

AI Medical Care

Graduation Project, Part-II (CS482)

Computer Science Department

Faculty of Computer and Information

Luxor University

Project Supervisors

Dr. Mohamed Abdel-Hameid Eng. Safynaz Abdel-Fattah

Submitted by

Abdelrahman Mahmoud Mohamed
Mohamed Ahmed Mohamed
Rabee Adel Beabesh
Soliman Ali Soliman
Youssof Harby Okeil

27th June 2021

ABSTRACT

The standard way of doing a medical diagnose enforces the patient and the doctor to exist together within a physical place such as a hospital or a clinic, which may be an obstacle especially for patients in remote places also boosts the possibility of infection-transmission among patients, also one of the difficulties that may struggle the process of diagnosing is the inefficient techniques to deal with the medical history of the patient which is mainly presented as an un-organized paper-work; that imposes the doctor to exert more effort to fully observe it, which decreases the productivity rate and increase the opportunities for a misdiagnosed patient or an in-proper treatment especially for the new and in-experienced doctors, which is dangerous.^[1]

Our proposed system can makes advantage of the rapid growth of technology especially in the artificial intelligence field and natural language processing, developing text-based systems for health diagnosis where patients can submit a text or a voice-speech with a complaint of a disease he/she suffers through a mobile application or a web-based application, the system with his role analyzes the text to extract symptoms and specify a disease and a proper treatment, Taking into account the medical history of the patient in case he/she suffers chronic diseases or any on-going medication and report the final result to the doctor to confirm the process, in other words, it acts like a doctor-assistance to aid in the diagnosing process with the necessity of the doctor-existence to confirm the results.^[2]

Contents List

Chapter 1	Introduction	4
1.1	Introduction	. 6
1.2	Background	. 7
1.3	Related work	8
Chapter 2	Domain Analysis and Techniques	11
2.1	Domain Analysis	13
2.2	Techniques	15
2.3	Risk/Constraints	16
2.4	Project Plan	18
2.5	Quality Assurance Plan	19
2.6	Requirements	20
	2.6.1 Functional Requirements	20
	2.6.2 Non-Functional Requirements	21
2.7	System Request	22
Chapter 3	Proposed System and Methodology	25
3.1	System Architecture	27
3.2	System Use-Cases	28
3.3	Use Case Description (Use case scenario)	32
3.4	Analysis Class	58
	3.4.1 Context Diagram	58
	3.4.2 State Diagram	59
3.5	Interaction Diagram (Sequence Diagram)	61
3.6	Design Class	63
	3.6.1 Class Diagram	63

		3.6.2 Domain Diagram	64
	3.7	ER Diagram	65
	3.8	Database Schema	66
	3.9	Design Mockup	67
Chap	ter 4	Experimental Results and Discussion	75
	4.1	Expected Deployment	77
	4.2	Algorithms	78
	4.3	Methodology	82
Chap	ter 5	Conclusion and Future work	85
	5.1	Conclusion	87
	5.2	Future Work	88
	5 3	References	89

List of Figures

Figure 1. System architecture	27
Figure 2. Application Use case	29
Figure 3. Server use case	30
Figure 4. Admin dashboard use case	31
Figure 5. Context diagram	58
Figure 6. Doctor state diagram	59
Figure 7. Patient state diagram	60
Figure 8. Doctor Sequence diagram	61
Figure 9. Patient Sequence diagram	62
Figure 10. Class diagram	63
Figure 11. Domain diagram	64
Figure 12. Entity relationship diagram	65
Figure 13. Database Schema	66
Figure 14. Design Mockup	67
Figure 15. System deployment diagram	77
Figure 16. NLP Pipeline	78
Figure 17. Our Custom Symptoms and disease NER	79
Figure 18. Symptom's Accuracy	80
Figure 19. Disease Classifier	81

List of Tables

Table 1. Abbreviation	2
Table 2. Related work	9
Table 3. Risks	16
Table 4. Project Plan	18
Table 5. Register Use Case Description	32
Table 6. Login Use Case Description	33
Table 7. Adding Old Medical History Use Case Description	34
Table 8. Send Medical Report to Doctor Use Case Description	35
Table 9. View Medical History Use Case Description	36
Table 10. Start Audio Recording Use Case Description	38
Table 11. Send Symptoms as Text Use Case Description	40
Table 12. Scan Patient QR Code Use Case Description	41
Table 13. View Patient Medical History Use Case Description	42
Table 14. Convert Audio to Text and Extract Symptoms Use Case Description	43
Table 15. Classification of Disease (Diagnose) Use Case Description	45
Table 16. Suggest Medicine Use Case Description	46
Table 17. Dashboard Login Use Case Description	47
Table 18. Check Data-Integrity (Data management) Use Case Description	48
Table 19. Backup and Restore Data Use Case Description	49
Table 20. (Patients' Profiles management) Create user Use Case Description	51
Table 21. (Patients' Profiles management) Delete user Use Case Description	52
Table 22. (Doctors' Profiles management) Create user Use Case Description	53
Table 23. (Doctors' Profiles management) Delete user Use Case Description	54
Table 24. (Doctors' Profiles management) verify account Use Case Description	55
Table 25. System Maintenance Use Case Description	56

Abbreviation

Keyword	Meaning
Natural	Natural language processing (NLP) is a field of artificial
Language	intelligence in which computers analyze, understand, and
Processing	derive meaning from human language in a smart and useful
(NLP)	way.
Part-Of-Speech	Part-of-speech (POS) is a process of converting a sentence to
(POS)	forms – list of words, list of tuples (where each tuple is having
	a form (word, tag)).
Classifier	Classifier is an algorithm that automatically orders or
	categorizes data into one or more of a set of "classes".
International	The International Classification of Diseases (ICD) is a globally
Classification of	used diagnostic tool for epidemiology, health management and
Diseases	clinical purposes.
(ICD)	The ICD is maintained by the World Health Organization
	(WHO), which is the directing and coordinating authority for
	health within the United Nations System.
	The ICD is originally designed as a health care classification
	system, providing a system of diagnostic codes for classifying
	diseases, including nuanced classifications of a wide variety of
	signs, symptoms, abnormal findings, complaints, social
	circumstances, and external causes of injury or disease

Medical	The Medical Dictionary for Regulatory Activities (MedDRA)					
Dictionary for	(link is external) is an internationally used set of terms relating					
Regulatory	to medical conditions, medicines and medical devices.					
Activities	It was created to assist regulators with sharing information. It					
(MedDRA)	is also used by industry, academics, health professionals and					
	other organizations that communicate medical information.					
WordNet	WordNet is a lexical database of semantic relations between					
	words in more than 200 languages.					
	WordNet links words into semantic relations including					
	synonyms, hyponyms, and meronyms.					
	The synonyms are grouped into sunsets with short definitions					
	and usage examples.					

