

ECON 4683 Ignacio Sarmiento-Barbieri **2023-2**

Taller 2: Modelo Monocéntrico

Entrega: Viernes 8 de Septiembre, 6p.m. Bloque Neón

Cuando escriba sus respuestas, tenga como objetivo (1) ser correctos y (2) convencer al lector de que su respuesta es correcta. Para ello es importante que su trabajo sea legible y si se presenten todos los pasos con al menos una línea de explicación. Las respuestas que no alcancen estos objetivos no recibirán crédito completo.

1 Ejercicio 1

En este ejercicio trabajaremos sobre un ejemplo del modelo monocéntrico. Asumamos que tenemos una ciudad lineal y abierta. Supongamos que $w=3,\ l=1,\ p_z=1,\ \bar{R}=0.5,\ \bar{u}=u_o,\ y$ A=1. Supongamos además que u(z)=ln(z-1).

- 1. Escriba el problema del hogar. Suponga que estamos en un equilibrio espacial, es decir, todos están optimizando y nadie quiere mudarse. L'Lamemos al consumo de equilibrio z^* . Encuentre $U(Az^*)$.
- 2. Encuentre z^* .
- 3. Utilizando la restricción del problema del problema del hogar, encuentre una expresión para x en términos de w, z^* , R, l y t.
- 4. Usando el supuesto que hay una unidad de tierra en cada x derive la expresión para N^* en términos de \bar{x} y de \bar{l} .
- 5. Use la restricción presupuestaria del hogar en equilibrio y el tamaño en equilibrio de la ciudad para obtener el gradiente de renta de equilibrio $R^*(x)$.
- 6. Tomando derivadas de las expresiones para \bar{x} , N^* , y $R^*(x)$ con respecto a t. Como cambian el tamaño de la ciudad, la población, el gradiente de renta de equilibrio cuando aumentan los costos de transporte? Provea intuición del mismo.
- 7. Asuma que los costos de transporte aumentan de $t_0 = 1$ a $t_1 = 2$. Cuál es el límite de la ciudad ahora? Cual es $R^*(0)$? Usando estos tres puntos haga una gráfica de como cambia el gradiente cuando t aumenta. Etiquete en su gráfica $R^*(0)$, \bar{R} , y \bar{x} .
- 8. Como cambia la renta total de la tierra dentro de los límites de la ciudad si pasamos de $t_0 = 1$ a $t_1 = 2$?

ECON 4683 Ignacio Sarmiento-Barbieri **2023-2**

2 Ejercicio 2

En este ejercicio analizaremos los impuestos a las propiedades en el modelo monocéntrico.

- 1. Asumamos que tenemos una ciudad lineal y abierta. Tenemos además impuestos a la propiedad τ_0 . $R_0(x)$ es el gradiente de renta de esta ciudad. Plantee el problema del hogar.
- 2. Asuma que los impuestos aumentan de τ_0 a τ_1 , donde $1 + \tau_1 = (1.10)(1 + \tau_0)$. Plantee el problema del hogar con este nuevo impuesto.
- 3. Utilizando lo que sabe sobre z^* en una equilibrio de ciudad abierta, encuentre $R_1(x)$ en términos de $R_0(x)$. Como cambia R^* cuando el impuesto a la propiedad aumenta?
- 4. Suponga ahora que los arrendatarios (landlords) son los responsables de pagar el impuesto a la propiedad. ¿Qué sugiere esto sobre la relación entre lo que los arrendatarios pagan y los impuestos a la propiedad?

3 Ejercicio 3

Supongamos que tiene un modelo monocéntrico con vivienda y ciudad abierta donde la utilidad de reserva es $\bar{u}=3$. Asumamos también que la vivienda se produce en un mercado perfectamente competitivo.

Los hogares consumen un bien numerario z, con precio $p_z = 1$ y vivienda h con precio p. Tienen una función de utilidad de la forma $U(z,h) = z^{0.5}h^{0.5}$ y costos de transporte τ .

