Azonosító iel:								
J • 1.								

3.A feladat: Bástyák

22 pont

Ebben a feladatban egy 8x8-as mátrixban mint sakktáblán a számítógép által véletlenszerűen elhelyezett bástyákkal és gyalogokkal fog dolgozni.

A megoldás során vegye figyelembe a következőket:

- A képernyőre írást igénylő részfeladatok eredményének megjelenítése előtt írja a képernyőre a feladat sorszámát (például: 3. Feladat:)!
- Az ékezetmentes kiírás is elfogadott.
- A feladat jobb megértése érdekében tanulmányozza a mintát!

Készítsen programot bastyak néven, amely az alábbi feladatokat oldja meg!

- 1. Hozzon létre egy 8×8-as karakter típusú mátrixot (kétdimenziós tömböt), és töltse fel azt véletlenszerű pozíciókban 10 db gyaloggal a következőek szerint:
 - A gyalogok jelölésére a "G" karaktert használja!
 - Ügyeljen arra, hogy csak üres helyre (cellába) tegyen gyalogot!
- 2. Készítsen eljárást vagy függvényt Megjelenit néven, amely a véletlenszerűen feltöltött 8×8-as mátrix tartalmát a **következő oldalon** lévő minta szerint megjeleníti a képernyőn! A kiírásnál az üres cellákat a "#" karakter jelölje! (A "#" karaktereket a mátrixban is tárolhatja.)
- 3. Az előző feladatban létrehozott mátrixban helyezzen el véletlenszerű pozícióba további 5 db bástyát következők szerint:
 - A bástyák jelölésére a "B" karaktert használja!
 - Ügyeljen arra, hogy csak üres helyre (cellába) tegyen bástyát!
 - Bástya nem kerülhet a tábla szélére.

Írja ki a képernyőre feltöltött mátrix tartalmát! A megjelenítéshez a Megjelenit eljárást vagy függvényt használja!

- 4. Határozza meg a bástyák lépésértékeit, majd cserélje le a "B" karaktereket a lépésértéket jelző számjegyre a mátrixban a következő szabályok alapján:
 - A bástyák négy irányba tudnak lépni (fel, le, jobbra, balra) egyenes vonalban. Egy lépéssel tetszőleges számú üres mezőt (cellát) haladhatnak, ha azok a mezők üresek.
 - A lépésérték 0-4-ig azt határozza meg, hogy hány irányba tud a bástya egy lépéssel a tábla szélére jutni.

Például a következő tábla esetén a 4. sor 7. oszlopában lévő bástya értéke 2, mert felfelé és balra egy lépéssel el tudja érni a tábla szélét. Másrészt a 6. sor 7. oszlopában lévő bástya értéke 0, mert nincs olyan irány, ahol szabadon haladhatna a tábla széléig.

	1	2	3	4	5	6	7	8
1	#	G	#	#	G	#	#	#
2	#	#	#	В	#	G	#	#
3	#	#	#	G	#	#	#	#
4	#	#	#	#	#	#	В	G
5	#	#	#	#	#	#	#	G
6	G	В	#	#	G	#	В	G
7	#	#	В	#	#	#	#	#
8	#	#	#	#	#	#	G	#

Írja ki a képernyőre a lépésértékekkel módosított mátrix tartalmát!

5. Véletlenszerűen állítson elő mindaddig táblákat az első három feladatban leírtak szerint, amíg nem talál egy olyan állást, ahol az 5 bástya minden lehetséges lépésértéke (0-4) pontosan egyszer szerepel az adott felállásban! Jelenítse meg ezt az állást is a képernyőn a minta szerint!

Azonosító								
jel:								

MINTA A FELADATHOZ:

```
1. feladat: Gyalogok elhelyezése:
GG######
#####G#
#####GG#
###G###G
########
########
#G###G##
#####G#
3. feladat: Bástyák elhelyezése:
GG######
#####G#
##B#BGG#
###G###G
##B####
##B####
#G##BG##
#####G#
4. feladat: Bástyák lépésértékei:
GG######
######G#
##2#1GG#
###G###G
##2####
##3####
#G##1G##
######G#
5. feladat: Minden érték:
###G####
G###1G##
####G##G
########
##2#0#3#
#4#####
G#GGG###
#####G##
```