Architecting Your First Big Data Implementation

Bob Wakefield
Principal
bob@MassStreet.net
Twitter:
@BobLovesData

Who is Mass Street?

Boutique data consultancy

We work on data problems big or "small"

• We have a focus on helping organizations move from a batch to a real time paradigm.

• Free Big Data training

Mass Street Partnerships and Capability

- •Hortonworks Partner
- Confluent Partner
- ARG Back Office

Bob's Background

- IT professional 16 years
- Currently working as a Data Engineer
- Education
 - BS Business Admin (MIS) from KState
 - MBA (finance concentration) from KU
 - Coursework in Mathematics at Washburn
 - Graduate certificate Data Science from Rockhurst
- Addicted to everything data

Follow Me!

- •Personal Twitter: @BobLovesData
- •Company Twitter: @MassStreet
- •Blog: DataDrivenPerspectives.com
- •Website: www.MassStreet.net
- •Facebook: @MassStreetAnalyticsLLC

Upcoming MeetUps

October: Joint MeetUp with Data Science KC. Reproducible Research with R, The Tidyverse, Notebooks, and Spark

November: Joint MeetUp with Kansas City Apache Spark MeetUp. Practicing IoT skills with Satori. (Still in the works.)

December: Survey of common data science algorithms.

This Evening's Learning Objectives

- Tonight is a rare lecture with no hands on.
 - I didn't have time to put together a show and tell.
- General Info
 - What is Big Data?
 - What is Hadoop?
 - What kind of problems does Hadoop help me solve?
- What do I need to build big data competency?
 - Engineers
 - Linux experts
 - Data Analyst (Internal!)
- Big data software and tools
 - All the stuff!
- Use cases

Nerd alert!

- Every single individual topic we're going to talk about could be:
 - A book unto itself
 - Several volumes of books unto itself
 - A three credit hour undergrad college course

Watch out for soapbox moments!

Resources For This Evening's Material: Books

•Hadoop Application Architectures

•(it's a little dated)

Resources For This Evening's Material: Online Classes

•Architect and Build Big Data Applications

 Analytic Data Storage in Hadoop

Buzzword definitions

Distributed – many computers working on the same problem

 Commodity Hardware – This does not mean cheap. Means Cheaper.

• Schema-on-read – structure of data imposed at processing time.

Buzzword definitions

Linear Scale – Adding more boxes gets you performance
 = mx+b vs. diminishing returns

Definition v1: volume, velocity, variety

Definition v2:
When you have so much data you can't analyze it by traditional means.

SELECT address, COUNT(*)
FROM customers
GROUP BY address

Definition v3:

When you have so much data, you can't get things done in a reasonable amount of time.

Analytics

What Is Hadoop?

- 1. Distributed computing for the masses.
- 2. Is the backbone to many distributed applications.
- 3. Can mean a lot of things depending on context.
 - 1. Could mean Hadoop core.
 - 2. Could mean the entire set of Big Data tools.
 - 3. Could mean the MapReduce framework.

What is Hadoop?

- Provides distributed fault tolerant data storage
- Provides linear scalability on commodity hardware
- Translation: Take all of your data, throw it across a bunch of cheap machines, and analyze it. Get more data? Add more machines

It's like a child's erector set!

Photo Credit: Hortonworks website

What kind of problems does Hadoop help me solve?

- Easier analysis of big data
- Lower TCO of data
- Offloading ETL workloads
- Transition from batch to real time
- It lets you see the future.

What do I need to build big data competency?

- Engineers
 - Things aren't very point and clicky right now.
 - Java vs. Python vs. Scala
- Linux experts
- Data Analyst
 - These folks should be internal.
 - You can train a data scientist.
 - Python vs. R

Some questions to ask before you start your first big data project.

- Use these questions to drive your architecture.
- What kind of data do I have?
 - Highly organized vs. super messy.
 - Critical data that needs to move fast vs. data that can wait.
- How fast do I want to implement a solution?
 - Is there low hanging fruit?
- Who do I have vs. who do I need to hire?
 - Who is trainable?
 - Should I get outside help?

