					Om anatima Creatanna
Cluster	Computing	3	1	0	Operating Systems
				-	
		1	_	_	ost efficient high performance system
and how to de	eal with design an	d architecture	of grid and c	cluster compu	iting.
				_	
S. No.	Course Outcomes (CO)				
CO1	Describe the fu		ncepts, hardy	ware technolo	ogies, and software architectures used in

Operating Systems

CS406: Grid and

	cluster computing.
CO2	Implement and analyze standard MPI variants, derived data types, and communicators for parallel programming.
CO3	Demonstrate skills in resource management, distributed task scheduling, and system administration using tools like Condor, Maui, and PBS.
CO4	Set up and deploy grid computing environments, apply programming models, and ensure grid security.
CO5	Use performance evaluation tools and apply data management techniques to case studies such as molecular modeling and brain activity analysis.

S. No	Contents	Contact Hours
UNIT 1	Cluster Computing Introduction to concepts in Cluster based distributed computing Hardware technologies for cluster computing and software for cluster computing, and different Software Architecture for Cluster Computing.	6
UNIT 2	Programming; Programming Models and Paradigms, features and performance of standard MPI variants, Derived data types, communicators.	8
UNIT 3	Resource management and scheduling Managing, cluster resources: single system images, system level middleware, distributed task scheduling, monitoring and administering system resources Parallel I/O and Parallel Virtual File System. Scheduling: Condor, Maui Scheduler, Portable Batch System (PBS).	8
UNIT 4	Grid Computing: Grids and Grid Technologies, Programming models and Parallelization Techniques, Grid Security Infrastructure, Setting up Grid, deployment of Grid software and tools, and application execution.	10
UNIT 5	Standard application development tools and paradigms Performance evaluation tools, HINT, netperf, netpipe, ttcp, Iperf.message	8
UNIT 6	Data Management Application Case Study: Molecular Modeling for Drug Design and Brain Activity Analysis, Resource management and scheduling.	6

Total