Fouille de Données

Data Mining

Classification - Partie 1

Plan du cours

- 1. Contexte
- 2. Organisation
- 3. Evaluation du modèle
- 4. Les arbres de décision

Contexte

SAVOIR - PREDIRE - DECIDER

Algorithmes

Contexte

- Supervisée Vs. Non Supervisée (Clustering).
- Classification supervisée : Tâche très importante dans le data mining (Machine Learning).
- ➤ Permet d'apprendre des modèles de décision pour prédire/classifier le comportement des exemples futurs.
- Ex: Une tumeur est-elle bénigne ou maligne?
- Ex: Une transaction carte de crédit est-elle frauduleuse ou non?
- Ex: Catégorie d'une actualité/news : Sport, Politique, Musique, etc.

Contexte

- ➤ La classification supervisée :
- ➤ Inférer à partir d'un échantillon d'exemples classés une procédure de classification.
- > Effectue la recherche d'une telle procédure selon un **modèle**.
- Modèles basés sur des :
 - hypothèses probabilistes : classifier naïf de Bayes, méthodes paramétriques ;
 - notions de proximité : plus proches voisins ;
 - recherches dans des espaces d'hypothèses : **arbres de décision**, réseaux de neurones.

Deux étapes:

- \triangleright Chaque exemple de l'ensemble d'exemples S est représenté par m attributs et sa classe $y \subseteq Y$.
- Classe, ou label, ou étiquette.
- > Dans la classification, la classe prend sa valeur parmi <u>un ensemble fini</u>.
- Classe = attribut qualitatif.
- ➤ |Y | = 1 : Classification mono-classe
- \rightarrow |Y | = 2 : Classification binaire
- ➤ |Y| > 2 : Classification multi-classe
- ➤ Dans notre cas, on considère que chaque donnée appartient à une et une seule classe.

Deux étapes:

- 1. Apprentissage (entrainement)
- 2. Classification (Utilisation)

<u>Deux bases d'exemples</u>:

- 1. Training Set
- 2. Test Set

Pourquoi deux bases?

- Les données d'entrainement peuvent contenir des données bruitées ou erronées.
- Des données qui ne représentent pas le cas général tirant le modèle vers leurs caractéristiques.
- Problème de Sur-apprentissage Overfitting.
- > => Utilisation de la base de test.
- La base de test est un ensemble d'exemples ayant les mêmes caractéristiques que ceux de la base d'entrainement et qui sont écartés au départ de l'entrainement pour effectuer les tests.

- Méthode très efficace d'apprentissage et de classification supervisés.
- Partitionner un ensemble de données en des groupes les plus homogènes possible du point de vue de la classe à prédire.

Exemple

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	weak	no
07-06	hot	sunny	high	strong	no
07-07	hot	overcast	high	weak	yes
07-09	cool	rain	normal	weak	yes
07-10	cool	overcast	normal	strong	yes
07-12	mild	sunny	high	weak	no
07-14	cool	sunny	normal	weak	yes
07-15	mild	rain	normal	weak	yes
07-20	mild	sunny	normal	strong	yes
07-21	mild	overcast	high	strong	yes
07-22	hot	overcast	normal	weak	yes
07-23	mild	rain	high	strong	no
07-26	cool	rain	normal	strong	no
07-30	mild	rain	high	weak	yes

today	cool	sunny	normal	weak	?
tomorrow	mild	sunny	normal	weak	?

Exemple

Exemple

pure subset

Outlook	
Sunny	
Sunny	
Overcast	
Rain	
Rain	
Rain	ł
Overcast	
Sunny	
Sunny	
Rain	
Sunny	
Overcast	
Overcast	
Rain	

Wind	Play
Weak	No
Strong	No
Weak	Yes
Weak	Yes
Weak	Yes
Strong	No
Strong	Yes
Weak	No
Weak	Yes
Weak	Yes
Strong	Yes
Strong	Yes
Weak	Yes
Strong	No
	Weak Strong Weak Weak Strong Strong Weak Weak Weak Strong Strong Weak Weak Weak Strong Strong

Exemple

Strong

2 yes / 3 no split further

Normal

Sunny

9 yes / 5 no Training examples:

Outlook	Humidity
Sunny	High
Sunny	High
Overcast	High
Rain	High
Rain	Normal
Rain	Normal
Overcast	Normal
Sunny	High
Sunny	Normal
Rain	Normal
Sunny	Normal
Overcast	High
Overcast	Normal
Rain	High

Humidity	Wind	Play
High	Weak	No
High	Strong	No
High	Weak	Yes
High	Weak	Yes
Normal	Weak	Yes
Normal	Strong	No
Normal	Strong	Yes
High	Weak	No
Normal	Weak	Yes
Normal	Weak	Yes
Normal	Strong	Yes
High	Strong	Yes
Normal	Weak	Yes
High	Strong	No

Exemple

Outlook Humid

Rain High
Rain Normal
Rain Normal
Rain Normal
Rain High

3 yes / 2 no split further

Wind

Weak

Weak

Strong

Weak

Strong

Training examples: 9 yes / 5 no

Outlook Sunny Sunny Overcast Rain Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rain

Humidity	W
High	W
High	St
High	W
High	W
Normal	W
Normal	St
Normal	St
High	W
Normal	W
Normal	W
Normal	St
High	St
Normal	W
High	St

Wind	Play
Weak	No
Strong	No
Weak	Yes
Weak	Yes
Weak	Yes
Strong	No
Strong	Yes
Weak	No
Weak	Yes
Weak	Yes
Strong	Yes
Strong	Yes
Weak	Yes
Strong	No

Exemple

Outlook
Sunny
Sunny
Overcast
Rain
Rain
Rain
Overcast
Sunny
Sunny
Rain
Sunny
Overcast
Overcast
Rain
. ,

Humidity	Wind	Play
High	Weak	No
High	Strong	No
High	Weak	Yes
High	Weak	Yes
Normal	Weak	Yes
Normal	Strong	No
Normal	Strong	Yes
High	Weak	No
Normal	Weak	Yes
Normal	Weak	Yes
Normal	Strong	Yes
High	Strong	Yes
Normal	Weak	Yes
High	Strong	No

Humidity	Wind	Play
High	Weak	No
High	Strong	No
High	Weak	Yes
High	Weak	Yes
Normal	Weak	Yes
Normal	Strong	No
Normal	Strong	Yes
High	Weak	No
Normal	Weak	Yes
Normal	Weak	Yes
Normal	Strong	Yes
High	Strong	Yes
Normal	Weak	Yes
High	Strong	No

Outlook	
Sunny	
Sunny	
Overcast	
Rain	
Rain	
Rain	
Overcast	
Sunny	
Sunny	
Rain	
Sunny	
Overcast	
Overcast	
Rain	

lumidity	Wind	Play
ligh	Weak	No
ligh	Strong	No
ligh	Weak	Yes
ligh	Weak	Yes
Vormal	Weak	Yes
lormal	Strong	No
Vormal	Strong	Yes
ligh	Weak	No
Vormal	Weak	Yes
Vormal	Weak	Yes
Vormal	Strong	Yes
ligh	Strong	Yes
lormal	Weak	Yes
ligh	Strong	No

Algorithmes de construction d'arbres de décision

- Diviser pour régner Divide and Conquer.
- ➤ TDIDT: Top-Down Induction of Decision Trees.
- L'arbre est construit récursivement de haut en bas selon le principe « diviser pour régner ».
 - Diviser le problème en sous-problèmes.
 - Résoudre chaque sous-problème.
- Au début, tous les exemples sont dans la racine.
- Ensuite, les exemples sont partitionnés récursivement selon les attributs sélectionnés.

Algorithmes de construction d'arbres de décision

Etapes générales :

- 1. Sélectionner un attribut pour le nœud racine.
 - Créez une branche pour chaque valeur possible de l'attribut.
- 2. Diviser les exemples en sous-ensembles.
 - Un pour chaque branche s'étendant à partir du nœud.
- 3. Répéter récursivement pour chaque branche, en utilisant uniquement les exemples qui atteignent la branche.
- 4. Arrêter la récursivité pour une branche si tous ses exemples ont la même classe.

Algorithmes de construction d'arbres de décision

Etapes générales : Le meilleur, le plus <u>pur</u>, comment ?

