

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1962

An empirical relationship between the Deacon profile number and the Richardson number under convective conditions

Goenadi, Moeranto

Monterey, California: U.S. Naval Postgraduate School

http://hdl.handle.net/10945/12100

Copyright is reserved by the copyright owner

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NPS ARCHIVE 1962 GOENADI, M.

AN EMPIRICAL RELATIONSHIP BETWEEN
THE DEACON PROFILE NUMBER AND
THE RICHARDSON NUMBER UNDER
CONVECTIVE CONDITIONS

MOERANTO GOENADI

U.S. NAVAL POSTELADUATE SCHOOL MONTEREY, CALIFORNIA

AN EMPIRICAL RELATIONSHIP BETWEEN THE DEACON PROFILE NUMBER AND THE RICHARDSON NUMBER UNDER CONVECTIVE CONDITIONS

* * * * * *

Mogranto Goenadi

NPS ARCHIVE 1962 GOENADI, M. Thesis G527

LIBRARY U.S. NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

ABSTRACT

Mean to .- lete, temperative and line profiles were constructed for wh cases of free convection using the data for O'Nelse, Mesraska, curing July and August 1956. Based apon the expression for the normalized logarithmic wind shear first a greated by Ellison and later refined by Panofsky, a theoretical formula for the Deacon profile number as a fuaction of the Richardson number was derived, and values of the Deacon profile number were computed. One of the parameters entering into this theoretical formula is the ratio of the edy difficivities for heat and momentum. This parameter was, in t rn, computed from Priestley'. expression for the Ulmanaionless heat flux for free-convective cases. In using of served wine data from the mean profile in or cr to verify the theoretical computations of the come marked discrepancie occorred a ove the 100 cm level. These were due to inconsistent wine speed readings, and it was necessary to employ control data mased on neutral profiles to correct the sind peers. When this was done, the theoretical and oeserved Deacon profile numbers were in very good agreement.

The riter is deeply indebted to Dr. F. L. Martin

(Professor of Meteorology) for his suggestions and continued
help throughout the investigations and a ring preparation
of this paper. Special credit is due Professor Martin for
his large share in developing the derivations in this study.

TARLE OF CONTENTS

Section	Title	Pase
1.	Tatrog etion	1
2.	Computation of the Richardson sunder	5
3.	The Ermathant of the Data	5
~+ ·	Computation of the Radio of the Eccy Disfusivities for Heat and Momentum	6
5.	The B -Ri relationship	11
Ú.	Correction for B alues	13
	Bit Lography	19

LIST OF TABLES

Taules	I	2age
from 16 From 11.0 Levels stallation of	tenne ogical Data Octained Convective Cases at Succes- of the Texas A.a. M.h nt O'leill, Nebra .a, uning of July and August 1136	7
actric Mean	ne of AH MM it Layre Geo- Levels, asia, Equation (14) exective Cases at G'Meils, ring July an August 1916	10
3. Theor tical	an Verifying Value. of B	14
He tral Him	Talle, sporing the Mean Profile Computed from + couri can Sumsit, and factor	16
	End Specia Differences Uning Factors from Talke 4, and Value:	17

LIGT OF SYMBOLS USED

Symbol Symbol	Definition
u	Wind Speed
u *	Friction Velocity
k	Von Karmana Constant
Z	Height above the Ground
β	Deacon profile number
ĸ.	Richardson Number
	Acceleration of Gravity
0	Potential Temperature
d	Monin-Opukhov Constant
	Monia-Obukhov Scale Length
c _i ,	Specific Heat of Air
P	Density of Air
Н	Vertical Flux of Heat by Turbulent Diffusion
$K_{\mathcal{H}}$	Edgy Diffusivity for Heat Conduction
K ₁	Eddy Dirfusivity for Heat Momentum
S	Normalized Logarithmic Wind Shear
Rf	Flux Richardson Number
7	Constant Eddy Stress of the Surface Layer
8	Ratio of Convective to Mechanical Energy Sources of Turbulent Energy

