

PIRIS: Modelo de inteligencia artificial físicamente informado para simular adsorción a nanoescala

Juan Sebastian Hernández González

Director: Elisabeth Restrepo-Parra, Ph.D. **Co-Director**: Andrés Marino Álvarez-Meza, Ph.D.

Octubre 9, 2025

- 1 Motivación
- 2 Problema
- 3 Estado del Arte
- 4 Propuesta
- 5 Resultados
- 6 Conclusiones

Motivación

La Crisis Global del Agua

- La contaminación del agua por metales pesados es una amenaza ambiental y sanitaria crítica a nivel mundial Jia et al. [2024].
- La adsorción sobre nanoestructuras se perfila como una de las alternativas más prometedoras para la remediación Adegoke et al. [2023].

Niveles de contaminación por metales pesados en fuentes hídricas Kumar et al. [2023].

Motivación Problema Estado del Arte Propuesta Resultados Conclusiones References

Motivación: El Proceso de Adsorción

El adsorbente captura al adsorbato llevando a la purificación del Agua

Motivación

El Desafío Computacional

- Para optimizar este proceso, es fundamental el descubrimiento y diseño de nuevos nanomateriales Bamidele et al. [2022].
- La simulación computacional es clave para navegar el panorama molecular de la adsorción, predecir las configuraciones más estables y la energía de adsorción Salahshoori et al. [2024].

Creciente interés en la investigación con IA Vergara et al. [2024].

- 1 Motivación
- 2 Problema
- 3 Estado del Arte
- 4 Propuesta
- 5 Resultados
- 6 Conclusiones

Paradigmas de Simulación de Materiales

El enfoque físico garantiza precisión a costa de un alto coste computacional. La IA busca acelerar el proceso, pero introduce dependencia a los datos.

Planteamiento del Problema

Estos paradigmas revelan cuatro barreras fundamentales a las que se enfrenta la simulación de materiales:

1. Escalabilidad Computacional

Los métodos precisos son demasiado lentos para el cribado de materiales a gran escala Hine et al. [2009].

3. Exploración Energética

La búsqueda del estado de mínima energía es compleja, con riesgo de quedar atrapado en mínimos locales subóptimos Liang et al. [2025].

2. Dependencia de Datos

Los modelos de IA supervisados requieren de grandes bases de datos que son escasas y limitan la generalización Bamidele et al. [2022].

4. Interpretabilidad Física

Los modelos de IA a menudo operan como "cajas negras", sin ofrecer una justificación física para sus predicciones Bamidele et al. [2022].

- 1 Motivación
- 2 Problema
- 3 Estado del Arte
- 4 Propuesta
- 5 Resultados
- 6 Conclusiones

Estado del Arte: Density-Functional Theory

DFT es la herramienta de referencia para el cálculo de propiedades electrónicas a partir de primeros principios Hine et al. [2009].

Su idea central es reemplazar la compleja función de onda de N-cuerpos por la densidad electrónica, $n(\mathbf{r})$, resolviendo las ecuaciones de Kohn-Sham:

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{eff}}(\mathbf{r}) \right] \psi_i(\mathbf{r}) = \epsilon_i \psi_i(\mathbf{r})$$
$$n(\mathbf{r}) = \sum_i^N |\psi_i(\mathbf{r})|^2$$

La Barrera de la Escalabilidad

A pesar de su precisión, el coste computacional de DFT escala con el cubo del número de átomos $(O(N^3))$, lo que lo hace inviable para el cribado de materiales a gran escala Hine et al. [2009].

Estado del Arte: Density-Functional Theory

Figure 1: El tiempo de cómputo en DFT crece drásticamente con el tamaño del sistema, limitando su aplicabilidad. Adaptado de Hine et al. (2009).

Estado del Arte: El panorama de la IA

- 1 Motivación
- 2 Problema
- 3 Estado del Arte
- 4 Propuesta
- 5 Resultados
- 6 Conclusiones

Propuesta: El Framework PIRIS

Propuesta: El Hamiltoniano del Sistema

La optimización se guía por un Hamiltoniano que combina energía física y un regularizador de información.

$$\mathcal{L}(\mathbf{r}) = \underbrace{\mathcal{H}(\mathbf{r})}_{\text{Interacciones F\'{s}icas}} + \underbrace{\mathcal{PRI}(\mathbf{r})}_{\text{Regularizador de Informaci\'{o}n}}$$

Componente Físico (\mathcal{H})

- Lennard-Jones: Para fuerzas de corto alcance.
- Coulomb: Para interacciones de largo alcance.

Componente de Información (\mathcal{PRI})

- Guía hacia configuraciones diversas.
- Penaliza agrupamiento.

Propuesta: Optimización Inteligente

K-Means++

- Selecciona un conjunto de puntos de partida diversos y bien distribuidos sobre la superficie.
- Asegura una exploración más completa del paisaje energético.

Optimización Bayesiana

- Utiliza modelos probabilísticos para seleccionar los puntos más prometedores en cada iteración.
- Reduce el número de evaluaciones necesarias, acelerando la optimización.

- 1 Motivación
- 2 Problema
- 3 Estado del Arte
- 4 Propuesta
- 5 Resultados
- 6 Conclusiones

Resultados: Adsorción sobre ZnO

Figure 2: Estado Inicial: Ión de Ni posicionado sobre la superficie.

Figure 3: Estado Final: El ión encuentra un sitio de mínima energía.

Resultados: Escalabilidad y Estabilidad

Complejidad Computacional

El tiempo de cómputo de PIRIS permanece casi constante (O(1)), en contraste con el escalado $O(N^3)$ de DFT.

