

The plan4res modelling suite

Sandrine Charousset, EDF, 2025/06/04

- Scope of Model
- Optimisation Methods

Scope of Model

The plan4res electricity system modelling suite

a Stochastic Power System model composed of 3 embedded layers:

- ☐ The Capacity expansion model computes the optimal mix on a given year
 - ✓ electric generation plants,
 - ✓ Short term storages (batteries....),
 - ✓ interconnection capacities
- ☐ The seasonal storage valuation model computes the optimal strategy for seasonal storages
 - √ For Hydro reservoirs
 - ✓ And also all other 'seasonal' flexibilities such as Seasonal Demand response
- □ The European unit commitment (EUC) model computes the optimal dispatch:
 - ✓ Supply power demand and ancillary services
 - ✓ Minimal inertia in the system
 - ✓ Maximum transmission and distribution capacities between clusters
 - ✓ Technical (including dynamic) constraints of all assets.

Plan4res is based on the SMS++ optimisation and modelling framework The SMS++ Project

The SMS++ Project

A Structured Modeling System for mathematical models

- □ Adaptable Geography perimeter
 - Europe or lower perimeter
 - Subcountry representation is possible
- Uncertainties:
 - Electricity demand
 - RES profiles (PV, Wind, RoR...)
 - Inflows
 - Failures of traditional plants
- Modular Time horizon and granularity
 - Typically 1 yr. with hourly granularity
- ☐ Modular Grid
 - Regions and interconnections
 - Regions can be:
 - Countries
 - Groups of countries

Sub country regions

- □ Power plants
 - Operational decision of power plants based on their specific fuel costs
 - Technical constraints (ramping, min up-/downtimes,...)
- Storages
 - Hydro storages including complex cascaded systems
 - Battery storages
- Intermittent generation
 - Generation of wind, solar, run of river based on meteorological profiles
- ☐ E-mobility
 - Storage capability of electric vehicles (vehicle-togrid, power-to-vehicle)
 - Limitation of storage availability by driving profiles
- □ Demand Response
 - Load shifting of a given energy consumption during a sub-period
 - Load curtailment based on a given potential (e.g. during one year)

Thermal power plants

□ Constraints

- Minimum and maximum power
- Ramping rate limits
- Minimum up and down times
- Simple constraints between active power and reserves
- Simple modelling of inertia and system services

□ Cost functions

- Convex quadratic or piecewise linear (cutting plane model)
- Start up costs

Intermittent Generation

□ Constraints

- Maximum power depending on uncertainty scenarios
- Ramping rate limits
- Simple constraints between active power and reserves
- Simple modelling of inertia and system services

□ Cost functions

Linear (usually no cost)

Seasonal storage

- Constraints
 - Minimum and maximum volume of the reservoir
 - Minimum and maximum power injections
 - For each turbine, minimum and maximum ow rate of water
 - Power is given as a function of ow rate by a concave cutting plane model
 - Ramping rate limits on ow rates
 - Simple constraints between active power and reserves
- Valleys can be modeled
 - Valley are modeled as a graph with arcs connecting the reservoirs
 - For each arc, uphill and downhill ow delays
 - But requires extensions to pre-processing
- Cost functions are provided by the Seasonal Storage Valuation (SSV) as a Cutting plan model

Short term storage

- Constraints
 - Minimum and maximum volume of the storage
 - Minimum and maximum injected power into the grid
 - Ramping rate limits
 - Potentially different injection and withdrawing efficiency ratio
 - Simple constraints between active power and reserves
 - Simple modelling of inertia and system services (eg for hydro)
- Cost functions
 - Linear costs

Demand Response : Load curtailment

- □ Load curtailment Ex: Mid-term contracts (for instance annual contracts) between utilities and consumers, where each consumer agrees to reduce his consumption when this is required by the utility
 - Energy storage that can be optimized over the whole mid-term horizon as a seasonal storage

Demand Response: Load Shifting

- Load shifting (Ex: Appliances with fixed energy needs on a given period allowing some flexibility on the load profile e.g. EV battery)
 - Data: a reference consumption signal with a given energy consumption on a given period
 - The flexible profile (to be optimally chosen) should
 - ▶in terms of energy: consume the same energy as the reference prole on the given period
 - ➤in terms power: not deviate to much from the reference prole

