Importing Libraries

```
In [3]:
          import numpy as np
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
In [4]:
          lead = pd.read csv('Data Science Internship - Dump.csv', sep=',')
   [5]:
          lead.head(20)
              Unnamed:
Out[5]:
                                                                    Agent_id status
                                                                                        lost_re
                      0
           0
                          1deba9e96f404694373de9749ddd1ca8aa7bb823145a6f...
                                                                               LOST
                                                                                      Not respor
                      1
                          299ae77a4ef350ae0dd37d6bba1c002d03444fb1edb236...
                                                                               LOST
                                                                                         Low bu
                      2
                          c213697430c006013012dd2aca82dd9732aa0a1a6bca13...
           2
                                                                               LOST
                                                                                      Not respor
                          eac9815a500f908736d303e23aa227f0957177b0e6756b...
                                                                               LOST
                                                                                         Low bu
           3
                      3
           4
                      4
                          1deba9e96f404694373de9749ddd1ca8aa7bb823145a6f...
                                                                               LOST
                                                                                           Junk
                                                                                       Wants pr
           5
                      5
                          2306878a9ad9b57686cd623dd285aaa9b25afdf627f651...
                                                                               LOST
                                                                                     accommod
           6
                      6
                          2306878a9ad9b57686cd623dd285aaa9b25afdf627f651...
                                                                                          Short
                                                                               LOST
                                                                                       Wants pr
           7
                      7
                          44864c96fa1c36602f0d045b268981b6cab638a60fc207...
                                                                               LOST
                                                                                     accommod
           8
                         ab6bb4584e9946b135dca2e39d12abba3ea82d5ea927d0...
                                                                               LOST
                      8
                                                                                         Low bu
                                                                                         Booked
                           131127203c89e8219dbdfe2f597538759310f40918b222...
                      9
           9
                                                                               LOST
                                                                                            mar
          10
                     10
                          2fca346db656187102ce806ac732e06a62df0dbb2829e5...
                                                                               LOST
                                                                                      Low availa
          11
                     11
                           d4192f06768ab0f257c7f5e17ad021b075b995d4a18675...
                                                                               LOST
                                                                                      Not respor
                                                                                       Wants pr
          12
                     12
                          44864c96fa1c36602f0d045b268981b6cab638a60fc207...
                                                                               LOST
                                                                                     accommod
```

14/02/23, 8:27 PM Yash_Patil_Lead_Score_UniAcco

13	13	50750ee66f27656c2b34d43078a064c3b9b8807938b6a3	LOST	Not respor
14	14	a9f80b4eaba3fd134bafafe7506e08940201964615f7ee	LOST	Low bu
15	15	a9f80b4eaba3fd134bafafe7506e08940201964615f7ee	LOST	Not respor
16	16	2fca346db656187102ce806ac732e06a62df0dbb2829e5	LOST	Low availa
17	17	f1ece3b02f1e5989bb0918e468fbc3f3e60d74ed90809d	LOST	Wants pr accommod
18	18	f1ece3b02f1e5989bb0918e468fbc3f3e60d74ed90809d	LOST	Junk
19	19	2fca346db656187102ce806ac732e06a62df0dbb2829e5	LOST	Low availa

EDA

In [6]: lead.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 46608 entries, 0 to 46607 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype						
0	Unnamed: 0	46608 non-null	int64						
1	Agent_id	46608 non-null	object						
2	status	46608 non-null	object						
3	lost_reason	43244 non-null	object						
4	budget	42908 non-null	object						
5	lease	44267 non-null	object						
6	movein	32970 non-null	object						
7	source	46608 non-null	object						
8	source_city	46608 non-null	object						
9	source_country	46608 non-null	object						
10	utm_source	46608 non-null	object						
11	utm_medium	46608 non-null	object						
12	des_city	46608 non-null	object						
13	des_country	46608 non-null	object						
14	room_type	23061 non-null	object						
15	lead_id	46608 non-null	object						
dtyp	dtypes: int64(1), object(15)								

memory usage: 5.7+ MB

```
In [7]:
         lead.describe()
Out[7]:
                Unnamed: 0
         count 46608.00000
         mean 23303.50000
                13454.71501
           std
           min
                    0.00000
          25%
                11651.75000
          50%
               23303.50000
          75% 34955.25000
          max 46607.00000
In [8]: 1 = lead.copy()
```

