DSCI353-353m-453: Class 04a GGplot Graphics in Action

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

07 February, 2023

Contents

4.1.3.1 ggplot:	2 Graphics
4.1.3.2 Creatin	g a graph with ggplot
4.1.3.2.1	
4.1.3.2.2	Geoms
4.1.3.2.3	Grouping
4.1.3.2.4	Scales
4.1.3.2.5	Facets
4.1.3.2.6	Labels
4.1.3.2.7	Themes
4.1.3.3 ggplot:	2 details
4.1.3.3.1	Placing the data and mapping options
4.1.3.3.2	Graphs as objects
4.1.3.3.3	Exporting graphs
4.1.3.3.4	Common Mistakes
4.1.3.4 ggplot:	2 Summary
4.1.3.5 Links	

4.1.3.1 ggplot2 Graphics

• A good book on ggplot2 is The Grammar of Graphics

4.1.3.2 Creating a graph with ggplot

- The ggplot2 package uses a series of functions
 - to build up a graph in layers.
- We'll build a complex graph
 - by starting with a simple graph
 - and adding additional elements, one at a time.
- By default, ggplot2 graphs
 - appear on a grey background
 - with white reference lines.
- We'll start by setting the default theme
 - to a white background
 - with light grey reference lines.
- This looks better when printed in black and white.

Let's load the ggplot2 package and set this default theme.

```
library(ggplot2)
theme_set(theme_bw())
```

4.1.3.2.1

- The first function in building a graph is the ggplot() function.
- It specifies the
 - data frame containing the data to be plotted
 - the mapping of the variables to visual properties of the graph.

The mappings are placed in an aes() function

• (which stands for aesthetics or "something you can see").

```
library(ggplot2)
library(mosaicData)
ggplot(data = CPS85, mapping = aes(x = exper, y = wage))
```


Why is the graph empty?

- We specified that the exper variable
 - should be mapped to the x-axis
- and that the wage variable
 - should be mapped to the y-axis,
- but we haven't yet specified what we wanted placed on the graph.

In this case,

• we'll want points to represent each participant.

4.1.3.2.2 Geoms Geoms are the geometric objects

- (points, lines, bars, and shaded regions)
 - that can be placed on a graph.
- They are added using functions that start with the phrase geom_.
- Currently, 37 different geoms are available and the list is growing.

Table 4.1 describes the more common geoms,

• along with frequently used options for each.

We'll add points using the geom_point() function,

Table 4.1 Geom functions

Function	Adds	Options
geom_bar()	Bar chart	color, fill, alpha
<pre>geom_boxplot()</pre>	Box plot	color, fill, alpha, notch, width
<pre>geom_density()</pre>	Density plot	color, fill, alpha, linetype
<pre>geom_histogram()</pre>	Histogram	color, fill, alpha, linetype, binwidth
<pre>geom_hline()</pre>	Horizontal lines	color, alpha, linetype, size
geom_jitter()	Jittered points	color, size, alpha, shape
geom_line()	Line graph	colorvalpha, linetype, size
<pre>geom_point()</pre>	Scatterplot	color, alpha, shape, size
geom_rug()	Rug plot	color, side
geom_smooth()	Fitted line	method, formula, color, fill, linetype, size
<pre>geom_text()</pre>	Text annotations	Many; see the help for this function
<pre>geom_violin()</pre>	Violin plot	color, fill, alpha, linetype
geom_vline()	Vertical lines	color, alpha, linetype, size

Figure 1: fig

• creating a scatterplot.

In ggplot2 graphs, functions are chained together

• using the + sign to build a final plot.

```
library(ggplot2)
library(mosaicData)
ggplot(data = CPS85, mapping = aes(x = exper, y = wage)) + geom_point()
```


It appears that as experience goes up,

- wages go up,
- but the relationship is weak.

The graph also indicates

- that there is an outlier.
- One individual has a wage
 - much higher than the rest.
- We'll delete this case and reproduce the plot.

```
CPS85 <- CPS85[CPS85$wage < 40, ]
ggplot(data = CPS85, mapping = aes(x = exper, y = wage)) +
  geom_point()</pre>
```


A number of options can be specified

- in a geom_ function (see table 4.1).
- Options for geom_point()
 - include color, size, shape, and alpha.
- These control
 - the point color, size, shape, and transparency, respectively.
- Colors can be specified by name or hexadecimal code.
- Shape and linetype can be specified by
 - the name or number representing the pattern or symbol respectively.
- Point size is specified with positive real numbers starting at zero.
- Large numbers produce larger point sizes.
- Transparency (alpha) ranges from
 - 0 (completely transparent)
 - to 1 (completely opaque).
- Adding a degree of transparency
 - can help visualize overlapping points.

