```
In [247]: import pandas as pd
import numpy as np
import seaborn as sns
```

In [248]: df1=pd.read_csv('C:/Users/ashiq/Desktop/csv/assignment_4/delivery_time.csv')

In [249]: df1_copy= df1.copy()

In [250]: df1_copy

Out[250]:

	Delivery_Time	Sorting_Time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10
5	15.35	6
6	19.00	7
7	9.50	3
8	17.90	10
9	18.75	9
10	19.83	8
11	10.75	4
12	16.68	7
13	11.50	3
14	12.03	3
15	14.88	4
16	13.75	6
17	18.11	7
18	8.00	2
19	17.83	7
20	21.50	5

In [251]: df1.head()

Out[251]:

	Delivery_Time	Sorting_Time
0	21.00	10
1	13.50	4
2	19.75	6
3	24.00	9
4	29.00	10

```
In [252]: df1.shape
```

Out[252]: (21, 2)

```
In [253]: df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21 entries, 0 to 20
Data columns (total 2 columns):
```

Column Non-Null Count Dtype

O Delivery_Time 21 non-null float64

Sorting_Time 21 non-null int64

dtypes: float64(1), int64(1)
memory usage: 464.0 bytes

In [254]: df1.corr()

Out[254]:

	Delivery_Time	Sorting_Time
Delivery_Time	1.000000	0.825997
Sorting Time	0.825997	1.000000

In [255]: df1.describe()

Out[255]:

	Delivery_Time	Sorting_Time
count	21.000000	21.000000
mean	16.790952	6.190476
std	5.074901	2.542028
min	8.000000	2.000000
25%	13.500000	4.000000
50%	17.830000	6.000000
75%	19.750000	8.000000
max	29.000000	10.000000

In [256]: df1.boxplot()

Out[256]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb88737250>


```
In [257]: import matplotlib.pyplot as plt
plt.figure(figsize = (9, 5))

plt.subplot(211)
sns.boxplot(df1['Sorting_Time'])

plt.subplot(212)
sns.kdeplot(df1['Sorting_Time'])
```

Out[257]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb887b31f0>


```
In [258]: plt.figure(figsize = (9, 5))
    plt.subplot(211)
    sns.boxplot(df1['Delivery_Time'])

    plt.subplot(212)
    sns.kdeplot(df1['Delivery_Time'])
```

Out[258]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb88853b20>


```
In [259]: from scipy.stats import kurtosis
from scipy.stats import skew
  (kurtosis(df1['Delivery_Time']),skew(df1['Delivery_Time']))
```

Out[259]: (-0.02558576894549036, 0.326702631656106)

```
In [260]: (kurtosis(df1['Sorting_Time']),skew(df1['Sorting_Time']))
```

Out[260]: (-1.1653901357029155, 0.043680994983108075)

In [261]: sns.pairplot(df1)

Out[261]: <seaborn.axisgrid.PairGrid at 0x1cb898e7c10>


```
In [262]: import seaborn as sns
sns.distplot(df1['Delivery_Time'])
```

Out[262]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb89a84370>

Out[263]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb89b03cd0>


```
In [264]:
          import statsmodels.formula.api as smf
          model=smf.ols('df1.Delivery_Time~df1.Sorting_Time', data= df1).fit()
In [265]: model.params
Out[265]: Intercept
                               6.582734
          df1.Sorting_Time
                               1.649020
          dtype: float64
In [266]: | sns.regplot(x=df1.Sorting_Time,y=df1.Delivery_Time, data=df1)
Out[266]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb89b60430>
             30
             25
           Delivery_Time
12
             10
                                                            10
                                  Sorting_Time
In [267]:
          (model.tvalues, model.pvalues)
Out[267]: (Intercept
                                3.823349
           df1.Sorting_Time
                                6.387447
           dtype: float64,
           Intercept
                                0.001147
           df1.Sorting_Time
                                0.000004
           dtype: float64)
In [268]:
          (model.rsquared_adj)
Out[268]: (0.6822714748417231, 0.6655489208860244)
  In [ ]:
          min_max
```

```
In [269]: array=df1_copy.values
```

```
In [270]: from sklearn.preprocessing import MinMaxScaler
          scaler = MinMaxScaler(feature_range=(0,1))
          rescaledX = scaler.fit_transform(array[:,:])
In [271]: rescaledX
Out[271]: array([[0.61904762, 1.
                                          ],
                  [0.26190476, 0.25
                                          ],
                  [0.55952381, 0.5
                                          ],
                  [0.76190476, 0.875]
                             , 1.
                  [0.35
                            , 0.5
                  [0.52380952, 0.625
                  [0.07142857, 0.125
                  [0.47142857, 1.
                  [0.51190476, 0.875
                  [0.56333333, 0.75
                  [0.13095238, 0.25
                                          ],
                  [0.41333333, 0.625
                  [0.16666667, 0.125
                  [0.19190476, 0.125
                  [0.32761905, 0.25
                  [0.27380952, 0.5
                                          ],
                  [0.48142857, 0.625
                             , 0.
                  [0.
                                          ],
                  [0.46809524, 0.625
                                          ],
                  [0.64285714, 0.375
                                          ]])
In [272]:
          column_values = ['Delivery_Time','Sorting_Time']
          df = pd.DataFrame(data = rescaledX,
                             columns = column values)
```

