Down-and-In Barrier Call Option Pricing

C++ Monte Carlo Simulation Project

Anindita Basu (466254)

January 25, 2025

1. Introduction and Objective

The goal of this project is to approximate the theoretical price of a downand-in barrier call option via Monte Carlo simulations implemented in C++.

2. Assumptions

• Underlying Asset Dynamics: We assume the underlying asset follows a stochastic process with a constant risk-free rate r and a constant volatility σ . For simplicity, an Euler discretization of the geometric Brownian motion (GBM) is approximated by

$$S_{t+\Delta t} = S_t + S_t \times (r \, \Delta t + \sigma \sqrt{\Delta t} \, Z),$$

where Z is a standard normal random variable generated via the Box-Muller method.

- Monte Carlo Iterations: We run a large number of simulated paths (num_exp = 100000) to achieve a stable approximation, each path consisting of n_steps(= 10000) time increments.
- Constant Model Parameters:

- Initial stock price: $S_0 = 100$

- Strike price: K = 110

- Annualized volatility: $\sigma = 25\%$

- Annualized risk-free rate: r = 5%

- Time to maturity: t = 0.75 (years)

• Barrier Level b: We experiment with reasonable values of b to slightly influence the price relative to a non-barrier option. In practice, we avoid setting b so low that it nearly never knocks in, or so high that it is immediately activated.

3. Down-and-In Barrier Call Option

A down-and-in barrier option is a type of exotic option that:

- Activates (knocks in) only if the underlying asset price S_t goes below or equal to a predefined barrier b at any point during the option's life.
- Payoff (if activated) for a call is $\max(S_T K, 0)$ where S_T is the asset price at maturity.

Since the barrier must be breached for the option to become active, the barrier level b significantly influences the option value. If b is set too low, the activation is unlikely, leading to a low or zero option price. Conversely, if b is close to or higher than S_0 , activation becomes more probable, and the option price approaches that of a plain vanilla call.

4. Description of the Code

4.1. Class barrieroption

We define a C++ class barrieroption with the following members:

- double SO, K, sigma, r, t, b;
- int n_steps, num_exp;
- std::vector<double> payoffs;

The constructor initializes these data members. Notable methods include:

- get_one_gaussian_by_box_muller(): Generates a single standard normal random variable using Box-Muller.
- simulate():
 - 1. Initializes the payoffs vector.
 - 2. For each experiment, simulates a path for the underlying asset by discretizing time into n_steps intervals.

- 3. Checks if the barrier b is breached; if so, records the payoff $\max(S-K,0)$ at maturity.
- 4. Computes the mean payoff and discounts it at the risk-free rate r.
- calculate_stddev(): Computes the standard deviation of the stored payoffs.

4.2. Main Program

In the main function, we create multiple barrieroption objects, each with a different barrier value b. By calling simulate(), we print the resulting discounted payoff, representing the approximate theoretical price of each barrier option.

5. Results

Using the following common parameters:

$$S_0 = 100$$
, $K = 110$, $\sigma = 0.25$, $r = 0.05$, $t = 0.75$,

and varying the barrier b, we tested several scenarios:

Barrier	Avg. Payoff	Discounted Price	Std. of Price
95	2.80977	2.70635	7.95543
97	3.93535	3.79051	9.55912
99	5.50280	5.30027	11.4710

We observe that as the barrier b rises from 95 to near or above the initial stock price S_0 , the option price approaches that of a vanilla call (since the option is more easily activated) and the payoff also increases.

6. Conclusions

- We successfully implemented a Monte Carlo simulation in C++ to price a down-and-in barrier call option.
- The option becomes more expensive as the barrier is raised closer to S_0 , indicating a higher probability of activation.

- The code structure follows object-oriented principles: we encapsulate option parameters in a single class and perform simulations in simulate().
- The results for barrier levels {95, 97, 99} show a clear trend of increasing option price as activation becomes more likely.
- All computations rely on standard assumptions of geometric Brownian motion and constant parameters.

In accordance with the Honor Code, I certify that my answers here are my own work, and I did not make my solutions available to anyone else.