

Kinks

Topological solutions in classical field theory

Contents

- Topology and vacuum structure
- ϕ^4 kinks and kink-antikink solutions
 - Single static and dynamical kink
 - Kink-antikink dynamics
- Sine-Gordon kinks
 - Single kink dynamics
 - Generating solutions Bäcklund transformation
 - Thirring model
- Generalization to higher dimensions (???)

Consider:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - U(\phi)$$

$$\Rightarrow \qquad \partial_{\mu}\partial^{\mu}\phi + \frac{dU}{d\phi} = 0,$$

$$\partial_{\mu}\partial^{\mu}\phi + \frac{dU}{d\phi} = 0, \qquad V = \int_{-\infty}^{\infty} \left(\frac{1}{2}{\phi'}^2 + U(\phi)\right)dx, \qquad T = \frac{1}{2}\int_{-\infty}^{\infty} \dot{\phi}^2 dx$$

$$T = \frac{1}{2} \int_{-\infty}^{\infty} \dot{\phi}^2 \, dx$$

Denote the vacuum manifold as:

$$\mathcal{V} = \{\phi_0, such \ that \ \phi'_0 = \dot{\phi_0} = 0, and \ U(\phi_0) = U_{min}\}$$

The existence of topological solitons depends on there being multiple vacua \equiv non-trivial $\pi_0(\mathcal{V})$ Remember:

- Field configuration defines a map $\phi^\infty : S^{d-1}_\infty o \mathcal{V}$
- Homotopy class $\pi_{d-1}(\mathcal{V})$ defines topological character of the field configuration ϕ_{∞}

For d=1: S^{d-1}_{∞} has two points, $\pm\infty\in\mathbb{R}$, which are mapped into \mathcal{V} by ϕ^{∞} , where the components of \mathcal{V} are classified by $\pi_{d-1}(\mathcal{V})$, the set of topologically distinct vacua

A finite energy field configuration is then classified by $(\phi_-, \phi_+) \in \pi_0(\mathcal{V}) \times \pi_0(\mathcal{V})$ where $\phi_\pm = \lim_{x \to \pm \infty} \phi(x)$

Take now the set $(\phi_-, \phi_+) \in \pi_0(\mathcal{V}) \times \pi_0(\mathcal{V})$:

If $\phi_- = \phi_+$, the field can be continuously transformed (with a finite amount of energy needed) into a constant vacuum solution with zero energy $\phi(x) = \phi_+$

If $\phi_- \neq \phi_+$, the field cannot be continuously transformed (with only a finite amount of energy needed) into constant vacuum solution

→ We get a stable solution

What makes this solution a kink?

To characterize what makes a soliton a kink we want to look at the energy and express it, if possible, in terms of our topological data $(\phi_-, \phi_+) \in \pi_0(\mathcal{V}) \times \pi_0(\mathcal{V})$

Consider

$$\left(\frac{1}{\sqrt{2}}{\phi'}^2 \pm \sqrt{U(\phi)}\right)^2 \ge 0.$$

Integrating over space and expanding the braket yields

$$\int_{-\infty}^{\infty} \left(\frac{1}{2} \phi' + U(\phi) \right) dx \ge \pm \int_{-\infty}^{\infty} \sqrt{2U(\phi)} \phi' dx$$

Hence for the static case we get

$$E \ge \left| \int_{-\infty}^{\infty} \sqrt{2U(\phi)} \phi' dx \right| = \left| \int_{\phi_{-}}^{\phi_{+}} \sqrt{2U(\phi)} dx \right| ,$$

which also holds for time dependent fields (since $T \geq 0$).

Since $U(\phi) \ge 0$ we may write $U(\phi) = \frac{1}{2} \left(\frac{dW}{d\phi}\right)^2$ so that:

$$E \ge |W(\phi_+) - W(\phi_-)|.$$

This expression, where the energy is bound from below solely by the topological data, is known as **Bogomolny** bound.

