#### Teoría de Matemáticas de Bachillerato

Pedro Ángel Fraile Manzano

13 de noviembre de 2022

## Contenidos Generales

| A <sub>I</sub> | partados del libro                                                                                            | Pág | ina                        |
|----------------|---------------------------------------------------------------------------------------------------------------|-----|----------------------------|
| Ι              | Prefacios, Repaso y otras consideraciones                                                                     |     | 7                          |
| 1.             | Operaciones sobre los números reales                                                                          |     | 9                          |
| In             | troducción  1.1. Estructura de los números reales                                                             |     | 10<br>10<br>11<br>13<br>15 |
| 2.             | Polinomios sobre el cuerpo de los reales y ecuaciones2.1. Conceptos básicos                                   |     | 17<br>17<br>17<br>17       |
| 3.             | Ecuaciones polinómicas3.1. Ecuaciones lineales3.2. Ecuaciones parabólicas3.3. Ecuaciones de grado mayor que 2 |     | 19<br>19<br>19<br>19       |
| 4.             | Inecuaciones 4.1. Inecuaciones lineales                                                                       |     | 21<br>21<br>21             |
| II             | Análisis Matemático                                                                                           |     | 23                         |
| <b>5</b> .     | Las sucesiones sobre $\mathbb R$                                                                              |     | 25                         |
| 6.             | Cálculo de Límites                                                                                            |     | 27                         |

| 7.        | Las funciones sobre $\mathbb R$                      | 29 |
|-----------|------------------------------------------------------|----|
| 8.        | Derivabilidad sobre $\mathbb R$                      | 31 |
|           | 8.1. Concepto de la derivada                         | 32 |
|           | 8.2. Derivabilidad de una función                    |    |
|           | 8.2.1. Estudio de la derivabilidad de una función    |    |
|           | 8.3. Tabla de derivadas                              |    |
|           | 8.4. Algunas demostraciones de fórmulas de derivadas |    |
| 9.        | Aplicaciones de la derivada                          | 35 |
|           | 9.1. Cálculo de mínimos y máximos                    | 36 |
|           | 9.2. Cálculo de la curvatura de las funciones        | 36 |
|           | 9.3. Optimización de funciones                       | 36 |
| 10        | Representación de funciones                          | 37 |
|           | 10.1. Dominio                                        | 38 |
|           | 10.2. Continuidad                                    | 38 |
|           | 10.3. Corte con los ejes                             | 38 |
|           | 10.4. Simetría                                       |    |
|           | 10.5. Asíntotas                                      |    |
|           | 10.6. Monotonía                                      |    |
|           | 10.7. Curvatura                                      | 38 |
| 11        | .Integración sobre $\mathbb R$                       | 39 |
| II        | I Ejercicios de Análisis Matemático                  | 41 |
| <b>12</b> | Representación de funciones                          | 43 |
|           | Introducción                                         | 43 |
|           | 12.1. Funciones polinómicas                          | 43 |
|           | 12.2. Funciones racionales                           | 44 |
|           | 12.3. Funciones irracionales                         | 44 |
|           | 12.4. Funciones exponenciales                        | 44 |
|           | 12.5. Funciones logarítmicas                         | 44 |
|           | 12.6. Funciones trigonométricas                      | 44 |
| ΙV        | V Álgebra lineal                                     | 45 |
| 13        | Espacios Vectoriales                                 | 47 |

| CONTENIDOS GENERALES               | 5  |
|------------------------------------|----|
| 14. Aplicaciones lineales          | 49 |
| 15. Matrices                       | 51 |
| 16.Determinantes                   | 53 |
| 17.Discusión de sistemas           | 55 |
| V Cálculo de probabilidades        | 57 |
| 18. Probabilidades básicas         | 59 |
| 19. Variables aleatorias discretas | 61 |
| 20. Variables aleatorias continuas | 63 |

## Parte I

# Prefacios, Repaso y otras consideraciones

## Operaciones sobre los números reales

| Índice del capítulo |                                        |    |  |  |
|---------------------|----------------------------------------|----|--|--|
| 1.1.                | Estructura de los números reales       | 10 |  |  |
| 1.2.                | Potencias y Logaritmos                 | 11 |  |  |
| 1.3.                | Resolución de ecuaciones exponenciales | 13 |  |  |
| 1.4.                | Resolución de ecuaciones logarítmicas  | 15 |  |  |
|                     |                                        |    |  |  |

#### Introducción

Los distintos conjuntos de números surgen de la necesidad de resolver distintas ecuaciones, es decir, a medida que necesitamos resolver ecuaciones más complejas, más se amplían el campo de números con los que podemos actuar:

#### 1.1. Estructura de los números reales

Los números reales tiene estructura de cuerpo y te preguntarás ¿ Qué es un cuerpo?

