Khôlles de Mathématiques - Semaine 21

Kylian Boyet, Hugo Vangilluwen(relecture)

15 avril 2024

1 Caractérisation des polynômes irréductibles de degré 1, 2 et 3 dans $\mathbb{K}[X]$.

Tous les polynômes de degré 1 sont irréductibles, les polynômes irréductibles de degré 2 ou 3 sont les polynômes sans racine.s dans le corps de base.

 $D\'{e}monstration.$ Un polynôme de degré 1 ne peut s'écrire comme produit de 2 polynômes de degré $\geqslant 1$ donc il est irréductible.

Soit $P \in \mathbb{K}[X]$ un polynôme irréductible de degré 2 ou 3.

Par définition, P n'a pas de racine.s dans \mathbb{K} , donc la première inclusion.

Soit $P \in \mathbb{K}[X]$ tel que deg P = 2.

Montrons que si P n'a pas de racine dans \mathbb{K} alors P est irréductible. Montrons la contraposée. Supposons P non-irréductible.

$$\exists A, B \in \mathbb{K}[X] : P = AB \text{ et deg } A, \deg B \geqslant 1,$$

On a alors, $P = AB \implies 2 = \deg A + \deg B \implies \deg A$, $\deg B = 1$ donc :

$$\exists \alpha, \gamma \in \mathbb{K}^* \times \mathbb{K} : A = \alpha X + \gamma,$$

ainsi, $P = (\alpha X + \gamma)B = \alpha \left(X + \frac{\gamma}{\alpha}\right)B$, donc P admet $-\frac{\gamma}{\alpha} \in \mathbb{K}$ comme racine, ce qui montre la contraposée.

Soit $P \in \mathbb{K}[X]$ tel que deg P = 3.

Montrons, de même, la contraposée. Supposons P non-irréductible. De même, on a :

$$\exists A, B \in \mathbb{K}[X] : P = AB \text{ et } \deg A, \deg B \geqslant 1,$$

Puis encore, $P = AB \implies 3 = \deg A + \deg B \implies \deg A$, $\deg B \in \{2,1\}$ (l'un n'étant pas l'autre). Donc l'un des deux est de degré 1 donc P admet une racine dans \mathbb{K} , donc encore une fois cela montre la contraposée, ce qui démontre l'inclusion réciproque.

2 Polynômes irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$.

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1 et ceux de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 de discriminant strictement négatif.

Démonstration. Le premier point est immédiat, les polynômes irréductibles d'un corps contiennent les polynômes de degré 1 et par le théorème de D'Alembert-Gauss, tout polynôme de $\mathbb{C}[X]$ (deg $\geqslant 2$) est scindé dans $\mathbb{C}[X]$, donc non-irréductible.

Pour le second point, le cas du degré 1 est réglé. Soit P un polynôme irréductible de $\mathbb{R}[X]$. Supposons que P soit de degré supérieur ou égal à 3. Si son degré est impair, le TVI conclut quant à l'existence d'une racine, donc non-irréductible. Si son degré est pair, par D'Alembert-Gauss, on obtient deg P couples de racines possiblement égaux.

Or, $P \in \mathbb{R}[X]$ donc $\forall z \in \mathbb{C}$, $P(z) = 0 \implies P(\overline{z}) = 0$ donc les racines se rassemblent 2 à 2 pour former un polynôme scindé dans \mathbb{R} , donc non-irréductible. Ainsi, deg P = 2, immédiatement, si le discriminant de P est positif ou nul, P admet une ou deux racines dans \mathbb{R} , donc non irréductible. Enfin, son discriminant est alors négatif, de cette manière P n'admet pas de racine dans \mathbb{R} et est donc irréductible. Ce qui achève la preuve.

3 X^3-2 est irréductible dans $\mathbb{Q}[X]$.

Il s'agit donc de montrer que racine cubique de 2 n'est pas un rationnel.