DATA CLEANING

```
In [9]: #Dropped Unnamed Column because we already have index
         1.drop(['Unnamed: 0'], axis=1, inplace=True)
In [10]:
         l = pd.DataFrame(1)
         13=1.replace(to_replace="9b2d5b4678781e53038e91ea5324530a03f27dc1d0e5f6c9
                     value= np.nan)
In [11]:
         13.isnull().sum()
                                0
         Agent id
Out[11]:
         status
                                0
         lost reason
                             3364
         budget
                             3700
         lease
                             2341
         movein
                            13638
         source
                             5977
         source city
                             8851
         source country
                             8641
         utm source
                               61
         utm medium
                             3187
         des city
                             2537
         des_country
                             2537
         room_type
                            23547
         lead id
                                0
         dtype: int64
In [12]:
         print("Number of Categories in: ")
         for ColName in l[['lost_reason','budget','lease','movein','source','sourc
                            'utm_medium','des_city','des_country','room_type','lead
              print("{} = {}".format(ColName,
                                                    len(l[ColName].unique())))
```

```
Number of Categories in:
lost_reason = 31
budget = 1858
lease = 312
movein = 478
source = 683
source_city = 4336
source_country = 186
utm_source = 35
utm_medium = 64
des_city = 220
des_country = 15
room_type = 6
lead_id = 30574
```

Replacing NAN values with the most frequent occurred category in variable/column.

We replaced every column that had missing values except the columns 'movein' and 'room_type' because replacing it with mode value will bias prediction.

```
In [13]: # Function to replace NAN values with mode value
         def impute_nan_most_frequent_category(13,ColName):
               most_frequent_category=13[ColName].mode()[0]
         # replace nan values with most occured category
               13[ColName + " Imputed"] = 13[ColName]
               13[ColName + " Imputed"].fillna(most frequent category,inplace=True)
         for Columns in ['lost reason', 'budget', 'lease', 'source', 'source city', 'so
                            'utm_medium', 'des_city', 'des_country']:
              impute nan most frequent category(13,Columns)
         13[['lost_reason','lost_reason_Imputed','budget','budget_Imputed','lease'
             , 'source_country', 'source_country_Imputed', 'utm_source', 'utm_source_Im
             ,'des_country','des_country_Imputed']].head(10)
         13 = 13.drop(['lost_reason','budget','lease','source','source_city','sour
                            'utm_medium','des_city','des_country'], axis = 1)
In [14]: | 13.rename(columns = {'status':'OUTPUT'}, inplace = True)
         13
```

Out[14]:

		Agent_id	OUTPUT	movein	room_t
	0	1deba9e96f404694373de9749ddd1ca8aa7bb823145a6f	LOST	NaN	
	1	299ae77a4ef350ae0dd37d6bba1c002d03444fb1edb236	LOST	NaN	
	2	c213697430c006013012dd2aca82dd9732aa0a1a6bca13	LOST	31/08/22	Ens
	3	eac9815a500f908736d303e23aa227f0957177b0e6756b	LOST	NaN	
	4	1deba9e96f404694373de9749ddd1ca8aa7bb823145a6f	LOST	NaN	
	•••				
4	16603	2306878a9ad9b57686cd623dd285aaa9b25afdf627f651	LOST	01/09/22	St
4	16604	327ec29056cc47c24bf922f7dc0f78261dad5c726d7353	LOST	29/09/22	St
4	16605	1134c0a7d44fdae1afd7f1f64e2789496784095ca0a050	LOST	20/09/22	St
4	16606	8b8b029f1142f5cbc825aa6cbee01406c915c6b055db79	LOST	30/08/22	
4	16607	1ea65ea38f2f574b3875ba895e4ff76b284b7725041612	LOST	01/09/22	St

