#### Lecture 3: Some Advanced Tips for Stata

Yi Chen

ShanghaiTech University

2021

#### Outline

- (Advanced) Tips for Stata
- Nine Principles of Writing a Do-file Well
- More Programming Details

#### Outline

- (Advanced) Tips for Stata
- 2 Nine Principles of Writing a Do-file Well
- More Programming Details

#### Auto-save in Stata

- VERY IMPORTANT! Stata do-file editor does not have an auto-save feature.
  - Do-file Editor Edit Preference General "Always save before do/run"
  - That is why the cloud storage introduced in the last lecture can be helpful.
  - Note that it's still not auto-saving.
- If you are using other text editors (e.g., Sublime Text 3), also check out auto-save first!
- If you are moving from your old computer to a new computer, it is highly recommended to copy the external program. The default path is "C:\ado\plus"





## Using profile.do

 If you have a list of commands that you are SURE that you wish to run EVERYTIME when you run Stata, you can put the codes in a file named "profile.do" and put it in the Stata directory.

```
profile.do X

1 set type double
2 set more off, permanently
3
4 sysdir set PLUS "D:\Program Files\Stata 14\ado\plus"
```

- Detour: why double precision is important?
- Art of storage: no larger, no smaller

# **Useful Logical Function**

- inrange(z,a,b)
  - 1 if a < z < b; otherwise, 0
  - Preferable to  $z \ge a \& z \le b$  because:
    - Shorter and clearer
    - Easier to specify the alternative !inrange(z,a,b)
- inlist(z,a,b,...)
- missing(x1,x2,...,xn)
  - Very useful when you have multiple set of control variables.
  - Be careful! Some Stata commands use comma to separate variables, others use space.

# More Flexible Usages of foreach loop

While the usage of "forvalues" is generally fixed, the usage of "foreach" can be quite flexible:

- foreach *Iname* in *any\_list*
- foreach Iname of local Imacname
- foreach Iname of global gmacname
  - Do not put `' (or \$)
- foreach Iname of varlist varlist
  - varlist can be flexible, e.g. age-grade
- foreach *Iname* of numlist *numlist*
  - numlist can be flexible, e.g. 1 4/8 13(2)21 103

# Listing Multiple Variables

- sum age race married never\_married grade
- sum age-grade
  - Pay VERY attention that the order of the variables are the same.
- sum s\*
  - \* = multiple symbols
- sum ?a?e
  - ? = single symbol

Very powerful if combined with: foreach Iname of varlist varlist

# Why foreach + varlist can be useful?

| cd004_1_  | byte | %8.0g | cd004_1_  | How Often Do You Have Contact with Child 1  |
|-----------|------|-------|-----------|---------------------------------------------|
| cd004_2_  | byte | %8.0g | cd004_2_  | How Often Do You Have Contact with Child 2  |
| cd004_3_  | byte | %8.0g | cd004_3_  | How Often Do You Have Contact with Child 3  |
| cd004_4_  | byte | %8.0g | cd004_4_  | How Often Do You Have Contact with Child 4  |
| cd004_5_  | byte | %8.0g | cd004_5_  | How Often Do You Have Contact with Child 5  |
| cd004_6_  | byte | %8.0g | cd004_6_  | How Often Do You Have Contact with Child 6  |
| cd004_7_  | byte | %8.0g | cd004_7_  | How Often Do You Have Contact with Child 7  |
| cd004_8_  | byte | %8.0g | cd004_8_  | How Often Do You Have Contact with Child 8  |
| cd004_9_  | byte | %8.0g | cd004_9_  | How Often Do You Have Contact with Child 9  |
| cd004_10_ | byte | %8.0g | cd004_10_ |                                             |
|           |      |       |           | How Often Do You Have Contact with Child 10 |
| cd004_11_ | byte | %8.0g | cd004_11_ |                                             |
|           |      |       |           | How Often Do You Have Contact with Child 11 |
| cd004_12_ | byte | %8.0g | cd004_12_ |                                             |
|           |      |       |           | How Often Do You Have Contact with Child 12 |
| cd004 13  | byte | %8.0g | cd004 13  |                                             |
|           |      |       |           | How Often Do You Have Contact with Child 13 |
| cd004 14  | byte | %8.0g | cd004 14  |                                             |
|           |      |       |           | How Often Do You Have Contact with Child 14 |
| cd004 15  | byte | %8.0g | cd004 15  |                                             |
|           |      |       |           | How Often Do You Have Contact with Child 15 |
| cd004 16  | byte | %8.0g | cd004 16  |                                             |
|           |      |       |           | How Often Do You Have Contact with Child 16 |
| a001 w3s1 | byte | %8.0g | a001 w3   | Whom do You Live Together                   |
| _         | _    | -     | _         | =                                           |

