b = 0.068496 + 0.982153I		
u = 0.263199 - 0.512655I		
a = 0.314251 + 0.278779I	1.46946 + 2.23986I	-4.09553 - 5.07809I
b = 0.068496 - 0.982153I		
u = -1.44216 + 0.21699I		
a = 1.45596 - 0.24216I	-6.77713 + 4.78765I	0
b = 1.35370 - 1.16416I		
u = -1.44216 - 0.21699I		
a = 1.45596 + 0.24216I	-6.77713 - 4.78765I	0
b = 1.35370 + 1.16416I		
u = -1.34664 + 0.66399I		
a = -1.40126 - 0.24609I	1.92930 + 8.74493I	0
b = -1.056310 + 0.681780I		
u = -1.34664 - 0.66399I		
a = -1.40126 + 0.24609I	1.92930 - 8.74493I	0
b = -1.056310 - 0.681780I		
u = -1.34848 + 0.70986I		
a = -1.49515 - 0.27888I	0.8188 + 16.7284I	0
b = -1.30284 + 0.92320I		
u = -1.34848 - 0.70986I		
a = -1.49515 + 0.27888I	0.8188 - 16.7284I	0
b = -1.30284 - 0.92320I		
u = 0.48219 + 1.46172I		
a = -0.058144 - 0.214259I	4.45642 - 1.12527I	0
b = 0.383661 - 0.274092I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.48219 - 1.46172I		
a = -0.058144 + 0.214259I	4.45642 + 1.12527I	0
b = 0.383661 + 0.274092I		
u = 1.35260 + 0.78453I		
a = 0.783396 + 0.049976I	1.30082 - 6.59534I	0
b = 0.837091 + 0.848083I		
u = 1.35260 - 0.78453I		
a = 0.783396 - 0.049976I	1.30082 + 6.59534I	0
b = 0.837091 - 0.848083I		
u = 0.407799 + 0.154731I		
a = 1.14417 - 1.09443I	1.79868 + 2.32213I	-6.69752 - 8.58341I
b = 0.473737 - 1.265520I		
u = 0.407799 - 0.154731I		
a = 1.14417 + 1.09443I	1.79868 - 2.32213I	-6.69752 + 8.58341I
b = 0.473737 + 1.265520I		
u = 0.419858		
a = -0.693573	-0.763533	-13.2570
b = 0.163880		
u = -1.68905		
a = -1.34682	-10.1736	0
b = -0.835443		
u = 1.69539 + 0.17399I	0.00444 . 0.450005	
a = -0.834045 + 0.259613I	-3.02414 + 3.47680I	0
b = -0.917744 + 0.009907I		
u = 1.69539 - 0.17399I	0.00444	
a = -0.834045 - 0.259613I	-3.02414 - 3.47680I	0
b = -0.917744 - 0.009907I		

$$\mathbf{II}$$

 $II. \\ I_2^u = \langle -1.69 \times 10^5 u^{20} - 2.31 \times 10^5 u^{19} + \dots + 9.44 \times 10^5 b + 1.22 \times 10^6, \ -2.84 \times 10^6 u^{20} - 1.10 \times 10^6 u^{19} + \dots + 2.83 \times 10^6 a + 1.09 \times 10^6, \ u^{21} - 8u^{19} + \dots - 5u + 3 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.00404u^{20} + 0.388635u^{19} + \dots + 1.07419u - 0.383497 \\ 0.179340u^{20} + 0.244820u^{19} + \dots + 0.837749u - 1.29617 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.278065u^{20} + 0.424159u^{19} + \dots + 2.82922u + 0.0479498 \\ -0.546638u^{20} + 0.280344u^{19} + \dots + 2.59278u - 0.864728 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.393839u^{20} + 0.436626u^{19} + \dots + 2.98089u - 0.513766 \\ -0.0848994u^{20} + 0.462763u^{19} + \dots + 2.90831u - 1.44015 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.76207u^{20} + 1.35703u^{19} + \dots + 5.66155u - 7.63449 \\ 0.844115u^{20} + 0.284923u^{19} + \dots + 1.65062u - 3.63281 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.02305u^{20} + 0.397755u^{19} + \dots - 3.35591u - 0.933981 \\ 1.06778u^{20} + 0.930275u^{19} + \dots - 1.21589u - 1.92881 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.111242u^{20} - 