Using Dask DataFrames

PARALLEL COMPUTING WITH DASK

Dhavide Aruliah
Director of Training, Anaconda

Reading CSV

import dask.dataframe as dd

- dd.read_csv() function
 - Accepts single filename or glob pattern (with wildcard *)
 - Does not read file immediately (lazy evaluation)
 - File(s) need not fit in memory

Reading multiple CSV files

%ls

```
quarter1.csv quarter2.csv quarter3.csv quarter4.csv
```

```
transactions = dd.read_csv('*.csv')
```

```
transactions.head()
transactions.tail()
```

```
id
                            date
             amount
       names
              -1159
131
     Norbert
                     2016-01-01
              1149
                     2016-01-01
       Jerry
342
                     2016-01-01
485
        Dan
               1380
               1555 2016-01-02
     Xavier
513
    Michael
                    2016-01-02
849
                363
```

	id	names	amount	date
195	838	Wendy	87	2016-12-28
196	915	Bob	852	2016-12-30
197	749	Patricia	1741	2016-12-31
198	743	Michael	1191	2016-12-31
199	889	Wendy	336	2016-12-31

Building delayed pipelines

```
is_wendy = (transactions['names'] == 'Wendy')
wendy_amounts = transactions.loc[is_wendy, 'amount']
wendy_amounts
```

```
Dask Series Structure:
npartitions=4
None int64
None ...
None ...
None ...
None ...
None ...
Name: amount, dtype: int64
Dask Name: loc-series, 24 tasks
```


Building delayed pipelines

```
wendy_diff = wendy_amounts.sum()
wendy_diff
```

```
dd.Scalar<series-..., dtype=int64>
```

```
wendy_diff.visualize(rankdir='LR')
```


Visualizing pipelines

Compatibility with Pandas API

Unavailable in dask.dataframe:

- some unsupported file formats (e.g., .xls , .zip , .gz)
- sorting

Available in dask.dataframe:

- indexing, selection, & reindexing
- aggregations: .sum() , .mean() , .std() , .min() ,.max() etc.
- grouping with .groupby()
- datetime conversion with dd.to_datetime()

Let's practice!

PARALLEL COMPUTING WITH DASK

Timing DataFrame Operations

PARALLEL COMPUTING WITH DASK

Dhavide Aruliah
Director of Training, Anaconda

How big is big data?

DatasizeM	Required hardware	
$M < 8\mathrm{GB}$	RAM (single machine)	
$8\mathrm{GB} < M < 10\mathrm{TB}$	hard disk (single machine)	
$M>10\mathrm{TB}$:	specialized hardware	

Two key questions:

- Data fits in RAM (random access memory)?
- Data fits on hard disk?

Taxi CSV files

```
%ll -h yellow_tripdata_2015-*.csv
```

```
1.8G 31 Jul 16:43 yellow_tripdata_2015-0
      staff
 user
              1.8G 31 Jul 16:43 yellow_tripdata_2015-0
       staff
 user
              1.9G 31 Jul 16:43 yellow_tripdata_2015-0
       staff
 user
              1.9G 31 Jul 16:43 yellow_tripdata_2015-0
       staff
 user
              staff
1 user
       staff
              1.8G 31 Jul 16:43 yellow_tripdata_2015-0
1 user
              staff
1 user
              1.6G 31 Jul 16:43 yellow_tripdata_2015-0
       staff
1 user
       staff
              1.6G 31 Jul 16:43 yellow_tripdata_2015-0
1 user
       staff
              1.8G 31 Jul 16:43 yellow_tripdata_2015-7
 user
              1.7G 31 Jul 16:43 yellow_tripdata_2015-7
       staff
1 user
              1.7G 31 Jul 16:43 yellow_tripdata_2015-1
      staff
1 user
```


Timing I/O & computation: Pandas

```
import time, pandas as pd
t_start = time.time();
df = pd.read_csv('yellow_tripdata_2015-01.csv');
t_end = time.time();
print('pd.read_csv(): {} s'.format(t_end-t_start)) # time [s]
```

```
pd.read_csv: 43.820565938949585 s
```

```
t_start = time.time();
m = df['trip_distance'].mean();
t_end = time.time();
print('.mean(): {} ms'.format((t_end-t_start)*1000)) # time [ms]
```

```
.mean(): 17.752885818481445 ms
```

