# निर्धारिका ३ व्रझाय्न

শান্তিময় চট্টোপাধ্যায়

মনোজ দত্ত

অশোক সিংহ





পশ্চিমবঙ্গ মধ্যশিক্ষা পর্যৎ অন্তুমোদিত পাঠক্রম অন্তুয়ায়ী নবম শ্রেণীর জন্ম লিখিত।

বিজ্ঞান পরিচয় গ্রন্থমালা

निर्णितिमा । उनारान

0

Gon, of West test

শান্তিময় চট্টোপাধ্যায়

এম্. এস্-সি, পি. আর. এস্ , ডি. ফিল্

মলোজ দত্ত

वि. धम्-मि., धम्. ध, वि. हि

অশোক সিংহ

এম্. এস্-সি

কলকাতা অক্সফোর্ড ইউনিভার্সিটি প্রেস দিল্লী বোদ্বাই নাজাজ ১৯৭৫

## PADARTHAVIDYA O RASAYAN 3 (Bengali) (Physics and Chemistry)

by

Santimay Chattopadhyay, Manoj Datta and Asok Sinha

OXFORD UNIVERSITY PRESS 1975

22.8.05

Santimay CHATTOPADHYAY

Manoj DATTA

Asok SINHA

ত অন্ত্রফোর্ড ইউনিভার্সিট প্রেস ১৯৭৫

শান্তিময় চট্টোপাধ্যায়

মনোজ দন্ত

অশোক সিংহ

First published 1974 Second edition 1975

প্রচ্ছদ: রামকৃঞ্চদত্ত ছবি একৈছেন: রঞ্জন কুণ্ডু



#### ভুমিকা

স্থূলের সর্বন্তরের ছাত্রদের জন্ম বিজ্ঞান পাঠ ১৯৭৪ সাল থেকে আবশ্রিক বিষয় বলে গণ্য হয়েছে। বিজ্ঞানকে কেবল জীবিকা নির্বাহের উপায় মনে না করে সাধারণ শিক্ষার অন্ধ হিসেবে গণ্য করা উচিত। এটাই আধুনিক শিক্ষাবিদদের দৃঢ় ধারণা। জাতীয় পর্যায়েও এই নীতি স্বীকৃত। বিজ্ঞান যে জীবনযাত্রার সঙ্গে সম্পর্করহিত ক্লাসে পড়ার বিষয়মাত্র নয় এই ধারণার উপর ভিত্তি করে নতুন বিজ্ঞান পাঠক্রম রচিত হয়েছে। নতুন পাঠক্রম ও নতুন দৃষ্টিভঙ্গি অন্থসরণ করে এই বই লেখার চেষ্টা করা হয়েছে।

ছাত্রদের বোঝার স্থবিধের জন্ম এই বইয়ের ভাষা কথ্য এবং যত দূর সম্ভব পরোক্ষ উক্তিবর্জিত রাখার চেষ্টা করা হয়েছে। এক্সপেরিমেন্টগুলিও প্রাত্যহিক জীবন থেকে নেওয়া। যত দূর সম্ভব বিজ্ঞানের ক্ষেত্রে সর্বাধুনিক মতামতগুলি উপস্থাপিত করা হয়েছে। এককের ক্ষেত্রে আমরা আন্তর্জাতিক ভাবে স্বীকৃত এস আই ইউনিট ব্যবহার করেছি।

বইটি ক্লাসে পড়ানোর উপযোগী হয়েছে কিনা তার বিচার শিক্ষক মহাশয়রাই করবেন। তাঁদের মতামত সাদরে গৃহীত হবে।

কনকাতা ১লা জানুয়ারী ১৯৭৪ শান্তিময় চট্টোপাধ্যায় মনোজ দত্ত অশোক সিংহ



## সূচীপত্র

| 31         | মাপের পদ্ধতি                                  | Con, of W | Ber |
|------------|-----------------------------------------------|-----------|-----|
| 21         | পদার্থ ও শক্তি                                | Con. of W | 16  |
| 91         | অবস্থার রূপান্তর                              |           | ২৩  |
| 8          | স্থিতি ও গতি                                  |           | 0)  |
| <b>a</b> 1 | কাজ, শক্তি ও ক্ষমতা                           | •••       | 8.5 |
| ७।         | তাপ                                           | •••       | 65  |
| 91         | আলোক                                          | /•••      | (v  |
| <b>b</b>   | পদার্থের বিভিন্ন অবস্থা ও তার রূপান্তরের কারণ | •••       | 44  |
| اھ         | ভোত ও রাসায়নিক পরিবর্তন                      | ***       | 90  |
| 201        | त्मीन ७ त्योग                                 |           | 36  |
| 221        | দ্রবণ, দ্রাব ও দ্রাবক                         | ***       | 500 |
| ३२ ।       | প্রতীক চিহ্ন, সংকেত ও সমীকরণ                  |           | 508 |
| 100        | তড়িৎ বিশ্লেষণ                                |           | 225 |
| 186        | অ্যাসিড, ক্ষারক ও লবণ                         |           | 339 |
| 100        | জারণ ও বিজারণ                                 | •••       | 252 |
| १७।        | তরল বায়ু, নাইট্রোজেন চক্র ও কার্বন           |           |     |
| 0          | ভাইঅক্সাইড চক্র                               | •••       | 320 |
| 196        | কয়েকটি গ্যাসের প্রস্তুত প্রণালী ও তাদের ধর্ম | •••       | 303 |
|            | প্রশালা                                       |           |     |
|            | পরিশিষ্ট : বৈজ্ঞানিক শব্দকোষ                  |           | 181 |

## 👆 মাপের পদ্ধতি

প্রতিদিনই বিভিন্ন কারণে নানা ধরনের মাপের প্রয়োজন হয়। জামা তৈরি করাতে জানতে হয় কতটা কাপড় লাগবে, জিনিস কিনতে দরকার হয় ওজনের, ইস্কুলে বা অফিসে যাওয়ার আগে বার বার সময় দেখতে হয়। অনেক সময় বলা হয়, কাপড়টা দেড় হাত লম্বা বা দোকানটা বিশ পা দ্রে। কিন্তু তাতে মাপ ঠিকমত বোঝা যায় না। কার হাত বা কার পায়ের সমান লম্বা ? তেমনি ইট বা পাথর দিয়ে ওজন করা বা আন্দাজে সময় মাপা চলে না। বিজ্ঞান সব সময়েই চায় সঠিক মাপ।

#### রাশি কী?

মাপ শুরু করার আগে জানা দরকার রাশি কাকে বলে। যা মাপা সম্ভব তাকেই রাশি বা সঠিকভাবে ভৌত রাশি বা ফিজিকাল কোয়ান্টিটি বলে। একটা পেন্সিল নাও। দেথ এর দৈর্ঘ্য স্কেল দিয়ে মাপা সম্ভব। দৈর্ঘ্য একটি ভৌত রাশি। তেমনি এর ওজন দাঁড়িপালা বা নিক্তি দিয়ে মাপতে পারবে। ওজনও তাহলে একটি ভৌত রাশি। সময়ও একটি ভৌত রাশি, কারণ সময় ঘড়ি দিয়ে মাপা যায়। পরে এ ধরনের অনেক রাশির নাম শুনতে পাবে।

ভৌত রাশিকে ত্ভাগে ভাগ করা হয়—স্কেলার রাশি ও ভেক্টর রাশি। যে সব রাশির মান আছে কিন্তু মানটি কোন নির্দিষ্ট দিকের উপর নির্ভর করে না তাদের বলা হয় স্কেলার রাশি। যেমন কোন বস্তুর দৈর্ঘ্যা, ক্ষেত্রফল, আয়তন বা ভর জানতে হলে দিকের কোন প্রশ্ন ওঠে না। যাদের মান আছে ও মান নির্দিষ্ট দিকের উপর নির্ভরশীল তাদের বলে ভেক্টর রাশি। কোন চলমান বস্তুর গতিবেগ বলতে বস্তুটি প্রতি সেকেণ্ডে কোন একটি নির্দিষ্ট দিকে কত দূরত্ব যাচ্ছে বোঝায়। তাই গতিবেগ একটি ভেক্টর রাশি। বস্তুর ওজনও একটি ভেক্টর রাশি। কেননা, ওজন বলতে বস্তুর উপর পৃথিবীর কেন্দ্রের ওজনও একটি ভেক্টর রাশি। কেননা, ওজন বলতে বস্তুর উপর পৃথিবীর কেন্দ্রের ভালভাবে জানবার স্থ্যোগ পরে পাবে।

#### মাপের একক

প্রায়ই শুনে থাকবে কোন লোকের উচ্চতা দেড় মিটার বা পেন্সিলটি দশ সেন্টিমিটার। তেমনি এক কিলোগ্রাম মাছ বা পাঁচ কিলোগ্রাম আলু বাড়িতে কিনে আনার কথাও শুনেছ। তাহলে মিটার কী ? কিলোগ্রামই বা কাকে বলে?

যথন পাঁচ কিলোগ্রাম আলুর কথা শুনছ তথন নিশ্চয় বুঝতে পারছ যে কিলোগ্রাম হল ওজনের একটি নির্দিষ্ট মাপ আর আলুর পরিমাণ এই কিলোগ্রাম ওজনের পাঁচ গুণ। দৈর্ঘ্যের বেলায় একই কথা থাটে। তাহলে যে কোন ভৌত রাশির মান জানতে হলে সেই রাশির একটি স্থবিধাজনক নির্দিষ্ট মাপের দরকার এবং সেই স্থবিধাজনক নির্দিষ্ট মাপের দরকার এবং সেই স্থবিধাজনক নির্দিষ্ট মাপকে দেই রাশির একক বা ইউনিট বলে।

#### প্রাথমিক একক ও লব্ধ একক

প্রতিটি রাশিরই একক আছে। দৈর্ঘ্য একটি রাশি যার এককের নাম
মিটার। ভরের একক কিলোগ্রাম। সময়ের একক সেকেণ্ড। পদার্থবিভায়
এমন কয়েক শত রাশি আছে। দেখা গেছে, সমস্ত রাশির একক কয়েকটি
রাশির এককের উপর নির্ভর করে। কিন্তু এই রাশিগুলির একক একে অন্তের
সম্পর্কহীন। এই রাশিগুলির একককে বলা হয় প্রাথমিক একক বা
ফাণ্ডামেন্টাল ইউনিট; দৈর্ঘ্য, ভর ও সময় হচ্ছে প্রাথমিক একক। অন্ত অনেক
রাশির একক এই তিনটি রাশির এককের উপর নির্ভর করে। তাই তাদের
বলে লক্ষা একক বা ভিরাইভ্ড্ইউনিট।

#### প্রাথমিক এককের বিভিন্ন পদ্ধতি

গত কয়েক শত বছর ধরে নানান দেশে ভিন্ন ভিন্ন ধরনের প্রাথমিক একক পদ্ধতির ব্যবহার প্রচলিত আছে। যেমন ইংলণ্ডে ও তার প্রভাবে সমস্ত ব্রিটিশ সাম্রাজ্যে ব্যবহার হত ফুট-পাউণ্ড-দেকেণ্ড বা এফ পি এস পদ্ধতি। আবার ফ্রান্সে এবং অধিকাংশ ইউরোপীয় দেশগুলিতে ব্যবহার হত দেটিমিটার-গ্রাম-দেকেণ্ড বা সি জি এস পদ্ধতি। আমাদের দেশে ব্রিটিশ আমলে ফুট-পাউণ্ড-দেকেণ্ড এবং তার সঙ্গে আমাদের নিজেদের পদ্ধতি বিশেষ করে হাত, কাঠা, সের প্রভৃতি এককগুলি প্রচলিত ছিল। দেশ স্বাধীন হবার পর 1961 সাল

থেকে আমাদের দেশে মাপের জন্ম মেট্রিক পদ্ধতি ও টাকা পয়দার জন্ম দশমিক পদ্ধতি চালু হয়েছে।

- (1) মেট্রক একক পদ্ধতি: ফরাদী বিপ্লবের দময় প্যারি শহরে
  1791 খ্রীস্টাবে লাগ্রাজ, লাপলাদ প্রম্থ কয়েকজন প্রথাত বিজ্ঞানী মাপ
  পদ্ধতির সংস্কারের জন্ম ফ্রেঞ্চ আকাদেমিতে এক প্রস্তাব করেন। সেই প্রস্তাব
  অহ্যায়ী দে দেশে মেট্রিক একক পদ্ধতি চালু হয়। মেট্রিক পদ্ধতিতে দৈর্ঘ্যের
  একক মিটার, ভরের একক গ্রাম, এবং দময়ের একক দেকেও। এই পদ্ধতির
  এককগুলির গুণিতক বা ভগ্নাংশগুলি প্রাথমিক এককের দশগুণ বা দশভাগ।
  হিদাবের স্থবিধার জন্ম এই পদ্ধতি বর্তমানে আন্তর্জাতিক ক্ষেত্রে প্রচলিত।
  মেট্রিক পদ্ধতিতে তিনটি বিশিষ্ট ধারার চলন আছে।
- (i) সি জি এস একক পদ্ধতি—এটি সবচেয়ে প্রচলিত পদ্ধতি।

  সি জি এস পদ্ধতিতে দৈর্ঘ্যের একক সেন্টিমিটার। সেন্টিমিটার এক মিটারের
  একশো ভাগের এক ভাগ। এই পদ্ধতিতে ভরের একক প্রাম ও সময়ের একক
  সেকেও। সি জি এস পদ্ধতিতে তড়িৎবিভায় বিভিন্ন রাশির পরিমাপের জন্ত
  তিনটি ভিন্ন একক প্রচলিত আছে। এগুলি হচ্ছে—(ক) সি জি এস ইলেকট্রো—
  ম্যাগনেটিক একক, (খ) সি জি এস ইলেকট্রোস্ট্যাটিক একক এবং
  (গ) ব্যবহারিক একক বা প্র্যাকটিকাল ইউনিট। একই রাশির পরিমাপের জন্ত
  তিনটি আলাদা একক চালু থাকায় বেশ অস্থবিধার স্প্রি হয়।
- (ii) এম কে এম এ পদ্ধতি বা জর্জি পদ্ধতি—উপরে লিখিত অহবিধা দ্ব করার জন্ম অধ্যাপক জর্জি এক নতুন পদ্ধতির প্রচলন করেন। এই পদ্ধতিকে এম কে এম এ বা জর্জি পদ্ধতি (MKSA বা Georgi unit) বলে। 1938 খ্রীস্টাব্দে এক আন্তর্জাতিক সম্মেলনে এই পদ্ধতি বিজ্ঞানীরা গ্রহণ করেন। এই পদ্ধতিতে দৈর্ঘ্যের একক মিটার, ভরের একক কিলোগ্রাম, সময়ের একক সেকেণ্ড এবং তড়িং প্রবাহের একক আান্সিয়র। সি জি এম ব্যবহারিক পদ্ধতিতে আ্যান্সিয়রের যে মান প্রচলিত ছিল এখানেও সেই মানধ্রা হয়।
- (iii) এস আই একক—এম কে এস এ পদ্ধতিতে ব্যবহৃত এককগুলি যেমন দৈর্ঘ্যের জন্ম মিটার, ভরের জন্ম কিলোগ্রাম, সময়ের জন্ম সেকেও ও তড়িং প্রবাহের জন্ম আম্পিয়র ছাড়া আরও তিনটি রাশির প্রাথমিক এককের

প্রয়োজন হয়—দীপন শক্তির এককের জন্ম ক্যাণ্ডেলা, তাপমাত্রার জন্ম কেলভিন এবং বস্তুর পরিমাণ বোঝাতে মোল। 1967 দালে বিজ্ঞানীদের এক আন্তর্জাতিক দম্মেলনে যে পদ্ধতি দর্বদম্মতিক্রমে গৃহীত হয় তার নাম আন্তর্জাতিক একক পদ্ধতি বা এদ আই একক পদ্ধতি (ফরাদীতে Le Système International d'Unités)। ভারত এই দম্মেলনে অংশগ্রহণ করেছিল। এখনও ভিন্ন ভিন্ন ক্ষেত্রে দবগুলি একক পদ্ধতি ব্যবহার হয়। তবে চেষ্টা হচ্ছে দবদেশেই একেবারে স্কুল থেকে এদ আই একক ব্যবহার করার।

(2) ব্রিটিশ পদ্ধতি বা এফ পি এস পদ্ধতি: এই পদ্ধতিতে দৈর্ঘ্যের একক ফুট, ভরের একক পাউও ও সময়ের একক সেকেও। ইংল্যাও ও অন্ত কয়েকটি দেশে এই পদ্ধতি চলে। আমাদের দেশে বেসরকারী ক্ষেত্রে আংশিকভাবে এই পদ্ধতি চালু আছে।

#### বিভিন্ন পদ্ধতিতে প্ৰাথমিক একক

(1) মেটি ক পদ্ধতি: (i) মিটার—মেট্রিক পদ্ধতিতে দৈর্ঘ্যের একক মিটার। ফরাদী ভাষায় মিটারের অর্থ মাপ। 1791 থাস্টাব্দে ফরাদী আকাদেমির প্রস্তাব অমুযায়ী মিটাবেরপ্রথম সংজ্ঞাদেওয়া হয়। ফ্রান্সেররাজধানী প্যারি শহরের ভিতর দিয়ে যে দ্রাঘিমা রেখা উত্তরমেকর দিকে গিয়েছে, পৃথিবীর বিষুবরেখা থেকে দেই দ্রাঘিমা বরাবর উত্তরমেকতে যেতে যে দূরত্ব অতিক্রম করতে হবে তার এক কোটি ভাগের এক ভাগকে বলা হয় এক মিটার। দৈর্ঘ্যের এই এককের ব্যবহারিক স্থবিধার জন্ম 1799 থ্রীন্টাবে প্র্যাটিনমের একটি প্রামাণিক দণ্ড বা দ্যাণ্ডার্ড তৈরি করা হয়। পরে অবশ্য দেখা যায় যে বিষ্বরেথা থেকে উত্তরমেকর দূরত্ব এই মিটারের এক কোটি গুণের চেয়েও কিছু বেশি। তথন এই ভুল শোধরান আর সম্ভব ছিল না কারণ মিটার ততদিনে আন্তর্জাতিক স্বীকৃতি পেয়ে গেছে। 1875 খ্রীস্টাব্দে ইন্টারন্তাশনাল বারো অফ ওয়েট্স্ এাও মেজার্স্ প্রতিষ্ঠিত হয় প্যারির কাছে সেভরেতে। প্ল্যাটিনম ও ইরিডিয়মের এক সংকর ধাতুর (প্ল্যাটিনম 90% ও ইরিডিয়ম 10%) তৈরি দণ্ডকে বরফের গলনাক্ষে প্রমাণ বায়ুচাপে রেখে তার ছুই প্রান্তের ছুইটি मार्गित मरधात वावधानरक अभाग भिष्ठात हिरमस्य धता हरम्रह । अष्टिह আন্তর্জাতিক প্রমাণ মিটার। দদশু রাষ্ট্রগুলিকে এর এক-একটি নকল

দেওয়া হয়েছে। ভারতের প্রমাণ মিটার নতুন দিল্লীর ত্থাশনাল ফিজিকাল ল্যাবরেটরিতে আছে।

বিজ্ঞানের ক্ষেত্রে অনেক সময় স্ক্রমাণের প্রয়োজন পড়ে। দৈর্ঘ্য কত স্ক্রেভাবে মাপা সন্তব ? স্ক্রমাপের জন্ম মিটারের এক নতুন আন্তর্জাতিক সংজ্ঞা দেওয়া হয়েছে আলোর তরঙ্গদর্ঘ্যের হিদাবে। এই সংজ্ঞা অন্থায়ী 'এক মিটার বায়্শ্ন্য স্থানে 86 পারমাণবিক ভরসংখ্যাসম্পন্ন ক্রিপটন প্রমাণ্র ছটি বিশিষ্ট শক্তিস্তরের মধ্যে বিকিরিত কমলা রশ্মির তরঙ্গ দৈর্ঘ্যের 1 650 763 '73 গুণের সমান'।

(ii) প্রান্স—দি জি এদ পদ্ধতিতে ভরের একক গ্রাম। দেখা গেছে 4°C উফ্ডায় এক ঘন দেটিমিটার জলের ওজন এক গ্রাম। এম কে এদ এ ও এদ আই পদ্ধতিতে ভরের একক কিলোগ্রাম। এক কিলোগ্রাম এক গ্রামের হাজার গুল। কিলোগ্রামের আন্তর্জাতিক মানটি ইন্টারক্তাশনাল ব্যুরো অফ ওয়েটদ আ্যাও মেজার্দের দপ্তরে রাখা আছে। প্রাাটিনম ও ইরিডিয়মের সংকর ধাতু বা স্টেনলেদ স্টীলের তৈরি নকল কিলোগ্রাম ভিন্ন ভিন্ন দেশে রাখা আছে। মূল কিলোগ্রামের সঙ্গে নকলের ভর একেবারে এক। ভুলের পরিমাণ দশ কোটি ভাগের এক ভাগ। ভারতের নকল কিলোগ্রামটি রাখা আছে ক্তাশনাল ফিজিকাল ল্যাব্রেটরিতে। প্রমাণ মিটার ও কিলোগ্রামের ছবি 1.1 চিত্রে দেখান হল।



চিত্ৰ 1.1

(iii) সেকেণ্ড — সময়ের একক সেকেণ্ড। ব্রিটিশ ও মেট্রিক স্বর্ক্ম পদ্ধতিতেই সেকেণ্ড ব্যবহার করা হয়।

দাধারণত এক স্থাস্ত থেকে আর এক স্থাস্ত পর্যন্ত সময়কে বলা হয় এক

দিন। এই দিনকে 24 ভাগ করলে এক ভাগকে বলে ঘণ্টা। এক ঘণ্টার 60 ভাগকে এক মিনিট ও এক মিনিটের 60 ভাগকে এক দেকেণ্ড বলে। এক সেকেণ্ড এক দিনের ৪৪ বৈত্ব অংশ। লক্ষ্য করা গেছে যে বছরের সব দিন সমান হয় না। এই অস্থবিধা দ্ব করার জন্ম 1960 সালে এক আন্তর্জাতিক সম্মেলনে ক্রান্তীয় বছরের হিদাবে সময় গণনার প্রস্তাব নেওয়া হয়। মহাবিষ্ব বিন্দু থেকে নিজ কক্ষপথে যাত্রা করে স্থেরির মহাবিষ্ব বিন্দুতে কিরে আসতে যে সময় লাগে তাকে এক ক্রান্তীয় বছর বলে। এক দেকেণ্ড হচ্ছে এক ক্রান্তীয় বছরের 1/315 569 259 747 অংশ।

1956 সালে পারমাণবিক ঘড়ি আবিষ্কার হয়। এই ঘড়িতে অতি স্ক্ষ্মভাবে সময় জানা যায়। 133 পারমাণবিক ভরসংখ্যাবিশিষ্ট সিজিয়ম-পরমাণু থেকে 9 192 631 770 তরঙ্গ বার হতে যে সময় লাগে তা এক সেকেণ্ডের সমান। এটাই বর্তমানে সেকেণ্ডের স্বীকৃত সংজ্ঞা।

এই বড় বড় সংখাগগুলি মৃথস্থ করার দরকার নেই।

তোমাদের মনে হতে পারে যে এত স্ক্ষভাবে দৈর্ঘ্য বা এত স্ক্ষভাবে সময় মাপার প্রয়োজন কি? সাধারণত আমরা ঘড়িতে এক সেকেণ্ডের কম সময় দেখতে পারি না এবং সাধারণ ক্ষেত্রে মিলিমিটারের ছোট মাপের প্রয়োজন হয় না। কিন্তু বিজ্ঞানের অনেক ক্ষেত্রে অতি স্ক্ষভাবে দৈর্ঘ্য, ভর ও সময়ের মাপের দরকার হয়ে পড়ে। কোন কোন ক্ষেত্রে কোটি কোটি ভাগেরও এক ভাগের সমান স্ক্ষতা প্রয়োজন হয়ে পড়ে। ভেবে দেখ যে সব নভক্ষরা চাঁদে যাতায়াত করেন তাঁদের ক্ষেত্রে সময় বা দ্রত্বের মাপ নিথুঁত হওয়া কত প্রয়োজন। পৃথিবী থেকে চাঁদের দ্রত্ব  $4 \times 10^5 \ \mathrm{km}$ । সেখানে গিয়ে পূর্ব নির্ধারিত সময়ে ফিরে এসে নির্ধারিত স্থানে নামতে হলে নিথুঁত মাপের দরকার বৈকি! মাপ নিথুঁত না হলে তাঁরা পৃথিবীতে নাও ফিরতে পারেন।

আমরা প্রত্যেকেই ভিন্ন ভিন্ন ধরনের ঘড়ি ব্যবহার করি। তার কোনটাই নিভূলি সময় দেয় না। তাই সময় জানবার জন্ম সরকারী ব্যবস্থা আছে। দিল্লীতে ক্যাশনাল ফিজিকাল ল্যাবরেটরিতে যে পারমাণবিক ঘড়ি আছে তা থেকে প্রতিদিন রাত ন'টার সময় রেডিওর মাধ্যমে সংকেত পাঠানো হয়—পিপ্পিপ্পিপ্। ভারতবর্ষের যে কোন স্থান থেকে রেডিও শুনে তোমরা ঘড়ি মিলিয়ে নিতে পার।

- (2) ব্রিটিশ পদ্ধতি: (i) ফুট—ব্রিটশ বা এফ পি এস পদ্ধতিতে দৈর্ঘ্যের একক ফুট। ফুট এক গজের ভিন ভাগের এক ভাগ। লগুনের স্ট্যাগুর্ড ভিপাটমেন্ট অফ দি বোর্ড অফ ট্রেডে 62°F তাপমাত্রায় রাখা একটি ব্রোক্তের তৈরি দণ্ডের ছুই প্রান্তের ছুটি দাগের মধ্যের ব্যবধানকে এক গজ বলা হয়। ছোট বা বড় মাপের জন্ম গজের ভগ্নাংশ বা গুণতকগুলি তোমরা জান এবং দেগুলি মেট্রিক প্রথার মত দশ বা অন্ম কোন নির্দিষ্ট সংখ্যা দিয়ে ভাগ বা গুণ করে পাওয়া যায় না। মেট্রিক প্রথার দঙ্গে ইঞ্চি বা ফুটের সম্পর্ক: 1 ইঞ্চি=2.54 দেন্টিমিটার; 1 ফুট=30.48 দেন্টিমিটার।
- (ii) পাউণ্ড এফ পি এস পদ্ধতিতে ভরের একক পাউণ্ড। প্রমাণ পাউণ্ড প্ল্যাটিনমের তৈরি একটি স্তম্ভ, লণ্ডনের স্ট্যাণ্ডার্ড ডিপার্টমেণ্ট অফ দি বোর্ড অফ ট্রেডে রাথা আছে। পাউণ্ডের ছোট বড় মাপ ভোমাদের নিশ্চয় জানা আছে। মনে রেথো 1 পাউণ্ড = 453.59 গ্রাম।
- (iii) সেকেণ্ড—ব্রিটিশ ও মেট্রিক উভয় পদ্ধতিতেই সময়ের একক সেকেণ্ড।
  রাশি ও প্রাথমিক এককের প্রতীক
  বিভিন্ন পদ্ধতিতে ব্যবহৃত বাশি ও প্রাথমিক এককের প্রতীক চিহ্ন নিচে দেওয়া
  হল। ভৌত রাশির প্রতীক লেখা হয় ইটালিকদ হরফে (হেলান) এবং একক
  রোমান হরফে (খাড়া)।

| রাশি                                   | রাশির<br>প্রতীক | দি জি এদ |            | এম কে এস এ |                  | এদ আই |                |        |
|----------------------------------------|-----------------|----------|------------|------------|------------------|-------|----------------|--------|
| -6.5                                   | চিহ্ন           | একক      | এককের      | একক        | এককে             | র     | একক            | এককের  |
|                                        |                 |          | প্রতীক     |            | প্রতীক           |       |                | প্রতীক |
|                                        |                 |          | চিহ্ন      |            | চিহ্ন            |       |                | চিহ্ন  |
| दिन्धा                                 | l               | সেন্টি   | बेहोत्र cm | য়ি        | াটার             | m     | মিটার          | m      |
| ভর                                     | m               | গ্ৰাম    |            | F          | ্<br>লাগ্ৰাম     | kg    | কিলোগ্ৰা:      | ų kg   |
| সময়                                   | t               | দেকে     | s s        | CE         | কেণ্ড            | S     | <b>গেকেণ্ড</b> | S      |
| তড়িং                                  | প্ৰবাহ I        |          |            | অ্য        | <b>াম্পি</b> য়র | A     | অ্যাম্পিয়র    | A      |
| ভাপমাত্রা <i>T</i> কেলভিন K            |                 |          |            |            |                  |       |                |        |
| দীপনশক্তি 1 <sub>0</sub> ক্যাণ্ডেলা cd |                 |          |            |            |                  |       | cd             |        |
|                                        | পরিমাণ          | n        |            |            | -                |       | মোল            | mol    |

