Data 301 - Predicting Fire Causes

____ Edward Du, Ethan Choi, Cal Schwefler _____

Why wildfires?

- Regular wildfires ravage the Pacific Coast of the continental United States
- These fires are started for a number of reasons and force many out of their homes
- Our model could help predict the size and duration of fires in the contiguous United States based on time of year
- Heatmap suggests much larger fires in Western half of U.S.

Figure 1: Heatmap of fires from data set. Limited to contiguous 48 states by latitude/longitude and color coded by fire size

Overview of dataset

- Downloaded from Kaggle
- Contains 1.88 million geo-referenced wildfires that occurred in the US from 1992 to 2015.
- Downloaded and read as an sqlite file

```
1 import sqlite3
2 import numpy as np
3 import pandas as pd
4
5 pd.set_option('display.max_columns', None)
6
7 conn = sqlite3.connect('/content/drive/My Drive/Cal Poly/DATA 301/DATA 301 Project/FPA_FOD_20170508.sqlite')
8
9 df = pd.read_sql_query("SELECT * FROM Fires", conn)
10
11 print(df)
12
13
```

Correlations Between Each Feature in Fires Dataset

-01

- 0.0

-0.1

Contents of dataset

\Box		OBJECTID	FOD_ID	FPA_ID	SOURCE_SYSTEM_TYPE	1		SOURCE_REPO	RTING_UNIT	_NAME LOCAL_FIR	E_REPORT_ID L	OCAL_INCIDE	NT_ID	1
_	0	1	1	FS-1418826	FED		0	Plumas	National F	orest	1	P	NF-47	
	1	2	2	FS-1418827	FED		1	Eldorado	National F	orest	13		13	
	2	3	3	FS-1418835	FED		2	Eldorado	National F	orest	27		021	
	3	4	4	FS-1418845	FED		3	Eldorado	National F	orest	43		6	
	4	5	5	FS-1418847	FED		4	Eldorado	National F	orest	44		7	
	1880460	1880461	300348363	2015CAIRS29019636	NONFED		1880460		sta-Trinity		591814		09371	
	1880461	1880462	300348373	2015CAIRS29217935	NONFED		1880461		e-Calaveras		569419	0	99366	
	1880462	1880463	300348375	2015CAIRS28364460	NONFED		1880462	Tuolumne	e-Calaveras	Unit	574245	0	00158	
	1880463	1880464	300348377	2015CAIRS29218079	NONFED		1880463	Tuolumne	e-Calaveras	Unit	570462	0	00380	
	1880464	1880465	300348399	2015CAIRS26733926	NONFED		1880464	CDF - San	Bernardino	Unit	535436	0	03225	
		SOURCE SYS	TEM NWCG RE	PORTING AGENCY NWC	G_REPORTING_UNIT_ID	1		FIRE_CODE		FIRE NAME	ICS 209 INCI	DENT NUMBER	1	
	0	FS-FIRES		FS	USCAPNE		0	ВЈ8К		FOUNTAIN		None		
	1	FS-FIRES	TAT	FS	USCAENF		1	AACØ		PIGEON		None		
	2	FS-FIRES		FS	USCAENF		2	A32W		SLACK		None		
	3	FS-FIRES		FS	USCAENF		3	None		DEEF		None		
	4	FS-FIRES		FS	USCAENF		4	None		STEVENOT		None		
	1880460	ST-CA	CDF	ST/C&L	USCASHU		1880460	None		ODESSA 2		None		
	1880461	ST-CA	CDF	ST/C&L	USCATCU		1880461	None		None	19	None		
	1880462	ST-CA	CDF	ST/C&L	USCATCU		1880462	None		None		None		
	1880463	ST-CA	CDF	ST/C&L	USCATCU		1880463	None		None	ir.	None		
	1880464	ST-CA	CDF	ST/C&L	USCABDU		1880464		BARKER BL	BIG_BEAR_LAKE_		None		
		NWCG REPO	RTING UNIT	NAME SOURCE REPORT:	ING UNIT \			TCS 200 NA	ME MTDC TO	MTBS_FIRE_NAME	COMPLEY NAME	FIRE_YEAR	1	
	0		National Fo		0511		0	Nor		None	None None	2005	1	
	1		National Fo		0503		1	Nor		None	None	2003		
	2		National Fo		0503		2							
	3		National Fo		0503		3	Nor		None	None	2004		
	4		National Fo		0503		3	Nor		None	None	2004		
		LIUOI auo	Macional 10				4	Nor		None	None			
	1880460	Shac	ta-Trinity	Unit	CASHU		4000460					2045		
	1880461		-Calaveras		CATCU		1880460	Nor		None	None	2015		
	1880462		-Calaveras		CATCU		1880461	Nor		None	None	2015		
	1880463		-Calaveras				1880462	Nor		None	None	2015		
					CATCU		1880463	Nor	1 2 2 2 2 2 2	None	None	2015		
	1880464	San	Bernardino	Unit	CABDU		1880464	Non	ne None	None	None	2015		

