Trace Equivalence in Abstract GSOS

Oberseminar des Lehrstuhls für Theoretische Informatik

Robin Jourde¹, Stelios Tsampas, Sergey Goncharov, Henning Urbat, Pouya Partow, Jonas Forster 14th January 2025

Outline

- 1. Preliminaries
 - **1.1 GSOS**
 - 1.2 **Abstract** GSOS
 - 1.3 Trace & Kleisli categories
 - 1.4 Trace-GSOS
 - 1.5 Trace equivalence & congruence
 - 1.6 Strong and affine monads
- 2. Result
 - 2.1 The theorem
 - 2.2 Sketch of the proof
 - 2.3 Focus on hypothesis : Smoothness
 - 2.4 Focus on hypothesis : Affineness
 - 2.5 And for non affine monads?
- 3. Conclusion

1. Preliminaries

• a **framework** for specifying reduction rules and semantics

- a **framework** for specifying reduction rules and semantics
 - \rightarrow rule format

- a **framework** for specifying reduction rules and semantics
 - \rightarrow rule format
- given a **syntax** (with endofunctor Σ)

- a **framework** for specifying reduction rules and semantics
 - \rightarrow rule format
- given a syntax (with endofunctor Σ)

Example: Set of operations \mathcal{O} with arity map $\operatorname{ar}:\mathcal{O}\to\mathbb{N}, \Sigma X=\sum_{\sigma\in\mathcal{O}}X^{\operatorname{ar}\sigma}$

- a **framework** for specifying reduction rules and semantics
 - \rightarrow rule format
- given a syntax (with endofunctor Σ)

Example: Set of operations \mathcal{O} with arity map $\operatorname{ar}:\mathcal{O}\to\mathbb{N}, \Sigma X=\sum_{\sigma\in\mathcal{O}}X^{\operatorname{ar}\,\sigma}$

Example: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$

- a framework for specifying reduction rules and semantics
 → rule format
- given a syntax (with endofunctor Σ)

Example: Set of operations \mathcal{O} with arity map $\operatorname{ar}:\mathcal{O}\to\mathbb{N}, \Sigma X=\sum_{\sigma\in\mathcal{O}}X^{\operatorname{ar}\,\sigma}$

Example: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t \rightsquigarrow \Sigma X = 1 + A \times X + X^2 + X$

- a framework for specifying reduction rules and semantics
 → rule format
- given a syntax (with endofunctor Σ)

Example: Set of operations \mathcal{O} with arity map $\operatorname{ar}:\mathcal{O}\to\mathbb{N}, \Sigma X=\sum_{\sigma\in\mathcal{O}}X^{\operatorname{ar}\,\sigma}$

Example: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t \iff \Sigma X = 1 + A \times X + X^2 + X$

Eg. for $a, b, c, \tau \in A : a.(b.a.0 + ? \tau.a.c.0)$

- a framework for specifying reduction rules and semantics
 → rule format
- given a syntax (with endofunctor Σ)

Example: Set of operations \mathcal{O} with arity map $\operatorname{ar}:\mathcal{O}\to\mathbb{N}, \Sigma X=\sum_{\sigma\in\mathcal{O}}X^{\operatorname{ar}\,\sigma}$

Example: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t \iff \Sigma X = 1 + A \times X + X^2 + X$

Eg. for $a, b, c, \tau \in A : a.(b.a.0 + ? \tau.a.c.0) = a(ba + ? \tau ac)$

- a framework for specifying reduction rules and semantics
 → rule format
- given a syntax (with endofunctor Σ)

Example: Set of operations $\mathcal O$ with arity map $\operatorname{ar}:\mathcal O\to\mathbb N$, $\Sigma X=\sum_{\sigma\in\mathcal O}X^{\operatorname{ar}\,\sigma}$

Example: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t \rightsquigarrow \Sigma X = 1 + A \times X + X^2 + X$

Eg. for $a, b, c, \tau \in A : a.(b.a.0 + ? \tau.a.c.0) = a(ba + ? \tau ac)$

• **behaviour** (with endofunctor *H*)

- a framework for specifying reduction rules and semantics
 → rule format
- given a syntax (with endofunctor Σ)

Example: Set of operations $\mathcal O$ with arity map $\operatorname{ar}:\mathcal O\to\mathbb N$, $\Sigma X=\sum_{\sigma\in\mathcal O}X^{\operatorname{ar}\,\sigma}$

Example: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t \rightsquigarrow \Sigma X = 1 + A \times X + X^2 + X$

Eg. for $a, b, c, \tau \in A : a.(b.a.0 + ? \tau.a.c.0) = a(ba + ? \tau ac)$

• **behaviour** (with endofunctor *H*)

Example: x terminates $(x \downarrow)$ or progresses to x' with label $a \in A$ $(x \stackrel{a}{\rightarrow} x')$

- a framework for specifying reduction rules and semantics
 → rule format
- given a syntax (with endofunctor Σ)

Example: Set of operations $\mathcal O$ with arity map $\operatorname{ar}:\mathcal O\to\mathbb N$, $\Sigma X=\sum_{\sigma\in\mathcal O}X^{\operatorname{ar}\,\sigma}$

Example: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t \rightsquigarrow \Sigma X = 1 + A \times X + X^2 + X$

Eg. for $a, b, c, \tau \in A : a.(b.a.0 + ? \tau.a.c.0) = a(ba + ? \tau ac)$

• **behaviour** (with endofunctor *H*)

Example: x terminates $(x \downarrow)$ or progresses to x' with label $a \in A$ $(x \stackrel{a}{\rightarrow} x') \rightsquigarrow HX = \mathcal{P}(1 + A \times X)$

• $k: X \to HX$ a *H***-coalgebra** \longrightarrow set equipped with semantics

• $k: X \to HX$ a *H***-coalgebra** \longrightarrow set equipped with semantics

Example: Let $k: X \to HX$, for $x \in X$, $x \downarrow \Leftrightarrow * \in k(x)$ and $x \stackrel{a}{\to} x' \Leftrightarrow (a, x') \in k(x)$

