CS 580 ALGORITHM DESIGN AND ANALYSIS

NP and NP-completeness: Part 2

Vassilis Zikas

SO FAR

• So far:

- Definition on NP and co-NP
- NP-completeness
- CIRCUIT-SAT and 3-SAT (and more) are NPcomplete

• Today:

More NP-completeness proofs

SEQUENCING PROBLEMS (8.5 IN KT)

HAMILTONIAN CYCLE

• HAM-CYCLE: Given an undirected graph G = (V, E) does it contain a simple cycle C that has every node in G?

HAMILTONIAN CYCLE

NO: bipartite graph with odd number of nodes.

- DIR-HAM-CYCLE: Given a directed graph G = (V, E), does there exist a Hamiltonian cycle (a simple directed cycle that contains all nodes)?
- Claim: DIR-HAM-CYCLE \leq_P HAM-CYCLE
- Proof: Given a directed graph G we construct an undirected graph G' by replacing every node u with 3 nodes: u_{in} , u and u_{out}
 - Add edges (u_{in}, u) and (u, u_{out}) in G'
 - For every directed (u, v) edge in G we have an (undirected) edge (u_{out}, v_{in})

- Claim: G' has a Hamiltonian cycle if and only if G has one.
- Pf. \Rightarrow
 - Suppose G has a directed Hamiltonian cycle Γ (e.g., (u, w, v)).
 - Then G' has an undirected Hamiltonian cycle (same order): for each node z in the directed cycle replace z with (z_{in}, z, z_{out})

- Claim: *G'* has a Hamiltonian cycle if and only if *G* has one.
- Pf. ←
 - Suppose G' has an undirected Hamiltonian cycle Γ' .
 - \circ Γ' must visit nodes in G' using one of following two orders:

...,
$$z_{in}^1$$
, z^1 , z_{out}^1 , z_{in}^2 , z^2 , z_{out}^2 , ...
..., z_{out}^2 , z^2 , z_{in}^2 , z_{out}^1 , z^1 , z_{in}^1 , ...

- $^{\circ}$ The first corresponds to a directed Hamiltonian cycle in G. If the second is a Hamiltonian cycle, then its inverse is also an undirected Hamiltonian cycle (in G'), so again we're done.
- Therefore, DIR-HAM-CYCLE \leq_P HAM-CYCLE

- Claim: $3-SAT \leq_P DIR-HAM-CYCLE$
- Proof:
 - \circ Given an instance ϕ of 3-SAT, we will construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle if and only if ϕ is satisfiable.
 - Construction:
 - Create a graph G that has 2^n Hamiltonian cycles corresponding to the 2^n possible truth assignments of n variables

- Given a 3-SAT instance ϕ with n variables x_i , and k clauses
 - Construction:
 - A (bidirectional) line for each variable x_i with 3k + 3 nodes
 - Traversing from left to right = set $x_i = 1$
 - Traversing from right to left = set $x_i = 0$

- Claim: ϕ has a satisfying iff G has a Hamiltonian cycle
- Proof (\Rightarrow)
 - Suppose 3-SAT has a satisfying assignment x^*
 - Define the Hamiltonian cycle as follows:
 - If $x_i^* = 1$ traverse the *i*-th row from left to right, and otherwise traverse from right to left
 - Use the left/right most nodes to go from row to row
 - For each clause/node C_i there will be at least one row in which we can "go in and out" in the correct way, thus we include the node in the tour

- Claim: ϕ has a satisfying iff G has a Hamiltonian cycle
- Proof (*⇐*)
 - Suppose G has a Hamiltonian cycle Γ
 - When Γ enters node/clause C_i using edge (x_j^k, C_i) it must leave using the mate edge
 - Otherwise there is no way to visit both nodes next to x_i^k
 - Thus, every clause C_i the nodes immediately before and after in the tour have an edge e_i between them
 - Remove all C_i s and use e_i to get a tour Γ' in the new graph
 - In every Hamiltonian cycle of this graph, every row is either left to right or right to left
 - Set $x_i = 1$ if Γ' is left to right, and $x_i = 0$ otherwise
 - This is a valid assignment
 - Since Γ visited every node (including the C_i nodes) at least one path was in the "correct" direction relative to C_i , and thus the clause is satisfied.