ভড়িৎ প্রবাহ, দীপনশক্তি ও বস্তব পরিমাণের কথা তোমরা পরে জানবে। তাপমাত্রার বিষয় জান। লক্ষ্য কর—(1) কেলভিনের প্রতীক K হবে, 'K হবে না। তাপমাত্রার একক হিসেবে যদিও বিজ্ঞানীরা কেলভিন ব্যবহার পছন্দ করেন তবু এখনও ভিগ্রি দেলসিয়াস (°C) সর্বত্র প্রচলিত। আবার ভাক্তারদের থার্মোমিটারে ভিগ্রি ফারেনহাইট (°F) প্রচলিত। মনে রেথো ভিগ্রি সেন্টিগ্রেড কথাটি এখন আর চলে না। (2) সেন্টিমিটার, মিলিমিটার প্রভৃতির প্রতাক cm, mm ইত্যাদি হবে, c. m বা m. m হবে না। (3) কোন এককের বহুবচনে s যোগ হবে না। অর্থাৎ cms, mms, kgs হবে না।

#### মেট্রিক পদ্ধভিতে ভগ্নাংশ ও গুণিভক

মেট্রক পদ্ধতিতে কোন এককের গুণিতক ও ভগ্নাংশগুলিকে দশের ঘাতে দেখান হয়। নিচে গুণিতক ও ভগ্নাংশগুলি দেখান হল। মূল এককের নামের আগে এগুলি বদিয়ে এককটি প্রকাশ করা হয়, যথা—সেটিমিটার, সেণ্টিগ্রাম বা মিলিমিটার, মিলিগ্রাম ইত্যাদি।

|               | প্রতীক | দশের ঘাতে       | গুণিতক বা প্রতীক    | দশের ঘাতে |
|---------------|--------|-----------------|---------------------|-----------|
| ভগ্নাশের নাম  |        | সংখ্যাটি        | ভগ্নাংশের নাম       | সংখ্যাটি  |
| টেরা (tera)   | T      | 1012            | সেকি (centi) c      | 10-2      |
| গিগা (giga)   | G      | 109             | মিলি (mili) m       | 10-8      |
| মেগা (mega)   | M      | 10 <sup>6</sup> | মাইকো (micro) $\mu$ | 10-6      |
| কিলো (kilo)   | k      | 10³             | নানো (nano) n       | 10-9      |
| হেক্টো (hecto | ) h    | 10 <sup>3</sup> | পিকো (pico) p       | 10-12     |
| ডেকা (deca)   | da     | 10              | ফেমটো (femto) f     | 10-15     |
| ডেদি (deci)   | d      | 10-1            | অটো (atto) a        | 10-18     |

#### সাধারণ ক্ষেল ও তার ব্যবহার

মিটার স্কেল তোমরা দেখেছ। এবার স্কেল নিয়ে কেমন করে মাপবে দেখ। যে বস্তুটি মাপবে তার এক প্রান্ত স্কেলটির শৃত্য দাগের দঙ্গে মেলাও ও স্কেলটিকে দোজা ভাবে বস্তুটির গায়ে বসাও। বস্তুর অত্য প্রান্তুটি স্কেলের কোন দাগের দঙ্গে মিলেছে দেখ। ধর, দশটি বড় দাগ পার হয়ে চারটি ছোট দাগের সঙ্গে মিলেছে। বস্তুটির দৈর্ঘ্য হল 10 cm ও 4 mm অর্থাৎ 10.4 cm।

স্থেলের চেয়ে বড় দৈর্ঘ্য মাপার জন্ম মেজারিং টেপ, দার্ভেয়ারের চেন প্রভৃতি ব্যবহার করা হয়। দর্জিরা কাপড় মাপতে ফিতে ব্যবহার করেন। ভোমরা নিশ্চয়ই দর্জির মাপবার ফিতে দেখেছ।

#### মাপের সম্ভাব্য ভুল

যে কোন মাপে ভুল থাকা স্বাভাবিক। যে স্কেলটি নিয়ে তুমি মাপ নাও,
দীর্ঘদিনের ব্যবহারে তার ছই প্রান্ত ক্ষয়ে গেলে শৃত্য দাগটি বোঝা যায় না।
ফলে মাপে ভুল হবে। আবার স্কেলটির আঁকা দাগগুলো সমান নাও হতে পারে।
সেক্ষেত্রে যে কোন মাপে ভুল হবে। এই ধরনের ভুলকে যান্ত্রিক ক্রুটি বা
ইন্ট্রুমেন্টাল এরর বলে।

স্কেলটি বস্তুটির গায়ে ঠিকভাবে না বসালে ভুল মাপ আদবে। যে কোন বস্তুর দৈর্ঘ্য মাপতে হলে স্কেলের এক প্রাস্ত বস্তুটির প্রাস্তের সঙ্গে মিলিয়ে স্কেলট



हिज 1.2

বস্তুর দৈর্ঘ্য বরাবর বদাতে হয় (চিত্র 1.2)। এভাবে না বদিয়ে স্কেলটি

ইচ্ছামত বদালে মাপে ভুল হবে।

স্কেলে রিডিং নেবার সময় চোথ দাগের ঠিক উপরে রাথবে। না রাথলে ভূল হতে পারে (চিত্র 1·3)। এই ভূল দ্র করার জন্ম অনেক স্কেলের এক প্রাস্ত ক্রমশ ঢালু করা হয়। এতে মাপবার বস্তুটির তল ও স্কেলের দাগ অনেকটা কাছে এদে পড়ে। ফলে



চিত্ৰ 1.3

ভুল হওয়ার সন্তাবনা কমে যায়। এই ধরনের স্কেলকে বেভেল্ড ভেল বলে।

মেজারিং দিলিতার বা মাপবার চোঙে জলের উচ্চতা মাপার সময় ভুল হতে



পাবে ( চিত্র 1.4 )। নিশ্চয় লক্ষা করেছ, জলের উপর তল অবতল। কেন অবতল পরে জানবে। জলের উচ্চতা মাপার সময় জলের নিম্নভাগের সক্ষে তোমার চোথ একই তলে রাথবে। পারদের বেলায় উন্টো। ব্যারোমিটারে পারদের উচ্চতা মাপার সময় পারদের উত্তল তলের স্বচেয়ে উচ্চু অংশের

মাপ নিতে হবে।

শেষের ভুলগুলি হয় অসাবধানতায়। এগুলিকে ব্যক্তিগত ক্রটি বা পার্শোনাল এরর বলে।

এই ব্যক্তিগত ভুল সকলেরই হতে পারে। এইজন্ম যে কোন মাপ একবার না নিয়ে বেশ কয়েকবার নিয়ে তাদের গড় মান অথবা আভারেজ বা মীন ভ্যালু নেওয়া ভাল। যেমন ধর, কোন রিডিং পাঁচবার নিয়েছ। দব কয়টি যোগফলকে পাঁচ দিয়ে ভাগ করলে গড় মান পাবে।

ভূল এড়াবার আর একটি উপায় মাপ নেওয়ার আগে চোথের আন্দাজে
মাপ সম্বন্ধে একটি ধারণা করে নেওয়া। ধর, একটি বই-এর দৈর্ঘ্য মাপবে।
মাপার আগে কত সেন্টিমিটার মাপ হতে পারে চোথের আন্দাজে ধারণা করে
নাও। পরে স্কেল বসিয়ে মেপে নাও। মাপের সৃঙ্গে তোমার ধারণার তফাৎ
কতটা থেয়াল রাখবে।

#### ক্ষেত্রফলের পরিমাপ

ক্ষেত্রফল মাপার জন্ম আলাদা কোন যন্ত্র সাধারণত ব্যবহার করা হয় না। ক্ষেত্রটির দৈর্ঘ্য, প্রস্থ বা উচ্চতা, গোলক বা শংকুর ক্ষেত্রে ব্যাদ ইত্যাদি মাপা হয় এবং জ্যামিতির স্ত্রে অন্থযায়ী ক্ষেত্রফল বার করা হয়।

করেকটি স্থম ক্ষেত্রের ক্ষেত্রফল দেওয়া হল—বর্গক্ষেত্র=( দৈর্ঘ্য $)^2$ ; আয়তক্ষেত্র= দৈর্ঘ্য $\times$  প্রস্থ ; ত্রিভূজ $=\frac{1}{2}$  ভূমি $\times$  উচ্চতা ; বৃত্ত $=\frac{\pi}{4}$  (ব্যাস $)^2$ , ঢোঙ $=\pi$  ব্যাস $\times$  উচ্চতা, গোলক $=\pi$  ( ব্যাস $)^2$ ।

ক্ষেত্রফল একটি ভৌত রাশি। A অথবা S প্রতীক চিহ্ন দিয়ে প্রকাশ করা হয়। ক্ষেত্রফলের একক হবে  $m^2$ ,  $cm^2$  ইত্যাদি দৈর্ঘ্যের এককের বর্গ। ক্ষেত্রফলের এককগুলির ক্ষেত্রে অনেক সময় একক চিহ্নের আগে sq বদিয়ে লেখা হয়, যেমন  $m^2$  একককে sq m লেখা হয়।

অসম ক্ষেত্রের বেলায় ক্ষেত্রটিকে কয়েকটি বর্গক্ষেত্র বা আয়তক্ষেত্র বা ত্রিভুজ ইত্যাদিতে ভাগ করে প্রত্যেকটির ক্ষেত্রফল যোগ করে পেতে হয়।

কোন ছোটথাট অসম আকৃতির ক্ষেত্রফল মাপতে হলে ছক কাগজের (স্থোএর পেপার) সাহায্যে মাপা হয়। মনে কর একটি গাছের পাতার

ক্ষেত্র মাপবে। একটি ছক কাগজের উপর পাতাটি রেথে তার বাইরের দীমারেথা টেনে নাও (চিত্র 1.5)। ছক কাগজের একটি ছোট ঘরের ক্ষেত্রফল দেথে মোট কয়টি পূর্ণ ঘর আছে গুণে নাও। একটি ছোট ঘরের ক্ষেত্রফল দাধারণত 1 mm² হয়। পরে আংশিক পূর্ণ কতগুলি ঘর আছে হিদেব কর। তুটি অর্ধেক পূর্ণ ঘরের জন্ম একটি পূর্ণ ঘর এবং এক তৃতীয়াংশগুলির বেলায় তিনটি ঘরে এক ঘর নাও এবং



চিত্ৰ 1.5

মোট পূর্ণ ঘর কয়টি হবে দেখ। আরও ছোট ঘর আন্দাজে ধরতে হবে।
এইভাবে পাওয়া মোট পূর্ণ ঘরগুলির ক্ষেত্রফল হচ্ছে পাতাটির ক্ষেত্রফল।
এইভাবে মাপলে নিভূলি মাপ পাবে না। অসম ক্ষেত্রের ক্ষেত্রফল মাপার জন্ত প্রেনিমিটার নামক যন্ত্র গবেষণাগারে ব্যবহার হয়।

#### আয়ভনের পরিমাপ

স্থম বস্তুর আয়তন মাণার জন্ম দৈর্ঘ্য, প্রস্থ, উচ্চতা, ব্যাদ ইত্যাদি মেপে জ্যামিতিক স্থ্র ব্যবহার করা হয়। যেমন ঘনকের আয়তন যে কোন বস্তুর ( দৈর্ঘ্য ) $^3$ । আয়তাকার ঘরের আয়তন দৈর্ঘ্য imesপ্রস্থ imesউচ্চতা। একটি চোঙের আয়তন  $\pi/4$  (ব্যাস) $^2$  imesউচ্চতা এবং একটি গোলকের আয়তন  $\pi/6$  imes(ব্যাস) $^3$ ।

তরল পদার্থের আয়তন মাপের জন্ম দাগ কাটা মাপবার চোঙ বা মেজারিং দিলিগুার ব্যবহার করা হয়। এর প্রতিটি ঘরের জন্ম নির্দিষ্ট আয়তন cc বা ষন দেটিমিটারের দাগ থাকে।

আয়তন একটি ভৌত রাশি, V অক্ষর দিয়ে প্রকাশ করা হয়। আয়তনের সবচেয়ে প্রচলিত একক ঘন সেণ্টিমিটার, প্রতীক cc। তরলের আয়তন মাপার জন্ম আর একটি প্রচলিত এককের নাম লিটার, প্রতীক 1 অক্ষর।

#### 1 निर्धेष = 1000 cc

আন্তর্জাতিক সংজ্ঞা অহুযায়ী এক লিটার হচ্ছে প্রমাণ চাপে ও 4°C উষ্ণতায় 1kg বিশুদ্ধ জলের আয়তনের সমান। দেখাগিয়েছে এই আয়তন 1000.028 cc।



চিত্ৰ 1.6

এই তারতম্য এতই কম যে দাধারণ ব্যবহারে এক লিটার 1000 ccর দমান ধরা যায়। এক ccকে অনেক দময় এক মিলিলিটার বা ml লেখা হয় তরল মাপের দময়। বড় মাপের জন্ম এক ঘন মিটার ব্যবহার করা হয়।  $1m^3 = 10^6$ cc। ব্রিটিশ পদ্ধতিতে আয়তনের এককের নাম গ্যালন। 1 গ্যালন হচ্ছে  $62^\circ F$  তাপ-মাত্রায় 10 পাউও বিশুদ্ধ জলের আয়তন। 1 গ্যালন=4.546 লিটার।

দিতীয় মহাযুদ্ধের পর থেকে আর একটি একক ব্যবহার হচ্ছে—কিউসেক। প্রতি দেকেণ্ডে এক ঘন-ফুট তরল-প্রবাহকে কিউসেক বলে। কিউসেক আয়তনের একক নয়।

ছোটথাট অদম বস্তুর আয়তন মাপবার চোডের সাহায্যে মাপা যায়। বস্তুটি যদি চোডের মুথের চেয়ে ছোট হয় তবে কোন চোঙে কিছু জল নিয়ে

জলের আয়তন দেখ। পরে বস্তটি জলে ডুবিয়ে জলের আয়তন দেখ (চিত্র 1.6)।
ছইটি আয়তনের বিয়োগফল হচ্ছে বস্তটির আয়তন।

যদি বস্তুটি চোঙের চেয়ে বড় হয় তবে একটি বড় থালার উপর একটি কানায় কানায় ভর্তি জলপূর্ণ পাত্র নাও। বস্তুটি জলপূর্ণ পাত্রে ডুবিয়ে রাথ। যে পরিমাণ জল উপচে থালায় পড়বে তার আয়তন মেজারিং চোঙ-এর সাহায্যে মাপ। এই আয়তনই বস্তুটির আয়তন।

#### ভর ও ওজন পরিমাপক যন্ত্র

দাঁড়িপালা: কোন বস্তুর ভর মাপতে যে যত্ত্বের প্রয়োজন হয় তাকে বলে দাঁড়িপালা। হাটে, বাজারে, মৃদির দোকানে দাঁড়িপালা ব্যবহার করা হয়।

দাঁড়িপালার প্রধান অংশ একটা কাঠের দণ্ড AB ( চিত্র 1.7 )। দণ্ডটির ঠিক মাঝখানে Oতে একটি এবং A ও B ছই প্রান্তে আরও ছটি ফুটো থাকে। O বিন্দুতে একটা দড়ি লাগান থাকে যেটা ধরে দাঁড়িপালা ঝুলিয়ে রাখা হয়। AO এবং BO দৈর্ঘ্যকে যন্ত্রটির বাহু বলা হয়। অন্ত ঘটো প্রান্ত A এবং B থেকেটিনের বা বেতের ঘটো সমান ভরের পালা ঝোলান থাকে। প্রথমে O বিন্দুতে লাগান দড়ি ধরে দণ্ডটি অহুভূমিক থাকে কিনা দেখতে হয়। পরে একটি পালায় বস্তুটি এবং অন্তটিতে বাটথারা চাপিয়ে দণ্ডটিকে অহুভূমিক করতে হয়। বাটথারা দণ্ডটিকে O বিন্দুকে কেন্দ্র করে যেদিক ঘোরাবার চেষ্টা করে, বস্তুটিও O বিন্দুকে কেন্দ্র করে দণ্ডটিকে উল্টো দিকে ঘোরাবার চেষ্টা করে।



দণ্ডটির অহভূমিক অবস্থায়—

বাটথারার ওজন × AO = বস্তর ওজন × BO।

এখন AO এবং BOর দৈর্ঘ্য সমান হলে বস্তুর ওজন বাটথারার ওজনের সমান হবে। নিশ্চয়ই বুঝতে পারছ দাঁড়িপাল্লায় যথন কোন বস্তুর ওজন নেওয়া হয় তথন প্রমাণ বাটথারার ভরের সঙ্গে বস্তুর ভরের তুলনা করা হয়।

যদি তুলাদণ্ডের বাহুর দৈর্ঘ্য সমান না হয় তবে কি হবে ? ধর AO এবং BO সমান নয়। মনে কর, AO বড়। উপরের সমীকরণ থেকে দেখতে পাবে এক্ষেত্রে ওজনে পাওয়া বস্তু প্রকৃত ওজনের চেয়ে বেশি। যদি AO বাহু BO বাহুর চেয়ে ছোট হয় তবে কি হবে বলত ?

ফিজিকাল ব্যালেন্স: গবেষণাগারে ভর মাপবার জন্ম যে তুলাযন্ত্র বা ফিজিকাল ব্যালেন্স ব্যবহার হয় তার ছবি 1.8 চিত্রে দেওয়া হল।

একটি তক্তার উপর কাচের বাক্দের মধ্যে যন্ত্রটি ঢাকা থাকে। তক্তাটি তিনটি জুর উপর বদান হয়। তক্তাটির ঠিক মাঝথানে একটি ফাপা স্তম্ভ আছে। তক্তাটির দামনে আটকানো একটি চাকতি ঘুরিয়ে একটি ধাতুদওকে এই ফাঁকা স্তম্ভের ভিতর দিয়ে ওঠানামা করান যায়। দওটির ঠিক মাঝথানে একটি ক্রুবধার ত্রিভুজ বা নাইফ এজ এমনভাবে রাথা আছে যেন ত্রিভুজটির শীর্ষরেথা





চিত্ৰ 1.8

দণ্ডটির উপর থাকে। এই ত্রিভুজের সঙ্গে একটি দণ্ড AB সমান্তরালভাবে রাথা আছে। এই দণ্ডটিকে বলে তুলাদণ্ড বা ব্যালাম্স বীম। ত্রিভুজটি ABর ঠিক মাঝথানে এমনভাবে আটকানো আছে যেন দণ্ডটির আলম্ব ত্রিভুজের শীর্ষরেথার উপর থাকে। ভারদামা অবস্থায় দণ্ডটি অহুভূমিক থাকবে। চাকতি ঘ্রিয়ে দণ্ডটি উপরে তুললে ক্ষরধার ত্রিভুজ সমেত তুলাদণ্ডটি আলগা হয়ে দণ্ডের উপর ভর রেখে দোল থাবে অথবা সমান্তরাল হয়ে থাকবে। তুলাদণ্ডটির ছই প্রান্তে ফুটো তুলাপাত্র লাগান থাকে। বাঁ দিকের পাত্রে যে বস্তুটির ভর মাপতে হবে সেটি এবং ডানদিকে জানা ভরগুলি রাখতে হয়। তুলাদণ্ডের ঠিক মাঝখানে স্ট্চক বা পয়েন্টার লাগান থাকে। স্ট্চকের নিচের অংশটি তুলাদণ্ডের আলগা অবস্থায় একটি স্কেলের উপর যাওয়া আসা করতে পারে। যদি স্টকটি এই অবস্থায় ঠিক মাঝের দাগের উপর থাকে বা তার ছইপাশে সমান সংখ্যক ঘর বরাবর দোল থায় তবে জানবে তুদিকে ভর সমান। তুলাদণ্ডের মাঝথানে স্চকের একটু পাশে একটি ওলন দড়ি বা প্লাম্ব লাইন ঝোলান থাকে। ওলন দড়ির নিচে উপর দিকে মৃথ করে আর একটি কাঁটা স্তস্তটির গায়ে শক্তভাবে আটকান থাকে। কাঠের নিচের জুগুলির সাহায্যে এই কাঁটার সঙ্গে ওলন দড়ির মৃথ মিলিয়ে নিতে হয়। নতুবা স্থচক কাঁটাটি স্কেলের উপর স্বাধীনভাবে দোল থেতে পারে না। বাইরের বাতাদে যাতে স্চকটি নড়ে মাপে ভুল না আদে দেজতা যন্ত্রটি কাচের বাক্সে বদান থাকে। ভর তুলনা করার জন্ত ওজনের বাক্স বা ওয়েট বক্স পাওয়া যায় ( চিত্র 1.8 )। এই বাক্সে বিভিন্ন মাপের ওজন থাকে। সাধারণ বাক্সে সর্বোচ্চ ওজন হচ্ছে 100 g। গ্রামের ভগ্নংশ ওজনও থাকে। অনেক হুবেদী তুলাযন্ত্রে রাইডার ব্যবহার করা হয়। ওজনগুলির গায়ে যাতে ময়লা না লাগে সেজন্ত একটি চিমটার সাহায্যে ওজনগুলি নাড়া-চাডা করতে হয়।

তোমরা দেখেছ সাধারণ দাঁড়িপালায় ওজন করার সময় বাঁদিকের পালায় বাটথারা রেথে ডানদিকে বস্তু কমিয়ে বা বাড়িয়ে ওজন করা হয়। ফিজিকাল ব্যালেন্দে বাঁদিকের তুলাপাত্রে বস্তু রেথে ডানদিকের তুলাপাত্রে বাটথারা বাড়িয়ে বা কমিয়ে ওজন নিতে হয়। কারণ এক্ষেত্রে বস্তুটির ওজন নির্দিষ্ট। বাঁ দিকে বস্তু ও ডান দিকে বাটথারা রেথে চাকতি ঘ্রিয়ে দওটিকে উপরে তুললে স্চকটি স্কেলের একস্থানে স্থির থাকে অথবা দোল থেতে থাকে। স্চকটি যদি স্কেলের ঠিক মাঝখানে থাকে অথবা তুইপাশে সমান সংখ্যক ঘর বরাবর দোল থায় তবে বস্তুর ওজন ডান দিকের তুলাপাত্রে রাখা বাটথারার ওজনের সমান।

## সময়ের পরিমাপ

কোন ঘটনা নির্দিষ্ট সময়ের ব্যবধানে ঘটলে এই সময়ের অন্তরের দাহায্যে সময় মাপা যায়।

সময় মাপের সবচেয়ে পুরনো ঘড়ি ক্র্য। পৃথিবীর আবর্তনের জন্ত স্থাৰ্থৰ উদয় ও অন্তেৰ মধ্যবৰ্তী সময়ের ব্যবধান জেনে সময় মাপা অতি প্রাচীনকালে প্রচলিত ছিল। তথনকার দিনে সুর্যের উদয় ও অস্তের মধাবর্তী সময়কে দিন এবং অন্ত ও উদয়ের মধাবর্তী সময়কে রাত্রি বলা হত। পরবর্তীকালে এক সূর্যান্ত থেকে পরবর্তী স্থান্তের মধ্যবর্তী সময়কে বলা হত দিন। সময় মাপার যন্ত্রকে বলা হত তুর্ঘ ঘড়ি বা সান ডায়াল। একটা গোলাকার বৃত্তের মাঝখানে কেন্দ্র থেকে বৃত্ত রেথা পর্যন্ত বিস্তৃত একটি ত্রিভুজাকার অস্বচ্ছ পাত রাথা হত। এই পাতের ছায়া দেখে সময় নির্ণয় করা হত। বুত্ত রেথার উপর সময় অহুযায়ী দাগ কাটা থাকত। সামাদের দেশে প্রাচীন কালে সূর্য ঘড়ি ব্যবহার হত। দিল্লি এবং জয়পুরে যে যন্তর মন্তর আছে তাতে সূর্য ঘড়ি দেখতে পাবে। আকাশে নক্ষত্রের অবস্থান দেখেও সময় নির্ণয় করা হত। মিশরীরা এবং গ্রীনল্যাণ্ডের এন্ধিমোরা জোয়ার ও ভাটার মধ্যবর্তী সময়ের ব্যবধান দেখে সময় নির্ণয় করত। তোমরা জল



हिंख 1. 9

ঘড়ির কথাও শুনে থাকবে। মুঘল আমলে আমাদের দেশে জল ঘড়ির চলন ছিল। আজকাল অবশ্য সম্পূর্ণ নতুন ধরনের ঘড়ি ব্যবহার হয়। অনেক দেওয়াল ঘড়িতে একটা দণ্ড সমেত চাকতি তুলতে দেখে থাকবে। একে বলে দোলক বা পেণ্ড্লাম। দোলকের ব্যবহার চালু করেন গ্যালিলিও। তিনি এক দিন গির্জেয় ঝোলান ঝাড়লগুনকে ত্লতে দেখে লক্ষ্য করেন যে এর দোলন

कान वहनाय ना । जिनि निष्क्रत नाष्ट्रीत व्यन्मतम्त्र मत्त्र भिनित्य तहर्थन अकिषिक থেকে আর একদিক পর্যন্ত যাওয়ার সময়ের অন্তর একই থাকে। তোমরা

