

Adult-Child Musculoskeletal Model and Motion Analysis

Final Project in Medical Robotics

September 2021

Catia Carocci, Alessandro Lambertini, Denise Landini

Project goal and Overview:

FIRST PART:

- 1) Processing of the raw data from MOCAP system of two twins relating to 18 walking trials for Sirine (healthy subject) and 6 walking trials for Lina (affected by spastic CP)
- 2) Visualization of the manipulated data with an OpenSim model for Sirine and Lina.

SECOND PART:

Use the processed data in order to do the **equilibrium analysis** of the twins:

- 1) Scaling of the muscoloskeletals models;
- 2) Kinematic and Dynamic analysis;
- 3) Computation of the distance between Minimum Moment Axis (Δ) and the Center of Mass (CoM) [1]:

$$d_{COM - \Delta} = \frac{F \times M_{COM}}{\|F\|^2}$$

Vertical
Anterior-posterior

Input Data

Adult-Child Musculoskeletal Model and Motion Analysis

- 7 years old, 1.20 m height, 20 kg weight;
- OpenSim simplified model (upper body approximated only to the torso);
- 18 walking trials stored in .c3d files
 - Coverted using Matlab through c3dExport.m function [2] into:
 - .mot files (Force Plate Data)
 - .trc files (Marker Data)

- 7 years old, 1.05 m height, 17.6 kg weight;
- OpenSim simplified model (upper body approximated only to the torso);
- 6 walking trials stored in .c3d files
 - Coverted using Matlab through c3dExport.m function [2] into:
 - .mot files (Force Plate Data)
 - .trc files (Marker Data)

Input Data: Marker data – Sirine/Lina

.trc files have information about:

- Sampling frequency [Hz] (DataRate);
- Total number of frames (NumFrames);
- Total number of markers (*NumMarkers*);
- Units of measurement of recorded values (*Units*);
- (x, y, z) coordinates for markers, recorded in camera frame.

2	Data	Rate	Came	eraR	ate	NumI	ram	es	Num	Mark	ers	Uni	ts	Ori	gDat	aRat	e	Ori	gDat	aSta	rtFr	ame	Ori	gNum	Frame	es		
3	200.	000000	200	.000	000	677	48	mm	200	.000	000	0	677															
4	Fram	e# Tim	ie	LAS	IS			RAS:	IS			LPS	IS			RPS	IS			RGT			RMF	Ε			RLF	£
5		X1	Y1	Z1	X2	Y2	z_2	Х3	Y3	z_3	X4	Y4	Z4	X5	Y5	Z5	Х6	Y6	Z 6	x7	Y7	z 7	X8	Y8	Z8	X9	Y9	Z 9
6																												
7	1	0 807	.416	0766	60156	3	728	.630	1879	8828	1	293	9.82	7392	5781	25	101	5.84	8510	7421	88	733	.772	8881	8359:	35	2959	9.91
8	2	0.005	807	.130	98144	5312	25	727	.863	2812	4999	98	2932	2.15	8 447	2656	25	101	5.34	7351	0742	19	732	.209	6557	61718	35	295
9	3	0.01	806	.552	49023	4375	5	727	.225	8911	1328	1	292	4.61	9873	0468	75	101	7.96	7895	5078	13	730	.362	7319	33593	35	294
10	4	0.015	806	.890	25878	9062	25	726	.409	5458	9843	73	291	6.24	4140	625	101	6.12	5305	1757	81	729	.596	5576	1718	73	2936	6.69
11	5	0.02	805	.581	97021	4843	38	726	.466	9189	4531	23	2908	8.81	2988	2812	5	101	7.54	3395	9960	94	728	.011	1083	9843	73	292
12	6	0.025	805	.835	87646	4843	38	726	.163	2080	0781	23	2899	9.45	8496	0937	5	101	7.22	5830	0781	25	726	.672	6684	5703:	L	291
13	7	0.03	805	.337	76855	4687	75	726	.073	1811	5234	35	2893	1.21	2890	625	101	5.24	9572	7539	06	726	.204	0405	2734	35	2911	1.30
14	8	0.035	805	.378	29589	8437	75	726	.278	5034	1796	85	2882	2.49	8291	0156	25	101	7.72	5646	9726	56	724	.980	4077	14843	35	290
15	9	0.04	805	.609	49707	0312	25	726	.547	1801	7578	1	2873	3.03	1494	1406	25	101	5.69	6228	0273	44	724	.202	3925	7812	18	289

