Logical Equivalence

CSE015 Lab 2, 2024 Fall Jieke (Jacky) Wang jwang450@ucmerced.edu EECS, School of Engineering UC Merced

TOC

Slides is posted on Canvas: Files. If you find any typos or have any concerns, please contact me ASAP!

My proofs may not be the most beautiful ones. If you find a better one, please share it via Canvas:Discussion.

Review

Practice

lieke

Abstract of $1.1 \sim 1.3$

- ► **Terms**: propositions, tautology, contradiction, contingency, logically equivalent
- ▶ **Operations**: negation, conjunction, disjunction, exclusive, conditional statement, biconditional statement
- ► Apply: truth table, logical precedence, Boolean variable, De Morgan laws, conditional-disjunction equivalence, distributive law of disjunction over conjunction
- ► More contents: refer to Prof's slides.

A control of the cont

Lah2

Table 6

TABLE 6 Logical Equivalences.	
Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p\vee q\equiv q\vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \vee q) \vee r \equiv p \vee (q \vee r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \wedge (p \vee q) \equiv p$	
$p \lor \neg p \equiv \mathbf{T}$	Negation laws
$p \land \neg p \equiv \mathbf{F}$	

Proof of Table 6

Sketch of Proof.

By truth table. Can be found on Textbook p.26-28.

Table 7

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

Proof of Table 7

Theorem (Implication Equivalence)

$$p \rightarrow q \equiv \neg p \lor q$$

proof. via truth table.

Corollary

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

proof.

$$p o q \equiv \neg p \lor q$$
 apply IE
$$\equiv q \lor \neg p$$
 commutativity
$$\equiv \neg (\neg q) \lor \neg p$$
 double negation

 $\equiv
eg q
ightarrow
eg p$ apply IE (simplify triple-neg to single-neg)

Lah2

Corollary

$$p \lor q \equiv \neg p \rightarrow q$$

proof.
$$p \lor q \equiv \neg(\neg p) \lor q \equiv \neg p \to q$$

Corollary

$$p \land q \equiv \neg(p \rightarrow \neg q)$$

Look at Table 6. Which law is most relevant to such pattern?

proof.

$$p \wedge q \equiv \neg(\neg(p \wedge q))$$
 double negation
$$\equiv \neg(\neg p \vee \neg q)$$
 De Morgan in inner parenthesis
$$\equiv \neg(p \to \neg q)$$
 apply IE in inner parenthesis

For the rest, I will simply write the sketch of the proof for convenience.

Corollary

$$\neg(p\to q)\equiv p\wedge\neg q$$

proof. $\neg(p \to q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$ where we applied IE and De Morgan's Laws.

Corollary

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

proof. $(\neg p \lor q) \land (\neg p \lor r) \equiv \neg p \lor (q \land r) \equiv p \rightarrow (q \land r)$ where we applied distributive laws and IE.

Corollary

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

proof.
$$(p \to r) \lor (q \to r) \equiv (\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor r \lor \neg q \lor r \equiv (\neg p \lor \neg q) \lor (r \lor r) \equiv \neg (p \land q) \lor r \equiv (p \lor q) \to r$$

Corollary

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

proof.

$$(p \to q) \land (p \to r) \equiv (\neg p \lor q) \land (\neg p \lor r) \equiv \neg p \lor (q \land r) \equiv p \to (q \lor r)$$

Corollary

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

proof.
$$(\neg p \lor r) \lor (\neg q \lor r) \equiv \neg p \lor r \lor \neg q \lor r \equiv (\neg p \lor \neg q) \lor (r \lor r) \equiv \neg (p \land q) \lor r \equiv (p \land q) \rightarrow r$$

Table 8

Theorem

- 1. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
- 2. $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
- 3. $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
- 4. $\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

You can prove one via truth table, then construct others by applying laws. But truth tables can be easier for these.

Proof of Table 8

proof. (sketch)

$$1 \to 3 \ p \leftrightarrow q \equiv (p \to q) \land (q \to p) \equiv (\neg p \lor q) \land (\neg q \lor p) \equiv ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p) \equiv ((\neg p \land \neg q) \lor (q \land \neg q)) \lor ((\neg p \land p) \lor (q \land p)) \equiv ((\neg p \land \neg q) \lor F) \lor (F \lor (q \land p)) \equiv (p \land q) \lor (\neg p \land \neg q).$$

$$1 \to 2 \ p \leftrightarrow q \equiv (p \to q) \land (q \to p) \equiv (\neg p \lor q) \land (\neg q \lor p) \equiv (q \lor \neg p) \land (p \lor \neg q) \equiv (\neg q \to \neg p) \land (\neg p \to \neg q) \equiv \neg p \leftrightarrow \neg q.$$

$$1 \to 4 \ \neg(p \leftrightarrow q) \equiv \neg((p \land q) \lor (\neg p \land \neg q)) \equiv \neg(p \land q) \land \neg(\neg p \land \neg q) \equiv (\neg p \lor \neg q) \land (p \lor q) \equiv (p \to \neg q) \land (\neg q \to p) \equiv p \leftrightarrow \neg q.$$

Tips

- ▶ If you are uncertain, use **truth table**.
- ► When you construct logical equivalence:
 - 1. Make sure the rules applied are allowed i.e. in our scope.
 - 2. Comment the rule explicitly at each step.
 - 3. Break down complex expressions into simpler components.
 - 4. Look for patterns and common equivalences.
 - 5. Do NOT skip any procedure.

Patterns

- 1. The atomic rules are Table 6 + IE + 1 of Table 8
- 2. $\neg (p \land / \lor q)$: De Morgan.
- 3. ∧, ∨ alternatively appears inside/outside parenthesis: distributive law.
- 4. If the term includes biconditional, first convert it to simpler form (conj, disj, cond). Even simplifying the RHS helps you find the correct direction.
- 5. There can be more ... Come to lab to learn.

Practice

