

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

SU 1252321 A1

150 4 С 04 В 38/10, 24/20

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3869521/29-33

(22) 19.03.85

(46) 23.08.86. Бел. Р 31

(71) Государственный всесоюзный научно-исследовательский институт строительных материалов и конструкций

им. П.П. Будникова

(72) А.В. Долгорук, В.П. Варламов,
В.А. Терехов, В.Ф. Харитонов,
В.Н. Петрухина, В.Т. Липаева

и В.В. Носов

(53) 666.973.6(088.8)

(56) 1. Авторское свидетельство СССР
№ 963773, кл. С 04 В 21/02, 1982.

2. Руководство по применению химических добавок в бетоне. - М.:
НИИЖБГосстроя СССР, 8/т., с. 51.

(54)(57) ПЕНООБРАЗОВАТЕЛЬ ДЛЯ ПОРИЗАЦИИ ГИПСОБЕТОННОЙ СМЕСИ, включающей алкилароматические сульфонаты, о т - л и ч а ю щ и й с я тем, что, с целью увеличения стойкости пены и повышения прочности изделий из яз- гиб, он дополнителько содержит сульфат окисного железа при следующем соотношении компонентов, мас.-%:

Алкилароматические сульфонаты	75,0-95,0
Сульфат окисного железа	5,0-25,0

SU 1252321 A1

BEST AVAILABLE COPY

1252321

2

Изобретение относится к производству строительных изделий ячеистой структуры, например пеногипса, облегченных гипсокартонных листов.

Цель изобретения - увеличение стойкости пены и повышение прочности на изгиб.

Сульфат окисного железа при взаимодействии с алкилароматическими сульфонатами по сульфогруппе образует прочную комплексную соль, которая резко снижает поверхностную энергию на границе раздела фаз воздух - пенообразователь, тормозя обменные процессы, что повышает диспергируемость системы, предотвращает агрегирование и укрупнение пузырьков воздуха, а это приводит к повышению стойкости всей системы. Своеобразное "бронирование" микропузырьков воздуха пенообразователем создает условия, при которых твердые частицы, не нарушая целостности микропузырьков, прилипают к его поверхности. При использовании алкиларилсульфонатов без добавления сульфата окисного железа происходит быстрое разрушение пены, не только на стадии формования изделия, но и в процессе приготовления пен. Наиболее эффективен пенообразователь для приготовления пеногипса, применяемого в процессе изготовления перегородочных гипсовых плит (гипсокартонов).

Технология получения пеногипса включает три основные стадии: приготовление пены, приготовление гипсового теста (смесь гипсового вяжущего и воды) и перемешивание пены с гипсовым тестом. В этом случае стойкость пены оценивают по коэффициенту выхода пеногипсовой смеси K_p (отношение объема пеногипсовой смеси к сумме объемов пены и гипсового раствора). Чем выше стойкость пены, тем в меньшей степени она разрушается в процессе приготовления пеногипса. Следовательно, с увеличением стойкости пены растет коэффициент K_p .

В процессе исследований и испытаний стойкости пены пенообразователя с использованием различных алкиларилсульфонатов с добавками сульфата железа (III) установлено, что во всех случаях прочность получаемых изделий из пеногипса значительно превышает прочность изделий при той же объемной массе, приготавляемых с применением пенообразователей известного

состава. Для оценки упрочняющего влияния пенообразователя используют понятие приведенной прочности Π_p (отношение предельного сопротивления сжатию к объемной массе изделия). Найденная закономерность увеличения Π_p для предлагаемых составов пенообразователя подтверждается с использованием различных алкиларилсульфонатов, в частности сульфонола, эстанола, алкилбензолсульфоната триэтаноламина, (трис-(2-гидроксиэтил)аммоний алкилбензолсульфонат), рафинированного алкиларилсульфоната ДС-РАС, алкиларилароматических сульфонатов ПО-1, ПО-1Д, ПО-6Б, контакта Петрова, контакта нейтрализованного черного (КНЧ), контакта рафинированного нейтрализованного черного (КЧНР).

Пример 1. Готовят пенообразователь, состоящий из 90,0% КНЧ и 10,0% сульфата окисного железа, например девятиводного кристаллогидрата сульфата железа (III), причем КНЧ содержит 9% органического вещества. Из полученного пенообразователя готовят 2%-ный водный раствор, который диспергируют механическим путем до получения пены (кратность отношений объема пены к объему исходного раствора пенообразователя и стойкость пены определяются по известной методике).

Пример 2. Готовят пенообразователь, состоящий из 80,0% КЧНР, раствор содержит 45% органического вещества, и 20,0% сульфата железа (III). Из полученного пенообразователя готовят 2%-ный раствор, который преобразуют в пену.

