INDEX

Page numbers followed by (n) indicate that the entry appears in a footnote on that page.

A

Abel, N. H., 2, 4, 183, 184, 219 Abel's integral equation, 2, 4, 9, 13, 183-186 Abramowitz, M., 219 Airy functions, 180 as hypergeometrics of complexity $\frac{0}{2}$, Algorithms for differintegration, 136-148 Allegre, J., 133, 202, 219 Analog differintegration, 148-154 Analytic functions, 77, 80, 116 differintegrals of, 75 Applications of fractional calculus to Abel's integral equation, 183-186 to biology, 10 to chemical physics, 2 to classical calculus, 181-195 to definition of function families. 192-195 to differential equations, 2, 8, 10, 13 to diffusion of atmospheric pollutants, 208 to diffusion problems, 197-218 to electrical conduction in transmission lines, 210 to electrochemistry, 2, 14, 15, 204 to functional equations, 10 to geometry, 4

to grain boundary grooving in metals, 216-218 to integral equations, 2, 10, 12, 13, 15 to location of candidate solutions for differential equations, 189-192 to mechanics, 4 to Navier-Stokes equation, 12, 14 to prediction of peak pollutant concentrations, 209 to problems of elasticity, 2 to quantitative chemical analysis. 205-207 to rheology, 2 to solution of Bessel's equation, 186-189 to solution of Legendre's equation, 191 to tautochrone problem, 2, 4, 5 to theory of heat conduction, 202-203 to transmission line theory, 2 to transport problems, 2 to wave equation, 11 Associated Legendre functions, as reducible transcendentals, 161 Ayabe, Y., 160, 221

В

Babbitt, J. D., 197, 219 Barrer, R. M., 197, 219 Basis hypergeometrics, 168-172 complementary, 168

Basic hypergeometrics (cont.)	Churchill, R. V., 134, 136, 150, 219
definition of, 168	Circuit for performing semiintegration,
graphs of, 168	see Semiintegrating circuits
Laplace transformation of, 171	Civin, P., 53, 219
relationships among, 171	Classical calculus, 25-44
Bassam, M. A., 12	Classical derivatives, 28
Belavin, V. A., 2, 13, 219	Classical integrals, 29
Berg, E. J., 9	Cole, K. S., 10
Bessel functions, 13, 97-98, 124, 125,	Complementary functions, 4, 5, 8
177–178	Complete beta functions, 21, 65
as hypergeometrics of complexity $\frac{0}{2}$,	Complex error functions, 209
164	Composition rule, 48, 82–87
	for differentiable functions, 85
as reducible transcendentals, 161	tabular summary, 86
relationships among, 98	for differintegrable units, 82-84
Bessel's equation, 186–189	tabular summary, 84
solution via fractional calculus, 186–189	examples illustrating failure, 83, 86–87
Beta function, see Complete beta functions,	for general differintegrable series, 84–85
Incomplete beta functions	tabular summary, 85
Bibliography, chronological, 3–15	for mixed integer orders, 30–33
Binomial coefficients, 20, 28–29, 178, 180	failure, 32
of moiety argument, table of, 118	for noninteger orders, 63
Binomial functions, 162, 174	role in locating solutions of differential
as hypergeometrics of complexity $\frac{1}{1}$,	equations, 190
99	use in inverting extraordinary differential
Biology, 10	equations, 155
Biorci, G., 154, 219	utility in finding differintegrals, 96
Bishop, D. M., 2, 14, 222	Continued fractions, 151–152
Blumenthal, L. M., 10	Convolution theorem for Laplace
Boole, G., x, 2, 6, 219	transformation, 134
Boundary geometries for diffusion	Cosine integrals as reducible transcenden-
problems, 198	tals, 161
diagrams of, 199	Cosines, see Sines and cosines
Bourlet, C., x, 2, 219	Coulomb's law, 211
Brenke, W. C., 9	Courant, R., 12, 27, 50, 219
Buschman, R. G., 12, 13	
Butzer, P., 14	Crank, J., 197, 219 Curvature correction for current semi-
	integral, graph of, 206
C	Cyclodifferential functions, 110–112, 169(n)
C-M I E 2 222	
Caffyn, J. E., 2, 222	definition of, 110 Cycloid as solution to tautochrone
Carslaw, H. S., 197, 219	
Carson, J. R., 2, 219	problem, 185
Cauchy's integral formula, 1, 7, 8, 14, 54	diagram of, 185
Cayley, A., 8	
Center, W., 6, 7, 9	
Chain rule	D
for differintegrals, 80–81	Davis II T 0 0 10 11
for multiple derivatives, 36–37	Davis, H. T., 8, 9, 10, 11
Chronological bibliography on fractional	Davison, B., 197, 219
calculus, 3–15	Dawson's integral, 163, 175