We'll also change the gray background to white using theme

It would be helpful if the graph

• had a line summarizing the trend between experience and wages.

We can add this line with the geom_smooth() function.

- $\bullet\,$ Options control the type of line
 - (linear, quadratic, nonparametric),
- the thickness of the line,
- the line's color,
- and the presence or absence of a confidence interval.

Here we request a linear regression (method = lm) line.

We can see from this line that on average,

• wages appear to increase to a moderate degree with experience.

4.1.3.2.3 Grouping

- In the previous section, we set graph characteristics
 - such as color and transparency to a constant value.
- However, we can also map variables values
 - to the color, shape, size, transparency, line style,
 - and other visual characteristics of geometric objects.
- This allows groups of observations
 - to be superimposed in a single graph
 - (a process called grouping).

Let's add sex to the plot

• and represent it by color, shape, and linetype.

```
ggplot2::ggplot(
  data = CPS85,
  mapping = aes(
    x = exper,
    y = wage,
    color = sex,
    shape = sex,
    linetype = sex
)
) +
  geom_point(alpha = .7, size = 3) +
  geom_smooth(method = "lm", se = FALSE, size = 1.5)
```


By default, the first group (female) is represented

- by pink filled circles
 - and a solid pink line,
- while the second group (male) is represented
 - by teal filled triangles
 - and a dashed teal line.

Note that the color = sex, shape = sex, and linetype = sex, options

- are placed in the aes() function
 - because we are mapping a variable to an aesthetic.
- The geom smooth option (se = FALSE)
 - was added to suppresses the confidence intervals,
 - making the graph less busy and easier to read.
- The size = 1.5 option
 - makes the line a bit thicker.

4.1.3.2.4 Scales As we've seen, the aes() function is used

- to map variables to the visual characteristics of a plot.
- Scales specify how each of these mappings occurs.
- For example, ggplot2 automatically creates plot axes
 - with tick marks, tick mark labels, and axis labels.
- Often they look fine, but occasionally
 - you'll want to take greater control over their appearance.
- Colors that represent groups are chosen automatically,
 - but you may want to select a different set of colors
 - based on your tastes or a publication's requirements.

Scale functions (which start with scale_)

• allow you to modify these default scaling.

In the next plot,

• we'll change the x- and y-axis scaling,

Function	Description
<pre>scale_x_continuous(), scale_y_continuous()</pre>	Scales the x and y axes for quantitative variables. Options include breaks for specifying tick marks, labels for specifying tick mark labels, and limits to control the range of the values displayed.
<pre>scale_x_discrete(), scale_y_discrete()</pre>	Same as above for axes representing categorical variables.
scale_color_manual()	Specifies the colors used to represent the levels of a categorical variable. The values option specifies the colors. A table of colors can be found at http://research.stowers.org/mcm/efg/R/Color/Chart/ColorChart.pdf

Figure 2: Scales

- and the colors representing males and females.
- The x-axis representing exper
 - will range from 0 to 60 by 10,
- and the y-axis representing wage
 - will range from 0 to 30 by 5.
- Females will be coded with an off-red color
 - and males will be coded with an off-blue color.

The code

```
ggplot(data = CPS85,
  mapping = aes(x = exper, y = wage,
  color = sex, shape=sex, linetype=sex)) +
  geom_point(alpha = .7, size = 3) +
  geom_smooth(method = "lm", se = FALSE, size = 1.5) +
  scale_x_continuous(breaks = seq(0, 60, 10)) +
  scale_y_continuous(breaks = seq(0, 30, 5)) +
  scale_color_manual(values = c("indianred3", "cornflowerblue"))
```


Code Styling, using Rstudio's Cntrl-Shft-A to reformat the code.

```
ggplot(
  data = CPS85,
  mapping = aes(
    x = exper,
    y = wage,
    color = sex,
    shape = sex,
    linetype = sex
)
) +
  geom_point(alpha = .7, size = 3) +
  geom_smooth(method = "lm", se = FALSE, size = 1.5) +
  scale_x_continuous(breaks = seq(0, 60, 10)) +
  scale_y_continuous(breaks = seq(0, 30, 5)) +
  scale_color_manual(values = c("indianred3", "cornflowerblue"))
```

