முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

போற்பியற் பி. தமிழ் மாணவற்கள், மொறுட்டுளைய் நுடாத்தும் க. பொறுட்டுளைப் பல்கலைக்கழக Tamil Students, Faculty of Engineering, Universit, பல் பல்களையில் நட்டியில் கட்டிலர் பல்கலைக்கழக பெறு பிறும் பல்கலைக்கழக பெறும் பல்கலைக்கழக பெறும்பேற் பிறும்பியற் பிறும்பியற்பியற்கள் பிறும்பியற்கள் பிற

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை - 2018 General Certificate of Education (Adv. Level) Pilot Examination - 2018

இரசாயனவியல் Ι Chemistry Ι

இரண்டு மணித்தியாலம் Two hours

அறிவுறுத்தல்கள்:

- 💥 ஆவர்த்தன அட்டவணையும் தரப்பட்டுள்ளது
- 💥 இவ்வினாத்தாள் 08 பக்கங்களைக் கொண்டது
- 💥 எல்லா வினாக்களுக்கும் விடை எழுதுக
- * கணிப்பானைப் பயன்படுத்தக் கூடாது
- 💥 விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது சுட்டெண்ணை எழுதுக
- 🗱 1 தொடக்கம் 50 வரையுள்ள விணாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் சரியான அல்லது மிகப்பொருத்தமான விடையைத் தெரிந்தெடுத்து, அதனைக் குறித்து நிற்கும் இலக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தாளில் புள்ளடி (x) இடுக

அகில வாயு மாநிலி அவகாதரோ மாறிலி பிளாங்கின் மாறிலி

 $R = 8.314 \text{ J K}^{-1} \text{mol}^{-1}$ $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$ $h = 6.626 \times 10^{-34} \text{ Js}$

ஒளியின் வேகம்

 $C = 3 \times 10^8 ms^{-1}$

- ஐதரசன் காலல் நிறமாலையில் நீலநிற ஒளியுடன் தொடர்புடைய ஒரு போட்டோனின் சக்தி 4.5 x10⁻¹⁹J ஆகும். இந்நீல நிற ஒளியின் அலைநீளம்.
 - (1) $4.42 \times 10^{-7} \text{nm}$
- (2) 400 nm
- (3) 442nm
- (4) 560nm
- $(5) 4.72 \times 10^{-7} \text{nm}$
- 2. கீழே தரப்பட்டுள்ள மூலக்கூறுகள் தொடர்பான பின்வரும் கூற்றுகளில் **பொய்யான** கூற்று.

SO₂, CO₂, XeF₄, CCl₄, SF₄

- (1) ஒரே எண்ணிக்கையான பங்கீட்டு வலுப்பிணைப்பை உடையன.
- இம்முலக்கூறுகள் யாவற்றிலும் மைய அணு அட்டக விதிக்கு அமைவதில்லை.
- எல்லா மூலக்கூறுகளிலும் இலத்திரன் சோடி கேத்திரகணிதம் வேறுபட்டது.
- எல்லா மூலக்கூறுகளும் முனைவுப்பங்கீட்டுவலுப்பிணைப்பை கொண்டுள்ளன.
- எல்லா மூலக்கூறுகளும் வேறுபட்ட வடிவத்தைக் கொண்டுள்ளன.
- 3. சேர்வை X இன் IUPAC பெயர் யாது?
 - (1) 1,2-diamino-4-formyl-5-hydroxypent-3-en-1-one
 - (2) 2-amino-4-methylhydroxy-5-oxopent-3-enamide
 - (3) 4,5-diamino-2-methylhydroxy-5-oxopent-3-enal
 - (4) 2-amino-4-formyl-4-methylhydroxybut-3-enamide.
 - (5) 2-amino-4-formyl-5-hydroxypent-3-enamide.

 $HOCH_2C = CH - CH - CH - CH - NH_2$

[X]

- 4. என்னும் என்புக் கட்டமைப்பைக் கொண்ட நடுநிலை உறுதியான மூலக்கூறில் N,S,C ஆகிய அணுக்களின் ஒட்சியேற்றநிலைகள் முறையே
 - (1) -3, +2,+2

- (2) -3, +4, 0 (3) -3, +2, 0 (4) -2, +2, +1 (5) -3, +3, +1

சில சேர்வைகளின் மைய அணுவின் மின்னெதிரியல்பு வேறுபாடு தொடர்பான பின்வரும் கூற்றுக்களில் **சரியானது** எது?

- $\mathrm{NO_2}^+,\ \mathrm{NO_3}^-$ இல் N அணுவின் மின்னெதிரியல்பு வேறுபாட்டை N அணுவிலுள்ள ஏற்றமே பிரதானமாக (1)தீர்மானிக்கின்றது.
- $\mathrm{CO}_2,\mathrm{CO}_3^{2-}$ இல் C அணுவின் மின்னெதிரியல்பு வேறுபாட்டை C அணுவின் கலப்பு நிலை வேறுபாடே (2)பிரதானமாக தீர்மானிக்கின்றது.
- $\operatorname{CF}_4,\ \operatorname{CCl}_4,\ \operatorname{CBr}_4$ இல் C அணுவின் மின்னெதிரியல்பு வேறுபாட்டை C அணுவின் ஒட்சியேற்றநிலை (3)வேறுபாடே பிரதானமாக தீர்மானிக்கின்றது.
- ${
 m ClO_3}$, ${
 m ClO_4}$ இல் ${
 m Cl}$ அணுவின் மின்னெதிரியல்பு வேறுபாட்டை ${
 m Cl}$ அணுவின் கலப்பு நிலை வேறுபாடே (4)பிரதானமாக தீர்மானிக்கின்றது.
- (5) $\mathrm{NH_{2}^{-}}$, $\mathrm{NH_{3}}$, $\mathrm{NH_{4}^{+}}$ இல் N அணுவின் மின்னெதிரியல்பு வேறுபாட்டை N இன் ஒட்சியேற்றநிலை வேறுபாடே பிரதானமாகத் தீர்மானிக்கின்றது.

6. m C, H, O ஐ மட்டும் கொண்ட சேதனச் சேர்வை ஒன்றின் குறித்த திணிவின் பூரண தகனத்தின் போது $m CO_2, H_2O$ என்பன முறையே $110 \, \mathrm{g}, 45 \, \mathrm{g}$ உருவாகியது. எனின் இச்சேர்வையின் மூலக்கூற்றுச் சூத்திரம் (C = 12, H = 1, O = 16)

 $(1) C_4H_{10}O$

 $(2) C_3H_8O_2$

 $(3) C_2H_6O_2$

 $(4) C_8H_8O$

 $(5) C_5 H_{10}O$

7. குறித்த வெப்பநிலையில் அரிதிற்கரையும் அயன்திண்மங்கள் $SrSO_{4(s)}$, $BaSO_{4(s)}$ ஆகியவற்றின் கரைதிறன் பெருக்கங்கள் முறையே Ksp₁, Ksp₂ ஆகும். குறித்த வெப்பநிலையில் இவ்விரு உப்புக்களையும் கொண்ட நிரம்பிய நீர்க்கரைசலில் SO_4^{2-} அயன் செறிவிற்கான சரியான கோவை.

 $(1) Ksp_1 + Ksp_2 \qquad (2) (Ksp_1 + Ksp_2)^2 \qquad (3) \left(\frac{1}{Ksp_1} + \frac{1}{Ksp_2}\right) \qquad (4) (Ksp_1 + Ksp_2)^{1/2} \qquad (5) \left(\frac{1}{Ksp_1} + \frac{1}{Ksp_2}\right)^{1/2}$

கந்தகத்தின் இரசாயனவியல் தொடர்பான பின்வரும் கூற்றுக்களில் **தவறானது**

- (1) SCl₄ நீர்க்கரைசல் வெளிற்றும் இயல்பை காண்பிக்கும்.
- (2) கந்தகத்தின் பிறதிருப்ப வடிவங்களாகிய சாய்சதுரக்கந்தகம் ஒருசரிவுக்கந்தகங்களில் \mathbf{S}_8 மூலக்கூற்று அலகுகள் காணப்படுகின்றது.
- (3) கந்தகம் செநிந்த சூடான நைத்திரிக்கமிலத்தினால் ஒட்சியேற்றப்படும் போது அதன் இறுதி விளைவு கந்தகம் +4 ஒட்சியேற்றநிலையிலுள்ள SO_2 இற்கு மட்டுப்படுத்தப்படுகிறது.
- (4) சல்பூரிக்கமிலத்தை விட பெரொட்சி சல்பூரிக்கமிலம் (H₂SO₅) உயர் ஒட்சியேற்றும் திறனைக் கொண்டுள்ளது.
- (5) கந்தகம் காரக்கரைசலுடன் தாக்கமடையும் போது இருவழிவிகாரத்திற்கு உட்படுகிறது.

9. மக்னீசியத்தின் (Mg) வலுவளவு இலத்திரன் ஒன்றினால் உணரப்படும் பயன்படு கருவேற்றம் தொடர்பான பின்வரும் கூற்றுக்களில் **சரியானது**.

(1) சோடியத்திலும் அதிகமானது

(2) +1 இந்கு சமனாகும்

(3) +12 இந்கு சமனாகும்

(4) அலுமினியத்திலும் அதிகமானது

(5) +24 இந்கு சமனாகும்.

10. ஓர் $\mathrm{Ba}(\mathrm{OH})_2$ கரைசலை நீர் சேர்த்து ஐதாக்கும் போது பின்வரும் எது கரைசலில் அதிகரிக்கிறது?

(1) OH⁻ அயன் செறிவு

(2) கரைசலின் அடர்த்தி

(3)Ba²⁺அயன் செறிவு

(4) H⁺ அயன் செநிவு

(5) மின்கடத்தல் வலிமை

11. பிணைப்புக்கோணங்கள் தொடர்பாக பின்வரும் ஒப்பீடுகளில் **சரியானது?**

 $(1)NO_3^- > NO_4^{3-}$

13.

(2) $PH_3 > NH_3$

(3) $BF_4^- > NH_4^+$

(4) $ClO_3^- > ClO_4^-$ (5) $NO_2 < NO_2^-$

tetracarbonyldicyanidochromium(III) chloride இனது IUPAC விதிக்கமைவான இரசாயன சூத்திரம் 12.

(1) $[Cr(CO)_4(CN)_2]C1$

(2) $[CrCl_2(CO)_4](CN)_2$

(3)[Cr(CN)₂(CO)₄]Cl₂

(4) [Cr(CN)₂(CO)₄Cl]

(5) [Cr(CN)₂(CO)₄]Cl

 $2\mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{g})} o 2\mathrm{CO}_{2(\mathrm{g})}$ எனும் தாக்கத்தின் வெப்பவுள்ளுறை மாற்றம் ($\Delta\mathbf{H}$), எந்திரோபி மாற்றம் ($\Delta\mathbf{S}$),

சுயாதீன சக்தி மாற்றம் (ΔG) என்பன தொடர்பான பின்வரும் கூற்றுக்களில் **உண்மையானது**

 $(1) \Delta H > 0, \Delta S < 0$ எவ்வெப்பநிலையிலும் $\Delta G > 0$

(2) $\Delta H > 0$, $\Delta S < 0$ எவ்வெப்பநிலையிலும் $\Delta G < 0$

(3) ΔH < 0, ΔS < 0 தாழ்வெப்பநிலையில்

 $\Delta G < 0$

(4) $\Delta H > 0$, $\Delta S > 0$ உயர்வெப்பநிலையில் $\Delta G < 0$

(5) ΔH < 0, ΔS < 0 உயர்வெப்பநிலையில் $\Delta G < 0$ $X_{(g)} o Y_{(g)} + Z_{(g)}$ எனும் முதன்மைத்தாக்கத்தைக் கருதுக.

