```
In [2]: import numpy as np #For Various Mathematical Funtions
         import pandas as pd #For Data Analysis
         import seaborn as sns #Statisical Data Visualisation
         import matplotlib.pyplot as plt #For Basic Graphs
         %matplotlib inline
         import warnings, string
         warnings.filterwarnings('ignore') #alert the user of some condition
         from sklearn.model_selection import train_test_split, GridSearchCV #SKLEARN-Data Analysis, model_
         from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
         import nltk #Natural Language Toolkit
         from nltk.corpus import stopwords #Dictionary
         from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer #CV for text to null
         from sklearn.pipeline import Pipeline
         from sklearn.ensemble import RandomForestClassifier #Random Forest Algo of ML #2#11111
         #CNN Approach
         from sklearn.svm import SVC #Support Vector ML Algo #5#1111111111111
         df = pd.read_csv('Preprocessed Fake Reviews Detection Dataset.csv')
         df.head()
Out[3]:
            Unnamed: 0
                                 category rating label
                                                                                        text
         0
                     0 Home_and_Kitchen_5
                                              5.0
                                                    CG love well made sturdi comfort i love veri pretti
                     1 Home_and_Kitchen_5
         1
                                              5.0
                                                    CG
                                                        love great upgrad origin i 've mine coupl year
         2
                     2 Home_and_Kitchen_5
                                              5.0
                                                    CG
                                                            thi pillow save back i love look feel pillow
                                                    CG
         3
                     3 Home_and_Kitchen_5
                                              1.0
                                                               miss inform use great product price i
                     4 Home_and_Kitchen_5
         4
                                              5.0
                                                    CG
                                                          veri nice set good qualiti we set two month
         df.drop('Unnamed: 0',axis=1,inplace=True)
         df.head()
In [5]:
                     category rating label
Out[5]:
                                                                            text_
         0 Home_and_Kitchen_5
                                 5.0
                                       CG love well made sturdi comfort i love veri pretti
         1 Home_and_Kitchen_5
                                 5.0
                                       CG love great upgrad origin i 've mine coupl year
         2 Home_and_Kitchen_5
                                 5.0
                                       CG
                                                thi pillow save back i love look feel pillow
         3 Home_and_Kitchen_5
                                 1.0
                                       CG
                                                   miss inform use great product price i
         4 Home and Kitchen 5
                                 5.0
                                       CG
                                              veri nice set good qualiti we set two month
         df.dropna(inplace=True)
         df['length'] = df['text_'].apply(len)
         df.info()
In [8]:
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 40431 entries, 0 to 40431
         Data columns (total 5 columns):
                       Non-Null Count Dtype
             Column
             category 40431 non-null object
             rating
                      40431 non-null float64
          1
          2
             label
                         40431 non-null object
             text
                         40431 non-null object
             length
                        40431 non-null int64
         dtypes: float64(1), int64(1), object(3)
         memory usage: 1.9+ MB
```

5/5/23, 12:51 PM Fake Review Machine

'i compar thi rawhid to <a data-hook="product-link-linked" class="a-link-normal" href="/goo Out[12]: d-buddy-usa-rawhide-braided-sticks-for-dogs-7-to-8-inch-2-count-pack-of-1/dp/b005gwvwja/ref=cm c r arp d rvw txt?ie=utf8">good buddi usa rawhid braid stick for dogs, 7 to 8-inch, 2 count (pack of 1) for my 3 year old labradoodle. where it is made: thi is made in china. the < a data-hook="product-link-linked" class="a-link-normal" href="/good-buddy-usa-rawhide-braided-st icks-for-dogs-7-to-8-inch-2-count-pack-of-1/dp/b005gwvwja/ref=cm_cr_arp_d_rvw_txt?ie=utf8">good buddi usa rawhid braid stick for dogs, 7 to 8-inch, 2 count (pack of 1) i from the usa. ingredients: made ingredi is beefhid v rawhide. rawhid is the inner layer of the hide of ani cle ft-hoof bovin livestock. beef-hid is premium rawhid made from cow rais for consumption. so, thi is just anoth form of rawhid that is from