1

Probability

RAVISHA JAIN CC22MTECH14001 CLIMATE CHANGE DEPARTMENT

1.0 0.8 0.6 0.4 0.2 0.0 -4 -3 -2 -1 0 1 2 3 4

Fig. 1.2. The CDF of T

Fig. 1.3. The PDF of T

1 Triangular Distribution

1.1 Generate

$$T = U_1 + U_2 \tag{1.1.1}$$

Solution: The value of T is generated in tri.dat file

https://github.com/RavishaJain/ Assignment_4/blob/main/Codes /exrand.c https://github.com/RavishaJain/ Assignment_4/blob/main/Codes /coeffs.h https://github.com/RavishaJain/ Assignment_4/blob/main/Codes /TRIpdf.py

1.2 Find the CDF of T.

Solution: The Python code for the cdf is

https://github.com/RavishaJain/ Assignment_4/blob/main/Codes /TRIcdf.py

1.3 Find the PDF of T.

Solution: The Python code for the pdf is

- 1.4 Find the theoretical expressions for the PDF and CDF of *T*. solution
- 1.5 Find the theoretical expressions for the PDF and CDF of *T*.

Solution: We know that $T = U_1 + U_2$. Accordingly,

 $= \int_{0}^{t-1} F_{U_2}(t-x) F_$

$$F_{T}(t) = PrU_{1} + U_{2} \le t$$

$$= \int_{0}^{1} \Pr(U_{1} + U_{2} \le t \mid U_{1} = x) f_{U_{1}}(x) dx$$

$$= \int_{0}^{1} \Pr(x + U_{2} \le t \mid U_{1} = x) f_{U_{1}}(x) dx$$

$$= \int_{0}^{1} \Pr(U_{2} \le t - x \mid U_{1} = x) f_{U_{1}}(x) dx$$

$$= \int_{0}^{1} \Pr(U_{2} \le t - x) f_{U_{1}}(x) dx$$

$$= \int_{0}^{1} F_{U_{2}}(t - x) f_{U_{1}}(x) dx$$

Now we can take the derivative (with respect to t) of the CDF to get the density (F_U 2 becomes f_U2):

$$f_T(t) = \frac{d}{dt} F_T(t)$$

$$f_{U_1}(x) f_{U_2}(t - x) dx$$

where U_1 and U_2 are uniform random variables in [0, 1]. Clearly, $0 \le U_1 + U_2 \le 2$.

Again we know that

$$f_{U_{1}}(x) = \begin{cases} \text{(iv)} & t \geq 2 \text{: Also } F_{T}(t) = 1. \\ 0 & \text{Sporthe CDF for T is given by} \\ 1 & \text{for } x \geq 0 \end{cases}$$

$$F_{U_{1}}(x) = \Pr(U_{1} \leq x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \in [0, 1] \\ 1 & \text{for } x > 1 \end{cases}$$

$$F_{T}(t) = \Pr(T \leq t) = \begin{cases} 0 & x < 0 \\ \frac{t^{2}}{2} & 0 \leq t < 1 \\ 2t - \frac{t^{2}}{2} - 1 & 1 \leq t < 2 \\ 1 & x > 2 \end{cases}$$

and

$$F_T(t) = \int_0^t F_{U_2}(t-x)F_{U_1}(x)dx$$

$$= \int_0^t (t-x)dx$$

$$= \left[tx - \frac{x^2}{2}\right]_0^t$$

$$= \frac{t^2}{2}$$

(iii) $1 \le t < 2$: Here, we need $t - x \le 1$ and thus $x \le t - 1$ and therefore, we integrate from 0 to x = t - 1 and x = t - 1 to x = 1.

$$F_T(t)$$

$$\int_{t-1}^1 F_{U_2}(t-x)F_{U_1}(x)dx$$

$$= \int_0^{t-1} dx + \int_{t-1}^1 (t-x)dx$$

$$= t - 1 + t(2-t) - \frac{1 - (t-1)^2}{2}$$

$$= -\frac{t^2}{2} + 2t - 1$$

(iv) $t \ge 2$: Also $F_T(t) = 1$.

$$f_{U_1}(x) = \begin{cases} 0 & \text{Sporthe CDF for T is given by} \\ 1 & \text{for } x \ge 0 \end{cases}$$

$$F_T(t) = \Pr\left(T \le t\right) = \begin{cases} 0 & x < 0 \\ \frac{t^2}{2} & 0 \le t < 1 \\ 2t - \frac{t^2}{2} - 1 & 1 \le t < 2 \\ 1 & x \ge 2 \end{cases}$$
(1.5.1)

$$f_{U_2}(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$$

$$F_{U_2}(x) = \Pr(U_2 \le x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \in [0, 1] \\ 1 & \text{for } x > 1 \end{cases}$$

Now to deal with the interval from 0 to 2, it is useful to break this down into four cases:

- (i) t < 0: In this case, it is clear that $F_T(t) = 0$.
- (ii) $0 \le t < 1$: We need $t x \ge 0$ and thus $x \le t$ and therefore, we integrate from x = 0 and x = t.