

Student Research Paper Critical clearing time of synchronous generators

Author: B. Eng. Maximilian Köhler

23176975

Supervisor: M. Sc. Ilya Burlakin

Submission date: March 31, 2024

Todo list

Insert some fancy introduction	1
SMIB model with double OHL; different faults: near generator (both lines vs. one	
line not working) and far away	2
Input of basic knowledge for system modelling; Maybe supplementary knowledge	3
Comment [MK1]: This is a test comment. I'm wirting what I think	3

Contents

1	Intr	oduction	1			
2	Fundamentals					
	2.1	Basics synchronous generators	3			
	2.2	System stability esp. transient context	4			
	2.3	Numerical methods for TDSs and system modeling	4			
	2.4	Events harming the system stability	4			
3	Nun	nerical modelling	5			
	3.1	Algorithm and functional structure	5			
	3.2	Implementation of functions and dependencies	5			
	3.3	Implementation of numerical solvers	5			
4	Rest	ults	6			
	4.1	Analytical results	6			
	4.2	Numerical results	6			
5	Disc	cussion	7			
	5.1	Analytical vs. numerical	7			
	5.2	Single machine vs. network models	7			
6	Sun	nmary and outlook	8			
Bi	bliog	raphy	IX			
Αr	pend	lix	Α			

1 Introduction

Insert some fancy introduction

- 1 Introduction (1 page)
- 2 State-of-the-art (\sim 4 pages)
 - 2.1 Basics synchronous generators
 - -> swing-equations
 - 2.2 System stability esp. transient context
 - -> rotor angle stability, **derivation of EAC**, basic assessment models (single machine infinite bus, see [1])
 - 2.3 Numerical methods for TDSs and system modelling
 - -> solving second order ODEs (explicit)
 - 2.4 Events harming the system stability
 - -> **faults,** load-changes, effects of electrical networks (esp. generator networks) vs. single machine systems
- 3 Numerical modeling (\sim 5 pages)
 - 3.1 (Object relations and classes)
 - 3.2 Algorithm and functional structure
 - 3.3 Implementation of functions and dependencies
 - 3.4 Implementation of numerical solvers
- 4 Results (\sim 3 pages)
 - 4.1 Analytical results
 - 4.2 Numerical results
- 5 Discussion (\sim 2 pages)
 - 5.1 Numerical vs. analytical
 - 5.2 (Single machine vs. network models)
 - 5.3 ... (dependent on time and outcomes)
- 6 Summary and outlook (1 page)

Total amount \sim 16 pages (without appendix and supplementary pages)

Bullet points for the thesis from Ilya:

- Swing equation of synchronous generators
- Solving the Swing equation with the help of Python -> Solving of second order ODEs
- Equal-area criterion -> Derivation of the equations
- Simulation of a fault -> applying the equal-area criteria with the help of Python.
- Comparison between analytical and (numerical) simulation results

Das ist ein Testkommentar.

Introduction via [2] and other standard literature like [1], [3]–[6]. Need for understanding of Transient stability and therefore critical pole angle and fault clearing time assessment: Running and maintaining the electrical grid; Adding virtual inertia in FACTs and HVDC; Better and faster predicting, due to shorter (critical) fault clearing times; .

Figure 1.1: Representative circuit of a single machine infinite bus (SMIB) model with pole wheel voltage $E_{\rm p} \angle$ and infinite bus bar (IBB) voltage $E_{\rm ibb} \angle 0^{\circ}$

SMIB model with double OHL; different faults: near generator (both lines vs. one line not working) and far away

2 Fundamentals

Input of basic knowledge for system modelling; Maybe supplementary knowledge

General sources in terms of standard literature: [1], [3]–[5]

Figure 2.1: A plot from python

2.1 Basics synchronous generators

- Swing equations
- Characteristics of a synchronous generator
- types of SG's

Comment [MK1]: This is a test comment. I'm wirting what I think.

2.2 System stability esp. transient context

- What is to be analyzed? And why? -> different stability analysis
- rotor angle stability,
- derivation of EAC,
- basic assessment models (single machine infinite bus, see [1])

2.3 Numerical methods for TDSs and system modeling

• solving second order ODEs (explicit)

2.4 Events harming the system stability

- fault types,
- load-changes
- effects of electrical networks (esp. generator networks) vs. single machine systems

3 Numerical modelling

3.1 Algorithm and functional structure

Describing the basic functionality and compartements of the model.

3.2 Implementation of functions and dependencies

Describing implementation into Python-code.