`geom_smooth()` using formula = 'y ~ x'

The numbers on the x- and y-axes are better,

- and the colors are more attractive.
- However,
 - wages are in dollars.
- We can change the labels on the y-axis
 - to represent dollars using the scales package.
- The scales package provides
 - label formatting for dollars, euros, percents, and more.

```
ggplot(
  data = CPS85,
  mapping = aes(
    x = exper,
    y = wage,
    color = sex,
    shape = sex,
    linetype = sex
  )
) +
  geom_point(alpha = .7, size = 3) +
  geom_smooth(method = "lm", se = FALSE, size = 1.5) +
  scale_x_continuous(breaks = seq(0, 60, 10)) +
  scale_y_continuous(breaks = seq(0, 30, 5),
                     label = scales::dollar) +
  scale_color_manual(values = c("indianred3", "cornflowerblue"))
```


We are definitely getting there.

4.1.3.2.5 Facets

- Here is the next question.
- Is the relationship between
 - experience, wages $\ensuremath{\mathrm{and}}$ $\ensuremath{\mathrm{sex}}$
 - the same for each job sector?
- Let's repeat this graph once
 - $-\,$ for each job sector in order to explore this.

Sometimes relationships are clearer

- if groups appear in side-by-side graphs
 - rather than overlapping in a single graph.
- Facets reproduce a graph
 - for each level of a given variable
 - * (or combination of variables).
- You can create faceted graphs
 - using the facet_wrap() and facet_grid() functions.

The syntax is given in table 14.3,

• where var, rowvar, and colvar are factors.

Syntax	Results
<pre>facet_wrap(~var, ncol=n)</pre>	Separate plots for each level of var arranged into n columns
<pre>facet_wrap(~var, nrow=n)</pre>	Separate plots for each level of var arranged into n rows
facet_grid(rowvar~colvar)	Separate plots for each combination of rowvar and colvar, where rowvar represents rows and colvar represents columns
<pre>facet_grid(rowvar~.)</pre>	Separate plots for each level of rowvar, arranged as a single column
facet_grid(.~colvar)	Separate plots for each level of colvar, arranged as a single row

Here, facets will be defined

- by the eight levels of the sector variable.
- Since each facet
 - will be smaller than a one panel graph alone,
- we'll omit size = 3 from geom_point()
 - and size = 1.5 from geom_smooth().
- This will reduce the point and line sizes
 - compared with the previous graphs
 - and looks better in a faceted graph.

```
ggplot(
  data = CPS85,
  mapping = aes(
    x = exper,
    y = wage,
    color = sex,
    shape = sex,
    linetype = sex
  )
) +
  geom_point(alpha = .7) +
  geom_smooth(method = "lm", se = FALSE) +
  scale_x_continuous(breaks = seq(0, 60, 10)) +
  scale_y_continuous(breaks = seq(0, 30, 5),
                     label = scales::dollar) +
  scale_color_manual(values = c("indianred3", "cornflowerblue")) +
  facet_wrap( ~ sector)
```


It appears that the differences between men and women

- depend on the job sector under consideration.
- For example, there is a strong positive relationship
 - between experience and wages for male managers,
 - but not for female managers.
- To a lesser extent,
 - this is also true for sales workers.
- There appears to be no relationship
 - between experience and wages
 - for both male and female service workers.
 - In either case, males make slightly more.
- Wages go up with experience for female clerical workers,
 - but may go down for male clerical workers
 - (the relationship may not be significant here).
- We have gained a great deal of insight into
 - the relationship of wages and experience at this point.

4.1.3.2.6 Labels

- Graphs should be easy to interpret
 - and informative labels are a key element
 - in achieving this goal.
- The labs() function provides customized labels
 - for the axes and legends.
- Additionally, a custom title, subtitle, and caption can be added.

```
ggplot(
  data = CPS85,
  mapping = aes(
    x = exper,
    y = wage,
    color = sex,
    shape = sex,
```

```
linetype = sex
  )
) +
  geom_point(alpha = .7) +
  geom_smooth(method = "lm", se = FALSE) +
  scale_x_continuous(breaks = seq(0, 60, 10)) +
  scale_y_continuous(breaks = seq(0, 30, 5),
                     label = scales::dollar) +
  scale_color_manual(values = c("indianred3",
                                 "cornflowerblue")) +
  facet_wrap( ~ sector) +
  labs(
    title = "Relationship between wages and experience",
    subtitle = "Current Population Survey",
    caption = "source: http://mosaic-web.org/",
    x = " Years of Experience",
    y = "Hourly Wage",
    color = "Gender",
    shape = "Gender",
    linetype = "Gender"
  )
```

