Mitschrieb: Algebraic Groups SS 20

Akin

July 31, 2020

Vorwort

Contents

1	Introduction	2
2	Algebraic Groups and Hopf Algebras	4
3	Jordan Decomposition	11
4	Non-Commutative Algebra	24
5	Tori	32
6	Projective Space	54

1 Introduction

Let k be an algebraically closed field.

Definition 1. For $I \subseteq k[X] := k[X_1, \dots, X_n]$, we define its **vanishing set** by

$$V(I) := \{ p \in k^n \mid \forall f \in I : f(p) = 0 \}.$$

A set $S \subset k^n$ is called **algebraic**, if

$$S = V(I)$$

for some $I \subseteq k[X]$.

Example 1. The group $\mathsf{GL}_n(k)$ is not an algebraic subset of $k^{n\times n}$. But, we can identify it with an algebraic subset of $(k^{n\times n})^2$ by

$$\mathsf{GL}_n(k) \cong \left\{ (x,y) \in k^{n \times n} \mid xy = 1_n \right\} = V(X \cdot Y - 1_n).$$

Definition 2. Let $\iota : \mathsf{GL}_n(k) \hookrightarrow k^{n \times n^2}$ be the injection

$$A \mapsto (A, A^{-1}).$$

A linear algebraic group over k is a subgroup $U \subseteq \mathsf{GL}_n(k)$ s.t. $\iota(k)$ is an algebraic subset of k^{2n^2} .

I.e., a linear algebraic group is a matrix-group which can be defined by polynomials over the entries of a matrix and its inverse.

Example 2. The following groups are linear algebraic groups:

- 1. The multiplicative group $\mathcal{G}_m(k) := k^{\times} = k \setminus \{0\} = \mathsf{GL}_1(k)$.
- 2. The general linear group $\mathsf{GL}_n(k)$.
- 3. The special linear group

$$\mathsf{SL}_n(k) := \{ A \in \mathsf{GL}_n(k) \mid \det(A) = 1 \}.$$

4. The orthogonal group

$$\mathsf{O}_n(k) := \left\{ A \in \mathsf{GL}_n(k) \mid A^T \cdot A = 1 \right\}.$$

5. The special orthogonal group

$$SO_n(k) := O_n(k) \cap SL_n(k).$$

6. The upper triangle-matrix group

$$\left\{ \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ & \ddots & \vdots \\ & & a_{n,n} \end{pmatrix} \mid a_{i,j} \in k \right\} \cap \mathsf{GL}_n(k).$$

7. The normed upper triangle-matrix group

$$\left\{ \begin{pmatrix} 1 & \cdots & a_{1,n} \\ & \ddots & \vdots \\ & & 1 \end{pmatrix} \mid a_{i,j} \in k \right\} \cap \mathsf{GL}_n(k).$$

8. The group of *n*-th roots of unity

$$\mu_n(k) := \{ x \in k \mid x^n = 1 \}.$$

9. The additive group (k, +) is not a subgroup of $\mathsf{GL}_n(k)$, but it can be identified with the linear algebraic group

$$\left\{ \begin{pmatrix} 1 & a \\ & 1 \end{pmatrix} \mid a \in k \right\} \subset \mathsf{GL}_2(k)$$

10. For $k = \mathbb{C}$, the unit sphere and the unitary groups are NOT linear algebraic groups.

2 Algebraic Groups and Hopf Algebras

Definition 3. A morphism $f: X \to Y$ of algebraic sets $X \subset k^m, Y \subset k^n$ is a map which is coordinatewise described by polnomials.

Definition 4. An algebraic group is an algebraic set $G \subset k^n$ together with a fixed element $e \in G$ and morphisms $m: G \times G \to G, i: G \to G$ s.t. (G, m, i, e) is a group.

A morphism of algebraic groups is a morphism of algebraic sets that is also a group homomorphism.

Definition 5. Let $V \subset k^n$ be any subset. Then, we define the vanishing ideal of V by

$$I(V) := \{ f \in k[x] \mid f(V) = 0 \}.$$

Definition 6. For a commutative ring R we define the **radical** of an ideal $I \subseteq R$ by

$$\sqrt{I} := \{ r \in R \mid r^m \in I \text{ for some } m \in \mathbb{N}_0 \}.$$

R is called **reduced**, if $\sqrt{0} = 0$.

Lemma 1 (Zariskis Lemma). Let $L \supseteq k$ be fields. If L is finitely generated as a k-algebra, then the extension $L \supseteq k$ is finite, i.e., L is a finitely-generated k-vector space.

Theorem 1 (Hilberts Nullstellensatz). For any ideal $I \subseteq k[x]$, we have

$$I(V(I)) = \sqrt{I}.$$

Proof. It is easy to see that

$$I \subset \sqrt{I} \subset I(V(I)).$$

Now, let $f \in I(V(I))$ and assume – for the sake of contradiction – that $f \notin \sqrt{I}$. Since \sqrt{I} is the intersection of its upper prime ideals, there is a prime ideal $p \supset I$, s.t. $f \notin p$. Now, define the zero divisor-free ring

$$R := (k[x]/p)[f^{-1}].$$

And let $\phi: k[x] \to R$ be the corresponding ring homomorphism.

Let $m \subseteq R$ be a maximal ideal in R. Then, R/m is a field, which contains k and is finitely generated as k-algebra. According to Zariski's lemma, R/m is a finite (ergo algebraic) extension of k. Since k is algebraically closed, we have R/m = k. Let $\pi_m : R \to k$ be the corresponding ring homomorphism.

Now, for x_1, \ldots, x_n , set

$$t_i := \pi_m(\phi(x_i)).$$

Then, $t = (t_1, \ldots, t_n) \in k^n$. We now have

1. $t \in V(I)$: For each $g \in I$, we have $\phi(g) = 0$. On the other hand

$$g(t) = g(\pi_m \circ \phi(x)) = \pi_m \circ \phi(g) = 0.$$

2. $f(t) \neq 0$: $\phi(f)$ is invertible in R, therefore $\phi(f) \neq 0$ and $\phi(f) \notin m$. Ergo

$$f(t) = \pi_m \circ \phi(f) \neq 0.$$

Ergo, there is a point $t \in V(I)$ s.t. $f(t) \neq 0$. This yields a contradiction, since we assumed $f \in I(V(I))$.

Definition 7. For an algebraic set $X \subset k^n$, we define its **coordinate ring** by

$$k[X] := k[x_1, \dots, x_n]/I(X).$$

Lemma 2. For a morphism $f: X \to Y$ of algebraic sets define the following homomorphism of k-algebras.

$$f^*: k[Y] \longrightarrow k[X]$$

 $p \longmapsto p \circ f.$

We have a contravariant functor $_*$ from the categories of algebraic sets over k to the category of k-algebras:

$$\begin{array}{c} X \longmapsto k[X] \\ \operatorname{Hom}\left(X,Y\right) \longmapsto \operatorname{Hom}_k\left(k[Y],k[X]\right) \\ f \longmapsto f^*. \end{array}$$

Lemma 3. We have

$$k[X \times Y] \cong k[X] \otimes k[Y].$$

Proof.

$$k[X] \otimes k[Y] = k[x]/I(X) \otimes_k k[y]/I(Y) = k[x,y]/I(X) \otimes k[y] + k[x] \otimes I(Y).$$

But

$$V(I(X) \otimes k[y] + k[x] \otimes I(Y)) = V(I(X) \otimes k[y]) \cap V(k[x] \otimes I(Y)) = X \times Y.$$

Theorem 2. Every finitely generated reduced k-algebra A is isomorphic to some k[X] for some algebraic X.

Proof. Choose some $\pi: k[x_1, \ldots, x_n] \twoheadrightarrow A$ and set $X := V(\ker \pi)$. Then $\ker \pi = I(X)$, since π 's kernel is radical since A is reduced.

Corollary 1. The contravariant functor $_^* : \mathcal{C}_{algSets} \to \mathcal{C}_{k-alg.s}$ gives an antiequivalence of categories.

Lemma 4. An algebraic set X is isomorphic to some algebraic subset of Y iff there is an epimorphism $k[Y] \rightarrow k[X]$.

Lemma 5. Let $G \subset k^n$ be an algebraic group. Then, we have maps

$$m: G \times G \longrightarrow G$$
$$i: G \longrightarrow G$$
$$e: * \longrightarrow G.$$

They induce dual maps in the category of k-algebras:

$$\Delta := m^* : k[G] \longrightarrow k[G] \otimes_k k[G]$$
$$\iota := i^* : k[G] \longrightarrow k[G]$$
$$\varepsilon := e^* : k[G] \longrightarrow k$$

Definition 8. A **Hopf-algebra** over k is a (reduced?!) k-algebra together with maps $\Delta, \varepsilon, \iota$ as above s.t. the following holds:

$$(\Delta \otimes \operatorname{Id})\Delta = (\operatorname{Id} \otimes \Delta)\Delta$$
$$(\iota \otimes \operatorname{Id})\Delta = (\operatorname{Id} \otimes \iota)\Delta = \varepsilon$$
$$(\varepsilon \otimes \operatorname{Id})\Delta = (\operatorname{Id} \otimes \varepsilon)\Delta = \operatorname{Id}$$

A morphism of Hopf-algebras is a homomorphism of k-algebra $F: A \to B$ s.t.

$$\Delta \circ F = (F \otimes F) \circ \Delta.$$

Theorem 3. The contravariant functor $_*$ gives an anti-equivalence of the categories of algebraic groups and the categories of finitely generated Hopf-algebras over k.

Example 3. 1. Let $G = \mathcal{G}_a = (k, +)$. Then, k[G] = k[x], since I(x) = 0. Then, we have

$$\Delta(x) = x \otimes 1 + 1 \otimes x$$
$$\iota(x) = -x$$
$$\varepsilon(x) = 0.$$

2. Let $G=\mathcal{G}_m=\{(a,a^{-1})\mid a\neq 0\}\cong k^{\times}$. Then, $k[G]=k[x,y]/(xy-1)=k[x,x^{-1}]$. Then, we have

$$\Delta(x) = x \otimes x$$
$$\iota(x) = x^{-1}$$
$$\varepsilon(x) = 1.$$

3. Let $G = \mathsf{GL}_n(k)$. Then, $k[G] = k[x,y]/(xy-1_n) = k[x_{i,j},\frac{1}{\det}]$. Then, we have

$$\Delta(x_{i,j}) = \sum_{k} x_{i,k} \otimes x_{k,j}$$
$$\iota(x_{i,j}) = (x^{-1})_{i,j}$$
$$\varepsilon(x_{i,j}) = \delta_{i,j}.$$

Lecture from 03.03.2020

Recall: Last time we introduced the **Zariski-Topology** on X.

There, algebraic sets equal closed sets.

We called a set X irreducible iff each open subset lies dense in X.

Lemma 6. For an algebraic set X, the following are equivalent:

- (1) X is irreducible.
- (2) $k[X] = k[x_1, ..., x_n]/I(X)$ is a domain.
- (3) I(X) is a prime ideal.

The proof of $(2) \iff (3)$ is a basic algebraic result.

Lemma 7. An open base for the Zariski-Topology on an algebraic set X is given by sets:

$$D(f) := \{ p \in X \mid f(p) \neq 0 \}$$

for each $f \in k[X]$. We call the D(f) basic open sets.

Proof. Suppose $U \subseteq X$ is nonempty and open. Set

$$Z:=X\setminus U$$

then Z is closed. Thus

$$Z = \{x \in X \mid f(x) = 0 \forall f \in I\}$$

for some ideal $I \subseteq k[X]$. Let $p \in U$, then there is an $f \in Z$ s.t.

$$f(p) \neq 0$$
.

Also, $D(f) \cap Z = 0$, thus $p \in D(f) \subseteq U$.

Lemma 1. It is clear that (2) is equivalent to (3).

(1) is equivalent to

$$\forall$$
 nonempty, open $U_1,U_2\subset X:U_1\cap U_2\neq\emptyset$

$$\stackrel{\text{Lemma }^2}{\Longrightarrow} ^2 \forall$$
 nonempty, basic open $D(f_1), D(f_2) \subset X : D(f_1) \cap D(f_2) \neq \emptyset$

Since $D(f_1) \cap D(f_2) = D(f_1f_2)$, this is equivalent to the statement

$$f_1, f_2 \in k[X] : f_1, f_2 \neq 0 \implies f_1 f_2 \neq 0.$$

Which states that k[X] is a domain.

