T-invariant and T-cyclic subspace

Seanie Lee

04 May 2019

Theorem 1. Let **T** be a linear operator on a finite-dimensional vector space **V** such that the characteristic polynomial of **T** splits. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the distinct eigenvalues of **T** Then,

- (1). T is diagonalizable if and only if the multiplicty of λ_i is equal to $\dim(\mathbf{E}_{\lambda_i})$ for all i
- (2). If **T** is diagonalizable and β_i is an ordered basis for \mathbf{E}_{λ_i} , for each i, then $\beta = \beta_1 \cup \cdots \cup \beta_k$ is an ordered basis for **V** consisting of eignevectors of **T**

$$\text{Note. } [\mathbf{T}]_{\beta} = \begin{pmatrix} \lambda_1 I_{n_1} & & & \\ & \lambda_2 I_{n_2} & & \\ & & \ddots & \\ & & & \lambda_k I_{n_k} \end{pmatrix} \text{: block diagonal matrix}$$

Definition 2. $T: V \longrightarrow V$ is linear operator and $W \leq V$. If $TW \subseteq W$, then W is called T-invariant subspace. 0, V, and E_{λ} are examples of it.

Lemma 3.
$$M := \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
, $\det M = \det A \det C$

Proof. 1. if $\det A = 0$

Then there are some linearly dependent column vectors in A, so $\det M = \det A \det C = 0$

2. if
$$\det A \neq 0$$

$$\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det \begin{pmatrix} A & 0 \\ 0 & I_m \end{pmatrix} \det \begin{pmatrix} I_n & A^{-1}B \\ 0 & C \end{pmatrix} = \det A \det C$$

Note. $v = W_1 \oplus \cdots \oplus W_k$, $T : V \longrightarrow V$, and β_i is a basis for W_i . Then $\beta = \beta_1 \biguplus \cdots \biguplus \beta_k$ is a basis for V. But $[T]_{\beta}$ is not a block matrix because $T(\beta_i) \not\subset W_i$. But if W_1 is T-invariant, then $[T]_{\beta} = \not\in W_1 c_{\beta_1} B0C$

Moreover if W_i is T-invariant for all i the, $[T]_{\beta}=m{c}W_1c_{\beta_1}$ \bigcirc $[T|_{W_2}]_{\beta_2}$ \Box \bigcirc $[T|_{W_k}]_{\beta_k}$

and by Lemma 3. $\phi_{\mathbf{T}}(t) = \phi_{\mathbf{T}_1}(t) \times \cdots \times \phi_{\mathbf{T}_k}(t)$; where $\mathbf{T}_i := \mathbf{T}|_{\mathbf{W}_1}$

Definition 4. $T:V\longrightarrow V$ linear. $span\{v,Tv,T^2v,\ldots,\}$ is T-cyclic subspace of $v\in V$

Note. T-cyclic subspace of $v \in V$ is the smallest T-invariant of V containing v.

Proof. 1. **T**-invariant.

$$egin{aligned} m{W} \coloneqq & \mathrm{span}\{m{v}, m{T}m{v}, m{T}^2m{v}, \dots, \} \ \mathrm{and} \ m{w} = \sum_{i=0}^\infty a_i m{T}^i m{v} \in m{W} \ m{T}m{w} = \sum_{i=0}^\infty a_i m{T}^{i+1} m{v} \in m{W} \ m{W} \ \mathrm{is} \ m{T} ext{-invariant}. \end{aligned}$$

2. Let U be any T-invariant subspace of V containing v. Since U is T-invariant and $v \in V$, $Tv \in V$. Repeatedly $T^kv \in V$ for all k. Thus $\{v, Tv, T^2v, \ldots\} \subset U$ \therefore span $\{v, Tv, T^2v, \ldots\} \leq U$

Theorem 5. W is T-cyclic subspace of V generated by a nonzero vector $v \in V$ and dimW = k

1.
$$\{v, Tv, \dots, T^{k-1}v\}$$
 is a basis for W

2.
$$a_0 \mathbf{v} + a_1 \mathbf{T} \mathbf{v} + \dots + a_{k-1} \mathbf{T}^{k-1} \mathbf{V} + a_k \mathbf{T}^k \mathbf{v} = 0 \Longrightarrow \phi_{\mathbf{T}|\mathbf{w}}(t) = t^k + a_{k-1} t^{k-1} + \dots + a_1 t + a_0$$

Proof. 1. Let l be the largest integer such that $\beta := \{v, Tv, \dots, T^{l-1}v\}$ is linearly independent. Let $\mathbf{Z} := \operatorname{span}\beta$. Then β is a basis for \mathbf{Z} . Since β is linearly independent set and $\beta \cup \{T^iv\}$ is linearly dependent, $\mathbf{T}^iv \in \operatorname{span}\beta$ for $i = l, l+1, \dots$ So, $\mathbf{T}^lv \in \mathbf{Z}$. Note that \mathbf{Z} is \mathbf{T} -invariant because of the following reason.

$$oldsymbol{w} = b_0 oldsymbol{v} + b_1 oldsymbol{T} oldsymbol{v} + \cdots + b_{l-1} oldsymbol{T}^{l-1} oldsymbol{e} oldsymbol{Z}$$
 $oldsymbol{T} oldsymbol{w} = b_0 oldsymbol{T} oldsymbol{v} + b_1 oldsymbol{T}^2 oldsymbol{v} + \cdots + b_{l-2} oldsymbol{T}^{l-1} oldsymbol{v} + b_{l-1} oldsymbol{T}^l oldsymbol{v} \in oldsymbol{Z}$

Moreover Z is T-invariant subspace containing v and W is the smallest T-invariant subspace containing v, $W \leq Z$ which implies that $k \leq l$. But $\dim W = k$ and $l \leq k$, thus k = l $\therefore \beta$ is linearly independent subset of W.

