Digvijay

Arjun

Practice Set 5.1 Geometry 9th Std Maths Part 2 Answers Chapter 5 Quadrilaterals

Question 1.

Diagonals of a parallelogram WXYZ intersect each other at point O. If \angle XYZ \angle = 135°, then measure of \angle XWZ and \angle YZW? If I(OY) = 5 cm, then I(WY) = ?

Solution:

i. ∠XYZ = 135°

□WXYZ is a parallelogram.

 $\angle XWZ = \angle XYZ$

∴ ∠XWZ = 135°(i)

ii. ∠YZW + ∠XYZ = 180° [Adjacent angles of a parallelogram are supplementary]

∴ ∠YZW + 135°= 180° [From (i)]

∴ ∠YZW = 180°- 135°

 $\therefore \angle YZW = 45^{\circ}$

iii. I(OY) = 5 cm [Given]

I(OY) = 12 I(WY) [Diagonals of a parallelogram bisect each other]

 $\therefore I(WY) = 2 \times I(OY)$

 $= 2 \times 5$

 \therefore I(WY) = 10 cm

∴∠XWZ = 135°, ∠YZW = 45°, I(WY) = 10 cm

Question 2.

In a parallelogram ABCD, if $\angle A = (3x + 12)^\circ$, $\angle B = (2x - 32)^\circ$, then liptl the value of x and the measures of $\angle C$ and $\angle D$.

Solution:

□ABCD is a parallelogram. [Given]

 \therefore $\angle A + \angle B = 180^{\circ}$ [Adjacent angles of a parallelogram are supplementary],

$$\therefore (3x + 12)^{\circ} + (2x-32)^{\circ} = 180^{\circ}$$

$$\therefore 3x + 12 + 2x - 32 = 180$$

$$\therefore 5x - 20 = 180$$

$$\therefore 5x = 180 + 20$$

$$\therefore 5x = 200$$

$$\therefore x = 2005$$

ii.
$$\angle A = (3x + 12)^{\circ}$$

$$= [3(40) + 12]^{\circ}$$

$$=(120 + 12)^{\circ} = 132^{\circ}$$

$$\angle B = (2x - 32)^{\circ}$$

$$= [2(40) - 32]^{\circ}$$

$$= (80 - 32)^{\circ} = 48^{\circ}$$

Digvijay

Arjun

$$\therefore \angle C = \angle A = 132^{\circ}$$

 $\angle D = \angle B = 48^{\circ}$ [Opposite angles of a parallelogram]

 \therefore The value of x is 40, and the measures of \angle C and \angle D are 132° and 48° respectively.

Question 3.

Perimeter of a parallelogram is 150 cm. One of its sides is greater than the other side by 25 cm. Find the lengths of all sides.

Solution:

i. Let $\Box ABCD$ be the parallelogram and the length of AD be x cm.

One side is greater than the other by 25 cm.

$$\therefore$$
 AB = x + 25 cm

$$AD = BC = x cm$$

AB = DC = (x + 25) cm [Opposite angles of a parallelogram]

ii. Perimeter of □ABCD = 150 cm [Given]

$$\therefore$$
 AB + BC + DC + AD = 150

$$(x + 25) + x + (x + 25) + x - 150$$

$$\therefore 4x + 50 = 150$$

$$\therefore 4x = 150 - 50$$

$$...4x = 100$$

$$x = 1004$$

iii.
$$AD = BC = x = 25 \text{ cm}$$

$$AB = DC = x + 25 = 25 + 25 = 50 \text{ cm}$$

: The lengths of the sides of the parallelogram are 25 cm, 50 cm, 25 cm and 50 cm.

Question 4.

If the ratio of measures of two adjacent angles of a parallelogram is 1 : 2, find the measures of all angles of the parallelogram.

Solution:

i. Let □ABCD be the parallelogram.

The ratio of measures of two adjacent angles of a parallelogram is 1 : 2.

Let the common multiple be x.

$$\therefore \angle A = x^{\circ} \text{ and } \angle B = 2x^{\circ}$$

 $\angle A + \angle B = 180^{\circ}$ [Adjacent angles of a parallelogram are supplementary]

$$x + 2x = 180$$

$$\therefore 3x = 180$$

$$\therefore x = 1803$$

$$\therefore x = 60$$

ii.
$$\angle A = x^{\circ} = 60^{\circ}$$

$$\angle B = 2x^{\circ} = 2 \times 60^{\circ} = 120^{\circ}$$

$$\angle A = \angle C = 60^{\circ}$$

 $\angle B = \angle D = 120^{\circ}$ [Opposite angles of a parallelogram]

: The measures of the angles of the parallelogram are 60°, 120°, 60° and 120°.

Digvijay

Arjun

Question 5.

Diagonals of a parallelogram intersect each other at point O. If AO = 5, BO show that $\square ABCD$ is a rhombus.

Given: AO = 5, BO = 12 and AB = 13.

To prove: □ABCD is a rhombus.

Solition: Proof:

AO = 5, BO = 12, AB = 13 [Given]

 $AO^2 + BO^2 = 5^2 + 12^2$

= 25 + 144

 $AO^2 + BO^2 = 169(i)$

 $AB^2 = 13^2 = 169 \dots (ii)$

 $\therefore AB^2 = AO^2 + BO^2$ [From (i) and (ii)]

: ΔAOB is a right-angled triangle. [Converse of Pythagoras theorem]

∴ ∠AOB = 90°

∴ seg AC ⊥ seg BD(iii) [A-O-C]

: In parallelogram ABCD,

∴ seg AC ⊥ seg BD [From (iii)]

∴ □ABCD is a rhombus. [A parallelogram is a rhombus perpendicular to each other]

Question 6.

