

11-785 Introduction to Deep Learning

Spring 2023

Class Streaming Link ☑ (https://cmu.zoom.us/j/98857399276?

pwd=ems3MzMvMjNQYkZzdTAyWGdVRGZSUT09)

In-Person Venue: Giant Eagle Auditorium, Baker Hall (A51)

Bulletin and Active Deadlines

Assignment	Deadline	Description	Links
HW3P1	Early Submission: 25th March, 11:59 PM Final Submission: 7th April, 11:59 PM	RNNs, GRUs and Search	Autolab (https://autolab.andrew.cmu.edu/courses/11785- s23/assessments/hw3p1)
HW3P2	Early Submission: 25th March, 11:59 PM Final Submission: 7th April, 11:59 PM	Utterance to Phoneme Mapping	Kaggle (https://www.kaggle.com/competitions/11-785-s23- hw3p2) Writeup (./document/homework/HW3/11_785_hw3p2_S23- 2.pdf)
HW4P1	Early Submission: 15th Apr, 11:59 PM Final Submission: 28th Apr, 11:59 PM	Language Modeling	Autolab (https://autolab.andrew.cmu.edu/courses/11785- s23/assessments/hw4p1backup)
HW4P2	Early Submission (Mandatory) - Canvas Quiz : 10th Apr, 11:59 PM Early Submission Bonus (Optional) - Kaggle : 15th Apr, 11:59 PM Final Submission: 28th Apr, 11:59 PM	Automatic Speech Recognition using Attention- based Seq2Seq Models	Kaggle (https://www.kaggle.com/competitions/11-785-s23- hw4p2) Writeup (./document/homework/HW4/P2/HW4P2_S23.pdf)
		Project Gallery (/shared/projec	ct.html)
Here's an example of a successful project from Fall 2020. The team developed an Al Limmerick generator, and compiled a book from the Al Poet's creations.		vw.youtube.com/watch?v=b16x	octAKMLcZmmnmxDZjQwPFYDA8yJ2/view) Project Video, :OLpG_p0&feature=youtu.be) Book (Amazon) n.com/dp/B08TV36KF7)
This piece is performed by the Chinese Music Institute at Peking University (PKU) together with PKU's Chinese orchestra. This is an adaptation of Beethoven: Serenade in D major, Op.25 - 1. Entrata (Allegro), for Chinese transverse flute (Dizi), clarinet and flute.	0:00 / 3:58		

The Course

"Deep Learning" systems, typified by deep neural networks, are increasingly taking over all the AI tasks, ranging from language understanding, speech and image recognition, to machine translation, planning, and even game playing and autonomous driving. As a result, expertise in deep learning is fast changing from an esoteric desirable to a mandatory prerequisite in many advanced academic settings, and a large advantage in the industrial job market.

In this course we will learn about the basics of deep neural networks, and their applications to various Al tasks. By the end of the course, it is expected that students will have significant familiarity with the subject, and be able to apply Deep Learning to a variety of tasks. They will also be positioned to understand much of the current literature on the topic and extend their knowledge through further study.

If you are only interested in the lectures, you can watch them on the YouTube channel (https://www.youtube.com/channel/UC8hYZGEkl2dDO8scT8C5UQA).

Course description from student point of view

The course is well rounded in terms of concepts. It helps us understand the fundamentals of Deep Learning. The course starts off gradually with MLPs and it progresses into the more complicated concepts such as attention and sequence-to-sequence models. We get a complete hands on with PyTorch which is very important to implement Deep Learning models. As a student, you will learn the tools required for building Deep Learning models. The homeworks usually have 2 components which is Autolab and Kaggle. The Kaggle components allow us to explore multiple architectures and understand how to fine-tune and continuously improve models. The task for all the homeworks were similar and it was interesting to learn how the same task can be solved using multiple Deep Learning approaches. Overall, at the end of this course you will be confident enough to build and tune Deep Learning models.

Prerequisites

- 1. We will be using Numpy and PyTorch in this class, so you will need to be able to program in python3.
- 2. You will need familiarity with basic calculus (differentiation, chain rule), linear algebra and basic probability.

Units

Courses 11-785 and 11-685 are equivalent 12-unit graduate courses, and have a final project and HW 5 respectively. Course 11-485 is the undergraduate version worth 9 units, the only difference being that there is no final project or HW 5.