পরীক্ষা করে দেখতে পারো একটি স্থতোর মৃথে ঢিল বেঁধে। যদি স্থতো ও ঢিলের মাঝথান পর্যন্ত দ্রত্ব 99'4 cm হয় তবে ঢিলটির এক প্রান্ত থেকে অন্ত প্রান্তে যেতে এক দেকেও সময় লাগবে। আমরা যে দব ঘড়ি ব্যবহার করি দবই প্রিং দিয়ে একটি চাকা দোলান হয়। গবেষণাগারে সময়ের অন্তর মাপার বিশেষ ধরনের ঘড়ি ব্যবহার হয়, তাদের বলে দ্টপ ঘড়ি। এই ঘড়ি ইচ্ছামত চালান বা বন্ধ করা যায়। তু রকমের দ্টপ ঘড়ি আছে—দ্টপ ক্রক ও দ্টপওয়াচ (চিত্র 1.9)। তু রকমের ঘড়িতেই ঘটি কাঁটা থাকে—বড়টি দেকেও মাপার জন্ত, ছোটটি মিনিটের মাপের জন্ত। ইচ্ছামত চালান বা বন্ধ করার জন্ত দ্টপ ওয়াচে একটি নব ও দ্টপ ক্লকে একটি দও থাকে।

সময়ের মান অতি স্ক্ষভাবে মাপতে হলে আজকাল পারমাণবিক ঘড়ি ব্যবহার হয়। আমাদের দেশেও এই ধরনের ঘড়ি আছে।

## ঽ পদার্থ ও শক্তি

#### পদার্থ

আমাদের চারপাশে কত বকমের জিনিদ। তাদের আকৃতি, প্রকৃতি, গঠন ও ধর্মও নানা বকমের। কোনটা শক্ত, কোনটা আবার গ্যাদীয়। তাদের গন্ধ, বঙ, স্বাদও বিভিন্ন। কোনটা জড় আবার কোনটা জীবন্ত। এই পৃথিবীর জড় ও জীব দকল বস্তকেই আমরা ইন্দ্রিয়ের দাহায্যে অন্তব করতে পারি। দকল বস্তুই কিছু জায়গা জুড়ে আছে এবং দকলেরই ওজন আছে—যত কম বা যত বেশিই হোক না কেন।

বস্তুর জড়তা কাকে বলে তোমরা পড়েছ। স্থির বস্তু চিরদিনই স্থির থাকে এবং চলমান বস্তু চিরদিনই চলতে থাকবে যদি জমি বা বাতাসের ঘর্ষণ না থাকে। এই অবস্থার পরিবর্তন করতে হলে বলের প্রয়োজন। বস্তুর নিজের অবস্থাতে থাকতে চাওয়ার ধর্মকে জড়তা বলে।

ষে দব বস্তকে আমরা ইন্দ্রিয়ের সাহায্যে অন্থভব করতে পারি, যারা কিছু স্থান অধিকার করে আছে এবং যাদের ওজন ও জড়তা আছে তাদের পদার্থ বলে।

#### লক্তি

কাজ করা কাকে বলে তোমরা পড়েছ। শুধু জীব নয় জড় বস্তুও কাজ করতে সক্ষম। যে কোন বস্তুর কাজ করার সামর্থ্যকে বলে শক্তি। শক্তি বস্তুর সঙ্গে যুক্ত থেকে তাদের ক্রিয়াকলাপকে নিয়ন্ত্রিত করে।

वश्च ७ मिक्क এই छ्टेस्स्र अक्षाम्रम् ट्राट्स भार्थ विकान।

#### ভর ও ভার

কোন বস্তুর ভর ও ভার এক জিনিস নয়। কোন বস্তুতে জড়তার মোট পরিমাণকে বলে তার ভর, কিন্তু সেই বস্তুকে পৃথিবী যে বল দিয়ে আকর্ষণ করে তাকে বলে তার ভার। ভর স্কেলার রাশি, ভার ভেক্টর রাশি। ভার পৃথিবীর বিভিন্ন স্থানে ভিন্ন হতে পারে, কিন্তু ভর অপরিবর্তিত থাকে। পৃথিবী থেকে দূরে যেতে থাকলে অভিকর্ষ টান কমতে থাকে। তথন নভশ্চরদের ভার বা ওজন কমতে থাকে। কিন্তু তাদের ভর অপরিবর্তিত থাকে। ভর যে কোন বস্তুর মৌলিক ধর্ম।

পরে জানতে পারবে বস্তব ভবও অপরিবর্তিত থাকে না। কোন চলমান বস্তব বেগ আলোর গতিবেগের কাছাকাছি হলে তার ভর বৃদ্ধি হয়—একথা আইন-ফাইন প্রথম উপলব্ধি করেন এবং তার জন্ম একটি স্থ্র তৈরি করেন। স্ত্রটি যে ঠিক সেটা পরে পরীক্ষায় প্রমাণ হয়েছে।

সাধারণ দাঁড়িপালা বা স্প্রিং তুলা দিয়ে বস্ত ওজন করা হয়। দাঁড়ি-পালায় যে বস্তুটির ওজন নেবে তার ভর, বাটখারা অর্থাৎ আর একটি বস্তুর নির্দিষ্ট ভরের দঙ্গে তুলনা করা হয়। দাঁড়িপালায় আদলে ভর মাপা হয়। স্প্রিং তুলার নিচের আংটায় বস্তুটিকে ঝুলিয়ে দিলে পৃথিবীর আকর্ষণী বল স্রিংটিতে যে প্রসারণ স্বষ্টি করে তাই বস্তুটির ওদন। স্থতরাং স্প্রিং তুলায় তোমরা প্রকৃত ওজন মাপতে পার। স্প্রিং তুলা সম্বন্ধে ভালভাবে পরে পড়বে। বস্তুর ওজন অভিকর্ষজ ত্বরণের উপর নির্ভর করে। কোন স্থানে অভিকর্ষজ ত্ববণের মান সেই স্থান থেকে পৃথিবীর কেন্দ্রের দূরত্বের বর্গের ব্যাস্তাহ্নপাতিক। কিন্তু ভূপৃষ্ঠ থেকে পৃথিবীর কেন্দ্রের দূরত্ব সব জায়গায় সমান নয়। স্থতরাং কোন বস্তুর ভর এক হলেও সর্বত্র ভার ওজন नमान रूप ना। मृद्र वाष्ट्रल ७ जन करम आंत्र मृद्र कमरल ७ जन वार्ष । পাহাড়ের উপর বস্তুর ওজন ভূপৃষ্ঠের ওজনের চেয়ে কম। আবার মেরু অঞ্চলে বস্তুর ওজন বিষুব অঞ্চলের ওজনের চেয়ে বেশি। কোন বস্তুর উত্তর মেক্ততে ওজন 1 kg হলে মাল্রাজে ওজন হবে 0.995 kg অর্থাৎ উত্তর মেরুর ওজনের চেয়ে কম কারণ মাজাজ বিষুব অঞ্লে অবস্থিত। চাঁদের ভর পৃথিবীর ভরের প্রায় এক ষষ্ঠাংশ। তাই যে কোন বস্তুর ওজন চাঁদে মাপলে পৃথিবীতে ঐ বস্তুর ওজনের প্রায় ছয় ভাগের এক ভাগ দেখাবে।

#### শক্তির বিভিন্ন রূপ ও তাদের রূপান্তর

শক্তির কথা তোমরা আগেই পড়েছ। শক্তির কয়েকটি ভিন্ন রূপের কথাও তোমরা জান। সাধারণত নিম্নলিথিত রূপে শক্তির প্রকাশ পেতে পারে:

- (ক) যান্ত্ৰিক শক্তি, (থ) তাপ শক্তি, (গ) বিকিরণ শক্তি, (ঘ) শব্দ শক্তি,
- (ঙ) চুম্বক শক্তি, (চ) বিহাৎ শক্তি।

এছাড়াও রাসায়নিক শক্তি, পারমাণবিক শক্তি ইত্যাদির কথা পরে পড়বে। যান্ত্রিক শক্তি স্থিতিশক্তি বা গতিশক্তি এই ছুইভাবেঃ প্রকাশ পেতে পারে এবং আলোর শক্তি বিকিরণ শক্তিরই এক বিশেষ রূপ।

শক্তিকে এক রূপ থেকে অন্য রূপে রূপান্তর করা সম্ভব। যেমন ধর বিছাৎ। বিছাৎশক্তি যথন পাথা ঘোরায় বা টেন চালায় তথন যান্ত্রিক শক্তিতে, যথন আলো জালায় তথন আলোক শক্তিতে এবং ইলেকট্রিক হিটারে তাপ শক্তিতে রূপান্তরিত হয়। আবার জলের স্রোতের গতিশক্তি টারবাইন ূর্রিয়ে বিছাৎ শক্তিতে রূপান্তরিত হয়। স্থীম এঞ্জিনের তাপশক্তি রেলগাড়ি চালিয়ে যান্ত্রিক শক্তিতে রূপান্তরিত হয়। এ ধরনের অজ্ঞ্জ উদাহরণ দেওয়া চলে।

#### ভরের নিত্যভা

তুলাদণ্ডের দাহায্যে বস্তুর ভর মাপা সম্ভব বা তৃটি ভরের তুলনা সম্ভব। যতক্ষণ তুলাদণ্ড সমাস্তরাল থাকবে ততক্ষণ বস্তুটিকে কাটা, ছেঁড়া বা গুঁড়ো যাই কর না কেন বস্তুর ভর একই থাকবে। রাদায়নিক প্রক্রিয়াতেও বস্তুর ভর পরিবর্তন করা সম্ভব নয়। একই কথা দব বস্তুর ক্ষেত্রেই থাটে। অর্থাৎ পৃথিবীতে মোট ভরের পরিমাণ অপরিবর্তিত আছে। বস্তুর ভরের বিনাশ নেই বা স্কৃষ্টিও করা যায় না। একে ভরের নিভ্যতা প্রুত্ত বলে।



চিত্ৰ 2.1

ভরের নিত্যতার প্রথম পরীক্ষা করেন ল্যাণ্ডোন্ট বিংশ শতাব্দীর প্রথম ভাগে। H-আকৃতির মত দেখতে ছই বাহু বিশিষ্ট একটি কাচের নলের এক বাহুতে তিনি ফেরাস সালফেট (FeSO4) ও অক্ট বাহুতে সিলভার সালফেট (Ag2SO4) দ্রবণ নেন (চিত্র 2.1)। তিনি বাহুত্টির ম্থ বন্ধ করে দেন ও লক্ষ্য রাথেন যাতে এক বাহুর দ্রবণ অক্ট বাহুর দ্রবণের সঙ্গে মিশে না যায়। এই অবস্থায় তিনি দ্রবণ সমেত কাচ নলটি অতি স্ক্ষ্ম তুলাদণ্ডে ওজন করেন। পরে নলটিকে উলটিয়ে দ্রবণ ছটিকে সম্পূর্ণ

ভাবে মেশান। তথন তাদের মধ্যে রাদায়নিক বিক্রিয়ার ফলে দিলভার দালফেট বিজ্ঞারিত হয়ে রুপোয় পরিণত হয়।

 $2\text{Fe SO}_4 + \text{Ag}_2 \text{SO}_4 = \text{Fe}_2 (\text{SO}_4)_3 + 2\text{Ag}$ 

বিক্রিয়ার শেষে নলটিকে কিছুক্ষণ ঠাণ্ডা হতে দিয়ে তিনি আবার ওজন নেন ও দেখেন আগের ও পরের ওজন সমান। এ থেকে ভরের নিতাতা প্রমাণিত হয়।

#### শক্তির নিত্যতা

শক্তি যথন রূপান্তরিত হয় তথন তাদের ক্ষয় বা বিনাশ হয় না। শক্তি স্ষষ্টি করা বা ক্ষয় করা সন্তব নয়। যথন কোন বস্তু শক্তি হারায় তথন অক্সকোন বস্তু সমপরিমাণ শক্তি লাভ করে। প্রমাণ করা গিয়েছে যে শক্তি রূপান্তরের সময় রূপান্তরের আগে ও পরে মোট শক্তির পরিমাণ সমান। বিজ্ঞানীদের মতে বিশ্ব স্প্রির সময় শক্তির মোট পরিমাণ যা ছিল আজও তা অপরিবর্তিত আছে। এই স্তুকে বলে শক্তির নিত্যতা স্কুত্র।

#### শক্তির অপচয়

শক্তি যথন এক রূপ থেকে অন্ত রূপে পরিবর্তিত হয় তথন প্রায়ই দেখা যায় রূপান্তরের পরের শক্তি রূপান্তরের আগের শক্তির চেয়ে কম। উদাহরণস্বরূপ যে কোন যন্ত্র নাও। যন্ত্রে যে শক্তি দেওয়া হয় এবং যন্ত্রের কাজ করার ক্ষমতা এক নয়। প্রদত্ত শক্তি দব সময়েই বেশি। এই শক্তির কিছু পরিমাণ যন্ত্রের বিভিন্ন অংশে ঘর্ষণের বাধা অতিক্রম করার কাজে লাগে ও ফলে তাপ উৎপন্ন হয়। অনেক উপর থেকে একটি ঢিল নিচে ফেলে দিলে ঢিলটির স্থিতিশক্তি রূপান্তরিত হয় গতিশক্তি, শব্দশক্তি এবং তাপশক্তিতে। কিন্তু এই শক্তিগুলির কোনটিকেই উপযোগী কাজে লাগানো যায় না এবং তাদের অপচয় হয়েছে বলে মনে করা হয়। কিন্তু এই অন্তর্পযোগী শক্তি ও প্রাপ্ত শক্তির যোগফল প্রদত্ত শক্তির সমান।

#### বস্তু ও শক্তির তুল্যমূল্যতা

বিংশ শতান্ধীর প্রথম ভাগে বৈজ্ঞানিক আালবার্ট আইনস্টাইন বলেন যে বস্তু ও শক্তি একে অন্ততে রূপান্তরিত হতে পারে। তিনি বলেন, পদার্থ হচ্ছে শক্তিরই

2702

22.8.05

- (ক) যান্ত্ৰিক শক্তি, (থ) তাপ শক্তি, (গ) বিকিরণ শক্তি, (ঘ) শব্দ শক্তি,
- (ঙ) চুম্বক শব্জি, (চ) বিহাৎ শব্জি।

এছাড়াও রাসায়নিক শক্তি, পারমাণবিক শক্তি ইত্যাদির কথা পরে পড়বে। যান্ত্রিক শক্তি স্থিতিশক্তি বা গতিশক্তি এই তুইভাবে: প্রকাশ পেতে পারে এবং আলোর শক্তি বিকিরণ শক্তিরই এক বিশেষ রূপ।

শক্তিকে এক রূপ থেকে অন্য রূপে রূপান্তর করা সম্ভব। যেমন ধর বিছাৎ। বিছাৎশক্তি যথন পাথা ঘোরায় বা ট্রেন চালায় তথন যান্ত্রিক শক্তিতে, যথন আলো জালায় তথন আলোক শক্তিতে এবং ইলেকট্রিক হিটারে তাপ শক্তিতে রূপান্তরিত হয়। আবার জলের স্রোতের গতিশক্তি টারবাইন ু্র্রিয়ে বিছাৎ শক্তিতে রূপান্তরিত হয়। স্থীম এঞ্জিনের তাপশক্তি রেলগাড়ি চালিয়ে যান্ত্রিক শক্তিতে রূপান্তরিত হয়। এ ধরনের অজ্ঞ্জ্ম উদাহরণ দেওয়া চলে।

#### ভরের নিত্যভা

তুলাদণ্ডের দাহায্যে বস্তর ভর মাপা সম্ভব বা ছটি ভরের তুলনা সম্ভব। যতক্ষণ তুলাদণ্ড সমাস্তরাল থাকবে ততক্ষণ বস্তুটিকে কাটা, ছেঁড়া বা গুঁড়ো যাই কর না কেন বস্তর ভর একই থাকবে। রাদায়নিক প্রক্রিয়াতেও বস্তর ভর পরিবর্তন করা সম্ভব নয়। একই কথা দব বস্তর ক্ষেত্রেই থাটে। অর্থাৎ পৃথিবীতে মোট ভরের পরিমাণ অপরিবর্তিত আছে। বস্তর ভরের বিনাশ নেই বা স্পৃত্তিও করা যায় না। একে ভরের নিত্যতা স্তুত্র বলে।



চিত্ৰ 2.1

ভরের নিত্যতার প্রথম পরীক্ষা করেন ল্যাণ্ডোন্ট বিংশ শতাব্দীর প্রথম ভাগে। H-আরুতির মত দেখতে ছই বাছ বিশিষ্ট একটি কাচের নলের এক বাহুতে তিনি ফেরাস সালফেট (FeSO4) ও অক্ত বাহুতে সিলভার সালফেট (Ag2SO4) দ্রবণ নেন (চিত্র 2.1)। তিনি বাহুত্টির ম্থ বন্ধ করে দেন ও লক্ষ্য রাথেন যাতে এক বাহুর দ্রবণ অক্ত বাহুর দ্রবণের সঙ্গে মিশে না যায়। এই অবস্থায় তিনি দ্রবণ সমেত কাচ নলটি অতি স্ক্ষ তুলাদুত্তে ওজন করেন। পরে নলটিকে উলটিয়ে দ্রবণ তুটিকে সম্পূর্ণ

ভাবে মেশান। তথন তাদের মধ্যে রাদায়নিক বিক্রিয়ার ফলে দিলভার দালফেট বিজারিত হয়ে রুপোয় পরিণত হয়।

 $2\text{Fe SO}_4 + \text{Ag}_2 \text{SO}_4 = \text{Fe}_2 (\text{SO}_4)_3 + 2\text{Ag}$ 

বিক্রিয়ার শেষে নলটিকে কিছুক্ষণ ঠাণ্ডা হতে দিয়ে তিনি আবার ওজন নেন ও দেখেন আগের ও পরের ওজন সমান। এ থেকে ভরের নিত্যতা প্রমাণিত হয়।

#### শক্তির নিত্যতা

শক্তি যথন রূপান্তরিত হয় তথন তাদের ক্ষয় বা বিনাশ হয় না। শক্তি স্বষ্টি করা বা ক্ষয় করা সন্তব নয়। যথন কোন বস্তু শক্তি হারায় তথন অক্সকোন বস্তু সমপরিমাণ শক্তি লাভ করে। প্রমাণ করা গিয়েছে যে শক্তি রূপান্তরের সময় রূপান্তরের আগে ও পরে মোট শক্তির পরিমাণ সমান। বিজ্ঞানীদের মতে বিশ্ব স্বাধীর সময় শক্তির মোট পরিমাণ যা ছিল আজও তা অপরিবর্তিত আছে। এই স্ত্রেকে বলে শক্তির নিত্যতা স্কুত্র।

#### শক্তির অপচয়

শক্তি যথন এক রূপ থেকে অন্ত রূপে পরিবর্তিত হয় তথন প্রায়ই দেখা যায় রূপান্তরের পরের শক্তি রূপান্তরের আগের শক্তির চেয়ে কম। উদাহরণস্বরূপ যে কোন যন্ত্র নান্ত। যন্ত্রে যে শক্তি দেওয়া হয় এবং যন্ত্রের কাজ করার ক্ষমতা এক নয়। প্রদত্ত শক্তি সব সময়েই বেশি। এই শক্তির কিছু পরিমাণ যন্ত্রের বিভিন্ন অংশে ঘর্ষণের বাধা অতিক্রম করার কাজে লাগে ও ফলে তাপ উৎপন্ন হয়। অনেক উপর থেকে একটি ঢিল নিচে ফেলে দিলে ঢিলটির স্থিতিশক্তি রূপান্তরিত হয় গতিশক্তি, শব্দশক্তি এবং তাপশক্তিতে। কিন্তু এই শক্তিগুলির কোনটিকেই উপযোগী কাজে লাগানো যায় না এবং তাদের অপচয় হয়েছে বলে মনে করা হয়। কিন্তু এই অন্থ্রেণাগী শক্তি ও প্রাপ্ত শক্তির যোগফল প্রদত্ত শক্তির সমান।

### বস্তু ও শক্তির তুল্যমূল্যভা

বিংশ শতান্দীর প্রথম ভাগে বৈজ্ঞানিক আালবার্ট আইনস্টাইন বলেন যে বস্তু ও শক্তি একে অন্ততে রূপান্তরিত হতে পারে। তিনি বলেন, পদার্থ হচ্ছে শক্তিরই

22.8.05

2702

এক বিশেষ রূপ। পদার্থ ও শক্তির সম্পর্ক নিয়ে তিনি এক সমীকরণ বার করেন। যদি m ভর, E শক্তিতে রূপান্তরিত হয় এবং c যদি আলোর গতিবেগ হয় তবে  $E=mc^2$ । অর্থাং বস্তকে বিলোপ করে শক্তি এবং শক্তিকে বিলোপ করে বস্তুতে রূপান্তর করা সম্ভব। একেই বলে বস্তু ও শক্তির তুলামূল্যতা। এর কোন সাধারণ উদাহরণ দেওয়া সম্ভব নয়, তবে পরমাণু বিজ্ঞানে এটা অহরহ ঘটছে।

পদার্থ বিলোপ করে যে প্রচণ্ড শক্তি পাওয়া সন্তব, সাধারণ মাত্র তার প্রথম প্রমাণ পায় পরমাণ বোমার বিক্ষোরণে। পরে এই শক্তি নিয়ন্ত্রিত করে পারমাণবিক রিজ্যাকটর তৈরি হয়েছে বিছাৎ উৎপাদনের জন্ম। তোমরা নিশ্চয়ই জান বোঘাইয়ের কাছে তারাপুরে পারমাণবিক রিজ্যাকটর কেল্রে উৎপাদিত বিছাৎ মহারাষ্ট্র ও গুজরাটে সরবরাহ করা হয়। তামিলনাড়্র কলাপক্কমে, রাজস্থানের বাণাপ্রতাপসাগরে এবং উত্তর প্রদেশের নারোরায় বিছাৎ উৎপাদনের জন্ম পারমাণবিক রিজ্যাকটর তৈরি চলেছে।

#### ভর ও শক্তির নিভ্যতা

তোমরা জানলে ভরকে শক্তিতে এবং শক্তিকে ভরে রূপান্তরিত করা যায় এবং পারমাণবিক বিক্রিয়ার ক্ষেত্রে ভর শক্তিতে রূপান্তরিত হয়। তোমরা জান পৃথিবীতে শক্তির উৎস সূর্য। আবার সূর্যের শক্তির উৎস হচ্ছে নানা ধরনের পারমাণবিক বিক্রিয়া। বিশেষ বিশেষ ক্ষেত্রে শক্তির নিত্যতা স্থ্র সত্য হলেও পারমাণবিক বিক্রিয়ায় এগুলি থাটে না। তাই সাধারণভাবে বলতে গেলে বলতে হয় ভর ও শক্তির মোট পরিমাণ নিত্য। এই স্থ্রের নাম ভর ও শক্তির নিত্যতা ভূত্র।

## ত অবস্থার রূপান্তর

#### পদার্থের ভৌত অবস্থা

পৃথিবীর যাবতীয় পদার্থকে কঠিন, তরল এবং গ্যাসীয়—তিনটি পৃথক শ্রেণীতে ভাগ করা যায়। প্রতিটি শ্রেণীকে বস্তুর অবস্থা বলে।

কঠিন: কঠিন পদার্থের নির্দিষ্ট আকার এবং আয়তন আছে। আয়তন থাকার অর্থই হল একটা স্থনির্দিষ্ট জায়গা দখল করে থাকা। বাইরে থেকে বল প্রয়োগ বাতীত কঠিন পদার্থ মাত্রই আপন আপন আকার বজায় রাথবার চেষ্টা করে।

তরল: তরল পদার্থের নির্দিষ্ট আয়তন আছে। কিন্তু আকার নেই।
তাই তরল পদার্থ রাথার জন্ম কোন পাত্র বা আধারের প্রয়োজন হয় এবং যে
পাত্রে তরল পদার্থ রাথা যায় পদার্থ সেই পাত্রের আকার ধারণ করে। এক বোতল হুধ বা তেল কোন বাটিতে বা হাঁড়িতে যে পাত্রেই রাথা হোক না কেন,
তার আকার বাটি বা হাঁড়ির মতই হবে। কিন্তু আয়তন একটুও বাড়ল না,
সেই এক বোতলই থাকবে।

গ্যাস: গ্যাসীয় পদার্থের কোন নির্দিষ্ট আকারও নেই, আয়তনও নেই। যথন যে আধারে থাকে সেই আধারের আকার ও আয়তন গ্রহণ করে। গ্যাসীয় পদার্থের এই ধর্ম দহজেই তোমরা পরীক্ষা করে দেখতে পার।

#### পদার্থের অবস্থার পরিবর্তন

পৃথিবীর যে কোন পদার্থ—কঠিন, তরল অথবা গ্যাস—সাধারণ তাপমাত্রায় যে কোন একটি অবস্থায় থাকে। পদার্থের এই অবস্থা কি স্থায়ী ? অর্থাৎ কোন কঠিন পদার্থ কি যে কোন অবস্থায় কঠিন থাকবে অথবা কোন তরল পদার্থকে কি সব সময়েই তরল অবস্থায় পাওয়া যাবে ? গ্যাসের ক্ষেত্রেও ওই একই প্রশ্ন হতে পারে। জল নিয়ে পরীক্ষা করে এই প্রশ্নের আলোচনা করা যেতে পারে।

জল স্বাভাবিক অবস্থায় তরল পদার্থ এবং জলের উপাদান অক্সিজেন এবং হাইড্রোজেন—এই ঘটি গ্যাস। কিন্তু বরফ স্বাভাবিক অবস্থায় কঠিন পদার্থ। বরফের উপাদানও অক্সিজেন ও হাইড্রোজেন গ্যাস। আবার অদৃশু জলীয় বাঙ্গ যা স্বাভাবিক অবস্থায় গ্যাস অথবা জল ফোটালে যে স্থীম পাওয়া যায় তার উপাদানও ওই তৃটি গ্যাস—অক্সিজেন ও হাইড্রোজেন। আমরা এখন নিশ্চিত ভাবে বলতে পারি—জল, বরফ এবং জলীয় বাষ্প বা ষ্টীম একই পদার্থের তিনটি পৃথক অবস্থা মাত্র।

#### গলন ও হিমায়ন: গলনাম্ব ও হিমাম্ব

্যে কোন বস্তুকে গ্রম করলে ছুটি পরিবর্তন লক্ষ্য করা যায়। বস্তুর তাপমাত্রা বাড়ে এবং আরও গরম করলে এক সময় বস্তুর অবস্থার পরিবর্তন হয়। উদাহরণস্বরূপ 0°C তাপমাত্রায় এক টুকরো বরফ নেওয়া হল। এই টুকরোটিকে গ্রম করলে বরফ গলে জল হতে থাকবে। যতক্ষণ না সমস্ত বরফ গলে জল হয় ততক্ষণ তার তাপমাত্রার কোন পরিবর্তন হয় না। সমস্ত বস্তুর ক্ষেত্রে একই घटेना घटि। এই প্রণালীকে বলা হয় প্রজন বা মেল্টিং এবং প্রমাণ চাপে যে निर्मिष्टे जानभावात्र वस्त्र भटन जादक वना इत्र वस्त्र भननास्त्र वा प्यिन्टिः नरम् বস্তু গলে যাওয়ার পরেও তাকে গরম করা হলে বস্তুটির তরল অবস্থায় তাপমাত্রা বাড়তে থাকবে। ঠিক একই ভাবে যে কোন তরল বস্তুকে ঠাণ্ডা করে কঠিন বস্তুতে পরিণত করা যায়। ঠাণ্ডা করতে থাকলে প্রথমে তরলের তাপমাত্রা কমতে থাকবে। পরে আরও ঠাণ্ডা করতে থাকলে দেখা যাবে একটি তাপমাত্রায় বস্তুটি জমতে শুরু করেছে এবং সমস্ত তরলটুকু জমে না যাওয়া পর্যন্ত এই তাপমাত্রার কোন পরিবর্তন হবে না। এই প্রণালীকে বলে হিমায়ন বা ফ্রিজিং এবং প্রমাণ চাপে যে তাপমাত্রায় বস্তুটি জমতে থাকে তাকে বলে হিমাল্ক ব। ফ্রিজিং পয়েন্ট। মনে রাখবে গলনান্ধ ও হিমান্ক চাপের উপর নির্ভর করে। চাপ পরিবর্তিত হলে এই তাপমাত্রা পরিবর্তিত হয়। বস্তুটিকে আরও ঠাণ্ডা করতে থাকলে কঠিন অবস্থায় তাপমাত্রা কমতে থাকবে।

