Python para Análisis de datos: Introducción Sesión 6 Jesús Fernández (fernandez.cuesta@gmail.com) 10 Abril 2019 Visualización de datos Integración con pandas Otros tipos de gráficos disponibles Parámetros opcionales Interactivo/Práctico Parámetros de visualización con pyplot Estilos Tipos de gráficos más importantes en pyplot Seaborn

Bokeh

Geovisualización

	Visuali	zación de da	atos	
hacer fá versátil, integrac acepta Algunas ext Seaborr en me Cartopy vis	d de-facto, basado en Ma icil tareas sencillas y posi madura y extensa do con pandas (<100%) paquetes de terceros com tensiones de Matplotli focado a análisis estadístico ejora el diseño de matplotli	ible tareas comple no extensiones (pl ib: b		

Descargar cuaderno jupyter: matplotlib/pyplot ► Iniciar jupyter (2 opciones): Desde Anaconda Navigator (jupyter notebook > Launch) Desde un terminal (Anaconda Prompt o terminal de VSCODE): > jupyter notebook Abrir cuaderno descargado en jupyter Ejecutar paso a paso de la siguiente sección Fragmentos de código encerrados entre '####" Matplotlib pyplot: módulo con interfaz parecida a MATLAB Para importar pyplot: import matplotlib.pyplot as plt # o bien: from matplotlib import pyplot as plt # Además, sólo en jupyter: %matplotlib inline

Los componentes más importantes son:

- ► Figura
- ► Ejes (axes)
 región de la figura donde se visualizarán gráficos
- ► Eje (axis)
 - eje de coordenadas
- Artist
 - cualquier elemento (líneas, leyenda, etc., incluidos ejes)

Como regla general seguiremos los siguientes pasos:

- 1. Crear figura
- 2. Obtener ejes
- 3. Dibujar sobre los ejes

Nota: 1 y 2 se pueden combinar en un mismo comando

```
N = 365
np.random.seed(2983) # reproducibilidad
t = pd.date_range('1/1/2018', periods=N)
y = 200 * (np.random.randn(N).cumsum() + 40)

#####
fig = plt.figure() # crea figura
ax = plt.subplot(1, 1, 1) # crea ejes
ax.plot(t, y) # dibuja sobre los ejes
#####
```

De forma simplificada, los ejes y la figura se crean simultáneamente:

```
(fix, ax) = plt.subplots(1, 1) # (n_filas, n_columnas)
ax.plot(t, y) # dibuja sobre los ejes
```

Importante

En jupyter/ipython, los gráficos aparecerán automáticamente si la primera línea es:

%matplotlib inline

De lo contrario necesitaremos ejecutar:

```
# [...]
ax.plot(t, y, 'g.-')
plt.show() # muestra el gráfico
```

... para mostrar cada gráfico

Matplotlib puede dibujar datos organizados en:

- Listas
- Diccionarios
- Arrays (np.array)
- pandas.DataFrame

El tipo de datos nativo es np.array.

El resto puede requerir limpiar/homogeneizar los datos

Para crear una tupla (figura, ejes) usaremos:

- plt.subplots()
 - sin argumentos: crea una figura con 1 area de dibujo
 - plt.subplots(n, m): crea una figura con varias zonas de dibujo distribuidas en n filas y m columnas
 - devuelve la figura y todos los ejes

```
fig, (eje1, eje2) = plt.subplots(1, 2)

eje1.plot(t, y, 'g')
eje2.plot(t, z)

Cottzación criptomoneda en s

Rentabilidad a futuro

Tottzación criptomoneda en s

Tottzación criptomoneda en s
```

```
#####
fig, (eje1, eje2) = plt.subplots(1, 2)
#####

eje1.plot(t, y, 'g')
eje2.plot(t, z)

Cotización criptomoneda en s

Cotización criptomoneda en s

Rentabilidad a futuro

Documento de la futuro de la futuro
```


