MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

ABSTRACT. We prove a formula for the determinant of the principal minors of the distance matrix of a weighted tree. This generalizes a result of Graham and Pollak.

Contents

1. Introduction	1
1.1. Weighted trees	2
1.2. Previous work	2
1.3. Notation	3
2. Background	3
2.1. Trees and forests	3
2.2. Distance in trees	3
3. Proofs	3
4. Physical interpretation	7
4.1. Alternate proof	7
5. Examples	7
6. Further work	8
Acknowledgements	8
References	8

1. Introduction

Suppose G=(V,E) is a tree with n vertices. Let D denote the distance matrix of G. In [4], Graham and Pollak proved that

(1)
$$\det D = (-1)^{n-1} 2^{n-2} (n-1).$$

This identity is remarkable in that the result does not depend on the tree structure, beyond the number of vertices. The identity ($| 1 \rangle$ was motivated by a problem in data communication, and inspired much further research on distance matrices.

The main result of this paper is to generalize ($| 1 \rangle$ by replacing det D with any

The main result of this paper is to generalize (I) by replacing det D with any of its principal minors. For a subset $S \subset V(G)$, let D[S] denote the submatrix consisting of the S-indexed rows and columns of D.

thm:main

Theorem 1. Suppose G is a tree with n vertices, and distance matrix D. Let $S \subset V(G)$ be a nonempty subset of vertices. Then

eq:main

(2)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left((n-1) \kappa(G;S) - \sum_{\mathcal{F}_2(G;S)} (2 - \deg^o(F,*))^2 \right),$$

where $\kappa(G; S)$ is the number of S-rooted spanning forests of G, $\mathcal{F}_2(G; S)$ is the set of (S,*)-rooted spanning forests of G, and $\deg^o(F,*)$ denotes the outdegree of the *-component of F.

For definitions of (S,*)-rooted spanning forests and other terminology, see \Diamond **TODO**: cite section \Diamond . Note that the quantity $\deg^o(F,*)$ satisfies the bounds

$$1 \le \deg^o(F, *) \le |S|.$$

When S = V is the full vertex set, the set of V-rooted spanning forests is a singleton, consisting of the vertex set with no edges, so $\kappa(G; V) = 1$; and moreover the set $\mathcal{F}_2(G; V)$ of (V, *)-rooted spanning forests is empty. Thus (2) recovers the Graham-Pollak identity (1) when S = V.

1.1. Weighted trees. A weighted version of (I) was proved by Bapat–Kirkland–Neumann II. If $\{\alpha_e: e \in E\}$ is a collection of positive edge weights, the α -distance matrix D_{α} takes the distance along edge e to be α_e ; then

eq:w-full-det

$$\det D_{\alpha} = (-1)^{n-1} 2^{n-2} \sum_{e \in E} \alpha_e \prod_{e \in E} \alpha_e.$$

 $\det D_\alpha = (-1)^{n-1} 2^{n-2} \sum_{e \in E} \alpha_e \prod_{e \in E} \alpha_e.$ The weighted identity (II.I) reduces to (II) when taking all unit weights, $\alpha_e = 1$. We also prove the following weighted version of our main theorem.

thm:w-main

Theorem 2. Suppose G = (V, E) is a finite, weighted tree with edge weights $\{\alpha_e : A_e : A_e : A_e \}$ $e \in E$, and corresponding weighted distance matrix D_{α} . For any nonempty subset $S \subset V$, we have

eq:w-main

$$\det D_{\alpha}[S] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(T) - \sum_{\mathcal{F}_2(G;S)} k(F,*)^2 w(F) \right).$$

where $\mathcal{F}_1(G;S)$ is the set of S-rooted spanning forests of G, $\mathcal{F}_2(G;S)$ is the set of (S,*)-rooted spanning forests of G, w(T) and w(F) denote the α -weights of the forests T and F, and

eq:2-minus-deg

$$k(F,*) = 2 - \deg^o(F,*)$$

where $\deg^{o}(F, *)$ is the outdegree of the *-component of F, as above.

It is worth observing that depending on the chosen subset $S \subset V$, the distances appearing in the submatrix D[S] may ignore a large part of the ambient tree G. We could instead replace G by the subtree consisting of paths between vertices in equinain S, which we call $\operatorname{conv}(S,G)$, the *convex hull* of $S\subset G$. To apply formula (2) or (2) "efficiently," we should replace G with this convex hull $\operatorname{conv}(S,G)$. However, the formulas as stated are true even without this replacement due to cancellation of terms.

