

Teste de Hipótese: Teste Qui-Quadrado

Prof. Fermín Alfredo Tang Montané

Teste Qui-Quadrado

Descrição

É um teste não paramétrico, pois independe dos parâmetros populacionais (média, variância, etc.);

É utilizado quando se deseja comparar frequências observadas com frequências esperadas, estas baseadas em distribuições de probabilidades conhecidas.

O método é aplicado a dois tipos de testes:

- l°) Teste de aderência ou teste de bondade de ajustamento;
- 2°) Teste de independência de duas variáveis aleatórias.

Descrição

É utilizado para testar a natureza de uma distribuição de probabilidade amostral, ou seja, se os dados da amostra aderem a uma determinada distribuição de probabilidade (Binomial, Poisson, Hipergeométrica, Normal, etc.).

Compara frequências observadas às frequências esperadas para uma distribuição de probabilidade proposta. Para isso utiliza a seguinte estatística:

$$\chi_{\text{calc}}^2 = \sum_{i=1}^k \frac{\left(\text{fo}_i - \text{fe}_i\right)^2}{\text{fe}_i}$$

Onde:

k: é o número de observações o classes;

fo_i: é a frequência observada da classe i;

fe_i: é a frequência esperada da classe i;

 χ^2_{calc} tem aproximadamente distribuição qui-quadrado com (k-1-m) graus de liberdade (m é o número de parâmetros estimados se houver).

O valor do χ^2_{calc} será menor quanto mais próximos sejam os valores observados dos valores esperados.

Teste de Aderência Procedimento

I°) Definir as hipóteses nula e alternativa:
 H_o: os dados da amostra aderem à distribuição proposta

H₁: os dados da amostra **não aderem** à distribuição

- 2°) Fixar o nível de significância (α);
- 3°) Determinar a região de aceitação (RA) de H_o através do valor crítico (abscissa) da distribuição qui-quadrado, $\chi^2_{\rm crit} = \chi^2_{\varphi}(\alpha)$, para φ =(k-1-m) graus de liberdade e nível de significância α ; onde k é o número de classes ou observações e m é o número de parâmetros estimados a partir da amostra.
- 4°) Calcular as frequências esperadas fe_i utilizando a distribuição proposta (Probabilidade x Numero Total de Observações).
- 5°) Determinar o valor da estatística:

$$\chi_{\text{calc}}^2 = \sum_{i=1}^k \frac{\left(\text{fo}_i - \text{fe}_i\right)^2}{\text{fe}_i}$$

6°) Se $\chi_{\text{calc}}^2 \leq \chi_{\text{crit}}^2$ aceita-se H_o, caso contrário rejeita-se H_o.

Procedimento

A hipótese nula será aceita se: $\chi^2_{\text{calc}} \leq \chi^2_{\text{crit}}$

Sendo que,
$$\chi^2_{\rm crit} = \chi^2_{\varphi}(\alpha)$$

corresponde ao valor crítico (abscissa) da distribuição qui-quadrado com ϕ graus de liberdade e um nível de significância α .

Um livro foi impresso com 1000páginas. Acredita-se que o número de erros por página observado no livro, apresentado na tabela abaixo, estão distribuídos segundo a distribuição de Poisson. Utilize o nível de significância de 1% para avaliar esta hipótese.

Número de erros por página	0	1	2	3	4
Número de páginas observado (f _{oi})	500	340	120	30	10
Número de páginas esperado (f _{eij})	492	349	124	29	5

Definem-se as hipóteses nula e alternativa:

H_o: as frequências observadas distribuem-se segundo Poisson

H₁: as frequências observadas não distribuem-se segundo Poisson

Calcula-se a estatística:
$$\chi_{\text{calc}}^2 = \sum_{i=1}^k \frac{\left(\text{fo}_i - \text{fe}_i\right)^2}{\text{fe}_i}$$

$$\chi_{\text{calc}}^2 = \frac{\left(500 - 492\right)^2}{492} + \frac{\left(340 - 349\right)^2}{349} + \frac{\left(120 - 124\right)^2}{124} + \frac{\left(30 - 29\right)^2}{29} + \frac{\left(10 - 5\right)^2}{5} = 5,53$$

Calcula-se o valor crítico para a distribuição qui-quadrado: $\chi^2_{\rm crit} = \chi^2_{\varphi}(\alpha)$

Onde:

- O número de graus de liberdade φ corresponde ao número de observações ou classes menos um, (k-1)=4 (Não foram estimados parâmetros).
- O nível de significância α corresponde a 1%, ou seja, 0,01.
- O valor crítico é obtido a partir da tabela da distribuição qui-quadrado.