Definite integrals, evaluation through	benavior near lower limit, 90
fractional calculus, 181-183	chain rule, 14, 80-81
Delahay, P., 160, 219	commutativity, 87
Delta function, see Dirac delta function	composition rule, 82-87
DeMorgan, A., 5	dependence on lower limit, 87-89
Derivatives, see Classical derivatives	differintegration term by term, 69-75
Difference quotients, 28, 48, 56	homogeneity, 75
for classical derivatives, 28	inversion, 86
Differential equations, 2, 8, 10, 13	Leibniz's rule, 76-79
conversion to lower order, 190	linearity, 69
extraordinary, see Extraordinary	scale change, 75-76
differential equations	translation, 89-90
Differentiation	Grünwald definition, 48, 55
to fractional order, see Differintegration	identity of definitions, 51-52
of hypergeometrics, 40-44	of imaginary order, 14
of powers, 39-40, 192	of integer order, 25-44
diagram showing sign of resultant	modified Grünwald definition, 57
derivative, 39	representation for analytic functions,
term by term, 38	57–59
Differintegrable functions, 46-47	with respect to arbitrary function, 55
definition of, 47	Riemann–Liouville definition, 1, 6, 9, 49
Differintegrable and nondifferintegrable	56, see also Riemann-Liouville
functions, figure showing examples	integral
of each, 47	use in evaluating integrals, 181
Differintegrable series, 69, 70, 82, 93, 116	some general definitions, 52–57
definition of, 46	summary of definitions, 59–60
Differintegrable series units, 82	symbolism for, 45
definition of, 46	Differintegration, 61–68, 93–114
Differintegral operators	of Bessel functions, 97–98
analytic continuation for, 49	of binomial functions $[C - cx]^p$, 93–94
comparison of definitions, 55-57	of constants, 63
connection with Fourier analysis, 56	of cosine function $cos(x)$, 112
connection with Laplace transformation,	of cyclodifferential functions, 110–112
11	of Dirac delta function, 106
defined, x, 16, 27(n)	of exponential functions $\exp(C - cx)$,
definition of, 45–60	94–95
based on Cauchy's integral formula,	
54, 56	of function $x^{q-1} \exp(-1/x)$, 112–113
diagram of contour used, 55	of function $x = a$, 63–65
as integral transform, see Differinte-	of functions $x^q/[1-x]$ and $x^p/[1-x]$ and $[1-x]^{q-1}$, 95–96
gral operators, Riemann-	
Liouville definition	of Heaviside function, 105
as sum, see Differintegral operators,	diagram illustrating, 106
Grünwald definition	of hyperbolic function $\sinh(\sqrt{x})$, 96–97
in terms of difference quotients, 1	of hypergeometric functions, 99–102
in terms of series, 1, 5, 7, 53	examples of $\frac{1}{3}$ complexity, 112
differentiation of, 48, 50	of logarithms, 102-104
equivalence of definitions, 51–52	to order one-quarter, 217
general properties, 10, 11, 69–92	of periodic functions, 108–110
behavior far from lower limit, 91	of piecewise-defined functions, 107

