Assignment-1 (Quiz) - Results

Attempt 1 of 2

Written Dec 7, 2023 7:19 PM - Dec 7, 2023 7:34 PM

Attempt Score 0.8 / 2 - 40 %

Overall Grade (Highest Attempt) 1.6 / 2 - 80 %

Question 1

Suppose we have four stations that are connected by train services as shown in the following graph:

The adjacency matrix A associated with this graph has entries defined as

$$a_{ij} = \begin{cases} 1 & \text{if direct train service exists from station } j \text{ to station } i, \\ 0 & \text{otherwise.} \end{cases}$$

Choose the correct adjacency matrix from the options below:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Question 2

What does $x_2^{(3)}$ represent in the following data matrix?

	HR	ВР	Temp
Patient-1	76	126	38.0
Patient-2	74	120	38.0
Patient-3	72	118	37.5
Patient-4	78	136	37.0

- TEMP of the 2nd patient
- ✓ BP of the 3rd patient
 - BP of the 2nd patient
 - BP of the 2nd patient

Question 3

The MAHE registrar has the complete list of courses taken by each graduating student in a program. This data is represented as an $m \times n$ -matrix **X** such that

$$x_{ij} = \begin{cases} 1 & \text{if student } i \text{ has taken course } j, \\ 0 & \text{otherwise.} \end{cases}$$

The dot product $x^{(4)} \cdot \mathbf{1}$, where $\mathbf{1}$ is the vector whose entries are all equal to $\mathbf{1}$, gives the

- Number of courses taken by the 4th student
 - Number of students who have not taken the 4th course
 - Number of courses not taken by the 4th student
- \mathbf{x} Number of students in the 4th course

Question 4

The MAHE registrar has the complete list of courses taken by each graduating student in a program. This data is represented as an $m \times n$ -matrix \mathbf{X} such that

$$x_{ij} = \begin{cases} 1 & \text{if student } i \text{ has taken course } j, \\ 0 & \text{otherwise.} \end{cases}$$

The number of students who have taken both the 5^{th} and 6^{th} courses is the dot product :

- $\bigcirc x^{(5)} \cdot x^{(6)}$
- $\mathbf{x} \bigcirc x_5 \cdot x^{(6)}$
- $\Rightarrow \bigcirc x_5 \cdot x_6$
 - $\bigcirc x^{(5)} \cdot x_6$

Question 5

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}_{\mathbf{2}}$$

What is the effect of multiplying a vector \mathbf{x} by the matrix

- \mathbf{x} Cycle the components of x upward by 1 step
 - Switch the 1st and 5th components of x
 - \bigcirc Switch the 2nd and 5th components of x
- Cycle the components of x downward by 1 step

Done