University of the Philippines College of Science

PHYSICS 72

1st Semester 2012-2013 First Long Problem Set

INSTRUCTIONS: Choose the **best** answer and shade the corresponding circle on your answer sheet. To change your answer, cross-out and sign your original answer and then shade your new answer. No computational devices allowed (e.g. calculators, mobile phones). Following instructions is part of the exam.

Useful formulas:

	Area	Volume
Sphere (radius = r)	$4\pi r^2$	$\frac{4}{3}\pi r^3$
Cylinder (radius $=r$, height $=h$)	2πrh	$\pi r^2 h$

Useful constants:

$$\begin{array}{lll} e & -1.60 \times 10^{-19} \text{ C} \\ m_e & 9.1 \times 10^{-31} \text{ kg} \\ \varepsilon_o & 8.854 \times 10^{-12} \text{ C}^2/\text{Nm}^2 \\ k & 8.988 \times 10^9 \text{ Nm}^2/\text{C}^2 \end{array}$$

1. The Cube. Cube A has initial charge 4Q and cube B has initial charge -2Q. Both cubes have the same dimensions and are conducting. They were made to momentarily touch each other. What are the final charges of each cube a long time after touching?

A. Cube A: 0, cube B: 0 B. Cube A: Q, cube B: Q C. Cube A: 4Q, cube B: -2Q D. Cube A: -2Q, cube B: 4Q Cube A: -4Q, cube B: 2Q

2. **T-square.** What is the **net electric force** on q_0 given the system at the right? Each point charge has charge Q.

- E-wan. Which of the following statements about the electric field due to a point charge is TRUE?
 - I. Its magnitude follows the inverse square law.
 - II. It points towards a positive point charge.
 - III. Its magnitude depends on the square of the charge magnitude.

A. I only

В. II only

C. III only

D. I and II

E. I. II and III

- 4. Adidas. Consider three parallel infinitely long wires with linear charge density as shown in the figure below. The wires are coplanar and separated by a distance a, from the next. What is the electric field at a point on the bottom wire?
 - A. $k\lambda/a$, upward
 - kλ/a, downward B.
 - C. 3kλ/a, upward
 - D. 3kλ/a, downward
 - F. Zero

- 5. Transfer. Two identical conductors X and Y are separately charged with +15C and -25C, respectively. They are then brought into contact. What is the amount of **charge** on conductor X **at electrostatic equilibrium**?
 - 0C Α.
 - B. -5C
 - C. -10C
 - D. -15C
 - F. -25C
- 6. Trajectory. A negative point charge with initial velocity v_0 enters a region of uniform electric field directed downward as shown. Which trajectory would the charge most likely follow as it traverses the electric field?

- Conduction. Spheres 1 and 2, which are uncharged metals, are mounted on insulating support rods. Sphere 3, carrying a positive charge, is then placed near sphere 2. Now a conducting wire is momentarily connected between spheres 1 and 2 and then removed. Finally, sphere 3 is removed. What are the final charges of spheres 1 and 2?
 - A. Sphere 1: +; sphere 2: +
 - B. Sphere 1: -; sphere 2: +
 - C. Sphere 1: 0; sphere 2: 0
 D. Sphere 1: +; sphere 2: -

 - Sphere 1: -; sphere 2: -

Consider three **infinite** (nonconducting) sheets of charge placed side by side as with their cross-sections shown below. The left (L) and right (R) sheets have surface charge densities $+\sigma$ and $-\sigma$, respectively. The charge density of sheet M located in between L and R is not known. It was found that the **net force** on a **test charge** placed at **point P is zero**.

- 8. **Density**. What is the **charge density** of sheet M?
 - Α. -σ
 - B. $+\sigma$
 - C. -2σ
 - D. +2σ
 - E. Zero
- 9. **Force**. An **electron** is launched into the uniform electric field between two parallel plates with an initial horizontal velocity v_o =1.60×10⁶ m/s. The magnitude of the electric field is 1.00×10⁵ N/C. What is the **force (magnitude and direction)** experienced by the electron?
 - A. $1.60 \times 10^{11} \,\text{N}$, left
 - B. 1.60×10¹¹ N, right
 - C. 1.60×10⁻¹⁴ N, up
 - D. 1.60×10⁻¹⁴ N, down
 - E. 1.00×10^{-5} N, down

For the next two numbers, consider an **infinite line** charge with charge $-\lambda$ that is at a distance d above point NOY and a **point charge** +Q placed at the left of point NOY.

