MA-207 Differential Equations II S1 - Lecture 6

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 9th October 2017 S1 - Lecture 6

M.K. Keshari

S1 - Lecture 6

Recall : Assume x=0 is a regular singular point of $x^2y''+xB(x)y'+C(x)y=0$ and I(r)=0 has real roots $r_1\geq r_2$. Then we get a Frobenius solution $y(x,r)=x^r\sum_{n\geq 0}a_n(r)x^n,\quad a_0(r)=1$ at $r=r_1$.

For second solution $y_2(x)$, we have

• If
$$r_1 - r_2 \notin \mathbb{Z}$$
, then $y_2(x) = y(x, r_2)$.

• If
$$r_1=r_2$$
, then $y_2(x)=\frac{\partial y(x,r)}{\partial r}\big|_{r=r_2}$.

• If
$$r_1 \neq r_2$$
, $r_1 - r_2 \in \mathbb{Z}$, then

$$y_2(x) = \frac{\partial (r - r_2)y(x, r)}{\partial r}\Big|_{r=r_2}$$

Bessel equation $x^2y'' + xy' + (x^2 - p^2)y = 0$, $p \ge 0$. Roots of I(r) = 0 are p, -p.

For
$$p \notin \{-1, -2, \dots, \}$$

$$J_p(x) = \sum_{n \ge 0} \frac{(-1)^n}{n! \Gamma(n+p+1)} \left(\frac{x}{2}\right)^{2n+p}$$

For integer $m \geq 1$, define

$$J_{-m}(x) := \sum_{n \ge 0} \frac{(-1)^n}{n! \, \Gamma(n-m+1)} \, \left(\frac{x}{2}\right)^{2n-m}$$

$$= \sum_{n \ge m} \frac{(-1)^n}{n! \, (n-m)!} \, \left(\frac{x}{2}\right)^{2n-m} = \sum_{n \ge 0} \frac{(-1)^{n+m}}{(n+m)! \, (n)!} \, \left(\frac{x}{2}\right)^{2n+m}$$

$$= (-1)^m J_m(x)$$

So, $J_p(x)$ is defined for all real p. Let us see some Bessel identities.

M.K. Keshari S1 - Lecture 6

(1)
$$[x^{p}J_{p}(x)]' = x^{p}J_{p-1}(x)$$
.
 $J_{p}(x) = \sum_{n\geq 0} \frac{(-1)^{n}}{n! \Gamma(n+p+1)} \left(\frac{x}{2}\right)^{2n+p}$
 $(x^{p}J_{p}(x))' = \left(2^{p}\sum_{n\geq 0} \frac{(-1)^{n}}{n! \Gamma(n+p+1)} \left(\frac{x}{2}\right)^{2n+2p}\right)'$
 $= 2^{p}\sum_{n\geq 0} \frac{(-1)^{n}(2n+2p)}{n! \Gamma(n+p+1)} \frac{1}{2} \left(\frac{x}{2}\right)^{2n+2p-1}$
 $= 2^{p}\sum_{n\geq 0} \frac{(-1)^{n}}{n! \Gamma(n+p)} \left(\frac{x}{2}\right)^{2n+2p-1}$
 $= x^{p}\sum_{n\geq 0} \frac{(-1)^{n}}{n! \Gamma(n+p)} \left(\frac{x}{2}\right)^{2n+p-1} = x^{p}J_{p-1}(x)$

(1)
$$[x^p J_p(x)]' = x^p J_{p-1}(x)$$

Similarly, prove

(2)
$$[x^{-p}J_p(x)]' = -x^{-p}J_{p+1}(x)$$

Expand LHS of (1), (2) and divide by $x^{\pm p}$ to prove

(3)
$$J'_p(x) + \frac{p}{x}J_p(x) = J_{p-1}(x)$$

(4)
$$J'_p(x) - \frac{p}{x}J_p(x) = -J_{p+1}(x)$$

Adding and subtracting (3) and (4), prove

(5)
$$J_{p-1}(x) - J_{p+1}(x) = 2J'_p(x)$$

(6)
$$J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x} J_p(x)$$

M.K. Keshari

S1 - Lecture 6

Show that between any two <u>consecutive</u> zeros of $J_p(x)$, there exists <u>precisely one</u> zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$.

Proof. Let 0 < c < d be two consecutive zeros of $J_p(x)$. So $x^pJ_p(x)$ vanishes at c and d. By Rolle's theorem,

$$[x^p J_p(x)]'(b) = 0$$
 for some $b \in (c, d)$

$$[x^p J_p(x)]' = x^p J_{p-1}(x) \implies J_{p-1}(b) = 0$$

Assume there exist another zero b' of $J_{p-1}(x)$ in (c,d). Assume c < b < b' < d.

