Lista 5

Arruti, Sergio, Jesús

Ej 68. Sea R un anillo artiniano (noetheriano) a izquierda. Pruebe que $\forall M \in mod(R), M$ es artiniano (noetheriano).

 $\begin{array}{l} \textit{Demostraci\'on.} \text{ Sea } M \text{ un } R\text{-m\'odulo finitamente generado, como } \bigoplus_{m \in M} Rm \\ \text{genera a } M \text{ entonces existe un subconjunto finito } A \text{ de } M \text{ tal que} \\ M = \bigoplus_{m \in A} Rm, \text{ por lo que si } m_0 \in A, \text{ la sucesi\'on} \end{array}$

$$0 \longrightarrow Rm_0 \stackrel{i_0}{\longrightarrow} M \stackrel{\pi_0}{\longrightarrow} \bigoplus_{m \in A \setminus \{m_0\}} Rm \longrightarrow 0$$

es exacta, donde i_0 y π_0 son la inclusión natural y proyeccón natural respectivamente.

Ahora, si R es artiniano (noetheriano) entonces Rm_0 y $\bigoplus_{m \in A \setminus \{m_0\}} Rm$

también son artinianos (noetherianos) por ser A finito. Por la proposición 10.12 del libro de Anderson-Fuller, M es artiniano (noetheriano).

Ej 69. Sean R artiniano a izquierda y $M \in mod(R)$. Entonces $\forall N \in \mathcal{L}(M)$

$$M_{/N}$$
 es semisimple $\implies rad(M) \subseteq N$.

Demostración. Sea $\mathscr{R}:=J(R)$. Como $M\in mod(R)$, entonces por el Ej. 18 $\exists n\in\mathbb{N}$ y $f:R^n\to M$ un epimorfismo en Mod(R). Así, sí π es el epimorfismo canónico en Mod(R) de M en $M_{/N}$, se tiene que $\pi f:R^n\to M_{/N}$ es un epimorfismo en Mod(R) y por lo tanto, nuevamente por el Ej. 18, $M_{/N}\in mod(R)$. Por lo anterior, dado que $S\in mod(R)$ es semisimple $\iff \mathscr{R}S=0$ (véase 2.7.13 (c)) y que $rad(M)=\mathscr{R}M$ (véase 2.7.17 (b)), basta con verificar la siguiente implicación:

$$\mathscr{R}^M/_N = 0 \implies \mathscr{R}M \subseteq N.$$

Se tiene que

$$x \in \mathscr{R}M \implies \exists \ t \in \mathbb{N} \ \text{t.q.} \ x = \sum_{i=1}^t r_i m_i, \ r_i \in \mathscr{R} \ \text{y} \ m_i \in M \ \forall \ i \in [1,t]$$

$$\implies \pi\left(x\right) = \sum_{i=1}^t r_i \pi\left(m_i\right), \ r_i \in \mathscr{R} \ \text{y} \ \pi\left(m_i\right) \in M_{/N} \ \forall \ i \in [1,t]$$

$$\implies \pi\left(x\right) \in \mathscr{R}M_{/N} = 0$$

$$\implies x \in Ker\left(\pi\right) = N.$$

$$\implies \mathscr{R}M \subseteq N.$$

Ej 70. Sea R un anillo no trivial. Pruebe que si todo $x \in R \setminus (0)$ es invertible a izquierda, entonces R es un anillo con división.

Demostración. Sea $0 \neq x \in R$. Por hipótesis, existe $y \in R$ tal que yx = 1. Como R no es trivial, $y \neq 0$, por lo que existe $z \in R$ tal que zy = 1. Entonces

$$z = z \cdot 1 = z \cdot (yx) = (zy) \cdot x = 1 \cdot x = x$$

Por tanto, x es invertible. $\therefore R$ es anillo con división.

