## Practical Parallel Computing (実践的並列コンピューティング)

Part2: GPU (4) May 16, 2022

Toshio Endo School of Computing & GSIC endo@is.titech.ac.jp







- Part 0: Introduction
  - 2 classes
- Part 1: OpenMP for shared memory programming
  - 4 classes
- Part 2: GPU programming
  - 4 classes
     We are here (4/4)
  - OpenACC (1.5 classes) and CUDA (2.5 classes)
- Part 3: MPI for distributed memory programming
  - 3 classes

### Comparing OpenMP/OpenACC/CUDA



|                                | OpenMP                      | OpenACC                                | CUDA                |
|--------------------------------|-----------------------------|----------------------------------------|---------------------|
| Processors                     | CPU                         | CPU+GPU                                |                     |
| File extension                 | .C, .CC                     |                                        | .cu                 |
| To start parallel (GPU) region | #pragma omp<br>parallel     | #pragma acc kernels                    | func<<<,>>>()       |
| To specify # of threads        | export OMP_NUM<br>_THREADS= | (num_gangs, vector_length etc)         |                     |
| Desirable # of threads         | # of CPU cores or less      | # of GPU cores or "more"               |                     |
| To get thread ID               | omp_thread_num()            | -                                      | blockldx, threadldx |
| Parallel for loop              | #pragma omp for             | #pragma acc loop                       | -                   |
| Task parallel                  | #pragma omp task            | -                                      | -                   |
| To allocate device memory      | -                           | #pragma acc data                       | cudaMalloc()        |
| To copy to/from device memory  | -                           | #pragma acc data<br>#pragma acc update | cudaMemcpy()        |
| Function on GPU                | -                           | #pragma acc routine                    | global,device       |

## Speed of GPU Programs and GPU Architecture



Case 1: How should block-size be determined?

When creating 1,000,000 threads,

- <<1, 1000000>>> causes an error
  - blockDim must be <= 1024</li>
- <<1000000, 1>>> can work, but slow
- <<1000, 1000>>> is faster → Why?

### Case 2: How should each thread access memory?

 In mm-cuda, (x = row,y = col) and (x = col, y = row) shows different speed

Knowledge of GPU architecture helps understanding of speeds

# Why Do We Have to Specify both gridDim and blockDim?

- and why did NVIDIA decide so?
- → Hierarchical structure of GPU processor is considered



Structure of P100 GPU (16nm, 15Billion transistors)

1 GPU = 56 SMXs 1 SMX = 64 CUDA cores (16 cores x 4 groups)

→ 1GPU=3,584 CUDA cores



### Mapping between Threads and Cores



- 1 thread blocks (or more) run on 1 SMX
  - → At least 56 blocks are needed to use all SMXs on P100
  - $\rightarrow$  gridDim (gx\*gy\*gz) should be  $\geq$  56
- 1 thread (or more) run on a CUDA core
  - → At least 56\*64=3584 threads in total are needed to use all CUDA cores on P100
  - → Total threads (gx\*gy\*gz \* bx\*by\*bz) should be ≥3584
- 32 consective threads (in a block) are batched (called a warp) and scheduled
  - → At least 32 threads per block are needed for performance
  - $\rightarrow$  blockDim (bx\*by\*bz) should be  $\ge$ 32



### Warp: Internal Execution Unit

thread < warp < thread block < grid







- •Threads in a thread block are internally divided into "warp", a group of contiguous 32 threads
- •32 threads in a warp always are executed synchronously
  - They execute the same instruction simultaneously
  - Only 1 program counter for 32 threads → GPU hardware is simplified
  - Actually 32 threads are executed on 16 CUDA cores



### Observations due to Warps



- If number of threads per block (blockDim) is not 32 x n, it is inefficient
  - Even if blockDim=1, the system creates a warp for it
- Characteristics in memory addresses accessed by threads in a warp affect the performance
  - Coalesced accesses are fast



※ In multi-dimensional cases (blockDim.y>1 or blockDim.z>1), "neighborhood" is defined by x-dimension

### **Coalesced Memory Access**

 When threads in a warp access "neighbor" address on memory (coalesced access), it is more efficient



