Computability - Exercise 4

All answers should be proved formally

Due Monday, June 16, 11:59 AM

- 1. (a) Specify the Myhill-Nerode equivalence classes of the language $L_1 = \{0^i 1^j \mid i > j\}$. (You do not have to prove that these are the equivalence classes, but do be careful not to miss anything). Is L_1 regular?
 - (b) Is $L_2 = \{w \in \{0,1\}^* \mid \text{ the number of 0's in } w \text{ is greater then the number of 1's in } w\}$ regular? (remember to prove your answer). Hint: You may use the language 0^*1^* .
- 2. Describe the (Myhill-Nerode) equivalence classes of the language L = (0+1)*010(0+1)* and draw a deterministic finite automaton (a.k.a. DFA) for L, based on these classes. (No proof required)
- 3. (based on a question from last year's midterm exam) Let $C = \{L_1, L_2, ..., L_n\}$ be a finite set of regular languages over an alphabet Σ . Suppose that for each one of the languages in the set, the number of Myhill-Nerode equivalence classes is k. For $m \geq 0$, let L^m denote the language

$$L^m = \{ w \in \Sigma^* : w \text{ belongs to exactly } m \text{ languages from } C \}$$

Give a tight bound for the number of Myhill-Nerode equivalence classes of L^m .

A tight bound is a function $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, such that for all n,k, and m, there is no set $C = \{L_1, \ldots, L_n\}$ for which the DFA for L^m needs more than f(n, m, k) states (that is, f is an upper bound), and there exists a set $C = \{L_1, \ldots, L_n\}$ for which an automaton for L^m needs at least f(n, k, m) states (that is, f is also a lower bound).

Justify your answer (without a formal proof).

- Justify your answer (without a formal proof).
- 4. For each of the following languages over $\Sigma = \{0, 1\}$, write a context-free grammar with the **minimal** number of variables that generates the language (without further proof).
 - (a) $\{w \mid w = w^R\}$ (w^R denotes the reverse of w).
 - (b) $\{w \mid w \neq w^R\}.$
 - (c) $\{w \mid \text{the number of 0's in } w \text{ equals to the number of 1's} \}.$
- 5. (optional)

Let G be a context-free grammar in Chomsky normal form that contains k variables. Show that, if G generates some string using a derivation with at least 2^k steps, then L(G) is infinite (that is, contains infinitely many words).