

Low Dropout Regulators

Pavan Kumar Hanumolu University of Illinois, Urbana-Champaign

Updated Slides: https://uofi.box.com/CICC15-LDO

P. Hanumolu CICC 2015

Low Dropout Regulators

Role of a Low Dropout Regulator

- □ Ripple suppression
- Isolation
- Low noise

Conceptual LDO Regulator Implementation

$$V_{\text{IN}} \overset{R_{\text{IN}}}{\overset{\bullet}{\longrightarrow}} R_{\text{L}}$$

$$V_{\text{OUT}} = \frac{R_{\text{L}}}{R_{\text{IN}} + R_{\text{L}}} V_{\text{IN}}$$

$$V_{\text{OUT}} = \frac{V_{\text{IN}}}{\alpha + 1}$$

- □ Output voltage generated using a resistive divider
 - Fixed divide ratio → sensitive to load current changes
- ☐ Feedback loop regulates R_{IN} such that it is always a desired fraction of load current
 - Output voltage is independent of load current

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 3

Conceptual LDO Regulator Implementation

- \Box Feedback adjusts R_{IN} such that $V_{OUT} = V_{REF}$
 - Ideally independent of V_{IN}
- lue Output capacitor (C_O) used to "filter" ripple/noise

LDO Block Diagram

- ☐ Bandgap circuit provides fixed reference voltage
- ☐ Feedback resistors used to level shift output voltage
 - Output voltage can be varied by changing R_{F2}
- □ Variable resistor is implemented using "pass device"
 - Usually NMOS or PMOS

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 5

LDO Block Diagram

- Bandgap circuit provides fixed reference voltage
- □ Feedback resistors used to level shift output voltage
 - Output voltage can be varied by changing R_{F2}
- □ Variable resistor is implemented using "pass device"
 - Usually NMOS or PMOS
- □ This tutorial: Regulation loop design

P. Hanumolu CICC 2015

Tutorial Roadmap

- Performance metrics
- Stability
- □ Power supply rejection
- Summary

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 7

Performance Metrics

Dropout Voltage

- \Box V_{IN} - V_{OUT} at which V_{OUT} is no longer regulated
- Dropout voltage depends on pass device/load current
- ☐ Dropout voltage is in the range of 0.1 to 0.5V

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 9

Quiescent Current

- \square $I_{\mathbb{Q}}$ is mainly due to bias currents in:
 - Reference generator
 - Error amplifier
 - Feedback resistors
 - Support circuits
- $\hfill \square \hfill \hfil$

Efficiency

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 11

Efficiency

$$\mathbf{Power~efficiency}: \eta = \frac{\mathbf{I_{OUT}V_{OUT}}}{(\mathbf{I_{OUT} + I_{Q})V_{IN}}} \times \mathbf{100} \approx \frac{\mathbf{V_{OUT}}}{\mathbf{V_{IN}}} \times \mathbf{100}$$

Example:

$$egin{array}{lll} \mathbf{V_{OUT}}=\mathbf{1.8\,V}, & \mathbf{V_{IN}}=\mathbf{2.5\,V}, & \mathbf{I_{OUT}}=\mathbf{25\,mA}, & \mathbf{I_{Q}}=\mathbf{50\,\mu A} \\ \\ &\Longrightarrow \eta_{\mathrm{I}} &=& \mathbf{99.8\%} \\ &\eta &=& \mathbf{71.86\%} \end{array}$$

P. Hanumolu CICC 2015

Line Regulation

lue Measure of LDO's ability to maintain desired V_{OUT} with varying V_{IN} (static metric)

$$\label{eq:linear} \textbf{Line regulation } L_R = \frac{\Delta V_{OUT}}{\Delta V_{IN}}$$

$$\Delta V_{LR} = \Delta V_{IN} \times Line regulation$$

$$\Delta V_{LR} = [mV/V]@\Delta V_{IN} = V_1$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 13

Load Regulation

 $\hfill \square$ Measure of LDO's ability to maintain desired V_{OUT} with varying I_{OUT}

$$m Load\ regulation\ = rac{\Delta V_{OUT}}{\Delta I_{OUT}}$$

 $\Delta V_{LDR} = \Delta I_{OUT} \times Output resistance$

Line Transient Response

 $\hfill \square$ Measure of LDO's ability to maintain desired V_{OUT} with varying V_{IN} (dynamic metric)

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 15

Load Transient Response

lue Measure of LDO's ability to maintain desired V_{OUT} with varying I_{OUT} (dynamic metric)

P. Hanumolu CICC 2015

Power Supply Rejection

 $\hfill \square$ Regulator's ability to reject V_{OUT} variations due to changes in V_{IN}

