非再帰セグ木サイコー! 一番すきなセグ木です

えびちゃん

HCPC

November 21, 2019

今日の流れ

- 1. いつものコーナー
- 2. セグ木の導入
- 3. セグ木の実装
- 4. セグ木で解ける問題例
- 5. おわり

最近お勉強したもの (1/6)

えびちゃんが CHT の回以降に勉強したことたちです.興味があったら言ってね.

- simplex 法
 - 線形計画法を解くアルゴリズム
 - maximize $c^{\top}x$ subject to $Ax \leq b$ and $x \geq 0$
 - 実用的には高速だが、最悪指数時間かかる
- wavelet matrix
 - 無限回言及したね
 - 整数の配列 α[n] に関するいろんなクエリに答えられる
 - i ∈ [s, t) のうちで a_i ∈ [x, y) の個数は?
 - i ∈ [s, t) のうちで x が k 番目に現れる場所は?
 - i ∈ [s, t) のうちで k 番目に大きい値は?
 - i ∈ [s, t) のうちで x 以上の要素の総和は?
 - i ∈ [s, t) のうちの要素を頻出順に列挙して?

最近お勉強したもの(2/6)

- rolling hash \mathcal{O} hack
 - 弱いものなら誕生日攻撃で終了
 - tree attack というのがあるらしい
- Mo's algorithm
 - Mo Tao (中国人)
 - 区間クエリ処理に関する枠組み
 - 区間の左端の位置でバケットに分ける
- 並列二分探索
 - クエリ処理に関する枠組み(に限らないかも?)

000000

最近お勉強したもの(3/6)

- 永続配列
 - バージョン管理できる配列みたいなの
- Karatsuba 法
 - 長さ \mathfrak{n} の畳み込みを $O(\mathfrak{n}^{\log_2 3}) \subset O(\mathfrak{n}^{1.59})$ 時間で行う
 - FFT と違って原始 n 乗根などがいらないので抽象化が楽 そう?
- Fibonacci heap
 - amortized O(1) で優先度を高くできる
 - Dijkstra 法や Prim 法で pop の回数を減らせて,
 O(|E| + |V| log |V|) にできる
 - 改良版もいろいろある

最近お勉強したもの (4/6)

- disjoint sparse table
 - 静的なモノイドの配列で、O(1) 時間で任意区間 fold できる
 - 空間は n · (log₂ n + O(1)) 要素ぶん
- sliding window aggregation
 - モノイドの両端キューで、ならし O(1) 時間で fold できる
 - 空間は 2n 要素ぶん
- word-level parallel
 - word あたり w bits あるので w bits をまとめて演算できる
 - あるいは $w^{1/2}$ 個の $w^{1/2}$ bits の整数をまとめるとか
 - 最上位ビットを O(1) で求められたりする

最近お勉強したもの(5/6)

- WQS binary search (trick from Aliens)
 - Qingshi Wang (中国人)
 - 関数がいい性質を満たすときのテク
 - 回数に関する制約をペナルティで置き換える
- removable CHT
 - O((log n)³) でできるらしい
- x-fast trie
 - 整数 [0, U) に関する集合演算を O(log log U) 時間とかで
- 整数除算最適化
 - 除算は重くて加減乗算・ビット演算は軽い
 - $(n / 5) == ((n * 0xCCCCCCD_ju) >> 34)$
 - これは 32-bit 符号なし整数の例

最近お勉強したもの(6/6)

- monotone minima
 - monotone な m×n 行列について各行の最小値を O(n log m) 時間で求める
- SMAWK
 - すもうく~(線形時間)
 - totally monotone な m×n 行列について各行の最小値を O(m+n) 時間で求める

00000

非再帰セグ木の導入

ここから非再帰セグ木の話.

再帰セグ木を知っている人へ:

再帰セグ木を stack などで無理やり書いたものではないです.

たぶんボトムアップセグ木とか呼ぶ方が適切?

