Convergent Series

Jerich Lee

June 10, 2025

Problem 1 (14.2(d)). Determine which of the following series converge. Justify your answers.

 $1. \sum_{n=1}^{\infty} \left(\frac{n^3}{3^n}\right)$

Solution 1. *Proof.* We are given the series:

$$\sum_{n=1}^{\infty} \frac{n^3}{3^n} \tag{1}$$

We will apply the ratio test to check for convergence. First, compute the ratio:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)^3}{3^{n+1}} \times \frac{3^n}{n^3} \right| \tag{2}$$

Simplifying the expression:

$$=\frac{(n+1)^3}{n^3} \times \frac{1}{3} \tag{3}$$

Now expand $(n+1)^3$:

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1 (4)$$

Thus:

$$=\frac{n^3+3n^2+3n+1}{n^3}\times\frac{1}{3}$$
 (5)

Simplifying the fraction:

$$=\frac{1+\frac{3}{n}+\frac{3}{n^2}+\frac{1}{n^3}}{3}\tag{6}$$

As $n \to \infty$, the terms involving $\frac{3}{n}, \frac{3}{n^2}, \frac{1}{n^3}$ approach zero, so:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{3} \tag{7}$$

Since $\frac{1}{3} < 1$, the series converges by the ratio test.

Problem 2 (14.4(a,b)). Determine which of the following series converge. Justify your answers.

1.
$$\sum_{n=2}^{\infty} \frac{1}{(n+(-1)^n)^2}$$

$$2. \sum_{n=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n} \right)$$

Solution 2. 1. *Proof.* For even n we have $n + (-1)^n = n - 1$, and for odd n we have $n + (-1)^n = n + 1$. In either case

$$(n-1)^2 \le (n+(-1)^n)^2 \le (n+1)^2$$

Hence

$$\frac{1}{(n+1)^2} \le \frac{1}{(n+(-1)^n)^2} \le \frac{1}{(n-1)^2} \quad (n \ge 2).$$

Because the p-series $\sum n^{-2}$ converges and the middle expression is sandwiched between two constant multiples of n^{-2} , the comparison test shows the given series converges.

2. *Proof.* Write one term and telescope:

$$\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}.$$

Since $\sqrt{n+1} + \sqrt{n} \ge 2\sqrt{n}$, each term satisfies

$$0 < \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{2\sqrt{n}},$$

and the comparison with the divergent p-series $\sum n^{-1/2}$ shows that the series diverges.

Problem 3 (14.5(a,b,c)). Suppose $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$, where A and B are real numbers. Use limit theorems from section 9 to quickly prove the following.

1.
$$\sum_{n=1}^{\infty} (a_n + b_n) = A + B$$

2. $\sum_{n=1}^{\infty} ka_n = kA$ for $k \in \mathbb{R}$

3. Is $\sum_{n=1}^{\infty} a_n b_n = AB$ a reasonable conjecture? Discuss.

Solution 3. We are asked to verify some basic algebra of convergent series.

1. Proof. Let $A_n = \sum_{k=1}^n a_k$ and $B_n = \sum_{k=1}^n b_k$. Because $\sum_{k=1}^\infty a_k = A$ and $\sum_{k=1}^\infty b_k = B$, we have $\lim_{n\to\infty} A_n = A$ and $\lim_{n\to\infty} B_n = B$. Then

$$\sum_{k=1}^{n} (a_k + b_k) = A_n + B_n \implies \lim_{n \to \infty} (A_n + B_n) = A + B,$$

so
$$\sum_{k=1}^{\infty} (a_k + b_k) = A + B.$$

2. Proof. Fix a constant $k \in \mathbb{R}$. The *n*-th partial sum of $\sum_{k=1}^{\infty} ka_n$ is kA_n , and

$$\lim_{n \to \infty} k A_n = k \lim_{n \to \infty} A_n = k A,$$

proving
$$\sum_{n=1}^{\infty} ka_n = kA$$
.

3. Proof. In general the series $\sum a_n b_n$ **does not** equal AB. A simple counter-example: take $a_n = b_n = (-1)^{n+1}$. Then $A = B = 1 - 1 + 1 - 1 + \dots$ converges conditionally by Cesàro summation to $\frac{1}{2}$, but $a_n b_n = 1$ for every n, so $\sum a_n b_n$ diverges to $+\infty$. The correct statement is that $\sum a_n b_n$ converges (and the naive identity holds) **only if** the series of absolute values $\sum |a_n|$ and $\sum |b_n|$ both converge.

