

Introdução ao Cálculo Diferencial e Integral

Funções Trigonométricas

Prof. Dani Prestini

Funções Trigonométricas Ciclo Trigonométrico

Funções Trigonométricas Seno e Cosseno no Ciclo Trigonométrico

Lembre que, para cada arco x, o ciclo trigonométrico associa um ponto P(a,b) do plano cartesiano, chamado de extremidade do arco x.

A abscissa de P é igual ao cosseno do arco x e a ordenada de P é igual ao seno do arco x.

Funções Trigonométricas Seno dos Arcos Notáveis

Seno dos Arcos Notáveis

Arco	Valor	do send
$\frac{\pi}{}$		$\sqrt{2}$
$\overline{4}$		2
3π		$\sqrt{2}$
4		2
5π		$\sqrt{2}$
4		2
7π		$\sqrt{2}$
4	\longrightarrow	

Seno dos Arcos Notáveis

Função Seno

Definição. A função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \sin x$$

é chamada de função seno.

Domínio

Imagem

Período

$$D(f) = \mathbb{R}$$

$$Im(f) = [-1,1]$$

$$P(f) = 2\pi$$

Função Seno

Funções Trigonométricas Função Seno

- ✓ Inverte horizontalmente o gráfico se m < 0.
- ✓ Alonga ou comprime horizontalmente o gráfico.

 $f(x) = a\sin(mx + n) + b$

- ✓ Alonga ou comprime verticalmente o gráfico.
- ✓ Inverte verticalmente o gráfico se a < 0.

✓ Desloca verticalmente o gráfico.

Desloca horizontalmente

o gráfico.

Funções Trigonométricas Deslocamento Vertical para Cima

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função $f(x) = \sin x + 3$

Solução:

Deslocamento vertical do gráfico da função seno em três unidades para cima.

$$D(f) = \mathbb{R}$$
 $Im(f) = [2,4]$ $P(f) = 2\pi$

Funções Trigonométricas Deslocamento Vertical para Baixo

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função

 $f(x) = \sin x - 1$

Solução:

Deslocamento vertical do gráfico da função seno em uma unidade para baixo.

$$D(f) = \mathbb{R}$$
 $Im(f) = [-2,0]$ $P(f) = 2\pi$

Alongamento Vertical

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função

$$f(x) = 3\sin x$$

Compressão Vertical

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função

 $f(x) = \frac{1}{2}\sin x$

Solução:

Compressão verticalmente o gráfico da função seno pelo fator $\frac{1}{2}$.

$$D(f) = \mathbb{R} \qquad Im(f) = \left[-\frac{1}{2}, \frac{1}{2} \right] \qquad P(f) = 2\pi$$

Funções Trigonométricas Reflexão em Relação ao Eixo Horizontal

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função $f(x) = -\sin x$

Solução:

Reflete o gráfico da função seno em relação ao eixo horizontal.

$$D(f) = \mathbb{R}$$
 $Im(f) = [-1,1]$ $P(f) = 2\pi$

Funções Trigonométricas Deslocamento Horizontal para a Esquerda

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função π_{λ}

 $f(x) = \sin\left(x + \frac{\pi}{2}\right)$

Solução:

Deslocamento horizontal do gráfico da função seno em $\frac{\pi}{2}$ para a esquerda.

$$D(f) = \mathbb{R} \qquad Im(f) = [-1,1] \qquad P(f) = 2\pi$$

Funções Trigonométricas Deslocamento Horizontal para a Direita

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função

$$f(x) = \sin(x - \pi)$$

Solução:

Deslocamento horizontal do gráfico da função seno em π unidades para a direita.

$$D(f) = \mathbb{R}$$
 $Im(f) = [-1,1]$ $P(f) = 2\pi$

Funções Trigonométricas Compressão Horizontal

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função

$$f(x) = \sin(2x)$$

Solução:

Compressão horizontal do gráfico da função seno pela metade.

$$D(f) = \mathbb{R} \qquad Im(f) = [-1,1] \qquad P(f) = \pi$$

Alongamento Horizontal

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função $f(x) = \sin(x)$

 $f(x) = \sin\left(\frac{x}{2}\right)$

Solução:

Alongamento horizontal do gráfico da função seno em dobro.

$$D(f) = \mathbb{R} \qquad Im(f) = [-1,1] \qquad P(f) = 4\pi$$

Funções Trigonométricas Reflexão em Relação ao Eixo Vertical

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período da função

$$f(x) = \sin(-x)$$

Solução:

Reflexão do gráfico da função seno em relação ao eixo vertical.

$$D(f) = \mathbb{R} \qquad Im(f) = [-1,1] \qquad P(f) = 2\pi$$

Funções Trigonométricas Exemplo

Exemplo. Esboce o gráfico da função

$$f(x) = 2\sin(x + \pi) + 1$$

Cosseno dos Arcos Notáveis

Cosseno dos Arcos Notáveis

Cosseno dos Arcos Notáveis

Função Cosseno

Definição. A função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \cos x$$

é chamada de função cosseno.

