Thenn

Bay of Ice

DNLINE-TSP

(w

(metric)

(w

(metric)

INPUT:

(w

(metric)

INPUT:

metric space: M
 (with metric d)

(metric)

- metric space: M
 (with metric d)
- places to visit: S

(metric)

INPUT:

- metric space: M
 (with metric d)
- places to visit: S

OUTPUT:

(metric)

INPUT:

- metric space: M
 (with metric d)
- places to visit: S

OUTPUT:

Shortest tour \mathcal{T}^* through \mathcal{S}

(metric)

INPUT:

- metric space: M
 (with metric d)
- places to visit: S

NP-hard!

OUTPUT:

Shortest tour \mathcal{T}^* through \mathcal{S}

(metric)

INPUT:

NP-hard!

ALG

OUTPUT:

- metric space: M
 (with metric d)
- places to visit: S

(metric)

INPUT:

NP-hard!

ALG

Superpolynomial Alg.

- metric space: M
 (with metric d)
- places to visit: S

OUTPUT:

(metric)

INPUT:

- metric space: M
 (with metric d)
- places to visit: S

NP-hard!

Superpolynomial Alg.

ALG

Approximation Alg.
 e.g. Christofides

OUTPUT:

(metric)

(metric)

(metric)

Christofides Algorithm:

(1) minimal spanning tree

(metric)

Christofides Algorithm:

(1) minimal spanning tree

(metric)

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices

(metric)

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices
- (3) Euler tour

(metric)

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices
- (3) Euler tour
- (4) Skip double visited vertices

(metric)

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices
- (3) Euler tour
- (4) Skip double visited vertices

(metric)

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices
- (3) Euler tour
- (4) Skip double visited vertices

(metric)

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices
- (3) Euler tour
- (4) Skip double visited vertices

$$\leq 1 \cdot \mathcal{T}^*$$

$$\leq \frac{1}{2} \cdot \mathcal{T}^*$$

$$\leq \frac{3}{2} \cdot \mathcal{T}^*$$

(metric)

Christofides Algorithm:

- (1) minimal spanning tree
- (2) minimum weighted perfect matching of odd vertices
- (3) Euler tour
- (4) Skip double visited vertices

$$\leq \frac{1}{2} \cdot \mathcal{T}^*$$

$$\leq \frac{3}{2} \cdot \mathcal{T}^*$$

1,5-approximative solution

NP-hard!

ALG

(metric)

INPUT:

- Superpolynomial Alg.
- Approximation Alg.
 e.g. Christofides

OUTPUT:

- metric space: M
 (with metric d)
- places to visit: S

INPUT:

• metric space

- metric space
- starting-point: *o*

INPUT:

- metric space
- starting-*p,x*
- ,*x* t: *o*
- request-sequence σ :

0, x

INPUT:

- metric space
- starting-*p,x*
- ,*x* t: *o*
- request-sequence σ :

0, x

- metric space
- starting-*p,x*
- ,*x* t: *o*
- request-sequence σ : 0, x

- metric space
- starting-*p,x*
- ,*x* t: *o*
- request-sequence σ : 0, x

- metric space
- starting-*p,x*
- ,*x* t: *o*
- request-sequence σ : 0, x

- metric space
- starting-*p*,*x*
- ,*x* t: *o*
- request-sequence σ : 0, x

INPUT:

- metric space
- starting-*p*,*x*
- ,*x* t: *o*
- request-sequence σ :

 $\sqrt{0}$, x

N-OLTSP

"nomadic"

INPUT:

- metric space
- starting-*p*,*x*
- ,x t: o
- request-sequence σ :

N-OLTSP

H-OLTSP

"nomadic"

"homing"

INPUT:

- metric space
- starting-*p*,*x*
- ,x t: o
- request-sequence σ :

N-OLTSP

H-OLTSP

"nomadic"

"homing"

DEF: ALG is ρ -competitive

Online-TSP

INPUT:

- metric space
- starting-p,x
- ,*x* t: *o*
- request-sequence σ :

N-OLTSP

H-OLTSP

"nomadic"

"homing"

ALG is ρ -competitive

$$\Leftrightarrow |\mathcal{T}^{ALG}| \leq \rho \cdot |\mathcal{T}^{OPT}|$$

Online-TSP

INPUT:

- metric space
- starting-p,x
- ,x t: o
- request-sequence σ :

N-OLTSP

H-OLTSP

"nomadic"

"homing"

DEF: ALG is ρ -competitive

$$\Leftrightarrow |\mathcal{T}^{ALG}| \leq \rho \cdot |\mathcal{T}^{OPT}|$$

for all request- sequences

I. Find online-algorithms

I. Find online-algorithms (superpolynomial)

- I. Find online-algorithms (superpolynomial)
- II. Find lower bounds

- I. Find online-algorithms (superpolynomial)
- II. Find lower bounds
- III. Find *polynomial* online-algorithms

- I. Find online-algorithms (superpolynomial)
- II. Find lower bounds
- III. Find *polynomial* online-algorithms
- IV. Bonus: The real line

Greedily Travelling between Requests (GTR)

Invariant: always on shortest path between points in *S*

Greedily Travelling between Requests (GTR)

tt,zz) at time tt and alg between xx and yy

Invariant: always on shortest path between points in S

(1) New request (t, z) at time t and ALG between x and y

Greedily Travelling between Requests (GTR)

p(t)

tt,zz) at time tt and alg between xx and yy

Invariant: always on shortest path between points in S

(1) Add z to U

Greedily Travelling between Requests (GTR)

tt,zz) at time tt and alg between xx and yy

Invariant: always on shortest path between points in S

- (1) Add z to U
- (2) Follow shortest path through \mathcal{U} beginning with x or y

Greedily Travelling between Requests (GTR)

- (1) New request (t, z) at time t and ALG between x and y
- (3) Follow shortest path through Ubeginning with *x* or *y*

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

Invariant: always on shortest path between points in *S*

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR $\left|\mathcal{T}^{\mathsf{GTR}}\right|$

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR
$$\left|\mathcal{T}^{\overset{ullet}{\mathsf{GTR}}}
ight| \leq$$

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR
$$\left|\mathcal{T}^{\overset{\downarrow}{\mathsf{GTR}}}\right| \leq \hat{t}$$

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR
$$\left|\mathcal{T}^{\overset{\downarrow}{\mathsf{GTR}}}\right| \leq \hat{t}$$

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*


```
path found by GTR opt. path ignoring request times \left|\mathcal{T}^{\text{GTR}}\right| \leq \hat{t} + \min\{d(o,x) + d(x,p), d(p,y) + d(y,a)\} + |\mathcal{T}^*|
```

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR
$$|\mathcal{T}^{\mathsf{GTR}}| \leq \hat{t} + \min\{d(o,x) + d(x,p), d(p,y) + d(y,a)\} + |\mathcal{T}^*|$$

$$\leq \hat{t} + \frac{1}{2} \cdot |\mathcal{T}^*| + |\mathcal{T}^*|$$

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR
$$|\mathcal{T}^{\mathsf{GTR}}| \leq \hat{t} + \min\{d(o,x) + d(x,p), d(p,y) + d(y,a)\} + |\mathcal{T}^*|$$

$$\leq \hat{t} + \frac{1}{2} \cdot |\mathcal{T}^*| + |\mathcal{T}^*|$$
 path found by opt. offline-ALG
$$\leq |\mathcal{T}^{\mathsf{OPT}}| +$$

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR
$$|\mathcal{T}^{GTR}| \leq \hat{t} + \min\{d(o,x) + d(x,p), d(p,y) + d(y,a)\} + |\mathcal{T}^*|$$

$$\leq \hat{t} + \frac{1}{2} \cdot |\mathcal{T}^*| + |\mathcal{T}^*|$$
 path found by opt. offline-ALG
$$\leq |\mathcal{T}^{OPT}| + \frac{3}{2} \cdot |\mathcal{T}^{OPT}|$$

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

path found by GTR
$$|\mathcal{T}^{\mathsf{GTR}}| \leq \hat{t} + \min\{d(o,x) + d(x,p), d(p,y) + d(y,a)\} + |\mathcal{T}^*|$$

$$\leq \hat{t} + \frac{\frac{1}{2} \cdot |\mathcal{T}^*|}{\mathsf{path found by}} + |\mathcal{T}^*|$$

$$= \frac{5}{2} \cdot |\mathcal{T}^{\mathsf{OPT}}|$$

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through *U* beginning with *x* or *y*

$$\left|\mathcal{T}^{\text{GTR}}\right| \le \left|\mathcal{T}^{\text{OPT}}\right| + \frac{3}{2} \cdot \left|\mathcal{T}^{\text{OPT}}\right| = \frac{5}{2} \cdot \left|\mathcal{T}^{\text{OPT}}\right|$$

