|         | Vedant Milind Athavale  TY BTech EXTC  Page No  Date 23-09-20                                |
|---------|----------------------------------------------------------------------------------------------|
|         |                                                                                              |
|         | DCS - Class Test 2                                                                           |
| 017     | Write the basis vector for the vector space V6 over GF(2)                                    |
| 7)      | Basis vector for V6 over GF(2) is                                                            |
|         | V6 - 5 1000D8                                                                                |
|         | V6 = { 100000, 010000, 001000, 0000100                                                       |
|         | 000010,0000013                                                                               |
| Q2.]    | Date the board coal sails of the first                                                       |
| 42.     | Write the linear combination of vectors for given set of vectors 10111 and 00110 over GF(2). |
|         | 356 (17(2)                                                                                   |
| -       | a, Va + a2 Vb = V . Va = 10111                                                               |
|         | Vb = 00110                                                                                   |
|         | where,                                                                                       |
|         | $a_1 = \{0,1\}$                                                                              |
|         | $\alpha_2 = \{0,1\}$                                                                         |
|         |                                                                                              |
|         | $V_1 = 0. V_a + 0. V_b = 00000$                                                              |
|         | $V_1 = 0. V_0 + 1. V_0 = 0.0110$                                                             |
|         | $V_3 = 1 \cdot V_a + 0 \cdot V_b = 101181$ $V_4 = 1 \cdot V_a + 1 \cdot V_b$                 |
|         | $V_4 = 1 \cdot V_a + 1 \cdot V_b$ $V_5 = 10111 + 00110$                                      |
|         | =(1+0)(0+0)(1+1)(1+1)(1+0)                                                                   |
|         | V4 = 10001                                                                                   |
|         |                                                                                              |
|         |                                                                                              |
|         |                                                                                              |
|         |                                                                                              |
|         |                                                                                              |
|         |                                                                                              |
| ))))))) |                                                                                              |



· Parity check matrix, S = 2. HT

| = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 | 1 1 0   |   |  |  |
|-----------------------------------------|---------|---|--|--|
|                                         | 0 1 1   |   |  |  |
|                                         | 1 1 1   |   |  |  |
|                                         | . 1 0 1 | _ |  |  |
|                                         | 1 0 0   |   |  |  |
|                                         | 0 1 0   |   |  |  |
|                                         | 0 0 1   | 1 |  |  |

Sina, S=[0 , the seceived codeword is valid.

$$(5) \quad X^{15} + 1 = (x+1) \cdot (x^{4} + x^{3} + x^{2} + x + 1) \cdot (x^{4} + x^{3} + 1).$$

$$(x^{4} + x + 1) \cdot (x^{2} + x + 1).$$

$$(x^{4} + x + 1) \cdot (x^{2} + x + 1).$$

 $(n, \kappa) = (\tau, 4)$ 



We know that,

$$x^{n}+1 = g(x)h(x)$$

g(X) = Generator polynomial h(x) = Parity check polynomial.

(i) Degree of generator polynomial is

n-K = 15-4 = 11

 $(x^4 + x^3 + 1) (x^4 + x^3 + 1) (x^4 + x + 1) (x^2 + x + 1)$ 

 $(x^{3} + x^{5} + x^{4} + x^{7} + x^{4} + x^{3} + x^{4} + x + 1) - (x^{3} + x^{4} + x^{4} + x^{4} + x + 1) - (x^{3} + x^{4} + x^{4} + x^{4} + x + 1)$ 

 $= x'' + x^3 + x^{10} + x^7 + x^8 + x^5 + x^7 + x^4 + x^3 + 1$ 

 $(x) = x'' + x'' + x^{5} + x^{5} + x + 1$