Homework 4

Table of Contents

Problem 13.9: Determine the mean, ACVS and stationarity of a random process	. 1
[✓] a) Determine the mean sequence	.1
b) Determine the ACVS	
c) Comment on the stationarity of the random process	. 3
[✓] Problem 13.13: MSE objective function	. 3
a) Express the objective function in terms of its parameters	. 4
b) Using partial derivatives to determine the values of parameters	. 4
Problem 13.22: Computing distributions	.6
a) Determine marginal distributions and conditional probabilities	6
b) Are X and Y independent?	6

Problem 13.9: Determine the mean, ACVS and stationarity of a random process

9. A random process x[n] is characterized by

$$x[n] = A(\zeta) \cos \left[\Omega(\zeta)n + \Theta(\zeta)\right],$$

where random variables $A(\zeta)$, $\Omega(\zeta)$, and $\Theta(\zeta)$ are mutually independent. Random variables $A(\zeta) \sim U(0,1)$ and $\Theta(\zeta) \sim U(-\pi,\pi)$ are of continuous type while $\Omega(\zeta)$ is of discrete type taking values 10 and 20 radians with equal probability.

$\creat{7}$ a) Determine the mean sequence $m_x[n]$

We need to compute:

$$E[x[n]] = E[A\cos(\Omega n + \Theta)]$$

Since the three random variables are independent then we can write:

$$E[x[n]] = E[A]E[\cos(\Omega n + \Theta)]$$

We know that $E[A] = \frac{1}{2}$ since $A \sim U(0, 1)$.

Computing the expression $E[\sin(\Theta)]$ requires a bit of an explanation.

Suppose we want to compute $E[\cos(\Omega n + \Theta)]$ where $\Theta \sim U(-\pi, \pi)$. Let us pick one frequency ω (realise one value of Ω). Then let us pick a lot of realisations of Θ . Now if we plot the function $\cos(\omega n + \theta)$ for different values of θ then we will see something like this:

```
n = linspace(0, 4*pi);
plot(n, cos(n), n, cos(n-1), n, cos(n-2), n, cos(n-3), n, cos(n-4));
xlim([0, 4*pi]);
```


If we plot hundreds of cosine functions shifted slightly, we get a large blob of points from -1 to 1. For this reason, the quality $E[\cos(\Omega n + \Theta)]$ will be zero because the mean value is 0. Formally, we can write:

$$E[\cos(\Omega n + \Theta)] = \int_{-\pi}^{\pi} f_{\Theta}(\Theta) \cdot \cos(\Omega n + \Theta) d\Theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(\Omega n + \Theta) d\Theta$$

So we are integrating cosine function over 2π which is zero.

In signal processing, we like to add random shifts ala $\Theta \sim U(0, 2\pi)$ to avoid that the expected value or the mean value becomes dependent on time.

Alternatively, we can use

Using the rule $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$, we rewrite the expression to:

$$E[x[n]] = E[A(\cos(\Omega n)\cos(\Theta) - \sin(\Omega n)\sin(\Theta))]$$

$$E[x[n]] = E[A\cos(\Omega n)\cos(\Theta) - A\sin(\Omega n)\sin(\Theta)]$$

At this point, we need to employ some expection rules to decompose the expression.

Let *X* and *Y* be two random variables and *a* and *b* be two constants. Following expectation identities apply:

- 1. E[a] = a e.g. E(42) = 42
- 2. E[aX] = aE[X] e.g. if you multiply every value by 2, the expectation doubles
- 3. $E[a \pm X] = a \pm E[X]$ e.g. if you add 42 to every case, the expectation increases by 42
- 4. E[X + Y] = E[X] + E[Y]
- 5. If *X* and *Y* are independent, then E[XY] = E[X]E[Y]
- 6. $E[a \pm bX] = a \pm E[b X] = a \pm b E[X]$
- 7. $E[b(a \pm X)] = b E[a \pm X] = b(a \pm E[X])$

Use rule 4:

$$E[x[n]] = E[A\cos(\Omega n)\cos(\Theta)] - E[A\sin(\Omega n)\sin(\Theta)]$$

Use rule 5 multiple times:

$$E[x[n]] = E[A]E[\cos(\Omega n)]E[\cos(\Theta)] - E[A]E[\sin(\Omega n)]E[\sin(\Theta)]$$

But how can we continue from here?

