

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer:

0 132 638
A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 84107733.2

(51) Int. Cl.: F 01 D 5/14
F 04 D 29/68

(22) Anmeldetag: 04.07.84

(30) Priorität: 15.07.83 DE 3325663

(71) Anmelder: MTU MOTOREN- UND TURBINEN-UNION
MÜNCHEN GMBH
Dachauer Strasse 665 Postfach 50 06 40
D-8000 München 50(DE)

(43) Veröffentlichungstag der Anmeldung:
13.02.85 Patentblatt 85/7

(72) Erfinder: Eckardt, Dietrich, Dr.-Ing.
Irschenriederstrasse 13a
D-8000 München 60(DE)

(84) Benannte Vertragsstaaten:
AT CH DE FR GB IT LI SE

(72) Erfinder: Schäffler, Arthur, Dipl.-Ing. grad.
Ganghofer-Strasse 11
D-8061 Vierkirchen(DE)

(54) Axial durchströmtes Schaufelgitter einer mit Gas oder Dampf betriebenen Turbine.

(57) Axialschaufelgitter einer mit Gas oder Dampf betriebenen Turbine, mit zum Großteil laminarer Profilgrenzschicht, dessen Schaufel stromabwärts des Geschwindigkeitsmaximums auf der Saugseite (Profiloberseite) im Bereich der verzögerten Strömung eine im wesentlichen über die ganze Schaufelhöhe (H) reichende sägezahnartig profilierte Störkante aufweisen.

Fig. 2

1

5 ba/fr

MTU MOTOREN- UND TURBINEN-UNION
MÜNCHEN GMBH

10

15

Axial durchströmtes Schaufelgitter
einer mit Gas oder Dampf betriebenen
Turbine

20

25 Die Erfindung bezieht sich auf ein axial durchströmtes
Schaufelgitter einer mit Gas oder Dampf betriebenen Tur-
bine, dessen Schaufelprofile so ausgebildet sind, daß die
Strömung entlang des größten Teils der saugseitigen Profil-
oberfläche (Unterdruckseite), bis zu einem Geschwindig-
keitsmaximum im Bereich der Kanalengfläche beschleunigt
30 wird, so daß die Profilgrenzschicht zum Großteil laminar
ist.

35 ESP-733

1

- 5 Abhängig vom Turbulenzgrad der Strömung, von der Größe des Druckgradienten in Strömungsrichtung und von der Reynoldszahl Re_2 , einem Ähnlichkeitsparameter, gebildet aus der Profilsehnenlänge l , der Abströmgeschwindigkeit c_2 und der kinematischen Viskosität η_2 am Austritt des Schau-
10 felgitters, schlägt die Grenzschicht unmittelbar oder unter Ausbildung von Umschlag- oder Ablöseblasen in den turbulenten Zustand um.

In Niederdruckturbinen, beispielsweise den Endstufen axial durchströmter Fluggastturbinen, treten Reynolds-
15 zahlen zwischen 50 000 und 500 000 auf. Dieses Reynolds-
zahlniveau liegt im laminar/turbulenten Umschlagbereich,
d. h. verzögerte laminare Grenzschichten ändern ihren
Strömungszustand unter Ausbildung stark verlustbehafteter
20 Umschlag- oder Ablöseblasen.

Bisher wurde angenommen, daß in vielstufigen Strömungs-
maschinen ein derart hoher Turbulenzgrad herrscht, daß
laminare Strömung entweder gänzlich unmöglich ist oder
25 aber der Grenzschichtumschlag bei Strömungsverzögerung
unmittelbar, d. h. ohne Blasenbildung erfolgt. Jüngste
Untersuchungen haben im Gegensatz dazu ergeben, daß im
Bereich der beschleunigten Strömung von ND-Turbinen
der laminare Grenzschichtzustand aufrechterhalten werden
30 kann, daß aber der Wirkungsgrad der Energieübertragung
durch Strömungsverluste im Zusammenhang mit laminar/
turbulenten Umschlag- bzw. Ablöseblasen erheblich be-
einträchtigt wird.

