# Advanced Network Analysis Centrality

Olga Chyzh [www.olgachyzh.com]

### Would You Win \$1,000,000?

Suppose you are playing the following game:

If you can get all your friends to meet you at the entrance to the ROM in exactly 1 hour, you will win \$1,000,000. The catch is that you can only contact one friend, and not all your friends know each other. The picture below is a visualization of your friendship network. Which friend would you call and why?



### **Discussion**

- What criterion helps spread the message in the fewest possible steps?
- What are social science applications of this game?

## **Network Measures: Centrality**

- Centrality measures help understand which node is the most important or central in this network?
  - What do you mean by "important"? "center"?
  - Definition of "center" varies by context/purpose
  - The power a person holds in an organization may be inversely proportional to the number of keys on their keyring
    - A janitor has keys to every office, and no power
    - The CEO does not need a key: people always open the door for her
  - No unanimity on exactly what centrality is or how to measure it.

### Florentine Families

Who looks central?



# Popular Measures of Centrality

Well ... let's define centrality:

- Degree
- Closeness
- Betweenness
- Eigenvector

# Degree centrality

- Idea: The nodes with more connections to others are more central
- How to measure:
  - $\circ$  Undirected degree centrality:  $\sum_{j:j 
    eq i} y_{i,j}$
  - $\circ$  Directed outdegree centrality:  $\sum_{j:j 
    eq i} y_{j,i}$
  - $\circ$  Directed indegree centrality:  $\sum_{j:j \neq i} y_{i,j}$
- Though simple, degree is often a highly effective measure of the influence or importance of a node
  - In many situations, people with more connections tend to have more power

# Florentine Families: an Adjacency Matrix

How would you calculate Albizzi's degree centrality?

| ## |              | Acciaiuoli | Albizzi | Barbadori | Bischeri | Castellani | Ginori |
|----|--------------|------------|---------|-----------|----------|------------|--------|
| ## | Acciaiuoli   | 0          | 0       | 0         | Θ        | 0          | 0      |
| ## | Albizzi      | 0          | 0       | 0         | 0        | 0          | 1      |
| ## | Barbadori    | 0          | 0       | 0         | 0        | 1          | 0      |
| ## | Bischeri     | 0          | 0       | 0         | 0        | 0          | 0      |
| ## | Castellani   | 0          | 0       | 1         | Θ        | 0          | 0      |
| ## | Ginori       | 0          | 1       | 0         | Θ        | 0          | 0      |
| ## | Guadagni     | 0          | 1       | 0         | 1        | 0          | 0      |
| ## | Lamberteschi | 0          | 0       | 0         | Θ        | 0          | 0      |
| ## | Medici       | 1          | 1       | 1         | Θ        | 0          | 0      |
| ## | Pazzi        | 0          | 0       | 0         | Θ        | 0          | 0      |
| ## | Peruzzi      | 0          | 0       | 0         | 1        | 1          | 0      |
| ## | Pucci        | 0          | 0       | 0         | Θ        | 0          | 0      |
| ## | Ridolfi      | 0          | 0       | 0         | Θ        | 0          | 0      |
| ## | Salviati     | 0          | 0       | 0         | 0        | 0          | 0      |
| ## | Strozzi      | 0          | 0       | 0         | 1        | 1          | 0      |
| ## | Tornabuoni   | 0          | 0       | 0         | Θ        | 0          | 0      |

### Closeness centrality

- **Idea**: If a node is far away from all other nodes, then it should be less central ... or to put it another way, the more central a node, the lower its total distance to all other nodes
- How to measure:
  - $\circ$  (geodesic) distance:  $d_{i,j}$  is the minimal path length from i to j
  - $\circ$  closeness centrality:  $\frac{1}{\sum_{j:j\neq i}d_{i,j}}$
- Closeness can also be regarded as a measure of how long it will take to spread information from a node to all other nodes sequentially
- This measure won't be useful for disconnected graphs ... why?

### Betweenness

- Idea: A node is central if it acts as a bridge to other nodes
- How to measure in words:
  - For each pair of nodes, compute the geodesic distance (shortest path between them)
  - Then for each node, determine the fraction of shortest paths that go through the actor in question
  - End by summing this fraction over all pairs of nodes

### Betweenness

- How to measure a bit more formally:
  - $\circ$  Say  $g_{j,k}$  equals the number of geodesics between nodes j and k
  - $\circ$  Say  $g_{j,k}(i)$  equals the number of geodesics between nodes j and k going through i
  - $\circ$  Then betweenness centrality for actor i:  $\sum_{j < k} rac{g_{j,k}(i)}{g_{j,k}}$

### Betweenness

- ullet Simple way to think of  $rac{g_{j,k}(i)}{g_{j,k}}$  is the probability that a "message" from j to k goes through i
  - $\circ \; j$  and k have  $g_{j,k}$  routes of communication
  - $\circ \ i$  is on  $g_{i,k}(i)$  of these routes
  - $\circ$  a randomly selected path contains i with probability  $rac{g_{j,k}(i)}{g_{j,k}}$
- Examples where this might be useful?

