ENDEREÇAMENTO IPv4 e IPv6

Dúvidas!?!

O **checksum** serve para o destinatário da mensagem verificar que não existiram erros durante o transporte, sendo de referir que o TCP e o **IP** têm **checksums** separados por razões de eficiência e segurança.

Controle de fluxo - O receptor, à medida que recebe os dados, envia mensagens ACK (=Acknowledgement), confirmando a recepção de um segmento "..."

IPv4 x IPv6

- O surgimento desse Protocolo de Internet na versão 6.0, foi baseado nas limitações de funcionalidades do IPv4
- Com mudança, novas funcionalidades do IPv6 foram desenvolvidas para:
 - fornecer uma forma mais simples de configuração para redes baseadas em IP
 - maior segurança na comunicação entre hosts na rede interna e internet
 - melhor aproveitamento e disponibilidade de recursos.

IPv4 x IPv6

- Sobre o IPv4já é sabido que foi publicado em 1981 através da RFC 791 e desde então não sofreu nenhuma alteração significativa;
- Seu funcionamento se deu com bom funcionamento até o momento, porém suas limitações começaram a bater na porta e com o tempo surgirão mais...
 - Número de usuários cresce a cada dia mais, principalmente em decorrência da grande inserção dos dispositivos móveis.

IPv4 x IPv6

Limitações do IPv4:

- · Limite de endereços IP
 - cabeçalho de 32 bits para representação do endereçamento (número máximo de 4.294.967.296 IPs).
 Maioria em uso

Roteamento complexo

 gerenciamento ineficiente das tabelas de roteamento (os roteadores da internet tem em torno de 85.000 rotas em suas tabelas de roteamento)

• Sem segurança integrada

• IPv4 não disponibiliza nenhum mecanismo de segurança para os dados que são transmitidos pela rede

IPv4 x IPv6

- O IPv6 também é um protocolo de endereçamento de hosts e roteamento de pacotes como o IPv4
- Mais simples que o IPv4, com algumas melhorias
- Conhecido como IP the Next Generation (IPng)

IPv4 x IPv6

Melhorias do IPv6

· Roteamento mais eficiente

 maneira de criação dos endereços permite um roteamento totalmente baseado em hierarquia, reduzindo o número de rotas que um roteador terá que armazenar em sua tabela de roteamento

Mais espaço para endereçamento

 endereços de origem e destino do IPv6 tem 128 bits de comprimento, possibilitando a disponibilização de um número bem maior de IP's que o IPv4

IPv4 x IPv6

· Melhorias do IPv6

Segurança integrada

 o IPv6 possui suporte ao protocolo IPSEC, o que permite o uso de criptografia por parte dos hosts para o envio de dados pela rede de forma mais simples e segura

· Cabeçalho aprimorado

 todas as informações não essenciais foram retiradas e alocadas em um cabeçalho de extensão.

IPv5

- E onde foi parar o IPv5?
 - Foi designado para o ST (Stream Protocol)
 - Não é compatível com IP
 - Sua função era enviar voz e vídeo via rede, como uma alternativa ao IP (RFC 1819)
 - Chegou a ser utilizado comercialmente
 - Está em desuso

Versões dos protocolos

versão	nome	data	estado
0	IP	Março de 1977	não padronizado pelo IETF
1	IP	Janeiro de 1978	não padronizado pelo IETF
2	IP	Fevereiro de 1978 v.A	não padronizado pelo IETF
3	IP	Fevereiro de 1978 v.B	não padronizado pelo IETF
4	IPv4	Setembro de 1981	em uso
5	ST	Setembro de 1979	em desuso
6	IPv6	Dezembro de 1988	em uso
7	CATNIP	Outubro de 1994	em desuso, depreciado
8	PIP	Maio de 1994	em desuso, depreciado
9	TUBA	Junho de 1992	em desuso, depreciado
10-15			não atribuídos

Cabeçalho IPv6

- Algumas mudanças foram realizadas no cabeçalho do protocolo IPv4, que foram implementadas no IPv6
- Principais alterações
 - · Cabeçalho fixo
 - Cabeçalhos de extensão
- Formato
 - Possui o cabeçalho base, seguido (ou não) por cabeçalhos de extensão

Cabeçalho IPv4

- 12 campos fixos, com opções ou não, variando o tamanho entre 20 e 60 bytes
- ✓ Versão
- √ Tamanho do cabeçalho
- √ Tamanho total do pacote
- ✓ Fragmentação e offset
- ✓ Protocolo (TCP, UDP, ICMP)
- ✓ Origem e destino

Cabeçalho IPv4 x IPv6

· Campos removidos

Cabeçalho IPv4 x IPv6

· Campos alterados

Cabeçalho IPv4 x IPv6

· Campo adicionado

Identificador de fluxo: mecanismo extra de suporte a QoS ao IP. Diferencia o tráfego na camada de rede.