配列 $a=(a_0,\,a_1,\,\ldots,\,a_{n-1})$ が与えられる. 次のクエリを q 回処理してね. $1\leqslant n\leqslant 10^5,\,1\leqslant q\leqslant 10^5$.

クエリセット(かんたん)

- i が与えられて、αi の値を答える
- (i, x) が与えられて、a_i を x に書き換える

配列 $\mathfrak{a}=(\mathfrak{a}_0,\,\mathfrak{a}_1,\,\ldots,\,\mathfrak{a}_{\mathfrak{n}-1})$ が与えられる. 次のクエリを \mathfrak{q} 回処理してね. $1\leqslant\mathfrak{n}\leqslant 10^5,\,1\leqslant\mathfrak{q}\leqslant 10^5$.

クエリセット(かんたん)

- i が与えられて、αi の値を答える
- (i, x) が与えられて, α_i を x に書き換える

配列を知っていますか?

配列 $\mathfrak{a}=(\mathfrak{a}_0,\,\mathfrak{a}_1,\,\ldots,\,\mathfrak{a}_{\mathfrak{n}-1})$ が与えられる. 次のクエリを \mathfrak{q} 回処理してね. $1\leqslant\mathfrak{n}\leqslant 10^5,\,1\leqslant\mathfrak{q}\leqslant 10^5$.

クエリセット(むずかしい)

- (l, r) が与えられて, $\sum_{i=1}^{r-1} a_i$ の値を答える
- (i, x) が与えられて, αi を x に書き換える

配列 $\mathfrak{a}=(\mathfrak{a}_0,\,\mathfrak{a}_1,\,\ldots,\,\mathfrak{a}_{\mathfrak{n}-1})$ が与えられる. 次のクエリを \mathfrak{q} 回処理してね. $1\leqslant\mathfrak{n}\leqslant 10^5,\,1\leqslant\mathfrak{q}\leqslant 10^5$.

クエリセット(むずかしい)

- (l, r) が与えられて, $\sum_{i=1}^{r-1} a_i$ の値を答える
- (i, x) が与えられて、αi を x に書き換える

for 文を知っていますか?

配列 $\mathfrak{a}=(\mathfrak{a}_0,\,\mathfrak{a}_1,\,\ldots,\,\mathfrak{a}_{\mathfrak{n}-1})$ が与えられる. 次のクエリを \mathfrak{q} 回処理してね. $1\leqslant\mathfrak{n}\leqslant 10^5,\,1\leqslant\mathfrak{q}\leqslant 10^5$.

クエリセット(むずかしい)

- (l, r) が与えられて、 $\sum_{i=1}^{r-1} a_i$ の値を答える
- (i, x) が与えられて、ai を x に書き換える

for 文を知っていますか?

↑計算量を知っていますか?

配列 $a=(a_0,\,a_1,\,\ldots,\,a_{n-1})$ が与えられる. 次のクエリを q 回処理してね. $1\leqslant n\leqslant 10^5,\,1\leqslant q\leqslant 10^5$.

クエリセット(むずかしい)

- (l, r) が与えられて、 $\sum_{i=1}^{r-1} a_i$ の値を答える
- (i, x) が与えられて、a_i を x に書き換える

for 文を知っていますか?

- ↑計算量を知っていますか?
- →セグ木を使うと $O(n + q \log n)$ で解ける.

基本アイディア

隣同士の和を求める. そのペアごとに, 和を求める. というのを繰り返す.

a	$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$								
$a_0 + a_1 + a_2 + a_3$ $a_4 + a_5 + a_6 + a_7$							\mathfrak{a}_7		
a ₀ -	⊦ a ₁	a ₂ -	⊦ a ₃	a ₄ -	⊢ a ₅	$a_6 + a_7$			
a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7									

Figure: セグ木の概念図

基本アイディア

隣同士の和を求める. そのペアごとに, 和を求める. というのを 繰り返す.

