DM, λ -calcul, 2023

Valeran MAYTIE

11 avril 2023

1 Le λ -calcul en appel par valeur

Le λ -calcul en appel par valeur a été introduit par Gordon Plotkin en 1975. Il est défini comme suit. On définit les *valeurs V* :

$$V := x$$
 variables $| \lambda x.v$ abstractions,

où v est un λ -terme arbitraire, pas nécessairement une valeur. La règle de réduction en appel par valeur, ou $\beta_{\tt V}$ -réduction, est :

$$(\beta_{V})$$
 $(\lambda x.u)V \to u[x:=V],$

où V est restreint à être une valeur. Cette règle s'applique sous n'importe quel contexte, et modulo les règles usuelles d' α -renommage. On écrira $u \to_{V} v$ pour dire que u se réécrit (en une étape) en v par cette règle, s'il y a besoin.

Attention, une valeur V n'est pas une forme normale en général; on peut exhiber des réductions $V \to V'$, et dans ce cas V' est aussi une valeur.

Question 1 Montrer que si $u \to_{\mathbb{V}}^* v$ et si v est β -normal (i.e., normal pour la β -réduction), alors v est l'unique forme normale de u en λ -calcul ordinaire.

Réponse:

On définit les règles de réductions (abs_V) , $(appD_V)$ et $(appG_V)$ de manière analogue aux règles de la β -réductions pour les réductions sous n'importe quel contexte.

Lemme 1 Soit u et v des λ -terme, si $u \to_{V} v$ alors $u \to v$.

Démonstration.

Montrons que $u \to_{V} v$ implique $u \to v$ par récurrence sur $u \to_{V} v$.

- Cas (de base) où $u \to_{V} v$ vient de la règle (β_{V}) . Donc $u = (\lambda x.u')V$ et v = u'[x := V]. Comme V est un lambda terme (variable ou lambda abstraction) on $u \to v$ par définition de la beta réduction.
- Cas où $u \to_{V} v$ vient de la règle (abs_{V}) . Donc $u = (\lambda x.A)$ et $v = (\lambda x.A')$ avec $A \to_{V} A'$. Par hypotèse de récurrence on a $A \to A'$. Donc par (abs) on a $u \to v$
- Cas où $u \to_V v$ vient de la règle (app G_V). Donc u = AB et v = A'B avec $A \to_V A'$. Par hypothèse de récurrence on a $A \to A'$. Dinc par (appG) on à $u \to v$
- Case où $u \to_{V} v$ vient de la règle $(appD_{V})$ est traité de manière siminlaire.

Lemme 2 Soit u et v des lambda terme, si $u \to_{\mathbf{V}}^* v$ alors $u \to^* v$.

Démonstration.

Montrons que $u \to_{\mathbf{v}}^* v$ implique $u \to^* v$ par récurrence sur la longueur k de la réduction $u \to_{\mathbf{v}}^* v$.

- si k = 0 alors u = v donc on a bien la réduction $u \to v$.
- sinon, il existe un w tel que $u \to_{V}^{*} w$ en moin de k étapes et $w \to_{V} v$. Par hypothèse de récurrence, $u \to^{*} w$ et par le <u>lemme 1</u> on a $w \to v$. Donc par transitivité de la beta réduciton $u \to v$.

On peut enfin montrer que si $u \to_{\mathbf{v}}^* v$ et v est β -normale alors v est l'unique forme normale de u.

Démonstration.

Soit u un lambda terme et v_1 , v_2 des lambdas termes β -normaux tel que, $u \to_{\mathbb{V}}^* v_1$ et $u \to_{\mathbb{V}}^* v_2$. Par le <u>lemme 2</u> on à $u \to v_1$ et $u \to v_2$, or la beta réduction est confluente donc $v_1 = v_2$. Donc la $\beta_{\mathbb{V}}$ -réduction a bien la propriété de forme normale unique.

Question 2 Exhiber un terme u qui a une forme normale $u \downarrow$ (pour la β -réduction), mais tel que $u \not\to_{\mathbb{V}}^* u \downarrow$; la $\beta_{\mathbb{V}}$ -réduction est donc incomplète.