- 1 Aus der Fachliteratur zur Tragflügelaerodynamik ist es
bekannt, zur Vermeidung von laminaren Ablöseblasen beim
Übergang einer laminaren in eine turbulente Grenzschicht-
strömung mechanische Turbulatoren, wie Stolperdrähte,
5 hervorspringende Kanten, Stufen oder ähnliche Hinder-
nisse zu verwenden. Es hat sich gezeigt, daß die An-
ordnung solcher Turbulatoren auf der Oberfläche des
Tragflügelprofils den Widerstandsbeiwert des Profils
erhöhen und insbesondere dann zu merklichen Verlusten
10 kann
führen, wenn ein höheres Reynoldszahl niveau erreicht
wird, d. h. in einem Bereich, in dem sie ihren eigentli-
chen Zweck, nämlich den Umschlag von laminarer in
turbulente Grenzschicht zu beschleunigen, wegen des von
selbst eintretenden, schnellen Umschlags ohne Blasenbildung
15 ohnehin nicht mehr erfüllen.

Im technischen Bericht von Francis R. Hama, James D. Long
und John C. Hegarty vom August 1956 mit dem Titel
"On Transition from Laminar to Turbulent Flow", ver-
öffentlicht durch Document Service Center, Dayton, Ohio,
20 U.S.A., werden Wassertankversuche über den Umschlag von
laminarer in turbulente Grenzschichtströmung an einer
ebenen Platte beschrieben, und es wird dort vorgeschlagen,
zur Herbeiführung des Umschlages von laminarer in turbu-
lente Grenzschichtströmung einen gewellten Draht oder
25 eine Reihe dünner dreieckiger Plättchen, die auf eine
flache Platte aufgeklebt sind, zu verwenden. Hinweise auf
aerodynamische Schaufelgitter finden sich in dieser Druck-
schrift nicht.
30 Turbomaschinen-
In der Praxis sind mechanische Turbulatoren bisher nicht
angewendet worden. Vielmehr ist aus der DE-PS 30 43 567
eine Anordnung zur Beeinflussung der Strömung an aero-
dynamischen Profilen bekannt geworden, bei der durch
35 Ausblasen von Fluid im Bereich der Ablösestelle der

- 1 laminaren Strömung ein schneller Umschlag in Turbulenz erzielt wird und somit die Entstehung laminarer Ablöseblasen verhindert wird. Eine solche Anordnung hat den Vorteil, daß in einem Betriebsbereich mit hohem Reynolds-
- 5 zahlniveau, in dem laminare Ablöseblasen ohnehin nicht mehr auftreten, keine Hindernisse am Tragflügelprofil vorhanden sind und somit keine zusätzlichen Verluste in Kauf genommen werden müssen. Ein Nachteil der vorgenannten Anordnung besteht jedoch darin, daß der Herstellungsaufwand für ein Tragflügelprofil mit der vorgenannten Anordnung recht hoch ist. Für Schaufelgitter von Turbomaschinen, insbesondere dann, wenn es sich um thermische Turbomaschinen handelt, ist eine Anordnung nach der DE-PS 30 43 567 nicht oder nur sehr begrenzt anwendbar, da aufgrund der vorkommenden hohen mechanischen und thermischen Beanspruchung der Schaufeln die Anordnung von entsprechenden Strömungskanälen zur Führung des auszublasenden Fluids von Nachteil wären.
- 10 20 Aufgabe der vorliegenden Erfindung ist es, in axial durchströmten Schaufelgittern der eingangs genannten Art, also insbesondere in solchen, in denen über einen großen Betriebsbereich aufgrund des Reynoldszahlniveaus laminare Strömung herrscht, Profilverluste im Zusammenhang mit laminar/turbulenten Umschlagblasen zu verringern und damit den Gesamtwirkungsgrad der Turbine zu verbessern.
- 15 25 30 35 Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß bei einem Axialschaufelgitter der eingangs genannten Art stromabwärts des Geschwindigkeitsmaximums auf der Saugseite (Profiloberseite) im Bereich der verzögerten Strömung die Schaufeln eine durchgehende im wesentlichen über die ganze Schaufelhöhe reichende in einer Tangentialebene zur Profiloberfläche sägezahnartig profilierte Störkante aufweisen.

