

# Seminario di Calcolo Scientifico Il Metodo delle Iterazioni dei Sottospazi

Ivan Bioli

Università di Pisa

22 Marzo 2021

### Setting e assunzioni

Analizzeremo varie varianti del *Metodo delle Iterazioni dei Sottospazi* nelle seguenti ipotesi:

- $A \in \mathbb{C}^{n \times n}$  matrice simmetrica reale o hermitiana
- autovalori  $\lambda_1, \lambda_2, \dots, \lambda_n$  ordinati in ordine decrescente di modulo
- relativi autovettori  $u_1, \ldots, u_n$  ortonormali
- p un intero 1 , vogliamo calcolare i <math>p autovalori dominanti nell'ipotesi che questi siano separati dal resto dello spettro:

$$|\lambda_1| \ge \cdots \ge |\lambda_p| > |\lambda_{p+1}| \ge \cdots \ge |\lambda_n|$$

# Metodo delle Iterazioni Ortogonali

### Algorithm Iterazioni ortogonali

- 1: Sia  $X \in \mathbb{C}^{n \times p}$  matrice con colonne ortonormali,  $X^*X = I_p$
- 2:  $X^{(0)} := X, k = 0$
- 3: repeat
- 4: k := k + 1
- 5:  $Z^{(k)} := AX^{(k-1)}$
- 6:  $Z^{(k)} =: Q^{(k)}R^{(k)}$  /\*Fattorizzazione QR di  $Z^{(k)*}$ /
- 7:  $X^{(k)} = Q^{(k)}$
- 8:  $\lambda^{(k)} := diag(R^{(k)})$
- 9: until  $\|\lambda^{(k)} \lambda^{(k-1)}\|/\|\lambda^{(k)}\| < tol \text{ or } k > itmax$

# Analisi teorica della velocità di convergenza

### Teorema (Convergenza dei sottospazi)

Sia  $U_p:=[u_1,\ldots,u_p]$  e sia  $X^{(0)}\in\mathbb{C}^{n\times p}$  tale che  $W_p:=U_p^*X^{(0)}$  sia non singolare. Se  $|\lambda_p|>|\lambda_{p+1}|$  vale:

$$an heta^{(k)} \leq \left| rac{\lambda_{p+1}}{\lambda_p} 
ight|^k an heta^{(0)}, \qquad heta^{(k)} = \angle (\mathcal{R}(X^{(k)}), \mathcal{R}(U_p))$$

### Corollario

Supponiamo che  $|\lambda_{j-1}| > |\lambda_j| > |\lambda_{j+1}|$  e che  $W_j$  sia non singolare. Allora:

$$\sin \angle (x_j^{(k)}, u_j) \le c \cdot \max \left\{ \left| \frac{\lambda_j}{\lambda_{j-1}} \right|^k, \left| \frac{\lambda_{j+1}}{\lambda_j} \right|^k \right\}$$



# Analisi teorica della velocità di convergenza

### Teorema (Convergenza degli autovalori)

Supponiamo che

$$|\lambda_1| > \cdots > |\lambda_p| > |\lambda_{p+1}|$$

Allora per gli elementi diagonali della matrice  $R^{(k)}$  vale la stima:

$$|r_{ii}^{(k)} - \lambda_i| = O\left(\left|\frac{\lambda_{i+1}}{\lambda_i}\right|^k + \left|\frac{\lambda_i}{\lambda_{i-1}}\right|^k\right)$$

### Dobbiamo cercare di accelerare l'algoritmo perché:

- la velocità di convergenza dipende dai rapporti  $|\lambda_{i+1}/\lambda_i| \Longrightarrow$  molto lenta potenzialmente
- la convergenza delle autocoppie non è assicurata

Dobbiamo cercare di accelerare l'algoritmo perché:

- la velocità di convergenza dipende dai rapporti  $|\lambda_{i+1}/\lambda_i| \Longrightarrow$  molto lenta potenzialmente
- la convergenza delle autocoppie non è assicurata

Dobbiamo cercare di accelerare l'algoritmo perché:

- la velocità di convergenza dipende dai rapporti  $|\lambda_{i+1}/\lambda_i| \Longrightarrow$  molto lenta potenzialmente
- la convergenza delle autocoppie non è assicurata

