Algorithmen und Wahrscheinlichkeit

Woche 11

Theorie Recap

Konvexe Hülle

Gegeben: eine endliche Punktenmenge $P \subseteq \mathbb{R}^d$

Gesucht: die konvexe Hülle von P, conv(P)

Konvexe Hülle: die minimale konvexe Menge, die P beinhaltet

Randkante: geordnetes Paar qr für $q, r \in P$ mit $q \neq r$ s.d. alle Punkte von P links von qr liegen

JarvisWrap(P)

- 1) $h \leftarrow 0$
- 2) $p_{now} \leftarrow \text{Punkt mit kleinster } x \text{Koordinate}$
- 3) repeat
- 4) $q_h \leftarrow p_{now}$
- 5) $p_{now} \leftarrow \text{FindNext}(q_h)$
- 6) $h \leftarrow h + 1$
- 7) until $p_{now} = p_0$
- 8) return $(q_0, ..., q_{h-1})$

Laufzeit: $\mathcal{O}(n \cdot h)$, wobei h := # Ecken in conv(P)

- $\rightarrow \mathcal{O}(n^2)$ worst case
- $\rightarrow \mathcal{O}(n)$ wenn h konstant

FindNext(q)

- 1) Wähle beliebig $p_0 \in P \setminus \{q\}$
- 2) $q_{next} \leftarrow p_0$
- 3) for all $p \in P \setminus \{q, p_0\}$ do
- 4) if p rechts von qq_{next} then
- 5) $q_{next} \leftarrow p$
- 6) return q_{next}

p rechts von qq_{next}

$$\iff (q_x - p_x)(q_{next,y} - p_y) < (q_y - p_y)(q_{next,x} - p_x)$$

Konvexe Hülle - Lower Bound der Laufzeit

Reduktion vom Sortieren:

$$(x_1, ..., x_n) \rightarrow ((x_1, x_1^2), ..., (x_n, x_n^2))$$

können wir Konvexe Hülle in t(n) bestimmen so können wir in $\mathcal{O}(t(n)+n)$ sortieren $\implies t(n) \in \Omega(n \cdot \log n)$

Konvexe Hülle - Lokal Verbessern

```
LocalRepair(p_1, p_2, \ldots, p_n)
                                                            (p_1, p_2, \ldots, p_n) sortiert
 1: q_0 \leftarrow p_1; h \leftarrow 0
 2: for i \leftarrow 2 to n do

    □ unterer Rand, links nach rechts

          while h > 0 und q_h links von q_{h-1}p_i do
         h \leftarrow h - 1
       h \leftarrow h + 1; q_h \leftarrow p_i
                   \triangleright (q_0, \ldots, q_h) untere konvexe Hülle von \{p_1, \ldots, p_i\}
 7: h' \leftarrow h
 8: for i \leftarrow n-1 downto 1 do \triangleright oberer Rand, rechts nach links
          while h > h' und q_h links von q_{h-1}p_i do
              h \leftarrow h - 1
10:
          h \leftarrow h + 1; q_h \leftarrow p_i
11:
12: return (q_0, q_1, \dots, q_{h-1})
```

Analyse

- Sortieren -> $\mathcal{O}(n \log n)$
- 2n-2-h Mal erfolgreiche Tests (neues Dreieck) -> $\mathcal{O}(n)$
- 2n-2 erfolglose Tests (p_i wird zu einer Kante) -> $\mathcal{O}(n)$
- \rightarrow Wenn die Punkte schon sortiert sind -> $\mathcal{O}(n)$ statt $\mathcal{O}(n \log n)$

Netzwerke und Flüsse

Netzwerk N := (V, A, c, s, t)

- (V,A) ist ein gerichteter Graph
- $-s \in V$ ist die Quelle
- $-t \in V$ ist die Senke
- $c:A \to \mathbb{R}_0^+$ die <u>Kapazitätsfunktion</u>

