

ME414 - Estatística para Experimentalistas

Parte 9

Variável Aleatória Discreta

Variável Aleatória

- Em um experimento aleatório, muitas vezes não estamos interessados nos detalhes do resultado do evento, mas sim em alguma quantidade numérica obtida a partir do experimento.
- Ex: lançamento de dois dados. O interesse pode estar apenas na soma, não nos resultados individuais dos dados.
- · Quantidades de interesse que são determinadas a partir do resultado de experimento aleatório são denominadas variáveis aleatórias.
- Cada resultado possível de uma variável aleatória (v.a.) tem associado uma probabilidade. O conjunto de todos os resultados possíveis e as respectivas probabilidades é denominado distribuição de probabilidade.

Estamos interessados na soma dos resultados.

Definição: Variável Aleatória Discreta

Uma $função\ X$ que associa a cada elemento do espaço amostral um valor num conjunto enumerável de pontos da reta é denominada $variável\ aleatória$ discreta.

Exemplo: Lançamento de uma moeda

X = 1 se cara e X = 0 se coroa

Exemplo: Lançamento de uma moeda duas vezes

X é a soma dos resultados (coroa é 0 e cara é 1).

Distribuição de Probabilidade

Distribuição de Probabilidade - v.a. discreta

- · Quando a v.a. assume valores inteiros: v.a. discreta.
- · A distribuição de probabilidade associa uma probabilidade P(X=x) para cada valor possível, x, da variável aleatória X.
- · Para cada valor de x, $0 \le P(X = x) \le 1$.
- · Soma das probabilidades de todos os valores possíveis de X é igual a 1.

Distribuição de Probabilidade - v.a. discreta

- · Seja X uma v.a. discreta com n valores possíveis denotados por x_1, x_2, \ldots, x_n .
- · $P(X = x_i)$ denota a probabilidade de que a v.a. X assuma o valor x_i .
- · O conjunto de todas essas probabilidades (para cada x_i) representa a distribuição de probabilidade de X.

X	x_1	x_2	x_3	
P(X=x)	$P(X=x_1)$	$P(X=x_2)$	$P(X=x_3)$	•••

· Como X só pode assumir valores entre x_1, x_2, \ldots, x_n , temos que:

$$\sum_{i=1}^{n} P(X = x_i) = 1$$

Exemplo

Suponha que X seja uma v.a. discreta que assume os valores 1,2 e 3.

Se
$$P(X = 1) = 0.4$$
 e $P(X = 2) = 0.1$, qual o valor de $P(X = 3)$?

$$\sum_{i=1}^{n} P(X = x_i) = 1$$

$$P(X = 1) + P(X = 2) + P(X = 3) = 1$$

$$0.4 + 0.1 + P(X = 3) = 1$$

$$P(X = 3) = 0.5$$

Distribuição de Probabilidade

Podemos representar a distribuição de probabilidade com o seguinte gráfico:

A altura de cada barra representa a probabilidade daquele valor.

Um vendedor de enciclopédias visita cada casa duas vezes.

Com anos de experiência, ele acredita que a probabilidade de uma venda logo na primeira visita é 0.3.

Já na segunda visita, ele acredita que a probabilidade de venda seja 0.6. Ele acredita também que o resultado em cada visita seja independente.

Qual é a distribuição de probabilidade da v.a. X: número de vendas feitas em uma casa?

Considere os eventos:

- V_1 = {venda na primeira visita}
- V_2 = {venda na segunda visita}

Espaço amostral do fenômeno aleatório:

$$\Omega = \{ (V_1^c \cap V_2^c), (V_1 \cap V_2^c), (V_1^c \cap V_2), (V_1 \cap V_2) \}$$

Temos X=0 se nenhuma venda ocorrer nas duas visitas.

$$P(X = 0) = P(V_1^c \cap V_2^c) \stackrel{ind}{=} P(V_1^c) P(V_2^c)$$
$$= [1 - P(V_1)][1 - P(V_2)] = (1 - 0.3)(1 - 0.6) = 0.28$$

 $\cdot X = 1$ quando ocorre uma venda apenas na primeira visita **ou** uma venda apenas segunda visita.