Dobbiamo cercare di accelerare l'algoritmo perché:

- la velocità di convergenza dipende dai rapporti  $|\lambda_{i+1}/\lambda_i| \Longrightarrow$  molto lenta potenzialmente
- la convergenza delle autocoppie non è assicurata

Supporremo d'ora in poi che A sia una matrice simmetrica reale o hermitiana definita positiva

Dobbiamo cercare di accelerare l'algoritmo perché:

- la velocità di convergenza dipende dai rapporti  $|\lambda_{i+1}/\lambda_i| \Longrightarrow$  molto lenta potenzialmente
- la convergenza delle autocoppie non è assicurata

Supporremo d'ora in poi che A sia una matrice simmetrica reale o hermitiana definita positiva

### **Teorema**

Sia  $X^{(0)}$  come nel Teorema 1 e siano  $u_i, 1 \leq i \leq p$  gli autovettori corrispondenti ai p autovalori dominanti  $\lambda_1, \ldots, \lambda_p$  di A. Allora:

$$\min_{x \in \mathcal{R}(X^{(k)})} \sin \angle (u_i, x) \le c \left(\frac{\lambda_{p+1}}{\lambda_i}\right)^k$$

#### Dimostrazione

Per induzione

$$A^{k}X^{(0)} = X^{(k)}R, \qquad R = R^{(k)}R^{(k-1)}\cdots R^{(1)}$$

Sia  $U \in \mathbb{C}^{n \times n}$  matrice unitaria, tale che  $U^*AU = diag(\lambda_1, \dots, \lambda_n) =: \Lambda$ .

$$\Lambda = \text{diag}(\Lambda_1, \Lambda_2), \quad \text{$U^*X^{(k)} =: \hat{X}^{(k)} = \left[\begin{array}{c} \hat{X}_1^{(k)} \\ \hat{X}_2^{(k)} \end{array}\right]} \qquad \Lambda_1, \hat{X}_1^{(k)} \in \mathbb{C}^{\rho \times \rho}$$

$$X^{(k)}R = A^k X^{(0)} = U \Lambda^k U^* X^{(0)} = U \begin{bmatrix} \Lambda_1^k \hat{X}_1^{(0)} \\ \Lambda_2^k \hat{X}_2^{(0)} \end{bmatrix} = U \begin{bmatrix} I_p \\ S^{(k)} \end{bmatrix} \Lambda_1^k \hat{X}_1^{(0)}$$

dove 
$$S^{(k)} = \Lambda_2^k \hat{X}_2^{(0)} \hat{X}_1^{(0)^{-1}} \Lambda_1^{-k} \in \mathbb{C}^{(n-p) imes p}$$
 e vale

$$s_{ij}^{(k)} = s_{ij} \left( \frac{\lambda_{p+i}}{\lambda_j} \right)^k, \quad s_{ij} := s_{ij}^{(0)} \qquad 1 \leq i \leq n-p, \quad 1 \leq j \leq p$$

Dunque 
$$\mathcal{R}(X^{(k)}) = \mathcal{R}\left(U \left[ egin{array}{c} I_p \\ S^{(k)} \end{array} 
ight]
ight)$$

### Dimostrazione

$$\min_{x \in \mathcal{R}(X^{(k)})} \sin \angle (u_i, x) \leq \sin \angle \left(u_i, U\left(\begin{array}{c}I_p\\S^{(k)}\end{array}\right) e_i\right) =$$

$$= \left\| (I - u_i u_i^*) U\left[\begin{array}{c}0\\\vdots\\0\\1\\0\\\vdots\\s_{n-p,i}(\lambda_p + 1/\lambda_i)^k\\\vdots\\s_{n-p,i}(\lambda_n/\lambda_i)^k\right] \right\| / \left\| \left(\begin{array}{c}I_p\\S^{(k)}\end{array}\right) e_i \right\| \leq$$

$$\leq \left\| (I-u_iu_i^*) \left( u_i + \sum_{j=\rho+1}^n s_{j-\rho,i} \left( \frac{\lambda_j}{\lambda_i} \right)^k u_j \right) \right\| = \sqrt{\sum_{j=1}^{n-\rho} s_{ji}^2 \frac{\lambda_{\rho+j}^{2k}}{\lambda_i^{2k}}} \leq \left( \frac{\lambda_{\rho+1}}{\lambda_i} \right)^k \sqrt{\sum_{j=1}^{n-\rho} s_{ji}^2}$$