Some questions to ask before you start your first big data project.

- What is my current tech stack?
 - Windows vs. Linux
 - On Prim Vs. Cloud
 - If you're on prim do you have rack space?
 - What are my current BI Tools?
 - Excel vs. Microstrategy (free now!) vs. Bime vs. Tableau
- What is managing my application security?
 - LDAP vs. Active Directory

Big Data Software and Tools

- Most of it is free open source.
- Despite being open source, it's high quality.
- A lot of projects are part of the Apache Software Foundation.
- Several projects have dozens of committers.
- A cottage industry has sprung up around open source.

Cloud Solutions

- AWS (S3)
- MS Azure
- Google Cloud (Big Query, Big Table)
- Databricks
- Confluent (Kafka Saas)

Cloud Solutions Bob's Thoughts

- Great for tactical solutions.
- If you're a smaller organization, cloud offers a managed solution.
- Can be a hassle. You need top flight network engineers.
- Moving to the cloud is not something to do lightly. It requires long term thinking.
- I have no idea why anybody waste time with on prim servers anymore.

Analytics

NoSQL Databases

If you're interested in learning more about NoSQL, I suggest: NoSQL Distilled by Martin Fowler and Pramod J. Sadalage

NoSQL Databases

Easy ETL

Easy schema evolution

Impedance mismatch solved

Types of NoSQL Databases

- Key Value A simple has table, primary used when all access to the database is via primary key.
- Document The database stores and retrieves documents, which can be XML, JSON, BSON
- Column-family Data is stored in columns
- Graph allows you to store relationships between entities

Issues with NoSQL Databases

- They do NOT work like relational databases
 - The guarantees that you are used to aren't there
 - CAP theory (consistency, availability, partition tolerance)
- Each database has it's own query language
 - That language will frequently look NOTHING like SQL

Analytics

Examples of NoSQL Databases

<u>Document</u>	<u>Key Value</u>	<u>Column Store</u>	<u>Graph</u>
Mongo DB	Apache Accumulo	Apache Accumulo	Neo4J
	Redis (in memory)	Druid	
		Hive?	
		Cassandra (DataStax)	
		Hbase	

New SQL Databases

- Distributed versions of databases you're used to
- New concept Hybrid Transactional/Analytical Processing (HTAP)
- Generally two types
 - In Memory
 - Massively Parallel Processing (MPP)

New SQL Databases

- In Memory Databases
 - MemSQL
 - In Memory Databases: A Real Time Analytics Solution
 - MassStreet.net -> YouTube
 - VoltDB
 - NuoDB

New SQL Databases

- MPP Databases
- More suited to analytics
- Examples
 - Greenplumb (has gone open source!)
 - SQL Server PDW
 - MySQL Cluster CGE

Hadoop Distributions

- Get. A. Distro!
- What is a distro?
 - Popular big data software bundled together and installed as a total package.
- Popular distros:
 - Hortonworks
 - Cloudera
 - MapR
 - Various Others
- Most important difference is the support package
 - You can download and use distros without buying a support package.

Hadoop Core

- Hadoop Distributed File System (HDFS) a distributed file-system that stores data on commodity machines, providing very high aggregate bandwidth across the cluster.
- Hadoop YARN a resource-management platform responsible for managing computing resources in clusters and using them for scheduling of users' applications.

Analytics

• Hadoop MapReduce – a programming model for large scale data processing.

Hadoop Core

- **Apache ZooKeeper** A highly available system for coordinating distributed processes. Distributed applications use ZooKeeper to store and mediate updates to important configuration information.
- Apache Tez Generalizes the MapReduce paradigm to a more powerful framework for executing a complex DAG (directed acyclic graph) of tasks for near real-time big data processing.

