Suite de fonctions

Pour tous ce qui suit, I désigne un intervalle d'intérieur non vide de \mathbb{R} .

Définition 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions réelles définies sur I. Soit f une fonction réelle définie sur I. On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers la fonction f, si pour tout $x\in I$, la suite $(f_n(x))_{n\in\mathbb{N}}$ converge vers f(x). On dit aussi que f est la limite simple sur I de $(f_n)_{n\in\mathbb{N}}$.

Exemples 2.

- 1. On considère la suite $(f_n)_{n\in\mathbb{N}}$ définies sur [0,1] par : $\forall x\in[0,1], \forall n\in\mathbb{N}, f_n(x)=x^n$.

 - $Si \ x \in [0,1[, alors \lim_{n \to +\infty} f_n(x) = 0.$ $Si \ x = 1, alors \lim_{n \to +\infty} f_n(x) = 1.$

Donc la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1] vers la fonction f définie par $f(x) = \begin{cases} 0, & \text{si } x \in [0,1[\\ 1, & \text{si } x = 1. \end{cases}$

2. Sur \mathbb{R}^+ , on définit pour tout $n \in \mathbb{N}$ la fonction $f_n(x) = \frac{nx}{1+nx}$. Soit $x \in \mathbb{R}^+$.

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{1 + nx} = \begin{cases} 0, & \text{si } x = 0 \\ 1, & \text{si } x > 0 \end{cases}$$

Donc la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction f définie sur \mathbb{R}^+ par : $f(x) = \begin{cases} 0, & \text{si } x = 0 \\ 1, & \text{si } x > 0. \end{cases}$

Exercice 3. Pour $x \in [0,1]$ et $n \in \mathbb{N}^*$, on pose $f_n(x) = nx(1-x)^n$. Étudier la convergence simple de la suite $(f_n)_{n>0}$.

Propriétés 4. Soient (f_n) et (g_n) deux suites de fonctions réelles convergent simplement sur I vers f et g respectivement.

- 1. pour tous a et b dans \mathbb{R} , la suite $(af_n + bg_n)$ converge simplement vers af + bg,
- 2. la suite $(f_n g_n)$ converge simplement vers fg.
- 3. si on suppose que (f_n) et f sont non nulles sur I, $(\frac{1}{f_n})$ converge simplement sur I vers $\frac{1}{f}$ et $(\frac{g_n}{f_n})$ converge simplement sur I vers $\frac{g}{f}$.

Définition 5. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions réelles définies sur I. Soit f une fonction réelle définie sur I. On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f, si

$$\lim_{n \to +\infty} \sup\{|f_n(x) - f(x)| : x \in I\} = 0.$$

On dit aussi que f est la limite uniforme de la suite $(f_n)_{n\in\mathbb{N}}$.

Si on pose $M_n = \sup\{|f_n(x) - f(x)| : x \in I\}$, alors la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers la fonction f, si et seulement si, la suite (M_n) tend vers 0 quand n tend vers l'infini.

Exemples 6.

1. Pour $n \in \mathbb{N}$, on considère la fonction $f_n : [0,1] \longrightarrow \mathbb{R}$. $x \longmapsto x^n$

La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction $f(x) = \begin{cases} 0, & \text{si } x \in [0,1[\\ 1, & \text{si } x = 1. \end{cases}$ (voir l'exemples(2)). On vérifie aisément que $M_n = \sup\{|f_n(x) - f(x)| : x \in [0,1]\} = 1$. Donc $\lim_{n \to +\infty} M_n \neq 0$. D'où la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément vers la fonction f.

2. Soit $a \in]0,1[$. Pour $n \in \mathbb{N}$, on considère la fonction $f_n:[0,a] \longrightarrow \mathbb{R}$. $x \longmapsto x^n$

$$x \longmapsto x$$

La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction f(x)=0.

Pour
$$n \in \mathbb{N}$$
, $M_n = \sup\{|f_n(x) - f(x)| : x \in [0, a]\} = \sup\{x^n : x \in [0, a]\} = a^n$.

$$Donc \lim_{n \to +\infty} M_n = \lim_{n \to +\infty} a^n = 0.$$

$$\lim_{n \to +\infty} m_n = \lim_{n \to +\infty} a = 0.$$

D'où la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction nulle.

Remarques 7.