**Definición 1.1.1.** Un cuerpo es una terna  $(\mathbb{K}, +, \cdot)$  donde:

- 1. K es un conjunto de elementos
- 2. + es una operación sobre los elementos de  $\mathbb{K}$  que cumple:
  - Es una operación **conmutativa**, es decir, sean  $a, b \in \mathbb{K}$  entonces tendremos que a + b = b + a
  - Es una operación **asociativa**, es decir dados  $a, b, c \in \mathbb{K}$  tenemos que a + (b + c) = (a + b) + c
  - Existe un elemento neutro, es decir  $\exists e/e+a=a+e=a \ \forall a \in \mathbb{K}$ .
  - Cada elemento  $a \in \mathbb{K}$  existe un elemento **inverso** que se denota por  $a^{-1}$  de tal manera que  $a + a^{-1} = a^{-1} + a = e$  (Esto también se da cuando no se cumple la conmutativa)
- 3. · es una operación que cumple lo siguiente
  - Es una operación **asociativa**, es decir dados  $a, b, c \in \mathbb{K}$  tenemos que  $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
  - Existe un **elemento neutro** para esta operación  $\exists e/e \cdot a = a \cdot e = a$  $\forall a \in \mathbb{K}$ .
  - Para todo elemento  $a \in \mathbb{K}$  entonces  $\exists a^{-1}/a \cdot a^{-1} = a^{-1} \cdot a = e$  (Esto es lo que distingue un cuerpo a un anillo)
  - · es distributivo respecto de + es decir,  $a \cdot (b+c) = a \cdot b + a \cdot b$

11

**Aclaración 1:** Aunque se denoten como  $+, \cdot$  no tenemos por qué usar las definiciones habituales de la suma y la multiplicación. Por ejemplo, la suma y producto de números reales no son iguales que las mismas operaciones para las matrices (quedaros con ese nombre.)

Aclaración 2: De esta manera que tenemos que lo que llamamos en los números reales la resta es la suma por el inverso y la división es el producto por el inverso.

Ejercicio Propuesto. Demostrar que  $\mathbb{R}$  y  $\mathbb{C}$  son cuerpos

#### 1.2. Potencias y Logaritmos

**Definición 1.2.1.** Podemos definir las potencias como  $a^n = \overbrace{a \cdot \ldots \cdot a}^n$ . Una vez entendido esto tenemos las siguientes propiedades

#### **Propiedades**

1. 
$$a^1 = a y a^0 = 1$$
 para cualquier  $a \in \mathbb{R}$ 

2. 
$$a^{-1} = \frac{1}{a}$$

3. 
$$a^n \cdot a^m = a^{n+m}$$

$$4. \ \frac{a^n}{a^m} = a^{n-m}$$

$$5. (a^n)^m = a^{n \cdot m}$$

6. 
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

7. 
$$(a \cdot b)^n = a^n \cdot b^n$$

8. 
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

#### Demostración

- 1. Para la primera demostración no hace falta más que decir que estamos "poniendo" sólo una a y que  $a^0=1$  es básicamente proveniente del álgebra  $\mathbb Z$  modular.
- 2. En este caso, tenemos que al utilizar la propiedad 3 quedará más clara pero si nosotros tenemos  $a^1 \cdot a^{-1} = a^0 = 1 \Rightarrow a^{-1} = \frac{1}{a}$

