Kurzfassung Riemannsche Geometrie

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

Def. Eine topologische Mannigfaltigkeit (Mft) ist ein topologischer Raum M^m mit folgenden Eigenschaften:

• M^m ist **hausdorffsch**, d. h.

$$\forall x, y \in M^m : x \neq y \implies \exists U_x \otimes M^m : \exists U_y \otimes M^m : x \in U_x \land y \in U_y \land U_x \cap U_y = \emptyset.$$

• M^m erfüllt das **zweite Abzählbarkeitsaxiom**, d. h. es gibt eine abzählbare Menge $\{U_i \mid i \in \mathbb{N}\} \subset \mathcal{T}$, sodass

$$\forall A \circledcirc M^m \, : \, \exists \, K \subset \mathbb{N} \, : \, A = \bigcup_{k \in K} U_k.$$

• M^m ist lokal euklidisch, d. h. für alle $x \in M^m$ gibt es eine offene Umgebung U_x von x und einen Homöomorphismus $\phi: U_x \to \mathcal{O}$ mit $\mathcal{O} \subset \mathbb{R}^m$ offen.

Bemerkung. lokal euklidisch \Rightarrow hausdorffsch

Prop. Sei M eine topologische Mannigfaltigkeit. Dann gilt

M zusammenhängend $\iff M$ wegzusammenhängend.

Def. • Sei M eine m-dim. topol. Mft. Ein **Atlas** ist eine Menge $\mathcal{A} = \{(U_j, \phi_j : U_j \to \mathcal{O}_j) \mid j \in J\}$ mit $U_j \odot M$ und $\mathcal{O}_j \subset \mathbb{R}^n$ offen und Homöomorphismen ϕ_j , für die gilt $\bigcup_{j \in J} U_j = M$.

- Die Paare (U_j, ϕ_j) werden **Karten** genannt.
- Für je zwei Karten (U_j, ϕ_j) und (U_k, ϕ_k) gibt es eine Kartenwechselabbildung

$$\phi_{kj} := \phi_k \circ \phi_j^{-1}|_{\phi_j(U_j \cap U_k)} : \phi_j(U_j \cap U_k) \to \phi_k(U_j \cap U_k).$$

- Ein Atlas heißt differenzierbar, wenn alle Kartenwechselabbildungen C[∞]-Abbildungen sind.
- Ein Atlas \mathcal{A} heißt differenzierbare Struktur von M, wen gilt: Ist $(\tilde{U}, \tilde{\phi_j})$ eine Karte von M und $\tilde{\mathcal{A}} := \mathcal{A} \cup \{(\tilde{U}, \tilde{\phi_j})\}$ ein differenzierbarer Atlas, dann gilt $\mathcal{A} = \tilde{A}$.
- Eine topol. Mft versehen mit einer differenzierbaren Struktur heißt differenzierbare Mannigfaltigkeit.

Notation. Seien ab jetzt M^m und N^n differenzierbare M
ften der Dimensionen m und n

Def. • Eine Abbildung $f: M \to N$ heißt in $x \in M$ differenzierbar, wenn es eine Karte $(U_x, \phi: U_x \to \mathcal{O}) \in \mathcal{A}_M$ und eine Karte $(\tilde{U}_{f(x)}, \tilde{\phi}: \tilde{U}_{f(x)} \to \tilde{\mathcal{O}}) \in \mathcal{A}_N$ gibt, sodass

$$\tilde{\phi} \circ f|_{U_x} \circ \phi^{-1} : \mathcal{O} \to \tilde{\mathcal{O}}$$
 differenzierbar (\mathcal{C}^{∞}) ist.

• Die Abbildung f heißt **differenzierbar**, falls sie in jedem Punkt $x \in M$ differenzierbar ist.

Notation. $C^{\infty}(M,N) := \{f : M \to N \mid f \text{ ist differenzierbar}\}$

Bemerkung. Die Definition ist unabhängig von Wahl der Karten um x und f(x).

Def. Eine Abbildung $f: M \to N$ heißt **Diffeomorphismus**, wenn f ein Homöo ist und f und f^{-1} differenzierbar sind.

