Distributional Semantics

COMP90042 Natural Language Processing Lecture 10

Semester 1 2022 Week 5 Jey Han Lau

Lexical Databases - Problems

- Manually constructed
 - Expensive
 - Human annotation can be biased and noisy
- Language is dynamic
 - New words: slang, terminology, etc.
 - New senses
- The Internet provides us with massive amounts of text. Can we use that to obtain word meanings?

Distributional Hypothesis

- You shall know a word by the company it keeps
 - Firth, 1957
- Document co-occurrence indicative of topic (document as context)
 - E.g. *voting* and *politics*
- Local context reflects its meaning (word window as context)
 - E.g. *eat a pizza* vs. *eat a burger*

Guessing Meaning from Context

Learn unknown word from its usage

```
    tezgüino
```

```
(14.1) A bottle of ____ is on the table.(14.2) Everybody likes ____.(14.3) Don't have ____ before you drive.
```

(14.4) We make ____ out of corn.

Another way: look at words that share similar contexts!

	(14.1)	(14.2)	(14.3)	(14.4)	•••
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
choices	0	1	0	0	
wine	1	1	1	0	>

COMP90042 L10

Word Vectors

	(14.1)	(14.2)	(14.3)	(14.4)	•••
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
choices	0	1	0	0	
wine	1	1	1	0	

- Each row can be thought of a word vector
- It describes the distributional properties of a word
 - i.e. encodes information about its context words
- Capture all sorts of semantic relationships (synonymy, analogy, etc)

Word Embeddings?

- We've seen word vectors before: word embeddings!
- Here we will learn other ways to produce word vectors
 - Count-based methods
 - More efficient neural methods designed just for learning word vectors

Outline

- Count-based methods
- Neural methods
- Evaluation

Count-Based Methods

COMP90042 L10

Learning Count-Based Word Vectors

- Generally two flavours
 - Use document as context
 - Use neighbouring words as context

COMP90042 L10

Document as Context: The Vector Space Model

- Core idea: represent word meaning as a vector
- Consider documents as context
- One matrix, two viewpoints
 - Documents represented by their words
 - Words represented by their documents

	•••	state	fun	heaven	•••
•••					
425		0	1	0	
426		3	0	0	
427		0	0	0	
•••••					

Manipulating the VSM

- Weighting the values (beyond frequency)
- Creating low-dimensional dense vectors

Tf-idf

Standard weighting scheme for information retrieval

$$idf_w = \log \frac{|D|}{df_w} \text{total #docs}$$

Discounts common words!

	•••	the	country	hell	•••
•••					
425		43	5	1	
426		24	1	0	
427		37	0	3	
•••					
df		500	14	7	

	•••	the	country	hell	•••
•••					
425		0	26.0	6.2	
426		0	5.2	0	
427		0	0	18.6	
•••					

tf-idf matrix

Dimensionality Reduction

- Term-document matrices are very sparse
- Dimensionality reduction: create shorter, denser vectors
- More practical (less features)
- Remove noise (less overfitting)

COMP90042

Singular Value Decomposition

 $A = U\Sigma V^{I}$

(new term matrix)

m

(singular values)

m

(new document matrix)

|D|

```
\begin{bmatrix} 2.2 & 0.3 & 8.7 \\ 5.5 & -2.8 & \cdots & 0.1 \\ -1.3 & 3.7 & & 3.5 \\ \vdots & \ddots & \vdots \\ 2.9 & -2.1 & \cdots & -1.9 \end{bmatrix} \quad m \quad \begin{bmatrix} 9.1 & 0 & 0 & & 0 \\ 0 & 4.4 & 0 & \cdots & 0 \\ 0 & 0 & 2.3 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0.1 \end{bmatrix} \quad m
```

$$m = Rank(A)$$

Truncating – Latent Semantic Analysis

- Truncating U, Σ , and V to k dimensions produces best possible k rank approximation of original matrix
- U_k is a new low dimensional representation of words
- Typical values for k are 100-5000

Words as Context

- Lists how often words appear with other words
 - In some predefined context (e.g. a window of N words)
- The obvious problem with raw frequency: dominated by common words
 - But we can't use tf-idf!