1. La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction f sur le domaine I, si et seulement si, pour chaque $x\in I$,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : (n \ge N \Longrightarrow |f_n(x) - f(x)| < \epsilon).$$

2. La suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f sur le domaine I, si et seulement si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : (n \ge N \Longrightarrow (\forall x \in I : |f_n(x) - f(x)| < \epsilon)).$$

Pour la convergence simple, le rang N dépend de ϵ et x, et peut changer quand on change x, par contre, le rang N de la convergence uniforme ne dépend que de ϵ , il est valable pour tous les x en même temps.

Propriétés 8. Soient (f_n) et (g_n) deux suites de fonctions réelles convergent uniformément sur I vers f et g respectivement, alors

- 1. pour tous a et b dans \mathbb{R} , la suite $(af_n + bg_n)$ converge uniformément vers af + bg.
- 2. si f et g sont bornées sur I, la suite (f_ng_n) converge uniformément sur I vers fg.
- 3. si (f_n) et f sont non nulles sur I et $\frac{1}{f}$ et g sont bornées sur I, les suites $(\frac{1}{f_n})$ et $(\frac{g_n}{f_n})$ converge uniformément et respectivement vers les fonctions $\frac{1}{f}$ et $\frac{g}{f}$

Proposition 9. Si la suite de fonctions (f_n) converge uniformément sur I vers la fonction f, alors pour tout $B \subset I$, la suite (f_n) converge uniformément sur B vers la fonction f.

Proposition 10. Si la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f sur I, alors $(f_n)_{n\in\mathbb{N}}$ converge $simplement\ vers\ la\ fonction\ f\ sur\ I.$

La réciproque de la proposition 10 est fausse, comme le montre le contre-exemple suivant :

On a vu que la suite de fonctions suivante $f_n:[0,1]\longrightarrow \mathbb{R}$ converge simplement vers la fonction $x\longmapsto x^n$

Théorème 11 (Critère de Cauchy de la convergence uniforme).

Pour qu'une suite de fonctions réelles $(f_n)_{n\in\mathbb{N}}$ soit converge uniformément sur I vers une fonction réelle f, il faut et il suffit que

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} : (p, q \ge N \Longrightarrow \forall x \in I, |f_p(x) - f_q(x)| < \epsilon).$$

Démonstration. Si (f_n) converge uniformément vers f, alors

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall x \in I : (n \ge N \Longrightarrow |f_n(x) - f(x)| < \frac{\epsilon}{2}).$$

Alors

$$p, q \ge N \implies |f_p(x) - f(x)| < \frac{\epsilon}{2} \text{ et } |f_q(x) - f(x)| < \frac{\epsilon}{2}$$

 $\implies |f_p(x) - f_q(x)| < \epsilon.$

 $\underline{\text{R\'eciproquement}}, \text{ supposons que } \forall \epsilon > 0, \ \exists N \in \mathbb{N} : \forall (p,q) \, ; \ (p,q \geq N \Longrightarrow \forall x \in I, |f_p(x) - f_q(x)| < \epsilon) \ (*).$

On fixe $x \in I$, alors $(f_n(x))$ est une suite de Cauchy dans \mathbb{R} .

Donc $(f_n(x))$ converge vers un réel f(x).

c-à-d on a trouvé une fonction f qui est limite simple de la suite (f_n) .

On fait tendre $q \longrightarrow +\infty$ dans (*), on obtient

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall x \in I; (p \ge N \Longrightarrow |f_p(x) - f(x)| < \epsilon).$$

D'où, (f_n) converge uniformément vers f.

Théorème 12. [Interversion de limites]

Soit (f_n) une suite de fonctions réelles converge uniformément sur I vers la fonction f. On suppose que, pour tout $n \in \mathbb{N}$, $\lim_{x \to x_0} f_n(x) = b_n$ existe. Alors, les limites $\lim_{x \to x_0} f(x)$ et $\lim_{n \to +\infty} b_n$ existent et elles sont égales. Autrement dit $\lim_{n \to +\infty} (\lim_{n \to +\infty} f_n(x)) = \lim_{x \to x_0} (\lim_{n \to +\infty} f_n(x))$.

Démonstration. Supposons que (f_n) converge uniformément sur I vers f.

Alors $\forall \epsilon > 0, \exists N \in \mathbb{N} : (p, n \ge N \Longrightarrow \forall x \in I, |f_n(x) - f_p(x)| < \epsilon).$

Faisons $x \longrightarrow x_0$, alors $\forall \epsilon > 0$, $\exists N \in \mathbb{N} : (p, n \ge N \Longrightarrow |b_n - b_p| < \epsilon)$.

