Al for Predictive Maintenance

Prognostics and Forecasting

Nirav Bhatt

Prognostics

- Prognostics and health management
 - Monitoring health of equipment/software/human being using real-time data
 - Forecast the health of equipment/software/human using the historical data
- Prognostics:
 - Predict actual remaining useful life of equipment while it is in operation
- Condition-based maintenance System:
 - Combination of hardware and software
 - Monitor, detect, isolate and predict performance of equipment and degradation
 - No interruption to the operation
 - Maintenance based on the current condition

Prognostics

- Maintenance Paradigm
- Corrective Maintenance
- Preventive Maintenance
 - Periodic interval
 - Use reliability engineering to decide proper intervals for maintenance and replacements
 - Pre Scheduled maintenance
- Predictive Maintenance (Condition-based maintenance System)

Prognostics

Cost vs Maintenance Strategies dost Cost Repair cost Prevention cost Number of failures

Prognostics and Health Management

2. An estimation of time to failure and risk for one or more existing and future failure modes

Prognostics and Health Management: an Example

Statistics on helicopter accident rate by the Civil Aviation Authority of United Kingdom before PHM (1980-1990) and after PHM (1991-2000)

	Per 100,000 Flying Hours		Per 100,000 Sectors (Flight Stages)	
	Occupant Fatal Accident Rate	Non-Fatal Reportable Accident Rate	Occupant Fatal Accident Rate	Non-Fatal Reportable Accident Rate
1981-1990 years	5.61	2.24	2.39	0.96
1991-2000 years	1.13	0.82	0.49	0.35

John Burt Associates Limited 2011 and Oil and Gas UK

- Prognostics methods:
 - Physics-based approaches
 - Data-driven approaches
- Objective:
 - To predict future damage/degradation and the remaining useful life (RUL) based on measured data
- Physics-based approaches
- Data-driven approaches

- Prognostics methods:
 - Physics-based approaches
 - Data-driven approaches

• Paris (or Paris-Erdogan) Model for damage vs cycle

- Prognostics methods:
 - Physics-based approaches
 - Data-driven approaches
- Objective:
 - To predict future damage/degradation and the remaining useful life (RUL) based on measured data
- Physics-based approaches
- Data-driven approaches

Prognostics: Benefits

- Cost: Reducing operating costs, Increased revenues
- System Design: Optimizing system design in future, Improved reliability predictions
- Production and Operation: Better process control, Safety, Improved operational reliability
- Logistic Support and maintenance: Optimized supply chain, reduced maintenance-induced faults

Prognostics: Fault to Failure

Fredicted Time

Prognostics: for improved online reliability

Prognostics: Challenges

• Optimal sensor selection and location:

Feature Extraction

Conditions for prognostics approaches

La Phylois Us dailar dairen.

Prognostics: Challenges

Uncertainties and accessing its accuracy

Prognostics: Challenges

Uncertainties and accessing its accuracy

* False alarm rate missed estimations rules correct origination rule & statical * RUL: Remaining reserved life

* Prognostic horizon, Prediction spread,

* Relutive accuracy

* \text{\$\alpha - \lambda \text{ Performelle}}.