Recent Advances in Visualizing Multivariate Linear Models

Michael Friendly Matthew Sigal

May 26-29, 2013, SSC annual Meeting

Outline

- Background
 - Visual overview
 - Data ellipses
 - The Multivariate Linear Model
 - Motivating example
- 2 Hypothesis-Error (HE) plots
 - Visualizing H and E (co)variation
 - MANOVA designs
 - MREG designs
 - Reduced-rank displays
 - Low-D displays of high-D data
 - Canonical discriminant HE plots
- 4 Recent extensions
 - Robust MI Ms
 - Influence diagnostics for MLMs
- Conclusions

Slides: http://datavis.ca/papers/ssc2013/

Introduction: The LM family and friends

Models, graphical methods and opportunities

es
0
σ
Ξ
io
-
Se
Ċ
0
ğ
ě
-
O
#

	Classical linear models	Generalized linear models
1	LM family: $E(y)=X\beta$, $V(y X)=\sigma^2I$	GLM: $E(\mathbf{y})=g^{-1}(\mathbf{X}\boldsymbol{\beta}), \ V=V[g^{-1}(\mathbf{X}\boldsymbol{\beta})]$
	ANOVA, regression,	poisson, logistic, loglinear,
- 4"	Many graphical methods: effect plots, spread-leverage, influence,	Some graphical methods: mosaic plots, 4fold plots, diagnostic plots,
2+	MLM: $E(Y)=X\beta$, $V(Y X)=I\otimes\Sigma$	MGLM: ???
ппа	MANOVA, MMReg,	
90	Graphical methods: ???	Graphical methods: ???

Friendly, Sigal ()

Classical linear models

Models, graphical methods and opportunities

<u>6</u>
0
<u>ria</u>
ari
Φ
S
\Box
O
Q.
S
response \
ot
#

LM family: $E(y)=X\beta$, $V(y|X)=\sigma^2I$ ANOVA, regression, ...

Many graphical methods: effect

plots, spread-leverage, influence, ...

2+ MLM: $E(Y)=X\beta$, $V(Y|X)=I\otimes\Sigma$ MANOVA, MMReg, ...

Graphical methods: ???

Generalized linear models

GLM: $E(y)=g^{-1}(X\beta)$, $V=V[g^{-1}(X\beta)]$ poisson, logistic, loglinear, ...

Some graphical methods: mosaic plots, 4fold plots, diagnostic plots, ...

MGLM: ???

Graphical methods: ???

Models, graphical methods and opportunities

ď)
Variab	5
response	oollodoo!
Ţ	5
#	

	Classical linear models	Generalized linear models
1	LM family: $E(y)=X\beta$, $V(y X)=\sigma^2I$ ANOVA, regression,	GLM: $E(y)=g^{-1}(X\beta)$, $V=V[g^{-1}(X\beta)]$ poisson, logistic, loglinear,
	Many graphical methods: effect plots, spread-leverage, influence,	Some graphical methods: mosaic plots, 4fold plots, diagnostic plots,
2+	MLM: $E(Y)=X\beta$, $V(Y X)=I\otimes\Sigma$	MGLM: ???
- d ²	MANOVA, MMReg, Graphical methods: ???	Graphical methods: ???

Friendly, Sigal ()

Introduction: The LM family and friends

Models, graphical methods and opportunities

es
/ariabl
ponse \
res
of

	Classical linear models	Generalized linear models
1	LM family: $E(y)=X\beta$, $V(y X)=\sigma^2I$	GLM: $E(\mathbf{y})=g^{-1}(\mathbf{X}\boldsymbol{\beta}), \ V=V[g^{-1}(\mathbf{X}\boldsymbol{\beta})]$
	ANOVA, regression,	poisson, logistic, loglinear,
99	Many graphical methods: effect plots, spread-leverage, influence,	Some graphical methods: mosaic plots, 4fold plots, diagnostic plots,
2+	MLM: $E(Y)=X\beta$, $V(Y X)=I\otimes\Sigma$	MGLM: ???
	MANOVA, MMReg,	
- 10 ¹⁰	Graphical methods: ???	Graphical methods: ???