Def. Sei $p \in M$. Zwei Funktionen $f: U_p \to \mathbb{R}$ und $g: V_p \to \mathbb{R}$ mit $U_p, V_p \subset M$ heißen äquivalent, falls es eine offene Umgebung $W \subset U_p \cap V_p$ mit $f|_W = g|_W$ gibt. Die Äquivalenzklasse [f] bezüglich der so definierten Äq'relation heißt **Funktionskeim** in p.

Notation. $C^{\infty}(M, p) := \{[f] \mid [f] \text{ Funktionskeim in } p\}$

Bemerkung. Die Menge der Funktionskeime ist eine $\mathbb{R}\text{-}\mathrm{Algebra}.$

Def. Eine lineare Abb. $\delta:\mathcal{C}^\infty(M,p)\to\mathbb{R}$ heißt **Derivation**, falls

$$\forall [f], [g] \in \mathcal{C}^{\infty}(M, p) : \delta[f \cdot g] = \delta[f] \cdot g(p) + f(p) \cdot \delta[g].$$

Def. Der gewöhnliche Tangentialraum des \mathbb{R}^n im Punkt p ist

$$\tilde{T}_p \mathbb{R}^n := \{ (p, v) \mid v \in \mathbb{R}^n \}$$

 $\mathrm{mit}\ (p,v) + (p,w) \coloneqq (p,v+w)\ \mathrm{und}\ \lambda \cdot (p,v) \coloneqq (p,\lambda \cdot v).$

Def. Der Tangentialraum von M im Punkt $p \in M$ ist

$$T_pM := \{\partial : \mathcal{C}^{\infty}(\mathbb{R}^n, p) \to \mathbb{R} \mid \partial \text{ linear, derivativ} \}$$

Ein Element $v \in T_pM$ heißt Tangentialvektor an M in p.

Bemerkung. Wir erhalten eine Abbildung

$$T_p M \times \mathcal{C}^{\infty}(M, p) \to \mathbb{R}, \quad (v, [f]) \mapsto v.f := v[f].$$

Bemerkung. T_pM ist ein \mathbb{R} -Vektorraum.

Satz. Die Vektorräume $T_p\mathbb{R}^n$ und $\tilde{T}_p\mathbb{R}^n$ sind isomorph. Insbesondere gilt $\dim(T_p\mathbb{R}^n)=n$.

Korollar. Für eine m-dimensionale diff'bare Mft M gilt: $\dim(T_pM) = m$.

Bemerkung. Sei $c:(-\epsilon,\epsilon)\to M$ eine differenzierbare Kurve. Dann kann man $\dot{c}(0)$ auffassen als Tangentialvektor an M in c(0) mittels

$$\dot{c}(0)[f] := \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} (f \circ c).$$

Bemerkung. Sei (U, ϕ) eine Karte von M. Wir setzen

$$\frac{\partial^{\phi}}{\partial x_i}|_{p}[f] := (\phi^{-1} \circ \alpha_i) \cdot (0)[f] = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} (f \circ \phi^{-1} \circ \alpha_i)$$

mit $\alpha_i : (-\epsilon, \epsilon) \to U, \ t \mapsto \phi(p) + te_i.$

Wir erhalten $\frac{\partial^{\phi}}{\partial x_i}|_p \in T_p M$.

 $\textbf{Def.} \mbox{ Sei } f:M \rightarrow N$ diff'bar. Die Ableitung von f in $p \in M$ ist die Abbildung

$$T_p f = f_{*p}: T_p M \to T_{f(p)} N, \ v \mapsto f_{*p} v$$
 wobei $f_{*p}(v).[g] \coloneqq v.[g \circ f].$

Lemma. Sei M eine diff'bare Mft, $p \in M$. Dann gilt

- f_{*p} ist linear $(\mathrm{id}_M)_{*p} = \mathrm{id}_{T_pM}$
- $\bullet\,$ Kettenregel: Seien $N,\,P$ diff'bare Mften. Dann gilt

$$\forall p \in M : (f \circ g)_{*p} = f_{*g(p)} \circ g_{*p}.$$

Korollar. Wenn $f: M \to N$ ein Diffeomorphismus ist, dann ist $f_{*p}: T_pM \to T_{f(p)}N$ ein VR-Isomorphismus für alle $p \in M$.

 ${\bf Satz.}\,$ Sei Meine $m\text{-dimensionale Mft},\,p\in M$ und (U,ϕ) eine Karte.