Figure 1: Visualization of marche 18.trc by using Notepad++

Input Data: Marker data - Sirine/Lina

loadDataFromTRC.m function was used to read the data from the file .trc:

1	Variables - m	_cols										
	m_cols ×											
Ш	677x147 doub	ole										
	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	807.4161	728.6302	2.9398e+03	1.0158e+03	733.7729	2.9599e+03	855.9110	762.9460	3.0699e+03	928.3724
2	2	0.0050	807.1310	727.8633	2.9322e+03	1.0153e+03	732.2097	2.9523e+03	856.3193	761.7199	3.0621e+03	928.4947
3	3	0.0100	806.5525	727.2259	2.9246e+03	1.0180e+03	730.3627	2.9433e+03	856.6849	760.6412	3.0544e+03	928.5626
4	4	0.0150	806.8903	726.4095	2.9162e+03	1.0161e+03	729.5966	2.9367e+03	857.0802	759.7244	3.0464e+03	928.7776
5	5	0.0200	805.5820	726.4669	2.9088e+03	1.0175e+03	728.0111	2.9275e+03	857.4123	758.9622	3.0381e+03	928.9373
6	6	0.0250	805.8359	726.1632	2.8995e+03	1.0172e+03	726.6727	2.9189e+03	857.4697	758.3734	3.0298e+03	928.9451
7	7	0.0300	805.3378	726.0732	2.8912e+03	1.0152e+03	726.2040	2.9113e+03	857.4058	757.9381	3.0211e+03	929.0350
8	8	0.0350	805.3783	726.2785	2.8825e+03	1.0177e+03	724.9804	2.9024e+03	856.9780	757.8494	3.0124e+03	928.8389
9	9	0.0400	805.6095	726.5472	2.8730e+03	1.0157e+03	724.2024	2.8939e+03	856.3708	758.0247	3.0034e+03	928.8514

Figure 2: Matrix of the measurement (m_cols) build by the function loadDataFromTRC.m of marche 18.trc of Sirine

The data matrix (m_cols) first two columns represent the frames and the time instants in which they were acquires and the remaining ones are precisely the x, y and z components of each marker.

Input Data: Force Plate Data-Sirine/Lina SAPIENZA UNIVERSITÀ DI ROMA

.mot files have information about:

- Number of columns (nColumns)
- Number of rows (nRows)
- Type of the data (*DataType*)
- Version of OpenSim
- Endheader

After this we have the first column in which there is the time and then for each force we have (x, y, z) coordinates for the right/left foot's **ground reaction force** vector, **CoP** (center of pressure) of the right/left foot and the right/left foot's **ground reaction** momentum vector.

```
1 nColumns=46
   nRows=7490
   DataType=double
  version=3
   OpenSimVersion=4.2-2021-03-12-fcedec9
   endheader
          ground force 1 vx ground force 1 vy ground force 1 vz ground force 1 px ground force 1 py ground force 1 pz ground moment 1 mx
   ground moment 1 my ground moment 1 mz ground force 2 vx ground force 2 vy ground force 2 vz ground force 2 py
                                                                                                                                    ground force 2 pz
   ground moment 2 mx ground moment 2 my ground moment 2 mz ground force 3 vx ground force 3 vy
                                                                                                                ground force 3 px
                                                                                                                                    ground force 3 py
   ground force 3 pz ground moment 3 mx ground moment 3 my ground moment 3 mz ground force 4 vx ground force 4 vy
                                                                                                                                    ground force 4 px
                                                                                                                 ground force 4 vz
                     ground force 4 pz ground moment 4 mx ground moment 4 my ground moment 4 mz ground force 5 vx
   ground force 4 py
                                                                                                                 ground force 5 vy
                                                                                                                                    ground force 5 vz
   ground force 5 px ground force 5 py ground force 5 pz ground moment 5 mx ground moment 5 my ground moment 5 mz
         0 0 -nan(ind) -nan(ind)
                                        -nan(ind) -nan(ind)
                                                              -nan(ind) -nan(ind)
                                                                                    -15.72464278179867 0.1700239777565002 0.1212794580159315
   -3.223367776011851 7.236644215575843e-18
                                           -0.1181833687984858 7.105427357600809e-18
                                                                                    -8.95685769546486
                                                                                                       -5.484493537064746e-16 0
                         -nan(ind)
                                    -nan(ind)
                                               -nan(ind)
                                                                     -nan(ind) -nan(ind)
                                                                                           -nan(ind)
                                                                                                       -nan(ind)
   -nan(ind)
              -nan(ind)
                         -nan(ind)
                                    -nan(ind)
                                               -nan(ind)
                                                          -nan(ind)
```