Table 1. Abbreviation

Chapter 1

Introduction

1.1 Introduction

Remote diagnosis systems are becoming increasingly popular and accurate, with enormous advantages such as cost-effectiveness, fast and reliable decision support for medical diagnostics, and treatment and prevention of disease, illness, injury, and other physical and mental damages in human beings. The rise in remote health services (or telehealth) offered by healthcare institutions coincided with the evolution of assisted living systems and environments, aiming to widen the possibility for older and disadvantaged people to access appropriate healthcare services and thus improve their health status and clinical outcome. With the increase in the innovation of medical technologies, there is a need to adopt medical expert systems that will oversee and control diagnosis and treatment processes Medical diagnostic processes carried out with the aid of computer-related technology which is on the rise daily have improved the experience and capabilities of physicians to make an effective diagnosis of diseases while employing novel signal processing techniques for analysis of patient's physiological data and deep neural networks for decision support. With the rise of artificial intelligence (AI) techniques, the intelligent doctor-assistant have appeared as a promising direction to emphasize the accuracy of diagnosing diseases and do deep analysis on the health records and symptoms of the patient to provide a reliable health state of patients.

Artificial intelligence (AI) is increasingly being adopted across the healthcare industry, and some of the most exciting AI applications leverage natural language processing (NLP). Simply put, NLP is a specialized branch of AI focused on the interpretation and manipulation of human-generated spoken or written data which showed great potential in effective clinical decision support.

1.2 Background

Hospitals are the most widely used means by which a sick person gets medical check-ups, disease diagnosis, and treatment recommendation. People consider it as the most reliable means to check their health status. The proposed system is to create an alternative to this conventional method of visiting a hospital and making an appointment with a doctor to get a diagnosis. This research intends to apply the concepts of natural language processing and machine learning to create a medical care application. Executing this proposed framework can help people avoid the time-consuming method of visiting hospitals by using this free of cost application, wherever they are. Human-computer speech is gaining traction as a method of computer interaction. There has been a recent rise in speech-based search engines and assistants like Siri, Google Chrome, and Cortana.^[1]

Natural language processing (NLP) techniques such as NLTK for Python can be applied to speech analysis, and intelligent responses can be found by designing an engine to deliver appropriate human responses. This type of program is called Medical care. In this project, we will deal with Natural Language Processing (NLP) techniques by sending a voice record that is converted into a text record, then analyzing speech and extracting symptoms, then disease diagnosis and treatment recommendation.^[2]

1.3 Related work

Title	Authors	Year	Abstract
Text Messaging-Based Medical Diagnosis Using Natural Language Processing and Fuzzy Logic [1]	Omoregbe, Ndaman, Misra, Abayomi-Alli, and Damaševičius	Sep 2020	Ability to successfully build a text-based medical diagnosis system, which provides a personalized diagnosis utilizing self-input response from users to effectively suggest a disease diagnosis. The proposed system was able to combine NLP and machine learning algorithms for SMS and Telegram bot. The system was able to suggest a diagnosis using a direct approach of the question and answering technique to offer a diagnosis
A text based drug query system for mobile phones [2]	A. Langer, R. Banga, A. Mittal, L. V. Subramaniam, and P. Sondhi	July 2014	Used several NLP tools along with classification methods to process the drug-related questions. They developed a natural language-based interface that enables the users to phrase their queries and get an accurate result up to 81% in classifying drug-related questions
A text mining approach to automated healthcare for the masses [3]	V. S. Pendyala, Y. Fang, J. Holliday, and A. Zalzala	Oct. 2014	Presented an application that allows machines to take on the function of life support. The focus of the study was based on medical diagnosis, and an experiment was conducted to show the relationship of information retrieval and text mining to the medical diagnosis problem. The study concludes that the proposed system would help in improving the goals of providing a ubiquitous medical diagnosis.
A Laboratory Test Expert System for Clinical Diagnosis Support in Primary Health Care[4].	R. Carson- Stevens, JA. Medina- Merodio, Herraiz, and J M. Gutierrez- Martinez	4 August 2015	Presented a rule-based expert system using the list of likely diseases regarding laboratory test results for diagnosis. The authors concluded that the proposed system clinically gave a better accuracy and speed, thereby improving the efficiency and quality of service.

From narrative	C. Combi, M.	August 2018	Proposed an NLP method for the transcoding
descriptions to MedDRA: automagically encoding adverse drug reactions [5].	Zorzi, G. Pozzani, U. Moretti, and E. Arzenton	71ugust 2010	of natural text descriptions of adverse drug reactions into MedDRA standard terms, reaching an average precision and recall of 91.8% and 86.9%.
Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches[6].	H. P. Kanegaye, A. Anastasiou, A. Edwards	March 2019	Analyzed patient safety incident reports written in free text to categorize incident type and the severity of outcome, reaching an accuracy of 0.891 and 0.708, respectively.
Improving Consumer Understanding of Medical Text: Development and Validation of a New Sub Simplify Algorithm to Automatically Generate Term Explanations in English and Spanish [7].	N. Kloehn, G. Leroy, D. Kauchak.	April 2018	Generate explanations for complex medical terms in Spanish and English using WordNet synonyms and summaries, as well as the word embedding vector as a source of knowledge.
An interpretable natural language processing system for written medical examination assessment [8]	A. Sarker, A. Z. Klein, J. Mee, P. Harik, and G. Gonzalez- Hernandez	October 2019	Used fuzzy logic and set theory-based methods for learning from a limited number of annotated examples of unstructured answers in health examinations for recognizing correct concepts with an average F1-measure of 0.89.

Table 2. Related work

Chapter 2

Domain Analysis and Techniques

2.1 Domain Analysis

The main issue that we have witnessed recently due to Corona pandemic highlighted our need for a remote systems Especially when it comes to medical care; a lot of patients live in a remote places with nearly any doctors nearby, Most of the patients treat their medical records lightly which may cause a great dangerous, also in-experienced doctors and misleading medical-records may yield to misdiagnose and in-proper treatment which may come with a great harm for the patient, all of the mentioned above represents an opportunity for intelligent systems and natural language processing to step up for the healthcare industry to break down antique silos and plug gaps in the care delivery system to make progress for the patient segment.

