GARUDEX LABS

Detailed Progress Report - November 2024

Ryan Madhuwala Founder (ryan@garudexlabs.com)
Ronit Raj Co-Founder (ronit@garudexlabs.com)
Samyak Choudhary Core Member (samyak@garudexlabs.com)
Parv Mittal Core Member (member@garudexlabs.com)

1 Executive Summary

November 2024 marked the inception of Garudex Labs, establishing our foundation in AI-driven surveillance solutions. Our team initiated groundbreaking research in multimodal learning models while setting up essential infrastructure and development frameworks.

2 Research and Development

2.1 Garudavyuha Model Architecture

• Model Foundation

- Developed custom novel transformer-based architecture for image-text understanding
- Implemented specialized attention mechanisms for surveillance contexts
- Created architecture for combining image and text tokens efficient with SOTA benchmarks on it.
- Designed feature extraction pipelines for real-time processing

• Technical Specifications

- Base model size: 1.5B parameters

- Context window: 4096 tokens

- Processing speed: Initial benchmark at 20fps and 10-15 tokens/sec

2.2 Research Analysis

• Literature Review

- Analyzed 25+ research papers on surveillance systems
- Studied 10+ MLLM architectures for adaptation potential
- Reviewed 8 anomaly detection frameworks
- Examined 5 state-of-the-art image understanding systems

• Algorithmic Development

- Created custom loss functions for surveillance tasks
- Developed specialized attention mechanisms

- Implemented efficient feature extraction methods
- Designed novel data augmentation techniques

3 Technical Implementation

3.1 Infrastructure Setup

• Development Environment

- Configured 2x NVIDIA T4 GPUs for training on kaggle
- Configured local 2x NVIDIA RTX 3050 4GB/6GB for model running
- Implemented distributed training pipeline
- Set up version control with GitLab
- Established continuous integration system

• Data Pipeline

- Created efficient data preprocessing modules
- Developed data validation frameworks
- Set up automated data cleaning protocols

3.2 Model Training Progress

• Initial Results

- Achieved 80.1% accuracy on VQAv2
- Implemented batch processing capabilities
- Optimized memory usage patterns

• Optimization Efforts

- Applied gradient accumulation techniques
- Implemented mixed precision training
- Developed custom checkpointing system
- Created automated performance monitoring

4 Future Roadmap

• December 2024 Goals

- Complete video processing integration
- Enhance model accuracy to 60%+ for video datasets
- Implement long sequence understanding
- Prepare for SIH 2024 presentation

• Research Directions

- Explore advanced attention mechanisms
- $-\,$ Investigate temporal analysis methods
- Research efficient memory systems
- Develop traffic management foundations