# Table des matières

| 1 Préliminaires |                  |         | res                                                                                               |  |  |
|-----------------|------------------|---------|---------------------------------------------------------------------------------------------------|--|--|
|                 | 1.1              | Introdu | uction à la logique mathématique                                                                  |  |  |
|                 |                  | 1.1.1   | Propositions, démonstrations                                                                      |  |  |
|                 |                  | 1.1.2   | Opérations sur les propositions                                                                   |  |  |
|                 |                  | 1.1.3   | Quantificateurs                                                                                   |  |  |
|                 |                  | 1.1.4   | Conditions nécessaires et/ou suffisantes                                                          |  |  |
|                 |                  | 1.1.5   | Raisonnements                                                                                     |  |  |
|                 | 1.2 Ensembles    |         |                                                                                                   |  |  |
|                 |                  | 1.2.1   | Définitions                                                                                       |  |  |
|                 |                  | 1.2.2   | Opérations                                                                                        |  |  |
|                 | 1.3              | Relatio | ons, Fonctions, Applications                                                                      |  |  |
|                 |                  | 1.3.1   | Relations                                                                                         |  |  |
|                 |                  | 1.3.2   | Fonctions                                                                                         |  |  |
|                 |                  | 1.3.3   | Applications                                                                                      |  |  |
|                 |                  | 1.3.4   | Formulaire : domaine de définition pour les fonctions usuelles                                    |  |  |
|                 |                  | 1.3.5   | Composition des applications                                                                      |  |  |
|                 |                  | 1.3.6   | Injections, surjections, bijections                                                               |  |  |
|                 |                  | 1.3.7   | Image et image réciproque                                                                         |  |  |
|                 |                  | 1.3.8   | Application réciproque                                                                            |  |  |
|                 | 1.4              | Notatio | ${ m cons} \; { m et} \; { m rappels} \; \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ |  |  |
|                 |                  | 1.4.1   | Lettres grecques                                                                                  |  |  |
|                 |                  | 1.4.2   | Intervalles                                                                                       |  |  |
|                 |                  | 1.4.3   | Valeur absolue                                                                                    |  |  |
|                 |                  | 1.4.4   | Sommes et produits                                                                                |  |  |
|                 |                  | 1.4.5   | Factorielle                                                                                       |  |  |
|                 |                  | 1.4.6   | Coefficient binomial                                                                              |  |  |
|                 | 1.5 Dénombrement |         |                                                                                                   |  |  |
|                 |                  | 1.5.1   | Permutations avec répétition                                                                      |  |  |
|                 |                  | 1.5.2   | Permutations sans répétition ou arrangements                                                      |  |  |
|                 |                  | 1.5.2   | Permutations sans répétition de $n$ objets dont $k \leq n$ seulement sont distincts .             |  |  |
|                 |                  | 1.5.4   | Combinaisons                                                                                      |  |  |

# Chapitre 1

# Préliminaires

# 1.1 Introduction à la logique mathématique

Les Mathématiques c'est un langage rigoureux.

L'activité mathématique se développe suivant trois axes principaux :

- Construction et définition d'objets mathématiques.
- Recherche de propriétés qui amène à énoncer des conjectures.
- Démonstration de certaines propriétés qui prennent le nom de théorème, proposition, lemme, corollaire etc.

# 1.1.1 Propositions, démonstrations ...

**Définition 1.1.1.** Une *proposition* ou *assertion* est un énoncé dont on peut pouvoir dire qu'il est vrai ou faux.

On notera V ou F (ou encore 1 ou  $\theta$ ) les deux valeurs logiques possibles d'une proposition. C'est  $le\ principe\ du\ tiers\ exclu$ .

**Définition 1.1.2.** Certaines propositions sont déclarées vraies à priori : ce sont les *axiomes*. Au contraire la véracité (ou la fausseté) d'une proposition doit résulter d'une *démonstration*, une preuve.

**Définition 1.1.3.** • Un *théorème* est une proposition vraie particulièrement importante.

- Un *lemme* est une proposition vraie, utile à la démonstration d'une proposition plus importante.
- Un corollaire est une proposition vraie, conséquence immédiate d'une autre proposition vraie.
- Une conjecture est une proposition qu'on pense généralement vraie, sans en avoir de preuve.

**Définition 1.1.4.** Une *définition* est un énoncé qui définit un nouvel objet mathématique. On utilise le symbole " :=".

**Définition 1.1.5.** On appelle *prédicat* un énoncé contenant des lettres, appelées *variables*, tel que, dès que l'on attribue une valeur à chaque variable y figurant, on obtienne une assertion qui est donc soit vraie soit fausse.

Un *résultat mathématique* est donc un énoncé vrai que l'on peut déduire d'axiomes ou d'autres résultats en s'appuyant sur des règles strictes de logiques.

# 1.1.2 Opérations sur les propositions

**Définition 1.1.6.** À partir des propositions P et Q on définit aussi :

- la **négation** est (non P), notée  $\overline{P}$
- la disjonction est P ou Q, notée  $P \vee Q$
- la conjonction est P et Q, notée  $P \wedge Q$
- l'*implication* est (non P) ou Q, notée  $P \Rightarrow Q$  ("P implique Q")
- l'équivalence est  $(P \Rightarrow Q)$  et  $(Q \Rightarrow P)$ , notée  $P \Leftrightarrow Q$  ("P équivaut à Q" ou "P si et seulement si Q")
- la contraposée de l'implication  $P \Rightarrow Q$  est  $(non \ Q) \Rightarrow (non \ P)$
- l'implication réciproque de l'implication  $P \Rightarrow Q$  est  $Q \Rightarrow P$

On résume la valeur des propositions précédentes dans des tableaux de vérité :

| Р | Q | non P | P ou Q | P et Q | $P \Rightarrow Q$ | P⇔ Q |
|---|---|-------|--------|--------|-------------------|------|
| V | V | F     | V      | V      | V                 | V    |
| F | F | V     | F      | F      | V                 | V    |
| V | F |       | V      | F      | F                 | F    |
| F | V |       | V      | F      | V                 | F    |

