iemisc: Comparing Other Hydraulic Software Output to iemisc's Manningtrap for Critical Conditions

Irucka Embry, E.I.T. (EcoC²S)

2023-02-12

Contents

Replicate the R code without the images	1
FHWA Hydraulic Toolbox Example 1	2
Dr. Xing Fang's Open Channel Flow Calculator's Solution of Example 1	3
emisc's Manningtrap Solution of Example 1	3
FHWA Hydraulic Toolbox Example 2	5
Dr. Xing Fang's Open Channel Flow Calculator's Solution of Example 1	6
emisc's Manningtrap Solution of Example 2	6
Works Cited	7
$ m EcoC^2S~Links$	7
Copyright and License	8

Replicate the R code without the images

Note: If you wish to replicate the R code below, then you will need to copy and paste the following commands in R first (to make sure you have all the of the required packages):

```
install.packages("iemisc", "knitr")
# install the package and its dependencies
# load the required package
```

library("iemisc")

FHWA Hydraulic Toolbox Example 1

Dr. Xing Fang's Open Channel Flow Calculator's Solution of Example 1

iemisc's Manningtrap Solution of Example 1

Parameters	Normal Value	Critical Value	Units
Flow depth (y)	1.454	1.551	ft
Flow area (A)	12.158	13.417	ft^2
Wetted Perimeters (P)	13.196	13.808	ft
Top Width (B)	12.724	13.304	ft

Parameters	Normal Value	Critical Value	Units
Bottom width (b)	4	NA	ft
Hydraulic Radius (R)	0.921	0.972	ft
Hydraulic Depth (D)	0.956	1.008	ft
Flow Mean Velocity (V)	3.618	7.064	ft/sec (fps)
Flow Discharge (Q)	43.986	67.414	$ft^3/sec (cfs)$
Manning's roughness coefficient (n)	0.055	NA	dimensionless
Slope (Sf)	0.02	0.015	ft/ft
Temperature	68	NA	degrees Fahrenheit
Absolute Temperature	293.15	NA	Kelvin
Saturated Liquid Density	1.937	NA	slug/ft^3
Absolute or Dynamic Viscosity	2.092885e-05	NA	slug/ft*s
Kinematic Viscosity	1.080619 e-05	NA	ft^2/s
Froude number (Fr)	0.652	1	dimensionless
Reynolds number (Re)	308461	NA	dimensionless
symmetric side slope (m)	3	NA	ft/ft
non-symmetric side slope (m1)	NA	NA	ft/ft
non-symmetric side slope (m2)	NA	NA	ft/ft
Wetted Length (w)	4.598	NA	ft
Wetted Length for a non-symmetric trapezoid (w1)	NA	NA	ft
Wetted Length for a non-symmetric trapezoid (w2)	NA	NA	ft
Section Factor (Z)	11.512	11.885	ft
conveyance (K)	311.026	NA	$ft^3/sec (cfs)$
Specific Energy (E)	1.657	1.718	ft
Velocity Head (Vel_Head)	0.203	NA	ft
Maximum Shear Stress (taud)	1.812	NA	lb/ft^2
Average Shear Stress (tau0)	1.148	NA	lb/ft^2

FHWA Hydraulic Toolbox Example 2

Dr. Xing Fang's Open Channel Flow Calculator's Solution of Example 1

iemisc's Manningtrap Solution of Example 2

```
uuc2 <- Manningtrap_critical(Q = 745, b = 8, m1 = 2, m2 = 1.5, Sf = 0.01, n = 0.015,
    units = "Eng", type = "non-symmetrical", critical = "accurate", output = "data.table")

##
## Flow IS in the rough turbulent zone so the Gauckler-Manning-Strickler equation
## is acceptable to use.
##
##
##
##
## This is supercritical flow.
knitr::kable(uuc2)</pre>
```

Parameters	Normal Value	Critical Value	Units
Flow depth (y)	3.298	6.442	ft
Flow area (A)	45.423	74.086	ft^2
Wetted Perimeters (P)	21.321	34.019	ft
Top Width (B)	19.544	30.548	ft

Parameters	Normal Value	Critical Value	Units
Bottom width (b)	8	NA	ft
Hydraulic Radius (R)	2.13	2.178	ft
Hydraulic Depth (D)	2.324	2.425	ft
Flow Mean Velocity (V)	16.401	14.397	ft/sec (fps)
Flow Discharge (Q)	745	392.789	$ft^3/sec (cfs)$
Manning's roughness coefficient (n)	0.015	NA	dimensionless
Slope (Sf)	0.01	0.004	ft/ft
Temperature	68	NA	degrees Fahrenheit
Absolute Temperature	293.15	NA	Kelvin
Saturated Liquid Density	1.937	NA	slug/ft^3
Absolute or Dynamic Viscosity	2.092885 e - 05	NA	slug/ft*s
Kinematic Viscosity	1.080619 e-05	NA	ft^2/s
Froude number (Fr)	1.897	1	dimensionless
Reynolds number (Re)	3233520	NA	dimensionless
symmetric side slope (m)	NA	NA	ft/ft
non-symmetric side slope (m1)	2	NA	ft/ft
non-symmetric side slope (m2)	1.5	NA	ft/ft
Wetted Length (w)	NA	NA	ft
Wetted Length for a non-symmetric trapezoid (w1)	7.375	NA	ft
Wetted Length for a non-symmetric trapezoid (w2)	5.946	NA	ft
Section Factor (Z)	58.585	69.248	ft
conveyance (K)	7449.995	NA	$ft^3/sec (cfs)$
Specific Energy (E)	7.479	8.014	ft
Velocity Head (Vel_Head)	4.181	NA	ft
Maximum Shear Stress (taud)	2.055	NA	lb/ft^2
Average Shear Stress (tau0)	1.328	NA	lb/ft^2

Works Cited

 $FHWA\ \ Hydraulic\ \ Toolbox\ \ Version\ \ 4.4. \qquad https://www.fhwa.dot.gov/engineering/hydraulics/software/toolbox404.cfm$

EcoC²S Links

 $\label{lem:coc2s} EcoC^2S\ Home-https://www.ecoccs.com/\\ About\ EcoC^2S-https://www.ecoccs.com/about_ecoc2s.html\\ Products-https://www.questionuniverse.com/products.html\\ EcoC^2S\ Media-https://www.ecoccs.com/media.html\\ EcoC^2S\ Resources-https://www.ecoccs.com/resources.html\\ \end{tabular}$

R Trainings and Resources provided by EcoC2S (Irucka Embry, E.I.T.) – https://www.ecoccs.com/rtraining.html

Copyright and License

All R code written by Irucka Embry is distributed under the GPL-3 (or later) license, see the GNU General Public License {GPL} page.

All written content originally created by Irucka Embry is copyrighted under the Creative Commons Attribution-ShareAlike 4.0 International License. All other written content retains the copyright of the original author(s).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.