Visual overview: Multivariate data, $\mathbf{Y}_{n \times n}$

- 2 vars: Scatterplot

Visual overview: Multivariate data, $\mathbf{Y}_{n \times p}$

- 2 vars: Scatterplot + annotations (data ellipses)

Visual overview: Multivariate data, $\mathbf{Y}_{n \times p}$

- 2 vars: Scatterplot + annotations (data ellipses)
- p vars: Scatterplot matrix (all pairs)
- p vars: Reduced-rank display—show max. total variation \mapsto biplot

Visual overview: Multivariate data, $\mathbf{Y}_{n \times p}$

- 2 vars: Scatterplot + annotations (data ellipses)
- p vars: Scatterplot matrix (all pairs)
- p vars: Reduced-rank display— show max. total variation \mapsto biplot

Visual overview: Multivariate linear model, $\mathbf{Y} = \mathbf{X} \mathbf{B} + \mathbf{U}$

What is new here?

- 2 vars: HE plot— data ellipses of **H** (fitted) and **E** (residual) SSP matrices
- p vars: HE plot matrix (all pairs)

Visual overview: Multivariate linear model, $\mathbf{Y} = \mathbf{X} \mathbf{B} + \mathbf{U}$

What is new here?

- 2 vars: HE plot— data ellipses of **H** (fitted) and **E** (residual) SSP matrices
- p vars: HE plot matrix (all pairs)

Visual overview: Multivariate linear model, $\mathbf{Y} = \mathbf{X} \mathbf{B} + \mathbf{U}$

What is new here?

- 2 vars: HE plot— data ellipses of **H** (fitted) and **E** (residual) SSP matrices
- p vars: HE plot matrix (all pairs)
- p vars: Reduced-rank display— show max. **H** wrt. **E** \mapsto Canonical HE plot

Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MLMs
- Influence measures and diagnostic plots for MLMs
- Visualizing canonical correlation analysis

Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MLMs
- Influence measures and diagnostic plots for MLMs
- Visualizing canonical correlation analysis

Friendly, Sigal ()

Visual overview: Recent extensions

Extending univariate methods to MLMs:

- Robust estimation for MI Ms.
- Influence measures and diagnostic plots for MLMs
- Visualizing canonical correlation analysis

Data Ellipses: 2D contours of a bivariate density

Data Ellipses: Galton's data

Galton's data on Parent & Child height

Data Ellipses: Galton's data

Data ellipse: Shows means, std. devs, regression lines, correlation

Data Ellipses: Galton's data

Radii: $c^2 = \chi_p^2 (1 - \alpha)$ — 40%, 68% and 95% data ellipses

The Data Ellipse: Details

Visual summary for bivariate relations

- Shows: means, standard deviations, correlation, regression line(s)
- **Defined**: set of points whose squared Mahalanobis distance $< c^2$.

$$D^{2}(\mathbf{y}) \equiv (\mathbf{y} - \bar{\mathbf{y}})^{\mathsf{T}} \, \mathbf{S}^{-1} \, (\mathbf{y} - \bar{\mathbf{y}}) \leq c^{2}$$

S = sample variance-covariance matrix

- Radius: when y is \approx bivariate normal, $D^2(y)$ has a large-sample χ^2 distribution with 2 degrees of freedom.
 - $c^2=\chi_2^2(0.40)\approx 1$: 1 std. dev univariate ellipse– 1D shadows: $\bar{y}\pm 1s$ $c^2=\chi_2^2(0.68)=2.28$: 1 std. dev bivariate ellipse

 - $c^2 = \chi_2^2(0.95) \approx 6$: 95% data ellipse, 1D shadows: Scheffé intervals
- **Construction**: Transform the unit circle, $\mathcal{U} = (\sin \theta, \cos \theta)$,

$$\mathcal{E}_c = \bar{\mathbf{y}} + c\mathbf{S}^{1/2}\mathcal{U}$$

 $\mathbf{S}^{1/2} = \text{any "square root" of } \mathbf{S} \text{ (e.g., Cholesky)}$