Então,

$$P(X = 1) = P[(V_1 \cap V_2^c) \cup (V_1^c \cap V_2)]$$

$$= P(V_1 \cap V_2^c) + P(V_1^c \cap V_2)$$

$$\stackrel{ind}{=} P(V_1)P(V_2^c) + P(V_1^c)P(V_2)$$

$$= (0.3)(1 - 0.6) + (1 - 0.3)(0.6)$$

$$= 0.54$$

 $\cdot X = 2$ quando ocorre uma venda nas duas visitas.

$$P(X = 2) = P(V_1 \cap V_2)$$

 $\stackrel{ind}{=} P(V_1)P(V_2) = (0.3)(0.6) = 0.18$

Satisfaz a propriedade:

$$\sum_{i=0}^{2} P(X = i) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= 0.28 + 0.54 + 0.18 = 1$$

X	0	1	2
P(X=x)	0.28	0.54	0.18

Exemplo: Comissão

O Departamento de Estatística é formado por 35 professores, sendo 21 homens e 14 mulheres.

Uma comissão de 3 professores será constituída sorteando, ao acaso, três membros do departamento.

Qual é a probabilidade da comissão ser formada por pelo menos duas mulheres?

Seja X o número de mulheres na comissão. X pode assumir os valores: 0, 1, 2 e 3.

Seja X o número de mulheres na comissão. X pode assumir os valores: 0, 1, 2 e 3.

$$P(X=0) = \frac{\binom{21}{3}\binom{14}{0}}{\binom{35}{3}} = 0.203$$

$$P(X=1) = \frac{\binom{21}{2}\binom{14}{1}}{\binom{35}{3}} = 0.450$$

$$P(X = 2) = \frac{\binom{21}{1}\binom{14}{2}}{\binom{35}{3}} = 0.291$$

$$P(X=3) = \frac{\binom{21}{0}\binom{14}{3}}{\binom{35}{3}} = 0.056$$

Veja que $\sum_{i=0}^{3} P(X = i) = 1$.

Probabilidade da comissão ter pelo menos duas mulheres:

$$P(X \ge 2) = P(X = 2) + P(X = 3) = 0.347$$

Exemplo: Comissão

A distribuição de probabilidade de X é dada por:

X	0	1	2	3
P(X=x)	0.203	0.450	0.291	0.056

Exemplo: Comissão

Outra maneira para calcular as probabilidades:

Espaço amostral	Probabilidade	X
(ННН)	$\frac{21}{35} \times \frac{20}{34} \times \frac{19}{33} = 0,203$	0
(ННМ)	$\frac{21}{35} \times \frac{20}{34} \times \frac{14}{33} = 0,150$	1
(HMH)	$\frac{21}{35} \times \frac{14}{34} \times \frac{20}{33} = 0,150$	1
(MHH)	$\frac{14}{35} \times \frac{21}{34} \times \frac{20}{33} = 0,150$	1
(HMM)	$\frac{21}{35} \times \frac{14}{34} \times \frac{13}{33} = 0,097$	2
(MHM)	$\frac{14}{35} \times \frac{21}{34} \times \frac{13}{33} = 0.097$	2
(MMH)	$\frac{14}{35} \times \frac{13}{34} \times \frac{21}{33} = 0,097$	2
(MMM)	$\frac{14}{35} \times \frac{13}{34} \times \frac{12}{33} = 0.056$	3

Qual a probabilidade da soma ser menor do que 6?

X: soma dos dados.

$$P(X < 6) = P(X = 5) + P(X = 4) + P(X = 3) + P(X = 2) = \frac{10}{36}$$

Y: máximo resultado no lançamento de 2 dados.

Y	1	2	3	4	5	6
P(Y=y)	1/36	3/36	5/36	7/36	9/36	11/36

Z: diferença entre os pontos do segundo e do primeiro lançamento.

