Bootcamp outline

Day #1: Basic command line interface, reproducible research, and sequence alignment

Day #2: Intro to R and RStudio, data input, and cleaning

Day #3: R and data cleaning, manipulation, processing

Day #4: R and data plotting, presentations

is a software environment for statistical computing

Data structures in R

Vectors are one-dimensional data sets of any one data type

Data frames are two-dimensional data sets of any data type

Lists are groups of vectors, data frames, or other lists.

How do we explore data objects?

```
names (df) = gives the names of columns of df
rownames (df) = gives the names of rows of df
colnames(df) = gives the names of columns of df
               = outputs the number of rows then columns of df
dim(df)
length(df) = outputs the length of df
summary(df) = outputs summary statistics of df
```

Other useful functions in R

```
match, %in% = match elements in object to another
                = same as in CL, look for pattern in strings
grep
                = generate a sequence of numbers
seq
                = gives TRUE or FALSE for NA data values
is.na
unique
                = same as in CL, look for unique data values
merge, join = merge two vectors or data frames
                = combine data
C
rbind, cbind = combine rows or columns, respectively
                = replicate data
rep
```

Flow of data analysis

- 2. Tidy3. Process
- 4. Plot5. Present
 Tomorrow

What is the structure of your data?

- 1. Are there missing values?
- 2. What are the column names?
- 3. What are the dimensions?
- 4. What are the row values?
- 5. Are the data organized long or wide?

Introducing tidy data

Tidy data are easy to manipulate (dplyr), visualize (ggplot2) and model (many packages).

Each column is a variable (sample, replicate, phenotype, etc.)

Each row is an observation.

Let's make some messy data. Three people take two drugs and recored his/her heart rates:

Each column is a variable (sample, replicate, phenotype, etc.)

Each row is an observation.

Let's make some messy data. Three people take two drugs and recored his/her heart rates:

These data are wide. Also, columns a and b are not variables.

Each column is a variable (sample, replicate, phenotype, etc.)

Each row is an observation.

```
> messy
name a b
1 Kelly 67 56
2 Bob 80 90
3 Greg 64 50
```

These data are wide. Also, columns a and b are not variables.

Use gather() to bring together a and b columns into key-value pairs (or variable-observation pairs)

> messy %>% gather(drug, heartrate, a:b)

```
> messy
name a b
1 Kelly 67 56
2 Bob 80 90
3 Greg 64 50
```

These data are wide. Also, columns a and b are not variables.

Use gather() to bring together a and b columns into key-value pairs (or variable-observation pairs)

> messy %>% gather(drug, heartrate, a:b)

Most of your data are already tidy.

Use gather() to bring together a and b columns into key-value pairs (or variable-observation pairs)

Use **spread()** to do the opposite to make long data wide again

> messy %>% gather(drug, heartrate, a:b) %>%
spread(key = drug, value = heartrate)

```
name a b
1 Kelly 67 56
2 Bob 80 90
3 Greg 64 50
```

Use gather() to bring together a and b columns into key-value pairs (or variable-observation pairs)

Use spread() to do the opposite to make long data wide again

Use separate() to split column data into different columns

Use unite() to combine column data into one column

Variables Identifiers

Ozone	Solar.R	Wind	Temp	Month	Day
41	190	7.4	67	5	1
36	118	8.0	72	5	2
12	149	12.6	74	5	3
18	313	11.5	62	5	4
NA	NA	14.3	56	5	5
28	NA	14.9	66	5	6
23	299	8.6	65	5	7
19	99	13.8	59	5	8
8	19	20.1	61	5	9
NA	194	8.6	69	5	10
7	NA	6.9	74	5	11
16	256	9.7	69	5	12
11	290	9.2	66	5	13
14	274	10.9	68	5	14
18	65	13.2	58	5	15
14	334	11.5	64	5	16
34	307	12.0	66	5	17
6	78	18.4	57	5	18
30	322	11.5	68	5	19
11	44	9.7	62	5	20
1	8	9.7	59	5	21