গলনান্ধ নির্ণয়: (1) বেশ কয়েক টুকরো বরফ নাও। পরিকার ভাবে ধুয়ে এক টুকরো রটিং কাগজ দিয়ে তাদের গা শুকনো করে নাও। পরে বরফ-শুলোকে একটি বিকারে রেথে একটি থার্মোমিটার দিয়ে তাদের তাপমাত্রা দেথে নাও। এবারে বুন্দেন বা স্পিরিট দীপের সাহায্যে বিকারটিকে ধীরে ধীরে গরম করতে থাক। দেথবে বরফ গলতে শুরু করেছে। তাপমাত্রার দিকে বিশেষভাবে লক্ষ্য কর। দেথবে বরফ সম্পূর্ণ গলে না যাওয়া পর্যন্ত তাপমাত্রার

কোন পরিবর্তন হচ্ছে না। সমস্ত বরফ গলে যাওয়ার পরে তাপ দিতে থাকলে জলের তাপমাত্রা ধীরে ধীরে বাড়তে থাকবে।

(2) একটি বড় বিকারে কিছু গুঁড়ো গ্রাপথালিন নাও এবং ব্নসেন দীপের সাহায্যে ধীরে ধীরে গরম করতে থাক। একটি থার্মোমিটারের সাহায্যে গুঁড়ো

ন্যাপথালিনের তাপমাত্রা এক
মিনিট অন্তর লক্ষ্য করতে থাক
এবং থাতায় টুকে নাও। তাপমাত্রা যথন প্রায় ৪0°C তথন
লক্ষ্য করলে দেখবে যে গুঁড়োটি
গলতে শুরু করেছে। তাপমাত্রা
বিশেষভাবে লক্ষ্য করলে দেখতে
পাবে যে পদার্থ গলে না যাওয়া
পর্যন্ত তাপমাত্রার কোন
পরিবর্তন হয়নি। তারও পরে



গরম করলে দেখতে পাবে যে তরল বস্তুটির তাপমাত্রা আবার বাড়তে শুরু করেছে। যদি X অক্ষ বরাবর সময় ও Y অক্ষ বরাবর তাপমাত্রা ধরে একটি লেখ আঁক তবে 3.1 চিত্রের মত এক লেখ পাবে। চিত্রটি লক্ষ্য করলে দেখতে পাবে যে BC অংশে তাপমাত্রার কোন পরিবর্তন হয়নি। এই তাপমাত্রাই

ন্যাপথালিনের গলনান্ধ।



এইবার বস্তুটিকে ঠাণ্ডা হতে দাও

এবং এক মিনিট অন্তর তাপমাত্রা
লক্ষ্য করতে থাক যতক্ষণ না বস্তুটি
কঠিন হয়। বস্তুর সময়-তাপমাত্রা
লেথ আঁক। লেথটি 3.2 চিত্রের
মত হবে। লেথটির যে অংশে
তাপমাত্রার পরিবর্তন নেই তাই
ত্যাপথালিনের হিমান্থ নির্দেশ করছে।
লক্ষ্য করলে দেথবে ত্যাপথালিনের
হিমান্ধ 80°C।

এই পরীক্ষায় ব্রাতে পারলে যে কোন কেলাসিত বস্তব হিমাত্ব ও গলনাত্বের তাপমাত্রা এক। নির্দিষ্ট চাপে যে কোনও বস্তব গলনাত্ব একটি নির্দিষ্ট তাপমাত্রা। এটি কেলাসিত বস্তব একটি ভৌত ধর্ম। উদাহরণস্বরূপ প্রমাণ চাপে বরফের গলনাত্ব 0°C, পারদের — 39°C এবং ত্যাপথালিনের 80°C।

কয়েকটি অকেলাদিত বস্তুর বেলায় দেখা গিয়েছে যে তাদের কোন নির্দিষ্ট গলনাস্ক নেই। উদাহরণস্বরূপ পিচ প্রভৃতির নাম করা চলে। পিচ গরম করলে প্রথমে সান্দ্র বা চটচটে অবস্থায় পরিণত হয়। এই পরিবর্তনের সময় তাপনাত্রারও পরিবর্তন হতে থাকে। কয়েকটি তরল যথা গ্রিদারিন, আাদেটিক আাদিত প্রভৃতির নির্দিষ্ট হিমাক্ষ নেই। এরাও অবস্থার পরিবর্তনের মধ্যবর্তী সময়ে এক চটচটে অবস্থার মধ্যে দিয়ে যায়।

গলনে বা হিমায়নে আয়তনের পরিবর্তন: বেশির ভাগ পদার্থের কঠিন থেকে তরলে পরিবর্তনের সঙ্গে আয়তন বাড়ে এবং তরল থেকে কঠিন অবস্থার পরিবর্তনে আয়তন কমে। কিন্তু কয়েকটি বস্তু এদের ব্যতিক্রম, যেমন—জল, ঢালাই লোহা, বিদমাধ, আন্টিমনি, পিতল ইত্যাদি। এদের তরল অবস্থায় আয়তন কম এবং কঠিন অবস্থায় আয়তন বেশি। দেজতা এই দব বস্তুর কঠিন অবস্থায় ঘনত্ব কম। জল একটি অতি পরিচিত উদাহরণ। বরফের টুকরোকে জলে ভাগতে তোমরা দেখেছ। শীতের দেশে খুব বেশি ঠাণ্ডা পড়লে থোলা জলের পাইপ ফেটে যায়। গল্লে হয়ত পড়েছ দ্বীপের মত বড় বড় বরফের চাঁই সাইবেরিয়া অঞ্চলে এক জায়গা থেকে অত্য জায়গায় ভেদে যায়। দেখা গিয়েছে যে 0°Cএ 11 cc জল জমে 0°Cএ 12 cc বরফে পরিণত হয়। এ থেকে বোঝা যায় যথন বরফ ভাদে তথন 1½ অংশ জলের উপর থাকে। লোহা ও পিতলের আয়তন বৃদ্ধিও অনেক দময় প্রয়োজনে আদে। কঠিন অবস্থায় পিতল ও লোহার আয়তন বৃদ্ধি ছাঁচে ঢালাই কাজে দাহায়া করে।

## গলনাঙ্কের উপর চাপের প্রভাব : পুনঃশিলীভবন

ছটো বরফের টুকরো নিয়ে কিছুক্ষণ চেপে ধর। পরে তাদের ছেড়ে দিলেই দেখবে তারা জোড়া লেগেছে। যথন বরফের টুকরো হুটোকে চেপে ধরা হয় তথন চাপের প্রভাবে গলনাম্ব কমে যায় এবং চাপের জায়গাটিতে বরফ গলে জল জমে। ছেড়ে দেওয়ামাত্র গলনাম্ব বেড়ে যায় এবং গলে যাওয়া জল আবার বরফ হয়। ফলে টুকরো ছটি জোড়া লেগে যায়। এই ঘটনাকে বলে পুনঃশিলীভবন।

সব বস্তুর গলনাঙ্কের উপর চাপের প্রভাব কিন্তু এক নয়। পরীক্ষা করে দেখা গিয়েছে যে, যে সব বস্তু গলে গেলে আয়তনে কমে তাদের গলনাক্ষ চাপের প্রভাবে কমে। লোহা, জল, বিসমাথ, আাতিমনি এই শ্রেণীর উদাহরণ। যে সব বস্তুর গলনে আয়তন বাড়ে চাপের প্রভাবে তাদের গলনাত্ব বাড়ে। প্রাত্ত্ব বস্তুর বেলায় এই ঘটনা ঘটে।

হিমমিশ্রণ: কোন বস্তকে তরলে দ্রবীভূত করলে দেথা যাবে যে, দ্রবণের হিমান্ত দেই তরলের হিমান্তের চেয়ে কম। এই মিশ্রণকে হিমমিশ্রণ বলে।

একভাগ লবণ তিনভাগ গুঁড়ো বরফে ছড়িয়ে দিলে দেখবে তাপমাত্রা প্রায় —23°C পর্যন্ত কমে। জল ও আামোনিয়ম নাইটেট মিশ্রণের দর্বনিয় তাপমাত্রা প্রায় —15°C পর্যন্ত হয়। তুটি মিশ্রণই হিমমিশ্রণের উদাহরণ।

যথন কোন কঠিন পদার্থকে তরলে দ্রবীভূত করা হয় তথন কঠিন বস্তুটির তরলে পরিণত হওয়ার জন্য উত্তাপের প্রয়োজন হয়। কঠিন বস্তুটি প্রয়োজনীয় উত্তাপ তরল থেকে সংগ্রহ করে। ফলে মিশ্রণের তাপমাত্রা কমে যায়। বরকে যথন লবণ ছড়িয়ে দেওয়া হয় তথন লবণ গলে যাওয়ার জন্ম বরফও জল থেকে প্রয়োজনীয় উত্তাপ গ্রহণ করে। এমনকি লবণ গোলা জলের হিমাক্ষ — 2°C।

#### ৰাষ্পীভবন

তরলের বায়বীয় অবস্থাকে বাষ্পা বলে। অন্ত কোন অবস্থা থেকে কোন বস্তুকে বাষ্পো পরিণত করাকে বলে বাষ্পীভবন। বাষ্পীভবন তিন ভাবে হতে পারে, যথা—(1) বাষ্পায়ন, (2) ক্ষুটন, (3) উদ্ধ্বপাতন।

(1) বাষ্পায়ন—ধীরে ধীরে তরল থেকে বাষ্পে পরিবর্তিত হওয়ার পদ্ধতিকে বলে বাষ্পায়ন। বাষ্পায়নের কোন নির্দিষ্ট তাপমাত্রার প্রয়োজন হয় না। যে কোন তাপমাত্রায় হতে পারে। এই পদ্ধতিতে তরলের উপরতলে বাষ্প হতে দেখা যায়। গ্রীষ্মকালে নদী, পুকুর থেকে জল শুকিয়ে যাওয়া বা ভিজে কাপড় থেকে জল শুকিয়ে যাওয়া সমস্ত বাষ্পায়নের লক্ষণ। ইথার, মেথিলেটেড স্পিরিট এই পদ্ধতিতে বাষ্পা হয়়। বাপায়ন পদ্ধতিতে বাপা হওয়ার হার সব তরলের ক্ষেত্রে সমান নয়। কোন কোন তরল খ্ব ক্রত বাপায়িত হয়; এদের উল্লামী তরল বলা হয়। অ্যালকোহল, মেথিলেটেড স্পিরিট, বেনজিন, কার্বন-টেট্রাক্লোরাইড, ইথার, পেট্রল প্রভৃতি উদ্বায়ী তরল।

(2) স্ফুটন-প্রমাণ চাপে একটি নির্দিষ্ট তাপমাত্রায় খুব ক্রত তরল অবস্থা থেকে বাঙ্গীয় অবস্থায় পরিবর্তনকে স্ফুটন বলে। স্ফুটন তরলের সমস্ত অংশ



চিত্ৰ 3.3

থেকে হয়। যে তাপমাত্রায় স্ফুটন শুরু হয়, তরলের সমস্ত অংশ বাপ্প না হওয়া পর্যন্ত দেই তাপমাত্রা স্থির থাকে। এই তাপমাত্রাকে স্ফুটনাস্ক বলে। স্ফুটনাস্ক পারিপার্থিক চাপের উপর নির্ভর করে। স্ফুটনাস্ক তরলের ভৌত ধর্ম।

একটি ফ্লাস্কে কিছুটা জল নাও (চিত্র 3.3)।
ফ্লাস্কের ম্থে একটি ছিপি আটকাও এবং ছিপির
ভিতর দিয়ে একটি থার্মোমিটার ও একটি বাঁকা
নল ঢোকাও। লক্ষ্য রাথবে থার্মোমিটারের
বাল্বটি যেন জলের উপর থাকে। একটি বৃন্দেন
দীপের সাহায্যে জলটি গরম কর এবং এক মিনিট

অন্তর তাপমাত্রা নাও। প্রথমে জলের উপরতলে বাষ্পের মত ধেঁায়া উঠতে

দেখা যাবে। পরে জলের নিচে ছোট ছোট বৃদ্বৃদ উঠবে এবং কিছুদ্রে গিয়েই ভেঙে পড়বে। জল ক্রমশ গরম হতে থাকলে প্রায় 98°C বা 99°C এর কাছে বড় বড় বৃদ্বৃদ জলের উপরে গিয়ে ভেঙে পড়তে থাকবে এবং 100°C এ সমস্ত তরলে একটা আলোড়নের স্বষ্টি হবে। কাচের নল দিয়ে প্রচূর স্থীম বার হতে



থাকবে। এই অবস্থাকে জলের ফুটতে থাকা বা ক্টন বলে। যদি কোন লেখচিত্রে X-অক্ষ বরাবর সময় এবং Y-অক্ষ বরাবর তাপমাত্রা আঁক ভবে চিত্র 3.4 এর মত লেখচিত্র পাবে। চিত্র দেখে বুঝতে পারবে যে জল একবার ফুটতে শুরু করলে তাপমাত্রার আর পরিবর্তন হবে না যতক্ষণ না সমস্ত জল বাপ্পীভূত হয়। এ থেকে বোঝা যায় তরলের স্ফুটনান্ধ একটি নির্দিষ্ট তাপমাত্রা। স্ফুটনান্ধ যে কোন তরলের একটি বিশেষ ভৌত ধর্ম।

(3) ঊধ্ব পাতন — কোন বস্তুর কঠিন অবস্থা থেকে শলে পরিবর্তিত না হয়ে সোজাস্থজি বাঙ্গে পরিণত হওয়াকে উধ্ব পাতন বলে। এই পদ্ধ ততে বাঙ্গীতবন ধীরে ধীরে যে কোন তাপমাত্রায় হতে পারে। ফ্রাপথালিন প্রভৃতি এই পদ্ধতিতে বাঙ্গীভূত হয়।

বাঞ্চায়ন যে কারণে প্রভাবিত হয়—বান্দায়ন বাইরের অনেকগুলি কারণে প্রভাবিত হতে পারে। ফ্রন্ত বান্দায়ন সবচেয়ে বেশি নির্ভ্র করে ভরলের নিজের প্রকৃতির উপর। অন্থান্থ যে ফোরণে এই পদ্ধতিতে তরল তাড়াতাড়ি বান্দীভূত হয় দেগুলি হচ্ছে: (1) তরলের তাপমাত্রা বৃদ্ধির উপর; (2) তরলের উপরতলের ক্ষেত্রফল বৃদ্ধির উপর; (3) তরলের উপর বায়ু চলাচল বৃদ্ধির উপর অর্থাৎ ফু দিলে তাড়াতাড়ি বান্দীভূত হবে; (4) তরল সংলগ্ন বায়ুর শুদ্ধতার উপর।

শুক্টনাক্ষের উপর চাপের প্রভাব — পরীক্ষায় দেখা গিয়েছে কোন তরলের স্টুনাক্ষ চাপ বাড়লে বাড়ে এবং কমলে কমে। প্রমাণ চাপে জল 100°C এ ফোটে। পরীক্ষায় দেখা গিয়েছে যে, প্রতি 2.68 cm পারদ চাপের পরিবর্তনের দক্ষে জলের স্টুনাক্ষ 1°C হারে পরিবর্তিত হয়। সম্প্রপৃষ্ঠ থেকে দার্জিলিং এর উচ্চতা প্রায় ছহাজার মিটার এবং সেথানে জলের স্টুনাক্ষ 93.6°C। থনির নিচে বায়ুমগুলের চাপ বেশি, দেখানে জলের স্টুনাক্ষ 100°C থেকে বেশি।

চাপের প্রভাবে ক্টনান্ধ কমে যাওয়ায় উচু পাহাড় অঞ্চলে রানা করতে বেশ অস্থবিধা হয়। সেজন্য পাত্রের ভিতর ক্রন্তিম উপায়ে চাপ বাড়িয়ে ক্টনান্ধ বাড়াবার চেষ্টা করা হয়। প্রেদার-কুকার বাবহার করতে অনেকেই দেখেছ। প্রেদার-কুকারের পাত্রের ভিতরে জল ও দিন্ধ করার জিনিদটি রাখতে হয়। উপরের ঢাকনিতে একটি ভাল্ভ আছে। গরম করার দঙ্গে যথন ভিতরে বাষ্পা জমতে থাকে তথন চাপ ও সেই সঙ্গে ক্টনান্ধ বাড়তে থাকে, ফলে জিনিদটি তাড়াতাড়ি দিন্ধ হয়। অতিরিক্ত বাষ্পা ভাল্ভের ভিতর দিয়ে বেরিয়ে যেতে দেওয়া হয়, যাতে বিক্ষোরণ হতে না পারে।

### লীন ভাপ

তোমরা দেখেছ যথন কঠিন বস্তকে গরম করা হয় একটি নির্দিষ্ট তাপমাত্রায় বস্তুটি গলতে শুকু করে এবং তাপ দেওয়া দত্তেও সমস্ত বস্তুটি না গলা পর্যন্ত তার তাপমাত্রার পরিবর্তন হয় না। আবার হিমায়নের সময় ঠাণ্ডা করতে থাকলেও তাপমাত্রা সমস্ত তরল জমে না যাওয়া পর্যন্ত স্থির থাকে। একই ভাবে ক্ট্রেনর সময় দেখা গিয়েছে যে সমস্ত তরল বাপ্পীভূত না হওয়া পর্যন্ত তরলটি গরম করলেও তাপমাত্রা স্থির থাকে। আবার বাপ্প ঘনীভবনের সময় সমস্ত বাপ্প তরল না হওয়া পর্যন্ত ঠাণ্ডা করলেও তাপমাত্রা স্থির থাকে। চিত্র 3.1, 3.2 এবং 3.4 লেখতে তোমরা এটা ভালভাবে ব্যুতে পেরেছ। এই তাপ কোথায় যায় ? অবস্থা পরিবর্তনের সময় এই তাপ শোষিত বা বর্জিত হয়—গলন ও ক্ট্রেনকালে শোষিত হয় এবং হিমায়ন ও ঘনীভবনের সময় তাপ বর্জিত হয়। এই তাপকে লীন তাপ বলে।

এক একক ভরকে প্রমাণ চাপে ও নির্দিষ্ট তাপমাত্রায় কঠিন অবস্থা থেকে ভরলে পরিণত করতে যে তাপশক্তির প্রয়োজন হয় তাকে গলনের লীন তাপ বলে। এদ আই পদ্ধতিতে জলের গলনের লীন তাপ হচ্ছে  $333.6 \times 10^{9}$  J/kg.। দি জি এদ পদ্ধতিতে 80 cal/g, এবং এফ পি এদ পদ্ধতিতে 144 B. Th. U/fb.

প্রমাণ চাপে ও নির্দিষ্ট তাপমাত্রায় কোন একক ভরের বস্তুর তরল অবস্থা থেকে গ্যাদে পরিণত হতে যে তাপ লাগে তাকে ফুটনের লীন তাপ বলে। এদ আই পদ্ধতিতে স্থীমের লীন তাপ 2258 × 10° J/kg, দি জি এদ পদ্ধতিতে 537 cal/g এবং এক পি এদ পদ্ধতিতে 964.5 B. Th. U/tb.।

# 웅 স্থিতি ও গতি

প্রতিদিন অনেক বস্তুকে তোমরা চলাফেরা করতে দেখেছ। রাস্তায় গাঁজি চলে,
মাহ্র হাঁটে, গরু ছোটে। কেউবা জোরে; আবার কেউ খুব আস্তে। এ ধরনের
অনেক উদাহরণ তোমরা নিজেরাই দিতে পারবে। আবার অনেক জিনিদ
আশপাশে পড়ে থাকতেও দেখেছ। তোমরাও তো দিনের অনেক সময় চুপ
করে বদে বা শুয়ে থাক। কিন্তু চলাফেরার দঙ্গে বদে থাকার তফাৎ কোথায়?
যখন তুমি হাঁট তখন সময়ের দঙ্গে তোমার অবস্থানের পরিবর্তন কর। যে
কোন সচল বস্তুই সময়ের সঙ্গে তার অবস্থান পরিবর্তন করে। বস্তুটি তখন
গতিতে আছে বলা হয়। আর কোন বস্তু যথন সময়ের সঙ্গে তার অবস্থান
পরিবর্তন করে না তখন বলা হয় বস্তুটি স্থিতিতে আছে।

কোন বস্তু স্থিতিতে আছে, না গতিতে আছে কি করে জানবে? জানতে হলে এমন একটি বস্তুর দুরকার যে কোনদিনই তার অবস্থান পান্টায় না। এরকম বস্তুর স্থিতিকে পরম স্থিতি বলে। কিন্তু পৃথিবীর উপর এরকম কোন वखत्र मिथा शाख्या यात्र ना । कादन, शृथिवी निष्क्रे एर्धित ठात्रशारम पूत्रह, আর তার দঙ্গে ঘুরছে পৃথিবীর উপরেব দব কিছু বস্তুই। পৃথিবীর উপরে যদি স্থির কোন বস্তু দেখি, তবে দেটা আপাতদৃষ্টিতে স্থির। স্থতরাং যে কোন স্থির বস্তুই পৃথিবীর গতির সাপেক্ষে স্থির। একে বলে **আপে**ক্ষিক স্থিতি। আর পৃথিবীর উপরে কোন বস্তু যদি কোন স্থির বস্তুর পরিপ্রেক্ষিতে তার অবস্থান পরিবর্তন করে, তবে তার গতিকে বলে আপেক্ষিক গতি। একটু সহজ করে বলি, কেমন? যথন তুমি টেনে কোথাও যাও, তথন চলস্ত ট্রেনে তোমার পাশে যারা বদে আছে তাদের কাছে তুমি স্থির অবস্থায় অর্থাৎ আপেক্ষিক স্থিতিতে আছ, কিন্তু বাইরের তুপাশের গাছপালা বাড়িঘরের পরিপ্রেক্ষিতে তুমি ছুটছ অর্থাৎ আপেক্ষিক গতিতে আছ। তাংলে দেখছ, তুমি একই সঙ্গে আপাতদৃষ্টিতে কারও কাছে স্থির, আর কারও কাছে গতিতে আছ। তাহলে পৃথিবীর উপরের যে কোন স্থিতি এবং গতিই আপেকিক।

যদি কোন বস্তুর চারপাশে অন্য কোন বস্তু পরম স্থিতিতে থাকত এবং তার

সাপেক্ষে প্রথম বস্থটির গতি নির্ধারণ করা যেত তবে দেই গতিকে প্রন্ম গতি বলা হত। প্রম স্থিতি যেমন সম্ভব নয়, প্রম গতিও তেমনি সম্ভব নয়।

চলন সংক্রান্ত কয়েকটি রাশির সংজ্ঞা নিচে দেওয়া হল।

(ক) সরণ: কোন বস্তু যথন অবস্থানের পরিবর্তন করে তথন তার



প্রথম ও শেষ অবস্থিতির মধ্যে সরল-বৈথিক দ্রন্থকে সরণ বলে।

ধর, কোন বস্তুর প্রথম অবস্থান ছিল A বিন্দু এবং কিছু সময় পরে B বিন্দুতে এসে উপস্থিত হল (চিত্র 4.1)। AB, ACB বা ADB যে কোন পথেই B বিন্দুতে আদা সম্ভব। কিন্তু

A ও Bর মধ্যে সরলবৈথিক দ্রত্ব ABই হচ্ছে বস্তাটির সরণ। AB সরণের শুধু মান নির্দেশ করে না, বস্তাটি যে A থেকে B বিন্দৃতে AB পথে এসেছে, এই দিকও নির্দেশ করে।

মনে কর, একটি পিঁপড়ে প্রথমে আঁকাবাকা পথে 4cm পথ দ্রত্ব OA

অতিক্রম করল, পরে A বিন্দু থেকে একইভাবে AB পথ অতিক্রম করল ( চিত্র 4.2 )। AB পথ 3 cm এর দমান। O হচ্ছে পিঁপড়েটার প্রথম অবস্থান এবং B হচ্ছে শেষ অবস্থান। O ও Bর মধ্যেকার বৈথিক দ্রত্ব OB হচ্ছে পিঁপড়েটার দরণ OB দিকে। OB রেথার মান হচ্ছে



$$\sqrt{OB^2} = \sqrt{OA^2 + AB^2}$$

$$= \sqrt{4^2 + 3^2}$$

$$= 5 \text{ cm}$$

সরণ একটি ভেক্টর রাশি। কারণ এর মান ও দিক তুই-ই আছে। ও কথাটি দিয়ে সরণ প্রকাশ করা হয়। সরণের একক এদ আই পদ্ধতিতে মিটার, সি জি এস পদ্ধতিতে সেন্টিমিটার ও ব্রিটিশ পদ্ধতিতে ফুট। (থ) জ্বন্ত সোজা বা বাঁকা পথে কোন বস্তু একক সময়ে যে দ্বত্ব অতিক্রম করে তাকে বস্তুর ক্রতি বলে।

ধর, কোন বস্তর প্রথম ও শেষ অবস্থানের দ্রত্ব ও এবং এই পরিবর্তন t সেকেও সময়ে ঘটেছে। একক সময়ে বস্তুটি s/t দ্রত্ব যেতে পারে; এটিই হচ্ছে বস্তুটির ক্রতি। অতএব, বস্তুটির অবস্থানের পরিবর্তনের হারকেও তার ক্রতি বলে। ক্রতি বোঝাতে কোন দিকের প্রয়োজন হয় না। মনে কর, কোন লোক ঘন্টায় 50 km বেগে ছুটছে। যে কোন দিকে সে ইচ্ছামত ছুটতে পারে—সোজা বা বাঁকা পথে। ক্রতি সেজন্য একটি স্কেলার রাশি।

এদ আই পদ্ধতিতে ক্রতির একক প্রতি দেকেণ্ডে এক মিটার বা m/s, সি জি এদ পদ্ধতিতে cm/s এবং এফ পি এদ পদ্ধতিতে ft/s।

(গ) বেগ: বস্তুর একক সময়ের সরণকে বেগ বলে। অর্থাৎ কোন বস্তু নির্দিষ্ট দিকে একক সময়ে যে দ্রত্ব অতিক্রম করে তাই বস্তুর বেগ।

মনে কর, একটি বস্তু t সময়ে AB পথে s দূরত্ব অতিক্রম করল। বস্তুর বেগের মান হচ্ছে s/t এবং বেগের দিক হচ্ছে A থেকে Bর দিকে। স্থতরাং একটি বিশেব দিকে নির্দিষ্ট জ্রুতিকে বেগ বলে। বেগের মান ও দিক তুইই থাকায় বেগ একটি ভেক্টর রাশি।