Analytics

File Formats

- You can't just drop CSVs onto HDFS
 - That's super inefficient
- Pick a file format with the following requirements
 - Compressible
 - Splitable
- You have options on compression codecs
 - Snappy is popular
 - Ultimately an engineering decision

File Formats

Apache Avro

- Language neutral data serialization
- Serializes data in a compact binary format
- Fairly powerful tool
- Useful for schema evolution

Apache Parquet

- General purpose storage format
- Column oriented
- Stores metadata thus self documenting

File Formats

- Avro is good for storing transactional workloads
- Parquet is good for storing analytical workloads
- When in doubt, use Avro
- Both can be used
 - Read and write Parquet with Avro APIs

IMPORTANT!

- Data in HDFS is IMMUTABLE
 - There is no random access
 - If you need that, you'll have to use a database technology
 - A lot of big data databases use HDFS to store the actual data file.

Batch Data Flow Tools

- **Apache Pig** A platform for processing and analyzing large data sets. Pig consists of a high-level language (Pig Latin) for expressing data analysis programs paired with the MapReduce framework for processing these programs.
- Cascading software abstraction layer for Apache Hadoop and Apache Flink. Cascading is
 used to create and execute complex data processing workflows on a Hadoop cluster using
 any JVM-based language (Java, JRuby, Clojure, etc.), hiding the underlying complexity of
 MapReduce jobs. It is open source and available under the Apache License. Commercial
 support is available from Driven, Inc.
- **Apache Sqoop** Sqoop is a tool that speeds and eases movement of data in and out of Hadoop. It provides a reliable parallel load for various, popular enterprise data sources.

Real Time Processing

- THIS IS THE
 QUANTUM LEAP
 GAME CHANGER IN
 YOUR DATA
 MANAGEMENT
 STRATEGY!!!!!
- As a first step, read I
 (*heart*) Logs by Jay
 Kreps

Central Concepts

• The log as a unifying abstraction

• Everything in your org is an event that can be logged, captured, and transported

Real Time Processing Considerations

- Consider a radically different data architecture
 - Microservices?
- Apache Kafka is critical in any streaming architecture
- True Streaming vs. Microbatch
 - I don't think microbatch is a thing anymore
- Delivery guarantees
 - At least once
 - At most once
 - Exactly once

Real Time Processing

- Apache Kafka Kafka is a fast and scalable publish-subscribe messaging system that is often used in place of traditional message brokers because of its higher throughput, replication, and fault tolerance.
- Commercially backed by Confluent
 - Open source and Enterprise Versions

Radically Different Architecture

Radically Different Architecture

Real Time Processing

- Apache Spark Structured Streaming scalable and fault-tolerant stream processing engine built on the Spark SQL engine.
- **Apache Storm** Storm is a distributed real-time computation system for processing fast, large streams of data adding reliable real-time data processing capabilities to Apache Hadoop 2.x.
- Apache Flume Flume allows you to efficiently aggregate and move large amounts of log data from many different sources to Hadoop.

Real Time Processing

- Other real time processing frameworks
 - Apache Flink
 - Apache Samza

They all have benefits and drawbacks

Interesting Point and Click Tools

- Talend
 - Kafka/Spark streaming product
- Streamsets
 - Connector to SQL Server CDC
- NiFi

Data Access and Processing

- **Apache Spark** Spark is ideal for in-memory data processing. It allows data scientists to implement fast, iterative algorithms for advanced analytics such as clustering and classification of datasets.
- **Apache Mahout** Mahout provides scalable machine learning algorithms for Hadoop which aids with data science for clustering, classification and batch based collaborative filtering.
- **Hue** Hadoop User Experience. Open source interface to the Hadoop ecosystem.
 - Provides interfaces and code editors for various projects.
 - Prefer it for interacting with data over Ambari.
 - If you're not using Cloudera, it's a little hard to install.
- **Apache Zeppelin** really powerful notebook
 - Comes with Hortonworks
- Jupyter Notebooks less powerful but more universal

