Package 's525'

November 30, 2017

Type Package	
Title Implementation of common Bayesian models	
Version 1.0	
Date 2017-11-26	
Author Daniel Bourgeois	
Maintainer Daniel Bourgeois <dcb10@rice.edu></dcb10@rice.edu>	
Description This package contains implementations of common Bayesian models.	
Imports truncnorm, MASS, coda	
License MIT License	
R topics documented: s525-package horseshoe_regression metropolis probit_horseshoe_regression probit_regression ridge_regression shrinkage_regression_plot	1 2 4 5 6 8 9
Index	11
s525-package Implementation of common Bayesian models	

Description

This package contains implementations of common Bayesian models.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Daniel Bourgeois

Maintainer: Daniel Bourgeois <dcb10@rice.edu>

Examples

simple examples of the most important functions

horseshoe_regression Gibbs Sampler for Horseshoe Regression

Description

The horseshoe regression model is given by

$$\begin{split} [y_i|x_i,\beta,\sigma] &\sim N(x_i^t\beta,\sigma^2), i=1,...,n, \\ [\beta_j|\sigma,\lambda_j] &\sim N(0,\sigma^2\lambda_j^2), \\ [\lambda_j|A] &\sim C^+(0,A), \\ A &\sim Uniform(0,10), \\ p(\sigma^2) &\propto \frac{1}{\sigma^2}. \end{split}$$

The half-Cauchy parameter expansion is used; given by

$$[\eta_j|\gamma_j] \sim Gamma(\frac{1}{2},\gamma_j),$$

 $[\gamma_j] \sim Gamma(\frac{1}{2},\frac{1}{A^2}).$

Let $\eta_j = \lambda_j^{-2}$, $\tau_A = A^{-2}$, $\tau = \frac{1}{\sigma^2}$ and $\Lambda = diag(\eta_1, ..., \eta_p)$. The full conditionals are given by:

$$[\beta|Y,X,\eta,\tau] \sim \mathcal{N}((X'X+\Lambda)^{-1}X'Y,\tau^{-1}(X'X+\Lambda)^{-1}),$$

$$[\eta_{j}|\beta_{j},\gamma_{j},\tau] \sim \exp(\frac{\tau\beta_{j}^{2}}{2}+\gamma_{j}),$$

$$[\gamma_{j}|\eta_{j},\tau_{A}] \sim \exp(\eta_{j}+\tau_{A}),$$

$$[\tau_{A}|\gamma] \sim \operatorname{Gamma}(\frac{p-1}{2},\sum_{j}\gamma_{i})\operatorname{I}_{(\frac{1}{100},\infty)},$$

$$[\tau|Y,X,\beta,\eta] \sim \operatorname{Gamma}(\frac{n+p}{2},\frac{(y-X\beta)'(y-X\beta)+\beta'\Lambda\beta}{2}).$$

horseshoe_regression 3

Usage

```
horseshoe_regression <- function(
  Y,
  X,
  niter = 10000)</pre>
```

Arguments

Y n by 1
X n by p predictor matrix
niter number of gibbs sampling iterations

Details

This function returns the generated parameters from the gibbs sampling markov chain.

Value

beta An niter x p matrix
lambda An niter x p matrix
sigma An niter x 1 matrix

```
# Load the data
prostate.data = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"
prostate = read.table(file = "prostate.data", sep="", header = TRUE)
# Training data:
prostate_train = prostate[which(prostate$train),-10]
# Testing data:
prostate_test = prostate[which(!prostate$train),-10]
# Response:
y = prostate_train$lpsa
# Center and scale the data:
y = scale(y)
# And the predictors
X = scale(prostate_train[,names(prostate_train) != "lpsa"])
gibbs_hs <- horseshoe_regression(y, X, niter=10000)
shrinkage_regression_plot(gibbs_hs$beta, y, X)</pre>
```

4 metropolis

metropolis

Metropolis MCMC

Description

The metropolis algorithm is a special case of the metropolis-hastings algorithm, namely where the proposal distribution is symmetric.

