Movimento retilíneo

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

28 de Setembro de 2022

Sumário

- **1** Introdução
- Movimento Retilíneo Uniforme
- Movimento Uniformemente Variado
- Apêndice

A cinemática é o ramo da Física que se preocupa em estudar os movimentos sem se preocupar com o que causou o seu movimento, ou sua mudança ao longo do tempo. Como exemplo, suponha um carro se movimentando em uma rodovia. Gostaríamos de saber algumas informações a respeito do movimento, como o quão rápido está se movimentando, ou a sua localização e como ela muda ao longo do tempo. Agora, não tempos até o momento interesse em saber as causas de cada um deles.

Prof. Flaviano W. Fernandes

0000

O movimento dos objetos

Agora, para simplificar o nosso estudo poderemos tratar um objeto qualquer como se fosse uma partícula. A característica de uma partícula é que suas dimensões podem ser desconsideradas. e assim ela se torna um objeto pontual no espaço. A grande vantagem disso é que poderemos tratar cada parte desse objeto como se tivesse o mesmo movimento.

Satélites como objetos pontuais ao redor da Terra.

Trajetória de um objeto

Trajetória é o caminho percorrido por algum objeto. Na figura ao lado temos como exemplo a trajetória registrada pelas luzes dos automóveis que trafegam em uma rodovia. Nesta aula trataremos movimentos de trajetórias retilíneas.

Corollary

Quando um objeto se desloca com velocidade constante ao longo de uma trajetória retilínea, dizemos que o seu movimento é retilíneo e uniforme.

Trajetória registrada pelas luzes dos carros [3].

Movimento relativo e o referencial

Quando dizemos que o movimento é relativo, significa que o movimento muda dependendo do ponto de vista de quem está vendo. Ou seja, para analisar o movimento de algo, primeiramente devemos adotar um referencial. Suponha um avião voando horizontalmente e em certo momento libera uma caixa. Para a pessoa no chão (referencial) ele verá a caixa cair em uma trajetória curvilínea, no entanto para o piloto (outro referencial), ele verá cair verticalmente.

Trajetória de uma bomba [1].

Corollary

O movimento de um objeto, visto por um observador, depende do referencial no qual ele está situado.

Velocidade de um objeto

Velocidade é uma grandeza física que está associado a rapidez do movimento. Quantitativamente, definimos a velocidade como a razão do deslocamento ΔS realizado pelo objeto pelo intervalo de tempo Δt que ele está realizando o movimento,

$$v = \frac{\Delta S}{\Delta t}$$

Trajetória entre a posição inicial (Irati) e a posição final (Curitiba)

Posição de um objeto

Definimos a posição de um objeto como a sua localização em relação a um referencial adotado, que está na origem e chamamos de marco zero. A posição poderá assumir valor negativo dependendo do sentido adotado para o movimento. Sabendo que o deslocamento pode ser representado como a diferenca da posicões final e inicial. $\Delta S = S_2 - S_1$, teremos. E a partir da velocidade temos

$$v = \frac{S_2 - S_1}{t_2 - t_1},$$

$$S_2 - S_1 = v(t_2 - t_1),$$

 $S_2 = S_1 + v(t_2 - t_1).$

Posições em relação ao referencial no marco zero [2].

Gráfico da posição em função do tempo

Da expressão $S_2 = S_1 + v(t_2 - t_1)$, se definirmos que o instante inicial $t_1 = 0$ segundo, podemos dizer que S_1 é a posição final, e a equação se transforma em uma função do primeiro grau, onde S é a variável dependente da variável t,

$$S(t) = S_1 + vt.$$

Sabendo que uma função pode ser representada em um gráfico S(t) versus t, teremos

Gráfico da posição versus tempo.

Gráfico da velocidade em função do tempo

No caso da velocidade, como ela é constante ao longo do tempo, então o gráfico da velocidade versus tempo é uma reta horizontal, como mostra a figura ao lado. Além disso, poderemos obter o deslocamento a partir deste gráfico simplesmente determinando a área da figura geométrica formada abaixo da reta.

Gráfico da velocidade versus tempo.

Velocidade negativa

Quando um objeto se desloca em uma trajetória, costumamos convencionar que um dos sentidos do movimento é positivo e o outro negativo. Portanto, quando dizemos que a velocidade de um carro é -60 km/h, significa que ele está se movendo a 60 km/h no sentido convencionado como negativo, ou seja, no sentido contrário aquele orientado na trajetória. Como exemplo, na figura ao lado, podemos dizer que o carro vermelho possui velocidade positiva, enquanto que ambos

os carros brancos possuem velocidade negativa.