In the adjoining figure, \Box PQRS and \Box ABCR are two parallelograms. If \angle P = 110°, then find the measures of all the angles of \Box ABCR.

Solution:

□PQRS is a parallelogram. [Given]

 $\therefore \angle R = \angle P$ [Opposite angles of a parallelogram]

∴ ∠R = 110°(iii)

□ABCR is a parallelogram. [Given]

 \therefore $\angle A + \angle R = 180^{\circ}$ [Adjacent angles of a parallelogram are supplementary]

 $\therefore \angle A + 110^{\circ} = 180^{\circ} [From (i)]$

∴ ∠A= 180°- 110°

∴ ∠A = 70°

∴ ∠C = ∠A = 70°

 $\therefore \angle B = \angle R = 110^{\circ}$ [Opposite angles of a parallelogram]

 $\therefore \angle A = 70^{\circ}, \angle B = 110^{\circ},$

∴ ∠C = 70°, ∠R = 110°

Question 7.

In the adjoining figure, $\Box ABCD$ is a parallelogram. Point E is on the ray AB such that BE = AB, then prove that line ED bisects seg BC at point F.

Given: □ABCD is a parallelogram.

Digvijay

Arjun

BE = AB

To prove: Line ED bisects seg BC at point F i.e. FC = FB

Solution:

Proof:

□ABCD is a parallelogram. [Given]

 \therefore seg AB \cong seg DC(i) [Opposite angles of a parallelogram]

 $seg AB \cong seg BE \dots (ii) [Given]$

seg DC \cong seg BE(iii) [From (i) and (ii)]

side DC | side AB [Opposite sides of a parallelogram]

i.e. side DC || seg AE and seg DE is their transversal. [A-B-E]

 $\therefore \angle CDE \cong \angle AED$

 $\therefore \, \angle \mathsf{CDF} \cong \angle \mathsf{BEF} \, (\mathsf{iv}) \; [\mathsf{D}\text{-}\mathsf{F}\text{-}\mathsf{E}, \, \mathsf{A}\text{-}\mathsf{B}\text{-}\mathsf{E}]$

In ΔDFC and ΔEFB,

seg DC = seg EB [From (iii)]

 $\angle CDF \cong \angle BEF [From (iv)]$

 $\angle DFC \cong \angle EFB$ [Vertically opposite angles]

 $\therefore \Delta DFC \cong \Delta EFB [SAA test]$

: FC \cong FB [c.s.c.t]

∴ Line ED bisects seg BC at point F.

Maharashtra Board Class 9 Maths Chapter 5 Quadrilaterals Practice Set 5.1 Intext Questions and Activities

Question 1.

Write the following pairs considering

ABCD. (Textbook pg. no 57)

Pairs of adjacent sides:

i. AB, AD

ii. AD, DC

iii. DC, BC

iv. BC, AB

Pairs of adjacent angles:

i. ∠A, ∠B

ii. ∠C, ∠D

iii. ∠B, ∠C

iv. ∠D, ∠A

Pairs of opposite sides:

i. AB, DC

ii. AD, BC

Pairs of opposite angles:

i. ∠A, ∠C

ii. ∠B, ∠D

Digvijay

Arjun

Question 2.

Complete the following tree diagram. (Textbook pg. no 57)

Question 3.

In the above theorem, to prove $\angle DAB \cong \angle BCD$, is any change in the construction needed? If so, how will you write the proof making the change? (Textbook pg. no. 60)

Solution:

Yes

Construction: Draw diagonal BD.

Proof:

side AB | side CD and diagonal BD is their transversal. [Given]

 $\therefore \angle ABD \cong \angle CDB \dots (i)$ [Alternate angles]

side BC | side AD and diagonal BD is their transversal. [Given]

 $\therefore \angle ADB \cong \angle CBD \dots (ii) [Alternate angles]$

In $\triangle DAB$ and $\triangle BCD$,

 $\angle ABD \cong \angle CDB [From (i)]$

 $seg BD \cong seg DB [Common side]$

- $\therefore \angle ADB \cong \angle CBD [From (ii)]$
- $\therefore \Delta DAB \cong \Delta BCD [ASA test]$
- $\therefore \angle DAB \cong \angle BCD [c.a.c.t.]$

Note: ∠DAB s ∠BCD can be proved using the same construction as in the above theorem.

 $\angle BAC \cong \angle DCA(i)$

 $\angle DAC \cong \angle BCA(ii)$

- \therefore \angle BAC + \angle DAC \cong \angle DCA + \angle BCA [Adding (i) and (ii)]
- $\therefore \angle DAB \cong \angle BCD$ [Angle addition property]

Digvijay

Arjun

Practice Set 5.2 Geometry 9th Std Maths Part 2 Answers Chapter 5 Quadrilaterals

Question 1.

In the adjoining figure,

—ABCD is a parallelogram, P and Q are midpoints of sides AB and DC respectively, then prove

—APCQ is a parallelogram.

Given: □ABCD is a parallelogram. P and Q are the midpoints of sides AB and DC respectively.

To prove: □APCQ is a parallelogram.