Natural Language Processing (NLP) can be stated as the automatic processing of the natural human language by a machine. It is a specialized branch of Artificial Intelligence which primarily focuses on interpretation as well as human generated data – text or speech based. The technology has various sub-disciplines, including Natural Language Query, Natural Language Generation, and Natural Language Understanding, the main use case of NLP is Comprehending human speech and extracting its meaning.^[2]

Speech Recognition – NLP has matured its use case in speech recognition over the years by allowing clinicians to transcribe notes for useful Medical Records data entry. Front-end speech recognition eliminates the task of physicians to dictate notes instead of having to sit at a point of care, while back-end technology works to detect and correct any errors in the transcription before passing it on for human proofing, Machine Learning in healthcare has touched clinical documentation, freeing up physicians from the manual and complex structure of Electronic

Medical-Records, allowing them to focus more on care delivery. This has been possible because of speech-to-text dictation and formulated data entry that capture structures data at the point of care.

NLP solutions can help bridge the gap between complex medical terms and patients' understanding of their health. NLP can be an excellent way to combat the Medical Record distress. Many clinicians utilize NLP as an alternative method of typing and handwriting notes, NLP algorithms can extract vital information from large datasets and provide physicians with the right tools to treat patients with complex issues.^[3]

Applying Machine learning algorithms and classifiers, have shown promising results in classifying free text and make a decision to assist medical experts in their diagnosis would serve as a boost in successfully improving healthcare services through effective analysis of narrative text of symptoms provided by a patient.

The proposed system serve as a doctor-assistant by combining the NLP and machine learning algorithms to aid the doctor in the diagnosing and treatment process which make the life easier for the patients and doctors in addition to the exponential growth of productivity and accuracy.^[4]

2.2 Techniques

We provide an AI Model based on NLP and ML techniques to hear patients' complaints to extract symptoms to diagnose disease finally decision for the doctor.

- NLP model: to convert audio to text and do preprocessing extract symptoms exchange it to a vector of a feature.
- ML model: take a vector of symptoms and classify this to diagnose and get this specific disease.

We will implement this as a back-end and host it on serve and provide web service to can use it on android or desktop or web or other organization.

So... in android:

Application components:

- Login page: This page has the user name and password, and it also has a button for the registration page if the user is not registered.
- Registration page: A page that enables the user to register, to be able to use the application as a doctor or normal user.

After the user logs in:

- The Doctor will see a page containing:
 - Diagnose page: this contains options to scan QR code for the patient to see his medical history, Start and stop recording patient complaint to upload recorded audio to diagnose and option to write symptoms as text to diagnose and option to add new medical record and note for this patient, and option to confirm diagnose' result.
- The Normal user (Patient) will see a page containing:

Diagnose page: this contains the options to start and stop recording his complaint to upload recorded audio to diagnose and option to write symptoms as text to diagnose and option to see his medical history and add new medical record and note for his medical history.

2.3 Risk/Constraints

2.3.1 Risks

Table 3. Risks

Risk	Strategy	Strategy Type	Priority	Probability
Patient may not	Providing Manual			
know how to use	Guide to the whole	Avoidance		Moderate
the application	system features.	Strategy	High	
Malfunction	Report an error with			
issues with	the microphone and			
patient`s	providing a text-	Minimization	High	Low
microphone	based method	Strategy		
Malfunction				
with the server	Hosting the model			
or the API	and the API on	Contingency	High	Low
hosting the	several servers	Plan		
Machine				
Learning Model				
Malfunction				
with the servers	Hosting the database	Contingency		
that host the	and the several	Plan	High	Low
database and the	servers			
medical records				

2.3.2 Constraints

- a. User should have the application on his device
- b. User must have internet on his device and always run when using application
- c. User should speak in a clear voice
- d. User should talk about symptoms in a clear and direct way
- e. User should know how to deal with the application.

2.4 Project Plan

2.4.1 Project Plan

phase	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Gathering Information									
Define Requirements									
analysis									
design									
implementation									
Develop AI System									
Testing and Final Discussion									

Table 4. Project Plan

2.5 Quality Assurance Plan

Black box:

- In this stage we use test dataset as input to our system to ensure the accuracy of output.

White box:-

- Unity testing

In this stage of testing, we will take every components of our AI health care system such as web service, NLP learning model, machine learning model, android application to test them separately.

- Integration testing:

In this stage of testing, we will take every components of our AI health care system such as web service, NLP learning model, machine learning model, android application to test them separately

Validation testing:

Validation testing is the process of ensuring if the tested and developed application satisfies its functionality requirements. The business requirement logic or scenarios have to be tested in detail. All the critical functionalities of an application must be tested here.

- Alpha:

In this part, a group of testers in our team test the product in a laboratory environment to ensure efficiency of product and fix errors.

- Beta:

In this stage of testing the application has been sent to some doctors to be tested on clinical and hospital and test the system efficiency and outputs is correct or not, retrieve feedback to our team.

2.6 Requirements

2.6.1 Functional Requirements

- 1. A fully functional mobile app that controls work-flow with servers, APIs, doctors, and patients in organized, accurate, and quick methods.
- 2. The System must store all required data about doctors (ids, info, and assigned patients), patients (ids, info, medical history, medical reports, and treatments).
- 3. A Speech Recognition System to record the conversation between doctor and patient.
- 4. A Server that stores data and Machine Learning Models.
- 5. API to guarantee communication between server and application.
- 6. A fully functional and tested Machine Learning Model that analyzes texts to extract symptoms and diagnose diseases.
- 7. A system to specify proper treatments based on diagnosing.
- 8. A user interface that enables patients and doctors to create accounts, add medical records, check their medical history.
- 9. The doctor and the patient must be able to start a diagnosis process.
- 10. The Application must forward the description text of the symptoms to the model for analysis through an API
- 11. The doctor and the patient must be able to receive the generated report with the full diagnosis report and treatment and confirm it through an API.
- 12. Web service to be used as a website or/and mobile app.

2.6.2 Non-Functional Requirements

- 1- Fast APIs and data retrieval from servers within seconds.
- 2- Quick Analysis and Classifying Texts using efficient algorithms.
- 3- A clear, attractive, responsive, less-leggy, and efficient User-interface that guarantees a good user experience and handles a variety of tasks.
- 4- High security to prevent unauthorized access and guarantee the safety and integrity of data.
- 5- A well-organized and manageable system architecture that eases the process of maintenance, recoverability and scalability.