3.3 Implementation of numerical solvers

Describing the functionality and structure of (excplicit) numerical methods. Starting from Euler (basic) to a more complex but more reliable method (Heun, predictor-corrector, ...). Main focus: Implementation into Python.

Euler's method

Heun's method

Heun's method is implemented in Python. An example is provided in Listing A.2

4 Results

- 4.1 Analytical results
- 4.2 Numerical results

5 Discussion

- 5.1 Analytical vs. numerical
- 5.2 Single machine vs. network models

6 Summary and outlook

In der Zusammenfassung werden die Ergebnisse der Arbeit kurz zusammengefasst. Der Umfang beträgt ca. eine Seite.

Acronyms

IBB infinite bus bar

SMIB single machine infinite bus

TDS time domain solution

Bibliography

- [1] P. S. Kundur and O. P. Malik, *Power System Stability and Control*, Second edition. New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto: McGraw Hill, 2022, 948 pp., ISBN: 978-1-260-47354-4.
- [2] "Perspektiven der elektrischen Energieübertragung in Deutschland," VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V., Ed., Frankfurt am Main, Apr. 2019.
- [3] J. D. Glover, T. J. Overbye, and M. S. Sarma, "Power system analysis & design," Boston, MA, 2017.
- [4] J. Machowski, Z. Lubosny, J. W. Bialek, and J. R. Bumby, *Power System Dynamics: Stability and Control*, Third edition. Hoboken, NJ, USA: John Wiley, 2020, 1 p., ISBN: 978-1-119-52636-0 978-1-119-52638-4.
- [5] D. Oeding and B. R. Oswald, *Elektrische Kraftwerke und Netze*, 8. Auflage. Berlin [Heidelberg]: Springer Vieweg, 2016, 1107 pp., ISBN: 978-3-662-52702-3. DOI: 10.1007/978-3-662-52703-0.
- [6] A. J. Schwab, *Elektroenergiesysteme: smarte Stromversorgung im Zeitalter der Energiewende*, 7. Auflage. Berlin [Heidelberg]: Springer Vieweg, 2022, 871 pp., ISBN: 978-3-662-64773-8.

