Lecture 6: OLS asymptotics and further issues

Topics we'll cover today

- Asymptotic consistency of OLS
- Lagrange multiplier test
- Data scaling
- Predicted values with logged dependent variables
- Interaction terms

Consistency

$$n \rightarrow \infty$$

$$bias \rightarrow 0$$

- Consistency is a more relaxed form of unbiasedness. An estimator may be biased, but as n approaches infinity, it may be consistent (or unbiased in the limit).
- Consistency of the OLS slope estimate requires a relaxed version of MLR4
 - Each x_i is uncorrelated with u

Inconsistency

$$n \to \infty$$

$$b i a s \to |c| > 0$$

If any x_j is correlated with u, each slope estimate is biased, and increasing sample size does not eliminate bias, so the slope estimates are inconsistent as well.

- MLR6 assumes that the error term is distributed normally, allowing us to perform t-tests and Ftests on the estimated parameters.
- In practice, the actual distribution of the error term has a lot to do with the distribution of the dependent variable. In many cases, with a highly non-normal dependent variable, the error term is nowhere near normally distributed.
- But . . .

If assumptions MLR1 through MLR5 hold,

$$n \to \infty$$

$$\hat{\beta}_{j} \sim N(\beta_{j}, se(\hat{\beta}_{j}))$$

$$(\hat{\beta}_{j} - \beta_{j}) / se(\hat{\beta}_{j}) \sim N(0,1)$$

$$se(\hat{\beta}_{j}) \cong c_{j} / \sqrt{n}$$

This means that t and F tests are valid as sample size increases. Also, the standard error will decrease proportional the increase in the square root of the sample size.

If assumptions MLR1 through MLR5 hold,

$$n \to \infty$$

$$\widehat{\beta}_{j} \sim N(\beta_{j}, se(\widehat{\beta}_{j}))$$

$$(\widehat{\beta}_{j} - \beta_{j}) / se(\widehat{\beta}_{j}) \sim N(0,1)$$

$$se(\widehat{\beta}_{j}) \cong c_{j} / \sqrt{n}$$

- We are not invoking MLR6 here. We make no assumption about the distribution of the error terms.
- This means that as n approaches infinity, our parameters are normally distributed.

- But how close to infinity do we need to get before we can invoke the asymptotic properties of OLS regression?
- Some econometricians say 30. Let's say above 200, assuming you don't have too many regressors.
- Note: Reviewers in criminology are typically not sympathetic to the asymptotic properties of OLS!

Lagrange Multiplier test

- In large samples, an alternative to testing multiple restrictions using the F-test is the Lagrange multiplier test.
 - 1. Regress *y* on restricted set of independent variables
 - 2. Save residuals from this regression
 - Regress residuals on unrestricted set of independent variables.
 - 4. R-squared times *n* in above regression is the Lagrange multiplier statistic, distributed chi-square with degrees of freedom equal to number of restrictions being tested.

Lagrange Multiplier test example

- Does ethnicity/race, age, delinquency frequency, school attachment, income and antisocial peers explain any variation in high school gpa?
- We will compare to a model that only includes male, middle school gpa and math knowledge.
- . reg hsgpa male msgpa r mk

Source	SS 	df 	MS		Number of obs F(3, 6570)	= 6574 = 2030.42
Model Residual + Total	1488.67547 1605.6756	3 496 6570 .24	.225156 4395069 		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.4811
hsgpa		Std. Err.			[95% Conf.	-
male msgpa r_mk _cons	1341638 .4352299 .1728567 1.554284	.012397 .0081609 .0074853 .0257374	-10.82 53.33 23.09 60.39	0.000 0.000 0.000	158466 .4192319 .1581832 1.50383	1098616 .4512278 .1875303 1.604738

Lagrange Multiplier test example

df

Source

SS

. reg residual male hisp black other agedol dfreq1 schattach msgpa r mk income1 antipeer

Number of ohs =

6574

MS

= 65/4 = 29.76	F(11, 6562)		MS	ai 	55	Source
= 0.0000			704584	11 6.93	76.3075043	Model
= 0.0475			064325	5562 .233	1529.3681	Residual
= 0.0459 = .48277	Adj R-squared Root MSE		283524	5573 .244	1605.6756	Total
Interval]	 [95% Conf.	P> t	t	Std. Err.	Coef.	residual
.0008316	0473701	0.058	-1.89	.0122943	0232693	male
0258337	0941806	0.001	-3.44	.0174325	0600072	hisp
1103024	1702753	0.000	-9.17	.0152967	1402889	black
.0083386	0647844	0.130	-1.51	.0186507	0282229	other
001086	0199273	0.029	-2.19	.0048056	0105066	agedol
.0006606	0012153	0.562	-0.58	.0004785	0002774	dfreq1
.0279176	.0153702	0.000	6.76	.0032003	.0216439	schattach
0100504	0421005	0.001	-3.19	.0081747	0260755	msgpa
0257445	0560411	0.000	-5.29	.0077274	0408928	r_mk
1.52e-06	8.96e-07	0.000	7.55	L.60e-07	1.21e-06	income1
0085559	0248953	0.000	-4.01	.0041675	0167256	antipeer
.2392106	0509776	0.204	1.27	.0740153	.0941165	cons

Lagrange Multiplier test example

```
. di "This is the Lagrange multiplier statistic:",e(r2)*e(N)
This is the Lagrange multiplier statistic: 312.42022
. di chi2tail(8,312.42022)
9.336e-63
```

- Null rejected.
- The degrees of freedom in either the restricted or unrestricted model plays no part on the test statistic. This is because the test relies on large sample properties.
- The residual from the first regression represents variation in high school gpa not explained by the first three variables (sex, middle school gpa and math knowledge).
- The second regression shows us whether the excluded variables can explain any variation in the dependent variable that the included variables couldn't.

In-class exercise

Do questions 1 through 4

Data scaling and OLS estimates

- If you multiply y by a constant c
 - the coefficients are multiplied by c
 - \circ SST, SSR, SSE are multiplied by c^2
 - RMSE multiplied by c
 - R-squared, F-statistic, t-statistics, p values unchanged
 - If you have really small coefficients that are statistically significant, multiply your dependent variable by a constant for ease of interpretation.
- If you add a constant c to y
 - Intercept changes by same amount.
 - Nothing else changes.

Data scaling and OLS estimates

- If you multiply x_i by a constant c
 - the coefficient β_i , se(β_i), CI(β_i) are divided by c
 - Nothing else changes
- If you add a constant c to x_i
 - Intercept reduces by $c^*\beta_i$
 - Standard error and confidence interval of intercept changes as well.
 - Nothing else changes.

Predicted values with logged dependent variables

It is incorrect to simply exponentiate the predicted value from the regression with the logged dependent variable. The error term must be taken into account:

$$\hat{y} = \exp(\hat{\sigma}^2 / 2) \cdot \exp(\log yhat)$$

- Where σ^2 (hat) is the mean squared error of the regression.
- Even better, where alpha hat is the expected value of the exponentiated error term:

$$\hat{y} = \hat{\alpha}_0 \cdot \exp(\log yhat)$$

Predicted values with logged dependent variables

- Alpha hat can be estimated two different ways.
 - Take the average of the exponentiated residuals ("smearing estimate", I kid you not)
 - Regress y on the expected value of log(y) from the initial regression (no constant). The slope estimate is an estimate of alpha.
- Example of smearing estimate in ceosal1.dta:

Predicted values with logged dependent variables, example

reg lsalary lsales

Source	SS	df		MS		Number of obs	
Model Residual	14.0661688 52.6559944	1 207		661688 376785		F(1, 207) Prob > F R-squared	= 0.0000 = 0.2108
Total	66.7221632	208	.320	779631		Adj R-squared Root MSE	= 0.2070 = .50430
lsalary	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
lsales _cons	.2566717 4.821997	.0345		7.44 16.72	0.000	.1886224 4.253538	.3247209 5.39045

- . gen wronghat=exp(4.821997+.2566717*lsales)
- summ wronghat

Variable	Obs	Mean	Std. Dev.	Min	Max
wronghat	209	1079.71	292.9326	467.755	2370.687

Predicted values with logged dependent variables, example

- . predict resid, r
- . gen expresid=exp(resid)
- . summ expresid

Variable	Obs	Mean	Std. Dev.	Min	Max
expresid	209	1.199045	1.364334	.3640822	16.63112

- . gen righthat2=1.199045*exp(4.821997+.2566717*lsales)
- . summ righthat2

Variable	Obs	Mean	Std. Dev.	Min	Max
righthat2	209	1294.621	351.2394	560.8593	2842.561

Another way to obtain an estimate of alpha-hat:

. reg lsalary sales

Source	SS	df		MS		Number of obs		209 17.79
Model Residual	5.27916955 61.4429937	1 207		7916955 5826056		F(1, 207) Prob > F R-squared Adj R-squared	= =	0.0000 0.0791 0.0747
Total	66.7221632	208	.320	779631		Root MSE	=	.54482
lsalary	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
sales _cons	.000015 6.84665	3.55e .045		4.22 152.14	0.000	7.98e-06 6.757927		. 000022 . 935373

. predict p

(option xb assumed; fitted values)

. gen ep=exp(p)

. reg salary ep, noc

Source	SS	df		MS		Number of obs	=	209
						F(1, 208)	=	176.55
Model	337331623	1	337	331623		Prob > F	=	0.0000
Residual	397426261	208	1910	703.18		R-squared	=	0.4591
						Adj R-squared	=	0.4565
Total	734757884	209	3515	587.96		Root MSE	=	1382.3
	•							
salary	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
ep	1.158517	.0871	.908	13.29	0.000	.9866264	1	.330408

