WHAT IS CLAIMED IS:

1. A compound of formula (I):

$$A \longrightarrow Y^1 \longrightarrow L \longrightarrow Y^2 \longrightarrow C \longrightarrow X^2 \longrightarrow H \qquad (I)$$

3

4

5

2

1

wherein

6 <u>↓</u> 7

16

> 17 18 19

> > 20

21 22 23

25 26

1

24

A is a cyclic moiety selected from the group consisting of C₃₋₁₄ cycloalkyl, 3-14 membered heterocycloalkyl, C₄₋₁₄ cycloalkenyl, 3-14 membered heterocycloalkenyl, aryl, or heteroaryl; the cyclic moiety being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl;

each of X^1 and X^2 , independently, is O or S; each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -S-, -N(R^a)-, -N(R^a)-C(O)-O-, $-O-C(O)-N(R^a)-$, $-N(R^a)-C(O)-N(R^b)-$, -O-C(O)-O-, or a bond; each of R^a and R^b . independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;

L is a straight C_{3-12} hydrocarbon chain optionally containing at least one double bond. at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, hydroxyl, halo, amino, nitro, cyano, C₃₋₅ cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C₁₋₄ alkylcarbonyloxy, C₁₋₄ alkyloxycarbonyl, C₁₋₄ alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, $-N(R^c)$ -, $-N(R^c)$ -C(O)-O-, -O-C(O)-N(R^c)-, $-N(R^c)$ -C(O)-N(R^d)-, or -O-C(O)-O-; each of R^c and R^d, independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; provided that when L contains two or more double bonds, the double bonds are not adjacent to each other; and further provided that when L contains less than 6 carbon atoms in the hydrocarbon chain, Y¹ is not a bond;

or a salt thereof.

2. The compound of claim 1, wherein X^1 is O.

- 1 3. The compound of claim 1, wherein X^2 is O.
- 4. The compound of claim 1, wherein each of X^1 and X^2 is O.
- 5. The compound of claim 1, wherein each of Y¹ and Y², independently, is -CH₂-, -O-,
- 2 $-N(R^a)$ -, or a bond.
- 6. The compound of claim 1, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- $3 -N(C_{1-2} \text{ alkyl})_2.$
- 7. The compound of claim 1, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing
- at least one double bond and no triple bond, said unsaturated hydrocarbon chain being
 - optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
 - 8. The compound of claim 7, wherein the double bond is in trans configuration.
- 9. The compound of claim 1, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing
- at least one double bond and one triple bond, said unsaturated hydrocarbon chain being
- optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 10. The compound of claim 9, wherein the double bond is in trans configuration.
- 1 11. The compound of claim 1, wherein A is a C₅₋₈ cycloalkenyl or 5-8 membered
- 2 heteroalkenyl containing at least two double bonds.
- 1 12. The compound of claim 1, wherein A is phenyl, naphthyl, indanyl, or tetrahydronaphthyl.
- 1 13. The compound of claim 1, wherein A is phenyl optionally substituted with alkyl alkenyl,
- alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, or amino.

- 14. The compound of claim 13, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally
- substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- $3 -N(C_{1-2} \text{ alkyl})_2.$
- 15. The compound of claim 14, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is -CH₂-, -O-, -N(R^a)-, or a bond.
- 16. The compound of claim 13, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing only double bonds in trans configuration, said unsaturated hydrocarbon chain
- being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 17. The compound of claim 16, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 1 18. The compound of claim 13, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain
- being substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 19. The compound of claim 18, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 1 20. The method of claim 1, said compound being 4-chloro-5-phenyl-2,4-pentadienoic acid, 5-
- 2 (4-dimethylaminophenyl)-2,4-pentadienoic acid, 5-(2-furyl)-2,4-pentadienoic acid, 5-phenyl-
- 2-en-4-yn-pentanoic acid, 7-phenyl-2,4,6-heptatrienoic acid, or 8-phenyl-3,5,7-octatrienoic
- 4 acid.
- 1 21. The method of claim 1, said compound being 7-phenyl-2,4,6-heptatrienoic acid or 8-
- 2 phenyl-3,5,7-octatrienoic acid.

