

NATIONAL INSTITUTE OF TECHNOLOGY CALICUT Department of Mathematics

MA 2002E: Mathematics III

Monsoon Semester 2024-25: Tutorial 4

Functions of complex variables, Limit, continuity

- 1. Show that $\lim_{x \to iy \to 0} \left[xy / \left(x^2 + y^2 \right) \right]$ does not exist.
- 2. Show that $\lim_{x+iy\to 0} \left[x^2y/\left(x^4+y^2\right)\right]$ does not exist even though this function approaches the same limit along every straight line through the origin.
- 3. If

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) & y \neq 0\\ 0 & y = 0 \end{cases}$$

show that $\lim_{y\to 0} [\lim_{x\to 0} f(x,y)]$ and $\lim_{x\to 0} f(x,y)$ exist and are equal, but that $\lim_{x\to 0} [\lim_{y\to 0} f(x,y)]$ does not exist.

4. Show that the various values approached by the difference quotient of $f(z) = \bar{z}$ as $\Delta z \to 0$ along the lines y = mx all lie on a circle.

\mathbf{B} Complex differentiability, Cauchy-Riemann equations

5. Check whether the following functions analytic?

(a)
$$f(z) = \text{Im}(z^2)$$

(b)
$$f(x+iy) = e^{2x}(\cos y + i\sin y)$$

(c)
$$f(x+iy) = e^{-x}(\cos y - i\sin y)$$

(d)
$$f(z) = \text{Arg } z$$

(e)
$$f(z) = \operatorname{Re} z + \operatorname{Im} z$$

(f)
$$f(z) = \ln|z| + i \operatorname{Arg} z$$

(g)
$$f(z) = i/z^8$$

(h)
$$f(z) = z^2 + 1/z^2$$

- 6. Prove that the function $f(x+iy) = \sqrt{|x||y|}$ satisfies the Cauchy-Riemann equations at the origin, but f is not
- 7. Find the set points on which each of the following functions satisfies the Cauchy-Riemann equations. Also check whether the function is holomorphic and if so find its derivative.

(a)
$$f(x+iy) = x$$

(c)
$$f(x+iy) = x^3 + i(y-1)^3$$
 (e) $f(z) = \bar{z}^2$.
(d) $f(z) = \bar{z}$. (f) $f(z) = |z|^2$

(e)
$$f(z) = \bar{z}^2$$
.

(a)
$$f(x+iy) = x$$

(b) $f(x+iy) = x^2 + iy^2$

(d)
$$f(z) = \bar{z}$$

(f)
$$f(z) = |z|^2$$
.

- 8. Let f be a holomorphic function in an open set Ω . Prove that f reduces to a constant if any of the following is true:
 - (a) Re(f) is a constant
- (c) |f| is a constant

(e) f' = 0.

- (b) Im(f) is a constant
- (d) Arg(f) is a constant
 - (f) \bar{f} is analytic.

9. If f(z) is an analytic function, show that

(a)
$$\left[\frac{\partial}{\partial x}|f(z)|\right]^2 + \left[\frac{\partial}{\partial y}|f(z)|\right]^2 = \left|f'(z)\right|^2$$

(b)
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$

10. If u and v are respectively the real and imaginary parts of a holomorphic function f, prove that the level curves u(x,y)=k and v(x,y)=c are orthogonal to each other at all points (x,y) where $f'(x+iy)\neq 0$.

C Harmonic functions, Harmonic conjugate

11. Determine a, b, c such that given the functions are harmonic and find a harmonic conjugate.

(a) $u = e^{3x} \cos ay$

(b) $u = \sin x \cosh cu$

(c) $u = ax^3 + by^3$

12. Are the following functions harmonic? If yes, find a corresponding analytic function f(z) = u(x,y) + iv(x,y)

(a) u = xy

(c) $v = -y/(x^2 + y^2)$

(e) $u = x^3 - 3xy^2$

(b) v = xy

(d) $v = \ln |z|$

(f) $u = e^{-x} \sin 2y$

- 13. Let u be a real valued harmonic function in an open disc \mathbb{D} . Prove that any two harmonic conjugates of u differ by a constant.
- 14. Let u be a real valued harmonic function in an open disc \mathbb{D} . If u^2 is also harmonic, prove that u is a constant.
- 15. Let u be a real valued harmonic function in an open disc \mathbb{D} and v its harmonic conjugate. Prove that -u is a harmonic conjugate of v.
- 16. Let u be a real valued harmonic function in an open set Ω and v its harmonic conjugate. Prove that uv and $u^2 v^2$ are also harmonic.
- 17. Let u be a real-valued harmonic function in an open set Ω . Prove that $\frac{\partial u}{\partial z}$ is holomorphic in Ω .
- 18. Check whether the following functions u are harmonic in some domain and if so find their harmonic conjugates. Also, find the holomorphic function f(z) such that u = Re(f).

(a) u(x, y) = c

(c) u(x,y) = 2x(1-y)

(e) $u(x, y) = \sinh x \sin y$

(b) $u(x,y) = y^3 - 3x^2y$

(d) $u(x,y) = \frac{y}{x^2 + u^2}$

- 19. If f is holomorphic on a region Ω , prove that f is harmonic there. When is $|f|^2$ harmonic?
- 20. Let f be a complex function on a region Ω and both f and f^2 are harmonic in Ω . Prove that either f or \bar{f} is harmonic in Ω .
- 21. If u and v are harmonic in a region $\Omega \subset \mathbb{C}$, show that

$$\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$

is analytic in Ω .