Acknowledgments (../shared/TAs.html)

Your Supporters

Instructors:

Bhiksha Raj : bhiksha@cs.cmu.eduRita Singh : rsingh@cs.cmu.edu

TAs:

- Abuzar Khan: abuzark@andrew.cmu.edu
- Aparajith Srinivasan: aparajis@andrew.cmu.edu
- Arjun Chauhan: arjunc@andrew.cmu.edu
- Cedric Manouan: cmanoun@andrew.cmu.edu
- Eshani Agrawal: eshania@andrew.cmu.edu
- Harshith Kumar: harunkum@andrew.cmu.edu
- Joseph Konan: jkonans@andrew.cmu.edu
- Liangze "Josh" Li: liangzel@andrew.cmu.edu
- Miya Sylvester: nsylvest@andrew.cmu.edu
- Prakruthi Pradeep: prakruth@andrew.cmu.edu
- Qin Wang: qinw@andrew.cmu.edu
- Sarthak Bisht: sbisht@andrew.cmu.edu
- Shikhar Agnihotri: sagnihot@andrew.cmu.edu
- Swathi Jadav: sjadav@andrew.cmu.edu
- Varun Jain: vjain2@andrew.cmu.edu
- Vedant Bhasin: vedantb@andrew.cmu.edu
- Vishhvak Srinivasan: vishhvas@andrew.cmu.edu
- Yooni Choi: jungyoon@andrew.cmu.edu
- (SV) Ruimeng Chang: ruimengc@andrew.cmu.edu
- (Kigali) Yonas Chanie: ychanie@andrew.cmu.edu
- (Kigali) Paul Ewuzie: pewuzie@andrew.cmu.edu

Pittsburgh Schedule (Eastern Time)

Lecture: Tuesday and Thursday, 12:30 p.m. - 1:50 p.m. - Good times :')

Recitation: Friday, 12:30 p.m. - 1:50 p.m.

Event Calendar: The Google Calendar below ideally contains all events and deadlines for student's convenience. Please feel free to add this calendar to your Google Calendar by clicking on the plus (+) button on the bottom right corner of the calendar below. Any adhoc changes to the schedule will be visible on the calendar first.

IDL Spring 2023

IDL Spring 2023 Today June 2023						halman
Sun	Mon	Tue	Wed	Thu	₽ ₩ ₽ ₩	Sa
28	29	30	31	Jun 1	2	
4			7	8	9	
11	12	13	14	15	16	
18		20	21	22	23	
25	26	27	28	29	30	

Events shown in time zone: Eastern Time - New York

OH Calendar: The Google Calendar below contains the schedule for Office Hours. Please feel free to add this calendar to your Google Calendar by clicking on the plus (+) button on the bottom right corner of the calendar below. Any adhoc changes to the schedule, including extra OH, will be visible on the calendar first.

	June 2023	▼				⊕ Print	Week Mor
S	iun	Mon	Tue	Wed	Thu	Fri	
	28	29	30		Jun 1 2pm [IDL-OH] Vedant Bhasin	2	
	4		6 10am Unsubscribe doordah 4pm Call Tyler		8 2pm [IDL-OH] Vedant Bhasin	9	
	11	12	13		15 9am Unsubscribe Netflix 2pm [IDL-OH] Vedant Bhasin	16	
	18	19	20		22 2pm [IDL-OH] Vedant Bhasin	23	
	25	26	27	28	29	30	

Office hours: This is the schedule for this semester. We will be using OHQueue (https://ohq.eberly.cmu.edu/#/ca)(11-785) for both zoom and in-person Office hours. Please refer the OH calendar/ Piazza for updated information on OH hours.

Day	Time (Eastern Time)	TA	zoom/In Person Menu		
Monday	9:00AM to 10:00AM	Prakruthi Pradeep	Zoom		
	11:00AM to 12:00PM	Arjun Chauhan	In-person		
	2:00PM to 3:00PM	Eshani Agrawal	In-person		
	8:00PM to 9:00PM	Swathi Jadav	Zoom		
Tuesday	8:00AM to 9:00AM	Yooni Choi	Zoom (https://cmu.zoom.us/my/yoonichoi)		
	9:30AM to 10:30AM	Liangze "Josh" Li	Zoom		
	10:30AM to 11:30AM	Yonas Charlie	Zoom (https://cmu.zoom.us/my/yonas)		
	3:00PM to 4:00PM	Qin Wang	In-person		
	4:00PM to 6:00PM	Vish	In-person		
	6:00PM to 7:00PM	Harshith Arun Kumar	In-person		
Wednesday	8:00AM to 9:00AM	Yooni Choi	Zoom (https://cmu.zoom.us/my/yoonichoi)		
	9:00AM to 10:00AM	Prakruthi Pradeep	Zoom		
	11:00AM to 12:00PM	Arjun Chauhan	In-person		
	12:00PM to 1:00PM	Abu	In-person		
	2:00PM to 3:00PM	Eshani Agrawal	In-person		
	6:30 PM to 7:30 PM	Swathi Jadav	In-person		
Thursday	9:30AM to 10:30AM	Liangze "Josh" Li	Zoom		
	11:00AM to 12:00PM	Abu	In-person		
	2:00PM to 3:00PM	Vedant Bhasin	In-person		
	3:00PM to 5:00PM	Varun Jain	Zoom (https://cmu.zoom.us/j/6293775343)		
	6:00PM to 7:00PM	Harshith Arun Kumar	In-person		
Friday	10:30AM to 11:30AM	Yonas Charlie	Zoom (https://cmu.zoom.us/my/yonas)		
	11:30AM to 12:30PM	Paul Ewuzie	Zoom (https://cmu.zoom.us/j/9486705609)		
	2:00PM to 3:00PM	Vedant Bhasin	In-person		
	5:00PM to 7:00PM	Sarthak Bisht	In-person		
Saturday	9:00AM to 10:00AM	Paul Ewuzie	Zoom (https://cmu.zoom.us/j/9486705609)		
	10:00AM to 11:00AM	Shikhar Agnihotri	Zoom (https://cmu.zoom.us/my/shikhar)		
	6:00PM to 7:00PM	Ruimeng Chang	Zoom (https://cmu.zoom.us/j/9952452727)		
Sunday	9:00AM to 11:00AM	Shikhar Agnihotri	In-person		
	12:00PM to 1:00PM	Ruimeng Chang	Zoom (https://cmu.zoom.us/j/9952452727)		
	1:00PM to 2:00PM	Qin Wang	In-person		
	6:00PM to 8:00PM	Aparajith Srinivasan	Zoom (https://cmu.zoom.us/j/96859426301? pwd=czJTRWlSb3p1QkZsWFFST3N3S0pKZz09)		

