Интуиционистки структури и модели на Крипке. Интуиционистка съждителна логика. Примери за съждителни тавтологии, които не са от интуиционистката съждителна логика. Породени подструктури. Коренови структури

Ангел Димитриев

Дефиниция: Интуиционистка структура на Крипке.

$$F = (W, \leq)$$

където \leq е релация на частична наредба в W. Ако \leq има минимален елемент, то F е **коренова**.

Дефиниция: Оценка на PVar в структура $F=(W,\leq)$.

$$V: PVar \rightarrow P(W)$$
 като:

за всяка променлива p: V(p) е затворено нагоре. Затворено нагоре: $\forall x \forall y (x \in V(p) \land x \leq y \implies y \in V(p))$

Дефиниция: Интуиционистки модел на Крипке

$$m = (F, V)$$

където F е структура на Крипке, а V е оценка.

Дефиниция: $m, x \models \phi$

С индукция по построение на формулата:

- $\bullet m, x \models p \iff x \in V(p)$
- $m, x \models \phi \land \psi \iff m, x \models \phi$ и $m, x \models \psi$
- $m, x \models \phi \lor \psi \iff m, x \models \phi$ или $m, x \models \psi$
- $m, x \models \phi \rightarrow \psi \iff \forall y (x \le y \land m, y \models \phi \implies m, y \models \psi)$
- $m, x \models \neg \phi \iff \forall y (x \le y \implies m, y \not\models \phi)$
- \bullet $m, x \not\models \perp$
- \bullet $m, x \models \top$

Дефинициии:

```
m \models \phi \iff (\forall x \in W)(m, x \models \phi) F, x \models \phi \iff за всеки модел m над F: m, x \models \phi F \models \phi \iff (\forall x \in W)(F, x \models \phi)
```

Твърдение:

За всеки интуиционистки модел на Крипке на структурата $F=(W,\leq),$ всяка формула ϕ и всички точки $x,y\in W,$ ако $x\models\phi$ и $x\leq y,$ то $y\models\phi$

Доказателство:

С индукция по построението на ϕ .

- $ullet \phi = \perp$ или $\phi = \top$. тривиално.
- $\bullet \phi = p.$ Тогава $p \in V(x),$ но V е затворено нагоре $p \in V(y).$ Но тогава $y \models p = \phi$
- $ullet \phi=\phi_1\wedge\phi_2$. Тогава $x\models\phi_1$ и $x\models\phi_2$. От и.п $y\models\phi_1$ и $y\models\phi_2$. Следователно $y\models\phi_1\wedge\phi_2=\phi$
- $\bullet \phi = \phi_1 \lor \phi_2$ аналогично с \land .
- $\bullet \phi = \phi_1 \to \phi_2$

Ще покажем, че $y \models \phi_1 \rightarrow \phi_2$.

Нека $z \in W$ и $y \le z$ и нека $z \models \phi_1$.

Трябва да покажем, че $z \models \phi_2$

Но $x \leq y$ и $y \leq z$ и \leq е транзитивна. Следователно $x \leq z$.

Ho $x \models \phi_1 \rightarrow \phi_2$ и $x \leq z$ и $z \models \phi_1$.

Следователно $z \models \phi_2$.

Тогава $y \models \phi_1 \rightarrow \phi_2$.

Пример 1:

Нека $F=(W,\leq)$, където $W=\{w_1,w_2\}$ и $\leq=\{(w_1,w_1),(w_1,w_2),(w_2,w_2)\}$ и нека $V(p)=\{w_2\},$ а $V(q)=\{w_1,w_2\}.$

Да разгледаме формулата:

$$p \lor (p \to \perp)$$

Формулата е **истина** в точката w_2 и **лъжа** в точката w_1 в модела m=(F,V). Следователно $F\not\models p\vee (p\to \perp)$

Пример 2:

Да разгледаме същия модел и формулата:

$$p \vee \neg p$$

- $\bullet m, w_1 \not\models p$ (понеже $w_1 \not\in V(p)$)
- $\bullet m, w_1 \not\models \neg p$ (защото $w_1 \leq w_2 \wedge m, w_2 \models p$)

От където следва, че $F, w_1 \not\models p \lor \neg p$ (и че $F \not\models p \lor \neg p$)

Пример 3:

Да разгледаме:

$$\phi = (p \to q) \lor (q \to p)$$

- $ullet w_1 \not\models p o q$, защото $w_1 \leq w_2$ и $w_2 \models p$ и $w_2 \not\models q$
- $\bullet w_1 \not\models q \to p$, защото $w_1 \leq w_3$ и $w_3 \models q$ и $w_3 \not\models p$

От където следва, че $F\not\models\phi$

Пример 4:

Нека
$$F=(W,\leq)$$
, където $W=\{w_1,w_2,w_3\}$ и $\leq=\{(w_1,w_1),(w_2,w_2),(w_3,w_3),(w_1,w_2),(w_2,w_3),(w_1,w_3)\}$

$$\bullet V(p_1) = \{w_3\}$$

$$\bullet V(p_2) = \{w_2, w_3\}$$

Да разгледаме:

$$\phi = p_2 \lor (p_2 \to p_1 \lor \neg p_1)$$

Тогава:

 $\bullet w_1 \not\models p_2$

 $\bullet w_1 \not\models p_2 \to p_1 \vee \neg p_1$

От където следва, че $F \not\models \phi$

Дефиниция:

$$CPL = \{\phi \mid \phi \text{ е съждителна тавтология }\}$$

$$IntPL = \{\phi \mid (\forall F)(F \models \phi)\}$$

Но владация на формула от класическата съждителна логика е валидация в едноточкова структура на Крипке. Тогава:

$$CPL = \{ \phi \mid F \models \phi \ (F \text{ е едноточкова структура}) \}$$

$$F = (\{x_0\}, \{(x_0, x_0)\})$$

$$V(p) = egin{cases} \emptyset & \text{интуитивно лъжа} \\ \{x_0\} & \text{интуитивно истина} \end{cases}$$

Тогава $CPL\subseteq IntPL$. Но вече видяхме, че $p\vee \neg p\not\in IntPL$, от където следва, че $IntPL\not\subseteq CPL$

Породени подструкури

Нека (W, <) е частично наредено множество.

Нека $X \neq \emptyset$ и $X \subseteq W$.

 $W_X = \{ y \in W \mid \exists x \in X (x \le y) \}$

Индуцирана от \leq частична наредба в W_X означаваме \leq_X

 $\leq_X = (W_X \times W_X) \cap \leq$

 $\forall x, y \in W_X (x \le y \iff x \le_X y)$

 $F=(W,\leq)$ - интуиционистка структура на Крипке

 $F_X = (W_X, \leq_X)$ - породена от X подструктура на F

 $X = \{x_0\}$. Ще бележим F_{x_0} .

Нека V е оценка в $F = (W, \leq)$

 $V_X(p) = V(p) \cap W_X$

 \bullet Твърдим, че V_X е оценка в F_X .

Нека $p\in Pvar,\ x\in V_X(p)$ и $x\leq y$. Трябва да покажем, че $y\in V_X(p)$. Щом $x\in V(p)$, то $y\in V(p)$ (V е затв. нагоре). Но $y\in W_X$ (от деф. на W_X). Следователно $y\in V(p)\cap W_X=V_X(p)$

$$m_X = (F_X, V_X)$$
 - породен от X подмодел на m

Твърдение

Нека m_X е породения от X подмодел на m. Нека ϕ е съждителна формула. Тогава:

$$\forall x \in W_X(m_X, x \models \phi \iff m, x \models \phi)$$

Индукция по построението на ϕ :

 $1.\phi \in PVar$

$$m_X,x\models\phi\iff x\in V_X(p)\iff x\in V(p)\text{ и }x\in W_X\iff x\in W_X\text{ и }m,x\models p=\phi$$

 $2.\phi = \phi_1 \wedge \phi_2$

$$m_X, x \models \phi \iff m_X, x \models \phi_1 \text{ if } m_X, x \models \phi_2 \iff$$

$$\iff$$
 (ot u.x.) $m, x \models \phi_1$ u $m, x \models \phi_2 \iff m, x \models \phi$

 $3.\phi = \phi_1 \lor \phi_2$ аналогично с 2.

 $4.\phi = \phi_1 \rightarrow \phi_2$.

$$m_X, x \models \phi \iff \forall y \in W_X(x \leq_X y \land m_X, y \models \phi_1 \implies m_X, y \models \phi_2) \iff$$

(от и.п и от това, че наследниците на x в W са и в W_X и обратно.)

$$\iff \forall y \in W (x \le y \land m, y \models \phi_1 \implies m, y \models \phi_2) \iff m, x \models \phi_1 \rightarrow \phi_2 = \phi$$

Следствие:

За всяка структура F и всяка формула ϕ : $F \models \phi \iff$ за всяка коренова породена подструктура P на F е изпълнено, че $P \models \phi$

Следствие:

$$IntPL = \{ \phi \mid F \models \phi \text{ за всички коренови структури } F \}$$

Дизюнктивно свойство на IntPl:

$$\phi \lor \psi \in IntPL \iff \phi \in IntPL \lor \psi \in IntPL$$

Доказателство:

⇒ ясно.

 \Longrightarrow Нека $\phi \lor \psi \in IntPL$. Да допуснем, че $\phi \not\in IntPl$ и $\psi \not\in IntPl$ Тогава съществуват $m' = (F', V'), x' \in F'$ и $m'' = (F'', V''), x'' \in F''$, такива че F' и F'' са коренови, x' и x'' са съответните корени и:

$$m',x'\not\models\phi$$
 и $m'',x''\not\models\psi$

$$F' = (W', \leq'), F'' = (W'', \leq'').$$
B.o.o $W' \cap W'' = \emptyset$

$$W = W' \cup W'' \cup \{x_0\} \ (x_0 \notin W' \cup W'')$$

$$\leq = \leq' \cup \leq'' \cup \{(x_0, y) \mid y \in W\}$$

$$F = (W, \leq)$$

$$V = V' \cup V''$$

$$m = (F, V)$$

m'm'' са породени подмодели на m.

