Ekman (boundary) layer dynamics

The viscosity term:

$$\frac{\partial}{\partial x} (A_H \frac{\partial \mathbf{u}}{\partial \mathbf{x}}) + \frac{\partial}{\partial y} (A_H \frac{\partial \mathbf{u}}{\partial \mathbf{y}}) + \frac{\partial}{\partial z} (A_V \frac{\partial \mathbf{u}}{\partial z})$$

Ekman number (E_k) = scale of vertical viscosity term / scale of Coriolis term

$$= \nu_E \, \frac{U}{H^2} / f U = \frac{\nu_E}{f H^2}$$

For ocean interior: $f \sim 10^{-4} \ s^{-1}$, $v_E = 10^{-2} \ m^2 \ s^{-1}$, $H \sim 100 - 1000 m$

$$E_k \sim 10^{-4} - 10^{-2}$$
 friction can be neglected

In the boundary layers, friction should be dominant, $E_k \sim 1$:

d: boundary layer thickness $\frac{v_E}{fd^2} \sim 1 \longrightarrow d \sim \sqrt{v_E/f}$

The bottom Ekman layer

Assumptions: large-scale motion ($R_0 \ll 1$)

steady flow $(\frac{\partial}{\partial t} = 0)$

geostrophic flow in the interior

$$u = \overline{u}, \qquad v = 0$$

homogeneous fluid ($\rho = \rho_0$)

$$\frac{\partial p'}{\partial z} + \rho' g = 0 \qquad \longrightarrow \qquad \frac{\partial p'}{\partial z} = 0$$

flat bottom

Governing equations in the bottom boundary layer (BBL):

$$- fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + \nu_E \frac{\partial^2 u}{\partial z^2} + fu = -\frac{1}{\rho_0} \frac{\partial p}{\partial y} + \nu_E \frac{\partial^2 v}{\partial z^2}$$

Boundary conditions:

Bottom
$$(z = 0)$$
: $u = 0, v = 0,$

Toward the interior $(z \gg d)$: $u = \bar{u}, v = 0$

For the interior (geostrophic) flow:

$$0 = -\frac{1}{\rho_0} \frac{\partial \bar{p}'}{\partial x},$$

$$f\bar{u} = -\frac{1}{\rho_0} \frac{\partial \bar{p}'}{\partial y} = \text{constant.}$$

$$\frac{\partial p'}{\partial z} = 0$$

Substitution of the pressure gradient force into the boundary layer:

$$- fv = \nu_E \frac{d^2 u}{dz^2}$$

$$f(u - \bar{u}) = \nu_E \frac{d^2 v}{dz^2}$$

$$- fv = \nu_E \frac{d^2u}{dz^2}$$
 (1)

$$f(u - \bar{u}) = \nu_E \frac{d^2v}{dz^2} \qquad (2)$$

From (2), $u = \bar{u} + \frac{v_E}{f} \frac{d^2 v}{dz^2}$, and substitution into (1):

$$\frac{{v_E}^2}{f^2} \frac{d^4 v}{dz^4} + v = 0$$

Let
$$v=e^{\lambda z}$$
,
$$\frac{{v_E}^2}{f^2}\lambda^4+1=0 \implies \lambda^2=\pm i\frac{f}{v_F}=\frac{(1\pm i)^2}{2}\frac{f}{v_F}$$

$$d = \sqrt{\frac{2\nu_E}{f}} \qquad \lambda = \pm \sqrt{\frac{f}{2\nu_E}} (1 \pm i) = \pm \frac{1}{d} (1 \pm i)$$

scale of boundary layer thickness

$$\lambda = \pm \frac{1}{d} \left(1 \pm i \right)$$

If
$$\lambda = \frac{1}{d} (1 \pm i)$$
:

$$v = e^{\lambda z} = e^{\frac{z}{d}} e^{\pm \frac{z}{d}i}$$

cannot satisfy the upper boundary condition $v \to 0$, not considered

So

$$\lambda = -\frac{1}{d} (1 \pm i):$$

$$v = Ae^{-\frac{1}{d}(1+i)z} + Be^{-\frac{1}{d}(1-i)z}$$

$$= e^{-\frac{z}{d}}(Ae^{-\frac{z}{d}i} + Be^{\frac{z}{d}i})$$

$$= e^{-\frac{z}{d}}(E\cos\frac{z}{d} + F\sin\frac{z}{d})$$

$$u = \bar{u} + \frac{v_E}{f} \frac{d^2 v}{dz^2} = \bar{u} + e^{-\frac{z}{d}} \left(E \sin \frac{z}{d} - F \cos \frac{z}{d} \right)$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$u = \overline{u} + e^{-\frac{z}{d}} (E \sin \frac{z}{d} - F \cos \frac{z}{d})$$
$$v = e^{-\frac{z}{d}} (E \cos \frac{z}{d} + F \sin \frac{z}{d})$$