Homework Hackathon: During 'Homework Hackathons', students will be assisted with homework by the course staff. It is recommended to come as study groups.

Location: BH A36/A136 Time: Saturday 2-5 PM EST

Course Work

Policy

Breakdown

Grading will be based on weekly quizzes (24%), homeworks (50%) and a course project (25%). Note that 1% of your grade is assigned to Attendance.

Quizzes

There will be weekly quizzes.

- We will retain your best 12 out of the remaining 14 quizzes.
- Quizzes will generally (but not always) be released on Friday and due 48 hours later.
- Quizzes are scored by the number of correct answers.
- Quizzes will be worth 24% of your overall score.

Assignments

There will be five assignments in all. Assignments will include *autolab* components, where you must complete designated tasks, and a *kaggle* component where you compete with your colleagues.

- Autolab components are scored according to the number of correctly completed parts.
- We will post performance cutoffs for HIGH (90%), MEDIUM (70%), LOW (50%), and VERY LOW (30%) for Kaggle competitions. Scores will be interpolated linearly between these cutoffs.
- Assignments will have a "preliminary submission deadline", an "on-time submission deadline" and a "late-submission deadline."
 - Early submission deadline: You are required to make at least one submission to Kaggle by this deadline. People who miss this deadline will automatically lose 10% of subsequent marks they may get on the homework. This is intended to encourage students to begin working on their assignments early.
 - On-time deadline: People who submit by this deadline are eligible for up to five bonus points. These points will be computed by interpolation between the A cutoff and the highest performance obtained for the HW. The highest performance will get 105.
 - Late deadline: People who submit after the on-time deadline can still submit until the late deadline. There is a 10% penalty applied to your final score, for submitting late.
 - Slack days: Everyone gets up to 10 slack days, which they can distribute across all their homework P2s only. Once you use up your slack days you will fall into the late-submission category by default. Slack days are accumulated over *all* parts of *all* homeworks, except HW0, to which no slack applies.
 - Kaggle scoring: We will use $max(max(on-time\ score), max(slack-day\ score), .0.9*max(late-submission\ score))$ as your final score for the HW. If this happens to be a slack-days submission, slack days corresponding to the selected submission will be counted.
- Assignments carry 50% of your total score. HW0 is not graded (but is mandatory), while each of the subsequent four are worth 12.5%.
- A fifth HW, HW5, will be released later in the course and will have the same weight as a course project. Please see Project section below for
 more details.

Project

- All students taking a graduate version of the course are required to do a course project. The project is worth 25% of your grade. These points are distributed as follows: 20% Midterm Report; 35% Project Video; 5% Responding to comments on Piazza; 40% Project report.
- Note that a Project is mandatory for 11-785/18-786 students. In the event of a catastrophe (remember Spring 2020), the Project may be substituted with HW5. 11-685 Students may choose to do a Project instead of HW5. Either your Project OR HW5 will be graded.

Attendance

- If you are in section A you are expected to attend in-person lectures. We will track attendance.
- If you are in any of the other (out-of-timezone) sections, you must watch lectures live on zoom. Real-time viewing is mandatory unless you are in inconvenient time zones. Others are required to obtain specific permission to watch the pre-recorded lectures (on MediaServices).
- If viewed on MediaServices, the lectures of each week must be viewed before 8AM of the Monday following the following week (Otherwise, it doesn't count)
- At the end of the semester, we will select a random subset of 50% of the lectures and tabulate attendance
- If you have attended at least 70% of these (randomly chosen) lectures, you get the attendance point

Final grade

The end-of-term grade is curved. Your overall grade will depend on your performance relative to your classmates.

Pass/Fail

Students registered for pass/fail must complete all quizzes, HWs and if they are in the graduate course, the project. A grade equivalent to B- is required to pass the course.

Auditing

Auditors are not required to complete the course project, but must complete all quizzes and homeworks. We encourage doing a course project regardless.

