under Graduate Homework In Mathematics

RiemannGeometry 1

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2024年11月28日

 (T,τ) is compatible locally on x with both (U,ϕ) and (V,ψ) . So (U,ϕ) is locally compatible with (V,ψ) on x. Since x is arbitrary, we know (U,ϕ) is compatible with (V,ψ) . So $\mathcal A$ is differential structure of M. Now we assume \mathcal{B} is another differential structure of M contains \mathcal{A}_0 . Since \mathcal{B} is compatible,

 \mathbb{R}^{OBEM} I Assume $\mathcal{A}_0 = \{(U_{\alpha}, \phi_{\alpha}) : \alpha \in I\}$ is a C^r -compatible coordinate covery of a m-

 $\mathcal{A} := \{(U, \phi) : (U, \phi) \text{ is chart of } M, \land \forall (V, \psi) \in \mathcal{A}_0, (U, \phi) \text{ is compatible with } (V, \psi)\}$

SOLION. First, easily $A_0 \subset A$ by definition of A_0 . Now we should prove A is differential structure on M. Let $(U, \phi), (V, \psi) \in \mathcal{A}$. If $(U, \phi) \in \mathcal{A}_0$, then by definition of \mathcal{A}_0 we know (U, ϕ) is compatible to (V, ψ) . If $(U, \phi), (V, \psi) \notin \mathcal{A}_0$, then consider $U \cap V$. If $U \cap V = \emptyset$, then (U, ϕ) is compatible with (V,ψ) . Now assume $W=U\cap V\neq\varnothing$. Consider $\gamma:=\psi\circ\phi^{-1}:\phi(W)\to\psi(W)$. For any $x\in W$, since \mathcal{A}_0 is covery of M, we know $\exists (T,\tau) \in \mathcal{A}_0, x \in T$. Then by the definition of \mathcal{A} , we know

. Then \mathcal{A} is unique C^r -differential structure on M contains \mathcal{A}_0 .

we get $\mathcal{B} \subset \mathcal{A}$. Since \mathcal{B} is maximal, we get $\mathcal{B} = \mathcal{A}$. So \mathcal{A} is unique.

dimensional manifold M, let

. So easily to get that

 $\left(\frac{\partial z^i}{\partial x^j}\right) = \left(\frac{\partial z^i}{\partial y^k}\right) \left(\frac{\partial y^k}{\partial x^j}\right)$ SOLUTION. For fixed $1 \leq i, j \leq m$, we have

POBEM II Assume $(U, \phi; x^i), (V, \psi; y^i), (W, \chi; z^i)$ are three local coordinate on an m-dimensional

smooth manifold M, and $W \cap V \cap U \neq \emptyset$. Prove that on $\phi(U \cap V \cap W)$, we have:

$$\frac{\partial z^{i}}{\partial x^{j}} = \sum_{k=1}^{m} \frac{\partial z^{i}}{\partial y^{k}} \frac{\partial y^{k}}{\partial x^{j}}$$
$$\left(\frac{\partial z^{i}}{\partial x^{j}}\right) = \left(\frac{\partial z^{i}}{\partial y^{k}}\right) \left(\frac{\partial y^{k}}{\partial x^{j}}\right)$$

We let $(W, \chi; z^i) = (U, \phi; x^i)$, then we get:

 $I_m = \left(\frac{\partial x^i}{\partial y^k}\right) \left(\frac{\partial y^k}{\partial x^j}\right)$

. So both terms on the right side are invertible, thus non-singular. \mathbb{R}^{OBEM} III Assume M is orientable and connected, prove that M has exactly two different orien-

tion.

SOLTION. Since M is orientable, we can assume that $\mathcal{B} \subset \mathcal{A}$ is an oriention of M, where \mathcal{A} is all local coordinate of M. Now consider $\mathcal{C} := \{(U; -x^i) : (U; x^i) \in \mathcal{B}\}$. Easily to check that \mathcal{C} is an

oriention of M, too. And obviously $\mathcal{B} \cap \mathcal{C} = \emptyset$, thus $\mathcal{B} \neq \mathcal{C}$. So there is two oriention. Now we need to prove there is no other oriention.