Landscape Net

An Application of the Landscape Theory in Machine Learning for Eigenvalue Counting

> Li Chen Joint work with Wei Wang

> > MIT

May 6, 2020

Code available at https://github.com/nehcili/Wave-Localization

Introduction

Experimental Setting

- $L^2(\mathbb{Z} \cap [1, 1000])$
- $-\Delta_{\mathbb{Z}} + V$ with periodic boundary conditions
- V(x) are iid distributions for x = 1, 2, 3, ..., 1000
- $V(x) \ge 0$

Objective: approximate the eigenvalue counting

 $N_V(E) := \#$ of eigenvalues of $-\Delta_{\mathbb{Z}} + V$ less or equal to E

Introduction

Method: We develop a neural net, the **Landscape Net**, to generalize landscape box counting.

Why?

Introduction

Method: We develop a neural net, the **Landscape Net**, to generalize landscape box counting.

Why?

• David-Filoche-Mayboroda box counting $N^W(E)$

$$c_1 N^W(c_2 E) \leq N_V(E) \leq C_3 N^W(C_4 E)$$

where W = 1/u is the landscape potential. (Discrete case: Arnold-Filoche-Mayboroda-Wang-Zhang)

 More than just inequalities, box counting works well as a regression model with 2 parameters.

predicted eigenvalue count =
$$c_1 N^W(c_2 E)$$

Under fitting. It only has 2 parameters.

Results

0.0

0.1

0.2

0.3

Energy (E)

0.4

0.5

Results

Testing on the bottom 10% of eigenvalues (100/1000 eigenvalues) from 30 samples,

$$\langle ({\sf predicted}\ {\it N}_{\it V}({\it E}) - {\sf true}\ {\it N}_{\it V}({\it E}))^2
angle pprox 3$$

Time complexity

Data generation*	Training*	Predicting one $N_V(E)$
0.0012s per eigenvalue	pprox 1 hr	0.0025s

^{*}Training data = bottom 10% of eigenvalues (100/1000 eigenvalues) from 300 samples.

$$6 \ 5 \ 2 \ 1 \ 7 \ 3 = W$$

$$6 | 5 | 2 | 1 | 7 | 3 = W$$

$$\begin{vmatrix} -2 & -1 & 2 & 3 & -3 & 1 \end{vmatrix} = E-W$$

$$=$$
 sup(E-W) on Q 's

$$= \sup(E-W) \text{ on } Q$$
's

$$\begin{bmatrix} 6 & 5 & 2 & 1 & 7 & 3 \end{bmatrix} = W$$
 $\begin{bmatrix} -2 & -1 & 2 & 3 & -3 & 1 \end{bmatrix} = E-W$

$$-1 3 1$$
 = sup(E-W) on Q 's

$$6 | 5 | 2 | 1 | 7 | 3 = W$$

$$|-2|-1|2|3|-3|1| = E-W$$

grader
$$f(W, E, Q)$$

$$= \sup(E-W) \text{ on } Q$$
's

activation
$$\Theta$$
, max $(0, \cdot)$, etc.

$$=$$
 apply Heaviside Θ

weighted sum
$$w_O$$

$$= sum$$

Ansatz for f

• Let ρ be the true density, we would like to have

$$f(W, E, Q) = \int_{Q} dx \, \rho(x).$$

• In dimension d, the semi-classical expansion $(-\hbar^2\Delta + V$ and $\hbar \to 0)$ of ρ is

$$\rho(x) = \hbar^{-d} \int_{\mathbb{R}^d} dp \, 1_{\{p^2 + W(x) - E < 0\}} \text{ (Weyl term)}$$

$$+ \hbar^{-d+2} \sum_i A_i(V(x), W(x), \nabla W(x)) B_i(E - W(x))$$

$$+ O(\hbar^{-d+4}),$$

for some local functions A_i and B_i .

Ansatz for f

• We choose f to have the same form as the first 2 lowest order terms

$$f(W, E, Q) = \sum_{x \in Q} w_x A(V(x), W(x), W'(x)) B(E - W(x))$$

where each A and B are constructed from layers of neural nets and w_x are weights.

Thank you!

Semi-classical expansions

For any meromorphic function f which is analytic on a tabular neighborhood of the real line, if $\rho(x) = f(-\hbar^2 \Delta + V)(x,x)$ and W is the associated landscape potential, then as $\hbar \to 0$,

$$\rho = \hbar^{-d} \int_{\mathbb{R}^d} dp \, f(p^2 + W)
+ \hbar^{-d+2} \left(-\frac{1}{2} \Delta W \int_{\mathbb{R}^d} dp \, f''(p^2 + W) \right)
+ 2W^{-1} \Delta W \int_{\mathbb{R}^d} dp \, p^2 f''(p^2 + W)
- \frac{1}{3} |\nabla W|^2 \int_{\mathbb{R}^d} dp \, f'''(p^2 + W)
+ (2W^{-1} |\nabla W|^2 + \frac{2}{3} \Delta W) \int_{\mathbb{R}^d} dp \, p^2 f'''(p^2 + W)
+ \frac{1}{2} |\nabla W|^2 \int_{\mathbb{R}^d} dp \, p^2 f''''(p^2 + W) \right) + O(\hbar^{-d+4})$$

Types of potentials considered

- constant 1
- uniform
- standard exponential
- poisson
- power
- 6 bernoulli
- chisquare
- rayleigh
- laplace
- normal
- logistic

Future direction

- Optimization: reduction of parameters, hyperparameter tuning, scalability, training on additional classes of potentials
- Larger domain/higher dimension
- Obtaining eigenvalue counting by using signatures of H-E instead of explicity eigenvalue computation
- Approximating the density ρ itself