# Paths of analysis\*

# Synthia

March 3, 2022

# 1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: FGI, FGI with protections

Max. paths returned: 5

Max. iterations: 300

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1000 \$/g

## Published:

1. Max. molecular weight - 1000 g/mol

2. Popularity - 10

## My Stockroom:

1. Max. molecular weight - 1000 g/mol

**Reaction scoring formula:** TUNNEL\_COEF\*FGI\_COEF\*STEP\*20+1000 000\*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

<sup>\*</sup>The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

## FGI Coeff: 0

JSON Parameters: {}

# 2 Paths

 $2~{\rm paths}$  found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

# 2.1 Path 1

Score: 173.72



Figure 1: Outline of path 1

# 2.1.1 Synthesis of O-substituted N-substituted hydroxamic acids

# Substrates:

- 1. n-methoxymethylamine ChemImpexInternational
- 2. 7-Azaindole-3-carboxylic acid Combi-Blocks

## **Products:**

 $1. \ \mathrm{CON(C)C(=O)c1c[nH]c2ncccc12}$ 

Typical conditions: DCC.DMAP or CDI.TEA.DCM

Protections: none

Yield: good

**Reference:** Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

# 2.1.2 Chlorination of aromatic compounds

## Substrates:

 $1. \ \mathrm{CON(C)C(=O)c1c[nH]c2ncccc12}$ 

# **Products:**

1. CON(C)C(=O)c1c[nH]c2ncc(Cl)cc12

Typical conditions: Cl2 or other chlorinating agent like NCS

Protections: none
Yield: moderate

**Reference:** DOI: 10.1007/s11178-005-0256-1

Retrosynthesis ID: 11125

# 2.1.3 Suzuki coupling with aryl chlorides



Substrates:

1. (p-Fluorophenyl)boric acid - available at Sigma-Aldrich

2. CON(C)C(=O)c1c[nH]c2ncc(Cl)cc12

## **Products:**

1. CON(C)C(=O)c1c[nH]c2ncc(-c3ccc(F)cc3)cc12

Typical conditions: [Pd].catalyst.base.

Protections: none

Yield: good

**Reference:** 10.1002/anie.201108608 and 10.1002/anie.200801465 and 10.1055/s-0033-1338293 and 10.1039/c1cc10708a and 10.1055/s-0030-1260169 and 10.1016/j.tet.2005.05.071 and 10.1038/s41929-020-00564-z (metal-free coupling)

Retrosynthesis ID: 26284

## 2.1.4 Schmidt Reaction



## Substrates:

1. 6-Chloro-2-fluoro-3-iodobenzoic acid - AOBChem

2. hydrazoic acid

#### **Products:**

1. Nc1c(Cl)ccc(I)c1F

Typical conditions: azide.H+.40C

Protections: none
Yield: moderate

**Reference:** 10.1039/B505080D

Retrosynthesis ID: 10953

# 2.1.5 N-Sulfonylation

## Substrates:

- 1. Nc1c(Cl)ccc(I)c1F
- 2. 1-Propanesulfonyl chloride available at Sigma-Aldrich

# **Products:**

1. CCCS(=O)(=O)Nc1c(Cl)ccc(I)c1F

Typical conditions: THF.rt

Protections: none

Yield: good

**Reference:** 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and <math>10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

Retrosynthesis ID: 14717

# 2.1.6 Synthesis of ketones from Weinreb amides

## Substrates:

1. CCCS(=O)(=O)Nc1c(Cl)ccc(I)c1F

 $2. \ CON(C)C(=O)c1c[nH]c2ncc(-c3ccc(F)cc3)cc12 \\$ 

# Products:

 $1. \ \ CCCS(=O)(=O)Nc1c(Cl)ccc(C(=O)c2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F$ 

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Yield: good

**Reference:** 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 5060

# 2.2 Path 2

Score: 236.18



Figure 2: Outline of path 2

# 2.2.1 Chan-Lam Coupling

## Substrates:

 2. 3-Bromo-6-Chloro-2-fluorophenylboronic acid - AOBChem

## **Products:**

1. CCCS(=O)(=O)Nc1c(Cl)ccc(Br)c1F

 $\textbf{Typical conditions:} \ \mathrm{Cu(OAc)2.K2CO3.H2O} \ \mathrm{or} \ \mathrm{Cu(OAc)2.pyridine.DCM.MS}$ 

4A

Protections: none

Yield: good

**Reference:** 10.1016/j.molcata.2014.02.017 and 10.1039/C4RA08137D and

WO2008073956 p.88

Retrosynthesis ID: 31015970

## 2.2.2 Heck Reaction

## Substrates:

1. CCCS(=O)(=O)Nc1c(Cl)ccc(Br)c1F

2. Acrylamide - available at Sigma-Aldrich

## **Products:**

1. CCCS(=O)(=O)Nc1c(C1)ccc(/C=C/C(N)=O)c1F

Typical conditions: Pd (cat). Ligand e.g. TXPTS. Base. Temp

Protections: none

Yield: good

**Reference:** DOI: 10.1039/C3GC40493E DOI: 10.1021/ol0360288 or DOI: 10.1021/ol702755g or DOI: 10.1055/s-0033-1340319 or DOI: 10.1016/j.tet.2004.10.049

Retrosynthesis ID: 9180

# 2.2.3 Reduction of Amides to Amines

# Substrates:

1. CCCS(=O)(=O)Nc1c(Cl)ccc(/C=C/C(N)=O)c1F

## **Products:**

1. CCCS(=O)(=O)Nc1c(Cl)ccc(/C=C/CN)c1F

Typical conditions: LAH.ether.H+.H20

Protections: none

Yield: good

**Reference:** 10.1021/jo0349633 and 10.1021/op990019q and 10.1021/op200181f

and 10.1021/op2003826

Retrosynthesis ID: 10259

# 2.2.4 Suzuki coupling of arylboronic acids with aryl bromides



#### Substrates:

1. (p-Fluorophenyl)boric acid - available at Sigma-Aldrich

2. 5-Bromo-2,3-dichloropyridine - available at Sigma-Aldrich

## **Products:**

1. Fc1ccc(-c2cnc(Cl)c(Cl)c2)cc1

Typical conditions: Pd catalyst.base.solvent

Protections: none

Yield: good

**Reference:** 10.1021/cr00039a007 and  $10.1007/3418\_2012\_32$  and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H and 10.1016/j.ejmech.2018.08.092 and 10.1038/s41929-020-00564-z (metal-free coupling)

Retrosynthesis ID: 25150

# 2.2.5 Heck-type synthesis of indoles



## Substrates:

1. Fc1ccc(-c2cnc(Cl)c(Cl)c2)cc1

2. CCCS(=O)(=O)Nc1c(C1)ccc(/C=C/CN)c1F

## **Products:**

 $1. \ \ CCCS(=O)(=O)Nc1c(Cl)ccc(Cc2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F$ 

 $\textbf{Typical conditions:}\ Pd2dba3.dppf.NaOtBu.PhMe.140C$ 

Protections: none

Yield: good

**Reference:** 10.1002/anie.200703763

Retrosynthesis ID: 28942

## 2.2.6 Benzylic oxidation to ketone

## Substrates:

 $1. \ \ CCCS(=O)(=O)Nc1c(Cl)ccc(Cc2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F$ 

## **Products:**

 $1. \ \ CCCS(=O)(=O)Nc1c(Cl)ccc(C(=O)c2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F$ 

Typical conditions: oxidant eg. Oxone or O2 or K2S2O8

Protections: none

Yield: moderate

1610678 and 10.1021/acs.orglett.6b02914

Retrosynthesis ID: 7201