igcond and igcondiny functions

Vincenzo Coia

October 13, 2016

This document describes in detail what the igcond and igcondinv functions are in the copsupp package.

IG Copula Family Definition

The IG copula family is defined as

$$C(u, v; \theta, k) = u + v - 1 + (1 - u) H_k (H_k^{\leftarrow} (1 - v; \theta); \theta (1 - u)),$$
(1)

where the parameter space is $(\theta, k) \in [0, \infty) \times (1, \infty)$, and $H_k(\cdot; \theta) : [1, \infty) \to (0, 1]$ is defined by

$$H_k(y;\theta) = \begin{cases} \frac{1}{y} \Psi_k\left(\frac{1}{\theta \log y}\right), & y > 1; \\ 1, & y = 1, \end{cases}$$
 (2)

where $\Psi_k:[0,\infty)\to(0,1]$ is a concave distribution function defined by

$$\Psi_{k}(y) = \begin{cases} y \frac{\Gamma(k) - \Gamma^{*}(k, y^{-1})}{\Gamma(k-1)} + \frac{\Gamma^{*}(k-1, y^{-1})}{\Gamma(k-1)}, & y > 0; \\ 0, & y = 0, \end{cases}$$
(3)

where Γ and Γ^* are the gamma and (upper) incomplete gamma functions, respectively. Note that $H_k(\cdot;\theta)$ is strictly decreasing for all $\theta > 0$, k > 1, and $H_k^{\leftarrow}(\cdot;\theta)$ is the unique inverse function of $H_k(\cdot;\theta)$.

2|1 Distribution Function

The 2|1 distribution function of the IG copula for some $(\theta,k) \in [0,\infty) \times (1,\infty)$ and $u \in (0,1)$ is

$$C_{2|1}(v|u;\theta,k) = 1 - \frac{\bar{F}_{k-1}(\theta(1-u)\log H_k^{\leftarrow}(1-v;\theta))}{H_k^{\leftarrow}(1-v;\theta)}$$

$$= 1 - \varphi_k(H_k^{\leftarrow}(1-v;\theta);\theta(1-u)),$$
(4)

 $v \in (0,1)$, where $\bar{F}_{k-1}(x) = \Gamma^*(k-1,x)/\Gamma(k-1)$ for $x \geq 0$ is the Gamma survival function with shape parameter k-1 and unit scale parameter, and

$$\varphi_k(x;\eta) = x^{-1}\bar{F}_{k-1}(\eta \log x) \tag{5}$$

for x > 1. So, computing $C_{2|1}^{\leftarrow}$ amounts to computing the inverse of $\varphi_k(\cdot; \theta)$:

$$C_{2|1}^{\leftarrow}\left(\tau|u;\theta,k\right) = 1 - H_k\left(\varphi_k^{\leftarrow}\left(1 - \tau;\theta\left(1 - u\right)\right);\theta\right),\tag{6}$$

 $\tau \in (0,1)$. Here are some plots of φ_k :

In the copsupp package, igcond is φ_k , and igcondinv is φ_k^{\leftarrow} .

To compute igcondinv by solving $\varphi_k(x;\eta) = p$ for x, the Newton-Raphson algorithm is used to solve g(x) = 0 for x, where

$$g(x) = xp - \bar{F}_{k-1}(\eta \log x),$$

with derivative

$$g'(x) = p + \frac{\eta}{x} f_{k-1} \left(\eta \log x \right).$$

A starting value is used by noting that φ_k is the product of two invertible survival functions, and is therefore smaller than those two survival functions. The smaller of the two *roots* of these survival functions is therefore an upper bound for the root of φ_k . The starting point is taken to be immediately to the left of this upper bound.