Nome _	
Cognome _	
Matricola _	

Architettura degli Elaboratori

Corso di Laurea in Informatica Appello 28 Settembre 2010

1.	. (3 punti) Convertire in base 4 il numero intero $CADEF_{16}$.								
2.	. (2 punti) Fornire la rappresentazione in complemento a due e modulo e segno a 10 bit dei seguenti due interi: -86, -106.								
	(a) Modulo e segno								
	(b) Complemento a due								
3.	$(2~{\rm punti})$ Determinare gli interi rappresentati dalle sequenze di 8 bit $11011100_2~1001010_2$ nelle codifiche modulo e segno e complemento a due.								
	(a) Modulo e segno								
	(b) Complemento a due								
4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di verità utilizzando il metodo delle mappe di Karnaugh:									

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$		
0	0	0	0	1		
0	0	0	1	0		
0	0	1	0	-		
0	0	1	1	0		
0	1	0	0	1		
0	1	0	1	-		
0	1	1	0	-		
0	1	1	1	1		
1	0	0	0	-		
1	0	0	1	0		
1	0	1	0	1		
1	0	1	1	1		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	0		
1	1	1	1	0		

5. (8 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x_1) e singola uscita (z) tale che $z_j = 1$ se e solo se la sottosequenza di 1 consecutivi letta fino al passo corrente ha lunghezza pari (si assuma che la sottosequenza di lunghezza 0 che si verifica quando l'input corrente e' pari a 0 sia di lunghezza pari).

6. (9 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati già codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimmali e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1					·		

$j_1 : _$			
$k_1 : _$			
$j_2 : _$			
$k_2 : _$	 	 	
z ·			

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.