HW # 6: Due Tues 10/8 by 11:59pm ET

Graded

2 Hours, 9 Minutes Late

Student

Ivan Wang

Total Points

10 / 15 pts

Question 1

Problem 1 5 / 9 pts

- ✓ **0 pts** part (a): while you will arrive at the same answer in the case of equal sample sizes, you are not computing $\overline{\overline{x}}$ correctly. You are taking the mean of each column and averaging those, whereas you should instead take the mean of each row and average those.
- **✓ 1.5 pts** part (b): here you need to compute $\widehat{\sigma} = \frac{\overline{s}}{c_4}$ and $\widehat{\sigma} = \frac{s_p}{c_4}$, where the special N is used in the second case.
- \checkmark 0.5 pts part (c): missing the c_4 from the calculations, which is why your computed limits disagree with Minitab's.
- ✓ 2 pts part (d): missing the calculations.

Question 2

Problem 2 5 / 6 pts

- ✓ **0.5 pts** part (c): mostly the right idea, except you're using the standard deviation of X rather than the standard deviation of \overline{x} . Since this question deals with a value of \overline{x} plotting inside the control limits, need to use the distribution of \overline{x} .
- ✓ 0.5 pts part (a): mostly correct, except double-check your calculation of the 1.28

Problem 1. Suppose 20 random samples of size n=5 were collected from some normally distributed process. The data is contained in columns G through K in the hw_data.xlsx file. The process mean μ and the process standard deviation σ are assumed to be unknown.

(a) Use the data to estimate the process mean. Statistics

Variabl e	N	N *	Mean	SE Mean	StDev	Minimu m	Q1	Media n	Q3	Maximu m
x_1	2 0	0	129.43	3.07032	13.730 9	102.8	118.97 5	131.2	139.35	149.3
x_2	2 0	0	124.16	4.47432	20.009 7	84.3	111.1	125	138.82 5	160.2
x_3	2 0	0	135.58	3.76144	16.821 7	105	124.05	131.2	150.7	165.1
x_4	2 0	0	133.84 5	3.23534	14.468 9	109	120.8	136.2	146.85	155
x_5	2	0	132.24	5.17061	23.123 7	92.3	112.2	135	150.8	173.2

(129.43 + 124.16 + 135.58 + 133.84 + 132.24)/5 = 131.05

(b) Use the data to estimate the process standard deviation using (i) the s -bar method and (ii) the pooled- s method.

(i) the s -bar method

(ii) the pooled- s method

(c) Use the appropriate formulas to compute the center line and the 3-sigma control limits for an x -control chart using the s-bar method. Then use Minitab to create this control chart (include the chart, and make sure your computed limits agree with Minitab's).

$$U(L=A) + 3.5$$
 $CL=A)$
 $CL=A) - 3.5$
 $CL=A) - 3.5$
 $CL=153.367523663$
 $CL=131.07$
 $CL=108.732476337$

(d) Repeat part (c) using the pooled- s method.

Problem 2. An x -control chart produced using the R -bar method with R = 9 has the following control limits:

X-chart
$$LCL = 360$$
, $CL = 363$, $UCL = 366$

The sample size is n = 10, the chart indicates the process average is in-control, and the process is assumed to be normally distributed.

(a) What is the α -risk (i.e., level of significance) associated with the x -chart?

Stadud Eyror of Mean (SEM) =
$$\frac{R}{d_2 \cdot JN}$$
 $\frac{d_2 = 3.078}{3.078 \cdot J_{10}} = 1.28$
LCL: $\frac{360 - 363}{1.28} = -2.34$
VLL: $\frac{366 - 363}{1.28} = 2.34$
P(ZL-2.34) + P(Z >2.34) = 0.0096+0.0096
=0.0192

(b) Specifications on this quality characteristic are 362 ± 6 . What proportion of items produced will meet specifications?

6)
$$362\pm 6 = (356,368)$$

 $6 = \frac{R}{d2} = \frac{9}{3.018} = 2.93$
 $LSL: \frac{356-368}{6} = \frac{-7}{2.93} = -2.39$
 $USL: \frac{368-363}{6} = \frac{5}{293} = 1.71$
-For LSL: $P(ZL-7.39) = 0.0084$
 $-For VSL: P(ZL.71) = 0.9564$
 $P(LSL \angle X \angle VSL) = 0.9564 - 0.0084 = 0.9480$

(c) Suppose the process means shifts to 361. What is the probability that the shift will not be detected on the first sample following the shift?

ZL(L: $\frac{360-361}{6} = \frac{-1}{2.43} = -0.34$ ZUCL: $\frac{366-361}{6} = \frac{5}{2.43} = 1.71$ -For ZL(L: P(ZL-0.34) = 0.3662-For ZUCL: P(ZL|.71) = 0.9664-For ZUCL: P(ZL|.71) = 0.9664P(ZL(L) XL ZV(L) = 0.9564 - 0.3662 = 0.5902

P(ZL(L) XL ZV(L) = 0.9564 - 0.3662 = 0.5902

Fig. of the Shift will not be detaited as the Shift, the first sample follows the Shift,