Chapitre 4 : Formes bilinéaires symétriques, produit scalaire.

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \geq 1$. On note $\mathcal{S}_2(E)$ l'ensemble des formes bilinéaires symétriques sur E. On peut montrer que $\mathcal{S}_2(E)$ muni de lois internes et externes adaptées est un \mathbb{R} -espace vectoriel.

Formes quadratiques et formes bilinéaires symétriques

Définition 1. Une forme quadratique q sur E est une application $q: E \to \mathbb{R}$ vérifiant:

- 1. $\forall x \in E, \ \forall \lambda \in \mathbb{R}, \ q(\lambda x) = \lambda^2 x$
- 2. L'application $\varphi:(x,y)\mapsto \frac{1}{2}[q(x+y)-q(x)-q(y)]$ appartient à $\mathcal{S}_2(E)$. φ s'appelle la forme polaire de q.

On note Q(E) l'ensemble des formes quadratiques sur E. On peut montrer que Q(E) est un \mathbb{R} -espace vectoriel.

Théorème 1. Q(E) et $S_2(E)$ sont isomorphes.

Proof. Soit $q \in Q(E)$. On pose $\sigma(q)$ la forme polaire de q, i.e. $\sigma(q) = \varphi$ avec

$$\varphi(x,y) = \frac{1}{2} [q(x+y) - q(x) - q(y)], \qquad \forall (x,y) \in E^2.$$

Il est immédiat que $\sigma(q) \in \mathcal{S}_2(E)$. Soit $\varphi \in \mathcal{S}_2(E)$. Définissons $\sigma'(\varphi)$ par $\sigma'(\varphi)(x) = \varphi(x,x)$ pour tout $x \in E$. On peut vérifier par le calcul que $\sigma'(\varphi) \in Q(E)$. Montrons que $\sigma(q)$ est inversible et que son inverse est σ' . Soit $\varphi \in \mathcal{S}_2(E)$. On a $\sigma \circ \sigma'(\varphi) = \sigma(q)$ avec $q(x) = \varphi(x,x)$. Or $\sigma(q) = \varphi'$ avec

$$\varphi'(x,y) = \frac{1}{2}[q(x+y) - q(x) - q(y)]$$

$$= \frac{1}{2}[\varphi(x+y,x+y) - \varphi(x,x) - \varphi(y,y)]$$

$$= \varphi(x,y)$$

par bilinéarité de φ . On a donc $\sigma \circ \sigma' = \operatorname{Id}_{\mathcal{S}_2(E)}$. On montre de même que $\sigma' \circ \sigma = \operatorname{Id}_{Q(E)}$. L'application σ est donc bijective de Q(E) dans $\mathcal{S}_2(E)$ et $\sigma^{-1} = \sigma'$. Elle est linéaire par construction, d'où le résultat.

Dans la suite, pour toute $\varphi \in \mathcal{S}_2(E)$, on note ϕ_{φ} l'unique forme quadratique telle que

$$\phi_{\varphi}(x) := \varphi(x, x), \ \forall x \in E.$$

On appelle ϕ_{φ} la forme quadratique associée à φ .

Un exemple de forme bilinéaire symétrique dégénérée

On considère $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{B}_E = \{e_1, e_2, e_3\}$. Définissons $f : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ telle que pour tout $x = \sum_{i=1}^3 x_i e_i$ et $y = \sum_{i=1}^3 y_i e_i$:

$$f(x,y) = x_2 y_2 - x_1 y_1$$

On peut vérifier que $f \in \mathcal{S}_2(E)$. Intéressons-nous à l'orthogonal de E pour f:

$$E^{\perp} = \{ y \in E, \ \forall x \in E, \ f(x, y) = 0_{\mathbb{R}} \}.$$

Soit $y \in E^{\perp}$, alors pour tout $x \in E$, $x_2y_2 = x_1y_1$. En prenant $x = e_1 + e_2$ on en déduit $y_1 = y_2$. En prenant $x = e_2$, on en déduit $y_1 = y_2 = 0_{\mathbb{R}}$. Au final, $E^{\perp} = \text{Vect}\{e_3\}$. On a donc $E^{\perp} \neq \{0_E\}$, ce qui montre que f est dégénérée.

