Unit 12 Line Bisectors And Angel Bisectors

THEOREM 12.1.1

Any point on the right bisector of a line segment

is equidistant from its

end points.

Solution:

Given:

A line \overrightarrow{LM} intersects the line segment AB at point C such that $\overrightarrow{LM} \perp \overrightarrow{AB}$ and $\overrightarrow{AC} \cong \overrightarrow{BC}$.

To Prove:

$$\overline{PA} \cong \overline{PB}$$

Construction:

Take a point P on \overrightarrow{LM} . Join P to the points A and B.

Proof:

Statements	Reasons
$\operatorname{in} \Delta ACP \longleftrightarrow \Delta BCP$	
$\overline{AC} \cong \overline{BC}$	Given
∠ACP ≅ ∠BCP	Given $(\overline{PC} \perp \overline{AB})$
$\overline{PC} \cong \overline{PC}$	Common
$\Delta ACP \cong \Delta BCP$	S.A.S. Postulate
$\overline{PA} \cong \overline{PB}$	Corresponding sides of congruent triangles

SEDINFO.NET

THEOREM 12.1.2

Any point equidistant from the end points of a line segment is on the right bisector of it.

Solution:

Given:

AB is a line segment. Point P is such that $\overline{PA} \cong \overline{PB}$

To Prove:

Point P is on the right bisector of \overline{AB}

Construction:

Join P to C, the midpoint of AB.

Proof:

•	1001.	•
	Statements	Reasons
	In $\triangle ACP \leftrightarrow \triangle BCP$	WO.
	$\overline{PA} \cong \overline{PB}$	Given
	$\overline{PC} \cong \overline{PC}$	Common
	$\overline{AC} \cong \overline{BC}$	Construction
	$\therefore \Delta ACP \cong \Delta BCP$	S.S.S. ≅ S.S.S.
	$\angle ACP \cong \angle BCP$ (i)	Corresponding angles of
İ	•	congruent triangles
ı	But $m \angle ACP + \angle BCP = 180^{\circ} \dots$	Supplementary angles
	$m \angle ACP + m \angle BCP = 90^{\circ}$	From (i) and (ii)
C	or $\overline{PC} \perp \overline{AB}$ (iii)	$m \angle ACP = 90^{\circ} \text{ (proved)}$
F	Also $\overline{CA} \cong \overline{AB}$ (iv)	Construction:
:	\overline{PC} is a right bisector of	from (iii) and (iv)
Ā	\overline{B} i.e. the point P is on the	
ri	ght bisector of \overline{AB}	

- (ii) Take \overline{AB} right bisector of \overline{PQ} and \overline{CD} right bisector of \overline{QR} . \overline{AB} and \overline{CD} intersect at O.
- (iii) Join O to P, Q, R.
 O is the place of Children Park.

Proof:

	\sim \sim \sim \sim \sim
Statements	Reasons
$\overline{OP} \cong \overline{QR} = \overline{OR}$ (i)	O is on the right bisector-
$\overline{OQ \cong \overline{OR}}$ (ii)	PQ. O is on the right bisector of QR.
$\therefore \overline{OP} \cong \overline{OQ} \cong \overline{OR}$	From (i) and (ii)
Hence Q is equidistant	
from P, Q, R.	

THEOREM 12.1.3

The right bisectors of the three sides of a triangle are concurrent.

Solution:

Given:

ABC is a triangle

To Prove:

The right bisectors of \overline{AB} , \overline{BC} and \overline{CA} are concurrent.

Construction:

Draw the right bisectors of \overline{AB} and \overline{BC} , which meet each other at the point O. Join O to A, B and C.

Proof:

	and the state of the second se
Statements	Reasons
$\overline{OA} \cong \overline{OB}$ (i)	Each point on right bisector
	of a segment is equidistant
	from its end point.
$\overline{OB} \cong \overline{OC}$ (ii)	From (i)
$\overline{OA} \cong \overline{OC}$ (iii)	From (i) and (ii)
(iv) Point O is on the right	O is equidistant from A and
bisector of \overline{CA} .	C.
(v) Point O is on the right	Construction
bisector of \overline{AB} and \overline{BC} .	1/1/00
Thus, the right bisectors of	From (iv) and (v)
the three sides of a triangle	DK.
are concurrent.	TAME

THEOREM 12.1.4

Each point on the bisector of an angle is equidistant from its arms.