Solution:

Proof:

AP = 12 AB(i) [P is the midpoint of side AB]

QC = 12 DC(ii) [Q is the midpoint of side CD]

□ABCD is a parallelogram. [Given]

∴ AB = DC [Opposite sides of a parallelogram]

∴ 12 AB = 12 DC [Multiplying both sides by 12]

 \therefore AP = QC(iii) [From (i) and (ii)]

Also, AB | DC [Opposite angles of a parallelogram]

i.e. $AP \parallel QC(iv) [A - P - B, D - Q - C]$

From (iii) and (iv),

□APCQ is a parallelogram. [A quadrilateral is a parallelogram if its opposite sides is parallel and congruent] Question 2.

Using opposite angles test for parallelogram, prove that every rectangle is a parallelogram.

Given:

□ABCD is a rectangle.

To prove: Rectangle ABCD is a parallelogram.

Solution: Proof:

□ABCD is a rectangle.

 $\therefore \angle A \cong \angle C = 90^{\circ}$ [Given]

 $\angle B \cong \angle D = 90^{\circ}$ [Angles of a rectangle]

: Rectangle ABCD is a parallelogram. [A quadrilateral is a parallelogram, if pairs of its opposite angles are congruent]

Question 3.

In the adjoining figure, G is the point of concurrence of medians of ADEF. Take point H on ray DG such that D-G-H and DG = GH, then prove that \Box GEHF is a parallelogram.

Given: Point G (centroid) is the point of concurrence of the medians of ADEF.

Digvijay

Arjun

DG = GH

To prove: □GEHF is a parallelogram.

Solution:

Proof:

Let ray DH intersect seg EF at point I such that E-I-F.

 \therefore seg DI is the median of Δ DEF.

∴ El = Fl(i)

Point G is the centroid of ΔDEF.

∴ DGGI = 21 [Centroid divides each median in the ratio 2:1]

 \therefore DG = 2(GI)

 \therefore GH = 2(GI) [DG = GH]

 $\therefore GI + HI = 2(GI) [G-I-H]$

 \therefore HI = 2(GI) – GI

∴ HI = GI(ii)

From (i) and (ii),

□GEHF is a parallelogram [A quadrilateral is a parallelogram, if its diagonals bisect each other]

Question 4.

Prove that quadrilateral formed by the intersection of angle bisectors of all angles of a parallelogram is a rectangle.

Given: □ABCD is a parallelogram.

Rays AS, BQ, CQ and DS bisect $\angle A$, $\angle B$, $\angle C$ and $\angle D$ respectively.

To prove: □PQRS is a rectangle.

Solution: Proof:

 $\angle BAS = \angle DAS = x^{\circ} ...(i)$ [ray AS bisects $\angle A$]

 $\angle ABQ = \angle CBQ = y^{\circ}(ii)$ [ray BQ bisects $\angle B$]

 $\angle BCQ = \angle DCQ = u^{\circ}(iii)$ [ray CQ bisects $\angle C$]

 $\angle ADS = \angle CDS = v^{\circ}(iv)$ [ray DS bisects $\angle D$]

□ABCD is a parallelogram. [Given]

 $\therefore \angle A + \angle B = 180^{\circ}$ [Adjacent angles of a parallelogram are supplementary]

 \therefore \angle BAS + \angle DAS + \angle ABQ + \angle CBQ = 180° [Angle addition property]

 $x^* + x^* + v^* + v^* = 180$ [From (i) and (ii)]

 $\therefore 2x^{\circ} + 2v^{\circ} = 180$

 \therefore x + y = 90°(v) [Dividing both sides by 2]

Also, $\angle A + \angle D = 180^{\circ}$ [Adjacent angles of a parallelogram are supplementary]

 \therefore \angle BAS + \angle DAS + ADS + \angle CDS = 180° [Angle addition property]

 $\therefore x^{\circ} + x^{\circ} + v^{\circ} + v^{\circ} = 180^{\circ}$

 $\therefore 2x^{\circ} + 2v^{\circ} = 180^{\circ}$

 \therefore x° + v° = 90°(vi) [Dividing both sides by 2]

In ΔARB,

Digvijay

Arjun

 \angle RAB + \angle RBA + \angle ARB = 180° [Sum of the measures of the angles of a triangle is 180°]

$$x^{\circ} + y^{\circ} + \angle SRQ = 180^{\circ} [A - S - R, B - Q - R]$$

$$\therefore$$
 90° + \angle SRQ = 180° [From (v)]

$$\therefore \angle SRQ = 180^{\circ} - 90^{\circ} = 90^{\circ}(vi)$$

Similarly, we can prove

In ΔASD,

 \angle ASD + \angle SAD + \angle SDA = 180° [Sum of the measures of angles a triangle is 180°]

$$\therefore$$
 \angle ASD + x° + v° = 180° [From (vi)]

$$\therefore$$
 \angle ASD + 90° = 180°

$$\therefore \angle ASD = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

$$\therefore \angle PSR = \angle ASD$$
 [Vertically opposite angles]

$$\therefore \angle PSR = 90^{\circ} \dots (ix)$$

Similarly we can prove

$$\angle PQR = 90^{\circ} ..(x)$$

$$\angle$$
SRQ = \angle SPQ = \angle PSR = \angle PQR = 90° [From (vii), (viii), (ix), (x)]

∴ □PQRS is a rectangle. [Each angle is of measure 90°]

Question 5.

In the adjoining figure, if points P, Q, R, S are on the sides of parallelogram such that AP = BQ = CR = DS, then prove that $\Box PQRS$ is a parallelogram.

Given: □ABCD is a parallelogram.

$$AP = BQ = CR = DS$$

To prove: □PQRS is a parallelogram.

