DNA Sequencing

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

DNA

A profound implication of the central dogma is that nearly all the information necessary to construct and operate a living thing is contained in its DNA.² We call the complete complement of DNA (and therefore the collection of all the genes) in a particular species its *genome*. That is why genome sequencing projects, which determine the exact sequence of all the DNA in an organism, are so important.

Hunter, Lawrence. "Life and its molecules: A brief introduction." *Al Magazine* 25.1 (2004): 9.

Genomics technology

Sanger DNA sequencing

1977-1990s

DNA Microarrays

Since mid-1990s

2nd-generation DNA sequencing

Since ~2007

3rd-generation & single-molecule DNA sequencing

Since ~2010

Fred Sanger 1918-2013

"Chain termination" sequencing

Sanger sequencing

Sanger sequencing 1977-1990s

Fred Sanger in episode 3 of PBS documentary "DNA"

Not-so-high-throughput Sanger sequencing

First practical method invented by Fred Sanger in 1977. Initially used to sequence shorter genomes, e.g. viral genomes 10,000s of bases long.

Sanger sequencing

From "DNA" documentary, episode 3

Genomics technology

Sanger DNA sequencing

1977-1990s

DNA Microarrays

Since mid-1990s

2nd-generation DNA sequencing

Since ~2007

3rd-generation & single-molecule DNA sequencing

Since ~2010

Sequencing

No sequencing technology yet invented can read much more than 10,000 nucleotides at a time with reasonable cost, throughput, accuracy

Instead, there's a vigorous race to see whose sequencer can read "short" fragments of DNA (around 100s of nucleotides) with best cost, throughput, accuracy

Decoding DNA With Semiconductors

By NICHOLAS WADE
Published: July 20, 2011

Cost of Gene Sequencing Falls, Raising Hopes for Medical Advances Company Unveils DNA Sequencing Device Meant to Be Portable, Disposable and Cheap

By ANDREW POLLACK

Published: February 17, 2012

By JOHN MARKOFF

Published: March 7, 2012 Source: nytimes.com

Sequencing

Since 2005, many DNA sequencing instruments have been described and released. They are based on a few different principles

Synthesis / ligation

SMRT cell

Nanopore

Sequencing by synthesis ("massively parallel sequencing") provides greatest throughput, and is the most prevalent today

Pictures: http://www.illumina.com/systems/miseq/technology.ilmn, http://www.genengnews.com/gen-articles/third-generation-sequencing-debuts/3257/

