Control Systems

G V V Sharma*

	Contents			7	Compensators 4		
					7.1	Phase Lead	4
1	Signal Flow Graph		1		7.2	Lag Lead	4
	1.1	Mason's Gain Formula	1		7.3	Example	4
	1.2	Matrix Formula	1	o	Coin N	Novois	4
	1.3	Example	1	8	Gain N 8.1	Introduction	4 4
					8.2	Example	4
2	Bode Plot		1		8.3	Example	4
	2.1	Introduction	1		0.5	L'ampie	•
	2.2	Example	1	9	Phase 1	Margin	4
	2.3	Phase	4		9.1	Intoduction	4
					9.2	Example	4
3	Second order System		4				
	3.1	Damping	4	10	Oscilla		4
	3.2	Example	4		10.1	Introduction	4
	3.3	Settling Time	4		10.2	Example	4
				11 Root Locus 4			
4		Hurwitz Criterion	4	11	11.1	Introduction	4
	4.1	Routh Array	4		1111		
	4.2	Marginal Stability	4	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.			
	4.3	Stability	4				
	4.4	Example	4	Download python codes using			
	4.5	Example	4				
_				svn co https://github.com/gadepall/school/trunk/			
5	State-Space Model		4	(control/codes		
	5.1	Controllability and Observ-					
		ability	4			1 Signal Flow Graph	
	5.2	Second Order System	4				
	5.3	Example	4	I.I	Mason's (Gain Formula	
	5.4	Example	4	1.2	Matrix Fo	ormula	
	5.5	Example	4	1.3	Example		
	5.6	Example	4		-	2 Bode Plot	
	5.7	Example	4	2.1	Introducti		
_						On	
6		ist Plot	4		Example		
	6.1	Introduction	4	2.1.		TI system, the Bode plot for its g	ain
	6.2	Example	4		defined a	S	
						$G(s) = 20 \log H(s) $ (2.1)	.1)
*Tl	ne author i	s with the Department of Electrical Enginee	rıng,			2(0) 20108 11(0)	,

Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

is as illustrated in the Fig. 2.1. Find the corner frequencies ω_{01} and ω_{02} from the plot.

Fig. 2.1

Solution: The corner frequencies can be calculated as follows:

$$slope = \frac{M_2 - M_1}{\log \omega_2 - \log \omega_1}$$

Therefore for ω_{02} ,

$$-40 = \frac{0 - 12}{\log 8 - \log \omega_{02}}$$

$$\log 8 - \log \omega_{02} = \frac{12}{40}$$

$$\log \omega_{02} = \log 8 - \frac{12}{40}$$

$$\omega_{02} = 4$$

And for ω_{01} ,

$$20 = \frac{0 - 12}{\log 0.5 - \log \omega_{01}}$$

$$\log 0.5 - \log \omega_{01} = \frac{-12}{20}$$

$$\log \omega_{01} = \log 0.5 + \frac{12}{20}$$

$$\omega_{01} = 2$$

So, the corner frequencies are ω_{01} =2 and ω_{02} = 4.

2.2. Express the given bode plot as a piece-wise linear function.

Solution:

$$G(\omega) = \begin{cases} 20 \log 2\omega & 0 < \omega \le 2\\ 12 & 2 \le \omega \le 4\\ -40 \log \frac{\omega}{8} & \omega \ge 4 \end{cases}$$
 (2.2.1)

2.3. Find the transfer function from the calculated frequencies.

Solution: By looking to the plot, we can say that since the initial slope is +20, there must be a zero at the origin. At ω_{01} , the change in slope is -20dB, so their exists one pole at this frequency.

At ω_{02} , the change in slope is -40dB, so their exists two pole at this frequency.

The denominators have the form,

$$(1+\frac{s}{\omega})$$

So, the denominator of the transfer function is

$$(1+\frac{s}{2})(1+\frac{s}{4})^2$$

Therefore, the transfer function is,

$$\frac{cs}{(1+\frac{s}{2})(1+\frac{s}{4})^2}$$

here c is some constant

2.4. Compare the above calculated transfer function with one of the options that best represents it.

$$(A)\frac{2s}{(1+0.5s)(1+0.25s)^2} (B)\frac{4(1+0.5s)}{s(1+0.25s)}$$

$$(C)\frac{2s}{(1+2s)(1+4s)} \quad (D)\frac{4s}{(1+2s)(1+4s)^2}$$

Solution: From the above given options, we can see that option (A) best represents our transfer function.

$$\frac{2s}{(1+0.5s)(1+0.25s)^2}$$

2.5. Verify the above transfer function by plotting the bode plot.

Solution: Refer Fig. 2.5 for the bode plot:

Fig. 2.5: Plot of G(s)

The plot was plotted using the following code:

```
import numpy as np
import control.matlab as ml
import matplotlib.pyplot as plt
# If using termux
import subprocess
import shlex
#end if
# num is the numerator of the trasfer
    function which is (2s)
# dem is the denominator of the transfer
    function which is (0.25s + 1)(0.25s + 1)
    (0.5s + 1)
num = np.array([2, 0])
den = np.polymul(np.array([0.5, 1]), np.array
    ([0.25, 1])
den = np.polymul(den, np.array([0.25, 1]))
# Generating the transfer function
g = ml.tf(num, den)
print("The transfer function is: ", g)
print("The poles of the above function are",
    ml.pole(g))
print("The zeros of the above function are",
    ml.zero(g)
# Generating the bode plot as well as plotting
mag, phase, w = ml.bode(g)
```

```
# If using termux
plt.savefig("./figs/ep18btech11016_plot.pdf")
plt.savefig("./figs/ep18btech11016_plot.eps")
subprocess.run(shlex.split("termux-open ./figs
/ep18btech11016_plot.pdf"))
# else
plt.show()
```

\sim	2	D1
,	۲.	Phase

3 SECOND ORDER SYSTEM

- 3.1 Damping
- 3.2 Example
- 3.3 Settling Time

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 4.5 Example

5 STATE-SPACE MODEL

- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 5.6 Example
- 5.7 Example
- 6 Nyouist Plot
- 6.1 Introduction
- 6.2 Example

7 Compensators

- 7.1 Phase Lead
- 7.2 Lag Lead
- 7.3 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 8.3 Example
- 9 Phase Margin
- 9.1 Intoduction
- 9.2 Example
- 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example
- 11 Root Locus
- 11.1 Introduction