

1

ELEKTROMOS VEZETÉSI FOLYAMATBAN TÖLTÉST TOVÁBBÍTÓ (ELMOZDULNI KÉPES) RÉSZECSKÉK:

Vezetők fémek ötvözetek szabad elektron szabad elektron

+ és - ionok

elektrolitok plazma áll. gázok

+ és - ionok

Félvezetők

szabad elektronok, lyukak

vegyület kovalens kristályok Szigetelők

szabad elektronok, lyukak szabad elektronok, lyukak

ionos kristályok szabad elektronok, lyukak

+ és - ionok folyadékok

gázok + és - ionok

Vezetési jelenségek

2

VEZETŐ ANYAGOK KLASSZIKUS **CSOPORTOSÍTÁSA**

σ (fajlagos vezetőképesség)

Siemens/m, 1/Ohm m

 $< 10^{-8} \text{ S/m}$ 10⁻⁸ - 10⁶ S/m > 10⁶ S/m

szigetelő félvezető fémes vezető

Vezetési jelenségek

FAJLAGOS ELLENÁLLÁS IRÁNYFÜGGÉSE

izotróp (köbös szerkezetű egykristályok, polikristályok)

anizotróp (alacsony szimmetriájú kristályok: hex., tetragonális ...)

pl: Cd, Mg, Zn, C (grafit):

$$\frac{\rho_{parallel}}{\rho} \approx 1000$$

Vezetési jelenségek

VEZETÉSI MECHANIZMUSOK LEÍRÁSA

Klasszikus (Sommerfeld-féle, szabad-elektron modell)

Feltételezés: elektronok között nincs kölcsönhatás (ideális

Elektron mozgása:

Rendezetlen termikus mozgás + sodródás (drift)

Kvantummechanikai leírás

Elektronhoz rendelt síkhullám mozgása a rácsperiodikus potenciáltérben. Vezető test: potenciálgödör.

Vezetési jelenségek

4/25

KLASSZIKUS VEZETÉSI MODELL

q: az elektron töltése n: a szabad elektronok száma

gyorsulnak.

 $a = \frac{F}{m} = \frac{q \cdot E}{m} \Longrightarrow v_d = \frac{q \cdot E}{2 \cdot m} \tau$

 $j = \frac{n \cdot q^2 \cdot \tau}{2 \cdot m} E = \sigma \cdot E$

 $v_d = \mu \cdot E$ v_d: driftsebesség (sodródási seb.)

Az elektronok az elektromos térerősség hatására folyamatosan gyorsulnak, az atomtörzseknek ütközve megállnak, majd újra

τ: két ütközés közötti átlagos idő

a: gyorsulás

F: az elektronra ható erő

m: az elektron tömege E: elektromos térerősség

s: fajlagos vezetőképesség

KLASSZIKUS VEZETÉSI MODELL

Eredmények:

- · Differenciális Ohm-törvény
- 1-2 vegyértékű fémekre jó fajlagos ellenállás értékek

Problémák:

- azonos fém allotróp módosulatainak különböző vezetését nem magyarázza meg
- többvegyértékű fémek (fajlagos ellenállás hibás)
- Félvezetők, szigetelők fajlagos ellenállásának hőmérsékletfüggését nem magyarázza meg
- σ (T, megvilágítás, külső E, sugárzás...) nem definiált

Vezetési jelenségek

7/25

7

FÉMEK FAJLAGOS ELLENÁLLÁSÁT BEFOLYÁSOLÓ TÉNYEZŐK

Kristályrács torzulása $\Rightarrow \rho$ növekedése

- · termikus rácsrezgések
- termikusan aktivált ponthibák
- diszlokációk (alakítás)
- felületszerű hibák (szemcseméret)
- térfogati hibák (kiválások, új fázis)
- rácstorzulás (szilárd oldatos ötvözés)

Matthiesen-szabály (az egyes tényezők szeparálható függvényként fejtik ki hatásukat)

$$\rho(T,c,\varepsilon) = \rho_1(T) + \rho_2(c) + \rho_3(\varepsilon) + \cdots$$

Vezetési jelenségek

8/25

10

ÖTVÖZÉS HATÁSA

Nordheim-szabály: ha az alkotók szilárd oldatot és második fázist is létrehoznak akkor a fajlagos ellenállás:

$$\rho = \rho_A + (\rho_A - \rho_B)c_B + Ac_B(1 - c_B)$$

Mott-szabály: szilárd oldatok esetén kis ötvözőkoncentrációknál az (1-C) közelítőleg 1 lesz, vagyis az egyik (pl. A) alkotóban gazdag ötvözetben a másik (pl. B) alkotó atomjai által okozott ellenállás-nővekmény egyenlő lesz az A atom által okozott növekménnyel, ha az ötvözet B atomokban gazdag.