Use

$$[x^{-(p-1)}J_{p-1}(x)]' = -x^{-(p-1)}J_p(x)$$

Since $x^{-(p-1)}J_{p-1}(x)$ has zeros at b,b', its derivative $-x^{-(p-1)}J_p(x)$ has a zero at $b'' \in (b,b') \subset (c,d)$.

Hence $J_p(x)$ has a zero at b''.

This is a contradiction to the assumption that c, d were consecutive zeros of $J_p(x)$.

This proves that in the interval (c,d), $J_{p-1}(x)$ has a unique zero.

Similarly, you prove that in the interval (c,d), $J_{p+1}(x)$ has a unique zero. \Box

M.K. Keshari

S1 - Lecture 6

Example.

If
$$J_2(x) - J_0(x) = aJ_c''(x)$$
, find a and c.

Use
$$J_{p-1}(x) - J_{p+1}(x) = 2J'_p(x)$$
 for $p = 1$, we get

$$J_0(x) - J_2(x) = 2J_1'(x)$$

Now use
$$[x^{-p}J_p(x)]' = -x^{-p}J_{p+1}$$
 for $p = 0$, we get

$$J_0'(x) = -J_1(x)$$
. Therefore,

$$J_2(x) - J_0(x) = -2J_1'(x) = 2J_0''(x).$$

Hence
$$a=2$$
 and $c=0$.

We can use $J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x} J_p(x)$

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x, \quad J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

to compute $J_p(x)$ for all half integer values of p.

•
$$J_{3/2}(x) = \frac{1}{x}J_{1/2}(x) - J_{-1/2}(x)$$

= $\sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x\right)$
• $J_{-3/2}(x) = -\frac{1}{x}J_{-1/2}(x) - J_{1/2}(x)$

$$= -\sqrt{\frac{2}{\pi x}} \left(\frac{\cos x}{x} + \sin x \right)$$

M.K. Keshari S1 - Lecture 6

•
$$J_{\frac{5}{2}}(x) = \frac{3}{x} J_{\frac{3}{2}}(x) - J_{\frac{1}{2}}(x)$$

$$= \sqrt{\frac{2}{\pi x}} \left(\frac{3\sin x}{x^2} - \frac{3\cos x}{x} - \sin x \right)$$

For integer m, $J_{m+\frac{1}{2}}(x)$ are elementary functions called spherical Bessel functions as they arise in solving wave equations in spherical coordinates.

Theorem (Liouville)

 $J_{m+\frac{1}{2}}(x)$'s are the only Bessel functions which are elementary functions, where $m \in \mathbb{Z}$.

$$\frac{d}{dx} [x^p J_p(x)] = x^p J_{p-1}(x)$$

$$\implies \int_0^x t^p J_{p-1}(t) dt = x^p J_p(x)$$

$$\frac{d}{dx} \left[x^{-p} J_p(x) \right] = -x^{-p} J_{p+1}(x)$$

$$\implies \int_0^x t^{-p} J_{p+1}(t) dt = -x^{-p} J_p(x)$$

For example, with p = 1,

$$\int_0^x t J_0(t) dt = x J_1(x)$$

M.K. Keshari

S1 - Lecture 6

Qualitative properties of solutions

It is rarely possible to solve 2nd order linear ODE

$$y'' + P(x)y' + Q(x)y = 0$$

in terms of familiar elementary functions.

Then how do we understand the nature and properties of solutions.

It is surprising that we can obtain quite a bit of qualitative information about the solution from the ODE itself.

Let us study some of the qualitative properties of the solution.

M.K. Keshari

S1 - Lecture 6

Theorem (Sturm separation theorem)

If $y_1(x)$ and $y_2(x)$ are linearly independent solns of

$$y'' + P(x)y' + Q(x)y = 0$$

P,Q continuous on (a,b). Then

- (1) $y_1(x)$ and $y_2(x)$ have no common zero in (a,b).
- (2) Between any two successive zeros of $y_1(x)$, there is exactly one zero of $y_2(x)$ and vice versa.

Proof of (1). Since y_1, y_2 are linearly independent solutions, their Wronskian

$$W(x) := W(y_1, y_2) = y_1(x)y_2'(x) - y_1'(x)y_2(x)$$

is non vanishing on (a, b), hence (1) follows.

M.K. Keshari

S1 - Lecture 6

Proof of (2). Let x_1 and x_2 be successive zeros of $y_1(x)$. This means $y_1(x_1) = y_1(x_2) = 0$ and y_1 has no zeros on (x_1, x_2) .

To show y_2 has a zero in (x_1, x_2) .

If not, then either $y_2 > 0$ or $y_2 < 0$ on (x_1, x_2) .

