# Construction of Wireless Propogation Model

Submitted By: Deepali Mittal(153050016) Achala Bhati(153050056)

## Aim of Project

 Construction of wireless propogation model (outdoor) using large number of signal strength measurements.

### Steps of Experiment

- Take 2 laptops to make one as transmitter and other one as reciever.
- Create Wifihotspot in laptop 1 to make it as Transmitter.
- Install Wireshark in laptop 2.
- Put laptop 2 in monitor mode using command
  - sudo ifconfig wlan0 down
  - 2) sudo iwconfig wlan0 mode monitor

## Steps of Experiment(cont..)

- We can put laptop 2 in monitor mode directly using Wireshark without any commands i.e. modifying the properties of the wlan0 interface.
- We performed experiment in the main ground(Outdoor) of IIT Bombay Campus.
- We got transmitter power using the command iwconfig (which was 15dbm in our case)
- Then We also maintained the clear line of site between Transmitter and the receiver.

## Steps of Experiment(Cont..)

- Experiment was performed at distances ranging from 1 to 20m.
- Packets were captured on receiver side for various distance for 1-2min each.
- On all captured pcap files we filter the entries based on our transmitter's SSID (i.e. deepali in our case).
- We use command to get signal strength at receiver side

```
tshark -r 1.pcapng -Y "wlan_mgt.ssid eq deepali" -T fields -e radiotap.dbm antsignal -E separator=/t
```

## Steps of Experiment(cont..)

- Command Explaination:
- Options :
  - 1. -r: name of input pcap file
  - 2. -R: to specify filter
  - 3. -T: output format
  - 4. -e: to specify required field
  - 5. -E: to specify field print option

## Steps of Experiment(cont..)

- Now We got 'output' files containing the Received Signal Strength corresponding to every captured pcap file.
- An Awk script 'awks.awk' was executed on every 'output' to get average Received Signal Strength at different distances:

```
BEGIN{sum=0; c=0;avg=0;}
{ sum=sum+$1;c=c+1;}
END{avg=sum/c; print avg;}
```

## Result of Experiment

| Distance(Meters) | Received Signal Strength(in dBm) |
|------------------|----------------------------------|
| 1                | -22.2722                         |
| 2                | -27.0757                         |
| 4                | -40.9587                         |
| 7                | -49.1674                         |
| 10               | -54.8534                         |
| 12               | -56.3859                         |
| 15               | -57.98                           |
| 18               | -58.0825                         |
| 20               | -58.1932                         |

#### Plot of Measurements Taken



According to simplified path loss model:

$$P_r = P_t K(d/d_0)^{\gamma}$$

where,

P<sub>r</sub>: Received Power

P<sub>t</sub>: Transmitter Power

K: path Gain

d: distance between transmitter and receiver

d<sub>0</sub>: reference distance, i.e. 1 meter

```
• K=P_r(dBm) - P_t(dBm)

so we can calculate K at d=d_0=1m

P_r (at 1 m)= -22.2722 dBm

P_t=15 dBm

so K=-37.2722 dBm
```

For Received Power in dBm
 P<sub>r</sub>(dBm)=P<sub>t</sub>(dBm)+K- 10Ylog<sub>10</sub>(d/d<sub>0</sub>)

| Sno. | Distance<br>(m) | RSSI(dBm) | Observed P <sub>r</sub> -P <sub>t</sub> | Calculated P <sub>r</sub> -P <sub>t</sub> (in terms of Y) |
|------|-----------------|-----------|-----------------------------------------|-----------------------------------------------------------|
| 1    | 1               | -22.2722  | -37.2722                                | -37.2722 + 0.000Y                                         |
| 2    | 2               | -27.0757  | -42.0752                                | -37.2722 - 3.01Y                                          |
| 3    | 4               | -40.9587  | -55.9587                                | -37.2722 - 6.02Y                                          |
| 4    | 7               | -49.1674  | -64.1674                                | -37.2722 - 8.45Y                                          |
| 5    | 10              | -54.8534  | -69.8534                                | -37.2722 - 10Y                                            |
| 6    | 12              | -56.3859  | -71.3859                                | -37.2722 - 10.791Y                                        |
| 7    | 15              | -57.98    | -72.98                                  | -37.2722 - 11.76Y                                         |
| 8    | 18              | -58.0825  | -73.0825                                | -37.2722 - 12.55Y                                         |
| 9    | 20              | -58.1932  | -73.1932                                | -37.2722<br>-13.01Y                                       |

 In order to calculate Y value we will take mean sqaure Error.

Error = Observed – Calculated

MSE is:

 $(7168.6271 + 798.2088Y^2 - 4769.6278Y)/10$ 

Y is calculated by differentiating this value w.r.t.

Y, which is 2.9877.