PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-205768

(43) Date of publication of application: 22.07.2003

(51)Int.Cl.

B60K 41/02 B60K 6/04 B60K 17/04 B60K 41/00 F02N 11/08 FO2N 15/02

(21)Application number: 2002-002619

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

09.01.2002

(72)Inventor: ISHIKAWA YUTAKA

KUBODERA MASAO FUKUDA TOSHIHIKO HAGIWARA KENJI

(54) POWER TRANSMISSION FOR HYBRID VEHICLE

(57)Abstract:

PROBLEM TO BE SOLVED: To restrain unintended impact from occurring in a vehicle to maintain a smooth travel condition, when an internal combustion engine is started by an output of a motor, in a travel drive condition by the motor in stop of the internal combustion engine. SOLUTION: In the EV travel condition where the internal combustion engine 11 under a stopped condition is separated from a transmission 13 by a main clutch 14, and where driving force of the motor 12 is transmitted to driving wheels W, W, an ECU 15 controls an engagement condition of the main clutch 14 based on a clutch oil pressure command value Pccom, and sets a motor torque correction value Tm for correcting the output of the motor 12 based on an estimated clutch torque Tcli, when the internal combustion engine 11 is started. When the main clutch 14 is brought into a complete engaged condition, a value of the clutch oil pressure command value Pccom is reduced to reduce transmission torque transmitted to the internal combustion engine 11 via the main clutch 14.

LEGAL STATUS .

[Date of request for examination]

26.11.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3712670

[Date of registration]

26.08.2005

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision

THIS PAGE LEFT BLANK

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-205768

(P2003-205768A)

(43)公開日 平成15年7月22日(2003.7.22)

(51) Int.Cl. ⁷		識別記号		1	FI		รั	-73-ド(参考)
B60K	41/02			В	6.0 K 41/02			3D039
·	6/04	310			6/04		310	3D041
		320					3 2 0	3G093
		360					360	5H115
		400					400	
		•	審查請求	有	請求項の数3	OL	(全 11 頁)	最終頁に続く

(21)出願番号

特顧2002-2619(P2002-2619)

(22)出顕日

平成14年1月9日(2002.1.9)

(71)出願人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72) 発明者 石川 豊

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(72)発明者 毽寺 雅雄

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 100064908

弁理士 志賀 正武 (外5名)

最終頁に続く

(54) 【発明の名称】 ハイブリッド車両用動力伝達装置

(57)【要約】

【課題】 内燃機関の停止時でのモータによる走行駆動 状態において、内燃機関をモータの出力により始動させ る際に、車両に意図しない衝撃が発生することを抑制し て、滑らかな走行状態を維持する。

【解決手段】 ECU15は、停止状態の内燃機関11と変速機13とがメインクラッチ14により分離され、モータ12の駆動力が駆動輪W、Wに伝達されているEV走行状態において、内燃機関11を始動させるときには、クラッチ油圧指令値Pccomに基づいてメインクラッチ14の係合状態を制御すると共に、推定クラッチトルクTcliに基づいてモータ12の出力を補正するモータトルク補正値Tmを設定する。メインクラッチ14が完全係合状態となる際に、クラッチ油圧指令値Pccomの値を低減させ、メインクラッチ14を介して内燃機関11へと伝達される伝達トルクを低減する。

【請求項1】 少なくとも内燃機関またはモータの何れか一方を、伝達手段を介して駆動輪に連結し、駆動力を前記駆動輪に伝達するハイブリッド車両用動力伝達装置であって、

1

前記内燃機関と前記伝達手段との間に設けられ、接続状態を任意に制御可能に前記内燃機関と前記伝達手段とを接続または分離するクラッチと、

前記クラッチにより停止状態の前記内燃機関と前記伝達 手段とを分離し、かつ、前記モータの駆動力を前記駆動 輪に伝達させるモータ駆動状態にて、前記クラッチによ り前記内燃機関と前記伝達手段とを徐々に接続するよう に制御することで前記モータの駆動力を徐々に前記内燃 機関に伝達し、前記内燃機関を始動させる内燃機関始動 手段と、

前記クラッチの接続状態に応じて、前記モータの出力を 制御するモータ出力制御手段とを備えることを特徴とす るハイブリッド車両用動力伝達装置。

【請求項2】 前記クラッチの接続状態を指示する接続指令に基づき、前記クラッチを駆動するアクチュエータの作動遅れを考慮して、前記クラッチの実際の接続状態を推定する推定手段を備え、

前記モータ出力制御手段は、前記推定手段にて推定した 前記クラッチの実際の接続状態に応じて、前記モータの 出力を制御することを特徴とする請求項1に記載のハイ ブリッド車両用動力伝達装置。

【請求項3】 前記クラッチの完全接続状態を予測する 予測手段と、

前記予測手段にて前記クラッチの完全接続状態を予測した場合には、前記クラッチを介して伝達されるトルクを、減少傾向に変化するように補正する補正手段とを備えることを特徴とする請求項1または請求項2の何れかに記載のハイブリッド車両用動力伝達装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、内燃機関及びモータを併用して走行駆動するハイブリッド車両に搭載され、内燃機関の始動をモータの駆動力により行うハイブリッド車両用動力伝達装置に関する。

[0002]

【従来の技術】従来、例えば特許第2896951号に開示されたハイブリッド型車両のように、内燃機関の停止時に電気モータの出力により車両を走行駆動する状態において、この電気モータの出力によって内燃機関を始動させる場合に、電気モータの発生トルクを大きくするように補正する、あるいは、内燃機関と走行輪とを接続/分離可能なクラッチを接続して内燃機関を始動させる際に、このクラッチの接続によるトルクの落ち込みを電気モータの発生トルクで補正するハイブリッド型車両が知られている。このハイブリッド型車両は、クラッチの50

