寒假第一讲 相交线

【知识点一】

1. 邻补角: $\angle 1$ 和 $\angle 2$ 有一条公共边 OC ,它们的另一边 OA 、 OB 互为反向延长线($\angle 1$ 和 $\angle 2$ 互补),具有这种关系的两个角叫做互为邻补角.

思考: 互为邻补角与互为补角有什么联系和区别?

答: 互为邻补角的两个角一定互为补角; 互为补角的两个角不一定互为邻补角.

互为补角只是数量关系, 互为邻补角是数量+位置关系.

- 2. 对顶角: $\angle 1$ 和 $\angle 3$ 有一个公共顶点 O ,并且 $\angle 1$ 的两边 OA 、 OC 分别是 $\angle 3$ 两边 OB 、 OD 的反向延长线,具有这种位置关系的两个角叫做互为对顶角.
- 3. 对顶角的性质:对顶角相等. $\angle 1 = \angle 3$. $\angle 2 = \angle 4$.
- 4. 余角、补角的性质: (1) 同角(或等角)的余角相等; (2) 同角(或等角)的补角相等.

例 1、下列各图中, ∠1 和 ∠2 互为对顶角的是

(

)

例 2、把解答过程补全:

已知直线 $AB \setminus CD$ 相交于点 O , OE 平分 $\angle BOC$. 已知 $\angle BOE = 65^{\circ}$ 求 : $\angle AOD \setminus \angle AOC$ 的度数 .

【基础练习一】

1. 下列说法: ① 对顶角相等; ②相等的角是对顶角; ③ 互补的两个角是邻补角; ④ 两个邻补角一定互补; ⑤ 两条直线相交形成的四个角中, 同一角的两邻补角一定是对顶角. 其中正确的有

2. 如图,直线 $AB \setminus CD \setminus EF$ 相交于 O , OF 平分 $\angle BOD$, $\angle COB = \angle AOC + 45^{\circ}$ 求 $\angle AOF$ 的度数. 难度有点大,要么换一个简单的写过程的,要么把这题换成例 2 类型的填空题。

【知识点二】

- 1. 夹角: 两条直线相交形成的四个小于平角的角, 其中不大于直角的角叫做两条直线的夹角 α ($0 < \alpha \le 90^\circ$).
- 2. 斜交与斜线:如果两条直线的夹角为锐角,就说这两条直线互相斜交,其中 一条直线叫做另一条直线的斜线.
- 3. 垂直与垂线:如果两条直线的夹角为直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
 - 描述: "垂直"用符号"⊥"表示,读作"垂直于". 直线 AB 与 CD 垂直, 垂足为点 O,写作"AB ⊥ CD 于 O"
- 4. 垂线的性质 1: 过一点有且只有一条直线与已知直线垂直. 垂线的性质 2: 联结直线外一点与直线上各点的所有线段中, 垂线段最短.
- 5. 直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离.特别的, 直线上的点到这条直线的距离为零.

例 3	、如右图:	$\angle ACB = 90^{\circ}$,	$CD \perp AB \mp b$	点 D ,则
	线段 AC 的-	长表示点	到直线	的距离;
	线段BD的	长表示点	_到直线	_的距离;
	线段	_的长度表示点	B 到直线AC	》的距离;
	线段	_的长度表示点	(A 到直线CD	的距离;
	线段	的长度表示点	(C 到直线AE	3 的距离.

【基础练习二】

1.	. ①两条相交直线所成的各角中有	_个锐角	-	
	② A 为直线 l 外一点, B 为直线 l 上一点,	点 <i>A</i> 到 <i>l</i>	的距离为5cm,	,则线段 AB
	的取值范围是 .			

- 2. 如图, $\angle ACB = 90^{\circ}$, $CD \perp AB$ 于点 D, 则下列的结论中正确的是 ()
 - ① AC 与BC 互相垂直;
 - ② CD 和BC 互相垂直;
 - ③ 点B 到AC 的垂线段是线段CA;
 - ④ 点C 到AB 的距离是线段CD;
 - ⑤ 线段AC 的长度是点A 到BC 的距离;
 - A. ① ⑤
- B. ① ④
- C.3 5
- D. 1) 4) 5)

3. 把解答过程补全

如图,已知点O 在直线AB上,OM 平分 $\angle AOC$,ON 平分 $\angle BOC$,那么OM 与 ON 垂直吗?

