Inhaltsverzeichnis

1. Das Shortest Path Problem. 1 1.1. Ziele. 1 1.2. Fragestellung: Routenplanung. 1 1.3. Definition: gerichteter Graph. 2 1.4. Implementierung von Graphen. 2 1.4.1. Adjazenzmatrix. 2 1.4.2. Beispiel: ungewichteter Graph. 2 1.4.3. Beispiel: gewichteter Graph. 3 1.4.4. Aufgabe: Template Klasse Matrix. 3 1.5. Floyd-Algo: Der kürzeste Weg zwischen 2 beliebigen Knoten. 3 1.5.1. Grundidee. 3 1.5.2. Beispiel. 5 1.5.3. Verallgemeinerung. 5 1.5.4. RDP-AUFGABE: FLOYD-WARSHALL-All-Pair-Shortest-Path. 7			
1.1. Ziele. 1 1.2. Fragestellung: Routenplanung. 1 1.3. Definition: gerichteter Graph. 2 1.4. Implementierung von Graphen. 2 1.4.1. Adjazenzmatrix. 2 1.4.2. Beispiel: ungewichteter Graph. 2 1.4.3. Beispiel: gewichteter Graph. 3 1.4.4. Aufgabe: Template Klasse Matrix. 3 1.5. Floyd-Algo: Der kürzeste Weg zwischen 2 beliebigen Knoten. 3 1.5.1. Grundidee. 3 1.5.2. Beispiel. 5 1.5.3. Verallgemeinerung. 5	1C	as Shortest Path Problem	. 1
1.3. Definition: gerichteter Graph. 2 1.4. Implementierung von Graphen. 2 1.4.1. Adjazenzmatrix. 2 1.4.2. Beispiel: ungewichteter Graph. 2 1.4.3. Beispiel: gewichteter Graph. 3 1.4.4. Aufgabe: Template Klasse Matrix. 3 1.5. Floyd-Algo: Der kürzeste Weg zwischen 2 beliebigen Knoten. 3 1.5.1. Grundidee. 3 1.5.2. Beispiel. 5 1.5.3. Verallgemeinerung. 5			
1.4. Implementierung von Graphen. 2 1.4.1. Adjazenzmatrix. 2 1.4.2. Beispiel: ungewichteter Graph. 2 1.4.3. Beispiel: gewichteter Graph. 3 1.4.4. Aufgabe: Template Klasse Matrix. 3 1.5. Floyd-Algo: Der kürzeste Weg zwischen 2 beliebigen Knoten. 3 1.5.1. Grundidee. 3 1.5.2. Beispiel. 5 1.5.3. Verallgemeinerung. 5	1.2.	_Fragestellung: Routenplanung	. 1
1.4. Implementierung von Graphen. 2 1.4.1. Adjazenzmatrix. 2 1.4.2. Beispiel: ungewichteter Graph. 2 1.4.3. Beispiel: gewichteter Graph. 3 1.4.4. Aufgabe: Template Klasse Matrix. 3 1.5. Floyd-Algo: Der kürzeste Weg zwischen 2 beliebigen Knoten. 3 1.5.1. Grundidee. 3 1.5.2. Beispiel. 5 1.5.3. Verallgemeinerung. 5	1.3.	_Definition: gerichteter Graph	. 2
1.4.2. Beispiel: ungewichteter Graph			
1.5. Floyd-Algo: Der kürzeste Weg zwischen 2 beliebigen Knoten		1.4.2 Reispiel: ungewichteter Graph	2
1.5.2. Beispiel	1.5.	_Floyd-Algo: Der kürzeste Weg zwischen 2 beliebigen Knoten	.3
1.5.3. Verallgemeinerung		1.5.2 Beispiel	. 5
1.5.4. RDP-AUFGABE: FLOYD-WARSHALL-All-Pair-Shortest-Path		1.5.3. Verallgemeinerung	. 5
		1.5.4. RDP-AUFGABE: FLOYD-WARSHALL-All-Pair-Shortest-Path	. 7

1. Das Shortest Path Problem

1.1. Ziele

☑ Finde den kürzesten Pfad von A nach B.

1.2. Fragestellung: Routenplanung

- Suche die kürzeste Fahrtzeit oder
- suche die geringsten Fahrtkosten zwischen zwei Orten.

http://fuzzy.cs.uni-magdeburg.de/studium/graph/txt/duvigneau.pdf

Informatik 1/7

1.3. Definition: gerichteter Graph

Ein gerichteter Graph G=(V,E) ist die Zusammensetzung

- einer Menge V von Knoten (Vertex) und
- einer Menge von Kanten (Edge) mit $E \subset V \times V$

Beispiel:

- Die Knoten (engl. vertex, node) eines Graphen werden oft als Kreise dargestellt,
- die Kanten (engl. edge, arc) als gerichtete Pfeile zwischen den Knoten.

