

Proprietà strutturali e leggi di controllo

Retroazione statica dallo stato

Retroazione statica dallo stato

- La legge di controllo
- Esempi di calcolo di leggi di controllo
- ➤ Il problema della regolazione

Retroazione statica dallo stato

La legge di controllo

Introduzione (1/2)

Consideriamo un sistema dinamico LTI TC a un ingresso ($u(t) \in \mathbb{R}^p \rightarrow p = 1 \rightarrow B \in \mathbb{R}^{n \times 1}$) descritto dalle equazioni di stato:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

- Ricordiamo che:
 - Il comportamento dinamico del sistema dipende dagli autovalori della matrice A
 - La possibilità di modificare tale comportamento dinamico tramite l'ingresso è descritta dalla proprietà di raggiungibilità
 - Le caratteristiche di raggiungibilità dipendono dalla coppia (A,B)

Introduzione (2/2)

- Vogliamo studiare come si può agire sull'ingresso, in modo da modificare il comportamento dinamico del sistema al fine di:
 - Rendere asintoticamente stabile un sistema instabile
 - Cambiare le caratteristiche del movimento di un sistema (asintoticamente) stabile tramite l'imposizione di modi naturali convergenti che ne migliorino le proprietà di:
 - Smorzamento
 - Rapidità di convergenza
 - Portare lo stato del sistema in un dato stato di equilibrio

Legge di controllo

Per modificare il comportamento dinamico del sistema, l'ingresso u(t) deve poter agire in modo da cambiare gli autovalori della matrice A

y(t) = Cx(t)

Page 2 Questo può avvenire se u(t) dipende dallo stato x(t) secondo la seguente **legge di controllo**

$$U(t) = -Kx(t) + \alpha r(t)$$

- \bullet $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}$
- \bullet $K \in \mathbb{R}^{1 \times n} \rightarrow$ vettore o matrice dei guadagni
- $r(t) \rightarrow ingresso esterno (riferimento)$
- \bullet $\alpha \in \mathbb{R}$

Retroazione statica dallo stato

Consideriamo lo schema:

- ightharpoonup L'ingresso u(t) è la somma di due contributi:

 - \bullet $Kx(t) \rightarrow$ retroazione dallo stato (state feedback)
- ► L'ingresso $u(t) = -Kx(t) + \alpha r(t)$ rappresenta quindi una legge di controllo per retroazione statica dallo stato

Equazioni del sistema controllato

Sostituendo l'espressione della legge di controllo:

y(t) = Cx(t)

$$U(t) = -Kx(t) + \alpha r(t)$$

nelle equazioni di stato

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Si ottengono le equazioni di stato del sistema controllato complessivo:

$$\dot{x}(t) = Ax(t) + Bu(t) = Ax(t) + B[-Kx(t) + \alpha r(t)] =$$

$$u(t) = -Kx(t) + \alpha r(t)$$

$$= (A - BK)x(t) + B\alpha r(t)$$

Il problema di assegnazione degli autovalori

$$\dot{x}(t) = (A - BK)x(t) + B\alpha r(t)$$

y(t) = Cx(t)

- Vogliamo studiare sotto quali condizioni, tramite un'opportuna scelta della matrice K, è possibile fare in modo che gli n autovalori della matrice A – BK coincidano con n numeri fissati arbitrariamente
- Tale problema va sotto il nome di: assegnazione degli autovalori mediante retroazione statica dallo stato

Il teorema di assegnazione degli autovalori

Al proposito, vale il seguente

Teorema di assegnazione degli autovalori

y(t) = Cx(t)

Il problema di assegnazione degli autovalori mediante retroazione statica dallo stato ammette soluzione se e soltanto se la coppia di matrici (A,B) soddisfa la condizione di completa raggiungibilità:

$$\rho(M_R) = \rho(\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}) = n$$