Differintegration (cont.)	Euler, L., 1, 3, 220
of powers, 63–68	Euler's constant, 24
breakdown for $p \leq -1$, 67	Euler's integral of second kind, 21
figure showing contour used in, 66	Exponential functions, differintegration of,
signs of resulting coefficients, 68	94–95
of sawtooth function, 107-108	Exponential integrals, 166
diagram of, 108	as reducible transcendentals, 161
of sine function $sin(x)$, 112	Exponential-like functions, as hyper-
of sine function $\sin(\sqrt{x})$, 96–97	geometrics of complexity $\frac{0}{1}$,
of unit function, 61-63	162
graphs of differintegrals, 62	Extraordinary differential equations,
of zero function, 63	154–157
Diffusion	definition of, 154
on curved surface, 216-218	for describing groove depth in metals,
in finite media, 209-215	217
in planar geometry, 201-203	inversion of, 155
in presence of sources and sinks, 207-209	series solutions of, 159–160
in spherical geometry, 204-207	series solutions of, 139–100
Diffusion equation	
general form, 198	
in presence of sources and sinks, 207	F
for semiinfinite geometries, 199	
Dirac delta function, 105	Faà di Bruno's formula for differentiating
differintegrals of, 106	composite function, 37, 80
Duff, G. F. D., 27, 49, 220	Fabian, W., 11
	Faddeeva, V. N., 209, 220
${f E}$	Faradaic current, semiintegral of, 205-207
	graph versus time, 206
Eigenfunction	diagram illustrating curvature correc-
of differintegral operator, 122(n)	tion, 206
of semidifferential operator, 122(n)	Faraday's constant, 204
graph of, 123	Faraday's electrochemical law, 204
Elasticity, 2	Feller W., x, 220
Electrochemistry, 2, 14, 15, 204	Festinger, J. C., 219
Elliptic integrals	Fick's first law, 204
of first kind, 122	Fourier, J. B. J., 4, 5
as hypergeometrics of complexity	Fourier analysis, 14
$\frac{2}{2}$, 165	Fractional calculus
as reducible transcendentals, 161	applications of, see Applications of
of second kind, 122	fractional calculus
Erdélyi, A., 2, 11, 12, 13, 54, 55, 76, 115,	historical survey, 1-15
220	symbolic methods in, 2
Error function complement, 194	Fractional difference operators, 12
Error function complement integrals, 175,	Fractional differential operators, see
194–195	Differintegral operators
Error functions, 175	Fractional differentiation, see Differinte-
as reducible transcendentals, 161	gration
Errors in analog semidifferentiation,	Fractional integral operators, see
	U ,
215–216	Differintegral operators