Figure 3: Visualization of marche 1.mot by using Notepad++

Input Data: Force Plate Data-Sirine/Lina SAPIENZA UNIVERSITÀ DI ROMA

loadDataFromMOT.m function was used to read the data from the file .mot:

<mark>⊮</mark> V	ariables - M_FN	И											
	M_FM ×												
⊞ 6	770x46 double												
	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	-49.4155	4.4899	0.9560
2	5.0000e-04	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	-21.0015	0.7483	1.6478
3	1.0000e-03	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0
4	0.0015	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	18.4457	-3.2825	0.7343
5	0.0020	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0
6	0.0025	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0
7	0.0030	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0
8	0.0035	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0
9	0.0040	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0
10	0.0045	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0
11	0.0050	0	0	0	NaN	NaN	NaN	NaN	NaN	NaN	0	0	0

Figure 4: Matrix of the measurement (M_FM) build by the function loadDataFromMOT.m of marche 18.trc of Sirine

The data matrix (*M_FM*) first column represent the time instants in which forces and momentums were acquired and the remaining ones are precisely the x, y and z components of ground reaction force vectors, CoP and ground reaction momentum vectors.

Gap filling analysis

Adult-Child Musculoskeletal Model and Motion Analysis

Gap filling: introduction - Sirine/Lina

- Raw data contain NaN values in 3D markers
- Gap filling allows us to eliminate this NaN values
- Gap filling is done **before filtering** because if we filter the entire signal, we will reduce the distortion of the filtered signal.

Gap filling: introduction - Sirine/Lina

Marche	Markers	Frames	Marker E	Name Marker	Gap E
1	147	749	-	-	-
2	147	661	-	-	-
3	198	800	[159->197]	-	-
4	201	600	[33,34,35]	RATT	[600]
			[168->200]	-	[]
5	207	560	[156->206]	-	[]
6	147	750	[27, 28, 29]	LMFE	[742, 750]
			[33, 34, 35]	RATT	[747, 750]
			[42, 43, 44]	LATT	[743, 747]
7	147	800	[33, 34, 35]	RATT	[799, 800]
8	147	500	[33, 34, 35]	RATT	[500]
9	147	450	-	-	-
10	147	850	[54, 55, 56]	RTT2	[850]
11	147	1054	[27, 28, 29]	LMFE	[1049, 1051], [1054]
			[42, 43, 44]	LATT	[1047, 1053]
12	147	750	[42, 43, 44]	LATT	[666, 667],[669,671],[747,749]
13	147	750	-	-	-
14	147	650	[33, 34, 35]	RATT	[650]
15	147	650	-	-	-
16	147	700	[33, 34, 35]	RATT	[699,700]
17	147	700	[33, 34, 35]	RATT	[686,687],[689,691],[693,700]
			[54,55,56]	RTT2	[698,700]
18	147	677	[6,7,8]	RASIS	[674,676]
_			[27,28,29]	LMFE	[140,142],[672]
			[33, 34, 35]	RATT	[677]
			[42,43,44]	LATT	[668],[670,675],[677]
			[72,73,74]	LMFH1	[677]
			[78,79,80]	OCC	[5,8],[10,13]