Commenti

- Pertanto, se un sistema dinamico risulta completamente raggiungibile, è sempre possibile determinare la matrice dei guadagni K di una legge di controllo per retroazione statica dallo stato del tipo $u(t) = -Kx(t) + \alpha r(t)$ in modo da assegnare arbitrariamente tutti gli n autovalori della matrice A BK
- Nel caso in cui il sistema non risulti completamente raggiungibile, la legge di controllo può modificare solo gli rautovalori corrispondenti alla sua parte raggiungibile

Sistemi a più ingressi

- Il teorema di assegnazione degli autovalori vale anche nel caso di sistemi a più ingressi $(u(t) \in \mathbb{R}^p \to B \in \mathbb{R}^{n \times p})$
- La legge di controllo ha la medesima forma:

y(t) = Cx(t)

$$U(t) = -Kx(t) + \alpha r(t)$$

ma:

- \bullet $K \in \mathbb{R}^{p \times n} \rightarrow$ matrice dei guadagni
- In generale anche l'ingresso r(t) può avere più componenti (tipicamente pari alla dimensione q dell'uscita $y(t) \rightarrow r(t) \in \mathbb{R}^q$). In tal caso:

Equazioni di ingresso – stato – uscita (1/2)

Vogliamo ricavare le equazioni di ingresso – stato – uscita quando al sistema dinamico LTI TC:

y(t) = Cx(t)

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

viene applicata legge di controllo per retroazione statica dallo stato

$$U(t) = -Kx(t) + \alpha r(t)$$

Equazioni di ingresso – stato – uscita (2/2)

Si ha:

$$\dot{x}(t) = Ax(t) + Bu(t) = Ax(t) + B[-Kx(t) + \alpha r(t)] = u(t) = -Kx(t) + \alpha r(t)$$

$$= (A - BK)x(t) + B\alpha r(t)$$

$$y(t) = Cx(t) + Du(t) = Cx(t) + D[-Kx(t) + \alpha r(t)] = u(t) = -Kx(t) + \alpha r(t)$$

$$= (C - DK)x(t) + D\alpha r(t)$$

Matrice di trasferimento

Quindi:

$$\dot{x}(t) = (A - BK)x(t) + B\alpha r(t)$$

$$y(t) = (C - DK)x(t) + D\alpha r(t)$$

y(t) = Cx(t)

▶ La matrice di trasferimento H(s) tra l'ingresso r(t) (riferimento) e l'uscita y(t) si calcola come:

$$H(s) = \left\{ (C - DK) \left[sI - (A - BK) \right]^{-1} B + D \right\} \alpha$$

Il caso di sistemi dinamici LTI TD

➤ Il teorema di assegnazione degli autovalori vale anche per i sistemi LTI TD del tipo:

y(t) = Cx(t)

$$X(k+1) = AX(k) + BU(k)$$

nei quali la **legge di controllo per retroazione statica dallo stato** assume la forma:

$$U(k) = -KX(k) + \alpha r(k)$$

Il caso di sistemi dinamici LTI TD

Le equazioni di ingresso – stato – uscita del sistema controllato mediante retroazione statica dallo stato sono:

y(t) = Cx(t)

$$x(k+1) = (A - BK)x(k) + B\alpha r(k)$$
$$y(k) = (C - DK)x(k) + D\alpha r(k)$$

La matrice di trasferimento H(z) tra l'ingresso r(k) (riferimento) e l'uscita y(k) è data da:

$$H(Z) = \left\{ (C - DK) \left[ZI - (A - BK) \right]^{-1} B + D \right\} \alpha$$

Retroazione statica dallo stato

Esempi di calcolo di leggi di controllo

Esempio 1: formulazione del problema

Dato il seguente sistema dinamico LTI TC:

$$\dot{x}(t) = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} x(t) + \begin{bmatrix} -1 \\ 2 \end{bmatrix} u(t)$$

trovare, se possibile, i coefficienti della matrice dei guadagni *K* di una legge di controllo per retroazione statica dallo stato del tipo:

$$u(t) = -Kx(t) + \alpha r(t)$$

che permette di assegnare gli autovalori del sistema retroazionato in: $\lambda_{1,des} = -2$ e $\lambda_{2,des} = -3$

