# Functions, Limit and Continuity

### Functions of a complex variable

- Let  $S \subseteq \mathbb{C}$ . A complex valued function f on S is a function  $f: S \to \mathbb{C}$ .
- We write w = f(z). The set S is called the **domain** of f and the set  $\{f(z) : z \in S\}$  is called **range** of f.
- Suppose z = x + iy, that f(z) = w = u + iv. Then

$$f(z) = f(x + iy) = u(x, y) + iv(x, y),$$

i.e., u and v are real valued functions of two real variables.

• Ex. If  $w = z^2$ , then

$$u(x, y) + iv(x, y) = (x + iy)^2 = (x^2 - y^2) + i \cdot 2xy,$$

i.e., 
$$u(x,y) = x^2 - y^2$$
,  $v(x,y) = 2xy$ .

• (In polar form): Suppose  $z = re^{i\theta}$  and f(z) = w = u + iv. We can write

$$f(z) = f(re^{i\theta}) = u(r,\theta) + iv(r,\theta).$$

• Ex. For  $w = z^2$ ,  $u(r, \theta) + iv(r, \theta) = z^2 = r^2 e^{i2\theta}$  so that

$$u(r,\theta) = r^2 \cos 2\theta$$
,  $v(r,\theta) = r^2 \sin 2\theta$ .

### Visualizing a complex function

- A real valued function of a real variable is visualized with its graph.
  However, graph of a complex function is not a curve.
- **Example:** Consider  $w = f(z) = \overline{z}$ , defined on  $\mathbb{C}$ . Image of each point is the reflection about the real axis. What is the image of the set  $\{z: |z-i| \leq 2\}$ ?
- For visualizing a complex function w = f(z) we often need two planes.
- Take xy-plane as z-plane, and the domain is on this plane.
  Take uv-plane as w-plane, and the codomain is on this plane.
- w = f(x) is visualized by the images of of sets and curves under the mapping.
- Example: Consider  $w = f(z) = z^2$ , defined on  $\mathbb{C}$ .
  - What is the image of a point z? Use  $z = re^{i\theta}$ .
  - image of the set  $\{z = e^{i\theta} : 0 \le \theta \le \pi/2\}$ ?
  - of the set  $\{z = re^{i\theta} : 0 \le \theta \le \pi/2\}$ ? If r < 1? r > 1?
  - of the set  $\{z = re^{i\theta} : 0 < r \le r_0, \ 0 \le \theta \le \pi/2\}$ ?
  - of the set  $\{z = re^{i\theta} : 0 < r \le r_0, \ 0 \le \theta \le \pi\}$ ?

### Visualizing a complex function

**Example:** Again consider  $w = f(z) = z^2$ , defined on  $\mathbb{C}$ . Note that

$$w = u(x,y) + iv(x,y) = (x+iy)^2 = (x^2 - y^2) + i \cdot 2xy,$$
 i.e., 
$$u(x,y) = x^2 - y^2, \quad v(x,y) = 2xy.$$

• What is the image of the hyperbola  $x^2 - y^2 = c_1$ ,  $c_1 > 0$ ?





- It is a vertical line in w-plane given by  $u = c_1$ .
- Note:  $v = \pm 2y\sqrt{y^2 + c_1}, y \in \mathbb{R}$ .
- Each branch of the hyperbola maps the line in one-one manner.
- As you travel upward (downward) on the branch right (left) to y-axis, you travel upward on the image.

## Visualizing a complex function

Example (contd.): For 
$$w = f(z) = z^2$$
,  $u(x, y) = x^2 - y^2$ ,  $v(x, y) = 2xy$ .

• What is the image of the hyperbola  $2xy = c_2, x > 0, c_2 > 0$ ?





- It is the horizontal line  $v = c_2$ .
- Note:  $u = x^2 \frac{c_2^2}{x^2}$ ,  $\lim_{x \to 0^+} u = -\infty$ ,  $\lim_{x \to \infty} u = \infty$ .
- The hyperbola mapped to the line in one-one manner. In which orientation?
- What is the image of  $\{z = x + iy : 0 < x^2 y^2 \le c\}$ ?
- What is the image of  $\{z = x + iy : 0 < 2xy \le c, x > 0\}$ ?