	•••	the	country	hell	•••
•••					
state		1973	10	1	
fun		54	2	0	
heaven		55	1	3	
••••					

Pointwise Mutual Information

- For two events x and y, PMI computes the discrepancy between:
 - Their joint distribution = P(x, y)
 - Their individual distributions (assuming independence) = P(x)P(y)

$$PMI(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)}$$

COMP90042 L10

Calculating PMI

	•••	the	country	hell	•••	Σ
•••						
state		1973	10	1		12786
tun		54	2	0		633
heaven		55	1	3		627
•••						
Σ		1047519	3617	780		15871304

$$PMI(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)}$$

$$P(x, y) = \frac{\text{count}(x, y)}{\Sigma}$$

$$P(x) = \frac{\Sigma_x}{\Sigma}$$

$$P(y) = \frac{\Sigma_y}{\Sigma}$$

$$x = \text{state}, y = \text{country}$$

$$P(x, y) = \frac{10}{15871304} = 6.3 \times 10^{-7}$$

$$P(x) = \frac{12786}{15871304} = 8.0 \times 10^{-4}$$

$$P(y) = \frac{3617}{15871304} = 2.3 \times 10^{-4}$$

$$PMI(x, y) = \log_2 \frac{6.3 \times 10^{-7}}{(8.0 \times 10^{-4})(2.3 \times 10^{-4})} = 1.78$$

PMI(heaven, hell)?

	•••	the	country	hell	•••	Σ
•••						
state		1973	10	1		12786
fun		54	2	0		633
heaven		55	1	3		627
•••						
Σ		1047519	3617	780		15871304

$$PMI(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)}$$

$$P(x, y) = \frac{\text{count}(x, y)}{\Sigma}$$

$$P(x) = \frac{\sum_x}{\Sigma}$$

$$P(y) = \frac{\sum_y}{\Sigma}$$

PollEv.com/jeyhanlau569

PMI Matrix

- PMI does a better job of capturing semantics
 - E.g. *heaven* and *hell*
- But very biased towards rare word pairs
- And doesn't handle zeros well

	•••	the	country	hell	•••
•••					
state		1.22	1.78	0.63	
fun		0.37	3.79	-inf	
heaven		0.41	2.80	6.61	
•••••					

PMI Tricks

- Zero all negative values (Positive PMI)
 - Avoid –inf and unreliable negative values
- Counter bias towards rare events

Normalised PMI
$$\left(\frac{\text{PMI}(x,y)}{-\log P(x,y)}\right)$$

COMP90042 L10

SVD $(A = U\Sigma V^T)$

	•••	the	country	hell	•••
•••					
425		0	26.0	6.2	
426		0	5.2	0	
427		0	0	18.6	
•••					

	•••	the	country	hell	•••
•••					
state		1.22	1.78	0.63	
fun		0.37	3.79	0	
heaven		0.41	2.80	6.60	
•••••					

tf-idf matrix

PPMI matrix

 Regardless of whether we use document or word as context, SVD can be applied to create dense vectors

Neural Methods

Word Embeddings

- We've seen word embeddings used in neural networks (lecture 7 and 8)
- But these models are designed for other tasks:
 - Classification
 - Language modelling
- Word embeddings are just a by-product

Neural Models for Embeddings

- Can we design neural networks whose goal is to purely learn word embeddings?
- Desiderata:
 - Unsupervised
 - Efficient

Word2Vec

- Core idea
 - You shall know a word by the company it keeps
 - Predict a word using context words

Word2Vec

- Framed as learning a classifier
 - Skip-gram: predict surrounding words of target word

- CBOW: predict target word using surrounding words
- Use surrounding words within L positions, L=2 above

COMP90042 L10

Skip-gram Model

Predicts each neighbouring word given target word

... Bereft of life he rests in peace! If you hadn't nailed him ...