46608 rows × 15 columns

Replacing NAN categories with most occurred values, and adding a new feature to introduce some weight/importance to non-imputed and imputed observations.

```
In [15]: # Function to impute most occured category and add importance vairable
def impute_nan_add_vairable(13,ColName):
    #1. add new column and replace if category is null then 1 else 0
    13[ColName+"_Imputed"] = np.where(13[ColName].isnull(),1,0)

#Take most occured category in that vairable (.mode())

Mode_Category = 13[ColName].mode()[0]

#Replace NAN values with most occured category in actual vairable

13[ColName].fillna(Mode_Category,inplace=True)

# Call function to impute NAN values and add new importance feature
for Columns in ['movein','room_type']:
    impute_nan_add_vairable(13,Columns)

# Display top 10 row to see the result of imputation
13[['movein','movein_Imputed','room_type','room_type_Imputed']].head(10)

Out[15]: movein movein_Imputed room_type room_type_Imputed

O 10/09/22

1 Ensuite

1
```

Out[15]:		movein	movein_Imputed	room_type	room_type_Imputed
	0	10/09/22	1	Ensuite	1
	1	10/09/22	1	Ensuite	1
	2	31/08/22	0	Ensuite	0
	3	10/09/22	1	Ensuite	1
	4	10/09/22	1	Ensuite	1
	5	10/09/22	1	Ensuite	1
	6	10/09/22	1	Ensuite	1
	7	08/09/22	0	Entire Place	0
	8	10/09/22	1	Ensuite	1
	9	10/09/22	1	Ensuite	1

```
In [16]: 13 = 13.drop(['movein','room_type'], axis = 1)
```

In [17]: 13

Out[17]: Agent_id OUTPUT

0	1deba9e96f404694373de9749ddd1ca8aa7bb823145a6f	LOST	cd5dc0d9393f3
1	299ae77a4ef350ae0dd37d6bba1c002d03444fb1edb236	LOST	b94693673a5f717
2	c213697430c006013012dd2aca82dd9732aa0a1a6bca13	LOST	96ea4e2bf04496c
3	eac9815a500f908736d303e23aa227f0957177b0e6756b	LOST	1d2b34d8add02a1
4	1deba9e96f404694373de9749ddd1ca8aa7bb823145a6f	LOST	fc10fffd29cfbe
•••			
46603	2306878a9ad9b57686cd623dd285aaa9b25afdf627f651	LOST	1aaa4a4a9092e4
46604	327ec29056cc47c24bf922f7dc0f78261dad5c726d7353	LOST	1f90dbad4873cl
46605	1134c0a7d44fdae1afd7f1f64e2789496784095ca0a050	LOST	d9e0f455b68a6
46606	8b8b029f1142f5cbc825aa6cbee01406c915c6b055db79	LOST	1f90dbad4873cl
46607	1ea65ea38f2f574b3875ba895e4ff76b284b7725041612	LOST	7520a8abba2b44

46608 rows × 15 columns

In [18]: 13.isnull().sum()

```
Out[18]: Agent_id
                                      0
          OUTPUT
                                      0
          lead id
                                      0
                                      0
          lost_reason_Imputed
          budget_Imputed
                                      0
          lease_Imputed
                                      0
          source_Imputed
                                      0
          source city Imputed
                                      0
          source_country_Imputed
                                      0
                                      0
          utm source Imputed
          utm_medium_Imputed
                                      0
          des city Imputed
                                      0
                                      0
          des country Imputed
          movein Imputed
          room_type_Imputed
                                      0
          dtype: int64
```