$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$							
$a_0 + a_1 + a_2 + a_3$ $a_4 + a_5 + a_6 + a_7$					a ₇		
a ₀ -	⊦ a ₁	a ₂ -	⊦ a ₃	\mathfrak{a}_4 -	$+a_5$	a ₆ -	⊦ a ₇
ao	a ₁	\mathfrak{a}_2	аз	a 4	a 5	\mathfrak{a}_6	a ₇

Figure: $a_0 + a_1 + \cdots + a_6$ に対応する区間

基本アイディア

隣同士の和を求める. そのペアごとに, 和を求める. というのを繰り返す.

$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$								
ao	$a_0 + a_1 + a_2 + a_3$				$a_4 + a_5 + a_6 + a_7$			
a ₀ -	⊦ a ₁	\mathfrak{a}_2	⊢ a ₃	a ₄ -	⊦ a ₅	$a_6 + a_7$		
ao	a ₁	\mathfrak{a}_2	a ₃	a 4	a 5	\mathfrak{a}_6	a 7	

Figure: a₂ が関与する区間

木の表現

配列を用いる. 根の添字を1として, 幅優先順に番号をつける.

Figure: セグ木の添字

[i>>1]					
[:	i]	[i^1]			
[i<<1 0]	[i<<1 1]				

Figure: 親子の添字(綺麗!)

木の表現(悪い例)

配列を用いる. 根の添字を0として, 幅優先順に番号をつける.

[0]					
[1] [2]					
[3]	[4]	[5]	[6]		

Figure: セグ木の添字

親子の添字を求めるのが面倒なことがわかる(はず). なんでも 0-indexed にしたがる人は考え直した方がよい.

- 少ない区間で所望の区間をカバーしたい。
- 上の要素ほど大きな区間をカバーする.
- → できるだけ上の要素で足したい.

ある要素を足さなきゃいけない条件は?

→ その親の要素では所望の区間をはみ出してしまうとき.

所望の区間を半開区間で表す.

Figure: 半開区間 [i, j) を意味する矢印

区間の左端・右端と、左の子・右の子の4パターンを考える.

まず左端について考える.

Figure: 左端・左の子

Figure: 左端・右の子

👚 は,その要素を足すことを意味する.足したら区間をずらす.

次に右端について考える.

Figure: 右端・左の子

Figure: 右端・右の子

👚 は,その要素を足すことを意味する.足したら区間をずらす.

要素数 n の配列に対応するセグ木で、[l, r)の和を求める.

```
x = 0;
l += n, r += n;
while (l < r) {
  if (l & 1) x += c[l++];
  if (r & 1) x += c[--r];
  l >>= 1, r >>= 1;
}
return x;
```

交換法則を仮定したくないときも,少しの手直しで対処可能(読者への課題).

非再帰セグ木 rsk0315

a	$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$								
$a_0 + a_1 + a_2 + a_3$ $a_4 + a_5 + a_6 + a_7$									
a ₀ -	+ a ₁	a ₂ -	⊦ a ₃	a ₄ -	⊢ a ₅	$a_6 + a_7$			
a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7									

Figure: [1, 7) の和を求めてみる

動作例

$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$									
ao	$+a_1$	$a_1 + a_2 + a_3$ $a_4 + a_5 + a_6 + a_7$							
a ₀ -	⊦ a ₁	a_2	- a ₃	a ₄ -	⊢ a ₅	_a ₆ -	- a ₇		
ao	a ₁	\mathfrak{a}_2	a ₃	a4 a5 a6 a7					

Figure: [1,7) の和を求めてみる

動作例

Figure: [1, 7) の和を求めてみる

非再帰セグ木

変更するクエリ

自分の項が関係するのは祖先ノードのみ.

