

🥉 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE171101103

FCC REPORT

Applicant: Shenzhen AlldoCube Technology and Science Co.,Ltd

Address of Applicant:

Building No.1, Suwang Industrial Park, Xiahenglang, Dalang,

Longhua District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: i1101, KNOTE

Trade mark: ALLDOCUBE

FCC ID: 2AKO6ADC03

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 02 Nov., 2017

Date of Test: 02 Nov., to 21 Nov., 2017

Date of report issued: 22 Nov., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	22 Nov., 2017	Original

Tested by: Date: 22 Nov., 2017

Test Engineer

Reviewed by: Date: 22 Nov., 2017

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
			_
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	7
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	28
	6.6	BAND EDGE	39
	6.6.		
	6.6.		
	6.7	Spurious Emission	
	6.7.		
	6.7.	2 Radiated Emission Method	72
7	TES	ST SETUP PHOTO	84
Ω	FUT	CONSTRUCTIONAL DETAILS	95

4 Test Summary

<u> </u>		
Test Items	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Conducted and Radiated Spurious Emission	15.205/15.209	Pass
Pass: The EUT complies with the essential require	ements in the standard.	

5 General Information

5.1 Client Information

Applicant:	Shenzhen AlldoCube Technology and Science Co.,Ltd
Address:	Building No.1,Suwang Industrial Park, Xiahenglang,Dalang,Longhua District,Shenzhen,China
Manufacturer/ Factory:	Shenzhen Alldocube Technology and science Co., LTD
Address:	Building No.1,Suwang Industrial Park, Xiahenglang,Dalang,Longhua District,Shenzhen,China

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	i1101, KNOTE
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Operation requestey.	2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Chariner numbers.	7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology:	Direct Sequence Spread Spectrum (DSSS)
(IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology:	Outh a war at Francisco Division Multiplacing (OFDM)
(IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 300Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-2.81dBi
Power supply:	Rechargeable Li-ion Battery DC7.6V/4000mAh
AC adapter:	Model:AK36WG-120025U
	Input: AC100-240V, 50/60Hz, 0.8A
	Output: DC12V, 2.5A
Remark:	Model No.: i1101, KNOTE were identical inside, the electrical circuit
	design, layout, components used and internal wiring, with only difference
	being model name.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and test mode

B				
Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

Report No: CCISE171101103

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	02-25-2017	02-24-2018
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
Cable	HP	10503A	N/A	02-25-2017	02-24-2018
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an Internal Antenna which cannot replace by end-user, the best case gain of the antenna is -2.81 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
•				
Receiver setup:	RBW=9 kHz, VBW=30 k		ID 10	
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the log	arithm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	AUX Equipment Test table/Insula Remark EUT: Equipment Under LISN Line Impedence St. Test table height=0 8m	E.U.T EMI Receiver	Iter — AC power	
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Tablet PC Model : ill01

Test Mode : 2.4G-WIFI mode Power Rating : AC 120V/50Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Carey

