EEL 4930/Stats HW 3 Solutions

1.

(a) either A or B occurs if A and B are mutually exclusive

(b) either A or B occurs if A and B are statistically independent

$$P(A \cup B) = P(A) + P(B) - P(A)P(B)$$

$$= 0.7 - 0.12 = 0.58$$

$$P(A \cup B) = 1 - P(A \cap B) = 1 - (0.7)(0.6) = 0.58$$

(c) either A or B occurs if A is a subset of B

(d) A occurs but B does not occur if A and B are mutually exclusive

$$P(A \land \overline{B}) = P(A)$$
$$= 0.3$$

(e) A occurs but B does not occur if A and B are statistically independent

$$P(A \cap \overline{B}) = P(A)P(\overline{B}) = (0.3)(0.6) = 0.18$$

(f) A occurs but B does not occur if A is a subset of B

$$P(ANB) = P(X) = 0$$

(g) both A and B occur if A and B are mutually exclusive

$$P(ADB)=P(\emptyset)=0$$

(h) both A and B occur if A and B are statistically independent

(i) both A and B occur if A is a subset of B

(j) B occurs but A does not occur if A is a subset of B

$$P(B) = P(B) - P(A)$$

= 0.4-0.3=0.1

- 2. See the separate Jupyter Notebook solution
- 3. Problem 61 from Leon-Garcia.

This is a Bayes' theorem problem. Let D be the event that a chip is defective. We are given P(D|A) = 0.001, P(D|B) = 0.005, and P(D|C) = 0.01, and we are asked to find P(A|D) and P(C|D).

Well, $P(A|D) = P(A \cap D)/P(D) = P(D|A)P(A)/P(D)$. We don't know P(D), but we find it from the law of total probability.

$$P(D) = P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)$$

$$= \frac{0.001}{3} + \frac{0.005}{3} + \frac{0.01}{3}$$

$$= 5.33 \times 10^{-3}.$$

Thus,

$$P(A|D) \approx \frac{(0.001)(0.333)}{(5.33 \times 10^{-3})}$$

= 0.0625,

and

$$P(C|D) \approx \frac{(0.01)(0.333)}{(5.33 \times 10^{-3})}$$

= 0.625.

4.

(= event non has concer

$$E= 11 PSA | erel elevated$$

 $P(C|E) = P(E|C)P(C)$
 $P(E|C)P(C)$
 $P(E|C)$

C)
$$P(C|E)$$
 for $P(C) = 0.3$
 $P(C|E) = \frac{6.268(0.3)}{6.268(0.3) + (0.135)(6.7)}$
 $= 0.46$
d) $P(C|E) = \frac{(0.732)(0.3)}{(0.732)(0.3) + (0.865)(0.7)}$
 $= 0.266$

5. Communication system problem from *Random Signal Analysis in Engineering Systems* by John J. Komo

This is another problem that is solved using Bayes' rule. We need to find $P(A_i|B_j)$ and we know $P(B_i|A_i)$ and $P(A_i)$. I provide the solution for B_0 received here:

$$P(A_0|B_0) = \frac{P(B_0|A_0)P(A_0)}{P(B_0)}.$$

So we need to find $P(B_0)$ from the total probability law:

$$P(B_0) = P(B_0|A_0)P(A_0) + P(B_0|A_1)P(A_1)$$

= (0.5)(0.6) + (0.1)(0.4)
= 0.34.

Similarly, $P(B_1) = 0.27$, and $P(B_2) = 0.39$.

Then $P(A_0|B_0) = (0.5)(0.6)/(0.34) \approx 0.882$, and $P(A_1|B_0) = 1 - P(A_0|B_0) \approx 0.118$. Thus the best decision for the receiver given that B_0 is received is to choose A_0 because that will be the correct decision with probability 0.882. The probability of error given that B_0 is received is then 0.118.

Similarly, given that B_1 is received, the conditional probability that A_0 was sent is ≈ 0.556 and the conditional probability that A_1 was sent is ≈ 0.444 . The best decision rule is to decide that A_0 was sent, and the conditional probability of error given that B_1 was received is 0.444.

Given that B_2 is received, $P(A_0|B_2) \approx 0.385$, and $P(A_1|B_2) \approx 0.615$. The best decision rule is to decide that A_1 was transmitted, and the conditional probability of error is 0.385.

The overall probability of error P(E) can also be found using the law of total probability, $P(E) = P(E|B_0)P(B_0) + P(E|B_1)P(B_1) + P(E|B_2)P(B_2) = 0.310$.