Programme de khôlle de maths nº 6

Semaine du 4 Novembre

Cours

Chapitre 4 : Entiers, sommes et récurrences

- Nombres entiers, familles finies et dénombrables
- ullet Sommes sur une partie finie de \mathbb{Z} , relation de Chasles, changement d'indice, changement de sens de sommation
- Somme double sur un rectangle $(\sum_{i=a}^{b} \sum_{j=c}^{d} u_{i,j})$, somme double sur un triangle $(\sum_{i=1}^{n} \sum_{j=1}^{i} u_{i,j})$.
- Récurrence simple, récurrence double, récurrence forte
- Formule du binôme de Newton

Chapitre 5 : Nombres réels

- Manipulation de nombres réels, inégalités, intervalles
- Borne supérieure, borne inférieure, maximum, minimum, majorant, minorant. Propriété de la borne supérieure (admis).
- Valeur absolue. $|x a| \le d \iff x \in [a d, a + d]$.
- Un voisinage de $a \in \mathbb{R}$ est un intervalle de la forme $]a \varepsilon; a + \varepsilon[$.
- Propriétés algébriques de la valeur absolue, inégalités triangulaires $|x+y| \le |x| + |y|$ et $||x| |y|| \le |x-y|$.
- Partie entière de x notée $\lfloor x \rfloor$ ou E(x). \mathbb{R} est archimédien (admis). Existence et unicité de la partie entière. $x \mapsto \lfloor x \rfloor$ est croissante
- Racine carrée. $\sqrt{x^2} = |x|$. $x \mapsto \sqrt{x}$ est strictement croissante sur $[0; +\infty[$. Propriétés algébriques.
- Fonction puissance réelle : $\forall x > 0, \forall a \in \mathbb{R}, x^a := e^{a \ln x}$. Propriétés algébrique. Racine n-ième de x > 0 : $\sqrt[n]{x} = x^{1/n}$. Dérivée de $x \mapsto x^a$

Questions de cours et exercices vus en classe

- Montrer que $x^n y^n = (x y) \sum_{k=0}^{n-1} x^k y^{n-k-1}$
- Démontrer l'inégalité triangulaire $|x + y| \le |x| + |y|$
- Démontrer l'existence et l'unicité de la partie entière d'un réel **positif** : soit $x \ge 0$, montrer qu'il existe un unique entier $n \in \mathbb{N}$ tel que $n \le x < n+1$.
- Montrer que la fonction partie entière est croissante sur \mathbb{R} et que $\forall x \in \mathbb{R}$, E(x+1) = E(x) + 1 et que la fonction racine carrée est strictement croissante sur $[0; +\infty[$.