Manalaa	Μ1	T	M. J T	NI M	C E
			Marker E	Name Marker	
2	147	1714	[3, 4, 5]	RASIS	[1667 ~ 1675],[1713, 1714]
			[24, 25, 26]	LATT	[1647 ~ 1704],[1712,1713]
			[42, 43, 44]	LMFH1	[1586, 1602]
			[48, 49, 50]	RMFE	[1705, 1714]
			[51, 52, 53]	RLFE	[1624 ~ 1703], [1711, 1714]
			[54, 55, 56]	RATT	[1642 ~ 1647], [1714]
			[66, 67, 68]	RTT2	[1672 ~ 1681], [1689 ~ 1714]
			[141, 142, 143]	RFT3	[1698 ~ 1706], [1712, 1714]
3	147	1748	[3, 4, 5]	RASIS	[1742, 1748]
			[102, 103, 104]	LMHE	[1748]
4	147	1780	[15, 16, 17]	LGT	[12, 13],[15, 16]
5	147	1770	[144, 145, 146]	LGT	[1, 49]
6	147	2201	[15, 16, 17]	LGT	[417, 420],[422, 426]
			[51, 52, 53]	RATT	[2201]
			[108., 109, 110]	LUS	[242, 243], [245, 246]
			[144, 145, 146]	RMFE	[1, 12]
7	147	1897	[24, 25, 26]	LSPH	[1841, 1842],[1844, 1845],[1896, 1897]
				LTT2	[1471, 1897]
			[48, 49, 50]	RLFE	[1805, 1809],[1811, 1813]
			[51, 52, 53]	RATT	[1897]
			[87, 88, 89]	C 7	[1883, 1897]
			[144, 145, 146]		[1]

Table 2: summary table for the gaps present in the trajectories of Lina

Table 1: summary table for the gaps present in the trajectories of Sirine

SAPIENZA UNIVERSITÀ DI ROMA

- Implementation:
 - GapFiller.m: file that include the identification and the elimination of the gap.
- Solution: use a linear regression method.
 - For each interval, we have used different degrees of the polynomial according to the best estimation that it produces.

```
MC(660:680, 42) = gapfilling(MC(660:680, :), 42, 2);
MC(:, 42) = gapfilling(MC, 42, 14);
MC(660:680, 44) = gapfilling(MC(660:680, :), 44, 1);
MC(:, 44) = gapfilling(MC, 44, 4);
```

• Example:

Filtering analysis

Adult-Child Musculoskeletal Model and Motion Analysis

Filtering analysis – Sirine/Lina

Raw data contains high frequency noise, filtering allow us to remove it.

Implementation:

• dataProcessing.m: script that also design filter, filter the data and then put them in a new .trc file.

- Solution: use a low-pass filter.
 - Butterworth filter of order 4
 - NO ripples in the passband
 - Rolls off towards zero in the stopband
 - Fixed cutoff frequency: 10 Hz
 - Sampling frequency:
 - **Sirine**: 200 Hz
 - **Lina**: 2000 Hz

Figure 5: Frequency response of n-order Butterworth low-pass filter

Filtering analysis: example – Sirine/Lina

Trajectory of x-component of LATT marker in marche 12 of Sirine with filtering

Scaling phase

Adult-Child Musculoskeletal Model and Motion Analysis

Scaling phase – Sirine/Lina

Sirine Scale Tool Settings Scale Factors Static Pose Weights -Subject Data Generic Model Data Model name Sirine-scaled Model name Sirine 20 kg Marker set 28 markers Add markers from file Resulting marker set 28 markers Scale Model Preserve mass distribution during scale 3\Desktop\La Sapienza\Medical Robotics\Final Project\statiq Marker data for measurements 0 and Average measurements between times 0 - 25.82 s Adjust Model Markers Marker data for static pose 3rs\denis\Desktop\La Sapienza\Medical Robotics\Final Project\s Average markers between times Frames 5,165 @ 200 Hz Coordinate data for static pose Preview static pose (no marker movement)

Figure 6: Setting of Scale Tool for Sirine

Lina

Figure 7: Setting of Scale Tool for Lina

Why?

In order to adapt the location of the virtual markers on the body model to experimental ones.