No Null Values

```
In [19]: 13.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 46608 entries, 0 to 46607
Data columns (total 15 columns):
```

```
#
    Column
                           Non-Null Count Dtype
0
    Agent id
                            46608 non-null object
1
    OUTPUT
                            46608 non-null object
                            46608 non-null object
2
    lead id
3
    lost reason Imputed
                           46608 non-null object
4
    budget Imputed
                           46608 non-null object
5
    lease Imputed
                            46608 non-null object
6
                           46608 non-null object
    source_Imputed
    source_city_Imputed
                           46608 non-null object
8
    source country Imputed 46608 non-null object
9
    utm_source_Imputed
                            46608 non-null object
10 utm medium Imputed
                            46608 non-null object
11 des_city_Imputed
                            46608 non-null object
                            46608 non-null object
12 des country Imputed
13 movein Imputed
                            46608 non-null int64
                            46608 non-null int64
    room type Imputed
dtypes: int64(2), object(13)
```

```
memory usage: 5.3+ MB
```

```
object
         Agent id
Out[20]:
         OUTPUT
                                  object
         lead id
                                  object
         lost_reason_Imputed
                                  object
         budget_Imputed
                                  object
         lease_Imputed
                                  object
         source_Imputed
                                  object
         source city Imputed
                                  object
         source_country_Imputed
                                  object
         utm source Imputed
                                  object
         utm_medium_Imputed
                                  object
         des city Imputed
                                  object
                                  object
         des country Imputed
         movein Imputed
                                  object
         room_type_Imputed
                                  object
         dtype: object
In [21]:
        13.columns
         Index(['Agent_id', 'OUTPUT', 'lead_id', 'lost_reason_Imputed',
Out[21]:
                'budget_Imputed', 'lease_Imputed', 'source_Imputed',
                'source_city_Imputed', 'source_country_Imputed', 'utm_source_Imput
         ed',
                'utm_medium_Imputed', 'des_city_Imputed', 'des_country_Imputed',
                'movein_Imputed ', 'room_type_Imputed '],
               dtype='object')
         Using LabelEncoder because One-Hot Encoding will use too much space and each
         feature has too many categories
In [22]:
         from sklearn import preprocessing
         label_encoder = preprocessing.LabelEncoder()
         'source_city_Imputed', 'source_country_Imputed', 'utm_source_Imput
                'utm_medium_Imputed', 'des_city_Imputed', 'des_country_Imputed',
                'movein_Imputed ', 'room_type_Imputed ']
         13[categ] = 13[categ].apply(label_encoder.fit_transform)
In []:
In []:
In [23]:
         13['OUTPUT'] = 13['OUTPUT'].multiply(100)
```

In [24]:

13.head(100)

Out[24]:		Agent_id	OUTPUT	lead_id	lost_reason_Imputed	budget_Imputed	lease_Imputed
	0	12	0	24421	21	1834	266
	1	20	0	22037	16	1834	266
	2	87	0	17924	21	1752	266
	3	110	0	3582	16	10	2
	4	12	0	30016	8	1834	266
	•••						
	95	18	0	1615	21	1752	266
	96	86	0	23864	21	1793	266
	97	23	0	10081	21	1834	263
	98	86	100	21687	15	806	197
	99	98	0	1615	16	1834	278

```
100 rows × 15 columns
In [ ]:
In [25]: | 13["OUTPUT"].value_counts()
         ## Data Is Highly Imbalanced
                43244
Out[25]:
         100
                 3073
         Name: OUTPUT, dtype: int64
In [60]: # Scaling The Data Between 0-100, just to make predictions better.
         from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler(feature range=(0, 100))
         scaler.fit(13)
         MinMaxScaler(feature_range=(0, 100))
Out[60]:
In [27]: scaled_data = scaler.transform(13)
         14 = pd.DataFrame(scaled_data, columns = categ)
In [28]: ##PCA - Principal Component Analysis-
         from sklearn.decomposition import PCA
         pca = PCA(n components = 2)
         pca.fit(scaled data)
         x_pca = pca.transform(scaled_data)
         x_pca.shape
```

```
Out[28]: (46317, 2)
```

```
In [29]: plt.figure(figsize =(8, 6))
    plt.scatter(x_pca[:, 0], x_pca[:, 1], c = 14['OUTPUT'], cmap ='plasma')
# labeling x and y axes
plt.xlabel('First Principal Component')
plt.ylabel('Second Principal Component')
```

Out[29]: Text(0, 0.5, 'Second Principal Component')

