AKHIL CHERUKURI

San Jose, California, (669)-260-3190

akhilcherukuri@gmail.com | linkedin.com/in/akhilcherukuri | github.com/akhilcherukuri | akhilcherukuri.com

TECHNICAL SKILLS

Programming Languages : C, C++, Embedded C, Python, Bash Scripting, Assembly, Java.

Operating Systems : Linux (Ubuntu, ROS, Raspbian), Real-Time OS (FreeRTOS, Amazon FreeRTOS).

Platforms : LPC 4078, LPC 1769, ESP32, Raspberry Pi, Nvidia Jetson. **Technologies and Protocols** : GPIO, SPI, I2C, UART, CAN, BLE, USB, ADC, PWM.

Tools and Debugging : Eclipse, Visual Studio Code, Git, CMock, MATLAB, NXP MCUXpresso, Keil μVision,

CCStudio, Putty, TeraTerm, Arduino, Saleae Logic Analyzer, EAGLE PCB Design,

GDB, PCAN, Cura, Test-Driven, Development, Agile Methodologies

EDUCATION

Master of Science in Computer Engineering [Embedded Systems]

July 2021

San Jose State University, San Jose, California

3.6/4.0

<u>Courses</u>: Embedded Software, Embedded Hardware Design, Embedded System Applications, Advanced Computer Design, System Software, Object-Oriented Programming Data Structures and Algorithms (C++), Internet of Things.

Bachelor of Technology in Electronics and Communication

July 2019

Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India

3.6/4.0

<u>Courses</u>: Embedded Systems Design, Microcontrollers, Objected Oriented Programming (Java), Operating Systems, Computer Networks, Computer Architecture and Organization, Wireless Communication and Networks

EXPERIENCE

Embedded Systems Intern, Orange Research Labs Hyderabad, India

Aug 2018 - Dec 2018

- Developed I2C and UART Drivers for ESP32, connected to the Google Firebase.
- Worked with a team and developed a home automation system controllable via an android application.
- Designed compact multi-layer PCBs schematics using cadence virtuoso software, which saved 30% of wiring used.

ACADEMIC PROJECTS

Remote Monitoring and Operations Management for Hospitals [In Progress]

Fall 2020

Hardware / Technologies: Raspberry Pi 4, SPI, UART, I2C, MQTT, JSON, EAGLE PCB, AWS Services, DynamoDB, Alexa Voice Service, AD8232 Heart Rate Monitor, TMP102 Temperature Sensor, ADS1115 ADC, Heroku.

• An IoT based body vitals monitoring system connected to physiological sensors with real-time monitoring with abnormality alerts and assistance using Alexa Skills.

Space Invaders, A Video Game System [Link]

Fall 2020

Hardware / Technologies: SJSU-Dev Board (ARM Cortex-M4 based NXP LPC4078), SPI, UART, I2C, 64x64 RGB LED Matrix, EAGLE PCB, FreeRTOS, MMA8452Q Accelerometer Sensor, Audio Decoder with Equalizer, 2- axis Joystick.

• Designed a single-player 2-axis joystick controller-based arcade game called Space Invaders which uses a 64x64 RGB LED matrix as a display and an MP3 decoder with equalizer to decode audio data for in-game sounds.

Can-Ster, Autonomous RC Car - [Link]

Spring 2020

Hardware / Technologies: SJSU-Dev Board (ARM Cortex-M4 based NXP LPC4078), HC-05 Bluetooth, CAN, UART, SN65HVD230 CAN Bus Transceiver, LiDAR, Ultrasonic Sensors, GPS, FreeRTOS, CMock (Unit Testing), EAGLE PCB. Built a self-driving car using industrial standard CAN bus protocol with obstacle avoidance and shortest path algorithms to reach

- Built a self-driving car using industrial standard CAN bus protocol with obstacle avoidance and shortest path algorithms to reach a destination. Worked on Bridge & Sensor module to devise the implementation of Bluetooth protocol.
- Developed Android Application using AndroidX Library with Google Maps API. Implemented HandlerThreads for Live Location feedback on Map and used Material Design for UI displaying live data.

2D and 3D Graphic Rendering using Transformation - [Link]

Fall 2019

Hardware / Technologies: MCUXpresso LPX1769(ARM Cortex-M3 based NXP LPC1769), SPI, 120x160 TFT.

• Wrote SPI interface device driver for TFT LCD and designed 2D based Live screensaver. Implemented Transformational algorithms to 3D object's perspectives and reflection gradients.

Explosive Ordnance Disposal Rover - [Link]

April 2019

Hardware / Technologies: Raspberry Pi 3 Model B, Apache, H-Bridge L298, Servo Motors, MIT App Inventor, PiCam.

- The rover uses a Raspberry Pi 3 Model B with a local Apache HTTP Server for user end control application and achieved communication via 802.11g for remote control and live camera feed.
- Implemented PWM for a 3-way servo motor arm for dissembling ordinances and H-Bridge L298 for wheel motor movement.