LONGEST PATH

- SHORTEST-PATH: Given a directed graph *G* and two vertices *s*, *t* does there exist a simple path from *s* to *t* using at most *k* edges?
- LONGEST-PATH: Given a directed graph *G* and two vertices *s*, *t* does there exist a simple path from *s* to *t* using at least *k* edges?
- Claim: 3-SAT \leq_P LONGEST-PATH
- Proof 1: Re-do the reduction to DIR-HAM-CYCLE, ignoring edge from t to s, for k = #vertices 1
- Proof 2: Show HAM-CYCLE \leq_P LONGEST-PATH

TRAVELING SALESPERSON PROBLEM

• TSP: Given a set of n cities and a pairwise distance function d(u, v) is there a tour of size $\leq D$?

All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

TRAVELING SALESPERSON PROBLEM

• TSP: Given a set of n cities and a pairwise distance function d(u, v) is there a tour of size $\leq D$?

All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

TRAVELING SALESPERSON PROBLEM

- Claim: HAM-CYCLE \leq_P TSP
- Proof:
 - Given an instance G of HAM-CYCLE create an instance G' of TSP by adding the following distance function

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

- ∘ TSP has a tour of size $\leq n$, i.e. can use distance 1 edges, iff G is Hamiltonian
- Note: TSP instance above satisfies triangle inequality!

GRAPH COLORING

• 3-COLOR: Given an undirected graph *G*, does there exist a way to color the vertices red, green and blue so that adjacent nodes have different colors?

3-COLOR

- Claim: 3-SAT $\leq_P 3$ -COLOR
- Proof:
 - \circ Given a 3-SAT instance ϕ we construct an instance of 3-COLOR (a graph G) that is 3 colorable iff ϕ is satisfiable
 - Construction:
 - 1. For each literal create a node
 - 2. Create 3 new nodes T, F, B. Connect them in a triangle. Connect every literal to B
 - 3. Connect each literal to its negation
 - 4. For each clause add a gadget (TODO) of 6 nodes and 13 edges

- Claim: Graph is 3-colorable iff ϕ is satisfiable.
- Pf. \Rightarrow Suppose graph is 3-colorable.
 - T, F and B get different colors
 - (2) ensures each literal is (the color of) T or F.
 - (3) ensures a literal and its negation are opposites.

- Claim. Graph is 3-colorable iff ϕ is satisfiable.
- Pf. \Rightarrow Suppose graph is 3-colorable.
 - T, F and B get different colors
 - (2) ensures each literal is T or F.
 - (3) ensures a literal and its negation are opposites.
 - (4) ensures at least one literal in each clause is T.

- Claim. Graph is 3-colorable iff ϕ is satisfiable.
- Pf. \Rightarrow Suppose graph is 3-colorable.
 - T, F and B get different colors
 - (2) ensures each literal is T or F.
 - (3) ensures a literal and its negation are opposites.
 - (4) ensures at least one literal in each clause is T.

- Claim. Graph is 3-colorable iff ϕ is satisfiable.
- Pf. ← Suppose 3-SAT formula satisfiable
 - Color all true literals T
 - Color node below green node F, and node below that B.
 - Color remaining middle row nodes B.
 - Color remaining bottom nodes T or F as forced.

- Planar graphs?
 - Recall definition of planar: can be "drawn" on the plane in a way that the edges don't intersect
- PLANAR 3-COLOR: Still NP-complete!
- PLANAR 4-COLOR: *O*(1)!
 - Appel and Haken [1976]

NUMERICAL PROBLEMS

- SUBSET-SUM: Given natural numbers $w_1, ..., w_n$ and a target number W, is there a subset of $\{w_1, ..., w_n\}$ that adds up to W?
- Claim: SUBSET-SUM is NP-complete.
- PARTITION: Given natural numbers $w_1, ..., w_n$, can they be partitioned into two subsets that add up to the same value?
- Claim: SUBSET-SUM \leq_P PARTITION
 - Intuition: pad the instance of SUBSET-SUM with two new numbers: $W + \sum_i w_i$ and $2 \sum_i w_i W$
- Claim: SUBSET-SUM is a special case of KNAPSACK

SUMMARY

- More reductions!
- Sequencing problems (8.5 in KT)
- Graph coloring (8.7 in KT)
- Numerical problems (8.8 in KT)