

MYMETEOCAL: COST ESTIMATION

Authors:

Benedetto Vitale Ettore Randazzo Giacomo Scolari

Professor:

Raffaella Mirandola

Course:

Software Engineering 2

February 10, 2015

Contents

2	Fun	action Points	
	2.1	Internal Logical Files (ILFs)	
	2.2	External Logical Files (ELFs)	
	2.3	External Inputs (EIs)	
	2.4	External Outputs (EOs)	
		External Inquiries (ExIs)	
	2.6	Total	

1 Introduction

In this document we are going to perform an estimation of the effort that our project requires. We are going to use the following tables:

Function types	Weights			
	Simple	Medium	Complex	
N. Inputs	3	4	6	
N. Outputs	4	5	7	
N. Inquiry	3	4	6	
N. Internal Files	7	10	15	
N External Files	5	7	10	

tipo applic	а	b	С	D
Organic	2.4	1.05	2.5	0.38
Semi-detached	3	1.12	2.5	0.35
Embedded	3.6	1.2	2.5	0.32

2 Function Points

2.1 Internal Logical Files (ILFs)

- 1. User: simple structure to model users information
- 2. Event: medium structure to model events information
- 3. Invitation: simple structure to manage invitations
- 4. **Notification**: simple structure to manage participations

Using the weights from the given table we get:

$$ILFs = 4 \times 7 + 1 \times 10 = 38 FPs$$

2.2 External Logical Files (ELFs)

1. **WeatherNotification**: medium structure, retrieved from the weather provider, to manage weather information

Using the weights from the given table we get:

$$ELFs = 1 \times 7 = 7 FPs$$

2.3 External Inputs (EIs)

- 1. Login/Logout: simple operations to sign in/out the system
- 2. **Registration**: simple operation to sign up to the system
- 3. Edit Profile: simple operation to modify user's profile
- 4. **Create Event**: complex operation to create an event and invite other users (includes participations and notifications creation)
- 5. Edit Event: complex operation to modify an event
- Respond to Invitation: simple operation to accept or decline an invitation to an event
- 7. **Import Calendar**: complex operation to import a calendar as XML file Using the weights from the given table we get:

$$EIs = 5 \times 3 + 3 \times 6 = 33 FPs$$

2.4 External Outputs (EOs)

- 1. **Invitation Notification**: simple operation that creates the notification of an invitation
- 2. **Invitation Mail**: simple operation to send an email to notify of an invitation
- 3. Weather Notification: simple operation that creates a weather notification
- 4. Weather Mail: simple operation to send an email to notify of the weather
- 5. Export: medium operation to export a calendar as XML file

Using the weights from the given table we get:

$$EOs = 4 \times 4 + 1 \times 5 = 21 \text{ FPs}$$

2.5 External Inquiries (ExIs)

- 1. View Event: simple operation to get event information
- 2. View User: simple operation to get user information
- 3. View Notifications: simple operation to get notifications
- 4. Search User: simple operation to find other users by username

Using the weights from the given table we get:

$$ExIs = 4 \times 3 = 12 FPs$$

2.6 Total

The total function points are:

$$38 + 7 + 33 + 21 + 12 = 111 \text{ FPs}$$

Using a conversion factor of 46, for J2EE language, that means a total SLOCs of:

$$111 \times 46 = 5106 \text{ SLOCs}$$

The lines of code of our project are 5200, which means a quite good estimation.

3 COCOMO

Since we consider our application as a $\it Semi-Detached$ application, the COCOMO values are:

$$E = a \times KSLOC^b$$

$$D = c \times E^d$$

$$P = E/D$$

Hence:

$$M = 3 \times (5.106)^{1.12} = 18.63 \text{ men} - \text{month}$$

$$M = 2.5 \times (18.63)^{0}.35 = 6.96 \text{ month}$$

$$M = 18.63/6.96 = 2.67 = 3 \text{ men}$$