Z	-5	-4	-3	-1	-1	0	1	2	3	4	5	
P(Z=z)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36	

Exemplo: Construção

Na construção de um certo prédio, as fundações devem atingir 15 metros de profundidade, e para cada 5 metros de estacas colocadas, o operador anota se houve alteração no ritmo de perfuração previamente estabelecido.

Essa alteração é resultado de mudanças para mais ou para menos na resistência do subsolo.

Nos dois casos, medidas corretivas serão necessárias, encarecendo o custo da obra.

- · com base em avaliações geológicas, admite-se que a probabilidade de ocorrência de alterações é de 0.1 para cada 5 metros.
- · o custo básico inicial é de 100 UPCs (Unidades Padrão de Construção) e será acrescido de 50k, com k representando o número de alterações observadas.

Exemplo: Construção

- · Como se comporta a variável Custo de Obra de fundações?
- Assumimos que as alterações ocorrem independentemente entre cada um dos três intervalos de 5 metros.
- $\cdot A = \text{ocorrência de alterações em cada intervalo.}$
- 3 etapas \Rightarrow $2 \times 2 \times 2 = 2^3 = 8$ possibilidades.
- · Espaço Amostral

$$\Omega = \{AAA, AAA^c, AA^cA, A^cAA, AA^cA^c, A^cAA^c, A^cA^cA, A^cA^cA^c\}$$

Evento	Probabilidade	Custo
AAA	$(0.1)^3 = 0.001$	250
AAA^c	$(0.1)^2(0.9) = 0.009$	200
AA^cA	$(0.1)^2(0.9) = 0.009$	200
A^cAA	$(0.1)^2(0.9) = 0.009$	200
AA^cA^c	$(0.1)(0.9)^2 = 0.081$	150
A^cAA^c	$(0.1)(0.9)^2 = 0.081$	150
A^cA^cA	$(0.1)(0.9)^2 = 0.081$	150
$A^cA^cA^c$	$(0.9)^3 = 0.729$	100

Note que associamos a cada evento do espaço amostral um valor da variável C (custo), e eventos diferentes podem corresponder ao mesmo valor de C:

$$c_1 = 100, \quad c_2 = 150, \quad c_3 = 200, \quad c_4 = 250$$

$$P(C = c_1) = P(A^c A^c A^c) = 0.729$$

$$P(C = c_2) = P(AA^cA^c \cup A^cAA^c \cup A^cA^cA) = 3 \times 0.081 = 0.243$$

$$P(C = c_3) = P(AAA^c \cup AA^c A \cup A^c AA) = 3 \times 0.009 = 0.027$$

$$P(C = c_4) = P(AAA) = 0.001$$

O comportamento de C estudado através da probabilidade de ocorrência pode auxiliar na previsão de gastos e na elaboração de orçamentos:

C	100	150	200	250
P(C=c)	0.729	0.243	0.027	0.001

Exemplo: Lançamento de uma moeda duas vezes

Espaço amostral:

$$\Omega = \{CC, C\bar{C}, \bar{C}C, \bar{C}\bar{C}\},\$$

em que C= cara e $ar{C}=$ coroa.

Seja a v.a. X= número de caras em dois lançamentos.

X	0	1	2
P(X = x)	$P\left(\bar{C}\bar{C}\right) = \frac{1}{4}$	$P\left(C\bar{C}\cup\bar{C}C\right) = \frac{2}{4} = \frac{1}{2}$	$P(CC) = \frac{1}{4}$

Função de Distribuição Acumulada

Exemplo: Vacina

Um grupo de 1000 crianças foi analisado para determinar a efetividade de uma vacina contra um tipo de alergia. As crianças recebiam uma dose de vacina e após um mês passavam por um novo teste. Caso ainda tivessem tido alguma reação alérgica, recebiam outra dose.

Variável de interesse: X = número de doses.

