Contents

1.	Nota	ations	1
2.	Sear	ching in Graphs	1
2	2.1.	DFS using Stack	1
2	2.2.	BFS	2
2	2.3.	Determine the number of connected components	
2	2.4.	Finding paths between vertices	3
2	2.5.	Strongly Connected Property of Directed Graph	4
2	2.6.	Finding Cut Vertices	4
2	2.7.	Finding Bridges	5
3.	Eule	erian and Hamiltonian Graph	5
3	3.1.	Eulerian Graph:	5
3	3.2.	Semi-Eulerian Graph	6
3	3.3.	Hamiltonian Graph:	
4.	Min	imum Spanning Trees:	7
2	4.1.	Spanning Tree:	
2	4.2.	Kruskal:	8
2	4.3.	Prim:	8
5.	Sho	rtest Path Problem	9
4	5.1.	Dijkstra:	9
4	5.2.	Bellman-Ford:	10
4	5.3.	Floyd:	11

1. Notations

- Directed graph G = <V, E> is said to be strongly connected if there is a path between every pair of vertices.
- Directed graph $G=<\!\!V,E\!\!>$ is said to be weakly connected if its corresponding undirected graph is connected.
- 2. Searching in Graphs
 - 2.1.DFS using Stack

2.2.BFS

```
BFS(u)
{
    // Step 1: Initialize
    queue = Ø; push(queue, u);
    visited[u] = True;

    // Step 2: Loop
    while(queue ≠ Ø)
    {
        s = pop(queue);
        <visit s>;
        for(t ∈ Adj(s))
            if(!visited[t])
            {
                 visited[t] = True;
                  push(queue, t);
            }
        }
        // Step 3: Return results
```

```
return <set of traversed vertices>;
}
```

2.3. Determine the number of connected components

```
CountComp()
{
    // Step 1: Initialize
    count = 0;

    // Step 2: Loop
    for(u ∈ V){
        if(!visited[u]){
            count = count + 1;
            BFS(u); // DFS(u)
            <store vertices of the connected component>;
        }
    }

    // Step 3:
    return <connected components>;
}
```

2.4. Finding paths between vertices

To store the path, we use the array previous[].When push $t \in Adj(u)$ to the stack or queue, we set previous[t] = u

❖ For DFS:

```
}
}

// Step 3: Return results
return <set of traversed vertices>;
}
```

❖ For BFS:

2.5. Strongly Connected Property of Directed Graph

```
bool Strongly_Connected(G = <V, E>)
{
    ReInit(); // for u ∈ V: visited[u] = False
    for(u ∈ V)
        if(BFS(u) ≠ V) // DFS(u) ≠ V
        return false;
    else ReInit();
    return true;
}
```

2.6. Finding Cut Vertices

```
Finding_Cut_Vertices(G = <V, E>)
{
    ReInit(); // for u ∈ V: visited[u] = False
    for(u ∈ V)
```

2.7. Finding Bridges

- 3. Eulerian and Hamiltonian Graph
 - 3.1. Eulerian Graph:
 - ❖ Necessary and Sufficient Conditions for Eulerian Graph:
 - Undirected graph: Connected undirected graph $G = \langle V, E \rangle$ is Eulerian graph if and only if every vertex of G has even degree.
 - Directed graph: Weakly-connected directed graph $G = \langle V, E \rangle$ is Eulerian graph if and only if in-degree of each vertex equals to its out-degree.
 - **&** Eulerian Graph Proof:
 - Undirected graph: $\begin{cases} DFS(u) = BFS(u) = V \\ deg(u) : even? \ (\forall u \in V) \end{cases}$
 - Directed graph: $\begin{cases} \exists u \in V : DFS(u) = DFS(u) = V \\ \deg + (u) = \deg (u) \ (\forall u \in V) \end{cases}$
 - Present algorithm:

```
Euler_Cycle(u)
{
    // Step 1: Initialize
    stack = Ø;
    CE = Ø;
    push(stack, u);

    // Step 2: Loop
    while(stack ≠ Ø)
    {
        s = get(stack);
    }
}
```

