Informe Tecnico Tecnico

Estudio Shonos

Índice de contenidos

01
DEFINICIONES Y CARACTERISTICAS

02

VENTAJAS Y DESVENTAJAS

06

EJEMPLOS DE IMPLEMENTACION

09

RECOMENDACIÓN

Que es una bd centralizada?

Definición

TODOS LOS DATOS Y EL
PROCESAMIENTO SE CONCENTRAN EN
UNA ÚNICA COMPUTADORA O
SERVIDOR PRINCIPAL.

Características

- UNA SOLA BASE DE DATOS CENTRAL.
- ALTO CONTROL Y SEGURIDAD EN UN ÚNICO PUNTO.
- DEPENDENCIA TOTAL: SI EL SERVIDOR FALLA, EL SISTEMA SE DETIENE.

Que es una bd clienteservidor?

Definición

DIVIDE EL SISTEMA EN DOS: EL SERVIDOR GESTIONA LA BASE DE DATOS Y LOS CLIENTES HACEN SOLICITUDES PARA ACCEDER A ELLA.

Características

- SEPARACIÓN ENTRE CLIENTE (INTERFAZ) Y SERVIDOR (PROCESAMIENTO).
- MAYOR EFICIENCIA EN CONSULTAS Y ACTUALIZACIONES.
- PERMITE MÚLTIPLES CLIENTES CONECTADOS A UN SERVIDOR.

Que es una bd distribuida?

Definición

LOS DATOS SE ALMACENAN EN VARIOS SERVIDORES/LOCALIZACIONES, PERO TRABAJAN DE FORMA COORDINADA COMO UNA SOLA BASE DE DATOS LÓGICA.

Características

- LOS DATOS PUEDEN ESTAR REPLICADOS O FRAGMENTADOS.
- ALTA DISPONIBILIDAD Y TOLERANCIA A FALLOS.
- MEJORA EL ACCESO LOCAL REDUCIENDO LA LATENCIA.

Ventajas en un e-commerce

Arquitectura	Ventajas en E-commerce
Centralizada	- Fácil administración de inventarios y ventas Mayor seguridad al estar todo en un solo punto Costos iniciales más bajos en infraestructura.
Cliente-Servidor	- Permite que muchos clientes accedan al mismo tiempo Buen rendimiento en procesamiento de pedidos y pagos Escalable al agregar más clientes o mejorar el servidor.
Distribuida	- Alta disponibilidad (el e-commerce sigue funcionando aunque un nodo falle) Acceso más rápido desde diferentes regiones Escalabilidad horizontal (agregar más servidores fácilmente).

Desventajas en un e-commerce

Arquitectura	Desventajas en E-commerce
Centralizada	- Punto único de fallo (si el servidor cae, todo el e- commerce se detiene) Problemas de rendimiento con muchos usuarios simultáneos Latencia alta para usuarios lejanos al servidor.
Cliente-Servidor	- Si el servidor principal colapsa, se interrumpe el servicio Puede requerir servidores más potentes a medida que crece Costo moderado de mantenimiento.
Distribuida	- Mayor complejidad en administración y sincronización de datos Costos más altos de infraestructura Riesgo de inconsistencias si no se gestiona bien la replicación.

Ejem. Implementación

Centralizado

- Una empresa instala MySQL en un solo servidor físico o virtual.
- Todos los datos de clientes, productos y transacciones se guardan en esa base central.
- Los empleados o el sistema web del e-commerce se conectan únicamente a ese servidor para leer y escribir datos.

Distribuida

La facultad tiene varias sedes o departamentos (Administración, Ingeniería, Medicina). Cada uno guarda su base de datos local con la información de sus estudiantes y cursos, pero todas las sedes están interconectadas y funcionan como un solo sistema.

- Departamento de Administración → almacena datos de matrículas y pagos.
- Departamento de Ingeniería → almacena calificaciones y horarios de ingeniería.
- Departamento de Medicina → almacena datos de prácticas y asistencia.

Arquitectura recomendada para un sistema de gestión académica (Distribuida)

Acceso geográfico eficiente

- EN UNA UNIVERSIDAD CON VARIAS SEDES O
 FACULTADES, LOS DATOS NO NECESITAN ESTAR TODOS
 EN UN SOLO LUGAR.
- EJEMPLO: LOS ESTUDIANTES DE LA FACULTAD DE MEDICINA CONSULTAN SUS NOTAS EN UN SERVIDOR LOCAL, Y SI NECESITAN INFORMACIÓN DE PAGOS, EL SISTEMA ACCEDE AL SERVIDOR DE ADMINISTRACIÓN. ESTO REDUCE LA LATENCIA.

Alta disponibilidad

- EN UN SISTEMA ACADÉMICO, LA MATRÍCULA, EL REGISTRO DE NOTAS O LA CONSULTA DE HORARIOS NO PUEDEN DETENERSE.
- EN UNA ARQUITECTURA DISTRIBUIDA, SI EL SERVIDOR
 DE UNA FACULTAD O SEDE FALLA, LOS DEMÁS SIGUEN
 FUNCIONANDO Y LOS ESTUDIANTES AÚN PUEDEN
 ACCEDER AL SISTEMA.

Destaca en:

- LA INFORMACIÓN
 ACADÉMICA ES CRÍTICA
 (NOTAS, HISTORIALES,
 PAGOS, TÍTULOS).
- EN UNA ARQUITECTURA
 DISTRIBUIDA, SE PUEDEN
 TENER COPIAS REPLICADAS
 DE LOS DATOS EN VARIOS
 NODOS, LO QUE PROTEGE
 CONTRA PÉRDIDAS.

Flexibilidad organizativa

- CADA FACULTAD O ÁREA PUEDE TENER
 AUTONOMÍA EN LA GESTIÓN DE SU INFORMACIÓN,
 PERO AL MISMO TIEMPO EL SISTEMA GLOBAL
 INTEGRA TODO.
- EJEMPLO: LA FACULTAD DE INGENIERÍA MANEJA SUS CURSOS Y DOCENTES, PERO AL FINAL LOS DATOS SE SINCRONIZAN CON EL SISTEMA CENTRAL PARA REPORTES INSTITUCIONALES.

Escalabilidad

- LAS UNIVERSIDADES CRECEN
 CONSTANTEMENTE: MÁS ALUMNOS,
 MÁS CURSOS, MÁS PROCESOS
 (PAGOS, CERTIFICACIONES,
 BIBLIOTECAS DIGITALES).
- CON UNA BASE DISTRIBUIDA, SE PUEDEN AGREGAR MÁS SERVIDORES FÁCILMENTE SIN REHACER TODA LA INFRAESTRUCTURA.

Gracias