AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended): Care and/or make-up cosmetic composition comprising a liquid fatty phase comprising at least one silicone oil, structured with a gelling system comprising:
 - 1) at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
 - at least one polyorganosiloxane group consisting of 1 to 1 000 organosiloxane units in the chain of the moiety or in the form of a graft, and
 - at least two groups capable of establishing hydrogen interactions, chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, thiourea, oxamido, guanidino and biguanidino groups, and combinations thereof, provided that at least one of the groups is different from an ester group,

the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, [[and]]

- 2) at least one non-polymeric organogelling agent, wherein the organogelling agent is selected from the group consisting of:
 - N, N'-bis (dodecanoyl) -1, 2-diaminocyclohexane,
 - N, N'-bis (dodecanoyl) -1, 3-diaminocyclohexane,
 - N, N'-bis (dodecanoyl) -1, 4-diaminocyclohexane,
 - N, N'-bis (dodecanoyl) -1, 2-ethylenediamine,
 - N, N'-bis (dodecanoyl) -1-methyl-1, 2-ethylenediamine,
 - N, N'-bis (dodecanoyl) -1, 3-diaminopropane,
 - N, N'-bis (dodecanoyl) 1, 12 diaminododecane,

- N, N'-bis (dodecanoyl) -3, 4-diaminotoluene,
- at least one compound chosen from the compounds of formula (XV):

in which the groups R⁴⁸, which are identical or different, are chosen from a hydrogen atom and saturated, linear and branched hydrocarbon chains, the said hydrocarbon chains containing from 1 to 6 carbon atoms;

- the groups Z, which are identical or different, each represent a group chosen from the following groups: $-CO-S-R^{49}$; $-CO-NHR^{49}$; $-NH-COR^{49}$ and $-S-COR^{49}$; in which the groups R^{49} , which may be identical or different, are chosen from:
 - a hydrogen atom,
 - aryl groups,
 - aralkyl groups, and
- saturated hydrocarbon chains chosen from linear, branched and cyclic hydrocarbon chains, containing from 1 to 22 carbon atoms, optionally substituted with at least one group chosen from aryl, ester, amide and urethane groups; and/or optionally comprising at least one heteroatom chosen from O, S and N; and/or optionally substituted with at least one fluorine atom and/or one hydroxyl radical,
- 12 hydroxystearic acid, its salts and its ester or amide derivatives,
- -amides of tricarboxylic acids,
- esters and amides of N acylamino acids,

- diureas of N-acylamino acids,
- urethane amides of dipeptides,
- dibenzylidenesorbitol and its derivatives,
- sterol derivatives,
- cyclodipeptides chosen from cyclo(glycyl-L-alanyl), cyclo(glycyl-L-valyl), cyclo(glycyl-L-leucyl), cyclo(glycyl-Lphenylalanyl), cyclo(L-valyl-L-leucyl), cyclo(L-leucyl-Lleucyl), cyclo(L-phenylalanyl-L-leucyl), cyclo(L-phenylalanyl-L-phenylalanyl), cyclo(L-valyl-L-γ-3,7-dimethyloctylglutamyl), cyclo(L-valyl-L-γ-2-ethylhexylglutamyl), cyclo(L-leucyl-L-γethylglutamyl), cyclo(L-leucyl-L-\gamma-dodecylglutamyl), cyclo(Lleucyl-L- γ -3,7-dimethyloctylglutamyl), cyclo(L-leucyl-L-ybenzylglutamyl), cyclo(L- β -butylasparaginyl-L-phenylalanyl), cyclo(L- γ -dodecylasparaginyl-L-phenylalanyl), cyclo(L- β -3,7dimethyloctylasparaginyl-L-phenylalanyl), cyclo(L- β -2-ethylhexylasparaginyl-L-phenylalanyl), cyclo(L- β -3,5,5trimethylhexylasparaginyl-L-phenylalanyl) and cyclo(L- β -2ethylbutylasparaginyl-L-phenylalanyl),
- trans-(1R,2R)-bis(undecylcarbonylamino)cyclohexane of formula:

- fluorinated ethers,
- organogelling agents of formula (XVII):

 $Q-O-W-(CHOH)_s-W^1-O-Q^1$ (XVII)

in which W and W¹, which may be identical or different, are chosen from $-CH_2$ - and -CO-, and in which Q and Q¹, which may be identical or different, are a hydrocarbon chain chosen from saturated or unsaturated, linear or branched hydrocarbon chains containing at least 6 carbon atoms, and in which s is an integer from 2 to 4;

- bolaamphiphilic amides derived from amino acids of formulae:

$$R^{36}O\text{-}CO\text{-}NH\text{-}CH\text{-}CO\text{-}NH$$
 CH_3
 CH_3

where $R^{36} = -CH_2 - C_6H_5$ or $-CH_2 - CH_3$, and

- 2-alkyl-2-ammonium is obutyl acetate p-toluene sulphonate salts of formula (XXII):

p-CH₃-C₆H₄-SO₃⁻ +H₃N-CH(R³⁷)-CO-OR³⁸ (XXII)

in which R³⁷ represents:

-CH₂-CH-(CH₃)₂ (leucine), -CH-(CH₃)₂ (L-valine),
-CH-CH₂-CH₃ (L-isoleucine), -CH₂-C₆H₅ (L-phenylalanine),
-CH₃

-CH₂-CH₂-C-O-CH₂-(CH₂)₁₀-CH₃ (L-glutamic acid ester)

R³⁸ represents:

-CH₂-(CH₂)_n-CH₃ with
$$n = 4$$
 to 12, or
-(CH₂)₂-CH-(CH₂)₃-CH-(CH₃)₂
-(CH₃)

- diamide derivatives of benzenedicarboxylic acid and of valine of formulae:

CO-L-Val-NH-
$$C_{12}H_{25}$$
CO-L-Val-NH- $C_{12}H_{25}$
CO-L-Val-NH- $C_{12}H_{25}$
CO-L-Val-NH- $C_{12}H_{25}$
CO-L-Val-NH- $C_{12}H_{25}$
in which $-L-Val-$ represents:

-NH-CH
$$\left[\text{CH}(\text{CH}_3)_2 \right]$$
 -CO-;

