Ekeland

A beginner's point of view on some variational principles

Averil Prost

January 10, 2022 LMI/LMRS doctoral seminar

Table of Contents

The original principle

History

Statement

The proof

What since

History

Hilbert version: Ekeland-Lebourg Smooth version: Borwein-Preiss

An application

History (1/2)

1974 Ivar Ekeland's On the variational principle [Eke74], metric, distances.

Theorem – Ekeland [Eke74] Let (X,d) be a complete metric space. Let $f:X\mapsto \mathbb{R}\cup\{\infty\}$ be proper, lsc and lower bounded.

$$f(y) \leqslant f(x) - \delta d(x,y), \tag{1a}$$

The original principle

No min when it exists

- No min when it exists

$$\begin{cases}
f(y) \leqslant f(x) - \delta d(x, y), \\
f(y) - \delta d(z, y) < f(z)
\end{cases}$$
(1a)
$$\forall z \in X \setminus \{y\}.$$
(1b)

- No min when it exists

$$\begin{cases}
f(y) \leqslant f(x) - \delta d(x, y), \\
f(y) - \delta d(z, y) < f(z)
\end{cases}$$
(1a)
$$\forall z \in X \setminus \{y\}.$$
(1b)

- No min when it exists

- $\downarrow \bullet \sim \text{no } +\infty \text{ behavior}$

$$\begin{cases}
f(y) \leqslant f(x) - \delta d(x, y), \\
f(y) - \delta d(z, y) < f(z)
\end{cases}$$
(1a)
$$\forall z \in X \setminus \{y\}.$$
(1b)

- No min when it exists
- $\not = y$ stays in X
- ♠ No (local) compactness

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$.

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$. Pick $x_0 \in S_0$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$.

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$. Pick $x_0 \in S_0$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Build $(x_i, S_i)_i$ as

$$S_i := \{ x \in X \mid f(x) \leq f(x_{i-1}) - \delta d(x, x_{i-1}) \},$$

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$. Pick $x_0 \in S_0$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Build $(x_i, S_i)_i$ as

$$S_{i} := \{ x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1}) \},$$
$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$. Pick $x_0 \in S_0$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Build $(x_i, S_i)_i$ as

$$S_i \coloneqq \left\{ x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1}) \right\},$$
$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

and pick $x_i \in S_i$ such that

$$f(x_i) \leqslant \frac{f(x_{i-1}) + \inf_{y \in S_i} f(y)}{2}.$$

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$. Pick $x_0 \in S_0$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Build $(x_i, S_i)_i$ as

$$S_{i} := \left\{ x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1}) \right\},$$
$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

and pick $x_i \in S_i$ such that

$$f(x_i) \leqslant \frac{f(x_{i-1}) + \inf_{y \in S_i} f(y)}{2}.$$

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$. Pick $x_0 \in S_0$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Build $(x_i, S_i)_i$ as

$$S_{i} := \left\{ x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1}) \right\},$$
$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

and pick $x_i \in S_i$ such that

$$f(x_i) \leqslant \frac{f(x_{i-1}) + \inf_{y \in S_i} f(y)}{2}.$$

Let $S_0 := \text{dom } f$, and $\varepsilon > 0$. Pick $x_0 \in S_0$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Build $(x_i, S_i)_i$ as

$$S_{i} := \left\{ x \in X \mid f(x) \leqslant f(x_{i-1}) - \delta d(x, x_{i-1}) \right\},$$

$$\delta d(x, x_{i-1}) \leqslant f(x_{i-1}) - f(x)$$

and pick $x_i \in S_i$ such that

$$f(x_i) \leqslant \frac{f(x_{i-1}) + \inf_{y \in S_i} f(y)}{2}.$$

 S_i nonempty and closed.

Let us show that $S_{i+1} \subset S_i$, and diam $S_i \xrightarrow[i \to \infty]{} 0$.