End Policy

Menu

Study groups

This semester we will be implementing study groups. It is highly recommended that you join a study group; Check piazza for further updates.

Piazza: Discussion Board

Piazza is what we use for discussions. You should be automatically signed up if you're enrolled at the start of the semester. If not, please sign up **TBA**. Also, please follow the Piazza Etiquette (etiquette.html) when you use the piazza.

AutoLab: Software Engineering

AutoLab is what we use to test your understand of low-level concepts, such as engineering your own libraries, implementing important algorithms, and developing optimization methods from scratch.

Kaggle: Data Science

Kaggle (https://kaggle.com/) is where we test your understanding and ability to extend neural network architectures discussed in lecture. Similar to now I AutoLab shows scores, Kaggle also shows scores, so don't feel intimidated -- we're here to help. We work on hot Al topics, like speech recognition, face recognition, and neural machine translation.

MediaServices/YouTube: Lecture and Reciation Recordings

CMU students who are not in the live lectures should watch the uploaded lectures at MediaServices

(https://mediaservices.cmu.edu/channel/11785%2BIntroduction%2Bto%2BDeep%2BLearning%2B%2528Spring%2B2023%2529) in order to get attendance credit. Links to individual videos will be posted as they are uploaded.

Our YouTube Channel (https://www.youtube.com/channel/UC8hYZGEkl2dDO8scT8C5UQA) is where non-CMU folks can view all lecture and recitation recordings. Videos marked "Old" are not current, so please be aware of the video title.

Books and Other Resources

The course will not follow a specific book, but will draw from a number of sources. We list relevant books at the end of this page. We will also put up links to relevant reading material for each class. Students are expected to familiarize themselves with the material before the class. The readings will sometimes be arcane and difficult to understand; if so, do not worry, we will present simpler explanations in class.

You can also find a nice catalog of models that are current in the literature here (http://www.datasciencecentral.com/profiles/blogs/concise-visual-summary-of-deep-learning-architectures). We expect that you will be in a position to interpret, if not fully understand many of the architectures on the wiki and the catalog by the end of the course.

Academic Integrity

You are expected to comply with the University Policy on Academic Integrity and Plagiarism (https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html).

- You are allowed to talk with and work with other students on homework assignments.
- You can share ideas but not code. You should submit your own code.

Your course instructor reserves the right to determine an appropriate penalty based on the violation of academic dishonesty that occurs. Violations of the university policy can result in severe penalties including failing this course and possible expulsion from Carnegie Mellon University. If you have any questions about this policy and any work you are doing in the course, please feel free to contact your instructor for help.

Class Notes

A book containing class notes is being developed in tandem with this course; check it out (http://mlsp.cs.cmu.edu/people/rsingh/IDLbook.html).

Schedule of Lectures

You can watch the recorded lectures on MediaServices

(https://mediaservices.cmu.edu/channel/11785%2BIntroduction%2Bto%2BDeep%2BLearning%2B%2528Spring%2B2023%2529).

Lecture	Date	Topics	Slides and Video	Additional Materials
0	-	Course LogisticsLearning ObjectivesGradingDeadlines	Slides (*.pdf) (./document/slides/lec0.logistics.pdf) Video (YT) (https://youtu.be/IMXmJoD0jjw)	
1	Tuesday, 17 Jan	• Introduction	Slides (*.pdf) (./document/slides/lec1.intro.pdf) Video (YT) (https://youtu.be/Q3qCfSiRmQY)	The New Connectionism (1988) (docume On Alan Turing's Anticipation of Connect McCullogh and Pitts paper (https://www.Rosenblatt: The perceptron (document/Bain: Mind and body (document/reading Hebb: The Organization Of Behaviour (https://pure.mpg.de/pubman/item/item
2	Thursday, 19 Jan	Neural Nets As Universal Approximators	Slides (*.pdf) (./document/slides/lec2.universal.pdf) Video (YT) (https://youtu.be/RnFpV1W3_XY) (F22 in-person lecture link)	Shannon (1949) (document/readings/Sh Boolean Circuits (document/readings/bc On the Bias-Variance Tradeoff (https://w