- Robustify: Use robust estimate of S, e.g., MVE (mimimum volume ellipsoid)
- p variables: Extends naturally to p-dimensional ellipsoids

The univariate linear model

- Model: $\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times q} \, \boldsymbol{\beta}_{q\times 1} + \boldsymbol{\epsilon}_{n\times 1}$, with $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$
- LS estimates: $\hat{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- General Linear Test: H_0 : $C_{h\times q}\beta_{q\times 1}=0$, where C= matrix of constants; rows specify h linear combinations or contrasts of parameters.
- e.g., Test of $H_0: \beta_1 = \beta_2 = 0$ in model $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$

$$\mathbf{C}oldsymbol{eta} = \left[egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight] \left(egin{array}{c} eta_0 \ eta_1 \ eta_2 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \end{array}
ight)$$

• All \rightarrow F-test: How big is SS_H relative to SS_F ?

$$F = \frac{SS_H/\mathrm{df}_h}{SS_E/\mathrm{df}_e} = \frac{MS_H}{MS_E} \longrightarrow (MS_H - F MS_E) = 0$$

The multivariate linear model

- Model: $\mathbf{Y}_{n \times p} = \mathbf{X}_{n \times q} \mathbf{B}_{q \times p} + \mathbf{U}$, for p responses, $\mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_p)$
- General Linear Test: $H_0: C_{h\times q} B_{q\times p} = \mathbf{0}_{h\times p}$
- Analogs of sums of squares, SS_H and SS_E are $(p \times p)$ matrices, H and E,

$$\begin{split} \boldsymbol{H} &= (\boldsymbol{C}\widehat{\boldsymbol{B}})^T [\boldsymbol{C}(\boldsymbol{X}^T\boldsymbol{X})^- \boldsymbol{C}^T]^{-1} (\boldsymbol{C}\widehat{\boldsymbol{B}}) \ , \\ \boldsymbol{E} &= \boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{Y}^T [\boldsymbol{I} - \boldsymbol{H}] \boldsymbol{Y} \ . \end{split}$$

Analog of univariate F is

$$\det(\mathbf{H} - \lambda \mathbf{E}) = 0 ,$$

- How big is **H** relative to **E**?
 - Latent roots $\lambda_1, \lambda_2, \dots \lambda_s$ measure the "size" of **H** relative to **E** in $s = \min(p, df_h)$ orthogonal directions.
 - Test statistics (Wilks' Λ, Pillai trace criterion, Hotelling-Lawley trace criterion, Roy's maximum root) all combine info across these dimensions

Tubb, Parker & Nicholson analyzed the chemical composition of 26 samples of Romano-British pottery found at four kiln sites in Britain.

- Sites: Ashley Rails, Caldicot, Isle of Thorns, Llanedryn
- Variables: aluminum (Al), iron (Fe), magnesium (Mg), calcium (Ca) and sodium (Na)
- ullet One-way MANOVA design, 4 groups, 5 responses

Friendly, Sigal ()

Questions:

- Can the content of Al, Fe, Mg, Ca and Na differentiate the sites?
- How to understand the contributions of chemical elements to discrimination?

Numerical answers:

What have we learned?

- Can: YES! We can discriminate sites.
- But: **How to understand** the pattern(s) of group differences: ???

Univariate plots are limited

• Do not show the *relations* of variables to each other

Visual answer: HE plot

- Shows variation of means (H) relative to residual (E) variation
- Size and orientation of H wrt E: how much and how variables contribute to discrimination
- Evidence scaling: H is scaled so that it projects outside **E** iff null hypothesis is rejected.