cow a oppos to just ani anim with a cleft hoof. the he althi hide rawhid ha some extra potato starch, salt, soybean oil, vitamin e (100 iu), and preser vatives. the healthi hide stick have almost zero smell. size: these are realli small pencil size rawhid treat (see pictures) and are too small for my 45 pound dog (medium size dog). the <a data-hook="product-link-linked" class="a-link-normal" href="/good-buddy-usa-rawhide-braided-stic ks-for-dogs-7-to-8-inch-2-count-pack-of-1/dp/b005gwvwja/ref=cm cr arp d rvw txt?ie=utf8">good bu ddi usa rawhid braid stick for dogs, 7 to 8-inch, 2 count (pack of 1) i a veri good siz e for almost ani size dog. dog\' opinion: my dog doesn\'t like these rawhid stick but love the&n bsp;<a data-hook="product-link-linked" class="a-link-normal" href="/good-buddy-usa-rawhide-braid ed-sticks-for-dogs-7-to-8-inch-2-count-pack-of-1/dp/b005gwvwja/ref=cm_cr_arp_d_rvw_txt?ie=utf8"> good buddi usa rawhid braid stick for dogs, 7 to 8-inch, 2 count (pack of 1). the healthi hi de stick come with 20 stick but they smell like plain old rawhid and my dog just leav it lie aro und. the tini amount of vitamin e ad to thi stick isn\'t realli enough in my opinion to give you r dog a "healthi and luxuri coat" like it promises. overall: save your money on thi one and buy the <a data-hook="product-link-linked" class="a-link-normal" href="/good-buddy-usa-rawhidebraided-sticks-for-dogs-7-to-8-inch-2-count-pack-of-1/dp/b005gwvwja/ref=cm_cr_arp_d_rvw_txt?ie=u tf8">good buddi usa rawhid braid stick for dogs, 7 to 8-inch, 2 count (pack of 1) inste ad. if you found thi review help plea give it a thumb up below! thanks!!'

```
In [13]: df.length.describe()
         count
                  40431.000000
Out[13]:
         mean
                     236,315599
         std
                     259.236021
         min
                       8.000000
         25%
                      72.000000
         50%
                     133.000000
         75%
                     291.000000
                    2567.000000
         max
         Name: length, dtype: float64
In [14]:
         def text_process(review):
              nopunc = [char for char in review if char not in string.punctuation]
              nopunc = ''.join(nopunc)
              return [word for word in nopunc.split() if word.lower() not in stopwords.words('english')]
In [15]:
         bow transformer = CountVectorizer(analyzer=text process)
          bow transformer
         CountVectorizer(analyzer=<function text_process at 0x000001EB4D502D30>)
Out[15]:
         bow transformer.fit(df['text '])
In [16]:
         print("Total Vocabulary:",len(bow transformer.vocabulary ))
         Total Vocabulary: 39377
         review4 = df['text_'][3]
In [17]:
          review4
          'miss inform use great product price i'
Out[17]:
In [18]:
         bow_msg4 = bow_transformer.transform([review4])
         print(bow msg4)
         print(bow_msg4.shape)
            (0, 15533)
            (0, 18102)
                          1
            (0, 22653)
                          1
           (0, 27193)
                          1
           (0, 27345)
                          1
           (0, 36860)
         (1, 39377)
```

```
print(bow_transformer.get_feature_names_out()[15841])
In [19]:
         print(bow_transformer.get_feature_names_out()[23848])
         guntot
         nicew
In [20]: bow_reviews = bow_transformer.transform(df['text_'])
In [21]:
         print("Shape of Bag of Words Transformer for the entire reviews corpus:",bow_reviews.shape)
         print("Amount of non zero values in the bag of words model:",bow_reviews.nnz)
         Shape of Bag of Words Transformer for the entire reviews corpus: (40431, 39377)
         Amount of non zero values in the bag of words model: 1038987
In [22]: | print("Sparsity:",np.round((bow_reviews.nnz/(bow_reviews.shape[0]*bow_reviews.shape[1]))*100,2))
         Sparsity: 0.07
In [23]: tfidf_transformer = TfidfTransformer().fit(bow_reviews)
         tfidf_rev4 = tfidf_transformer.transform(bow_msg4)
         print(bow_msg4)
           (0, 15533)
                         1
           (0, 18102)
                         1
           (0, 22653)
                         1
           (0, 27193)
                         1
           (0, 27345)
                         1
           (0, 36860)
                         1
         print(tfidf_transformer.idf_[bow_transformer.vocabulary_['mango']])
In [24]:
         print(tfidf_transformer.idf_[bow_transformer.vocabulary_['book']])
         10.91422964906803
         2.839736252370183
In [25]: tfidf_reviews = tfidf_transformer.transform(bow_reviews)
         print("Shape:",tfidf_reviews.shape)
         print("No. of Dimensions:",tfidf_reviews.ndim)
         Shape: (40431, 39377)
         No. of Dimensions: 2
In [26]: review_train, review_test, label_train, label_test = train_test_split(df['text_'],df['label'],te
In [27]: #RANDOM FOREST CLASSIFIER
         pipeline = Pipeline([
              ('bow',CountVectorizer(analyzer=text_process)),
              ('tfidf',TfidfTransformer()),
              ('classifier',RandomForestClassifier())
          ])
         pipeline.fit(review_train,label_train)
In [28]:
         Pipeline(steps=[('bow',
Out[28]:
