ICPC Teilnehmervortrag: Graphenalgorithmen II

Markus Schneckenburger, Moritz Uehling, Florian Weber, Cora Weidner

KIT ICPC-Teilnehmervortrag

28.05.15

Übersicht

```
Minimum Spanning Tree (MST)
   Problem
   Lösung: Kruskal
SSSP (Single Source Shortest Path)
   Dijkstra
   Belllman-Ford
All Pairs Shortest Paths (APSP)
   Idee
   Code
   Beurteilung
```

Zusammenfassung

Code und mehr

Den kompletten Code (inklusive dem der Folien) findet ihr unter: https://github.com/Florianjw/ICPC-Graphen

Problemstellung

- "finde das billigste Netzwerk"
- genau: Gegeben sei ein zusammenhängender ungerichteter gewichteter Graph, gesucht ist ein Spannbaum mit geringstem Gesamtgewicht.

- Ansatz: baue einen Baum mit greedy Algorithmus:
 - 1. betrachte Kante mit niedrigstem Gewicht
 - 2. untersuche: führt hinzufügen der Kante zu einem Zyklus?
 - ▶ Ja: verwerfe Kante
 - Nein: füge Kante zum Baum hinzu
 - 3. starte bei 1. mit restlichen Kanten bis alle abgearbeitet sind
 - 4. \implies Baum ist ein MST

Implementierung - Algorithmus von Kruskal

- sortiere Kanten nach Gewicht
- benutze Union-Find um Zyklen zu detektieren

```
int kruskal(std::vector<edge>& edges, int maxnode) {
   int fullweight = 0;
   UnionFind ufind(maxnode + 1);
   std::sort(edges.begin(), edges.end());
   for (const auto& e : edges) {
      if(!ufind.sameSet(e.from, e.to)) {
            ufind.unify(e.from, e.to);
            fullweight += e.weight;
      }
   }
   return fullweight;
}
```

Für Laufzeiten:
$$n := |V|$$
, $m := |E|$

Laufzeit

$$O(m\log(m) + m \cdot \alpha(n)) = O(m\log(m))$$

= $O(m\log(n^2)) = O(2m\log(n)) = O(m\log(n))$

Weitere lösbare Probleme

- Maximum Spanning Tree
- "MST" finden, wenn Kanten vorgegeben sind
- ▶ Minimum Spanning Forest: mehrere getrennte Bäume
- Minimax-Problem:
 - Finden des Pfades zwischen zwei Knoten mit dem kleinsten Maximalgewicht einer Kante

SSSP (Single Source Shortest Path)

Das Problem

Breitensuche schlägt bei gewichteten Graphen fehl.

⇒ Es wird ein Weg der Länge 7 gefunden, obwohl 5 das Optimum ist

Djikstras Algorithmus

- ► Grundsätzliche Idee: Breitensuche mit Priortiy-Queue (so dass "nähere" Knoten zuerst behandelt werden)
- ▶ std:: priority_queue verwendet binären Heap
- ▶ \implies Laufzeit von Dijkstra ist $\Theta((n+m)\log n)$
- ▶ Nachteil: Funktioniert nicht bei negativen Kantengewichten

Code

Header:

```
#include<vector>
#include<algorithm>
#include<queue> // not priority_queue!
#include<jostream>
using namespace std;

struct arrival_event {
   int to;
   int weight;
};

bool operator < (const arrival_event& e1, const arrival_event& e2) {
        // inversed
        return e1.weight> e2.weight;
}
```

Code

```
vector<int> dijkstra(vector<vector<arrival_event>>& nodes, int startnode) {
  vector<int> distances (nodes.size(), 2000000000);
  priority_queue < arrival_event > todo;
  todo.push({startnode, 0});
  while(!todo.empty()) {
    auto current = todo.top();
   todo.pop();
    if (current.weight < distances [current.to]) {
      distances [current.to] = current.weight;
     for(int i = 0; i < nodes[current.to].size(); i++) {
        arrival_event next = nodes[current.to][i];
        next.weight += current.weight;
        todo.push(next);
  return distances:
```

Beispiel

Übersicht

▶ Problem: Dijkstra kommt nicht mit negativen Kanten zurecht

Ansätze

- Lösung: rohe Rechenleistung
- Wichtige Einschränkung: negative Kreise auf irgendeinem Pfad von Q zu S bedeuten Nichtexistenz eines kürzesten Pfades
- Idee 1: vollständige Tiefensuche.
 - ► selbst für Brute-Force-Verhältnisse zu langsam (exponentielle Laufzeit)