T K வெப்பநிலையில் குறித்தளவு X ஆனது விறைத்த குடுவையில் எடுக்கப்பட்ட போது அமுக்கம் $P_{
m o}$ ஆகக்காணப்பட்டது. மாறாவெப்பநிலையில் மேற்குநித்த தாக்கம் நடைபெற அனுமதிக்கப்பட்ட போது t நேரத்தில் தொகுதியின் அமுக்கம் $\mathrm P$ ஆகக் காணப்பட்டது. தாக்கத்தின் வீதமாநிலி $\mathrm k$ எனக்கொண்டு $\mathrm t$ ஆவது நேரத்தில் தாக்கவீதத்திற்கான சரியான கோவை

- $(1)\left(\frac{k}{RT}\right)^2 \left[4P^2 P_0^2\right]$
- $(2)\frac{k}{RT}[2P_0 P] \qquad (3)\frac{k}{RT}[2P P_0]$

 $(4) \left(\frac{k}{RT}\right)^2 \left[4P_0^2 - P^2\right]$

- $(5)\left(\frac{k}{RT}\right)^2[2P_0-P]$
- சம செறிவுடைய $50 \, \mathrm{cm^3 \; HNO_3}$ கரைசலையும், $50 \, \mathrm{cm^3 \; HCOOH}$ கரைசலையும் ஒருமித்து கலந்து 15. பெருப்பட்ட விளைவுக் கரைசலில் $\mathrm{H_3O^+}$, $\mathrm{OH^-}$, $\mathrm{NO_3^-}$, $\mathrm{HCOO^-}$, HCOOH ஆகியவற்றின் செறிவுகள் அதிகரிக்கும் **சரியான** வரிசை.
 - (1) $[OH^{-}] < [HCOOH] < [HCOO^{-}] < [H_{3}O^{+}] < [NO_{3}^{-}]$
 - (2) $[OH^{-}] < [HCOO^{+}] < [HCOOH] < [NO_{3}^{-}] < [H_{3}O^{+}]$
 - (3) $[HCOO^{-}] < [OH^{-}] < [HCOOH] < [NO_{3}^{-}] < [H_{3}O^{+}]$
 - (4) $[HCOO^{-}] < [HCOOH] < [OH^{-}] < [NO_{3}^{-}] < [H_{3}O^{+}]$
 - (5) $[HCOO^{-}] < [HCOOH] < [OH^{-}] < [H_{3}O^{+}] < [NO_{3}^{-}]$
- 16. பின்வருவனவற்றில் எது பென்சமைட்டின் பரிவுக்கட்டமைப்பு **அல்ல.**

- 17. **பின்வரும் காரணிகளில் எது/எவற்றில்** தாக்கமொன்றின் வீதமாநிலி தங்கியுள்ளது
 - (A) வெப்பநிலை
- (B) செறிவு
- (C) ஊக்கியின் பிரசன்னம்
- **(D)** தொகுதியின் அமுக்கம்.

(1) A மட்டும்

- (2) **A** உம் **B** உம்
- (3) A உம், B உம், C உம்

(4) A உம் C உம்

- (5) **A,B,C,D** யாவும்.
- பின்வரும் மின்வாய்களின் நியம மின்வாய் அழுத்தங்கள் கீழே தரப்பட்டுள்ளது. 18.

$$E^{\theta}_{Hg_2Cl_{2(s)}/Hg(l)} = 0.28V \qquad \quad E^{\theta}_{Fe^{3+(}aq)/\ Fe^{2+}(aq)} = 0.77V$$

இம்மின்வாய்களைப் பயன்படுத்தி உருவாக்கப்படும் கலத்தின் நியமமின்னியக்கவிசை,கலத்தாக்கம் என்பன

- (1) $+1.16 \text{ V}, 2Hg_{(l)} + 2Fe^{3+}_{(aq)} + 2Cl_{(aq)}^{-} \rightarrow Hg_2Cl_{2(s)} + 2Fe^{2+}_{(aq)}$
- (2) +0.49 V, $Hg_2Cl_{2(s)} + 2Fe^{2+}_{(aq)} \rightarrow Hg_{(l)} + 2Fe^{3+}_{(aq)} + 2Cl_{(aq)}^{-}$
- (3) $+0.49 \text{ V}, 2\text{Hg}_{(1)} + 2\text{Fe}^{3+}_{(aq)} + 2\text{Cl}_{(aq)} \rightarrow \text{Hg}_2\text{Cl}_{2(s)} + 2\text{Fe}^{2+}_{(aq)}$
- (4) $+0.21 \text{ V}, 2\text{Hg}_{(1)} + 2\text{Fe}^{3+}_{(aq)} + 2\text{Cl}_{(aq)}^{-} \rightarrow \text{Hg}_{2}\text{Cl}_{2(s)} + 2\text{Fe}^{2+}_{(aq)}$
- (5) $+0.49 \text{ V}, 2\text{Hg}_{(1)} + 2\text{Fe}^{2+}_{(aq)} + 2\text{Cl}_{(aq)}^{-} \rightarrow \text{Hg}_{2}\text{Cl}_{2(s)} + 2\text{Fe}^{3+}_{(aq)}$
- குளோரின் வாயுவினால் மாசாக்கப்பட்ட வளிமாதிரியின் 4.48 dm³ ஆனது நியம வெப்ப அமுக்க நிபந்தனையில 19. மிகை KOH கரைசலினூடாகச் செலுத்தப்பட்டது. பெறப்பட்ட விளைவுக்கரைசல் ஐதான H2SO4 சேர்த்து அமிலமாக்கப்பட்டது. விளைவுக்கரைசல் மிகை KI கரைசலுடன் தாக்கமுறும் போது பெறப்படும் I2 ஐ நியமிப்பதற்கு $0.01~{
 m moldm^{-3}},~10~{
 m cm^3}~{
 m Na_2S_2O_3}$ கரைசல் தேவைப்பட்டது. வளிமாதிரியில் உள்ள குளோரினின் அளவு (ppm இல்) யாது?
 - (1) 200ppm
- (2) 250ppm
- (3) 400ppm
- (4) 500ppm
- (5) 750ppm

- 20. நைதரசன்(N) பற்றிய பின்வரும் கூற்றுக்களில் எது **பொய்யானது**
 - (1) நைதரசன் உருவாக்கும் சேர்வைகளில் அதன் வலுவளவோட்டில் இருக்கக் கூடிய உயர் இலத்திரன்களின் எண்ணிக்கை 8 ஆகும்.
 - (2) N இன் வலுவளவோட்டில் நான்கு ஒபிற்றல்கள் மாத்திரம் காணப்படுகிறது.
 - (3) இரண்டாம் ஆவர்த்தன மூலகங்களில் உயர் வலுவளவைக் காட்டுவது நைதரசன் ஆகும்.
 - (4) m N ஆனது கார உலோகங்களில் m Li தவிர்ந்த ஏனைய உலோகங்களுடன் தாக்கமடையாது.
 - (5) பௌலிங்கின் அளவுத்திட்டத்தின்படி நைதரசன் மின்னெதிர்த்தன்மை குளோரினை விட உயர்வானது.

21. $S_{(s)}$ (சாய்சதுரம்) $+O_{2(g)} \rightarrow SO_{2(g)}$ $\Delta H^{\theta} = -296.06 \text{ kJmol}^{-1}$

 $S_{(s)}$ (ஒரு சநிவு) + $O_{2(g)} o SO_{2(g)}$ $\Delta H^{\theta} =$ -296.36 kJmol $^{-1}$

மேற்படி தாக்க வெப்பவுள்ளுறைத் தரவுகளில் இருந்து $SO_{2(g)}$, $S_{(s)}$ (ஒரு சரிவு) என்பவற்றின் நியம தோன்றல் வெப்பவுள்ளுறை மாற்றங்கள் முறையே (kJmol⁻¹ இல்)

(1) -296.36, -0.3

(2) -296.06, -0.3

(3) -296.06, +0.3

(4) -296.36, -592.42

(5) -296.36, 0

- 22. 3d தாண்டல் மூலகங்கள் மற்றும் அவற்றின் சேர்வைகள் பற்றிய பின்வரும் கூற்றுக்களில் **தவறானது**
 - (1) Ti இலிருந்து Cr வரையிலான மூலகங்களின் அதிஉயர் வலுவளவு அவற்றின் தரைநிலை சோடிசேரா இலத்திரன்களின் எண்ணிக்கைக்குச் சமனாகும்.
 - Ti,Cr,V,Mn என்பன ஈரொட்சைட்டுக்களைத் தோற்றுவிக்கக்கூடியவை. (2)
 - Mn,Fe,Co உலோகங்களின் இருவலுவளவுள்ள ஐதரொட்சைட்டுக்கள் வளிமண்டலத்தில் இலகுவில் ஒட்சியேற்றப்படக்கூடியவை.
 - V,Cr,Mn என்பன கார, ஈரியல்பு, அமில ஒட்சைட்டுக்களை தோற்றுவிக்கக்கூடியவை.
 - Ni, Fe, Cu என்பவற்றின் உறுதியான உயர் வலுவளவு நீர்ற்ற திண்ம குளோரைட்டுக்கள் மஞ்சள்
- 23. மூடிய தொகுதியொன்றில் $CaCO_3$ திண்மம் எடுக்கப்பட்டு $835^{\circ}C$ இற்கு வெப்பப்படுத்தப்பட்ட போது CaO , CO_2 என்பவற்றைத் தோற்றுவித்து பின்வருமாறு சமநிலை அடைகின்றது.

 $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ $\Delta H^{\theta} = + 177.8 \text{ KJmol}^{-1}$

 ${
m CaCO_3}$ இன் பிரிகை வெப்பநிலை $835^{\circ}{
m C}$ எனக் கொண்டு மேற்படி சமநிலை தொடர்பான பின்வரும் கூற்றுக்களில் **சரியானது** எது?

- (1) 835 0 C இல் இவற்றின் $\Delta \mathbf{G}^{\theta}$, $\Delta \mathbf{H}^{\theta}$ என்பன பூச்சியமாகும்.
- (2) 835° C இல் ஏற்படும் சமநிலை தொகுதியின் அமுக்கம் அதன் சமநிலை மாறிலியின் பருமனைச் சார்ந்தது.
- (3) $835^{0}\mathrm{C}$ இனை விட உயர்வெப்பநிலையில் ஏற்படும் சமநிலையில் $\Delta\mathbf{G}^{0} > 0$ ஆக அமையும்.
- இத்தாக்கத்தின் போது சூழல் மூலக்கூறுகளின் எந்திரப்பி அதிகரிக்கும்.
- (5) வெப்பநிலை 835^{0} C இலிருந்து அதிகரிக்கும் போது சமநிலை மாறிலியின் பெறுமதி குறைகிறது.

24.
$$OH$$

$$CH - CH_2 - OP$$

$$PCC/CH_2Cl_2 \longrightarrow A \qquad Con HNO_3 \longrightarrow B$$

B இன் கட்டமைப்பாக இருக்கக்கூடியது.