In [273]: df

Out[273]:

	Delivery_Time	Sorting_Time
0	0.619048	1.000
1	0.261905	0.250
2	0.559524	0.500
3	0.761905	0.875
4	1.000000	1.000
5	0.350000	0.500
6	0.523810	0.625
7	0.071429	0.125
8	0.471429	1.000
9	0.511905	0.875
10	0.563333	0.750
11	0.130952	0.250
12	0.413333	0.625
13	0.166667	0.125
14	0.191905	0.125
15	0.327619	0.250
16	0.273810	0.500
17	0.481429	0.625
18	0.000000	0.000
19	0.468095	0.625
20	0.642857	0.375

In [274]: df.corr()

Out[274]:

	Delivery_Time	Sorting_Time
Delivery_Time	1.000000	0.825997
Sorting_Time	0.825997	1.000000

In [275]: sns.pairplot(df)

Out[275]: <seaborn.axisgrid.PairGrid at 0x1cb89b08460>


```
model1=smf.ols('df1.Delivery_Time~df1.Sorting_Time', data= df).fit()
In [277]:
          model1.params
Out[277]: Intercept
                               6.582734
          df1.Sorting_Time
                               1.649020
          dtype: float64
          (model1.tvalues, model1.pvalues)
In [278]:
Out[278]: (Intercept
                                3.823349
           df1.Sorting_Time
                                6.387447
           dtype: float64,
           Intercept
                                0.001147
           df1.Sorting_Time
                                0.000004
           dtype: float64)
```

```
In [279]: sns.regplot(x=df1.Sorting_Time,y=df1.Delivery_Time, data=df1)
```

Out[279]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb89d993d0>


```
In [280]: (model1.rsquared_adj)
```

Out[280]: (0.6822714748417231, 0.6655489208860244)

standard scalar

```
In [281]: from sklearn.preprocessing import StandardScaler
In [282]: array = df1_copy.values
    scaler = StandardScaler().fit(array)
    rescaledX = scaler.transform(array)
```

```
In [283]: rescaledX
Out[283]: array([[ 0.84986692, 1.53562462],
                 [-0.66449036, -0.88298415],
                 [ 0.59747404, -0.07678123],
                 [ 1.45560983, 1.13252315],
                 [ 2.46518134, 1.53562462],
                 [-0.2909489 , -0.07678123],
                 [ 0.44603831, 0.32632023],
                 [-1.47214757, -1.28608562],
                 [ 0.22393258, 1.53562462],
                 [0.39555973, 1.13252315],
                 [ 0.61362718, 0.72942169],
                 [-1.21975469, -0.88298415],
                 [-0.02240287, 0.32632023],
                 [-1.06831896, -1.28608562],
                 [-0.96130438, -1.28608562],
                 [-0.38584862, -0.88298415],
                 [-0.61401178, -0.07678123],
                 [ 0.26633458, 0.32632023],
                 [-1.77501902, -1.68918708],
                 [ 0.20979858, 0.32632023],
                 [ 0.95082407, -0.47988269]])
In [284]:
          column_values = ['Delivery_Time', 'Sorting_Time']
          df3 = pd.DataFrame(data = rescaledX,
                            columns = column values)
```

In [285]: df3

Out[285]:

	Delivery_Time	Sorting_Time
0	0.849867	1.535625
1	-0.664490	-0.882984
2	0.597474	-0.076781
3	1.455610	1.132523
4	2.465181	1.535625
5	-0.290949	-0.076781
6	0.446038	0.326320
7	-1.472148	-1.286086
8	0.223933	1.535625
9	0.395560	1.132523
10	0.613627	0.729422
11	-1.219755	-0.882984
12	-0.022403	0.326320
13	-1.068319	-1.286086
14	-0.961304	-1.286086
15	-0.385849	-0.882984
16	-0.614012	-0.076781
17	0.266335	0.326320
18	- 1.775019	-1.689187
19	0.209799	0.326320
20	0.950824	-0.479883

```
In [286]: model2=smf.ols('df3.Delivery_Time~df3.Sorting_Time', data= df3).fit()
```

```
In [287]: sns.regplot(x=df3.Sorting_Time,y=df3.Delivery_Time, data=df3)
```

