COMP 540 Assignment #1

Yunda Jia Yu Wu

January 21, 2020

0 Background refresher(30 points)

• Plot the categorical distribution.

Figure 1: Categorical distribution

• Plot the Univariate normal distribution with mean of and standard deviation of 1.

Figure 2: Univariate Normal Distribution

• Produce a scatter plot of the samples for a 2-D Gaussian.

Figure 3: Univariate Normal Distribution

• Test mixture sampling code Code can be seen in sampler.py. Mixture Gaussian plot is shown below

Figure 4: Univariate Normal Distribution

• Prove that the sum of two independent Poisson random variables is also a Poisson random variable. Suppose $X \sim \mathcal{P}(\lambda)$ and $Y \sim \mathcal{P}(\mu)$. Now Prove that $X + Y \sim \mathcal{P}(\lambda + \mu)$.

$$\begin{split} P(X+Y=k) &= \sum_{i=0}^{k} P(X+Y=k, X=i) \\ &= \sum_{i=0}^{k} P(Y=k-i, X=i) \\ &= \sum_{i=0}^{k} P(Y=k-i) P(X=i) \\ &= \sum_{i=0}^{k} e^{-\mu} \frac{\mu^{k-i}}{(k-i)!} e^{-\lambda} \frac{\lambda^{i}}{i!} \\ &= e^{-(\mu+\lambda)} \frac{1}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \mu^{k-i} \lambda^{i} \\ &= e^{-(\mu+\lambda)} \frac{1}{k!} \sum_{i=0}^{k} \binom{k}{i} \mu^{k-i} \lambda^{i} \\ &= \frac{(\mu+\lambda)^{k}}{k!} \cdot e^{-(\mu+\lambda)} \end{split}$$

So $X + Y \sim \mathcal{P}(\lambda + \mu)$.

• Find α, μ_1 and σ_1 . We have X_0 and X_1 be continuous random variables. If

$$p(X_0 = x_0) = \alpha_0 e^{-\frac{(x_0 - \mu_0)^2}{2\sigma_0^2}}$$
$$P(X_1 = x_1 | X_0 = x_0) = \alpha_1 e^{-\frac{(x_1 - x_0)^2}{2\sigma^2}}$$

$$p(X_1 = x_1) = \int P(X_1 = x_1 | X_0 = x_0) \cdot p(X_0 = x_0) dx_0$$

$$= \alpha_0 \alpha_1 \int e^{-\frac{\sigma^2 (x_0 - \mu_0)^2 + \sigma_0^2 (x_1 - x_0)^2}{2\sigma_0^2 \sigma^2}} dx_0$$

$$= \alpha_0 \alpha_1 \int e^{-\frac{(\sigma^2 + \sigma_0^2) x_0^2 - 2(\sigma^2 \mu_0 + \sigma_0^2 x_1) x_0 + \sigma^2 \mu_0^2 + \sigma_0^2 x_1^2}{2\sigma_0^2 \sigma^2}} dx_0$$

$$= \alpha_0 \alpha_1 \int e^{-\frac{1}{2\sigma_0^2 \sigma^2}} [(\sqrt{\sigma^2 + \sigma_0^2} x_0 - \frac{-\sigma^2 \mu_0 + \sigma_0^2 x_1}{\sqrt{\sigma^2 + \sigma_0^2}})^2 + \sigma^2 \mu_0^2 + \sigma_0^2 x_1^2 - \frac{\sigma^2 \mu_0^2 + \sigma_0^2 x_1^2}{\sigma^2 + \sigma_0^2}]} dx_0$$

Since

$$\int \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1$$

$$p(X_1 = x_1) = \frac{\alpha \alpha_0 \sqrt{2\pi} \sigma \sigma_0}{\sqrt{\sigma^2 + \sigma_0^2}} e^{-\frac{1}{2\sigma_0^2 \sigma^2} (\sigma^2 \mu_0^2 + \sigma_0^2 x_1^2 - \frac{\sigma^2 \mu_0^2 + \sigma_0^2 x_1^2}{\sigma^2 + \sigma_0^2})}$$
$$= \alpha e^{-\frac{(x_1 - \mu_0)^2}{2(\sigma^2 + \sigma_0^2)}}$$