- 1 In einem erfindungsgemäß ausgebildeten Schaufelgitter erfolgt ein schneller Umschlag von laminarer in turbulente Grenzschichtströmung auf der Saugseite der Schaufeln ohne die Ausbildung von laminaren Ablöseblasen. Die besten Ergebnisse sind dabei zu erzielen, wenn die Störkante 0,01 bis 0,1 l stromabwärts des Geschwindigkeitsmaximums an der Schaufelsaugseite positioniert ist, wobei l die Länge der Profilsehne bedeutet.
- 10 Bei einer ersten bevorzugten Ausführungsform der Erfindung ragt die Störkante über die Profiloberfläche der Schaufel geringfügig heraus. Sie kann dabei alternativ von einem auf der Profiloberfläche erhaben angeordneten Band gebildet sein oder sie kann die freiliegende Kante einer von der Profiloberfläche ausgebildeten in Strömungsrichtung vorspringenden Stufe sein.

Vorzugsweise soll die Höhe (k) der Störkante über der Profiloberfläche Werte in einem Bereich aufweisen, der abhängig von der Impulsverlustdicke δ_2 der Grenzschicht an einer Stelle unmittelbar stromaufwärts vor der Störkante und der für diese Stelle aus der Höhe (k), der Geschwindigkeit im Wandabstand (k) und der Viskosität des Fluids gebildeten Reynoldszahl Re_k bestimmt wird, wobei für $50 < Re_k < 200$ gelten soll $1,5 < k/\delta_2 < 3,5$

$$\delta_2 = \frac{1}{U^2} \cdot \int_0^y u (U-u)^{1/2} dy$$

Y = Wandabstandskoordinate
 u = f(y) = Geschwindigkeitskomponente tangential zur Profiloberfläche
 U = Geschwindigkeit in der durch Reibung nicht gestörten Strömung

$$Re_k = \frac{u_k \cdot k}{v_k}$$

v_k = kinematische Zähigkeit des Fluids an der Stelle k.

1 Die sich aufgrund dieser Vorschrift ergebenden Stufenhöhen
der Störkante sind dabei so gering, daß auch bei höheren
Reynoldszahlen, bei denen sie als Auslöser für den Umschlag
von laminarer in turbulente Strömung nicht mehr benötigt
5 werden, nur minimale Verluste in Kauf zu nehmen sind.

Dieser Vorteil eines hochwirksamen Turbulenzerzeugers mit
besonders geringem Strömungswiderstand wird auch bei den
Ausführungsformen nach den Patentansprüchen 6 und 7 erzielt,
10 wobei in diesen Fällen allerdings eine etwas größere Höhe
der Stufe vorzusehen ist, wie sie im Patentanspruch 8 ange-
geben ist, um das Entstehen von Ablöseblasen zu verhindern.

Vorzugsweise sind die Störkanten in allen Fällen scharf-
15 kantig auszubilden. Das Sägezahnprofil der Störkante kann
am Zahnkopf und Zahngrund spitz oder abgerundet ausgebildet
sein. Besonders vorteilhaft im Sinne der Aufgabenstellung
ist es jedoch, wenn abwechselnd Zahnkopf und Zahngrund abge-
rundet und spitz ausgebildet sind. Es hat sich gezeigt, daß
20 durch diese Kombination bei minimaler Höhe der Störkante
der effektivste Grenzschichtumschlag erzielbar ist. Die geo-
metrische Ausbildung des Sägezahnprofils ist vorzugsweise
durch Öffnungswinkel α von 45° bis 120° und eine Teilung
von 5 % bis 15 % der Profilsehnenlänge bestimmt. Insoweit
25 ein Störband zur Ausbildung der Störkante verwendet ist,
soll dessen Breite b normal zur Störkante gemessen 0,05
bis 0,1 l betragen. Soweit die Störkante gemäß Anspruch 7
durch eine Senke in der Profiloberfläche gebildet wird, soll
diese Senke mit einem Neigungswinkel β von 3° bis 6° gegen
30 die Schaufeloberfläche verlaufen.