• $k: X \to HX$ a *H***-coalgebra** \longrightarrow set equipped with semantics

Example: Let $k: X \to HX$, for $x \in X$, $x \downarrow \Leftrightarrow * \in k(x)$ and $x \stackrel{a}{\to} x' \Leftrightarrow (a, x') \in k(x)$

GSOS rules

$$\frac{\left\{x_{i}\overset{a_{i,k}}{\rightarrow}y_{i,k}\right\}_{i\in I,k\in K_{i}}\left\{x_{j}\downarrow\right\}_{j\in J}}{\sigma(x_{1}...x_{n})\overset{b}{\rightarrow}u\left[x_{1}...x_{n},y_{i,k}...\right]}\quad\text{or}\quad\frac{\left\{x_{i}\overset{a_{i,k}}{\rightarrow}y_{i,k}\right\}_{i\in I,k\in K_{i}}\left\{x_{j}\downarrow\right\}_{j\in J}}{\sigma(x_{1}...x_{n})\downarrow}$$

with $\sigma \in \mathcal{O}, n = \text{ar } \sigma, u \in \Sigma^*, a_{i,k}, b \in A, I, J, K_i \subset \llbracket 1, n \rrbracket$

• syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$

- syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$
- rules

- syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$
- rules

0 \

- syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$
- rules

$$\frac{}{0\downarrow} \quad \frac{}{a.t \xrightarrow{a} t} \forall a$$

- syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$
- rules

$$\frac{1}{0\downarrow} \quad \frac{1}{a.t \stackrel{a}{\rightarrow} t} \forall a \qquad \frac{t \stackrel{a}{\rightarrow} t'}{t + u \stackrel{a}{\rightarrow} t'} \forall a \qquad \frac{u \stackrel{a}{\rightarrow} u'}{t + u \stackrel{a}{\rightarrow} u'} \forall a \qquad \frac{t \downarrow u \downarrow}{t + u \downarrow}$$

- syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$
- rules

$$\frac{1}{0 \downarrow} \quad \frac{1}{a \cdot t} \forall a \quad \frac{t \stackrel{a}{\rightarrow} t'}{t + u \stackrel{a}{\rightarrow} t'} \forall a \quad \frac{u \stackrel{a}{\rightarrow} u'}{t + u \stackrel{a}{\rightarrow} u'} \forall a \quad \frac{t \downarrow u \downarrow}{t + u \downarrow} \quad \frac{t \stackrel{\tau}{\rightarrow} t' \quad t \stackrel{\tau}{\rightarrow} t''}{? \quad t \stackrel{\tau}{\rightarrow} t' + t''}$$

- syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$
- rules

$$\frac{}{0\downarrow} \quad \frac{}{a.t \xrightarrow{a}t} \forall a \quad \frac{t \xrightarrow{a}t'}{t+u \xrightarrow{a}t'} \forall a \quad \frac{u \xrightarrow{a}u'}{t+u \xrightarrow{a}u'} \forall a \quad \frac{t \downarrow u \downarrow}{t+u \downarrow} \quad \frac{t \xrightarrow{\tau}t' \ t \xrightarrow{\tau}t''}{?t \xrightarrow{\tau}t' + t''}$$

- syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$
- rules

$$\frac{1}{0 \downarrow} \quad \frac{1}{a \cdot t} \forall a \quad \frac{t \stackrel{a}{\rightarrow} t'}{t + u \stackrel{a}{\rightarrow} t'} \forall a \quad \frac{u \stackrel{a}{\rightarrow} u'}{t + u \stackrel{a}{\rightarrow} u'} \forall a \quad \frac{t \downarrow u \downarrow}{t + u \downarrow} \quad \frac{t \stackrel{\tau}{\rightarrow} t' \quad t \stackrel{\tau}{\rightarrow} t''}{? t \stackrel{\tau}{\rightarrow} t' + t''}$$

- syntax: $t = 0 \mid a.t \ \forall a \in A \mid t+t \mid ?t$
- rules

$$\frac{1}{0 \downarrow} \frac{1}{a \cdot t} \forall a \qquad \frac{t \xrightarrow{a} t'}{t + u \xrightarrow{a} t'} \forall a \qquad \frac{u \xrightarrow{a} u'}{t + u \xrightarrow{a} u'} \forall a \qquad \frac{t \downarrow u \downarrow}{t + u \downarrow} \qquad \frac{t \xrightarrow{\tau} t' \quad t \xrightarrow{\tau} t''}{? t \xrightarrow{\tau} t' + t''}$$

$$\frac{a(b + c)}{a \downarrow} \qquad \frac{ab + ac}{b \downarrow} \qquad \frac{? (\tau a + \tau b)}{\tau \downarrow}$$

$$\frac{b}{b + c} \qquad b \qquad c \qquad a \qquad a + b \qquad b$$

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

• any syntax functor Σ and behaviour functor H

- any syntax functor Σ and behaviour functor H
- rules \leadsto a natural transformation $\rho_X: \Sigma(X \times HX) \to H\Sigma^*X$

- any syntax functor Σ and behaviour functor H
- rules \rightsquigarrow a natural transformation $\rho_X: \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times (X \times \mathcal{P}(1 + A \times X)) + (X \times \mathcal{P}(1 + A \times X))^2 \to \mathcal{P}(1 + A \times \Sigma^*X)$$

- any syntax functor Σ and behaviour functor H
- rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

Example: For the previous example without ?: $\Sigma X = 1 + A \times X + X^2$,

$$\rho: 1 + A \times (X \times \mathcal{P}(1 + A \times X)) + (X \times \mathcal{P}(1 + A \times X))^2 \to \mathcal{P}(1 + A \times \Sigma^* X)$$

• $\rho(*) = \{*\}$

0 \

- any syntax functor Σ and behaviour functor H
- rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times (X \times \mathcal{P}(1 + A \times X)) + (X \times \mathcal{P}(1 + A \times X))^2 \to \mathcal{P}(1 + A \times \Sigma^*X)$$

