AMATH 561 Assignment 4

Tyler Chen

Exercise 4.1

A six-sided die is rolled repeatedly. Which of the following a Markov chains? For those that are, find the one-step transition matrix.

- (a) X_n is the largest number rolled up to the nth roll.
- (b) X_n is the number of sixes rolled in the first n rolls.
- (c) At time n, X_n is the time since the last six was rolled.
- (d) At time n, X_n is the time until the next six is rolled.

Solution

(a) Yes.

$$P = \begin{bmatrix} 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ & 2/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ & 36 & 1/6 & 1/6 & 1/6 \\ & & 4/6 & 1/6 & 1/6 \\ & & & 5/6 & 1/6 \\ & & & 1 \end{bmatrix}$$

(b) Yes.

$$P = \left[\begin{array}{ccc} 5/6 & 1/6 & & \\ & 5/6 & 1/6 & \\ & & \ddots & \ddots \end{array} \right]$$

(c) Yes. Suppose $X_n = i$. The next roll is either a 6, in which case $X_{n+1} = 0$. Otherwise $X_{n+1} = i+1$.

$$P = \begin{bmatrix} 1/6 & 5/6 \\ 1/6 & 5/6 \\ 1/6 & 5/6 \\ \vdots & \ddots & \ddots \end{bmatrix}$$

(d) Yes. Suppose $X_n = 0$. The probability of $X_{n+1} = j$ is $(1/6)(5/6)^j$ as you must not roll a 6 for j turns, and then must roll a 6 on the j-th. Suppose $X_n = i > 0$. Then the next step you will be on turn closer to rolling a 6. That is, $X_{n+1} = i - 1$.

Exercise 4.2

Let $Y_n = X_{2n}$. Compute the transition matrix for Y when

(a) X is a simple random walk (i.e., X increases by one with probability p and decreases by 1 with probability q)

(b) X is a branching process where G is the generating function of the number of offspring from each individual

Solution

(a) In each step we can go down with probability q and then down again with probability q or up with probability p. Alternatively we can go up with probability p and then down with probability q or up again with probability p.

Therefore we will end up two spaces down with probability q^2 , in the same position with probability qp + pq = 2pq, or up two spaces with probability p^2 . Thus,

$$p(i,j) = \begin{cases} p^2 & j = i+2\\ 2pq & i = j\\ q^2 & j = i-2\\ 0 & \text{otherwise} \end{cases}$$

(b) As a property of generating functions and branching processes we have,

$$G_{X_2}(s) = G_{X_0}(G(G(s)))$$

where G_0 is the generating function of X_0 .

Therefore, since $X_0 = i$ means $G_{X_0}(s) = s^i$,

$$\begin{aligned} p(i,j) &= \mathbb{P}(Y_{n+1} = j | Y_n = i) \\ &= \mathbb{P}(X_{2n+2} = j | X_{2n} = i) \\ &= \mathbb{P}(X_2 = j | X_0 = i) \\ &= \frac{1}{j!} \frac{d^n}{ds^n} \Big[G(G(s))^i \Big]_{s=0} \end{aligned}$$

Exercise 4.3

Let X be a Markov chain with state space S and absorbing state k (i.e., p(k, j) = 0 for all $j \in S$). Suppose $j \to k$ for all $j \in S$. Show that all states other than k are transient.

Solution

Fix a state $j \in S$. By definition of $j \to k$, $\exists N \ge 0 : p_N(j,k) \ge 0$. Since $\{X_N = k | X_0 = j\} \subseteq \{\forall n, X_n \ne j | X_0 = j\}$ we have,

$$0 < p_N(j, k) = \mathbb{P}(X_N = k | X_0 = j) \le \mathbb{P}(\forall n, X_n \ne j | X_0 = j)$$

Therefore,

$$\mathbb{P}(\exists n \ge 0 : X_n = j | X_0 = j) = 1 - \mathbb{P}(\forall n, X_n \ne j | X_0 = j) < 1$$

This proves state j is transient.

Exercise 4.4

Suppose two distinct states i, j satisfy

$$\mathbb{P}(\tau_i < \tau_i | X_0 = i) = \mathbb{P}(\tau_i < \tau_i | X_0 = j)$$

where $\tau_j = \inf\{n \geq 1 : X_n = j\}$. Show that, if $X_0 = i$, the expected value of visits to j prior to returning to i is one.

Solution

Write

$$p = \mathbb{P}(\tau_i < \tau_i | X_0 = i) = \mathbb{P}(\tau_i < \tau_i | X_0 = j)$$

That is, p is the probability that we go to state j before state i give we are in state i, and p is also the probability that we go to state i before state j given we are in state j.

Then 1-p is the probability that we do not go to state i before returning state j,0 given we start in state j.

So $(1-p)^k$ is the probability that we return to state j exactly k times before moving to state i, given we start in state j.

Let N be the number of visits to j prior to returning to i given we start in state i.

The probability that $N = k \in \mathbb{Z}_{\geq 0}$ is the probability that starting from state i we go to state j, return to state j (k-1) times without returning to state i, and then return to state i without going to returning to state j.