DNA: double helix

GTATGCACGCGATAG	TATGTCGCAGTATCT	CACCCTATGTCGCAG	GAGACGCTGGAGCCG
TAGCATTGCGAGACG	GGTATGCACGCGATA	TGGAGCCGGAGCACC	CGCTGGAGCCGGAGC
	CGCGATAGCATTGCG	GCATTGCGAGACGCT	CCTATGTCGCAGTAT
	GCACCCTATGTCGCA	GTATCTGTCTTTGAT	CCTCATCCTATTATT
TATCGCACCTACGTT	CAATATTCGATCATG	GATCACAGGTCTATC	ACCCTATTAACCACT
CACGGGAGCTCTCCA	TGCATTTGGTATTTT	CGTCTGGGGGGTATG	CACGCGATAGCATTG
GTATGCACGCGATAG	ACCTACGTTCAATAT	TATTTATCGCACCTA	CCACTCACGGGAGCT
GCGAGACGCTGGAGC	CTATCACCCTATTAA	CTGTCTTTGATTCCT	ACTCACGGGAGCTCT
CCTACGTTCAATATT	GCACCTACGTTCAAT	GTCTGGGGGGTATGC	AGCCGGAGCACCCTA
GACGCTGGAGCCGGA	GCACCCTATGTCGCA	GTATCTGTCTTTGAT	CCTCATCCTATTATT
TATCGCACCTACGTT	CAATATTCGATCATG	GATCACAGGTCTATC	ACCCTATTAACCACT
CACGGGAGCTCTCCA	TGCATTTGGTATTTT	CGTCTGGGGGGTATG	CACGCGATAGCATTG
	TAGCATTGCGAGACG TGTCTTTGATTCCTG GACGCTGGAGCCGGA TATCGCACCTACGTT CACGGGAGCTCTCCA GTATGCACGCGATAG GCGAGACGCTGGAGC CCTACGTTCAATATT GACGCTGGAGCCGGA TATCGCACCTACGTT	TAGCATTGCGAGACG GGTATGCACGCGATA TGTCTTTGATTCCTG CGCGATAGCATTGCG GACGCTGGAGCCGGA GCACCCTATGTCGCA TATCGCACCTACGTT CAATATTCGATCATG CACGGGAGCTCTCCA TGCATTTGGTATTTT GTATGCACGCGATAG ACCTACGTTCAATAT GCGAGACGCTGGAGC CTATCACCCTATTAA CCTACGTTCAATATT GCACCTACGTTCAAT GACGCTGGAGCCGGA GCACCCTATGTCGCA TATCGCACCTACGTT CAATATT	TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC TGTCTTTGATTCCTG CGCGATAGCATTGCG GCATTGCGAGACGCT GACGCTGGAGCCGGA GCACCCTATGTCGCA GTATCTGTCTTTGAT TATCGCACCTACGTT CAATATTCGATCATG GATCACAGGTCTATC CACGGGAGCTCTCCA TGCATTTGGTATTTT CGTCTGGGGGGGTATG GTATGCACGCGATAG ACCTACGTTCAATAT TATTTATCGCACCTA GCGAGACGCTGGAGC CTATCACCCTATTAA CTGTCTTTGATTCCT CCTACGTTCAATATT GCACCTACGTTCAAT GACCCTGGGGGGGTATGC GACGCTGGAGCCGGA GCACCCTATGTCGCA GTATCTGTCTTTGAT TATCGCACCTACGTT CAATATT GATCACCGTTCATC

Your genome

CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

Your genome

Your genome

Double stranded DNA (double helix)

Double stranded DNA (lego version)

Input DNA

CCATAGTATATCTCGGCTCTAGGCCCTCATTTTTT
CCATAGTATATCTCGGCTCTAGGCCCTCATTTTTT
CCATAGTATATCTCGGCTCTAGGCCCTCATTTTTT
CCATAGTATATCTCGGCTCTAGGCCCTCATTTTTT

Cut into snippets

CCATAGTA TATCTCGG CTCTAGGCCCTC ATTTTTT
CCA TAGTATAT CTCGGCTCTAGGCCCCTCA TTTTTTT
CCATAGTAT ATCTCGGCTCTAG GCCCTCA TTTTTT
CCATAG TATATCT CGGCTCTAGGCCCT CATTTTTT

Deposit on slide

CCATAG

More details: Accurate whole human genome sequencing using reversible terminator chemistry. *Nature*. 2008 Nov 6;456(7218):53-9

DNA polymerase

Actual Illumina HiSeq 3000 image

Billions of templates on a slide

Massively parallel: photograph captures all templates simultaneously

Terminators are "speed bumps," keeping reactions in sync

Cluster of clones

$$Q = -10 \cdot \log_{10} p$$

Base quality

Probability that base call is incorrect

$$Q = 10 \rightarrow 1$$
 in 10 chance call is incorrect

$$Q = 20 \rightarrow 1 \text{ in } 100$$

$$Q = 30 \rightarrow 1 \text{ in } 1,000$$

Call: orange (C)

Estimate *p*, probability incorrect: non-orange light / total light

p = 3 green / 9 total = 1/3

 $Q = -10 \log_{10} \frac{1}{3} = 4.77$

A read in FASTQ format

```
Name @ERR194146.1 HSQ1008:141:D0CC8ACXX:3:1308:20201:36071/1
Sequence (ignore) +
Base qualities ?@@FFBFFDDHHBCEAFGEGIIDHGH@GDHHHGEHID@C?GGDG@FHIGGH@FHBEG:G
```

