

CSE322 Recursive and Recursively enumerable sets

Lecture #15

Definitions

- A procedure for solving a problem is a finite sequence of instructions which can be mechanically carried out given any input.
- An algorithm is a procedure that terminates after a finite number of steps for any input.

Definitions

 A set X is recursive if we have an algorithm to determine whether a given element belongs to X or not.

• A recursively enumerable set is a set X for which we have a procedure to determine whether a given element belongs to X or not.

A context sensitive language is recursive

NUMERICAL

Consider the grammar G given by $S \to 0SA_12$, $S \to 012$, $2A_1 \to A_12$, $1A_1 \to 11$. Test whether (a) $00112 \in L(G)$ and (b) $001122 \in L(G)$.

Solution

(a) To test whether $w = 00112 \in L(G)$, we construct the sets W_0 , W_1 , W_2 etc. |w| = 5.

$$W_0 = \{S\}$$

 $W_1 = \{012, S, 0SA_12\}$
 $W_2 = \{012, S, 0SA_12\}$

As $W_2 = W_1$, we terminate. (Although $0SA_12 \Rightarrow 0012A_12$, we cannot include $0012A_12$ in W_1 as its length is > 5.) Then $00112 \notin W_1$. Hence, $00112 \notin L(G)$.

SOULTION

(b) To test whether $w = 001122 \in L(G)$. Here, |w| = 6. We construct W_0 , W_1 , W_2 , etc.

$$W_0 = \{S\}$$

 $W_1 = \{012, S, 0SA_12\}$
 $W_2 = \{012, S, 0SA_12, 0012A_12\}$
 $W_3 = \{012, S, 0SA_12, 0012A_12, 001A_122\}$
 $W_4 = \{012, S, 0SA_12, 0012A_12, 001A_122, 001122\}$
 $W_5 = \{012, S, 0SA_12, 0012A_12, 001A_122, 001122\}$

As $W_5 = W_4$, we terminate. Then $001122 \in W_4$. Thus, $001122 \in L(G)$.