Integración con pandas

- Descargar y abrir cuaderno jupyter
- pyplot está (parcialmente) integrado en pandas
- Podemos dibujar directamente desde un dataframe de pandas
- se devuelve un objeto "Axes" sobre el que poder trabajar
 - no es necesario crear con antelación la figura y los ejes
 - ... aunque suele ser lo recomendable

```
# Crea la figura y los ejes
fig, ax = plt.subplots()
# siempre se devuelve referencia al eje
ax2 = df.plot.scatter(
    'a', 'b', c='c', s=df['d'],
    colormap='viridis', alpha=.5,
    title='Scatter con pandas', rot='vertical',
    ax = ax;
)
ax.annotate(
    'Defecto', xy=(1.9, -17),
    xytext=(2, -20),
    arrowprops=dict(facecolor='black', shrink=0.05)
)
ax2 == ax # dos referencias al mismo objeto
True
```

Sintaxis


```
Usar pandas es conveniente y mucho más sencillo:
provincias = ['Cantabria', 'Madrid', 'Murcia', 'León', 'Albacete']
index = np.arange(len(provincias)) + 0.3
y_offset = np.zeros(len(marriages.Total.columns))
cell_text = []
for row in marriages. Total.columns:
    _data = marriages.Total.loc[provincias, row]
    plt.bar(index, _data, bottom=y_offset, width=0.5)
    y_offset = y_offset + _data
    cell_text.append(["%1.1f" % (x / 1000.0) for x in y_offset])
cell_text.reverse()
tabla = plt.table(cellText=cell_text,
                  rowLabels=marriages.Total.columns,
                  colLabels=provincias,
                  loc='bottom')
plt.legend(marriages.Total.columns)
plt.title('Total Matrimonios en 2017')
con pandas, lo equivalente sería:
provincias = ['Cantabria', 'Madrid', 'Murcia', 'León', 'Albacete']
df = ax.Total.loc[provincias]
ax = df.plot.bar(stacked=True,
    table=True, title='Total Matrimonios en 2017')
```

```
provincias = ['Cantabria', 'Madrid', 'Murcia', 'León', 'Albacete']
df = ax.Total.loc[provincias]
ax = df.plot.bar(
    stacked=True,
    table=True,
    title='Total Matrimonios en 2017'
)
```


 Generalmente las opciones más usadas en cada tipo de gráfico (título, ejes y posición, color, tamaño de línea,) son directamente accesibles desde pandas.DataFrame.plot(). Para el resto, usar matplotlib sobre el objecto "Axes": 	
<pre>ax = df.plot(kind='scatter',) # df.plot.scatter() ax.set_yticks(rotation='vertical')</pre>	
Otros tipos de gráficos disponibles	

► Gráfico de dispersión (scatter)

```
df.plot.scatter(
    x='a', y='b', # nombres de las columnas del dataframe
    c='c', # columna con datos de color
    s=df['d'], # tamaño de los puntos
    colormap='viridis', # paleta de color
    alpha=.5, # transparencia
    title='Scatter con pandas', # título
    rot='vertical', # rotar etiquetas del eje 'x'
)
```

Scatter con pandas

► Histograma

df.hist(sharey=True, log=True)

Boxplots

:::

df.boxplot(by='origin', ax=ax)

Cars manufactured 1970-198

Área

```
np.random.seed(0)
N = 5
data = pd.DataFrame(
    {'Grupo A': np.random.randint(1, 20, N),
     'Grupo B': np.random.randint(1, 20, N),
     'Grupo C': np.random.randint(1, 20, N)},
    index=range(1, N+1)
)
ax = plt.subplot(1, 2, 1)
data.plot.area(
    stacked=False,
    alpha=.6,
    title='Gráfico de área',
    ax=ax)
ax = plt.subplot(1, 2, 2)
data.plot.area(
    title='Gráfico de área (apilado)',
    ax=ax)
```


Circular (pie chart)

Parámetros opcionales	
pd.DataFrame.plot()	
Es posible pasar argumentos para realizar personalizaciones rápidas. Existen opciones específicas para cada tipo de visualización	
También hay opciones comunes a todos ellos	

Además, podremos usar las primitivas de matplotlib, bien como argumentos adicionales o sobre los ejes

NaN

- ► Por defecto ignora los datos ausentes (NaN)
- ▶ Podemos "rellenar los huecos": df.fillna()

 - propagando el último valoro con valores preestablecidos
- O interpolar df.interpolate()

	Interactivo/Práctico
 Descargar cuaderno jupyte Abrirlo con jupyter note Utiliza las celdas vacías por 	ter ebook para las respuestas, pruebas, etc.

