Intégration pratique

14 février 2021

Introduction

Dans cette note, on va redonner les résultats de théorie de l'intégration de Lebesgue permettant de justifier les interversions des signes \sum , \int , $\frac{d}{dx}$, lim.

1 Théorème de convergence dominée

Théorème 1.1 (Convergence dominée). Soit $(X, \mathcal{F}, \lambda)$ un espace mesuré.

Soit (f_n) une suite de fonctions de L^1 qui converge μ -presque partout vers une application mesurable f de X dans \mathbb{R} et tel qu'il existe une fonction $g \in L^1$ telle que $\forall n \in \mathbb{N}, \forall x \in X, |f_n(x)| \leq g(x)$. Alors $f \in L^1$ et $\lim ||f_n - f|| = 0$ i.e. f_n converge vers f dans L^1 .

Dans les hypothèses de ce théorème, $\lim \int f_n = \int \lim f_n = \int f$

Le théorème de convergence dominée nous permet d'intervertir une limite et une intégrale (resp. une série)

Exemple 1.2. Calculons la limite de $I_n := \int_0^n (1 - x/n)^n x^m dx$ quand $n \to \infty$ et $m \in \mathbb{N}$. Soit $f_n : x \in \mathbb{R} \mapsto (1 - x/n)^n x^m \mathbf{1}_{[0,n]}(x)$. On a alors $I_n = \int f_n$. Pour tout $x \in \mathbb{R}$, $\lim_{n \to \infty} f_n = e^{-x} x^m \mathbf{1}_{\mathbb{R}_+} =: f(x)$.

De plus, on a l'inégalité, pour tout n et pour tout x, $|f_n(x)| \le e^{-x} x^m \mathbf{1}_{\mathbb{R}_+}(x)$. Cette dernière application étant intégrable, on en déduit, grâce au théorème de convergence dominée que $\lim I_n = \int f = \int_0^\infty x^m e^{-x} dx = \Gamma(m+1) = m!$

$\mathbf{2}$ Théorème de Fubini

Définition 2.1 (espace σ -finis). Un espace mesuré $(X, \mathcal{F}, \lambda)$ est dit σ -fini s'il existe des ensembles de mesures finis qui recouvrent X.

Exemple 2.2. 1. Mesure de comptage sur un ensemble dénombrable : \mathbb{N},\mathbb{Z}

2. Mesure de Lebesgue et plus généralement, mesure de Haar sur un groupe localement compact σ -compact : $\mathbb{R}, \mathbb{R}/\mathbb{Z}$ et leur produits.

Définition 2.3. Soient $(X, \mathcal{F}, \lambda)$ et (Y, \mathcal{G}, μ) deux espaces mesurés σ -finis.

- La tribu produit de \mathcal{F} et \mathcal{G} , noté $\mathcal{F} \otimes \mathcal{G}$, est définie comme étant la plus petite tribu contenant les $F \times G$ pour $F \in \mathcal{F} \text{ et } G \in \mathcal{G}.$
- La mesure produit de λ et μ , noté $\lambda \otimes \mu$, est définie de la façon suivante : Soit $Q \in \mathcal{F} \otimes \mathcal{G}$.

Soient $Q_x := \{y | (x,y) \in Q\}$ et $Q^y := \{x | (x,y) \in Q\}$ les sections de Q suivant, respectivement, x et y. $\lambda \otimes \mu(Q) := \int_{Y} \lambda(Q_x) d\mu(x) = \int_{Y} \mu(Q^y) d\lambda(y)$

On peut définir ainsi le produit de plusieurs espaces mesurés.

Exemple 2.4. $\mathcal{B}(\mathbb{R}^d) = \mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R})$ $\lambda_{\mathbb{R}^d} = \lambda_{\mathbb{R}} \otimes \ldots \otimes \lambda_{\mathbb{R}}$

Théorème 2.5 (de Fubini). Soient $(X, \mathcal{F}, \lambda)$ et (Y, \mathcal{G}, μ) deux espaces mesurés σ -finis. Soit $f: X \times Y \to \overline{\mathbb{R}}$ une application $\mathcal{F} \otimes \mathcal{G}$ -mesurable.

1) Si $f \ge 0$ alors les applications $\varphi_y : x \mapsto \int_Y f(x,y) d\mu(y)$ et $\psi_x : y \mapsto \int_X f(x,y) d\lambda(y)$ sont mesurables sur, respectivement, \mathcal{F} et \mathcal{G} et

$$\int_{X\times Y} f d(\lambda\otimes\mu) = \int_X \varphi_y(x) d\lambda(x) = \int_Y \psi_x(y) d\mu(y)$$

2) Si f est $\lambda \times \mu$ -intégrable alors les applications $f(x,\cdot)$ et $f(\cdot,y)$ sont intégrables pour, respectivement, presque tout $x \in X$ et presque tout $y \in Y$. Les applications φ_y et ψ_x sont bien définis (comme dans le 1)) pour, respectivement, presque tout y et presque x et sont intégrables. On a, alors, comme dans le cas précédent,

$$\int_{X\times Y} f d(\lambda\otimes\mu) = \int_X \varphi_y(x) d\lambda(x) = \int_Y \psi_x(y) d\mu(y)$$

Le théorème de Fubini permet de faire les intervertions $\sum \sum, \sum \int, \int \int$

Exemple 2.6. Soit $n \in \mathbb{N}, n \geq 2$. Calculons $I = \int_0^1 \cdots \int_0^1 \frac{dx_1...dx_n}{1-x_1...x_n}$.

