Subject: Computer Science	
Course Code: B070401T Course Title: Computer System Architecture	

Credits: 4

The student will be able to understand the basic arithmetic of a Computer System; how the data is represented, how the various operation are performed on the data, the basic circuits to perform these operations, how instructions are formatted and how these instructions are executed to accomplish a particular operation. Student can also learn the organization of the peripheral devices, the interface between these devices to the system. Student can also understand the architecture of a basic computer, its registers, bus system and the interaction flow among them.

Core Compulsory

Credits. 4		core compe	11301 3	
	Max. Marks: 25+75	Min. Passing	Marks:	
	Total No. of Lectures-Tutorials-I	Practical (in hours per week): 4-	0-0	
Unit	Торіс		No. of Lectures	
I	Data Representation and basic Computer Arithmetic: Number systems, complements, fixed and floating point representation, character representation, addition, subtraction, magnitude comparison.			
II	Logic gates and circuits: logicombinational circuits, circuit sin flip-flops and sequential circuit registers, counters.	8		
ш	Basic Computer Organization and Design: Computer registers, bus system, instruction set, timing and control, instruction cycle, memory reference, input-output and interrupt.		7	
IV	Central Processing Unit: Register organization, arithmetic and logical micro-operations, stack organization, Hardwired vs. micro programmed control. Pipeline control: Instruction pipelines, pipeline performance, super scalar processing, Pipelining, RISC & CISC		8	
v	Programming the Basic Comp addressing modes, instruction co	7		
VI	Memory Organization: Memory de random access memories, serial ac memories, address translation, me features, address mapping, structu	8		
VII	Input-output Organization: interface. Modes of data transfe	Peripheral devices, I/O	22 / 50	

VIII	Parallel processing: Processor-level parallelism,	7
	multiprocessor architecture	,

Suggested Readings:

- 1. M. Mano, "Computer System Architecture", Pearson Education, New Jersey, 2017, Third Edition
- W. Stallings, "Computer Organization and Architecture Designing for Performance", Prentice Hall of India, 2015, Tenth Edition.

Driven and Direct Memory Access.

- 3. M. Mano, "Digital Design", Pearson Education, New Jersey, 2018, Sixth Edition.
- 4. Vranasic and Hamacher, Computer Organization, TMH"

This course can be opted as an elective by the students of following subjects: B.Sc. in Electronics, B.Sc. in Physics, B.Sc. in Engineering, BCA, B.E, B.Tech.

Suggested Continuous Evaluation Methods

1. Assessment Type: Class Tests (Max. Marks 14) Suggested Usage:

Include all types of questions-essay, short answer, objective; Design to test all levels of domain; Exam Blue Print be prepared to ensure inclusion of all types & levels of questions and proper sampling of content; Marking Criteria made known to students; Teacher should provide written feedback selectively and discuss answers in the class; Only Role/Code numbers, not names be written to avoid bias in marking; Display of model answer copies.

After Completion of Unit I and Unit II, a first class test of max. marks of 7 shall be conducted.

After Completion of Unit III and IV, a second class test of max. marks of 7 shall be conducted.

If any student does not appear in any one or both class test, a makeup test shall be conducted of max. marks of 5 instead of total 14 marks.

2. Assessment Type: Quizzes/ Objective Tests / Recognition Type (such as MCQs; True or False; Matching; Classifying) /Recall Type -Filling Blanks; One word / Phrase Answers (Max Marks: 5)

Suggested Usage: Teachers be trained in construction, advantages, disadvantages and precautions while preparing different types of objective items; Go beyond factual information to High Order Thinking (HOT) Skills. It shall be "End of the class quiz".

3. Assessment Type: Assignments (Max Marks: 4)

Programme/Class: Diploma		Year: Second	Semester: Fourth
		Subject: Computer Science	e
Course Code: B070402	Course	e Title: Computer System Arcl	nitecture Lab
CO2 Boolean algeb CO3 And implement CO4 computer bus	of various h raic express tation of di es and input	nardware components and the sions to digital design fferent sequential and Combin t/output peripherals esign of primary memory	

Practical: 60 Lab Periods

Memory			Instruction form	nat
4096 words	0	3 4		15
16 bits per	Op	code	Address	1

Basic Computer Instructions

M	D D. f	I
Memory Reference	Register Reference	Input-Output

1. Create a machine based on the following architecture:

Register Set

IR	DR	AC	AR	PC	FGI	FGO	S	I	Е
0 15	0 15	0 15	011	011	1 Bit				

Symbol	Hex	Symbol	Hex	Symbol	Hex
AND	0xxx	CLA	E800	INP	F80 0
ADD	2xxx	CLE	E400	OUT	F40 0
ISZ	Cxxx	INC	E020		

AND_I	1xxx		SPA	E010	
ADD_I	3xxx		SNA	E008	
LDA_I	5xxx	Indirect	SZA	E004	
STA_I	7xxx	Addressing	SZE	E002	
BUN_I	9xxx		HLT	E001	
BSA_I	Bxxx			*	*
ISZ_I	Dxxx				

Refer to Chapter-5 of Morris Mano for description of instructions.

- ii) Create the micro operations and associate with instructions as given in the chapter (except interrupts). Design the register set, memory and the instruction set. Use this machine for the assignments of this section.
- iii) Create a Fetch routine of the instruction cycle.
- iv) Simulate the machine to determine the contents of AC, E, PC, AR and IR registers in hexadecimal after the execution of each of following register reference instructions:

a. CLA	e. CIR	i. SNA
b. CLE	f. CIL	j. SZA
c. CMA	g. INC	k. SZE
d. CME	h. SPA	I. HLT

Initialize the contents of AC to $(A937)_{16}$, that of PC to $(022)_{16}$ and E to 1.

5. Simulate the machine for the following memory-reference instructions with I= 0 and address part = 082. The instruction to be stored at address 022 in RAM. Initialize the memory word at address 082 with the operand B8F2 and AC with A937. Determine the contents of AC, DR, PC, AR and IR in hexadecimal after the execution.

a. ADD	f.	BSA
b. AND	g.	ISZ
c. LDA		
d. STA		
e. BUN		

- e. BUN

 Simulate the machine for the memory-reference instructions referred in above question with I= 1 and address part = 082. The instruction to be stored at address 026 in RAM. Initialize the memory word at address 082 with the value 298. Initialize the memory word at address 298 with operand B8F2 and AC with A937. Determine the contents of AC, DR, PC, AR and IR in hexadecimal after the execution.
- $7. \quad Modify \ the \ machine \ created \ in \ Practical \ 1 \ according \ to \ the \ following \ instruction \ format:$