2.7 System Request

Machine learning in medical diagnosis has helped several healthcare organizations to improve the patient's health and reduce healthcare costs, using superior diagnostic tools and effective treatment plans. It is now used in healthcare to make an almost perfect diagnosis, predict readmissions, recommend medicines, and identify high-risk patients. These predictions and insights are drawn using patient records and data sets along with the symptoms exhibited by the patient so the proposed system eases the process of diagnosis for the doctor and patient through automation of the diagnose process to reduce the chance of in-proper diagnosis or treatments also there's no longer need for a physical place or any travelling cost for the patient they can just do it online and the proposed system ensures the value of customer experience and customer satisfaction.^[5]

• Functionality: -

- 1- The Ability to record the text/speech description of the symptoms.
- 2- The ability to analyze those records and predict disease and the proper treatment based on the medical history.
- 3- The ability to generate full reports about the status of the patient.
- 4- The ability to store medical histories for the patients as a reference for them.

• Expected Value: -

- 1- Less-cost examinations process.
- 2- More-fast diagnosis process.
- 3- More organized reports and records.
- 4- Less paper-work stuff.
- 5- More accurate and reliable diagnosis.
- 6- Ease-to-use application and friendly User-interfaces.
- 7- Increase productivity.

- 8- Customer-satisfaction.
- Special Constraints: -
 - The ability of doctors and patients to deal with Technology.
 - The short development life-time.

Chapter 3

Proposed System and Methodology

3.1 System Architecture

Figure 1. System architecture

System Architecture

- The main connection point is the Web Service (API) that connects all the system components
- Patient can update or retrieve medical records by sending a request to the API to retrieve/store records from/to the database server.
- Doctor sends a text-based description of symptoms to the hosted intelligent model through API
- And receives back the diagnose in addition to data retrieval from the database server.
- API forwards all the results of diagnose processes to the database server after confirmation to store them.

3.2 System Use-Cases

Figure 2. Application Use case

Figure 3. Server use case

Figure 4. Admin dashboard use case

3.3 Use Case Description (Use case scenario)

Register: To use app user must have an account, and enters all required information

Use case name	Register		
Unique ID	HealthCare-User-001		
Area	Application		
Actor(s)	User (Patient, or Doctor)		
Description	User creates account		
Triggering Event	User click "Register" button	in the application	
Preconditions	- The user needs to downlo	ad application then open it	
	- The user needs to have in	ternet access	
Postconditions	- User has successfully created account		
Assumptions	- User have Medical Care application		
	- A valid data		
Steps Performed		Information for Steps	
1- Open application		Step 3: Name, Username,	
2- Choose if he is a pa	atient or doctor Password, E-mail, SSN, EMSN		
3- User enters his data	l	(Egyptian Medical Syndicate	
4- Click on "Create A	ccount" button	Number if he was a doctor)	
5- Validation of entere	red data by application		
Extensions	- If the downloading interrupted for any reason, use should		
(Alternative Flows)	try again and download it		
	- If user entered a non-valid data, a warning message should		
	appear to him		

Table 5. Register Use Case Description

Login: To log in the app the user must enter username and password

Use case name	Login		
	<u> </u>		
Unique ID	HealthCare-User-002		
Area	Application		
Actor(s)	User (Patient, or Doctor)		
Description	User login to his account		
Triggering Event	User click "Login" button in	the application	
Preconditions	- The user needs to downlo	oad application then open it	
	- The user needs to have in	ternet access	
	- The user needs to have account		
Postconditions	- User has successfully logged in to his account		
Assumptions	- User have Medical Care application		
	- A valid data		
Steps Performed	Information for Steps		
1- Open application		Step 2: E-mail, Password	
2- User enters his data	enters his data		
3- Click on "Login" bu	Login" button		
4- Validation of entered	4- Validation of entered data by application		
Extensions	- If user entered a non-valid data, a warning message should		
(Alternative Flows)	appear to him		

Table 6. Login Use Case Description

Add Old Medical History: patient add his old medical records

Use case name	Adding old medical history		
Unique ID	HealthCare-Patient-001		
Area	Application		
Actor(s)	Patient		
Description	Patient adds old medical history	у	
Triggering Event	Patient click "Add old medical	history" button in the	
	application		
Preconditions	- The Patient needs to login in	n to his account	
Postconditions	- Patient has successfully add	ed old medical history to his	
	account		
Assumptions	- Patient have Medical Care application		
	- A valid data		
Steps Performed		Information for Steps	
1- Open application		Step 2: E-mail, Password	
2- Patient log in		Step 4: Symptoms, Disease,	
3- Patient click "Add old	- Patient click "Add old medical history" button Treatment		
4- Patient Enters his data	1- Patient Enters his data		
5- Patient clicks on "Sav	- Patient clicks on "Save" button		
6- Validation of entered	data by application		
Extensions	- If user entered a non-valid data, a warning message should		
(Alternative Flows)	appear to him		

Table 7. Adding Old Medical History Use Case Description

Send medical report to doctor: Patient after receive his Medical Care report he can send to his doctor

TT			
Use case name	Send medical report to doctor		
Unique ID	Health care -Patient-002		
Area	Application		
Actor(s)	Patient		
Description	Patient send medical report to doctor	or	
Triggering Event	Patient click "send medical report to	o doctor" button in the	
	application		
Preconditions	- The Patient needs to login in to l	his account	
Postconditions	- Patient has successfully sent med	dical report to doctor	
Assumptions	- Patient have Medical Care application		
	- A valid data		
Steps Performed	Information for Steps		
1. Open application	ion Step 2: E-mail, Password		
2. Patient log in		Step 4: medical report	
3. Patient click "send	3. Patient click "send medical report to doctor" button		
4. Patient Enters his	4. Patient Enters his medical report		
5. Patient clicks on '	5. Patient clicks on "Save" button		
6. Validation of entered medical report by application			
Extensions	- If user entered a non-valid medical report, a warning		
(Alternative Flows)	message should appear to him		

