U.S.N.						
						l

06

08

BMS College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2017 Semester End Main Examinations

Course: Data Structures with C

Course Code: 15IS3DCDSC

Max Marks: 100

Date:19.12.2017

Instruction: Answer any FIVE full questions, choosing one from each Unit.

UNIT 1

- 1. a) What is structure? Give different ways of defining structure and declaring variables and method of accessing members of structures using a student structure with roll number, name, and marks of subjects as members of that structure as example.
 - b) Write a algorithm for transpose the given sparse matrix. Consider a matrix of size 5 X 6 containing 6 number of non-zero values as triplets and find its transpose.

 $\begin{bmatrix} 0 & 0 & 0 & 0 & 9 & 0 & -1 \\ 0 & 8 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}$

- c) Give the differences between:
 - i) Static memory allocation and dynamic memory allocation
 - ii) Malloc() and calloc().

UNIT 2

- 2. a) Create a function of Linked Stack using dynamic arrays and show the operations of push, pop and display elements.
 - b) Write an algorithm to convert a valid infix expression to a postfix expression.

 Also evaluate the following suffix expression for the values: A=1 B=2 C=3. 1)

 AB+C-BA+C\$-
 - c) Give the Ackerman's Function. Write a function demonstrate Ackerman's **04** Function.

UNIT 3

3.	a)	What is Circular Queue? List its operations. Develop a C program for the implementation of a circular queue using arrays.	08			
	b)	For a given sparse matrix, write the diagrammatic linked representation.				
		$\begin{bmatrix} 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 8 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}$				
	c)	Develop the C function for Adding and evaluating Polynomials using Circular Linked List.	08			
		OR				
4.	a)	Write a C program to implement a queue using linked list. Ensure to perform the following operations on the queue:	10			
	L .\	i) insert ii) delete iii) display	10			
	b)	i) Write a C function to reverse the given singly linked list.	10			
		ii) Write a C function to concatenate two singly linked list.				
		UNIT 4				
5.	a)	Define the tree and suitable example define the following i) Binary tree ii) Complete binary tree iii) Degree of a binary tree iv) Depth of binray tree	08			
	b)	Write a function to implement the following operations on doubly linked list:	08			
		(i) Insert an element at the beginning				
		(ii) Deleting all nodes whose information field is even number				
,	c)	Construct a binary tree from a given preorder and inorder sequence:				
		i) Preorder: A B D G C E H I F ii) Inorder: B CAEDGHFI				
		UNIT 5				
6.	a)	What is threaded binary tree? Write a function to traverse a threaded binary tree in preorder	08			
	b)	What is a forest? With suitable example illustrate how you transform a forest into a binary tree.	06			
	c)	Explain with suitable example, how traversing a tree using selection trees.	06			
		OR				
7. a)		What is a winner tree? Explain with suitable example a winner tree for $k=8$.	06			
	b)	Describe the binary search tree with an example. Write a iterative & recursive	08			

function to search for a key value in a binary search tree.

c) Define disjoin sets? Consider the three 3disjoint sets $S1=\{0,6,7,8\}$ $S2=\{1,4,9\}$ **06** $S3=\{2,3,5\}$.

Represents the following in:

i) tree(linked list representation) ii) Array representation
