Kapitel 13: Prozessmodellierung und Workflow-Management

- 13.1 Prozessmodellierung
 - Statecharts
 - Ereignis-Prozess-Ketten
- 13.2 Workflow-Management für Geschäftsprozesse
- 13.3 Semantik von Statecharts
- 13.4 Eigenschaften von Statecharts und deren Verifikation

Workflow Application Example 1: Credit Request Processing

Workflow Application Example 2: Journal Refereeing Process

What is Workflow Management?

Computer-supported business processes: coordination of control and data flow between distributed - automated or intellectual - activities

Application examples:

Credit requests, insurance claims, etc.

Tax declaration, real estate purchase, etc.

Student exams, journal refereeing, etc.

Electronic commerce, virtual enterprises, etc.

Business Benefits of Workflow Technology

- Business process automation (to the extent possible and reasonable)
 - shorter turnaround time, less errors, higher customer satisfaction
 - better use of intellectual resources for exceptional cases
- Transparency
 - ⇒ understanding & analyzing the enterprise
- Fast & easy adaptation

 Business Process Reengineering (BPR)

13.1 Specification Method and Environment

Requirements:

- Visualization
- Refinement & Composability
- Rigorous Semantics
- Interoperability with other methods & tools
- Wide acceptance & standard compliance

Solutions:

Statecharts (Harel et al. 1987)

(alt.: Petri Net variants, temporal logic, process algebra, script language)

- Statecharts included in UML industry standard (Unified Modeling Language, OMG 1997))

Example of Activitychart

Example of Statechart

Refinement of States

Activitychart Example 1

Statechart Example 1

Statechart Example 2

E-Commerce Workflow: Activitychart

E-Commerce Workflow: Statechart

E-Commerce Sub-Workflows

Ereignis-Prozeß-Ketten (EPKs) (1)

Ereignis-Prozeß-Ketten (EPKs) (2) **Funktion** Funktion Beding-Bedingung 2 ung 1 Ereignis Ereignis 2 Ereignis Ereignis 2 (Fork-Join-) Split Verzweigung Informationssysteme \$\overline{SS2004}\$ 13-17

Import from BPR Tools

Principle:

Event process chains (EPCs à la Aris Toolset):

- process decomposed into functions
- completed functions raise events that trigger further functions
- control-flow connectors

Import from BPR Tools (continued)

13.2 Workflow Management System Architecture

WfMC Reference Architecture

13.3 Abstract Syntax of Statecharts (1)

State set S

State tree (with node types AND or XOR)

Transition t: (source, target, [c]/a)

Transition set T

Variable set V

Abstract Syntax of Statecharts (2)

Operational Semantics of Statecharts (1)

Execution state of statechart (S,T,V):

subset $states \subseteq S$ of currently active states s.t.

- root of S is in states
- if s in states and type of s is AND then all children of s are in states
- if s in states and type of s is XOR then exactly one child of s is in states

Execution context of statechart (S,T,V): current values of variables defined by $val: V \rightarrow Dom$

Configuration of statechart (S,T,V): (states, val) **Initial configuration**

Operational Semantics of Statecharts (2)

Evaluation of expression in configuration: eval (expr, conf) defined inductively

Effect of action on context: modification of variable values in val

Operational Semantics of Statecharts (3)

for transition t:

- a = lca (source(t), target(t))
- src(t) = child of a in subtree of source(t)
- tgt(t) = child of a in subtree of target(t)

when t fires:

- set of left states source*(t):
 - src(t) is in source*(t)
 - if s in source*(t) then all children of s are in source*(t)
- set of entered states target*(t):
 - tgt(t) and target(t) are in target*(t)
 - if s in target*(t) and type of s is AND then all children of s are in target*(t)
 - if s in target*(t) and type of s is XOR then exactly one child of s with initial transition is in target*(t)

Operational Semantics of Statecharts (4)

For a given configuration conf = (states, val) a **successor configuration** conf' = (states', val') is derived by selecting one transition t from fire(conf) with the effect:

- states source*(t) \cup target*(t)
- val' captures the effect of action(t) and equals val otherwise

The operational semantics of a statechart (S,V,T) is the set of all possible executions along configurations $conf_0$, $conf_1$, $conf_2$, ... with

- initial configuration conf0 and
- conf_{i+1} being a successor configuration of conf_i

Digression: Finite State Automata

Definition:

Ein endlicher Automat (finite state automaton) ist ein 5-Tupel

$$M = (Z, \Sigma, \delta, z0, E)$$
 mit

- einer endlichen Zustandsmenge Z
- $\square \bullet$ einem Alphabet (d.h. einer endlichen Menge von Zeichen) Σ
- $\square \bullet$ einer Transitionsfunktion $\delta: \mathbb{Z} \times \Sigma \to \mathbb{Z}$
- einem Startzustand z0
- $\square \bullet$ einer Menge von Endzuständen $E \subseteq Z$

M geht in $z \in Z$ mit Eingabe $x \in \Sigma$ in $\delta(z,x) \in Z$ über.