Let $x \in S_{i+1}$:

$$f(x) \leqslant_{x \in S_{i+1}} f(x_i) - \delta d(x, x_i)$$

Let
$$x \in S_{i+1}$$
:

$$f(x) \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i)$$
$$\underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right]$$

Let
$$x \in S_{i+1}$$
:

$$\begin{split} f(x) & \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i) \\ & \underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ & \underset{\triangle \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), \end{split}$$

Let $x \in S_{i+1}$:

$$\begin{split} f(x) & \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i) \\ & \underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ & \underset{\triangle \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), \end{split}$$

and $x \in S_i$, so that $S_{i+1} \subset S_i$.

Let $x \in S_{i+1}$:

$$\begin{split} f(x) & \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i) \\ & \underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ & \underset{\triangle \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), \end{split}$$

and $x \in S_i$, so that $S_{i+1} \subset S_i$.

On the other hand, since $\inf_{S_{i+1}} f \geqslant \inf_{S_i} f$,

$$f(x_i) - \inf_{S_{i+1}} f \leq [f(x_{i-1}) + \inf_{S_i} f - 2 \inf_{S_{i+1}} f]/2$$

Let $x \in S_{i+1}$:

$$\begin{split} f(x) & \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i) \\ & \underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ & \underset{\triangle \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), \end{split}$$

and $x \in S_i$, so that $S_{i+1} \subset S_i$.

On the other hand, since $\inf_{S_{i+1}} f \geqslant \inf_{S_i} f$,

$$f(x_i) - \inf_{S_{i+1}} f \leqslant [f(x_{i-1}) + \inf_{S_i} f - 2 \inf_{S_{i+1}} f]/2$$

$$\leqslant [f(x_{i-1}) - \inf_{S_i} f]/2 \leqslant \dots \leqslant \frac{\varepsilon}{2^i}.$$

Let $x \in S_{i+1}$:

$$\begin{split} f(x) & \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i) \\ & \underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ & \underset{\Delta \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), \end{split}$$

and $x \in S_i$, so that $S_{i+1} \subset S_i$.

On the other hand, since $\inf_{S_{i+1}} f \geqslant \inf_{S_i} f$,

$$f(x_i) - \inf_{S_{i+1}} f \leqslant [f(x_{i-1}) + \inf_{S_i} f - 2 \inf_{S_{i+1}} f]/2$$

$$\leqslant [f(x_{i-1}) - \inf_{S_i} f]/2 \leqslant \dots \leqslant \frac{\varepsilon}{2^i}.$$

$$\delta d(x, x_i) \leqslant f(x_i) - f(x) \leqslant f(x_i) - \inf_{S_{i+1}} f \leqslant \frac{\varepsilon}{2^i}.$$

Let $x \in S_{i+1}$:

$$\begin{split} f(x) & \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i) \\ & \underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ & \underset{\Delta \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), \end{split}$$

and $x \in S_i$, so that $S_{i+1} \subset S_i$.

On the other hand, since $\inf_{S_{i+1}} f \geqslant \inf_{S_i} f$,

$$f(x_i) - \inf_{S_{i+1}} f \leqslant [f(x_{i-1}) + \inf_{S_i} f - 2 \inf_{S_{i+1}} f]/2$$

$$\leqslant [f(x_{i-1}) - \inf_{S_i} f]/2 \leqslant \dots \leqslant \frac{\varepsilon}{2^i}.$$

$$\delta d(x, x_i) \leqslant f(x_i) - f(x) \leqslant f(x_i) - \inf_{S_{i+1}} f \leqslant \frac{\varepsilon}{2^i}.$$
so that $d(x, x_{i-1}) \leqslant \frac{\varepsilon}{\delta 2^i}$, and diam $S_i \xrightarrow[i \to \infty]{} 0$.

Let $x \in S_{i+1}$:

$$\begin{split} f(x) & \underset{x \in S_{i+1}}{\leqslant} f(x_i) - \delta d(x, x_i) \\ & \underset{x_i \in S_i}{\leqslant} f(x_{i-1}) - \delta \left[d(x_i, x_{i-1}) + d(x, x_i) \right] \\ & \underset{\triangle \text{ ineq}}{\leqslant} f(x_{i-1}) - \delta d(x, x_{i-1}), \end{split}$$

and $x \in S_i$, so that $S_{i+1} \subset S_i$.

