Hands-on Reinforcement Learning for RecSys - from Bandits to Offline RL with Ray RLlib

Kourosh Hakhamaneshi - kourosh@anyscale.com Christy Bergman - christy@anyscale.com

- → GitHub: https://bit.ly/rllib_recsys_2022_github
- → Q & A Doc: https://bit.ly/rllib recsys 2022-qa
- → Logins+passwords: https://bit.ly/rlib_recsys-logins
- → Anyscale: <u>console.anyscale.com</u>
- → Tutorial Survey: https://bit.ly/rlib_recsys_2022

- → GitHub: https://bit.ly/rllib_recsys_2022_github
- → Q & A Doc: https://bit.ly/rllib_recsys_2022-qa
- → Logins+passwords: https://bit.ly/rlib_recsys-logins
- → Anyscale: <u>console.anyscale.com</u>
- → Tutorial Survey: https://bit.ly/rlib_recsys_2022

- → GitHub: https://bit.ly/rllib_recsys_2022_github
- → Q & A Doc: https://bit.ly/rllib recsys 2022-qa
- → Logins+passwords: https://bit.ly/rlib_recsys-logins
- → Anyscale: <u>console.anyscale.com</u>
- → Tutorial Survey: https://bit.ly/rlib_recsys_2022

- → GitHub: https://bit.ly/rllib_recsys_2022_github
- → Q & A Doc: https://bit.ly/rllib recsys 2022-qa
- → Logins+passwords: https://bit.ly/rlib_recsys-logins
- → Anyscale: <u>console.anyscale.com</u>
- → Tutorial Survey: https://bit.ly/rlib_recsys_2022

\$whoami (Christy)

- → AI/ML DevAdvocate @Anyscale.
- → Previously: AI/ML Solutions Architect at AWS, before that data scientist real-time fraud detection

\$whoami (Kourosh)

- → ML Engineer working on RL and RLlib @Anyscale.
- → Previously: PhD student at UC Berkeley working on RL in Robotics and design optimization

RL Team @ Anyscale

Anyscale

Who we are: Original creators of Ray, a unified framework for scalable, distributed computing. Part of that framework are our libraries for ML and data processing.

What we do: Scalable compute for AI and Python

Why we do it: Scaling is a necessity, scaling is hard; make distributed computing easy and simple for all developers.

Some of RLlib's Industry Users

Overview of the tutorial

- → Brief intro RL
- → Brief intro RecSys
 - + Traditional Approaches
 - Defining RecSys as an RL problem
- → Online RL vs Offline RL
- → Hands-on coding with python notebooks and scripts

Goals - Understand:

- What are the advantages of using RL in RecSys?
- What are the pros and cons of offline RL in practical scenarios?

Overview of the tutorial

- → 4 min: Welcome
- → 5 min: Very brief intro RL
- → 5 min: Very brief intro RecSys
 - + Machine learning (ML) approach
 - + Challenges with current ML approach
 - Map RecSys problem into MDP for RL
- → 5 min: Intro Online RL vs Offline RL
- → 1 hour: Hands-on with Google Colab
 - + 15min: Introduction to the environment
 - + 10min: Run baselines, bandit, and RL algorithm
 - + 5min: Conclusion so far TODO ADD slide with results
 - 10min: Run offline RL on expert, random, greedy data
 - + 5min: Conclusion so far TODO ADD slide with results
 - + 5min: Deploy a policy to production using Ray Serve

Conversation between an agent and an environment.

Learning objectives:

- Maximize sum of rewards.
- Learn from delayed reward.
- Proper exploration to maximally learn

 $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$

$$(\mathcal{S}, \mathcal{A}[\mathcal{P}], \mathcal{R}, \gamma)$$

$$S_0 \sim \mathcal{P}(.)$$

$$S_{t+1} \sim \mathcal{P}(.|S_t, A_t)$$

$$(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$$

$$R_t = \mathcal{R}(S_t, A_t)$$

$$(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}[\gamma)$$

$$R(\tau) = \sum_{t} \gamma^{t} R_{t}$$

Discount factor γ in RL

- If $\gamma = 0$, the algorithm considers 1-step rewards only.
- If $\gamma = 1$, the algorithm considers all future rewards equally.

Brief intro RecSys

Companies want to recommend content.

ML: Pointwise recommendations.

RL: Combine pointwise recommendations with session based data.

Brief intro RecSys ML

Credit: https://developers.google.com/machine-learning/

- Traditional ML (collaborative filtering) models are static with respect to time.
- This type of model ignores time order in which users did actions.

- Traditional ML (collaborative filtering) models are static with respect to time.
 - Ignores the sequence of interactions with a given user.

- Traditional ML (collaborative filtering) models are static with respect to time.
 - Ignores the sequence of interactions with a given user.
- Static models can be:
 - Too short-sighted and miss out on Long-term, delayed rewards

- Traditional ML (collaborative filtering) models are **static with** respect to time.
 - Ignores the sequence of interactions with a given user.
- Static models can be:
 - Too short-sighted and miss out on Long-term, delayed rewards
 - Overlook important and changing user intents or business conditions such as seasonality or promotional campaigns

- By taking each user's session history as a sequence of decisions, the RecSys problem can be converted into a sequential decision-making problem.
 - \circ Pr[R(t+1)=r_t | A(t)=a_t, S(t)=s_t, A(t-1)=a_{t-1}, ...S(0)=s₀]
- A stochastic process is a **Markov Decision Process (MDP)** if the values at time t depend only on the values at time t-1.
 - $Q_{\pi}(s, a) = E_{\pi} \left[\sum_{j=0}^{T} \gamma^{j} r_{t+j+1} | S_{t} = s, A_{t} = a \right]$
- RL has become the de-facto ML approach for solving MDPs.

 By taking each user's session history as a sequence of decisions, the RecSys problem can be converted into a sequential decision-making problem.

 By taking each user's session history as a sequence of decisions, the RecSys problem can be converted into a sequential decision-making problem.

States: item features, user feature, history of interactions

 By taking each user's session history as a sequence of decisions, the RecSys problem can be converted into a sequential decision-making problem.

States: item features, user feature, history of interactions

Actions: the items to recommend

 By taking each user's session history as a sequence of decisions, the RecSys problem can be converted into a sequential decision-making problem.

States: item features, user feature, history of interactions

Actions: the items to recommend

Reward: long term satisfaction (explicit or implicit)

 By taking each user's session history as a sequence of decisions, the RecSys problem can be converted into a sequential decision-making problem.

States: item features, user feature, history of interactions

Actions: the items to recommend

Reward: long term satisfaction (explicit or implicit)

Gamma: 0 (bandits) or 1 (RL)

RL Environment: Delayed Rewards & Long Term Satisfaction (LTS)

Online RL vs Offline RL

Online RL	Batch / Offline RL
From State s, Take action a Environment Get back next reward r' and next state s'	

Online RL vs Offline RL

- → Claim username/password at https://bit.ly/rlib_recsys-logins
 - + Update the "Status" column to "Available" or "Claimed"
- → Go to Console: http://console.anyscale.com/
- → Enter username (for the email) and password

Thank you.

We would love to connect with you!

Twitter - @anyscalecompute | @raydistributed

GitHub - https://github.com/ray-project/ray

Slack - https://www.ray.io/community

Discuss - https://discuss.ray.io/

