(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出廣公開番号

特開平7-235680

(43)公開日 平成7年(1995)9月5日

(51) Int.Cl.*		識別記号	庁内蘇理番号	FΙ			技術表示箇所
HOIL	29/786						
	21/336						
	21/265						
			9056-4M	H01L	29/ 78	311 P	
					21/ 265	G	
			審查請求	未請求 請求」	質の数1 OL	(全 5 頁)	最終頁に続く
(21) 出讀書号	}	特膜平6-25800		(71)出職人	000003078		
					株式会社東芝	<u>.</u>	
(22)出實日		平成6年(1994)2	月24日		神奈川県川鮮	市幸区場川町	2番地
				(72)発明者	後藤 康正		
					神奈川県川麓	市幸区小向東	芝町1番地 株
					式会社東芝研	「究開発センタ ー	一内
				(72)発明者	源戸 俊祐		
					神奈川県川僧	市幸区小向東	芝町1番地 株
					式会社東芝研	 究開発センタ -	一内
				(72)発明者	川久慶人		
					神奈川県川崎	市幸区小向東	医町1番地 株
					式会社東芝研	究開発センタ-	一内
				(74)代理人	弁理士 則近	憲佑	

(54) 【発明の名称】 荐譲トランジスタの製造方法

(57)【要約】

【目的】 製造工程を煩雑化することなしに、低リーク 電流のTFTを提供する。

【構成】 多結晶シリコンをチャネルに有するトップゲ ート型薄膜トランジスタにおいて、ソース・ドレイン領 域にイントリンシック領域、低不純物濃度領域、高不純 物濃度領域を有する薄膜トランジスタをゲート電極を同 -のマスクを用いて、2回のエッチング工程と、1回の 不純物注入工程で形成する薄膜トランジスタの製造方 法。

【特許請求の範囲】

【請求項1】絶縁基板上に半導体層を形成する工程と、この半導体層上に底面が広がったゲート電極を形成する ご程と、このゲート電極をマスクとして前記半導体層に 不範物を導入しソース・ドレイン領域形成する工程と、 前記ゲート電極の側面をエッチングする工程とを具備することを特徴とする薄膜トランジスタの製造方法。

【発明の詳細な説明】

[4001]

【産業上の利用分野】本発明は、薄膜トランジタの製造 方法に関する。

[0002]

【逆来の技術】プラズマ、発光ダイオード、液晶等の表 デデバイスは、表示部の薄型化が可能であり、事務機器 やコンピュータ等の表示装置あるいは特殊な表示装置へ ご用途として要求が高まっている。

【0003】これらの中で、非晶質であるアモルファス・プリコン(aーSi)または結晶を持ったシリコン(ボリシリコン、polyーSi)を用いた薄膜トランジスタ(TFT)をスイッチング素子としてマトリックス上に配した液晶表示装置(TFT-LCD)は、表示品位が高く、低消費電力であるため、その開発が盛んに行われている。

【0004】特にpoly-5~を用いたTFTは、aーS:TFTよのも移動度が10から100倍程度高く、その利点を利用して画素スイッチング素子して用いるだけでなく、周辺駆動回路にpory-SiTFTを用いて、画素TFTと駆動回路TFTを同一基板上に同時に形成する駆動回路一体型TFT-LCDの研究開発が盛んに行われている。

【りりりう】 poly-SiTFTは、a-SiTFTに比・移動度は高いが、他方リーク電流(TFTがOFFのとき流れてしまうリーク電流)が a-SiTFTに比へ高いという難点がある。駆動回路を構成する場合には、特に問題にならないが画素スイッチングに用いた場合は、画質劣化の原因となる。

【0006】そのため、画素に用いるpply-SiTFTには、さまざまに構造上に工夫をこうしたものがある。その一例として、オフセット構造を持ったTFTを製造する場合、ソースドレイン領域、オフセット領域を形成するために、フォトリッグラフィー工程が2回必要である。従って露光のために少くとも2つのマスケが必要であり、それに申うPEP工程等の露光工程も夫々必要となり、工程が傾雑化するという問題があった。

[0007]

【発明が解決しようとする課題】従来の薄膜トランジタン製造方法は、リード電流の低減化に有利なオフセット構造を有するものの、少くとも2つのマスクを必要とする2回の露光工程が必要で工程が煩雑化する問題があった。

【ののの8】 本発明は上記問題点に鑑みてなされたもので、「何の霧光工程ですっセット構造を形成でき、製造工程数を簡略化した薄膜トラットスタの製造方法の提供を目的とする。

[0009]

