Узагальнене оптимальне керування

Гуляницький А. Л.*

24 вересня 2019 р.

Зміст

1.2	Властивості дробових похідних		
	1.2.1	Властивості похідних Рімана-Ліувілля	
	1.2.2	Властивості похідних за Капуто	

1.2 Властивості дробових похідних

Приклад 1.18

Знайдемо похідні степеневих функцій.

Розв'язання. Нехай $\beta > -1,\, 0 < \alpha < 1.$ Тоді

$$D_0^{\alpha} t^{\beta} = \frac{\mathrm{d}}{\mathrm{d}t} I_0^{1-\alpha} t^{\beta}. \tag{1.20}$$

У свою чергу

$$I_0^{1-\alpha} t^{\beta} = \frac{1}{\Gamma(1-\alpha)} \int_0^t s^{\beta} (t-s)^{-\alpha} \, \mathrm{d}s.$$
 (1.21)

Нагадаємо

Означення 1.19 (бета-функції).

$$B(a,b) = \int_0^1 \xi^{a-1} (1-\xi)^{b-1}.$$
 (1.22)

а також наступну властивість бета-функції:

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}. (1.23)$$

 $^{^*}$ Гуляницький Андрій Леонідович, andriy.hul@gmail.com

Проведемо заміну $\xi = s/t$, тоді $ds = t d\xi$, отримаємо

$$\frac{1}{\Gamma(1-\alpha)} \int_0^1 (t\xi)^{\beta} t^{-\alpha} (1-\xi) t \, d\xi =
= \frac{t^{\beta-\alpha+1}}{\Gamma(1-\alpha)} B(\beta+1, 1-\alpha) =
= \frac{\Gamma(\beta+1)}{\Gamma(2+\beta-\alpha)} t^{\beta-\alpha+1}.$$
(1.24)

Лишилося продиференційювати цей інтеграл:

$$D_0^{\alpha} \frac{\Gamma(\beta+1)}{\Gamma(2+\beta-\alpha)} t^{\beta-\alpha+1} =$$

$$= \frac{\Gamma(\beta+1)}{\Gamma(2+\beta-\alpha)} (\beta-\alpha+1) t^{\beta-\alpha} =$$

$$= \frac{\Gamma(\beta+1)}{\Gamma(1+\beta-\alpha)} t^{\beta-\alpha},$$
(1.25)

де ми скористалився властивістю $a\Gamma(a) = \Gamma(a+1)$.

Зауваження 1.20 — Ця формула справедлива і для $\alpha \geq 1$, але умова $\beta > -1$ важлива для збіжності кількох інтегралів, зокрема $\int_0^t s^\beta (t-s)^{-\alpha} \, \mathrm{d}s$.

Приклад 1.21

Зокрема, якщо $\alpha \leq \beta \in \mathbb{N}$, то маємо формулу

$$\frac{\mathrm{d}^{\alpha}}{\mathrm{d}t^{\alpha}}t^{\beta} = \frac{\beta!}{(\beta - \alpha)!}t^{\beta - \alpha}.$$
 (1.26)

Наприклад,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}t^4 = \frac{4!}{2!}t^2. \tag{1.27}$$

Зауваження 1.22 — Зрозуміло також що всі введені нами оператори лінійні.

1.2.1 Властивості похідних Рімана-Ліувілля

Твердження 1.23

На жаль, не виконується наступна властивість

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n}e^{\lambda t} = \lambda^n e^{\lambda t}.$$
 (1.28)

Доведення.

$$e^{\lambda t} = \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!}.$$
 (1.29)

Почленно диференціюємо:

$$D_0^{\alpha} e^{\lambda t} = D_0^{\alpha} \left(\sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} \right) =$$

$$= \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} D_0^{\alpha} \left(t^k \right) =$$

$$= \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \frac{k!}{\Gamma(k+1-\alpha)} t^{k-\alpha} \neq$$

$$\neq \sum_{k=0}^{\infty} \lambda^{\alpha} \frac{(\lambda t)^k}{k!}.$$

$$(1.30)$$

Твердження 1.24 (формула (не) Ньютона-Лейбніца)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_0^t f(s) \, \mathrm{d}s = f(t). \tag{1.31}$$

Твердження 1.25 (формула Ньютона-Лейбніца)

$$\int_0^t f'(s) \, \mathrm{d}s = f(t) - f(0). \tag{1.32}$$

Твердження 1.26 (напівгрупова властивість дробових інтегралів)

Нехай $\alpha, \beta > 0$, тоді $I_0^{\alpha+\beta} = I_0^{\alpha} I_0^{\beta}$.