- **Ej 71.** Para un anillo R y $M \in Mod(R)$, pruebe que
 - a) Si $e \in End(_RM)$ es tal que $e^2 = e$, entonces $M = eM \oplus (1 e)M$ y $eM = \{m \in M \mid e(m) = m\}$.
 - b) Sean $M_1,M_2\in \mathcal{L}(M)$. Si $M=M_1\oplus M_2$, entonces existe $e\in End(_RM)$ tal que: $e^2=e,\,eM=M_1\,\,$ y $\,$ $(1-e)M=M_2.$

Demostraci'on. a)

Supongamos $x \in M \cap (1-e)M$, entonces x=ey=(1-e)z, es decir, ey=z-ez por lo que e(y+z)=z, Así

$$x = (1 - e)(e(y + z)) = e(y + z) - e^{2}(y + z) = e(y + z) - e(y - z) = 0.$$

por lo tanto $M \cap (1 - e)M = \{0\}.$

Sea $x \in M$ entonces x = (x-ex) + ex donde $(x-ex) = (1-e)x \in (1-e)M$ y $ex \in eM$. Así $x \in eM \oplus (1-e)M$.

Por último, sea $y \in eM$ entonces y = ex para alguna $x \in M$, y por lo anterior, e(y) = eex = ex = y. Así $eM = \{m \in M \mid e(m) = m\}$.

b)

Sea $e = \mu_1 \pi_1$ donde $\pi \colon M \longrightarrow M_1$ es la proyección canónica y $\mu_1 \colon M_1 \longrightarrow M$ es la inclusión canónica. Entonces $\pi_1 \mu_1 = Id_{M_1}$, por lo que $e^2(m_1) = \mu_1 \pi_1 \mu_1 \pi_1(m_1) = \mu_1 \pi_1(m_1) = e(m_1)$ para toda $m_1 \in M_1$.

Sea $m \in M$ entonces $e(m) = \mu_1 \pi_1(m) = \mu_1(\pi_1(m)) \in M_1$, por lo que $eM \subseteq M_1$ y todo elemento $x \in M_1$ cumple que $e(x) = \mu_1 \pi_1(x) = \mu_1(x) = x$ por lo que $M_1 = eM$.

Por otra parte, por a), $M = M_1 \oplus (1-e)M$ y por hipótesis $M = M_1 \oplus M_2$, entonces $M_2 = (1-e)M$ pues si $x \in M$, existe $m_1 \in M_1$, $m_2 \in M_2$ y $m_3 \in M$ tales que $x = m_1 + m_2 = m_1 + (1-e)m_3$ por lo que $m_2 = (1-e)m_3$.

Ej 72. Sean $f: P \to M$ y $g: Q \to M$ cubiertas proyectivas de $M \in Nod(R)$. Entonces $\exists h: P \to Q$ isomorfismo en Mod(R) tal que gh = f.

Demostración. Se tiene el siguiente esquema

con P proyectivo y g, en partícular por ser un epi-esencial, un epimorfismo en Mod(R). Por lo tanto $\exists \ h \in Hom_R(P,Q)$ tal que

$$gh = f. (*)$$

Así pues, basta con verificar que h es un isomorfismo en Mod(R). De (*) se sigue que, como g es un epi-esencial y f es en partícular un epimorfismo en Mod(R), h es un epimorfismo en Mod(R). Con lo cual, si i es la inclusión natural de Ker(h) en P, la sucesión

$$0 \longrightarrow Ker(h) \stackrel{i}{\longrightarrow} P \stackrel{h}{\longrightarrow} Q \longrightarrow 0$$

es exacta. Más aún es una sucesión exacta que se parte, puesto que Q es proyectivo (Ej. 62), con lo cual h es un split-epi (Ej. 54) i.e. $\exists j \in Hom_R(Q,P)$ tal que $hj=Id_Q$. Notemos que lo anterior garantiza que j es un split-mono y así en partícular es un monomorfismo. Además

$$gh = f \implies fj = g,$$

con lo cual j es un epimorfismo, pues g lo es y f es un epi-esencial. Así j es un isomorfismo en Mod(R) y por lo tanto $h=j^{-1}$ también lo es.

Ej 73. Para un anillo artiniano a izquierda R, pruebe que para todo $M \in mod(R)$, $top(P_0(M)) \cong top(M)$.