Die Herstellung einer Schaufel für ein erfindungsgemäßes
Schaufelgitter erfolgt vorzugsweise dadurch, daß in einem
ersten Verfahrensschritt das mit Sägezahnprofil versehene
35 Band vorzugsweise durch Drahterodieren aus einer Blech-
platte ausgeschnitten wird und in einem zweiten Verfahrens-
schritt auf die Schaufeloberfläche vorzugsweise durch
Schweißen aufgebracht wird.

- 1 Da sich die erfindungsgemäße Gestaltung eines Schaufelgitters ohne jede Schwierigkeit auch bei stark verwundenen Schaufeln anwenden lässt, können bereits benutzte Schaufeln in erfindungsgemäßer Weise nachgerüstet werden, wozu
 5 vorzugsweise die in den Ansprüchen 17 bis 19 aufgezeigten Verfahren zur Anwendung kommen.

Unter Bezugnahme auf die Zeichnung werden Ausführungsbeispiele der Erfindung erläutert; in der Zeichnung zeigen:

10

Fig. 1 einen Ausschnitt aus einem Querschnitt des Axialschaufelgitters einer Niederdruckturbine mit dem Verlauf der Oberflächenmachzahl und des Grenzschichtzustandes schematisch,

15

Fig. 2 einen Meridianschnitt durch zwei Stufen einer Niederdruckturbine deren Schaufeln mit erfindungsgemäßen Störkanten versehen sind,

20

Fig. 3 einen Querschnitt durch eine mit einem Band versehene Laufschaufel entsprechend der Linie III-III in Fig. 2 ausschnittweise vergrößert,

25

Fig. 4a, b, jeweils eine Draufsicht entsprechend Pfeilrichtung IV auf die Schaufel nach Fig. 3, in zwei unterschiedlichen Sägezahnprofilen,

30

Fig. 5 einen Querschnitt durch eine mit einer vor-springenden Stufe ausgebildeten Schaufel analog zu Fig. 3,

35

Fig. 6 eine Draufsicht auf die Schaufel entsprechend Pfeilrichtung VI in Fig. 5 und

1 Fig. 7 ein Schrägbild der in Fig. 5 im Querschnitt
gezeigten Schaufel,

5 Fig. 8 einen Querschnitt entsprechend Fig. 5
einer mit zurückspringender Stufe ausge-
bildeten Schaufel,

10 Fig. 9 eine Draufsicht entsprechend Pfeilrich-
tung IX auf die Schaufel nach Fig. 8,

15 Fig. 10 einen Querschnitt entsprechend der Linie
III-III in Fig. 2 durch eine Laufschaufel,
bei der die Störkante durch eine in die
Profiloberfläche eingesenkte Stufe gebildet
wird,

Fig. 11 eine Draufsicht auf die Schaufel nach
Fig. 10 in Pfeilrichtung XI,

20 Fig. 12 einen Querschnitt entsprechend Fig. 9 einer
zweiten Ausführungsform einer Schaufel mit
eingesenkter Stufe.

In dem in Fig. 1 dargestellten Schaufelgitter
25 sind zwei benachbarte Axialschaufeln mit 10 bezeichnet.
Für die obere Schaufel 10 ist die Profilsehne 1 sowie
die in Richtung der Profilsehne 1 verlaufende Koordinate
x eingezeichnet. Zu- und Abströmung zum Schaufelgitter
sind mit Pfeilen angegeben. Für die untere Schaufel 10
30 ist der Grenzschichtverlauf schematisch angedeutet.
Daraus ergibt sich, daß auf der Druckseite 13 der Schau-
fel 10 über deren gesamter Länge sich eine laminare Grenz-
schicht ausbildet, während auf der Saugseite 11 der
Schaufel 10 die laminare Grenzschicht nur bis etwa
35 zum Geschwindigkeitsmaximum (Ma_{max}) im Bereich der