Invariant: always on shortest path between points in *S*

- (1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y
- (3) Follow shortest path through U beginning with x or y

THEOREM: GTR is 2,5-competitive for N-OLTSP

$$\left|\mathcal{T}^{\mathrm{GTR}}\right| \leq \left|\mathcal{T}^{\mathrm{OPT}}\right|$$

$$\frac{3}{2} \cdot |\mathcal{T}^{OPT}|$$

$$= \frac{5}{2} \cdot \left| \mathcal{T}^{OPT} \right|$$

Invariant: always on shortest path between points in *S*

(1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y

(3) Follow shortest path through *U* beginning with *x* or *y*

THEOREM: GTR is 2,5-competitive for N-OLTSP

REMARK: tightness

Invariant: always on shortest path between points in *S*

(1) Last request (\hat{t}, z) at time \hat{t} and ALG between x and y

(3) Follow shortest path through U beginning with x or y

THEOREM: GTR is 2,5-competitive for N-OLTSP

REMARK: tightness

REMARK: GTR is also 2,5-competitive for H-OLTSP

time, request

Online-ALG

0

time, request

Online-ALG

0

1

time, request

Online-ALG

0

1

time, request

Online-ALG

0

1.

time, request

Online-ALG

()

1, 1

time, request

Online-ALG

0

1, 1

time, request

Online-ALG

Offline-ALG

0

1, 1

time, request

Online-ALG

Offline-ALG

0

1,

time, request

Online-ALG

Offline-ALG

0

1, 1

 $2 + \varepsilon$

$$-1$$
 0 1

$$\Rightarrow |\mathcal{T}^{OFF}| = 1$$

time, request

Online-ALG

Offline-ALG

0

1. 1

 $2 + \varepsilon$

$$\Rightarrow \left| \mathcal{T}^{\text{OFF}} \right| = 1$$

THEOREM:

Any ρ -competitive ALG for N-OLTSP has $\rho \geq 2$.

time, request

Online-ALG

Offline-ALG

0

1, 1

 $2 + \varepsilon$

$$-1$$
 0 1

$$\Rightarrow |\mathcal{T}^{ON}| = 2 + \varepsilon$$

$$\Rightarrow \left| \mathcal{T}^{\text{OFF}} \right| = 1$$

THEOREM:

Any ρ -competitive ALG for N-OLTSP has $\rho \geq 2$.

time, request

Online-ALG

Offline-ALG

0

1, 1

 $2 + \varepsilon$

$$\Rightarrow |\mathcal{T}^{ON}| = 2 + \varepsilon$$

$$\Rightarrow \left| \mathcal{T}^{\text{OFF}} \right| = 2$$

THEOREM: Any ρ -competitive ALG for N-OLTSP has $\rho \geq 2$.

time, request

Online-ALG

Offline-ALG

0

1, 1

 $2 + \varepsilon$

 $3 + \varepsilon$

$$\Rightarrow \left| \mathcal{T}^{\text{OFF}} \right| = 2$$

THEOREM:

Any ρ -competitive ALG for N-OLTSP has $\rho \geq 2$.

time, request

Online-ALG

Offline-ALG

0

1,

$$2 + \varepsilon$$

$$3 + \varepsilon$$

$$\Rightarrow \left| \mathcal{T}^{\text{OFF}} \right| = 2$$

THEOREM:

Any ρ -competitive ALG for H-OLTSP has $\rho \geq 1.5$.