Appendix

A	A Code					
	A.1	Model functions	В			
	A.2	Model of GK	D			

A Code

A.1 Model functions

```
import matplotlib.pyplot as plt
2 | import numpy as np
4 def mag_and_angle_to_cmplx(mag, angle):
       return mag * np.exp(1j * angle)
   # Define the parameters of the system and starting values
8
   H_gen = 3.5
10 X_gen = 0.2
11 | X_ibb = 0.1
12 | X_line = 0.65
14 E_fd_gen = 1.075
15 \mid E_{fd_ibb} = 1.033
16 P_m_gen = 1998/2200
   # init states of variables
   omega_gen_init = 0 # init state
19
   delta_gen_init = np.deg2rad(45.9) # init state
20
   delta_ibb_init = np.deg2rad(-5.0) # init state
   v_bb_gen_init = mag_and_angle_to_cmplx(1.0, np.deg2rad(36.172))
24
   def init(t, fault, system_parameters, init_state):
       # -> wie global setzen?
27
       t_start, t_stop, timestep = t
       fault_type, fault_start = fault # fault_start, fault_end also neede for CCT-
            determination?
       fn, H_gen, X_gen, X_line, X_ibb, E_fd_gen, E_fd_ibb, P_m_gen =
29
            system_parameters
       omega_gen_init, delta_gen_init, delta_ibb_init, v_bb_gen_init = init_state
30
   def dynamic_system(init_state, t, fault_on):
33
       # global H_gen
34
       omega, delta = init_state
35
       d_{omega_dt} = 1 / (2 * H_{gen}) * (T_{m_gen(omega)} - P_{e_gen(delta, fault_on)})
       d_delta_dt = omega
       return [d_omega_dt, d_delta_dt]
40
42
   def T_m_gen(omega):
       # Assuming a simple linear function for demonstration purposes
       return P_m_gen / (1 + omega)
  def P_e_gen(delta, fault_on):
       if fault_on:
```

```
48
            y_{adm} = np.array([[(-1j / X_gen - 1j / X_line) + 1000000, 1j / X_line],[1j])
                 / X_line, -1j / X_line - 1j / X_ibb]])
49
        else:
            y_{adm} = np.array([[-1j / X_gen - 1j / X_line, 1j / X_line],[1j / X_line, -1])
50
                 j / X_line - 1j / X_ibb]])
        y_inv = np.linalg.inv(y_adm)
52
        i_inj_gen = mag_and_angle_to_cmplx(E_fd_gen, delta) / (1j * X_gen)
54
        i_inj_ibb = mag_and_angle_to_cmplx(E_fd_ibb, delta_ibb_init) / (1j * X_ibb)
55
57
        # Calculate voltages at the bus by multiplying the inverse of the admittance
             matrix with the current injections
        v_bb_gen = y_inv[0, 0] * i_inj_gen + y_inv[0, 1] * i_inj_ibb
58
        v_bb_ibb = y_inv[1, 0] * i_inj_gen + y_inv[1, 1] * i_inj_ibb
59
        E_gen_cmplx = mag_and_angle_to_cmplx(E_fd_gen, delta)
61
63
        P_e = (v_bb_gen * np.conj((E_gen_cmplx - v_bb_gen) / (1j * X_gen))).real
        return P_e
64
    def stability_eac():
66
        # under construction!!! Aufruf zu jedem Zeitpunkt...
67
        # Berechne die aktuelle Beschleunigungsfläche -> integrate(P_t - P_e_fault)
69
             _delta-0^delta-akt
        # Berechne aktuell übrige Beschleunigungsfläche -> integrate(P_e_normal - P_t)
70
             _delta-akt^delta-max
        # vergleichen -> aktuell noch stabiler Betrieb oder nicht
72
        area acc = 1
74
        area_dec = 1
75
        if area_acc < area_dec: # True: stable, False: NOT stable</pre>
77
            return True
78
        else:
79
            return False
80
    def solver_euler(t, fault_start):
83
        # Initialize the variables
        omega_gen = omega_gen_init
84
        delta_gen = delta_gen_init
85
86
        v_bb_gen = v_bb_gen_init
        # Define time. Here, the time step is 0.005 s and the simulation is 5 s long
        t = np.arange(0, 5, 0.005)
89
        x_result = []
90
92
        for timestep in t:
            # Those lines cause a short circuit at t = 1 s until t = 1.05 s
94
            if 1 <= timestep < 1.05:</pre>
95
96
                sc_on = True
97
            else:
98
                sc_on = False
            # Calculate the differences to the next step by executing the differential
100
                 equations at the current step
```

```
101
            domega_dt, ddelta_dt = differential(omega_gen, v_bb_gen, delta_gen)
102
            omega_gen = omega_gen + domega_dt * (t[1] - t[0])
            delta_gen = delta_gen + ddelta_dt * (t[1] - t[0])
103
            v_bb_gen = algebraic(delta_gen, sc_on)
105
107
            # Save the results, so they can be plotted later
            x_result.append(omega_gen)
        # Convert the results to a numpy arrays
110
        res = np.vstack(x_result)
111
        # return variables
113
        t_sim = 1 # time vector
114
        omega = 1 # TDS: omega
115
        delta = 1 # TDS: delta
116
        P_e = 1 \text{ # TDS: } P_e, \text{ terminal voltage at generator}
117
        P_m = [] # TDS: P_m, Mechanical power of generator; -> const?; Moment(Torque)
             ist nicht const, da abhängig von omega
119
        t_cc = 1 # max. time under fault for stable clearing
        delta_cc = 1 # max. angle delta when clearing of fault results in stable
120
             operation and no cut-off or runaway
        return t_sim, omega, delta, P_e, P_m, t_cc, delta_cc
    if __name__ == "__main__":
124
        print("Hello World!")
125
```

Listing A.1: Module containing all relevant functions of the SMIB model in Python

