Computational Methods and Modelling

Antonio Attili

antonio.attili@ed.ac.uk

School of Engineering University of Edinburgh United Kingdom

 ${\color{blue} \textbf{Lecture 4}} \\ \textbf{Ordinary Differential Equations (ODEs), Euler and Runge-Kutta methods} \\$

In the present and following lectures, we will study how to deal with Differential Equations using numerical methods

- ► How to solve Ordinary Differential Equations using numerical methods
- How to approximate derivatives of different orders that appear in Ordinary and Partial Differential Equation
- ▶ Learn about the stability of numerical schemes

- In this lecture, we will discuss
 - Derivatives and Taylor series
 - Euler Method
 - Runge-Kutta Methods

Differential equations are omnipresent in mathematical models of natural phenomena and engineering applications.

Examples are countless and with complexity that might range from

Simple, linear Ordinary Differential Equations (ODE):
 Pendulum equation for in the small-angle approximation:

$$\frac{d^2\theta}{dt^2} + \frac{g}{I}\theta = 0$$

To non-linear Ordinary Differential Equations:
 Logistic differential equation (applications in machine learning, population dynamics, virus spread)

$$\frac{df}{dt} = rf - \frac{rf^2}{k}$$

where f is the population (or number of infected)

And non-linear systems of Partial Differential Equations (PDE):
 Navier-Stokes equations of fluid-dynamics (weather forecasting, energy production devices like gas and wind turbines)

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial \tau_i j}{\partial x_j}$$

where u_i is the velocity vector, p the pressure, $\nu=$ the kinematic viscosity, and τ_{ij} the stress tensor.

Common aspect: All these equations contain derivatives.

Approximation of a derivative

• We want to compute the derivative of a function y(t) in the point t_i .

See video on Learn: "Lecture 4 - Differential Equations, Euler and Runge-Kutta methods - Video 1" in Course Material - Lecture Slides

► The derivative (the slope of the function) can be approximated as:

$$rac{dy}{dt} pprox rac{\Delta y}{\Delta t} = rac{y(t_{i+1}) - y(t_i)}{t_{i+1} - t_i}$$

Approximation of a derivative

▶ The approximate expression for the slope

$$rac{dy}{dt}pprox rac{\Delta y}{\Delta t} = rac{y(t_{i+1})-y(t_i)}{t_{i+1}-t_i}$$

is called a Finite Divided Difference

► The expression

$$\frac{dy}{dt} pprox \frac{\Delta y}{\Delta t}$$

is approximate because Δ is finite.

From calculus:

$$\frac{dy}{dt} = \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t}$$

So if $\Delta t \to 0$ the approximate slope converges to the real one

See video on Learn: "Lecture 4 - Differential Equations, Euler and Runge-Kutta methods - Video 2" in Course Material - Lecture Slides

Taylor's theorem and Taylor series

▶ Taylor's theorem: If the function f(x) of the independent variable x and its n+1 derivatives are continuous in an interval containing the two points x_i and $x_{i+1} = x_i + h$, f(x) can be expanded in the following series:

$$f(x_{i+1}) = f(x_i) + \frac{f'(x_i)}{1!} (x_{i+1} - x_i) +$$

$$+ \frac{f''(x_i)}{2!} (x_{i+1} - x_i)^2 + \frac{f'''(x_i)}{3!} (x_{i+1} - x_i)^3 +$$

$$+ \dots +$$

$$+ \frac{f^{(n)}(x_i)}{n!} (x_{i+1} - x_i)^n + R_n$$

where

$$R_n = \int_{x_i}^{x_{i+1}} \frac{(x_i - t)^n}{n!} f^{(n+1)}(t) dt$$

R_n can be also expressed in the Lagrangian form (the derivation of R_n is not important for our purpose).

