Metropolia Ammattikorkeakoulu

Mathematics and Methods in Machine Learning and Neural Networks Mathematics / Home Exercises 4

1. a) Let $f_i(x) = w_i x + b_i$ with i = 1, 2, 3, where w_i and b_i are constants. Calculate

$$\frac{d}{dx} f_3(f_2(f_1(x))).$$

b) (Optional) Let f_i be as above and let

$$g(x) = \frac{1}{1 + e^{-x}}.$$

The derivative of the function g(x) can be written as

$$g'(x) = g(x) (1 - g(x)).$$

If we denote

$$z_1 = f_1(x), \quad a_1 = g(z_1), \quad z_2 = f_2(a_1), \quad a_2 = g(z_2)$$

what is the derivative

$$\frac{d}{dx}g(f_2(g(f_1(x))))?$$

2. Let $\alpha = 2$, $X_0 = (2, -1)$, and $X_i = (x_i, y_i)$. Using

$$X_{i+1} = X_i - \alpha \nabla f(X_i)$$

calculate X_1 and X_2 for the functions

a)
$$f(x,y) = x^2y + 3y$$
.

a)
$$f(x,y) = x^2y + 3y$$
, b) $f(x,y) = 3x^2 + xy + y^2 - 4y$.

Answer: a) $X_2 = (610, -221)$, b) $X_2 = (206, 27)$

3. (Python Exercise) Fit a logistic regression model

$$\hat{y} = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x)}}$$

to the data

using the gradient descent method.

Answer: $\theta_0 = -3.12097227$, $\theta_1 = 0.66032075$

4. We have the following small network, where the weights are written beside the edges, and there are no bias terms. The values of the cells are stored in matrices A_0 , A_1 and A_2 , where

$$A_0 = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}, \qquad A_1 = W_1 A_0, \qquad A_2 = W_2 A_1.$$

a) What are the matrices W_1 and W_2 ? Calculate the matrices A_1 and A_2 by hand or using Python.

b) (Optional) If you are using Python, calculate the matrices A_1 and A_2 using the formulae

$$A_1 = g(W_1 A_0)$$
 and $A_2 = g(W_2 A_1)$,

where

$$g(x) = \frac{1}{1 + e^{-x}}.$$

Answer: a)
$$A_2 = \begin{pmatrix} 4.16 \\ 39.18 \end{pmatrix}$$
, b) $A_2 = \begin{pmatrix} 0.96083404 \\ 0.95257383 \end{pmatrix}$