Thus we can solve that:

$$\alpha = \frac{\alpha \alpha_0 \sqrt{2\pi} \sigma \sigma_0}{\sqrt{\sigma^2 + \sigma_0^2}}$$

$$\mu_1 = \mu_0$$

$$\sigma_1 = \sqrt{\sigma^2 + \sigma_0^2}$$

• Consider the vectors $u = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ and $v = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$. Define the matrix $M = uv^T$. Compute the eigenvalues and eigenvectors of M.

$$\begin{aligned} \boldsymbol{M} &= \boldsymbol{u}\boldsymbol{v}^{\mathrm{T}} \\ &= \begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathrm{T}} \cdot \begin{bmatrix} 2 & 3 \end{bmatrix} \\ &= \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \end{aligned}$$

$$\begin{vmatrix} \lambda \mathbf{I} - \mathbf{M} \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -3 \\ -4 & \lambda - 6 \end{vmatrix} = 0$$

Then we can solve it as

$$(\lambda - 2)(\lambda - 6) - 12 = 0$$
$$\lambda^2 - 8\lambda = 0$$
$$\lambda(\lambda - 8) = 0$$
$$\lambda_1 = 0, \lambda_2 = 8$$

Let $\lambda = 0$:

$$(\lambda \mathbf{I} - \mathbf{M}) \cdot \begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\mathrm{T}} = 0$$
$$\begin{bmatrix} -2 & -3 \\ -4 & -6 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$-2x_1 - 3x_2 = 0$$

Let $x_1 = 3$, Then $x_2 = -2$. So eigenvector is $\begin{bmatrix} 3 & -2 \end{bmatrix}^{\mathrm{T}}$. Let $\lambda = 8$:

$$(\lambda \mathbf{I} - \mathbf{M}) \cdot \begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\mathrm{T}} = 0$$
$$\begin{bmatrix} 6 & -3 \\ -4 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$6x_1 - 3x_2 = 0$$
$$-4x_1 + 2x_2 = 0$$

Let $x_1 = 1$, Then $x_2 = 2$. So eigenvector is $\begin{bmatrix} 1 & 2 \end{bmatrix}^T$. Thus, when eigenvalue $\lambda = 0$, eigenvector is $\begin{bmatrix} 3 & -2 \end{bmatrix}^T$, when eigenvalue $\lambda = 8$, eigenvector is $\begin{bmatrix} 1 & 2 \end{bmatrix}^T$.

- Provide one example for each of the following cases. As for $(A+B)^2 \neq A^2 + 2AB + B^2$. Suppose $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Since $A \cdot B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $B \cdot A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. So $(A+B)^2 = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2$. As for $AB = 0, A \neq 0, B \neq 0$, Suppose $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- Show that A is orthogonal. Given $u^{T}u = 1$ and $A = I - 2uu^{T}$.

$$egin{aligned} {m{A}}^{\mathrm{T}}{m{A}} &= ({m{I}} - 2{m{u}}{m{u}}^{\mathrm{T}})^{\mathrm{T}}({m{I}} - 2{m{u}}{m{u}}^{\mathrm{T}}) \\ &= ({m{I}} - 2{m{u}}{m{u}}^{\mathrm{T}})({m{I}} - 2{m{u}}{m{u}}^{\mathrm{T}}) \\ &= {m{I}} - 2{m{u}}{m{u}}^{\mathrm{T}} - 2{m{u}}{m{u}}^{\mathrm{T}} + 4{m{u}}{m{u}}^{\mathrm{T}}{m{u}}{m{u}}^{\mathrm{T}} \\ &= {m{I}} - 2{m{u}}{m{u}}^{\mathrm{T}} - 2{m{u}}{m{u}}^{\mathrm{T}} + 4{m{u}}{m{u}}^{\mathrm{T}} \\ &= {m{I}} \end{aligned}$$

So \boldsymbol{A} is orthogonal.

