

=> Ht - Fit = of	
た× (円,一円,) = 元 (写放発)	
同程. $\bar{h} \times (\bar{E}_{\lambda} - \bar{E}_{i}) = 0$	
Tx(E;-云)=0 电场 切向分量连续。 Tx(H-H,)=T 磁场 切向分量不连续。	
【 元× [元-开,) = 录 □ 证券场 切向分量不连续。 (边界处安境 环路 定程)	
$\vec{n} \cdot (\vec{p}_1 - \vec{p}_1) = \sigma$	
$\overrightarrow{n} \times (\overrightarrow{H}, -\overrightarrow{H}_{0}) = \overrightarrow{J}$ $\overrightarrow{n} \cdot (\overrightarrow{B}_{0} - \overrightarrow{B}_{0}) = 0$	
eg.	
-of 水丘 与 repretise -of	
V +0;	
$\overrightarrow{R} \times \left(\overrightarrow{E}_{2} - \overrightarrow{E}_{1}\right) = 0 \qquad E 只有垂直分量$ $\left(\overrightarrow{R} \cdot \left(\overrightarrow{D}_{2} - \overrightarrow{D}_{1}\right) = 0\right).$	
核校由部 E=0	
$ \frac{\hat{r}_{k}}{F_{ik}} \qquad \vec{r} \cdot (\vec{D}_{i} - \vec{D}_{k}) = \sigma_{j}. $	
<u>De</u> =0	
$\vec{D}_i = \sigma_{\vec{f}}$	
季体	
事件 ①>= 0g <u>位在表面</u> , 0g=0	
$ \begin{cases} E_1 = \frac{\sigma_1}{\varepsilon_1} \\ E_2 = \frac{\sigma_2}{\varepsilon_2} \end{cases} $ $ \begin{cases} E_1 = \frac{\sigma_2}{\varepsilon_1} \\ E_2 = \frac{\sigma_2}{\varepsilon_2} \end{cases} $	
$\left(,E_{\perp}=\frac{\sigma_{f}}{\epsilon_{b}}\right) = \sigma_{b}$	
$ \begin{cases} \overline{C}_{1} = \frac{c_{1}}{\epsilon_{1}} \\ \overline{E}_{2} = \frac{c_{1}}{\epsilon_{2}} \end{cases} $ $ \begin{cases} \varepsilon_{0} \left(\overline{E}_{1} - \overline{E}_{1}\right) = \sigma_{f} + \sigma_{p} \\ \varepsilon_{1} \left(\overline{E}_{2} - \overline{E}_{1}\right) = \sigma_{p} \end{cases} $ $ \begin{cases} \varepsilon_{0} \left(\overline{E}_{1} - \overline{E}_{1}\right) = \sigma_{p} \\ \overline{E}_{1} - \overline{E}_{2} - \overline{E}_{2} \end{cases} $	
求导体 介度 援 台畑の	
(下松枚) = 60 E, - of, = - (+ 60/E) g.	
のp ^u +のp ¹ +のp =0, 电持守恒.	