Esempio 1: procedimento di soluzione

- Per determinare gli elementi della matrice K occorre procedere come segue:
 - Verificare la completa raggiungibilità del sistema (in caso contrario non è possibile calcolare K)
 - Dato l'insieme degli autovalori da assegnare $\{\lambda_{1,des},...,\lambda_{n,des}\}$, si calcola il polinomio caratteristico desiderato $p_{des}(\lambda)$
 - Si calcola in funzione degli elementi incogniti di K il polinomio caratteristico della matrice $A BK : p_{A-BK}(\lambda)$
 - Si determinano gli elementi incogniti di Kapplicando il principio di identità dei polinomi:

$$p_{A-BK}(\lambda) = p_{des}(\lambda)$$

Esempio 1: verifica della raggiungibilità

Le matrici A e B del sistema dato sono:

$$A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Poiché il sistema è di ordine n = 2, la matrice di raggiungibilità è della forma:

$$M_R = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = \begin{bmatrix} B & AB \end{bmatrix}$$

Svolgendo i calcoli si ottiene:

$$M_R = \begin{bmatrix} -1 & 5 \\ 2 & 0 \end{bmatrix} \Rightarrow \rho(M_R) = 2$$

▶ Per cui il sistema è completamente raggiungibile

Esempio 1: determinazione di $p_{des}(\lambda)$

Gli autovalori desiderati da assegnare sono:

$$\lambda_{1,des} = -2$$
 , $\lambda_{2,des} = -3$

Il corrispondente polinomio caratteristico desiderato è quindi:

$$p_{des}(\lambda) = \prod_{i=1}^{n} (\lambda - \lambda_{i,des}) =$$

$$= (\lambda - \lambda_{1,des})(\lambda - \lambda_{2,des}) =$$

$$= (\lambda - (-2))(\lambda - (-3)) =$$

$$= \lambda^{2} + 5\lambda + 6$$

Esempio 1: determinazione di $p_{A-BK}(\lambda)$

Poiché n = 2, la matrice dei guadagni K è della forma:

$$K = [k_1 \quad k_2]$$

si ha

$$A - BK = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} - \begin{bmatrix} -k_1 & -k_2 \\ 2k_1 & 2k_2 \end{bmatrix} = \begin{bmatrix} 1 + k_1 & 3 + k_2 \\ 4 - 2k_1 & 2 - 2k_2 \end{bmatrix}$$

Esempio 1: calcolo di $p_{A-BK}(\lambda)$

$$A - BK = \begin{bmatrix} 1 + k_1 & 3 + k_2 \\ 4 - 2k_1 & 2 - 2k_2 \end{bmatrix}$$

Per cui:

$$\begin{aligned} \rho_{A-BK}(\lambda) &= \det(\lambda I - (A - BK)) = \\ &= \det\begin{bmatrix} \lambda - (1 + k_1) & -(3 + k_2) \\ -(4 - 2k_1) & \lambda - (2 - 2k_2) \end{bmatrix} = \\ &= \left[\lambda - (1 + k_1)\right] \left[\lambda - (2 - 2k_2)\right] - (3 + k_2)(4 - 2k_1) = \\ &= \lambda^2 + (-3 - k_1 + 2k_2)\lambda + 8k_1 - 6k_2 - 10 \end{aligned}$$

