CLAIMS

WHAT IS CLAIMED IS:

1. A process for the asymmetric synthesis of the chiral compound of the structure

where Y is H, mono or multisubsubstituted electron with drawing group or electron-donating group, wherein Y can be located at m-,o-,or p-position of the benzene ring;

P is hydgogen or an amino protecting group,

Rf is fluoro-containing alkyl,

R is trialkylsilyl, alkyl, cycloalkyl or aryl group,

R⁶ is hydrogen when R⁵ is hydroxy, also R⁵ and R⁶ can be –HNCO- of the structure or its enantiomer

where Y, P, R, Rf is the same as above;

Comprising the steps of:

(a) providing a mixture of chiral ligand (1R, 2R)-2-N,N-substituted-1-(substituted -phenyl)-2-R³-substituted-2-aminoethanol or its enantiomer, of the structure

$$Z \xrightarrow{\text{OH}} R^3 \qquad Z \xrightarrow{\text{QH}} R^3 \\ NR^1R^2 \quad \text{or} \quad Z \xrightarrow{\text{NR}^1R^2}$$

wherein R¹, R² is amino protecting group, and R³ is alkyl; alkyl substituted with alkyloxy or

silyoxy, carboxylic group, carbalkoxy group, hydroxyl methyl, cycloalkyl, aryl or CH_2OR^4 , wherein R^4 is an oxygen protecting group,

Z is H, mono or multisubsubstituted electronwithdrawing group or electron-donating group, wherein Z can be located at m-,o-,or p-positon of the benzene ring;

with a terminal alkyne and a Zn(II), Cu(II) or Cu(I) salts in the presence of an organic base in aprotic solvent, wherein the terminal alkyne is $H - \mathbb{R}$, R is the same as above,

(b) mixing with the mixture of step (a) of reactant of the structure

or of the structure

wherein P is hydrogen or an amino protecting group, Rf is fluoro-containing alkyl, Y is the same as above:

obtains the target addition product after normal isolation.

2. A process of claim 1, wherein the process is for the asymmetric synthesis of the chiral compound of the structure or its enantiomer

Comprising the steps of:

(a) providing a mixture of chiral ligand (1R, 2R)-2-N,N-substitutedamino-1-(substituted-phenyl)-2-substituted-2-aminoethanol, of the structure, or its enantiomer

with a terminal alkyne and a Zn(II) or Cu salts in the presence of an organic base in aprotic solvent, wherein the terminal alkyne is $\frac{1}{R}$

(b) mixing with the mixture of step (a) of reactant of the structure

3. A process of claim 2, wherein the chiral ligand is (1R, 2R)-2-N,N-substitutedamino-1-(substituted-phenyl)-3-O-R⁴substituted-propane-1-ol or its enantiomer, of the structure

4. A process of claim 1, wherein the process is for the asymmetric synthesis of the chiral compound of the structure or its enantiomer

Comprising the steps of:

(a) providing a mixture of chiral ligand (1R, 2R)-2-N,N-substitutedamino-1-(substituted-phenyl)-2-R³-substituted-1-ethanol or its enantiomer, of the structure,

with a terminal alkyne and a Zn(II) or Cu salts in the presence of an organic base in aprotic solvent, wherein the terminal alkyne is $H \longrightarrow R$;

(b) mixing with the mixture of step (a) of reactant of the structure

5. A process of claim 1, wherein R¹ and R² is alkyl, substituted alkyl, benzyl, trialkylsilyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy, C₁~C₃ hydroxyalkyl, C₁~C₄ alkyl, C₁~C₃ alkoxy; or R¹, R² can be -(CH₂)_nX(CH₂)_m-, where X can be CH₂, O or NH; n,m is an integer from 1 to 6.

P is hydrogen, alkyl, substituted alkyl, benzyl, trialkylsilyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy;

 R^4 is alkyl, substituted alkyl, benzyl, trialkylsilyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy, $C_1 \sim C_3$ hydroxyalkyl, $C_1 \sim C_4$ alkyl, $C_1 \sim C_3$ alkoxy or CN;

electronwithdrawing group is halogen, NO₂, CF₃, CH₃SO₂, CH₃CH₂SO₂, PhCH₂OCO, or AcO. electron-donating group is alkoxy, OH, Me₂NCH₂CH₂O, Et₂NCH₂CH₂O, NH₂, $C_1 \sim C_4$ alkyl.