# Accelerazione di Rayleigh-Ritz

IDEA: Fare un cambio di base. Consideriamo la restrizione di A al sottospazio  $\mathcal{R}(Q^{(k)})$ 

$$H^{(k)} := Q^{(k)^*}AQ^{(k)} \in \mathbb{C}^{p \times p}$$
 (quoziente di Rayleigh generalizzato)

### Accelerazione di Rayleigh-Ritz

**Algorithm** Iterazioni ortogonali con accelerazione di Rayleigh-Ritz, versione 1

```
1: Sia X \in \mathbb{C}^{n \times p} matrice con colonne ortonormali, X^*X = I_p
 2: X^{(0)} := X, k = 0
 3: repeat
 4: k := k + 1
 5. Z^{(k)} := AX^{(k-1)}
 6: Z^{(k)} =: Q^{(k)}R^{(k)} /*Fattorizzazione QR di Z^{(k)*}
 7: H^{(k)} := Q^{(k)^*} A Q^{(k)}
    H^{(k)} = F^{(k)} D^{(k)} F^{(k)*}
                                    /*Decomposizione spettrale di H^{(k)*}/
 8:
 9: X^{(k)} = Q^{(k)}F^{(k)}
10: \lambda^{(k)} := diag(D^{(k)})
11: until \|\lambda^{(k)} - \lambda^{(k-1)}\|/\|\lambda^{(k)}\| < tol \text{ or } k > itmax
```

### Limiti della prima versione

PROBLEMA: Il costo del quoziente di Rayleigh generalizzato è troppo alto

| Iterazione Algoritmo 1       |                         |
|------------------------------|-------------------------|
| $Z^{(k)} := AX^{(k-1)}$      | p chiamate di <i>OP</i> |
| $Z^{(k)} =: Q^{(k)} R^{(k)}$ | p(p+1)n operaz.         |
| $X^{(k)} = Q^{(k)}$          | 0 operaz.               |
|                              |                         |

| Iterazione Algoritmo 2                                                 |                                                           |
|------------------------------------------------------------------------|-----------------------------------------------------------|
| $Z^{(k)} := AX^{(k-1)}$                                                | p chiamate di <i>OP</i> , $Z^{(k)}$ sovrascrive $X^{(k)}$ |
| $Z^{(k)} =: Q^{(k)} R^{(k)}$                                           | $p(p+1)n$ operaz., $Q^{(k)}$ sovrascrive $Z^{(k)}$        |
| $H^{(k)} := Q^{(k)*}(AQ^{(k)})$<br>$H^{(k)} =: F^{(k)}D^{(k)}F^{(k)*}$ | p chiamate di $OP$ , $\frac{1}{2}p(p+1)n$ operaz.         |
| $H^{(k)} =: F^{(k)} D^{(k)} F^{(k)^*}$                                 | $kp^3$ operaz. ( $k$ dipende dal metodo)                  |
| $X^{(k)} = Q^{(k)}F^{(k)}$                                             | $kp^2n$ operaz. $X^{(k)}$ sovrascrive $Q^{(k)}$           |

OP: costo della moltiplicazione di un vettore per A

### Seconda versione

Cerchiamo di calcolare implicitamente il quoziente di Rayleigh generalizzato, scrivendo  $X^{(k)}$  nella forma:

$$X^{(k)} = Z^{(k)}G^{(k)}, \qquad G^{(k)} \in \mathbb{C}^{p \times p} \text{ non singolare}$$

richiedendo:

$$G^{(k)^*}Z^{(k)^*}Z^{(k)}G^{(k)} = I_p, \qquad \left(Z^{(k)}G^{(k)}\right)^*A^{-2}(Z^{(k)}G^{(k)}) = \Delta^{(k)^{-2}}$$

Sostituendo si ottiene:

$$\left(AX^{(k-1)}G^{(k)}\right)^*A^{-2}(AX^{(k-1)}G^{(k)})=G^{(k)^*}G^{(k)}=\Delta^{(k)^{-2}}$$