requests at time 0

• wait until time t = 2

• wait until time t = 2

wait until time t = 2

- aa p, a = tt 2
- *=2*

- aa p,a = tt-2
- *=2*

- aa p,a = tt-2
- *=2*

- aa p,a = tt-2
- *=2*

- aa p,a = tt-2
- *=2*

$$|\mathcal{P}| = 2 - \delta$$

- aa p,a = tt-2
- =2

$$|\mathcal{P}| = 2 - \delta$$

- aa p,a = tt-2
- =2

$$|\mathcal{P}| = 2 - \delta$$

$$|\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \le$$

- aa p, a = tt 2
- *=2*

$$|\mathcal{P}| = 2 - \delta$$

$$|\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \le 2 + \delta$$

- aa p,a = tt-2
- *=2*

$$|\mathcal{P}| = 2 - \delta$$

$$|\mathcal{Q}| + |\mathcal{P}| + |\mathcal{R}|$$

$$|\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \le 2 + \delta$$

- aa p,a = tt-2
- *=2*

$$|\mathcal{P}| = 2 - \delta$$

$$|\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \le 2 + \delta$$

$$|\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \le 2 + \delta$$

- aa p,a = tt-2
- *=2*

$$|\mathcal{P}| = 2 - \delta \} |\mathcal{Q}| + |\mathcal{P}| + |\mathcal{R}| \le 2$$

$$|\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \le 2 + \delta \} \Rightarrow |\mathcal{U}|$$

- aa p,a = tt-2
- *=2*

$$\begin{aligned} |\mathcal{P}| &= 2 - \delta \\ |\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \le 2 + \delta \end{aligned} \qquad |\mathcal{Q}| + |\mathcal{P}| + |\mathcal{R}| \le 2 \\ \Rightarrow |\mathcal{U}| \ge 2 - \frac{2}{n} \end{aligned}$$

- aa p,a = tt-2

new requests on ${\mathcal P}$

$$|\mathcal{P}| = 2 - \delta \} |Q| + |\mathcal{P}| + |\mathcal{R}| \le 2$$

$$|\mathcal{P}| + 2|Q| + 2|\mathcal{R}| \le 2 + \delta \} \Rightarrow |\mathcal{U}| \ge 2 - \frac{2}{n}$$

$$\begin{aligned} |Q| + |P| + |R| &\le 2 \\ \Rightarrow |U| &\ge 2 - \frac{2}{n} \end{aligned}$$

- aa p, a = tt 2

- new requests on ${\mathcal P}$
- OPT finishes at t=4

$$|\mathcal{P}| = 2 - \delta$$

$$|\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \le 2 + \delta$$

$$|\mathcal{Q}| + |\mathcal{P}| + |\mathcal{R}| \le 2$$

$$\Rightarrow |\mathcal{U}| \ge 2 - \frac{2}{n}$$

$$\begin{aligned} |Q| + |P| + |R| &\le 2 \\ \Rightarrow |U| &\ge 2 - \frac{2}{n} \end{aligned}$$

- aa p, a = tt 2

- OPT finishes at t=4
- $\begin{array}{l} \bullet \quad \text{OPT finishes at } t = 4 \\ |\mathcal{P}| + 2|\mathcal{Q}| + 2|\mathcal{R}| \leq 2 + \delta \end{array} \right\} \begin{array}{l} |\mathcal{Q}| + |\mathcal{P}| + |\mathcal{R}| \leq 2 \\ \Rightarrow |\mathcal{U}| \geq 2 \frac{2}{n} \end{array}$

$$\begin{aligned} |Q| + |P| + |R| &\le 2 \\ \Rightarrow |U| &\ge 2 - \frac{2}{n} \end{aligned}$$

- 4
- 4
- aa p, a = tt 2
- *=2*

- $0 \neq 0$ finishes at $t \geq 4$
- (

$$|Q| + |P| + |R| \le 2$$

 $\Rightarrow |U| \ge 2 - \frac{2}{n}$

- 4
- 4
- aa p, a = tt 2
- *=2*

- $\delta \Rightarrow finishes at <math>t \ge 4$
- <

$$|Q| + |P| + |R| \le 2$$

 $\Rightarrow |U| \ge 2 - \frac{2}{n}$

- 4
- 4
- aa p, a = tt 2
- *=2*

- 6 finishes at $t \ge 4$
- ζ $\begin{cases} \delta \delta \\ -22nnn2n & 2n & 2-2n \\ + & 2n & 2n2-2-2n & 2 \cdot 2\delta \delta \end{cases}$

$$\begin{aligned} |Q| + |P| + |R| &\le 2 \\ \Rightarrow |U| &\ge 2 - \frac{2}{n} \end{aligned}$$