Contents of dataset

	DISCOVERY_DATE	DISCOVERY_DOY	DISCOVERY	TIME STA	AT_CAUSE_CODE	1
0	2453403.5	33		1300	9.6	1
1	2453137.5	133		0845	1.6	1
2	2453156.5	152		1921	5.6)
3	2453184.5	180		1600	1.6	
4	2453184.5	180		1600	1.6	
	• • • •					
1880460	2457291.5	269		1726	13.6	1
1880461	2457300.5	278		0126	9.6	1
1880462	2457144.5	122		2052	13.6	
1880463	2457309.5	287		2309	13.6)
1880464	2457095.5	73		2128	9.6)
	STAT_CAUSE_DESC	R CONT_DATE	CONT_DOY	CONT_TIME	FIRE_SIZE	1
0	Miscellaneous	5 2453403.5	33.0	1730	0.10	
1	Lightning	g 2453137.5	133.0	1530	0.25	
2	Debris Burning	g 2453156.5	152.0	2024	0.10	
3	Lightning	2453189.5	185.0	1400	0.10	
4	Lightnin	g 2453189.5	185.0	1200	0.10	
1880460	Missing/Undefine	d 2457291.5	269.0	1843	0.01	
1880461	Miscellaneous	s NaN	NaN	None	0.20	
1880462	Missing/Undefine	d NaN	NaN	None	0.10	
1880463	Missing/Undefine	d NaN	NaN	None	2.00	
1880464	Miscellaneou	s NaN	NaN	None	0.10	

	FIRE SIZE CLASS	LATITUDE	LONGITUDE	OWNER CODE	OWNER DESCR	
0	Α Α	40.036944	-121.005833	5.0	USFS	
1	A	38.933056	-120.404444	5.0	USFS	
2	A	38.984167	-120.735556	13.0	STATE OR PRIVATE	
3	A	38.559167	-119.913333	5.0	USFS	
4	A	38.559167	-119.933056	5.0	USFS	

1880460	A	40.481637	-122.389375	13.0	STATE OR PRIVATE	
1880461	Α	37.617619	-120.938570	12.0	MUNICIPAL/LOCAL	
1880462	A	37.617619	-120.938570	12.0	MUNICIPAL/LOCAL	
1880463	В	37.672235	-120.898356	12.0	MUNICIPAL/LOCAL	
1880464	Α	34.263217	-116.830950	13.0	STATE OR PRIVATE	

```
STATE COUNTY FIPS CODE
                                FIPS NAME \
                                   Plumas
0
           CA
                           063
           CA
                                   Placer
                           061
                           017
                                El Dorado
                                   Alpine
                           003
                           003
                                   Alpine
                            . . .
1880460
                None
                          None
                                      None
1880461
                None
                          None
                                      None
1880462
                None
                          None
                                      None
1880463
                None
                          None
                                      None
1880464
                None
                                      None
           CA
                          None
                                                      Shape
         b'\x00\x01\xad\x10\x00\x00\xe8d\xc2\x92 @^\xc0...
         b'\x00\x01\xad\x10\x00\x00T\xb6\xeej\xe2\x19^\...
         b'\x00\x01\xad\x10\x00\x00\xd0\xa5\xa0W\x13/^\...
         b'\x00\x01\xad\x10\x00\x00\x94\xac\xa3\rt\xfa]...
         b'\x00\x01\xad\x10\x00\x00@\xe3\xaa.\xb7\xfb]\...
         b'\x00\x01\xad\x10\x00\x00P\xb8\x1e\x85\xeb\x9...
         b'\x00\x01\xad\x10\x00\x00\x00\x80\xbe\x88\x11...
```