- diamides of formula (XXV) or (XXVI):

$$R^{44}$$
-X-CO-NH- R^{45} -NH-CO-X- R^{44} (XXV)

or

$$R^{44}$$
-CO-NH- R^{45} -NH-CO- R^{44} (XXVI)

in which the groups R^{44} , which may be identical or different, represent a saturated or unsaturated, linear or branched C_8 - C_{60} hydrocarbon chain, the group(s) R^{44} optionally comprising a hydroxyl group or at least one heteroatom such as N, O, S or Si, R^{45} is a hydrocarbon-based group chosen from linear, branched and cyclic C_1 to C_{50} groups and C_5 to C_8 arylene groups optionally substituted with one or more C_1 - C_4

alkyl groups, and X represents -O- or -NH-, and mixtures thereof,

the liquid fatty phase and the gelling system forming a physiologically acceptable medium, and

- 3) at least one pigment in an amount sufficient to provide a coloring effect to keratin materials upon application.
- 2. (Original): Composition according to Claim 1, in which the liquid fatty phase comprises at least one volatile silicone oil.
- 3. (Original): Composition according to Claim 1, in which the liquid fatty phase comprises at least one volatile silicone oil and at least one volatile non-silicone oil.
- 4. (Previously Presented): Composition according to Claim 2, in which the volatile silicone oil has a flash point equal to or greater than 40°C and greater than the softening point of the gelling system.
- 5. (Previously Presented): Composition according to claim 2, in which the volatile silicone oil is chosen from the group consisting of the following compounds: octyltrimethicone, hexyltrimethicone, octamethylcyclotetrasiloxane D4, dodecamethylcyclohexasiloxane D6, heptamethyloctyltrisiloxane, decamethyltetrasiloxane, dodecamethylpentasiloxane, polydimethylsiloxane of 1.5 cSt, polydimethylsiloxane of 2 cSt, polydimethylsiloxane of 3 cSt, polydimethylsiloxane of 5 cSt, and mixtures thereof.

- 6. (Previously Presented): Composition according to claim 2, in which the volatile oil has a flash point of 40 to 135°C.
- 7. (Currently Amended): Composition according to claim 2, in which the liquid fatty phase contains at least 30% silicone oil with respect to the total weight of the composition.
- 8. (Previously Presented): Composition according to claim 2, in which the volatile oil represents from 3 to 89.4% of the total weight of the composition.
- 9. (Previously Presented): Composition according to Claim 1, further comprising at least one filler comprising solid particles.
- 10. (Original): Composition according to Claim 9, in which the solid particles are hydrophobic particles.
- 11. (Original): Composition according to Claim 10, in which the solid particles are hydrophilic particles, coated with a film of hydrophobic compound.
- 12. (Original): Composition according to Claim 9, in which the solid particles are hydrophilic particles and the composition further comprises an amphiphilic silicone.
- 13. (Previously Presented): Composition according to claim 1, in which the at least one pigment is chosen from zinc oxides, iron oxides, titanium oxides and mixtures thereof.

14. (Previously Presented): Composition according to claim 1, in which the polymer used in the gelling system comprises at least one moiety corresponding to the formula:

in which:

- 1) R^1 , R^2 , R^3 and R^4 , which may be identical or different, represent a group chosen from:
- linear, branched or cyclic, saturated or unsaturated, C_1 to C_{40} hydrocarbon-based groups, possibly containing in their chain one or more oxygen, sulphur and/or nitrogen atoms, and possibly being partially or totally substituted with fluorine atoms,
- C_6 to C_{10} aryl groups, optionally substituted with one or more C_1 to C_4 alkyl groups,
- polyorganosiloxane chains possibly containing one or more oxygen, sulphur and/or nitrogen atoms;
- 2) the groups X, which may be identical or different, represent a linear or branched C_1 to C_{30} alkylenediyl group, possibly containing in its chain one or more oxygen and/or nitrogen atoms;
- 3) Y is a saturated or unsaturated, C_1 to C_{50} linear or branched divalent alkylene, arylene, cycloalkylene, alkylarylene or arylalkylene group, possibly comprising one or more oxygen, sulphur

and/or nitrogen atoms, and/or bearing as substituent one of the following atoms or groups of atoms:

fluorine, hydroxyl, C_3 to C_8 cycloalkyl, C_1 to C_{40} alkyl, C_5 to C_{10} aryl, phenyl optionally substituted with 1 to 3 C_1 to C_3 alkyl groups, C_1 to C_3 hydroxyalkyl and C_1 to C_6 aminoalkyl, or

4) Y represents a group corresponding to the formula:

in which

- T represents a linear or branched, saturated or unsaturated, C_3 to C_{24} trivalent or tetravalent hydrocarbon-based group optionally substituted with a polyorganosiloxane chain, and possibly containing one or more atoms chosen from O, N and S, or T represents a trivalent atom chosen from N, P and Al, and
- R^5 represents a linear or branched C_1 to C_{50} alkyl group or a polyorganosiloxane chain, possibly comprising one or more ester, amide, urethane, thiocarbamate, urea, thiourea and/or sulphonamide groups, which may possibly be linked to another chain of the polymer;
- 5) the groups G, which may be identical or different, represent divalent groups chosen from:

in which R^6 represents a hydrogen atom or a linear or branched C_1 to C_{20} alkyl group, on condition that at least 50% of the groups R^6 of the polymer represent a hydrogen atom and that at least two of the groups G of the polymer are a group other than:

6) n is an integer ranging from 2 to 500, and m is an integer ranging from 1 to 1 000.

- 15. (Previously Presented): Composition according to Claim 14, in which Y represents a group chosen from:
 - a) linear C_1 to C_{20} ,
- b) C_{30} to C_{56} branched alkylene groups possibly comprising rings and unconjugated unsaturations,
 - c) C₅-C₆ cycloalkylene groups,
- d) phenylene groups optionally substituted with one or more C_1 to C_{40} alkyl groups,
- e) C_1 to C_{20} alkylene groups comprising from 1 to 5 amide groups,
- f) C_1 to C_{20} alkylene groups comprising one or more substituents chosen from hydroxyl, C_3 to C_8 cycloalkane, C_1 to C_3 hydroxyalkyl and C_1 to C_6 alkylamine groups,
 - g) polyorganosiloxane chains of formula:

in which R^1 , R^2 , R^3 , R^4 , T and m are as defined above.

