Projekt 5: modelowanie pola elektrostatycznego pułapki jonowej

9 stycznia 2019

1 Wstęp

Na laboratorium wyznaczymy potencjał elektrostatyczny w obszarze stanowiącym pułapkę jonową. Schemat poglądowy układu pokazuje rysunek (1). Pułapkę stanowi obszar wewnątrz wydrążonego

Rysunek 1: Schemat pułapki dla jonów o dodatnim ładunku. Ponieważ do lewej i prawej elektrody przyłożony jest wysoki potencjał (V>0), jony zostają uwięzione w środkowej części (V=0). Ruch jonów w kierunku radialnym (ρ) ogranicza silne jednorodne pole magnetyczne skierowane wzdłuż osi symetrii układu (z).

walca, do którego końców przyłożony jest wysoki potencjał. W części środkowej, odseparowanej od końców, potencjał na powierzchnii walca jest niższy (V=0). W takim układzie ruch jonów w kierunku osi 'z' jest ograniczony polem eletrostatycznym wytwarzanym przez układ cylindrycznych elektrod. Aby zapobiec ucieczce jonów w kierunku radialnym, na część środkową nałożona jest zazwyczaj cewka, która wytwarza pole magnetyczne skierowane wzdłuż osi symetrii układu. Zakrzywia ono trajektorię czastek, kierując je do środka. 1

Problem modelowania pola elektrostatycznego rozwiążemy numerycznie, znajdując rozwiązanie równania Laplace'a (zakładamy brak gęstości ładunku w układzie)

$$\nabla^2 V(\vec{r}) = 0 \tag{1}$$

Ze względu na symetrię układu, wygodniej będzie posługiwać się współrzędnymi cylindrycznymi (ρ, ϕ, z) . Równanie Laplace'a we współrzędnych cylindrycznych

$$\left(\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho}\frac{\partial}{\partial \rho} + \frac{1}{\rho^2}\frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}\right)V(\rho, \phi, z) = 0$$
(2)

¹Za skonstruowanie pułapki jonowej nagrodę Nobla otrzymali Hans Dehmelt i Wolfgang Paul. Osoby zainteresowane tematyką mogą znaleźć więcej informacji w artykule przeglądowym: K. Blaum , Yu. N. Novikov, G. Werth, "Penning traps as a versatile tool for precise experiments in fundamental physics", Contemporary Physics 51, 149(2010). Artykuł dostępny jest bezpłatnie za pośrednictwem biblioteki głównej AGH.

1.1 Dyskretyzacja równania Laplace'a

Równanie (2) rozwiążemy metodą relaksacji na siatce. Wcześniej jednak zauważmy, że układ posiada symetrię obrotową, zatem rozwiązanie nie powinno zależeć od zmiennej kątowej ϕ . Problem redukuje się do dwóch wymiarów (ρ, z) . W płaszczyźnie $\rho - z$ wprowadzamy siatkę węzłów i określamy na niej wszystkie niezbędne wielkości [dolne indeksy (i,j) numerują węzły]

$$\rho \rightarrow \rho_i = i \cdot \Delta \rho, \quad i = 0, 1, \dots, n$$
 (3)

$$z \rightarrow z_j = j \cdot \Delta z, \quad j = 0, 1, \dots, m$$
 (4)

$$V(\rho, z) \rightarrow V(\rho_i, z_i) \rightarrow V_{i,j}$$
 (5)

Ponieważ potencjał chcemy znaleźć w dyskretnych położeniach (węzłowych) musimy zdyskretyzować równanie Laplace'a, a dokładniej sam operator ∇^2 . W tym celu pochodne zastępujemy ilorazami różnicowymi:

$$\frac{\partial V_{i,j}}{\partial \rho} = \frac{V_{i+1,j} - V_{i-1,j}}{2\Delta \rho} \tag{6}$$

$$\frac{\partial^2 V_{i,j}}{\partial \rho^2} = \frac{V_{i+1,j} - 2V_{i,j} + V_{i-1,j}}{\Delta \rho^2} \tag{7}$$

$$\frac{\partial^2 V_{i,j}}{\partial z^2} = \frac{V_{i,j+1} - 2V_{i,j} + V_{i,j-1}}{\Delta z^2} \tag{8}$$