We scale the model by using the **Scale Tool** in OpenSim

• For each segment of the body, we choose the final markers pairs.

Figure 8: Measurment Set for both Sirine and Lina

Scaling phase – Sirine

With these final markers pairs, we are able to obtain the scaling factors.

	scaled mass [Kg]	CoM [m]
pelvis	3.16042292829541	(-0.0389535 0 0)
femur_r	2.49608200944611	(0 -0.133551 0)
tibia_r	0.99492808072134	(0 -0.151816 0)
talus_r	0.0268355517389438	(0 0 0)
calcn_r	0.335444396736797	(0.0744395 0.0223319 0)
toes_r	0.0581258050665522	(0.0257561 0.00446637 -0.013027)
femur_l	2.49608200944611	(0 -0.135109 0)
tibia_l	0.99492808072134	(0 -0.1465 0)
talus_l	0.0268355517389438	(0 0 0)
calcn_l	0.335444396736797	(0.0739452 0.0221836 0)
toes_l	0.0581258050665522	(0.0255851 0.00443672 0.0129405)
torso	9.0167453842851	(0.00222114 0.175516 0)
tot.	20.000000000000000	

Figure 10: Scales masses and CoM for Sirine

Figure 9: Scaling factors for Sirine

With scaling tool, OpenSim scale also the masses, CoM, forces and inertia of each link.

Scaling phase – Lina

With these final markers pairs, we are able to obtain the scaling factors.

	scaled mass [Kg]	CoM [m]
pelvis	2.78117217689996	(-0.0374462 0 0)
femur_r	2.19655216831257	(0 -0.126695 0)
tibia_r	0.87553671103478	(0 -0.132354 0)
talus_r	0.0236152855302705	(0 0 0)
calcn_r	0.295191069128381	(0.066774 0.0200322 0)
toes_r	0.0511507084585659	(0.0231038 0.00400644 -0.0116855)
femur_l	2.19655216831257	(0 -0.12326 0)
tibia_l	0.87553671103478	(0 -0.13221 0)
talus_l	0.0236152855302705	(0 0 0)
calcn_l	0.295191069128381	(0.0641224 0.0192367 0)
toes_1	0.0511507084585659	(0.0221864 0.00384735 0.0112215)
torso	7.9347359381709	(0.00237363 0.188667 0)
tot.	17.600000000000000	

Figure 12: Scales masses and CoM for Lina

Figure 11: Scaling factors for Sirine

With scaling tool, OpenSim scale also the masses, CoM, forces and inertia of each link.

Visualization in OpenSim - Sirine

• Filled and filtered maker data can be associated to the OpenSim simplified and scaled model.

• The inverse Kinematics tool is used to display trials.

FILTERED_marche 12.trc

Visualization in OpenSim - Lina

• Filled and filtered maker data can be associated to the OpenSim simplified and scaled model.

• The inverse Kinematics tool is used to display trials.

FILTERED_marche 2.trc

Kinematic analysis

Adult-Child Musculoskeletal Model and Motion Analysis

In order to compute the **direct kinematic** to obtain the kinematic model, we have computed the DH tables of the biped model.

Implementation: KD_model_complex.m

DH table for the right leg

α_i	a_i	d_i	q_i
$-\frac{\pi}{2}$	<i>a</i> _{1,2}	0	$-\frac{\pi}{2}$
$-\frac{\pi}{2}$	0	0	$q_{2,1}-\frac{\pi}{2}$
$-\frac{\pi}{2}$	0	0	$q_{2,2}-\frac{\pi}{2}$
$-\frac{\pi}{2}$	a_2	0	$q_{2,3}$
$-\frac{\pi}{2}$	a_3	0	q_3

DH table for the base (common)

α_i	a_i	d_i	q_i
$-\frac{\pi}{2}$	0	0	$q_{1,1}$
$-\frac{\pi}{2}$	0	0	$q_{1,2}-\frac{\pi}{2}$
0	a_1	0	$q_{1,3}$