1. ax: ejes sobre los que dibujar

1.2. Barras apiladas (stacked)

2.2. layout como parámetro de plt.subplots()

3. sharex/sharey: compartir ejes (subplots)

4. title:

str: título de la figura

list(str): título de cada subplot

Julio

Mes

Septiembre

Noviembre

6. stacked [True|False]: apilar datos

Hombres Mujeres

Marzo

Mayo

50

0

Enero

9. xlim, ylim: tuplas (lo, hi) para delimitar visualización

10. colormap: mapa de colores (matplotlib.cm.)

11. secondary_y: segundo eje de ordenadas

12. table [True|False]: mostrar tabla bajo el gráfico

D /		
Parar	metros de visualización con pyplot	
▶ Descargar cuaderno	o junyter	
Descargar cuaderno	o jupyter	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	o jupyter r notebook so de la siguiente sección	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	
Abrirlo con jupyte:	r notebook	

Color/estilo de línea

El color de línea para un gráfico individual se puede controlar mediante una cadena de texto que defina color+estilo+marcador (p.e. 'r--'), en cualquier orden, todos opcionales:

```
colors = {'b': 'blue', 'g': 'green', 'r': 'red', 'c': 'cyan', 'm': 'magenta',
          'y': 'yellow', 'k': 'black', 'w': 'white'}
lineStyles = {'-': '_draw_solid', '--': '_draw_dashed', '-.': '_draw_dash_dot',
              ':': '_draw_dotted', 'None': '_draw_nothing',
              ' ': '_draw_nothing', '': '_draw_nothing'}
markers = {
    '.': 'point', ',': 'pixel', 'o': 'circle', 'v': 'triangle_down',
    '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right',
    '1': 'tri_down', '2': 'tri_up', '3': 'tri_left', '4': 'tri_right',
    '8': 'octagon', 's': 'square', 'p': 'pentagon', '*': 'star',
    'h': 'hexagon1', 'H': 'hexagon2', '+': 'plus', 'x': 'x', 'D': 'diamond',
    'd': 'thin_diamond', '|': 'vline', '_': 'hline', 'P': 'plus_filled',
    'X': 'x_filled', 0: 'tickleft', 1: 'tickright', 2: 'tickup', 3: 'tickdown',
    4: 'caretleft', 5: 'caretright', 6: 'caretup', 7: 'caretdown',
    8: 'caretleftbase', 9: 'caretrightbase', 10: 'caretupbase',
    11: 'caretdownbase', 'None': 'nothing', None: 'nothing', ' ': 'nothing',
    '': 'nothing'
}
```

Color/estilo de línea

#####

```
N = 50
np.random.seed(4873)

x = np.linspace(0, 10, N)
k = 0.8
y = k + np.sin(x) * np.random.randn(N)

(fig, ax) = plt.subplots(1)

#####

ax.errorbar(x, y, yerr=k, fmt='.r');
ax.plot(x, 1 + np.cos(np.pi*x), '--g')
ax.plot(x, x/5, 'b')
```


xticks/yticks

```
plt.yticks(rotation='vertical')
plt.xticks(rotation=20) # 20 grados en sentido antihorario
```


Títulos, etiquetas y anotaciones

Niveles de accinci y flavonosies (muestra de 178 vinos)

Vinos de 3 clases

Vinos de 3 clases

10 110 115 120 125 130 135 140 145 150

```
Título de la figura ----->
Título del subplot (Axes) --->
Título de cada eje (Axis) --->
Anotaciones ------>
```