Usage

```
metropolis <- function(
  rproposal,
  prob,
  niter,
  init,
  log_prob = FALSE)</pre>
```

Arguments

rproposal rproposal(previous_val) generates a value from the proposal distribution
prob prob(val_proposed)/prob(val_t_minus_1) forms the acceptance probability
niter number of iterations to perform
init vector of initial values
log_prob whether or not prob function specifies log probabilities

Details

This function returns a niter x d matrix of values where d is the dimension of init and the dimension of each element from rproposal. The returned matrix contains all generated values of the metropolis walk.

```
vals <- metropolis(
  rproposal = function(val){ rnorm(1, mean = val, sd = 1){} },
  prob = posterior_prob,
  niter = 10000,
  init = 0)

library(coda)
plot(as.mcmc(vals))</pre>
```

probit_horseshoe_regression

Gibbs Sampler for Probit Regression with Horseshoe Prior

Description

The probit regression model with horseshoe prior is given by

$$y_i|\pi_i \sim Bernoulli(\pi_i),$$

$$\pi_i = \Phi(x_i^t\beta),$$

$$[\beta_j|\lambda_j] \sim N(0, \lambda_j^2), j = 2, ..., p,$$

$$p(\beta_1) \propto 1,$$

$$[\lambda_j|A] \sim C^+(0, A), j = 2, ..., p,$$

$$A \sim Uniform(0, 10).$$

where Φ is given by the gaussian CDF.

The implemented parameter-expanded model is given by

$$y_i^* = x_i^t \beta + \epsilon_i,$$

$$\epsilon_i \sim N(0, 1),$$

$$y_i = I(y_i^* > 0).$$

The half-Cauchy parameter expansion is also used; given by

$$[\eta_j|\gamma_j] \sim Gamma(\frac{1}{2}, \gamma_j),$$

$$[\gamma_j] \sim Gamma(\frac{1}{2}, \frac{1}{A^2})$$

and $\eta_j = \lambda_j^{-2}$, $\tau_A = A^{-2}$, The full conditionals are given by:

$$[y_i^*|y_i,\beta,X] \sim sgn(y_i,y_i^*)N(x_i^t\beta,1)$$

where sqn is 1 if both arguments are of the same sign and zero otherwise,

$$\begin{split} [\beta|Y^*,X,\eta] \sim \mathcal{N}(Q^{-1}l,Q^{-1}) \end{split}$$
 where $Q = X'X + diag(0,1/\eta_2,...,1/\eta_p)$ and $l = X'Y^*,$
$$[\eta_j|\beta_j,\gamma_j] \sim \exp(\frac{\beta_j^2}{2} + \gamma_j), \\ [\gamma_j|\eta_j,\tau_A] \sim \exp(\eta_j + \tau_A), \\ [\tau_A|\gamma] \sim \mathrm{Gamma}(\frac{p-2}{2},\sum \gamma_i)\mathrm{I}_{(\frac{1}{100},\infty)}. \end{split}$$

probit_regression

Usage

```
probit_horseshoe_regression <- function(
   Y,
   X,
   niter,
   init = NULL)</pre>
```

Arguments

Y n by 1 vector of ones and zeros

X n by p predictor matrix, where p > 1 and the first column of X is all 1.

niter number of gibbs sampling iterations

init Initial starting values for beta. If NULL, beta is set to zero.

Details

This function returns a niter x p matrix of values where p is the second dimension of the predictor matrix X. The returned matrix contains all generated values of the gibbs sampling markov chain.

Examples

```
print("TODO")
```

probit_regression

Gibbs Sampler for Probit Regression

Description

The probit regression model is given by

$$y_i | \pi_i \sim Bernoulli(\pi_i),$$

 $\pi_i = \Phi(x_i^t \beta),$
 $\beta_i \sim N(0, A^2).$

where Φ is given by the gaussian CDF.

The implemented parameter-expanded model is given by

$$y_i^* = x_i^t \beta + \epsilon_i,$$

$$\epsilon_i \sim N(0, 1),$$

$$y_i = I(y_i^* > 0).$$

The full conditional distributions are given by

$$[\beta|y, y^*, X] \sim N(Q^{-1}l, Q^{-1})$$

probit_regression 7

```
where Q = X^t X + A^{-2}I and l = X^t y^*,
```

$$[y_i^*|y_i, \beta, X] \sim sgn(y_i, y_i^*)N(x_i^t\beta, 1)$$

where sqn is 1 if both arguments are of the same sign and zero otherwise.

