A Special Contest on Christmas Eve

ID	Title
A	Internet service providers
В	Last digit
C	Ones
D	Volume
E	Equation
F	Y-value
G	Ohw mayn squaers
Н	U can do it

A. Internet service providers

Description

A group of N Internet Service Provider companies (ISPs) use a private communication channel that has a maximum capacity of C traffic units per second. Each company transfers T traffic units per second through the channel and gets a profit that is directly proportional to the factor T(C - TN). The problem is to compute T_{optim} , the smallest value of T that maximizes the total profit the N ISPs can get from using the channel. Notice that N, C, T, and T_{optim} are integer numbers.

Input

Each data set corresponds to an instance of the problem above and contains two integral numbers N and C with values in the range from 0 to 10^9 . The input data are separated by white spaces, are correct, and terminate with an end of file.

Output

For each data set the program computes the value of T_{optim} according to the problem instance that corresponds to the data set.

Sample Input	Sample Output
10	0
0 1	0
4 3	0
2 8	2
3 27	4
25 1000000000	20000000

B. Last digit

Description

Determine the last nonzero digit in value of expression:

$$C_n^m = \frac{n!}{m! (n-m)!}$$

Input

Each case contains a single line with n and m separated by one or several spaces; n, m are integers from 0 to 1,000,000 (inclusive), n > 0 and $n \ge m \ge 0$.

Output

Each case contains a single line with the last nonzero digit.

Sample Input	Sample Output
4 2	6

C. Ones

Description

Given any integer $0 \le n \le 10,000$ not divisible by 2 or 5, some multiple of n is a number which in decimal notation is a sequence of 1's. How many digits are in the smallest such a multiple of n?

Input

Each line contains a number n.

Output

Output the number of digits.

Sample Input	Sample Output
3	3
7	6
9901	12

D. Volume

Description

In the three-dimensional space, there are three different shapes, of which equations are as follows.

$$S_1$$
: $x^2 + y^2 = R^2$

$$S_2$$
: $x^2 + z^2 = R^2$

$$S_3$$
: $y^2 + z^2 = R^2$

Please calculate the volume of the polyhedron, surrounded by the three shapes, in which \mathbf{R} is given.

Input

Each line contains a number R, and $0.0 \le R \le 1,000.0$.

Output

Output the answer per line for each case, with 2 digits after the decimal point.

Sample Input	Sample Output
0	0.00
0.2	0.04

E. Equation

Description

We know that some positive integer x can be expressed as $x = A^2 + B^2$ (A, B are integers). Take x = 10 for example, $10 = (-3)^2 + 1^2$.

We define R(N) (N is positive) to be the total number of variable presentation of N. So R(1) = 4, which consists of $1 = 1^2 + 0^2$, $1 = (-1)^2 + 0^2$, $1 = 0^2 + 1^2$, $1 = 0^2 + (-1)^2$. Given N, you are to calculate R(N).

Input

No more than 100 test cases. Each case contains only one integer N ($N \le 10^9$).

Output

For each N, print R(N) per line.

Sample Input	Sample Output
2	4
6	0
10	8
25	12
65	16

Hint

For the 4^{th} case, (A, B) can be (0, 5), (0, -5), (5, 0), (-5, 0), (3, 4), (3, -4), (-3, 4), (-3, -4), (4, 3), (4, -3), (-4, 3), (-4, -3).

F. *Y*-value

Description

Given a permutation $a_1, a_2, ..., a_N$ of $\{1, 2, ..., N\}$, we define its **Y**-value as the amount of elements where $a_i > i$. For example, the **Y**-value of permutation $\{1, 3, 2, 4\}$ is 1, while the **Y**-value of $\{4, 3, 2, 1\}$ is 2. You are requested to find how many permutations of $\{1, 2, ..., N\}$ whose **Y**-value is exactly k.

Input

There are several test cases, and one line for each case, which contains two integers, N and k. ($1 \le N \le 1,000, 0 \le k \le N$).

Output

Output one line for each case. As the answer may be quite huge, you need to output the answer module 1,000,000,007.

Sample Input	Sample Output
3 0	1
3 1	4

Hint

There is only one permutation with Y-value 0: $\{1, 2, 3\}$, and there are four permutations with Y-value 1: $\{1, 3, 2\}$, $\{2, 1, 3\}$, $\{3, 1, 2\}$, and $\{3, 2, 1\}$.

G. Ohw mayn squaers

Description

Given a grid of $N \times M$ ($1 \le N, M \le 1,000$), and calculate how many different squares can be found in this gird.

Input

For each case, given a line of 2 integers, N and M.

Output

One integer per line, the number of squares can be found, for each case.

Sample Input	Sample Output
3 3	14

H. U can do it

Description

Determine value of the following expression.

$$\int_0^x \frac{t}{\sqrt{t^3 + 1}} dt$$

Input

Multiple test cases, each case per line, a float number x (0.0 $\leq x \leq$ 100.0). Assume that x will be processed with only 1 digit at most after the decimal point.

Output

Output the answers, processed with 4 digits after the decimal point.

Sample Input	Sample Output
0.2	0.0200