Dunque la matrice  $Y^{(k)} := G^{(k)} \Delta^{(k)}$  è ortogonale e:

$$Y^{(k)^*}Z^{(k)^*}Z^{(k)}Y^{(k)} = \Delta^{(k)^2}$$

Possiamo quindi ricavare  $X^{(k)}$  come:

$$X^{(k)} = Z^{(k)}G^{(k)} = Z^{(k)}Y^{(k)}\Delta^{(k)^{-1}}$$

### Seconda versione

# **Algorithm** Iterazioni ortogonali con accelerazione di Rayleigh-Ritz, versione 2

```
1: Sia X \in \mathbb{C}^{n \times p} matrice con colonne ortonormali, X^*X = I_p

2: X^{(0)} := X, k = 0

3: repeat

4: k := k + 1

5: Z^{(k)} := AX^{(k-1)}

6: \hat{H}^{(k)} := Z^{(k)*}Z^{(k)}

7: \hat{H}^{(k)} =: Y^{(k)}\Delta^{(k)^2}Y^{(k)*} /*Decomposizione spettrale di \hat{H}^{(k)*}/

8: X^{(k)} = Z^{(k)}Y^{(k)}\Delta^{(k)^{-1}} /*= Z^{(k)}G^{(k)*}/

9: \lambda^{(k)} := diag(\Delta^{(k)})
```

10: **until**  $\|\lambda^{(k)} - \lambda^{(k-1)}\|/\|\lambda^{(k)}\| < tol \$ **or** k > itmax

### Algoritmo ritzritz

# **Algorithm** Iterazioni ortogonali con accelerazione di Rayleigh-Ritz, versione 3 (ritzritz)

```
1: Sia X \in \mathbb{C}^{n \times p} matrice con colonne ortonormali, X^*X = I_p
 2: X^{(0)} := X, k = 0
 3: repeat
 4: k := k + 1
 5. Z^{(k)} := AX^{(k-1)}
 6: Z^{(k)} =: Q^{(k)}R^{(k)} /*Fattorizzazione QR di Z^{(k)*}
 7: H^{(k)} := R^{(k)} R^{(k)^*}
     H^{(k)} = P^{(k)} \wedge (k)^2 P^{(k)*}
                                            /*Decomposizione spettrale di H^{(k)*}/
 8:
     X^{(k)} = Q^{(k)}P^{(k)}
 9:
     \lambda^{(k)} := diag(\Delta^{(k)})
10:
11: until \|\lambda^{(k)} - \lambda^{(k-1)}\|/\|\lambda^{(k)}\| < tol \text{ or } k > itmax
```

# Velocità di convergenza: autovettori

#### **Teorema**

Supponiamo valgano le ipotesi del Teorema 1. Sia  $x_i^{(k)} = X^{(k)}e_i$  e sia  $y_i^{(k)} = U\begin{pmatrix} I_p \\ S^{(k)} \end{pmatrix}$   $e_i$  (cfr. dimostrazione del Teorema 2). Allora:

$$\sin \angle (x_i^{(k)}, y_i^{(k)}) \le c \left(\frac{\lambda_{p+1}}{\lambda i}\right)^k, \qquad 1 \le i \le p$$

Usando la dimostrazione vista in precedenza:

### Corollario

$$\sin \angle (x_i^{(k)}, u_i) \le c_3 \left(\frac{\lambda_{p+1}}{\lambda i}\right)^k$$

# Velocità di convergenza: autovalori

• Algoritmo 2:

$$|\lambda_i^{(k)} - \lambda_i| = O\left(\left|\frac{\lambda_{p+1}}{\lambda_i}\right|^k\right)$$

• Algoritmi 3 e 4, se *A* è simmetrica definita positiva:

$$\lambda_j^{(k+1)^2} = \frac{\|Ax_j^{(k)}\|^2}{\|x_j^{(k)}\|^2} = x_j^{(k)^*} A^2 x_j^{(k)}$$

e vale:

$$|\lambda_j^{(k+1)} - \lambda_j| = O\left(\frac{\lambda_{p+1}}{\lambda_i}\right)^{2k}$$

# Velocità di convergenza: autovalori

• Algoritmo 2:

$$|\lambda_i^{(k)} - \lambda_i| = O\left(\left|\frac{\lambda_{p+1}}{\lambda_i}\right|^k\right)$$