- □ Similar to line regulation BUT measured vs. frequency
- ☐ Similar to line transient BUT measured for "small signal" variations

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 17

Accuracy

- ☐ Includes all non-ideal effects:
- 1. Line/load regulation
- 2. Reference voltage drift
- 3. Error amplifier offset drift
- 4. Feedback resistor tolerance

$$Accuracy \approx |\Delta V_{LR}| + |\Delta V_{LDR}| + \sqrt{\Delta V_{O,REF}^2 + \Delta V_{O,EA}^2 + \Delta V_{R}^2}$$

LDO Types

Pass device: PMOS or NMOS

Cap or Cap-less LDOs

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 19

PMOS LDO w/ Output Capacitor[1]

- PMOS pass device
 - Dropout voltage is approximately V_{DSAT} (0.1-0.4V)
- □ Output capacitor C_o placed off chip
 - Comes with ESR

Output Voltage Calculation

□ Use KCL/KVL to calculate transfer functions

$$H_{IN} = \frac{V_{OUT}}{V_{IN}} \hspace{1cm} H_{REF} = \frac{V_{OUT}}{V_{REF}}$$

$$\mathbf{V_{OUT}} = \mathbf{H_{IN}V_{IN}} + \mathbf{H_{REF}V_{REF}}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 21

Signal Flow Representation

☐ Use Mason's gain rule to find transfer functions

Mason's Gain Rule

$$H = \frac{\sum_{j} M_{j} \Delta_{j}}{\Delta}$$

H = transfer function of the system

j = index number of a forward path from input to output

 M_i = gain of forward path j from input to output

 $\Delta = 1 - \sum (\text{all loop gains})$

 $+\sum$ (nontouching loop gains multiplied two at a time)

 $-\sum$ (nontouching loop gains multiplied three at a time)

 $+\sum_{i=1}^{\infty}$ (nontouching loop gains multiplied four at a time)...

 $\Delta_i = \Delta$ calculated after excluding all feedback loops that intersect with forward path j

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 23

Mason's Gain Rule: Example

$$H = \frac{\sum_{j} M_{j} \Delta_{j}}{\Delta}$$

- M₁ = ABC
- ∆₁ = 1
- $\Delta = 1 (L_1 + L_2 + L_3) + (L_1 L_2 + L_2 L_3 + L_3 L_1) (L_1 L_2 L_3)$ = 1 - (AX+BY+CZ) + (AXBY+BYCZ+CZAX) - (AXBYCZ)

$$H = \frac{ABC}{1 - (AX + BY + CZ) + (AXBY + BYCZ + CZAX) - (AXBYCZ)}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Output Voltage Calculation (due to V_{REF})

$$\frac{\mathbf{V_{OUT}}}{\mathbf{V_{REF}}} = \frac{\mathbf{A_{EA0.g_{mp}.R_{FL}}}}{1 + \mathbf{A_{EA0.g_{mp}.R_{FL}.\beta} + R_{FL}/r_{dsp}}}$$

$$rac{ extbf{V}_{ ext{OUT}}}{ extbf{V}_{ ext{REF}}} = rac{ extbf{A}_{ ext{EA0}}. extbf{g}_{ ext{mp}}. extbf{r}_{ ext{dsp}}}{1 + extbf{A}_{ ext{EA0}}. extbf{g}_{ ext{mp}}. extbf{r}_{ ext{dsp}}.eta + extbf{r}_{ ext{dsp}}/ ext{R}_{ ext{FL}}}$$

$$\approx \frac{1}{\beta} \ \text{if} \ \mathbf{A_{EA0}.g_{mp}.R_{FL}.\beta} \gg 1$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 25

Output Voltage Calculation (due to VIN)

$$\beta = \frac{\mathbf{R_{F2}}}{\mathbf{R_{F1}} + \mathbf{R_{F2}}}$$

$$\mathbf{H_{EA}(s)} = \mathbf{A_{EA0}}$$

$$\left(\mathbf{R_{F1}}+\mathbf{R_{F2}}\right)||\mathbf{R_L}=\mathbf{R_{FL}}$$

$$\frac{\mathbf{V_{OUT}}}{\mathbf{V_{IN}}} = \frac{\mathbf{g_{mp}.R_{FL}} + 1/\mathbf{r_{dsp}R_{FL}}}{1 + \mathbf{A_{EA0}.g_{mp}.R_{FL}.\beta} + \frac{\mathbf{R_{FL}}}{\mathbf{r_{dsp}}}}$$

$$egin{split} rac{
m V_{OUT}}{
m V_{IN}} &= rac{1+
m g_{mp}r_{dsp}}{1+\left(
m A_{EA0}.g_{mp}.r_{dsp}eta+rac{
m r_{dsp}}{
m R_{FL}}
ight)} \end{split}$$

$$rac{
m V_{OUT}}{
m V_{IN}}pproxrac{1}{
m A_{EA0}.eta} \quad {
m if} \,\,
m g_{mp}r_{dsp}\gg 1$$