16. (Previously Presented): Composition according to claim 1, in which the polymer used in the gelling system comprises at least one moiety corresponding to formula (II):

in which

- R^1 and R^3 , which may be identical or different, are as defined above for formula (I) in Claim 14,
- R^7 represents a group as defined above for R^1 and R^3 , or represents the group of formula -X-G-R 9 in which X and G are as defined above for formula (I) in Claim 14, and R^9 represents a hydrogen atom or a linear, branched or cyclic, saturated or unsaturated, C_1 to C_{50} hydrocarbon-based group optionally comprising in its chain one or more atoms chosen from O, S and N, optionally substituted with one or more fluorine atoms and/or one or more hydroxyl groups, or a phenyl group optionally substituted with one or more C_1 to C_4 alkyl groups,
- R^8 represents the group of formula -X-G- R^9 in which X, G and R^9 are as defined above,
 - m_1 is an integer ranging from 1 to 998, and
 - m_2 is an integer ranging from 2 to 500.
- 17. (Original): Composition according to Claim 14, in which the polymer comprises at least one moiety of formula (III) or (IV):

or

in which R^1 , R^2 , R^3 , R^4 , X, Y, m and n are as defined in Claim 14.

- 18. (Previously Presented): Composition according to claim 17, in which X and/or Y represent an alkylene group containing in its alkylene portion at least one of the following elements:
 - 1) 1 to 5 amide, urea or carbamate groups,
 - 2) a C₅ or C₆ cycloalkyl group, and
- 3) a phenylene group optionally substituted with 1 to 3 identical or different C_1 to C_3 alkyl groups,

it being possible for the alkyl groups X or Y to also be substituted with at least one element chosen from the group consisting of:

- a hydroxyl group,
- a C₃ to C₈ cycloalkyl group,
- one to three C_1 to C_{40} alkyl groups,
- a phenyl group optionally substituted with one to three C_1 to C_3 alkyl groups,
 - a C_1 to C_3 hydroxyalkyl group, and
 - a C_1 to C_6 aminoalkyl group.
- 19. (Previously Presented): Composition according to claim 17, in which Y represents:

in which R^5 represents a polyorganosiloxane chain and T represents a group of formula:

in which a, b and c are, independently, integers ranging from 1 to 10, and R^{10} is a hydrogen atom or a group such as those defined for R^1 , R^2 , R^3 and R^4 , in Claim 14.

- 20. (Previously Presented): Composition according to claim 17, in which R^1 , R^2 , R^3 and R^4 represent, independently, a linear or branched C_1 to C_{40} alkyl group, preferably a CH_3 , C_2H_5 , $n-C_3H_7$ or isopropyl group, a polyorganosiloxane chain or a phenyl group optionally substituted with one to three methyl or ethyl groups.
- 21. (Previously Presented): Composition according to claim 1, in which the polymer used in the gelling system comprises at least one moiety of formula:

in which X^1 and X^2 , which are identical or different, have the meaning given for X in Claim 14, n, Y and T are as defined in Claim 14, R^{11} to R^{18} are groups chosen from the same group as R^1 to R^4 in Claim 14, m_1 and m_2 are numbers in the range from 1 to 1 000, and p is an integer ranging from 2 to 500.

- 22. (Previously Presented): Composition according to Claim 21, in which:
 - p is in the range from 1 to 25,
 - R^{11} to R^{18} are methyl groups,
 - T corresponds to one of the following formulae:

in which R^{19} is a hydrogen atom or a group chosen from the groups defined for R^1 to R^4 , and R^{20} , R^{21} and R^{22} are, independently, linear or branched alkylene groups,

- m_1 and m_2 are in the range from 15 to 500,
- X^1 and X^2 represent $(CH_2)_{10}$ -, and
- Y represents -CH₂-.

23. (Previously Presented): Composition according to claim 1, in which the polymer used in the gelling system comprises at least one moiety corresponding to the following formula:

$$\begin{bmatrix}
R^{1} \\
Si \\
Si
\end{bmatrix}
O
\begin{bmatrix}
Si \\
M
\end{bmatrix}
X
U
C
NH
Y
NH
C
U
X
\end{bmatrix}$$
(VIII)

in which R^1 , R^2 , R^3 , R^4 , X, Y, m and n have the meanings given above for formula (I) in Claim 14, and U represents -O- or -NH-, or

Y represents a C_5 to C_{12} cycloaliphatic or aromatic group that may be substituted with a C_1 to C_{15} alkyl group or a C_5 to C_{10} aryl group, or Y represents a linear or branched C_1 to C_{40} alkylene radical or a C_4 to C_{12} cycloalkylene radical, or

Y represents a polyurethane or polyurea block corresponding to the condensation of several diisocyanate molecules with one or more molecules of coupling agents of the diol or diamine type, corresponding to the formula:

in which B^1 is a group chosen from the groups given above for Y, U is -O- or -NH- and B^2 is chosen from:

- linear or branched C_1 to C_{40} alkylene groups, which can optionally bear an ionizable group such as a carboxylic acid or sulphonic acid group, or a neutralizable or quaternizable tertiary amine group,
- ullet C₅ to C₁₂ cycloalkylene groups, optionally bearing alkyl substituents, for example one to three methyl or ethyl groups, or alkylene substituents, for example the diol radical: cyclohexanedimethanol,
- \bullet $\,$ phenylene groups that may optionally bear C_1 to C_3 alkyl substituents, and
 - groups of formula:

in which T is a hydrocarbon-based trivalent radical possibly containing one or more heteroatoms such as oxygen, sulphur and

nitrogen and R^5 is a polyorganosiloxane chain or a linear or branched C_1 to C_{50} alkyl chain.

24. (Previously Presented): Composition according to claim 1, in which the polymer used in the gelling system comprises at least one moiety of formula:

in which R^1 , R^2 , R^3 , m_1 and m_2 have the meanings given for formula (I) in Claim 14,

- U represents O or NH,
- R^{23} represents a C_1 to C_{40} alkylene group, optionally comprising one or more heteroatoms chosen from O and N, or a phenylene group, and
- R^{24} is chosen from linear, branched or cyclic, saturated or unsaturated C_1 to C_{50} alkyl groups, and phenyl groups optionally substituted with one to three C_1 to C_3 alkyl groups.
- 25. (Previously Presented): Composition according to claim 1, in which the polymer used in the gelling system comprises at least one moiety of formula:

(XIII)

in which X^1 and X^2 , which are identical or different, have the meaning given for X in Claim 14, n, Y and T are as defined in Claim 14, R^{11} to R^{18} are groups chosen from the same group as R^1 to R^4 in Claim 14, m_1 and m_2 are numbers in the range from 1 to 1 000, and p is an integer ranging from 2 to 500.