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x_{i+1} - x_i)^{n+1}$$

where $x_{i+1} < \xi < x_i$

 $ightharpoonup R_n$ is often called **Truncation Error**

The Taylor series term-by-term

▶ Defining $h = x_{i+1} - x_i$ the Taylor series can be written as:

$$f(x_{i+1}) = f(x_i) + \frac{f'(x_i)}{1!}h + \frac{f''(x_i)}{2!}h^2 + \frac{f'''(x_i)}{3!}h^3 + \dots + \frac{f^{(n)}(x_i)}{n!}h^n + R_n$$

- It can be used to approximate a function in a point in terms of the value of the function and its derivatives in another point
- Depending on the number of terms we keep in the series, we have different levels of approximation:
 - zero-order approximation:

$$f(x_{i+1}) = f(x_i)$$

If f(x) is constant, this is a perfect estimate

first-order approximation

$$f(x_{i+1}) = f(x_i) + f'(x_i)h$$

This can predict a change in the function, but it is exact only if the function is linear

order n approximation

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \dots + R_n$$
 with $R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1}$

Truncation error

► The Truncation Error

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}$$

cannot be determined since ξ is not known. We only know that it lies between x_i and x_{i+1}

- ▶ However, we have control over *h*. For different orders (equivalently, different values of *n*), the error decreases in different ways if we decreases h.
- ▶ We often write $R_n = \mathcal{O}(h^{n+1})$. The expression $\mathcal{O}(h^{n+1})$ states that the error is of order of h^{n+1} , which means that the error is proportional to h^{n+1} .

Numerical derivative

▶ Let's consider the Taylor series, truncated after the first derivative:

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + R_1$$

► This equation can be solved for:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} - \frac{R_1}{x_{i+1} - x_i}$$

Which is the same expression we wrote in the graphical excercise we did before, but now we have also an estimate of the error:

$$\frac{R_1}{x_{i+1}-x_i}=\frac{f''(\xi)(x_{i+1}-x_i)^2}{2!}\frac{1}{x_{i+1}-x_i}=\mathcal{O}(x_{i+1}-x_i)$$

In the usual more compact form:

$$f'(x_i) = \frac{\Delta f_i}{h} + \mathcal{O}(h)$$

where Δf_i is called **first forward difference** and h is called the **step size**.

It is called forward since we used data in i and i+1

▶ Then, $\Delta f_i/h$ is the first forward divided difference

The first forward divided difference is one of many ways to approximate the derivative using the Taylor series.

One-step methods for ODEs

We want to solve equations in the form

$$\frac{dy}{dx} = f(x, y)$$

with a given initial condition $y_0 = y(x_0)$

- ▶ To solve this equation with a numerical method on a set of discrete points, we need to be able to extrapolate from a value y_i to a new value y_{i+1} over a step h (usually starting from the initial condition y_0).
- ▶ In a general mathematical form, this translates to:

$$y_{i+1} = y_i + \phi h$$

where ϕ is an estimate of an appropriate slope of the function y over the step h.

- Then, this formula can be applied step-by-step to compute on an interval as large as we want.
- ► This formula is the general way to express all **one-step** methods.
- lacktriangle The difference for different methods could be in the way we specify the slope ϕ .
- ▶ The simplest approach is to estimate the slope from the differential equation itself as the first derivative of y at the point x_i , which is nothing else than $f(x_i, y_i)$.
- ► This approach is called the Euler Method.
- ▶ Alternative ways to estimate the slope ϕ can result in more accurate predictions, for example in **one-step Runge-Kutta methods**.

► For the equation:

$$\frac{dy}{dx} = f(x, y)$$
 with $y_0 = y(x_0)$

The formula

$$y_{i+1} = y_i + f(x_i, y_i)h$$

is referred to as Euler Method or sometimes the Euler-Cauchy Method.

▶ A new value of y is computed extrapolating **linearly** over the step h using a slope approximated with the derivative in the original point x_i , where the solution and its derivatives are know.

