A Smorgasbord of Expectation Shocks

Sonan Memon*

This version: September 2022

Abstract

I study a smorgasbord of various expectation shocks in two kinds of macroeconomic models. I present impulse response results for exogenous, temporary expectation shocks lasting for one period only *or* 4 periods, permanent exogenous shocks (long run shock) and a series of multiple positive and negative, temporary exogenous shocks within a long period. As a baseline, I use a simple, aggregate demand and supply framework with adaptive expectations. Later, I extend my results by using modern New Keynesian models with various choices of parameters, allowing for a deeper analysis. The results indicate blah.. monetary policy rule explains the variation in results etc etc etc¹.

Keywords: Smorgasbord of Inflation Expectation Shocks. Temporary, Permanent and Sequence of Temporary Expectation Shocks. Monetary Policy and Inflation Expectations. AD and AS Model. Expectation Shocks in New Keynesian Models.

JEL Classification:

^{*}Research Economist, PIDE, Islamabad. smemon@pide.org.pk

¹The replication code of this paper, using Python, R and Julia is available on my github page: https://github.com/sonanmemon

CONTENTS

1	1 Motivation					3
2	Aggregate Demand and Aggregate Supply Model				4	
	2.1 Building Blocks				 	4
	2.2 Long Run Equilibrium				 	4
	2.3 Parameters				 	5
	2.4 Dynamic AS and Dynamic AD Equations				 	5
3	3 Impulse Responses					6
4	New Keynesian Framework			16		
5	Conclusion			17		
6	Appendix				18	
R	References					19

1. MOTIVATION

2. AGGREGATE DEMAND AND AGGREGATE SUPPLY MODEL

blah blah blah

2.1. Building Blocks

Output Equation/Demand for Goods and Services:

$$Y_t = \bar{Y} - \alpha(r_t - \varrho) + \epsilon_t, \ \alpha > 0 \tag{1}$$

Fisher Equation:

$$r_t = i_t - \mathbb{E}_t \{ \pi_{t+1} \} \tag{2}$$

Philip's Curve:

$$\pi_t = i_t - \mathbb{E}_{t-1}\{\pi_t\} + \phi(Y_t - \bar{Y}) + v_t, \ \phi > 0 \tag{3}$$

Adaptive Expectations:

$$\mathbb{E}_t\{\pi_{t+1}\} = \pi_t + \eta_t, \ \forall t \tag{4}$$

Monetary Policy Rule:

$$i_t = \pi_t + \varrho + \theta_\pi (\pi_t - \pi^*) + \theta_Y (Y_t - \bar{Y}), \ \theta_\pi, \theta_Y > 0$$
 (5)

2.2. LONG RUN EQUILIBRIUM

$$Y_t = \bar{Y}$$
 $r_t = \varrho$
 $\pi_t = \pi^*$
 $\mathbb{E}_t \{ \pi_{t+1} \} = \pi^*$
 $i_t = \varrho + \pi^*$

2.3. PARAMETERS

Model Parameters					
$\bar{Y} = 50$	$\pi^* = 2$				
$\varrho=2$	$lpha = 1$ $ heta_Y = 0.3$				
$ heta_{\pi}=1$	$\theta_{\rm Y}=0.3$				
$\phi = 0.6$					

2.4. DYNAMIC AS AND DYNAMIC AD EQUATIONS

The dynamic AS curve is displayed in equation 6 below:

$$\pi_t = \pi_{t-1} + \eta_{t-1} + \phi(Y_t - \bar{Y}) + v_t \tag{6}$$

The dynamic AD curve is displayed in equation 7 below:

$$Y_t = \bar{Y} - \frac{\alpha \theta_{\pi}}{1 + \alpha \theta_{Y}} (\pi_t - \pi^*) + \frac{1}{1 + \alpha \theta_{Y}} \epsilon_t + \frac{\alpha}{1 + \alpha \theta_{Y}} \eta_t \tag{7}$$

