1001011101111000001

10100110100010ZO 1011110001110

001101100011111010100 第四章介质访问控制子层

二层交换

为什么需要二层交换?

- □ 有很多LAN,如何将它们连接起来?
 - ▶可用网桥(bridges)将它们连接起来。
- □ 网桥工作在DLL层,通过检查MAC地址做出转发帧的决策
 - ➤不会检查网络层,所以,IPv4, IPv6, AppleTalk, ATM, IPX, and OSI 分组均可穿越网桥。

谁来完成二层交换?

□ 网桥/交换机

从 802.11 到 802.3 的网桥操作

从 802.X 到 802.Y的网桥

- □ 遇到的问题:
 - ▶不同的帧格式 重新封装
 - ▶不同的数据传输速率 Buffering
 - ➤不同的802LAN有不同的最大帧长度 (如, 802.3 1526 字节, 802.11 2346 字节)
 - ▶安全: 802.11 和 802.16 支持数据链路层的加密,但 802.3
 不支持
 - ▶服务质量: 802.11 和 802.16 提供了服务质量, 但 802.3 没有

透明的网桥

- □ 通过透明网桥(transparent bridges)将多个LAN连接起来,硬件和软件不需要做任何的变化
- □ 透明网桥工作在混杂模式(promiscuous mode),它接收所有 跟它相联的LAN的帧
- □ 当一个帧到达网桥时,它必须作出丢弃(discard)还是转发 (forward)的决策,如果是转发,它还要知道向哪个LAN转发
- □ 决策是通过在网桥内部的一张地址表(hash table)中查找目的 MAC地址而作出的

怎样透明?

- □ 网桥如何维护它的内部转发表?
- □ 初始时,这张表是空的
- □ 扩散算法(泛洪算法,flooding algorithm)
 - ▶当网桥不知道目的地址时(表中查不到),它会将这帧从除 来的LAN外的所有LAN转发出去
- □ 逆向学习(backward learning)
 - ▶网桥从到达帧的源地址认识到源地址对应的那台机是在帧来的那个LAN上,所以,把它写入MAC地址表

怎样透明?

- □ 但是拓扑是变化的,网桥怎样适应这种变化?
 - >无论何时,凡往表中加入记录,也必须同时打下时戳
 - >到达帧的源地址在表中已有记录,将时戳更新为当前时间
 - >网桥周期性地扫描表,将那些超时的记录从表中删除

网桥工作原理

- □ 当一帧到达时, 网桥启动如下算法:
 - ▶如果源LAN和目的LAN相同,则丢弃该帧;
 - ▶如果源LAN和目的LAN不同,则转发该帧;
 - ▶如果目的LAN未知,则广播该帧。
- □ 每当一帧到达,上述算法都将执行一遍
- □ 有些专用的 VLSI 芯片可以在几微秒内完成查找和更新表项的 动作

步骤1: A向H发送数据帧Fa

步骤2: 网桥B1扩散帧Fa

B1从b11接收帧Fa,从b12向LAN2扩散帧Fa

步骤3: 网桥B2扩散帧Fa

步骤4: H向A回送数据帧Fh

步骤5: 网桥B2 转发 帧F_h

所有站点都工作的地址表

只有主动发送数据的站点填入表项 定时刷新表项,删除不活动的站点

课堂练习:网桥如何工作?

Filter

 $V \Rightarrow Xc$

Forward

 $V \Rightarrow Hh$

网桥和中继器的比较

功能	网桥	中继器
再生信号	Yes	Yes
连接采用不同MAC协议的网段	Yes	No
隔离冲突域	Yes	No
根据帧头的物理地址转发帧	Yes	No
丢弃损坏帧	Yes	No

小结

- □ 网桥/交换机将不同的LAN段连在一起了。
- MAC地址表是通过逆向地址学习建立、更 新和维护的。
- □ 二层交换的基本原理是:
 - ▶泛洪/扩散
 - ▶转发
 - ▶过滤
- □ 网桥/交换机隔离了冲突了

思考题

- □ 为什么需要二层交换?
- □ 二层交换的基本原理是什么?
- □ 什么是扩散?
- □ 为什么网桥又叫透明网桥?
- □ 为什么采用了交换机而不是集线器作为星形拓扑的中心,性能 会得到提升?

请写出下列数据帧正常收发之后,两个交换机内部的MAC 地址表。

- > A向D传送一个帧
- ➤ E向A传送一个帧
- ➤ D向E发送一个帧

 $A \rightarrow D$

 $E \rightarrow A$

 $D \rightarrow E$

B1/2的MAC地址表(自学习表)

MAC地址	端口

参考答案

B1的MAC地址表(自学习表)		
MAC地址	端口	
Mac(a)	FE0/0	
Mac(e)	FE0/2	

B2的MAC地址表(自学习表)		
MAC地址	端口	
Mac(a)	FE0/2	
Mac(e)	FE0/0	
Mac(d)	FE0/0	

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!