On the other hand, since $\inf_{S_{i+1}} f \geqslant \inf_{S_i} f$,

$$f(x_i) - \inf_{S_{i+1}} f \leq [f(x_{i-1}) + \inf_{S_i} f - 2 \inf_{S_{i+1}} f]/2$$

 $\leq [f(x_{i-1}) - \inf_{S_i} f]/2 \leq \dots \leq \frac{\varepsilon}{2^i}.$

$$\delta d(x, x_i) \leqslant f(x_i) - f(x) \leqslant f(x_i) - \inf_{S_{i+1}} f \leqslant \frac{\varepsilon}{2^i}.$$

so that $d(x,x_{i-1})\leqslant rac{arepsilon}{\delta 2^i}$, and $\operatorname{diam} S_i \underset{i o \infty}{\longrightarrow} 0$.

Since X is closed, by Cantor's intersection theorem, there exists an unique $y \in \bigcap_{i=0}^{\infty} S_i$.

• Since $y \in S_1$, $f(y) \le f(x_0) - \delta d(y, x_0)$, hence (1a).

- Since $y \in S_1$, $f(y) \leq f(x_0) \delta d(y, x_0)$, hence (1a).
- Let $x \neq y$, and $i \in \mathbb{N}$ s.t. $x \notin S_{i+1}$.

- Since $y \in S_1$, $f(y) \leq f(x_0) \delta d(y, x_0)$, hence (1a).
- Let $x \neq y$, and $i \in \mathbb{N}$ s.t. $x \notin S_{i+1}$.

$$f(x) \underset{x \notin S_{i+1}}{>} f(x_i) - \delta d(x, x_i)$$

- Since $y \in S_1$, $f(y) \le f(x_0) \delta d(y, x_0)$, hence (1a).
- Let $x \neq y$, and $i \in \mathbb{N}$ s.t. $x \notin S_{i+1}$.

$$f(x) \underset{x \notin S_{i+1}}{>} f(x_i) - \delta d(x, x_i)$$

$$\underset{y \in S_{i+1}}{\geqslant} f(y) + \delta d(y, x_i) - \delta d(x, x_i),$$

- Since $y \in S_1$, $f(y) \leq f(x_0) \delta d(y, x_0)$, hence (1a).
- Let $x \neq y$, and $i \in \mathbb{N}$ s.t. $x \notin S_{i+1}$.

$$\begin{split} f(x) &\underset{x \notin S_{i+1}}{>} f(x_i) - \delta d(x, x_i) \\ &\underset{y \in S_{i+1}}{\geqslant} f(y) + \delta d(y, x_i) - \delta d(x, x_i), \\ &\underset{\triangle \text{ ineq.}}{\geqslant} f(y) - \delta d(y, x), \end{split}$$

hence (1b).

Averil Prost Ekeland 7/16

Table of Contents

The original principle

History

Statemer

The proof

What since

History

Hilbert version: Ekeland-Lebourg Smooth version: Borwein-Preiss

An application

History (2/2)

Ivar Ekeland's On the variational principle [Eke74], metric, distances.

The original principle

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded $D \subset H$ real Hilbert, and $f: D \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded.