Solution:

Proof:

□ABCD is a parallelogram. [Given]

 $\therefore \angle B = \angle D(i)$ [Opposite angles of a parallelogram]

Also, AB = CD [Opposite sides of a parallelogram]

$$\therefore$$
 AP + BP = DR + CR [A-P-B, D-R-C]

$$\therefore$$
 AP + BP = DR + AP [AP = CR]

$$\therefore$$
 BP = DR(ii)

In APBQ and ARDS,

 $seg BP \cong seg DR [From (ii)]$

 $\angle PBQ \cong \angle RDS [From (i)]$

 $seg BQ \cong seg DS [Given]$

$$\therefore \triangle PBQ \cong \triangle RDS [SAS test]$$

$$\therefore \text{ seg PQ} \cong \text{seg RS(iii) [c.s.c.t]}$$

Similarly, we can prove that

 $\Delta PAS \cong \Delta RCQ$

 \therefore seg PS \cong seg RQ(iv) [c.s.c.t]

From (iii) and (iv),

□PQRS is a parallelogram. [A quadrilateral is a parallelogram, if pairs of its opposite angles are congruent]

Maharashtra Board Class 9 Maths Chapter 5 Quadrilaterals Practice Set 5.2 Intext Questions and Activities

Digvijay

Arjun

Question 1.

Points D and E are the midpoints of side AB and side AC of \triangle ABC respectively. Point F is on ray ED such that ED = DF. Prove that \square AFBE is a parallelogram. For this example write 'given' and 'to prove' and complete the proof. (Text book pg. no. 66)

Given: D and E are the midpoints of side AB and side AC respectively.

ED = DF

To prove: □AFBE is a parallelogram.

Solution: Proof:

seg AB and seg EF are the diagonals of $\ensuremath{\square} \mathsf{AFBE}.$

 $seg AD \cong seg DB [Given]$

 $seg DE \cong seg DF [Given]$

- ∴ Diagonals of □AFBE bisect each other.
- ∴ □AFBE is a parallelogram. [By test of parallelogram]

Practice Set 5.3 Geometry 9th Std Maths Part 2 Answers Chapter 5 Quadrilaterals

Question 1.

Diagonals of a rectangle ABCD intersect at point O. If AC = 8 cm, then find BO and if \angle CAD = 35°, then find \angle ACB.

Solution:

i. AC = 8 cm ...(i) [Given]

□ABCD is a rectangle [Given]

- ∴ BD = AC [Diagonals of a rectangle are congruent]
- \therefore BD = 8 cm [From (i)]

BO = 12 BD [Diagonals of a rectangle bisect each other]

- \therefore BO = 12 x 8
- \therefore BO = 4 cm

ii. side AD | side BC and seg AC is their transversal. [Opposite sides of a rectangle are parallel]

 $\therefore \angle ACB = \angle CAD [Alternate angles]$

 \angle ACB = 35° [\because \angle CAD = 35°]

 \therefore BO = 4 cm, \angle ACB = 35°

Question 2.

In a rhombus PQRS, if PQ = 7.5 cm, then find QR. If \angle QPS 75°, then find the measures of \angle PQR and \angle SRQ. Solution:

Digvijay

Arjun

i. PQ = 7.5 cm [Given]

□PQRS is a rhombus. [Given]

: QR = PQ [Sides of a rhombus are congruent]

 \therefore QR = 7.5 cm

ii. ∠QPS = 75° [Given]

 $\angle QPS + \angle PQR = 180^{\circ}$ [Adjacent angles of a rhombus are supplementary]

 \therefore 75° + \angle PQR = 180°

 $\therefore \angle PQR = 180^{\circ} - 75^{\circ}$

∴ ∠PQR =105°

iii. \angle SRQ = \angle QPS [Opposite angles of a rhombus]

 $\therefore \angle SRQ = 75^{\circ}$

 \therefore QR = 7.5 cm, \angle PQR = 105°,

 \angle SRQ = 75°

Question 3.

Diagonals of a square IJKL intersects at point M. Find the measures of ∠IMJ, ∠JIK and ∠LJK.

□IJKL is a square. [Given]

∴ seg IK ⊥ seg JL [Diagonals of a square are perpendicular to each other]

∠ IMJ=90°

∠ JIL 90° (i) [Angle of a square]

ii. ∠JIK = 12∠JIL [Diagonals of a square bisect the opposite angles]

 \angle JIK = 12 (90°) [From (i)

 \therefore \angle JIK = 45°

 $\angle IJK = 90^{\circ}$ (ii) [Angle of a square]

iii. ∠LJK = 12∠IJK [Diagonals of a square bisect the opposite angles]

 \angle LJK = 12 (90°) [From (ii)]

∴ ∠LJK = 45°

 \therefore \angle LJK = 90°, \angle JIK = 45°, \angle LJK=45°

Question 4.

Diagonals of a rhombus are 20 cm and 21 cm respectively, then find the side of rhombus and its Perimeter. Solution:

i. Let □ABCD be the rhombus.