• Prove the following assertions. As for $f(x) = x^3$ for $x \ge 0$.

$$f(x) = x^3$$
$$f''(x) = 6x$$

Since $x \ge 0$, $f''(x) = 6x \ge 0$. Thus $f(x) = x^3$ is convex for $x \ge 0$. As for $f(x_1, x_2) = max(x_1, x_2)$. Let $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$ and $\lambda \in [0, 1]$.

$$\begin{split} f(\lambda \pmb{x} + (1 - \lambda) \pmb{y}) &= f(\lambda x_1 + (1 - \lambda) y_1, \lambda x_2 + (1 - \lambda) y_2) \\ &= max(\lambda x_1 + (1 - \lambda) y_1, \lambda x_2 + (1 - \lambda) y_2) \\ &\leq max(\lambda x_1, \lambda x_2) + max((1 - \lambda) y_1, (1 - \lambda) y_2) \\ &= \lambda max(x_1, x_2) + (1 - \lambda) max(y_1, y_2) \\ &= \lambda f(\pmb{x}) + (1 - \lambda) f(\pmb{y}) \end{split}$$

So $f(x_1, x_2) = max(x_1, x_2)$ is convex on R^2 . As for function f + g. If univariate functions f and g are convex on S, then $f''(x) \ge 0$ and $g''(x) \ge 0$. So $(f+g)''(x) = f''(x) + g''(x) \ge 0$. Thus if univariate functions f and g are convex on S, then f+g is convex on S.

As for fg. If univariate functions f and g are convex and non-nigegative on S.

$$(fg)''(x) = (f'g + fg')'(x)$$

$$= (f''g + f'g' + f'g' + fg'')(x)$$

$$= (f''g + 2f'g' + fg'')(x)$$

Since f and g have their minimum within S at the same point. Before the minimum point, both f and g are decreasing. After the minimum point, both f and g are increasing. So $f'g' \geq 0$, $f'' \geq 0$, $g'' \geq 0$, $f \geq 0$ and $g \geq 0$. Thus $(fg)''(x) = (f''g + 2f'g' + fg'')(x) \geq 0$. Then fg is convex on S.

Find the highest entropy of categorical distribution.
 The entropy of a categorical distribution on K values is defined as

$$H(p) = -\sum_{i=1}^{K} p_i log(p_i)$$

The probability and constrains are defined below:

$$P(X = x_i) = p_i$$
 for $i = 1, 2, ..., K$

s.p.
$$\begin{cases} \sum_{i=1}^{K} p_i = 1\\ p_i \geq 0 \quad for \quad i = 1, 2, ..., K \end{cases}$$

Constrain function is

$$\varphi(p_i) = \sum_{i=1}^{K} p_i - 1 = 0$$

Define Lagrange multipliers:

$$\mathcal{L} = H(p) + \lambda \varphi(p_i)$$

$$= -\sum_{i=1}^{K} p_i log(p_i) + \lambda (\sum_{i=1}^{K} p_i - 1)$$

To find the highest entropy, we should find the point where derivative is 0.

$$\frac{\partial \mathcal{L}}{\partial p_i} = -log(p_i) - 1 + \lambda = 0$$
$$p^* = e^{\lambda - 1}$$

Thus when all p_i , i = 1, 2, ..., K are equally equal to $e^{\lambda - 1}$, the categorical distribution has the highest entropy.

1 Locally weighted linear regression(20 points)

• Find an appropriate diagonal matrix W.

$$J(\theta) = (X\theta - y)^T W (X\theta - y)$$

Let W be

$$W = \begin{bmatrix} \frac{1}{2}w^{(1)} & & & \\ & \frac{1}{2}w^{(2)} & & \\ & & \ddots & \\ & & & \frac{1}{2}w^{(i)} \end{bmatrix}$$

X is the $m \times d$ input matrix and y is a $m \times 1$ vector.

