PERFORMANCE EVALUATION EXERCISES

QUEUING

Jean-Yves Le Boudec, Spring 2021

- 1. An information server can be modelled as an M/GI/1 queue. Doubling the capacity of the server would...
 - (a) \square Reduce the mean queuing time by a factor 2
 - (b) \square Reduce the mean queuing time by a factor larger than 2
 - (c) \square Reduce the mean queuing time by a factor smaller than 2
 - (d) \Box It depends on the utilization factor
- 2. The 3 curves are for an M/GI/1 queue with different distributions of the service time S. Say which curve is for which distribution.
 - **B** Rescaled Bernoulli with p=0.2, i.e. S=s with probability p=0.2 and S=0 with probability 1-p.

E Exponential

- X Y Z (a) \(\B\) \mathbf{C} Ε \mathbf{C} (b) □ B Ε Ε (c) □ C В (d) □ E В C (e) □ C Ε В (f) □ E \mathbf{C} В
- 3. Which sentences are true ? $\lambda=$ arrival rate, $\bar{S}=$ mean service time.
 - **A** For a single server queue, if $\lambda < \frac{1}{S}$ the queue has a stationary regime.
 - **B** For an M/GI/1 queue, if $\lambda < \frac{1}{S}$ the queue has a stationary regime.
 - (a) □ A

	(b)		В
	(c)		Both
	(d)		None
4.	A tra		with 200 tourists arrive at the skilift. A queue builds up. Doubling the capacity of the skilift
	(a)		Reduce the queuing time by a factor 2
	(b)		Reduce the queuing time by a factor larger than 2
	(c)		Reduce the queuing time by a factor smaller than 2
	(d)		It depends on the utilization factor
	. ,		•
_	TC1		1 - C
5.	The a	iver	rage number of customers present in an M/GI/ ∞ queue is (\bar{S} is the mean service time)
	(a)		$ar{N}=\lambdaar{S}$
	(b)		$ar{N}=rac{ ho}{1- ho}$ with $ ho=\lambdaar{S}$
	(c)		None of the above, the result depends on the distribution
	(d)		There is no closed form formula
6.	At a	GI/0	GI/1 FIFO queue, the expected waiting time for a job, given that its service time is s , is
	(a)		Independent of s
			Proportional to s
			-
	(c)	Ш	Dependent on s but not proportional (in general)
7.	At a l	M/C	GI/1 Processor Sharing queue, the expected response time for a job, given that its service time
	is s , i	is	
	(a)		Independent of s
	(b)		Proportional to s
	(c)		Dependent on s but not proportional (in general)
	(0)		Dependent on a out not proportional (in general)
8.	The I	Euro	opean Commission has 50 anti-dumping cases on file and opens 20 cases a year. What is the

average case duration?

9. The autolib company has a fleet of electric cars and one single charging station. Every car visits the charging station to charge its batteries. Only one car can be charged at a time, other cars wait in a queue. The charging time is 30 mn. Every car spends in average 2 hours when it is charged before returning to the charging station. There are N cars in total. Can you approximately plot (1) the average waiting time at the charging station (2) the intensity of visits to the charging station as a function of N? (3) Can you estimate the worst case waiting time?