R> heplot3d(pottery.mod)

Friendly, Sigal ()

Outline

- Background
 - Visual overview
 - Data ellipses
 - The Multivariate Linear Model
 - Motivating example
- Hypothesis-Error (HE) plots
 - Visualizing H and E (co)variation
 - MANOVA designs
 - MREG designs
- Reduced-rank displays
 - Low-D displays of high-D data
 - Canonical discriminant HE plots
- Recent extensions
 - Robust MLMs
 - Influence diagnostics for MLMs
- Conclusions

HE plots: Visualizing \mathbf{H} and \mathbf{E} (co) variation

Ideas behind multivariate tests: (a) Data ellipses; (b) H and E matrices

- **H** ellipse: data ellipse for fitted values, $\hat{\mathbf{y}}_{ii} = \bar{\mathbf{y}}_{i}$.
- **E** ellipse: data ellipse of residuals, $\hat{\mathbf{y}}_{ii} \bar{\mathbf{y}}_{i}$.

HE plots: Visualizing multivariate hypothesis tests

Ideas behind multivariate tests: latent roots & vectors of **HE**⁻¹

- λ_i , $i = 1, \dots df_h$ show size(s) of **H** relative to **E**.
- latent vectors show canonical directions of maximal difference.

HE plot for iris data

- (a) Data ellipses and (b) **H** and **E** matrices (scaled by $1/df_e$: effect size)
- **H** ellipse: data ellipse for fitted values, $\hat{\mathbf{y}}_{ij} = \bar{\mathbf{y}}_{j}$.
- **E** ellipse: data ellipse of residuals, $\hat{\mathbf{y}}_{ii} \bar{\mathbf{y}}_{i}$.

HE plot details: **H** and **E** matrices

Recall the data on 5 chemical elements in samples of Romano-British pottery from 4 kiln sites:

R> summary(Manova(pottery.mod))

Term: Site

```
Sum of squares and products for hypothesis:
   175.6 -149.3 -130.8 -5.89
Fe -149.3
         134.2
                117.7
Mg - 130.8
         117.7
                 103.4 4.21
          4.8
Ca
    -5.9
                   4.2 0.20
                             0.15
   -5.4
         5.3
Na
                   4.7
                        0.15
                              0.26
```

- E matrix: Within-group (co)variation of residuals
 - diag: SSE for each variable
 - ullet off-diag: \sim partial correlations
- **H** matrix: Between-group (co)variation of means
 - diag: SSH for each variable
 - off-diag: ~ correlations of means
- How big is H relative to E?
- Ellipsoids: $dim(\mathbf{H}) = rank(\mathbf{H})$ = $min(p, df_h)$

HE plot details: Scaling H and E

- The E ellipse is divided by $df_e = (n p) \rightarrow$ data ellipse of residuals
 - Centered at grand means \rightarrow show factor means in same plot.
- "Effect size" scaling– $\mathbf{H}/df_e
 ightarrow \mathrm{data}$ ellipse of fitted values.
- "Significance" scaling

 H ellipse protrudes beyond E ellipse iff H₀ can be rejected by Roy maximum root test
 - $H/(\lambda_{\alpha} df_e)$ where λ_{α} is critical value of Roy's statistic at level α .
 - direction of **H** wrt **E** \mapsto linear combinations that depart from H_0

R> heplot(pottery.mod, size="effect")

HE plot details: Scaling H and E

- The E ellipse is divided by $df_e = (n p) \rightarrow$ data ellipse of residuals
 - \bullet Centered at grand means \to show factor means in same plot.
- "Effect size" scaling– $\mathbf{H}/df_e
 ightarrow \mathrm{data}$ ellipse of fitted values.
- "Significance" scaling– H ellipse protrudes beyond E ellipse $iff\ H_0$ can be rejected by Roy maximum root test
 - $H/(\lambda_{\alpha} df_{\rm e})$ where λ_{α} is critical value of Roy's statistic at level α .
 - direction of H wrt E → linear combinations that depart from H₀.