(2)
$$\langle O \rangle$$
 $C - CH_2 \langle O \rangle$

$$(4) \bigcirc C - CH_2 \bigcirc NO_2$$

(5)
$$\langle \bigcirc \rangle$$
 $\stackrel{\text{II}}{\bigcirc}$ $-\text{CH}_2$ $\stackrel{\text{C}}{\bigcirc}$ $-\text{NO}_2$

- 8)" வளிமண்டலத்தில் காணப்படக்கூடிய தீங்கு விளைவிக்கும் வாயுக்கள் சம்பந்தமான பின்வரும் கூற்றுக்களில் சரியானது எது?
 - *3+ வளிமண்டலத்திலுள்ள ് K Z q th/ NO2 இனால் மாத்திரம் SO2 ஆனது SO3 ஆக ஒட்சியேற்றப்படுகின்றது.
 - $^{*4+}$ வளிமண்டலத்தில் $\mathrm{CO}_2,\ \mathrm{SO}_2$ அதிகரிப்பு அமிலமழைக்கு காரணமாக அமையும்.
 - ஒளி இரசாயனபுகார் விளைவு, ஒசோன்படை சிதைவு, அமிலழை, பூகோள வெப்பமாதல் ஆகிய எல்லா சூழல் பிரச்சினைகளையும் NO_2 ஏற்படுத்தக்கூடியது.
 - ${
 m CO_2}$ ஒரு முனைவற்ற மூலக்கூறு என்பதனால் ${
 m IR}$ கதிர்களை உறிஞ்சும் ஆற்றல் அற்றது.
 - *7+ ஐதரோபுளோரோகாபன்கள் (HFCs) ஓசோன்படை நலிவடைதலிற்கு பங்களிப்பு செய்கின்றது.
- **8***" பின்வரும் எச்சேதனச் சேர்வை தரப்பட்டுள்ள தாக்கங்கள் முன்றிற்கும் உட்படும்? தாக்கம் A-NaOH கரைசலுடன் வெப்பப்படுத்தும் போது NH_3 வாயு வெளிவருகிறது. தாக்கம் B – பிராடியின் சோதனைப்பொருளுடன் செம்மஞ்சள் நிற வீழ்படிவைத் தருகிறது. தாக்கம் $\mathrm{C-Br_2/CCl_4}$ இன் செம்மஞ்சள் நிறத்தை நீக்குகிறது.

27. $0.1 \text{ mol } [\text{Cu}(\text{NH}_3)_4]^{2^+}$, $1 \text{ mol } \text{NH}_3$ என்பவற்றை காய்ச்சி வடித்த 1000 cm^3 நீரில் கரைப்பதன் மூலம் தயாரிக்கப்பட்ட கரைசலில் பின்வரும் சமநிலை நிலவியது.

$$Cu^{2+}_{(aq)} + 4NH_{3(aq)} \rightleftharpoons [Cu(NH_3)_4]^{2+}_{(aq)}$$

 25^{0} C இல் சமநிலைத் தாக்கத்தின் சமநிலை மாறிலி $5x10^{13}~\text{mol}^{-4}\text{dm}^{12}$ ஆகும். சமநிலையில் கரைசலில் உள்ள $\text{Cu}^{2^{+}}_{(aq)}$ இன் செறிவு.

 $(1) 2x10^{-15} \text{moldm}^{-3}$

 $(2) 2x10^{-14} \text{moldm}^{-3}$

 $(3)5x10^{-15}$ moldm⁻³

 $(4) 5x10^{-14} \text{moldm}^{-3}$

- (5) 1.6 x10⁻¹⁵moldm⁻³

மேற்தரப்பட்ட தாக்க ஒழுங்கு முறையில் $\mathbf{Q}_{\mathbf{A}}\mathbf{R}$ என்பவற்றின் கட்டமைப்புகளை முறையே

(1) $\begin{array}{c} NH_2 \\ N=N- \end{array}$

(2) $N_2^+Cl^-$ OH $N = N \sqrt{C}$

(3) $OH \qquad N = N - O \cdot Na^{+}$

 $\begin{array}{ccc}
N_2 + Cl & N = N - \bigcirc \\
O \cdot Na^+
\end{array}$

- (5) $N_2^+Cl^ N = N O^-Na^-$
- **29.** பல்பகுதியங்கள் தொடர்பான பின்வரும் கூற்றுக்களில் **சரியானது.**
 - (1) ரெப்லோன் உயர்வெப்பத்தை தாக்குப்பிடிக்கக்கூடிய வெப்பமிறுக்கும் பல்குதியமாகும்.
 - (2) பொலி ஐசோப்பிரினின் திரான்ஸ் (Trans) வகையே இயற்கை இறப்பராகும்.
 - (3) PVC, பொலிஎதீன், பொலிபுறப்பீன் என்பன நிரம்பிய நேர்ச்சங்கிலிப் பல்பகுதியமாகும்.
 - (4) இயற்கை இறப்பரை $1 ext{-}3\%$ கந்தகத்துடன் வெப்பமேற்றுவதன் மூலம் எபனைற்று உற்பத்தியாக்கப்படுகிறது.
 - (5) ஸ்ரைநீனின் அனுபவச்சூத்திரமும், பொலிஸ்ரைநீனின் அனுபவசூத்திரமும் வேறுபட்டவை.
- **30.** A,B ஆகியவற்றின் சம மூல்கள் மாறும் கனவளவையுடைய பாத்திரத்தில் எடுக்கப்பட்ட போது பின்வரும் முதன்மைத்தாக்க சமநிலை நிலவியது.

$$A_{(g)} + B_{(g)} \rightleftharpoons C_{(g)}$$

மாறா வெப்பநிலையில் பாத்திரத்தின் கனவளவை சடுதியாக அரைவாசியாக்குவதன் மூலம் தொகுதியின் அமுக்கம் இருமடங்காக்கப்பட்டு தொகுதி மீண்டும் சமநிலை அடைய அனுமதிக்கப்பட்டது. இதன்போது தொகுதியின் முற்தாக்க வீதம்($R_{\rm f}$) , பிற்தாக்க வீதம்($R_{\rm f}$) என்பவற்றில் ஏற்படும் மாறல்களைக் கீழே தரப்பட்ட எவ்வரிப்படம் சிறப்பாக வகைக்குறிக்கின்றது?

- 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a), (b), (c), (d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்ப்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளைத் தேர்ந்தெடுக்க.
 - (a), (b) ஆகியன மாத்திரம் திருத்தமானவையெனில் (1) இன் மீதும்
 - (b), (c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
 - (c), (d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (3) இன் மீதும்
 - (a), (d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (4) இன் மீதும்

வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவையெனில் (5) இன் மீதும் உமது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

மேற்கூறிய அறிவுறுத்தற் சுருக்கம். 1 5 வேறு தெரிவுகளின் (a), (b) ஆகியன (c), (d) ஆகியன (a), (d) ஆகியன (b), (c) ஆகியன எண்ணோ சேர்மானங்களோ மாத்திரம் மாத்திரம் மாத்திரம் மாத்திரம் திருத்தமானவை திருத்தமானவை திருத்தமானவை திருத்தமானவை திருத்தமானவை

31. T₁,T₂ ஆகிய இரு வெப்பநிலைகளிலும் மாறா அமுக்கத்திலும்.

$$A_{(g)} \rightleftharpoons B_{(g)}$$

இன் தாக்க அளவுடன் நியம கிப்ஸ் சக்தி மாறல் கீழே தரப்படும் வரைபுகளில் காட்டப்பட்டுள்ளது. இங்கு $T_1 < T_2$ ஆகும். இத்தாக்கம் பற்றிய கூற்றுக்களில் எது/எவை **சரியானது/ சரியானவை?**

- (a) T_1 இல் முற்தாக்கத்திற்கான $\Delta G^{\theta} \le 0$ ஆகும்
- (b) T_2 இல் பிற்தாக்கம் சாத்தியமாகும்.
- (c) முற்தாக்கத்திற்கான $\Delta S^{ heta} \leq 0$ ஆகும்.
- (d) முற்தாக்கம் அகவெப்பத்திற்குரியதாகும்
- 32. ()- CH₂ Cl + HO: - ()- CH₂OH + Cl: இத்தாக்கம் தொடர்பான கூற்றுக்களில் எது/எவை சரியானது/ சரியானவை?
 - (a) இத்தாக்கத்தில் ஒரு ஏவப்பட்ட இடைநிலைச்சிக்கல் மட்டும் உருவாகிறது.
 - (b) இத்தாக்கத்தின் தாக்கவரிசை இரண்டு ஆகும்.
 - (c) OH⁻ இன் செறிவுமாற்றம் தாக்கவீதத்தில் பாதிப்பை ஏற்படுத்தாது.
 - (d) இது ஒரு கருநாட்டப் பிரதியீட்டுத் தாக்கமாகும்.
- **33.** சில கைத்தொழிற் செயன்முறைகளுடன் தொடர்பான பின்வரும் கூற்றுக்களில் எது/எவை **உண்மையானது**/ **உண்மையானவை?**
 - (a) சோல்வே முறை மூலம் சோடியமிருகாபனேற்றை உற்பத்தி செய்வதில் அரண்களின் வெப்பநிலை $30^{\circ}\mathrm{C}$ இலும் உயர்வாகப் பேணப்படுதல் அவசியம்.
 - (b) ஊதுலைமூலம் இரும்பு உற்பத்தியில் CO பிரதான தாழ்த்தியாகச் செயற்பட்டு இரும்பு உற்பத்தி செய்யப்படுகிறது.
 - (c) பெரும்படியான தூய NaOH தயாரிப்பில் கற்றயன் பரிமாற்ற மென்சவ்வு பயன்படுகிறது.
 - (d) டவுண்கல முறையில் சோடியம் உற்பத்தியில் தாழ் மின்னோட்டமும் உயர் மின்னழுத்தமும் பயன்படுத்தப்படும்.
- 34. முதன்மைத் தாக்கமொன்று தொடர்பான பின்வரும் கூற்றுகளில் எது/எவை **தவறானது/ தவறானவ**?
 - (a) ஒட்டுமொத்தவரிசை பூச்சியமாக அமைய முடியாது
 - (b) தாக்கவீதமானது எல்லாத்தாக்கிக் கூறுகளினதும் செறிவு மாற்றத்தினால் பாதிப்படைவதில்லை.
 - (c) ஒட்டுமொத்த தாக்க வீதமானது இடைநிலை தோன்றும் வீதத்தில் தங்கியுள்ளது.
 - (d) தாக்கவீத மாறிலியின் அலகானது அதன் மூலக்கூற்றுத்திறன் மாற்றத்துடன் மாற்றமடையும்.

- T K வெப்பநிலையில் $N_{2(g)}$ $+3H_{2(g)}$ $\stackrel{ op}{
 ightharpoonup}$ 2 $NH_{3(g)}$, $\Delta H^{\theta}=$ -92 $kJmol^{-1}$ எனும் தாக்கத்திற்கான சமநிலை மாறிலி Kc =k இத்தாக்கம் தொடர்பான பின்வரும் கூற்றுக்களில் எது/எவை **சரியானது**/ **சரியானவை**
 - $2\mathrm{NH}_{3(\mathrm{g})}
 ightleftharpoons \mathrm{N}_{2(\mathrm{g})} + 3\mathrm{H}_{2(\mathrm{g})}$ எனும் தாக்கத்திற்கான $\mathrm{Kc} = rac{1}{\mathrm{k}}$ ஆகும்
 - (b) $1/2 \text{ N}_{2(g)} + 3/2 \text{ H}_{2(g)} \rightleftharpoons \text{ NH}_{3(g)}$ எனும் தாக்கத்திற்கான $\text{Kc} = \frac{1}{2k}$ ஆகும்
 - (c) வெப்பநிலை அதிகரிப்புடன் Kc பெறுமதி k இலிருந்து அதிகரிக்கிறது. (d) இத்தாக்கத்திற்கான $Kp=rac{k}{R^2T^2}$ ஆகும்.
- 36. பின்வரும் சந்தர்ப்பங்களில் மக்னீசியம், இரும்பு மின்வாய்கள் இணைக்கப்பட்டுள்ள நிலையை ஒழுங்கமைப்பு(a) உம் அவை மின்கலங்களுடன் இணைக்கப்பட்டுள்ள நிலைகளை ஒழுங்கமைப்பு (b), ஒழுங்கமைப்பு (c) உம் காட்டுகின்றது.

மேலே தரப்பட்ட ஒழுங்கமைப்புக்கள் தொடர்பாக **சரியான** கூற்று/ கூற்றுக்கள் எது/எவை?

