Section 3.4

Matrix Multiplication

Section 3.4 Outline

- Understand composition of linear transformations
- Learn how to multiply matrices
- Learn the connection between these two things

Function composition

Remember from calculus that if f and g are functions then the composition $f\circ g$ is a new function defined as follows:

$$f \circ g(x) = f(g(x))$$

In words: first apply g, then f.

Example: $f(x) = x^2$ and g(x) = x + 1.

Note that $f\circ g$ is usually different from $g\circ f.$

Composition of linear transformations

We can do the same thing with linear transformations $T:\mathbb{R}^p \to \mathbb{R}^m$ and $U:\mathbb{R}^n \to \mathbb{R}^p$ and make the composition $T\circ U$.

Notice that both have an p. Why?

What are the domain and codomain for $T \circ U$?

Natural question: What is the matrix for $T \circ U$? We'll see!

Associative property: $(S \circ T) \circ U = S \circ (T \circ U)$

Why?

Composition of linear transformations

Example. T= projection to y-axis and U= reflection about y=x in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

What about $U \circ T$?

Matrix Multiplication

And now for something completely different (not really!)

Suppose A is an $m \times n$ matrix. We write a_{ij} or A_{ij} for the ijth entry.

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$ and

$$(AB)_{ij} = r_i \cdot b_j$$

where r_i is the *i*th row of A, and b_j is the *j*th column of B.

Or: the jth column of AB is A times the jth column of B.

Multiply these matrices (both ways):

$$\left(\begin{array}{rrr}1 & 2 & 3\\4 & 5 & 6\end{array}\right)\left(\begin{array}{rrr}0 & -2\\1 & -1\\2 & 0\end{array}\right)$$

Matrix Multiplication and Linear Transformations

As above, the composition $T \circ U$ means: do U then do T

Fact. Suppose that A and B are the standard matrices for the linear transformations $T:\mathbb{R}^n\to\mathbb{R}^m$ and $U:\mathbb{R}^p\to\mathbb{R}^n$. The standard matrix for $T\circ U$ is AB.

Why?

$$(T \circ U)(v) = T(U(v)) = T(Bv) = A(Bv)$$

So we need to check that A(Bv)=(AB)v. Enough to do this for $v=e_i$. In this case Bv is the ith column of B. So the left-hand side is A times the ith column of B. The right-hand side is the ith column of AB which we already said was A times the ith column of B. It works!

Matrix Multiplication and Linear Transformations

Fact. Suppose that A and B are the standard matrices for the linear transformations $T:\mathbb{R}^p \to \mathbb{R}^m$ and $U:\mathbb{R}^n \to \mathbb{R}^p$. The standard matrix for $T\circ U$ is AB.

Example. T= projection to y-axis and U= reflection about y=x in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy-plane and then projects onto the yz-plane.

Discussion Question

Are there nonzero matrices A and B with AB = 0?

- 1. Yes
- 2. No

Properties of Matrix Multiplication

- A(BC) = (AB)C
- A(B+C) = AB + AC
- $\bullet \ (B+C)A = BA + CA$
- r(AB) = (rA)B = A(rB)
- $\bullet \ (AB)^T = B^T A^T$
- $I_m A = A = A I_n$, where I_k is the $k \times k$ identity matrix.

Multiplication is associative because function composition is (this would be hard to check from the definition!).

Warning!

- ullet AB is not always equal to BA
- AB = AC does not mean that B = C
- AB = 0 does not mean that A or B is 0

More rabbits

Recall that the following matrix describes the change in our rabbit population from this year to the next:

$$\left(\begin{array}{ccc}
0 & 6 & 8 \\
1/2 & 0 & 0 \\
0 & 1/2 & 0
\end{array}\right)$$

What matrix should we use if we want to describe the change in the rabbit population from this year to two years from now? Or 10 years from now?

Fun with matrix multiplication

Play the Buzz game!

http://textbooks.math.gatech.edu/ila/demos/transform_game.html

In the rotation game, you need to find a composition of shears that gives a rotation!

Summary of Section 3.4

- Composition: $(T \circ U)(v) = T(U(v))$ (do U then T)
- Matrix multiplication: $(AB)_{ij} = r_i \cdot b_j$
- Matrix multiplication: the *i*th column of AB is $A(b_i)$
- Suppose that A and B are the standard matrices for the linear transformations $T:\mathbb{R}^n \to \mathbb{R}^m$ and $U:\mathbb{R}^p \to \mathbb{R}^n$. The standard matrix for $T\circ U$ is AB.
- Warning!
 - ightharpoonup AB is not always equal to BA
 - ightharpoonup AB = AC does not mean that B = C
 - ightharpoonup AB=0 does not mean that A or B is 0

Typical Exam Questions 3.4

- True/False. If A is a 3×4 matrix and B is a 4×3 matrix, then it makes sense to multiply A and B in both orders.
- True/False. If it makes sense to multiply a matrix A by itself, then A must be a square matrix.
- \bullet True/False. If A is a non-zero square matrix, then A^2 is a non-zero square matrix.
- True/False. If $A = -I_n$ and B is an $n \times n$ matrix, then AB = BA.
- Find the standard matrices for the projections to the xy-plane and the yz-plane in \mathbb{R}^3 . Find the matrices for the linear transformations obtained by doing these two linear operations in the two different orders. Are the answers the same?
- Find the standard matrix A for projection to the xy-plane in $\mathbb{R}^3.$ What is A^2 ?
- Find the standard matrix A for reflection in the xy-plane in \mathbb{R}^3 . Is there a matrix B so that $AB = I_3$?