

3 REGRESI

Dr. Prima Dewi Purnamasari Program Studi Teknik Komputer FTUI

Pendahuluan

- Analisis/uji regresi merupakan suatu kajian dari hubungan antara satu variabel, yaitu variabel yang diterangkan (the explained variabel) dengan satu atau lebih variabel, yaitu variabel yang menerangkan (the explanatory).
- Apabila variabel bebasnya hanya satu, maka analisis regresinya disebut dengan regresi linear sederhana (simple linear regression).
- Apabila variabel bebasnya **lebih dari satu**, maka analisis regresinya dikenal dengan regresi linear berganda (**multiple regression**).
 - Dikatakan berganda karena terdapat beberapa variabel bebas yang mempengaruhi variabel tak bebas
- Hasil dari analisis/uji regresi berupa suatu persamaan regresi.
 - Persamaan regresi ini merupakan suatu fungsi prediksi variable yang mempengaruhi variabel lain

- Regresi Linear Sederhana adalah Metode Statistik yang berfungsi untuk menguji sejauh mana hubungan sebab akibat antara Variabel Faktor Penyebab (X) terhadap Variabel Akibatnya (Y).
- X = predictor
- Y = response
- Regresi Linear Sederhana atau sering disingkat dengan SLR (Simple Linear Regression) juga merupakan salah satu Metode Statistik yang dipergunakan dalam produksi untuk melakukan peramalan ataupun prediksi tentang karakteristik kualitas maupun kuantitas.

- Contoh penggunaan analisis Regresi Linear Sederhana dalam kegiatan produksi, antara lain:
 - Hubungan antara lamanya kerusakan mesin dengan kualitas produk yang dihasilkan
 - Hubungan jumlah pekerja dengan output yang diproduksi
 - Hubungan antara suhu ruangan dengan cacat produksi yang dihasilkan.

Metode Regresi Linear Sederhana

diambil dari Machine Learning with Python cognitiveclass.ai

Regresi Untuk Melakukan Prediksi Pada Data yang Kontinyu

CO2EMISSIONS	FUELCONSUMPTION_COMB	CYLINDERS	ENGINESIZE	
196	8.5	4	2.0	0
221	9.6	4	2.4	1
136	5.9	4	1.5	2
255	11.1	6	3.5	3
244	10.6	6	3.5	4
230	10.0	6	3.5	5
232	10.1	6	3.5	6
255	11.1	6	3.7	7
267	11.6	6	3.7	3
?	9.2	4	2.4	9

Misal: 1 independent variable X untuk memprediksi dependent variable Y

Topologi Regresi Linear

- Regresi Linear Sederhana:
 - Prediksi emisi Co2 VS Ukuran mesin (engine size)
 - Variabel Independen (X): Ukuran mesin (engine size)
 - Variabel Dependen (Y): Emisi Co2
- Regresi Linear Berganda:
 - Prediksi emisi Co2 VS Ukuran mesin (engine size) dan Silinder
 - Variabel Independen (X): Ukuran mesin (engine size), Silinder
 - Variabel Dependen (Y): Emisi Co2

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	(?
				_

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

Representasi Model Regresi Linear

Representasi Model Regresi Linear

Representasi Model Regresi Linear


```
x<sub>1</sub> = 2.4 independent variable
y= 250 actual Co2 emission of x1
```

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $\hat{y} = 340$ the predicted emission of x1

Error = y-
$$\hat{y}$$

= 250 - 340
= -90

x₁ = 2.4 independent variable y= 250 actual Co2 emission of x1

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $\hat{y} = 340$ the predicted emission of x1

Error = y-
$$\hat{y}$$

= 250 - 340
= -90

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$


```
x_1 = 2.4 independent variable
y= 250 actual Co2 emission of x1
```

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $\hat{y} = 340$ the predicted emission of x1

Error = y-
$$\hat{y}$$

= 250 - 340
= -90

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

ENG	INESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	22
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4 X ₁ -	3.5	6	10.6	y 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{\mathbf{y}} = \mathbf{\theta_0} + \mathbf{\theta_1} \mathbf{x_1}$$

ENG	INESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	(2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4 X ₁	3.5	6	10.6	y— 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\boldsymbol{\theta_1} = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\theta_0 = \overline{y} - \theta_1 \overline{x}$$