→ Equality if:

$$\phi' = \pm \sqrt{2U(\phi)}.$$

The solutions with the + sign are called **kinks**, those with the minus sign **antikinks** (defining equation)

Consider the theory with

$$U(\phi) = \mu + \nu \phi^2 + \lambda \phi^4.$$

Requiring $\pi_0(\mathcal{V})=\mathbb{Z}_2$ and $U_{min}=0$ we get

$$U(\phi)=\lambda(m^2-\phi^2)^2$$
 with degenerated minima $\phi=m$ and $\phi=-m$

so overall:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \lambda (m^2 - \phi^2)^2$$

If $\phi_+ \neq \phi_-$ we have a kink/antikink in our configuration. We can capture it's topological content by defining a conserved topological charge:

$$N = \frac{\phi_+ - \phi_-}{2m} = \frac{1}{2m} \int_{-\infty}^{\infty} \phi' dx = \int_{-\infty}^{\infty} j^0 dx$$

The corresponding current can be constructed

$$j^{\mu} = \frac{\beta}{2\pi} \epsilon^{\mu\nu} \partial_{\nu} \phi$$

In this model: $N = \{0, +1, -1\}$ where

$$N=1$$
 is a kink, $N=-1$ an antikink

Note:

- "quantized charge" in classical theory?!
- $\phi \rightarrow -\phi$ in a kink solution yields an antikink
- N>1 is not compatible with finite energy boundary condition
- a field configuration can contain a mixture

How about the Bogomolny bound?

$$E \ge \left| \int_{\phi_{-}}^{\phi_{+}} \sqrt{2\lambda} (m^{2} - \phi^{2}) d\phi \right| = \left| \sqrt{2\lambda} \left[m^{2} \phi - \frac{1}{3} \phi^{3} \right]_{\phi_{-}}^{\phi_{+}} \right| = \frac{4}{3} m^{3} \sqrt{2\lambda} |N|$$

Demanding equality:

$$\phi' = \sqrt{2\lambda}(m^2 - \phi^2)$$

Defining equation $\phi' = \sqrt{2\lambda}(m^2 - \phi^2)$ can be solved by integrating:

$$\phi(x) = m \tanh(\sqrt{2\lambda}m(x-a))$$

The energy corresponding to the rest mass of the kink is given by:

$$E = \int_{-\infty}^{\infty} \mathcal{E} \, dx = \int_{-\infty}^{\infty} \frac{1}{2} {\phi'}^2 + \lambda (m^2 - \phi^2)^2 \, dx = 2\lambda m^4 \operatorname{sech}^4 \left(\sqrt{2\lambda} m(x - a) \right)$$

How does the kink resemble a particle?

- Energy density is concentrated over a finite region
- It can be Lorentz-boosted to any velocity smaller than the speed of light
- One can consider solutions with several kinks (antikinks) which can move with different speeds and scatter

Show plot of a single kink and antikink

Lorentz boosting this solutions the static kink is promoted to a dynamical one:

$$\phi(t,x) = m \tanh\left(\sqrt{2\lambda} \, m\gamma(x - vt - a)\right)$$

In non-relativistic limit, $\gamma o 1$. Then $\dot{\phi} = -v \phi'$ and

$$T = \frac{1}{2}v^2 \int_{-\infty}^{\infty} \phi' \, dx = \frac{1}{2}Mv^2$$

Examples in Physics:

- Wave mechanics
- False vacua decay

How to simulate a kink? = How to simulate the Klein-Gordon equation?

- → Discretize energy and time
- → Make sure this discretization leaves energy conservation untouched
- → Apply an implicit-explicit time stepping scheme which is time reversible and approximately conserves energy

$$\partial_{\mu}\partial^{\mu}\phi - 2(1 - \phi^{2})\phi = 0$$
$$\frac{\partial^{2}\phi}{\partial t^{2}} - \Delta\phi = 2(\phi - \phi^{3})$$

$$\frac{\text{yields}}{0} \xrightarrow{\phi^{n+1} - 2\phi^n + \phi^{n-1}}{(\delta t)^2} - \Delta \frac{\phi^{n+1} + 2\phi^n + \phi^{n-1}}{4} = 2 \left[\frac{\phi^{n+1} + 2\phi^n + \phi^{n-1}}{4} - \phi^{n-1} \right]$$