FASTQ

		● ● ● □ reads — Example — bash — 104×25	M
		<pre>\$ head -20 SRA_HISEQ2000_FC1.shuffle.2M.1.fastq</pre>	
	Name	@509.6.64.20524.149722	
Read 1	Sequence	AGCTCTGGTGACCCATGGGCAGCTGCTAGGGAGCCTTCTCTCCACCCTGAAAATAGCTTCTGGCTGNTGGGTGAACTATGGAGAGAAAGCGTTTTATTAT	
	(placeholder)	+	
	Base qualities	ННИНННЫНННЫНННЫНННЫННЫННЫННЫННЫННЫННЫННЫ	
	Name	@509.4.62.19231.2763	
Read 2	Sequence	GTTGATAAGCAAGCATCTCATTTTGTGCATATACCTGGTCTTTCGTATTCTGGCGTGAAGTCGCCGNCTGAATGCCAGCAATCTCTTTTTGAGTCTCATT	
11000.2	(placeholder)	+	
	Base qualities	ННИНИННИНИНИННЕННИНИНИНИНИНИНИНИНИНИНИН	
Danda	Name	CCTTTTCGACTAGAGACTGCCAAGTGCCAAAATATCCACTTGCAGATACTACAACAAGAGTGTTTCNAAACTGCTCAATCAAAAGAAATGTTCAACTCTT	
Read 3	Sequence (placeholder)	+	
	Base qualities	ННИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИН	
	Name	@509.2.7.2951.186312	
Read 4	Sequence	AAAGATACAACATACCACAATCTTTGAGACACCCTAAGACAATAAGGCAGTGTTAAGAGGAAAATTAATAGCACTAAATGCCCACATCAAAAAGTTAGA	
ineau 4	(placeholder)	+	
	Base qualities	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	
	Name	@509.6.25.8102.140546	
Read 5	Sequence	GGACACATTCAAACCATTGCATCCATCCTCTGCATTCAGAAAGATAGTCCAACAGAAAGATCTGGANTCAAGAGACCCAGCTGATTACCAATTCCAGTTT	
	(placeholder)	+	
	Base qualities	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	
		\$	

Base qualities

Bases and qualities line up:

Base quality is ASCII-encoded version of $Q = -10 \log_{10} p$

ASCII

0					Ι.		1								1	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	<nul></nul>	32	<spc></spc>	64	(<u>©</u>)	96	,	128	Ä	160	+	192	٤	224	#
3	1		33	!	65	Α	97	а			161	o		i		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<stx></stx>	34	w			98	b	130		162		1			,
S	3	\leq ETX>	35	#	67	C	99	c	131		163	£	195	\checkmark	227	*
6	4	<eot></eot>	36	\$	68	D	100	d	132		164	§	196	f	228	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	<enq></enq>	37	%	69		101	e	133		165	•	197	\approx	229	Â
8	6	<ack></ack>	38	&	70	F	102	f	134	Ü	166	1	198	Δ	230	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	<bel></bel>	39	'	71	G	103	g	135	á	167	ß	199	≪.	231	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	<bs></bs>	40	(72	н	104	h	136	à	168	(B)	200	20-	232	Ë
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	<tab></tab>	41)	73	I	105	i	137	ä	169	0	201		233	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	<lf></lf>	42	*	74	J	106	j	138	ă	170	TO	202		234	
13	11	<71>	43	+	75	K	107	k	139		171	,	203		235	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	<ff></ff>	44	1	76	L	108	I	140	å	172	-	204		236	
15	13	<cr></cr>	45	-	77	M	109	m	141	ç	173	#	205	Õ	237	Ì
16 <dle> 48 0 80 P 112 p 144 ê 176 ∞ 208 − 240 ★ 17 <dc1> 49 1 81 Q 113 q 145 ê 177 ± 209 − 241 Ò 18 <dc2> 50 2 82 R 114 r 146 í 178 ≤ 210 ° 242 Ú 19 <dc3> 51 3 83 S 115 s 147 ì 179 ≥ 211 ° 243 Û 20 <dc4> 52 4 84 T 116 t 148 î 180 ¥ 212 ° 244 Û 21 <nak> 53 5 85 U 117 U 149 ï 181 µ 213 ′ 245 i 22 <syn< td=""> 54 6 86 V 118 v 150 ñ</syn<></nak></dc4></dc3></dc2></dc1></dle>	14	<\$0>	46		78	N	110	n	142	é	174	Æ	206	Œ	238	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	<si></si>	47	/	79	0	111	O	143	è	175	Ø	207	œ	239	Ô
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	<dle></dle>	48	0	80	P	112	р	144	ê	176	∞	208	-	240	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	<dc1></dc1>	49	1	81	Q	113	q	145	ë	177	±	209	_	241	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	<dc2></dc2>	50	2	82	R.	114	r	146	Í	178	≤	210	17.	242	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	<dc3></dc3>	51	3	83	S	115	S	147	ì	179	≥	211		243	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	<dc4></dc4>	52	4	84	Т	116	t	148	î	180	¥	212	k.	244	Ù
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	<nak></nak>	53	5	85	U	117	u	149	Ï	181	μ	213	,	245	I
23	22	<syn< td=""><td>54</td><td>6</td><td>86</td><td>V</td><td>118</td><td>V</td><td>150</td><td>ñ</td><td>182</td><td>9</td><td>214</td><td>÷</td><td>246</td><td></td></syn<>	54	6	86	V	118	V	150	ñ	182	9	214	÷	246	
25	23	<etb></etb>	55	7	87	W	119	W	151	ó	183	Σ	215	• • • • • • • • • • • • • • • • • • •	247	A41
26	24	<can></can>	56	8	88	X	120	×	152	à	184	Π	216	ÿ	248	-
27 <esc> 59 ; 91 [123 { 155 $\tilde{6}$ 187 \tilde{a} 219 € 251 \tilde{a} 28 <fs> 60 < 92 \ 124 156 \tilde{u} 188 \tilde{a} 220 < 252 , 29 <gs> 61 = 93] 125 } 157 \tilde{u} 189 Ω 221 > 253 \tilde{a} 30 <rs> 62 > 94 $^{\circ}$ 126 $^{\circ}$ 158 \tilde{u} 190 $^{\odot}$ 222 $^{\circ}$ $^{\circ}$ 254 ,</rs></gs></fs></esc>	25		57	9	89	Υ	121	У	153	ô	185	П	217	Ÿ	249	v
27 <esc> 59 ; 91 [123 { 155 6 187 6 219 € 251 7 128 < 155 6 187 6 219 € 251 7 128</esc>	26		58	:	90	Z	122	z	154	ö	186	ſ	218	1	250	
29 <65> 61 = 93] 125 } 157 ù 189 Ω 221 > 253 " 30 <rs> 62 > 94 ^ 126 ~ 158 ù 190 æ 222 fi 254 ,</rs>	27	<esc></esc>	59	;	91]	123	{	155	ũ	187	a	219	€	251	0
29 <65> 61 = 93] 125 } 157 ù 189 Ω 221 > 253 ″ 30 <rs> 62 > 94 ^ 126 ~ 158 ù 190 æ 222 fi 254 ू</rs>	28	<fs></fs>	60	<.	92	\	124	1	156	ú	188	0	220	≼:	252	
	29	<g\$></g\$>	61	=	93]	125	}	157	ù	189	Ω	221	>	253	
	30	<rs></rs>	62	>-	94	۸	126	~	158	û	190	æ	222	fi	254	
	31	<us></us>	63	?	95		127		159	ü	191	Ø	223	fl	255	

Base qualities

```
Usual ASCII encoding is "Phred+33":
take Q, rounded to integer, add 33, convert to character
def QtoPhred33(Q):
      Turn Q into Phred+33 ASCII-encoded quality
  return chr(int(round(Q)) + 33)
              (converts character to integer according to ASCII table)
def phred33ToQ(qual):
  """ Turn Phred+33 ASCII-encoded quality into Q
  return ord(qual)-33
              (converts integer to character according to ASCII table)
```