

5.1 Exercices d'application

5.1.1 Mouvement dans un champ électrique uniforme

On étudie le mouvement d'une particule chargée dans le référentiel du laboratoire qu'on considère galiléen. On assimile cette particule à un point matériel M de masse m et de charge q. On s'intéresse au mouvement de cette particule dans un champ \overrightarrow{E} uniforme : $\overrightarrow{E} = E \overrightarrow{e}_x$. La vitesse initiale $\overrightarrow{v_0}$ de la particule fait un angle α avec le champ \overrightarrow{E} .

- 1. Déterminer les équations horaires du mouvement.
- 2. Déterminer l'équation de la trajectoire.
- 3. Tracer l'allure de cette trajectoire pour $\alpha \neq 0$ en distinguant le cas où la particule est un proton et le cas où la particule est un électron.
- 4. Quelle est la trajectoire si $\alpha = 0$?

5.1.2 Déflexion électrique dans un oscilloscope

On se place dans le référentiel terrestre supposé galiléen, associé à un repère cartésien $(O, \overrightarrow{u}_x, \overrightarrow{u}_y, \overrightarrow{u}_z)$. Entre les plaques planes et parallèles P_1 et P_2 d'un condensateur règne un champ électrique uniforme. On néglige les effets de bords en supposant que le champ est nul à l'extérieur du parallélépipède rectangle délimité par les plaques du condensateur. On note Ox l'axe perpendiculaire aux plaques. La distance entre les plaques est d, la longueur des plaques est D et la différence de potentiel entre les plaques est $U = V_{P_2} - V_{P_1}$ est positive. Des électrons (charge q = -e, masse m) accélérés pénètrent dans la zone de champ électrique uniforme avec une vitesse initiale : $\overrightarrow{v_0} = v_0 \overrightarrow{u}_z$ selon l'axe Oz.

1. Établir l'expression du champ électrique en fonction de U, d et \overrightarrow{u}_x . En déduire l'expression de la force électrique.

- 2. Établir l'équation de la trajectoire x = f(z) de l'électron dans la zone où règne le champ en fonction de d, U et v_0 .
- 3. Déterminer le point de sortie S de la zone de champ ainsi que les composantes de la vitesse en ce point.
- 4. On place un écran à une distance L de la sortie du condensateur (voir figure). Déterminer l'abscisse x_M du point d'impact de l'électron avec l'écran.
- Les oscilloscopes analogiques fonctionnent avec un tel dispositif. Expliquer le principe de fonctionnement de ces appareils.

5.1.3 Action d'un champ magnétique sur un proton ou un électron.

Un électron et un proton de même énergie cinétique décrivent des trajectoires circulaires dans un champ magnétique uniforme. Comparer :

- 1. leur vitesse,
- 2. le rayon de leur trajectoire,
- 3. leur période.

5.1.4 Chambre à bulle

Pour visualiser les trajectoires des particules chargées, les premiers détecteurs étaient des "chambres à bulles" dans lesquelles les particules (électrons, protons, neutrons, etc...) déclenchaient la formation de bulles dans un liquide et marquaient ainsi leur passage par une traînée de bulles. La figure ci-contre représente un cliché typique des traces observées lors d'une collision à haute énergie au CERN. Sur le côté droit, on a schématisé les trois types de trajectoires observées avec leur sens de parcours. Dans ces chambres à bulles, il règne un champ magnétique uniforme \overrightarrow{B} . Par ailleurs, le passage dans le liquide conduit à une lente décélération des particules.

- 1. Déterminer le signe de la charge pour les trois types de trajectoires observées.
- 2. Expliquer qualitativement pourquoi les trajectoires observées ne sont pas circulaires mais s'enroulent en spirales dont le rayon diminue.

5.1.5 Cyclotron de Lawrence.

Le premier cyclotron utilisé par Lawrence a coûté une trentaine de dollars et possédait un diamètre d=11 cm. Il a permis d'obtenir des protons d'énergie E=80 keV en appliquant des différences de potentiel U=1800 V entre les deux demi-cylindres. Données : $m_p=1,7.10^{-27}$ kg et $q_p=e=1,6.10^{-19}$ C.

- 1. Quelle était la vitesse de tels protons?
- 2. Combien de tours ont effectué les protons?
- 3. Quelle différence de potentiel aurait-il fallu appliquer pour obtenir la même énergie grâce à une accélération linéaire?
- 4. Estimer le champ magnétique utilisé.

5.2 Exercices de réflexion

5.2.1 Mouvement dans un champ magnétique non perpendiculaire à la vitesse initiale

Décrivez la trajectoire d'une particule chargée placée avec une vitesse initiale quelconque dans un champ magnétique uniforme.

5.2.2 Mouvement dans un champ magnétique

On considère une particule de masse m de charge q dans un champ magnétique uniforme : $\overrightarrow{B} = B\overrightarrow{u}_z$. La particule a une vitesse initiale $\overrightarrow{v_0} = v_0 \overrightarrow{u}_x$ et est initialement sur l'origine O du repère. Le référentiel d'étude est le référentiel terrestre considéré comme galiléen.

- 1. En appliquant le principe fondamental de la dynamique, montrer que le mouvement est décrit par un système de 2 équations différentielles couplées.
- 2. En intégrant ces équations et en tenant compte des conditions initiales à t = 0, déterminer les équations différentielles satisfaite par x(t) et y(t).
- 3. Montrer qu'on peut introduire une pulsation cyclotron que l'on déterminera.
- 4. Avec les conditions initiales, déterminer les solutions de ces équations.
- 5. Montrer que la trajectoire est une trajectoire circulaire dont vous déterminerez le rayon.