Тогава от горното твърдение: $m, x' \not\models \phi$ и $m, x'' \not\models \psi$

Следователно: $m, x_0 \not\models \phi$ и $m, x_0 \not\models \psi$ (понеже $x_0 \leq x'$ и $x_0 \leq x''$)

 $m, x_0 \not\models \phi \lor \psi$

Но тогава $\phi \lor \psi \not\in IntPL$

Абсурд!

Задача 1.

Нека $n \geq 1$, а $\phi_1 \dots \phi_n$ са модални формули. Да се докаже, че следните са еквивалентни.

- і) Формулата $\neg \phi_1 \lor \neg \phi_2 \cdots \lor \neg \phi_n$ е от най-малката нормална модална логика.
- іі) Поне една от формулите ϕ_1,\ldots,ϕ_n е от най-малката нормална модална порика

Решение:

 $ii) \implies i$

Нека $\vdash_K \phi_i$ за някое $i, (1 \leq i \leq n)$. От правилото за необходимост $\vdash_K \Box \phi_i$. От тук следва, че $\vdash_K \Box \phi_1 \vee \Box \phi_2 \cdots \vee \Box \phi_n$

 $i) \implies ii)$

Да разгледаме контрапозицията $[\neg(ii) \implies \neg(i)]$.

Нека никоя от формулите ϕ_1, \ldots, ϕ_n не е от най-малката нормална модална логика. Тогава за всяко i (понеже ϕ_i не е теорема на K) съществува коренова структура на Крипке $S_i = (W_i, R_i)$ с корен w_i , оценка V_i и модел $M_i = (S_i, V_i)$, за които $M_i, w_i \not\models \phi_i$.

Ще пострим контрамодел за формулата $\Box \phi_1 \vee \Box \phi_2 \cdots \vee \Box \phi_n$. Да приемем, че $W_i \cap W_j = \emptyset$ за всеки $i,j (1 \leq i < j \leq n)$. Нека $w_c \notin \cup_{i=1...n} W_i$. Да дефинираме:

$$S_c = (\bigcup_{i=1...n} W_i \cup \{w_c\}, \bigcup_{i=1...n} R_i \cup \{(w_c, w_1)\} \dots \{(w_c, w_n)\})$$

$$V_c = \bigcup_{i=1...n} V_i$$

Разглеждаме модела $M_c = (S_c, V_c)$. M_i е **породен подмодел** на M_c за всяко $i = 1 \dots n$

Тогава за произволно i е изпълнено, че $M_c, w_c \not\models \Box \phi_i$, защото $M_c, w_i \not\models \phi_i$ (от лемата за породените структури) и $w_c R w_i$. От тук следва, че $M_c \not\models \Box \phi_1 \vee \Box \phi_2 \cdots \vee \Box \phi_n$.

 $\overline{\mathrm{C}}$ ледователно $\forall \overline{f}_K \ \Box \phi_1 \lor \Box \phi_2 \cdots \lor \Box \phi_n$

Лема за породените структури:

Нека F = (W, R) и $\emptyset \neq X \subseteq W$

 $F_X = (W_X, R_X)$

 $W_X = \cup_{x \in X, k \in \mathbb{N}} R^k(x)$

 $R_X = R \cap (W_X \times W_X)$

Оценка: $V_X(p) = V_{\ell}p \cap W_X$

За всяка модална формула ϕ и всяко $y \in W_X$ е в сила

$$(F,V), y \models \phi \iff (F_X,V_X), y \models \phi$$

Доказателство:

С индукция по построението на ϕ

 $1.\phi = p \in PVar$ за $y \in W_X$:

$$(F,V),y\models p\iff y\in V(p)\iff y\in V(p)\cap W_X\iff y\in V_X(p)\iff (F_X,V_X),y\models p$$

2.
$$\phi = \neg \phi_1$$
 за $y \in W_X$.

$$(F,V), y \models \neg \phi_1 \iff (F,V), y \not\models \phi_1 \iff$$

 $\iff (F_X, V_X), y \not\models \phi_1 \iff (F_X, V_X), y \models \neg \phi_1$

 $3.\phi = \phi_1 \wedge \phi_2$ за $y \in W_X$.

$$(F,V), y \models \phi \iff (F,V), y \models \phi_1 \text{ и } (F,V), y \models \phi_2 \iff$$

 $\iff (F_X,V_X), y \models \phi_1 \text{ и } (F_X,V_X), y \models \phi_2 \iff$
 $(F_X,V_X), y \models \phi_1 \land \phi_2$

Аналогично с \vee , \Longrightarrow ... $4.\phi = \bigcap \phi_1$ за $y \in W_X$.

$$(F,V), y \models \Box \phi_1 \iff \forall z \in W_X(yRz \implies (F,V), z \models \phi_1) \iff$$

$$\iff \forall z \in W_X(yRz \implies (F_X, V_X), z \models \phi_1) \iff$$

$$\iff (F_X, V_X), y \models \Box \phi_1$$

Следствие:

$$K = \{ \phi \mid F \models \phi$$
 за всички коренови структури $F \}$