- ஒழுங்கமைப்பு (a) ஐ விட (b) இல் இரும்பு ஒட்சியேற்றமடைவது மேலும் தடுக்கப்படும்.
- ஒழுங்கமைப்பு (a) ஐ விட (c) இல் இரும்பு ஒட்சியேற்றமடைவது மேலும் தடுக்கப்படுகிறது.
- ஒழுங்கமைப்பு (b) இல் மக்னீசியம் மின்வாயில் வாயுவெளியேற்றம் நடைபெறுகிறது.
- ஒழுங்கமைப்பு (c) இல் மக்னீசியம் மின்வாயில் வாயுவெளியேற்றம் நடைபெறுகிறது. (d)
- 37. பின்வரும் சேர்வைகளில் எது/எவை காரக்கரைசலில் தன் ஒடுங்கல் அடையும்.
 - (a) HCHO
- (b) CH₃CH₂CHO
- -CH₂CHO
- (d) (CH₃)₃CCHO
- 38. தாக்க இயக்கவியல் பற்றிய பின்வரும் கூற்றுக்களில் **சரியானது/ சரியானவை.**
 - தாக்கிக் கூறுகளின் செறிவு மாறினாலும் தாக்க ஏவற்சக்தி மாறாது.
 - (b) குநித்த தாக்கமொன்றிற்கு வெவ்வேறு ஊக்கிகளைப் பிரயோகிக்கும் போது அதன் ஏவற்சக்தி மாறலாம்.
 - (c) தாக்கமொன்றில் ஏவற்சக்தி குறைந்தபடி தாக்கவீத நிர்ணயப்படியாகும்.
 - (d) தாக்கமொன்றில் தோன்றும் ஏவப்பட்ட இடைநிலைச் சிக்கல் மிகவும் உறுதிகூடிய நிலையாகும்.
- 39.
 - இம்மூலக்கூறில் sp^2 கலப்புநிலைக்குரிய காபன் அணுக்கள் பன்னிரண்டும் sp கலப்புநிலைக்குரிய காபன் அணுக்கள் இரண்டும் காணப்படுகிறது.
 - (b) ஒரே தளத்தில் காணப்படக்கூடிய ஆகக்கூடிய காபன் அணுக்களின் எண்ணிக்கை 10 ஆகும்.
 - இரு பென்சீன் வளையங்களும் ஒரே தளத்தில் காணப்படுவதில்லை. (c)
 - பென்சீன் வளையங்களில் உள்ள காபன் அணுக்கள் யாவும் ஒரே மின்னெதிரியல்புடையவை.
- வளிமண்டலத்தில் விடுவிக்கப்படும் CO இன் அளவு பின்வரும் எதனால்/ எவற்றால் குறைக்கப்படுகிறது? 40.
 - (a) மண்நுண்ணங்கிகளின் ஒட்சியேற்றச் செயற்பாட்டின் மூலம்
 - (b) மெல்லிய பிளாற்றினப்படை, குரோமியம், செப்பு ஒட்சைட்டுக்களைக் ஊக்கிமாற்றியொன்றை இணைப்பதன் மூலம்
 - (c) வாகன இயந்திரங்களில் வளி எரிபொருள் விகிதத்தை செப்பனிட்டு வளமில்லாத கலவை (Lean mixture) ஒன்றினை தகனமாக்குவதன் மூலம்
 - (d) சுண்ணாம்புக்கல் படுக்கைகளினூடாக செலுத்துவதன் மூலம்
 - கொடக்கம் 50 ഖത്വെപ്പள്ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு தரப்பட்டுள்ளன. கூற்றுக்கள் அட்டவணையில் உள்ள (1), (2), (3), (4), (5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள இரு கூற்றுக்களுக்கும் மிகவும் சிறப்பாக பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளில் குறிப்பிடுக.

தெரிவுகள்	கூற்று I	கற்று II
(1)	உ ண்மை	உண்மை, கூற்று I இன் விளக்கம்
(2)	உண்மை	உண்மை, கூற்று I இன் விளக்கமல்ல
(3)	உண்மை	பொய்
(4)	பொய்	உண்மை
(5)	பொய்	பொய்

	முதலாம் கூற்று	இரண்டாம் கூற்று
41.	$ m NH_3$ மூலக்கூறின் பிணைப்புக்கோணம் $ m NF_3$ மூலக்கூறை விட உயர்வானது.	$ m NH_3$ மூலக்கூறைவிட $ m NF_3$ மூலக்கூறு முனைவானது.
42.	ஒத்தநிபந்தனையின் கீழ் H–Br உடன் நடைபெறும் கூட்டல் தாக்க வேகம் புரப்பீனை (CH ₃ CH=CH ₂) விட புரப்பீன் நைத்திரைலில் (CH ₂ =CHCN) உயர்வானது.	காபோகற்றயன்கள் CH ₃ – ⁺ CH –CH ₃ ஐ விட CH ₃ – ⁺ CH– CN உறுதியானது
43.	சம செறிவுடைய CH ₃ COOH கரைசல், HCl கரைசல் என்பவற்றை தனித்தனியாக நீர் சேர்த்து ஒரே மடங்கினால் ஐதாக்கும் போது HCl கரைசலில் ஏற்படும் pH உயர்ச்சியை விட CH ₃ COOH இல் ஏற்படும் pH உயர்ச்சி உயர்வானது.	CH3COOH நீர்க்கரைசலினை நீர் சேர்த்து ஐதாக்கப்படும் போது அதன் அயனாக்க அளவு அதிகரிக்கிறது.
44.	முதன்மைச் சமநிலைத்தாக்கமொன்றில் முற்தாக்க, பிற்தாக்க வீதமாறிலிகளிற்கிடையிலான விகிதம் சமநிலை மாறிலியைத் தரும்.	முதன்மைச் சமநிலைத்தாக்கமொன்றில் முற்தாக்க பிற்தாக்க வீதமாறிலிகள் ஒன்றுக்கொன்று சமனாக அமையும்.
45.	பென்சல்டிகைட்டைக் காட்டிலும் அசற்றல்டிகைட்டு இலகுவாக ஒட்சியேற்றப்படக்கூடியது.	பென்சல்டிகைட்டு, அசற்றல்டிகைட்டு இரண்டும் கருநாட்ட கூட்டல்களிற்கு உட்படக்கூடியவை.
46.	$373.15 ext{K}$ வெப்பநிலையிலும் $1 ext{atm}$ அமுக்கத்திலும் $H_2 O_{(1)} ightleftharpoons H_2 O_{(g)}$ எனும் மாற்றத்திற்குரிய $\Delta \mathbf{H}^{m{ heta}} > 0$ ஆகவும் $\Delta \mathbf{S}^{m{ heta}} > 0$ ஆகவும் $\Delta \mathbf{G}^{m{ heta}} = 0$ ஆகவும் அமையும்.	$373.15 { m K}$ வெப்பநிலையிலும் $1 { m atm}$ அமுக்கத்திலும் ${ m H}_2{ m O}_{({ m l})} ightleftharpoons { m H}_2{ m O}_{({ m g})}$ எனும் மாற்றம் நடைபெறும் பொழுது மூலக்கூறுகளிற்கிடையிலான கவர்ச்சி நலிவடைவதுடன் ${ m \Delta}{ m H}^{ m \theta} = { m T.} { m \Delta}{ m S}^{ m \theta}$ ஆக அமைகின்றது.
47.	சோல்வே முறையினூடாக K ₂ CO ₃ ஐ உற்பத்தி செய்ய முடியாது.	Na_2CO_3 ஐவிட K_2CO_3 நீர்க்கரைதிறன் கூடியது.
48.	போமல்டிகைட் தவிர்ந்த ஏனைய அல்டிகைட்டுக்கள் யாவும் HCN/KCNகலவையுடன் தாக்கமடைந்து எதிருரு சமபகுதிய விளைவுகளை கொடுக்கின்றது.	ஒன்றுக்கொன்று ஆடிவிம்பமாக அமையும் திண்ம சமபகுதியங்கள் எதிருரு சமபகுதியங்களாகும்.
49.	ஐதான HNO_3 கரைசலில் Ag_2CO_3 இலகுவில் கரையும் எனினும் $AgCl$ கரைவதில்லை.	காபனேற்று அயன் ஒரு மென்னமிலத்தின் இணை மூலமாகும் எனினும் குளோரைட்டு அயன் ஒரு வன்னமிலத்தின் இணைமூலமாகும்.
50.	Pd ஊக்கி முன்னிலையில் சமமூல்கள் but-1-ene. but-2-ene என்பன ஐதரசனேற்றத் தாக்கமடையும் போது ஒரேயளவு வெப்பம் வெளிவிடப்படுகிறது.	but-l-ene, but-2-ene ஆகிய இரண்டும் ஊக்கல் ஐதரசனேற்றத் தாக்கத்தில் butane ஐ விளைவாகத் தருகிறது.

ஆவர்த்தன அட்டவணை

	1																	2
1	Н																	He
	3	4											5	6	7	8	9	10
2	Li	Be	-										В	C	N	O	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

Compic General Debasses of Amini Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering, University of Moratuwa | Mode E-TAMILS 2020 | Tamin Students, Faculty of Engineering,

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை - 2018 General Certificate of Education (Adv. Level) Pilot Examination - 2018

இரசாயனவியல் II Chemistry II

மூன்று மணித்தியாலம் Three hours

சுட்டெண் :.....

- 💥 கணிப்பானை பயன்படுத்தக்கூடாது.
- st அகில வாயு மாறிலி, $R = 8.314 \, J \, K^{-1} mol^{-1}$
- * அவகாதரோ மாறிலி, $N_{_A} = 6.022 \times 10^{23} \text{mol}^{-1}$
- 💥 இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

உ-ம் :
$$\mathrm{CH_{3}CH_{2}}$$
-இனால் $\mathbf{H} - \mathbf{C} - \mathbf{C} - \mathbf{C}$ ஐக் காட்டலாம்.

🖵 பகுதி A அமைப்புக்கட்டுரை (பக்கங்கள் 2 – 10)

- 🗱 எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக.
- ஓவ்வொரு வினாவுக்குக் கீழும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதையும் விரிவான விடைகள் எதிர்பார்க்கப்படவில்லை என்பதையும் கவனிக்க.
 - 🔲 பகுதி B கட்டுரை (பக்கங்கள் 11 18)
- * ஒவ்வொரு பகுதியிலிருந்தும் இரண்டு வினாக்களைத் தெரிவுசெய்து எல்லாமாக **நான்கு** வினாக்களுக்கு விடை எழுதுக. உமக்கு வழங்கப்படும் எழுதும் தாள்களை இதற்கு பயன்படுத்துக.
- * இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி A மேலே இருக்கும்படியாக A, B, C ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டியபின் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாளின் B, C ஆகிய பகுதிகளை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

பகுதி	வினா இல.	புள்ளிகள்
	1	
A	2	
· [3	
	4	
В	5	
	6	
	7	
	8	
С	9	
	10	
6	மாத்தம்	
а	தவீதம் -	

	இறுதா புள்ளகள்
இலக்கத்தில்	
எழுத்தில்	

இறுகிப் பன்னிகள்

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளைப் பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி A – அமைப்புக் கட்டுரை