- 3. Ahora tenemos que  $a^n \cdot a^m = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} \cdot \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a^{n+m}}_{n \text{ veces}} = \underbrace{a^{m+n}}_{n \text{ veces}}$
- 4. Si combinamos la propiedad 2 y 3 queda probado  $\frac{a^n}{a^m}=a^n\cdot\frac{1}{a^m}=a^n\cdot a^{-m}=a^{n-m}$
- 5. Este se debe a que estamos multiplicando paquetitos del producto de n a's, es decir,  $(a^n)^m = \overbrace{a^n \cdot \ldots \cdot a^n}^{m \text{ veces}} = \underbrace{a \cdot \ldots \cdot a}_{n \text{ veces}} \cdot \underbrace{a \cdot \ldots \cdot a}_{n \text{ veces}} = \underbrace{a \cdot \ldots \cdot a}_{n \text{ veces}} =$
- 6. Haciendo un razonamiento análogo pero con el producto lo tenemos
- 7. Tenemos lo siguiente  $(a \cdot b)^n = \underbrace{a \cdot b \cdot \ldots \cdot a \cdot b}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} \cdot \underbrace{b \cdot \ldots \cdot b}_{\text{n veces}} = \underbrace{a^n \cdot b^n}_{\text{n veces}}$
- 8. Utilizando un razonamiento similar al anterior lo tenemos cambiando únicamente b por  $b^{-1}$

**Definición 1.2.2.** Definimos el logaritmo de  $b \in \mathbb{R}^+$  en base a > 0 de la siguiente manera

$$loq_a b = x \Leftrightarrow a^x = b \tag{1.1}$$

Esta definición nos permite "traducir" de logaritmos a potencias y es lo que se utiliza para demostrar las siguientes propiedades

**Propiedades:** Sean  $P, Q, a \in \mathbb{R}^+$ 

- 1.  $log_a 1 = 0$
- $2. log_a a = 1$
- 3.  $log_a(P \cdot Q) = log_aP + log_aQ$
- 4.  $log_a\left(\frac{P}{Q}\right) = log_aP log_aQ$
- $5. \log_a P^n = n \cdot \log_a P$

Ejercicio Propuesto. Se propone al lector la demostración de estas propiedades utilizando la definición de logaritmos y las propiedades de las potencias.

#### 1.3. Resolución de ecuaciones exponenciales

**Definición 1.3.1.** Podemos definir una ecuación exponencial como aquella que tiene la incógnita en el exponente

$$a^x = b$$

Podemos distinguir los siguientes casos:

Ecuaciones donde la incógnita aparece en un solo exponente
 El procedimiento es intentar poner todos los elementos como potencias de la base que tiene la incógnita

$$2^{x+1} = 8$$
$$2^{x+1} = 2^3$$

Tras esto, podemos hacer el logaritmo de cada uno de los lados ya que  $log_a P = log_a Q \Leftrightarrow P = Q$  en este caso a = 2 de tal forma que lo anterior nos queda:

$$2^{x+1} = 2^3$$
$$log_2(2^{x+1}) = log_2(2^3)$$
$$x + 1 = 3$$
$$x = 2$$

También puede que no podamos descomponer en potencias de una sola base entonces tenemos el siguiente caso.

$$2^x = 127$$

Entonces tomamos logaritmos para poder resolverlo

$$2^{x} = 127$$

$$log_{2}(2^{x}) = log_{2}(127)$$

$$x \cdot log_{2}(2) = log_{2}(127)$$

$$x = log_{2}(127)$$

A partir de aquí podemos utilizar un cambio de base de los logaritmos para poder usar el logaritmo en base 10 o e.

Ejercicio 1.3.1. Resuelve las siguientes ecuaciones.

a) 
$$4^{x+1} - 8 = 0$$
 b)  $3^{x+2} = 81$   
c)  $x + 1$  d)  $e^x - 1 = 3$ 

■ Ecuaciones donde la incógnita está en más de una potencia El procedimiento es conseguir una expresión donde las potencias que tengan las incógnitas se reduzcan a las misma base y podamos hacer un cambio de variable  $a^x = t$  que después desharemos como si fuera un caso como el anterior.

Vamos a resolver el siguiente ejemplo

$$2^{x+1} + 2^{x-1} + 2^x = 7$$

Para empezar pongamos todo como una combinación lineal de  $2^x$  para ello aplicamos las propiedades de las potencias.

$$2^{x+1} + 2^{x-1} + 2^x = 7$$
$$2 \cdot 2^x + \frac{2^x}{2} + 2^x = 7$$

Ahora ya podemos tomar el cambio de variable  $2^x = t$  de manera que obtenemos lo siguiente.

$$2 \cdot 2^{x} + \frac{2^{x}}{2} + 2^{x} = 7$$
$$2 \cdot t + \frac{t}{2} + t = 7$$

La anterior ecuación es una ecuación fácilmente resoluble por tanto, ya hemos obtenido lo que queríamos, reducir la dificultad del ejercicio.

$$2 \cdot t + \frac{t}{2} + t = 7$$
$$\frac{7}{2} \cdot t = 7$$
$$t = 2$$

Por tanto sabemos que t=2 lo que implica entonces que  $2^x=t=2$  y al aplicar logaritmos a ambos lados de la igualdad y obtenemos que

$$log_2 2^x = log_2 2$$
$$x = 1$$

#### 1.4. Resolución de ecuaciones logarítmicas

**Definición 1.4.1.** Podemos definir una ecuación exponencial como aquella que tiene la incógnita dentro de un logaritmo.

## Polinomios sobre el cuerpo de los reales y ecuaciones

| Índice del capítulo |                             |    |  |  |
|---------------------|-----------------------------|----|--|--|
| 2.1.                | Conceptos básicos           | 17 |  |  |
| 2.2.                | Operaciones con polinomios  | 17 |  |  |
| 2.3.                | Divisibilidad de polinomios | 17 |  |  |

- 2.1. Conceptos básicos
- 2.2. Operaciones con polinomios
- 2.3. Divisibilidad de polinomios

18CAPÍTULO 2. POLINOMIOS SOBRE EL CUERPO DE LOS REALES Y ECUACIONES

## Ecuaciones polinómicas

| Índice de | l capítulo                      |    |
|-----------|---------------------------------|----|
| 3.1.      | Ecuaciones lineales             | 19 |
| 3.2.      | Ecuaciones parabólicas          | 19 |
| 3.3.      | Ecuaciones de grado mayor que 2 | 19 |
|           |                                 |    |

- 3.1. Ecuaciones lineales
- 3.2. Ecuaciones parabólicas
- 3.3. Ecuaciones de grado mayor que 2

#### Inecuaciones

| 4.1. | Inecuaciones lineales    |
|------|--------------------------|
| 4.2. | Inecuaciones no lineales |

#### 4.1. Inecuaciones lineales

#### 4.2. Inecuaciones no lineales

# Parte II Análisis Matemático

Las sucesiones sobre  $\mathbb R$ 

Capítulo 6 Cálculo de Límites

## 

### Derivabilidad sobre $\mathbb{R}$

| del  | capítulo                                          |                                            |
|------|---------------------------------------------------|--------------------------------------------|
| 8.1. | Concepto de la derivada                           | 32                                         |
| 8.2. | Derivabilidad de una función                      | <b>33</b>                                  |
| 8    | 3.2.1. Estudio de la derivabilidad de una función | 33                                         |
| 8.3. | Tabla de derivadas                                | 33                                         |
| 8.4. | Algunas demostraciones de fórmulas de derivadas   | 33                                         |
|      | 8.1.<br>8.2.<br>8.3.                              | del capítulo  8.1. Concepto de la derivada |

#### Concepto de la derivada 8.1.

por esos dos puntos  $p_1, p_2$  es la siguiente:

Para empezar, tenemos que refrescar un concepto de geometría análitica, la pendiente de una recta

**Definición 8.1.1.** La pendiente de una recta en  $\mathbb{R}^2$  (El plano real) se define como la cantidad de unidades que avanza la y por cada unidad que avanza la x. Es decir, definiendo el incremento de y como  $y_1 - y_0 = \Delta y$  donde  $y_1$  es la coordenada y del punto final y  $y_0$  lo mismo pero del punto inicial. definimos de manera igual el  $\Delta x$ . Entonces definimos de manera matemática la fórmula de la pendiente como:

$$m = \frac{\Delta y}{\Delta x}$$

Ahora bien, sea f(x) una función de manera que  $f: \mathbb{R} \longrightarrow \mathbb{R}$  de la cual queremos obtener la recta secante que pasa por unos determinados puntos  $p_1 = (x_1, y_1), p_2 = (x_2, y_2)$ . Entonces tendremos la siguiente gráfica: Tendremos entonces que la fórmula de la recta secante a la función que pasa

$$(y - f(x_1)) = \frac{\Delta f(x)}{\Delta x}(x - x_1)$$

**Definición 8.1.2.** A la pendiente de la recta secante a la función f(x) en los puntos  $x_1, x_2$  se le conoce como **Tasa de Variación Media** 

