Лабораторная работа № 1

Линейные вычислительные процессы

Цель работы: научиться реализовывать ЛВП средствами Free Pascal.

Оборудование: PC, Lazarus

Задача № 1

Постановка задачи: Даны два числа 7 и 5. Определить результат вещественного деления, целочисленного деления и найти остаток от целочисленного деления.

Математическая модель:

- 1) A=7/5;
- 2) B=7 div 5;
- 3) C=7 mod 5;

Список идентификаторов (обозначение переменных):

Таблица 1

Имя	Смысл	Тип
del1	Делимое	integer
del2	Делитель	integer
A	Результат "обыкновенного" деления	real

В	Результат целочисленного деления	real
С	Результат остатка	real

Код программы:

```
program delenie;
var del1, del2: integer;
A, B, C: real;
begin
del1 := 7;
del2 := 5;
A := del1 / del2;
```

```
writeln ('resultat obyknovennogo delenia ', C:1:3);
B := del1 div del2;
writeln ('zeloch delenie ', A:1:3);
C := del1 mod del2;
writeln ('ostatok ', B:1:3);
readln
end.
```

Результаты выполненной работы:

Анализ результатов вычисления: программа вычисляет и выводит на экран результаты "обыкновенного" и целочисленного деления 7 на 5, а также выводит остаток от деления этих чисел.

Задача №2

Постановка задачи: вычислить и

Математическая модель:

$$u = \frac{1 + \sin^2(x + y)}{2 + \left| x - \frac{2x^2}{1 + \left| \sin(x + y) \right|} \right|}$$

Код программы:

```
program zadanie2;
var x, y, u, t: real;
begin
    writeln('vvedite x');
    readln(x);
    writeln('vvedite y');
    readln (y);
    t := sin(x+y);
    u := (1 + t * t) / (2 + abs(x - 2 * x * x / (1 + abs(t))));
    writeln ('u = ', u:1:3);
    readln
end.
```

Список идентификаторов (обозначение переменных):

Таблица 2

Имя	Смысл	Тип
X	Элемент выражения	real
У	Элемент выражения	real
t	Промежуточная переменная	real
и	Результат вычислений	real

Результаты выполненной работы:

Анализ результатов вычисления: программа вычисляет и выводит на экран некоторое значение u после ввода пользователем с клавиатуры переменных x и y.

Задача №3

Постановка задачи: вычислить т

Математическая модель:

$$m = \frac{\cos(xy)}{\pi - 2x} + 16x\cos(yx) - 2$$

Список идентификаторов (обозначение переменных):

Таблица 3

Имя	Смысл	Тип
X	Элемент выражения	real
у	Элемент выражения	real
t	Промежуточная переменная	real

m	Результат	real
	вычислений	

Код программы:

```
program zadanie3;
var m, x, y: real;
begin
    writeln('vvedite x');
    readln(x);
    writeln('vvedite y');
    readln (y);
    t:=cos(x*y);
```

```
m := ((t)/(pi - 2 * x)) + 16 * x * t - 2;

writeln('m = ', m:2:3);

readln
```

end.

Результаты выполненной работы:

Анализ результатов вычисления: программа вычисляет и выводит на экран некоторое значение m после ввода пользователем с клавиатуры переменных x и y.

Задача №4

Постановка задачи: С клавиатуры вводится трехзначное число. Вычислить сумму его цифр.

Математическая модель:

- 1) Количество сотен = m div 100;
- 2) Количество десятков = m div 10 mod 10;
- 3) Количество единиц = m mod 10;
- 4) Сумма цифр = Количество сотен + Количество десятков + Количество единиц;

Список идентификаторов (обозначение переменных):

Таблица 4

Имя	Смысл	Тип
m	Трехзначное число, вводимое с клавиатуры	integer
sum	Сумма цифр трехзначного числа	integer

Код программы:

```
program zadanie4;
var m, sum: integer;
begin
    writeln ('vvedite trechznachnoe chislo');
    readln (m);
    sum := (m div 100) + (m div 10 mod 10) + (m mod 10);
    writeln ('Summa cifr = ', sum);
    readln
end.
```

Результат выполненной работы:

Анализ результатов вычисления:

Для того, чтобы выполнить задачу, необходимо воспользоваться операциями целочисленного деления и нахождения остатка от деления. Сначала вычисляем количество сотен некоторого трехзначного числа. Обозначим это число, как т. Количество сотен будет равно: т div 100. Чтобы вычислить количество десятков, нужно сначала разделить т на 10 и вычислить остаток деления этого числа на 10. Количество единиц мы получим, используя операцию нахождения остатка от деления числа т на 10. Полученные результаты суммируем.