Solution:

Given:

A point P is on \overrightarrow{OX} , the bisector of $\angle AOB$

To prove:

 $\overline{PQ}\cong \overline{PR}$ i.e., P is equidistant from \overrightarrow{OA} and \overrightarrow{OB} Construction:

Draw $\overline{PR} \perp \overline{OA}$ and $\overline{PQ} \perp \overline{OB}$

Proof:

Statements	Reasons
In $\triangle POQ \longleftrightarrow \triangle POR$	
$\overline{OP} \cong \overline{OP}$	Common
∠PRO ≅∠PQO	Construction
∠POQ ≅∠POR	Given
$\therefore \Delta POQ \cong \Delta POR$	* S.A.A. ≅ S.A.A.
and $\overline{PQ} \cong \overline{PR}$	Corresponding sides of congruent triangles

THEOREM 12.1.5 Converse of THEOREM 12.1.4

Any point inside an angle, equidistant from its arms is on the bisector of it.

Given:

Any point P lies inside $\angle AOB$ such that $\overline{PQ} \cong \overline{PR}$, where $\overline{PQ} \perp \overline{OB}$ and $\overline{PR} \perp \overline{OA}$

To prove:

Point P is on the bisector of $\angle AOB$.

Construction:

Join P to O.

Proof:

Statements	Reasons
In $\triangle POQ \longleftrightarrow \triangle POR$	
$\angle PQO \cong \angle PRO$	Given (right angles)
$\overline{PO} \cong \overline{PO}$	Common
$\overline{PQ} \cong \overline{PR}$	Given
	H.S ≅ H.S Corresponding angles of congruent triangles
Hence P is on the bisector of $\angle AOB$	From (i) (proved)

EXERCISE 12.2

Q1. In a quadrilateral ABCD, $\overline{AB} \cong \overline{BC}$ and the right bisectors of \overline{AD} , \overline{CD} meet each other at point N. Prove that \overline{BN} is a bisector of $\angle ABC$.

Given:

In the quadrilateral ABCD, $\overline{AB} \cong \overline{BC}$ \overline{NP} is right bisector of \overline{CD} and \overline{NQ} is right bisector of \overline{AD} . They meet at N.

To Prove:

 \overline{BN} is a bisector of $\angle ABC$

Construction:

Join N to A, B, C, D.

Hence \overline{PO} is bisector of $\angle P$ or Bisector of $\angle P$ also passesthrough O.

THEOREM 12.1.6

The bisectors of the angles of a triangle are

A

D

concurrent.

Solution:

Given:

ABC is a triangle.

To prove:

The bisectors of $\angle A$, $\angle B$ and $\angle C$ are concurrent.

Construction:

Draw the

bisectors or $\angle B$ and $\angle C$ which intersect at point I. From I, draw $\overline{IF} \perp \overline{AB}$, $\overline{IE} \perp \overline{CA}$ and $\overline{ID} \perp \overline{BC}$

B

Proof:

	1001.	
	Statements	Reasons
	$\overline{ID}\cong\overline{IF}$	A point on bisector of an
	Similarly,	angle is equidistant from
		its arms
	$\overline{ID} \cong \overline{IE}$	Each is congruent to ID
1	$\overline{IE} \cong \overline{IF}$	(proved)
	So, the point I is on the bisector	
1	of ∠A (i)	
1	Also the point I is on the	
1	oisectors of ∠ABC and ∠BCA (ii)	
7	Thus, the bisectors of $\angle A$, $\angle B$	From (i) and (ii)
а	nd ∠C are concurrent.	

SEDINFO.NET

EXERCISE 12.1

Q1. Prove that the centre of a circle is on the right bisectors of each of its chords.