解: : OM 平分 ∠AOC ()

$$\therefore \angle MOC = \frac{1}{2} \angle \underline{\hspace{1cm}} ($$

)

同理, _____=___

=___+

=____

又∵点O 是直线AB上一点 ()

 $\therefore \angle MON = \underline{\hspace{1cm}}, \quad \therefore OM \underline{\hspace{1cm}}ON \quad ()$

【知识点三】

1. "三线八角图":在同一平面内,直线a 、b 被直线l 所截,形成的图形叫做三线八角图

2. 八角的分类

	基本图形	截线	两条直线	类别	记忆方式	常见变式
∠1 和∠5 ∠2 和∠6 ∠3 和∠7 ∠4 和∠8	79	同旁	同侧	同位角	"F"型	
∠3和∠5 ∠4和∠6	Z	两旁	之间	内错角	"Z"型	
∠3 和 ∠6 ∠4 和 ∠5		同旁	之间	同旁内角	"C"型	

● 描述: $\angle 1$ 和 $\angle 5$ 是直线 a 与 b 被直线 l 所截得的同位角.

例4、如图,

∠1 和 ∠B 是直线 _____ 和 ____ 被直线 ____ 所截而成的 _____;
∠A 和 ∠1 是直线 ____ 和 ____ 被直线 ____ 所截而成的 _____;
∠1 和 ∠2 是直线 ____ 和 ____ 被直线 ____ 所截而成的 _____;

【基础练习三】

1. 如图所示:

/4\ /1 To /2 E	<i>→ /></i> =	2-4-	<u> </u>
(1) ∠1 和∠2 是	,它们是	被	截成的:

- (2) $\angle 3$ 与 $\angle 4$ 是 被 所截而得到的 角;

【巩固提高】

- 1. 已知 $\angle AOB = 70^{\circ}$, $\angle BOC = 85^{\circ}$,则 $\angle AOC =$ ______.
- 2. 如图,已知 AOB 是一条直线,OC 是 $\angle AOB$ 的平分线, $\angle DOE$ 是直角,图中哪些角互余?

3. 如图、 $\angle 1^{\sim} \angle 9$ 中是同位角的有几对? 是内错角的有几对?

补充同旁内角: 10 对, 每个三角形里是 3 对, 共 9 对. 再加上∠2 和∠8 , 共 10 对.

4.	平面内的3条直线,	最多有_	个交点;其中	同位角最多有	对;
	内错角最多有	对:「	司旁内角最多有	对:	

- (1) 平面内的4条直线,最多有_____个交点;其中同位角最多有_____对;
- (2) 平面内的5 条直线,最多有_____个交点;其中同位角最多有_____对; 平面内的n(n>2) 条直线,最多有_____个交点;其中同位角最多有_____对.

【课后作业】

- 1. 已知 $\angle \alpha$ 、 $\angle \beta$ 互为邻补角,且 $\angle \alpha$ 的度数是 $\angle \beta$ 度数的 5 倍,则 $\angle \alpha$ = ______.
- 2. 若点 P 到直线的距离为 3 ,则直线 l 上到 P 点距离为 4 的点的个数为_______.
- 3. 如图, AB = CD 交于点O, OM 为射线.
- (1) 写出 $\angle BOD$ 的对顶角.
- (2) 写出 $\angle BOD$ 与 $\angle COM$ 的邻补角.
- (3) 已知 $\angle AOC = 70^{\circ}$, $\angle BOM = 80^{\circ}$, 求 $\angle DOM$ 和 $\angle AOM$ 的度数.

4. 已知,直线 $a \times b \times c$ 的位置关系如图所示,请利用图中信息填空:

- (2) ∠4 与 ∠11 是______,它们是直线_____与_____被直线______所截得;
- (3) ∠3 与∠5 是_____,它们是直线____与____被直线_____所截得;
- (4) 直线a 与b 被直线c 所截得的同旁内角是______;
- (5) 直线a 与c 被直线b 所截得的内错角是________;
- 5. 已知 $\angle AOB$ 与 $\angle BOC$ 互为邻补角,OD 平分 $\angle AOB$,OE 在 $\angle BOC$ 内, $\angle BOE = \frac{1}{3} \angle BOC$, $\angle DOE = 72^{\circ}$,求 $\angle EOC$.

【思维拓展】

1.	如果 $\angle 1$ 和 $\angle 2$ 有公共顶点,且 $\angle 1$ 的两边分别垂直于的两边,则 $\angle 1$ 与 $\angle 2$ 的
	关系是 <u></u> .
2.	两条直线相交,有对对顶角,对邻补角;
	三条直线相交于一点,有对对顶角,对邻补角;
	四条直线相交于一点,有对对顶角,对邻补角;
	由此可见, n 条直线相交于一点,有 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
3.	点 A 、点 B 所在直线垂直于直线 l ,且点 A 到直线 l 的距离为 2 ,点 B 到直
	线 l 的距离为 4 ,则线段 AB 的中点到直线 l 的距离为
4.	图中,同旁内角的对数是对.
5.	平面上有17条直线,其中5条直线经过同一点,这些直线最多把平面分成