A Generative Framework for Zero-Shot Learning with Adversarial Domain Adaptation

Varun Khare¹, Divyat Mahajan¹², Homanga Bharadhwaj², Vinay Kumar Verma, Piyush Rai

Indian Institute of Technology Kanpur, India Microsoft Research, India University of Toronto. Canada

February 21, 2020

¹VK and DM contributed equally

²DM and HB contributed while being part of IIT Kanpur

Motivation

- Human can predict the novel classes just by class description.
- For examples: Zebra is a horse like animal with black and white stride.
- We can predict the unseen class zebra just by description

 Zero-Shot Learning (ZSL) provides ability to machine to classify novel class (with the help of side information)

Highlights

- Generative ZSL Framework
- Adversarial Domain Adaptation (ADA) to minimize domain gap between the "actual" and the "generated" distributions
- End-to-end training in the Generative Framework
- Domain adaption for the novel class

Proposed Approach (Generative Framework)

We model the data distribution as a mixture of individual class conditional distributions:

$$\mathbf{x} \sim p(\mathbf{x}|\Theta_c) \ \forall c \in C$$

The plate notation is given by:

Once Θ is learnt new samples from a particular class can be generated by conditional sampling from the above distribution

Proposed Approach (Domain Adaptation)

Figure 2: Overall Architecture with Adversarial Domain Adaptation

Results (ZSL)

	SUN	CUB	AWA2
Method	PS	PS	PS
CONSE	38.8	34.3	44.5
SSE	51.5	43.9	61.1
LATEM	55.3	49.3	55.8
DEVISE	56.5	52.0	59.7
SJE	53.7	53.9	61.9
ESZSL	54.5	53.9	58.6
SYNC	56.3	55.6	46.6
DEM	61.9	51.7	67.1
GFZSL	63.1	49.2	67.0
CVAE-ZSL	61.7	52.1	65.8
W/O ADA (Ours)	63.3	70.9	70.4

Table 1: Zero Shot Learning Accuracy on the SUN, CUB, and AWA2 dataset.

Empirical Gains from ADA

Method	SUN	CUB	AWA2
DSRL	56.8	48.7	72.8
ALE	55.7	54.5	70.7
GFZSL	64.2	50.5	78.6
With ADA (Ours)	65.5	74.2	78.6

Table 2: Transductive Zero-Shot Learning results on the SUN, CUB, and AWA2 dataset.

Conclusion

- End-to-end generative framework for the ZSL.
- Handles the domain shift for the novel classes.

(For more details please visit the poster)