Домашнее задание по астрофизике №3

Николай Ипатов

September 2022

Задача 1(а) 1

Эффект Сюняева-Зельдовича (1972):

$$\frac{\Delta T}{T} = \tau \frac{v}{c}.$$

Да, но это же просто добавка к изменению температуры реликтового фона в $\frac{\Delta T}{T} = au \frac{v}{c}$. Направлении скопления галактик, которое движется на нас со скоростью с...

Скорости скоплейий галактик всё-же на

кинетического СЗ-эффекта -- доли

порядок меньше (амплитуда

милликельвинов.

Вероятность рассеяния τ дается интегралом (сразу его оценим)

$$\tau = \int \sigma_t n_e(r) dr \sim \sigma_t \overline{n}_e R, \tag{2}$$

где σ_t - константа из томпсоновской теории рассеяния света на электронах, $\overline{n}_{e} \sim 10^{-2} cm^{-3}$ - характерная концентрация электронов, $R \sim 10^{25} cm$ характерный размер задачи (галактический). Оценка дает $\tau \sim 10^{-1}$. Тогда

$$v = c \frac{\Delta T}{\tau T} \approx 10^{-2} c.$$

Задача 1(б)

Из формулы очевидно, что если $\frac{\Delta T}{T}=1$, то

$$v = \frac{c}{\tau} \sim 10c. \tag{4}$$

Кажется, что это какая-то ерунда. Возможно поможет, если собрать все префакторы и как-то честнее посчитать интеграл 2, но эта задача чрезвычайно сложна.

> Вы в итоге решали не ту задачу :-\ Потому и странные ответы...