For $x \in \{x_1, x_2\}$, the Wronskian reduces to

$$W(x) = -y_1'(x)y_2(x) \neq 0$$

Hence $y_1'(x) \neq 0$ for $x \in \{x_1, x_2\}$. Further, $y_1'(x_1)$ and $y_1'(x_2)$ must have opposite signs. Therefore, $W(x_1)$ and $W(x_2)$ must have opposite signs.

This is a contradiction, since Wronskian is non-vanishing and continuous on (a,b).

Hence it has a constant sign.

As a consequence, if y_1 and y_2 are linearly independent solution of y'' + P(x)y' + Q(x)y = 0, P, Q continuous on (a, b).

Then the number of zeros of y_1 and y_2 on (a, b) differ by atmost 1.

In particular, either both have finite number of zeros or both have infinite number of zeros in (a, b).

• For further discussion, we need that any ODE in the "standard" form y'' + P(x)y' + Q(x)y = 0 can be written in the "normal" form u'' + q(x)u = 0.

Put
$$y(x)=u(x)v(x)$$
, $y'=u'v+uv'$, and $y''=uv''+2u'v'+u''v$ in the ODE.

M.K. Keshari

S1 - Lecture 6

$$(uv'' + 2u'v' + u''v) + P(u'v + uv') + Quv = 0$$

$$vu'' + (2v' + Pv)u' + (v'' + Pv' + Qv)u = 0$$
Put $2v' + Pv = 0 \implies v(x) = exp\left(-\frac{1}{2}\int P(x)\,dx\right)$

Thus our ODE reduces to normal form

$$u'' + q(x)u = 0$$

where

$$q(x) = \frac{1}{v}(v'' + Pv' + Qv) = Q(x) - \frac{1}{4}P(x)^2 - \frac{1}{2}P'(x)$$

Theorem

Let u(x): non-trivial solution of u'' + q(x)u = 0 q(x) < 0 and continuous on (a,b). Then u(x) has atmost one zero in (a,b).

Proof. Assume $u(x_0) = 0$. Then $u'(x_0) \neq 0$, since Wronskian $W(x_0) \neq 0$.

Assume $\widetilde{x} \in (a, b)$ is next zero of u(x) after x_0 . Assume $u'(x_0) > 0$. Then u(x) > 0 on (x_0, \widetilde{x}) .

Since u''(x) = -q(x)u(x) > 0 on (x_0, \widetilde{x}) , u'(x) is an increasing function on (x_0, \widetilde{x}) .

Hence $u'(\tilde{x}) > 0$. This contradicts that $u'(\tilde{x}) < 0$.

M.K. Keshari

S1 - Lecture 6

Theorem

Let u(x): non-trivial solution of u''+q(x)u=0 q(x): continuous and q(x)>0 for all $x>x_0$. If $\int_{-\infty}^{\infty}q(x)\,dx=\infty$,

then u(x) has infinitely many zeros in (x_0, ∞) .

Proof. Assume u(x) has only finitely many zeros on $(0, \infty)$. Then $\exists \widetilde{x} > x_0$ such that $u(x) \neq 0$ for $x \geq \widetilde{x}$. Assume u(x) > 0 for $x \geq \widetilde{x}$.

Then u''(x) = -q(x)u(x) < 0 for $x \ge \widetilde{x}$. Hence u'(x) is decreasing for $x \ge \widetilde{x}$.

If we show that u'(x) < 0 for some $x > \widetilde{x}$, then $u(x_1) = 0$ for some $x_1 > \widetilde{x}$, a contradiction.

To show that u'(x) < 0 for some $x > \tilde{x}$. Put

$$v(x) = -\frac{u'(x)}{u(x)}, \quad \text{for } x \ge \widetilde{x}$$

$$v' = \frac{-u''u + u'^2}{u^2} = \frac{q(x)u^2 + u'^2}{u^2} = q(x) + v(x)^2$$

Integrate from \widetilde{x} to $x > \widetilde{x}$, we get

$$v(x) - v(\widetilde{x}) = \int_{\widetilde{x}}^{x} q(x) dx + \int_{\widetilde{x}}^{x} v(x)^{2} dx$$

 $\int_{x_0}^{\infty} q(x) \, dx = \infty \implies v(x) > 0 \text{ for large } x.$ Hence for large x, u(x) and u'(x) have opposite signs. So claim is proved as u(x) > 0 for $x > \widetilde{x}$. \square

M.K. Keshari

S1 - Lecture 6

Theorem

In Bessel equation $x^2y'' + xy' + (x^2 - p^2)y = 0$ Substituting $u(x) = \sqrt{x}y(x)$, we get

$$u'' + \left[1 + \frac{1 - 4p^2}{4x^2}\right]u = 0$$

 $q(x)=1+rac{1-4p^2}{4x^2}$ is continuous and q(x)>0 for $x>x_0>0$. Further,

$$\int_{x_0}^{\infty} \left(1 + \frac{1 - 4p^2}{4x^2} \right) dx = \infty$$

By previous theorem, u(x), hence any Bessel function has infinitely many zeros on $(0, \infty)$.

