E.S.S.A.I Janvier 2019

Examen Session Principale

Cours Séries Temporelles

Durée: 1h30 D. Malouche

- Remplir la grille attaché au sujet en respectant les cases
- L'examen contient 3 exercices et 4 pages.

Exercice 1

```
> library(sarima)
> x <- sim_sarima(n=100, model = list(ar=0.8,ma=.4))
X_t = \frac{...(1)...}{...(2)...} Z_t tel que Z_r \sim ...(3)...
> x <- sim_sarima(n=200,model=list(sar=0.8, nseasons=12, sigma2 = 1))
X_t - ...(4)...X_{..(5)...} = Z_t tel que Z_r \sim ...(6)...
> x < sim_sarima(n=144, model = list(ar=c(1.2,-0.8), ma=0.4,
                                       sar=0.3, sma=0.7, iorder=1,
                                       siorder=2,
                                       nseasons=12, sigma2 = 2))
...(7)... ...(8)...X_t = \frac{...(9)...}{...(10)...} Z_t
x \leftarrow sim_sarima(n=144, model = list(...(11)..., iorder=...(12)..., siorder=...(13)...,
                                    nseasons=...(14)..., sigma2 = 1))
(1-B)^2(1-B^4)^3X_t = (1+.8B)Z_t
> library(urca)
> library(fpp2)
> ...(15)...
> t1<-h02%>%diff(12)%>%...(30)...(lags =...(16)...,type=...(17)...)
> ...(18)...
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression ...(19)...
Call:
lm(formula = z.diff ~ z.lag.1 + ...(20)...)
Residuals:
      Min
                 1Q
                       Median
                                     3Q
                                               Max
-0.192380 -0.032261 0.002563 0.029618 0.205681
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01045
                                  1.950 0.052768 .
                        0.00536
```

```
..(23)..
            -0.36425
                        0.10213 -3.567 0.000465 ***
z.diff.lag1 -0.54432
                        ..(21).. -4.906 2.1e-06 ***
z.diff.lag2 -0.21562
                        0.11675 -1.847 0.066444 .
z.diff.lag3 0.02955
                        z.diff.lag4 -0.11476
                        0.11145 -1.030 0.304557
z.diff.lag5 ..(22)..
                        0.10440 0.114 0.909241
z.diff.lag6 -0.01355
                        0.08031 -0.169 0.866160
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.0584 on 177 degrees of freedom
Multiple R-squared: 0.5036, Adjusted R-squared: 0.4839
F-statistic: 25.65 on 7 and 177 DF, p-value: < 2.2e-16
Value of test-statistic is: -3.5666 6.3869
Critical values for test statistics:
      1pct 5pct 10pct
tau2 -3.46 -2.88 -2.57
..(24).. 6.52 4.63 3.81
On note par (X_t) le processus observé dans h02. On a effectué ci dessus le test d'hypothèse nulle
                      H_0: ..(25)..., \text{ vs l'hypothèse alternative} H_1: \pi...(26)...
On peut conclure que le processus \dots(27)\dots est \dots(28)\dots
> t2<-h02%>%diff(12)%>%...(29)...(type=...(33)...)
> ...(31)...
##########################
# ...(32)... Unit Root Test #
############################
Test is of type: ...(34)... with 4 lags.
Value of test-statistic is: 0.432
Critical value for a significance level of:
                10pct 5pct 2.5pct 1pct
critical values 0.347 0.463 0.574 0.739
> library(forecast)
> m1<-Arima(h02,order=c(..(35)..,1,..(36)..),include.drift = ..(37)..,
            seasonal=list(order=..(38)..,period=4),
            lambda=NULL)
> m1
Series: h02
ARIMA...(40)...(1,0,0)..(39).. with drift
Coefficients:
                     ma1 ..(41)....(42)..
         0.5776 -1.0000 ..(48).. 0.0024
..(43). 0.0597 0.0154 0.0708 0.0003
sigma^2 estimated as 0.01933: ...(44)...=112.3
AIC=..(45).. AICc=-214.29
                             BIC=-198.03
> m1$aic+2*m1$loglik
[1] ..(46)..
```

```
t.stat ..(47).. -65.1087 -2.219095 ...(49)..
p.val 0.000000
                   0.0000 0.026480 0.000000
Le modèle estimé ci dessus sécrit alors
                                  ..(54)..X_t = ..(53).. + \frac{..(50)..}{..(51)..}Z_t
où Z \sim ..(52)..
> m2 < -sarima(h02,p = ...(55)...,d = 2,q = ...(56)...,P = ...(57)...,
    D = 1,Q = ...(58)...,S = 4,details = F,no.constant = T)
> m2
$fit
Call:
stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, d, q))
    Q), period = S), include.mean = !no.constant, optim.control = list(trace = trc,
    REPORT = 1, reltol = tol))
Coefficients:
                  ..(65)..
      ..(59)..
                 -0.9999
     0.0716
                 0.0127
sigma^2 estimated as ..(66)..: log likelihood = -0.97, aic = 7.95
$degrees_of_freedom
[1] 196
$ttable
     Estimate
                   SE t.value p.value
ar1 ..(61)....(60).. -0.3254 0.7452
..(64).. ..(63).. 0.0127 ..(62).. 0.0000
$AIC
[1] -1.875119
$AICc
[1] -1.864727
$BIC
[1] ...(67)...
Exercice 2
```