P. Hanumolu CICC 2015

Line Regulation

$$\begin{split} \mathbf{L_R} &= \frac{\Delta \mathbf{V_{OUT}}}{\Delta \mathbf{V_{IN}}} = \frac{1 + \mathbf{g_{mp}r_{dsp}}}{1 + \mathbf{A_{EA0}.g_{mp}.r_{dsp}.\beta}} \\ &\implies \mathbf{L_R} \approx \frac{1}{\beta \mathbf{A_{EA0}}} \\ \Delta \mathbf{V_{OUT}} &= \frac{\Delta \mathbf{V_{IN}}}{\beta \mathbf{A_{EA0}}} + \frac{(\Delta \mathbf{V_{REF}} + \Delta \mathbf{V_{OS}})}{\beta} \end{split}$$

- $lue{}$ Changes in V_{IN} suppressed by error amp. gain
- □ Reference and offset voltage drift amplified by feedback factor

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 27

Load Regulation

Output impedance lowered by loop gain

Stability

- □ Closely-spaced poles compromise stability
- Needs frequency compensation
 - Pole-zero "cancellation"
 - Pole splitting

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 29

Loop Gain

$$\begin{split} \mathbf{Loop~gain~T(s)} &= \frac{-\mathbf{V_Y}}{\mathbf{V_X}} = \mathbf{H_{EA}(s)}.\mathbf{g_{mp}}.\left[\mathbf{r_{dsp}}||\left(\mathbf{R_{F1}} + \mathbf{R_{F2}}\right)||\mathbf{Z_L}\right].\beta \\ &= \mathbf{A_{EA0}}.\mathbf{g_{mp}}.\left[\mathbf{r_{dsp}}||\left(\mathbf{R_{F1}} + \mathbf{R_{F2}}\right)\right].\beta \end{split}$$

DC loop gain $T_0 \approx A_{EA0}.g_{mp}.r_{dsp}.\beta$

Loop Gain Transfer Function

$$\mathbf{T}(\mathbf{s}) = \frac{-\mathbf{v_y}(\mathbf{s})}{\mathbf{v_x}(\mathbf{s})} = \frac{\beta \mathbf{G_{MEA}.R_{OEA}.g_{mp}.R_{out}} \left(1 - \mathbf{sC_{gdp}}/g_{mp}\right)}{1 + b\mathbf{s} + a\mathbf{s^2}}$$

$$\mathbf{R_{OUT}} = \mathbf{r_{dsp}}||\mathbf{R_L}||(\mathbf{R_{F1}} + \mathbf{R_{F2}})$$

$$\mathbf{a} = \left(\mathbf{C_O} + \mathbf{C_{gdp}}\right)\mathbf{R_{OUT}} + \left(\mathbf{C_1} + \mathbf{C_{gdp}}\right)\mathbf{R_{OEA}} + \mathbf{g_{mp}}\mathbf{R_{OUT}}\mathbf{R_{OEA}}\mathbf{C_{gdp}}$$

$$\mathbf{b} = \mathbf{R_{OEA}} \mathbf{R_{OUT}} \left(\mathbf{C_1} \mathbf{C_{gdp}} + \mathbf{C_1} \mathbf{C_O} + \mathbf{C_O} \mathbf{C_{gdp}} \right)$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 31

Approximate Pole Zero Locations

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 32

Frequency Compensation – I^[1]

☐ Introduce zero by adding series resistor R_C

$$\mathbf{Z_{out}} = \mathbf{R_{OUT}} || \left(\frac{1}{\mathbf{sC_O}} + \mathbf{R_C} \right)$$

$$=\frac{\left(1+sR_{\mathbf{C}}C_{\mathbf{O}}\right).R_{\mathbf{OUT}}}{1+s\left(R_{\mathbf{OUT}}+R_{\mathbf{C}}\right).C_{\mathbf{O}}}$$

$$\mathbf{T}(\mathbf{s}) = rac{eta.\mathbf{G_{MEA}.R_{OEA}.g_{mp}.R_{OUT}.\left(1+\mathbf{s}/\omega_{\mathbf{Z}}
ight)}}{\left(1+\mathbf{s}/\omega_{\mathbf{PH}}
ight)\left(1+\mathbf{s}/\omega_{\mathbf{PL}}
ight)}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 33

Loop Gain Bode Plot (Compensated)

$$\omega_{\mathbf{Z}} = \frac{1}{\mathbf{R_C.C_O}}$$

$$\omega_{\mathbf{PH}} = \frac{1}{\mathbf{R_{OEA}.C_1'}}$$

$$\omega_{\mathbf{PL}} = \frac{\mathbf{1}}{\left(\mathbf{R_{\mathbf{OUT}}} + \mathbf{R_{\mathbf{C}}}\right).\mathbf{C_{\mathbf{O}}}}$$

$$oldsymbol{\Phi_{ extbf{M}}} pprox extbf{arctan}igg(rac{\omega_{ extbf{ugf}}}{\omega_{ extbf{Z}}}igg)$$

Typical LDO Implementation

- fill Choose C_O and R_{ESR} to achieve desired phase margin
- lue Vendors specify min. R_{ESR} and C_O for stable operation

Can we introduce zero without using ESR resistance?

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 35

Frequency Compensation – II^[2]

■ Introduce zero by adding feed-forward capacitor

$$\frac{\mathbf{V_X(s)}}{\mathbf{V_{OUT}(s)}} = \left(\frac{\mathbf{R_{F2}}}{\mathbf{R_{F1}} + \mathbf{R_{F2}}}\right).\left(\frac{\mathbf{1} + \mathbf{sC_{F1}}\mathbf{R_{F1}}}{\mathbf{1} + \mathbf{sC_{F1}}(\mathbf{R_{F1}}||\mathbf{R_{F2}})}\right)$$

$$\omega_{\mathbf{ZF}} = rac{\mathbf{1}}{\mathbf{R_{F1}C_{F1}}}$$

$$\omega_{\mathbf{ZF}} = rac{1}{\mathbf{R_{F1}C_{F1}}} \qquad \omega_{\mathbf{PF}} = rac{1}{(\mathbf{R_{F1}}||\mathbf{R_{F2}})\mathbf{C_{F1}}}$$

$$rac{\omega_{\mathbf{PF}}}{\omega_{\mathbf{ZF}}} = 1 + rac{\mathbf{R_{F1}}}{\mathbf{R_{F2}}} = rac{\mathbf{V_{OUT}}}{\mathbf{V_{REF}}}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

How to Eliminate ω_{PF} ?

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 37

How to Eliminate ω_{PF} ?

How to Eliminate ω_{PF} ?

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 39

How to Eliminate ω_{PF} ?

Frequency Comp. - II Implementation

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 41

VCCS Implementation

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 42

Frequency Compensation - III

- \square Make $\omega_{PH} > \omega_{uqf}$
- □ Reducing C₁ is difficult
 - C₁ is set by I_{LOAD} and V_{DSAT} of pass device
- □ Reducing R_{OEA} degrades load/line regulation

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 43

Frequency Compensation – III[3]

☐ Shield C₁ from loading EA using a buffer

$$\omega_{\mathbf{PL}} = \frac{1}{\mathbf{R_L}\mathbf{C_O}}$$

$$\omega_{\mathbf{PH}} = \frac{1}{\mathbf{R_{OEA}.C_x}} \qquad \quad \mathbf{C_x} = \mathbf{C_{OEA}} + \mathbf{C_{IBUF}} \ll \mathbf{C_1}$$

$$\omega_{PB} = rac{1}{R_B.C_1}$$
 $R_B \ll R_{OEA}$

P. Hanumolu CICC 2015

Low Dropout Regulators

Buffer Implementation

$$m R_{
m B}pprox 1/g_{mB} \propto rac{1}{(W/L)I_{
m B}}$$

- Source follower as a buffer
 - Small input capacitance
 - Lower output impedance → large power
- ☐ Use feedback to lower output impedance

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 45

Improved Buffer

$$\begin{split} \mathbf{R_B} \approx \frac{1}{\left(\mathbf{g_{mB}.R_x}\right).\mathbf{g_{mS}}} \\ = \frac{1}{\mathbf{g_{mB}.\left(\mathbf{g_{mS}.R_x}\right)}} \end{split}$$

- ☐ Shunt feedback reduces output impedance
 - Reduction factor proportional to loop gain
- Low power

Cap-less LDO

$$egin{align*} \mathbf{V_{IN}} & \omega_{\mathbf{P1}} = \omega_{\mathbf{PL}} = \frac{1}{\mathbf{R_{OEA}.(C_1 + g_{mp}.R_{OUT}.C_{gdp})}} \\ \mathbf{V_{REFO}} & \mathbf{V_{OUT}} & \omega_{\mathbf{P2}} = \omega_{\mathbf{PH}} = \frac{1}{\mathbf{R_{OUT}.C_O}} \\ \mathbf{R_{F2}} & \mathbf{C_0} & \mathbf{R_L} & \omega_{\mathbf{Z}} = \frac{\mathbf{g_{mp}}}{\mathbf{C_{gdp}}} \\ \end{array}$$

- \square C_O less than few hundred pF
 - Difficult to make output pole dominant
- Need to make EA output pole dominant
 - Miller compensation
 - Cascode compensation

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 47

Miller Compensation

- ☐ Stability is compromised at large cap loads
 - Need large compensation capacitor $(C_0 < 5C_c)$
 - Sensitive to load current variation
- □ Poor high frequency PSR

Cascode Compensation[4]

- ☐ Suppresses feed-forward path
 - Moves RHP zero to a very high frequency
- ☐ Preserves Miller multiplication of C_C
- ☐ Pushes second pole to even higher frequencies

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 49

Cascode Compensation: Intuition

$$\mathbf{I}_{\mathrm{T}} = \left[\mathbf{V}_{\mathrm{T}} - \left(-\mathbf{g}_{\mathrm{m2}} \mathbf{R}_{2} \mathbf{V}_{\mathrm{T}} \right) \right] \mathbf{C}_{\mathrm{CS}}$$

$$\mathbf{Z}_{2\mathrm{in}} = \frac{\mathbf{V}_{\mathrm{T}}}{\mathbf{I}_{\mathrm{T}}} = \frac{1}{(1 + \mathbf{g}_{\mathrm{m2}} \mathbf{R}_{2}) \mathbf{C}_{\mathrm{C}}}$$

$$\implies \omega_{\mathrm{p1}} \approx \frac{1}{\mathbf{R}_{1} \mathbf{g}_{\mathrm{m2}} \mathbf{R}_{2} \mathbf{C}_{\mathrm{C}}}$$

Cascode Compensation: Intuition

$$I_{\mathrm{T}} = \left[\mathrm{V_T} - \left(-\mathrm{g_{m2}R_2V_T} \right) \right] \mathrm{C_CS}$$
 $\mathbf{Z_{2in}} = \frac{\mathrm{V_T}}{\mathrm{I_T}} = \frac{1}{(1 + \mathrm{g_{m2}R_2}) \mathrm{C_C}}$
 $\Rightarrow \omega_{\mathrm{p1}} pprox \frac{1}{\mathrm{R_1 g_{m2} R_2 C_C}}$

$$I_T = g_{m2}(g_{m3}R_1)V_T + \frac{V_T}{R_2}$$

$$\Longrightarrow \omega_{p2} \approx \frac{g_{m2}(g_{m3}R_1)}{C_2}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 51

LDO w/ Cascode Compensation

$$T(s) = \frac{\beta.g_{mEA}.g_{mp}.R_{OEA}.R_{OUT}}{1 + s\left(R_{OEA}.C_1 + R_{OUT}.C_C + R_{OUT}.C_O + g_{mEA}.R_{OUT}.R_{OEA}.C_C\right) + s^2R_{OEA}.R_{OUT}.C_1\left(C_C + C_O\right)}$$

$$\mathbf{p_1} \approx \frac{1}{(\mathbf{R_{OEA}C_1} + \mathbf{R_{OUT}}\left(\mathbf{C_C} + \mathbf{C_O}\right) + \mathbf{g_{mp}R_{OEA}R_{OUT}C_C})}$$

$$\mathbf{p_2} \approx \frac{\mathbf{R_{OEA}C_1} + \mathbf{R_{OUT}\left(C_C + C_O\right)} + \mathbf{g_{mp}R_{OEA}R_{OUT}C_C}}{\mathbf{R_{OEA} \cdot R_{OUT} \cdot C_1\left(C_C + C_O\right)}}$$

P. Hanumolu CICC 2015

Cascode Compensation[5]

$$p_1 \approx \frac{1}{\left(R_{OEA}C_1 + R_{OUT}\left(C_C + C_O\right) + g_{mp}R_{OEA}R_{OUT}C_C\right)}$$

$$\mathbf{p_2} \approx \frac{\mathbf{R_{OEA}C_1} + \mathbf{R_{OUT}\left(C_C + C_O\right)} + \mathbf{g_{mp}R_{OEA}R_{OUT}C_C}}{\mathbf{R_{OEA} \cdot R_{OUT} \cdot C_1\left(C_C + C_O\right)}}$$

For small Co

$$p_{1} \approx \frac{1}{g_{mp}R_{OEA}R_{OUT}C_{C}} \qquad \qquad p_{2} \approx \frac{g_{mp}C_{C}}{C_{1}\left(C_{C} + C_{O}\right)}$$

$$\mathbf{p_2} pprox rac{\mathbf{g_{mp}C_C}}{\mathbf{C_1}\left(\mathbf{C_C} + \mathbf{C_O}
ight)}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 53

Cascode Compensation[5]

$$p_1 \approx \frac{1}{\left(R_{OEA}C_1 + R_{OUT}\left(C_C + C_O\right) + g_{mp}R_{OEA}R_{OUT}C_C\right)}$$

$$\mathbf{p_2} \approx \frac{\mathbf{R_{OEA}C_1} + \mathbf{R_{OUT}\left(C_C + C_O\right)} + \mathbf{g_{mp}R_{OEA}R_{OUT}C_C}}{\mathbf{R_{OEA} \cdot R_{OUT} \cdot C_1\left(C_C + C_O\right)}}$$

For large Co

$$\mathbf{p_1} \approx \frac{1}{\mathbf{R_{OUT}}\left(\mathbf{C_C} + \mathbf{C_O}\right)} \qquad \mathbf{p_2} \approx \frac{1}{\mathbf{R_{OEA}C_1}}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Stability Quality Factor

$$\mathbf{S} \equiv \mathbf{p_2}/\omega_{ ext{UGF}} \qquad rac{\partial \mathbf{S}}{\partial \mathbf{C_O}} = \mathbf{0} \implies \mathbf{C_O}^* pprox (\mathbf{g_{mp}R_1} - \mathbf{1}) \, \mathbf{C_C}$$

$$\mathbf{S_{MIN}} = \frac{4}{\mathbf{g_{m1}R_1}}.\left(\frac{\mathbf{C_C}}{\mathbf{C_1}}\right) \implies \uparrow \mathbf{C_C} \text{ or } \downarrow \mathbf{C_1}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 55

Phase Margin Vs. I_L[3]

$$\frac{\partial S}{\partial \mathbf{g_{mp}}} = \frac{4}{\mathbf{g_{m1}}R_1}\frac{C_C}{C_1}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 56

Power Supply Rejection

- ☐ Many paths from input to output
 - Reference generator
 - Error amplifier
 - Pass device
- □ Need to evaluate their combined effect on PSR

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 57

PSR Calculation

- \square PSR_{EA} = PSR of error amplifier
- \square PSR_{REF} = PSR of reference generator
- ☐ Signal flow analysis to determine overall PSR

P. Hanumolu CICC 2015

PSR Calculation

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 59

Reducing Noise Leakage from Reference

$$\left. \frac{\mathbf{V_{OUT}}}{\mathbf{V_{IN}}} \right|_{\mathbf{REF}} = \frac{\mathbf{PSR_{REF}} \cdot \mathbf{H_{EA}(s)} \cdot \mathbf{g_{mp}} \cdot \left[(\mathbf{R_{F1}} + \mathbf{R_{F2}}) \ || \mathbf{Z_L} \right]}{\mathbf{D(s)}}$$

- □ PSR_{REF} sees low pass response
- Noise leakage improved by using a low pass filter

Error Amplifier PSR (Type – A)

□ PSR_{EA} depends on amplifier topology

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 61

Error Amplifier PSR (Type - A)

□ PSR_{EA} depends on amplifier topology

$$V_{dd} \underbrace{ \begin{array}{c} i_x \sqrt{\frac{1}{g_{m3}}} \\ M_1 \\ M_2 \end{array} }_{R_x} \underbrace{ \begin{array}{c} i_{out} \sqrt{\frac{1}{g_{m3}}} \\ i_{out} \sqrt{\frac{1}{g_{m3}}} \\ N_2 \end{array} }_{R_x} \underbrace{ \begin{array}{c} i_x \sqrt{\frac{1}{g_{m3}}} \\ i_{out} \sqrt{\frac{1}{g_{m3}}} \\ N_2 \sqrt{\frac{1}{g_{m3}}} \\ N_3 \sqrt{\frac{1}{g_{m3}}} \\ N_4 \sqrt{\frac{1}{g_{m3}}} \\ N_2 \sqrt{\frac{1}{g_{m3}}} \\ N_3 \sqrt{\frac{1}{g_{m3}}} \\ N_4 \sqrt{\frac{1}{g_{m3}}} \\ N_3 \sqrt{\frac{1}{g_{m3}}} \\ N_4 \sqrt{\frac{1}{g_{m3}}} \\ N_4 \sqrt{\frac{1}{g_{m3}}} \\ N_5 \sqrt{\frac{1}{g_{m3}}} \\ N_6 \sqrt{\frac{1}{g_{m3}}} \\ N_7 \sqrt{\frac{1}{g_{m3}}} \\ N_8 \sqrt{\frac{1$$

$$i_{out} = 2i_x + \frac{v_{dd}}{r_{ds4}}$$

$$v_{dd} \underbrace{\underbrace{v_{dd}}_{r_{ds4}}} \underbrace{v_{dd}}_{r_{ds4}}$$

$$R_x \approx g_{m1}.r_{ds1}.\frac{1}{g_{m2}} + r_{ds2} \simeq 2r_{ds1}$$

$$i_x = \frac{v_{dd}}{1/g_{m3} + 2r_{ds1}} \approx \frac{v_{dd}}{2r_{ds1}}$$

$$\Longrightarrow G_M = r_{ds1} || r_{ds4}$$

Error Amplifier PSR (Type – A)