 $\frac{\textit{R\'eponse}:}{\textit{Soit}\ \Omega = ((\lambda x.xx)(\lambda x.xx))}$ $\textit{On prend}\ u = (\lambda xy.y)\Omega.$ $u \downarrow = (\lambda y.y)$ $u \not\rightarrow_{\mathtt{V}}^* u \downarrow \textit{car, il faut transformer}\ \Omega \textit{ en valeur ce qui est impossible.}$

Question 3 Exhiber un terme normalisable (pour la β -réduction) mais qui n'a aucune forme normale pour la β_v -réduction. La β_v -réduction n'est donc pas standardisante.

Réponse:

On peut prendre le même terme que la question précédente.

u n'a aucune forme normale car la seule réduction possible est $(\lambda xy.y)\Omega \to_{\mathbf{V}} (\lambda xy.y)\Omega = u$ et u n'est pas une forme normale.

2 Confluence du λ -calcul en appel par valeur

On définit une relation de réduction parallèle \Rightarrow_v , imitant celle vue en TD pour le λ -calcul ordinaire, par les règles :

$$\frac{u \Rightarrow_{\mathbf{V}} u' \quad v \Rightarrow_{\mathbf{V}} V}{(\lambda x. u) v \Rightarrow_{\mathbf{V}} u'[x := V]} (1)$$

$$\frac{u \Rightarrow_{\mathbf{V}} u'}{\lambda x. u \Rightarrow_{\mathbf{V}} \lambda x. u'} (\lambda) \quad \frac{u \Rightarrow_{\mathbf{V}} u' \quad v \Rightarrow_{\mathbf{V}} v'}{uv \Rightarrow_{\mathbf{V}} u' v'} (@)$$

Ici, V désigne une valeur arbitraire, et u, u', v, v' des λ -termes arbitraires. On dira simplement $\ll u \Rightarrow_{\tt V} u' \gg$ pour dire que le jugement $u \Rightarrow_{\tt V} u'$ est dérivable dans ce système de règles, autrement pour dire qu'il existe un arbre de preuve, formé à l'aide de ces règles, dont la conclusion est $u \Rightarrow_{\tt V} u'$. Les règles ont des noms : (0), (1), (λ), (@), que vous devrez nommer dans vos preuves lors de toute utilisation. On admettra les trois résultats suivants.

Fait 3 Si $w \Rightarrow_{V} w'$ alors toutes les variables libres dans w' sont déjà libres dans w.

Fait 4 Pour tous λ -termes s', w' et v, si x est une variable qui n'est pas libre dans w' et si $x \neq z$, alors s'[x := v][z := w'] = s'[z := w'][x := v[z := w']].

L'égalité est bien sûr à comprendre à α -renommage près.

Fait 5 Pour tous λ -termes, u, w et w', pour toute variable z, si $w \Rightarrow_{V} w'$ alors $u[z := w] \Rightarrow_{V} u[z := w']$.

C'est une récurrence facile sur la taille de u.

Nous démontrons ensuite le lemme suivant. Je laisse des trous, que vous devrez combler.

Lemme 6 Pour tous λ -termes u, u', w, pour toute valeur W, pour toute variable z, si $u \Rightarrow_{V} u'$ et $w \Rightarrow_{V} W$, alors $u[z := w] \Rightarrow_{V} u'[z := W]$.

Démonstration.

Question 4 Ceci se fait par récurrence, mais sur quoi?

Réponse:

On fait une récurrence sur $u \Rightarrow_{V} u'$

On distingue quatre cas, en fonction de la dernière règle utilisée dans la dérivation donnée de $u \Rightarrow_{V} u'$.

- (0): dans ce cas, u=u', et on a $u[z:=w] \Rightarrow_{\tt V} u[z:=W]=u'[z:=W]$ par le <u>fait 5</u>.
- (1) : dans ce cas, u est de la forme $(\lambda x.s)t$, on a $s \Rightarrow_{\tt V} s'$, $t \Rightarrow_{\tt V} V$, u' = s'[x := V]. Par α -renommage, on peut supposer que $x \neq z$ et que x n'est pas libre dans W.

