Structures Algébriqes Structure d'anneau et structure de corps MPSI 2

1 Axiomes des structures

1.1 Structure d'anneau

Soit A un ensemble non vide muni de deux lois, + et \times .

Définition 1.1.1

 $(A, +, \times)$ est un <u>anneau</u> si:

- \bigcirc (A, +) est un groupe ablien.
- \bigcirc × est associative.
 - \times est distributive sur +.
 - \times admet un lment neutre.

Notations: Soit $(A, +, \times)$ un anneau.

- Alors (A, +) est un groupe ablien. on le note avec la notation additive, et son lment neutre est not 0_A .
- \times est not multiplicativement, mais n'est pas ncessairement commutative. On note son lment neutre 1_A . C'est <u>l'Iment unit</u>.

Définition 1.1.2

Soit $(A, +, \times)$ un anneau non rduit à $\{0_A\}$.

- Si a et b deux lments de A tels que $\times b = 0_A$ et $a \neq 0$ et $b \neq 0$, alors a et b sont des diviseurs de zro
- On dit que $(A, +, \times)$ est <u>intere</u> si $\forall (a, b) \in A^2$, $(a \times b = 0_A) \Rightarrow (a = 0_A \text{ ou } b = 0_A)$

Propriété 1.1.1

- Si a est un lment inversible de $(A, +, \times)$, alors a n'est pas un diviseur de zro.
- $Si(A, +, \times)$ est un anneau <u>fini</u> et et si a est un lment non nul de A, alors a est inversible ssi a n'est pas un diviseur <u>de</u> zro.

Définition 1.1.3

Soit a un lment de A.

On dit que a est <u>nilpotent</u> si il existe un entier naturel n non nul tel que: $\prod_{k=1}^{n} a = 0_A$

1.2 Structure de corps

Soit K un ensemble non vide muni de deux lois internes + et \times .

Définition 1.2.1

 $(K, +, \times)$ est un corps si:

- ① (K,+) est un groupe ablien.
- ② $(K \setminus \{0_K\}, \times)$ est un groupe ablien. \times est distributive sur +

Remarques:

- Si $(K, +, \times)$ est un corps, alors c'est un anneau intgre.
- Si $(A, +, \times)$ est un anneau intgre fini, alors c'est un corps.

2 Calculs dans un anneau

Soit $(A, +, \times)$ un anneau.

Soit a un lment de A.

Soit n un lment de \mathbb{N} .

- a + a + ... + a, n fois se note n a
- (-a) + (-a) + ... + (-a) se note n(-a) ou (-n)a ou -na et est l'oppos de na
- Si n = 0, alors $0 a = 0_A$
- $a \times a \times ... \times a$, n fois se note a^n
- Si a est inversible, $(a^{-1}) \times (a^{-1}) \times ... \times (a^{-1})$ se note $(a^{-1})^n$ ou $(a^{-1})^n$ ou a^{-n} et est l'oppos de a^n
- Par convention: $a^0 = 1_A$

Propriété 2.0.1

•
$$(1_A + a)^n = \sum_{k=0}^n \binom{n}{k} a^k$$

• $\underline{Si \ a \ et \ b \ commutent:}$
 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \ b^{n-k}$

- $1_A a^{n+1} = (1_A a)(1_A + a + a^2 + \dots + a^n)$ <u>Si a et b commutent:</u>

$$\overline{a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}}$$

3 Homomorphismes d'anneau et Homomorphismes de corps

Définition 3.0.2

Soit $(A, +, \times)$ et $(A', +', \times')$ deux anneaux.

Soit $f: A \to A'$

On dit que f est un homomorphisme d'anneau si:

- $\forall (x,y) \in A^2, \ f(x+y) = f(x) + f(y)$
- $\forall (x,y) \in A^2$, $f(x \times y) = f(x) \times' f(y)$
- $f(1_A) = 1_{A'}$

Définition 3.0.3

Soit $(K, +, \times)$ et $(K', +', \times')$ deux corps.

Soit $f: K \to K'$

On dit que f est un homomorphisme de corps si f est un homomorphisme d'anneau.

Propriété 3.0.2

Tout homomorphisme de corps est injectif.

En utilisant les notations de la dfinition:

Soit $\ker(f) = f^{-1} < \{0_{K'}\} >$

f est en particulier un homomorphisme de groupe de (K, +) dans (K', +'). Donc f est injectif ssi $\ker(f) = \{0_K\}$

Soit x un l
ment de K

 1^{er} cas: $x = 0_K$

 $\overline{f(0_K)} = 0_{K'} \text{ donc } 0_K \in \ker(f) \ \underline{2^{\text{ème}} \text{ cas: }} x \neq 0_K$

Alors x est inversible dans K: $x \times x^{-1} = 1_K$

Donc: $f(x \times x^{-1}) = f(1_K) = 1_{K'}$

$$f(x \times x^{-1}) = f(x) \times' f(x)^{-1}$$

D'où $f(x) \times' f(x)^{-1} = 1'_{K}$

En particulier, $f(x) \neq 0_{K'}$

Donc $x \notin \ker(f)$

Donc $ker(f) = \{0_K\}$

Donc f est injective.

Corollaire 3.0.1

Soit $f: K \to K'$ un homomorphisme de corps. Alors K est isomorphe à un sous-corps de K'

- ullet f est un homomorphisme de corps, donc f est injectif.
- L'image d'un corps par un homomorphisme de corps est un corps.
- f induit une bijection de K sur f(K):

$$\tilde{f} \colon K \longrightarrow f(K)$$

$$x \longmapsto f(x)$$

Finalement: K est isomorphe à f(K) et f(K) est un sous-groupe de K'.