Ansätze

- ▶ Idee 2:
 - lacktriangle kürzester Pfad enthält maximal |V|-1 Kanten
 - ▶ Enthalte der kürzeste Pfad i Kanten. Falls wir alle kürzesten Pfade mit bis zu i-1 Knoten kennen:
 - Zu den kürzesten Pfaden mit bis zu i Kanten fehlt höchstens eine Kante.
 - Probiere für alle Kanten, ob sie irgendwo einen kürzeren Pfad erzeugen
 - ► Für *i* = 0 ist die Distanz der Quelle zu sich selbst 0, und die zu allen anderen Knoten inf
- Idee 2 ist offensichtlich vielversprechender, sie führt zum Algorithmus von Belllman und Ford.

Initialisierung

Runde 3 (keine Änderungen \rightarrow fertig)


```
using node = std::size_t;
using dist = double;

struct edge {
    node from;
    node to;
    dist weight;
};

const auto inf_dist = std::numeric_limits < dist >::
    infinity();
```

```
std::vector<dist> bellman_ford(
        std::size_t node_count,
        const std::vector<edge>& edges,
        node source
    std::vector<dist> min_dists(node_count, inf_dist);
    min_dists[source] = 0;
    for (std::size_t i = 0; i < node_count + 1; ++i) {
        auto changes = false;
        for(const auto& e: edges) {
            const auto old_dist = min_dists[e.to];
            const auto new_dist = min_dists[e.from]
                                   + e.weight;
            if (new_dist < old_dist) {</pre>
                min_dists[e.to] = new_dist;
                changes = true;
```

```
// ...
if (!changes) { break; }
if (i == node_count) {
    throw std::runtime_error{
        "negative_cycle"};
}
return min_dists;
```

```
int main() try {
    const auto edges = std::vector<edge>{
        \{0, 1, 7\}, \{0, 4, -1\},
        \{1, 0, 10\}, \{1, 3, -4\},
       {2, 4, 1},
        \{3, 0, 0\}, \{3, 2, 2.5\},\
        {4, 1, 23}
    const auto min_dists = bellman_ford(5, edges, 0);
    std::copy(min_dists.begin(), min_dists.end(),
        std::ostream_iterator<dist>{std::cout, "\n"});
} catch (std::runtime_error& e) {
    std::cerr << "Error:" << e.what() << '\n';
```

Weitere Eigenschaften

- Negative Kreise lassen sich durch eine weitere Anwendung detektieren
- Negative Kreise die nicht auf dem Weg zum Ziel liegen, verfälschen das Ergebnis nicht
 - ightharpoonup Die Detektion aller problemlosen Knoten ist mit V-1 weiteren Anwendungen möglich

Beurteilung

- ▶ Assymptotische Komplexität $\in O(n \cdot m)$
- Profitiert nicht von kurzen Distanzen zwischen Quelle und Senke
- ► Relativ leicht zu implementieren

Fazit

Kann man schon so machen, meistens will man das aber nicht

All Pairs Shortest Paths (APSP)

APSP - All Pairs Shortest Paths

Problemstellung

Man hat einen Graphen gegeben, der gewichtet ist. Nun möchte man den kürzesten Pfad zwischen allen Knoten i zu allen Knoten j herausfinden.

APSP - Erster Ansatz

Lösungsansatz

Man verwendet den bereits bekannten SSSP-Algorithmus, und führe diesen nach bedarf aus, d.h. in diesem Fall n-mal.

Laufzeit

$$n \cdot O(m + n \cdot log(n))$$

= $n \cdot O(n^2 + n \cdot log(n))$
= $n \cdot O(n^2 + n^2)$
= $O(n^3)$
 \implies geht es einfacher in etwa der selben Zeit?

APSP - Zweiter Ansatz

Lösungsansatz

Wir wissen: jeder Pfad zwischen zwei Knoten ist entweder bereits der kürzeste, oder es gibt einen Kürzeren Pfad als zwei Verknüpfung anderer Pfade über mindestens einen dritten Knoten.

Genauer

Systematisch in einer Adjazenzmatrix A: Nehme für jeden Pfad $A[i][j] = \min(A[i][j], A[i][k] + A[i][k])$, d.h. entweder der Pfad ist bereits minimal, oder ein Pfad über Knoten k ist kürzer und wird als neues Minimum übernommen. Wenn man nun richtig iteriert, erhält man alle minimalen Pfade.