Fluss f in $N: f: A \to \mathbb{R}_0^+$

- Zulässigkeit: $0 \le f(e) \le c(e)$ für alle $e \in A$
- Flusserhaltung: Für alle $v \in V \setminus \{s, t\}$ gilt

$$\sum_{u \in V: (u,v) \in A} f(u,v) = \sum_{u \in V: (v,u) \in A} f(v,u)$$

$$-\operatorname{val}(f) \coloneqq \operatorname{netoutflow}(s) \coloneqq \sum_{u \in V: (s, u) \in A} f(s, u) - \sum_{u \in V: (u, s) \in A} f(u, s)$$

$$-\operatorname{val}(f) \coloneqq \operatorname{netinflow}(t) \coloneqq \sum_{u \in V: (u, t) \in A} f(u, t) - \sum_{u \in V: (t, u) \in A} f(t, u)$$

Schnitte

s-t-Schnitt in
$$N := (V, A, c, s, t)$$

- eine Partition von V:(S,T)
- $-s \in S, t \in T$

$$-\operatorname{cap}(S,T) = \sum_{(u,w)\in(S\times T)\cap A} c(u,w)$$

Flüsse und Schnitte

- für einen Fluss f und einen Schnitt (S,T) : $\mathrm{val}(f) \leq \mathrm{cap}(S,T)$
- für einen Fluss $f: \exists (S, T) : val(f) = cap(S, T) \implies f$ is maximal
- MaxFlowMinCut-Theorem:

$$\max_{f} \operatorname{val}(f) = \min_{(S,T)} \operatorname{cap}(S,T)$$

$$cap(S, T) = 2 + 2 + 6 = 10$$

Restnetzwerk

Restnetzwerk $N_f = (V, A_f, r_f, s, t)$ für N, f

- N hat keine entgegen gerichtete Kanten
- $\forall e \in A : f(e) < c(e) \Longrightarrow e \in A_f \land r_f(e) = c(e) f(e)$
- $\forall e \in A : f(e) > 0 \Longrightarrow e^{opp} \in A_f \land r_f(e^{opp}) = f(e)$
- A_f hat keine weiteren Kanten

Restnetzwerk und MaxFlow

f ist ein <u>maximaler Fluss</u> $\iff \neg \exists \underline{\text{gerichteter s-t-Pfad}} \text{ in } N_f$

Netzwerk

Fluss

Restnetzwerk

Restnetzwerk $N_f = (V, A_f, r_f, s, t)$ für N, f

- N hat keine entgegen gerichtete Kanten
- $\forall e \in A : f(e) < c(e) \Longrightarrow e \in A_f \land r_f(e) = c(e) f(e)$
- $\forall e \in A : f(e) > 0 \Longrightarrow e^{opp} \in A_f \land r_f(e^{opp}) = f(e)$
- A_f hat keine weiteren Kanten

Restnetzwerk und MaxFlow

f ist ein <u>maximaler Fluss</u> $\iff \neg \exists \underline{\text{gerichteter s-t-Pfad}} \text{ in } N_f$

Netzwerk

Fluss

Max-Flow Algorithmen nach Veröffentlichung [Bearbeiten | Quelltext bearbeiten]