- Es gilt $T_pM = \{\dot{c}(0) \mid c : (-\epsilon, \epsilon) \to M \text{ diff'bar}, c(0) = p\}$
- $\{\frac{\partial^{\phi}}{\partial n^i}|_p \mid i=1,...,n\}$ ist eine Basis von T_pM .

 $\mathbf{Def.}\ TM\coloneqq\bigcup_{p\in M}T_pM$ heißt Tangentialbündel von M. Die

Fußpunktabbildung ist die Projektion

$$\pi: TM \to M, v \in T_pM \mapsto p.$$

Def. Ein **Vektorfeld** auf M ist eine Abbildung $X: M \to TM$, sodass $\pi \circ X = \mathrm{id}_M$. Dies ist äquivalent zu $\forall p \in M: X(p) \in T_p(M)$.

Bemerkung. Sei $X: M \to TM$ ein Vektorfeld, (U, ϕ) eine Karte. Dann gibt es Funktionen $\xi^j: U \to \mathbb{R}, \ j=1,...,n$ mit

$$X(p) = \sum_{j=1}^{n} \xi^{j}(p) \frac{\partial^{\phi}}{\partial x^{j}}|_{p}$$
 für alle $p \in M$.

- **Def.** Ein Vektorfeld X auf M heißt in $p \in M$ **diff'bar** (\mathcal{C}^{∞}) , wenn es eine Karte (U, ϕ) um p gibt, sodass die Funktionen $\xi_1, ..., \xi^m$ diff'bar (\mathcal{C}^{∞}) sind.
- X heißt differenzierbar, wenn X in allen $p \in M$ diff'bar ist.

Lemma. Wenn die Koordinatenfunktionen $\xi^1,...,\xi^n$ für eine bestimmte Karte $(U,\phi:U\to\mathcal{O})$ differenzierbar sind, dann sind sie es für jede andere Karte $(\tilde{U},\psi:\tilde{U}\to\tilde{O})$ mit $\tilde{U}\subseteq U$.

Def. Sei M eine m-dimensionale diff'bare Mft mit diff'barer Struktur $\mathcal{A} = \{(U_j, \phi_j) \mid j \in J\}$. Dann ist TM eine 2m-dimensionale Mft mit Atlas $\tilde{\mathcal{A}} := \{(\tilde{U}_j := \pi^{-1}(U_j), \tilde{\Phi}_j) \mid j \in J\}$, wobei

$$\tilde{\Phi}_j: \pi^{-1}(U_j) \to \phi_j(U_j) \times \mathbb{R}^m, \quad \sum_{k=1}^m \xi^k(p) \frac{\partial^{\phi_j}}{\partial x^k}|_p \mapsto (\phi_j(p), \xi^1(p), ..., \xi^n(p)).$$

Eine Menge $V \subseteq TM$ heißt offen, wenn $\tilde{\Phi}_j(V \cap \pi^{-1}(U_j)) \subseteq \mathbb{R}^{2n}$ offen ist für alle $j \in J$.

Notation. $\chi(M) := \{ \text{ diff'bare Vektorfelder auf } M \}$

Bemerkung. $\chi(M)$ ist ein \mathbb{R} -VR und ein $\mathcal{C}^{\infty}(M)$ -Modul.

Lemma. Jedes $X \in \chi(M)$ induziert eine Abbildung

$$X: \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M), \quad \phi \mapsto X(\phi) := p \mapsto X(p).[\phi].$$

Die Abbildung X ist linear und derivativ.

Lemma. Seien $X, Y \in \chi(M)$ mit $\forall f \in C^{\infty}(M) : X(f) = Y(f)$. Dann gilt X = Y.

Lemma. Seien $X, Y \in \chi(M)$. Dann definiert

$$Z: \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M), f \mapsto X(Y(f)) - Y(X(f))$$

ein Vektorfeld auf M.

Def. Dieses Vektorfeld [X,Y] := Z wird als **Kommutator** oder **Lie-Klammer** von X und Y bezeichnet.