- $\rho(*) = \{*\}$
- $\rho((a, t, T)) = \{(a, t)\}$

$$\frac{}{a.t \stackrel{a}{\rightarrow} t} \forall a$$

- any syntax functor Σ and behaviour functor H
- rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times (X \times \mathcal{P}(1 + A \times X)) + (X \times \mathcal{P}(1 + A \times X))^2 \to \mathcal{P}(1 + A \times \Sigma^*X)$$

- $\rho(*) = \{*\}$
- $\rho((a,t,T)) = \{(a,t)\}$
- $\rho((t,T),(u,U)) = \{(a,t') \mid \forall (a,t') \in T\} \cup$

$$\frac{t \xrightarrow{a} t'}{t + u \xrightarrow{a} t'} \forall a$$

- any syntax functor Σ and behaviour functor H
- rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times (X \times \mathcal{P}(1 + A \times X)) + (X \times \mathcal{P}(1 + A \times X))^2 \to \mathcal{P}(1 + A \times \Sigma^*X)$$

- $\rho(*) = \{*\}$
- $\rho((a,t,T)) = \{(a,t)\}$
- $\rho((t,T),(u,U)) = \{(a,t') \mid \forall (a,t') \in T\} \cup \{(a,u') \mid \forall (a,u') \in U\} \cup \{(a,u') \mid \forall (a,u') \in U\}$

$$\frac{t \xrightarrow{a} t'}{t + u \xrightarrow{a} t'} \forall a \qquad \frac{u \xrightarrow{a} u'}{t + u \xrightarrow{a} u'} \forall a$$

- any syntax functor Σ and behaviour functor H
- rules \rightsquigarrow a natural transformation $\rho_X : \Sigma(X \times HX) \to H\Sigma^*X$

$$\rho: 1 + A \times (X \times \mathcal{P}(1 + A \times X)) + (X \times \mathcal{P}(1 + A \times X))^2 \to \mathcal{P}(1 + A \times \Sigma^*X)$$

- $\rho(*) = \{*\}$
- $\rho((a,t,T)) = \{(a,t)\}$
- $\rho((t,T),(u,U)) = \{(a,t') \mid \forall (a,t') \in T\} \cup \{(a,u') \mid \forall (a,u') \in U\} \cup \{* \mid * \in T \land * \in U\}$

$$\frac{t \xrightarrow{a} t'}{t + u \xrightarrow{a} t'} \forall a \qquad \frac{u \xrightarrow{a} u'}{t + u \xrightarrow{a} u'} \forall a \qquad \frac{t \downarrow u \downarrow}{t + u \downarrow}$$

1.3 Trace & Kleisli categories

• trace of a term t: tr t = set of words of A^* that can be produced by t

1.3 Trace & Kleisli categories

• trace of a term t: tr t= set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow$$

• trace of a term t: tr t= set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

• trace of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example: $\operatorname{tr} a(b+c) =$

• trace of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example: $\operatorname{tr} a(b+c) = \{ab, ac\},\$

• trace of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example: $\operatorname{tr} a(b+c) = \{ab, ac\}, \operatorname{tr} (ab+ac) =$

• trace of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example: $tr \ a(b+c) = \{ab, ac\}, tr \ (ab+ac) = \{ab, ac\},\$

• **trace** of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example: $tr \ a(b+c) = \{ab, ac\}, tr \ (ab+ac) = \{ab, ac\}, tr \ (a+b?c) = \{ab, ac\}, tr \ (a+b?c$

• **trace** of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example: $tr\ a(b+c) = \{ab, ac\}, tr\ (ab+ac) = \{ab, ac\}, tr\ (a+b?c) = \{a\}$

• **trace** of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example:
$$tr\ a(b+c) = \{ab, ac\}, tr\ (ab+ac) = \{ab, ac\}, tr\ (a+b?c) = \{a\}$$

• recall $HX = \mathcal{P}(1 + A \times X)$

• **trace** of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example:
$$tr\ a(b+c) = \{ab, ac\}, tr\ (ab+ac) = \{ab, ac\}, tr\ (a+b?c) = \{a\}$$

- recall $HX = \mathcal{P}(1 + A \times X) = TBX$
 - $T = \mathcal{P}$ effectful behaviour
 - $B = 1 + A \times X$ pure behaviour

• **trace** of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example:
$$tr\ a(b+c) = \{ab, ac\}, tr\ (ab+ac) = \{ab, ac\}, tr\ (a+b?c) = \{a\}$$

- recall $HX = \mathcal{P}(1 + A \times X) = TBX$
 - $T = \mathcal{P}$ effectful behaviour \rightsquigarrow powerset : non-determinism
 - ▶ $B = 1 + A \times X$ pure behaviour \rightsquigarrow words : A^* (initial B-algebra)

• **trace** of a term t: tr t = set of words of A^* that can be produced by t, defined by coinduction

$$\varepsilon \in \operatorname{tr} t \Leftrightarrow t \downarrow \qquad a.w \in \operatorname{tr} t \Leftrightarrow t \stackrel{a}{\to} u \land w \in \operatorname{tr} u$$

Example:
$$tr\ a(b+c) = \{ab, ac\}, tr\ (ab+ac) = \{ab, ac\}, tr\ (a+b?c) = \{a\}$$

- recall $HX = \mathcal{P}(1 + A \times X) = TBX$
 - $ightharpoonup T = \mathcal{P}$ effectful behaviour \rightsquigarrow powerset : non-determinism
 - ▶ $B = 1 + A \times X$ pure behaviour \rightsquigarrow words : A^* (initial B-algebra)
- $\operatorname{tr} t \in \mathcal{P}(A^*)$