Modelling load shifting

Optimisation Problems

- The Capacity expansion model computes the optimal mix:
 - ✓ electric generation plants,
 - √ storages,
 - ✓ interconnection capacities between clusters
 - √ distribution grid capacities,
- The seasonal storage valuation model computes the operation strategies for seasonal storages:
 - ✓ For Hydro reservoirs
 - ✓ And also all other 'seasonal' flexibilities such as Demand response
- The European unit commitment model computes the optimal operation schedule for all the assets dealing with constraints:
 - ✓ Supply power demand and ancillary services
 - ✓ Minimal inertia in the system
 - ✓ Maximum transmission and distribution capacities between clusters
 - ✓ Technical constraints of all assets

Capacity Expansion

$$\min_{\kappa} \left\{ C^{inv}(\kappa) + \max_{\eta \in \Upsilon} C^{op}(\kappa, \eta) \right\}$$

Generation Mix

Interconnexion
Capacities

Seasonal Storage Valuation

$$C^{op}(\kappa) = \min_{x \in \mathcal{M}} \mathbb{E}\left[\sum_{s \in S} C_s(x_s)\right]$$

Water Values

Strategies

Unit Commitment

$$\min \sum_{i} C_{i}^{op}(p_{:,i}, p_{:,i}^{pr}, p_{:,i}^{sc}, p_{:,i}^{he}) + \alpha(v^{hy})$$

Optimal Schedules

Marginal Costs

Unit Commitment

Compute dispatch for all assets on a short-term horizon (eg. 1 week)

$$\min \sum_{i} C_{i}^{op}(p_{:,i}, p_{:,i}^{pr}, p_{:,i}^{sc}) + \alpha(v^{hy})$$

 C_i^{op} : Operational costs of unit i subject to it's operational variables $p_{t,i}, p_{t,i}^{pr}, p_{t,i}^{sc}$: Provision of power, primary/secondary reserve by unit i in timestep t submitted to dynamic constraints α : Approximation of the value of seasonal storages v^{hy} : Storage level

- The Capacity expansion model computes the optimal mix:
 - ✓ electric generation plants,
 - √ storages,
 - √ interconnection capacities between clusters
 - √ distribution grid capacities,
- The seasonal storage valuation model computes the operation strategies for seasonal storages:
 - ✓ For Hydro reservoirs
 - ✓ And also all other 'seasonal' flexibilities such as Demand response
- The European unit commitment model computes the optimal operation schedule for all the assets dealing with constraints:
 - ✓ Supply power demand and ancillary services
 - ✓ Minimal inertia in the system
 - ✓ Maximum transmission and distribution capacities between clusters
 - ✓ Technical constraints of all assets

Capacity Expansion

$$\min_{\kappa} \left\{ C^{inv}(\kappa) + \max_{\eta \in \Upsilon} C^{op}(\kappa, \eta) \right\}$$

Generation Mix

Interconnexion Capacities

Seasonal Storage Valuation

$$C^{op}(\kappa) = \min_{x \in \mathcal{M}} \mathbb{E}\left[\sum_{s \in S} C_s(x_s)\right]$$

Water Values

Strategies

Unit Commitment

$$\min \sum_{i} C_{i}^{op}(p_{:,i}, p_{:,i}^{pr}, p_{:,i}^{sc}, p_{:,i}^{he}) + \alpha(v^{hy})$$

Optimal Schedules

Marginal Costs

Seasonal Storage Valuation

Compute strategies for managing seasonal storage on a mid-term horizon (eg 1 year)

$$C^{op}(\kappa) = \min_{x \in \mathcal{M}} \mathbb{E}\left[\sum_{s \in S} C_s(x_s)\right]$$