Corollary 3.

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{E(G)} \alpha_e - \frac{\sum_{\mathcal{F}_2(G/S)} w(F) k(F, *)^2}{\sum_{\mathcal{F}_1(G/S)} w(T)} \right).$$

 \Diamond add remark / theorem that det/cof is achieved as result of optimization problem \Diamond

We remark that the calculation of det D[S] is related to the following optimization problem: for $\mathbf{m} \in \mathbb{R}^S$,

optimize: $D[S]\mathbf{m}$

with constraints: $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 1$.

By the theory of Lagrange multipliers, the solution \mathbf{m}^* is the vector satsifying

$$D[S]\mathbf{m}^* = \lambda \mathbf{1}$$
 for some $\lambda \in \mathbb{R}$,

or equivalently $\mathbf{m}^* = \lambda(D[S]^{-1}\mathbf{1}).$

Theorem 4 (Monotonicity of principal minor ratios). Suppose G = (V, E) is a finite, weighted tree with distance matrix D.

(1) If $S \subset V(G)$ is nonempty,

$$0 \le \frac{\det D[S]}{\cot D[S]} \le \frac{1}{2} \sum_{E(G)} \alpha_e.$$

(2) If conv(S,G) denotes the subtree of G consisting of all paths between points of $S \subset V(G)$,

$$\frac{\det D[S]}{\operatorname{cof} D[S]} \leq \frac{1}{2} \sum_{E(\operatorname{conv}(S,G))} \alpha_e.$$

(3) If $A, B \subset V(G)$ are nonempty subsets with $A \subset B$, then

$$\frac{\det D[A]}{\cot D[A]} \le \frac{\det D[B]}{\cot D[B]}.$$

Theorem 5 (Nonsingular minors). Let G be a finite, weighted tree with distance matrix D, and let $S \subset V(G)$ be a subset of vertices. If $|S| \ge 2$ then $\det D[S] \ne 0$.

- 1.2. **Previous work.** A formula for the inverse matrix D^{-1} was found by Graham and Lovász in [3].
- 1.3. Notation. G a finite graph, loops and parallel edges allowed, possibly disconnected
 - E(G) edge set of G
 - V(G) vertex set of G
 - $\kappa(G)$ number of spanning trees of G
 - $\mathcal{F}_1(G)$ the set of spanning trees of G
 - $\mathcal{F}_2(G)$ the set of 2-component forests of G
 - $\mathcal{F}_1(G;S)$ the set of S-rooted spanning forests of G
 - $\mathcal{F}_2(G;S)$ the set of (S,*)-rooted spanning forests of G

2. Graph matrices

For background on enumeration problems for graphs and trees, see Moon [5]. Given a graph G = (V, E), let $L \in \mathbb{R}^{V \times V}$ denote the Laplacian matrix of G. If G is a weighted graph with edge weights $\alpha_e \in \mathbb{R}_{>0}$ for $e \in E$, let L denote the weighted Laplacian matrix of G.

Given $S \subset V$, let $L[\overline{S}]$ denote the matrix obtained from L by removing the rows and columns indexed by S.

For any graph G, let $\kappa(G)$ denote the number of spanning trees of G. The following theorem is due to Kirchhoff. For any graph G, let $\kappa(G)$ denote the number of spanning trees of G.

thm:matrix-tree

Theorem 6 (All-minors matrix tree theorem). Let G = (V, E) be a finite graph, and let L denote the Laplacian matrix of G. Then for any nonempty vertex set $S \subset V(G)$,

$$\det L[\overline{S}] = \kappa(G/S).$$

Note that $\kappa(G/S)$ is also the number of S-rooted spanning forests of G. The following result is due to Bapat–Siviasubramanian.

Theorem 7 (Distance matrix cofactor sums [2]). Given a tree G, let D be the distance matrix of G, and L the Laplacian matrix. Let $S \subset V(G)$ be a nonempty subset of vertices of G. Then

$$\operatorname{cof} D[S] = (-2)^{|S|-1} \det L[\overline{S}].$$

2.1. Distance in trees. Given an edge $e \in E$ and vertices $v, w \in V$, let

$$\delta(e; v, w) = \begin{cases} 1 & \text{if} \\ 0 & \text{if} \end{cases}.$$

Note that we can express the tree distance d(v, w) as a sum over edges

$$d(v,w) = \sum_{e \in E(G)} \delta(e;v,w) \quad \text{where } \delta(e;v,w) = \begin{cases} 1 & \text{if } e \text{ lies on } v \sim w \text{ path,} \\ 0 & \text{otherwise.} \end{cases}$$