# Why foreach + varlist can be useful?

```
a001 w3s1
                       %8.0q
                                 a001 w3
                                            Whom do You Live Together
               byte
a001 w3s2
                                 a001 w3
              byte
                      %8.0g
                                            Whom do You Live Together
a001 w3s3
              byte %8.0g
                                 a001 w3
                                          Whom do You Live Together
a001 w3s4
                                 a001 w3
              byte
                       %8.0g
                                            Whom do You Live Together
a001 w3s5
                      %8.0q
                                 a001_w3
                                            Whom do You Live Together
              byte
a001 w3s6
               byte
                       %8.0g
                                 a001 w3
                                            Whom do You Live Together
a001 w3 0s1
                       %8.0a
                                 a001 w3 0
              byte
```

Which Parents

## (Optional) Sublime Text 3 + Stata

- As previously mentioned, Stata's build-in do-file editor is essentially a text file editor.
- Stata is clearly not an expert in text editing. Therefore, you may wish to use a more professional text editor, e.g., Sublime Text 3.
- Search "Sublime Text 3" + "Stata" (Reading Material 3.1)
- Important features include:
  - External plugins (e.g., Stata Editor for Sublime Text 3)
  - Can also be used for other programs, e.g., LATEX, Matlab, R, Python.

## ST3 Examples

- Project management
- Stata
  - Auto-completion command/variable
  - @ Group operation
- ATEX
  - Auto-completion command/citation
  - Multiple selection
  - Useful tools

#### The Tradeoff—To Learn or Not?

- ST3 does not come at a free price
  - Lump-sum set-up cost (non-trivial)
  - Changes in user habits
- The margnial benefits are larger for more frequent/efficient users.
- Personal recommendation for beginners
  - Stick to Stata/LATEX themselves for now
  - Know the existence of ST3 (and other similar text editors), return to it when you want to pursue efficiency/convenience.

#### Outline

- (Advanced) Tips for Stata
- Nine Principles of Writing a Do-file Well
- More Programming Details

## Writing a Do-file "Well"

- One requirement for this course is to use a software "nicely." (Reading Material 3.2, 3.3)
- An extreme example:

#### 美程序员枪击4同事 竟因代码不写注释?



- In previous lectures, we already mentioned three principles:
  - Principle 1 Replication
  - Principle 2 Automation
  - Principle 3 Annotation

## Principle 4: Organization

- Each do file should have its own purpose. Don't put everything in a huge do-file.
  - In many cases, we don't start from the beginning. e.g., codes used for cleaning the data would mostly remain untouched during the analysis.
- Because you have multiple do-files, number them to indicate the order.
- Also, organize well WITHIN each do-file. So you can easily pin down the place where you wish to modify.

