Devoir maison 7.

À rendre le lundi 6 janvier 2025

Exercice 1

Soit $n \in \mathbb{N}^*$, on définit la fonction $f_n: [1, +\infty[\rightarrow \mathbb{R} \\ x \mapsto x^n \ln(x) - 1]$

- 1°) Montrer, pour tout $n \in \mathbb{N}^*$, que l'équation $f_n(x) = 0$ possède une unique solution sur $[1, +\infty[$, que l'on notera x_n .
- **2°)** Pour $n \in \mathbb{N}^*$, étudier le signe de $f_{n+1}(x_n)$ et en déduire le sens de variation de la suite (x_n) .
- **3**°) Montrer que $x_n \xrightarrow[n \to +\infty]{} 1$.
- **4**°) Montrer que $x_n^n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 2

Soient x_0 et y_0 des réels tels que $1 < x_0 < y_0$. On pose, pour tout $n \in \mathbb{N}$:

$$\begin{cases} x_{n+1} = \frac{1}{2} (x_n + \sqrt{y_n}) \\ y_{n+1} = \frac{1}{2} (\sqrt{x_n} + y_n) \end{cases}$$

- 1°) Montrer que les suites (x_n) et (y_n) sont bien définies, et que pour tout $n \in \mathbb{N}$, $1 < x_n < y_n$.
- 2°) Montrer que si l'une des deux suites (x_n) ou (y_n) converge, alors l'autre aussi, et déterminer dans ce cas leurs limites.
- **3°)** Montrer que (y_n) converge et conclure.
- $\mathbf{4}^{\circ}$) Les suites (x_n) et (y_n) sont-elles adjacentes?
- 5°) On suppose de plus que $y_0 \le x_0^2$. Montrer que (x_n) est décroissante.