Timing I/O & computation: Dask

```
import dask.dataframe as dd, time

t_start = time.time();

df = dd.read_csv('yellow_tripdata_2015-*.csv');

t_end = time.time();

print('dd.read_csv: {} ms'.format((t_end-t_start)*1000)) # time [ms
```

```
dd.read_csv: 404.7999382019043 ms
```

```
t_start = time.time();
m = df['trip_distance'].mean();
t_end = time.time();
print('.mean(): {} ms'.format((t_end-t_start)*1000)) # time [ms]
```

```
.mean(): 2.289295196533203 ms
```


Timing I/O & computation: Dask

```
t_start = time.time();
result = m.compute();
t_end = time.time();
print('.compute(): {} min'.format((t_end-t_start)/60)) # time [min]
```

.compute(): 3.4004417498906454 min

Timing in the IPython shell

```
m = df['trip_distance'].mean()
%time result = m.compute()
```

```
CPU times: user 9min 50s, sys: 1min 16s, total: 11min 7s
Wall time: 3min 1s
```

Is Dask or Pandas appropriate?

- How big is dataset?
- How much RAM available?
- How many threads/cores/CPUs available?
- Are Pandas computations/formats supported in Dask API?
- Is computation I/O-bound (disk-intensive) or CPU-bound (processor intensive)?

Best use case for Dask

- Computations from Pandas API available in Dask
- Problem size close to limits of RAM, fits on disk

Let's practice!

PARALLEL COMPUTING WITH DASK

Analyzing NYC Taxi Rides

PARALLEL COMPUTING WITH DASK

Dhavide Aruliah
Director of Training, Anaconda

The New York taxi dataset

Taxi CSV files

```
%ll -h yellow_tripdata_2015-*.csv
```

```
1.8G 31 Jul 16:43 yellow_tripdata_2015-01.csv
          1 user staff
                           1.8G 31 Jul 16:43 yellow_tripdata_2015-02.csv
                  staff
           1 user
                           1.9G 31 Jul 16:43 yellow_tripdata_2015-03.csv
          1 user staff
                           1.9G 31 Jul 16:43 yellow_tripdata_2015-04.csv
          1 user staff
                           1.9G 31 Jul 16:43 yellow_tripdata_2015-05.csv
-rw-r--r-- 1 user staff
                           1.8G 31 Jul 16:43 yellow_tripdata_2015-06.csv
-rw-r--r-- 1 user staff
                           1.7G 31 Jul 16:43 yellow_tripdata_2015-07.csv
-rw-r--r-- 1 user staff
                           1.6G 31 Jul 16:43 yellow_tripdata_2015-08.csv
-rw-r--r-- 1 user staff
-rw-r--r-- 1 user staff
                           1.6G 31 Jul 16:43 yellow_tripdata_2015-09.csv
                           1.8G 31 Jul 16:43 yellow_tripdata_2015-10.csv
-rw-r--r-- 1 user staff
                           1.7G 31 Jul 16:43 yellow_tripdata_2015-11.csv
-rw-r--r-- 1 user staff
                           1.7G 31 Jul 16:43 yellow_tripdata_2015-12.csv
-rw-r--r-- 1 user staff
```

Exercises use smaller files...

Taxi data features

```
import pandas as pd

df = pd.read_csv('yellow_tripdata_2015-01.csv')

df.shape

df.columns
```


Amount paid

- How much was each ride?
 - o fare_amount : cost of ride
 - o tolls_amount : charges for toll roads
 - extra : additional charges
 - tip_amount : amount tipped (credit cards only)
 - total_amount : total amount paid by passenger

Payment type

```
df['payment_type'].value_counts()
```

```
1  7881388
2  4816992
3  38632
4  11972
5  2
Name: payment_type, dtype: int64
```


Let's practice!

PARALLEL COMPUTING WITH DASK