- 1 Engfläche 3 des von den beiden Schaufeln gebildeten Strömungskanals verläuft und sich stromabwärts der Engfläche 3 in dem mit Pfeil gekennzeichneten Bereich 2 laminare Ablöseblasen ausbilden, in deren Bereich die 5 Grenzschicht turbulent wird. Im unteren Teil der Fig. 1 ist über der dimensionslos aufgetragenen Profillänge entlang der Oberfläche $x : l$ die Machzahl/der Schaufel 10 aufgetragen. Das Geschwindigkeitsmaximum liegt etwa im Bereich der Engfläche, d. h. bei etwa $x : l = 0,55$. Um nun die 10 Ausbildung großer verlustbehafteter Ablöseblasen zu vermeiden, sind, wie in Fig. 2 angedeutet, auf der Profiloberseite (Saugseite) der Schaufeln durchgehende, im wesentlichen über die ganze Profiltiefe reichende sägezahnartig gezackte Störkanten 20 angeordnet.
- 15 Sowohl die Leitschaufeln als auch die Laufschaufeln eines um die Achse 8 rotierenden Turbinenläufers 9 sind mit Störkanten versehen. Die in der Zeichenebene nicht sichtbaren Störkanten der Leitschaufeln sind 20 unterbrochen gezeichnet. Die Strömungsrichtung durch das Gitter ist in sämtlichen Figuren mit einem Pfeil w angegeben.
- Es hat sich gezeigt, daß die geringsten Profilverluste 25 dann erreicht werden, wenn die Störkanten 0,01 bis 0,1 l (l = Länge der Profilsehne der Schaufel) stromabwärts des Geschwindigkeitsmaximums auf der Saugseite der Schaufel positioniert sind.
- 30 Wie sich aus dem in Fig. 3 dargestellten Teilquerschnitt einer Laufschaufel 10 ergibt, wird die Störkante bei dieser ersten Ausführungsform der Erfindung durch ein auf der Profiloberfläche der Schaufel befestigtes Band 15 gebildet. Das Band 15 kann aus einer ebenen Blechplatte
- 35

1 ausgeschnitten sein und durch Schweißen auf der Profil-
oberfläche der Schaufel befestigt sein. Die Höhe des
Bandes 15 und damit die Höhe der Störkante 20 über der
Profiloberfläche 12 ist mit k bezeichnet. Die übrige
5 geometrische Ausbildung des Bandes 15 ist in zwei alter-
nativen Ausführungsformen in Fig. 4a und Fig. 4b darge-
stellt. Die beiden Ausführungsformen nach Fig. 4a und
Fig. 4b unterscheiden sich dadurch, daß bei der Aus-
führung nach Fig. 4a jeweils ^(stromauf liegend) der Zahnkopf 21 des Säge-
10 zahnprofils abgerundet und der Zahngrund 22 spitz ausge-
bildet ist, wogegen bei der Ausführungsform nach Fig. 4b
der Zahnkopf 21 einen spitzen Scheitel ausbildet und
der Zahngrund 22 abgerundet ist. Die Teilung t des Säge-
zahnprofils soll 0,05 bis 0,15 l betragen. Der Öffnungs-
15 winkel α des Sägezahnprofils liegt beim gezeigten Aus-
führungsbeispiel bei 90° . Die Breite b des Bandes soll
etwa 0,01 bis 0,03 l sein. Die Störkante 20, d. h. die
der ankommenden Strömung w entgegengerichtete obere Kante
des Bandes 15 soll scharfkantig ausgebildet sein. Dies
20 gilt auch für die in den Fig. 5, 8, 10 und 12 dargestell-
ten Ausführungsformen von Störkanten. Anstelle der in
Fig. 4a und Fig. 4b gezeigten abwechselnd am Zahnkopf
und am Zahngrund abgerundeten Störkanten sind auch Aus-
führungsformen möglich, die sowohl am Zahnkopf als auch
25 am Zahngrund abgerundet sind oder an beiden Stellen spitz
zulaufen.