DH table for the left leg

α_i	a_i	d_i	q_i
$-\frac{\pi}{2}$	$-a_{1,2}$	0	$-\frac{\pi}{2}$
$-\frac{\pi}{2}$	0	0	$q_{2,1}-\frac{\pi}{2}$
$-\frac{\pi}{2}$	0	0	$q_{2,2}-\frac{\pi}{2}$
$\frac{\pi}{2}$	a_2	0	$q_{2,3}$
$-\frac{\pi}{2}$	a_3	0	q_3

Figure 13: Complex Biped model (7R)

SAPIENZA Università di Roma

DH table for the base (common)

α_i	a_i	d_i	q_i
$\frac{\pi}{2}$	0	d_1	q_1

DH table for the right leg

α_i	a_i	d_i	q_i
0	0	$-d_2$	0
π	a_2	0	q_{2r}
0	a_3	0	q_{3r}

DH table for the left leg

α_i	a_i	d_i	q_i
0	0	d_2	0
π	a_2	0	q_{2l}
0	a_3	0	q_{3l}

In order to compute the **inverse** kinematic to obtain the plot of the joint angles we have used a simplified version of the kinematic model.

Implementation: KD model.m

Figure 14: Simplified Biped model (3R)

Results of Inverse kinematic - Sirine/Lina

SAPIENZA UNIVERSITÀ DI ROMA

These are the **results** that we have obtained by computing the **inverse kinematic** using the simplified kinematic model. The joints angles are:

- q_1 : is the pelvis angle
- q_2 : is the hip angle
- q_3 : is the knee angle

Figure 15: Joint angles of Sirine's right leg of Marche 2

Figure 16: Joint angles of Lina's left leg of Marche 2

Dynamic analysis

Adult-Child Musculoskeletal Model and Motion Analysis

Dynamic Model - Sirine/Lina

In order to do the dynamic model, we have computed:

- Inertia Matrix M(q): that depends only on the configuration of the humanoid.
- Coriolis and Centrifugal Terms $c(q, \dot{q})$: that depends on the configuration and on the velocity of the humanoid.
- Gravity g(q): that depends only on the configuration of the humanoid. We have computed this because we are in a vertical plane.

The formula that we have used is the following:

$$M(q)\ddot{q} + c(q,\dot{q}) + g(q) = u$$

We have decided to use the moving frame approach (recursive algorithm). We use the same approach for both Sirina and Lina.

Implementation: ComputeDynamicModel3R.m

Dynamic Model: Inertia Matrix

Given:

- DH table of the biped model
- *I_{ci}*: Inertia matrix of each link
- m_i : mass of each link
- ${}^{1}r_{1,c1}$, ${}^{2}r_{2,c2}$, ${}^{3}r_{3,c3}$: CoM of each link

Solution:

- 1. Initialization: ${}^0\varpi_0 = 0$ ${}^0v_0 = 0$ i = 0
- 2. Write all the rotation matrix that we have ${}^{0}R_{1}$ ${}^{n-1}R_{n}$ $n=n^{\circ}$ joints
- 3. Assign $\sigma_i = 0$ because we have all joints that are revolute
- 4. Follow these formulas for each link:

$${}^{i}\boldsymbol{\varpi_{i}} = {}^{i-1}R_{i}^{T} \begin{bmatrix} i^{-1}\boldsymbol{\varpi}_{i-1} + (1-\sigma_{i}) \ \dot{q}_{i} \ z \end{bmatrix} \quad z = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$^{i}v_{ci} = {}^{i}v_{i} + {}^{i}\varpi_{i} \times {}^{i}r_{i,ci}$$

5. Compute the kinetic energy of EACH link:

$$T_{i} = \frac{1}{2} m_{i} \left| \left| i_{.} v_{ci} \right| \right|^{2} + \frac{1}{2} i_{.} \varpi_{i}^{T} I_{ci} i_{.} \varpi_{i}$$

Kinetic energy of whole model : $T = T_1 + \cdots + T_n$

6. Compute M(q) with Matlab

Goal: find the inertia matrix M(q).