接続の程度を検出する検出手段として、内燃機関の回転数およびトランスミッション出力軸の回転数を検出する各回転センサを備えている。そして、内燃機関の回転数とトランスミッション出力軸の回転数との差がゼロ近傍の値に到達すると、クラッチの動摩擦係数が静止摩擦係数に近づいて増大すると判断し、モータトルク指令値を増大させるように設定されている。

[0003]

【発明が解決しようとする課題】ところで、上記従来技 術の一例に係るハイブリッド型車両では、クラッチが完 10 全な接続状態となる際に、このクラッチを介して電気モ ータから内燃機関に伝達される伝達トルクは、電気モー タに連結された駆動軸に対するトルク変動となる。この ため、クラッチでの伝達トルクが大きくなることに伴っ て、駆動軸に作用するトルク変動が増大し、例えば駆動 軸のねじれ等が発生してしまう虞がある。このような駆 動軸のねじれは、車両の振動等の意図しない衝撃を発生 させることから、車両の滑らかな走行性が損なわれてし まうという問題が生じる。しかも、回転センサ等のセン サからの出力に基づいてモータトルク指令値を変更する 場合には、例えば電気モータに対するモータトルク指令 値の入力から実際にトルクが発生するまでの応答遅れ等 によって、クラッチの接続時における実際のトルク変動 を補償するための適切なモータトルクを、的確なタイミ ングで発生させることができず、車両走行時に意図しな い衝撃が発生してしまう虞がある。本発明は上記事情に 鑑みてなされたもので、内燃機関の停止時でのモータに よる走行駆動状態において、内燃機関をモータの出力に より始動させる際に、車両に意図しない衝撃が発生する ことを抑制して、滑らかな走行状態を維持することが可 能なハイブリッド車両用動力伝達装置を提供することを 目的とする。

[0004]

40

【課題を解決するための手段】上記課題を解決して係る 目的を達成するために、請求項1に記載の発明のハイブ リッド車両用動力伝達装置は、少なくとも内燃機関(例 えば、後述する実施の形態における内燃機関11)また はモータ(例えば、後述する実施の形態におけるモータ 12)の何れか一方を、伝達手段(例えば、後述する実 施の形態における変速機13)を介して駆動輪(例え ば、後述する実施の形態における駆動輪W)に連結し、 駆動力を前記駆動輪に伝達するハイブリッド車両用動力 伝達装置であって、前記内燃機関と前記伝達手段との間 に設けられ、接続状態を任意に制御可能に前記内燃機関 と前記伝達手段とを接続または分離するクラッチ(例え ば、後述する実施の形態におけるメインクラッチ14) と、前記クラッチにより停止状態の前記内燃機関と前記 伝達手段とを分離し、かつ、前記モータの駆動力を前記 駆動輪に伝達させるモータ駆動状態(例えば、後述する 実施の形態におけるEV走行状態)にて、前記クラッチ により前記内燃機関と前記伝達手段とを徐々に接続するように制御することで前記モータの駆動力を徐々に前記内燃機関に伝達し、前記内燃機関を始動させる内燃機関始動手段(例えば、後述する実施の形態における E C U 15)と、前記クラッチの接続状態に応じて、前記モータの出力を制御するモータ出力制御手段(例えば、後述する実施の形態におけるステップS 0 6)とを備えることを特徴としている。

3

【0005】上記構成のハイブリッド車両用動力伝達装置によれば、クラッチにより停止状態の内燃機関と伝達 10 手段とを分離し、モータの駆動力を駆動輪に伝達させるモータ駆動状態において、内燃機関を始動させる際には、接続状態を任意に制御可能なクラッチによって徐々に内燃機関と変速機とを接続し、モータの駆動力により内燃機関を始動させる。このとき、クラッチの接続状態を制御すると共に、この接続状態に応じてモータの出力を制御することにより、このクラッチを介してモータから内燃機関に伝達されるトルクの変動分を補償するようにして、的確なタイミングで適切にモータのトルク制御を行うことができる。これにより、モータによる滑らか 20 な走行状態を維持しつつ、内燃機関を始動させることができる。

【0006】さらに、請求項2に記載の発明のハイブリッド車両用動力伝達装置は、前記クラッチの接続状態を指示する接続指令(例えば、後述する実施の形態におけるクラッチ油圧指令値Pccom)に基づき、前記クラッチを駆動するアクチュエータの作動遅れを考慮して、前記クラッチの実際の接続状態を推定する推定手段(例えば、後述する実施の形態におけるステップS04~ステップS05)を備え、前記モータ出力制御手段は、前記推定手段にて推定した前記クラッチの実際の接続状態に応じて、前記モータの出力を制御することを特徴としている。

【0007】上記構成のハイブリッド車両用動力伝達装 置によれば、推定手段は、クラッチの接続状態つまり内 燃機関と変速機との接続の度合いを指示する接続指令に 基づき、例えばクラッチを介して伝達されるトルク等か らなるクラッチの接続状態を推定する。ここで、推定手 段は、クラッチを駆動するアクチュエータの作動遅れを 考慮し、推定したクラッチの接続状態の位相を、実際に クラッチにて伝達されるトルクの位相と同等になるよう に設定する。そして、モータ出力制御手段は、推定手段 にて推定されたクラッチの実際の接続状態に応じて、例 えばクラッチを介して伝達されるトルクの変動分を補償 するようにモータの出力を制御する。これにより、実際 にクラッチにて伝達されるトルクと同等の位相特性によ って適切にモータのトルクを制御することができ、モー タ駆動状態での内燃機関の始動時において、例えば内燃 機関の駆動に起因する走行駆動力の低下等のように、車 両の走行状態に意図しない変化が発生することを確実に 50