 $C^{op}(\kappa)$: Operational costs depending on investment decisions κ

 C_s : Operational costs on sub-period s

 \mathcal{M} : Feasible set associated with operation decisions

S: Set of sub-periods (e.g. weeks)

x: Operation decisions on sub-period s

 κ : Investment decisions taken by capacity expansion model

- The Capacity expansion model computes the optimal mix:
 - ✓ electric generation plants,
 - ✓ storages,
 - √ interconnection capacities between clusters
 - √ distribution grid capacities,
- The seasonal storage valuation model computes the operation strategies for seasonal storages:
 - ✓ For Hydro reservoirs
 - ✓ And also all other 'seasonal' flexibilities such as Demand response
- The European unit commitment model computes the optimal operation schedule for all the assets dealing with constraints:
 - ✓ Supply power demand and ancillary services
 - ✓ Minimal inertia in the system
 - ✓ Maximum transmission and distribution capacities between clusters
 - ✓ Technical constraints of all assets

Capacity Expansion

$$\min_{\kappa} \left\{ C^{inv}(\kappa) + \max_{\eta \in \Upsilon} C^{op}(\kappa, \eta) \right\}$$

Generation Mix

Interconnexion Capacities

Seasonal Storage Valuation

$$C^{op}(\kappa) = \min_{x \in \mathcal{M}} \mathbb{E}\left[\sum_{s \in S} C_s(x_s)\right]$$

Water Values

Strategies

Unit Commitment

$$\min \sum_{i} C_{i}^{op}(p_{:,i}, p_{:,i}^{pr}, p_{:,i}^{sc}, p_{:,i}^{he}) + \alpha(v^{hy})$$

Optimal Schedules

Marginal Costs

Capacity Expansion

Design the optimal generation, transmission and distribution mix for a given long-term horizon (eg. 2050)

$$\min_{\kappa} \left\{ C^{inv}(\kappa) + \min_{\eta \in \Upsilon} E^{op}(\kappa, \eta) \right\}$$

 κ : Investment decisions (generation assets, transmission)

Y: Set of uncertainty scenarios

 C^{inv} : Costs induced by installing capacitiy κ

 C^{op} : Expected operational costs with given capacity κ

Inputs and Outputs

Inputs and Outputs

- Generation mix (capacities, costs, constraints) (incl.
 Storages....)
- Electricity demand and system services requirements
- Uncertainties (timeseries for Inflows, power demand and renewable potentials)

plan4res Unit Commitment (SIM)

- Generation schedules
- Marginal costs
- Generation cost

 Bellman Values (= strategies for seasonal storage management)

Potentials for investment

plan4res Capacity Expansion (CEM)

- Additionnal Generation capacities
- Additionnal Interconnection capacities
- Additionnal short term storage capacities

Input Format: excel and csv files

<u>Data format and linkages – africaenergymodels.net</u>

			MW	MW	€/MWh	€/MW/y	
Zone	Name	NumberUnits	MaxPower	MinPower	VariableCost	FixedCos	
Baltics	Biomass w / CCS	1	140.00	0	42.7947925	6435	
Benelux	Biomass w / CCS	1	6 596.00	0	42.7947925	6435	
Britain	Biomass w / CCS	1	7 107.00	0	42.7947925	6435	
Denmark	Biomass w / CCS	1	3 018.00	0	42.7947925	6435	
EasternEu	Biomass w / CCS	1	23 701.00	0	42.7947925	6435	
Finland	Biomass w / CCS	1	10.00	0	42.7947925	6	
Germany	Biomass w / CCS	1	23 431.00	0	42.7947925	6	
Iberia	Biomass w / CCS	1	8 439.00	0	42.7947925	6	
Norway	Biomass w / CCS	1	278.00	0	42.7947925	6	
Balkans	Biomass w/o CCS	1	346.162174	0	38.304	4.	
Baltics	Biomass w/o CCS	1	390.834754	0	38.304	4:	
Benelux	Biomass w/o CCS	1	674.853699	0	38.304	4	
Britain	Biomass w/o CCS	1	1876.66987	0	38.304	4	