Wide

Identifiers

Month Day variable value 5 1 Ozone 41.0 5 2 Ozone 36.0 5 3 Ozone 12.0 5 4 Ozone 18.0 5 5 Ozone NA 5 6 Ozone 28.0 5 7 Ozone 23.0 5 8 Ozone 19.0 5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 2 Ozone 36.0 5 3 Ozone 12.0 5 4 Ozone 18.0 5 5 Ozone NA 5 6 Ozone 28.0 5 7 Ozone 23.0 5 8 Ozone 19.0 5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 3 Ozone 12.0 5 4 Ozone 18.0 5 5 Ozone NA 5 6 Ozone 28.0 5 7 Ozone 23.0 5 8 Ozone 19.0 5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 4 Ozone 18.0 5 5 Ozone NA 5 6 Ozone 28.0 5 7 Ozone 23.0 5 8 Ozone 19.0 5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 5 Ozone NA 5 6 Ozone 28.0 5 7 Ozone 23.0 5 8 Ozone 19.0 5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 6 Ozone 28.0 5 7 Ozone 23.0 5 8 Ozone 19.0 5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 7 Ozone 23.0 5 8 Ozone 19.0 5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 8 Ozone 19.0 5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 9 Ozone 8.0 5 10 Ozone NA 5 11 Ozone 7.0	
5 10 Ozone NA 5 11 Ozone 7.0	
5 11 Ozone 7.0	
5 12 Ozone 16.0	
5 13 Ozone 11.0	
5 14 Ozone 14.0	
5 15 Ozone 18.0	
5 16 Ozone 14.0	
5 17 Ozone 34.0	
5 18 Ozone 6.0	
5 19 Ozone 30.0	
5 20 Ozone 11.0	
5 21 Ozone 1.0	

Long

How to convert between long and wide data?

tidyr - "Easily tidy data with spread and gather functions."

An example:

```
library(tidyr)
library(dplyr)

# make df object be 'airquality' dataset
df <- airquality

View(df)</pre>
```

An example:

```
library(tidyr)
library(dplyr)

# make df object be 'airquality' dataset
df <- airquality

View(df)</pre>
```

Variables Identifiers

Ozone	Solar.R	Wind	Temp	Month	Day
			•		-
41	190	7.4	67	5	1
36	118	8.0	72	5	2
12	149	12.6	74	5	3
18	313	11.5	62	5	4
NA	NA	14.3	56	5	5
28	NA	14.9	66	5	6
23	299	8.6	65	5	7
19	99	13.8	59	5	8
8	19	20.1	61	5	9
NA	194	8.6	69	5	10
7	NA	6.9	74	5	11
16	256	9.7	69	5	12
11	290	9.2	66	5	13
14	274	10.9	68	5	14
18	65	13.2	58	5	15
14	334	11.5	64	5	16
34	307	12.0	66	5	17
6	78	18.4	57	5	18
30	322	11.5	68	5	19
11	44	9.7	62	5	20
1	8	9.7	59	5	21

Convert to long format

```
df1 <- df %>%
  gather(variable, value, -Month, -Day)
```

tidyr integrates with dplyr

Identifiers

Month	Day	variable	value	
5	1	Ozone	41.0	
5	2	Ozone	36.0	
5	3	Ozone	12.0	
5	4	Ozone	18.0	
5	5	Ozone	NA	
5	6	Ozone	28.0	
5	7	Ozone	23.0	
5	8	Ozone	19.0	
5	9	Ozone	8.0	
5	10	Ozone	NA	
5	11	Ozone	7.0	
5	12	Ozone	16.0	
5	13	Ozone	11.0	
5	14	Ozone	14.0	
5	15	Ozone	18.0	
5	16	Ozone	14.0	
5	17	Ozone	34.0	
5	18	Ozone	6.0	
5	19	Ozone	30.0	
5	20	Ozone	11.0	
5	21	Ozone	1.0	

Long

Convert back to wide format

```
df2 <- df1 %>%
    spread(variable, value)
```

Identifiers

Variables

Month	Day	Ozone	Solar.R	Wind	Temp
5	1	41	190	7.4	67
5	2	36	118	8.0	72
5	3	12	149	12.6	74
5	4	18	313	11.5	62
5	5	NA	NA	14.3	56
5	6	28	NA	14.9	66
5	7	23	299	8.6	65
5	8	19	99	13.8	59
5	9	8	19	20.1	61
5	10	NA	194	8.6	69
5	11	7	NA	6.9	74
5	12	16	256	9.7	69
5	13	11	290	9.2	66
5	14	14	274	10.9	68
5	15	18	65	13.2	58
5	16	14	334	11.5	64
5	17	34	307	12.0	66
5	18	6	78	18.4	57
5	19	30	322	11.5	68
5	20	11	44	9.7	62
5	21	1	8	9.7	59

Why do we care about long vs. wide data?

Easy grouping leads to easy analysis

Easy summarization and plotting

Don't forget unique()

Data tidying time

Flow of data analysis

- 3. Process
- 4. Plot
- 5. Present

Why do we care about processing data?

Measurement data can be overwhelming.

Summarize with means, medians, dispersion of data

Summaries help us think about replication and error

Sometimes we don't care about processing data

dplyr: the grammar of data analysis

Hadley Wickham: R guru

> rnor	m(1000)						
[1]	0.7414303363	-0.9383127854	-0.5898356239	-1.4879381203	-0.1659582252	0.4690914210	-0.3598660699
[11]	2.6412618078	0.2321025525	-0.1327265269	1.5190948454	0.9066730669	0.8596798670	1.4650258834
[21]	0.3458054361	-0.4886197680	1.3973476592	-1.5638681539	1.2853007445	0.4101364885	0.2294735247
[31]	0.4139866417	-0.6954449569	0.8041125473	0.5535330655	-0.4694144802	1.7690122917	0.4707698513
[41]	-0.4594998205	0.4043386537	-1.6870132729	-0.1942175306	1.1583540288	-0.0002630832	-0.1468545234
[51]	-0.4410132764	0.7364134275	2.0252124219	-1.4500256740	1.9125350969	-0.2343692491	1.3286159719
[61]	1.1314206797	-0.9113800142	0.1240687944	-0.3060999484	-0.4709176421	-0.1122752856	-0.5401285711
[71]	-0.0686987744	-0.1373026497	0.6094719385	-1.4732265606	0.7573958380	-0.7515556914	-1.2857906361
[81]	-0.8857107791	-0.4069381352	-2.1758080948	-0.3569778668	-0.0397559943	-0.0961785023	0.6472138988
[91]	-0.8830039848	-2.0658918174	2.2363978861	-0.9000721943	1.1227886790	2.1469963330	-1.0971182540
[101]	0.8612006384	-1.0684987091	1.5397207327	-0.0174112748	0.6287091546	-0.9850152543	1.4317789228
[111]	-0.9610323091	-0.8214297129	0.0698531890	-0.2544790671	0.9626996188	1.4312750227	1.1144196341
[121]	0.8893473243	-1.2105287954	-1.2804874114	-1.5417165424	-0.5225043177	-0.2443883469	1.0395231050
[131]	-0.0216148381	1.0670464559	-1.0937062759	-0.3949936928	0.6399457290	0.3473726551	-0.5487464459
[141]	2.1042373099	-0.8215960512	1.1647203780	-0.5018804363	-0.6276899976	-0.8121978140	-1.9868618662
[151]	-2.5904304497	0.5526988025	-0.3580881297	-0.3931144287	-0.6494195785	-0.1096485904	0.0678612489
[161]	1.6343875443	-0.0683924766	1.2130360802	-0.6313426788	0.9838639622	-0.4797304977	0.1817758260
[171]	0.0695651300	1.0314607326	-2.0653772732	-0.0865188406	-1.1631547204	0.5729574962	-1.2640545629
[181]	-0.9050088656	0.2930384939	-0.2051316675	0.9764933512	-0.2243143242	-0.9517134217	-0.3218631511
[191]	-0.1991329532	-0.0923899862	-1.9904200615	-1.3877169486	-0.7618046746	0.2040072200	1.9060898324
F2017	2 2265402260	A 24EE7600EA	0 272946E044	0 1507400710	0.0224071126	1 1706255015	0.0000070600

Data

arrange select mutate filter summarise

Simple operations

Simple, efficient storage, fast algorithms, database integration

dplyr: simple verbs

arrange arrange the order of rows

select select columns to keep

filter rows to keep

mutate mutate columns into new columns

group_by group data by specific column(s)

summarise summarize data by group

arrange arrange the order of rows

```
> head(df)
> df <- arrange(df, Row, TOF)
> head(df)
```

select select columns to keep

```
> head(df)
> reduced.df <- select(df, Row, Column, TOF, EXT, Red, Yellow)
> head(reduced.df)
```

mutate mutate columns into new columns

```
> head(reduced.df)
> reduced.df <- mutate(reduced.df, norm.yellow = Yellow/TOF)
> head(reduced.df)
```

filter filter rows to keep

```
> head(processed.df)
> processed.df <- filter(processed.df, Column %in% c(1:5, 7:11))
> head(processed.df)
```

group_by group data by specific column(s)

summarise summarize data by group

```
> head(reduced.df)
> reduced.df <- group_by(reduced.df, Row, Column)
> processed.df <- summarise(reduced.df, mean.TOF = mean(TOF, na.rm=TRUE))
> head(processed.df)
```