Démonstration. Supposons, par l'absurde, qu'il existe $r \in \mathbb{Q}$ tel que $r^3-2=0$. Prenons $p,q \in \mathbb{Z} \times \mathbb{N}^*$ le représentant irréductible de r dans \mathbb{Q} . On a alors, $p^3=2q^3$ donc $2\mid p^3$ or $2\in \mathcal{P}$ donc $2\mid p$, ainsi, il existe $k\in \mathbb{Z}$ tel que p=2k. Par conséquent, $2(2k^3)=q^3$ donc $2\mid q^3$ or $2\in \mathcal{P}$ donc $2\mid q$ donc ceci contredit p et q premiers entre eux, par définition d'un représentant irréductible. Ainsi, $P=X^3-2$ n'admet pas de racine dans \mathbb{Q} , c'est donc un polynôme irréductible.

4 PGCD d'un polynôme de $\mathbb{C}[X]$ et son polynôme dérivé

Pour $P = \prod_{k=1}^{p} (X - z_k)^{m_k} \in \mathbb{C}[X] \setminus \{0_{\mathbb{C}[X]}\}$ avec $m_k \in \mathbb{N}^*$ pour tout $k \in [1, p]$, on a

$$P \wedge P' = \prod_{k=1}^{p} (X - z_k)^{m_k - 1} \tag{1}$$

C'est une conséquence de la définition du pgcd de deux polynômes $P \wedge Q = \prod_{i \in I} P_i^{\min\{m_i, p_i\}}$, où les P_i sont les facteurs irréductibles de P et Q dans leur décomposition.

Démonstration. Soit P un tel polynôme et p un entier naturel non nul. Naturellement, P' hérite de P, deg P-p racines, lesquelles sont les z_k pour $k \in [1, p]$, de multiplicité $m_k - 1$. Ainsi,

$$\exists B \in \mathbb{C}[X] : \left[P' = \left(\prod_{k=1}^p (X - z_k)^{m_k - 1} \right) B \right] \land \left[\deg B = p \right],$$

de cette manière on peut écrire :

$$P' = \left(\left(\prod_{k=1}^{p} (X - z_k)^{m_k - 1} \right) B \right) P^0 \text{ et } P = \left(\prod_{k=1}^{p} (X - z_k)^{m_k} \right) (P')^0,$$

de façon à faire apparaître dans les deux décompositions les mêmes facteurs, possiblement avec une puissance 0, histoire de coller à la définition de manière explicite. Ceci fait, il ne reste plus qu'à appliquer la définition du pgcd et de remarquer que seuls les $(X-z_k)^{m_k-1}$ subsistent. Notons $\mathfrak I$ l'ensemble des facteurs de leur décomposition, on a alors :

$$P \wedge P' = \prod_{D \in \mathfrak{I}} D^{\min\{\nu_D(P), \nu_D(P')\}} = \prod_{k=1}^p (X - z_k)^{m_k - 1},$$

où $\nu_D(\cdot)$ est la valuation D-adique au sens des polynômes irréductibles. Ce qui conclut.

5 Justifier la bonne définition de la dérivée d'une fraction rationnelle.

Il s'agit là de vérifier que la définition que l'on souhaiterait le plus, c'est-à-dire la même que pour la dérivée d'une fraction de fonctions, s'applique effectivement aux fractions rationnelles, c'est-à-dire que cette définition ne dépend pas du représentant choisi.

Démonstration. Montrons que pour $A, B \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\},$ on a :

$$\left(\frac{A}{B}\right)' = \frac{A'B - B'A}{B^2}.$$

Soient A et B de tels polynômes et C, $D \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\}$ tels que AD = BC, en dérivant on obtient A'D + D'A = B'C + C'B. Calculons :

$$\begin{array}{rcl} (A'B-B'A)D^2 & = & D(A'BD-(AD)B') \\ & = & D(A'BD-BCB') \\ & = & BD(A'D-CB') \\ & = & BD(C'B-D'A) \\ & = & B(C'BD-(AD)D') \\ & = & B^2(C'BD-BCD') \\ & = & B^2(C'D-D'C), \end{array}$$

ce qui prouve que le résultat ne dépend pas du représentant, par définition de $\mathbb{K}(X)$ comme structure quotient.