Question 5 Terminer ce cas. Autrement dit, démontrer que $(\lambda x.s[z:=w])(t[z:=w]) \Rightarrow_{\tt V} s'[x:=V][z:=W]$. Où l'hypothèse que W est une valeur estelle utilisée?

Réponse:

 $\overline{\textit{Par hypothèse de récurrence}}, \ s[z:=w] \Rightarrow_{\tt V} s'[z:=W] \ \textit{et } t[z:=w] \Rightarrow_{\tt V} V[z:=W]. \ \textit{On a donc} \ (\lambda x.s[z:=w])t[z:=w] \Rightarrow_{\tt V} s'[z:=W][x:=V[z:=W]]. \ \underline{\textit{Par la règle}} \ (1). \ \textit{Comme } x \ \textit{n'est pas libre dans } W \ \textit{et que } x \neq z \ \textit{on a } s'[z:=W][x:=V[z:=W]] = s'[x:=V][z:=W] \ \textit{par le } \underline{\textit{fait 4}}. \ \underline{\textit{On a donc bien }} u[z:=w] \Rightarrow_{\tt V} u'[z:=W]$

- (λ) : dans ce cas, u est de la forme $\lambda x.s$, u' est de la forme $\lambda x.s'$, et $s \Rightarrow_{\mathbb{V}} s'$. Par hypothèse de récurrence, $s[z:=w] \Rightarrow_{\mathbb{V}} s'[z:=W]$, et l'on obtient $u[z:=w] \Rightarrow_{\mathbb{V}} u'[z:=W]$ par la règle (λ) .
- (@) : similairement, on utilise l'hypothèse de récurrence et la règle (@). \Box

Le fait suivant est une analyse de cas facile sur la dernière règle utilisée dans la dérivation donnée de $V \Rightarrow_{V} t$.

Fait 7 Pour toute valeur V et pour tout λ -terme t, si $V \Rightarrow_{V} t$ alors t est une valeur.

Nous démontrons le lemme suivant. Je laisse des trous dans la preuve, que vous devrez combler, comme plus haut.

Lemme 8 *La relation* \Rightarrow_{V} *est fortement confluente.*

Démonstration. On doit démontrer que pour tous λ -termes s, t_1 , t_2 , si $s \Rightarrow_{V} t_1$ et $s \Rightarrow_{\tt V} t_2$, alors il existe un λ -terme t_3 tel que $t_1 \Rightarrow_{\tt V} t_3$ et $t_2 \Rightarrow_{\tt V} t_3$. Nous le démontrons par récurrence.

Question 6 Sur quoi porte cette récurrence?

 $\frac{\textit{R\'eponse}:}{\textit{On fait une r\'ecurrence sur les r\'eductions } s \Rightarrow_{\texttt{V}} t_1 \textit{ et } s \Rightarrow_{\texttt{V}} t_2.$

A symétrie près, il y a 10 cas, selon la dernière règle utilisée.

- (0)/n'importe quoi [4 cas d'un coup!] : on a $s = t_1$, dont on peut prendre $t_3 \stackrel{\text{def}}{=} t_2$; on a $s = t_1 \Rightarrow_{\mathbf{V}} t_3 = t_2$, et $t_2 \Rightarrow_{\mathbf{V}} t_3 = t_2$ par (0).
- (1)/(1). C'est l'un des deux cas compliqués. On est dans une situation de la forme:

$$\frac{u \Rightarrow_{\mathbf{V}} u_1 \quad v \Rightarrow_{\mathbf{V}} V_1}{(\lambda x. u) v \Rightarrow_{\mathbf{V}} \underbrace{u_1[x := V_1]}_{t_1}} (1) \quad \frac{u \Rightarrow_{\mathbf{V}} u_2 \quad v \Rightarrow_{\mathbf{V}} V_2}{(\lambda x. u) v \Rightarrow_{\mathbf{V}} \underbrace{u_2[x := V_2]}_{t_2}} (1)$$

et $s = (\lambda x.u)v$. Par hypothèse de récurrence, il existe un λ -terme u_3 tel que $u_1 \Rightarrow_{V} u_3$ et $u_2 \Rightarrow_{V} u_3$, et il existe un λ -terme v_3 tel que $V_1 \Rightarrow_{V} v_3$ et $V_2 \Rightarrow_{V} v_3$. Par le <u>fait 7</u>, v_3 est une valeur. Par le <u>lemme 6</u>, on a alors $u_1[x:=V_1] \Rightarrow_{\tt V} u_3[x:=v_3]$ et $u_2[x:=V_2] \Rightarrow_{\tt V} u_3[x:=v_3]$. On peut donc prendre $t_3 \stackrel{\text{def}}{=} u_3[x := v_3]$.