6. A process of claim 1, wherein R^1 and R^2 is $C_1 \sim C_{20}$ alkyl, $C_1 \sim C_{20}$ substituted alkyl, trialkylsilyl, benzyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy, $C_1 \sim C_3$ hydroxy alkyl, $C_1 \sim C_{20}$ alkyl, $C_1 \sim C_3$ alkoxy; or R^1 , R^2 can be $-(CH_2)_n X(CH_2)_m$, where X can be CH_2 , O or NH; n,m is an integer from 1 to 6; R^3 is $C_1 \sim C_{20}$ alkyl; $C_1 \sim C_{20}$ alkyl substituted with alkyloxy or silyoxy, carboxylic group, $C_1 \sim C_{20}$ carbalkoxy group, hydroxyl methyl, $C_3 \sim C_{20}$ cycloalkyl, aryl or CH_2OR^4 , wherein R^4 is $C_1 \sim C_{20}$ alkyl, $C_1 \sim C_{20}$ substituted alkyl, benzyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy, $C_1 \sim C_3$ hydroxyalkyl, $C_1 \sim C_4$ alkyl, $C_1 \sim C_3$ alkoxy or CN;

Z is H, F, Cl, Br, I, CH₃SO₂, OH, PhCH₂O, AcO, MeO, EtO, Me₂NCH₂CH₂O, Et₂NCH₂CH₂O, PhCH₂OCO, *t*-Bu, *i*-Pr, NH₂, or NO₂

P is hydrogen, $C_1 \sim C_{20}$ alkyl, $C_1 \sim C_{20}$ substituted alkyl, benzyl, trialkylsilyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy, $C_1 \sim C_3$ hydroxyalkyl, $C_1 \sim C_4$ alkyl, $C_1 \sim C_3$ alkoxy or CN;

Y is H, F, Cl, Br, I, CH₃SO₂, OH, PhCH₂O, AcO, MeO, EtO, Me₂NCH₂CH₂O, Et₂NCH₂CH₂O, PhCH₂OCO, *t*-Bu, *i*-Pr, NH₂, or NO₂

Rf is $C_1 \sim C_{20}$ fluoro-containing alkyl;

R is trialkylsilyl, $C_1 \sim C_{20}$ alkyl., $C_3 \sim C_{20}$ cycloalkyl or aryl group;

7. A process of claim 1, wherein R¹ and R² is C₁~C₄ alkyl, tri-phenylmethyl, *t*-butyldimethylsilyl, benzyl unsubstituted or substituted with C₁-C₄ alkyl; *para*-methoxy benzyl; *para*-nitrobenzyl; *para*-chlorobenzyl; 2, 4-dichlorobenzyl; 2, 4-dimethoxybenzyl; or R¹, R² can be -(CH₂)₂O(CH₂)₂-, -(CH₂)₂N(CH₂)₂-, -(CH₂)₅- or -(CH₂)₆-; R³ is C₁~C₄ alkyl, C₁~C₄ alkyl substituted with alkyloxy or silyoxy, carboxylic group, C₁~C₄ carbalkoxy group, hydroxyl methyl, C₃~C₆ cycloalkyl, aryl or CH₂OR⁴, wherein R⁴ is C₁~C₄ alkyl, tri-phenyl methyl, *t*-butyldimethylsilyl, benzyl unsubstituted or substituted with C₁~C₄ alkyl, *para*-methoxy benzyl, *para*-nitrobenzyl, *para*-chlorobenzyl, 2, 4-dichlorobenzyl, 2, 4-dimethoxybenzyl, or trialkylsilyl groups; Z is H, F, Cl, Br, I, CH₃SO₂, OH, PhCH₂O, AcO, MeO, EtO, Me₂NCH₂CH₂O,

P is hydrogen, $C_1\sim C_4$ alkyl, tri-phenylmethyl, t-butyldimethylsilyl, benzyl unsubstituted or substituted with $C_1\sim C_4$ alkyl; para-methoxy benzyl, para-nitrobenzyl, para-chlorobenzyl, 2, 4-dichlorobenzyl, 2, 4-dimethoxybenzyl;

Y is H, Cl, Br, CH₃SO₂, CH₃CH₂SO₂, NO₂ or F;

Et₂NCH₂CH₂O, PhCH₂OCO, *t*-Bu, *i*-Pr, NH₂, or NO₂;

Rf is $C_1 \sim C_4$ fluoro-containing alkyl;

R is $C_1 \sim C_4$ alkyl, $C_3 \sim C_6$ cycloalkyl or aryl group, wherin aryl is phenyl, naphenyl, furan, thiophene, pyrrole;

Halogen or halo is fluoro, chloro, bromo and iodo.