I. Algorithms

II. Lower Bounds

III. Polynomial Alg.

IV. Real Line

$$2 - \frac{2}{n}$$
 $2 - \delta$

- 4
- 4
- aa p, a = tt 2
- *=2*

• $\delta \Rightarrow finishes at <math>t \ge 4$

•
$$\begin{cases} 2 + \\ \delta + 2 - 2n + 22 + 2 - -\delta \\ -\delta n n n 2 n 2 - \frac{2}{n} + 2 \end{cases}$$

$$|Q| + |P| + |R| \le 2$$

 $\Rightarrow |U| \ge 2 - \frac{2}{n}$

nomial Alg.

IV. Real Line

- 4
- 4
- aa p, a = tt 2
- *=2*

• $\delta \models f$ finishes at $t \ge 4 - \frac{4}{n}$

•
$$\begin{cases} 2 + \\ \delta + 2 - 2n + 22 + 2 - -\delta \\ -\delta n n n 2 n 2 - \frac{2}{n} + 2 \end{cases}$$

$$|Q| + |P| + |R| \le 2$$

 $\Rightarrow |U| \ge 2 - \frac{2}{n}$

nomial Alg.

IV. Real Line

- 4
- 4
- aa p, a = tt 2
- *=2*
- Algebraiches at $t \ge 4 \frac{4}{n}$

THEOREM: Any ρ -competitive ALG for H-OLTSP has $\rho \geq 2$.

$$\begin{array}{c|c}
-o & n & n & 2 & n & 2 & -\overline{n} + 2 \\
+ & & & + & (2 - \delta)
\end{array}$$

A better algorithm for H-OLTSP

: start op

A better algorithm for H-OLTSP

: start op

U :=places yet to visit

(1) At o: start optimal tour through U

- (1) tt,xx):
- (2) At o: start optimal tour through U
- (3) For new request (t, x):

- (1) tt,xx:
- (2) At o: start optimal tour through U
- (3) For new request (t, x):

- (1) *xx,00*)>*dd(pp,00)*: *go back to 00*
- (2) tt,xx:
- (3) At o: start optimal tour through U
 - a) If d(x, o) > d(p, o): go back to o

- (1) xx,00)>dd(pp,00): go back to 00
- (2) tt,xx:
- (3) At *o*: start optimal tour through *U*
 - a) If d(x, o) > d(p, o): go back to o

- (1) xx,00)>dd(pp,00): go back to 00
- (2) tt,xx:
- (3) At *o*: start optimal tour through *U*
 - a) If d(x, o) > d(p, o): go back to o

- (1) *xx,00*)>*dd(pp,00)*: *go back to 00*
- (2) tt,xx:
- (3) At *o*: start optimal tour through *U*
 - a) Else: ignore *x* until back at *o*

U :=places yet to visit

- (1) xx,00)>dd(pp,00): go back to 00
- (2) tt,xx:
- (3) At o: start optimal tour through U
 - a) Else: ignore *x* until back at *o*

Plan At Home (PAH)

U :=places yet to visit

- (1) xx,00)>dd(pp,00): go back to 00
- (2) tt,xx:
- (3) At o: start optimal tour through U
 - a) Else: ignore *x* until back at *o*

Plan At Home (PAH)

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$|\mathcal{T}^{\mathsf{PAH}}|$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$|\mathcal{T}^{PAH}| = \hat{t} +$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\left|\mathcal{T}^{\text{PAH}}\right| = \hat{t} + d(p, o)$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\left|\mathcal{T}^{\text{PAH}}\right| = \hat{t} + d(p, o)$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\left|\mathcal{T}^{\text{PAH}}\right| = \hat{t} + d(p, o) + \left|\mathcal{T}_{U}\right|$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\left|\mathcal{T}^{\mathrm{PAH}}\right| = \hat{t} + d(p, o) + \left|\mathcal{T}_{U}\right|$$

$$\leq \left|\mathcal{T}^{\mathrm{OPT}}\right|$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\left|\mathcal{T}^{\mathrm{PAH}}\right| = \hat{t} + d(\hat{x}, o) + \left|\mathcal{T}_{U}\right|$$