- If we fix v and w, then $\delta(-; v, w) : E(G) \to \{0, 1\}$ is the indicator function for the unique v w path in G.
- On the other hand if we fix e and v, then the deletion $G \setminus e$ has two connected components, and $\delta(e; v, -) : V(G) \to \{0, 1\}$ is the indicator function for the component of $G \setminus e$ not containing v.

prop:distance-sum

Proposition 8.

$$d(v,w) = \sum_{e \in E} \ell(e) \delta(e;v,w).$$

2.2. Tree distance. For $e \in E$ and $v, w \in V$, let

$$\delta(e; v, w) = \begin{cases} 1 & \text{if } e \text{ separates } v \text{ from } w, \\ 0 & \text{otherwise.} \end{cases}$$

(Note that $\delta(e; v, v) = 0$ for any e and v.)

2.3. **Principal cuts.** Given a tree G = (V, E) and an edge $e \in E$, the edge deletion $G \setminus e$ contains two connected components. Using the implicit orientation on $e = (e^+, e^-)$, we let $(G \setminus e)^+$ denote the component that contains endpoint e^+ , respectively $(G \setminus e)^-$ and endpoint e^- .

For any $e \in E$ and $v \in V$, we let $(G \setminus e)^v$ denote the component of $G \setminus e$ containing v, respectively $(G \setminus e)^{\overline{v}} \diamondsuit$ or $(G \setminus e)^{-v} \diamondsuit$ for the component not containing v.

2.4. Outdegree of rooted forest. Given a rooted forest F in $\mathcal{F}(G; S)$ and $s \in S$, let F(s) denote the s-component of F. We define the outdegree $\deg^{o}(F, s)$ by

eq:outdeg

$$\deg^o(F,s) = \#\{e = (a,b) \in E : a \in F(s), \, b \not\in F(s)\}.$$

In words, $\deg^o(F, s)$ is the number of edges which connect the s-component of F to a different component.

 $\#\{e \in E : e \text{ connects the } s\text{-component of } F \text{ to a different component}\}\$

If F is a forest in $\mathcal{F}_2(G/S)$, let $\deg^o(F,*)$ denote the outdegree of the floating component.

lem:outdeg-sum

Lemma 9. Suppose G is a tree and $H \subset G$ is a (nonempty) connected subgraph. Then

$$\sum_{v \in V(H)} (2 - \deg(v)) = 2 - \deg^{o}(H).$$

Proof. This is straightforward to check by induction on |V(H)|, with base case |V(H)| = 1: if $H = \{v\}$ consists of a single vertex, then $\deg^o(H) = \deg(v)$.

2.5. **Spanning trees and forests.** A spanning tree of a graph G is a subgraph which is connected, has no cycles, and contains all vertices of G. A spanning forest of a graph G is a subgraph which has no cycles and contains all vertices of G.

Given a set of vertices $S = \{v_1, v_2, \dots, v_k\}$, an S-rooted spanning forest of G is a spanning forest which has exactly one vertex v_i in each connected component. An (S,*)-rooted spanning forest of G is a spanning forest which has |S|+1 components, where |S| components each contain one vertex of S, and the additional component is disjoint from S. We call the component disjoint from S the "floating component."

Let

$$\kappa_k(v_1|v_2|\cdots|v_k)$$

denote the number of k-component spanning trees which have a vertex v_i in each component. If $S = \{v_1, \ldots, v_k\}$, then $\kappa_k(v_1|\cdots|v_k) = \kappa(G/S)$.

If u, v, w are vertices, then let

$$\kappa_2(uv|w)$$

denote the number of two-forests which have u, v in one component and w in the other component.

Example 10. Suppose G is the tree with unit edge lengths shown below.

Let S be the set of three leaf vertices. Then $\mathcal{F}_1(G;S)$ contains 11 forests, while $\mathcal{F}_2(G;S)$ contains 19 forests. These are shown in Figures ??? and ??, respectively.

fig:1-forests

FIGURE 2. Forests in $\mathcal{F}_2(G;S)$.

fig:2-forests

3. Proofs

In this section we prove Theorem 2.