Out[31]: <AxesSubplot:>

FEATURE SELECTION

Out[32]: <AxesSubplot:>

All Features are independent from each other

```
In [33]:
         from skfeature.function.similarity_based import fisher_score
         #fisher rank = fisher score.fisher score( .to numpy(),Y)
         s = pd.Series(fisher_rank, index = _.columns)
         s.sort values().plot(kind = "barh")
         NameError
                                                    Traceback (most recent call las
         /var/folders/bt/rtt5pc916cq7xtghg828tf800000gp/T/ipykernel_8095/360929925
         5.py in <module>
               1 from skfeature.function.similarity_based import fisher_score
               2 #fisher rank = fisher score.fisher score( .to numpy(),Y)
         ----> 3 s = pd.Series(fisher_rank, index = _.columns)
               4 s.sort_values().plot(kind = "barh")
         NameError: name 'fisher rank' is not defined
In [34]:
         from sklearn.feature selection import mutual info classif, chi2, f classi
         var_th = VarianceThreshold(threshold = 0.0)
         var_th.fit_transform(_)
         s = pd.Series(var_th.get_support(),index = _.columns)
```

```
Agent id
                                     True
Out[34]:
         lead id
                                     True
          lost reason Imputed
                                     True
          budget_Imputed
                                     True
          lease_Imputed
                                     True
          source_Imputed
                                     True
          source_city_Imputed
                                     True
          source country Imputed
                                     True
          utm_source_Imputed
                                     True
          utm medium Imputed
                                     True
         des_city_Imputed
                                     True
          des_country_Imputed
                                     True
         movein Imputed
                                     True
          room_type_Imputed
                                     True
          dtype: bool
```

ALL ARE GOOD PREDICTORS

Out[35]:		Chi2	P_val
	Agent_id	1048.57	0.00
	lead_id	12.58	0.00
	lost_reason_Imputed	4897.31	0.00
	budget_Imputed	867.07	0.00
	lease_Imputed	15.81	0.00
	source_Imputed	480.31	0.00
	source_city_Imputed	19.02	0.00
	source_country_Imputed	359.52	0.00
	utm_source_Imputed	6.52	0.01
	utm_medium_Imputed	3641.90	0.00
	des_city_Imputed	659.58	0.00
	des_country_Imputed	52.42	0.00
	movein_Imputed	8774.50	0.00
	room_type_Imputed	196.25	0.00

room_type and utm_source isnt that important for our model

```
In [36]:
                import seaborn as sns
                import matplotlib.pyplot as plt
                %matplotlib inline
                # Correlation matrix
                cor= 14.corr()
                # PLoan
                plt.figure(figsize = (10,6))
                sns.heatmap(cor, annot = True)
               <AxesSubplot:>
Out[36]:
                                                                                                                                     - 1.0
                               Agent_id - 1 0.0330.00410.068 0.064 0.056-0.0590.0079 0.03 0.026-0.0870.064 0.093-0.093 -0.08
                               OUTPUT -0.033 1 -0.004 -0.13 -0.0330.00460.0430.00530.0320.00490.0530.0280.032-0.0520.0093
                                                                                                                                      - 0.8
                                lead id -0.00410.004 1 0.00650.0066.0080.00630.00450.0016.00890.00450.001-4.00360.00490.0025
                   lost_reason_imputed -0.068 -0.130.006 1 0.046 0.041-0.0380.00160.00260.017-0.0420.011 0.053-0.031-0.049
                                                                                                                                      - 0.6
                       budget Imputed -0.064-0.0330.00660.046 1 0.66 -0.32-0.0120.078-0.011-0.16-0.0820.089 -0.59 -0.7
                                                                                                                                      - 0.4
                         lease Imputed -0.0560.0046.00810.041 0.66 1 -0.39-0.0690.0230.053 -0.18-0.077 0.11 -0.6 -0.52
                        source Imputed -0.0590.0430.00630.038-0.32-0.39 1 -0.15-0.13 0.094 0.16-0.016-0.12 0.34 0.22
                                                                                                                                      - 0.2
                    source_city_Imputed -0.0079.00530.0048.00160.012-0.069-0.15 1 0.25 -0.23 0.078 0.11 0.037 0.038 0.23
                source_country_Imputed - 0.03 0.0320.001-8.00260.078 0.023 -0.13 0.25 1 -0.13 -0.075 -0.04 0.12 -0.0710.021
                                                                                                                                     – ი ი
                   utm_source_imputed -0.0260.0049.00890.017-0.0110.053 0.094 -0.23 -0.13 1 -0.12-0.0610.034 -0.16 -0.32
                  utm_medium_Imputed -0.0870.0530.00430.042-0.16-0.18 0.16 0.078-0.075-0.12 1 0.033-0.26 0.13 0.29
                                                                                                                                      - -0.2
                       des_city_Imputed -0.064-0.0280.00140.011-0.082-0.077-0.016 0.11 -0.04-0.0610.033 1
                                                                                                            0.11 0.092 0.17
                   des_country_Imputed -0.093 0.0320.00330.053 0.089 0.11 -0.12 0.037 0.12 0.034 -0.26 0.11 1
                                                                                                                                       -0.4
                       movein_Imputed =0.0930.0520.00490.031-0.59 -0.6 0.34 0.038-0.071-0.16 0.13 0.092-0.093
                                                                                                                                       -0.6
                   room type Imputed --0.080.00930.00250.049 -0.7 -0.52 0.22 0.23 0.021 -0.32 0.29 0.17 -0.12 0.64
                                                                                                                         1
                                                                                 source_city_Imputed
                                                           ost_reason_Imputed
                                                                           source_Imputed
                                                                                       ource_country_Imputed
                                                                                             utm_source_Imputed
                                                                                                  tm_medium_Imputed
                                                                                                        des_city_Imputed
                                                                                                             des_country_Imputed
                                                                budget_Imputed
                                                                      lease_Imputed
                                                                                                                   movein_Imputed
                                                                                                                         room_type_Imputed
```