Total probability defined as

$$\prod_{l \in -L, \dots, -1, 1, \dots, L} P(w_{t+l} | w_t)$$

Using a logistic regression model

$$P(\text{life} \mid \text{rests}) = \frac{\exp(W_{\text{rests}} \cdot C_{\text{life}})}{\sum_{u \in V} \exp(W_{\text{rests}} \cdot C_u)} \frac{\text{word embedding of } \text{rests}}{\sum_{u \in V} \exp(W_{\text{rests}} \cdot C_u)}$$

Embedding parameterisation

$$P(\text{life} | \text{rests}) = \frac{\exp(W_{\text{rests}} \cdot C_{\text{life}})}{\sum_{u \in V} \exp(W_{\text{rests}} \cdot C_u)}$$

• Two word embedding matrices (W and C)!

 Words are numbered, e.g., by sorting vocabulary and using word location as its index

Skip-gram model

Fig 19.18, JM3

Training the skip-gram model

- Train to maximise likelihood of raw text
- Too slow in practice, due to normalisation over IVI

$$P(\text{life} | \text{rests}) = \frac{\exp(W_{\text{rests}} \cdot C_{\text{life}})}{\sum_{u \in V} \exp(W_{\text{rests}} \cdot C_u)}$$

- Reduce problem to binary classification
 - (life, rests) → real context word
 - (aardvark, rests) → non-context word
 - How to draw non-context word or negative samples?
 - Randomly from V

Negative Sampling

... lemon, a [tablespoon of apricot jam, a] pinch ...
c1 c2 t c3 c4

positive examples +

apricot tablespoon apricot of apricot jam apricot a

negative examples -

t	c	t	c
apricot	aardvark	apricot	seven
apricot	my	apricot	forever
apricot	where	apricot	dear
apricot	coaxial	apricot	if

$$P(+|t,c) = \frac{1}{1 + e^{-t \cdot c}} \longleftarrow$$

maximise similarity between target word and real context words

$$P(-|t,c) = 1 - \frac{1}{1 + e^{-t \cdot c}}$$

minimise similarity between target word and non-context words

Skip-gram Loss

$$L(\theta) = \sum_{(t,c)\in +} \log P(+|t,c) + \sum_{(t,c)\in -} \log P(-|t,c)$$

In practice, use k negative examples

$$L(\theta) = \log P(+|t,c) + \sum_{i=1}^{k} \log P(-|t,n_i)$$

Desiderata

- Unsupervised
 - Unlabelled corpus
- Efficient
 - Negative sampling (avoid softmax over full vocabulary)
 - Scales to very very large corpus

COMP90042 L10

Problems with word vectors/embeddings (count and neural methods)?

- Difficult to quantify the quality of word vectors
- Don't capture polysemous words
- Data sparsity (not enough data to learn them)
- Difficult to incorporate them in downstream tasks

PollEv.com/jeyhanlau569

Evaluation

Word Similarity

- Measure similarity of two words using cosine similarity
- Compare predicted similarity with human intuition
- Datasets
 - WordSim-353 are pairs of nouns with judged relatedness
 - SimLex-999 also covers verbs and adjectives

Word Analogy

- Man is to King as Woman is to ???
- v(Man) v(King) = v(Woman) v(???)
- v(???) = v(Woman) v(Man) + v(King)
- Find word whose embedding is closest to v(Woman) - v(Man) + v(King)

Embedding Space

- Word2Vec embeddings show interesting geometry
- Explains why they are good in word analogy task

Downstream Tasks

- Best evaluation is in other downstream tasks
 - Use bag-of-word embeddings as a feature representation in a classifier
 - First layer of most deep learning models is to embed input text
 - Initialise them with pretrained word vectors!

General Findings

- neural > count
- Contextual word representation is shown to work even better
- Dynamic word vectors that change depending on context!
- ELMO & BERT (next lecture!)

Pointers to Software

Word2Vec

 C implementation of Skip-gram and CBOW https://code.google.com/archive/p/word2vec/

GenSim

Python library with many methods include LSI, topic models and Skip-gram/CBOW https://radimrehurek.com/gensim/index.html

GLOVE

http://nlp.stanford.edu/projects/glove/

Further Reading

► JM3, Ch 6