通过模拟物理退火过程的随机搜索与概率接受机制,在多无人机、多烟幕弹的决策 变量可行域内寻找使有效遮蔽时间 Δt 最大化的最优解,具体步骤如下:

步骤 1 初始化参数

- 初始解生成: 在决策变量可行域内随机生成初始解 $S_0 = \{\alpha_j, v_{\text{FYj}}, t_{\text{FYj},i2}\}$ (j = 1, 2, ..., 5 为无人机编号,i = 1, 2, 3 为烟幕弹编号),确保满足时间约束(如 $t_{\text{FYj},(i+1)1} \ge t_{\text{FYj},i1} + 1$ 、 $t_{\text{FYj},i2} \ge t_{\text{FYj},i1}$);
- 初始温度 T_0 : 设定较高的初始温度(如 $T_0 = 100$),确保算法初期能接受较差解,扩大对多变量组合的搜索范围;
- **降温系数** k: 设定降温速率(如 k = 0.95),控制温度随迭代逐步降低,平衡全局探索与局部精细搜索;
- 终止温度 T_{end} : 设定停止阈值(如 $T_{end} = 10^{-5}$),当温度低于此值时,算法收敛,终止迭代;
- **迭代次数** L: 设定每轮温度下的迭代步数(如 L = 100),确保在当前温度下对邻域解进行充分搜索,避免遗漏较优解。

步骤 2 目标函数计算(核心步骤)

对任意解 $S = \{\alpha_j, v_{\text{FYj}}, t_{\text{FYj},i1}, t_{\text{FYj},i2}\}$,计算其对应的有效遮蔽时间 Δt ,步骤如下:

• 多轨迹同步模拟:

导弹 Mk 轨迹: 按位置公式计算任意时刻 t 的坐标 $(x_{Mk,t}, y_{Mk,t}, z_{Mk,t})$,即沿指向假目标的直线飞行;

无人机 FY_j 轨迹:根据 α_j 和 v_{FYj} ,计算投放时刻 $t_{\text{FYj},i1}$ 的位置 $(x_{\text{FYj},t_{\text{FYj},i1}},y_{\text{FYj},t_{\text{FYj},i1}},z_{\text{FYj},t_{\text{FYj},i1}})$, 保持 z 轴高度不变;

烟幕弹起爆轨迹:基于 $t_{\text{FYj},i2} - t_{\text{FYj},i1}$ 的时间差,计算起爆位置 $(x_{\text{FYji},t_{\text{FYj},i2}},y_{\text{FYji},t_{\text{FYj},i2}},z_{\text{FYji},t_{\text{FYj},i2}})$, x,y 方向随无人机惯性运动,z 方向受重力下落;

烟幕云团轨迹:对 $t \in [t_{\text{FYj},i2}, t_{\text{FYj},i2} + \Delta t_0]$ (Δt_0 为烟幕有效时长),计算云团中心坐标 $(x_{\text{FYii},t}, y_{\text{FYii},t}, z_{\text{FYii},t})$,x, y 坐标恒定,z 方向以 v_1 匀速下沉;

- **真目标采样**: 在真目标圆柱面 $(x_1^2 + (y_1 y_0)^2 = r_0^2, z_1 \in [0, h_0]$)上均匀采样(如 10 个角度 ×5 个高度,共 50 个采样点),覆盖目标所有关键区域;
- **遮挡时间判定**: 对每个采样点和每个时间 t,判断是否被任一烟幕云团球体($O_{\mathrm{FYji},t}$: $(x-x_{\mathrm{FYji},t})^2+(y-y_{\mathrm{FYji},t})^2+(z-z_{\mathrm{FYji},t})^2=r^2$)遮挡,若满足 $\sum_{j=1}^5\sum_{i=1}^3a_i^j\neq 0$ (a_i^j 为 遮挡标识,1 表示遮挡,0 表示未遮挡),则记录 t 为遮挡时刻;
- **有效时长统计**: 合并所有连续的遮挡时间区间,计算总时长,即为该解对应的 Δt 。

步骤 3 邻域解生成

为当前解 $S = \{\alpha_j, v_{\text{FYj}}, t_{\text{FYj},i1}, t_{\text{FYj},i2}\}$ 生成邻域解 S',确保新解满足所有约束条件:

• 方向角 α_i' : $\alpha_i' = \alpha_i + \Delta \alpha$,其中 $\Delta \alpha$ 为 [-0.1, 0.1] 弧度的随机扰动,若 α_i' 超出 $[0, 2\pi]$,

则通过取模($\alpha'_i = \alpha'_i \mod 2\pi$)调整至可行域;

- 飞行速度 v'_{FYj} : $v'_{\text{FYj}} = v_{\text{FYj}} + \Delta v$,其中 Δv 为 [-3,3] m/s 的随机扰动,若 v'_{FYj} 超出 [70,140] m/s,则截断至边界(小于 70 取 70,大于 140 取 140);
- 投放时刻 $t'_{\text{FYj},i1}$: $t'_{\text{FYj},i1} = t_{\text{FYj},i1} + \Delta t$, 其中 Δt 为 [-0.3,0.3] s 的随机扰动,调整后 需满足 $t'_{\text{FYj},(i+1)1} \geq t'_{\text{FYj},i1} + 1$ 及 $t'_{\text{FYj},i1} \in [0, d_{\text{mk},0}/v_0]$ ($d_{\text{mk},0}$ 为导弹初始距离假目标的 距离);
- 起爆时刻 $t'_{\text{FYj},i2}$: $t'_{\text{FYj},i2} = t_{\text{FYj},i2} + \Delta t$, 其中 Δt 为 [-0.3,0.3] s 的随机扰动,调整后 需满足 $t'_{\text{FYi},i2} \geq t'_{\text{FYi},i1}$ 及 $t'_{\text{FYi},i2} \in [t'_{\text{FYi},i1}, d_{\text{mk},0}/v_0]$ 。

步骤 4 判断准则 (接受/拒绝新解)

- 计算目标函数差值: $\Delta E = \Delta t(S') \Delta t(S)$, 其中 $\Delta t(S')$ 为邻域解的有效遮蔽时间, $\Delta t(S)$ 为当前解的有效遮蔽时间;
- 若 $\Delta E > 0$ (新解更优): 直接接受 S' 作为当前解,更新当前解的参数与 Δt ;
- 若 $\Delta E \leq 0$ (新解较差): 以概率 $P = \exp\left(\frac{\Delta E}{T}\right)$ 接受 S' (T 为当前温度),通过生成 [0,1] 区间的随机数 rand,若 rand < P,则接受 S',否则保留原解。温度越高,P 越大,越容易接受较差解,利于跳出局部最优。

步骤 5 降温与迭代

- 每完成 L 次迭代 (即对当前温度下的 L 个邻域解完成接受/拒绝判断) 后,按 $T = k \cdot T$ 降低温度,逐步减小对较差解的接受概率;
- 重复 "邻域解生成 \to 接受/拒绝判断 \to 降温"的循环过程,直至当前温度 $T \le T_{\rm end}$,停止迭代。

步骤 6 终止与最优解输出

迭代终止后,从所有历史解中筛选出有效遮蔽时间 Δt 最大的解,作为最优解 $S^* = \{\alpha_j^*, v_{\text{FYj}}^*, t_{\text{FYj},i1}^*, t_{\text{FYj},i2}^*\}$,并输出 S^* 的所有参数及对应的最大有效遮蔽时间 Δt^* 。

D(in)	$P_u(lbs)$	$u_u(in)$	β	$G_f(psi.in)$
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089

表 1 标准三线表格