Def. Sei $X \in \chi(M)$. Eine diff'bare Kurve $c: (-\epsilon, \epsilon) \to M$ heißt **Integralkurve** von X, falls

$$\forall t \in (-\epsilon, \epsilon) : \dot{c}(t) = X_{c(t)}.$$

Lemma. Sei $X \in \chi(M), p \in M$ und $v \in T_pM$. Dann hat das Anfangswertproblem

$$\dot{c}(t) = X_{c(t)}, \ c(0) = p$$

eine eindeutige lokale Lösung $c=c_p^X:(-\epsilon,\epsilon)\to M.$

Def. Die Abbildung $\Phi_X : U \times (-\epsilon, \epsilon) \to M, \ (p, t) \mapsto c_p^X(t)$ heißt **Fluss** von X.

Def. Ein Vektorraum V mit einer bilinearen Abbildung $[-,-]:V\times V\to V,\ (v,w)\mapsto [v,w]$ heißt **Lie-Algebra**, falls

- die Abb. antisymmetrisch ist, d. h. $\forall v, w \in V : [v, w] = -[w, v]$
- die Jacobi-Identität erfüllt ist, d. h.

$$\forall v, w, z \in V : [v, [w, z]] + [z, [v, w]] + [w, [z, v]] = 0.$$

Bspe. • $(\chi(M), [-, -])$ ist eine Lie-Algebra.

• $\mathbb{K}^{n \times n}$ ist eine Lie-Algebra mit [A, B] := AB - BA.

Def. Eine Gruppe G, welche ebenfalls eine diff'bare Mft ist, heißt Lie-Gruppe, wenn gilt:

- $\mu: G \times G \to G$, $(g_1, g_2) \mapsto g_1 \cdot g_2$ ist diff'bar.
- $\iota: G \to G, \ g \mapsto g^{-1}$ ist diff'bar.

Bsp. Die allgemeine lineare Gruppe $\mathrm{GL}(n,\mathbb{R})\subset\mathbb{R}^{n\times n}\approx\mathbb{R}^{(n^2)}$ ist eine Lie-Gruppe. Die Differenzierbarkeit der Inversion folgt aus der Cramerschen Regel.

Def. Sei G eine Lie-Gruppe und $q \in G$. Dann sind

$$lg: G \to G, \quad x \mapsto g \cdot x = \mu(g, x)$$

 $rg: G \to G, \quad x \mapsto x \cdot g = \mu(x, g)$

Diffeomorphismen mit Umkehrabbildung $l(g^{-1})$ bzw. $r(g^{-1})$.

Bsp. Abgeschlossene Untergruppen von $\mathrm{GL}(n,\mathbb{R})$ sind Lie-Gruppen, z. B.

• $GL(n, \mathbb{C}) \subset GL(2n, \mathbb{R})$ • $O_n \subset GL(n, \mathbb{R})$ • $U_n \subset GL(2n, \mathbb{R})$

 $\mathbf{Def.}\,$ Sei $f:M\to N$ ein Diffeomorphismus und $X\in\chi(M).$ Dann ist

$$f_*X: N \to TN, \ x \mapsto f_{*f^{-1}(x)}X(f^{-1}(x))$$

Def. Ein Vektorfeld $X \in \chi(G)$ heißt linksinvariant, wenn gilt:

$$\forall g, h \in G : X(g \cdot h) = lg_{*h}X(h).$$

Kürzer: $\forall g \in G : lg_*X = X$.

Notation. $\mathcal{L}(G) := \{X \in \chi(G) \mid X \text{ ist linksinvariant}\} \subset \chi(G)$

Bemerkung. Ein linksinvariantes VF $X \in \chi(G)$ ist eindeutig bestimmt durch X(e). Andererseits: Ist $x \in T_eG$, dann gibt es ein linksinvariantes VF $X \in \chi(G)$ mit X(e) = x. Somit ist die Abbildung

$$i: \mathcal{L}(G) \to T_eG, \ X \mapsto X(e)$$

ein Vektorraum-Isomorphismus.

Lemma. Seien $X, Y \in \mathcal{L}(G)$. Dann ist $[X, Y] \in \mathcal{L}(G)$.

Korollar. $(\mathcal{L}(G), [-,-])$ ist eine dim(G)-dimensionale Unter-Lie-Algebra von $(\chi(G), [-,-])$.

Notation. $OJ := T_eG \cong \mathcal{L}(G)$

Def. Ein Skalarprodukt auf einem Vektorraum V ist eine symmetrische, positiv definite Bilinearform $\langle -, - \rangle$. Die davon induzierte Norm ist $||v|| := \sqrt{|\langle v, v \rangle|}$.

