Adding interactions to regression models Consder two predictors: $Y = \beta_0' + \beta_1' X_1 + \beta_2' X_2 + \xi$ => association between ig scores does not depend on his How can we relax this assumption? $E[Y|X_1=1,X_2]-E[Y|X_1=0,X_2]=\beta_1+\beta_2X_2$ want this to depend on X2 New Mole! $Y = \beta_0 + (\beta_1 + \beta_2 X_2) X_1 + \beta_2 X_2 + \varepsilon$ = β , \dagger β , $X_1 + \beta$, $X_2 + \beta$, $X_1 + \xi$ (interaction) In order to fit welficents of least squares write X3=X1X2 Y = Bo + BIX1 + B2 X2 + B3 X3+E (interaction) Example Suppose X, ~ Bemoulli(1/2) \$ 0=0, \$ =1 $X_2 \sim Normal(0,1)$ $\beta_2 = 1, \beta_{1/2} = -1$ Sketch data consistent with these parameters When Z = 0, Y = Bo + B2 x2 + E when X1=1, Y=Bo+ B1+(B1+B2) X2+2 $\frac{7}{2} = 1 + 0 \times 2 + \epsilon$

Example (test scores)

	B	p-m
Cost	-11.9	0.4
he	51-2	0.001
ib	0.96	0.000
hs-ig	-0.48	0.003
-		

Sketch data that is consistent

-/ tree values, focus on relation

between regression lines, ust

exact #s

when
$$X_{-hs} = D$$

 $Y = -11.5 + 0.96 X_{i6} + 2$

when
$$X_{hs} = 1$$

 $Y = -11.5 + 51.2 + (0.96 - 0.48) XijtE$
 $= 41 + 0.48 Xij + E$
April $= 80 = 7$ My $= 80 = 7$

fourier models - see tyred unter section 4/5