Symool

21.2

 H_{k}

RMS

Jelimition

Geometric Mean of Eq. and \mathbf{z}_2

Mon-Dimensional Heat Flux

(KH/KH) X

Integral Mean Value of S
Root Mean Square

1. Introduction.

The Deacon profile number may be defined by

$$\frac{\partial u}{\partial z} = \frac{u_{+}}{k} z^{-3} \tag{1}$$

where:

u. = the friction velocity

k = the Von Karmann constant and is approximately
 equal to 0.4

z = the neight above the ground

B = the Deacon profile number

An alternative definition of β which is equivalent to that in equation (1), provided β and σ_{π} are constant with height in any part of the surface layer, is

$$\beta = -\frac{2}{2} \frac{\partial u}{\partial z^2}$$

$$\frac{\partial z}{\partial z}$$
(2)

With the use of finite differences in the layer 1, 2, 3, the last definition of β implies that an integral mean value is given by

$$\overline{\beta} - \underline{1} = -\frac{\log\left(\frac{u_3 - u_2}{u_2 - u_1}\right)}{\log 2}$$
(3)

In the derivation of equation (3), the successive levels z_1 , z_2 and z_3 are taken to be "doubted" levels so that $z_3/z_2 = z_2/z_1 = 2$. Equation (3) affords a means of verifying the value of $\overline{\beta}$ computed by other methods to be discussed later.

The Richardson august is defined by

$$Ri = \frac{9}{9} \frac{\partial \theta}{\partial z}$$

$$(4)$$

where

g = the acceleration of gravity

the potential temperature within the surface
layer

u = the winc speed

The Richardson number represents the ratio of the curvatent energy produced by atmospheric coyancy to that produced by mechanical friction.

Me in and Obukhov [1954] have introduced a wind profile which has the form

$$\frac{\delta u}{\delta z} = \frac{u_{\star}}{kz} \left(1 + \sqrt{\frac{z}{L}} \right) \tag{9}$$

in place of the equation $\frac{\partial u}{\partial z} = \frac{u}{kz}$ which applies in strictly neutral conditions.

In equation (5), of is a constant estimated by Moulin and Obukhov to re 0.6, and lais the Monin-O monov scale-length defined according to the pair of eq ations

$$L = -\frac{11\sqrt{3} + 0 \cdot c_p}{kgH}$$

$$H = -K_H pc_p \frac{36}{3}$$

In (0), e_p and f are an specific heat and density of air, respectively, and K_H is the eady diffusivity for heat conduction. In the sorface bouncary layer, u_k and H are generally reparted as constant with height, although for H this condition is more appropriate above 1 meter [Priestley, 1999]. It is well known that equation (5) applies only in hear neutral conditions. However, Ellison [1997] has recently suggested a more peneral relationship [we equation (7) although the covers a wider range of surface-layer stallities.

In deriving the desired theoretical relationship, the "normalized" logarithmic vin. shear S has been used. S is defined by

$$5' = \frac{kz}{\sqrt{3z}} \frac{\partial u}{\partial z} \tag{7}$$

Using S, L and Rr, as defined in equations (7), (0) and (4) respectively, one can derive the equation

$$\frac{Z}{L} = -\left(\frac{K_H}{K_H}Ri\right)S = -\left(R_f\right)S \tag{8}$$

where

 $\mathrm{K}_{\mathrm{U}}/\mathrm{K}_{\mathrm{M}}$ is the ratio of eacy delicestvities for heat and non-neum,

$$Ai = \frac{H}{M} Ai$$

Rf is the so-called flux Richardson number.

In deriving equation (b) one makes use of the well known definition of the friction velocity

where $T = K_{n} \rho$ is the constant easy stress of the surface layer, and ρ is the density of air.