Given
$$\frac{\phi^{n+1}-2\phi^n+\phi^{n-1}}{(\delta t)^2}-\Delta\frac{\phi^{n+1}+2\phi^n+\phi^{n-1}}{4}=2\left[\frac{\phi^{n+1}+2\phi^n+\phi^{n-1}}{4}-\phi^{n}\right] \text{ how do we implement the spatial derivatives?}$$

- → Given our program of choice is PYTHON, we can use the integrated function "fast Fourier transformation" (numpy.fft):
- Accessible via the extension package NUMPY, "numpy.fft" provides an implementation for a discrete Fourier transformation.

$$A_k = \sum_{m=0}^{n-1} a_m e^{-2\pi i \frac{mk}{n}}, \qquad k = 0, ..., n-1$$

The corresponding inverse Fourier transformation is given by "numpy.ifft"

Given this powerful tool and that fact that time is discretized in δt we can apply the Fourier transform:

Define Φ as the Fourier transform of ϕ and Φ_{new} as the Fourier transform of $\phi^{n+1}(\Phi_{old})$ corresponding to ϕ^{n-1} , we get

$$\Phi_{new} = \frac{1}{\frac{1}{(\delta t)^2} - \frac{k^2}{4} - \frac{1}{2}} \left[\frac{1}{2} (2\Phi + \Phi_{old}) + k^2 \frac{2\Phi - \Phi_{old}}{4} - 2\Phi^3 + \frac{1}{(\delta t)^2} (2\Phi - \phi_{old}) \right]$$

This can be computed $\frac{t}{\delta t}$ times to simulate the dynamics governed by the Klein-Gordon equation.

Show simulation of a single moving kink and error

What happens with kink-antikink solutions?

 \rightarrow Consider the same Lagrangian, set $\lambda=\frac{1}{2}$ and m=1, and calculate the force as the change of the momentum $P=-\int_{-\infty}^{b}\dot{\phi}\phi'\,dx$:

$$F = \dot{P} = -\int_{-\infty}^{b} (\ddot{\phi}\phi' + \dot{\phi}\dot{\phi}') dx = \left[-\frac{1}{2} (\dot{\phi}^{2} + {\phi'}^{2}) + U(\phi) \right]_{-\infty}^{b}$$

Considering a kink antikink pair with kink at position a and antikink at -a ($-a \ll b \ll a$), insert

$$\phi(x) = \phi_1(x) + \phi_2(x) + 1 = -\tanh(x+a) + \tanh(x-a) + 1.$$

Proseminar in Theoretical Physics - Kinks

$$F = \left[-\frac{1}{2}{\phi_1'}^2 + U(\phi_1) - {\phi_1'}{\phi_2'} + (1 + \phi_2) \frac{dU}{d\phi}(\phi_1) \right]_{-\infty}^b = \left[-{\phi_1'}{\phi_2'} + (1 + \phi_2){\phi_1''} \right]_{-\infty}^b$$

Since our field configuration is defined such that $\phi' o 0$ for $x o \infty$ and $-a \ll b \ll a$ insert

$$\phi_1(x) \sim -1 + 2e^{-2(x+a)}, \ \phi_2 \sim -1 + 2e^{-2(x-a)},$$

which yields:

$$F = 32e^{-2R} = \frac{dE_{int}}{dR}$$

with R = 2a.

Show simulation of kink-antikink attraction

Consider

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - (1 - \cos(\phi))$$

Which results in multiple zero energy vacua $\phi=2\pi n$, with $n\in\mathbb{Z}$, in other words $\pi_0(\mathcal{V})=\mathbb{Z}$.

Physical example? → Pegs on a clothesline

In the same manner as in ϕ^4 a field configuration is characterized by (ϕ_-, ϕ_+) .