Sentido das velocidades de cada movimento [2].

000000

O que é aceleração

Aceleração é uma grandeza física que indica o quanto movimento do objeto, ou seja, a sua velocidade, muda a cada segundo. Quantitativamente, definimos a velocidade como a razão da variação da velocidade Δv realizado pelo objeto pelo intervalo de tempo Δt que a velocidade está variando.

$$a = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Lembrando que a aceleração também pode ser negativa, quando ($\Delta v < 0$), ou seja, quando o objeto estiver desacelerando, por exemplo, ou quando ele estiver acelerando (com a velocidade aumentando em módulo) mas no movimento retrógrado.

Velocidade	Aceleração	Movimento
Positiva	Positiva	Progressivo acelerado
Positiva	Negativa	Progressivo retardado
Negativa	Positiva	Retrógrado retardado
Negativa	Negativa	Retrógrado acelerado

Cálculo da velocidade a partir da aceleração

Da expressão $v_2 = v_1 + a(t_2 - t_1)$, se definirmos que o instante inicial $t_1 = 0$ segundo, podemos dizer que S_1 é a posição inicial, e a equação se transforma em uma função do primeiro grau, onde v é a variável dependente da variável t,

$$v(t)=v_1+vt.$$

Sabendo que uma função pode ser representada em um gráfico v(t) versus t, teremos

Gráfico da posição versus tempo.

Cálculo do deslocamento a partir da aceleração

Assim como vimos no movimento retilíneo uniforme, podemos determinar o deslocamento a partir da área sob o gráfico v(t) x t. No caso do MUV temos que o gráfico da função velocidade representa a figura de um trapézio, como mostra a figura ao lado. Pela área do trapézio temos

$$S_2 - S_1 = \frac{(v_2 + v_1)t}{2} = \frac{(at + 2v_1)t}{2},$$

 $S_2 = S_1 + v_1t + \frac{a}{2}t^2.$

Deslocamento como a área sob o gráfico.

Gráfico da posição no movimento uniformemente variado

Da expressão $S_2 = S_1 + v_1t + \frac{a}{2}t^2$, se definirmos que o instante inicial $t_1 = 0$ segundo, podemos dizer que S_1 é a posição inicial, e a equação se transforma em uma função do segundo grau, onde S é a variável dependente da variável t, ou seja, uma concavidade para cima (a>0) ou para baixo (a<0) dependendo do valor da aceleração a.

Se uma função pode ser representada em um gráfico S(t) versus t, teremos

Gráfico da posição versus tempo.

Equação de Torricelli

Considerando as funções horárias da posição x(t) e da velocidade v(t) podemos combiná-las de modo a eliminar a variável tempo. Primeiramente isolamos t em v(t),

$$v = v_0 + at,$$

$$t = \frac{v - v_0}{a}.$$

Substituindo em x(t) temos

$$x = x_0 + v_0 \left(\frac{v - v_0}{a}\right) + \frac{1}{2}a \left(\frac{v - v_0}{a}\right)^2,$$

$$x = x_0 + \frac{v_0 (v - v_0)}{a} + \frac{a(v - v_0)^2}{2a^2},$$

$$x = x_0 + \frac{v_0 v}{a} - \frac{v_0^2}{a} + \frac{v^2}{2a} - \frac{v_0 v}{a} + \frac{v_0^2}{2a}.$$

Somando os termos remanescentes, temos como opção

$$v^2=v_0^2+2a\Delta x.$$

Movimento de queda livre

Entre os vários exemplos de movimento retilíneo temos o movimento vertical de queda livre, onde os objetos caem em movimento progressivo acelerado, com aceleração constante de $10\ m/s^2$. Na prática, os objetos não caem em queda livre, devido a resistência do ar que impede o seu movimento. Mas se colocarmos dois objetos diferentes no vácuo, ambos chegarão ao mesmo tempo no chão.

Corollary

Abandonados de uma mesma altura, um objeto leve e outro pesado caem simultaneamente e atingem o chão no mesmo instante.

Queda livre de uma pena e uma bola no vácuo.

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	heta
lota	1	ι
Capa	Κ	κ
Lambda	٨	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ho
Sigma	Σ	σ
Tau	T	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

- A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)
- https://brasilescola.uol.com.br/fisica/
 movimento-uniforme.htm
- https://br.freepik.com/fotos-premium/
 rodovia-suburbana-no-final-da-noite-vestigios-de-farois-e-lan20424758.htm

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education