

Machine Learning 1 – Fundamentals

Summary Prof. Dr. J. M. Zöllner, M.Sc. Nikolai Polley, M.Sc. Marcus Fechner

Outline

- Recap on ML1
- What's Next?
- Evaluation
- Exam

Introduction

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Inductive Learning

Goal: The machine learning method should find the best hypothesis $h \approx t$ in the large hypothesis space H, that best fits the observed data

- Induction
- **Deduction**

- Inductive learning hypothesis
- **Induktive bias:** Certain hypotheses are preferred over other hypotheses in the hypothesis space

Learning Theory

- Learning system = Hypothesis space + Learning method
- Empirical risk minimization: $\hat{\mathcal{L}}_{D}(h_{\theta}) = \mathbb{E}_{(x,y) \sim \hat{p}}[\ell(h_{\theta}(x),y)] = \frac{1}{|D|} \sum_{(x,y) \in D} \ell(h_{\theta}(x),y)$
- Generalization gap →

Train Error

Validation Error

Test Error

- Learning is challenging
- Overfitting vs underfitting

- Evaluate model: Metrics, Cross-validation
- Improve model: Boosting, Bagging, Adaboost
- VC dimension

Support Vector Machine

- **Problem**: There are many ways to separate the two sets (red and blue), but what is the optimal solution to the problem?
- Solution: Find the best separating line/hyperplane with maximum margin to the classes
- Support vectors
- Soft Margin SVM
- Non-linear SVM
 - Kernel function
 - Kernel-trick

Decision Trees

Properties

- Non-parametric
- Interpretable

Attribute selection

- Entropy
- Information gain

■ ID3 Algorithm

- Top-Down
- Greedy
- Prone to overfitting

Reduce overfitting

- Early Stopping
- Pruning
- Bagging
- Random Forests

Neural Networks - Basics

Artificial neuron = Mathematical approximation of a real neuron

XOR Problem

Representation matters

- Multi-layer neural networks are universal function approximators
- Learning = Optimization = Gradient Descent
- Backpropagation = Efficient application of the chain rule

Neural Networks - Hyperparameter

Hyperparameter: Manually defined settings of training algorithm

Badly chosen settings prevent successful training

Optimization Methods

- SGD, Momentum, ADAM,
- Static and dynamic learning rates
- Regularization

- Initialization of parameters
 - Bad intialization can lead to vanishing gradient

Hyperparam	RoBERTa _{LARG}	E
Number of Layers	24	
Hidden size	1024	
FFN inner hidden size	4096	
Attention heads	16	
Attention head size	64	
Dropout	0.1	
Attention Dropout	0.1	Covered in
Warmup Steps	30k	ML2
Peak Learning Rate	4e-4	IVILZ
Batch Size	8k	
Weight Decay	0.01	Covered in
Max Steps	500k	ML1
Learning Rate Decay	Linear	
Adam ϵ	1e-6	
Adam β_1	0.9	
Adam β_2	0.98	
Gradient Clipping	0.0	

Convolutional Neural Networks

Input with spatial relations

Base Operator: Convolution

Small kernel that gradually increase the receptive field layer after layer

Layers and activation functions

Architectures (ResNet)

identity

weight layer

 $\mathcal{F}(\mathbf{x})$

 $\mathcal{F}(\mathbf{x}) + \mathbf{x}$

Unsupervised Learning

- Examples only contain input data (unlabeled data)
 - Goal: Find the underlying structure in the data
 - Clustering or generative
- K-Means
 - How it works
 - What if it doesn't work
 - Adaptations
- **DBSCAN**
- **Autoencoder**

Bayesian Learning

- Why?
 - Combining prior knowledge with observed data
- Bayes' theorem: $P(h|D) = \frac{P(D|h)P(h)}{P(D)}$
- **Estimation**
 - Maximum a posteriori
 - Maximum likelihood
- Classifier
 - Optimaler Bayes Klassifikator
 - Naiver Bayes Klassifikator
- **Bayesian networks**
- **Expectation-maximization algorithm**

NLP and Sequence Models

- NLP: Enable computers to understand, interpret and generate natural language
- Challenges: Language ambiguity, syntax, grammar, polysemy, etc.
- Text Normalization: Convert text to standardized format
- Tokenization: Break text into meaningful units (tokens)
 - Space-based tokenization
 - Byte-pair encoding
- Text representation: Word embeddings
- Language models: Task of predicting the next token
 - Sequence models
 - RNN, LSTM
- Decoding: Convert output of model to text

Reinforcement Learning (RL)

- Sequential decision making problem
- Data is actively generated by interacting with the environment
- Basis for RL is the reward hypothesis
- Reward hypothesis: Any goal can be formalized as the outcome of maximizing a cumulative reward!

$$\mathbf{E}_{\tau \sim \pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} \right]$$

