

Feature Distillation Interaction Weighting Network for Lightweight Image Super-Resolution

AAAI-22

Guangwei Gao^{1†}, Wenjie Li^{1†}, Juncheng Li^{2*}, Fei Wu¹, Huimin Lu³, Yi Yu⁴
¹ Nanjing University of Posts and Telecommunications ² The Chinese University of Hong Kong
³ Kyushu Institute of Technology ⁴ National Institute of Informatics

Background

SR aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) image. However, most existing SR models are often accompanied by a large number of model parameters and large calculation costs, which limits their applications on mobile devices.

- We aim to explore a lightweight and efficient SR model.
- > We aim to solve the problem of how to make full use of intermediate features

Contributions

- We propose a wide-residual attention weighting unit for lightweight SISR, which has stronger feature distillation capabilities than ordinary residual blocks.
- We propose a novel Self-Calibration Fusion module to replace the traditional concatenate operation for efficient feature interaction and fusion, which can aggregate more representative features and self-calibrate the input and output features.
- We propose a Wide-Residual Distillation Connection framework, which connects the coarse and distilled fine features within the module and allows features from different scales to interact with each other.
- We design a Feature Shuffle Weighted Group for pairwise feature fusion, which consists of interactional WDIBs. Meanwhile, it serves as a basic component of our proposed model.