Trace **abstractly**

Trace abstractly

• in the Kleisli category of T

Trace abstractly

• in the Kleisli category of T

$$A \in \mathrm{Kl}(T) \Leftrightarrow A \in \mathbb{C}$$

$$A - B \in Kl(T) \Leftrightarrow A \to TB \in \mathbb{C}$$

Trace abstractly

• in the Kleisli category of T

$$A \in \mathrm{Kl}(T) \Leftrightarrow A \in \mathbb{C}$$

$$A \multimap B \in \mathrm{Kl}(T) \Leftrightarrow A \to TB \in \mathbb{C}$$

• A^* is the final B-coalgebra in $\mathrm{Kl}(T)$

Trace abstractly

• in the Kleisli category of T

$$A \in \mathrm{Kl}(T) \Leftrightarrow A \in \mathbb{C}$$

$$A - B \in \mathrm{Kl}(T) \Leftrightarrow A \to TB \in \mathbb{C}$$

• A^* is the final B-coalgebra in Kl(T)

$$\zeta: A^* - BA^* \text{ or } A^* \to TBA^*$$

$$\zeta(\varepsilon) = \{*\}, \quad \zeta(a.w) = \{(a, w)\}$$

Trace abstractly

• in the Kleisli category of T

$$A \in \mathrm{Kl}(T) \Leftrightarrow A \in \mathbb{C}$$

$$A - B \in \mathrm{Kl}(T) \Leftrightarrow A \to TB \in \mathbb{C}$$

• A^* is the final B-coalgebra in Kl(T)

$$\zeta: A^* - BA^* \text{ or } A^* \to TBA^*$$

$$\zeta(\varepsilon) = \{*\}, \quad \zeta(a.w) = \{(a, w)\}$$

• for any $k: X \rightarrow BX$,

• GSOS rule

$$\rho: \Sigma(X \times HX) \to H\Sigma^*X$$

• GSOS rule

$$\rho: \Sigma(X \times TBX) \to TB\Sigma^*X$$

• GSOS rule

$$\rho: \Sigma(X \times TBX) \to TB\Sigma^*X$$

• Trace-GSOS rule

$$\rho: \Sigma(X \times BX) \to TB\Sigma^*X$$

• GSOS rule

$$\rho: \Sigma(X \times TBX) \to TB\Sigma^*X$$

• Trace-GSOS rule

$$\rho: \Sigma(X \times BX) \to TB\Sigma^*X$$

→ only pure observations

• GSOS rule

$$\rho: \Sigma(X \times TBX) \to TB\Sigma^*X$$

• Trace-GSOS rule

→ only pure observations

• GSOS rule

$$\rho: \Sigma(X \times TBX) \to TB\Sigma^*X$$

• Trace-GSOS rule

$$\rho: \Sigma(X \times BX) - B\Sigma^*X$$

- → only pure observations
- Rules observe each variable once and only once

• GSOS rule

$$\rho: \Sigma(X \times TBX) \to TB\Sigma^*X$$

• Trace-GSOS rule

$$\rho: \Sigma(X \times BX) \longrightarrow B\Sigma^*X$$

→ only pure observations

• Rules observe each variable once and only once

Example:

$$\frac{t \xrightarrow{\tau} t' \quad t \xrightarrow{\tau} t''}{? t \xrightarrow{\tau} t' + t''} \qquad \frac{a.t \xrightarrow{a} \forall a}{a.t \xrightarrow{a} t} \forall a \qquad \frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \qquad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a$$

• trace equivalence:

• trace equivalence: $t \equiv u \Leftrightarrow \text{tr } t = \text{tr } u$

• trace equivalence: $t \equiv u \Leftrightarrow \operatorname{tr} t = \operatorname{tr} u$

Example: Recall tr $a(b+c) = \{ab, ac\} = \text{tr } (ab+ac)$.

• trace equivalence: $t \equiv u \Leftrightarrow \operatorname{tr} t = \operatorname{tr} u$

Example: Recall tr $a(b+c) = \{ab, ac\} = \text{tr } (ab+ac)$.

$$a(b+c) \equiv ab + ac$$

• trace equivalence: $t \equiv u \Leftrightarrow \operatorname{tr} t = \operatorname{tr} u$

Example: Recall tr $a(b+c) = \{ab, ac\} = \text{tr } (ab+ac)$.

$$a(b+c) \equiv ab + ac$$
 but not bisimilar $\rightsquigarrow \equiv$ coarsest

• trace equivalence: $t \equiv u \Leftrightarrow \operatorname{tr} t = \operatorname{tr} u$

Example: Recall tr $a(b+c)=\{ab,ac\}={\rm tr}\ (ab+ac).\ a(b+c)\equiv ab+ac$ but not bisimilar $\leadsto \equiv {\rm coarsest}$

• congruence:

• trace equivalence: $t \equiv u \Leftrightarrow \operatorname{tr} t = \operatorname{tr} u$

Example: Recall tr $a(b+c) = \{ab, ac\} = \text{tr } (ab+ac)$. $a(b+c) \equiv ab+ac$ but not bisimilar $\rightsquigarrow \equiv \text{coarsest}$

• congruence: $\forall \sigma, (\forall i, t_i \equiv u_i) \Rightarrow \sigma(t_1...t_n) \equiv \sigma(u_1...u_n)$

• trace equivalence: $t \equiv u \Leftrightarrow \operatorname{tr} t = \operatorname{tr} u$

Example: Recall tr $a(b+c) = \{ab, ac\} = \text{tr } (ab+ac)$. $a(b+c) \equiv ab+ac$ but not bisimilar $\rightsquigarrow \equiv \text{coarsest}$

- congruence: $\forall \sigma, (\forall i, t_i \equiv u_i) \Rightarrow \sigma(t_1...t_n) \equiv \sigma(u_1...u_n)$
- prove $\operatorname{tr}(\sigma(t_1...t_n)) = [\![\sigma]\!](\operatorname{tr}\ t_1...\operatorname{tr}\ t_n)$

• trace equivalence: $t \equiv u \Leftrightarrow \operatorname{tr} t = \operatorname{tr} u$

Example: Recall tr $a(b+c) = \{ab, ac\} = \text{tr } (ab+ac)$. $a(b+c) \equiv ab+ac$ but not bisimilar $\rightsquigarrow \equiv \text{coarsest}$

- congruence: $\forall \sigma, (\forall i, t_i \equiv u_i) \Rightarrow \sigma(t_1...t_n) \equiv \sigma(u_1...u_n)$
- prove $\operatorname{tr}(\sigma(t_1...t_n)) = [\![\sigma]\!](\operatorname{tr}\ t_1...\operatorname{tr}\ t_n)$

