

Interpreting Numbers by Intensities

0 is "Black", 255 is "White", numbers in between are levels of gray

Each number is shown as a shaded small square, called a pixel

These are regions in the shown image with intensities \geq 180; the pixels showing the teeth are still below threshold 180

C_{IT}

Arrays of Numbers

 \dots allow us to do numerical calculations, for example with the intention to improve the contrast in the digital image

Cm

Image Carrier

An image I is a rectangular array of pixels (x, y, u)

A pixel combines location $p = (x, y) \in \mathbb{Z}^2$ and sample u at p

 \mathbb{Z} is the set of all integers; points $(x,y) \in \mathbb{Z}^2$ form a regular grid

An image I is defined on a carrier

 $\Omega = \{(x, y) : 1 \le x \le N_{cols} \land 1 \le y \le N_{rows}\} \subset \mathbb{Z}^2$

of N_{cols} times N_{rows} pixel locations (grid points)

1

$$Z^{2} = Z \times Z$$

$$\begin{cases} a,h \end{cases} \times \begin{cases} a,b \end{cases}$$

$$= \begin{cases} (a,a),(a,b),(b,a) \end{cases}$$

$$= \begin{cases} (a,a),(a,b),(b,a) \end{cases}$$

Image Coordinate System

Assuming a left-hand coordinate system, the thumb defines the x-axis and the pointer the y-axis while looking into the palm of the hand

Сп

Image Rows and Columns

We assume a left-hand coordinate system in $\boldsymbol{\Omega}$

Row y

contains grid points $\{(1, y), (2, y), \dots, (N_{cols}, y)\}$, for $1 \le y \le N_{rows}$

Column x

contains grid points $\{(x,1),(x,2),\ldots,(x,N_{rows})\}$, for $1 \le x \le N_{cols}$

Pixels

Left: Image values as shades in grid squares (grid cells)
Right: Image values as labels at grid points (centers of grid squares)

CT Grid

Grid Cells, Grid Points, and Adjacency

Grid cell model

A pixel is a homogeneously shaded square cell

Grid point model

A pixel is a labelled grid point

Pixel adjacency

Not defined by the pixels themselves; needs to be defined by us

Two Examples

Two pixel locations p and q in grid cell model are adjacent iff $p \neq q$ and

- (1) their tiny shaded squares share an edge (\equiv 4-adjacency)
- (2) their tiny shaded squares share an edge or corner (≡ 8-adjacency)

 C_{TT}

Basic Statistics

 C_{TT}

Mean

Given: $N_{cols} \times N_{rows}$ scalar image I

Mean (i.e., the "average gray level") of image I

$$\mu_{I} = \frac{1}{N_{cols} \cdot N_{rows}} \sum_{x=1}^{N_{cols}} \sum_{y=1}^{N_{rows}} I(x, y)$$

$$= \frac{1}{|\Omega|} \sum_{(x,y) \in \Omega} I(x, y)$$

$$= \frac{1}{|\Omega|} \sum_{p \in \Omega} I(p)$$

 $|\Omega| = \textit{N}_{\textit{cols}} \cdot \textit{N}_{\textit{rows}}$ is the cardinality of the carrier Ω

CIT

Variance and Standard Deviation

Variance of image 1

$$\sigma_I^2 = \frac{1}{|\Omega|} \sum_{(x,y) \in \Omega} [I(x,y) - \mu_I]^2$$

Root σ_I is the standard deviation of image I

Well-known formula in statistics:

$$\sigma_I^2 = \left[\frac{1}{|\Omega|} \sum_{(x,y) \in \Omega} I(x,y)^2 \right] - \mu_I^2$$

Thus: Mean and variance calculated by running through image I only once Why?

Cπ

Standart deviation = Variance

Cm Four Histograms

Histograms for a 200×231 image Neuschwanstein

Upper left: Original image. Upper right: Brighter version. Lower left: Darker version. Lower right: After histogram equalization (defined later) Cп

Definition of Histograms

A histogram represents tabulated frequencies, typically by using bars in a graphical diagram

Given: Scalar image I with pixels (x, y, u), where $0 \le u \le G_{max}$ Absolute frequencies (count of appearances of u in Ω)

$$H_I(u) = |\{(x, y) \in \Omega : I(x, y) = u\}|$$

 $|\ldots|$ denotes the cardinality of a set

 $H_I(0), H_I(1), \ldots, H_I(G_{max})$ define the (absolute) gray-level histogram of I

Relative frequencies (between 0 and 1) define a relative histogram

$$h_I(u) = \frac{H_I(u)}{|\Omega|}$$

C_{TT}

More on Histograms

We have:

$$\mu_I = \sum_{u=0}^{G_{\max}} u \cdot h_I(u) \quad \text{or} \quad \sigma_I^2 = \sum_{u=0}^{G_{\max}} [u - \mu_I]^2 \cdot h_I(u)$$

Absolute and relative cumulative frequencies define cumulative histograms

$$C_I(u) = \sum_{v=0}^{u} H_I(v)$$
 and $c_I(u) = \sum_{v=0}^{u} h_I(v)$

Observation

Relative frequencies are comparable to the *probability density function* $\Pr[I(p) = u]$ of discrete random numbers I(p), relative cummulative frequencies are comparable to the *probability function* $\Pr[I(p) \leq u]$

Histograms for Two Image Windows

Two 104 \times 98 windows in image Yan and corresponding histograms Upper window: $\mu_{W_1}=133.7$ and $\sigma_{W_1}=55.4$

Lower window: $\mu_{W_2} = 104.6$ and $\sigma_{W_2} = 89.9$

Draw a sketch of the cumulative histograms of both windows!

3D Views of Gray-Level Images

3-dimensional (3D) views illustrate different "degrees of homogeneity" in an image window; here for the two windows from Page 32

Left: Steep slope from lower plateau to higher plateau illustrates an "edge'

Value Statistics in a Window

Given: Window $W = W_p^{n,n}(I)$, with n = 2k + 1 and p = (x, y)

We have in window coordinates

$$\mu_W = \frac{1}{n^2} \sum_{i=-k}^{+k} \sum_{j=-k}^{+k} I(x+i, y+j)$$

Formulas for variance, histograms, and so forth, can be adapted analogously