# SKILLS REFRESHER FOR CHAPTER 4: EXPONENTS

We list the definition and properties that are used to manipulate exponents.

### **Definition of Zero, Negative, and Fractional Exponents**

If m and n are positive integers:<sup>34</sup>

- $a^0 = 1$
- $\bullet \ a^{-n} = \frac{1}{a^n}$
- $a^{1/n} = \sqrt[n]{a}$ , the  $n^{\text{th}}$  root of a
- $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

### **Properties of Exponents**

 $\bullet \ a^m \cdot a^n = a^{m+n}$ 

For example,  $2^4 \cdot 2^3 = (2 \cdot 2 \cdot 2 \cdot 2) \cdot (2 \cdot 2 \cdot 2) = 2^7$ .

•  $\frac{a^m}{a^n} = a^{m-n}, a \neq 0$  For example,  $\frac{2^4}{2^3} = \frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2} = 2^1$ . •  $(a^m)^n = a^{mn}$  For example,  $(2^3)^2 = 2^3 \cdot 2^3 = 2^6$ .

- $\bullet (ab)^n = a^n b^n$
- $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, \quad b \neq 0$

Be aware of the following notational conventions:

$$ab^n = a(b^n), \qquad \text{but } ab^n \neq (ab)^n,$$
 
$$-b^n = -(b^n), \qquad \text{but } -b^n \neq (-b)^n,$$
 
$$-ab^n = (-a)(b^n).$$

For example,  $-2^4 = -(2^4) = -16$ , but  $(-2)^4 = (-2)(-2)(-2)(-2) = +16$ . Also, be sure to realize that for  $n \neq 1$ ,

 $(a+b)^n \neq a^n + b^n$  Power of a sum  $\neq$  Sum of powers.

#### Example 1 Evaluate without a calculator:

(a)  $(27)^{2/3}$ 

- (b)  $(4)^{-3/2}$
- (c)  $8^{1/3} 1^{1/3}$

Solution

(a) We have 
$$(27)^{2/3} = \sqrt[3]{27^2} = \sqrt[3]{729} = 9$$
, or, equivalently,  $(27)^{2/3} = (27^{1/3})^2 = (\sqrt[3]{27})^2 = 3^2 = 9$ .

(b) We have 
$$(4)^{-3/2} = (2)^{-3} = \frac{1}{2^3} = \frac{1}{8}$$
.

(c) We have 
$$8^{1/3} - 1^{1/3} = 2 - 1 = 1$$
.

<sup>&</sup>lt;sup>34</sup>We assume that the base is restricted to the values for which the power is defined.

Example 2 Use the rules of exponents to simplify the following:

(a) 
$$\frac{100x^2y^4}{5x^3y^2}$$

(b) 
$$\frac{y^4(x^3y^{-2})^2}{2x^{-1}}$$

(c) 
$$\sqrt[3]{-8x^6}$$

(b) 
$$\frac{y^4(x^3y^{-2})^2}{2x^{-1}}$$
 (c)  $\sqrt[3]{-8x^6}$  (d)  $\left(\frac{M^{1/5}}{3N^{-1/2}}\right)^2$ 

Solution

(a) We have

$$\frac{100x^2y^4}{5x^3y^2} = 20(x^{2-3})(y^{4-2}) = 20x^{-1}y^2 = \frac{20y^2}{x}.$$

(b) We have

$$\frac{y^4 \left(x^3 y^{-2}\right)^2}{2 x^{-1}} = \frac{y^4 x^6 y^{-4}}{2 x^{-1}} = \frac{y^{(4-4)} x^{(6-(-1))}}{2} = \frac{y^0 x^7}{2} = \frac{x^7}{2}.$$

(c) We have

$$\sqrt[3]{-8x^6} = \sqrt[3]{-8} \cdot \sqrt[3]{x^6} = -2x^2.$$

(d) We have

$$\left(\frac{M^{1/5}}{3N^{-1/2}}\right)^2 = \frac{\left(M^{1/5}\right)^2}{\left(3N^{-1/2}\right)^2} = \frac{M^{2/5}}{3^2N^{-1}} = \frac{M^{2/5}N}{9}.$$

Example 3 Solve for x:

(a) 
$$\frac{10x^7}{4x^2} = 37$$

(b) 
$$\frac{x^2}{3x^5} = 10$$

(c) 
$$\sqrt{9x^5} = 10$$

Solution

(a) We have

$$\frac{10x^7}{4x^2} = 37$$
$$2.5x^5 = 37$$
$$x^5 = 14.8$$
$$x = (14.8)^{1/5} = 1.714.$$

(b) We have

$$\frac{x^2}{3x^5} = 10$$

$$\frac{1}{3}x^{-3} = 10$$

$$\frac{1}{x^3} = 30$$

$$x^3 = \frac{1}{30}$$

$$x = \left(\frac{1}{30}\right)^{1/3} = 0.322.$$

### (c) We have

$$\sqrt{9x^5} = 10$$

$$3x^{5/2} = 10$$

$$x^{5/2} = \frac{10}{3}$$

$$x = \left(\frac{10}{3}\right)^{2/5} = 1.619.$$

## **Exercises to Skills for Chapter 4**

For Exercises 1–33, evaluate without a calculator.