Вправа 1.27. Доведіть цю властивість. Підказка: за означеннями,

$$I_0^{\alpha+\beta} f = f \star y_{\alpha+\beta} \stackrel{?}{=} f \star (y_\alpha \star y_\beta) \stackrel{?}{=} (f \star y_\alpha) \star y_\beta = I_0^\beta I_0^\alpha f, \tag{1.33}$$

тому достатньо перевірити асоціативність згортки і рівність $y_{\alpha+\beta} = y_{\alpha} \star y_{\beta}$.

Доведення. Перевіримо два вищезгаданих твердження:

1) Асоціативність ⋆ отримується "в лоб":

$$((f \star g) \star h)(t) = \int_0^t (f \star g)(s)h(t-s) \, ds =$$

$$= \int_0^t \left(\int_0^\xi f(\xi)g(s-\xi) \, d\xi \right) h(t-s) \, ds =$$

$$= \int_0^t \int_0^s f(\xi)g(s-\xi)h(t-s) \, d\xi \, ds =$$

$$= \int_0^t \int_\xi^t f(\xi)g(s-\xi)h(t-s) \, ds \, d\xi =$$

$$= \int_0^t \int_0^{t-\xi} f(\xi)g(s)h(t-s-\xi) \, ds \, d\xi =$$

$$= \int_0^t f(\xi) \left(\int_0^{t-\xi} g(s)h(t-\xi-s) \, ds \right) \, d\xi =$$

$$= \int_0^t f(\xi)(g \star h)(t-\xi) \, d\xi =$$

$$= (f \star (g \star h))(t).$$

2) Далі

$$y_{\alpha}(t) \star y_{\beta}(t) = \int_{0}^{t} y_{\alpha}(s) y_{\beta}(t-s) \, \mathrm{d}s =$$

$$= \int_{0}^{t} \frac{1}{\Gamma(\alpha)} s^{\alpha-1} \frac{1}{\Gamma(\beta)} (t-s)^{\beta-1} \, \mathrm{d}s =$$

$$= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{t} s^{\alpha-1} (t-s)^{\beta-1} \, \mathrm{d}s.$$

$$(1.35)$$

Проведемо заміну $\xi=s/t$, тоді $\mathrm{d}s=t\,\mathrm{d}\xi$, отримаємо

$$\frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{t} s^{\alpha-1}(t-s)^{\beta-1} ds = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{t} (\xi t)^{\alpha-1} (1-\xi)^{\beta-1} t^{\beta-1} t d\xi =
= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} t^{(\alpha-1)+(\beta-1)+1} \int_{0}^{t} \xi^{\alpha-1} (1-\xi)^{\beta-1} d\xi =
= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} t^{\alpha+\beta-1} B(\alpha,\beta) =
= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} t^{\alpha+\beta-1} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} =
= \frac{1}{\Gamma(\alpha+\beta)} t^{\alpha+\beta-1} =
= y_{\alpha+\beta}(t).$$
(1.36)

Теорема 1.28 (аналог формули (не) Ньютона-Лейбніца)

Для $\alpha > 0$

$$D_0^{\alpha} I_0^{\alpha} f = f. \tag{1.37}$$

Доведення. Нехай $n = \lceil \alpha \rceil$, тоді

$$D_0^{\alpha} I_0^{\alpha} f = \frac{\mathrm{d}^n}{\mathrm{d}t^n} I_0^{n-\alpha} I_0^{\alpha} f = \frac{\mathrm{d}^n}{\mathrm{d}t^n} I_0^n f = f.$$
 (1.38)

Зауваження 1.29 — Тут ми скористалися напівгруповою властивістю.

Твердження 1.30 (аналог формули Ньютона-Лейбніца)

Нехай $f, D_0^{\alpha} f \in L_1([0,T]), \, n = \lceil \alpha \rceil, \, \alpha \not \in \mathbb{N},$ тоді для 0 < t < T маємо

$$(I_0^{\alpha} D_0^{\alpha} f)(t) = f(t) - \sum_{k=0}^{n-1} (D_0^{\alpha-k-1} f)(0) \cdot \frac{t^{\alpha-k-1}}{\Gamma(\alpha-k)}.$$
 (1.39)

 ${f 3}$ ауваження ${f 1.31}$ — Тут під $D_0^{-|eta|}$ маємо на увазі $I_0^{|eta|}$

Приклад 1.32

Для $0 < \alpha < 1$ маємо

$$(I_0^{\alpha} D_0^{\alpha} f)(t) = f(t) - (I_0^{1-\alpha} f)(0) \frac{t^{\alpha-1}}{\Gamma(\alpha)}.$$
 (1.40)

Зауваження 1.33 — Тут
$$(I_0^{1-\alpha}f)(0)=\lim_{\varepsilon\downarrow 0}(I_0^{1-\alpha}f)(\varepsilon).$$