→親を辿っていけばよい.

```
i += n;
c[i] += x;
while (i > 1) {
   i >>= 1;
   c[i] = c[i<<1|0] + c[i<<1|1];
}</pre>
```

非再帰セグ木

$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$								
$a_0 + a_1 + a_2 + a_3$ $a_4 + a_5 + a_6 + a_7$								
a ₀ -	⊦ a ₁	a ₂ -	⊦ a ₃	a ₄ -	⊢ a ₅	a ₆ -	⊢ a ₇	
a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7								

$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$								
$a_0 + a_1 + a_2 + a_3$ $a_4 + a_5 + a_6 + a_7$							a ₇	
a ₀ -	⊢ α ₁	a ₂ -	⊦ a ₃	a ₄ -	⊢ a ₅	a ₆ -	⊢ a ₇	
a_0 a_1 x a_3 a_4 a_5 a_6 a_7							a 7	

а	$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$								
$a_0 + a_1 + a_2 + a_3$ $a_4 + a_5 + a_6 + a_7$									
a ₀ -	⊦ a ₁	x +	· a ₃	a ₄ -	⊦ a ₅	a ₆ -	⊢ a ₇		
ao	a1 x a3 a4 a5 a6 a7								

а	$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$								
ao	$a_0 + a_1 + x + a_3$ $a_4 + a_5 + a_6 + a_7$					a ₇			
a ₀ -	⊦ a ₁	x +	· a ₃	$a_4 + a_5$ $a_6 +$		- a ₇			
ao	a_0 a_1 x a_3 a_4 a_5 a_6 a_7								

$a_0 + a_1 + x + a_3 + a_4 + a_5 + a_6 + a_7$									
ao	$a_0 + a_1 + x + a_3$ $a_4 + a_5 + a_6 + a_7$						a ₇		
a ₀ -	⊦ a ₁	x +	· a ₃	a ₄ -	⊢ a ₅	a ₆ -	⊢ a ₇		
ao	\mathfrak{a}_1	χ	a ₃	a ₃ a ₄ a ₅ a ₆ a ₇					

驚愕の事実?

上のコードは要素数 n を二べキにしなくても動く.

O(log n) 個の完全二分木のセグ木が存在していると見なせる.

Figure: 11 要素の配列に対応するセグ木

驚愕の事実?

Figure: 配列に詰め込んだ形

	[1,5)				[5,9)					
	[1,3)		[3,5)		[5,7)		[7,9)		[9,11)	
0	1	2	3	4	5	6	7	8	9	10

Figure: 実質的に扱う概念

抽象化

和に限ったデータ構造ではなく,モノイドならなんでもよい.

- $\bullet \ (a \circ b) \circ c = a \circ (b \circ c)$
- $\exists e \text{ s.t. } a \circ e = e \circ a = a$

 $(\{i, i+1, \ldots, i+n\}, \min)$ はモノイドを成す.単位元はi+n.

中級者向け:ロリハは連接についてモノイドを成す.

基数 b, 法 p と する.

長さ n_1 , n_2 の文字列のハッシュ値 h_1 , h_2 について,

$$(n_1, h_1) \circ (n_2, h_2) = (n_1 + n_2, h_1 \cdot b^{n_2} + h_2).$$

非再帰セグ木

抽象化

モノイドになるようにうまく言い換えられるとうれしい.

たとえば,正しい括弧列を考えてみる.

開き括弧を +1, 閉じ括弧を -1 として, 正しい括弧列である条件をうまく表せないか考えてみよう.

セグ木上のにぶたん (セグメント木上の二分探索)

非負整数の配列 $\alpha=(\alpha_0,\alpha_1,\ldots,\alpha_{n-1})$ について、先頭からの 累積和が x を超えない限界はどこ? 形式的には、以下のものが知 りたくなってみる.

max. s s.t.
$$\sum_{i=0}^{s-1} a_i \leqslant x.$$

 $s \in [0,n+1)$ を決め打ちして, [0,s) での和を求めてにぶたん? →これをすると $O((\log n)^2)$.

