Algorytmy Numeryczne Zadanie 1. Sumowanie szeregów potęgowych

Agnieszka Harłozińska 253994

1. Wprowadzenie

Celem zadania była implementacja programu obliczającego wartość funkcji sin(x) na cztery następujące sposoby:

- sumowanie elementów szeregu potęgowego obliczane za pomocą wzoru Taylora w kolejności od początku
- sumowanie elementów szeregu potęgowego obliczane za pomocą wzoru Taylora w kolejności od końca
- sumowanie elementów szeregu potęgowego od początku obliczając każdy kolejny wyraz na podstawie poprzedniego
- sumowanie elementów szeregu potęgowego od końca obliczając każdy kolejny wyraz na podstawie poprzedniego

2. Podejście do zagadnienia

- Zadanie zostało wykonane przy użyciu języka Python.
- Operacje zostały wykonane dla 10^6 argumentów w przedziale $[-\pi; \pi]$.
- Błędy zostały obliczone na podstawie porównania z wynikiem funkcji **sin** z biblioteki math.

3. Analiza problemu

Na podstawie otrzymanych wyników zweryfikowano następujące hipotezy: H1: sumowanie od końca daje dokładniejsze wyniki niż sumowanie od początku

Wykres 1. Błąd względny badanych metod w zależności od argumentu funkcji.

Dane na powyższym wykresie zostały zagregowane w zakresie [-2,83; 2,83]. Na podstawie wykresu można stwierdzić, że sumowanie elementów od końca (tzn. od mniejszych wyrazów) daje dokładniejsze wyniki niż w przypadku sumowania od początku, jednak ta hipoteza nie potwierdza się dla większych argumentów (przedział 1 i 18).

H2: używając rozwinięcia wokół 0 (szereg MacLaurina), przy tej samej liczbie składników szeregu dokładniejsze wyniki uzyskujemy przy małych argumentach

Wykres 2. Wartości błędów w metodach sumujących wyrazy od końca.

Wykres 3. Wartości błędów dla metoda sumujących wyrazy od początku.

Błąd dla argumentów w okolicach - π oraz π jest o kilka rzędów większy w porównaniu z małymi argumentami, zwłaszcza w okolicach zera. Z tego powodu skrajne przedziały nie zostały zaprezentowane na wykresach. Ujmując problem w skali całego okresu funkcji sinus – można zgodzić się z hipotezą H2. Jednak przyglądając się wynikom w bliższym otoczeniu argumentu x=0 na wykresach 2 i 3 hipoteza ta zostaje potwierdzona tylko w przypadku metod sumujących elementy od końca.

H3: sumowanie elementów obliczanych na podstawie poprzedniego daje dokładniejsze wyniki niż obliczanych bezpośrednio ze wzoru.

W oparciu o przedstawione powyżej wykresy 1, 2 oraz 3 można potwierdzić tę hipotezę, ponieważ wartości błędów są mniejsze w przypadku zliczania sumy na podstawie poprzedniego wyrazu.

Q1: Jak zależy dokładność obliczeń (błąd) od liczby sumowanych składników?

Dokładność obliczeń jest tym większa im większa jest liczba sumowanych składników.

W przypadku funkcji sin(x) składniki sumy szeregu Taylora są na zmianę dodatnie i ujemne, a także malejące co do wartości bezwzględnej, a zatem każdy kolejny składnik powoduje zmniejszenie błędu.

Q2: Ile składników należy sumować, aby otrzymać dokładność 10^{-6} w zależności od argumentu? Dla małych argumentów wystarczy zsumować około 6 składników, w przypadku większych argumentów adekwatne przybliżenie otrzymamy dla około 10, ponieważ wtedy silnia znajdująca się w mianowniku osiąga wynik rzędu milionów.

Nr przedziału	Zakres wartości
1	[-2,83; -2,51]
2	[-2,51; -2,20
3	[-2,20; -1,88]
4	[-1,88; -1,57]
5	[-1,57; -1,26]
6	[-1,26; -0,96]
7	[-0,94; -0,63]
8	[-0,63; -0,31]
9	[-0,31; 0,00]
10	[0,00; 0,31]
11	[0,31; 0,63]
12	[0,63; 0,94]
13	[0,94; 1,26]
14	[1,26; 1,57]
15	[1,57; 1,88]
16	[1,88; 2,20]
17	[2,20; 2,51]
18	[2,51; 2,83]

Tabela 1. Zakresy wartość przedziałów argumentu x dla wykresów 1, 2, 3.