Algorytm Molera-Morissona

Aleksander Czeszejko-Sochacki

12 listopada 2017

1 Wprowadzenie

Algorytm Molera-Morissona to iteracyjna metoda obliczania wyrażeń postaci $\sqrt{a^2+b^2}$. Tego typu funkcje pojawiają się nadzwyczaj często, między innymi przy obliczaniu:

- przeciwprostokątnej
- modułu liczby zespolonej
- normy wektora
- zmiany układu współrzędnych z eukidesowych na biegunowe

1.1 Pseudokod

Algorithm 1 Algorytm iteracyjny Molera-Morissona

```
\begin{split} p &:= max(|a|,|b|) \\ q &:= min(|a|,|b|) \\ \textbf{while} & \text{ wartość q jest znacząca do} \\ r &:= (\frac{q}{p})^2 \\ s &:= \frac{r}{4+r} \\ p &:= p+2*s*p \\ q &:= s*q \\ \textbf{end while} \\ \textbf{return p} \end{split}
```

Od razu możemy zauważyć zalety algorytmu - nie wymaga on używania skomplikowanych operacji arytmetycznych, a każda iteracja składa się z kilku elementarnych działań i przypisów.

 $^{^1}$ a, b $\in\mathbb{R},$ najlepiej gdy a, b $\in\mathbb{Q},$ ponieważ przybliżona reprezentacja liczb niewymiernych może powiększać ewentualny błąd

1.2 Liczba iteracji

Dowodzi się, że po 3 iteracjach algorytmu błąd względny jest na poziomie $0.5*10^{-20}$, co uznamy za wystarczającą dokładność w naszym artykule. W przypadku chęci szerszej analizy zbieżności i numerycznej poprawności odsyłamy Czytelnika do rozdziału czwartego https://blogs.mathworks.com/images/cleve/moler_morrison.pdf

1.3 Opis użytych metod

W swoim sprawozdaniu zaprezentuję obliczenia wykonane w języku Julia. Przeprowadzone zostały w dwóch arytmetykach:

- 1. double, tzn. Float64
- 2. BigFloat(128)

Dlaczego takie arytmetyki? Precyzja arytmetyki Float64 może okazać się niewystarczająca, ponieważ wynosi ona

$$\frac{1}{2}2^{-52} = \frac{1}{8}(2^{-10})^5 \approx 10^{-16}$$

Numer iteracji	Błąd względny dla pary $(3, 4)$	Błąd względny dla pary (-5, 12)
2.	5.162349481224737e-9,	5.241619104568739e-13
3.	1.7763568394002506e-16,	1.3664283380001927e-16

Powyższe wyniki zgadzają się z naszym wnioskiem. Powyższe błędy po trzeciej iteracji powinny być rzędu najwyżej 10^{-21} . Powinniśmy dobrać taką arytmetykę, której precyzja będzie mniejsza niż $\frac{1}{2}2^{-20}$. Zakładając, że zwiększając w Julii liczbę bitów przydzielanych dla arytmetyki dwukrotnie, w przybliżeniu dwukrotnie zwiększa się liczba bitów przydzielanych na mantysę, precyzja arytmetyki BigFloat(128) wynosi około:

$$\frac{1}{2}2^{-100} = \frac{1}{2}(2^{-10})^{10} \approx 10^{-31}$$

co zdecydowanie wystarczy na wychwycenie ewentualnego błędu algorytmu.

Za wartość dokładną \sqrt{a} będę uznawał wartość funkcji sqrt(a) w arytmetyce BigFloat(128)

2 Analiza Algorytmu

2.1 Testownie algorytmu dla wybranych danych

Poniżej przeprowadzimy testy dla następująch danych:

$$(3,4), (-5,12), (7,-24), (1,1), (1000000000,2), (71075075103, 1000000000)$$

Testy (trzy iteracje:)

Numer iteracji	Wynik algorytmu (Float64)	Wynik algorytmu (BigFloat(128))
1	4.986301369863014	4.986301369863013698630136986301369863002
2	4.999999974188253	4.999999974188252149492661061886530575595
3	5.0000000000000001	4.9999999999999999999999828030176654495

Numer iteracji	Wynik algorytmu (Float64)	Wynik algorytmu (BigFloat(128))
1	12.998336106489186	1.299833610648918469217970049916805324457e+01
2	12.99999999993186	1.2999999999931842560000017867063951355e+01
3	13.0000000000000002	1.2999999999999999999999999999999999999

Numer iteracji	Wynik algorytmu (Float64)	Wynik algorytmu (BigFloat(128))
1	24.999575010624735	2.499957501062473438164045898852528686783e + 01
2	24.9999999999997	2.4999999999999999999999999999999999999
3	25.000000000000004	2.5000000000000000000000000000000000000

(1,1), dokładna wartość: 1.414213562373095048801688724209698078569 Równe obie dane, nie dają całkowitego wyniku

Numer iteracji	Wynik algorytmu (Float64)	Wynik algorytmu (BigFloat(128))
1	1.4	1.39999999999999999999999999999999999
2	1.4142131979695431	1.414213197969543147208121827411167512687
3	1.4142135623730951	1.41421356237309504879564008075425994635

Numer iteracji	Wynik algorytmu (Float64)	Wynik algorytmu (BigFloat(128))
1	1.0e9	$1.0000000000000000019999999999999998001\mathrm{e}{+09}$
2	1.0e9	1.00000000000000000199999999999999998001e+09
3	1.0e9	1.0000000000000000019999999999999998001e+09

