

685.621 Algorithms for Data Science

Supervised Learning: Classification Algorithms

How Classifiers Separate Data

Linear Boundaries

- Logistic Regression
- SVM

n Boundary

Non-Linear Boundaries

- KNN
- Decision Trees, Random Forest

How Classification Models Learn

$$L = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$
 Log Loss

$$L = -\sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log(\hat{y}_{ij})$$
 Softmax Cross-Entropy Loss

Handling More Than Two Classes

Problem: Many classification algorithms are naturally binary

Solution:

- ☐ One-vs-Rest (OvR):
 - ☐ Train one classifier per class.
 - The class with the highest confidence score wins
- **☐** One-vs-One (OvO):
 - ☐ Train classifiers for every pair of classes.
 - Use majority voting

Choosing the Right Model

Algorithm	Туре	Key Characteristics
Logistic Regression	Linear Model	Simple, interpretable, probabilistic
K-Nearest Neighbors (KNN)	Instance-based	No training phase, works well for small datasets
Decision Trees	Rule-based	Intuitive, interpretable, prone to overfitting
Random Forest	Ensemble	Reduces overfitting, handles large feature sets
Support Vector Machines	Hyperplane-based	Effective in high-dimensional spaces, kernel trick
Neural Networks	Deep Learning	Complex, data-hungry, highly accurate

The Simplest Classifier

$$\hat{y} = rac{1}{1 + e^{-(\omega^T x + b)}}$$

Advantages

- Interpretable
- Probabilistic output
- Efficient & scalable

Limitations

- Only finds linear decision boundaries
- Assumes feature independence
- Struggles with class imbalance

Instance-Based Learning

$$d\left(x,x'
ight) = \sqrt{\sum_{i=1}^{n}\left(x_i - x_i'
ight)^2}$$

Advantages

- Simple & Intuitive
- Works well with non-linear relationships
- Adapts to new data quickly

Limitations

- Slow on large datasets
- Sensitive to irrelevant features
- Choice of k matters

Rule-Based Classification

The Power of Ensembles

Advantages

- Reduces overfitting
 More stable than a single Decision Tree.
- Handles highdimensional data well – Works even when many features exist.
- Works with missing data – Can still make predictions even if some values are missing.

Limitations

- Less interpretable Unlike a single Decision Tree, it's hard to visualize.
- Computationally expensive — Training multiple trees takes more time than a single model.
- May not work well for small datasets — Too many trees can lead to unnecessary complexity.

Finding the Optimal Decision Boundary

Hard Margin
$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$
 Soft Margin $\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$,

Support Vector Machine Optimization

Primal Form

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i,$$

Dual Form

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j),$$

Subject to:
$$0 \le \alpha_i \le C$$
, $\sum_{i=1}^{N} \alpha_i y_i = 0$,

