Körper

Körper-Axiome

Ein Körper ist eine Menge K zusammen mit zwei binären Operationen + und \cdot sowie zwei ausgezeichneten Elementen 0 und 1, so dass folgendes gilt:

$\forall x \ \forall y$:	x + y = y + x	Kommutativität der Addition	
$\forall x \ \forall y \ \forall z$:	x + (y+z) = (x+y) + z	z Assoziativität der Addition	
$\forall x$:	0 + x = x	Neutrales Element der Addition	
$\forall x \; \exists x'$:	x + x' = 0	Inverses Element der Addition	
$\forall x \ \forall y$:	$x \cdot y = y \cdot x$	Kommutativität der Multiplikation	
$\forall x \ \forall y \ \forall z$:	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	Assoziativität der Multiplikation	
$\forall x$:	$1 \cdot x = x$	Neutrales Element der Multiplikation	
$\forall x \neq 0 \ \exists x' :$	$x \cdot x' = 1$	Inverses Element der Multiplikation	
$\forall x \ \forall y \ \forall z$:	$x \cdot (y+z) = x \cdot y + x \cdot z$	Distributivität	
	$1 \neq 0$	Nichttrivialität	

Das inverse Element der Addition zu x ist eindeutig bestimmt und wird auch mit -x bezeichnet. Für x + (-y) schreibt man auch x - y.

Das inverse Element der Multiplikation zu $x \neq 0$ ist eindeutig bestimmt und wird auch mit $\frac{1}{x}$ bezeichnet. Für $x \cdot \frac{1}{y}$ schreibt man auch $\frac{x}{y}$.

Beispiele von Körpern				
Die Menge $\mathbb Q$ der rationalen Zahlen				
Die Menge $\mathbb R$ der reellen Zahlen				
Die Menge $\mathbb C$ der komplexen Zahlen				
Die Menge \mathbb{F}_2 der binären Zahlen				

Binäre Zahlen: $\mathbb{F}_2 = \{0, 1\}$ mit den folgenden Operationen:

+	0	1		0	1
0	0	1	0	0	0
1	1	0	1	0	1