□ PSR_{FA} depends on amplifier topology

$$\frac{\mathbf{v_{out}}}{\mathbf{v_{dd}}} = -\mathbf{G_M} \!\cdot\! \mathbf{R_{out}}$$

$$\mathbf{R_{out}} = (\mathbf{r_{ds2}} || \mathbf{r_{ds4}})$$

$$i_{out} = 2i_x + \frac{v_{dd}}{r_{ds4}}$$

$$R_x \approx g_{m1}.r_{ds1}.\frac{1}{g_{m2}} + r_{ds2} \simeq 2r_{ds1}$$

$$i_x = \frac{v_{dd}}{1/g_{m3} + 2r_{ds1}} \approx \frac{v_{dd}}{2r_{ds1}}$$

$$\Rightarrow G_M = r_{ds1} || r_{ds4}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 63

Error Amplifier PSR (Type – B)

- □ None of the supply-noise appears at the output
 - $PSR = \infty$
- ☐ Good for regulator with NMOS output stage
 - Prevents noise leakage through NMOS gate

PMOS Output Stage PSR

$$rac{\mathbf{v_{out}(s)}}{\mathbf{v_{dd}(s)}} pprox \mathbf{g_{m1}\left(r_{ds1}||\mathbf{R_L}
ight)}$$

- Two scenarios for PSR calculation
- 1. Gate of M₁ not coupled to V_{DD}
 - Behaves as a common gate stage

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 65

PMOS Output Stage PSR

$$rac{\mathbf{v_{out}(s)}}{\mathbf{v_{dd}(s)}} pprox \mathbf{g_{m1}} \left(\mathbf{r_{ds1}} || \mathbf{R_L}
ight)$$

$$rac{\mathbf{v_{out}(s)}}{\mathbf{v_{dd}(s)}} = rac{\mathbf{R_L}}{\mathbf{r_{ds1}} + \mathbf{R_L}}$$

- ☐ Two scenarios for PSR calculation
- 1. Gate of M₁ not coupled to V_{DD}
 - Behaves as a common gate stage
- 2. Gate of M₁ tightly coupled to V_{DD}
 - Becomes a resistor divider

NMOS Output Stage PSR

- Two scenarios for PSR calculation
- 1. Gate of M₁ not coupled to V_{DD}
 - M₁ acts as a cascode
- 2. Gate of M₁ tightly coupled to V_{DD}
 - Behaves as a source follower

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 67

Error Amp. and Output Stage Possibilities^[6]

- □ Four possibilities
 - 1. NMOS amplifier & PMOS output stage
 - 2. NMOS amplifier & NMOS output stage
 - 3. PMOS amplifier & PMOS output stage
 - 4. PMOS amplifier & NMOS output stage

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 68

Regulator PSR_{1/2}

$$egin{aligned} \omega_{\mathbf{a}} &= rac{1}{\mathbf{r_{oa}C_C}} \ & \ \omega_{\mathbf{o}} &= rac{1}{\left(\mathbf{r_{dsP}} \mid\mid \mathbf{R_L}\right)\mathbf{C_D}} \ & \ \mathbf{A_a} &= \mathbf{g_{ma}r_{oa}} \ & \ \mathbf{A_o} &= \mathbf{g_{mP}}\left(\mathbf{r_{dsP}} \mid\mid \mathbf{r_{vco}}
ight) \end{aligned}$$

$$Sv_{dd} = \frac{R_L}{R_L + r_{dsP}}$$

$$rac{\mathbf{v_{out}(s)}}{\mathbf{v_{dd}(s)}} = rac{\mathbf{S_{V_{dd}}}\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{a}}}
ight)}{\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{a}}}
ight)\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{o}}}
ight) + \mathbf{A_{a}A_{o}}}$$

$$rac{\mathbf{v_{out}(s)}}{\mathbf{v_{dd}(s)}} = rac{\mathbf{S_{V_{dd}}}}{\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{o}}}
ight)\left(\mathbf{1} + \mathbf{LG(s)}
ight)}$$

