

Toward Entailment Checking: Explore Eigenmarking Search

Tatpong Katanyukul

Computer Engineering, Khon Kaen University, Thailand

inCACCT 2025, 17-18 April, Chandigarh University, India

1

Big Picture

- Entailment is central to logic reasoning.
- Model checking goes through all combinations of logical symbols for validation of entailment: $O(2^n)$.
- Our work is to propose improved quantum search targeting a more efficient model checking.

Logic Entailment: Model Checking

if and only if, in every truth scenario in which KB is true, α is true.

Model checking = truth evaluation given truth values of all symbols.

KB:

- Durians are spiky.
- Durians are yummy.

 α_1 : Montong durian is spiky.

 α_2 : Montong durian is not spiky.

 α_3 : There is life on Mars.

 α_4 : There is no life on Mars.

Spiky Montong	Life on Mars	КВ	α_{1}	α_{2}	α_3	α_{4}	
F	F	F	F	T	F	Т	
F	Т	F	F	Т	Т	F	$O(2^n)$
Т	F	Т	Т	F	F	Т	
Т	Т	Т	Т	F	Т	F	

$$KB \models \alpha_1 \quad KB \not\models \alpha_2$$

$$KB \not\models \alpha$$

$$KB \not\models \alpha_3$$

$$KB \not\models \alpha_4$$

Quantum Computing and Quantum Mechanical Properties

- Quantum computing utilizes quantum mechanical properties for computing.
- The quantum effect is more prominent at a small scale.
 - Linear evolution
 - Measurement
 - Superposition, Entanglement, Tunneling.

Classical

Grover Search

- Problem: Given unknown $f(\cdot)$, find an answer $x' \in \{0,1\}^n$: f(x') = 1
- Promise: one and only one answer x': f(x') = 1 and f(x) = 0 for all $x \neq x'$.
- Classical approach: trial-and-error
 - Average computation cost $\sim O\left(\frac{N}{2}\right) = O(2^{n-1})$
 - All possible candidates $N = 2^n$.

Grover search

5

Grover Algorithm: Key Ideas

- Evolve the probability amplitude of the answer eigenstate such that when measured, the answer is more likely to be observed.
- ~ Parallelism using superposition!
- Implementation:
 - Selective phase inversion: mark the answer.
 - Inversion about the mean: amplify the answer's probability amplitude.
 - This relies on that the answer is minority!

Challenges and Our Approach

Spiky Monto	ong Life on Mars	КВ	α_1	α_2	α_3	α_4	
F	F	F	F	T	F	Т	
F	Т	F	F	Т	Т	F	
Т	F	Т	Т	F	F	Т	
T	Т	Т	Т	F	T	F	
			1	1	1	1	
W	hen KB = T,	1	No F 2	2 Fs	1 F	1 F	

- Original Grover search addresses 1-F case.
- Our approach:
 - Additional qubits
 - Maintain minority condition for Grover amplification
 - Facilitate easy identification of no-winner case

Subtle Eigenmarking

Conclusion & Discussion

- The ideas work! (at least for a two-qubit case, in a simulator.)
- Quality of outcomes
 - Eigenmarking
 - Better at suppressing chances of dummy states: best global winning margin.
 - Quite well on distinguishability: best relative scores.
 - Subtle marking
 - Quite well on every aspect:
 - best local winning margin,
 - best absolute distinguishability.
- Architectural aspect: subtle marking requires less modification, but needs multiple-qubit controls.
- Limitations: Scalability? (more qubits) Reliability? (theoretical analysis)
 Robustness? (real QC)

Logic Entailment

 $KB \models \alpha$

if and only if, in every model (truth scenario) in which KB is true, α is true.

KB:

 α_1 : Montong durian is spiky.

 $KB \models \alpha_1$

Durians are spiky.

Durians are yummy.

 α_2 : Montong durian is not spiky. $KB \not\models \alpha_2$

 α_3 : There is life on Mars.

 $KB \not\models \alpha_3$

 α_4 : There is no life on Mars.