8. A process of claim 1, wherein the stoichiometric ratios are about 0.1-3: 0.1-3: 1-4:1 of

ligand: Zinc salt:the organic base: substrate ketone or ketimine.

- 9. A process of claim 1, wherein the Zinc salt is selected from ZnCl₂, ZnBr₂, ZnF₂, ZnI₂, Zn(OTf)₂, CuCl₂, CuBr₂, Cu(OTf)₂, CuCl, CuBr, Cu(OTf).
- 10. A process of claim 1, wherein the organic base is selected from MeN(*i*Pr)₂, HNEt₂, N(*i*Pr)₃, pyridine, NEt₃, piperidine, EtN(*i*Pr)₂, Bu₃N.
- 11. A process of claim 1, wherein the reaction temperature is 0-100°C
- 12. A process of claim 1, wherein the reaction temperature is 0-50°C.
- 13. A process of claim 1, wherein the reaction solvent is selected from THF, dioxane, Et₂O, benzene, mono or multi-alkylsubstituted-benzene, DME, toluene, n-hexane, CH₂Cl₂ and cyclohexane, or mixture thereof. One preferred solvent is toluene.
- 14. A process of claim 1, wherein quenching the reaction by adding a proton source to give the desired compound.
- 15. A process of claim 1, wherein it is for the asymmetric synthesis of the chiral compound of the structure

or of the structure

Comprising the steps of:

(a) providing a mixture of 0.1~3 molar equivalent of (1R,2R)-2-N,N-substitutedamino-1-(4-Z-substituted-phenyl)-3-O-R⁴-substituted propane-1-ol, of the structure

with 0.1~3 molar equivalent of cyclopropylacetylene and 0.1~3 molar equivalent of Zn(II), Cu(I) or Cu(II) salts and 1~4 molar equivalent of an organic base in organic solvent;
(b) mixing with the mixture of step (a) 1.0 molar equivalent of reactant of the structure

or of the structure

and maintaining the resulting reaction mixture at a temperature of between about 0-50°C for 1-20 hrs;

- (c) quenching by adding a proton source;
- (d) to give the desired compound.
- 16. The compound of the structure or its enantiomer

wherein R¹, R² is amino protecting group, and R⁴ is oxygen protecting group; Z is mono or multisubstituted electron withdrawing group or electron-donating group;

and when Z is NO_2 at 4-postion of the phenyl, R^1 is N=0, R^2 is $COCH_3$, R^4 is only alkyl, substituted alkyl, benzyl, substituted benzyl, or trialkylsilyl;

and when Z is NO_2 at 4-postion of the phenyl, R^1 , R^2 is CH_3 , the ligand is only (1R, 2R)-2-N,N-dimethylamino-1-(4- nitrophenyl)-3-O- R^4 -1-propanol;

and when Z is OCH₃ at 4-postion of the phenyl, R^1 , R^2 is CH₃, R^4 is only alkyl, substituted alkyl, benzyl, substituted benzyl; said substituted group is phenyl, naphthyl, halogen, NO₂, hydroxyl, $C_1 \sim C_3$ hydroxyalkyl, $C_1 \sim C_4$ alkyl, $C_1 \sim C_3$ alkoxy or CN;

17. The compound of claim 16, of the structure or its enantiomer

18. The compound of claim 16, of the structure or its enantiomer

•

19. The compound of claim 16, wherein R¹ and R² is alkyl, substituted alkyl, benzyl, trialkylsilyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy, C₁~C₃ hydroxyalkyl, C₁~C₄ alkyl, C₁~C₃ alkoxy; or R¹, R² can be -(CH₂)_nX(CH₂)_m-, where X can be CH₂, O or NH; n,m is an integer from 1 to 6; R⁴ is alkyl, substituted alkyl, benzyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy, C₁~C₃ hydroxy alkyl, alkyl, C₁~C₃ alkoxy or CN;

electronwithdrawing group is halogen, NO₂, CF₃, CH₃SO₂, CH₃CH₂SO₂, PhCH₂OCO or AcO. electron-donating group is C₁~C₃ alkoxy, OH, Me₂NCH₂CH₂O, Et₂NCH₂CH₂O, NH₂, C₁~C₄ alkyl;

and when Z is NO_2 at 4-postion of the phenyl, R^1 is N=0, R^2 is $COCH_3$, R^4 is only alkyl, substituted alkyl, benzyl, substituted benzyl, or trialkylsilyl;

and when Z is NO_2 at 4-postion of the phenyl, R^1 , R^2 is CH_3 , the ligand is only (1R, 2R)-2-N,N-dimethyl-1-(4-nitrophenyl)-3- $O-R^4$ -1-propanol;

and when Z is OCH₃ at 4-postion of the phenyl, R¹, R² is CH₃, R⁴ is only alkyl, substituted alkyl, benzyl, substituted benzyl.