Für eine entsprechend den Fig. 2 bis 4 gestaltete Nieder-
druckturbinenschaufel eines Gasturbinenstrahltrieb-
werks mit einer Profilsehnennlänge (l = 35 mm) ergab
30 sich bei einer Flugmachzahl $Ma = 0,8$ in 10,7 km Höhe,
d. h. bei einer Reynoldszahl $Re_2 \approx 100\,000$ erfindungsgemäß
eine Höhe k von 0,06 bis 0,12 mm. Vergleichsversuche er-
gaben, daß sich bei einem entsprechend ausgerüsteten
35 Strahltriebwerk der Treibstoffverbrauch im

- 1 Reiseflug, der bekanntlich den längsten Teil einer Flugmission für Verkehrsflugzeuge ausmacht, um ca. 1 % senken lässt.
- 5 In den Fig. 5 bis 7 ist eine zweite grundlegende Störkantenausbildung offenbart. Wie der Teilquerschnitt durch eine Schaufel gemäß Fig. 5 zeigt, ist bei dieser Ausführungsform die Störkante 30 die freiliegende Kante einer von der Profiloberfläche 12 ausgebildeten in Strömungsrichtung vorspringenden Stufe. Eine solche Ausbildung der Störkante ist nur für die Neufertigung einer Schaufel geeignet. Wie sich aus der Draufsicht gemäß Fig. 6 und aus dem Schrägbild einer entsprechend ausgebildeten Schaufel gemäß Fig. 7 ergibt, sind die Köpfe des Sägezahnprofils jeweils spitz ausgebildet, während der Grundbereich abgerundet ist. Die Teilung t und der Öffnungswinkel α liegen in derselben Größenordnung wie im Zusammenhang mit der Ausführungsform nach den Fig. 3 und 4 beschrieben.
- 10 20 In den Fig. 8 und 9 ist eine Alternative zu der Ausführungsform nach den Fig. 5 bis 7 gezeigt, bei der ebenfalls eine gestufte Profiloberfläche 12 vorgesehen ist, im Unterschied zu der Ausbildung nach den Fig. 5 bis 7 jedoch die Störkante 40 die freiliegende Kante einer in Strömungsrichtung (w) zurückspringenden Stufe ist.

Auch bei der Ausführungsform nach den Fig. 8 und 9 ist der Zahngrund 41 des Sägezahnprofils abgerundet, während der Zahnkopf 42 einen spitzen Scheitel ausbildet.

- 30 35 Eine weitere grundlegende Störkantenausbildung ist in den Fig. 10 bis 12 dargestellt. Bei dieser Ausführung entsteht die Störkante durch Einsenken einer Stufe in die Profiloberfläche 12 der Schaufel 10. Die Einsenkung erfolgt dabei konisch unter einem Neigungswinkel β der zwischen 3° und 6° gegen die Schaufeloberfläche 12 verläuft.

- 1 Der Übergang von der Schaufeloberfläche 12 zur Senke soll dabei stetig erfolgen. Alternativ kann die Störkante durch eine der Strömung entgegengerichtete Stufe gebildet sein (Störkante 50), wie es in Fig. 10 gezeigt ist oder es
- 5 kann die Störkante bezogen auf die Strömungsrichtung w
stromabwärts gerichtet sein (Störkante 60), wie es in
Fig. 12 dargestellt ist. Die geometrische Ausbildung des
Sägezahnprofils erfolgt in entsprechender Weise wie bei
den Störkantenausbildungen in den Fig. 3 bis 9, wobei
10 eine Ausführung mit gerundetem Zahnkopf und Zahngrund
gemäß Fig. 11 bevorzugt ist.