 $KB \not\models \alpha_4$

Note

- $KB \models \alpha$ means α agrees with what KB said.
- $KB \not\models \alpha$ means α is not what is said by KB.

Quantum State and Superposition

 Superposition: a quantum state is a combination of eigenstates:

$$|\psi\rangle = c_1|\psi_1\rangle + c_2|\psi_2\rangle + c_3|\psi_3\rangle + \dots + c_N|\psi_N\rangle$$

or vector representation

$$|\psi\rangle = \begin{bmatrix} c_1 & c_2 & c_3 & \cdots & c_N \end{bmatrix}^T$$

Quantum Computing

In short, we can control quantum state evolution by unitary operator *U* through manipulation of the system energy,

$$|\psi'\rangle = U |\psi\rangle.$$

And we can measure the state and collapse it to one of the eigenstates with probability,

$$\Pr[|\psi'\rangle = |\psi_i\rangle] = |c_i|^2.$$

Shortcomings of Original Grover in Entailment Context

- Designed for a lone match search.
 - Mitigation:
 - Probabilistic control over # applications.
 - Time-out to handle a no-winner case.
- Entailment checking is likely to have multiple matches or no match at all
 - No match ⇒ no violation: the entailment is validated.

Eigenmarking

• Tag 00,
$$\phi(x') = \frac{\pi}{2} + 0 + 0 = \frac{\pi}{2}$$
 and $\phi(x) = 0 + 0 + 0 = 0$.

• Tag 01,
$$\phi(x') = \frac{\pi}{2} + 0 + \frac{\pi}{2} = \pi$$
 and $\phi(x) = 0 + 0 + \frac{\pi}{2} = \frac{\pi}{2}$.

• Tag 10,
$$\phi(x') = \frac{\pi}{2} - \frac{\pi}{2} + 0 = 0$$
 and $\phi(x) = 0 - \frac{\pi}{2} + 0 = -\frac{\pi}{2}$.

• Tag 11,
$$\phi(x') = \frac{\pi}{2} = \frac{\pi}{2}$$
 and $\phi(x) = 0 = 0$.

- With winners, tag 01 has the answer(s): $\phi(x') = \pi$ while others having $-\frac{\pi}{2}$, $0, \frac{\pi}{2}$.
 - But all-winner and no-winner may look the same.

Eigenmarking: Cases

Tag	$\phi(x')$	$\phi(x)$
00	$\pi/2$	0
01	π	$\pi/2$
10	0	$-\pi/2$
11	$\pi/2$	0

	00	01	10	11
No win.	0	$\pi/2$	$-\pi/2$	0
Some win.	$0,\pi/2$	π , π /2	$0, -\pi/2$	$\pi/2$, 0
All win.	$\pi/2$	π	0	$\pi/2$

Complementary, esp., in no win.

01 10 11 00 No win. 0 $\pi/2$ $-\pi/2$ Tie 01 and 10 $0,\pi/2$ $0, -\pi/2$ $\pi/2, 0$ 01 dominates Some win. π , π /2 All win. $\pi/2$ 0 $\pi/2$ 01 dominates π

Results: Eigenmarking

Null and Subtle Eigenmarkings

Null marking

- Explicit no-winner state10 11
- In entailment checking,
 No-winner ~ no violation!

Subtle marking

- Only one extra qubit!
- No change to U_f

Cons

Multiple-qubit control

Results: Null Eigenmarking

Results: Subtle Eigenmarking

Final Results: Get The Winner

Relative difference between #counts (observed) of winning states and ones of non-winning state.

$$W = (c - c')/c'$$

Scheme	Relative winning margin			
	Global	Local	prefix	
Eigen.	[0.57, 1.10 , 1.76](0.2)	[0.67, 1.49 , 2.60](0.3)	01	
Null.	[-0.44, -0.09 , 0.27](0.1)	[0.6 <u>2</u> , 1.8 2, 4.74](0.5)	01	
Subtle.	[-0.37, 0.31 , 6.12](1.4)	[0.28, 25.72 , 197.00](15.8)	0	

E.g., W=1.1 means that chance of seeing the winning state $c\approx 1.1~c'+c'\approx 2.1~c'$.

