Partially Observable Markov Decision Processes

Lionel Rigoux & Frederike Petzschner

Introduction

- MDP >> Full observability: the agent always knows the state of the world
- This might often not be true in real life
 - Imperfect memory
 // navigation: "turn left on the seventh street"
 > what if you loose track of the number of streets already passed?
 - Changing environment
 // reward selection in a T-maze
 > reward location changes every trials, as
 cued by a smell

Outline

- Extend the MPD framework to account for state uncertainty
 - Beliefs representation
 - Observation function
 - Belief updating and state chaining
- Formalization
- Solution
- Conclusion
- Perspectives

state action outcome

leave

R = 100

stay

stay

Stay

R = 30

leave

leave

R = -40

state

not known

belief

$$b=p(s=S_1)$$

$$p(s=S_1) = 0$$
 $p(s=S_1) = 1$

actions and payoff function

$$E[R](a) = p(x=0) R_0(a) + p(x=1) R_1(a)$$

observation function

provide information about state

_	leave	stay	listen
noises	0	0.5	0.15
no one	1	0.5	0.85

_	leave	stay	listen
noises	1	0.5	0.85
no one	0	0.5	0.15

noises

listen no one

listen no one

state space

belief space

POMDP Formalism

MDP

- S set of states
- A set of actions
- T transition matrix $S \times A \rightarrow S$
- R reward function $S \times A \rightarrow \mathbb{R}$
- $\cdot \gamma$ discount factor

POMDP extension

- Ω set of observations
- 0 observation probabilities $S \times A \times \Omega \rightarrow [0, 1]$
- B belief space
- r reward function $B \times A \rightarrow \mathbb{R}$
- τ belief update function $B \times A \times \Omega \rightarrow B$

Simulation workflow

Initial state (s,b)

- Select action $a=\pi(b)$
- Update state sT = T(s,a)
- Receive outcome R(s,a)
- Get observation $o = O(s\uparrow', a)$
- Update belief $b \uparrow = \tau(b, a, o)$
- -Start over

$$V^{\pi}(b) = \sum_{t=0}^{\infty} \gamma^t \, r(b_t, a_t)$$

$$\pi^* = \operatorname*{argmax}_{\pi} V^{\pi}$$

Resolution

The value function is always convex

- Certainty is preferable to uncertainty
- Gathering information is valuable

The solution can be discretized

- Optimal solution often visit a finite number of belief states
- The POMDP can then be reformulated as a (fully observable) MDP

Take home message

POMDPs allow to model:

- sequential decision making in a complex environment (MDP)
- subjectivity about the state of the world (PO)

POMDPs can capture:

- information gathering as an economic decision
- · irrational behaviour as an optimal policy based on wrong representations

Perspectives

Information sequential sampling with varying payoffs

Errors as exploratory behaviour in reversal learning tasks

Checking behaviours in OCD

[Averbeck 2015, PCB]

Questions?