Def. Eine Riemannsche Metrik auf einer diff. Mft M ist eine Familie $g = (g_p)_{p \in M}$ von Skalarprodukten $g_p : T_pM \times T_pM \to \mathbb{R}$, die differenzierbar von p abhängt, d. h. für alle $X, Y \in \chi(M)$ ist $g(X,Y) : M \to \mathbb{R}, p \mapsto g_p(X(p),Y(p))$ differenzierbar (\mathcal{C}^{∞}) . Das Tupel (M,q) heißt Riemannsche Mannigfaltigkeit.

Bemerkung. Sei (U, ϕ) eine Karte von M. Setze

$$g_{ij}^{\phi}: U \to \mathbb{R}, \ p \mapsto g(\frac{\partial^{\phi}}{\partial x^{i}}|_{p}, \frac{\partial^{\phi}}{\partial x^{j}}|_{p}).$$

Seien $X = \sum_{i=1}^{n} v^{i} \frac{\partial^{\phi}}{\partial x^{i}}$ und $Y = \sum_{j=1}^{n} w^{j} \frac{\partial^{\phi}}{\partial x^{j}}$ zwei VF in U. Dann gilt

$$g(X,Y)(p) = g_p(X(p),Y(p)) = \sum_{i,j=1}^n v^i(p)w^j(p)g_{ij}(p).$$

Def. Seien (M, g_M) , (N, g_N) Riemannsche Mannigfaltigkeiten. Eine Abbildung $f: M \to N$ heißt Isometrie, wenn gilt:

- \bullet f ist ein Diffeomorphismus
- f erhält Riemannsche Metriken, d. h. für alle $X, Y \in \chi(M)$ gilt:

$$q_M(X,Y) = q_N(f_*X, f_*Y) \circ f$$

also
$$\forall p \in M : \forall v, w \in T_p M : g_{M,p}(v,w) = g_{N,f(p)}(f_{*p}(v), f_{*p}(w)).$$

Def. Sei (M, g) eine Riemannsche Mannigfaltigkeit. Dann ist

$$I(M,g) := \{f : M \to M \mid f \text{ Isometrie}\}\$$

in kanonischer Weise eine Lie-Gruppe (Myers-Steenrod).

Satz. Jede diff'bare Mannigfaltigkeit hat eine Riemannsche Metrik.

Bsp. Das Oberer-Halbraum-Modell des hyperbolischen Raum ist

$$H^n := \{x \in \mathbb{R}^n \, | \, \langle x, e_n \rangle_{\text{eukl}} > 0\} \ @ \ \mathbb{R}^n$$

mit dem offensichtlichen Atlas und der Riemannschen Metrik

$$g_p^{\mathrm{Hyp}}((p,\tilde{v}),(p,\tilde{w})) \coloneqq \frac{\langle \tilde{v},\tilde{w}\rangle_{\mathrm{eukl}}}{\langle p,e_n\rangle^2}.$$

Def. Eine diffbare Abbildung $f:M\to N$ zwischen diff'baren Mften heißt **Immersion**, falls $f_{*p}:T_pM\to T_{f(p)}N$ für alle $p\in M$ injektiv ist.

Def. Angenommen, N ist sogar eine Riemannsche Mft mit Metrik g_N . Dann erhalten wir eine Riemannsche Metrik auf M, die mit f zurückgeholte Metrik, durch

$$(f^*g_N)_p(v,w) := g_{N,f(p)}(f_{*p}(v), f_{*p}(w)).$$

Def. Eine Immersion $f:(M,g^M)\to (N,g^N)$ heißt **isometrisch**, falls $g^M=f^*g^N$.

Prop. Sei M eine zusammenhängende Mannigfaltigkeit. Dann gibt es für alle Punkte $p, q \in M$ einen stückweise differenzierbaren Weg $\gamma : [0, 1] \to M$ mit $\gamma(0) = p$ und $\gamma(1) = q$.

