

NEAREST NEIGHBOR PREDICTORS

Why

We might expect similar precepts to lead to similar postcepts.

Definition

Consider a set of inputs X with a metric $d: X \times X \to \mathbf{R}$ Let $D = (x^1, y^1), \dots, (x^n, y^n)$ a dataset in $X \times Y$ The nearest-neighbor predictor is the predictor $f: X \to Y$ which assigns to $x \in X$ the value ...

Notation

Let $D = ((a^1, b^1), \dots, (a^n, b^n))$ be a dataset in $A \times B$, where A and B are non-empty sets. Let f be the nearest neighbor inductor. Then $\iota(D)(x)$ is Let n be a natural number. Let Ξ be a length n paired record sequence in $\mathcal{U} \times \mathcal{V}$; so

$$\Xi = ((u^1, v^1), \dots, (u^n, v^n))$$

with $u^i \in \mathcal{U}$ and $v^i \in \mathcal{V}$ for i = 1, ..., n.

The nearest neighbor induction associates Ξ with the function f_{Ξ} such that

$$f_{\Xi}(u) = v^j$$

where j < n is the largest integer such that

$$d(u, u^j) = \min_i \{ d(u, u^i) \}.$$