Out[287]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb89de3130>


```
In [288]: model2.params
Out[288]: Intercept
                              -5.134781e-16
          df3.Sorting_Time
                               8.259973e-01
          dtype: float64
In [289]:
          (model2.tvalues, model2.pvalues)
Out[289]: (Intercept
                               -3.970733e-15
           df3.Sorting_Time
                                6.387447e+00
           dtype: float64,
           Intercept
                                1.000000
           df3.Sorting_Time
                                0.000004
           dtype: float64)
In [290]:
          (model2.rsquared_model2.rsquared_adj)
Out[290]: (0.6822714748417231, 0.6655489208860244)
  In [ ]:
  In [ ]:
```

exponential

```
In [291]: from numpy import exp
In [292]: data4 = exp(df1_copy)
In [293]:
            data4
Out[293]:
                  Delivery_Time Sorting_Time
                                22026.465795
              0
                  1.318816e+09
               1
                  7.294164e+05
                                   54.598150
                  3.778470e+08
                                  403.428793
               2
                  2.648912e+10
                                 8103.083928
               3
                  3.931334e+12 22026.465795
              5
                  4.638956e+06
                                  403.428793
                  1.784823e+08
                                 1096.633158
              6
              7
                  1.335973e+04
                                   20.085537
              8
                  5.941160e+07
                                22026.465795
              9
                  1.390022e+08
                                 8103.083928
              10
                  4.093168e+08
                                 2980.957987
              11
                  4.663003e+04
                                   54.598150
              12
                  1.754010e+07
                                 1096.633158
              13
                  9.871577e+04
                                   20.085537
                                   20.085537
              14
                  1.677114e+05
              15
                  2.899358e+06
                                   54.598150
                                  403.428793
             16
                  9.365892e+05
                  7.329478e+07
              17
                                 1096.633158
```

```
In [294]: | model3=smf.ols('data4.Delivery_Time~data4.Sorting_Time', data= data4).fit()
```

7.389056

1096.633158

148.413159

18

19

20

2.980958e+03

5.539501e+07

2.174360e+09

```
In [295]: sns.regplot(x=data4.Sorting_Time,y=data4.Delivery_Time, data=data4)
```

Out[295]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb89d64fa0>


```
In [296]: model3.params
Out[296]: Intercept
                                -6.243560e+10
          data4.Sorting_Time
                                 5.779920e+07
          dtype: float64
In [297]:
          (model3.tvalues, model3.pvalues)
Out[297]: (Intercept
                                 -0.330955
           data4.Sorting_Time
                                  2.675152
           dtype: float64,
           Intercept
                                  0.744301
           data4.Sorting_Time
                                  0.014970
           dtype: float64)
In [298]:
          (model3.rsquared_model3.rsquared_adj)
Out[298]: (0.27360134105224776, 0.23536983268657663)
          4 model
In [299]:
          from sklearn.preprocessing import RobustScaler
```

array = df1_copy.values

```
In [300]:
           transformer = RobustScaler().fit transform(array)
In [301]: transformer
Out[301]: array([[ 0.5072,
                            1.
                 [-0.6928, -0.5]
                                   ],
                 [ 0.3072,
                            0.
                                   ],
                 [ 0.9872, 0.75
                 [ 1.7872,
                            1.
                 [-0.3968,
                            0.
                 [ 0.1872, 0.25
                 [-1.3328, -0.75]
                 [ 0.0112, 1.
                 [ 0.1472, 0.75
                 [ 0.32 , 0.5
                 [-1.1328, -0.5]
                 [-0.184 , 0.25
                 [-1.0128, -0.75]
                 [-0.928, -0.75
                 [-0.472, -0.5]
                 [-0.6528, 0.
                 [ 0.0448, 0.25
                 [-1.5728, -1.
                       , 0.25
                 [ 0.
                 [ 0.5872, -0.25
In [302]:
          column values = ['Delivery Time','Sorting Time']
          df4 = pd.DataFrame(data = transformer,
                            columns = column_values)
  In [ ]:
In [303]: model4=smf.ols('df4.Delivery Time~df4.Sorting Time', data= df4).fit()
In [304]: model4.params
Out[304]: Intercept
                              -0.216503
          df4.Sorting_Time
                               1.055373
          dtype: float64
In [305]:
          (model4.tvalues, model4.pvalues)
Out[305]: (Intercept
                               -2.106611
           df4.Sorting_Time
                                6.387447
           dtype: float64,
           Intercept
                                0.048673
           df4.Sorting Time
                                0.000004
           dtype: float64)
```

```
In [306]: sns.regplot(x=df4.Sorting_Time,y=df4.Delivery_Time, data=df4)
```

Out[306]: <matplotlib.axes._subplots.AxesSubplot at 0x1cb89de8880>