for functions of more than one variable. Generalized integration, see Differintegraby parts, 11 Generalized logarithms, 163(n), 175, 192 Fresnel integrals, 125, 180 definition of, 193 as reducible transcendentals, 161 representation of, 193-194 Friedman, B., x, 220 Geometric factor to characterize boundary Function families, 192-195 geometries in diffusion problems. Function synthesis, 169 198 of K = L - 2 transcendentals, 177–180 Gradshteyn, I. S., 220 of K = L - 1 transcendentals, 175–176 Graham, A., 2, 220 of K = L transcendentals, 172–175 Greatheed, S. S., 5 Function synthesis diagrams, see Syn-Greer, H. R., 7 thesis diagrams Gregory, D. F., 5 Functional equations, 10 Grenness, M., 2, 14, 144, 204, 220 Fundamental theorem of calculus, 30 Grünwald, A. K., x, 1, 7, 48, 220 G Gaer, M. C., 13, 53, 220 H Gamma function, 14, 16-24, see also Incomplete gamma functions Hadamard, J., 8 asymptotic expansion, 19 Hagstrom, K. G., 11 duplication formula, 18 Hardy, G. H., 2, 8, 9, 10, 11, 220 Gauss multiplication formula, 18 Hargreave, C. J., 6 general properties, 16-24 Heat conduction in semiinfinite planar for integer and half-integer arguments, medium, 202 17 - 18Heat equation, 5 table of values, 18 Heat flux, relation to surface temperature ratios, 17, 19-20 through semidifferentiation, 202 polynomials expressible as, 19 Heaviside, O., x, xii, 2, 8, 9, 53, 62, 220 graphs of, 19 Heaviside function, 61, 105 reciprocal, 17 graph of differintegrals, 106 asymptotic representation of, 17 Heaviside's operational calculus, see graph of, 17 Operational calculus recurrence formula, 16 Heaviside's unit function, see Heaviside reflection formula, 18 function relation to beta functions, 21 Herpe, G., 219 relation to binomial coefficients, 20 Higgins, T. P., 2, 13, 220 relation to psi function, 23 Hilbert, D., 27, 50, 219 Gauss functions, 41, 122, 165, 174 Hilbert transforms, 15 as reducible transcendentals, 161 Hille, E., x, 220, 221 Gel'fand, I. M., 13 Hirschmann, I. I., 12 Gemant, A., 2, 67, 220 Holmgren, H., 1, 7, 12, 221 Generalized Abel equation, 186 Holmgren-Riesz transforms, 12 Generalized differentiation, see Holub, K., 133, 221 Differintegration Hyperbolic cosines as reducible transcenfor operators, 2 dentals, 161 Generalized error function complement Hyperbolic sine integrals, 128 integrals, 195 as hypergeometrics of complexity $\frac{1}{3}$, Generalized hypergeometric functions, see Hypergeometrics

Hyperbolic sines	Incomplete gamma functions, 21, 41, 94,
as hypergeometrics of complexity $\frac{0}{2}$,	95, 109, 158, 175
100	recursion formula for, 22
as reducible transcendentals, 161	as reducible transcendentals, 161
Hypergeometric functions, 11, 13, 14, 15	Infinite series
of complexity K	differentiation and integration of, 38
of complexity $\frac{K}{L}$, 15	evaluation through fractional calculus,
Laplace transformation of, 171	183
notation for, 15	Infinite transmission line, approximation by
product with power of argument, see	finite transmission line, 212
Hypergeometrics	Integral equations, 2, 10, 12, 13, 15
as reducible transcendentals, 161	Integrals, See Classical integrals
Hypergeometrics, 40–41, 99–102, 129–130	Integrating circuit, 149
of argument $x^{1/n}$, 43, 100–101	Integration
cancellation property of, 42	to fractional order, see Differintegration
of complexity $\frac{0}{0}$, 162	of hypergeometrics, 40–44
of complexity $\frac{0}{1}$, 162	of powers, 39–40, 192–193
	diagram showing sign of resultant
of complexity $\frac{1}{1}$, 163	integral, 39
-	term by term, 38
of complexity $\frac{1}{2}$, 164	Intergranular groove, 216–218
of complexity $\frac{1}{3}$, 165	cross sectional diagram, 217
_	Inverse hyperbolic functions, 163
of complexity $\frac{2}{2}$, 164–165	as reducible transcendentals, 161
convergence properties of, 165	Inverse hyperbolic sines as hypergeo-
definition of, 162	metrics of complexity $\frac{2}{2}$, 165
differentiation and integration of, 40-44	Inverse trigonometric functions, 163
as differintegrable series, 99	as reducible transcendentals, 161
differintegrals of, 99—102	Iterated integrals, 37–38
examples of, 162–165	Cauchy's formula for, 38
with $K > L$, 165–166	
utility for asymptotic representations,	
166	J
Laplace transformation, 171–172	Y I C 107 210
recurrence relations for, 42	Jaeger, J. C., 197, 219
reduction of complexity, 166–167	Johnson, W. C., 197, 210, 221
reduction to complexity $\frac{0}{L-M}$, 167	Jost, W., 197, 221
regeneration from basis hypergeometrics,	Juberg, R. K., 15
169	
as sum of hypergeometrics, 44	W.
use in finding differintegrals, 101	K
symbolism for, 40	Voliceh C V 12
	Kalisch, G. K., 13
I	Kaufman, H., 115, 222
I'a Bromwich, T. J., 9	Kelland, P., 4, 5, 6, 7
Ichise, M, 133, 154, 221	Kesarwini, R. N., 13 Knopp, K., 49, 221
Incomplete beta functions, 21, 41, 94, 122,	Klopp, K., 49, 221 Kober, H., 2, 11, 14, 221
174	Kojima, T., 221
as reducible transcendentals, 161	Koutecky, J., 160, 221
	1.00, 2.1