On the other hand, Ellison [1957] has designed an interpolation formula for the wind profile which fits observed data under certain limiting conditions of stability. His suggested formula, after some transformations, has the form

$$5^4 - 8^2 = 1$$
 (9)

where χ is the ratio of convective to mechanical energy sources of turbulent energy. By utilizing equations (7) and (9), one obtains

$$S = (1 - \chi R_f)^{\frac{1}{4}} = (1 - \chi^2 R_i)^{\frac{1}{4}}$$

$$\chi' = \frac{K_H}{K_H} r$$
(10)

For small values of 2/6 or of Ri, one can easily verify that equation (10) gives the same form upon minomial expansion as that of Mogra-Obulhov [equation (5)].

From tests of numerous wind profiles at various micrometeorological sites, Panofsky, Blackadar and McVehil [1960] concluded from equation (10) that $X = (K_{11} / K_{12})X = 18.0$ gives the Lest fit. The significance of this value will be seen in Section 4.

As the continue of the theoretical

A finite difference technique for obtaining Ri at a level $z_{1,2}$ near the midpoint of layer z_1 to z_2 was suggested by Lettau [see pp. 328-329, Lettau and pavioson, 1957], and has the form

$$Re(7,2) = -\frac{97,2(\theta_1 - \theta_2) \ln 2}{9(11)}$$
(11)

where z_1 and z_2 are "successive dou'led" levels, and $z_{1,2}$ is the <u>seemetric mean level</u> of z_1 and z_2 defined by $\overline{z}_1 = \sqrt{z_1} = \sqrt{z_2} = \sqrt{z_2}$. In equation (11), C_1 and C_2 apply to the top of the layer, and C_2 and C_1 apply to the lower boundary, while Ri is considered applicable at the geometric mean height $z_{1,2}$. Note that Ri is negative in unstable conditions.

3. The treatment of the data.

the contract of the contract of the targes to the target of target of

obtained by entrapolation using the logarities of height as the ineepondent variable. For the viral cheed, simple linear extrapolation has been employed; this is equivatent to assume, that a unique logarithmic vinc profile exists in laters below 50 cm. Based upon the fork of Lavithmon and man. [1900], who showed that B approaches entity hear a = 0, this is a rather well accepted approximate temperature at the level to 21 cm has obtained by a progenitar extrapolation total que, using equal logarithmic internals of out, ht as an independent variable.

Lote that potential temperature and that speed offithences have been entered in Table I offectly beneath
the layer geometric mean, which appears in row 4

w. Computation of the ratio of the edg Arthusivities for meat and homenthms.

Priescle; has shown by dimensional analysis that the non-dimensional leaf flux $\Psi_{\rm g}$ has the following

TABLE 1. Mean micrometeorological usta ostained from 44 free convective cases at successive levels or the Texas A. and M. Listallation at O'Leill, Nerraska curing the months of July and August 1950.

1600.0	301.38	3 3 3 8	1131.36	0.38	37.4	692.8	
800.0	301.76	548.4	565.68 11	£47°0	٠ ١ ١	471.5	
0.004	302,23	512.8	282.84 56	70.0	48.1		
200.0	502.79	464.7		0 89 0		.7 156.0	
100.0	303.48	421.7	70.10 141+2	0.81 0	3 (3.0	7 116.7	
50.0	30+.29	370.4	35,35 70.	0.97 0.	58.5 51.3	24.4 48.7	
25.0	305.26	311.8	17.68 35	0.80	58.3* 58	9.2% 24	
12.5	305.06	253.3%					
6.25	307,46*	194.5%	7 8° 8	1,42%	58,5%	80.3%	
Level (cm)	Potential Temp.(°K)	Windspeed, (cm sec	Layer geometric mean (cm)	0-9-6-6	$u_2 - u_1 $ (cm sec $^{-1}$)	-Ri x 10-3	

^{*} Numbers with an asterisk are extrapolated values.