**Proposition 1.1.1.** L'assertion  $P \Rightarrow Q$  est vraie si, et seulement si, sa contraposée est vraie.

# 1.1.3 Quantificateurs

**Définition 1.1.7.** Soit P(x) un prédicat à une variable x défini sur un ensemble E.

- La proposition  $\exists x \in E \ P(x)$  dit que au moins un élément x de E vérifie la propriété P. On dit que " $\exists$ " est le *quantificateur existentiel*.
- La proposition  $\forall x \in E \ P(x)$  dit que tout élément x de E vérifie la propriété P. On dit que " $\forall$ " est le *quantificateur universel*.
- La proposition  $\exists ! \ x \in E \ P(x)$  exprime qu'un et un seul élément x de E vérifie la propriété P.

**Proposition 1.1.2.** Soit E un ensemble et P(x) un prédicat de la variable x définie sur E.

- La négation de " $\exists x \in E \ P(x)$ " est " $\forall x \in E \ (non \ P(x))$ ".
- La négation de " $\forall x \in E \ P(x)$ " est " $\exists x \in E \ (non \ P(x))$ ".

#### Remarques:

- l'ordre des quantificateurs est très important;
- les quantificateurs ne sont pas des abréviations.

# 1.1.4 Conditions nécessaires et/ou suffisantes

Lorsque la proposition  $P \Rightarrow Q$  est vraie, on dit

- "Q est une **condition nécessaire** pour P" ou encore "il faut que Q soit vraie pour que P soit vraie";
- "P est une  $condition \ suffisante$  pour Q" ou encore "il suffit que P soit vraie pour que Q soit vraie".

Lorsque l'assertion  $P \Leftrightarrow Q$  est vraie, on dit

• "P est une **condition nécessaire et suffisante** pour Q" ou que "il faut et il suffit que P soit vraie pour que Q soit vraie" ou encore "P est vraie si, et seulement si, Q est vraie".

# 1.1.5 Raisonnements

#### Raisonnement direct

On veut montrer que l'assertion " $P \Rightarrow Q$ " est vraie. On suppose P vraie et on montre qu'alors Q est vraie.

## Disjonction

Si on veut vérifier une proposition P(x) pour tous les x dans un ensemble E, on montre la proposition pour les x dans une partie A de E et puis pour tous les x n'appartenant pas à A.

#### Contraposée

Il permet de démontrer  $P \Rightarrow Q$  en utilisant l'équivalence  $\overline{Q} \Rightarrow \overline{P}$ .

## Absurde

Il s'agit de supposer qu'une proposition est vraie et à démontrer que cela conduit à une contradiction.

#### Contre-exemple

Si l'on veut démontrer qu'une assertion du type : " $\forall x \in E \ P(x)$ " est vraie alors pour chaque x de E, il faut montrer que P(x) est vraie. Par contre pour montrer que cette assertion est fausse alors il suffit de trouver  $x \in E$  tel que P(x) soit fausse. Trouver un tel x c'est trouver un contre-exemple.

#### Récurrence

Le principe de récurrence permet de montrer qu'une assertion P(n), dépendant de n, est vraie pour tous  $n \in \mathbb{N}$ . La démonstration par récurrence se déroule en trois étapes :

- 1. initialisation: on prouve P(0);
- 2.  $h\acute{e}r\acute{e}dit\acute{e}$ : on suppose  $n\geq 0$  donné avec P(n) vraie, et on démontre alors que l'assertion P(n+1) au rang suivant est vraie;
- 3. conclusion : on rappelle que par le principe de récurrence P(n) est vraie pour tout  $n \in \mathbb{N}$ .

## Analyse-synthèse

Il se déroule en 2 étapes :

- 1. analyse : suppose qu'il existe au moins une solution et on essaye de trouver des conditions nécessaires que cet objet doit vérifier ;
- 2. synthèse : on utilise la ou les solutions trouvées et on vérifie si elles vérifient le problème.

# 1.2 Ensembles

#### 1.2.1 Définitions

**Définition 1.2.1.** Un *ensemble* est la réunion dans une même entité de certains objets bien déterminés. On appelle ces objets les *éléments* de l'ensemble.

### Notations:

• On désigne habituellement les éléments par des lettres minuscules et les ensembles par des lettres majuscule.

- On écrit " $a \in E$ " pour signifier que l'élément a appartient à l'ensemble E et " $a \notin E$ " si a n'est pas un élément de E.
- Lorsque p est un entier naturel non nul et si  $a_1, a_2, \ldots, a_p$  sont p éléments distincts, on décrit l'ensemble qui contient ces éléments par  $E = \{a_1, a_2, \ldots, a_p\}$

Un ensemble peut se définir de deux manières :

- soit *en extension* : on dresse la liste de tous les éléments. L'ordre, ainsi qu'une éventuelle répétition des éléments sont sans influence.
- soit *en compréhension* : on énonce une propriété caractéristique des éléments de l'ensemble. On peut représenter graphiquement un ensemble à l'aide d'un *diagramme de Venn*.

**Définition 1.2.2.** Un ensemble E est dit fini lorsque le nombre d'éléments qui le compose est un entier naturel.

Le nombre d'éléments d'un ensemble E est appelé le *cardinal*. On le note Card(E).

Un ensemble qui n'est pas fini est dit *infini*.

Un ensemble est dit vide lorsqu'il ne contient aucun élément. On le note  $\emptyset$ . Par convention  $Card(\emptyset)=0$ . On appelle singleton un ensemble qui ne contient qu'un seul élément.

**Définition 1.2.3.** Soient A et B deux ensembles. On dit que "A est inclus dans B" (ou que "A est contenu dans B") et on note  $A \subset B$  si tout élément de A est un élément de B.

L'inclusion peut s'écrire aussi  $B \supset A$ , qui se lit "B inclut A" ou "B contient A".