- 26. (Previously Presented): Composition according to claim 17, in which the polymer used in the gelling system further comprises a hydrocarbon-based moiety comprising two groups capable of establishing hydrogen interactions, chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, thiourea, oxamido, guanidino and biguanidino groups, and combinations thereof.
- 27. (Original): Composition according to Claim 26, in which the copolymer is a block copolymer or a graft copolymer.
- 28. (Previously Presented): Composition according to claim 1, in which the polymer represents from 0.5 to 80% of the total weight of the composition.

- 29. (Previously Presented): Composition according to claim 1, in which the liquid fatty phase further contains a non-silicone oil.
- 30. (Previously Presented): Composition according to claim 1, in which the liquid fatty phase represents from 5 to 99% of the total weight of the composition.
- 31. (Previously Presented): Composition according to claim 1, in which the said organogelling agent is chosen from non-polymeric organic compounds whose molecules are capable of establishing, with each other, at least one physical interaction leading to self-aggregation of the said molecules with formation of a three-dimensional macromolecular network.
- 32. (Original): Composition according to Claim 31, in which the physical interaction(s) are chosen from self-complementary hydrogen interactions, interactions between unsaturated nuclei, dipolar interactions and coordination bonds with organometallic derivatives.
- 33. (Previously Presented): Composition according to claim 1, in which the organogelling agent is chosen from compounds whose molecules comprise at least one entity chosen from at least one group capable of establishing a hydrogen bond, at least one aromatic nucleus, at least one bond comprising an ethylenic unsaturation and at least one asymmetric carbon.
- 34. (Previously Presented): Composition according to claim 1, in which the organogelling agent is a compound whose molecules comprise at least two groups capable of establishing a hydrogen bond.

- 35. (Original): Composition according to Claim 34, in which the group capable of establishing a hydrogen bond is chosen from the hydroxyl, carbonyl, amine, carboxylic acid, amide, benzyl, sulphonamide, carbamate, thiocarbamate, urea, thiourea, oxamido, guanidino and biguanidino groups.
- 36. (Previously Presented): Composition according to claim 1, in which the organogelling agent comprises at least one compound chosen from:
- hydroxylated fatty carboxylic acids comprising a chain chosen from linear and branched, aliphatic carbon chains, and the salts thereof chosen from alkali metal salts and alkaline-earth metal salts, and esters thereof;
 - amides of carboxylic acids;
 - amides and esters of amino acids;
 - amides of N-acylamino acids;
- diamides having hydrocarbon chains each containing from 1 to 22 carbon atoms, optionally substituted with at least one substituent chosen from ester, urea and fluoro groups;
 - amines and amides of steroids and their salts;
- compounds containing several aromatic nuclei, chosen from the anthrylic derivatives comprising at least two alkyl chains containing from 8 to 30 carbon atoms, or comprising a steroid group;
 - azobenzene steroids;
- organometallic compounds, chosen from mononuclear copper β -diketonate (the octasubstituted copper complex of bis(3,4-nonyloxybenzoyl)methane), binuclear copper tetracarboxylates or Zn (II) complexes of trisubstituted (para-carboxyphenyl)porphyrine;

- surfactants in salt form comprising at least two chains chosen from linear or branched alkyl chains;
- benzylidene sorbitols and alditols and derivatives thereof;
- cyclodipeptides which are cyclic condensates of two amino acids;
- cyclic compounds and alkylene compounds comprising two urea or urethane groups;
 - alkylaryl derivatives of cyclohexanol;
 - calixarenes;
- combinations of 2,4,6-triaminopyrimidines which are substituted with an alkyl chain and of dialkylbarbituric acid;
 - gluconamide derivatives;
 - bisoxalylamides of amino acids;
 - amide and urea derivatives of a lysine ester;
- diamide derivatives of benzenedicarboxylic acids;
 - monoalkyloxamides;
 - bolaamphiphiles with a 1-glucosamide head;
 - amide derivatives of bolaamphiphiles;
- 2-alkyl-2-ammoniumisobutyl acetate p-toluenesulphonates;
 - fatty esters of cellobiose; and
- derivatives having two urea groups and two carbamate groups of formula (XXIV):

in which R^{41} is an alkyl group of 4 to 42 carbon atoms optionally containing oxygen atoms, and R^{42} and R^{43} , which may be identical or different, represent C_2 to C_{20} alkylene, C_5 to C_{10} cycloalkylene or C_5 to C_{10} cycloarylene groups;

- diamides of formula (XXV) or (XXVI):

 R^{44} -X-CO-NH- R^{45} -NH-CO-X- R^{44} (XXV)

or

 R^{44} -CO-NH- R^{45} -NH-CO- R^{44} (XXVI)

in which the groups R^{44} , which may be identical or different, represent a saturated or unsaturated, linear or branched C_8 - C_{60} hydrocarbon chain, the group(s) R^{44} optionally comprising a hydroxyl group or at least one heteroatom such as N, O, S or Si, R^{45} is a hydrocarbon-based group chosen from linear, branched and cyclic C_1 to C_{50} groups and C_5 to C_8 arylene groups optionally substituted with one or more C_1 - C_4 alkyl groups, and X represents -O- or -NH-.

- 37. (Original): Composition according to Claim 36, in which in the said hydroxylated fatty carboxylic acids, the said chain comprises a carbon chain having at least 8 carbon atoms.
- 38. (Original): Composition according to Claim 36, in which the said carboxylic acid amides are chosen from tricarboxylic acid amides.