EN	GINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4 X ₁	3.5	6	10.6	y- 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\boldsymbol{\theta_1} = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + ...)/9 = 3.34$$

$$\overline{y} = (196 + 221 + 136 + ...)/9 = 256$$

$$\theta_0 = \overline{y} - \theta_1 \overline{x}$$

IISSIONS	CO2EM	ELCONSUMPTION_COMB	CYLINDERS	ENGINESIZE	
196		8.5	4	(2.0	0
22		9.6	4	2.4	1
136		5.9	4	1.5	2
255		11.1	6	3.5	3
244	y_	10.6	6	X ₁ 3.5	4
230		10.0	6	3.5	5
232		10.1	6	3.5	6
255		11.1	6	3.7	7
267		11.6	6	3.7	8

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\boldsymbol{\theta_1} = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + ...)/9 = 3.34$$

$$\bar{y} = (196 + 221 + 136 + ...)/9 = 256$$

$$\theta_0 = \overline{y} - \theta_1 \overline{x}$$

ENG	INESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4 X ₁ -	3.5	6	10.6	y 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\theta_1 = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + \dots)/9 = 3.34$$

$$\bar{y} = (196 + 221 + 136 + \dots)/9 = 256$$

$$\theta_0 = \overline{y} - \theta_1 \overline{x}$$

ENG	GINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	22
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4 X ₁	3.5	6	10.6	y 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\boldsymbol{\theta_1} = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + ...)/9 = 3.34$$

$$\bar{y} = (196 + 221 + 136 + ...)/9 = 256$$

$$\theta_1 = \frac{(2.0 - 3.34)(196 - 256) + (2.4 - 3.34)(221 - 256) + \dots}{(2.0 - 3.34)^2 + (2.4 - 3.34)^2 + \dots}$$

$$\theta_0 = \overline{y} - \theta_1 \overline{x}$$

ENG	SINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4 X ₁	3.5	6	10.6	y 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\theta_1 = \frac{\sum_{i=1}^s (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^s (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + \dots)/9 = 3.34$$

$$\bar{y} = (196 + 221 + 136 + \dots)/9 = 256$$

$$= \frac{(2.0 - 3.34)(196 - 256) + (2.4 - 3.34)(221 - 256) + \dots}{(2.0 - 3.34)^2 + (2.4 - 3.34)^2 + \dots}$$

$$\theta_0 = \overline{y} - \theta_1 \overline{x}$$

ENGI	NESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS	
0	2.0	4	8.5	196	$\boldsymbol{\theta_1} = \frac{\sum_{i=1}^{s} (x_i - 1)^{s}}{\sum_{i=1}^{s} (x_i - 1)^{s}}$
1	2.4	4	9.6	221	$O_1 - \sum_{i=1}^{s} (x_i)^{s}$
2	1.5	4	5.9	136	$\bar{x} = (2.0 + 2.4 + 1.5 +$
3	3.5	6	11.1	255	
4 X ₁ -	3.5	6	10.6	y— 244	$\bar{y} = (196 + 221 + 136 - 120)$
5	3.5	6	10.0	230	$\theta_1 = (2.0 - 3.34)(196 - 256) + (2.0 - 3.34)^2 + (2.0$
6	3.5	6	10.1	232	
7	3.7	6	11.1	255	$\theta_1 = 39$
8	3.7	6	11.6	267	$\theta_0 = \overline{y} - \theta_1$

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\theta_1 = \frac{\sum_{i=1}^s (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^s (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + \dots)/9 = 3.34$$

$$\bar{y} = (196 + 221 + 136 + \dots)/9 = 256$$

$$= \frac{(2.0 - 3.34)(196 - 256) + (2.4 - 3.34)(221 - 256) + \dots}{(2.0 - 3.34)^2 + (2.4 - 3.34)^2 + \dots}$$

$$= 39$$

ENG	SINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	22
2	1.5	4	5.9	136
3	3.5	6	11.1	258
4 X ₁	3.5	6	10.6	y 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\theta_1 = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + \dots)/9 = 3.34$$

$$\bar{y} = (196 + 221 + 136 + \dots)/9 = 256$$

$$\theta_1 = \frac{(2.0 - 3.34)(196 - 256) + (2.4 - 3.34)(221 - 256) + \dots}{(2.0 - 3.34)^2 + (2.4 - 3.34)^2 + \dots}$$