			4		0202012		
Freq						Over Limit	Remark
MHz	₫₿u₹	ďĎ	ab	₫₿u₹	dBu∜	dB	
0.158	30.23	-0.37	10.77	40.63	55.56	-14.93	Average
0.162	48.93	-0.37	10.77	59.33	65.34	-6.01	QP
0.178	43.76	-0.36	10.77	54.17	64.59	-10.42	QP
0.222	41.27	-0.33	10.76	51.70	62.74	-11.04	QP
0.222	21.68	-0.33	10.76	32.11	52.74	-20.63	Average
0.521	14.72	-0.30	10.76	25.18	46.00	-20.82	Average
0.809	25.22	-0.30	10.81	35.73			
0.848	14.83	-0.29	10.82	25.36	46.00	-20.64	Average
1.698	13.58	-0.27	10.94	24.25	46.00	-21.75	Average
1.744	23.33	-0.27	10.94	34.00	56.00	-22.00	QP
13.551	26.05	-0.15	10.91	36.81	50.00	-13.19	Average
13.623	34.69	-0.16	10.91	45.44	60.00	-14.56	QP
	MHz 0. 158 0. 162 0. 178 0. 222 0. 521 0. 809 0. 848 1. 698 1. 744 13. 551	Freq Level MHz dBuV 0.158 30.23 0.162 48.93 0.178 43.76 0.222 41.27 0.222 21.68 0.521 14.72 0.809 25.22 0.848 14.83 1.698 13.58 1.744 23.33 13.551 26.05	MHz dBuV dB 0.158 30.23 -0.37 0.162 48.93 -0.37 0.178 43.76 -0.36 0.222 41.27 -0.33 0.222 21.68 -0.33 0.521 14.72 -0.30 0.809 25.22 -0.30 0.848 14.83 -0.29 1.698 13.58 -0.27 1.744 23.33 -0.27 13.551 26.05 -0.15	Freq Level Factor Loss MHz dBuV dB dB 0.158 30.23 -0.37 10.77 0.162 48.93 -0.37 10.77 0.178 43.76 -0.36 10.77 0.222 41.27 -0.33 10.76 0.222 21.68 -0.33 10.76 0.521 14.72 -0.30 10.76 0.809 25.22 -0.30 10.76 0.809 25.22 -0.30 10.81 0.848 14.83 -0.29 10.82 1.698 13.58 -0.27 10.94 1.744 23.33 -0.27 10.94 13.551 26.05 -0.15 10.91	MHz dBuV dB dB dBuV 0.158 30.23 -0.37 10.77 40.63 0.162 48.93 -0.37 10.77 59.33 0.178 43.76 -0.36 10.77 54.17 0.222 41.27 -0.33 10.76 51.70 0.222 21.68 -0.33 10.76 32.11 0.521 14.72 -0.30 10.76 25.18 0.809 25.22 -0.30 10.81 35.73 0.848 14.83 -0.29 10.82 25.36 1.698 13.58 -0.27 10.94 24.25 1.744 23.33 -0.27 10.94 34.00 13.551 26.05 -0.15 10.91 36.81	MHz dBuV dB dB dBuV dBuV 0.158 30.23 -0.37 10.77 40.63 55.56 0.162 48.93 -0.37 10.77 59.33 65.34 0.178 43.76 -0.36 10.77 54.17 64.59 0.222 41.27 -0.33 10.76 51.70 62.74 0.222 21.68 -0.33 10.76 32.11 52.74 0.521 14.72 -0.30 10.76 25.18 46.00 0.809 25.22 -0.30 10.81 35.73 56.00 0.848 14.83 -0.29 10.82 25.36 46.00 1.698 13.58 -0.27 10.94 24.25 46.00 1.744 23.33 -0.27 10.94 34.00 56.00 13.551 26.05 -0.15 10.91 36.81 50.00	MHz dBuV dB dB dBuV dBuV dB 0.158 30.23 -0.37 10.77 40.63 55.56 -14.93 0.162 48.93 -0.37 10.77 59.33 65.34 -6.01 0.178 43.76 -0.36 10.77 54.17 64.59 -10.42 0.222 41.27 -0.33 10.76 51.70 62.74 -11.04 0.222 21.68 -0.33 10.76 32.11 52.74 -20.63 0.521 14.72 -0.30 10.76 25.18 46.00 -20.82 0.809 25.22 -0.30 10.81 35.73 56.00 -20.27 0.848 14.83 -0.29 10.82 25.36 46.00 -21.75 1.744 23.33 -0.27 10.94 24.25 46.00 -21.75 1.751 26.05 -0.15 10.91 36.81 50.00 -13.19

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : Tablet PC : ill01 Model

Test Mode : 2.4G-WIFI mode
Power Rating : AC 120V/50Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

Nemaik .	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.166	44.42	-0.55	10.77	54.64	65.16	-10.52	QP
2	0.170	30.88	-0.54	10.77	41.11	54.94	-13.83	Average
1 2 3 4 5 6 7 8 9	0.214	39.23	-0.52	10.76	49.47	63.05	-13.58	QP
4	0.214	25.51	-0.52	10.76	35.75	53.05	-17.30	Average
5	0.389	29.46	-0.50	10.72	39.68		-18.40	
6	0.389	20.66	-0.50	10.72	30.88	48.08	-17.20	Average
7	0.466	28.38	-0.49	10.75	38.64	56.58	-17.94	QP
8	0.479	20.03	-0.49	10.75	30.29	46.36	-16.07	Average
9	0.747	15.61	-0.48	10.79	25.92	46.00	-20.08	Average
10	2.900	24.16	-0.44	10.92	34.64	56.00	-21.36	QP
11	13.267	35.93	-0.44	10.91	46.40	60.00	-13.60	QP
12	13.267	27.44	-0.44	10.91	37.91	50.00	-12.09	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

<u>vieasurement L</u>	Jala.					
Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result
	Louiset	AUX	13.41	,		
	Lowest	MAIN	13.45	'	ļ	Door
802.11b	Middle	AUX	13.22	,	30.00	
602.110	Middle	MAIN	12.47	/	30.00	Pass
	Lighoot	AUX	13.59	1		
	Highest	MAIN	13.87	/		
	Lowest	AUX	13.48	,		
	Lowest	MAIN	11.70	/	30.00	Pass
802.11g	Middle	AUX	11.11	/		
602.11g	Middle	MAIN	11.26			
	Highest	AUX	11.42	/		
	Tilgriest	MAIN	11.23			
	Lowest	AUX	7.41	10.50	30.00	
		MAIN	7.57			Pass
802.11n20	Middle	AUX	7.69	10.84		
002.111120	Mildale	MAIN	7.97			
	Highest	AUX	7.95	10.88		
	- Ingriest	MAIN	7.79	10.00		
	Lowest	AUX	7.16	10.19		
	LOWEST	MAIN	7.20	10.19	30.00	
802.11n40	Middle	AUX	6.99	10.20		Pass
002.111140		MAIN	7.39	10.20		
	Highest	AUX	6.87	10.10		
		MAIN	7.29	10.10		