セグ木上のにぶたん

セグ木をよく見ると、すでに半々に分けられた構造をしているこ とがわかる. →左右どちらに辿るかを判定すればよい.

00000000000000

Figure: 左の子を辿る

Figure: 右の子を辿る

左の子を足しても条件を満たすなら、足して右の子を辿る、そう でなければ、そのまま左の子を辿る.

 \checkmark はそこまで足しても条件を満たすことを $, \times$ はそこまで足すと 条件を満たさないことを意味する.

rsk0315

0000000000000

セグ木上のにぶたん

完全二分木でないときは次のような感じになっている.

Figure: 11 要素の配列に対応するセグ木

木は $O(\log n)$ 個しかないので、どの根から始めるかを線形探索できる、任意位置を始点とすることもできる(考えてみよう).

. 心同ろ秦要を另づちろる水を味の (+ ,1] , 和財もべる見づちろを人式ぶつで (+ ,1] 間図:イベコ

以下のクエリを処理してね.

クエリセット(むずかしそう)

- 集合に要素 x を追加する
- 集合から要素 x を削除する
- 小さい方から k 番目の要素を答える

ただし、 $0 \le x < 10^5$. x を先読み可能なら $|x| \le 10^9$ でも.

rsk0315

以下のクエリを処理してね.

クエリセット(むずかしそう)

- 集合に要素 x を追加する
- 集合から要素 x を削除する
- 小さい方から k 番目の要素を答える

ただし, $0 \le x < 10^5$. x を先読み可能なら $|x| \le 10^9$ でも.

std::set ではk番目へのアクセスはできない.

ing Review m rsk0315

以下のクエリを処理してね.

クエリセット(むずかしそう)

- 集合に要素 x を追加する
- 集合から要素 x を削除する
- 小さい方から k 番目の要素を答える

ただし, $0 \le x < 10^5$. x を先読み可能なら $|x| \le 10^9$ でも.

std::set ではk番目へのアクセスはできない.

AVL 木や赤黒木を貼るしかない…? →セグ木でできます.

つよい bit set で 64 倍高速化してもいいです。

rsk0315

 $(\mathbb{N}, +)$ を管理するセグ木を使う.

要素 i が集合に入っているとき $a_i = 1$, otherwise $a_i = 0$ とする.

追加・削除は簡単に行える(0または1を代入すればよいので).

k 番目の要素は、このセグ木で和が k になる添字に対応するので、 セグ木上でのにぶたん。

図があった方がわかりやすそう. 次ページ.

集合 $\{1, 4, 6, 9\}$ に対応する配列(実際にはセグ木で管理する). ここから 0-indexed で 2 番目の要素を探してみる.

(セグ木上のにぶたんができて) 6 が答えだとわかる.

動的配列の模倣(抽象化)

以下の条件を満たして,入りうる全要素を並べられればよい.

- 同時に配列に入る要素間では、その順序が保たれている
- そうでない要素については不問

あとは,前ページ同様に (№, +) で添字を管理すればよい.

 (T, \circ) のセグ木を用意して、x が入っているなら x、そうでないなら単位元 e を入れておくと、添字 k までの fold なども可能.

非再帰セグ木

転倒数というのを求めてみよう.

転倒数

配列 $a = (a_0, a_1, \ldots, a_{n-1})$ について、次の条件を満たす (i, j)のペアの個数を転倒数と呼ぶ.

- i < j
- $a_i > a_i$

ウェーブレット行列はこのクエリに直接答えられるが...

→セグ木でできます.

例として、配列 $\alpha = (4, 2, 5, 3, 1)$ は次のように見なせる.