Setting $\phi_-=0$, since $\mathcal{L}'=\mathcal{L}$ for $\phi \to \phi \pm 2\pi$, then $N=\frac{\phi_+-\phi_-}{2\pi}$ counts the number of kinks and

$$E \ge \int_0^{2\pi N} 2 \left| \sin\left(\frac{\phi}{2}\right) \right| d\phi = 4|N| \left[-\cos\left(\frac{\phi}{2}\right) \right]_0^{2\pi} = 8|N|$$

Equality is attained with $\phi' = \pm 2\sin(\frac{\phi}{2})$ which results in

$$\phi(x) = 4\arctan(e^{x-a}) + c$$

Here, α again is the position of the kink which is confirmed by

$$\mathcal{E} = 4 \operatorname{sech}^2(x - a)$$

Show plot of Sine-Gordon kink

Also analogously to ϕ^4 we can calculate the interaction energy (for two kinks!) and get:

$$E_{int} = 32 e^{-R}$$

→ Repulsive force

Note: There is no static multi-soliton solution in Sine-Gordon! (no multi-kink solutions of the Bogomolny equation)

Can we/How can we construct time-dependent multi-soliton solutions?

→ Bäcklund transformation

Bäcklund Transformation

For the following steps, let's introduce lightcone coordinates $x_{\pm} = \frac{1}{2}(x \pm t)$, $\partial_{\pm} = \partial/\partial x_{\pm}$.

Then, the eq.o.m. is given by

$$\partial_-\partial_+\phi = \sin(\phi)$$

Consider

$$\partial_+\psi = \partial_+\phi - 2\beta\sin\left(\frac{\phi+\psi}{2}\right)$$
, $\partial_-\psi = -\partial_-\phi + \frac{2}{\beta}\sin\left(\frac{\phi-\psi}{2}\right)$

and the compatibility condition $\partial_-\partial_+\psi=\partial_+\partial_-\psi$. Inserting the first in the latter we again get the eq.o.m.

Similarly $\partial_-\partial_+\phi=\partial_+\partial_-\phi$ yields the Sine-Gordon field equation for ψ .

- → Bäcklund transformation allows mapping between solutions of the Sine-Gordon equation
- → Generate new solutions from known ones

Bäcklund Transformation

E.g. start with $\phi = 0$:

$$\partial_{+}\psi = -2\beta \sin\left(\frac{\psi}{2}\right), \ \partial_{-}\psi = -\frac{2}{\beta}\sin\left(\frac{\psi}{2}\right)$$

This can be integrated to

$$\psi(x_+, x_-) = 4 \arctan\left(e^{-\beta x_+ - \frac{x_-}{\beta} + \alpha}\right)$$

where α is an integration constant. Defining

$$v = \frac{1-\beta^2}{1+\beta^2}$$
, $\gamma = \frac{1}{\sqrt{1-v^2}} = -\frac{1+\beta^2}{2\beta}$, $\alpha = \frac{2\beta\alpha}{1+\beta^2}$

we get

$$\psi(t,x) = 4\arctan(e^{\gamma(x-vt-a)})$$

E.g. start with $\phi=\psi_0$ and calculate ψ_1,ψ_2 , where we simply used two different Bäcklund parameter β_1,β_2 .

Now use

$$\partial_{+}\psi_{12} = \partial_{+}\psi_{1} - 2\beta_{2}\sin\left(\frac{\psi_{1} + \psi_{12}}{2}\right), \qquad \partial_{-}\psi_{12} = -\partial_{-}\psi_{1} + \frac{2}{\beta_{2}}\sin\left(\frac{\psi_{1} - \psi_{12}}{2}\right)$$

and

$$\partial_{+}\psi_{21} = \partial_{+}\psi_{2} - 2\beta_{1}\sin\left(\frac{\psi_{2} + \psi_{21}}{2}\right), \qquad \partial_{-}\psi_{21} = -\partial_{-}\psi_{2} + \frac{2}{\beta_{1}}\sin\left(\frac{\psi_{2} - \psi_{21}}{2}\right)$$

Proseminar in Theoretical Physics - Kinks

The consistancy equation $\psi_{12}=\psi_{21}$ leads to

$$\psi_{12} = \psi_{21} = 4 \arctan\left(\left(\frac{\beta_1 + \beta_2}{\beta_2 - \beta_1}\right) \tan\left(\frac{\psi_1 - \psi_2}{4}\right)\right) - \psi_0$$