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded $D \subset H$ real Hilbert, and $f: D \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. $\forall \delta > 0, \exists \overline{x} \in D \text{ and } p \in H' \text{ s.t.}$

$$\begin{cases} |p|_{H'} < \delta, \\ x \to f(x) + \langle p, x \rangle_{H', H} \text{ admits a strict minimum over } D \text{ in } \overline{x}. \end{cases} \tag{2a}$$

$$x \to f(x) + \langle p, x \rangle_{H', H}$$
 admits a strict minimum over D in \overline{x} . (2b)

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded $D \subset H$ real Hilbert, and $f:D\mapsto\mathbb{R}\cup\{\infty\}$ be proper, lsc and lower bounded. $\forall\,\delta>0,\,\exists\,\overline{x}\in D$ and $p\in H'$ s.t.

$$\begin{cases} |p|_{H'} < \delta, \\ x \to f(x) + \langle p, x \rangle_{H',H} \text{ admits a strict minimum over } D \text{ in } \overline{x}. \end{cases} \tag{2a}$$

$$x \to f(x) + \langle p, x \rangle_{H', H}$$
 admits a strict minimum over D in \overline{x} . (2b)

Boundedness of D really essential $(f \equiv c)$

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded $D \subset H$ real Hilbert, and $f:D\mapsto\mathbb{R}\cup\{\infty\}$ be proper, lsc and lower bounded. $\forall\,\delta>0,\,\exists\,\overline{x}\in D$ and $p\in H'$ s.t.

$$\begin{cases} |p|_{H'} < \delta, \\ x \to f(x) + \langle p, x \rangle_{H',H} \text{ admits a strict minimum over } D \text{ in } \overline{x}. \end{cases} \tag{2a}$$

$$x \to f(x) + \langle p, x \rangle_{H',H}$$
 admits a strict minimum over D in \overline{x} . (2b)

- Boundedness of D really essential $(f \equiv c)$

Theorem – Ekeland-Lebourg [EL76] Let a closed bounded $D \subset H$ real Hilbert, and $f:D\mapsto\mathbb{R}\cup\{\infty\}$ be proper, lsc and lower bounded. $\forall\,\delta>0,\,\exists\,\overline{x}\in D$ and $p\in H'$ s.t.

$$\begin{cases} |p|_{H'} < \delta, \\ x \to f(x) + \langle p, x \rangle_{H',H} \text{ admits a strict minimum over } D \text{ in } \overline{x}. \end{cases} \tag{2a}$$

$$x \to f(x) + \langle p, x \rangle_{H',H}$$
 admits a strict minimum over D in \overline{x} . (2b)

- Boundedness of D really essential $(f \equiv c)$
- Very nice perturbation

The proof is quite different.

Let (X, d) be a complete metric space.

gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0, \infty]$ satisfying $\rho(x, x) = 0$ for all $x \in X$, and $\forall \varepsilon > 0$, $\exists \eta > 0$ such that $\rho(x, y) \leqslant \eta$ implies $d(x, y) \leqslant \varepsilon$.

Let (X, d) be a complete metric space.

gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0,\infty]$ satisfying $\rho(x,x)=0$ for all $x \in X$, and $\forall \varepsilon>0$, $\exists \eta>0$ such that $\rho(x,y)\leqslant \eta$ implies $d(x,y)\leqslant \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$.

Let (X, d) be a complete metric space.

gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0,\infty]$ satisfying $\rho(x,x)=0$ for all $x \in X$, and $\forall \varepsilon>0$, $\exists \eta>0$ such that $\rho(x,y)\leqslant \eta$ implies $d(x,y)\leqslant \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^{\infty} \subset X$ such that

$$\rho(x_0, y) \leqslant \varepsilon / \delta_0 \quad \text{and} \quad \rho(x_i, y) \leqslant \varepsilon / (2^i \delta_0)$$
(3a)

(3b)

(3c)

Let (X, d) be a complete metric space.

gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0, \infty]$ satisfying $\rho(x,x)=0$ for all $x\in X$, and $\forall \varepsilon>0$, $\exists \eta>0$ such that $\rho(x,y)\leqslant \eta$ implies $d(x,y)\leqslant \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^{\infty} \subset X$ such that

$$\begin{cases} \rho(x_0, y) \leqslant \varepsilon / \delta_0 & \text{and} \quad \rho(x_i, y) \leqslant \varepsilon / (2^i \delta_0) \\ f(y) + \sum_{i=0}^{\infty} \delta_i \rho(y, x_i) \leqslant f(x_0) \end{cases}$$
(3a)
(3b)

(3c)

Let (X, d) be a complete metric space.

gauge-type functions Any lower semicontinuous $\rho: X \times X \mapsto [0,\infty]$ satisfying $\rho(x,x)=0$ for all $x \in X$, and $\forall \varepsilon>0$, $\exists \eta>0$ such that $\rho(x,y)\leqslant \eta$ implies $d(x,y)\leqslant \varepsilon$.