Def. Für $\gamma:[a,b]\to M$ stückweise \mathcal{C}^1 heißt

$$L(\gamma) := \int\limits_a^b \lVert \dot{\gamma}(au) \rVert \, \mathrm{d} au \quad \mathbf{Länge} \ \mathrm{von} \ \gamma.$$

Def. Sei (M, g) eine Riemannsche Mft. Dann ist der Riemannsche Abstand gegeben durch die Metrik

$$d_g: M \times M \to \mathbb{R}, \quad (p,q) \mapsto \inf\{L(\gamma) \mid \gamma : [a,b] \to M \text{ stückweise } \mathcal{C}^1$$

 $\min \gamma(a) = p \text{ und } \gamma(b) = q\}.$

Bemerkung. Nach dem Satz von Hopf-Rinow stimmt die von d_g induzierte Topologie mit der von M überein.

Def. Ein **Zusammenhang** (kov. Ableitung) ist eine Abb.

$$\nabla: \chi(M) \times \chi(M) \to \chi(M), \quad (X,Y) \mapsto \nabla_X Y$$

sodass für $X, X_1, X_2, Y, Y_1, Y_2 \in \chi(M)$ und $f \in \mathcal{C}^{\infty}(M)$ gilt:

- $\bullet \quad \nabla_{X_1+fX_2}Y = \nabla_{X_1}Y + f\nabla_{X_2}Y$
- $\nabla_X(Y_1 + Y_2) = \nabla_X Y_1 + \nabla_X Y_2$
- $\nabla_X(fY) = f(\nabla_X Y) + (X(f)) \cdot Y$ (Leibniz-Regel)

Def. Sei ∇ ein Zusammenhang auf M. Dann heißt

$$T^{\nabla}(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y],$$
 Torsion von ∇ .

Wen $T^{\nabla} = 0$, dann heißt ∇ torsionsfrei.

Def. Ein Zusammenhang ∇ auf einer riemannschen Mft. (M,g) heißt **metrisch**, wenn gilt:

$$q(\nabla_X Y, Z) + q(Y, \nabla_X Z) = Xq(Y, Z)$$

Theorem. Auf jeder Riem. Mft. (M, g) gibt es genau einen torisionsfreien, metrischen Zusammenhang. Für diesen gilt:

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) + q([X, Y], Z) + q([Z, X], Y) + q([Z, Y], X)$$

Def. Der eindeutige torsionsfreie und metrische Zusammenhang auf (M, g) heißt Levi-Civita-Zusammenhang auf (M, g).

Bemerkung. Sei (M,g) eine riemannsche Mft., (U,ϕ) eine Karte von M. Dann gibt es diff'bare Funktionen $\Gamma^k_{ij}:U\to\mathbb{R}$ für $i,j,k\in\{1,...,n\}$, sodass gilt

$$\nabla_{\left(\frac{\partial^{\phi}}{\partial x^{i}}\right)}\left(\frac{\partial^{\phi}}{\partial x^{j}}\right) = \sum_{k=1}^{n} \Gamma_{ij}^{k} \frac{\partial^{\phi}}{\partial x^{k}}.$$

Die Funktionen Γ_{ij}^k heißen Christoffel-Symbole von ∇ .

Lemma.
$$\left[\frac{\partial^{\phi}}{\partial x^{j}}, \frac{\partial^{\phi}}{\partial x^{k}}\right] = 0$$

Satz. Für die Christoffel-Symbole gilt

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{n} g^{kl} \left(\frac{\partial^{\phi}}{\partial x^{j}} g_{il} + \frac{\partial^{\phi}}{\partial x^{i}} g_{jl} - \frac{\partial^{\phi}}{\partial x^{l}} g_{ij} \right),$$

wobei

$$g_{ij}: U \to \mathbb{R}, \ p \mapsto g_p\left(\frac{\partial^{\phi}}{\partial x^i}(p), \frac{\partial^{\phi}}{\partial x^j}(p)\right)$$

 $g^{kl}: U \to \mathbb{R} \text{ definiert ist durch } \sum_{r=1}^n g^{jr} g_{rk} = \delta_k^j.$

 $\textbf{Def.}\,$ Sei ∇ ein Zusammenhang auf M. Dann heißt $X\in\chi(M)$ parallel, falls

$$\nabla X : \chi(M) \to \chi(M), \ Y \mapsto \nabla_Y X$$

gleich Null ist.