# Comparison of these measures (Thanks to Arifuzzaman & Bhuiyan)



# Comparison of these measures (Thanks to Arifuzzaman & Bhuiyan)

|                     | Low Degree                                     | Low Closeness                                                                                                      | Low Betweenness                                                                                  |
|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| High Degree         |                                                | Embedded in cluster that is far from the rest of the network                                                       | Ego's connections are redundant - communication bypasses him/her                                 |
| High Closeness      | Key player tied to important/active alters     |                                                                                                                    | Probably multiple paths in<br>the network, ego is near<br>many people, but so are<br>many others |
| High<br>Betweenness | Ego's few ties are<br>crucial for network flow | Very rare cell. Would<br>mean that ego monopolizes<br>the ties from a small<br>number of people to many<br>others. |                                                                                                  |

### One more ... Eigenvector

- **Idea**: An actor is more central if it is connected to other more central actors
- Eigenvector centrality: centrality of each node is proportional to the sum of the centralities of its neighbors (let  $c_i^e$  denote the eigenvector centrality of actor i):

$$egin{array}{l} \circ \ c_i^e = rac{1}{\lambda} \sum_{j:j 
eq i} y_{ij} c_j^e \end{array}$$

- Based on some matrix algebra:
  - $\circ Yc^e = \lambda c^e$
  - $\circ$  Vector  $c^e$  satisfying the above equation is an **eigenvector** of Y
- Generally, there are multiple eigenvectors, centrality is taken to be the one corresponding to the largest value of  $\lambda$
- Examples of where this might be useful?

### Trillion dollar application

Google Describing PageRank: PageRank relies on the uniquely democratic nature of the web by using its vast link structure as an indicator of an individual page's value. In essence, Google interprets a link from page A to page B as a vote, by page A, for page B. But, Google looks at more than the sheer volume of votes, or links a page receives; it also analyzes the page that casts the vote. Votes cast by pages that are themselves "important" weigh more heavily and help to make other pages "important."

### Your Turn

For each of the following networks, think of the best measure of centrality to measure the amount of influence in different contexts.

- countries connected by trade relations
- a network of student friendships on a university campus
- a network of legislators connected by co-sponsorships of bills
- a network of CEOs connected based on their undergraduate institutions

# Lab: Calculate Centrality

# Working example

#### Florentine marriages (Padgett & Ansell 1993)

```
# load datasets
data(flo) #this dataset is available from the -network- package
flo[1:5,1:5]
```

| ## |            | Acciaiuoli | Albizzi | Barbadori | Bischeri | Castellani |
|----|------------|------------|---------|-----------|----------|------------|
| ## | Acciaiuoli | 0          | 0       | Θ         | Θ        | 0          |
| ## | Albizzi    | 0          | 0       | Θ         | Θ        | 0          |
| ## | Barbadori  | 0          | 0       | Θ         | Θ        | 1          |
| ## | Bischeri   | 0          | 0       | Θ         | Θ        | 0          |
| ## | Castellani | 0          | 0       | 1         | 0        | 0          |

### Florentine families

```
# convert to igraph object
library(igraph)
g = graph_from_adjacency_matrix(flo, mode='undirected', diag=FALSE)
g<- delete_vertices(g, V(g)[degree(g) == 0])
plot(g)</pre>
```

### Centrality

##

1.0000000

Lets calculate each centrality measure in R (using the igraph package)

```
sort(igraph::degree(g), decreasing=TRUE)[1:6]
      Medici
               Guadagni Strozzi Albizzi
                                              Bischeri Castellani
##
##
sort(igraph::closeness(g), decreasing=TRUE)[1:6]
      Medici
                Ridolfi Albizzi Tornabuoni Guadagni Barbadori
##
## 0.04000000 0.03571429 0.03448276 0.03448276 0.033333333 0.03125000
sort(igraph::betweenness(g), decreasing=TRUE)[1:6]
    Medici Guadagni Albizzi Salviati Ridolfi Bischeri
##
## 47.50000 23.16667 19.33333 13.00000 10.33333 9.50000
sort(igraph::eigen_centrality(g)$vector, decreasing=TRUE)[1:6]
      Medici
                Strozzi Ridolfi Tornabuoni Guadagni Bischeri
##
```

0.7937398 0.7572302

0.8272688

0.6718805 0.6572037 21/22

### Your Turn

• Plot the Florentine network, such that node size is proportionate to each centrality measure. How do they compare?