Resposta: O valor críticos é obtido da tabela qui-quadrado:

$$\chi_{\text{crit}}^2 = \chi_{\varphi}^2(\alpha) =$$
 $\chi_4^2(0,01) = 13,28$

Como: $\chi_{\text{calc}}^2 \le \chi_{\text{crit}}^2$ 5,53 \le 13,28

φ						α							
Τ'	0.995	0.990	0.975	0.950	0.900	0.750	0.500	0.250	0.100	0.050	0.025	0.010	0.00
1	0.000	0.000	0.001	0.004	0.015	0.102	0.455	1.323	2.71	3.84	5.02	6.63	7.88
2	0.010	0.020	0.050	0.103	0.211	0.575	1.386	2.77	4.61	5.99	7.38	9.21	10.60
3	0.072	0.115	0.216	0.352	0.584	1.213	2.37	4.11	6.25	7.81	9.35	11.34	12.8
4	0.207	0.297	0.484	0.711	1.064	1.923	3.36	5.39	7.78	9.49	11.14	13.28	14.86
5	0.412	0.554	0.831	1.145	1.61	2,67	4.35	6.63	9.24	11.07	12.83	15.09	16.75
6	0.676	0.872	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.5
7	0.989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.22	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.39	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.55	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.70	17.28	19.68	21.92	24.73	26.76
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.85	18.55	21.03	23.34	26,22	28.30
13	3.57	4.11	5.01	5.89	7.04	9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00

Logo, aceita-se a hipótese nula, ou seja, ao nível de significância de 1%, o número de erros por páginas do livro estão distribuídos segundo a distribuição de Poisson.

Exemplo 2

Utilize o teste χ² com nível de significância de 5% ou α=0,05 para testar se a distribuição abaixo, obtida em uma amostragem, é uma distribuição de Poisson, com média estimada de λ=2 chegadas/minuto.

N° Chegadas /Min	Freq. Observada	P (N° Chegadas = k)	Freq. Esperada
0	39	$2^{0}e^{-2}/0! = 0.135$	$300 \times 0,135 = 40,6$
1	91	$2^{1}e^{-2}/1! = 0.271$	300x 0,271= 81,2
2	67	$2^{2}e^{-2}/2! = 0.271$	$300 \times 0.271 = 81.2$
3	59	$2^{3}e^{-2}/3! = 0,180$	300x 0,180 = 54,1
4	28	$2^4 e^{-2}/4! = 0.090$	$300 \times 0,090 = 27,1$
5	10	$2^{5}e^{-2}/5! = 0.036$	$300 \times 0.036 = 10.8$
6	4	$2^{6}e^{-2}/6! = 0.012$	$300 \times 0,012 = 3,6$
7	2	$2^{7}e^{-2}/7! = 0,003$	$300 \times 0,003 = 1,0$
Soma	300		

$$P(n=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Como a frequência observada é menor do que 5, agrupamos a última e penúltima linhas, tanto na frequência observada como na frequência esperada.

Exemplo 2

• Calculamos:
$$\chi_{\text{calc}}^2 = \sum_{i=1}^k \frac{\left(\text{fo}_i - \text{fe}_i\right)^2}{\text{fe}_i}$$

N° Chegadas /Min	Freq. Observada	P (N° Chegadas = k)	Freq. Esperada
0	39	0,135	40,6
1	91	0,271	81,2
2	67	0,271	81,2
3	59	0,180	54,1
4	28	0,090	27,1
5	10	0,036	10,8
6 ou 7	6	0,015	4,6
Soma	300		

$$\chi_{calc}^{2} = \frac{(39-40,6)^{2}}{40,6} + \frac{(91-81,2)^{2}}{81,2} + \frac{(67-81,2)^{2}}{81,2} + \frac{(59-54,1)^{2}}{54,1} + \frac{(28-27,1)^{2}}{27,1} + \frac{(10-10,8)^{2}}{10,8} + \frac{(6-4,6)^{2}}{4,6} = 4,88$$

Exemplo 2

• Procuramos na tabela: χ^2_{crit} com φ graus de liberdade e $\alpha = 0.05$

• Onde:
$$\varphi = (N^{\circ} \text{ de Classes}) - (N^{\circ} \text{ parâmetros estimados}) - 1$$

$$\varphi = 7 - 1 - 1 = 5$$

• A média λ é o único parâmetro, logo com φ =5 e α =0,05 temos:

$$\chi_{crit}^2 = \chi_5^2(0,05) = 11,07.$$

Como:
$$\chi_{calc}^2 = 4.88 \le \chi_{crit}^2 = 11.07$$
.

 Aceita-se a hipótese de que a distribuição das chegadas segue uma distribuição de Poisson.

