Chair Bule given the formula $f(x_{iy})$, there are 3 cases to consi.

Case 1:
$$y = y(x)$$
(ase 2: $x = x(t)$)

(a) 2:
$$x = x(t)$$
, $y = y(t)$
(a) 3: $x = x(u,v)$, $y = y(u,v)$

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

$$= > df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} dx$$

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$

$$df = \frac{\partial f}{\partial y} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}{\partial x}$$

$$df = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial x} \frac{\partial y}$$

df = 25 0x + 25 24