Oscillator Design Report

Piyush Gupta, EE22B056

1. Introduction

- **Objective**: To design, simulate, and verify a stable RF oscillator operating at **5 GHz** using **Keysight ADS**, ensuring startup, steady-state oscillation, and spectral purity.
- **Applications**: Local Oscillators (LOs) in RF front-ends, frequency synthesizers, communication systems.

2. Design Specifications

Parameter	Target Value
Oscillation Frequency	5 GHz
Output Power	0.600 dBm
Startup Condition	Satisfied (gain > losses)
Stability Factor (K)	K < 1 (required for oscillation)
Technology Used	[NPN BJT]

3. Design Methodology

3.1 Device Selection

- Chosen transistor: ADS inbuilt _BJT_NPN ,Model=BJTM1
- Key specs: Transition frequency (ft), gain at 5 GHz, noise, S-parameters.

3.2 Oscillator Topology

The oscillator is designed using a **Colpitts topology** with a **BJT** (model: BJTM1) as the active device. The circuit uses a parallel LC resonator and capacitive feedback to satisfy the Barkhausen criterion for oscillation.

- Type: Common-emitter
- Justification: Simplicity, availability of component values, stable design.

3.3 Biasing Network

DC bias (V_CE=10 V, I_B = 64 uA) set for maximum gain and transistor linear region.

•

5. Results

5.1 S-Parameters and Stability

• Show plots of S11, S21, and K-factor.

```
m2
freq=5.000 GHz
mag(S(1,1))=1.107
mag(S(1,2))=1.118
mag(S(2,1))=1.210
mag(S(2,2))=1.091
```

m3 freq=5.000 GHz phase(S(1,1))=-100.239 phase(S(1,2))=24.324 phase(S(2,1))=61.716 phase(S(2,2))=-93.634

m1 freq=5.000 GHz Mu1=-0.080 StabFact1=0.485

- K=0.485 ⇒ potential oscillation region.
- Selection of Gamma_T = 0.4285,ang 180 and Z_T = 20 ohm.

indep(L_StabCircle1) (0.000 to 51.000)

5.2 Transient Waveform

• Plot of voltage at output node.

Vout Vres

- Confirm startup and steady-state oscillation.
- Measured frequency: ~5.151 Ghz

5.3 Spectrum / FFT

- Spectrum plot showing oscillation tone at ~5 GHz.
- Harmonic content analysis.

Pdc	Pout	PoutdBm
0.099	0.001	0.600

7. Layout

9. Conclusion

- Successfully designed and simulated a 5 GHz oscillator in ADS.
- Oscillation confirmed using transient and HB simulations.
- Oscillator can be used as an LO in RF systems.
- Future improvements could focus on optimizing phase noise and output power.