

Algorithmen und Datenstrukturen

Wintersemester 2018/19
19. Vorlesung

Kürzeste Wege & Dijkstras Algorithmus

Wozu kürzeste Wege?

Modellierung des Problems Routenplanung

 $\mathsf{StraBenkreuzung} \to \mathsf{Knoten}$

Straßenabschnitt → zwei entgegengerichtete Kanten

Einbahnstraßenabschnitt \rightarrow in Fahrtrichtung gerichtete Kante

Fahrtzeit für Abschnitt $e \rightarrow \mathsf{Kantengewicht}\ w(e) \geq 0$

Straßennetz \rightarrow gerichteter, gewichteter und zusammenhängender Graph G = (V, E)

Start \rightarrow Knoten $s \in V$

 $\mathsf{Ziel} o \mathsf{Knoten} \ t \in V$

Start-Ziel-Route $\rightarrow s$ -t-Weg, d.h. Folge von Kanten $(s, v_1), (v_1, v_2), \ldots, (v_k, t)$ in G

Wozu kürzeste Wege?

Wozu kürzeste Wege? (II)

Was ist das Problem?

Eingabe:

- gerichteter, zusammenhängender Graph G = (V, E) mit nicht-negativen **Kantengewichten** $w: E \to \mathbb{Q}_0^+$,
- Knoten *s* und *t*

3 6 b b 2 7 5 c 7 t

Ausgabe:

• kürzester s-t-Weg W in G, d.h. $\sum_{e \in W} w(e)$ minimal.

Darstellung durch Vorgänger-Zeiger π : für jeden Knoten v sei $\pi(v) \in V \cup \{nil\}$ Vorgänger von v auf kürzestem s-v-Weg.

Was ist das Problem?

Eingabe:

- gerichteter, zusammenhängender Graph G = (V, E) mit nicht-negativen **Kantengewichten** $w: E \to \mathbb{Q}_0^+$,
- Knoten s und t

Ausgabe:

für alle $t \in V$

• kürzeste/ s-t-Wege W_t in G, d.h. $\sum_{e \in W} w(e)$ minimal.

Darstellung durch Vorgänger-Zeiger π : für jeden Knoten v sei $\pi(v) \in V \cup \{nil\}$ Vorgänger von v auf kürzestem s-v-Weg.

Nebenbemerkung: Analoge Berechnungsverfahren?

Dijkstra – BFS mit Gewichten

```
Dijkstra(WeightedGraph G = (V, E; w), Vertex s)
                        // Gewichtung
 Initialize (G, s)
 Q = new PriorityQueue(V, d) BFS(Graph G, Vertex s)
                                   Initialize (G, s)
 while not Q.Empty() do
                                   Q = new Queue()
     u = Q.ExtractMin()
                                   Q. Enqueue(s)
     foreach v \in Adj[u] do
                                   while not Q.Empty() do
         Relax(u, v; w)
                                      u = Q. Dequeue()
     u.color = black
                                      foreach v \in Adj[u] do
Relax(u, v; w)
                                          if v.color == white then
  if v.d > u.d + w(u, v) then
                                             v.color = gray
                                             v.d = u.d + 1
     v.color = gray
                                             v.\pi = u
     v.d = u.d + w(u, v)
                                             Q. Enqueue(v)
      v.\pi = u
      Q. Decrease Key(v, v.d)
                                      u.color = black
```

Dijkstra – ein Beispiel

```
Dijkstra(WeightedGraph G, Vertex s)
Initialize(G, s)
Q = \mathbf{new} \text{ PriorityQueue}(V, d)
\mathbf{while \ not} \ Q.\text{Empty}() \ \mathbf{do}
u = Q.\text{ExtractMin}()
\mathbf{foreach} \ v \in \text{Adj}[u] \ \mathbf{do}
\text{Relax}(u, v; w)
u.color = black
```



```
Relax(u, v; w)

if v.d > u.d + w(u, v) then
v.color = gray
v.d = u.d + w(u, v)
v.\pi = u
Q.DecreaseKey(v, v.d)
```

Initialize(Graph G, Vertex s)

foreach $u \in V$ do $\begin{array}{c} u.color = white \\ u.d = \infty \\ u.\pi = nil \\ s.color = gray \\ s.d = 0 \end{array}$

Dijkstra – ein Beispiel

```
Dijkstra(WeightedGraph G, Vertex s)
Initialize(G, s)
Q = \mathbf{new} \text{ PriorityQueue}(V, d)
\mathbf{while \ not} \ Q.\text{Empty}() \ \mathbf{do}
u = Q.\text{ExtractMin}()
\mathbf{foreach} \ v \in \text{Adj}[u] \ \mathbf{do}
\text{Relax}(u, v; w)
u.color = black
```



```
Relax(u, v; w)

if v.d > u.d + w(u, v) then
v.color = gray
v.d = u.d + w(u, v)
v.\pi = u
Q.DecreaseKey(v, v.d)
```