								MW	MW	€/MW
Name	Type	Direction	StartLine	EndLine	MaxPowerFlow	MinPowerFlow	Impedance	MaxAddedCapacity	MaxRetCapacity	InvestmentCos
Denmark>Germany	AC	Bidirection	Denmark	Germany	3100	-3100	0	10000	0	2142500
Denmark>Norway	AC	Bidirection	Denmark	Norway	1700	-1700	0	10000	0	2142500
Denmark>Sweden	AC	Bidirection	Denmark	Sweden	2440	-2440	0	10000	0	2142500
Finland>Sweden	AC	Bidirection	Finland	Sweden	1950	-2250	0	10000	0	2142500
France>Germany	AC	Bidirection	France	Germany	9547.99513	-8260	0	10000	0	214250
France>Italy	AC	Bidirection	France	Italy	866	-1160	0	10000	0	2142500
France>Switzerland	AC	Bidirection	France	Switzerlan	3200	-1100	0	10000	0	2142500
Germany>Norway	AC	Bidirection	Germany	Norway	1444	-1444	0	10000	0	2142500
Germany>Sweden	AC	Bidirection	Germany	Sweden	353.958333	-610	0	10000	0	214250
								.0000	0	2142500
								.0000	0	214250

€/MW

st MaxAddedCapacity MaxRetCapacity InvestmentCost

		WW	WW	MS4:	9050		witch							
Cat. Unput gibbs	Marabert sits	Marren	Mister	Manifelia (10)	Mercula	whose	settalivolume	Furbinett Fallerso	Promptopt Molecus	merie	Primaryh No	plike.	Manager Tradi	silvarialis
- 0	- 1	ENGINE.	-	28-07	- 2	1.98-07	20081081.081	- 1		43	81	- 11		EST_ANTHER THE TALESTO HAVE THE THE THE THE TALESTON TO THE TA
- 0	1	10000	- 4	79871467	- 6	16-67	SAMMERS	- 1	- 6	4.5	9.1	- 0.6		ESF_inflow repursional filter from recovery CH_18090518_18090518_vLpn
.0	- 1	23400		0.0547		440-01	48/17/176	. 1		63	91	0.0		804_before Hours Confirmed Frame (Cleanly NO_18000001_18000001_clean
- A	- 1	10413.5		3864771		2.94-01	2194718-0	- 1	- 6	4.5	61	81		(04 of the 40x1) Coff cost Franciscop F4 (400018 of 61018 +1.0)
		4094		9404460		LIPMIT	21/14048		- 6	2.5	8.0	8.1		#07_billiou fourtainaffs set (insentitionals F_1#000118_1801018_a) rec
- 6		9576.0	- 6	SHANKE		1.86-01	230487.732	1	- 0	4.5	6.1	43		804 _ inflow-rough-cleffs pert impaint Contre-1*_LB000008_18000004_v0.rbs
- 0	. 1	108017	- 6	1200000		1/19/07	#R0180 1728	1	- 1	4.3	E1	83		EST, white the Confession framed lines dependings, 1800016, 1800116.
0	- 1	3458b	- 6	5.79×61	- 0	4.(\$10)	29989713	1	- 0	4.3	6.1	61		ESF INFORMATION OF PROPERTY OF THE LIBERT OF THE PARTY OF
0.	- 1	20004.5	1.0	409MGT	- 2	8.00142	22/95/1985/214		100	41	84	0.1		ESF_refree You's Coefficient Present Complete Service, 18062531, 1806253, click

Output Format: csv files

<u>Data format and linkages – africaenergymodels.net</u>

4	А	BZ	CA	CK	CL	
1	Timestep	Hydro Run of River_Italy_0	Hydro Run of River_Norway_0	Solar PV_France_0	Solar PV_Germany_0	So
2	0	8924.261003	9384.602202	0	0	
3	1	8924.261003	9384.602202	0	0	
4	2	8924.261003	9384.602202	0	0	
5	3	8924.261003	9384.602202	0	0	
6	4	8924.261003	9384.602202	0	1264.439101	
7	5	8924.261003	9384.602202	436.4834276	7767.268764	2
8	6	8924.261003	9384.602202	5565.163702	18785.95236	
9	7	8924.261003	9384.602202	16259.00768	28178.92854	2
10	8	0	9384.602202	32081.53193	43352.19775	4
11	9	8924.261003	9384.602202	47685.81447	50758.1982	4
12	10	0	9384.602202	59252.6253	50938.83236	5
13	11	0	9384.602202	66127.23928	54190.24719	
14	12	0	9384.602202	69946.46927	65028.29663	7
15	13	8924.261003	9384.602202	68964.38156	61776.8818	5
16	14	8924.261003	9384.602202	60671.19644	53828.97888	
17	15	8924.261003	9384.602202	44193.94704	55635.32045	5
18	16	8924.261003	9384.602202	28917.02708	43171.56359	
19	17	8924.261003	9384.602202	16259.00768	32333.51416	4
20	18	8924.261003	9384.602202	8293.185124	17340.8791	2
11	10	0034 364003	0204 (02202	2046 262126	C141 FC1340	0