Demostración. Sea $M \in mod(R)$. En virtud de que R es un anillo artiniano a izquierda, M posee una cubierta proyectiva $\varepsilon_M : P_0(M) \longrightarrow M$. De esta forma, ε_M es epi-esencial. Entonces, evocando a la **proposición 2.8.1**, tenemos que $Ker(\varepsilon_M) \subseteq rad(M)$ y

$$\overline{\varepsilon_M}: P_0\left(M\right)/rad\left(P_0\left(M\right)\right) \longrightarrow M/rad\left(M\right)$$

es un isomorfismo. Luego, $\overline{\varepsilon_M}: top\left(P_0\left(M\right)\right) \longrightarrow top\left(M\right)$ es isomorfismo. $\therefore top\left(P_0\left(M\right)\right) \cong top\left(M\right)$.

Ej 74. Para un anillo artiniano a izquierda R, pruebe que R es local $\iff R^{op}$ es local.

Demostración. Por definición un anillo A es local si $A \neq 0$ y satisface alguna de las condiciones de 2.7.20 (en particular c) de esta proposición). Dado que $R^{op} - U(R^{op}) = R - U(R)$ y $J(R) = J(R^{op})$, entonces R es local si y sólo si

$$R - U(R) = J(R)$$

si v sólo si

$$R^{op} - U(R^{op}) = J(R^{op})$$

si y sólo si R^{op} es local.

- **Ej 75.** Sean R un anillo no trivial.
 - a) Sean $e \in R \setminus \{0\}$ un idempotente, $\{P_i\}_{i=1}^n$ una familia en $\mathscr{L}(Re)$ y $\mathcal{A} := \{e_i\}_{i=1}^n \subseteq R$. Si $Re = \bigoplus_{i=1}^n P_i \ \forall \ i \in [1,n] \ e_i \in P_i \ y \ e = \sum_{i=1}^n e_i$, entonces \mathcal{A} es una familia de idempotentes ortogonales. Más aún $\forall \ i \in [1,n] \ Re_i = P_i$.
 - b) Si $\{e_i\}_{i=1}^n$ es una familia de idempotentes ortogonales en R y $e:=\sum_{i=1}^n e_i$, entonces \forall $i \in [1,n]$ $Re_i \in \mathcal{L}(_RRe)$ y $Re=\bigoplus_{i=1}^n Re_i$.

Demostración. a) Sea $u \in [1, n]$. Notemos primeramente que como $e_u \in Re$, entonces $\exists r_u \in R$ tal que $e_u = r_u e$, y así

$$e_u e = (r_u e) e = r_u (ee)$$

= $r_u e$, $e^2 = e$
= e_u .

Así

$$e_u = e_u e = e_u \sum_{i=1}^n e_i$$
$$= \sum_{i=1}^n e_u e_i$$
$$= e_u^2 + \sum_{\substack{i=1\\i \neq u}}^n e_u e_i.$$

Como $e_u \in P_u$, $\forall i \in [1, n]$ $e_u e_i \in P_i$ y la desomposición en suma en $\sum_{i=1}^n P_i$ es única, por formar $\{P_i\}_{i=1}^n$ una suma directa para Re, lo anterior garantiza que $e_u = e_u^2$ y que $\forall i \neq u$ $e_u e_i = 0$. Por lo tanto $\{e_i\}_{i=1}^n$ es una familia de idempotentes ortogonales (f.i.o.).

Por su parte, como $e_u \in P_u \leq Re$ entonces $Re_u \subseteq P_u$, así que basta con probar que $P_u \subseteq Re_u$. Sea $p \in P_u \leq Re$, entonces $\exists q \in R$ tal que

$$p = qe = q \sum_{i=1}^{n} e_{i}$$

$$\implies p - qe_{u} = \sum_{\substack{i=1\\i \neq u}}^{n} qe_{i},$$

con

$$p - qe_u \in P_u$$
, $\sum_{\substack{i=1\\i\neq u}}^n qe_i \in \sum_{\substack{i=1\\i\neq u}}^n P_i$.