$$X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & \cdots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \ddots \\ x_1^{(m)} & x_2^{(m)} & x_3^{(m)} & \cdots & x_d^{(m)} \end{bmatrix}$$

$$y = \begin{bmatrix} y_1^{(1)} \\ y_2^{(2)} \\ \vdots \\ y_m^{(m)} \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_{(1)} \\ \theta_{(2)} \\ \vdots \\ \theta_{(d)} \end{bmatrix}$$

$$X\theta - y = \begin{bmatrix} (\theta_1 x_1^{(1)} + \theta_2 x_2^{(1)} + \dots + \theta_d x_d^{(1)}) - y^{(1)} \\ (\theta_1 x_1^{(2)} + \theta_2 x_2^{(2)} + \dots + \theta_d x_d^{(2)}) - y^{(2)} \\ \vdots \\ (\theta_1 x_1^{(m)} + \theta_2 x_2^{(m)} + \dots + \theta_d x_d^{(m)}) - y^{(m)} \end{bmatrix}$$

$$W(X\theta - y) = \begin{bmatrix} \frac{1}{2} w^{(1)} \times ((\theta_1 x_1^{(1)} + \theta_2 x_2^{(1)} + \dots + \theta_d x_d^{(1)}) - y^{(1)}) \\ \frac{1}{2} w^{(2)} \times ((\theta_1 x_1^{(2)} + \theta_2 x_2^{(2)} + \dots + \theta_d x_d^{(2)}) - y^{(2)}) \\ \vdots \\ \frac{1}{2} w^{(m)} \times ((\theta_1 x_1^{(m)} + \theta_2 x_2^{(m)} + \dots + \theta_d x_d^{(m)}) - y^{(m)}) \end{bmatrix}$$

$$(X\theta - y)^{T}W(X\theta - y) = \frac{1}{2}w^{(1)} \times ((\theta_{1}x_{1}^{(1)} + \theta_{2}x_{2}^{(1)} + \dots + \theta_{d}x_{d}^{(1)}) - y^{(1)})^{2}$$
$$+ \frac{1}{2}w^{(2)} \times ((\theta_{1}x_{1}^{(2)} + \theta_{2}x_{2}^{(2)} + \dots + \theta_{d}x_{d}^{(2)}) - y^{(2)})^{2} + \dots$$
$$+ \frac{1}{2}w^{(m)} \times ((\theta_{1}x_{1}^{(m)} + \theta_{2}x_{2}^{(m)} + \dots + \theta_{d}x_{d}^{(m)}) - y^{(m)})^{2}$$

So $J(\theta) = (X\theta - y)^T W(X\theta - y)$ can be written in the from $J(\theta) = (X\theta - y)^T W(X\theta - y)$ when choosing W as above.

•

- 2 Properties of the linear regression estimator(10 points)
- 3 Implementing linear regression and regularized linear regression(90 points)

3.1 Implementing linear regression(45 points)

- A1: Computing the cost function $J(\theta)$ See the implementation for the loss function in the file linear_regressor.py.
- A2: Implementing gradient descent See the implementation for the *train* function in the file *linear_regressor.py*.

Figure 5: Fitting a linear model

Figure 6: Convergence of gradient descent

- A3: Predicting on unseen data
 For lower status percentage = 5, we predict a median home value of 298034.49
 For lower status percentage = 50, we predict a median home value of -129482.13
- B1: Feature normalization

• B2: Loss function and gradient descent

Figure 7: Convergence of gradient descent with multiple variables

- B3: Making predictions on unseen data For average home in Boston suburbs, we predict a median home value of 230467.11
- \bullet B4: Normal equations Theta computed by direct solution is: [3.64594884e+01-1.08011358e-014.64204584e-022.05586264e-022.68673382e+00-1.77666112e+013.80986521e+006.92224640e-04-1.47556685e+003.06049479e-01-1.23345939e-02-9.52747232e-019.31168327e-03-5.24758378e-01] For average home in Boston suburbs, we predict a median home value of 230406.54.

• B5: Exploring convergence of gradient descent

Figure 8: Convergence of gradient descent with multiple variables according to different learning rates According to the above figures, when learning rate = 0.01 is a good choice.

When learning rate = 0.01, chosing different iteration times.

Figure 9: Convergence of gradient descent with multiple variables according to different iteration times According to the above figures, iteration time is 500 is a good choice.