import pandas as pd

df1 = pd.read_csv('HR_Attrition Data.csv')

df1.head()

Employee No.	Gender	Education	Education Field	Job Role	Department	Age group	Work Location	Attrition	Attrition Date	•••	Environment Satisfaction	Attrition Count
E_1	Female	Associates Degree	Life Sciences	Sales Executive	Sales	35-44	Banglore	Yes	4/30/2022		2	1.0
E_2	Male	High School	Life Sciences	Research Scientist	R & D	45-55	Hydrabad	No	NaN		3	NaN
E_4	Male	Associates Degree	Other	Laboratory Technician	R&D	35-44	Noida	Yes	05-03- 2022		4	1.0
E_5	Female	Master's Degree	Life Sciences	Research Scientist	R&D	25-34	Pune	No	NaN		4	NaN
E_7	Male	High School	Medical	Laboratory Technician	R&D	25-34	Mumbai	No	NaN		1	NaN
/s × 26 coli	umns											

New interactive sheet

df2 = pd.read_csv('HR_New_data.csv')

Generate code with df2

df2.head()

0 E_1 0.53 2 157 0 0 1 E 4 0.86 5 262 0 0
1 F 4 0.86 5 262 0 0
2 E_19 0.88 7 272 0
3 E_27 0.87 5 223 0 0
4 E 31 0.52 2 159 0 0

View recommended plots

Merging both datasets

Next steps:

df = pd.merge(left=df1,right=df2,left_on="Employee No.",right_on="emp_id")

df.head()

_		Employee No.	Gender	Education	Education Field	Job Role	Department	Age group	Work Location	Attrition	Attrition Date	•••	Performance Rating	Placeholde
	0	E_1	Female	Associates Degree	Life Sciences	Sales Executive	Sales	35-44	Banglore	Yes	4/30/2022		3	
	1	E_2	Male	High School	Life Sciences	Research Scientist	R & D	45-55	Hydrabad	No	NaN		4	
	2	E_4	Male	Associates Degree	Other	Laboratory Technician	R & D	35-44	Noida	Yes	05-03- 2022		3	
	3	E_5	Female	Master's Degree	Life Sciences	Research Scientist	R & D	25-34	Pune	No	NaN		3	
	4	E_7	Male	High School	Medical	Laboratory Technician	R & D	25-34	Mumbai	No	NaN		3	
	5 ro	ws × 32 col	umns											
	4													•

df.columns

```
Index(['Employee No.', 'Gender', 'Education', 'Education Field', 'Job Role', 'Department', 'Age group', 'Work Location', 'Attrition', 'Attrition Date', 'Attrition Label', 'Dynamic Date', 'Age', 'Attrition.1', 'Avg. Satisfaction Score', 'Employee Count',
```

```
'Environment Satisfaction', 'Attrition Count', 'Job Involvement', 'Job Satisfaction', 'Monthly Income', 'Percent Salary Hike', 'Performance Rating', 'Placeholder', 'Relationship Satisfaction', 'Work Life Balance', 'emp_id', 'last_evaluation', 'number_project', 'average_montly_hours', 'Work_accident', 'promotion_last_5years'], dtype='object')
```

Exploratry Data Analysis

```
# Checking Target Variable

df['Attrition'].value_counts()

count

Attrition

No 1233

Yes 237
```

import matplotlib.pyplot as plt
import seaborn as sns

```
# Plot distribution of Attrition (target variable)
plt.figure(figsize=(6,4))
sns.countplot(x='Attrition', data=df)
plt.title('Distribution of Attrition')
plt.show()
```



```
# Plot distribution of a few key categorical variables
categorical_cols1 = ['Work Location', 'Department', 'Education']
for col in categorical_cols1:
    plt.figure(figsize=(7,5))
    sns.countplot(x=col, data=df)
    plt.title(f'Distribution of {col}')
    plt.show()
```

∓


```
# Plot distribution of a few key categorical variables
categorical_cols2 = ['Job Role']
for col in categorical_cols2:
   plt.figure(figsize=(14,5))
   sns.countplot(x=col, data=df)
```

plt.title(f'Distribution of {col}')
plt.show()

[#] Categorical vs Target (Attrition)
for col in categorical_cols1:

```
plt.figure(figsize=(8,4))
sns.countplot(x=col, hue='Attrition', data=df)
plt.title(f'{col} vs Attrition')
plt.show()
```



```
# Categorical vs Target (Attrition)
for col in categorical_cols2:
   plt.figure(figsize=(14,5))
   sns.countplot(x=col, hue='Attrition', data=df)
   plt.title(f'{col} vs Attrition')
   plt.show()
```



```
# Boxplots for numerical features vs Attrition
for col in numerical_cols:
   plt.figure(figsize=(8,4))
   sns.boxplot(x='Attrition', y=col, data=df)
   plt.title(f'{col} vs Attrition')
   plt.show()
```


Data Preprocessing

```
# Check Missing Values
df.isna().sum()
```



```
0
     Employee No.
                             0
        Gender
                             0
       Education
                             0
    Education Field
                             0
        Job Role
                             0
      Department
                             0
      Age group
                             0
     Work Location
                             0
        Attrition
                             0
     Attrition Date
                          1233
     Attrition Label
                             0
     Dynamic Date
                          1233
          Age
                             0
       Attrition.1
                             0
Avg. Satisfaction Score
                             0
    Employee Count
                             0
Environment Satisfaction
                             0
     Attrition Count
                          1233
    Job Involvement
                             0
    Job Satisfaction
                             0
    Monthly Income
                             0
  Percent Salary Hike
                             0
  Performance Rating
                             0
      Placeholder
                             0
Relationship Satisfaction
                             0
   Work Life Balance
                             0
        emp_id
                             0
    last_evaluation
                             0
    number_project
                             0
 average_montly_hours
    Work_accident
                             0
 promotion_last_5years
                             0
```

```
df = df[['Gender', 'Education', 'Education Field', 'Job Role',
       'Department', 'Work Location', 'Attrition', 'Age',
       'Avg. Satisfaction Score',
       'Environment Satisfaction', 'Job Involvement',
       'Job Satisfaction', 'Monthly Income', 'Percent Salary Hike',
       'Performance Rating', 'Relationship Satisfaction', 'Work Life Balance','last_evaluation', 'number_project',
       'average_montly_hours', 'Work_accident', 'promotion_last_5years']]
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1470 entries, 0 to 1469
     Data columns (total 22 columns):
                                       Non-Null Count Dtype
      #
          Column
      0
          Gender
                                       1470 non-null
                                                        object
          Education
                                       1470 non-null
                                                        object
          Education Field
                                       1470 non-null
                                                        object
          Job Role
                                       1470 non-null
                                                         object
      4
          Department
                                       1470 non-null
                                                         object
          Work Location
                                       1470 non-null
                                                         object
```

Attrition

object

1470 non-null

```
Age
                               1470 non-null
                                               int64
    Avg. Satisfaction Score
8
                               1470 non-null
                                              float64
    Environment Satisfaction
                              1470 non-null
                                               int64
10 Job Involvement
                               1470 non-null
                                               int64
11 Job Satisfaction
                               1470 non-null
                                               int64
12 Monthly Income
                               1470 non-null
                                               int64
13 Percent Salary Hike
                               1470 non-null
                                               int64
14 Performance Rating
                               1470 non-null
                                               int64
                                              int64
    Relationship Satisfaction 1470 non-null
15
16 Work Life Balance
                               1470 non-null
                                               int64
                               1470 non-null
                                               float64
17
    last_evaluation
18 number_project
                               1470 non-null
                                               int64
19 average_montly_hours
                               1470 non-null
                                               int64
20 Work_accident
                               1470 non-null
                                               int64
21 promotion_last_5years
                               1470 non-null
                                               int64
dtypes: float64(2), int64(13), object(7)
memory usage: 252.8+ KB
```

df.head()

-	7	7	,
٠		_	

	Gender	Education	Education Field	Job Role	Department	Work Location	Attrition	Age	Avg. Satisfaction Score	Environment Satisfaction	•••	Monthly Income	Percent Salary Hike
) Female	Associates Degree	Life Sciences	Sales Executive	Sales	Banglore	Yes	41	2.2	2		5993	11
	I Male	High School	Life Sciences	Research Scientist	R&D	Hydrabad	No	49	2.8	3		5130	23
:	2 Male	Associates Degree	Other	Laboratory Technician	R&D	Noida	Yes	37	2.8	4		2090	15
;	B Female	Master's Degree	Life Sciences	Research Scientist	R&D	Pune	No	33	3.2	4		2909	11
	I Male	High School	Medical	Laboratory Technician	R&D	Mumbai	No	27	2.6	1		3468	12
5	rows × 22 c	columns											

#Drop rows with missing values df.dropna(inplace=True)

One-hot encoding for categorical variables df = pd.get_dummies(df, columns=['Gender', 'Education', 'Education Field', 'Job Role', 'Department', 'Work Location'], drop_first=True)

df.head()

<u>-</u>		Attrition	Age	Avg. Satisfaction Score	Environment Satisfaction	Job Involvement	Job Satisfaction	Monthly Income	Percent Salary Hike		Relationship Satisfaction	•••	Role_Res∈ Scier
	0	Yes	41	2.2	2	3	4	5993	11	3	1		
	1	No	49	2.8	3	2	2	5130	23	4	4		
	2	Yes	37	2.8	4	2	3	2090	15	3	2		
	3	No	33	3.2	4	3	3	2909	11	3	3		
	4	No	27	2.6	1	3	2	3468	12	3	4		
5	ro	ws × 41 colur	nns										
5	ro	ws × 41 colur	nns										

Convert binary columns to 0 and 1 df['Attrition'] = df['Attrition'].apply(lambda x: 1 if x == 'Yes' else 0)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 41 columns):

#	Column	Non-Null Count	Dtype
0	Attrition	1470 non-null	int64
1	Age	1470 non-null	int64
2	Avg. Satisfaction Score	1470 non-null	float64
3	Environment Satisfaction	1470 non-null	int64
4	Job Involvement	1470 non-null	int64
5	Job Satisfaction	1470 non-null	int64

```
6 Monthly Income
                                                 1470 non-null
                                                                       int64
                                                 1470 non-null
     Percent Salary Hike
                                                                       int64
     Performance Rating
                                                 1470 non-null
                                                                       int64
                                              1470 non-null
1470 non-null
     Relationship Satisfaction
10 Work Life Balance
11 last_evaluation
                                                 1470 non-null
                                                                       float64
12 number project
                                                 1470 non-null
                                                                       int64
                                                1470 non-null
13 average_montly_hours
                                                                       int64
14 Work_accident
                                                1470 non-null
1470 non-null
                                                                       int64
15 promotion_last_5years
                                                                       int64
15 promotion_last_syears 1470 non-null
16 Gender_Male 1470 non-null
17 Education_Bachelor's Degree 1470 non-null
18 Education_Doctoral Degree 1470 non-null
19 Education_High School 1470 non-null
20 Education_Master's Degree 1470 non-null
21 Education Field_Life Sciences 1470 non-null
                                                                       bool
                                                                       bool
                                                                       bool
22 Education Field_Marketing 1470 non-null
23 Education Field_Medical 1470 non-null
24 Education Field_Other 1470 non-null
                                                                       bool
                                                                       bool
25 Education Field_Technical Degree 1470 non-null
                                                                       hoo1
26 Job Role_Human Resources 1470 non-null
                                                                       hoo1
27 Job Role_Laboratory Technician 1470 non-null
                                                                       bool
28 Job Role_Manager
                                                  1470 non-null
                                                                       bool
29 Job Role_Manufacturing Director 1470 non-null
30 Job Role_Research Director 1470 non-null
31 Job Role_Research Scientist 1470 non-null
32 Job Role_Sales_Executive 1470 non-null
32 Job Role_Sales Executive 1470 non-null 133 Job Role_Sales Representative 1470 non-null
                                                                       bool
                                           1470 non-null
1470 non-null
34 Department_R & D
                                                                       bool
35 Department Sales
                                                                       bool
                                                1470 non-null
1470 non-null
36 Work Location Delhi
                                                                       hoo1
37 Work Location_Hydrabad
                                                                       bool
38 Work Location_Mumbai
                                                1470 non-null
39 Work Location_Noida
                                                  1470 non-null
                                                                       bool
40 Work Location_Pune
                                                 1470 non-null
```

dtypes: bool(25), float64(2), int64(14)

memory usage: 219.8 KB

df.describe()

•	Attrition	Age	Avg. Satisfaction Score	Environment Satisfaction	Job Involvement	Job Satisfaction	Monthly Income	Percent Salary Hike	Performance Rating	Relati Satisf
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.
mean	0.161224	36.923810	2.730748	2.721769	2.729932	2.728571	6502.931293	15.209524	3.153741	2.
std	0.367863	9.135373	0.428551	1.093082	0.711561	1.102846	4707.956783	3.659938	0.360824	1.
min	0.000000	18.000000	1.200000	1.000000	1.000000	1.000000	1009.000000	11.000000	3.000000	1.
25%	0.000000	30.000000	2.400000	2.000000	2.000000	2.000000	2911.000000	12.000000	3.000000	2.
50%	0.000000	36.000000	2.800000	3.000000	3.000000	3.000000	4919.000000	14.000000	3.000000	3.
75%	0.000000	43.000000	3.000000	4.000000	3.000000	4.000000	8379.000000	18.000000	3.000000	4.
max	1.000000	60.000000	4.000000	4.000000	4.000000	4.000000	19999.000000	25.000000	4.000000	4.
4										•

from sklearn.preprocessing import StandardScaler

```
# Scaling numerical features
scaler = StandardScaler()
numerical_features = ['Age', 'Monthly Income', 'Percent Salary Hike', 'average_montly_hours', 'last_evaluation', 'number_project']
df[numerical_features] = scaler.fit_transform(df[numerical_features])
```

Model Building

```
from sklearn.model_selection import train_test_split
# Define features and target variable
X = df.drop(columns=['Attrition'])
y = df['Attrition']
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

Model Training

```
# Initialize and train the model
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)

RandomForestClassifier (random_state=42)

RandomForestClassifier(random_state=42)
```

Model Evaluation

```
from \ sklearn.metrics \ import \ accuracy\_score, \ confusion\_matrix, \ classification\_report, \ roc\_auc\_score
# Predictions on test set
y_pred = model.predict(X_test)
# Evaluation metrics
print("Accuracy:", accuracy_score(y_test, y_pred))
\verb|print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))|\\
print("Classification Report:\n", classification_report(y_test, y_pred))
print("ROC-AUC Score:", roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]))
Accuracy: 0.9455782312925171
     Confusion Matrix:
      [[372 4]
      [ 20 45]]
     Classification Report:
                    precision
                                 recall f1-score
                                                     support
                0
                        0.95
                                  0.99
                                             0.97
                                                         376
                        0.92
                                  0.69
                                             0.79
                1
                                                         65
                                             0.95
                                                        441
         accuracy
        macro avg
                        0.93
                                   0.84
                                             0.88
                                                         441
     weighted avg
                        0.94
                                   0.95
                                             0.94
                                                         441
```

ROC-AUC Score: 0.947340425531915

Model Export

Deployment and Reporting

```
# Load the model
loaded_model = joblib.load('employee_attrition_model.pkl')
import numpy as np
import pandas as pd

# Example new data (for 5 employees)
new_employee_data = {
   'Age': [28, 35, 40, 50, 25],
   'Avg. Satisfaction Score': [3.5, 4.2, 3.0, 4.0, 3.8],
   'Environment Satisfaction': [3, 4, 2, 4, 3],
   'Job Involvement': [3, 3, 4, 3, 2],
```