Solution:

Given:

A, B, C are three non-collinear points.

Required:

To find the centre of the circle passing through A, B, C

- (i) Join B to A,C
- (ii) Take \overrightarrow{PQ} right bisector of \overrightarrow{AB} and \overrightarrow{RS} right bisector of BC. They intersect at O.
- (iii) Join O to A, B, C
 O is the centre of the circle.

Proof:

Statements	Reasons
In $\overline{0A} \cong \overline{OB}$ (i)	o is on right bisector of AB
$\overline{OB} \cong \overline{OC}$ (ii)	O is on right bisector of BC
$\therefore \overline{0A} \cong \overline{OB} \cong \overline{OC} \qquad \text{(iii)}$	From (i), (ii)
Hence O is equidistant	
from A, B, C.	
Therefore O is the	
required centre of the	
circle.	1 1

Q2. Where will be the centre of a circle passing through three non-collinear points?

Solution:

Given:

O is the centre of a circle. \overline{AB} is any chord of the circle.

To Prove:

O is right bisector of \overline{AB} .

Construction:

Take mid point D of AB and join D to O.

Proof:

Statements	Reasons
In $\triangle AOD \longleftrightarrow \triangle BOD$	
$\overline{(OA)} \cong \overline{(OB)}$	Radii of same circle
$\overline{(OD)} \cong \overline{(OD)}$	Common
$\overline{(AD)} \cong \overline{(BD)}$	Construction
$\therefore \Delta AOD \cong \Delta BOD$	S.S.S.≅ S.S.S.
But $m \angle 1 \cong m \angle 2 = 180^{\circ}$	Supplementary angles
$\therefore m \angle 1 + m \angle 2 = 180^{\circ}$	From (i)
$2m\angle 1 = 180^{o}$	Mo,
$m \angle 1 = 90^{\circ}$	
∴ DO is riht bisector of AB.	
i.e. O is on the right	
bisector of AB.	

Q3. Three villages P, Q and R are not on the same line. The people of these villages want to make a Children Park at such a place which is equidistant from these three villages. After fixing the place of Children Park, prove that the park is equidistant from three villages.

Solution:

Given:

P, Q, R are three villages on the same straight line

To prove:

To find the point equidistant from P, Q, R.

Construction:

(i) Join Q to P and R.

- (ii) Take \overline{AB} right bisector of \overline{PQ} and \overline{CD} right bisector of \overline{QR} . \overline{AB} and \overline{CD} intersect at O.
- (iii) Join O to P, Q, R.
 O is the place of Children Park.

Proof:

	\sim \sim \sim \sim \sim
Statements	Reasons
$\overline{OP} \cong \overline{QR} = \overline{OR}$ (i)	O is on the right bisector-
$\overline{OQ \cong \overline{OR}}$ (ii)	PQ. O is on the right bisector of QR.
$\therefore \overline{OP} \cong \overline{OQ} \cong \overline{OR}$	From (i) and (ii)
Hence Q is equidistant	
from P, Q, R.	

THEOREM 12.1.3

The right bisectors of the three sides of a triangle are concurrent.

Solution:

Given:

ABC is a triangle

To Prove:

The right bisectors of \overline{AB} , \overline{BC} and \overline{CA} are concurrent.

Proof:

Statements	Reasons
In $\triangle POQ \longleftrightarrow \triangle POR$	
$\angle PQO \cong \angle PRO$	Given (right angles)
$\overline{PO} \cong \overline{PO}$	Common
$\overline{PQ} \cong \overline{PR}$	Given
	H.S ≅ H.S Corresponding angles of congruent triangles
Hence P is on the bisector of $\angle AOB$	From (i) (proved)

EXERCISE 12.2

Q1. In a quadrilateral ABCD, $\overline{AB} \cong \overline{BC}$ and the right bisectors of \overline{AD} , \overline{CD} meet each other at point N. Prove that \overline{BN} is a bisector of $\angle ABC$.

Given:

In the quadrilateral ABCD, $\overline{AB} \cong \overline{BC}$ \overline{NP} is right bisector of \overline{CD} and \overline{NQ} is right bisector of \overline{AD} . They meet at N.