- Mathematically formulated as MDP
- Environment behavior predicted by the agent
- 3. Behavior of the agent for all states
- 4. Evaluation of states/action for a given policy

Reinforcement Learning (RL)

- An MDP is solved if an optimal policy π^* is found.
 - Policy Iteration:

- Dynamic Programming:
 - Computes the optimal value function and policy iteratively if the true model is known.
 - Value Iteration: Combines the evaluation and improvement step into one update step.

$$V_{k+1}(s) \leftarrow \max_{a \in A} \left(r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V_k(s') \right)$$

Reinforcement Learning (RL)

- Reinforcement Learning by interacting with the environment (sampling) due to an unknown model → exploration
- Value-based RL: → Learn value function and derive policy
 - Monte-Carlo Methods: Estimate by sampling
 - Temporal-Difference (TD) Learning: Learn by bootstrapping
 - Reduce the TD error between value functions of successive states
 - SARSA (on-policy TD control) and Q-Learning (off-policy TD control)
 - n-step bootstrapping: Mix of Monte-Carlo and Temporal Difference
 - Deep Q-Learning: Use neural nets for function approximations
 - Catastrophic forgetting → replay buffer
 - Changing target values → target network
 - Overestimation of Q-values → double Q-Learning

Outline

- Recap on ML1
- What's Next?
- Evaluation
- Exam

Courses

- Machine Learning 1 Fundamentals
 - Fundamentals of learning systems
- Machine Learning 2 Advanced Methods 💝
- Advanced and current methods from research
 - e.g. Diffusion Models, Foundation Models, Transformer, Object Detection, Deep Reinforcement Learning, Self-Supervised Learning, Generative Neural Networks, Active Learning

Seminar & Practical Labs

Seminar: Cognitive Automobiles and Robots 💝 🏶

- Development of a theoretical research task in the field of ML/autonomous driving and the state of the art.
- Practical Lab: Cognitive Automobiles and Robots &

- Project in the field of ML/autonomous driving, which is to be implemented in practice.
- Practical Lab: Machine Learning 🤃

Project in the field of ML/autonomous driving, which is to be implemented in practice.

> Explanation: Summer Winter term term

Courses

Applications are closed

Seminar & Practical Labs

Seminar: Cognitive Automobiles and Robots 💝 🏶

- Development of a theoretical research task in the field of ML/autonomous driving and the state of the art.
- Practical Lab: Cognitive Automobiles and Robots 🍪

- Project in the field of ML/autonomous driving, which is to be implemented in practice.
- Practical Lab: Machine Learning 🤃
 - Project in the field of ML/autonomous driving, which is to be implemented in practice.

Applications are open

Explanation: Summer Winter term term

Practical Lab: Machine Learning

Head-Pose-Estimation from Mobile Devices

Increasing Network Efficiency

Simulation and V2V Communication for Platooning

Advertisement

- We are always looking for motivated students!
- Topics: Perception Prediction Mapping Planning Safety and Security

 Vehicle-2-X Simulation End-to-End Learning Safe Al

 Mixed Reality Virtual Reality Reinforcement Learning UX
- Where: Many interesting offers in the field of machine learning can be found on <u>our homepage</u>.
- Offers: Bachelor theses, master theses, student assistant positions
- Nothing there? Feel free to send an email to our doctoral students!

Outline

- Recap on ML1
- What's Next?
- Evaluation
- Exam

Evaluation: Lecture and Exercise

- https://onlineumfrage.kit.edu
- TAN:

Lecture: X8XR2

Exercise: MC3G8

Outline

- Recap on ML1
- What's Next?
- Evaluation
- Exam

Project Task: CAPTCHA

- The project task is finished
- Top 3:
 - Team Hummingbird 87.92%
 - Team Apple Moth 87.54%
 - Team Cobra 87.29%

Some Statistics:

Number of Uploads: 2327

Number of Teams: 290

	TeamName	↓ Accurac
1	Übungsleitung Large-CNN	89.59
2	Team Humming Bird	87.92
3	Team Apple Moth	87.54
6	Team Cobra	87.29
5	Team African Golden Cat	87.29
4	Team Quail	87.29
9	Team Angelfish	87.27
8	Team Emu	87.27
7	Team Rattlesnake	87.27
10	Team Asian Giant Hornet	87.21

Current Leaderboard:

Notes for Exam

- Bring your calculator!
- 60 minutes, 60 points
 - One Point → approx. one minute per point
 - Don't waste time if you don't know the answer
 - You don't need all points for very good grades!
- We don't want long texts
- If you know you won't write the exam:
 It makes our lives easier if you cancel beforehand in campus-system

ML1 Exam of SS-2023

- We let GPT-4 take the exam
- Let's see how it did!

Good Luck for the Exam!