Doses (X)	1	2	3	4	5
Frequência	245	288	256	145	66

Uma criança é sorteada ao acaso, qual a probabilidade dela ter recebido 2 doses?

$$P(X=2) = \frac{288}{1000} = 0.288$$

Exemplo: Vacina

Distribuição de Probabilidade de X

Doses (X)	1	2	3	4	5
P(X=x)	0.245	0.288	0.256	0.145	0.066

Qual a probabilidade da criança ter recebido até duas doses?

$$P(X \le 2) = P(X = 1) + P(X = 2)$$

= 0.245 + 0.288
= 0.533

Função de Distribuição Acumulada

A função de distribuição acumulada (f.d.a.) de uma variável aleatória X é definida por

$$F(x) = P(X \le x), \quad x \in \mathbb{R}$$

Assim, se X assume os valores em $\{x_1, x_2, \ldots, x_n\}$, em que $x_1 < x_2 < \ldots < x_n$:

$$F(x_1) = P(X = x_1)$$

$$F(x_2) = P(X = x_1) + P(X = x_2)$$

•

$$F(x_n) = P(X = x_1) + ... + P(X = x_n)$$

Exemplo: Vacina

Doses (X)	1	2	3	4	5
P(X=x)	0.245	0.288	0.256	0.145	0.066

Note que a f.d.a. de X= número de doses é definida para qualquer valor real, logo:

$$F(x) = \begin{cases} 0 & x < 1 \\ 0.245 & 1 \le x < 2 \\ 0.533 & 2 \le x < 3 \\ 0.789 & 3 \le x < 4 \\ 0.934 & 4 \le x < 5 \\ 1 & x \ge 5 \end{cases}$$

Exemplo: Vacina

Função de distribuição acumulada (f.d.a.) do número de doses (X)

$$F(x) = \begin{cases} 0 & x < 1 \\ 0.245 & 1 \le x < 2 \\ 0.533 & 2 \le x < 3 \\ 0.789 & 3 \le x < 4 \\ 0.934 & 4 \le x < 5 \\ 1 & x \ge 5 \end{cases}$$

Exemplo: Comissão

O Departamento de Estatística é formado por 35 professores, sendo 21 homens e 14 mulheres. Uma comissão de 3 professores será constituída sorteando, ao acaso, três membros do departamento.

Seja X o número de mulheres na comissão. X pode ser 0, 1, 2 e 3.

X	0	1	2	3
P(X=x)	0.203	0.450	0.291	0.056

$$F(x) = P(X \le x) = \begin{cases} 0, & \text{se } x < 0 \\ 0.203 & \text{se } 0 \le x < 1 \\ 0.653 & \text{se } 1 \le x < 2 \\ 0.944 & \text{se } 2 \le x < 3 \\ 1 & \text{se } x \ge 3 \end{cases}$$

Exemplo: Comissão

Função de distribuição acumulada de X: número de mulheres na comissão.

$$F(x) = \begin{cases} 0, & \text{se } x < 0 \\ 0.203 & \text{se } 0 \le x < 1 \\ 0.653 & \text{se } 1 \le x < 2 \\ 0.944 & \text{se } 2 \le x < 3 \\ 1 & \text{se } x \ge 3 \end{cases}$$

Esperança

Esperança: variável aleatória discreta

Seja X uma v.a. discreta assumindo os valores x_1, \ldots, x_n .

A **esperança** (ou valor esperado) da variável X é dada por:

$$\mathbb{E}(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

A esperança de X é a média ponderada de todos os valores possíveis de X, onde o peso de cada valor é a probabilidade.

Esperança - Exemplos

 * Suponha que X assuma os valores 0 ou 1 com igual probabilidade, ou seja,

$$P(X = 0) = P(X = 1) = \frac{1}{2}$$

$$\mathbb{E}(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = \frac{1}{2}$$

· Suponha que X assuma os valores 0 ou 1 com as seguintes probabilidades,

$$P(X = 0) = \frac{2}{3}$$
 e $P(X = 1) = \frac{1}{3}$

$$\mathbb{E}(X) = 0 \times P(X = 0) + 1 \times P(X = 1) = 0 \times \frac{2}{3} + 1 \times \frac{1}{3} = \frac{1}{3}$$

Veja que nesses dois exemplos: $\mathbb{E}(X) = P(X = 1)$

Exemplo: Lançamento de um dado

X é a v.a. representando o resultado do lançamento.

$$P(X = i) = \frac{1}{6}, \qquad i = 1, 2, 3, 4, 5, 6$$

$$\mathbb{E}(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5$$

Neste caso, a esperança de X não é igual a nenhum dos valores possíveis de X.

