ACTIVITÉ 📐

On considère un triangle équilatéral de côté 1 que l'on colorie en turquoise. À chaque étape, on trace dans chaque triangle turquoise un triangle plus clair qui a pour sommet les milieux des côtés du triangle turquoise.

Étape 0

Cette construction porte un nom : c'est le triangle de Sierpiński.

- 1. On s'intéresse au nombre de triangles turquoises.
 - a. Combien y en a t-il à l'étape 0?
 - **b.** Combien y en a t-il à l'étape 1?
 - c. Combien y en a t-il à l'étape 2?
 - d. Combien y en a t-il à l'étape 3?
 - e. Combien y en a t-il à l'étape 4?
- 2. On définit une fonction t sur \mathbb{N} qui, à chaque étape, associe le nombre de triangles turquoises.

Une telle fonction définie sur \mathbb{N} s'appelle une **suite**. Souvent, pour $n \in \mathbb{N}$, au lieu d'écrire t(n), on écrira t_n .

- **a.** Donner les valeurs de t_0 et de t_1 .
- **b.** Donner l'expression de t_n en fonction de n.
- **c.** En déduire la valeur de t_{10} .