To Prove:

 \overline{BN} is a bisector of $\angle ABC$

Construction:

Join N to A, B, C, D.

Proof:

Statements	Reasons
$\overline{ND} \cong \overline{NC}$ (i)	N is on right bisector of $\overrightarrow{D}\overrightarrow{C}$
$\overline{ND} \cong \overline{NA}$ (ii)	N is on right bisector of \overline{AC}
$\overline{NA} \cong \overline{NC}$ (iii)	From (i), (ii)
In $\triangle BNA \leftrightarrow \triangle BNC$	
$\overline{NA} \cong \overline{NC}$	From (iii)
$\overline{AB} \cong \overline{CD}$	Given
$\overline{BN}\cong \overline{BN}$	Common
$\therefore \Delta BNA \leftrightarrow \Delta BNC$	S.S.S.≅S.S.
Hence ∠1 ≅ ∠2	Corresponding angles of
	congruent triangles.
Hence \overline{BN} is bisector of	
∠ABC. ·	

Q2. The bisectors of $\angle A, B$ and $\angle C$ of a quadrilateral ABCP meet each other at point O, prove that the bisector of $\angle P$ will also pass through the point O.

S

Solution:

Given:

ABCP is a quadrilateral.

 \overline{Ao} , \overline{BO} , \overline{CO} are bisector of $\angle A$, $\angle B$, $\angle C$, respectively.

P is joined to O.

To prove:

PO is bisector of $\angle P$

Construction:

From O draw

 $\overline{OT} \perp \overline{AB} \ \overline{OQ} \perp \overline{BC}, \overline{OR} \perp$

 \overline{PC} and $\overline{OS} \perp \overline{AP}$ respectively.

Proof:

Statements	Reasons
$\overline{OS} \cong \overline{OT} \qquad (i)$ $\overline{OT} \cong \overline{OQ} \qquad (ii)$ $\overline{OQ} \cong \overline{OR} \qquad (iii)$ $\therefore \qquad \overline{OS} \cong \overline{OR}$ $\therefore O \text{ is on bisector of } \angle P_{\bullet}$	AO is bisector of $\angle A$ BO is bisector of $\angle B$ CO is bisector of $\angle C$ From (1), (ii), (iii)

Hence \overline{PO} is bisector of $\angle P$ or Bisector of $\angle P$ also passesthrough O.

THEOREM 12.1.6

The bisectors of the angles of a triangle are

A

D

concurrent.

Solution:

Given:

ABC is a triangle.

To prove:

The bisectors of $\angle A$, $\angle B$ and $\angle C$ are concurrent.

Construction:

Draw the

bisectors or $\angle B$ and $\angle C$ which intersect at point I. From I, draw $\overline{IF} \perp \overline{AB}$, $\overline{IE} \perp \overline{CA}$ and $\overline{ID} \perp \overline{BC}$

B

Proof:

	1001.			
	Statements	Reasons		
	$\overline{ID}\cong \overline{IF}$	A point on bisector of an		
	Similarly,	angle is equidistant from		
		its arms		
	$\overline{ID} \cong \overline{IE}$	Each is congruent to ID		
	$\overline{IE} \cong \overline{IF}$	(proved)		
	So, the point I is on the bisector			
1	of ∠A (i)			
	Also the point I is on the			
1	oisectors of ∠ABC and ∠BCA (ii)			
7	Thus, the bisectors of $\angle A$, $\angle B$	From (i) and (ii)		
а	nd ∠C are concurrent.			

SEDINFO.NET

EXERCISE 12.3

Q1. Prove that the bisectors of the angles of base of an isosceles triangle intersect each other on its altitude.

Solution:

Given:

In $\triangle ABC$, sides \overline{CA} and \overline{CB} are produced.

 \overrightarrow{BL} is bisector of $\angle ABV$.

 \overline{AM} is disector of $\angle BAU$.

 \overline{RL} and \overline{AM} is intersect at I.