இந்நிரலில் எதனையும்

		நான்கு வினாக்களுக்கும் விடை எழுதுக. (ஒவ்வொரு வினாவிற்கும் 10 புள்ளிகள் வழங்கப்படும்)	எழுதுதல ஆகாது.
01.(a)		ருவனவற்றை அடைப்புக்குறிக்குள் குறிப்பிட்ட இயல்புகள் அதிகரிக்கும் வரிசையில் குபடுத்துக.	
	i.	C, Li, Si (இலத்திரன் நாட்டம்)	
		<	
	ii.	N ₂ H ₄ , NaNH ₂ ,NH ₂ OH (N – அணுவின் ஒட்சியேற்ற நிலை)	
		<u> </u>	
	iii.	Li ⁺ , Cl ⁻ , Al ³⁺ (நீரேற்றல் சக்தி)	
		<u> </u>	
	iv.	KHCO ₃ ,NaHCO ₃ , Mg(HCO ₃) ₂ (பിரிகை வெப்பநிலை)	
	v.		
		<	
(b)	மூலக்	NO ₃ மூலக்கூற்றுச் சூத்திரமுடைய சேர்வை NaOH நீர்க்கரைசலுடன் தாக்கி H ₂ C ₂ NO ₃ Na என்ற கூற்றுச் சூத்திரமுடைய சேர்வையினையும் நீரையும் கொடுக்கிறது. இச்சோடியம் உப்பின் அன்னயன் ர்பான பின்வரும் வினாக்களுக்கு விடை தருக.	
	இதன்	லூயிஸ் கட்டமைப்பின் முதந்படி கீழே தரப்பட்டுள்ளது.	
		н :ö: :ö:	
		H :Ö: :Ö: 	
		$\Pi = \underbrace{\Pi}_1 = \underbrace{C_2}_1 = \underbrace{C_2}_2$.	
	i.	காபன், ஒட்சிசன் அணுக்களிற்கு பொருத்தமான முறைமையான ஏற்றங்களை (Formal charges) மேற்குறித்த கட்டமைப்பில் இடுக.	
	ii.	பொருத்தமான லூயிஸ் கட்டமைப்பை வரைக.	
	iii.	மேற்படி அயனிற்கு வரையக்கூடிய அனைத்துப் பரிவுக் கட்டமைப்புகளையும் வரைக.	
i		மேலே (iii) இல் வரைந்த பரிவுக்கட்டமைப்புகளிற்குரிய சார் உறுதிநிலைகளை காரணத்துடன் தறிப்பிடுக.	

இந்நிரலில் எதனையும் எழுதுதல் ூ. ஆகாது.

v. (மேலே	தரப்பட்ட	உறுதியான	லூயிக்	கட்டமைப்பின்	அடிப்படையில்,
------	------	----------	----------	--------	--------------	---------------

- 1. அணுக்களைச் சுற்றியுள்ள VSEPR சோடிகள்
- 2. அணுக்களைச் சூழவுள்ள இலத்திரன் சோடிக்கேத்திரகணிதம்
- 3. அணுக்களைச் சூழவுள்ள அணுக்களின் ஒழுங்கமைப்பு வடிவம்
- 4. அணுக்களின் கலப்பாக்கம். என்பவற்றை பின்வரும் அட்டவணையில் பூர்த்தி செய்க.

		C_1	C_2	N
1.	VSEPR சோடிகள்			
2.	இலத்திரன் சோடி கேத்திரகணிதம்			
3.	வடிவம்			
4.	கலப்பாக்கம்			

1.	V SELIK Genikasii				
2.	இலத்திரன் சோடி கேத்திரகணிதம்				
3.	வடிவம்				
4.	கலப்பாக்கம்				
vii.	மேலே நீர் வரைந்த உறுதியான லூயிக் ச சம்மந்தப்பட்ட அணு / கலப்பு ஒழுக்குகன 1. C_1 – C_2	ளத் தருக.	ы H₃C₂NO₃ மூல	க்கூற்றுச்சூத்திரத்	
	 H⁺ இணைந்த அணுவைக் கருத்திற் மாற்றம் தொடர்பாக பொருத்தமான (_	இயல்புகளில் ஏற்	ந்படும்
	மாந்நம் தொடாபாக போருத்தமான ச கலப்பு நிலை ஒட்சியேற்றநிலை ஏற்றப்பருமன் VSEPR சோடிகளின் எண்ணிக்கை மின்னெதிரியல்பு	் (மாந்நமடைகிறது (அதிகரிக்கிறது (அதிகரிக்கிறது (அதிகரிக்கிறது	து / மாற்றமடையல / குறைகிறது / ம / குறைகிறது / ம / குறைகிறது / ம / குறைகிறது / ம / குறைகிறது / ம	ாற்றமடையவில்ன ராற்றமடையவில்ன ாற்றமடையவில்ன	oல) ல)
	ழ தரப்பட்ட மூலக்கூறுகளில் காணப்படும் லக்கூறுகளைத் தெரிவு செய்க.	மூலக்கூற்றிடைக்	கவர்ச்சி விசைக்க	மைய பொருத்தம	ाळा
	CS _{2(l)} , CH ₂ Cl _{2(l)} ,	, NH ₂ OH _(l) , XeO ₂	$_{3(l)}, C_6H_{6(l)}$		
i.	ஐதரசன் பிணைப்பைக் கொண்ட மூலக்	கூறு/மூலக்கூறுக	तंं-		
ii.	இருமுனைவு - இருமுனைவுக் கவர்ச்சி	விசையைக் கொ	ண்ட மூலக்கூறு /	மூலக்கூறுகள்-	
iii.	லண்டன் கலைவு விசையைக் கொண்ட				

A		
	В	C
D	E	F
G	Н	I
சமன்பாடுகளைத் தருக.	ளுடன் சம்பந்தப்படும் இரசாயனத் தாக்கா	
	7.01	
	ZnCl ₂ ஆகிய உப்புக்களைக் கொண்ட _? கோட்டுப்படம் கீழேதரப்பட்டுள்ளது.	திண்ம மாதிரியொன்றின்
	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது.	திண்ம மாதிரியொன்றின்
		திண்ம மாதிரியொன்றின்
	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக்	க்கப்பட்டது.
	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது.	க்கப்பட்டது.
	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக்	க்கப்பட்டது.
பகுப்பாய்விற்கான பாய்ச்சற் (மீழ்படிவுகள்	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக்	க்கப்பட்டது. ர்த்தல் வடிகிரவம்
பகுப்பாய்விற்கான பாய்ச்சற் (கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக்	ந்தப்பட்டது. ர்த்தல் ▼
பகுப்பாய்விற்கான பாய்ச்சற் வீழ்படிவுகள் (i) L (ii) M	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக் (ii) NH ₄ Cl/NH ₄ OH(aq) சேர்	ந்த்தல் ்த்தல் வடிகிரவம் (i) உலோக அயன் N (ii) உலோகஅயன் O
பகுப்பாய்விற்கான பாய்ச்சற் வீழ்படிவுகள் (i) L	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக் (ii) NH ₄ Cl/NH ₄ OH(aq) சேர்	ந்கப்பட்டது. ர்த்தல் ▼ வடிகிரவம் (i) உலோக அயன் N
பகுப்பாய்விற்கான பாய்ச்சற் வீழ்படிவுகள் (i) L (ii) M H ₂ O ₂ /NaOH சேர்த்த	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைச் (ii) NH ₄ Cl/NH ₄ OH(aq) சோ	ந்த்தல் ்த்தல் வடிகிரவம் (i) உலோக அயன் N (ii) உலோகஅயன் O
பகுப்பாய்விற்கான பாய்ச்சற் வீழ்படிவுகள் (i) L (ii) M H ₂ O ₂ /NaOH சேர்த்த	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக் (ii) NH ₄ Cl/NH ₄ OH(aq) சோ	ந்த்தல் ்த்தல் வடிகிரவம் (i) உலோக அயன் N (ii) உலோகஅயன் O
பகுப்பாய்விற்கான பாய்ச்சற் வீழ்படிவுகள் (i) L (ii) M H ₂ O ₂ /NaOH சேர்த்த படிவு Q கரைச் சோடியம் உ	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக் (ii) NH4Cl/NH4OH(aq) சேர்	்த்தல் வடிகிரவம் (i) உலோக அயன் N (ii) உலோகஅயன் O மிகைNaOH _(aq) சேர்த்தல்
பகுப்பாய்விற்கான பாய்ச்சற் வீழ்படிவுகள் (i) L (ii) M H ₂ O ₂ /NaOH சேர்த்த படிவு Q கரைச் சோடியம் உ	கோட்டுப்படம் கீழேதரப்பட்டுள்ளது. உப்புக்களின் கலவை (i) ஐதான HCl இல் கரைக் (ii) NH4Cl/NH4OH(aq) சேர் ல் ப்பு P (Cl _{2(aq)} சேர்த்தல்	ந்த்தல் வடிகிரவம் (i) உலோக அயன் N (ii) உலோகஅயன் O மிகைNaOH _(aq) சேர்த்தல்

ii.	வீழ்படிவு R இன் நிறம் யாது? இவ்வீழ்படிவிற்கு ஐதான HNO_3 ஐ சேர்க்கும் பொழுது பெறப்படும் விளைவுக்கரைசலின் நிறம் யாது? இம்மாற்றத்திற்கான பொருத்தமான சமன்செய்த இரசாயனச் சமன்பாட்டைத் தருக.
	உப்பு R இன் நிறம்-
	பெறப்பட்ட விளைவுக்கரைசலின் நிறம்
	இரசாயனச் சமன்பாடு
	துசாயவச் சம்வபாடு
iii.	வீழ்படிவு ${ m S,U}$ இலுள்ள உலோக அயன்களை இனங்காண்பதற்கான சோதனை ஒன்றையும் பெறப்படும் அவதானிப்புக்களையும் குறிப்பிடுக.
	சோதனை :
	அவதானிப்புக்கள்
	S:
	U:
iv.	வீழ்படிவு Q இல் உள்ள கற்றயனை இனங்காண்பதற்கான சோதனையையும் பொருத்தமான அவதானத்தையும் குறிப்பிடுக.
0	C வெப்பநிலையில் ஒரு நீர்க்கரைசல் HA,HB எனும் ஒரு மூல மென்னமிலங்கள் ஒவ்வொன்றினதும்
Бед НА, НА, (25° i.	வெகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பநிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$ HA , HB ஆகியவற்றில் அமிலவலிமை கூடியது எது என்பதை காரணத்துடன் உய்த்தறிக. HA , HB ஆகியவற்றில் அமிலவலிமை கூடியது எது என்பதை காரணத்துடன் உய்த்தறிக. அமிலங்களின் அயனாக்க அளவுகள் α, β அயனாக்க மாறிலிகள் K_1, K_2 ஆகியவற்றிற்கு இடையேயான தொடர்பைப் பெறுக.
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
செற HA HA	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு
Бед НА, НА, (25° i.	இவுகள் 1moldm^3 ஆக அமையக்கூடிய வகையில் கரைசல் S தயாரிக்கப்பட்டது. இக்கரைசலில் HB என்பவற்றின் அயனாக்க அளவுகள் முறையே α, β ஆகும். கருதப்படும் வெப்பறிலையில் HB இன் அயனாக்க மாறிலிகள் முறையே K_1, K_2 ஆகும். C இல் $K_1 = 4 \times 10^{-6} \text{moldm}^{-3}, \ K_2 = 1.2 \times 10^{-5} \text{moldm}^{-3}$) C அமிலங்களின் அயனாக்க அளவுகள் C 0 அயனாக்க மாறிலிகள் C 1, C 2 ஆகியவற்றிற்கு

	iii.	இக்கரைசல் S இன் pH இற்கான கோவையை $pH=-\frac{1}{2}log[K_1+K_2]$ ஆக அமையுமெனக் காட்டுக.
	iv. 	$lpha+eta=4 ext{x}10^{-3}$ ஆக அமையுமெனக் காட்டுக.
7	v.	மேலே iv இல் பெற்ற தொடர்புகளுடன் அயனாக்க மாறிலிகள் α,β ஆகியவற்றின் பெறுமதிகளைக் கணிக்க.
		மக்னீசியம் மின்வாய், நியம வெள்ளி மின்வாய், Pt கம்பி, Cu கம்பி என்பவற்றைப் பயன்படுத்தி வன் ஒருவனால் உருவாக்கப்பட்ட ஒழுங்கமைப்பு கீழே தரப்பட்டுள்ளது.
		Cu கம்பி Ag Pt கம்பி
		P
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$E^{\theta}{}_{Mg}{}^{2+}{}_{(aq)/Mg(s)} = -2.36V \qquad \qquad E^{\theta}{}_{Ag}{}^{+}{}_{(aq)/Ag(s)} = + \; 0.8V \label{eq:energy}$
i		${ m Mg,Ag}$ மின்வாய்களின், ${ m Pt}$ கம்பியின் முனைவுகள் ${ m P,Q}$ ஆகியவற்றின் முனைவுத்தன்மைகளை நேர்முனைவு $/$ எதிர்முனைவு என அடையாளம் காண்க.
		Mg
		PQ
	i. ii.	மேலே சுற்றில் Cu கம்பி, Pt கம்பிகளில் இலத்திரன் பாய்ச்சல் திசையை குறித்துக் காட்டுக.