কোন বস্তার বেগ u বা v অক্ষর দিয়ে প্রকাশ করা হয়। এদ আই পদ্ধতিতে বেগের একক m/s, দি জি এদ পদ্ধতিতে cm/s এবং এফ পি এদ পদ্ধতিতে ft/s। অনেক দময় ভেকটর রাশি বোঝাতে রাশির মানের মাথায় তীর চিহ্ন

লেখা হয়। বেগের ক্ষেত্রে u বা v ব্যবহার করা হয়।

মনে কর, ABC একটি পথ (চিত্র 4.3)। ABC পথে একটি ট্যাক্সি

যাচ্ছে যার জ্রুভি স্পিডোমিটারে ধরা পড়ে। AB পথ থেকে BC পথে বাঁক নেবার সময় গাড়িটি দিক পরিবর্তন করল, কিন্তু স্পিডোমিটারের রিডিং এক আছে। স্থতরাং গাড়িটার



ক্রতির মান অপরিবর্তিত আছে। এক্ষেত্রে গাড়ির বেগ পরিবর্তিত হচ্ছে। যে কোন বল্পর বেগের দিক পরিবর্তিত হলে বেগও পরিবর্তিত হবে। তিনটি কারণে বেগের পরিবর্তন আসতে পারে—(ক) দিক না পাল্টিয়ে কেবল মান পাল্টালে, (খ) মান না পাল্টিয়ে কেবল দিক পাল্টালে, এবং
(গ) দিক ও মান ছইই পাল্টালে।

কোন বস্তু নির্দিষ্ট দিকে চলার সময়ে সমান অবকাশে সমান দূরত্ব অতিক্রম করলে তার বেগকে সমবেগ বলে। না করলে অসমবেগ বলে। আবার মান সমান থেকে দিক পান্টালেও সেই বেগকে অসমবেগ বলে।

অসমবেগ বিশিষ্ট কোন বস্তু কোন নির্দিষ্ট সময়ে কোন দ্রত্ব অতিক্রম করলে

একক সময়ে অতিক্রান্ত গড়

A a b c d e f B

মনে কর, কোন বস্তু

চিত্র 4.4

\*\*Transport of the state of

(চিত্র 4·4)। মনে কর প্রথম সেকেণ্ডে Aa, দ্বিতীয় সেকেণ্ডে ab পথ অতিক্রম করে এবং এইভাবে t সেকেণ্ডের শেষে AB পথ অতিক্রম করে। তাহলে একক সময়ে বস্তুটি গড় দূরত্ব অতিক্রম করে  $\frac{AB}{t}$  এবং এটিই তার গড় বেগ।

### (ঘ) ত্বরণ: একক সময়ে বেগ বৃদ্ধিকে ত্বরণ বলে।

ধর, কোন বস্তু ক্রমবর্ধমান বেগ নিয়ে এগিয়ে চলেছে। তার বেগের পরিবর্তন তিনটি কারণে হতে পারে যা তোমরা একটু আগেই পড়েছ। মনে কর, কোন বস্তুর বেগ নির্দিষ্ট দিকে প্রতি 2 দেকেণ্ডে 10 cm বাড়ছে। যদি তার আদি বেগ 30 cm/s হয় তবে দিতীয় সেকেণ্ডের শেষে বেগ হবে 40 cm/s, চতুর্থ দেকেণ্ডের শেষে হবে 50 cm/s ইত্যাদি। সংজ্ঞা অনুযায়ী ত্ববণ — বেগ বৃদ্ধি। সময়

এক্ষেত্রে ত্বরণ =  $\frac{1}{2}$  তথাৎ প্রতি সেকেণ্ডে 5 cm/s বা প্রতি বর্গদেকেণ্ডে 5 cm ( 5 cm/s/s বা 5 cm/s $^2$  )।

দেখতে পাচ্ছ ত্বরণের একক হচ্ছে cm/s/s অর্থাৎ দেকেণ্ডের s ত্বার আদছে। বর্তমানে cm/s/s লেথার প্রচলন নেই। লেথা হয়  $cm/s^2$  বা  $cms^{-2}$ ।

দৈর্ঘ্য, ভর ও সময়ের মত বেগ ও বরণও ভৌত রাশি। বরণের মান

থাকায় এবং ত্বন একটি বিশেষ দিকে নির্দিষ্ট বলে এটি ভেক্টর রাশি। প্রকাশ

করা হয় a অক্ষর দিয়ে। অনেক সময় ভেক্টর বোঝাতে a লেখা হয়।
আবার বেগ ও ত্বনের একক প্রাথমিক নয়, লব্ধ।

এদ আই পদ্ধতিতে হরণের একক  $\,m/s^2$ , দি জি এদ পদ্ধতিতে  $\,cm/s^2$  এবং এফ পি এদ পদ্ধতিতে  $\,ft/s^2$ ।

ত্বণ ত্বকমের হতে পারে—সমত্বণ ও অসমত্বণ। সমান অবকাশে বেগবৃদ্ধি সমান হলে সমত্বণ, আরু না হলে অসমত্বণ বলে।

(%) মন্দন: একক সময়ে বেগের হাসকে মন্দন বলে। মনে কর, কোন একটি বস্তব বেগ প্রতি সেকেণ্ডে 2 cm/s করে কমে। তাহলে বস্তব মন্দন হচ্ছে  $2 \text{ cm/s}^2$ । স্থতবাং মন্দন = -ছবণ। মন্দন হল ঋণাত্মক ছবণ।

মন্দন ও ছবণের প্রতীক ও একক এক।

### জড়ভা বা জাড্য

একটি মার্বেলকে আঙ্বলের টোকা দিলে সেটি চনতে থাকে। কিন্তু একটা টেবিলকে নড়াতে হলে বেশ জোরে ধাক। দেওয়া দরকার। আবার কোন বস্তুকে চালিয়ে দিলে কিছুক্ষণ পরেই থেমে যায়। তাকে সমবেগে চালাতে হলে বাইরে থেকে বল প্রয়োগের প্রয়োজন হয়। আড়াই হাজার বছর আগে গ্রীক দার্শনিক আরিস্ততল অভিজ্ঞতা থেকে এই কথাই বলেছিলেন।

পরের যুগে গ্যালিলিও কিন্তু ব্যাখ্যা করেছিলেন একটু অন্ত ভাবে। তিনি বলেছিলেন, কোন বস্তুকে সমবেগে চলার জন্ম বাইরের এই বলের প্রয়োজন কেবল ঘর্ষণের উপস্থিতির জন্ম। তিনি যুক্তি দিয়ে বললেন, ঘর্ষণ না থাকলে কোন চলমান বস্তু চিরদিন চলতেই থাকবে। তাঁর ব্যাখ্যা সাধারণ অভিজ্ঞতার বাইরে। তাই অনেকের মনে খটকা লাগল। কোন বস্তু স্থিতিতে থাকলে অবশ্য চিরদিনই স্থিতিতে থাকবে—এই ব্যাখ্যা কারও মনে সন্দেহ জাগায়নি, কারণ এটা সাধারণ অভিজ্ঞতা।

বস্তুর এই ধর্মকে জড়তা বা জাড্য বলে। চলমান বস্তুর জড়তাকে গতিজাড্য ও স্থির বস্তুর জড়তাকে স্থিতিজাড্য বলে। জাড্য স্থত্তের আদি ভায়কার স্বয়ং গ্যালিলিও হলেও পরবর্তী যুগে বস্তুর গতির উপর বলের প্রভাব নিয়ে শুর আইজাক নিউটন তিনটি স্ত্র দিয়েছিলেন। এই তিনটি স্ত্র নিউটনের গতিস্ক নামে বিখ্যাত।

# নিউটনের গতিসূত্র

প্রথম সূত্র: বাইরে থেকে বল প্রয়োগ না করলে অচল বস্তু চিরদিন অচল থাকবে এবং সচল বস্তু সমবেগে সরল রেখা পথে চিরদিন চলতে থাকবে।

দিভীয় সূত্র: বস্তুর ভরবেগের পরিবর্তনের হার প্রযুক্ত বলের সমানুপাতিক এবং বল যে দিকে ক্রিয়া করে ভরবেগের পরিবর্তন সেই দিকে ঘটে।

ভূতীয় সূত্র: প্রভ্যেক ক্রিয়ার একটি সমান ও বিপরীত প্রতি-ক্রিয়া থাকে।

প্রথম সূত্রের ব্যাখ্যা—প্রথম স্ত্রের প্রথম অংশে দেখা যায়, কোন বস্তু স্থির থাকলে চিরদিন স্থির থাকবে এবং চলতে থাকলে চিরদিন চলবে। এই অবস্থার পরিবর্তন বস্তু নিজে থেকে করতে পারে না। বস্তুর এই ধর্মকে জড়তা বলে। জড়তা বেশি হলে বস্তুর অবস্থা পরিবর্তন করতে বেশি বলের প্রয়োজন হয়। যে কোন বস্তুর জড়তা একটি মৌলিক ধর্ম। কোন বস্তুর জড়তার পরিমাপকে তার ভর বলে। যে বস্তুর ভর বেশি তার জড়তাও বেশি। কিছু পরেই তা জানতে পারবে।

প্রথম স্ত্রের বিতীয় অংশ থেকে জানতে পার্বে, বল কাকে বলে। কোন বস্তুর অবস্থার পরিবর্তন করতে হলে বাইরে থেকে কিছু প্রয়োগ করতে হয়। স্থির বস্তুকে সচল করতে বা সচল বস্তুকে অচল করতে বা বস্তুর গতি বাড়াতে বা কমাতে বা দিক পরিবর্তন করতে বাইরে থেকে যা প্রয়োগ করা হয় তাকে বলা হয় বল। প্রতীক F।

# জাড্যের উদাহরণ

ক্যারাম থেলার সময় তোমরা দেখেছ যে একটা ঘুটি আর একটা ঘুটির উপর থাকার সময় ষ্টাইকরি দিয়ে নিচের ঘুটিতে আঘাত করলে অনেক সময় উপরের যুটি সরে যায় না। এটা স্থিতিজাড্যের উদাহরণ। একটা গ্লাদের উপর এক টুকরো পিজবোর্ড রেথে তার উপর একটা দশ পয়দা রাথ (চিত্র 4.5)। এখন জোরে পিজবোর্ডটাকে আঘাত করলে দেখবে মুদ্রাটি পিজবোর্ডের সঙ্গে ছুটে



চিত্ৰ 4.5

না গিয়ে গ্লাদের ভিতরে পড়বে। ট্রামে বাদে চলার সময়ও তোমাদের জাড়োর অভিজ্ঞতা হয়। যথন বাদ হঠাৎ চলতে শুরু করে, তথন যাত্রীরা পিছন দিকে হেলে পড়ে, আবার চলন্ত বাদ থামলে সামনের দিকে ঝুঁকে পড়ে। প্রথমটি স্থিতি ও দ্বিতীয়টি গতিজ্ঞাড়োর উদাহরণ। লং জাম্পের আগে থেলোয়াড় প্রথমে কিছু দ্ব দোড়ে এদে তবে লাফ দেয়। তার গতিজ্ঞাড়া তাকে বেশি লাফাতে সাহায্য করে।

দ্বিতীয় স্পূত্রের ব্যাখ্যা—দ্বিতীয় স্ত্র থেকে আমরা বলের পরিমাপ এবং বল ও ত্বরণের সম্পর্ক জানতে পারি। দ্বিতীয় স্থত্রের আলোচনার আগে ভর-বেগের সংজ্ঞা জানতে হবে।

ভরবেগ: কোন গতিশীল বস্তুতে ভর ও বেগের সমন্বরে যে ধর্মের স্থাষ্টি হয় তাকে ভরবেগ বা মোমেন্টাম বলে। ভরবেগের মান বস্তুর ভর ও বেগের প্রণফলের সমান। ভরবেগ একটি ভেক্টর রাশি। বেগের দিক অহুযায়ী ভরবেগের দিক স্থির করা হয়। ভরবেগের একক দি জি এদ পদ্ধতিতে g.cm/s, এদ আই পদ্ধতিতে kg. m/s এবং এফ পি এদ পদ্ধতিতে lb. ft/s। প্রতীক p।

মনে কর, সরলরেখায় চলমান কোন বস্তার ভর m, প্রাথমিক বেগ u এবং একটি বল F বস্তুটির উপর কাজ করছে। t সেকেণ্ড পরে প্রযুক্ত বলের প্রভাবে বস্তুটির বেগ হল v।

অতএব ভরবেগের পরিবর্তন হবে  $\dfrac{m(v-u)}{t}=ma$  অর্থাৎ প্রযুক্ত বলের প্রয়োগে বস্তুটিতে a ত্বরণের স্বৃষ্টি হয়েছে। স্ত্র অনুষায়ী

 $F \propto ma$ 

=k ma

k একটি সমারূপাতিক ধ্বক। যে বল একক ভবের একটি বস্তুর উপর প্রযুক্ত হয়ে একক স্বরণের স্ঠে করে সেই বলকে একক বল বলা হয়। অর্থাৎ  $m\!=\!1,\,a\!=\!1$  এবং  $F\!=\!1$  হলে  $k\!=\!1$  হবে। অতএব  $F\!=\!ma$ ।

বল একটি ভেক্টর রাশি, লেখা হয় F অক্ষর দিয়ে। উপরের সমীকরণ থেকে ভোমরা বলের একক বার করতে পারবে। নিশ্চয়ই লক্ষ্য করেছ বলের একটি নিদিষ্ট দিক ও একটি প্রয়োগ বিন্দু আছে।

দি জি এদ পদ্ধতিতে বলের একক ডাইন, এদ আই পদ্ধতিতে নিউটন এবং এফ পি এদ পদ্ধতিতে পাউণ্ডাল।

ভাইন— যে বল 1 g ভরের উপর প্রযুক্ত হয়ে 1 cm/s $^2$  ত্বণ স্পৃষ্টি করে তাকে এক ভাইন বলে। ভাইন প্রকাশ করা হয় dyn লিখে। স্তরাং 1 dyn=1g. cm/s $^2$ ।

নিউটন—যে বল 1 kg ভরের উপর প্রযুক্ত হয়ে 1 m/s² ত্বরণ স্বাষ্টি করে তাকে এক নিউটন বলে। নিউটনের প্রতীক চিহ্ন N। অতএব

 $1 N = 1 kg.m/s^2$ 

পাউণ্ডাল—যে বল 1 fb ভরের উপর প্রযুক্ত হয়ে 1 ft/s² দ্বরণের সৃষ্টি করে তাকে এক পাউণ্ডাল বলে। 1 পাউণ্ডাল=1 fb ft/s²।

নিউটন ও ডাইনের সম্পর্ক :  $1 \text{ N} = 10^3 \text{ g} \times 10^2 \text{ cm/s}^2 = 10^5 \text{ dyn}$ ।

তৃতীয় স্থানের ব্যাখ্যা—যদি কোন বস্তু অন্য একটি বস্তুর উপর বল প্রয়োগ করে তবে দিতীয় বস্তুটিও প্রথম বস্তুর উপর একটি সমান ও বিপরীত বল প্রয়োগ করবে। প্রথম বলটিকে ক্রিয়া বলা হলে, দ্বিতীয়টিকে বলা হবে প্রতিক্রিয়া। এইটিই নিউটনের তৃতীয় স্থ্র।

(ক) টেবিলের উপর একটা বই রেখেছ। বইটা ওজনের জন্ম দোজা পৃথিবীর কেন্দ্রে যাওয়ার কথা। কিন্তু টেবিলের উপর স্থির ভাবে পড়ে থাকার একমাত্র কারণ হতে পারে টেবিল নি\*চয়ইউপর দিকে সমান বল প্রয়োগ করছে। টেবিলের প্রযুক্ত বল বেশি হলে বইটা আপনা আপনি উপর দিকে উঠত আর কম হলে টেবিল ভেদ করে নিচের দিকে নামত। টেবিলে না রেথে হাভে রাখলে অহভেব করতে পারবে মাংসপেশীর সাহায্যে তোমরা উপর দিকে বল প্রয়োগ করছ।

- (থ) যথন তোমরা হাঁট তথন পা দিয়ে মাটিতে বল প্রয়োগ কর। মাটিও তোমার উপর বল প্রয়োগ করে। এই বলের সামনের অংশ তোমাকে হাঁটতে সাহায্য করে।
- (গ) নোকো থেকে লাফ দিয়ে যদি তীরে নেমে পড় দেখবে নোকোটা পিছনে সরে যাচ্ছে। তুমি যেই নোকোতে বল প্রয়োগ করলে, নোকোর প্রতিক্রিয়া তোমাকে সামনের দিকে ঠেলে তীরে নামতে সাহায্য করল।
- (ঘ) একটি বেলুনকে ফুলিয়ে যদি ছেড়ে দাও, দেখবে, বেলুনের ম্থ দিয়ে যে দিকে হাওয়া বেকচেছ, বেলুনটা তার উলটো দিকে সরে যাচছে। বেলুনের ম্থ দিয়ে বাতাস যথন বেরিয়ে যাচ্ছিল তথন তার প্রতিক্রিয়া বেলুনকে পিছন দিকে ঠেলে দিচ্ছিল।
- (৬) তোমরা রকেটের কথা নিশ্চয় শুনেছ। হাউই বাজী আকাশে উঠতে নিশ্চয় দেখেছ। হাউই-এর এক প্রান্ত মোটা। তার ভিতর বিস্ফোরক পদার্থ থাকে। হাউইকে মাটির উপর বসিয়ে মাটির দিকে ম্থ করে যে পলতে থাকে তাতে আগুন লাগিয়ে দিতে হয়। পলতেটা ধরলে ভিতরের বিস্ফোরক পদার্থে আগুন লাগে ও ভিতরে প্রচুর গ্যাদ স্পষ্ট হয়। এই গ্যাদ নিচের দিকের ম্থ দিয়ে বেরিয়ে এলে গ্যাদের প্রতিক্রিয়া হাউইকে উপর দিকে ঠেলে দেয়।

রকেটও একই ভাবে আকাশে ওঠে। রকেটে পর্যাপ্ত বল স্থান্ট হলে দেটি হাউই-এর মত পৃথিবীতে ফিরে না এদে পৃথিবীর অভিকর্ম বল এড়িয়ে মহাশূল্যে চলে যায়। রকেটের মধ্যে কঠিন বা তরল জালানি থাকে। এই জালানি যথন অক্সিজেনের সংস্পর্শে এদে পুড়তে থাকে তথন প্রচণ্ড গ্যাদ নিচের দিকে নামতে থাকলে রকেটটি প্রতিক্রিয়ার জন্ম জোরে উপর দিকে উঠতে থাকে। অনেক রকেটে পারমাণবিক জালানি ব্যবহার করা হয়। অভিকর্ম বলের প্রভাব মৃক্ত হওয়ার জন্ম প্রচণ্ড বল প্রয়োজন হওয়ায় রকেট সাধারণত অনেকগুলি থাক বা স্তরে বিভক্ত। একটি স্তর পুড়ে উপরে উঠে যাওয়ার পর অন্যটিতে আগুন লাগে এবং সেটি কাজ করতে থাকে।

### জাড্য ভর

ভোমরা পড়েছ জাড়া পদার্থের একটি ধর্ম। ধর, তুটো মাবেল নিয়েছ, একটি অন্তটির চেয়ে ভারী। তুটো বস্ততে যদি একই টোকা দাও অর্থাৎ একই বল প্রয়োগ কর তবে হালকা মার্বেলটি বেশি দ্ব যায় এবং ভারীটি কম দ্র যায়। একই বল প্রয়োগে হালকাটিতে বেশি ত্বরণ ও ভারীটিতে কম ত্বরণ স্বান্টি হয়েছে।

কোন বস্তুতে F বল প্রয়োগ করলে যদি a ত্বরণের স্থাষ্টি হয়, তবে F বল a ত্বরণের সমামপাতিক। F ও a ব অমপাতকে বস্তুর ভব বলে। বস্তুর এই ভবকে জাড্য ভব বলা হয়। তুইটি বস্তুর ভব যদি  $m_1$  ও  $m_2$  হয় এবং একই বলের প্রয়োগে তাদের মধ্যে  $a_1$  ও  $a_2$  ত্বণের স্থাষ্ট হয় তবে তাদের মধ্যের সম্পর্ক হবে

$$\frac{m_1}{m_2} = \frac{a_2}{a_1}$$

স্বতরাং দেখতে পাচ্ছ, একই নির্দিষ্ট বল প্রয়োগ করলে যে বস্তুতে বেশি স্বরণের স্বৃষ্টি হয়, তার জড়তা কম ও যে বস্তুতে কম স্বরণের স্বৃষ্টি হয় তার জড়তা বেশি।

# 🖉 কাজ, শক্তি ও ক্ষমতা

MINUTE TO PERSON DESCRIPTION OF STREET

কাজ

কাজ বা কার্য বা ইংরেজীতে ওয়ার্ক কথাটি তোমাদের অজানা নয়। নিজেরাও যে প্রতিদিন কত কাজ কর তার ঠিক নেই। থেলাগুলা, দৌড়ান, হাঁটা, মোট বওয়া, বাসন মাজা, সবই কাজ। এমন কি বই পড়াকেও তোমরা কাজ করা বল। বই পড়া কিন্তু কাজ নয়। বিজ্ঞানের ভাষায় কাজ কাকে বলে জান?

বল কাকে বলে পড়েছ। কোন বস্তুর উপর বল প্রয়োগ করলে বস্তুটি স্থানান্তরিত হয়। বস্তুটির উপর বলের প্রয়োগবিদু যে দূরত্বে স্থানান্তরিত হয় সেরণ ও বলের গুণফলকে বিজ্ঞানের ভাষায় কাজ বলে। বই পড়তে কোন বলের প্রয়োজন হয় না। স্থতরাং এটা কাজ নয়। আবার কোন বস্তুর উপর বল প্রয়োগ করলে বস্তুটি যদি কোন দূরত্বে দরে না যায় তবে সেটাকেও কাজ বলা হবে না। যেমন ধর ঘরের দেওয়ালকে যত জোরেই ঠেল না কেন, নড়াতে পারবে না, স্থতরাং এটাও কাজ করা হবে না।

ধর কোন বস্তর উপর বল

F প্রয়োগ করে বস্তুটিকে 

দূরত্বে সরিয়েছ (চিত্র 5:1a)।

এক্ষেত্রে বলের অভিমূথ ও

বস্তুটির স্থানচ্যুতি একই দিকে।

সংজ্ঞা অনুযায়ী কাজ W=F.s।



F=0 অর্থাৎ কোন স্থির বস্তকে চুপচাপ ধরে বসে থাকলে কাজের পরিমাণ হবে শৃ্ন্ত। আবার s=0 হলে অর্থাৎ যত জোরেই ঠেলা দাও না কেন, বস্তুটিকে না সরাতে পারলে, কাজের পরিমাণ হবে শ্ন্ত।

বস্তুর স্থানচ্যুতি যে সব সময় বলের দিকে হবে তার কোন অর্থ নেই। চিত্র 5.1b দেখলে বুঝতে পারবে। মনে কর, একটি চলমান বস্তুকে থামাবার জন্ম F বল তীর চিহ্নিত দিকে বস্তুটির চলার বিপরীত দিকে প্রয়োগ করা হল। বস্তুটির প্রাথমিক অবস্থান A এবং শেষ অবস্থান B হলে বলের প্রয়োগবিন্দু AB দ্রুত্বে স্থানাস্তরিত হয়েছে বলের উলটো দিকে। স্কুতরাং কাজের মান হচ্ছে  $F \times AB$ । এক্ষেত্রে বলের বিরুদ্ধে কাজ হয়েছে।

কাজের মান বুঝতে কোন দিকের প্রয়োজন হয় না। বল যে দিকেই হোক না কেন বস্তু যে দ্রত্বে স্থানাস্তরিত হয় সেই দূরত্ব ও বল এই তুইয়ের গুণফলকে কাজ বলে। স্থতরাং কাজ একটি স্কেলার রাশি। প্রতীক চিহ্ন W।

একক বল এবং বলের প্রয়োগবিন্দুর একক দ্রত্বে স্থানচ্যুতির গুণফলকে বলে একক কাজ। সি জি এদ পদ্ধতিতে কাজের একক হচ্ছে আর্ম। কোন বস্তব উপর এক ডাইন বলপ্রয়োগ করলে যদি বস্তুটি এক সেন্টিমিটার দ্রত্ব সরে যায়, তবে মোট কাজের পরিমাণ হবে এক আর্ম। আর্ম এককটি erg অক্ষর দিয়ে প্রকাশ করা হয়। স্থতরাং 1 erg=1 g. cm²/s²।

এন আই পদ্ধতিতে কাজের একক জুল। যদি এক নিউটন বল কোন বস্তুকে প্রয়োগ করলে বস্তুটি এক মিটার সরে যায় তবে সেই কাজকে এক জুল বলা হয়। জুল এককটিকে J অক্ষর দিয়ে লেখা হয়। স্থতরাং  $1\ J=1\ kg.\ m^2/s^2$ ।

এফ পি এদ পদ্ধতিতে কাজের একককে বলে ফুট পাউণ্ডাল। এক পাউণ্ডাল বল কোন বস্তুর উপর কাজ করে যদি বস্তুটিকে এক ফুট দ্রত্ব দরায় তবে কাজের পরিমাণ হবে এক ফুট-পাউণ্ডাল। এককটিকে ft-poundal লেখা হয়।

### শক্তি

কাজ যে সব সময় মানুষ করে তাই নয়। জড় বস্ততেও কাজ করতে পারে। যেমন মালগাড়ি মাল বয়, পাথা ঘোরে, স্পিং দম দেওয়া অবস্থায় ঘড়ির কাঁটা ঘোরায়, জল টারবাইনের চাকা ঘ্রিয়ে বিত্যুৎ উৎপাদন করে ইত্যাদি। যে কোন বস্তুর কাজ করার সামর্থাকে বলে শক্তি বা ইংরেজীতে এনার্জি।

কোন বস্তুর উপর কাজ করলে বস্তুটির শক্তি বৃদ্ধি পায়। যেমন কোন বস্তুকে মাটি থেকে তুললে তার শক্তি বৃদ্ধি পায়, ঘড়ির স্প্রিংকে দম দিলে স্প্রিংটির শক্তি বৃদ্ধি পায়। আবার বস্তুটি যথন কাজ করে তথন তার শক্তি হ্রাস পায়। উপর থেকে মাটিতে পড়লে বস্তুর শক্তি হ্রাস পায়।

কাজের মত শক্তিও একটি রাশি। শক্তির একক ও কাজের একক হুবছ এক। E অথবা W অক্ষর ছটি হচ্ছে শক্তির প্রতীক চিহ্ন।

দি জি এদ পদ্ধতিতে শক্তির একক আর্গ, এদ আই পদ্ধতিতে জুল ও এফ ধি এদ পদ্ধতিতে ফুট-পাউণ্ডাল।

#### ক্ষমতা

এতক্ষণ কাজ করার কথা বলা হয়েছে। কিন্তু সময়ের কথা বলা হয়নি। কোন কাজ এক সেকেণ্ডে করা যায়, আবার এক বছরেও করা যায়। কিন্তু কাজ করার হার ছটি ক্ষেত্রে এক নয়। মনে কর কোন কাজ W, t সময়ে করা হল। তাহলে প্রতি একক সময়ে কাজ করার হার W/t। কাজ করার হারকে ক্ষমতা বা পাওয়ার বলে। ক্ষমতা একটি স্থেলার রাশি। প্রকাশ করা হয় P অক্ষর দিয়ে।

