TO PASS 70% or higher

Big-O

TOTAL POINTS 7

1. Introduction and Learning Outcomes

1 / 1 point

1/1 point

1 / 1 point

1 / 1 point

1/1 point

The goal of this assignment is to practice with big-O notation.

Recall that we write f(n) = O(g(n)) to express the fact that f(n) grows no faster than g(n): there exist constants N and c>0 so that for all $n\geq N$, $f(n)\leq c\cdot g(n)$.

Is it true that $\log_2 n = O(n^2)$?

Yes

O No

/ Corroct

A logarithmic function grows slower than a polynomial function.

 $2. \quad n \log_2 n = O(n)$

O Yes

No

✓ Correct

To compare these two functions, one first cancels n. What is left is $\log_2 n$ versus 1. Clearly, $\log_2 n$ grows faster than 1.

3. $n^2 = O(n^3)$

Yes

O No

✓ Correct

 n^a grows slower than n^b for constants a < b.

4. $n = O(\sqrt{n})$

O Yes

No

✓ Correct

 $\sqrt{n}=n^{1/2}$ grows slower than $n=n^1$ as 1/2<1 .

5. $5^{\log_2 n} = O(n^2)$

O Yes

No

✓ Correct

Recall that $a^{\log_b c}=c^{\log_b a}$ so $5^{\log_2 n}=n^{\log_2 5}$. This grows faster than n^2 since $\log_2 5=2.321\ldots>2$.

6. $n^5 = O(2^{3\log_2 n})$

O Yes

No

. /

1/1 point

Correct $2^{3\log_2 n} = (2^{\log_2 n})^3 = n^3 \text{ and } n^3 \text{ grows slower than } n^5.$

1/1 point

7. $2^n = O(2^{n+1})$

Yes

O No

✓ Correct

 $2^{n+1}=2\cdot 2^n$, that is, 2^n and 2^{n+1} have the same growth rate and hence $2^n=\Theta(2^{n+1})$.