抑制し、より一層、滑らかな走行状態を維持することができる。

【0008】さらに、請求項3に記載の発明のハイブリッド車両用動力伝達装置は、前記クラッチの完全接続状態を予測する予測手段(例えば、後述する実施の形態におけるステップS23)と、前記予測手段にて前記クラッチの完全接続状態を予測した場合には、前記クラッチを介して伝達されるトルクを、減少傾向に変化するように補正する補正手段(例えば、後述する実施の形態においては、ECU15が兼ねる)とを備えることを特徴としている。

【0009】上記構成のハイブリッド車両用動力伝達装 置によれば、予測手段は、例えばクラッチの内燃機関側 と変速機側との回転数の差等に基づき、クラッチが完全 な接続状態になるときが近接していることを予測する。 そして、予測手段にて直にクラッチが完全接続状態にな ると予測されたときに、補正手段はクラッチを介して伝 達されるトルクを、減少傾向に変化するように補正す る。すなわち、クラッチを介してモータから内燃機関に 伝達されるトルクは、モータに連結された駆動軸に対す るトルク変動となる。このため、クラッチを介して伝達 されるトルクを小さくすることによって、駆動軸に作用 するトルク変動を低滅させ、例えば駆動軸のねじれ等が 発生することを抑制することができる。これにより、車 両の振動等の意図しない衝撃が発生することを抑制し て、車両の滑らかな走行性を向上させることができる。 [0010]

【発明の実施の形態】以下、本発明の実施形態に係るハイブリッド車両用動力伝達装置について添付図面を参照しながら説明する。図1は本発明の実施形態に係るハイブリッド車両用動力伝達装置10の構成図である。本実施の形態によるハイブリッド車両用動力伝達装置10は、少なくとも内燃機関11またはモータ12の何れか一方の駆動力を自車両の駆動輪W、Wに伝達するものであって、変速機13と、内燃機関11と変速機13との間に設けられたメインクラッチ14と、ECU(電子制御装置)15とを備えて構成されている。

【0011】ここで、変速機13の出力軸(図示略)と一体に設けられた連結ギア13aは駆動軸16,16に接続されたディファレンシャル17のギア17aと常に噛み合うようにされ、内燃機関11は、メインクラッチ14、変速機13、駆動軸13,13を介して駆動輪W,Wに機械的に接続され、モータ12は、変速機17、駆動軸13,13を介して駆動輪W,Wに機械的に接続される。さらに、モータ12の回転軸12aは、順次、変速機13、メインクラッチ14を介して、内燃機関11のクランクシャフト11aに接続可能とされている。

【0012】メインクラッチ14は、例えば湿式多板クラッチとされ、変速機13の入力軸13bと一体的に回

40

50

転可能に配置された複数のインナークラッチ板14a, …, 14aと、これらのインナークラッチ板14a, …, 14aと交互に重ね合わせるように配置され、各インナークラッチ板14a, …, 14aに当接可能とされた複数のアウタークラッチ板14b, …, 14bと、これらのアウタークラッチ板14b, …, 14bを保持し、内燃機関11のクランクシャフト11aと一体的に回転可能とされたクラッチハウジング14cとを備えている。

【0013】また、メインクラッチ14は、ECU15 により制御可能な油圧アクチュエータ(図示略)を備 え、この油圧アクチュエータは、クラッチハウジング1 4 c 内に摺動可能に配設され、ピストン室を形成するピ ストンを備えている。油圧アクチュエータは、ピストン 室内に供給される作動油の油圧に応じてスラスト力を発 生させ、各インナークラッチ板14a, …, 14aと各 アウタークラッチ板14b, …, 14bとを相互に当接 (つまり、係合) させることによって、内燃機関11の クランクシャフト11aと変速機13の入力軸13bと を一体に締結する。そして、メインクラッチ14の係合 状態では、内燃機関11と変速機13との間でトルクが 伝達され、係合解除の状態では、内燃機関112変速機 13との間のトルクの伝達が遮断される。なお、後述す るように、ピストン室内に供給される作動油の油圧は、 ECU15によりクラッチ油圧指令値Pccomに基づ いて制御され、これに伴いメインクラッチ14の係合度 合い (係合状態) が調整可能とされている。

【0014】 E C U (電子演算装置) 15は、例えば運転者のアクセル操作に係るアクセル開度 A c や、モータ12に電力を供給するバッテリ (図示略) の残容量 S O C (state of charge) や、内燃機関 11 および補機

(図示略)の作動状態等に応じて、変速機13の変速動作およびメインクラッチ14の油圧アクチュエータの駆動を制御することによって、モータ11の駆動力の伝達経路を変更する。例えば、ECU15は、停止状態の内燃機関11と変速機13とがメインクラッチ14により分離され、モータ12の駆動力が駆動輪W,Wに伝達されているEV走行状態において、例えば運転者から急波な負荷上昇が要求された場合や、例えばバッテリの残容量SOCが所定値を超えて低下した場合等に、内燃機関11を始動させるときには、メインクラッチ14を係合状態とし、変速機13を介してモータ12の回転軸12aと内燃機関11のクランクシャフト11aとを接続し、モータ12の駆動力を内燃機関11および駆動輪W,Wに配分する。

【0015】このEV走行状態における内燃機関11の 始動時に、ECU15は、後述するように、モータ12 が出力可能な駆動力のうち、少なくとも内燃機関11を 始動可能な所定の駆動力を内燃機関11に配分すると共 に、メインクラッチ14の係合状態に応じて、モータ1 5の出力つまりモータ15に対するトルク指令値を設定する。このため、ECU15には、例えば図1に示すように、メインクラッチ14の内燃機関11側と変速機13側との回転数差、つまり内燃機関11のクランクシャフト11aの回転数と変速機13の入力軸13bの回転数との差である差回転Ndを検出する差回転検出器18から出力される検出信号と、メインクラッチ14の油圧アクチュエータの油圧を検出する油圧センサ19から出力される検出信号と、モータ12の回転数を検出する回転数検出器20から出力される検出信号とが入力されている。