and in cases of free convection, H, has the average value of However, H, may be expressed in the form

$$H_{\star} = \frac{K_{H} k^{2}}{K_{m}} \left(\frac{K_{H}}{K_{m}} \gamma - \frac{1}{R_{\star}} \right)^{2}$$
(12)

by applying equations (4) and (10) with the first form of H_{\star} . Thus by equation (12) with $H_{\star}=0$, the (ki,K_H/K_M) relationship for cases of free convection is

$$\frac{K_H}{K_M} \left(\frac{K_H}{K_M} \chi - \frac{1}{R_L} \right)^2 = 5.625,$$
 (13)

using the value k=0.4 for the von Karman constant. In using equation (13), $\chi'=(K_{\rm H}/K_{\rm M})$ $\chi'=18.0$ was assumed to hold exactly at the level 1.41 meters, that is, where Ki=-9.11c/. This gives the following results at z=1.41 meters:

$$\frac{K_H}{K_M} = 1.091$$
 and $\gamma = 16.49$

Henceforth, χ = 10.49 was treated as a constant at all other layer centers of Table I and the (Ri, $K_{\rm H}/K_{\rm H}$) relationship recomes

$$\left(\frac{K_H}{K_H}\right)^2 \left[\frac{K_H}{N_H} - \frac{1}{K_L}\right] = 1.919 \tag{14}$$

The ratio $K_{\rm H}/K_{\rm H}$ is thus obtained as the solution of the cubic equation (14) at all other geometric mean levels. Table 2 shows the values of $K_{\rm H}/K_{\rm H}$ computed by equation (14)

at the various doubled levels using the computed Richardson number of Table 1.

Since lamofsky et al [1900] on tained good agreement, on the average, using $\chi' = (K_H/K_M)\chi' = 18.0$, this value of χ'' was assumed to hold exactly in this study at the level 1.41 meters. The main justification of this assumption is that this height is close to the geometric mean of the height range of the wind levels under investigation. It turns out that the choice $\chi'' = 10.0$ at 1.41 meters, results in values of χ'' slightly greater than 18.0 above 1.41 meters, but somewhat smaller below this level. Moreover, when these χ'' values have been plotted versus 1000 z. For 25 cm $\chi'' = 1000$ cm, an average value of χ'' very close to 18.0 results.

Computed values of $\frac{K_{H}}{4g}$ at layer secwetric mean levels, using equation (14) for freeconvective cases at C'Neill, Nebraska, curing July and August 1950. TABLE 2.

0 ° 0		
1.00.0	131.30	1,21.
2002		7007
0.004	ა €ეი	
	282,84	
200.0	141.42	1.001
100.0		
20.0	70.70	0.938
	30,08	0.74
25.0	17.08	0.519*
77.7		
3	% ప	0.480*
7.0		
	Layer seometric nean (cm)	
Levei (c.)	Layer seome nean (cm)	
Trevo	Layer	print to the second

^{*} Numbers with an asterisk are extrapolated values, tased on extrapolations of Table 1.

5. The \triangle - Alreat unship. From the celinition of $1 = \frac{kz}{M} \frac{\partial u}{\partial x}$

iogarithmic differentiation with respect to z leads to

$$\frac{1}{5}\frac{35}{5z} = \frac{1}{z}\left(1 + z\frac{8u/z}{8u/z} - \frac{z}{4}\frac{3u}{5z}\right)$$
 (15)

From equation (2) the second term within the parentheses is recognized to be $-\beta$. Also upon applying logarithmic differentiation to the normalized logarithmic wind shear S = /: - > fri) one obtains

$$\frac{1}{5} \frac{35}{5} = \frac{1}{4} \left(1 - \sqrt{R_{\star}}\right)$$
Elimination of $\frac{1}{5} \frac{35}{5} = \frac{1}{4} \left(1 - \sqrt{R_{\star}}\right)$ from equations (15) and

(16) leads to

$$B-1 = \begin{bmatrix} \frac{1}{2} & \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
 (17)

assuming to be constant in the layer.