Não podemos interpretar $\mathbb{E}(X)$ como o valor que esperamos que X irá assumir, mas sim como uma média dos valores observados de X ao longo de muitas repetições do experimento aleatório.

Se jogarmos o dado muitas vezes e calcularmos uma média de todos os resultados obtidos, essa média será aproximadamente 3.5.

Exemplo: Seguros

Uma companhia de seguros determina o <u>prêmio</u> anual do seguro de vida de maneira a obter um lucro esperado de 1% do valor que o segurado recebe em caso de morte.

Encontre o valor do prêmio anual para um seguro de vida no valor de R\$200 mil assumindo que a probabilidade do cliente morrer naquele ano é 0.02.

- *A*: prêmio anual
- $\cdot X$: lucro da companhia no ano para o cliente
- · Então,

$$X = \begin{cases} A, & \text{se o cliente sobrevive} \\ A - 200000, & \text{se o cliente morre} \end{cases}$$

Exemplo: Seguros

$$\mathbb{E}(X) = A \times P(\text{sobreviver}) + (A - 200000) \times P(\text{morrer})$$

$$\mathbb{E}(X) = A \times 0.98 + (A - 200000) \times 0.02$$

$$\mathbb{E}(X) = A - 4000$$

Companhia quer lucro esperado de 1% do valor recebido em caso de morte: R\$2000.

$$\mathbb{E}(X) = 2000 = A - 4000$$

Portanto, A=R\$6000 é o valor do prêmio anual.

Um empresário pretende estabelecer uma firma para montagem de um componente mecânico. Cada peça é composta de duas partes, A e B, cada uma com uma chance específica de ser defeituosa. Só é possível verificar a qualidade das peças depois que elas são montadas.

- · Se ambas são defeituosas, a peça é descartada e dá um prejuízo de \$5.
- Se a peça B é defeituosa, ainda é possível reparar a peça e obter um lucro de \$5.
- · De maneira semelhante, se A é defeituosa, o reparo permite vender a peça inteira com um lucro de \$10.
- · Se as duas peças são boas, o lucro é de \$15.

Pergunta: Qual o lucro esperado por peça produzida?

Seja A o evento indicando que a peça A está perfeita.

Então A^c indica que a peça A está com defeito.

Seja B o evento indicando que a peça B está perfeita.

Então ${\it B}^{\it c}$ indica que a peça B está com defeito.

Cada uma das configurações está associada a uma probabilidade:

$$P(A \cap B) = 0.56$$
 $P(A^c \cap B) = 0.23$

$$P(A \cap B^c) = 0.02$$
 $P(A^c \cap B^c) = 0.19$

Como podemos descrever a distribuição do lucro por componente?

$$P(A \cap B) = 0.56$$
 $P(A^c \cap B) = 0.23$ $P(A \cap B^c) = 0.02$ $P(A^c \cap B^c) = 0.19$

Seja X a variável indicando o lucro na produção de um componente.

- \cdot X assume o valor 15 se as peças A e B estão ok, o que ocorre com probabilidade 0.56.
- \cdot X assume o valor 10 se apenas A apresentar defeito, o que ocorre com probabilidade 0.23.
- \cdot X assume o valor 5 se apenas B apresentar defeito, o que ocorre com probabilidade 0.02.
- · X assume o valor -5 se tanto A quanto B apresentarem defeito, o que ocorre com probabilidade 0.19.

Distribuição de probabilidade para a variável aleatória X:

X	– 5	5	10	15
P(X=x)	0.19	0.02	0.23	0.56

X	- 5	5	10	15
P(X=x)	0.19	0.02	0.23	0.56

Função de Distribuição Acumulada:

$$F(x) = \begin{cases} 0 & \text{se } x < -5 \\ 0.19 & \text{se } -5 \le x < 5 \\ 0.21 & \text{se } 5 \le x < 10 \\ 0.44 & \text{se } 10 \le x < 15 \\ 1 & \text{se } x \ge 15 \end{cases}$$

Função de Distribuição Acumulada

O empresário quer saber: Qual o lucro médio por conjunto montado que espero conseguir?