Coalesced access

→ Faster



Non-coalesced access







- mm-cuda:  $(x = row, y = col) \rightarrow coalesced$  and fast
- mm-nc-cuda: (x = col, y = row) → non-coalesced and slow
  - /gs/hs1/tga-ppcomp/22/mm-nc-cuda

We should see "what data are accessed by threads in a warp simultaneously"







## Why #threads >> #cores Works Well on GPUs?



- GPU supports very fast (~1 clock) context switches
  - → With many threads, memory access latency can be hidden



# Considering Branches in Parallel Programs



Consider this code. How long is execution time?

```
if (thread-id % 2 == 0) {
      : // (A) 30msec
} else {
      : // (B) 20msec
}
```

#### On CPU (OpenMP)



On GPU, threads in a warp must execute the same instruction. What happens?







```
if (thread-id \% 2 == 0)
                                 Some threads are made sleep
} else {
                                 Both "then" and "else" are executed!
                                   → Answer to previous
                                   question is 50ms!
                                   Similar cases happen in
```

for, while...





- As exceptional cases, if threads in a warp "agree" in branch condition, either "then" part or "else" part is executed → Efficient!
- If there is difference of opinion (previous page), it is called a divergent branch
- → Agreement among buddies (threads in a warp) is important for speed

### **Considering Data Transfer Costs**





Example case: We are going to compute multiply for different matrices

- Input data are on host memory
  - $C1 = A1 \times B1$
  - $C2 = A2 \times B2$

. . . .

- $Cn = An \times Bn$
- •In default, GPU cannot compute during transfer
- → cudaStream is useful for hiding transfer costs

This is also useful for speed-up of mm-cuda, by dividing matrices into pieces

→ Samples are at /gs/hs1/tga-ppcomp/22/mm-str-cuda

## Asynchronous Executions with cudaStream (1)



What are streams?

- GPU's "service counters" that accept tasks from CPU
  - Each stream looks like a queue
- "Tasks" from CPU to GPU include
  - Data transfer (Host → Device)
  - GPU kernel function call
  - Data transfer (Device → Host)

"Tasks" here are a bit different from "omp task"



## Asynchronous Executions with cudaStream (2)



#### Create a stream

cudaStream\_t str; cudaStreamCreate(&str); // Create a stream

### Data transfer using a specific stream

cudaMemcpyAsync(dst, src, size, type, str);

### Call GPU kernel function using a stream

func<<<gs, bs, 0, str>>>( ... );

// 3<sup>rd</sup> parameter is related to for "shared memory"

#### Wait until all tasks on a stream are finished

cudaStreamSynchronize(str);







- Tasks on the same stream is done in FIFO
- If tasks are in different streams, and have different kinds, they may be done simultaneously
  - Kinds: H→D, kernel, D→H
  - Note: If tasks are in the same kind, no speed up

# Speed Up with Overlap of Computation and Transfer



n streams can be used for n independent tasks

- C1 = A1 × B1 (includes H->D, Calc, D->H)
- $C2 = A2 \times B2$

. . . .

- $Cn = An \times Bn$
- → We will see speed up since
   (Total comp time + Total trans time)
   is improved to
   max(Total comp time, Total trans time)

This is not a unique solution; Use 2 or 3 streams repeatedly → we can save memory and stream resources

cudaMallocHost() is used instead of malloc()
This speeds up cudaMemcpyAsync()



### **More Things to Study**



- Using CUDA shared memory
  - fast and small memory than device memory
- Unified memory in recent CUDA
  - cudaMemcpy can be omitted for automatic data transfer
- Using Tensor-core to accelerate deep learning
  - Only on V100 GPUs or later
  - Unfortunately, TSUBAME3 has older P100 ②
- Using multiple GPUs towards petascale computation
  - MPI+CUDA, MPI+OpenACC
- More and more...

# Assignments in GPU Part (Abstract)



Choose one of [G1]—[G3], and submit a report

Due date: May 26 (Thursday)

- [G1] Parallelize "diffusion" sample program by OpenACC or CUDA
- [G2] Evaluate speed of "mm-acc" or "mm-cuda" in detail
- [G3] (Freestyle) Parallelize any program by OpenACC or CUDA.





- Part 3: MPI Programming (1)
  - Introduction to distributed memory parallel programming