22. A compound of formula (I):

$$A \longrightarrow Y^1 \longrightarrow L \longrightarrow Y^2 \longrightarrow C \longrightarrow X^2 \longrightarrow H \qquad (I)$$

3

2

4

5

6

7

8

18

19

wherein

A is a cyclic moiety selected from the group consisting of aryl or heteroaryl; the cyclic moiety being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino;

each of X1 and X2, independently, is O or S;

each of Y^1 and Y^2 , independently, is $-CH_2$ -, -O-, -S-, $-N(R^a)$ -, $-N(R^a)$ --C(O)-O-, -O--C(O)- $N(R^a)$ -, $-N(R^a)$ --C(O)- $N(R^b)$ -, -O--C(O)-O-, or a bond; each of R^a and R^b , independently, being hydrogen, alkyl, hydroxylalkyl, or haloalkyl;

L is a straight C_{3-12} hydrocarbon chain optionally containing at least one double bond, at least one triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, or amino, and further optionally interrupted by -O- or -N(R^c)-, where R^c is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; provided that when L contains two or more double bonds, the double bonds are not adjacent to each other; and further provided that when L contains less than 6 carbon atoms in the hydrocarbon chain, Y^1 is not a bond;

or a salt thereof.

- 1 23. The compound of claim 22, wherein L is a C_{3-8} saturated hydrocarbon chain optionally
- substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- $-N(C_{1-2} \text{ alkyl})_2.$
- 1 24. The compound of claim 23, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 1 25. The compound of claim 22, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing only double bonds in trans configuration, said unsaturated hydrocarbon chain

5

6

7

9

11

12

13

14

16

- being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 26. The compound of claim 25, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 1 27. The compound of claim 22, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain
- being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂,
- 4 -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 28. The compound of claim 27, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -N(\mathbb{R}^a)-, or a bond.
 - 29. A compound of formula (I):

$$A \longrightarrow Y^{1} \longrightarrow L \longrightarrow Y^{2} \longrightarrow C \longrightarrow X^{2} \longrightarrow H \qquad (I)$$

wherein

A is a heteroaryl optionally substituted with alkyl, alkenyl, alkynyl, alkoxy,

hydroxylalkyl, or amino;

each of X^1 and X^2 , independently, is O or S;

8 each of Y^1 and Y^2 , independently, is $-CH_2$ -, -O-, -S-, $-N(R^a)$ -, $-N(R^a)$ --C(O)-O-,

 $-O-C(O)-N(R^a)-$, $-N(R^a)-C(O)-N(R^b)-$, -O-C(O)-O-, or a bond; each of R^a and R^b ,

independently, being hydrogen, alkyl, hydroxylalkyl, or haloalkyl;

L is a straight C_{3-12} hydrocarbon chain optionally containing at least one double bond, at least one a triple bond, or at least one double bond and one triple bond; said hydrocarbon

chain being optionally substituted with C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, or

amino, and further optionally interrupted by -O- or -N(R°)-, where R° is hydrogen, alkyl,

15 hydroxylalkyl, or haloalkyl;

or a salt thereof.

- 30. The compound of claim 29, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 3 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 31. The compound of claim 30, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 1 32. The compound of claim 29, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing at least one double bond in trans configuration and no triple bond, said
- 3 unsaturated hydrocarbon chain being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy,
- 4 hydroxyl, $-NH_2$, $-NH(C_{1-2}$ alkyl), or $-N(C_{1-2}$ alkyl)₂.
- 33. The compound of claim 32, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 34. The compound of claim 29, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain
- being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂,
- -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 35. The compound of claim 34, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- 2 independently, is -CH₂-, -O-, -N(R^a)-, or a bond.
- 1 36. The compound of claim 29, wherein A is furyl, thienyl, pyrrolyl, or pyridyl.
- 1 37. The compound of claim 36, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally
- substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or
- -N(C_{1-2} alkyl)₂; X^1 is O; X^2 is O; and each of Y^1 and Y^2 , independently, is -CH₂-, -O-,
- 4 $-N(R^a)$ -, or a bond.

7

8

9

10

11

12

13

14

15

- 1 38. The compound of claim 36, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing at least one double bond in trans configuration and no triple bond, said
- 3 unsaturated hydrocarbon chain being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy,
- 4 hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂; X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 1 39. The compound of claim 36, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain
- being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂,
- -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂; X^1 is O; X^2 is O; and each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -N(R^a)-, or a bond.
 - 40. A compound of formula (I):

$$A \longrightarrow Y^1 \longrightarrow L \longrightarrow Y^2 \longrightarrow C \longrightarrow X^2 \longrightarrow H \qquad (I)$$

wherein

A is a phenyl optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino;

each of X¹ and X², independently, is O or S;

each of Y¹ and Y², independently, is -CH₂-, -O-, -N(R^a)-, -N(R^a)-C(O)-O-,

-O-C(O)-N(R^a)-, -N(R^a)-C(O)-N(R^b)-, -O-C(O)-O-, or a bond; each of R^a and R^b ,

independently, being hydrogen, alkyl, hydroxylalkyl, or haloalkyl;

L is a straight C_{3-12} hydrocarbon chain containing at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, or amino, and further optionally interrupted by -O- or -N(R^c)-, where R^c is hydrogen, alkyl, hydroxylalkyl, or haloalkyl;

or a salt thereof.