BI Tools

- Apache Superset
- Microstrategy
- Things Board
- Grafana

Orchestration (Job Scheduler)

- Apache Oozie
- Apache Airflow

Security and Governance

- **Apache Knox** The Knox Gateway ("Knox") provides a single point of authentication and access for Apache Hadoop services in a cluster. The goal of the project is to simplify Hadoop security for users who access the cluster data and execute jobs, and for operators who control access to the cluster.
- **Apache Ranger** Apache Ranger delivers a comprehensive approach to security for a Hadoop cluster. It provides central security policy administration across the core enterprise security requirements of authorization, accounting and data protection.

Use Cases

- The use cases are only limited by your imagination and creativity.
- There are a few common use cases.
- We'll discuss two types:
 - Use cases you can find in a book.
 - My personal pet use cases

Use Case Assumptions

- All use cases require a cluster of machines
 - On prim
 - Or in the cloud
- All use cases will require a security/access plan
- You've had conversations with your engineers about the best approach for your specific situation

Use Case 1: Get started analyzing big data

Problem: We have large amounts of data and it takes a long time to analyze it.

Solution: Move that data into Hive.

Use Case 1: Get started analyzing big data

- Required tech:
 - Hadoop Core
 - Apache Hive
 - ETL tool of your choice
 - Data access tool of your choice
 - Recommend Hue
 - Ambari interface not that impressive for data access

Analytics

Use Case 1: Get started analyzing big data

- Can be as simple as an ad-hoc process.
- Can be as complicated as a nightly run.
- Design
 - Identify data sets that need analyzed.
 - Think of it as creating views.
 - Create tables in Hive.
 - Dump data into those tables as necessary.

Problem: Executives need faster access to historical data.

Solution: Re-engineer your ETL for a real time paradigm

- Required tech:
 - Hadoop Core
 - Streaming ETL tool of your choice
 - Recommend StreamSets.
 - Apache Kafka
 - Recommend Enterprise Kafka through Confluent.
 - MPP database
 - Recommend Greenplumb

- Required tech:
 - BI Tool of your choice
 - You should be able to plug your current BI tools right into Greenplumb

- Does not require "Big Data"
- Will require a total rethink about how you move data around your organization.
- I highly recommend you read I (*heart*) Logs by Jay Kreps before you attempt this.
- I recommend that you create a POC.
 - Use cloud resources and the cost of your POC will be low.

Analytics

Problem: We have data located in many different data sources being used differently by different parts of the enterprise.

Solution: Create a data lake/data hub.

- Required tech:
 - Hadoop Core
 - ETL tool of your choice
 - Data access tool of your choice
 - BI tool of your choice

- This is a batch process.
 - You can stream in data if you want.
- The goal is to drop everything into Hadoop in its NATIVE FORMAT.
 - Still use a file format
- Store it now. Figure out what to do with it later.

Implementing a data lake is a presentation all its own.

- Sounds simple. Actually pretty complicated.
 - Recommend: Architecting Data Lakes by Alice LaPlante and Ben Sharma

- Data lakes solve a lot of problems at once.
 - Really cuts down the time on ETL development
 - Removes need to put some virtualization solution in place
 - Removes the need to put some federated data solution in place.
 - Implements a self serve model
 - Gives everybody access to all the data
 - Facilitates 360 degree analysis

- Data governance here is key
 - Data dictionary has to be on point.
 - Stuff needs to be clean.
 - All datasets need clear provenance.

Other Use Cases

- Clickstream Analysis
 - Basically analyze weblogs
 - Can be done in batch
 - More interesting to do it in real time
 - https://hortonworks.com/tutorial/visualizewebsite-clickstream-data/

Other Use Cases

- Fraud Detection
- Network Intrusion detection
- Same approach
 - Pull in data in real time and make decisions on it.
 - Requires data science tools to create models of behavior.
- Aren't there commercial solutions?
 - Pretty generic use case.
 - Build vs. buy.

Obligatory Q & A Period