এদ আই পদ্ধতিতে কাজ করার একককে বলে ওয়াট। এক দেকেণ্ডে এক জুল কাজ করার ক্ষমতাকে বলে এক ওয়াট। এই একক W অক্ষর দিয়ে প্রকাশ করা হয়। পরে জানতে পারবে যে বিছাতের ক্ষেত্রে ওয়াট এককটি ব্যবহার হয়। এক ভোল্ট বিভব প্রভেদের মধ্যে দিয়ে এক আম্পিয়র বিছাৎ-প্রবাহ চলাচল করলে তার ক্ষমতা হয় এক ওয়াট। এক ওয়াট ব্যবহারিক একক হিসেবে ছোট হওয়ায় কিলোওয়াটের সংজ্ঞা থেকে আর একটি একক বর্তমানে খ্ব বেশি ব্যবহার করা হয়। একে বলে কিলোওয়াট-ঘন্টা। এককটি লেখা হয় kWh অক্ষর দিয়ে। আমরা বাড়িতে যে বিছাৎশক্তি ব্যবহার করি তার দাম দেওয়া হয় কিলোওয়াট-ঘন্টা এককে।

এফ পি এস পদ্ধতিতে ক্ষমতার একককে বলে হর্স-পাওয়ার। প্রতি সেকেণ্ডে 550 ফুট পাউণ্ড কান্ধ করার ক্ষমতাকেবলে এক হর্স-পাওয়ার। লেথা হয় hp অক্ষর দিয়ে। 1 hp=745.7 W।

### **স্থিতিশ**ক্তি

স্থিতিশক্তি বা পোটেনশিয়াল এনার্জি হচ্ছে যান্ত্রিক শক্তির একটি বিশেষ রূপ। অবস্থা বা অবস্থানের জন্ম কোন বস্তুর শক্তিকে বলে স্থিতিশক্তি।

মনে কর, একটি বস্তর ওজন হচ্ছে mg। তুমি বস্তকে h উচ্চতার উঠিরে রাথলে। ওজন পৃথিবীর কেন্দ্রের অভিমৃথী বল। ভূপৃষ্ঠ থেকে h উচ্চতার বস্তকে তুলে ধরতে তুমি এই বলের বিরুদ্ধে কাজ করেছ। সংজ্ঞা অনুযায়ী এই

কাজের পরিমাণ, বল ও যে উচ্চতার বস্তুটিকে সরিয়ে রাথলে তাদের গুণফল।
এক্ষেত্রে এই কাজের পরিমাণ mgh (চিত্র 5.2)। তুমি যে কাজ করলে
সেই কাজ বস্তুতে শক্তি হয়ে জমা থাকল। শুধু যে উচুতে কোন বস্তুকে রাথলে
স্থিতিশক্তি হয় তা নয়। বস্তুর অবস্থার জন্মও হতে পারে। কোন স্প্রিংক
দম দিলে স্থিংএ স্থিতিশক্তির সঞ্চার হয়। এই স্থিতিশক্তি ধীরে ধীরে ঘড়ির
কাটা ঘোরায় অর্থাৎ কাজ করে। তীর ছোড়ার সময় ধহুকের স্থিতিশক্তি
তীর ছোড়ার কাজ করে। সংকুচিত গ্যাদ স্থীম এঞ্জিনে যথন পিন্টনকে



সামনের দিকে ছুড়ে দেয় সেটাও স্থিতিশক্তির উদাহরণ। স্থিতিশক্তির আর একটা স্থানর উদাহরণ দেখ। মনে কর বেশ বড় ভারী একটা পাথর মাটির উপর পড়ে আছে। তোমরা নির্ভয়ে তার পাশে দাঁড়াতে বা তার উপর উঠে বসতে পার। কিন্তু সেই পাথরটি যদি একটা দড়ি দিয়ে বেবধে তোমার মাথার একটু উপরে ঝুলিয়ে রাখাহয়, তুমি ভয়ে কাঁপবে। একটু ভাবলেই বমতে

পারবে ভয় তোমার পাথরটিকে নয়, অবস্থানের জন্ম পাথরের স্থিতিশক্তিকে।

দৈনন্দিন জীবনে স্থিতিশক্তির অনেক উদাহরণ তোমরা পাবে।

# গভিশক্তি

গতিশক্তি বা কাইনেটিক এনার্জি যান্ত্রিক শক্তির আর একটি বিশেষ রূপ। গতির জন্ম কোন গতিশীল বস্তুর যে শক্তি তাকে বলৈ গতিশক্তি।

মনে কর, কেউ হাতুড়ি দিয়ে দেয়ালে একটা পেরেক ঠুকছে, হাতুড়িটাকে জ্বতগতিতে টেনে এনে পেরেকের গায়ে মারছে, অর্থাৎ হাতুড়ির গতিশক্তি এখানে কাজ করছে।

বস্তুর ভর m এবং বেগ u হলে গতিশক্তি  $= \frac{1}{2}m\ v^2$ । এর প্রমাণ তোমরা পরে পড়বে।

গতিশক্তির অনেক উদাহরণ লক্ষ্য করলেই দেখতে পাবে। এই শক্তিকে কাজে লাগিয়ে অন্ত শক্তি উৎপাদন করা যায়। জলপ্রপাতের পড়স্ত জলের স্রোতে যথন কোন টারবাইন ঘোরান হয়, তথন তার গতিশক্তিকে কাজে লাগিয়ে বিদ্যুৎশক্তি উৎপাদন করা হয়। বছ প্রাচীন কাল থেকে বায়্শক্তিকে কাজে লাগান হয়ে থাকে। এই যন্ত্রকে উইগুমিল বা বাতচক্র বলে। হল্যাগু দেশে সব সময় প্রচণ্ড হাওয়া বয়, দেখানে উইগুমিলের খুব চলন আছে। যাদবপুর বিশ্ববিভালয়ে একটি উইগুমিল আছে। জোয়ার-ভাটার জন্ম জনে যে স্রোত হয়, তাও কাজে লাগিয়ে কোন কোন দেশে বিদ্যুৎশক্তি উৎপাদন করা হয়ে থাকে।

# গতিশক্তি ও স্থিতিশক্তির রূপান্তর

তোমরা পড়েছ, গতিশক্তিকে স্থিতিশক্তিতে এবং স্থিতিশক্তিকে গতিশক্তিতে রূপান্তরিত করা যায়। সরল দোলক একটি উদাহরণ। দোলকটি যথন তার পথের স্বচেয়ে নিচে আসে তথন তার বেগ স্বচেয়ে বেশি হওয়ায় গতিশক্তিও

দ্বচেয়ে বেশি। আবার
দোলকটি যথন তার
পথের শেষ প্রান্ত হুটির
যে কোন একটিতে আদে,
তথন তার বেগ শৃগ্
কিন্তু অবস্থানের উচ্চতা
সবচেয়ে বেশি। তথন
তার স্থিতিশক্তিও সবচেয়ে
বেশি। দোলনের সময়
দোলকটির স্থিতিশক্তি



চিত্ৰ 5.3

গতিশক্তিতে এবং গতিশক্তি স্থিতিশক্তিতে রূপান্তরিত হয়ে থাকে। পথের অন্য যে কোন স্থানে দোলকটির স্থিতিশক্তি ও গতিশক্তি ছই থাকে এবং এই ছই শক্তির মোট পরিমাণ সর্বত্র সমান।

পরীক্ষা করে দেখ। একটা ছোট দোলক A নাও (চিত্র 5.3)। দোলকটির দোলন পথের একপাশে একটি স্প্রিং রাথা আছে। এর একটি মাথায় একটি ছোট প্লেট আটকান আছে এবং অন্ত প্রান্তটি একটা বড় প্লেটে শক্ত ভাবে আটকান। A দোলকটি যথন B প্লেটে এসে সজোরে আঘাত দেয়, তথন স্প্রিটি সংকুচিত হয়। দোলকটির গতিশক্তি স্প্রিংএর স্থিতিশক্তিতে রূপান্তরিত

হয়। এখন দোলকটি স্থির অবস্থায় এলে সংকুচিত স্প্রিংটি দোলকটিকে সজোরে ঠেলে দেয়। ফলে স্প্রিং-এর স্থিতিশক্তি আবার দোলকের গতিশক্তিতে রূপান্তরিত হয়। এই অবস্থায় গতিশক্তি ও স্থিতিশক্তি একে অন্তুতে রূপান্তরিত হতে পারে।

### সাধারণ যন্ত্র

যুগ যুগান্তর ধরে মাহ্য তার পরিশ্রম কমাবার জন্ম বিভিন্ন যন্ত্রের উদ্ভাবন করেছে। আজকের দিনে কত বড় কলকারথানা তোমরা দেখতে পাবে চার পাশে। কিন্তু দে যুগে যথন মাহুষের জ্ঞান ছিল দীমাবদ্ধ, তথনও বিভিন্ন ছোটখাট যন্ত্রের সাহায্যে দে তার পরিশ্রমের লাঘ্য করত। লিভার এবং চাকাও অক্ষণণ্ড বছদিনকার ব্যবহৃত ছটি যন্ত্র।

(ক) লিভার—ধর, একটা বড় পাধরকে তুমি সরাবে। কাজটা বেশ শক্ত। কিন্তু একটা শক্ত বাঁশ বা লোহার রডও ছোট পাধরের সাহাযো এটাকে নড়াতে পারবে। চিত্র 5.4-এ যেমনটি আছে, সেভাবে ছোট পাধর ও লোহার রঙটিকে বসাও। বড় পাধরটিকে রডের এক প্রান্তে রেথে ছোট পাথরটিকে মাঝে রেথে তার গায়ে রডটি রাথ। রডের অক্য প্রান্তে তোমাকে চাপ দিতে



চিত্ৰ 5.4

হবে। লক্ষ্য কর ছোট
পাথর ও বড় পাথরের
মাঝের রডের অংশ,
ছোট পাথর ও তোমার
হাতের মাঝের রডের
অংশের চেয়ে অনেক
ছোট। এইবার চাপ
দিলেই দেখবে বড়
পাথরটি নড়ে উঠবে।
তোমার দিকের রডের

অংশের চেয়ে অন্য প্রান্তকে যতই ছোট করবে কান্ধ করার স্থবিধা ততই বেশি হবে।

বড় বোঝা সরাবার জন্ম এই ধরনের যন্ত্রকে বলা হয় লিভার। যে বিনুর

উপর লিভার রাথা হয়, তাকে বলা হয় আলম্ব বা ফালক্রাম। বোঝা ও আলম্বের মধ্যের লিভার অংশকে বলে ভার বাছ এবং প্রয়াস ও আলম্বের মধ্যের লিভারের অংশকে বলে প্রয়াস বাছ।

লিভারের কাজ বুঝবার আগে বলের ভ্রামক কাকে বলে দেখ। দরজা লাগাবার সময় দরজার এক প্রান্ত হাত দিয়ে ঠেল। দরজাটা কজাকে কেন্দ্র ঘোরে। কিন্তু কজার বেশ কাছে হাত এনে যদি দরজাটাকে ঠেল, দেখবে একই দরজাকে ঠেলতে বেশি জোর লাগছে। শুধু দরজা কেন, যে কোন জিনিসের বেলায় তোমাদের একই অভিজ্ঞতা হবে। কজাকে আমরা যদি অক্ষ বলি তবে বলের প্রয়োগবিন্দু যতই অক্ষের কাছে আসবে বলের পরিমাণ ততই বেশি হবে এবং প্রয়োগবিন্দু যতই অক্ষ থেকে দূরে হবে বলের পরিমাণ ততই কম হবে। চিত্র 5.5 এর ছবিটি লক্ষ্য কর। A বিন্দৃটি অক্ষ

এবং B বিন্দুতে F বল প্রয়োগ করা হয়েছে। বল এবং বলের প্রয়োগবিন্দু ও অক্ষের মধ্যবর্তী দ্রত্বের গুণফলকে বলের জ্রান্সক বলে। এক্ষেত্রে F×AB হচ্ছে বলের জ্রামক। যদি AB দ্রত্ব



চিত্ৰ 5.5

ছোট হয় তবে বলের পরিমাণ বেশি হবে। একই ভাবে AB বেশি হলে প্রয়োজনীয় বল F কম লাগবে।

এইবার লিভারের কথায় ফিরে আসা যাক। চিত্র 5.6 দেখ। AB একটি লিভার এবং C বিন্দৃটি AB লিভারের আলম্ব। A বিন্দৃতে ভার W এবং B বিন্দৃতে প্রয়াস P প্রয়োগ করা হয়েছে। AB অহভূমিক থাকলে বলের

A C B ভামক অহ্যায়ী
$$W \times AC = P \times BC$$

$$W \times AC = \frac{W}{P} = \frac{BC}{AC}$$

উপরের সমীকরণে দেখছ BC/ACর অন্থপাত বল ছটির অন্থপাতের সমান। বল ছটির এই অন্থপাতকে যন্ত্রের যাক্ত্রিক স্থবিধা বলে। অন্থপাতটি যত বড় হবে যান্ত্রিক স্থবিধা ততই বেশি হবে।

গল্প আছে, আর্কিমিডিদ একবার বলেছিলেন, যদি বিরাট লম্বা একটি রড আমাকে দেওয়া হয়, আর দেওয়া হয় পৃথিবীর বাইরে দাঁড়াবার মত একটু জায়গা, তবে আমি একাই সমস্ত পৃথিবীটাকে নড়াতে পারব। কথাটি কি ঠিক ?

লিভার তিন শ্রেণীর। উপরে বর্ণিত লিভারকে প্রথম শ্রেণীর লিভার বলে। এই লিভারে আলম্ব বিন্টি ভার এবং প্রয়াদের মধ্যে অবস্থিত।

ভোমরা স্থপারি কাটা জাঁতি দেখেছ। লক্ষ্য করলে দেখবে এথানে আলম্ব বিন্দুটি এক প্রান্তে অবস্থিত এবং ভার ( এক্ষেত্রে স্থপারি ) আলম্ব ও প্রয়াদের মাঝথানে। এই শ্রেণীর লিভারকে দ্বিতীয় শ্রেণীর লিভার বলে। আগের মত যান্ত্রিক স্থবিধা অঙ্ক ক্ষে বার করলে দেখবে যান্ত্রিক স্থবিধা একের বেশি এবং প্রযুক্ত বলের মান ভারের চেয়ে ক্ম।

চিমটেও এক শ্রেণীর লিভার। একে মাঝথানটা টিপে ধরে থোলা প্রান্তে কয়লার বা অন্ত কোন জিনিদের টুকরো চেপে তুলতে হয়। এথানেও আলম্ব বিন্দুটি এক প্রান্তে অবস্থিত এবং প্রয়াদ, আলম্ব ও ভারের মধ্যে অবস্থিত। এই শ্রেণীর লিভারকে তৃতীয় শ্রেণীর লিভার বলে। এথানে যান্ত্রিক স্থ্রিধা একের কম এবং প্রযুক্ত বলের মান ভারের চেয়ে বেশি।

তিন শ্রেণীর লিভারের আরও কয়েকটি উদাহরণ 5.7 চিত্রে দেখান হল।



চিত্ৰ 5,7

(খ) চাকা ও অক্ষনগু—চাকার সাহায্যে কুয়ো থেকে জল তুলতে তোমরা দেখেছ। গ্রাম অঞ্চলে বিশেষ করে বিহার, উত্তর প্রদেশের গ্রামাঞ্চলে এর প্রচলন খ্ব বেশি। এই ধরনের একটি যন্ত্র (চিত্র 5.8) পরের পৃষ্ঠায় দেখান হল। বড় চাকার দড়িটি ধরে যখন টানা হয় তখন চোঙের গায়ে জড়ান দড়িটি জড়িয়ে ছোট হতে থাকে এবং বালতিটা কুয়ো থেকে উঠতে থাকে। একটা বড় চাকা, একটি সমাক্ষ চোঙে লাগান থাকে। সমাক্ষ চোঙটির ছই প্রান্ত ছটি খুঁটির উপর রাথা আছে। চোঙের গায়ে আটকান দড়িটার

এক প্রান্ত সমাক্ষ দণ্ডে লাগান থাকে, অন্ত প্রান্তে বালতিটা ঝোলান থাকে। বড় চাকার গায়ের দড়ির এক প্রান্ত চাকার গায়ে লাগান থাকে, অন্ত প্রান্তে

বল প্রয়োগ করতে হয়। যথন দড়িটা ধরে টানা হয়, তথন বড় চাকা ঘূরতে থাকে এবং সেই সঙ্গে ছোট চাকাপ্ত ঘোরে। এবার দেখা যাক এই যন্ত্রের যান্ত্রিক স্থবিধা কত। মনে কর, বড় চাকার ব্যাসার্ধ a এবং চোঙের ব্যাসার্ধ b। বড় চাকার দড়িতে টান P এবং বালতির ওজন ধর Q। বলের ভামক অহুযায়ী যান্ত্রিক স্থবিধা



छिब 5.8

 $\frac{Q}{P} = \frac{a}{b}$ । a এবং bর অমুপাত যতই বাড়ান যাবে, যান্ত্রিক স্থবিধাও তত বাড়বে। বড় চাকার বদলে অনেক সময় চোঙের গায়ে একটা হাতল লাগান থাকে। এক্ষেত্রে চোঙের অক্ষ থেকে হাতলের দূরত্ব চোঙের ব্যাসার্ধের চেয়ে বড় হওয়া দরকার।

#### নত তল

তোমরা হয়ত দেখে থাকবে ঢালু কাঠের তক্তা পেতে তার উপর ভারী বোঝা গড়িয়ে উপরে তোলা হয়ে থাকে। বিশেষ করে ট্রাকে ভারী বোঝা বা তেলের পিপে তোলার সময় কাঠের পাটাতনের সাহায্য নেওয়া হয়। এ ভাবে বোঝা



চিত্ৰ 5.9

তুলতে বোঝার ওজনের তুলনায় কম বল প্রয়োগ করতে হয়। কোন সমতল অনুভূমিক ভাবে না থেকে তলটি যদি ভূমিতলের দঙ্গে একটি কোণ করে থাকে তাকে বলে নত তল বা আনত তল এবং ইংরেজীতে ইনুকাইন্ড প্লেন। মনে কর AB ভূমিতলের দঙ্গে কোণ করে একটি পাটাতন AC রাথা আছে (চিত্র 5.10)। স্থতরাং AC একটি নত তল, বোঝাটি নত তলের



চিত্ৰ 5.10

নিচ A থেকে উপরে C পর্যন্ত নেওয়া হল এবং তার জন্ম P বল প্রয়োগ করতে হল। এর জন্ম কাজ হল  $P \times AC$ । নত তল দিয়ে তোলা হলেও আসলে বোঝাটি তোলা হয়েছে ভূমিতল B থেকে C পর্যন্ত। বোঝার ওজন যদি W হয় তবে

নোজাস্থজি BC পথে তুললে কাজের পরিমাণ হয়  $W \times BC$ । ভিন্ন পথে তোলা হলেও কাজের পরিমাণ তুক্ষেত্রেই সমান।

पार्थाः W×BC=P×AC

 $\therefore$  যান্ত্ৰিক স্থাবিধা  $\frac{W}{P} = \frac{AC}{BC}$ 

কোণটি যত ছোট হবে তত BC অপেক্ষা AC বড় হবে এবং যান্ত্রিক স্থবিধা বাড়বে।

# ও তাপ

### ভাপ কী

কোন্ বস্তু গরম বা কোন্ বস্তু ঠাণ্ডা তা তোমরা সহজেই বুঝতে পার।
ধূমায়িত এক কাপ চা যে গরম সেটা কাউকে বলে দিতে হয় না। সেই গরম
চা-ই আবার থানিকক্ষণ রেথে দিলে ঠাণ্ডা হয়ে যায়। তাপে বস্তু গরম হয়,
দ্বাই জানে। কিন্তু তাপ কী এবং তা কি ভাবে পাওয়া যায়?

প্রায় ঘহাজার বছর আগে গ্রীক দার্শনিক প্রেটো বলেছিলেন, 'তাপ পাওয়া যায় ধাকা, ঘর্ষণ এবং গতি থেকে।' সপ্তদশ শতান্ধীতে ফ্রান্সিদ বেকন বলেন, 'তাপ গতি ছাড়া অন্ত কিছু নয়।' তিনি সর্বেকে বলতেন 'গরম' এবং চাঁদের আলোকে বলেছিলেন 'ঠাণ্ডা'। ওই একই শতান্ধীতে হয়গেন্স্ বলতেন যে, আগুন ও আগুনের শিথায় ক্রুতগতিসম্পন্ন এক ধরনের কণা থাকে যা কঠিন বস্তুকে গলাতে পারে। কয়েক বছর পরে জন লক নামে একজন বৈজ্ঞানিক বলেন, তাপ হচ্ছে বস্তুর অচেতন অংশের ক্রুত আলোড়ন। অষ্টাদশ শতান্ধীতে রবার্ট হুক বলেন, কোন বস্তুর গরম হওয়ার কারণ বস্তুর দেহে কণাগুলির ক্রুত আলোড়ন। রবার্ট বয়েল এই মতবাদ সমর্থন করেন। অষ্টাদশ শতান্দীর শেষে লাভ্যমিয়ে এবং লাপ্লাস এই মতবাদ সমর্থন করেন। এই মতবাদকে সে ঘূগে যান্ত্রিক মতবাদ বা মেক্যানিকাল থিওরি বলা হত। অষ্টাদশ শতান্দীর শেষের দিকে আর একটি মতবাদ প্রচলিত হয়—নাম ক্যালরিক মতবাদ। এই মতবাদ জহুযায়ী তাপ হচ্ছে এক ধরনের অদৃশ্য বস্তু, যা গরম বস্তু থেকে ঠাণ্ডা বস্তুতে যেতে পারে। এই অদৃশ্য বস্তুকে বলা হত ক্যালরিক।

তাপের সঠিক ব্যাখ্যা দেবার প্রথম চেষ্টা করেন কাউন্ট রামফোর্ড (1798)। গল্প আছে, অষ্টাদশ শতাব্দীর শেষের দিকে তিনি তুরপুন দিয়ে কামানের মাঝে গর্ত করার কাজের তদারকি করছিলেন। একদিন লক্ষ্য করেন যে, এই কাজে প্রচণ্ড তাপ উৎপন্ন হচ্ছে। তাপের পরিমাণ এত বেশি যে আগুন ছাড়াই বেশ কিছুটা জল ফোটাতে তিনি সমর্থ হন। তিনি এটাও লক্ষ্য করেন যে, এই তাপের পরিমাণ সীমাহীন অর্থাৎ যতক্ষণ গর্ত করার কাজ চলবে

ততক্ষণ তাপ উৎপন্ন হবে। ঠিক একই সময়ে (1778—1829) ইংরেজ বৈজ্ঞানিক হামক্রে ডেভি বায়্শৃত্ত স্থানে শৃত্ত তাপমাত্রার নিচে ছ টুকরো বরফ কেবলমাত্র ঘবে গলান। তাপ যে বস্তকণার গতিশক্তির বাহ্য প্রকাশ এই মতবাদ ক্রমশ দানা বাঁধতে লাগল। এই মতবাদকে চ্ডান্ত রূপ দেন ইংরেজ বৈজ্ঞানিক জেমস প্রেম্বট জুল তাঁর দীর্ঘ ছ বছরের (1843—1849) পরীক্ষার সাহায্যে। তিনি পরীক্ষা করে দেখান, এক একক তাপ উৎপাদন করতে নির্দিষ্ট পরিমাণ যান্ত্রিক শক্তির প্রয়োজন। সেই থেকে জানা গিয়েছে—তাপ হচ্ছে এক ধরনের শক্তি—অণুগুলির মোট গতিশক্তির সমান। কোন বস্তর 'উফ্ডা' বাড়লে অণুগুলির গতিশক্তিও সঙ্গে সঙ্গে বাড়ে।

### ভাপ ও শক্তি

यে कान कृति। वश्च नित्र घषराज थोक, दिश्द कृति। वश्चरे भेत्रम रुद्र উঠেছে। একটা লোহার মাথায় যদি হাতুড়ি দিয়ে ঠুকতে থাক দেখবে লোহার টুকরোটা গরম হয়ে উঠেছে। শীতের দিনে হাত হটো ঘষে গরম করার অভিজ্ঞতা তোমাদের অনেকেরই আছে। এক টুকরো পাথর মেঝেতে घराल दम्यदा, পाधवरो। भवम राम छिट्टा । यथन दम्मलारे जित्र रमनि, চকমকি পাথর ঠকে আগুন ধরান হত। আজকাল লাইটারেও পাথর ঘষে আগুন জালান হয়। ছুরি কাঁচি শান দেওয়ার সময় আগুনের ফুলকি ছোটে দেখেছ। উপরের প্রত্যেকটি ক্ষেত্রেই তাপ উৎপন্ন হয়—বল্পগুলির গতিশক্তি তাপে রূপান্তরিত হওয়ার জন্ম। এক টুকরো শিরীষ কাগজ নিয়ে মাটিতে चरम हां फिरम दम्यद कांगर इक दांगे। भन्न हरम छेट्टेर । अरक्ष গতিশক্তি তাপে রূপান্তরিত হয়েছে। আর একটা পরীক্ষা করে দেখ। একটা ছোট টেস্ট টিউবে ধাতুর কিছু টুকরো নাও। একটা থার্মোমিটারের সাহায্যে ধাতুর টুকরোগুলোর তাপমাত্রা দেখে নাগু। এইবার থার্মোমিটারটা বার করে নিয়ে টেস্ট টিউবের মূথে একটা ছিপি আটকে দাও। পরে বেশ किছूक्कन धरत हिलि मरभछ टिम्हे विखेरनत म्थिन छेनरत छ निट्ड नामिरस छन्टिन ও দোজা করতে থাক। থার্মোমিটার দিয়ে আর একবার ধাতুর টুকরোগুলোর তাপমাত্রা নাও। দেখবে, তাপমাত্রা বেড়েছে। এইক্ষেত্রে টুকরোগুলোক স্থিতিশক্তি তাপমাত্রায় পরিণত হয়েছে।

উপরের উদাহরণ থেকে ব্রুতে পারছ যে, যান্ত্রিক শক্তি তাপে রূপান্তরিত হতে পারে। যথন কয়লা পোড়াও তথন কয়লার রাদায়নিক শক্তি তাপে রূপান্তরিত হয়। দেই ভাবে বিদ্যাৎ বা তড়িৎ প্রবাহ যথন রোধে বাধা প্রাপ্ত হয়, তথন বিদ্যাৎশক্তি তাপে রূপান্তরিত হয়। স্থতরাং তাপও শক্তির একটা বিশেষ রূপ।

### ভাপ ও ভাপমাত্রা

কোনটা গরম কোনটা ঠাণ্ডা সহজেই তোমরা বলতে পার। চায়ের কাপে আঙ্ল ড্বিয়ে বলতে পার চা গরম, আবার আইসক্রিম হাতে নিয়ে সহজেই বলতে পার এটা ঠাণ্ডা। কোন বস্তু কি পরিমাণ গরম বা কি পরিমাণ ঠাণ্ডা জানা যায় তাপমাত্রা দিয়ে। কিন্তু হাত দিয়ে বা আঙ্ল ড্বিয়ে তাপমাত্রা অরুত্তব করা সম্ভব নয়। কেন নয়, তোমরা আগেই পড়েছ।

