ESIR – CUPGE 1ère année

ELECTRONIQUE NUMERIQUE

Semestre 1 – J. Bézy-Wendling

SeqA - Chap1 01/11/2021

CODAGE DE L'INFORMATION ET

OPERATIONS ARITHMETIQUES

A. CODAGE DE L'INFORMATION

- 1. Nombres entiers
- 2. Changement de base de représentation

B. OPERATIONS ARITHMETIQUES

Addition de deux nombres binaires

A. CODAGE DE L'INFORMATION

1. Nombres entiers

- Plusieurs façons de représenter les nombres entiers :
- ✓ Base 2 (binaire) avec deux symboles (bits) : 0 et 1
- **✓ Base 8** (octal) avec huit symboles : 0,1,2,3,4,5,6,7
- ✓ **Base 10** (décimal) avec dix symboles : 0,1,2,3,4,5,6,7,8,9
- ✓ Base 16 (héxadécimal) avec seize symboles : 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F les symboles lettres valant 10, 11, 12, 13, 14 et 15 en décimal.
- Dans les quatre représentations (pondérées) :
 - ✓ Nombre N s'exprime en fonction de la base (B) et des symboles a_i :

$$N = \sum_{i=0}^{n-1} a_i B^i$$

• En pratique : symboles juxtaposés (gauche : poids forts, droite : poids faibles)

• Exemples :

$$N_2 = 10110_2 = 1.2^4 + 0.2^3 + 1.2^2 + 1.2^1 + 0.2^0 = 16 + 4 + 2 = 22_{10}$$

$$N_8 = 572_8 = 5.8^2 + 7.8^1 + 2.8^0 = 5 * 64 + 7 * 8 + 2 * 1 = 378_{10}$$

$$N_{10} = 782_{10} = 7.10^2 + 8.10^1 + 2.10^0 = 700 + 80 + 2 = 782_{10}$$

$$N_{16} = 2A9F_{16} = 2.16^3 + 10.16^2 + 9.16^1 + 15.16^0$$

$$= 2 * 4096 + 10 * 256 + 9 * 16 + 15 * 1 = 10911_{10}$$

Comptage (succession de nombres) dans les différents systèmes de représentation

Décimal	Binaire	Octal	Hexadécimal	
00	000 000	00	00	
01	000 001	01	01	
02	000 010	02	02	
03	000 011	03	03	
04	000 100	04	04	
05	000 101	05	05	
06	000 110	06	06	
07	000 111	07	07	
08	001 000	10	08	
09	001 001	11	09	
10	001 010	12	OA	
11	001 011	13	OB OC	
12	001 100	14		
13	001 101	15	OD	
14	001 110	16	OE	
15	001 111	17	OF	
16	010 000	20	10	
17	010 001	21	11	
18	010 010	22	12	
19	010 011	23	13	

..etc

2. Changement de bases de représentation

- Soit un nombre N, exprimé dans une base B₁, à convertir dans une base B₂
- Méthode dépend des bases de départ et d'arrivée

2.1. Binaire ↔ Octal / Hexadécimal

- Méthode **Binaire** → **Octal** :
 - ✓ diviser le nombre en groupes de 3 bits en partant de la virgule (parfois nécessaire d'ajouter un 0 au début ou à la fin d'un groupe de 3 bits)
 - ✓ remplacer chaque groupe de 3 bits par un nombre de 0 à 7 : $000 \rightarrow 0,001 \rightarrow 1,...,110 \rightarrow 6,111 \rightarrow 7$
- Méthode Octal → Binaire :
 - ✓ remplacer chaque chiffre octal (0.....7) par un groupe de 3 bits : $0 \rightarrow 000, 1 \rightarrow 001, ..., 7 \rightarrow 111$

• Méthode **Binaire** ↔ **Hexadécimal** :

✓ Même principe avec des groupes de 4 bits.

Exercice d'application

Donner les représentations en base 8, puis en base 16 des deux nombres suivants représentés en base 2.

