

lacksquare Ordre et opérations dans l'ensemble des nombres réels ${\mathbb R}:$

A. Ordre dans \mathbb{R} :

- a. Activité:
 - a et b de l'ensemble \mathbb{R} .
 - 1. Trouver une comparaison entre a et b pour les cas suivants :
- $(b-a) \in \mathbb{R}^+$ puis $(a-b) \in \mathbb{R}^+$.
- $(b-a) \in \mathbb{R}^{+*}$ puis $(b-a) \in \mathbb{R}^{+*}$.
 - 2. Donner les définitions .
 - **<u>b.</u>** Définitions :

a et b de l'ensemble R

- ❖ a est inférieur ou égale à béquivaut à $(b-a) \in \mathbb{R}^+$ on note $a \le b$.
- ❖ a est strictement inférieur à béquivaut à $(b-a) \in \mathbb{R}^{+^*}$ on note a < b.
- ❖ a est supérieur ou égale à béquivaut à $(a-b) \in \mathbb{R}^+$ on note $a \ge b$.
- ❖ a est strictement supérieur à béquivaut à $(b-a) \in \mathbb{R}^{+*}$ on note a > b.

<u>c.</u> Exemple :

- On a: $\frac{2}{7} > \frac{1}{7}$ et $\sqrt{2} < 2$ et -100 < 1.
- Comparer les deux nombres : $a = 5 \sqrt{3}$ et $b = 2\sqrt{3}$.

B. Propriétés de l'ordre et les opérations :

- a. Activité:
 - 1. Rappeler quelques propriétés ?
 - 2. Démontrer une propriété.
- **b.** propriétés :

a et b et c et d de \mathbb{R} .

- si $(a \le b \text{ et } b \le c)$ alors $a \le c$.(1'ordre est transitive).
- $\operatorname{si}\left(a \le b \text{ et } c \in \mathbb{R}\right) \text{ alors } a + c \le b + c \text{ et } a c \le b c.$
- si $(a \le b \text{ et } c \le d)$ alors $a + c \le b + d$ (l'ordre est compatible avec l'addition).
- $\operatorname{si}\left(c > 0 \text{ et } a \leq b\right)$ alors $a \times c \leq b \times c$ et $\frac{a}{c} \leq \frac{b}{c}$.
- $\operatorname{si}\left(\operatorname{c}<0\text{ et }\operatorname{a}\leq\operatorname{b}\right)$ alors $\operatorname{a}\times\operatorname{c}\geq\operatorname{b}\times\operatorname{c}$ et $\operatorname{\frac{a}{\geq}}\operatorname{\frac{b}{\leq}}$.
- si a et b non nuls et de même signe on a : $a \le b$ équivaut à $\frac{1}{a} \ge \frac{1}{b}$.
- Si a et b sont positifs on a $a \le b$ équivaut à $a^2 \le b^2$.
- Si a et b sont positifs on a $a \le b$ équivaut à $a^n \le b^n$ (avec $n \in \mathbb{N}$)
- Si a et b sont positifs on a $a \le b$ équivaut à $\sqrt{a} \le \sqrt{b}$.

ι≤4

1}

- <u>c.</u> Exercice: x est réel tel que: $1 \le x \le 7$ donner un encadrement du nombre $B = 2x + \frac{3}{x}$.
- d. Remarques:
- L'écriture : $a \le x$ et $x \le b$ sera notée $a \le x \le b$. On lit x est compris entre a et b.
- L'écriture : a < x et x < b sera notée a < x < b. On lit x est strictement compris entre a et b.
- Les intervalles –encadrement :
 - A. Intervalle:
 - a. Activité:

Compléter le tableau suivant :

	Les intervalles bornés	
inégal ités	Représentation sur une droite graduée	intervalles
$2 \le x \le 4$	-3 -2 -1 0 1 2 3 4 5 6 7	$[2,4] = \{x \in \mathbb{R} / 2 \le$
2 < x < 4	-5 -4 -3 -2 -1 0 1 2 3 4 5 6	
2 < x ≤ 4	-5 -4 -3 -2 -1 0 1 2 3 4 5 6	
2≤x<4	-5 -4 -3 -2 -1 0 1 2 3 4 5 6	
Les intervalles non bornés		
inégal ités	Représentation sur une droite graduée	intervalles
x>1	-5 -4 -3 -2 -1 0 1 2 3 4 5 6	$]1,+\infty[=\{x\in\mathbb{R}\mid x$
x≥1	-3 -2 -1 0 1 2 3 4 5 6 7	
x < 3	-5 -4 -3 -2 -1 0 1 2 3 4 5 6	
x ≤ 2	-5 -4 -3 -2 -1 0 1 2 3 4 5 6	

<u>b.</u> Application :

On considère les intervalles suivants : $\begin{bmatrix} 1,4 \end{bmatrix}$; $\begin{bmatrix} -2,0 \end{bmatrix}$ et $\begin{bmatrix} -3,2 \end{bmatrix}$.

