Research & Coordination Activity

N. Vianello

01 June 2012

ITER Research Plan framework

- European Fusion Research focused on unresolved physic and technological problems in support of ITER
- ► ITER research plan (IRP) has individuate 12 top operation risks which should be addressed by the world-wide fusion program (L. Horton FED 2012)
 - 1. Inadequate disruption mitigation
 - H-mode power threshold at high end of uncertainty range
 - 3. Inadequate ELM mitigation schemes
 - 4. Inadequate vertical stability control
 - 5. Lack of reliable high power heating during non-active phase of program
 - 6. Unacceptable divertor performance with tungsten PFCs
 - 7. Lack of plasma rotation leads to a degradation of plasma performance
 - High levels of tritium retention require more frequent tritium removal procedures than foreseen
 - Incompatibility of core plasma requirements for Q=10 with radiative divertor operation
 - 10. Inability to achieve densities near Greenwald value for required Q=10
 - 11. Inadeguate particle control to sustain high-Q plasma scenario

ITER Research Plan framework

- European Fusion Research focused on unresolved physic and technological problems in support of ITER
- ▶ ITER research plan (IRP) has individuate 12 top operation risks which should be addressed by the world-wide fusion program (L. Horton FED 2012)
 - 1. Inadequate disruption mitigation
 - 2. H-mode power threshold at high end of uncertainty range
 - 3. Inadequate ELM mitigation schemes
 - 4. Inadequate vertical stability control
 - 5. Lack of reliable high power heating during non-active phase of program
 - 6. Unacceptable divertor performance with tungsten PFCs
 - 7. Lack of plasma rotation leads to a degradation of plasma performance
 - 8. High levels of tritium retention require more frequent tritium removal
 - 9. Incompatibility of core plasma requirements for Q=10 with radiative
 - 10. Inability to achieve densities near Greenwald value for required Q=10
 - 11. Inadeguate particle control to sustain high-Q plasma scenario

Personal research interest

- Actively involved in fusion plasma science since the M.Sci. thesis in 1999
- Personal research interests can be summarized in four main macro-areas
 - (A) Flows & Turbulence induced transport ⇒ points 2,7
 - (B) Emerging of electromagnetic structures ⇒ points 2,7
 - (C) 3D physics and helical plasmas \Rightarrow points 2,3,7,10

Flows & Turbulence induced transport

The principal results may be summarized as follows:

Flows & Turbulence induced transport

► The principal results may be summarized as follows:

(i) Momentum flux generated by off-diagonal terms in the stress tensor: Reynolds stress, Maxwell stress and non-linear momentum flux $\langle \tilde{v}_{\perp} \tilde{v}_r \tilde{n} \rangle$

PRL 94 p. 135001, NF 45 p. 761, PPCF 48 p. S193

Flows & Turbulence induced transport

► The principal results may be summarized as follows:

(i) Momentum flux generated by off-diagonal terms in the stress tensor: Reynolds stress, Maxwell stress and non-linear momentum flux $\langle \tilde{V}_{\perp} \tilde{V}_r \tilde{n} \rangle$

(ii) Transport reduction induced by active modification of sheared flow

PPCF 42, p. 83

Coherent structures characterization

 Complete characterization in the perpendicular plane of blobs responsible for plasma intermittent behavior

Coherent structures characterization

 Complete characterization in the perpendicular plane of blobs responsible for plasma intermittent behavior

> p [Pa] $\phi_f[V]$ 13.0 8.7 4.3 0.0 -4.3 -8.7 -13.0 440 440 돌 435 430 430 425 425 420 0 0 -10 -5 5 10 -10 -5 5 10 τ[μς] τ[μς] n_e [10¹⁹m⁻³] T_o [eV] 440 7.0 4.7 2.3 0.0 -2.3 -4.7 -7.0 440 0.3 0.2 0.1 0.0 [ww] 435 435 430 -0.1 -8.2 -8.3 425 420 -10 -5 0 -10 -5 0 τ[μς] τ[μς]

 Evaluation of transport contribution due to coherent structures

 Measurements of parallel plasma current associated to blobs & filaments in different experiments with different magnetic configuration

First direct measurements of current filaments associated to plasma blob identified as DKA vortex PRL 102 2009, NF 50 2010

RFX-mod Reversed Field Pinch

 Measurements of parallel plasma current associated to blobs & filaments in different experiments with different magnetic configuration