L'ensemble A est alors qualifié de partie ou de sous-ensemble de B.

# Remarques:

- $\bullet$  Par convention l'ensemble  $\emptyset$  est inclus dans tout ensemble.
- Si A et B sont deux ensembles finis et  $A \subset B$  alors  $Card(A) \leq Card(B)$ .
- Soient A, B et C trois sous-ensembles de E. Si  $A \subset B$  et  $B \subset C$  alors  $A \subset C$ .

**Définition 1.2.4.** Deux ensembles E et F sont **égaux** (ou **identiques**) et on note E = F, si tout élément de E est élément de E. Autrement dit

$$E = F \Leftrightarrow (E \subset F \text{ et } F \subset E)$$

Dans le cas contraire, on dit qu'ils sont **distincts** et on note  $E \neq F$ .

**Définition 1.2.5.** Soit E un ensemble. Les sous-ensembles de E forment un ensemble appelé *ensemble des parties* de E et noté  $\mathcal{P}(E)$ . Autrement dit  $A \in \mathcal{P}(E)$  signifie que  $A \subset E$ .

Remarque: Les éléments de  $\mathcal{P}(E)$  sont des sous-ensembles de E et non pas de éléments de E. De plus, contrairement à l'ensemble E qui peut-être vide, l'ensemble  $\mathcal{P}(E)$  n'est, lui, jamais vide puisqu'il contient au moins les ensembles  $\emptyset$  et E.

**Proposition 1.2.1.** Si E est un ensemble fini de cardinal n, alors l'ensemble  $\mathcal{P}(E)$  est fini et

$$Card(\mathcal{P}(E)) = 2^n$$

#### Ensembles de nombres

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$ 



 $\mathbb{N}$ : entier naturel  $\mathbb{Z}$ : entier relatif  $\mathbb{Q}$ : nombre rationnel

 $\mathbb{R}$ : nombre réel

 $\mathbb{C}:$  nombre complexe

# 1.2.2 Opérations

**Définition 1.2.6.** Soient E un ensemble et A, B deux sous-ensembles de E.

• L'union des deux ensembles A et B, notée  $A \cup B$  est l'ensemble constitué par les éléments de E appartenant à A ou à B, c'est-à-dire :

$$A \cup B := \{ x \in E \mid x \in A \text{ ou } x \in B \}$$

• L'intersection des deux ensembles A et B, notée  $A \cap B$ , est l'ensemble constitué par les éléments de E appartenant à A et B. Autrement dit

$$A \cap B := \{ x \in E \mid x \in A \text{ et } x \in B \}$$

Si  $A \cap B = \emptyset$  alors les deux ensembles A et B sont dits disjoints.

• La différence des ensembles A et B, notée  $A \setminus B$  est l'ensemble constitué par les éléments de A qui n'appartiennent pas à B, c'est-à-dire :

$$A \backslash B := \{ x \in E \mid x \in A \text{ et } x \notin B \}$$

# Propriétés

L'union et l'intersection sont :

- commutatives :  $A \cup B = B \cup A$  et  $A \cap B = B \cap A$
- associatives :  $A \cup (B \cup C) = (A \cup B) \cup C$  et  $A \cap (B \cap C) = (A \cap B) \cap C$

**Définition 1.2.7.** Soit A une partie de l'ensemble E. On appelle **complémentaire** de A dans E le sous-ensemble de E, noté  $A^C$  constitué des éléments de E qui n'appartiennent pas à A, c'est-à-dire :

$$A^C := \{ x \in E \mid x \notin A \} = E \backslash A$$

**Proposition 1.2.2.** Soient A et B deux parties finies d'un ensemble E. On a

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$$

Corollaire 1.2.1. Soient A et B deux parties finies d'un ensemble E.

Si  $A \subset B$  et Card(A) = Card(B), alors A = B.

# Remarque:

Si E est un ensemble fini, alors pour toute partie A de E, on a  $Card(A^C) = Card(E) - Card(A)$ .

**Proposition 1.2.3.** Soient A et B deux sous-ensembles d'un ensemble E. On a les relations suivantes appelées  $lois\ de\ De\ Morgan$ :

- $(A \cup B)^C = A^C \cap B^C$
- $(A \cap B)^C = A^C \cup B^C$

**Définition 1.2.8.** Soient  $E_1, E_2, \ldots, E_n$  des ensembles non vides. On appelle **produit cartésien** des ensembles  $E_1, E_2, \ldots, E_n$ , l'ensemble noté  $E_1 \times E_2 \times \ldots \times E_n$ , constitué des n-uplets  $(x_1, x_2, \ldots, x_n)$  avec  $x_i \in E_i$ , pour tout  $i \in \{1, 2, \ldots, n\}$ . En d'autres termes,

$$E_1 \times E_2 \times \ldots \times E_n = \{(x_1, x_2, \ldots, x_n) \mid x_1 \in E_1, x_2 \in E_2, \ldots, x_n \in E_n\}.$$

**Proposition 1.2.4.** Soient E et F deux ensembles finis. On a  $Card(E \times F) = Card(E) \times Card(F)$ 

# 1.3 Relations, Fonctions, Applications

# 1.3.1 Relations

**Définition 1.3.1.** Soient E et F deux ensembles. On appelle **relation**  $\mathcal{R}$  de E vers F tout triplet  $(E, \Gamma, F)$ , où  $\Gamma$  est une partie du produit cartésien  $E \times F$ .

L'ensemble E s'appelle l'ensemble de départ de  $\mathcal{R}$ , l'ensemble F s'appelle l'ensemble d'arrivée de  $\mathcal{R}$  et le sous-ensemble  $\Gamma$  de  $E \times F$  s'appelle le graphe de  $\mathcal{R}$ .

Si  $(x,y) \in \Gamma$ , on dit que x est en relation avec y par la relation  $\mathcal{R}$ , ce que l'on note  $x\mathcal{R}y$ .

