

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja. FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

September, Examination 2020 1

COURSE CODE: MTH312

COURSE TITLE: Abstract Algebra II

CREDIT UNIT: 3

TIME ALLOWED: 3 Hours

INSTRUCTION: Answer Question Number One and Any Other Four Questions.

- 1.(a). Define the following:
- (i). Ring homomorphism (ii). Group Isomorphism (ii). Automorphism (6 marks)
- (b). (i). If $\emptyset: G \to H$ and $\theta: H \to K$ are two isomorphisms of groups, show that $\theta \circ \emptyset$ is an isomorphism of G onto K. (6 marks)
- (ii). Prove that any cyclic group is isomorphic to (Z, +) or $(Z_n, +)$. (6 marks)
- (c). Show that every subgroup of Z is normal in Z. (4 marks)
- 2. Consider the groups (R, +) and (C, +) and define $f: (C, +) \to (R, +)$ by f(x + iy) = x, the real part of x + iy.
 - (i) Show that f is a homomorphism. (8 marks)
 - (ii) Hence, find the Im f and Ker f. (4 marks)
- 3. (a). Show that (S_n, \circ) is non-commutative group for $n \ge 3$. (6 marks)
 - (b) Do the cycles (1 3) and (1 5 4) commute? Give reason for your answer. (6 marks)
- 4. (a). Define the following:
 - i. External direct product (3 marks)
 - ii. Internal direct product (3 marks)
 - (b). Let a group G be internal direct product of its subgroups H and K. Prove that:
 - i. Each $x \in G$ can be uniquely expressed as x = hk, where $h \in H, k \in K$; (3 marks)
 - ii. $hk = kh \forall h \in H, k \in K$. (3 marks)

4. (a). Define a ring for a non-empty set R.

(4 marks)

- (b). Consider the set $Z + iZ = \{m + in: m \text{ and } n \text{ are integers}\}$, where $i^2 = -1$. Verify that Z + iZ is a ring under addition and multiplication of complex number. (8 marks)
- **5**. (a). Define an ideal I of a ring R.

(2 marks)

- (b). (i). Let R be a ring and $a_1, a_2 \in R$, show that $Ra_1 + Ra_2 = \{x_1a_1 + x_1a_1 : x_1, x_2 \in R\}$ is an ideal of R. **(6 marks)**
 - (ii). Show that $\{\overline{0}, \overline{3}\}$ and $\{\overline{0}, \overline{2}, \overline{4}\}$ are proper ideals of Z_6 .

(4 marks)

- 6. (a). Define the following:
 - i. Sylow p-subgroup of *G*.

(3 marks)

ii. Simple group.

(3 marks)

(b). Show that every group of order 20 has a proper normal non-trivial subgroup. (6 marks)