Exemplo 3

Utilize o teste χ^2 com nível de significância de 5% ou $(1-\gamma)=0,05$ para testar se a distribuição abaixo, obtida em uma amostragem, segue uma distribuição exponencial, com média estimada de μ =3 clientes/minuto. $\overline{x} = \frac{\sum x_i f_i}{\sum f_i}$

$$P(t_1 \le t \le t_2) = e^{-\mu t_1} - e^{-\mu t_2}$$

Duração do Serviço/Segs	Freq. Observada	P (t)	Freq. Esperada
0-30	480	$e^{-3x0}-e^{-3x0,5}=0,7769$	540 x 0,7769 = 419,53
30-60	33	$e^{-3x0,5}-e^{-3x1}=0,1733$	$540 \times 0,1733 = 93,58$
60-90	19	$e^{-3x^{1}}-e^{-3x^{1},5}=0,0387$	540x0,0387=20,90
90-120	7	$e^{-3x^{1,5}}-e^{-3x^{2}}=0,0086$	540x0,0086=4,64
120-150	1	$e^{-3x^2}-e^{-3x^2,5}=0,0019$	540x0,0019=1,03
Soma	540		

Como a frequência observada é menor do que 5, agrupamos a última e penúltima linhas, tanto na freqüência observada como na freqüência esperada.

Exemplo 3

• Calculamos:
$$\chi_{\text{calc}}^2 = \sum_{i=1}^k \frac{\left(\text{fo}_i - \text{fe}_i\right)^2}{\text{fe}_i}$$

Duração do Serviço/Segs	Freq. Observada	P (t)	Freq. Esperada
0-30	480	0,7769	419,53
30-60	33	0,1733	93,58
60-90	19	0,0387	20,90
90-150	8	0,0105	5,67
Soma	540		

$$\chi_{calc}^{2} = \frac{\left(480 - 419,53\right)^{2}}{419,53} + \frac{\left(33 - 93,58\right)^{2}}{93,58} + \frac{\left(19 - 20,9\right)^{2}}{20,9} + \frac{\left(8 - 5,67\right)^{2}}{5,67}$$
$$= 49,066$$

- Procuramos na tabela: χ^2_{crit} com φ graus de liberdade e $\alpha = 0.05$
- Onde: $\varphi = (N^{\circ} \text{ de Classes}) (N^{\circ} \text{ parâmetros estimados}) 1$ $\varphi = 4 - 1 - 1 = 2$
- A média λ é o único parâmetro, logo com ϕ =2 e α =0,05 temos:

$$\chi^2_{crit} = \chi^2_2(0,05) = 5,99.$$

Como: $\chi_{calc}^2 = 49,066 > \chi_{crit}^2 = 5,99.$

 Rejeita-se a hipótese de que a distribuição da duração do atendimento segue uma distribuição exponencial.

Exemplos

- 1) No lançamento de uma moeda 200 vezes, ocorreram 80 caras e 120 coroas. Testar se a moeda é honesta ao nível de significância de 1%.
- 2) Um dado foi lançado 300 vezes e o resultado observado está apresentado na tabela abaixo. Verifique se o dado é honesto ao nível de significância de 2,5%.

	1	2	3	4	5	6
f _{oi}	58	55	52	43	40	52
f _{ei}	50	50	50	50	50	50

Definição

Este teste é utilizado para verificar se há independência entre duas variáveis aleatórias X e Y, sendo que X tem "n" amostras e Y tem "m" amostras.

A tabela abaixo, chamada de tabela de contingência apresenta as frequências observadas.

	X ₁	X ₂	 X _n
Y ₁	f _{o11}	f _{o12}	 f _{o1n}
Y ₂	f _{o21}	f _{o22}	 f _{o2n}
Y _m	f _{om1}	f _{om2}	 f _{omn}

Essa tabela é comparada a outra tabela de contingência para frequências esperadas.

Procedimento

- I°) Definir as hipóteses nula e alternativa:
 H_o: as variáveis X e Y são independentes
 H_I: as variáveis X e Y não são independentes
- 2°) Fixar o nível de significância (α);
- 3°) Determinar a região de aceitação (RA) de H_o através do valor crítico (abscissa) da distribuição qui-quadrado, $\chi^2_{\rm crit} = \chi^2_{\varphi}(\alpha)$, para φ =(n-1)x(m-1) graus de liberdade e nível de significância α ;
- 4°) Montar a tabela de contingência das freqüências esperadas, onde cada elemento fe_{ij} é calculado como a soma dos elementos da linha i multiplicado pela soma dos elementos da coluna j dividido pelo total de observações;
- 5°) Determinar o valor da estatística:

$$\chi_{\text{calc}}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\left(\text{fo}_{ij} - \text{fe}_{ij}\right)^{2}}{\text{fe}_{ij}}$$

6°) Se $\chi_{\text{calc}}^2 \leq \chi_{\text{crit}}^2$ aceita-se H_o, caso contrário rejeita-se H_o.