If A is a vector, $Q = X^t X + diag(A)$. A flat prior on the intercept at position 1 is thus given by A = c(Inf, rep(3, p)).

Usage

```
probit_regression <- function(
   Y,
   X,
   niter,
   A = 3,
   init = NULL)</pre>
```

Arguments

Υ	n by 1	vector of ones	and zeros
---	--------	----------------	-----------

X n by p predictor matrix

niter number of gibbs sampling iterations

A parameter. The default value is chosen to provide a reasonable range of π . If

A is a vector, then different variances are given for each intercept.

init Initial starting values for beta. If NULL, beta is set to zero.

Details

This function returns a niter x p matrix of values where p is the second dimension of the predictor matrix X. The returned matrix contains all generated values of the gibbs sampling markov chain.

```
library(LearnBayes)
library(s525)

data(donner)
y = donner$survival
X = cbind(1, donner$age, donner$male)
niter <- 2000
gibbs_results <- probit_regression(y, X, niter)</pre>
```

8 ridge_regression

ridge_regression

Gibbs Sampler for Ridge Regression

Description

The ridge regression model coeffecients are given by

$$\arg\min_{\beta} \parallel Y - X\beta \parallel^2 + \lambda \parallel \beta \parallel^2.$$

This is the implementation of the bayesian interpretation. Namely,

$$[y_i|x_i, \beta, \tau] \sim N(x_i^t \beta, \tau^{-1}), i = 1, ..., n,$$
$$[\beta|\eta] \sim N(0, \eta^{-1}I),$$
$$\tau \sim Gamma(\frac{1}{100}, \frac{1}{100}),$$
$$\sigma_{\beta} \sim unif(0, A)$$

where A=1000 and $\tau=\frac{1}{\sigma_{\beta}^2}$.

Usage

```
ridge_regression <- function(
  Y,
  X,
  niter = 10000)</pre>
```

Arguments

Y n by 1

X n by p predictor matrix

niter number of gibbs sampling iterations

Details

This function returns the generated parameters from the gibbs sampling markov chain.

Value

beta	An niter by p matrix
sigma	An niter by 1 matrix
sigma beta	An niter by 1 matrix

Examples

```
# Load the data
prostate.data = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"
prostate = read.table(file = "prostate.data", sep="", header = TRUE)
# Training data:
prostate_train = prostate[which(prostate$train),-10]
# Testing data:
prostate_test = prostate[which(!prostate$train),-10]
# Response:
y = prostate_train$lpsa
# Center and scale the data:
y = scale(y)
# And the predictors
X = scale(prostate_train[,names(prostate_train) != "lpsa"])
gibbs_ridge <- ridge_regression(y, X, niter=10000)
shrinkage_regression_plot(gibbs_ridge$beta, y, X, main = "Ridge Prior")</pre>
```

shrinkage_regression_plot

Plot the MC chain of regression coeffecients compared to OLS.

Description

Plot the MC chain of regression coeffecients comparet to OLS using 95% HPD confidence intervals.

Usage

```
horseshoe_regression_plot <- function(
  beta,
  Y,
  X,
  main = "Horseshoe Prior",
  ylim = NULL)</pre>
```

Arguments

beta	n x p MCMC chain of beta coeffecients.
Υ	Y values used to generate beta; used as input to OLS regression
X	X values used to generate beta; used as input to OLS regression
main	Title of the plot
vlim	y range of plot

```
# Load the data
prostate.data = "https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data"
prostate = read.table(file = "prostate.data", sep="", header = TRUE)
# Training data:
prostate_train = prostate[which(prostate$train),-10]
# Testing data:
prostate_test = prostate[which(!prostate$train),-10]
# Response:
y = prostate_train$lpsa
# Center and scale the data:
y = scale(y)
# And the predictors
X = scale(prostate_train[,names(prostate_train) != "lpsa"])
gibbs_hs <- horseshoe_regression(y, X, niter=10000)
shrinkage_regression_plot(gibbs_hs$beta, y, X)</pre>
```

Index

```
*Topic package

s525-package, 1

horseshoe_regression, 2

metropolis, 4

probit_horseshoe_regression, 5

probit_regression, 6

ridge_regression, 8

s525 (s525-package), 1

s525-package, 1

shrinkage_regression_plot, 9
```