1. Donner la représentation des intervalles précédents .

- 2. Donner la longueur de chaque intervalle des intervalles précédents.
- 3. Préciser le centre de chaque intervalle des intervalles précédents.
- 4. Que représente chaque nombre des nombres suivants : 1,5 et 1 et 2,5 respectivement pour les intervalles suivants $\begin{bmatrix} 1,4 \end{bmatrix}$; $\begin{bmatrix} -2,0 \end{bmatrix}$; $\begin{bmatrix} -3,2 \end{bmatrix}$.

c. Vocabulaire:

 $a \text{ et } b \text{ de } \mathbb{R} \text{ tel que : } a < b \text{ .}$

Pour les intervalles suivants [a,b] et]a,b [et [a,b [et]a,b] on a :

- * a et b sont appelés les extrémités de l'intervalles.
- ❖ Le nombre positif b a est appelé la distance entre a et b. (sachant que a < b)
- **❖** Le nombre positif b a est appelé la longueur (ou capacité) des intervalles précédents
- ❖ Le nombre $x_0 = \frac{a+b}{2}$ représente le centre des intervalles précédents.
- **Le nombre positif** $r = \frac{b-a}{2}$ représente le rayon des intervalles précédents.
- **\Leftrightarrow** Les deux symboles $-\infty$ et $+\infty$ ne sont pas des nombres.
- ❖ Ø est un intervalle on l'appelé ensemble vide .

B. Encadrement:

a. Définition:

x est un nombre réel.

- Réaliser un encadrement du nombre x c'est trouver deux nombres réels a et b tel que a < b on $a : a \le x \le b$ ou bien $a < x \le b$ ou bien $a \le x \le b$ ou bien $a \le x \le b$ ou bien $a \le x \le b$.
- Le nombre réel positif b a s'appelle l'amplitude de cet encadrement.

b. Exercice:

1. Donner un encadrement de $\sqrt{2}$ d'amplitude 0,01.

2. Soit
$$x \in \left[\frac{1}{3}, 1\right[$$
.

- Déterminer un encadrement du nombre x + 4 et préciser son amplitude.
- En déduit un encadrement du nombre $\frac{x}{x+4}$ et préciser son amplitude.
- Vérifier que $\frac{x}{x+4} = 1 \frac{4}{x+4}$
- Déterminer un encadrement du nombre $\frac{x}{x+4}$ d'amplitude $\frac{112}{65}$.

Intersections et réunions d'intervalles :

A. Intersections d'intervalles :

a. Définition :

A et B sont deux ensembles.

Tous les éléments communs de A et de B constituent l'ensembles noté A \(\hat{D}\) B appelé intersection de

A et B. Donc: $A \cup B = \{x \mid x \in A \text{ et } x \in B\}$.

- **b.** Remarque: $x \in A \cap B$ équivaut à $(x \in A \text{ et } x \in B)$.
- **<u>c.</u>** Exemple: soient: $A = \{1, 2, 3, 4, 5, 6\}$ et $B = \{-1, 2, 4, 6, 44, 50\}$.
- **d.** Exemples pour les intervalles :

Remarque:

On va décaler les intervalles par rapport à l'axe gradué pour des raison de clarté du dessin en réalité la représentation graphique des intervalles reste toujours des parties de l'axe gradué.

$$I = [-1,3]$$
 (couleur violet) et $J = [1,5]$ (couleur maron)

on a : $I \cap J = [-1,3] \cap [1,5] = [1,3]$ intersection couleur rouge.

Exemple 2:

$$I = [-1,3]$$
 (couleur violet) et $J = [1,5]$ (couleur maron)

on a : $I \cap J = [-1,3] \cap]1,5] =]1,3]$ intersection couleur rouge.

Exemple 3:

$$I = [-1,3]$$
 (couleur violet) et $J = [3,5]$ (couleur maron)

on a : $I \cap J = [-1,3] \cap]3,5[=\emptyset]$ intersection couleur rouge (pas de couleur)

B. Réunions d'intervalles :

a. Définition:

A et B sont deux ensembles.

Tous les éléments qui appartiennent soit à A ou soit à B constituent l'ensembles noté $A \cup B$, appelé union de A et B. Donc : $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$

c. Exemple: soient:
$$A = \{1, 2, 3, 4, 5, 6\}$$

et
$$B = \{-1, 2, 4, 6, 44, 50\}$$

$$I = [-1,3]$$
 (couleur violet) et $J = [1,5]$ (couleur maron)

on a : $I \cup J = [-1,3] \cup [1,5] = [-1,5]$ réunion couleur rouge .

Exemple 2:

$$I = [-1,3]$$
 (couleur violet) et $J = [1,5]$ (couleur maron)

on a : $I \cup J = [-1,3] \cup]1,5] = [-1,5]$ réunion couleur rouge .

Exemple 3:

$$I = [-1,3]$$
 (couleur violet) et $J = [3,5]$ (couleur maron)

on a : $I \cup J = [-1,3] \cup [3,5] = [-1,5]$ réunion couleur rouge.

Valeur absolue d'un nombre réel et propriétés :

A. Valeur absolue d'un nombre réel :

a. Activité:

Soit une droite graduée d'origine O et d'unité de mesure OI = 1

- 1. Construire les points A et B et C d'abscisses 3 et -2 et 2.
- 2. Donner les distances suivantes : OA et OB et OC.

b. Vocabulaire:

- Le nombre positif OA = 3 est appelé la valeur absolue du nombre 3 on note OA = 3 = |3|.
- Le nombre positif OB = 2 est appelé la valeur absolue du nombre -2 on note OB = 2 = |-2|.
- Le nombre positif OC = 2 est appelé la valeur absolue du nombre 2 on note OC = 2 = |2|.

c. Définition

x est un nombre réel. (D) est une droite graduée d'origine O et d'unité de mesure OI = 1 le point M est un point de (D) dont l'abscisse est x.

la valeur absolue du nombre x est la distance OM on note OM = |x|.

d. Remarques:

- $x \in [0, +\infty[$ (càd $x \ge 0$) on a : |x| = x
- $x \in]-\infty, 0]$ (càd $x \le 0$) on a : |x| = -x.
- |0| = 0 et |-x| = |x| et $|x| \ge 0$
 - **e.** Exemples: $|1-\sqrt{2}| = \sqrt{2}-1$; $|-\sqrt{3}| = \sqrt{3}$; $|-\frac{3}{7}| = \frac{3}{7}$; $|\sqrt{5}| = \sqrt{5}$.

B. Propriétés de la valeur absolue :

<u>a.</u> Propriétés :

- Pour tout x de \mathbb{R} on a : $\sqrt{a^2} = |a|$.
- Pour tous a et b de \mathbb{R} on a : $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \times |\mathbf{b}|$ et $|\mathbf{a}^n| = |\mathbf{a}|^n$ $\mathbf{n} \in \mathbb{N}$; $|\mathbf{a}^{-n}| = |\mathbf{a}|^{-n}$ $(\mathbf{a} \neq \mathbf{0})$.
- Pour tous a et b de \mathbb{R} on a : $|a+b| \le |a|+|b|$.
- Pour tout b de \mathbb{R}^* on a : $\left| \frac{1}{\mathbf{b}} \right| = \frac{1}{|\mathbf{b}|}$.
- Pour tout b de \mathbb{R}^* on a : $\left| \frac{\mathbf{a}}{\mathbf{b}} \right| = \frac{|\mathbf{a}|}{|\mathbf{b}|}$.
- Pour tout a et b de \mathbb{R} on a : |a| = |b| équivaut à (a = -b) ou a = b.

b. Exemple:

Simplifier l'expression suivante $\sqrt{(2x-3)^2}$ sachant que $x \ge 2$.

C. Distance et la valeur absolue :

a. Définition :

Soit une droite graduée d'origine O. Notons A d'abscisse a et B d'abscisse b.

Le nombre positif |b-a| est appelé la distance entre les points entre A et B.

on a :
$$AB = |b-a|$$
.

b. Exercice :

On considère la droite graduée suivante :

- 1. Trouver les nombres réels x qui vérifie :
- $|x| \le 2$ puis $|x| \ge 2$.
- Donner la propriété.
 - 2. Soient a et b de \mathbb{R} tel que : a < b.
- Déterminer x_0 le centre du segment [a,b] puis déterminer r le rayon du segment [a,b].
- Ecrire [a,b] en fonction de x₀ et r.
- Montrer que : $|x-x_0| \le r$ équivaut à $x_0 r \le x \le x_0 + r$.

c. Propriétés:

Soit x de $\mathbb R$ et r un nombre réel positif

- $|x| \le r \text{ \'equivaut \'a } -r \le x \le r.$
- |x| < r 'equivaut à -r < x < r.
- $|x| \ge r$ équivaut à x ∈]-∞, r] ∪ [r, +∞[
- $|x| > r \text{ \'equivaut \'a } x \in]-\infty, r[\bigcup]r, +\infty[$
- $|x-x_0| \le r$ équivaut à $x_0 r \le x \le x_0 + r$
- On a: $[a,b] = [x_0 r, x_0 + r]$ avec $x_0 = \frac{a+b}{2}$ centre de l'intervalle et $r = \frac{b-a}{2}$ son rayon
- **d.** Exercice: Soit x de \mathbb{R} tel que: $|x-3| \le 2$ déterminer l'intervalle [a,b] tel que $x \in [a,b]$.