• Algoritmi 3 e 4, se *A* è simmetrica definita positiva:

$$\lambda_j^{(k+1)^2} = \frac{\|Ax_j^{(k)}\|^2}{\|x_j^{(k)}\|^2} = x_j^{(k)^*} A^2 x_j^{(k)}$$

e vale:

$$|\lambda_j^{(k+1)} - \lambda_j| = O\left(\frac{\lambda_{p+1}}{\lambda_j}\right)^{2k}$$

### Sperimentazione numerica: confronto tra algoritmi

I quattro algoritmi sono stati confrontati, al variare di  $n \in p$ , in termini di:

- it: numero di iterazioni svolte per ciascuna istanza;
- time: tempo di risoluzione di un'istanza, in secondi;
- it\_time: tempo di esecuzione di un'iterazione, in secondi;
- values\_err: errore relativo massimo commesso sull'approssimazione degli autovalori (assumendo come esatti quelli calcolati da MATLAB)
- vectors\_err: errore relativo in norma massimo commesso sull'approssimazione degli autovettori (assumendo come esatti quelli calcolati da MATLAB)

É stata eseguita una sperimentazione nel caso di A matrice sparsa per i seguenti valori di p e n:

- n = 1000, p = 5 Risultati
- n = 1000, p = 10 Risultati
- n = 1000, p = 15 Risultati
- n = 1000, p = 20 Risultati
- n = 5000, p = 5 Risultati
- n = 10000, p = 5 Risultati

É stata eseguita una sperimentazione nel caso di A matrice sparsa per i seguenti valori di p e n:

- n = 1000, p = 5 Risultati
- n = 1000, p = 10 Risultati
- n = 1000, p = 15 Risultati
- n = 1000, p = 20 Risultati
- n = 5000, p = 5 Risultati
- n = 10000, p = 5 Risultati

Sono stati ricavati interessanti risultati interessanti risultati:

• confronto con l'analisi teorica del costo e della convergenza

É stata eseguita una sperimentazione nel caso di A matrice sparsa per i seguenti valori di p e n:

- n = 1000, p = 5 Risultati
- n = 1000, p = 10 Risultati
- n = 1000, p = 15 Risultati
- n = 1000, p = 20 Risultati
- n = 5000, p = 5 Risultati
- n = 10000, p = 5 Risultati

Sono stati ricavati interessanti risultati interessanti risultati:

- confronto con l'analisi teorica del costo e della convergenza
- comportamento al crescere di p

É stata eseguita una sperimentazione nel caso di A matrice sparsa per i seguenti valori di p e n:

- n = 1000, p = 5 Risultati
- n = 1000, p = 10 Risultati
- n = 1000, p = 15 Risultati
- n = 1000, p = 20 Risultati
- n = 5000, p = 5 Risultati
- n = 10000, p = 5 Risultati

Sono stati ricavati interessanti risultati interessanti risultati:

- confronto con l'analisi teorica del costo e della convergenza
- comportamento al crescere di p
- differenze tra A simmetrica qualsiasi o definita positiva

É stata eseguita una sperimentazione nel caso di A matrice sparsa per i seguenti valori di p e n:

- n = 1000, p = 5 Risultati
- n = 1000, p = 10 Risultati
- n = 1000, p = 15 Risultati
- n = 1000, p = 20 Risultati
- n = 5000, p = 5 Risultati
- n = 10000, p = 5 Risultati

Sono stati ricavati interessanti risultati interessanti risultati:

- o confronto con l'analisi teorica del costo e della convergenza
- comportamento al crescere di p
- differenze tra A simmetrica qualsiasi o definita positiva
- comportamento al crescere di n