Outline of proof: given a subset $S \subset V$ and distance submatrix D[S], we will

- (i) Find vector $\mathbf{m} \in \mathbb{R}^S$ such that $D[S]\mathbf{m} = \lambda \mathbf{1} \in \mathbb{R}^S$.
- (ii) Compute the sum of entries of \mathbf{m} , i.e. $\mathbf{1}^{\mathsf{T}}\mathbf{m}$.
- (iii) Using (i), note the identity

$$\mathbf{1}^\intercal \mathbf{m} = \lambda (\mathbf{1}^\intercal D[S]^{-1} \mathbf{1}) = \lambda \frac{\operatorname{cof} D[S]}{\det D[S]}.$$

where $\operatorname{cof} D[S]$ is the sum of cofactors of D[S].

(iv) Use known expression for cof D[S] to compute

$$\det D[S] = \lambda(\operatorname{cof} D[S]) \left(\mathbf{1}^{\mathsf{T}}\mathbf{m}\right)^{-1}.$$

The interesting part of this expression will turn out to be in the constant λ .

Example 11. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding submatrix of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}.$$

Following the steps outlined above:

(i) The vector
$$\mathbf{m} = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$
 satisfies $D[S]\mathbf{m} = (a+b+c)\mathbf{1}$

- (ii) The sum of entries of \mathbf{m} is $\mathbf{1}^{\intercal}\mathbf{m} = 2$.
- (iii) We have

$$2 = \mathbf{1}^{\mathsf{T}} \mathbf{m} = \lambda (\mathbf{1}^{\mathsf{T}} D[S]^{-1} \mathbf{1}) = \lambda \frac{\operatorname{cof} D[S]}{\det D[S]}.$$

(iv) The cofactor sum cof D[S] is -8abc, so the determinant is

$$\det D[S] = \lambda \frac{\cot A}{\mathbf{1}^{\mathsf{T}} \mathbf{m}} = (a + b + c)(-8abc) \frac{1}{2} = -4(a + b + c)abc.$$

3.1. Warmup case: S = V.

Proposition 12. Let G = (V, E) a tree, and consider the vector $\mathbf{m} \in \mathbb{R}^V$ defined by

$$\mathbf{m}_v = 2 - \deg v$$
 for each $v \in V$.

Then
$$\mathbf{1}^{\mathsf{T}} \mathbf{m} = \sum_{v \in V} (2 - \deg v) = 2.$$

Proof. For any graph,
$$\sum_{v \in V} \deg v = 2|E|$$
. Since G is a tree, $|E| = |V| - 1$.

prop:m-distance-warmup

Proposition 13. Let \mathbf{m} be the vector defined above, and let D be the distance matrix of G. Then $D\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. It suffices to show that for each edge e, with endpoints (e^+, e^-) , we have

$$(D\mathbf{m})_{(e^+)} = (D\mathbf{m})_{(e^-)}$$

We compute

$$(D\mathbf{m})_{(e^+)} - (D\mathbf{m})_{(e^-)} = \sum_{v \in V} (d(v, e^+) - d(v, e^-))(2 - \deg v)$$
$$= \sum_{v \in (G \setminus e)^-} \alpha_e (2 - \deg v) - \sum_{v \in (G \setminus e)^+} \alpha_e (2 - \deg v)$$

eq:12-1

since

$$d(v, e^+) - d(v, e^-) = \begin{cases} \alpha_e & \text{if } v \text{ is closer to } e^- \text{ than } e^+, \\ -\alpha_e & \text{if } v \text{ is closer to } e^+ \text{ than } e^-. \end{cases}$$

 \lozenge TO DO: define notation $(G \setminus e)^{\pm} \diamondsuit$ For each sum in $(\P^{eg:12-1}, W^{eg:12-1})$ we apply Proposition \diamondsuit cite \diamondsuit to obtain

$$\alpha_e \sum_{v \in (G \setminus e)^-} (2 - \deg v) = \alpha_e (2 - \deg^o((G \setminus e)^-)) = \alpha_e.$$

The same identity applies to the sum over $(G \setminus e)^+$, so $(D\mathbf{m})_{(e^+)} = (D\mathbf{m})_{(e^-)}$ as desired.

3.2. General case: $S \subset V$. Fix a tree G = (V, E) and a subset $S \subset V$.

dfn:m-vector

Definition 14. Let $\mathbf{m} = \mathbf{m}(G; S) \in \mathbb{R}^S$ be defined by

eq:m-vector

$$\mathbf{m}_v = \sum_{T \in \mathcal{F}_1(G;S)} 2 - \deg^o(T,v)$$
 for each $v \in S$.

where $\deg^o(T,v)$ is the outdegree of the v-component of T, (??).