- 1. <u>Sélectionner un attribut</u> pour le nœud racine.
 - Créez une branche pour chaque valeur possible de l'attribut.
- 2. Diviser les exemples en sous-ensembles.
 - Un pour chaque branche s'étendant à partir du nœud.
- 3. Répéter récursivement pour chaque branche, en utilisant uniquement les exemples qui atteignent la branche.
- 4. Arrêter la récursivité pour une branche si tous ses exemples ont la même classe.

Algorithmes de construction d'arbres de décision

Algorithmes de construction d'arbres de décision

Quel attribut choisir comme racine?

Algorithmes de construction d'arbres de décision

Plusieurs problèmes:

Quel attribut choisir comme racine?

- Comment choisir l'attribut qui sépare le mieux l'ensemble d'exemples?
 On parle souvent de la variable de segmentation (Split).
- Comment choisir les <u>critères</u> de séparation d'un ensemble selon l'attribut choisi, et comment ces critères varient selon que l'attribut soit numérique ou symbolique ?
- Quel est le nombre optimal du nombre de critères qui minimise la taille de l'arbre et maximise la précision ?
- ➤ Quels sont les critères d'arrêt de ce partitionnement, sachant que souvent l'arbre est d'une taille gigantesque ?

Algorithmes de construction d'arbres de décision

- Un bon attribut préfère les attributs qui divisent les exemples de manière à ce que chaque nœud successeur soit aussi pur que possible.
- i.e. Séparer en sous-ensembles homogènes.

Algorithmes de construction d'arbres de décision

- Comment mesurer la pureté d'un attribut ?
- Différentes mesures :
 - Entropie
 - Gain d'information
 - GainRatio
 - Indice de Gini
- Dépend de l'algorithme choisi.

Algorithme ID3

- ID3 construit l'arbre récursivement.
- > Utilise le gain d'information pour mesurer la pureté d'un attribut.
- > Son calcul se fait à base de l'entropie de Shannon.
- L'algorithme suppose que tous les attributs sont catégoriels;
- Si des attributs sont numérique, ils doivent être discrétisés.

Algorithme ID3: Pseudo-Code

- ullet Créer nœud N
- Si tous les exemples de D sont de la même classe C alors
 Retourner N comme une feuille étiquetée par C;
- Si la liste des attributs est vide alors
 Retourner N Comme une feuille étiquetée de la classe de la majorité dans D;
- Sélectionner l'attribut A du meilleur Gain dans D;
- Etiqueter N par l'attribut sélectionné;
- Liste d'attributs ← Liste d'attributs A;
- Pour chaque valeur V_i de A Faire
 - Soit D_i l'ensemble d'exemples de D ayant la valeur de $A = V_i$;
 - Attacher à N le sous arbre généré par l'ensemble Di et la liste d'attributs
- FinPour;
- Fin;

Choix d'attribut: Entropie

- Supposons qu'il y a deux classes : Yes et No.
- \triangleright Soit l'ensemble d'exemples S contenant p exemples de la classe Yes et n exemples de la classe No.
- L'entropie est la quantité d'information nécessaire pour décider qu'un exemple dans *S* appartienne à Yes ou No.
- > Elle est définie par :

$$E(S) = -p_{+} \log_{2}(p_{+}) - p_{-} \log_{2}(p_{-})$$

Où, p_+ est la proportion des exemples Yes,

et p_{-} est la proportion des exemples No

Choix d'attribut: Entropie

$$E(S) = -p_{+} \log_{2}(p_{+}) - p_{-} \log_{2}(p_{-})$$

- > Se mesure en **bits**.
- ➤ Si tous exemples sont soit tous Yes, soit tous No, l'entropie est nulle.
- ➤ Si p+ = p- = 0.5 alors l'entropie est égale à 1.