Leyenda

▶ Se genera automáticamente según datos inferidos de las etiquetas

```
(line1, ) = ax.plot([1.5, 2, 3],
                                          3.00 - --
                         label='IPC')
                                                  Salarios
(line2, ) = ax.plot([1, 1.2, 1.3], 2.75)
                        label='Salaric
                                          2.50
ax.legend(loc='upper left')
loc: define dónde emplazar la
                                          2.25
leyenda
     best, upper right, upper
                                          2.00
     left, lower left, lower right,
     right, center left, center
                                          1.75
     right, lower center, upper
                                          1.50
     center, center
                                          1.25
                                          1.00
                                                              0.75
                                                                    1.00
                                               0.00
                                                    0.25
                                                         0.50
                                                                         1.25
                                                                               1.50
                                                                                    1.75
                                                                                          2.00
```

:::

Estilos

- ► Aplican a todos los gráficos generados
- ► Estilo por defecto en matplotlib.rcParams
 - pueden modificarse dinámicamente
- ▶ Podemos cambiar a estilos preconfigurados:

```
print(plt.style.available)
plt.style.use('ggplot')
```

y/o modificar parámetros (plt.rcParams) individualmente

```
plt.rcParams["figure.figsize"] = (20.0, 15.0)
plt.rcParams['font.family'] = ['monospace']
```

- Los cambios aplican a todos los gráficos
 - salvo cambio temporal de estilos:

```
with plt.style.context(('dark_background')):
    plt.plot(np.sin(np.linspace(0, 2 * np.pi)), 'r-o')
```

Otros estilos

```
with plt.xkcd():
```


Otros estilos

seaborn import seaborn as sns

sns.set()
sns.set_context("talk")

:::

Tipos de gráficos más importantes en pyplot

```
Lineplot (.plot())
Tipo de gráfico por defecto
(fix, ax) = plt.subplots(1, 1) # (n_filas, n_columnas)
x = np.linspace(0, 10, 1000)
y = np.exp(-x/2) * np.cos(2*np.pi*x)

#####
ax.plot(x, y, 'bo')
######
```


Dos gráficos al mismo tiempo:

```
Dos gráficos al mismo tiempo:

(fig, ax) = plt.subplots(1, 1) # (n_filas, n_columnas)

x = np.linspace(0, 10, 1000)

y1 = np.exp(-x / 2) * np.cos(2 * np.pi * x)

y2 = np.exp(-x) / 2 * np.sin(2 * np.pi * x)

#####

ax.plot(x, y1, 'bo')
ax.plot(x, y2, 'r--') # <-- dibujar sobre el mismo eje

#####
```

Gráfico de dispersión (Scatterplot)

```
Scatterplot
N = 75
np.random.seed(45987230)
                                                  14
fig, (ax1, ax2) = plt.subplots(2, 1,
                                figsize=(7, 10))
a = np.random.randint(low=1, high=11, size=50)
b = a + np.random.randint(1, 5, size=a.size)
x = np.linspace(0, 1, N)
y = np.random.gamma(5, size=N)
colors = np.random.rand(N)
                                                               X VS V
#####
ax1.scatter(x=a, y=b, marker='o', c='r',
            edgecolor='b')
ax2.scatter(
    x, y, \# x=x, y=y
    s=np.random.randint(10,800, N), # tamaño
    marker='v', # tipo de marcador
    c=colors, # colores
    alpha=0.4 # nivel de transparencia
#####
ax1.set_title('$a$ vs $b$')
ax2.set_title('$x$ vs $y$')
fig.suptitle("Scatterplot")
```

```
Gráfico de barras (barplot)
                                                     Desviación standard de la altura por grupo y género
ax1.bar(
    ind,
                       # eje de abcisas
    men_std,
                      # eje de ordenadas
    width,
                      # grosor de barra
    color='#0055ff' # color de barra (RGB)
)
ax1.bar(
    ind,
    women_std,
    width,
                                                                 Grupo
                                                          Altura media por grupo y género
    color='#fabada',
    bottom=men_std # apilado
)
# Barras horizontales
ax2.barh( # cambia orden (y, x)
                     # eje 'y' !
    ind,
                    # eje 'x' !
    men_means,
                                                          50 75 100 125 150 175
    width,
                    # grosor de barra
    color='#0055ff' # color (RGB)
ax2.barh( # cambia orden (y, x)
                     # eje 'y' !
                    # eje 'x' !
    women_means,
    width,
                    # grosor de barra
    color='#fabada' # color (RGB)
  Histograma
  fig, ax = plt.subplots(2, figsize=(10,5))
  bins = 20
  x1 = np.random.gamma(10, size=1000)
  x2 = np.random.randn(1000)
  ax1, ax2 = ax.flatten()
  #####
  (ax1_values, _, _) = ax1.hist(x1, bins=bins, facecolor='brown', alpha=.7);
  (_, ax2_bins, _) = ax2.hist(x2, alpha=.7, cumulative=True,
                                 log=True, orientation='horizontal')
  #####
   150
   100
    50
     0
               5
                              10
                                            15
                                                            20
                                                                           25
     4
     2
     0
       101
                                         10<sup>2</sup>
                                                                            10^{3}
```

```
Diagrama circular (pie)
ax.pie(
    [80, 20], explode=(0, .5), labels=labels,
    colors=colors, shadow=True, startangle=90
)
# ejes iguales = asegurarnos de que se muestre
# como un círculo
ax.axis('equal');
```



```
Guardar figura a fichero (de forma programática)
from sklearn.datasets import load_iris

iris = load_iris()
plt.style.use('ggplot')
fig, ax = plt.subplots(figsize=(7, 6))
formatter = plt.FuncFormatter(lambda i, *args: iris.target_names[int(i)])

plt.scatter(iris.data[:, 0], iris.data[:, 1], c=iris.target)
plt.colorbar(ticks=[0, 1, 2], format=formatter)

#####
fig.savefig('iris.pdf')
#####
Tipos de fichero soportados, según backend:
print(fig.canvas.get_supported_filetypes())
```

