Computer Logic 1

Lab 2 - Deliverable

 ${\bf Giorgio} \,\, {\bf Grigolo}$

October 29, 2021

Truth Table and Schematic

Below are the worked out values of the truth table for the boolean expressions

$$S = (A \oplus B) \oplus C_{\text{in}}$$

$$C_{\text{out}} = A \cdot B + C_{\text{in}} \cdot (A \oplus B)$$

and its representation in a schematic using logic gates.

A	B	$C_{\rm in}$	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Tinkercad Schematic

My breadboard setup for this lab session.

All possible input combinations

It is to be noted that the **red LED** stands for the S bit (the sum bit) and that the **green LED** stands for the C_{out} bit (the carry bit). A more intuitive view of binary addition through this 1-bit full adder could have been achieved by arranging the C_{out} LED before the S LED (opposite of what is portrayed in pictures hereunder).

Figure 1. All switches are off. A = 0, B = 0, $C_{in} = 0$ and so S = 0, $C_{out} = 0$.

Figure 2. Only switch 1 is on. A = 1, B = 0, $C_{in} = 0$ and so S = 1, $C_{out} = 0$.

Figure 3. Only switch 2 is on. A = 0, B = 1, $C_{in} = 0$ and so S = 1, $C_{out} = 0$.

Figure 4. Only switches 1 and 2 are on. A = 1, B = 1, $C_{in} = 0$ and so S = 0, $C_{out} = 1$.

Figure 5. Only switch 3 is on. A = 0, B = 0, $C_{in} = 1$ and so S = 1, $C_{out} = 0$.

Figure 6. Only switch 1 and 3 are on. A = 1, B = 0, $C_{in} = 1$ and so S = 0, $C_{out} = 1$.

Figure 7. Only switches 2 and 3 are on. A = 0, B = 1, $C_{in} = 1$ and so S = 0, $C_{out} = 1$.

Figure 8. All switches are on. $A=1,\,B=1,\,C_{in}=1$ and so $S=1,\,C_{out}=1.$