Final Results: Some Win VS No Win

Scheme	Distinguishability				
	Wor	est-case	Average-case		
	D	$D/ M_0 $	d	$d/ \bar{M}_0 $	
Eigen.	0.190	19.000	0.532	53.188	
Null.	0.220	0.524	0.548	1.306	
Subtle.	0.550	0.753	1.140	1.561	

Distinguishability ~ gap between at least some win vs no win.

Worst-case: worst score of the winner vs best score of the non-winner

$$D = \frac{\min_{i>0} \min M_i - \max_i M_0}{|\max_i M_0|}$$

Architectures

Logic Entailment: Theorem Proving

 $KB \models \alpha$

if and only if, in every model (truth scenario) in which KB is true, α is true.

KB:

 α_1 : Montong durian is spiky.

 $KB \models \alpha_1$

Durians are spiky.

Durians are yummy.

 α_2 : Montong durian is not spiky. $KB \not\models \alpha_2$

 α_3 : There is life on Mars.

 $KB \not\models \alpha_3$

 α_4 : There is no life on Mars.

 $KB \not\models \alpha_4$

Note

- $KB \models \alpha$ means α agrees with what KB said.
- $KB \not\models \alpha$ means α is not what is said by KB.

Z ↓ SG Apparatus

- Vertical Magnetic Field $(Z \downarrow)$
 - Results: Up, Down
 - Eigenstates: $|u\rangle$, $|d\rangle$
- Horizontal Magnetic Field (X ·)
 - Results: Front, Back
 - Eigenstates: $|f\rangle$, $|b\rangle$
- Eigenstates depend on measurement operators.

- #5, which way do the silver atoms go through xmagnetic field?
- Another word, what is the state at that moment?
 - If $|\psi_2\rangle = |f\rangle$, c.f. #4
 - If $|\psi_2\rangle = |b\rangle$, c.f. #3
 - It is "superposition".

Eigenstates and Measurement

$$|\psi\rangle = c_1|\psi_1\rangle + c_2|\psi_2\rangle + c_3|\psi_3\rangle + \dots + c_N|\psi_N\rangle$$

- Observability: when measured, the state collapses to one of its eigenstates upon measurement.
 - Eigenstates correspond to the measurement operator.
 - Probability of an eigenstate to which the state collapses is:
 - $\Pr[|\psi'\rangle = |\psi_i\rangle] = |c_i|^2$

Quantum State Evolution

Given Hamiltonian (energy operator) \widehat{H} , quantum state evolution is described by Schrödinger equation:

$$i \, \overline{h} \, \frac{\partial |\psi\rangle}{\partial t} = \widehat{H} |\psi\rangle$$

Solution: $|\psi'\rangle = |\psi\rangle \exp(-\frac{i}{\hbar} \widehat{H} t)$ where $|\psi'\rangle$ is the next state.

• Let unitary operator $U \equiv \exp\left(-\frac{i}{\hbar} \ \widehat{H} \ t\right)$ for a specific time t,

$$|\psi'\rangle = U |\psi\rangle$$

Tensor Product: Properties

Combining vector spaces together to form larger vector spaces

- Tensor product, $V \otimes W$
 - For an arbitrary scalar z and elements $|v\rangle$ of V and $|w\rangle$ of W, $z(|v\rangle \otimes |w\rangle) = (z|v\rangle) \otimes |w\rangle = |v\rangle \otimes (z|w\rangle)$.
 - For arbitrary $|v_1\rangle$ and $|v_2\rangle$ in V and $|w\rangle$ in W, $(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle.$
 - For arbitrary $|v\rangle$ in V and $|w_1\rangle$ and $|w_2\rangle$ in W, $|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle$.

