Zestaw 2 Informatyka, rok 1

1. a) Prom kursuje pomiędzy przystaniami leżącymi naprzeciwko siebie po obu stronach rzeki o szerokości 40 m, która płynie z prędkością 3 m/s. Ile trwa przeprawa przez rzekę jeżeli na stojącej wodzie prędkość promu wynosi 5 m/s?

- b) Łódź napędzana silnikiem porusza się na stojącej wodzie z prędkością 4 m/s. Jaka jest prędkość łodzi gdy przepływa ona przez rzekę, której prąd ma prędkość 3 m/s, sterując cały czas prostopadle do kierunku prądu? Jaka może być maksymalna prędkość łodzi płynącej po tej rzece?
- 2. W kartezjańskim układzie współrzędnych dane są dwa wektory $\mathbf{a} = 3\mathbf{i} + 3\mathbf{j} 3\mathbf{k}$ oraz
 - $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$, gdzie \mathbf{i} , \mathbf{j} , \mathbf{k} są wersorami osi tego układu. Znaleźć:
 - a) długość każdego wektora,
 - b) iloczyn skalarny aob,
 - c) kat zawarty między nimi,
 - d) sume i różnice wektorów: $\mathbf{a} + \mathbf{b}$, $\mathbf{a} \mathbf{b}$,
- 3. Dane są wektory A=[1,2,3], B=[-2,-1,3]. Obliczyć ich sumę S=A+B, różnicę R=A-B, iloczyny skalarne $c=A\cdot B$ i $d=B\cdot A$ oraz wektorowe $W=A\times B$ i $V=B\times A$.
- **4.** Dane są wektory $\mathbf{A} = (3, y, z)$; $\mathbf{B} = (1, 3, -2)$ oraz $\mathbf{C} = (2, -4, 1)$.
 - a) Obliczyć y i z tak, by wektor **A** był prostopadły do wektorów **B** oraz **C**.
 - b) Obliczyć jaki kat tworza wektory **B** i **C**?
- 5. Wektor wodzący punktu jest określony wzorem: $\mathbf{r} = 3t \,\mathbf{i} + 2 \,\mathbf{j} + t^2 \,\mathbf{k}$, obliczyć:
 - a) wektor prędkości w funkcji czasu oraz jego wartość liczbową w chwili t = 2 s,
 - b) wektor przyspieszenia w funkcji czasu oraz jego wartość liczbową w chwili t = 2 s,
 - c) kąt między wektorami przyspieszenia i prędkości w chwili t = 2 s.
 - d) Jaki jest tor ruchu punktu? Jakim ruchem poruszają się rzuty punktu na osie układu współrzędnych OX, OY, OZ?
- 6. Siła $\mathbf{F} = 2\mathbf{x} \mathbf{z}$ zaczepiona do pewnego ciała w punkcie P (4,2,1) powoduje jego obrót wokół punktu R (1, -1, 1).
 - a) Oblicz wektor ramienia działającej siły.
 - b) Oblicz jaki kat tworzy wektor siły z ramieniem siły.
 - c) Oblicz wartość momentu siły działającej na ciało.
- 7. Wektor położenia ciała o masie m = 2 kg dany jest jako $\mathbf{R}(t) = 5\mathbf{i} + t^2\mathbf{j} + 2t^2\mathbf{k}$. Oblicz pracę wykonaną przez siłę poruszającą to ciało: a) w ciągu trzech pierwszych sekund jego ruchu, b) w ciągu trzeciej sekundy jego ruchu.
- 8. Obliczyć wektor prędkości i przyspieszenia dla wektora wodzącego $\mathbf{r} = r \cos(\omega t + \varphi_0) \mathbf{i} + r \sin(\omega t + \varphi_0) \mathbf{j}$, gdzie \mathbf{r} , ω , ω , ω 0 są stałe. Wykazać za pomocą odpowiednich obliczeń jaki to jest ruch.
- 9. Na ciało działa siła o następujących składowych: $F_x = 3(x^2 y)$, $F_y = 2$. Siła przesuwa punkt materialny wzdłuż boków trójkąta, którego wierzchołki znajdują się w punktach: A(0,0), B(0,2), C(3,0). Oblicz pracę wykonaną przez siłę F przy przesuwaniu punktu z $A \to B \to C \to A$.