Dispositivi di I/O

Lucidi fatti in collaborazione con l'Ing. Valeria Cardellini

Possibile organizzazione di un calcolatore

Dispositivi di I/O

- Un dispositivo di I/O è costituito da due componenti:
 - Il dispositivo fisico effettivo (disco, stampante, mouse, video, ...)
 - Il device controller (o interfaccia) che gestisce tutte le operazioni che il dispositivo è in grado di svolgere
 - Permette di uniformare la connessione tra il dispositivo ed il resto del sistema
- Il device controller è collegato attraverso il bus di sistema con CPU e memoria principale
- Il device controller è un sottosistema specializzato nel controllo dei dispositivi di I/O
 - Fornisce eventuali registri dove possono essere appoggiati i dati del trasferimento ed i comandi al dispositivo

Eterogeneità dei dispositivi di I/O

- Hanno caratteristiche molto diverse tra loro, classificabili in base a 3 dimensioni
 - Comportamento
 - Input/output o memorizzazione di dati
 - Controparte (partner)
 - Uomo o macchina
 - Tasso di trasferimento dati
 - Dal dispositivo in memoria e viceversa

Dispositivo	Funzione	Partner	Velocità (Mb/sec)
Tastiera	input	umano	0,0001
Mouse	input	umano	0,0038
Stampante laser	output	umano	3,2
Network/ wireless LAN	input o output	macchina	11-54
Network/LAN	input o output	macchina	100-1000
Disco ottico	memoriz- zazione	macchina	80
Disco magnetico	memoriz- zazione	macchina	240-2560
Scheda grafica	output	umano	800-8000

Disco magnetico

- Costituito da un insieme di piatti rotanti (da 1 a 15)
 - Piatti rivestiti di una superficie magnetica
- Esiste una testina (bobina) per ogni faccia del piatto
 - Generalmente piatti a doppia faccia
- Le testine di facce diverse sono collegate tra di loro e si muovono contemporaneamente in modo solidale
- Velocità di rotazione costante (ad es. 10000 RPM)
- La superficie del disco è suddivisa in anelli concentrici (tracce)
- Registrazione seriale su tracce concentriche
 - 1000-5000 tracce
 - Tracce adiacenti separate da spazi

Disco magnetico (2)

Ciascuna traccia è divisa in settori

- Settore: la più piccola unità che può essere trasferita (scritta o letta)
- Centinaia di settori per traccia, generalmente di lunghezza fissa (es., 512 B)
- Il settore contiene un ID del settore, i dati e un codice di correzione di errore: la capacità formattata scende del 15%
- Tracce sovrapposte su piatti diversi formano un cilindro

Organizzazione dei dati sul disco

Nei dischi più vecchi

- Ogni traccia conteneva lo stesso numero di settori
- Le tracce esterne (più lunghe) memorizzavano informazioni con densità minore

Nei dischi recenti

- Per aumentare le prestazioni, si utilizzano maggiormente le tracce esterne: zoned bit recording (o multiple zone recording)
- Tracce raggruppate in zone sulla base della loro distanza dal centro
 - Una zona contiene lo stesso numero di settori per traccia
- Più settori per traccia nelle zone esterne rispetto a quelle interne
- Densità di registrazione (quasi) costante

Lettura/scrittura di un disco

- Processo composto da 3 fasi:
 - Posizionamento della testina sul cilindro desiderato (tempo di seek)
 - Da 3 a 14 ms (può diminuire del 75% se si usano delle ottimizzazioni)
 - Dischi di diametro piccolo permettono di ridurre il tempo di posizionamento
 - Attesa che il settore desiderato ruoti sotto la testina di lettura/scrittura (tempo di rotazione)
 - In media è il tempo per ½ rotazione
 - Tempo di rotazione medio = 0.5/numero di giri al secondo
 Es.: 7200 RPM → Tempo di rotazione medio = 0.5/(7200/60) = 4.2 ms
 - Operazione di lettura o scrittura di un settore (tempo di trasferimento)
 - Da 30 a 80 MB/sec (fino a 320 MB/sec se il controllore del disco ha una cache built-in)
- In più: tempo per le operazioni del disk controller (tempo per il controller)