De manière générale, dans un \mathbb{R} -espace vectoriel E de dimension finie $n \geq 1$, $\mathcal{B}_E = \{e_1, \dots, e_n\}$ une base de E, toute forme bilinéaire symétrique de matrice représentative de rang strictement inférieur à n convient. En effet, d'après le cours

f dégénérée $\iff \operatorname{Mat}(f,\mathcal{B})$ non inversible pour toute base $\mathcal{B} \iff \operatorname{Det}(\operatorname{Mat}(f,\mathcal{B}_E)) = 0_{\mathbb{R}}$.

On pourrait donc de choisir une application $f \in \mathcal{S}_2(E)$ telle que

$$\begin{cases} \exists i_0 \in \{1, \dots, n\}, \ \phi_f(e_{i_0}) = 0_{\mathbb{R}} \\ \forall (i, j) \in \{1, \dots, n\}^2, \ i \neq j, \ f(e_i, e_j) = 0_{\mathbb{R}}. \end{cases}$$
 (1)

Pour tout $(x,y) \in E^2$, $x = \sum_{i=1}^n x_i e_i$ et $y = \sum_{i=1}^n y_i e_i$, on peut écrire dans ce cas

$$f(x,y) = \sum_{i=1}^{n} f(e_i, e_i) x_i y_i + 2 \sum_{1 \le i < j \le n} f(e_i, e_j) x_i y_j$$
$$= \sum_{i=1}^{n} \phi_f(e_i) x_i y_i$$
$$= X^{\top}. \text{Mat}(f, \mathcal{B}_E). Y$$

avec

$$\operatorname{Mat}(f, \mathcal{B}_E) = \begin{pmatrix} \phi_f(e_1) & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \phi_f(e_{i_0}) & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \phi_f(e_n) \end{pmatrix}.$$

Dans cet exemple, $\operatorname{Mat}(f, \mathcal{B}_E)$ est diagonale par construction et comprend au moins un élément diagonal nul, $\phi_f(e_{i_0})$. On en conclut que f est dégénérée en utilisant

$$\operatorname{Det}(\operatorname{Mat}(f,\mathcal{B}_E)) = \prod_{i=1}^n \phi_f(e_i) = \prod_{j \neq i_0}^n \phi_f(e_j) \times 0_{\mathbb{R}} = 0_{\mathbb{R}}.$$

Un exemple de forme bilinéaire symétrique qui n'est pas un produit scalaire

N'importe quelle forme bilinéaire symétrique dégénérée convient puisqu'il est facile de voir que pour tout $\varphi \in \mathcal{S}_2(E)$

 ϕ_{φ} définie positive $\implies \varphi$ non-dégénérée .

Soit E un \mathbb{R} -e.v. de dimension 3, $\mathcal{B}_E=\{e_1,e_2,e_3\}$ une base de E et $f\in\mathcal{S}_2(E)$ telle que, $\forall (x,y)\in E^2,\ x=\sum_{i=1}^3x_ie_i,\ y=\sum_{i=1}^3y_ie_i$

$$f(x,y) = x_1y_1 + 3x_2y_2 + 5x_3y_3 + x_1y_2 + y_1x_2 - 2x_1y_3 - 2x_3y_1 + 3x_2y_3 + 3x_3y_2$$

La forme quadratique associée à f est:

$$\phi_f(x) = x_1^2 + 3x_2^2 + 5x_3^2 + 2x_1x_2 - 4x_1x_3 + 6x_2x_3$$

En utilisant le procédé d'orthogonalisation de Gauss, on montre par exemple l'égalité suivante (décomposition non unique):

$$\phi_f(x) = (x_1 + x_2 - 2x_3)^2 + (x_3 + 5x_2)^2 - 23x_2^2$$

Si on prend (x_1, x_2, x_3) solution du système

$$\begin{cases} x_1 + x_2 - 2x_3 = 0 \\ x_3 + 5x_2 = \sqrt{23}x_2 \end{cases}$$
 (2)

, par exemple $x_1 = -11 + 2\sqrt{23}$, $x_2 = 1$ et $x_3 = \sqrt{23} - 5$, on a trouvé un $x := \sum_{i=1}^3 x_i e_i \neq 0_E$ tel que $\phi_f(x) = 0$. Donc ϕ_f ne peut pas être définie positive et f n'est donc pas un produit scalaire.

