ICT പ്രാക്ടിക്കൽ വർക്ക്ഷീറ്റ് – ഒൻപതാം ക്ലാസ്

വർക്ക്ഷീറ്റ് നമ്പർ	7.1
അധ്യായത്തിന്റെ പേര്	കമ്പ്യൂട്ടറിലെ പരീക്ഷണശാല
പ്രവർത്തിയുടെ പേര്	ജിയോജിബ്ര ഉപയോഗിച്ച് ഗണിതം
ഉപയോഗിച്ച സോഫ്റ്റ്വെയർ	ജിയോജിബ്
സമയം	40 മിനിറ്റ്

പ്രവർത്തന ക്രമം

പ്രവർത്തനം	നിർദ്ദേശങ്ങൾ
ജിയോജിബ്വ തുറക്കൽ	കമ്പ്യൂട്ടറിൽ ജിയോജിബ്ര സോഫ്റ്റ്വെയർ തുറക്കുക.
ടൂളുകൾ പര്യവേക്ഷണം	ഗ്രൂപ്പ് 2, 3, 5, 6, 8, 10 എന്നിവയിലെ ടൂളുകൾ തിരിച്ചറിയുക. അവയുടെ ഉപയോഗങ്ങൾ ഒരു പട്ടികയിൽ രേഖപ്പെടുത്തുക.
സമാന്തര രേഖകൾ വരയ്ക്കൽ	തുല്യ അകലത്തിൽ 4 സമാന്തര രേഖകൾ വരയ്ക്കുക.
ഛേദിക്കുന്ന രേഖ വരയ്ക്കൽ	എല്ലാ സമാന്തര രേഖകളെയും ഛേദിക്കുന്ന ഒരു രേഖ വരയ്ക്കുക.
വിഭാഗങ്ങൾ അളക്കൽ	Distance/Length ടൂൾ ഉപയോഗിച്ച് ഛേദനത്തിൽ ഉണ്ടാകുന്ന വിഭാഗങ്ങൾ അളക്കുക.
പാറ്റേൺ നിരീക്ഷണം	വിഭാഗങ്ങൾ തുല്യമാണോയെന്ന് ശ്രദ്ധിക്കുക. ഛേദിക്കുന്ന രേഖ വലിച്ച് മാറ്റങ്ങൾ നിരീക്ഷിക്കുക.
ആപ്ലെറ്റ് ഇറക്കൽ	സ്കൂൾ റിസോഴ്ലസിൽ നിന്ന് triangle.ggb തുറക്കുക.
അനപാതങ്ങൾ നിരീക്ഷണം	EC/EA, FC/FB എന്നീ അനപാതങ്ങൾ ശ്രദ്ധിക്കുക. വെർട്ടെക്സുകൾ വലിച്ച് അനപാത സ്ഥിരത നിരീക്ഷിക്കുക.
ഒരു രേഖ വിഭജിക്കൽ	19 യൂണിറ്റ് നീളമുള്ള ഒരു രേഖ വരയ്ക്കുക. ചരിഞ്ഞ രേഖയും സമാന്തര രേഖകളും ഉപയോഗിച്ച് അതിനെ 3 തുല്യ ഭാഗങ്ങളാക്കുക.
ഫയൽ സേവ് ചെയ്യൽ	നിങ്ങളുടെ കൺസ്ലക്ഷൻ line_division.ggb എന്ന പേരിൽ സേവ് ചെയ്യുക.

ICT പ്രാക്ടിക്കൽ വർക്ക്ഷീറ്റ് – ഒൻപതാം ക്ലാസ്

വർക്ക്ഷീറ്റ് നമ്പർ	7.2
അധ്യായത്തിന്റെ പേര്	കമ്പ്യൂട്ടറിലെ പരീക്ഷണശാല
പ്രവർത്തിയുടെ പേര്	കാൽസിയം ഉപയോഗിച്ച് രസതന്ത്രം
ഉപയോഗിച്ച സോഫ്റ്റ്വെയർ	കാൽസിയം
സമയം	40 മിനിറ്റ്

