투 무빅스

<리뷰분석을 통한 영화 손익분기점 예측>

장재석, 오건우, 전종섭, 최문정, 황다솔

CONTENTS

- Ⅰ 주제 선정 배경
- 비 데이터 수집
- Ⅲ 분석과정
- Ⅳ 결론

주제 선정 배경 데미터 수집 분석과정 결론

- 2017년 개봉영화들의 누적 관객수

6,592,151명

6,879,844 명

5,653,270 명

3,849,087 명

3,279,296 명

주제 선정 배경 데이터 수집 분석과정 결론

- 이 영화들의 손익분기점은 ?

6,592,151 명 8,000,000명

6,879,844 명 2,000,000 명

5,653,270 명 2,000,000 명

3,849,087 명 5,000,000 명

3,279,296 명 1,800,000 명

주제 선정 배경 데이터 수집 분석과정 결론

1 프로젝트주제

영화 개봉 전, 배급사들은 영화의 반응을 알기 위해 시사회를 진행한다.

1 프로젝트주제

"그렇다면 이 개봉 전 반응으로 영화가 손익분기점을 넘길 지 알 수 있을까?"

-> 영화진흥위원회>영화정보센터>영화IB검색

약 6500개의 영화목록 수집

2 네이버영화평점

2 각명화별리뷰

주제 선정 배경 데이터 수집 분석과정 결론

2 영화 목록 필터링

6500 개의 명화

필터링

- 네미버 영화 내 평점 X

- 참여민원미 너무 적은 영화

1689 개의 명화

문석고 정 주제 선정배경 데이터 수집 분석과정 결론

3 데이터분할

TRAIN / VALIDATION / TEST 6 2 2

3 변수 설명

변수	설명		
글쎄요	수치형		
보고싶머요	수치형		
참여민원	수치형		
평점	수치형		
장르	SF, 판타지, 느와르, 로맨스 등	\rightarrow	카테고리화
관람등급	전체관람가, 15세 이상 관람가, 청소년 관람 불가	\rightarrow	카테고리화
배급사	롯데멘터테인먼트, NEW 등	\rightarrow	배급사의 영화 배급 양에 따라 1~5

3 기본 분석

	MEAN ACCURACY	MEAN F1 SCORE
RIDGE	0.80	0.65
LASSO	0.80	0.64
RANDOMFOREST	0.78	0.63
DECISIONTREE	0.80	0.53
KNN	0.76	0.52

F1 SCORE

$$Precision = \frac{tp}{tp + fp}$$

$$Recall = \frac{tp}{tp + fn}$$

$$F_1 = 2 \cdot \frac{1}{\frac{1}{recall} + \frac{1}{precision}} = 2 \cdot \frac{tp}{2tp + fp + fn}$$

문식과정 7제 선정 배경 데이터 수집 분석과정 결론

명화 리뷰의변수화

"각 영화의 리뷰들을 요약하여 변수로 만들자"

→ 1. COUNT 기반

어떻게 만들까?

→ 2. 감성사전 기반

데이터 수집 분석과정

결론

3

영화 리뷰 전처리

50만개의 리뷰 데이터

재미있을것같네요!

주인공연기가 너무좋았습니다.앞으로도 좋은연기부탁드립니다^^

4일에 보고 왔습니다. 정말 몰입해서 봤네요. 공감가는 내용도 많아 울컥했습니다.

아 완전 내가 원하던 내용의 영화!!! 개봉 꼭 해주세요!! 지구 반대편에서 개봉하더라도 보러갑니다 ♥ 기대하구잇어요~~~

시간이가는줄모르고 봤습니다지금까지본 영화중 가장 현실적이면서 감정이입 잘 되는 영화!!

비정규직의 현실을 너무 디테일하게 잘 표현한 영화. 일주일에서 10분으로 바뀐 현실. 엔딩의 10분의 초 감정폭발의 표현 없이도 이런 영화가 나올수 있다는것을 보여주었다

18회 부국제에서 본 최고의 한국영화. 지극한 현실을 가지고 무섭도록 아픈 드라마를 재단해낸 솜씨. 꼭 실전 필수 관람! 적극 추천!

방금 영화의전당에서보고왔는데 정말 재밌게봤네요. 공감많이가고 너무현실적인 영화.. 잘봤습니다^^ 부산영화제에서 봤는데 정말 대박 작품이네요. 시나리오, 연출, 배우 연기 모두 너무나 훌륭하고 시간가 18회 부산국제영화제에서 본영화중 2번째로 재미있는영화였음 공감이 많이가서 울컥

대박기원!! 재미날것 같아요~^^

KONLPY TWITTER [제미졌/Agective, 플/Precomi, 첫/Precomi, 날리/Agective, 포/comi, !/Punctuation]
[주인공/Noun, '연기/Noun', '가/Josa', '닉무/Noun', '종/Adjective', '았/PreEomi', '급니다/Eomi', './Punctuation', '영화/Noun', '네/Josa', '보고/Noun', '왔/Verb', '습니다/Eomi', '/Punctuation', '정말/Noun', '목입, [아/Exclamation', '완전/Noun', '내/Noun', '가/Josa', '원하던/Verb', '내용/Noun', '의/Josa', '영화/Noun', '!!!//