We observe colums movein and room_type are co-related

Out[37]:

	F_Val	P_val
Agent_id	50.61	0.00
lead_id	0.75	0.39
lost_reason_Imputed	772.38	0.00
budget_Imputed	49.87	0.00
lease_Imputed	0.98	0.32
source_Imputed	87.58	0.00
source_city_Imputed	1.30	0.25
source_country_Imputed	48.68	0.00
utm_source_Imputed	1.10	0.29
utm_medium_Imputed	128.24	0.00
des_city_Imputed	36.74	0.00
des_country_Imputed	48.01	0.00
movein_Imputed	124.59	0.00
room_type_Imputed	3.98	0.05

utm_source and source_city features dont have that discriminative power.

We decide to drop utm_source as it doesnt contribute much in prediction.

In [38]: 14.drop(['utm_source_Imputed'], axis=1)

0	U	t	L	3	8	J	į

	Agent_id	OUTPUT	lead_id	lost_reason_Imputed	budget_Imputed	lease_Im
0	10.084034	0.0	80.095113	72.413793	99.135135	85.8
1	16.806723	0.0	72.276156	55.172414	99.135135	85.8
2	73.109244	0.0	58.786487	72.413793	94.702703	85.8
3	92.436975	0.0	11.748114	55.172414	0.540541	0.6
4	10.084034	0.0	98.445392	27.586207	99.135135	85.8
•••						
46312	12.605042	0.0	10.806822	51.724138	99.135135	84.8
46313	20.168067	0.0	12.774680	82.758621	99.135135	92.2
46314	4.201681	0.0	85.067235	51.724138	97.837838	85.8
46315	50.420168	0.0	12.774680	51.724138	44.054054	30.0
46316	10.924370	0.0	45.788783	51.724138	96.918919	85.8

46317 rows × 14 columns

```
In [39]: fig, ax = plt.subplots(1,2 ,figsize=(15, 3))
    sns.histplot(scaled_data, ax=ax[1], kde=True, legend=False)
    ax[1].set_title("Scaled data")
    plt.show()
```