Cabeçalho IPv6

Endereço origem e destino: antes possuiam 32 bits, agora possuem 128 bits para endereçamento.

Possível endereçar 340.282.366.920.938.463.463.374.607.431.768.211.456 hosts

Cabeçalho IPv6

- Mais simplificado
 - · Possui somente 8 campos
- Tamanho fixo
 - sempre 40 bytes

Cabeçalho IPv6

- Versão
 - Versão do protocolo IP
- Classe de tráfego (ou prioridade)
 - Atribui prioridade e classe aos pacotes
 - 0-7: pacote pode ser transmitido com velocidade reduzida
 - 8-15: transmissão em tempo real, com taxa constante
- Identificador de fluxo
 - Diferencia sequências de pacotes no mesmo fluxo de dados, que necessitam mesmo tratamento nos roteadores
 - · Tratamento especial, por exemplo, largura de banda maior
- Tamanho dos dados
 - Tamanho dos dados (em bytes) que o pacote possui

Cabeçalho IPv6

- Próximo cabeçalho
 - Indica o que segue ao cabeçalho. Pode ser tanto um cabeçalho de extensão quanto um pacote da camada de transporte (TCP, UDP)
- Limite de encaminhamento
 - Número máximo de roteadores que o pacote pode passar. Após este valor, o pacote é descartado (similar ao TTL do IPv4)
- Endereço origem
 - Endereço de quem está enviando o pacote
- Endereço destino
 - Endereço do destinatário do pacote

Cabeçalho de Extensão IPv6

- No IPv4, as opções adicionais são colocadas no cabeçalho do pacote
- No IPv6, estas informações adicionais são tratadas como cabeçalhos de extensão

Cabeçalho de Extensão IPv6

Próximo Tamanho Cabeçalho do Cabeçalho		Dados do cabecalho
		Dados do Cabeçamo

Valor.	Name do cabeçalho	Definição	
0	Hop-By-Hop	Transporta informações opcionais que são processadas em cada nó ao longo do caminho do pocote, incluindo a origem e o destino.	
60	Destination Options	Transporta informações opcionais que são processades apenas pelo destino final do pacota.	
43	Routing	Utilizado no suporte a mobilidade do IPv6, ele armazena o endereço origenal de um nó móvel (Type 2).	
44	Fragmentation	Utilizado pela origem para enviar pacotes málores do que a Maximum Transmit Unit (MTU) de um caminho. Ao contrário do 1944, a fisigmentação no 1946 não ocorre nos roteadores encontrados ao longo do caminho do pacote, apenas na origem, sendo re-agrupados no destino final.	
51	Authentication	Utilizado pelo serviço IPSec (IP Security) para prover autenticação e parantia de integridade aos pacotes IPv6. Esse cabeçalho é idêntico ao utilizado no IPv4.	
50	Encapsulating Security Payload	Tembém utilizado pelo IPSec, prové integridade e confidencialidade para os patotes.	

Cabeçalho de Extensão IPv6

•••

Endereçamento IPv6

- Uma nova notação foi criada, com o intuito de descrever os endereços de 16 bytes
- Os endereços são agrupados em 8 grupos de 4 dígitos em hexadecimal
 - A separação dos grupos é feita utilizando o separador ":" (dois pontos)
 - Exemplo:
 - FB3B:00A4:0000:0000:0000:0012:0332:DCFF

Endereçamento IPv6

- Como muitos endereços vão conter muitos zeros, convencionou-se que:
 - 1) zeros à esquerda podem ser omitidos
 - Logo: FB3B:00A4:0000:0000:0000:0012:0332:DCFF
 - Seria: FB3B:A4:0:0:0:12:332:DCFF
 - 2) um ou mais grupos de 16 zeros poderão ser substituídos por um par de dois pontos (::)
 - Logo: FB3B:A4:0:0:0:12:332:DCFF
 - Seria: FB3B:A4::12:332:DCFF
 - 3) Endereços IPv4 podem ser descritos com :: e o normal
 - 187.23.20.12 → ::187.23.20.12

Referências

_https://www.techtudo.com.br/noticias/2020/10/ipv4-e-ipv6-saiba-tudo-sobre-os-protocolos-de-internet.ghtml

KUROSE, J. F. e ROSS, K. - Redes de Computadores e a Internet - 6ª Ed., Pearson, 2013.

PETERSON, L. L. e DAVIE, B. S. - Redes de Computadores (Uma abordagem de sistemas) - 3^a Ed., Editora Campus (Elsevier), 2004

STALLINGS, W. – Redes e Sistemas de Comunicação de Dados – 5ª Ed., Editora Campus (Elsevier), 2005.

TANENBAUM, A. S. – Redes de Computadores – 5ª Ed., Pearson, 2011.