In [210]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [211]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\20_states.csv")
```

Out[211]:

	id	name	country_id	country_code	country_name	state_code	type	latitu	
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.7347	
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.1671	
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.1789	
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.7550	
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.8100	
5072	1953	Mashonaland West Province	247	ZW	Zimbabwe	MW	NaN	-17.4851	
5073	1960	Masvingo Province	247	ZW	Zimbabwe	MV	NaN	-20.6241	
5074	1954	Matabeleland North Province	247	ZW	Zimbabwe	MN	NaN	-18.5331	
5075	1952	Matabeleland South Province	247	ZW	Zimbabwe	MS	NaN	-21.0523	
5076	1957	Midlands Province	247	ZW	Zimbabwe	MI	NaN	-19.0552	
5077 rows × 9 columns									

In [212]:

```
a=a.head(10)
a
```

Out[212]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	_
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	ť
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	ť
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	ť
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	ť
5	3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	(
6	3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	ť
7	3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	ť
8	3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	ť
9	3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	(
4 (

In [213]:

```
# to find
a.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 9 columns):

	`	,	
#	Column	Non-Null Count	Dtype
0	id	10 non-null	int64
1	name	10 non-null	object
2	country_id	10 non-null	int64
3	country_code	10 non-null	object
4	country_name	10 non-null	object
5	state_code	10 non-null	object
6	type	0 non-null	object
7	latitude	10 non-null	float64
8	longitude	10 non-null	float64

dtypes: float64(2), int64(2), object(5)

memory usage: 848.0+ bytes

In [214]:

```
# to display summary of statastic
a.describe()
```

Out[214]:

	id	country_id	latitude	longitude
count	10.000000	10.0	10.000000	10.000000
mean	3884.100000	1.0	34.953490	66.458391
std	11.589746	0.0	1.477933	2.579742
min	3870.000000	1.0	32.495328	62.262663
25%	3872.750000	1.0	33.777016	64.905955
50%	3886.000000	1.0	34.988570	66.471945
75%	3891.250000	1.0	36.154067	68.268350
max	3901.000000	1.0	36.755060	70.811995

In [215]:

```
# to display colum heading
a.columns
```

Out[215]:

In [216]:

sns.pairplot(a)

Out[216]:

<seaborn.axisgrid.PairGrid at 0x243f8ba8d60>

In [217]:

```
sns.displot(a["country_id"])
```

Out[217]:

<seaborn.axisgrid.FacetGrid at 0x243f968f730>

In [218]:

Out[218]:

	id	name	country_id	country_code	country_name	state_code	type	latitude	
0	3901	Badakhshan	1	AF	Afghanistan	BDS	NaN	36.734772	_
1	3871	Badghis	1	AF	Afghanistan	BDG	NaN	35.167134	ť
2	3875	Baghlan	1	AF	Afghanistan	BGL	NaN	36.178903	ť
3	3884	Balkh	1	AF	Afghanistan	BAL	NaN	36.755060	(
4	3872	Bamyan	1	AF	Afghanistan	BAM	NaN	34.810007	(
5	3892	Daykundi	1	AF	Afghanistan	DAY	NaN	33.669495	(
6	3899	Farah	1	AF	Afghanistan	FRA	NaN	32.495328	(
7	3889	Faryab	1	AF	Afghanistan	FYB	NaN	36.079561	(
8	3870	Ghazni	1	AF	Afghanistan	GHA	NaN	33.545059	(
9	3888	Ghōr	1	AF	Afghanistan	GHO	NaN	34.099578	ť
4 (>

In [219]:

```
sns.heatmap(b.corr())
```

Out[219]:

<AxesSubplot:>

In [221]:

```
x=a[['id','country_id', 'latitude', 'longitude']]
y=a['latitude']
```

In [222]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [223]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[223]:

LinearRegression()

In [224]:

```
lr.intercept_
```

Out[224]:

3.552713678800501e-14

In [225]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[225]:

Co-efficient

id -7.797727e-18

country_id 7.771561e-16

latitude 1.000000e+00

longitude -3.325573e-17

In [226]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[226]:

<matplotlib.collections.PathCollection at 0x243f9c71a90>

In [227]:

```
lr.score(x_test,y_test)
```

Out[227]:

1.0

In [228]:

```
lr.score(x_train,y_train)
```

Out[228]:

1.0

```
In [229]:
from sklearn.linear_model import Ridge,Lasso
In [230]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[230]:
Ridge(alpha=10)
In [231]:
rr.score(x_test,y_test)
Out[231]:
0.9733158079069464
In [232]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[232]:
Lasso(alpha=10)
In [233]:
la.score(x_test,y_test)
Out[233]:
0.0
In [234]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[234]:
ElasticNet()
In [235]:
en.coef_
Out[235]:
```

, 0.64476958, 0.0525972])

array([0.

, 0.

```
In [236]:
en.intercept_
Out[236]:
8.939161964166033
In [237]:
prediction=en.predict(x_test)
prediction
Out[237]:
array([34.33940401, 34.95080137, 34.9679595])
In [238]:
en.score(x_test,y_test)
Out[238]:
0.8018930236223091
EVALUATION METRICS
In [239]:
from sklearn import metrics
In [240]:
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolute Error: 0.19326515931722335
```

In [241]:

print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))

Mean Squared Error 0.039003429107221245

In [242]:

print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))

Root Mean Squared Error 0.19749285837017308

MODEL SAVING

```
In [243]:
import pickle
In [244]:
filename='prediction'
pickle.dump(lr,open(filename,'wb'))
In [245]:
import pandas as pd
import pickle
In [246]:
filename='prediction'
model=pickle.load(open(filename,'rb'))
In [248]:
real=[[10,20,30,40],[13,23,33,43]]
result=model.predict(real)
result
Out[248]:
array([30., 33.])
In [ ]:
```