Lecture	Date	Topics	Slides and Video	Additional Materials Menu	
3	Tuesday, 24 Jan • The problem of learning, Empirical Risk Minimization		Slides (*.pdf) (./document/slides/lec3.learning.pdf)Video (YT) (https://youtu.be/RpH6DsN7ZZM)	Widrow and Lehr (1992) (document/readi Adaline and Madaline (document/readi Convergence of perceptron algorithm (Threshold Logic (https://www.tutorialsp TC (Complexity) (https://en.wikipedia.or AC (Complexity) (https://en.wikipedia.or	
4	Thursday, 26 Jan	 Empirical risk minimization and gradient descent Training the network: Setting up the problem 	Slides (*.pdf) (./document/slides/lec4.learning.pdf) Video (YT) (https://youtu.be/adS_Dv2pOqo)	Werbos (1990) (http://axon.cs.byu.edu/E Rumelhart, Hinton and Williams (1986) (
5	Tuesday, 31 Jan	BackpropagationCalculus of Backpropagation	Slides (*.pdf) (./document/slides/lec5.learning.pdf) Video (YT) (https://youtu.be/N2CUiCwwcyU)	Werbos (1990) (http://axon.cs.byu.edu/E Rumelhart, Hinton and Williams (1986) (
5.5	Wednesday, 1 Feb	Backpropagation (Extra Lecture)Calculus of Backpropagation	Video (YT) Extra Lecture (https://www.youtube.com/watch? v=_YWxXj4G0Sk&list=PLp-0K3kfddPwgBSCbDtT6NaVOd- glHVMW&index=6&t=31s)		
6	Thursday, 2 Feb	Convergence issuesLoss SurfacesMomentum	Slides (*.pdf) (./document/slides/lec6.pdf) Video (YT) (https://youtu.be/N-rAA7SvyF0)	Backprop fails to separate, where perce Why Momentum Really Works (https://d	
7	Tuesday, 7 Feb	Optimization Batch Size, SGD, Mini-batch, second- order methods	Slides (*.pdf) (./document/slides/lec7.stochastic_gradient.pdf) Video (YT) (https://youtu.be/2VpMupDorqk)	Momentum, Polyak (1964) (https://www. Nestorov (1983) (http://www.mathnet.ru Derivatives and Influences (document/re	
8	Thursday, 9 Feb	Optimizers and Regularizers Choosing a divergence (loss) function Batch normalization Dropout	Slides (*.pdf) (./document/slides/lec8.optimizersandregularizers.pdf)Video (YT) (https://www.youtube.com/watch?v=XAq0X-qYwKY)	Derivatives and Influence Diagrams (./dc ADAGRAD, Duchi, Hazan and Singer (20' Adam: A method for stochastic optimiza	
9	Tuesday, 14 Feb	Shift invariance and Convolutional Neural Networks	Slides (*.pdf) (./document/slides/lec9.CNN1.pdf) Video (YT) (https://youtu.be/gKVfy8sAX5s)		
10	Thursday, 16 Feb	Models of vision, Convolutional Neural Networks	Slides (*.pdf) (./document/slides/lec10.CNN2.pdf) Video (YT) (https://youtu.be/vAVtALDVmUc)		
11	Tuesday, 21 Feb	Learning in Convolutional Neural Networks	Slides (*.pdf) (./document/slides/lec11.CNN3.pdf) Video (YT) (https://youtu.be/sjQe3X4BM8Q)	CNN Explainer (https://poloclub.github.io	
12	Thursday, 23 Feb	Learning in CNNsTranspose ConvolutionCNN Stories	Slides (*.pdf) (./document/slides/lec12.CNN4.pdf) Video (YT) (https://youtu.be/5omQcU8vHhM)		
13	Tuesday, 28 Feb	Time Series and Recurrent Networks	Slides (*.pdf) (./document/slides/lec13.recurrent.pdf) Video (YT) (https://youtu.be/75skj-hdsV8)	Fahlman and Lebiere (1990) (https://pap How to compute a derivative, extra help	
14	Thursday, 2 Mar	Stability and Memory, LSTMs	Slides (*.pdf) (./document/slides/lec14.recurrent.pdf) Video (YT) (https://youtu.be/Be6NjkwTA-g)	Bidirectional Recurrent Neural Networks	

Lecture	Date	Topics	Slides and Video	Additional Materials Menu
-	Tuesday, 7 Mar	No Class - Spring Break	-	IVICITO
-	Thursday, 9 Mar	No Class - Spring Break	-	
15	Tuesday, 14 Mar	Sequence PredictionAlignments and Decoding	Slides (*.pdf) (./document/slides/lec15.recurrent.pdf) Video (YT) (https://youtu.be/tLfOD883haM)	LSTM (document/readings/LSTM.pdf)
16	Thursday, 16 Mar	Sequence prediction Connectionist Temporal Classification (CTC) Blanks and Beamsearch	Slides (*.pdf) (./document/slides/lec16.recurrent.pdf) Video (YT) (https://youtu.be/xwdBvlpZvXU)	
17	Tuesday, 21 Mar	Language ModelsSequence To Sequence Prediction	Slides (*.pdf) (./document/slides/lec17.recurrent.pdf) Slides (*.pdf) (./document/slides/lec17.recurrent.pdf) Video (YT) (https://youtu.be/mXPSlqmg5x4)	Labelling Unsegmented Sequence Data
18	Thursday, 23 Mar	Sequence To Sequence MethodsAttention	Slides (*.pdf) (./document/slides/lec18.attention.pdf) Video (YT) (https://youtu.be/XuFlj2Giey4)	Attention Is All You Need (https://arxiv.o The Annotated Transformer - Attention (http://nlp.seas.harvard.edu/annotated-
19	Tuesday, 28 Mar	Transformers and GNNs	Slides (*.pdf) (./document/slides/lec19.transformer_GNN.pdf) Video (YT) (https://youtu.be/hPPg1jLj57M)	A comprehensive Survey on Graph Neur
20	Thursday, 30 Mar	Learning RepresentationsAutoEncoders	Slides (*.pdf) (./document/slides/lec20.representations.pdf) Video (YT) (https://youtu.be/TkergiVs_5Y)	
21	Tuesday, 4 Apr	Variational Auto Encoders	Slides (*.pdf) (./document/slides/lec21.VAE_1.pdf) Video (YT) (https://youtu.be/YmUwDxnCoMs)	Tutorial on VAEs (Doersch) (https://arxiv Autoencoding variational Bayes (Kingma
22	Thursday, 6 Apr	Variational Auto Encoders II	Slides (*.pdf) (./document/slides/lec21.VAE_2.pdf) Video (YT) (https://youtu.be/uXk0DzZlwMQ)	
23	Tuesday, 11 Apr	Generative Adversarial Networks, 1	Slides (*.pdf) (./document/slides/lec23.GAN1.pdf)	
-	Thursday, 13 Apr	No Class - Spring Carnival	-	-
24	Tuesday, 18 Apr	Generative Adversarial Networks, 2	ТВА	
25	Thursday, 20 Apr	Hopfield Nets and Auto Associators	ТВА	
26	Tuesday, 25 Apr	Hopfield Nets and Boltzmann Machines	TBA	
27	Thursday, 27 Apr	Boltzmann Machines	ТВА	