Donc (b_n) est une suite de Cauchy.

Alors (b_n) converge vers $b = \lim_{n \to +\infty} (\lim_{x \to x_0} f_n(x)).$

$$|f(x) - b| = |f(x) - f_n(x) + f_n(x) - b_n + b_n - b|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - b_n| + |b_n - b|.$$

$$f_n \xrightarrow{C.U} f \Longrightarrow \forall \epsilon > 0, \exists N' \in \mathbb{N}, \forall x \in I, (n \ge N' \Rightarrow |f_n(x) - f(x)| < \frac{\epsilon}{3})$$

$$f_n(x) \xrightarrow[x \to x_0]{} b_n \Longrightarrow \forall \epsilon > 0, \exists r > 0 : (|x - x_0| < r \Rightarrow |f_n(x) - b_n| < \frac{\epsilon}{3})$$

$$b_n \xrightarrow[x \to +\infty]{} b \Longrightarrow \forall \epsilon > 0, \exists N'' \in \mathbb{N} : (n \ge N'' \Rightarrow |b_n - b| < \frac{\epsilon}{3})$$

$$(2).$$

En combinant (1), (2) et (3) et on en déduit que

$$\forall \epsilon > 0, \ \exists r > 0 : (\left\{ \begin{array}{l} x \in I, \\ |x - x_0| < r \end{array} \right. \Longrightarrow |f(x) - b| < \epsilon).$$

D'où $\lim_{x \to x_0} f(x) = b$.

Remarque 13.

1. x_0 peut être une extrémité d'un intervalle, ou ∞ .

2. Le résultat reste valable si $\lim_{n\to+\infty} b_n = +\infty$.

Exemple 14. Soit (f_n) la suite de fonctions définies sur \mathbb{R} par : $f_n(x) = \frac{n}{n + e^x}$.

Pour $x \in \mathbb{R}$ fixé, on a $\lim_{n \to +\infty} f_n(x) = 1$.

Donc (f_n) converge simplement vers la fonction constante 1.

 $Or \lim_{x \to +\infty} f_n(x) = 0.$

 $D'où \lim_{n \to +\infty} (\lim_{x \to +\infty} f_n(x)) = 0 \neq 1 = \lim_{x \to +\infty} (\lim_{n \to +\infty} f_n(x)).$

Donc la suite (f_n) ne converge pas uniformément sur \mathbb{R} vers la fonction constante 1.

Définition 15. On dit que la suite de fonctions $(f_n)_n$ converge uniformément sur tout segment de I si, pour tout $[a,b] \subset I$, la suite $(f_n)_n$ converge uniformément sur [a,b].

Remarque 16. Si une suite de fonctions $(f_n)_n$ converge uniformément sur I, elle converge uniformément sur tout segment de I. La réciproque est en general fausse.

Théorème 17. Soit (f_n) une suite de fonctions réelles converge uniformément sur tout segment de I vers la fonction f. Si les fonctions f_n sont continues sur I, alors f est continue sur I.

Remarque 18. Ce résultat fournit une méthode pour prouver la non-convergence uniforme; en effet, si les f_n sont continues et f n'est pas continue, alors il n'y a pas de convergence uniforme.

Exemple 19. $\forall n \in \mathbb{N}, \ \forall x \in [0,1]: f_n(x) = x^n.$ On a vu que $f_n \xrightarrow{C.S} f$, telle que $f(x) = \left\{ \begin{array}{l} 0, & si \ x \in [0,1[\\ 1, & si \ x = 1. \end{array} \right.$ C'est clair que les f_n sont continues en 1 à gauche, et puisque f n'est pas continue en 1 à gauche. Alors la suite (f_n) ne converge pas uniformément sur [0,1] vers f.

Théorème 20 (Intégrabilité et convergence uniforme).

Soit (f_n) une suite de fonctions réelles continues sur [a,b]. On définie la suite de fonctions (F_n) par :

$$\forall x \in [a, b], F_n(x) = \int_a^x f_n(t)dt.$$

Si la suite (f_n) converge uniformément sur [a,b] vers la fonction f, alors, la suite (F_n) converge uniformément vers la fonction F définie sur [a,b] par : $F(x) = \int_a^x f(t)dt$.