6 Théorème de Gauss-Lucas et interprétation graphique.

Les racines du polynôme dérivée sont dans l'enveloppe convexe des racines du polynôme. Soit $P \in \mathbb{C}[X]$ de degré au moins 2 et notons z_1, \ldots, z_n ses racines répétées avec multiplicité. Soit u une racine de P'. Alors :

$$\exists (c_1, \dots, c_n) \in \mathbb{R}_+^* : \sum_{k=1}^n c_k z_k = u \text{ et } \sum_{k=1}^n c_k = 1.$$
 (2)

Démonstration. \star Si u est une racine de P alors noter k_0 son indice et utiliser le symbole de Kronecker.

$$\sum_{k=1}^{n} \delta_{k,k_0} z_k = u \text{ et } \sum_{k=1}^{n} \delta_{k,k_0} = 1$$

* Sinon, u n'appartient pas aux racines de P, donc u n'est pas pôle de $\frac{P'}{P}$ ce qui permet de prendre l'image par le morphisme d'évaluation en u de cette même fraction rationnelle :

$$0_{\mathbb{K}} = \frac{P'(u)}{P(u)} = \sum_{k=1}^{n} \frac{1}{u - z_k} = \sum_{k=1}^{n} \frac{\overline{u} - \overline{z_k}}{|u - z_k|^2} = \sum_{k=1}^{n} \frac{\overline{u}}{|u - z_k|^2} - \sum_{k=1}^{n} \frac{\overline{z_k}}{|u - z_k|^2}.$$

Donc en passant la seconde somme à gauche et en prenant le conjugué :

$$\sum_{k=1}^{n} \frac{u}{|u-z_{k}|^{2}} = \sum_{k=1}^{n} \frac{z_{k}}{|u-z_{k}|^{2}} \implies u = \frac{\sum_{k=1}^{n} \frac{z_{k}}{|u-z_{k}|^{2}}}{\sum_{k=1}^{n} \frac{1}{|u-z_{k}|^{2}}} = \sum_{k=1}^{n} \frac{\frac{1}{|u-z_{k}|^{2}}}{\sum_{i=1}^{n} \frac{1}{|u-z_{i}|^{2}}} z_{k} = \sum_{k=1}^{n} c_{k} z_{k},$$

ce qui démontre la première partie du résultat, il est immédiat de vérifier que $\sum_{k=1}^{n} c_k = 1$, vérification laissée aux lecteurs. Ce qui achève la preuve.

* En bleu, les racines du polynôme P = (X - (-2+i))(X - (2+1.5i))(X - (1-2i))(X - (-1.5-i))(X - (-0.5+2i))(X - (0.5-1.5i))(X - (1.5+0.5i))

* Délimitée en rouge, l'enveloppe convexe des racines.

* En orange, les racines du polynôme dérivé $P' = (21.8125 + 40.1875i) - (3.5 + 21.375i)X + (7.125 - 25.125i)X^2 + (16 - 31.5i)X^3 + (3.75 + 5i)X^4 - (6 + 3i)X^5 + 7X^6$

Les racines de P' se retrouvent bien dans l'enveloppe convexe des racines de P.