Design of the tool

plan4res design

Database
(IAMC
format), eg
Scenario
Explorer, or
csv files in
IAMC
format

Additionnal data (timeseries profiles, operational constraints

Linkage scripts

Plan4res
Input
Dataset
(plan4res
format=
xlsx+csv)

plan4res
Formatting
Tool

SMS++
input
Datasets
(netcdf4)

plan4res Solvers SMS++
output
Datasets
(csv)

Linkage scripts SMS++ output IAMC format

plan4res design

- Plan4res is composed of:
 - Linkage scripts: from and to IAMC format (python)
 - Formatting tool:
 - Creates NetCDF4 SMS++ inputs
 - C++ version available in the container
 - Currently being rewritten in python
 - Plan4res Solvers
 - Written in C++ based on SMS++

Main modules:

- ucblock_solver
 - sddpsolver
- investmentsolver

Plan4res solving modules

- 3 modules
 - ucblock_solver: solves a deterministic unit commitment problem (usually on 1 week)
 - sddp_solver:
 - Compute bellman values
 - Solves a serie of unit commitments on a sequence of periods, with bellman values as input
 - Investment_solves
 - Compute optimal investments
 - Simulates (= solves series of unit commitment problems on all periods, for all scenarios)

Plan4res solving modules

- The 3 modules are implemeted with the SMS++ framework (developped by University of Pisa)
- They are available within a container (developped by HPE)
- Can run on any platform (Unix, Windows, Mac)
- Includes parallelisation
- Installation process:
 - Download container: git clone -recursive https://gitlab.com/cerl/plan4res/p4r-env.git
 - Install container: bin/p4r
 - Install solvers:
 - CPLEX or equivalent
 - StOpt: : bin/p4r add-on stopt
 - Install SMS++: bin/p4r add-on sms++

Modelling with SMS++

- SMS++ is a set of C++ classes implementing a modelling system that:
- allows exploiting specialised solvers
- manages all types of dynamic changes in the model
- Explicitely handles reformulation/restriction/relaxation
- does parallel from the start
- should be able to deal with almost anything (bilevel, PDE,..)
- Includes specialized blocks for energy system modelling

Modelling with SMS++

Nested decompositions at different time horizons

• Schedule a set of generating units to satisfy the demand at each node of the transmission network at each time instant of the horizon (24h)

- Several types of almost independent blocks + linking constraints
- Perfect structure for Lagrangian relaxation^{1,2}

• Manage water levels in reservoirs considering uncertainties (inflows, temperatures, demands, ...) to minimize costs over the time horizon

- Very large size, nested structure
- Perfect structure for Stochastic Dual Dynamic Programming^{3,4} with multiple EUC inside

Borghetti, F., Lacalandra, Nucci "Lagrangian Heuristics Based on Disaggregated Bundle Methods [...]", IEEE TPWRS, 2003

Scuzziato, Finardi, F. "Comparing Spatial and Scenario Decomposition for Stochastic [...]" IEEE Trans. Sust. En., 2018

Pereira, Pinto "Multi-stage stochastic optimization applied to energy planning" Math. Prog., 1991

⁴ van-Ackooij, Warin "On conditional cuts for Stochastic Dual Dynamic Programming" arXiv:1704.06205, 2017

The Seasonal Storage Valuation and Unit Commitment in SMS++

- Plan4res documentation: <u>OM4A-Training-Material/plan4res-Training-Material</u>
- Plan4res gitub (containing all that is necessary for installing and running planRres):
 plan4res
- SMS++: https://gitlab.com/smspp/smspp-project
- Plan4res on zenodo: https://zenodo.org/communities/plan4res

https://zenodo.org/communities/openentrance