Starting from $\psi_0=0$ we saw that $\psi_i=4\arctan(e^{-\beta_ix_+-\frac{x_-}{\beta_i}+\alpha_i})$. Inserting this in ψ_{12} leads to

$$\psi(t,x) = 4 \arctan\left(\frac{v \sinh(\gamma x)}{\cosh(\gamma v t)}\right)$$

when $\beta_1=-\frac{1}{\beta_2}\equiv \beta$, $\alpha_1=\alpha_2=0$.

Show 3 plots ,t<0, t=0, t>0 and ask the audience for N in this solution to wake them up again (maybe simulation if I can do it in time)

Proseminar in Theoretical Physics - Kinks

David Maibach | 20.04.2020

How do we interpret this solution?

Rewrite

$$\tan\left(\frac{\psi}{4}\right) = e^{\gamma(x-a)} - e^{-\gamma(x+a)}$$

with
$$a(t) = \frac{1}{\gamma} \log \left(\frac{2}{v} \cosh(\gamma v t) \right)$$
.

For $|vt| \gg 1$: - $a \sim |vt|$, and near x = a the second part in the first equation can be neglected, the rest describes a single moving kink

- near
$$x = -a$$
 viseversa, $-a \sim -(|vt| + \delta)$

 \rightarrow two well separated kinks, approaching the origin with v for t < 0, and separating for t > 0

→ "Scattering solution"

Is it really scattering?

- Either scattering (elastic bounce) or pass through (with position shift 2δ)
- No distinction possible
- However, the repulsive force makes backward scattering more "physical" (at least at slow speed)

How about kink-antikink scattering/annihilation?

- In Sine-Gordon elastic scattering
- Infinite number of conserved quantities prevent annihilation
- However, there are also exact time periodic solutions in N=0 sector with kink-antikink bound states

Thirring model

Let's have a look at the infinite number of conserved quantities. On may suggest the conclusion that:

- For degenerate vacua there can exist topological currents
- They lead to conserved quantities which are not associated with any manifest symmetry of the lagrangian (unlike Noether)

Is this true?

→ Consider the <u>Thirring model:</u>

$$\mathcal{L} = \frac{1}{2} \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi - \frac{1}{2} g \bar{\psi} \gamma^{\mu} \psi \bar{\psi} \gamma_{\mu} \psi$$

(1+1 dimensional spacetime)

From $\psi \to \psi' = e^{i\alpha}\psi$ we get the conserved current $J^\mu = \bar{\psi}\gamma^\mu\psi$. In the quantum treatment we get

$$Q = \int_{-\infty}^{\infty} J^0 dx, \qquad [Q, \psi(x)] = -\hbar \psi$$

Thirring model

Therefore, $\frac{J^{\mu}}{\hbar} = \frac{\overline{\psi}\gamma^{\mu}\psi}{\hbar}$ and $j^{\mu} = \frac{\beta\epsilon^{\mu\nu}\partial_{\nu}\phi}{2\pi}$ each have charges of the spectrum \mathbb{Z} . Yet, one is a Noether current, one a topological.

They are even the same if we quantize Sine-Gordon and set

$$\frac{\beta^2 \hbar}{4\pi} = \frac{1}{1 + \frac{g\hbar}{\pi}}$$

This condition follows from the demand of equivalent equal-time commutators for the currents.

- → The suggestion made before is in some sense false:
 - there is a symmetry connected to the topological current
 - this becomes evident when transforming from $\phi o \psi$ and comparing Sine-Gordon with Thirring

Thank you for your attention!

ETH zürich

References:

- [1]: N. Manton, P. Sutclie, "Topological solitons", Cambridge University Press (2004)
- [2]: P. Goddard, D.I. Olive, "Magnetic monopoles in gauge field theories", Rep. Prog. Phys. 41, 1357 (1978)
- [3]: https://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods/The_Klein-Gordon_Equation, last visit 20.04.20