— $(1)/(\lambda)$: impossible.

— (1)/(@). C'est l'autre cas compliqué. On est dans une situation de la forme :

$$\underbrace{\frac{u \Rightarrow_{\mathbf{V}} u_1 \quad v \Rightarrow_{\mathbf{V}} V_1}{(\lambda x. u) v} \Rightarrow_{\mathbf{V}} \underbrace{u_1[x := V_1]}_{t_1}}_{(1)} \ \frac{\lambda x. u \Rightarrow_{\mathbf{V}} u_2 \quad v \Rightarrow_{\mathbf{V}} v_2}{(\lambda x. u) v} \Rightarrow_{\mathbf{V}} \underbrace{u_2 v_2}_{t_2} \ (@)$$

Question 7 Terminer la démonstration du cas (1)/(@). On donnera t_3 explicitement.

Réponse:

 $u_2 = \lambda x. u_3$ avec $u \Rightarrow_{\mathbb{V}} u_3$ car les seules règles de réductions possibles pour réduire $\lambda x. u$ sont (λ) ou (0) dans ce cas $u = u_3$. Par hypothèse de récurrence il existe des λ -termes u_4 et V_2 tel que $u_1 \Rightarrow_{\mathbb{V}} u_4$, $u_3 \Rightarrow_{\mathbb{V}} u_4$, $V_1 \Rightarrow_{\mathbb{V}} V_2$ et $v_2 \Rightarrow_{\mathbb{V}} V_2$. V_1 est une valeur danc V est aussi une valeur, par le fait 7.

$$u_2v_2 = (\lambda x.u_3)v_2$$

 $\Rightarrow_{\mathbf{V}} u_4[x := V_2]$ $r\grave{e}gle\ (1)$

$$u_1[x := V_1] \Rightarrow_{\mathbf{V}} u_4[x := V_2]$$
 lemme 6

On prend donc $t_3 \stackrel{\text{def}}{=} u_4[x := V_2]$.

- $(\lambda)/(\lambda)$: alors $s=\lambda x.u$, on a dérivé $u\Rightarrow_{\tt V} u_1$ et $u\Rightarrow_{\tt V} u_2$ par des dérivations plus courtes, $t_1=\lambda x.u_1$ et $t_2=\lambda x.u_2$. Par hypothèse de récurrence, on a un λ -terme u_3 tel que $u_1\Rightarrow_{\tt V} u_3$ et $u_2\Rightarrow_{\tt V} u_3$. On applique la règle (λ) , et on obtient $t_1=\lambda x.u_1\Rightarrow_{\tt V} t_3$ et $t_2=\lambda x.u_2\Rightarrow_{\tt V} t_3$, où $t_3\stackrel{\rm def}{=}\lambda x.u_3$.
- $(\lambda)/(@)$: impossible.
- (@)/(@). On a:

$$\frac{u \Rightarrow_{\mathsf{V}} u_1 \quad v \Rightarrow_{\mathsf{V}} v_1}{\underbrace{uv}_s \Rightarrow_{\mathsf{V}} \underbrace{u_1v_1}_{t_1}} \, (@) \quad \frac{u \Rightarrow_{\mathsf{V}} u_2 \quad v \Rightarrow_{\mathsf{V}} v_2}{\underbrace{uv}_s \Rightarrow_{\mathsf{V}} \underbrace{u_2v_2}_{t_2}} \, (@)$$

Par hypothèse de récurrence, on peut trouver un terme u_3 tel que $u_1 \Rightarrow_{\mathbb{V}} u_3$ et $u_2 \Rightarrow_{\mathbb{V}} u_3$, ainsi qu'un terme v_3 tel que $v_1 \Rightarrow_{\mathbb{V}} v_3$ et $v_2 \Rightarrow_{\mathbb{V}} v_3$. On a alors $u_1v_1 \Rightarrow_{\mathbb{V}} u_3v_3$ et $u_2v_2 \Rightarrow_{\mathbb{V}} u_3v_3$ par <u>la règle (@)</u>, et l'on pose donc $t_3 \stackrel{\text{def}}{=} u_3v_3$.