#### Limit of a function

• **Limit of a function:** Suppose f is a complex valued function defined on a deleted neighborhood of  $z_0$ . We say f has a **limit** a as  $z \to z_0$  if for every  $\epsilon > 0$ , there is a  $\delta > 0$  such that

$$|f(z)-a|<\epsilon$$
 whenever  $0<|z-z_0|<\delta$ .

We then write

$$\lim_{z\to z_0}f(z)=a.$$

Example:

$$\lim_{z \to i} \frac{2i}{z} = 2.$$

Take any  $\epsilon$  and draw diagram and see:

- $w = f(z) = \frac{2i}{z}$  is defined in a deleted neighborhood of i,
- $|f(z)-2|=\frac{2|z-i|}{|z|}<\epsilon \text{ if } |z-i|<\frac{\epsilon}{4} \text{ and } |z|>\frac{1}{2},$
- If  $\delta = \min\{\frac{\epsilon}{4}, \frac{1}{2}\}$ , then  $|f(z) 2| < \epsilon$  when  $|z i| < \delta$ .
- The limit of a function f(z) at a point  $z_0$ , if exists, is unique.

#### Limit of a function

• If f(z) = u(x, y) + iv(x, y) and  $z_0 = x_0 + iy_0$ , pause then

$$\lim_{z\to z_0} f(z) = u_0 + iv_0 \Longleftrightarrow \left\{ \begin{array}{l} \lim\limits_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \quad \text{and} \\ \lim\limits_{(x,y)\to(x_0,y_0)} v(x,y) = v_0. \end{array} \right.$$

- Ex.  $\lim_{z \to z_0} z^2 = z_0^2$ .
- The point  $z_0$  can be approached from **any direction**. If the limit  $\lim_{z\to z_0} f(z)$  exists, then f(z) must approach a **unique** limit, no matter how z approaches  $z_0$ .
- If the limit  $\lim_{z \to z_0} f(z)$  is different for different path of approaches then  $\lim_{z \to z_0} f(z)$  does not exists.
- Ex.  $\lim_{z\to 0} \frac{z}{\overline{z}}$  does not exist.
  - Take  $z = (x, 0) \rightarrow 0$  and  $z = (0, y) \rightarrow 0$  separately and see.

#### Limit contd....

Let f, g be complex valued functions with  $\lim_{z \to z_0} f(z) = \alpha$  and  $\lim_{z \to z_0} g(z) = \beta$ . Then,

- $\bullet \lim_{z \to z_0} [f(z) \pm g(z)] = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) = \alpha \pm \beta.$
- $\bullet \lim_{z \to z_0} [f(z) \cdot g(z)] = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z) = \alpha \beta.$
- $\bullet \lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} = \frac{\alpha}{\beta} \quad (if \quad \beta \neq 0).$
- $\lim_{z \to z_0} Kf(x) = K \lim_{z \to z_0} f(z) = K\alpha \quad \forall \quad K \in \mathbb{C}.$

#### Continuous functions

• Continuity at a point: Let D be a domain or a region. A function  $f:D\to\mathbb{C}$  is continuous at a point  $z_0\in D$  if for for every  $\epsilon>0$ , there is a  $\delta>0$  such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever  $|z - z_0| < \delta$ .

In other words, f is is continuous at a point  $z_0$  in the domain if the following conditions are satisfied.

- $\lim_{z \to z_0} f(z)$  exists,
- $\bullet \lim_{z\to z_0} f(z) = f(z_0).$
- A function f is continuous on D if it is continuous at each and every point in D.
- A function  $f: D \to \mathbb{C}$  is continuous at a point  $z_0 \in D$  if and only if u(x,y) = Re (f(z)) and v(x,y) = Im (f(z)) are continuous at  $z_0$ .

### Continuity

Let  $f,g:D\subseteq\mathbb{C}\to\mathbb{C}$  be continuous functions at the point  $z_0\in D$ . Then

- $f \pm g$ , fg, Kf  $(k \in \mathbb{C})$ ,  $\frac{f}{g}$   $(g(z_0) \neq 0)$  are continuous at  $z_0$ .
- Composition of continuous functions is continuous.
- $\overline{f(z)}$ , |f(z)|, Re (f(z)) and Im (f(z)) are continuous.
- If a function f(z) is continuous and nonzero at a point  $z_0$ , then there is a  $\epsilon > 0$  such that  $f(z) \neq 0$ ,  $\forall z \in B(z_0, \epsilon)$ .
- Continuous image of a compact set (closed and bounded set) is compact.