Exemplo

Pesquisou-se a preferência de 4 emissoras de rádio em 3 bairros diferentes com 500 pessoas, numa determinada cidade. O resultado está apresentado na tabela abaixo. Verifique se há independência entre o bairro onde foi realizada a pesquisa e a preferência pela emissora, ao nível de significância de 10%.

Tabela de contingência das freqüências observadas (foii)

Emissora	B1	B2	В3	Σ
E1	56	42	102	200
E2	39	30	56	125
E3	19	9	22	50
E4	36	19	70	125
Σ	150	100	250	500

Teste de Independência Exemplo

Definem-se as hipóteses nula e alternativa:

H_o: as variáveis Bairro e Emissora **são** independentes

H₁: as variáveis Bairro e Emissora **não são** independentes

Calcula-se a tabela de contingência para as frequências esperadas. Cada elemento da tabela fe_{ij} é calculado como a soma dos elementos da linha i multiplicado pela soma dos elementos da coluna j dividido pelo total de observações.

Tabela de contingência das freqüências esperadas (f_{eij})

		Bairro					
Emissora	B1	B2	В3	Σ			
E1	60	40	100	200			
E2	37,5	25	62,5	125			
E3	15	10	25	50			
E4	37,5	25	62,5	125			
Σ	150	100	250	500			

Exemplo

Calcula-se a estatística:
$$\chi_{\text{calc}}^2 = \sum_{i=1}^n \sum_{j=1}^m \frac{\left(\text{fo}_{ij} - \text{fe}_{ij}\right)^2}{\text{fe}_{ij}}$$

$$\chi_{\text{calc}}^{2} = \frac{\left(56 - 60\right)^{2}}{60} + \frac{\left(42 - 40\right)^{2}}{40} + \frac{\left(102 - 100\right)^{2}}{100} + \frac{\left(39 - 37, 5\right)^{2}}{37, 5} + \frac{\left(30 - 25\right)^{2}}{25} + \frac{\left(56 - 62, 5\right)^{2}}{62, 5}$$
$$+ \frac{\left(19 - 15\right)^{2}}{15} + \frac{\left(9 - 10\right)^{2}}{10} + \frac{\left(22 - 25\right)^{2}}{25} + \frac{\left(36 - 37, 5\right)^{2}}{37, 5} + \frac{\left(19 - 25\right)^{2}}{25} + \frac{\left(70 - 62, 5\right)^{2}}{62, 5} = 6,07$$

Calcula-se o valor crítico para a distribuição qui-quadrado: $\chi^2_{\rm crit} = \chi^2_{\varphi}(\alpha)$

Onde:

- O número de graus de liberdade φ corresponde a (n-1)x(m-1)=3x2=6 (Não foram estimados parâmetros).
- O nível de significância α corresponde a 10%, ou seja, 0, 1.
- O valor crítico é obtido a partir da tabela da distribuição qui-quadrado.

Teste de Independência Exemplo

Resposta: O valor críticos é obtido da tabela qui-quadrado:

$$\chi_{\text{crit}}^2 = \chi_{\varphi}^2(\alpha) =$$
 $\chi_6^2(0,1) = 10,64$

Como: $\chi_{\text{calc}}^2 \le \chi_{\text{crit}}^2$ 6,07 \le 10,64

φ						α							
Ψ.	0.995	0.990	0.975	0.950	0.900	0.750	0.500	0.250	0.100	0.050	0.025	0.010	0.00
1	0.000	0.000	0.001	0.004	0.015	0.102	0.455	1.323	2.71	3.84	5.02	6.63	7.88
2	0.010	0.020	0.050	0.103	0.211	0.575	1.386	2.77	4.61	5.99	7.38	9.21	10.6
3	0.072	0.115	0.216	0.352	0.584	1.213	2.37	4.11	6.25	7.81	9.35	11.34	12.8
4	0.207	0.297	0.484	0.711	1.064	1.923	3.36	5.39	7.78	9.49	11.14	13.28	14.8
5	0.412	0.554	0.831	1.145	1.61	2,67	4.35	6.63	9.24	11.07	12.83	15.09	16.7
6	0.676	0.872	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.5
7	0.989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14.07	16.01	18.48	20.2
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.22	13.36	15.51	17.53	20.09	21.9
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.39	14.68	16.92	19.02	21,67	23.5
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.55	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.70	17.28	19.68	21.92	24.73	26.7
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.85	18.55	21.03	23.34	26,22	28.30
13	3.57	4.11	5.01	5.89	7.04	9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.8
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.33
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.2
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.7
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.10
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.5
20	7.43	8.26	9.59	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00

Logo, aceita-se a hipótese nula, ou seja, ao nível de significância de 10%, existe independência entre o bairro onde foi realizado a pesquisa e a preferência pela emissora de rádio.