769

CLAIMS 723 724 725 Having described my invention, 726 727 1. A method for sensing motion of a body using 728 quasistatic electric potential measurements consisting 729 730 of: 731 a. at least one sensor capable of detecting said 732 quasistatic electric potential perturbations 733 relative to the background electric potential 734 caused from the presence or motion of a body in 735 proximity to sensor; 736 737 b. a least one motional command perturbing the said 738 electric potential; 739 740 c. a means electronically conditioning and acquiring 741 the signal data from the at least one sensor, or 742 a plurality thereof, in time; 743 744 d. a means processing the acquired data to produce a 745 signal indicative of a body's motion of its 746 747 presence; 748 e. a means of recognizing the said signal associated 749 with body's motion or its presence; 750 751 f. a means of maintaining or modulating the 752 electrical conductivity of the body such that the 753 A.C. amplitude changes in a fairly predictable 754 way with changes in relative proximity between 755 the said sensor and body; 756 757 g. a means of dispatching a command to an electronic 758 device upon recognition; 759 760 761 2. An apparatus using the method in claim 1 when used to 762 sense motion of a body through walls, ceilings, doors, 763 764 and containers; 765 766 3. An apparatus using the method in claim 1 used to 767 communicate motional commands to a device using 768 perturbations in the A.C. background potential;

771
772
773
773 774 775 776 777 778 779 780
775
776
777
778
770
700
780
781
782 783 784 785 786 787
783
784
785
786
787
788
789
700
701
788 789 790 791 792
792
793
794
795
796
793 794 795 796 797 798 799
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

815 816

770

- 4. An apparatus using the method in claim 1 used to communication motional commands to a device using perturbation in the D.C. background potential;
- 5. An apparatus using the method in claim 1 communicating motional commands to a device using perturbations in both the D.C. and A.C. signal components;
- 6. An apparatus as in claim 1 used to detect the D.C., A.C., or combination of both signal components of inanimate objects including a machine and matter;
- 7. An apparatus as in claim 1 used to detect the D.C., A.C., or combination of both signal components of a animate objects including people, and animals, and fish, and insects;
- 8. An apparatus using method of claim 1 in a toys;
- 9. An apparatus using method in claim 1 used to communicate motional commands to a device by recognizing perturbations in the background signal originating from the A.C. power wiring or equipment;
- 10.An apparatus using method in claim 1 used to communicate motional commands to a device by recognizing perturbations in the background signal originating from static field transmitter or and A.C. transmitter;
- 11. An apparatus as in claim 1 consisting of:
 - a. a high input impedance amplifier with low frequency response to signals about 4 Hz while still having sensitivity to the background A.C. signal;
 - b. a means for filtering the pass band signals from said amplifier in part a to extract the A.C. and D.C. part;

817	12. An apparatus using method in claim 11 used to
818	communicate motional commands to a device using
819	perturbations in the A.C. background potential and
820	consisting of:
821	
822	
823	a. an array of said sensors on a viewing monitor
824	with at least 2 sensors forming a pair and having
825	a component of the vector joining them in the
826	direction of motion sensed;
827	
828	13. An apparatus using the method in claim 12 as a part of
829	a portable computing device;
830	
831	14. An apparatus using the method in claim 12 as a part of
832	a device for viewing pictures and videos;
833	
834	15. An apparatus using the method in claim 12 as a part of
835	a computer monitor device;
836	
837	16.An apparatus using the method in claim 12 as a part of
838	a computer keyboard device;
839	·
840	17. An apparatus using the method in claim 12 as a part of
841	baby mobile toy;
842	
843	18. An apparatus using the method in claim 12 as a part
844	of;
845	
846	19.An apparatus using method in claim 12 where the means
847	for modulation is a switch in a shoe;
848	
849	20. An apparatus using method in claim 12 used to detect
850	fish;