

Machine Learning for Materials

4. Crystal Representations

Aron Walsh

Department of Materials

Centre for Processable Electronics

Module Contents

- 1. Introduction
- 2. Machine Learning Basics
 - 3. Materials Data
- 4. Crystal Representations
 - 5. Classical Learning
- 6. Artificial Neural Networks
- 7. Building a Model from Scratch
 - 8. Accelerated Discovery
- 9. Generative Artificial Intelligence
 - 10. Recent Advances

Class Outline

Crystal Representations

- A. Compositional
 - B. Structural
 - C. Graphs

Representation of Materials

Model performance depends on the choice of compositional and structural features

Minimal representation

Ab initio quantum mechanics (QM)

Input:

Atomic number, Z Coordinates, R

$$\widehat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$
electronic
wavefunction

Output:

Properties

Effective representation

Input:

Feature vector, X

Supervised machine learning (ML)

$$y = f(\mathbf{X}, \mathbf{\Theta})$$
learned
weights

Output:

Properties

How to Best Represent a Molecule?

Networks of atoms (nodes) connected by bonds (edges)

How to Best Represent a Material?

Many possible materials features from atomistic to macroscopic length scales

Hot Encoding

We can use an *n*-dimensional vector to categorise the atomic number of the elements in a compound

```
Element (One-hot)
     [10000000...]
       H He Li Be B C N O F....
Compound (Multi-hot)
     [000001010...]
       H He Li Be B C N O F....
```

Hand-Built (Local) Representations

We can define elemental feature vectors based on standard properties of the elements

```
import elementembeddings
print(AtomEmbeds["magpie"].dim)

22
print(AtomEmbeds["magpie"].feature_labels)

['Number', 'MendeleevNumber', 'AtomicWeight', 'MeltingT', 'Column', 'Row', 'CovalentRadius', 'Electronegativity', 'NsValence', 'NpValence', 'NdValence', 'NfValence', 'Nvalence', 'NsUnfilled', 'NpUnfilled', 'NdUnfilled', 'NfUnfilled', 'NfUnfilled', 'SpaceGroupNumber']
```

22 dimensional Magpie representation from

L. Ward et al, npj Comp. Mater. 2, 16028 (2016)

Hand-Built (Local) Representations

We can also define compound feature vectors based on standard properties of the elements

```
Fe203_magpie = CompositionalEmbedding("Fe203", "magpie")
```

$$X(Fe_2O_3) = [2X(Fe) + 3X(O)]/5$$

	X_1	X ₂	X ₃	X _n
Fe	0.52	0.11	0.01	0.80
0	0.32	0.23	0.14	0.64
Fe ₂ O ₃	0.40	0.18	0.09	0.70

Different types of pooling is possible (e.g. max, min, mean)

Learned (Distributed) Representations

We can *learn* continuous feature vectors with elemental information as part of model training

SkipSpecies
200 D
Structure
graph pooling

Mat2Vec
200 D
Literature word
embedding

LETTER

https://doi.org/10.1038/s41586-019-1335-8

Unsupervised word embeddings capture latent knowledge from materials science literature

Vahe Tshitoyan^{1,3}*, John Dagdelen^{1,2}, Leigh Weston¹, Alexander Dunn^{1,2}, Ziqin Rong¹, Olga Kononova², Kristin A. Persson^{1,2}, Gerbrand Ceder^{1,2}* & Anubhav Jain¹*

Element Embeddings

Toolkit to access and modify elemental and compositional representations for machine learning

Machine learning approaches for materials informatics have become increasingly widespread. Some of these involve the use of deep learning techniques where the representation of the elements is learned rather than specified by the user of the model. While an important goal of machine learning training is to minimise the chosen error function to make more accurate predictions, it is also important for us material scientists to be able to interpret these models. As such, we aim to evaluate and compare different atomic embedding schemes in a consistent framework.

Getting started

ElementEmbeddings's main feature, the Embedding class is accessible by importing the class.

Dr Anthony Onwuli

Latest embeddings CrystaLLM

SkipSpecies CGNF

Learned Chemical Similarity

Quantify with distance (e.g. Chebyshev), similarity (e.g. Cosine), or correlation (e.g. Pearson) metrics

Name	Dimension	Туре	
Magpie	22	Element properties	
Mat2Vec	200	Chemical abstracts	
Skipatom	200	Crystal structure graphs	
MegNet	16	Graph neural network	
CrystaLLM	512	Crystal structure text	

Learned Chemical Similarity

Dimensionality reduction confirms a natural clustering of elements into "groups"

Anthony Onwuli et al, Digital Discovery 2, 1558 (2023)

Class Outline

Crystal Representations

A. Compositional

B. Structural

C. Graphs

Many Possible Materials Features

site.py

Learn from Crystallography

High symmetry crystal:

MgO

Cubic

8 atom unit cell

$$a = b = c$$

Low symmetry crystal:

BiVO₄

Monoclinic

24 atom unit cell

$$a \neq b \neq c$$

Learn from Crystallography

7 crystal systems, 14 Bravais lattices, 230 space groups, 10³ prototype structures

Conventional description

Unit cell (\mathcal{L})

 α , β , α , β , γ

Fractional coordinates (X)

$$(x_1, y_1, z_1)...$$

Atom types (A)

Sn, Ti, O...

