Riemann Proof Map (Bounded-Real Route via Product Certificate)

Ambient domain. Let $\Omega := \{s \in \mathbb{C} : \Re s > \frac{1}{2}\}$. Write $s = \frac{1}{2} + \sigma + it$, $\sigma > 0$. Let $\xi(s) = \frac{1}{2}s(1-s)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)$. Objects. On $\ell^2(\mathcal{P})$ let $A(s)e_p := p^{-s}e_p$. Define the outer-normalized ratio

$$\mathcal{J}(s) := \frac{\det_2(I - A(s))}{\mathcal{O}(s)\,\xi(s)}, \qquad \Theta(s) := \frac{2\mathcal{J}(s) - 1}{2\mathcal{J}(s) + 1}.$$

Target: $2\mathcal{J}$ is Herglotz on Ω (i.e. $\Re(2\mathcal{J}) \geq 0$) $\iff \Theta$ is Schur on Ω .

Window & geometry. Fix even $\psi \in C^{\infty}$ with $\psi \equiv 1$ on [-1,1], $0 \le \psi \le 1$, compactly supported. For an interval I = [T - L, T + L] with $L \le 1/\log\langle T \rangle$ and aperture $\alpha \in [1,2]$, the Carleson box is

$$Q(\alpha I) := \{ (\sigma, t) : |t - T| \le \alpha L, \quad 0 < \sigma \le \alpha |I| \}, \qquad \Omega(I) := \{ \frac{1}{2} + \sigma + it : (\sigma, t) \in Q(\alpha I) \} \subset \Omega.$$

Boundary phase density. With boundary phase w(t) one has on I

$$\int_{I} (-w'(t)) dt \leq \pi \mu(Q(I)),$$

where μ is the Carleson/energy measure induced by the neutralized potential.

Locked certificate to (P+). The independent bounds are:

$$c_0(\psi) = 0.17620819$$
, $C_H(\psi) = 0.65$, $C_P(\kappa) = 0.020$, $C_{\psi}^{(H^1)} = 0.2400$, $C_{\text{box}} = 0.067022$.

The fixed-aperture embedding gives

$$M_{\psi} \leq \frac{4}{\pi} C_{\psi}^{(H^1)} \sqrt{C_{\text{box}}}$$
 (analytic enclosure < 0.245) $\Rightarrow M_{\psi} \leq 0.0800745$.

Hence the boundary certificate

$$\Upsilon := \frac{C_H(\psi) M_{\psi} + C_P(\kappa)}{c_0(\psi)} = 0.408882385 \le \frac{1}{2} < \frac{\pi}{2},$$

which forces $w \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ a.e. on $\partial \Omega(I)$; this is (P+).

Poisson & Cayley. From (P+) and the Poisson integral, $\Re(2\mathcal{J}) \geq 0$ on $\Omega(I)$, so $2\mathcal{J}$ is Herglotz. Therefore the Cayley transform is Schur: $|\Theta| \leq 1$ on $\Omega(I)$.

Removable singularities at $Z(\xi)$. If $\rho \in Z(\xi)$, boundedness of Θ on a punctured disc implies Θ (and hence \mathcal{J}) extends holomorphically across ρ .

Globalization/pinch. Exhausting Ω by overlapping boxes and using the maximum-modulus pinch excludes zeros of ξ inside Ω . By the functional equation, all nontrivial zeros lie on $\Re s = \frac{1}{2}$; thus RH.

Independence (no circularity).

- $C_{\text{box}} = K_0 + K_{\xi} + ||U_{\Gamma}||_{\text{area}}$ with (i) prime tails K_0 , (ii) ξ -block K_{ξ} , (iii) Archimedean Γ -term; each bounded independently.
- $M_{\psi} \leq \frac{4}{\pi} C_{\psi}^{(H^1)} \sqrt{C_{\text{box}}}$ via fixed-aperture H^1 -BMO/Carleson embedding (one-time numeric evaluation).

PSC status. The Prime-Tail Schur-Covering inequality closes numerically, but the proof chain to (P+) and RH above runs solely through the *product* certificate Υ .