UNIVERSIDAD DE GRANADA

E.T.S. de Ingenierías Informática y de Telecomunicación

Departamento de Ciencias de la Computación e Inteligencia Artificial

Inteligencia de Negocio

Guion de Prácticas

Práctica 2: Análisis Relacional mediante Segmentación

Curso 2021-2022

Grado en Ingeniería Informática y Matemáticas Grado en Ingeniería Informática y Matemáticas Grado en Ingeniería Informática y Administración y Dirección de Empresas

Práctica 2

Segmentación mediante Clustering

1. Objetivos y Evaluación

En esta segunda práctica de la asignatura Inteligencia de Negocio veremos el uso de técnicas de aprendizaje no supervisado para análisis relacional mediante segmentación. Se trabajará con un conjunto de datos sobre el que se aplicarán distintos algoritmos de agrupamiento (clustering). A la luz de los resultados obtenidos se deberán crear informes y análisis lo suficientemente profundos.

La práctica se calificará hasta un **máximo de 2 puntos**. Se valorará el acierto en los recursos de análisis gráficos empleados, la complejidad de los experimentos realizados, la interpretación de los resultados, la organización y redacción del informe, etc.

2. Descripción del problema: encuesta de condiciones de vida, datos sobre el hogar

A partir de los microdatos publicados por el Instituto Nacional de Estadística (INE) sobre la última encuesta de condiciones de vida (año 2020)¹, se dispone de un conjunto de 15.043 respuestas y unas 200 variables sobre datos básicos del hogar, la vivienda, exclusión social, renta, carencia, sobreendeudameiento, consumo, riqueza y otras variables complementarias. En la web de la asignatura se incluye el conjunto de datos —ligeramente procesado a partir de la fuente original— sobre el que se trabajará en esta práctica.

Existen variables categóricas como, por ejemplo, retraso en pagos (sí o no) o tipo de vivienda (unifamiliar, piso...). Estas variables no sirven para aplicar un análisis de agrupamiento, pero sí son útiles para fijar casos de estudio donde centrar el análisis. Hay otras variables numéricas como, por ejemplo, renta que sí se pueden usar para clustering. Finalmente, hay también variables que, aunque no son numéricas, sí son ordinales (por ejemplo, capacidad para llegar a

 $^{^{1}} https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C\&cid=1254736176807\&menu=resultados\&idp=1254735976608$

3 Tareas a Realizar 2

fin de mes, que se ordena en una escala de 6 niveles desde mucha dificultad a mucha facilidad) y, por tanto, también se pueden usar para clustering.

El objetivo de la práctica es definir algunos casos de estudio de interés (fijando condiciones en algunas variables), aplicar distintos algoritmos de *clustering*, analizar la calidad de las soluciones obtenidas y, finalmente, interpretar los resultados para explicar los distintos perfiles o grupos encontrados.

Con este análisis se consigue encontrar relaciones entre variables, yendo así más allá del análisis de encuesta habitual centrada en valorar la frecuencia de variables de forma independiente.

3. Tareas a Realizar

La práctica consiste en aplicar y analizar técnicas de agrupamiento para descubrir grupos en el conjunto de datos bajo estudio. El trabajo se realizará empleando bibliotecas y paquetes de Python, principalmente numpy, pandas, scikit-learn, matplotlib y seaborn. Se recomienda consultar las siguientes páginas web:

- http://scikit-learn.org/stable/modules/clustering.html
- http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/
- http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html
- https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/
- http://seaborn.pydata.org/generated/seaborn.clustermap.html

Nos interesaremos en segmentar la muestra seleccionando previamente grupos de interés según las variables categóricas y/u ordinales. Por ejemplo, analizar solo los hogares con una renta inferior a 25.000 €, los que viven en un piso de alquiler, quienes reciben asistencia social, etc. Queda a elección libre del alumno escoger varios casos (al menos tres) y realizar el estudio sobre ellos. Será necesario también aplicar una normalización para que las métricas de distancia y la visualización funcionen correctamente. Deberán justificarse las decisiones tomadas respecto al tratamiento de las variables.

En cada caso de estudio se analizarán 5 algoritmos distintos de agrupamiento (siendo al menos uno de ellos K-means) obteniéndose el tiempo de ejecución y métricas de rendimiento tales como Silhouette y el índice Calinski-Harabasz. Además, se analizará el efecto de algunos parámetros determinantes (por ejemplo, el valor de k si el algoritmo necesita fijarlo a priori) en al menos 2 algoritmos distintos para cada caso de estudio.

