Elevton 2006

ENUNCIADO DE AVALIAÇÃO

Modelo PED.002.02

Curso	Engenh	nharia Informática				Ano lectivo	08/09
Unidade Sistemas Robóticos Curricular							
Ano	3°	Semestre	2°	Data	27/06/2009	Duração	2h

FREQUÊNCIA

Algumas das questões do teste têm numeração repetida. Nesses casos responda apenas à questão correspondente ao tipo de projecto que está a realizar à disciplina: Robô Físico ou Robô Simulado.

1. Robô Físico

- a) 1 Considere que se pretende programar um robô com um sistema de condução diferencial para que este
- navegue em direcção à chama da vela de modo a ficar o mais centrado possível com esta. O robô está equipado com dois sensores baseados em fototransistores iguais aos estudados nas aulas. a) Desenhe o circuito electrónico desses sensores e explique sucintamente o seu princípio de funcionamento. b) Explique como usaria esse sensor ao nível da programação. Pretende-se que indique as instruções necessárias para declarar o sensor e as instruções necessárias para obter os valores da percepção do sensor. c) Escreva o algoritmo em pseudocódigo que o robô deve seguir para que navegue como se

pretende. Considere que o robô deve parar quando detectar a zona branca onde se encontra a vela.

1. Robô Simulado

- Considere que se pretende programar um robô com um sistema de condução diferencial para que este navegue seguindo uma parede que se encontra à sua direita. a) Foram escolhidos sensores SONAR para equipar o robô de modo a que este consiga detectar a presença da parede. Explique o princípio de funcionamento deste tipo de sensores. b) Explique como usaria esses sensores ao nível da programação. Pretende-se que indique as instruções necessárias para declarar o sensor (caso se justifique), e as instruções necessárias para obter os valores da percepção do sensor. c) Escreva o algoritmo em pseudocódigo que o robô deve seguir para que navegue como se pretende. Considere que o robô pode encontrar paredes à sua frente.
- 2. Qual a diferença entre um motor de corrente continua e um servomotor, no que se refere ao controlo
- 2 dos mesmos?
- 3. Considere o labirinto do concurso Robô Bombeiro representado na figura 1. Determine um caminho
- entre o local onde se encontra o robô e o local assinalado com uma cruz, aplicando o método de decomposição celular.
- 4. Considere que se pretende implementar um sistema de controlo baseado em comportamentos para a) 1 controlar um robô com a tarefa de pulverizar uma plantação do alfaces com um aduba conficie (uma
- a) 1 controlar um robô com a tarefa de pulverizar uma plantação de alfaces com um adubo orgânico (ver b) 2 figure 2). Considera que a sub â tarefa de pulverizar uma plantação de alfaces com um adubo orgânico (ver
- figura 2). Considere que o robô tem os sensores e actuadores adequados para a tarefa. a) Que método de localização considera mais adequado para o robô? Justifique. b) Defina um conjunto de comportamentos que o robô deve ter e organize-os numa máquina de estados finitos (com as respectivas condições de transição), representativa do sistema de controlo que se pretende

ENUNCIADO DE AVALIAÇÃO

Modelo PED.002.02

implementar. c) Na aula foi estudado um método genérico para implementar uma máquina de estados numa linguagem de programação. Descreva esse método em pseudocódigo.

- 5. De um exemplo de um robô móvel para uma determinada aplicação em que seja mais adequado usar
- 2 uma arquitectura de controlo reactiva. Justifique.

Um dos métodos estudados para a localização de robôs móveis foi o método Dead Reckoning. a) 6.

a) 2 Descreva o princípio de funcionamento genérico deste método. b) No método Dead Reckoning o

b) 2 deslocamento do robô pode ser determinado recorrendo à odometria. Comente, justificando, a seguinte afirmação: "A precisão do método Dead Reckoning aumenta se diminuirmos a distância entre as rodas do robô, assim como o diâmetro das mesmas."

7. Robô Simulado

O simulador robótico estudado tem um sistema de localização simulado tipo GPS. Descreva genericamente como se pode usar esse sistema de localização para que o robô construa um mapa baseado numa grelha de ocupação, à medida que navega num ambiente desconhecido.

7. Robô Físico

a) 2,5 Considere o diagrama da figura 3. a) Represente as ligações entre os sensores, os actuadores e o b) 0,5 microcontrolador IntelliBrain (o sensor SRF05 deve ser ligado de modo a que os sinais Echo e Trigger partilhem a mesma porta). b) Identifique eventuais restrições/considerações a ter em conta nas

ENUNCIADO DE AVALIAÇÃO

Modelo PED.002.02

Nome:

No:

Fig. 3

ENUNCIADO DE AVALIAÇÃO

Modelo PED.002.02

Fórmulas da Odometria

deltaDistance = (leftCounts + rightCounts) / 2 * distancePerCount
distancePerCount = Pi * diameterWheel / countsPerRevolution

O perímetro da circunferência é: circunferenceTw = Pi * trackWidth

O perímetro de uma roda é: circunferenceWheel = Pi * wheelDiameter

 ${\tt countsPerRotation = (circunferenceTw \ / \ circunferenceWheel) * countsPerRevolution}$

countsPerRotation = (trackWidth/wheelDiameter) * countsPerRevolution

countsPerRotation = 2 * (trackWidth/wheelDiameter) * countsPerRevolution

radiansPerCount = 2 * Pi / countsPerRotation

radiansPerCount = 2 * Pi / (2 * (trackWidth / wheelDiameter) * countsPerRevolution)

radiansPerCount = Pi / ((trackWidth / wheelDiameter) * countsPerRevolution)

radiansPerCount = Pi * (wheelDiameter / trackWidth) / countsPerRevolution

deltaHeading = (rightCount - leftCount) * radiansPerCount