解:
$$L_1 = R_1 m R_1 \omega_1 \uparrow$$
 \downarrow $L_2 = R_2 m R_2 \omega_2 \uparrow$ \downarrow

$$\frac{\boldsymbol{L}_{2} = \boldsymbol{L}_{1}}{\Rightarrow \omega_{2} = (\frac{\boldsymbol{R}_{1}}{\boldsymbol{R}_{2}})^{2} \omega_{1}}$$

$$A = \frac{1}{2}m(R_2^2\omega_2^2 - R_1^2\omega_1^2)$$

 角动量
 动 能 动 量

 不 变 变 变

[讨论] $\vec{L}_{\alpha}\vec{L}_{A}$ 守恒否?

按 定 义

按守恒条件

L。守恒 {大小不变 rp 方向不变 ↑

合力 是有心力

 \vec{L}_A 不守恒 $\{$ 大小 不变 lp

 F_{c} \neq 0且不是有心力 θ

动量矩必须指明对哪一点

[例2-10] 已知:
$$k, m, M, \vec{v}_0, l, l_0$$
 求: $\vec{V} = ?$

解: (1) 完全非 $\rightarrow \{m, M\}$ 声守恒

 $mv_0 = (m + M)V_1$ (1)

(2) $\{m, M, 地球, 弹簧\}$: E 守恒

 $\frac{1}{2}(m + M)V_1^2 = \frac{1}{2}(m + M)V^2 + \frac{1}{2}k(l - l_0)^2$ (2)

(1) $\} \rightarrow V = \sqrt{\frac{m^2v_0^2}{(m + M)^2} - \frac{k(l - l_0)^2}{m + M}}$ (3)

 $\{m, M$ 对 o 点 $\}$: \vec{L} 守恒

 $(m + M)V_1l_0 = (m + M)Vl\sin\theta$ (4)

 $(1)(3)(4) \theta = \sin^{-1}\frac{l_0mv_0}{l\sqrt{m^2v_0^2} - k(l - l_0)^2(M + m)}$ 3

5° 动量矩(角动量)与动量(线动量)的类比

动量矩(角动量)

力 $ec{F}$

动量 \vec{p}

动量定理 $\vec{F} = \frac{dP}{dt}$

动量守恒

$$\sum \vec{F}_{y} = 0$$
 $\vec{P} =$ $\hat{P} =$

力矩
$$\vec{M} = \vec{r} \times \vec{F}$$

动量矩
$$\vec{L} = \vec{r} \times \vec{P}$$

动量矩定理
$$\bar{M} = \frac{dL}{dt}$$

动量矩守恒

$$\sum \vec{M}_{\text{sh}} = 0$$
 $\vec{L} =$ $\ddot{\mathbb{L}}$

FangYi

质点动力学(累积效应)总结

[1]累积

1	累积	对 $ec{F}$	对 $\vec{F} = m\vec{a}$
	对时间	$\vec{I} = \int_{t_1}^{t_2} \vec{F} \cdot dt$ 冲量	$\vec{I} = \Delta \vec{p}$ 动量定理
	对空间	$A = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r} \ \ \Box$	$A_{\text{inf}} = \Delta E_{k}$ 动能定理 $\mathbf{E} A_{\text{ifk}} = \Delta E_{k}$ 功能原理
→		1	$A_{\rm R} = -\Delta E_{\rm p}$ 保守力功势能关系

[2]守恒

动 量 守恒: $\vec{p} = \vec{p}_o$ 条件: $\sum \vec{F}_{y} = \mathbf{O}$ (*近似性, 方向性)

机械能守恒: $E_{t,t} = E_{t,t,0}$ 条件: $A_{t,t,k} = O(*A_{t,t,k})$

动量矩守恒: $\vec{L} = \vec{L}_0$ 条件: $\sum \vec{M}_y = 0$ 质点 $\begin{cases} \mathbf{v} & \mathbf{h} \\ \mathbf{f} & \mathbf{h} \end{cases}$ 易满足

动量定理求t 动能定理求 A x

先守恒 后累积 先功能 后动能

[3] 质心 $\vec{r}_{c} = \sum_{i \in \mathcal{F}_{i}} \frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}}$ $\sum_{i} \vec{F}_{i} = \sum_{i} m_{i} \vec{a}_{c} v_{c0} = 0$, Σ F=0,质心位置不变

质点动力学(累积效应)总结补充

[1]累积

$$\vec{J} = \int_{t_1}^{t_2} \vec{M} \cdot dt$$
 冲量矩 $\vec{J} = \Delta \vec{L}$ 动量矩定理

[2]守恒

动量矩守恒: $\vec{L} = \vec{L}_0$ 条件: $\sum M_y = 0$ 质点 $\{ \mathcal{F}_0 \}$ 为 易满足

动量(矩)定理求t、 动能定理求Δx

[讨论1]已知等边 Δ 均匀平面板 J_A ,求 J_B

[讨论2]求薄园盘 $J_{"}$

$$\begin{array}{c|c}
\mathbf{y'} & \mathbf{y} \\
\mathbf{J}_{y'} = \mathbf{J}_{y} + \mathbf{m}\mathbf{R}^{2} \\
\mathbf{J}_{y} + \mathbf{J}_{y} = \mathbf{J}_{z} = \frac{1}{2}\mathbf{m}\mathbf{R}^{2}
\end{array}
\Rightarrow \mathbf{J}_{y'} = \frac{5}{4}\mathbf{m}\mathbf{R}^{2}$$