【0016】本実施形態によるハイブリッド車両用動力 伝達装置10は上記構成を備えており、次に、このハイ ブリッド車両用動力伝達装置10の動作、特に、EV走 行状態での内燃機関11の始動時における動作について 添付図面を参照しながら説明する。図2はハイブリッド 車両用動力伝達装置10の動作、特にメインクラッチ1 4を係合させる処理を示すフローチャートであり、図3 は油圧指令値Pccomに基づき、推定油圧Pciおよ び推定クラッチトルクTcliを算出する処理を示すブ ロック線図である。図4はハイブリッド車両用動力伝達 装置10の動作、特に図2に示すクラッチ油圧指令値P c c o mを設定する処理を示すフローチャートであり、 図5はハイブリッド車両用動力伝達装置10の動作、特 に図2に示すモータトルク指令値Tmを設定する処理を 示すフローチャートであり、図6(a)~(f)はEV 走行状態での内燃機関11の始動時における各種の制御 パラメータの時間変化を示すグラフ図である。

【0017】先ず、図2に示すステップS01においては、例えば、停止状態の内燃機関11と変速機13とがメインクラッチ14により分離され、モータ12の駆動力が駆動輪W,Wに伝達されているEV走行状態において、例えば内燃機関11を始動させる指令の発生等に伴い、メインクラッチ14の係合を指示する指令が発生したか否かを判定する。この判定結果が「NO」の場合には、一連の処理を終了する。一方、この判定結果が「YES」の場合には、ステップS02に進む。ステップS02においては、例えば、この時点において油圧センサ19から出力される検出信号や、後述する油圧アクチュエータモデルにて使用される各種のパラメータ等を読み込む。次に、ステップS03においては、後述するクラッチ油圧指令値Pccomを設定する処理を行う。

【0018】次に、ステップS04においては、油圧アクチュエータモデルにより、メインクラッチ14の油圧アクチュエータの油圧に対する推定油圧Pciを推定する。ここでは、例えば図3に示すように、先ず、ECU15の加算部21にてクラッチ油圧指令値Pccomと油圧補正項とを加算して得た値を、新たにクラッチ油圧指令値として設定し、推定油圧算出部22に入力する。なお、油圧補正項は、例えば、後述する無効ストローク

詰め等によって予め与えられている油圧のオフセット分 等を補正するものである。そして、推定油圧算出部22 において、例えば下記数式(1)に示すような2次の線 形の伝達関数によって油圧アクチュエータの動特性を近 似した油圧アクチュエータモデルにより、油圧アクチュ エータのピストン室内に供給される作動油の油圧を推定 する。このとき、推定油圧算出部22は、例えば油圧ア クチュエータの作動遅れ等を考慮して、実際にメインク ラッチ14にて伝達されるトルクと同等の位相を有する ように、推定した油圧の位相を設定する。

[0019]

【数1】

$$G(s) = \frac{k\omega^2}{s^2 + \zeta \omega s + \omega^2} \qquad \dots (1)$$

【0020】そして、ステップS05においては、差回 転検出器18から出力される差回転Ndの検出値と推定 油圧Pciに基づき、予め設定された所定のマップのマ ップ検索により摩擦係数 μを算出し、この摩擦係数 μ と、メインクラッチ14の構成に係る所定のパラメータ に基づいて、メインクラッチ14にて内燃機関11へと 伝達されるトルクの推定値として推定クラッチトルクT cliを算出する。ここでは、例えば図3に示すよう に、先ず、推定油圧算出部22から出力された推定油圧 Pciを摩擦係数算出部23およびパラメータ乗算部2 4に入力する。摩擦係数算出部23は、メインクラッチ 14の係合時における各クラッチ板14a, …, 14a および14b, …, 14bの滑り速度と、油圧アクチュ エータのピストン室内に供給される作動油の油圧と、摩 擦係数μとの関係を示す所定のマップを予め備えてお り、差回転検出器18から出力される差回転Ndと推定 油圧Pciに基づき摩擦係数μをマップ検索し、乗算部 25に入力する。

【0021】また、パラメータ乗算部24においては、 例えば下記数式(2)に示すように、メインクラッチ1 4の構成に係るパラメータとして、各クラッチ板14 a, …, 14aおよび14b, …, 14bの枚数ND と、各クラッチ板14a, …, 14aおよび14b. …, 14bの有効半径 r と、ピストン室の面積 A と、所 定の係数gとを、推定油圧Pciに乗算して得た値Tc を乗算部25に入力する。乗算部25においては、パラ メータ乗算部24から入力された値Tcに摩擦係数算出 部23から入力された摩擦係数 μ を乗算して得た値を、 推定クラッチトルクTcliとして設定する。

[0022]

【数2】

$$Tc = Pci \times ND \times r \times A \times g \qquad \cdots (2)$$

【0023】そして、ステップS06においては、後述 するモータトルク補正値Tmを算出する処理を行う。こ こで、モータトルク補正値Tmは、例えばモータ12の 50 内燃機関11の始動時等における油圧応答遅れの発生が

