OneTouch Glucometer BLE Protocol

Client: Appia Care Inc.

Document: ONETOUCH-20-001-EN

Prepared by: Santiago, IVULICH

Tobías, LIFSCHITZ

Date: 07/06/2020

Revision: B

1.Contents

Contents	2
Scope	3
Overview	3
Introduction	3
Document objectives	3
Glucometer operation	3
GATT services and characteristics	3
Packets	4
Decoded Packets	5
Time Get	5
Time Set	5
High Limit Get	5
High Limit Set	6
Low Limit Get	6
Low Limit Set	6
Total Record Count Get	6
Correct Record Count Get	7
Record Get By Index	7
Record Request By ID	7
Unknown Packets	8
UK 1 - R	8
UK 2	8
UK 3 - R	9
References	9

2.Scope

The scope of this document is to decode the communication protocol used by a third-party commercial glucometer over Bluetooth Low Energy (BLE) technology. It is not within the scope of this document the determination of the statefulness of the protocol, as at the time of writing it's not known if the order of the packets affects the communication.

3.Overview

3.1.Introduction

The purpose of this document is to define and document the packets used to communicate with the Onetouch Select Plus Flex glucometer. A technique of reverse engineering was used observing the correlation between packets of the same length and knowledge on the field to decode the meaning of the unknown packets. This allowed to understand the communication protocol in a bottom up approach.

3.2.Document objectives

The key objective is to document the communication with the device, logging all the packets with the official app in the process. This will ease the development of the protocol during the implementation stage.

4. Glucometer operation

After scanning bluetooth communications, it was confirmed that the device does not implement the standard profile defined by Bluetooth SIG for healthcare devices which measure blood glucose levels [2].

Instead, the manufacturer designed the communication using a proprietary protocol running over an emulated serial port using BLE technology. Frequently called serial over BLE, it consists of an Attribute Protocol (ATT) made up of a single service containing one RX characteristic with only the notify/indicate permission, and one TX characteristic that only allows writing.

4.1.GATT services and characteristics

After scanning all services and characteristics exposed by the device using an Android tool^[3] the result are presented below.

• Generic Access Profile | UUID: 0x1800

Characteristic	UUID	Properties
Device Name	0X2A00	READ WRITE
Appearance	0X2A01	READ
Peripheral Preferred Connection Parameters	0X2A04	READ

• Generic Attribute | UUID: 0x1801

Characteristic	UUID	Properties
Service Changed	0X2A05	INDICATE

• Device Information | UUID: 0x180A

Characteristic	UUID	Properties
Manufacturer Name String	0X2A29	READ
Model Number String	0X2A24	READ
Serial Number String	0X2A25	READ
Software Revision String	0X2A28	READ
System ID	0X2A23	READ

• Unknown Service 1 | UUID: 0xaf9df7a1-e595-11e3-96b4-0002a5d5c51b

Characteristic	UUID	Description	Properties
Unknown Characteristic	0x2902	RX	NOTIFY
Unknown Characteristic	0xaf9df7a2-e595-11e3-96b 4-0002a5d5c51b	TX	WRITE, WRITE NO RESPONSE

Note: 16 bit characteristic UUID is equal to 0x0000XXXX-0000-1000-8000-00805F9B34FB

The first detailed service is specified in BLE Core 4.0^[4] and is the GAP service. GAP is an acronym for the Generic Access Profile, and it controls connections and advertising in Bluetooth. GAP is what makes the device visible to the outside world, and determines how two devices can (or can't) interact with each other.

The second service include characteristics specified in GATT Specification Supplement^[5] which specifies standard characteristics not defined in Bluetooth Core Specification. In this case contains information detailed in the table above.

Finally the last service is vendor specific, reason why it's parsed as Unknown Service by the used tool, as well as their characteristics.

5.Packets

After making measurements and logging several interactions with the official app^[6], and having sufficient data to analyze the following protocol was identified and decoded.

Because of limitations of BLE the messages are split in several blocks. This is why the first packet of a message starts with the total number of blocks. The following packets will have in the first byte

the index of the packet inside the message (e.g each packet of a long message divided in five packets will have in the first byte: $0x05 \rightarrow 0x41 \rightarrow 0x42 \rightarrow 0x43 \rightarrow 0x44$).

Every packet is acknowledged with a byte that has 8 in its upper nibble and copies the low nibble of the first byte of the packet.

Examples:

5.1.Decoded Packets

All packets are represented in hexadecimal numbers separated in bytes.

5.1.1.Time Get

Request the time of the device. Responds with the number of seconds since 2000-01-01.00:00.

Request:

Response:

5.1.2.Time Set

Sets the device time, must be the number of seconds since 2000-01-01 00:00.

Request:

Response:

BLKS	-	LEN	PAD	DML	-	- DML		KSUM
01	02	08	00	04	06	03	78	c1

5.1.3. High Limit Get

Request the limit to display high glucose. Returns a two byte integer in little endian.

Request:

BLKS	-	LEN	PAD	DLM	CMD			DLM CMD DLM				CHEC	CHECKSUM		
01	02	0a	00	04	0a	02	0a	03	CS_L	CS_H					

Response:

BLKS	-	LEN	PAD	DLM	-	High	High Limit		PAD	DLM	CHEC	KSUM
01	02	0c	00	04	06	HI_L	HI_H	00	00	03	CS_L	CS_H

5.1.4. High Limit Set

Set the limit to display high glucose.