Domínio

$$D(f) = \mathbb{R}$$

Imagem

$$Im(f) = [-1,1]$$

Período

$$P(f) = 2\pi$$

Função Cosseno

Funções Trigonométricas Exemplo

Exemplo. Esboce o gráfico da função

$$f(x) = -\cos(3x) - 1$$

Funções Trigonométricas Tangente no Ciclo Trigonométrico

Lembre que, para cada arco x, o ciclo trigonométrico associa um ponto P(a,b) do plano cartesiano, chamado de extremidade do arco x.

Funções Trigonométricas Função Tangente

Definição. A função f dada por

$$f(x) = \tan x$$

é chamada de função tangente.

Lembre que:

 $\sin x$ $\tan x = --$

 $D(f) = \left\{ x \in \mathbb{R} \middle| x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\} \quad Im(f) = \mathbb{R} \quad P(f) = \pi \quad x = \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$

Domínio

Imagem

Período

Assíntotas

Funções Trigonométricas Exemplo

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período e as assíntotas da função $f(x) = \tan x + 1$

Solução: Deslocamento vertical do gráfico da função tangente em uma unidade para cima. 3π $y = \tan x \quad \blacksquare \quad y = \tan x + 1$ $D(f) = \left\{ x \in \mathbb{R} \middle| x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\} \qquad Im(f) = \mathbb{R} \qquad P(f) = \pi$

Exemplo

Exemplo. Esboce o gráfico, determine o domínio, a imagem e o período e as

assíntotas da função

$$f(x) = \tan\left(x + \frac{\pi}{2}\right)$$

Solução: Deslocamento horizontal do gráfico da função tangente em uma $\frac{\pi}{2}$ unidades para a esquerda.

$$D(f) = \{ x \in \mathbb{R} | x \neq k\pi; k \in \mathbb{Z} \}$$

$$Im(f) = \mathbb{R}$$

$$P(f) = \pi$$

Funções Trigonométricas Exercícios

1) Esboce o gráfico das funções trigonométricas, e determine o período (T), amplitude (A), domínio e imagem das funções:

a)
$$y = 2 + \sin x$$
 $T = 2\pi$ $A = 1$ $D(f) = \mathbb{R}$ $Im(f) = [1,3]$
b) $y = 2 \sin 4x$ $T = \frac{\pi}{2}$ $A = 2$ $D(f) = \mathbb{R}$ $Im(f) = [-2,2]$
c) $y = -3\cos(0,5x)$ $T = 4\pi$ $A = 3$ $D(f) = \mathbb{R}$ $Im(f) = [-3,3]$
d) $y = 3\sin 2\pi x$ $= 1$ $A = 3$ $D(f) = \mathbb{R}$ $Im(f) = [-3,3]$
e) $y = 3\cos\left(2x + \frac{\pi}{2}\right)$ $T = \pi$ $A = 3$ $D(f) = \mathbb{R}$ $Im(f) = [-3,3]$
a) $y = \tan(2x) + 1$ $T = \frac{\pi}{2}$ $D(f) = \{x \in \mathbb{R} \mid x \neq \frac{\pi}{4} + \frac{k\pi}{2}; k \in \mathbb{Z}\}$ $Im(f) = \mathbb{R}$

b) $y = 2 \tan(3x)$ $T = \frac{\pi}{2}$ $D(f) = \left\{ x \in \mathbb{R} \middle| x \neq \frac{\pi}{6} + \frac{k\pi}{3}; k \in \mathbb{Z} \right\}$ $Im(f) = \mathbb{R}$

Relações Trigonométricas Triângulo Retângulo Função Seno

Relações Trigonométricas

Triângulo Retângulo

cateto adjacente

Relações Trigonométricas Triângulo Retângulo

Relações Trigonométricas

Exemplo de aplicação:

Uma pessoa de 2 metros de altura observa um prédio segundo um ângulo de 45° com a horizontal. Sabendo que a tangente de 45° é igual a 1 e que a distância dessa pessoa ao prédio é 30 metros, calcule a altura do prédio:

Calculando o valor de x, temos:

$$tg 45^{\circ} = \frac{x}{30} \implies 1 = \frac{x}{30} \implies x = 30$$

Logo, a altura do prédio é 30 + 2 = 32 m.