இந்நிரலில் எதனையும் எழுதுதல் ஆகாது.

iv.	ஆரம்பநிலையில் Mg, <i>i</i>	Ag மின்வாய்களிடையே காணப்படும்	மின்னழுத்த வேறுபாடு யாது?	இந்நிரலில் எதனையுட எழுதுதல் ஆகாது.
v.	தாக்கத்திற்கான சமன்	சல்களிலும் காணப்படும் Pt கம்பி (படுத்திய இரசாயன சமன்பாடுகளை எ	ரழுதுக.	
vi.		க்கான சமன்படுத்திய சமன்பாடுகளை		
இச்சே சேர்ச நீரகர ஈர்மப PCC நீரேர உட் தன்செ	சேர்வைகள் யாவும் பிரா வை A ஒளியியல் தொ ந்நலுக்கு உட்படுத்திய யவெளி சமபகுதியத்தன் இனால் ஒட்சியேற்றும் ந்நலுக்கு உட்படுத்திய ன் உடனடிக் கலங்களை னொடுங்கலுக்கு உட்படுக	ல உருவாக்கக்கூடியது. சேர்வை E அ	மஞ்சள் நிறத்தை தரக்கூடியவை. ஐ NaBH4 இனால் தாழ்த்தி பின் வுகள் பெறப்பட்டன H ஆனது நான H ₂ SO ₄ தொழிற்படச் செய்து G ஐ ஐதான H ₂ SO ₄ உடன் பட்டது. I ஆனது நீரற்ற ZnCl ₂ /HCl யூனது ஐதான NaOH கரைசலில்	
	A	В	С	
	D	Е	F	
	G	Н	I	

ii. H இன் ஈர்மயவெளி சமபகுதியங்களை கீழே தரப்பட்ட பெட்டிகளில் வன	பரைக
--	------

iii. சேர்வைகள் F,G,H ஐ அவற்றின் உறுதித் தன்மை அதிகரிக்கும் வரிசையில் தருக.

.....

(b) 1 தொடக்கம் 6 வரையான தாக்கங்கள் ஒவ்வொன்றிலும் உள்ள தாக்கியும் சோதனைப்பொருளும் கீழே உள்ள அட்டவணையில் தரப்பட்டுள்ளன. ஒவ்வொரு தாக்கத்திற்குரிய வகைகளையும் [கருநாட்டகூட்டல் (A_N), மின்நாட்டகூட்டல் (A_E), கருநாட்ட பிரதியீடு (S_N), மின்நாட்ட பிரதியீடு (S_E), நீக்கல் (E)] மற்றும் பிரதான விளைபொருளையும் உரிய பெட்டிகளில் எழுதுக.

	தாக்கி	சோதனைப்பொருள்	தாக்க வகை	பிரதான விளைபொருள்
1	CH₃CH=CH ₂	HBr		
2	CH ₃ CH ₂ -C-(CH ₃) ₂ Cl	C ₂ H ₅ OH / KOH		
3	CH₃C≡C–MgCl	CH₃CH₂Cl		
4		CH ₃ -CH-CH ₂ Cl CH ₃ / Dry AlCl ₃		
5	СНО	2,4 - DNPH		
6	COCH ₃	Dil Ba(OH) _{2(aq)}		

(c) பின்வரும் தாக்கத்திற்குப் பொருத்தமான பொறிநுட்பத்தை தருக.

 $(CH_3)_3-C-OH$ Con.HBr $(CH_3)_3-C-Br$

முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

Georgic இவைப் பல்கலைக் **மொறு**ட்டுவை மடல்களைக்கழக கட்டியாத இது மானவர்கள் படல்களைக்கழக கட்டியாது இவரும் மானவர்கள் படல்களைக்கழக கட்டியாது இவரும் மானவர்கள் கட்டியாதும் கட்டியாது கட்டியாதும் கட்டியாதும் கட்டியாதும் கட்டியாதும் கட்பியாதும் கட்டியாதும் கட்டியாதுற்கும் கட்டியாதும் கட்டியாதும் கட்டியாதும் கட்டியாதும் கட்டியாதும் கட்ப

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை - 2018 General Certificate of Education (Adv. Level) Pilot Examination - 2018

இரசாயனவியல் II Chemistry II

பகுதி f B - கட்டுரை இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் 15 புள்ளிகள் வழங்கப்படும்.)

05. (a) குறிப்பிட்ட வெப்பநிலையில் NH_4Cl , NH_4Br திண்மங்கள் ஒரு விறைப்பான குடுவையில் எடுக்கப்பட்டு கீழ்த்தரப்பட்ட சமன்பாட்டிற்கமைய பிரிகையடைந்து சமநிலை பெறப்பட்டது.

$$\begin{split} NH_4Cl_{(s)} &\rightleftharpoons NH_{3(g)} + HCl_{(g)} &\quad Kp = 3\times 10^8~Pa^2 \\ NH_4Br_{(s)} &\rightleftharpoons NH_{3(g)} + HBr_{(g)} &\quad Kp = 6\times 10^8~Pa^2 \end{split}$$

- i. NH_{3(g)} இன் பகுதியமுக்கத்தைக் கணிக்க.
- ii. $HCl_{(g)}$, $HBr_{(g)}$ என்பவற்றின் பகுதியமுக்கங்களைக் கணிக்க.

பின்னர் தொகுதியின் வெப்பநிலை சற்று உயர்த்தப்பட்ட போது $HBr_{(g)}$ மூலக்கூறுகள் $H_{2(g)}$, $Br_{2(g)}$ விளைவுகளைத் தோற்றுவித்தவாறு பகுதியாகப் பிரிகையடைந்தது. தொகுதி மீண்டும் ஆரம்ப வெப்பநிலைக்கு கொண்டுவரப்பட்ட போது மேலே குறிப்பிட்ட இரு சமநிலைகளிற்கு மேலதிகமாக பின்வரும் சமநிலையும் பெறப்பட்டது.

$$2HBr_{(g)} \rightleftharpoons H_{2(g)} + Br_{2(g)}$$

தற்பொழுது புதிய சமநிலையில் $\mathrm{HCl}_{(\mathrm{g})}$ இன் பகுதியமுக்கம் $6 \times 10^3 \mathrm{Pa}$ ஆகக்காணப்பட்டது. இச்சமநிலையில் $\mathrm{HCl}_{(\mathrm{g})}$ இன் பகுதியமுக்கம் யாது?

- iv. $2HBr_{(g)} \rightleftharpoons H_{2(g)} + Br_{2(g)}$ எனும் சமநிலைக்கான சமநிலை மாறிலி K_P ஐக் கணிக்க.
- (b) i. கரையம் A ஆனது நீருக்கும் குளோரோபோமுக்கும் இடையில் பங்கீடு செய்யப்படக்கூடியது. 25°C வெப்பநிலையில் 17.5ppm அமைப்பில் A ஐக் கொண்டுள்ள 100cm³ நீர்க்கரைசலானது 50cm³ CHCl₃ படையுடன் நன்நாகக் குலுக்கப்பட்டு சமநிலை அடையவிடப்பட்டது. சமநிலையில் CHCl₃ படையில் Aயின் அமைப்பு 25ppm ஆகும். 25°C ல் CHCl₃, நீர் ஆகியவற்றிற்கிடையே Aயின் பங்கீட்டுக்குணகத்தைக் கணிக்க. (1ppm = 1mgdm³ என எடுக்க)
 - ${
 m ii.}~~{f A+B}
 ightarrow~$ விளைவுகள்

இத்தாக்கத்தின் வீத விதியினை துணியும் பொருட்டு பின்வரும் பரிசோதனைகள் மேற்கொள்ளப்பட்டன. A யானது பகுதி (i) இல் குறிப்பிடப்பட்ட பதார்த்தமாகும். B யானது குளோரோபோமில் கரையமாட்டாது. 25^{0} C யில் A யானது நீரில் கரைக்கப்பட்டு $CHCl_{3}$ சேர்க்கப்பட்டு சமநிலையடைய விடப்பட்டது. பின்பு B சேர்க்கப்பட்டு அட்டவணைப்படுத்தப்பட்டது.

பரிசோதனை இலக்கம்	V _{CHCl3} /cm ³	V _(aq) /cm ³	தொகுதிக்குள் சேர்க்கப்பட்ட Aயின் அளவு /mol	தொகுதிக்குள் சேர்க்கப்பட்ட Bயின் அளவு /mol	தொடக்கதாக்க வீதம் moldm ⁻³ s ⁻¹
1	0.0	50.0	0.001	0.002	$4x10^{-6}$
2	50.0	50.0	0.012	0.002	$8x10^{-6}$
3	100.0	100.0	0.012	0.002	$1x10^{-6}$

A,B யினது தாக்கவரிசைகள் a,b எனவும் தாக்கவீதமாறிலி k எனவும் தரப்பட்டுள்ளது.

- 1. தாக்க வீதக் கோவையை எழுதுக.
- 2. a,b யினது பெறுமானங்களைக் கணிக்க.
- 3. தாக்கத்தின் ஒட்டுமொத்த வரிசை யாது?
- 4. தாக்க வீத மாறிலி k ஐக் கணிக்க.
- (c) A,B என்பன ஒன்றுடனொன்று கலந்து கொள்ளக்கூடிய துவித இலட்சியகரைசலை உருவாக்கும் இரண்டு கரைப்பான்களாகும். 27° C வெப்பநிலையிலே Aயின் 64g, B யின் 46g திணிவுகள் மூடிய தொகுதி ஒன்றில் எடுக்கப்பட்டு அதன் ஆவியுடன் சமநிலை அடைய அனுமதிக்கப்பட்டது. சமநிலை அமுக்கம் $2.4 \times 10^5 \ Pa$ ஆகவும், ஆவியடைக்கும் கனவளவு $8.314 \ dm^3$ ஆகவும் ஆவியில் A யின் மூல்ப்பின்னம் 0.75 ஆகவும் இருப்பின் 27° C இல் A,B யினது நிரம்பலாவி அமுக்கங்களைக் கணிக்க.

(A,Bயின் சார்மூலக்கூற்றுத்திணிவுகள் முறையே 32, 46 ஆகும்.)

