Bayesian Parameter Estimation

Bayesian Equation

Events

 $S = \{ \text{ simple event that may happen during a random experiment} \}$

$$X:2^S o \mathbb{R}$$

$$A,B\subseteq 2^S$$

Subset and Equality

 $A \subseteq B \iff$ A is included by B

$$A\subseteq B\wedge B\subseteq A\to A=B$$

Mutual Exclusion and Negation

If A happens, then B cannot happen, and vice versa.

 $ar{A}=\{A ext{ does not happen}\}$. Exactly one of A and $ar{A}$ will happen.

$$A\cup \bar{A}=U$$

$$A\cap ar{A}=\emptyset$$

Addition Law of Probability

When A, B are ME, then

$$A+B \triangleq A \cup B$$
 $AB \triangleq A \cap B$ $P(A+B) = P(A) + P(B)$

Total Probability Equation

Suppose B_1, \ldots, B_n are **mutually exclusive**. AB_1, \ldots, AB_n are mutually exclusive.

Now further suppose that $B_1+\cdots+B_n=\Omega$. (collectively exhaustive)

$$P(A) = P(A\Omega) = P(A(\sum_i B_i)) = P(\sum_i AB_i) = \sum_i P(AB_i)$$

Conditional Probability

 $A, B, P(B) \neq 0. P(A|B)$ is the probability that A happens when B is known to happen.

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Counting measure: M_A the number of simple events that A happens, M_B the number of simple events that B happens, M_{AB} the number of simple events that AB happens.

$$P(A|B) = rac{M_{AB}}{M_B} = rac{M_{AB}/M}{M_B/M} = rac{P(AB)}{P(A)}$$

When P(A|B) = P(A), we say that A and B are **independent**:

$$P(AB) = P(A)P(B)$$

The Bayesian Equation

Suppose B_1, \ldots, B_n are mutually exclusive and collectively exhaustive

$$P(B_{i}|A) = \frac{P(AB_{i})}{P(A)}$$

$$= \frac{P(A)P(A|B_{i})}{P(A)}$$

$$= \frac{P(A)P(A|B_{i})}{\sum_{j}P(AB_{j})}$$

$$= \frac{P(A)P(A|B_{i})}{\sum_{j}P(A)P(A|B_{j})}$$

$$P(B_{i}|A) = \frac{P(B_{i})P(A|B_{i})}{\sum_{j}P(B_{i})P(A|B_{j})}$$

$$P(\theta|A) = \frac{P(\theta)P(A|\theta)}{\int P(\theta)P(A|\theta)d\theta}$$

$$\text{posterior} = \frac{\text{prior} \times \text{likelihood}}{\text{evidence}}$$

Parameter Estimation

$$D=(x^1,\ldots,x^n)$$
 is the dataset.

$$P(\theta|D) = \frac{P(\theta)P(D|\theta)}{\int P(\theta)P(D|\theta)d\theta}$$
 where
$$P(D|\theta) = \prod_{i} P(x^{i}|\theta)$$

The process above mimic the following example.

	Red	White	Black	
1	80	10	10	
2	10	80	10	
3	10	10	80	

 $A: I ext{ draw a red ball from mixed balls}$ $B_i: \text{The ball I draw is from box } i$

From the perspective of conditional probability,

$$P(B_1|A) = rac{P(AB_1)}{P(A)} = rac{80/300}{100/300}$$
 $P(B_2|A) = 10/100$
 $P(B_3|A) = 10/100$

From the perspective of Bayesian equation,

$$P(B_i|A) = rac{P(B_i)P(A|B_i)}{\sum_j P(B_i)P(A|B_j)}$$

	1	2	3
prior ratio	100	100	100
likelihood	80/100	10/100	10/100
posterior ratio	80	10	10
conditional probability	0.8	0.1	0.1

Example: Coin Flip

Suppose in N=10 experiments, there are n=4 times of head up. Denote as the probability of head up as $p \in [0,1]$.

$$\begin{aligned} \text{prior: } \rho(p) &= U(p;0,1) = 1 \\ \text{likelihood: } P(n|p) &= \binom{N}{n} p^n (1-p)^{N-n} \\ \text{evidence: } &= \int_0^1 \rho(q) P(n|q) \mathrm{d}q = \int_0^1 \binom{N}{n} q^n (1-q)^{N-n} \mathrm{d}q \\ \text{posterior } &= \rho(p|n,N) \\ \rho(p|n,N) &= \frac{\binom{N}{n} p^n (1-p)^{N-n}}{\int_0^1 \binom{N}{n} q^n (1-q)^{N-n} \mathrm{d}q} \\ &= \frac{p^n (1-p)^{N-n}}{\int_0^1 q^n (1-q)^{N-n} \mathrm{d}q} \\ &= \frac{p^n (1-p)^{N-n}}{B(n+1,N-n+1)} \\ &= \frac{p^{n+1-1} (1-p)^{N-n+1-1}}{B(n+1,N-n+1)} \\ &= \text{Beta}(p;n+1,N-n+1) \end{aligned}$$

Point Estimate

Maximum A Posteriori

$$p^* = rg \max_p \operatorname{posterior}(p)$$

Minimum Mean Squared Error

$$p^* = rg \min_{\hat{p}} \mathop{\mathrm{E}}_{p \sim \mathrm{posterior}} (p - \hat{p})^2 \Rightarrow \ p^* = \mathop{\mathrm{E}}_{p \sim \mathrm{posterior}} p$$

Interval Estimate

Credible Interval

Given a credibility, find the shortest interval such that the probability that the parameter falls in this range is larger than or equal to the credibility.