Пример 3. Готовят пенообразователь, состоящий из 95,0% сульфонола (40%-ный раствор) и 5,0% сульфата окисного железа. Из полученного пенообразователя готовят 5%-ный раствор, который преобразуют в пену.

Пример 4. Готовят пенообразователь, состоящий из 79% алкилбензолсульфоната аммония (40%-ный раствор) и 21% сульфата окисного железа. Из полученного пенообразователя готовят 3%-ный раствор, который преобразуют в пену.

Пример 5. Готовят пенообразователь из 90% эстанола (триэтаноламиновая соль алкилбензолсульфоната, трис-(2-гидроксиэтил)аммоний алкилбензолсульфонат) и 10% сульфата окисного железа. Из полученного пенооб-

3

1252321

разователя готовят 2%-ный раствор, который преобразуют в пену:

Приимеp 6. Готовят пенообразователь, состоящий из 92% рафинированного алкиларилсульфоната ДС-РАС (40%-ный раствор) и 8% сульфата окисного железа. Из полученного пенообразователя готовят 2%-ный раствор, который преобразуют в пену.

Приимеp 7. Готовят пенообразователь, состоящий из 95% ПО-1Д (29%-ный раствор) и 5% сульфата окисного железа. Из полученного пенообразователя готовят 2%-ный раствор, который преобразуют в пену.

Приимеp 8. Готовят пенообразователь, состоящий из 94% контакта Петрова и 6% сульфата окисного железа. Из полученного пенообразователя готовят 2%-ный раствор, который преобразуют в пену.

Приимеp 9. Готовят пенообразователь из 95% КЧИР и 5% сульфата окисного железа. Из полученного пенообразователя готовят 2%-ный раствор, который преобразуют в пену.

Приимеp 10. Готовят пенообразователь из 75% КЧИР и 25% сульфата

окисного железа. Из полученного пенообразователя готовят 2%-ный раствор, который преобразуют в пену.

Во всех примерах из полученной пены готовят пеногипс путем смешивания 40 об.% пены и 60 об.% гипсового теста из гипсового вяжущего при $B/G=0,55$.

Составы предлагаемого (1-10) и известного (11 и 12) пенообразователей приведены в табл. 1, причем составы пенообразователей соответствуют примерам 1 - 10, а результаты испытаний образцов на основе этих составов - в табл. 2.

Таким образом, предлагаемый пенообразователь, представляющий собой смесь алкиларилсульфоната с сульфатом окисного железа, взятого в указанном процентном соотношении, позволяет получать пеногипсовую смесь с высоким выходом, изделия с малой объемной массой и достаточно высокой прочностью. По своим показателям пенообразователь на основе алкиларилсульфонатов преосходит известные, прост по составу, исходные компоненты доступны и не являются дефицитными.

Таблица 1

Компоненты пенообразователя	Содержание компонентов, мас.%, состава											
	1	2	3	4	5	6	7	8	9	10	11(известный)	12(известный [2])
Алкиларилсульфонат	90	80	95	79	90	92	95	94	95	75	-	100
Сульфат окисного железа	10	20	5	21	10	8	5	6	5	25	-	-
Вторичные алкилсульфаты	-	-	-	-	-	-	-	-	-	-	90	-
Динатрий метиленбис	-	-	-	-	-	-	-	-	-	-	10	-

5

1252321

6

Т а б л и ц а 2

Состав	Пенообразующая способность		К ₀	Объемная масса, кг/см ³	Прочность на изгиб, кг/см ²	Приведенная прочность к объемной массе 700 кг/см ³ , Р _н
	Кратность	Стойкость пены, мин				
1	25	144	0,88	780	22,1	19,9
2	26	180	0,89	800	21,4	19,5
3	16	120	0,86	920	24,5	18,7
4	15	180	0,86	910	24,5	18,9
5	16	182	0,86	720	18,3	17,8
6	20	142	0,92	700	22,2	22,2
7	24	189	0,89	810	22,5	20,2
8	21	160	0,90	750	22,5	19,8
9	24	170	0,89	780	19,6	20,2
10	23	180	0,90	750	22,8	20,3
11(известный)	15	40	0,56	1090	19,9	11,8
12(известный [2])	5	30	0,18	1200	21,5	12,5

Составитель О.Моторина
 Редактор И.Дербак Техред М.Маргентал Корректор А.Зинокосов

Заказ 4586/26 Тираж 640 Подписано
 ВНИИПТИ Государственного комитета СССР
 по делам изобретений и открытий
 113035, Москва, Щ-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, г.Ужгород, ул.Проектная, 4

BEST AVAILABLE COPY