Digvijay

Arjun

$$AC = 20 \text{ cm}, BD = 21 \text{ cm}$$

AQ =
$$\frac{1}{2}$$
 AC [Diagonals of a rhombus bisect each other]
= $\frac{1}{2} \times 20 = 10$ cm. (3)

$$=\frac{1}{2} \times 20 = 10 \text{ cm}$$
 (i)

Also, BO =
$$\frac{1}{2}$$
 BD [Diagonals of a rhombus bisect each other]
= $\frac{1}{2} \times 21 = \frac{21}{2}$ cm (ii)

ii. In $\triangle AOB$, $\angle AOB = 90^{\circ}$ [Diagonals of a rhombus are prependicular to each other]

$$\therefore$$
 AB² = AO² + BO² [Pythagoras theorem]

$$= (10)^{2} + \left(\frac{21}{2}\right)^{2}$$
 [From (i) and (ii)]
$$= 100 + \frac{441}{4}$$

$$= \frac{400 + 441}{4}$$

$$AB^2 = \frac{841}{4}$$

$$AB^{2} = \frac{841}{4}$$

$$AB = \sqrt{\frac{841}{4}}$$
 [Taking square root of both sides]
$$= \frac{29}{2} = 14.5 \text{ cm}$$

iii. Perimeter of □ABCD

$$= 4 \times AB = 4 \times 14.5 = 58 \text{ cm}$$

: The side and perimeter of the rhombus are 14.5 cm and 58 cm respectively.

Question 5.

State with reasons whether the following statements are 'true' or 'false'.

- i. Every parallelogram is a rhombus.
- ii. Every rhombus is a rectangle,
- iii. Every rectangle is a parallelogram.
- iv. Every square is a rectangle,
- v. Every square is a rhombus.
- vi. Every parallelogram is a rectangle.

Answer:

i. False.

All the sides of a rhombus are congruent, while the opposite sides of a parallelogram are congruent.

All the angles of a rectangle are congruent, while the opposite angles of a rhombus are congruent.

iii. True.

The opposite sides of a parallelogram are parallel and congruent. Also, its opposite angles are congruent.

The opposite sides of a rectangle are parallel and congruent. Also, all its angles are congruent.

iv. True.

The opposite sides of a rectangle are parallel and congruent. Also, all its angles are congruent.

All the sides of a square are parallel and congruent. Also, all its angles are congruent.

v. True.

All the sides of a rhombus are congruent. Also, its diagonals are perpendicular bisectors of each other.

All the sides of a square are congruent. Also, its diagonals are perpendicular bisectors of each other.

vi. False.

All the angles of a rectangle are congruent, while the opposite angles of a parallelogram are congruent.

Digvijay

Arjun

Practice Set 5.4 Geometry 9th Std Maths Part 2 Answers Chapter 5 Quadrilaterals

Question 1.

In \Box IJKL, side IJ || side KL, \angle I = 108° and \angle K = 53°, then find the measures of \angle J and \angle L. Solution:

i. ∠I = 108° [Given]

side IJ || side KL and side IL is their transveral. [Given]

 $\therefore \angle I + \angle L = 180^{\circ}$ [Interior angles]

∴ 108° + ∠L = 180°

 $\therefore \angle L = 180^{\circ} - 108^{\circ} = 72^{\circ}$

ii. ∠K = 53° [Given]

side IJ | side KL and side JK is their transveral. [Given]

 $\therefore \angle J + \angle K = 180^{\circ}$ [Interior angles]

 $\therefore \angle J + 53^{\circ} = 180^{\circ}$

∴ ∠J= 180°- 53° = 127°

∴ ∠L = 72°, ∠J = 127°

Question 2.

In $\Box ABCD$, side BC \parallel side AD, side AB \cong side DC. If $\angle A = 72^{\circ}$, then find the measures of $\angle B$ and $\angle D$.

Construction: Draw seg BP \perp side AD, A – P – D, seg CQ \perp side AD, A – Q – D.

Solution:

i. ∠A = 72° [Given]

In □ABCD, side BC || side AD and side AB is their transversal. [Given]

 $\therefore \angle A + \angle B = 180^{\circ}$ [Interior angles]

 $\therefore 72^{\circ} + \angle B = 180^{\circ}$

 $\therefore \angle B = 180^{\circ} - 72^{\circ} = 108^{\circ}$

ii. In \triangle BPA and \triangle CQD,

 \angle BPA $\cong \angle$ CQD [Each angle is of measure 90°]

Hypotenuse AB ≅ Hypotenuse DC [Given]

seg BP \cong seg CQ [Perpendicular distance between two parallel lines]

∴ \triangle BPA \cong \triangle CQD [Hypotenuse side test]

 $\therefore \angle BAP \cong \angle CDQ [c. a. c. t.]$

 $\therefore \angle A = \angle D$

∴ ∠D = 72°

∴ ∠B = 108°, ∠D = 72°

Question 3.

In $\Box ABCD$, side BC < side AD, side BC || side AD and if side BA \cong side CD, then prove that $\angle ABC = \angle DCB$.

Digvijay

Arjun

Given: side BC < side AD, side BC || side AD, side BA = side CD

To prove: $\angle ABC \cong \angle DCB$

Construction: Draw seg BP \perp side AD, A – P – D

seg CQ \perp side AD, A – Q – D

Solution: Proof:

In \triangle BPA and \triangle CQD,

 \angle BPA $\cong \angle$ CQB [Each angle is of measure 90°]

Hypotenuse BA ≅ Hypotenuse CD [Given]

seg BP ≅ seg CQ [Perpendicular distance between two parallel lines]

∴ \triangle BPA \cong \triangle CQD [Hypotenuse side test]

 $\therefore \angle BAP \cong \angle CDQ [c. a. c. t.]$

 $\therefore \angle A = \angle D(i)$

Now, side BC | side AD and side AB is their transversal. [Given]

 $\therefore \angle A + \angle B = 180^{\circ}$(ii) [Interior angles]

Also, side BC | side AD and side CD is their transversal. [Given]

 $\therefore \angle C + \angle D = 180^{\circ} \dots (iii)$ [Interior angles]

 $\therefore \angle A + \angle B = \angle C + \angle D$ [From (ii) and (iii)]

 $\therefore \angle A + \angle B = \angle C + \angle A$ [From (i)]

 $\therefore \angle B = \angle C$

 $\therefore \angle ABC \cong \angle DCB$

Practice Set 5.5 Geometry 9th Std Maths Part 2 Answers Chapter 5 Quadrilaterals

Question 1.