Hence integration of equation (17) from z_1 to z_2 yields the mean value β for the layer siven by

where $K_{\rm H}/K_{\rm M}$ is also a function of Ri. This equation is then the theoretical β - Ri relationship. The value is to be associated with the geometric mean height

 $z_{1,2} = \sqrt{-1}$ in the layer z_1 to z_2 . Application of equation (18) is made for layers between successive doubled levels of Table 2 at which a value of K_H/K_M is become.

Since $\chi = 10.49$ is treated as a constant within the surface layer, equation (18) becomes

The results obtained using this equation, together with the data of Table 1 and 2, are listed in Table 3. In this table, the following three different types of values are tabulated against elevation:

 $\beta_{\rm T}$, the value resulting from equation (19) with $K_{\rm H}/K_{\rm M}$ values taken from Table 2.

(, the value resulting from equation (18) with (K_H/K_M) X = 18.0 at all levels, so that satisfies

$$\frac{7}{3\pi}$$
, the value resulting from equation (3).

It should be noted that β_1 and β_2 are in relatively close agreement, but some unusual discrepancies occur in β_1 . This difficulty is dealt with at more length in Section 6.

6. Correction for $\overline{\beta}_m$ values.

direct wind cata. At the 200 cm level, the surrounding state of this error occurred because the vertical wind speed increment between the 200 cm and 400 cm level was not consistent with those in augacent layers. This suggests that there may have been an instrumental error at one or more of these levels. Hence a control data table was made up by selecting data occurring at the time of a neutral wind profile, that is, when the potential temperature is isothermal with height. This usually occurs near sunrise and sunset. Fourteen (14) cases have been selected that meet those requirements and from these a near-neutral wind profile was computed, as shown in Table 4.

A perfect neutral wind profile would have the characteristic of constant $(u_2 - u_1)$ increments between successive concled levels. However, the values of $(u_2 - u_1)$ in Table 4 indicates that this was not the case. The lowest three layers in Table 4 have $(u_2 - u_1)$ increments which are quite close to their overall mean of 49.6 cm sec⁻¹. This last value indicates the slope of the logarithmic profile which exists under neutral conditions. The remaining three wind increments of Table 4 then indicate percentagewise how much the next three layers deviated from consistency with the lower

TABLE 3. Theoretical and verifying values of $\widehat{\beta}$

Level (cm)	Layer geometric mean (cm)	(61) sq T_)	(3I vy (20)	(E) V. (3)
6.25	8.8	ŝ	ì	\$
12.5	÷ 8	1	1	1
25.0	17,68 35	1.060	1,035	1
0.00 100.0	35.35 70.70 141.42	1.115	1.405	1.189
100.0	0 141.	1,200	1.181	1,225
200.0		1.085	1.075	0,338
0.00 t	64 565. p 6	1.349	1.328	1.433
0.003	282.64 565.08 1131.00	1.131	1.120	0.530
1500.0				

has been included for each layer. For example, the correction factor 0.022 is tased on the fact that the mean wind increment recorded is 00.3 cm sec⁻¹ rather than 49.6 cm sec⁻¹. In arriving at the corrected wind-speed differences of Table 5, one must enter with the data of Tables-1 and 4. Thus for example, the mean wind difference in the layer 200 to 400 cm is indicated as 40.1 cm sec⁻¹ in the non-mestral case of Table 1. However, the data of Table 4 indicates that this reading is overestimated in the neutral case by the factor 1/0.822. Hence, the corrected wind speed increment applicable to the same layer is

 $0.822 \times 46.1 \text{ cm sec}^{-1} = 39.57 \text{ cm sec}^{-1}$ Similar corrections may then we applied to the other layers.

With the corrected wind differences obtained by this method and displayed in Table 5, corrected \overline{S}_{II} values are then obtained from equation (3), and are listed in the last row of the table.

