Nom:	Prénom :	Groupe:							
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS									
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2013/2014	Note / 20							
École d'ingénieurs POLYTECH NICE-SOPHIA	DS électronique analogique No1	7 20							

Mardi 18 Février 2014

CORRECTION

Durée: 1h30

- □ Cours et documents non autorisés.
- □ Calculatrice de type collège autorisée
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous devez:
 - indiquer votre nom et votre prénom.
 - éteindre votre téléphone portable (- 1 point par sonnerie).

RAPPELS:

1

1. (1 pt) Soit le montage ci-dessous dont les données sont: $V_{DD} = 5 V$, $R = 1 \text{ k}\Omega$, diode : $V_S = 0.6 \text{ V}$, $R_S = 0 \Omega$.

Donner les valeurs de $V_{\rm e}$ pour les valeurs de $V_{\rm e}$ indiquées ci-dessous

V _e	Vo	
0 V	0,6 V	
5 V	5 V	

Les éléments du montage sont $R = 50 \Omega$ et pour la diode $V_S = 1 V$, $R_S = 50 \Omega$.

2. (1 pt) On se propose d'étudier le circuit ci-contre.

0.5

2.1. Déterminer la valeur de la tension V_D pour $E_G = -1$ V.

$$V_D = -1 V$$

0.5

2.2 Déterminer la valeur du courant ID pour EG = 2 V.

$$I_D = \frac{E_G - V_S}{R + R_S} = 10 \text{ mA}$$

1.5

3. (1.5 pt) Par la méthode de votre choix, donner l'expression de la droite de charge $I_D = f(V_D)$ du montage ci-contre.

$$I_{D} = \frac{0.5.E_{G} - V_{D}}{2.R}$$

Donner l'évolution temporelle de V_A et de V_R .

5. (2 pts) La mémoire PROM est constituée d'une matrice de diodes dont certaines sont détruites lors de la programmation pour stocker des 0 et des 1. La mémoire de la figure ciaprès est constituée de 4 lignes (notées de A à D, aussi appelée "adresse") de 4 bits (notés de S1 à S4). Un interrupteur permet de sélectionner la ligne. On considère que V_{DD} correspond au 1 logique et que 0 V correspond au 0 logique. Pour les diodes $V_S = 0$ et $R_S = 0$.

Donner les valeurs (0 ou 1) des sorties S1 à S4 dans le tableau ci-après lorsque les lignes A à D sont sélectionnées.

Adresse	S1	S2	S3	S4
A	1	0	0	0
В	0	1	0	0
С	0	0	1	0
D	0	0	0	1

6. (5pts) Soit le circuit électrique de la figure (6.1) dont les caractéristiques des diodes sont données à la figure (6.2). Les autres données du circuit sont $E_G = 0.8 \text{ V}$ et $R = 40 \Omega$.

6.1. Déterminer les tensions de seuil et les résistances séries des deux diodes

$$V_{S1} = 0.2 \text{ V}$$

$$V_{S2} = 0.4 V$$

$$R_{S1} = 100 \Omega$$

$$R_{S2} = 30 \Omega$$

6.2. Est-ce que la droite de charge doit dépendre des paramètres des deux diodes ?

OUI

X NON

Parfois

6.3. Donner l'expression de la droite de charge $I_D = f(V_D)$

$$I_D = \frac{E_G - V_D}{R}$$

6.4. Tracer la droite de charge sur la figure (6.2)

0.5

0,5

1

6.5. Si on débranche la diode D_2 , quelle doit être la valeur du courant dans le circuit (méthode graphique)?

0.5

$$I_D = 4.3 \text{ mA}$$

0.5

6.6. Les deux diodes sont branchées, est ce que l'intersection de la droite de charge avec les caractéristiques des deux diodes correspond au point de polarisation des diodes ?

OUI

X NON

Parfois

1

6.7. Détermine graphiquement le point de polarisation de chaque diode.

$$I_{D1} = 3,66 \text{ mA}$$

$$V_{D1} = 566 \text{ mV}$$

$$I_{D2} = 2.19 \text{ mA}$$

$$V_{D2} = 566 \text{ mV}$$

7. (3 pts) Soit le circuit ci-contre dont les éléments sont : $E_G = 1.5$ V, $V_{DD} = 3$ V, $R_B = 10$ k Ω , $R_C = 200$ Ω , pour le transistor : $V_S = 0.6$ V, $R_S = 1$ k Ω , $\beta = 100$, $V_{CEsat} = 0.2$ V.

8.1. Déterminer l'expression et la valeur du courant I_B qui entre dans la base du transistor.

 $\mathbf{F}_{\mathbf{G}} - \mathbf{V}_{\mathbf{G}}$

$$I_B = \frac{E_G - V_S}{R_B + R_S} = 81.8 \ \mu\text{A}$$

7.2. Le transistor est :

0,5

1

X Passant

Bloqué

7.3. Donner l'expression et la valeur du courant, Ic, qui entre dans le collecteur.

0,5

$$I_C = \beta . I_B = 8.18 \text{ mA}$$

7.4. Donner l'expression et la valeur de la tension $V_{\rm CE}$

0,5

$$V_{CE} = V_{DD} - R_{C}.I_{C} = 1,36 \text{ V}$$

7.5. Le transistor est en régime :

0,5

X Linéaire

Saturé

8. (4,5 pts) Soit le circuit ci-contre dont les éléments sont : $V_{DD}=3$ V, $R_B=10$ k Ω , $R_C=200$ Ω , $R_E=20$ Ω , Diode D_1 : $V_{SD1}=1,2$ V, $R_{SD1}=12$ Ω . Transistor T_1 : $\beta=100$, $V_{CEsat}=0,2$ V et sa base $V_{ST1}=0,6$ V, $R_{ST1}=1$ k Ω

- **8.1.** Parmi les 4 propositions suivantes, laquelle est correcte?
 - A) Si D₁ est bloquée alors T₁ est saturé
 - B) Si T₁ est passant alors D₁ est saturée
 - C) $X D_1$ devient passante que si T_1 devient passant
 - D) T₁ devient saturé que si D₁ devient passante

8.2. A partir de quelle valeur de E_{G} le transistor devient passant ?

$$E_{\rm G} = V_{\rm S} = 0.6 \, \rm V$$

0.5

8.3. Déterminer l'expression I_B

$$I_{B} = \frac{E_{G} - V_{ST1}}{R_{B} + R_{ST1} + (1 + \beta)R_{E}}$$

1

8.4. Quelle valeur doit-on donner à E_G pour que le courant qui circule dans la diode D_1 soit égal à $10\ mA$

$$E_G = \frac{I_C}{\beta} [R_B + R_{ST1} + (1 + \beta)R_E] + V_{ST1} = 1.9 \text{ V}$$

1

8.5. Donner l'expression de la tension V_{CE}.

$$V_{CE} = V_{DD} - V_{SD1} - \left(R_{SD1} + R_C + R_E \left(1 + \frac{1}{\beta}\right)\right) I_C$$

0,5

8.6. Détermination de la valeur de la tension VCE.

$$V_{CE} = -0.52 \text{ V}$$

0,5

8.7. Donner le régime de fonctionnement du transistor

Linéaire

X Saturé

BONUS. (1.5 pts) Soit le circuit ci-contre dont Rs et Vs du transistor sont non nuls. Déterminer l'expression du courant de base, I_B .

$$I_{\rm B} = \frac{V_{\rm DD} - V_{\rm S}}{\left(1 + \beta\right)\!R_{\rm C} + R_{\rm B} + R_{\rm S} + \left(1 + \beta\right)\!R_{\rm E}}$$

