Single Final State for NFAs

1

Any NFA can be converted

to an equivalent NFA

with a single final state

,

NFA without final state Add a final state Without transitions

Properties of Regular Languages

For regular languages $L_{\!1}$ and $L_{\!2}$ we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L1*

Reversal: L_1^R

Complement: $\overline{L_l}$

Intersection: $L_1 \cap L_2$

Are regular Languages

/

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Concatenation

NFA for L_1L_2

13

Example

NFA for $L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$

Reverse

NFA for L_1^R

- 1. Reverse all transitions
- 2. Make initial state final state and vice versa

17

Example

 M_1

$$L_1 = \{a^n b\}$$

 M_1

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the ${f DFA}$ that accepts $L_{\!1}$
- 2. Make final states non-final, and vice-versa

19

Example

$$L_1 = \{a^n b\}$$

$$\overline{L_1} = \{a,b\} * -\{a^n b\}$$

$$a \qquad a,b \qquad a$$

$$b \qquad a \qquad b$$

Intersection

DeMorgan's Law:
$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

$$L_1$$
, L_2 regular

$$\overline{L_1}$$
, $\overline{L_2}$ regular

$$\overline{L_1} \cup \overline{L_2}$$
 regular

$$\begin{array}{cccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

$$\longrightarrow L_1 \cap L_2 \qquad \text{regular}$$

Example

$$L_1 = \{a^nb\}$$
 regular $L_1 \cap L_2 = \{ab\}$ $L_2 = \{ab,ba\}$ regular regular

Regular Expressions

Regular expressions describe regular languages

Example: $(a+b\cdot c)*$

describes the language

 $\{a,bc\}$ * = $\{\lambda,a,bc,aa,abc,bca,...\}$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

25

Examples

A regular expression: $(a+b\cdot c)*\cdot(c+\varnothing)$

Not a regular expression: (a+b+)

Languages of Regular Expressions

L(r): language of regular expression r

Example

$$L((a+b\cdot c)*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

27

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions
$$r_1$$
 and r_2
$$L(r_1+r_2)=L(r_1)\cup L(r_2)$$

$$L(r_1\cdot r_2)=L(r_1)\,L(r_2)$$

$$L(r_1^*)=(L(r_1))^*$$

$$L((r_1^*))=L(r_1^*)$$

20

Example

Regular expression: $(a+b) \cdot a *$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Example

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

31

Example

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Example

Regular expression
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings with at least two consecutive 0 }

33

Example

Regular expression
$$r = (1+01)*(0+\lambda)$$

$$L(r)$$
 = { all strings without two consecutive 0 }

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if $L(r_1) = L(r_2)$

35

Example

 $L = \{ all strings without two consecutive 0 \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$
 are equivalent regular expr.

Regular Expressions and Regular Languages

Theorem - Part 1

1. For any regular expression r the language L(r) is regular

20

Theorem - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

Proof - Part 1

1. For any regular expression rthe language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \emptyset , λ , α

NFAs

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = {\lambda} = L(\lambda)$$
$$L(M_3) = {a} = L(a)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

Assume

for regular expressions r_1 and r_2 that

 $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

We will prove:

$$L(r_1 + r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

45

By inductive hypothesis we know:

 $L(r_1)$ and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1)L(r_2)$

Star $(L(r_1))^*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Are regular languages

And trivially:

 $L((r_1))$ is a regular language

Proof - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

Proof by construction of regular expression

49

Since L is regular take the NFA M that accepts it

$$L(M) = L$$

Single final state

From M construct the equivalent

Generalized Transition Graph

in which transition labels are regular expressions

Example:

Resulting Regular Expression:

$$bb*a$$

$$bb*(a+b)$$

$$q_0$$

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$