Just Enough Spectral Theory

Ng Yen Kaow

Notations (Important)

- A vector is by default a column
 - For vectors x and y, their inner (or dot) product, $\langle x, y \rangle = x^{T}y$
 - Beware: some texts use row vectors and $\langle x, y \rangle = xy^T$
- For a matrix an example is a row
 - An example (or datapoint) is a row x_i while each feature is a columns
 - Features are like fixed columns in a spreadsheet
 - For matrices X and Y, $\langle X, Y \rangle = XY^{\mathrm{T}}$ or $\sum_{i} (x_{i}y_{i}^{\mathrm{T}})$
 - Beware: some texts use column for examples and let $\langle X, Y \rangle = X^{T}Y$
- \square So it's x^Tx , x^TMx , but XX^T and $Q\Lambda Q^T$

Outer product

□ The outer product of two vectors x and y is a matrix M where the $M_{ij} = x_i y_j$

e.g.
$$\binom{a}{b}(c \quad d) = \begin{pmatrix} ac & ad \\ bc & bd \end{pmatrix}$$

- The outer product (or Kronecker product) of two matrices is a tensor
 - We don't deal with tensors yet
- Common uses of outer products
 - Denote pairwise inner product matrix, $xx^{T} = \begin{pmatrix} x_1x_1 & x_1x_2 & \dots \\ x_2x_1 & x_2x_2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$

Denote matrix of all ones,
$$\mathbf{11}^{T} = \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{bmatrix}$$

More notations

- Conventions
 - \mathbf{x}_i from a matrix is by default a row vector
 - \mathbf{x}_i from a vector is a scalar
 - x_{ij} from a matrix is a scalar
 - \mathbf{x} , u_i (all other vectors) are by default column vectors
- Common expansions

$$xy^{T} = \sum_{i} x_{i} y_{i} \qquad (XY)_{ij} = \sum_{k} x_{ik} y_{kj}$$

$$(x^{T}y)_{ij} = x_{i} y_{j} \qquad (XY^{T})_{ij} = x_{i} y_{j}^{T} = \sum_{k} x_{ik} y_{jk}$$

$$x^{T}My = \sum_{ij} m_{ij} x_{i} y_{j} \qquad (X^{T}Y)_{ij} = \sum_{k} x_{ki} y_{kj}$$

$$X^{T}X = \sum_{i} x_{i}^{T} x_{i} \text{ (used in kernel PCA)}$$

Python call for inner product

- Inner products are performed with np. dot()
 - When called on two arrays, the arrays are
 automatically oriented to perform inner product
 Note that [[1], [1]] is a 1 × 2 matrix
 - When called on an array x and a matrix X, the array is automatically read as a row for np. dot(x, X), and column for np. dot(X, x) to perform inner product
 - When called on two matrices, make sure that the matrices are oriented correctly, or you will get X^TX when you want XX^T
 - Impossible to get outer product with np. dot()
- If you write x*y or X*Y, what you get is an element-wise multiplication

Eigenvectors and eigenvalues

- Only concerned with square matrices
 - Most matrices we consider are furthermore symmetric and of only real values
- \square A eigenvector for a square matrix M is vector u where $Mu = \lambda u$
 - u is invariant under transformation M
 - The scaling factor λ is a eigenvalue
 - Use u to denote a column vector even when multiple u_i are collected into a matrix $U = [u_1 \quad ... \quad u_k]$

$Mu = \lambda u$ is a system of equations

- □ An equation such as $Mu = \lambda u$ actually states n linear equations, namely $\forall i, \sum_{i} m_{i}u_{i} = \lambda u_{i}$
 - For example

$$\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

states the two equations

$$m_{11}u_1 + m_{12}u_2 = \lambda u_1$$

$$m_{21}u_1 + m_{22}u_2 = \lambda u_2$$

- This is important when manipulating equation by multiplying with other matrix/vector
 - For example when $Mu = \lambda u$ is multiplied from the left by u^{T} , the resultant $u^{\mathrm{T}}Mu = \lambda u^{\mathrm{T}}u$ becomes only one equation, that is, $\sum_{ij} u_i m_{ij} u_j = \lambda \sum_{ij} u_i u_j$

Eigendecomposition

□ A eigendecomposition of matrix M is $M = Q\Lambda Q^{-1}$

where Λ is diagonal, and Q contains (not necessarily orthogonal) eigenvectors of M

- Any normal M can be eigendecomposed
- The set of eigenvalues for M is unique
- There can be different eigenvectors of the same eigenvalue (hence not unique)
 - For real symmetric M, eigenvectors that correspond to distinct eigenvalues are (chosen to be) orthogonal

Orthogonal eigendecomposition

- \square For real symmetric M, can choose Q to be orthogonal matrix (proof omitted)
- \Box For square matrix Q, the following are equivalent (proof next slide)
 - 1. *Q* is an orthogonal matrix
 - 2. $Q^{T}Q = I$
 - 3. $QQ^{\mathrm{T}} = I$
 - Corollary. $Q^{\mathrm{T}}Q = I \Rightarrow Q^{\mathrm{T}}QQ^{-1} = Q^{-1}$

$$\Rightarrow Q^{\mathrm{T}} = Q^{-1}$$

□ By default the eigendecomposition of real symmetric matrix M is $M = Q\Lambda Q^{T}$

Orthogonal matrix property

- \Box For square matrix Q, the following are equivalent
 - 1. *Q* is orthogonal matrix
 - 2. $Q^{T}Q = I$
 - 3. $QQ^{T} = I$
 - 2⇔1 Let u_i be the column vectors of A

$$Q^{\mathrm{T}}Q = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \begin{bmatrix} u_1 & \dots & u_n \end{bmatrix} = \begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix}$$

$$\begin{bmatrix} u_1u_1 & \dots & u_1u_n \\ \vdots & \ddots & \vdots \\ u_nu_1 & \dots & u_nu_n \end{bmatrix} = I \text{ implies } u_iu_j = 0 \text{ for } i \neq j$$

Eigenspace

- □ The eigenspace of a matrix M is the set of all the vectors u that fulfills $Mu = \lambda u$
 - The rank of M is its number of non-zero λ
- A eigenbasis of a n × n matrix M is a set of n orthogonal eigenvectors of M (including those with zero eigenvalues)
 - Any datapoint x_i in M can be written as a linear combination of the eigenbasis, $x_i = \sum_i \langle x_i, u_i \rangle u_i$
 - Any eigenvector u_i for M can be written as a linear combination of the datapoints x_i , by solving the system of equations $x_i = \sum_i \langle x_i, u_i \rangle u_i$

Rayleigh Quotient

- $\Box \frac{u^{\mathrm{T}}Mu}{u^{\mathrm{T}}u}$ is called the **Rayleigh quotient**
- □ Let $\lambda_1,...,\lambda_n$ where $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ be the eigenvalues of M
- Min-max Theorem (simplified)
 - Maximum of the Rayleigh quotient,

$$\max_{\|u\|=1} \frac{u^{\mathrm{T}} M u}{u^{\mathrm{T}} u} = \lambda_1$$

Minimum of the Rayleigh quotient,

$$\min_{\|u\|=1} \frac{u^{\mathrm{T}} M u}{u^{\mathrm{T}} u} = \lambda_n$$

Proof of min-max theorem

- Find stationary points of $\frac{u^{T}Mu}{u^{T}u}$
- Letting u' = cu does not change $\frac{u^{T}Mu}{u^{T}u} \left(= \frac{u'^{T}Mu'}{u'^{T}u'} \right)$
 - Hence consider only unit *u*
 - Maximize $u^{T}Mu$ subject to $u^{T}u = 1$
- □ Use Lagrangian to add $u^{T}u = 1$ constraint

