

VETORES

RESUMO TEÓRICO E EXERCÍCIOS

EQUIPE MAG110

Baseado na bibliografia básica

Fevereiro - 2021

EXEMPLO DE APLICAÇÃO

Você é o capitão de um barco e quer viajar para o sul a 40 nós. Se a corrente marítima está se movendo para noroeste a 16 nós, em que direção e magnitude você deve operar o motor?

SEGMENTOS ORIENTADOS

Segmentos Orientados

Sejam dois pontos distintos A e B do espaço:

A
$$\rightarrow$$
 B B \rightarrow extremidade

Igualdade de Segmentos Orientados: AB=CD → A=C e B=D

Segmentos Orientados Nulos

Segmentos Orientados Opostos

SEGMENTOS ORIENTADOS

Características dos Segmentos Orientados

COMPRIMENTO: Medida do segmento geométrico, em relação a uma unidade fixada.

Comprimento sempre um nº positivo ou nulo.

DIREÇÃO: Dois segmentos orientados não nulos AB e CD têm a mesma direção se e somente se as retas AB e CD forem paralelas ou coincidentes.

SENTIDO: Dois segmentos orientados de mesma direção podem ter o mesmo sentido ou sentidos opostos. Só é possível comparar os sentidos se eles têm a mesma direção.

SEGMENTOS ORIENTADOS

Equipolência de Segmentos Orientados

Dois segmentos orientados AB e CD são equipolentes se, e somente se, AB e CD tiverem as mesmas características, isto é, mesmo comprimento, mesma direção e mesmo sentido.

AB~CD

Ex. de pares de segmentos equipolentes:

Ex. de pares de segmentos não equipolentes

SEGMENTOS ORIENTADOS EQUIPOLENTES

Propriedades da Equipolência

REFLEXIVA: AB~AB,

SIMÉTRICA: se AB~CD, então CD~AB

TRANSITIVA: se AB~CD e CD~EF, então AB~EF

TRANSPORTE: Dado o segmento AB e o ponto C, existe um único ponto D tal

que AB~CD.

VETORES

Conceito de Vetor

Um vetor é uma classe de equipolência de segmentos orientados, ou seja, é o conjunto de todos os segmentos orientados equipolentes a um segmento

Notações Utilizadas

 $\vec{v} = \overrightarrow{AB}$ ou notação de Grassmann $\vec{v} = (B-A)$

Igualdade de Vetores

Dois vetores \overrightarrow{AB} e \overrightarrow{CD} são iguais se, e somente se, os segmentos orientados AB e CD são equipolentes.

Vetores nulos são indicados por $\vec{0}$, são segmentos orientados nulos equipolentes entre si.

VETORES

Características de um Vetor

MÓDULO: é o comprimento de qualquer um dos representantes do vetor, isto é, o comprimento de qualquer um dos segmentos orientados equipolentes que determinam esse vetor. Módulo é um número positivo para vetor não nulo e zero para vetor nulo.

DIREÇÃO: é a mesma direção dos segmentos orientados que o representam. Dois vetores são paralelos quando têm a mesma direção. O Vetor nulo não tem direção.

SENTIDO: é o mesmo sentido dos segmentos orientados que o representam. Só comparamos os sentidos se os vetores tiverem a mesma direção (ou seja, forem paralelos).

O vetor nulo não tem sentido.

VETOR OPOSTO:

A
$$\overrightarrow{v}$$
 B $\overrightarrow{v} = \overrightarrow{AB} \quad \mathbf{x}(-1)$ A B $-\overrightarrow{v} = -\overrightarrow{AB} = \overrightarrow{BA}$

Soma de um ponto com um vetor:

$$A \qquad \vec{v} \qquad B \qquad B=A+\vec{v}$$

Notação de Grassmann: \vec{v} = (B-A)

PROPRIEDADES: Para $\forall \ \vec{u} \ e \ \vec{v}$, e quaisquer pontos A, B, C e D são válidas as seguintes propriedades:

- a) $A+\vec{0}=A$, isto é $A-A=\vec{0}$
- b) A- \vec{v} =A+($-\vec{v}$)
- c) $A + \vec{v} = B + \vec{v} \Rightarrow A \equiv B$
- d) $A+\vec{u}=A+\vec{v} \Rightarrow \vec{u}=\vec{v}$
- e) A+(B-A)=B
- f) (B-A)=-(A-B)
- g) $(B-A)=(D-C) \Rightarrow (C-A)=(D-B)$