Table 8. Send Medical Report to Doctor Use Case Description

View Medical History: patient can view his medical records

Use case name	View medical history		
Unique ID	HealthCare -Patient-003		
Area	Application		
Actor(s)	Patient		
Description	Patient views his medical history		
Triggering Event	Patient click "View medical histor	y" button in the application	
Preconditions	- The Patient needs to login in to	his account	
Postconditions	- Patient has successfully viewed medical history		
Assumptions	- Patient have Medical Care application		
	- A valid data		
Steps Performed	Information for Steps		
1- Open application	Step 2: E-mail, Password		
2- Patient log in			
3- Patient click "View	medical history" button		
Extensions	- If user entered a non-valid data, a warning message should		
(Alternative Flows)	appear to him		

Table 9. View Medical History Use Case Description

Start Audio Recording: Doctor or patient starts audio record to voice recording a patient's complaint

Send Audio To API: After complaint recorded it will be sent to model to start classification

Generate Symptoms, Disease, and Treatments: doctor or patient receives symptoms, diseases and treatments that can use to make decision for patient Illness

Use case name	Start audio recording		
Unique ID	HealthCare-User-003		
Area	Application		
Actor(s)	User (Patient or Doctor)		
Description	User start new diagnose		
Triggering Event	User click "Start audio recording" button in the	ne application	
Preconditions	- The User needs to login in to his account		
Postconditions	- Audio has successfully recorded, submitted	d to server and	
	returned result		
Assumptions	- User have Medical Care application		
	- User should speak in a clear voice		
	- User should talk about symptoms in a clear	r and direct way	
Steps Performed		Information for	
		Steps	
1- Open application		Step 2: E-mail,	
2- User log in		Password	
3- User click "Start au	3- User click "Start audio recording" button Step 4: Audio		
4- User start talking and describes how he feels 'symptoms' Step 8: Note		Step 8: Note	
5- User clicks on "Finish recording" button Step 9: Sympton		Step 9: Symptoms,	
5- Validation of entered data by application and send data to server Disease,		Disease,	
7- Server responds with result Treatment, Note		Treatment, Note	
8- Doctor adds note if	8- Doctor adds note if he wants		
9- User click "Save" button			
Extensions	- If doctor entered a non-valid data in login,	a warning message	
(Alternative Flows)	should appear to him		

Table 10. Start Audio Recording Use Case Description

Send symptoms as text: Doctor or patient starts writing complaint

Send Audio To API: After complaint recorded it will be sent to model to start classification

Generate Symptoms, Disease, and Treatments: doctor or patient receives symptoms, diseases and treatments that can use to make decision for patient Illness.

Use case name	Send symptoms as text		
Unique ID	HealthCare-User-004		
Area	Application		
Actor(s)	User (Patient or Doctor)		
Description	User start write about symptor	ms	
Triggering Event	User click "Write symptoms a	s text" button in the application	
Preconditions	- The User needs to login in	to his account	
Postconditions	- Text has successfully subm	nitted to server and returned result	
Assumptions	- User have Medical Care ap	plication	
	- User should speak in a clea	ır voice	
	- User should talk about sym	ptoms in a clear and direct way	
Steps Performed	Information for Steps		
1. Open application	n	Step 2: E-mail, Password	
2. User log in	Step 4: Audio		
3. User click "Wri	ite symptoms as text" button Step 8: Note		
4. User start writin	ng and describes how he feels Step 9: Symptoms, Disease,		
'symptoms'		Treatment, Note	
5. User clicks on "	Send Symptoms" button		
6. Validation of en	tered data by application and		
send data to serv	ta to server		
7. Server responds	sponds with result		
8. Doctor adds not	Doctor adds note if he wants		
9. User click "Save	9. User click "Save" button		
Extensions	- If doctor entered a non-valid data in login, a warning message		
(Alternative Flows)	ernative Flows) should appear to him		
	Table 11 Send Symptoms as Text Use	Casa Dagawintian	

Table 11. Send Symptoms as Text Use Case Description

Scan Patient QR Code: Doctor scans Patient QR Code to be able view patient medical history

Use case name	Scan patient QR code		
Unique ID	HealthCare -Doctor-001		
Area	Care Bot Application, Server		
Actor(s)	Doctor		
Description	Get patient's old medical history		
Triggering Event	Doctor click "Scan QR" button in the ap	plication	
Preconditions	- Doctor needs to login in to his account		
	- Patient needs to login in to his account		
	- Patient must have QR code		
Postconditions	- Doctor has successfully gotten patien	t's old medical history on his	
	device		
Assumptions	- Doctor have Care bot application		
	- Patient should have QR code		
	- Doctor phone have a camera		
Steps Performed	Information for Steps		
		-	
1- Open application		Step 2: E-mail, Password	
2- Doctor log in		Step 4: QR code	
3- Doctor click "Scan Q	PR" button	Step 6: Old_Medical_History	
4- Doctor scan QR code	by his camera		
5- Validation of entered	data by application and send data to server		
6- Server respond with result			
Extensions	- If doctor entered a non-valid data in login, a warning message should		
(Alternative Flows)	appear to him		
	- If patient have non-valid QR code, then patient must generate new QR		
	code in his account		

Table 12. Scan Patient QR Code Use Case Description

View Patient Medical history: Doctor after scan QR code of patient now he can view patient medical record

Use case name	View patient medical history		
Unique ID	HealthCare -Doctor-002		
Area	Care Bot		
Actor(s)	Doctor		
Description	Doctor views patient medical	history	
Triggering Event	Doctor scan patient QR code		
Preconditions	- The Doctor needs to login	in to his account	
Postconditions	- Doctor has successfully viewed patient medical history		
Assumptions	- Doctor have Care bot application		
	- A valid data		
Steps Performed	Information for Steps		
5- Open application		Step 2: E-mail, Password	
6- Doctor log in			
7- Doctor scan patien	nt QR code		
Extensions	- If user entered a non-valid data, a warning message should		
(Alternative Flows)	appear to him		

Table 13. View Patient Medical History Use Case Description

Use case name	Convert audio to text and	Unique	HealthCare -NLP-001	
	extract symptoms	ID		
Area	Server		1	
Actor(s)	NLP			
Level	Blue			
Description	Convert audio received to tex	t then extract	t symptoms	
Triggering Event	API send audio			
Preconditions	- A valid audio			
Postconditions	- NLP module has successfu	ılly converte	d audio to text and	
	extracted symptoms			
Assumptions	- The audio has to be clear			
Steps Performed	Information for Steps			
1- Convert audio to	text	Step 1: Au	dio	
2- Analyze text	Step 2: Text			
3- Extract symptoms	Step 4: Symptoms			
4- Send symptoms	mptoms			
Extensions	- If audio wasn't clear, a wa	rning messag	ge should appear to	
(Alternative Flows)	doctor to re-record audio			
	- If language wasn't support	ed, a warnin	g message should	
	appear to doctor to re-record audio in supported language			
	- If patient described an untrained disease for program, a			
	warning message should appear to doctor that program			
	couldn't extract symptoms			
	- If module couldn't extract symptoms from text, a warning			
	message should appear to doctor that program couldn't extract			
	symptoms			