Estabilidad del Modelo

La predicción de energía es estable y no depende del tamaño del sistema, garantizando resultados consistentes.

Validación y Limitaciones Actuales

Contexto: Comparamos nuestra energía de adsorción predicha con los resultados de DFT reportados para un sistema similar de Ni sobre ZnO Mashhadzadeh et al. [2018].

Observación

Nuestros resultados confirman la existencia de un sitio de adsorción estable, cualitativamente similar al reportado.

Limitación y Hallazgo Clave

La magnitud de la energía calculada difiere de los resultados de DFT. Esto es esperado y demuestra que, si bien el framework es robusto, la precisión actual está limitada por la simplicidad del Hamiltoniano clásico utilizado.

- 1 Motivación
- 2 Problema
- 3 Estado del Arte
- 4 Propuesta
- 5 Resultados
- 6 Conclusiones

Conclusiones

Contribuciones Clave de PIRIS

- Escalable y Generalizable: Demuestra una complejidad casi constante (O(1)) y elimina la necesidad de grandes bases de datos, permitiendo el estudio de una amplia gama de materiales.
- Interpretable Físicamente: A diferencia de los modelos de "caja negra", cada resultado se deriva directamente de un Hamiltoniano físico, garantizando la explicabilidad.
- Exploración Robusta: El flujo de optimización inteligente (K-Means++ y Bayesiana) aborda el problema de los mínimos locales, explorando sistemáticamente el espacio de soluciones.

Trabajo Futuro y Visión

Refinar la Precisión

Mejorar la precisión cuantitativa del modelo.

Incorporar términos más sofisticados en el Hamiltoniano (e.g., polarización, efectos de solvatación) para capturar la física con mayor fidelidad.

Hibridación con Deep Learning

Brindar interpretabilidad a modelos poderosos.

Usar PIRIS para inyectar interpretabilidad o generalización en arquitecturas potentes como los Transformers Xiao et al. [2025].

Referencias I

- Z. Jia, A. Cai, R. Li, X. Wang, and Y. Liu. Knowledge map and hotspot analysis in source appointment of heavy metals from 1994 to 2022: a scientometric review. Frontiers in Environmental Science, 12, 2024. doi: 10.3389/fenvs.2024.1443633.
- K. A. Adegoke, S. O. Giwa, O. R. Adegoke, and N. W. Maxakato. Bibliometric evaluation of nanoadsorbents for wastewater treatment and way forward in nanotechnology for clean water sustainability. *Scientific African*, 21:e01753, 2023. doi: 10.1016/j.sciaf.2023.e01753.
- Amit Kumar, Vinod Kumar, Shevita Pandita, Sumit Singh, Renu Bhardwaj, Memet Varol, and Jesus Rodrigo-Comino. A global meta-analysis of toxic metals in continental surface water bodies. *Journal of Environmental Chemical Engineering*, 11(3):109964, 2023. doi: 10.1016/j.jece.2023.109964.
- Emmanuel Bamidele, Olayinka S. Akande, A. Olorunnisola, and A. Oladipo. Discovery and prediction capabilities in metal-based nanomaterials: An overview of the application of machine learning techniques and some recent advances. *Advanced Engineering Informatics*, 54:101783, 2022.
- Iman Salahshoori, Paulo A.S. Marcos, M.A.L. Nobre, and A. Yazdanbakhsh. Navigating the molecular landscape of environmental science and heavy metal removal: A simulation-based approach. *Journal of Molecular Liquids*, page 124116, 2024.

Referencias II

- Diego Vergara, Georgios Lampropoulos, Pablo Fernández-Arias, and Álvaro Antón-Sancho. Artificial intelligence reinventing materials engineering: A bibliometric review. Applied Sciences, 14(18), 2024. doi: 10.3390/app14188143.
- N. D. M. Hine, P. D. Haynes, A. A. Mostofi, C.-K. Skylaris, and M. C. Payne. Linear-scaling density-functional theory with tens of thousands of atoms: Expanding the scope and scale of calculations with onetep. *Computer Physics Communications*, 180(6):1041–1053, 2009. doi: 10.1016/j.cpc.2008.12.023.
- J. Liang, Q. Li, H. Han, and Y. Fu. Parallel software design of large-scale diamond-structured crystals molecular dynamics simulation. Future Generation Computer Systems, 166:107694, 2025. doi: 10.1016/j.future.2024.107694.
- S. Zhao, L. Guo, C. Xu, Q. Wang, J. Park, and L. Zhou. Machine learning-based prediction and experimental validation of heavy metal adsorption capacity of bentonite. *Science of The Total Environment*, 927:171986, 2024. doi: 10.1016/j.scitotenv.2024.171986.
- Z. H. Jaffari, A. Abbas, C.-M. Kim, J. Shin, J. Kwak, C. Son, Y.-G. Lee, S. Kim, K. Chon, and K. H. Cho. Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents. *Journal of Hazardous Materials*, 462:132773, 2024. doi: 10.1016/j.jhazmat.2023.132773.

Referencias III

- Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In *Advances in Neural Information Processing Systems*, volume 32, 2019.
- Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.
- A. H. Mashhadzadeh, M. Fathalian, and M. G. Ahangari. Dft study of ni, cu, cd and ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide bulk. *Materials Chemistry and Physics*, 219:319–327, 2018. doi: 10.1016/j.matchemphys.2018.09.016.
- Penghao Xiao, Yuanbin Liu, Ata Madanchi, Andy S. Anker, Lena Sim, et al. A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks. *Nature Communications*, 16(1):1–11, 2025. doi: 10.1038/s41467-025-58499-7.