| →                 | t (E:) ▶ OneDrive ▶ Research ▶ Family | Planning ▶ do-file ▶ | •     | ₹ţ 搜索 do-file |  |
|-------------------|---------------------------------------|----------------------|-------|---------------|--|
| 文件(F) 编辑(E) 查看(V) | 工具(T) 帮助(H)                           |                      |       |               |  |
| 组织 ▼ 包含到库中 ▼      | 共享 ▼ 刻录 新建文件夹                         |                      |       |               |  |
| ☆ 收藏夹             | 名称                                    | 修改日期                 | 类型    | 大小            |  |
| ▶ 下载              | 晏 backup                              | 2017/9/23 15:39      | 文件夹   |               |  |
| ■ 桌面              | 📝 1_Data.do                           | 2017/5/2 16:44       | DO 文件 | 5 KB          |  |
| 3 最近访问的位置         | 2_Summary.do                          | 2017/7/24 14:46      | DO 文件 | 5 KB          |  |
| St. Dropbox       | 3_Regression.do                       | 2017/5/2 15:42       | DO 文件 | 7 KB          |  |
| ♠ OneDrive        | 4_QQ_Tradeoff.do                      | 2017/5/2 17:11       | DO 文件 | 5 KB          |  |
|                   | § 5_LateLongFew.do                    | 2017/5/4 15:59       | DO 文件 | 6 KB          |  |
| <b>声</b>          | 6_Mechanism_Underreport.do            | 2017/5/4 16:02       | DO 文件 | 4 KB          |  |
|                   | 7_Cultural_Revolution.do              | 2017/7/20 16:04      | DO 文件 | 11 KB         |  |
| ■ 暴风影视库           | 📝 master.do                           | 2017/7/24 14:16      | DO 文件 | 1 KB          |  |
| ₩ 视频 🗉            |                                       |                      |       |               |  |

# Principle 5: Use a log File

- A log file is basically a text file that records everything in the result window.
- In almost all Stata textbooks, they encourage using log file . . . without telling you why.
   capture log close
   log using mylog1.log, text replace
- One often claimed purpose is recording.
  - But we wish to do it in a more explicit way (e.g., save graphs/tables).
- The log file is more helpful for "comparison."
   global sysdate=c(current\_date)
   log using ``\$path1\lecture3\_\$sysdate.txt'', text replace

## Principle 6: Version Control

- Imagine what would happen if Word does not have an "undo" feature. An accidental "Enter" may ruin your life.
- Version control can be viewed as a global "undo" button: it provides a quick way to roll back changes you want to discard.
  - Recall the "Version History" feature in Dropbox.

| 名称                                                                    | 修改日期             | 类型           | 大小   |
|-----------------------------------------------------------------------|------------------|--------------|------|
| <ul><li>■ backup_20161026.zip</li><li>■ backup_20170329.zip</li></ul> | 2016/10/26 14:59 | 360压缩 ZIP 文件 | 5 KB |
|                                                                       | 2017/3/29 19:26  | 360压缩 ZIP 文件 | 9 KB |

- Another usage is for comparison purpose.
- There exist professional version control softwares.

# Principle 7: Portability

- Have a "master" file. Its purpose is to make the program portable across computers.
  - Different co-authors can work on their own computer simply by changing path in the master file, without making any change to the other do-files.
- Different computers can differ in
  - Stata version
  - Path
  - External programs

```
master.do X Lecture 2.do X Untitled.do X
      clear all
      version 14.1
 2
      set type double
      set more off, permanently
 5
      local platform = 1 /*1 = Desktop, 2 = Laptop */
      local install = 0
 7
 8
      *Desktop
10
    Fif ('platform' == 1) {
11
      global path1 "E:\OneDrive\Research\CEEE Preferential Policy\Data" /*Working Data
12
      global path2A "E:\Data Sets\CEEE\CCSS" /*Original Folder*/
13
      global path2B "E:\Data Sets\IPUMS\Census 2000" /*Original Folder*/
14
      global path3 "E:\OneDrive\Research\CEEE Preferential Policy\DoFile" /*Do-file Fe
15
      global path4 "E:\OneDrive\Research\CEEE Preferential Policy\Output" /*Output Fo:
16
                    "E:\OneDrive\Research\CEEE Preferential Policy\Data"
      cd
17
18
19
      *Laptop
20
    □if ('platform' == 2) {
21
      global path1 "D:\OneDrive\Research\CEEE Preferential Policy\Data" /*Working Data
22
      global path2A "C:\Data Sets\CEEE\CCSS" /*Original Folder*/
23
      global path2B "C:\Data Sets\IPUMS\Census 2000" /*Original Folder*/
24
      global path3 "D:\OneDrive\Research\CEEE Preferential Policy\DoFile" /*Do-file Fe
25
      global path4 "D:\OneDrive\Research\CEEE Preferential Policy\Output" /*Output Fo:
26
                     "D:\OneDrive\Research\CEEE Preferential Policy\Data"
      cd
27
28
29
    □ if ('install' == 1) {
30
      ssc install reghdfe
31
      ssc install winsor2
32
      ssc install estout
33
     L
34
```