Test plot as follows: AUX Antenna Port:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

MAIN Antenna Port:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data: AUX Antenna Port:

Test CH		6dB Emission	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiiii(Ki i2)	resuit
Lowest	9.92	15.36	15.44	35.52		Pass
Middle	10.08	15.68	15.36	35.52	>500	
Highest	9.84	15.28	15.60	35.52		
Test CH		99% Occupy	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nesult
Lowest	12.72	16.48	17.60	36.00		
Middle	12.64	16.48	17.60	36.16	N/A	N/A
Highest	12.64	16.48	17.68	36.16		

MAIN Antenna Port:

MAIN AIRCIIIIA						
Test CH		6dB Emission	Limit(kHz)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	resuit
Lowest	10.16	15.20	15.28	35.52	>500	Pass
Middle	9.44	15.36	15.36	35.52		
Highest	10.16	15.28	15.76	35.44		
Test CH		99% Occupy	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	Rosuit
Lowest	12.56	16.48	17.60	36.00		
Middle	12.56	16.48	17.60	36.00	N/A	N/A
Highest	12.72	16.48	17.68	36.00		

Test plot as follows: AUX Antenna Port

Date: 9.NOV.2017 19:50:56

Lowest channel

Date: 9.NOV.2017 19:49:00

Date: 9.NOV.2017 19:46:20

Middle channel

Highest channel

802.11b

Date: 9.NOV.2017 19:51:07

Lowest channel

Date: 9.NOV.2017 19:52:29

Middle channel

Date: 9.NOV.2017 19:52:46

Highest channel

PARM 100 kHz Delta 1 [71] - Verm 300 kHz

802.11g

Date: 9.NOV.2017 19:44:42

Lowest channel

Date: 9.NOV.2017 19:51:21

Lowest channel

Date: 14.NOV.2017 17:48:05

Date: 9.NOV.2017 19:45:35

Date: 14.NOV.2017 17:43:12

Date: 9.NOV.2017 19:53:06

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(H20)

Date: 9.NOV.2017 19:39:49

Date: 9.NOV.2017 19:51:44

Lowest channel

Date: 14.NOV.2017 17:47:25

Date: 14.NOV.2017 17:43:23

Date: 9.NOV.2017 19:53:22

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(H40)

Date: 9.NOV.2017 19:34:12

Date: 9.NOV.2017 19:33:24

Lowest channel

Lowest channel

Date: 14.NOV.2017 17:44:25

Date: 9.NOV.2017 19:32:25

Date: 14.NOV.2017 17:43:39

Date: 9.NOV.2017 19:31:36

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

MAIN Antenna Port:

802.11b

Date: 3.NOV.2017 17:59:57

Lowest channel

Date: 3.NOV.2017 17:59:19

Date: 3.NOV.2017 17:57:43

Date: 3.NOV.2017 17:57:59

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

PARM 100 kHz Delta 1 [71] - Verm 300 kHz

802.11g

Date: 3.NOV.2017 18:00:32

Date: 3.NOV.2017 17:57:13

Lowest channel

Lowest channel

Date: 14.NOV.2017 17:28:34

Date: 14.NOV.2017 17:28:48

Date: 3.NOV.2017 17:56:49

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(H20)

Date: 3.NOV.2017 18:03:41

Date: 3.NOV.2017 17:56:08

Lowest channel

Date: 14.NOV.2017 17:27:56

Date: 3.NOV.2017 18:02:22

Middle channel

Date: 14.NOV.2017 17:29:00

Middle channel

Date: 3.NOV.2017 17:56:33

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11n(H40)

Date: 3.NOV.2017 18:04:56

Date: 3.NOV.2017 17:55:54

Lowest channel

Lowest channel

Date: 14.NOV.2017 17:27:20

Date: 14.NOV.2017 17:26:13

Date: 3.NOV.2017 17:55:27

Middle channel

Middle channel

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2					
Limit:	8dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Mode	Test CH	Ant. Port	PSD (dBm)	Total PSD (dBm)	Limit (dBm)	Result
	Lowest	AUX	3.76	,		
	Lowest	MAIN	2.78	,		Pass
802.11b	Middle	AUX	3.62	,	8.00	
002.110	ivildule	MAIN	2.86	,	0.00	F a 5 5
	Highort	AUX	3.58	/		
	Highest	MAIN	3.71	/		
	Lowest	AUX	0.87	,		
	Lowest	MAIN	0.21	/		Pass
802.11g	Middle	AUX	-0.66	,	8.00	
602.11g	Middle	MAIN	-0.16	/		
	Highort	AUX	-0.94	/		
	Highest	MAIN	-0.59			
	Lowest	AUX	1.14	3.75	8.00	Pass
		MAIN	0.29			
802.11n20	Middle	AUX	-0.36	2.47		
002.111120	Middle	MAIN	-0.72			
	Highest	AUX	-0.28	2.47		
	riigiiest	MAIN	-0.81	2.47		
	Lowest	AUX	-2.87	0.15	8.00	
802.11n40	Lowest	MAIN	-3.48	-0.15		Dage
	Middle	AUX	-3.72	-0.37		
002.111140	iviluule	MAIN	-3.06			Pass
	Highest	AUX	-4.82	-1.40		
		MAIN	-4.04			

Test plot as follows: AUX Antenna Port:

Test mode: 802.11g

Date: 9.NOV.2017 20:04:45

Date: 9.NOV.2017 20:04:29

Date: 9.NOV.2017 20:02:55

Date: 9.NOV.2017 20:02:34

Date: 14.NOV.2017 17:42:59

Date: 9.NOV.2017 20:02:10

Highest channel

Highest channel

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 802.11n(H20)

Date: 9.NOV.2017 20:04:07

.