Tensor Product

Combining vector spaces together to form larger vector spaces

 $A: m \times n$ matrix, $B: p \times q$ matrix,

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B & \cdots & A_{1n}B \\ A_{21}B & A_{22}B & \cdots & A_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1}B & A_{m2}B & \cdots & A_{mn}B \end{bmatrix}$$

E.g.,

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \otimes \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 3 \\ 4 \end{bmatrix} \\ 2 \begin{bmatrix} 3 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$

Related Matrices: Hadamard

 $H^{\bigotimes(N+1)}$

$$\bullet \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Related Matrices: Selection

- $U_f = |x'\rangle\langle x'| \otimes R_z(\pi) + \sum_{x \in \widetilde{X}} |x\rangle\langle x| \otimes I \text{ and } R_z(\pi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{bmatrix}.$
- E.g., N = 2, x' = 01

$$U_f = egin{bmatrix} 0 & & & & \ & 1 & & \ & & 0 & \ & & & 0 \end{bmatrix} \otimes egin{bmatrix} 1 & 0 & & \ 0 & e^{i\pi} \end{bmatrix} + egin{bmatrix} 1 & & & \ & & 1 & \ & & & 1 \end{bmatrix} \otimes egin{bmatrix} 1 & 0 & \ 0 & 1 \end{bmatrix}$$

• Note $e^{i\pi} = -1$

Grover Algorithm

- Have operator U_f represent f: flip phase of y if x = x'.
- Prepare $|x_0\rangle = |\mathbf{0}\rangle$.
- Apply Hadamard: $|x_1\rangle = H|x_0\rangle$.
- Do Phase Inversion: $|x_2, y_2\rangle = |\psi_2\rangle = U_f |x_1, 1\rangle$.
- Inverse about the mean on the input: $|x_3\rangle = (2A I)|x_2\rangle$.
- Apply for J times: $J = \text{round}\left(\frac{\pi}{4}\sqrt{N} \frac{1}{2}\right)$ where $N = 2^n$.
- Measure the qubits.
- Have operator U_f represent f: flip phase of y if x = x'.
- Prepare $|x_0\rangle = |\mathbf{0}\rangle$.
- Apply Hadamard: $|x_1\rangle = H|x_0\rangle$.
- Do Phase Inversion: $|x_2, y_2\rangle = |\psi_2\rangle = U_f |x_1, 1\rangle$.
- Inverse about the mean on the input: $|x_3\rangle = (2A I)|x_2\rangle$.
- Apply for J times: $J = \text{round}\left(\frac{\pi}{4}\sqrt{N} \frac{1}{2}\right)$ where $N = 2^n$.
- Measure the qubits.

Grover Algorithm: Examples

Selective phase

Inversion about

- E.g., n = 2 and $|x'\rangle = |01\rangle$,
 - $|x_0\rangle = |00\rangle = [1\ 0\ 0\ 0]^T$ $\frac{|0\rangle}{}$
 - $|x_1\rangle = H|00\rangle = \frac{1}{2}[1\ 1\ 1\ 1]^T$.
 - $|\psi_1\rangle = |x_1, 1\rangle = \frac{1}{2}[0,1,0,1,0,1,0,1]^T$.
 - $|\mathbf{x}_2, \mathbf{y}\rangle = U_f |\mathbf{x}_1, 1\rangle = \frac{1}{2} [0, 1, 0, -1, 0, 1, 0, 1]^T.$
 - $|x_2\rangle|y_2\rangle = \frac{1}{2}[1, -1, 1, 1]^T \otimes [0, 1]^T$
 - $|x_2\rangle = \frac{1}{2}[1, -1, 1, 1]^T$
 - $|\mathbf{x}_3\rangle = (2A I)|\mathbf{x}_2\rangle = [0,1,0,0]^T$.
 - $J = \text{round}\left(\frac{\pi}{4}\sqrt{4} \frac{1}{2}\right) = 1.$
 - Measure $|x_3\rangle$ and get eigenstate $|01\rangle$ with probability 1.

Related Matrices: Average

•
$$A = \frac{1}{2^N} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

•
$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

- Inversion about mean: $\bar{x} (x \bar{x}) = 2\bar{x} x$
 - That is, (2A I)X where AX computes the mean.