i.

Operaciones entre vectores

1. a. i. (9,6) ii. (0, 1) iii. (-1, -1) iv. (4, 1) v.
$$\left(3, -\frac{4}{3}\right)$$

b. i.
$$(4, 2, 0)$$
 ii. $(4, -2, 1)$ iii. $(-1, 0, 0)$

3. a.
$$\vec{v} = \left(\frac{3\sqrt{2}}{2}; \frac{3\sqrt{2}}{2}\right)$$
 b. $\vec{v} = \left(1; \sqrt{3}\right)$ c. $\vec{v} = \left(-\frac{1}{2}; -\frac{\sqrt{3}}{2}\right)$

4. a.
$$\|\overrightarrow{OP}\| = \sqrt{10}$$
 $\|\overrightarrow{OQ}\| = \sqrt{10}$ $\|\overrightarrow{OR}\| = \sqrt{14}$ $\|\overrightarrow{OS}\| = \sqrt{13}$

b.
$$\|\overrightarrow{PQ}\| = 2\sqrt{5}$$

c. d(P, Q) =
$$2\sqrt{5}$$

d. d(R , S) =
$$\sqrt{17}$$

e.
$$\left(\frac{\sqrt{14}}{7}, \frac{3\sqrt{14}}{14}, \frac{\sqrt{14}}{14}\right)$$

5.
$$\left(\frac{5\sqrt{2}}{2}, \frac{5\sqrt{2}}{2}\right) y \left(-\frac{5\sqrt{2}}{2}, -\frac{5\sqrt{2}}{2}\right)$$

6. a.
$$\overrightarrow{v.u} = 5$$
, \overline{w} . $(2\overline{u} - \overline{v}) = -12$, \overline{v} . $(\overline{w} + \overline{u}) = 19$

b. El ángulo comprendido entre \overline{u} y \overline{v} es de aproximadamente 1,38 radianes. El ángulo comprendido entre \overline{v} y \overline{w} es de aproximadamente 0,886 radianes.

c.
$$\overline{u}$$
 x \overline{v} = (9, 23, 10) \overline{u} x \overline{w} = (-1, 6, 16)

d.
$$k(14, -7, 7) con k \in R$$

7. a. El área es
$$\sqrt{296}$$
 b. El área es $\frac{\sqrt{153}}{2}$

8. la fuerza resultante es de, aproximadamente, 97,72 N

Ecuación de la recta y del plano

$$X = (0 \ 2) + \lambda (2 \ -1)$$
 $\lambda \in R$ ii. $X = (0 \ 3) + \lambda (1 \ -1)$ $\lambda \in R$

iii.
$$X = \begin{pmatrix} 1 & \frac{2}{3} \end{pmatrix} + \lambda(3 \ 1) \ \lambda \in R$$
 iv. $X = \lambda(3 \ 1) \ \lambda \in R$

i.

 $X = (1 \ 3 \ -1) + \lambda \, (0 \ 1 \ 2) \ \lambda \in R \qquad \text{ ii. } X = (1 \ 2 \ -1) + \lambda \, (1 \ -1 \ 2) \quad \lambda \in R$

iii. X = $(3 \ 2 \ -1) + \lambda (1 \ 4 \ -6) \ \lambda \in R$

iv. Una posibilidad es X = (-3 2 1) + λ (2 1 0) $\lambda \in R$. No es única.

12.

i. Son concurrentes. Se intersecan en el punto (1 -2 5)

ii. Son alabeadas.

iii. Son paralelas.

iv. Son coincidentes.

14.

a. Dos puntos del plano podrían ser (1, 0, -1) y (0, 1, 0).

b. Un versor normal podría ser $\left(\frac{3\sqrt{14}}{14} \quad \frac{\sqrt{14}}{14} \quad \frac{\sqrt{14}}{7}\right)$

c. La intersección del plano con cada uno el eje x es $\left(\frac{1}{3}; 0; 0\right)$, con el eje y (9; 1; 0) y con el eje z $\left(0; 0; \frac{1}{2}\right)$

d. Con el plano xy: X = X = t(1;3;0) + (0;1;0) $t \in R$

Con el plano yz: $X = t.(0; -2; 1) + (0; 1; 0) t \in R$

Con el plano xz: $X = t.\left(1; 0; -\frac{3}{2}\right) + (0; 0; \frac{1}{2}), t \in \mathbb{R}$

e. 3x + y + 2z = 1

f. $X = (1, -1, 0) + \lambda_{(3, 1, 2)} con \lambda \in R$

15.

a. i. -x + 3y - 6z = 6 ii. -2y + z = 6

b. i. x + z = 1 ii. -13x + 6y + 11z = 1

c. y = 0

d. 2x + 4y - 3z = -18

e. x + 2y + 2z = -2

f. 2x - y + 4z = 3

16.

a. $X = \lambda (153) + (001) \text{ con } \lambda \in R$

b. $X = \lambda (-8 \ 5 \ 7) + \left(\frac{17}{7} - \frac{1}{7} \ 0\right) \text{ con } \lambda \in \mathbb{R}$

c. No hay intersección

d. (2-1 -3)

 $e.\left(0-\frac{3}{2}\ \frac{3}{2}\right)$

17.

a. Π : 5x + 2y + 7z = 19 r: $X = \lambda_{(5\ 2\ 7)} + (3\ 4\ 5) \cos \lambda \in R$

b. $M = \left(\frac{1}{2} \ 3 \ \frac{3}{2}\right)$

18. a.
$$-2x + 14y + 5z + 12 = 0$$

b. $k = \frac{7}{2}$

Espacios vectoriales, subespacios y bases

19. a. V es subespacio b. V no es subespacio c. V es subespacio d. V no es subespacio.

20. a. Si es posible b. Si es posible c. No es posible d. Si es posible

21. a. linealmente independiente b. linealmente dependiente c. li d. li

22. a. k ≠ -10 b. k = -10

23. a. $B = \{(2 \ 3)\}\ dim(S) = 1$ b. $B = \{(-3 \ 2 \ 0) \ (2 \ 0 \ 1)\}\ dim(S) = 2$ c. $B = \{(1 \ -1 \ -1)\}\ dim(S) = 1$

d. $B = \{(-1 \ 1 \ 3) (0 \ 5 \ -1)\} \ dim(S) = 2$

24. a. $B = \{(-1 \ 0 \ 1 \ 3)(2 \ 1 \ 0 \ 5)(0 \ 4 \ 8 \ -4)\} \ \dim(S) = 3$ b. k = -2

25. a. B = $\{(1 - 2 \ 1)\}\ dim(S^{\perp}) = 1$ b. B = $\{(1 \ 0 \ 0 \ 1)(1 \ -3 \ 0 \ 1)\}\ dim(S^{\perp}) = 2$ c. B = $\{ (2 \ 1 \ 0) (-1 \ 0 \ 1) \} \dim(S^{\perp}) = 2$ d. dim(S^{\perp}) = 0. S^{\perp} no tiene base

Si es un subespacio. Una base de S^{\perp} es $B = \{(1 \ 1 \ 1)\}, \dim(S^{\perp}) = 1.$ 26.