- 39. (Original): Composition according to Claim 38, in which the said tricarboxylic acid amides are chosen from cyclohexanetricarboxamides.
- 40. (Original): Composition according to Claim 36, in which the said amides of N-acylamino acids are chosen from the diamides resulting from the action of an N-acylamino acid with an amine comprising from 1 to 22 carbon atoms.
- 41. (Original): Composition according to Claim 36, in which the said hydrocarbon chains of the said diamides having hydrocarbon chains comprising from 1 to 22 carbon atoms contain from 6 to 18 carbon atoms.
- 42. (Previously Presented): Composition according to claim 1, in which the organogelling agent comprises at least one compound chosen from amides of N-acylamino acids, cyclohexanetricarboxamides and diamides having hydrocarbon chains, each containing from 1 to 22 carbon atoms, optionally substituted with at least one substituent chosen from ester, urea and fluoro groups.
- 43. (Previously Presented): Composition according to claim 1, in which the organogelling agent comprises at least one compound chosen from the compounds of formula (XIV):

R^{46} -CO-NH-A-NH-CO- R^{47} (XIV)

in which R^{46} and R^{47} , which may be identical or different, represent a hydrogen atom or a hydrocarbon chain chosen from saturated and unsaturated, linear, branched and cyclic hydrocarbon chains containing from 1 to 22 carbon atoms, optionally substituted with at least one group chosen

from aryl $(-C_6H_5)$, ester $(-COOR^{48})$, amide $(-CONHR^{48})$ with R^{48} , urethane $(-OCONHR^{48})$, and urea $(-NHCONHR^{48})$ with R^{48} being an alkyl group of 2 to 12 carbon atoms) groups; and/or optionally containing from 1 to 3 heteroatoms chosen from 0, S and N; and/or optionally substituted with 1 to 4 halogen atoms and/or 1 to 3 hydroxyl radicals,

provided that \mathbf{R}^{46} and \mathbf{R}^{47} are not both a hydrogen atom, and

A is chosen from saturated and unsaturated, linear, cyclic and branched hydrocarbon chains containing from 1 to 18 carbon atoms, optionally substituted with at least one group chosen from aryl $(-C_6H_5)$, ester $(-COOR^{48})$, amide $(-CONHR^{48})$, urethane $(-OCONHR^{48})$ and urea $(-NHCONHR^{48})$ groups where R^{48} is as defined above; and/or optionally containing from 1 to 3 heteroatoms chosen from 0, S and N; and/or optionally substituted with 1 to 4 halogen atoms and/or 1 to 3 hydroxyl radicals.

- 44. (Previously Presented): Composition according to claim 1, in which the said organogelling agent comprises at least one compound chosen from:
 - N, N'-bis (dodecanoyl) -1, 2-diaminocyclohexane,
 - N, N'-bis (dodecanoyl) -1, 3-diaminocyclohexane,
 - N, N'-bis (dodecanoyl) -1, 4-diaminocyclohexane,
 - N, N'-bis (dodecanoyl) -1, 2-ethylenediamine,
 - N, N'-bis (dodecanoyl) -1-methyl-1, 2-ethylenediamine,
 - N, N'-bis (dodecanoyl) -1, 3-diaminopropane,
 - N, N'-bis (dodecanoyl) -1, 12-diaminododecane,
 - N, N'-bis (dodecanoyl) 3, 4-diaminotoluene.
- 45. (Previously Presented): Composition according to claim 1, in which the said organogelling agent comprises at least one compound chosen from the compounds of formula (XV):

in which the groups R^{48} , which are identical or different, are chosen from a hydrogen atom and saturated, linear and branched hydrocarbon chains, the said hydrocarbon chains containing from 1 to 6 carbon atoms;

- the groups Z, which are identical or different, each represent a group chosen from the following groups: $-CO-S-R^{49}$; $-CO-NHR^{49}$; $-NH-COR^{49}$ and $-S-COR^{49}$; in which the groups R^{49} , which may be identical or different, are chosen from:
 - a hydrogen atom,
 - aryl groups,
 - aralkyl groups, and
- saturated hydrocarbon chains chosen from linear, branched and cyclic hydrocarbon chains, containing from 1 to 22 carbon atoms, optionally substituted with at least one group chosen from aryl, ester, amide and urethane groups; and/or optionally comprising at least one heteroatom chosen from O, S and N; and/or optionally substituted with at least one fluorine atom and/or one hydroxyl radical.
- 46. (Original): Composition according to Claim 45, in which in the said formula (XV), each R^{48} is a hydrogen atom.
- 47. (Previously Presented): Composition according to claim 45, in which in the said formula (XV), each Z is chosen from the groups $CONHR^{49}$ and $NH-COR^{49}$.

- 48. (Previously Presented): Composition according to claim 45, in which in the said formula (XV), R^{49} is chosen from aryl groups; aralkyl groups in which the alkyl portion is a linear or branched alkyl chain comprising 12 to 16 carbon atoms; and linear and branched C_{11} - C_{18} alkyl chains.
- 49. (Previously Presented): Composition according to claim 45, in which the organogelling agent is chosen from:
- cis-1,3,5-tris(dodecylaminocarbonyl)cyclohexane,
- cis-1,3,5-tris(octadecylaminocarbonyl)cyclohexane,
- cis-1,3,5-tris[N-(3,7-dimethyloctyl)aminocarbonyl]cyclohexane,
- trans-1,3,5-trimethyl-1,3,5-tris(dodecylaminocarbonyl)cyclohexane, and
- trans-1,3,5-trimethyl-1,3,5-tris(octadecylaminocarbonyl)-cyclohexane.
- 50. (Previously Presented): Composition according to claim 1, in which the organogelling agent comprises at least one compound of formula (XVI):

R⁴⁶NHCONHANHCONHR⁴⁶ (XVI)

in which R^{46} represents a hydrogen atom or a hydrocarbon chain chosen from saturated and unsaturated, linear, branched and cyclic hydrocarbon chains containing from 1 to 22 carbon atoms, optionally substituted with at least one group chosen from aryl $(-C_6H_5)$, ester $(-COOR^{48})$, amide $(-CONHR^{48})$ with R^{48} , urethane $(-OCONHR^{48})$, and urea $(-NHCONHR^{48})$ with R^{48} being an alkyl group of 2 to 12 carbon atoms) groups; and/or optionally containing from 1 to 3 heteroatoms chosen from 0, S

and N; and/or optionally substituted with 1 to 4 halogen atoms and/or 1 to 3 hydroxyl radicals, and

A is chosen from saturated and unsaturated, linear, cyclic and branched hydrocarbon chains containing from 1 to 18 carbon atoms, optionally substituted with at least one group chosen from aryl $(-C_6H_5)$, ester $(-COOR^{48})$, amide $(-CONHR^{48})$, urethane $(-OCONHR^{48})$ and urea $(-NHCONHR^{48})$ groups where R^{48} is as defined above; and/or optionally containing from 1 to 3 heteroatoms chosen from 0, S and N; and/or optionally substituted with 1 to 4 halogen atoms and/or 1 to 3 hydroxyl radicals.