Tabella: n = 1000, p = 5, itmax = 5000,  $tol = 10^{-10}$ 

| Algoritmo    | it      | time   | $\mathtt{it}_{\mathtt{-}}\mathtt{time}$ | values_err               | vectors_err            |
|--------------|---------|--------|-----------------------------------------|--------------------------|------------------------|
| 1            | 3846    | 0.996  | $2.580 \times 10^{-4}$                  | $1.857\times10^{-6}$     | 0.030                  |
| 2            | 3287    | 1.805  | $5.482 \times 10^{-4}$                  | $5.545 	imes 10^{-4}$    | $5.251\times10^{-4}$   |
| 3            | 2765    | 0.795  | $2.853 \times 10^{-4}$                  | $8.536 \times 10^{-4}$   | $7.385 \times 10^{-4}$ |
| 4            | 2765    | 0.942  | $3.402 \times 10^{-4}$                  | $8.536 \times 10^{-4}$   | $7.385 \times 10^{-4}$ |
| Tabella: n = | = 1000, | A def. | positiva, $p=5$ ,                       | $\mathtt{itmax} = 5000,$ | $tol = 10^{-10}$       |
| Algoritmo    | it      | time   | $\mathtt{it}_{\mathtt{-}}\mathtt{time}$ | values_err               | vectors_err            |
| 1            | 3468    | 0.915  | $2.652 \times 10^{-4}$                  | $1.242 \times 10^{-6}$   | 0.030                  |
| 2            | 1832    | 1.031  | $5.653 \times 10^{-4}$                  | $1.393\times10^{-7}$     | $3.363 \times 10^{-4}$ |
| 3            | 1832    | 0.524  | $2.872 \times 10^{-4}$                  | $1.391\times10^{-7}$     | $3.362 \times 10^{-4}$ |
| 4            | 1832    | 0.623  | $3.437 \times 10^{-4}$                  | $1.391\times10^{-7}$     | $3.362 \times 10^{-4}$ |

Tabella: n = 1000, p = 10, itmax = 7500,  $tol = 10^{-10}$ 

| Algoritmo | it   | time  | $\mathtt{it\_time}$    | values_err             | vectors_err            |
|-----------|------|-------|------------------------|------------------------|------------------------|
| 1         | 4647 | 2.363 | $5.095\times10^{-4}$   | $1.124\times10^{-5}$   | 0.073                  |
|           |      |       |                        | $1.552\times10^{-4}$   |                        |
|           |      |       |                        | $2.248 \times 10^{-4}$ |                        |
| 4         | 2737 | 1.697 | $6.199 \times 10^{-4}$ | $2.249 \times 10^{-4}$ | $8.769 \times 10^{-4}$ |

Tabella: n = 1000, A def. positiva, p = 10, itmax = 7500,  $tol = 10^{-10}$ 

| Algoritmo | it   | time  | it_time                | values_err             | vectors_err            |
|-----------|------|-------|------------------------|------------------------|------------------------|
|           |      |       | $5.087\times10^{-4}$   |                        |                        |
| 2         | 2377 | 2.325 | $9.755 \times 10^{-4}$ | $4.866 \times 10^{-8}$ | $1.833 \times 10^{-4}$ |
| 3         | 1    |       | $4.887 	imes 10^{-4}$  |                        |                        |
| 4         | 2376 | 1.501 | $6.314 	imes 10^{-4}$  | $4.873 	imes 10^{-8}$  | $1.847 	imes 10^{-4}$  |

Tabella: n = 1000, p = 15, itmax = 7500,  $tol = 10^{-10}$ 

| Algoritmo    | it    | time     | it_time                | values_err              | vectors_err            |
|--------------|-------|----------|------------------------|-------------------------|------------------------|
| 1            | 7087  | 5.881    | $8.294 \times 10^{-4}$ | $1.076 	imes 10^{-5}$   | 0.146                  |
| 2            | 4571  | 7.071    | $1.532\times10^{-3}$   | $1.554\times10^{-4}$    | $1.994\times10^{-4}$   |
| 3            | 3687  | 2.712    | $7.328 \times 10^{-4}$ | $1.412\times10^{-4}$    | $3.282 \times 10^{-4}$ |
| 4            | 3687  | 3.747    | $1.047\times10^{-3}$   | $1.411 \times 10^{-4}$  | $3.282 \times 10^{-4}$ |
| Tabella: n = | 1000, | A def. p | positiva, $p=15$       | $\mathtt{itmax} = 7500$ | $, tol = 10^{-10}$     |

| Algoritmo | it   | time     | $\mathtt{it\_time}$    | values_err             | vectors_er                                             |
|-----------|------|----------|------------------------|------------------------|--------------------------------------------------------|
| 1         | 6970 | 5.891    | $8.465\times10^{-4}$   | 0.019                  | 0.173                                                  |
| 2         | 4420 | 6.961    | $1.644\times10^{-3}$   | $4.328 \times 10^{-7}$ | 0.006                                                  |
| 3         | 4399 | 2.302    | $7.537 \times 10^{-4}$ | $4.405\times10^{-7}$   | 0.006                                                  |
| 4         | 4385 | 4.494    | $1.079\times10^{-3}$   | $4.411 \times 10^{-7}$ | 0.006                                                  |
|           |      | <u> </u> | <u> </u>               |                        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