L'élément y est appelé **image** de x par  $\mathcal{R}$  et l'élément x est appelé **antécédent** de y par  $\mathcal{R}$ .

On peut représenter cette relation :

- soit à l'aide d'un diagramme sagittal dans lequel une flèche va de  $x \in E$  vers  $y \in F$  si  $x \mathcal{R} y$ ;
- soit à l'aide d'un diagramme cartésien.

# 1.3.2 Fonctions

**Définition 1.3.2.** Soient E et F deux ensembles. Une relation f d'ensemble de départ E, d'ensemble d'arrivée F et de graphe  $\Gamma$  est appelée une **fonction** de E vers F si tout élément de E est en relation avec au plus un élément de F (c'est-à-dire avec un élément ou avec aucun élément). On note alors

$$f: E \to F \text{ ou } E \xrightarrow{f} F$$

Soit  $(x,y) \in \Gamma$ . Pour signifier que y est en relation avec x par la fonction f, on écrit y = f(x) ou  $x \mapsto y = f(x)$ .

**Définition 1.3.3.** Soient E et F deux ensembles et f une fonction de E vers F. On appelle **ensemble de définition** (ou **domaine de définition**) de la fonction f, et on note  $D_f$ , l'ensemble des éléments de E ayant une image par f. En d'autres termes :

$$D_f := \{ x \in E \mid \exists y \in F \ y = f(x) \}.$$

Remarque : L'ensemble de définition est un sous-ensemble du domaine de départ.

# 1.3.3 Applications

**Définition 1.3.4.** Soient E et F deux ensembles. Une fonction f de E vers F est appelée une **application** si son domaine de définition est E, c'est-à-dire  $D_f = E$ . L'ensemble des applications de E vers F est noté  $F^E$  ou A(E,F).

**Définition 1.3.5.** Deux applications f et g sont **égales** si elles ont le même ensemble de départ E et le même ensemble d'arrivée F et pour tous x de E, on a f(x) = g(x).

**Définition 1.3.6.** Soit E un ensemble. On définit l'application  $identit\acute{e}$  de E dans E, notée  $Id_E$  par  $\forall x \in E \ Id_E(x) = x$ .

**Définition 1.3.7.** Une application f de E dans F est dite **constante** s'il existe un élément  $\alpha$  de F, tel que, pour tout x de E, f(x) soit égal à  $\alpha$ .

**Définition 1.3.8.** Soit A un sous-ensemble de E. On appelle *indicatrice* ou *fonction caractéris*tique de A, et on note  $\chi_A$  ou  $\mathbb{1}_A$  la fonction définie sur E par

$$\chi_A: E \to \{0, 1\}$$

$$x \mapsto \begin{cases} 1 = \mathbb{1}_A(x) & \text{si } x \in A \\ 0 = \mathbb{1}_A(x) & \text{si } x \notin A \end{cases}$$

**Définition 1.3.9.** Soit  $f: E \to F$  une application.

On appelle **restriction** de f à E', l'application notée  $g = f|_{E'}$  de E' dans F définie par

$$g = f|_{E'} : E' \to F$$
  
 $x \mapsto f(x)$ 

On a  $\forall x \in E' \ g(x) = f(x)$ .

On appelle **prolongement** de f à E'', l'application h définie sur un ensemble E'' contenant E, dont la restriction de h à E est égale à f:

$$\forall x \in E \ h(x) = f(x)$$

# 1.3.4 Formulaire : domaine de définition pour les fonctions usuelles

| Fonction $f(x)$        | $D_f$                                                                                                 |
|------------------------|-------------------------------------------------------------------------------------------------------|
|                        |                                                                                                       |
| x                      | $\mathbb{R}$                                                                                          |
| $x^{\alpha}$           | $\mathbb{R} \text{ si } \alpha \in \mathbb{N}$                                                        |
| $a^x(\text{avec }a>0)$ | $\mathbb{R}$                                                                                          |
| $\sqrt{x}$             | $\mathbb{R}_{+}$                                                                                      |
| $\frac{1}{x}$          | $\mathbb{R}^*$                                                                                        |
| ln(x)                  | $\mathbb{R}_+^*$                                                                                      |
| $e^x$                  | $\mathbb{R}$                                                                                          |
| $\cos(x)$              | $\mathbb{R}$                                                                                          |
| $\sin(x)$              | $\mathbb{R}$                                                                                          |
| tan(x)                 | $\left  \ \right] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \left[ \ , \ k \in \mathbb{Z} \right]$ |

# 1.3.5 Composition des applications

**Définition 1.3.10.** Soient E, F, G trois ensembles et  $f: E \to F$  et  $g: F \to G$  deux applications. On appelle *application composée* de f par g, l'application de E vers G, notée  $g \circ f: E \to G$  définie par :

$$\forall x \in E \ (g \circ f)(x) := g(f(x))$$

# Remarques:

• La composition de fonctions n'est valable que si les domaines de définition des fonctions sont compatibles.

Soient  $f: E \to F$  et  $g: I \to G$  deux fonctions, alors  $g \circ f$  est toujours définie si et seulement si  $F \subseteq I$  (l'ensemble d'arrivée de la fonction f est compris dans l'ensemble de départ de la fonction g);

- la composition n'est pas commutative;
- la composition est associative;
- $f \circ f = f^2$ ,  $f^k := f \circ f \circ \ldots \circ f$ ,  $f^0 = Id_E$  et  $Id_F \circ f = f = f \circ Id_E$

# 1.3.6 Injections, surjections, bijections

**Définition 1.3.11.** Soit  $f: E \to F$  une application.

- ullet On dit que f est une application injective ou une injection si elle vérifie l'une des conditions équivalentes suivantes :
  - si tout élément y de F possède au plus un antécédent x par f (c'est-à-dire un ou aucun);
  - $\forall (x_1, x_2) \in E \times E = E^2$ , si  $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ ;
  - $\forall (x_1, x_2) \in E \times E = E^2$ , si  $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ ;
  - deux éléments différents ont toujours des images différentes.
- On dit que f est une application surjective ou une surjection si elle vérifie l'une des conditions équivalentes suivantes :
  - si tout élément y de F possède au moins un antécédent x par f (c'est-à-dire un ou plusieurs);