Schedule of Recitations

Menu

Recitation	Date	Topics	Materials
0A	Friday, 13th Jan	Python & OOP Fundamentals	Notebook (*.zip) (./document/recitation/Recitation0/Recitation0a.zip)
0B	Friday, 13th Jan	Fundamentals of NumPy	Notebook (*.zip) (./document/recitation/Recitation0/Recitation0b.zip)
0C	Friday, 13th Jan	PyTorch Tensor Fundamentals	Notebook + Slides + Cheatsheet (*.zip) (./document/recitation/Recitation0/Recitation0c.zip)
0D	Friday, 13th Jan	Dataset & DataLoaders	Notebook + Slides (*.zip) (./document/recitation/Recitation0/Recitation0d.zip)
0E	Friday, 13th Jan	Introduction to Google Colab	Notebook (*.zip) (./document/recitation/Recitation0/Recitation0e.zip)
OF	Friday, 13th Jan	AWS Fundamentals	Slides (*.zip) (./document/recitation/Recitation0/Recitation0f.zip)
0G	Friday, 13th Jan	Debugging, Monitoring	Notebook + Slides (*.zip) (./document/recitation/Recitation0/Recitation0g.zip)
0H	Friday, 13th Jan	Basics of Git	Colab Notebook (https://colab.research.google.com/drive/15mk3OTEx14CuJmdwc_PqBh4RQjiLQLxU?usp=sharing)
Ol	Friday, 13th Jan	Wandb	
OJ	Friday, 13th Jan	What to do if you're struggling	Slides (*.zip) (./document/recitation/Recitation0/Recitation0i.zip)
0K	Friday, 13th Jan	Data Preprocessing	Notebook + Slides (*.zip) (./document/recitation/Recitation0/Recitation0j.zip)
OL	Friday, 13th Jan	Google Cloud	
OM	Friday, 13th Jan	Workflow of a Deeplearning Homework	Notebook + Slides (*.zip) (./document/recitation/Recitation0/Recitation0l.zip)
1	Friday, 20th Jan	Your first MLP Code	Slides (*.pdf) (./document/recitation/Recitation1/Your First MLP - S23.pdf), Notebook 1a (https://colab.research.google.com/drive/1gSjoUsmPxRjH3bzEkkmCZYYhPG_M_rMp? authuser=1#scrollTo=DsNhXR25mCmq), Notebook 1b (https://colab.research.google.com/drive/1h5gWHIFups_ZV0FEhYJj0J-e7uZ1jYip#scrollTo=gwz0u5NKn1n6), Notebook 1c (https://colab.research.google.com/drive/1kAOgTsIOoizTMXZDh3xVL2_8FN5UZx8X#scrollTo=ZgDp_Mm7xOV
2	Friday, 27th Jan	Network Optimization, Hyperparameter Tuning	Slides (*.pdf) (./document/recitation/Recitation2/11785-NetworkOptimization-Spring23.pdf)
HW1 Bootcamp	Saturday, 28th Jan	How to get started with HW1	Slides (*.zip) (./document/bootcamp/S23_Bootcamp 1_HW1P2.pdf)
3	Friday, 3rd Feb	Computing Derivatives & Autograd	Slides (*.pdf) (./document/recitation/Recitation3/s23_Recitation_3_AutoDiffBackprop.pdf) Notebook (*.ipynb) (./document/recitation/Recitation3/s23_Simple_Grad.ipynb)
HW1 Hackathon	Saturday, 4th Feb	Tips with HW1	Slides (*.zip) (./document/bootcamp/s23_hw1_hackathon.pdf)