- 10. Gaussian. Which of the following Gaussian surfaces can be used to manually calculate the electric field at point NOY?
 - A. One **sphere** centered at +Q with a radius d and another **sphere** centered at λ with radius d
 - B. One **cylinder** centered at +Q with radius d and has infinite length and another **cylinder** centered at $-\lambda$ with radius d and has infinite length
 - C. One **cylinder** centered at +Q with radius d and has infinite length and another **cylinder** centered at $-\lambda$ with radius 2d and has infinite length
 - D. A **sphere** centered at +Q with radius d and a **cylinder** centered at $-\lambda$ with radius d and has infinite length
 - E. A **sphere** centered at +Q with radius d and a **cylinder** centered at $-\lambda$ with radius 2d and has infinite length
- 11. **Field.** What is the **net electric field** at point *NOY? Note:* $k = 1/(4\pi\varepsilon_0)$
 - A. $\mathbf{E} = 2kQ/d^2 \mathbf{i} + k\lambda/d \mathbf{j}$
 - B. $\mathbf{E} = 2kQ/d^2 \mathbf{i} k\lambda/d \mathbf{j}$
 - C. $\mathbf{E} = kQ/d^2 \mathbf{i} + 2k\lambda/d \mathbf{j}$
 - D. $\mathbf{E} = kQ/d^2 \mathbf{i} 2k\lambda/d \mathbf{i}$
 - E. $\mathbf{E} = kQ/d^2 \mathbf{i} + k\lambda/d \mathbf{j}$
- 12. **Force.** Consider a +2Q charge placed at the center of a **thin uniformly-charged spherical conducting** shell with net charge -Q and radius R. Point UP is at a distance 2R away from +2Q charge. If a +Q charge is placed at point *UP*, what will be the **electric force** acting on +Q? *Note:* $k = 1/(4\pi\varepsilon_0)$
 - A. zero
 - B. $|F| = kQ^2/4R^2$, downward
 - C. $|F| = kQ^2/4R^2$, upward
 - D. $|F| = 2kQ^2/4R^2$, downward
 - E. $|F| = 2kQ^2/4R^2$, upward

- 13. Flux. Consider a point charge +Q placed at the center of a cubic surface with side-length 2d. Determine the net flux through the cubic surface if the point charge is moved to the right at a distance d/2 from the center.
 - A. +Q/ε₀
 - B. Q/ε₀
 - C. $+ Q/2\epsilon_0$
 - D. $-Q/2\varepsilon_0$
 - E. zero

14. **Electric flux.** At each point on the surface of the cube shown in figure, the electric field is parallel to the z axis. The length of each edge of the cube is 1.0 m. On the top face of the cube **E** = -14 x 10³ N/C **k**, and on the bottom face of the cube **E** = 7.0 x 10³ N/C **k**. What is the net flux through the cube?

A. -2.1 x 10⁴ Nm²/C

B. 2.1 x 10⁴ Nm²/C

C. Zero

D. -7.1 x 10⁴ Nm²/C

E. $14.1 \times 10^4 \text{ Nm}^2/\text{C}$

15. **Charges on Conductors.** The figure shows a cross section of a spherical metal shell of inner radius R. A point charge of -q is located at a distance R/2 from the center of the shell. If the shell has a net charge of 3q, what are the (induced) charges on its **inner** and **outer** surfaces?

A. zero, zero

B. +q, -2q

C. +q, +2q

D. +q, +3q

E. +q,-q

16. Charges on Conductors. Consider two concentric conducting spherical shells. If the inner shell has total charge +q, what is the electric field magnitude at a distance b<r<?</p>

A. zero

B. $3kq/r^2$

C. $2kq/r^2$

D. kq/r^2 E. kq/b^2

- 17. **Gauss Law.** A positive point charge Q is located at the center of a cube of side-length L. In addition, six other identical positive point charges q are positioned symmetrically around Q, as shown in the figure. What is the **electric flux through one face** of the cube?

A. q/ε_0

B. $6q/\varepsilon_0$

C. $(Q+6q)/\varepsilon_0$

D. $(Q+6q)/6\varepsilon_0$

E. Żero

- 18. Gauss Law. A point charge q is located at the center of a uniform ring having linear charge density λ and radius a, as shown in the figure. What is the total electric flux through a Gaussian sphere centered at the point charge and having radius R, where R<a.</p>
 - A. zero
 - B. q/ϵ_0
 - C. $\lambda R^2/2a \epsilon_0$
 - D. 2πλa/ε₀
 - E. $(2πλa + q)/ε_0$

19. **Circle.** Six **identical** point charges +Q are placed along the circumference of a circle of radius R whose center coincides with the origin. Which of the following configurations will produce the **highest potential at the origin**?

E. ALL will produce the same potential at the origin.

- 20. **Uniform field.** A negative point charge -a is moved downward in a uniform electric field **E** directed to the right. Which of the following statements is TRUF?
 - Potential energy is stored due to this motion of the point charge.
 - B. Potential energy decreases due to the motion of the charge.
 - C. The work done bν the electrostatic force is positive.
 - D. The work done bν the electrostatic force is negative.
 - done work by the electrostatic force is zero.

