A0M17NKA projekt č. 1

projekt č. 1 Mikropáskový patch

1. Návrh patchové antény pomocí modelu vedení

Pomocí implementace modelu vedení v prostředí Matlab určete rozměry a základní charakteristiky lineárně polarizované mikropáskové patchové antény obdélníkového tvaru (pro rezonanci v základním módu) dle níže uvedených parametrů zadání. Pro danou frekvenci a zvolený materiál.

- 1.1. Určete šířku W a délku L antény.
- 1.2. Implementujte frekvenční závislost vstupní impedance pomocí modelu vedení (TLM). Graficky znázorněte průběh $R_{in}(f)$ a $X_{in}(f)$ a průběh modulu koeficientu odrazu $\Gamma(f)$ pro napájecí bod na hraně antény.
- 1.3. Určete $Z_{in}(L_1 = 0)$ na hraně antény a vzdálenost L_1 od okraje zářiče, kde vstupní impedance nabývá hodnoty $Z_{in} = 50 \Omega$. Graficky znázorněte průběh $R_{in}(f)$ a $X_{in}(f)$ a průběh modulu koeficientu odrazu $\Gamma(f)$ pro přizpůsobenou anténu.
- 1.4. Určete impedanční šířku pásma *BW* (*PSV* = 2) odečtením z průběhu frekvenční závislosti koeficientu odrazu z modelu vedení, porovnejte s *BW* zjištěnou z analytických výrazů.
- 1.5. S využitím analytických výrazů znázorněte závislost šířky pásma BW (PSV = 2) na tloušťce substrátu h a relativní permitivitě substrátu ϵ_r pro běžně realizovatelné hodnoty.
- 1.6. V polárním diagramu v dB míře znázorněte tvar vyzařovacích diagramů v obou hlavních rovinách (*E* a *H* rovina).

Obr. 1 Schema mikropáskové patchové/flíčkové antény

Materiálové parametry některých dielektrických substrátů:

Číslo materiálu	Název materiálu	Tlouštka <i>h</i> [mm]	εr	tg δ
1	Umatext 222	1,5	4,3	0,017
2	GML 1000	1,52	3,05	0,003
3	ULTRALAM 2000	2,0	2,40	0,0019
4	ROGERS RO4003	0,76	3,38	0,002
5	MC5	0,76	3,40	0,012
6	DICLAD	1,5	2,6	0,0022
7	Taconic	1,58	3,0	0,0016

2. Měření patchové antény

Proměřte $Z_{in}(L_1)$ resp. $|S_{11}|$ u dodaného vzorku antény pro 3 polohy napájecího kolíku L_1 (obě krajní polohy a polohu s nejlepším přizpůsobením).

- 2.1. Naměřené frekvenční průběhy Z_{in} (L_1) a $|S_{11}|$ vyneste do společného grafu s průběhy modelovanými pomocí TLM modelu.
- 2.2. Porovnejte měřené a modelované rezonanční kmitočty f_r a šířku pásma BW (PSV = 2), určete procentuální odchylky.
- 2.3. Diskutujte příčiny rozdílu mezi měřenými a modelovanými výsledky, vezměte v úvahu zejména zjednodušení TLM modelu.

A0M17NKA projekt č. 1

Návrhové vztahy (rozměry):

$$\begin{split} W &= \frac{c}{2 \cdot f} \cdot \sqrt{\frac{2}{\varepsilon_r + 1}} \quad \text{(m), } L = \frac{c}{2 \cdot f \cdot \sqrt{\varepsilon_{ef}}} - 2 \cdot d\ell \quad \text{(m)} \\ \varepsilon_{ef} &= (0) = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \cdot \left(1 + 12 \cdot \frac{h}{W}\right)^{-\frac{1}{2}} \\ d\ell &= h \cdot 0.412 \cdot \frac{\left(\varepsilon_{ef} + 0.3\right) \cdot \left(\frac{W}{h} + 0.264\right)}{\left(\varepsilon_{ef} - 0.258\right) \cdot \left(\frac{W}{h} + 0.813\right)} \quad \text{(m)} \end{split}$$

Činitel jakosti Q - definovány dílčí činitelé jakosti (jako poměry energie akumulované v dutině ku energii ztracené: dielektrika Q_d , vodiče Q_c , vyzařování Q_r) a celkový činitel jakosti Q_T

$$\begin{split} Q_d &= \frac{\omega \cdot W_T}{P_d} = \frac{1}{tg\,\delta}, \ Q_c = \frac{\omega \cdot W_T}{P_c} = \sqrt{\pi\,f\mu_0\sigma\,t} \ , \ \ Q_r = \frac{\omega \cdot W_T}{P_r} = c\,\frac{\sqrt{\varepsilon_r}}{4f\,h}, \\ Q_T &= \frac{\omega \cdot W_T}{P_T} = 1 \bigg/ \bigg(\frac{1}{Q_d} + \frac{1}{Q_c} + \frac{1}{Q_r}\bigg) = \frac{1}{tg\,\delta_{ef}} \end{split}$$

t je tloušťka pokovení, σ vodivost mědi (5,6*10⁷ S/m).

Šířka pásma BW pro poměr stojatých vln PSV

$$BW = \frac{PSV - 1}{Q_T \sqrt{PSV}} \cdot 100 \text{ [\%]}$$

pro
$$PSV = 2$$
 (odpovídá $|S_{11}| = -9,54$ dB) je $BW = \frac{1}{\sqrt{2}Q_T} \cdot 100$ [%]

Směrové charakteristiky

Dle C. A. Balanis, *Antenna Theory: Analysis and Design*, John Wiley a Sons, New York, 1997, str. 745-6, pozor záměnu funkcí $sin(\theta)$ a $cos(\theta)$ ve zde uvedeném vztahu F_H (θ) v rovině H (yz) v důsledku polohy patche v rovině xy, viz obr. níže).

Vyzařovací diagramy: úhel v polárním diagramu v Matlabu je třeba zadávat v radiánech v rozsahu $(-\pi/2 \text{ až } \pi/2)$.

$$E \text{ rovina } (\varphi = 0): F_E(\theta) = \frac{\sin(k_0 \frac{h_2}{2} \cos(\theta))}{k_0 \frac{h_2}{2} \cos(\theta)} \cos(k_0 \frac{L_{ef}}{2} \sin(\theta))$$

$$H \text{ rovina } (\varphi = 90): F_H(\theta) = \cos(\theta) \frac{\sin(k_0 \frac{h_2}{2} \cos(\theta))}{k_0 \frac{h_2}{2} \cos(\theta)} \frac{\sin(k_0 \frac{W_2}{2} \sin(\theta))}{k_0 \frac{W_2}{2} \sin(\theta)}$$

Balanis

NKA projekt