Integration of Artificial Intelligence in Education and Software Development

Luna Schätzle Florian Prandstetter

HTL Anichstraße, Department of Business Informatics
Thesis Supervisor:
Mag. Dr. Dipl. -Ing. Albert Greinöcker
MMag.a Eva-Maria Egger, MA

Diploma Thesis Defense - April 2025

Introduction

- Presenter: Luna Schätzle Project Lead (Al evaluation, backend & website)
- Objective: Open-source AI platform for education
- Focus: Evaluate various AI models for multiple use cases
- Platform: Enable students to access and experiment with Al
- Motivation: Overcome high resource requirements of current Open Source AI models

Project Team and Management

- Team Members: Luna Schätzle, Florian Prandstetter
- Project Coordination: Regular meetings, discussions, and planning sessions
- Tools Employed:
 - GitHub for version control and collaborative coding
 - Discord for communication and coordination
 - Google Sheets for time tracking
 - LaTeX for comprehensive documentation

Theoretical Background

- LLMs Integration: Evaluation and incorporation of various Large Language Models.
- Interfaces: API connections, local models (e.g., Ollama), and OpenAI API.
- Evaluation: Systematic testing of open source models

Testing and Evaluation

- Evaluation of models: Llama3.2, Deepseek-r1, gemma2, qwen, ...
- Testing methods: Different prompts and tasks where asked the models (automated via Python script)
- Evaluation criteria:
 - response time
 - accuracy
 - resource usage
 - BLEU score
 - readability
 - Textquality

Evaluation Results: Quantitative metrics

Evaluation Results: Qualitative metrics

Figure: CPU Usage Comparison

Figure: Memory Usage Comparison

Website Platform

- Developed to make AI accessible to students.
- Built with:
 - Vue.js (Frontend)
 - Flask (Backend API)
 - Firebase (User data & authentication)
- Purpose: Central interface for interacting with various AI tools.

User System

- Registration and secure login
- Profile management
- Firebase-based authentication

Chatbot Interface

- Multiple AI models available via tabs:
 - ChatGPT (OpenAl API)
 - Local models (e.g., Ollama)
 - Programming Assistant
- Vision models: LLaVA, LLaMA 3.2 Vision

Image Generation

- Generate images from text prompts
- Uses DALL·E (OpenAI) via backend API
- Fully integrated into frontend

OCR and Image Recognition

- OCR with Tesseract
- Post-processing using LLaMA 3.2 Vision
- Recognize and explain content in uploaded images

Al in Economics and Ethics

Applications:

- Customer service & support
- Supply chain management
- Predictive analytics
- Data analysis
- Process automation

Al in Economics and Ethics

Ethical & Social Concerns:

- Bias in training data
- Transparency & accountability
- Privacy and data protection
- Impact on employment

Al in Economics and Ethics

Regulatory Challenges:

- Inconsistent global regulations
- EU AI Act considerations [EUR-Lex: 2024/1689]
- Data security standards (e.g., GDPR [EUR-Lex: 2016/679])

Open Source Overview

- **Definition:** Collaborative, transparent development with public source code.
- Advantages: Cost efficiency, flexibility, improved security through peer review, high compatibility.
- Economic Impact:
 - Drives innovation & cross-industry collaboration
 - Empowers startups and lowers entry barriers

Challenges and Revenue Models

- **Challenges:** Fragmentation, limited support, licensing complexities, security risks.
- Revenue Models: Open core, managed services, support contracts, donations, dual licensing.
- Our Approach: Utilize open source tools (e.g., Python, Flask, Vue.js) under GNU GPL-3.0 for transparency and collaboration.

Conclusion

- Summary of achievements
- Insights gained during the development
- Future potential of the system
- Final thoughts and acknowledgments

Server

Server Hardware:

• CPU: Intel Core i5.8600k

GPU: NVIDA GeForce RTX 2060

• RAM: 16GB DDR4

• Motherboard: H370 Chipset

Power Supply: 500W BeQuiet

• Storage: 512GB NVMe SSDd

 Used Operating System: The Server is running with the Ubuntu Server Operating System. The Operating System has been chosen due to the good cuda support.

Server

- Networking:
 - Axios: Used for server requests
 - Tailscale: VPN tunnel used for secure remote access
- Backup and Recovery: Regular system backups have been made to avoid data loss.

Flask Service

- Flask as a Web Framework
- Architecture and Service Structure
- Restful Endpoints and Functionalities
- Deployment with Docker

Visual Studio Code Extension

- VS Code API / Typescript
- Server Request
- Integrated Chatbot
- Status Bar Item

Operating System Market Share

- **Competitors:** Android, Microsoft Windows, Apple and Linux hold most of the market.
- Bild
- For Servers: When looking at Server Operating Systems specifically The main Competitors are Red Hat and Microsoft.
- Bild

