Chain Rule for Functions of More Than One Variable

Chapter 2 Section 4

Theorem.

If u is a differentiable function of x and y defined by u = f(x, y), where

$$x = F(r,s), y = G(r,s) \text{ and } \frac{\partial x}{\partial r}, \frac{\partial x}{\partial s}, \frac{\partial y}{\partial r}, \frac{\partial y}{\partial s}$$

all exist, then u is a function of r and s and

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r},$$

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s}.$$

Theorem

Suppose that u is a differentiable function of n variables $x_1, x_2, ..., x_n$ and each of these variables is in turn a function of m variables $y_1, y_2, ..., y_m$.

Suppose further that each of the partial derivatives,

$$\frac{\partial x_i}{\partial y_i} (i = 1, 2, \dots, n; j = 1, 2, \dots, m)$$

exists. Then u is a function of $y_1, y_2, ..., y_m$ and

$$\frac{\partial u}{\partial y_1} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial y_1} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial y_1} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial y_1}$$

$$\frac{\partial u}{\partial y_2} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial y_2} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial y_2} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial y_2}$$

$$\frac{\partial u}{\partial y_m} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial y_m} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial y_m} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial y_m}$$

Example If $u = 3x^2 - 4y$, x = 6rs and $y = 4r^2 - 2s$ Find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial s}$.

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r}$$
$$= (6x) \cdot (6s) + (-4) \cdot (8r)$$

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial s}$$
$$= (6x) \cdot (6r) + (-4) \cdot (-2)$$

Example If
$$u = \tan xy$$
, $x = 2r^3t^2$ and $y = 3tr$
Find $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial t}$.

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \left(\frac{\partial x}{\partial r} \right) + \frac{\partial u}{\partial y} \left(\frac{\partial y}{\partial r} \right)$$
$$= \left(y \sec^2 xy \right) \cdot \left(6r^2 t^2 \right) + \left(x \sec^2 xy \right) \cdot (3t)$$

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \left(\frac{\partial x}{\partial t} \right) + \frac{\partial u}{\partial y} \left(\frac{\partial y}{\partial t} \right)$$
$$= \left(y \sec^2 xy \right) \cdot \left(4r^3 t \right) + \left(x \sec^2 xy \right) \cdot (3r)$$

Example If $u = x^2 + y^2 + z^2$ where $x = r^2 \sin \varphi \cos \theta$ $y = 2r \sin \varphi \sin \theta$ and $z = r \cos \varphi \sin \theta$

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \left(\frac{\partial x}{\partial r} \right) + \frac{\partial u}{\partial y} \left(\frac{\partial y}{\partial r} \right) + \frac{\partial u}{\partial z} \left(\frac{\partial z}{\partial r} \right)$$
$$= (2x) \cdot (2r \sin \varphi \cos \theta) + (2y) \cdot (2\sin \varphi \sin \theta)$$
$$+ (2z) \cdot (\cos \varphi \sin \theta)$$

Example If $u = x^2 + y^2 + z^2$ where $x = r^2 \sin \varphi \cos \theta$ $y = 2r \sin \varphi \sin \theta$ and $z = r \cos \varphi \sin \theta$

$$\frac{\partial u}{\partial \varphi} = \frac{\partial u}{\partial x} \left(\frac{\partial x}{\partial \varphi} \right) + \frac{\partial u}{\partial y} \left(\frac{\partial y}{\partial \varphi} \right) + \frac{\partial u}{\partial z} \left(\frac{\partial z}{\partial \varphi} \right)$$
$$= (2x) \cdot \left(r^2 \cos \varphi \cos \theta \right) + (2y) \cdot \left(2r \cos \varphi \sin \theta \right)$$
$$+ (2z) \cdot \left(-r \sin \varphi \sin \theta \right)$$

Example If $u = x^2 + y^2 + z^2$ where $x = r^2 \sin \varphi \cos \theta$ $y = 2r \sin \varphi \sin \theta$ and $z = r \cos \varphi \sin \theta$