Prestazioni dei dischi magnetici

- Calcolo del tempo medio necessario a leggere o scrivere un settore di 512 byte sapendo che:
 - II disco ruota a 10000 RPM
 - Il tempo medio di seek è 6 ms
 - Il transfer rate è di 50 MB/sec
 - L'overhead del controller è di 0.2 ms

Tempo di seek + tempo medio di rotazione + tempo medio di trasferimento + overhead del controller =

$$= 6 \text{ ms} + (0.5/(10000/60)) \cdot 1000 \text{ ms} + 0.5 \text{ KB}/(50 \text{ MB/sec}) + 0.2 \text{ ms} = (6.0 + 3.0 + 0.01 + 0.2) \text{ ms} =$$

$$= 9.2 \, \text{ms}$$

Affidabilità e disponibilità

- Fallimento (failure): il comportamento del servizio non è conforme alle specifiche
 - Il fallimento è causato da un errore (error) i.e. porzione di stato scorretto
 - La causa di un errore è un guasto (fault)
 - tipo: hw, sw o operativo
 - durata: transiente, permanente, intermittente
 - visibilità esterna: fail-stop, bizantino

Affidabilità e disponibilità (2)

- •Affidabilità reliability: probabilità che il sistema funzioni secondo le specifiche di progetto continuamente dall'istante in cui viene attivato all'istante di "osservazione" R(t)
- •Disponibilità (availability) all'istante t: probabilità che il sistema funzioni secondo le specifiche di progetto quando gli si chiede un servizio A(t)
- Disponibilità (a regime permanente) availability: disponibilità quando t -> infinito

Affidabilità e disponibilità (3)

- Tempo medio di fallimento (mean time to failure o MTTF)
 - -Tempo medio che intercorre tra l'istante in cui il servizio è ripristinato ed il fallimento successivo
 - –E' un indice dell'affidabilità (reliability) del servizio
- •Tempo medio di riparazione (mean time to repair o MTTR):
 - -Tempo medio necessario per ripristinare il servizio

Affidabilità e disponibilità (4)

- Tempo medio tra due fallimenti (mean time between failures o MTBF)
 - Tempo medio tra due fallimenti consecutivi
 MTBF = MTTF + MTTR
- Disponibilità (availability) a regime permanente:

- Per aumentare il MTTF
 - Evitare i guasti (p.e. uso di componenti più costosi)
 - Tollerare i guasti
 - Tolleranza ai guasti: capacità del servizio di non subire fallimenti anche in presenza di guasti
 - Occorre introdurre *ridondanze* (spaziale, temporale)
 - Predire i guasti (evitare di usare sistemi con componenti prossimi al guasto) – manutenzione preventiva

- Le prestazioni dei dischi crescono più lentamente di quelle dei processori
 - Accesso ai dischi migliorato di 5/10 volte in 20 anni
- Idea di Patterson et al. nel 1987: usare in parallelo più dischi per aumentare le prestazioni dei dischi
- Problema: un array di dischi (senza ridondanza dei dati) è inaffidabile!
 - Affidabilità di un array da N dischi = Affidabilità di 1 disco/N
- Soluzione: definire un'organizzazione dei dati memorizzati sui dischi in modo da ottenere un'elevata affidabilità (tolleranza ai guasti) replicando i dati sui vari dischi dell'array
- RAID: Redundant Array of Inexpensive (Independent)
 Disks
 - Insieme di dischi a basso costo ma coordinati in azioni comuni per ottenere diversi livelli di tolleranza ai guasti

Livelli RAID

- Nessuna ridondanza dei dati
- Solo striping dei dati
 - Striping: allocazione di blocchi logicamente sequenziali (memorizzanti p.e. lo stesso file, che quindi è suddiviso in più blocchi) su dischi diversi per aumentare le prestazioni rispetto a quelle di un singolo disco
 - Lettura e scrittura in parallelo di stripe (strisce) su dischi diversi

Strip 1

Strip 5

Strip 9

Strip 2

Strip 6

Strip 10

Strip 3

Strip 7

Strip 11

 Non è un vero RAID perché non c'è nessuna ridondanza

Strip 0

Strip 4

Strip 8

 E' la migliore soluzione in scrittura, perchè non ci sono overhead per la gestione della ridondanza, ma non in lettura

- Mirroring (o shadowing)
- Ciascun disco è completamente replicato su un disco ridondante (mirror), avendo così sempre una copia
 - Usa il doppio dei dischi rispetto a RAID 0
- Ottime prestazioni in lettura
 - Molte possibilità di migliorare le prestazioni (es.: leggere dal disco con il minimo tempo di seek, leggere due file contemporanemanete su dischi "gemelli")
- Una scrittura logica richiede due scritture fisiche
- E' la soluzione RAID più costosa

- Rivelazione e correzione degli errori (codice di Hamming)
- Striping a livello di parola o di byte (in RAID 0 e 1 strip di settori)
 - Es. in figura: 4 bit (nibble) più 3 bit (codice di Hamming a 7 bit)
- Svantaggio: rotazione dei dischi sincronizzata
- Resiste a guasti semplici
- Ad ogni scrittura bisogna aggiornare i dischi di "parità" anche per la modifica di un singolo bit di informazione
- Forte *overhead* per pochi dischi (in figura +75%), ha senso con molti dischi, ad esempio:
 - Parola da 32 bit+(6+1) bit di parità ⇒ 39 dischi
 - Overhead del 22% (=7/32)
- In disuso

- Un bit di parità orizzontale ed uno verticale
- Resiste ad un guasto (transiente o permanente) alla volta
- Overhead abbastanza contenuto
- Solo un'operazione su disco per volta
 - Ciascuna operazione coinvolge tutti i dischi
- Soluzione diffusa per applicazioni che operano su grandi quantità di dati in lettura (come nei video games o nelle fruizioni multimediali), disco di parità collo di bottiglia in caso di scrittura

RAID 3: esempio

- Evoluzione di Raid 3 con striping a blocchi (come RAID 0)
 - la stripe nell'ultimo disco contiene i bit di parità dell'insieme di bit omologhi di tutte le altre stripe
- No rotazione sincronizzata (come in RAID 2 e 3)
- Resiste a guasti singoli (transienti e permanenti)
- Consente letture indipendenti sui diversi dischi
 - Se si legge una quantità di dati contenuta in una sola strip
- Il disco di parità è il collo di bottiglia

RAID 4: lettura e scrittura

Scrittura in RAID 3 e RAID 4

- Esempio di scrittura piccola in RAID 4:
 - Opzione 1: si leggono i dati sugli altri dischi, si calcola la nuova parità P' e la si scrive sul disco di parità (come per RAID 3)
 - Es.: 1 scrittura logica = 3 letture fisiche + 2 scritture fisiche
 - Opzione 2: poiché il disco di parità ha la vecchia parità, si confronta il vecchio dato D0 con il nuovo D0', si aggiunge la differenza a P, e si scrive P' sul disco di parità
 - Es.: 1 scrittura logica = 2 letture fisiche + 2 scritture fisiche

- Blocchi di parità distribuita
- Le stripe di parità sono distribuite su più dischi in modalità round-robin (circolare)
- Si evita il collo di bottiglia del disco di parità in RAID 4
- La scrittura piccola è gestita come in RAID 4

RAID 5: scrittura

- Ridondanza P+Q (si aumenta la distanza di Hamming)
- Anziché la parità, si usa uno schema che consente di ripristinare anche un secondo guasto
 - la singola parità consente di recuperare un solo guasto
- Overhead di memorizzazione doppio rispetto a RAID 5