Lemma 8. Let X be an algebraic set. We have bijections

$$\{closed\ subsets\ Z\subseteq X\}\leftrightarrow \{\ radical\ ideals\ I\subset k[X]\}$$

and

 $\{irreducible, closed subsets Z \subseteq X\} \leftrightarrow \{prime ideals I \subset k[X]\}$

and

$$\{points\ of\ X\} \leftrightarrow \{maximum\ ideals\ I \subset k[X]\}.$$

Lemma 9 (Primary Decompositions, Atiyah, Macdonald Ch. 4). For an ideal I we call $P \supseteq I$ a **minimal prime** of I if P is a prime ideal and we have for each prime ideal Q:

$$P\supseteq Q\supseteq I\implies P=Q.$$

Any radical ideal I of $k[x_1, \ldots, x_n]$ has only finitely many **minimal** primes P_1, \ldots, P_r . In particular,

$$I = \bigcap_{i=1}^{n} P_i$$

and for each i

$$P_j \not\supseteq \bigcap_{j:j \neq i} P_j.$$

Definition 9. An (irreducible) component Z of X is a maximal irreducible closed subset, i.e., an irreducible closed $Z \subseteq X$ s.t. there does not exist an irreducible closed $Y \subset X$ s.t. $Y \supsetneq Z$.

Then, we have the bijection

{irreducible components of X} \leftrightarrow { minimal primes of I(X)}.

Lemma 10. Any algebraic set X has finitely many components Z_1, \ldots, Z_r . We have

$$X = Z_1 \cup \ldots \cup Z_r$$

and for each i

$$Z_i \not\subset \bigcup_{j:j\neq i} Z_j.$$

Example 4. 1. Let $X = V(x \cdot y) \subset k^2$. Then $X = Z_1 \cup Z_2$ where $Z_1 = V(x), Z_2 = V(y)$.

X is connected, but not irreducible (D(x) does not lie dense in X).

2. Let X be a **finite** algebraic set. It is easy to check that every subset of X is closed:

$$\{p\} = V(x_1 - p_1, \dots, x_n - p_n)$$

for each $p \in X$. Further

$$X = \{p_1\} \cup \ldots \cup \{p_r\}.$$

Moreover: Any function $f: X \to k$ is regular (i.e. given by polynomials).

Lemma 11. We call an element $e \in k[X]$ idempotent iff $e^2 = e$.

Let X be an algebraic set. Then

 $X \ connected \iff the \ only \ idempotents \ e \in k[X] \ are \ 0 \ and \ 1$ $\iff k[X] \not\cong A \times B \ for \ any \ k-algebras \ A, B.$

Lemma 12. Morphisms of algebraic sets are continuous.

Proof. Let $\phi: X \to Y$ be a morphism. It suffices to show that for all closed $Z \subset Y$ that $\phi^{-1}(Z) \subset X$ is closed.

But, if

$$Z = V_Y(S) := \{ q \in Y \mid f(q) = 0 \forall f \in S \}$$

for some ideal $S \subset k[Y]$, then

$$\phi^{-1}(Z) = V_X(\phi^*(S)) = \{\phi^*(f) = f \circ \phi \mid f \in S\}.$$

Lemma 13. Isomorphisms of algebraic sets are homeorphisms. In particular, any isomorphism of algebraic sets $\phi: X \to X$ permutes the components Z_1, \ldots, Z_r of X:

$$\forall i \exists j : \phi(Z_i) = Z_j.$$

Theorem 4. Let G be an algebraic group.

- (i) There is a unique component G^0 of G with $e \in G^0$.
- (ii) Every component Z of G is a coset gG^0 of G for some $g \in Z$.
- (iii) G^0 is a normal algebraic subgroup of G.
- (iv) G^0 is of finite index, i.e.

$$[G:G^0] = \# \left(G/G^0 \right) < \infty.$$

(v) The irreducible components are also the connected components.

Proof. Let $G = Z_1 \cup ... \cup Z_r$ be the decomposition into components. We may assume that $e \in Z_1$.

Recall that $Z_1 \not\subset \bigcup_{j\geq 2} Z_j$. Then, there is an $x\in Z_1\setminus \bigcup_{j\geq 2} Z_j$. Thus, for all algebraic set isomorphisms $\phi:G\to G$, we have by some previous lemma that $\phi(x)$ is likewise contained in some unique component of G. For example, we may take ϕ to be

$$\phi_g: G \to G$$
$$y \longmapsto gy$$

for any $g \in G$. Then, for all $g \in G$, the element $gx = \phi_g(x)$ is contained in only one component of G. Ergo, each $g \in G$ is contained in exactly one component.

- (i) Take g = e.
- (iii) G^0 is an algebraic subset, by construction. Denote by $m: G \times G \to G$ and $i: G \to G$ the continuous multiplication and inversion map on G. Why is G^0 a subgroup? We need to show

$$m(G^0 \times G^0) \subseteq G^0.$$

 $i(G^0) \subseteq G^0.$

We know that $i(G^0)$ is some component of G, since i is an isomorphism. But it contains the identity e, since $e^{-1} = e$. Therefore, $i(G^0) = G^0$.

If $g \in G$, then gG^0 is some component of G. Suppose $g \in G^0$. Then $gG^0 \cap G^0 \supseteq \{g\}$, therefore $gG^0 = G^0$. Ergo, G^0 is closed under multiplication.

Why is G^0 a normal? If $g \in G$, then gG^0g^{-1} is a component that contains e, therefore $G^0 = gG^0g^{-1}$.

(Alternative proof that $m(G^0 \times G^0) = G^0$: Consider

- any continuous image of an irreducible set is irreducible.
- $\bullet\,$ the closure of any irreducible set is irreducible.

Ergo $\overline{m(G^0 \times G^0)}$ is a closed irreducible set containing e. Ergo, $\overline{m(G^0 \times G^0)} = G^0$.

(ii) Let $Z \subset G$ be a component. Let $g \in Z$. Then $g \in (gG^0 \cap Z)$, so $gG^0 = Z$.

- (iv) This follows from some previous lemma.
- (v) This is left as a topological exercise. It is true whenever the irreducible components do not intersect.

It now follows:

$$\{\text{finite algebraic groups}\} \longleftrightarrow \{finite groups\}$$

where the above arrow is an equivalence of categories.

Example 5. • Let $G = \{g_1, \ldots, g_r\}$ be a finite algebraic group. Then,

$$G^0 = \{e\}.$$

• Without proofs:

$$G \in \{\mathsf{GL}_n(k), \mathsf{SO}_n(k), \mathsf{SL}_n(k)\} \implies G^0 = G.$$

Further,

$$G = O_n(k) \implies G^0 = \mathsf{SO}_n(k)$$

(but only if -1 = 1 i.e. chark = 2. Otherwise $[G: G^0] = 2$.)

3 Jordan Decomposition

As usual, $k = \overline{k}$ is an algebraically closed field.

Definition 10. Let V be a finite-dimensional vector space.

An element $x \in \text{End}(V)$ is **semisimple**, if it is diagonalizable, i.e. it has a basis of eigenvectors, or equivalently, if the minimal polynomial of x is square-free.

Then, there is a decomposition $V = \bigoplus_{i=1}^r V_i$ and distinct elements $\lambda_1, \ldots, \lambda_n \in k$ s.t.

$$x|_{V_i} = \lambda_i.$$

If $\dim(V_i) = n_i$, then

char polynomial of
$$x = \prod_{i=1}^r (T_i - \lambda_i)_i^n \in k[T]$$

and

minimal polynomial of
$$x = \prod_{i=1}^{r} (T_i - \lambda_i) \in k[T].$$

(Where the minimal polynomial of x is defined as the least degree monic m s.t. m(x) = 0 and Cayley-Hamilton m|c.)

Definition 11. $x \in End(V)$ is **nilpotent** if $x^n = 0$ for some n. (Equivalent to: characteristic polynomial of x is $T^{\dim(V)}$.)

x is **unipotent**, if x - 1 is nilpotent.

Lemma 14. If x is semisimple and nilpotent, then x = 0.

If x is semisimple and unipotent, then x = 1.

Lemma 15. If x, y are commuting elements, that are semisimple resp. unipotent or nilpotent, then so is xy.

Theorem 5 (Goal). For all algebraic groups G and for all $g \in G$, there exist unique group elements $g_s, g_u \in G$ s.t.

$$g = g_s g_u = g_u g_s$$

and for all finite-dimensional representations $\rho: G \to GL(V)$, $\rho(g_s)$ is semisimple and $\rho(g_u)$ is unipotent.

Example 6. If
$$g = \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix} \in G = \mathsf{GL}_3(k)$$
, then $g_s = \begin{pmatrix} \lambda & 0 & 0 \\ & \lambda & 0 \\ & & \lambda \end{pmatrix}$, $g_u = \begin{pmatrix} 1 & \lambda^{-1} & 0 \\ & 1 & \lambda^{-1} \\ & & 1 \end{pmatrix}$.

Lecture from 09.03.2020

Theorem 6 (Goal Theorem). Let G an algebraic group. For all $g \in G$ there is exactly one pair $g_s, g_u \in G$ s.t.

$$g = g_s g_u = g_u g_s$$

and for all finite-dimensional representations $r: G \to GL_n(V)$, the element $r(g_s)$ resp. $r(g_u)$ is semisimple resp. unipotent.

Last time, we saw:

ullet If g,h are commuting and semisimple resp. commuting and unipotent then so is gh.

• If g is semisimple and unipotent, then g = 1.

Proposition 1. Let V be a finite-dimensional vector space and $g \in GL(V)$. There exist unique elements $g_s, g_u \in GL(V)$ s.t.

$$g = g_s g_u = g_u g_s$$

and g_s is semisimple and g_u is unipotent. Moreover, $g_s, g_u \in k[g] = \{\sum_{i=1}^m a_i g^i \mid a_i \in k\} \subseteq \mathit{End}(V)$.

Proof. Existence (Sketch): Say

$$g = \begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}$$

then take

$$g_s = \begin{pmatrix} \lambda & \\ & \lambda & \\ & & \lambda \end{pmatrix}, \quad g_u = \begin{pmatrix} 1 & \lambda^{-1} & 0 \\ & 1 & \lambda^{-1} \\ & & 1 \end{pmatrix}.$$

For $\lambda \in k$, define the **generalized** λ -eigenspace of g by

$$V_{\lambda} := \{ v \in V \mid \exists n \in \mathbb{N}_0 : (g - \lambda)^n v = 0 \}.$$

Then

$$V = \bigoplus_{\lambda \in k} V_{\lambda}.$$

Here $V_{\lambda} = \text{sum of domains of all Jordan blocks with } \lambda \text{s on the diagonal.}$ (It follows from the Jordan Decomposition for matrices that such a decomposition exist.)

Let's define $g_s \in \mathsf{GL}(V)$ by

$$g_s|_{V_\lambda} = \lambda \cdot \mathrm{Id}$$
.

Note that $gV_{\lambda} \subset V_{\lambda}$, hence g commutes with g_s , hence g, g_s commutes with $g_u :=$

 gg_s^{-1} . Then, $g = g_s g_u = g_u g_s$. Write $\det(T - g) = \prod_{\lambda} (T - \lambda)^{n(\lambda)}$, $n(\lambda) = \dim(V_{\lambda})$. Since the polynomials $T - \lambda$ for $\lambda \in k$ are coprime, the chinese remainder theorem implies that there is a $Q \in k[T]$ s.t.

$$Q \equiv \lambda \mod (T - \lambda)^{n(\lambda)}$$

for each $\lambda \in k$.

We claim that

$$Q(g) = g_s$$
.

Indeed, since $gV_{\lambda} \subseteq V_{\lambda}$, we have

$$Q(g)V_{\lambda} \subseteq V_{\lambda}$$
.

So, it suffices to show for all $v \in V_{\lambda}$

$$Q(g)v = g_s v = \lambda v.$$

Note that, by Cayley-Hamilton,

$$V_{\lambda} = \left\{ v \in V \mid (g - \lambda)^{n(\lambda)} v = 0. \right\}$$

Write

$$Q = \lambda + R \cdot (T - \lambda)^{n(\lambda)}$$

for some $R \in k[T]$. Since $(g - \lambda)^{n(\lambda)}v = 0$, deduce that $Q(g)v = \lambda v$, as required. If $Q' \equiv T(T-\lambda)^{n(\lambda)}$, then

$$Q'(g) = g_u.$$

If $Q'' \equiv \lambda^{-1}(T-\lambda)^{n(\lambda)}$, then $Q''(g) = g_s^{-1}$. check corresponding stuff for g_u . Uniqueness: Suppose given some other decomposition

$$q = q_e' q_u' = q_u' q_e'$$

with g'_s semisimple and g'_u unipotent. Then g'_s commutes with g'_s and g'_u , hence with g, hence also with any element in k[g]. Ergo, g'_s commutes with g_s and g_u . Similarly, g'_u commutes with g_s and g_u .

Consider

$$h := g_s' g_s^{-1} = g_s' g_u' (g_u')^{-1} g_s^{-1} = g(g_u')^{-1} g_s^{-1} = g_u(g_u')^{-1}.$$

Then $h = g'_s g_s^{-1}$ is a product of semisimple elements and $h = g_u(g'_u)^{-1}$ is a product of unipotent elements. By proceeding lemmas, h is semisimple and unipotent, ergo trivial. It follows $g'_s = g_s$ and $g'_u = g_u$.