ASDEX-Upgrade Tokamak

 First direct measurements of current asociated to type-I filaments (PRL 106, 2011)

 Measurements of parallel plasma current associated to blobs & filaments in different experiments with different magnetic configuration

 First direct 2D map of parallel current associated to an interchange-induced plasma blob (PRL 106, 2011)

Collaboration established to extend studies of current filaments to other devices, namely TJ-II stellarator, with a probe which combines vorticity and current measurements and EAST tokamak for the studies of ELMs

TJ-II Stellarator

EAST-Tokamak

 Observation and characterization of spontaneous helical plasmas developed in high current Reversed Field Pinch operation Nat. Phys. 5 pp. 570

 Helical core associated with a transport barrier located in the region of a local maxima of q value

 Ambipolar electric field builds up as a response to the magnetic perturbation causing a perpendicular flow with the same periodicity of the helical perturbation

- Similar phenomenology appears in High density regime
- In this case, radiative collapse caused by density accumulation induced by perpendicular flow inversion
- Accumulation point coincides with the X-point of the magnetic islands (asterisks track accumulation point toroidal location) NF 2012 p. 054015

 RFX-mod scientific program is coordinated by Task Force Leaders in collaborations with Scientific Coordinators

- RFX-mod scientific program is coordinated by Task Force Leaders in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)

- RFX-mod scientific program is coordinated by Task Force Leaders in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)
- Experimental time appointed on the basis of scientific priorities and machine condition in order to optimize the experimental time

- RFX-mod scientific program is coordinated by Task Force Leaders in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)
- Experimental time appointed on the basis of scientific priorities and machine condition in order to optimize the experimental time
- I've been appointed task force leader for two subsequent years:

- RFX-mod scientific program is coordinated by Task Force Leaders in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)
- Experimental time appointed on the basis of scientific priorities and machine condition in order to optimize the experimental time
- I've been appointed task force leader for two subsequent years:
 - 2009 TFL for task force *Particle, momentum and energy transport*

- RFX-mod scientific program is coordinated by Task Force Leaders in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)
- Experimental time appointed on the basis of scientific priorities and machine condition in order to optimize the experimental time
- I've been appointed task force leader for two subsequent years:
 - 2009 TFL for task force Particle, momentum and energy transport
 - 2010 TFL for task force *Physics integration for high* performance *RFP*

In 2011 I've been appointed as coordinator of the working group 3D field effects in edge and SOL and diagnostic development for the EFDA Transport-topical group

- In 2011 I've been appointed as coordinator of the working group 3D field effects in edge and SOL and diagnostic development for the EFDA Transport-topical group
- Monitoring and coordination of activities from 11 different European Associations

- In 2011 I've been appointed as coordinator of the working group 3D field effects in edge and SOL and diagnostic development for the EFDA Transport-topical group
- Monitoring and coordination of activities from 11 different European Associations
- Discussion stimulated through remote meetings and shared wiki pages information

- In 2011 I've been appointed as coordinator of the working group 3D field effects in edge and SOL and diagnostic development for the EFDA Transport-topical group
- Monitoring and coordination of activities from 11 different European Associations
- Discussion stimulated through remote meetings and shared wiki pages information
- Activities monitored and reported to STAC committee

Scientific objectives I

Using draft of JET 2013 work program the following scientific topics has to be pursued

Headline 2.2 Assess plasma scenario with regards to power loads, their mitigation and control

- Complete the characterization of the ELMs in ILW. Why do they seem *slower*? Is this related to different pedestal pressure/current profile?
- Determine the plasma flow response to RMPs highlighting differences with respect to collisionality. Can eventual differences account for different behavior with respect to collisionality?
- Determine the role of MHD islands in the density limit. Is radiative collapse really determined by density accumulation?

Headline 3.4 Confinement pedestal and ELM physics

Complete characterization of ILW pedestal.

Scientific objectives II

- Determine the reason for *cooler* pedestal.
 Different/enhanced thermal transport mechanism?
- If the pedestal is the result of a balance between $\omega_{E\times B}$ and turbulence determine flow profiles in ILW and compare with CW.
- Is there any correlation with a different SOL? Different neutral profiles determine different conditions at the separatrix?
- Why L-H power threshold is lower in ILW? Is it possible to relate it to the claimed relation between GAM/turbulence/flow?

Headline 3.5 MHD and fast particle physics

Establish the amount of fast-ion losses caused by RMP experiments