`geom_smooth()` using formula = 'y ~ x'

Relationship between wages and experience Current Population Survey

source: http://mosaic-web.org/

Now a viewer doesn't need to guess

- what the labels expr and wage mean,
- or where the data come from.

4.1.3.2.7 Themes

- Finally, we can fine tune the appearance of the graph

 using themes.
- Theme functions (which start with theme_)

- control background colors, fonts, grid-lines, legend placement,
- and other non-data related features of the graph.
- Let's use a cleaner theme.
- We used themes at the beginning in order
 - to give each plot a white background.
- Let's try a different theme
 - one that is more minimalistic.

```
ggplot(data = CPS85,
       mapping = aes(x = exper, y = wage, color = sex)) +
  geom\ point(alpha = .6) +
  geom_smooth(method = "lm", se = FALSE) +
  scale_x_continuous(breaks = seq(0, 60, 10)) +
  scale_y_continuous(breaks = seq(0, 30, 5),
                     label = scales::dollar) +
  scale_color_manual(values = c("indianred3", "cornflowerblue")) +
  facet_wrap( ~ sector) +
  labs(
   title = "Relationship between wages and experience",
   subtitle = "Current Population Survey",
   caption = "source: http://mosaic-web.org/",
   x = " Years of Experience",
   y = "Hourly Wage",
   color = "Gender"
  ) +
  theme minimal()
```

`geom_smooth()` using formula = 'y ~ x'

Relationship between wages and experience Current Population Survey

source: http://mosaic-web.org/

This is our finished graph,

- ready for publication.
- Of course, these findings are tentative.
- They are based on a limited sample size and
 - don't involve statistical testing

- to assess whether differences may be due to chance variation.

4.1.3.3 ggplot2 details

- Before we finish, there are three important topics to consider:
 - the placement of the aes() function,
 - the treatment of ggplot2 graphs as R objects,
 - and various methods to save your graphs
 - * for use in reports and webpages.

4.1.3.3.1 Placing the data and mapping options

- Plots created with ggplot2
 - always start with the ggplot function.
- In the previous examples,
 - the data= and mapping= options were placed in this function.
- In this case they apply to each geom function that follows.

You can also place these options

- directly within a geom.
- In that case, they only apply to that specific geom.

Consider the following graph.

`geom_smooth()` using formula = 'y ~ x'

Since the mapping of sex to color

- appears in the ggplot() function,
 - it applies to both geom_point and geom_smooth.
- The color of the point indicates the sex,

- and a separate colored trend line is produced for men and women.

Compare this to

```
ggplot(CPS85, aes(x = exper, y = wage)) +
geom_point(aes(color = sex), alpha = .7, size = 3) +
geom_smooth(method = "lm", se = FALSE, size = 1.5)
```

`geom_smooth()` using formula = 'y ~ x'

Since the sex to color mapping

- only appears in the geom_point() function,
 - it is only used there.
- A single trend line is created for all observations.

Most examples place the data and mapping options

- in the ggplot function.
- Additionally, the phrases data = and mapping = are omitted
 - since the first option always refers to data
 - and the second option always refers to mapping.

But your code will be more readable and understandable

• If you put the data = and mapping = - in your code explicitly.

4.1.3.3.2 Graphs as objects

- $\bullet\,$ A ggplot2 graph can be saved as
 - a named R object (a list),
- or manipulated further,
 - and then printed or saved to disk.

```
data(CPS85 , package = "mosaicData") #A
CPS85 <- CPS85[CPS85$wage < 40,] #A
myplot <- ggplot(data = CPS85, aes(x = exper, y = wage)) + geom_point() #B</pre>
```


$geom_smooth()$ using formula = 'y ~ x'

Mildly interesting graph

And here is what the codes doing at each letter step

- #A Prepare data
- #B Create a scatterplot and save it as myplot
- #C Display myplot
- #D Make the points larger and blue,
 - save it as myplot2 and display the graph
- #E Display myplot with a best fit line and a title

First the data are imported and outliers are removed #A.

