

Lab 12 - Securitate

Criptare simetrica

- o singura cheie C
- C(M) = MC
- C(MC) = M
- AES, DES, IDEA, RC5, Blowfish, Twofish
- greu de gestionat stabilirea cheii partajate

Criptare asimetrica

- doua chei: publica (E), privata (D), D(E(M)) = M = E(D(M))
- A vrea sa ii trimita un mesaj M lui B:
 - o cripteaza cu cheia publica a lui B: E_B(M)
 - B decripteaza cu cheia sa privata: D_B(E_B(M)) = M
- RSA
- un atacator de tip man-in-the-middle (MITM) poate sa preia mesajul, sa il modifice, apoi sa il recripteze cu E_B

Rezumate de mesaje si semnaturi digitale

- rezumat/digest = sir de biti de lungime fixa, generat cu ajutorul unei functii de hash MD
- se foloseste la verificarea transmisiei corecte → un MITM poate prelua mesajul si il poate modifica (cu tot cu rezumat)
- solutia → utilizarea semnaturilor digitale:
 - A vrea sa ii trimita un mesaj M lui B
 - A calculeaza rezumatul mesajului: MD(M)
 - A cripteaza rezumatul cu cheia sa privata: D_A(MD(M))
 - A trimite mesajul M si D_A(MD(M))
 - B decripteaza rezumatul cu cheia publica a lui A: E_Δ(D_Δ(MD(M))) = MD(M)
 - B verifica daca MD(M) este corect
- MD5, SHA-1, SHA-2, SHA-3

Certificate

- identitatea si cheia publica a solicitantului, semnate digital
- oferite de o CA (Certification Authority)
- X.509

Link-uri

Lab OCW
SSH handshake
TLS handshake
Formular feedback
C Crash Course
Guide to Network Programming