El análisis deberá apoyarse en visualizaciones tales como nubes de puntos (scatter matrix), dendrogramas (en agrupamiento jerárquico), mapas de temperatura (heatmap), gráfico de burbujas con la distancia relativa entre los centros de los clústers mediante multidimensional scaling, etc. Por ejemplo, en la figura 2.1 se incluye un scatter matrix de un conjunto de variables numéricas obtenido por K-means (k = 5) entre quienes declaran gastos en transporte

3 Tareas a Realizar

público. Se recomienda que sobre estas visualizaciones se construyan tablas que caractericen aproximadamente cada grupo observando las agrupaciones realizadas. También pueden generarse gráficas de los centroides como la de la figura 2.2 para ayudar a interpretar el significado de cada grupo o boxplots como el de la figura 2.3. En la web de la asignatura se incluyen *scripts* de ejemplo que pueden servir como punto de partida para realizar la práctica.

Figura 2.1: Ejemplo de resultado de K-means con k=5 relacionando renta, alquiler imputado, gastos en alimentación en casa y transporte público

A partir de los resultados obtenidos se deberán extraer conclusiones sobre los hogares españoles. Se valorará el acierto en la selección de casos de estudio que mejor reflejen los grupos encontrados en los datos.

4. Esquema de la Documentación

La documentación entregada deberá ajustarse al siguiente esquema (debe respetarse la numeración y nombre de las secciones):

- 1. **Introducción**: se hablará sobre el problema abordado y todas las consideraciones generales que se deseen indicar.
- 2. Caso de estudio X: se incluirá una sección por cada caso de estudio analizado (el epígrafe describirá el subconjunto de datos bajo estudio). En ella se explicará en detalle en un primer apartado qué caso se analiza y por qué (deberá indicarse el número de datos que representa el caso de estudio). Se incluirá una tabla comparativa con los resultados de los algoritmos de clustering (que incluirá, al menos, el número de clusters obtenidos, el valor de las métricas y el tiempo de ejecución en cada algoritmo) y tantas otras tablas para el análisis de los parámetros (una tabla por algoritmo). Cada sección contendrá las visualizaciones necesarias para analizar el problema y junto a cada visualización se incluirá una tabla que caracterice cada cluster. Se añadirá un apartado final titulado "Interpretación de la segmentación" que incluirá las conclusiones generales a las que haya llegado el alumno a la luz de los resultados en el correspondiente caso de estudio. En cada sección deberán incluirse extractos de los scripts que el alumno considere relevantes para destacar el trabajo realizado.
- 3. Contenido adicional: opcionalmente, cualquier tarea adicional a las descritas en este guion puede presentarse en esta sección.
- 4. Bibliografía: referencias y material consultado para la realización de la práctica.

Las tablas de resultados no deberán ser capturas de pantalla, sino tablas creadas en el procesador de texto empleado. No se aceptarán otras secciones distintas de estas. Además, la primera página de la documentación incluirá una portada con el nombre completo del alumno, grupo de prácticas y dirección email. También se incluirá una segunda página con el índice del documento donde las diferentes secciones y páginas estarán enlazadas en el pdf.

5. Entrega

La fecha límite de entrega será el miércoles 8 de diciembre de 2021 hasta las 23:59. La entrega se realizará a través de la web de la asignatura en https://prado.ugr.es/. En ningún caso se aceptan entregas a través de enlaces como Dropbox, Google Drive, WeTransfer o similares. En un único fichero zip se incluirá la documentación, los scripts de Python empleados y cualquier otro archivo que el alumno considere relevante. El nombre del archivo zip será el siguiente (sin espacios): P2-apellido1-apellido2-nombre.zip. La documentación tendrá el mismo nombre pero con extensión pdf. Es decir, la alumna "María Teresa del Castillo Gómez" subirá el archivo P2-delCastillo-Gómez-MaríaTeresa.zip que contendrá, entre otros, el archivo P2-delCastillo-Gómez-MaríaTeresa.pdf.

5 Entrega 5

Figura 2.2: Centros de los grupos de la figura 2.1

5 Entrega 6

Figura 2.3: Distribución de los grupos de la figura 2.1 ordenados de menor a mayor renta (aquí se muestran histogramas y curvas de distribución de probabilidad, pero también se puede simplificar empleando boxplots, por ejemplo, cuando la distribución tiende a la normalidad)

5 Entrega 7

Figura 2.4: Distancia relativa entre centroides de clusters (radio del círculo proporcional al número de objetos en cada clúster)

Figura 2.5: Coordenadas para
lelas para interpretar en detalle; es mejor usar la versión interactiva
 HTML