

Interconnexion de Réseaux

André-Luc BEYLOT ENSEEIHT Département Sciences du Numérique

PLAN GENERAL

- Introduction Générale et modèle OSI
- Interconnexion de Réseaux Télécoms
- Illustration Réseaux Téléphoniques : du RTC à la VoIP
- Interconnexion de Réseaux Locaux : G. Jakllari
- La vision Internet : J. Fasson
- MPLS : E. Chaput

Interconnexion de Systèmes Ouverts

- Années 70: Grands constructeurs : annonce d'architecture (IBM : SNA System Network Architecture ...)
 - Risque de monopole
- Définition d'une architecture normalisée internationale ISO faite par l'OSI Organisation des Standards Internationaux
- DEFINITION d'une architecture de réseau :

C'est un Modèle de Référence pour décrire tous les moyens physiques et logiques nécessaires à la mise en place de communications entre machines distantes

Caractéristiques Générales

C'EST UN MODELE HIERARCHIQUE :

Pour diminuer la complexité de conception, Modèle hiérarchisé en couches ou niveaux

Modèle OSI: 7 couches

- Architecture = Spécification de l'ensemble de ces niveaux ou couches
- 1 couche N
 - Gère le dialogue avec une entité homologue sur une autre machine
 - Propose des services à la couche (N+1) par l'intermédiaire d'une INTERFACE de SERVICE

Service

- Primitive de service = Fonction précise demandée par 1 niveau à 1 autre
- Services = {primitives}
- Entité = Regroupement d'un ensemble de primitives réalisant tout ou partie du service
- 4 types de primitives de service :
 - ◆ Requête : (N+1) vers (N)
 - Indication: (N) vers (N+1)
 - ◆ Réponse : (N+1) vers (N)
 - Confirmation: (N) vers (N+1)
- 1 service = 2 ou 4 primitives (éventuellement 1)

Exemples de Service

- Mise en place de connexion : 4 primitives
 EXEMPLE : Connexion Téléphonique
- Envoi de données : 2 primitives
- Fermeture de Connexion : 2 primitives

Protocole

- Ensembles des règles précisant les échanges valides entre entités paires
- Unité de données de protocole (PDU) = Message circulant entre entités de même niveau
- Message descend la hiérarchie en respectant les définitions des interfaces
- Il peut être
 - modifié (compression, cryptage),
 - fragmenté, ajout d'en-tête et d'en-queue
- et Remonte la hiérarchie sur machine distante

Point d'accès au Service (SAP)

Guichet permettant à une entité d'en appeler une autre

- Les données échangées entre niveau N+1 et N s'appellent des SDU (Service Data Unit) - N-SDU
- On y ajoute des informations de contrôle du protocole N pour créer une N-PDU

Modèle OSI

- Séparation des fonctions de base en groupes homogènes
- Minimisation des échanges entre couches
- Nombre de couches suffisamment :
 - grand : pour éviter que des fonctions très différentes soient dans une même couche
 - petit : pour que le système reste gérable
- Modèle en 7 couches

Schéma Général en 7 Couches

Sous-Réseau de communication

Problèmes Communs (à plusieurs niveaux)

- Utilisation d'un mode connecté vs. Non connecté
- Multiplexage/Démultiplexage
- Adressage
- Fragmentation/Réassemblage
- Concaténation-groupage/Dégroupage
- Contrôle d'erreur/perte
- Contrôle de flux
- Contrôle de congestion
- Routage

Couche Physique

- Objectif: Assurer la transmission effective des suites binaires entre deux équipements
- Synchronisation de l'émetteur et du récepteur sur le début et la fin de l'échange
- Mode d'échange des informations binaires
 - ◆ Utilisation de niveaux tension/intensité, fréquence
 - ◆ Durée de l'intervalle élémentaire
 - Codage
- Spécification des interfaces Connecteurs
 - Forme des prises
 - Utilisation des broches

Couche Liaison de Données

- Objectif : Gérer les transmissions effectives entre machines
- Découpage des informations de l'émetteur en trames -Accusés de réception
- Traite les problèmes liés aux trames perdues endommagées - dupliquées
- Contrôle d'erreur (détection reprise)
- Contrôle de flux (régulation du trafic)

Couche Réseau

- Objectif: Permettre à 1 hôte de communiquer avec 1 autre au moyen du sous-réseau de communication
- Routage
- Multiplexage
- Fragmentation
- Contrôle de congestion
- Comptabilité
- Compatibilité : Gestion de réseaux hétérogènes
- Rem: Pour les réseaux à diffusion, routage très simple

Couche Transport

- Objectif: Surveillance des communications <u>de bout en bout</u>
- S'assure que les «morceaux» arrivent correctement : en particulier pour les réseaux routant les paquets individuellement
- Objectifs de performances :
 - 1 connexion de transport peut utiliser plusieurs connexions réseau
 - n connexions réseaux peuvent utiliser la même connexion réseau
- Gestion efficace de multiples connexions
- Contrôle de Flux de bout en bout

Couche Session

- Objectif Synchroniser les échanges entre les utilisateurs
- Etablissement, maintien et terminaison ordonnée d'une connexion
- Négociation des droits d'utilisation des services de synchronisation
- Capacité de resynchroniser un dialogue interrompu

Couche Présentation

Objectif Conversion des données

- Evolution : tous les services relatifs à la représentation des données transmises :
 - Conversions
 - Compression
 - Cryptographie

Couche Application

- Couche Associée à l'utilisateur
- Comporte de très nombreux protocoles :
 - transferts de fichiers
 - Messagerie
 - Echange de documents
 - Connexion distante
 - **•** ...
- On normalise les échanges de données entre
 « applications » pas les interfaces utilisateurs
- N'offre aucun service!

RELATION Service/Protocole

- Service = {primitives (actions) qu'1 couche fournit audessus d'elle}
- Ne dit rien sur la façon avec laquelle ces opérations sont mises en œuvre
- Protocoles = {règles s'appliquant au formatet à la signification des PDU}
- Les entités utilisent les protocoles afin de mettre en œuvre leur spécifications
- Protocoles et Services découplés
- On peut changer de protocole sans changer la visibilité du service par les utilisateurs

Exemples d'Architectures

- Modèle OSI
- Architecture des réseaux TCP/IP
- Architecture des réseaux locaux (IEEE)
- Architecture des réseaux Télécoms (ITU)
- Architectures propriétaires

Architecture TCP/IP

Architecture IEEE

Application	
Présentation	
Session	Interface avec le niveaux
Transport	▲ cunérieurc₄
Réseau	 contrôle liaison logique
Liaison	contrôle d'accès au médium
Physique	Signal physique
Médium	Médium Médium

Modèle IEEE

Modèle ISO

Architecture ITU

- Plan Utilisateur : Données Utilisateurs
 - Plan de Contrôle : Signalisation
- Plan de Gestion : surveillance du réseau