പ്രവർത്തന ക്രമം

പ്രവർത്തനം	നിർദ്ദേശങ്ങൾ
കാൽസിയം തുറക്കൽ	കാൽസിയം സോഫ്റ്റ്വെയർ തുറക്കുക.
പീരിയോഡിക് ടേബിൾ പരുവേക്ഷണം	ഗ്രൂപ്പുകൾ, പീരിയഡുകൾ, ആകെ മൂലകങ്ങൾ എന്നിവ നിരീക്ഷിക്കുക.
സോഡിയം കണ്ടെത്തൽ	സോഡിയം (Na) ക്ലിക്ക് ചെയ്യുക. ആറ്റോമിക നമ്പർ, ഗ്രൂപ്പ്, പീരിയഡ്, ഇലക്ലോൺ കോൺഫിഗറേഷൻ എന്നിവ രേഖപ്പെടുത്തുക.
ആറ്റം മോഡൽ കാണൽ	Atom Model ക്ലിക്ക് ചെയ്ത് ഇലക്ടോൺ ഷെല്ലുകൾ കാണക.
പട്ടിക പൂർത്തിയാക്കൽ	ലിഥിയം, പൊട്ടാസ്യം, റുബിഡിയം, ബെറിലിയം, മഗ്നീഷ്യം, കാൽസ്യം എന്നിവയുടെ വിവരങ്ങൾ പൂരിപ്പിക്കുക.
മെയിൻ ഗ്രൂപ്പുകൾ തിരിച്ചറിയൽ	Scheme → Groups ഉപയോഗിച്ച് മെയിൻ ഗ്രൂപ്പ് മൂലകങ്ങൾ ഹൈലൈറ്റ് ചെയ്യുക.
ഐക്കോണിക് വൃ ഉപയോഗിക്കൽ	Scheme → Iconic ക്ലിക്ക് ചെയ്ത് മൂലകങ്ങളുടെ ഉപയോഗങ്ങൾ പ്രതിനിധീകരിക്കുന്ന ചിഹ്നങ്ങൾ കാണക.
മൂലകങ്ങൾ തിരയൽ	പൊട്ടാസ്യം മുതലായ മൂലകങ്ങൾ കണ്ടെത്താൻ സെർച്ച് ബാർ ഉപയോഗിക്കുക.
വിവരങ്ങളുള്ള പട്ടിക പൂർത്തിയാക്കൽ	ലിഥിയം, അലുമിനിയം, സിങ്ക്, ടിൻ, പൊളോണിയം എന്നിവയുടെ വിവരങ്ങൾ പട്ടിക 7.5-ൽ പൂരിപ്പിക്കുക.
നോട്ടുകൾ സേവ് ചെയ്യൽ	നിങ്ങളുടെ നിരീക്ഷണങ്ങൾ element_properties.odt എന്ന പേരിൽ സേവ് ചെയ്യുക.

ICT പ്രാക്ടിക്കൽ വർക്ക്ഷീറ്റ് – ഒൻപതാം ക്ലാസ്

വർക്ക്ഷീറ്റ് നമ്പർ	7.3
അധ്യായത്തിന്റെ പേര്	കമ്പൂട്ടറിലെ പരീക്ഷണശാല
പ്രവർത്തിയുടെ പേര്	PhET സിമുലേഷൻ – ലൈറ്റ് ബെൻഡിംഗ്
ഉപയോഗിച്ച സോഫ്റ്റ്വെയർ	PhET സിമുലേഷൻ
സമയം	40 മിനിറ്റ്

പ്രവർത്തന ക്രമം

പ്രവർത്തനം	നിർദ്ദേശങ്ങൾ
PhET തുറക്കൽ	PhET തുറന്ന് Physics → Bending Light തിരഞ്ഞെടുക്കുക.
ഇൻടോ തിരഞ്ഞെടുക്കൽ	Intro സിമുലേഷൻ ആരംഭിക്കുക.
ലൈറ്റ് ബെൻഡിംഗ് നിരീക്ഷണം	ലൈറ്റ് സോഴ്സ് നീക്കി വായു-ജലം തമ്മിലുള്ള പ്രകാശ വളവ് നിരീക്ഷിക്കുക.
പ്രൊടാക്ടർ ഉപയോഗിക്കൽ	ആംഗിൾ ഓഫ് ഇൻസിഡൻസും ആംഗിൾ ഓഫ് റിഫ്രാക്ഷനും അളക്കാൻ പ്രൊട്രാക്ടർ ടൂൾ ആക്ടിവേറ്റ് ചെയ്യുക.
ആംഗിളൂകൾ രേഖപ്പെടുത്തൽ	വൃതൃസ്ത മീഡിയകൾക്ക് (വായു-ജലം, വായു-വായു
വേവ് വൃവിലേക്ക് മാറ്റം	മുതലായവ) ആംഗിളുകൾ പട്ടിക 7.6-ൽ പൂരിപ്പിക്കുക. പ്രകാശത്തെ ഒരു തരംഗമായി നിരീക്ഷിക്കാൻ Wave ടൂൾ ഉപയോഗിക്കുക.
പ്രിസങ്ങൾ പര്യവേക്ഷണം	Prisms ടാബിലേക്ക് പോയി വ്യത്യസ്ത പ്രിസങ്ങളിലൂടെ പ്രകാശം കടന്നപോകുന്നത് നിരീക്ഷിക്കുക.
ഫലങ്ങൾ വിശകലനം ചെയ്യൽ	നിങ്ങളുടെ ആംഗിൾ അളവുകളെ അടിസ്ഥാനമാക്കി ഒരു നിഗമനം എഴുതുക.
സ്ക്ലീൻഷോട്ടുകൾ സേവ് ചെയ്യൽ	രസകരമായ നിരീക്ഷണങ്ങളുടെ സ്ക്രീൻഷോട്ടുകൾ എടുത്ത് light_bending.png എന്ന പേരിൽ സേവ് ചെയ്യുക.