0.225450u^{19} + \dots - 1.70101u + 1.47329 \\ -0.986755u^{20} + 0.623445u^{19} + \dots + 3.11692u + 0.482363 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.111242u^{20} - 0.225450u^{19} + \dots - 1.70101u + 1.47329 \\ -0.821127u^{20} + 0.800904u^{19} + \dots + 4.57789u - 0.193986 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.11242u^{20} - 0.225450u^{19} + \dots - 1.70101u + 1.47329 \\ -0.821127u^{20} + 0.800904u^{19} + \dots + 4.57789u - 0.193986 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{6854663}{944459}u^{20} - \frac{94727}{944459}u^{19} + \dots + \frac{15667372}{944459}u - \frac{1422408}{944459}u^{19} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{21} - 6u^{19} + \dots + 2u + 3$
c_2	$u^{21} - u^{20} + \dots - 2u - 1$
c_3	$u^{21} + 7u^{20} + \dots + 6u + 1$
c_4	$u^{21} - 8u^{19} + \dots - 5u - 3$
c_5	$u^{21} + u^{20} + \dots - 2u + 1$
	$u^{21} + 4u^{20} + \dots + 97u + 7$
	$u^{21} - 8u^{18} + \dots - 26u - 1$
<i>C</i> ₈	$u^{21} - 5u^{19} + \dots - 4u - 1$
<i>c</i> ₉	$u^{21} + 11u^{20} + \dots + 9u + 1$
c_{10}	$u^{21} - 8u^{19} + \dots - 5u + 3$
c_{11}	$u^{21} - 2u^{20} + \dots - 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{21} - 12y^{20} + \dots + 64y - 9$
c_2, c_5	$y^{21} + 5y^{20} + \dots + 14y - 1$
c_3	$y^{21} - 9y^{20} + \dots - 16y^2 - 1$
c_4, c_{10}	$y^{21} - 16y^{20} + \dots + 55y - 9$
<i>c</i> ₆	$y^{21} - 16y^{20} + \dots + 11327y - 49$
<i>C</i> ₇	$y^{21} - 6y^{19} + \dots + 666y - 1$
c ₈	$y^{21} - 10y^{20} + \dots + 12y - 1$
<i>c</i> ₉	$y^{21} - 13y^{20} + \dots + 9y - 1$
c_{11}	$y^{21} - 2y^{20} + \dots + 24y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.047640 + 0.248949I		
a = 1.11386 + 1.03676I	-5.46548 + 5.39204I	-17.4584 - 5.1370I
b = 0.889867 - 0.517208I		
u = -1.047640 - 0.248949I		
a = 1.11386 - 1.03676I	-5.46548 - 5.39204I	-17.4584 + 5.1370I
b = 0.889867 + 0.517208I		
u = 1.16767		
a = -2.18668	-8.35390	-22.8760
b = -2.15365		
u = -0.679857 + 0.446838I		
a = -0.127896 - 0.264606I	1.77824 - 1.61097I	-7.53353 - 1.62371I
b = -0.613519 - 1.245460I		
u = -0.679857 - 0.446838I		
a = -0.127896 + 0.264606I	1.77824 + 1.61097I	-7.53353 + 1.62371I
b = -0.613519 + 1.245460I		
u = -1.173280 + 0.260964I		
a = 0.881494 + 0.887530I	-5.83828 - 3.07420I	-16.8807 + 4.9165I
b = 0.913294 - 0.046728I		
u = -1.173280 - 0.260964I		
a = 0.881494 - 0.887530I	-5.83828 + 3.07420I	-16.8807 - 4.9165I
b = 0.913294 + 0.046728I		
u = 0.785925		
a = -3.72133	-6.81637	11.9480
b = -2.23310		
u = -1.120180 + 0.600951I		
a = -1.47135 - 0.18734I	0.00904 + 5.86285I	-6.73177 - 5.24479I
b = -1.13102 + 0.89771I		
u = -1.120180 - 0.600951I		
a = -1.47135 + 0.18734I	0.00904 - 5.86285I	-6.73177 + 5.24479I
b = -1.13102 - 0.89771I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.560710 + 0.288461I		
a = 3.24760 - 1.40038I	3.70067 - 5.02391I	-6.64273 + 2.70695I
b = 0.114885 - 0.587959I		
u = 0.560710 - 0.288461I		
a = 3.24760 + 1.40038I	3.70067 + 5.02391I	-6.64273 - 2.70695I
