MATH 272A: Numerical PDE HW5

University of California, San Diego

Zihan Shao

In this homework set, our main goal is to solve the 2D Poisson equation

$$\begin{cases}
-\Delta u = f & \text{on } \Omega = (0, 1)^2, \\
u = g & \text{on } \partial\Omega,
\end{cases}$$
(1)

using the finite element method with continuous piecewise linear elements.

Code source: Codes for below numerical results can be found at https://github.com/EddyShao/272-numericalPDE.

- 1. (3 pts) Write a code that automatically generates a uniform finite element mesh for Ω with $2n^2$ triangles for a given positive integer n. The data structure corresponding to the mesh should include:
 - (a) A node matrix of size (total number of vertices) \times 2.
 - (b) An element matrix of size (total number of triangles) \times 3.
 - (c) A bdNode vector of size (total number of vertices) which specifies which vertices are on the boundary (give a value 1 if a vertex is on the boundary, otherwise 0).

You may number the vertices and triangles in the way shown in the following picture (take n=3 as an example).

To test your code, take n = 5 and print out the 7th row of the node matrix, the 8th row of the element matrix, and the 12th component of the bdNode vector.

Solution. Below is the output of the tests

7th row of the node matrix: 0 0.2000

8th row of the element matrix:

9 15 16

12th component of the bdNode vector:

1

2. Write a code to compute the local stiffness matrix $A_K = (a_{ij}^K)_{i,j=1}^3$ and the local load vector $F_K = (f_j^K)_{j=1}^3$ for a given triangle K with three vertices v_1 , v_2 , and v_3 . To test your code, print out A_K and F_K for $v_1 = (0,0)^T$, $v_2 = (0.5,0.5)^T$, and $v_3 = (0,1)^T$.

Solution. Below is the output of the tests (Note that here the results for load vector F_K depends on f, where we use the f computed with u given below.)

Local stiffness matrix A_K:

Local load vector F_K:

- 0.2350
- 0.5711
- 0.6330
- 3. Implement the finite element method with continuous piecewise linear elements (Algorithm 2) to solve equation (1). Use the exact solution $u(x_1, x_2) = (x_1 + x_2)^2 \cos(x_1 + 2x_2)$ (with f and g computed accordingly) to test your code. Test your code for h = 1/4, 1/8, 1/16, 1/32 (corresponding to n = 4, 8, 16, 32). You may plot the numerical solution u_h to see whether it looks like the exact solution u.

For a quantitative study on the order of convergence, we want to compare the difference between u_h and u in the two norms:

$$||u - u_h||_{L^2} = \left(\int_{\Omega} |u(x) - u_h(x)|^2 dx\right)^{1/2}$$

and

$$|u - u_h|_{H^1} = \left(\int_{\Omega} (\nabla u - \nabla u_h) \cdot (\nabla u - \nabla u_h) dx\right)^{1/2}.$$

To evaluate these norms approximately, we can approximate the integral over each triangle K by the following rule:

$$\int_{K} v(x) dx \approx \frac{|K|}{3} \sum_{i=1}^{3} v(m_i),$$

where |K| is the area of K and $\{m_i\}_{i=1}^3$ are the three midpoints of the edges of K.

Solution. We implement the finite element method based on Algorithm 2 in the lecture. We plot the numerical solution (n = 64) and exact solution to check if they look the same (See Fig.1)

Figure 1: Comparison of Numerical and Exact Solutions (n = 64)

We also offer quantitative results. Note that when doing the quadrature, we use the same discretization used for numerical solutions (i.e. the triangle meshes) for simplicity concern (See Tab.1).

n	h	$ u-u_h _{L^2}$	$ u-u_h _{H^1}$
4	1/4	0.100371	1.079165
8	1/8	0.026010	0.546943
16	1/16	0.006565	0.274450
32	1/32	0.001645	0.137349

Table 1: L_2 and H_1 (semi) Norm Errors for Different Values of n

Log-Log error-h plot for both norms is shown in Fig.2.

Figure 2: Log-Log error-h plot for both norms

With least square estimation, we validte that $||u - u_h||_{L^2} = O(h^2)$ and $|u - u_h|_{H^1} = O(h)$.