Meeting 10/5/15

Work in progress

- 1.) Evaluation of TM of published NI algorithms
- Pearson
- WGCNA (with differing beta parameters)
- Topological Overlap Measure
- CLR
- ARACNE
- PANDA
- 2.) Comparison to direct edge difference to find TF-TF interaction.
- Pearson
- WGCNA (with differing beta parameters)
- Topological Overlap Measure
- CLR
- ARACNE

ROC for transitions (Correlation Network)

ROC for transitions (WGCNA (6))

ROC for transitions (WGCNA (12))

ROC for transitions (CLR)

ROC for transitions (ARACNE)

ROC for transitions (TOM)

ROC for transitions (PANDA)

Comparison of NI methods

	Pearson	WGCNA(6)	WGCNA(12)	ARACNE	CLR	ТОМ	PANDA1	PANDA2
Network AUC	.701 (p<.0001)	.701 (p<.0001)	.701 (p<.0001)	.515 (p<.0001)	.691 (p<.0001)	.700 (p<.0001)	.740 Motif=.570 (p<.0001)	.676 Motif = .547 (p<.0001)
Direct AUC	.510	.512	.52	.523	.57	.51	.520	.509
	(p=.72)	(p=.61)	(p=.10)	(p=.58)	(p=.19)	(p=.62)	(p<.13)	(p<.43)
Transition AUC	.802	.688	.589	.566	.814	.689	.793	.66
	(p<.0001)	(p<.0001)	(p=.02)	(p=.09)	(p<.0001)	(p<.0001)	(p<.0001)	(p<.0001)

ECLIPSE results, top TF-TF interactions

Changing TF	Trainer TF	Gain/Loss	p-value	FDR
GABPA	SPIB	Loss	1.07E-009	3.82E-005
E2F4	PAX2	Loss	1.22E-008	2.17E-004
ELK4	SPIB	Loss	1.83E-008	2.18E-004
E2F4	SPIB	Loss	3.53E-008	3.15E-004
E2F4	ZEB1	Gain	4.70E-008	3.36E-004
E2F4	YY1	Gain	6.76E-008	4.02E-004
E2F4	SREBF2	Gain	1.46E-007	7.46E-004
NRF1	SPIB	Loss	3.64E-007	1.63E-003
E2F4	FOXL1	Gain	4.10E-007	1.63E-003
E2F1	YY1	Gain	4.23E-007	1.51E-003
E2F4	FOXD1	Loss	5.07E-007	1.65E-003
NRF1	BACH1::MAFK	Gain	5.39E-007	1.61E-003
E2F4	BACH1::MAFK	Gain	6.25E-007	1.72E-003
E2F4	PPARG	Gain	8.24E-007	2.10E-003
NRF1	YY1	Gain	1.26E-006	3.00E-003
NRF1	PPARG	Gain	1.46E-006	3.27E-003
E2F4	GABPA	Gain	1.62E-006	3.40E-003
ELK4	MYOG	Loss	2.11E-006	4.19E-003
GABPA	ZEB1	Gain	2.24E-006	4.22E-003
GABPA	MYOG	Loss	3.27E-006	5.83E-003

Checking this list for differential methylation may be our best hope for biological validation in humans.

Conclusions

- The transition matrix approach finds TF-TF interactions dramatically better than using pairwise NI approaches.
- Effectiveness of TM <u>does</u> depend on network inference method, but is always superior to pairwise approach.

Story

• 1.) Method works?

- TM approach has strong theoretical basis with clearly defined assumptions and conditions.
 - Can be proven to be most efficient unbiased estimator of our defined transitions for any edge distribution.
- TM approach validates in in silico, E. coli, and Yeast datasets

• 2.) Method replicates?

- TM approach finds dramatic and significant improvement upon TF-TF edge prediction in all tested NI methods.
 - Pearson, WGCNA(6 and 12), TOM, CLR, ARACNE, PANDA
- Method finds highly concordant results in different datasets studying the same disease.
 - COPDGene, ECLIPSE, LGRC (note, this fact *does* depend on NI method)

3.) Method is useful?

- Method predicts TF-TF targeting substantially better than existing methods in *Yeast* and *in silico* datasets.
- Method predicts many TF interactions as well as TFs which have non-specified behavioral changes

Yes, yes and yes?