Esempio 1: calcolo di K

Affinché i polinomi:

$$p_{des}(\lambda) = \lambda^2 + 5\lambda + 6\lambda$$

y(t) = Cx(t)

e

$$p_{A-BK}(\lambda) = \lambda^2 + (-3 - k_1 + 2k_2)\lambda + 8k_1 - 6k_2 - 10$$

abbiano le stesse radici, per il principio di identità dei polinomi, deve risultare:

$$\begin{cases} -3 - k_1 + 2k_2 = 5 \\ 8k_1 - 6k_2 - 10 = 6 \end{cases} \Rightarrow \begin{cases} k_1 = 8 \\ k_2 = 8 \end{cases}$$

Per cui:

$$K = [k_1 \quad k_2] = [8 \quad 8]$$

Esempio 2: formulazione del problema

Dato il seguente sistema LTI TD:

$$x(k+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.001 & -0.03 & -0.3 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(k)$$

y(t) = Cx(t)

trovare, se possibile, i coefficienti della matrice dei guadagni *K* di una legge di controllo per retroazione statica dallo stato del tipo:

$$u(k) = -Kx(k) + \alpha r(k)$$

che permette di assegnare gli autovalori del sistema retroazionato in: $\lambda_{1,des} = \lambda_{2,des} = \lambda_{3,des} = 0.2$

Esempio 2: procedimento di soluzione

- ▶ Per determinare gli elementi della matrice K occorre procedere come segue:
 - Verificare la completa raggiungibilità del sistema (in caso contrario non è possibile calcolare K)
 - Dato l'insieme degli autovalori da assegnare $\{\lambda_{1,des},...,\lambda_{n,des}\}$, si calcola il polinomio caratteristico desiderato $p_{des}(\lambda)$
 - Si calcola in funzione degli elementi incogniti di K il polinomio caratteristico della matrice $A BK : p_{A-BK}(\lambda)$
 - Si determinano gli elementi incogniti di Kapplicando il principio di identità dei polinomi:

$$p_{A-BK}(\lambda) = p_{des}(\lambda)$$

Esempio 2: analisi della raggiungibilità

Le matrici A e B del sistema dato sono:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.001 & -0.03 & -0.3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- Notiamo che:
 - La matrice A è in forma compagna inferiore
 - La matrice B ha tutti gli elementi nulli tranne l'ultimo
- ➤ → Il sistema dato è in forma canonica di raggiungibilità e pertanto risulta completamente raggiungibile

Esempio 2: determinazione di $p_{des}(\lambda)$

Gli autovalori desiderati da assegnare sono:

$$\lambda_{1,des} = \lambda_{2,des} = \lambda_{3,des} = 0.2$$

Il corrispondente polinomio caratteristico desiderato è quindi:

$$p_{des}(\lambda) = (\lambda - 0.2)^3 = \lambda^3 - 0.6\lambda^2 + 0.12\lambda - 0.008$$

Esempio 2: determinazione di $p_{A-BK}(\lambda)$

Poiché n = 3, la matrice dei guadagni K è della forma: $K = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$

si ha

$$A - BK = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.001 & -0.03 & -0.3 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} = \\ = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.001 & -0.03 & -0.3 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ k_1 & k_2 & k_3 \end{bmatrix} = \\ = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.001 - k_1 & -0.03 - k_2 & -0.3 - k_3 \end{bmatrix}$$

Esempio 2: calcolo di $p_{A-BK}(\lambda)$

$$A - BK = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.001 - k_1 & -0.03 - k_2 & -0.3 - k_3 \end{bmatrix}$$

y(t) = Cx(t)

Poiché A – BK è in forma compagna inferiore, si può direttamente determinare il polinomio caratteristico in base ai coefficienti dell'ultima riga:

$$p_{A-BK}(\lambda) = \lambda^3 + (0.3 + k_3)\lambda^2 + (0.03 + k_2)\lambda + 0.001 + k_1$$

