Paper 102: Programming & Problem solving through C

Lecture-07:Unit-I C Fundamentals

System softwares

Assembler

• It is a translator that converts assembly language code in the form of directly executable object code (i.e in machine language)

Interpreter

- The interpreter converts source language instructions into executable code in a step by step manner.
- One instruction is converted, executed then the next instruction is taken up for processing.(i.e. line by line)

Compiler

- It converts the entire source language program into executable code.
- The output of a compiler is either in the form of directly executable object code(in machine language), or in the form of an assembly program to be run through the assembler.

System softwares

Linker

- A linker perform the important task of linking together all the object modules.
- This need arises if the program consist of several object modules.
- They must be linked together to execute as a single program.

Loader

- The task of loading the linked object modules is performed by the *loader*.
- It is of two types:
 - Absolute loader:- load the executable code into the memory location specified in the object module.
 - Relocating loader:-load the object code in memory locations which are decided at load time.(i.e, any memory location)

The C compilation model

- The Preprocessor accepts source code as input and
 - O removes comments
 - extends the code according to the preprocessor directives included in the source code (lines starting with #)
- The Compiler takes the output of the preprocessor and produces assembly code
- The Assembler takes the assembly code and produces machine code (or object code)
- □ The Linker takes the object code, joins it with other pieces of object code and libraries and produces code that can be executed

Algorithms

• The word algorithm comes from the name of a Persian mathematician

Abu ja`far Mohamed ibn Musa al Khowarizmi

- It refers to a method that can be used by a computer for describing the solution of a problem
- Criteria for all algorithms:
 - <u>Input</u>:-Zero or more quantities are externally supplied
 - Output:-At least one quantity is produced
 - <u>Definiteness</u>:- Each instruction is clear and unambiguous
 - <u>Finiteness</u>:- The algorithm should terminate after a finite number of steps
 - <u>Correct</u>:-For every input instance it halts with the correct output

Example of an algorithm

Algorithm : Average This algorithm computes the average of n numbers. The variables used are:n, number, count, sum: type integer average: type real Step 1: [Input the number of data items] read n Step 2: [continue processing if n is positive] if n>0perform step 3 onwards else exit Step 3: [Initialize] sum=0count=0

```
Step 4: [read and add the numbers]
repeat while count < n
read number
sum=sum + number
count=count + 1

Step 5: [Compute the average]
average=sum/n

Step 6: [finished]
Exit
```

Pseudocode

- Pseudocode consist of English-like statements describing an algorithm.
- It uses simple phrases and avoid cryptic symbols

Example of Pseudocode

If student's grade is greater than or equal to 60
 Display "passed"
 else
 Display "failed"

Convert temperature from Fahrenheit to Centigrade

- 1. Enter the temperature in F
- Calculate 5/9 (F-32) and assign the result to C
- 3. Display F and C
- 4. Ask if the user wants to enter another value
- Check if the answer is yes then
 Repeat step 1 to 5
 Else
 stop

Find average of three subjects

- 1. assign total to zero
- 2. Enter the marks in three subject
- Add the three marks in total
- 4. Assign the average to the total divided by 3
- 5. Display the marks, total and average

A.V.Hujon, Dept. of Computer Science, SAC

Flowchart

- It is a pictorial representation of an algorithm
- It shows the logic of the algorithm and the flow of control.
- It uses symbols to represent specific actions and arrows to indicate the flow of control.

Flowchart symbols

Basic Symbols

Of the many Symbols available, these 6 Basic Symbols will be used most:

Start/Stop

Question, Decision (Use in Branching)

Input/Output

Connector (connect one part of the flowchart to another)

Process, Instruction

Comments, Explanations, Definitions

A.v.nujon, Dept. of Computer Science, SAC

Flowchart example

A.V.Hujon, Dept. of Computer Science, SAC

Class assignment

• Write the Pseudocode, Algorithm and draw the Flowchart to input the monthly attendance of N students, total class taken, and marks scored in the monthly test. Compute the percentage of attendance. If percentage is less than 75%,5 marks should be deducted from the marks scored in the monthly test. Display a monthly attendance and marks report of all N students in a proper format.