

한이음 ICT멘토링 프로젝트 중간보고서

프로젝트 정보						
프로젝트명	환경을 생각하는 친환경 쓰레기					
프로젝트 소개	사람들이 재활용을 생각하지 않고 무분별하게 쓰레기를 쓰레기통에 버리는데, 많은 쓰레기통들이 일반 쓰레기라는 명목하에 플라스틱, 유리 등을 한꺼번에 버려진다. 이러한 문제점을 타파하고자 알아서 분류를 해주는 쓰레기통을 생각해내었다. 쓰레기통을 개발하여 쓰레기가 그냥 쓰레기가 아닌 환경에 기여 하는 쓰레기가 되게 하 는 게 우리 프로젝트의 목표다.					
구성도	초기 구성안 - 적외선 센서로 사람이 보이면 감지->학생 DB 확인 - 카메라로 쓰레기 인식 - 쓰레기 인식을 통해 해당 쓰레기에 맞는 쓰레기통 오픈 - 쓰레기통의 쓰레기 높이를 감지하여 일정 % 이상 있을시 알림 발생->안드로이드					
개발배경 및 필요성	대학교에선 DB를 통해 학생들의 무분별한 쓰레기 투척을 방지할 뿐만 아니라 쓰레기통의 쓰레기 높이를 감지하여 쓰레기통의 수거시기를 효율적으로 활용 가능추 개발을 통해 대학교뿐만 아니라 넓은 곳에서 활용할 수 있도록 수정예정					
특·장점	쓰레기를 확실하게 분리수거 하여 환경에 도움 - 해당 쓰레기에 맞는 쓰레기통 오픈 쓰레기통을 직접 분리수거 하는 인력 감소 쓰레기통의 수거시기를 상시 확인 가능하여 개인 시간 확보					
주요 기능	- 적외선 센서로 사람 감지 - 센서 작동 시 카메라 시작 - 카메라로 쓰레기 인식하면 해당 쓰레기통 모터 작동 - 쓰레기의 높이를 인식(장애물 감지 센서)					
기대효과 및 활용분야	1. 학생들의 신원파악이 확실한 대학교 2. 공공장소에서의 쓰레기 분리수거 - 추후 보완					

I. 프로젝트 개요

1. 프로젝트 소개

- ㅇ 쓰레기 분리수거를 도와주는 쓰레기통
- ㅇ 쓰레기 수거시기를 알려주는 역할
- ㅇ 쓰레기가 더이상 골칫거리가 아니게 되는 쓰레기통

2. 추진배경 및 필요성

- ㅇ 무분별한 쓰레기 투척으로 인해 동물들이 먹이로 착각
- ㅇ 낮은 분리수거율로 미화원의 재 분리수거 업무
- ㅇ 수거시기를 파악하여 특정 행사 등에 있어서도 쾌적한 쓰레기통 활용 가능

3. 국내·외 기술 현황

- ㅇ 스마트 쓰레기통 개발(쓰레기통 적재량 모니터링, 쓰레기 압축)
- 1) 문제점: 미화원들의 활용 불가, 쓰레기통의 배터리 문제
- 2) 개선점 : GUI 개선을 통해 적극적 활용, 압축 기능-쓰레기 감지 센서 알림(% 마다 상이)

4. 개발목표 및 내용

- ㅇ 최종 개발목표
 - 쓰레기를 버리면 쓰레기통 내부에서 인식해서 자동 분류
 - 쓰레기통 앞에 쓰레기를 버리고 가는 사람들 카메라로 확인
 - 쓰레기 퍼센트를 확인하여 효율적 동선 개선
- ㅇ 주요 개발내용(기능 중심)
 - 캔과 종이, 플라스틱 분류 학습모델 구현(YOLO 알고리즘)
 - 구분된 종류의 쓰레기 일치 시 자동 오픈
 - 앱을 통해 쓰레기 허용수준을 넘기면 알람기능 작동
- ㅇ 기존 기술 활용여부 및 차별성
 - IoT Greengrass 활용
 - 기존 쓰레기통에는 없는 자동 분리수거 기능
 - 간편한 GUI를 통해 미화원분들의 활용성 up