Initialize(Graph G, Vertex s)

foreach $u \in V$ do $\begin{array}{c} u.color = white \\ u.d = \infty \\ u.\pi = nil \\ s.color = gray \\ s.d = 0 \end{array}$

Dijkstra – ein Beispiel

Dijkstra(WeightedGraph G, Vertex s) Initialize(G, s) $Q = \mathbf{new}$ PriorityQueue(V, d) while not Q.Empty() do u = Q.ExtractMin() foreach $v \in Adj[u]$ do Relax(u, v; w)

Kürzester-Wege-Baum mit Wurzel *s*


```
Relax(u, v; w)

if v.d > u.d + w(u, v) then

v.color = gray
v.d = u.d + w(u, v)
v.\pi = u
Q.DecreaseKey(v, v.d)
```

u.color = black

```
Initialize(Graph G, Vertex s)

foreach u \in V do
\begin{array}{c} u.color = white \\ u.d = \infty \\ u.\pi = nil \\ s.color = gray \\ s.d = 0 \end{array}
```

Dijkstra – die Laufzeit

Relax(u, v; w)

if v.d > u.d + w(u, v) then v.color = gray v.d = u.d + w(u, v) $v.\pi = u$ Q.DecreaseKey(<math>v, v.d)

Abk. für O(|V|) O(V) Zeit

genau | V | mal

Wie oft wird Relax aufgerufen?

Für jeden Knoten $u \in V$ genau $|\operatorname{Adj}[u]| = \deg u$ mal, also insg. $\Theta(E)$ mal.

Also wird DecreaseKey O(E) mal aufgerufen.

Dijkstra – die Laufzeit

Satz. Gegeben ein Graph G = (V, E), läuft Dijstras Alg. in $O(V \cdot T_{\text{ExtractMin}}(|V|) + E \cdot T_{\text{DecreaseKey}}(|V|))$ Zeit.

Implementierung einer PriorityQueue	$T_{ExtractMin}(n)$	$T_{DecreaseKey}(n)$	$T_{Dijkstra}(V , E)$
als unsortiertes Feld	O(n)	$O(1)^{\star}$	$O(V^2+E)$
als Heap	$O(\log n)$	$O(\log n)^{**}$	$O((E+V)\log V)$
als Fibonacci-Heap	O(log n) amortisiert	O(1) amortisiert	$O(E+V\log V)$ im Worst-Case!

 $^{^{\}star}$) Das geht, weil wir bei ExtractMin Lücken im Feld lassen; daher bleiben die Schlüssel an ihrem Platz (\rightarrow Direktzugriff)

Korollar. In einem Graphen G = (V, E; w) mit $w: E \to \mathbb{Q}_{\geq 0}$ kann man in $O(E + V \log V)$ Zeit die kürzesten Wege von einem zu allen Knoten berechnen (SSSP-Problem).

^{**)} Das geht, obwohl wir im Heap nicht suchen können (!). Wir merken uns ständig für jeden Knoten, wo er im Heap steht.

Dijkstra – die Korrektheit

siehe [CLRS], Kapitel 24.3., Satz 24.6: Korrektheisbeweis mittels Schleifeninvariante.

oder

MIT-Vorlesungsmitschnitt von Erik Demaine:

http://videolectures.net/mit6046jf05_demaine_lec17

Wozu kürzeste Wege? (III) – SMSen

GHI

MNO

DEF

MNO

PQRS

MNO

ABC

TUV

GHI

JKL

10:21 für T9

Modellierung – SMSen

Kanten $\hat{=}$ aufeinanderfolgende Buchst.

Gewichte $\hat{=}$ Wahrscheinlichkeiten w / Häufigkeiten

Gesucht: Weg P von \square nach \square mit $gr\"{o}Bter$ WK $(=\prod_{e\in P} w(e))$

Lösung: dynamisches Programmieren... [kommt noch!]

Literatur

 A note on two problems in connexion with graphs.

Edsger Wybe Dijkstra:

Numerische Mathematik
1959, S. 269–271.

Lesen Sie

Das Geheimnis des mal rein! kürzesten Weges.

Ein mathematisches Abenteuer. Peter Gritzmann und

René Brandenberg:

Springer-Verlag, 3. Aufl., 2005.

Beide Werke sind über die UB frei zugänglich und über unsere WueCampus-Seite verlinkt!

Edsger Wybe Dijkstra
* 1930 in Rotterdam
† 2002 in Nuenen, Niederlande

Kürzeste Wege nach Dijkstra

nicht-neg. Kantengew.	Dijkstra	$O(E + V \log V)$
ungewichteter Graph	Breitensuche	O(E+V)
azyklischer Graph	topol. Sortieren	$O(E+V)$ Nächstes \checkmark
negative Kantengew.	Bellman-Ford	O(EV) Vorlesung Alg. Graphentheorie (?)
für alle Knotenpaare	V imes Dijkstra	$O(V(E + V \log V))$
+ negative Kantengew.	Floyd-Warshall	$O(V^3)$
	Johnson	$O(V(E + V \log V))$
k kürzeste s-t-Wege	Eppstein	$O(k + E + V \log V)$