date: monday, february 12, 2024

Group Theory and Linear Algebra

Matrices and Groups:

Let $M_n(\mathbb{R}) = \{all \ n \times n \ matrices \ in \ \mathbb{R} \}$. If we ignore multiplication, then

Mn(IR) is a group under addition: identity = 20] <- zero matrix

· if $A = [a_{ij}]$, then $-A = [-a_{ij}]$ Set Mn(IR) is not a group under multiplication because many matrices

(eq. [0]) has no multiplicative inverse.

Recall: $A \in M_n(\mathbb{R})$ is invertible $\langle - \rangle \det(A) \neq 0$.

Let GL_(IR)={A&M_(IR)|det(A) +O}

identity is In

 Def^n : General linear group $GL_n(\mathbb{R})$ = set of all invertible matrices. Fact: $GL_n(\mathbb{R})$ is a group under multiplication.

IGLn(IR) = 0 GLn(IR) is not abelian

given A'eGL, (IR), the inverse is A'

Theorem: Let $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ (this is a group under multiplication). Then the map $\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$ given by $A \mapsto \det(A)$ is a group homomorphism.

Proof

Let A,BeGL,(R). Then det(AB) = det(A) det(B). So det is a group homomorphism.

Can use kernel of det to find normal subgroups: $ker(det) = \{A \in GL_n(\mathbb{R}) | det(A) = 1\}$.

 Def^{2} : Special linear group: $SL_{n}(\mathbb{R}) = \{A \in GL_{n}(\mathbb{R}) \mid det(A) = 1\}$

Note: $SL_n(\mathbb{R})$ is normal in $GL_n(\mathbb{R})$ 1^{st} Isometry Theorem $GL_n(\mathbb{R})$ $SL_n(\mathbb{R}) \cong \mathbb{R}^*$

Geometry A matrix A corresponds to a linear transformation. $T_A: \mathbb{R}^n \to \mathbb{R}^n$ given by $T_A(\vec{x}) = A\vec{x}$.

eg. $A = \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix}$ What does T_A do to the unit square?

If $A \in SL_n(\mathbb{R})$, then the map $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ maps the unit square to another shape of area 1. Orthogonal Group O(n)

A matrix A is orthogonal if $A^T = A^T$

eq
$$A = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$$
, $A^{T} = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$

$$A = \begin{bmatrix} 4/_{5} & 3/_{5} \end{bmatrix}, A = \begin{bmatrix} 4/_{5} & 3/_{5} \end{bmatrix}$$

$$A A^{T} = \begin{bmatrix} 3/_{5} & -4/_{5} \end{bmatrix} \begin{bmatrix} 3/_{5} & 4/_{5} \\ 4/_{5} & 3/_{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2}$$

Alternative def^n : A orthogonal if: · $\begin{bmatrix} a_{i,i} \\ a_{i,i} \end{bmatrix}$ is the ith column, then $\sqrt{a_{i,i}^2 + a_{2,i}^2 + \cdots + a_{n,i}^2} = 1$

For columns $i \neq j$, $\alpha_{i,i} \alpha_{i,j} + \alpha_{2,i} \alpha_{2,j} + \cdots + \alpha_{n,i} \alpha_{n,j} = 0$ (saying the columns are orthogonal)

 $Def^{n}: O(n) =$ set of all $n \times n$ orthogonal matrix sClaim: O(n) is a group under multiplication. Given A, BeO(n), Want to show ABEO(n) <=> ABEO(n) <=>(AB) = (AB) $(AB)^{T} = B^{T}A^{T} = B^{T}A^{T} = (AB)^{T}$ Fact: If $A \in O(n)$, then $det(A) = \pm 1$. Proof $I_n = det(I_n) = det(A) det(A^T) = det(A) det(A) = det(A)^2$. So $det(A) = \pm 1$ Elements of O(n) preserve distance. Given $\vec{v} = \begin{bmatrix} \vec{v}_i \\ \vec{v}_n \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} \vec{w}_i \\ \vec{w}_n \end{bmatrix}$, the distance between \vec{v} and \vec{w} is $dist(\vec{W}) = \sqrt{(v_1 - W_1)^2 + \dots + (v_n - W_n)^2}$ Edistance or norm Theorem: A \in O(n) iff $\|A\vec{x}-A\vec{y}\| = \|\vec{x}-\vec{y}\|$ for all $\vec{x},\vec{y} \in \mathbb{R}$.

The contract between \vec{x} and \vec{y} distance between Azz and Air Picture: $Def^{\underline{n}}$: Special orthogonal group $SO(n) = O(n) \cap SL_n(\mathbb{R})$ = {all orthogonal matrices with det = 1}

Special Case
$$O(2)$$
 Elements in $O(2)$ come in two "flavours"

Note that $A \in O(2)$ is determined by where it takes $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

If $A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix}$, then $a^2 + b^2 = 1$. Note this implies $A = \begin{bmatrix} a & * \\ b & * \end{bmatrix}$.

Since columns orthogonal, then

 $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ or $A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$.

If $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$ for some $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix} = \begin{bmatrix} a & b \\$