Graphical models overview

Brooks Paige

COMP0171

From the **product rule**, we can always factorize a joint distribution over three random variables a,b,c into a product of conditionals, for example

$$p(a, b, c) = p(a|b, c)p(b|c)p(c)$$

From the **product rule**, we can always factorize a joint distribution over three random variables a,b,c into a product of conditionals, for example

$$p(a,b,c) = p(a|b,c)p(b|c)p(c)$$

$$p(a,b,c) = p(a|b,c)p(c|b)p(b)$$

From the **product rule**, we can always factorize a joint distribution over three random variables a, b, c into a product of conditionals, for example

$$p(a, b, c) = p(a|b, c)p(b|c)p(c)$$

$$p(a, b, c) = p(a|b, c)p(c|b)p(b)$$

$$p(a, b, c) = p(c|b, a)p(b|a)p(a)$$

$$\vdots$$

From the **product rule**, we can always factorize a joint distribution over three random variables a,b,c into a product of conditionals, for example

$$p(a, b, c) = p(a|b, c)p(b|c)p(c)$$

$$p(a, b, c) = p(a|b, c)p(c|b)p(b)$$

$$p(a, b, c) = p(c|b, a)p(b|a)p(a)$$

$$\vdots$$

Structured models and conditional independence

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

Structured models and conditional independence

Structured models and conditional independence

$$p(a, b|c) = \frac{p(a|c)p(b|c)p(c)}{p(c)}$$
$$= p(a|c)p(b|c)$$

$$p(a, b|c) = \frac{p(a|c)p(b|c)p(c)}{p(c)}$$
$$= p(a|c)p(b|c)$$
$$\Rightarrow a \perp b|c$$

$$p(a,b|c) = \frac{p(a|c)p(b|c)p(c)}{p(c)}$$

$$= p(a|c)p(b|c)$$

$$\Rightarrow a \perp b|c$$

$$p(a,b|c) = \frac{p(a)p(c|a)p(b|c)}{p(c)}$$

$$= p(a|c)p(b|c)$$

$$= p(a|c)p(b|c)$$

$$p(a, b|c) = \frac{p(a)p(c|a)p(b|c)}{p(c)}$$
$$= p(a|c)p(b|c)$$

$$p(a, b|c) = \frac{p(a|c)p(b|c)p(c)}{p(c)}$$
$$= p(a|c)p(b|c)$$
$$\Rightarrow a \perp b|c$$

$$p(a,b|c) = \frac{p(a)p(c|a)p(b|c)}{p(c)}$$
$$= p(a|c)p(b|c)$$
$$\Rightarrow a \perp b|c$$

$$p(a, b|c) = \frac{p(a|c)p(b|c)p(c)}{p(c)}$$
$$= p(a|c)p(b|c)$$
$$\Rightarrow a \perp b|c$$

$$p(a, b|c) = \frac{p(a)p(c|a)p(b|c)}{p(c)}$$

$$= p(a|c)p(b|c)$$

$$\Rightarrow a \perp b|c$$

$$p(a,b|c) = \frac{p(a)p(b)p(c|a,b)}{p(c)}$$

Plate notation

$$p(\mathbf{w}, t_1, \dots, t_N) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$

Including deterministic variables

Hyperparameters just get "dots", no circles.

$$p(\mathbf{w}, t_1, \dots, t_N | \alpha, \sigma^2, x_{1:N}) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2)$$

Why do this?

Example: building larger discrete distributions

Graphical models are a way of visually representing dependencies (and conditional dependencies) in models.

This is a "Bayes net" which describes the relationship between three random variables, each a discrete distribution. There exist fast algorithms for estimating the posterior over any particular random variable, conditioned on any set of other random variables

Example: medical diagnostics

Easy way of encoding (probabilistic) domain knowledge and causal relationships.

These models have a long history in medical diagnosis systems. Each conditional probability in this graph can be estimated reliably from historical clinical data.

Estimating effects of COVID-19 interventions

This is a generative model for COVID-19 deaths (Flaxman et al., 2020).

- The observed data are dates of deaths and of different types of interventions, in a variety of countries.
- The goal is to estimate the time-varying reproduction number R.