- $\forall y \in F, \exists x \in E \ f(x) = y;$
- On dit que f est une application bijective ou une bijection si elle vérifie l'une des conditions équivalentes suivantes :
  - si f est à la fois injective et surjective;
  - si tout élément y de F possède un et un seul antécédent x par f;
  - $\forall y \in F, \exists! \ x \in E \ f(x) = y;$

# 1.3.7 Image et image réciproque

**Définition 1.3.12.** Soit  $f: E \to F$  une application.

- Soit  $A \subset E$ . On appelle *image* de A par f le sous-ensemble  $f(A) = \{f(a), a \in A\}$  de F. f(A) est donc l'ensemble des images par f des éléments de A. On peut écrire :  $y \in f(A) \Leftrightarrow \exists x \in A, f(x) = y$ .
- Soit B une partie de F. L'image réciproque de B par f, notée  $f^{-1}(B)$  est l'ensemble des éléments de E dont l'image est dans B. Autrement dit  $f^{-1}(B) = \{x \in E, f(x) \in B\}$ .

# 1.3.8 Application réciproque

**Définition 1.3.13.** Soient E et F deux ensembles et  $f: E \to F$  une application bijective. L'application notée  $f^{-1}: F \to E$  qui à  $y \in F$  lui associe l'unique élément  $x \in E$  tel que y = f(x) est appelée application réciproque ou bijection réciproque de f. Autrement dit, l'application  $f^{-1}$  est définie pour tout  $y \in F$  par :

$$f^{-1}(y) = x \text{ si } y = f(x).$$

**Proposition 1.3.1.** Soit  $f: E \to F$  une application.

• Si f est bijective alors son application réciproque est elle même bijective et elle vérifie

$$(f^{-1})^{-1} = f,$$
  $f^{-1} \circ f = Id_E,$   $f \circ f^{-1} = Id_F;$ 

• Si il existe une application  $g: F \to E$  telle que  $g \circ f = Id_E$  et  $f \circ g = Id_F$ , alors f est bijective et  $f^{-1} = g$ .

**Proposition 1.3.2.** Soient E, F, G trois ensembles et  $f: E \to F$  et  $g: F \to G$  deux applications. On a les propriétés suivantes :

- 1. si  $g \circ f$  est injective alors f est injective;
- 2. si  $g \circ f$  est surjective alors g est surjective;
- 3. si f et g sont injectives alors  $g \circ f$  est injective;
- 4. si f et g sont surjectives alors  $g \circ f$  est surjective;
- 5. si f et g sont bijectives alors  $g \circ f$  est bijective et  $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ .

#### Remarques:

- Si f est injective alors  $Card(E) \leq Card(F)$ ;
- Si f est surjective alors  $Card(E) \ge Card(F)$ ;
- Si f est bijective alors Card(E) = Card(F);

**Proposition 1.3.3.** Soit E, F deux ensembles finis et  $f: E \to F$  une application. Si Card(E) = Card(F) alors les assertions suivantes sont équivalentes :

- (i) f est injective;
- (ii) f est surjective;
- (iii) f est bijective.

# 1.4 Notations et rappels

# 1.4.1 Lettres grecques

#### Alphabet grec et notations mathématiques

#### Lettres minuscules

| La lettre            | Se lit   | Désigne souvent :                                                                    |
|----------------------|----------|--------------------------------------------------------------------------------------|
| α                    | alpha    | Un angle                                                                             |
| β                    | bêta     | Un angle                                                                             |
| γ                    | gamma    | Un angle                                                                             |
| δ                    | delta    | Un angle, une droite                                                                 |
| ε                    | epsilon  | Une « très petite »<br>quantité                                                      |
| ζ                    | zêta     |                                                                                      |
| ζ                    | [dzeta]  |                                                                                      |
| η                    | êta      |                                                                                      |
| θ                    | thêta    | Un angle, un<br>argument d'un<br>nombre complexe                                     |
| ι                    | iota     |                                                                                      |
| κ                    | kappa    |                                                                                      |
| λ                    | lambda   | Une longueur d'onde                                                                  |
| μ                    | mu       | Une moyenne                                                                          |
| μ<br>ν<br>ξ          | nu       | Une fréquence                                                                        |
| ξ                    | xi       |                                                                                      |
| 0                    | omicron  |                                                                                      |
| π                    | pi       | 3,14159                                                                              |
| ρ                    | rhô      | Le module d'un<br>nombre complexe,<br>le rayon d'un cercle<br>une masse<br>volumique |
| σ                    | sigma    | Un écart type                                                                        |
| τ                    | tau      |                                                                                      |
| υ                    | upsilon  |                                                                                      |
| <i>φ</i> ou <i>φ</i> | phi      | Un angle                                                                             |
| χ                    | chi [ki] | Un test en statistiques (test du $\chi^2$ )                                          |
| ψ                    | psi      | Un angle                                                                             |
| ω                    | oméga    | Une vitesse<br>angulaire                                                             |