Corollary 2. Let $g \in GL(V)$, let $W \subset V$ be any g-invariant subspace, i.e. $gW \subseteq W$.

Then, W is g_s -invariant and g_u -invariant.

Proof. This is clear, since g_s and g_u are algebraically generated by g over g.

Lemma 17. Let $\phi: V \to W$ be a linear map between finite-dimensional vector spaces.

Let $\alpha \in GL(W)$ and $\beta \in GL(W)$ s.t.

$$V \xrightarrow{\alpha} V$$

$$\downarrow^{\phi} \qquad \downarrow^{\phi}$$

$$W \xrightarrow{\beta} W,$$

i.e. $\phi \circ \alpha = \beta \circ \phi$.
Then,

$$\phi \circ \alpha_s = \beta_s \circ \phi,$$
$$\phi \circ \alpha_u = \beta_u \circ \phi.$$

Proof. Write $V = \bigoplus_{\lambda \in k} V_{\lambda}$, $W = \bigoplus_{\lambda \in k} W_{\lambda}$ where V_{λ} are the generalized α -eigenspaces and W_{λ} are the generalized β -eigenspaces.

We claim that

$$\phi(V_{\lambda}) \subset W_{\lambda}$$
.

Indeed, let $v \in V_{\lambda}$, then

$$(\beta - \lambda)^n \phi(v) = \phi((\alpha - \lambda)^n v) = 0.$$

Since $(\alpha - \lambda)^n v = 0$, the claim follows.

Since, $\alpha_s|_{V_{\lambda}} = \lambda \mathrm{Id}$ and $\beta_s|_{W_{\lambda}} = \lambda \mathrm{Id}$, deduce that

$$\phi \circ \alpha_s = \beta_s \circ \phi.$$

Indeed, both sides are given on V_{λ} by $\lambda \cdot \phi$. Thus

$$\phi \circ \alpha_u = \phi \circ \alpha \alpha_s^{-1}$$

$$= \beta \beta_s^{-1} \circ \phi$$

$$= \beta_u \circ \phi.$$

Lemma 18. Let $\alpha \in GL(V)$, $\beta \in GL(W)$. Then the **tensor** $\alpha \otimes \beta \in GL(V \otimes W)$ is defined by

$$(\alpha \otimes \beta)(u \otimes v) = \alpha(u) \otimes \beta(v).$$

Then, we have

$$(\alpha \otimes \beta)_s \stackrel{(1)}{=} \alpha_s \otimes \beta_s$$
$$(\alpha \otimes \beta)_u \stackrel{(2)}{=} \alpha_u \otimes \beta_u.$$

Proof. It suffices to prove (1), since

$$(\alpha \otimes \beta)_u = (\alpha \otimes \beta) \circ (\alpha \otimes \beta)_s^{-1}$$

$$\stackrel{(1)}{=} (\alpha \otimes \beta) \circ (\alpha_s \otimes \beta_s)^{-1}$$

$$= \alpha \alpha_s^{-1} \otimes \beta \beta_s^{-1}$$

$$= \alpha_u^{-1} \otimes \beta_u^{-1}$$

For (1), consider

$$V = \bigoplus_{\lambda \in k} V_{\lambda},$$
$$W = \bigoplus_{\lambda \in k} W_{\lambda}.$$

It follows

$$V \otimes W = \bigoplus_{\lambda, \mu \in k} V_{\lambda} \otimes W_{\mu}.$$

Now,

$$\alpha_s \otimes \beta_s|_{V_\lambda \otimes W_\mu} = \lambda \mu \cdot \mathrm{Id}.$$

Ergo, $\alpha_s \otimes \beta_s$ is semisimple. By Proposition, we reduce to checking that $\alpha_u \otimes \beta_u$ is unipotent. Indeed,

$$\alpha_u \otimes \beta_u - 1 = (\alpha_u - 1) \otimes (\beta_u - 1) + 1 \otimes (\beta_u - 1) + (\alpha_u - 1) \otimes 1$$

is nilpotent (You can also check that $\alpha_u \otimes \beta_u = (\alpha_u \otimes 1) \circ (1 \otimes \beta_u)$ is unipotent.) \square **Example 7.** Let $1 \in \mathsf{GL}(V)$. Then $1_s = 1$ and $1_u = 1$.

Summary: Let G be an algebraic group. Let $r_V: G \to \mathsf{GL}(V)$ be a finite-dimensional representation. Also, fix $g \in G$.

Let $\lambda_V := r_V(g)_s$ (or $r_V(g)_u$).

We get a family of operators $\lambda_V \in \mathsf{End}(V)$ with the following properties:

- (i) if V = k and $r_V(g') = 1$ for all $g' \in G$, then $\lambda_V = 1$.
- (ii) for any two representations in V and W, we have

$$\lambda_{V\otimes W}=\lambda_V\otimes\lambda_W.$$

(iii) for all G-equivariant $\phi: V \to W$ we have

$$\phi \circ \lambda_V = \lambda_W \circ \phi$$
.

Theorem 7. Let G be an algebraic group. Let $\lambda_V \in End(V)$ (i.e. $V = (r_V, V)$ is a finite-dim. representation of G) be a family of operations satisfying (i), (ii), (iii). Then, there is exactly one $g \in G$ s.t. $\lambda_V = r_V(g)$ for all V.

Note, that this theorem implies our goal theorem.

Applying the theorem to $\lambda_V = r_V(g_s)$ implies

$$\exists g_s \in G : r_V(g_s) = r_V(g)_s$$

and

$$\exists g_u \in G : r_V(g_u) = r_V(g)_u.$$

Proof of Goal Theorem. There exist unique $g_s, g_u \in G$ s.t.

$$g \stackrel{(*)}{=} g_u g_s = g_s g_u,$$

Then, $r_V(g) = r_V(g_s)r_V(g_u) = r_V(g_u)r_V(g_s)$.

Since $r_V(g_u)$ is unipotent and $r_V(g_s)$ is semisimple, it follows $r_V(g_u) = r_V(g)_u$ and $r_V(g_s) = r_V(g)_s$.

To deduce (*), take any $r_V: G \hookrightarrow \mathsf{GL}(V)$. We know for each V

$$r_V(g) = r_V(g_s)r_V(g_u) = r_V(g_u)r_V(g_s).$$

Proof of Theorem. We first extend the assignment

$$V \mapsto \lambda_V$$

to all representations of G.

Say $V = \bigcup_j W_j$ where each W_j is a finite-dimensional G-invariant subspace. Try to define $\lambda_V \in \mathsf{End}(V)$ by

$$\lambda_V|_{W_j} := \lambda_{W_j}.$$

For this to be well-defined, we need to show for each i, j

$$\lambda_{W_i}|_{W_i \cap W_j} \stackrel{(*)}{=} \lambda_{W_j}|_{W_i \cap W_j}.$$

Proof of (*): Apply assumption (iii) to the G-equivariant linear maps

$$W_i \cap W_j \stackrel{\phi}{\hookrightarrow} W_i,$$

 $W_i \cap W_j \stackrel{\phi'}{\hookrightarrow} W_j.$

Then,

$$\lambda_{W_i}|_{W_i \cap W_j} = \lambda_{W_i} \circ \phi$$

$$\stackrel{(iii)}{=} \phi \circ \lambda_{W_i \cap W_j}$$

$$= \phi' \circ \lambda_{W_i \cap W_i}$$

and

$$\lambda_{W_j}|_{W_i\cap W_j}=\lambda_{W_i}\circ\phi'=\phi'\circ\lambda_{W_i\cap W_j}.$$

Recall here that any finite-dimensional G-invariant $W \subset V$ is a representation. \square

 $[\]overline{}^0$ Not necessarily finite-dimensional, but may be written as a filtered union of finite-dimensional G-invariant subspaces of W.

Let G be an algebraic group.

Lecture from 11.03.2020

Easy Exercise: If V_1, V_2 are representations r_1, r_2 of G, then $V_1 \otimes V_2$ is also a representation with

$$r = r_1 \otimes r_2 : G \to \mathsf{GL}(V_1 \otimes V_2)$$

given by

$$r(g)(v_1 \otimes v_2) = (r_1(g)v_1) \otimes (r_2(g)v_2).$$

Proof. Given $\Delta_j: V_j \to V_j \otimes k[G]$, define

$$\Delta: V_1 \otimes V_2 \longrightarrow V_1 \otimes V_2 \otimes k[G]$$

by: if

$$\Delta_1 u = \sum u_i \otimes f_i, \quad \Delta_2 v = \sum v_j \otimes h_j,$$

then

$$\Delta(u \otimes v) \sum \sum u_i \otimes v_j \otimes f_i h_j.$$

Set A := k[G], then

 $r_A := \text{right regular representation with } r_A(g)f(x) = f(xg).$

The map

$$A \otimes A \xrightarrow{m} A$$
$$f_1 \otimes f_2 \longmapsto f_1 f_2$$

defines a morphism of representations

$$(A, r_A) \otimes (A, r_A) \rightarrow (A, r_A).$$

Indeed,

$$m((r_A \otimes r_A)(g)(f_1 \otimes f_2))(x) = f_1(xg)f_2(xg),$$

= $f_1f_2(xg) = r_A(g)(m(f_1 \otimes f_2))(x),$

since
$$f_1(_g) \otimes f_2(_g) = (r_A \otimes r_A)(g)(f_1 \otimes f_2)$$
.
Ergo $m \circ (r_A \otimes r_A)(g) = r_A(g) \circ m$.

Recall: We stated the following theorem

Theorem 8. Let $\lambda_V \in End(V)$ be given s.t. for all finite-dim. rep.s V of G s.t.:

- (i) $\lambda_k = 1$
- (ii) $\lambda_{V\otimes W} = \lambda_V \otimes \lambda_W$
- (iii) for all morphisms of rep.s $\phi: V \to W$ we have

$$\phi \circ \lambda_V = \lambda_W \circ \phi.$$

Then, there is exactly one $g \in G$ s.t. $\lambda_V = r_V(g)$ for all V.

Proof. Last time, we saw that any such family $V \mapsto \lambda_V$ extends to **all** rep.s V of G. Let's note also that, if (V_0, r_0) is any representation of G with trivial action, i.e. r(g) = 1 for all g, then $\lambda_{V_0} = 1$. Indeed, let $v \in V_0$. We must check that $\lambda_{V_0} v = v$. Since the action is trivial, any subsapce of V_0 is G-invariant.

Consider the map

$$\phi: k \longrightarrow V_0$$
$$\alpha \longmapsto \alpha v$$

where $v = \phi(1)$. Then, ϕ is a morphism of rep.s because the action is trivial. Thus,

$$\lambda_V v = (\lambda_V \circ \phi)(1) \stackrel{(iii)}{=} (\phi \circ \lambda_k)(1) \stackrel{(i)}{=} \phi(1) = v.$$

Consider $\lambda_A \in \operatorname{End}(A)$. Then,

$$\lambda_{A\otimes A}=\lambda_A\otimes\lambda_A.$$

It is an easy exercise to see that $m:(A,r_A)\otimes(A,r_A)\to(A,r_A)$ is a morphism of rep.s.

By (iii) it follows, $m \circ (\lambda_A \otimes \lambda_A) = \lambda_A \circ m$, i.e.

$$\lambda_A(f_1 f_2) = \lambda_A(f_1) \lambda_A(f_2)$$

for all $f_1, f_2 \in A$. Thus, λ_A is an algebra morhism (check, using the morphism $k \hookrightarrow A$, that $\lambda_A(1) = 1$).

Thus, $\lambda_A = \phi^*$ for some unique morphism ϕ of algebraic sets $\phi: G \to G$. We claim that ϕ commutes left multiplication i.e.

$$\phi(hx) = h\phi(x)$$

for all $h, x \in G$. Indeed, let's consider the map

$$A \longrightarrow A$$
$$f \longmapsto f(h \cdot \underline{\hspace{0.1cm}}).$$

This induces a morphism

$$(A, r_A) \xrightarrow{\psi} (A, r_A).$$

By (ii), $\psi \circ \lambda_A = \lambda_A \circ \psi$.

Since $\lambda_A = \phi^*$, this implies the claim.

Now, set $g := \phi(e)$. Then for all $h \in G$,

$$\phi(h) = \phi(he) = hg.$$

Thus, $\lambda_A = \phi^* = r_A(g)$.

(It remains to show that

$$\lambda_V = r_V(g)$$

for each finite-dim. rep. V.)

Let V = (V, r) be any rep. This induces a map

$$\Delta: V \longrightarrow V \otimes A$$
.

If $\Delta v = \sum v_i \otimes f_i$, then

$$hv = \sum f_i(h_i) \otimes v_i.$$

Let

$$\varepsilon: V \otimes A \longrightarrow V$$
$$v \otimes f \longmapsto f(1)v.$$

It follows $\varepsilon \circ \Delta : V \to V$ is the identity map.

Let (V_0, r_0) be the representation of G with $V_0 := V$ and r_0 the trivial action.