Tabella: n = 1000, p = 20, itmax = 7500,  $tol = 10^{-10}$ 

| Algoritmo | it   | time   | $\mathtt{it}_{\mathtt{-}}\mathtt{time}$ | values_err             | vectors_err            |
|-----------|------|--------|-----------------------------------------|------------------------|------------------------|
| 1         | 7293 | 8.377  | $1.198\times10^{-3}$                    | $8.529 \times 10^{-6}$ | 0.104                  |
|           |      |        |                                         | $4.003\times10^{-6}$   |                        |
| 3         | 2735 | 2.409  | $8.809 \times 10^{-4}$                  | $8.510\times10^{-5}$   | $1.473 \times 10^{-4}$ |
| 4         | 2735 | 3.8673 | $1.447 \times 10^{-3}$                  | $8.514\times10^{-5}$   | $1.473 \times 10^{-4}$ |

Tabella: n=1000, A def. positiva, p=20, itmax=7500,  $tol=10^{-10}$ 

| Algoritmo | it   | time  | $\mathtt{it}_{\mathtt{-}}\mathtt{time}$ | $values\_err$          | vectors_err |
|-----------|------|-------|-----------------------------------------|------------------------|-------------|
|           |      |       | $1.267 \times 10^{-3}$                  |                        | 0.163       |
| 2         |      |       | $2.299 \times 10^{-3}$                  |                        |             |
| 3         | I    |       | $9.062 \times 10^{-4}$                  |                        |             |
| 4         | 4835 | 6.951 | $1.435\times10^{-3}$                    | $9.525 \times 10^{-7}$ | 0.009       |



Tabella: n = 5000, p = 5, itmax = 5000,  $tol = 10^{-10}$ 

| Algoritmo | it   | time  | $\mathtt{it}_{\mathtt{-}}\mathtt{time}$ | values_err                                                                  | vectors_err |
|-----------|------|-------|-----------------------------------------|-----------------------------------------------------------------------------|-------------|
| 1         | 3336 | 6.388 | $1.945\times10^{-3}$                    | $9.361\times10^{-7}$                                                        | 0.033       |
| 2         | 2163 | 8.214 | $3.939 \times 10^{-3}$                  | $\begin{array}{c} 9.361 \times 10^{-7} \\ 1.266 \times 10^{-4} \end{array}$ | 0.003       |
| 3         | 1883 | 3.578 | $1.971 \times 10^{-3}$                  | $1.833 \times 10^{-3}$                                                      | 0.004       |
| 4         | 1883 | 3.963 | $2.184 \times 10^{-3}$                  | $1.833\times10^{-3}$                                                        | 0.004       |

Tabella: n = 5000, A def. positiva, p = 5, itmax = 5000,  $tol = 10^{-10}$ 

| Algoritmo | it   | time  | $\mathtt{it}_{\mathtt{-}}\mathtt{time}$ | $values\_err$          | vectors_err |
|-----------|------|-------|-----------------------------------------|------------------------|-------------|
|           |      |       | $1.947\times10^{-3}$                    |                        |             |
|           |      |       | $3.866\times10^{-3}$                    |                        |             |
|           |      |       | $1.915\times10^{-3}$                    |                        |             |
| 4         | 1730 | 3.556 | $2.101\times10^{-3}$                    | $4.735 \times 10^{-7}$ | 0.003       |