δ wird homomorph zur Funktion $δ^*$: $Z × Σ^* → Z$ erweitert: $δ^*(z, au) = δ^*(δ(z,a),u)$ mit z∈Z, a∈Σ, $u∈Σ^*$.

Die Menge $L(M) = \{ w \in \Sigma^* \mid \delta^*(z0,w) \in E \} \subseteq \Sigma^*$ ist die vom Automat M akzeptierte Sprache.

FSA Example 1

FSA Example 2

Mapping Statecharts into FSAs

Represent SC configurations as states of a FSA:

Step 1:

abstract conditions on infinite-domain variables into Boolean vars formal mapping: $\psi 1$: val $\rightarrow B1 \times B2 \times ... \times Bm$

Step 2:

capture set of active SC states (in SC hierarchy and in components) by powerset automaton $\psi 2$: states $\rightarrow 2^S =: Z$

Step 3:

encode SC context into extended state space of FSA by an injective mapping $\psi 3\colon Z\times B1\times B2\times ...\times Bm\to Z'$ such that there is a transition from z1 to z2 in the FSA iff $\psi 3^{\text{-1}}(z2)$ is a possible successor configuration of $\psi 3^{\text{-1}}(z1)$ in the SC

Example: From SC To FSA (1)

Example: From SC To FSA (2)

13.4 Guaranteed Behavior and Outcome of Mission-critical Workflows

Crucial for workflows in banking, medical applications, electronic commerce, etc.

- **Safety** properties (invariants): nothing bad ever happens
- **Liveness** properties (termination, fairness, etc.): something good eventually happens

Mathematical model
 Finite-state automaton

Verification method
 Model checking

CTL: Computation Tree Logic

propositional logic formulas

combination:

EF AG p

- quantifiers ranging over execution paths
- modal operators referring to future states

all finally exists finally exists all all exists (inevitably): globally: (possibly): globally: next: next: EX p AG p AX p AF p EG p EF p

Critical Properties of the Example Workflow

formalized in CTL (Computation Tree Logic)

```
    Can we ever exceed the budget ?
        not EF ( in(Go) and !Bok )
        ≡ AG ( not in(Go) or Bok )
```

- Do we always eventually reach a decision?
 AF (in(Go) or in(No))
- Can the trip still be approved after a proposal that would have exceeded the budget?
 EF ((in(CheckCost) and !Bok) => (EF (in(Go))))

CTL Syntax

Definition:

Eine atomare *CTL-Formel* ist eine aussagenlogische Formel über elementaren Aussagen (bzw. Booleschen Variablen). Die Menge der in CTL erlaubten Formeln ist induktiv wie folgt definiert:

- Jede atomare CTL-Formel ist eine Formel.
- Wenn P und Q Formeln sind, dann sind auch EX (P), AX (P), EG (P), AG (P), EF (P), AF (P), (P), ¬P, P∧Q, P∨Q, P⇒Q und P⇔Q Formeln.

CTL Semantik (1)

Definition:

Gegeben sei eine Menge P atomarer aussagenlogischer Formeln.

Eine Kripke-Struktur M über P ist ein 4-Tupel (S, s0, R, L) mit

- einer endlichen Zustandsmenge S,
- einem Startzustand $s0 \in S$,
- einer Transitionsrelation $R \subseteq S \times S$,
- einer Funktion L: $S \rightarrow 2^P$, die einem Zustand wahre Aussagen zuordnet.

Definition:

- Eine Kripke-Struktur M = (S, s0, R, L) ist ein *Modell* einer Formel F, wenn $M,s0 \mid = F$.
- Eine Formel heißt erfüllbar, wenn sie mindestens ein Modell hat, ansonsten unerfüllbar.
- Eine Formel F heißt *allgemeingültig* (oder Tautologie), wenn jede Kripke-Struktur über den atomaren Aussagen von F ein Modell von F ist.

CTL Semantik (2)

Definition:

Die *Interpretation* ψ einer Formel F mit atomaren Aussagen P ist eine Abbildung auf eine Kripke-Struktur M=(S, s₀, R, L) über Aussagen P so dass die Wahrheitswerte von Teilformeln p bzw. p1, p2 von F in den Zuständen s von M, in Zeichen: M,s |= p, wie folgt sind:

- (i) M,s \mid = p mit einer aussagenlogischen Formel p gilt g.d.w. p \in L(s);
- (ii) M,s $\mid = \neg p$ g.d.w. nicht M,s $\mid = p$ gilt;
- (iii) M,s $|= p1 \land p2$ g.d.w. M,s |= p1 und M,s |= p2;
- (iv) M,s $|= p1 \lor p2$ g.d.w. M,s |= p1 oder M,s |= p2;
- (v) M,s \mid = EX p g.d.w. es t \in S gibt mit (s,t) \in R und M,t \mid = p;
- (vi) M,s \mid = AX p g.d.w. für alle t \in S mit (s,t) \in R gilt: M,t \mid = p;
- (vii) M,s |= EG p g.d.w. es t_1 , ..., $t_k \in S$ gibt mit t_1 =s, $(t_i, t_{i+1}) \in R$ für alle i und t_k = t_j für ein j:1 $\leq j$ <k oder t_k ohne Nachfolger, so dass M, t_i |= p für alle i;
- (viii) M,s = AG p g.d.w. für alle $t \in S$ mit $(s,t) \in R^*$ gilt: M,t = p;
- (ix) M,s = EF p g.d.w. es $t \in S$ gibt mit $(s,t) \in R^*$ und M,t = p;
- (x) M,s |= AF p g.d.w. es für alle $t \in S$ mit $(s,t) \in R^*$ einen Zustand $t' \in S$ gibt mit a) $(t,t') \in R^*$ oder b) $(s,t') \in R^*$ und $(t',t) \in R^*$, so dass M,t' |= p gilt.

Model Checking

Für CTL-Formel F und Transitionssystem (Kripke-Struktur) M teste, ob M ein Modell von F ist, indem man induktiv alle Zustände von M mit q markiert, in denen die Teilformel q von F wahr ist.

Sei q eine Teilformel von F, seien p, p1, p2 direkte Teilformeln von q und seien P, P1, P2 die mit p, p1, p2 markierten Zustände von M.

- (i) q ist eine atomare Aussage (Boolesche Variable): Markiere alle Zustände s mit q∈L(s) mit q
- (ii) q hat die Form $\neg p$: Markiere S P mit q
- (iii) q hat die Form p1 \land p2: Markiere P1 \cap P2 mit q
- (iv) q hat die Form p1 \vee p2: Markiere P1 \cup P2 mit q
- (v) q hat die Form EX p:

Markiere alle Vorgänger von P mit q, also alle $s \in S$, für die es ein $x \in P$ gibt mit R(s,x)

(vi) q hat die Form AX p:

Markiere s mit q, wenn alle Nachfolger von s mit p markiert sind

Model Checking: Fall EF

```
(vii) q hat die Form EF p:
    Löse Rekursion EF p \Leftrightarrow p \vee EX (EF p).
    (Fixpunktgleichung Q = P \cup pred(Q))
O := P;
Qnew := Q \cup pred(Q);
while not (Q = Qnew) do
    Q := Qnew;
    Qnew := Q \cup pred(Q);
od;
```

Model Checking: Fall EG

```
(viii) q hat die Form EG p:
    Löse Rekursion EG p \Leftrightarrow p \land EX (EG p):
Q := P;
Qnew := Q ;
repeat
for each s in Q do
       if s has successors and
            no successor of s is in Q
     then Qnew := Q - \{s\}; fi;
od;
until (Q = Qnew);
```

Model Checking: Fall AG

Löse Rekursion AG $p \Leftrightarrow p \land AX (AG p)$ Q := P;repeat Qnew := Q;for each s in Q do if s has successors and one successor of s is not in Q then $Q := Q - \{s\}$ fi; od; until (Q = Qnew);

(ix) q hat die Form AG p:

Alternativ wegen AG p $\Leftrightarrow \neg$ EF (\neg p): Berechne Zustandsmenge Q' zur Formel EF (\neg p) und markiere dann die Zustandsmenge S – Q' mit q.

Model Checking: Fall AF

(x) q hat die Form AF p: Löse Rekursion AF p ⇔ p ∨ AX (AF p)

```
Q := P;
repeat
        Qnew := Q;
for each s in pred(Q) do
        if all successors of s are in Q
        then Q := Q U {s}; fi;
od;
until (Q = Qnew);
```

Alternativ wegen AF $p \Leftrightarrow \neg EG (\neg p)$: Berechne Zustandsmenge Q' zur Formel EG $(\neg p)$ und markiere dann die Zustandsmenge S – Q' mit q.

Model Checking: Beispiel 1

AG (not in(Go) or Bok)

Model Checking: Beispiel 2

 $AF (in(Go) \lor in(No))$

mit AF $(in(Go) \lor in(No))$:

Model Checking: Beispiel 3

EF ((in(CheckCost) and !Bok) => (EF (in(Go)))

Guaranteed Behavior of Workflows

- Leverage computer-aided verification techniques for finite-state concurrent systems
- Efficiency gain with encoding of FSM as OBDD
- Further requirements:
 - User-friendly macros for CTL
 - More expressive logic
 - Adding assertions on behavior of invoked apps
 - Adding real-time (clock variables)
- Preserving guaranteed behavior
 in distributed, failure-prone system environment
 System guarantees