#### Lettres majuscule

| La lettre | Se lit  | Désigne souvent :                                                                                         |
|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| A         | alpha   |                                                                                                           |
| В         | bêta    |                                                                                                           |
| Γ         | gamma   | Un cercle, une courbe                                                                                     |
|           |         | Une droite, un                                                                                            |
| Δ         | delta   | discriminant, une                                                                                         |
| Δ         |         | variation ou une                                                                                          |
|           |         | différence                                                                                                |
| E         | epsilon |                                                                                                           |
| Z         | zêta    |                                                                                                           |
| Н         | êta     |                                                                                                           |
| Θ         | thêta   |                                                                                                           |
| I         | iota    |                                                                                                           |
| K         | kappa   |                                                                                                           |
| Λ         | lambda  |                                                                                                           |
| M         | mu      |                                                                                                           |
| N         | nu      |                                                                                                           |
| Ξ         | xi      |                                                                                                           |
| 0         | omicron |                                                                                                           |
| П         | pi      | Un plan, un produit : $\prod_{i=1}^{n} x_i = x_1 \times \times x_n$                                       |
| P         | rhô     | <i>t</i> =1                                                                                               |
| Σ         | sigma   | Une somme: $\sum_{i=1}^{n} x_i = x_1 + \dots + x_n$                                                       |
| T         | tau     |                                                                                                           |
| Υ         | upsilon |                                                                                                           |
| Ф         | phi     |                                                                                                           |
| X         | chi     |                                                                                                           |
| Ψ         | psi     |                                                                                                           |
| Ω         | oméga   | Le centre d'un cercle,<br>le centre d'une<br>rotation, l'univers<br>associé à une<br>expérience aléatoire |

# 1.4.2 Intervalles

#### Notations:

• Entiers naturels : N

• Entiers relatifs :  $\mathbb{Z}$ 

• Nombres rationnels : Q

ullet Nombres réels :  $\mathbb R$ 

ullet Nombres complexes :  ${\mathbb C}$ 

# Remarques:

- avec le sommet \* on note tous les éléments de cette ensemble sauf le zéro;
- avec l'indice + ou on note l'ensemble de nombres positifs ou négatifs.

Soit a et b deux réels tels que  $a \le b$ . On note alors :

- $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$ , appelé *intervalle fermé*;
- $[a, b] = \{x \in \mathbb{R} | a \le x < b\}$ , appelé *intervalle semi-ouvert ou semi-fermé*;
- $|a,b| = (a,b] = \{x \in \mathbb{R} | a < x \le b\}$ , appelé  $intervalle \ semi-ouvert \ ou \ semi-ferm\'e$ ;
- $|a,b| = (a,b) = \{x \in \mathbb{R} | a < x < b\}$ , appelé *intervalle ouvert*;
- $[a, +\infty[ = [a, +\infty) = \{x \in \mathbb{R} | a \le x\}, \text{ appelé } demi-droite fermé;}$
- $]-\infty, b] = (-\infty, b] = \{x \in \mathbb{R} | x \le b\}, \text{ appelé } demi-droite fermé;}$
- $[a, +\infty[ = (a, +\infty) = \{x \in \mathbb{R} | a < x\}, \text{ appelé } demi-droite ouverte};$
- $]-\infty, b[ = (-\infty, b) = \{x \in \mathbb{R} | x < b\}, \text{ appelé } demi-droite ouverte; \}$
- $\mathbb{R}$  ou  $]-\infty, +\infty[$  ou  $(-\infty, +\infty)$ .

## 1.4.3 Valeur absolue

**Définition 1.4.1.** On définit la *valeur absolue* d'un réel x par

$$|x| = \begin{cases} x & \text{si } x \ge 0\\ -x & \text{si } x < 0 \end{cases}$$

Proposition 1.4.1. On a les propriétés suivantes :

- $\forall x \in \mathbb{R}$   $|x| = \max(-x, x)$  et |-x| = |x|;
- $\forall x \in \mathbb{R}$   $|x| = 0 \Leftrightarrow x = 0$ ;
- $\forall (x,y) \in \mathbb{R}^2$   $|x \times y| = |x| \times |y|$ ;
- $\forall x \in \mathbb{R} \ \forall n \in \mathbb{N} \qquad |x^n| = |x|^n$ .

# 1.4.4 Sommes et produits

Étant donné  $a_1, a_2, \ldots, a_n$  nombres. On veut considérer leur somme  $a_1 + a_2 + \ldots + a_n$  et leur produit  $a_1 \times a_2 \times \ldots \times a_n$  ou encore  $a_1 \cdot a_2 \cdot \ldots \cdot a_n$ . On introduit les notations suivantes :

•  $\sum_{k=1}^n a_k$  ou  $\sum_{1 \le k \le n} a_k$  ou  $\sum_{k \in [\![1,n]\!]} a_k$  pour désigner la somme de n nombres ;

• 
$$\prod_{k=1}^n a_k$$
 ou  $\prod_{1 \le k \le n} a_k$  ou  $\prod_{k \in [\![1,n]\!]} a_k$  pour désigner le produit de  $n$  nombres.

Plus généralement, si p et q sont deux entiers vérifiant  $p \leq q$ , et si l'on dispose de q-p+1 nombres complexes numérotés de p à  $q:a_p,\ldots,a_q$ , on note  $\sum_{k=p}^q a_k$  leur somme et  $\prod_{k=p}^q a_k$  leur produit. Remarque: L'ordre dans lequel on somme ou on multiple les termes n'a pas d'importance, car l'ad-

dition et la multiplication sont commutatives.

# Règles de calculs

Dans toute la suite  $(a_k)_{k\in I}$  désigne une famille finie de nombres complexes avec I non vide. On suppose que I contient n éléments.

• Si tous les éléments de la famille  $(a_{i \in I})$  sont égaux, on a :

$$-\sum_{i\in I} a_i = \alpha + \alpha + \ldots + \alpha = n\alpha$$

$$-\prod_{i\in I} a_i = \alpha \times \alpha \times \ldots \times \alpha = \alpha^n$$

$$- \sum_{k \in I} (a_k + b_k) = \sum_{k \in I} a_k + \sum_{k \in I} b_k$$

$$-\prod_{k\in I}(a_k\ b_k) = \left(\prod_{k\in I}a_k\right)\left(\prod_{k\in I}b_k\right)$$