## Principle 8: Readability

- Use space properly
  - "gen t = hours + minutes/60 + seconds/3600" looks better than "gen t=hours+minutes / 60+seconds / 3600"
- Use the comment.
- Don't make the line too long.
- Abstraction

Break complicated algebraic calculations into pieces. Programming languages have no objection to definitions like

```
gen percap_gdp_real = ///
       (consumption + govt_expenditures + exports - imports - taxes) * ///
       10^6 / (price_index * pop_thousands * 1000)
or far longer ones. But a human may find it easier to parse the following:
     gen gdp_millions_nominal = ///
       (consumption + govt_expenditures + exports - imports - taxes)
     gen gdp_total_real = gdp_millions * 10^6 / price_index
     gen pop_total = pop_thousands * 10^3
     gen gdp_percap_real = gdp_total_real / pop_total
```

# Principle 9: Efficiency (in Running Time)

- Pay attention to "slow" codes.
- Can we speed up the process?
  - e.g., regressions using large dataset such as census.
  - May consider reduce the data size by compress and by dropping redundant variables.
- Is it necessary to run those codes every time? (slow codes in a loop)

```
/* un-comment them if you want to re-define the drug category
***********
*Drug Name Matching 1: Perfect Match*
insheet using "$path1\FDA\Application.txt",clear
keep applno chemical type
gen NME = [chemical type == 1]
gen new drug = [chemical type <= 5]
tempfile temp
save 'temp', replace
insheet using "$path1\FDA\Product.txt".clear
keep applno drugname
duplicates drop
merge n:1 applno using 'temp'
keep if new drug==1
drop merge
```

#### Outline

- (Advanced) Tips for Stata
- 2 Nine Principles of Writing a Do-file Well
- More Programming Details

#### Scalar v.s. Local v.s. Global

We already know how to define and call a scalar/local/global.

#### Scalar v.s. Local:

- At the first glance, scalar seems to be a more convenient version of local
  - Note scalar can be used for both numbers and strings.
- The answer is quite surprising... We should try our best to avoid using scalar
  - The main problem of *scalar* is, the way of calling is exactly the same as a variable.
  - Don't be overconfident! Don't forget Stata allows for abbreviations.
     You could easily fall into the pitfall. (see the example in the do-file)

#### Local v.s. Global:

- Local is effective only during the execution of a do-file. Global is always effective unless Stata is closed.
- Global often results in unintended consequence.
- Nested global does not work so well. See the example in the do-file.

## Personal Recommendations about Scalar/Local/Global

- Use scalar only when the return value is a scalar
- Use global only for defining global environment and storing the variable list
  - Use different names for different variable lists, e.g., \$var\_regress1, \$var\_regress2, \$var\_iv
  - If you really wish to use global, avoid repeatedly defining the same global.
- Use local in all the other scenarios.

#### Tempfile

```
Forvalues y = 1980/2014 {
 use "$path2A\cepr march `y'.dta",clear
 replace incp all = incp all - incp int
 keep hhid year wgt age incp all
 keep if age>=25&age<=100
 tempfile year'y'
 save 'year'y'', replace
 use 'year1980',clear
\neg forvalues v = 1981/2014 {
 append using 'year'y''
 rename year YEAR
 merge n:1 YEAR using "$path1\CPI stata.dta", nogenerate
 replace incp all = incp all*100/CPI
 rename YEAR year
 drop CPI
 save "$path1A\CPS.dta", replace
```

#### Random Numbers

In Stata, there are two sets of functions related to random numbers.

