Mixup: Beyond Empirical Risk Minimization

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz

Введение

Published as a conference paper at ICLR 2018

mixup: BEYOND EMPIRICAL RISK MINIMIZATION

Hongyi Zhang Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz*
FAIR

ABSTRACT

Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose *mixup*, a simple learning principle to alleviate these issues. In essence, *mixup* trains a neural network on convex combinations of pairs of examples and their labels. By doing so, *mixup* regularizes the neural network to favor simple linear behavior in-between training examples. Our experiments on the ImageNet-2012, CIFAR-10, CIFAR-100, Google commands and UCI datasets show that *mixup* improves the generalization of state-of-the-art neural network architectures. We also find that *mixup* reduces the memorization of corrupt labels, increases the robustness to adversarial examples, and stabilizes the training of generative adversarial networks.

Идея

$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j,$$

$$\tilde{y} = \lambda y_i + (1 - \lambda)y_j,$$

where x_i, x_j are raw input vectors where y_i, y_j are one-hot label encodings

Теоретическое обоснование. Empirical risk

$$R(f) = \int \ell(f(x), y) \mathrm{d}P(x, y)$$
. Expected risk

$$P_{\delta}(x,y) = rac{1}{n} \sum_{i=1}^{n} \delta(x=x_i,y=y_i),$$
 Empirical distribution

$$R_\delta(f) = \int \ell(f(x),y) \mathrm{d}P_\delta(x,y) = rac{1}{n} \sum_{i=1}^n \ell(f(x_i),y_i).$$
 Empirical risk

Теоретическое обоснование. Vicinal risk

$$P_{
u}(ilde{x}, ilde{y}) = rac{1}{n} \sum_{i=1}^{n}
u(ilde{x}, ilde{y}|x_i,y_i),$$
 Vicinal distribution

$$R_{
u}(f) = rac{1}{m} \sum_{i=1}^{m} \ell(f(ilde{x}_i), ilde{y}_i).$$
 Empirical vicinal risk

тіхир задает распределение:

$$\mu(\tilde{x}, \tilde{y}|x_i, y_i) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left[\delta(\tilde{x} = \lambda \cdot x_i + (1 - \lambda) \cdot x_j, \tilde{y} = \lambda \cdot y_i + (1 - \lambda) \cdot y_j)\right],$$
where $\lambda \sim \text{Beta}(\alpha, \alpha)$, for $\alpha \in (0, \infty)$.

Эксперимент. ImageNet Classification

Model	Method	Epochs	Top-1 Error	Top-5 Error
ResNet-50	ERM (Goyal et al., 2017) $mixup \ \alpha = 0.2$	90 90	23.5 23.3	6.6
ResNet-101	ERM (Goyal et al., 2017) mixup $\alpha = 0.2$	90 90	22.1 21.5	5.6
ResNeXt-101 32*4d	ERM (Xie et al., 2016) ERM mixup $\alpha = 0.4$	100 90 90	21.2 21.2 20.7	5.6 5.3
ResNeXt-101 64*4d	ERM (Xie et al., 2016) mixup $\alpha = 0.4$	100 90	20.4 19.8	5.3 4.9
ResNet-50	ERM $mixup \ \alpha = 0.2$	$\begin{array}{c} 200 \\ 200 \end{array}$	23.6 22.1	7.0 6.1
ResNet-101	$\overline{\text{ERM}}$ $mixup \ \alpha = 0.2$	$\begin{array}{c} 200 \\ 200 \end{array}$	22.0 20.8	6.1 5.4
ResNeXt-101 32*4d	$\overline{\text{ERM}}$ $mixup \ \alpha = 0.4$	$\begin{array}{c} 200 \\ 200 \end{array}$	21.3 20.1	5.9 5.0

Эксперимент. CIFAR-10 and CIFAR-100

Dataset	Model	ERM	тіхир
CIFAR-10	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	5.6 3.8 3.7	4.2 2.7 2.7
CIFAR-100	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	25.6 19.4 19.0	$21.1 \\ 17.5 \\ 16.8$

(a) Test errors for the CIFAR experiments.

(b) Test error evolution for the best ERM and *mixup* models.

Эксперимент. Speech data

Model	Method	Validation set	Test set
LeNet	ERM $mixup \ (\alpha = 0.1)$ $mixup \ (\alpha = 0.2)$	9.8 10.1 10.2	10.3 10.8 11.3
VGG-11	ERM $mixup \ (\alpha = 0.1)$ $mixup \ (\alpha = 0.2)$	5.0 4.0 3.9	4.6 3.8 3.4