Koutecky function of polarography, 160 Krug, A., 1, 8, 53, 221	differintegrals of, 102-104 graphs of, 104
Kummer functions, 41, 175	generalization of, 192-194
as hypergeometrics of complexity $\frac{1}{2}$, 164	location in function synthesis diagram, 194
as reducible transcendentals, 161	as hypergeometrics of complexity $\frac{1}{1}$,
Kuttner, B., 2, 12, 221	102
, -, -,,	as reducible transcendentals, 161
	Love, E. R., 11, 14
L	Lower limit, 87–89
	Lutskaya, N. K., 13, 219
Lacroix, S. F., 4	
Lagrange, J. L., 1, 3, 221	
Laplace, P. S., 3	M
Laplace transforms, 11, 115	141
of derivatives and integrals, 133	Magnus W 220
of differintegrals, 133–136	Magnus, W., 220
formula for, 134	Matsuda, H., 160, 221
for performing circuit analysis, 150	Mechanics, 4 Mallin transforms, 11
role played in solving diffusion problems,	Mellin transforms, 11
201	Meyer, R. F., 133, 203, 221
Laurent, H., 8	Mikusínski, J. G., x, 221 Miroshnikov, A. I., 13, 219
Law of exponents, see Composition rule	Modified Bessel functions, 97–98, 125
for operators of integral order, 3	
Lebesgue class, 2, 10	as hypergeometrics of complexity $\frac{0}{2}$,
Legendre functions, 122	100
as hypergeometrics of complexity $\frac{2}{2}$,	Modified Struve functions, 125
164	notation for, 15
as reducible transcendentals, 161	Moore, F. K., 197, 221
Legendre's equation, 191	Moritz, R. E., 8
Leibniz, G. W., x, 1, 3, 221	Mullins, W. W., 217, 218, 221
Leibniz's rule, 6, 8, 10, 14, 15, 53, 62	Multiple integrals
for derivatives, 36	dependence on lower limit, 33–34
for differintegral operators	symbolism for, 26, 27
convergence difficulties, 78–79	Murphy, G. M., 156, 158, 159, 202, 221
integral form, 79, 182	Muskat, M., 197, 221
symmetric form, 79	
when factors are analytic, 77	X1
when one factor is polynomial, 77–78	N
for multiple integrals, 34–35	Nassassi V 221
Letnikov, A. V., 7, 8	Nagayanagi, Y., 221
Levy, P., 9	Narian Stakes assertion 12 14
L'Hospital, G. A., 1, 3	Navier–Stokes equation, 12, 14
Lions, J. L., 12, 14	Nekrassov, P. A., 8, 54, 221
Liouville, J., xi, 1, 4, 5, 6, 7, 8, 49, 53,	Nerve impulse propagation 10, 210(n)
95, 191, 221 Lipschitz classes, 2	Nerve impulse propagation, 10, 210(n) Nessel, R., 14
Littlewood, J. E., 2, 10, 11, 220	Nigmatullin, R. Sh., 13, 219
Liverman, T. P. G., 13	Numerical differintegration
Logarithms, 163	algorithms for, 136–148

