Regression

Mark Hagemann

March 5, 2015

```
##
## Attaching package: 'dplyr'
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

▶ What is a regression model and what's it good for?

- ▶ What is a regression model and what's it good for?
 - Explanation

- ▶ What is a regression model and what's it good for?
 - Explanation
 - Quantifying relationships

- What is a regression model and what's it good for?
 - Explanation
 - Quantifying relationships
 - Prediction

- What is a regression model and what's it good for?
 - Explanation
 - Quantifying relationships
 - Prediction
- Limitations

- What is a regression model and what's it good for?
 - Explanation
 - Quantifying relationships
 - Prediction
- Limitations
 - Assumptions (linearity, i.i.d., etc.)

- What is a regression model and what's it good for?
 - Explanation
 - Quantifying relationships
 - Prediction
- Limitations
 - Assumptions (linearity, i.i.d., etc.)
 - Predicting is hard!

► Look at your data

- ▶ Look at your data
- build model(s)

- ▶ Look at your data
- build model(s)
- Check assumptions

- ▶ Look at your data
- build model(s)
- Check assumptions
- select model

- Look at your data
- build model(s)
- Check assumptions
- select model
- ► Use model

Math background

Linear functions

Linear functions

$$y = a \times x + b$$

Some (perfectly linear) data

A (perfect) linear regression line

More realistic case

In reality, we start with the (noisy) data, and we seek the underlying function

Fit a line

Compare to "actual" function

Impact of noise

These data are 4 times noisier than the previous

Now fit a line

Dashed line is generating function.

Example: state demographics

data(state)
kable(head(state.x77))

	Population	Income	Illiteracy	Life Exp	Murder	HS Gr
Alabama	3615	3624	2.1	69.05	15.1	41
Alaska	365	6315	1.5	69.31	11.3	66
Arizona	2212	4530	1.8	70.55	7.8	58
Arkansas	2110	3378	1.9	70.66	10.1	39
California	21198	5114	1.1	71.71	10.3	62
Colorado	2541	4884	0.7	72.06	6.8	63

Rename the columns

```
state = state.x77 %>%
  as.data.frame() %>%
  setNames(c("pop", "inc", "illit", "lExp", "murder", "hsGrad",
kable(head(state))
```

•	pop	inc	illit	IExp	murder	hsGrad	frost	ar
Alabama	3615	3624	2.1	69.05	15.1	41.3	20	507
Alaska	365	6315	1.5	69.31	11.3	66.7	152	5664
Arizona	2212	4530	1.8	70.55	7.8	58.1	15	1134
Arkansas	2110	3378	1.9	70.66	10.1	39.9	65	519
California	21198	5114	1.1	71.71	10.3	62.6	20	1563
Colorado	2541	4884	0.7	72.06	6.8	63.9	166	1037

Inspect all pairwise relationships using pairs() function

Make a model! For life expectancy...

```
mod1 = lm(lExp ~ hsGrad, state)
mod2 = lm(lExp ~ murder + hsGrad, state)
mod3 = lm(lExp ~ murder + hsGrad + illit, state)
```


See the good parts using summary()

Model 1:

```
##
## Call:
## lm(formula = lExp ~ hsGrad, data = state)
##
## Residuals:
##
       Min
             1Q Median
                                 3Q
                                         Max
## -3.01867 -0.67517 -0.07538 0.64483 2.17311
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 65.73965    1.04748    62.760    < 2e-16 ***
## hsGrad 0.09676 0.01950 4.961 9.2e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ''
##
## Residual standard error: 1.103 on 48 degrees of freedom
## Multiple R-squared: 0.339, Adjusted R-squared: 0.3252
## F-statistic: 24.61 on 1 and 48 DF, p-value: 9.196e-06
```

Model 2:

```
##
## Call:
## lm(formula = lExp ~ murder + hsGrad, data = state)
##
## Residuals:
##
       Min
              1Q Median
                                 30
                                         Max
## -1.66758 -0.41801 0.05602 0.55913 2.05625
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 70.29708 1.01567 69.213 < 2e-16 ***
## murder -0.23709 0.03529 -6.719 2.18e-08 ***
## hsGrad 0.04389 0.01613 2.721 0.00909 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
##
## Residual standard error: 0.7959 on 47 degrees of freedom
## Multiple R-squared: 0.6628, Adjusted R-squared: 0.6485
## F-statistic: 46.2 on 2 and 47 DF, p-value: 8.016e-12
                                     4□ > 4□ > 4 = > 4 = > = 990
```

Model 3:

```
##
## Call:
## lm(formula = lExp ~ murder + hsGrad + illit, data = state)
##
## Residuals:
##
      Min
            1Q Median 3Q
                                    Max
## -1.65922 -0.46400 0.08517 0.59643 1.77657
##
## Coefficients:
##
            Estimate Std. Error t value Pr(>|t|)
## murder -0.25813 0.04350 -5.934 3.63e-07 ***
## hsGrad 0.05179 0.01876 2.761 0.00825 **
## illit 0.25398 0.30508 0.833 0.40942
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
##
## Residual standard error: 0.7985 on 46 degrees of freedom
## Multiple R-squared: 0.6679, Adjusted R-squared: 0.6462
## F-statistic: 30.83 on 3 and 46 DF, p-value: 4.444e-11
```

Inspect the model!

termplot() function

```
par(mfrow = c(1, 2))
termplot(mod2, partial.resid = TRUE)
```


qplot() to look at residual distribution

Could also use hist(), qqnorm(), etc.

Make a prediction!

predict() function

```
newdat = data.frame(murder = 9, hsGrad = 77)
kable(newdat)
```

murder	hsGrad
9	77

Make a prediction!

predict() function

```
predict(mod2, newdat, se.fit = TRUE) %>%
  as.data.frame() %>%
  kable()
```

fit	se.fit	df	residual.scale
71.5426	0.4311892	47	0.7958717

▶ glm()

- ▶ glm()
- ► gam() mgcv package

- ▶ glm()
- ► gam() mgcv package
- ▶ arima() time series models

- ▶ glm()
- ► gam() mgcv package
- arima() time series models
- automated model selection

- ▶ glm()
- ► gam() mgcv package
- ▶ arima() time series models
- automated model selection
 - stepwise step() function,

- ▶ glm()
- ▶ gam() mgcv package
- ▶ arima() time series models
- automated model selection
 - ▶ stepwise step() function,
 - best subset leaps package

- ▶ glm()
- ► gam() mgcv package
- arima() time series models
- automated model selection
 - stepwise step() function,
 - best subset leaps package
- machine learning methods various packages