Problem for ML: conventional description lacks invariance*

^{*}with respect to atomic permutation, unit cell rotations, and translations

Unit Cell Transformations

The same structure is described in each case

Two-atom orthorhombic unit cell

Two-atom orthorhombic unit cell
$$\begin{bmatrix}
 a & b & c \\
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2
\end{bmatrix}
\begin{bmatrix}
 4 & 5 & 6 \\
 0 & 0 & 0 \\
 0.5 & 0.5
\end{bmatrix}$$

Atomic permutation Crystal rotation Unit cell translation

$$\begin{bmatrix} 4 & 5 & 6 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 5 & 4 & 6 \\ 0.5 & 0.5 & 0.5 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 4 & 5 & 6 \\ 0.0 & 0.5 & 0.5 \\ 0.5 & 0 & 0 \end{bmatrix}$$

Structural Representations

Many structural descriptors have been developed

- Coulomb Matrix (Rupp et al, 2012)
 - mimics electrostatic interactions $(q_i q_i / r_{ii})$
- Atom-Centered Symmetry Functions (Behler, 2011)
 - site expansion of radial and angular terms
- Many Body Tensor Representation (Huo et al, 2017)
 - distribution of local structural motifs
- Atomic Cluster Expansion (Drautz, 2019)
 - high body-order expansion of atomic environments

Real Space Grid

Voxels (three-dimensional pixels) used in computer graphics can describe a unit cell

Used in early materials ML, but not recommended for structure

Pairwise Interatomic Distances

Coulomb matrix is a global descriptor that mimics the electrostatic interaction between nuclei

$$M_{ij}^{\text{Coulomb}} = \begin{cases} 0.5Z_i^{2.4} & \text{for } i = j\\ \frac{Z_iZ_j}{R_{ij}} & \text{for } i \neq j \end{cases}$$

[36.9]	33.7	5.5	3.1	5.5	5.5
33.7	73.5	4.0	8.2	3.8	3.8
5.5	4.0	0.5	0.35	0.56	0.56
3.1	8.2	0.35	0.5	0.43	0.43
5.5	3.8	0.56	0.43	0.5	0.56
5.5	3.8	0.56	0.43	0.56	0.5

Sine matrix is a modification that accounts for periodicity

Invariant Structural Representations

Invariant Structural Representations

Atomic Cluster Expansion (ACE) provides a systematic representation of atomic environments through radial (R) and angular (Y) terms

Site basis function
$$\phi(r) = R_l Y_l^m$$

Permutation invariance
$$A_i = \sum_{neighbours}^{r} \phi(r)$$

Rotation (Q) invariance
$$\boldsymbol{B_i} = \int \boldsymbol{A_i} \ dQ$$

Product basis **B** forms a body-order expansion

Property =
$$f(B, \Theta)$$
 weights

ACE is used in linear and deep learning models for materials

ML Powered Molecular Dynamics

Classical models are being complemented by machine learning force fields (MLFF)

Three start-of-the-art implementations based on equivariant neural network regression are MACE, Allegro, and SevenNet

ML Powered Molecular Dynamics

Enable large-scale simulations of complex materials such as organic-inorganic solids

69,120 atom simulation of CsPbI₃ perovskite based on the atomic cluster expansion (ACE)

Animation by Will Baldwin (Small 20, 2303565, 2024)

Class Outline

Crystal Representations

- A. Compositional
 - B. Structural
 - C. Graphs

Graphs

Graphs are a representation common to many domains and problems

Graphs

Graph Components

Nodes (Vertices), Edges, Global Attributes

Crystal systems

N - atoms

E – bonds

G - unit cell or

materials properties

Graph Components

Nodes (Vertices), Edges, Global Attributes

Graphs can be fully connected (every node connected to every other node), but sparse connections are often used

Graph Components

Nodes (or Vertices), Edges, Global Attributes

Molecule (including H)

For chemical problems, nearest-neighbour connectivity is common, as used in "ball and stick" representations

Crystal Graphs

Standard crystallographic representation of materials

Fractional positions xyz of atoms within a unit cell formed of lattice vectors abc

Effective for humans

Crystal graph representation

Nodes (atoms) connected by edges (bonds). Multiple edges can describe periodicity

Effective for ML models

Materials Graphs

Nodes can be used to represent larger structural units of a crystal or even entire grains

Multi-Scale Representations

Ongoing efforts to combine features that bridge from the micro to macroscale; from atoms to devices

Class Outcomes

- Describe the ways that chemical composition can expanded into vectors
- 2. Explain how the structure of a material can be represented for machine learning
- 3. Consider the limitations of a graph-based description of a three-dimensional structure

Activity:

Chemical space