On admettra le résultat suivant, qui est facile à démontrer.

Fait 9 Pour tous λ -termes s et t, si $s \to_{V} t$ alors $s \Rightarrow_{V} t$, et si $s \Rightarrow_{V} t$ alors $s \to_{V}^{*} t$.

Question 8 En déduire que \rightarrow_{V} est confluente.

Réponse:

Lemme 10 Si R et S sont deux relations binaires, et :

- (a) $R \subseteq S \subseteq R^*$
- (b) S est confluente

alors R est confluent

Démonstration.

Démontré en cours.

D'après le <u>fait 9</u> on $a \to_{V} \subseteq \Rightarrow_{V} \to_{V}^{*}$. De plus \Rightarrow_{V} est fortement confluente (<u>lemme 8</u>).

Donc \rightarrow _V *est bien confluente d'apèrs le* <u>lemme 10</u>. □

3 Enumérations calculables des λ -termes

On pose:

Question 9 Montrer que pour tout $n \in \mathbb{N}$, asr $\lceil n \rceil \to^* \lceil asr(n) \rceil$, où asr est une fonction de \mathbb{N} dans \mathbb{N} que vous expliciterez.

Réponse:

On pose asr(n) = n/2. Si n est pair sinon asr(n) = (n-1)/2.

Pour ça il faut montrer que le deuxième élément du couple renvoyé par $\lceil n \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle$ est égale à $\lceil asr(n) \rceil$

Montrons que $\lceil n \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle \to^* \langle \mathbf{F}, \lceil asr(n) \rceil \rangle$ si n pair sinon $\lceil n \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle \to^* \langle \mathbf{V}, \lceil asr(n) \rceil \rangle$ par récurrence sur n.

- Cas (de base) où n = 0. $\lceil 0 \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle \to^* \langle \mathbf{F}, \lceil 0 \rceil \rangle$. On réduit asr $\lceil n \rceil \to^* \lceil 0 \rceil$. On a bien asr $\lceil 0 \rceil \to^* \lceil 0/2 = 0 \rceil$
- Comme n une application de n foit la fonction f qui dans notre cas est asr_helper . Il suffit d'appliquer encore une foit asr_helper au résultat de $\lceil n \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle$ pour avoir le résultat de $\lceil n + 1 \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle$.

On a deux cas:

- n est pair, alors $\lceil n \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle \rightarrow^* \langle \mathbf{F}, \lceil n/2 \rceil \rangle$ par hypothèse de récurrence. On calcule asr_helper $\langle \mathbf{F}, \lceil n/2 \rceil \rangle \rightarrow^* \langle \mathbf{V}, \lceil n/2 \rceil \rangle$. On a bien $\lceil n+1 \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle \rightarrow^* \langle \mathbf{V}, \lceil asr(n+1) \rceil \rangle$, car n+1 est impaire donc asr(n+1) = (n+1-1)/2 = n/2
- n est impaire, alors $\lceil n \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle \to^* \langle \mathbf{V}, \lceil (n-1)/2 \rceil \rangle$ par hypothèse de récurrence. On calcule asr_helper $\langle \mathbf{V}, \lceil (n-1)/2 \rceil \rangle \to^* \langle \mathbf{F}, \lceil S \rceil \rceil (n-1)/2 \rceil$. $\lceil S \rceil \rceil n \rceil$ est la représentation de n+1. $\lceil S \rceil \rceil (n-1)/2 \rceil$ représente donc (n-1)/2+1=(n+1)/2=asr(n+1). On a bien $\lceil n+1 \rceil$ asr_helper $\langle \mathbf{F}, \lceil 0 \rceil \rangle \to^* \langle \mathbf{F}, \lceil asr(n+1) \rceil \rangle$

 $\mathbf{asr}^{\lceil} n^{\rceil}$ se réduit bien en $\lceil asr(n) \rceil$

On rappelle qu'il existe une bijection de $\mathbb{N} \times \mathbb{N}$ vers \mathbb{N} , donnée par la formule :

$$[m,n] \stackrel{\text{def}}{=} \frac{(m+n)(m+n+1)}{2} + m.$$

(Nous utiliserons la notation [m, n] plutôt que la notation $\langle m, n \rangle$ utilisée en cours, pour éviter un conflit de notation avec la construction $\langle u, v \rangle$ rappelée plus haut.)

Question 10 Exhiber un λ -terme **cpl** tel que **cpl** $\lceil m \rceil \lceil n \rceil \to^* \lceil [m,n] \rceil$ pour tous $m,n \in \mathbb{N}$. Ne cherchez surtout pas à l'obtenir en forme normale; préférez la clarté.

```
Réponse :
On pose :

\lceil \times \rceil \stackrel{def}{=} \lambda x. \lambda y. \lambda f. x (y f)

On a donc

\operatorname{cpl} \stackrel{def}{=} \lambda m. \lambda n. \lceil S \rceil (\operatorname{asr} (\lceil \times \rceil (\lceil S \rceil m n) (\lceil S \rceil (\lceil S \rceil \lceil 1 \rceil m) n))) m
```

On suppose une énumération $n\mapsto x_n$ des variables du λ -calcul; autrement dit, une bijection. On notera $\#_x$ le numéro de chaque variable x, autrement dit $x\mapsto \#_x$ est la fonction inverse. Pour tout λ -terme t, on définit un entier $\operatorname{num}(t)$ comme suit :

$$\mathbf{num}(x) \stackrel{\text{def}}{=} [0, \#_x]$$

$$\mathbf{num}(uv) \stackrel{\text{def}}{=} [1, [\mathbf{num}(u), \mathbf{num}(v)]]$$

$$\mathbf{num}(\lambda x. u) \stackrel{\text{def}}{=} [\#_x + 2, \mathbf{num}(u)]$$

On fera attention au fait que $\mathbf{num}(t)$ n'est pas invariant par α -équivalence; par exemple, $\mathbf{num}(\lambda x.x) \neq \mathbf{num}(\lambda y.y)$.

Question 11 Décrire un λ -terme kwote tel que, pour tout entier $n \in \mathbb{N}$, kwote $\lceil n \rceil \to^* \lceil \text{num} (\lceil n \rceil) \rceil$. (Prenez du temps à analyser le côté droit; notamment, $\lceil n \rceil$ est vu comme un λ -terme, dont on prend le numéro num $(\lceil n \rceil)$, écrit ensuite sous forme d'entier de Church.) On supposera pour cela que, dans la définition de $\lceil n \rceil$ utilisée dans le côté droit de la réduction, $\#_f = 0$ et $\#_x = 1$. Vous êtes encouragés à produire des λ -termes auxiliaires, et à utiliser ceux produits plus haut; ne développez surtout pas leurs définitions pour former les λ -termes désirés : privilégiez la clarté.

On pose:

kwote_helper $\stackrel{def}{=} \lambda x.\mathbf{cpl} \, \lceil 1 \rceil \, (\mathbf{cpl} \, (\mathbf{cpl} \, \lceil 0 \rceil \, \lceil 0 \rceil) \, x)$

 $\mathbf{kwote_iterator} \stackrel{def}{=} \lambda c.c \ \mathbf{kwote_helper} \ (\mathbf{cpl} \ \lceil 0 \rceil \ \lceil 1 \rceil)$

kwote_helper est le lambda terme qui va remplasser tout les f dans $\lceil n \rceil$. On aura donc $[1, [0, 0], \mathbf{kwote_helper}(f \dots (f \ x))]$ grâce à kwote_iterator.

