EXERCISES 12.8

In Exercises 1-12, calculate the indicated derivative from the given equation(s). What condition on the variables will guarantee the existence of a solution that has the indicated derivative? Assume that any general functions F, G, and H have continuous first partial derivatives.

1.
$$\frac{dx}{dy}$$
 if $xy^3 + x^4y = 2$ 2. $\frac{\partial x}{\partial y}$ if $xy^3 = y - z$

$$2. \ \frac{\partial x}{\partial y} \text{ if } xy^3 = y - z$$

3.
$$\frac{\partial z}{\partial y}$$
 if $z^2 + xy^3 = \frac{xz}{y}$

3.
$$\frac{\partial z}{\partial y}$$
 if $z^2 + xy^3 = \frac{xz}{y}$ 4. $\frac{\partial y}{\partial z}$ if $e^{yz} - x^2z \ln y = \pi$

5.
$$\frac{\partial x}{\partial w}$$
 if $x^2y^2 + y^2z^2 + z^2t^2 + t^2w^2 - xw = 0$

6.
$$\frac{dy}{dx}$$
 if $F(x, y, x^2 - y^2) = 0$

7.
$$\frac{\partial u}{\partial x}$$
 if $G(x, y, z, u, v) = 0$

8.
$$\frac{\partial z}{\partial x}$$
 if $F(x^2 - z^2, y^2 + xz) = 0$

9.
$$\frac{\partial w}{\partial t}$$
 if $H(u^2w, v^2t, wt) = 0$

10.
$$\left(\frac{\partial y}{\partial x}\right)_u$$
 if $xyuv = 1$ and $x + y + u + v = 0$

11.
$$\left(\frac{\partial x}{\partial y}\right)_z$$
 if $x^2 + y^2 + z^2 + w^2 = 1$, and $x + 2y + 3z + 4w = 2$

12.
$$\frac{du}{dx}$$
 if $x^2y + y^2u - u^3 = 0$ and $x^2 + yu = 1$

13. If $x = u^3 + v^3$ and $y = uv - v^2$ are solved for u and v in terms of x and y, evaluate

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$, and $\frac{\partial (u, v)}{\partial (x, y)}$

at the point where u = 1 and v = 1.

14. Near what points (r, s) can the transformation

$$x = r^2 + 2s$$
, $y = s^2 - 2r$

be solved for r and s as functions of x and y? Calculate the values of the first partial derivatives of the solution at the origin.

- **15.** Evaluate the Jacobian $\partial(x, y)/\partial(r, \theta)$ for the transformation to polar coordinates: $x = r \cos \theta$, $y = r \sin \theta$. Near what points (r, θ) is the transformation one-to-one and therefore invertible to give r and θ as functions of x and y?
- **16.** Evaluate the Jacobian $\partial(x, y, z)/\partial(R, \phi, \theta)$, where

$$x = R \sin \phi \cos \theta$$
, $y = R \sin \phi \sin \theta$, and $z = R \cos \phi$.

This is the transformation from Cartesian to spherical coordinates in 3-space that we discussed in Section 10.6. Near what points is the transformation one-to-one and hence invertible to give R, ϕ , and θ as functions of x, y, and z?

17. Show that the equations

$$\begin{cases} xy^2 + zu + v^2 = 3\\ x^3z + 2y - uv = 2\\ xu + yv - xyz = 1 \end{cases}$$

can be solved for x, y, and z as functions of u and v near the point P_0 where (x, y, z, u, v) = (1, 1, 1, 1, 1), and find $(\partial y/\partial u)_v$ at (u,v)=(1,1).

- 18. Show that the equations $\begin{cases} xe^y + uz \cos v = 2\\ u\cos y + x^2v yz^2 = 1 \end{cases}$ can be solved for u and v as functions of x, y, and z near the point P_0 where (x, y, z) = (2, 0, 1) and (u, v) = (1, 0), and find $(\partial u/\partial z)_{x,y}$ at (x, y, z) = (2, 0, 1).
- 19. Find dx/dy from the system

$$F(x, y, z, w) = 0, G(x, y, z, w) = 0, H(x, y, z, w) = 0.$$

20. Given the system

$$F(x, y, z, u, v) = 0$$

$$G(x, y, z, u, v) = 0$$

$$H(x, y, z, u, v) = 0,$$

how many possible interpretations are there for $\partial x/\partial y$? Evaluate them.