- Then a simple scatter plot of experience vs. wages
 - is created and saved as myplot #B.
- Next, the plot is printed #C.
- The plot is then modified
 - by changing the point size and color,
 - saved as myplot2 and printed #D.
- Finally, the original plot
 - is given a line of best fit and title, and printed #E.

Note that these changes are not saved.

The ability to save graphs as objects

- $\bullet\,\,$ allows you to continue to work with and modify them.
- This can be a real time saver (and help you avoid carpal tunnel syndrome).
- It is also handy when saving graphs programmatically.

4.1.3.3.3 Exporting graphs

- You can export graphs created by ggplot2
 - in a variety of image formats
 - using the RStudio GUI
 - or through your code.
- To export a graph using the RStudio menus,
 - go to the Plots tab and choose Export

To export a graph via code

- use the ggsave() function.
- You can specify the plot to save,
 - its size and format,
 - and where to save it. For example,
 - ggsave(file = "mygraph.png", plot = myplot, width = 5, height = 4)
 - saves myplot as a 5-inch by 4-inch PNG file
 - named mygraph.png
 - in the current working directory.

You can save the graph in a different format

• by changing the file extension.

Extension	Format
pdf	Portable Document Format
jpeg	JPEG
tiff	Tagged Image File Format
png	Portable Network Graphics
svg	Scalable Vector Graphics
wmf	Windows Metafile

Figure 3: Image File Formats

The pdf, svg, and wmf formats are lossless

- they resize without fuzziness or pixilation.
- The other formats are lossy
 - they will pixelate when resized.
 - This is especially noticeable when small images are enlarged.
- The png format is popular for images destined for webpages.
- The jpeg and tif formats are usually reserved for photographs.

The wmf format is usually recommended for graphs

- that will appear in Microsoft Word or PowerPoint documents.
- MS Office does not support pdf or svg files.
 - and the wmf format will rescale well.
- However, note that wmf files
 - will lose any transparency settings that have been set.

If you omit the plot = option,

• the most recently created graph is saved.

The code is valid and

• saves the graph to disk as a PDF document.

• See help(ggsave) for additional details.

```
ggplot(data = mtcars, aes(x = mpg)) + geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
ggsave(file = "mygraph.pdf")
```

```
## Saving 5 x 3.5 in image
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

4.1.3.3.4 Common Mistakes After working with ggplot2 for years,

- I've found that there are two mistakes that are frequently made.
- The first is omitting or misplacing a closing parentheses.
 - This happens most often following the aes() function.

Consider the following code.

- Note the lack of a closing parentheses at the end of the first line.
 - I can't tell you how many times I've done this.

The second error is confusing an assignment for a mapping.

This code produces the next graph.

```
ggplot(CPS85, aes(x = exper, y = wage, color = "blue")) +
geom_point()
```


The points are red (not blue) and there is a strange legend.

• What happened?

The aes() function is used

- to map variables to the visual characteristics of the graph.
- Assigning constant values is done outside the aes() function.

4.1.3.4 ggplot2 Summary

- The ggplot2 package provides a powerful platform
 - for creating both simple and complex graphs.
 - Graphs are built up in layers
 - * using functions chained together with the plus (+) symbol.
- The ggplot() function specifies a data frame
 - containing plot data
 - and an aes() function that maps variables
 - * to visual aspects of the graph.
 - geom_ functions specify the geometric objects
 - * (bars, lines, points, etc.)
 - * to be placed on the graph.
- Optional scale_ functions allow you to
 - customize how a variable's values
 - * will be translated into their visual representations on the graph
 - * (e.g., the x- and y-axis scales and labels to used,
 - * and what colors, shapes, and line-types
 - * will be mapped to a variable's values).
- Data from two or more groups
 - can be represented by grouping
 - (superimposing plots distinguished by visual aspects such as color)
 - or faceting (placing several small plots in a matrix-like array).
- Two common errors of ggplot are
 - missing/misplaced parentheses
 - nd confusing an assignment for a mapping.

- Graphs can be exported in a wide variety of image formats
 - (such as tiff, pdf, jpg, png, svg, and wmf)
 - using the RStudio GUI
 - or with the ggsave() function.

4.1.3.5 Links

- Robert I. Kabacoff, R in Action, 3rd Edition, Manning Publications $2020\,$