A.2 Model of GK

```
import matplotlib.pyplot as plt
   import numpy as np
   def mag_and_angle_to_cmplx(mag, angle):
       return mag * np.exp(1j * angle)
   fn = 60
11 | H_gen = 3.5
   X_gen = 0.2
   X_{ibb} = 0.1
  X_line = 0.65
   # Values are initialized from loadflow
17
  E_fd_gen = 1.075
   E_fd_ibb = 1.033
   P_m_gen = 1998/2200
21 omega_gen_init = 0
22 | delta_gen_init = np.deg2rad(45.9)
23 | delta_ibb_init = np.deg2rad(-5.0)
```

```
v_bb_gen_init = mag_and_angle_to_cmplx(1.0, np.deg2rad(36.172))
   def differential(omega, v_bb_gen, delta):
28
       # Calculate the electrical power extracted from the generator at its busbar.
29
       E_gen_cmplx = mag_and_angle_to_cmplx(E_fd_gen, delta)
       P_{egen} = (v_bb_gen * np.conj((E_gen_cmplx - v_bb_gen) / (1j * X_gen))).real
31
       # transform the constant mechanical energy into torque
33
       T_m_gen = P_m_gen / (1 + omega)
34
       # Differential equations of a generator according to Machowski
       domega_dt = 1 / (2 * H_gen) * (T_m_gen - P_e_gen)
       ddelta_dt = omega * 2 * np.pi * fn
38
       return domega_dt, ddelta_dt
40
   def algebraic(delta_gen, sc_on):
43
       # If the SC is on, the admittance matrix is different.
44
       # The SC on busbar 0 is expressed in the admittance matrix as a very large
45
            admittance (1000000) i.e. a very small impedance.
       if sc on:
47
           y_adm = np.array([[(-1j / X_gen - 1j / X_line) + 1000000, 1j / X_line],
                              [1j / X_line, -1j / X_line - 1j / X_ibb]])
48
49
       else:
           y_{adm} = np.array([[-1j / X_gen - 1j / X_line, 1j / X_line],
50
                              [1j / X_line, -1j / X_line - 1j / X_ibb]])
51
       # Calculate the inverse of the admittance matrix (Y^-1)
53
       y_inv = np.linalg.inv(y_adm)
54
       # Calculate current injections of the generator and the infinite busbar
56
       i_inj_gen = mag_and_angle_to_cmplx(E_fd_gen, delta_gen) / (1j * X_gen)
57
       i_inj_ibb = mag_and_angle_to_cmplx(E_fd_ibb, delta_ibb_init) / (1j * X_ibb)
58
       # Calculate voltages at the bus by multiplying the inverse of the admittance
60
            matrix with the current injections
       v_bb_gen = y_inv[0, 0] * i_inj_gen + y_inv[0, 1] * i_inj_ibb
       v_bb_ibb = y_inv[1, 0] * i_inj_gen + y_inv[1, 1] * i_inj_ibb
       return v_bb_gen
64
   def do_sim():
       # Initialize the variables
69
70
       omega_gen = omega_gen_init
       delta_gen = delta_gen_init
71
       v_bb_gen = v_bb_gen_init
       # Define time. Here, the time step is 0.005 s and the simulation is 5 s long
74
75
       t = np.arange(0, 5, 0.005)
76
       x_result = []
78
       for timestep in t:
           # Those lines cause a short circuit at t = 1 s until t = 1.05 s
80
```

```
81
             if 1 <= timestep < 1.05:</pre>
82
                 sc_on = True
             else:
                 sc_on = False
84
             # Calculate the initial guess for the next step by executing the
86
                  differential equations at the current step
             domega_dt_guess, ddelta_dt_guess = differential(omega_gen, v_bb_gen,
                  delta gen)
             omega_guess = omega_gen + domega_dt_guess * (t[1] - t[0])
88
             delta_guess = delta_gen + ddelta_dt_guess * (t[1] - t[0])
89
             v_bb_gen = algebraic(delta_guess, sc_on)
             # Calculate the differential equations with the initial guess
93
             {\tt domega\_dt\_guess2} \;,\;\; {\tt ddelta\_dt\_guess2} \; = \; {\tt differential} \; ({\tt omega\_guess} \;, \;\; {\tt v\_bb\_gen} \;,
                  delta_guess)
             domega_dt = (domega_dt_guess + domega_dt_guess2) / 2
             ddelta_dt = (ddelta_dt_guess + ddelta_dt_guess2) / 2
             omega_gen = omega_gen + domega_dt * (t[1] - t[0])
gg
             delta_gen = delta_gen + ddelta_dt * (t[1] - t[0])
100
102
            v_bb_gen = algebraic(delta_gen, sc_on)
105
             # Save the results, so they can be plotted later
             x_result.append(omega_gen)
106
        # Convert the results to a numpy array
108
        res = np.vstack(x_result)
109
110
        return t, res
    if __name__ == '__main__':
113
        # Here the simulation is executed and the timesteps and corresponding results
115
             are returned.
116
        # In this example, the results are omega, delta, e_q_t, e_d_t, e_q_st, e_d_st
              of the generator and the IBB
        t_sim, res = do_sim()
117
        # load the results from powerfactory for comparison
119
        delta_omega_pf = np.loadtxt('pictures/powerfactory_data.csv', skiprows=1,
             delimiter=',')
        # Plot the results
122
        plt.plot(t_sim, res[:, 0].real, label='delta_omega_gen_python')
123
        plt.plot(delta_omega_pf[:, 0], delta_omega_pf[:, 1] - 1, label='
124
             delta_omega_gen_powerfactory')
        plt.legend()
125
        plt.title('Reaction of a generator to a short circuit')
126
128
        plt.savefig('pictures/short_circuit_improved.png')
130
        plt.show()
```

Listing A.2: GK's SMIB model with Heun's integration method