b'\x00\x01\xad\x10\x00\x00\x80\xbe\x88\x11...
b'\x00\x01\xad\x10\x00\x00x\xba_\xaa~9^\xc0\xb...
b'\x00\x01\xad\x10\x00\x01\xa7\xe8H.5]\xc0...

[1880465 rows x 39 columns]

Initial goal (and how it failed)

- Predict fire size from given latitude
- Predict fire size from relevant factors (lat, long, state, time of year)

- Used Knn
- Had average error of about half a standard deviation
- Source of error came from larger fires that were included

Initial goal (and how it failed)

Main Issue: Heavy, Consistent Data skew to Smaller Fires

Random Forest Algorithm

- Decision Trees
 - At each node, the data is split into multiple, distinct groups.
 - Example: Decision tree with two features

A Random Forest consists of a large number of decision trees that operate together

- The uncorrelated trees act as a committee
 - A few individual errors will not skew the prediction
 - Robust to outliers

Simple Decision Tree Example

Source: towardsdatascience.com

Tally: Six 1s and Three 0s Prediction: 1

Source: towardsdatascience.com

Analyzing Data

- Using matplotlib to visualize our data
 - A significant amount of debris fires
 - Very few structure fires
 - Many fires are of unknown cause
 - An extremely large amount of smaller fires

Training Inputs

- Numerical data that described or provided information about the fire were kept.
- Columns that were empty were removed
- The labels were removed but saved to check our predictions

First Results

ML Model:

- RandomForestClassifier
- 100 estimators (trees)
 - Doubling the estimators would only yielded a 0.2% increase in mean accuracy

```
1 from sklearn.ensemble import RandomForestClassifier
2
3 rf = RandomForestClassifier(n_estimators=100)
4 rf = rf.fit(X_train, y_train)
5 print(rf.score(X_test,y_test))
6 pred = rf.predict(X_test)

0.6284010268943173
```

Interpreting Results:

Interpreting Results

- Classification Report
 - Recall for some causes are very high, some are very low
 - Some fire attributes might be too similar
- Confusion Matrix
 - Columns = predicted, rows = actual
 - Matches the classification report
 - Diagonals are the True Positives per feature

		р	recisi	on r	ecall	f1-	score	suppor	rt			
L	ightnin	g	0.	77	0.91		0.84	438	17			
	ment Us	-		40	0.23		0.29	99	55			
	Smokin			31	0.06		0.10	450				
(Campfir			56	0.40		0.47	104:				
Debris				56	0.70		0.62	3419				
	Railroa			77	0.25		0.37	15				
	Arso	100		61	0.60		0.61	279				
	Childre			44	0.22		0.29	53				
	llaneou			54	0.56		0.55	296				
	irework			64	0.53		0.58	290				
	owerlin			38				159				
		_			0.07		0.12					
100 100 70	tructur	700		38	0.07		0.11		05			
Missing/U	ndetine	d	0.	80	0.79	1	0.80	689	92			
	accurac	У					0.63	1784	92			
ma	acro av	g	0.	55	0.41		0.44	1784	92			
weigh	nted av	g	0.	61	0.63		0.61	1784	92			
[[39940]	177	22	560	836	6	546	51	1478	57	13	1	
1	2246	76	311	2332	12	935	140	2199	44	38	10	
[651 63]	213	260	354	1215	5	433	77	1201	26	4	1	
[2737 29]	217	60	4190	1340	9	560	53	1184	27	10	1	
[1103 207]	591	105	469	23899	37	4460	443	2730	104	37	14	
[246 17]	55	17	41	464	376	158	9	132	5	2	0	
[1028 131]	506	76	313	5630	14(16782	298	3001	101	25	1	
[398 55]	174	43	121	1792	3	673	1164	852	84	6	14	
[3152 1 481]	1067	130	1114	4278	23	2377	267	16575	151	48	8	
[260 13]	47	13	17	187	5	184	45	182(1083	1	3	
[268 21]	142	10	19	434	0	173	23	382	5	118) 1	
[35 6]	30	1	8	184	0	65	40	94	6	3	33	\supset
[433 5442]]	98	14	27	228	1	116	6	512	9	6	0	
5442]]												