Date: 14.NOV.2017 17:42:40

Middle channel

Date: 9.NOV.2017 20:01:38

Date: 9.NOV.2017 20:05:24

Lowest channel

Date: 14.NOV.2017 17:42:17

Middle channel

Date: 9.NOV.2017 20:06:10

Highest channel

Highest channel

MAIN Antenna Port:

Date: 3.NOV.2017 18:09:21

Lowest channel - Ref 26.5 dBm - Akt 30 dB - SYT 5 ma 2.436460000 GMs - Of 6 ot 6. dB - Akt 30 dB - SYT 5 ma 2.436460000 GMs - Of 6 ot 6. dB - Akt 30 dB - Akt 3

Date: 3.NOV.2017 18:09:32

Date: 3.NOV.2017 18:09:44

Highest channel

Date: 3.NOV.2017 18:09:08

Date: 14.NOV.2017 17:29:41

Date: 3.NOV.2017 18:08:42

Highest channel

Test mode: 802.11n(H20)

Date: 3.NOV.2017 18:08:01

Lowest channel

Date: 14.NOV.2017 17:29:25

Date: 3.NOV.2017 18:08:27

Middle channel

Highest channel

Test mode: 802.11n(H40)

Date: 3.NOV.2017 18:06:59

Lowest channel

Date: 14.NOV.2017 17:29:58

Middle channel

Date: 3.NOV.2017 18:07:32

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Conducted Emission	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows: AUX Antenna Port:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

MAIN Antenna Port:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

6.6.2	Radiated Emission Me	etnoa										
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205										
	Test Method:	ANSI C63.10: 2 section 12.1	013 and	KDE	3558074 D01 E	OTS M	leas Gu	iidance v04				
	Test Frequency Range:	2.3GHz to 2.5G	Hz									
	Test Distance:	3m										
	Receiver setup:	Frequency	Detec	tor	RBW \		BW	Remark				
	·	Above 1GHz	Peal				ИНz	Peak Value				
			RMS		1MHz		MHz I	Average Value				
	Limit:	Frequenc	У	Lin	nit (dBuV/m @:	3m)	Λ.	Remark				
		Above 1Gh	Ηz		54.00 74.00			verage Value Peak Value				
	Test esture	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the make the maters and to find the material find the mater	at a 3 m the the po the ras set 3 thich was that height to deteriontal and the rotal t	eter of sition meters is various vertinent. It emissions table in real vertem h with hen te repwould	camber. The to n of the highest ers away from to unted on the to aried from one the maximum cal polarization assion, the EUT na was turned fred ding. It was set to Pe in Maximum Ho ne EUT in peak esting could be orted. Otherwis	able was a meter value as of the was a o height a mode a stoppes the bone by	vas rota tion. erference variable to four of the fine antel errange ghts fror degrees tect Funde e was 1 ped and emission	meters above ield strength. nna are set to d to its worst n 1 meter to 4 is to 360 degrees nction and OdB lower than is the peak values ons that did not sing peak, quasi-				
	Test setup:	- 1-Stern	AE E	·	Her 3m Ground Reference Plane	n Antenna	Antenna Ton	wer				
	Test Instruments:	Refer to section	5.8 for c	detail	S							
	Test mode:	Refer to section	5.3 for c	detail	S							
	Test results:	Passed										

AUX Antenna of 802.11b **Test channel: Lowest**

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Tablet PC Condition

EUT Model : 11101

Test mode : 802.11B-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK : AUX ANT

	***	Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	₫₿uѶ	dB/m	₫B	₫B	dBuV/m	dBuV/m	−−−−dB		
1 2	2390.000									

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 45 of 85

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

EUT Tablet PC Model

11101 Test mode : 802.11B-L mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK : AUX ANT REMARK

	Read	Antenna	Cable P	Preamp		Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB		
2390.000 2390.000		25.45 25.45			48.21 39.40			Peak Average	

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Tablet PC : 11101 Model

Test mode : 802.11B-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK : AUX ANT

Freq		Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
	MHz	dBu∜	dB/m	dB	₫B	dBuV/m	dBuV/m	₫₿	
	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT

Model : 11101 Test mode : 802.11B-H mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Carey

: AUX ANT REMARK

2483.500

ReadAntenna Cable Preamp Over Limit Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB/m dB dBuV/m dBuV/m ďB MHz dB 19.09 4.81 0.00 49.56 74.00 -24.44 Peak 0.00 39.09 54.00 -14.91 Average 25.66 2483.500 8.62 25.66

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

4.81

The emission levels of other frequencies are very lower than the limit and not show in test report.