7 Deux expressions du coefficient associé à un pôle simple dans une décomposition en éléments simples.

 $D\acute{e}monstration$. Soient $(P,Q) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\})$ tels que la fraction rationnelle $\frac{P}{Q}$ soit irréductible et en prenant deg $P < \deg Q$. En appliquant le théorème de décomposition en éléments simples, on obtient un expression de la forme :

$$\exists R \in \mathbb{K}(X) : \frac{P}{Q} = \sum_{k=1}^{n} \frac{a_k}{X - z_k} + R,$$

où les z_k pour $k \in [1, n]$ sont racines de Q. Ainsi, en prenant $k_0 \in [1, n]$ tel que z_{k_0} soit racine simple,

$$\frac{P(X - z_{k_0})}{Q} = a_{k_0} + \sum_{k=0 \text{ et } k \neq k_0} \frac{a_k(X - z_{k_0})}{X - z_{k_0}} + R(X - z_{k_0}),$$

une première expression se trouvera en notant $\widetilde{Q} = \prod_{\substack{k=1\\k\neq k_0}}^n (X-z_k)^{\nu_{(X-z_k)}(Q)}$, on a alors :

$$\frac{P(z_{k_0})}{\widetilde{Q}(z_{k_0})} = a_{k_0}.$$

Une autre expression est possible en explicitant \widetilde{Q} . Pour ce faire, remarquons plutôt :

$$Q' = \sum_{k=1}^{n} \nu_{(X-z_k)}(Q)(X-z_k)^{\nu_{(X-z_k)}(Q)-1} \prod_{\substack{i=1\\i\neq k}}^{n} (X-z_i)^{\nu_{(X-z_i)}(Q)},$$

donc en prenant l'image par le morphisme d'évaluation en z_{k_0} on obtient :

$$Q'(z_{k_0}) = \prod_{\substack{i=1\\i\neq k_0}}^n (z_{k_0} - z_i)^{\nu_{(X-z_i)}(Q)},$$

il s'agit exactement de $\widetilde{Q}(z_{k_0}).$ Ainsi,

$$\frac{P(z_{k_0})}{Q'(z_{k_0})} = a_{k_0},\tag{3}$$

ce qui suffit.

8 Expressions des deux coefficients associés à un pôle double dans une décomposition en éléments simples.

Démonstration. Soient $(P,Q) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\})$ tels que la fraction rationnelle $\frac{P}{Q}$ soit irréductible et en prenant deg $P < \deg Q$. En appliquant le théorème de décomposition en éléments simples on obtient un expression de la forme suivante en considérant z_{k_0} , une racine double de Q:

$$\exists R \in \mathbb{K}(X) : \frac{P}{Q} = \frac{a_1}{X - z_{k_0}} + \frac{a_2}{(X - z_{k_0})^2} + R \quad (\star)$$

puis de même,

$$\frac{P(X - z_{k_0})^2}{Q} = a_2 + \left(\frac{a_1}{X - z_{k_0}} + R\right) (X - z_{k_0})^2,$$

donc en notant $\widetilde{Q} = \prod_{\substack{k=1\\k\neq k_0}}^n (X-z_k)^{\nu_{(X-z_k)}(Q)},$ on a :

$$\frac{P(z_{k_0})}{\widetilde{Q}(z_{k_0})} = a_2,$$

c'est une première expression. Pour la suivante, encore une fois, explicitons \widetilde{Q} . Remarquons que :

$$\exists A \in \mathbb{K}[X] : \left[Q'' = 2 \prod_{\substack{k=1\\k \neq k_0}}^n (X - z_k)^{\nu_{(X - z_k)}(Q)} + A \right] \wedge [A(z_{k_0}) = 0],$$

donc, en remarquant que :

$$2\widetilde{Q}(z_{k_0}) = Q''(z_{k_0}),$$

on a finalement :

$$\frac{2P(z_{k_0})}{Q''(z_{k_0})} = a_2.$$

Pour récupérer a_1 , on multiplie (\star) par $(X-z_{k_0})^2$ puis on dérive :

$$\left(\frac{P(X-z_{k_0})^2}{Q}\right)' = a_1 + R'(X-z_{k_0})^2 + 2R(X-z_{k_0}),$$

soit,

$$\frac{((P'(X-z_{k_0})^2+2P(X-z_{k_0}))Q-Q'P(X-z_{k_0})^2}{Q^2}=a_1+R'(X-z_{k_0})^2+2R(X-z_{k_0})$$