

CALVADOS Validation and Evaluation Manual

pmdtechnologies ag – 2019-08-20

Execute validation

- In order to do a validation, you need:
 - CALVADOS software installation (in this case the script validate_plane_run.py and its dependencies is used)
 - A raw data file of 20 depth images recorded in a Validation Box at a given validation distance (*.rds file format)
 - The corresponding calibration file (*.zwetschge or *.jgf file format)
 - The processing parameters (*.json file format) for the depth computation library built into the CALVADOS software
 which must be suitable for the recorded data (frequencies and number frequencies) and use case
- The validation is executed by running a command of the following structure (separated by whitespaces) in a command line interface:

python.exe

validate_plane_run.py

set of arguments

Execute validation cont'd

- Required arguments:
 - --jgf_file path_to_calibration_file\0000-0000-0000-0000.jgf (file suffix could be different)
 - --file_mask path_to_validation_box_folder\0000-0000-0000-0000_VAL.rds
 - --output_folder path_to_output_folder
 - --processing_parameter_config path_to_processing_config.json
 - --expected_distance 0.5 (true distance of Validation Box in m)
 - --apply_test (apply limits given in processing_config.json)
- Optional arguments:
 - --spreadsheet (results are stored as spreadsheet in path_to_output_folder)
 - --spreadsheet_avg (mean amplitudes, mean depth data and point cloud are stored as csv in path_to_output_folder)
 - --roi " x_1 , y_1 , x_2 , y_2 " ($x_2 > x_1$ long side of imager, $y_2 > y_1$ short side of imager)

Example call of the validation tool in a command line interface (e.g. cmd):

"C:\Program Files\pmdtechnologies_ag\pmd_Calibration_and_Validation_Software\envs\python37\python.exe" "C:\Program Files\pmdtechnologies_ag\pmd_Calibration_and_Validation_Software\scripts\validate_plane_run.py" --jgf_file
"D:\calibration_files\0000-0000-0000-0000.zwetschge" --file_mask "C:\data\0000-0000-0000-0000_VAL.rds" --output_folder
"C:\results" --processing_parameter_config "C:\configuration_files\processing_config_8060mhz.json" -expected_distance 0.5 --spreadsheet --apply_test

Execute validation cont'd

- validate_plane can also be started with a batch file:
 - Create an empty batch file called validate_plane_run.bat at a location of choice
 - Open validate_plane_run.bat in a text editor
 - Enter the function and argument call like on previous slide
 - Save and close the file
 - Run validate_plane_run.bat by double clicking or by calling within a command line interface
 - Alternative: use the bat file created during installation in installation path and adapt arguments as needed

File example:

```
REM bat file for doing validation with CALVADOS

@echo off

setlocal

"C:\Program

Files\pmdtechnologies_ag\pmd_Calibration_and_Validation_Software\envs\python

37\python.exe" "C:\Program

Files\pmdtechnologies_ag\pmd_Calibration_and_Validation_Software\scripts\val

idate_plane_run.py" --jgf_file "D:\calibration_files\0000-0000-0000-

0000.zwetschge" --file_mask "C:\data\0000-0000-0000-0000_VAL.rds" --

output_folder "C:\results" --processing_parameter_config

"C:\configuration_files\processing_config_8060mhz.json" --expected_distance

0.5 --spreadsheet --apply_test
```

Execute performance evaluation

- In order to do a performance evaluation, you need:
 - CALVADOS software installation (in this case the script cdd_metric_run.py and its dependencies is used)
 - Raw data files of 25 depth images recorded at several distances (typically ranging from 20cm to 400cm) recorded on LTS (*.rds file format); files need to be in a folder called 0000-0000-0000_LTS with 0000-0000-0000-0000 being the module serial number; tool can do batch analysis of several folders/modules
 - The corresponding calibration file (*.zwetschge or *.jgf file format)
 - The processing parameters (*.json file format) for the depth computation library built into the CALVADOS software which must be suitable for the recorded data (frequencies and number frequencies) and use case
- The performance evaluation is executed by running a command of the following structure (separated by whitespaces) in a command line interface:

python.exe

cdd_metric_run.py

set of arguments

Execute performance evaluation cont'd

- Required arguments:
 - --jgf_file path_to_calibration_file_collection*.jgf (file suffix could be different)
 - --file_mask path_to_lts_data_collection\<serial>_LTS\performance_eval_data*.rds.
 - --output_folder path_to_output_folder
 - --processing_parameter_config path_to_processing_config\processing_config.json
 - --wall_fit_position 600 (distance where wall fit for determination of mounting and LTS installation uncertainty is done [mm], 600 is default)
 - --spreadsheet (generates xlsx sheets containing results in tabular view and plots)
- Optional arguments:
 - --roi " x_1 , y_1 , x_2 , y_2 " ($x_2 > x_1$ long side of imager, $y_2 > y_1$ short side of imager)

Example call of the performance evaluation tool in a command line interface (e.g. cmd):

"C:\Program Files\pmdtechnologies_ag\pmd_Calibration_and_Validation_Software\envs\python37\python.exe" "C:\Program Files\pmdtechnologies_ag\pmd_Calibration_and_Validation_Software\scripts\cdd_metric_run.py" --jgf_file "D:\calibration_files*.zwetschge" --file_mask "C:\data\<serial>_LTS\performance_eval_data*.rds" --output_folder "C:\results" --processing_parameter_config "C:\configuration_files\processing_config_8060mhz.json" -- wall_fit_position 600 --spreadsheet

Execute validation cont'd

- A performance evaluation can also be started with a batch file:
 - Create an empty batch file called cdd_metric_run.bat at a location of choice
 - Open cdd_metric_run.bat in a text editor
 - Enter the function and argument call like on previous slide
 - Save and close the file
 - Run cdd_metric_run.bat by double clicking or by calling within a command line interface
 - Alternative: use the bat file created during installation in installation path and adapt arguments as needed

File example:

```
REM bat file for doing validation with CALVADOS

@echo off
setlocal

"C:\Program
Files\pmdtechnologies_ag\pmd_Calibration_and_Validation_Software\envs\python
37\python.exe" "C:\Program
Files\pmdtechnologies_ag\pmd_Calibration_and_Validation_Software\scripts\cdd
_metric_run.py" --jgf_file "D:\calibration_files\*.zwetschge" --file_mask

"C:\data\<serial>_LTS\performance_eval_data*.rds" --output_folder

"C:\results" --processing_parameter_config

"C:\configuration_files\processing_config_8060mhz.json" --wall_fit_position
600 --spreadsheet
```