In the adjoining figure, points X, Y, Z are the midpoints of Δ ABC respectively, cm. Find the lengths of side AB, side BC and side AC AB = 5 cm, AC = 9 cm and BC = 11c.m. Find the lengths of XY, YZ, XZ.

Solution:

i. AC = 9 cm [Given]

Points X and Y are the midpoints of sides AB and BC respectively. [Given]

∴ XY = 12 AC [Midpoint tfyeprem]

 $= 12 \times 9 = 4.5 \text{ cm}$

ii. AB = 5 cm [Given]

Points Y and Z are the midpoints of sides BC and AC respectively. [Given]

∴ YZ = 12 AB [Midpoint theorem]

 $= 12 \times 5 = 2.5 \text{ cm}$

iii. BC = 11 cm [Given]

Points X and Z are the midpoints of sides AB and AC respectively. [Given]

∴ XZ = 12 BC [Midpoint theorem]

= 12 x 11 = 5.5 cm

I(XY) = 4.5 cm, I(YZ) = 2.5 cm, I(XZ) = 5.5 cm

Digvijay

Arjun

Question 2.

i. SL = LR

ii. LN = 12 SQ.

Given: □PQRS and □MNRL are rectangles. M is the midpoint of side PR.

Solution:

Toprove:

i. SL = LR

ii. LN = 12 (SQ)

Proof:

 $\therefore \angle S = \angle L = 90^{\circ}$ [Angles of rectangles]

∠S and ∠L form a pair of corresponding angles on sides SP and LM when SR is their transversal.

∴eg ML || seg PS ...(i) [Corresponding angles test]

In ΔPRS,

Point M is the midpoint of PR and seg ML | seg PS. [Given] [From (i)]

: Point L is the midpoint of seg SR.(ii) [Converse of midpoint theorem]

 \therefore SL = LR

ii. Similarly for ΔPRQ, we can prove that,

Point N is the midpoint of seg QR.(iii)

In ΔRSQ,

Points L and N are the midpoints of seg SR and seg QR respectively. [From (ii) and (iii)]

∴ LN = 12SQ [Midpoint theorem]

Question 3.

In the adjoining figure, \triangle ABC is an equilateral triangle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that \triangle FED is an equilateral triangle.

Given: ΔABC is an equilateral triangle.

Points F, D and E are midpoints of side AB, side BC, side AC respectively.

To prove: ΔFED is an equilateral triangle.

Solution: Proof:

ΔABC is an equilateral triangle. [Given]

:. AB = BC = AC(i) [Sides of an equilateral triangle]

Points F, D and E are midpoints of side AB and BC respectively.

Digvijay

Arjun

∴ FD = 12AC(ii) [Midpoint theorem]

Points D and E are the midpoints of sides BC and AC respectively.

∴ DE = 12AB(iii) [Midpoint theorem]

Points F and E are the midpoints of sides AB and AC respectively.

 \therefore FE = 12BC

 \therefore FD = DE = FE [From (i), (ii), (iii) and (iv)]

 \therefore \triangle FED is an equilateral triangle.

Question 4.

In the adjoining figure, seg PD is a median of Δ PQR. Point T is the midpoint of seg PD. Produced QT intersects PR at M. Show that PMPR = 13. [Hint: Draw DN || QM]

Solution:

Given: seg PD is a median of $\triangle PQR$. Point T is the midpoint of seg PD.

To Prove: PMPR = 13

Construction: Draw seg DN ||seg QM such that P-M-N and M-N-R.

Proof: In ΔPDN,

Point T is the midpoint of seg PD and seg TM || seg DN [Given]

: Point M is the midpoint of seg PN. [Construction and Q-T-M]

∴ PM = MN [Converse of midpoint theorem]

In ΔQMR,

Point D is the midpoint of seg QR and seg DN || seg QM [Construction]

- : Point N is the midpoint of seg MR. [Converse of midpoint theorem]
- ∴ RN = MN(ii)
- ∴ PM = MN = RN(iii) [From (i) and (ii)]

Now, PR = PM + MN + RN [P-M-R-Q-T-M]

 \therefore PR = PM + PM + PM [From (iii)]

 \therefore PR = 3PM

PMPR = 13

Problem Set 5 Geometry 9th Std Maths Part 2 Answers Chapter 5 Quadrilaterals

Question 1.

Choose the correct alternative answer and fill in the blanks.

- i. If all pairs of adjacent sides of a quadrilateral are congruent, then it is called _____.
- (A) rectangle
- (B) parallelogram
- (C) trapezium
- (D) rhombus
- Answer:
- (D) rhombus
- ii. If the diagonal of a square is $22\sqrt{2}$ cm, then the perimeter of square is _____.
- (A) 24 cm
- (B) $24\sqrt{2}$ cm
- (C) 48 cm
- (D) $48\sqrt{2}$ cm

Answer:

Digvijay

Arjun

In $\triangle ABC$,

 $AC^2 = AB^2 + BC^2$

 $\therefore (12^2 \sqrt{2})^2 = AB^2 + AB^2$

$$AB_2=122\times22=122$$

 \therefore AB = 12 cm

∴ Perimeter of \Box ABCD = 4 x 12 = 48 cm

(C) 48 cm

iii. If opposite angles of a rhombus are $(2x)^{\circ}$ and $(3x - 40)^{\circ}$, then the value of x is _____.

