СПИСОК ЗАДАЧ

Задача 1. Имеется реализация случайной выборки, которая содержит 20 единиц, 30 двоек и 50 троек. Постройте выборочную функцию распределения.

Задача 2. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x;\theta) = \begin{cases} \frac{6x(\theta-x)}{\theta^3} & \text{при } x \in [0;\theta], \\ 0 & \text{при } x \notin [0;\theta], \end{cases}$$

где $\theta > 0$ — неизвестный параметр распределения. Используя центральный момент 2-го порядка, при помощи метода моментов найдите оценку для неизвестного параметра θ .

Задача 3. Пусть $X = (X_1, ..., X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x;\theta) = \begin{cases} (\theta+1)x^{\theta} & \text{при } x \in (0;1), \\ 0 & \text{при } x \notin (0;1), \end{cases}$$

где $\theta \in (-1; +\infty)$ — неизвестный параметр распределения. С помощью метода максимального правдоподобия найдите оценку неизвестного параметра θ .

Задача 4. Пусть $X = (X_1, ..., X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x; \theta) = \begin{cases} \frac{4x^3}{\theta^4} & \text{при } x \in [0; \theta], \\ 0 & \text{при } x \notin [0; \theta], \end{cases}$$

где $\theta > 0$.

- (a) Является ли оценка $\hat{\theta} = \overline{X}$ несмещенной оценкой неизвестного параметра θ ?
- (b) Подберите константу c так, чтобы оценка $\tilde{\theta}=c\overline{X}$ оказалась несмещенной оценкой неизвестного параметра θ .

Задача 5. Пусть $X = (X_1, ..., X_n)$ — случайная выборка из нормального распределения с параметрами $\mu \in \mathbb{R}$ и $\sigma^2 > 0$, причем параметр σ^2 известен.

- (a) Найдите $I_n(\mu)$.
- (b) Является ли оценка $\hat{\mu} = \overline{X}$ несмещенной?
- (c) Является ли оценка $\hat{\mu} = \overline{X}$ эффективной?

Задача 6. Пусть $X = (X_1, ..., X_n)$ — случайная выборка из распределения с плотностью распределения

$$f(x;\theta) = \begin{cases} \frac{4x^3}{\theta^4} & \text{при } x \in [0;\theta], \\ 0 & \text{при } x \notin [0;\theta], \end{cases}$$

1

где $\, heta>0\,.$ Является ли оценка $\,\hat{ heta}_{n}=rac{5n+3}{4n-2}\,\overline{X}_{n}\,$ состоятельной оценкой параметра $\, heta\,?$

Задача 7. Пусть $X=\left(X_1,...,X_n\right)$ и $Y=\left(Y_1,...,Y_m\right)$ — независимые случайные выборки из нормального распределения с параметрами $\left(\mu_X,\sigma_X^2\right)$ и $\left(\mu_Y,\sigma_Y^2\right)$ соответственно. Известно, что $\sigma_X^2=\sigma_Y^2$. Уровень значимости $\alpha=0.05$. Используя реализации случайных выборок

$$x_1 = 1.53$$
, $x_2 = 2.83$, $x_3 = -1.25$, $x_4 = 1.86$, $x_5 = 1.31$; $y_1 = -0.80$, $y_2 = 0.06$, $y_3 = 0.84$, $y_4 = 4.07$, $y_5 = 3.26$

Проверьте гипотезу $H_{\scriptscriptstyle 0}$: $\mu_{\scriptscriptstyle X}=\mu_{\scriptscriptstyle Y}$ против альтернативы $H_{\scriptscriptstyle 1}$: $\mu_{\scriptscriptstyle X}<\mu_{\scriptscriptstyle Y}$.

Задача 8. Пусть $x=(x_1,\ldots,x_n)$ — реализация случайной выборки из распределения Пуассона с неизвестным параметром $\lambda>0$. Известно, что выборочное среднее \overline{x} по 80 наблюдениям равно 1.7 . При помощи теста отношения правдоподобия на уровне значимости 1% протестируйте гипотезу $H_0: \lambda=2$ против $H_1: \lambda\neq 2$.

Задача 9. Маша очень любит писать диктанты по русскому языку и пишет их каждый день. Она может написать диктант на четверку или на пятерку. На другую оценку Маша написать диктант не в состоянии. Маша пишет диктант только синей, черной или фиолетовой ручкой. Имеются следующие данные о 365 диктантах, написанных Машей:

	ручка синяя	ручка черная	ручка фиолетовая
за диктант пятерка	100	40	50
за диктант четверка	65	60	50

На уровне значимости 5% протестируйте гипотезу о том, что цвет ручки не влияет на оценку за диктант.

Задача 10. Губка Боб и Патрик любят генерировать случайные числа. В этот раз он сгенерировали выборку $x_1 = -4.3$, $x_2 = 3.4$, $x_3 = 35.8$, $x_4 = 27.7$, $x_5 = -13.5$, $x_6 = 30.3$, и рапортовали, что данная случайная выборка порождена логистическим распределением с функцией распределения $\Lambda(x) = \frac{e^x}{1+e^x}$. С помощью теста Колмогорова на уровне значимости 1% проверьте гипотезу о том, что данная случайная выборка, действительно, имеет логистическое распределение.