Blokkon lévő adatok automatikus feldolgozása

September 25, 2019

1 Blokkon lévő adatok automatikus feldolgozása

1.1 Bevezetés

Ebben a fejezetben ismertetem programom főbb jellemzőit, a megoldandó problémát, ezekhez kapcsolódó meglévő módszereket, alkalmazásokat és szolgáltatásokat.

1.1.1 Megoldandó probléma

A programom gépi látás témakörében mozog, amelyen belül leginkább a kép szegmentációjával, az azon lévő adatok kinyerésével foglalkozom. Lényegében amikor nekiláttam ennek a projektnek, annyi lebegett a szemem előtt, hogy tudjam mikor, hol, mennyiért vásárálok, mindezt egy egyszerű webes felületen megjelenítve. Amíg a lefényképezett nyugtából kinyert adatok lesznek, sok folyamat lejátszódik a háttérben. Legfőbb probléma, hogy nagyon sokféle blokk létezik méretre és tartalomra vonatkozóan. Én ezért csak olyan magyarországon kiadható nyugtával foglalkozom, melyen a tételek megtalálhatóak. Szerencsére a Nemzeti Adó- és Vámhivatal a nyugta kiállítását alapvető szabályokhoz köti. Csak néhányat kiemelve ami számomra is fontos: a nyugta kibocsátásának kelte; a nyugta kibocsátójának neve és címe; a termék értékesítésének, szolgáltatás nyújtásának adót is tartalmazó ellenértéke. Mivel ezek minden blokkon megtalálhatók, ezért szűkül a megoldandó probléma .Röviden a megoldás úgy néz ki, hogy van egy lefényképezett blokk, melyen apróbb módosításokat végzek el először (nyújtás, vágás, küszöbölés), majd a letisztázott képet szegmentálom, mert csak bizonyos részek érdekelnek a blokk tartalmából, és ezután történik meg az optikai karakterfelismerés. Majd a kinyert adatokat egyszerű adatbázisban tárolom, amelyet ezután már könnyű megjeleníteni webes felületen.

(Nyugta kötelező adattartalma - 17. oldal)

1.1.2 Kapcsolódó területek

ez lemaradt ezt is kiegészítem

1.1.3 Módszerek, alkalmazások, szolgáltatások

Mivel ez nem egy új keletű dolog, már létezik számos ilyen megoldás, de azok általában mind zárt forráskódúak, nem láthatóak a háttérbeli folyamatok. Pár ilyen kész szoftvert az alábbiakban bemutatok, melyek többféle lehetőséget kínálnak.

Az egyik ilyen alkalmazás a Taggun, amelyet ingyenesen ki lehet próbálni, viszont ha rendesen használni szeretnénk akkor 0.08 USD-be kerül blokkonként.. 82.26%-os pontossággal tud kinyerni adatokat ez az alkalmazás. Több nyelvet és több féle fájl formátumot tud kezelni. Gépi tanulásos módszert, a Google Vision API-t és Microsoft Cognitive Service API-t is használ az adatok kinyeréséhez.

A másik a Tabscanner. Ez a szoftver évek óta piacon jelen van. Különböző mesterséges intelligencia modellekkel támogatják a szolgáltatásukat. Ellenörző moduljuk segítségével nincs szükség emberi beavatkozásra, minden teljesen automatikusan működik. Kiválaszthatjuk milyen adatokkal szeretnénk csak foglalkozni és még ami nagyon kedvező ebben a termékben, hogy API-t biztosítanak a vevő részére, így bármilyen alkalmazásba bele lehet integrálni a megoldásukat. Naprakész adatbázissal rendelkezik a blokkok formátumára vonatkozóan

A harmadik amit még érdemes bemutatom az Xtracta-nak a blokk olvasó API-ja. Ez egy mégnagyobb rendszer, melynek működését az alábbi ábrán láthatjuk. Egyszerű a működtetése, többféle helyről lehet blokkokat feltölteni (mobil alkalmazásuk is van), szintén biztosít API-t a programozók számára. Széles körben elterjedt szoftver, nagyobb cégek is használják (pl.: Volvo).

(Xtracta folyamatábra - kép)

Erről majd még írok : https://github.com/mre/receipt-parser

1.2 Mintaadatbázis

A következőkben megvizsgáljuk, hogy milyen típusú blokkokkal találkozhatunk manapság, milyen előfeltételek szükségesek a sikeres beolvasáshoz, a vizsgálandó adatoknak a szerkezetét, illetve az adatbázisunk felépítését.

- 1.2.1 Blokkok fő típusai
- 1.2.2 Előfeltételek
- 1.2.3 Képre vonatkozó paraméterek
- 1.2.4 Kinyerendő adatok szerkezete
- 1.2.5 Mintáink elnevezési és tárolási konvenciói