Лабораторна робота 2

Побудова матриці бінарного відношення

Варіант 13

1. Чи є вірною рівність
$$(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$$
?

Розв'язання

Для доведення невірності рівності наведемо контрприклад. Розглянемо наступні множини:

$$A = \{1\} B = \{2\} C = \{3\} D = \{4\}$$

Обчислимо декартові добутки та об'єднання:

$$A \times B = \{(1, 2)\} C \times D = \{(3, 4)\} (A \times B) \cup (C \times D) = \{(1, 2), (3, 4)\}$$

Тепер обчислимо об'єднання множин A, B, C та D:

$$A \cup C = \{1, 3\} B \cup D = \{2, 4\}$$

Та декартовий добуток (AUC)×(BUD):

$$(A \cup C) \times (B \cup D) = \{(1, 2), (1, 4), (3, 2), (3, 4)\}$$

Як видно з результатів, $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$, оскільки:

$$\{(1, 2), (3, 4)\} \neq \{(1, 2), (1, 4), (3, 2), (3, 4)\}$$

Отже, рівність $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$ не ε вірною.

2. Знайти матрицю відношення $R \subset M \times 2^M$: $R = \{(x, y) | x \in M \& x \in y \& y \subset M \& |y| > x \},$

де
$$M = \{x \mid x \in Z \& |x| \le 1\}$$
, Z - множина цілих чисел.

Розв'язання

 $|\mathbf{x}| \leq 1$

$$-1 \le x \le 1$$

 $M = \{-1, 0, 1\}$ — множина M у явному вигляді

Визначимо булеан множини М у явному вигляді:

$$2^{M} = \{ \emptyset; \{-1\}; \{0\}; \{1\}; \{-1,0\}; \{0,1\}; \{-1,1\}; \{-1;0;1\} \}$$

Змн.	Арк.	№ докум.	Підпис	Дата	ЖИТОМИРСЬКА ПОЛІТЕХН	IKA.21	.125.10.0	000 — Лр. <mark>1</mark>	
Розр		Хробуст Антон	11101140	дата		Лim.	Арк.	Аркушів	
Пере		· · ·				1 1	1	7 1,011.9 00.10	
		Шелуха О.О			Звіт з лабораторної	1			
Реце	нз.				•				
Н. Ко	нтр.				роботи №1	ФІКТ, гр. <mark>КБ-2</mark>			
Зав.ка	аф.					l ' '	, •		

Знайдемо матрицю заданого відношення, враховуючи, що $|\{-1\}|=1$, $|\{0\}|=1$, $|\{-1,0\}|=2$, $|\{-1\}|=1$, $|\{-1,0,1\}|=3$

x/y	Ø	{-1}	{0}	{1}	{-1, 0}	{0, 1}	{-1, 1}	{-1, 0,
								1}
-1	0	1	0	0	1	0	1	1
0	0	0	1	0	1	1	0	1
1	0	0	0	0	0	1	1	1

3. Зобразити відношення графічно:

 $\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& (x - y)^2 = 9\},$ де \mathbb{R} - множина дійсних чисел.

Розв'язання

$$(x - y)^2 = 9$$

 $x - y = \pm 3$
 $x - y = 3$ and $x - y = -3$
 $y = x - 3$ $y = x + 3$

Маємо дві лінійні функції, графіки прямі з однаковими кутовими коефіцієнтами: k1 = k2 = 1, отже прямі паралельні:

$$y1 = x - 3$$

X	0	1
у	-3	-2

$$y2 = x + 3$$

X	0	1
у	3	4

Графік:

		Хробуст Антон				Арк.
					ЖИТОМИРСЬКА ПОЛІТЕХНІКА.20. <mark>125.10</mark> .000 — Лр. 1	2
Змн.	Арк.	№ докум.	Підпис	Дата	, '	

4. Навести приклад бінарного відношення $R \subset A \times A$, де $A = \{a, b, c, d, e\}$, яке є нерефлексивне, симетричне, транзитивне, та побудувати його матрицю.

$$A(R) =$$

	a	b	c	d	Е
a	1	0	1	0	1
b	0	1	0	1	0
c	1	0	1	0	1
d	0	1	0	0	0
e	1	0	1	0	1

Числа виділені червоним – головна діагональ

Це бінарне відношення ϵ :

		Хробуст Антон		
Змн.	Арк.	№ докум.	Підпис	Дата

- 1) Нерефлексивним, бо не всі елементи на головній діагоналі присутні(ϵ один нуль)
- 2) Симетричне(всі "1" симетричні відносно головної діагоналі)
- 3) Транзистивне: для довільного елемента Мху і Муz існує елемент Мхz (елемент це "1")
- **5.** Визначити множину (якщо це можливо), на якій дане відношення ϵ : а) функціональним; б) бієктивним:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& y = (\sqrt{x})^4 \}.$$

- а) дане відношення буде функціональним на множині $x \ge 0$
- б) перевіримо на бієктивність на цій множині:
- 1. ін'єктивність виконується, тому що для різних аргументів функція приймає різні значення, вона зростає на даній множині:

$$V x1, x2 \in X$$
, якщо $x1 \neq x2$, то $f(x1) \neq f(x2)$

2. функція ϵ сюр'єктивною, тому що для \forall у \in У \exists х \in Х, що у = f(х)

		Хробуст Антон				Αļ
					ЖИТОМИРСЬКА ПОЛІТЕХНІКА.20. <mark>125.10</mark> .000 — Лр. <mark>1</mark>	
Змн.	Арк.	№ докум.	Підпис	Лата	•	ľ

Bı	иснов	вок: функція	∈ сюр	° СКТИ	вною та ін'єктивною на множині х ≥ 0 , а отже ϵ і	
			r o orop	011111		
бі	єктиі	вною				
	Π	Vnohum Auman				Λ :
		Хробуст Антон				Арк
				<u> </u>	ЖИТОМИРСЬКА ПОЛІТЕХНІКА.20. <mark>125.10</mark> .000 — Лр. <mark>1</mark>	5
Змн.	Арк.	№ докум.	Підпис	Дата		1