CSCI 4470 Algorithms

Part II Sorting and Order Statistics

- 6 Heapsort
- 7 Quicksort
- · 8 Sorting in Linear Time
- 9 Medians and Order StatisticsHeapsort Algorithms Notes

Chapter 9: Medians and Order Statistics

- 9 Medians and Order Statistics
 - 9.1 Minimum and maximum
 - 9.2 Selection in Expected Linear Time
 - 9.3 Selection in worst-case linear time

Order Statistics

Definition

- *i*-th Order Statistic: Element with rank *i* in set *S*.
- **Minima**: First order statistic, requires n-1 comparisons.
 - Min value is 1
- Maxima: n-th order statistic.
 - Max value is n
- The Median is another important order statistic, representing the middle value of a dataset.
 - **Median** is $\lceil \frac{n}{2} \rceil$

Selection Problem

- Given a set A of n distinct numbers and a number i, the task is to find the i-th order statistic of A.
- Used to find the *i*-th smallest number in an unsorted list in linear time.

Average Case & Worst Case:

- Average Case: Typically O(n).
- Worst Case: Can be O(n) with optimal algorithms like Median of Medians.
- Could be worse than O(n), such as $O(n^2)$ or $O(n \log n)$, depending on the algorithm used.

Finding Minima and Maxima Together

- Number of Comparisons to Find Minima: n-1.
- Number of Comparisons to Find Maxima: n-1.
- Lower Bound on Number of Comparisons: $\Omega(n)$.

Method:, To find both minima and maxima together, **compare in pairs**:

- Compare $x_1:x_2$.
- If $x_1 < x_2$, then compare x_1 with current min and x_2 with current max.
- Otherwise, compare x_2 with current min and x_1 with current max.

```
MIN-AND-MAX(A)
1. min = max = A[1]
2. for i = 1 to A.length/2  // assume A.length is even
3. if A[2i - 1] > A[2i]
   if min > A[2i] //compare min to smaller value
      min = A[2i]
5.
      if max < A[2i-1]  // compare max to larger value</pre>
6.
7.
          max = A[2i-1]
8. else if min > A[2i-1] // compare min to smaller value
9. \min = A[2i-1]
10. if max < A[2i]
                     //compare max to larger value
11. max = A[2i]
12. return min, max
```

- Number of Comparisons in One Iteration: 3.
 - In the MIN-AND-MAX algorithm, it's not always 3 comparisons in one iteration. It can be 2 or 3 comparisons
 depending on the elements.
- Total Number of Iterations: $rac{n}{2}$ (because we are comparing in pairs: $[x_1:x_2], [x_3:x_4], ...,$ etc.)
 - The total number of comparisons is not strictly $3(\frac{n}{2})$. It is at most $3(\frac{n}{2})$ and at least $2(\frac{n}{2})$.
- Total Number of Comparisons: $3(\frac{n}{2})$.
- Optimized Number of Comparisons: Less than 2(n-1) when found separately.

```
O(3\frac{n}{2}) comparisons
```

Randomized Select Algorithm

- Randomized Select Algorithm: To find any i-th order statistics efficiently.
- How can selection be performed in place in expected linear time?
 - · Similar to binary search
 - Approach: Similar to quicksort, it works by partitioning the array and then recursively searching in one of the partitions.
- Order statistics: The elements of a set sorted in order. The *i*-th order statistic is the *i*-th smallest element in the set.

Selecting i-th Element

- Randomized Partition: The core operation that helps in finding the *i*-th order statistic.
 - If it returns index i, A[i] is the i-th order statistic.
 - \circ If it returns index k < i, the search continues on the right side.
 - If it returns index k > i, the search continues on the left side.
- Function Parameters:
 - Array A, starting index p, ending index r, and the target order statistic index i.
- Working:
 - Single Element: If p equals r, return A[p].
 - Partitioning: Utilizes randomized partition to find the pivot and accordingly directs the search to the left or right subarray.
 - Recursive Search: If the pivot's rank matches i, it is returned; otherwise, a suitable subarray is chosen for
 a recursive search based on the comparison of i and the pivot's rank.

Analysis of Randomized Select

Expected running time: O(n), where n is the number of elements in the array. **Worst-case running time**: $O(n^2)$, but the worst case occurs rarely due to randomization.

What is the worst-case running time?

In the worst case, the running time of the algorithm is $O(n^2)$. This occurs when each recursive call decreases the size of the input by only 1, leading to a series of recursive calls that take a considerable amount of time.

· When does it occur?

This scenario happens when the RANDOMIZED-PARTITION function consistently picks the worst possible pivot, either the smallest or the largest element in the array, resulting in the most unbalanced partitions. In your example array $\{5,10,7,3,15,9,2\}$, it would occur if, while searching for the smallest element, the largest element is consistently chosen as the pivot, and vice versa.

Practical Considerations

- Usage: Useful in scenarios where we need to find median or other order statistics quickly.
- Optimization: Can be optimized further by using a hybrid approach with other efficient sorting algorithms for small arrays.

Conclusion

• Randomized Select: A powerful tool for finding order statistics in expected linear time, offering a good average case performance.

Worst-Case Analysis of RANDOMIZED-SELECT

In the worst-case scenario for RANDOMIZED-SELECT, the RANDOMIZED-PARTITION function always picks an element that results in the most skewed partition possible. This means that one partition has n-1 elements and the other has 0 elements.

Recurrence Relation:

Given this skewed partitioning, the recurrence relation for the worst-case scenario is:

$$T(n) = T(n-1) + O(n)$$

Here's a breakdown:

- 1. T(n-1): This term represents the time taken by the recursive call on the partition with n-1 elements.
- 2. O(n): This term represents the time taken to partition the array of size n. O(n):

Base Case:

$$T(1) = O(1)$$

When the array has only one element, the algorithm simply returns that element, which takes constant time.

Solving the Recurrence:

To solve the recurrence relation T(n) = T(n-1) + O(n), we can expand it:

$$T(n) = T(n-1) + O(n)$$
 $= [T(n-2) + O(n-1)] + O(n)$
 $= [T(n-3) + O(n-2)] + O(n-1) + O(n)$
 $= \dots$
 $= T(1) + O(n) + O(n-1) + O(n-2) + \dots + O(2) + O(1)$
 $T(n) = O(n) + O(n-1) + O(n-2) + \dots + O(2) + O(1)$

To find the Big O notation for this series, we sum up all the terms:

$$O(n) + O(n-1) + O(n-2) + \ldots + O(2) + O(1) = O\left(\sum_{i=1}^n i\right) = \sum_{i=1}^n i = \frac{n(n+1)}{2}$$
 $O\left(\frac{n(n+1)}{2}\right) = O\left(\frac{n^2+n}{2}\right) = O(n^2)$ $T(n) = O(n^2)$

So, in the worst-case scenario, the RANDOMIZED-SELECT algorithm has a time complexity of $O(n^2)$.

Average Case Runtime Analysis

Let $X_k = I$ { pivot rank = k}, $1 \le k \le n$

what is $E[X_k]$?

Step 1: Define $E[X_k]$ (步驟 1:定義 $E[X_k]$)

- $E[X_k]$ is the expected value of the random variable X_k , which indicates whether the k-th element is chosen as the pivot.
- It is calculated as $E[X_k]=rac{1}{n}$ because the pivot is chosen randomly.

Step 2: Worst Case in Partition

• In the worst case during partition, the i-th element ends up on the side with the greater number of elements, resulting in partition sizes of k-1 and n-k.

Step 3: Recurrence Relation

• The recurrence relation for the expected runtime E[T(n)] is derived considering the worst case in each partition, leading to the relation:

$$E[T(n)] \leq \sum_{k=1}^n X_k \cdot \max\{T(k-1),T(n-k)\} + O(n)$$

Step 4: Independent Variables

- Note that X_k and $T(\max\{k-1,n-k\})$ are independent; the runtime of a partition of size k-1 or n-k does not depend on whether that size is selected.
- Also, T is an increasing function, so we can simplify $\max\{T(k-1),T(n-k)\}$ to $T(\max\{k-1,n-k\})$.

Step 5: Simplifying the Relation

· Now, we can simplify the relation further to find the expected runtime:

$$egin{aligned} E[T(n)] & \leq \sum_{k=1}^n E[X_k] \cdot E[T(\max\{k-1,n-k\})] + O(n) \ & T(n) \in O(n) \end{aligned}$$

A linear time algorithm

SELECT Algorithm Example Analysis

Initial Array

A = {10, 38, 87, 55, 47, 5, 3, 9, 12, 88, 19, 22, 53, 98, 17, 37, 35, 63, 72, 33, 93, 87, 15, 66}

G1	G2	G3	G4	G 5
10	5	19	37	93
38	3	22	35	87
87	9	53	63	15
55	12	98	72	66
47	88	17	33	

Step 1: Grouping and Finding Medians

Grouping: Divide array A into groups of 5 elements each, and one group with 4 elements. This takes linear time, O(n).

Finding Medians: Find the median of each group through insertion sort. For instance, the first group will be {10, 38, 87, 55, 47} and its median is 47. This process is repeated for all groups.

The medians of groups = $\{47, 9, 22, 37, 87\}$, O(n)

Step 2: Finding Median of Medians

Recursive Call: We find the median of the medians obtained in step 1. Let's assume the medians are $\{47, 9, 22, 37, 87\}$. The median of this set is **37**.

the median of medians =37, O(n)

Step 3: Partitioning Around x

Partition: We partition the array around the median of medians, 37, resulting in two subarrays: one with elements less than 37 and one with elements greater than 37.

Step 4: Recursive Calls to Find the i-th Smallest Element

Recursion: Depending on the value of i relative to k, recursively find the i-th smallest element. For instance, if we are looking for the 7th smallest element, we would proceed with the elements less than 22.

Finding a Good Pivot

- Grouping and Sorting: The array is divided into groups and sorted to find a good pivot, taking O(n) time.
- Median of Medians: The median of medians is found recursively, serving as a good pivot.

Modifying Partition

• Partition with Median of Medians: The partition is modified to use the median of medians as the pivot, guiding the next steps based on the rank k sought.

Recurrence Relation

- Formulation: The recurrence relation for the worst-case running time is formulated as $T(n) \leq T(n/5) + T(7n/10) + \Theta(n)$, where $\Theta(n)$ represents a linear time complexity.
- **Solving**: The recurrence is solved using the substitution method, proving that T(n) = O(n).

Analysis of Elements Relative to the Pivot

- Smaller Elements: At least 3n/10-6 elements are smaller than the pivot, derived from the analysis of medians and their respective groups.
- Larger Elements: At most 7n/10+6 elements are larger than the pivot, ensuring a balanced partition most of the time.

Solution of The Recurrence Relation

The Recurrence Relation for the worst-case running time

 $T(n) \leq T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7n}{10} + 6\right) + \Theta(n)$, where $\Theta(n)$ represents a linear time complexity.

Step 1: Aim to prove T(n) = O(n) using the substitution method

Assume $T(n) \leq cn$, aiming to find c and a.

Step 2: Substitute $T(n) \leq cn$ into the recurrence:

$$T(n) \leq c\left(\frac{n}{5}+1\right) + c\left(\frac{7n}{10}+6\right) + an$$

Step 2.1: Distribute c in the term $c\left(\frac{n}{5}+1\right)$ and $c\left(\frac{7n}{10}+6\right)$

$$c\left(rac{n}{5}
ight)+c$$
, and $c\left(rac{7n}{10}
ight)+6c$

$$T(n) \leq c\left(rac{n}{5}
ight) + c + c\left(rac{7n}{10}
ight) + 6c + an$$

Step 2.2: Combine the n terms by adding $\frac{n}{5}c$ and $\frac{7n}{10}c$

$$T(n) \le c \left(\frac{n}{5} + \frac{7n}{10}\right) + 7c + an$$

$$T(n) \leq c\left(\frac{9n}{10}\right) + 7c + an$$

Step 3: Simplify

$$T(n) \leq cn\left(\frac{9}{10}\right) + 7c + an$$

Step 4: To satisfy T(n) < cn,

$$cn\left(\frac{9}{10}\right) + 7c + an \le cn$$

Step 4.1: Bring the term $cn\left(\frac{9}{10}\right)$ to the right to have it with cn:

$$7c+an \leq cn-cn\left(rac{9}{10}
ight)$$
, then $7c+an \leq cn\left(rac{10}{10}-rac{9}{10}
ight)$

Further simplify $7c + an \leq cn\left(rac{1}{10}
ight)$

Step 5: Rearrange inequality to find the terms involving a

$$7c + an \le cn\left(\frac{1}{10}\right)$$
, then $an \le cn\left(\frac{1}{10}\right) - 7c$

$$cn\left(\frac{1}{10}\right) \ge an - 7c$$

Step 6: Divide both sides by n and then by c to get:

$$\frac{1}{10} \geq \frac{a}{c} - \frac{7}{n}$$

Step 7: Rearrange to find a condition involving a and c:

$$\frac{c}{10} - a \geq \frac{7}{n}$$

Step 8: Ensure a positive left-hand side:

$$\frac{c}{10} - a > 0$$

Step 9: find a condition on n, rearrange the inequality from step 7:

Step 7,
$$rac{c}{10}-a\geq rac{7}{n},$$
 $n\cdot \left(rac{c}{10}-a
ight)\geq n\cdot \left(rac{7}{n}
ight)$

Step 9.1 Isolate n

$$n\left(rac{c}{10}-a
ight)\geq 7$$
 , then $n\geq rac{7}{\left(rac{c}{10}-a
ight)}$

Step 9.2 Making it a Strict Inequality

$$n>rac{7c}{rac{c}{10}-a}$$