NANYANG TECHNOLOGICAL UNIVERSITY School of Electrical & Electronic Engineering

EE/IM4152 Digital Communications

Tutorial No. 2 (Sem 1, AY2016-2017)

- 1. A signal g(t) band-limited to B Hz is sampled using a triangular pulse train $x_p(t) = \sum_{n=-\infty}^{\infty} \Delta\left(\frac{t-nT_s}{\tau}\right)$, where $\Delta(t/\tau)$ is a triangular pulse spreading over 2τ seconds (from $-\tau$ to τ). Note that $\tau = 1/(16B)$ and the sampling period $T_s = 1/(2B)$.
 - (a) For the triangular pulse train, the pulse at the centre is $x(t) = \Delta(t/\tau)$. Find its Fourier transform X(f).
 - (b) Determine the Fourier coefficients $\{C_n\}$ of the periodic sampling function $x_n(t)$.
 - (c) Show that the sampled-data signal $\overline{g}(t)$ is given by

$$\overline{g}(t) = \sum_{n = -\infty}^{\infty} \frac{1}{8} \operatorname{sinc}^{2} \left(\frac{n}{8} \right) g(t) e^{j2\pi n f_{s} t}$$

where $f_s = 2B$. Can the signal g(t) be recovered by passing $\overline{g}(t)$ through an ideal low-pass filter (LPF) of bandwidth B Hz and gain 8?

- 2. The signal $s(t) = \cos 2\pi t$ is sampled every 0.4 sec and sent over the channel using natural-sampled PAM with pulse width of 0.1 sec. The transmission channel can be modelled as an ideal low-pass filter (LPF) with cut-off frequency at 6.25 Hz. Determine the received waveform. How can we perfectly recover the original signal s(t) from the received waveform?
- 3. A signal $g(t) = x(t) \otimes x(t)$ is sampled using uniformly spaced impulses at 40 samples/s, where x(t) = sinc(50t) and the symbol \otimes denotes the convolution operation. The sampled-data function $\overline{g}(t)$ is fed to an ideal low-pass filter (LPF) with cutoff frequency 25 Hz.
 - (a) Obtain the frequency-domain and time-domain representations of g(t). Determine the bandwidth of g(t) and its Nyquist sampling rate.
 - (b) Sketch the spectrum of the sampled-data function $\overline{g}(t)$.
 - (c) Sketch the spectrum of the output signal y(t) of the LPF. Determine the frequency-domain and time-domain representations of y(t).