Modélisation de la transformation chimique. Cours

I- Système chimique-Transformation chimique.

- 1- Activité 1 et 2:
- 2- Description d'un système chimique :

Un système chimique est un mélange d'espèces chimiques.

Pour décrire l'état d'un système chimique à l'échelle macroscopique, il faut indiquer :

- La nature et la quantité des espèces chimiques qui le composent.
- Les paramètres physiques : la pression P, la température 0.
- L'état physico-chimique des espèces chimiques (solide, liquide, gazeux, ions en solution).
- 3- Activité 3 :
- 4- Transformation chimique:

Lorsque l'évolution d'un système chimique s'accompagne de l'apparition de nouvelles espèces chimiques, le passage de son état initial à son état final est une transformation chimique.

Au cours d'une transformation chimique :

- les espèces chimiques qui disparaissent sont appelées les réactifs
- les espèces chimiques qui apparaissent sont appelées les produits.

Remarques:

On appelle **État Initial (E.I)** du système chimique, l'état de ce système avant la transformation chimique.

On appelle **État Final** (E.F) du système chimique, l'état de ce système lorsque la transformation chimique est terminée.

La transformation chimique permet le passage de l'état initial à l'état final.

II- Réaction chimique et équation chimique.

- 1)- Activté 4 :
- 2)- La réaction chimique :

La transformation chimique qui fait intervenir les réactifs et les produits s'appelle la réaction chimique. Elle modélise la transformation chimique subie par un système chimique.

On écrit : la solution de sulfate de cuivre **II** réagit avec la solution de soude pour donner de l'hydroxyde de cuivre **II**.

On peut écrire plus simplement : les ions cuivre II réagissent avec les ions hydroxyde pour donner de l'hydroxyde de cuivre II.

Les ions sodium et les ions sulfate ne participent pas à la réaction mais ils font partie du système chimique : Ce sont des ions spectateurs ou des espèces chimiques spectatrices.

3)- Lois de conservation.

Au cours d'une réaction chimique, il y a conservation des éléments chimiques.

- Les éléments présents dans les réactifs se retrouvent dans les produits.
- Conservation de la charge : au cours d'une réaction chimique, la charge se conserve.
- 4)- Écriture d'une équation chimique nombres stæchiométriques :

Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

a)- L'équation chimique :

L'équation chimique est l'écriture symbolique, à l'échelle macroscopique, de la réaction chimique.

Par convention:

- On écrit les formules des réactifs dans le membre gauche de l'équation chimique
- On écrit les formules des produits dans le membre droit de l'équation chimique.
- On sépare les deux membre de l'équation par une flèche qui indique le sens d'évolution du système.

Réactifs	Transformation chimique	Produits
() + ()	\rightarrow	() + ()

b)- Ajustement des nombres stæchiométriques.

<u>Les nombres stœchiométriques</u> assurent la <u>conservation des éléments</u> et, dans le cas échéant, la <u>conservation des charges</u>.

Ajuster les nombres stæchiométriques d'une équation, c'est choisir ces nombres de manière à traduire ces conservations.

Par convention:

- le nombre stœchiométrique se place devant la formule de l'espèce chimique.
- Le nombre stæchiométrique 1 ne s'écrit pas.
 - c)- Applications : ajustement des nombres stæchiométriques :
 - Le butane brûle dans le dioxygène pour donner du dioxyde de carbone et de l'eau

	Réactifs		Produits		
Équation chimique	$2 C_4 H_{10 (g)} + 13 O_{2 (g)}$	\rightarrow	8 CO _{2 (g)} + 10 H ₂ O _(l)		
Éléments chimiques présents	Carbone C, hydrogène H, et oxygène O.				
Nombre de « carbone »	2 x 4 = 8		8 x 1 = 8		
Nombre d' « hydrogène »	2 x 10 = 20		10 x 2 = 20		
Nombre d' « oxygène »	13 x 2 = 26		$8 \times 2 + 10 \times 1 = 26$		

 Le sulfate de cuivre II réagit avec la soude en donnant un précipité bleu d'hydroxyde de cuivre II.

	Réactifs		Produit
Équation chimique	Cu ²⁺ _(aq) + 2 HO ⁻ _(aq)	\rightarrow	Cu (HO) _{2 (s)}
Éléments chimiques présents	Carbone Cu, hydrogène H, et oxygène O.		
Nombre de « cuivre »	1 x 1 = 1		1 x 1 = 1
Nombre d' « hydrogène »	2 x 1 = 2		1 x 2 = 2

Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Nombre d' « oxygène »	2 x 1 = 2	1 x 2 = 2
Charge	$1 \times (2+) + 2 \times (1-) = 0$	0