3.2. Semi-Eulerian Graph

- Necessary and Sufficient Conditions for Semi-Eulerian Graph:
 - Undirected graph: Connected undirected graph $G = \langle V, E \rangle$ is semi-Eulerian if and only if G has 0 or 2 vertices with odd degree.
 - G has 2 vertices with odd degree: Eulerian path starts at an odd-degree vertex and ends at the other odd-degree vertex
 - G does not have any odd-degree vertex: G is Eulerian graph
 - Directed graph: Weakly-connected directed graph G = <V, E> is semi-Eulerian if and only if:
 - There exits exactly 2 vertices $u, v \in V$ s.t: $deg^+(u) deg^-(u) = deg^-(v) deg^+(v) = 1$
 - For $s \neq u$, v: $deg^+(s) = deg^-(s)$
- ❖ Semi-Eulerian Graph Proof:
 - Undirected graph:
 - DFS(u) = BFS(u) = V
 - Has 2 vertices with odd degree
 - Directed graph:
 - DFS(u) = BFS(u) = V
 - $u, v \in V \text{ s.t: } deg^+(u) deg^-(u) = deg^-(v) deg^+(v) = 1$
 - For $s \neq u$, v: $deg^+(s) = deg^-(s)$
- Notes: Algorithm for finding an Eulerian path is similar to the one for finding Eulerian circuit. However:
 - Finding Eulerian circuit: starting from any $u \in V$
 - Finding Eulerian path:
 - Undirected graph: starting from an odd-degree
 - Directed graph: starting from u: $deg^+(u) deg^-(u) = 1$

3.3. Hamiltonian Graph:

```
Hamilton(k)
{
    for(y ∈ Adj(X[k - 1]))
        if(k == n + 1 && y == v)
            Out(X[1], X[2], ..., X[n], v);
    else if(!visisted[y])
        {
            X[k] = y;
            visited[y] = True;
            Hamilton(k + 1);
            visited[y] = False;
        }
}
```

- 4. Minimum Spanning Trees:
 - 4.1. Spanning Tree:

```
Tree_DFS(u)
{
    visited[u] = True;
    for(v ∈ Adj(u))
        if(!visited[v])
        {
            T = T U {(u, v)};
            Tree_DFS(v);
        }
}
```

4.2. Kruskal:

```
Kruskal()
{
    // Step 1: Initialize
    T = Ø;
    d(H) = 0;

    // Step 2: Sort
    <Sort edges in the ascending order of length>;

    // Step 3: Loop
    while(|T| < n - 1 && E ≠ Ø)
    {
        e = <minimum length edge>;
        E = E \ {e};
        if(T U {e} does not produce a circuit)
        {
            T = T U {e};
            d(H) = d(H) + d(e);
        }
    }
    if(|T| < n - 1) <not connected>;
    else return {T, d(H)};
}
```

4.3. Prim:

```
Prim(s)
{
    // Step 1: Initialize
    Vh = {s};
    V = V \ {s};
    T = Ø;
    d(H) = 0;

    // Step 2: Loop
    while(V ≠ Ø)
```

```
{
    e = {u, v}; // u ∈ V, v ∈ Vh
        if(e does not exist)
            return <not connected>;
    T = T U {e};
    d(H) = d(H) + d(e);
    Vh = Vh U {u};
    V = V \ {u};
}

// Step 3: Result
return {T, d(h)};
}
```

5. Shortest Path Problem

5.1. Dijkstra:

Code C++:

```
void dijkstra(int s) {
    priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>> pq; // min heap
    for (int v = 1; v <= n; v++)
    {
        d[v] = INT_MAX;
    }
}</pre>
```

```
pre[v] = s;
}
d[s] = 0;
pq.push({0, s}); // pair: khoang cach, dinh
while (!pq.empty())
    int u = pq.top().second; // dinh u: d[u] = min(d[z]| z \in T)
    int du = pq.top().first;
    pq.pop();
    if(visited[u]) continue;
    visited[u] = true;
    for (int v = 1; v <= n; v++)
        if(!visited[v] && d[v] > d[u] + a[u][v])
            d[v] = d[u] + a[u][v];
            pre[v] = u;
            pq.push({d[v], v});
        }
}
```

5.2. Bellman-Ford:

Code C++:

5.3. Floyd: