Name: SOLUTIONS

73% CLASS AVG

Read each question carefully before answering. Answer all parts. Show all work, calculations, and/or reasoning, otherwise no points will be awarded. Properly labeled loops **must** be **shown** on K-maps to receive credit. Assume that you have access to gates with as many inputs as you need. Point values are as indicated. Usage of XOR and XNOR gates is **not allowed** on this exam!

1. (5 points) Using the following K-map, find the minimum SOP expression for a hazard-free circuit.

 $F_{hazard-free} = AC+BC+A'B$

All prime implicants are required to implement a hazard-free circuit!

- 2. $F(A, B, C, D) = \Sigma m(2, 3, 6, 7, 8, 11) + \Sigma d(0, 10, 12, 13)$
 - (a) (5 points) Using a K-map, find the minimum SOP expression.

(b) (5 points) Draw the circuit diagram as a NOR-only circuit. (Use either the double prime or bubble method and show your work.)

3. $F(A, B, C, D) = \Pi M(1, 5, 8, 9, 11, 13) + \Pi D(2, 3, 6, 10, 14, 15)$

(a) (5 points) Using a K-map, find the minimum POS expression.

		A	1		
CD	00	01	11	10	
00	1		1	0	- (A'+B)
01	0	0	0	0	- (c+D')
11	×	1	X	0	
10	X	X	X	X	

(b) (5 points) Draw the circuit diagram as a NAND-only circuit. (Use either the double prime or bubble method and show your work.)

3. Use the Quine-McCluskey method to find the minimum SOP expression for the following expression. Each column containing implicants is worth 5 points. Circle all of the prime implicants in each column. This question continues on the next page.

 $F(A, B, C, D, E) = \sum m(0, 1, 9, 11, 16, 17, 23, 29, 31) + \sum d(4, 6, 13, 15, 25, 27)$

all others are redundant	
Column 3 0-1-16-17 0-16-17 0-16-17 1-9-19-25 1-9-19-15 9-11-13-15 9-11-25-27 9-13-15-29 9-13-15-29 9-13-15-29 9-13-15-29 9-25-11-15 9-25-11-15 9-25-11-29 9-25-11-29 9-25-11-29	11-15-27-31 -1-11 13-15-29-31 -11-1 13-15-29-31 -11-1 25-27-29-31 11-1
	277777
30lumn 2 0000 0000 0000 000 000 100 010 100	
1-0 0-10 0-10 1-9 1-17 1-17 1-13 1-13 1-25	11-15 11-15 13-15 13-24 15-24 25-24 25-29 23-31 24-31
Column 1 2ero 0,000000 one 1,000001 16,10000 16,100001 17,10001 17,10001 25,11001	12227

(a) (5 points) Fill out the prime implicant table.

(b) (5 points) Identify all of the essential prime implicants.

ACDE (23-31)

$$B'C'D'(0-1-16-17)$$

BE $(9-11-13-15-25-27-29-31)$

(c) (5 points) Write the minimum SOP expression.

(d) (5 points) If this had to be implemented as a hazard-free circuit, write the corresponding circuit equation.

Fhazard-free = A'B'D'E' + ACDE + B'C'D' + C'D'E + BE

Y-b is not necessary because

it consists only of don't care terms!

4. Use the following K-map to answer the following questions. In addition, assume that logic gates cost \$0.50 each, and inputs cost \$0.20 each.

(a) (5 points) Find the minimum SOP expression.

A'C+B'C+BD'

(b) (5 points) What is the cost of this circuit? (Show how many gates and inputs are needed, then calculate the cost.)

4 gates
$$* $0.50 = $2.00$$

9 inputs $* $0.20 = 1.80

(c) (5 points) Find the factored SOP expression.

C(A'+B')+BD'

(d) (5 points) What is the cost of this circuit? (Show how many gates and inputs are needed, then calculate the cost.)

4 gates * \$0.50 = \$2.00 8 inputs * \$0.20 = \$1.60 \$3.60

(e) (5 points) Find the minimum POS expression.

(B+c) (C+D')(A'+B'+D')

(f) (5 points) What is the cost of this circuit? (Show how many gates and inputs are needed, then calculate the cost.)

(g) (5 points) Identify the lowest cost implementation of this circuit.

Factored SOP

(h) (5 points) Draw the lowest cost circuit diagram as a NAND-only circuit. (Use either the double prime or bubble method and show your work.)

(i) (5 points) Draw the lowest cost circuit diagram as a NOR-only circuit. (Use either the double prime or bubble method and show your work.)