On définit kwote $\stackrel{def}{=} \lambda n.\mathbf{cpl} \, \lceil 2 \rceil \, (\mathbf{cpl} \, \lceil 3 \rceil \, (\mathbf{kwote_iterator} \, n))$

La fonction num est une bijection entre \mathbb{N} et l'ensemble des λ -termes. Pour tout $n \in \mathbb{N}$, notons t_n l'unique λ -terme tel que $\operatorname{num}(t_n) = n$.

Question 12 Exhiber un λ -terme diag tel que pour tout $n \in \mathbb{N}$, diag $\lceil n \rceil \to^* \lceil \text{num}(t_n \lceil n \rceil) \rceil$.

Comme $\operatorname{num}(t_n) = n \text{ on } a:$ $\operatorname{num}(t_n \ u) = [1, [n, \operatorname{num}(u)]]$ $\operatorname{diag} \stackrel{def}{=} \lambda n.\operatorname{cpl} \lceil 1 \rceil (\operatorname{cpl} n, (\operatorname{kwote} n)))$

Question 13 En déduire que, pour chaque λ -terme u, il existe un λ -terme B_u tel que, pour tout $n \in \mathbb{N}$, $B_u \sqcap n = \beta u \sqcap num(t_n \sqcap n)$. On décrira B_u explicitement; comme d'habitude, on est encouragé à utiliser les termes précédemment définis, et à ne surtout pas les remplacer par leurs définitions.

$$B_u \stackrel{def}{=} \lambda n. u \ (\mathbf{diag} \ n)$$

 $B_{u} \stackrel{def}{=} \lambda n.u \text{ (diag } n)$ $Par \ definition \ de \ diag \ on \ a \ B_{u} \to^{*} \lambda n.u \ \lceil \mathbf{num}(t_{n} \ n) \rceil \rceil. \ Donc$ $B_{u} \ \lceil n \rceil =_{\beta} u \ \lceil \mathbf{num}(t_{n} \ \lceil n \rceil) \rceil.$

Question 14 En déduire, pour chaque λ -terme u, un λ -terme A_u tel que $A_u =_{\beta} u \operatorname{runm}(A_u)^{\neg}$. (Indication: poser $n \stackrel{\text{def}}{=} \mathbf{num}$ (B_u). On donnera A_u explicitement, toujours en utilisant les termes précédemment construits, sans les remplacer par leurs définitions.) L'existence de ce terme pour chaque u est le deuxième théorème de point fixe du λ -calcul.

$$A_u = B_u \lceil n \rceil$$
 avec $n = \mathbf{num}(B_u)$

On calcule $A_u \to^* u$ (diag $\lceil \text{num}(B_u) \rceil$). Par définition de diag, on a $\operatorname{\mathbf{diag}} \lceil \operatorname{\mathbf{num}}(B_u) \rceil \to^* \lceil \operatorname{\mathbf{num}}(t_n \lceil \operatorname{\mathbf{num}}(B_u) \rceil) \rceil$. Or t_n est défini comme l'unique lambda terme tel que $num(t_n) = n$, or $n = num(B_u)$ donc $t_n = B_u$. Enfin diag $\lceil \operatorname{num}(B_u) \rceil \to^* \lceil \operatorname{num}(B_u \lceil n \rceil) \rceil$. On obtient bien $A_u =_{\beta} u \operatorname{rum}(A_u)^{\neg}$.

On dit qu'un ensemble L de λ -termes est $r\acute{e}cursif$ si et seulement si la fonction caractéristique de $\{\mathbf{num}(t) \mid t \in L\}$ est récursive; autrement dit, si la fonction qui à tout $n \in \mathbb{N}$ associe 1 si $t_n \in L$ et 0 sinon est récursive au sens usuel.

On dit qu'un ensemble X de λ -termes est β -saturé si et seulement pour tout $u \in X$, pour tout $v =_{\beta} u$, v est dans X.

On dit que deux ensembles X et Y de λ -termes sont *séparés* par un ensemble L si et seulement si X est inclus dans L et Y est inclus dans le complémentaire de L; en formules, si $X \subseteq L$ et $Y \cap L = \emptyset$. X et Y sont *récursivement séparables* si et seulement si X et Y sont séparés par un ensemble récursif de λ -termes.