1.6 Strong and affine monads

• strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y)$

1.6 Strong and affine monads

 $\bullet \ \ \mathbf{strong\ monad} \colon \mathrm{st}_{X,Y}: X \times TY \to T(X \times Y) \not \leadsto \mathrm{st}': TX \times Y \to T(X \times Y)$

1.6 Strong and affine monads

- strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y) \xrightarrow{\operatorname{st}} \operatorname{st}': TX \times Y \to T(X \times Y)$ double strength $\operatorname{dst}: TX \times TY \xrightarrow{\operatorname{st}} T(TX \times Y) \xrightarrow{T\operatorname{st}'} T^2(X \times Y) \xrightarrow{\mu} T(X \times Y)$

- strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y) \leadsto \operatorname{st}': TX \times Y \to T(X \times Y)$ double strength $\operatorname{dst}: TX \times TY \overset{\operatorname{st}}{\to} T(TX \times Y) \overset{T\operatorname{st}'}{\to} T^2(X \times Y) \overset{\mu}{\to} T(X \times Y)$ (and dst')

- strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y) \xrightarrow{\operatorname{st}} \operatorname{st}': TX \times Y \to T(X \times Y)$ double strength $\operatorname{dst}: TX \times TY \overset{\operatorname{st}}{\to} T(TX \times Y) \overset{T\operatorname{st}'}{\to} T^2(X \times Y) \overset{\mu}{\to} T(X \times Y)$ (and dst') affine monad: $TX \times TY \overset{\operatorname{dst}}{\to} T(X \times Y) \overset{(T\pi_1, T\pi_2)}{\to} TX \times TY = \operatorname{id} \text{ or } \eta_1: 1 \overset{\simeq}{\to} T1$

- strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y) \xrightarrow{\operatorname{st}} \operatorname{st}': TX \times Y \to T(X \times Y)$ double strength $\operatorname{dst}: TX \times TY \overset{\operatorname{st}}{\to} T(TX \times Y) \overset{T\operatorname{st}'}{\to} T^2(X \times Y) \overset{\mu}{\to} T(X \times Y)$ (and dst')
 affine monad: $TX \times TY \overset{\operatorname{dst}}{\to} T(X \times Y) \overset{(T\pi_1, T\pi_2)}{\to} TX \times TY = \operatorname{id} \text{ or } \eta_1: 1 \overset{\cong}{\to} T1$
- **affine part**: greatest affine submonad

- strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y) \xrightarrow{\operatorname{st}} \operatorname{st}': TX \times Y \to T(X \times Y)$ double strength $\operatorname{dst}: TX \times TY \overset{\operatorname{st}}{\to} T(TX \times Y) \overset{T\operatorname{st}'}{\to} T^2(X \times Y) \overset{\mu}{\to} T(X \times Y)$ (and dst')
 affine monad: $TX \times TY \overset{\operatorname{dst}}{\to} T(X \times Y) \overset{(T\pi_1, T\pi_2)}{\to} TX \times TY = \operatorname{id} \text{ or } \eta_1: 1 \overset{\cong}{\to} T1$
- **affine part**: greatest affine submonad

Example:

• Powerset $\mathcal{P} \rightsquigarrow \mathcal{P}_{ne}$

- strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y) \xrightarrow{\operatorname{st}} \operatorname{st}': TX \times Y \to T(X \times Y)$ double strength $\operatorname{dst}: TX \times TY \overset{\operatorname{st}}{\to} T(TX \times Y) \overset{T\operatorname{st}'}{\to} T^2(X \times Y) \overset{\mu}{\to} T(X \times Y)$ (and dst')
 affine monad: $TX \times TY \overset{\operatorname{dst}}{\to} T(X \times Y) \overset{(T\pi_1, T\pi_2)}{\to} TX \times TY = \operatorname{id} \text{ or } \eta_1: 1 \overset{\cong}{\to} T1$
- **affine part**: greatest affine submonad

Example:

- Powerset $\mathcal{P} \rightsquigarrow \mathcal{P}_{ne}$
- (Sub)distribution $\mathcal{S} \rightsquigarrow \mathcal{D}$

- strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y) \xrightarrow{\text{st}'} \operatorname{st}': TX \times Y \to T(X \times Y)$
- double strength dst : $TX \times TY \stackrel{\text{st}}{\to} T(TX \times Y) \stackrel{T\text{st'}}{\to} T^2(X \times Y) \stackrel{\mu}{\to} T(X \times Y)$ (and dst') affine monad: $TX \times TY \stackrel{\text{dst}}{\to} T(X \times Y) \stackrel{\tau}{\to} TX \times TY = \text{id or } \eta_1 : 1 \stackrel{\cong}{\to} T1$
- **affine part**: greatest affine submonad

Example:

- Powerset $\mathcal{P} \rightsquigarrow \mathcal{P}_{ne}$
- (Sub)distribution $\mathcal{S} \rightsquigarrow \mathcal{D}$ with $\mathcal{D}X = \left\{ \sum_{i \in I} p_i x_i \mid \sum p_i = 1, x_i \in X, I \text{ finite} \right\}$ and $\mathcal{S}X = \left\{ \sum_{i \in I} p_i x_i \mid \sum p_i \leq 1, x_i \in X, I \text{ finite} \right\}$

- strong monad: $\operatorname{st}_{X,Y}: X \times TY \to T(X \times Y) \xrightarrow{\text{st}'} \operatorname{st}': TX \times Y \to T(X \times Y)$
- double strength dst : $TX \times TY \stackrel{\text{st}}{\to} T(TX \times Y) \stackrel{T\text{st}'}{\to} T^2(X \times Y) \stackrel{\mu}{\to} T(X \times Y)$ (and dst') affine monad: $TX \times TY \stackrel{\text{dst}}{\to} T(X \times Y) \stackrel{\tau}{\to} TX \times TY = \text{id or } \eta_1 : 1 \stackrel{\simeq}{\to} T1$
- **affine part**: greatest affine submonad

Example:

- Powerset $\mathcal{P} \rightsquigarrow \mathcal{P}_{ne}$
- (Sub)distribution $\mathcal{S} \leadsto \mathcal{D}$ with $\mathcal{D}X = \left\{ \sum_{i \in I} p_i x_i \mid \sum p_i = 1, x_i \in X, I \text{ finite} \right\}$ and $\mathcal{S}X = \left\{ \sum_{i \in I} p_i x_i \mid \sum p_i \leq 1, x_i \in X, I \text{ finite} \right\}$
- Maybe $-+1 \rightsquigarrow Id$

2. Result

Theorem 2.1.1: Let \mathbb{C} be a cartesian category,

Theorem 2.1.1: Let \mathbb{C} be a cartesian category, T be a strong **affine** *effectful* monad,

Theorem 2.1.1: Let \mathbb{C} be a cartesian category, T be a strong **affine** *effectful* monad, B a *behaviour* endofunctor that extends to $\mathrm{Kl}(T)$,

Theorem 2.1.1: Let \mathbb{C} be a cartesian category, T be a strong **affine** *effectful* monad, B a *behaviour* endofunctor that extends to $\mathrm{Kl}(T)$, Σ a *syntax* endofunctor that extends to $\mathrm{Kl}(T)$ with all free objects (Σ^*X) ,

Theorem 2.1.1: Let \mathbb{C} be a cartesian category, T be a strong **affine** *effectful* monad, B a *behaviour* endofunctor that extends to $\mathrm{Kl}(T)$, Σ a *syntax* endofunctor that extends to $\mathrm{Kl}(T)$ with all free objects (Σ^*X) , let $\zeta:Z \to BZ$ be the final \overline{B} -coalgebra (with $\exists z, \zeta = \eta \circ z$) and

Theorem 2.1.1: Let \mathbb{C} be a cartesian category, T be a strong **affine** effectful monad, B a behaviour endofunctor that extends to $\mathrm{Kl}(T)$, Σ a syntax endofunctor that extends to $\mathrm{Kl}(T)$ with all free objects (Σ^*X) , let $\zeta:Z - BZ$ be the final \overline{B} -coalgebra (with $\exists z, \zeta = \eta \circ z$) and let $\rho: \Sigma(X \times BX) \to TB\Sigma^*X$ be a natural transformation representing Trace-GSOS rules

Theorem 2.1.1: Let \mathbb{C} be a cartesian category, T be a strong **affine** effectful monad, B a behaviour endofunctor that extends to $\mathrm{Kl}(T)$, Σ a syntax endofunctor that extends to $\mathrm{Kl}(T)$ with all free objects (Σ^*X) , let $\zeta:Z - BZ$ be the final \overline{B} -coalgebra (with $\exists z, \zeta = \eta \circ z$) and let $\rho: \Sigma(X \times BX) \to TB\Sigma^*X$ be a natural transformation representing Trace-GSOS rules such that ρ is **smooth** and is a map of distributive laws,

Theorem 2.1.1: Let \mathbb{C} be a cartesian category, T be a strong **affine** *effectful* monad, B a *behaviour* endofunctor that extends to $\mathrm{Kl}(T)$, Σ a *syntax* endofunctor that extends to $\mathrm{Kl}(T)$ with all free objects (Σ^*X) , let $\zeta:Z \to BZ$ be the final \overline{B} -coalgebra (with $\exists z, \zeta = \eta \circ z$) and let $\rho: \Sigma(X \times BX) \to TB\Sigma^*X$ be a natural transformation representing Trace-GSOS rules such that ρ is **smooth** and is a map of distributive laws, then trace equivalence is a congruence.

Recall

• define [-]: semantics of Z + induction + trace

- define [-]: semantics of Z + induction + trace
- $\Sigma^* X \to B\Sigma^* X$ (with ρ^*)

- define [-]: semantics of Z + induction + trace
- $\Sigma^* X \to B\Sigma^* X$ (with ρ^*) and $Z \to BZ$

- define [-]: semantics of Z + induction + trace
- $\Sigma^* X B\Sigma^* X$ (with ρ^*) and Z BZ
- show \overline{B} -coalgebra morphisms

- define [-]: semantics of Z + induction + trace
- $\Sigma^* X \to B\Sigma^* X$ (with ρ^*) and $Z \to BZ$
- show \overline{B} -coalgebra morphisms
- tr ∘ *i* ✓

- define [-]: semantics of Z + induction + trace
- $\Sigma^* X \to B\Sigma^* X$ (with ρ^*) and $Z \to BZ$
- show \overline{B} -coalgebra morphisms
- tr ∘ i
- $[-] \circ \Sigma^*$ tr more complicated : naturality + smoothness + map of distributive law of ρ^*

Recall

- define [-]: semantics of Z + induction + trace
- $\Sigma^* X B\Sigma^* X$ (with ρ^*) and Z BZ
- show \overline{B} -coalgebra morphisms
- $\operatorname{tr} \circ i$
- $[-] \circ \Sigma^*$ tr more complicated : naturality + smoothness + map of distributive law of ρ^*

Remark: need dst

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{a} t'}{?t \xrightarrow{a} t + t'} \forall a$$

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{a} t'}{?t \xrightarrow{a} t + t'} \forall a$$

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{a} t'}{?t \xrightarrow{a} t + t'} \forall a$$

$$\frac{t \stackrel{a}{\rightarrow} t'}{!t \stackrel{a}{\rightarrow} ?t'} \forall a \qquad \frac{t \stackrel{a}{\rightarrow} t'}{?t \stackrel{a}{\rightarrow} t + t'} \forall a$$

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{a} t'}{?t \xrightarrow{a} t + t'} \forall a$$

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t}$$

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t}$$

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t}$$

$$\begin{array}{c}
|a(b+\tau)| \\
a \downarrow \\
?(b+\tau) \\
\tau \downarrow \\
b + \tau \\
0
\end{array}$$

$$\operatorname{tr} ! a(b+\tau) = \{a\tau b, a\tau\tau\}$$

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t}$$

$$\operatorname{tr} ! a(b+\tau) = \{a\tau b, a\tau\tau\}$$

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t}$$

$$\operatorname{tr} ! a(b+\tau) = \{a\tau b, a\tau\tau\} \neq \{a\tau\tau\} = \operatorname{tr} ! (ab+a\tau)$$