অনেক সময় তাপ ও তাপমাত্রা আমরা একই অর্থে ব্যবহার করি। তাপ হল শক্তি, আর সেই তাপ প্রয়োগে বস্তুর উষ্ণতা কতটা বাড়ল, তার মান হল তাপমাত্রা। একই তাপশক্তির প্রয়োগে বিভিন্ন বস্তুর উষ্ণতা বা তাপমাত্রা ভিন্ন ভিন্ন হয়। সেটা বস্তুটির ধর্ম। ধর, এক কেটলি ফুটস্ত জল, একটি ছোট ও একটি বড় পাত্রে রাথা হল। এই অবস্থায় দেখা যাবে, ছুটির তাপ-মাত্রা এক। কিন্তু বড়টিতে তাপের পরিমাণ ছোটটির চেয়ে অনেক বেশি।

যথন কোন বস্তুতে তাপ প্রয়োগ কর, অর্থাৎ বস্তুকে গরম কর, তথন বস্তু তাপ শোষণ করে। তাপশোষণের জন্ম বস্তুর অণু বা পরমাণ্র গতি বাড়ে, ফলে গতিশক্তিও বাড়ে। সব অণু পরমাণুগুলির গতিশক্তি কিন্তু এক নয়। তবে নির্দিষ্ট তাপমাত্রায় তাদের গতিশক্তির গড় মান নির্দিষ্ট থাকে। যে কোন তাপমাত্রায় গতিশক্তির গড় মান সেই তাপমাত্রার সমান্থপাতিক। তাপমাত্রা বাড়লে গতিশক্তির গড় মান বাড়ে, কমলে এই মান কমে।

একটা গরম বস্তুকে একটা ঠাণ্ডা বস্তুর সংস্পর্শে নিয়ে এলে গরম বস্তুটি তাপ হারায় ও ঠাণ্ডা বস্তুটি তাপ গ্রহণ করে। গরম বস্তু থেকে ঠাণ্ডা বস্তুতে তাপপ্রবাহ ততক্ষণ চলবে, যতক্ষণ না বস্তু তৃটির তাপমাত্রা সমান হয়। স্থতরাং তৃটি অসম তাপবিশিষ্ট বস্তুকে একত্রে আনলে তাপ কোন দিকে প্রবাহিত হবে নির্ভির করে বস্তু তৃটির তাপমাত্রার পার্থক্যের উপর।

তাপের প্রয়োগে বৃদ্ধর কোন ভৌত ধর্মের পরিবর্তন হলে সেই পরিবর্তিত ধর্মের সাহায্যে তাপমাত্রা মাপা হয়। যেমন পারদের এবং গ্যাসের আয়তনের পরিবর্তনের সাহায্যে বা তড়িৎ-পরিবাহীর রোধ পরিবর্তনের সাহায্যে তাপ-মাত্রা মাপা হয়।

পাবদ থার্মোমিটারে কি ভাবে তাপমাত্রা মাপা হয়, আগে পড়েছ। বরফের হিমান্ধ ও প্রমাণ চাপে জলের স্ফুটনান্ধকে থার্মোমিটারের নিম্ন ও উচ্চ স্থিরান্ধ ধরা হয়। তাপমাত্রার এই অন্তরফলকে বিভিন্ন থার্মোমিটারে বিভিন্ন ভাবে ভাগ করা হয়ে থাকে।

### ভাপ পরিমাপের একক

বিভিন্ন পদ্ধতিতে তাপের একক বিভিন্ন। তাপ একটি শক্তি। দেইজন্য এদ আই পদ্ধতিতে তাপ জুল (J) এককে প্রকাশ করা হয়। দি জি এদ পদ্ধতিতে তাপের এককের নাম ক্যালরি। 4°C উফতায় বিশুদ্ধ এক গ্রাম জলের 1°C তাপমাত্রা বাড়াতে যে তাপশক্তির প্রয়োজন হয়, তাকে এক ক্যালরি বলে। তাপকে Q চিহু দিয়ে ক্যালরিকে cal কথা দিয়ে প্রকাশ করা হয়। ক্যালরি একটা ছোট একক। দেজন্য আর একটা বড় একক ব্যবহার করা হয়—নাম কিলোক্যালরি। 1 kg জলের তাপমাত্রা 1°C বাড়াতে যে তাপের প্রয়োজন হয় তাকে এক কিলোক্যালরি বলে। কিলোক্যালরি প্রকাশ করা হয় যে রিটিশ পদ্ধতিতে তাপ পরিমাপের জন্য যে একক ব্যবহার করা হয় তাকে ত্রিটিশ থার্মাল একক বলে। এই একক এক পাউও জলের এক ডিগ্রি ফারেনহাইট তাপমাত্রা বাড়াতে প্রয়োজনীয় তাপশক্তির দমান। ব্রিটিশ থার্মাল এককে করা হয় থাকে। 1 থার্ম নামে আর একটি বড় একক এই পদ্ধতিতে ব্যবহার করা হয়ে থাকে। 1 থার্ম = 105 B Th U। এক ব্রিটিশ থার্মাল একক = 252 ক্যালরি।

### আপেক্ষিক তাপ

ভোমরা যদি লোহা, ভামা, পিতল, দস্তা প্রভৃতি বিভিন্ন বস্তুকে গ্রম করতে থাক, তবে দেখবে সকলে একই হারে গ্রম হচ্ছে না। লোহা, ভামা, পিতল প্রভৃতি ধাতুর কয়েকটি গোলক নাও। ধর, গোলকগুলির ভর সমান। যদি গোলকগুলিকে গরম করতে থাক তবে দেখা যাবে, দকলে একই হারে গরম হচ্ছে না। অর্থাৎ ভাদের তাপগ্রহণের মাত্রা সমান নয়। দেই রকম যদি গোলকগুলিকে ঠাণ্ডা করতে থাক তবে তাদের তাপ বর্জনের পরিমাণও দেখা যাবে এক নয়। তাপগ্রহণ ও বর্জনের হার বস্তুটির ধর্মের উপর নির্ভর করে। একটি পরীক্ষা করে দেখ। উপরের বিভিন্ন পদার্থের সম ভরের গোলকগুলিকে নির্দিষ্ট তাপ দেওয়ার পর ট্রেতে জমানো মোমের স্তরের উপর রাখ। দেখবে নির্দিষ্ট সময়ে মোম গলার পরিমাণ সকল ক্ষেত্রে সমান নয়। তামা বেশি মোম গলিয়েছে, কিন্তু লোহা অনেক কম। বস্তুর তাপ গ্রহণ ও বর্জনের ধর্মকে তার আপেক্ষিক তাপ বলে।

আপেক্ষিক তাপের সংজ্ঞা হল—একক ভরের বস্তুর একক তাপমাত্রা বৃদ্ধির জন্ম যে পরিমাণ তাপশক্তির প্রয়োজন তাকে বস্তুটির আপেক্ষিক তাপ বলে।

দি জি এদ পদ্ধতিতে কোন বস্তুর আপেক্ষিক তাপ হল বস্তুর 1 g ভরের 14.5°C থেকে 15.5°C পর্যন্ত 1°C তাপমাত্রা বৃদ্ধির জন্য ক্যালরি এককে যে পরিমাণ তাপশক্তির প্রয়োজন। আপেক্ষিক তাপের একক দি জি এদ পদ্ধতিতে হল cal/g°C। 4°C উষ্ণতার জলের আপেক্ষিক তাপকে এক ধরা হয়। এদ আই পদ্ধতিতে বস্তুর এক কিলোগ্রাম ভরের এক কেলভিন তাপমাত্রা বৃদ্ধির জন্ম জুল এককে যে পরিমাণ তাপশক্তির প্রয়োজন তাকে বস্তুটির আপেক্ষিক তাপ বলে। এদ আই পদ্ধতিতে আপেক্ষিক তাপের একক হল J/kgK। তোমরা আগেই পড়েছ O°C=273.16K। কিন্তু এক ডিগ্রিতাপমাত্রার অস্তর কেলভিন ও দেলদিয়াদ এককে এক। স্কৃত্রাং আপেক্ষিক তাপের ক্ষেত্রে J/kgK কে অনেক দময় J/kg°C লেখা হয়।

ব্রিটিশ পদ্ধতিতে কোন বস্তুর এক পাউণ্ড ভরেরএক ফারেনহাইট তাপমাত্রা বৃদ্ধির জন্ম ব্রিটিশ থার্মাল এককে যে তাপশক্তির প্রয়োজন তাকে বস্তুটির আপেক্ষিক তাপ বলে। এফ পি এদ পদ্ধতিতে আপেক্ষিক তাপের একক B Th U/lb°F লেখা হয়।

### বস্তুর ভাপগ্রাহিতা

কোন বস্তুর একক তাপমাত্রা পরিবর্তন করতে যেপরিমাণ তাপের প্রয়োজন হবে তাকে বস্তুর তাপগ্রাহিতা বা থার্মাল ক্যাপ্যাসিটি বলে। যদি বস্তুর ভর m এবং আপেক্ষিক তাপ c হয় তবে একক তাপমাত্রা পরিবর্তন করতে মোট তাপের প্রয়োজন হবে mc, এবং এটিই হচ্ছে বস্তুর তাপগ্রাহিতা। যদি বস্তুটির ভর এক হয়, তবে বস্তুর তাপগ্রাহিতা বস্তুর আপেক্ষিক তাপের সমান হবে। অতএব, একক ভর বিশিষ্ট বস্তুর তাপগ্রাহিতা বস্তুর আপেক্ষিক তাপের সমান। দি জি এদ পদ্ধতিতে তাপগ্রাহিতা ক্যালরি এককে, ব্রিটশ পদ্ধতিতে ব্রিটশ থার্মাল এককে এবং এদ আই পদ্ধতিতে জুল এককে প্রকাশ করা হয়।

# বস্তুর জল-তুল্যান্ধ

কোন বস্তুর 1°C তাপমাত্রা বৃদ্ধির জন্ম যে পরিমাণ তাপ লাগে, সেই তাপ যে পরিমাণ জলের 1°C তাপমাত্রা বাড়াতে পারে সেই পরিমাণ জলকে বস্তুর জল-তুল্যাক্ষ বা ওয়াটার ইক্উইভ্যালেণ্ট বলে। কোন বস্তুর ভর m ও আপেক্ষিক তাপ c। বস্থাটির তাপগ্রাহিতা তাহলে mc ক্যালরি। কিন্তু সংজ্ঞা অহুযায়ী এক ক্যালরি তাপশক্তি 1 g জলের 1°C তাপমাত্রা বৃদ্ধি করতে পারে। অতএব, mc ক্যালরি তাপশক্তি mc গ্রাম জলকে 1°C উষ্ণ করতে পারে। অতএব, ঐ বস্তুর জলতুল্যাক্ব হচ্ছে mc গ্রাম।

তাপগ্রাহিতা ও জল-তুল্যান্ধ প্রত্যেকটিই ভর ও আপেন্দিক তাপের গুণফল। প্রথমটির একক ক্যালরি এবং দ্বিতীয়টির একক গ্রাম।

### ভাপ ও কাজ

ইংরেজ বৈজ্ঞানিক জেমস্ প্রেস্কট জুলের কথা ভোমরা আগেই শুনেছ। তিনিই প্রথম পরীক্ষা করে দেখান যে, যথন কোন যান্ত্রিক শক্তি তাপশক্তিতে রূপান্তরিত হয়, তথন নির্দিষ্ট পরিমাণ যান্ত্রিক শক্তি থেকে নির্দিষ্ট পরিমাণ তাপশক্তি পাওয়া যায় এবং একটি অক্যটির দমাকুপাতিক। যান্ত্রিক শক্তিকে W এবং তাপশক্তিকে H অক্ষর দিয়ে যদি প্রকাশ করা হয় তবে  $W \sim H$  অথবা W = JH। J একটি জ্বেক। যদি H এক ক্যালিরি হয় তবে W = J।

স্তরাং ধ্রুবক J হচ্ছে এক ক্যালরি তাপ উৎপন্ন করতে প্রয়োজনীয় যান্ত্রিক শক্তি। এই ধ্রুবককে বলা হয় তাপের যান্ত্রিক তুল্যাচ্চ বা মেক্যানিকাল ইক্উইভ্যালেণ্ট অফ হীট। জুলের নাম অনুসারে ধ্রুবকটি J অক্ষর দিয়ে প্রকাশ তাপ ৫৭

করা হয়। এই ধ্রুবকের মান 4.18 J/cal। ধ্রুবক J এবং শক্তির একক J ছটি আলাদা মনে রেখো।

তাপের সাহায্যে কিভাবে কাজ করা হতে পারে একটি পরীক্ষার সাহায্যে

দেখ। একটি ফ্লান্থে কিছু জল নাও। ফ্লান্থটির মৃথ ছিপি আটকে ভিতরে একটি ছোট নল প্রবেশ করাও। (চিত্র 6.1)। একটি কাচের নল আলগাভাবে ছিপির নলটির উপর বসাও। উপরের নলটির তুই স্ফলোপ্রান্ত বিপরীত দিকে লম্বভাবে মৃথ করে আছে একই অমুভূমিক তলে। ফ্লান্থের জল কিছুক্ষণ গরম কর। দেখবে বাল্প নলের তুই প্রান্ত দিয়ে যখন বেরিয়ে আসছে তখন নলটি ঘুরতে থাকবে। এটি ভাপশক্তির যান্ত্রিক শক্তিতে রপান্তরিত হওয়ার উদাহরণ।



চিত্ৰ 6.1

স্থীম এঞ্জিনের সাহায্যে টেন চলতে তোমরা দেখে থাকবে। পেটোল এঞ্জিনে মোটর গাড়ি বা বাস চলে। ডিজেল এঞ্জিনে বড় বড় টাক চলে। আসলে কিন্তু সব এঞ্জিন চলার মূলে রয়েছে—তাপ। তাপ স্বৃষ্টি হয় বলেই এঞ্জিনগুলি চলে।

### প আলোক

### আলোর উৎস

আলো কোথা থেকে আসে? আমাদের পৃথিবীতে আলোর সর্বপ্রধান উৎস হল সূর্য। চাঁদ থেকেও সামান্ত আলো আমরা পাই, যদিও চাঁদ নিজে ঠিক আলোর উৎস নয়। সূর্য থেকে আলো এসে চাঁদে পড়ে, সেথান থেকে আবার আমাদের কাছে এসে পোঁছয়। এছাড়া রাতের আকাশে আরও অসংখ্য নক্ষত্র জনজন করে, তবে আমাদের ব্যবহারিক কাজে এইসব আলোর উৎসগুলি বড় একটা লাগে না। এইগুলি সবই আলোর স্বাভাবিক উৎস। জোনাকি, গভীর সম্জের অনেক মাছ, রেডিয়ম, ইউরেনিয়মের লবণ ইত্যাদিও স্বাভাবিক আলোর উৎস। কৃত্রিম উৎস হল প্রদীপ, মোমবাতি, লগন, ইলেকট্রিক আলো, গ্যাসবাতি, টর্চ ইত্যাদি। লোহা ও পাথর ঘ্রনে আলোর ফুলকি পাওয়া যায়।

আলোর উৎসকে আলোর প্রভব বলা হয়ে থাকে। একটু লক্ষ্য করলেই বুঝবে যে আলোর উৎস হ রকমের। যে উৎস নিজেই আলো দিতে পারে তাকে স্থপ্রশুভ বস্তু বলে। যেমন—স্থ্র্, নক্ষ্ত্র, মোমবাতি ইত্যাদি। আর এক রকমের উৎস আছে যারা পরের আলোয় আলোকিত। এদের বলে অপ্রভ বস্তু। চাঁদ এবং বৃহস্পতি, শুক্র প্রভৃতি গ্রহগুলি অপ্রভ বস্তু। আমাদের চারপাশের বেশির ভাগ বস্তুই, যেমন চেয়ার, টেবিল, পেন ইত্যাদি সবই অপ্রভ বস্তু।

### স্বচ্ছ ও অনচ্ছ বস্তু

যে বস্তুর ভিতর দিয়ে আলো যেতে পারে তাকে আমরা স্বচ্ছ বস্তু বলি, যেমন কাচ। কাচ ভেদ করে আমরা দেখতে পাই। যে বস্তুর ভিতর দিয়ে আলো যায় না এবং আমরা দেখতে পাই না তাকে অনচ্ছ বস্তু বলে। স্বচ্ছ ও অনচ্ছ বস্তুর মাঝামাঝি আর এক ধরনের বস্তু আছে যাদের মধ্যে দিয়ে আলো আংশিক ভাবে যেতে পারে। এদের বলে ঈষদচ্ছ বস্তু। ঘ্যা কাচ তোমরা নিশ্চয়ই দেখেছ। তেলে ভেজা কাগজও এই জাতীয় উদাহরণ। পরিকার

জনের পাতনা স্তর স্বচ্ছ, কিন্তু জনের স্তর পুরু হলে ঈষদচ্ছ হয়। অনেকগুলি স্বচ্ছ কাচ উপরে রাখনে ঈষদচ্ছ দেখায়।

#### আলো-রশ্মি

উৎসকে কেন্দ্র করে আলো চতুর্দিকে ছড়িয়ে পড়ে। আলোর যে কোন একটি পথকে আলো-রশ্মি বলে। সেই আলো-রশ্মির গুচ্ছকে আলো-রশ্মিগুচ্ছ বলে। আলো-রশ্মিগুচ্ছ থেকে একটি আলো-রশ্মি আলাদা করা সম্ভব নয়। আলো-



রশ্মি বা রশ্মিগুচ্ছের পথ তীর চিহ্নিত সরলরেথা দিয়ে প্রকাশ করা হয়। তীরের মুখটি আলোর গতিপথ নির্দেশ করে।

রশিগুছ তিন রকমের: (ক) সমান্তরাল, (থ) অপসারী ও (গ) অভিসারী। সমান্তরাল রশিগুছে রশিগুলো একে অন্তের সমান্তরাল (চিত্র 7.1a)। বহু দ্র থেকে আসা আলোর রশিগুছেকে সমান্তরাল বলা যেতে পারে। অপসারী রশিগুলি একটি বিন্দু থেকে বার হয়ে বিভিন্ন দিকে ছড়িয়ে পড়েছে মনে হয় (চিত্র 7.1b)। কোন মাধ্যমে রশিগুছের রশিগুলি যদি একটি বিন্দুতে এসে মিলিত হয় তবে তাদের অভিসারী আলো-রশিগুছে বলে (চিত্র 7.1c)।

# আলোর প্রতিফলন

ঘবের বাইবে স্থের আলো ঝলমল করছে, অথচ ঘবে ঢোকে না। একটা আয়নার উপর সেই আলো ফেলে আয়নাটা ঘ্রিয়ে ঘ্রিয়ে সহজেই ঘরের মধ্যে আলো ঢোকানো যায়। তোমরা অনেকেই নিশ্চয় এ রকম করে দেখেছ। আয়না থেকে ঘরে যে আলো এল তা প্রতিফলনের সাহায়ে। একটি টেনিদ

# প আলোক

### আলোর উৎস

আলো কোথা থেকে আদে? আমাদের পৃথিবীতে আলোর সর্বপ্রধান উৎস হল সূর্য। চাঁদ থেকেও সামান্ত আলো আমরা পাই, যদিও চাঁদ নিজে ঠিক আলোর উৎস নয়। সূর্য থেকে আলো এসে চাঁদে পড়ে, সেথান থেকে আবার আমাদের কাছে এসে পোঁছয়। এছাড়া রাতের আকাশে আরও অসংখ্য নক্ষত্র জনজন করে, তবে আমাদের ব্যবহারিক কাজে এইসব আলোর উৎসগুলি বড় একটা লাগে না। এইগুলি সবই আলোর স্বাভাবিক উৎস। জোনাকি, গভীর সম্জের অনেক মাছ, রেডিয়ম, ইউরেনিয়মের লবণ ইত্যাদিও স্বাভাবিক আলোর উৎস। কৃত্রিম উৎস হল প্রদীপ, মোমবাতি, লঠন, ইলেকট্রিক আলো, গ্যাসবাতি, টর্চ ইত্যাদি। লোহা ও পাথর ঘষলে আলোর ফুলকি পাওয়া যায়।

আলোর উৎদকে আলোর প্রান্তব বলা হয়ে থাকে। একটু লক্ষ্য করলেই ব্ববে যে আলোর উৎদ হ রকমের। যে উৎদ নিজেই আলো দিতে পারে তাকে স্বপ্রভ বস্ত বলে। যেমন—স্র্থ, নক্ষত্র, মোমবাতি ইত্যাদি। আর এক রকমের উৎদ আছে যারা পরের আলোয় আলোকিত। এদের বলে অপ্রভ বস্ত। চাঁদ এবং বৃহস্পতি, শুক্র প্রভৃতি গ্রহগুলি অপ্রভ বস্ত। আমাদের চারপাশের বেশির ভাগ বস্তুই, যেমন চেয়ার, টেবিল, পেন ইত্যাদি সবই অপ্রভ বস্ত।

### স্বচ্ছ ও অনচ্ছ বস্তু

যে বস্তুর ভিতর দিয়ে আলো যেতে পারে তাকে আমরা স্বচ্ছ বস্তু বলি, যেমন কাচ। কাচ ভেদ করে আমরা দেখতে পাই। যে বস্তুর ভিতর দিয়ে আলো যায় না এবং আমরা দেখতে পাই না তাকে অনচ্ছ বস্তু বলে। স্বচ্ছ ও অনচ্ছ বস্তুর মাঝামাঝি আর এক ধরনের বস্তু আছে যাদের মধ্যে দিয়ে আলো আংশিক ভাবে যেতে পারে। এদের বলে ঈষদচ্ছ বস্তু। ঘ্যা কাচ তোমরা নি\*চয়ই দেখেছ। তেলে ভেজা কাগজও এই জাতীয় উদাহরণ। পরিকার

জলের পাতলা স্তর স্বচ্ছ, কিন্তু জলের স্তর পুরু হলে ঈষদচ্ছ হয়। অনেকগুলি স্বচ্ছ কাচ উপরে রাখলে ঈষদচ্ছ দেখায়।

### আলো-রশ্মি

উৎসকে কেন্দ্র করে আলো চতুর্দিকে ছড়িয়ে পড়ে। আলোর যে কোন একটি পথকে আলো-রশ্মি বলে। সেই আলো-রশ্মির গুচ্ছকে আলো-রশ্মিগুচ্ছ বলে। আলো-রশ্মিগুচ্ছ থেকে একটি আলো-রশ্মি আলাদা করা সম্ভব নয়। আলো-



রশি বা রশিগুচ্ছের পথ তীর চিহ্নিত সরলরেথা দিয়ে প্রকাশ করা হয়। তীরের মুখটি আলোর গতিপথ নির্দেশ করে।

রশিগুচ্ছ তিন রকমের: (ক) সমান্তরাল, (খ) অপসারী ও
(গ) অভিসারী। সমান্তরাল রশিগুচ্ছে রশিগুলো একে অন্তের সমান্তরাল
(চিত্র 7.1a)। বহু দূর থেকে আদা আলোর রশিগুচ্ছকে সমান্তরাল বলা
যেতে পারে। অপসারী রশিগুলি একটি বিন্দু থেকে বার হয়ে বিভিন্ন দিকে
ছড়িয়ে পড়েছে মনে হয় (চিত্র 7.1b)। কোন মাধ্যমে রশিগুচ্ছের রশিগুলি
যদি একটি বিন্দুতে এদে মিলিত হয় তবে তাদের অভিসারী আলো-রশিগুচ্ছ
বলে (চিত্র 7.1c)।

# আলোর প্রতিফলন

ঘবের বাইরে স্র্যের আলো ঝলমল করছে, অথচ ঘরে ঢোকে না। একটা আয়নার উপর সেই আলো ফেলে আয়নাটা ঘূরিয়ে ঘূরিয়ে সহজেই ঘরের মধ্যে আলো ঢোকানো যায়। তোমরা অনেকেই নিশ্চয় এ রকম করে দেখেছ। আয়না থেকে ঘরে যে আলো এল তা প্রতিফলনের সাহায্যে। একটি টেনিস বল দেওয়ালে ছুঁড়ে দিলে যেমন ধাকা থেয়ে ফিরে আদে, আলোর প্রতিফলন আনেকটা দেই ধরনের। আয়নার সামনে দাঁড়িয়ে যথন নিজেকে দেখতে পাও তথন তোমার দেহের বিভিন্ন অংশ থেকে আলো-রশ্মি আয়নায় প্রতিফলিত হয়ে তোমার চোথে এদে পড়ে। আলো-রশ্মির কোন একটি তলে প্রতিহত হয়ে দিক পরিবর্তন করে ফিরে আসাকে আলোর প্রতিফলন বলে। যে বস্তু থেকে আলো প্রতিফলন হয় তাকে বলে প্রতিফলক।

যে কোন তল থেকেই আলো-রশ্ম প্রতিফলিত হতে পারে। কিন্তু একটি
নির্দিষ্ট দিকে প্রতিফলনের জন্ম প্রতিফলকের তল মন্থণ হওয়া দরকার। লক্ষ্য
করলে দেখবে আয়নার উপরতল খ্বই মন্থণ। ধাতুর ফলকের উপরতল মন্থণ
হলে তাতেও আয়নার মত ম্থ দেখা যায়। অমন্থণ তল থেকে প্রতিফলিত
আলো কোন একটি নির্দিষ্ট দিকে যায় না।

স্বতরাং একটি নির্দিষ্ট দিক থেকে আদা সমান্তরাল রশ্মিগুচ্ছ যথন কোন আয়নায় বা প্রতিফলকে প্রতিফলিত হয়ে নির্দিষ্ট দিকে সমান্তরাল ভাবে যায় তথন তাকে নিয়মিত প্রতিফলন বলে। প্রতিফলনের পর সমান্তরাল রশ্মিগুচ্ছ



চিত্ৰ 7.2

যদি নির্দিষ্ট দিকে সমাস্তরালভাবে না গিয়ে কোন রশ্মি এদিকে কোন রশ্মি গুদিকে যায় তাহলে তাকে অনিয়মিত বা বিক্ষিপ্ত প্রতিফলন বলে। যে কোন অমস্থা তলে বিক্ষিপ্ত প্রতিফলন হয় (চিত্র 7.2)।

XY একটি দর্পন এবং AO রেখা বরাবর আলোর রশ্মি দর্পণের O বিন্দৃতে আপতিত হয়েছে (চিত্র 7.3)। AO রেখা O বিন্দৃতে OB পথে প্রতিফলিত হয়েছে। পাতলা কাচের প্রেট বা চাদরের উপর নিচ ছই তলই মন্তন তবে কাচ স্বচ্ছ হওয়ায় তাতে যথেষ্ট পরিমানে আলো প্রতিফলিত হয় না। কাচের নিচের তলে পারদ মিশ্রিত ধাতুর প্রলেপ দিলে প্রতিফলন অনেক গুণ বৃদ্ধি পায়। এই ভাবেই আয়না বা দর্পন তৈরি করা হয়। সমতল কাচের তৈরি

