We present a real-world case where a state-of-the-art deep model collapses under slight input drift, uncovering a deploy Introduction Modern deep nets often boast near-perfect performance Smith2024,Lee2023, but bridging from lab to proceed the Work Numerous studies discuss domain shift Ganin2016,Tsai2022, robust training Madry2018, and transfer lear Problem Setup We train a vision transformer on CIFAR-10 with standard augmentations Krizhevsky2009. In deployment Experiments [t] [width=0.45]drift_accuracy.png[width=0.45]feature_shift.png(Left)Accuracyvs. colordriftseverity.(In We evaluate three adaptation strategies: (a) naive fine-tuning on a small unlabeled batch via pseudo-labels; (b) batch-10 Method In-domain AccDeployment Acc

Method	m-domain Acc	рерюушен Асс	
None (baseline)	94.1	72.3	
[t] Fine-tune (pseudo)	93.5	82.0	Accuracy under color drift.
BN-recalib	94.0	83.4	
Contrastive pretrain	93.8	86.1	

Discussion We pinpointed two culprits: (i) collapsed feature-covariances in early layers, (ii) overconfident pseudo-labels Conclusion Minor real-world shifts can still break today's best models. Our analysis suggests practitioners should monit