Power Electronics

EE312

Selective Harmonic Elimination based PWM

Power Electronics Muhammad H. Rashid

FIGURE 6.32

Output voltage with two bipolar notches per half-wave.

$$v_o = \sum_{n=1,3,5,\dots}^{\infty} B_n \sin n\omega t$$

$$B_n = \frac{4V_s}{\pi} \left[\int_0^{\alpha_1} \sin n\omega t \, d(\omega t) - \int_{\alpha_1}^{\alpha_2} \sin n\omega t \, d(\omega t) + \int_{\alpha_2}^{\pi/2} \sin n\omega t \, d(\omega t) \right]$$
$$= \frac{4V_s}{\pi} \frac{1 - 2\cos n\alpha_1 + 2\cos n\alpha_2}{n}$$
(6.92)

$$a_n = \frac{1}{\pi} \int_0^{2\pi} v_o(\omega t) \cos n\omega t \, d(\omega t)$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} v_o(\omega t) \sin n\omega t \, d(\omega t)$$

FIGURE 6.32

Output voltage with two bipolar notches per half-wave.

$$B_n = \frac{4V_s}{\pi} \left[\int_0^{\alpha_1} \sin n\omega t \, d(\omega t) - \int_{\alpha_1}^{\alpha_2} \sin n\omega t \, d(\omega t) + \int_{\alpha_2}^{\pi/2} \sin n\omega t \, d(\omega t) \right]$$
$$= \frac{4V_s}{\pi} \frac{1 - 2\cos n\alpha_1 + 2\cos n\alpha_2}{n}$$
(6.92)

$$B_3 = B_5 = 0$$

$$1 - 2\cos 3\alpha_1 + 2\cos 3\alpha_2 = 0$$
 or $\alpha_2 = \frac{1}{3}\cos^{-1}(\cos 3\alpha_1 - 0.5)$

$$1 - 2\cos 5\alpha_1 + 2\cos 5\alpha_2 = 0$$
 or $\alpha_1 = \frac{1}{5}\cos^{-1}(\cos 5\alpha_2 + 0.5)$

$$\alpha_1 = 23.62^{\circ} \text{ and } \alpha_2 = 33.3^{\circ}$$

half

m notches per quarter cycle → m harmonics removable

$$B_n = \frac{4V_s}{n\pi} \left(1 - 2\cos n\alpha_1 + 2\cos n\alpha_2 - 2\cos n\alpha_3 + 2\cos n\alpha_4 - \cdots \right)$$
 (6.93)

$$B_n = \frac{4V_s}{n\pi} \left(1 - 2\cos n\alpha_1 + 2\cos n\alpha_2 - 2\cos n\alpha_3 + 2\cos n\alpha_4 - \cdots \right)$$
 (6.93)

Example 6.6 Finding the Number of Notches and Their Angles

A single-phase full-wave inverter uses multiple notches to give bipolar voltage as shown in Figure 6.32, and is required to eliminate the fifth, seventh, eleventh, and thirteenth harmonics from the output wave. Determine the number of notches and their angles.

Solution

For elimination of the fifth, seventh, eleventh, and thirteenth harmonics, $A_5 = A_7 = A_{11} = A_{13} = 0$; that is, m = 4. Four notches per quarter-wave would be required. Equation (6.93) gives the following set of nonlinear simultaneous equations to solve for the angles.

$$\begin{aligned} 1 - 2\cos 5\alpha_1 + 2\cos 5\alpha_2 - 2\cos 5\alpha_3 + 2\cos 5\alpha_4 &= 0 \\ 1 - 2\cos 7\alpha_1 + 2\cos 7\alpha_2 - 2\cos 7\alpha_3 + 2\cos 7\alpha_4 &= 0 \\ 1 - 2\cos 11\alpha_1 + 2\cos 11\alpha_2 - 2\cos 11\alpha_3 + 2\cos 11\alpha_4 &= 0 \\ 1 - 2\cos 13\alpha_1 + 2\cos 13\alpha_2 - 2\cos 13\alpha_3 + 2\cos 13\alpha_4 &= 0 \end{aligned}$$

Solution of these equations by iteration using a Mathcad program yields

$$\alpha_1 = 10.55^{\circ}$$
 $\alpha_2 = 16.09^{\circ}$
 $\alpha_3 = 30.91^{\circ}$
 $\alpha_4 = 32.87^{\circ}$

FIGURE 6.32
Output voltage with two bipolar notches per half-wave.

8-6-3 CURRENT-REGULATED (CURRENT-MODE) MODULATION

8-6-3-1 Tolerance Band Control

AC Motor Drives

Figure 14-17 Variable-frequency converter.

14-7 VARIABLE-FREQUENCY PWM-VSI DRIVES

$$P_h/m^3 = \eta \ B_{max}^{1.6} \ f \ Watts$$

$$Or$$

$$P_h \ = \eta \ B_{max}^{1.6} \ f \ V \ Watts$$

14-7 VARIABLE-FREQUENCY PWM-VSI DRIVES

$$P_h/m^3 = \eta \ B_{max}^{1.6} \ f \qquad \text{Watts}$$

$$Or$$

$$P_h \ = \eta \ B_{max}^{1.6} \ f \ V \qquad \text{Watts}$$

Eddy Current Loss,

$$\mathbf{W}_e = \mathbf{K}_e \mathbf{B}_m^2 t^2 f^2 \mathbf{V}$$

Where,

Ke = co-efficient of eddy current

B_m - maximum value of flux density in wb/m²

T - thickness of lamination in meters

F - frequency in Hz

V - volume of magnetic material in m³

14-7 VARIABLE-FREQUENCY PWM-VSI DRIVES

The input current

FIGURE 3.11

Three-phase bridge rectifier.

Figure 3.11 Three-phase diode bridge rectifier with CR load

14-7-3 ELECTROMAGNETIC BRAKING

Rectifier mode of operation of Inverters

Figure 8-3 Single-phas switch-mode inverter.

Inverter

8-7 RECTIFIER MODE OF OPERATION

$$V_{An} = (jwL)*I_A + E_A$$

Minor mistake in audio – at the start
Yahan pai samjhaata hoon kai PWM Rectifier ko
Rectifier mode main kaisai operate kerna hai

14-11 LINE-FREQUENCY VARIABLE-VOLTAGE DRIVES

14-13 SPEED CONTROL BY STATIC SLIP POWER RECOVERY

Torque speed xtic for a constant torque load.

Notice that the operating points (intersection of black lines with brown line) shift back as Rr increases.

