Fitting drug response curves with sigmoid function

In [1]:

```
import pandas as pd
import numpy as np
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os, sys
sys.path.insert(1, os.path.relpath("../functions"))
from fitting import *
from plotting import *
_FOLDER = "../data/"
_FOLDER_2 = "../figures/"
_FOLDER_3 = "../results/"
```

Fitting data

In [2]:

```
df = pd.read_csv(_FOLDER_3+"filt_123.csv")
conc_columns= ["fd_num_"+str(i) for i in range(10)]
response_norm = ['norm_cells_'+str(i) for i in range(10)]
df.columns
```

Out[2]:

sigmoid_4_param

```
# sigmoid_4_param
y = 1/ (L + np.exp(-k*(x-x0))) + d)
x0 - p - position, correlation with IC50 or EC50
L = 1 protect from devision by zero if x is too small
k = -1/s (s -shape parameter)
d - determines the vertical position of the sigmoid - shift on y axis
```

In [3]:

100%| 2776/2776 [00:08<00:00, 340.49it/s] <function sigmoid_4_param at 0x7f91002d5ae8> R2>0: (2755, 32) R2>0.9 2703

Number of samples with fitting <0.1: 21

CPU times: user 7.79 s, sys: 328 ms, total: 8.12 s Wall time: 8.19 s

Visual Analysis of fitting efficiency

All samples

In [4]:

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

Bad fitting examples (examination after analysis of predictive models)

In [5]:

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

Outliers in predictive models

In [6]:

```
ind = int(df[(df["DRUG_ID"]==180)& (df["COSMIC_ID"]==907064)].index[0])
fitting_parameters = fitting_function
predicted_param = [0.348604, 1.106316, -14.202945, 0.168828]
save_fig_name = _FOLDER_2+"outlier_coef1_1.png"
show_one_fitting(df, ind, conc_columns, response_norm, fitting_function, fitting_parameters, pred
```

Fitting parameters: [9.5763911 -5.03279099 -11.74360689 0.43769208] Predicted parameters: [0.348604, 1.106316, -14.202945, 0.168828]

In [7]:

```
ind =int(df[(df["DRUG_ID"]==173)& (df["COSMIC_ID"]==687777)].index[0])
fitting_parameters =fitting_function
predicted_param = [0.623563, 1.099364, -13.124646, -8.772640e-15]
save_fig_name = _FOLDER_2+"outlier_coef3.png"
show_one_fitting(df, ind, conc_columns, response_norm, fitting_function, fitting_parameters, pred
```


In [8]:

```
ind =int(df[(df["DRUG_ID"]==180)& (df["COSMIC_ID"]==907064)].index[0])
fitting_parameters = fitting_function
save_fig_name = _FOLDER_2+"outlier_coef1_2.png"

fig_size = (4,3)
show_one_fitting(df, ind, conc_columns, response_norm, fitting_function, fitting_parameters, fig_
```


In [9]:

```
ind =int(df[(df["DRUG_ID"]==273)& (df["COSMIC_ID"]==907071)].index[0])
fitting_parameters =fitting_function
save_fig_name = _FOLDER_2+"filt_fit_0.png"

fig_size = (4,3)
show_one_fitting(df, ind, conc_columns, response_norm, fitting_function, fitting_parameters, fig_
```


In [10]:

```
ind =int(df[(df["DRUG_ID"]==273)& (df["COSMIC_ID"]==907071)].index[0])
fitting_parameters = fitting_function
save_fig_name = _FOLDER_2+"filt_fit_0.png"

fig_size = (4,3)
show_one_fitting(df, ind, conc_columns, response_norm, fitting_function, fitting_parameters, fig_
```


In [11]:

```
ind =int(df[(df["DRUG_ID"]==274)& (df["COSMIC_ID"]==1240223)].index[0])
save_fig_name = _FOLDER_2+"filt_fit_1.png"
fig_size = (4,3)
show_one_fitting(df, ind, conc_columns, response_norm, fitting_function, fitting_parameters, fig_
```


In [12]:

```
ind =int(df[(df["DRUG_ID"]==135)& (df["COSMIC_ID"]==753610)].index[0])
save_fig_name = _FOLDER_2+"filt_fit_2.png"
fig_size = (4,3)
show_one_fitting(df, ind, conc_columns, response_norm, fitting_function, fitting_parameters, fig_
```


sigmoid_2_param

In [13]:

100%| 2755/2755 [00:05<00:00, 539.10it/s]

<function sigmoid_2_param at 0x7f91002d5730>

R2>0: (2755, 34)

R2>0.9 2457

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

CPU times: user 4.86 s, sys: 197 ms, total: 5.05 s

Wall time: 5.4 s

sigmoid_3_param

```
# sigmoid_3_param
y = 1/ (1 + np.exp(-k*(x-x0))) + d

x0 - p - position, correlation with IC50 or EC50
k = -1/s (s -shape parameter)
```

d - determines the vertical position of the sigmoid - shift on y axis - better fitting then Dennis Wang's sigmoid

In [14]:

100%| 2755/2755 [00:11<00:00, 233.67it/s]

<function sigmoid_3_param at 0x7f91002d5a60>

R2>0: (2755, 36) R2>0.9 2683

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

CPU times: user 9.46 s, sys: 417 ms, total: 9.88 s

Wall time: 12.1 s

fsigmoid

In [15]:

100%| 2755/2755 [00:05<00:00, 494.88it/s]

<function fsigmoid at 0x7f91002d59d8>
(2755. 38)