MODEL SELECTION

```
In [40]:
         from sklearn.model selection import train test split, RandomizedSearchCV
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import accuracy score, precision recall curve, classi
         x_train,x_test,y_train,y_test = train_test_split(X,Y, test_size=0.2, rand
In [41]:
In [42]: #Unbalanced data , we have to balance it
         from imblearn.over sampling import SMOTE
         sm = SMOTE(sampling strategy=0.75)
         sm_x,sm_y = sm.fit_resample(x_train,y_train)
In [43]: print(f"First we have the value counts:\n{y_train.value_counts()}\n\nAfte
         First we have the value counts:
         0.0
                  34595
         100.0
                   2458
         Name: OUTPUT, dtype: int64
         After OverSampling now we have value counts:
         0.0
                  34595
         100.0
                  25946
         Name: OUTPUT, dtype: int64
```

```
In [44]:
         import os
          from sklearn.tree import DecisionTreeRegressor
          from sklearn.linear model import LogisticRegression
          from sklearn.svm import SVR
          from sklearn import linear model
          from sklearn.ensemble import RandomForestRegressor
          arr = scaler.fit_transform(sm_x)
          std x = pd.DataFrame(arr, columns = sm x.columns)
          std x.head()
          arr1 = scaler.transform(x test)
          std_x_te = pd.DataFrame(arr1, columns = x_test.columns)
          std x te.head()
Out[44]:
                         lead_id lost_reason_Imputed budget_Imputed lease_Imputed source_
             Agent_id
          0 83.050847
                     6.352903
                                         62.068966
                                                         44.918919
                                                                      63.548387
            17.796610 86.054444
                                          51.724138
                                                         56.486486
                                                                      85.806452
                                                                                      5
          2 55.932203 76.064283
                                          89.655172
                                                         94.702703
                                                                      85.806452
                                                                                      5
            17.796610 54.945884
                                          51.724138
                                                         99.135135
                                                                       84.838710
                                                                                      5
           11.864407 11.853067
                                          55.172414
                                                         94.702703
                                                                       84.838710
                                                                                      5
In [45]:
         lst = [("LogisticRegression", LogisticRegression()),
                 ("DecisionTree", DecisionTreeRegressor()),
                 ("RandomForest", RandomForestRegressor())
          for name, model in 1st:
              model.fit(std_x,sm_y)
              y1 = model.predict(std x)
              accuracy = accuracy score(sm y,y1)
              y2 = model.predict(std_x_te)
              acc te = accuracy score(y test,y2)
              print(f"For {name}::\nThe Training Accuracy is: {accuracy}\nThe Testi
              print("--"*40)
          For LogisticRegression::
          The Training Accuracy is: 0.6995920120249087
          The Testing Accuracy is: 0.7847582037996546
          For DecisionTree::
          The Training Accuracy is: 1.0
```

For RandomForest::
The Training Accuracy is: 0.9092515815728184
The Testing Accuracy is: 0.9194732297063903

The Testing Accuracy is: 0.9766839378238342

In [46]: #decision tree seems better on testing set.

TRAINING AND METRICS

```
In [52]: regressor = DecisionTreeRegressor(random state = 0)
         regressor.fit(std_x,sm_y)
         DecisionTreeRegressor(random state=0)
Out [52]:
In [55]: y_pr_train = regressor.predict(std_x)
         acc train = accuracy score(sm y,y pr train)
         class_re = classification_report(sm_y,y_pr_train)
         con_mat = confusion_matrix(sm y,y pr train)
         print("Confusion Matrix:\n",con_mat)
         print("\n")
         print("The accuracy of the model:",(acc train)*100)
         print("\n")
         print("The classification report:\n",class re)
         Confusion Matrix:
          [[34595
               0 25946]]
         The accuracy of the model: 100.0
         The classification report:
                        precision
                                   recall f1-score
                                                         support
                            1.00
                                      1.00
                                                 1.00
                                                          34595
                  0.0
                100.0
                            1.00
                                      1.00
                                                 1.00
                                                          25946
                                                 1.00
                                                          60541
             accuracy
                            1.00
                                      1.00
                                                 1.00
                                                          60541
            macro avq
         weighted avg
                            1.00
                                      1.00
                                                 1.00
                                                          60541
```

TESTING AND METRICS

```
In [56]: y_pr_test = regressor.predict(std_x_te)
         acc_test = accuracy_score(y_test,y_pr_test)
         class_re1 = classification_report(y_test,y_pr_test)
         con mat1 = confusion matrix(y test,y pr test)
         print("Confusion Matrix:\n",con_mat1)
         print("\n")
         print("The accuracy of the model:",(acc_test)*100)
         print("\n")
         print("The classification report:\n",class rel)
```

Confusion Matrix: [[8527 122] [91 524]]

The accuracy of the model: 97.70077720207254

The classification report:

	precision	recall	f1-score	support
0.0	0.99	0.99	0.99	8649
100.0	0.81	0.85	0.83	615
accuracy			0.98	9264
macro avg	0.90	0.92	0.91	9264
weighted avg	0.98	0.98	0.98	9264

In []:		
In []:		