Recitation	Date	Topics	Materials Mer			
4	Friday, 10th Feb	Paper Writing Workshop	Slides (*.pdf) (./document/recitation/Recitation4/Paper_Writing_Workshop.pdf)			
HW1 Hackathon	Saturday, 11th Feb	Tips with HW1P2	Slides (*.zip) (./document/bootcamp/s23_hw1_hackathon2.pdf)			
5	Friday, 17th Feb	CNN: Basics & Backprop	Slides (*.pdf) (./document/recitation/Recitation5/S23_IDL_ Recitation 5.pdf) Colab Notebook (https://colab.research.google.com/drive/1US-Bi-INfSkM-wW3Vxxvty7Q04jHvc? authuser=1#scrollTo=utWAViW7LA_A)			
6	Friday, 24th Feb	CNNs: Classification & Verification	Slides(*.pdf) (./document/recitation/Recitation6/IDL S'23 Recitation 6_CNN Classification.pdf)			
HW2 Bootcamp	Saturday, 25th Feb	How to get started with HW2	Resources (*.zip) (./document/bootcamp/hw2_bootcamp.zip)			
7	Friday, 3rd Mar	CNNs: Verification, Code	Slides (*.pdf) (./document/recitation/Recitation7/IDL_S23_Recitation_7_CNN_Verification.pdf)			
8	Friday, 10th Mar	RNN Basics (Pre-recorded)	Slides (*.pdf) (./document/recitation/Recitation8/IDL_S23_Recitation_8_RNN_Basics.pdf) Code (*.ipynb) (./document/recitation/Recitation8/language_model-2.ipynb)			
9	Friday, 17th Mar	CTC, Beam Search	CTC Slides (*.pdf) (./document/recitation/Recitation9/Recitation 9 (CTC Decoding and Beam Search).pdf) Beam-search Slides (*.pdf) (https://drive.google.com/file/d/1jW32YLlOeh3cFC04siYiD8W4y1iBbH-p/view? usp=sharing)			
HW3 Bootcamp	Saturday, 18th Mar	How to get started with HW3	HW3P1 Slides (*.pdf) (./document/bootcamp/hw3p1_bootcamp_s23.pdf) HW3P2 Slides (*.pdf) (./document/bootcamp/hw3p2_bootcamp_s23.pdf)			
10	Friday, 24th Mar	Attention, MT, LAS	Slides (./document/recitation/Recitation10/Recitation_10_s23.pdf)			
11	Friday, 31st Mar	Transformers	Slides (./document/recitation/recitation11/IDL_recitation_transformers.pdf) Colab Notebook (https://colab.research.google.com/drive/1NXKxOXk80fiXNaWRYoVNGDDhf-CekAbC?usp=sharing)			
12	Friday, 7th Apr	Graph Neural Networks	Slides (*.ipynb) (./document/recitation/Recitation12/recitation12-slides.pdf)			
HW4 Bootcamp	Wednesday, 12th Apr	How to get started with HW4				
13	Friday, 21st Apr	Autoencoders and VAEs				
14	Friday, 28th Apr	Deep Reinforcement Learning				
HW5 Bootcamp		GANs and How to get started with HW5				

Assignments

∑ Ongoing, ∏ Upcoming

Assignment	Release Date (EST)	Due Date (EST)	Related Materials / Links Menu
HW0P1	Friday, 13th Jan, 11:59 PM	Final: 30th Jan, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw0p1), Handout (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw0p1/attachments/4322) (see recitation 0s)
HW0P2	Friday, 13th Jan, 11:59 PM	Final: 30th Jan, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw0p2), Handout (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw0p2/attachments/4313) (see recitation 0s)
HW1P1 22n	Sunday, 22nd Jan, 11:59 PM	Early Submission: 11th Feb, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw1p1), Writeup (pdf, (./document/homework/HW1/HW1P1_S23.pdf), Handout (.tar) (./document/homework/HW1/hw1p1_handout.tar)
		Final: 17th Feb, 11:59 PM	
HW1P2	Sunday, 22nd Jan, 11:59 PM	Early Submission: 11th Feb, 11:59 PM	Kaggle (https://www.kaggle.com/competitions/11-785-s23-hw1p2), Writeup (pdf) (./document/homework/HW1/HW1P2_523.pdf), Starter Notebook (https://colab.research.google.com/drive/1KPvkpxELmLfjxBHrwOg1CApQW2t8Hv3c?usp=sharing8
	11.39 PW	Final: 17th Feb, 11:59 PM	MCQ (https://canvas.cmu.edu/courses/32813/quizzes/98455)
HW1 Bonus	Sunday, 22nd Jan, 12:00 AM	Friday, 10th Mar, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw1p1bonus)
HW1 Autograd	Sunday, 22nd Jan, 12:00 AM	Wednesday, 3rd May, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw1p1bonusautograc Writeup (pdf) (https://autolab.andrew.cmu.edu/courses/11785- s23/assessments/hw1p1bonusautograd/attachments/4347), Handout (.tar) (https://autolab.andrew.cmu.edu/courses/11785- s23/assessments/hw1p1bonusautograd/attachments/4362)
Project Proposal	Monday, 27th Feb, 11:59 PM		
HW5	Monday, 20th Feb, 11:59 PM	Thursday, 27th Apr, 11:59 PM EST	
HW2P1	Friday, 17th Feb,	Early Submission: 4th Mar, 11:59 PM	Writeup (https://autolab.andrew.cmu.edu/courses/11785- s23/assessments/hw2p1/attachments/4379),
	11:59 PM	Final: 17th Mar, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw2p1)
HW2P2	Friday, 17th Feb,	Early Submission: 4th Mar, 11:59 PM	Face Classification: Kaggle, (http://www.kaggle.com/c/11-785-s23-hw2p2-classification) Face Verification: Kaggle, (https://www.kaggle.com/c/11-785-s23-hw2p2-verification)
11444614	11:59 PM	Final: 17th Mar, 11:59 PM	Writeup (*.pdf), (./document/homework/HW2/11_785_HW2P2_S23_v2.pdf) Starter Notebook (./document/homework/HW2/HW2P2_Starter_S23.ipynb)
HW2 Bonus	Friday, 17th Feb, 11:59 PM	Friday, 31st March, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw2p1bonus),
HW2 Autograd	Friday, 5th March, 11:59 PM	Wednesday, 28th April, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/autogradcnn)
Project Midterm Report	-	Friday, 31st March, 11:59 PM	

