Computer Science

Theory of Computation

Regular Languages and Non-regular Languages

Lecture No.- 1

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic

Topic Model-I (Easy: Phi, Sigma*, only epsilon, Sigma*)

Model II (Length)

Model III (No. of symbols), Model IV (Over 1 symbol)

Model V (Sequence based), Model VI (Length & Remainder)

Model VII (Symbols & Remainder)

Model VIII (Multiple Conditions on symbols)

Model IX (Start, End, Contain), Model X (Position based)

Model XI (Multiple Conditions-Remainder)

Model XII (Multiple Conditions-Simple)

Minimization of DFA

Topics to be Covered

Topic

DFA Vs NFA

Topic

NFA Construction

Topic

Conversion from NFA to DFA

Topic

NFA with epsilon Moves

DFA

$$\delta: Q \times \Sigma \rightarrow Q$$

$$\delta: Q X \Sigma_{\varepsilon} \rightarrow 2^{Q}$$

- I) Every DFA is NFA.
- II) NFA may or may not be DFA.
- DFA = NFA (D) DFA DFA)

 DFA = NFA (D) NFA DFA)

non-deterministic FA

1 He 2 1/2

opt deterministic FA (not DFA)

Min DFA

Min NFA

$$0 = 0 \text{ over } \Sigma = \{a,b\}$$

$$\rightarrow 0$$

$$\rightarrow 0^{a,b}$$

Note:

I) For every regular language, No.of min DFAs = 1

II) " No-of min NFAs > 1

III) For a regular language $N(min DFA) \ge N(min NFA)$

Min DFA

Min NFA

 $L = a \left(a + b\right)^*$ min. a

S L= (a+b)*a

min-a

(3) L=(a+b) a (a+b)*

Joea, bolistics & was a single of the single

John Company

|min|+1=25+

-> (Dear)
|min/t1=

TO a Commission

ab ab and sext

Min DFA

Min NFA

Pw

(7) L= abb (a+b)*

5 states

8) L= (a+b) *abb

4 Slate

9 L= (a+b) * abb (a+b)*

4 State

30 4 (b) (b) (c)

Min DFA

Min NFA

$$L = (a+b)^2$$

Min NFA

=K+2 states

= KX1

= K+2 states

1/XX

(15)
$$L = (a+b)^k (a+b)^k$$
 K is constant

= K+1 States

'XXI

(16) L = babab

= 4 States

=3

#05=2

() L= b(a+8)b(a+8)b

#a's < 2

(18) $L = (a+b)^{*}a(a+b)^{*}a(a+b)^{*}$ Har > 8

= 4

= 3

73

=3

Min DFA

Min NFA

L = (a+b) a (a+b)*

= (2+1)+1=4 status $\sqrt{(2+1)}$

- 2+1=3

L=(a+b) a (a+b)

=2+1 = 3 statu

L= (a+b) a (a+b)

= 9 = 1024 States

= 10+1 = 11 State

Identify Language allepted by NFAs.

$$\frac{1}{3}$$

Send bolk that polk of give

Rw

GIVEN

Q = 91,2 & = Set of States in NFA

1 states in NFA

Subset constructions

DFA

20 = { d, dis, des, distres = set of status in DFA

State in DFA

Conversion From NFA to DFA:

······································	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	W		
t constan	S DFB	0	6	200
2666	§ }	र रे	4 %	
	->d12	41,23	413	
	+424	{ }	13	711
	× 91,27	{1,2}	र्राभ	. O

Conversion From NFA to DFA:

Conversion From NFA to DFA:

······································				
t constan	O DFA	0	6	
25/25	→ f1}	91,23	र्व। रि	
	* 81,27	§1,24	4,7	
I) Inid	ial state o	2 DFA is	same as	initial of NFA
II) Z	(Spark X) = O,15		ONIFALVIX en make it

III) If any subset contain final of NFA then than of NFA

R

NFA

Subset Constant of DFA

n states

2° states

NFA

n state

(22 state)

Maximum 2 state

Maximum 2 state

NOX: If NFA has 100 states then thow many states in min DFA?

If almost a^{100} status a^{100}

NFA wilk & moves:

$$W=00 \quad |\frac{\epsilon}{2} > 2 - 2 - 2 - 2$$

$$2)$$

$$1)$$

$$2)$$

1 Wilkout reading any symbol we can reach 2 from (by reading E) E has 2 palks: S(1,2)=2 S(1,2)=2

E-NFA:

J: QX SUJEB->2 Empire

Transition Table

£2,3 h

$$\frac{2}{3}$$

Extended monsition

$$T) S(1, a) = \{1,2,3\}$$

II)
$$\delta(1, \alpha) = \delta 1$$

€-closure (9): Epsilon closure of state 9

= gx x is a state reachable from 9 } by reading &

= Set of all states reachable by reading & from V

$$\mathcal{E}$$
-closure (1) = $\{1, 2, 3\}$
 \mathcal{E} -closure (2) = $\{2\}$
 \mathcal{E} -closure (3) - $\{3, 1, 2\}$

8(3,ab)= {2,3,1}

iv)
$$S(1,ab) = ?$$

Min-b

2 mins Summary

THANK - YOU