【課題を解決するための手段】上記目的を達成するために、本発明は絶縁基板上に半導体層を形成する工程と、この半導体層上に底面が広がったゲート電極を形成する工程と、このゲート電極をマスコとして前記半導体層に不純物を導入しソース・ドレイン領域を形成する工程と、前記ゲート電極の側面をエッチンプする工程とを具備することを特徴とする薄膜トランジファの製造方法を提供するものである。ここで、半導体は以底半導体や日子に疾等の化合物半導体であっても良いが、液晶表示装置に使用した際の画質向上面からシシコンが好ましい。【0010】

【作用】透明絶縁性基板上に、薄膜トランジスタを製造する際、ゲート電極のエッチング工程、「純物注入工程、再エッチング工程を、同一のマスタで行うことにより、サブミクロンあるいはミクロンオーダのオフセット領域の製造工程を簡略化することができる。それによりコストの低下、歩留まりの向上が可能となる。

[0011]

【集施例】以下、本発明の詳細を図示に実施例により説明する。

・実施例 1) 実施例 1 を図 1 に従い説明する。図 1 には n チャネルコプラナ型TFTの製造工程を示している。 【 0 0 1 2】最初にガラス基板・石英基板等からなる透

光性絶縁基板101上にCVD法により x_1 ファ層となる $s_1 \circ x$ 膜102を $t_1 \circ t_2$ の t_1 の m 程度被着する。さらにCVD法により $t_2 \circ t_3$ と、日膜を $t_3 \circ t_4$ の度で1時間炉アニールを行った後、例えば $t_4 \circ t_5$ の度で1時間炉アニールにより $t_4 \circ t_5$ の一世アニールにより $t_4 \circ t_5$ の一世アニールにより $t_4 \circ t_5$ を溶脱する。その後、フォトリソグラフィ等により $t_4 \circ t_5$ でターニング、エッチングし、島状に加工する(図1(4))。

【10013】次に、CVD法によりゲート絶縁膜として SiOx膜104を100nm被着した後、ゲート電極 として例えば燐ドーブロートi膜(05を400nm被 着する「図1(b))。

【0014】フォトリングラフィによりレジスト、感光性ポリイミド106等をしターニングした後に、ゲート電極107aを例えばCDE法等により出土25%の角度がつてようにエッチングを行うに引し、ショ

【0015】次にレジアト、ホリ・ミト等の刺離を行わず、サオン注入、イオントービンド法により隣を注入する。オオン注入法の場合、例えば知速電(Eは10) とe ∇ 、ドード量は $5\times10^{15}\,\mathrm{cm}^{-2}$ とする。 嬢イナンは上部にゲート電極が存在しないソード・デンイン領域 10

3には燐イオンがヘビードープされる、この領域に電気的に隣接してゲートテーバ端部を通過して燐イオンが注入される領域、つまりライトリッドープされた領域10 3、さらに隣接して膜厚が215nm以上あるテーバ部直下の活性層領域、すなわちイントリンシック5:のままである領域11が得られる(図1・d) ...

【①)16】次にレジスト・ボー・ミド等の刺離を行わず、CDE法によるエッチング時に用いたままの状態できるに、RIE法により42 = x T度のテード角でマスケとして使用する。RIE法により42 = x T度のテード角でイート電極を再エッチングすると約500mのLDD領域109が形成できる。このときの活性層及びゲート電極の状態について記載する。ゲート電極の再エッチングによりゲート電極107b長は短くなり、それにとちないチャネル領域はやや短くなる。チャネルに隣接して前記ライトリッドーで(LDD)鎖域109、イントリンシッケ81領域(オフセット領域)1:0がソース・ドレイン領域の一部として加わる(図1(e))。

【0017】この後レジスト等の刺離を行った後、APCVD法により層間絶縁膜!11を400nm程度被着する(図1%),次に、例えばXeC1 エキンマレーザアニールにより 7-2 ドレイン領域、ゲート電極107 bの活性化を行う。この時のレーザエネルギーは約200m 1/2 で m^2 とすれば、十分に活性化ができる。レーザ活性化法を用いた場合不純物の拡散長は、たかだか60 nm程度であるので約540 nm(0.5 μ m)のオフセット領域110 が形成される。さらに、LDD領域109 とオフセート領域110 を同時に溶融させるために、良好な μ m・主接合を μ m・主きることも、リーク電流低減に寄与している(図1 μ m)。

【0018】 さらに、フォトリソグラフィによりコンタクトホール目を開孔し(図1(h))、ソース・ドレイン電極として例えばAI膜をスパッタリング法により成膜する。フォトリソグラフィ等によりソース・ドレイン電極112にパターニングして、nチャネルコプラナ型下ド下が完成する(図1(i))。