Improving Results

- Removing feature of least importance
- Grouping up similar labels

```
1 print(rf.feature_importances_)
2
3 fire_features = fire_info.columns.to_list()
4 plt.barh(fire_features, rf.feature_importances_)
5
```

```
owner code
longitude
latitude
size
containment time
containment date
time
day of year
date
year
```

```
26 unknown = ['Miscellaneous', 'Missing/Undefined'] # 1
27 unintentional = ['Railroad', 'Powerline', 'Structure'] # 2
28 preventable = ['Debris Burning', 'Children', 'Equipment Use', 'Campfire', 'Smoking', 'Fireworks'] # 3
29 natural = ['Lightning'] # 4
30 purposeful = ['Arson'] # 5
```

Testing Set Results

- The mean accuracy increased from 62.8% to 70.9%.
- f1-scores are consistently higher in all categories except 'Unintentional'.

```
1 rf = ske.RandomForestClassifier(n_estimators=100)
2 rf = rf.fit(X_train, y_train)
3 print(rf.score(X_test,y_test))
4 pred = rf.predict(X_test)
```

0.7087981076445331

```
precision
                                recall f1-score
\Gamma
                                                    support
          Unknown
                        0.66
                                  0.59
                                             0.62
                                                      36563
   Unintentional
                        0.72
                                  0.12
                                             0.21
                                                      3623
      Preventable
                        0.67
                                  0.76
                                             0.71
                                                      66493
          Natural
                                             0.85
                        0.82
                                  0.89
                                                      43817
       Purposeful
                        0.68
                                  0.54
                                             0.60
                                                      27906
                                             0.71
                                                     178402
         accuracy
                        0.71
                                                     178402
        macro avg
                                  0.58
                                             0.60
     weighted avg
                        0.71
                                  0.71
                                             0.70
                                                     178402
    [[21438
               42 10556
                         2756
                               1771]
              439 2073
                         413
                                215]
       6223
               95 50705
                         4680
                               4790]
               14 3046 38862
       1514
                                381]
     2747
                          760 15007]]
               19 9373
```

Validation Set Results

- Our validation set results are extremely similar to our testing set results, which is a good thing.
- Most of the labels that were incorrectly classified were classified to group 3, or fires under the 'Preventable' group (shown in the histograms).

		prec	ision	recall	f1-score	support
Unk	nown		0.66	0.59	0.62	36617
Unintenti	onal		0.74	0.12	0.20	3662
Prevent	able		0.67	0.76	0.71	66425
Nat	ural		0.82	0.88	0.85	43757
Purpos	eful		0.67	0.53	0.60	27941
accu	ıracy				0.71	178402
macro	avg		0.71	0.58	0.60	178402
weighted	avg		0.71	0.71	0.70	178402
[[21651	44	10356	2790	1776]		
[466	435	2113	395	253]		
[6202	73	50519	4776	4855]		
[1604	13	3100	38683	357]		
Γ 2819	21	9346	818	1493711		

Analysis of Results

- Our model was able to predict the cause of the fire based on fire attributes, with a decent accuracy.
- Where our model struggles categorizing: 'Preventable' vs 'Unintentional'
 - Varying fire characteristics
- Improving results: predict for smaller regions

What was Learned?

Organizing your data can be challenging, especially if it is skewed

 Using different models and approaches within Machine Learning can greatly affect your results

It is important to understand your data before trying to apply a model