MAIN Antenna of 802.11b **Test channel: Lowest**

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Tablet PC Model : 11101

: 802.11B-L mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey REMARK : MAIN ANT REMARK

Freq			Antenna Factor					1 10 2 4 1 1 1 1	
	MHz	dBu∀	dB/m	₫₿	₫B	dBuV/m	dBuV/m	₫B	
	2390.000 2390.000	100000000000000000000000000000000000000				111001100100000000000000000000000000000		100 000 000 000 000	The state of the s

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT

Model : 11101

Test mode : 802.11B-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey

REMARK : MAIN ANT

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dB dBuV/m dBuV/m dBuV MHz dB/m ďΒ 0.00 47.68 74.00 -26.32 Peak 0.00 39.01 54.00 -14.99 Average 17.54 2390.000 25.45 4.69 2390.000 25.45 4.69 8.87

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Tablet PC

Model : 11101

Test mode : 802.11B-H mode Power Rating : AC 120V/60Hz

: Temp: 25.5°C Huni: 55% Environment

Test Engineer: Carey : MAIN ANT REMARK

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor dBuV dB/m MHz dB dB dBuV/m dBuV/m

2483.500 21.23 0.00 51.70 74.00 -22.30 Peak 25.66 4.81 0.00 42.48 54.00 -11.52 Average 2483.500 12.01 25.66 4.81

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Tablet PC : 11101 Model

Test mode : 802.11B-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey
REMARK : MAIN ANT

		ReadAntenna			Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∀	dB/m	₫₿	₫B	dBuV/m	dBuV/m	dB		
			25.66 25.66						Peak Average	

Remark:

2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

AUX Antenna of 802.11g **Test channel: Lowest**

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Tablet PC Condition

EUT Model : 11101

Test mode : 802.11G-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey

: AUX ANT REMARK

Freq Le		Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
2390.000 2390.000								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT : 11101 Model

Test mode : 802.11G-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK : AUX ANT

	Freq	Read Level	Antenna Factor	Cable	Preamp Factor	Level	Limit	Over Limit	Remark
	MHz		dB/m			dBuV/m			
1 2	2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Tablet PC Condition

EUT Model : 11101

: 802.11G-H mode Test mode

Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK: AUX ANT

aun .	ReadAntenna		Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line		Remark
	MHz	dBu∛	dB/m	₫₿	₫₿	dBuV/m	dBuV/m	₫₿	
	2483,500 2483,500								

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT Model : 11101

Test mode : 802.11G-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey : AUX ANT REMARK

ReadAntenna Cable Preamp Limit Over Loss Factor Level Freq Level Factor Line Limit Remark dBuV MHz dB/m dB dB dBuV/m dBuV/m dB

0.00 51.68 74.00 -22.32 Peak 0.00 39.74 54.00 -14.26 Average 4.81 2483.500 21.21 25.66 25.66 2 9.27 2483.500 4.81

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

MIAN Antenna of 802.11g **Test channel: Lowest**

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT Tablet PC : 11101 Model

Test mode : 802.11G-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey
REMARK : MAIN ANT

REMARK

		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B		
23	90.000	25.11	25.45	4.69	0.00	55.25	74.00	-18.75	Peak	

2 2390.000 15.54 25.45 4.69 0.00 45.68 54.00 -8.32 Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT Tablet PC

Model 11101

Test mode : 802.11G-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK : MAIN ANT

ReadAntenna Cable Preamp Over Limit Line Limit Remark Loss Factor Level Freq Level Factor dBuV dB dBuV/m dBuV/m MHz dB/m dB dB 2390.000 20.91 25.45 4.69 0.00 51.05 74.00 -22.95 Peak 2390.000 0.00 42.75 54.00 -11.25 Average 12.61 25.45 4.69

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Tablet PC

Model : 11101

Test mode : 802.11G-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK : MAIN ANT

55	Freq			a Cable r Loss					
	MH2	dBuV	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2483.500 2483.500								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Tablet PC Model : 11101

Test mode : 802.11G-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey REMARK : MAIN ANT REMARK

***		Readântenna		Cable	Preamp		Limit	Over		
	Freq		Factor						Remark	
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
	2483.500 2483.500									

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)-MIMO Mode **Test channel: Lowest**

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Tablet PC Condition

EUT

Model : 11101

: 802.11N20-L mode Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Carey REMARK : AUX ANT

•••		Read	7	Cable	Preamp		Limit	Over		
	Freq								Remark	
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
	2390.000 2390.000	the state of the s	40.000		1000	54.49 44.13			Peak Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT : 11101 Model

Test mode : 802.11N20-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK : AUX ANT

	Freq	Read Level	Antenna Factor	a Cable r Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	₫₿u₹	dB/m	ďB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL

EUT : Tablet PC

Model 11101

Test mode : 802.11N2O-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK : AUX ANT