Wenn $(v, w) \in E$ dann nennen wir das eine Kante von v nach w.

1.4. Implementierung von Graphen

Zur Repräsentation von Graphen in Programmen gibt es im Wesentlichen zwei Möglichkeiten:

- Adjazenzmatrizen (Nachbarschaftsmatrizen) und
- Adjazenzlisten (Nachbarschaftslisten).

Die "richtige" Wahl hängt von der Aufgabenstellung und davon ab, ob der Graph eher dichte oder dünne Kantenbelegung hat.

1.4.1. Adjazenzmatrix

Eine **Adjazenzmatrix** $A=(a_{i,j})$ eines Graphen G=(V,E) mit $V=\{v_1,v_2,...,v_n\}$ ist eine (n,n)-Matrix mit den Elementen:

$$a_{i,j}=1$$
, $falls(v_i,v_j) \in E$
 $a_{i,j}=0$, $falls(v_i,v_j) \notin E$

1.4.2. Beispiel: ungewichteter Graph

	1	2	3	4
1	0	0	1	1
2	1	0	0	0
3	0	0	1	1
4	0	1	0	0

Informatik 2/7

1.4.3. Beispiel: gewichteter Graph

$$a_{i,j} = c(i,j), \quad falls(v_i, v_j) \in E \ mit \ C : E \rightarrow \mathbb{R}$$

 $a_{i,j} = 0, \quad falls(v_i, v_j) \notin E$

	1	2	3	4
1	0	0	5	7
2	6	0	0	0
3	0	0	6	9
4	0	8	0	0

Vor/Nachteile von Adjazenzmatrix:

- Platzbedarf = $O(|V|^2)$.
- Direkter Zugriff auf Kante (i, i) in konstanter Zeit möglich.
- Kein effizientes Verarbeiten der Nachbarn eines Knotens.
- Sinnvoll bei dicht besetzten Graphen.
- Sinnvoll bei Algorithmen, die wahlfreien Zugriff auf eine Kante benötigen.

1.4.4. Aufgabe: Template Klasse Matrix

Studiere die template Klasse Matrix.

1.5. Floyd-Algo: Der kürzeste Weg zwischen 2 beliebigen Knoten

https://www-m9.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_de.html

Auch All-Pair shortest Path (APSP) genannt.

Berechne in einem Graphen den kürzesten Weg zwischen 2 Knoten.

Wir wollen hier ein auf **Adjazenzmatrix** basiertes **Verfahren von Floyd-Warshall** verwenden.

1.5.1. Grundidee

Man verwendet zunächst eine sog. Kostenmatrix C, die in den Zellen(=Kanten des Graphen) die Kosten (zB: Entfernung) speichert.

Es gilt:

- 1. C[i,i]=0
- 2. C[i,j]=∞, falls keine Kante von i nach j existiert
- C[i,j]=Kantengewicht von (i,j), falls eine Kante von i nach j existiert anders ausgedrückt: C[i,j]= len(i,j)

Informatik 3/7

Wenn man

■ 1 Kante des Graphen berücksichtigt (also nur einen Knoten weit geht), enthält die Kostenmatrix C bereits die kürzeste Entfernung von i nach j.

Wenn man

■ 2 od. mehrere Kanten des Graphen berücksichtigen (also 2 od. mehrere Knoten weit geht),

muss man die kürzeste Entfernung aller Entfernungen der Art C[i,k]+ C[k,j] mit k ist die Anzahl der Knoten suchen.

Wir sagen: Suche den kürzesten Umweg zwischen i und j über alle k.

Wir brechnen also für die neue Kostenmatrix D (wir wollen sie Distanzmatrix nennen): $D[i,j] = \min_k (C[i,k] + C[k,j])$

Wenn man

nun die Matrixmultiplikation betrachtet:D = C x C

```
D[i,j] = Summe_k (C[i,k] * C[k,j]) mit k = 1...n
```

dann sieht man, dass man

- statt der Summe das Minimum und
- statt des Produktes die Addition verwenden muss.
- Es gilt also (nach Floyd):

```
D[i,j] = MIN_k (C[i,k] + C[k,j]) mit k = 1...n
```

Informatik 4/7

1.5.2. Beispiel

Gegeben sei:

C

	1	2	3	4
1	0	3	6	
2		0	2	
3			0	2
4	1			0

- --- bedeutet unendlich
 - 1. Wenn k=1 (also nur ein Knoten weit) folgt: D= C
 - 2. Wenn k=4 (also alle 4 Knoten berücksichtigt werden)

Man sieht aus dem Graphen: Die kürzeste Entfernung (1,3) ist 5. Nämlich über den Umweg Knoten 2.