Question 15 Soient X et Y deux ensembles de λ -termes séparés par un ensemble récursif L. Montrer qu'il existe un λ -terme D tel que, pour tout $n \in \mathbb{N}$:

—
$$D^{\sqcap}n^{\dashv} =_{\beta} \mathbf{V}$$
 si et seulement si $t_n \in L$, et

—
$$D \lceil n \rceil =_{\beta} \mathbf{F}$$
 si et seulement si $t_n \notin L$.

Réponse:

Comme la fonction qui détermine si n est dans L est récursif, on peut la coder en lambda calcul. On nome ce lambda term D_l . Comme défini plus haut D_l renvoi $\lceil 1 \rceil$ si t_n est dans L sinon $\lceil 0 \rceil$.

On défini donc
$$D \stackrel{\text{def}}{=} \lambda n.(D_l \ n) \ (\lambda y.V) \ F.$$

$$D$$
 renvoi \mathbf{F} si $n=0$ sinon il renvoi \mathbf{V}

Question 16 En utilisant le deuxième théorème de point fixe, pour tous λ -termes t, u, v, construire un λ -terme j tel que :

— si
$$t \lceil \mathbf{num}(j) \rceil =_{\beta} \mathbf{V}$$
, alors $j =_{\beta} v$;

— et si
$$t$$
 ^{Γ} **num** (j) ^{Γ} = $_{\beta}$ **F**, alors j = $_{\beta}$ u .

Réponse:

On pose
$$j \stackrel{def}{=} A_s$$
 avec $s \stackrel{def}{=} \lambda n.t \ n \ u \ v$

On réduit $A_s \to^* s \lceil \text{num}(A_s) \rceil$ (définition de A_s). On pose $n \stackrel{\text{def}}{=} \text{num}(A_s)$ pour plus de lisibilité. On obtient donc $s \lceil n \rceil \to^* t \lceil n \rceil u v$.

Donc si.

— si
$$t \lceil n \rceil =_{\beta} \mathbf{V}$$
 alors $s \lceil n \rceil =_{\beta} \mathbf{V}$ $u \ v \to^* u$, donc $j =_{\beta} u$.

—
$$si\ t \lceil n \rceil =_{\beta} \mathbf{F} \ alors \ s \lceil n \rceil =_{\beta} \mathbf{F} \ u \ v \to^* v, \ donc \ j =_{\beta} v.$$

Question 17 Déduire des questions précédentes que deux ensembles β -saturés non vides X et Y de λ -termes ne sont *jamais* récursivement séparables.

Réponse:

Supposons que X et Y sont séparés récursivement par L (un ensemble récursif). On a donc un lambda terme $D \lceil n \rceil$ qui détermine si t_n est dans L ou non grâce à la **Question 15**. Soit $x \in X$ et $y \in Y$.

On applique le résultat de la **Question 16** avec t = D, u = x et v = y. Par définition de D, $D \lceil n \rceil$ renvoie toujours V ou F.

On a deux cas:

- si $D \lceil num(j) \rceil =_{\beta} \mathbf{V}$, on a donc $j \in L$ et $j =_{\beta} y$. Or Y est β -saturé donc $j \in Y$.
- si $D \lceil num(j) \rceil =_{\beta} \mathbf{F}$, on a donc $j \notin L$ et $j =_{\beta} x$. Or X est β -saturé donc $j \in X$.

Par définition de la sépration si $j \in L$ alors $j \notin Y$, ou si $j \notin L$ alors $j \notin X$.

Or dans les deux cas ci-dessus j ne respecte par la définition. Cela remet donc en cause l'existence de j ce qui n'est pas possible par le deuxième thèorème de point fixe **Question 14**.

Deux ensembles β -saturés non vides ne sont donc jamais récursivement séparables.

Comme cas particulier de ce résultat (en prenant pour Y le complémentaire de X), on obtient : les seuls ensembles β -saturés X de λ -termes qui sont récursifs sont (1) l'ensemble vide et (2) l'ensemble de tous les λ -termes. On reconnaît ici une version λ -calculatoire du théorème de Rice.