作動遅れ等が考慮されて算出され、実際にメインクラッ チ14にて伝達されるトルクと同等の位相を有するよう に、モータトルク補正値Tmの位相が設定される。そし て、ステップSO7においては、クラッチ油圧指令値P c c o mに基づいてメインクラッチ14を係合すると共 に、モータトルク補正値Tmに基づいてモータ12の出 力を制御し、一連の処理を終了する。すなわち、この推 定クラッチトルクTcliは、メイントルク14を介し てモータ12から内燃機関11に伝達されるトルクであ り、駆動軸16に対するトルク変動となる。従って、こ のトルク変動分を、モータトルク補正値Tmに基づくモ ータ12の出力で補正することで、トルク変動分に起因 する衝撃の発生を抑制した滑らかなEV走行状態を維持 しつつ、内燃機関11を始動させることができる。

【0024】しかも、推定クラッチトルクTcliに基 づいて算出されるモータトルク補正値Tmは、例えば油 圧アクチュエータやモータ12の作動遅れ等が考慮され て推定されたものであり、実際にメインクラッチ14に て伝達されるトルクと同等の位相を有するように設定さ れている。これにより、的確なタイミングで適切なトル ク制御を行うことができる。

【0025】以下に、上述したステップS03におけ る、クラッチ油圧指令値Pccomを設定する処理につ いて添付図面を参照しながら説明する。ここで、例えば 停止状態の内燃機関11と変速機13とがメインクラッ チ14により分離され、モータ12の駆動力が駆動輪 W. Wに伝達されている E V 走行状態において、メイン クラッチ14の油圧アクチュエータは無効ストローク詰 めの状態に設定されている。この無効ストローク詰めの 状態とは、例えば車両の発進時等におけるメインクラッ チ14の応答性を向上させるため、油圧アクチュエータ のピストン室内に作動油を充満させると共に、メインク ラッチ14の各クラッチ板14a, …, 14aおよび1 4 b, …, 1 4 b を係合直前の状態に設定する(つま り、係合直前の位置までピストンを移動させる)状態で ある。

【0026】先ず、図4に示すステップS11において は、メインクラッチ14の動作状態を示すクラッチステ ータスCLSTの判定処理を行う。ここでは、クラッチ ステータスCLSTに、メインクラッチ14の初期動作 を指示する立ち上げ油圧指令ステータスSTSTが設定 されているか否かを判定する。この判定結果が「NO」 の場合には、後述するステップS14に進む。一方、こ の判定結果が「YES」の場合には、ステップS12に 進み、クラッチ油圧指令値Pccomに所定の立ち上げ 油圧指令値STCMを設定する。これにより、クラッチ 油圧指令値Pccomは、無効ストローク詰めの状態で 設定されている所定の油圧指令値INCMから、立ち上 げ油圧指令値STCMまでステップ状に増大させられ、

抑制されている。

【0027】そして、ステップS13においては、クラッチステータスCLSTに、クラッチ油圧指令値Pccomをステップ状に徐々に増大させる状態を示すクランクトルク分加算ステータスCRSTを設定して、一連の処理を終了する。

【0028】一方、ステップS14においては、クラッチステータスCLSTに、クランクトルク分加算ステータスCRSTが設定されているか否かを判定する。この判定結果が「NO」の場合には、後述するステップS21に進む。一方、この判定結果が「YES」の場合には、ステップS15に進み、クラッチ油圧指令値Pccomに所定のクランキングトルク分油圧指令値Pccomにより、クラッチ油圧指令値Pccomが、クランキングトルク分油圧指令値CRCMを加として設定する。これにより、クラッチ油圧指令値Pccomが、クランキングトルク分油圧指令値CRCMを1ステップあたりの上げ幅としてステップ状に増加させられる。すなわち、メインクラッチ14が徐々に係合させられることで、内燃機関11のクランクシャフト11aの回転数が徐々に増大させられる。

【0029】そして、ステップS16においては、クラッチ油圧指令値Pccomが、所定のクランクトルク上限油圧指令値ULCM以上か否かを判定する。この判定結果が「NO」の場合には、後述するステップS18に進む。一方、この判定結果が「YES」の場合には、ステップS17に進み、例えばクラッチ油圧指令値Pccomに所定のクランクトルク上限油圧指令値ULCMを設定し、ステップS18に進む。

【0030】ステップS18においては、差回転検出器18から出力される差回転Ndが所定回転数#N1以下か否かを判定する。この判定結果が「NO」の場合には、ステップS19に進み、クラッチステータスCLSTに、クランクトルク分加算ステータスCRSTを設定して、一連の処理を終了する。一方、この判定結果が「YES」の場合には、ステップS20に進み、クラッチステータスCLSTに、クラッチ油圧指令値Pccomをクランクトルク上限油圧指令値ULCMよりも小さい所定のクランクトルク保持油圧指令値KECMに設定する状態を示すクラッチ油圧保持ステータスKESTを設定して、一連の処理を終了する。

【0031】また、ステップS21においては、クラッチステータスCLSTに、クラッチ油圧保持ステータスKESTが設定されているか否かを判定する。この判定結果が「NO」の場合には、後述するステップS25に進む。一方、この判定結果が「YES」の場合には、ステップS22に進み、クラッチ油圧指令値PCComに、クランクトルク上限油圧指令値ULCMよりも小さい所定のクランクトルク保持油圧指令値KECMを設定する。これにより、例えばEV走行状態での内燃機関11の始動時にメインクラッチ14が完全係合状態となる

際に、メインクラッチ14によって伝達されるトルクが 小さくなるように設定されるため、駆動軸16のねじれ 等に起因した振動が発生することを抑制することができ る。

【0032】そして、ステップS23においては、例えば、差回転検出器18から出力される差回転Ndがゼロ、あるいは、ゼロ近傍の所定回転数以下か否かを判定することによって、メインクラッチ14が完全係合状態となったか否かを判定する。この判定結果が「NO」の場合には、上述したステップS20に進む。一方、この判定結果が「YES」の場合には、ステップS24に進み、クラッチステータスCLSTに、クラッチ油圧指令値Pccomを所定の内燃機関フリクション分トルク保持油圧指令値ENCMに設定する状態を示す内燃機関フリクション分トルク保持ステータスENSTを設定して、一連の処理を終了する。