Der Algorithmus: Berechne das Minimum aller Umwege k (k=1,2,3,4):

Für die Zelle (1,3) also den kürzesten Weg von Knoten 1 zu Knoten 3:

$$D[1,3] = MIN \{ (C[1,1] + C[1,3]), (C[1,2] + C[2,3]), (C[1,3] + C[3,3]), (C[1,4] + C[4,3]) \}$$

$$D[1,3] = MIN \{ (0+6), (3+2), (6+0), (---+---) \}$$

$$D[1,3] = MIN \{ (6), (5), (6), (---) \}$$

$$D[1,3]=5$$

Die Zelle (1,3) erhält nun das Minimum 5

D

	1	2	3	4
1	0	3	<mark>5</mark>	-
2		0	2	
3			0	2
4	1			0

1.5.3. Verallgemeinerung

Für einen Graph mit n Knoten berechnet man die kürzeste Entfernung zwischen jeweils allen Knoten durch:

$$D = C^n$$

also:
$$D = C \times C \times \times C$$
 (n mal)

Um auch die zugehörige Kantenfolge rekonstruieren zu können, wird parallel dazu eine Folge von (n \times n)-Matrizen P_1 , P_2 , ..., P_n aufgebaut, die an Position $P_k[i,j]$ den vorletzten Knoten auf dem kürzesten Weg von i nach j notiert, der nur über die Zwischenknoten 1, 2, ..., k-1 läuft.

Informatik 5/7

Anmerkungen zur Implementierung:

Den Ortsnamen werden Indizes (beginnend bei 0) zugeordnet.

Mit dem Algorithmus von Floyd-Warshall ergeben sich die folgenden Matrizen:

$$D_{0} = \begin{pmatrix} 0 & 4 & 2 & \infty \\ \infty & 0 & \infty & 2 \\ \infty & 1 & 0 & 5 \\ \infty & \infty & \infty & 0 \end{pmatrix} \qquad D_{1} = \begin{pmatrix} 0 & 4 & 2 & \infty \\ \infty & 0 & \infty & 2 \\ \infty & 1 & 0 & 5 \\ \infty & \infty & \infty & 0 \end{pmatrix}$$

$$D_{2} = \begin{pmatrix} 0 & 4 & 2 & 6 \\ \infty & 0 & \infty & 2 \\ \infty & 1 & 0 & 3 \\ \infty & \infty & \infty & 0 \end{pmatrix} \qquad D_{3} = \begin{pmatrix} 0 & 3 & 2 & 5 \\ \infty & 0 & \infty & 2 \\ \infty & 1 & 0 & 3 \\ \infty & \infty & \infty & 0 \end{pmatrix}$$

$$D_{4} = D_{3}$$

Hier der Algorithmus in Java notiert:

```
/** berechnet alle kuerzesten Wege und ihre Kosten mit Algorithmus von Floyd */
/\star der Graph darf keine Kreise mit negativen Kosten haben
public class Floyd {
                           (int n, // Dimension der Matrix double [][] c, // Adjazenzmatrix mit Kosten double [][] d, // errechnete Distanzmatrix
  public static void floyd (int n,
                           int [][] p){ // errechnete Wegematrix
   int i, j, k;
                                          // Laufvariablen
   for (i=0; i < n; i++) (
                                          // fuer jede Zeile
                                         // fuer jede Spalte
// initialisiere mit Kantenkosten
     for (j=0; j < n; j++) {
       d[i][j] = c[i][j];
                                          // vorletzter Knoten
// vorhanden ist nun D hoch -1
       p[i][j] = i;
    for (k=0; k < n; k++) {
                                          // fuer jede Knotenobergrenze
                                          // fuer jede Zeile
     for (i=0; i < n; i++) {
       d[i][j] = d[i][k] + d[k][j];  // notiere Verkuerzung
p[i][j] = p[k][j];  // notiere vorletzten Knoten
                                          // vorhanden ist nun D hoch k
}
```

Informatik 6/7

1.5.4. RDP-AUFGABE: FLOYD-WARSHALL-All-Pair-Shortest-Path

- Gegeben: Template Klasse: Matrix

- Gegeben: Skriptum: Floyd-Warshall all pair shortest path

- Gegeben: net.h (s.u.)

- Gegeben: main.cpp (s.u.)

- GESUCHT: net.cpp

- Gegeben: Folgendes Netz

- 0(Salzburg)	<-> 2(Linz)	: 120
- 0(Salzburg)	<-> 3(Innsbruck)	: 100
- 0(Salzburg)	<-> 4(Graz)	: 200
- 2(Linz)	<-> 1(Wien)	: 230
- 4(Graz)	<-> 1(Wien)	: 260

- Folgende Ausgabe muss generiert werden, wenn der kürzeste Weg von Innsbruck nach Wien gesucht wird.

Kürzeste Verbindung: von (3/I) nach (1/W): 450

Route:

(3/I) nach (0/S): 100 (0/S) nach (2/L): 120 (2/L) nach (1/W): 230

Informatik 7/7