V. Approximation – Approximation décimale :

A. Approximation:

<u>a.</u> Définitions :

Soit x de R et r un nombre réel strictement positif.

- ❖ On dit que a est une valeur approchée (ou approximation) de x à r près (ou à la précision r) lorsque x vérifie $|x-a| \le r$.
- On dit que a est une valeur approchée par excès (ou approximation par excès) de x à r près (ou à la précision r) lorsque x vérifie $a \le x \le a + r$.
- On dit que a est une valeur approchée par défaut (ou approximation par défaut) de x à r près (ou à la précision r) lorsque x vérifie a − r ≤ x ≤ a.

b. Exercice:

- 1. Donner l'intervalle I de centre 2 et de 0,5.
- 2. Soit x de I . 1. Déterminer l'intervalle J tel que $\frac{1}{x} \in J$.
 - 2. déterminer une approximation du nombre $\frac{1}{x}$ à $\frac{2}{25}$ près (ou à la précision $\frac{2}{25}$).

c. Cas particulier:

Le nombre x vérifie : $a \le x \le a + r = b$ on a :

- ✓ Le nombre a est une valeur approchée par défaut de x à la précision b-a.
- ✓ Le nombre b est une valeur approchée par excès de x à la précision b-a.
- ✓ Le nombre $\frac{a+b}{2}$ est une valeur approchée par défaut de x à la précision $\frac{b-a}{2}$.

d. Exemple:

On a: $1,4142 \le \sqrt{2} \le 1,4143$.

- ✓ Le nombre 1,4142 est une valeur approchée par défaut de $\sqrt{2}$ à la précision 10^{-4} . (car b-a=1,4143-1,4142=0,0001= 10^{-4}).
- ✓ Le nombre 1,4143 est une valeur approchée par excès de $\sqrt{2}$ à la précision 10^{-4} . (car b-a=1,4143-1,4142=0,0001= 10^{-4}).
- ✓ Le nombre 1,41425 est une valeur approchée de $\sqrt{2}$ à la précision 510⁻⁵.

$$(\operatorname{car} \frac{b-a}{2} = \frac{1,4143-1,4142}{2} = \frac{0,0001}{2} = 0,00005 = 5 \times 10^{-5} = \frac{0,0001}{2})$$

B. Approximation décimale :

> La partie entière d'un nombre réel :

a. Activité:

Donner la partie entière des nombres suivants : 3 et 41,5 et -7 et -2,5.

La parie entière de 21 est 21 on note $\mathbb{E}(21) = 21$.

La parie entière de 2,14 est 2 on note E(2,14)=2.

b. Définition :

Pour tout nombre réel x il existe un nombre entier relatif unique p tel que : $p \le x < p+1$.

Le nombre p s'appelle la partie entière de x, on note : E(x) = p.

> Approximation décimale :

a. Activité:

Prenons l'exemple précédent : on a $1,4142 \le \sqrt{2} \le 1,4143$ donc

$$14142 \times 10^{-4} \le \sqrt{2} \le (14142 + 1) \times 10^{-4}$$

On dit que:

Le nombre 1,4142 s'appelle approximation décimale par défaut de $\sqrt{2}$ à la précision 10^{-4}

■ Le nombre 1,4143 s'appelle approximation décimale par excès de $\sqrt{2}$ à la précision 10^{-4} b. Définitions :

Soit x de $\mathbb R$ et r un nombre réel et n est un nombre naturel tel que la partie entière du nombre $10^n \times x$ est p (c.à.d. $\left(E\left(10^n \times x\right) = p \right)$ ou bien $p \le 10^n \times x < p+1$ d'où :

- Le nombre décimal $p \times 10^{-n}$ est appelé approximation décimale par défaut du nombre x à la précision 10^{-n} (ou de l'ordre n).
- Le nombre décimal $(p+1)\times 10^{-n}$ est appelé approximation décimale par excès du nombre x à la précision 10^{-n} (ou de l'ordre n).