

ey concept T9 L6

Hypothesis

A statistical hypothesis is a claim about the <u>population</u> parameter

Hypothesis Testing Procedure:

Step 1: Define hypotheses

Null hypothesis, *H*₀

- \circ Always about a population parameter (μ)
- Always contains "="
- Always assumed to be true at start

Alternative hypothesis, *H*₁

- The opposite of the null hypothesis
- o X "="
- It is mutually exclusive and collectively exhaustive from the null hypothesis
 There are three different sets of hypotheses to be tested
 - Two-tail test: H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$
 - Lower-tail test: H₀: μ≥μ₀ against H₁: μ<μ₀
 - Upper-tail test: H₀: μ≤μ₀ against H₁: μ>μ₀

Hypothesis

Step 2: Collect the data and identify the rejection region(s)

Representative sample

Rejection region/level of significance α

- o Typical values: 0.01, 0.05, 0.1
- Probability of committing Type I error: The acceptable risk level for rejecting the null hypothesis wrongly

Location

- Two-tail
- One-tail: lower-tail/upper-tail

Step 3: Compute test statistic

$$\sigma$$
 is known: Z distribution Z

$$\sigma$$
 is unknown: t distribution

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

$$t = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

Hypothesis

Step 4: Make statistical decision

Z/t statistic **VS.** Critical value (i.e. rejection region)

- \circ If yes, then reject H_0
- \circ Otherwise, do not reject H_0

p-value (converted from Z/t statistic) **VS.** level of significance (α)

- Two-tail: p-value = $P(Z \le -|test\ statistic|) + P(Z \ge |test\ statistic|)$
- One-tail: p-value = $P(Z \le test \ statistic)$ or p-value = $P(Z \ge test \ statistic)$
- If p-value $< \alpha$, then reject H_0
- \circ Otherwise, do not reject H_0

Risk of Making a Wrong Decision

Decision	The Truth	
	H_0 True	H_0 False
Do not reject H_0	Level of Confidence $(1-\alpha)$	Type II Error (β)
Reject H_0	Type I Error (α)	Power of the Test $(1 - \beta)$

Type II error (β)

- depends on the true value of the parameter to be tested, often unknown if the null hypothesis is rejected
- ways to reduce the probability of making a Type II error:
 - By increasing a
 - By increasing the sample size for the test

Type I error (α)

o often pre-specified (e.g. a = 0.05)

Z Test for the Population Mean (σ Known)

Conditions: σ known + Population: normal, or large enough sample size (CLT)

Critical value(s): obtained from the Z-table, Z_{α} or $Z_{\alpha/2}$

Test statistic: obtained from sample, $\mathbf{Z} = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$

p-value: obtained from test statistic,

- two-tail: P(Z < -|Z|) + P(Z > |Z|)
- lower-tail: P(Z < Z)
- upper-tail: P(Z > Z)

Reject / Do not reject H_0 :

- Reject H_0 if Z < C.V. or Z > C.V. or p-value $< \alpha$
- There is evidence that the true mean is not xxx
- Do not reject H_0 as p-value > α
- There is no evidence that the true mean is not xxx

t Test for the Population Mean (σ Unknown)

Conditions: σ unknown + Population: normal, or large enough sample size (CLT)

Critical value(s): obtained from the *t*-table, $t_{\alpha,df}$ or $t_{\alpha/2,df}$ (df=n-1)

Test statistic: obtained from sample, $t = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$

p-value: obtained from test statistic,

```
• two-tail: P(t < -| \ t \ |) + P(t > | \ t \ |)

• lower-tail: P(t < t)

• upper-tail: P(t > t)

* = find the range P(t < -| \ t \ |)

= P(t < -2.37) + P(t > 2.37)

= 2 \times P(t \ge 2.37)

= 2 \times (0.01, 0.025)

= (0.02, 0.05)
```

Reject / Do not reject H_0 :

- o Reject H_0 if t < C.V. or t > C.V. or p-value $< \alpha$
- There is evidence that the true mean is not xxx
- Do not reject H_0 as p-value > α
- There is no evidence that the true mean is not xxx

Z or t Test change

Z test

Critical value(s): obtained from the Z-table, Z_{α} or $Z_{\alpha/2}$

$$\alpha \propto \frac{1}{|\mathsf{C.V.}|}$$

Test statistic, **Z**:

t test

Critical value(s): obtained from the *t*-table, $t_{\alpha,df}$ or $t_{\alpha/2,df}$

$$\alpha \propto \frac{1}{|\mathsf{C.V.}|}$$

$$df \propto \frac{1}{|\mathsf{C.V.}|}$$

Test statistic, *t*: