Integers Modulo n

Carmen M. Wright, Ph.D.

Jackson State University

2017

Preliminary definitions

FACT: If you divide a number by a number smaller than its absolute value, you will get either a zero or positive remainder.

$$22/7 \rightarrow 22 = 3 \cdot 7 + 1$$

 $45/9 \rightarrow 45 = 5 \cdot 9 + 0$
 $-17/5 \rightarrow -17 = (-4) \cdot 5 + 3$

Division Algorithm

Theorem

Division Algorithm. Let n and $d \ge 1$ be integers. There exist uniquely determined integers q and r such that

$$n = qd + r$$
 and $0 \le r < d$.

$$0 \leq r < d$$
.

Division Algorithm (cont.)

Note: q is called the quotient; r is called the remainder e.g.

$$22/7 \rightarrow 22 = 3 \cdot 7 + 1$$

So
$$n = 22$$
,

q=3 is the quotient, d=7 is the divisor, r=1 is the remainder. Case: When r = 0 in n = qd + r, or n = qd.

Definition

Let d and n be in \mathbb{Z} . Then d|n means that there exists an q in \mathbb{Z} such that n=qd. The following are equivalent statements:

Case: When r = 0 in n = qd + r, or n = qd.

Definition

Let d and n be in \mathbb{Z} . Then d|n means that there exists an q in \mathbb{Z} such that n=qd. The following are equivalent statements:

1 d is a divisor (or integral divisor, or factor) of n in \mathbb{Z} .

Case: When r = 0 in n = qd + r, or n = qd.

Definition

Let d and n be in \mathbb{Z} . Then d|n means that there exists an q in \mathbb{Z} such that n=qd. The following are equivalent statements:

- **1** d is a divisor (or integral divisor, or factor) of n in \mathbb{Z} .
- ② n is a multiple (or integral multiple) of d in \mathbb{Z} .

e.g. 5|25, 7|21, $3 \nmid 5$ Also, 1|n and n|0 for all integers n.

Congruence modulo *n*

Let $n \geq 2$.

The integers a and b are said to be **congruent modulo** n if n|(a-b). In this case we write $a \equiv b \pmod{n}$ and refer to n as the **modulus**.

Congruence modulo *n*

Let $n \geq 2$.

The integers a and b are said to be **congruent modulo** n if n|(a-b). In this case we write $a \equiv b \pmod{n}$ and refer to n as the **modulus**.

It is related to the idea of the division algorithm: a = nq + b is equivalent to a - b = nq, and indeed n|(a - b).

Congruence modulo *n*

Let n > 2.

The integers a and b are said to be **congruent modulo** n if n|(a-b). In this case we write $a \equiv b \pmod{n}$ and refer to n as the **modulus**.

It is related to the idea of the division algorithm: a = nq + b is equivalent to a - b = nq, and indeed n|(a - b).

$$5 \equiv 8 \pmod{3}$$

$$20 \equiv 1 \pmod{19}$$

$$-5 \equiv 15 \pmod{10}$$

The congruence modulo n relation is an equivalence relation on \mathbb{Z} . That is, for any $a,b,c\in\mathbb{Z}$,

The congruence modulo n relation is an equivalence relation on \mathbb{Z} . That is, for any $a,b,c\in\mathbb{Z}$,

• $a \equiv a \pmod{n}$

The congruence modulo n relation is an equivalence relation on \mathbb{Z} . That is, for any $a,b,c\in\mathbb{Z}$,

- $a \equiv a \pmod{n}$
- If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$

The congruence modulo n relation is an equivalence relation on \mathbb{Z} . That is, for any $a,b,c\in\mathbb{Z}$,

- $a \equiv a \pmod{n}$
- If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$
- If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

If a is an integer, its equivalence class [a] with respect to congruence modulo n is called its **residue class modulo** n, and we write for convenience:

$$\overline{a} = [a] = \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}.$$

If a is an integer, its equivalence class [a] with respect to congruence modulo n is called its **residue class modulo** n, and we write for convenience:

$$\overline{a} = [a] = \{x \in \mathbb{Z} \mid x \equiv a \pmod{n}\}.$$

Example For n = 2, there are two equivalence classes:

$$\overline{0} = [0] = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\}$$

$$\overline{1} = [1] = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\}$$

the even and odd integers, respectively.

Example For n = 4, there are four equivalence classes:

$$\overline{0} = [0] = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{4}\} = \{\dots, -8, -4, 0, 4, 8, \dots\}$$

$$\overline{1} = [1] = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{4}\} = \{\dots, -7, -3, 1, 5, 9, \dots\}$$

$$\overline{2} = [2] = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{4}\} = \{\dots, -6, -2, 2, 6, 10, \dots\}$$

$$\overline{3} = [3] = \{x \in \mathbb{Z} \mid x \equiv 3 \pmod{4}\} = \{\dots, -5, -1, 3, 7, 11, \dots\}$$

Theorem

Given $n \geq 2$, $\overline{a} = \overline{b}$ if and only if $a \equiv b \pmod{n}$.

Theorem

Given $n \ge 2$, $\overline{a} = \overline{b}$ if and only if $a \equiv b \pmod{n}$.

Note: For ease of notation, we will write $a \equiv b$ to mean $a \equiv b \pmod{n}$.

Since this is "if and only if", there are two statements to prove.

Since this is "if and only if", there are two statements to prove.

• Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Since this is "if and only if", there are two statements to prove.

- Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.
- Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Recall, by definition

$$\overline{a} = \{x \in \mathbb{Z} \mid x \equiv a\}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Recall, by definition

$$\overline{a} = \{ x \in \mathbb{Z} \mid x \equiv a \}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$. Suppose $\overline{a} = \overline{b}$.

Recall, by definition

$$\overline{a} = \{ x \in \mathbb{Z} \mid x \equiv a \}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have

Recall, by definition

$$\overline{a} = \{ x \in \mathbb{Z} \mid x \equiv a \}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so

Recall, by definition

$$\overline{a} = \{ x \in \mathbb{Z} \mid x \equiv a \}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Recall, by definition

$$\overline{a} = \{ x \in \mathbb{Z} \mid x \equiv a \}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Recall, by definition

$$\overline{a} = \{x \in \mathbb{Z} \mid x \equiv a\}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Conversely, let $a \equiv b$. Since \overline{a} and \overline{b} are sets, we must show $\overline{a} \subseteq \overline{b}$ and $\overline{b} \subseteq \overline{a}$.

Recall, by definition

$$\overline{a} = \{x \in \mathbb{Z} \mid x \equiv a\}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Conversely, let $a \equiv b$. Since \overline{a} and \overline{b} are sets, we must show $\overline{a} \subseteq \overline{b}$ and $\overline{b} \subseteq \overline{a}$.

If $x \in \overline{a}$, then

Recall, by definition

$$\overline{a} = \{x \in \mathbb{Z} \mid x \equiv a\}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Conversely, let $a \equiv b$. Since \overline{a} and \overline{b} are sets, we must show $\overline{a} \subseteq \overline{b}$ and $\overline{b} \subseteq \overline{a}$.

If $x \in \overline{a}$, then $x \equiv a$; so, as $a \equiv b$, we have

Recall, by definition

$$\overline{a} = \{x \in \mathbb{Z} \mid x \equiv a\}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Conversely, let $a \equiv b$. Since \overline{a} and \overline{b} are sets, we must show $\overline{a} \subseteq \overline{b}$ and $\overline{b} \subseteq \overline{a}$.

If $x \in \overline{a}$, then $x \equiv a$; so, as $a \equiv b$, we have $x \equiv b$ (by

Recall, by definition

$$\overline{a} = \{x \in \mathbb{Z} \mid x \equiv a\}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Conversely, let $a \equiv b$. Since \overline{a} and \overline{b} are sets, we must show $\overline{a} \subseteq \overline{b}$ and $\overline{b} \subseteq \overline{a}$.

If $x \in \overline{a}$, then $x \equiv a$; so, as $a \equiv b$, we have $x \equiv b$ (by transitivity) and hence $x \in \overline{b}$. This proves that $\overline{a} \subseteq \overline{b}$.

Recall, by definition

$$\overline{a} = \{ x \in \mathbb{Z} \mid x \equiv a \}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Conversely, let $a \equiv b$. Since \overline{a} and \overline{b} are sets, we must show $\overline{a} \subseteq \overline{b}$ and $\overline{b} \subseteq \overline{a}$.

If $x \in \overline{a}$, then $x \equiv a$; so, as $a \equiv b$, we have $x \equiv b$ (by transitivity) and hence $x \in \overline{b}$. This proves that $\overline{a} \subseteq \overline{b}$. Since $b \equiv a$ (by symmetry),

Recall, by definition

$$\overline{a} = \{x \in \mathbb{Z} \mid x \equiv a\}.$$

Statement 1: If $\overline{a} = \overline{b}$, then $a \equiv b$.