Précisions sur la preuve de l'algorithme d'orthogonalisation de Gauss

Théorème 2. E est un \mathbb{R} -espace vectoriel de dimension finie $n \geq 1$, $\mathcal{B}_E = \{e_1, \ldots, e_n\}$ une base. Alors pour toute forme quadratique q sur E, il existe n combinaisons linéaires $L_i(x_1, \ldots, x_n) \equiv L_i(x)$ linairement indépendantes et n nombres c_i tels que

$$q(x) \equiv q(x_1, \dots, x_n) = \sum_{i=1}^{n} c_i L_i(x)^2$$

Remarque Dire que les $(L_i)_{i=1,...,n}$ sont des formes n-linéaires sur \mathbb{R} signifie que ce sont des applications de $\mathbb{R} \times ... \times \mathbb{R} \to \mathbb{R}$ linéaires en chacune de leurs coordonnées. Dire qu'elles sont

linéairement indépendantes signifie que pour $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$

$$\left(\sum_{i=1}^{n} \lambda_i L_i(x) = 0 \,\forall \, x \in E\right) \implies (\lambda_i = 0_{\mathbb{R}}, \,\forall i = 1, \dots, n)$$

Proof. On montre le théorème par récurrence forte sur $n \in \mathbb{N}^*$. Pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$: " $\forall k \in \mathbb{N}^*$, $k \leq n : P(k)$ est vraie, où pour tout $l \in \mathbb{N}^*$,

 $P(l): E \text{ est un } \mathbb{R}\text{-espace vectoriel de dimension finie } l \geq 1, \mathcal{B}_E = \{e_1, \ldots, e_l\} \text{ une base. Alors pour toute forme quadratique q sur } E, \text{ il existe } l \text{ combinaisons linéaires } L_i(x_1, \ldots, x_n) \equiv L_i(x) \text{ linairement indépendantes et } l \text{ nombres } c_i \text{ tels que}$

$$q(x) \equiv q(x_1, \dots, x_l) = \sum_{i=1}^{l} c_i L_i(x)^2$$

,,

Si n=1, il n'y a rien à montrer. Supposons maintenant n>1 et P(n-1) vraie. Si q est nulle, $c_i=0$ convient avec par exemple $L_i(x)=x_i$. Supposons donc q non nulle et écrivons-la en utilisant sa forme polaire associée notée φ (i.e., $\varphi(x,x)=q(x), \forall x\in E$):

$$q(x_1, ..., x_n) = \sum_{i=1}^{n} \varphi(e_i, e_i) x_i^2 + 2 \sum_{1 \le i < j \le n} \varphi(e_i, e_j) x_i x_j$$

• Cas 1 : $\exists i_0 \in \{1,\ldots,n\}, q(e_{i_0}) = \phi_{\varphi}(e_{i_0}) = \varphi(e_{i_0},e_{i_0}) \neq 0_{\mathbb{R}}$. On réarrange les termes dans q:

$$q(x) = \phi_{\varphi}(e_{i_0})x_{i_0}^2 + 2\sum_{j \neq i_0}^n \varphi(e_{i_0}, e_j)x_{i_0}x_j + \sum_{i, j \neq i_0} \varphi(e_i, e_j)x_ix_j$$

$$= \phi_{\varphi}(e_{i_0}) \left(x_{i_0} + \sum_{j \neq i_0}^n \frac{\varphi(e_{i_0}, e_j)}{\phi_{\varphi}(e_{i_0})} x_j \right)^2 - \frac{1}{\phi_{\varphi}(e_{i_0})} \left(\sum_{j \neq i_0}^n \varphi(e_{i_0}, e_j)x_j \right)^2 + \sum_{i, j \neq i_0} \varphi(e_i, e_j)x_ix_j$$

$$= \phi_{\varphi}(e_{i_0}) \left(x_{i_0} + \sum_{j \neq i_0}^n \frac{\varphi(e_{i_0}, e_j)}{\phi_{\varphi}(e_{i_0})} x_j \right)^2 + q'(x)$$