ReadAntenna Cable Preamp Limit Over Freq Level Factor Line Limit Remark Loss Factor Level dB dBuV/m dBuV/m MHz dBuV dB/m dB dB

0.00 50.17 74.00 -23.83 Peak 2483.500 19.70 25.66 4.81 0.00 40.77 54.00 -13.23 Average 2483.500 10.30 25.66 4.81

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT

Model : 11101

Test mode : 802.11N20-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Carey REMARK : AUX ANT

		ReadAntenna			Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫₿	
1 2	2483.500 2483.500								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)-MIMO Mode **Test channel: Lowest**

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Tablet PC Model : 11101

Test mode : 802.11N40-L mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

EMAI	un :	Read	ı Antenna	Cable	Preamo		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	
	MHz	dBu∇	dB/m	dB	d₿	dBuV/m	dBuV/m	₫B	
1 2	2390.000 2390.000					58.41 46.53			Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Tablet PC Condition

EUT Model : 11101

Test mode : 802.11N40-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey
REMARK : AUX ANT

2 MCT	·	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq						Line	Limit	Remark
	MHz	dBuV	dBuV dB/m	₫₿	<u>dB</u>	dBuV/a	dBuV/m	₫₿	
1	2390.000	26.19	25.45	4.69	0.00				Peak

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Tablet PC

Model : 11101

Test mode : 802.11N40-H mode Power Rating : AC 120V/60Hz Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK : AUX ANT

REMARK

- Maria		Read	dAntenna Cable		Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

: Tablet PC EUT

Model 11101

Test mode : 802.11N40-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK : AUX ANT

	Freq		Antenna Factor						Remark
	MHz	dBu∀	dB/m	d₿	₫₿	dBuV/m	dBuV/m	d₿	
1 2	2483.500 2483.500								Peak Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

0.7.1 Conducted Linission	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows: AUX Antenna Port:

Test mode: 802.11b

Lowest channel

Date: 9.NOV.2017 20:22:25

30MHz~25GHz

Middle channel

Date: 9.NOV.2017 20:22:05

Date: 9.NOV.2017 20:21:40

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 9.NOV.2017 20:20:35

30MHz~25GHz

Middle channel

Date: 14.NOV.2017 05:56:24

$30MHz\sim25GHz$

Highest channel

Date: 9.NOV.2017 20:21:19

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 9.NOV.2017 20:20:07

30MHz~25GHz

Middle channel

Date: 14.NOV.2017 05:55:50

Date: 9.NOV.2017 20:19:21

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 9.NOV.2017 20:22:58

30MHz~25GHz

Middle channel

Date: 14.NOV.2017 05:55:28

30MHz~25GHz

Date: 9.NOV.2017 20:23:49

30MHz~25GHz

MAIN Antenna Port:

Test mode: 802.11b

Lowest channel

Date: 9.NOV.2017 18:01:37

30MHz~25GHz

Middle channel

Date: 9.NOV.2017 18:01:12

Date: 9.NOV.2017 18:00:49

30MHz~25GHz

Highest channel

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 9.NOV.2017 18:02:01

30MHz~25GHz

Middle channel

Date: 14.NOV.2017 05:58:39

30MHz~25GHz

Highest channel

Date: 9.NOV.2017 18:02:55

30MHz~25GHz

Test mode: 802.11n(H20)

Lowest channel

Date: 9.NOV.2017 18:03:54

30MHz~25GHz

Date: 14.NOV.2017 05:59:03

30MHz~25GHz

Date: 9.NOV.2017 18:03:16

Test mode: 802.11n(H40)

Lowest channel

Date: 9.NOV.2017 18:04:20

30MHz~25GHz

Middle channel

Date: 14.NOV.2017 05:59:27

$30MHz\sim25GHz$

Highest channel

Date: 9.NOV.2017 18:04:54

30MHz~25GHz

30MHz~25GHz

6.7.2 Radiated Emission Method

6.7.2	Radiated Emission Me	ethod									
	Test Requirement:	FCC Part 15 C S	ection 15	5.209 a	and 15.205						
	Test Method:	ANSI C63.10:201	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10:2013								
	Test Frequency Range:	9kHz to 25GHz									
	Test Distance:	3m									
	Receiver setup:	Frequency	Detec	tor	RBW	VI	3W	Remark			
	•	30MHz-1GHz	Quasi-p	oeak	120KHz	300	KHz	Quasi-peak Value			
		Above 1GHz	Pea		1MHz		/IHz	Peak Value			
	1 facts		RMS		1MHz t (dBuV/m @3r		/lHz	Average Value Remark			
	Limit:	Frequency 30MHz-88MH	7	LIIIII	40.0	11)	Oı	uasi-peak Value			
		88MHz-216MH			43.5			uasi-peak Value			
		216MHz-960MI			46.0			uasi-peak Value			
		960MHz-1GH			54.0			uasi-peak Value			
		Above 1GHz 54.0 Average Value									
	Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8m(below									
		The table was highest radia? The EUT was antenna, who tower. The antenna the ground to Both horizon make the med. For each suscase and the meters and to find the med. The test-reconspecified Base. If the emission the limit specified Base.	as rotated ation. Its set 3 mich was in the ight is to determ atal and versurements and with a sindwidth on level of cified, the would be margin we	d 360 meters mount s varie ine the vertica ent. emissi atenna table v readir stem w with N of the en tes report ould b	away from the don the top ed from one ne maximum vor a polarizations on, the EUT was turned from the country as set to Pearlaximum Hole EUT in peak ting could be ted. Otherwise re-tested of	ne into o of a neter value s of th was a o heigom 0 o ak De d Mod mode stopp e the ne by	erferent variable to four of the fane ante arrange hts fro degree tect Funde. e was 1 ped and emiss one us	r meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees			
	Test setup:	Below 1GHz EUT Turn Table Ground P	0.8m	4m			_				

