Computational Geometry

The systematic study of algorithms and data structures for geometric objects, with a focus on exact algorithms that are asymptotically fast.

Two key ingredients of a good algorithmic solution:

- ♦ Thorough understanding of the problem geometry.
- ◆ Proper application of algorithmic techniques and data structures.

Com S 418 (prereq. Com S 311)

http://www.cs.iastate.edu/~cs518/

Example 1 - Proximity

Closest café on campus? Delaunay triangulation

Voronoi diagram

Example 2 - Path Planning

How can a robot find a *short* route to the destination that avoids all obstacles?

Line Segments & Vectors

Points (vectors): $p \downarrow 1$, $p \downarrow 2$, $p \downarrow 1 - p \downarrow 2 = p \downarrow 2$ $p \downarrow 1$

Line segment: $p \downarrow 2$ $p \downarrow 1$ = $p \downarrow 1$ $p \downarrow 2$

Dot (Inner) Product

 $p \downarrow 1 \cdot p \downarrow 2 = x \downarrow 1 \ x \downarrow 2 + y \downarrow 1 \ y \downarrow 2 = p \downarrow 2 \cdot p \downarrow 1 = |p \downarrow 1| / |p \downarrow 2| \cos \varphi$

Cross (Vector) Product

 $p \downarrow 1 \times p \downarrow 2 = x \downarrow 1$ $y \downarrow 2 - x \downarrow 2$ $y \downarrow 1 = -p \downarrow 2 \times p \downarrow 1 = |p \downarrow 1| / |p \downarrow 2| \sin \varphi$ $p \downarrow 1$ and $p \downarrow 2$ are *collinear* with the origin iff $p \downarrow 1 \times p \downarrow 2 = p \downarrow 1$

Turning of Consecutive Segments

Segments $p \not\downarrow 0$ $p \not\downarrow 1$ and $p \not\downarrow 1$ $p \not\downarrow 2$. Move from $p \not\downarrow 0$ to $p \not\downarrow$

Counterclockwise

Clockwise

Turn of 0 or π

 $p \downarrow 0 p \downarrow 1 \times p \downarrow 1 p \downarrow 2 p \downarrow 0 p \downarrow 1 \times p \downarrow 1 p \not p \downarrow 20 p \downarrow 1 \times p \downarrow 1$

Collinear Points

 $p \downarrow 0$ $p \downarrow 1$ $\times p \downarrow 1$ $p \not \rightleftharpoons \not \bowtie \downarrow 0$, $p \downarrow 1$, $p \downarrow 2$ are collinear.

No change of direction

Direction reversal

 $p \downarrow 0 \ p \downarrow 1 \ \cdot p \downarrow 1 \ p \downarrow 2 > 0 p \downarrow 0 \ p \downarrow 1 \ \cdot p \downarrow 1 \ p \downarrow 2 <$

Convex Sets & Concave Sets

A planar region R is called *convex* if and only if for any pair of points p, q in R, the line segment pq lies *completely* in R.

Otherwise, it is called *concave*.

An Example

Regions 1 & 2: convex

Regions 3 & 4: concave

Convex Hull

The *convex hull* CH(Q) of a set Q is the *smallest* convex region that contains Q.

When Q is finite, its convex hull is the unique $convex\ polygon$ whose vertices are from Q and that contains all points of Q.

Degenerate Hulls

♦ The convex hull of a single point is itself.

◆ The convex hull of several collinear points is the line segment joining the leftmost and rightmost ones of them.

The Convex Hull Problem

Input: a set $P = \{ p \downarrow 1 , p \downarrow 2 , ..., p \downarrow n \}$ of points

Output: a list of vertices of CH(*P*) in *counterclockwise* order.

(direction of traversal about the outward axis with the interior

on the left)

Example

Output: $p \downarrow 8$, $p \downarrow 10$, $p \downarrow 7$, $p \downarrow 5$, $p \downarrow 9$, $p \downarrow 2$.

Edges of a Convex Hull

- For every edge with both endpoints p, $q \in P$.
- All other points in P lie
 - \rightarrow to the same side of the line passing through p and q

A Slow Convex Hull Algorithm

```
Slow-Convex-Hull(P)
       E \leftarrow \{\} // set of directed edges of CH(P) that bounds the
                 // points of P on the right.
        for every ordered pair (p, q), where p, q \in P and p \neq q // X
              do valid ← true
           for every point r \neq p or q // n \geq 2 such points
                  do if {\mathcal P} lies to the right of {\mathcal P} {\mathcal Q} or
                         collinear with \mathcal{P} and \mathcal{Q} but not on \mathcal{P}\mathcal{Q}
                         then valid ← false
              if valid
then E \leftarrow E \cup \{pq\} // pq and qp cannot be Running time \{m, n, m\} of vertices of CH(P), sorted in
```

Polar Angle

Graham's Scan (1972)

1) Select the node with the smallest y coordinate.

This node will be a vertex of the convex hull.

Tie Breaking (1)

When more than one point has the smallest y coordinate, pick the *leftmost* one.

Sorting by Polar Angle

2) Sort by polar angle with respect to $p \downarrow 0$.

Labels are in the polar angle order.

No Polar Angle Evaluation

 $p \downarrow 0$ is the lowest (and leftmost) \longrightarrow all polar angles $\in [0, \pi)$.

Use cross product!

$$p \downarrow i if $p \downarrow 0$ $p \downarrow i$ $\times p \downarrow 0$ $p \downarrow j > 0$$$

Tie Breaking (2)

What if $p \downarrow 0$, $p \downarrow i$, $p \downarrow j$ are on the same line? Order them by distance from $p \downarrow 0$.

 $p \downarrow 0$ $p \downarrow i$ $\cdot p \downarrow 0$ $p \downarrow i$ $<math>p \downarrow j$ $\cdot p \downarrow 0$ $p \downarrow j$

Point Elimination

When multiple points have the same polar angle, keep the one furthest from $p \downarrow 0$.

Remove the rest since they cannot possibly be the hull vertices.

Stack Initialization

3) Scan points in the increasing order of polar angle, maintaining a stack.

Finish

Graham's Scan

The Graham Scan Algorithm

```
Graham-Scan(P)
     let p \downarrow 0 be the point in P with minimum y-coordinate
     let \langle p \downarrow 1, p \downarrow 2, ..., p \downarrow n-1 \rangle be the remaining points in P
          sorted in counterclockwise order by polar angle around p \downarrow 0.
     Top[S] \leftarrow 0
     Push(p \downarrow 0, S)
     Push(p\downarrow1, S)
     Push(p \downarrow 2, S)
     for i \leftarrow 3 to n-1
          do while p \downarrow i makes a nonleft turn from the line segment
                     determined by Top(S) and Next-to-Top(S)
                  do Pop(S)
              Push(S, p \downarrow i)
     return S
```

Correctness of Graham's Scan

Invariant The points on the stack S always form the vertices of the convex hull of the points scanned so far in counterclockwise order.

Theorem If Graham-Scan is run on a set P of at least three points, then a point of P is on the stack S at termination if and only if it is a vertex of CH(P).

Running time

#operations	time / operation	total
Finding 1		$\mathbb{X}(n)$
Sorting 1	$O(n \log n)$	$O(n \log n)$
Push n	$\mathcal{O}(1)$	(n)
Pop $ \mathbb{W} $	0(1)	O(n)

The running time of Graham's Scan is $O(n \log n)$.