Démonstration. Soit $\epsilon > 0$, $f_n \xrightarrow{C.U} f \Longrightarrow (\exists N \in \mathbb{N} : n \ge N \Rightarrow \forall t \in [a, b], |f_n(t) - f(t)| < \frac{\epsilon}{b-a})$. Donc $\int_a^x |f_n(t) - f(t)| dt \le \int_a^x \frac{\epsilon}{b-a} dt$ pour $n \ge N$.

Donc $\left| \int_{a}^{x} (f_n(t) - f(t)) dt \right| \le \frac{x - a}{b - a} \epsilon \le \epsilon$ pour $n \ge N$.

Ce qui implique que $\lim_{n \to +\infty} \int_a^x f_n(t)dt = \int_a^x f(t)dt$.

Donc la suite (F_n) converge simplement vers F sur [a,b].

Or l'entier naturel N ne dépend pas de x, donc la convergence est uniforme.

Corollaire 21. Si (f_n) est une suite de fonctions réelles continues converge uniformément sur l'intervalle [a,b] vers la fonction f, alors

$$\forall x \in [a, b], \lim_{n \to +\infty} \int_a^x f_n(t)dt = \int_a^x f(t)dt.$$

Théorème 22. Soit (f_n) une suite de fonctions réelles de classe C^1 définies sur l'intervalle I = [a, b]. On suppose que

- 1. Il existe $x_0 \in I$ tel que la suite $(f_n(x_0))$ converge vers un réel a.
- 2. La suite (f'_n) converge uniformément sur tout segment de I vers la fonction g.

Alors

- 1. La suite la suite (f_n) converge uniformément sur tout segment de I vers une fonction f de classe \mathcal{C}^1 .
- 2. f' = q et $f(x_0) = a$.

Démonstration. Soit f la fonction définie sur I par : $f(x) = a + \int_{x_0}^x g(t)dt$.

Donc f est l'unique fonction derivable sur I dont la dérivée g telle que $f(x_0) = a$.

Puisque f_n est de classe \mathcal{C}^1 , on a $\forall x \in I$, $f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t) dt$.

Alors $f_n(x) - f(x) = (f_n(x_0) - a) + \int_{x_0}^x (f'_n(t) - g(t)) dt$. Donc $|f_n(x) - f(x)| \le |f_n(x_0) - a| + |\int_{x_0}^x f'_n(t) dt - \int_{x_0}^x g(t) dt|$.

Soit $\epsilon > 0$.

Puisque (f'_n) est une suite de fonctions continues converge uniformément sur I vers la fonction g et d'après le théorème 17, on déduit que la suite $(\int f'_n)$ converge uniformément sur I vers la fonction $\int g$.

Donc, il existe $N_1 \in \mathbb{N}$ tel que $n \geq N_1 \Rightarrow |\int_{x_0}^x f_n'(t)dt - \int_{x_0}^x g(t)dt| < \frac{\epsilon}{2}$.

D'autre part, $(f_n(x_0))$ converge vers a.

Donc, il existe $N_2 \in \mathbb{N}$ tel que : $n \ge N_2 \Rightarrow |f_n(x_0) - a| < \frac{\epsilon}{2}$.

D'où, pour $n \ge \max\{N_1, N_2\}$, on a $|f_n(x) - f(x)| < \epsilon$ pour tout $x \in I$.

Ce qui achève la démonstration.

Du théorème 22 découlent plusieurs corollaires, le premier par unicité de la limite.

Corollaire 23. Soit I un intervalle de \mathbb{R} . Soient (f_n) une suite de fonctions réelles de classe \mathcal{C}^1 sur I et f et g deux fonctions réelles définies sur I. On suppose que :

- i. (f_n) converge simplement vers f sur I.
- ii. (f'_n) converge uniformément sur tout segment de I vers g.

Alors

- i. (f_n) converge uniformément sur tout segment de I vers f.
- ii. f est de classe C^1 et f' = g.

Le second corollaire se déduit du corollaire 23 par récurrence.

Corollaire 24. $k \in \mathbb{N}^*$. Soit (f_n) une suite de fonctions de classe C^k sur I. On suppose que :

- i. pour tout $p \in \{0, 1, ..., k-1\}$, la suite $(f_n^{(p)})$ converge simplement.
- ii. La suite $(f_n^{(k)})$ converge uniformément sur tout segment de I vers la fonction g.

Alors (f_n) converge uniformément sur tout segment de I vers une fonction f de classe \mathcal{C}^k . De plus $f^{(k)} = g$.