b = 0.114885 + 0.587959I		
u = 1.40713 + 0.19832I		
a = -1.50239 - 0.29253I	-6.98589 - 4.93986I	-24.1840 + 13.1442I
b = -1.40025 - 1.20102I		
u = 1.40713 - 0.19832I		
a = -1.50239 + 0.29253I	-6.98589 + 4.93986I	-24.1840 - 13.1442I
b = -1.40025 + 1.20102I		
u = 0.27754 + 1.39957I		
a = 0.064235 - 0.253321I	4.41960 - 1.49996I	-7.35710 + 9.23152I
b = -0.295868 - 0.174182I		
u = 0.27754 - 1.39957I		
a = 0.064235 + 0.253321I	4.41960 + 1.49996I	-7.35710 - 9.23152I
b = -0.295868 + 0.174182I		
u = 0.181335 + 0.523673I		
a = 0.794687 + 1.024240I	-2.44382 + 2.36069I	-11.11778 - 3.12439I
b = -0.878799 + 0.633409I		
u = 0.181335 - 0.523673I		
a = 0.794687 - 1.024240I	-2.44382 - 2.36069I	-11.11778 + 3.12439I
b = -0.878799 - 0.633409I		
u = 1.45442 + 0.23658I		
a = -1.196910 + 0.367608I	-1.14902 - 4.42293I	-3.30825 + 2.88214I
b = -0.476403 - 0.419593I		
u = 1.45442 - 0.23658I		
a = -1.196910 - 0.367608I	-1.14902 + 4.42293I	-3.30825 - 2.88214I
b = -0.476403 + 0.419593I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.67395		
a = -1.36531	-10.2279	-83.6430
b = -0.857609		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ \left (u^{21} - 6u^{19} + \dots + 2u + 3)(u^{69} + u^{68} + \dots - 14400u + 2701) \right $
c_2	$ (u^{21} - u^{20} + \dots - 2u - 1)(u^{69} + 23u^{67} + \dots + 26u + 1) $
<i>c</i> 3	$(u^{21} + 7u^{20} + \dots + 6u + 1)(u^{69} - 4u^{68} + \dots - 2u + 1)$
C ₄	$(u^{21} - 8u^{19} + \dots - 5u - 3)(u^{69} - u^{68} + \dots + 1241u + 299)$
<i>C</i> 5	$(u^{21} + u^{20} + \dots - 2u + 1)(u^{69} + 23u^{67} + \dots + 26u + 1)$
<i>c</i> ₆	$(u^{21} + 4u^{20} + \dots + 97u + 7)(u^{69} + 5u^{68} + \dots + 41005u - 959)$
C ₇	$(u^{21} - 8u^{18} + \dots - 26u - 1)(u^{69} - 3u^{68} + \dots - 1626u - 131)$
c ₈	$(u^{21} - 5u^{19} + \dots - 4u - 1)(u^{69} - u^{68} + \dots + 26u - 1)$
<i>C</i> 9	$(u^{21} + 11u^{20} + \dots + 9u + 1)(u^{69} + 6u^{68} + \dots - 431u - 77)$
c_{10}	$(u^{21} - 8u^{19} + \dots - 5u + 3)(u^{69} - u^{68} + \dots + 1241u + 299)$
c_{11}	$(u^{21} - 2u^{20} + \dots - 4u - 1)(u^{69} + 5u^{68} + \dots - 144u + 13)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{21} - 12y^{20} + \dots + 64y - 9)$ $\cdot (y^{69} + y^{68} + \dots + 37585944y - 7295401)$
c_2,c_5	$(y^{21} + 5y^{20} + \dots + 14y - 1)(y^{69} + 46y^{68} + \dots + 142y - 1)$
c_3	$(y^{21} - 9y^{20} + \dots - 16y^2 - 1)(y^{69} - 16y^{68} + \dots - 92y - 1)$
c_4, c_{10}	$(y^{21} - 16y^{20} + \dots + 55y - 9)(y^{69} - 39y^{68} + \dots + 2462795y - 89401)$
c_6	$(y^{21} - 16y^{20} + \dots + 11327y - 49)$ $\cdot (y^{69} + 5y^{68} + \dots + 1401617939y - 919681)$
c_7	$(y^{21} - 6y^{19} + \dots + 666y - 1)(y^{69} + 5y^{68} + \dots + 3046570y - 17161)$
C ₈	$(y^{21} - 10y^{20} + \dots + 12y - 1)(y^{69} + 7y^{68} + \dots + 6292y - 1)$
<i>C</i> 9	$(y^{21} - 13y^{20} + \dots + 9y - 1)(y^{69} - 28y^{68} + \dots + 272925y - 5929)$
c_{11}	$(y^{21} - 2y^{20} + \dots + 24y - 1)(y^{69} - 9y^{68} + \dots + 42316y - 169)$