$$\theta_1 = 39$$

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$\theta_0 = 256 - 39 * 3.34$$

$$\theta_0 = 125.74$$

SSIONS	CO2EMIS	FUELCONSUMPTION_COMB	CYLINDERS	ENGINESIZE	
196	1.0	8.5	4	(2.0	0
221		9.6	4	2.4	1
136		5.9	4	1.5	2
255		11.1	6	3.5	3
244	у	10.6	6	X ₁ 3.5	4
230		10.0	6	3.5	5
232		10.1	6	3.5	6
255		11.1	6	3.7	7
267		11.6	6	3.7	8

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\theta_1 = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + \dots)/9 = 3.34$$

$$\bar{y} = (196 + 221 + 136 + \dots)/9 = 256$$

$$\theta_1 = \frac{(2.0 - 3.34)(196 - 256) + (2.4 - 3.34)(221 - 256) + (2.0 - 3.34)^2 + (2.4 - 3.34)^2 + \dots}{(2.0 - 3.34)^2 + (2.4 - 3.34)^2 + \dots}$$

$$\theta_1 = 39$$

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$\theta_0 = 256 - 39 * 3.34$$

$$\theta_0 = 125.74$$

$$\widehat{y} = 125.74 + 39x_1$$

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $Co2Emission = \theta_0 + \theta_1 EngineSize$

Co2Emission = 125 + 39 EngineSize

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $Co2Emission = \theta_0 + \theta_1 EngineSize$

Co2Emission = 125 + 39 EngineSize

 $Co2Emission = 125 + 39 \times 2.4$

Co2Emission = 218.6

Metode tadi adalah metode statistika.

Bagaimana metode machine learning bekerja?

- The following slides are taken from:
- https://www.coursera.org/learn/machinelearning/home/welcome

All credit to Prof. Andrew Ng

Regression Model

Housing Prices (Portland, OR)

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valued output

Training set of housing prices (Portland, OR)

Size in feet² (x) Price (\$) in 1000's (y) 2104 460 1416 232 1534 315 852 178

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

(x, y) – one training example $(x^{(i)}, y^{(i)})$ – ith training example

$$x^{(1)} = 2104$$

$$x^{(2)} = 1416$$

$$y^{(1)} = 460$$

h maps from x's to y's

How do we represent h?

 $h_{\Theta}(x) = \Theta_0 + \Theta_1 x$

Linear regression with one variable Univariate linear regression.

One variable

COST FUNCTION

Training Set

Size	in	feet ²	(x)
------	----	-------------------	-----

Price (\$) in 1000's (

2104	460
1416	232
1534	315
852	178

• • •

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i 's: Parameters

How to choose θ_i 's?

$h_{\theta}(x) = \theta_0 + \theta_1 x$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (\mathbf{h}_{\Theta}(\mathbf{x}^{(i))} - \mathbf{y}^{(i))2}$$

$$\mathbf{h}(\mathbf{x}) = \Theta_0 + \Theta_1 \mathbf{x}^{(i)}$$

$$J(\Theta_{0}, \Theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\Theta}(\mathbf{x}^{(i))} - \mathbf{y}^{(i))2}$$

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Minimize $J(\Theta_{0}, \Theta_{1})$: Cost Function

Squared error function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: minimize $J(\theta_0, \theta_1)$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$hotag{0}{} \theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

$$h_{\theta}(x)$$
 $h_{\theta}(x) = \theta_{1} \times$

(for fixed θ_1 , this is a function of x)

(function of the parameter θ_1

$$J(1)=0$$

$$h_{\theta}(x)$$

(for fixe θ_1 , this is a function of x)

$$J(0.5) = \frac{1}{2 \cdot 3} \sum_{i=1}^{3} \left[(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \right]$$
$$= \frac{1}{6} \cdot (3.5) = 0.58$$

$J(\theta_1)$

(function of the parameter \mathbf{r}_1

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(0) = \frac{1}{2 \cdot 3} \sum_{i=1}^{3} [1^2 + 2^2 + 3^2]$$
$$= \frac{1}{6} \cdot 14 = 2.3$$

(function of the parameter θ_{NIVE} (sitas

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters θ_0 , θ_0) (function of the parameters θ_0) (functio

