der Technischen Universität München

apl. Prof. Dr. D. Castrigiano

Dr. G. Zumbusch

HÖHERE MATHEMATIK 2 FÜR PHYSIK

(Analysis 1)

 $Probeklausur \\ Mittwoch, \ 08.01.2003, \ 09:15 \ Uhr. \\ Arbeitszeit: \ 90 \ Minuten$

1. Aufgabe. Man berechne

$$\lim_{x \to \pi} \frac{\pi - x + \tan x}{\left(x - \pi\right)^3} \, .$$

[6 Pkte.]

- 2. Aufgabe.
 - 1. Man bestimme einen größten gemeinsamen Teiler der beiden Polynome $P(X)=X^8-16$ und $Q(X)=X^5+X^4-4X-4$.
 - 2. Man ermittle die gekürzte Form der rationalen Funktion

$$R(X) = \frac{X^5 + X^4 - 4X - 4}{X^8 - 16}.$$

[14 Pkte.]

- **3. Aufgabe.** Es soll eine Reihendarstellung der Funktion $f : \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \sin^2 x$ gefunden werden. Man bearbeite dazu eine der beiden im Folgenden beschriebenen Varianten. Die Wahl der Variante bleibt Ihnen überlassen.
 - 1. Variante. Darstellung von f(x) durch $\exp ix$ und $\exp -ix$ sowie Verwendung der $\exp z$ -Reihe.
 - 2. Variante. Cauchy-Produkt der Sinus-Reihe mit sich selbst. Zur weiteren Berechnung der Koeffizienten des Cauchy-Produktes dürfen ohne Beweis die in der Vorlesung gezeigten Formeln

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \quad und \quad \sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

verwendet werden. [15 Pkte.]

- **4. Aufgabe.** Seien $D \subset \mathbb{C}$, $f:D \longrightarrow \mathbb{R}$ stetig sowie (x_n) und (y_n) Folgen aus D, die beide gegen $x_0 \in D$ konvergieren. Dabei soll $f(x_n) < 0$ und $f(y_n) > 0$ für alle $n \in \mathbb{N}$ gelten.
 - 1. Man zeige: $f(x_0) = 0$. Alle Beweisschritte sind genau zu begründen, ggf. mit Zitaten aus der Vorlesung.
 - 2. Bleibt 1. gültig, wenn bei der Funktion f auf die Stetigkeit verzichtet wird? (Ggf. gebe man ein Gegenbeispiel an). [9 Pkte.]

Hinweis: Für das Bestehen der Prüfung sind 17 der 44 erreichbaren Punkte erforderlich. Ab 37 Punkten wird mit Note 1,0 bewertet.