06.(a) HA என்ற மென்னமிலத்தினதும் BOH என்ற மென்மூலத்தினதும் உப்பு BA ஆனது நீரில் முற்றாக அயனாக்கமடையக்கூடியது. BA யினது நீர்ப்பகுப்புத்தாக்கம் பின்வருமாறு அமையும்.

$$B^{+}_{(aq)} + A^{-}_{(aq)} + H_2O_{(l)} \rightleftharpoons HA_{(aq)} + BOH_{(aq)}$$

- HA,BOH இனது அயனாக்க மாநிலிகள் $K_a\,,\,K_b\,$ எனவும் நீரின் அயன் பெருக்கம் $K_w\,$ எனவும் கொள்க.
- i. BA யின் நீர்ப்பகுப்புத்தாக்கத்தினைக் கருத்திற் கொண்டு $pH=\frac{1}{2}\left[pK_{W}+pK_{a}-pK_{b}\right]$ எனக் காட்டுக.
- 10^{-2} பில் 1 moldm^3 10^{-2} 10^{-2} நீர்க்கரைசலின் pH இனை பகுதி (i) இன் முடிவினைப் பயன்படுத்திக் கணிக்க. (25^{0} C யில் 10^{-2} COOH இன் 10^{-2} 10^{-2} moldm 10^{-3} , 10^{-2} moldm 10^{-2} 10^{-2} moldm 10^{-2} moldm1
- (b) i. 25^{0} C யில் $0.1~\text{moldm}^{-3}~\text{NH}_{4}\text{OH}~$ நீர்க்கரைசலின் pH இனைக் கணிக்க. (NH $_{4}\text{OH}~$ இன் $K_{b}=1x10^{-5}~\text{moldm}^{-3},~K_{w}=1x10^{-14}~\text{mol}^{2}\text{dm}^{-6}$)
 - ii. 25^{0} C யில் 0.1moldm 3 NH $_{4}$ OH நீர்க்கரைசலின் 1dm 3 இனுள் 0.66g (NH $_{4}$) $_{2}$ SO $_{4}$ திண்மம் கரைக்கப்பட்டது. விளைவுக் கரைசலின் pH இனைக் கணிக்க. (N-14, S-32, O-16, H-1)

 - iv. 25^{0} C யில் (ii) இன் கரைசலினுள் $CaCl_{2}$ திண்மத்தினைச் சேர்ப்பதன் மூலம் $Ca(OH)_{2}$ இனை வீழ்படியச் செய்ய முடியுமா? இல்லையா? எனத் தீர்மானிக்க. (Ca-40, Cl-35.5) ($Ca(OH)_{2}$ இன் கரைதிறன்பெருக்கம் = $4x10^{-6}\,\text{mol}^{3}\text{dm}^{-9}$)
- 07.(a) பட்டியலில் தரப்பட்டுள்ள இரசாயனப் பொருட்களை மாத்திரம் பயன்படுத்தி பொருத்தமான தொடங்குபொருட்களை தாக்குபொருட்களை தெரிவுசெய்வதன் மூலம் 2,4-diphenyl-2,4-pentanediol இனை எங்கனம் தொகுப்பீர்?

இரசாயனப் பொருட்களின் பட்டியல் CH₃MgBr, CH₃CH₂OH, Br₂, PCl₅, AlCl₃, KMnO₄, NaOH, H₂SO₄,CCl₄,

(b) பின்வரும் தாக்கத்திட்டத்தை பூரணப்படுத்துவதன் மூலம் பொருத்தமான தாக்குபொருட்கள் $R_1-R_{6,}$ விளைவுகள் P_1 — P_8 ஆகியவற்றை இனங்காண்க.

(c) சேதன இரசாயனத்தில் பொறிமுறை தொடர்பான உமது அறிவைப்பயன்படுத்தி பின்வரும் தாக்கத்தின் விளைவையும் பொருத்தமான பொறிநுட்பத்தையும் தருக.

பகுதி C - கட்டுரை இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் 15 புள்ளிகள் வழங்கப்படும்.)

- 08. (a) P என்னும் அசேதன உப்பு $K_2Cr_2O_7$, செறிந்த H_2SO_4 சேர்த்து வெப்பப்படுத்தும் போது வெண்ணிறவீழ்படிவு Q ஐயும் செந்நிற ஆவி R ஐயும் விளைவுகளாகத்தந்தது. R ஐ NaOH கரைசலினூடாக செலுத்திய போது மஞ்சள் நிறக்கரைசல் S பெறப்பட்டது. இக்கரைசலினுள் P ஐ சேர்த்த போது மஞ்சள் வீழ்படிவு T பெறப்பட்டது. இவ்வீழ்படிவை ஐதான H_2SO_4 இல் கரைத்த போது வீழ்படிவு Q உம் கரைசல் U உம் விளைவாக்கப்பட்டது. Pஐ சுவாலைச்சோதனைக்கு உட்படுத்திய போது மஞ்சள் கலந்த பச்சை நிற சுவாலை பெறப்பட்டது.
 - i. P,Q,R,S,T,U ஆகியவற்றை இனங்காண்க.
 - ii. கரைசல் U இற்கு ஐதான NaOH சேர்க்கும் போது கரைசலில் ஏற்படும் நிறமாற்றத்தைக் குறிப்பிடுக.
 - iii. இவ் அவதானிப்புக்குப் பொருத்தமான இரசாயனச் சமன்பாட்டை தருக.
 - (b) X என்னும் நீர்க்கரைசல் ஒன்றில் மூன்று உலோக அயன்கள் உள்ளன. இவ்வுலோக அயன்களை இனங்காண்பதற்கு பின்வரும் பரிசோதனைகள் நிகழ்த்தப்பட்டது.

செய்கை A

பரிசோதனை	அவதானிப்பு
1. கரைசல் X ஐதான HCl இனால் அமிலமாக்கப்பட்டு $ m H_2S$ வாயு செலுத்தப்பட்டது.	வீழ்படிவுகள் எவையும் பெறப்படவில்லை.
2. விளைவுக்கரைசலுக்கு மிகை NH ₄ Cl/NH ₄ OH சேர்க்கப்பட்டது	வீழ்படிவுகளின் கலவை ($P_1 \! + \! P_2$) பெறப்பட்டது.
3 . வீழ்படிவுகள் வடித்து அகற்றப்பட்டு $\mathrm{Na_2C_2O_4}$ சேர்க்கப்பட்டது.	வீழ்படிவு \mathbf{P}_3 பெறப்பட்டது.

வீழ்படிவுகள் P_1,P_2,P_3 என்பவற்றிற்கான சோதனைகள் பின்வருமாறு மேற்கொள்ளப்பட்டது.

செய்கை B

பரிசோதனை	அவதானிப்பு
$1.$ வீழ்படிவுகளின் கலவை $(P_1 + P_2)$ ஐ ஐதான	மென்சிவப்பு சாயலுடைய வெண்வீழ்படிவு
HCl இல் கரைத்து பெறப்பட்ட கரைசலுக்கு மிகை NaOH சேர்க்கப்பட்டது.	P ₄ பெறப்பட்டது.
	வீழ்படிவு வடிக்கப்பட்டு அவதானிக்கப்பட்ட
	போது நேரத்துடன் கபிலமாக மாநியது.
2. (1)இல் பெறப்பட்ட கரைசலுக்கு HCl ஐ மிகையாக சேர்த்து மிகை NH ₄ OH சேர்த்து அவதானிக்கப்பட்டது.	ஊண்பசை போன்ற வெண்வீழ்படிவு (P_5) பெறப்பட்டது.
3. வீழ்படிவு P ₃ இற்கு அசற்றிக்கமிலம் சேர்க்கப்பட்டது.	அசற்றிக்கமிலத்தில் கரையவில்லை
4. HCl இல் கரைக்கப்பட்டு சுவாலைச் சோதனைக்கு உட்படுத்தப்பட்டது.	செங்கட்டிசிவப்பு நிற சுவாலை பெறப்பட்டது.

- i. கரைசல் X இலுள்ள மூன்று உலோக அயன்களையும் இனங்காண்க. (காரணங்கள் அவசியமன்று)
- ii. வீழ்படிவுகள் P_3, P_4, P_5 இன் இரசாயன சூத்திரங்களைத் தருக.
- iii. வீழ்படிவு $m P_4$ இலுள்ள உலோக அயனை இனங்காண்பதற்கான ஒரு சோதனையைக் குறிப்பிடுக.

(c) விற்றமின் C இல் உள்ள இரசாயனக்கூறு அஸ்கோபிக்கமிலமாகும். இது ஒரு மென்தாழ்த்தும் கருவியாக (Mild reducing agent) அமைவதன் முலம் ஒட்சியேற்றத்தை தடைசெய்யக் கூடியது(Antioxident). இது மனித உடலில் கொலாஜன் நார்களின் (collegene fibres) உருவாக்கத்திற்கு மிகவும் இன்றியமையாததாகும். அத்துடன் இது புற்று நோய்கலங்கள் உருவாகும் வாய்ப்பை குறைக்கும் எனவும் நம்பப்படுகிறது. ஒரு விற்றமின் C மாத்திரையிலுள்ள அஸ்கோபிக் அமிலத்தின் அளவைத் துணிவதற்கு பின்வரும் நடைமுறைகள் பயன்படுத்தப்பட்டன.

நடைமுறை I

 $0.02~{
m moldm^{-3}~KIO_3}$ கரைசலின் $25~{
m cm^3}$ இனுள் $10\%~{
m KI}$ கரைசலின் $10~{
m cm^3}$ (I_3 ஐ உருவாக்குமளவிற்கு மிகையானது) உம் ஐதான H_2SO_4 இன் $10~{
m cm^3}$ உம் சேர்க்கப்பட்டது.

நடைமுறை II

விற்றமின் C இன் 500~mg மாத்திரைகள் இரண்டு நீரில் கரைத்து $500~cm^3$ கரைசலாக்கப்பட்டது. இக்கரைசலின் $25~cm^3$ பகுதிக்கு நடைமுறை I இல் பெறப்பட்ட கரைசல் முழுமையாக சேர்க்கப்பட்டு பெறப்பட்ட விளைவுக்கரைசல் மாப்பொருள் காட்டி முன்னிலையில் $0.1~moldm^{-3}~Na_2S_2O_3$ கரைசலினால் நியமிக்கப்பட்ட போது அதன் $25cm^3$ தேவைப்பட்டது. I_3 - கரைசலானது அஸ்கோபிக்கமிலத்துடன் பின்வரும் சமன்பாட்டிற்கமைய தாக்கமடையக்கூடியது

$$H_2O + I_3^- +$$
 OH HO OH OH OH OH

- 1) அமில ஊடகத்தில் ${\rm IO_3}^{\text{-}}, {\rm I^{\text{-}}}$ இற்கிடையிலான தாக்கத்தின் மூலம் ${\rm I_3}^{\text{-}}$ உருவாவதற்கான சமப்படுத்திய சமன்பாட்டைத் தருக
- 2) நடைமுறை I இல் கரைசலில் விடுவிக்கப்பட்ட ${I_3}^{\text{-}}$ இன் மூலளவை கணிக்க.
- 3) நடைமுறை II இன் அடிப்படையில் ஒரு விற்றமின் C மாத்திரையிலுள்ள அஸ்கோபிக் அமிலத்தின் திணிவு நூற்று வீதத்தை கணிக்க.

09. (a) சில கைத்தொழில் செயன்முறைகளுடன் தொடர்புபட்ட மூலப்பொருட்கள், செய்முறைகள், உற்பத்தி விளைபொருட்கள் உடன் தொடர்புடைய பாய்ச்சற் கோட்டுப்படம் ஒன்று கீழே தரப்பட்டுள்ளது.

இயற்கை மூலப்பொருட்கள் R இனாலும் செய்முறைகள் O இனாலும் விளைவுகள் P இனாலும் தரப்பட்டுள்ளது.

 P_4 பழங்கள் பழுத்தலை ஊக்குவிக்கக்கூடியது.

 P_{21} இரும்பின் அரிப்பை தடுப்பதில் அர்ப்பண உலோகமாக பயன்படுகின்றது.

 ${
m P}_{
m 19-}$ நீர்க்குழாய்களை உற்பத்தி செய்வதில் பயன்படும் ஒரு பல்பகுதியமாகும்.