R> heplot(pottery.mod, size="evidence")

Friendly, Sigal ()

HE plot details: Contrasts and linear hypotheses

- An overall effect \mapsto an **H** ellipsoid of $s = \min(p, df_h)$ dimensions
- Linear hypotheses, of the form $H_0: \mathbf{C}_{h \times q} \, \mathbf{B}_{q \times p} = \mathbf{0}_{h \times p} \mapsto \text{sub-ellipsoid of dimension } h$
- 1D tests and contrasts → degenerate 1D ellipses (lines)

HE plot details: Contrasts and linear hypotheses

- An overall effect \mapsto an **H** ellipsoid of $s = \min(p, df_h)$ dimensions
- Linear hypotheses, of the form $H_0: \mathbf{C}_{h \times q} \, \mathbf{B}_{q \times p} = \mathbf{0}_{h \times p} \mapsto \text{sub-ellipsoid of dimension } h$
- 1D tests and contrasts → degenerate 1D ellipses (lines)

Friendly, Sigal ()

HE plot details: Contrasts and linear hypotheses

- An overall effect → an H ellipsoid of $s = \min(p, df_h)$ dimensions
- Linear hypotheses, of the form $H_0: \mathbf{C}_{h\times q} \, \mathbf{B}_{q\times p} = \mathbf{0}_{h\times p} \mapsto \text{sub-ellipsoid of}$ dimension h
- 1D tests and contrasts → degenerate 1D ellipses (lines)

Friendly, Sigal ()

HE plot matrices: All bivariate views

AL stands out $r(\overline{Fe}, \overline{Mg}) \approx 1$

R> pairs(pottery.mod)

HE plots for Multivariate Multiple Regression

- **Model**: Y = XB + U, where cols of X are quantitative.
- **Overall test**: H_0 : B = 0 (all coefficients for all responses are zero)

$$ullet$$
 $ightarrow$ $ightar$

• Individual predictors: $H_0: \beta_i = \mathbf{0}$

$$ullet$$
 $ightarrow$ $extstyle extstyle e$

- HE plot
 - Overall H ellipse: how predictors relate collectively to responses
 - Individual **H** ellipses (rank(**H**)=1 \rightarrow vectors):
 - orientation \rightarrow relation of x_i to y_1, y_2

 - collection of individual H vectors → how predictors contribute to overall test.

HE plots for Multivariate Multiple Regression

- **Model**: Y = XB + U, where cols of X are quantitative.
- **Overall test**: H_0 : B = 0 (all coefficients for all responses are zero)

$$ullet$$
 $ightarrow$ $ightar$

- Individual predictors: $H_0: \beta_i = \mathbf{0}$
 - $\bullet \to \mathbf{C} = (0,0,\ldots,1,0,\ldots,0) \to \mathbf{H}_i = \hat{\beta}_i^\mathsf{T} (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \hat{\beta}_i$
- HE plot
 - Overall H ellipse: how predictors relate collectively to responses
 - Individual H ellipses (rank(H)=1 → vectors):
 - orientation \rightarrow relation of x_i to y_1, y_2
 - ullet length o strength of relation
 - collection of individual H vectors → how predictors contribute to overall test.

HE plots for MMRA: Example

- Rohwer data on n = 37 low SES children, for 5 PA tasks (N, S, NS, NA, SS) predicting intelligence/achievement (PPVT, SAT, Raven)
- Only NA is individually significant (in this view)
- ... but overall test highly significant
- NA & S contribute to predicting PPVT
- NS & SS contribute to predicting SAT

HE plots for MMRA: Example

- Rohwer data on n = 37 low SES children, for 5 PA tasks (N, S, NS, NA, SS) predicting intelligence/achievement (PPVT, SAT, Raven)
- Only NA is individually significant (in this view)
- ... but overall test highly significant
- NA & S contribute to predicting PPVT
- NS & SS contribute to predicting SAT

HE plots for MMRA: MANCOVA

- Rohwer data on $n_1 = 37$ low SES, and $n_2 = 32$ high SES children
- Are regressions parallel?
- Are they coincident?
- Fit separate regressions for each group

HE plots for MMRA: MANCOVA

- Rohwer data on $n_1 = 37$ low SES, and $n_2 = 32$ high SES children
- Fit MANCOVA model (assuming equal slopes)

(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss

Outline

- Background
 - Visual overview
 - Data ellipses
 - The Multivariate Linear Model
 - Motivating example
- 2 Hypothesis-Error (HE) plots
 - Visualizing H and E (co)variation
 - MANOVA designs
 - MREG designs
- Reduced-rank displays
 - Low-D displays of high-D data
 - Canonical discriminant HE plots
- Recent extensions
 - Robust MLMs
 - Influence diagnostics for MLMs
- Conclusion

