

Predicting YouTube Success

Jessica Ling, Edmund Doerksen, William Qi

Background:

YouTube is an ever-growing platform for:

- Influencing and advertising
- Artistic expression
- Social commentary
- Making money

With financial earnings and social influence directly tied towards viewership, there is a strong incentive to **build a strong subscriber base** on YouTube.

Our Objective:

To develop a predictive model of channel success based on actionable channel parameters.

Inputs:

- Engagement statistics
- Weekly upload schedule
- Optional personalizations
- Content type

Outputs:

Predicted Subscriber Count

Our Dataset:

1.10 million channels

- Randomly sampled from ~50 million channels on YouTube
- Represents channels up to 244 million subscribers

Sourced from Kaggle, gathered in 2024

16 Channel Parameters

Parameters

Channel Intrinsics:

- channel_id (str)
- channel_link (url)
- join_date (date)

Engagement Stats:

- subscriber count (int)
- total views (float)
- total_videos (float)
- monthly stats:
 - mean_views (float)
 - median_views (float)
 - o std_views (float)
- videos_per_week (float)

Personalizable data:

- channel_name(str)
- banner_link (url)
- description (str)
- keywords (str)
- avatar (url)
- country (str)

EDA

Important Parameters

subscriber_count: data label

- description, keywords, banner, avatar: important customizations for channel appeal
- engagement stats: measure video quality and output rate

Handling NaNs

Feature Engineering

Anticipated Challenges

Anticipated Challenges

Correlation Matrix

Modeling

Baseline Model

Linear regression

RMSE: 455656.43

• R²: 0.6731

PCA + Scaling

- PCA: Large number of features, with many highly correlated (e.g. mean_views_last_30_videos and median views last 30 videos)
- Scaling required for regularized regression and gradient boosting

Linear Regression Revisited

• Linear regression with reduced and normalized features

	Train R ²	Test R ²
Original labels	0.6904	0.6694
Log-scaled labels	0.3505	0.3517

Ridge Regression

- Varied the weight of the normalization term (α)
- Large α values required to significantly alter the regression model

α	Test Error (regular labels)	Test Error (log labels)
0.1	0.6694	0.3517
1	0.6694	0.3517
10	0.6694	0.3505
100	0.6694	0.3516
1000	0.6696	0.3516
10000	0.6716	0.3513
100000	0.6816	0.3371
1000000	0.5384	0.2193

Elastic Net Regression

 $\alpha = 0.1$

 $\alpha = 0.2$

 $\alpha = 0.5$

 $\alpha = 1.0$

 $\alpha = 2.0$

 $\alpha = 5.0$

Combination of Lasso and Ridge

0.6800

0.6816

0.6588

0.5936

0.4750

0.2866

- Test R² generally increased as weight of Lasso regularization term increased relative to weight of Ridge regularization term Average Train D2: 0 F021 Average Test D2: 0 F06F

•	Average In	am R-: 0.593 i, Averag	je rest R=1 0.0005		
•	Table: effect of L1 ratio and α on Test R ²				
		L1 ratio = 0.2	L1 ratio = 0.4	L1 ratio = 0.6	L1 ratio = 0.8

0.6761

0.6800

0.6800

0.6588

0.5935

0.4292

0.6731

0.6761

0.6811

0.6800

0.6588

0.5606

0.6784

0.6817

0.6716

0.6273

0.5297

0.3442

Random Forest

- Random Forest regression- grid search over hyperparameters for tree depth and number of trees
- Original features, original labels
- Average Train R²: 0.8427, Average Test R²: 0.7541
- Table: Effect of n_estimators and max_depth on Test R²

	max_depth=3	max_depth=5	max_depth=8	max_depth=12
n_estimators=10	0.7347	0.7583	0.7484	0.7316
n_estimators=20	0.7391	0.7486	0.7773	0.7622
n_estimators=50	0.7421	0.7466	0.7724	0.7569
n_estimators=100	0.7461	0.7607	0.7673	0.7740

Gradient Boosting

- Used grid search over max depth of 4, 6, and 8, and learning rate of 0.01, 0.1, and 0.2.
- Performance on log-transformed data was significantly better than on original subscriber count, supporting our initial hypothesis.
- Train R² of 0.84 and test R² of 0.83 no overfitting, no underfitting (!!)
- Best model out of the ones we tried able to model nonlinearities, boosting was able to reduce the bias

	Train R ²	Test R ²
Original labels	0.56	0.44
Log-scaled labels	0.84	0.83

Performance With/out Outliers

0.6694

0.6816

0.6817

0.7630

0.44

Linear Regression 2

Ridge Regression

Elastic Net

Regression

Random Forest

Gradient Boosting

Metric: Test R ²	With Outliers		Without Outliers	
	Original Labels	Log(Labels)	Original Labels	Log(Labels)

0.6071

0.6071

0.6063

0.78

0.68

0.3626

0.3626

0.3509

0.83

0.3517

0.3517

0.3400

0.83

Implications/Insights

- The factors that influence subscriber count seem to be quite complex. If you are an aspiring YouTuber, there is no one-size-fits-all formula!
- Ensemble methods proved to be an important player, as we saw random forest and gradient boosting significantly outperform linear models.
- Big takeaway don't underestimate bagging and boosting! These methods can rival neural networks, especially for tabular data. They are also more interpretable and less computationally-expensive.
- The best model was gradient boosting, with a score of 0.83. This means that the
 proportion of the variation in the subscriber count that is predictable from the features
 is quite good.

Challenges/Limitations

- Dataset skew: subscriber counts range from 0 to 244 million, but 35% of channels have less than 100 subscribers and 94% have less than 100,000
- Data perhaps not granular enough. Additionally, data was very sparse.
- RMSE not as indicative of performance when models run using log of subscriber count because of extreme outliers
 - o mean absolute error (MAE) a more useful metric instead due to punishing outliers less
- Processing limitations: runtime limits in Colab cutting long computations short

Future Work

Current model improvements

- Sentiment analysis of YouTube channel description
- More sophisticated balancing techniques
 - Webscraping top channels to augment high-subscription channels
 - SMOTE-NC
 - Further analysis on outlier effects
- Using deep neural networks to increase model complexity even more
- Joining on different datasets to get richer feature sets

Other Predictions

- Prediction of YouTube channel category given its description
- Prediction of channel age given its description