Dado que $P_u \cap \sum_{\substack{i=1\\i\neq u}}^n P_i = \langle 0 \rangle$, se sigue que $p = qe_u \in Re_u$

b Sea $r \in R$. Como $\forall i \in I$ $Re_i \in Mod(R)$, para verificar que $Re_i \in \mathscr{L}(RRe)$ basta con probar que $Re_i \subseteq Re$, y esto último es consecuencia de que si $re_i \in Re_i$ entonces $(re_i) e \in Re$ y

$$(re_i) e = r (e_i e)$$

$$= r \left(e_i \sum_{j=1}^n e_j \right)$$

$$= re_i. \qquad \{e_j\}_{j=1}^n \text{ es una f. i. o.}$$

Más aún, así se tiene que $\sum_{i=1}^{n} Re_i \subseteq Re$. Notemos que $re = \sum_{i=1}^{n} re_i \in \sum_{i=1}^{n} Re_i$, así para verificar que $Re = \bigoplus_{i=1}^{n} Re_i$ basta con verificar que esta

descomposición es única. Sea $s \in R$ tal que $re = \sum_{i=1}^{n} se_i$, entonces

$$\sum_{i=1}^{n} re_i = \sum_{i=1}^{n} se_i$$

$$\implies \sum_{i=1}^{n} (r - s) e_i = 0.$$

Sea $j \in [1, n]$. Multiplicando a ambos lados de la igualdad por e_j y empleando nuevamente que $\{e_j\}_{j=1}^n$ es una f. i. o. se obtiene que

$$(r-s) e_j = 0, \ \forall \ j \in [1, n]$$

 $\implies re_j = se_j, \ \forall \ j \in [1, n]$

y así se tiene lo deseado.

Ej 76. Sea R un anillo artiniano a izquierda, $\mathcal{R} = J(R)$ y e, f idempotentes en R. Pruebe que el morfismo de grupos abelianos $\varphi : eRf \longrightarrow Hom_R(Re, Rf)$, $\varphi(erf)(r'e) = r'erf$ es un isomorfismo. Más aún, la restricción $\varphi|_{e\mathcal{R}^m f} : e\mathcal{R}^m f \longrightarrow Hom_R(Re, \mathcal{R}^m f)$ es un isomorfismo.

Demostración. Sea $\psi: Hom_R(Re, Rf) \longrightarrow eRf$ el morfismo dado por $\psi(\alpha) = e\alpha(e)$. Veremos que $\varphi\psi = 1_{Hom_R(Re, Rf)}$ y $\psi\varphi = 1_{eRf}$.

Sean $\alpha \in Hom_R(Re, Rf)$ y $xe \in Re$. Entonces:

$$\varphi\psi(\alpha)(xe) = \varphi(e\alpha(e))(xe)$$

$$= xe\alpha(e)$$

$$= \alpha(xe^{2})$$

$$= \alpha(xe)$$

Por lo que $\varphi \psi = 1_{Hom_R(Re,Rf)}$.

Por otro lado, sea $erf \in eRf$. Luego:

$$\psi\varphi\left(erf\right) = \psi\left(\varphi\left(erf\right)\right)$$

$$= e\varphi\left(erf\right)\left(e\right)$$

$$= e\left(erf\right)$$

$$= e^{2}rf$$

$$= erf$$

De esta forma, $\psi \varphi = 1_{eRf}$. Por tanto, φ es un isomorfismo.