Let 1 denote the all-ones vector.

Proposition 15. For **m** defined above, $\mathbf{1}^{\intercal}\mathbf{m} = 2 \kappa(G; S)$.

Proof. We have

$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = \sum_{s \in S} \mathbf{m}_s = \sum_{s \in S} \left(\sum_{T \in \mathcal{F}_1(G;S)} 2 - \deg^o(T,s) \right)$$
$$= \sum_{T \in \mathcal{F}_1(G;S)} \left(\sum_{s \in S} \sum_{v \in T(s)} 2 - \deg(v) \right)$$
$$= \sum_{T \in \mathcal{F}_1(G;S)} \left(\sum_{v \in V} 2 - \deg(v) \right) = \sum_{T \in \mathcal{F}_1(G;S)} 2.$$

In the second line we apply Lemma ?? and exchange the outer summations. To obtain the third line, we observe that the vertex sets of T(s) for $s \in S$ form a partition of V, since T is an S-rooted spanning forest. Finally we again apply Lemma ?? for the last equality, as $\deg^o(G) = 0$.

Theorem 16. With $\mathbf{m} = \mathbf{m}(G; S)$ defined as in (P, P), $D[S]\mathbf{m} = \lambda \mathbf{1}$ for the constant

$$\lambda = \sum_{\mathcal{F}_1(G;S)} w(T) \sum_{E(G)} \alpha_e - \sum_{\mathcal{F}_2(G;S)} w(F) (2 - \deg^o(F,*))^2$$

where $\deg^{o}(F, w)$ is the out-degree of the w-component of F (as a spanning forest).

Proof. For $e \in E$ and $v, w \in V$, let

$$\delta(e; v, w) = \begin{cases} 1 & \text{if } e \text{ separates } v \text{ from } w, \\ 0 & \text{otherwise.} \end{cases}$$

For any $v \in S$, we have

$$(D[S]\mathbf{m})_{v} = \sum_{s \in S} d(v, s)\mathbf{m}_{s}$$

$$= \sum_{s \in S} \left(\sum_{e \in E(G)} \alpha_{e} \,\delta(e; v, s)\right) \left(\sum_{T \in \mathcal{F}_{1}(G; S)} w(T)(2 - \deg^{o}(T, s))\right)$$

$$= \sum_{e \in E} \alpha_{e} \sum_{T \in \mathcal{F}_{1}} w(T) \sum_{s \in S} (2 - \deg^{o}(T, s)) \delta(e; v, s)$$

$$= \sum_{e} \alpha_{e} \sum_{T} w(T) \sum_{s \in S \cap (G \setminus e)^{\overline{v}}} (2 - \deg^{o}(T, s)).$$

eq:14-1

where $S(G \setminus e)^{\overline{v}} = \{s \in S : e \text{ separates } v \text{ from } s\}$

 $S^*(e, v) = \{s \in S : e \text{ lies on path from } v \text{ to } s\}.$

 \lozenge MOVE TO REMARK? If $e \in \text{conv}(G,S)$, then $S(G \setminus e)^{\overline{v}}$ is nonempty and \diamondsuit We have

$$\sum_{s \in S(G \setminus e)^{\overline{v}}} (2 - \deg^o(T, s)) = \begin{cases} 1 & \text{if } e \not\in T, \\ 1 - (2 - \deg^o(T \setminus e, *)) & \text{if } e \in T(s'), \ s' \in S(G \setminus e)^{\overline{v}}, \\ 1 + (2 - \deg^o(T \setminus e, *)) & \text{if } e \in T(s'), \ s' \in S(G \setminus e)^v \end{cases}$$

Here $T \setminus e$ is a forest in $\mathcal{F}_2(G; S)$, and $\deg^o(T \setminus e, *)$ refers to the out-degree of the "floating" component of $T \setminus e$. These cases correspond to

$$(G \setminus e)^{\overline{v}} = \begin{cases} \bigcup_{s \in S(G \setminus e)^{\overline{v}}} T_s & \text{if } e \notin T, \\ \left(\bigcup_{s \in S(G \setminus e)^{\overline{v}}} T_s\right) \cup (T \setminus e)_* & \text{if } e \in T_{s'}, \, \delta(e; v, s') = 0 \\ \left(\bigcup_{s \in S(G \setminus e)^{\overline{v}}} T_s\right) \setminus (T \setminus e)_* & \text{if } e \in T_{s'}, \, \delta(e; v, s') = 1. \end{cases}$$

From (??) we have

$$(D[S]\mathbf{m})_v = \sum_{e \in E} \sum_{T \in \mathcal{F}_1} \alpha_e w(T) (1 - f(v, e, T))$$

where

$$f(v,e,T) = \begin{cases} 0 & \text{if } e \not\in T \\ 2 - \deg^o(T \setminus e,*) & \text{if } e \in T(s') \text{ for some } s' \in S, \, \delta(e;v,s') = 0 \\ -(2 - \deg^o(T \setminus e,*) & \text{if } e \in T(s') \text{ for some } s' \in S, \, \delta(e;v,s') = 1 \end{cases}$$

Thus

$$(D[S]\mathbf{m})(v) - \sum_{e \in E} \sum_{T \in \mathcal{F}_1} \alpha_e w(T) = -\sum_{T \in \mathcal{F}_1} \sum_{e \in T \setminus T(S^*)} \alpha_e w(T)(2 - \deg^o(T \setminus e, *))$$
$$+ \sum_{T \in \mathcal{F}_1} \sum_{e \in T(S^*)} \alpha_e w(T)(2 - \deg^o(T \setminus e, *))$$

If $e \in T$, the deletion $T \setminus e$ is an (S, *)-rooted spanning forest of G, so we may rewrite the above expression in terms of $\mathcal{F}_2(G; S)$.

$$(1) = -\sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{T \in \mathcal{F}_1} \sum_{e \in T \setminus T(S^*)} \mathbb{1}(F = T \setminus e)$$
$$+ \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{T \in \mathcal{F}_1} \sum_{e \in T(S^*)} \mathbb{1}(F = T \setminus e)$$

Next, we note that $F = T \setminus e$ is equivalent to $T = F \cup e$, and in particular this only occurs when we choose $e \in \partial(F, *)$:

$$(1) = -\sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{e \in \partial F(*)} \mathbb{1}(\delta(e; v, F(*)) = 1)$$
$$+ \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{e \in \partial F(*)} \mathbb{1}(\delta(e; v, F(*)) = 0)$$

Here we let $\delta(e; v, F_*)$ denote

$$\delta(e; v, F_*) = \begin{cases} 0 & \text{if} \\ 1 & \text{if} \end{cases}$$

Finally, we observe that for any forest F in $\mathcal{F}_2(G; S)$, there is exactly one edge e in the boundary $\partial(F, *)$ of the floating component which satisfies $\delta(e; v, F(*)) = 1$, namely the unique boundary edge on the path from F(*) to v. Thus

$$\#\{e \in \partial F(*) : \delta(e; v, F(*)) = 1\} = 1$$

and

$$\#\{e \in \partial(F,*) : \delta(e;v,F(*)) = 0\} = \deg^{o}(F,*) - 1$$

Thus

$$(1) = -\sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *))(1)$$

$$+ \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *))(\deg^o(F, *) - 1)$$

$$= -\sum_{F \in \mathcal{F}_2(G/S)} w(F)(2 - \deg^o(F, *))^2.$$

as desired.

Figure 3. Components rooted in $S(G \setminus e)^{\overline{v}}$.

FIGURE 4. Components rooted in $S(G \setminus e)^{\overline{v}}$.

Remark 17. The set $\mathcal{F}_2(G; S)$ of (S, *)-rooted spanning forests of G can be partitioned into two types: "active" and "inactive".

$$\mathcal{F}_2(G/S) = \mathcal{F}_2^{in}(G/S) \sqcup \mathcal{F}_2^{out}(G/S),$$

where

$$\mathcal{F}_2^{in}(G/S) = \{ F \in \mathcal{F}_2(G/S) \text{ such that } \deg^o(*, F) \ge 2 \},$$

$$\mathcal{F}_2^{out}(G/S) = \{ F \in \mathcal{F}_2(G/S) \text{ such that } \deg^o(*, F) = 1 \}.$$

Remark 18. For a given spanning forest $F \in \mathcal{F}_2(G/S,*)$, there are exactly $\deg^o(F,*)$ choices of pairs $(T,e) \in \mathcal{F}_1(G/S) \times E(G)$ such that $F = T \setminus e$. Consider the map

$$E(G) \times \mathcal{F}_1(G/S) \to \mathcal{F}_2(G/S) \sqcup \{\text{error}\}$$

defined by ...

$$(e,T) \mapsto \begin{cases} T \setminus e & \text{if } e \in T, \\ \text{error} & \text{if } e \notin T. \end{cases}$$

For a forest F in $\mathcal{F}_2(G/S)$, the preimage under this map has $\deg^o(F,*)$ elements.

Proposition 19. Let G = (V, E) be a tree, and $S \subset V$. Suppose we label $S = \{s_1, \ldots, s_r\}$ and $V \setminus S = \{t_1, \ldots, t_{n-r}\}$. For each $t_i \in V \setminus S$, consider $\mathbf{f}_i \in \mathbb{R}^V$ defined by

Example 20. If

$$D[S \cup t] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}$$

then

$$\begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \begin{bmatrix} ab+ac+bc \\ -bc \\ -ac \\ -ab \end{bmatrix} = \begin{bmatrix} -3abc \\ -abc \\ -abc \\ -abc \end{bmatrix}$$

4. Physical interpretation

If we consider G as a network of wires with each edge containing a unit resistor, which is grounded at all nodes in S, then \mathbf{m}_S records the currents flowing to S when current is added on $V \setminus S$ in the amount $2 - \deg v$ for each $v \notin S$.

4.1. Alternate proof. Let 1 denote the all-ones vector. When we choose a subset $S \subset V(G)$, we no longer have a single "obvious" replacement for **m** inside \mathbb{R}^S . Instead, we can take an average over S-rooted spanning forests.

In the outline above, our first goal is to find a "special" vector $\mathbf{m} \in \mathbb{R}^S$ satisfying $D[S]\mathbf{m} = \lambda \mathbf{1}$. We can approach this first goal as follows: consider \mathbb{R}^S inside the larger vector space $\mathbb{R}^V = \mathbb{R}^S \oplus \mathbb{R}^{V \setminus S}$, and we wish to find vectors $\mathbf{n}_i \in \mathbb{R}^V$ satisfying $\pi_S(D\mathbf{n}_i) = \lambda_i \mathbf{1}$. By finding sufficiently many such vectors \mathbf{n}_i , we can hope to find a linear combination that lies inside $\mathbb{R}^S \oplus \{0\}$.

prop:n-vector

Proposition 21. Suppose $v \in V \setminus S$. For each $s_j \in S$, let $\mu(v, s_j) = current$ flowing to s_j when unit current enters G at v and G is grounded at S. Explicitly,

$$\mu(v,s) = \frac{\# \ of \ S\text{-rooted spanning forests of } G \ whose \ s_{j}\text{-component contains } v}{\# \ of \ S\text{-rooted spanning forests of } G}$$

$$= \frac{\sum_{\mathcal{F}_{1}(G/S)} \mathbb{1}(v \in T(s))}{\kappa(G/S)}$$

$$= \frac{\kappa_{r}(s_{1}|\cdots|s_{j}v|\cdots|s_{r})}{\kappa_{r}(s_{1}|\cdots|s_{r})}$$

Consider the vector $\mathbf{n} = \mathbf{n}(G; S, v) \in \mathbb{R}^V$ defined by

$$\mathbf{n}_v = 1, \quad \mathbf{n}_s = -\mu(v, s) \text{ if } s \in S, \quad \mathbf{n}_w = 0 \text{ if } w \notin S \cup v$$

Then $D\mathbf{n}$ is constant on S, i.e. $\pi_S(D\mathbf{n}) = \lambda \mathbf{1}$ for some λ .

Proof sketch. For any $s, s' \in S$, consider tracking value of $D\mathbf{n}$ along path from s to s'. The value of $D\mathbf{n}$ changes according to current flow in the corresponding network, i.e. $D\mathbf{n}$ records electrical potential. By assumption S is grounded, so $D\mathbf{n}$ takes the same value at s and s'.