Then, $\Delta: V \to V_0 \otimes A$ is a morphism of representations.

(Indeed, if $\Delta v = \sum v_i \otimes f_i$, then

$$\Delta(r(h)v) \stackrel{?}{=} (r_0(h) \otimes r_A(h)) \Delta v$$

since

$$\Delta v = \sum v_i \otimes f_i$$

$$\iff xv = \sum f_i(x_i)v_i \ \forall x \in G$$

$$\iff xhv = \sum f_i(xh)v_i \ \forall x, h \in G.$$

Since r(h)v = hv, it follows

$$\Delta(hv) = \sum v_i \otimes f_i(\cdot h) \implies (?).)$$

We want to show

$$\lambda_V = r_V(g).$$

We have

$$\Delta \circ \lambda_V \stackrel{(iii)}{=} \lambda_{V_0 \otimes A} \circ \Delta$$

$$\stackrel{(ii)}{=} \lambda_{V_0} \otimes \lambda_A$$

$$= 1 \otimes \lambda_A = 1 \otimes r_A(g).$$

This implies

$$\Delta \circ \lambda_V = (1 \otimes r_A(g)) \circ \Delta$$

but also

$$\Delta \circ r_V(g) = (1 \otimes r_A(g)) \circ \Delta.$$

Because of the injectivity of Δ it now follows

$$\lambda_V = r_V(g).$$

Corollary 3. Let $\phi: G \to H$ be any morphism of algebraic groups. Then, for all $g \in G$

$$\phi(g)_s = \phi(g_s)$$
$$\phi(g)_u = \phi(g_u).$$

Proof. Let V be any **faithful** representation of H, i.e. $r_V : H \to \mathsf{GL}(V)$ is injective, (for a finite-dim. V).

Then, $r_V \circ \phi$ is a rep. of G. To prove (i), it suffices to show

$$r_V(\phi(g)_s) = r_V(\phi(g_s))$$

since H operates faithfully on V.

We know that

$$r_V(\phi(g)_s) = r_V(\phi(g))_s$$

(characterizing property of h_s for $h \in H$). On the other hand,

$$r_V(\phi(g_s)) = (r_V \circ \phi)(g_s) = r_V(\phi(g))_s.$$

Therefore, claim (i) follows. (ii) works analogously.

Definition 12. Let $g \in G$ where G is an algebraic group. We call g semisimple, if $g = g_s$.

We call g unipotent, if $g = g_u$.

Lemma 19. For $g \in G$, the following are equivalent:

- (i) g is semisimple.
- (ii) $r_V(g)$ is semisimple for all finite-dim. rep. V.
- (iii) $r_V(g)$ is semisimple for at least one faithful f.d. rep. V of G.

We get an analogous lemma for unipotent group elements.

Proof. We have

$$(i) \iff g = g_s$$

$$\overset{\text{Def. of } g_s \text{ by goal thm.}}{\iff} r_V(g) = r_V(g)_s \forall \text{ f.d. } V$$

$$\iff r_V(g) \text{ is semisimple}$$

$$\iff (ii) \implies (iii).$$

On the other hand,

$$(iii) \implies \exists \text{ faithful f.d. } V \text{ s.t. } r_V(g) = r_V(g)_s = r_V(g_s) \implies g = g_s.$$

4 Non-Commutative Algebra

Definition 13. A ring R (for now) is unital, associative but not necessarily commutative.

Example 8. The ring of matrices over some field or ring.

Definition 14. A **left ideal** $I \subset R$ is a subset that is an abelian subgroup of (R, +) s.t. $ra \in I$ for all $r \in R$, $a \in I$.

A **right ideal** $I \subset R$ is a subset that is an abelian subgroup with

$$IR \subset I$$
.

A two-sided ideal I is a subset that is a left and a right ideal of R.

It is easy to check that for any homomorphism of rings $\phi: R \to S$, Kern ϕ is a two-sided ideal. Also, if $J \subset R$ is any two-sided ideal, then there exists a unique ring structure on R/J s.t. the projection $R \to R/J$ is a ring homomorphism.

Definition 15. A **left module** M for R is an abelian group equipped with a ring homomorphism

$$R \stackrel{\alpha}{\longrightarrow} \operatorname{End}(M)$$

where End(M) acts on the left of M. We write

$$rm := \alpha(r)m$$
.

We have

$$(r_1r_2)(m) = r_1(r_2(m)).$$

If R acts on M by the right, we write

$$R \curvearrowright M$$
.

Example 9. $M_n(k) \curvearrowright k^n$ where k^n is the space of column vectors. If k^n denotes the space of row vectors, we have $k^n \curvearrowleft M_n(k)$.

Definition 16. A (left) submodule $N \subset M$ is an algebraic subgroup s.t.

$$RN \subset N$$
.

It follows that N is itself is a left module.

Definition 17. A (left) module M of R is **simple** (or irreducible) if it has exactly the two submodules: $0 = \{0\}$ and M.

Definition 18. A ring R is a **division ring** if it satisfies any of the following equivalent requirements:

- (i) $R^{\times} = R \setminus \{0\}$ where $R^{\times} = \{r \in R \mid \exists a, b \in R : ar = rb = 1.\}$
- (ii) R has no nontrivials left or right ideals.

Definition 19. If $R \curvearrowright M$, then we can define

$$\operatorname{End}_R(M) := \left\{ \phi \in \operatorname{End}(M) \mid \phi(rm) = r\phi(m) \ \forall r \in R, m \in M \right\}.$$

Note, that $\operatorname{End}_R(M)$ is a ring.

Lemma 20 (Schur's Lemma). If M is simple, then $End_R(M)$ is a division ring.

Lemma 21. Let k be a field. Then, $M_n(k)$ has no nontrivial twosided ideals.

Theorem 9 (Jacobson Density Theorem (Double Commutant Theorem)). Suppose M is a simple left module which is finitely generated as a right D-module for $D = End_B(M)$.

Assume that R acts faithfully on M, i.e. $R \to \operatorname{End}_R(M)$ is injective. Then, the map $R \to \operatorname{End}_D(M)$ is an isomorphism.

⁰If ar = rb = 1, then a = arb = b.

Recap:

- Basics: definitions, Hopf-algebras, ...

- Jordan decomposition

- Primer on non-commutative algebra

• Jacobson density theorem

- Unipotent groups

- Tori

4.1 Jacobson Density Theorem

We had last week

$$\operatorname{End}_D(M) := \{ \phi \in \operatorname{End}(M) \mid \phi \circ d = d \circ \phi \forall d \in D \} .$$

Lecture from

16.03.2020 (Corona-

Madness

started here...)

Let k be an algebraically closed field, V a non-trivial finite-dimensional k-vector space and let G be a subgroup of $\mathsf{GL}(V)$ that acts **irreducibly** on V, i.e., V is G-**irreducible**, i.e., the only G-invariant subspaces of V are 0 and V.

Set

$$D:=\left\{d\in \operatorname{End}_k(V)\mid dg=gd\forall g\in G\right\}=\operatorname{span}(G)=\left\{\sum_{i=1}^n c_ig_i\mid c_i\in k, g_i\in G, n\in \mathbb{N}_0\right\}.$$

Then,

$$D=\operatorname{End}_R(V)$$

where R is the k-subalgebra of End(V) that is generated by G.

Lemma 22 (Schur's Lemma). We understand $k \stackrel{\mathsf{End}}{\hookrightarrow} (V)$ as the inclusion of operations which operate by scalar multiplication

$$k \xrightarrow{\cong} \{\phi : V \to V \mid \phi : v \mapsto t \cdot v \text{ for some } t \in k\}.$$

Then, we have

$$D \cong k$$
.

Proof. Let $d \in D$. Since $V \neq 0$, there is an eigenspace $V_{\lambda} \neq 0$ for d. Observe that V_{λ} has to be G-invariant:

if $g \in G$ and $v \in V_{\lambda}$, then $gv \in V_{\lambda}$, since

$$dgv = gdv = g(\lambda v) = \lambda gv.$$

Since V_{λ} is a non-trivial G-invariant subspace and V is irreducible under G, we have

$$V_{\lambda} = V$$
.

Ergo $d = \lambda$ in the sense of $k \hookrightarrow \text{End}(V)$.

Consequence of the Jacobson Density Theorem: $R = \text{End}_k(V)$, i.e., G generates all linear operations on V, if V is G-irreducible.

We will prove this after a lemma.

Lemma 23. Let $n \in \mathbb{N}$. Set

$$V^n := V \oplus V \oplus \ldots \oplus V = V_1 \oplus \ldots \oplus V_n$$

where each $V_i = V$.

Let $v = (v_1, \dots, v_n) \in V^n$ and set

$$Rv := \{(rv_1, \dots, rv_n) \mid r \in R\} = \text{span}\{(gv_1, \dots, gv_n) \mid g \in G\}.$$

Then, $Rv \neq V^n$ iff the v_i are linearly dependent over k.

Consequence: Take $n := \dim(V)$. Let $\{e_1, \ldots, e_n\}$ be a basis of V and set

$$e := (e_1, \dots, e_n) \in V^n.$$

Since the $(e_i)_i$ are linearly independent, the lemma states that $Re = V^n$. Now, let $x \in \operatorname{End}_k(V)$. Choose $r \in R$ s.t.

$$re = (xe_1, \ldots, xe_n).$$

Then $re_i = xe_i$ for all i, thus x = r. Hence, $R = \text{End}_k(V)$.

Proof. Choose $J \in \{1, ..., n\}$ as large as possible with

$$Rv + V_1 + V_2 + \ldots + V_{J-1} =: U \neq V^n$$

. Such an J does exist, since we know that $Rv \neq V^n$.

Then, $V_J \not\subseteq U$, otherwise we may increase J. Also, U is invariant by the diagonal action of G on V^n . Thus, $V_J \cap U \subseteq V_J$ is a proper G-invariant subspace of the G-irreducible $V_J \cong V$. Therefore, $V_J \cap U = 0$.

On the other hand, by maximality of J, we have

$$U \oplus V_J = V^n$$
.

Ergo, the map (composition)

$$V \cong V_J \hookrightarrow V^n \twoheadrightarrow V^n/U$$

is a G-equivariant isomorphism, since U is G-invariant.

Let $z:V^n/U\stackrel{\cong}{\to} V$ be the inverse isomorphism. Let l be the G-equivariant map given by

$$V^n \xrightarrow{l} V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

and let l_j be the G-equivariant maps by restricting l on V_j . Then $l_j \in D \cong k$. Say $l_j = t_j \in k$. Then,

$$l(w) = t_1 w_1 + \dots t_n w_n.$$

Since z is an isomorphism, l is nonzero and $(t_1, \ldots, t_n) \neq (0, \ldots, 0)$. Since $l|_U = 0$, we can deduce for all $u \in U$

$$t_1u_1+\ldots+t_nu_n=0.$$

But $v \in Rv \subseteq U$, so we may conclude – as required – that the $(v_i)_i$ are linearly dependent (l(v) = 0).

4.2 Unipotent Groups

Let G be a subgroup of $\mathsf{GL}(V)$ where V is a finite-dimensional vector space and k an algebrically closed field.

Definition 20. We say that G is **unipotent** if one of the following equivalent conditions hold:

- each $g \in G$ is unipotent (i.e. $(g-1)^n = 0$ for some $n \in \mathbb{N}$).
- all eigenvalues of g are 1.
- g is conjugate to $\begin{pmatrix} 1 & \star & \star \\ 0 & \ddots & \star \\ 0 & 0 & 1 \end{pmatrix}.$

Theorem 10. Any unipotent subgroup of $GL_n(k)$ is conjugate to a subgroup of

$$U_n := \left\{ \begin{pmatrix} 1 & \star & \star \\ 0 & \ddots & \star \\ 0 & 0 & 1 \end{pmatrix} \right\} = \left\{ U \in M_n(k) \mid U_{i,j} = \begin{cases} 0, & \text{if } i > j \\ 1, & \text{if } i = j \end{cases} \right\}.$$

Definition 21. For two subgroups G, H of some common supergroup, define their **commutator** by

$$[G,H]:=\left\langle ghg^{-1}h^{-1}\mid g\in G,h\in H\right\rangle.$$

A group G is called **nilpotent**, if one of its commutators is trivial, i.e. if we set

$$G_0 := G \text{ and } G_{i+1} := [G_i, G],$$

then G is called nilpotent iff there is an $j \in \mathbb{N}$ with $G_j = 1$.

Corollary 4. Any unipotent subgroup of GL(V) is nilpotent.

Definition 22. A group G is called **solvable**, if $G^{(n)} = 1$ for some n where

$$G^{(0)} := G,$$

 $G^{(i+1)} := [G^{(i)}, G^{(i)}].$

Notation 1. In the following, we will write G' := [G, G].