Jahr	Autor(en)	Name	Laufzeiten
1956	Ford, Fulkerson	Algorithmus von Ford und Fulkerson	$\mathcal{O}\left(m\cdot n\cdot u_{ ext{max}} ight)$, falls alle Kapazitäten ganzzahlig sind
1969	Edmonds, Karp	Algorithmus von ⊨amonds und Karp	$\mathcal{O}\left(m\cdot n\cdot u_{ ext{max}} ight)$, falls alle Kapazitäten ganzzahlig sind $\mathcal{O}\left(m^2\cdot n ight)$
1970	Dinic	Algorithmus von Dinic	$\mathcal{O}\left(m\cdot n^2 ight)$
1973	Dinic, Gabow		$\mathcal{O}\left(m \cdot n \cdot \log(u_{ ext{max}}) ight)$
1974	Karzanov		$\mathcal{O}\left(n^3 ight)$
1977	Cherkassky		$\mathcal{O}\left(n^2\cdot\sqrt{m} ight)$
1980	Galil, Naamad		$\mathcal{O}\left(m\cdot n\cdot \log\left(n ight)^2 ight)$
1983	Sleator, Tarjan		$\mathcal{O}\left(m \cdot n \cdot \log(n) ight)$
1986	Goldberg, Tarjan	Goldberg-Tarjan-Algorithmus	$\mathcal{O}\left(m\cdot n\cdot \log\!\left(rac{n^2}{m} ight) ight)$
1987	Ahuja, Orlin		$\mathcal{O}\left(m\cdot n + n^2\cdot \log(u_{ ext{max}}) ight)$
1987	Ahuja, Orlin, Tarjan		$\mathcal{O}\left(m \cdot n \cdot \log \left(2 + \frac{n \cdot \sqrt{\log(u_{\max})}}{m}\right)\right)$
1990	Cheriyan, Hagerup, Mehlhorn		$\mathcal{O}\left(rac{n^3}{\log(n)} ight)$
1990	Alon		$\mathcal{O}\left(m\cdot n + \sqrt[3]{n^8}\cdot \log(n)\right)$
1992	King, Rao, Tarjan		$\mathcal{O}\left(m\cdot n+n^{2+e} ight)$
1993	Philipps, Westbrook ^[2]		$\mathcal{O}\left(m\cdot n\cdot\log_{rac{m}{n}}\left(n ight)+n^2\cdot\log\left(n ight)^{2+e} ight)$
1994	King, Rao, Tarjan ^[3]		$\mathcal{O}\left(m \cdot n \cdot \log_{rac{m}{n \cdot \log(n)}}(n) ight)$
1997	Goldberg, Rao ^[4]		$\mathcal{O}\left(\min\{\sqrt{m},\sqrt[3]{n^2}\}\cdot m\cdot \log\!\left(\frac{n^2}{m}\right)\cdot \log(u_{\max})\right)$
2012	Orlin, King, Rao, Tarjan		$\mathcal{O}\left(n\cdot m ight)$
2022	Chen, Kyng, Liu Peng, Gutenberg, Sachdeva ^[5]		$m^{1+o(1)}$ für janzzahlige Kapazitäten, die polynomiell beschränkt sind

Algorithmen

Ford-Fulkerson Algorithmus

- 1) $f \leftarrow 0$
- 2) while $\exists s$ -t-Pfad P in N_f do
- 3) Augmentiere den Fluss entlang P
- 4) return f
- \rightarrow kann unendlich laufen wenn $c:A \rightarrow \mathbb{R}$
- \rightarrow läuft immer endlich wenn $c:A\to\mathbb{N}_0$
- ightarrow Laufzeit: $\mathcal{O}(mnU)$ wobei $c:A
 ightarrow\mathbb{N}_0$ und $U=\max_{e\in A}c(e)$

Andere Methode/Algorithmen

- 1) Capacity Scaling (Kapazitäten ganzzahlig + höchstens U) $\mathcal{O}(mn(1+\log U))$
- 2) Dynamic Trees $\mathcal{O}(mn \log n)$

Satz für Ford-Fulkerson Algorithmus

Für N mit $c:A\to \mathbb{N}_0^{\leq U}$ gilt:

- 1) es gibt einen ganzzahligen maximalen Fluss
- 2) der Algo findet den Fluss in $\mathcal{O}(mnU)$

Pathological Example:

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/07DemoFordFulkersonPathological.pdf

Kahoot

Aufgaben

Aufgabe 1: Conference Scheduling

Die ETH organisiert eine Konferenz für alle Departements. Es gibt n Departments mit m_i $(1 \le i \le n)$ vielen Teilnehmer:innen von jedem Department i. Auf der Konferenz gibt es eine Gruppenarbeitsphase. Dazu werden alle Teilnehmer:innen in k Gruppen aufgeteilt und jede Gruppe hat l_i $(1 \le i \le k)$ viele Plätze. Es darf dabei nie 2 oder mehr Teilnehmer:innen aus dem gleichen Departement in der gleichen Gruppe sein. Wie kann man überprüfen, ob solch eine Aufteilung möglich ist und wenn es möglich ist, wie findet man sie? Modelliere das Problem als ein MaxFlow Problem. Was ist die Laufzeit deines Algorithmus?

Aufgabe 2: Modified Network

Gegeben seien ein Netzwerk N=(V,A,c,s,t) mit ganzzahligen Kapazitäten und ein ganzzahliger maximaler Fluss f_{max} .

Nun wird die Kapazität einer Kante $e \in A$ um 1 erhöht. Wie kann man nun einen maximalen Fluss f'_{max} in Zeit $\mathcal{O}(n+m)$ finden?