Divide and conquer

Let's put it all together

Data processing time

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

Flow of data analysis

- 4. Plot
- 5. Present

Plots should make data obvious and beautiful

Pie charts are impossible to interpret

Bar charts hide data

Beautiful, but...have to believe investigator on numbers, not quantitative, and hard to project

ggplot2: the grammar of graphics

Hadley Wickham: R guru

Edward Tufte: graphics guru

Field

What is a grammar?

```
> rnorm(1000)
  [1] 0.7414303363 -0.9383127854 -0.5898356239 -1.4879381203 -0.1659582252 0.4690914210 -0.3598660699
 [11] 2.6412618078 0.2321025525 -0.1327265269 1.5190948454 0.9066730669 0.8596798670 1.4650258834
 [21] 0.3458054361 -0.4886197680 1.3973476592 -1.5638681539 1.2853007445 0.4101364885 0.2294735247
 [31] 0.4139866417 -0.6954449569 0.8041125473 0.5535330655 -0.4694144802 1.7690122917 0.4707698513
 [51] -0.4410132764 0.7364134275 2.0252124219 -1.4500256740 1.9125350969 -0.2343692491 1.3286159719
 [61] 1.1314206797 -0.9113800142 0.1240687944 -0.3060999484 -0.4709176421 -0.1122752856 -0.5401285711
  [71] \ -0.0686987744 \ -0.1373026497 \ \ 0.6094719385 \ -1.4732265606 \ \ 0.7573958380 \ -0.7515556914 \ -1.2857906361 
 [81] -0.8857107791 -0.4069381352 -2.1758080948 -0.3569778668 -0.0397559943 -0.0961785023 0.6472138988
 [91] -0.8830039848 -2.0658918174 2.2363978861 -0.9000721943 1.1227886790 2.1469963330 -1.0971182540
 [101] 0.8612006384 -1.0684987091 1.5397207327 -0.0174112748 0.6287091546 -0.9850152543 1.4317789228
[111] -0.9610323091 -0.8214297129 0.0698531890 -0.2544790671 0.9626996188 1.4312750227 1.1144196341
[121] 0.8893473243 -1.2105287954 -1.2804874114 -1.5417165424 -0.5225043177 -0.2443883469 1.0395231050
[131] -0.0216148381 1.0670464559 -1.0937062759 -0.3949936928 0.6399457290 0.3473726551 -0.5487464459
[141] 2.1042373099 -0.8215960512 1.1647203780 -0.5018804363 -0.6276899976 -0.8121978140 -1.9868618662
[161] 1.6343875443 -0.0683924766 1.2130360802 -0.6313426788 0.9838639622 -0.4797304977 0.1817758260
 [171] 0.0695651300 1.0314607326 -2.0653772732 -0.0865188406 -1.1631547204 0.5729574962 -1.2640545629
[191] -0.1991329532 -0.0923899862 -1.9904200615 -1.3877169486 -0.7618046746 0.2040072200 1.9060898324
```

Data

x y z color

Aesthetics

points boxplot line Geometric objects

http://ggplot2.org

Simple ggplot2 example

ggplot(data=df) + aes(x=TOF, y=EXT) + geom_point()

Data
Aesthetics Geometric objects

Let's add some aesthetics

ggplot(data=df) + aes(x=TOF, y=EXT, color=Row) + geom_point()

Let's add some aesthetics

ggplot(data=df) + aes(x=TOF, y=EXT, color=Row) + geom_point(alpha=0.25)

Aesthetics apply to data and geoms

Challenge:

Make a scatter plot with size from Column and shape = 2

Another aspect of grammar: coordinates

Another aspect of grammar: facets

ggplot(data=df) + aes(x=TOF, y=EXT, color=Row) + geom_point(alpha=0.25) + xlim(0, 1000) + ylim(0,4000) + facet_grid(Row~Column)

How to make the plot look prettier

```
ggplot(data=df) + aes(x=TOF, y=EXT, color=Row) +
    geom_point(alpha=0.25) +
    xlim(0, 1000) + ylim(0,4000) +
    labs(x="Length (\mu m)", y="Optical Density", title="Sorter Data") +
    facet_grid(Row~Column) +
    theme_bw()
```


Other geometric objects

http://docs.ggplot2.org/current/

As always, ggplot2 is not the only way to plot data in R. Keep up with current trends.

http://flowingdata.com/

Data plotting time

https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2cheatsheet.pdf

Flow of data analysis

Tidy

7. Process

5. Present

What to do when you are lost?

http://www.r-bloggers.com

http://gettinggeneticsdone.blogspot.com

http://rseek.org

Day #3 Homework

- 1. Think about your data analysis
- 2. Finish tidying, processing, and plotting your data