Example: $t = 0 \mid a.t \mid t+t \mid ?t \mid !t$ with the previous rules for 0, a., + and

$$\frac{t \xrightarrow{a} t'}{!t \xrightarrow{a} ?t'} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t}$$

$$\operatorname{tr} ! a(b+\tau) = \{a\tau b, a\tau\tau\} \neq \{a\tau\tau\} = \operatorname{tr} ! (ab+a\tau)$$

 \longrightarrow observations that are "not used" \cong

smoothness

- smoothness
 - ▶ linear: if $x_i \to x_{i'}$ then not x_i and $x_{i'}$ in the target

smoothness

- ▶ **linear**: if $x_i \to x_{i'}$ then not x_i and $x_{i'}$ in the target
- if x_i in the target, the observation on x_i is **irrelevant** ie. any other observation could have been done (the same rule for each other possible observation exists)

- smoothness
 - ▶ **linear**: if $x_i \to x_{i'}$ then not x_i and $x_{i'}$ in the target
 - if x_i in the target, the observation on x_i is **irrelevant** ie. any other observation could have been done (the same rule for each other possible observation exists)
- abstract smoothness

- smoothness
 - ▶ **linear**: if $x_i \to x_{i'}$ then not x_i and $x_{i'}$ in the target
 - if x_i in the target, the observation on x_i is **irrelevant** ie. any other observation could have been done (the same rule for each other possible observation exists)
- abstract smoothness

• need smoothness **for** ρ^* (terms with more than one layer)

• need smoothness for ρ^* (terms with more than one layer)

• need smoothness for ρ^* (terms with more than one layer)

$$\frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \qquad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

• need smoothness for ρ^* (terms with more than one layer)

$$\frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \qquad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

$$\operatorname{let} X_1 = \left\{ t \stackrel{\tau}{\to} t', u \stackrel{a}{\to} u' \right\}$$

• need smoothness for ρ^* (terms with more than one layer)

$$\frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \qquad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

$$\operatorname{let} X_1 = \left\{t \overset{\tau}{\to} t', u \overset{a}{\to} u'\right\} \operatorname{then} \operatorname{mix} X_1 = \left\{t \overset{\tau}{\to} t', t \overset{a}{\to} u', u \overset{\tau}{\to} t', u \overset{a}{\to} u'\right\}$$

• need smoothness for ρ^* (terms with more than one layer)

$$\frac{1}{0\downarrow} \frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \quad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a \quad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

$$\text{let } X_1 = \left\{t \xrightarrow{\tau} t', u \xrightarrow{a} u'\right\} \text{ then mix } X_1 = \left\{t \xrightarrow{\tau} t', t \xrightarrow{a} u', u \xrightarrow{\tau} t', u \xrightarrow{a} u'\right\}$$

$$\frac{t \xrightarrow{\tau} t' \in X_1}{?t \xrightarrow{\tau} t'} \qquad \frac{u \xrightarrow{\tau} ? \notin X_1}{?u \xrightarrow{\tau}}$$

$$\frac{?u \xrightarrow{\tau}}{b.?t \xrightarrow{b} ?t} \qquad \frac{?u \xrightarrow{\tau}}{b.?u \xrightarrow{\tau}}$$

• need smoothness for ρ^* (terms with more than one layer)

$$\frac{1}{0\downarrow} \frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \qquad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

$$\det X_1 = \left\{ t \xrightarrow{\tau} t', u \xrightarrow{a} u' \right\} \text{ then mix } X_1 = \left\{ t \xrightarrow{\tau} t', t \xrightarrow{a} u', u \xrightarrow{\tau} t', u \xrightarrow{a} u' \right\}$$

$$\frac{t \xrightarrow{\tau} t' \in X_1}{?t \xrightarrow{\tau} t'} \qquad \frac{u \xrightarrow{\tau} ? \notin X_1}{?u \xrightarrow{\tau}}$$

$$\frac{?t \xrightarrow{\tau} t'}{b.?t \xrightarrow{b} ?t} \qquad \frac{?u \xrightarrow{\tau}}{b.?u \xrightarrow{\tau}}$$

$$\Phi(\rho^*)(b.?x_1)(X_1) = \left\{ \xrightarrow{b} ?t \right\}$$

• need smoothness for ρ^* (terms with more than one layer)

$$\frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \qquad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

$$\text{let } X_1 = \left\{ t \xrightarrow{\tau} t', u \xrightarrow{a} u' \right\} \text{ then mix } X_1 = \left\{ t \xrightarrow{\tau} t', t \xrightarrow{a} u', u \xrightarrow{\tau} t', u \xrightarrow{a} u' \right\}$$

$$\frac{t \xrightarrow{\tau} t' \in X_1}{?t \xrightarrow{\tau} t'} \qquad \frac{u \xrightarrow{\tau} ? \notin X_1}{?u \xrightarrow{\tau}} \qquad \frac{t \xrightarrow{\tau} t' \in \text{mix } X_1}{?t \xrightarrow{\tau} t'} \qquad \frac{u \xrightarrow{\tau} t' \in \text{mix } X_1}{?u \xrightarrow{\tau} t'}$$

$$\frac{?t \xrightarrow{\tau} t'}{b.?t \xrightarrow{b} ?t} \qquad \frac{?u \xrightarrow{\tau} t'}{b.?u \xrightarrow{b} ?t}$$

$$\Phi(\rho^*)(b.?x_1)(X_1) = \left\{ \xrightarrow{b} ?t \right\}$$

• need smoothness for ρ^* (terms with more than one layer)

$$\frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \quad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a \quad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

$$\text{let } X_1 = \left\{ t \xrightarrow{\tau} t', u \xrightarrow{a} u' \right\} \text{ then mix } X_1 = \left\{ t \xrightarrow{\tau} t', t \xrightarrow{a} u', u \xrightarrow{\tau} t', u \xrightarrow{a} u' \right\}$$