- 00101011100110102
- 1101011101010001,101₂

Correction

- 1^{er} nombre:
 - ✓ En octal

✓ En hexadécimal

- 2ème nombre:
 - ✓ En octal

✓ En hexadécimal

2.2. Binaire \leftrightarrow Décimal

- Deux méthodes pour convertir un **nombre décimal entier** vers son équivalent binaire
- Méthode 1 (pour les petits nombres) :
 - ✓ Exprimer le nombre comme une somme de puissances de 2
 - ✓ Inscrire des 1 et des 0 en face des positions binaires
 - ✓ Exemple : $39_{10} = 32 + 4 + 2 + 1$ = 1x32 + 0x16 + 0x8 + 1x4 + 1x2 + 1x1
- Méthode 2 : divisions successives
 - ✓ Convient mieux aux grands nombres
 - ✓ Division du quotient par 2, jusqu'à ce qu'il soit nul
 - ✓ Nombre binaire formé par les restes des divisions (le premier reste obtenu en position poids faible, et le dernier reste obtenu en poids fort)

• Exemple Méthode 2 : (on prend les restes de bas en haut mais on les écrit de gauche à droite.

$$\frac{34}{2} = 17 + reste de 0$$

$$\frac{17}{2} = 8 + reste de 1$$

$$\frac{8}{2} = 4 + reste \ de \ 0$$

$$\frac{4}{2} = 2 + reste de 0$$

$$\frac{2}{2} = 1 + reste de 0$$

$$\frac{1}{2} = 0 + reste de 1$$

Résultat:

$$34_{10} = 100010_2$$

2.3. Décimal ↔ Octal

• Octal → Décimal :

- ✓ Multiplier chaque chiffre octal par son **poids** positionnel (**puissance de 8**)
- ✓ Additionner les nombres ainsi obtenus
- ✓ Exemple: $234_8 = 2x8^2 + 1x8^1 + 4x8^0 = 2x64 + 8 + 4 = 140_{10}$
- ✓ Exemple: $13,68=1\times8^1+3\times8^0+6\times8^{-1}=8+3+0,75=11,75_{10}$

• Décimal → Octal :

- ✓ Passage par le binaire (divisions par 2 puis conversion binaire→Octal)
- ✓ Divisions successives par 8

$$\frac{150}{8} = 18 + reste \ de \ 6$$

$$\frac{18}{8} = 2 + reste \ de \ 2$$

$$\frac{2}{8} = 0 + reste \ de \ 2$$
Résultat:

2.4. Décimal ↔ Hexadécimal

• Hexadécimal → Décimal :

- ✓ Multiplier chaque chiffre hexadécimal par son **poids** positionnel (**puissance de 16**)
- ✓ Additionner les nombres ainsi obtenus
- ✓ Exemple : $A3C_{16}=10x16^2+3x16^1+12x16^0=2560+48+12=2620_{10}$
- ✓ Exemple: $2B,8_{16}=2x16^1+11x16^0+8x16^{-1}=32+11+0,5=43,5_{10}$

• Décimal → Hexadécimal:

- ✓ Passage par le binaire (divisions par 2 puis conversion binaire→Hexa)
- ✓ Divisions successives par 16

$$rac{287}{16} = 17 + reste\ de\ 15$$
 Résultat:
$$rac{17}{16} = 1 + reste\ de\ 1$$

$$rac{1}{16} = 0 + reste\ de\ 1$$

B. OPERATIONS ARITHMETIQUES

Addition de deux nombres binaires (non signés)

Principe de l'addition

- Soit deux nombres A et B représentés sur quatre bits
- Somme de A et B : addition bit par bit, de la droite vers la gauche en propageant la retenue au rang immédiatement supérieur.

• Opérateur ADD sur mots de n bits :

• Fonctionnement défini par un algorithme : algorithme d'addition binaire

$x_i y_i r_i$	r_{i+1}	Si
0 0 0	0	0
0 0 1	0	1
010	0	1
100	0	1
0 1 1	1	0
1 1 0	1	0
101	1	0
111	1	1

Appliqué itérativement avec
$$r_0=0$$

SOM= s_{n-1} s_{n-2} ... s_0
rep= r_n ("report ou retenue")

Exercice d'application

1) Additionner les nombres binaires suivants :

$$1011\ 0111_{(2)} + 1100\ 1000_{(2)}$$

$$0111\ 1010_{(2)} + 1000\ 0101_{(2)}$$

