La réaction d'oxydo-réduction étudiée

Solutions utilisées :

1SPÉ

- solution aqueuse de **diiode l**₂(aq) de concentration en quantité de matière $C_1 = 1.0 \times 10^{-3}$ mol.L⁻¹
- solution aqueuse de **thiosulfate** de sodium (2 Na+ (aq) + $S_2O_3^{2-}$ (aq)) de concentration en quantité de matière $C_2 = 1.0 \times 10^{-3}$ mol.L-1.

La réaction chimique modélisant la transformation chimique entre le diiode et les ions thiosulfate est une réaction d'oxydo-réduction dont les couples oxydant/réducteur sont :

I₂(aq) / I⁻(aq) S₄O₆²⁻(aq) / **S₂O₃²⁻**(aq)

1.	Écrire les demi-équations modélisant le transfert d'électrons entre l'oxydant et le réducteur de chaque
	couple.

2.	Écrire l'équation de la réaction d'oxydo-réduction modélisant la transformation chimique entre le diiode et les ions thiosulfate.

• Suivi de l'évolution d'un système chimique : l'avancement

Expérience 1:

Quantités initiales :

• $I_2(aq): n_1 = 1,5 \times 10^{-5} \text{ mol}$

• $S_2O_3^{2-}$ (aq) : $n_2 = 2.0 \times 10^{-5}$ mol

3. Compléter l'état initial et l'état intermédiaire du tableau d'avancement

	Avancement (en mol)	l ₂ (aq) -	+ S ₂ O ₃ ²⁻ (aq) -	→ l-(aq)	+ S ₄ O ₆ ²⁻ (aq)
État initial	x = 0				
État intermédiaire	x				
État final	$x_{max} =$				

Remarque : toutes les transformations sont ici totales donc l'avancement final x_f est égal à l'avancement maximal x_{max} .

4. Compléter les phrases suivantes :

- Si I_2 (aq) est le réactif limitant alors 1,5×10-5 - x_{max} = et donc x_{max} =

- Si S₂O₃²-(aq) est le réactif limitant alors 2,0×10⁻⁵ - $2x_{max}$ = et donc x_{max} =

Le réactif limitant est car il conduit à la plus faible valeur de l'avancement maximal.

5. Compléter final.	5. Compléter la dernière ligne du tableau d'avancement puis prévoir la couleur du système dans son éta final.									
	6. Calculer le volume V_1 de solution aqueuse de diiode et le volume V_2 de solution aqueuse de thiosulfate de sodium à introduire afin de reproduire l'état initial figurant dans le tableau d'avancement précédent.									
(5)		DEMANI	DER VÉRIFICATION		(2)					
Réalisez l'expé	rience.									
7. Vos prédict	ions sont-elles v	vérifiées ?								
Expérience 2 :										
				mL de solution aqu	euse de diiode et					
$V_2' = 20,0 \text{ mL } c$	de solution aque	euse de thiosulfate	de sodium.							
8. À partir des	s observations, i	ndiquer quelle esp	pèce chimique est le	réactif limitant.						
9. Compléter le tableau d'avancement ci-dessous en détaillant les calculs des quantités de matière initiales et de l'avancement maximal.										
	Avancement (en mol)									
État initial	x = 0									
État intermédiaire	x									
État final	$x_{max} =$									
10. Le tableau	confirme-t-il vos	observations?								