Naive Bayes Tutorial Part 1: Predicting survival from titanic crash

Conditional Probability

Consider the example to know the essence of conditional probability, a fair die is rolled, the probability that it shows "4" is 1/6, it is an unconditional probability, but the probability that it shows "4" with the condition that it comes with even number, is 1/3, this is a conditional probability.

Passenger Id	Name	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived
1	Braund, Mr. Owen Harris	3	male	22	1	0	21171	7.25		S	0
2	Cumings, Mrs. John Bradley	1	female	38	1	0	17599	71.2833	C85	C	1
3	Heikkinen, Miss. Laina	3	female	26	0	0	3101282	7.925		S	1
4	Futrelle, Mrs. Jacques Heath	1	female	35	1	0	113803	53.1	C123	S	1
5	Allen, Mr. William Henry	3	male	35	0	0	373450	8.05		S	0
6	Moran, Mr. James	3	male		0	0	330877	8.4583		Q	0
7	McCarthy, Mr. Timothy J	1	male	54	0	0	17463	51.8625	E46	S	0
8	Palsson, Master. Gosta Leonard	3	male	2	3	1	349909	21.075		S	0
9	Johnson, Mrs. Oscar	3	female	27	0	2	347742	11.1333		S	1
10	Nasser, Mrs. Nicholas	2	female	14	1	0	237736	30.0708		С	1
$P\left(\frac{Survived}{Male \& Class \& Age \& Cabin \& Fare}\right)$:)				
(Mute & Cluss & Aye & Cubin & Fure)											

Make a naïve assumption that features such as male, class, age, cabin, fare etc. are independent of each other

Some applications of Nayive Base:

- 1. Email Spam Detection
- 2. Hand Digit Recognition
- 3. Wheather Prediction
- 4. Face Detection
- 5. News Article Categorization


```
In [1]: import pandas as pd
In [2]: df = pd.read_csv("D:/Data_Science/My Github/Machine-Learning-with-Python/14. naiv
         df.head()
Out[2]:
             PassengerId
                              Name Pclass
                                               Sex Age
                                                         SibSp Parch
                                                                           Ticket
                                                                                     Fare Cabin Embark
                             Braund,
          0
                       1
                           Mr. Owen
                                          3
                                              male 22.0
                                                              1
                                                                     0 A/5 21171
                                                                                   7.2500
                                                                                            NaN
                              Harris
                           Cumings,
                           Mrs. John
                             Bradley
          1
                       2
                                          1 female 38.0
                                                              1
                                                                     0 PC 17599 71.2833
                                                                                             C85
                           (Florence
                              Briggs
                               Th...
                          Heikkinen,
                                                                        STON/O2.
          2
                       3
                                          3 female 26.0
                                                              0
                                                                                   7.9250
                               Miss.
                                                                                            NaN
                                                                         3101282
                              Laina
                            Futrelle.
                               Mrs.
                            Jacques
          3
                                          1 female 35.0
                                                                     0
                                                              1
                                                                          113803 53.1000
                                                                                           C123
                              Heath
                            (Lily May
                               Peel)
                           Allen, Mr.
                       5
                                                                     0
          4
                             William
                                          3
                                              male 35.0
                                                              0
                                                                          373450
                                                                                   8.0500
                                                                                            NaN
                              Henry
In [3]: df.drop(['PassengerId','Name','SibSp','Parch','Ticket','Cabin','Embarked'],axis=
          df.head()
Out[3]:
              Pclass
                                          Survived
                       Sex
                             Age
                                     Fare
          0
                  3
                             22.0
                                   7.2500
                                                 0
                       male
          1
                             38.0
                                                 1
                  1
                     female
                                  71.2833
                     female
                             26.0
                                   7.9250
                                                 1
```

In [4]: inputs = df.drop('Survived',axis='columns') target = df.Survived

male 35.0

35.0

female

3

53.1000

8.0500

1

0

3

```
In [5]: #inputs.Sex = inputs.Sex.map({'male': 1, 'female': 2})
dummies = pd.get_dummies(inputs.Sex)
dummies.head(3)
```