Adição de Vetores

Dados dois vetores \vec{u} e \vec{v} pelos seus representantes, considere um ponto qualquer A e os pontos $B = A + \vec{u}$ e $C = A + \vec{v}$. Por definição, o vetor $\vec{w} = \overrightarrow{AD} = (D - A) \rightarrow \vec{w} = \vec{u} + \vec{v}$

Propriedades

a) ASSOCIATIVA: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

b) COMUTATIVA: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$

c) ELEMENTO NEUTRO: $\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$

d) ELEMENTO OPOSTO: $\forall \vec{u} \neq \vec{0}, \exists (-\vec{u}) \mid \vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$

DIFERENÇA DE DOIS VETORES

Multiplicação de um Número Real por um Vetor

Dados $\alpha \in \Re$ *e um vetor qualquer* \vec{v} , define-se a multiplicação por $\alpha \vec{v}$ da seguinte forma:

- a) Se $\alpha=0$ ou se $\vec{v}=\vec{0}$ então $\alpha\vec{v}$ é o vetor nulo, ou seja, $\alpha\vec{v}=\vec{0}$.
- b) Se $\alpha \neq 0$ e $\vec{v} \neq \vec{0}$, então definimos para o vetor $\alpha \vec{v}$:
 - a) Módulo: $|\alpha \vec{v}| = |\alpha| |\vec{v}|$,
 - b) Direção: $\alpha \vec{v}$ é paralelo ao vetor \vec{v} ,
 - c) Sentido: Se $\alpha>0$ o sentido de $\alpha \vec{v}$ é o mesmo de \vec{v} , Se $\alpha<0$ o sentido de $\alpha \vec{v}$ é oposto ao de \vec{v} .

Exemplos:

Propriedades: $\forall \vec{u} \ e \ \vec{v} \ e \ \forall \ \alpha, \beta \in \Re$ são válidas as seguintes propriedades:

- a) $\alpha(\beta \vec{v}) = (\alpha \beta) \vec{v}$; $\forall \alpha, \beta \in \Re$; ASSOCIATIVA;
- b) $\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}, \forall \alpha \in \Re$; DISTRIBUTIVA À ESQUERDA;
- c) $(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{u}, \ \forall \alpha, \beta \in \Re$; DISTRIBUTIVA À DIREITA;
- d) $1\vec{u} = \vec{u}$; ELEMENTO NEUTRO DA OPERAÇÃO.

VERSOR DE UM VETOR:

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|} = \frac{1}{|\vec{v}|} \vec{v}$$

$$\frac{\vec{v}}{\vec{v}}$$

Características do Versor: mesma direção e mesmo sentido de \vec{v} porém, módulo unitário.

1) Localize os pontos de acordo com cada equação:

a)
$$\overrightarrow{AB} = 2\overrightarrow{AC}$$

c)
$$\overrightarrow{AB} = \frac{2}{5}\overrightarrow{AD}$$

b)
$$\overrightarrow{AB} = \frac{1}{3}\overrightarrow{AD}$$

d)
$$\overrightarrow{AB} = -2\overrightarrow{AC}$$

e)
$$\overrightarrow{AB} = -\frac{2}{3}\overrightarrow{AC}$$

1) Localize os pontos de acordo com cada equação:

a)
$$\overrightarrow{AB} = 2\overrightarrow{AC}$$

$$\overrightarrow{A}$$
 C B

b)
$$\overrightarrow{AB} = \frac{1}{3}\overrightarrow{AD}$$

e)
$$\overrightarrow{AB} = -\frac{2}{3}\overrightarrow{AC}$$

c)
$$\overrightarrow{AB} = \frac{2}{5}\overrightarrow{AD}$$

d)
$$\overrightarrow{AB} = -2\overrightarrow{AC}$$

2) Dado um triângulo ABC e sabendo que sabendo que $\overrightarrow{BX} = \frac{1}{3}\overrightarrow{BA}$ escreva \overrightarrow{CX} em função de \overrightarrow{CA} e \overrightarrow{CB} .

2) Dado um triângulo ABC e sabendo que sabendo que $\overrightarrow{BX} = \frac{1}{3}\overrightarrow{BA}$ escreva \overrightarrow{CX} em função de \overrightarrow{CA} e \overrightarrow{CB} .

$$\overrightarrow{CX} = \overrightarrow{CB} + \overrightarrow{BX}$$

$$\overrightarrow{CX} = \overrightarrow{CB} + \frac{1}{3}\overrightarrow{BA}$$

$$\overrightarrow{CX} = \overrightarrow{CB} + \frac{1}{3} (\overrightarrow{BC} + \overrightarrow{CA})$$

$$\overrightarrow{CX} = \overrightarrow{CB} - \frac{1}{3}\overrightarrow{CB} + \frac{1}{3}\overrightarrow{CA}$$

$$\overrightarrow{CX} = \frac{2}{3}\overrightarrow{CB} + \frac{1}{3}\overrightarrow{CA}$$

3) A, B, C e D são vértices de um paralelogramo. O lado \overline{AB} foi dividido em 4 partes iguais e o lado \overline{DC} em três partes iguais.