$$\Delta \rho = Ac \Longrightarrow \Delta \rho_{AB} = \Delta \rho_{BA}$$

Vezetési jelenségek

11/25

NYOMÁS ÉS RÉTEGVASTAGSÁG HATÁSA

Nyomás (hidrosztatikus) hatása: ρ növekszik

Rétegvastagság hatása

ha az e- szabad úthossza összemérhetővé válik a rétegvastagsággal

- k: felület minősége (jellemző konstans)
- a: alaktényező (huzal, lemez)

$$+\Delta \rho = k \cdot a \cdot \rho \cdot \frac{\lambda}{d}$$

$$\lambda = v_{\textit{drift}} \cdot \tau$$

Vezetési jelenségek

13/25

13

VEZETŐANYAGOK

Vezetékanyagok:

Cu és ötvözetei Al és ötvözetei Fe és ötvözetei

Érintkezőanyagok

kis átmeneti ellenállás ió hővezetés jó ívállóság nagy szilárdság

kopásállóság pl. Au, Ag, W, Pt, Cu-Ag, Cu-Ag-Au, kompozitok, pl. Ag-CdO Hőelemek aktív anyagai Cu - konstantán

Fe – konstantán Ni - CrNi, Pt - PtRh

Üveg- és kerámiaátvezetők kis hőtágulási együttható pl. Fe – Ni ötvözet 36-42% Ni

Kettősfémek

két eltérő hőtágulású anyag összehengerelve

Forraszanyagok

Vezetési jelenségek

14

16

19

ISMERTEBB I. ÉS II. FAJÚ SZUPRAVEZETŐ ELEMEK ÉS T_C (K) Al 1,18 Ti V Zn Ga 0,39 5,03 0,86 1,09 *** \mathbf{Zr} Nb Cd In Sn 0,55 9,5 0,52 3,41 3,72 Pb TlTa Hg 7,19 4,48 4,15 2,37 Vezetési jelenségek

20

•Elem •Ötvözet •Vegyület (intermetallikus) •Kerámia (rideg, törékeny, magas Tc)

etési jelenségek 21/

22

ELEMI FÉLVEZETŐK									
ΔE T=0 K Θ Θ Θ Θ Θ elektronok	$\begin{array}{c c} \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \Delta E \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline T = 300 \text{ K} \\ \bullet & \bullet & \bullet & \bullet \\ \text{lyukak} \\ \hline \end{array} \text{ vezetési sáv}$	Gerjesztés (pl. hőmérséklet, vagy elektromágneses sugárzás [fény, röntgensugárzás]) hatására elektronok kerülhetnek a vegyértéksávból a vezetési sávba. Ekkor az anyag vezetővé válik. Az elektronok helyén a vegyértéksávban pozitív töltésű fiktív részecskék, "lyukak" keletkeznek.							
Vezetési jelenségek									

ADALÉKOLT FÉLVEZETŐK							
Extrinsic (adalékolt) n-típusú, donor, 5 vegyérték (P, As, Sb) p-típusú, akceptor, 3 vegyérték (B, Al, In, Ga) Adalékolás: szubsztitúciós ötvözés (oldhatósági határ alatt) Az n-típusúnál az elektronok, a p-típusúnál a lyukak száma sokszorozódik meg, így lesznek elektron- ill. lyukvezetők.							
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	vezetési sáv						
vegyértéksáv	ΔE						
FD4.ábra FD5.ábra							
Vezetési jelenségek							

FÉLVEZETŐK CSOPORTOSÍTÁSA

	II	III	IV	V	VI	VII
II	Ве	В	С	N	О	
III	Mg	Al	Si	P	S	Cl
IV	Ca	Ga	Ge	As	Se	Br
V	Zn	In	Sn	Sb	Те	I
VI	Sr		Pb	Bi	Po	At
VII	Cd					

Elemi félvezető (Si, Ge...)

Vegyületfélvezetők: biner, ternér, kvaternér... (A^{III} B^V, A^{II} B^{VI})

Vezetési jelenségek

25/25