

IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): A method for printing a sheetlike or three-dimensional substrates substrate by the ink jet process comprising utilizing a thermally crosslinkable, aqueous recording fluid containing random polyurethane copolymers and one or more melamine derivatives as crosslinkers in a printing process.

Claim 2 (Currently Amended): The method as claimed in claim 1, wherein the recording fluid contains one or more melamine derivatives of the general formula (I)

where:

R¹ to R⁶ are the same or different and are each selected from the group consisting of hydrogen, (CH₂O)_z-R⁷, CH₂-OR⁷, CH(OR⁷)₂ and CH₂-N(R₇)₂

where z is from 1 to 10 and

each R⁷ is the same or different and is selected from the group consisting of hydrogen, C₁-C₁₂-alkyl, branched or unbranched; alkoxyalkylene, (-CH₂-CH₂-O)_m-H, (-CHCH₃-CH₂-O)_m-H, (-CH₂-CHCH₃-O)_m-H, (-CH₂-CH₂-CH₂-CH₂-O)_m-H, where m is an integer from 1 to 20.

Claim 3 (Original): The method as claimed in claim 2, wherein R¹ and R² are each hydrogen in the formula (I).

Claim 4 (Previously Presented): The method as claimed in claim 2, wherein R³ is CH₂OH in the formula (I).

Claim 5 (Currently Amended): A Printed printed sheetlike or three-dimensional substrates substrate obtained by the method of claim 1.

Claim 6 (Currently Amended): A process for preparing a colorant preparations preparation for recording fluids as defined in claim 1 comprising a mixture of mixing random polyurethane copolymers and one or more melamine derivatives as dispersing binders, water, optionally one or more organic solvents and a finely divided inorganic or organic colorant, which comprises mixing together in a ball mill dispersing binders, water, optionally one or more organic solvents and a finely divided inorganic or organic colorant.

Claim 7 (Currently Amended): A Colorant preparations colorant preparation for recording fluids, obtained by the process of claim 6.

Claim 8 (New): The method as claimed in claim 1, wherein the aqueous recording fluid exhibits a dynamic viscosity between 2 and 15 mPa • s.

Claim 9 (New): The method as claimed in claim 1, wherein the aqueous recording fluid exhibits a surface tension between 30 and 60 mN/m.

Claim 10 (New): The method as claimed in claim 1, wherein a weight ratio between the polyurethane random copolymer and melamine derivative is 1:1 to 10:1.

Claim 11 (New): The process as claimed in claim 6, wherein the mixing in the ball mill occurs at a pressure between 1 to 10 bar.

Claim 12 (New): The process as claimed in claim 6, wherein mixing in the ball mill occurs at a temperature between 0 and 250°C.

Claim 13 (New): The process as claimed in claim 6, wherein the amount of the finely divided inorganic or organic colorant in the colorant preparation is between 1 and 6 wt%.

Claim 14 (New): The process as claimed in claim 6, wherein the average particle size of the finely divided inorganic or organic colorant is between 0.05 and 0.2 μm .

Claim 15 (New): The process as claimed in claim 6, wherein the amount of the polyurethane random copolymer incorporated into the colorant preparation is between 0.5 and 10 wt%.

Claim 16 (New): The colorant preparation as claimed in claim 7, wherein the colorant preparation exhibits a pH between 7 and 9.