- 21. Working. Two positive charges +a are to be fixed along the x-axis at x=-a and x=a. How much **potential energy** is needed to **assemble** the system?
 - Α.
 - B. kq^2/a
 - C. $kq^2/(2a)$
 - D. $kq^2/(4a)$
 - $2kq^{2}/(a)$

For the next two questions, consider spherical equipotential surfaces (whose cross sections are shown in the figure) surrounding a positive point charge. The potential difference between the surfaces I and II is measured to be 2.00 V.

- 22. **Surface.** A positive test charge q_0 is to be placed in one of the labeled points along the surfaces. At which location for the test charge will the **potential energy** of the system be highest?
 - A. At point A
 - B. At point B
 - C. At point C
 - D. Either point A or B
 - Either A. B or C
- 23. **Test.** Another positive test charge $q = 1.00 \times 10^{-9} \text{ C}$ is brought from A to C and then to B. What is the total work done by the electric field in moving the test charge?

- 1.00×10^{-9} J B.
- C. 2.00 x 10⁻⁹ J
- D. -1.00 x 10⁻⁹ 1
- E. -2.00 x 10⁻⁹ J

24. **Electric Potential.** Consider an isolated square **conductor slab** with charge density **-p** as shown. Among the points A to E, which is **greatest** in terms of potentials? (a and 2a are distances of the given point from the slab.)

25. **Potential energy**. Consider two **small spheres A** and **B** initially separated by a distance of $\mathbf{r_0}$. Both have the same charge of \mathbf{q} . Sphere B has mass \mathbf{m} . Sphere A is held on a stationary position while sphere B is launched towards sphere A with a speed \mathbf{v} . How close can sphere B get to sphere A? *Neglect the force of gravity*.

A.
$$\frac{2kq^{2}}{mv^{2}}$$
B.
$$\frac{\sqrt{\frac{2kq^{2}}{mv^{2}}}}{\sqrt{\frac{kq^{2}}{mv^{2}} + \frac{kq^{2}}{r_{0}}}}$$
C.
$$\frac{kq}{\sqrt{\frac{mv^{2}}{2} + \frac{kq^{2}}{r_{0}}}}$$
D.
$$\frac{r}{\sqrt{\frac{mv^{2}}{2} + \frac{kq^{2}}{r_{0}}}}$$

E. None of the above

26. Electric Potential and Electric Field. Consider an electric potential-versus**position** (V vs. r) plot shown below. Which of the plots below best represent its corresponding **electric field-versus-position** (E vs. r) plot?

- 27. **Conductors and Electric Potential.** Conducting spheres C, A and B are connected to each other by conducting wires as shown in the figure. If the radius of A is twice of B, and the radius of A is three times the radius of C ($r_a = 2r_b = 3r_c$), which of the following statements is correct at electrostatic equilibrium?
 - A. $Q_A = Q_B = Q_C$; $V_A = V_B = V_C$
 - $B. \quad Q_A = Q_B < Q_C; V_A < V_B = V_C$
 - C. $Q_A > Q_B > Q_C$; $V_A = V_B = V_C$
 - D. $Q_A > Q_C > Q_B$; $V_A = V_B = V_C$
 - E. $Q_A < Q_B < Q_C$; $V_A = V_B = V_C$

- 28. **Capacitance**. Consider a 10μF parallel plate capacitor initially connected to a 5-V DC power supply. The potential applied to the capacitor is then increased to 10V. What happens to the **capacitance** of the capacitor?
 - A. It will be doubled
 - B. It will be auadrupled
 - C. It will be halved
 - D. It will be quartered
 - E. It will remain the same
- 29. **Energy**. A **parallel plate capacitor** is connected to a battery. While connected to the battery, the area of each plate is **increased** by a **factor of 2**. What happens to the **energy stored** in the capacitor?
 - A. It will increase by a factor of 2
 - B. It will increase by a factor of 4
 - C. It will decrease by a factor of 2
 - D. It will decrease by a factor of 4
 - E. It will remain the same

For the next two numbers, consider an isolated parallel plate capacitor with an **initial charge 100\muC**. A **dielectric** κ is then inserted into the capacitor. The **energy** of the capacitor becomes **500\muJ**. The initial potential energy is 750 μ J.