- help statistical function calculates, PDF, CDF, and ICDF
- help random number generates a set of numbers that follow a certain distribution
- The second set of functions are used much more widely
  - e.g., generating a set of "placebo" shocks

#### **Pseudorandomness**

#### The concept of seed, set seed

- The machine generated random numbers are actually "pseudorandom" (read any textbook on numerical solution for details)
- From Wiki: "pseudorandom sequences typically exhibit statistical randomness while being generated by an entirely deterministic causal process."
- set seed in Stata is to guarantee the replicability. Everytime you run the code, you will get exactly the same sequence of "random" numbers.
  - One alternative is to store the random numbers in a separate file.

#### Matrix Basics

- Matrix is not the comparative advantage of Stata
  - Mainly used for creating your own program
  - Although Mata can do lots of matrix analysis, R and Matlab are more convenient alternatives.
- Usage 1: store information
  - mkmat, transits variables into matrix
  - symat, transits matrix into variables
- Usage 2: extract information
  - Many return values are stored as matrices, such as e(V). Sometime we
    wish to extract information from such matrices, such as
    variance-covariance matrix.

# One Way of Presenting Matrix



Table 1: Summary Statistics

|                                                           | All     | By R    | lesidence  | By      | Gender     |
|-----------------------------------------------------------|---------|---------|------------|---------|------------|
|                                                           |         | Urban   | Rural      | Male    | Female     |
| Basic Demographic Variables                               |         |         |            |         |            |
| Age                                                       | 9.86    | 10.17   | 9.75***    | 9.78    | 9.9500     |
| Male                                                      | 0.53    | 0.51    | 0.54***    |         |            |
| Urban                                                     | 0.26    |         |            | 0.25    | 0.27000    |
| Height (cm)                                               | 129.66  | 132.73  | 128.56***  | 130.21  | 129.05000  |
| Weight (kg)                                               | 30.68   | 32.75   | 29.93***   | 31.09   | 30.20000   |
| Health-Indicating Variables                               |         |         |            |         |            |
| Height for age z-score                                    | -0.96   | -0.73   | -1.05***   | -0.95   | -0.98°     |
| Weight for age z-score (age<10)                           | -0.28   | -0.16   | -0.32***   | -0.26   | -0.30°°    |
| Family Background Variables                               |         |         |            |         |            |
| Household income per capita <sup>a</sup> (yuan)           | 3509.64 | 4464.97 | 3166.66*** | 3573.15 | 3437.87000 |
| Drinks tap water                                          | 0.62    | 0.88    | 0.53***    | 0.61    | 0.6300     |
| Uses a flush toilet at home                               | 0.23    | 0.45    | 0.15***    | 0.23    | 0.23       |
| Mother's age                                              | 36.42   | 36.57   | 36.37      | 36.35   | 36.51      |
| Mother's height                                           | 155.59  | 155.93  | 155.46***  | 155.73  | 155.43000  |
| Mother's years of education                               | 6.46    | 7.89    | 5.96***    | 6.55    | 6.36000    |
| Mother has ever smoked                                    | 0.02    | 0.02    | 0.02       | 0.02    | 0.02       |
| Father's age                                              | 38.04   | 38.64   | 37.83***   | 37.92   | 38.19°°    |
| Father's height                                           | 166.12  | 166.67  | 165.92***  | 166.13  | 166.12     |
| Father's years of education                               | 8.08    | 8.88    | 7.80***    | 8.12    | 8.03°      |
| Father has ever smoked                                    | 0.70    | 0.71    | 0.70       | 0.68    | 0.72000    |
| Medical Service Variables                                 |         |         |            |         |            |
| Has medical insurance                                     | 0.25    | 0.32    | 0.23***    | 0.26    | 0.25       |
| Received preventive health service in the past four weeks | 0.05    | 0.08    | 0.04***    | 0.05    | 0.05       |
| Nutrition Intake Variables                                |         |         |            |         |            |
| Daily protein intake (g)                                  | 54.21   | 57.50   | 53.00***   | 56.55   | 51.59000   |
| Daily fat intake (g)                                      | 52.55   | 63.49   | 48.52***   | 54.41   | 50.46000   |
| Daily calorie intake (g)                                  | 1837.96 | 1847.91 | 1834.29    | 1911.33 | 1755.86000 |
| Daily carbohydrate intake (g)                             | 286.99  | 261.58  | 296.34***  | 298.76  | 273.81000  |
| Observations                                              | 17553   | 4638    | 12915      | 9311    | 8242       |

