STAT 235 FINAL EXAM FORMULA SHEET

Summaries:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}, \ s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1} = \frac{1}{n - 1} \left[\sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n} \right]$$

 $IQR = Q_3 - Q_1$, outliers are observations 1.5*IQR below Q_1 or 1.5*IQR above Q_3 .

Probability:

Conditional Probability: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Complement Law: P(A') = 1 - P(A)

Multiplication Law: $P(A \cap B) = P(A) \times P(B \mid A) = P(B) \times P(A \mid B)$

If A and B are independent, $P(A \cap B) = P(A) \times P(B)$ since $P(A \mid B) = P(A)$.

Addition Law: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

If A and B are mutually exclusive, $P(A \cup B) = P(A) + P(B)$

For any two events *A* and *B*: $P(A) = P(A \cap B) + P(A \cap B')$

Permutations:
$$P_k^n = n \times (n-1) \times (n-2) \times ... \times (n-k+1) = \frac{n!}{(n-k)!}$$

Combinations:
$$C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$
, where $n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$

Linear Combinations of Random Variables:

If
$$Y = a_1X_1 + a_2X_2 + ... + a_nX_n + b$$
, $E(Y) = a_1E(X_1) + a_2E(X_2) + ... + a_nE(X_n) + b$
If $X_1, X_2, ..., X_n$ are independent, $Var(Y) = a_1^2Var(X_1) + a_2^2Var(X_2) + ... + a_n^2Var(X_n)$

Discrete Variables:

$$\mu = E(X) = \sum_{i=1} x_i p_i$$
, $F(x) = P(X \le x) = \text{Sum of probabilities } p_i \text{ for } x_i \le x$,

$$\sigma^{2} = Var(X) = E(X^{2}) - [E(X)]^{2} = \sum_{i=1}^{\infty} (x_{i} - \mu)^{2} p_{i} = \sum_{i=1}^{\infty} x_{i}^{2} p_{i} - \mu^{2}$$

Distribution	Probability mass function	Mean	Variance
Binomial	$f(x) = P(X = x) = {n \choose x} p^{x} (1-p)^{n-x}$	E(X) = np	Var(X) = np(1-p)
Geometric	$f(x) = P(X = x) = (1 - p)^{x-1} p$	$E(X) = \frac{1}{p}$	$Var(X) = \frac{(1-p)}{p^2}$
Negative Binomial	$f(x) = P(X = x) = {x-1 \choose r-1} (1-p)^{x-r} p^{r}$	$E(X) = \frac{r}{p}$	$Var(X) = \frac{r(1-p)}{p^2}$
Poisson	$f(x) = P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$	$E(X) = \lambda$	$Var(X) = \lambda$

Continuous Variables:

$$\int_{-\infty}^{\infty} f(x)dx = 1, P(a \le X \le b) = \int_{a}^{b} f(x)dx, F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x)dx, \sigma^{2} = Var(X) = E(X^{2}) - [E(X)]^{2} = \int_{0}^{\infty} x^{2}f(x)dx - \mu^{2}$$

Distribution	Density function	Mean	Variance	F(x)
Uniform	$f(x) = \frac{1}{b-a}$	$E(X) = \frac{b+a}{2}$	$Var(X) = \frac{(b-a)^2}{12}$	$F(x) = \frac{x - a}{b - a}$
Exponential	$f(x) = \lambda e^{-\lambda x}$	$E(X) = \frac{1}{\lambda}$	$Var(X) = \frac{1}{\lambda^2}$	$F(x) = 1 - e^{-\lambda x}$

Normal: If X has a normal distribution with mean μ and variance σ^2 , then $X \sim N(\mu, \sigma^2)$.

Standard normal: If
$$X \sim N(\mu, \sigma^2)$$
, then $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ and $\Phi(z) = P(Z \le z)$.

Normal approximation to binomial: If X follows a binomial distribution with parameters n and p, then

$$P(a \le X \le b) \approx P(a - 0.5 \le Y \le b + 0.5),$$

where *Y* is normal with the mean np and the variance np(1-p), under the assumption that $np \ge 15$ and $n(1-p) \ge 15$.