- 30. **Charge**. What happens to the **charge** of the capacitor?
 - A. It will increase by a factor κ
 - B. It will increase by a factor κ^2
 - C. It will decrease by a factor κ
 - D. It will decrease by a factor κ²
 - E. It will remain the same
- 31. **Dielectric**. What is the value of κ?
 - A. 1.0
 - B. 1.5
 - C. 2.0
 - D. 2.5
 - E. 3.0

- 32. **Capacitance.** Two capacitors C_1 =C and C_2 =4C are connected in parallel to a 3-V battery. Which of the following statements is always **TRUE** about the charge stored and voltage across each capacitor?
 - A. $V_{C1} < V_{C2}$; $Q_{C1} < Q_{C2}$
 - B. $V_{C1} < V_{C2}$; $Q_{C1} = Q_{C2}$
 - C. $V_{C1} > V_{C2}$; $Q_{C1} = Q_{C2}$
 - D. $V_{C1} = V_{C2}$; $Q_{C1} < Q_{C2}$
 - $V_{C1} = V_{C2}$; $Q_{C1} > Q_{C2}$
- 33. **Effective capacitance.** Consider the following diagrams at the right. Assume that each of the capacitors has capacitance equal to C. Which has the highest **effective capacitance**?

For the next two numbers, consider a parallel plate capacitor which consists of plates of area $1 \mathrm{cm}^2$, separated by $2 \mathrm{mm}$.

- 34. **Parallel plate capacitor.** The capacitor is connected to a 10-V battery. What is the electric field between the plates?
 - A. 10 kV/m
 - B. 5 kV/m
 - C. 2 kV/m
 - D. 1 kV/m
 - E. 0
- 35. **Dielectric Slab.** If a dielectric slab (κ =2) is then placed in between the plates, what will be the new electric field due to the plates of the capacitor?
 - A. 10 kV/m
 - B. 5 kV/m
 - C. 2 kV/m
 - D. 1 kV/m
 - E. 0
- 36. **Dielectrics.** Two dielectric slabs are placed inside a capacitor as shown in the figure. Which of the following circuit diagrams on its right corresponds to the capacitor combination?

- 37. Current Density. The current density J in a wire is given by 50.0 A/m² i. If the drift velocity of the charge carriers (q = -0.1 C) is -2.0×10^{-4} m/s i, what is the concentration of the carriers?
 - A. $-2.5 \times 10^6 \text{ m}^{-3}$
 - $-2.5 \times 10^6 \text{ m}^3$ В
 - $2.5 \times 10^5 \text{ m}^{-3}$ C.
 - 2.5 x 10⁶ m³ D.
 - $2.5 \times 10^6 \text{ m}^{-3}$
- 38. **Ohm's Law.** Three different materials A, B and C each have resistivities $\rho_A > \rho_B >$ ρ_C . Assuming that the **current densities** in all materials **are the same**, rank the three in order of increasing electric field magnitude.
 - A. A > B > C
 - B. B > A > C
 - C. C > A > B
 - D. C > B > A
 - F. A > C > B
- 39. I've got the powah! Consider three identical resistors connected to the battery as shown at the right. Arrange the three resistors in order of increasing dissipated power.

- $R_1 < R_2 = R_3$
- $R_1 = R_2 < R_3$
- D. $R_1 > R_2 = R_3$
- E. $R_1 = R_2 = R_3$

- 40. **RC circuit.** Consider the circuit below, composed of a battery *V* (internal resistance not shown), a resistor R, and a capacitor C. When the system is at steady state, which of the following statements is/are true?
 - A. Current through the resistor is at minimum
 - B. Power dissipated through the resistor is at minimum
 - Charge on the capacitor is at minimum
 - D. A and B
 - B and C E.

- 41. **Resistance**. A piece of cylindrical copper wire has diameter d and length L. If the diameter is halved while the length is doubled, what happens to its resistance?
 - A. 8 times the original
 - B. 4 times the original
 - C. Same as the original
 - D. 1/4 times the original
 - E. 1/8 times the original
- 42. Resistors. Given a set of three identical resistors, which configuration would have the highest dissipated power for a constant voltage?

43. RC circuit. From the current curve of a RC circuit shown on the right, what is the time constant of the circuit if the initial current $I_0 = 2.71$ A? Hint: e = 2.71...

Α. 0.1sВ. 0.25s

C. 0.45s

0.8s D.

E. 1.0s

44. Power. Three bulbs B1, B2, and B3 are connected to a voltage power supply. The resistance of B1 is twice that of B2 and B3 $(2R_2 = R_1 = 2R_3)$, how much **power** is B1 getting compared to B2 and B3?

Α. ½ times

В. Same

C. 2 times

D. 4 times

8 times E.

45. Kirchhoff. Using the circuit diagram on the right use junction rule to express the relationship of the assumed current direction.

A.
$$I_1 + I_2 + I_3 = 0$$

B. $-I_1 - I_2 + I_3 = 0$ C. $-I_1 + I_2 + I_3 = 0$

D. $-I_1 + 2I_2 - I_3 = 0$

E. $2I_1 - I_2 - I_3 = 0$

