Language Syntax, Semantics, Errors, Nondeterminism

CS 536: Science of Programming, Fall 2019 Due Wed 9/25, 11:59 pm

Problems [50 points]

Lecture 5: Language Syntax/Operational Semantics

1. [8 points] Translate the program below into our programming language.

$$x = 1$$
; $j = 0$; while $(j++ \le m) x++$; $x += y$;

- 2. $[8 = 2^*4 \text{ points}] \text{ Let } S = \text{if } x > 0 \text{ then } x := x + 2^*y; y := 3^*y \text{ fi.}$
 - a. Evaluate $\langle S, \{x = 2, y = 6\} \rangle$ to completion, using step-by-step operational (i.e., \rightarrow) semantics.
 - b. Evaluate $\langle S, \{x = -2, y = 8\} \rangle$ to completion, using step-by-step operational semantics.
- 3. [10 points] Let W be the program below and let $\sigma_0 = \{i = 1, x = 1, n = 5\}$.

$$W =$$
while $i \neq n$ do S od $where $S = i := i+1; x := x+i*i$$

Evaluate $\langle W, \sigma_0 \rangle$ to completion. You can use \to^n to emphasize how each iteration changes the state, but be sure to include six configurations (which ones are your choice), including the initial $\langle W, \sigma_0 \rangle$ and final $\langle E, (you fill in) \rangle$.

Lecture 6: Denotational Semantics, Runtime Errs, Sequential Nondeterminism pt. 1

- 4. [6 = 2*3 points] What are the denotational semantics of the configurations in Problems 2a and 2b? (I.e., M(S, ...) = ...?)
- 5. [3 points] Let W be the loop in Problem 3. What is the set of σ such that $\langle W, \sigma \rangle \to^* \langle E, \bot \rangle$?
- 6. [6 = 2*3 points] Let S be deterministic.
 - a. If $\bot \in M(S, \sigma)$, can we conclude anything about $\langle S; T, \sigma \rangle$ where T is any other statement? Give a brief justification.
 - b. If $\langle S, \sigma \rangle \rightarrow^* \langle E, \tau \rangle$ and $\tau \not\models T$, can we conclude anything more specific about τ ? Give a brief justification. (Recall T means true.)

Lecture 7: Sequential Nondeterminism pt. 2

- 7. [3 points] Let S be nondeterministic. Suppose S always terminates when run in σ (i.e., $\bot \notin M(S, \sigma)$). Is it possible nonetheless for there to be a predicate φ where $M(S, \sigma) \not\models \varphi$ and $M(S, \sigma) \not\models \neg \varphi$ simultaneously? Give a brief explanation.
- 8. [6 = 2*3 points] Let W be the incomplete program $\mathbf{do} \mathbf{x} \ge 0 \rightarrow ... \square \mathbf{x} ... \rightarrow ... \mathbf{od}$. Complete W by completing the guarded commands such that both a and b below are possible (and say what W is).
 - a. $\bot_{a} \in M(W, \{\mathbf{x} = 0\})$. Sketch an operational execution path where this happens. (I.e., $\langle W, \{\mathbf{x} = 0\}\rangle \rightarrow^*$ some configuration \to^* some configuration and so on.
 - b. $\{\mathbf{x} = \alpha\} \in M(W, \{\mathbf{x} = 0\})$. Sketch an operational execution path where this happens and say what value α has.