So $\mathbb{P}(N=k|X_0=i)=p(1-p)^{k-1}p$. This is the probability mass function for N so,

$$\mathbb{E}[N] = \sum_{n=0}^{\infty} np^2 (1-p)^{k-1} = p \sum_{n=0}^{\infty} n(1-p)^n = p \frac{p}{(1-(1-p))^2} = 1$$

Exercise 4.5

Let X be a Markov chain with transition matrix,

$$P = \begin{bmatrix} 1 - 2p & 2p & 0 \\ p & 1 - 2p & p \\ 0 & 2p & 1 - 2p \end{bmatrix}, \qquad p \in (0, 1)$$

Find P^n , the invariant distribution π , and the mean-recurrence times $\overline{\tau}_j$ for j=1,2,3.

Solution

Note that P has eigendecomposition $P = V\Lambda V^{-1}$ where,

$$\Lambda = \begin{bmatrix} 1 \\ 1 - 4p \\ 1 - 2p \end{bmatrix}, \qquad V = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Therefore, $P^n = V\Lambda^n V^{-1}$. Explicitly,

$$P^{n} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1-4p & & \\ & & 1-2p \end{bmatrix} \begin{bmatrix} 1/4 & 1/2 & 1/4 \\ 1/4 & -1/2 & 1/4 \\ -1/2 & 0 & 1/2 \end{bmatrix}$$

Invariant distributions are linear combinations of left eigenvectors corresponding to eigenvalues of 1. In this case that is the first row of V^{-1} . That is,

$$\pi = \left[\begin{array}{cc} \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \end{array} \right]$$

Finally, since the invariant distribution is unique, by Theorem we have,

$$\overline{\tau}_i = \frac{1}{\pi(i)}$$

Exercise 4.6

Let X_n be the number of mistakes in the n-th addition of a book. Between the n-th and the (n+1)-th addition an editor corrects each mistake independently with probability p and introduces Y_n new mistakes where the (Y_n) are iid and Poisson distributed with parameter λ . Find the invariant distribution π of the number of mistakes in the book.

Solution

Let $M_{n,k}$ be distributed as Ber(1-p) so that M_k is 0 if this mistake is corrected, and 1 otherwise. Let Y_n be Poisson distributed with parameter λ . Then,

$$X_{n+1} = Y_n + \sum_{k=1}^{X_n} M_k$$

Each $M_{n,k}$ has generating function,

$$G_{M_{n,k}} = p + (1-p)s = 1 - q + qs = 1 - q(1-s)$$

Similarly. Y_n has generating function,

$$G_Y(s) = \sum_{k=0}^{\infty} e^{-\lambda} \lambda^k / k! s^k = e^{-\lambda} e^{s\lambda} = e^{\lambda(s-1)}$$

Therefore X_{n+1} has generating function,

$$G_{n+1}(s) = G_Y(s) \mathbb{E} \left[s^{M_{k,1} + M_{k,2} + \dots + M_{k,X_n}} \right]$$

$$= G_Y(s) \mathbb{E} \left[\mathbb{E} \left[s^{M_{k,1} + M_{k,2} + \dots + M_{k,X_n}} \right] | X_n \right]$$

$$= G_Y(s) \mathbb{E} \left[(1 - q(1 - s))^{X_n} \right]$$

$$= G_Y(s) G_n (1 - q(1 - s))$$

First observe $1 - q^i(1 - (1 - q(1 - s))) = 1 - q^{i+1}(1 - s)$. We now use the relation $G_{n+1}(s) = G_Y(s)G_n(1 - q(1 - s))$ and the fact that $G_0(s) = 1$ to calculate,

$$G_{n+1}(s) = G_Y(s)G_n(1 - q(1 - s))$$

$$= G_Y(s)G_Y(1 - q(1 - s))G_{n-1}(1 - q^2(1 - s))$$

$$= G_Y(s)G_Y(1 - q(1 - s))G_Y(1 - q^2(1 - s))G_{n-2}(1 - q^3(1 - s))$$

$$\vdots$$

$$= \prod_{i=0}^n G_Y(1 - q^i(1 - s))$$

Then,

$$\lim_{n \to \infty} G_n(s) = \lim_{n \to \infty} G_{n+1}(s)$$

$$= \lim_{n \to \infty} \prod_{i=0}^n G_Y(1 - q^i(1 - s))$$

$$= \lim_{n \to \infty} \prod_{i=0}^n \exp\left(\lambda(-q^i(1 - s))\right)$$

$$= \exp\left(\sum_{i=0}^\infty \lambda(-q^i(1 - s))\right)$$

$$= \exp\left(\lambda(s - 1)\frac{1}{1 - q}\right)$$

$$= \exp\left(\frac{\lambda}{p}(s - 1)\right)$$

Thus, $G_n(S)$ converges to the generating function of a Poisson random variable with parameter λ/p .