Low-D displays of high-D data

- High-D data often shown in 2D (or 3D) views— orthogonal projections in variable space
- Dimension-reduction techniques: project the data into subspace that has the
- ullet ightarrow low-D approximation to high-D data

Low-D displays of high-D data

- High-D data often shown in 2D (or 3D) views— orthogonal projections in variable space
- Dimension-reduction techniques: project the data into subspace that has the largest shadow— e.g., accounts for largest variance.
- → low-D approximation to high-D data

Low-D displays of high-D data

- High-D data often shown in 2D (or 3D) views— orthogonal projections in variable space
- Dimension-reduction techniques: project the data into subspace that has the largest shadow— e.g., accounts for largest variance.
- → low-D approximation to high-D data

A: minimum-variance projection; B: maximum variance projection

Canonical discriminant HE plots

- As with biplot, we can visualize MLM hypothesis variation for all responses by projecting H and E into low-rank space.
- Canonical projection: $\mathbf{Y}_{n \times p} \mapsto \mathbf{Z}_{n \times s} = \mathbf{Y} \mathbf{E}^{-1/2} \mathbf{V}$, where $\mathbf{V} =$ eigenvectors of $\mathbf{H} \mathbf{E}^{-1}$.
- This is the view that maximally discriminates among groups, ie max. H wrt
 E!

Friendly, Sigal ()

Canonical discriminant HE plots

- Canonical HE plot is just the HE plot of canonical scores, (z_1, z_2) in 2D,
- or, z_1, z_2, z_3 , in 3D.
- As in biplot, we add vectors to show relations of the \mathbf{y}_i response variables to the canonical variates.
- variable vectors here are structure coefficients = correlations of variables with canonical scores.

Friendly, Sigal ()

Canonical discriminant HE plots: Properties

- Canonical variates are uncorrelated: **E** ellipse is spherical
- \mapsto axes must be equated to preserve geometry
- Variable vectors show how variables discriminate among groups
- Lengths of variable vectors \sim contribution to discrimination

Canonical discriminant HE plots: Pottery data

- Canonical HE plots provide 2D (3D) visual summary of **H** vs. **E** variation
- Pottery data: p = 5 variables, 4 groups $\mapsto df_H = 3$
- Variable vectors: Fe, Mg and Al contribute to distingiushing (Caldicot, Llandryn) from (Isle Thorns, Ashley Rails): 96.4% of mean variation
- Na and Ca contribute an additional 3.5%. End of story!

Outline

- Background
 - Visual overview
 - Data ellipses
 - The Multivariate Linear Model
 - Motivating example
- Hypothesis-Error (HE) plots
 - Visualizing H and E (co)variation
 - MANOVA designs
 - MREG designs
 - Reduced-rank displays
 - Low-D displays of high-D data
 - Canonical discriminant HE plots
- Recent extensions
 - Robust MI Ms
 - Influence diagnostics for MLMs
- Conclusions

Robust MI Ms

- R has a large collection of packages dealing with robust estimation:
 - robust::lmrob(), MASS::rlm(), for univariate LMs
 - robust::glmrob() for univariate generalized LMs
 - High breakdown-bound methods for robust PCA and robust covariance estimation
 - However, none of these handle the fully general MLM
- The heplots package now provides robmlm() for robust MLMs:
 - Uses a simple M-estimtor via iteratively re-weighted LS.
 - Weights: calculated from Mahalanobis squared distances, using a simple robust covariance estimator, MASS::cov.trob() and a weight function, $\psi(D^2)$.

$$D^2 = (\mathbf{Y} - \widehat{\mathbf{Y}})^\mathsf{T} \mathbf{S}_{\mathrm{trob}}^{-1} (\mathbf{Y} - \widehat{\mathbf{Y}}) \sim \chi_p^2$$

- This fully extends the "mlm" class
- Compatible with other mlm extensions: car:::Anova and heplots::heplot.
- Downside: Does not incorporate modern consistency factors or other niceties.

