Razvoj podatkovnog sloja i aplikacijske logike za potrebe sustava elektroničkog učenja Završni rad, ak. god. 2015/16.

Alen Murtić mentor: Doc. dr. sc. Damir Pintar

Faklutet elektrotehnike i računarstva, Sveučilište u Zagrebu

04.07.2016.

Sadržaj

- 1 Sustavi za elektroničko učenje Inteligentni sustavi za učenje (ITS)
- 2 Implementirano rješenje Baza podataka Aplikacijska logika
- 3 Pitanja
- 4 Literatura

Sustavi za elektroničko učenje

- prijenos znanja ili obrazovnog programa putem elektroničkih uređaja
- prenošenje informacija i materijala, provjeravanje znanja, upijanje novih činjenica
- cilj: objedinjavanje procesa učenja
- prednosti: objektivnost, dostupnost (vremenska i lokacijska)
- nedostatak: mala individualnost

Inteligentni sustavi za učenje (ITS)

- J. Carbonell: "Sustav za učenje nije samo alat, nego i učitelj."
- individualni pristup svakom korisniku, s obzirom na njegovo znanje i sposobnosti
- mogućnosti koje ITS treba nuditi:
 - procjena korisnikova znanja
 - inteligentno posluživanje pitanja
 - reakcije i pomoć korisniku
- reprezentacija znanja iznimno je važna za kvalitetu ITS-a

Komponente ITS-a

- domenski model
 - organizacija znanja u jedinice za pohranu u bazu podataka
 - uključuje i strategije koje korisnik treba naučiti
- korisnički (učenički) model
 - evaluacija točnosti odgovora i analiza zadataka korak po korak
- model učenja
 - procjena i bodovanje korisnikova znanja, navigacija sustavom
- korisničko sučelje
 - grafički ili tekstualni način komunikacije s korisnikom

Slika 1: Komponente ITS-a

Implementirano rješenje

- zadatak završnog rada:
 - podatkovni sloj i aplikacijska logika ITS-a
 - procjena i reprezentacija stanja usvojenosti koncepata
 - baza parametriziranih zadataka
 - inteligentno posluživanje zadataka
 - sastavljanje ispita s obzirom na uvjete

ER dijagram

Slika 2: ER dijagram baze

- podjela znanja u granulacije:
 - predmet
 - koncept pripada predmetu
 - granula znanja pripada konceptu
- između dvaju koncepata ili granula mogući su odnosi:
 - preduvjet nemoguće je znati jedno bez znanja drugog
 - podskup (nadskup) jedna granulacije u cijelosti sadrži drugu
 - korištenje da bi se riješila pitanja neke granulacije, potrebno je koristiti znanje druge
 - analogno znanjem nečega postoji osnovno razumijevanje nečeg drugog
 - paralelno više pogleda na jedan problem
- odnosi ne ovise o pripadnosti granulacije višoj, npr. mogući su odnosi između koncepata različitih predmeta

Parametrizirana pitanja

- entitet zadatak u bazi opisuju atributi:
 - pitanje tekstualni opis
 - slika dodatak opisu, neobavezna
 - parametri brojevi koji se generiraju prilikom stvaranja konkretnog pitanja, moguće definirati min. i max. vrijednost
 - izraz matematička formula za izračun rezultata
 - složenost težina pitanja
 - granula kojoj pripada
- korisniku se prikazuju pitanje, slika i konkretni parametri
- korisnikovo rješenje uspoređuje se s 5% točnosti u odnosu na izračunato

Procjena znanja korisnika

granule

- korisnikovo znanje granule počinje od 0
- granuli pitanja i granuli nadskupa dodaje se ili oduzima faktor važnosti * broj složenosti granule za svaki zadatak
- granula ima upisanu ukupnu bodovnu složenost u bazi
- faktor važnosti granule kojoj zadatak pripada i granule podskupa je 1, korištene granule 0.4, a analogne 0.2

koncepti

- težinski prosjek usvojenosti granula koje pripadaju konceptu
- težina granule je 5 * faktor važnosti
- Formula izračuna usvojenosti koncepata:

$$U = \sum_{i=1}^{n} T_i * G_i / \sum_{i=1}^{n} T_i$$

- U usvojenost koncepta
- T težina znanja
- G postotak usvojenosti granule

Znanje u sustavu

- diskretna matematika
 - osnove kombinatorike
 - skupovi, produktno pravilo, permutacije
 - varijacije i kombinacije
 - varijacije, kombinacije
 - napredna kombinatorika
 - mješovita kombinatorika, Dirichletovo načelo
 - osnove vjerojatnosti
 - osnove vjerojatnosti

Generiranje pitanja

- inteligentno učenje algoritam:
 - 1 odabir koncepata na koje korisnik može odgovarati
 - 2 odabir svih dostupnih granula znanja unutar koncepata
 - 3 permutacija liste granula i lista pitanja svake granule
 - pronalazak po jednog pitanja složenosti najsličnije korisnikovu znanju za svaku granulu
 - sako nema dovoljno pitanja, povećanje broja pitanja za 1 po granuli dok se na nađe dovoljno
- s obzirom na uvjete administratora (ispit)
 - odabir minimalne i maksimalne moguće složenosti pitanja
 - odabir korisnika kojemu se ispit generira
 - upozorenje ako neki korisnik ne smije dobiti neka pitanja
 - inteligentan odabir za svakog korisnika

Pitanja

- D. Stockley. E-learning definition (elearning, online training, online learning).
 http://www.derekstockley.com.au/elearning-definition.html.
 Preuzeto: 3, 7, 2016.
- M. Urban-Lurain. Intelligent tutoring systems: An historic review in the context of the development of artificial intelligence and educational psychology. http://www.cse.msu.edu/rgroups/cse101/ITS/its.htm.
 Preuzeto: 3, 7, 2016.