

Homework for the Lecture

Algebra and Dynamics of Quantum Systems

Stefan Waldmann

Winter Term 2023/2024

$\underset{\rm revision:\ 2023-10-17\ 09:47:54\ +0200}{Homework\ Sheet\ No\ 2}$

Last changes by Stefan@JMU on 2023-10-17 Git revision of algdyn-ws2324: 2e30f66 (HEAD -> master)

24.10.2023

(27 Points. Submission deadline 31. 10. 2023)

Homework 2-1: States and density matrices

Consider the finite-dimensional pre-Hilbert space $\mathfrak{H} = \mathbb{C}^n$ with its canonical inner product.

- i.) (2 Points) Show that the matrices $M_n(\mathbb{C})$ act on \mathbb{C}^n by adjointable operators and determine the induced *-involution. We will always endow $M_n(\mathbb{C})$ with this *-involution.
- ii.) (3 Points) Let $\omega \colon \mathrm{M}_n(\mathbb{C}) \longrightarrow \mathbb{C}$ be a positive linear functional. Prove that there exists a matrix $\varrho \in \mathrm{M}_n(\mathbb{C})$ with the property $\langle \varphi, \varrho \varphi \rangle \geq 0$ for all $\varphi \in \mathbb{C}^n$ such that $\omega(A) = \mathrm{tr}(\varrho A)$. Show that ω is a state iff $\mathrm{tr}(\varrho) = 1$. Such a matrix ϱ is called a *density matrix*.
- iii.) (2 Points) Conversely, show that every density matrix $\varrho \in M_n(\mathbb{C})$ gives a state on $M_n(\mathbb{C})$ via the definition $A \mapsto \operatorname{tr}(\varrho A)$.
- iv.) (7 Points) Show that for a matrix $A \in M_n(\mathbb{C})$ the following statements are equivalent:
 - (a) One has $\langle \phi, A\phi \rangle \geq 0$ for all $\phi \in \mathbb{C}^n$.
 - (b) One has $A = A^*$ and all eigenvalues of A are non-negative.
 - (c) There is a Hermitian matrix $B = B^*$ with non-negative eigenvalues and $A = B^2$.
 - (d) There is a Hermitian matrix $B = B^*$ with $A = B^2$.
 - (e) There is a matrix $B \in M_n(\mathbb{C})$ with $A = B^*B$.
 - (f) There are matrices $B_1, \ldots, B_N \in M_n(\mathbb{C})$ with $A = B_1^* B_1 + \cdots + B_N^* B_N$, i.e. A is algebraically positive.
 - (g) One has $\omega(A) \geq 0$ for all states ω , i.e. A is a positive algebra element.

The content of this homework should be well-known (at least in parts) from linear algebra courses. One can safely skip this homework if familiar with the results. Details can be found in e.g. [1, Sect. 7.8].

Homework 2-2: Polarization identity

Let V and W be two vector spaces over \mathbb{C} and $S: V \times V \longrightarrow W$ a sesquilinear map, i.e. assume that

$$S(\alpha u + \beta v, w) = \overline{\alpha}S(u, w) + \overline{\beta}S(v, w) \quad \text{and} \quad S(u, \alpha v + \beta w) = \alpha S(u, v) + \beta S(u, w)$$
 (2.1)

hold for all $\alpha, \beta \in \mathbb{C}$ and $u, v, w \in V$.

i.) Show that the polarization identity

$$S(v,w) = \frac{1}{4} \sum_{k=0}^{3} i^{k} \cdot S(v + i^{-k}w, v + i^{-k}w)$$
 (2.2)

holds for all $v, w \in V$. Conclude that S is constant 0 iff S(v, v) = 0 for all $v \in V$. (2 Points)

- ii.) Now let $W = \mathbb{C}$. A sesquilinear map $S \colon V \times V \longrightarrow \mathbb{C}$ is usually called a sesquilinear form. Such a sesquilinear form is said to be Hermitian if $\overline{S(v,w)} = S(w,v)$ holds for all $v,w \in V$. Show that a sesquilinear form S on V is Hermitian if and only if $S(v,v) \in \mathbb{R}$ holds for all $v \in V$. (2 Points)
- iii.) Let finally \mathcal{A} be a unital *-algebra over \mathbb{C} . Show that for every $a \in \mathcal{A}$ there exist algebraically positive elements $b_0, b_1, b_2, b_3 \in \mathcal{A}^{++}$ such that $a = \sum_{k=0}^{3} \mathbf{i}^k b_k$ holds. (3 Points)

Homework 2-3: Positivity in the commutative *-algebra $\mathbb{C}[x]$

Recall that $\mathbb{C}[x]$ with *-involution $\left(\sum_{n=0}^{\infty} a_n x^n\right)^* = \sum_{n=0}^{\infty} \overline{a}_n x^n$ is a commutative *-algebra. Show that for a polynomial $a \in \mathbb{C}[x]$ the following statements are equivalent:

- i.) The polynomial a is an algebraically positive element of $\mathbb{C}[x]$.
- ii.) The polynomial a is a positive element of $\mathbb{C}[x]$.
- iii.) The polynomial a is pointwise positive, i.e. $a(y) \geq 0$ for all $y \in \mathbb{R}$.

(6 Points)

Hint: You might want to make use of the evaluation functionals at $y \in \mathbb{C}$, defined as

$$\delta_y \colon \mathbb{C}[x] \ni a \mapsto a(y) \in \mathbb{C}.$$
 (2.3)

The fundamental theorem of algebra might also be useful.

References

[1] Waldmann, S.: Lineare Algebra I. Die Grundlagen für Studierende der Mathematik und Physik. Springer-Verlag, Berlin, 2. edition, 2021. 2