【0033】また、ステップS25においては、クラッチ油圧指令値Pccomに所定の内燃機関フリクション分トルク保持油圧指令値ENCMを設定し、一連の処理を終了する。すなわち、メインクラッチ14が完全に係合した後には、内燃機関11の運転や変速機13でのトルク伝達等に係る摩擦損失分をモータ12の出力によって補うように設定することで、車両の走行駆動時に、内燃機関11の駆動によって減速等が発生することを抑制する。

【0034】以下に、上述したステップS06における、推定クラッチトルクTcliによりモータトルク補正値Tmを算出する処理について添付図面を参照しながら説明する。先ず、図5に示すステップS31においては、差回転検出器18から出力される差回転Ndが所定の回転数#N2以下か否かを判定する。この判定結果が「YES」の場合には、後述するステップS35に進む。一方、この判定結果が「NO」の場合には、ステップS32に進み、クラッチ油圧指令値Pccomが、モータ12の出力を補正するか否かを判定するための所定の下限油圧指令値#P1以上か否かを判定する。

【0035】ステップS32での判定結果が「YES」の場合には、ステップS33に進み、モータトルク補正値T mに推定クラッチトルクTcliを設定して、一連の処理を終了する。なお、ここで、モータトルク補正値T mに設定される推定クラッチトルクTcli とは、例えば後述する無効ストローク詰めの状態における適宜の推定トルク#Tcli を推定クラッチトルク#Tcli から減算して得た値である。一方、ステップ#S32での判定結果が「#NO」の場合には、ステップ#S32での処理を終了する。

【0036】また、ステップS35においては、メインクラッチ14が完全に係合した後に、内燃機関11の運転や変速機13でのトルク伝達等に係る摩擦損失分をモ

50

40

11

ータ12の出力によって補うためのフリクション補正トルクTccを算出する。そして、ステップS36においては、モータトルク補正値Tmから所定値を減算して得た値を、新たにモータトルク補正値Tmに設定し、モータトルク補正値Tmを減算方向に変化するように設定する。

【0037】次に、ステップS37においては、モータトルク補正値Tmがフリクション補正トルクTcc以下か否かを判定する。この判定結果が「NO」の場合には、後述するステップS39に進む。一方、この判定結 10果が「YES」の場合には、ステップS38に進み、モータトルク補正値Tmにフリクション補正トルクTccを設定し、ステップS39に進む。

【0038】ステップS39においては、例えば吸気管 負圧PBが所定圧PB1以下となって、燃料供給許可フラグのフラグ値に「1」が設定され、内燃機関11への 燃料供給が指示されたか否かを判定する。この判定結果 が「NO」の場合には、一連の処理を終了する。一方、 この判定結果が「YES」の場合には、上述したステップS34に進み、モータトルク補正値Tmにゼロを設定 20 して、一連の処理を終了する。

【0039】例えば、図6(a), (b) に示す時刻 t 1以前のように、モータ12の駆動力が駆動輪W,Wに伝達されている E V走行状態においては、クラッチ油圧指令値Pccomがゼロに設定され、停止状態の内燃機関11 と変速機13 とがメインクラッチ14 により分離されている。ここで、先ず、無効ストローク詰めの状態では、例えば図6(b) 及び(c) に示す時刻 t1 から時刻 t2 のように、クラッチ油圧指令値Pccomに無効ストローク詰めにおける所定の油圧指令値INCMが設定され、推定クラッチトルクTc1 i は略ステップ状に適宜の推定トルク#Tc1程度まで増大させられる。

【0040】そして、メインクラッチ14の係合を指示 する指令が発生すると、例えば図6(b)に示す時刻 t 2のように、クラッチ油圧指令値 P c c o m は、先ず、 無効ストローク詰めの状態で設定されている所定の油圧 指令値INCMから、所定の立ち上げ油圧指令値STC Mまでステップ状に増大させられる。ここで、クラッチ 油圧指令値Pccomが、所定の立ち上げ油圧指令値S T CMまでステップ状に増大させられることで、油圧応 答遅れの発生が抑制されている。そして、時刻 t 2から 時刻t3の期間のように、クラッチ油圧指令値Pcco mが所定のクランクトルク上限油圧指令値ULCMま で、所定のクランキングトルク分油圧指令値CRCMを 1ステップあたりの上げ幅として、ステップ状に徐々に 増加させられる。これにより、メインクラッチ14が徐 々に係合させられ、図6(a), (c)に示すように、 例えば適宜の時間遅れの後に、内燃機関11のクランク シャフト11aの回転数NEおよび推定クラッチトルク Tcliが徐々に増大させられ、図6(e)に示すよう に、吸気管負圧PBが減少傾向に変化する。

【0041】さらに、この時刻 t2から後述する時刻 t5の期間においては、モータトルク補正値 T mに推定クラッチトルク T c1 i を設定し、例えば内燃機関 11 の駆動に起因する走行駆動力の低下等のように、車両の走行状態に意図しない変化が生じることを抑制する。なお、図6(c), (d) に示すように、モータトルク補正値 T mに設定される推定クラッチトルク T c1 i とは、例えば無効ストローク詰めの状態等のように、時刻 t2 以前における推定クラッチトルク T c1 i の値つまり適宜の推定トルク T C1 を、推定クラッチトルク T C1 i から減算して得た値である。

