Package 'logitr'

June 1, 2018

Type Package
Title Penalized Logistic Regression
Version 0.1.0
Description This is an R package for linear and logistic regression with optional ridge and bridge regularization penalties.
<pre>URL https://github.com/MGallow/logitr</pre>
<pre>BugReports https://github.com/MGallow/logitr/issues</pre>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends Rcpp (>= 0.12.10), RcppArmadillo, dplyr
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.0.1
Suggests testthat
R topics documented: linearr
Index

2 linearr

Description

Computes the linear regression coefficient estimates (ridge-penalization and weights, optional)

Usage

```
linearr(X, y, lam = seq(0, 2, 0.1), alpha = 1.5, penalty = c("none",
   "ridge", "bridge"), weights = NULL, intercept = TRUE, kernel = FALSE,
   method = c("SVD", "MM"), tol = 1e-05, maxit = 1e+05, vec = NULL,
   init = 1, K = 5)
```

Arguments

Χ	matrix or data frame
У	matrix or data frame of response values
lam	optional tuning parameter for ridge regularization term. If passing a list of values, the function will choose the optimal value based on K-fold cross validation. Defaults to 'lam = $seq(0, 2, 0.1)$ '
alpha	optional tuning parameter for bridge regularization term. If passing a list of values, the function will choose the optimal value based on K-fold cross validation. Defaults to 'alpha = 1.5'
penalty	choose from c('none', 'ridge', 'bridge'). Defaults to 'none'
weights	optional vector of weights for weighted least squares
intercept	add column of ones if not already present. Defaults to TRUE
kernel	use linear kernel to compute ridge regression coefficeients. Defaults to TRUE when $p \mathrel{>\!\!\!>} n$ (for 'SVD')
method	optimization algorithm. Choose from 'SVD' or 'MM'. Defaults to 'SVD'
tol	tolerance - used to determine algorithm convergence for 'MM'. Defaults to 10^{-5}
maxit	maximum iterations for 'MM'. Defaults to 10^5
vec	optional vector to specify which coefficients will be penalized
init	optional initialization for MM algorithm
K	specify number of folds for cross validation, if necessary

Value

returns the selected tuning parameters, coefficient estimates, MSE, and gradients

Examples

```
library(dplyr)
X = dplyr::select(iris, -c(Species, Sepal.Length))
y = dplyr::select(iris, Sepal.Length)
linearr(X, y, lam = 0.1, penalty = 'ridge')
```

logisticr 3

Description

Computes the coefficient estimates for logistic regression. ridge regularization and bridge regularization optional.

Usage

```
logisticr(X, y, lam = seq(0, 2, 0.1), alpha = 1.5, penalty = c("none",
   "ridge", "bridge"), intercept = TRUE, method = c("IRLS", "MM"),
   tol = 1e-05, maxit = 1e+05, vec = NULL, init = 1,
   criteria = c("logloss", "mse", "misclass"), K = 5)
```

Arguments

Χ	matrix or data frame
У	matrix or vector of response values 0,1
lam	optional tuning parameter(s) for ridge regularization term. If passing a list of values, the function will choose optimal value based on K-fold cross validation. Defaults to 'lam = $seq(0, 2, 0.1)$ '
alpha	optional tuning parameter for bridge regularization term. If passing a list of values, the function will choose the optimal value based on K-fold cross validation. Defaults to 'alpha = 1.5 '
penalty	choose from c('none', 'ridge', 'bridge'). Defaults to 'none'
intercept	Defaults to TRUE
method	optimization algorithm. Choose from 'IRLS' or 'MM'. Defaults to 'IRLS'
tol	tolerance - used to determine algorithm convergence. Defaults to 10^-5
maxit	maximum iterations. Defaults to 10^5
vec	optional vector to specify which coefficients will be penalized
init	optional initialization for MM algorithm
criteria	specify the criteria for cross validation. Choose from c('mse', 'logloss', 'misclass'). Defauls to 'logloss'
K	specify number of folds for cross validation, if necessary

Value

returns selected tuning parameters, beta estimates (includes intercept), MSE, log loss, misclassification rate, total iterations, and gradients.

Examples

```
library(dplyr)
X = dplyr::select(iris, -Species)
y = dplyr::select(iris, Species)
y$Species = ifelse(y$Species == 'setosa', 1, 0)
logisticr(X, y)
```

4 predict.logisticr

```
# ridge Logistic Regression with IRLS
logisticr(X, y, lam = 0.1, penalty = 'ridge')
# ridge Logistic Regression with MM
logisticr(X, y, lam = 0.1, penalty = 'ridge', method = 'MM')
```

predict.linearr

Predict Linear Regression

Description

Generates prediction for linear regression. Note that one can either input a 'linearr' object or a matrix of beta coefficients.

Usage

```
## S3 method for class 'linearr'
predict(object, X, y = NULL)
```

Arguments

object 'linearr' object or matrix of betas

X matrix or data frame of (new) observations

y optional, matrix or vector of response values

Value

predictions and loss metrics

Examples

```
library(dplyr)
X = dplyr::select(iris, -c(Species, Sepal.Length))
y = dplyr::select(iris, Sepal.Length)
fitted = linearr(X, y, lam = 0.1)
predict(fitted, X)
```

predict.logisticr

Predict Logistic Regression

Description

Generates prediction for logistic regression. Note that one can either input a 'logisticr' object or a matrix of beta coefficients.

Usage

```
## S3 method for class 'logisticr'
predict(object, X, y = NULL)
```

print.linearr 5

Arguments

object 'logisticr' object or matrix of betas

X matrix or data frame of (new) observations

y optional, matrix or vector of response values 0,1

Value

predictions and loss metrics

Examples

```
library(dplyr)
X = dplyr::select(iris, -Species)
y = dplyr::select(iris, Species)
y$Species = ifelse(y$Species == 'setosa', 1, 0)
logisticr(X, y)

fitted = logisticr(X, y, lam = 0.1, penalty = 'ridge', method = 'MM')
predict(fitted, X)
```

print.linearr

Print linearr object

Usage

```
## S3 method for class 'linearr' print(x, ...)
```

Arguments

Х

linearr class object

print.logisticr

Print logisticr object

Usage

```
## S3 method for class 'logisticr' print(x, ...)
```

Arguments

Χ

logisticr class object

Index

```
linearr, 2
logisticr, 3

predict.linearr, 4
predict.logisticr, 4
print.linearr, 5
print.logisticr, 5
```