$$= c_{i_0} L_{i_0}(x)^2 + q'(x)$$

où $c_{i_0}=\phi_{\varphi}(e_{i_0}),$ $L_{i_0}(x)=x_{i_0}+\sum_{j\neq i_0}^n\frac{\varphi(e_{i_0},e_j)}{\phi_{\varphi}(e_{i_0})}x_j$ et $q'(x)=-\frac{1}{\phi_{\varphi}(e_{i_0})}\left(\sum_{j\neq i_0}^n\varphi(e_{i_0},e_j)x_j\right)^2+\sum_{i,j\neq i_0}\varphi(e_i,e_j)x_ix_j$ est un polynôme homogène de degré 2 par rapport à $(x_i)_{i\neq i_0}$. Il s'agit donc d'une forme quadratique sur un espace de dimension finie n-1. L'hypothèse de récurence nous dit que $q'(x)=\sum_{j\neq i_0}^nc_jL_j(x)^2$ où les $(L_i(x))_{i\neq i_0}$ sont des combinaisons linéaires de $(x_i)_{i\neq i_0}$ indépendantes. La coordonnée x_{i_0} n'apparaît pas dans leur écriture et apparaît dans celle de L_{i_0} . Il en résulte que les formes $(L_i)_{1\leq i\leq n}$ sont encore indépendantes d'où le résultat.

• Cas 2 : $\forall i \in \{1, ..., n\}, q(e_i) = \phi_{\varphi}(e_i) = \varphi(e_i, e_i) = 0_{\mathbb{R}}$. Dans ce cas, on ne peut pas "compléter" les carrés, on va utiliser l'égalité remarquable:

$$4ab = (a+b)^2 - (a-b)^2, \ \forall (a,b) \in \mathbb{R}^2.$$

En réorganisant les termes dans q, on obtient:

$$q(x_1, \dots, x_n) = 2 \left(\varphi(e_{i_0}, e_{j_0}) x_{i_0} + \sum_{j \neq i_0}^n \varphi(e_j, e_{j_0}) x_j \right) \left(x_{j_0} + \frac{1}{\varphi(e_{i_0}, e_{j_0})} \sum_{j \neq j_0}^n \varphi(e_{i_0}, e_j) x_j \right)$$

$$- \frac{2}{\varphi(e_{i_0}, e_{j_0})} \left(\sum_{j \neq i_0}^n \varphi(e_j, e_{j_0}) x_j \right) \left(\sum_{j \neq j_0}^n \varphi(e_{i_0}, e_j) x_j \right)$$

$$+ \sum_{1 \leq i \leq j \leq n, i, j \neq i_0, j_0} \varphi(e_i, e_j) x_j x_i$$

$$= \frac{1}{2} \sum_{j \leq n, i, j \neq i_0, j_0} \varphi(e_i, e_j) x_j x_i$$

$$= \frac{1}{2} \sum_{j \leq n, i, j \neq i_0, j_0} \varphi(e_i, e_j) x_j x_i$$

Donc $q(x_1, \ldots, x_n)$ est de la forme

$$q(x_1, \dots, x_n) = 2\varphi(e_{i_0}, e_{j_0}) L_{i_0}(x) L_{j_0}(x) + q'(x_1, \dots, x_n)$$
(3)

où $q'(x_1,\ldots,x_n)$ est une forme quadratique à n-2 variables qui ne dépend pas de (x_{i_0},x_{j_0}) et

$$\begin{cases}
L_{i_0}(x) = L_{i_0}(x_1, \dots, x_n) = x_{i_0} + \frac{1}{\varphi(e_{i_0}, e_{j_0})} \sum_{j \neq i_0}^n \varphi(e_j, e_{j_0}) x_j \\
L_{j_0}(x) = L_{j_0}(x_1, \dots, x_n) = x_{j_0} + \frac{1}{\varphi(e_{i_0}, e_{j_0})} \sum_{j \neq j_0}^n \varphi(e_{i_0}, e_j) x_j
\end{cases} \tag{4}$$