We know that
$$\Theta \sim U(-\pi,\pi)$$
 so $E[\Theta] = \frac{\pi + (-\pi)}{2} = \frac{0}{2} = 0$

- b) Determine the ACVS $c_X[m,n]$
- c) Comment on the stationarity of the random process

[✓] Problem 13.13: MSE objective function

13. Consider the mse objective function (13.56)

$$J(a,b) = \mathbb{E}[(Y - aX - b)^2].$$

a) Express the objective function in terms of its parameters

(a) Express J(a, b) in terms of the parameters a, b, and the moments of X and Y.

Use MATLAB to expand the expression inside the expected value:

ans =
$$X^2 a^2 - 2 X Y a + 2 X a b + Y^2 - 2 Y b + b^2$$

So we have:

$$J(a,b) = E[X^2a^2 - 2XYa + 2Xab + Y^2 - 2Yb + b^2]$$

Let *X* and *Y* be two random variables and *a* and *b* be two constants. Following expectation identities apply:

- 1. E[a] = a e.g. E(42) = 42
- 2. E[a X] = a E[X] e.g. if you multiply every value by 2, the expectation doubles
- 3. $E[a \pm X] = a \pm E[X]$ e.g. if you add 42 to every case, the expectation increases by 42
- 4. E[X + Y] = E[X] + E[Y]
- 5. If *X* and *Y* are independent, then E[XY] = E[X]E[Y]

Use rule 4:

$$J(a,b) = E[X^{2}a^{2} - 2XYa + 2Xab + Y^{2} - 2Yb + b^{2}]$$

$$J(a,b) = E[X^{2}a^{2}] - E[2XYa] + E[2Xab] + E[Y^{2}] - E[2Yb] + E[b^{2}]$$

Use rule 1 and rule 2:

$$J(a,b) = a^2 E[X^2] - 2 a E[XY] + 2 a b E[X] + E[Y^2] - 2 b E[Y] + b^2$$

b) Using partial derivatives to determine the values of parameters

(b) Using partial derivatives $\frac{\partial J}{\partial a}$ and $\frac{\partial J}{\partial b}$, determine the values of a and b by solving the equations $\partial J/\partial a = 0$ and $\partial J/\partial b = 0$ that minimize J(a,b) to obtain optimum values given in (13.58) and (13.62).

First, take the partial derivatives:

$$\frac{\partial J(a,b)}{\partial a} = 2a E[X^2] - 2 E[XY] + 2b E[X]$$

$$\frac{\partial J(a,b)}{\partial b} = 2 a E[X] - 2 E[Y] + 2b$$

Next, solve the equations:

(Eq. 1)
$$2a E[X^2] - 2 E[XY] + 2b E[X] = 0$$

(Eq. 2)
$$2 a E[X] - 2 E[Y] + 2b = 0$$

Isolate b in (Eq. 2):

$$2b = -2 a E[X] + 2 E[Y]$$

$$b = -a E[X] + E[Y]$$

$$b = E[Y] - aE[X]$$

This corresponds to (13.58) in the book:

(13.58)
$$b_0 = m_y - am_x$$

Now, plug the expression for b into Eq. 1 in order to find an expression for a:

$$2a E[X^2] - 2 E[X Y] + 2 b E[X] = 0$$
$$2a E[X^2] - 2 E[X Y] + 2 (E[Y] - a E[X]) E[X] = 0$$

$$2aE[X^{2}] - 2E[XY] + 2(E[Y] - aE[X])E[X] = 0$$

$$2a E[X^2] - 2 E[XY] + 2 E[X]E[Y] - 2 a E[X]E[X] = 0$$

$$2a E[X^2] - 2 a E[X]E[X] - 2 E[XY] + 2 E[X]E[Y] = 0$$

$$2a(E[X^2] - E[X]E[X]) - 2 E[XY] + 2 E[X]E[Y] = 0$$

$$2a(E[X] - E[X]E[X]) - 2E[XY] + 2E[X]E[Y]$$

$$2a(E[X^2] - E[X]E[X]) = 2E[XY] - 2E[X]E[Y]$$

$$a(E[X^2] - E[X]E[X]) = E[XY] - E[X]E[Y]$$

$$a = \frac{E[XY] - E[X]E[Y]}{E[X^2] - E[X]E[X]} = \frac{E[XY] - E[X]E[Y]}{E[X^2] - E[X]^2}$$

We have found an expression for *a*. The numerator looks like it is the covariance:

Covariance The *covariance* of two random variables X and Y is defined by

$$(13.25) c_{xy} \triangleq \operatorname{cov}(X, Y) \triangleq \operatorname{E}[(X - m_x)(Y - m_y)] = \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y)$$

The denominator looks like it is the variance:

(13.11)
$$\operatorname{var}(X) = E[X^2] - E[X]^2 = E[X^2] - m_x^2$$

Therefore, the derived expression is the same as (13.62) in the book.

$$(13.62) \quad a_0 = \frac{c_{xy}}{\sigma_x^2} = \rho_{xy} \frac{\sigma_y}{\sigma_x}$$

Problem 13.22: Computing distributions

22. Consider two jointly distributed random variables X and Y with pdf

$$f(x,y) = \begin{cases} 8xy, & 0 \le x \le 1, 0 \le y \le x \\ 0, & \text{otherwise} \end{cases}$$

- a) Determine marginal distributions and conditional probabilities
- (a) Determine f(x), f(y), f(x|y), and f(y|x).

The **marginal** distributions of random variables *X* and *X* are obtained by integration as follows:

6

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$$
 and $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx$, (13.19)

Compute the marginal distribution of *X*:

$$f(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{0}^{x} 8xy \, dy = \left[\frac{1}{2}8xy^{2}\right]_{0}^{x} = \frac{1}{2}8xx^{2} - 0 = 4x^{3} \text{ where } 0 \le x \le 1$$

Compute the marginal distribution of Y:

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{y}^{1} 8xy dx = [4yx^{2}]_{y}^{1} = 4y - 4y^{3} \text{ where } 0 \le y \le 1$$

To compute f(x|y) we use following relation:

$$f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x) = f_{X|Y}(x|y)f_Y(y).$$
(13.23)

From Eq. 13.23, we know that:

$$f(x|y) = \frac{f(x,y)}{f(y)} = \frac{8xy}{4y - 4y^3} = \frac{4y \cdot 2x}{4y(1 - y^2)} = \frac{2x}{1 - y^2}$$

and

$$f(y|x) = \frac{f(x,y)}{f(x)} = \frac{8xy}{4x^3} = \frac{4x \cdot 2y}{4x \cdot x^2} = \frac{2y}{x^2}$$

- b) Are X and Y independent?
- **(b)** Are *X* and *Y* independent?

Random variables *X* and *Y* are statistically independent, if f(y|x) = f(y) or f(x|y) = f(x).

In a) we have computed the following expressions:

- $f(x) = 4x^3$
- $f(y) = 4y 4y^{3}$ $f(y|x) = \frac{2y}{x^{2}}$
- $f(x|y) = \frac{2x}{1 y^2}$

Clearly $f(y|x) \neq f(y)$ and $f(x|y) \neq f(x)$. Therefore, the answer is no! The random variables X and Y are not statistically independent.