Problem 4 (14.6(a)). 1. Prove that if $\sum_{n=1}^{\infty} |a_n|$ converges and b_n is a bounded sequence, then $\sum_{n=1}^{\infty} a_n b_n$ converges. *Hint*: Use Theorem 14.4.

Solution 4. If b_n is bounded, then $\forall n, \exists M \in s.t. |s_n| \leq M$.

$$\sum_{n=1}^{\infty} a_n b_n \le \sum_{n=1}^{\infty} a_n M \tag{8}$$

By Problem 3.2 in this document, we can state:

$$\sum_{n=1}^{\infty} a_n M = AM \tag{9}$$

$$\left| \sum_{n=1}^{\infty} a_n \right| = \lim_{n \to \infty} \left(\sum_{k=1}^{\infty} a_k \right) \tag{10}$$

$$\left| \sum_{k=1}^{\infty} a_k - S \right| < \frac{\varepsilon}{M} \tag{11}$$

Problem 5 (17.4). Prove the function \sqrt{x} is continuous on its domain $[0, \infty)$. *Hint:* Apply Example 5 in section 8.

Solution 5. *Proof.* We will utilize the definition of continuity of a function at a point for this proof. To assist us in our proof, we can use Example 5 in section 8.

$$x = \lim_{n \to \infty} x_n \tag{12}$$

Invoking Example 5 in section 8, we obtain:

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sqrt{x_n} = \sqrt{x} \tag{13}$$

Problem 6 (17.9(c,d)). Prove each of the following functions is continuous at x_0 by verifying the $\epsilon - \delta$ property of Theorem 17.2.

1. $f(x) = x \sin(\frac{1}{x}), x_0 = 0 \text{ for } x \neq 0 \text{ and } f(0) = 0, x_0 = 0$

2. $g(x) = x^3$, x_0 arbitrary. Hint: $x^3 - x_0^3 = (x - x_0)(x^2 + x_0x + x_0^2)$

Solution 6. 1. Proof.

$$f(x) = x \sin\left(\frac{1}{x}\right) \tag{14}$$

$$x\sin\left(\frac{1}{x}\right) < \varepsilon \tag{15}$$

We know that the value of f(x) will always be less than or equal to x, as the value of $\sin(x)$ is bounded from [-1,1]. Thus,

$$|f(x) - f(0)| = |f(x)| \le x < \varepsilon \tag{16}$$

Setting $\delta = \varepsilon$:

$$|x - 0| < \delta \implies |x - 0| < \varepsilon$$
 (17)

$$\implies |f(x) - f(0)| < \varepsilon$$
 (18)

2. Proof. For all ε , we want to find δ such that $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \epsilon$. We state:

$$\left|x^{3} - x_{0}^{3}\right| = \left|x - x_{0}\right| \left|x^{2} + x_{0}x + x_{0}^{2}\right| < \varepsilon$$
 (19)

$$|x| < |x_0| + 1 \tag{20}$$

$$\left|x^{2} + x_{0}x + x_{0}^{2}\right| \le \left|x^{2}\right| + \left|x_{0}x\right| + \left|x_{0}^{2}\right|$$
 (21)

$$<(|x_0|+1)^2+|x_0^2|+|x_0(|x_0|+1)|$$
 (22)

Solving for $|x - x_0|$:

$$|x - x_0| < \frac{\varepsilon}{(|x_0| + 1)^2 + |x_0|^2 + |x_0(|x_0| + 1)|}$$
(23)

Setting
$$\delta = \min \left\{ 1, \frac{\varepsilon}{(|x_0|+1)^2 + |x_0^2| + |x_0(|x_0|+1)|} \right\}$$
:

$$|x - x_0| < \delta \implies |f(x) - f(0)| < \varepsilon$$
 (24)

Problem 7 (17.10(b)). Prove the following functions are discontinuous at the indicated points. You may use either Def 17.1 or the $\varepsilon - \delta$ property in Theorem 17.2.

1. $g(x) = \sin(\frac{1}{x})$ for $x \neq 0$ and $g(0) = 0, x_0 = 0$.

Solution 7. Proof. Our goal is to find $x_n \to 0$ such that $g(x_n) \not\to g(0) = 0$. It suffices to use the definition of continuity at a function at a point by finding a sequence x_n converging to 0 such that $f(x_n)$ does not converge to g(0) = 0.

$$\frac{1}{x} = 2\pi n + \frac{\pi}{2} \tag{25}$$

$$x_n = \frac{1}{2\pi n + \frac{\pi}{2}} \tag{26}$$

$$\lim_{n \to \infty} x_n = 0 \tag{27}$$

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} 1 = 1 \tag{28}$$

$$0 \neq 1 \tag{29}$$