Семинар 19

Конечные поля

- 0. Дано-коммутативное кольцо с единицей, без делителей нуля. Доказать, что любая конечная подгруппа мультипликативной группы обратимых элементов кольца является циклической.
- 1. Сколько существует неприводимых многочленов второй степени над конечным полем из пяти элементов?
 - 2. $\mathbb{F}_{p^m} < \mathbb{F}_{p^n} \iff m|n$. Доказать.
- 3. Пусть p нечетное простое число. Многочлен X^2+1 тогда и только тогда неприводим над полем \mathbb{F}_p , когда $p\equiv 3\mod 4$.
 - 4. Докажите, что расширение $\mathbb{F}_{p^{md}} | \mathbb{F}_{p^m}$ является простым.
- 5. Докажите, что группа $\operatorname{Gal}(\mathbb{F}_{p^{md}}|\mathbb{F}_{p^m})$ порождается автоморфизмом Фробениуса $\Phi_{p^d}: \bar{\mathbb{F}}_p \to \bar{\mathbb{F}}_p$, $\Phi_{p^d}(\alpha) = \alpha^{p^d}$.
- 6. Пусть γ образующая мультипликативной группы поля \mathbb{F}_{p^m} . Докажите, что степень γ над полем \mathbb{F}_p равна m.