Def. Ein Tensorfeld vom Typ (j,k) mit $k \in \mathbb{N}$ und $j \in \{0,1\}$ ist eine Abbildung

$$T: \chi(M) \times ... \times \chi(M) \to \begin{cases} \mathcal{C}^{\infty}(M), & \text{falls } j = 0, \\ \chi(M), & \text{falls } j = 1, \end{cases}$$

die in jedem Argument linear ist.

Bspe. • $T^{\nabla}: \chi(M) \times \chi(M) \to \chi(M)$ ist Tensor vom Typ (1,2).

- $\nabla Y : \chi(M) \to \chi(M), \ X \mapsto \nabla_X Y \text{ ist Tensor vom Typ } (1,1).$
- Alternierende k-Formen auf \mathbb{R}^n sind Tensoren vom Typ (0, k).
- Riemannsche Metriken sind Tensorfelder vom Typ (0, 2).

Satz. Sei T ein Tensorfeld auf M vom Typ (j,k). Sei $p \in M$. Seien $X_1,...,X_k \in \chi(M)$. Dann hängt $T(X_1,...,X_k)(p)$ nur von $X_1(p),...,X_k(p)$ ab.

Bemerkung. Sei (U, ϕ) eine Karte von M und T ein Tensorfeld vom Typ (1, k) auf M. Dann gibt es Funktionen T_{i_1, \dots, i_k}^l , sodass

$$T(\frac{\partial^{\phi}}{\partial x^{i_1}}, ..., \frac{\partial^{\phi}}{\partial x^{i_k}}) = \sum_{l=1}^{n} T_{i_1, ..., i_k}^{l} \frac{\partial^{\phi}}{\partial x^{l}}.$$

Notation. $\nabla_v Y := (\nabla_X Y)(p)$ für $v \in T_p M$ und X ein VF mit $X_p = v$ (wohldefiniert).

Satz. Sei ∇ ein Zusammenhang auf M. Sei $p \in M$, $v \in T_pM$ und $Y, \tilde{Y} \in \chi(M)$. Falls für eine diff'bare Kurve $c : (-\epsilon, \epsilon) \to M$ gilt

$$c(0)=p, \ \dot{c}(0)=0 \ \text{und} \ \forall \, t\in (-\epsilon,\epsilon) \, : \, Y(c(t))=\tilde{Y}(c(t)),$$
dann gilt $\nabla_v Y=\nabla_v \tilde{Y}.$

Def. Ein **VF** längs einer Kurve $c: I \to M$ ist eine Abbildung

$$X: I \to TM$$
 mit $X(t) = X_t \in T_{c(t)}M$,

welche diff'bar ist, d. h. für alle $t_0 \in I$ existiert eine Karte (U, ϕ) um $c(t_0)$, sodass man schreiben kann

$$X(t) = \sum_{i=1}^{n} \xi^{i}(t) \frac{\partial^{\phi}}{\partial x^{j}}|_{c(t)} \quad \text{für alle } t \in c^{-1}(U)$$

mit diff'baren Funktionen $\xi^i: c^{-1}(U) \to \mathbb{R}$.

Bemerkung. X_t muss nicht Einschränkung eines VF auf M sein.

Notation. $\chi_c := \{ \text{ Vektorfelder längs } c \}$

Bemerkung. χ_c ist ein Modul über $\mathcal{C}^{\infty}(I,\mathbb{R})$.

Satz. Sei ∇ ein Zusammenhang auf M, sei $c:I\to M$ eine diff'bare Kurve. Dann gibt es eine eindeutige Abbildung

$$\frac{\nabla}{\mathrm{d}t} = \frac{D}{\mathrm{d}t} = \frac{D^{\nabla}}{\mathrm{d}t} : \chi_c \to \chi_c,$$

sodass für $X, \tilde{X} \in \chi_c, Y \in \chi(M)$ und $f \in \mathcal{C}^{\infty}(I, \mathbb{R})$ gilt:

- $\frac{D}{dt}(X + \tilde{X}) = \frac{D}{dt}X + \frac{D}{dt}\tilde{X}$,
- $\frac{D}{dt}(f \cdot X) = f \cdot \frac{D}{dt}X + f'X$,
- $\frac{D(Y \circ c)}{\mathrm{d}t} = \nabla_{\dot{c}} Y$.

Def. Die Abbildung $\frac{D}{\mathrm{d}t}$ heißt von ∇ induzierte kovariante Ableitung längs c.