Sendo $\overline{AB}=\vec{a}$, $\overline{AD}=\vec{b}$, $\vec{u}=\overline{DE}$, $\vec{v}=\overline{CF}$ e $\vec{w}=\overline{GH}$, escreva \vec{u} , \vec{v} e \vec{w} em função de \vec{a} e \vec{b} .

Continuação:

3) A, B, C e D são vértices de um paralelogramo. O lado \overline{AB} foi dividido em 4 partes iguais e o lado \overline{DC} em três partes iguais.

Sendo $\overline{AB}=\vec{a}$, $\overline{AD}=\vec{b}$, $\vec{u}=\overline{DE}$, $\vec{v}=\overline{CF}$ e $\vec{w}=\overline{GH}$, escreva \vec{u} , \vec{v} e \vec{w} em função de \vec{a} e \vec{b} .

3) A, B, C e D são vértices de um paralelogramo. O lado \overline{AB} foi dividido em 4 partes iguais e o lado \overline{DC} em três partes iguais.

Sendo $\overline{AB} = \vec{a}$, $\overline{AD} = \vec{b}$, $\vec{u} = \overline{DE}$, $\vec{v} = \overline{CF}$ e $\vec{w} = \overline{GH}$, escreva \vec{u} , \vec{v} e \vec{w} em função de \vec{a} e \vec{b} .

$$\overrightarrow{DE} = \overrightarrow{u}$$

$$\overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AE} \qquad \overrightarrow{DE} = \overrightarrow{DA} + \frac{1}{4}\overrightarrow{AB}$$

$$\overrightarrow{DE} = -\overrightarrow{b} + \frac{1}{4}\overrightarrow{a} \qquad \therefore \overrightarrow{u} = -\overrightarrow{b} + \frac{1}{4}\overrightarrow{a}$$

$$\overrightarrow{CF} = \overrightarrow{v}$$

$$\overrightarrow{CF} = \overrightarrow{CB} + \overrightarrow{BF}$$
 $\overrightarrow{CF} = -\overrightarrow{b} + \frac{1}{2}\overrightarrow{BA}$ \therefore $\overrightarrow{v} = -\overrightarrow{b} - \frac{1}{2}\overrightarrow{a}$

Continuação:

3) A, B, C e D são vértices de um paralelogramo. O lado \overline{AB} foi dividido em 4 partes iguais e o lado \overline{DC} em três partes iguais.

Sendo $\overline{AB} = \vec{a}$, $\overline{AD} = \vec{b}$, $\vec{u} = \overline{DE}$, $\vec{v} = \overline{CF}$ e $\vec{w} = \overline{GH}$, escreva \vec{u} , \vec{v} e \vec{w} em função de \vec{a} e \vec{b} .

$$\overrightarrow{GH} = \overrightarrow{w}$$

$$\overrightarrow{GH} = \overrightarrow{GA} + \overrightarrow{AD} + \overrightarrow{DH}$$
 $\overrightarrow{DE} = \overrightarrow{DA} + \frac{1}{4}\overrightarrow{AB}$

$$\overrightarrow{GH} = \frac{3}{4}\overrightarrow{BA} + \overrightarrow{b} + \frac{1}{3}\overrightarrow{DC} = -\frac{3}{4}\overrightarrow{a} + \overrightarrow{b} + \frac{1}{3}\overrightarrow{a}$$

$$\overrightarrow{GH} = -\frac{5}{12}\vec{a} + \vec{b}$$

Bibliografia:

- 1) Watanabe, R. G., Mello, D. A. VETORES E UMA INICIAÇÃO A GEOMETRIA ANALÍTICA. 2° Ed. LF Editorial. 2011. São Paulo.
- 2) Loreto, A. C. C.; Junior, A. P. L. VETORES E GEOMETRIA ANALÍTICA Teoria e Exercícios. 4° Ed. LCTE Editora. 2014. São Paulo.
- 3) Winterle, P., Vetores e Geometria Analítica. Makron Books Ltda, 2000.