SMAC Results

Yuri Lavinas 4/16/2017

Contents

Summary	
Convergency plots	2
ANOVA test and HSD Tukey	14
All regions	14

Summary

In this document we show the convergency plots for the GAModel and ReducedGAmodel with tournize size (k) 3 and tournsize (k) 2. The value of k being 2 was select by SMAC after it was executed for 2 days for both models.

Convergency plots

Kanto 2005 GAModel (Orange, k=3, Blue k=2)

Kanto 2005 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2006 GAModel (Orange, k=3, Blue k=2)

Kanto 2006 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2007 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2008 GAModel (Orange, k=3, Blue k=2)

Kanto 2008 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2009 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2010 GAModel (Orange, k=3, Blue k=2)

Kanto 2010 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2005 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2006 GAModel (Orange, k=3, Blue k=2)

Kansai 2006 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2007 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2008 GAModel (Orange, k=3, Blue k=2)

Kansai 2008 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2009 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2010 GAModel (Orange, k=3, Blue k=2)

Kansai 2010 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2005 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2006 GAModel (Orange, k=3, Blue k=2)

Tohoku 2006 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2007 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2008 GAModel (Orange, k=3, Blue k=2)

Tohoku 2008 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2009 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2010 GAModel (Orange, k=3, Blue k=2)

Tohoku 2010 ReducedGAModel (Orange, k=3, Blue k=2)

EastJapan 2009 ReducedGAModel (Orange, k=3, Blue k=2)

EastJapan 2010 GAModel (Orange, k=3, Blue k=2)

EastJapan 2010 ReducedGAModel (Orange, k=3, Blue k=2)

ANOVA test and HSD Tukey

All regions

```
resultANOVA = aov(loglikeValues~model+years+regions, data = data)
summary(resultANOVA)
##
                \mathsf{Df}
                       Sum Sq Mean Sq
                                         F value Pr(>F)
                                  3409
                                            1.972 0.16090
## model
                 1
                         3409
                        26894
                                  5379
                                            3.111 0.00896 **
## years
                 5
## regions
                 3 216542658 72180886 41751.046 < 2e-16 ***
## Residuals
                       812555
                                  1729
               470
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

95% family-wise confidence level

Differences in mean levels of model

Differences in mean levels of years

Differences in mean levels of regions

KANTO

```
subTabela = data[data$regions=="Kanto",]
print("In Kanto")
## [1] "In Kanto"
resultANOVA = aov(loglikeValues~model+years, data = subTabela)
summary(resultANOVA)
##
                Df Sum Sq Mean Sq F value
                                            Pr(>F)
## model
                     4397
                             4397
                                    12.85 0.000499 ***
## years
                 5 139054
                            27811
                                    81.29 < 2e-16 ***
## Residuals
               113 38661
                              342
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

EASTJAPAN

```
subTabela2 = data[data$regions=="EastJapan",]
print("In EastJapan")
## [1] "In EastJapan"
resultANOVA = aov(loglikeValues~model+years, data = subTabela2)
summary(resultANOVA)
##
                Df Sum Sq Mean Sq F value
                                              Pr(>F)
## model
                    10522
                             10522
                                      2.91 0.090773 .
                    97986
                             19597
                                      5.42 0.000166 ***
## years
                  5
               113 408578
                              3616
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level


```
subTabela3 = data[data$regions=="Kansai",]
print("In Kansai")
## [1] "In Kansai"
resultANOVA = aov(loglikeValues~model+years, data = subTabela3)
summary(resultANOVA)
##
                Df Sum Sq Mean Sq
                                   F value Pr(>F)
## model
                       15
                                     1.617 0.206
                 1
                               15
                            17925 1877.966 <2e-16 ***
## years
                    89623
                     1079
## Residuals
               113
                               10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

TOHOKU

```
subTabela3 = data[data$regions=="Tohoku",]
print("In Tohoku")
## [1] "In Tohoku"
resultANOVA = aov(loglikeValues~model+years, data = subTabela3)
summary(resultANOVA)
##
                Df Sum Sq Mean Sq F value
## model
                     2321
                              2321
                                     39.02 7.59e-09 ***
## years
                 5
                    43900
                              8780 147.60 < 2e-16 ***
                     6722
## Residuals
               113
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