(A) 100°

(B) 80°

(C) 160°

(D) 40°

Answer:

 $2x = 3x - 40 \dots [Pythagoras theorem]$

 $\therefore x = 40^{\circ}$

(D) 40°

Question 2.

Adjacent sides of a rectangle are 7 cm and 24 cm. Find the length of its diagonal.

Solution:

Let □ABCD be the rectangle.

AB = 7 cm, BC = 24 cm

In \triangle ABC, \angle B = 90° [Angle of a rectangle]

 $AC^2 = AB^2 + BC^2$ [Pythagoras theorem]

 $=7^2+24^2$

=49 + 576

= 625

 $AC = \sqrt{625}$ [Taking square root of both sides]

= 25 cn

∴ The length of the diagonal of the rectangle is 25 cm.

Question 3.

If diagonal of a square is 13 cm, then find its side.

Solution:

Let \Box PQRS be the square of side x cm.

 \therefore PQ = QR = x cm(i) [Sides of a square]

∴ In $\triangle PQR$, $\angle Q = 90^{\circ}$ [Angle of a square]

 \therefore PR² = PQ² + QR² [Pythagoras theorem]

 $\therefore 13 = x + x [From (i)]$

 $\therefore 169 = 2x^2$

$$\therefore x^2 = \frac{169}{2}$$

 $\therefore x = \sqrt{\frac{169}{2}}$ [Taking square root of both sides]

$$\therefore \qquad x = \frac{13}{\sqrt{2}}$$

 $= \frac{13}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ [Multiplying the numerator and denominator by $\sqrt{2}$]

$$=\frac{13\sqrt{2}}{2}=6.5\sqrt{2}$$
 cm

The length of the side of the square is $6.5\sqrt{2}$ cm.

Digvijay

Arjun

Question 4.

Ratio of two adjacent sides of a parallelogram is 3:4, and its perimeter is 112 cm. Find the length of its each side. Solution:

Let □STUV be the parallelogram.

Ratio of two adjacent sides of a parallelogram is 3:4.

Let the common multiple be x.

ST = 3x cm and TU = 4x cm

 \therefore ST = UV = 3x cm

TU = SV = 4x cm(i) [Opposite sides of a parallelogram]

Perimeter of □STUV = 112 [Given]

 $\therefore ST + TU + UV + SV = 112$

3x + 4x + 3x + 4x = 112 [From (i)]

 $\therefore 14x = 112$

 $\therefore \mathbf{x} = 11214$

 $\therefore x = 8$

 $: ST = UV = 3x = 3 \times 8 = 24 \text{ cm}$

 $TU = SV = 4x = 4 \times 8 = 32 \text{ cm [From (i)]}$

 \therefore The lengths of the sides of the parallelogram are 24 cm, 32 cm, 24 cm and 32 cm.

Ouestion 5

Diagonals PR and QS of a rhombus PQRS are 20 cm and 48 cm respectively. Find the length of side PQ. Solution:

□PQRS is a rhombus. [Given]

PR = 20 cm and QS = 48 cm [Given]

∴ PT = 12 PR [Diagonals of a rhombus bisect each other]

 $= 12 \times 20 = 10 \text{ cm}$

Also, QT = 12 QS [Diagonals of a rhombus bisect each other]

 $= 12 \times 48 = 24 \text{ cm}$

ii. In $\triangle PQT$, $\angle PTQ = 90^{\circ}$ [Diagonals of a rhombus are perpendicular to each other]

 $\therefore PQ^2 = PT^2 + QT^2$ [Pythagoras- theorem]

 $=10^2+24^2$

= 100 + 576

 $\therefore PQ^2 = 676$

 \therefore PQ = 676—— $\sqrt{\text{[Taking square root of both sides]}}$

= 26 cm

∴ The length of side PQ is 26 cm.

Question 6.

Diagonals of a rectangle PQRS are intersecting in point M. If $\angle QMR = 50^{\circ}$, then find the measure of $\angle MPS$. Solution:

 $\square PQRS$ is a rectangle.

 $\therefore PM = 12 PR \dots (i)$

MS = 12 QS ...(ii) [Diagonals of a rectangle bisect each other]

Also, PR = QS(iii) [Diagonals of a rectangle are congruent]

 \therefore PM = MS(iv) [From (i), (ii) and (iii)]

In ΔPMS,

PM = MS [From (iv)]

 $\therefore \angle MSP = \angle MPS = x^{\circ} \dots (v)$ [Isosceles triangle theorem]

 $\angle PMS = \angle QMR = 50^{\circ} \dots (vi)$ [Vertically opposite angles]

In ΔMPS,

 $\angle PMS + \angle MPS + \angle MSP = 180^{\circ}$ [Sum of the measures of the angles of a triangle is 180°]

 $\therefore 50^{\circ} + x + x = 180^{\circ}$ [From (v) and (vi)]

 $∴ 50^{\circ} + 2x = 180$

 $\therefore 2x = 180-50$

 $\therefore 2x = 130$

Digvijay

Arjun

 $\therefore x = 1302 = 65^{\circ}$

 $\therefore \angle MPS = 65^{\circ} [From (v)]$

Question 7.

In the adjoining figure, if seg AB \parallel seg PQ, seg AB \cong seg PQ, seg AC \parallel seg PR, seg AC \cong seg PR, then prove that seg BC \parallel seg QR and seg BC \cong seg QR.