Theorem

Let u(x): non-trivial solution of u'' + q(x)u = 0 on finite interval [a,b], with q(x) continuous. Then u(x) has at most finite number of zeros in [a,b]. Hence if u(x) has infinitely many zeros on $(0,\infty)$, then the set of zeros of u(x) are not bounded.

Proof. Assume u(x) has infinitely many zeros in [a,b]. Then $\exists \, x_0 \in [a,b]$ and a sequence of zeros $x_n \neq x_0$ such that $x_n \to x_0$ as $n \to \infty$. $u(x_0) = \lim_{x_n \to x_0} u(x_n) = 0$ (u is continuous) and $u'(x_0) = \lim_{x_n \to x_0} \frac{u(x_n) - u(x_0)}{x_n - x_0} = 0$

a contradiction.

M.K. Keshari

S1 - Lecture 6

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_p(x)$ on $(0,\infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded.

We will conside the following question.

Write $Z^{(p)} = \{x_1, x_2, \ldots\}$ as increasing sequence $x_n < x_{n+1}$.

Question. What is the limit of $x_{n+1} - x_n$ as $n \to \infty$?

3 Extra slides: Not part of the course.

M.K. Keshari

S1 - Lecture 6

Assume roots of I(r)=0 are complex $r_1=t+is$ and $r_2=t-is$, $i=\sqrt{-1}$, $s\neq 0$.

In this case, their difference $r_1 - r_2 = 2is \notin \mathbb{Z}$.

Hence we get two Frobenius solutions.

But the coefficients $a_n(r_1)$ and $a_n(r_2)$ will be complex conjugates of each other.

Further $x^{t+is} = x^t e^{\log x^{is}} = x^t e^{is \log x}$

$$x^{t+is} = x^t(\cos(s\log x) + i\sin(s\log x))$$

Similarly, $x^{t-is} = x^t(\cos(s\log x) - i\sin(s\log x))$

Therefore, $y_1(x) = y(x, r_1)$ and $y_2 = y(x, r_2)$ are two L.I. solutions which are complex conjugates.

Taking real and imaginary part of y_1 , we get two linearly independent real solutions.

Remark on solving higher order linear ODE.

x = 0 is a regular singular point of

$$y''' + \frac{1}{x}B(x)y'' + \frac{1}{x^2}C(x)y' + \frac{1}{x^3}D(x)y = 0$$

if B(x), C(x), D(x) are analytic at 0.

In this case a Frobenius solution

$$y(x,r) = \sum_{n>0} a_n(r)x^{n+r}$$

exists atleast on $(0, \rho)$, where ρ is the minimum of radius of convergence of B(x), C(x), D(x) at 0.

Coefficient of x^r in

$$x^{3}y''' + x^{2}B(x)y'' + xC(x)y' + D(x)y = 0$$

gives the indicial equation I(r) = 0.

M.K. Keshari

S1 - Lecture 6

Assume $r_1 \ge r_2 \ge r_3$ be the real roots of I(r) = 0. So $I(r) = (r - r_1)(r - r_2)(r - r_3)$.

- $r = r_1$: Frobenius solution $y(x, r_1)$.
- If $r_1 r_2 \notin \mathbb{Z}$, Frobenius solution $y(x, r_2)$.
- If $r_1 r_3, r_2 r_3 \notin \mathbb{Z}$, Frobenius solution $y(x, r_3)$.
- If $r_1=r_2$, Solution: $\frac{\partial}{\partial r}y(x,r)\big|_{r_1}$
- $r_1=r_2=r_3$, Solutions: $\frac{\partial}{\partial r}y(x,r)\big|_{r_1}$ and

$$\frac{\partial^2}{\partial r^2}y(x,r)\big|_{r_1}$$
 both give solutions.

•
$$r_1 - r_2 \in \mathbb{Z}$$
, Solution: $\frac{\partial}{\partial r}(r - r_2)y(x,r)\big|_{r_2}$

•
$$r_1-r_2, r_2-r_3 \in \mathbb{Z}$$
, Solution: $\frac{\partial}{\partial r}(r-r_2)y(x,r)\big|_{r_2}$ and $\frac{\partial}{\partial r}(r-r_2)(r-r_3)y(x,r)\big|_{r_3}$