Euler method

```
# Euler method
# importing modules
import numpy as np
import matplotlib.pyplot as plt
                                                              # number of steps
import math
                                                              n_step = math.ceil(x_final/h)
                                                              # Definition of arrays to store the solution
                                                              v eul = np.zeros(n step+1)
                                                              x_eul = np.zeros(n_step+1)
# inputs
# functions that returns du/dx
                                                              # Initialize first element of solution arrays
# i.e. the equation we want to solve: dy/dx = -y
                                                              # with initial condition
def model(v.x):
                                                              v eul[0] = v0
    k = -1
                                                              x eul[0] = x0
    dvdx = k * v
    return dvdx
                                                              # Populate the x array
                                                              for i in range(n step):
# initial conditions
                                                                  x eul[i+1] = x eul[i] + h
\mathbf{v} \mathbf{0} = \mathbf{0}
v0 = 1
                                                              # Apply Euler method n_step times
# total solution interval
                                                              for i in range(n_step):
                                                                  # compute the slope using the differential equation
x final = 1
                                                                  slope = model(y_eul[i],x_eul[i])
# step size
h = 0.2
                                                                  # use the Euler method
                                                                  y_{eul}[i+1] = y_{eul}[i] + h * slope
```

Output

```
# super refined sampling of the exact solution c*e^(-x)
# n exact linearly spaced numbers
# only needed for plotting reference solution
                                                            # print results in a text file (for later use if needed)
                                                            file name= 'output h' + str(h) + '.dat'
# Definition of array to store the exact solution
                                                            f io = open(file name, 'w')
n exact = 1000
                                                            for i in range(n_step+1):
x_exact = np.linspace(0,x_final,n_exact+1)
                                                                s1 = str(i)
y_exact = np.zeros(n_exact+1)
                                                               s2 = str(x eul[i])
                                                               s3 = str(v eul[i])
                                                                s4 = s1 + ' ' + s2 + ' ' + s3
# exact values of the solution
                                                               f io.write(s4 + '\n')
for i in range(n exact+1):
    y_exact[i] = y0 * math.exp(-x_exact[i])
                                                            f io.close()
# print results on screen
print ('Solution: step x y-eul y-exact error%')
for i in range(n_step+1):
                                                            # plot results
    print(i,x_eul[i],y_eul[i], y0 * math.exp(-x_eul[i]),
                                                            plt.plot(x_eul, y_eul , 'b.-',x_exact, y_exact , 'r-')
            (y_eul[i]- y0 * math.exp(-x_eul[i]))/
                                                            plt.xlabel('x')
            (y0 * math.exp(-x_eul[i])) * 100)
                                                           plt.ylabel('y(x)')
                                                           plt.show()
```

Solution obtained with the Euler method

► We consider the ODE:

$$\frac{dy}{dx} = -y \quad \text{with} \quad y(x = 0) = 1$$

which has the analytical (exact) solution

$$y(x) = e^{-x}$$

▶ We run the Euler methods to compute the solution in the interval $0 \le x \le 1$ for two different steps h = 0.2 and h = 0.1:

×	y exact	y Euler	error %	y Euler	error %
		h = 0.1	h = 0.1	h = 0.2	h = 0.2
0.0	1.0	1.0	0.0	1.0	0.0
0.1	0.904	0.9	-0.534	NA	NA
0.2	0.818	0.81	-1.066	0.800	-2.287
0.3	0.740	0.729	-1.595	NA	NA
0.4	0.670	0.656	-2.121	0.640	-4.523
0.5	0.606	0.590	-2.644	NA	NA
0.6	0.548	0.531	-3.165	0.512	-6.707
0.7	0.496	0.478	-3.682	NA	NA
8.0	0.449	0.43	-4.197	0.409	-8.841
0.9	0.406	0.387	-4.709	NA	NA
1.0	0.367	0.348	-5.219	0.327	-10.92

Table: Solution and error for the Euler method with two two different steps (NA = not available)

Solution obtained with the Euler method

▶ Plotting the two solutions in the interval $0 \le x \le 1$ with different steps h = 0.2 and h = 0.1 we obtain:

- ightharpoonup The error decreases by approximately a factor of 2 if the step h is halved
- ▶ Note that we used very large values of h in the example to highlight the numerical error

Runge-Kutta methods

- Runge-Kutta methods achieve high accuracy without the use of higher order derivatives like in the case of the Taylor saries
- Many versions exist, but all can be cast as: $y_{i+1} = y_i + \phi(x_i, y_i, h)h$ where $\phi(x_i, y_i, h)$ is usually called an **increment function**.
- ► The increment function $\phi(x_i, y_i, h)$ is written, in general form as:

$$\phi = a_1 k_1 + a_1 k_1 + ... + a_n k_n$$

where the coefficients a_i are constant and:

$$k_{1} = f(x_{i}, y_{i})$$

$$k_{2} = f(x_{i} + p_{1}h, y_{i} + q_{11}k_{1}h)$$

$$k_{3} = f(x_{i} + p_{2}h, y_{i} + q_{21}k_{1}h + q_{22}k_{2}h)$$

$$\vdots$$

$$k_{n} = f(x_{i} + p_{n-1}h, y_{i} + q_{n-1,1}k_{1}h + q_{n-1,2}k_{2}h + \dots + q_{n-1,n-1}k_{n} - 1h)$$

where also the coefficients p_i and q_i are constant.

- ▶ The $k_1...k_n$ can be computed in a cascade from k_1 to k_2 to k_n (recurrence relations)
- ▶ Once n is selected, which is the order of the method, all the constants are computed by equating $y_{i+1} = y_i + \phi(x_i, y_i, h)h$ to the terms of the Taylor series.
- \blacktriangleright Finally, it is worth noting that the Runge-Kutta method with n=1 is the Euler method.

 \blacktriangleright With n=2, the Runga-Kutta method is written as:

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

where

$$k_1 = f(x_i, y_i)$$

 $k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)$

and we need to compute a_1 , a_2 , p_1 , and q_{11} .

► To do this, we start from the Taylor series:

$$y_{i+1} = y_i + f(x_i, y_i)h + \frac{f'(x_i, y_i)}{2}h^2$$

We use chain rule to compute:

$$f'(x_i, y_i) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$

and substituting this in the Taylor series we get

$$y_{i+1} = y_i + f(x_i, y_i)h + \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx}\right)\frac{h^2}{2}$$

Now, we have to equate this with $y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$ to find the coefficients.

▶ Interpreting $k_2 = f(x_i + p_1h, y_i + q_{11}k_1h)$ as a Taylor series expansion with respect to both variables x and y, we can write:

$$f(x_i + p_1h, y_i + q_{11}k_1h) = f(x_i, y_i) + p_1h\frac{\partial f}{\partial x} + q_{11}k_1h\frac{\partial f}{\partial y} + \mathcal{O}(h^2)$$

▶ Inserting this and the expression $k_1 = f(x_i, y_i)$ in $y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$:

$$y_{i+1} = y_i + \left[a_1 f(x_i, y_i) + a_2 f(x_i, y_i) \right] h + \left[a_2 p_1 \frac{\partial f}{\partial x} + a_2 q_{11} f(x_i, y_i) \frac{\partial f}{\partial y} \right] h^2 + \mathcal{O}(h^2)$$

▶ We equate term-by-term this equation with

$$y_{i+1} = y_i + \left(f(x_i, y_i)h \right) + \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} \right) \frac{h^2}{2}$$

► In order for the two highlighted terms to be equal, we must have

$$a_1 + a_2 = 1$$

► Equating also the other terms, we have

$$a_2p_1 = \frac{1}{2}$$
 and $a_2q_{11} = \frac{1}{2}$

So the second-order Runga-Kutta method is:

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

where

$$k_1 = f(x_i, y_i)$$

 $k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)$

with

$$a_1 + a_2 = 1$$
 $a_2 p_1 = \frac{1}{2}$
 $a_2 q_{11} = \frac{1}{2}$

▶ Since we have 3 equations and 4 unknowns, one of the coefficients needs to be specified arbitrarily. Therefore, there is an infinite number of second-order Runge-Kutta methods, which will give different results if the equation is more complicate than a simple linear or quadratic one.