Tabella: n = 10000, p = 5, itmax = 5000,  $tol = 10^{-10}$ 

| Algoritmo    | it     | time     | $\mathtt{it}_{\mathtt{\_}}\mathtt{time}$ | values_err               | vectors_err          |
|--------------|--------|----------|------------------------------------------|--------------------------|----------------------|
| 1            | 4515   | 10.116   | $2.229 \times 10^{-3}$                   | $1.851 \times 10^{-6}$   | 0.050                |
| 2            | 2167   | 10.088   | $4.715\times10^{-3}$                     | $1.006\times10^{-4}$     | $5.528\times10^{-4}$ |
| 3            | 1527   | 3.427    | $2.206 \times 10^{-3}$                   | $1.875\times10^{-3}$     | 0.003                |
| 4            | 1527   | 3.925    | $2.613 \times 10^{-3}$                   | $1.859\times10^{-3}$     | 0.003                |
| Tabella: n = | 10000, | A def. p | ositiva, $p=5$ ,                         | $\mathtt{itmax} = 5000,$ | $tol = 10^{-10}$     |
| Algoritmo    | it     | time     | $\mathtt{it}_{\mathtt{-}}\mathtt{time}$  | values_err               | vectors_err          |
| 1            | 4417   | 9.870    | $2.235 \times 10^{-3}$                   | $6.695 \times 10^{-5}$   | 0.374                |
| 2            | 2896   | 13.422   | $4.607 \times 10^{-3}$                   | $3.575 \times 10^{-8}$   | 0.020                |
| 3            | 2897   | 6.402    | $2.221\times10^{-3}$                     | $3.574\times10^{-8}$     | 0.020                |
| 4            | 2897   | 7.168    | $2.549\times10^{-3}$                     | $3.574 \times 10^{-8}$   | 0.020                |
|              |        |          |                                          |                          |                      |

# Sperimentazione numerica: confronto con la velocità di convergenza prevista

Possiamo inoltre analizzare graficamente la velocità di convergenza di autovalori e autovettori e in particolare chiederci se:

- la convergenza è effettivamente lineare
- il fattore di convergenza è quello ricavato teoricamente

# Algoritmo 1

Figura: Algoritmo 1. Plot in scala semilogaritmica dell'errore.



Figura: Algoritmo 1. Confronto, in scala semilogaritmica, tra la velocità di convergenza prevista teoricamente e quella sperimentale per gli autovettori.



Figura: Algoritmo 1. Confronto, in scala semilogaritmica, tra la velocità di convergenza prevista teoricamente e quella sperimentale per gli autovalori.



# Algoritmo 2

Figura: Algoritmo 2. Plot in scala semilogaritmica dell'errore.



Figura: Algoritmo 2. Confronto, in scala semilogaritmica, tra la velocità di convergenza prevista teoricamente e quella sperimentale per gli autovettori.



Figura: Algoritmo 2. Confronto, in scala semilogaritmica, tra la velocità di convergenza prevista teoricamente e quella sperimentale per gli autovalori.



# Algoritmo 3

Figura: Algoritmo 3. Plot in scala semilogaritmica dell'errore.



Figura: Algoritmo 3. Confronto, in scala semilogaritmica, tra la velocità di convergenza prevista teoricamente e quella sperimentale per autovettori.



Figura: Algoritmo 3. Confronto, in scala semilogaritmica, tra la velocità di convergenza prevista teoricamente e quella sperimentale per autovalori.



# Algoritmo 4

Figura: Algoritmo 4. Plot in scala semilogaritmica dell'errore.



Figura: Algoritmo 4. Confronto, in scala semilogaritmica, tra la velocità di convergenza prevista teoricamente e quella sperimentale per gli autovettori.



Figura: Algoritmo 4. Confronto, in scala semilogaritmica, tra la velocità di convergenza prevista teoricamente e quella sperimentale per gli autovalori.



# Riferimenti bibliografici

- [1] Peter Arbenz. Numerical Methods for Solving Large Scale Eigenvalue Problems. 2016.
- [2] Dario Bini. Problemi di vibrazioni. 2020.
- [3] Dario Bini, Milvio Capovani e Ornella Menchi. *Metodi numerici per l'algebra lineare*. Zanichelli, 1988.
- [4] Beresford N. Parlett. «14. Subspace Iteration». In: The Symmetric Eigenvalue Problem. Society for Industrial e Applied Mathematics, pp. 323–337.
- [5] H. Rutishauser. «Simultaneous Iteration Method for Symmetric Matrices». In: Handbook for Automatic Computation: Volume II: Linear Algebra. Springer Berlin Heidelberg, 1971, pp. 284–302.