BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-II

Time:3 Hours Notes-

Total Marks:100

- Attempt all sections and assume any missing data.
- · Appropriate marks are allotted to each question, answer accordingly.

SEC	TION -A	Attempt all of following question in brief	Marks (10×2=20)	CO		
Q.1(a)	Find the differential equation which represents the family of straight lines passing through the origins?					
Q.1(b)	State the criterion for linearly independent solutions of the homogeneous linear nth order differential equation.					
Q.1(c)	Evaluate: $\int_0^1 \frac{dx}{\sqrt{-logx}}$.					
Q.1(d)	Find the volume of the solid obtained by rotating the ellipse $x^2 + 9y^2 = 9$ about the x-axis.					
Q.1(e)	Test the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$.					
Q.1(f)	Find the constant term when $f(x) = 1 + x $ is expanded in Fourier series in the interval (-3, 3).					
Q.1(g)		$(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plan	ie.	4		
Q.1(h)	1	age of $ z - 2i = 2$ under the mapping $w = \frac{1}{z}$.		4		
Q.1(i)	Expand f($z = e^{z/(z-2)}$ in a Laurent series about the point $z = 2$.		5		
Q.1(j)		nature of singularity of $\frac{\cot \pi z}{(z-a)^2}$ at $z = a$ and $z = \infty$.		5		

SEC	TION-B Attempt any three of the following questions Marks (3×10=30)	СО		
Q.2(a)	Solve: $\frac{d^2x}{dt^2} + \frac{dy}{dt} + 3x = e^{-t}$, $\frac{d^2y}{dt^2} - 4\frac{dx}{dt} + 3y = \sin 2t$.	1		
Q.2(b)	Assuming $\Gamma n \Gamma(1-n) = \pi \csc n\pi$, $0 < n < 1$, show that $\int_0^\infty \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin n\pi}$; $0 .$			
Q.2(c)	Test the series $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} + \cdots$	3		
Q.2(d)	If $f(z) = u + iv$ is an analytic function, find $f(z)$ in term of z if $u - v = \frac{e^y - \cos x + \sin x}{\cosh y - \cos x}$ when $f\left(\frac{\pi}{2}\right) = \frac{3-l}{2}$.	4		
Q.2(e)	Evaluate by contour integration: $\int_0^{2\pi} e^{-\cos\theta} \cos(n\theta + \sin\theta) d\theta$; $n \in I$.	5		

BTFCH (SEM II) THEORY EXAMINATION 2021-22 ENGINEFRING MATHEMATICS-II

				ł	
	TION -C	Attempt any one of the following questions	Marl	s (1×10=10)	CO
2.3(a)	Use the vari	ation of parameter method to solve the differential equation			1
2(1)	1	-273-1/2			
Q.3(b)	Solve: (1 +	$(D^2 - 1)y = 2(1 - e^{-2x})^{-72}$ $x)^2 \frac{d^2y}{dx^2} + (1 + x)\frac{dy}{dx} + y = 4\cos\log(1 + x).$			1
	TION -C	Attempt any one of the following questions	Mark	s (1×10=10)	СО
Q.4(a)	The arc of t	he cardioid $r = a(1 + \cos \theta)$ included between $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ i	s rotate	I about the	2
	line = $\frac{\pi}{2}$. Fi	nd the area of surface generated.		i doodi iiio	
Q.4(b)	Evaluate III	xyz $\sin(x + y + z)dx dy dz$, the integral being extended to	all posi	ive values of	2
<u>·</u>	and variables	s subject to the condition $+y + z \le \frac{\pi}{2}$			
	TION -C	Attempt any one of the following questions	Mark	s (1×10=10)	CO
Q.5(a)	Test for con	vergence of the series $\frac{a+x}{1!} + \frac{(a+2x)^2}{2!} + \frac{(a+3x)^3}{1/(3!)} + \cdots$		1	: 3
Q.5(b)	Obtain Four	ier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0 \\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$ ce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{5^2$:		3
		()	•		
SEC	TION-C	Attempt any one of the following questions	Mark	s (1×10=10)	СО
Q.6(a)	ule image of	$v = \frac{z}{1-z}$ maps the upper half of the z-plane onto upper half of the circle $ z = 1$ under this transformation?		1	4
Q.6(b)	Find a biling	ear transformation which maps the points $i, -i, 1$ of the z -planespectively.	ne into	, 1, ∞ of the	4
					
SEC	TION-C	Attempt any one of the following questions	Marl	s (1×10=10)	СО
Q.7(a)	Evaluate ∮ _c	$\frac{e^{z}}{z(1-z)^{3}}dz, where c is (i) z = \frac{1}{2} (ii) z-1 = \frac{1}{2} (iii) z-1 $	z =2	, , ,	5
Q.7(b)	Find the Tay	ylor's and Laurent's series which represent the function $\frac{z^2-(z+2)(z+2)}{(z+2)(z+2)}$		(i) z < 2	5