In [1]: import pandas as pd
import numpy as np

Out[4]:

	math score	reading score	writing score	placement score	club join year	placement offer count	gender
0	79.0	70.0	79.0	100.0	2018	3	male
1	77.0	64.0	68.0	NaN	2018	1	female
2	21.0	NaN	NaN	87.0	2021	3	female
3	75.0	60.0	60.0	99.0	2018	3	female
4	72.0	NaN	NaN	94.0	2018	3	male
5	69.0	61.0	69.0	97.0	2020	3	female
6	60.0	64.0	72.0	86.0	2020	3	male
7	20.0	60.0	72.0	NaN	2018	1	female
8	NaN	80.0	63.0	77.0	2020	2	female
9	72.0	78.0	78.0	75.0	2020	2	female
10	72.0	NaN	NaN	NaN	2020	1	male
11	70.0	72.0	74.0	95.0	2018	3	female
12	61.0	71.0	67.0	81.0	2020	2	female
13	52.0	71.0	77.0	81.0	2021	2	male
14	73.0	NaN	68.0	97.0	2019	3	female
15	NaN	61.0	77.0	100.0	2020	3	female
16	11.0	75.0	70.0	NaN	2018	1	male
17	66.0	62.0	NaN	78.0	2021	2	male
18	61.0	NaN	62.0	87.0	2021	3	female
19	66.0	66.0	70.0	80.0	2020	2	female
20	NaN	69.0	65.0	86.0	2021	3	female
21	24.0	72.0	75.0	NaN	2018	1	male
22	69.0	76.0	62.0	76.0	2018	2	female
23	71.0	78.0	NaN	77.0	2021	2	male
24	66.0	63.0	71.0	76.0	2019	2	female
25	62.0	NaN	80.0	88.0	2019	3	female
26	72.0	71.0	77.0	80.0	2019	2	male
27	75.0	67.0	NaN	NaN	2021	1	female
28	70.0	70.0	75.0	97.0	2018	3	male
29	71.0	64.0	67.0	87.0	2021	3	male

In [5]: df.isnull()

Out[5]:								
oucloj.		math score	reading score	writing score	placement score	club join year	placement offer count	gender
	0	False	False	False	False	False	False	False
	1	False	False	False	True	False	False	False
	2	False	True	True	False	False	False	False
	3	False	False	False	False	False	False	False
	4	False	True	True	False	False	False	False
	5	False	False	False	False	False	False	False
	6	False	False	False	False	False	False	False
	7	False	False	False	True	False	False	False
	8	True	False	False	False	False	False	False
	9	False	False	False	False	False	False	False
	10	False	True	True	True	False	False	False
	11	False	False	False	False	False	False	False
	12	False	False	False	False	False	False	False
	13	False	False	False	False	False	False	False
	14	False	True	False	False	False	False	False
	15	True	False	False	False	False	False	False
	16	False	False	False	True	False	False	False
	17	False	False	True	False	False	False	False
	18	False	True	False	False	False	False	False
	19	False	False	False	False	False	False	False
	20	True	False	False	False	False	False	False
	21	False	False	False	True	False	False	False
	22	False	False	False	False	False	False	False
	23	False	False	True	False	False	False	False
	24	False	False	False	False	False	False	False
	25	False	True	False	False	False	False	False
	26	False	False	False	False	False	False	False
	27	False	False	True	True	False	False	False
	28	False	False	False	False	False	False	False
	29	False	False	False	False	False	False	False

In [6]: series = pd.isnull(df["math score"])
 df[series]

Out[6]:

	math score	reading score	writing score	placement score	club join year	placement offer count	gender
8	NaN	80.0	63.0	77.0	2020	2	female
15	NaN	61.0	77.0	100.0	2020	3	female
20	NaN	69.0	65.0	86.0	2021	3	female

In [7]: series1 = pd.notnull(df["math score"])
 df[series1]

Out[7]:

	math score	reading score	writing score	placement score	club join year	placement offer count	gender
0	79.0	70.0	79.0	100.0	2018	3	male
1	77.0	64.0	68.0	NaN	2018	1	female
2	21.0	NaN	NaN	87.0	2021	3	female
3	75.0	60.0	60.0	99.0	2018	3	female
4	72.0	NaN	NaN	94.0	2018	3	male
5	69.0	61.0	69.0	97.0	2020	3	female
6	60.0	64.0	72.0	86.0	2020	3	male
7	20.0	60.0	72.0	NaN	2018	1	female
9	72.0	78.0	78.0	75.0	2020	2	female
10	72.0	NaN	NaN	NaN	2020	1	male
11	70.0	72.0	74.0	95.0	2018	3	female
12	61.0	71.0	67.0	81.0	2020	2	female
13	52.0	71.0	77.0	81.0	2021	2	male
14	73.0	NaN	68.0	97.0	2019	3	female
16	11.0	75.0	70.0	NaN	2018	1	male
17	66.0	62.0	NaN	78.0	2021	2	male
18	61.0	NaN	62.0	87.0	2021	3	female
19	66.0	66.0	70.0	80.0	2020	2	female
21	24.0	72.0	75.0	NaN	2018	1	male
22	69.0	76.0	62.0	76.0	2018	2	female
23	71.0	78.0	NaN	77.0	2021	2	male
24	66.0	63.0	71.0	76.0	2019	2	female
25	62.0	NaN	80.0	88.0	2019	3	female
26	72.0	71.0	77.0	80.0	2019	2	male
27	75.0	67.0	NaN	NaN	2021	1	female
28	70.0	70.0	75.0	97.0	2018	3	male
29	71.0	64.0	67.0	87.0	2021	3	male

