

Databases Environment

Chapter #2 Imran Khan FCS, IBA

Lecture 2 - Objectives

- Purpose of three-level database architecture.
- Contents of external, conceptual, and internal levels.
- Purpose of external/conceptual and conceptual/internal mappings.
- Meaning of logical and physical data independence.
- Distinction between DDL and DML.
- A classification of data models.

Lecture 2 - Objectives

- Purpose/importance of conceptual modelling.
- Typical functions and services a DBMS should provide.
- Software components of a DBMS.
- Meaning of client—server architecture and advantages of this type of architecture for a DBMS.
- Function and importance of the system catalog.

Objectives of Three-Level Architecture

- All users should be able to access same data.
- A user's view is immune to changes made in other views.
- Users should not need to know physical database storage details.

Objectives of Three-Level Architecture

- DBA should be able to change database storage structures without affecting the users' views.
- Internal structure of database should be unaffected by changes to physical aspects of storage.
- DBA should be able to change conceptual structure of database without affecting all users.

ANSI-SPARC Three-level Architecture

ANSI-SPARC Three-level Architecture

External Level

- Users' view of the database.
- Describes that part of database that is relevant to a particular user.

Conceptual Level

- · Community view of the database.
- Describes what data is stored in database and relationships among the data.

ANSI-SPARC Three-level Architecture

Internal Level

- Physical representation of the database on the computer.
- Describes how the data is stored in the database.

Differences between Three Levels of ANSI-SPARC Architecture

Data Independence

- Logical Data Independence
 - Refers to immunity of external schemas to changes in conceptual schema.
 - Conceptual schema changes (e.g. addition/removal of entities)
 - Should not require changes to external schema or rewrites of application programs.

Data Independence

- Physical Data Independence
 - Refers to immunity of conceptual schema to changes in the internal schema.
 - Internal schema changes (e.g. using different file organizations, storage structures/devices).
 - Should not require change to conceptual or external schemas.

Data Independence and the ANSI-SPARC Three-level Architecture

Database Languages

- Data Definition Language (DDL)
 - Allows the DBA or user to describe and name entities, attributes, and relationships required for the application
 - plus any associated integrity and security constraints.

Database Languages

- Data Manipulation Language (DML)
 - Provides basic data manipulation operations on data held in the database.
- Procedural DML
 - allows user to tell system exactly how to manipulate data.
- Non-Procedural DML
 - allows user to state what data is needed rather than how it is to be retrieved.

Database Languages

- Fourth Generation Language (4GL)
 - Query Languages
 - Forms Generators
 - Report Generators
 - Graphics Generators
 - Application Generators

Data Model

- Integrated collection of concepts for describing data, relationships between data, and constraints on the data in an organization.
- Data Model comprises:
 - A structural part
 - A manipulative part
 - Possibly a set of integrity rules

Data Model

- Purpose
 - To represent data in an understandable way.
- Categories of data models include:
 - Object-based
 - Record-based
 - Physical

Data Models

- Object-based Data Models
 - Entity-Relationship
 - Semantic
 - Functional
 - Object-Oriented
- Record-based Data Models
 - Relational Data Model
 - Network Data Model
 - Hierarchical Data Model
- Physical Data Models

Conceptual modelling

- Conceptual schema is the core of a system supporting all user views.
- Should be complete and accurate representation of an organization's data requirements.
- Conceptual modelling is process of developing a model of information use that is independent of implementation details.
- Result is a conceptual data model.

Functions of a DBMS

- Data Storage, Retrieval, and Update.
- A User-Accessible Catalog.
- Transaction Support.
- Concurrency Control Services.
- Recovery Services.

Functions of a DBMS

- Authorization Services.
- Support for Data Communication.
- Integrity Services.
- Services to Promote Data Independence.
- Utility Services.

Components of a DBMS

Components of Database Manager (DM)

Multi-User DBMS Architectures

- Teleprocessing
- File-server
- Client-server

Teleprocessing

File Server

Client-server

- Server holds the database and the DBMS.
- Client manages user interface and runs applications.
- Advantages include:
 - · wider access to existing databases
 - increased performance
 - possible reduction in hardware costs
 - · reduction in communication costs
 - increased consistency.

Client-server Architecture

Client-server Architecture

Transaction Processing Monitors

 A program that controls data transfer between clients and servers in order to provide a consistent environment, particularly for online transaction processing (OLTP).

System Catalog

- Repository of information (metadata) describing the data in the database.
- Typically stores:
 - Names of authorized users.
 - Names of data items in the database.
 - Constraints on each data item.
 - Data items accessible by a user and the type of access.
- Used by modules such as Authorization Control and Integrity Checker.