【0042】そして、例えば図6(b)に示す時刻t3から時刻t4の期間のように、クラッチ油圧指令値Pccomが所定のクランクトルク上限油圧指令値ULCMに到達すると、クラッチ油圧指令値ULCMに維持される。これに伴い、図6(c),(d)に示すように、推定クラッチトルクTcliおよびモータトルク補正値Tmは、適宜の時定数やむだ時間等を有する応答によって、適宜の値に収束するように変化し、さらに、図6(a)に示すように、内燃機関11のクランクシャフト11aの回転数NEは増大傾向に変化する。

【0043】そして、例えば図6(a), (b) に示す 時刻 t 4のように、内燃機関 1 1のクランクシャフト 1 1aの回転数NE(例えば、NE=NN1)と、モータ 12の回転軸12aの回転数NM(例えば、NM=NN 3)との差、つまり差回転Nd(=NN3-NN1)が 所定回転数#N1以下になると、メインクラッチ14が 完全係合状態になる時刻の近傍に到達したと判断して、 クラッチ油圧指令値 Р с с о mにクランクトルク上限油 圧指令値ULCMよりも小さい所定のクランクトルク保 持油圧指令値KECMを設定する。これにより、クラッ チ油圧指令値Pccomは、クランクトルク上限油圧指 令値ULCMから、所定のクランクトルク保持油圧指令 値KECMまでステップ状に減少させられ、これに伴 い、図6(c),(d)に示すように、推定クラッチト ルクTcliおよびモータトルク補正値Tmは減少傾向 に変化させられる。つまり、メインクラッチ14の完全 係合時に伝達されるトルクが低減されることで、例えば 駆動軸16のねじれ等に起因した振動等の衝撃が発生す ることを抑制することができる。なお、クラッチ油圧指 令値Pccomを所定のクランクトルク保持油圧指令値 KECMまで減少させる際には、例えば徐々に減少する ように変化させてもよい。

【0044】そして、図6(b)に示す時刻 t4から時刻 t6の期間のように、クラッチステータス CLSTに クラッチ油圧保持ステータス KESTが設定されている間において、クラッチ油圧指令値 Pccombは、クランクトルク保持油圧指令値 KECMに維持される。ここ

で、例えば図6(a)に示す時刻 t 5のように、差回転 Nd(例えば、Nd=NN3-NN2)がゼロ、あるい は、ゼロ近傍の所定回転数以下に到達した時点で、メイ ンクラッチ14が完全係合状態になったと判断され、図 6 (d) に示す時刻 t 5 のように、モータトルク補正値 Tmに所定のフリクション補正トルクTccが設定され る。これにより、モータトルク補正値 T mは、推定クラ ッチトルクTcliから推定トルク#Tc1を減算して 得た値(例えば、Tcli-#Tc1=Tm1)から、 所定のフリクション補正トルクTccまでステップ状に 10 減少させられる。なお、モータトルク補正値Tmを所定 のフリクション補正トルクTccまで減少させる際に は、例えば上述したステップS36のように、徐々に減 少するように変化させてもよい。

13

【0045】そして、図6(d)に示す時刻 t 5から時 **刻t7の期間のように、モータトルク補正値Tmは、内** 燃機関11の運転や変速機13でのトルク伝達等に係る 摩擦損失分をモータ12の出力によって補うためのフリ クション補正トルクTccに維持される。そして、例え ば図6(d) \sim (f)に示す時刻t7のように、例えば 吸気管負圧 PBが所定圧 PB1以下となった時点で、燃 料供給許可フラグのフラグ値に「1」が設定され、内燃 機関11への燃料供給が指示されると共に、モータトル ク補正値Tmにゼロが設定される。これにより、EV走 行状態での内燃機関11の始動時において、車両に意図 しない振動等の衝撃が発生することを抑制し、滑らかな 走行状態を維持することができる。

【0046】上述したように、本実施形態によるハイブ リッド車両用動力伝達装置10によれば、EV走行状態 における内燃機関11の始動時に、クラッチ油圧指令値 30 Pccomに基づいてメインクラッチ14の係合状態を 制御することにより、車両の滑らかな走行状態を維持し つつ、内燃機関11を始動させることができる。特に、 メインクラッチ14の完全係合時に、クラッチ油圧指令 値Pccomを低減させ、伝達トルクを小さくすること で、例えば駆動軸16のねじれ等に起因した振動等の衝 撃が発生することを抑制することができる。

【0047】さらに、クラッチ油圧指令値Pccomに より推定した推定クラッチトルクTcl i に基づいてモ ータ12の出力を補正するモータトルク補正値 Tmを設 定することで、的確なタイミングで適切にモータ12の 出力を制御することができる。すなわち、例えば適宜の センサーによる油圧等の検出値に基づいてクラッチ伝達 トルクを推定し、このクラッチ伝達トルクに応じてモー タ12の出力を制御する場合に比べて、例えばセンサー やECU15での処理時間に起因する時間遅れや、例え ば油圧アクチュエータやモータ12の応答遅れ等の影響 を補償することができ、実際にメインクラッチ14にて 伝達されるトルクと同等の位相を有する推定クラッチト ルクTcliによって、適切な位相特性を有するモータ トルク補正値Tmを設定することができる。これによ り、EV走行状態での内燃機関11の始動時において、 例えば内燃機関11の駆動に起因する走行駆動力の低下 等のように、車両の走行状態に意図しない変化が発生す ることを抑制し、より一層、滑らかな走行状態を維持す ることができる。

【0048】なお、上述した本実施形態においては、メ インクラッチ14の油圧アクチュエータの動特性を2次 の線形の伝達関数により近似するとしたが、これに限定 されず、例えば2次よりも高次の伝達関数や、例えば非 線形の伝達関数等により近似してもよい。

