I/ Droites parallèles et perpendiculaires

1) Définitions

<u>**Définition**</u> : deux droites sont parallèles si elles ne se coupent pas en un point.

On note $(d_1) // (d_2)$: « la droite (d_1) est parallèle à la droite (d_2) .

<u>Remarque</u>: deux droites confondues sont des droites parallèles particulières.

Ici, les droites (d) et (d') sont confondues.

<u>**Définition**</u>: deux droites sont sécantes si elles ont un seul point d'intersection.

Les droites (d_1) et (d_2) sont sécantes en A.

<u>**Définition**</u>: deux droites sont perpendiculaires si elles sécantes en formant un angle droit.

On note (d) \perp (d') : « La droite (d) est perpendiculaire à la droite (d') en A ».

<u>Remarque</u> : un petit carré au point d'intersection indique que les droites sont perpendiculaires.

2) Propriétés

<u>Propriété 1</u>: Si deux droites sont parallèles, toute droite parallèle à l'une est parallèle à l'autre.

Si (d') // (d) et (d') // (d") alors (d) // (d').

<u>Propriété 2</u>: Si deux droites sont perpendiculaires à une même droite alors elles sont parallèles.

Si (d') \perp (d) et (d'') \perp (d) alors (d') // (d'').

<u>Propriété 3</u>: Si deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre. Si (d') // (d'') et (d) \perp (d') alors (d) \perp (d'').

II/ Angles

1) Rappels

90°.

Angle obtus: mesure entre 90° et 180°.

Angle droit: mesure 90°.

