Introduction

In this note(s), I will work with a matrix A with m rows and n columns. A can be viewed as a function that maps a vector, \vec{v} , in \mathbb{R}^n to $A\vec{v}$ in \mathbb{R}^m . I have two, closely related, goals for this note concerning this matrix A. The first is to prove the Rank Nullity Theorem, N = Dim(Range(A)) + Dim(Nullspace(A)). And the second is to discus decomposing the domain of A (viewed as a function), \mathbb{R}^n , as the direct sum of the nullspace of A and any complementary subspace to it in \mathbb{R}^n . Note that for the second goal, one such complementary subspace to the nullspace is the rowspace, its orthogonal complement in \mathbb{R}^n .

Appendix: Linear Independence, Dependence, Redundancy, Nullspace

Let me start by reviewing the definition(s) of linear independence and dependence.

A set of vectors $\{a_1,a_2,...,a_n\}$ is linearly independent if the only way to form the zero vector, $\vec{0}$, by taking a linear combination of the them is when all the weights are 0. That is, $x_1\vec{a_1}+x_2\vec{a_2}+...+x_n\vec{a_n}=\vec{0}$ only when all the x_i are themselves 0. All the x_i being 0 is known as the trivial solution to this equation. Note, the above equation can be written in matrix form as $A\vec{x}=\vec{0}$ where A=

$$(a_1 \ a_2 \ \dots \ a_n)$$
 and $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$. Then, if the only solution to this equation is $x = \vec{0}$, $\{a_1, a_2, ..., a_n\}$ is

linearly independent.

And if a set of vectors is not linearly independent, then it is linearly dependent. This means that there exists a nontrivial solution to $x_1\vec{a_1} + x_2\vec{a_2} + ... + x_n\vec{a_n} = \vec{0}$. The upshot is of this is that at least one of the a_i can be expressed as a linear combination of the remaining vectors. To see this for

a set of linearly independent vectors, consider the nontrivial solution, $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$. At least one of the

 $x_i \text{ is not } 0 \text{ so from } x_1\vec{a_1} + x_2\vec{a_2} + \ldots + x_n\overrightarrow{a_n} = \vec{0},$

$$x_i \vec{a_i} = \sum_{j \neq i} -x_j \vec{a_j}$$

$$\vec{a_i} = \sum_{i \neq i} - \left(\frac{x_j}{x_i}\right) \vec{a_j}$$

Linear Independence And Uniqueness

Say I have 2 vectors $\vec{a_1}$ and $\vec{a_2}$ that are lineary independent.

Axler proof

Key idea: Redundancy and NullSpace $A\vec{u}=A\vec{v}\Rightarrow A\vec{u}-A\vec{v}=\vec{0}\Rightarrow A(\vec{u}-\vec{v})=0$ Where last implication follows from linearity. So if $\vec{u}\neq\vec{v}$, I have found a non-trivial vector in the nullspace of $A,\vec{u}-\vec{v}$.