- 1 41. The compound of claim 40, wherein L is a C₃₋₈ saturated hydrocarbon chain optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- $-N(C_{1-2} \text{ alkyl})_2.$
- 42. The compound of claim 41, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^a)$ -, or a bond.
- 43. The compound of claim 40, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing at least one double bond in trans configuration and no triple bond, said
- 3 unsaturated hydrocarbon chain being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy,
- 4 hydroxyl, -NH₂, -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 44. The compound of claim 43, wherein X¹ is O; X² is O; and each of Y¹ and Y²,
- independently, is -CH₂-, -O-, -N(\mathbb{R}^{a})-, or a bond.
 - 45. The compound of claim 40, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
 - containing at least one double bond and one triple bond, said unsaturated hydrocarbon chain
- being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂,
- $^{\circ}$, 4 -NH(C₁₋₂ alkyl), or -N(C₁₋₂ alkyl)₂.
- 46. The compound of claim 45, wherein X^1 is O; X^2 is O; and each of Y^1 and Y^2 ,
- independently, is -CH₂-, -O-, -N(\mathbb{R}^{a})-, or a bond.
- 1 47. A compound of formula (I):

4 wherein

2 3

A is a saturated branched C₃₋₁₂ hydrocarbon chain or an unsaturated branched C₃₋₁₂ 5 hydrocarbon chain optionally interrupted by -O-, -S-, -N(Ra)-, -C(O)-, -N(Ra)-SO₂-, -SO₂-6 $N(R^{a})$ -, $-N(R^{a})$ -C(O)-O-, -O-C(O)- $N(R^{a})$ -, $-N(R^{a})$ -C(O)- $N(R^{b})$ -, -O- SO_{2} -, $-SO_{2}$ -O-, or 7 -O-C(O)-O- where each of R^a and R^b, independently, is hydrogen, alkyl, alkenyl, alkynyl, 8 alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; each of the saturated and the unsaturated 9 branched hydrocarbon chain being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, 10 hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, 11 alkylcarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl; 12 each of X¹ and X², independently, is O or S: 13 each of Y¹ and Y², independently, is -CH₂-, -O-, -S-, -N(R^c)-, -C(O)-, -N(R^c)-SO₂-, 14 $-SO_2-N(R^c)-$, $-N(R^c)-C(O)-O-$, $-O-C(O)-N(R^c)-$, $-N(R^c)-C(O)-N(R^d)-$, $-O-SO_2-$, $-SO_2-O-$, 5 6 7 8 19 20 21 -O-C(O)-O-, or a bond; each of R^c and R^d, independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; L is a straight C₂₋₁₂ hydrocarbon chain optionally containing at least one double bond, at least one a triple bond, or at least one double bond and one triple bond; said hydrocarbon chain being optionally substituted with C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, hydroxyl, halo, amino, nitro, cyano, C₃₋₅ cycloalkyl, 3-5 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C₁₋₄ alkylcarbonyloxy, 23 C₁₋₄ alkyloxycarbonyl, C₁₋₄ alkylcarbonyl, or formyl; and further being optionally interrupted by -O-, -S-, $-N(R^e)$ -, -C(O)-, $-N(R^e)$ -SO₂-, $-SO_2$ - $N(R^e)$ -, $-N(R^e)$ -C(O)-O-, -O-C(O)- $N(R^e)$ -. 24 -N(R^e)-C(O)-N(R^f)-, -O-SO₂-, -SO₂-O-, or -O-C(O)-O-; each of R^e and R^f, independently, 25 being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; 26 provided that when L contains two or more double bonds, the double bonds are not adjacent 27 to each other; and further provided that A contains a heteroatom selected from the group 28 consisting of O, S, or N or a double or triple bond; 29 or a salt thereof. 30

- 1 48. The compound of claim 47, wherein X^{l} is O.
- 1 49. The compound of claim 47, wherein X^1 is O.
- 1 50. The compound of claim 47, wherein each of X^1 and X^2 is O.