	Above 1GHz
	Horn Antenna Tower Ground Reference Plane Test Receiver Amptifier Controller
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Below 1GHz

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL : Tablet PC Condition

EUT Model : 11101

Test mode : 2.4G-WIFI mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK	:	Road	Ant enna	Cabla	Drasen		Limit	Over	
	Freq		Factor						
-	MHz	dBuV	dB/m	₫B	₫₿	dBuV/m	dBuV/m	₫B	
1	67.913	44.85	The second secon	1.46		27. 29			100000000000000000000000000000000000000
2	141.826 210.786	55.69 53.20		2.42		37.19 38.60		-6.31 -4.90	(1) (20) (C)
4	276.124			2.88			1000	-5.90	(1) (March 1) (1)
5 6	309.998 364.260	50.82 46.05	Committee Committee	2.97 3.09		38.80 35.10		The control of the control of the	1212

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : Tablet PC Condition

EUT Model : 11101 Test mode : 2.4G-WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK

2000-224-00		Read	Antenna	Cable	Preamp	f	Limit	Over	
	rreq	Level	Factor	Loss	ractor	rever	Line	Limit	Remark
-	MHz	dBuV	dB/m	₫₿	d₿	dBuV/m	dBuV/m	₫B	
1	47.994	44.86	14.40	1.27	29.84	30.69	40.00	-9.31	QP
2	66.266	41.93	11.24	1.41	29.75	24.83	40.00	-15.17	QP
3	143.830	51.10	8.38	2.44	29.25	32.67	43.50	-10.83	QP
4	161.474	48.86	8.68	2.60	29.12	31.02	43.50	-12.48	QP
1 2 3 4 5	300.367	45.71	13.40	2.94	28.45	33.60	46.00	-12.40	QP
6	572.614	37.81	17.86	3.91	29.03	30.55	46.00	-15.45	QP

Above 1GHz

AUX Antenna:

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.64	36.06	6.81	41.82	47.69	74.00	-26.31	Vertical
4824.00	47.72	36.06	6.81	41.82	48.77	74.00	-25.23	Horizontal
Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.58	36.06	6.81	41.82	37.63	54.00	-16.37	Vertical
4824.00	37.25	36.06	6.81	41.82	38.30	54.00	-15.70	Horizontal

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.88	36.32	6.85	41.84	47.21	74.00	-26.79	Vertical
4874.00	47.33	36.32	6.85	41.84	48.66	74.00	-25.34	Horizontal
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.29	36.32	6.85	41.84	36.62	54.00	-17.38	Vertical
4874.00	36.52	36.32	6.85	41.84	37.85	54.00	-16.15	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.91	36.58	6.89	41.86	48.52	74.00	-25.48	Vertical
4924.00	46.86	36.58	6.89	41.86	48.47	74.00	-25.53	Horizontal
Test mode: 80	02.11b		Test char	nel: Highest Remark: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.87	36.58	6.89	41.86	38.48	54.00	-15.52	Vertical
4924.00	36.57	36.58	6.89	41.86	38.18	54.00	-15.82	Horizontal

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.80	36.06	6.81	41.82	47.85	74.00	-26.15	Vertical
4824.00	47.30	36.06	6.81	41.82	48.35	74.00	-25.65	Horizontal
Test mode: 80	02.11g		Test char	Test channel: Lowest Remark: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	36.75	36.06	6.81	41.82	37.80	54.00	-16.20	Vertical
4824.00	37.56	36.06	6.81	41.82	38.61	54.00	-15.39	Horizontal

Test mode: 80)2.11g		Test char	nel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.29	36.32	6.85	41.84	48.62	74.00	-25.38	Vertical
4874.00	46.23	36.32	6.85	41.84	47.56	74.00	-26.44	Horizontal
Test mode: 80)2.11g		Test channel: Middle Rem			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	37.25	36.32	6.85	41.84	38.58	54.00	-15.42	Vertical
4874.00	36.55	36.32	6.85	41.84	37.88	54.00	-16.12	Horizontal