点 (j, a_i) に関して、i < j かつ $a_i > a_i$ は次の領域に相当する.

$$b = (0, 0, 0, 0, 0), x = 0$$

 a_j が大きい方から順に見て, $b_j \leftarrow 1$ で更新する.

$$b = (0, 0, 1, 0, 0), x = 0 + 0$$

非再帰セグ木

$$b = (1, 0, 1, 0, 0), x = 0 + 0 + 0$$

a_i が大きい方から順に見て、 $b_i \leftarrow 1$ で更新する.

$$b = (1, 0, 1, 1, 0), x = 0 + 0 + 0 + 2$$

非再帰セグ木

$$b = (1, 1, 1, 1, 0), x = 0 + 0 + 0 + 2 + 1$$

$$b = (1, 1, 1, 1, 1), x = 0 + 0 + 0 + 2 + 1 + 4$$

$$b = (1, 1, 1, 1, 1), x = 7$$

以上により, (4, 2, 5, 3, 1) の転倒数は7だとわかった.

 a_i の順で行うことで、 a_i の大小関係と処理順が対応づけられる のがうれしい.

平面走査

実装の際は, i > j かつ $a_i < a_j$ とみて, a_i の小さい方から走査し て、右下の点の個数を数えてもよい、

同じ値の組が入っているときに、それらを余分に数えないように 注意しよう. たとえば, (x, x) の転倒数が正しく 0 となるか確認 しよう.

少し考えると, 同じような方法で最大増加部分列 (LIS) も平面走 査で解けることがわかる.これは, 蟻本 pp. 63-65 に載っている 方法とは異なる. ∞ に相当する要素を用意しなくていいのが利点 としてありそう. 計算量は $\Theta(n \log n)$ のまま.

000000000000000

平面走查(応用例)

たとえば,ある条件を満たす区間 [l,r) の個数を求めたいとする. ある f が存在して,その条件を満たすことと $f(l) \leqslant f(r)$ が同値で あるとする.

→これは平面走査で解ける形をしているので,平面走査で解ける.

問題例

条件 P と配列 $\mathfrak{a}=(\mathfrak{a}_0,\,\mathfrak{a}_1,\,\ldots,\,\mathfrak{a}_{\mathfrak{n}-1})$ が与えられる. 次の条件 を満たす区間 $[\mathfrak{l},\,\mathfrak{r})$ の個数を数えよ. ただし $1\leqslant\mathfrak{n}\leqslant10^5$.

● P を満たす要素の方が満たさない要素より真に多い P(a;) の計算は高速にできると仮定してよい.

非再帰セグ木 rsk0315

まとめ

セグ木では、モノイドの配列への更新と fold を高速に行える. モノイドを利用できる形に言い換えられるとうれしい。 更新順序をうまく変えて平面走査するテクも有効.

非再帰セグ木の実装:

- 内部実装で 0-indexed にこだわるべきでない
- 二ベキに丸める必要もない

ところで再帰セグ木の紹介をしていませんね。

問題たち

- https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/all/DSL_2_A
- https://yukicoder.me/problems/no/875
- https://atcoder.jp/contests/abc127/tasks/abc127 f
- https: //atcoder.jp/contests/bitflyer2018-final/tasks/bitflyer2018_final_c
- https://atcoder.jp/contests/arc033/tasks/arc033_3
- https://yukicoder.me/problems/no/877
- https://atcoder.jp/contests/chokudai S001/tasks/chokudai S001 j
- https://atcoder.jp/contests/arc075/tasks/arc075_c
- https://atcoder.jp/contests/arc101/tasks/arc101 b
- https://atcoder.jp/contests/dp/tasks/dp_q

発展的な話

静的なら disjoint sparse table で O(1) 回の演算で fold 可能.

よい性質を満たすとき、fold に加えて区間の更新も O(log n) 回の演算で可能、遅延伝搬セグメント木(遅延セグ木).

- 区間 min・区間加算は可能
- 区間和・区間加算は可能
- 区間和・区間 min 更新は不可能 → segment tree beats!

beats は謎. なんかいろいろできるらしい.