$$\frac{t \xrightarrow{\tau} t' \in X_1}{?t \xrightarrow{\tau} t'} \qquad \frac{u \xrightarrow{\tau}? \notin X_1}{?u \xrightarrow{\tau}} \qquad \frac{t \xrightarrow{\tau} t' \in \text{mix } X_1}{?t \xrightarrow{\tau} t'} \qquad \frac{u \xrightarrow{\tau} t' \in \text{mix } X_1}{?u \xrightarrow{\tau} t'}$$

$$\frac{?t \xrightarrow{\tau} t'}{b.?t \xrightarrow{b}?t} \qquad \frac{?u \xrightarrow{\tau} t'}{b.?u \xrightarrow{b}?t} \qquad \frac{?u \xrightarrow{\tau} t'}{b.?u \xrightarrow{b}?u}$$

$$\Phi(\rho^*)(b.?x_1)(X_1) = \left\{ \xrightarrow{b}?t \right\} \neq \left\{ \xrightarrow{b}?t, \xrightarrow{b}?u \right\} = \Phi(\rho^*)(b.?x_1)(\text{mix } X_1)$$

• need smoothness for ρ^* (terms with more than one layer)

Example: $t = 0 \mid a.t \mid ?t$ with the following smooth rules

$$\frac{t \xrightarrow{b} t'}{a.t \xrightarrow{a} t} \forall a, b \qquad \frac{t \downarrow}{a.t \xrightarrow{a} t} \forall a \qquad \frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

$$\operatorname{let} X_1 = \left\{ t \overset{\tau}{\to} t', u \overset{a}{\to} u' \right\} \operatorname{then} \operatorname{mix} X_1 = \left\{ t \overset{\tau}{\to} t', t \overset{a}{\to} u', u \overset{\tau}{\to} t', u \overset{a}{\to} u' \right\}$$

$$\frac{t \xrightarrow{\tau} t' \in X_{1}}{? t \xrightarrow{\tau} t'} \qquad \frac{u \xrightarrow{\tau}? \notin X_{1}}{? u \xrightarrow{\tau}} \qquad \frac{t \xrightarrow{\tau} t' \in \max X_{1}}{? t \xrightarrow{\tau} t'} \qquad \frac{u \xrightarrow{\tau} t' \in \max X_{1}}{? u \xrightarrow{\tau} t'} \qquad \frac{? u \xrightarrow{\tau} t'}{b ? t} \qquad \frac{? u \xrightarrow{\tau} t'}{b .? u \xrightarrow{b}? u}$$

$$\Phi(\rho^*)(b.?\,x_1)(X_1) = \left\{ \stackrel{b}{\to} ?\,t \right\} \neq \left\{ \stackrel{b}{\to} ?\,t, \stackrel{b}{\to} ?\,u \right\} = \Phi(\rho^*)(b.?\,x_1) (\text{mix } X_1) \longrightarrow \text{the } X_1 = \left\{ \stackrel{b}{\to} ?\,t \right\} = \left\{$$

stuck computation is messing with smoothness 😕

Theorem 2.4.1: If T is an **affine** monad then the smoothness of ρ entails the smoothness of ρ^* .

Theorem 2.4.1: If T is an **affine** monad then the smoothness of ρ entails the smoothness of ρ^* .

• affine part of \mathcal{P} is $\mathcal{P}_{ne} \longrightarrow$ no stuckness!

Theorem 2.4.1: If T is an **affine** monad then the smoothness of ρ entails the smoothness of ρ^* .

- affine part of \mathcal{P} is $\mathcal{P}_{ne} \longrightarrow$ no stuckness!
- at the level of rules: give a semantics to every situation, nothing unspecified

Theorem 2.4.1: If T is an **affine** monad then the smoothness of ρ entails the smoothness of ρ^* .

- affine part of \mathcal{P} is $\mathcal{P}_{ne} \longrightarrow$ no stuckness!
- at the level of rules: give a semantics to **every situation**, nothing unspecified *Example*:

$$\frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'}$$

Theorem 2.4.1: If T is an **affine** monad then the smoothness of ρ entails the smoothness of ρ^* .

- affine part of \mathcal{P} is $\mathcal{P}_{ne} \longrightarrow$ no stuckness!
- at the level of rules: give a semantics to **every situation**, nothing unspecified *Example*:

$$\frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'} + \frac{t \xrightarrow{a} t'}{?t \dots} \forall a \neq \tau \qquad \frac{t \downarrow}{?t \dots}$$

need to have some semantics

Theorem 2.4.1: If T is an **affine** monad then the smoothness of ρ entails the smoothness of ρ^* .

- affine part of \mathcal{P} is $\mathcal{P}_{ne} \longrightarrow$ no stuckness!
- at the level of rules: give a semantics to **every situation**, nothing unspecified *Example*:

$$\frac{t \xrightarrow{\tau} t'}{?t \xrightarrow{\tau} t'} + \frac{t \xrightarrow{a} t'}{?t \downarrow} \forall a \neq \tau \qquad \frac{t \downarrow}{?t \downarrow}$$

need to have some semantics eg. termination ↓

• still under investigation 🚧

- 🔹 still under investigation 🚧
- idea 1: add an extra sink state \perp for stuck computations

- still under investigation 🚧
- idea 1: add an extra sink state \perp for stuck computations
- idea 2: map stuckness to **explicit termination** (cf. previous example) (a) change of semantics

- 🔹 still under investigation 🚧
- idea 1: add an extra sink state \perp for stuck computations
- idea 2: map stuckness to **explicit termination** (cf. previous example) a change of semantics
- \longrightarrow Can we get back information on the original system?

• For an affine monadic effect, under reasonable assumptions, trace equivalence is a congruence 😝 !

- For an affine monadic effect, under reasonable assumptions, trace equivalence is a congruence 🕳!
- Can we do better?

- For an affine monadic effect, under reasonable assumptions, trace equivalence is a congruence 🕳!
- Can we do better? Can we find a good reduction to the affine case for non affine monads?

- For an affine monadic effect, under reasonable assumptions, trace equivalence is a congruence 🕳 !
- Can we do better? Can we find a good reduction to the affine case for non affine monads?
- Thank you all for welcoming me in the chair 🧡

Powered by Typst