• Soient  $\lambda \in \mathbb{C}$  et  $p \in \mathbb{N}$ , on a :

$$-\sum_{k\in I}(\lambda \ a_k) = \lambda \sum_{k\in I} a_k \ \text{et} \ \prod_{k\in I}(\lambda \ a_k) = \lambda^n \prod_{k\in I} a_k$$

$$-\sum_{k\in I}(a_k+\lambda) = \left(\sum_{k\in I}a_k\right) + n\lambda \text{ et } \prod_{k\in I}(a_k)^p = \left(\prod_{k\in I}a_k\right)^p$$

• Relation de Chasles (avec p < r < q)

$$-\sum_{k=p}^{q} a_k = \sum_{k=p}^{r} a_k + \sum_{k=r+1}^{q} a_k = \sum_{k=p}^{r-1} a_k + \sum_{k=r}^{q} a_k$$

$$-\prod_{k=p}^{q} a_k = \left(\prod_{k=p}^{r} a_k\right) \left(\prod_{k=r+1}^{q} a_k\right) = \left(\prod_{k=p}^{r-1} a_k\right) \left(\prod_{k=r}^{q} a_k\right)$$

• Additivité par rapport à l'ensemble d'indexation. Si  $I_1$  et  $I_2$  sont deux ensembles disjoints, alors :

$$-\sum_{k \in I_1 \cup I_2} a_k = \sum_{k \in I_2} a_k + \sum_{k \in I_2} a_k$$

$$- \prod_{k \in I_1 \cup I_2} a_k = \prod_{k \in I_1} a_k * \prod_{k \in I_2} a_k$$

• Conventions: 
$$\sum_{k \in \emptyset} a_k = 0$$
 et  $\prod_{k \in \emptyset} a_k = 1$ 

# Changement d'indice

Si r est un entier, alors, dans la somme  $S = \sum_{k=p}^{q} a_k$ , on peut effectuer un décalage d'indice en utilisant

$$j = k + r$$
 et en écrivant  $\sum_{j=p+r}^{q+r} a_{j-r}$ .

# Symétrisation

On peut inverser l'ordre dans lequel les termes sont considérés en utilisant j = n - k:

$$\sum_{k=0}^{n} a_k = a_0 + a_1 + \ldots + a_n = \sum_{j=0}^{n} a_{n-j} = a_n + a_{n-1} + \ldots + a_0$$

# Remarques

- Les lettres k et j intervenant dans les notations précédentes désignent des variables muettes servant à décrire l'ensemble d'indexation. On peut choisir d'utiliser n'importe quelle autre lettre.
- Les considérations qui précèdent peuvent être faites aussi à propos du symbole ∏.

# Regroupements de termes

On peut regrouper les termes par paquets pour faire apparaître des simplifications. Par exemple on sépare les termes d'indices pairs et ceux d'indices impairs :

$$\sum_{\substack{k \in I \\ k \text{ impair}}} a_k + \sum_{\substack{k \in I \\ k \text{ pair}}} a_k$$

#### Sommes et produits télescopiques

On suppose  $p \leq q$ , on a:

• 
$$\sum_{k=n}^{q} (a_k - a_{k+1}) = a_p - a_{q+1}$$
, appelé somme télescopique;

• 
$$\prod_{k=p}^{q} \frac{a_k}{a_{k+1}} = \frac{a_p}{a_{q+1}}$$
, avec  $a_k$  tous non nuls, appelé **produit télescopique**.

#### Calculs remarquables

Proposition 1.4.2. (Somme des n premiers entiers)

Pour 
$$n \in \mathbb{N}$$
, on a  $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ 

Proposition 1.4.3. (Somme des carrés des n premiers entiers)

Pour 
$$n \in \mathbb{N}$$
, on a  $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ 

Proposition 1.4.4. (Somme des cubes des n premiers entiers)

Pour 
$$n \in \mathbb{N}$$
, on a  $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$ 

Proposition 1.4.5. (Somme des termes d'une suite géométrique)

Pour 
$$a \in \mathbb{C}$$
 et  $a \neq 1$  et pour  $(p, n) \in \mathbb{N}^2$  tel que  $p \leq n$ , on a  $\sum_{k=p}^n a^k = \frac{a^p - a^{n+1}}{1-a}$ 

**Proposition 1.4.6.** (Factorisation de  $x^n - y^n$ )

Pour  $n \in \mathbb{N}^*$  et  $(x, y) \in \mathbb{C}^2$ , on a

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}) = (x - y)\sum_{k=0}^{n-1} x^{k}y^{n-1-k}$$

# Sommes doubles

**Définition 1.4.2.** On appelle *somme double* une somme finie de la forme  $\sum_{(i,j)\in A} a_{i,j}$  où  $(a_{i,j})_{(i,j)\in A}$  est une famille de complexes doublement indexée et  $A = I \times J$  est un produit cartésien.

$$\sum_{(i,j)\in I\times J} a_{i,j} = \sum_{i\in I} \left(\sum_{j\in J} a_{i,j}\right) = \sum_{j\in J} \left(\sum_{i\in I} a_{i,j}\right)$$

L'ordre dans lequel apparaissent les deux symboles  $\sum$  n'a ici pas d'importance, car l'addition des nombres complexes est commutative.

# 1.4.5 Factorielle

**Définition 1.4.3.** Étant donné un entier naturel n, on appelle **factorielle** n, et l'on note n!, le nombre entier :

$$n! = 1 \times 2 \times 3 \times \dots \times (n-1) \times n = \prod_{k=1}^{n} k$$
 et  $0! = 1$ 

# 1.4.6 Coefficient binomial

**Définition 1.4.4.** Étant donné deux entiers naturels n et p avec  $p \leq n$ , on appelle **coefficient binomial** p **parmi** n, et l'on note  $\binom{n}{p}$  (ou aussi  $\binom{p}{n}$ ), le nombre suivant :

$$\binom{n}{p} = \frac{n(n-1)\dots(n-p+1)}{p!} = \frac{1}{p!} \prod_{k=0}^{p-1} (n-k)$$