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

logistic_4_param

```
# logistic_4_param localhost:8888/notebooks/other notebooks/2 1 Fitting 123.ipynb
```

```
y =(A-d)/(1.0+((x/C)**B)) + d

(A - d) = 1 in sigmoid_2_param:
  (x/C)**B - corresponds to np.exp((x-p)/s
  d - determines the vertical position of the graph
```

In [16]:

100%| 2755/2755 [00:11<00:00, 242.35it/s]

<function logistic_4_param at 0x7f91002d5c80>

R2>0: (2755, 40) R2>0.9 2720

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

CPU times: user 9.75 s, sys: 477 ms, total: 10.2 s

Wall time: 11.7 s

LL4_4_param

```
# II4_4_param
y= (c-d)/(1 + np.exp( b*(np.log(x)-np.log(e) ))) + d

- b: hill slope
- d: min response - determines the vertical position of the graph
- c: max response
- e: EC50
c-d - difference between max and min responses
np.exp( b* (np.log(x)-np.log(e)) - np.exp((x-p)/s in sigmoid_2_param
b- hill slope = 1/s - shape parameter
np.log(x)-np.log(e) == x-p in sigmoid_2_param
```

In [17]:

100% | 2755/2755 [00:13<00:00, 210.24it/s]

<function II4_4_param at 0x7f91002d5b70>

R2>0: (2755, 42) R2>0.9 2721

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

CPU times: user 11.4 s, sys: 515 ms, total: 11.9 s

Wall time: 13.5 s

II4R_4_param

```
#II4R_4_param
y=(a-d)/(1+np.exp(b*np.log(x)- c)) + d
a-d - difference between max and min responses
np.exp( b* np.log(x) - e) - np.exp((x-p)/s in sigmoid_2_param
b - hill slope = 1/s - shape parameter
```

```
np.log(x)-e/b == x-p in sigmoid_2_param
```

In [18]:

100%| 2755/2755 [00:13<00:00, 205.34it/s]

<function II4R_4_param at 0x7f91002d5bf8>

R2>0: (2755, 44) R2>0.9 2716

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

CPU times: user 11.4 s, sys: 529 ms, total: 12 s

Wall time: 13.9 s

logLogist_3_param

```
# logLogist_3_param
y= (1-E_inf)/(1+(np.log10(x)/EC50)**HS) + E_inf
```

```
E = E_{inf} + (1 - E_{inf})/(1 + (x/EC50)^{HS})
sigmoid_2_param: 1.0 / (1.0 + np.exp((x-p)/s))
(A - d) = 1 in sigmoid_2_param:
(np.log10(x)/EC50)**HS - (in logistic4 (x/C)**B) corresponds to np.exp((x-p)/s)
```

 $\mathsf{E_inf}$ - determines the vertical position of the graph /coefficient d, min response in other functions

In [19]:

100%| 2755/2755 [00:08<00:00, 324.21it/s]

<function logLogist_3_param at 0x7f91002d5d08>

R2>0: (2755, 46)

R2>0.9 2714

Figures titles: Index_DRUG_ID_COSMIC_ID (COSMIC_ID is a cell line)

CPU times: user 8.56 s, sys: 334 ms, total: 8.89 s

Wall time: 8.88 s

Comparison of fitting models

In [20]:

In [21]:

```
df["better_fitting"] = np.argmax(df[r2_columns].values, axis=1)
r2_col_res = r2_columns +["better_fitting"]
df["better_fitting"] = df["better_fitting"].map(functions_dict)
df[r2_col_res].head()
```

Out[21]:

	sigmoid_4_param_r2	sigmoid_2_param_r2	sigmoid_3_param_r2	II4_4_param_r2	II4R_4_pa
0	0.996467	0.995452	0.996302	0.993608	0.
1	0.978440	0.899079	0.942793	0.978230	0.
2	0.997584	0.994659	0.995039	0.997801	0.
3	0.997357	0.987070	0.997270	0.997515	0.
4	0.991678	0.969244	0.979949	0.987341	0.
4					•

In [22]:

```
df["better_fitting"].value_counts()
```

Out [22]:

```
sigmoid_4_param 1122
logLogist_3_param 800
logistic_4_param 296
l14R_4_param 278
l14_4_param 258
sigmoid_3_param 1
Name: better_fitting, dtype: int64
```

In [23]:

```
r2_limit = 0.98
fitted_samples = {}
for function in functions:
    fitted_samples[function] = df[df[function+"_r2"]> r2_limit].shape[0]

pd.DataFrame(fitted_samples.values(), index=fitted_samples.keys(), columns= ["fitted_samples R2>".sort_values("fitted_samples R2>"+str(r2_limit), ascending=False)
```

Out[23]:

fitted_samples R2>0.98

sigmoid_4_param	2306
II4_4_param	2283
logistic_4_param	2282
II4R_4_param	2278
logLogist_3_param	2255
sigmoid_3_param	1829
sigmoid_2_param	1395
fsigmoid	1395

In [24]:

Out [24]:

fitted_samples R2>0.95

2636
2636
2629
2614
2610
2454
2051
2051

In [25]:

```
r2_limit = 0.9
fitted_samples = {}
for function in functions:
    fitted_samples[function] = df[df[function+"_r2"]> r2_limit].shape[0]

pd.DataFrame(fitted_samples.values(), index=fitted_samples.keys(), columns= ["fitted_samples R2>".sort_values("fitted_samples R2>"+str(r2_limit), ascending=False)
```

Out[25]:

fitted_samples R2>0.9

II4_4_param	2721
logistic_4_param	2720
II4R_4_param	2716
logLogist_3_param	2714
sigmoid_4_param	2703
sigmoid_3_param	2683
sigmoid_2_param	2457
fsigmoid	2457

In [27]:

```
df.to_csv(_F0LDER_3+"fit_123.csv", index=False)
```

In []: