Lógica proposicional - P5

Natalia Rodríguez

Miércoles 17 de febrero de 2016

Ejercicio 1. Recordemos el sistema axiomático SP:

SP1: $\vdash \alpha \rightarrow (\beta \rightarrow \alpha)$

SP2: $\vdash (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$ SP3: $\vdash (\neg \alpha \to \neg \beta) \to ((\neg \alpha \to \beta) \to \alpha)$ MP: $\vdash \alpha \text{ y } \vdash \alpha \to \beta \text{ entonces } \vdash \beta$

- a) Demostrar que toda instancia de SP1 es tautología.
- b) Mostrar que $\{\varphi \to \psi, \psi \to \theta\} \vdash \varphi \to \theta$. O sea, que a partir de $\{\varphi \to \psi, \psi \to \theta\}$ hay una demostración de $\varphi \to \theta$.

Resolución.

a) Tenemos que probar que todas las valuaciones hacen verdadera a todas las instancias de SP1. Supongamos que no es el caso. Entonces, deben existir α, β y v tal que $v \not\models \alpha \to (\beta \to \alpha)$. Luego,

$$\begin{array}{lll} v\not\models\alpha\to(\beta\to\alpha) & \text{entonces} & v\models\alpha\;\mathrm{y}\;v\not\models\beta\to\alpha & & \text{(por definición de}\models)\\ & & \text{entonces} & v\models\alpha,\,v\models\beta\;\mathrm{y}\;v\not\models\alpha & & \text{(por definición de}\models) \end{array}$$

lo cuál es absurdo, al que arribamos por suponer que existía una instancia de SP1 no era una tautología.

- b) Recordemos que una demostración de $\Gamma \vdash \varphi$ es una lista finita de fórmulas en la que cada una
 - una instancia de un axioma, sustituyendo uniformemente cada fórmula por otra arbitraria
 - $lue{}$ un elemento de Γ
 - el resultado de la aplicación de modus ponens de dos elementos anteriores

y además el último elemento en la lista es φ . Siguiendo este esquema, una posible demostración es

1.
$$(\psi \to \theta) \to (\varphi \to (\psi \to \theta))$$
 (SP1: $\alpha \mapsto (\psi \to \theta), \beta \mapsto \varphi$)

2.
$$\psi \rightarrow \theta$$
 (del conjunto de hipótesis)

3.
$$(\varphi \to (\psi \to \theta))$$
 (MP: 1,2)

4.
$$(\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))$$
 (SP2: $\alpha \mapsto \varphi, \beta \mapsto \psi, \gamma \mapsto \theta$)

5.
$$(\varphi \to \psi) \to (\varphi \to \theta)$$
 (MP: 3,4)

6.
$$\varphi \to \psi$$
 (del conjunto de hipótesis)

7.
$$\varphi \to \theta$$
 (MP: 5,6)

Este tipo de demostraciones suelen ser muy engorrosas. Muchas veces no queda claro por dónde empezar ni resulta evidente cómo instanciar axiomas y aplicar *modus ponens*. Para sufrir (un poco) menos al realizarlas, recordemos el teorema de la deducción:

Si
$$\Gamma \cup \{\varphi\} \vdash \psi$$
 entonces $\Gamma \vdash \varphi \rightarrow \psi$.

Este teorema nos permite tomar algunos atajos. Si logramos demostrar ψ usando $\Gamma \cup \{\varphi\}$ como hipótesis, entonces también existe una demostración de $\varphi \to \psi$ usando sólo Γ como hipótesis. Demostremos nuevamente $\{\varphi \to \psi, \psi \to \theta\} \vdash \varphi \to \theta$, pero ahora usando el teorema. Con este propósito veamos primero que $\{\varphi \to \psi, \psi \to \theta, \varphi\} \vdash \theta$.

- 1. $\psi \to \theta$ (del conjunto de hipótesis)
- 2. $\varphi \to \psi$ (del conjunto de hipótesis)
- 3. φ (del conjunto de hipótesis)

4.
$$\psi$$

5.
$$\theta$$
 (MP: 1,4)

Ahora, usando el teorema de la deducción podemos concluir que $\{\varphi \to \psi, \psi \to \theta\} \vdash \varphi \to \theta$.

Ejercicio 2. Dados $\{\Gamma_i\}_{i\in\mathbb{N}}$ tal que Γ_i es satisfacible y $\Gamma_i\subseteq\Gamma_{i+1}$. $\partial \Gamma^\infty=\bigcup_{i\in\mathbb{N}}\Gamma_i$ es satisfacible?

П

Resolución. Vamos a probar que todo subconjunto finito es satisfacible entonces por compacidad Γ^{∞} será satisfacible. Tomemos un conjunto finito $\Delta \subseteq \Gamma^{\infty}$, como es finito y está incluido en Γ^{∞} entonces existe un Γ_k que contiene a todo Δ . Este Γ_k es satisfacible y como $\Delta \subseteq \Gamma_k$ entonces Δ es satisfacible. Al haber tomado un Δ genérico probamos que todo subconjunto finito de Γ^{∞} es satisfacible entonces por compacidad Γ^{∞} es satisfacible.

Ejercicio 3. Sean Γ_1, Γ_2 satisfacibles, tal que $\Gamma_1 \cup \Gamma_2$ es insatisfacible. Mostrar que existe un φ tal que $\Gamma_1 \models \varphi$ y $\Gamma_2 \models \neg \varphi$.

Resolución. Sabemos que $\Gamma_1 \cup \Gamma_2$ es insatisfacible, entonces por compacidad debe existir un $\Gamma_0 \subseteq \Gamma_1 \cup \Gamma_2$ insatisfacible *finito*.

Observación 1. Γ_0 no está completamente incluido en Γ_1 ni en Γ_2 . Si así fuera entonces Γ_1 y Γ_2 serían insatisfacibles ya que contienen un conjunto insatisfacible.

Entonces la relación entre los conjuntos debe ser la siguiente, Γ_0 tiene elementos tanto de Γ_1 , Γ_2 inclusive algunos que no están en su intersección.

Podemos dividir a Γ_0 como

$$\Gamma_0 = \{\underbrace{\alpha_1, \dots, \alpha_n}_{\in \Gamma_1}, \underbrace{\beta_1, \dots, \beta_m}_{\in \Gamma_2 \setminus \Gamma_1}\}$$

quedando en el siguiente diagrama los α_i como la parte rayada en diagonal y los β_j como la parte rayada horizontalmente.

Veamos primero que

$$\Gamma_1 \models \alpha_1 \land \dots \land \alpha_n \tag{1}$$

Por un lado sabemos que Γ_1 es satisfacible, entonces existe una valuación v tal que $v \models \Gamma_1$. Como para todo $1 \le i \le n, \ \alpha_i \in \Gamma_1$ entonces para toda valuación v tal que $v \models \Gamma_1$ entonces $v \models \alpha_i$ y, por lo tanto, $v \models \alpha_1 \land \cdots \land \alpha_n$. En consecuencia, como toda valuación v que $v \models \Gamma_1$ es tal que $v \models \alpha_1 \land \cdots \land \alpha_n \Rightarrow \Gamma_1 \models \alpha_1 \land \cdots \land \alpha_n$.

Veamos ahora que

$$\Gamma_2 \models \neg (\alpha_1 \land \dots \land \alpha_n) \tag{2}$$

Por definición sabemos que si v es una valuación que satisface Γ_2 entonces $v \models \beta_j$ para todo $1 \le j \le m$ (ya que $\beta_j \in \Gamma_2$). Sabemos también que al menos existe una $v \models \Gamma_2$ porque Γ_2 es satisfacible. Sea v una valuación que cumple que $v \models \Gamma_2$ luego, como Γ_0 es insatisfacible, debe existir algún α_i tal que $v \not\models \alpha_i$ y, por lo tanto, $v \models \neg \alpha_i$. Luego $v \models \neg (\alpha_1 \land \cdots \land \alpha_n)$. En consecuencia, como toda valuación v que $v \models \Gamma_2$ es tal que $v \models \neg (\alpha_1 \land \cdots \land \alpha_n) \Rightarrow \Gamma_2 \models \neg (\alpha_1 \land \cdots \land \alpha_n)$. Podemos concluir entonces que

$$\Gamma_1 \models \alpha_1 \wedge \cdots \wedge \alpha_n$$

 $\Gamma_2 \models \neg (\alpha_1 \wedge \cdots \wedge \alpha_n)$

Por lo tanto si tomamos $\varphi = \alpha_1 \wedge \cdots \wedge \alpha_n$ tenemos que $\Gamma_1 \models \varphi$ y $\Gamma_2 \models \neg \varphi$ que era lo pedido. \square