$$\leq \left|\mathcal{T}^{\mathrm{OPT}}\right|$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\left|\mathcal{T}^{\text{PAH}}\right| = \underbrace{\hat{t} + d(\hat{x}, o)}_{\leq} + \left|\mathcal{T}_{U}\right|$$
 $\leq \left|\mathcal{T}^{\text{OPT}}\right|$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\left|\mathcal{T}^{\text{PAH}}\right| = \underbrace{\hat{t} + d(\hat{x}, o)}_{\text{ }} + \left|\mathcal{T}_{U}\right|$$

$$\leq \left|\mathcal{T}^{\text{OPT}}\right| + \left|\mathcal{T}^{\text{OPT}}\right|$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &= \underbrace{\hat{t} + d(\hat{x}, o)}_{} + \left| \mathcal{T}_{U} \right| \\ &\leq \left| \mathcal{T}^{\text{OPT}} \right| + \left| \mathcal{T}^{\text{OPT}} \right| = 2 \cdot \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - a) If $d(\hat{x}, o) > d(p, o)$: go back to o

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &= \underbrace{\hat{t} + d(\hat{x}, o)}_{} + \left| \mathcal{T}_{U} \right| \\ &\leq \left| \mathcal{T}^{\text{OPT}} \right| + \left| \mathcal{T}^{\text{OPT}} \right| = 2 \cdot \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - b) $d(\hat{x}, o) > d(p, o)$: ignore \hat{x} ...

time: \hat{t}

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request

- (2) For new request (\hat{t}, \hat{x}) :
 - b) $d(\hat{x}, o) > d(p, o)$: ignore \hat{x} ...

U :=places yet to visit, (\hat{t}, \hat{x}) last request

I := ignored requests

- (2) For new request (\hat{t}, \hat{x}) :
 - b) $d(\hat{x}, o) > d(p, o)$: ignore \hat{x} ...

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (\hat{t}, \hat{x}) :
 - b) $d(\hat{x}, o) > d(p, o)$: ignore \hat{x} ...

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

 $I \coloneqq \text{ignored requests}$

- (2) For new request (\hat{t}, \hat{x}) :
 - b) $d(\hat{x}, o) > d(p, o)$: ignore \hat{x} ...

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$|\mathcal{T}^{\mathsf{PAH}}|$$

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\left|\mathcal{T}^{\mathrm{PAH}}\right| \leq t_{y}$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\left|\mathcal{T}^{\mathrm{PAH}}\right| \leq t_{y} + \left|\mathcal{R}\right|$$

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$|\mathcal{T}^{\text{PAH}}| \le t_y + |\mathcal{R}| - d(o, y)$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_v, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$|\mathcal{T}^{\text{PAH}}| \le t_{\gamma} + |\mathcal{R}| - d(o, \gamma)$$

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_v, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\left|\mathcal{T}^{\text{PAH}}\right| \le t_{\gamma} + \left|\mathcal{R}\right| - d(o, y) + \left|\mathcal{T}_{I}^{*}\right|$$

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_v, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$|\mathcal{T}^{\text{PAH}}| \le t_{v} + |\mathcal{R}| - d(o, y) + |\mathcal{T}_{I}^{*}|$$

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\left|\mathcal{T}^{\text{PAH}}\right| \le t_y + |\mathcal{R}| - d(o, y) + |\mathcal{T}_I^*|$$

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_v, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\left|\mathcal{T}^{\text{PAH}}\right| \le t_y + \left|\mathcal{R}\right| - d(o, y) + \left|\mathcal{T}_I^*\right|$$
 $\left|\mathcal{P}_I\right|$

PAH is 2-competitive for H-OLTSP

GOAL:

 $U \coloneqq \text{places yet to visit, } (\hat{t}, \hat{x}) \text{ last request, } y \text{ fst place in } I \text{ visited by OPT}$

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\left|\mathcal{T}^{\text{PAH}}\right| \le t_y + |\mathcal{R}| - d(o, y) + |\mathcal{T}_I^*|$$

$$\le t_y + |\mathcal{R}| + |\mathcal{P}_I|$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &\leq t_{y} + \left| \mathcal{R} \right| - d(o, y) + \left| \mathcal{T}_{I}^{*} \right| \\ &\leq t_{v} + \left| \mathcal{R} \right| + \left| \mathcal{P}_{I} \right| = t_{v} + \left| \mathcal{P}_{I} \right| + \left| \mathcal{R} \right| \end{aligned}$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

