MAT363 Lecture Notes

Arky!! :3c

'25 Winter Semester

Contents

1 Day 1: Introduction to the Class (Jan. 6, 2025)

2

§1 Day 1: Introduction to the Class (Jan. 6, 2025)

Course administrative details! First day slides are given here. This is a class in classical differential geometry; the following 12 weeks will be split up as follows,

- (a) Curves, for two weeks;
- (b) Surfaces, for three weeks;
- (c) Curvature of surfaces, for three weeks;
- (d) Geodesics, for three weeks;
- (e) Gauss-Bonnet theorem, for one week.

Grading will be done by 5% on PCEs, 15% on problem sets, 15% on quizzes, 25% on the term test, 30% on the final exam, and 10% weighted towards your best test.

To start, consider the following maps $\gamma: I = (-10, 10) \to \mathbb{R}^3$, given by

$$\gamma(t) = (t, t, t);
\gamma(t) = (|t|, |t|, |t|);
\gamma(t) = (t, t^2, t^3);
\gamma(t) = (t^3, t^3, t^3);
\gamma(t) = (\cos t, \sin t, t);
\gamma(t) = (t \cos t, t \sin t, t).$$

In this class, we say that a curve is a parameterized curve if it is a smooth function $\gamma: I \to \mathbb{R}^n$, where $I \subset \mathbb{R}$ is an interval. In particular, of the six examples given above, only $t \mapsto (|t|, |t|, |t|)$ is not smooth.

Definition 1.1 (Regular Curve). Let $\gamma: I \to \mathbb{R}^n$ be a curve; it is said to be *regular* if $|\gamma'(t)| \neq 0$ for all $t \in I$, i.e. the speed is always nonzero.

Note that $\gamma'(t)$ and $|\gamma'(t)|$ describe different qualities, with the former describing velocity and the latter describing speed (i.e., one describes speed as well, while the other is a scalar quantity). As an example, consider the curve $\gamma(t) = (\cos t, \sin t, t)$. To find the distance travelled from t = 0 to $t = 2\pi$, we may observe that

$$|\gamma'(t)| = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2}.$$

Since the speed is constant, the total distance traveled is simply $2\pi\sqrt{2}$.

Definition 1.2 (Closed Curve). Consider a curve $\gamma : [a, b] \to \mathbb{R}^n$. We say that γ is a closed curve if $\gamma(a) = \gamma(b)$ and $\gamma^{(n)}(a) = \gamma^{(n)}(b)$ for all naturals n.

Definition 1.3 (Simple Curve). We say that γ is a simple curve if it is injective on [a, b).

Note that while in topology we do not care if there is a "sharp corner" at $\gamma(a) = \gamma(b)$, such things do matter, as per the condition that the *n*th derivative of γ must agree on a and b (for example, the velocity γ' at a, b must be equal).

In this class, we automatically take the inner product \langle , \rangle as the Euclidean inner product,

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n.$$

For any subspace $V \subset \mathbb{R}^n$, we may decompose any vector $x \in \mathbb{R}^n$ uniquely as $x = x^{\parallel} + x^{\perp}$, where $x^{\parallel} \in V$ and $\langle x^{\perp}, v \rangle = 0$ for any vector $v \in V$. Now, consider any curve $\gamma : I \to \mathbb{R}^n$. We have the following proposition,

Proposition 1.4. If $|\gamma(t)|$ is constant, then $\langle \gamma(t), \gamma'(t) \rangle = 0$ for all $t \in I$.

To see this, let $|\gamma(t)|^2 = c$ be constant; then

$$\frac{d}{dt} |\gamma(t)|^2 = 0 \implies \frac{d}{dt} \left(\langle \gamma(t), \gamma(t) \rangle \right) = \left\langle \gamma'(t), \gamma(t) \right\rangle + \left\langle \gamma(t), \gamma'(t) \right\rangle = 0m$$

i.e.
$$\langle \gamma(t), \gamma'(t) \rangle = 0$$
 as desired.

Given a regular curve $\gamma: I \to \mathbb{R}^n$, we may compute the velocity and acceleration as $\gamma'(t), \gamma''(t)$, which are denoted v(t), a(t) respectively. In particular, we may write

$$a(t) = a^{\parallel}(t) + a^{\perp}(t),$$

with $a^{\parallel}(t)$ being the tangential acceleration, and $a^{\perp}(t)$ being the normal acceleration. We may find these by projecting a(t) into the subspace span $\{v\}$ (i.e., the span of the velocity vector).