MAT414 - Modern Algebra

Miraj Samarakkody

Tougaloo College

03/24/2025

Theorem 4.2 - $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $|a^k| = n/\gcd(n,k)$ Let a be an element of order n is a group and let k be a positive integer. Then $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $|a^k| = n/\gcd(n,k)$

Theorem 4.2 - $\langle a^k \rangle = \langle a^{\gcd(\mathsf{n},k)} \rangle$ and $|a^k| = n/\gcd(n,k)$

Let a be an element of order n is a group and let k be a positive integer. Then $< a^k > = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Proof steps:

We let $d = \gcd(n, k)$

▶ In the first part, we have to prove $< a^k > \subset < a^{\gcd(n,k)} >$ and $< a^k > \supset < a^{\gcd(n,k)} >$

Theorem 4.2 - $\langle a^k \rangle = \langle a^{\gcd(\mathsf{n},k)} \rangle$ and $|a^k| = n/\gcd(n,k)$

Let a be an element of order n is a group and let k be a positive integer. Then $< a^k > = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Proof steps:

We let $d = \gcd(n, k)$

- ▶ In the first part, we have to prove $< a^k > \subset < a^{\gcd(n,k)} >$ and $< a^k > \supset < a^{\gcd(n,k)} >$
 - ightharpoonup Let d = nk

Theorem 4.2 -
$$\langle a^k \rangle = \langle a^{\gcd(\mathsf{n},k)} \rangle$$
 and $|a^k| = n/\gcd(n,k)$

Let a be an element of order n is a group and let k be a positive integer. Then $< a^k > = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Proof steps:

We let $d = \gcd(n, k)$

- ▶ In the first part, we have to prove $< a^k > \subset < a^{\gcd(n,k)} >$ and $< a^k > \supset < a^{\gcd(n,k)} >$
 - ightharpoonup Let d = nk
 - ▶ Write d = ns + kt for some integers s, t

Theorem 4.2 -
$$\langle a^k \rangle = \langle a^{\gcd(\mathsf{n},k)} \rangle$$
 and $|a^k| = n/\gcd(n,k)$

Let a be an element of order n is a group and let k be a positive integer. Then $< a^k > = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Proof steps:

We let $d = \gcd(n, k)$

- ▶ In the first part, we have to prove $< a^k > \subset < a^{\gcd(n,k)} >$ and $< a^k > \supset < a^{\gcd(n,k)} >$
 - ightharpoonup Let d = nk
 - Write d = ns + kt for some integers s, t
- ▶ Here we show that $|a^d| \le n/d$ and then $|a^k| = n/d$.