                          CountVectorizer(analyzer=<function text process at 0x000001EB4D502D30>)),
                          ('tfidf', TfidfTransformer()),
                         ('classifier', RandomForestClassifier())])
         rfc_pred = pipeline.predict(review_test)
In [29]:
         rfc pred
         array(['OR', 'OR', 'OR', ..., 'CG', 'CG', 'OR'], dtype=object)
Out[29]:
In [30]: #EVALUATION OF RANDOM FOREST CLASSIFIER
         print('Classification Report:',classification_report(label_test,rfc_pred))
         print('Confusion Matrix:',confusion matrix(label_test,rfc pred))
         print('Accuracy Score:',accuracy_score(label_test,rfc_pred))
```

```
Classification Report:
                                               precision
                                                            recall f1-score
                                                                                support
                    CG
                             0.81
                                       0.89
                                                 0.84
                                                           7033
                    OR
                             0.88
                                       0.79
                                                 0.83
                                                           7118
                                                 0.84
                                                          14151
             accuracy
                             0.84
                                       0.84
                                                 0.84
                                                          14151
            macro avg
                                       0.84
                                                 0.84
                                                          14151
         weighted avg
                             0.84
         Confusion Matrix: [[6239 794]
          [1507 5611]]
         Accuracy Score: 0.8373966504133984
         #RESULT OF RANDOM FOREST CLASSIFIER
In [31]:
         print('Model Prediction Accuracy:',str(np.round(accuracy_score(label_test,rfc_pred)*100,2)) +
         Model Prediction Accuracy: 83.74%
In [32]:
         #SUPPORT VECTOR
         pipeline = Pipeline([
              ('bow',CountVectorizer(analyzer=text_process)),
              ('tfidf',TfidfTransformer()),
              ('classifier',SVC())
         ])
In [33]:
         pipeline.fit(review_train,label_train)
         Pipeline(steps=[('bow',
Out[33]:
                           CountVectorizer(analyzer=<function text process at 0x000001EB4D502D30>)),
                          ('tfidf', TfidfTransformer()), ('classifier', SVC())])
In [34]:
         svc_pred = pipeline.predict(review_test)
          svc_pred
         array(['OR', 'OR', 'OR', ..., 'CG', 'CG', 'OR'], dtype=object)
Out[34]:
         #EVALUTION OF SUPPORT VECTOR
In [35]:
         print('Classification Report:',classification_report(label_test,svc_pred))
         print('Confusion Matrix:',confusion_matrix(label_test,svc_pred))
         print('Accuracy Score:',accuracy_score(label_test,svc_pred))
         Classification Report:
                                               precision
                                                            recall f1-score
                                                                                support
                    CG
                             0.89
                                       0.86
                                                 0.88
                                                           7033
                    OR
                             0.87
                                       0.90
                                                 0.88
                                                           7118
                                                 0.88
                                                          14151
             accuracy
                                       0.88
                                                 0.88
                                                          14151
                             0.88
            macro avg
         weighted avg
                             0.88
                                       0.88
                                                 0.88
                                                          14151
         Confusion Matrix: [[6074 959]
          [ 736 6382]]
         Accuracy Score: 0.8802204791180835
         #RESULTS OF SUPPORT VECTOR
In [36]:
         print('Model Prediction Accuracy:',str(np.round(accuracy_score(label_test,svc_pred)*100,2)) +
         Model Prediction Accuracy: 88.02%
In [37]:
         #CONCLUSION
         print('Performance of various ML models:')
         print('\n')
         print('Random Forests Classifier Prediction Accuracy:',str(np.round(accuracy_score(label_test,rf
         print('Support Vector Machines Prediction Accuracy:',str(np.round(accuracy score(label test,svc
         Performance of various ML models:
         Random Forests Classifier Prediction Accuracy: 83.74%
         Support Vector Machines Prediction Accuracy: 88.02%
 In [ ]:
```

5/5/23, 12:51 PM Fake Review Machine

In []: