北京一七一中 2015-2016 学年度第一学期 初二数学期中考试试题

- 一、选择题(每题3分)
- 1. 下列四个汽车标志图中, 不是轴对称图形的是

- 2. 计算 3⁻³ 的结果是
 - A. -9
- B. -27
- C. $\frac{1}{27}$
- D. $-\frac{1}{27}$

- 3. 下列说法中,正确的是
 - A. 16 的算术平方根是 -4
 - C. 1 的立方根是±1
- 4. 下列各式中,正确的是

$$A. \quad \frac{1+b}{a+2b} = \frac{1}{a+2}$$

C.
$$\frac{a+1}{a-1} = \frac{a^2-1}{(a-1)^2}$$

- B. 25 的平方根是 5
- D. -27的立方根是-3

B.
$$\frac{a-2}{a^2-4} = \frac{1}{a-2}$$

D.
$$\frac{-1-b}{a} = \frac{1-b}{a}$$

- 5. 下列说法中正确的是
 - A. 两条对角线相等的四边形是矩形
 - B. 两条对角线互相垂直的四边形是菱形
 - C. 两条对角线互相垂直且相等的四边形是正方形
 - D. 两条对角线互相平分的四边形是平行四边形
- 6. 如右图,在 $\triangle ABC$ 中, $\angle C=90^{\circ}$,AB 的垂直平分线 MN分别交 AC,AB 于点 D,E.若 $\angle CBD$: $\angle DBA=3:1$,则 $\angle A$ 为

- A. 18°
- B. 20°
- C. 22.5°
- D. 30°
- 7. 如图,菱形 ABCD 中,E、F 分别是 AB、AC 的中点,若 EF = 3,则菱形 ABCD 的周长是

- B. 16
- C. 20
- D. 24
- 8. 如图,将正方形 OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1, $\sqrt{3}$),则点 C 的坐标为

- B. $(-\sqrt{3}, 1)$
- C. (-2, 1)
- D. (-1, 2)

9. 如图,矩形 AOBC 中,点 A 的坐标为 (0, 8),点 D 的纵坐标为 (0, 8),若将矩形沿直线 (0, 8),点 (0, 8) 的纵坐标为 (0, 8),点 (0, 8) 的级坐标为 (0, 8) 的级坐标为 (0, 8) 的级平均,是 (0, 8) 的级平均,是

- A. 30
- B. 32
- C. 34
- D. 16
- 10. 如图,AD 是 $\triangle ABC$ 的角平分线,DE ,DF 分别是 $\triangle ABD$ 和 $\triangle ACD$ 的高,得到下列四个结论:
 - \bigcirc OA = OD;
- ② $AD \perp EF$
- ③当 $\angle A = 90^{\circ}$ 时,四边形 AEDF 是正方形
- (4) AE + DF = AF + DE, 其中正确的是
- A. ②③
- B. 24
- C. (1)(3)(4)
- D. 234
- 二、填空题(每题3分)
- 11. 函数 $y = \sqrt{2-x}$ 中自变量 x 的取值范围是
- 12. 在 \Box ABCD中, \angle A=70°, \angle D=_____.
- 13. 比较大小: 2√3_____√13.
- 14. 计算: $\frac{1}{x-1} \frac{x}{x-1} = \underline{\hspace{1cm}}$
- 15. 课间时,学生小宇看见教室里的一根长 25 分米的旗竿倒在墙角(如图),竿足距墙底端 15 分米,于是他顺手将旗竿扶正,合旗竿的顶端上升了 4 分米,那么竿足将移动____分米.

16. 如图,在 $\triangle ABC$ 中, $\angle ACB$ = 90°,以它的各边向外作三个正方形,面积分别是 S_1 , S_2 , S_3 ,已知 S_1 = 35 , S_3 = 100 ,则 S_2 = ______.

17. 如图,已知 $S_{\triangle ABC}=8\mathrm{m}^2$,AD 平分 $\angle BAC$,且 $AD\perp BD$ 于点 D,则 $S_{\triangle ADC}=$ _______m^2.

18. 如图,图中的方格均是边长为 1 的正方形,每一个正方形的顶点都称为格点,图①~⑥ 这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为"内空格点多边形".

- (1) 当内空格点多边形边上的格点数为 10 时,此多边形的面积为______;
- (2)设内空格点多边形边上的格点数为L,面积为S,请写出用L表示S的关系式_____.
- 三、解答题(19题8分, 20-24题每题5分, 25题6分, 26题7分)
- 19. 因式分解

(1)
$$3a^3b - 12ab^3$$

(2)
$$ax^2 - 8ax + 16a$$

20. 化简求值

已知
$$x = \frac{1}{2}$$
, $y = -2$, 求代数式 $(x+2y)^2 - (x-2y)(x+2y)$ 的值.

21. 已知:如图,CB = DE, $\angle B = \angle E$, $\angle BAE = \angle CAD$. 求证: $\angle ACD = \angle ADC$.

22. $A \times B \times C \times D$ 在同一条直线上,且 AB = CD , AE // DF , AE = DF . 求证: 四边形 EBFC 是平行四边形.

- 23. 如图所示的网格中,每个小网格都是边长为 1 的正方形,每个小正方形的顶点叫格点, $\triangle ABC$ 的顶点都在格点上,在 AC 的延长线上取一点 D , D 也在格点上,并连接 BD .
 - (1) 如果 AC = CD,则 $\triangle ABD$ 是 三角形;
 - (2) 如果 $\triangle ABD$ 是以BD 为底的等腰三角形,求 $\triangle ABD$ 的周长.

- 24. 高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的 3 倍,同样行驶 690km,高速铁路列车比普通铁路列车少运行了 4.6h,求高速铁路列车的平均速度.
- 25. 如图, $\angle ABC = 90^{\circ}$,AB = 6cm,AD = 24cm,BC + CD = 34cm,C 是直线 l 上一动点,请你探索当 C 离 B 多远时, $\triangle ACD$ 是一个以CD 为斜边的直角三角形?

- 26. (1) 如图 1, $\triangle ABC$ 与 $\triangle ADE$ 均是顶角为 40° 的等腰三角形, BC 、 DE 分别是底边, 求证: BD = CE;

 - (3) 拓展探究

如图 3, $\triangle ACB$ 和 $\triangle DCE$ 均为等腰直角三角形, $\angle ACB = \angle DCE = 90^{\circ}$,点 $A \setminus D \setminus E$ 在同一直线上,CM 为 $\triangle DCE$ 中 DE 边上的高,连接 BE ,请判断 $\angle AEB$ 的度数 及线段 CM 、AE 、BE 之间的数量关系,并说明理由.

27. 阅读材料:

我们知道,分子比分母小的分数叫做真分数,分子比分母大或分子与分母相等的分数叫做假分数,类似地,如果一个分式的分子的次数低于分母的次数,我们把这样的分式叫做真分式,否则,称为假分式.

一个假分数可以表示为一个整数与一个真分数的和的形式,类似地,一个假分式也可以表示为一个整式与一个真分式的和的形式.

将假分式 $\frac{x^4+x^2-3}{x^2-1}$ 表示为一个整式与一个真分式的和的形式,可以利用下面的方法.

解: 由题意, 可设
$$\frac{x^4+x^2-3}{x^2-1}=M+\frac{N}{x^2-1}$$
.

则 $x^4 + x^2 - 3 = M(x^2 - 1) + N$, 其中 M 为关于 x 的二次式, N 为关于 x 的一次式或常数,

不妨设
$$M = x^2 + ax + b$$
, $N = cx + d$,则

$$x^4 + x^2 - 3 = (x^2 + ax + b)(x^2 - 1) + (cx + d)$$
.

整理得 $x^4 + x^2 - 3 = x^4 + ax^3 + bx^2 - x^2 - ax + cx - b + d$.

当 $x^2-1\neq 0$,对于任意x,上述等式均成立.

所以
$$\begin{cases} a=0 \ , \\ b-1=1 \ , \\ -a+c=0 \ , \\ -b+d=-3 \ , \end{cases}$$
 解得 $a=0$, $b=2$, $c=0$, $d=-1$.即 $M=x^2+2$, $N=-1$.

所以
$$\frac{x^4 + x^2 - 3}{x^2 - 1} = (x^2 + 2) - \frac{1}{x^2 - 1}$$
. 这样,假分式 $\frac{x^4 + x^2 - 3}{x^2 - 1}$ 就可以表示为整式 $(x^2 + 2)$ 与

真分式 $-\frac{1}{x^2-1}$ 的和的形式.

解答问题:

- (1) 将分式 $\frac{-x^4 6x^2 + 8}{-x^2 + 1}$ 表示为一个整式与一个真分式的和的形式;
- (2) 设分式 $\frac{5x+6}{3x-1}$ 的值为 y , 求 y 的取值范围.