$$\mathcal{L}(u,\lambda) = u^{\mathrm{T}} M u + \lambda (u^{\mathrm{T}} u - 1)$$
 Matrix differentiation*
$$\frac{\partial \mathcal{L}}{\partial u} = u^{\mathrm{T}} \left(M + M^{\mathrm{T}} \right) + 2\lambda u^{\mathrm{T}} = 0$$

$$\frac{\partial x^{\mathrm{T}} M x}{\partial x} = x^{\mathrm{T}} \left(M + M^{\mathrm{T}} \right)$$

$$\frac{\partial x^{\mathrm{T}} M x}{\partial x} = 2x^{\mathrm{T}}$$

$$\frac{\partial x^{\mathrm{T}} M x}{\partial x} = 2x^{\mathrm{T}}$$

$$u^{\mathrm{T}}(M + M^{\mathrm{T}}) = -2\lambda u^{\mathrm{T}} \Rightarrow (M + M^{\mathrm{T}})u = -2\lambda u$$

Since *M* is symmetric, $2Mu = -2\lambda u$

$$\Rightarrow Mu = \tilde{\lambda}u$$
 where $\tilde{\lambda} = -2\lambda$

Stationary points are solutions of $Mu = \tilde{\lambda}u$

 $\frac{\partial x^{\mathrm{T}} x}{\partial x^{\mathrm{T}} x} = 2x^{\mathrm{T}}$

Eigendecomposition applications

- Matrix inverse
- Matrix approximation
- Matrix factorization
 - Multidimensional Scaling
- Minimization or maximization through the Rayleigh Quotient
 - PCA
 - Max of covariance matrix
 - Spectral clustering
 - Min of graph Laplacian

Singular Value Decomposition

- Any matrix can be singular value decomposed
- \square $M = U\Sigma V^*$
 - lacktriangleq M is $m \times n$ matrix
 - lacksquare U is an $m \times m$ unitary (orthogonal) matrix
 - lacksquare Σ is an $m \times n$ diagonal matrix
 - lacksquare V is an $n \times n$ unitary matrix
- \square For a real $M, V^* = V^{\mathrm{T}}$ (and $U = U^{\mathrm{T}}$) hence $M = U\Sigma V^{\mathrm{T}}$

SVD applications

- Solving linear equations
- Linear regression
- Pseudoinverse
- Kabsch algorithm
- Matrix approximation
- As a eigendecomposition (see next slide)

SVD and eigendecomposition

- □ SVD is a eigendecomposition but not of *M*
 - Given an SVD of $M = U\Sigma V^{T}$
 - Then, clearly
 - $\square M^{\mathrm{T}}M = V\Sigma^{\mathrm{T}}U^{\mathrm{T}}U\Sigma V^{\mathrm{T}} = V(\Sigma^{\mathrm{T}}\Sigma)V^{\mathrm{T}}$
 - $\square \quad MM^{\mathrm{T}} = U\Sigma V^{\mathrm{T}}V\Sigma^{\mathrm{T}}U^{\mathrm{T}} = U(\Sigma^{\mathrm{T}}\Sigma)U^{\mathrm{T}}$
 - Hence V is the eigenbasis of M^TM and U is the eigenbasis of MM^T respectively
 - That is, *U* and *V* are eigenbases of the squared matrices of *M*
 - □ However the eigenbasis of $M^{T}M$ and MM^{T} are in general not the eigenbasis of M

Special Matrices

- Three types of matrices lead to most of the results
 - **Covariance** $(A^TA \text{ for column centered } A)$
 - ⇒ Principal Component Analysis
 - Gramian $(AA^T$ for column centered A)
 - ⇒ Multidimensional Scaling
 - ⇒ Kernel Method
 - Graph Laplacian (AA^T for incidence matrix A)
 - ⇒ Spectral Clustering