[시간/Noun, '이/Josa', '가는/Verb', '줄/PreEomi', '모르/Nerb', '교/Eomi', '봤/Verb', '습니다/Eomi', '지금/No [비정규직/Noun', '의/Josa', '현실/Noun', '을/Josa', '너무/Noun', '디테/Noun', '일하게/Verb', '잘/Verb', '표한 [감정/Noun', '목발/Noun', '의/Josa', '표현/Noun', '없/Adjective', '이/PreEomi', '도/Eomi', '이런/Adjective', '[¹8/Number', '외/Noun', '부/Noun', '국제/Noun', '에서/Josa', '본·Verb', '최고/Noun', '의/Josa', '한국영/No ['꼭/Noun', '실전/Noun', '필수/Noun', '관람/Noun', '식무/Noun', '작곡/Noun', '주천/Noun', '에서/Josa', '보고/Noun', '왔/Verb', '는데/Eomi', '정말/Noun', '데세/Josa', '보고/Noun', '에서/Josa', '珙/Noun', '에서/Josa', '珙/Noun', '이네/Josa', '김/Noun', '부산/Noun', '국제/Noun', '영화제/Noun', '에서/Josa', '목산/Noun', '이네/Josa', '김/Noun', '부산/Noun', '대박/Noun', '기원/Noun', '대박/Noun', '일/Verb', '것/PreEomi', '같아/Adjective', '요/Eomi' '['집장인/Noun', '의/Josa', '공감/Noun', '백서/Noun', '!/Punctuation', '취준생/Noun', '은/Josa', '필수/Noun', '내서/Noun', '!/Punctuation', '취준생/Noun', '은/Josa', '필수/Noun', '대선/Noun', '!/Punctuation', '취준생/Noun', '은/Josa', '필수/Noun', '내서/Noun', '!/Punctuation', '취준생/Noun', '은/Josa', '필수/Noun', '내선/Noun', '!/Punctuation', '취존생/Noun', '은/Josa', '필수/Noun', '필/Noun', '내선/Noun', '!/Punctuation', '취존생/Noun', '은/Josa', '필수/Noun', '필/Noun', '내선/Noun', '!/Punctuation', '취존생/Noun', '은/Josa', '필수/Noun', '필/Noun', '필/N

NOUN, VERB, ADJECTIVE , FOREIGN, KOREAN PARTICLE, PUNCTUATION 두 글자 이상의 단어

3 COUNT기반 - 계수계산 방법

100,07#

	기대됩/VERB	하는/VERB	입니/ADJECTIVE	시사회/NOUN	완전/NOUN	기대되/VERB	감독/NOUN	보러/VERB	
총합	14755	14776	14861	15192	16834	16851	17403	17441	
영화	10	0	0	0	124	632	0	0	
계수	6.7E-04	0	0	0	0.0073	0.0378	0	0	

상위 1000개의 단어를 미용해 각 영화들의 계수를 계산

분석과정 주제 선정 배경 데이터 수집 분석과정 결론

	MEAN ACCURACY	MEAN F1 SCORE
LASSO	0.85	0.70
RANDOM FOREST	0.84	0.68
RIDGE	0.85	0.67
DECISION TREE	0.85	0.63
KNN	0.81	0.54

분석과정 주제 선정 배경 데이터 수집 분석과정 결론

리뷰 별 평점을 이용하여 긍/부정 라벨링

TF-IDF 생성 WORD VECTOR 생성

예) 리뷰2가 단어A와 단어B만을 가지고 있다면?

최승현, 차승원, 소지섭, 서민국, 박서준, 이선균, 신세경

상위 1000개의 단어에 많은 배우 이름들이 포함 배우 이름들을 제거 전 후를 비교

- 배우 이름 제거 후 분석

	MEAN ACCURACY	MEAN F1 SCORE
RIDGE	0.84	0.69
LASSO	0.85	0.68
RANDOM FOREST	0.83	0.64
DECISION TREE	0.85	0.59
KNN	0.81	0.54

	100 차원 						
,	1	2	3	4	5	6	
리뷰1						•••	
리뷰2	-0.485	0.185	-0.288	0.442	0.194	-0.066	

LASSO를 통해서 각 단어의 긍/부정 계수를 계산하며 감성사전 구축

Ⅱ 분석과정 주제 선정 배경 데이터 수집 분석과정 결론

3 감성사전기반 - 분석

	MEAN ACCURACY	MEAN F1 SCORE
RANDOM FOREST	0.84	0.73
RIDGE	0.84	0.70
LASSO	0.85	0.67
KNN	0.82	0.54
DECISION TREE	0.84	0.49

- 배우 이름 제거 후 분석

	MEAN ACCURACY	MEAN F1 SCORE
RIDGE	0.85	0.68
RANDOM FOREST	0.85	0.68
LASSO	0.85	0.67
KNN	0.82	0.66
DECISION TREE	0.85	0.63

4 한계점

손믹 분기점

- 총 제작비 = 순 제작비 + 마케팅 비용 → 배급사의 규모로 대체 했으나 부족

영화 필터링

- 성민영화 등

리뷰

- 리뷰들 대부분이 긍정적인 반응을 기대하는 댓글. 이런 부분이 분석에 좋지 않은 영향

순위	방법론 + 데이터	MEAN ACCURACY	MEAN F1 SCORE	TEST ACCURACY	TEST F1 SCORE
1	RANDOM FOREST + DATA5	0.85	0.68	0.84	0.72
2	LASSO + DATA3	0.85	0.68	0.85	0.69
3	LASSO + DATA2	0.85	0.7	0.85	0.68
4	RANDOM FOREST+ DATA4	0.84	0.73	0.84	0.68
5	RIDGE + DATA1	0.85	0.67	0.84	0.65

*DATA1: 기본 데이터, DATA2: COUNT기반, DATA3: COUNT기반(배우제거), DATA4: 감성사전기반, DATA5: 감성사전기반(배우제거)

배우를 제거한 데이터에서 더 높은 F1 SCORE를 관찰 할 수 있음.

방법론적으로는 RANDOM FOREST 와 LASSO가 좋은 성능을 보임.