Numerical differintegration (cont.) algorithms for (cont.) based on Grünwald definition, 136 based on linear interpolation, 140 based on modified Grünwald definition, 137–138 based on Riemann–Liouville definition, 138–139	Pincherle, S., 8 Poritsky, H., 11 Post, E. L., 2, 6, 8, 9, 10, 48, 222 Prabhakar, T. R., 15 Product rule, see Leibniz's rule Psi function, 23, 103 recursion formula for, 23
relative error in, 141–144 weighting factors in, 144 table of, 146–147	Q
approximations used in, diagram illustrating, 139	Quasi-semiinfinite medium, condition for, 200(n)
coincidence of algorithms for, 144 comparison of rival algorithms, 144–145	R
in differintegrating \sqrt{x} , 145 in differintegrating $1 - x^{\frac{3}{2}}$, 145, 148 errors in, 141–144 table of, 144 nomenclature for, 136 diagram illustrating, 137	Radius of convergence of differintegrable series, 70–71 Rayleigh's formulas, generalizations of, 97 Reducible transcendentals, 161 Resistive-capacitative transmission line, see Transmission line
0	Rheology, 2, 67 Ridella, S., 154, 219
Oberhettinger, F., 220 Ohm's law, 150, 211, 214 Oldham, K. B., 2, 14, 15, 133, 143, 144, 154, 160, 200, 204, 220, 221, 222 Oltramare, G., 8 Operational calculus, 9, 10, 11, 12, 13 Ordinary derivatives, see Classical derivatives Ordinary differential equations, solution via fractional calculus, 186–189 Ordinary integrals, see Classical integrals O'Shaughnessy, L., 8 Osler, T. J., 2, 14, 15, 54, 55, 56, 79, 81, 182, 183, 192(n), 222	Riemann, B., xi, 1, 6, 7, 49, 53, 222 Riemann–Liouville integral, 49, 55 Riemann–Liouville transforms, 115 Riemann sums, 48, 56 for classical integrals, 29 Riemann zeta function, 142–143 table of values, 143 Riesz, M., 2, 11, 12, 27, 49, 222 Ritt, J. F., x, 2, 222 Roberts, G. E., 115, 222 Robertson, W. M., 217, 222 Rodrigues' formula, generalization of, 192 Ross, B., xiii, 3, 15 Rubel, L. A., 14, 53, 220 Ryzhik, I. M., 220

P

Parseval's integral formula, 79
Peacock, G., 4, 6, 7, 8
Pennell, W. O., 10
Periodic functions, 108–110
as hypergeometrics of complexity $\frac{0}{2}$, 163
Peters, A. S., 12
Piecewise-defined functions, 105, 107–108

\mathbf{S}

Samko, S. G., 13 Sawtooth function, 107-108 graphs of differintegrals, 108 Scale-change property, use in finding differintegrals, 100, 109 Schuyler, E., 8 Scott Blair, G. W., 2, 53, 67, 220, 222 Semicalculus, 14