Esempio 2: calcolo di K

Affinché i polinomi:

$$p_{des}(\lambda) = \lambda^3 - 0.6\lambda^2 + 0.12\lambda - 0.008$$

e

$$p_{A-BK}(\lambda) = \lambda^3 + (0.3 + k_3)\lambda^2 + (0.03 + k_2)\lambda + 0.001 + k_1$$

abbiano le stesse radici, deve risultare:

y(t) = Cx(t)

$$\begin{cases}
0.3 + k_3 = -0.6 \\
0.03 + k_2 = 0.12
\end{cases} \Rightarrow \begin{cases}
k_3 = -0.9 \\
k_2 = 0.09 \\
k_1 = -0.009
\end{cases}$$

$$K = [k_1 \quad k_2 \quad k_3] = [-0.009 \quad 0.09 \quad -0.9]$$

- In MatLab, la matrice dei guadagni K può essere calcolata, nel caso di autovalori di molteplicità unitaria, mediante l'istruzione: K = place (A, B, p)
 - A, B: matrici della rappresentazione di stato

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $x(k+1) = Ax(k) + Bu(k)$

- p: vettore contenente gli autovalori da assegnare
- Se invece gli autovalori da assegnare non hanno molteplicità unitaria, bisogna usare l'istruzione:

$$K = acker(A, B, p)$$

Per maggiori dettagli sulle istruzioni, digitare help place, help acker al prompt di MatLab

Retroazione statica dallo stato

Il problema della regolazione

Stati ed uscita di equilibrio (1/2)

Consideriamo il sistema dinamico LTI TC:

y(t) = Cx(t)

$$\dot{x}(t) = (A - BK)x(t) + B\alpha r(t)$$

$$y(t) = (C - DK)x(t) + D\alpha r(t)$$

- Supponiamo che:
 - La matrice K sia tale da rendere il sistema asintoticamente stabile
 - \bullet $r(t) \in \mathbb{R}$, $y(t) \in \mathbb{R} \rightarrow \text{sistema SISO}$, $\alpha \in \mathbb{R}$
 - \bullet $r(t) = \overline{r} = \text{costante}, \forall t$
- Vogliamo calcolare lo stato \overline{X} e l'uscita \overline{Y} di equilibrio corrispondenti all'ingresso $r(t) = \overline{r}$

Stati ed uscita di equilibrio (2/2)

In base alla condizione di equilibrio per sistemi dinamici LTI TC, $r(t) = \overline{r}$, $x(t) = \overline{x}$, $y(t) = \overline{y}$, $\forall t$ si ha:

$$\dot{\overline{X}} = 0 = (A - BK)\overline{X} + B\alpha\overline{r}$$

$$\overline{Y} = (C - DK)\overline{X} + D\alpha\overline{r}$$

per cui:

$$\overline{X} = -(A - BK)^{-1} B \alpha \overline{r}$$

$$\overline{Y} = \left[-(C - DK)(A - BK)^{-1} B + D \right] \alpha \overline{r}$$

La regolazione dell'uscita

- Data l'asintotica stabilità del sistema considerato, applicando l'ingresso costante \overline{r} , i movimenti dello stato e dell'uscita tenderanno, per tempi sufficientemente grandi, ai loro rispettivi valori di equilibrio \overline{X} e \overline{V} per qualsiasi condizione iniziale
- ightharpoonup Ci chiediamo se è possibile fare in modo che il valore di equilibrio dell'uscita \overline{y} coincida con \overline{r} :

$$\overline{y} = \overline{r}$$

Tale problema è noto come: regolazione dell'uscita

Condizione di regolazione (1/2)

$$\overline{y} = \left[-(C - DK)(A - BK)^{-1}B + D \right] \alpha \overline{r}$$

- ightharpoonup Se $\overline{r} = 0 \Rightarrow \overline{y} = \overline{r} = 0$, $\forall t, \forall \alpha$
- Più in generale, se $\overline{r} \neq 0$, allora per ottenere la condizione

y(t) = Cx(t)

deve risultare:

$$\left[-(C-DK)(A-BK)^{-1}B+D\right]\alpha=1$$

 $\overline{y} = \overline{r}$

Condizione di regolazione (2/2)

$$\left[-(C-DK)(A-BK)^{-1}B+D\right]\alpha=1$$

y(t) = Cx(t)