Lower boundary condition:

$$z=0$$
: $u=\bar{u}-F=0$, $F=\bar{u}$ $v=E=0$

The solutions for u and v are:

$$u = \bar{u} \frac{u_g}{u_E}$$

$$u = \bar{u} (1 - e^{-\frac{z}{d}} \cos \frac{z}{d})$$

$$v = \bar{u} e^{-\frac{z}{d}} \sin \frac{z}{d}$$

$$u = \bar{u}(1 - e^{-\frac{z}{d}}cos\frac{z}{d})$$
$$v = \bar{u}e^{-\frac{z}{d}}sin\frac{z}{d}$$

Properties:

In the BBL, $v \neq 0$: friction induces a traverse flow

$$z \to 0: \qquad u = \bar{u} - \bar{u} \lim_{z \to 0} e^{-\frac{z}{d}} \cos \frac{z}{d} \qquad \lim_{z \to 0} \frac{\cos \frac{z}{d}}{e^{\frac{z}{d}}} = \frac{\cos \frac{0}{d} - \frac{z}{d} \sin \frac{z}{d}|_{z=0}}{e^{\frac{0}{d}} + \frac{1}{d} e^{\frac{z}{d}}|_{z=0}} = \frac{1}{1 + \frac{z}{d}} = 1 - \frac{z}{d}$$

$$u = \frac{\bar{u}}{d} z$$

$$v = \bar{u}\lim_{z \to 0} e^{-\frac{z}{d}} \sin \frac{z}{d} = \frac{\bar{u}}{d} z$$

 $v = \overline{u} \lim_{z \to 0} e^{-\frac{z}{d}} \sin \frac{z}{d} = \frac{\overline{u}}{d}z$ near the bottom the flow is 45 degrees to the left of the interior flow

$$\frac{\partial u}{\partial z} = 0$$
, $\cos \frac{z}{d} + \sin \frac{z}{d} = 0$, $z = \frac{3\pi}{4} d$ maximum velocity in the interior flow direction

Mean velocity profile (Ekman Spiral)

Figure 8-4 The velocity spiral in the bottom Ekman layer. The figure is drawn for the Northern Hemisphere (f > 0), and the deflection is to the left of the current above the layer. The reverse holds for the Southern Hemisphere.

Non-uniform currents

The interior flow:

$$-f\bar{v} = -\frac{1}{\rho_0} \frac{\partial \bar{p}}{\partial x}, \quad f\bar{u} = -\frac{1}{\rho_0} \frac{\partial \bar{p}}{\partial y}$$

Substitution into the BBL momentum equations:

$$- f(v - \bar{v}) = \nu_E \frac{\partial^2 u}{\partial z^2}$$
$$f(u - \bar{u}) = \nu_E \frac{\partial^2 v}{\partial z^2}$$

The solutions are:

$$u = \bar{u}_{g} \qquad u_{E}$$

$$u = \bar{u} \left(1 - e^{-z/d} \cos \frac{z}{d} \right) - \bar{v} e^{-z/d} \sin \frac{z}{d}$$

$$v = \bar{u} e^{-z/d} \sin \frac{z}{d} + \bar{v} \left(1 - e^{-z/d} \cos \frac{z}{d} \right)$$

$$v_{g} \qquad v_{E}$$

Ekman transport:

$$U = \int_{0}^{\infty} (u - \bar{u}) dz = -\frac{d}{2} (\bar{u} + \bar{v})$$

$$V = \int_{0}^{\infty} (v - \bar{v}) dz = \frac{d}{2} (\bar{u} - \bar{v}).$$

Ekman transport divergence:

$$\frac{\partial \mathbf{U}}{\partial x} + \frac{\partial \mathbf{V}}{\partial y} = \int_0^\infty \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) dz = -\frac{d}{2} \left(\frac{\partial \bar{v}}{\partial x} - \frac{\partial \bar{u}}{\partial y}\right)$$

$$\frac{\partial \mathbf{W}}{\partial z}$$

$$\frac{\partial \mathbf{W}}{\partial z}$$

$$\overline{\zeta}$$
: relative vorticity of interior flow

$$w|_{z=\infty} - w|_{z=0} = \frac{d}{2}\bar{\zeta}$$
 Ekman pumping velocity

$$\frac{\partial \mathbf{U}}{\partial x} + \frac{\partial \mathbf{V}}{\partial y} = \int_0^\infty \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) \, dz = -\frac{d}{2} \left(\frac{\partial \bar{v}}{\partial x} - \frac{\partial \bar{u}}{\partial y}\right) > 0 \quad \text{divergence}$$

$$w|_{z=\infty} = \frac{d}{2} \, \bar{\zeta} < 0$$
 Divergence in the bottom boundary layer induces downwelling from the interior

Figure 8-5 Divergence in the bottom Ekman layer and compensating downwelling in the interior. Such a situation arises in the presence of an anticyclonic gyre in the interior, as depicted by the large horizontal arrows. Similarly, interior cyclonic motion causes convergence in the Ekman layer and upwelling in the interior.