# Monitoring du noyau Linux sur une architecture NUMA

Kevin Gallardo Eric Lombardet Pierre-Yves Péneau

Université Pierre et Marie Curie

12 Mai 2014

## Introduction

# Problématique

- architecture NUMA
- systèmes non efficaces
- gain de performances

## Introduction

## Problématique

- architecture NUMA
- systèmes non efficaces
- gain de performances

## **Objectifs**

- évaluation d'activité
- mesures d'évènements

## Architecture NUMA

#### Présentation

## **Objectifs**

- accélérer les temps de traitement
- répondre aux besoins d'applications spécifiques

## Moyens mis en œuvre

- découpe en noeuds
- ullet placement des contrôleurs d'E/S
- liens d'interconnexions
- mise en place d'une topologie



## Architecture NUMA

## Enjeux

- placement mémoire
- placement des threads
- activité d'entrées/sorties



## Infrastructure de tests

- ullet utilisation mutualisée du Magny Cour o machines virtuelles
- compilation du noyau avec KGDB
- problème: aucune émulation du monitoring par Qemu

## Infrastructure de tests

- utilisation mutualisée du Magny Cour → machines virtuelles
- compilation du noyau avec KGDB
- problème: aucune émulation du monitoring par Qemu

## Conséquence

• Travail en réel sur le noyau pour 50% du projet

Qu'est-ce que c'est?

- étude bas niveau du comportement matériel et système
- très utile pour le débugage ou l'optimisation poussée
- différentes solutions de monitoring existent
  - outils en mode utilisateur

Qu'est-ce que c'est ?

- étude bas niveau du comportement matériel et système
- très utile pour le débugage ou l'optimisation poussée
- différentes solutions de monitoring existent
  - outils en mode utilisateur
  - Performance Monitoring Counters

Qu'est-ce que c'est ?

- étude bas niveau du comportement matériel et système
- très utile pour le débugage ou l'optimisation poussée
- différentes solutions de monitoring existent
  - outils en mode utilisateur
  - Performance Monitoring Counters
  - Instruction Based Sampling (IBS)

Instruction Based Sampling - Présentation

- technologie AMD
- informations plus précises car IBS spécifique à une famille de processeur
- problème: plus difficile à mettre en place

Instruction Based Sampling - Fonctionnement

## Principe:

- taguer aléatoirement une instruction (découpage des instructions)
- suivi de l'exécution
- deux types de mesures: fetch/execution sampling

## Instruction Based Sampling - Utilisation

- beaucoup d'informations remontées par IBS
- sélection des plus utiles: cache hit/miss
- informations stockées dans des registres MSR

#### Instruction Based Sampling - Utilisation

- beaucoup d'informations remontées par IBS
- sélection des plus utiles: cache hit/miss
- informations stockées dans des registres MSR



Figure: Schéma du registre MSR IbsOpData3

#### Mise en place(1)

les interruptions matérielles - APIC



Figure: Schéma des composants matériels qui gèrent les interruptions

#### Mise en place(1)

• les interruptions matérielles - APIC



Figure: Schéma des composants matériels qui gèrent les interruptions

• interruptions IBS sont de type NMI (Non Maskable Interrupt)

# Monitoring Mise en place(2)

## Pour configurer les mesures :

- configuration de l'APIC
  - informer l'APIC de la présence d'interruptions IBS
  - à faire pour chaque coeur
- enregistrement d'un handler NMI
  - appelé à chaque interruption IBS
  - récolte les informations dans les registres MSR

# Monitoring Mise en place(3)

## Lancer les mesures (IbsOpCtl) :

- configurer le taux d'échantillonnage
- bit IbsOpEn = 1
- à faire sur le coeur du thread concerné

Instruction Based Sampling - Défauts

- overhead: traitement coûteux des mesures
- pas de vision d'ensemble

#### Chaleur d'un thread

- un compteur représente l'activité d'un thread
- différents critères d'activité:
  - état: (in)actif
  - taux d'utilisation mémoire
  - nombre d'entrées/sorties
  - commnunications entre threads
  - **.** . . .

#### Méthodes de tri envisagées

- nécessité d'une structure dédiée
- utilisation d'un tableau ou d'une liste chainée
  - insertion de nouveaux threads
    - difficulté à trouver les threads morts
    - tri peu performant

Méthodes de tri envisagées

- nécessité d'une structure dédiée
- utilisation d'un tableau ou d'une liste chainée
  - insertion de nouveaux threads
  - difficulté à trouver les threads morts
  - tri peu performant

## Conclusion

Solution abandonnée

Méthodes de tri envisagées



Méthodes de tri envisagées



Méthodes de tri envisagées



Méthodes de tri envisagées



#### Solution retenue

- ajout du compteur dans la task\_struct
- on conserve le tableau de chaleur précédent
- structure Gestion pour les listes

Struct Gestion

task\_struct\* proc Gestion\* next

#### Solution retenue



#### Réalisation

## Algorithme:

- 1 parcourir tous les threads
  - a si RUNNING → incrémentation du compteur de chaleur
  - b sinon décrémentation
- 2 stopper IBS
- 3 vider le tableau de chaleurs
- 4 générer le tableau de chaleurs
- 5 lancer les mesures sur les threads chauds

Réalisation

## Optimisation

 Utilisation d'un facteur d'incrémentation et de décrémentation dynamique

Réalisation

## **Optimisation**

 Utilisation d'un facteur d'incrémentation et de décrémentation dynamique

### **Problèmes**

ullet pas d'IBS avec qemu o merge impossible sur Magny Cour

## Conclusion

## Apports personnels

- beaucoup de connaissances acquises
- utile pour l'année prochaine
- découverte d'une nouvelle architecture prometteuse

## Conclusion

## Apports personnels

- beaucoup de connaissances acquises
- utile pour l'année prochaine
- découverte d'une nouvelle architecture prometteuse

## Ce qu'il reste à faire

- merger les deux parties du projet sur Magny Cour
- mettre en place un traitement des données
- améliorer l'algorithme de tri d'activités

## The end

To be continued... No questions please.