Name: Aditi Helekar UNC ID: 800966667

Project Report

Project Question:

Write a program to process a directed graph as follows:

- 1. Read in the number of vertices V and the number of edges E of the graph followed by its E edges, each in the form u, v, w where 1 <= u, v <= V & w > 0 representing a direct edge <u, v> with weight w.
- 2. Set up and print the adjacency matrix representation of the Graph.
- 3. Determine whether the graph is a dag. If it is a dag, print a topological order. If it is not a dag, print a cycle.
- 4. Find a shortest path tree from vertex 1. Print the adjacency matrix representation of the tree.

The program consists of two classes and a main file.

- 1. main.cpp
- 2. DirectedGraph.h & DirectedGraph.cpp
- 3. DFS.h & DFS.cpp

Algorithms used are:

- 1. Depth First Search using adjacency list technique
- 2. Topological Sort
- 3. All Pairs Shortest Path algorithm (Floyd Warshall Algorithm)

Steps followed in program as per files:

- 1. Main.cpp
 - a. Creates object of DirectedGraph.
 - b. Upon completion of processing deletes the above object.
- 2. DirectedGraph.h & DirectedGraph.cpp
 - a. Takes the input for graph from user such as number of vertices, number of edges and the edges.
 - b. Creates Adjacency matrix from the data and assigns 0 for no edge and 1 for edge existing.
 - c. Creates object of DFS which performs Depth first search on graph to detect the cycle.
 - d. Constructs graph for DFS
 - e. Performs shortest path Dijkstra algorithm for Vertex 1 and print the shortest path tree.

3. DFS.h & DFS.cpp

- a. This class implements Depth first search and Topological sort technique.
- b. Creates graph by adding edges from adjacency matrix.
- c. Checks if the given graph is Cyclic if true then does not perform topological sort.
- d. If graph is not cyclic it applies Topological Sort to find the Topological order of the vertices visited.

Time complexity of Algorithms:

1. Depth First Search with adjacency list

The time complexity of Depth first search is O(V + E) where

V => number of vertices of graph

E => number of edges of graph

As the edges and vertices increase in number the complexity increases.

2. Topological Sort

The number of operations is O(|E| + |V|) where

V => number of vertices of graph

E => number of edges of graph

For Adjacency list representation: O(|E|)

For Matrix representation: $O(|V|^2)$

3. Dijkstra Algorithm

The time complexity is $O(|V|^2)$

V => number of vertices of graph

Outputs:

Graph 1.

5 8

128

1 4 5

424

432

3 5 1

3 2 1

5 1 5

5 4 2

Enter the total number of vertices:
5
Enter the total number of edges:
8
Enter the directed edges in the form of $\langle u \ v \ w \rangle$:
1,2,8
1,4,5
4,2,4
4,3,2
3,5,1
3,2,1
5,1,5
5,4,2
The adjacency matrix for the given graph is:
08050
00000
01001
04200
50020
Graph is cyclic.

Vertex	Distance from Source Vertex 1	
1	0	
2	8	
3	7	
4	5	
5	8	
The adj	acency matrix for the Shortest Path Tree is:	
08050		
00000		
00001		
00200		
00000		
Graph	2.	
79		
1 2 2		
2 3 3		
3 4 5		
4 5 3		
3 5 1		
3 7 8		
3 6 6		
5 6 4		
672		
Enter the total number of vertices:		

Enter the total number of edges:			
9			
Enter the directed edges in the form of <u v="" w="">:</u>			
1,2,2			
2,3,3			
3,4,5			
4,5,3			
3,5,1			
3,7,8			
3,6,6			
5,6,4			
6,7,2			
The adjacency matrix for the given graph is:			
0200000			
0030000			
0005168			
0000300			
0000040			
0000002			
0000000			
Topological order is:			
3 7 6 5 4 2 1			
Graph is not cyclic.			

Vertex Distance from Source Vertex 1

- 1 0
- 2 2
- 3 5
- 4 10
- 5 6
- 6 10
- 7 12

The adjacency matrix for the Shortest Path Tree is:

0200000

0030000

0005100

0000000

0000040

0000002

0000000