Supongamos ahora que escribimos  $x_1 = x$  y  $x_2 = x + h$  donde  $h \in \mathbb{R}$  entonces la ecuación anterior queda como:

$$(y - f(x_1)) = \frac{f(x_1 + h) - f(x_1)}{h}(x - x_1)$$

Si después de esto, si hacemos que la  $h \to 0$  obtendremos la recta tangente de manera que la pendiente  $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ . Es ese límite lo que definimos como  $Derivada\ de\ una\ función$ .

**Definición 8.1.3.** Llamaremos derivada de f(x) en el punto a al límite

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

33

#### 8.2. Derivabilidad de una función

**Definición 8.2.1.** Diremos que una función es derivable en a si existe el límite  $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ .

**Definición 8.2.2.** Diremos que una función es derivable si lo es en todos los puntos del dominio.

#### 8.2.1. Estudio de la derivabilidad de una función

#### 8.3. Tabla de derivadas

Para empezar hay que tener en cuenta estas derivadas de operaciones de funciones básicas, sumar y restar, producto y división, producto por un escalar y composición Sean  $a\in\mathbb{R}$ 

## 8.4. Algunas demostraciones de fórmulas de derivadas

## Aplicaciones de la derivada

| Índice del capítulo |                                          |    |  |  |
|---------------------|------------------------------------------|----|--|--|
| 9.1.                | Cálculo de mínimos y máximos             | 36 |  |  |
| 9.2.                | Cálculo de la curvatura de las funciones | 36 |  |  |
| 9.3.                | Optimización de funciones                | 36 |  |  |
|                     |                                          |    |  |  |

- 9.1. Cálculo de mínimos y máximos
- 9.2. Cálculo de la curvatura de las funciones
- 9.3. Optimización de funciones

## Representación de funciones

| Índice del capítulo      |    |
|--------------------------|----|
| 10.1. Dominio            | 38 |
| 10.2. Continuidad        | 38 |
| 10.3. Corte con los ejes | 38 |
| 10.4. Simetría           | 38 |
| 10.5. Asíntotas          | 38 |
| 10.6. Monotonía          | 38 |
| 10.7. Curvatura          | 38 |
|                          |    |

- 10.1. Dominio
- 10.2. Continuidad
- 10.3. Corte con los ejes
- 10.4. Simetría
- 10.5. Asíntotas
- 10.6. Monotonía
- 10.7. Curvatura

## Capítulo 11 $\label{eq:capitulo}$ Integración sobre $\mathbb R$

# Parte III Ejercicios de Análisis Matemático

### Representación de funciones

#### Índice del capítulo

| Introducción                    | 43 |
|---------------------------------|----|
| 12.1. Funciones polinómicas     | 43 |
| 12.2. Funciones racionales      | 44 |
| 12.3. Funciones irracionales    | 44 |
| 12.4. Funciones exponenciales   | 44 |
| 12.5. Funciones logarítmicas    | 44 |
| 12.6. Funciones trigonométricas | 44 |
|                                 |    |

#### Introducción

En esta capítulo vamos a recopilar todo los conocimiento de análisis que hemos recopilado durante todos los temas anteriores

#### 12.1. Funciones polinómicas

#### Ejercicio 12.1.1.

$$f(x) = \frac{2x}{1+x^2}$$

Demostración. Hola

- 12.2. Funciones racionales
- 12.3. Funciones irracionales
- 12.4. Funciones exponenciales
- 12.5. Funciones logarítmicas
- 12.6. Funciones trigonométricas

## Parte IV Álgebra lineal

Capítulo 13 Espacios Vectoriales

## Capítulo 14 Aplicaciones lineales

Matrices

## Capítulo 16 Determinantes

## Capítulo 17 Discusión de sistemas

## Parte V Cálculo de probabilidades

## Capítulo 18 Probabilidades básicas

Variables aleatorias discretas

Variables aleatorias continuas