Building your First Python Analytics Solution

GETTING STARTED WITH PYTHON FOR ANALYTICS

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Python for data analytics

Installing Python on Windows and MacOS

Running Python from a terminal window

Installing Python packages using pip

Installing packages within a virtual environment

Development environments

Code editors and execution environments

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Ability to install tools and packages on your computer

Prerequisites

Python Fundamentals

Course Outline

Getting started with Python for analytics
Working with Python using Anaconda
Working with Python using other IDEs
Working with Python on the cloud

Python for Data Analytics

"When the facts change, I change my mind. What do you do, Sir?"

John Maynard Keynes

Thoughtful, Fact-based Point of View

Fact-based

Built with painstakingly collected data

Thoughtful

Balanced, weighing pros and cons

Point of View

Prediction, recommendation, call to action

Two Sets of Statistical Tools

Descriptive Statistics

Identify important elements in a dataset

Inferential Statistics

Explain those elements via relationships with other elements

Two Hats of a Data Professional

Find the Dots

Identify important elements in a dataset

Connect the Dots

Explain those elements via relationships with other elements

Finding the Dots

Data is more and more plentiful However careful handling is needed

- Missing values
- Outliers
 - Genuine outliers
 - Erroneously measured points

Connecting the Dots

Spreadsheets

Programming languages

- In-memory processing
- Distributed processing

SQL

- Relational databases
- Data warehouses

Python has truly democratized data analysis more than any technology since Microsoft Excel

Essential Analytical Building Blocks

Conditional Execution

Interconnected Calculations

Repeated Execution (Iteration)

Re-use of Logic (Composition)

Choices of Technology

Spreadsheets are best for

- Complex inter-connected calculations
- Rapid prototyping

Choices of Technology

SQL is best for

- Iterating over independent rows
- Simple syntax

Spreadsheets for Analytics

Conditionals: if() function within cells

Iteration: Copy-paste, or worse, macros

Composition: Not possible

SQL Databases for Analytics

Conditionals: if() function within queries

Iteration: Queries, cursors

Composition: Views, stored procedures

Python for Analytics

Programming languages offer full support for analytical operations

Conditionals: If-else

Iteration: For and while loops

Composition: Functions

Python Development Environments

Python for Data Analytics

On the one hand

Python combines Excel's ease-ofprototyping with SQL's simple syntax

But on the other

Python has yet to prove itself as robust as Java for big projects

Jupyter Notebook

Open-source web application that allows interactive development in Python and several other languages.

Python on Jupyter

Accessible

Web-based and free no cost or installation hassle

Interactive

Read-Evaluate-Print-Loop for instant feedback

Powerful

Integrations with cloud and distributed technologies

Jupyter is fine for prototyping, but for enterprise-scale development, IDEs still matter

Integrated Development Environment

Application that makes software development easy - usually by combining a code editor; build, execute and debug tools; and source control.

IDEs and Python

Jupyter is an execution environment, not an IDE

For large projects that span notebooks, seriously consider an IDE

Features of Most IDEs

Code editor

- Auto-completion
- Intuitive code/text highlighting

Execution environment

- Run
- Build
- Debug

Source control integration

Full IDEs

PyCharm

IDLE

Spyder

Thonny

Eclipse with PyDev

Visual Studio

Code Editors

SublimeText

Emacs

Vim

Visual Studio Code

Online IDEs

Online playgrounds e.g. repl.it
Interactive execution environment
Debugging and listing
Files and third-party packages
Hosting and deployment support

Packages and Libraries

Libraries in Python

Python has an incredibly rich set of third-party libraries

Made available by vast community of developers

Hosted in a comprehensive repository called PyPI

Perhaps single biggest driver of popularity of Python

Libraries in Python

PyPI is the <u>Py</u>thon <u>Package Index</u>

Libraries in Python are called packages

These packages encapsulate code in files called modules

Package

A unit of directories and files that can be easily imported for use in a Python program. Can contain namespaces, modules (.py files), and nested packages.

Creating Packages in Python

Anyone can package up their code for use by other developers

Package code in specific structure

Publish it for inclusion on PyPI

Using Packages in Python

Packages can be easily installed for use in Python programs

Two common ways to do this

- Conda
- Pip

Packages in Python

Pip

Install from PyPI

Install Python packages only

Installs "wheels" (source distributions)

To install other tools (e.g. interpreter) need a package manager or installer

Can not create isolated environments, need to use virtualenv in addition

Conda

Install from Anaconda repository

Install packages as well as other tools

Installs binaries (even for python packages)

Can also install any binaries including other language libraries, interpreters

Can create isolated environments to manage different version of Python

Windows: Installing Python and using Pip to install packages

MacOS: Using brew to install Python 3

MacOS: Using Pip to install packages

Installing and working with virtual environments

Editing Python scripts using nano and vim

Editing Python scripts using SublimeText

Using online editors to write Python code

Summary

Python for data analytics

Installing Python on Windows and MacOS

Running Python from a terminal window

Installing Python packages using pip

Installing packages within a virtual environment

Development environments

Code editors and execution environments