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.92	36.58	6.89	41.86	48.53	74.00	-25.47	Vertical
4924.00	47.83	36.58	6.89	41.86	49.44	74.00	74.00 -24.56	
Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.54	36.58	6.89	41.86	38.15	54.00	-15.85	Vertical
4924.00	37.58	36.58	6.89	41.86	39.19	54.00	-14.81	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

MAIN Antenna:

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Pea	Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	47.35	36.06	6.81	41.82	48.40	74.00	-25.60	Vertical	
4824.00	46.37	36.06	6.81	41.82	47.42	74.00	-26.58	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest	Remark: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.52	36.06	6.81	41.82	37.57	54.00	-16.43	Vertical	
4824.00	36.22	36.06	6.81	41.82	37.27	54.00	-16.73	Horizontal	

Test mode: 8	02.11b		Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.44	36.32	6.85	41.84	47.77	74.00	-26.23	Vertical
4874.00	46.28	36.32	6.85	41.84	47.61	74.00	-26.39	Horizontal
Test mode: 8	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.42	36.32	6.85	41.84	37.75	54.00	-16.25	Vertical
4874.00	36.57	36.32	6.85	41.84	37.90	54.00	-16.10	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	ık		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	46.30	36.58	6.89	41.86	47.91	74.00	-26.09	Vertical	
4924.00	46.38	36.58	6.89	41.86	47.99	74.00	-26.01	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.87	36.58	6.89	41.86	38.48	54.00	-15.52	Vertical	
4924.00	36.58	36.58	6.89	41.86	38.19	54.00	-15.81	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Pea	k		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.61	36.06	6.81	41.82	47.66	74.00	-26.34	Vertical	
4824.00	48.00	36.06	6.81	41.82	49.05	74.00	-24.95	Horizontal	
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.60	36.06	6.81	41.82	37.65	54.00	-16.35	Vertical	
4824.00	38.06	36.06	6.81	41.82	39.11	54.00	-14.89	Horizontal	

Test mode: 80)2.11g		Test char	nel: Middle		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.80	36.32	6.85	41.84	48.13	74.00	-25.87	Vertical
4874.00	46.17	36.32	6.85	41.84	47.50	74.00	-26.50	Horizontal
Test mode: 80)2.11g		Test char	Test channel: Middle Remark: Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.20	36.32	6.85	41.84	37.53	54.00	-16.47	Vertical
4874.00	36.52	36.32	6.85	41.84	37.85	54.00	-16.15	Horizontal

Test mode: 80	02.11g		Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	46.90	36.58	6.89	41.86	48.51	74.00	-25.49	Vertical		
4924.00	46.35	36.58	6.89	41.86	47.96	74.00	-26.04	Horizontal		
Test mode: 80	Test mode: 802.11g			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	36.85	36.58	6.89	41.86	38.46	54.00	-15.54	Vertical		
4924.00	36.15	36.58	6.89	41.86	37.76	54.00	-16.24	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

MIMO Antenna:

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.68	36.06	6.81	41.82	47.73	74.00	-26.27	Vertical	
4824.00	47.11	36.06	6.81	41.82	48.16	74.00	-25.84	Horizontal	
Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.47	36.06	6.81	41.82	37.52	54.00	-16.48	Vertical	
4824.00	37.13	36.06	6.81	41.82	38.18	54.00	-15.82	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.47	36.32	6.85	41.84	47.80	74.00	-26.20	Vertical	
4874.00	46.21	36.32	6.85	41.84	47.54	74.00	-26.46	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.49	36.32	6.85	41.84	37.82	54.00	-16.18	Vertical	
4874.00	36.54	36.32	6.85	41.84	37.87	54.00	-16.13	Horizontal	

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	47.46	36.58	6.89	41.86	49.07	74.00	-24.93	Vertical		
4924.00	46.85	36.58	6.89	41.86	48.46	74.00	-25.54	Horizontal		
Test mode: 80	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	37.03	36.58	6.89	41.86	38.64	54.00	-15.36	Vertical		
4924.00	36.15	36.58	6.89	41.86	37.76	54.00	-16.24	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	46.68	36.06	6.81	41.82	47.73	74.00	-26.27	Vertical	
4844.00	46.46	36.06	6.81	41.82	47.51	74.00	-26.49	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	36.33	36.06	6.81	41.82	37.38	54.00	-16.62	Vertical	
4844.00	36.59	36.06	6.81	41.82	37.64	54.00	-16.37	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.92	36.32	6.85	41.84	48.25	74.00	-25.75	Vertical	
4874.00	46.58	36.32	6.85	41.84	47.91	74.00	-26.09	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.47	36.32	6.85	41.84	37.80	54.00	-16.20	Vertical	
4874.00	36.14	36.32	6.85	41.84	37.47	54.00	-16.53	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	46.31	36.45	6.87	41.85	47.78	74.00	-26.22	Vertical		
4904.00	46.15	36.45	6.87	41.85	47.62	74.00	-26.38	Horizontal		
Test mode: 80	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	36.12	36.45	6.87	41.85	37.59	54.00	-16.41	Vertical		
4904.00	36.29	36.45	6.87	41.85	37.76	54.00	-16.24	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report