PRACTICA 3: "Respuesta de Sistemas Dinámicos Discretos"

MATERIAL

- Matlab & Simulink. Asegurarse de contar los Toolbox "Audio Toolbox" y "DSP System Toolbox"
- Archivos "seno10Hz_pink_noise_250Hz.txt", "ecg_pink_noise_250Hz.txt", "h1.txt" y "h2.txt"

EXPERIMENTO 1

Empleando el comando load, leer los archivos "ecg_pink_noise_250Hz.txt" y "seno10Hz_pink_noise_250Hz.txt", los cuales representan señales de prueba $(x_1(n) \ y \ x_2(n))$, ambas muestreadas a 250 Hz; ahora bien, también se deben leer los archivos "h1.txt" y "h2.txt", los cuales representan valores numéricos de dos respuestas impulso $h_1(n)$ y $h_2(n)$, respectivamente.

- a) Calcular la salida del sistema $h_1(n)$ considerando una entrada $x_1(n)$ mediante convolución. Grafique tanto la señal de entrada como la señal de salida contra el tiempo, recordando que la frecuencia de muestreo es de $250~\mathrm{Hz}$
- b) Calcular la salida del sistema $h_2(n)$ considerando una entrada $x_2(n)$ mediante convolución. Grafique tanto la señal de entrada como la señal de salida contra el tiempo, recordando que la frecuencia de muestreo es de $250~{\rm Hz}$
- c) Generar una simulación (duración 2 s) en Simulink, en donde su sistema discreto se implementará con un bloque de nombre "Discrete FIR Filter" (cuidando que en el campo "Filter Structure" se seleccione la opción "Direct Form" y el periodo de muestreo es de 1/250 o 4 ms), en donde los valores de la respuesta impulso $h_1(n)$ serán programados en el campo "Coeficients". Realizar un barrido en frecuencia (forma de onda senoidal con amplitud unitaria) y llenar la siguiente tabla:

Frecuencia [Hz]	1	10	20	30	40	50	60	70	80	90	100
Amp. Entrada											
Amp. Salida											
Ganancia											
Ganancia [dB]											

d) Similar al inciso anterior, pero el sistema de prueba será $h_2(n)$. Se debe realizar un barrido en frecuencia y llenarse la siguiente tabla:

Frecuencia [Hz]	1	3	5	7	9	11	13	15	17	19	21
Amp. Entrada											
Amp. Salida											
Ganancia											
Ganancia [dB]											

EXPERIMENTO 2

Sea la siguiente ecuación en diferencias

$$y(n) - \frac{1}{5}y(n-1) + \frac{1}{2}y(n-2) = 1$$

Sujeta a las condiciones iniciales y(-1) = 0 y y(-2) = 0

Calcular su salida de forma teórica y graficarla empleando como eje de tiempo discreto una sucesión de enteros desde 0 hasta 10 (Figure 1). De manera adicional, obtener la salida de dicho sistema empleando Simulink (considerando tiempo de simulación de $10 \text{ s y } T_s = 1 \text{ s}$) y exportar dicho resultado a Matlab para graficas ambas respuestas (Figure 2) y compararlas (realizar el cálculo del error cuadrático medio entre ambas señales)

EXPERIMENTO 3

Sea el modelo discreto descrito por la función de transferencia H(z). Generar la respuesta a entrada escalón en Simulink, considerando un periodo de muestreo (en el bloque step) $T_s = 0.05$ [s] y un tiempo de simulación de 10 [s]. Genere una simulación para cada inciso

$$H(z) = \frac{0.2994z^{-1} + 0.269z^{-2}}{1 - 0.2z^{-1} + 0.8z^{-2}}$$

a) Empleando el bloque de función de transferencia ($Discrete\ Transfer\ Fcn$)

b) Generando un diagrama de bloques empleando solo retrasos, ganancias y sumadores. Considerar que la ecuación en diferencias equivalente es:

$$y(n) - 0.2y(n-1) + 0.8y(n-2) = 0.2994x(n-1) + 0.269x(n-2)$$

c) Aplicar un control PID discreto (*Discrete PID Controller*) en el formato de función de transferencia, con los siguientes parámetros (también es válido generar su propia sintonización):

Main	Initialization	Output Saturation	Data Types	State Attributes			
Controller parameters							
Source: internal							
Proportional (P): 0.105903564567644							
Integral (I): 4.23614258270577							
Derivative (D): 0							
Use filtered derivative							
Filter coefficient (N): 100							

EXPERIMENTO 4

El siguiente diagrama de bloques representa el sistema generador de tonos digitales (oscilador senoidal discreto). La salida de cada sumador representa, respectivamente, la versión seno y coseno, las cuales tienen como diferencia solo un factor de defasamiento de 90°, lo cual no implica una diferencia audible.

Laboratorio de Procesamiento Digital de Bioseñales e Imágenes UPIBI Profesor Rodrigo Mora Martínez

Programando un periodo de muestreo de 0.0001 [s] ($f_s = 10$ [kHz]) en los bloques de retraso unitario, generar en la plataforma de Simulink <u>un diagrama para cada frecuencia asociada</u> (siete diagramas en total) a las notas de la cuarta octava del piano (Tabla 1). Simular durante 5 [s] y conectar a la salida el bloque de "Audio Device Writer" para que el sonido de dicha señal se genere en las bocinas de su computadora.

Tabla 1 Frecuencias de las notas de la cuarta octava del piano

Nombre	Símbolo	Frecuencia [Hz]
Do	C4	261.62
Re	D4	293.66
Mi	E4	329.62
Fa	F4	349.22
Sol	G4	391.99
La	A4	440.00
Si	B4	493.88

Nota: Tomar en cuenta que la frecuencia digital se define como:

$$f_D = \frac{f_{analogica}}{f_s}$$