Recurrence Relation

Recurrence Relations

• Definition:

An equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely a_0 , a_1 , a_2 ,..., a_{n-1} for all integers n with $n \ge n_0$, where n_0 is the nonnegative integer is called a recurrence relation for $\{a_n\}$ or a difference equation.

Recurrence Relations

•In other words, a recurrence relation is like a recursively defined sequence, but without specifying any initial values (initial conditions).

•Therefore, the same recurrence relation can have (and usually has) multiple solutions.

•If **both** the initial conditions and the recurrence relation are specified, then the sequence is **uniquely** determined.

What is the recurrence equation for the series

• 5,15,45,135,

$$a_{n+1} = 3a_n$$
, $n \ge 0$, $a_0 = 5$

• 3,9,27,....

$$a_{n+1} = 3a_n$$
, $n \ge 0$, $a_0 = 3$

Since, a_{n+1} depends only on its immediate predecessor, the relation is said to be first order

The general form of such an equation can be written $a_{n+1} = da_n$, $n \ge 0$, where d is a constant.

Values such as a_0 or a_1 , given in addition to the recurrence relations, are called boundary conditions. The expression $a_0 = A$, where A is a constant, is also referred to as an initial condition.

• The Unique solution of the recurrence relation $a_{n+1} = da_n$, where $n \ge 0$, d is a constant and $a_0 = A$ is given by

$$a_n = Ad^n$$
, $n \ge 0$

$$a_{n+1} = 3a_n, \qquad n \ge 0, \qquad a_0 = 5.$$

The first four terms of this sequence are

$$a_0 = 5$$
,
 $a_1 = 3a_0 = 3(5)$,
 $a_2 = 3a_1 = 3(3a_0) = 3^2(5)$, and
 $a_3 = 3a_2 = 3(3^2(5)) = 3^3(5)$.

These results suggest that for each $n \ge 0$, $a_n = 5(3^n)$. This is the *unique solution* of the given recurrence relation.

Solve the recurrence relation $a_n = 7a_{n-1}$, where $n \ge 1$ and $a_2 = 98$.

$$a_{\eta} = a_{0} (1^{\eta})$$
 $a_{\chi} = a_{0} (1^{2})$
 $98 = a_{0} 49$
 $a_{0} = 2$
 $a_{\eta} = a_{0} (7^{\eta})$, $a_{\chi} = a_{0}$

A bank pays 6% (annual) interest on savings, compounding the interest monthly. If Bonnie deposits \$1000 on the first day of May, how much will this deposit be worth a year later?

The annual interest rate is 6%, so the monthly rate is 6%/12 = 0.5% = 0.005. let p_n denote the value of Bonnie's deposit at the end of n months. $p_{n+1} = p_n + 0.005 p_n$, where $0.005 p_n$ is the interest earned on p_n during month n + 1, for $0 \le n \le 11$, and $p_0 = \$1000$.

The relation $p_{n+1} = (1.005)p_n$, $p_0 = 1000 , has the solution $p_n = p_0(1.005)^n = $1000(1.005)^n$. Consequently, at the end of one year, Bonnie's deposit is worth $$1000(1.005)^{12} = 1061.68 .

Find the recurrence relation of composition of numbers.

$$a_{n+1} = 2a_n, \qquad n \ge 1, \qquad a_1 = 1$$

to apply the formula for the unique solution (where $n \ge 0$) to this recurrence relation, we let $b_n = a_{n+1}$.

$$b_{n+1}=2b_n, \qquad n\geq 0, \qquad b_0=1,$$

so
$$b_n = b_0(2^n) = 2^n$$
, and $a_n = b_{n-1} = 2^{n-1}$, $n \ge 1$.

Find a_{12} if $a_{n+1}^2 = 5a_n^2$, where $a_n > 0$ for $n \ge 0$, and $a_0 = 2$.

$$let b_n = a_n^2,$$

 $b_{n+1} = 5b_n$ for $n \ge 0$, and $b_0 = 4$, is a linear relation

solution is $b_n = 4 \cdot 5^n$

Therefore, $a_n = 2(\sqrt{5})^n$ for $n \ge 0$

$$a_{12} = 2(\sqrt{5})^{12} = 31,250$$

The general first-order linear recurrence relation with constant coefficients has the form $a_{n+1} + ca_n = f(n)$, $n \ge 0$, where c is a constant and f(n) is a function on the set N of nonnegative integers.

When f(n) = 0 for all $n \in \mathbb{N}$, the relation is called *homogeneous*; otherwise it is called *nonhomogeneous*.

Bubble sort

```
procedure BubbleSort(n: positive integer; x_1, x_2, x_3, ..., x_n: real numbers)
begin
  for i := 1 to n - 1 do
     for j := n downto i + 1 do
       if X_j < X_{j-1} then
         begin {interchange}
            temp := x_{j-1}
            X_{J-1} := X_J
            x_i := temp
         end
end
```

Four comparisons and two interchanges.

Two comparisons and one interchange.

$$\begin{array}{c|ccc}
i & = 4 & x_1 & 2 \\
x_2 & 5 & 5 \\
x_3 & 7 & 7 \\
x_4 & 8 \\
x_5 & 9 & j = 5
\end{array}$$

One comparison but no interchanges.

Three comparisons and two interchanges.

To determine the time-complexity function h(n) when this algorithm is used on an input (array) of size $n \ge 1$, we count the total number of *comparisons* made in order to sort the n given numbers into ascending order.

If a_n denotes the number of comparisons needed to sort n numbers in this way, then we get the following recurrence relation:

$$a_n = a_{n-1} + (n-1), \qquad n \ge 2, \qquad a_1 = 0.$$

Given a list of n numbers, we make n-1 comparisons to bubble the smallest number up to the start of the list. The remaining sublist of n-1 numbers then requires a_{n-1} comparisons in order to be completely sorted.

$$a_1 = 0$$

 $a_2 = a_1 + (2 - 1) = 1$
 $a_3 = a_2 + (3 - 1) = 1 + 2$
 $a_4 = a_3 + (4 - 1) = 1 + 2 + 3$

In general,
$$a_n = 1 + 2 + \cdots + (n-1) = [(n-1)n]/2 = (n^2 - n)/2$$
.