627

$$p = \frac{h}{\lambda}$$
 (物質波の式) $E = hv$ (光子のエネルギーの式) … I より、 ① $p = \frac{h}{\lambda}$, ② $E = hv$

(2)

I 式より、光子 1 つのエネルギーは、hv

電極から外に飛び出る際に、エネルギーWが消費されている。

また、静止していた電子が1Vで加速されるときに得る運動エネルギーを1eVと定義されているので、電 $\dot{\Omega}_m$ により消費した運動エネルギーは、 $-eV_m$ となる。

よって、

$$hv-W=\frac{mv^2}{2}=eV_m$$
 が成り立つ。

$$hv - W = eV_m$$
 LD, ... II

W = const. なので、

 eV_m は ν に依存することが分かる。

$$h = \frac{deV_m}{dv}$$
 より、 (両辺を v で微分)

縦軸にeVm、横軸にvを取ればよい。

Ⅱ式に、

 $W = h\nu_0$ を代入して、

$$h(\nu - \nu_0) = eV_m$$

$$eV_m = 0 \rightarrow \nu = \nu_0$$
 , $\nu = 0 \rightarrow eV_m = h\nu_0$ LO.

グラフにはこれら2点をを通る直線を描けばよい。

xお、 ν は振動数なので $\nu \geq 0$ になることに注意する。

また、Wは仕事関数と呼ばれている。

③ $h\nu$, ④ $h\nu-W$, ⑤ eV_m , ⑥ eV_m , ⑦ ν , ⑧ 仕事関数 ※グラフは解答を参照のこと

(3)

これは、デビンソン-ジャーマーの実験である。 この場合の波長 λ は、 $\lambda = \frac{h}{\sqrt{2meV}}$ となる。 この粒子が示す波動は、ド・ブロイ波または物質波と呼ばれる。

⑨ デビンソン-ジャーマーの実験 , ⑩ $\frac{h}{\sqrt{2meV}}$, ⑪ ドブロイ波 / 物質波 % これに関しては解説ができなく申し訳ない。