HEAT PUMP COP PARAMETRIC STUDY: RESIDENTIAL SPACE HEATING

LAURA ARIAS (SURE 23/24), DIEGO FLOREZ (SURE 23/24), KARINA AZA (EMRE 23/24)

LOCATION

Parameter	Value	
Location	Oldenburg, Germany	
Latitude	53.143452	
Longitude	8.214552	
Ambient temperature average 2019 [1]	10.4 °C	
Apartment area	60 m^2	
Number of residents	2 adults	
Q _{SH} Annual Space Heating Demand [2]	16150 kWh	

HEAT PUMP [3]

Decarbo ECO030 For Heating: Water Temp. Outlet 35 °C

Parameter	Value
Decarbo ECO030	
Fluid	R290
Input Power Range (kW)	0.63 - 0.68
COP Range	1.7 - 5.04

DURATION CURVE

HEAT PUMP MODEL

Assumptions				
Parameter	Value			
Condenser Outlet Refrigerant State	Liquid			
Evaporator Outlet Refrigerant State	Vapor			
ETA Compressor Constant	0.8			
ΔT Evaporator	15°C			
ΔT Condenser Water	15°C			

Accumptions

RESULTS AND ANALYSIS

Figure 1: Heat Pump Modelling Concept [4]

Scenario / Temperature	T Amb source (°C)	T Evap. (°C)	T Demand-sink (°C)	T Cond. (°C)	COP
Case 1 (70%)	6	-9	20	35	4.6
Case 2 (50%)	10	-5	20	35	5.3
Case 3 (30%)	15	0	20	35	6.1

CONCLUSIONS

- Developed Python code for air source heat pump modelling, considering refrigerant choice, compressor efficiency, heating load, and heat exchanger temperatures.
- In winter, the COP decreased (worst case scenario) due to seasonal source temperature values, while in summer, the opposite trend was observed. Validation with real heat pump data showed COP within manufacturer's range.
- DHW's impact on COP was minimal; omitted due to space constraints, along with the compressor efficiency curve.
- Investigation of COP variations with different fluids revealed flashing issues with CoolProps.
- Future model could integrate P-h or T-s diagrams and include detailed heat exchanger analysis for both condenser and evaporator components.

REFERENCES

- [1] https://www.renewables.ninja/
- [2] https://app.npro.energy/en
- [3] https://frigopartners.com/media/b5/92/c7/1700648662/Decarbo_product_brochure_v2.2.pdf
- [4] https://fwitte.github.io/introduction-to-heat-pump-modeling/model/exercise-sm.html