15

20

25

30

35

1 ba/fr

MTU MOTOREN- UND TURBINEN-UNION
MÜNCHEN GMBH

5

P a t e n t a n s p r ü c h e

1. Axial durchströmtes Schaufelgitter einer mit Gas oder Dampf betriebenen Turbine, dessen Schaufelprofile so ausgebildet sind, daß die Strömung entlang des größten Teils der saugseitigen Profiloberfläche (Unterdruckseite), bis zu einem Geschwindigkeitsmaximum im Bereich der Kanalengfläche beschleunigt und stromab davon bis zur Profilhinterkante verzögert wird, so daß die Profilgrenzschicht über den Großteil der saugseitigen Profilänge laminar ist (Laminarprofil), dadurch gekennzeichnet, daß, wie für Turbulenzprofile bekannt, stromabwärts des Geschwindigkeitsmaximums auf der Saugseite (Profiloberseite) (11) im Bereich der verzögerten Strömung die Schaufeln (10) eine durchgehende, im wesentlichen über die ganze Schaufelhöhe (H) reichende Störkante aufweisen, daß die Störkante in einer Tangentialebene zur Profiloberfläche (12) sägezahnartig profiliert ist und daß die Störkante in der Profiloberfläche (12) selbst oder nur in solch geringer Höhe über der Profiloberfläche (12) liegt, daß Auswirkungen auf die Hauptströmung durch Querschnittsänderung des Kanals ausgeschlossen sind.
- 30 2. Schaufelgitter nach Anspruch 1, dadurch gekennzeichnet, daß die Störkante (20) von einem auf der Profiloberfläche (12) erhaben angeordneten Band (15) gebildet wird.

- 1 3. Schaufelgitter nach Anspruch 1, dadurch gekennzeichnet,
daß die Störkante (30) die freiliegende Kante einer von
der Profiloberfläche (12) ausgebildeten in Strömungs-
richtung vorspringenden Stufe ist.
- 5 4. Schaufelgitter nach den Ansprüchen 1 bis 3, dadurch ge-
kennzeichnet, daß die Höhe (k) der Störkante Werte in
einem Bereich aufweist, der abhängig von der Impuls-
verlustdicke δ_2 ^{saugseitigen} der Grenzschicht an einer Stelle un-
mittelbar stromaufwärts vor der Störkante (20, 30)
10 und der für diese Stelle aus der Höhe (k), der Ge-
schwindigkeit im Wandabstand (k) und der Viskosität
des Fluids gebildeten Reynoldszahl Re_k bestimmt
wird, wobei für $50 < Re_k < 200$ gelten soll $1,5 < k/\delta_2 < 3,5$
- 15
$$\delta_2 = \frac{1}{U^2} \cdot \int u (U-u) dy$$

y = Wandabstandskoordinate
u = f(y) = Geschwindigkeitskomponente tangential
zur Profiloberfläche
U = Geschwindigkeit in der durch Reibung nicht
20 gestörten Stromung
$$Re_k = \frac{u_k \cdot k}{\nu_k}$$

 ν_k = kinematische Zähigkeit des Fluids an der Stelle k.
- 25 5. Schaufelgitter nach Anspruch 1, dadurch gekennzeichnet,
daß die Störkante (40) die freiliegende Kante einer von
der Profiloberfläche (12) ausgebildeten in Strömungs-
richtung zurückspringenden Stufe ist.
- 30 6. Schaufelgitter nach Anspruch 1, dadurch gekennzeichnet,
daß die Störkante durch eine in die Profiloberfläche (12)
eingesenkte Stufe gebildet wird.
- 35 7. Schaufelgitter nach den Ansprüchen 5 und 6, dadurch ge-
kennzeichnet, daß die Höhe (k) der Stufe in der Profil-

