Heat units: a python tutorial

Growth stages

R1: SILKING

R4: Dough

R2: BLISTER

R5: DENT

R3: MILK

R6: MATURITY

Source Erick Larson

https://www.mississippi-crops.com/2019/05/25/

Source RL Nielsen

The point?

Plant care, hence, farm logistics, are defined by growth!

Herbicides and fungicides are applied at certain stages:

- VE to V3,
- V6 and later,
- etc.

Number of kernel rows is determined between V6 and V12

- Soil moisture, nutrient availability, and stress are critical for yield determination

Certain diseases / pests are more susceptible at different growth stages

- Checking for and dealing with such stress can dramatically improve yield

So, can how we track it?

By counting the "heat"!

So, whats a GDU?

A Growing Degree Unit or Growing Degree Day or Heat Unit is the average number of degrees the plant **experienced in a day.**

$$GDU = \frac{T_{\text{high}} + T_{\text{low}}}{2}$$

Note: The unit is "degree" x "day"

However, studies have shown that plants do not appreciably grow when below a certain temperature, called the "base" temperature.

We can adjust the formula by subtracting it

$$GDU = \frac{T_{high} + T_{low}}{2} - T_{base}$$

Studies also show that plants don't grow any faster *above* a certain temperature.

We'll deal with that later.

Where did that come from?

Consider a "typical" day with a sinusoidal temperature profile

Where did that come from?

Consider a "typical" day with a sinusoidal temperature profile

Then the total "heat" (above Tbase) for the day is the area under the curve and above Tbase

$$GDU = \int_0^1 \left(\frac{T_{\text{high}} - T_{\text{low}}}{2} \sin \left(\frac{2\pi}{1 \text{ day}} x \right) + \frac{T_{\text{high}} + T_{\text{low}}}{2} \right) dx - T_{\text{base}}$$

Okay, let's just do it in parts...

The area under just the sinusoidal part

For a sin with an offset equal to its amplitude, the Area = Amplitude x Length.

$$GDU = \frac{T_{high} - T_{low}}{2} \times 1 \text{ day}$$

Okay, let's just do it in parts...

For the remaining area,

It is a simple rectangle with Area = Height x Length

$$GDU = \frac{T_{high} - T_{low}}{2} \times 1 \, day + (T_{low} - T_{base}) \times 1 \, day$$

Doing it in parts

Then, we can simplify terms:

$$GDU = \frac{T_{\text{high}} - T_{\text{low}}}{2} \times 1 \text{ day} + (T_{\text{low}} - T_{\text{base}}) \times 1 \text{day}$$

$$= \left(\frac{T_{\text{high}} - T_{\text{low}}}{2} + T_{\text{low}} - T_{\text{base}}\right) \times 1 \text{day}$$

$$= \left(\frac{T_{\text{high}} - T_{\text{low}} + 2T_{\text{low}}}{2} - T_{\text{base}}\right) \times 1 \text{day}$$

$$= \left(\frac{T_{\text{high}} + T_{\text{low}}}{2} - T_{\text{base}}\right) \times 1 \text{day} = \left(T_{\text{avg}} - T_{\text{base}}\right) \times 1 \text{day}$$

Some caveats

What if Tavg < Tbase?

Result: Some days the "GDU" value is negative.

Solution: We replace negative values with 0.

Impact: A "negative" GDU day *could* have instantaneous temperatures over T_{base}, and, therefore, some growing would occur that we lost track of; however, this will only happen occasionally and only toward the start of year where GDU / day are small. In practice it is an acceptable error.

What if Thigh > Tmax?

Result: We are counting "heat" that did not translate into growth.

Solution: We replace Thigh with T_{max} and continue as normal.

Impact: We end up "under counting" the total heat energy.

This is standard practice and would require more data to fix.

Let's get back to Python and try it out