【①019】ここでゲート電櫃107a、107bのデーバー加工について説明を加える。ゲート電櫃をデーバエッチングする際、図2に示したようにゲート電櫃107aがデー・角を41度とする。次に、レジスト等の剥離を行わずそのままゲート電櫃107aをマフクとして不純物を注入する。さらに、前記ケート電櫃107aエッチング時に用いたレンフト等をマフクとし、ゲート電櫃107aにエッチ部が垂直あるいは垂直に近い角度では、メンロストをとるに再工しまり

 (H_2) になるように再エッチングを行ってゲート電橋 (1) アドを形成する。この時、 (H_2) (H_3) なる条件でエッチングすることは、言うまでもない、ゲート電橋 (1) (1) では、アート電機 (1) では、アート電機 (1) では、アート電機 (1) では、アートでは (1) では、アーネル節域に (1) では、アーネル節域に対し、アーネル節域に (1) では、アーネル節域に (1) では、アーネル節域に対し、アーネル節域に (1) では、ア

トリンシックボリシトコンのいわゆるエコセット領域の長さ(L_0) ブ制個は、ケート遺域、ロティ、1)テラの膜厚、イナン加速電圧、ゲート遺域テート部の角度(H_1 、 H_2) 等によって制御する。この時の活性層 1) 3 中の平均不純物密度を図るに示す。このように、1 度の不純物注入工程で、ゲート電域端 1) 1 たのの距離により、高下純物農度領域 1) 1 というに、低不純物農度領域 1) 1 というの 1 の

【) り 2 り】また、ゲート電幅を上記条件 $(m_2)>0$ 1 に 7 2 回でエッチンプした後、ゲート電幅をアスクとして、さらに不純物を低濃度で注入するとし1 1 1 得遺をとることもできる。

【り022】この製造方法によれば、オフセット領域を 形成するために新たなマスケを必要としない。従ってそ の分の食分のPEP工程等がなくなり、大幅に工程を簡 略化することができる。

【0023】本発明のTFTにおいては、容易にオフセット構造を形成することができり一ケ電流を7・10 -11 A程度に低減でき、ケート電極にテーバがついているにも関わらず、前記が一ト電極直下のゲート絶縁膜中に増イす。が注入されずTFTの信頼性が向上する。

《実施例』: 本実施例が、実施例1と異なる点は、半導 体が5:以外の主導体である化合物半導体の任宜人でで あり、ゲート電極がWNxのショットキー電極になった ことにある。この場合、実施例:の様なゲート絶縁膜は 必要ないので、Si基板上にGaAs層を形成してお き、このGaA:層上にさらに形成したモーバ形状(底) 面が広がった台形) のゲート電極から不純物をイオン注 入してソース・ドレイン領域を形成し、この後、デート 電極の側面を実施例;と同様にエッチングする。エッチ ングした下部のGaA:層がオフセット領域となる。こ れによって実施例1とは材料系は異なるもののGaAs を用いたコプラナ型TFTをオフセット領域を持った構 造で実施例1と同様に开成することができる。甲第1号 証かについても、実施例1と同様に多する事ができる。 【() 0 2 4】なお、本発明では、ココラナ型TPTにつ いて説明したが、本発明の主旨を逸脱しない範囲におい

いて説明したが、本発明の主旨を逸脱しない範囲において、さまざまに変形することができる。例えばソース・ドレイン領域、チーマル領域よりキゲート遺域が上にくる下FT、例えばスタガ型でFTについても同様に実施することができる。また、n チーネルまたは p チーネルタイプの T F T に適用することができるのは言うまでもない。ゲート運極材料については、痛耐点金属、それ経過物、窒化物などが使用でき、また、ケートや緑膿につ

いては、窒化シリコン、窒化酸化シリコン等が使用でき、さらには、ソース・ドレイン領域、チャネリ領域については、、多結晶、非晶質の各種半導体を使用することができる。

[0025]

【発明の効果】本発明により、オフセット領域を形成するためのフォトリソグラフィエ程を削除し、製造工程を 簡略化することができる。それによりコストの低下、歩 留まりの向上が可能となる。

【図面の簡単な説明】

【図1】 本発明の実施例を工程順に示した断面図。

【図2】 本発明の実施例の要部拡大図。

【図3】 本発明の実施例を説明する図。 【符号の説明】

- 101 基板
- 102 バラファ層
- 103 多結晶シリコンチャネル
- 104 ゲート絶縁膜
- 107a.107b ゲート電極
- 108 ソース・ドレイン領域
- 109 低不純物濃度領域
- 110 オフセット領域
- 111 層間絶縁膜

【図1】

ケート電極関都はらの距離

フロントページの続き

 (51) Int. Cl. 6
 識別記号
 庁内整理番号
 FI
 技術表示箇所

 9056-4M
 HOLL 29/78
 3 1 1 G