On applique l'hypothèse de récurence (forte) vraie au rang n-2 à q^\prime ce qui permet d'écrire

$$q'(x_1, \dots, x_n) = \sum_{i \neq i_0, j_0} c_i L_i(x)^2$$

où les $(L_i)_{i=1,\dots,n,i\neq i_0,\neq j_0}$ sont linéaires et linéairement indépendantes et ne dépendent pas de (x_{i_0},x_{j_0}) . En remplaçant q' par cette expression dans (3) et en utilisant l'égalité remarquable citée plus haut, on en déduit

$$q(x_1, \dots, x_n) = \frac{\varphi(e_{i_0}, e_{j_0})}{2} (L_{i_0}(x) + L_{j_0}(x))^2 + \frac{-\varphi(e_{i_0}, e_{j_0})}{2} (L_{i_0}(x) - L_{j_0}(x))^2$$

$$+ \sum_{i \neq i_0, j_0} c_i L_i(x)^2$$

$$= \frac{\varphi(e_{i_0}, e_{j_0})}{2} L'_{i_0}(x)^2 + \frac{-\varphi(e_{i_0}, e_{j_0})}{2} L'_{j_0}(x)^2 + \sum_{i \neq i_0, j_0} c_i L_i(x)^2$$

où L'_{i_0} et L'_{j_0} sont des fonctions linéaires des x_1, \ldots, x_n . Montrons qu'elles sont linéairement indépendantes. Supposons qu'il existe $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ tel que

$$\lambda_1 L'_{i_0}(x) + \lambda_2 L'_{i_0}(x) = 0_{\mathbb{R}}, \ \forall x \in E$$

De manière équivalente, on a

$$\lambda_{1}(L_{i_{0}}(x) + L_{j_{0}}(x)) + \lambda_{2}(L_{i_{0}}(x) - L_{j_{0}}(x)) = 0_{\mathbb{R}}, \ \forall x \in E$$

$$\iff L_{i_{0}}(x)(\lambda_{1} + \lambda_{2}) + L_{j_{0}}(x)(\lambda_{1} - \lambda_{2}) = 0_{\mathbb{R}}, \ \forall x \in E.$$

Si $x \in E$ est un vecteur qui a toutes ses coordonnées nulles sauf la i_0 -ème, alors comme $\phi(e_{i_0}) = \phi(e_{j_0}) = 0_{\mathbb{R}}$, on a $L_{j_0}(x) = 0$ et $L_{i_0}(x) = x_{i_0} \neq 0$. On en déduit $\lambda_1 = -\lambda_2$. Si $x \in E$ est un vecteur qui a toutes ses coordonnées nulles sauf la j_0 -ème, alors on a $L_{i_0}(x) = 0$ et $L_{j_0}(x) = x_{j_0} \neq 0$. On en déduit $\lambda_1 = \lambda_2$. Au final, on conclut que $\lambda_1 = \lambda_2 = 0_{\mathbb{R}}$. L'_{i_0} et L'_{j_0} sont donc linéairement indépendantes. De la même manière on montre que ces deux applications linéaires sont linéairement indépendantes de chacune des $(L_i)_{i\neq i_0, i\neq j_0}$.

Remarques

• Pour réduire une forme quadratique associée à une forme bilinéaire symétrique, on applique de manière itérative le procédé de réduction utilisé dans la preuve précédente : on obtient la décomposition de Gauss.

• Obtention d'une bases orthogonale et matrice de passage. A l'issue du procédé de Gauss, on obtient pour tout $x \in E$,

$$\phi(x) = a_1 L(x_1, \dots, x_n)^2 + \dots + a_r L_r(x_1, \dots, x_n)^2, \quad \text{avec } r = \text{Rg}(\varphi) \le n.$$

On pose alors pour tout $i \in \{1, ..., r\}$, $\widetilde{x}_i = L_i(x_1, ..., x_n)$. On choisit pour tout $i \in \{r+1, ..., n\}$, $\widetilde{x}_i = L_i(x_1, ..., x_n)$ tels que la famille $\{L_1(x_1, ..., x_n), ..., L_n(x_1, ..., x_n)\}$

 $\{r+1,\ldots,n\},\ x_i=L_i(x_1,\ldots,x_n)$ cons que la remain $\widetilde{X}=1,\ldots,N$ reste linéairement indépendante au sens défini précédemment. On obtient $\widetilde{X}=\begin{pmatrix}\widetilde{x}_1\\\vdots\\\widetilde{x}_n\end{pmatrix}$ les

coordonnées de x sur la base $\widetilde{\mathcal{B}}_E$ qui est orthogonale pour φ . Le procédé donne la relation $\widetilde{X} = P^{-1}.X$ avec $P^{-1} = \operatorname{Mat}(id_E, \mathcal{B}_E, \widetilde{\mathcal{B}}_E)$. Pour identifier les vecteurs de $\widetilde{\mathcal{B}}_E$, il faut calculer P