 $I \coloneqq \text{ignored requests}$

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &\leq t_y + \left| \mathcal{R} \right| - d(o, y) + \left| \mathcal{T}_I^* \right| \\ &\leq t_y + \left| \mathcal{R} \right| + \left| \mathcal{P}_I \right| = \underbrace{t_y + \left| \mathcal{P}_I \right|} + \left| \mathcal{R} \right| \end{aligned}$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

I := ignored requests

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &\leq t_y + \left| \mathcal{R} \right| - d(o, y) + \left| \mathcal{T}_I^* \right| \\ &\leq t_y + \left| \mathcal{R} \right| + \left| \mathcal{P}_I \right| = \underbrace{t_y + \left| \mathcal{P}_I \right|}_{\leq |\mathcal{T}^{\text{OPT}}|} + \left| \mathcal{R} \right| \end{aligned}$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

I := ignored requests

- (2) For new request (t_v, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &\leq t_y + \left| \mathcal{R} \right| - d(o, y) + \left| \mathcal{T}_I^* \right| \\ &\leq t_y + \left| \mathcal{R} \right| + \left| \mathcal{P}_I \right| = \underbrace{t_y + \left| \mathcal{P}_I \right|}_{\leq |\mathcal{T}^{\text{OPT}}|} + \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

I := ignored requests

- (2) For new request (t_y, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &\leq t_y + \left| \mathcal{R} \right| - d(o, y) + \left| \mathcal{T}_I^* \right| \\ &\leq t_y + \left| \mathcal{R} \right| + \left| \mathcal{P}_I \right| = \underbrace{t_y + \left| \mathcal{P}_I \right|}_{} + \left| \mathcal{T}^{\text{OPT}} \right| = 2 \cdot \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

GOAL:

U :=places yet to visit, (\hat{t}, \hat{x}) last request, y fst place in I visited by OPT

I := ignored requests

- (2) For new request (t_v, y) :
 - b) d(y,o) > d(p,o): ignore y ...

$$\begin{aligned} \left| \mathcal{T}^{\text{PAH}} \right| &\leq t_y + \left| \mathcal{R} \right| - d(o, y) + \left| \mathcal{T}_I^* \right| \\ &\leq t_y + \left| \mathcal{R} \right| + \left| \mathcal{P}_I \right| = \underbrace{t_y + \left| \mathcal{P}_I \right|}_{} + \left| \mathcal{T}^{\text{OPT}} \right| = 2 \cdot \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

GOAL:

U :=places yet to visit

- (1) At *o*: start optimal tour through *U*
- (2) For new request (t, x):
 - a) If d(x, o) > d(p, o): go back to o
 - b) Else: ignore x until back at o

GOAL:

U :=places yet to visit

- (1) At *o*: start optimal tour through *U*
- (2) For new request (t, x):
 - a) If d(x, o) > d(p, o): go back to o
 - b) Else: ignore x until back at o

THEOREM: PAH is 2-competitive for H-OLTSP

U :=places yet to visit

- (1) At *o*: start optimal tour through *U*
- (2) For new request (t, x):
 - a) If d(x, o) > d(p, o): go back to o
 - b) Else: ignore x until back at o

THEOREM: PAH is 2-competitive for H-OLTSP

REMARK: PAH is optimal online algorithm for H-OLTSP

Invariant: always on shortest path between points in *S*

0000

with Christofides-Heuristic

Invariant: always on shortest path between points in S

(1) At o: Find tour though $U \cup \{o\}$ with Christofides-Heuristic

tt,zz) at time t and alg between xx and yy:

0000

with Christofides-Heuristic

Invariant: always on shortest path between points in S

(1) For new request (t, z) at time t and ALG between x and y:

tt,zz) at time t and alg between xx and yy:

0000

with Christofides-Heuristic

Invariant: always on shortest path between points in S

(1) For new request (t, z) at time t and ALG between x and y:

tt,zz) at time t and alg between xx and yy:

0000

with Christofides-Heuristic

Invariant: always on shortest path between points in S

(1) For new request (t, z) at time t and ALG between x and y:

tt,zz) at time t and alg between xx and yy:

0000

with Christofides-Heuristic

Invariant: always on shortest path between points in S

a) Add z to U

0

tt,zz) at time t and alg between xx and yy:

0000

with Christofides-Heuristic

Invariant: always on shortest path between points in S

- a) Add z to U
- b) go back to o via x or y (take shortest path)

tt,zz) at time t and alg between xx and yy:

0000

with Christofides-Heuristic

Invariant: always on shortest path between points in S

- a) Add z to U
- b) go back to *o* via *x* or *y* (take shortest path)

THEOREM: CHR is a polynomial (and correct).

