Nama : Teosofi Hidayah Agung

NRP : 5002221132

3.2

4. Tunjukkan jika X dan Y suatu barisan yang sedemikian sehingga X konvergen ke $x \neq 0$ dan XY konvergen, maka Y juga konvergen.

Jawab:

Karena $XY = (x_n y_n)$ barisan konvergen, maka dapat diandaikan $\lim(x_n y_n) = z$ dan $\lim(x_n) = x \neq 0$.

Selanjutnya perhatikan bahwa bahwa limit barisan Y adalah $\lim(y_n) = \lim(\frac{x_n y_n}{x_n})$. Dapat disimpulkan bahwa barisan Y konvergen ke $\frac{z}{x}$.

3.3

7. Misal $x_1 := a > 0$ dan $x_{n+1} = x_n + 1/x_n$ untuk $n \in \mathbb{N}$. Tentukan apakah (x_n) konvergen atau divergen.

Jawab:

Andaikan bahwa (x_n) konvergen ke L, sehingga $\lim(x_n) = L$. Menurut teorema ketunggalan limit diperoleh

$$\lim(x_n) = \lim(x_{n+1})$$

$$\lim(x_n) = \lim(x_n + 1/x_n)$$

$$\lim(x_n) = \lim(x_n) + \lim(1/x_n)$$

$$L = L + 1/L$$

$$0 = 1/L \quad \text{(Kontradiksi)}$$

Jadi harusnlah (x_n) divergen.

3.4

9. Misalkan untuk setiap subbarisan dari $X = (x_n)$ memiliki subbarisan yang konvergen ke 0. Tunjukkan bahwa lim X = 0.

Jawab:

Andaikan $\lim(x_n) = L \neq 0$, sehingga untuk setiap $\epsilon > 0$ terdapat $K(\epsilon) \in \mathbb{N}$ sedemikian sehingga $\forall n \geq K(\epsilon) \in \mathbb{N}$ berlaku $|x_n - L| < \epsilon$.

Menurut sebuah teorema, Jika $X=(x_n)$ konvergen ke L maka sebarang barisan bagian dari X juga konvergen ke $L \neq 0$. Namun hal ini kontradiksi bahwa setiap subbarisan dari $X=(x_n)$ memiliki subbarisan yang konvergen ke 0.

 $\dot{}$. dapat disimpulkan barisan $X=(x_n)$ konvergen ke0atau limX=0

3.5

4. Tunjukkan menurut definisi bahwa jika (x_n) dan (y_n) adalah barisan Cauchy, maka (x_n+y_n) dan (x_ny_n) juga merupakan barisan Cauchy.

Jawab

Menurut definisi, barisan $A=(a_n)$ dikatakan barisan Cauchy jika untuk setiap $\epsilon>0$, $\exists H(\epsilon)\in\mathbb{N}$ sedemikian sehingga $\forall n,m\geq H(\epsilon)$ berlaku $|a_n-a_m|<\epsilon$.

(i) Untuk $(x_n + y_n)$ diberikan $\forall n, m \geq H(\epsilon)$, maka diperoleh

$$|(x_n + y_n) - (x_m + y_m)| = |(x_n - x_m) + (y_n - y_m)|$$

$$\leq |x_n - x_m| + |y_n - y_m|$$

Karena (x_n) dan (y_n) adalah barisan Cauchy, maka

$$\forall n, m \ge H(\epsilon)_x \Longrightarrow |x_n - x_m| < \epsilon/2$$
dan

$$\forall n, m \ge H(\epsilon)_y \Longrightarrow |y_n - y_m| < \epsilon/2$$

Sehingga untuk $H(\epsilon) = \sup\{H(\epsilon)_x, H(\epsilon)_y\}$ diperoleh

$$|x_n - x_m| + |y_n - y_m| < \epsilon/2 + \epsilon/2 = \epsilon$$

Maka didapat $|(x_n+y_n)-(x_m+y_m)|<\epsilon$ yang dimana merupakan definisi bahwa (x_n+y_n) adalah barisan Cauchy

(ii) Untuk $(x_n y_n)$ diberikan $\forall n, m \geq H(\epsilon)$, maka diperoleh

$$|x_n y_n - x_m y_m| = |x_n y_n - x_m y_n + x_m y_n - x_m y_m|$$

$$\leq |x_n y_n - x_m y_n| + |x_m y_n - x_m y_m|$$

$$\leq |y_n||x_n - x_m| + |x_m||y_n - y_m|$$

Sebuah teorema mengatakan "jika barisan (a_n) konvergen maka barisan itu terbatas". Karena (x_n) dan (y_n) adalah barisan Cauchy, maka sudah tentu barisan itu konvergen juga terbatas. Sehingga didapat $|x_m| \leq M_x$ dan $|y_n| \leq M_y$, lalu dapat diambil $M = \sup\{M_x, M_y\}$ yang berakibat

$$|y_n||x_n - x_m| + |x_m||y_n - y_m| \le M|x_n - x_m| + M|y_n - y_m|$$

Kembali lagi bahwa (x_n) dan (y_n) adalah barisan Cauchy, maka

$$\forall n, m \ge H(\epsilon)_x \Longrightarrow |x_n - x_m| < \frac{\epsilon}{2M}$$

dan

$$\forall n, m \ge H(\epsilon)_y \Longrightarrow |y_n - y_m| < \frac{\epsilon}{2M}$$

Sehingga untuk $H(\epsilon) = \sup\{H(\epsilon)_x, H(\epsilon)_y\}$ diperoleh

$$M|x_n - x_m| + M|y_n - y_m| < M\left(\frac{\epsilon}{2M}\right) + M\left(\frac{\epsilon}{2M}\right) = \epsilon$$

Maka didapat $|(x_ny_n)-(x_my_m)|<\epsilon$ yang dimana merupakan definisi bahwa (x_ny_n) adalah barisan Cauchy