II. 프로젝트 내용

1. 구성도

2. 주요기능

ㅇ 전체 기능 목록

구분	기능	설명	현재진척도(%)	
	YOLO	쓰레기 인식 -> 클라우드 서버 권한으로	80%	
S/W	1020	인한 사용	0076	
	IoT Greengrass	AWS의 YOLO 서비스, 사물 인식 기능	40%	
	Raspberry Pi	인식 센서 모듈의 작용기능, 사진에서 쓰	90%	
H/W	itaspherry ri	레기 사진을 서버로 전송	7076	
	아두이노 모듈	해당 기능들에 해당하는 모듈	100%	

o S/W 주요 기능

기능	설명
YOLO	클라우드 서버 사용 이전에 직접 노트북으로 작업하기 위한 YOLO 서비스 사용. 이미지 크롤링->이미지 분석 가중치 생성->쓰레기 인식
IoT Greengrass	AWS에서 제공하는 이미지 분석 서비스. Lambda 함수를 이용 : 사진이 버킷에 들어올 시 해당 사진을 분석하여 값을 추출하여 HW에 넘겨줌

o H/W 주요 기능

기능/부품	설명
Raspberry Pi	카메라, 모터, 장애물 감지 센서, 적외선 감지 센서 모듈 연결 가능한 HW. 서버로 전송 가능한 개발 툴 제공(Geany:python[사용언어])
아두이노 모듈	자동 분리수거 기능들을 구현하기 위한 모듈

3. 적용기술

- o YOLO 딥러닝 활용
- o Raspberry Pi Android App 연동
- o AWS Raspberry Pi 디바이스 등록으로 사진 전송

4. 예상 결과물

예상 결과물 이미지	설명
	현재까지 개발한 기능들의 프로토타입 ex) 쓰레기가 사진 서버로 전송 -> 서버에서 분석 -> 분석값 HW로 전송 -> 값에 따른 쓰레기통 오픈
	Greengrass를 사용할 때는 https://github.com/jenkspt/recycle 의 zip 파일을 통해 쓰레기의 분류 알고리즘 이용 람다 함수를 통해 zip 파일을 등록하여 실행 예정

III. 프로젝트 수행내용

1. 프로젝트 수행일정

프로젝트 기간 (한이음 사이트 기준)		2020.04.20. ~ 2020.11.30.											
구분 추진내용		프로젝트 기간											
十正	구인데증	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
계획	스마트 쓰레기통이 필요한 이유												
분석	활용할 기술들, 부품들, HW-SW												
설계	기술들을 활용할 알고리즘 설계												
	부품들의 활용방법 설계												
개발	YOLO 활용-Greengrass 활용												
	RaspberryPi 모듈 연결												
	RaspberryPi 모듈 코드 작성												
테스트	작동, 코드 테스팅												
종료	검증 테스트										·		

2. 프로젝트 수행 과정에서의 문제점 및 애로사항

- ㅇ 코로나로 인해 학교 비대면 수업으로 팀원과의 미팅시간 부족
- ㅇ 클라우드 서버 이용과정에서 권한 문제로 일정에 문제
- ㅇ 프로젝트 진행 중 필요한 장비 발견 시, 신청날짜로 인한 문제

VI. 기대효과 및 개선사항

1. 기대효과

- ㅇ 공공장소에서 쓰레기의 분리 수거율 향상
- ㅇ 학교에 우선 배치함으로써 무분별한 쓰레기 투척 습관 고치고 도덕성 향상
- ㅇ 원격으로 쓰레기통 청결 유지

2. 개선사항

- ㅇ 쓰레기통의 작동방식 개선 필요 -> 추후 보완예정
- ㅇ 실용적인 앱의 GUI를 개발
- ㅇ 쓰레기통의 부피 거대화 개선