Chrysene, octadecahydro-

Other names: Chrysitane; D-Homo-18-norestrane;

Octadecahydrochrysene; Perhydrochrysene; Perhydrochrysene, # 1; Perhydrochrysene, # 2; Perhydrochrysene, # 3; Perhydrochrysene, # 4; Perhydrochrysene, # 5; Perhydrochrysene, # 6; Perhydrochrysene, # 7.

InChl: InChl=1S/C18H30/c1-3-7-15-13(5-1)9-11-18-16-8-4-2-6-14(16)10-

12-17(15)18/h13-18H,1-12H2

InChI Key: ZEMKTMFBYLHVNN-UHFFFAOYSA-N

Formula: C18H30

SMILES: C1CCC2C(C1)CCC1C3CCCC3CCC21

Molecular Weight: 246.43

CAS: 2090-14-4

Physical Properties

Property	Value	Unit	Source
$\Delta_{f}G^{\circ}$	255.66	kJ/mol	Joback Method
$\Delta_{f}H^{o}_{gas}$	-201.29	kJ/mol	Joback Method
$\Delta_{fus}H^{o}$	24.46	kJ/mol	Joback Method
$\Delta_{vap}H^{o}$	55.73	kJ/mol	Joback Method
logP _{oct/wat}	5.42		Crippen Method
P_{c}	1823.17	kPa	Joback Method
T _{boil}	654.48	К	Joback Method
T _c	892.74	К	Joback Method
T _{fus}	334.78	К	Joback Method
V _c	0.82	m ³ /kg-mol	Joback Method

Temperature Dependent Properties

Property	Value	Unit	Temperature (K)	Source
C _{p,gas}	693.36	J/mol×K	654.48	Joback Method
η	0.00	Paxs	654.48	Joback Method
$\Delta_{vap}H$	82.40	kJ/mol	313.0	NIST Webbook

Sources

Joback Method: https://en.wikipedia.org/wiki/Joback_method

NIST Webbook: http://webbook.nist.gov/cgi/inchi/InChl=1S/C18H30/c1-3-7-15-13(5-1)9-11-18-16-8-4-2-6

-14(16)10-12-17(15)18/h13-18H,1-12H2

Crippen Method: http://pubs.acs.org/doi/abs/10.1021/ci990307l

Legend

 $\mathbf{C}_{\mathbf{p},\mathbf{gas}}$: Ideal gas heat capacity (J/molxK). η : Dynamic viscosity (Paxs).

 $\Delta_{\mathbf{f}}\mathbf{G}^{\circ}$: Standard Gibbs free energy of formation (kJ/mol).

 $\Delta_{\mathbf{f}}\mathbf{H^{\circ}_{gas}}$: Enthalpy of formation at standard conditions (kJ/mol).

 $\Delta_{\text{fus}} \overset{\text{H} \circ :}{\text{H}}$ Enthalpy of fusion at standard conditions (kJ/mol).

 $\Delta_{\mbox{vap}}\mbox{H}^{\circ}$: Enthalpy of vaporization at standard conditions (kJ/mol).

 $\Delta_{\mathbf{vap}}^{\mathbf{H}}$: Enthalpy of vaporization at a given temperature (kJ/mol).

logPoct/wat: Octanol/Water partition coefficient .

P_c: Critical Pressure (kPa).

T_{boil}: Normal Boiling Point Temperature (K).

T_c: Critical Temperature (K).

T_{fus}: Normal melting (fusion) point (K).

V: Critical Volume (m³/kg-mol).

Latest version available from:

https://www.chemeo.com/cid/78-276-0/Chrysene%2C%20octadecahydro-

Generated by Cheméo on Fri, 15 Dec 2017 06:26:38 +0000.

Cheméo (https://www.chemeo.com) is the biggest free database of chemical and physical data for the process industry.