- 51. The compound of claim 47, wherein each of Y¹ and Y², independently, is -CH₂-, -O-, 1
- $-N(R^c)$ -, or a bond. 2
- 52. The compound of claim 47, wherein each of Y¹ and Y², independently, is -CH₂- or a 1
- 2 bond.
- 53. The compound of claim 47, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally 1
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or 2
- $-N(C_{1-2} \text{ alkyl})_2$. 3
- 54. The compound of claim 47, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- containing at least one double bond and no triple bond, said unsaturated hydrocarbon chain
- 2 3 4 4 1 being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂,
 - -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 55. The compound of claim 54, wherein the double bond is in trans configuration.
 - 56. The compound of claim 47, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
 - containing at least one double bond and one triple bond; said unsaturated hydrocarbon chain
- 1 1 2 3 being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂,
 - -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂. 4
 - 1 57. The compound of claim 56, wherein the double bond is in trans configuration.
 - 58. The compound of claim 47, wherein A is a saturated branched C₄₋₁₀ hydrocarbon chain 1
 - interrupted by $-N(R^a)-$, $-N(R^a)-C(O)-O-$, $-O-C(O)-N(R^a)-$, $-N(R^a)-C(O)-N(R^b)-$, -O-C(O)-, or 2
 - -C(O)-O- where each of R^a and R^b, independently, is hydrogen, alkyl, alkoxy, hydroxylalkyl, 3
 - or hydroxyl. 4

- 59. The compound of claim 58, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 3 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 60. The compound of claim 59, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 1 61. The compound of claim 58, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing only double bonds, said unsaturated hydrocarbon chain being optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- $\stackrel{\text{\tiny }}{=}$ 4 -N(C₁₋₂ alkyl)₂.
 - 62. The compound of claim 61, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
 - independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
 - 63. The compound of claim 58, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
 - containing at least one double bond and one triple bond; said unsaturated hydrocarbon chain
 - being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂,
 - 4 -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
 - 1 64. The compound of claim 63, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
 - independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
 - 1 65. The compound of claim 47, wherein A is an unsaturated branched C₄₋₁₀ hydrocarbon
 - chain optionally interrupted by -N(R^a)-, -N(R^a)-C(O)-O-, -O-C(O)-N(R^a)-,
 - $N(R^a)$ -C(O)-N(R^b)-, -O-C(O)-, or -C(O)-O- where each of R^a and R^b , independently, is
 - 4 hydrogen, alkyl, alkoxy, hydroxylalkyl, or hydroxyl.
 - 1 66. The compound of claim 65, wherein A contains at least one double bond in trans
 - 2 configuration and no triple bond.

- 67. The compound of claim 66, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally 1
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or 2
- $-N(C_{1-2} \text{ alkyl})_2$. 3
- 68. The compound of claim 67, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 , 1
- independently, is -CH₂-, -O-, -N(R^c)-, or a bond. 2
- 69. The compound of claim 66, wherein L is an unsaturated C₄₋₈ hydrocarbon chain 1
- containing at least one double bond in trans configuration and no triple bond, said 2
- unsaturated hydrocarbon chain being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, 3
- hydroxyl, $-NH_2$, $-NH(C_{1-2}$ alkyl), or $-N(C_{1-2}$ alkyl)₂.
 - 70. The compound of claim 69, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 , independently, is -CH₂-, -O-, -N(R^c)-, or a bond.
- 4 1 2 3 3 71. The compound of claim 66, wherein L is an unsaturated C₄₋₈ hydrocarbon chain containing at least one double bond in trans configuration and one triple bond; said unsaturated hydrocarbon chain being optionally substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, 1 4 hydroxyl, $-NH_2$, $-NH(C_{1-2} \text{ alkyl})$, or $-N(C_{1-2} \text{ alkyl})_2$.

 - 72. The compound of claim 71, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 , 1
 - independently, is -CH₂-, -O-, -N(R^c)-, or a bond. 2
 - 73. The compound of claim 65, wherein A contains at least one double bond and one triple 1
 - bond. 2
 - 74. The compound of claim 73, wherein L is a saturated C₃₋₈ hydrocarbon chain optionally 1
 - substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or 2
 - $-N(C_{1-2} \text{ alkyl})_2$. 3

- 75. The compound of claim 74, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 1 76. The compound of claim 73, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing only double bonds, said unsaturated hydrocarbon chain being optionally
- substituted with C₁₋₂ alkyl, C₁₋₂ alkoxy, hydroxyl, -NH₂, -NH(C₁₋₂ alkyl), or
- 4 $-N(C_{1-2} \text{ alkyl})_2$.
- 1 77. The compound of claim 76, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- independently, is $-CH_2$ -, -O-, $-N(R^c)$ -, or a bond.
- 1 78. The compound of claim 73, wherein L is an unsaturated C₄₋₈ hydrocarbon chain
- 2 containing at least one double bond and one triple bond; said unsaturated hydrocarbon chain
- being optionally substituted with C_{1-2} alkyl, C_{1-2} alkoxy, hydroxyl, -NH₂,
- 4 -NH(C_{1-2} alkyl), or -N(C_{1-2} alkyl)₂.
- 1 79. The compound of claim 78, wherein each of X^1 and X^2 is O; and each of Y^1 and Y^2 ,
- 2 independently, is -CH₂-, -O-, -N(R°)-, or a bond.