Powyższe ilorazy są symetryczne względem węzła (i,j) i mają dokładność $O(\Delta \rho^2)$. Zdyskretyzowane równanie Laplace'a ma postać:

$$\frac{V_{i+1,j} - 2V_{i,j} + V_{i-1,j}}{\Delta \rho^2} + \frac{1}{\rho_i} \frac{V_{i+1,j} - V_{i-1,j}}{2\Delta \rho} + \frac{V_{i,j+1} - 2V_{i,j} + V_{i,j-1}}{\Delta z^2} = 0$$
(9)

które przekształcamy tak aby element $V_{i,j}$ uzależnić od pozostałych

$$V_{i,j} = \frac{1}{\frac{2}{\Delta \rho^2} + \frac{2}{\Delta z^2}} \left(\frac{V_{i+1,j} + V_{i-1,j}}{\Delta \rho^2} + \frac{1}{\rho_i} \frac{V_{i+1,j} - V_{i-1,j}}{2\Delta \rho} + \frac{V_{i,j+1} + V_{i,j-1}}{\Delta z^2} \right)$$
(10)

1.2 Warunki brzegowe

Na rysunku 2 pokazano siatkę obliczeniową wraz z zaznaczonymi warunkami brzegowymi w obszarach (1)-(6). Wprowadzamy następujące warunku brzegowe

• Obszar 1 (pobocznica lewego walca): warunki Dirichleta

$$V_{n,j} = V_0, \quad j = 0, 1, \dots, j_1$$
 (11)

• Obszar 2 (pobocznica środkowego walca): warunki Dirichleta

$$V_{n,j} = 0, \quad j = j_1 + 1, \dots, j_2$$
 (12)

• Obszar 3 (pobocznica prawego walca): warunki Dirichleta

$$V_{n,j} = V_0, \quad j = j_2 + 1, \dots, m$$
 (13)

• Obszar 4 (przekrój prawego walca): warunki von Neumanna - daleko od brzegu spodziewamy się niezależności od zmiennej 'z'. Zakładamy więc:

$$\frac{\partial V}{\partial z} = 0 \to \frac{V_{i,m} - V_{i,m-1}}{\Delta z} = 0 \tag{14}$$

skąd otrzymujemy

$$V_{i,m} = V_{i,m-1}, \quad i = 1, 2, \dots, n-1$$
 (15)

Rysunek 2: Rozmieszczenie i numeracja węzłów siatki obliczeniowej oraz warunki brzegowe.

• Obszar 5 (przekrój lewego walca): warunki von Neumanna jak dla obszaru 4

$$V_{i,0} = V_{i,1}, \quad i = 1, 2, \dots, n-1$$
 (16)

• Obszar 6 (oś symetrii układu, $\rho = 0$): warunki von Neumanna. Ze względu na symetrię obrotową układu, dla $\rho = 0$ powinna znikać pochodna w kierunku ρ , co daje warunek

$$V_{0,j} = V_{1,j}, \quad j = 1, 2, \dots, m-1$$
 (17)

Uwaga: założenie $\partial V/\partial \rho=0$ dla $\rho=0$ nie oznacza że istnieje tam minimum potencjału - potencjał zmienia się jeszcze w kierunku 'z'. Twierdzenie o jednoznaczności rozwiązania równania Laplace'a nadal obowiązuje.

1.3 Relaksacja

```
Proces relaksacji równania Laplace'a można wykonać przy użyciu poniższego pseudokodu
```

 $V_{n,j} = V_0$

enddo

```
//obszar 2:wzór (12)
//obszar 3:wzór (13)
//obszar 4:wzór (15)
//obszar 5:wzór (16)
//obszar 6:wzór (17)
```

END DO

2 Zadania do wykonania

- 1. Zaprogramować metodę relaksacji równania Poissona.
- 2. Rozwiązać rówanie Laplace'a dla następujących parametrów: $n=30,\,m=150,\,j_1=60,\,j_2=90,\,\Delta z=\Delta \rho=0.1,\,ITMAX=5000,\,V_0=10.$
- 3. Sporządzić następujące wykresy potencjału:
 - mapę 2D potencjału $V(\rho, z)$
 - mapę 3D potencjału (rzut izometryczny) $V(\rho, z)$
 - \bullet przekrój potencjału na osi symetri
iV(0,z)+ krzywą aproksymacyjną (parabola)
 - $\bullet\,$ przekrój potencjału $V(\rho,z_p)$ dla $z_p=(j_1+j_2)\Delta z/2$ + krzywą aproksymacyjną (parabola)
- 4. W sprawozdaniu zamieścić analizę uzyskanego rozwiązania.

2.1 Przykładowe wyniki

Rysunek 3: Mapy rozkładu potencjału: (a) 2D i (b) 3D.

Rysunek 4: Przekroje potencjału dla: (a) $\rho=0$ i (b) $z=z_{max/2}.$