TABLE 4. Control-data table, should, the mean neutral wind profile computed from 14 cases dear sunrise and sunset, and correction factors.

						Andrewson the second se			The same of the sa
Level (c.n)	2.2	12.5	25.0	0.00	100.0	200.0	400.0	800.0 1606.0	1600.0
Mean Wind Speed cm sec $\frac{1}{1}$	1	•	262.0	317.1	3.00	٠ ٠ ٠	4. 	523.9	.080
u2 - u1 cm Sec 1		1	4 2 3	6.64) · 64	E.00	52.3	00.7	7
Correction factors		ı		rood		0.822	0.)48	0.744	\ †

TABLE 5. Corrected wing-speed differences using correction factors from Table 4, and corrected B-values.

e - Allegarie de la calabra de	and the spines defined the although the spines of the spin	A COLUMN TO THE PROPERTY OF TH					The state of the s	embabbilitimas sept Birita robey; ya singsamilitananjimbili nikita di dyangberandaka
Level (cm)	6.25	12.5	25.0		50.0 100.0	200.0	0.00+	0.000.0
12 - ul cm sec-l	20 12	, 8°C	58.5 58.0 51.3	ار س	, C 43.		3.55	27.0
(Pr by (19)	ľ		1.000		1.200	1.085	1.34)	- च्य
© 1 × (20	ŀ	1.015	1.035	1.105	. 100	1.075	1.328	120
Corrected (3)	a de la companya de l		i	(8i .i	1,225	1.120	1.226	70.00
				The state of the s	The same of the sa	and the first formal and a second state of the	and the second second or supplied the second second second	Annual control of the

indicates corrected values.

Finally as a conclusion, comparison of the values obtained theoretically with those oftained directly from the corrected wind data indicates that the theoretical formulas are relassorabliated.

The average difference between $\overline{\beta}_{1}$ and $\overline{\beta}_{51}$ is equal to -0.031 with an RG error of 0.094. Similarly, the average difference between $\overline{\beta}_{1}$ and $\overline{\beta}_{61}$ is equal to -0.046 with an RMS error of 0.095.

Of the two theoretical formulas, there seems to be a slight advantage to the use of equation (20) over equation (1)), except possible leiou 25 cm, where use to tack of data, comparison is not possible.

LAPRY CAPTY

- i. Lava , h. ., i bo: Project realist Grass, a liela program is of the on, Vol. II, Scopey. Res. Pap., 10. 01, 20 pr.
- 2. Proceedar, A. L., J. A. Panofsky, G. L. McVenit, and S. H. Mottascon, 1900: Structure of tur grence and mean wind profile within the achospheric boundary layer. Penn State Univ., University Park, Fa. (under contract AF ig (504)-5231 to Air Force Camprings Laboratorics), 81 pp.
- 3. Davisson, B., and M. L. Barad, 1900: Some comments on the Meacon fine profile, Trais. Am. Geophys. Union.
- 4. Linton, T. H., 1957: Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech., Not. 2, pp 450-400.
- b. Lettau, H., and B. Davidson, ed., 17 7: Exploring the atmosphere's first wife, vote. I am 2, Ferganon gress, London; 576 + xiv pp.
- relationship between the Deacon profits number and the Ric aroson number under convective conditions.
- 7. Mcmin, A.-., and A. M. Chukhov, 1954: Osnovnye zakonomernostr tur uenthogo perumoshivania v prizemnon stoe stmosfery. (Basic law of turbulent mixing in the ground tayer of the atmosphere). Akademia Fauk SSER Leninglad, Geofizioneskii Institut, Trudy No. 24 (151), pp. 103-187.
- the discoling value of the discoling of the discoling value of the d
- Triestrey, C. W. M., 1909: Turbulent transfer in the 10 or atmosphere. Univ. Chicago Pless; 130 + vir pp.

thesG527
An empirical relationship between the De

3 2768 002 13056 9
DUDLEY KNOX LIBRARY