Finalmente, probaremos que $\varphi \mid_{e\mathcal{R}^m f}$ es un isomorfismo. Como R es artiniano, existe $n \in \mathbb{N}$ tal que $\mathcal{R}^n = 0$. Entonces en un número finito de pasos comprobamos que

$$\varphi \mid_{e\mathcal{R}^m f}: e\mathcal{R}^m f \longrightarrow Hom_R\left(Re, \mathcal{R}^m f\right)$$

$$\psi \mid_{Hom_R\left(Re, \mathcal{R}^m f\right)}: Hom_R\left(Re, \mathcal{R}^m f\right) \longrightarrow e\mathcal{R}^m f$$

у

$$\varphi \mid_{e\mathcal{R}^m f} \psi \mid_{Hom_R(Re,\mathcal{R}^m f)} = 1_{Hom_R(Re,\mathcal{R}^m f)}$$
$$\psi \mid_{Hom_R(Re,\mathcal{R}^m f)} \varphi \mid_{e\mathcal{R}^m f} = 1_{e\mathcal{R}^m f}$$

Entonces $\varphi \mid_{e\mathcal{R}^m f} y \psi \mid_{Hom_R(Re,\mathcal{R}^m f)}$ son inversos. $\therefore \varphi \mid_{e\mathcal{R}^m f}$ es un isomorfismo.

Ej 77. Para un anillo R y $M \in Mod(R)$, pruebe que

- a) M es proyectivo $\iff pd(M)=0$.
- b) M es inyectivo $\iff id(M)=0$.

Demostraci'on. a)

Supongamos \overline{M} es proyectivo, entonces tenemos la sucesión exacta

$$P_{\bullet}: \ldots \longrightarrow P_1 = 0 \xrightarrow{0} M = P_0 \xrightarrow{Id_M} M \longrightarrow 0$$

donde, como Mes proyectivo, P_{\bullet} es resolución proyectiva. Así $pd(M)=l(P_{\bullet})=0.$

Por otra parte, si pd(M) = 0 entonces existe resulución proyectiva P_{\bullet} tal que $l(P_{\bullet}) = 0$, es decir, se tiene la siguiente sucesión exacta con P_0 proyectivo,

$$P_{\bullet}: \ldots \longrightarrow P_1 = 0 \xrightarrow{0} P_0 \longrightarrow M \longrightarrow 0,$$

pero por el ejercicio 38 esto implica que P_0 es isomorfo a M, por lo tanto M es proyectivo.

b)

 $\overline{\text{Sup}}$ ongamos M es inyectivo, entonces tenemos la siguiente corelación invectiva:

$$I_{\bullet} \colon 0 \longrightarrow M \xrightarrow{Id_M} M = P_0 \longrightarrow 0 = P_1 \longrightarrow \dots$$

entonces $l(I_{\bullet}) = 0$ y por lo tanto id(M) = 0.

Por otra parte, si id(M) = 0 entonces existe una correlación inyectiva de longitud cero, es decir, una sucesión exacta de la siguiente forma:

$$I_{\bullet} : 0 \longrightarrow M \longrightarrow P_0 \longrightarrow 0 = P_1 \longrightarrow \dots$$

Como la sucesión es exacta, entonces por el ejercicio 38 se tiene que M es isomorfo a P_0 el cual es inyectivo, por lo tanto M es inyectivo.

Ej 78. Sea R un anillo. R es semisimple si y sólo si gldim(R) = 0.

Demostración. Afirmamos que M es proyectivo, $\forall M \in Mod(R)$, si y sólo sí gldim(R) = 0. En efecto:

 \implies Se tiene que si M es proyectivo, entonces por el Ej. 77a) pd(M) = 0. Luego bajo estas condiciones, como por el Teorema 2,9,1 (a)

$$gldim\left(R\right)=\sup_{M\in Mod\left(R\right)}\left\{ pd\left\{ M\right\} \right\} ,$$

se tiene que $gldim(R) = \sup_{M \in Mod(R)} \{0\} = 0.$

Each Sea $M \in Mod(R)$. Como en partícular gldim(R) es cota superior de $\{pd\{M\} \mid M \in Mod(R)\}$, entonces $pd(M) \leq 0$. En tal caso $pd(M) \in \mathbb{N}$ y por tanto $pd(M) \geq 0$. Con lo cual pd(M) = 0, así que, por el Ej. 77a), M es proyectivo.

Por la equivalencia previamente demostrada, y dado que por la Proposición $2.6.8\,$

M es proyectivo, $\forall M \in Mod(R) \iff R$ es semisimple,

se tiene lo deseado.