C is joined to I,

To Prove:

C1 is bisector of $\angle C$

Construction:

Draw $IP \perp CV, IQ \perp CU$ and $\overline{IN} \perp \overline{AB}$.

Proof:

Statements	Reasons	
$\overline{IN} \cong \overline{IP}$ (i)	\overline{BI} is hisector of $\angle ABV$	
$\overline{IN} \cong \overline{IQ}$ (ii)	ĀI is a bisector of.∠BAU	
ĪP ≅ IQ	From (i) and (ii)	
Now \overline{IP} and \overline{IQ} are perpendicular to \overline{CB} and \overline{CA} produced CI is bisector of angles $\angle C$.		

REVIEW EXERCISE 12

Q1. Which of the following are true and which are false?

- (i) Bisection means to divide into two parts.
- (ii) Right bisection of line segment means to draw perpendicular which passes through the mid-point of line segment.
- (iii) Any point on the right bisector of a line segment is not equidistant from its end points.
- (iv) Any point equidistant from the end points of a line segment is on the right bisector of it.
- (v) The right bisector of the sides of a triangle is not concurrent.
- (vi) The bisectors of the angles of a triangle are concurrent.
- (vii) Any point on the bisector of an angle is not equidistant from its arm.
- (viii) Any point inside an angle, equidistant from its arms, is on the bisector of it.

Answers:

(i)	T	(ii) \ T	(iii) F	(iv) T
(v)	F	(vi) T	(vii) F	(viii) T

Q2. If \overline{CD} is right bisector of line segment \overline{AB} , then

(i) $m \overline{OA} = \dots$

(ii) $m\overline{AQ} = \dots$

Answers:

(i) $m \overline{OB}$ (ii) $m \overline{BQ}$

- Q3. Define the following.
- (i) Bisector of a line segment:

A line passing through the midpoint of a segment is called the bisector of line segment.

(ii) Bisector of an angle:

A ray that bisects an angle is called bisector of the angle.

Q4. The given triangle ABC is equilateral triangle and \overline{AD} is bisector of angle A, then find the values of unknown x^0, y^0 and z^0 .

Solution:

$$m \angle A = m \angle B = m \angle C = 60^{\circ}$$

$$\therefore z^o = 60^o$$

 \overline{AD} is bisector of $\angle A$

$$x^{o} = y^{o} = \frac{1}{2}m\angle A$$

= $\frac{1}{2}(60^{o}) = 30^{o}$

$$\therefore x^0 = y^0 = 30^0$$

Q5. In the given congruent triangles LMO and LNO, find the unknowns x and m.

Solution:

Corresponding sides of congruent triangles ΔLMO and ΔLNO .

$$\overline{LM} \cong \overline{LN}$$

$$2x + 6 = 18$$

$$\Rightarrow 2x = 18 - 6 = 12$$

$$x=\frac{12}{6}=6$$

Given that
$$m \overline{ON} = 12$$

Since given triangles are congruent therefore $m \overline{OM} = m \overline{ON} = 12$
 $m \overline{OM} = m = 12$

- Q6. \overline{CD} is the right bisector of the line segment AB.
- (i) If $m \overline{AB} = 6 cm$, then find the $m \overline{AL}$ and $m \overline{LB}$
- (ii) If $m \overline{BD} = 4 cm$, then find the $m \overline{AD}$ Solution:

CD is right bisector

 $\therefore \quad \overline{AL} \cong \overline{BL}$

 $m\overline{AL} = m\overline{BL}$ $= \frac{1}{2}(m\overline{AB}) = \frac{1}{2}(6 cm) = 3cm$ $m\overline{AL} = m\overline{BL} = 3 cm$

In
$$\Delta ALD \leftrightarrow \Delta BLD$$
 $\overline{AL} \cong \overline{BL}$
 $\angle ALD \cong \angle BLD$
and $DL \cong DL$
 $\therefore \quad \Delta ALD \cong \Delta BLD$
So $m\overline{AD} \cong m\overline{BD} = 4cm$
 $m\overline{AD} = 4cm$