Notes:

Source: China Health and Nutrition Survey, 1991, 1993, 1997, 2000, 2004, 2006 and 2009. Age 0-17 if not specified. \* indicate regional difference significant at 10%; \*\* significant at 5%; \*\*\* significant at 1%. °°° °°° refer to gender difference.

a. Income all inflated to 2009 CPI.

## Challenge: Generate Table by Hand!

- A good practice: it involves almost all the programming elements we have learned so far.
- It is easy to generate "standard" regression tables using estout or outreg. But not all tables are standard.
- The way that using estout to generate nonstandard table is essentially the same as what we are going to introduce.

```
. foreach name of local rnames {
 2.
        local ++i
       local j 0
 3.
      capture matrix drop b
 5.
       capture matrix drop se
 6.
        foreach model of local models {
 7.
           local ++j
 8.
           matrix tmp = C[`i', 2*`j'-1]
 9.
            if tmp[1,1]<. {
 10.
                matrix colnames tmp = `model'
               matrix b = nullmat(b), tmp
 11.
 12.
                matrix tmp[1,1] = C['i', 2*'j']
 13.
               matrix se = nullmat(se), tmp
 14.
 15.
 16.
       ereturn post b
 17.
        quietly estadd matrix se
        eststo `name'
 18.
19. }
. esttab, se mtitle noobs
                     (1)
                                  (2)
                                                  (3)
                  weight
                                    mpg
                                                  _cons
model1
                   2.044***
                                                 -6.707
                 (0.377)
                                               (1174.4)
model2
                  1.747**
                               -49.51
                                               1946.1
                 (0.641)
                                (86.16)
                                               (3597.0)
```

#### Another Example

```
reghdfe wage expected mean, absorb(发布城市 企业规模 企业类型)
scalar r1 = e(r2)
reghtfe wage expected mean, absorb(发布城市 企业规模 企业类型 学历要求 经验要求 管理经验)
scalar r2 = e(r2)
reghdfe wage expected mean, absorb(发布城市 企业规模 企业类型 学历要求 经验要求 管理经验 行业)
scalar r3 = e(r2)
reghtfe wage expected mean, absorb (发布城市 企业规模 企业类型 学历要求 经验要求 管理经验 行业 首要职位大类)
scalar r4 = e(r2)
regndfe wage expected mean, absorb(发布城市 企业规模 企业类型 学历要求 经验要求 管理经验 行业 首要职位大类 首要职位小类)
scalar r5 = e(r2)
clear
gen square = .
set obs 5
forvalues i = 1/5 {
   replace square = r'i' in 'i'
outsheet using "$path4\R squared.txt", replace nonames
```

# Another Example

| Dependent Variable: Average Applicant's Expected Wage                                                                                                                               |                                                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
| Control Variables                                                                                                                                                                   | R-squared                                      |  |  |  |
| City+Firm Size+Firm Type + Job Requirement (Education, Experience, Management) + Industry (52 categories) + Broad Occupation (59 Categories) + Detailed Occupation (588 Categories) | 0.1013<br>0.4245<br>0.4382<br>0.4984<br>0.5942 |  |  |  |

- No matter how complicated a program is, you can generally proceed in three steps:
  - What input do I need?
  - How to organize the output?
  - Adjust the detail
- Input: sample mean (by group), T-test
- Output: each row represents one variable, each column represents one subsample
- Detail: observations, one blank line between two categories of variables