Robust MLMs: Example

For the Pottery data:

The **E** ellipse is considerably reduced, enhancing apparent significance

Influence diagnostics for MLMs

- Influence measures and diagnostic plots are well-developed for univariate LMs
 - Influence measures: Cook's D, DFFITS, dfbetas, etc.
 - Diagnostic plots: Index plots, car:::influencePlot() for LMs
 - However, these are have been unavailable for MLMs
- The mvinfluence package now provides:
 - Calculation for multivariate analogs of univariate influence measures (following Barrett & Ling, 1992)
 - Provides deletion diagnostics for subsets of size $m \ge 1$.
 - e.g., m=2 can reveal cases of masking or joint influence.
 - Extension of influencePlot() to the multivariate case.
 - A new plot format: leverage-residual (LR) plots.

Friendly, Sigal ()

Influence diagnostics for MLMs: Example

For the Rohwer data:

Cook's D vs. generalized Hat value

Leverage - Residual (LR) plot

Influence diagnostics for MLMs: LR plots

- Main idea: Influence \sim Leverage (L) \times Residual (R)
- $\bullet \mapsto log(Infl) = log(L) + log(R)$
- contours of constant influence lie

 on lines with slope = -1.
- Bubble size ∼ influence (Cook's D)
- This simplifies interpretation of influence measures

- Data ellipse: visual summary of bivariate relations
 - Useful for multiple-group, MANOVA data
 - Embed in scatterplot matrix: pairwise, bivariate relations
 - Easily extend to show partial relations, robust estimators, etc.
- **HE plots**: visual summary of multivariate tests for MANOVA and MMRA
 - Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
 - Embed in HE plot matrix: all pairwise, bivariate relations
 - Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
 - Biplot: Observations, group means, biplot data ellipses, variable vectors
 - Canonical HE plots: Similar, but for dimensions of maximal discrimination
- Beautiful and useful geometries:
 - Ellipses everywhere; eigenvector-ellipse geometries
 - Visual representation of significance in MLM
 - Opportunities for other extensions

- Data ellipse: visual summary of bivariate relations
 - Useful for multiple-group, MANOVA data
 - Embed in scatterplot matrix: pairwise, bivariate relations
 - Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
 - Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
 - Embed in HE plot matrix: all pairwise, bivariate relations
 - Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
 - Biplot: Observations, group means, biplot data ellipses, variable vectors
 - Canonical HE plots: Similar, but for dimensions of maximal discrimination
- Beautiful and useful geometries:
 - Ellipses everywhere; eigenvector-ellipse geometries
 - Visual representation of significance in MLM
 - Opportunities for other extensions

- Data ellipse: visual summary of bivariate relations
 - Useful for multiple-group, MANOVA data
 - Embed in scatterplot matrix: pairwise, bivariate relations
 - Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
 - Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
 - Embed in HE plot matrix: all pairwise, bivariate relations
 - Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
 - Biplot: Observations, group means, biplot data ellipses, variable vectors
 - Canonical HE plots: Similar, but for dimensions of maximal discrimination
- Beautiful and useful geometries:
 - Ellipses everywhere; eigenvector-ellipse geometries
 - Visual representation of significance in MLM
 - Opportunities for other extensions

- Data ellipse: visual summary of bivariate relations
 - Useful for multiple-group, MANOVA data
 - Embed in scatterplot matrix: pairwise, bivariate relations
 - Easily extend to show partial relations, robust estimators, etc.
- HE plots: visual summary of multivariate tests for MANOVA and MMRA
 - Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
 - Embed in HE plot matrix: all pairwise, bivariate relations
 - Extend to show partial relations: HE plot of "adjusted responses"
- Dimension-reduction techniques: low-rank (2D) visual summaries
 - Biplot: Observations, group means, biplot data ellipses, variable vectors
 - Canonical HE plots: Similar, but for dimensions of maximal discrimination
- Beautiful and useful geometries:
 - Ellipses everywhere; eigenvector-ellipse geometries!
 - Visual representation of significance in MLM
 - Opportunities for other extensions