On considère le code 'R' suivant

> t_stat(m1)

ar1

ma1

sar1

drift

```
> polyroot(c(1,-.5,.3))
[1] 0.83333+1.624466i 0.833333-1.624466i
> polyroot(c(1,1,1.5))
[1] -0.3333333+0.745356i -0.3333333-0.745356i
> polyroot(c(1,.4,.5,.8))
[1] 0.259294+1.012827i -1.143588+0.000000i 0.259294-1.012827i
```

Soit $Z_t \sim BB(0,1)$ un bruit blanc et X_t un processus ARMA vérifiant les équations ci dessous Indiquer si ces équations ARMA admettent des solutions stationnaires (Répondre par oui, si stationnaire et non, sinon)

```
- (1.5B + .3B^2)X_t = (1 + .8)Z_t ...(68)...

- X_t = -.4X_{t-1} - .5X_{t-2} - .8X_{t-2} + Z_t + .4Z_{t-1} ...(69)..

- (1 + B + 1.5B^2)X_t = Z_t ...(70)..
```

Exercice 3

On sait que si une équation ARMA admet une solution, elle est de la forme

$$X_t = \sum_{k=0}^{\infty} \psi_k Z_{t-k}$$

où $Z_t \sim BB(0,1)$. La commande ARMAtoMA calcule les coefficients ψ_k étant donné les coefficients AR et MA.

- 1. Rappeler l'expression de $\mathbb{E}(X_t)$ et $\gamma_X(h)$ $\mathbb{E}(X_t) = \dots (71) \dots$ et $\gamma_X(h) = \dots (72) \dots$
- 2. Donner à partir du code ci dessous :

```
— le modèle ARMA :....(73).....
```

$$-- \gamma_X(0)....(74)....$$

$$--\gamma_X(2)....(75)....$$

```
> psi < -ARMAtoMA(ar = c(.5,.3),ma=.8, lag.max = 1000)
```

$$> psi1 < -ARMAtoMA(ar = c(.5, .3), ma=.8, lag.max = 1001)$$

$$> psi2 < -ARMAtoMA(ar = c(.5, .3), ma=.8, lag.max = 1002)$$

- > sum(psi^2)
- [1] 5.24359
- > sum(psi*psi1[-1])
- [1] 4.302564
- > sum(psi*psi2[-c(1,2)])
- [1] 3.724359
- > psi[1:2]
- [1] 1.30 ..(76)..
- > sum(ARMAtoMA(ar = c(.5, .3), ma=.8, lag.max = 20))
- [1] 7.678335
- > library(FitAR)
- > g=tacvfARMA(theta = -.8,phi = c(.5,.3),sigma2 = 1,maxLag = 2)
- > g
- [1] ..(77).. ..(78).. 4.674359
- > PacfDL(g,LinearPredictor = ...(79)..)

\$Pacf

\$ARCoefficients

\$ResidualVariance

En déduire que

$$X_t = ..(84)... \times X_{t-1} + E_{t,1}^+$$

et

$$X_t = ...(85).. \times X_{t-1} + ..(86).. \times X_{t-2} + E_{t,2}^+$$

οù

$$||E_{t,2}^+||^2 = ..(87)...$$

Numéro	Réponse	Numéro	Réponses
1		26	
2		27	
2			
3		28	
4		29	
5		30	
6		31	
7		32	
8		33	
9		34	
10		35	
11		36	
12		37	
13		38	
14		39	
15		40	
16		41	
17		42	
18		43	
19		44	
20		45	
21		46	
22		47	
23		48	
24		49	
25		50	