If we assume $a_2 = 1/2$, we can calculate the other coefficients to obtain $a_1 = 1/2$, $p_1 = 1$, and $q_{11} = 1$. Then:

$$y_{i+1} = y_i + (\frac{1}{2}k_1 + \frac{1}{2}k_2)h$$

with

$$k_1 = f(x_i, y_i)$$

 $k_2 = f(x_i + h, y_i + k_1 h)$

This is the predictor-corrector method described before, since k_1 and k_2 are the derivatives in x_i and x_{i+1}

- ▶ If $a_2 = 1$, we obtain the midpoint method also described before
- ▶ If $a_2 = 2/3$, we obtain the **Ralston method**, which is the second-order Runge-Kutta method with the minimum truncation error:

$$y_{i+1} = y_i + (\frac{1}{3}k_1 + \frac{2}{3}k_2)h$$

with

$$k_1 = f(x_i, y_i)$$

 $k_2 = f(x_i + \frac{3}{4}h, y_i + \frac{3}{4}k_1h)$

Fourth order Runge-Kutta methods

- The most popular Runge-Kutta methods are the fourth order
- ► The most used version is:

$$y_{i+1} = y_i + \left(\frac{1}{6}k_1 + \frac{2}{6}k_2 + \frac{2}{6}k_3 + \frac{1}{6}k_4\right)h$$

with

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h)$$

$$k_3 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h)$$

$$k_4 = f(x_i + h, y_i + k_3h)$$

► The slope

$$\frac{1}{6}k_1 + \frac{2}{6}k_2 + \frac{2}{6}k_3 + \frac{1}{6}k_4$$

is a weighted average of four slopes with

- K₁ computed in the first point x_i (like in the Euler method)
- \blacktriangleright K_2 and K_3 computed in the middle $x_{i+1/2}$ (like in the mid-point method)
- \blacktriangleright K_4 computed in the end-point x_{i+1} (like in the predictor-corrector method)

Python code, Euler vs Runge-Kutta methods

► As usual, we want to solve

$$\frac{dy}{dx} = f(x, y)$$
 with $y_0 = y(x_0)$

Fuler method

Runge-Kutta fourth order method

```
# Fourth Order Runge-Kutta method
# Apply RK method n_step times
for i in range(n_step):
    # Compute the four slopes
    x_dummy = x_rk[i]
    y_dummy = y_rk[i]
    k1 = model(y_dummy,x_dummy)
    x_dummy = x_rk[i]+h/2
    y_dummy = y_rk[i] + k1 * h/2
    k2 = model(y_dummy,x_dummy)
    x_dummy = x_rk[i]+h/2
    v dummv = v rk[i] + k2 * h/2
    k3 = model(y_dummy,x_dummy)
    x dummy = x rk[i]+h
    v dummv = v rk[i] + k3 * h
    k4 = model(y_dummy,x_dummy)
    # compute the slope as weighted average of four slope:
    slope = 1/6 * k1 + 2/6 * k2 + 2/6 * k3 + 1/6 * k4
    # use the RK method
    v rk[i+1] = v rk[i] + h * slope
```

Solution obtained with the Runge-Kutta method

×	y exact	error Euler %	error R-K4 %
		h = 0.1	h = 0.2
0.0	1.0	0.0	0.0
0.2	0.818	-1.066	3.2×10^{-4}
0.4	0.670	-2.121	6.3×10^{-4}
0.6	0.548	-3.165	9.4×10^{-4}
8.0	0.449	-4.197	1.2×10^{-3}
1.0	0.367	-5.219	$1.5 imes 10^{-4}$

Table: Error for the Euler and Runge-Kutta methods

- ▶ The error for the Runge-Kutta method is remarkably smaller compared to the error obtained with the Euler method
- It is worth noting that the error is small even with the rather large step h=0.2 used