	Seaborn		
oyter notebook	ente sección		
	derno jupyter pyter notebook a paso de la siguie	derno jupyter	derno jupyter

Capa de abstracción que simplifica ciertas tareas enfocadas a análisis estadístico

```
sns.set() # tema por defecto
crashes = sns.load_dataset("car_crashes")

with sns.color_palette("husl", 8):
    sns.jointplot(
        "speeding",
        "alcohol",
        crashes,
        kind='reg'
)
```

speeding

```
Con matplotlib: ...
from scipy.stats import gaussian_kde
ax1 = plt.subplot2grid((4, 4), (1, 0), colspan=3, rowspan=3)
ax2 = plt.subplot2grid((4, 4), (0, 0), colspan=3)
ax3 = plt.subplot2grid((4, 4), (1, 3), rowspan=3)
crashes.plot.kde(y='speeding', ax=ax2, sharex=ax1, legend=None)
crashes.plot.hist(y='speeding', bins=6, ax=ax2, sharex=ax1, normed=True,
    legend=None, alpha=.5, color='red')
crashes.plot.scatter(x='speeding', y='alcohol', ax=ax1, color='red', s=50)
ax2.set_ylabel('')
ax2.set_yticks=[]
ax2.set_yticklabels=[]
# No está soportado directamente el rotado en kde
kde_speeding = gaussian_kde(crashes.alcohol)
y = np.linspace(np.amin(crashes.alcohol), np.amax(crashes.alcohol), 100)
ax3.plot(kde_speeding(y), y)
crashes.plot.hist(y='alcohol', ax=ax3, sharey=ax1, normed=True, legend=None,
    orientation='horizontal', alpha=.5, color='red')
```

Multitud de gráficas pre-establecidas

Permite cambiar temporalmente la estética mediante context managers:


```
+ ejemplos
tutorial seaborn
x, y = np.random.multivariate_normal(mean, cov, 1000).T
with sns.axes_style("white"):
    sns.jointplot(x=x, y=y, kind="hex", color="k");
                                 Bokeh
```

 ▶ Permite generar gráficos "interactivos" ▶ Salida a HTML o integrado en cuaderno jupyter 	
Geovisualización	

- Librería standard *de facto*: matplotlib-toolkit (obsoleta)
 Oficialmente reemplazada por cartopy (muy estática)
 Alternativa: folium

Folium		
ejemplos online		
ejempios omine		
	Cuadernos impyter	
	Cuadernos jupyter	

