Problem 3 Section 1

a) From the caret package optimum k was found to be K = 9

trControl = trainControl(method = "cv", number = 10))

> optimal.KNN

k-Nearest Neighbors

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was k = 9.

Misclassification rate	Sensitivity	Specificity	AUC	Estimated test error
0.1776235	0.85	0.6443769	0.745694	0.2139627

b) Logistic regression

Misclassification rate	Sensitivity	Specificity	AUC	Estimated test error
0.1976317	0.8264331	0.5916335	0.6133877	0.2000789

c) LDA

Misclassification rate	Sensitivity	Specificity	AUC	Estimated test error
0.19804	0.831484	0.5786713	0.6247355	0.2013075

d) QDA

Misclassification rate	Sensitivity	Specificity	AUC	Estimated test error
0.2476521	0.911571	0.455237	0.745694	0.2519394

e)

Method	AUC	Overall Misclassification rate	CV Test Error Rate
KNN	0.745694	0.1776235	0.2139627
GLM	0.6133877	0.1976317	0.2000789
LDA	0.6247355	0.19804	0.2013075
QDA	0.745694	0.2476521	0.2519394

AUC is high for both KNN and QDA. Lowest training and test errors are for KNN. Thus I would recommend KNN classifier.

```
Problem 3
           Section 1
### problem 3.
library(caret) # for cross-validation
library(MASS) # for LDA and QDA
library(cvAUC) # for calculating AUC
library(class) # for knn
wine <- read.csv("winequality-white.csv", header = T, sep=';')</pre>
wine$quality <- ifelse(wine$quality >= 7, 1, 0)
wine$quality <- as.factor(wine$quality)</pre>
attach(wine)
### problem 3. a)
set.seed(1234)
optimal.KNN <- train(quality ~ .,
                     data
                                = wine,
                     method
                                = "knn",
                     tuneLength = 50,
                     trControl = trainControl(method = "cv", number = 10))
#> optimal.KNN
# k-Nearest Neighbors
# 4898 samples
# 11 predictor
# 2 classes: '0', '1'
#
# No pre-processing
# Resampling: Cross-Validated (10 fold)
# Summary of sample sizes: 4408, 4409, 4408, 4408, 4408, 4409, ...
# Resampling results across tuning parameters:
#
#
   k
        Accuracy
                   Kappa
# 5 0.7837912 0.300339072
# 7 0.7807308 0.265270003
# 9 0.7860373 0.256348924
# 11 0.7811331 0.212080442
# ------
# 97 0.7825650 0.003279178
# 99 0.7829732 0.004089494
# 101 0.7831764 0.003416900
# 103 0.7829732 0.001974173
# Accuracy was used to select the optimal model using the largest value.
# The final value used for the model was k = 9.
fit.KNN <- knn(wine[,-12], wine[,-12], quality, k = 9)
mean(quality != fit.KNN)
# [1] 0.1776235
table(quality, fit.KNN)
#
        fit.KNN
```

```
# quality 0
                  1
#
        0 3604 234
        1 636 424
#sensitivity
3604/(3604+636) # [1] 0.85
#specificity
424/(234+424) # [1] 0.6443769
AUC(pred, quality)
# [1] 0.745694
# Estimated test error rate is 0.256348924
### problem 3. b)
set.seed(1234)
fit.full.GLM.CARET <- train(quality ~ . ,</pre>
                             data = wine,
                             method ="glm",
                             trControl = trainControl(method = "cv", number = 10))
pred <- as.numeric(predict(fit.full.GLM.CARET, wine)) - 1</pre>
mean(quality != pred)
# [1] 0.1976317
table(quality, pred)
         pred
                  2
# quality
             1
#
        0 3633 205
#
        1 763 297
#sensitivity
3633/(3633+763) # [1] 0.8264331
#specificity
297/(205+297) # [1] 0.5916335
AUC(pred, quality)
# [1] 0.6133877
# Estimated test error rate is 0.273915
### problem 3. c)
set.seed(1234)
fit.full.LDA.CARET <- train(quality ~ . ,</pre>
                             data = wine,
                             method ="lda",
                             trControl = trainControl(method = "cv", number = 10))
pred <- as.numeric(predict(fit.full.LDA.CARET, wine)) - 1</pre>
mean(quality != pred)
# [1] 0.19804
table(quality, pred)
         pred
```

```
# quality 1
                  2
        0 3597 241
        1 729 331
#sensitivity
3597/(3597+729) # [1] 0.831484
#specificity
331/(241+331) # [1] 0.5786713
AUC(pred, quality)
# [1] 0.6247355
# Estimated test error rate is 0.2876861
### problem 3. d)
set.seed(1234)
fit.full.QDA.CARET <- train(quality ~ . ,</pre>
                            data = wine,
                            method ="qda",
                            trControl = trainControl(method = "cv", number = 10))
pred <- as.numeric(predict(fit.full.QDA.CARET, wine)) - 1</pre>
mean(quality != pred)
# [1] 0.2476521
table(quality, pred)
         pred
# quality
                  1
        0 2907 931
#
        1 282 778
#sensitivity
2907/(2907+282) # [1] 0.911571
#specificity
778/(931+778) # [1] 0.455237
AUC(pred, quality)
# [1] 0.745694
# Estimated test error rate is 0.3900707
```