Since β is linearly independent and $\beta \cup \{T^i v\}$ is linearly dependent $\Longrightarrow T^i v \in \operatorname{span}\beta$ for $i \geq k$. $\therefore \beta$ is a basis for W

$$2. \ [\mathbf{T}|_{\mathbf{W}}]_{\beta} = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_{0} \\ 1 & 0 & \cdots & 0 & -a_{1} \\ 0 & 1 & \cdots & 0 & -a_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{k-1} \end{pmatrix} \text{ and } \phi_{[\mathbf{T}|_{\mathbf{W}}]_{\beta}}(t) = \det \begin{pmatrix} t & 0 & \cdots & 0 & a_{0} \\ -1 & t & \cdots & 0 & a_{1} \\ 0 & -1 & \cdots & 0 & a_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & t + a_{k-1} \end{pmatrix}$$

$$\text{Put } b_i \coloneqq \det \begin{pmatrix} t & 0 & \cdots & 0 & a_i \\ -1 & t & \cdots & 0 & a_{i+1} \\ 0 & -1 & \cdots & 0 & a_{i+2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & t + a_{k-1} \end{pmatrix}_{(k-i) \times (k-i)}$$

$$b_0 = \begin{pmatrix} t & 0 & \cdots & 0 & a_0 \\ -1 & t & \cdots & 0 & a_1 \\ 0 & -1 & \cdots & 0 & a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & t + a_{k-1} \end{pmatrix}$$

$$b_0 = t \det \begin{pmatrix} t & 0 & \cdots & 0 & a_1 \\ -1 & t & \cdots & 0 & a_2 \\ 0 & -1 & \cdots & 0 & a_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & t + a_{k-1} \end{pmatrix} + (-1)^{k+1} a_0 \det \begin{pmatrix} -1 & t & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -1 \end{pmatrix}$$

$$b_0 = t b_1 + (-1)^{k+1+k-1} a_0$$

$$b_0 = t b_1 + a_0$$

$$b_1 = t b_2 + a_1$$

$$\vdots$$

$$b_{k-2} = t b_{k-1} + a_{k-2}$$

$$b_{k-1} = t + a_{k-1}$$

$$b_0 = t^k + a_{k-1} t^{k-1} + \cdots + a_1 t + a_0$$

Theorem 6. If
$$F = \mathbb{C}$$
 and $T \in \mathfrak{L}(V, V)$, then $\exists \mathfrak{B}$ such that \mathfrak{B} is a basis for V and $[T]_{\mathfrak{B}}$ is upper-

Proof. Induction on matrix size n. Since (1x1) matrix is upper-triangular matrix, let's assume $n \geq 2$. Since $\mathbf{F} = \mathbb{C}$, $\exists \mathbf{v}_1$ such that $\mathbf{T}\mathbf{v}_1 = \lambda \mathbf{v}_1$. Construct a basis $\mathfrak{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ by Basis Extension Theorem. Then $[\mathbf{T}]_{\mathfrak{C}} = \begin{pmatrix} \lambda & * \\ 0 & B \end{pmatrix}$, where $B \in \mathfrak{M}_{n-1,n-1}(\mathbb{C})$. By Induction hypothesis, $\exists P \in \mathfrak{M}_{n-1,n-1}(\mathbb{C})$

such that
$$p^{-1}BP$$
 is upper-triangular matrix. Put $U := \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}$.

 $\therefore \phi_{|T|_{W}}(t) = t^k + a_{k-1}t^{k-1} + \dots + a_1t + a_0$

triangular matrix.

Since,
$$U^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & P^{-1} \end{pmatrix}$$
, $[T]_{\mathfrak{C}} \sim U^{-1} \begin{pmatrix} \lambda & * \\ 0 & B \end{pmatrix}$ $U = \begin{pmatrix} 1 & 0 \\ 0 & P^{-1} \end{pmatrix}$ $\begin{pmatrix} \lambda & * \\ 0 & B \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix} = \begin{pmatrix} \lambda & * \\ 0 & P^{-1}BP \end{pmatrix}$
Since $P^{-1}BP$ is upper-triangular matrix, $[T]_{\mathfrak{C}}$ is similar to upper-triangular matrix.

3

Example 1. Let $A \in \mathbf{M}_{n \times n}(\mathbb{R})$ be the matrix defined by $A_{ij} = 1$ for all i and j. Find the characteristic polynomial of A. $\phi_A(t) = t^{n-1}(t-n)$

Proof. Since, rank A = 1, dim(ker A) = n-1, which implies that $\exists x$ such that Ax = 0x and $x \neq 0$. Thus dim $E_0 = n-1$. Since multiplicty of eigenvalue 0 is greater than or equal to n-1, $\phi_A(t) = t^{n-1}(t-\lambda)$. Since there exists at least eigenvalue, which is 0, of A, A is similar to upper triangular matrix U by Theorem 6. Since U is upper-triangular matrix and trace $A = \text{trace } U = n, -(\lambda + 0) = -n$.

$$U = \begin{pmatrix} 0 & & & \\ & 0 & * & \\ & & \ddots & \\ & \mathbf{0} & & \ddots & \\ & & \lambda \end{pmatrix}$$

$$\therefore \phi_A(t) = \phi_U(t) = t^{n-1}(t-n)$$