21. Given the system

$$F(x_1, x_2, \dots, x_8) = 0$$

$$G(x_1, x_2, \dots, x_8) = 0$$

$$H(x_1, x_2, \dots, x_8) = 0,$$

how many possible interpretations are there for the partial $\frac{\partial x_1}{\partial x_2}$? Evaluate $\left(\frac{\partial x_1}{\partial x_2}\right)_{x_4,x_6,x_7,x_8}$

- **22.** If F(x, y, z) = 0 determines z as a function of x and y, calculate $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, and $\frac{\partial^2 z}{\partial y^2}$ in terms of the partial derivatives of F.
- **23.** If x = u + v, y = uv, and $z = u^2 + v^2$ define z as a function of x and y, find $\partial z/\partial x$, $\partial z/\partial y$, and $\partial^2 z/\partial x \partial y$.
- **24.** A certain gas satisfies the law $pV = T \frac{4p}{T^2}$ where p = pressure, V = volume, and T = temperature.
 - (a) Calculate $\partial T/\partial p$ and $\partial T/\partial V$ at the point where p = V = 1 and T = 2.
 - (b) If measurements of p and V yield the values $p = 1 \pm 0.001$ and $V = 1 \pm 0.002$, find the approximate maximum error in the calculated value T=2.

25. If
$$F(x, y, z) = 0$$
, show that $\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$.

Derive analogous results for F(x, y, z, u) = 0 and for F(x, y, z, u, v) = 0. What is the general case?

126. If the equations F(x, y, u, v) = 0 and G(x, y, u, v) = 0 are solved for x and y as functions of u and v, show that

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{\partial(F,G)}{\partial(u,v)} / \frac{\partial(F,G)}{\partial(x,y)}.$$

127. If the equations x = f(u, v), y = g(u, v) can be solved for u and v in terms of x and y, show that

$$\frac{\partial(u,v)}{\partial(x,y)} = 1 / \frac{\partial(x,y)}{\partial(u,v)}.$$

Hint: Use the result of Exercise 26.

13. If x = f(u, v), y = g(u, v), u = h(r, s), and v = k(r, s), then x and y can be expressed as functions of r and s. Verify by direct calculation that

$$\frac{\partial(x,y)}{\partial(r,s)} = \frac{\partial(x,y)}{\partial(u,v)} \frac{\partial(u,v)}{\partial(r,s)}.$$

This is a special case of the Chain Rule for Jacobians.

19. Two functions, f(x, y) and g(x, y), are said to be functionally dependent if one is a function of the other; that is, if there exists a single-variable function k(t) such that $f(x, y) = k\left(g(x, y)\right)$ for all x and y. Show that in this case $\partial(f, g)/\partial(x, y)$ vanishes identically. Assume that all necessary derivatives exist.

130. Prove the converse of Exercise 29 as follows: Let u = f(x, y) and v = g(x, y), and suppose that $\partial(u, v)/\partial(x, y) = \partial(f, g)/\partial(x, y)$ is identically zero for all x and y. Show that $(\partial u/\partial x)_v$ is identically zero. Hence u, considered as a function of x and y, is independent of x; that is, u = k(v) for some function k of one variable. Why does this imply that f and g are functionally dependent?

Thermodynamics Problems

31. Use the different versions of the equation of state, presented in this section, to determine explicit functions u and v such that S = u(E, V, N) and S = v(T, V, N).

In Exercises 32–34, verify the given Maxwell relation by using a suitable Legendre transformation (see the Thermodynamics subsection of Section 12.6) to involve the appropriate set of independent variables.

$$\begin{tabular}{l} \blacksquare \begin{tabular}{l} \bf 33. \end{tabular} \left(\frac{\partial V}{\partial S} \right)_{P,N} = \left(\frac{\partial T}{\partial P} \right)_{S,N}$$

In Exercises 1–12, calculate the indicated derivative from the given equation(s). What condition on the variables will guarantee the existence of a solution that has the indicated derivative? Assume that any general functions F, G, and H have continuous first partial derivatives.

1.
$$\frac{dx}{dy}$$
 if $xy^3 + x^4y = 2$ 2. $\frac{\partial x}{\partial y}$ if $xy^3 = y - z$

$$2. \ \frac{\partial x}{\partial y} \text{ if } xy^3 = y - z$$