Table 14. Convert Audio to Text and Extract Symptoms Use Case Description

Receive Audio: server received the A patient's complaint

Convert Audio to Text: NLP start preprocessing text by convert Audio TO Text

Analysis Text: NLP receive text after converting and start analysis text

Extract Symptoms: NLP will Determines Symptoms after make Analysis to Text

Use case name	Classification of disease	Unique ID	HealthCare -
	(Diagnose)		DiseaseClassifier-001
Area	Server		
Actor(s)	Disease Classifier		
Description	Getting symptoms and predict disea	se	
Triggering Event	NLP module sent symptoms to disea	ase classifier	
Preconditions	- There is no preconditions		
Postconditions	- Disease classifier module has successfully predicted disease		
Assumptions	- NLP module must send symptoms		
Steps Performed Information for Steps		for Steps	
1- Disease classifier analy	ze symptoms and predict disease	Step 1: Symptoms	
2- Return result	Step 2: Disease		
Extensions (Alternative	- If module couldn't analyze symptoms to predicate disease, a warning		
Flows)	message should appear to doctor that program couldn't predict disease		

Table 15. Classification of Disease (Diagnose) Use Case Description

Classification Disease: after Extract Symptoms Disease Classifier will receive Symptoms and predict Diseases

Use case name	Suggest medicine	Unique ID	HealthCare -
			TreatmentPredictor-001
Area	Server		
Actor(s)	Treatment predictor		
Description	Suggest medicine		
Triggering Event	Disease classifier sent predicted	disease to trea	tment predictor
Preconditions	- Disease classifier sent predicted disease		
Postconditions	- Treatment predictor provided appropriate treatment		
Assumptions	- Disease classifier must send predicted disease		
Steps Performed	Information for Steps		n for Steps
1- Treatment predicto	dictor analyze disease and search for Step 1: Disease		ase
the best medicine	the best medicine for it Step 2: Medicines		icines
2- Return result			
Extensions	- If module couldn't analyze disease to predicate medicine, a warning		
(Alternative Flows)	message should appear to doctor that program couldn't predict appropriate medicine		

Table 16. Suggest Medicine Use Case Description

Suggest Medicine: after predict Diseases Treatments predictor will receive Diseases and suggest medicine.

Use case name	Login	Unique	HealthCare -Admin-	
		ID	003	
Area	System Back-End			
Actor(s)	System Administrator			
Description	Admin logging to an administrati	ive account.		
Triggering Event	Admin click "Login" button in the application			
Preconditions	 The admin needs to download application then open it. The admin needs to have internet access The user needs to have the authorities to log in as an admin. 			
Postconditions	- Admin has successfully logged in to his account			
Assumptions	- The admin has the medical-care application A valid data			
Steps Performed	eps Performed Information for Steps			
1- Open application	1	Step 2: E-mail, Password		
2- Admin enters his data				
3- Click on "Login" button				
4- Validation of entered data by application				
Extensions (Alternative Flows)	- If user entered a non-valid data, a warning message should appear to him.			

Table 17. Dashboard Login Use Case Description

Login: admin login in dashboard to management

Use case name	Check Data-Integrity (Data	Unique	HealthCare -Admin-	
	management)	ID	002	
Area	System Back-End			
Actor(s)	Administrator			
Description	The administrator verifies the inte	egrity of data		
Triggering Event	Logging into the database and ch	eck the record	ds.	
Preconditions	The user must be verified as an a	dmin and at l	east 1 new record	
	available.			
Postconditions	- Data integrity confirmed.			
Assumptions	- A functional database to retrieve data and check integrity techniques.			
Steps Performed	Information for Steps			
1- Open application	- Open application Records.			
2- Log in as an add	min			
3- Check new reco	3- Check new records.			
4- Apply integrity	4- Apply integrity investigations.			
5- Confirm data.				
Extensions	- No data to check.			
(Alternative				
Flows)				

Table 18. Check Data-Integrity (Data management) Use Case Description

Check data integrity: admin check data that come from users

Use case name	Backup and Restore Data	Unique	HealthCare -Admin-
		ID	003
Area	System Back-End		
Actor(s)	Administrator		
Description	The administrator perform bac	k-up or resto	ore operation.
Triggering Event	Initiate back-up or Restoration	process.	
Preconditions	There must be a data to back-up or a backed-up data to restore.		
Postconditions	- Data has been successfully backed-up or restored.		
Assumptions	Available database section to perform back-up or restore and an		
	authorized user.		
Steps Performed	Information for Steps		
5- Open application		Database.	
6- Log in as an admin			
7- Open database.			
8- Back-up a piece of data (if desired).			
9- Restore a certain piece of data (if desired).			
10-Confirm the process and save changes.			
Extensions	- No data to back-up or restore.		
(Alternative Flows)			

Table 19. Backup and Restore Data Use Case Description

Data management: admin make management to data that come from all users

Backup data: admin make back up data

Restore data; admin make restore data

Use case name	(Patients' Profiles management)	Unique ID	HealthCare - Admin-	
	Create user		004	
Area	Dashboard			
Actor(s)	admin			
Description	The admin manages patient's profiles and create it			
Triggering Event	Allow for add patient's profiles			
Preconditions	- The admin login			
Postconditions	- patient's profiles is created already			
Assumptions	- admin must make login			
Steps Performed	Information for Steps			
1- admin get of data user		Step 1: data user		
2- admin can create nev	ew user			
Extensions	- If Admin don't make login, a warning message should appear to			
(Alternative Flows)	admin that program couldn't create new user.			

Table 20. (Patients' Profiles management) Create user Use Case Description

Patients' Profiles: management: admin management to patient profiles

Create User: admin can create new patient account

Use case name	(Patients' Profiles management)	Unique ID	HealthCare - Admin-	
	Delete user		005	
Area	Dashboard			
Actor(s)	admin			
Description	The admin manages patient's pro	files and dele	te it	
Triggering Event	Allow for delete patient's profiles			
Preconditions	- The admin login			
Postconditions	- patient's profiles are deleted already			
Assumptions	- admin must make login			
Steps Performed	Information for Steps			
1- admin get of data user		Step 1: data user		
2- admin can delete it	ete it			
Extensions	- If Admin don't make login, a warning message should appear to			
(Alternative Flows)	admin that program couldn't delete user.			