Theorem – Borwein-Preiss [BP87] Let $f: X \mapsto \mathbb{R} \cup \{\infty\}$ be proper, lsc and lower bounded. Let ρ be gauge-type, $(\delta_i)_i \subset \mathbb{R}^+_*$, and $x_0 \in X$ such that $f(x_0) \leqslant \inf_X f + \varepsilon$. Then there exist $y \in X$ and a sequence $(x_i)_{i=0}^\infty \subset X$ such that

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1+|x|)^{-1}$, $\delta_i = 0.01/(1+i)^2$, $\rho(x,y) = |x-y|^2$.

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1+|x|)^{-1}$, $\delta_i = 0.01/(1+i)^2$, $\rho(x,y) = |x-y|^2$.

Illustration of Borwein-Preiss

Figure: Iterative construction with $f(x) = (1+|x|)^{-1}$, $\delta_i = 0.01/(1+i)^2$, $\rho(x,y) = |x-y|^2$.

Table of Contents

The original principle

History

Statemen

The proof

What since

History

Hilbert version: Ekeland-Lebourg

An application

The Wasserstein context

• Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x\in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $C_2(E)$.

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x\in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $\mathcal{C}_2(E)$.

The problem

• Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $\mathcal{C}_2(E)$.

The problem

- Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.
- Bounded sets for the Wasserstein distance are narrowly compact, but not compact in the Wasserstein topology.

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $C_2(E)$.

The problem

- Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.
- Bounded sets for the Wasserstein distance are narrowly compact, but not compact in the Wasserstein topology.

A solution by Marigonda & Quincampoix [MQ18]

• Use Ekeland to obtain δ -minimizers that are exact strict minima of perturbed functions.

The Wasserstein context

- Space of measures μ with finite second moment $\int_{x \in E} |x|^2 d\mu(x)$.
- Narrow topology: duality with $C_b(E)$.
- Wasserstein topology: duality with $C_2(E)$.

The problem

- Aim: minimize a (coercive, lsc, proper) function in the Wasserstein space.
- Bounded sets for the Wasserstein distance are narrowly compact, but not compact in the Wasserstein topology.

A solution by Marigonda & Quincampoix [MQ18]

- Use Ekeland to obtain δ -minimizers that are exact strict minima of perturbed functions.
- What with Borwein & Preiss?

Thank you!

[AE84] Jean Pierre Aubin and I. Ekeland.

Applied Nonlinear Analysis.

Pure and Applied Mathematics, Wiley, New York, 1984.

[BP87] J. M. Borwein and D. Preiss.

A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions

Transactions of the American Mathematical Society, 303(2):517–527, 1987.

[BZ05] Jonathan M. Borwein and Qiji J. Zhu.

Techniques of Variational Analysis.

CMS Books in Mathematics. Springer-Verlag, New York, 2005.

[DGZ93] R. Deville, G. Godefroy, and V. Zizler.

A Smooth Variational Principle with Applications to Hamilton-Jacobi Equations in Infinite Dimensions.

Journal of Functional Analysis, 111(1):197-212, January 1993.

[Eke74] I. Ekeland.

On the variational principle.

Journal of Mathematical Analysis and Applications, 47(2):324-353, August 1974.

[EL76] Ivar Ekeland and Gérard Lebourg.

Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces.

Transactions of the American Mathematical Society, 224(2):193–216, 1976.

[MQ18] Antonio Marigonda and Marc Quincampoix.

Mayer control problem with probabilistic uncertainty on initial positions.

Journal of Differential Equations, 264(5):3212-3252, March 2018.