- 51. (Previously Presented): Composition according to claim 1, in which the organogelling agent comprises at least one compound capable of gelling a silicone oil, chosen from:
- a) 12-hydroxystearic acid, its salts and its ester or amide derivatives,
 - b) amides of tricarboxylic acids,
 - c) esters and amides of N-acylamino acids,
 - d) diureas of N-acylamino acids,
 - e) urethane amides of dipeptides,
 - f) dibenzylidenesorbitol and its derivatives,
 - g) sterol derivatives,
- h) cyclodipeptides chosen from cyclo(glycyl-L-alanyl), cyclo(glycyl-L-valyl), cyclo(glycyl-L-leucyl), cyclo(glycyl-L-phenylalanyl), cyclo(L-valyl-L-leucyl), cyclo(L-leucyl-L-leucyl), cyclo(L-phenylalanyl-L-leucyl), cyclo(L-phenylalanyl-L-phenylalanyl), cyclo(L-valyl-L-γ-3,7-dimethyloctylglutamyl), cyclo(L-leucyl-L-γ-ethylglutamyl), cyclo(L-leucyl-L-γ-dodecylglutamyl), cyclo(L-leucyl-L-γ-dodecylglutamyl), cyclo(L-leucyl-L-γ-3,7-dimethyloctylglutamyl), cyclo(L-leucyl-L-γ-dodecylglutamyl),

dimethyloctylglutamyl), cyclo(L-leucyl-L- γ -benzylglutamyl), cyclo(L- β -butylasparaginyl-L-phenylalanyl), cyclo(L- γ -dodecyl-asparaginyl-L-phenylalanyl), cyclo(L- β -3,7-dimethyl-octylasparaginyl-L-phenylalanyl), cyclo(L- β -2-ethyl-hexylasparaginyl-L-phenylalanyl), cyclo(L- β -3,5,5-trimethylhexylasparaginyl-L-phenylalanyl) and cyclo(L- β -2-ethylbutylasparaginyl-L-phenylalanyl),

i) trans-(1R,2R)-bis(undecylcarbonylamino)cyclohexane of formula:

- j) fluorinated ethers,
- k) organogelling agents of formula (XVII):

$$Q-O-W-(CHOH)_{c}-W^{1}-O-Q^{1}$$
 (XVII)

in which W and W¹, which may be identical or different, are chosen from $-CH_2$ - and -CO-, and in which Q and Q¹, which may be identical or different, are a hydrocarbon chain chosen from saturated or unsaturated, linear or branched hydrocarbon chains containing at least 6 carbon atoms, and in which s is an integer from 2 to 4;

1) bolaamphiphilic amides derived from amino acids
of formulae:

$$R^{36}$$
O-CO-NH-CH-CO-NH

 CH_3
 CH_3

where
$$R^{36} = -CH_2 - C_6H_5$$
 or $-CH_2 - CH_3$, and

m) 2-alkyl-2-ammoniumisobutyl
p-toluenesulphonate salts of formula (XXII):

acetate

n) diamide derivatives of benzenedicarboxylic acid and of valine of formulae:

in which -L-Val- represents:

-NH-CH
$$\left[\text{CH}(\text{CH}_3)_2 \right]$$
 -CO-;

o) diamides of formula (XXV) or (XXVI):

$$R^{44}$$
-X-CO-NH- R^{45} -NH-CO-X- R^{44} (XXV)

or

$$R^{44}$$
-CO-NH- R^{45} -NH-CO- R^{44} (XXVI)

in which the groups R^{44} , which may be identical or different, represent a saturated or unsaturated, linear or branched C_8 - C_{60} hydrocarbon chain, the group(s) R^{44} optionally comprising a hydroxyl group or at least one heteroatom such as N, O, S or Si, R^{45} is a hydrocarbon-based group chosen from linear, branched and cyclic C_1 to C_{50} groups and C_5 to C_8 arylene groups optionally substituted with one or more C_1 - C_4 alkyl groups, and X represents -O- or -NH-.

- 52. (Previously Presented): Composition according to Claim 51, in which the organogelling agent comprises at least one compound capable of gelling a silicone oil and possessing at least one group capable of establishing hydrogen interactions with the polymer of the gelling system, chosen from:
 - a) 12-hydroxystearic acid amide derivatives,
 - b) amides of tricarboxylic acids,
 - c) esters and amides of N-acylamino acids,
 - d) diureas of N-acylamino acids,
 - e) urethane amides of dipeptides,
- f) cyclodipeptides chosen from cyclo(glycyl-L-alanyl), cyclo(glycyl-L-valyl), cyclo(glycyl-L-leucyl), cyclo(glycyl-Lphenylalanyl), cyclo(L-valyl-L-leucyl), cyclo(L-leucyl-Lleucyl), cyclo(L-phenylalanyl-L-leucyl), cyclo(L-phenylalanyl-L-phenylalanyl), cyclo(L-valyl-L- γ -3,7-dimethyloctylglutamyl), cyclo(L-valyl-L-γ-2-ethylhexylglutamyl), cyclo(L-leucyl-L-γethylglutamyl), cyclo(L-leucyl-L-γ-dodecylglutamyl), cyclo(Lleucyl-L- γ -3,7-dimethyloctylglutamyl), cyclo(L-leucyl-L-γbenzylglutamyl), cyclo($L-\beta$ -butylasparaginyl-L-phenylalanyl), cyclo(L- γ -dodecylasparaginyl-L-phenylalanyl), cyclo(L- β -3,7dimethyloctylasparaginyl-L-phenylalanyl), cyclo(L- β -2-ethylhexylasparaginyl-L-phenylalanyl), cyclo(L- β -3,5,5trimethylhexylasparaginyl-L-phenylalanyl) and cyclo(L-\beta-2ethylbutylasparaginyl-L-phenylalanyl),
- g) trans-(1R,2R)-bis(undecylcarbonylamino)cyclohexane of formula:

h) bolaamphiphilic amides derived from amino acids of formulae:

-37-

$$R^{36}\text{O-CO-NH-CH-CO-NH} \\ CH_3 \\ CH_3 \\ CH_3 \\ R^{36}\text{O-CO-NH-CH-CO-NH} \\ CH_3 \\ C_2H_5 \\ C_2H_5 \\ CH_3 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH$$

i) diamide derivatives of benzenedicarboxylic acid and of valine of formulae:

CH₃ CH₃ CH₃ CH₃-CH₂-O-CO-NH-CH-CO-NH

in which -L-Val- represents:

-NH-CH
$$\left[\text{CH}(\text{CH}_3)_2 \right]$$
 -CO-;

j) diamides of formula (XXV) or (XXVI):

$$R^{44}$$
-X-CO-NH- R^{45} -NH-CO-X- R^{44} (XXV)

or

$$R^{44}$$
-CO-NH- R^{45} -NH-CO- R^{44} (XXVI)

in which the groups R^{44} , which may be identical or different, represent a saturated or unsaturated, linear or branched C_6 - C_{60} hydrocarbon chain, the group(s) R^{44} optionally comprising a hydroxyl group or at least one heteroatom N, O, S or Si, R^{45} is a hydrocarbon-based group chosen from linear, branched and cyclic C_1 to C_{50} groups and C_5 to C_8 arylene groups

optionally substituted with one or more $C_1\text{-}C_4$ alkyl groups, and X represents -O- or -NH-.

- 53. (Previously Presented): Composition according to claim 1, in which the organogelling agent comprises at least one compound chosen from:
- the cis-trans mixture of N,N'-bis(dodecanoyl)1,2-diaminocyclohexane of formula:

- the dibutylamide of N-laurylglutamic acid.
- 54. (Previously Presented): Composition according to claim 1, in which the said organogelling agent is present in a quantity ranging from 0.1% to 80% by weight relative to the total weight of the composition.
- 55. (Previously Presented): Composition according to claim 1, in which the said organogelling agent is present in a quantity ranging from 0.5% to 60% by weight relative to the total weight of the composition.
- 56. (Previously Presented): Composition according to claim 1, in which the polymer/non-polymeric organogelling agent mass ratio is in the range from 20 to 0.15.

- 57. (Previously Presented): Composition according to claim 1, characterized in that it comprises, in addition, at least one cosmetic or dermatological active agent.
- 58. (Previously Presented): Composition according to claim 1, characterized in that the active agent is chosen from essential oils, vitamins, moisturizers, sunscreens, cicatrizing agents and ceramides.
- 59. (Previously Presented): Composition according to claim 1, characterized in that it comprises at least one additive chosen from dyes that are soluble in polyols or in the fatty phase, antioxidants, essential oils, preserving liposoluble perfumes, polymers, especially agents, hydrocarbon-based liposoluble polymers such as polyalkylenes or polyvinyl laurate, liquid-fatty-phase gelling waxes, qums, resins, surfactants, for instance trioleyl phosphate, additional cosmetic or dermatological active agents chosen, for example, from the group consisting of water, emollients, moisturizers, vitamins, liquid lanolin, essential fatty acids, lipophilic sunscreens or sunscreens that are soluble in polyols, lipid vesicles, and mixtures thereof.
- 60. (Previously Presented): Composition according to claim 1, characterized in that it contains, in addition, an amphiphilic compound which is liquid at room temperature, having a hydrophilic/lipophilic balance value of less than 12.
- 61. (Previously Presented): Composition according to claim 1, characterized in that it additionally comprises at least one colouring matter other than a pigment.

- 62. (Previously Presented): Composition according to claim 1, characterized in that it is provided in the form of an anhydrous stick.
- 63. (Previously Presented): Make-up structured solid composition containing at least one pigment in a sufficient quantity for providing a coloring effect to keratin materials upon application and a liquid continuous fatty phase comprising at least one silicone oil structured with at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
 - at least one polyorganosiloxane group, consisting of 1 to 1 000 organosiloxane units in the chain of the moiety or in the form of a graft, and
 - at least two groups capable of establishing hydrogen interactions chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, thiourea, oxamido, guanidino and biguanidino groups, and combinations thereof, provided that at least one group is different from an ester group,

the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C,

the liquid fatty phase further comprising a non-polymeric organogelling agent,

the said composition being provided in the form of a solid, and the pigment, the liquid fatty phase, the organogelling agent and the polymer forming a physiologically acceptable medium.

64. (Original): Composition according to Claim 63, characterized in that it is self-supporting.

- 65. (Previously Presented): Lipstick structured composition, containing at least one pigment in a sufficient quantity for providing a coloring effect upon application to the lips and a liquid continuous fatty phase comprising at least one silicone oil structured with at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
 - at least one polyorganosiloxane group, consisting of 1 to 1 000 organosiloxane units in the chain of the moiety or in the form of a graft, and
 - at least two groups capable of establishing hydrogen interactions chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, thiourea, oxamido, guanidino and biguanidino groups, and combinations thereof, provided that at least one group is different from an ester group,

the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C,

the liquid fatty phase further comprising an organogelling agent,

the said composition being provided in the form of a solid, and the pigment, the liquid fatty phase and the polymer forming a physiologically acceptable medium.

66. (Previously Presented): Composition according to claim 1, characterized in that it is provided in the form of a cake mascara, an eyeliner, a foundation, a lipstick, a blusher, a make-up-removing or deodorant product, a make-up product for the body, an eyeshadow or a face powder, or a concealer product.

- 67. (Previously Presented): Make-up stick containing at least one pigment in a sufficient quantity for providing a coloring effect to keratin materials upon application and a liquid continuous fatty phase comprising at least one silicone oil structured with at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
 - at least one polyorganosiloxane group, consisting of 1 to 1 000 organosiloxane units in the chain of the moiety or in the form of a graft, and
 - at least two groups capable of establishing hydrogen interactions chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, thiourea, oxamido, guanidino and biguanidino groups, and combinations thereof, provided that at least one group is different from an ester group,

the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, the liquid fatty further comprising an organogelling agent, the pigment, the fatty phase and the polymer forming a physiologically acceptable medium.