51 76 52 77 53 78 54 79 55 80 56 81 57 82 58 83 59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99 75 100	Numéro	Réponse	Numéro	Réponses
53 78 54 79 55 80 56 81 57 82 58 83 59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99				
53 78 54 79 55 80 56 81 57 82 58 83 59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	52		77	
54 79 55 80 56 81 57 82 58 83 59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	02			
55 80 56 81 57 82 58 83 59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	53		78	
56 81 57 82 58 83 59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	54		79	
57 82 58 83 59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	55		80	
58 83 59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	56		81	
59 84 60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	57		82	
60 85 61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	58		83	
61 86 62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	59		84	
62 87 63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	60		85	
63 88 64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	61		86	
64 89 65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	62		87	
65 80 66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	63		88	
66 91 67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	64		89	
67 92 68 93 69 94 70 95 71 96 72 97 73 98 74 99	65		80	
68 93 69 94 70 95 71 96 72 97 73 98 74 99	66		91	
69 94 70 95 71 96 72 97 73 98 74 99	67		92	
70 95 71 96 72 97 73 98 74 99	68		93	
71 96 72 97 73 98 74 99	69		94	
72 97 73 98 74 99	70		95	
73 98 99 99	71		96	
74 99	72		97	
	73		98	
75	74		99	
	75		100	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Réponses	Numéro	Réponse	Numéro
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0	26	(1 + .4B)	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(1-B^{12})X_t$	27	(18B)	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	stationnarité	28	BB(0,1)	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ur.kpss	29	-0.8	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ur.df	30	X_{t-12}	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	summary(t2)	31	BB(0,2)	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KPSS	32	(1-B)	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	"mu"	33	$(1-B^{12})^2$	8
11 ma=.8 36 1 12 2 37 T 13 3 38 c(1,0,0) 14 4 39 [4] 15 data(h02) 40 (1,1,1) 16 6 41 sar1 17 "drift" 42 drift 18 summary(t1) 43 s.e. 19 drift 44 log likelihood	mu	34	$(1 + .4B)(1 + .7B^{12})$	9
12 2 37 T 13 3 38 c(1,0,0) 14 4 39 [4] 15 data(h02) 40 (1,1,1) 16 6 41 sar1 17 "drift" 42 drift 18 summary(t1) 43 s.e. 19 drift 44 log likelihood	1	35	$(1 - 1.2B + 0.8B^2)(13B^{12})$	10
13 3 38 c(1,0,0)	1	36	ma=.8	11
14 4 39 [4] 15 data(h02) 40 (1,1,1) 16 6 41 sar1 17 "drift" 42 drift 18 summary(t1) 43 s.e. 19 drift 44 log likelihood	 Т	37	2	12
15 data(h02) 40 (1,1,1) 16 6 41 sar1	c(1,0,0)	38	3	13
16 6 41 sar1 17 "drift" 42 drift 18 summary(t1) 43 s.e. 19 drift 44 log likelihood	[4]	39	4	14
17	(1,1,1)	40	data(h02)	15
18 summary(t1) 43 s.e. 19 drift 44 log likelihood	sar1	41	6	16
19 drift 44 log likelihood	 drift	42	"drift"	17
	s.e.	43	summary(t1)	18
20 1 + z.diff.lag 45 -214.6	 log likelihood	44	drift	19
	-214.6	45	1 + z.diff.lag	20
21 0.11095 46 10	 10	46	0.11095	21
22 0.01192 47 9.676136	9.676136	47	0.01192	22
23 z.lag.1 48 -0.1570	-0.1570	48	z.lag.1	23
24 phi1 49 7.139711	7.139711	49	phi1	24
$\pi = 0 50 (1 - B)$	 (1-B)	50	$\pi = 0$	25

Numéro	Réponse	Numéro	Réponses
51	$(1 - 0.58B)(1 + 0.16B^4)$	76	0.95
52	BB(0,0.02)	77	6.243590
53	0.0024	78	5.602564
54	(1-B)	79	T
55	1	80	0.8973306
56	1	81	-0.2902338
57	0	82	1.1577662
58	0	83	1.113787
59	-0.0233	84	0.8973306
60	0.0716	85	1.1577662
61	-0.0233	86	-0.2902338
62	-78.9945	87	1.113787
63	-0.9999	88	
64	ma1	89	
65	ma1	80	
66	0.05531	91	
67	-2.842589	92	
68	oui	93	
69	oui	94	
70	non	95	
71	0	96	
72	$\sigma^2 \sum_{j=0}^k \psi_j \psi_{h+j}$	97	
73	$(15B + .3B^2)X_t = (1 + .8B)Z_t$	98	
74	5.040553	99	
75	3.576947	100	