Задача № 5

Постановка задачи: ввести трехзначное число a. Поменять крайние цифры числа местами.

Математическая модель:

- 1) Единицы искомого числа = m div 100;
- 2) Десятки искомого числа = (m div 10 mod 10)*10;
- 3) Сотни искомого числа = $(m \mod 10)*100$;
- 4) Искомое число = Сотни искомого числа + Десятки искомого числа + Единицы искомого числа;

Блок-схема:

Список идентификаторов (обозначение переменных):

Таблица 5

Имя	Смысл	Тип
m	Трехзначное число, вводимое с клавиатуры	integer
С	Число т "наоборот"	integer

Код программы:

```
program zadanie5;
var m, c: integer;
begin
    writeln ('vvedite trechznachnoe chislo');
    readln (m);
    c := (m div 100) + ((m div 10 mod 10)*10) + ((m mod 10)*100);
    writeln ('Chislo = ', c);
    readln
end.
```

Результаты выполненной работы:

Анализ результатов программы: для начала нам необходимо выделить первую цифру трехзначного числа *а*. Сделаем это путем целочисленного деления числа *а* на сто. К полученному числу мы будем прибавлять десятки, которые мы выделим из числа *а* способом, которым мы их выделяли в предыдущей задаче (см. выше), дополнительно умножив на 10. Из единиц числа *а* нам необходимо сделать сотни. Выделяем единицы, используя операцию нахождения остатка от деления числа *а* на 10, и умножаем на 100. Полученное число прибавляем к сумме десятков и полученных из сотен единиц, чтобы получить ответ к данной задаче.

Задача № 6

Постановка задачи: выяснить на каком этаже, в каком подъезде 9этажного дома живет друг, если известен номер его квартиры, а также, что на каждом этаже располагается 4 квартиры. Номер интересующей нас квартиры вводится с клавиатуры. Вывести номер подъезда и номер этажа, на котором живет друг.

Математическая модель:

- 1) p = 1 + (k-1) div 36;
- 2) $a := (1 + (k-1) \operatorname{div} 4) ((p-1)*9);$

Список идентификаторов (обозначение переменных):

Таблица б

Имя	Смысл	Тип
k	Номер квартиры	integer
p	Номер подъезда	integer
а	Номер этажа	integer

Код программы:

```
program Zadanie6;

var k,p,a: integer;

begin

writeln('vvedite nomer kvartiry');

readln(k);

p:= 1 + (k-1) div 36;

writeln('Nomer podjezda: ', p);

a:= (1 + (k-1) div 4) - ((p-1)*9);

writeln('Nomer etaja: ',a);

readln

end.
```

Результат выполненной работы:

Анализ результату прибавить номер квартиры, которые находятся в предыдущих подъездах от искомой квартиры. Для того, чтобы учесть крайние квартиры тольезто этажей квартиры, которая на 1 Программа вынесть крайние квартиры на количество учесть крайние квартиры, которая на 1 меньше, чем квартира друга и к полученному результату прибавляем 1. Для того, чтобы выяснить номер этажа необходимо разделить номер квартиры на количество квартир в на каждом этаже и вычесть количество этажей квартир, которые находятся в предыдущих подъездах от искомой квартиры. Для того, чтобы учесть крайние квартиры на этаже, нужно разделить номер квартиры, которая на 1 меньше, чем квартира друга и к результату прибавить 1. Программа верно вычисляет номер подъезда и этажа, независимо от того, является ли номер этой квартиры последней на этаже или в подъезде. При вводе нуля программа называет 1 этаж и 1 подъезд.

Вывод.

Таким образом, был изучен метод реализации линейных вычислительных процессов средствами Free Pascal.