20. The compound according to claim 16, wherein R^1 and R^2 is $C_1 \sim C_{20}$ alkyl, $C_1 \sim C_{20}$ substituted alkyl, trialkylsilyl, benzyl or substituted benzyl, the substituted group of alkyl or benzyl can be phenyl, naphenyl, halo, nitro, hydroxy, $C_1 \sim C_3$ hydroxyalkyl, $C_1 \sim C_4$ alkyl, $C_1 \sim C_3$ alkoxy or CN; or R^1 , R^2 can be $-(CH_2)_n X(CH_2)_{m^2}$, where X can be CH_2 , O or NH; n,m is an integer from 1 to 6;

 R^4 is $C_1 \sim C_{20}$ alkyl, $C_1 \sim C_{20}$ substituted alkyl, benzyl, trialkylsilyl or substituted benzyl, the substituted group can be phenyl, naphenyl, halo, nitro, hydroxy, $C_1 \sim C_3$ hydroxyalkyl, $C_1 \sim C_4$ alkyl, $C_1 \sim C_3$ alkoxy or CN;

Z is H, F, Cl, Br, I, CH₃SO₂ OH, PhCH₂O, AcO, MeO, EtO, Me₂NCH₂CH₂O, Et₂NCH₂CH₂O, PhCH₂OCO, *t*-Bu, *i*-Pr, NH₂, or NO₂;

and when Z is NO_2 at 4-postion of the phenyl, R^1 is N=0, R^2 is $COCH_3$, R^4 is only alkyl, substituted alkyl, benzyl, substituted benzyl, or trialkylsilyloxy;

and when Z is NO_2 at 4-postion of the phenyl, R^1 , R^2 is CH_3 , the ligand is only (1R, 2R)-2-N,N-dimethylamino-1-(4- nitrophenyl)-3-O- R^4 -propane-1-ol;

and when Z is OCH₃ at 4-postion of the phenyl, R^1 , R^2 is CH₃, R^4 is only alkyl, substituted alkyl, benzyl, substituted benzyl; said substituted group is phenyl, naphthyl, halogen, NO₂, hydroxyl, $C_1 \sim C_3$ hydroxyalkyl, $C_1 \sim C_4$ alkyl, $C_1 \sim C_3$ alkoxy or CN.

21. The compound according to claim 16, wherein R¹ and R² is C₁~C₄ alkyl, tri-phenyl methyl, t-butyldimethylsilyl, benzyl unsubstituted or substituted with C₁-C₄ alkyl; para-methoxy benzyl; para-nitrobenzyl; para-chlorobenzyl; 2, 4-dichlorobenzyl; 2, 4-dimethoxybenzyl;

 R^4 is $C_1 \sim C_4$ alkyl, tri-phenyl methyl, *t*-butyldimethylsilyl, benzyl unsubstituted or substituted with $C_1 \sim C_4$ alkyl; *para*-methoxy benzyl; *para*-nitrobenzyl; *para*-chlorobenzyl; 2, 4-dichlorobenzyl; 2, 4-dimethoxybenzyl;

Z is H, F, Cl, Br, I, CH₃SO₂ OH, PhCH₂O, AcO, MeO, EtO, Me₂NCH₂CH₂O, Et₂NCH₂CH₂O, PhCH₂OCO, *t*-Bu, *i*-Pr, NH₂, or NO₂;

and when Z is NO_2 at 4-postion of the phenyl, R^1 is N=0, R^2 is $COCH_3$, R^4 is only alkyl, substituted alkyl, benzyl, substituted benzyl, or trialkylsilyl;

and when Z is NO_2 at 4-postion of the phenyl, R^1 , R^2 is CH_3 , the ligand is only (1R, 2R)-2-N,N-dimethylamino-1-(4-nitrophenyl)-3-O- R^4 -propane-1-ol;

and when Z is OCH₃ at 4-postion of the phenyl, R¹, R² is CH₃, R⁴ is only alkyl, substituted alkyl, benzyl, substituted benzyl.