Øving 12 Solenoide. Grensevilkår. Induksjon.

Veiledning: 16. og 17. april ifølge nettsider. Innlevering: Onsdag 18. april 14:00

Oppgave 1. Magnetfelt ved longitudinalt materialskille. ¹

En sylinderformet stav av jern med relativ permeabilitet $\mu_{\rm r}=2000$ er plassert midt (koaksialt) inne i en solenoide. Innerradien til solenoiden er b=30 mm og radien til staven er a=15 mm. Viklingstallet for solenoiden er $n=900\,{\rm m}^{-1}$ og den fører en strøm I=3,00 A. Du kan anta både solenoiden og staven er svært lange slik at du kan se bort fra randeffekter.

- a) Finn verdier for H_0 , B_0 og M_0 inni solenoiden, utenfor jernstaven (a < r < b).
- b) Finn verdier for H, B og M inne i jernstaven (r < a). Har du kommentarer til tallverdiene for B og M, i lys av resultatet oppgave 4 i forrige øving?

Oppgave 2. Magnetfelt ved transversalt materialskille.

(Viklingene tegnet for hånd, ikke helt pene!)

En toroideformet kjerne av jern har relativ permeabilitet $\mu_{\rm r}=2000$. Midlere radius i toroiden er R=0,200 m og tverrsnittradien r til toroiden er mye mindre enn R. Tett utenpå kjernen er det tvunnet en ledning som fører strømmen I=0,50 A og har N=400 viklinger. Viklingene er jamt fordelt og så tette at det magnetiske feltet kan regnes homogent inne i magnetkjernen.

Det er skjært bort en smal luftfylt spalte av toroidekjernen. Anta at åpningen δ er mye mindre enn r slik at magnetfeltlinjer også over åpningen er asimutale (sirkelretning).

- a) Finn verdier for H og B inne i den toroideformede kjernen.
- b) Finn verdier for H_0 og B_0 i den smale spalteåpningen.

Oppgave 3. Bevegelsesindusert ems.

En ledende stav A-A kan gli friksjonsfritt på to parallelle, horisontale, skinner. Skinnene er i venstre del forbundet med ei rett tverrskinne av samme materialet slik at systemet danner ei lukka strømsløyfe (se figuren). Det legges inn et kartesisk koordinatsystem med x-aksen parallelt med skinnene, y-aksen parallelt med bjelken A-A og z-aksen opp av papirplanet og med x-0 ved den venstre forbindelsesskinna.

Avstanden mellom de parallelle delene av skinnene er D. De parallelle skinnene og tverrforbindelsen har spesifikk motstand λ per lengdeenhet. Den ledende staven A-A har spesifikk motstand $\lambda_{\rm A}$ per lengdeenhet og total masse 20 g. Se i beregningene bort fra staven A-A sin utstrekning i x-retningen.

 $^{^1\,} Tips$ for opg. 1 og 2: Tangentkomponenten til \vec{H} og normalkomponenten til \vec{B} er kontinuerlig over ei grenseflate.

Skinnene er plassert i et ytre magnetfelt:

$$\vec{B}(x) = 3B_0(1 + \beta x)\,\hat{\mathbf{k}}$$

hvor β er en positiv konstant. Den ledende staven A-A beveges med konstant hastighet v med start fra x=0 og i positiv x-retning.

- a) Finn uttrykk for den magnetiske fluksen gjennom den lukkede sløyfa som funksjon av tida t.
- b) Finn uttrykk for den induserte elektromotoriske spenningen, \mathcal{E} , i sløyfa.
- c) Finn uttrykk for strømmen som \mathcal{E} genererer. Hvilken retning har den induserte strømmen?
- d) På grunn av den induserte strømmen i sløyfa og det ytre magnetfeltet vil det virke ei kraft på staven. Angi størrelse og retning på krafta som vi må bruke for å bevege staven med konstant hastighet v.

Oppgave 4. E-felt i en solenoide.

Når en rett solenoide blir påtrykt en varierende strøm induseres det et elektrisk felt E_{ϕ} i sirkulær (asimutal) retning rundt solenoiden. Vi har en rett, jernfylt ($\mu_{\rm r}=2000$) solenoide med 200 viklinger, lengde L=10.0 cm og radius R=1,00 cm. Beregn hva amplituden til det elektriske feltet E_{ϕ} er i avstand 5,0 cm fra sentrum av solenoiden når det sendes en AC-strøm med amplitude 2,00 A og frekvens 50 Hz gjennom viklingene.

Anta solenoiden er lang og tynn slik at B-feltet er homogent inni solenoiden og null utafor.

Oppgave 5. Varmeutvikling i solenoide.

En (tilnærmet uendelig) lang, luftfylt spole er laget med kobbertråd og har en viklingstetthet $n=1000\,\mathrm{m}^{-1}$. Resistiviteten til Cu er ved $20^{\circ}~\rho=1,68\cdot10^{-8}~\Omega\mathrm{m}$ (og ved $130^{\circ}~\rho=2,4\cdot10^{-8}~\Omega\mathrm{m}$).

- a) Hvor stor strøm I må gå i kobbertråden for at magnetfeltet inne i spolen skal bli 1,00 T?
- b) Kobbertråden har sirkulært tverrsnitt med diameter d = 1,00 mm. Hvor stort blir effekttapet P' per lengdeenhet av kobbertråden når den fører strømmen I? Kommentarer til svaret?

¹a) 2700 A/m, 3,40 mT, 0; 1b) 2700 A/m, 6,80 T, $5,40 \cdot 10^6$ A/m.

²a) 159 A/m, 0,40 T; 2b) $3, 18 \cdot 10^5$ A/m; 0,40 T.

³b) $-3B_0Dv(1+\beta vt)$. 4) 3,2 V/m. 5) 796 A; 14 kW/m.