Departamento de Matemáticas 4^{o} ESO

Autoevaluación - Trimestre 1

1. a02e00 - Racionaliza:

$$(a) \quad \frac{\sqrt{5}-2}{2+\sqrt{5}}$$

Sol:
$$9 - 4\sqrt{5}$$

(b)
$$\frac{42 + 14\sqrt{2}}{2\sqrt{2} - 6}$$

- 2. a02e01 Aplica la definición de logaritmo para calcular:
 - (a) $\log_{25} 5$

Sol: $\frac{1}{2}$

(b) $\log_{0.5} 1/8$

Sol: 3

(c) $\log_{0.5} 32$

- **Sol:** -5
- 3. a02e02 Halla el valor de k para que la siguiente división sea exacta:
 - (a) $(3x^2 + kx 15) : (x 3)$

Sol:
$$3k + 12 = 0 \rightarrow k = -4$$

(b)
$$(kx^3 - 6x^2 + 7x - 14) : (x - 2)$$

Sol: $8k - 24 = 0 \rightarrow k = 3$

Sol: $-11 - 6\sqrt{2}$

4. a02e03 - Factoriza:

(a)
$$4x^5 - 12x^4 + 13x^3 - 6x^2 + x$$

Sol:
$$x(x-1)^2(2x-1)^2$$

(c)
$$x^3 - 11x^2 + 40x - 48$$

Sol:
$$(x-4)^2(x-3)$$

(b)
$$4x^4 - 24x^3 + 21x^2 - 5x$$

Sol:
$$x(x-5)(2x-1)^2$$

(d)
$$8x^4 - 62x^3 + 139x^2 - 79x + 12$$

Sol:
$$(x-4)(x-3)(2x-1)(4x-1)$$

5. a02e04 - Simplifica la siguiente fracción algebraica:

(a)
$$\frac{2x^3 - x^2 - 6x}{x^3 - 2x^2}$$

Sol:
$$\frac{2x^3 - x^2 - 6x}{x^3 - 2x^2} = \frac{x(x-2)(2x+3)}{x^2(x-2)} = \frac{2x+3}{x}$$

(b)
$$\frac{2x^4 - 12x^3 + 24x^2 - 16x}{6x^4 - 36x^3 + 72x^2 - 48x}$$

Sol:
$$\frac{2x^4 - 12x^3 + 24x^2 - 16x}{6x^4 - 36x^3 + 72x^2 - 48x} = \frac{2x(x-2)^3}{6x(x-2)^3} = \frac{1}{3}$$

6. a01e05 - Resuelve las siguientes ecuaciones

(a)
$$4x^5 - 12x^4 + 13x^3 - 6x^2 + x = 0$$

Sol:
$$4x^5 - 12x^4 + 13x^3 - 6x^2 + x = 0 \rightarrow x(x-1)^2(2x-1)^2 = 0 \rightarrow x = 0, x = \frac{1}{2}, x = 1$$

(b)
$$x^3 - 11x^2 + 40x - 48 = 0$$

Sol:
$$x^3 - 11x^2 + 40x - 48 = 0 \rightarrow (x-4)^2 (x-3) = 0 \rightarrow x = 3, x = 4$$

(c)
$$3\sqrt{x-1} + 11 = 2x$$

Sol:
$$3\sqrt{x-1} + 11 = 2x \rightarrow x = 10$$

(d)
$$\sqrt{x} + \sqrt{x-4} = 2$$

Sol:
$$\sqrt{x} + \sqrt{x-4} = 2 \to x = 4$$

(e)
$$\frac{x+1}{x-1} - \frac{1}{x} = \frac{5}{2}$$

Sol:
$$\frac{x+1}{x-1} - \frac{1}{x} = \frac{5}{2} \to \frac{x^2+1}{x(x-1)} = \frac{5}{2} \to \frac{2}{x(x-1)} = \frac{5}{x^2+1} \to \frac{2}{x(x-1)} = \frac{5}{x^2+1} \to \frac{2}{x^2-x} = \frac{5}{x^2+1} \to 2$$

 $2(x^2+1) = 5(x^2-x) \to 2(x^2+1) - 5(x^2-x) = 0 \to -3x^2 + 5x + 2 = 0 \to x = -\frac{1}{3}, x = 2$

(f)
$$2^{x+1} + 2^{x-1} = 20$$

Sol:
$$x = 3$$

(g)
$$2^{x-1} + 2^{x-2} + 2^{x-3} = 224$$

Sol:
$$x = 8$$

(h)
$$\log 2 + \log x = 1$$

Sol:
$$x = 5$$

(i)
$$5 \log x - \log 32 = \log \frac{x}{2}$$

Sol:
$$x = 2$$