Request:

BLKS	-	LEN	PAD	DLM		CMD			Limit	PAD	PAD	DLM	CHEC	KSUM
01	02	0e	00	03	0a	01	0a	HI_L	HI_H	00	00	03	CS_L	CS_H

Response:

5.1.5.Low Limit Get

Request the limit to display low glucose. Returns a two byte integer in little endian.

Request:

E	BLKS	-	LEN	PAD	DLM		CMD			CHEC	KSUM
	01	02	0a	00	04	0a	02	09	03	CS_L	CS_H

Response:

BLKS	-	LEN	PAD	DLM	-	Low	Low Limit		PAD	DLM	CHEC	KSUM
01	02	0c	00	04	06	LO_L	LO_H	00	00	03	CS_L	CS_H

5.1.6.Low Limit Set

Set the limit to display low glucose. Returns a two byte integer in little endian.

Request:

	BLKS	-	LEN	PAD	DLM		CMD		Low Limit		PAD	PAD	DLM	CHECKSUM	
	01	02	0e	00	03	0a	01	09	LO_L	LO_H	00	00	03	CS_L	CS_H
Response:															
	BLKS	-	LEN	PAD	DLM	-	Low Limit		PAD	PAD	DLM CHECKS		KSUM		
	01	02	0c	00	03	06	LO_L	LO_H	00	00	03	CS_L	CS_H		

5.1.7.Total Record Count Get

Request the number of measurements including errors. Returns a two byte integer in little endian.

Request:

BLKS	-	LEN	PAD	DLM	CMD		DLM	CHEC	KSUM	
01	02	0a	00	04	0a	02	06	03	CS_L	CS_H

Response:

BLKS	-	LEN	PAD	DLM	PAD	Count	PAD	PAD	DLM	CHEC	KSUM
01	02	0c	00	04	06	CNT_L CNT_H	00	00	03	CS_L	CS_H

5.1.8.Correct Record Count Get

Request the number of correct measurements. Returns a two byte integer in little endian.

Request:

5.1.9.Record Get By Index

Request a measurement by its index. Returns its ID as a two byte integer in little endian, its Value as a two byte integer in little endian and a timestamp of seconds since 2000-01-01 00:00.

Request:

Response:

	TIMES	TAMP		VAL	LUE	ERROR CODE			
TM_3	TM_2	TM_1	TM_0	VAL_L	VAL_H	ERR_1	ERR_2	ERR_3	

Block-2

5.1.10.Record Request By ID

Request a measurement by its ID. Returns its value as a two byte integer in little endian and a timestamp of seconds since 2000-01-01 00:00.

Request

BLKS	-	LEN	PAD	DLM	CMD	REC	_ID	DLM	CHEC	KSUM
01	02	0a	00	04	В3	ID_L	ID_H	03	CS_L	CS_H

Response

BLKS	-	LEN	PAD	DLM	-	TIMESTAMP				VALUE		
01	02	13	00	04	06	75	190	106	38	a8	00	
01	UZ	13	00	04	00	/3	190	100	30	do	00	

	ERF	DLM	Checl	ksum			
ERR_1	ERR_2	ERR_3	ERR_4	ERR_5	03	CS_L	CS_H

5.2. Unknown Packets

The following packets could not be decoded due to the rarity of appearance and complexity.

5.2.1.UK 1 - R

This packet is believed to be the offset of the available ids, as the devices stores only 500 measurements but can give 65536 unique ids. This can be confirmed with further testing, but at the time of writing this document the device holds only 60 measurements.

Packet:

BLKS	-	LEN	PAD	DLM		CMD		DLM	CHEC	KSUM		
01	02	0a	00	04	09	02	02	03	c6	Of		
Respor	ise:											
BLKS	-	LEN	PAD	DLM	-	- Always 0x00000000				DLM	CHEC	KSUM
01	02	0c	00	04	06	00	00	00	00	03	e7	f6

5.2.2.UK 2

Request:

00

31

Block	-	LEN	PAD	DLM		CMD		DLM	CHEC	KSUM
01	02	0a	00	04	e6	02	08	03	09	b0
Respor	ise:									
BLKS	-	LEN	PAD	DLM	-					
03	02	2 a	00	04	06	41	00	44	00	
42	00	38	00	42	00	46	00	39	00	
41	36	00	34	00	41	00	37	00	41	

43

00

41

00

00

		5114	01150	VC1 18 4
		DLM	CHEC	KSUM
42	00	03	c5	a1

00

30

00

5.2.3.UK 3 - R

Request:

01

02

06

6. References

80

00

04

[2] <u>11073-10417-2015</u> - <u>IEEE Health informatics</u> -- <u>Personal health device communication Part</u> <u>10417</u>: <u>Device Specialization</u> -- <u>Glucose Meter</u>

03

78

c1

- [3] nRF Connect for Mobile.
- [4] Bluetooth Core Specification
- [5] GATT Characteristics | Bluetooth® Technology Website
- [6] OneTouch Reveal® mobile app for Diabetes Apps on Google Play