In equilibrium, aggregate demand equals aggregate supply, which implies that:

$$\pi_t = \pi_{t-1} + \eta_{t-1} + \phi \left(\bar{Y} - \frac{\alpha \theta_{\pi}}{1 + \alpha \theta_{Y}} (\pi_t - \pi^*) + \frac{1}{1 + \alpha \theta_{Y}} \epsilon_t + \frac{\alpha}{1 + \alpha \theta_{Y}} \eta_t - \bar{Y} \right) + v_t$$

Some further simplification yields:

$$\pi_t \bigg(1 + \frac{\phi \times \alpha \times \theta_\pi}{1 + \alpha \theta_Y} \bigg) = \pi_{t-1} + \eta_{t-1} + \phi \bigg(\frac{\alpha \theta_\pi}{1 + \alpha \theta_Y} \times \pi^* + \frac{1}{1 + \alpha \theta_Y} \epsilon_t + \frac{\alpha}{1 + \alpha \theta_Y} \eta_t \bigg) + v_t$$

Using some further notation for the purposes of simplification and assuming that $v_t = 0$ (assuming no supply shocks), I derive the following equations (8 and 9) for inflation and output in equilibrium. These equations can be solved for equilibrium levels of π_t and Y_t in any period, given the shocks, exogenous parameters (defined in last section) and past values² of π_{t-1} and η_{t-1} . Thus, one can compute the impulse responses for any forward horizon, given any initial shock to either η_t (expectation shock) or ϵ_t (demand shock).

²This is a backward looking model.

For instance, let's assume that we were in the long run equilibrium (i.e $\pi_{t-1} = \pi^* = 2\%$, $\bar{Y} = 50$, $i^* = 4\%$ and $r^* = 2\%$) before a positive, exogenous and one period (temporary) expectation shock i.e $\eta_t = 1$ hits the economy during period 1. In this case, can compute the impulse responses for inflation and output (using 8 and 9), before computing them for nominal and real interest rates (using equations 10 and 11 after we have solved for π_t and Y_t). Figure 1 of section 3 below depicts the impulse responses (50 periods) for exactly such a one period expectation shock.

$$\pi_t = \frac{\pi_{t-1} + \eta_{t-1} + \gamma \times \pi^* + \theta \times \epsilon_t + \beta \eta_t}{\zeta}$$
 (8)

$$Y_t = \bar{Y} - \frac{\gamma}{\phi} \left(\pi_t - \pi^* \right) + \frac{\theta}{\phi} \epsilon_t + \frac{\beta}{\phi} \eta_t \tag{9}$$

$$i_t = \pi_t + \varrho + \theta_\pi (\pi_t - \pi^*) + \theta_Y (Y_t - \bar{Y}), \ \theta_\pi, \theta_Y > 0$$

$$\tag{10}$$

$$r_t = i_t - (\pi_t + \eta_t) \tag{11}$$

Note that
$$\zeta = \left(1 + \frac{\phi \times \alpha \times \theta_{\pi}}{1 + \alpha \theta_{Y}}\right)$$
, $\gamma = \left(\frac{\alpha \times \phi \times \theta_{\pi}}{1 + \alpha \theta_{Y}}\right)$, $\theta = \left(\frac{\phi}{1 + \alpha \theta_{Y}}\right)$, $\beta = \left(\frac{\phi \times \alpha}{1 + \alpha \theta_{Y}}\right)$.

3. IMPULSE RESPONSES

blah blah blah..

All of the graphs show responses to expectation shocks i.e various type of shocks to η_t .

Figure 1: Impulse Responses For 1 Period Shock

Figure 2: Impulse Responses For 4 Period Shock

Figure 3: Impulse Responses For 4 Period Shock and Output Preference

Figure 4: Impulse Responses For 4 Period Shock and $\phi = 0.95$

Figure 5: Impulse Responses For 4 Period Shock and $\phi = 0.05$

Figure 6: Impulse Responses For 4 Period Shock and $\alpha = 0.05$

Figure 7: Impulse Responses For 4 Period Shock and $\alpha = 4$

Figure 8: Impulse Responses For Permanent Shock

Figure 9: Impulse Responses For Series of 3 Temporary (4 Period Each) Shocks

4. NEW KEYNESIAN FRAMEWORK

5. Conclusion

6. APPENDIX

REFERENCES