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters), IN THE PRESITANT OF THE PRE

$$h_{\theta}(x)$$

(for fixe θ_0, θ_1 , this is a function of x)

Training data

3000

Current hypothesis

4000

$$J(\theta_0, \theta_1)$$

(function of the parameters), UNIVERSITAS

2000

Size (feet²)

200

100

1000

$$\Theta_1 = 0$$

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

 $h_{\theta}(x)$

(for fixe θ_0, θ_1 , this is a function of x)

(function of the parameters), UMERSITAS

Gradient Descent

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

assignment

repeat until convergence {

$$\theta_j := \theta_j - \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 0$ and $j = 1$)

Learning rate

(for
$$j = 0$$
 and $j = 1$)
Simultaneously

update $\Theta_0 \& \Theta_1$

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{array}{l} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

Gradient descent algorithm

$$\begin{array}{l} \text{repeat until convergence } \{\\ \theta_j := \theta_j - @ \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \\ \} \text{ Learning rate} \end{array}$$

(simultaneously update j = 0 and j = 1)

$$\Theta_1 := \Theta_1 - \alpha \frac{\frac{d}{d\theta_1} J(\theta_1)}{\geq 0}$$

 $\Theta_1 := \Theta_1 - \alpha \cdot J(positive\ number)$

$$\Theta_1 := \Theta_1 - \alpha \frac{\frac{d}{d\theta_1} J(\theta_1)}{\leq 0}$$

 $\Theta_1 := \Theta_1 - \alpha \cdot J(negative number)$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

 θ_1 at local optima

Current value of θ_1

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{d}{d\theta_{j}} \cdot \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{h}_{\Theta}(\mathbf{x}^{(i))} \mathbf{y}^{(i))2})$$

$$= \frac{d}{d\theta_{j}} \cdot \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} \cdot \mathbf{x}^{(i)} \mathbf{y}^{(i))2})$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (\mathbf{h}_{\Theta}(\mathbf{x}^{(i)}) \mathbf{y}^{(i)})$$

$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (\mathbf{h}_{\Theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \cdot \mathbf{x}^{(i)}$$

Gradient descent algorithm

 $\frac{a}{d\theta_0} \cdot J(\theta_0, \theta_1)$ repeat until convergence { $\theta_0 := \theta_0 - \alpha \left| \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \right|$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$ simultaneously $\frac{a}{d\theta_1} \cdot J(\theta_0, \theta_1)$

update θ_0 and θ_1

STOCHASTIC VS BATCH Gradient Descent

- Repeatedly run through the training set, and each time we encounter a training example, we update the parameters according to the gradient of the error with respect to that single training example only.
- Also called incremental gradient descent

• This method looks at every example in the entire training set on every step, to update the $\boldsymbol{\theta}$

 Modifikasi: mini batch → sekelompok data digunakan dalam 1x iterasi, misal batch_size = 16 artinya 16 buah data digunakan dalam 1x iterasi

STOCHASTIC

```
UNIVERSITAS
INDONESIA
Vertea, Prelata, Juettia
```

```
Loop { for i=1 to m, \{ \\ \theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)})\right) x_j^{(i)} \qquad (for every j). \} }
```

BATCH

Repeat until convergence {

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m \left(y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.$$

}

- Often, stochastic gradient descent gets θ "close" to the minimum much faster than batch gradient descent.
- Note however that it may never "converge" to the minimum, and the parameters θ will keep oscillating around the minimum of J(θ); but in practice most of the values near the minimum will be reasonably good approximations to the true minimum.
- For these reasons, particularly when the training set is large, stochastic gradient descent is often preferred over batch gradient descent

MULTIPLE FEATURES/ Multiple variable regression

Multiple features (variables).

Size (feet ²)	Price (\$1000)	
\underline{x}	y	
2104	460	
1416	232	
1534	315	
852	178	
•••	 ERI VE	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

UNIVERSITAS
INDONESIA
Veritas, Prohitas, Justitia

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
		•••		

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Hypothesis:

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0=1\,$.

Multivariate linear regression.

Gradient descent for multiple variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$$

(simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

 $\}$

New algorithm $(n \ge 1)$: Repeat $\{$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $\,\, heta_{j}\,$ for

$$j=0,\ldots,n$$
)

}

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

. . .

Now, how to program? See the notebook given, and do the task in TKO2