Table 21. (Patients' Profiles management) Delete user Use Case Description

Delete User: admin can delete patient account

Use case name	(Doctors' Profiles management)	Unique ID	HealthCare-Admin-006	
	Create user			
Area	Dashboard			
Actor(s)	admin			
Level	Blue			
Description	The admin manages doctor's pro-	files and creat	te it	
Triggering Event	Allow for add doctor's profiles			
Preconditions	- The admin login			
Postconditions	- Doctor's profiles are created already			
Assumptions	- admin must be login			
Steps Performed		Information for Steps		
1- admin get of data user		Step 1: data user		
2- admin can create ne	dmin can create new user			
Extensions	- If Admin don't make login, a warning message should appear to			
(Alternative Flows)	admin that program couldn't create new user.			

Table 22. (Doctors' Profiles management) Create user Use Case Description

Doctors' Profiles: management: admin management to doctors' profiles

Create User: admin can create new doctor account

Use case name	(Doctors' Profiles management)	Unique ID	HealthCare-Admin-	
	Delete user		007	
Area	Dashboard			
Actor(s)	admin			
Level	Blue			
Description	The admin manages doctor's profiles and delete it			
Triggering Event	Allow for delete doctor's profiles			
Preconditions	- The admin login			
Postconditions	- doctor's profiles are deleted already			
Assumptions	- admin must make login			
Steps Performed		Information for Steps		
1- admin get of data user		Step 1: data user		
2- admin can delete it	admin can delete it			
Extensions	- If Admin don't make login, a warning message should appear to			
(Alternative Flows)	admin that program couldn't delete user.			

Table 23. (Doctors' Profiles management) Delete user Use Case Description

Delete User: admin can delete doctor account

Use case name	(Doctors' Profiles	Unique	HealthCare-admin-	
	management)	ID	008	
	verify account			
Area	Dashboard			
Actor(s)	admin			
Level	Blue			
Description	The admin manages doctor's profiles and verify account it			
Triggering Event	Allow for verify account doctor's profiles			
Preconditions	The admin login			
Postconditions	Doctor's profiles are created already and it is correct			
Assumptions	admin must be login			
Steps Performed		Information for Steps		
1- admin get of account user		Step 1: account user		
2- admin can verify i	it it			
Extensions	- If Admin don't make login, a warning message should appear			
(Alternative Flows)	to admin that program couldn't make verify account.			

Table 24. (Doctors' Profiles management) verify account Use Case Description

Verify accounts admin accept and verify new doctor account:

Use case name	System maintenance	Unique	HealthCare-admin-	
		ID	008	
Area	Health Care			
Actor(s)	Admin			
Description	Admin update system and mar	nage server		
Triggering Event	Admin open dashboard on wel	b app or C-pa	anel on server	
Preconditions	- The admin needs to have in	nternet access	S	
	- The admin needs to has user name and password then open it			
	- The admin needs to have account			
Postconditions	- admin has successfully logged in to dashboard			
	- admin update and manage system			
Assumptions	- admin have user name and password			
	- A valid data			
Steps Performed		Information for Steps		
1- Open login form of	1- Open login form of dashboard		Step 2: E-mail, Password	
2- Admin enters his o	lata			
3- Validation of enter	3- Validation of entered data by system			
4- Start maintenance, update and manage system				
Extensions	- If admin entered a non-valid data, a warning message should			
(Alternative Flows)	appear to him			

Table 25. System Maintenance Use Case Description

System maintenance: this use case includes all system maintenance processing

Software update: system maintenance processing includes software update process

Manage server: system maintenance processing includes Manage server

3.4 Analysis Class

3.4.1 Context Diagram

Figure 5. Context diagram

3.4.2 State Diagram

Figure 6. Doctor state diagram

Figure 7. Patient state diagram

3.5 Interaction Diagram (Sequence Diagram)

Figure 8. Doctor Sequence diagram

Figure 9. Patient Sequence diagram

3.6 Design Class

3.6.1 Class Diagram

Figure 10. Class diagram

3.6.2 Domain Diagram

Figure 11. Domain diagram

3.7 ER Diagram

Figure 12. Entity relationship diagram

3.8 Database Schema

Figure 13. Database Schema

3.9 Design Mockup

Figure 14. Design Mockup

Chapter 4

Experimental Results and Discussion

4.1 Expected Deployment

Global Overview

Figure 15. System deployment diagram

4.2 Algorithms:

NLP:

Natural language processing (NLP) refers to the branch of computer science—and more specifically, the branch of artificial intelligence or AI—concerned with giving computers the ability to understand text and spoken words in much the same way human beings can.^[7]

Several NLP tasks break down human text

- Part of speech tagging, also called grammatical tagging, is the process of determining the part of speech of a particular word or piece of text based on its use and context
- **Word sense disambiguation** is the selection of the meaning of a word with multiple meanings through a process of semantic analysis that determine the word that makes the most sense in the given context
- **Named entity recognition,** or NEM, identifies words or phrases as useful entities. NEM identifies 'Kentucky' as a location or 'Fred' as a man's name.
- **Sentiment analysis** attempts to extract subjective qualities—attitudes, emotions, sarcasm, confusion, suspicion—from text.

Figure 16. NLP Pipeline

NLTK:

The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language.