Definition 23. Let $n := \dim(V)$. A **complete flag** is a maximal strictly increasing chain of subspaces

$$0 = V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n = V.$$

Any complete flag is of the form

$$V_j := \operatorname{span}\{e_1, \dots, e_j\}$$

for some basis e_1, \ldots, e_n of V.

Let B be the basis of some flag $0 = V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n = V$. For $x \in \mathsf{End}(V)$, we have that x is upper-triangle with respect to B iff x leaves each member V_i of the flag invariant, i.e. $xV_i \subseteq V_i$.

Proposition 2 (Key Proposition). Let G be a unipotent subgroup of GL(V). Then there is a complete flag $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n$ consisting of G-invariant subspaces, i.e., each V_i is G-invariant.

Proof. Recall, that G is a unipotent subgroup of $\mathsf{GL}_n(V)$. We will give an induction on $n = \dim V$.

If n = 0, there is nothing to show.

Let $n \geq 1$. We may assume that V is G-irreducible. Because, if not, there is a G-invariant subspace $0 \neq W \subset V$ s.t. W and V/W have dimension < n. Then there exist complete G-invariant flags in W and V/W and the claim – that there is a complete G-invariant flag in V – follows by the induction hypothesis.

By Jacobson Density Theorem, we have

$$R := \operatorname{span}(G) = \operatorname{End}(V) := \operatorname{End}_k(V).$$

Since G is unipotent, we have for each $g \in G$

$$trace(g) = n.$$

Ergo, for $g, h \in G$

$$trace(gh) = trace(h)$$

and

$$\operatorname{trace}((g-1)h) = \operatorname{trace}(gh) - \operatorname{trace}(h) = 0.$$

Since $\operatorname{span}(G) = \operatorname{End}(V)$, it now in particularly follows for all $g \in G, \phi \in \operatorname{End}(V)$

$$\operatorname{trace}((g-1)\phi) = 0.$$

Since the above holds for all $\phi \in \operatorname{End}(V)$, it must hold

$$q - 1 = 0$$

for all $g \in G$ (take for example the elementary matrices $\phi = E_{i,j}$). Ergo, G is trivial. Then, any complete flag is trivially G-invariant.

Remark 1. This gives the group analogue of Engel's Theorem.

Proof Goal Theorem. Let B be a basis of V s.t. G leaves each subspace in the corresponding flag invariant. Then, G is upper-triangle with respect to this basis.

On the other hand, each $g \in G$ us unipotent, hence its diagonal (i.e. eigenvalues) are all 1. Thus, with respect to B

$$G \subseteq \left\{ \begin{pmatrix} 1 & \star & \star \\ 0 & \ddots & \star \\ 0 & 0 & 1 \end{pmatrix} \right\} = U_n.$$

Remark 2. Tori are of the form $(k^{\times})^n$. In the case $k = \mathbb{C}$, $(\mathbb{C}^{\times})^n$ are the complexification of $U(1)^n$. This equals tori in top. sense.

$$\begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix} \subseteq \mathsf{GL}_2(\mathbb{C})$$

is a non-algebraic unipotent group.

Exercise. (to be discussed next time)

it would have sufficed to prove the Goal theorem in the special case that G is algebraic.

Corollary of Proof: If $G \subset \mathsf{GL}(V)$ (with $V \neq 0$) is unipotent and acts irreducibly (?), then G = 1, dim V = 1.

Lecture from 18.03.2020

Answert to last Exercise: Recall that the main point was to show that any unipotent subgroup $G \subseteq GL(V)$ leaves invariant some complete flag $\mathcal{F} = (V_0 \subset V_1 \ldots)$. But by some homework (problem 1), the group

$$\mathsf{GL}(V)_{\mathcal{F}} := \{ g \in \mathsf{GL}(V) \mid g\mathcal{F} = \mathcal{F} \}$$

is algebraic.

Proof: If \mathcal{F} is the standard flag with $V_i = \operatorname{span}(e_1, \ldots, e_i)$ for the standard basis $\{e_1, \ldots, e_n\}$, then

$$\mathsf{GL}(V)_{\mathcal{F}} = \{ A \in \mathsf{GL}(V) \mid A \text{ is upper-triangle} \}.$$

The condition that A is upper triangle can be realized by polynomials. \Box Thus,

$$G \text{ fixes } \mathcal{F}$$

$$\iff G \subseteq \mathsf{GL}(V)_{\mathcal{F}}$$

$$\iff \overline{G} \subseteq \mathsf{GL}(V)_{\mathcal{F}}$$

$$\iff \overline{G} \text{ fixes } \mathcal{F}.$$

Now, the Zariski-Closure \overline{G} of any group G is an algebraic group (shown in some homework).

Further, if G is unipotent, then \overline{G} is unipotent.

5 Tori

Definition 24. A **torus** is an algebraic group that is isomorphic to \mathcal{G}_m^n for some $n \in \mathbb{N}_0$ where $\mathcal{G}_m = k^{\times} = \mathsf{GL}_1(k)$ is the unit group of k.

We think of $\mathcal{G}_m^n \subseteq \mathsf{GL}_n(k)$ as the subgroup of diagonal matrices.

Lemma 24. Let G be a commutative algebraic group. Then the following are equivalent:

- (i) each $g \in G$ is semisimple.
- (ii) for each finite-dimensional representation V of G and for each $g \in G$, the operator $r_V(g)$ is diagonalizable.

(iii) for all finite-dimensional representations V of G, there is a basis of common eigenvectors for $r_V(G)$, i.e. a basis s.t.

$$r_V(G) \subseteq \mathcal{G}_m^n$$
.

- (iv) G is isomorphic to an algebraic subgroup of a torus.
- (i) reals (ii): This follows from the Jordan decomposition and definition of semisimple.
- (ii) \implies (iii) : This is homework. Note that any commutative subset S of $\mathsf{GL}(V)$ consisting of semisimple operators may be diagonalized simultaneously.
- (iii) \Longrightarrow (iv) : Take any faithful representation V of G and diagonalize it simultaneously. Then, $G \cong r_V(G) \subseteq \mathcal{G}_m^n$.
- (iv) \implies (i) : Any diagonal matrix is semisimple.

Definition 25. A commutative algebraic group G is called **diagonalizable**, if it satisfies one of the above equivalent conditions.

Definition 26. A character χ of any algebraic group F is an element $\chi \in \mathsf{Hom}_{\mathsf{alg.grp.}}(G, k^{\times})$, i.e., a homomorphism $\chi: G \to k^{\times}$ of algebraic groups.

Notation 2. For an algebraic group G, set $\Xi(G) := \operatorname{\mathsf{Hom}}_{\operatorname{alg.grp.}}(G, k^{\times})$. Also denote now by $\mathsf{O}(X) := k[T]/I(X)$ the coordinate ring of an algebraic set X (rather than k[X]).

Lemma 25. There is a bijection

$$\Xi(G) = \{ characters \ \chi \ of \ G \} \longleftrightarrow \{ x \in \mathsf{O}(G)^{\times} \ | \ \Delta(x) = x \otimes x \}.$$

Proof. Note, that any $x \in O(G)^{\times}$ can be thought of as a map $x : G \to k^{\times} \subset k$. We have

$$\mathsf{Hom}_{\mathrm{alg.grp.}}\left(G,\mathcal{G}_{m}\right) = \left\{\phi \in \mathsf{Hom}_{\mathrm{alg.sets}}\left(G,\mathcal{G}_{m}\right) \mid \phi(gh) = \phi(g)\phi(h) \; \forall g,h\right\} \\ = \left\{\phi \in \mathsf{Hom}_{k-\mathrm{alg.}}\left(\mathsf{O}(\mathcal{G}_{m}),\mathsf{O}(G)\right) \mid (\phi \otimes \phi) \circ \Delta = \Delta \circ \phi\right\}.$$

Recall: $O(\mathcal{G}_m) \cong k[t, \frac{1}{t}]$ with $\Delta(t) = t \otimes t$.

Thus for any k-algebra A, $\mathsf{Hom}_{k-\mathrm{alg.}}(\mathsf{O}(\mathcal{G}_m),A) \stackrel{A}{\cong}^{\times} \mathsf{via}$ $[t \mapsto a, (t^{-1} \mapsto a^{-1})] \longleftrightarrow a.$

Thus,

$$\operatorname{Hom}_{\operatorname{alg.grp.}}(G, \mathcal{G}_m) \cong \left\{ a \in \operatorname{O}(G)^{\times} \mid a \otimes a = \Delta(a) \right\}.$$

Therefore, it suffices to test the condition $(\phi \otimes \phi) \circ \Delta = \Delta \circ \phi$ on the generators t, t^{-1} of $O(\mathcal{G}_m)$. Now, the above isomorphism is given by

$$\phi \mapsto a = \phi(t)$$

which is equivalent or regarding $\chi: G \to \mathcal{G}_m$ as a map $\chi: G \to k$.

Example 10. Let $G = \mathcal{G}_m$, then $O(G) = k[t, \frac{1}{t}]$. Which $x = \sum_{m \in \mathbb{Z}} c_m t^m \in O(G)$, almost all $c_m = 0$, but not all of them, have the property

$$\Delta(x) = x \otimes x.$$

We have

$$x \otimes x = \sum_{m,n \in \mathbb{Z}} c_m c_n t^m \otimes t^n,$$
$$\Delta(x) = \sum_{m \in \mathbb{Z}} c_m t^m \otimes t^m.$$

Those sums equal, if

$$c_m c_n = o$$
 for all $m \neq n$,
 $c_m^2 = c_m$ for all m.

By those conditions, it follows

$$x = t^m$$
.

Therefore

$$\Xi(G) = \{\chi_m \mid m \in \mathbb{Z}\} \cong \mathbb{Z}$$

with

$$\chi_m(y) = y^m.$$

Example 11. Let $T \cong \mathcal{G}_m^n$ be a torus. Then,

$$\Xi(T) = \{\chi_m \mid m \in \mathbb{Z}^n\} \cong \mathbb{Z}^n$$

where $\chi_m(y) = y^m = y_1^{m_1} \cdots y_n^{m_n}$.

Note: For each algebraic group G, $\Xi(G)$ is naturally an abelian group:

$$(\chi_1 \cdot \chi_2)(g) := \chi_1(g) \cdot \chi_2(g).$$

Given a morphism of algebraic groups $f: G \to H$, we get a morphism of abelian groups

$$f^* : \Xi(H) \longrightarrow \Xi(G)$$

 $\chi \longmapsto \chi \circ f =: f^*(\chi).$

This induces a contravariant functor from the category of algebraic groups to the category of abelian groups.

Lemma 26. Let G be a diagonalizable algebraic group. Then, $\Xi(G)$ is a k-basis for O(G).

Example 12. Let $G = \mathcal{G}_m^n$ be a torus. Then, we have the embedding

$$\Xi(G) \hookrightarrow \mathsf{O}(G)$$

 $\chi_m \longmapsto t^m.$

The lemma is obvious in this case: each elment of $O(G) = k[t_1, \ldots, t_m, t_1^{-1}, \ldots, t_m^{-1}]$ can be written uniquely as a linear combination of monomials.

Proof. (i) $\Xi(G)$ spans O(G):

Choose an embedding $G \subset \mathcal{G}_m^n$ of algebraic groups. Then, by restriction, we get

$$\mathsf{O}(\mathcal{G}_m^n) \twoheadrightarrow \mathsf{O}(G).$$

Since the $\chi_m, m \in \mathbb{Z}^n$, span $O(\mathcal{G}_m^n)$, their images $\chi_m|_G \in \Xi(G)$ span O(G).

(ii) $\Xi(G)$ is linearly independent:

Suppose otherwise and let ϕ_1, \ldots, ϕ_m be a linearly dependent subset of $\Xi(G)$ with $m \geq 1$ chosen minimally, with $c_1, \ldots, c_m \in k^{\times}$ s.t.

$$\sum_{i=1}^{m} c_i \phi_i = 0.$$

We distinguish the following cases:

m=1: In this case, we have $\phi_1=0$, but $\phi_1(1)=1$, a contradiction.

m>1: We can assume $\phi_1\neq\phi_2$, so there is an $h\in G$ s.t. $\phi_1(h)\neq\phi_2(h)$. Then,

$$\phi_1(h)\sum_{i=1}^m c_i\phi_i = 0,$$

but also for all $h, g \in G$

$$\sum_{i=1}^{m} c_i \phi_i(hg) = \sum_{i=1}^{m} c_i \phi_i(h) \phi_i(g) = 0.$$

This implies

$$\sum_{i=1}^{m} c_i \phi_i(h) \phi = 0.$$

Ergo

$$\sum_{i=1}^{m} c_j(\phi_i(h) - \phi_1(h))\phi_i = \sum_{i=2}^{m} c_j(\phi_i(h) - \phi_1(h))\phi_i = 0.$$

Now, $\phi_i(h) - \phi_1(h)$ is zero if i = 1 and non-zero, if i = 2. Therefore, this yields a shorter linear dependency for the elements

$$\phi_2, \ldots, \phi_m,$$

which contradicts our requirement.