- 1. Encuentre el gradiente de precios de vivienda p^* y el consumo de los bienes en equilibrio z^* y h^* .
- 2. Suponga que el productor produce vivienda con la tecnología $H_s(S) = S^{\frac{2}{3}}$, donde S es el ratio de capital a tierra (k/l), y que la tasa de interés es $i = \frac{1}{33}$. Encuentre la oferta de vivienda, H_s^* , en términos del precio de la vivienda, p^* .
- 3. Encuentre la expresión de la densidad poblacional, $\frac{H_s^*}{h^*}$, en términos de los parámetros
- 4. Encuentre la densidad población en x=1 y en x=2. Compare que sucede con la densidad cuando los costos de transporte pasan de $\tau=1$ a $\tau=0.5$. ¿Qué sugieren estos cambios sobre la densidad en el centro de la ciudad cuando caen los costos de transporte?

4 Ejercicio 4

En este problema, examinaremos algunos gradientes en la práctica. Usando los datos provistos de Bogotá y Medellín y los datos del Censo Nacional de Población de 2018 para Colombia.

ECON 4683 Ignacio Sarmiento-Barbieri **2023-2**

- 1. Para cada ciudad presente estadísticas descriptivas básicas de las propiedades, sus características a partir de los datos provistos, y sobre la densidad poblacional por manzana censal de los datos del Censo.
- 2. Para cada ciudad presente mapas que muestren:
 - (a) La proporción de propiedades ofertadas para venta y para arriendo por manzana censal y el identificador del centro de la ciudad.
 - (b) La densidad poblacional por manzana censal y el identificador del centro de la ciudad.
- 3. Estime y grafique los gradientes de:
 - (a) Precios por metro cuadrado de venta y arriendo.
 - (b) Densidad (a partir de los datos censales)

Para este punto:

- Tome como centro de Bogotá al centroide del Centro Internacional y para Medellín la Plaza Botero.
- Tenga en cuenta de justificar la forma funcional (Tip: use Box-Cox).
- Cuando presente las gráficas del gradientes estimados incluya los intervalos de confianza.
- Provea una explicación breve (a partir de lo que estudiamos hasta el momento) de los resultados observados, y sobre las similitudes y diferencias entre las ciudades.

5 Ejercicio 5

En este ejercicio examinaremos los cambios en los gradientes de precios y arriendo de Gupta et al. (2021), disponible en las lecturas de Bloque Neón.

1. Previo a la pandemia, el gradiente de arriendos estaba descrito por:

$$ln R_0(x) = 7.6 - 0.04 ln(x+1)$$
(1)

donde x es la distancia al centro de la ciudad. Esto se muestra en el panel A de la Figura 3 de Gupta et al. (2021). Durante la pandemia el gradiente de arriendos cambio a:

$$ln R_1(x) = 7.5 - 0.004 ln(x+1)$$
(2)

(a) ¿Cuánto es el arriendo mensual en x=0, antes y durante la pandemia?

 $\begin{array}{c} {\rm ECON~4683} \\ {\rm Ignacio~Sarmiento\text{-}Barbieri} \\ {\bf 2023\text{-}2} \end{array}$

- (b) ¿Cuál es el cambio porcentual en los arriendos en x = 0?
- 2. En el panel B, el gradiente de precios estaba descrito por:

$$ln P_0(x) = 13.2 - 0.127 ln(x+1)$$
(3)

Durante la pandemia, el gradiente cambió a:

$$ln P_1(x) = 13.15 - 0.115ln(x+1)$$
(4)

- (a) ¿Cuánto es el precio de las propiedades mensual en x = 0, antes y durante la pandemia?
- (b) ¿Cuál es el cambio porcentual en los precios en x = 0?
- 3. Suponga que los cambios en los arriendo inducidos por la pandemia son permanentes. Utilice los resultados del primer inciso, para encontrar el precio implícito de las propiedades arrendadas en x=0 antes y después de la pandemia usando una tasa del 3%.
 - (a) ¿Cuál es el cambio porcentual en estos precios implícitos?
 - (b) Compare estos resultados a los obtenidos en el segundo inciso. ¿Cuál es más grande? Porqué cree que surgen estas diferencias? ¿Qué sugiere estos resultados sobre las expectativas que tenía la gente de cuanto iba a durar la pandemia?