Доведення. Доведемо частинний випадок:

$$(I_0^{\alpha} D_0^{\alpha} f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} (D_0^{\alpha} f)(s) \, \mathrm{d}s =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{\alpha \Gamma(\alpha)} \int_0^t (t-s)^{\alpha} (D_0^{\alpha} f)(s) \, \mathrm{d}s \right). \tag{1.41}$$

Виконаємо наступні маніпуляції з виразом що стоїть під похідною:

$$\frac{1}{\alpha\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha} (D_{0}^{\alpha}f)(t) dt =
= \frac{1}{\alpha\Gamma(\alpha)} \left((t-s)^{\alpha} I_{0}^{1-\alpha}f(s) \Big|_{s=0}^{s=t} + \alpha \int_{0}^{t} (t-s)^{\alpha-1} I_{0}^{1-\alpha}f(s) ds \right) =
= -\frac{t^{\alpha} (I_{0}^{1-\alpha}f)(0)}{\alpha\Gamma(\alpha)} + I_{0}^{\alpha} I_{0}^{1-\alpha}f =
= -\frac{t^{\alpha} (I_{0}^{1-\alpha}f)(0)}{\alpha\Gamma(\alpha)} + I_{0}^{1}f.$$
(1.42)

Лишилося всього лише продиференціювати:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(-\frac{t^{\alpha} (I_0^{1-\alpha} f)(0)}{\alpha \Gamma(\alpha)} + I_0^1 f \right) = f(t) - \frac{t^{\alpha-1} (I_0^{1-\alpha} f)(0)}{\Gamma(\alpha)}. \tag{1.43}$$

1.2.2 Властивості похідних за Капуто

Теорема 1.34

Нехай $f\in L_\infty([0,T])$, тобто $\exists M\in\mathbb{R}\colon |f(t)|\stackrel{\mathrm{a.e.}}{\leq} M$, тоді, як і очікувалося, $({}^\star D_0^\alpha I_0^\alpha f)(0)=(I_0^{\alpha\star}D_0^\alpha f)(0).$

а також

Теорема 1.35

Нехай $n=\lceil \alpha \rceil,\, f\in AC^n([0,T]),$ тоді

$$(I_0^{\alpha \star} D_0^{\alpha} f)(t) = f(t) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} t^k.$$
(1.44)

Зауваження 1.36 — Ця формула справедлива і для цілих α

Твердження 1.37

Для похідних у загальному випадку не виконується напівгрупова властивість.

Теорема 1.38

Нехай $f, D_0^\beta \in L_1([0,T]), \, \alpha \not \in \mathbb{N}.$ Тоді

$$(D_0^{\alpha} D_0^{\beta} f)(t) = (D_0^{\alpha+\beta}) f(t) - \sum_{k=0}^{\lceil \beta \rceil - 1} (D_0^{\beta - k - 1} f)(0) \frac{t^{-\alpha - k - 1}}{\Gamma(-\alpha - k)}$$
(1.45)

Приклад 1.39

Зокрема, для $0 < \alpha, \beta < 1$:

$$(D_0^{\alpha} D_0^{\beta} f)(t) = (D_0^{\alpha+\beta}) f(t) - (I_0^{1-\beta} f)(0) \frac{t^{-\alpha-1}}{\Gamma(-\alpha)}$$
(1.46)

Доведення. Доведемо частинний випадок:

$$(D_0^{\alpha} D_0^{\beta} f)(t) = \left(\frac{\mathrm{d}}{\mathrm{d}t} I_0^{1-\alpha} D_0^{\beta} f\right)(t) =$$

$$= \left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} I_0^{2-\alpha} D_0^{\beta} f\right)(t) =$$

$$= \left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} I_0^{2-\alpha-\beta} I_0^{\beta} D_0^{\beta} f\right)(t) =$$

$$= \frac{\mathrm{d}^2}{\mathrm{d}t^2} I_0^{2-\alpha-\beta} \left(f(t) - \frac{(I_0^{1-\beta} f)(0)t^{\beta-1}}{\Gamma(\beta)}\right) =$$

$$= (D_0^{\alpha+\beta} f)(t) - \frac{(I_0^{1-\beta} f)(0)}{\Gamma(\beta)} D_0^{\alpha+\beta} t^{\beta-1} =$$

$$= (D_0^{\alpha+\beta} f)(t) - \frac{(I_0^{1-\beta} f)(0)}{\Gamma(\beta)} \frac{\Gamma(\beta)}{\Gamma(-\alpha)} t^{-1-\alpha} =$$

$$= (D_0^{\alpha+\beta} f)(t) - \frac{(I_0^{1-\beta} f)(0)}{\Gamma(-\alpha)} t^{-1-\alpha}.$$
(1.47)