X	- 5	5	10	15
P(X=x)	0.19	0.02	0.23	0.56

Lembrem-se que a esperança de uma v.a. X com valores x_1, x_2, \ldots, x_n é:

$$\mathbb{E}(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

Para saber o lucro esperado, basta aplicar a fórmula:

$$\mathbb{E}(X) = -5 \times 0.19 + 5 \times 0.02 + 10 \times 0.23 + 15 \times 0.56$$
$$= 9.85$$

Exemplo: Pedágio

Você, cansado de esperar em filas de pedágio com frequência, está considerando assinar o serviço de pagamento eletrônico.

Dentre as opções oferecidas, você se interessa pelas duas seguintes:

Plano 1: Clássico

· Plano 2: BR Adesão Zero

Exemplo: Pedágio

No plano Clássico:

- obrigatório fazer adesão novamente após 5 anos.
- em caso de perda/roubo/troca é preciso pagar a taxa de substituição.

Assumindo que não há roubo/perda, mas apenas troca do veículo e que não há o desconto na adesão para renovar após 5 anos, como decidir?

Podemos fazer um exemplo de acordo com o período em que vamos assinar o plano escolhido.

Exemplo: Pedágio

Seja a v.a. T: idade do veículo até a troca.

Função de distribuição acumulada é dada por:

$$F(t) = \begin{cases} 0 & \text{se} \quad t < 2\\ 0.1 & \text{se} \quad 2 \le t < 3\\ 0.2 & \text{se} \quad 3 \le t < 4\\ 0.5 & \text{se} \quad 4 \le t < 5\\ 0.7 & \text{se} \quad 5 \le t < 6\\ 0.9 & \text{se} \quad 6 \le t < 7\\ 1 & \text{se} \quad t \ge 7 \end{cases}$$

Assumindo que você queira assinar por um período de 3 anos. Vamos definir:

• C_1 : custo do plano 1 por 3 anos.

Probabilidade de trocar de carro em até 3 anos: 0.2

Portanto, C_1 assume os valores:

$$C_1 = \begin{cases} 73.16 + 13.05 \times 12 \times 3 = 542.96, \\ 73.16 + 13.05 \times 12 \times 3 + 43.83 = 586.79, \end{cases}$$
 com probabilidade 0.8 com probabilidade 0.2

$$\mathbb{E}(C_1) = 542.96 \times 0.8 + 586.79 \times 0.2 = 551.73$$

• C_2 : custo do plano 2 por 3 anos.

 C_2 assume o valor $17.28 \times 12 \times 3 = 622.08$, com probabilidade 1

$$\mathbb{E}(C_2) = 622.08$$

Assumindo que você queira assinar por um período de 6 anos. Vamos definir:

• C_1 : custo do plano 1 por 6 anos.

Probabilidade de trocar de carro em até 6 anos: 0.9

Portanto, C_1 assume os valores:

$$C_1 = \begin{cases} 2 \times 73.16 + 13.05 \times 12 \times 6 = 1085.92, & \text{com probabilidade } 0.1 \\ 2 \times 73.16 + 13.05 \times 12 \times 6 + 43.83 = 1129.75, & \text{com probabilidade } 0.9 \end{cases}$$

$$\mathbb{E}(C_1) = 1085.92 \times 0.1 + 1129.75 \times 0.9 = 1125.37$$

• C_2 : custo do plano 2 por 6 anos.

 C_2 assume o valor $17.28 \times 12 \times 6 = 1244.16$, com probabilidade 1

$$\mathbb{E}(C_2) = 1244.16$$

Leituras

- OpenIntro: seção 2.4.
- Ross: seções 5.1, 5.2, 5.3.
- Magalhães: seção 3.1.

Slides produzidos pelos professores:

- · Samara Kiihl
- · Tatiana Benaglia
- Larissa Matos
- Benilton Carvalho