- 1.  $(-5)^2$
- **2.** 11<sup>2</sup>
- 3.  $10^4$

- 7.  $\frac{6^4}{6^4}$  8.  $\sqrt{4}$  9.  $\sqrt{4^2}$
- **10.**  $\sqrt{4^4}$  **11.**  $\sqrt{(-4)^2}$  **12.**  $\frac{1}{7^{-2}}$

- **13.**  $\frac{2^7}{2^3}$  **14.**  $(-1)^{445}$  **15.**  $-11^2$

- **16.**  $(5^0)^3$
- **17.**  $2.1 (10^3)$  **18.**  $16^{1/2}$

- **19.**  $16^{1/4}$
- **20.**  $16^{3/4}$
- **21.**  $16^{5/4}$
- **22.**  $16^{5/2}$
- **23.**  $100^{5/2}$  **24.**  $\sqrt{(-4)^2}$
- **25.**  $(-1)^3 \sqrt{36}$  **26.**  $(0.04)^{1/2}$  **27.**  $(-8)^{2/3}$

- **28.** 3<sup>-1</sup>
- **29.**  $3^{-3/2}$  **30.**  $25^{-1}$

- 31.  $25^{-2}$
- **32.**  $(1/27)^{-1/3}$
- **33.**  $(0.125)^{1/3}$

Simplify the expressions in Exercises 34-55 and leave without radicals if possible. Assume all variables are positive.

**34.** 
$$\sqrt{x^4}$$

**35.** 
$$\sqrt{y^8}$$

**36.** 
$$\sqrt{w^8z^4}$$

37. 
$$\sqrt{x^5y^4}$$

**38.** 
$$\sqrt{49w^9}$$

**39.** 
$$\sqrt{25x^3z^4}$$

**40.** 
$$\sqrt{r^2}$$

**41.** 
$$\sqrt{r^3}$$

**42.** 
$$\sqrt{r^4}$$

**43.** 
$$\sqrt{64s^7}$$

**44.** 
$$\sqrt{50x^4y^6}$$

**45.** 
$$\sqrt{48u^{10}v^{12}y^5}$$

**4.** 
$$(-1)^{13}$$
 **5.**  $\frac{5^3}{5^2}$  **6.**  $\frac{10^8}{10^5}$  **46.**  $\sqrt{6s^2t^3v^5}\sqrt{6st^5v^3}$  **47.**  $\left(S\sqrt{16xt^2}\right)^2$ 

**47.** 
$$\left( S\sqrt{16xt^2} \right)$$

**48.** 
$$\sqrt{e^{2x}}$$

**49.** 
$$(3AB)^{-1} (A^2B^{-1})^2$$

**50.** 
$$e^{kt} \cdot e^3 \cdot e$$

**50.** 
$$e^{kt} \cdot e^3 \cdot e$$
 **51.**  $\sqrt{M+2}(2+M)^{3/2}$ 

**52.** 
$$(y^{-2}e^y)^2$$

53. 
$$\frac{a^{n+1}3^{n+1}}{a^n3^n}$$

**54.** 
$$\left(a^{-1} + b^{-1}\right)^{-1}$$

**55.** 
$$\left(\frac{35(2b+1)^9}{7(2b+1)^{-1}}\right)^2$$
 (Do not expand  $(2b+1)^9$ .)

If possible, evaluate the quantities in Exercises 56-64. Check your answers with a calculator.

**56.** 
$$(-32)^{3/5}$$
 **57.**  $-32^{3/5}$  **58.**  $-625^{3/4}$ 

**57.** 
$$-32^{3/5}$$

**58.** 
$$-625^{3/}$$

**59.** 
$$(-625)^{3/4}$$

**59.** 
$$(-625)^{3/4}$$
 **60.**  $(-1728)^{4/3}$  **61.**  $64^{-3/2}$ 

**61.** 
$$64^{-3/2}$$

**62.** 
$$-64^{3/2}$$

**62.** 
$$-64^{3/2}$$
 **63.**  $(-64)^{3/2}$  **64.**  $81^{5/4}$ 

**64.** 
$$81^{5/4}$$

In Exercises 65–66, solve for x.

**65.** 
$$7x^4 = 20x^2$$

**65.** 
$$7x^4 = 20x^2$$
 **66.**  $2(x+2)^3 = 100$ 

In Exercises 67-68, use algebra to find the point of intersection.

**67.** 



**68.** 



Are the statements in Exercises 69–74 true or false?

**69.** 
$$x^2y^5 = (xy)^{10}$$

**70.** 
$$5u^2 + 5u^3 = 10u^5$$

**71.** 
$$(3r)^2 9s^2 = 81r^2 s^2$$

**71.** 
$$(3r)^2 9s^2 = 81r^2s^2$$
 **72.**  $\sqrt[3]{-64b^3c^6} = -4bc^2$ 

**73.** 
$$-4w^2 - 3w^3 = -w^2(4+3w)$$

**74.** 
$$(u+v)^{-1} = \frac{1}{u} + \frac{1}{v}$$

Solve the equations in Exercises 75–76 in terms of r and s, given that

$$2^r = 5$$
 and  $2^s = 7$ .

**75.** 
$$2^x = 35$$
.

Let 
$$2^a=5$$
 and  $2^b=7$ . Using exponent rules, solve the equations in Exercises 77–82 in terms of  $a$  and  $b$ .

**77.** 
$$5^x = 32$$

**78.** 
$$7^x = \frac{1}{8}$$

**76.**  $2^x = 140$ .

**79.** 
$$25^x = 64$$

**80.** 
$$14^x = 16$$

**81.** 
$$5^x = 7$$

**82.** 
$$0.4^x = 49$$