Эксперимент. Memorization of corrupted labels

Label corruption Method	Test error		Training error		
<u> </u>		Best	Last	Real	Corrupted
	ERM	12.7	16.6	0.05	0.28
20%	ERM + dropout ($p = 0.7$)	8.8	10.4	5.26	83.55
	$mixup \ (\alpha = 8)$	5.9	6.4	2.27	86.32
	$mixup$ + dropout ($\alpha = 4, p = 0.1$)	6.2	6.2	1.92	85.02
	ERM	18.8	44.6	0.26	0.64
50%	ERM + dropout ($p = 0.8$)	14.1	15.5	12.71	86.98
	$mixup\ (lpha=32)$	11.3	12.7	5.84	85.71
	$mixup$ + dropout ($\alpha = 8, p = 0.3$)	10.9	10.9	7.56	87.90
	ERM	36.5	73.9	0.62	0.83
80%	ERM + dropout $(p = 0.8)$	30.9	35.1	29.84	86.37
00 /0	$mixup\ (lpha=32)$	25.3	30.9	18.92	85.44
	$mixup$ + dropout ($\alpha = 8, p = 0.3$)	24.0	24.8	19.70	87.67

Эксперимент. Robustness to adversarial examples

Metric	Method	FGSM	I-FGSM
Top-1	ERM mixup	90.7 75.2	99.9 99.6
Top-5	ERM mixup	63.1 49.1	93.4 95.8

Metric	Method	FGSM	I-FGSM
Top-1	ERM mixup	57.0 46.0	57.3 40.9
Top-5	ERM mixup	24.8 17.4	18.1 11.8

(b) Black box attacks.

⁽a) White box attacks.

Эксперимент. Stabilization of GANs

$$\label{eq:max_distance} \begin{split} \max_{g} \min_{d} \mathop{\mathbb{E}}_{x,z} \ell(d(x),1) + \ell(d(g(z)),0), \\ \max_{g} \min_{d} \mathop{\mathbb{E}}_{x,z,\lambda} \ell(d(\lambda x + (1-\lambda)g(z)),\lambda). \end{split}$$

Figure 5: Effect of mixup on stabilizing GAN training at iterations 10, 100, 1000, 10000, and 20000.

Рецензия

•

Булатова Катя

Сильные стороны

- Предложена альтернатива аугментациям, не зависящая от набора данных
- Сам метод очень прост в имплементации
- Все гиперпараметры для воспроизведения результатов указаны в статье
- Очень много экспериментов как на разных датасетах (включая даже разные типы данных, например изображения и звуки), так и для разных параметров, причем для разбора разнообразных предположений (запоминание классов, устойчивость)
- SOTA

Слабые стороны

- Не совсем понятно, насколько актуальна задача предсказания элементов in-between data
- Хотя в финальной версии статьи есть
 теоретическое обоснование того, как именно
 можно интерпретировать переход к миксапу
 (vicinal distribution), не очевидно, почему от
 этого должно стать лучше

(a) Prediction errors in-between training data. Evaluated at $x = \lambda x_i + (1-\lambda)x_j$, a prediction is counted as a "miss" if it does not belong to $\{y_i, y_j\}$. The model trained with *mixup* has fewer misses.

Насколько хорошо написана статья & Воспроизводимость

 Пара орфографических ошибок вроде "Figure 2 illustrate" & "the input that weights more"

- Идея выражается несколькими строчками кода
- Все гиперпараметры указаны

```
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
    lam = numpy.random.beta(alpha, alpha)
    x = Variable(lam * x1 + (1. - lam) * x2)
    y = Variable(lam * y1 + (1. - lam) * y2)
    optimizer.zero_grad()
    loss(net(x), y).backward()
    optimizer.step()
```

(a) One epoch of *mixup* training in PyTorch.

• Оценки с openreview: 6-7-6

Контекст

Дроздова Настя

Публикация

- ICLR 2018 (постер) (16 Feb 2018 (modified: 24 Feb 2018) openreview).
- Первая версия на архиве 25 Oct 2017.

Авторы

- Hongyi Zhang MIT, Graduate Research Assistant на момент публикации. В 2018 PhD в MIT.
- Moustapha Cisse Facebook Artificial Intelligence Research(FAIR). PhD in Machine Learning from Pierre et Marie Curie University, France.
- Yann N. Dauphin FAIR. В Facebook занимался машинным переводом. В 2015 PhD в университете Монреаля.
- David Lopez-Paz FAIR.

Предыдущие работы авторов в целом не связаны с тіхир.

Parseval networks: Improving robustness to adversarial examples[1] (2017) (Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, Nicolas Usunier)

На что опирается работа

Теоретическое обоснование

- Empirical Risk Minimization (ERM) principle (Vapnik, 1998).
- Vicinal Risk Minimization (VRM) principle (Chapelle et al., 2000)

Цитирования

- 2704 цитирований.
- AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty.[1]
 (ICLR 2020)
- CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features.[2]
 (ICCV, 2019)
- FMix: Enhancing Mixed Sample Data Augmentation. [3] (2020, ICLR 2021 rejected)

^{1.} https://arxiv.org/abs/1912.02781

^{2.} https://arxiv.org/abs/1905.04899

^{3.} https://arxiv.org/abs/2002.12047

Конкуренты

- Between-class learning for image classification. [1] (CVPR, 2018.)
 - Предложена аналогичная идея(ВС), а также улучшенная версия (ВС+),
 учитывающая нормализацию изображений.