Out[5]:

	female	male
0	0	1
1	1	0
2	1	0

```
In [6]: #append dummy variables into dataframes
inputs = pd.concat([inputs,dummies],axis='columns')
inputs.head(3)
```

Out[6]:

	Pclass	Sex	Age	Fare	female	male
0	3	male	22.0	7.2500	0	1
1	1	female	38.0	71.2833	1	0
2	3	female	26.0	7.9250	1	0

Drop Sex column

```
In [7]: inputs.drop('Sex',axis='columns',inplace=True)
inputs.head(3)
```

Out[7]:

	Pclass	Age	Fare	female	male	
0	3	22.0	7.2500	0	1	
1	1	38.0	71.2833	1	0	
2	3	26.0	7.9250	1	0	

```
In [8]: #Check if any nan value exist
inputs.columns[inputs.isna().any()]
```

```
Out[8]: Index(['Age'], dtype='object')
```

```
In [9]: inputs.Age[:10]
Out[9]: 0
               22.0
               38.0
         1
         2
               26.0
         3
               35.0
         4
               35.0
         5
               NaN
         6
               54.0
         7
                2.0
         8
               27.0
               14.0
         Name: Age, dtype: float64
In [10]: #Fill NAN value with mean value
         inputs.Age = inputs.Age.fillna(inputs.Age.mean())
         inputs.head()
Out[10]:
             Pclass Age
                           Fare female male
          0
                 3 22.0
                        7.2500
                                     0
                                          1
          1
                 1 38.0 71.2833
                                          0
                 3 26.0
                         7.9250
                                          0
          3
                 1 35.0 53.1000
                                          0
                                     1
                 3 35.0
                         8.0500
                                     0
                                          1
In [12]: | from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(inputs, target, test_size=0.2)
In [13]: len(X_train)
Out[13]: 712
In [14]: len(X_test)
Out[14]: 179
In [15]: from sklearn.naive_bayes import GaussianNB
         model = GaussianNB()
In [16]: model.fit(X_train,y_train)
Out[16]: GaussianNB()
In [17]: model.score(X_test,y_test)
Out[17]: 0.8324022346368715
```

```
In [18]: X test[0:10]
Out[18]:
                Pclass
                            Age
                                   Fare female male
           745
                    1 70.000000 71.0000
                                             0
                                                   1
           483
                    3 63.000000
                                 9.5875
                                             1
                                                   0
           632
                    1 32.000000
                                30.5000
                                             0
                                                   1
           273
                       37.000000
                                29.7000
                                             0
                                                   1
           499
                       24.000000
                                 7.7958
                                             0
                                                   1
            55
                    1
                       29.699118 35.5000
                                             0
                                                   1
           463
                    2 48.000000 13.0000
                                                   1
           202
                    3 34.000000
                                 6.4958
                                             0
                                                   1
           761
                    3 41.000000
                                 7.1250
                                             0
                                                   1
           465
                    3 38.000000
                                 7.0500
                                             0
                                                   1
In [19]: y_test[0:10]
Out[19]: 745
                  0
          483
                  1
          632
                  1
          273
                 0
          499
                 0
          55
                 1
          463
                 0
          202
                 0
          761
                 0
          465
                 0
          Name: Survived, dtype: int64
In [20]: |model.predict(X_test[0:10])
Out[20]: array([0, 1, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int64)
In [21]: model.predict_proba(X_test[:10])
Out[21]: array([[0.74309074, 0.25690926],
                  [0.06610057, 0.93389943],
                  [0.91881393, 0.08118607],
                  [0.92167558, 0.07832442],
                  [0.98684943, 0.01315057],
                  [0.91244306, 0.08755694],
                  [0.9759533 , 0.0240467 ],
                  [0.98817594, 0.01182406],
                  [0.98848654, 0.01151346],
                  [0.9884357 , 0.0115643 ]])
```

Calculate the score using cross validation

Date Author
2021-10-13 Ehsan Zia