Identidades Trigonométricas

Identidades trigonométricas básicas são repetidas abaixo para fins de referência:

1. **Identidades pitagóricas.** Para quaisquer t para os quais ambos os lados são definidos:

$$\cos^2 t + \sin^2 t = 1$$
 $1 + \operatorname{tg}^2 t = \sec^2 t$ $\cot g^2 t + 1 = \csc^2 t$
 $\cos^2 t = 1 - \sin^2 t$ $\operatorname{tg}^2 t = \sec^2 t - 1$ $\cot g^2 t = \csc^2 t - 1$
 $\sin^2 t = 1 - \cos^2 t$ $1 = \sec^2 t - \operatorname{tg}^2 t$ $1 = \csc^2 t - \cot g^2 t$

2. **Identidades recíprocas.** Para quaisquer t para os quais ambos os lados são definidos:

$$sen t = \frac{1}{\csc t} \qquad cos t = \frac{1}{\sec t} \qquad tg t = \frac{1}{\cot g t}$$

$$csc t = \frac{1}{\sec t} \qquad sec t = \frac{1}{\cos t} \qquad cot g t = \frac{1}{tg t}$$

3. **Identidades quociente.** Para quaisquer t para os quais ambos os lados são definidos:

$$tg t = \frac{\operatorname{sen} t}{\cos t} \quad \cot g t = \frac{\cos t}{\operatorname{sen} t}$$

Identidades Trigonométricas

Simplifique:
$$\frac{1 - \cos^2 \alpha}{\sin \alpha}$$

Da identidade pitagórica,
$$1 - \cos^2 \alpha = \sin^2 \alpha$$
. Logo, $\frac{1 - \cos^2 \alpha}{\sin \alpha} = \frac{\sin^2 \alpha}{\sin \alpha} = \sin \alpha$.

Exemplo

Verifique que
$$\frac{\sec t \cos t}{\tan t} = \cos^2 t$$
 é uma identidade.

Começando com o lado esquerdo, um primeiro passo óbvio é reduzir a senos e cossenos:

$$\frac{\operatorname{sen} t \cos t}{\operatorname{tg} t} = \frac{\operatorname{sen} t \cos t}{\operatorname{sen} t / \cos t}$$
 Identidade quociente
$$= \operatorname{sen} t \cos t \div \frac{\operatorname{sen} t}{\cos t}$$
 Álgebra
$$= \operatorname{sen} t \cos t \cdot \frac{\cos t}{\operatorname{sen} t}$$
 Álgebra
$$= \cos^2 t$$
 Álgebra

Equações Trigonométricas

Equações trigonométricas podem ser resolvidas por uma combinação de técnicas algébricas e trigonométricas, incluindo redução de outras funções a seno e cosseno, substituição a partir de identidades trigonométricas conhecidas, simplificação algébrica, entre outras.

- 1. **Equações trigonométricas básicas** são equações da forma sen t = a, cos t = b, tg t = c. Elas são resolvidas pelo uso de inversas de funções trigonométricas para expressar todas as soluções no intervalo $[0,2\pi)$ e, então, estender para o conjunto completo de soluções. Alguns problemas, contudo, especificam que apenas soluções no intervalo $[0,2\pi)$ devem ser consideradas.
- Outras equações trigonométricas são resolvidas pela redução a equações básicas por meio de técnicas algébricas e trigonométricas.

Exemplo: Encontre os valores para x, no intervalo $[0, 2\pi]$, da equação $sen x = \frac{1}{2}$

acesen (sch n) = arc sen (
$$\frac{1}{2}$$
)

 $n = arc sen (\frac{1}{2})$
 $n' = 30^{\circ} - \frac{11}{6} rad$
 $n' = 150^{\circ} - \frac{517}{6} rad$

Equações Trigonométricas

Exemplo: Encontre todas as soluções no intervalo $[0,2\pi]$ para

sen x + cos x = 1

$$(5cn n)^{2} = (1 - cos n)^{2}$$

$$5cn^{2}n = 1 - 2cosn + cos^{2}n$$

$$1 - cos^{2}n = 1 - 2cosn + cos^{2}n$$

$$2cos^{2}n - 2cosn = 0$$

$$(2cosn) \cdot (cosn - 1) = 0$$

$$2cosn = 0$$

$$cosn = 0$$

$$cosn = 0$$

$$cosn = 1$$

Equações Trigonométricas

Exemplo: Encontre todas as soluções no intervalo $[0,2\pi]$ para $tg^2x - tgx = 6$ Tg x = y

$$y^{2} - y = 6$$

 $y^{2} - y - 6 = 0$
 $\Delta = 1 + 29 = 26$
 $y = -(-1) \pm \sqrt{25}$
 $y = \frac{1 \pm 5}{2}$
 $y'' = -2$

tg n = 3

arc tg (Tg n) = arc tg (3)

arc tg (Tg n) = arc tg (-2)

$$x = arc tg (-2)$$
 $x = arc tg (-2)$
 $x = arc tg (-2)$

Exercícios

1) Lista de Exercícios postada no Moodle.

Obrigado