Assignment	Release Date (EST)	Due Date (EST)	Related Materials / Links Menu
HW3P1	Friday, 10th Mar, 11:59 PM	Early Submission: 26th Mar, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw3p1), Writeup (https://autolab.andrew.cmu.edu/courses/11785- s23/assessments/hw3p1/attachments/4418)
		Final: 7th Apr, 11:59 PM	
HW3P2	Friday, 17th Mar, 11:59 PM	Early Submission: 26th Mar, 11:59 PM	Kaggle (https://www.kaggle.com/competitions/11-785-s23-hw3p2), Canvas Quiz (https://canvas.cmu.edu/courses/32813/quizzes/98457), Writeup (*.pdf) (./document/homework/HW3/11_785_hw3p2_S23-2.pdf)
		Final: 7th Apr, 11:59 PM	
HW2 Autograd	Friday, 5th Mar, 11:59 PM	Wednesday, 28th April, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/autogradcnn)
HW4P1	Friday, HW4P1 31st Mar,	Early Submission Bonus: 15th Apr, 11:59 PM	Autolab (https://autolab.andrew.cmu.edu/courses/11785-s23/assessments/hw4p1backup), Writeup (*.pdf) (https://autolab.andrew.cmu.edu/courses/11785- s23/assessments/hw4p1backup/attachments/4434),
11:5	11:59 PM	Final: 28th Apr, 11:59 PM	Handout (*.zip) (https://autolab.andrew.cmu.edu/courses/11785- s23/assessments/hw4p1backup/attachments/4437)
HW4P2	Friday, 4th HW4P2 Apr, 11:59 PM		Kaggle (https://www.kaggle.com/competitions/11-785-s23-hw4p2), Writeup(*pdf) (./document/homework/HW4/P2/HW4P2_S23.pdf)
		Final: 28th Apr, 11:59 PM	
HW5	Friday, 1st	Early: 18th Apr, 11:59 PM	Kaggle (https://www.kaggle.com/competitions/11-685-s23-hw5/), Writeup(*pdf) (https://piazza.com/class_profile/get_resource/lbz3z9om43h2n3/lfyyrmqplki7ll),
СМА	Apr, 11:59 PM	Final: 1st May, 11:59 PM	Whiteup("put) (https://piazza.com/class_profile/get_resource/lbz3z9om43h2n3/lfyys8tlz2kot)
Final Project Video Presentation & Preiliminary Project Report	-	27th Apr, 11:59 PM	
Project Peer reviews			-
Final Project Report Submission	-	3rd May, 11:59 PM	

Documentation and Tools

Textbooks

This is a selection of optional textbooks you may find useful

Dive Into Deep Learning (http://d2l.ai) By Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola *PDF*, 2020

Deep Learning (https://www.deeplearningbook.org/) By Ian Goodfellow, Yoshua Bengio, Aaron Courville

Online book, 2017

Neural Networks and Deep Learning (http://neuralnetworksanddeeplearning.com/) By Michael Nielsen *Online book, 2016*

Deep Learning Step by Step with Python: A Very Gentle Introduction to Deep Neural Networks for Practical Data Science (https://www.amazon.com/Deep-Learning-Step-Python-Introduction/dp/1535410264)
By N. D. Lewis

Parallel Distributed Processing, Volume 1 (https://mitpress.mit.edu/books/parallel-distributed-processing-volume-1) By Rumelhart and McClelland

Parallel Distributed Processing, Volume 2 (https://mitpress.mit.edu/books/parallel-distributed-processing-volume-2) By Rumelhart and McClelland