<u>Exemple</u>: 9+ 5-

$$E(S) = E([9+,5-]) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

Choix d'attribut: Entropie

$$E(S) = -p_{+} \log_{2}(p_{+}) - p_{-} \log_{2}(p_{-})$$

Cas de plus de 2 classes :

$$E(S) = -p_1 \log p_1 - p_2 \log p_2 \dots - p_n \log p_n = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Choix d'attribut: Gain d'information

- L'entropie ne calcule que la qualité d'un seul (sous) ensemble d'exemples.
 - Correspond à une valeur unique.
- ➤ Comment calculer la qualité de l'ensemble du Split ?
 - Correspond à un attribut entier.
- \triangleright => Gain d'information pour un attribut A : G(S, A)

$$Gain(S, A) = E(S) - \sum_{v \in valeurs(A)} \frac{|S_v|}{|S|} E(S_v)$$

L'attribut qui maximise cette différence est sélectionné.

Choix d'attribut: Gain d'information

Choix d'attribut: Gain d'information

$$Gain (S, Humidity)$$
 $Gain (S, Wind)$
= .940 - (7/14).985 - (7/14).592 = .940 - (8/14).811 - (6/14)1.0 = .048
 $Gain (S, Outlook) = 0.246$ $Gain (S, Temperature) = 0.029$

Choix d'attribut: Gain d'information

Choix d'attribut: Gain d'information

Gain(Temperature)
Gain(Humidity)
Gain(Windy)

$$S = > S_{sunny}$$

$$Gain(S_{Sunny}, Humidity) = E(S_{Sunny}) - \sum_{v \in valeurs(Humidity)} \frac{\left|S_{Sunny-v}\right|}{\left|S\right|} E(S_{Sunny-v})$$

$$E(S_{Sunny}) = E([2+,3-]) = -\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5}) = 0.971$$

$$\sum_{v \in valeurs(Humidity)} \frac{\left|S_{Sunny-v}\right|}{\left|S\right|} E(S_{Sunny-v})$$

$$= \frac{\left|S_{Sunny-High}\right|}{\left|S_{Sunny}\right|} E(S_{Sunny-High}) + \frac{\left|S_{Sunny-Normal}\right|}{\left|S_{Sunny}\right|} E(S_{Sunny-Normal})$$

$$= \frac{3}{5}E([3+,0-]) + \frac{2}{5}E([0+,2-])$$

$$= 0.971 - (\frac{3}{5}*0) + \frac{2}{5}*0) = 0.971$$


```
Gain(Temperature) = 0.571 bits

Gain(Humidity) = 0.971 bits

Gain(Windy) = 0.020 bits
```

Choix d'attribut: Gain d'information

 $Gain(Temperature) = 0.571 ext{ bits}$ $Gain(Humidity) = 0.971 ext{ bits}$ $Gain(Windy) = 0.020 ext{ bits}$

Humidity est choisi

<u>D'autres algorithmes</u>

- ➤ Algorithme C4.5 (J48)
 - Amélioration de ID3
 - Prends en compte les attributs numériques.
 - Utilise le GainRation pour le Split/Segmentation.
- ➤ Algorithme CART
 - CART : Classification And Regression Trees.
 - Utilise l'indice de Gini pour le Split/Segmentation.
- Forêts aléatoires
 - Plus efficaces mais difficilement interprétables.
 - Construction des arbres se base sur le Bootstrap (ou le Bagging).

Ressources

Data Mining: concepts and techniques, 3rd Edition

- ✓ Auteur : Jiawei Han, Micheline Kamber, Jian Pei
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition: Juin 2011 744 pages ISBN 9780123814807

Data Mining: concepts, models, methods, and algorithms

- ✓ Auteur : Mehmed Kantardzi
- ✓ Éditeur : John Wiley & Sons
- ✓ Edition : Aout 2011 552 pages ISBN : 9781118029121

Data Mining: Practical Machine Learning Tools and Techniques

- ✓ Auteur : Ian H. Witten & Eibe Frank
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition : Juin 2005 664 pages ISBN : 0-12-088407-0

Ressources

- Cours Abdelhamid DJEFFAL Fouille de données avancée
 - ✓ www.abdelhamid-djeffal.net

WekaMOOC – Ian Witten – Data Mining with Weka

✓ https://www.youtube.com/user/WekaMOOC/featured

Cours - Laboratoire ERIC Lyon - DATA MINING et DATA SCIENCE

✓ https://eric.univ-lyon2.fr/~ricco/cours/supports_data_mining.html

Gregory Piatetsky-Shapiro - KDNuggets

✓ http://www.kdnuggets.com/