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \left(\frac{\partial x}{\partial \theta} \right) + \frac{\partial u}{\partial y} \left(\frac{\partial y}{\partial \theta} \right) + \frac{\partial u}{\partial z} \left(\frac{\partial z}{\partial \theta} \right)$$
$$= (2x) \cdot \left(-r^2 \sin \varphi \sin \theta \right) + (2y) \cdot (2r \sin \varphi \cos \theta)$$
$$+ (2z) \cdot (r \cos \varphi \cos \theta)$$

Remark:

If u is a differentiable function of n variables $x_1, x_2, ..., x_n$ and each of these variables is in turn a function of t, then

$$\frac{du}{dt} = \frac{\partial u}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial u}{\partial x_2} \frac{dx_2}{dt} + \dots + \frac{\partial u}{\partial x_n} \frac{dx_n}{dt}.$$

Example Find the total derivative $\frac{du}{dt}$ given that $u = y \ln x + xe^y$; $x = \cos t$; $y = \sin t$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \left(\frac{dx}{dt} \right) + \frac{\partial u}{\partial y} \left(\frac{dy}{dt} \right)$$

$$= \left(\frac{y}{x} + e^{y}\right) \cdot \left(-\sin t\right) + \left(\ln x + xe^{y}\right) \cdot \left(\cos t\right)$$

Example Find the total derivative $\frac{du}{dt}$ given that

$$u = xy + yz + xz;$$
 $x = 5^t;$ $y = Arc\sin t;$ $z = t$

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \left(\frac{dx}{dt} \right) + \frac{\partial u}{\partial y} \left(\frac{dy}{dt} \right) + \frac{\partial u}{\partial z} \left(\frac{dz}{dt} \right)$$

$$= (y+z) \cdot (5^t \ln 5) + (x+z) \cdot \left(\frac{1}{\sqrt{1-t^2}}\right) + (y+x) \cdot (1)$$

Recall. If y = f(x) and $\tan(xy) - y4^x - x^2y^3 = 0$

Find $\frac{dy}{dx}$. IMPLICIT DIFFERENTIATION

F(x, y)

$$x\sec^{2}(xy)\frac{dy}{dx} + y\sec^{2}(xy) - 4^{x}\frac{dy}{dx} - y4^{x}\ln 4$$

$$-3x^2y^2\frac{dy}{dx} - 2xy^3 = 0$$

$$\frac{dy}{dx} = \frac{-y\sec^2(xy) + y4^x \ln 4 + 2xy^3}{x\sec^2(xy) - 4^x - 3x^2y^2} - \frac{-F_x(x, y)}{F_y(x, y)}$$

Theorem

If f is a differentiable function of the single variable x such that y = f(x) and f is defined implicitly by the equation F(x, y) = 0, then if F is differentiable and $F_v(x, y) \neq 0$, then

$$\frac{dy}{dx} = -\frac{F_x(x, y)}{F_y(x, y)}$$

Theorem

If f is a differentiable function of x and y such that F(x, y, z) = 0 and f is defined implicitly by the equation z = f(x, y), then if F is differentiable and $F_z(x, y, z) \neq 0$

$$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}$$

Example. If w = F(x, y, z) and

$$\frac{yz}{x^2 + w^2} - \ln \sqrt{z^2 - w} = ze^{-w}$$

Find $\frac{\partial w}{\partial z}$.

$$F = \frac{yz}{x^2 + w^2} - \ln \sqrt{z^2 - w} - ze^{-w} = 0$$

$$\frac{\partial w}{\partial z} = \frac{-F_z}{F_w} = \frac{-\left[\frac{y}{x^2 + w^2} - \frac{1}{2}\left(\frac{2z}{z^2 - w}\right) - e^{-w}\right]}{\frac{-2wyz}{\left(x^2 + w^2\right)^2} - \frac{1}{2}\left(\frac{-1}{z^2 - w}\right) + ze^{-w}}$$