Sampling Distributions

Sample mean	Sample proportion	
$E(\bar{X}) = \mu$	$E(\hat{p}) = p$	
$Z = \frac{\overline{X} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\sim}{\sim} N(0, 1)$	$Z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} \pm \frac{0.5}{n} - p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\sim}{\sim} N(0,1)$	
Normal if $n \ge 30$ OR population is normal	Normal if $np \ge 15$ and $n(1-p) \ge 15$	

Inferences about μ (σ known)

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}, \ \overline{x} \pm z_{\alpha/2} \times \left(\frac{\sigma}{\sqrt{n}}\right), \ \mu \le \overline{x} + z_{\alpha} \times \frac{\sigma}{\sqrt{n}}, \ \overline{x} - z_{\alpha} \times \frac{\sigma}{\sqrt{n}} \le \mu$$

Inferences about μ (σ unknown)

$$t_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}, \overline{x} \pm t_{\alpha/2, n-1} \times \left(\frac{s}{\sqrt{n}}\right), \mu \leq \overline{x} + t_{\alpha, n-1} \times \frac{s}{\sqrt{n}}, \overline{x} - t_{\alpha, n-1} \times \frac{s}{\sqrt{n}} \leq \mu$$

Inferences about μ_d for paired data

$$t_0 = \frac{\overline{d} - \delta_0}{s_d / \sqrt{n}}, \ \overline{d} \pm t_{\alpha/2, n-1} \times \left(\frac{s_d}{\sqrt{n}}\right)$$

Inferences about $\mu_1 - \mu_2$ (independent samples, variances known)

$$z_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}, (\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \times \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Inferences about $\mu_1 - \mu_2$ (independent samples, variances unknown, equal variances)

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \; , \; s.e.(\overline{x}_1 - \overline{x}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$t_0 = \frac{(\overline{x}_1 - \overline{x}_2) - \delta_0}{s.e.(\overline{x}_1 - \overline{x}_2)}, \ (\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2, \nu} \times s.e.(\overline{x}_1 - \overline{x}_2), \ t\text{-distribution with } v = df = n_1 + n_2 - 2$$

Inferences about $\mu_1 - \mu_2$ (independent samples, variances unknown, variances not assumed equal)

$$t_{0} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - \delta_{0}}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}, \ (\overline{x}_{1} - \overline{x}_{2}) \pm t_{\alpha/2, \ \nu} \times \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}, \ t\text{-distribution with } \ \nu = df = \min\{n_{1}, n_{2}\} - 1$$

Simple Linear Regression (SLR)

Simple linear regression model: $Y = \beta_0 + \beta_1 x + ERROR$, $ERROR \sim N(0, \sigma^2)$. Estimated Regression Line: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

$$\hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}}, \ S_{xy} = \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}), \ \hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}, \ \hat{\sigma}^{2} = \frac{SSE}{n-2},$$

$$SSE = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

$$SST = SSR + SSE, F_0 = \frac{SSR/1}{SSE/(n-2)} = \frac{MSR}{MSE}, R^2 = \frac{SSR}{SST}$$

Inferences in Regression

$$t_0 = \frac{\hat{\beta}_1 - b_1}{s.e.(\hat{\beta}_1)}, \ \hat{\beta}_1 \pm t_{\alpha/2, v} \times s.e.(\hat{\beta}_1), s.e.(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}, t \text{ distribution with } v = n - 2$$

$$\left(\hat{\beta}_{0}+\hat{\beta}_{1}x^{*}\right)\pm t_{\alpha/2,\,\nu}\times\,\hat{\sigma}\sqrt{\frac{1}{n}+\frac{(x^{*}-\overline{x})^{2}}{S_{xx}}}\;;\left(\hat{\beta}_{0}+\hat{\beta}_{1}x^{*}\right)\pm\,t_{\alpha/2,\,\nu}\times\hat{\sigma}\sqrt{1+\frac{1}{n}+\frac{(x^{*}-\overline{x})^{2}}{S_{xx}}}$$

Inferences about p

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, \text{ under the assumption that } np_0 \ge 15 \text{ and } n(1 - p_0) \ge 15$$

$$\hat{p}\pm z_{\alpha/2}\times\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\ \ p\geq \hat{p}-z_{\alpha}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\ p\leq \hat{p}+z_{\alpha}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},$$

under the assumption that $n\hat{p} \ge 15$ and $n(1-\hat{p}) \ge 15$.

Inferences about $p_1 - p_2$

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}, \ z_0 = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, \ (\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Assumptions: $n_1\hat{p}_1$, $n_1(1-\hat{p}_1)$, $n_2\hat{p}_2$, $n_2(1-\hat{p}_2)$ are all larger than 15.

One-Way ANOVA

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$, $SST = SSTr + SSE$

$$F_0 = \frac{SSTr/(k-1)}{SSE/(N-k)} = \frac{MSTr}{MSE} \sim F_{k-1,N-k}$$