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 69

Regulator PSR_{2/2}

$$rac{\mathbf{v_{out}(s)}}{\mathbf{v_{dd}(s)}} = rac{\mathbf{S_{V_{dd}}}\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{a}}}
ight)}{\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{a}}}
ight)\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{o}}}
ight) + \mathbf{A_{a}A_{o}}}$$

PSR Improvement Techniques

- 1. NMOS output stage
- 2. Make regulator output pole dominant
- 3. Cascaded regulators
- 4. Replica regulators

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 71

NMOS Output Stage LDO

- ☐ Large dropout voltage
- □ Poor low frequency PSR

PMOS LDO w/ Output Pole Dominant

- □ No peaking in the supply noise transfer curve
 - Superior supply noise rejection
- □ Needs very large capacitors: C_C and C_D

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 73

Cascaded LDOs

 $\mathrm{PSR}\;[\mathrm{dB}] = \mathrm{PSR}_1\;[\mathrm{dB}] + \mathrm{PSR}_2\;[\mathrm{dB}]$

 $\label{eq:vode_vode} \text{Dropout voltage } V_{OD} = V_{OD1} + V_{OD2}$

- □ Dropout voltage traded for PSR
- □ Co-optimize the regulators for best PSR

P. Hanumolu CICC 2015 Low Dropout Regulators Page 74

Replica-based LDO^{[7],[8]}

- Indirect output regulation
 - Only scaled replica output is regulated
 - Accuracy depends on matching
- ☐ Stability independent of the load
 - Variable load outside the feedback loop
- Exhibits superior PSR performance

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 75

Replica-based LDO PSR_{1/2}

$$\mathbf{S_{M}} = \frac{\mathbf{R_{L}}}{\mathbf{R_{L}} + \mathbf{r_{dsM}}}$$

$$rac{\mathbf{v_{out}(s)}}{\mathbf{v_{dd}(s)}} = rac{\mathbf{S_M} \left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{a}}}
ight) \left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{o}}}
ight)}{\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{d}}}
ight) \left[\left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{a}}}
ight) \left(\mathbf{1} + rac{\mathbf{s}}{\omega_{\mathbf{o}}}
ight) + \mathbf{A_a}\mathbf{A_o}
ight]}$$

$$\frac{\mathbf{v_{out}(s)}}{\mathbf{v_{dd}(s)}} = \frac{\mathbf{S_M}}{\left(\mathbf{1} + \frac{\mathbf{s}}{\omega_{\mathbf{d}}}\right) \left(\mathbf{1} + \mathbf{LG(s)}\right)}$$

P. Hanumolu CICC 2015

Replica-based LDO PSR_{2/2}

- \square Large PSR improvement beyond ω_d
- $\square \omega_d > \omega_a$ eliminates "peaking"

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 77

References

- 1. ESR, Stability, and the LDO Regulator, 2002: Texas Instruments.
- 2. C. Chava and J. Silva-Martinez "A robust frequency compensation scheme for LDO voltage regulators", IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 6, pp. 1041-1050 2004.
- 3. M. Al-Shyoukh, H. Lee, R. Perez, "A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation", *IEEE J. Solid-State Circuits*, pp. 1732-1742 vol. 42, Aug. 2007.
- 4. B. K. Ahuja, "An improved frequency compensation technique for CMOS operational amplifiers", *IEEE J. Solid-State Circuits*, vol. SC-18, no. 6, pp.629 -633 1983.
- 5. R. Reay and G. Kovas, "An unconditionally stable two-stage CMOS amplifier", *IEEE J. Solid-State Circuits*, vol. 30, pp.591 -594 1995
- 6. V. Gupta, G. Rincon-Mora and P. Raha "Analysis and design of monolithic, high PSR, linear regulators for SoC applications", *Proc. IEEE Int. Syst. Chip Conf.*, pp.311 -315 2004.
- 7. G. W. den Besten and B. Nauta, "Embedded 5-V-to-3.3-V voltage regulator for supplying digital ICs in 3.3 V technology", *IEEE J. Solid-State Circuits*, vol. 33, no. 7, pp.956 -962 1998.
- 8. A. Arakali, S. Gondi, and P. Hanumolu, "Low-power supply-regulation techniques for ring oscillators in phase-locked loops using a split-tuned architecture," IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2169-2181, Aug. 2009.

Acl	know	led	gm	ents

□ Mrunmay Talegoankar, Saurabh Saxena, Seong-Joong Kim, Tianyu Wang, and Ahmed Elkholy for reviewing, providing detailed feedback and for assistance with preparation

☐ Eric Naviasky for coordination

P. Hanumolu CICC 2015

Low Dropout Regulators

Page 79