Semiderivatives, 7, 50	Semidifferentiation and semiintegration,
Semiderivatives and semiintegrals, 115-131	analog circuits for, 148-154
definition of, 115(n)	Semiintegral electroanalysis, 204
graphs for $cos(x)$, 126	Semiintegrals, 16, 185, see also Semideriv-
graphs for $sin(x)$, 126	atives and semiintegrals
role played in solving diffusion problems,	Semiintegrating circuits, 152
197	accuracy of, 149
table of definitions, 115-116	Shermergor, T. D., 2, 222
table of general properties, 116-117	Shilov, G. E., 13
tables of	Shinbrot, M., 12, 14
for Bessel and Struve functions,	Sine integrals, 128
127–128	as hypergeometrics of complexity $\frac{1}{3}$,
for binomials, 120–121	165
for complete elliptic integrals, 131	as reducible transcendentals, 161
for constants and powers, 118-119	Sines and cosines, see Hyperbolic
for exponentials and related functions,	sines
122–124	differintegration as examples of cyclo-
for generalized hypergeometric func-	differential functions, 110–112
tions, 129–130	as periodic functions, differintegration of
for Heaviside function, 131	110
for logarithms, 130	semiderivatives and semiintegrals,
for trigonometric and hyperbolic	124–126
functions, 124–125	
Semidifferential equations, 10, 120,	of \sqrt{x} , as hypergeometrics, 161, 163
157–159	differintegration of, 96
definition of, 157	Sneddon, I. N., 12, 13
for diffusion in planar geometry, 201	Somorjai, R. L., 2, 14, 222
for diffusion in semiinfinite media, 197	Spanier, J., 2, 14, 15, 200, 204, 222
for diffusion in spherical geometry, 204	Special functions of mathematical
examples of, 157, 159	physics
occurrence in electrochemistry, 159–160	interrelations among, 79, 81 as $K = L - 2$ transcendentals, 177
for open-circuited finite transmission	Stegun, I. A., 219
line, 213	Stephens, E., 10
for short-circuited finite transmission	Stirling numbers
line, 213	of first kind, 19
techniques for solving, 157	table of values, 18
Laplace transformation, 159	of second kind, 22, 37, 81
transformation to ordinary differential	notation for, 15
equation, 157	table of values, 22
used to relate current to applied voltage	Struve functions, 124, 125, 177–178
signal in infinite transmission	
line, 212	as hypergeometrics of complexity $\frac{0}{2}$,
used to relate electrochemical current to	164
surface concentration, 205	notation for, 15
used to relate ground-level pollution	as reducible transcendentals, 161
concentrations to pollution	Stuloff, N., 12
generation rate, 208	Symbolic methods, 2
Semidifferentiation, 14	Synthesis diagrams, 169
used to relate surface temperature to	for associated Legendre functions,
heat flux, 203	173

Synthesis diagrams (cont.)
Bessel-Struve line, 178
example illustrating principles, 170
involving steps of $\frac{1}{3}$ and $\frac{1}{4}$, 179-180
for K=L-2 transcendentals, 177-180
for K=L-1 transcendentals, 175-176
for K=L transcendentals, 172-174
Legendre line, 173
logarithm line, 175

T

Tautochrone, 2, 4, 5, 183 coordinate system for, 184 equations for, 185 Tautochrone problem, solution as a semiintegral, 185 Taylor's series, 14, 15 Techniques in fractional calculus, 133-160 Terentev, N. M., 209, 220 Term-by-term differentiation, 38, 74-75 Term-by-term differintegration, 69-75 of arbitrary differintegrable series, 71-74 to negative order, 71-72 to positive order, 74-75 Term-by-term integration, 38 Titchmarsh, E. C., 79, 222 Transcendental functions interrelationships among, 167 representation as hypergeometrics, 162-165 representations of, 161-180 Transmission line impedance of, 212, 213 optimum termination of, 212 simulation by discrete components, 216 symbolism, diagram explaining, 211 terminations, diagram depicting four alternatives, 214 theory, 2

Transport problems, 2 Transport in semiinfinite medium, 198–200 Transport theory, 197 Tricomi, F. G., 220

V

Veinoglu, B. C., 222 von Wolfersdorf, L., 13

w

Wall, H. S., 153, 223
Wallis, J., 3
Wallis' infinite product for π , 3
Wastchenxo, Z., 7
Watanabe, Y., 10, 79, 223
Wave equation, 11
Weakly singular intergral equation, see
Abel's integral equation
Welland, G. V., 13
Weyl, H., 2, 8, 10, 53, 95, 223
Weyl differintegrals, 95
Weyl integral, 53
Widder, D. V., 11, 38, 223
Wiener, N., 2, 223
Withers, R. F. J., 220

Y

Young, L. C., 11

Z

Zero, differintegration of, 63 Zeta function, 142–143 Zygmund, A., 10, 11, 14