In-class exercise

Do questions 5 and 6

Assumption #0: Additivity

- This assumption, usually unstated, implies that for each X_j, the effect is constant regardless of the values other independent variables.
- If we believe, on the other hand, that the effect of X_j depends on values of some other independent variable X_k, then we estimate an interactive (non-additive) model

Interactive model, non-additivity

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 X_2) ... + \beta_k X_k + u$$

- In this model, the effects of X₁ and X₂ on Y are no longer constant.
- The effect of X_1 on Y is $(\beta_1 + \beta_3 X_2)$
- The effect of X_2 on Y is $(\beta_2 + \beta_3 X_1)$

Interactive model, non-additivity

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 X_2) ... + \beta_k X_k + u$$

- This drastically changes the meaning of β_1 and β_2
- β_1 is now the effect of X_1 on Y when X_2 equals zero.
- β_2 is now the effect of X_2 on Y when X_1 equals zero.
- If X_2 never equals zero in your sample, β_1 is meaningless!
- If X_1 never equals zero in your sample, β_2 is meaningless!
- Do not interpret the magnitude of β_3 by itself. It is interpreted in combination with either β_1 or β_2 .
- If β₃ is statistically significant, it means that the effect of X₁ on Y depends on X₂, or that the effect of X₂ on Y depends on X₁, or both.

Non-additivity example: Hay & Forrest 2008

Figure 1. Opportunity as an Hypothesized Moderator of the Relationship Between Low Self-Control and Crime

Table 2. Results for OLS Regressions of Crime on Low Self-Control, Opportunity, and the Interaction between the Two

	Unsupervised Time from Home (Mother)	Unsupervised Time from Home (Child)	Time with Peers	Adult Absence		
Intercept	62 (.37)	59 (.37)		65 (.37)		
Age	.06** (.03)	.06** (.03)	.07** (.03)	.07** (.03)		
Male	.11** (.05)					
Black	.08 .10 (.06) .07	.07 .12** (.06) .08	.09 .14** (.06) .09	.10 .14** (.06) .09		
Hispanic	04 (.06)	05 (.06)	02 (.06)	01 (.06)		
Parental attachment		03 10** (.04)		.00 13*** (.04)		
Deviant peer pressure	13 .79*** (.16)		3 6	13 .83*** (.17)		
Low self-control	.11*** (.03)	, ,	3 6	.27		
Opportunity	.16 .08*** (.02) .12	.19 .11*** (.03) .16	.03 (.02) .05	.17 .06** (.03) .10		
Low self-control ×	.09*** (.03)	.06* (.03)	.02 (.02)	.05 (.04)		
opportunity	.15	.09	.03	.08		
N (Clusters)	749 (692)	743 (686)	744 (687)	740 (683)		
R^2	.240	.253	.226	.222		
F-test for R ² differences ^a	22.79***	7.15***	.87	4.58**		

NOTES: Unstandardized coefficients and robust standard errors (in parentheses) are shown in the top row, and standardized coefficients are shown in the bottom row.

^aThe F-test is computed by comparing the R-squared in these equations to the R-squared that was obtained in the table 1 equations that do not contain the interactions (Bohrnstedt and Knoke, 1988: 414).

^{*}p < .06; **p < .05; ***p < .01.

Non-additivity example: Hay & Forrest 2008

- The standardized coefficients in the first column can be interpreted as follows:
 - On average (when opportunity=0, the average), a 1 standard deviation decrease in self-control is associated with a .16 s.d. increase in crime
 - But for those with 1 s.d. less unsupervised time, a 1 s.d. decrease in self-control is associated with a .01 s.d. increase in crime
 - And for those with 1 s.d. more unsupervised time, a 1 s.d. decrease in self-control is associated with a .31 s.d. increase in crime.
- Or, we could focus on the standardized effect of unsupervised time, with self-control as a moderator:
 - .12 on average, for those with average self-control
 - -.03 for those with 1 s.d. higher self-control
 - .27 for those with 1 s.d. lower self-control

Non-additivity: interaction terms

- Interpretation of the main effects in non-additive models is easier if 0 has a substantive meaning for both variables in the interaction term.
- Wooldridge (p. 197) notes that if we would like the main effects to have specific meanings, we can subtract particular values from X₁ and X₂ before multiplying them.

Non-additivity: interaction terms

- To determine if interaction term adds to explanation, look at t-statistic for interaction term, or conduct F-test for restricted/unrestricted models.
- Hay and Forrest used an r-squared version of the restricted/unrestricted F-test. It's equivalent.
- In general, in order to interpret interaction effects, you have to plug in interesting values for the X₂ term and see how the effect on X₁ changes, or vice versa. Either that, or learn how to use the margins command.

In-class exercise

Do questions 7 through 9

Next time:

Homework 7 Problems C4.10, C5.2, C5.3, C6.4i, ii, iii, C6.6i, ii, iii, iv

Read: Wooldridge Chapter 7