Code

```
for (int k = 0; k < V; k++)
  for (int i = 0; i < V; i++)
    for (int j = 0; j < V; j++)
        A[i][j] = min(
        A[i][j],
        A[i][k] + A[k][j]
);</pre>
```

 \implies der Aufwand liegt in $O(n^3)$

Beispiel - Urzustand

Anfang

ij	Α	В	С	D
Α	œ	œ	3	œ
В	-2	œ	5	œ
С	œ	œ	œ	-1
D	œ	2	œ	œ

Beispiel - Über Knoten A

K = A (i über A nach j)

ij	Α	В	С	D
Α	œ	œ	3	œ
В	-2	œ	1	œ
С	œ	œ	œ	-1
D	œ	2	œ	oc

Beispiel - Über Knoten B

K = B (i über B nach j)

ij	Α	В	С	D
Α	œ	œ	3	œ
В	-2	œ	1	œ
С	œ	œ	œ	-1
D	0	2	3	œ

Beispiel - Über Knoten C

K = C (i über C nach j)

ij	Α	В	С	D
Α	œ	œ	3	2
В	-2	œ	1	0
С	œ	œ	œ	-1
D	0	2	3	2

Beispiel - Über Knoten D (1)

(1) K = D (i über D nach j)

ij	Α	В	С	D
Α	2	œ	3	2
В	-2	œ	1	0
С	œ	œ	œ	-1
D	0	2	3	2

Beispiel - Über Knoten D (2)

(2) K = D (i über D nach j)

ij	Α	В	С	D
Α	2	4	3	2
В	-2	œ	1	0
С	œ	œ	œ	-1
D	0	2	3	2

Beispiel - Über Knoten D (3)

(3) K = D (i über D nach j)

ij	Α	В	С	D
Α	2	4	3	2
В	-2	2	1	0
С	œ	œ	œ	-1
D	0	2	3	2

Beispiel - Über Knoten D (4)

(4) K = D (i über D nach j)

ij	Α	В	С	D
Α	2	4	3	2
В	-2	2	1	0
С	-1	œ	œ	-1
D	0	2	3	2

Beispiel - Über Knoten D (5)

(5) K = D (i über D nach j)

ij	Α	В	С	D
Α	2	4	3	2
В	-2	2	1	0
С	-1	1	œ	-1
D	0	2	3	2

Beispiel - Über Knoten D (6)

(6) K = D (i über D nach j)

ij	Α	В	С	D
Α	2	4	3	2
В	-2	2	1	0
С	-1	1	2	-1
D	0	2	3	2

Weitere Anwendungen

- ▶ Auch für SSSP Probleme anwendbar (wenn |V| < 400)
- ▶ Detektion von negativen oder günstigsten Zyklen möglich ⇒ ein negativer Zyklus existiert genau dann, wenn ein Diagonaleintrag negativ ist
- ► Finden des Durchmessers eines Graphen (der längste der kürzesten Pfade)
- ► Minimax, Maximin

Beurteilung

- + Asymptotische Komplexität $\in O(n^3)$ und mit Speicher $\in O(n^2)$
- + Sehr leicht zu implementieren (Vierzeiler)
- + Für andere Probleme günstig anzuwenden, wenn |V| < 400
- Für andere Probleme **nur** günstig anzuwenden, wenn |V| < 400
- ⇒ Gut für das ursprüngliche Problem
- \implies Auch nützlich für andere Probleme, solange |V| < 400

Zusammenfassung

Zusammenfassung

Kriterium	Dijkstra	Bellman Ford	Floyd Warshall
Laufzeit	$O(n+m)\log(n)$	$O(n \cdot m)$	$O(n^3)$
Max. Größe	$n, m \leq 300 K$	$n \cdot m \leq 10M$	$n \leq 400$
Ungewichtet	Ok	Schlecht	I.A. Schlecht
Gewichtet	Bestes	Ok	I.A. Schlecht
Neg. Gewichte	Ok	Ok	I.A. Schlecht
Neg. Zyklen	Nein	Aufspürbar	Aufspürbar
Kleine Graphen	Overkill	Overkill	Bestes

Tabelle: Übersicht

Erinnerung: n := |V| und m := |E|