Definition 27. Let M be an abelian group. The **group algebra** on M is the k-algebra k[M] (not a coordinate ring!) defined as follows:

k[M] := the k-vector space with basis M

$$:= \left\{ \sum_{m \in M} c_m \cdot m \mid c_m \in k, \text{ almost all } c_m = 0 \right\},\,$$

where the multiplication on k[M] extends that on M:

$$(\sum_{m \in M} c_m m)(\sum_{n \in M} d_n n) = \sum_{m,n \in M} c_m d_n m n.$$

Corollary 5. For a diagonalizable G, we have

$$O(G) \cong k[\Xi(G)].$$

Fact: For an abelian group M, there is exactly one Hopf algebra structure on k[M] given by $\Delta(m) = m \otimes m$ for all $m \in M$.

With this definition, the above isomorphism is one of Hopf algebras.

Lemma 27. If G, H are diagonalizable algebraic groups, then

$$\operatorname{Hom_{alg.grp.s}}(G,H) \xrightarrow{f \mapsto f^*} \operatorname{Hom_{grp.s}}(\Xi(H),\Xi(G))$$

is a bijection.

Proof.

$$\begin{split} \operatorname{Hom} \left(G, H \right) \cong & \operatorname{Hom}_{\operatorname{Hopf-alg.}} \left(\operatorname{O}(H), \operatorname{O}(G) \right) \\ \cong & \left\{ \phi \in \operatorname{Hom}_{k-\operatorname{alg.}} \left(\operatorname{O}(H), \operatorname{O}(G) \right) \ | \ (\phi \otimes \phi) \circ \Delta = \Delta \circ \phi \right\}. \end{split}$$

Since $\operatorname{\mathsf{Hom}}_{k-\operatorname{alg.}}(\mathsf{O}(H),\mathsf{O}(G)) \cong \operatorname{\mathsf{Hom}}(k[\Xi(H)],k[\Xi(G)])$, this reduces to the following lemma:

Lemma 28. Let M_1, M_2 be two abelian groups. Then

$$\operatorname{Hom}(M_1, M_2) \xrightarrow{\cong} \operatorname{Hom}_{\operatorname{Hopf-alg.}}(k[M_1], k[M_2])$$

$$\phi \longmapsto \left[\sum c_m m \mapsto \sum c_m \phi(m)\right].$$

Proof. We have to show that

$$M = \left\{ x \in K[M]^{\times} \mid \Delta(x) = x \otimes x \right\}.$$

Then, by this, it follows for each $\phi \in \mathsf{Hom}_{\mathsf{Hopf-alg.}}(k[M_1], k[M_2])$,

$$\phi(M_1)\subseteq M_2.$$

Ergo, $\phi|_{M_1} \in \text{Hom }(M_1, M_2)$. Therefore, the surjectivity of the claimed bijection is shown. The injectivity is clear, since M generates k[M] as a k-algebra.

To show

$$M = \left\{ x \in K[M]^{\times} \mid \Delta(x) = x \otimes x \right\},\,$$

let

$$x = \sum c_m m \in K[M]^{\times}$$
$$\Delta(x) = \sum c_m m \otimes m$$
$$x \otimes x = \sum c_m c_n m \otimes n.$$

If $\Delta(x) = x \otimes x$, then it follows

x = m

for some $m \in M$.

Lecture from 25.03.2020

Recall: We have seen that for diagonalizable algebraic groups G, H

$$\operatorname{Hom}(G,H) \cong \operatorname{Hom}(\Xi(H),\Xi(G))$$
.

If G is diagonalizable, then

$$O(G) \cong k[\Xi(G)].$$

Theorem 11. The functor

$$G \longrightarrow \Xi(G)$$
$$f \longmapsto f^*$$

defines an equivalence of categories:

 $\{diagonalizable\ alg.\ groups\}\cong\{finite\text{-}dim.\ abelian\ groups\ with\ no\ char(k)\text{-}torsion}\}.$

This amounts to the bijection above between Hom-spaces and the following lemma.

Lemma 29. (i) Let G be a diagonalizable alg. group. Then, $\Xi(G)$ is a finitely generated abelian group with no char(k)-torsion.

(ii) Let Γ be a finitely generated abelian group with no char(k)-torsion. Then, there is a diagonalizable algebraic group G s.t. $\Xi(G) \cong \Gamma$.

Proof. We will use the following facts:

• Let $n \in \mathbb{N}$. Then, $t^n - 1$ is square-free in k[t] iff the ideal $(t^n - 1)$ is radical in k[t] iff $t^n - 1$ has not repetitive root iff either $\operatorname{char}(k) = 0$ or $\operatorname{char}(k) = p > 0$ and $p \not | n$.

(Proof: Galois Theory, seperable/inseperable extensions.)

• Let $M := \mathbb{Z}/n\mathbb{Z}$. Then, the k-group-algebra generated by M

$$k[M] \cong k[t]/(t^n - 1)$$

is reduced iff either char(k) = 0 or $char(k) = p > 0, p \not| n$.

• If M_1, M_2 are abelian groups, then we have the following isomorphism of Hopf algebras

$$k[M_1] \otimes_k k[M_2] \xrightarrow{\cong} k[M_1 \oplus M_2]$$

 $m_1 \otimes m_2 \longmapsto m_1 m_2$

where $M_1 \oplus M_2 \cong M_1 \times M_2$.

(i) Embed $G \hookrightarrow T := \mathcal{G}_m^n$ for some n. Then, we have a surjection $\mathbb{Z}^n \cong \Xi(T) \twoheadrightarrow$ $\Xi(G)$. Ergo, $\Xi(G)$ is finitely generated. Suppose char(k) = p > 0. Let $\chi \in \Xi(G)$ with $\chi^p = 1$. Then, for all $g \in G$, $\chi^p(g) = \chi(g^p) = 1$. The unit group k^{\times} has not p-torsion, therefore $G \hookrightarrow T =$

 $(k^{\times})^n$ has also no p-torsion. Therefore, the frobenius $g \mapsto g^p$ is an isomorphism on G. Therefore, $\chi = 1$ is a trivial character. Ergo $\Xi(G)$ has no p-torsion.

(ii) Let Γ be a finitely generated abelian group with no char(k)-torsion. Then,

$$\Gamma \cong \mathbb{Z}^r \oplus \mathbb{Z}/n_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/n_l\mathbb{Z}$$

where $\operatorname{char}(k) \not| n_1, \ldots, n_l$. We may reduce to the cases:

- (a) $\Gamma = \mathbb{Z}$: take $G = \mathcal{G}_m$, then $\Xi(G) \cong \mathbb{Z} \cong \Gamma$.
- (b) $\Gamma = \mathbb{Z}/n\mathbb{Z}$ with char $(k) =: p \not | n$: take $G := \mu_n := \{ y \in k^{\times} \mid y^n = 1 \}$. Then, since $p \not \mid n, (t^n - 1)$ is radical. So,

$$O(\mu_n) \stackrel{Nullstellensatz}{=} k[t]/(t^n-1) \stackrel{asHopfalgebras}{\cong} k[\Gamma]$$

where t gets mapped to the generator of Γ .

Corollary 6. We have the bijection

 $\{tori\} \cong \{ finitely generated free abelian groups (\cong \mathbb{Z}^n) \}.$

Remark 3.

{algebraic group schemes/k} $\stackrel{\text{not necessarily natural}}{\cong}$ { f.g. Hopf algebras}.

by

$$G \mapsto \mathsf{O}(G)$$

and

 $\{diagonalizable algebraic group schemes/k\} \cong \{f.g. abelian groups\}.$

by

$$G \mapsto \Xi(G)$$
.

Where μ_p in the left hand term gets mapped to $O(\mu_p) = k[t]/(t^p-1)$ with p = char k.

5.1 Trigonalization

We say a representation $r: G \to \mathsf{GL}(V)$ of a group G on a finite-dimensional k-vectorspace V is **trigonalizable** if it admits a basis with respect to which r(V) is upper-triangular:

$$r(G) \subseteq \left\{ \begin{pmatrix} * & \dots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & * \end{pmatrix} \right\}$$

Definition 28. We call a subgroup $G \subseteq \mathsf{GL}(V)$ **trigonalizable**, if the identity representation is.

Lemma 30. Let G be an algebraic group. The following are equivalent:

- (i) Every finite-dimensional representation $r: G \to GL(V)$ is trigonalizable.
- (ii) Every irreducible representation of G is 1-dimensional.
- (iii) G is isomorphic to an algebraic subgroup of

$$B_n := \left\{ \begin{pmatrix} * & \dots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & * \end{pmatrix} \right\} \subseteq GL_n(k).$$

(iv) There is a normal unipotent algebraic subgroup U of G s.t. G/U is diagonalizable.

Proof. We prove as follows:

(i) \implies (ii): Let V be an irreducible representation. Then, $V \neq 0$. Choose a basis e_1, \ldots, e_n of V s.t.

$$r(G) \subseteq B_n$$
.

Then, $r(G)e_1 \subseteq ke_1$, so $V_0 := ke_1$ is G-invariant. Ergo $V = V_0$ is 1-dimensional.

(ii) \Longrightarrow (i): Let V be a f.d. representation. We show by induction on $\dim(V)$ that $r:G\to \operatorname{\mathsf{GL}}(V)$ is trigonalizable:

In the cases $\dim(V) = 0, 1$, there is nothing to show.

In the case $\dim(V) \geq 2$, assume that V is not irreducible. Then, there is a G-invariant V_0 with $0 \neq V_0 \neq V$.

By the induction hypothesis, V_0 and V/V_0 are trigonalizable. Ergo, V is trigonalizable.

(**Recall:** we used this criterion above in the proof that unipotent groups are trigonalizable by showing that every ??? of each G is trivial.)

(i) \implies (iii): Choose a faithful representation V of G. Then, $G \cong r(G)$. Since r is trigonalizable, there is a basis of V s.t.

$$r(G) \subseteq B_n \subseteq \mathsf{GL}_n(k)$$
.

(iii) \implies (ii): Suppose $G \subseteq B_n \subseteq \mathsf{GL}_n(k)$. Set

$$A_n := \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \subseteq \mathsf{GL}_n(k),$$

$$U_n := \left\{ \begin{pmatrix} 1 & \dots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & 1 \end{pmatrix} \right\} \subseteq \mathsf{GL}_n(k) \text{ normal algebraic subgroup of } B_n,$$

 $U := G \cap U_n$ normal unipotent algebraic subgroup of G.

Let V be an irreducible representation of G, then V is not zero. Consider the subspace of V fixed by U

$$V^U := \{ v \in V \mid r(u)v = v \forall u \in U \}.$$

Then, we get a representation

$$r|_U:U\longrightarrow \mathsf{GL}(V).$$

Then, r(U) is a unipotent algebraic group of $\mathsf{GL}(V)$. Ergo,

$$r(U) \subseteq \left\{ \begin{pmatrix} 1 & \dots & * \\ 0 & \ddots & \vdots \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

Ergo, $V^U \neq 0$. Since U is normal in G, the subspace V^U of V is G-invariant: if $v \in V^U, g \in G$, then for all $u \in U$ we have

$$r(u)r(g)v = r(g)r(g^{-1}ug)v = r(g)v$$

since $v \in V^U$. Ergo $r(g)v \in V^U$.

Since V is irreducible, $V = V^U$, i.e. U acts trivially on V. Ergo, r descends to a representation of the group G/U.

But $G/U \hookrightarrow B_n/U_n \cong A_n$. Therefore, G/U and r(G) are commutative. Moreover, for all $g \in G$, $r(g) \in \mathsf{GL}(V)$ is semisimple:

if $g = g_s g_u$, then $g_u \in U$, because U_n is the group of unipotent elements of B_n . Hence, $r(q) = r(q_s)r(q_u) = r(q_s)$ is semisimple.

It follows that r(G) is commutative and consists of semisimple elements. By some HW: r(G) is trigonalizable. It is easy to show now that V is one-dimensional. (Since V is irreducible and ke_1 is G-invariant.)

Definition 29. G is **trigonalizable**, if it satisfies one of the above equivalent conditions.

Later, we will see, that if G is connected, then being trigonalizable implies being solvable.

5.2 Commutative Groups

Let G be an algebraic group. Denote by G_s resp. G_u the subsets of semisimple resp. unipotent elements of G.

Then, G_u is always algebraical i.e. closed: if $G \hookrightarrow \mathsf{GL}_n(k)$, then $G_u = \{g \mid (g-1)^n = 0\}$. G_u does not need to be closed under multiplication (for example, take $G = \mathsf{SL}_2(k)$,

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$).

 G_s needs not to be algebraic: for example, take $G = \mathsf{SL}_2(k)$ and if G_s were algebraic, then

$$\left\{\lambda \in k^{\times} \mid \begin{pmatrix} \lambda & 1 \\ 0 & \lambda^{-1} \end{pmatrix} \in G_s \right\} = \left\{\lambda \mid \lambda \neq \lambda^{-1} \right\}$$

but the last set is not algebraic. Also, G_s does not need to be a subgroup.

We have the a surjective map of sets

Lecture from 30.03.2020

$$G_s \times G_u \longrightarrow G$$

 $(g_1, g_2) \longmapsto g_1 g_2.$

Example 13 (Non-Example). Take generic $g \in G_s, h \in G_u$ for $G = \mathsf{SL}_2(k)$. Then, g, h do not commute and we have

$$((gh)_s, (gh_u)) \neq (g, h)$$

because Jordan components commute.

Theorem 12. Let G be a commutative algebraic group. Then:

- (i) G_s, G_u are closed subgroups and the multiplicative map $G_s \times G_u \to G$ is an isomorphism of algebraic groups.
- (ii) G is trigonalizable. Moreover, for each finite dimensional representation $r: G \to GL(V)$ there is a basis s.t.

$$r(G_s) \subseteq \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \qquad r(G_u) \subseteq \left\{ \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

- (iii) G_s is diagonalizable.
- *Proof.* (ii) Let V be any irreducible representation of G. We have seen that commuting semisimple operators may be simultaneously diagonalizable, then

$$V = \bigoplus_{\chi: G_s \to \mathcal{G}_m} V_{\chi}$$

where

$$V_{\chi} = \{ v \in V \mid r(h)v = \chi(h)v \ \forall h \in G_s \}.$$

Since G is commutative, each subspace V_{χ} is G-invariant $(r(h)r(g)v = r(g)r(h)v = r(g)\chi(h)v = \chi(h)r(g)v)$.

Since V is irreducible, we must have $V = V_{\chi}$ for some χ .

Recall that $G \cong G_s \times G_u$ as abstract groups. We have seen that $r(G_s) \subseteq k^{\times}$. We proved a while ago that any unipotent group, such as G_u , is trigonalizable. Ergo, V is trigonalizable. Since V is irreducible, we have dim V = 1.

If we apply the same argument without assuming that V is irreducible, then we see that V is the coproduct of V_{χ} 's as above and that each V_{χ} admits a basis s.t.

$$r(G_s)|_{V_\chi} \subseteq \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\} \qquad r(G_u)|_{V_\chi} \subseteq \left\{ \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

This yields the same conclusion for V.

(i) We have to show that G_s and G_u are closed and $j: G_s \times G_u \to G$ is an isomorphism of groups. Take any faithful representation

$$G \xrightarrow{\cong,r} r(G) \subseteq \mathsf{GL}(V)$$

and apply (ii). Then we have

$$r(G) \subseteq \left\{ \begin{pmatrix} * & * & * \\ 0 & \ddots & * \\ 0 & 0 & * \end{pmatrix} \right\} =: B$$

$$B_u = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & 1 \end{pmatrix} \right\},$$

$$r(G_s) \subseteq \left\{ \begin{pmatrix} * & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & * \end{pmatrix} \right\} =: A.$$

In fact, $r(G_s) = r(G) \cap A$, because if $g \in G$ with $r(g) \in A$, then r(g) is semisimple, so $g \in G_s$.

Therefore, G_s is closed in G. Ergo, G_s and G_u are closed subgroups.

Then, the map j is a morphism of algebraic groups.

We need to show that j^{-1} is a morphism of algebraic groups. For this, it suffices to verify that the projection $G \to G_s$ is a morphism. But this map is given under r by the morphism:

$$t := \begin{pmatrix} a_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & a_n \end{pmatrix} \longmapsto \begin{pmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{pmatrix} =: t_s.$$

This suffices because if $g = g_s g_u$, then $g_u = g_s^{-1} g$, so if the map $g \mapsto g_s$ is a morphism, so is $g \mapsto g g_s^{-1} = g_u$, hence so is $g \mapsto (g_s, g_u)$.

(iii) We have seen that G_s is a closed subgroup. Hence G_s is a commutative algebraic group where elements are semisimple. Ergo, G_s is diagonalizable.

Theorem 13 (Lie-Kolchin). Let G be a connected solvable algebraic group. Then G is trigonalizable.

(By comparison, recall that we have seen that far that, if G is commutative or unipotent, then G is trigonalizable.) We can reformulate this theorem as: Any connected solvable subgroup of GL(V) stabilizes some complete flag $\mathcal{F} = (V_0 \subsetneq \ldots \subsetneq V_n)$.

Generalization (Borel's Fixed Point Theorem): Any connected algebraic group G acting on a projective variety X has a fixed point in X.

We get a relation between complete flags and projective varieties.

Proof. Induct on the number n s.t. $G^{(n)} = 1$.

For n = 0, there is nothing to show.

If n = 1, (G, G) = 1, then G is commutative, ergo trigonalizable.

Let $n \geq 2$. Then, we have $G' := (G, G) \neq 1$. We will show the following lemma:

Lemma 31. If G is connected, then the abstract group G' with the induced topology is connected (\iff the Zariski Closure of G' is connected).

Proof. We have the following facts:

- An increasing union of connected spaces is connected.
- A continuous image of a connected space is connected.

We have

$$G' = \langle (g, h) := ghg^{-1}h^{-1} \mid g, h \in G \rangle$$

= $\bigcup_{j \ge 0} \bigcup_{g_1, h_1, \dots, g_j, h_j \in G} \{ (g_1, h_1) \cdots (g_j, h_j) \}.$

Since

$$\bigcup_{g_1,h_1,\dots,g_j,h_j\in G}\{(g_1,h_1)\cdots(g_j,h_j)\}=\mathrm{Img}\phi_j$$

for some continuous map $\phi_j: G^{2j} \to G$, the claim follows.

Ergo, G' is connected.

Note: It is equivalent to show that (*) any subgroup of GL(V) s.t. G is connected and solvable is trigonalizable in GL(V).

Indeed, the theorem implies (*): the Zariski closure of G is a connected algebraic group that is solvable (which extends by continuity). If Zcl(G) is trigonalizable, then also G is trigonalizable.

(*) implies the theorem, since if G is given as in the theorem, apply (*) to $r(G) \subseteq \mathsf{GL}(V)$.

If $G^{(n)} = 1$, then $(G')^{(n-1)} = G^{(n)} = 1$. By induction, we may assume that G' satisfies the following:

For all finite dimensional representations $r: G \to \mathsf{GL}(V)$, r(G') is trigonalizable. Our aim is to show that any irreducible representation V of G has dimension 1.

The induction hypothesis implies that r(G') is trigonalizable. In particular, there exist an eigenspace $V_{\chi} \subseteq V$ for G' for some character $\chi: G' \to k^{\times}$. Since G' is normal in G we know that G acts from the left on

{eigenspaces
$$V_{\chi}$$
 in V for G' }.

Ergo, $\bigoplus_{\chi:G'\to k^\times} V_\chi$ is G-invariant. Ergo, $V=\bigoplus_{\chi:G'\to k^\times} V_\chi=\bigoplus_{\chi\in\Xi'} V_\chi$ for some finite subset $\Xi'=\{\chi\mid V_\chi\neq 0\}$ of $\mathsf{Hom}\ (G',\mathcal{G}_m)$, since V is finite dimensional.

Claim: Let $h \in G'$. Then, the map

$$G \longrightarrow \mathsf{GL}(V)$$

 $g \longmapsto r(ghg^{-1})$

has a finite map.

Proof. Denote by $\chi \mapsto \chi^g$ the action of $g \in G$ in $\text{Hom } (G', \mathcal{G}_m)$ given by $\chi^g(h) := \chi(ghg^{-1})$. This is an action, since G' is normal.

This descends to an action $G \curvearrowright \Xi$, because r is a homomorphism. Since r(h) is determined by $\{\chi(h) \mid \chi \in \Xi\}$, hence similarly $r(ghg^{-1}) \in r(G')$ by $\{\chi(ghg^{-1}) \mid \chi \in \Xi\}$.

Hence,

$$\#\{r(ghg^{-1})\mid g\in G\} \leq \#$$
representations of the finite set $\Xi<\infty$.

Lemma 32. Let G be an algebraic group. Then, G is connected iff for each finite algebraic set X, and for each morphism $f: G \to X$ of algebraic sets, we have that f is constant.

Claim with the Lemma implies that the map $g \mapsto t(ghg^{-1})$ is constant. This implies that $r(ghg^{-1}) = r(h)$ for all $g \in G, h \in G'$. Ergo, G stabilizes each eigenspace V_{χ} for G'. Ergo, $V = V_{\chi_0}$, since V is irreducible.

Lemma 33. Let G be any group with a finite dimensional representation $r: G \to GL(V)$. Then, the subspaces V_{χ} for $\chi \in Hom(G, k^{\times})$ are independent, i.e., the map

$$\oplus V_{\chi} \longrightarrow V$$

is injective.

Proof. The spaces V_{χ} are G-invariant. Suppose, there exist distinct χ_1, \ldots, χ_n of non-zero $v_j \in V_{\chi_j}$ s.t. $\sum_j v_j = 0$.

We may assume that n, the number of v_j , is minimal. W.l.o.g., $n \geq 2$.

Choose $g \in G$ s.t. $\chi_1(g) \neq \chi_2(g)$. Use that $0 = g \sum_j v_j = \sum_j g v_j$ and take the linear combination as in the proof of linear independence of characters to contradict the minimality of n.

Since $G' = \langle ghg^{-1}h^{-1} \mid g, h \in G \rangle$, so $\det(r(G')) = 1$. On the other hand, for each $g \in G'$, we have Lecture from 01.04.2020

$$r(g) = \begin{pmatrix} \chi_0(g) & & \\ & \ddots & \\ & & \chi_0(g) \end{pmatrix}$$

since $V = V_{\chi_0}$. This implies

$$1 = \det(r(g)) = \chi_0(g)^d$$
.

Ergo, χ_0 defines a morphism

$$\chi_0: G' \longrightarrow \mu_d \subset \mathcal{G}_m$$
.

But G' is connected and μ_d is finite. Since χ_0 is a morphism, χ_0 must be constant, ergo the trivial character.

As a consequence, we get r(G') = 1 on $V = V_{\chi_0}$.

Lemma 34. Let G be an algebraic group, $r: G \to GL(V)$ a representation. $v \in V$ shall be a simultaneous non-zero eigenvector for r(G).

Then, for each $g \in G$, there is a value $\chi(g) \in k^{\times}$ s.t.

$$r(g)v =: \chi(g)v.$$

Then, the mapping $\chi: G \to \mathcal{G}_m$ is a morphism of algebraic groups.

Therefore, r descends to a representation of the commutative group

$$\overline{r}: G/G' \longrightarrow \mathsf{GL}(V).$$

Ergo, r(G/G') = r(G) is commutative and therefore trigonalizable (because of irreducibility). \square

Example 14 (Non-Example). • Take $G = D_4 \hookrightarrow \mathsf{GL}_2(\mathbb{C})$ which is solvable and has an irreducible and faithful representation over \mathbb{C}^2 .

• Consider the solvable group

$$G = \left\langle \begin{pmatrix} \pm 1 & \\ & \pm 1 \end{pmatrix}, \begin{pmatrix} & 1 \\ 1 & \end{pmatrix} \right\rangle$$

which is a finite subgroup of $\mathsf{GL}_2(\mathbb{C})$, s.t. \mathbb{C}^2 define an irreducible representation of G.

Lemma 35 (Form of Schur's Lemma). If S is any commutative subset of GL(V) for a finite-dimensional $0 \neq V$ over an algebrically closed field k. Let V be S-irreducible. Then, $\dim V = 1$.

Proof. There is notthing to show if S is empty.

Let $s \in S$ and denote by $V_{\lambda} \subseteq V$ the λ -eigenspace for s. Then, since S is commutative, V_{λ} is S-invariant. Therefore, $V = V_{\lambda}$ for one $\lambda \in k^{\times}$.

Thus, every $s \in S$ acts by scaling, therefore every subspace of V is S-invariant. Since V is invariant, we get $\dim V = 1$.

Corollary 7. Let G be a connected algebraic group. Then, G is solvable iff G is trigonalizable.

Proposition 3. If G is trigonalizable, then G_u is a normal algebraic subgroup.

Proof. We have

$$G \hookrightarrow B := \left\{ \begin{pmatrix} * & \dots & * \\ & \ddots & \vdots \\ & & * \end{pmatrix} \right\} \subseteq \mathsf{GL}_n(k).$$

B has the normal subgroup $U := \left\{ \begin{pmatrix} 1 & \dots & * \\ & \ddots & \vdots \\ & & 1 \end{pmatrix} \right\}$ and we have $G_u = G \cap U$. Now,

U is the kernel of the multiplicative morphism

$$\begin{pmatrix} a_1 & \dots & * \\ & \ddots & \vdots \\ & & a_n \end{pmatrix} \longmapsto \begin{pmatrix} a_1 & \\ & & \\ & & a_n \end{pmatrix}.$$

Corollary 8. If G is connected and solvable, then G_u is a normal algebraic subgroup.

5.3 Semisimple Elements of nilpotent Groups

Theorem 14. Let G be a connected nilpotent algebraic group. Then, we have

$$G_s \subseteq Z(G)$$

where Z(G) denotes the center of G.

Theorem 15 (Lie-algebraic Analogue). Let V be a finite-dimensional vectorspace. Let \mathfrak{g} be the Lie-Subalgebra of End(V), i.e. \mathfrak{g} is a subspace s.t. we have for each $x, y \in \mathfrak{g}$

$$[x,y] := xy - yx \in \mathfrak{g}.$$

Assume that \mathfrak{g} is nilpotent, i.e. there is an $n \in \mathbb{N}_0$ s.t.

$$[x_1, [x_2, [\dots, [x_{n-1}, x_n]]]] = 0$$

for all $x_1, \ldots, x_n \in \mathfrak{g}$.

Then, any semisimple (semisimple in End(V) that is) $x \in \mathfrak{g}$ is **central** in \mathfrak{g} , i.e. [x,y] = 0 for each $y \in \mathfrak{g}$.

Remark 4. The Lie-algebraic Analogue implies the general theorem if – for example – $k = \mathbb{C}$.

Proof. Let $g \in G_s$. We want to show $Z_G(g) = G$.

Fact from the theory of Lie-Algebras: For the Lie-Algebra $\text{Lie}Z_G(g)$ we have

$$\operatorname{Lie} Z_G(q) = \ker(\operatorname{\mathsf{Ad}}(q))$$

where Ad is the map

$$\operatorname{Ad}: G \longrightarrow \operatorname{GL}(\mathfrak{g})$$
$$x \longmapsto qxq^{-1}.$$

Since G is connected, it suffices to verify

$$\ker(\mathsf{Ad}(g)) = \mathfrak{g}$$

i.e. Ad(g) = 1.

Since g is semisimple, we have for suitable basis

$$g = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$$

with $a_j \in \mathbb{C}^{\times}$. This is $\exp(x)$ for a suitable diagonal matrix $x \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_n \end{pmatrix} \in \mathsf{GL}_n(\mathbb{C})$.

Fact: We may assume that $x \in \mathfrak{g} := \text{Lie}(G)$.

Since G is nilpotent, it can be shown that \mathfrak{g} is nilpotent.

By the theorem, x is central in \mathfrak{g} . By the properties of exp we have

$$\mathsf{Ad}(g) = \exp(\mathrm{ad}(g)) = 1$$

ergo ad(x) = 0 where $ad : \mathfrak{g} \to \mathfrak{g}$ is defined by

$$ad(x) \cdot y := [x, y].$$

Proof. If \mathfrak{g} is nilpotent, then $ad(x) \in End(\mathfrak{g})$ is nilpotent.

Since x is semisimple, ad(x) is semisimple, because ad(x) is the restriction to \mathfrak{g} of the map

$$\operatorname{End}(V) \longrightarrow \operatorname{End}(V)$$

 $y \longmapsto [x, y]$

and, if e_1, \ldots, e_n are a basis of eigenvectors for x, then $E_{i,j}$ is a basis of eigenvectors for ℓ .

So,
$$ad(x)$$
 is nilpotent and semisimple, therefore $ad(x) = 0$.

Proof Theorem. Let G be a connected nilpotent algebraic group, $G \stackrel{\mathsf{GL}}{\hookrightarrow} (V)$.

Let $g \in G_s$, we want to show that $g \in Z(G)$.

Assume otherwise, then we have a $h \in G$ s.t. $(g,h) = ghg^{-1}h^{-1} \neq 1$.

Since G is connected and nilpotent (ergo solvable), we know by Lie-Kolchin that G stabilizes some complete flag $V_0 \subset \ldots \subset V_n$.

We have $g|_{V_i}, h|_{V_i} \in \mathsf{GL}(V_i)$. They commute, if i = 0, but not if i = n.

So, there is an i s.t. $g|_{V_i}$, $h|_{V_i}$ commute but $g|_{V_{i+1}}$, $h|_{V_{i+1}}$ don't commute. W.l.o.g. $V=V_{i+1},g=g|_{V_{i+1}},h=h|_{V_{i+1}}$. Set $a:=g|_{V_i},b:=h|_{V_i}\in\mathsf{GL}(V_i)$. a will be semisimple, since g is.

Since g is semisimple, there is an eigenvector $v \in V_{i+1}$ for g s.t.

$$V_{i+1} = V_i \oplus \langle v \rangle$$
.

We have an isomorphism of vector spaces

$$\mathsf{End}(V_{i+1}) \cong \mathsf{End}(V_i) \oplus \mathsf{Hom}\left(\left\langle v \right\rangle, V_i\right) \oplus \mathsf{Hom}\left(V_i, \left\langle v \right\rangle\right) \oplus \mathsf{End}(\left\langle v \right\rangle)$$

with

$$\operatorname{End}(\langle v \rangle) \cong k \text{ and } \operatorname{Hom}(\langle v \rangle, V_i) \cong V_i.$$

So, we can write $g|_{V_{i+1}}, h|_{V_{i+1}}$ write as

$$g = \begin{pmatrix} a & \\ & * \in k \end{pmatrix}$$
 and $h = \begin{pmatrix} b & c \in V_i \\ & * \end{pmatrix}$.

We may replace g, h with scalar multiples to reduce to the case that *=1. Then, So, we can write $g|_{V_{i+1}}, h|_{V_{i+1}}$ write as

$$g = \begin{pmatrix} a \\ 1 \end{pmatrix}$$
 and $h = \begin{pmatrix} b & c \\ 1 \end{pmatrix}$.

Then,

$$h \neq ghg^{-1} = \begin{pmatrix} b & ac \\ & 1 \end{pmatrix}.$$

Ergo, $c \neq ac$, i.e. $c \notin \ker(a-1)$. Let $h_1 := h^{-1}ghg^{-1}$. Check

$$h_1 = \begin{pmatrix} 1 & b^{-1}(a-1)c \\ & 1 \end{pmatrix}.$$

We claim that h_1 does not commute with g. This claim implies the theorem, since we can iterate the claim to obtain elements h_i by $h_{i+1} := h_i^{-1}gh_ig^{-1}$. Then, h_i does not commute with g. But G is nilpotent, therefore $h_i = 1$ for some large enough i.

We can prove the claim as follows: By some calculation as for h and g, we see, that h_1 and g don't commute iff $b^{-1}(a-1)c \notin \ker(a-1)$. This is equivalent to

$$\iff (a-1)b^{-1}(a-1)c \neq 0$$

$$\iff b^{-1}(a-1)^2c \neq 0$$

$$\iff (a-1)^2c \neq 0$$

$$\iff c \in \ker((a-1)^2).$$

But a being semisimple implies a-1 being semisimple, therefore $\ker((a-1)^2) = \ker(a-1)$. So h_1, g don't commute iff $c \in \ker(a-1)$ iff h, g don't commute.

Lecture from 06.04.2020

6 Projective Space

Let V be a finite-dimensional vector space. Then $\mathcal{G}_m = k^{\times}$ acts on V by scalar multiplication. $\{0\}$ is a \mathcal{G}_m -invariant subspace of V. We are interested on the orbits of \mathcal{G}_m on $V \setminus \{0\}$.

Define the **projective space** over V by

$$\mathbb{P}V := \mathcal{G}_m \setminus (V - 0) = (V - 0) / \sim \cong \{ \text{lines in } V \}$$

where for $a, b \in V - 0$ we set

$$a \sim b : \iff \exists \lambda \in k^{\times} : \lambda a = b.$$

If $V = k^{n+1}$, we denote the *n*-dimensional projective space by $\mathbb{P}^n := \mathbb{P}V$.

Given $a = (a_0, a_1, \dots, a_n) \in k^{n+1} - 0$, we denote the \sim -class of a by

$$[a] = [a_0, \dots a_n] \in \mathbb{P}^n.$$

Define S to be the graded algebra of polynomials in k

$$S := k[x_0, \dots, x_n] = \bigoplus_{d > 0} S_d$$

where each S_d is the space of homogenous polynomials of degree d, i.e.

$$S_d = \bigoplus_{i_1, \dots, i_d \in \{0, \dots, n\}} k \cdot x_{i_1} \cdots x_{i_d}.$$

We identify k with the space of constant polynomials $S_0 \subseteq S$.

We have

$$S_d = \left\{ f \in S \mid f(\lambda X) = \lambda^d f(X) \ \forall \lambda \in k^{\times} \right\}.$$

Given $f \in S_d$, the set

$$\left\{a \in k^{n+1} \mid f(a) = 0\right\}$$

is \mathcal{G}_m -invariant. In other words, given $a \in \mathbb{P}^n$ and $f \in S^d$, it is well-defined to state f(a) = 0 and $f(a) \neq 0$.

Definition 30. A **projective** algebraic subset $X \subseteq \mathbb{P}^n$ is a set of the form

$$X = V(\Sigma) := V_{\mathbb{P}^n}(\Sigma)$$

where Σ is a collection of homogenous elements of S, where

$$V_{\mathbb{P}^n}(\Sigma) := \{ a \in \mathbb{P}^n \mid f(a) = 0 \ \forall f \in \Sigma \}.$$

Facts:

• Hilbert basis theorem states

$$V(\Sigma) = V(f_1, \ldots, f_m)$$

for some finite collection $f_1, \ldots, f_m \in \Sigma$.

• It is useful to extend the meaning of "f(a) = 0" for $a \in \mathbb{P}^n$ to general elements $f \in S$ by requiring that f(a') = 0 for each $a' \in [a]$.

If we write $f = \sum_{d \geq 0} f_d$, $f_d \in S_d$, then we have

$$f(a) = 0 \iff f_d(a) = 0 \ \forall d > 0.$$

Therefore, we can extend the definition of $V(\Sigma)$ to any $\Sigma \subseteq S$.

- We have $V(\Sigma) = V((\Sigma))$ where (Σ) is the ideal generated by some finite subset of Σ .
- We call an ideal $I \subseteq S$ homogenous if it is the direct sum of its d-homogeneous components, i.e.

$$I = \sum_{d>0} I_d$$

where $I_d = \{ f \in I \mid f \text{ is homogenous of degree } d \}$.

I is homogeneous iff it is generated by homogeneous elements.

ullet We have the following Null stellens at z:

For any $X \subseteq \mathbb{P}^n$, set I(X) to be the ideal generated by all homogeneous polynomials of S vanishing on X. Then, we have

$$I(V_{\mathbb{P}^n}(I)) = I$$

for each homogeneous ideal $I \subseteq S$ for which we have:

- 1. I is radical.
- 2. I is not $(x_0, ..., x_n)$.

Example 15 (Anti-example). The second property is necessary:

Set $I = (x_0, \ldots, x_n)$. Then $V_{k^{n+1}}(I) = 0$. Therefore, $V_{\mathbb{P}^n}(I) = \emptyset$. However,

$$I(V_{\mathbb{P}^n}(I)) = S.$$

• The above point induces a bijection between algebraic subsets of \mathbb{P}^n and radical ideals $I \subset S$ which are not (x_0, \ldots, x_n) .

For i = 0, ..., n, set $D(x_i) := \{a \in \mathbb{P}^n \mid a_i \neq 0\}$. $D(x_i)$ is an open set homeomorphic to k^n by mapping

$$\phi_i: a \longmapsto (\frac{a_0}{a_i}, \dots, \frac{a_{i-1}}{a_i}, \frac{a_{i+1}}{a_i}, \dots, \frac{a_n}{a_i}).$$

The $D(x_i)$ cover $\mathbb{P}^n = \bigcup_i D(x_i)$.

Given a projective algebraic subset $X \subset \mathbb{P}^n$, define $X^{(i)} \subset k^n$ by

$$X^{(i)} := \phi_i(X \cap D(x_i)).$$

If $X = V_{\mathbb{P}^n}(I)$, then

$$X^{(i)} = V_{k^n}(I^{(i)})$$

where

$$I^{(i)} := \{ f^{(i)} \mid f \in I \}$$

where $f^{(i)}(t_1,\ldots,t_n):=f(t_1,\ldots,t_{i-1},1,t_i,\ldots,t_n)$. Thus, $X^{(i)}$ is an algebraic subset of k^n .

Definition 31. The **Zariski topology** on \mathbb{P}^n is defined by setting the set of closed sets to be the set of projective algebraic sets.

Facts:

- $D(x_i)$ is open in \mathbb{P}^n , since $D(x_i) = \mathbb{P}^n V(x_i)$.
- The bijections $D(x_i) \cong k^n$ are homeomorphims.

Definition 32. A quasi-projective algebraic set Y is an open subset of a projective algebraic set $X \subseteq \mathbb{P}^n$.

Example 16. Any algebraic set in k^n is quasi-projective.

Definition 33. A quasi-projective variety is an irreducible quasi-projective algebraic set.

Lecture from 08.04.2020