- 68. (Previously Presented): A method of making up a keratinous materil comprising applying the composition of claim 1 to the keratinous material.
- 69. (Currently Amended): A method of making a composition comprising combining at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:

- at least one polyorganosiloxane group, consisting of 1 to 1 000 organosiloxane units in the chain of the moiety or in the form of a graft, and
- at least two groups capable of establishing hydrogen interactions chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, thiourea, oxamido, guanidino and biguanidino groups, and combinations thereof, provided that at least one group is different from an ester group,

the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C,

with a liquid continuous fatty phase comprising at least one silicone oil, the liquid fatty phase comprising silicone oil(s) having a flash point equal to or greater than 40°C and greater than the softening point of the polymer and an organogelling agent, wherein the organogelling agent is selected from the group consisting of:

- N, N'-bis (dodecanoyl) -1, 2-diaminocyclohexane,
- N, N'-bis (dodecanoyl) -1, 3-diaminocyclohexane,
- N, N'-bis (dodecanoyl) -1, 4-diaminocyclohexane,
- N, N'-bis (dodecanoyl) -1, 2-ethylenediamine,
- N,N'-bis(dodecanoyl)-1-methyl-1,2-ethylenediamine,
- N, N'-bis (dodecanoyl) -1, 3-diaminopropane,
- N, N'-bis (dodecanoyl) -1, 12-diaminododecane,
- N, N'-bis (dodecanoyl) 3, 4-diaminotoluene,
- at least one compound chosen from the compounds of formula (XV):

Application No. 10/517,390 Response to Office Action dated May 27, 2008

in which the groups R⁴⁸, which are identical or different, are chosen from a hydrogen atom and saturated, linear and branched hydrocarbon chains, the said hydrocarbon chains containing from 1 to 6 carbon atoms;

- the groups Z, which are identical or different, each represent a group chosen from the following groups: $-\text{CO-S-R}^{49}; -\text{CO-NHR}^{49}; -\text{NH-COR}^{49} \text{ and } -\text{S-COR}^{49}; \text{ in which the groups}$ $R^{49}, \text{ which may be identical or different, are chosen from: }$

- a hydrogen atom,
- aryl groups,
- aralkyl groups, and

- saturated hydrocarbon chains chosen from linear, branched and cyclic hydrocarbon chains, containing from 1 to 22 carbon atoms, optionally substituted with at least one group chosen from aryl, ester, amide and urethane groups; and/or optionally comprising at least one heteroatom chosen from O, S and N; and/or optionally substituted with at least one fluorine atom and/or one hydroxyl radical,

- amides of tricarboxylic acids,
- diureas of N-acylamino acids,
- urethane amides of dipeptides,
- sterol derivatives,
- cyclodipeptides chosen from cyclo(glycyl-L-alanyl),
 cyclo(glycyl-L-valyl), cyclo(glycyl-L-leucyl), cyclo(glycyl-Lphenylalanyl), cyclo(L-valyl-L-leucyl), cyclo(L-leucyl-Lleucyl), cyclo(L-phenylalanyl-L-leucyl), cyclo(L-phenylalanyl-

- trans-(1R,2R)-bis(undecylcarbonylamino)cyclohexane of formula:

- fluorinated ethers,
- organogelling agents of formula (XVII):

 $Q-O-W-(CHOH)_s-W^1-O-Q^1$ (XVII)

in which W and W¹, which may be identical or different, are chosen from $-CH_2$ - and -CO-, and in which Q and Q¹, which may be identical or different, are a hydrocarbon chain chosen from saturated or unsaturated, linear or branched hydrocarbon chains containing at least 6 carbon atoms, and in which s is an integer from 2 to 4;

- bolaamphiphilic amides derived from amino acids of formulae:

$$R^{36}$$
O-CO-NH-CH-CO-NH
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5

where
$$\ R^{36} = \text{-CH}_2\text{-C}_6H_5 \ \text{or} \ \text{-CH}_2\text{-CH}_3, \ \text{and}$$

- 2-alkyl-2-ammoniumisobutyl acetate p-toluenesulphonate salts
of formula (XXII):

- diamide derivatives of benzenedicarboxylic acid and of valine of formulae:

Application No. 10/517,390 Response to Office Action dated May 27, 2008

in which -L-Val- represents:

-NH-CH
$$\left[\text{CH}(\text{CH}_3)_2 \right]$$
 -CO-;

- diamides of formula (XXV) or (XXVI):

$$R^{44}$$
-X-CO-NH- R^{45} -NH-CO-X- R^{44} (XXV)

or

$$R^{44}$$
-CO-NH- R^{45} -NH-CO- R^{44} (XXVI)

in which the groups R^{44} , which may be identical or different, represent a saturated or unsaturated, linear or branched C_8 - C_{60} hydrocarbon chain, the group(s) R^{44} optionally comprising a hydroxyl group or at least one heteroatom such as N, O, S or Si, R^{45} is a hydrocarbon-based group chosen from linear, branched and cyclic C_1 to C_{50} groups and C_5 to C_8 arylene groups optionally substituted with one or more C_1 - C_4

alkyl groups, and X represents -O- or -NH-, and mixtures thereof, and at least one pigment in an amount sufficient to provide a coloring effect to keratin materials upon application,

to form a composition which is in the form of a selfsupporting solid with a hardness ranging from 20 to 2 000 gf.

70-74. (Canceled).

75. (Canceled).

77. (New): Composition according to claim 1, wherein the polymer comprises multiples of a unit represented by the following formula (A):

$$- \left[C(O) - X - \left[SiO \right]_{DP} Si - X - C(O)NH - Y - NH \right]_{n}$$

where: (a) DP is between 1 and 700; (b) n is a number selected from the group consisting of 1-500; (c) X is a linear or branched chain alkylene having 1-30 carbons; (d) Y is selected from the group consisting of linear or branched chain alkylenes having 1-40 carbons; (d) R¹, R², R³ and R⁴ are the same or different and may be selected from the group consisting of methyl, ethyl, propyl, isopropyl, a siloxane chain, and phenyl.

Application No. 10/517,390 Response to Office Action dated May 27, 2008

78. (New): Composition according to claim 1, wherein the polymer is a nylon 611/dimethicone copolymer.