x by	Sh
ding	Pseud

SIMD&FP	<u>SVE</u>	<u>SME</u>	<u>Index by</u>
<u>Instructions</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding

LDAPUR (SIMD&FP)

<u>Base</u> Instructions

Load-Acquire RCpc SIMD&FP Register (unscaled offset). This instruction loads a SIMD&FP register from memory. The address that is used for the load is calculated from a base register value and an optional immediate offset.

The instruction has memory ordering semantics as described in *Load-Acquire*, *Load-AcquirePC*, and *Store-Release*, except that:

- There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release, created by having a Store-Release followed by a Load-AcquirePC instruction.
- The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode. Depending on the settings in the *CPACR_EL1*, *CPTR_EL2*, and *CPTR_EL3* registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Unscaled offset (FEAT LRCPC3)

128-bit (size == 00 && opc == 11)

```
LDAPUR <Qt>, [<Xn | SP>{, #<simm>}]

integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);
```

Assembler Symbols

<bt></bt>	Is the 8-bit name of the SIMD&FP register to be
	transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be

transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be

transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be

transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be

transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or

stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range

-256 to 255, defaulting to 0 and encoded in the "imm9"

field.

when MemOp STORE

Shared Decode

```
integer n = <u>UInt</u>(Rn);
integer t = <u>UInt</u>(Rt);
<u>MemOp</u> memop = if opc<0> == '1' then <u>MemOp LOAD</u> else <u>MemOp STORE</u>;
constant integer datasize = 8 << scale;
boolean tagchecked = memop != <u>MemOp PREFETCH</u> && (n != 31);
```

Operation

```
data = V[t, datasize];
    Mem[address, datasize DIV 8, accdesc] = data;

when MemOp LOAD
    data = Mem[address, datasize DIV 8, accdesc];
    V[t, datasize] = data;
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

<u>Base</u>	SIMD&FP	<u>SVE</u>	<u>SME</u>	Index by
<u>Instructions</u>	<u>Instructions</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding

 $Internal\ version\ only: is a\ v33.64,\ AdvSIMD\ v29.12,\ pseudocode\ no_diffs_2023_09_RC2,\ sve\ v2023-06_rel\ ;\ Build\ timestamp:\ 2023-09-18T17:56$

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Sh Pseu