The inertia matrix depends only on the configuration of the model.

$$i v_{i} = {}^{i-1}R_{i}^{T} \left[{}^{i-1}v_{i-1} + \sigma_{i}\dot{q}_{i} z + {}^{i-1}\varpi_{i} \times {}^{i-1}r_{i-1,i} \right]$$

$$= {}^{i-1}R_{i}^{T} {}^{i-1}v_{i-1} + {}^{i-1}R_{i}^{T} \sigma_{i}\dot{q}_{i} z + {}^{i-1}R_{i}^{T} {}^{i-1}\varpi_{i} \times {}^{i-1}R_{i}^{T} {}^{i-1}r_{i-1,i}$$

 $^{i-1}r_{i-1,i}$ is which we can find in the $^{i-1}A_i$ (last column, first 3 elements)

$${}^{i}v_{i} = {}^{i-1}R_{i}^{T}{}^{i-1}v_{i-1} + {}^{i-1}R_{i}^{T}\sigma_{i}\dot{q}_{i} z + {}^{i}\varpi_{i} \times {}^{i}r_{i-1,i}$$

SAPIENZA Università di Roma

Given:

• Inertia Matrix M(q)

Goal: find the Coriolis and Centrifugal terms $C_k(q)$. The Coriolis and centrifugal terms depend on the configuration and on the velocity.

Solution:

- 1. We divide $M(q) = [M_1 \ M_2 \ M_3 ... M_n]$ where $n = n^{\circ}$ joints
- 2. We apply the following formulas:

$$C_k(q) = \frac{1}{2} \left(\frac{\partial M_i}{\partial q} + \left(\frac{\partial M_i}{\partial q} \right)^T - \frac{\partial M}{\partial q_i} \right) \quad k = 1, ..., n$$

$$c_k(q, \dot{q}) = \dot{q}^T C_k(q) \, \dot{q} \quad k = 1, ..., n$$

$$c_k(q, \dot{q}) = \begin{pmatrix} c_i(q, \dot{q}) \\ ... \\ c_n(q, \dot{q}) \end{pmatrix}$$

SAPIENZA UNIVERSITÀ DI ROMA

Since we are in a vertical plane, we have to compute the potential energy.

Given:

Goal: find potential energy U_{gi} and gravity term g(q). g(q) depends only on the configuration.

- $r_{c,i}$: CoM offset w.r.t RF0
- m_i : mass of each link
- g_i : gravity vector containing g_0 in the gravity position and all other values are 0.

Solution:

1. We compute the potential energy of the whole model by using the following formula:

$$U_{gi} = -m_i g_i r_{c,i}$$
 $i = 1, ..., n$ where $n = n^{\circ}$ joints $U_a = U_{a1} + \cdots + U_{an}$

Where:

- m_i is the mass of the joint.
- g_i is the gravity term ($g_0 = 9.81 \frac{m}{s^2}$)
- $r_{c,i}$ is CoM offset w.r.t. RF0.
- 2. I compute the gravity vector by using the potential energy:

$$g(q) = \left(\frac{\partial U_g}{\partial q_1} \ \frac{\partial U_g}{\partial q_2} \ \dots \ \frac{\partial U_g}{\partial q_n}\right)^T$$

Equilibrium analysis

Adult-Child Musculoskeletal Model and Motion Analysis

Equilibrium analysis: Time Segmentation

SINGLE SUPPORT (SS)
PHASE: Only one limb in in contact with the ground.

DOUBLE SUPPORT (DS) PHASE: Both feet are in contact with the ground.

We are going to use the trajectory of RTT2 and LLT2 markers as reference:

- End of the SS phase/Start of the DS phase: the maximum height of the toe marker (Heel Strike).
- Start of the SS phase/End of the DS phase: start of the toe's movement that it's found behind (Toe Off).

These intervals will be further divided for:

- the left limb (SSI, DSI)
- the right limb (SSr, DSr).