- i. இயற்கை முதல்கள் R_1 R_4 வரை இனங்காண்க.
- ii. செய்கைகள் O_1 O_5 வரை இனங்காண்க.
- iii. alonnajan P_1 P_{23} auor இனங்காண்க.
- iv. P_{13} ஐயும் P_{15} ஐயும் பயன்படுத்தி P_{17} ஐ உற்பத்தி செய்வதற்கான உற்பத்திச் செயன்முறையின் பெயரைக் குறிப்பிடுக. இச்செயன்முறையில் பயன்படுத்தப்படும் தாக்க நிபந்தனைகளைக் குறிப்பிடுக.
- v. P_5 ஐயும் P_{22} ஐயும் பயன்படுத்தி P_{23} ன் உற்பத்தி செய்முறையில் பயன்படுத்தப்படும் மூலப்பொருட்களை மீள்சுழற்சி செய்வதற்கான சமப்படுத்திய இரசாயனச் சமன்பாட்டைத் தருக.

- (b) வாகனங்கள், கைத்தொழிற்சாலைகள் என்பவற்றில் பயன்படுத்தப்படும் இயந்திரங்களிலிருந்து வளிமண்டலத்தினுள் CO,CO₂,NO,NO₂,SO₂ என்பன விடுவிக்கப்படுகின்றன.
 - இவ்வாயுக்கூறுகள் யாவற்றினாலும் ஏற்படுத்தக்கூடிய குறித்த ஒரு சுற்றாடற் பிரச்சினை யாது?
 - ii. நீர் (i) இல் குறிப்பிட்ட சுற்றாடல் பிரச்சினை மேற்படி வாயுக்களினால் எங்கனம் ஏற்படுத்தப்படுகின்றது என்பதைக் குறிப்பிடுக.
 - iii. மேற்தரப்பட்ட வாயுக்களில் நீர்குறிப்பிட்ட சுற்றாடல் பிரச்சினைக்கு அதிக பங்களிப்புச்செய்யும் வாயு எது?
 - iv. (i) இல் குறிப்பிடப்பட்ட பிரச்சனையால் சூழல் மீது ஏற்படுத்தப்படும் 4 பாதகமான விளைவுகளைக் குறிப்பிடுக.
 - v. இங்கு (i) இல் குறிப்பிட்ட பிரச்சினைக்கு நீராவி மூலக்கூறுகள் பங்களிப்பு செய்வதில்லை எனக் கருதப்படுகிறது. இக்கூற்றை நியாயப்படுத்துக.
 - vi. மேற்குறிப்பிட்ட வாயுக்களில் எது சுற்றாடல் பிரச்சினைகளாகிய அமிலமழை (AR), பூகோள வெப்பமாதல் (GW), ஒசோன்படைச்சிதைவு (OLD), ஒளி இரசாயனப்புகார் விளைவு (PCS) ஆகிய நான்கிற்கும் பங்களிப்புச் செய்யக்கூடியது?
 - vii. நீர் (b) (vi) இல் குறிப்பிட்ட வாயு மூலக்கூறு எங்கனம் மேற்படி நான்கு பிரச்சினைகளையும் ஏற்படுத்துகின்றது என்பதை தேவையான இடங்களில் பொருத்தமான சமன்பாடுகளைப் பயன்படுத்திக் குறிப்பிடுக.
 - ${
 m viii.}$ ${
 m SO}_2$ எங்கனம் அமிலமழைக்கு பங்களிப்பு செய்கின்றது என்பதை பொருத்தமான சமன்பாடு மூலம் காட்டுக.
 - ix. SO_2 வளிமண்டலத்தை அடைவதை இழிவுபடுத்தும் நோக்கத்திற்காக எங்கனம் உள்நாட்டு வளம் ஒன்றைப் பயன்படுத்த முடியும் என்பதைக் குறிப்பிட்டு,பொருத்தமான சமன்பாட்டையும் தருக.
 - மலே குறிப்பிட்ட காலல்களில் அதிக நச்சுத்தன்மையான NO,CO என்பனவற்றை நச்சுத்தன்மை குறைந்த வாயுக்களாக மாற்றுவதற்கு வாகனப்புகைபோக்கியில் ஊக்கிமாற்றி பயன்படுத்தப்படுகின்றது.
 ஊக்கிமாற்றியில் பயன்படுத்தப்படும் இரசாயனகூறுகளைக் குறிப்பிட்டு இம்மாற்றத்திற்கான சமப்படுத்திய சமன்பாடுகளை எழுதுக.
- 10. (a) P,Q,R,S என்பன கோபோல்ற்றின் ஒரே ஒட்சியேற்ற நிலைக்குரிய எண்கோண கேத்திர கணிதத்தைக் கொண்டிருக்கும் நான்கு இணைப்புச் சேர்வைகளாகும். P,Q என்பன CoN₅H₁₅BrCl₂ எனும் மூலக்கூற்றுச் சூத்திரத்தினையும் R,S என்பன CoN₅H₁₅Br₂Cl எனும் மூலக்கூற்றுச் சூத்திரத்தினையும் கொண்டுள்ளது. இம் மாதிரிகளை தனித்தனியே காய்ச்சி வடித்த நீரில் கரைத்து பெறப்பட்ட கரைசல்களுக்கு குளோரினால் நிரம்பல் செய்யப்பட்ட காபநாற்குளோரைட்டுக் கரைசலைச் சேர்த்துக் குலுக்கிய போது Q,R,S என்பன சேதனப்படையில் நிறமாற்றத்தை ஏற்படுத்தியது எனினும் Pஆனது சேதனப்படையில் நிறமாற்றத்தினை ஏற்படுத்தவில்லை. ஒரே செநிவுடைய சம கனவளவு R,S மாதிரிக் கரைசல்களுக்கு தனித்தனியே சம செறிவுடைய AgNO_3 கரைசல் மிகையாகச் சேர்த்த போது R ஐ விட S இல் கூடியளவு திணிவு வீழ்படிவு பெறப்பட்டது.
 - i. இச்சேர்வைகளில் கோபோல்ற்றின் ஒட்சியேற்ற நிலை யாது?
 - ii. P,Q,R,S ஆகியவற்றின் கட்டமைப்புச் சூத்திரங்களையும் அவற்றிற்கு உரித்தான IUPAC பெயர்களையும் தருக.
 - ${
 m iii.}$ R,S கரைசல் மாதிரிகளிற்கு ${
 m AgNO_3}$ சேர்த்த போது தோன்றிய வீழ்படிவு / வீழ்படிவுகளைத் தருக.
 - iv. கிளைசினேற்றோ (gly) இன் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

$$\begin{array}{c}
O \\
\parallel \\
NH_2 - CH_2 - C - O
\end{array}$$

கிளைசினேற்றோ இணையியானது நைதரசன், ஒட்சிசன் அணுக்களின் ஊடாக உலோக அயன் Cr^{3+} உடன் இணைந்து எண்முக வடிவச்சிக்கல் அயன் T ஐ விளைவிக்கின்றது. T இன் கட்டமைப்புச் சூத்திரத்தை எழுதி அதன் கட்டமைப்பை வரைக.

குறிப்பு :- உங்களது கட்டமைப்புச் சூத்திரத்தில் கிளைசினேற்றோ அயனிற்காக gly எனும் சுருக்கத்தைப் பயன்படுத்துக. (b) X ஆனது குறித்த ஒரு மூலகமாகும். மூலகங்கள் X, ஐதரசன் தொடர்பான தரவுகள் 25^{0} C வெப்பநிலையிலும், 1atm அமுக்கத்திலும் தரப்பட்டுள்ளன.

இரசாயனக் கூறு	$H_{2(g)}$	$X_{(s)}$	$H^{+}_{(aq)}$	$X^{+}_{(aq)}$
நியமவெப்ப உள்ளுறை /kJmol ⁻¹	0	0	0	-240
நியம எந்திரப்பி $/\mathrm{Jmol}^{-1}\mathrm{K}^{-1}$	131	51	0	59

- i. $2X^+_{(aq)} + H_{2(g)} \rightarrow 2X_{(s)} + 2H^+_{(aq)}$ என்ற தாக்கம் தொடர்பாக $25^0 C$ வெப்பநிலையிலும் 1atm அமுக்கத்திலும் பின்வருவனவற்றைக் கணிக்க.
 - 1. ΔH^θ
 - 2. ΔS^{θ}
 - 3. ΔG^{θ}
- ii. $2H^{^{+}}_{\;\;(aq)}+\;2X_{(s)}
 ightarrow \;\;H_{2(g)}+\;2X^{^{+}}_{\;\;(aq)}$ எனும் தாக்கத்திற்கான
 - 1. ΔH^{θ}
 - 2. ΔS^{θ}
 - 3. ΔG^{θ} போன்றவற்றை (i)ல் பெறப்பட்ட பெறுமானங்களின் அடிப்படையில் உய்த்தறிக.
- X ஆனது மின்னிரசாயனத்தொடரில் H_2 இற்கு மேலேயுள்ளதா? கீழேயுள்ளதா? என்பதைத் தகுந்த காரணங்களைக் குறிப்பிட்டு தீர்மானிக்க.
- iv. மேற்படி மின்வாய்களைப் பயன்படுத்தி கலம் ஒன்று உருவாக்கப்பட்டதெனக் கருதி,
 - 1. இக்கலத்தின் அனோட்டு, கதோட்டு என்பவற்றின் வழமையான குறியீட்டினைத் தருக.
 - 2. இக்கலத்தின் அனோட்டு, கதோட்டு தாக்கங்களைத் தருக.
 - 3. கலத்தாக்கத்தைத் தருக.
 - 4. நியமக் கலக்குநியீட்டினைத் தருக.
 - 5. கலத்தாக்கத்திற்குரிய கிப்ஸின் சக்திமாற்றம் ΔG^{θ} ஆனது பின்வரும் சமன்பாடு மூலம் தரப்படலாம்.

$$\Delta G^{\theta} = -nFE^{\theta}$$

இங்கு n என்பது ஈடுசெய்த கலத்தாக்கத்தில் சம்பந்தப்படும் இலத்திரன்களின் மூல் எண்ணிக்கையாகும். (ஒட்சியேற்றி, தாழ்த்திகளிடையே பரிமாற்றப்பட்ட இலத்திரன்களின் மூல் எண்ணிக்கை)

F - பரடே மாறிலி ($F = 96500 \text{ Cmol}^{-1}$)

 E^{θ} - கலத்தின் நியம மின்னியக்க விசையாகும்.

இக்கலத்தின் நியம மின்னியக்கவிசையைக் கணிக்க.

6. கலத்தின் மின்னியக்க விசையை அதிகரிக்கும் வழிமுறைகளைத் தருக.

ஆவர்த்தன அட்டவணை

	-																	,
	Н																	He
-	3	4											5	9	7	8	6	10
	Li	Be											В	С	Z	0	Ŧ	Ne
	11	12											13	14	15	91	17	18
	Na	Mg											AI	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	56	30	31	32	33	34	35	36
	K	Ca	Sc	Ţi	^	\mathbf{Cr}	Mn	Fe	ပိ	Ż	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	4	45	46	47	48	46	95	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cq	In	Sn	Sb	Te	I	Xe
	55	99	La-	72	73	74	75	92	11	78	62	08	81	82	83	84	85	98
	Cs	Ba	Lu	Hť	Ta	×	Re	Os	Ir	Pt	Au	Hg	Т	Pb	Bi	Po	At	2
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
	Fr	Ra	Lr	Rf	Dp	Sg	Bh	Hs	Mt	Uun Uuu Uub	Una		Uut	÷				

29	8	61	62	63	2	65	8	29	89	69	92	71
PN	-	Pm	Sm	Eu	РS	Tb	Dy	Ho	Er	Tm	Yb	Lu
92	~	93	94	95	96	97	86	66	100	101	102	103
n		Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Мd	No	Lr