 $I = \int_{[0,1[} \dots \int_{[0,1[} \sum_{p \geq 0} (x_1 \dots x_n)^p dx_1 \dots dx_n.$ Comme $(x_1 \dots x_n)^p \geq 0$ sur $[0,1[^n$ alors, par le théorème de Fubini, on peut intervertir les signes somme et intégrale

$$I = \sum_{p \ge 0} \int_{[0,1[^n]} (x_1 \dots x_n)^p dx_1 \dots dx_n = \sum_{p \ge 0} \left(\int_{[0,1[} x^p dx \right)^n = \sum_{p \ge 0} \frac{1}{(p+1)^n} = \zeta(n)$$

Exemple 2.7. Soit (u_n) une suite dont la série est absolument convergente.

Montrons que, pour toute permutation σ de \mathfrak{S}_n , $\sum u_{\sigma(n)} = \sum u_n$.

Soit $(u_{n,p})$ la suite définie par : $u_{n,p} = u_n \delta_{n,\sigma^{-1}(p)}$.

Pour utiliser le théorème de Fubini, nous devons nous assurer que $\sum_{n,p} |u_{n,p}| < \infty$. Pour ce faire, on peut utiliser le théorème de Fubini pour les fonctions positives :

 $\sum_{n,p}|u_{n,p}|=\sum_n\sum_p|u_{n,p}|=\sum_n|u_n|<\infty.$ On en déduit, grâce au théorème de Fubini, que :

$$\sum_{n} u_{n} = \sum_{n} \sum_{p} u_{n,p} = \sum_{p} \sum_{n} u_{n,p} = \sum_{p} u_{\sigma(p)}$$

Théorème de continuité et de dérivation sous le signe J 3

Dans la suite, (X, \mathcal{F}, μ) est un espace mesuré, a et b sont deux réels tels que a < b et f désigne une application de $X \times [a,b]$ dans \mathbb{R} .

Théorème 3.1 (de continuité sous le signe \int). Si f vérifie les trois hypothèses suivantes :

- 1) Pour tout $t \in [a,b], f(\cdot,t) \in L^1$;
- 2) $\exists g \in L^1, \forall x \in X, \forall t \in [a, b], |f(x, t)| \leq g(x)$ (hypothèse de domination)
- 3) Pour tout $x \in X$, l'application $f(x, \cdot)$ est continue sur [a, b];

alors, l'application $F: t \in [a,b] \mapsto F(t) := \int_X f(x,t) d\mu(x) \in \mathbb{R}$ est continue sur [a,b].

Théorème 3.2 (de dérivabilité sous le signe \int). Si f vérifie les trois hypothèses suivantes :

- 1) Pour tout $t \in [a, b], f(\cdot, t) \in L^1$;
- 2) Pour tout $(x,t) \in X \times [a,b]$, l'application $\frac{\partial f}{\partial t}(x,t)$ est définie ;
- 3) $\exists g \in L^1, \forall x \in X, \forall t \in [a, b], \left| \frac{\partial f}{\partial t}(x, t) \right| \leq g(x)$ (hypothèse de domination).

- 1)l'application $F:t\in [a,b]\mapsto F(t):=\int_X f(x,t)d\mu(x)\in \mathbb{R}$ est dérivable sur [a,b]
- 2) Pour tout $t \in]a,b[,\frac{\partial f}{\partial t}(\cdot,t) \in L^1 \text{ et } F'(t) = \int_{X} \frac{\partial f}{\partial t}(x,t) d\mu(x).$

Théorème 3.3 (Généralisation). Soit $k \in \mathbb{N}$ et f qui vérifie les trois hypothèses suivantes :

- 1) Pour tout $t \in [a, b], f(\cdot, t) \in L^1$;
- 2) Pour tout $(x,t) \in X \times [a,b]$, l'application $\frac{\partial^k f}{\partial t^k}(x,t)$ est définie; 3) $\exists g \in L^1, \forall x \in X, \forall t \in [a,b], \left| \frac{\partial^k f}{\partial t^k}(x,t) \right| \leq g(x)$ (hypothèse de domination).

- 1) l'application $F: t \in [a,b] \mapsto F(t) := \int_X f(x,t) d\mu(x) \in \mathbb{R}$ est k fois dérivable sur [a,b]
- 2) Pour tout $t \in]a,b[,\frac{\partial^k f}{\partial t^k}(\cdot,t) \in L^1 \text{ et } F^{(k)}(t) = \int_X \frac{\partial^k f}{\partial t^k}(x,t)d\mu(x).$

Exemple 3.4. Soit $\Gamma: t \in \mathbb{R}_+^* \mapsto \int_0^\infty x^{t-1} e^{-x} dx$.

Soit $f:(x,t)\mapsto x^{t-1}e^{-x}$.

 Γ est bien défini pour tout t>0 (par des arguments de croissance comparée et de comparaison aux séries de Riemann). Comme, de plus, $f \geq 0$ alors $f \in L^1$.

f est clairement \mathcal{C}^{∞} .

Soit 0 < a < b deux réels et considérons la restriction de Γ sur [a, b].

Soit $x > 0, t \in]a, b[$ et $k \in \mathbb{N}$

$$\left| \frac{\partial^k f}{\partial t^k}(x,t) \right| = |x^{t-1} ln(x)^k e^{-x}| \le |ln(x)^k e^{-x}| x^{a-1}$$

 $\left|\frac{\partial^k f}{\partial t^k}(x,t)\right| = |x^{t-1}ln(x)^k e^{-x}| \leq |ln(x)^k e^{-x}| x^{a-1}.$ Par croissante comparée et comparaison aux séries de références, cette dernière fonction est intégrable sur \mathbb{R}_+^* . Par le théorème de dérivation, Γ est \mathcal{C}^k sur [a,b]. On en conclut donc que Γ est \mathcal{C}^∞ sur \mathbb{R}_+^*

Références

[1] W. Rudin. Analyse réelle et complexe : cours et exercices. Sciences sup. Dunod, 1998.