Solution:

Given: $seg AB \parallel seg PQ$, $seg AB \cong seg PQ$,

 $seg AC \parallel seg PR, seg AC \cong seg PR$

To prove: $seg BC \parallel seg QR, seg BC \cong seg QR$

Proof:

Consider □ABQP,

seg AB | seg PQ [Given]

 $seg AB \cong seg PQ [Given]$

∴ □ABQP is a parallelogram. [A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and congruent]

 \therefore segAP || segBQ(i)

 \therefore seg AP \cong seg BQ(ii) [Opposite sides of a parallelogram]

Consider □ACRP,

seg AC | seg PR [Given]

 $seg AC \cong seg PR [Given]$

∴ □ACRP is a parallelogram. [A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and congruent]

∴ seg AP || seg CR ...(iii)

 \therefore seg AP \cong seg CR(iv) [Opposite sides of a parallelogram]

Consider □BCRQ,

seg BQ || seg CR

 $seg BQ \cong seg CR$

∴ □BCRQ is a parallelogram. [A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and congruent]

∴ seg BC || seg QR

 \therefore seg BC \cong seg QR [Opposite sides of a parallelogram]

Question 8.

In the adjoining figure, $\Box ABCD$ is a trapezium. AB \parallel DC. Points P and Q are midpoints of seg AD and seg BC respectively. Then prove that PQ \parallel AB and PQ = 12 (AB + DC).

Given : □ ABCD is a trapezium.

To prove:

Construction: Join points A and Q. Extend seg AQ and let it meet produced DC at R.

Proof:

 $seg~AB \parallel seg~DC~[Given]$

and seg BC is their transversal.

 $\therefore \angle ABC \cong \angle RCB$ [Alternate angles]

 $\therefore \angle ABQ \cong \angle RCQ \dots (i) [B-Q-C]$

In $\triangle ABQ$ and $\triangle RCQ$,

 $\angle ABQ \cong \angle RCQ [From (i)]$

 $seg BQ \cong seg CQ [Q is the midpoint of seg BC]$

 $\angle BQA \cong \angle CQR$ [Vertically opposite angles]

 $\therefore \triangle ABQ \cong \triangle RCQ [ASA \text{ test}]$

 $seg AB \cong seg CR ...(ii) [c. s. c. t.]$

 $seg AQ \cong seg RQ [c. s. c. t.]$

∴ Q is the midpoint of seg AR.(iii)

Digvijay

Arjun

In \triangle ADR,

Points P and Q are the midpoints of seg AD and seg AR respectively. [Given and from (iii)]

∴ seg PQ || seg DR [Midpoint theorem] i.e. seg PQ || seg DC(iv) [D-C-R] But, seg AB | seg DC(v) [Given] \therefore seg PQ || seg AB [From (iv) and (v)]

In $\triangle ADR$,

$$PQ = \frac{1}{2} DR \quad [Midpoint theorem]$$
$$= \frac{1}{2} (DC + CR) \quad [D-C-R]$$

$$= \frac{1}{2} (DC + AB) [From (ii)]$$

$$PQ = \frac{1}{2} (AB + DC)$$

Question 9.

In the adjoining figure, \Box ABCD is a trapezium. AB || DC. Points M and N are midpoints of diagonals AC and DB respectively, then prove that MN || AB.

Solution:

Given: □ABCD is a trapezium. AB || DC.

Points M and N are midpoints of diagonals AC and DB respectively.

To prove: MN || AB

Construction: Join D and M. Extend seg DM to meet seg AB at point E such that A-E-B.

seg AB || seg DC and seg AC is their transversal. [Given]

 \therefore \angle CAB \cong \angle ACD [Alternate angles]

 $\therefore \angle MAE \cong \angle MCD(i) [C-M-A, A-E-B]$

In \triangle AME and \triangle CMD,

 \angle AME \cong \angle CMD [Vertically opposite angles]

 $seg AM \cong seg CM [M is the midpoint of seg AC]$

 \angle MAE \cong \angle MCD [From (i)]

- $\therefore \triangle AME \cong \triangle CMD [ASA test]$
- \therefore seg ME \cong seg MD [c.s.c.t]
- ∴ Point M is the midpoint of seg DE. ...(ii)

In $\triangle DEB$,

Points M and N are the midpoints of seg DE and seg DB respectively. [Given and from (ii)]

- ∴ seg MN || seg EB [Midpoint theorem]
- \therefore seg MN || seg AB [A-E-B]

Maharashtra Board Class 9 Maths Chapter 5 Quadrilaterals Problem Set 5 Intext Questions and Activities

Digvijay

Arjun

Question 1.

Draw five parallelograms by taking various measures of lengths and angles. (Textbook page no. 59)

Ouestion 2.

Draw a parallelogram PQRS. Draw diagonals PR and QS. Denote the intersection of diagonals by letter O. Compare the two parts of each diagonal with a divider. What do you find? (Textbook page no. 60)

Answer:

seg OP = seg OR, and seg OQ = seg OS

Thus we can conclude that, point O divides the diagonals PR and QS in two equal parts.

Question 3.

To verify the different properties of quadrilaterals.

Material: A piece of plywood measuring about 15 cm x 10 cm, 15 thin screws, twine, scissor.

Note: On the plywood sheet, fix five screws in a horizontal row keeping a distance of 2 cm between any two adjacent screws. Similarly make two more rows of screws exactly below the first one. Take care that the vertical distance between any two adjacent screws is also 2 cm.

With the help of the screws, make different types of quadrilaterals of twine. Verify the properties of sides and angles of the quadrilaterals. (Textbook page no. 75)