Invariant: always on shortest path between points in *S*

- (2) For last request (\hat{t}, z) at time \hat{t} and ALG between x and y:
 - b) go back to *o* via *x* or *y* (take shortest path)

Invariant: always on shortest path between points in *S*

- (2) For last request (\hat{t}, z) at time \hat{t} and ALG between x and y:
 - b) go back to *o* via *x* or *y* (take shortest path)

$$\left| \mathcal{T}^{\text{CHR}} \right| = \hat{t} +$$

GOAL:

CHR is _-competitive.

Invariant: always on shortest path between points in *S*

- (2) For last request (\hat{t}, z) at time \hat{t} and ALG between x and y:
 - b) go back to *o* via *x* or *y* (take shortest path)

$$|\mathcal{T}^{CHR}| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\}$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$|\mathcal{T}^{CHR}| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\}$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$|\mathcal{T}^{CHR}| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\} + CHR(U)$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\left|\mathcal{T}^{\text{CHR}}\right| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\} + \text{CHR}(U)$$

$$\leq \left|\mathcal{T}^{\text{OPT}}\right|$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\left|\mathcal{T}^{\text{CHR}}\right| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\} + \text{CHR}(U)$$

$$\leq \left|\mathcal{T}^{\text{OPT}}\right|$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\begin{aligned} \left| \mathcal{T}^{\text{CHR}} \right| &= \hat{t} + \underbrace{\min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\}}_{+ \text{ CHR}(U)} \\ &\leq \left| \mathcal{T}^{\text{OPT}} \right| + \underbrace{\frac{1}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right|}_{+} \end{aligned}$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\begin{aligned} \left| \mathcal{T}^{\text{CHR}} \right| &= \hat{t} + \min \{ d(o, x) + d(x, p), d(p, y) + d(y, o) \} + \text{CHR}(U) \\ &\leq \left| \mathcal{T}^{\text{OPT}} \right| + \frac{1}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| + \frac{3}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| \end{aligned}$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\left| \mathcal{T}^{\text{CHR}} \right| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\} + \text{CHR}(U)$$

$$\leq \left| \mathcal{T}^{\text{OPT}} \right| + \frac{1}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| + \frac{3}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| =$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\left| \mathcal{T}^{\text{CHR}} \right| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\} + \text{CHR}(U)$$

$$\leq \left| \mathcal{T}^{\text{OPT}} \right| + \frac{1}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| + \frac{3}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| = 3 \cdot \left| \mathcal{T}^{\text{OPT}} \right|$$

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\left| \mathcal{T}^{\text{CHR}} \right| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\} + \text{CHR}(U)$$

$$\leq \left| \mathcal{T}^{\text{OPT}} \right| + \frac{1}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| + \frac{3}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| = 3 \cdot \left| \mathcal{T}^{\text{OPT}} \right|$$

THEOREM: CHR is 3-competitive.

Invariant: always on shortest path between points in *S*

(1) At o: Find tour through $U \cup \{o\}$ with Christofides-Heuristic

$$\left| \mathcal{T}^{\text{CHR}} \right| = \hat{t} + \min\{d(o, x) + d(x, p), d(p, y) + d(y, o)\} + \text{CHR}(U)$$

$$\leq \left| \mathcal{T}^{\text{OPT}} \right| + \frac{1}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| + \frac{3}{2} \cdot \left| \mathcal{T}^{\text{OPT}} \right| = 3 \cdot \left| \mathcal{T}^{\text{OPT}} \right|$$

REMARK: There is a 3-competitive algorithm for N-OLTSP.

Credits & References

- Paper: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.5620
- Map: http://awoiaf.westeros.org/index.php/File:WorldofIceandFire.png
- Font: http://www.fonts4free.net/game-of-thrones-font.html