18.06 Recitation April 14

Kai Huang

Volume, Determinant, Trace

Consider an $n \times n$ matrix A.

- 1. A region in \mathbb{R}^n is transformed into another region in \mathbb{R}^n under $v \mapsto Av$.
- 2. The determinant is the scaling factor of volumes between the two regions.
- 3. The trace of A is the sum of its diagonal elements. We have tr(AB) = tr(BA).

Eigenvalues

Still consider an $n \times n$ matrix A.

- 1. We call λ an eigenvalue of A if there exists some vector $x \in \mathbb{C}^n$, such that $Ax = \lambda x$. Also we call x is the eigenvector.
- 2. Geometric meaning of eigenvalues and eigenvectors
- 3. If A is diagonalizable, i.e. we have $Q^{-1}AQ = \Sigma$ for some $n \times n$ matrix Q, where $\Sigma = diag(x_1, x_2, \dots, x_n)$. What are the eigenvalues of A?
- 4. A number λ is an eigenvalue of A if and only if $det(A \lambda Id_{n \times n}) = 0$
- 5. Suppose A is diagonal, what is the relationship between the determinant/trace of A and the eigenvalues of A? What if A is not diagonal but diagonalizable?

Problems

- 1. What is the area of the triangle in \mathbb{R}^2 whose vertices are (1,1), (2,4), (4,2)?
- 2. Compute the eigenvalues and corresponding eigenvectors of the following matrices.

1

(a)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$
, where $a, b, c \neq 0$

(c)
$$C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- 3. If AB = BA, and v is an eigenvector of B. Show that Av is also an eigenvector of B. What about A^nv ?
- 4. (a) Is the matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ diagonalizable?
 - (b) What is the relationship between the eigenvalues of an $n \times n$ matrix B and eigenvalues of B^2 ? (hiint: one side is easy)
 - (c) If B is diagonalizable, is B^2 also diagonalizable?