Remarques:

$$\bullet$$
 Si  $p > n$ ,  $\binom{n}{p} = 0$ 

• Si 
$$p \le n$$
,  $\binom{n}{p} = \frac{n!}{p!(n-p)!}$ 

• 
$$\forall n \in \mathbb{N}, \ \binom{n}{0} = \binom{n}{n} = 1$$

**Proposition 1.4.7.** Étant donné deux entiers naturels n et p, on a :

• 
$$\binom{n}{p} = \binom{n}{n-p}$$
 si  $p \le n$ 

• 
$$\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$$
 si  $n \ge 1$  et  $p \ge 1$  (**Relation de Pascal**)

**Proposition 1.4.8.** (Formule du binôme de Newton) Étant donné  $(x, y) \in \mathbb{C}^2$  et  $n \in \mathbb{N}$ , on a

$$(x+y)^n = \sum_{p=0}^n \binom{n}{p} x^p \ y^{n-p}$$

# 1.5 Dénombrement

Dénombrer, c'est compter le nombre d'éléments d'un ensemble, c'est-à-dire déterminer son cardinal à l'aide de techniques combinatoires qui permettent d'étudier les configurations de collections finies d'objets.

**Idée**: On veut placer des objets (au nombre de n) dans des cases (au nombre de p) de sorte que toutes les cases contiennent un objet et un seul.

**Problème** : De combien de manières différentes peut-on y parvenir?

#### Deux paramètres importants:

- Ordre : les cases peuvent être numérotées (il y a ordre) ou pas, c'est-à-dire l'ordre des objets dans les emplacements peut avoir une incidence ou pas selon les situations.
- Remise ou répétition: les objets peuvent être remis dans l'ensemble de départ après avoir été choisis et placés, auquel cas le même objet peut apparaître dans deux cases ou plus au final (il y a remise ou répétition). Ou bien chaque objet ne peut apparaître qu'une fois au plus.

# 1.5.1 Permutations avec répétition

**Principe des choix successifs**: Quand on fait k choix successifs, si il y a  $n_1$  possibilités pour le premier choix, puis  $n_2$  pour le deuxième, ...,  $n_k$  pour le k-ième choix, alors il y a en tout  $n_1 \cdot n_2 \cdot \ldots \cdot n_k$  manières différentes de faire ces choix.

Remarque: Lien avec les produits cartésiens d'ensembles:

choisir n éléments successivement dans des ensembles notés  $E_1, E_2, \ldots, E_n$ , c'est choisir un n-uple de l'ensemble  $E_1 \times E_2 \times \ldots \times E_n$ . Le principe des choix successifs dit donc que :

$$Card(E_1 \times E_2 \times \ldots \times E_n) = Card(E_1) \cdot Card(E_2) \cdot Card(E_3) \cdot \ldots \cdot Card(E_n)$$

**Définition 1.5.1.** Une *permutation avec répétition* de p objets parmi n est une suite ordonnée de p éléments choisis parmi n, et pouvant se répéter.

**Proposition 1.5.1.** Soit E et F des ensembles finis de cardinaux respectifs  $p \geq 1$  et n. Alors l'ensemble des applications de E dans F est un ensemble fini et son cardinal vaut :

$$(Card\ F)^{Card\ E} = n^p$$

Application: Placer n objets dans p cases avec remise et avec ordre de sorte que toutes les cases contiennent un objet et un seul, revient à construire une application de l'ensemble E des cases (Card(E) = p) dans l'ensemble F des objets (Card(F) = n), qui à chaque case associe l'objet qu'on y place. Il y a donc  $n^p$  manières différentes de le faire.

# 1.5.2 Permutations sans répétition ou arrangements

**Principe**: On a p objets rangés dans des cases numérotées de 1 à p. Pour la première case il y a n choix possibles, pour la deuxième il n'y en a plus que n-1, et pour la p-ème il n'en reste plus que n-p+1.

**Définition 1.5.2.** Une *permutation sans répétition* ou un *arrangement* de p objets parmi n est une suite  $ordonn\acute{e}e$  de p éléments choisis parmi n, et qui ne peuvent pas se répéter.

Remarque: Dans un arrangement l'ordre intervient mais il n'y a pas de remise.

**Proposition 1.5.2.** Le nombre d'injections d'un ensemble E de cardinal p dans un ensemble F de cardinal p est le nombre d'arrangements de p éléments parmi p:

$$A_n^p = n(n-1)\dots(n-p+1) = \frac{n!}{(n-p)!}$$

**Proposition 1.5.3.** Le nombre de bijections d'un ensemble E de cardinal n dans un ensemble F de cardinal n est le nombre d'arrangements de n éléments parmi n:

$$A_n^n = n!$$

# 1.5.3 Permutations sans répétition de n objets dont $k \leq n$ seulement sont distincts

Le nombre de permutations que l'on peut constituer si certains des éléments sont identiques est plus petit que si tous les éléments sont distincts.

Lorsque seul  $k \leq n$  éléments sont distincts, chacun d'eux apparaissant  $n_1, n_2, \ldots, n_k$  fois avec  $n_1 + n_2 + \ldots + n_k = n$  et  $n_i \geq 1$ . Par conséquent le nombre de permutations est :

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

#### 1.5.4 Combinaisons

**Définition 1.5.3.** Une *combinaison* est un sous-ensemble *non ordonné* de p objets choisis dans un ensemble qui en contient n.

**Proposition 1.5.4.** Soit n et p des entiers naturels. Le nombre de sous-ensembles de cardinal p d'un ensemble E de cardinal n est :

 $C_n^p = \frac{A_n^p}{p!} = \binom{n}{p} = \frac{n!}{p!(n-p)!}$ 

Remarque : L'ordre n'intervient pas et il n'y a pas de remise.

Un petit tableau pour résumer les cas d'utilisation de ces trois outils de dénombrement :

|                                   | L'ordre est important | L'ordre n'est pas important |
|-----------------------------------|-----------------------|-----------------------------|
| Répétitions ou remises possibles  | Permutations          |                             |
| Répétitions ou remises interdites | Arrangements          | Combinaisons                |