An application of Karnaugh Maps

A digital circuit is needed to control a seven-segment LED display of decimal digits, as shown below. The circuit has four inputs (A, B, C & D), which provide the 4-bit binary code used in packed decimal representation (010 = 0000, 110 = 0001, ... 910 = 1001). The seven output Boolean expressions define which LED lights will be activated to display a given decimal digit. Note that some combinations of inputs and outputs are not needed and, consequently, are marked with a 'd' (don't care).

Truth Table for digital circuit:

Input				Output						
Α	В	С	D	z_1	z ₂	z ₃	z ₄	z ₅	z ₆	z ₇
0	0	0	0	1	1	1	0	1	1	1
0	0	0	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0	1

Input				Output						
0	0	1	1	1	0	1	1	0	1	1
0	1	0	0	0	1	1	1	0	1	0
0	1	0	1	1	1	0	1	0	1	1
0	1	1	0	1	1	0	1	1	1	1
0	1	1	1	1	0	1	0	0	1	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	0
1	0	1	0	d	d	d	d	d	d	d
1	0	1	1	d	d	d	d	d	d	d
1	1	0	0	d	d	d	d	d	d	d
1	1	0	1	d	d	d	d	d	d	d
1	1	1	0	d	d	d	d	d	d	d
1	1	1	1	d	d	d	d	d	d	d

Find the simplified SOP (Sum Of Products) expression for each of the outputs, z_2 through z_7 . (The expression for z_1 has already been done.) Using the truth table on the 1st page, you will need to fill in the tables for z_5 through z_7 . Since we don't care what output results in those squares occupied by 'd', you may treat them as a 1 or 0 - whichever leads to a simpler SOP expression.

Z₁:

•	AB/CD	00	01	11	10
	00	1		1	1

AB/CD	00	01	11	10
01		1	1	1
11	d	d	d	d
10	1	1	d	d

•
$$z_1 = A + C + BD + \overline{BD}$$

z₂:

•	AB/CD	00	01	11	10
	00	1			
	01	1	1		1
	11	d	d	d	d
	10	1	1	d	d

•
$$z_2 = \overline{BC} + \overline{AC} + \overline{CD} + \overline{BD}$$

z₃:

•	AB/CD	00	01	11	10
	00	1	1	1	1
	01	1		1	
	11	d	d	d	d
	10	1	1	d	d

•
$$z_3 = \overline{B} + \overline{CD} + CD$$

z4:

,	AB/CD	00	01	11	10
	00			1	1
	01	1	1		1
	11	d	d	d	d
	10	1	1	d	d

•
$$z_4 = \overline{BC} + A + \overline{BC} + \overline{CD}$$

Recall, for the next 3 outputs you need to retrieve the 1's from the truth table and insert them in the tables.

Z5:

•	AB/CD	00	01	11	10
	00	1			1
	01				1
	11	d	d	d	d
	10	1		d	d

•
$$z_5 = \overline{CD} + \overline{BD}$$

z₆:

•	AB/CD	00	01	11	10
	00	1	1	1	
	01	1	1	1	1
	11	d	d	d	d
	10	1	1	d	d

•
$$z_6 = B + D + \overline{C}$$

z7:

•	AB/CD	00	01	11	10
	00	1		1	1
	01		1		1
	11	d	d	d	d
	10	1		d	d

•
$$z_7 = \overline{BD} + \overline{BC} + \overline{BCD} + \overline{CD}$$