Pesquisa Operacional - Problema da Corrente de Equilíbrio

Eduardo César¹ Manassés Ferreira¹ Marzo Júnior¹ Thiago Linke¹

¹Universidade Federal de Minas Gerais, Brasil

Pesquisa Operacional, 2013

Resumo

- Modelagem
 - O Problema
 - O Modelo
- Resolução
 - Resolução
- 3 Conclusões

Determinação da corrente de equilíbrio

Deseja-se determinar a corrente de equilíbrio que flui em um circuito elétrico como por exemplo:

O Modelo

Modelos

Existe mais de uma forma de se resolver o este problema. Duas dessas formas serão desenvolvidas aqui:

- Modelagem como sistema de equações lineares.
- Modelagem como fluxo em redes com custo convexo.

Modelagem como sistema quadrático

- Problema é resolvido introduzindo-se uma variável x_{ii} representando o fluxo de corrente no arco(i, j) do circuito elétrico e montar um sistema de equações de equilíbrio para estes fluxos. A solução para este sistema fornece a intensidade x_{ii} para cada arco respectivo.
- Baseia-se nos príncipios físicos:
 - Lei de Ohm $\longrightarrow V = R \times I$
 - 1^a Lei de Kirchhof $\longrightarrow I_1 = I_2 + I_3$

Modelagem como fluxo em redes com custo convexo

Esta formulação se utiliza de um comportamento conhecido de que as correntes de equilíbrio nos resistores são os fluxos para qual os resistores dissipam a menor potência total suprida pelas fonte de tensão (ou seja, a corrente elétrica segue o caminho de menor resistência.)

Minimizar
$$\sum_{(i,j)\in A} r_{ij} x_{ij}^2$$
 sujeito a

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{i:(j,i)\in A} x_{ji} = b(i)$$
 para cada nodo $i \in N$,

$$x_{ij} \ge 0$$
 para cada arco $(i, j) \in A$.

Linearização do custo convexo

Aproximação por segmentação:

- Cada custo de arco C_{ij}(x_{ij}) possui p segmentos lineares:
 0 = d_{ij}⁰ < d_{ij}¹ < d_{ij}² < d_{ij} < ..., que denotam os pontos onde a função "quebra".
- custo varia linearmente no intervalo $[d_{ij}k 1, d_{ij}^k]$. Denotamos c_{ij}^k como o coeficiente de custo linear no intervalo $[d_{ij}k - 1, d_{ii}^k]$.
- Sendo assim, para especificar o a função aproximada, precisamos especificar os segmentos e a inclinação da função nesses segmentos.

O Modelo

Linearização do custo convexo

Resolução

O Modelo

Linearização do custo convexo

Linearização do custo convexo

Arco original e arcos correspondentes na nova rede:

O Modelo

Linearização do custo convexo

Sistema quadrático

$$F:A\longrightarrow I\subset\mathbb{N}$$

$$F[(i,j)] = K$$

Tal que
$$(i_1, j_1) < (i_2, j_2) \longleftrightarrow F[(i_1, j_1)] < F[(i_2, j_2)]$$

Sendo que
$$(a, b) < (c, d) \longleftrightarrow (a < c) || ((a == c) \& \& (b < d))$$

Esta ordem faz com que F seja invertível

Sistema quadrático

$$F:A\longrightarrow I\subset\mathbb{N}$$

$$H_{ii} = 0$$
 $i \neq j$

$$i \neq i$$

$$lb_i = 0 \forall i$$

$$lb_i = \infty \forall i$$

$$A_{i,F(i,j)} = 1$$

$$\forall i, j : (i, j) \in A$$

$$A_{i,F(i,j)} = -1$$

$$\forall i, j : (j, i) \in A$$

$$A_{i,j}=0$$

Caso contrário

Resolução

Sistema quadrático

$$b_1 = 10$$

$$b_6 = 5$$

$$b > = -15$$

$$b_i = 0$$
 Caso contrário

Conclusões

 O algoritmo em redes é mais eficiente que a resolução em sistemas de equações lineares.

Conclusões

- O algoritmo em redes é mais eficiente que a resolução em sistemas de equações lineares.
- O equilíbrio está associado à condição de optimalidade do problema linear associado.

Conclusões

- O algoritmo em redes é mais eficiente que a resolução em sistemas de equações lineares.
- O equilíbrio está associado à condição de optimalidade do problema linear associado.
- Bla

Resolução

Dúvidas

