1

AI1103 - Challenging Problem 5

Anirudh Srinivasan CS20BTECH11059

Download latex-tikz codes from

https://github.com/Anirudh-Srinivasan-CS20/ AI1103/blob/main/Challenging-Problem-5// Challenging-Problem-5.tex

OUESTION

Suppose X_1, X_2, X_3 and X_4 are independent and identically distributed random variables, having density function f. Then,

A)
$$Pr(X_4 > Max(X_1, X_2) > X_3) = \frac{1}{6}$$

B)
$$Pr(X_4 > Max(X_1, X_2) > X_3) = \frac{1}{8}$$

A)
$$\Pr(X_4 > Max(X_1, X_2) > X_3) = \frac{1}{6}$$

B) $\Pr(X_4 > Max(X_1, X_2) > X_3) = \frac{1}{8}$
C) $\Pr(X_4 > X_3 > Max(X_1, X_2)) = \frac{1}{12}$
D) $\Pr(X_4 > X_3 > Max(X_1, X_2)) = \frac{1}{6}$

D)
$$Pr(X_4 > X_3 > Max(X_1, X_2)) = \frac{1}{6}$$

SOLUTION

Given, X_1, X_2, X_3, X_4 are i.i.d random variables.

Lemma 0.1. Every i.i.d sequence of random variables is exchangeable. Any value of a finite sequence is as likely as any permutation of those values. The joint probability distribution is invariant under the symmetric group.

Proof.

$$f_{X_1,X_2,X_3,...,X_n}(x) = f_{X_1}(x) \times f_{X_2}(x) \times \dots f_{X_n}(x)$$
 (0.0.1)

As X_i s are i.i.d random variables, their joint probability density function is the product of their marginal probability density functions and as multiplication is commutative, it is exchangeable.

Definition 1 (Symmetric Group). It is the group of permutation on a set with n elements and has n! elements. Order of a symmetric group represents the number of elements in it.

Lemma 0.2. If n elements of a set are random, then probability of each element 'E_i' of the symmetric group 'S' is $\frac{1}{n!}$.

Proof. As the n values are completely random, there will be no bias for a particular arrangement and hence all the elements of the symmetric group are equally likely.

$$O(S) = n! \tag{0.0.2}$$

where: O(S) denotes the order of the symmetric group.

$$\implies \Pr(E_i) = \frac{1}{n!} \forall E_i \in S$$
 (0.0.3)

Hence, any permutation of X_1, X_2, X_3, X_4 is equally likely. As there are 4 random values that the random variables represent, they can be arranged in 4! ways. By (0.0.3), we have:

$$Pr(X_1 > X_2 > X_3 > X_4) = Pr(X_1 > X_2 > X_4 > X_3)$$
(0.0.4)

$$= \dots$$
 (0.0.5)

$$=\frac{1}{24}$$
 (0.0.6)

1) Options A and B: Without loss of generality, let $Max(X_1, X_2) = X_1$

$$\Pr(X_4 > Max(X_1, X_2) > X_3) = \Pr(X_4 > X_1 > X_3)$$
(0.0.7)

$$Pr(X_4 > X_1 > X_3) = Pr(X_4 > X_1 > X_2 > X_3)$$
$$+ Pr(X_4 > X_1 > X_3 > X_2) = \frac{1}{12} \quad (0.0.8)$$

As $Max(X_1, X_2)$ being X_1 or X_2 is equally likely,

$$\Pr(X_4 > X_2 > X_3) = \frac{1}{12}$$
(0.0.9)

$$\Pr(X_4 > Max(X_1, X_2) > X_3) = 2 \times \frac{1}{12} = \frac{1}{6}$$
(0.0.10)

2) Options C and D: Without loss of generality,

let
$$Max(X_1, X_2) = X_1$$

$$\Pr(X_4 > X_3 > Max(X_1, X_2)) = \Pr(X_4 > X_3 > X_1 > X_2)$$

$$(0.0.11)$$

$$= \frac{1}{24} \qquad (0.0.12)$$

As $Max(X_1, X_2)$ being X_1 or X_2 is equally likely,

$$\Pr(X_4 > X_3 > X_2 > X_1) = \frac{1}{24}$$

$$(0.0.13)$$

$$\Pr(X_4 > X_3 > Max(X_1, X_2)) = 2 \times \frac{1}{24} = \frac{1}{12}$$

$$(0.0.14)$$

Answer: Option (A) and (C)