【0049】また、上述した本実施の形態において、摩 擦係数算出部23は、メインクラッチ14の係合時にお ける各クラッチ板14a, …, 14aおよび14b, …. 14 bの滑り速度と、油圧アクチュエータの油圧 と、摩擦係数 μ との関係を示す所定のマップを予め備え るとしたが、これに限定されず、所定のマップにおける 変数として、例えば作動油の油温や、経年劣化に係るパ

ラメータ等を含めてもよい。 【0050】また、上述した本実施の形態においては、 差回転Ndがゼロ、あるいは、ゼロ近傍の所定回転数以 下に到達した時点で、メインクラッチ14が完全係合状 態になったと判断したが、これに限定されず、例えば差 回転Ndの時間変化率等に応じて判断してもよい。

[0051]

50

【発明の効果】以上説明したように、請求項1に記載の 発明のハイブリッド車両用動力伝達装置によれば、クラ ッチにより停止状態の内燃機関と伝達手段とを分離し、 モータの駆動力を駆動輪に伝達させるモータ駆動状態に おいて、内燃機関を始動させる際には、クラッチの接続 状態を制御すると共に、この接続状態に応じてモータの 出力を制御することにより、このクラッチを介してモー タから内燃機関に伝達されるトルクの変動分を補償する ようにして、的確なタイミングで適切にモータのトルク 制御を行うことができる。これにより、モータによる滑 らかな走行状態を維持しつつ、内燃機関を始動させるこ とができる。

【0052】さらに、請求項2に記載の発明のハイブリ ッド車両用動力伝達装置によれば、実際にクラッチにて 伝達されるトルクと同等の位相特性によって適切にモー タのトルクを制御することができ、モータ駆動状態での 内燃機関の始動時において、例えば内燃機関の駆動に起 因する走行駆動力の低下等のように、車両の走行状態に 意図しない変化が発生することを確実に抑制し、より一 層、滑らかな走行状態を維持することができる。さら に、請求項3に記載の発明のハイブリッド車両用動力伝 達装置によれば、クラッチを介して伝達されるトルクを 減少傾向に変化するように補正することで、モータに接 続された駆動軸に作用するトルク変動を低減させ、例え ば駆動軸のねじれ等が発生することを抑制することがで

16

きる。これにより、車両の振動等の意図しない衝撃が発生することを抑制して、車両の滑らかな走行性を向上させることができる。

15

【図面の簡単な説明】

【図1】 本発明の実施形態に係るハイブリッド車両用 動力伝達装置の構成図である。

【図2】 ハイブリッド車両用動力伝達装置の動作、特にメインクラッチを係合させる処理を示すフローチャートである。

【図3】 油圧指令値 P c c o mに基づき、推定油圧 P 10 c i および推定クラッチトルク T c l i を算出する処理 を示すブロック線図である。

【図4】 ハイブリッド車両用動力伝達装置の動作、特に図2に示すクラッチ油圧指令値Pccomを設定する処理を示すフローチャートである。

【図5】 ハイブリッド車両用動力伝達装置の動作、特*

* に図2に示すモータトルク指令値Tmを設定する処理を 示すフローチャートである。

【図 6 】 図 5 (a) \sim (f) は E V 走行状態での内燃機関の始動時における各種の制御パラメータの時間変化を示すグラフ図である。

【符号の説明】

- 10 ハイブリッド車両用動力伝達装置
- 11 内燃機関
- 12 モータ
- 13 変速機(伝達手段)
- 14 メインクラッチ (クラッチ)
- 15 E C U (内燃機関始動手段、補正手段) ステップS O 4 ~ ステップS O 5 推定手段 ステップS O 6 モータ出力制御手段 ステップS 2 3 予測手段

[図2] 【図1】 15 メインクラッチ係合処理 **ECU** メインクラッ 係合指示有り Yes 18 | 14b -夕読み込み パラメ・ T/Miss クラッチ油圧指令値Pccom設定 13b ENGINE 油圧アクチュエータモテルにより 推定油圧Pci算出 MOTOR 12a 17a **└**13a 12 推定クラッチトルクTcliにより モータトルク補正値Tm算出 メインクラッチ係合 一~S07 終了

22 24 25 推定油圧算出部 油圧アクチュエータ 中間 中間 中間 中間 ロマップ では ロマップ 23 24 25 推定のラッチ トルク Tcll コマップ 23

[図3]

フロントページの続き

(51) Int.Cl.		識別記号		FΙ					Ī	73-	' (参考)
B 6 0 K		5 3 0		B 6 0 K	6/04	ļ		530)		
		7 3 3						733	3		
		ZHV			17/04				G		
	17/04	•			41/00)		30	1 B		
	41/00	3 0 1						30	1 C		
				B 6 0 L	11/14	ļ					
B 6 0 L	11/14				15/20)			K		
	15/20			F 0 2 D	29/02	?			D		
F 0 2 D	29/02			F 0 2 N	11/04	ļ			D		
F 0 2 N	11/04				11/08	}			V		
	11/08				15/02	?			D		
	15/02								N		
				B 6 O K	6/04	ļ		ZHY	V		
(72)発明者	福田 俊彦			F ターム(を	参考)	3D039	AA02	AB27	ACO3		
(15/76/71		中央1丁目4番1号	株式会	•		3D041					AC14
	社本田技術研究			•			AD10	AD22	AD23	AE23	AFO9
(72)発明者	萩原 顕治					3G093	AA07	BA33	CAO1	CB05	DAO1
(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		中央1丁目4番1号	株式会				DAO6	DBO1	DBO7	DB19	EAO5
	社本田技術研究						EBOO	ECO2	FA07		
		•				5H115	PAO1	PG04	PU25	QNO8	REO3
			•				RE12	SE03	SE05	SE09	

THIS PAGE LEFT BLANK