Equilibrium analysis: Time Segmentation

Figure 17: plot of the time segmentation and trajectory of toes markers (RTT2, LTT2). (Sirine, FILTERED_marche 2.trc)

Figure 18: plot of the time segmentation and trajectory of toes markers (RTT2, LTT2). (Lina, FILTERED_marche 5.trc)

Equilibrium analysis: Time Segmentation

	Sirine	Lina
DS (sec)	0,13±0,019	0,17±0,047
DSI (sec)	0,11±0,015	0,15±0,042
DSr (sec)	0,14±0,006	0,19±0,042
SS (sec)	0,31±0,012	0,29±0,048
SSI (sec)	0,32±0,007	0,30±0,042
SSr (sec)	0,31±0,013	0,27±0,058

As seen in [3]:

- Lina, in order to decrease her instability, walks with a larger DS phase compared to Sirine, while reducing the SS phase as well.
- The **DSI phase** is clearly shorter than the right one for both twins.
- The left swing phase (SSr) of Lina lasts less than the right one because the left side is more affected by the spasticity as confirmed by medical observations.
- **Higher standard deviations of Lina** compared to the ones of Sirine which is due to the larger gait variability of Lina.

Table 3: Time segmentation for Sirine and Lina.

(means and standard deviation values are computed on a single marche, FILTERED_marche 5.trc for Lina and FILTERED_marche 2.trc for Sirine).

Equilibrium analysis: Computation of $d_{COM-\Delta}$

Computation of the distance between Minimum Moment Axis (Δ) and the Center of Mass (CoM) [1]:

- Filter Force Plate Data (4th order, zero phase-shift, low-pass Butterworth filter with the cutoff frequency equal to 10 Hz);
- **Compute** the moment field expressed at the CoM point:

$$M_{CoM} = M_A + F \times P_{(A,CoM)}$$

 $(P_{(A,CoM)})$ is the position of CoM with respect to a point A)

• Compute:
$$d_{COM-\Delta} = \frac{F \times M_{COM}}{||F||^2}$$

"Several experiments involving multi-contact locomotion were previewed in the paper of Bailly et al. They conclude that the distance increases as the walking terrain increases in difficulty, implying that this distance may be used to quantify instability and risks of falling during gait [3]."[1]

SAPIENZA Università di Roma

Sirine:

- Heel strike with the right foot, the outcome's evolution is similar to the healthy subject's gait found in [1]:
 - Δ is farthest away behind the subject's CoM (A).
 - Afterwards we can notice a drop in the distance. Δ moves toward the CoM and tries to cross it.
 - In the Toe Off (B) instant the Δ is now in front of the body.
- If the **heel strike** is made with the **left foot** (A') the results don't follow this trend.

Figure 19: plot of the distance between minimal moment axis and center of mass (CoM) dCoM-Δ, relative to the gait cycle. This plot is referred to the Sirine model (healthy subject), Marche 6.

SAPIENZA Università di Roma

Lina:

• Variations of $d_{COM-\Delta}$ are very different from the physiological one found in [3] and from Sirine's.

The distance depends on the whole-body dynamics, her pathological condition causes his posture to be irregular during the gait (torso bent over, knee flexed and feet spread apart). Profile of $d_{COM-\Delta}$ seems coherent with a non-healthy one.

Figure 20: plot of the distance between minimal moment axis and center of mass (CoM) dCoM-∆, relative to the gait cycle.

The plot is referred to the lina model (subject that has a spastic CP), Marche 5.

Sources

- [1] Al Abiad N, Pillet H, Watier B. A Mechanical Descriptor of Instability in Human Locomotion: Experimental Findings in Control Subjects and People with Transfemoral Amputation. Applied Sciences. 2020; 10(3):840. https://doi.org/10.3390/app10030840
- [2] OpenSim Documentation https://simtk-confluence.stanford.edu/display/OpenSim/C3D+%28.c3d%29+Files
- [3]M. Marchitto. *Motion Analysis for Children with Cerebral Palsy: Study on Twins*. Master thesis at Sapienza Università di Roma.
- [4] F. Bailly, J. Carpentier, B. Pinet, P. Soueres and B. Watier, "A Mechanical Descriptor of Human Locomotion and its Application to Multi-Contact Walking in Humanoids," 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), 2018, pp. 350-356, doi: 10.1109/BIOROB.2018.8488125.

Thanks for your attention!

Final Project in Medical Robotics

September 2021

Catia Carocci, Alessandro Lambertini, Denise Landini