Aiyagari_Main.m

Set parameter value

StationaryDis_MarkovProcess.m

Get the stationary distribution of s

TransitionDynamics.m

Solve for a sequence of $\{K_t\}_{t=1}^{T-1}$

- Guess a path for aggregate capital $(\{K_t\}_{t=1}^{T-1})^0$
- Prices_Firm_FOC.m

Given guess for $\{K_t\}_{t=1}^{T-1}$, get sequence of $\{r_t\}_{t=1}^{T-1}$ and $\{w_t\}_{t=1}^{T-1}$

BackwardIndc_VF.m

Given $V_T = V_{{\it SS}_{new}}$, solve the value function backwards from $t = T-1, \dots, 1$

Solve for a sequence of $\{K_t^*\}_{t=1}^{T-1}$

Prices_Firm_FOC

r and w are functions of K

ForwardCalc Pol.m

Given r and w, solve household problem and get policy function using Bellman equation

CRRA_Utility.m

Get utility when doing value function iteration

LawMotion_mu.m

Given policy function, and the initial distribution μ_0 , compute distribution in each period μ_t using law of motion for μ

- ightharpoonup Given optimal decision for k_t (policy function) and distribution μ_t , compute the aggregate capital supply K_t^S
- $\triangleright \quad \Phi = K_t^s K_t$
- ightharpoonup Use 'fsolve' to find K_t^* such that Φ is close to zero.

Get difference between $\{K_t^*\}_{t=1}^{T-1}$ and $(\{K_t\}_{t=1}^{T-1})^0$. Update guess $(\{K_t\}_{t=1}^{T-1})^1 = \vartheta(\{K_t\}_{t=1}^{T-1})^0 + (1-\vartheta)\{K_t^*\}_{t=1}^{T-1}$