6. Sea $A =$	$\begin{pmatrix} a & b \end{pmatrix}$ una mat	riz definida positiva.	Demostrar que:		
6. Sea $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ una matriz definida positiva. Demostrar que:					
a) $a > 0$ b) $c > 0$					
c) det(A	$) > 0^{-2}$				
d) b <	$\frac{a+c}{2}$				
² Sugerencia	: evaluar qué suc	ede con el vector x	=(-b,a) al calc	ular $x^tAx;$ o analizar l	a función $\phi(\lambda) = (1, \lambda)^t A(1, \lambda)$
a) b)					
X^TAX	$= (X_1, X_2).$	(ax,+bxz,	bx4 + CX2)	$= ax_1^2 + 2b$	$X_1X_2 + CX_2$
Como	A es da:	$x^TAx > 0$	∀ χ≠0.		
	ticular val				
CII PINI	I TOTAL VA	- For or			
		۲.			
· e =	= (1,0) ⇒	etAe = ezAez =	a > 0		ei Aej = aij
· e2	= (0,1) =>	ez Aez =	c > 0		
c)					
	0 - 12				
det(A)	$= ac - b^2$				
X = (-k), a) ≠ o	porque a :	> 0		
		1. 1. 1		$b^2 = \alpha(ac)$	- 6 ²)
T A			. 2 .		
$\times^{T}A\times$	> 0	\Rightarrow a(a			es dp
		=> ac-		a	> 0
		\Rightarrow det((A) > 0		