- Si può agire sul parametro α
- Infatti, dal momento che risulta:

$$\alpha \in \mathbb{R}, -(C-DK)(A-BK)^{-1}B+D \in \mathbb{R}$$

per ottenere la condizione di regolazione si pone:

$$\alpha = \left[-(C - DK)(A - BK)^{-1}B + D \right]^{-1}$$

Sistemi LTI TD: equilibrio

Per i sistemi dinamici LTI TD SISO controllati mediante retroazione statica dallo stato, le equazioni di ingresso – stato – uscita sono:

$$x(k+1) = (A - BK)x(k) + B\alpha r(k)$$
$$y(k) = (C - DK)x(k) + D\alpha r(k)$$

La condizione di equilibrio è:

$$\overline{X} = (A - BK)\overline{X} + B\alpha\overline{r}$$

$$\overline{Y} = (C - DK)\overline{X} + D\alpha\overline{r}$$

Sistemi LTI TD: condizione di regolazione

Quindi

$$\overline{X} = \left[I - (A - BK)\right]^{-1} B \alpha \overline{r}$$

$$\overline{Y} = \left\{ (C - DK) \left[I - (A - BK)\right]^{-1} B + D\right\} \alpha \overline{r}$$

La regolazione dell'uscita

$$\overline{y} = \overline{r}$$

si ottiene ponendo:

$$\alpha = \left\{ (C - DK) \left[I - (A - BK) \right]^{-1} B + D \right\}^{-1}$$

Esempio: formulazione del problema

Al seguente sistema dinamico LTI TC raggiungibile:

$$\dot{x}(t) = \begin{bmatrix} -1 & 0.5 \\ 2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ 4 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 3 & 6 \end{bmatrix} x(t)$$

viene applicata una legge di controllo per retroazione statica dallo stato del tipo:

y(t) = Cx(t)

$$u(t) = -Kx(t) + \alpha r(t)$$

con $K = [0.5 \ 0.25]$. Supponendo $r(t) = \overline{r} = 3\varepsilon(t)$, calcolare il valore di α in modo da ottenere la regolazione dell'uscita $\overline{y} = \overline{r}$

Esempio: procedimento di soluzione

- ightharpoonup Per determinare il valore di lpha occorre procedere come segue:
 - Verificare che la retroazione dallo stato ottenuta mediante la matrice K stabilizzi asintoticamente il sistema
 - ullet Calcolare α in base alla condizione di regolazione

Esempio: verifica dell'asintotica stabilità

 \triangleright Calcolando la matrice A - BK:

$$A - BK = \begin{bmatrix} -1 & 0.5 \\ 2 & -3 \end{bmatrix} - \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 0.5 & 0.25 \end{bmatrix} =$$

$$= \begin{bmatrix} -1 & 0.5 \\ 2 & -3 \end{bmatrix} - \begin{bmatrix} 1 & 0.5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -4 \end{bmatrix}$$

- ightharpoonup Si nota che gli autovalori sono $\lambda_1 = -2$ e $\lambda_2 = -4$
- Il sistema dato risulta quindi asintoticamente stabile

Esempio: calcolo di α

Applicando la condizione per la regolazione di sistemi LTI TC

$$\alpha = \left[-(C - DK)(A - BK)^{-1}B + D \right]^{-1}$$

con i dati

$$A = \begin{bmatrix} -1 & 0.5 \\ 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, C = \begin{bmatrix} 3 & 6 \end{bmatrix}, D = 0, K = \begin{bmatrix} 0.5 & 0.25 \end{bmatrix}$$

si ottiene:

$$\alpha = -\left[\begin{bmatrix} 3 & 6 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & -4 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 4 \end{bmatrix}\right]^{-1} = 0.\overline{1}$$