Suppose $\overline{a} = \overline{b}$. Since $a \in \overline{a}$, we have $a \in \overline{b}$, so $a \equiv b$.

Statement 2: If $a \equiv b$, then $\overline{a} = \overline{b}$.

Conversely, let $a \equiv b$. Since \overline{a} and \overline{b} are sets, we must show $\overline{a} \subseteq \overline{b}$ and $\overline{b} \subseteq \overline{a}$.

If $x \in \overline{a}$, then $x \equiv a$; so, as $a \equiv b$, we have $x \equiv b$ (by transitivity) and hence $x \in \overline{b}$. This proves that $\overline{a} \subseteq \overline{b}$. Since $b \equiv a$ (by symmetry), the proof is similar to show $\overline{b} \subseteq \overline{a}$.

Theorem

Let $n \ge 2$ be an integer.

- **1** If $a \in \mathbb{Z}$, then $\overline{a} = \overline{r}$ for some r where $0 \le r \le n-1$.
- 2 The residue classes $\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}$ modulo n are distinct.

The set of all residue classes module n is denoted

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$$

and is called the set of integers modulo n.

Theorem

Let $n \ge 2$ be an integer.

- If $a \in \mathbb{Z}$, then $\overline{a} = \overline{r}$ for some r where $0 \le r \le n-1$.
- 2 The residue classes $\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}$ modulo n are distinct.

The set of all residue classes module n is denoted

$$\mathbb{Z}_n = {\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}}$$

and is called the set of integers modulo n.

$$\bullet \ \ \text{In} \ \ \mathbb{Z}_3 \colon \qquad \overline{4} = \overline{1}, \quad \overline{-6} = \overline{0}, \quad \overline{29} = \overline{2}, \quad \overline{3} = \overline{0}.$$

Theorem

Let $n \ge 2$ be an integer.

- **1** If $a \in \mathbb{Z}$, then $\overline{a} = \overline{r}$ for some r where $0 \le r \le n-1$.
- 2 The residue classes $\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}$ modulo n are distinct.

The set of all residue classes module n is denoted

$$\mathbb{Z}_n = {\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}}$$

and is called the set of integers modulo n.

- In \mathbb{Z}_3 : $\overline{4} = \overline{1}$, $\overline{-6} = \overline{0}$, $\overline{29} = \overline{2}$, $\overline{3} = \overline{0}$.
- In \mathbb{Z}_{11} : $\overline{16} = \overline{5}$, $\overline{-20} = \overline{2}$.

Operations in \mathbb{Z}_n

Adding and multiplying congruence module n: Let $a, a_1, b, b_1 \in \mathbb{Z}$. If

$$a \equiv a_1 \pmod{n}$$

 $b \equiv b_1 \pmod{n}$

Operations in \mathbb{Z}_n

Adding and multiplying congruence module n: Let $a, a_1, b, b_1 \in \mathbb{Z}$. If

$$a \equiv a_1 \pmod{n}$$

 $b \equiv b_1 \pmod{n}$

then

$$a+b \equiv a_1 + b_1 \pmod{n}$$

 $ab \equiv a_1b_1 \pmod{n}$

Hence, the arithmetic of \mathbb{Z} extends naturally to \mathbb{Z}_n as follows:

$$\overline{a} + \overline{b} = \overline{a+b}$$

$$\overline{a}\overline{b} = \overline{a}\overline{b}$$

These operations are well-defined, that is, they do not depend on which generators are used for the residue classes \overline{a} and \overline{b} .

Example: Operations in \mathbb{Z}_9

$$\overline{8} + \overline{7} = \overline{15} = \overline{6}$$
 since $15 \equiv 6 \pmod{9}$ $\overline{8} \cdot \overline{7} = \overline{56} = \overline{2}$ since $56 \equiv 2 \pmod{9}$

Notational convention: When working in \mathbb{Z}_n we frequently write the residue class \overline{a} as a. When there is confusion, we revert to the formal \overline{a} notation.

Properties of + and \cdot in \mathbb{Z}_n

Theorem

- $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a}\overline{b} = \overline{ab}$.
- $\overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$ and $\overline{a}(\overline{b}\overline{c}) = (\overline{a}\overline{b})\overline{c}$
- ullet $\overline{a}+\overline{0}=\overline{a}$ and $\overline{a}\overline{1}=\overline{a}$
- $\bullet \ \overline{a} + \overline{-a} = \overline{0}$
- $\overline{a}(\overline{b} + \overline{c}) = \overline{a}\overline{b} + \overline{a}\overline{c}$

Note: $\overline{-a} = -\overline{a}$, so subtraction in \mathbb{Z}_n is defined by

$$\overline{a} - \overline{b} = \overline{a} + \overline{-b} = \overline{a-b}$$

\mathbb{Z} versus \mathbb{Z}_n

- In \mathbb{Z} , ab = 0 implies a = 0 or b = 0.
- In \mathbb{Z}_n , $\overline{a} \cdot \overline{b} = \overline{0}$ does not imply $\overline{a} = 0$ or $\overline{b} = \overline{0}$.
- For example, in \mathbb{Z}_6 , $\overline{2} \cdot \overline{3} = \overline{6} = \overline{0}$.

\mathbb{Z} versus \mathbb{Z}_n

- In \mathbb{Z} , ab = 0 implies a = 0 or b = 0.
- In \mathbb{Z}_{n_i} $\overline{a} \cdot \overline{b} = \overline{0}$ does not imply $\overline{a} = 0$ or $\overline{b} = \overline{0}$.
- For example, in \mathbb{Z}_6 , $\overline{2} \cdot \overline{3} = \overline{6} = \overline{0}$.
- In \mathbb{Z} , for $a \neq 0$, ab = ac implies b = c.
- In \mathbb{Z}_n , $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c}$ does not imply $\overline{b} = \overline{c}$.
- For example, in \mathbb{Z}_6 , $\overline{4} \neq \overline{0}$, and $\overline{4} \cdot \overline{2} = \overline{4} \cdot \overline{5}$ even though $\overline{2} \neq \overline{5}$.

Solving equations modulo n

Find the inverse of $\overline{16}$ in \mathbb{Z}_{35} and use it to solve $\overline{16}x=\overline{9}$ in \mathbb{Z}_{35} .

By trial and error, we find that $\overline{11} \cdot \overline{16} = \overline{1}$ in \mathbb{Z}_{35} . Then $\overline{11}$ and $\overline{16}$ are inverses of each other. Then

$$\overline{16}x = \overline{9}$$

$$\overline{11} \cdot \overline{16}x = \overline{11} \cdot \overline{9}$$

$$\overline{1}x = \overline{99}$$

$$x = \overline{29}$$

But is there a better way to find inverses? Maybe not every element has an inverse and we can ignore those.

Relatively prime

Definition

The integers m and n are said to be relatively prime if they have no common divisors.

- 3, 4
- 7, 9
- 4, 9
- 6, 35

For $n \geq 2$ and an integer a, a residue class \overline{b} in \mathbb{Z}_n is called an inverse of \overline{a} if $\overline{b}\overline{a} = \overline{1}$ in \mathbb{Z}_n . If \overline{a} has an inverse, that inverse is unique and we say \overline{a} is invertible.

Theorem

Let a and n be integers with $n \ge 2$. Then \overline{a} has an inverse in \mathbb{Z}_n if and only if a and n are relatively prime.

For $n \geq 2$ and an integer a, a residue class \overline{b} in \mathbb{Z}_n is called an inverse of \overline{a} if $\overline{b}\overline{a} = \overline{1}$ in \mathbb{Z}_n . If \overline{a} has an inverse, that inverse is unique and we say \overline{a} is invertible.

Theorem

Let a and n be integers with $n \ge 2$. Then \overline{a} has an inverse in \mathbb{Z}_n if and only if a and n are relatively prime.

Exercise: Find the elements in \mathbb{Z}_9 that have inverses. What are their inverses?

Exercise I

- We know that $(a+b)^2 \neq a^2 + b^2$ for all integers a and b. Now prove the equality holds in \mathbb{Z}_2 , i.e. $(a+b)^2 = a^2 + b^2$ when a and b are elements in \mathbb{Z}_2 .
- ② Prove: If $a \equiv a_1 \pmod{n}$ and $a \equiv b_1 \pmod{n}$, then $a + b \equiv a_1 + b_1 \pmod{n}$ and $ab \equiv a_1b_1 \pmod{n}$.
- When the positive integer P is divided by 7, the remainder is 5. What is the remainder when 5P is divided by 7?
- If $a \equiv b \pmod{n}$ and m|n, show that $a \equiv b \pmod{m}$.
- \odot Find the remainder when 7^{112} is divided by 5.