Then X_n converges to a random variable distributed like a Poisson random variable with parameter λ/p . The random variable for which X_n converges to must be the variable corresponding to the stationary distribution. Therefore, the stationary distribution is distributed like the probability mass function of this random variable. That is,

$$\pi(k) = e^{-\lambda/p} \frac{(\lambda/p)^k}{k!}$$

In the limit $p \to 1$, where we correct all mistakes, the stationary distribution looks like a Poisson distribution with parameter λ . In the limit $\lambda \to 0$ so we do not make any new mistakes, $\pi(0) \to 1$ as expected.

Exercise 4.7

Give an example of a transition matrix P that admits multiple stationary distributions π .

Solution

Define P to be the identity matrix. Then any distribution is a stationary distribution.

Exercise 4.8

A Markov chain on $S = \{0, 1, 2, ..., n\}$ has transition probabilities $p(0, 0) = 1 - \lambda_0$, $p(i, i + 1) = \lambda_i$ and $p(i + 1, i) = \mu_{i+1}$ for i = 0, 1, ..., n - 1, and $p(n, n) = 1 - \mu_n$. Show that the process is reversible in equilibrium.

Solution

We assume all entries not specified are zero. (I heard this is the intent, however I wonder why we are given μ_j when $\mu_j = 1 - \lambda_j$ for all j). We write the matrix P as,

Write $\mu_n = 1 - \lambda_n$. Thus, $\mu_i = 1 - \lambda_i$ for i = 1, ..., n as the sum of each row must be 1 (making the assumption that all entries not specified at zero).

$$P = \left[\begin{array}{cccc} 1 - \lambda_0 & \lambda_0 & & & & & \\ \mu_1 & & \lambda_1 & & & & \\ & \mu_2 & & \lambda_2 & & & \\ & & \mu_3 & & & & \\ & & & & \lambda_{n-1} \\ & & & & & \mu_n & 1 - \mu_n \end{array} \right] = \left[\begin{array}{ccccc} 1 - \lambda_0 & \lambda_0 & & & & \\ 1 - \lambda_1 & & \lambda_1 & & & & \\ & & 1 - \lambda_2 & & \lambda_2 & & & \\ & & & 1 - \lambda_3 & & & & \\ & & & & & \lambda_{n-1} \\ & & & & & & 1 - \lambda_n & \lambda_n \end{array} \right]$$

This chain is irreducible and finite so a unique invariant distribution π exists. Write $\pi = [\pi_0, \pi_1, ..., \pi_n]$. Then $\pi P = \pi$. That is,

$$\pi P = \begin{bmatrix} \pi_0(1 - \lambda_0) + \pi_1(1 - \lambda_1) \\ \pi_0\lambda_0 + \pi_2(1 - \lambda_2) \\ \pi_1\lambda_1 + \pi_3(1 - \lambda_3) \\ \vdots \\ \pi_{n-1}\lambda_{n-1} + \pi_n\lambda_n \end{bmatrix}^T = \begin{bmatrix} \pi_0 \\ \pi_1 \\ \pi_2 \\ \vdots \\ \pi_j \\ \vdots \\ \pi_n \end{bmatrix}^T$$

$$\pi_{1} = \lambda_{0}\pi_{0}/(1 - \lambda_{1}) \qquad \lambda_{0}\pi_{0} = \pi_{1}(1 - \lambda_{1})$$

$$\pi_{2} = (\pi_{1} - \pi_{0}\lambda_{0})/(1 - \lambda_{2}) = \pi_{1}\lambda_{1}/(1 - \lambda_{2}) \qquad \lambda_{1}\pi_{1} = \pi_{2}(1 - \lambda_{2})$$

$$\pi_{3} = (\pi_{2} - \pi_{1}\lambda_{1})/(1 - \lambda_{3}) = \pi_{2}\lambda_{2}/(1 - \lambda_{3}) \qquad \lambda_{2}\pi_{2} = \pi_{3}(1 - \lambda_{3})$$

$$\vdots$$

$$\pi_{j+1} = (\pi_{j} - \pi_{j-1}\lambda_{j-1})/(1 - \lambda_{j+1}) = \pi_{j}\lambda_{j}/(1 - \lambda_{j+1}) \qquad \lambda_{j}\pi_{j} = \pi_{j+1}(1 - \lambda_{j+1})$$

$$\vdots$$

$$\pi_{n} = (\pi_{n-1}\lambda_{n-1})/(1 - \lambda_{n}) \qquad \pi_{n-1}\lambda_{n-1} = \pi_{n}(1 - \lambda_{n})$$

Observing the equations on the right hand side we have that for i = 1, 2, ..., n - 1,

$$\pi_i p(i, i+p) = \pi_{i+1} p(i+1, i)$$

We now show the detail balance condition. In particular, we must show,

$$\pi_i p(i,j) = \pi_i p(j,i)$$
 for all i,j

However, for $j \notin \{i-1, i+1\}$ we have p(i, j) = 0. Therefore, for this matrix the previous condition is equivalent to

$$\pi_i p(i, i+1) = \pi_{i+1} p(i+1, i)$$
 for $i = 1, 2, ..., n-1$

We have shown that these equations hold for all i=1,2,...,n-1.

This proves π is in detailed balance with P, and so this process is reversible in equilibrium. \Box