- 1 Oberfläche Werte in einem Bereich aufweist, der abhängig von der Impulsverlustdicke δ_2 der Grenzschicht an einer Stelle unmittelbar stromaufwärts vor der Störkante (40, 50, 60) und der für diese Stelle aus der Höhe (k) der Geschwindigkeit im Wandabstand (k) und der Viskosität des Fluids gebildeten Reynoldszahl Re_k bestimmt wird, wobei für $200 < Re_k < 500$ gelten soll $2 < k/\delta_2 < 4,5$ (Definition der Funktionsgrößen wie Anspruch 5).
- 5 der Geschwindigkeit im Wandabstand (k) und der Viskosität des Fluids gebildeten Reynoldszahl Re_k bestimmt wird, wobei für $200 < Re_k < 500$ gelten soll $2 < k/\delta_2 < 4,5$ (Definition der Funktionsgrößen wie Anspruch 5).
- 10 8. Schaufelgitter nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Störkante (20, 30, 40, 50, 60) scharfkantig ausgebildet ist.
- 15 9. Schaufelgitter nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß das Sägezahnprofil der Störkante sowohl am Zahnkopf als auch am Zahngrund spitz ausgebildet ist.
- 20 10. Schaufelgitter nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß das Sägezahnprofil der Störkante sowohl am Zahnkopf als auch am Zahngrund abgerundet ist.
- 25 11. Schaufelgitter nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß das Sägezahnprofil der Störkante abwechselnd am Zahnkopf und am Zahngrund spitz und abgerundet ausgebildet ist.
- 30 12. Schaufelgitter nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß das Sägezahnprofil der Störkante (20, 30, 40, 50, 60) einen Öffnungswinkel α von 45° bis 120° und eine Teilung (t) von 5 % bis 15 % der Profilsehnenlänge (l) aufweist.
- 35 13. Schaufelgitter nach den Ansprüchen 3, 5 und 8 bis 12, dadurch gekennzeichnet, daß die Breite b des Störbandes, normal zur Störkante gemessen, 0,05 bis 0,1 l beträgt.

- 4 -

- 1 14. Schaufelgitter nach den Ansprüchen 7 bis 13, dadurch gekennzeichnet, daß die die Störkante (50, 60) bildende Senke mit einem Neigungswinkel β von 3 bis 6° gegen die Schaufeloberfläche (12) verläuft.
- 5 15. Verfahren zur Herstellung einer Schaufel für ein Schaufelgitter nach den Ansprüchen 3, 5 und 8 bis 14, dadurch gekennzeichnet, daß in einem 1. Verfahrensschritt das mit dem Sägezahnprofil versehene Band vorzugsweise durch Drahterodieren aus einer Blechplatte ausgeschnitten wird und in einem 2. Verfahrensschritt auf die Schaufeloberfläche vorzugsweise durch Schweißen aufgebracht wird.
- 10 16. Nachrüstung einer Schaufel mit glatter Oberfläche für ein Schaufelgitter nach den Ansprüchen 3, 5 und 8 bis 13, gekennzeichnet durch das Aufbringen des Störbandes mittels des Maskenspritz- oder Aufdampfverfahrens.
- 15 17. Nachrüstung einer Schaufel mit glatter Oberfläche für ein Schaufelgitter nach den Ansprüchen 3, 5 und 8 bis 13, gekennzeichnet durch das Aufbringen des Störbandes mittels einer Lötfolie.
- 20 18. Nachrüstung einer Schaufel mit glatter Oberfläche für ein Schaufelgitter nach den Ansprüchen 4 bis 13 und 15, gekennzeichnet durch Anwendung des elektrochemischen oder funkenerosiven Senkens.
- 25
- 30
- 35 ESP-733

0132638

Fig. 1

Fig. 2

Fig. 3

Fig. 4

3/5

Fig. 5

Ansicht VI

Fig. 6

Fig. 7

Ansicht IX

Ansicht XI