$(71075075103,\,1000000000),$ dokładna wartość: 7.108210956982840179871838428090505048092e+10 Duże obie dane, nie dają całkowitego wyniku

Numer iteracji	Wynik algorytmu (Float64)	Wynik algorytmu (BigFloat(128))
1	7.108210956981117e10	$7.108210956981117607726957458289901508523\mathrm{e}{+10}$
2	7.10821095698284e10	7.108210956982840179871838428090505048092e+10
3	7.10821095698284e10	7.108210956982840179871838428090505048132e + 10

Możemy w powyższych przykładach zaobserwować następujące zjawiska:

- Zmniejszenie precyzji arytmetyki powoduje zwiększenie liczby cyfr znaczących
- Algorytm nie wyliczył oczekiwanych wartości całkowitych dla pierwszych trzech par

Więcej obserwacji będziemy w stanie wyciągnąć po analizie błędów względnych.

Błędy względne ²

Dane	$\frac{ \Delta y }{y}$, \tilde{y} we Float64	$\frac{ \Delta y }{y}$, \tilde{y} w BigFloat(128)
(3, 4)	1.776356839400250464677810668945312500001e-16	0.0
(-5, 12)	1.366428338000192665136777437650240384618e-16	0.0
(7, -24)	1.421085471520200371742248535156250000001e-16	0.0
(1, 1)	0.0000000000000000000000000000000000000	0.0
(1000000000, 2)	0.0000000000000000000000000000000000000	0.0
(71075075103, 1000000000)	0.0000000000000000000000000000000000000	0.0

 $^{^2}$ dla przejrzystości zmniejszyłem liczbę nieznaczących zer w błędach w arytmetyce BigFloat(128); \tilde{y} - wynik algorytmu, y - wartość obliczona przy pomocy funkcji sqrt()

Obserwacje (w powyższych przykładach):

- Błędy w arytmetyce Float64 są najwyżej rzędu 10⁻¹⁶, co zgadza się z przybliżoną wartością precyzji tej arytmetyki obliczoną we wprowadzeniu
- W niektórych przypadkach błędy są zerowe (lub mniejsze niż precyzja arytmetyki)
- W arytemtyce BigFloat(128) wszyskie błędy są zerowe (lub mniejsze niż precyzja arytmetyki)
- Błedy w arytmetyce BigFloat(128) są niewiększe niż we Float64

Hipoteza 1 Dla dostatecznie dużej precyzji algorytm zwraca matematycznie dokładny wynik dla dowolnych danych (nie wiadomo, czy taka precyzja jest osiągalna na każdej maszynie).

2.2 Ciekawostka

Algorytm zachowuje się ciekawie, gdy opuścimy wartości bezwzględne w inicjalizacji zmiennych. Po trzeciej iteracji

$$\sqrt{(-7)^2 + 24^2} \neq \sqrt{7^2 + (-24)^2}$$

natomiat po czwartej

$$\sqrt{(-7)^2 + 24^2} = \sqrt{7^2 + (-24)^2}$$

Zachęcam Czytelnika do przeprowadzenia własnych eksperymentów.

2.3 Zalety stosowania algorytmu

Algorytm iteracyjny Molera-Morissona ma bardzo przyzwoity wykładnik zbieżności - z każdą iteracją liczba cyfr znaczących zwiększa się około trzykrotnie. Niewątpliwą jego przewagą nad liczeniem wyrażenia przy pomocy funkcji sqrt() jest fakt, że w algorytmie nie podnosimy danych do kwadratu, przez co ma dużo mniejszą złożoność pamięciową. Złożoność czasowa zależy od czasu wykonywania elementarnych operacji (chyba że chcemy wykonać więcej niż trzy iteracje).

3 Zasosowanie algorytmu Molera-Morissona do obliczania normy wektora

Normą wektora x nazywamy wyrażenie:

$$||x|| = \sqrt{\sum_{i=1}^n x_i^2}$$

Możemy ją jednak zapisać następująco:

$$\sqrt{\sum_{i=1}^{n} x_i^2} = \underbrace{\sqrt{x_1^2 + x_2^2 + \dots + x_n^2}}_{n}$$

$$= \sqrt{\sqrt{(\sqrt{x_1^2 + x_2^2})^2 + x_3^2 + \dots + x_n^2}}$$

$$= \sqrt{\sqrt{\sqrt{(\sqrt{x_1^2 + x_2^2})^2 + x_3^2 + \dots + x_{n-1}^2}}}$$

$$= \sqrt{\sqrt{\sqrt{(\sqrt{x_1^2 + x_2^2})^2 + x_3^2 + \dots + x_{n-1}^2}}}$$
(1)

3.1 Pseudokod obliczania normy wektora

Powyższe rozpisanie umożliwia nam zapisanie algorytmu:

```
Algorithm 2 Algorytm iteracyjny Molera-Morissona
```

```
result = x_1

for i in 2, 3, ···, n do

result = Moler-Morrison(result, x_i)

end for

return result
```

Dokładność otrzymanego wyniku będzie zależna od dokładności samego algorytmu, jak i kolejności sumowania, jednak problem kolejności sumowania dla uzyskania najmniejszego błędu to temat obszerny i nie będzie on rozważany w tym artykule.

Literatura

[1] C. Moler, D. Morrison: Replacing Square Roots by Pythagorean Sums