Particle spectrograph

Wave operator and propagator

					٦		
$ au_1^{\#2}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6 k^2 (r_3 + 2 r_5) + 8 t_3}{(1 + 2 k^2)^2 (r_3 + 2 r_5) t_3}$
$\tau_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_{1}^{\#1}_{+}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$_{1}^{#1}$ $\dagger^{\alpha\beta}$	$_{1}^{#2} + \alpha \beta$	$_{1}^{#1}+^{\alpha\beta}$	$\sigma_{1}^{\#1} + \alpha$	$\sigma_{1}^{#2} + \alpha$	$ au_1^{\#_1} + ^{lpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1}\dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}ikt_2$	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_{1}^{#1}\dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{\sqrt{2}\ t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	2 <i>ikt</i> 3 3	$-\frac{1}{3}i\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

Source constraints/gauge generators

Multiplicities

SO(3) irreps

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$				
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0				
$ au_{2}^{\#1} \dagger^{lphaeta}$	0	0	0				
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0				
$\omega_{2^{+} \alpha \beta}^{\#1} f_{2^{+} \alpha \beta}^{\#1} \omega_{2^{-} \alpha \beta \chi}^{\#1}$							
$\omega_{2^+}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0				
$\omega_{2^{+}}^{\#1} \dagger^{\alpha\beta}$ $f_{2^{+}}^{\#1} \dagger^{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0				
_	2						

Quadratic (free) action

#1	c#1	c#2	#1
ω_0^{-1}	f " +	<i>f</i> 0 +	ω_{0}^{*-1}
t_3	$-i \sqrt{2} kt_3$	0	0
$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
0	0	0	0
0	0	0	t_2
	$i\sqrt{2}kt_3$	$t_3 -i \sqrt{2} kt_3$ $i \sqrt{2} kt_3 2k^2t_3$	$\begin{array}{c cccc} t_3 & -i \sqrt{2} kt_3 & 0 \\ i \sqrt{2} kt_3 & 2k^2t_3 & 0 \end{array}$

 $\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$

 $\tau_0^{\#1} - 2 \, \bar{i} \, k \, \sigma_0^{\#1} = 0$

2

 $\iota_1^{\#1}{}^{\alpha\beta} + ik \; \sigma_1^{\#2}{}^{\alpha\beta}$

Total constraints:

$\sigma_{0}^{\#}$	0	0	0	$\frac{1}{t_2}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0^+}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$ au_{0}^{\#1}$ †	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}$ †

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$