In [8]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['gender'] = le.fit_transform(df['gender'])
newdf=df
newdf

Out[8]:

	math score	reading score	writing score	placement score	club join year	placement offer count	gender
0	79.0	70.0	79.0	100.0	2018	3	1
1	77.0	64.0	68.0	NaN	2018	1	0
2	21.0	NaN	NaN	87.0	2021	3	0
3	75.0	60.0	60.0	99.0	2018	3	0
4	72.0	NaN	NaN	94.0	2018	3	1
5	69.0	61.0	69.0	97.0	2020	3	0
6	60.0	64.0	72.0	86.0	2020	3	1
7	20.0	60.0	72.0	NaN	2018	1	0
8	NaN	80.0	63.0	77.0	2020	2	0
9	72.0	78.0	78.0	75.0	2020	2	0
10	72.0	NaN	NaN	NaN	2020	1	1
11	70.0	72.0	74.0	95.0	2018	3	0
12	61.0	71.0	67.0	81.0	2020	2	0
13	52.0	71.0	77.0	81.0	2021	2	1
14	73.0	NaN	68.0	97.0	2019	3	0
15	NaN	61.0	77.0	100.0	2020	3	0
16	11.0	75.0	70.0	NaN	2018	1	1
17	66.0	62.0	NaN	78.0	2021	2	1
18	61.0	NaN	62.0	87.0	2021	3	0
19	66.0	66.0	70.0	80.0	2020	2	0
20	NaN	69.0	65.0	86.0	2021	3	0
21	24.0	72.0	75.0	NaN	2018	1	1
22	69.0	76.0	62.0	76.0	2018	2	0
23	71.0	78.0	NaN	77.0	2021	2	1
24	66.0	63.0	71.0	76.0	2019	2	0
25	62.0	NaN	80.0	88.0	2019	3	0
26	72.0	71.0	77.0	80.0	2019	2	1
27	75.0	67.0	NaN	NaN	2021	1	0
28	70.0	70.0	75.0	97.0	2018	3	1
29	71.0	64.0	67.0	87.0	2021	3	1

```
In [54]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.read_csv(r"C:\Users\akash\Downloads\StudentPerformance.csv")
col = ['math_score', 'reading_score', 'writing_score', 'placement_score']
df.boxplot(col)
plt.show()
```



```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.read_csv(r"C:\Users\akash\Downloads\StudentPerformance.csv")
fig, ax = plt.subplots(figsize = (18,10))
ax.scatter(df['placement_score'], df['placement_offer_count'])
plt.show()
```


In [62]: print(np.where((df['placement_score']<50) & (df['placement_offer_count']>1)
 print(np.where((df['placement_score']>85) & (df['placement_offer_count']<3)</pre>

```
(array([1, 6], dtype=int64),)
(array([11], dtype=int64),)
```

```
In [63]: fig, ax = plt.subplots(figsize = (18,10))
ax.scatter(df['math_score'], df['placement_offer_count'])
plt.show()
```


In [64]: fig, ax = plt.subplots(figsize = (18,10))
ax.scatter(df['reading_score'], df['club_join_year'])
plt.show()


```
In [77]: fig, ax = plt.subplots(figsize = (18,10))
ax.scatter(df['reading_score'], df['placement_score'])
plt.show()
```



```
In [67]: # Detecting outliers using Z-Score
         from scipy import stats
         df=pd.read_csv(r"C:\Users\akash\Downloads\StudentPerformance.csv")
         z = np.abs(stats.zscore(df['math_score']))
         print(z)
         0
                0.452445
         1
                0.150815
         2
                0.271467
         3
                2.865487
         4
                0.392119
         5
                0.693749
         6
                0.211141
                0.392119
         7
         8
                2.684509
         9
                0.090489
         10
               0.633423
         11
                0.331793
         12
                0.331793
         13
                2.020922
         14
                0.211141
         15
                0.452445
         16
                0.271467
         17
                0.573097
         18
                1.960596
         19
                0.331793
         20
                0.392119
         21
                0.452445
         22
                0.392119
         23
               0.331793
         24
               1.658966
               0.512771
         25
         26
                0.090489
         27
                0.271467
         28
                0.090489
         29
                0.633423
         Name: math_score, dtype: float64
In [68]:
         threshold = 0.18
         sample_outliers = np.where(z <threshold)</pre>
         sample_outliers
Out[68]: (array([ 1,  9, 26, 28], dtype=int64),)
In [69]: # Detecting outliers using Inter Quantile Range(IQR)
         sorted_rscore= sorted(df['math_score'])
         sorted_rscore
         q1 = np.percentile(sorted_rscore, 25)
         q3 = np.percentile(sorted_rscore, 75)
         print(q1,q3)
```

```
In [70]:
         IQR = q3-q1
         lwr_bound = q1-(1.5*IQR)
         upr\_bound = q3+(1.5*IQR)
         print(lwr_bound, upr_bound)
         45.0 93.0
In [73]: r_outliers = []
         for i in sorted_rscore:
             if (i<lwr_bound or i>upr_bound):
                  r_outliers.append(i)
         print(r_outliers)
         [20, 23, 34, 95, 100]
In [75]: | col = ['math_score']
         df.boxplot(col)
         plt.show()
           100
            90
            80
            70
            60
            50
            40
                                                 Φ
            30
            20
```

```
In [76]: median=np.median(sorted_rscore)
median
```

math_score

Out[76]: 71.5

```
# Ayush_Apte_13111_TE_A1
```