Xylorics: A New Mathematical Theory

Pu Justin Scarfy Yang

July 18, 2024

1 Introduction

Xylorics is a novel mathematical theory that explores the properties and interactions of a newly defined set of mathematical objects called *xylons*. These objects exhibit unique characteristics and operations, distinct from traditional mathematical entities. The primary goal of Xylorics is to provide new insights and tools for number theory and its applications.

2 Fundamental Concepts

2.1 Xylons

Definition 2.1. A xylon ξ is an abstract mathematical object characterized by its xylonic value and xylonic structure. We denote the n-th xylon by ξ_n .

2.2 Xylonic Operations

2.2.1 Xylonic Addition (\oplus)

Definition 2.2. *Xylonic addition is a binary operation* \oplus *on the set of xylons, defined as:*

$$\oplus: \xi_a \times \xi_b \to \xi_c$$

where $\xi_a \oplus \xi_b = \xi_c$ and ξ_c is the resultant xylon.

2.2.2 Xylonic Multiplication (⊗)

Definition 2.3. *Xylonic multiplication is a binary operation* \otimes *on the set of xylons, defined as:*

$$\otimes: \xi_a \times \xi_b \to \xi_d$$

where $\xi_a \otimes \xi_b = \xi_d$ and ξ_d is the product of ξ_a and ξ_b .

2.3 Xylonic Sequence (Ξ)

Definition 2.4. A xylonic sequence Ξ is an ordered set of xylons.

$$\Xi = \{\xi_1, \xi_2, \xi_3, \ldots\}$$

2.4 Xylonic Primes

Definition 2.5. A xylon ξ_p is called a xylonic prime if it cannot be decomposed into smaller xylons through xylonic multiplication, i.e., if there do not exist ξ_a and ξ_b such that $\xi_p = \xi_a \otimes \xi_b$, unless one of ξ_a or ξ_b is the identity element of xylonic multiplication.

2.5 Xylonic Congruences

Definition 2.6. Xylonic congruence is a relation that describes equivalence between xylons modulo another xylon.

$$\xi_a \equiv \xi_b \pmod{\xi_c}$$
 if $\exists \xi_k \text{ such that } \xi_a = \xi_b \oplus (\xi_k \otimes \xi_c)$.

3 Properties and Axioms

3.1 Axioms of Xylonic Addition

- 1. Closure: For all $\xi_a, \xi_b \in \Xi, \xi_a \oplus \xi_b \in \Xi$.
- 2. Associativity: For all $\xi_a, \xi_b, \xi_c \in \Xi, \xi_a \oplus (\xi_b \oplus \xi_c) = (\xi_a \oplus \xi_b) \oplus \xi_c$.
- 3. Commutativity: For all $\xi_a, \xi_b \in \Xi, \xi_a \oplus \xi_b = \xi_b \oplus \xi_a$.
- 4. **Identity Element:** There exists an element $\xi_0 \in \Xi$ such that for all $\xi_a \in \Xi$, $\xi_a \oplus \xi_0 = \xi_a$.
- 5. **Inverse Element:** For each $\xi_a \in \Xi$, there exists $\xi_{-a} \in \Xi$ such that $\xi_a \oplus \xi_{-a} = \xi_0$.

3.2 Axioms of Xylonic Multiplication

- 1. Closure: For all $\xi_a, \xi_b \in \Xi, \xi_a \otimes \xi_b \in \Xi$.
- 2. Associativity: For all $\xi_a, \xi_b, \xi_c \in \Xi$, $\xi_a \otimes (\xi_b \otimes \xi_c) = (\xi_a \otimes \xi_b) \otimes \xi_c$.
- 3. **Distributivity:** For all $\xi_a, \xi_b, \xi_c \in \Xi$, $\xi_a \otimes (\xi_b \oplus \xi_c) = (\xi_a \otimes \xi_b) \oplus (\xi_a \otimes \xi_c)$.
- 4. **Identity Element:** There exists an element $\xi_1 \in \Xi$ such that for all $\xi_a \in \Xi$, $\xi_a \otimes \xi_1 = \xi_a$.
- 5. Commutativity: (optional) For all $\xi_a, \xi_b \in \Xi, \xi_a \otimes \xi_b = \xi_b \otimes \xi_a$.

4 Applications in Number Theory

4.1 Xylonic Number Theory

Xylonic number theory involves the study of the properties and distributions of xylonic primes, the xylonic equivalents of classical number theory theorems, and the behavior of xylonic sequences.

4.2 Xylonic Cryptography

Xylonic cryptography explores the development of cryptographic algorithms based on the complexity of xylonic operations, potentially leading to more secure encryption methods.

4.3 Xylonic Functions

Definition 4.1. A xylonic function is a mapping $f: \Xi \to \Xi$ that respects xylonic operations. For example, a function f is said to be xylonic additive if:

$$f(\xi_a \oplus \xi_b) = f(\xi_a) \oplus f(\xi_b).$$

5 Example Notations

5.1 Xylonic Addition

$$\xi_1 \oplus \xi_2 = \xi_3$$

5.2 Xylonic Multiplication

$$\xi_1 \otimes \xi_2 = \xi_4$$

5.3 Xylonic Prime

$$\xi_p$$
 (where ξ_p is a xylonic prime)

5.4 Xylonic Congruence

$$\xi_5 \equiv \xi_2 \pmod{\xi_3}$$

6 Theorems in Xylorics

6.1 Xylonic Prime Theorem

Theorem 6.1. The distribution of xylonic primes follows a unique pattern analogous to the prime number theorem.

Proof. The proof involves defining a xylonic zeta function and analyzing its properties using xylonic calculus. This function's analytic behavior will mirror that of the classical Riemann zeta function, leading to similar distribution results for xylonic primes. \Box

6.2 Xylonic Euclidean Algorithm

Theorem 6.2. There exists an algorithm to find the greatest common divisor (GCD) of two xylons using xylonic operations.

Proof. The algorithm iteratively applies xylonic division and the xylonic remainder operation until a common xylon divisor is identified, analogous to the classical Euclidean algorithm. \Box

6.3 Xylonic Fermat's Little Theorem

Theorem 6.3. If ξ_p is a xylonic prime and ξ_a is any xylon, then

$$\xi_a^{\xi_p - 1} \equiv 1 \pmod{\xi_p}.$$

Proof. The proof follows by induction on the xylonic exponent and properties of xylonic multiplication and addition, analogous to the proof of Fermat's Little Theorem in classical number theory. \Box