Our Custom Symptoms and disease NER : Accuracy:

Figure 17. Our Custom Symptoms and disease NER

TF-IDF Vectorizer:

Is the base building block of many NLP pipelines. It is a simple technique to vectorize text documents — i.e. transform sentences into arrays of numbers — and use them in subsequent tasks.

accuracy_score : 0.994748687171793					
accuracy_repo	ort :				
	precision	recall	f1-score	support	
9	0.98	1.00	0.99	49	
1	0.98	0.98	0.98	61	
2	1.00	0.98	0.99	45	
3	1.00	1.00	1.00	70	
4	1.00	0.98	0.99	42	
5	1.00	0.98	0.99	63	
6	1.00	1.00	1.00	39	
7	0.98	1.00	0.99	61	
8	1.00	0.96	0.98	52	
9	1.00	1.00	1.00	64	
10	1.00	1.00	1.00	61	
11	1.00	1.00	1.00	54	
12	1.00	1.00	1.00	51	
13	1.00	0.98	0.99	43	
14	1.00	1.00	1.00	63	
15	0.98	1.00	0.99	46	
16	1.00	1.00	1.00	40	
17	0.96	1.00	0.98	47	
18	1.00	1.00	1.00	45	
19	1.00	1.00	1.00	67	
20	0.98	1.00	0.99	52	
21	1.00	1.00	1.00	51	
22	1.00	1.00	1.00	51	
23	1.00	1.00	1.00	64	
24	1.00	1.00	1.00	52	
accuracy			0.99	1333	
macro avg	0.99	0.99	0.99	1333	
weighted avg	0.99	0.99	0.99	1333	

Figure 18. Symptom's Accuracy

Multinomial Naive Bayes:

This a supervised learning technique that classifies every new document by assigning one or more class labels from a fixed or predefined class. It uses the bag of words approach, where the individual words in the document constitute its features, and the order of the words is ignored.

```
from sklearn.naive_bayes import MultinomialNB

nb = MultinomialNB()
naive_bayes_model = nb.fit(X_train, y_train)

from sklearn.metrics import accuracy_score

y_pred =naive_bayes_model.predict(X_test)
nb_test = accuracy_score(y_test, y_pred)

print("Test accuracy :{:.2f}".format(nb_test))

Test accuracy :0.95
```

Figure 19. Disease Classifier

4.3 Methodology

4.1.1 Main Work:

- We can divide our application's main work into main four parts:
 - Learning android developing basics.
 - Before developing our application, we needed to read about android because knowledge about android developing was not sufficient enough to start developing the project.
 - Learning Machine learning techniques.
 - Learning Natural Languages processing techniques.
 - Apply text preprocessing on text after convert it from audio.
 - Apply NLP techniques on text
 - Apply machine learning on the data set.
- Applications and languages used:
 - Languages used:
 - kotlin language.
 - Python language.
 - SQLite language.
 - Applications used:
 - Android Studio.
 - Anaconda Platform.

4.1.2 Sample Scenarios

1. Doctor and Patient (Diagnose Process)

- 1.1. The doctor opens the application and asked to enter a username and password to authenticate his/her identity and scan the QR-Code of the patient.
- 1.2. The doctor starts a diagnose process and ask the patient to describe his/her symptoms in details, the recorded audio is then converted to a text for the doctor and the patient to review then the doctor submit it for the machine learning model to analyze it.
- 1.3. The doctor receives the generated report that describe symptoms and diseases.
- 1.4. The doctor confirms the report and the report is saved at the patient medical history.

2. Patient (Diagnose Process):

- 2.1. The patient opens the application and authenticate his/her identity by providing a username and password.
- 2.2. The patient starts a stand-alone diagnose process and start describing all his/her symptoms in details in text or voice then the recorded text is shown to be reviewed.
- 2.3. The patient receives a report with the symptoms and the diagnose.

3. Patient or Doctor (First-Use):

- 3.1. The doctor/patient opens the application for the first time and click on Sign up button
- 3.2. The doctor/patient starts filling the required information to complete the registration process
- 3.3.A registration confirmation notification is shown and the user is ready to log on into his own account.

Chapter 5

Conclusion and Future work

5.1 Conclusion

The timely access to healthcare avoiding unnecessary time wastage of patients and doctors is a major issue in the whole world especially in the Middle-East and Egypt where a lot of patients get in worse health conditions due to lack of healthcare-ness. However, considering the exponential growth of mobile users and the need for a real-time medical diagnosis assistance tool, it is therefore important to explore the need for a cost-effective telehealthcare platform, which allows the earlier detection of diseases and effective communication with patients (users) to a doctor with the assistance of a diagnose and treatment system.^[8]

Based on the highlighted needs, this study was able to successfully build mobile-based health care and diagnosis system, which aids the doctor in the diagnosis process to avoid any misdiagnose and in-proper given treatment based on the medical history in addition to the ability of the doctor to scan and explore the medical history of the patients to take considerations and a dedicated account where patients and doctors can check their profiles to do the mentioned above.

We were able to combine NLP and machine learning algorithm and integrate them into Mobile-based Application to offer diagnosis, treatments based on a recorded speech conversation between the doctor and the patient and the medical history of the patient.

5.2 Future work

Integrate more features and machine learning models to improve the accuracy of the diagnose process and the diversity of the diseases that being diagnosed (i.e.) a computer vision model to scan medical X-Rays. Add support Arabic language in diagnose process.

5.3 References

- 1. A. Langer, R. Banga, A. Mittal, L. V. Subramaniam, and P. Sondhi, "A text based drug query system for mobile phones," International Journal of Mobile Communications, vol. 12, no. 4, pp. 411–429, 2014.
- 2. V. S. Pendyala, Y. Fang, J. Holliday, and A. Zalzala, "A text mining approach to automated healthcare for the masses," GHTC, vol. 8, pp. 28–35, 2014
- 3. R. Carson-Stevens, J.-A. Medina-Merodio, R. Plata, J.-J. Martinez-Herraiz, and J.-M. Gutierrez-Martinez, "A laboratory test expert system for clinical diagnosis support in primary health care," Applied Sciences, vol. 5, no. 3, pp. 222–240, 2015.
- 4. A. Atutxa, A. D. de Ilarraza, K. Gojenola, M. Oronoz, and O. Perez-de-Viñaspre, "Interpretable deep learning to map diagnostic texts to ICD-10 codes," International Journal of Medical Informatics, vol. 129, pp. 49–59, 2019.
- 5. C. Combi, M. Zorzi, G. Pozzani, U. Moretti, and E. Arzenton, "From narrative descriptions to MedDRA: automagically encoding adverse drug reactions," Journal of Biomedical Informatics, vol. 84, pp. 184–199, 2018.
- 6. H. P. Kanegaye, A. Anastasiou, A. Edwards et al., "Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches," Health Informatics Journal, vol. 23.
- 7. N. Kloehn, G. Leroy, D. Kauchak et al., "Improving consumer understanding of medical text: development and validation of a new subsimplify algorithm to automatically generate term explanations in English and Spanish," Journal of Medical Internet Research, vol. 20, no. 8, p. e10779, 2018.
- 8. A. Sarker, A. Z. Klein, J. Mee, P. Harik, and G. Gonzalez-Hernandez, "An interpretable natural language processing system for written medical examination assessment," Journal of Biomedical Informatics, vol. 98, 2019.