Notes of Advanced Physical Chemistry II

hebrewsnabla

September 2, 2019

Contents

12	Group Theory: the Exploitation of Symmetry	2
	12.1 The Exploitation of the Symm of a Mol Can Be Used to Significantly Simplify	
	Numerical Calculations	2
	12.2 The Symm of Mols Can Be Described by a Set of Symm Elements	2
	Identity	2
	Rotation	2
	Reflection	2
	Inversion	2
	Rotation Reflection	2

Introduction

TA: 刘琼 G403

12 Group Theory: the Exploitation of Symmetry

Matrices

 $det(\mathbf{A}) = 0 \implies \mathbf{A}$ is a singular matrix.

- 12.1 The Exploitation of the Symm of a Mol Can Be Used to Significantly Simplify Numerical Calculations
- 12.2 The Symm of Mols Can Be Described by a Set of Symm Elements

E	
C_n	Rotation by $360^{\circ}/n$
σ	
i	
S_n	

Table 1: Symmetry elements and operators

Identity

Rotation

σ_h	horizontal
σ_v	vertical
σ_d	diagonal (vertical and bisects the angle between C_2 axis)

Table 2

Reflection

Inversion

Rotation Reflection

$$\hat{S}_n = \hat{\sigma}_h \times \hat{C}_n \tag{12.1}$$

12.3 Point Groups of Interest to Chemists

C_{nv}	
C_{nh}	Rotation by $360^{\circ}/n$
D_{nh}	
D_{nv}	
D_{nd}	
T_d	

Table 3: Symmetry elements and operators