Theorem 22. Let G be a tree, S a nonempty subset of vertices, and D[S] the corresponding submatrix of the distance matrix. Suppose $\mathbf{m} = \mathbf{m}(G; S) \in \mathbb{R}^S$ is defined by (???);

$$\mathbf{m}(G; S)_v = \sum_{T \in \mathcal{F}_1(G; S)} \sum_{w \in T_v} (2 - \deg w) = \sum_{T \in \mathcal{F}_1(G; S)} 2 - \deg^o(T, v).$$

Then $D[S]\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. Note that

$$\mathbf{m}(G; S) = \kappa(G/S) \left(\sum_{v \in V} (2 - \deg v) \delta(v) - \sum_{v \in V \setminus S} (2 - \deg v) \mathbf{n}(G; S, v) \right)$$
$$= \kappa(G; S) \left(\mathbf{m}(G; V) - \sum_{v \in V \setminus S} (2 - \deg v) \mathbf{n}(G; S, v) \right)$$

♦ TODO: elaborate on this equation ♦ From Proposition ?? we know that $D\mathbf{m}(G;V)$ is constant on V, and from Proposition ?? we know that $D\mathbf{n}(G;S,v)$ is constant on S. Hence by linearity, $D\mathbf{m}(G;S)$ is constant on S.

5. Examples

Example 23. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding minor of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -a & a & a \\ b & b & -b & b \\ c & c & c & c & -c \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -2a & 0 & 0 \\ b & 0 & -2b & 0 \\ c & 0 & 0 & -2c \end{bmatrix}.$$

The determinant is

$$\det D[S] = -4(a+b+c)abc.$$

Example 24. Suppose Γ is a tripod with lengths a, b, c and corresponding leaf vertices u, v, w.

Let $S = \{u, v, w\}$. Then

$$D[S] = \begin{bmatrix} 0 & a+b & a+c \\ a+b & 0 & b+c \\ a+c & b+c & 0 \end{bmatrix}.$$

and

$$\det D[S] = 2(a+b)(a+c)(b+c) = 2((a+b+c)(ab+ac+bc) - abc).$$

The "special vector" that satisfies $D[S]\mathbf{m} = \lambda \mathbf{1}$ in this example is

$$\mathbf{m}^{\mathsf{T}} = \begin{bmatrix} a(b+c) & b(a+c) & c(a+b) \end{bmatrix}.$$

Example 25. Suppose Γ is the tree with unit edge lengths shown below, with five leaf vertices.

Let S denote the set of five leaf vertices. Then

$$D[S] = \begin{bmatrix} 0 & 2 & 3 & 3 & 3 \\ 2 & 0 & 3 & 3 & 3 \\ 3 & 3 & 0 & 2 & 2 \\ 3 & 3 & 2 & 0 & 2 \\ 3 & 3 & 2 & 2 & 0 \end{bmatrix}.$$

Forests in $\mathcal{F}_1(G;S)$:

Forests in $\mathcal{F}_2(G;S)$:

and

$$\det D[S] = 368 = (-1)^4 2^3 \left(6 \cdot 11 - (3 \cdot 1^2 + 2 \cdot 2^2 + 1 \cdot 3^2) \right)$$

Example 26. Suppose Γ is the tree with unit edge lengths shown below, with five leaf vertices and three internal vertices.

Let S denote the set of five leaf vertices. Then

$$D[S] = \begin{bmatrix} 0 & 2 & 3 & 4 & 4 \\ 2 & 0 & 3 & 4 & 4 \\ 3 & 3 & 0 & 3 & 3 \\ 4 & 4 & 3 & 0 & 2 \\ 4 & 4 & 3 & 2 & 0 \end{bmatrix}$$

and

$$\det D[S] = 864 = (-1)^4 2^3 \left(7 \cdot 21 - \left(14 \cdot 1^2 + 4 \cdot 2^2 + 1 \cdot 3^2\right)\right)$$

6. Further work

See [6].

ACKNOWLEDGEMENTS

The authors would like to thank Ravindra Bapat for helpful discussion.

References

bapat-kirkland-neumann

bapat-sivasubramanian

graham-lovasz

graham-pollak

moon

richman-shokrieh-wu

R. Bapat, S. J. Kirkland, and M. Neumann. On distance matrices and Laplacians. *Linear Algebra Appl.*, 401:193–209, 2005.

- [2] R. B. Bapat and S. Sivasubramanian. Identities for minors of the Laplacian, resistance and distance matrices. *Linear Algebra Appl.*, 435(6):1479–1489, 2011.
- [3] R. L. Graham and L. Lovász. Distance matrix polynomials of trees. Adv. in Math., 29(1):60–88, 1978
- [4] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell System Tech. J., 50:2495–2519, 1971.
- [5] J. W. Moon. Counting labelled trees. Canadian Mathematical Monographs, No. 1. Canadian Mathematical Congress, Montreal, Que., 1970. From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver, 1969).

[6] D. H. Richman, F. Shokrieh, and C. Wu. Capacity on metric graphs, 2022. in preparation.