দর্পণকে সমতল দর্পণ বলে। ছবিটি দেখ। XY রেখাটি দর্পণের একটি ছেদ। রেখাটির তলায় ড্যাশ রেখা দিয়ে দর্পণ বোঝান যায়। AO রেখা

বরাবর আলো-রশ্মি দর্পণের O
বিন্দুতে পড়েছে এবং OB
রেখাপথে প্রতিফলিত হচ্ছে।
O বিন্দুতে XY রেখার উপর
OC লম্ব টান।

AO কে আপতিত রশ্মি, OB কে প্রতিফলিত রশ্মি এবং OC কে অভিলম্ব বলে।



O বিন্দুকে আপতন বিন্দু বলা হয়।

অভিলয় ও আপতিত রশ্মির মধ্যের কোণকে **আপতন কোণ** এবং অভিলয় ও প্রতিফলিত রশ্মির মধ্যের কোণকে প্র**ভিফলন কোণ** বলা হয়। আপতন কোণ i অক্ষর দিয়ে ও প্রতিফলন কোণ r অক্ষর দিয়েপ্রকাশ করা হয়। উপরের ছবিতে AOC আপতন কোণ এবং BOC প্রতিফলন কোণ।

দর্পণ না থাকলে AO রশ্মি OD পথে যেত কিন্তু দর্পণের জন্ম AOD রশ্মি AOB পথে যাচ্ছে। উপরের ছবি দেখে নিশ্চয় বুঝতে পারছ। দর্পণের জন্ম আলোর রশ্মির স্বাভাবিক পথ থেকে বিচ্যুতি হল BOD কোণ।

# প্রতিফলন সূত্র

আলোর প্রতিফলন চ্টি স্ত্র মেনে চলে: (ক) আণতিত রশ্মি, প্রতিফলিত রশ্মি ও প্রতিফলকের উপর আপতন বিন্দৃতে অন্ধিত অভিলম্ব একই সমতলে অবস্থিত। (থ) আপতন কোণ এবং প্রতিফলন কোণ পরস্পর সমান।

# প্রতিফলন সূত্রের প্রমাণ

পিন পদ্ধতি: একটি সমতল বোর্ডের উপর একটা সাদা কাগজ পাত এবং চারটি বোর্ডপিন দিয়ে কাগজের চারকোণ বোর্ডে লাগাও যাতে কাগজ না সবে যায়। কাগজের মাঝথানে একটি সরলরেথা XY টান (চিত্র 7.4) এবং সেই রেথা বরাবর থাড়াভাবে একটি সমতল দর্পন বসাও। ছটি আলপিন নাও এবং দর্পণের দামনে ভানদিকে দেই ছটিকে P এবং Q বিন্দুতে কাগজে বদাও।
PQ রেথা যে বিন্দুতে দর্পণের XY রেথায় মিশবে তাকে O চিহ্নিত কর।
বাঁদিক থেকে দর্পণের দিকে দেখলে P এবং Q এর প্রতিবিম্ব দেখতে পাবে।
এইভাবে বাঁদিক থেকে তাকিয়ে এই প্রতিবিম্ব এক দরলরেথায় রেথে আরও
ছটি আলপিন বদাও R ও S বিন্দুতে। ভালো করে দেখ, যে চারটি পিন
R,S এবং P ও Q এর প্রতিবিম্ব এবং O বিন্দু এক দরলরেথায় আছে। এবার



চিত্ৰ 7.4

পিন ও দর্পণ সরিয়ে দিয়ে PQO এবং SRO রেখা টান এবং O বিন্দৃতে XY রেখার উপর ON লম্ব টান। এখানে PQ আপতিত রশ্মি, RS প্রতিফলিত রশ্মি, ON লম্ব। PON আপতন কোণ, SON প্রতিফলন কোণ। চাঁদার সাহায্যে মেপে দেখ কোণ ছটি সমান কিনা। PQ, RS এবং ON তিনটিই কাগজের সমতলে অবস্থিত, স্বতরাং ওরা এক সমতলেই আছে। সাধারণত এই ধরনের পরীক্ষায় কোণ মাপতে আধ ডিগ্রির মত পার্থক্য হতে পারে। ছটির জায়গায় তিনটি পিন দিয়ে পরীক্ষাটি করলে এবং বড় আকারের চাঁদা ব্যবহার করলে মাপের ভুল কম হবে।

### প্রভিবিশ্ব

যথন কোন বস্তুকে সরাসরি দেখ তথন বস্তু থেকে আলো সোজা তোমার চোথে এসে পড়ে। কিন্তু দর্পণ বা আয়নায় যথন কোন বস্তু দেখ তথন বস্তু থেকে আলো দর্পণে প্রতিফলিত হয়ে তোমার চোথে এসে পড়ে। তথন মনে হয় যেন বস্তুটি অন্ত কোন স্থানে আছে এবং সেথান থেকে আলো তোমার চোথে এদে পড়ছে। বস্তুর এই আপাত অবস্থানকে বস্তুর বিম্ব বা প্রতিবিম্ব বলে।

প্রতিবিশ্বের সংজ্ঞা: কোন বিন্দু-প্রভব থেকে অপস্থত আলোর রশ্মি প্রতিফলিত হয়ে যদি অন্য কোন বিন্দুতে মিলিত হয় বা অন্য কোন বিন্দু থেকে অপস্থত হচ্ছে মনে হয় তথন দ্বিতীয় বিন্দুটিকে প্রথম বিন্দুর প্রতিবিদ্ধ বলা হয়। প্রতিবিদ্ধ দুই ধরনের—সদবিদ্ধ এবং অসদবিদ্ধ। যথন কোন প্রভব থেকে অপস্থত আলোর রশ্মি দ্বিতীয় কোন বিন্দুতে মিলিত হয় তথন তাকে সদবিদ্ধ বলে। একটা থালায় কিছু জল ভর্তি করে যদি ঠিকমত ঘরের বাইরে



চিত্র 7.5

রাথ তবে স্থের প্রতিবিদ্ধ দেখতে পাবে (চিত্র 7.5)। অবশ্র থালার জল দ্বির হতে হবে। এটি সদ্বিদ্ধের উদাহরণ। মনে রেথ, এই ভাবে নিরাপদে ও খ্ব ভালভাবে স্থ্রহণ দেখা যায়। সদ্বিদ্ধেরই আরও উদাহরণ দিনেমার পর্দায় ছবি বা ক্যামেরায় তোলা ছবি। যখন কোন আলোর উৎস থেকে অপস্তত আলোর রশ্মি প্রতিফলনের পর অহ্য কোন বিন্দু থেকে আসছে বলে মনে হয় তথন সেই প্রতিবিদ্ধকে অসদ্বিদ্ধ বলে। আয়নায় বা পুরুরের জলে যে বিদ্ধ দেখা যায় দেগুলি অসদ্বিদ্ধ। সদ্বিদ্ধ চোখে দেখা যায় ও পর্দায় ধরা যায়। অসদ্বিদ্ধ চোখে দেখা যায় কিন্তু পর্দায় ধরা যায় না।

### সমতল দর্গণে প্রতিবিম্ব

সমতল দর্পণে প্রতিবিম্ব কিভাবে হয় এবং প্রতিবিম্বটির অবস্থান কোথায় পরীক্ষা করে দেথ। একটি বোর্ডের উপর একটা সাদা কাগজ পিন দিয়ে আটকাও। কাগজের মাঝথানে একটি সরল রেখা টান এবং সরল রেখা বরাবর একটি দর্পণ রাথ (চিত্র 7.6)। দর্পণের সামনে ছটো পিন বসাও। এক নম্বর পিন P বিন্তুত এবং ছু নম্বর পিন Q বিন্দুতে। আরও ছটো পিন নাও এবং P Q আপতিত



রশির প্রতিফলিত রশির উপর তিন নম্বর পিন R বিন্দৃতে ও চার নম্বর পিন S বিন্দৃতে বসাও। পিনগুলি তুলে P, Q, R, S বিন্দৃগুলি পেন্সিল দিয়ে চিহ্নিত কর। PQO এবং SRO রেখা টান। প্রথম পিনটি আবার P বিন্দৃতে বসাও। আর একটি রেখা ধরে তু নম্বর পিনটি A বিন্দৃতে বসাও এবং আগের মত তিন নম্বর ও চার নম্বর পিন তুটির সাহাযে PA আপতিত রশির প্রতিফলিত রশি নির্ণিয় কর, তিন নম্বর পিন B বিন্দৃতে ও চার নম্বর পিন C বিন্দৃতে বিদিয়ে। এবার পিনগুলি তুলে A, B, C বিন্দৃগুলি চিহ্নিত কর। PAD এবং CBD রেখা টান। এখন CBD ও SRO রেখা তুটো বাড়াও। এরা P' বিন্দৃতে তেদ্দ করবে। P' বিন্দৃতি P বিন্দৃর প্রতিবিয়।

P, P' বিন্দু ছটো যোগ কর। PP' রেখা দর্পণটিকে E বিন্দুতে ছেদ করবে। PE ও P'E স্কেল দিয়ে মাপ। দেখবে PE=P'E। PE যে PE' এর দমান তা তোমরা জ্যামিতির দাহায্যে প্রমাণ করতে পারবে। একটা টাদা নিয়ে PED ও P'ED কোণ ছটো মাপ। দেখবে ছটিই দমকোণ।

এই পরীক্ষা থেকে তোমরা তিনটি দিদ্ধান্তে আদতে পার: (ক) দর্পণ থেকে বস্তুর দ্রত্ব এবং প্রতিবিম্বের দ্রত্ব পরস্পর সমান। (থ) বস্তু ও প্রতিবিম্বের দ্রত্ব রেথা দর্পণকে লম্বভাবে ছেদ করে। (গ) প্রতিবিম্বটি অসং।

#### পার্খীয় বিপর্যয়

আয়নার সামনে দাঁড়িয়ে নিজের দিকে চাইলে ডান হাতকে বাঁ হাত ও বাঁ হাতকে ডান হাত মনে হয়। তোমার বাঁ গালে যদি কোন তিল থাকে দেখতে



চিত্ৰ 7.7

প্রতিবিধে তান গালে আছে মনে হবে। মনে কর একটা কাগজে b অক্ষর লিথে সরল দর্পণের কাছে ধরেছ। প্রতিবিধে অক্ষরটা d মনে হবে। 7.7 চিত্র দেথ। একে পার্শীয় বিপর্যয় বলে। প্রতিসম বস্তুগুলোর বেলায় পার্শীয় বিপর্যয় কেমন হবে ছবি এঁকে দেথ।

#### প্রভিসরণ

আলো বাতাদের ভিতর দিয়ে চলে, জলের মধ্যে দিয়ে এবং কাচের মধ্যেও যায়। তাই বাতাদ, জল বা কাচ, এরা আলোর মাধ্যম। স্বচ্ছ ও দমদত্ব বস্তু যার ভিতর দিয়ে আলো থেতে পারে দেই বস্তুকেই আলোর মাধ্যম বলে। আলো যথন এক মাধ্যম থেকে অন্ত মাধ্যমে যায় তথন হুই মাধ্যমের বিভেদতলে আলোর রশ্মি দিক পরিবর্তন করে। হুই মাধ্যমের বিভেদতলে আলো-বৃশ্বির্ক্তনকে প্রতিসর্বন বলে।

একটা গেলাস বা বীকারে জল নাও। একটি পেন্সিল ডুবিয়ে উপর থেকে দেখ। মনে হবে জলের উপর তল থেকে পেন্সিলটা হঠাৎ বেঁকে গেছে। এর কারণ কি? জলের মধ্যে পেন্সিলের যে অংশ আছে দেখান থেকে আলো-রন্ধি জলে যে রেখা বরাবর যাচ্ছিল বাতাদে এসে তার দিক পরিবর্তন হয়েছে।

#### প্রতিসরণের সংজ্ঞা

মনে কর PQ ঘৃটি মাধ্যমের বিভেদতল এবং AO আপতিত রশ্মি O বিন্দৃতে PQ তলের উপর এসে পড়েছে (চিত্র 7.8 a)। দ্বিতীয় মাধ্যমে আলোর রশ্মি বেঁকে OB পথে যায়। O বিন্দৃকে আপতন বিন্দু বলে। O বিন্দৃতে PQ এর উপর NON লম্ব টান। AO কে আপতিত রশ্মি, OB-কে প্রভিন্থত রশ্মি, NON কে আপতন বিন্দৃতে বিভেদতলের উপরে অভিলম্ব বলে। আপতিত রশ্মি অভিলম্বের সঙ্গে যে কোণ করে তাকে আপতন কোণ এবং প্রতিম্তত রশ্মি অভিলম্বের সঙ্গে যে কোণ করে তাকে প্রভিন্নরণ কোণ বলে। AON আপতন কোণ এবং BON প্রতিমরণ কোণ। আপতন কোণকে i ও প্রতিমরণ কোণকে r দিয়ে প্রকাশ করা হয়। পরীক্ষা করে দেখা গিয়েছে যে আলোর রশ্মি যখন লঘু মাধ্যম থেকে ঘন মাধ্যমে



আদে তথন প্রতিস্ত রেখা অভিলম্বের দিকে বেঁকে যায়। ছবিতে AOB রিখি লঘু মাধ্যম থেকে ঘন মাধ্যমে এদে পড়েছে। এক্ষেত্রে আপতন কোণের চেয়ে প্রতিদরণ কোণ ছোট। আলোর রিখা যথন ঘন মাধ্যম থেকে লঘু মাধ্যমে যায় তথন প্রতিস্ত রেখা অভিলম্ব থেকে দ্বে দরে যায় (চিত্র 7.8 b)। এক্ষেত্রে আপতন কোণের চেয়ে প্রতিদরণ কোণ বড়।

# প্রতিসরণে আলোর রশ্মির চুয়তি করে। ১৮৮ চন বার্ক করে বার্ক । ১৮৮-

উপরের ছবি তৃটিতে দেখ AO আলোক রেখা লঘু মাধ্যম থেকৈ ঘন মাধ্যমে অথবা ঘন মাধ্যম থেকে লঘু মাধ্যমে এদে OB পথে গিয়েছে। মাধ্যমের

পরিবর্তন না হলে AO রশ্মি OD পথে যেত। স্থতরাং আলো-রশ্মির চ্যুতি হচ্ছে BOD কোণ।

## প্রতিসরণের সূত্র

এক মাধ্যম থেকে অন্ত মাধ্যমে যাবার সময় আলো-রশ্মির প্রতিসরণ তুটো নিয়ম মেনে চলে: (ক) আপতিত রশ্মি, প্রতিস্ত রশ্মি এবং আপতন বিন্দুতে বিভেদতলের উপর অভিলম্ব একই তলে থাকে। (খ) তুটো নির্দিষ্ট মাধ্যমের ভিতর দিয়ে একটা নির্দিষ্ট রঙের আলো-রশ্মির প্রতিসরণ হলে আপতন কোণের সাইন ও প্রতিসরণ কোণের সাইনের অনুপাত গ্রুবক হয়। কোন কোণের গাইন ও প্রতিসরণ কোণের আহ্বর ক্লাদে পড়েছ। যদি আপতন কোনেক i ও প্রতিসরণ কোণকে r বলা হয় তবে sin i/sin r গ্রুবক। এই গ্রুবককে মাধ্যম তুটির প্রতিসরাক্ষ বলা হয় ও n অক্ষর দিয়ে প্রকাশ করা হয়।

ত্টি নির্দিষ্ট মাধ্যম ও নির্দিষ্ট বর্ণের আলো-রশ্মির জন্ম প্রতিসরাক্ষের মান সর্বদা সমান থাকে। মনে রেখ মাধ্যমের ক্ষেত্রে তাপমাত্রা সমান থাকা দরকার। দিতীয় স্ত্রটি বিজ্ঞানী স্নেল আবিষ্কার করেন, দেজন্ম এই স্ত্রকে অনেক সময় স্থেলির স্ত্র বলা হয়।

#### প্রতিসরণের প্রমাণ

একটা বোর্ডের উপর চারটে পিন দিয়ে একটা কাগজ আটকাও। একটা কাচের আয়তাকার ফলক কাগজের উপর রেখে বাইরের সীমারেখা ABCD টেনে নাও (চিত্র 7.9a)। ফলকটির AB পাশে তুটো পিন P ও Q খাড়া ভাবে বসাও। ফলকের CD পাশে আরও তুটো পিন R এবং S এমন ভাবে বসাও যেন P এবং Q পিন, R ও S এর প্রতিবিধের সঙ্গে একই রেখায় থাকে। P, Q ও R, S পিনগুলোর অবস্থান চিহ্নিত কর এবং ফলকটি সরাও। P, Q এবং R, S যোগ কর ও বাড়াও যাতে PQ এবং RS বশ্মি তুটো AB, CD রেখা তুটোকে O এবং O বিদ্যুতে ছেদ করে।

O এবং O বিন্দুতে AB ও CD এর উপর লম্ব টান। NON তে O বিন্দু বেথা ABর উপর লম। PON আপতন কোন এবং O'ON প্রতিসরণ কোন। PON ও O'ON কোণ হুইটি sin এর মান ত্রিকোণমিতির তালিকা থেকে বার করে। দেখবে sin PON এবং sin O'ON হুটির অনুপাত একটি গ্রুবক।



ঞ্বকটি n অক্ষর দিয়ে প্রকাশ করা হয়। PON কোণ এবং OON কোণের মান বিভিন্ন নিয়ে দেখ n এর মান প্রতিবারেই এক হবে। অন্তভাবেও প্রতিদরাক্ষের মান বার করতে পার। O বিন্দুকে কেন্দ্র করে যে কোন ব্যাদাধের একটা বৃত্ত আঁক (চিত্র নং 7.9b)। এই বৃত্ত PQ ও OO রেখা তুটোকে যথাক্রমে X ও X বিন্দুতে ছেদ করল। X ও X থেকে NON এর উপর XY ও X পুলম্ব টান।

অতএব  $\sin PON = \frac{XY}{OX}$ এবং  $\sin O'ON' = \frac{X'Y'}{OX'}$ , কিন্তু OX = OX'

কারণ একই বৃত্তের ব্যাসার্ধ। অতএব  $\frac{\sin \ PON}{\sin \ O'ON} = \frac{XY}{X'Y'}$ । XY ও X'Y' এর অমূপাত বার করলেই কোণ ছটির সাইনের অমূপাত পাবে। যদি আপতন কোণ ও প্রতিসরণ কোণের মান পরিবর্তন করে অমূপাত একই পাও তবে প্রতিসরণের বিতীয় হত্ত প্রমাণিত হল। প্রতিহত রেখা, আপতিত রেখা এবং আপতন বিন্দৃতে বিভেদতলের উপর অভিলম্ব একই তলে আছে। এটিই প্রতিদরণের প্রথম হত্ত।

# প্রতিসরণের করেকটি দৃষ্টান্ত

(ক) জলে ভোবানো জিনিস জলের বাইরে থেকে দেখলে কেমন দেখাবে?

জলভর্তি একটা পাত্র নাও। পাত্রের ঠিক নিচে একটা দশ পয়সারাথ। পয়সার ঠিক উপরে থাড়াথাড়ি ভাবে যদি দেথ মনে হবে পয়সাটা উপর দিকে উঠে এসেছে। জলের চৌবাচ্চা বা জলভর্তি বালতির নিচের দিকে চাইলে জলের গভীরতা কমে গিয়েছে মনে হয়।

(খ) জলের ভিতর চোথ রেখে উপরে বাতাদে রাখা জিনিদ কেমন দেখাবে? মনে কর বাতাদে A বিন্দৃতে একটা বস্তু রেখেছ এবং জলে চোখ রেখে বস্তুটা দেখছ (চিত্র 7.10)। AO রশ্মি জলের তলে পড়ার পর OB পথে জলের ভিতর দিয়ে যাবে অভিলম্বের দিকে সরে গিয়ে। দেই রকম আর একটি রশ্মি AO' পথে লম্বভাবে পড়ে দোজা AO'N পথে যাবে। BO এবং NO'



চিত্ৰ 7.10

বাড়ালে A' বিন্দৃতে ছেদ করবে। A'হচ্ছে A বিন্দুর প্রতিবিশ্ব। প্রতিবিশ্ব জলের তল থেকে দূরে সরে গিয়েছে।

# প্রতিদরণের প্রাকৃতিক দৃষ্টান্ত

বায়ুমণ্ডলে প্রতিসরণ: ভূপৃষ্ঠে বাতাদের চাপ বেশি এবং উপর দিকে যতই ওঠা যাবে বাতাদের চাপ ততই কমবে। চাঁদ, স্থ্য বা কোন নক্ষত্র থেকে



যথন আলো আদে তথন লঘু মাধ্যম থেকে ঘন মাধ্যমে আদার জন্য প্রতিস্ত রশ্মি বিভিন্ন স্তবে প্রতিদরণের পর অভিলম্বের দিকে দরে আদে। প্রতিস্ত রশ্মি যথন দর্শকের চোথে এসে পড়ে তথন সেই রশ্মিকে সরলরেথায় টানলে মূল উৎসটি সেথানে আছে মনে হয়। এই আপাত অবস্থান প্রকৃত অবস্থান থেকে কিছুটা উপরে (চিত্র 7.11)। ছবিতে ভাঙা সরল রেথার সাহায্যে স্ফ্রের আপাত অবস্থান ও গোটা রেথার সাহায্যে প্রকৃত অবস্থান দেখান হয়েছে। এই জন্ম স্থ্র ওঠার কিছু আগে এবং অস্ত যাওয়ার কিছু পরেও আমরা স্থ্রকে দেখতে পাই।

# আভ্যন্তরীণ পূর্ণ প্রতিফলন

আলোকরশ্মি যথন ঘন মাধ্যম থেকে লঘু মাধ্যমে আদে তথন প্রতিস্ত রেথা অভিলম্ব থেকে দূরে সরে যায়। তথন প্রতিসরণ কোণ আপতন কোণ অপেক্ষা বড় হয়। মনে কর XY একটি লঘু ও ঘন মাধ্যমের বিভেদতল। PO রশ্মি বিভেদতল O বিন্দুতে আপতিত হয়ে OQ দিকে প্রতিস্ত হল



( চিত্র 7.12 )। NON বিভেদতলের উপরে O বিন্দৃতে লম্ব। ছবিতে দেখ ∠QON>∠PON ।

∠RON আপতন কোণের জন্ম প্রতিস্ত রশ্মি বিভেদতল বরাবর যায়, অর্থাৎ প্রতিসরণ কোণ তথন 90°। আপতন কোণ যদি আরও বাড়ানো যায় তবে রশ্মি লঘু মাধ্যমে প্রতিস্ত না হয়ে সাধারণ প্রতিফলনের নিয়ম অন্থায়ী ঘন মাধ্যমে প্রতিফলিত হবে। ছবিতে ∠SON কোণ ∠RON কোণের চেয়ে বড় হওয়ায় SO রশ্মি OS পথে ঘন মাধ্যমে প্রতিফলিত হয়েছে। এই প্রতিফলনকে আভ্যন্তরীণ পূর্ণ প্রতিফলন বলে।

যে আপতন কোণের জন্ম প্রতিদরণ কোণ 90° হয় তাকে মাধাম ছটির সংকট কোণ বলে। এথানে 🗸 RON´ সংকট কোণ। স্থতরাং আভ্যন্তরীণ পূর্ণ প্রতিফলনের জন্ম (ক) আলোর রশ্মিকে ঘন মাধ্যম থেকে লঘু মাধ্যমে যেতে হবে এবং (থ) আপতন কোণ সংকট কোণের চেয়ে বড় হওয়া দরকার। আভ্যস্তরীণ পূর্ণ প্রতিফলন প্রতিসরণের একটি বিশেষ অবস্থা মাত্র।

# পূর্ণ প্রভিফলনের দৃষ্টান্ত

(ক) একটা জলভর্তি কাচের গেলাদকে ধীরে ধীরে চোথের উপর তুললে দেখতে পাবে একটা বিশেষ উচ্চতায় জলের উপরতল চকচকে দেখাচ্ছে।

গেলাসটাকে উপর দিকে তোলার সময় একটা বিশেষ উচ্চতায় আলোকরশার আপতন কোণ সংকট কোণের চেয়ে বেশি হয় ( চিত্র 7.13 )। সেই সময় পূর্ণ প্রতি-ফলনের জন্ম জলের উপরতল চকচকে দেখায়।

(থ) একটা বীকারে জল নাও। একটা টেন্ট টিউবকে আংশিক জলভর্তি করে বীকারের জলে তেরচা ভাবে রেথে জলের



চিত্ৰ 7.13

ভেতর দিয়ে দেখলে দেখবে টিউবের যে অংশে জল নেই সেই অংশ চকচক



করছে (চিত্র 7.14)। বাইরে থেকে আলো এসে টিউবের গায়ে পড়ে যথন আপতন কোণ সংকট কোণের চেয়ে বড় হয় তথন পূর্ণ প্রতিফলন হয়। পূর্ণ প্রতিফলন রশ্মি চোথে পড়ায় টিউবের শরীর চকচকে দেখায়।

এছাড়া পেপারওয়েটের ভিতরের वृष्कृत्रक टिर्थाय विस्थिय व्यवश्रीय চিত্র 7.14 চকচকে দেখায়। একটা কালো ভূদো

মাথা বলকে জলে ভোবালে দেখবে বলের শরীর চকচক করছে। ভূসোর

মাঝে মাঝে যে বাতাদের কণা আছে জল থেকে আলোর রশ্মি কণাগুলিতে এদে পড়লে পূর্ণ প্রতিফলন হয়। পূর্ণ প্রতিফলিত রশ্মি চোথে এদে পড়লে বল চকচক করে। হীরা চকচক করার কারণ পূর্ণ প্রতিফলন। বাতাদের সাপেক্ষে হীরার সংকট কোণ 24.5°। যদি আলো-রশ্মি বাতাস থেকে হীরায় প্রবেশ করে তবে আপতন কোণ সংকট কোণের চেয়ে বড় হলে পূর্ণ প্রতিফলিত হয়ে বার হয়ে আদে।

# পূর্ণ প্রতিফলনের প্রাকৃতিক দৃষ্টান্ত

মক অঞ্চলে অনেক দ্বের গাছপালা অনেক সময় জলাশয়ে প্রতিফলিত হচ্ছে মনে হয়। শীতের দেশে কোন বস্তুর প্রতিবিশ্বকে উলটো হয়ে ঝুলতে দেখা যায়। এই দৃষ্টিভ্রমকে মরীচিকা বলে। আলোর পূর্ণ প্রতিফলনের জন্ম মরীচিকা দেখা যায়।

(ক) সক্র অঞ্চলের সরীচিকা: স্থের তাপে মরুভূমির বালি গরম হয়ে উঠলে ঠিক উপরের স্তরের বাতাদ গরম হয়ে আয়তনে বাড়ে এবং ঘনত্ব কমে। বায়্স্তরের তাপমাত্রা উপরের দিকে ক্রমশ কমতে থাকে। মনে কর



চিত্ৰ 7-15

T একটি গাছ। বালির উপরের বাতাদকে যদি ঘনত্ব অহ্যায়ী কয়েকটি স্তরে ভাগ করা যায় তবে গাছের মাথা থেকে কোন আলোকরশ্মি যথন নিচের দিকে নামবে তথন ঘন মাধ্যম থেকে লঘু মাধ্যমে প্রবেশ করবে (চিত্র 7.15)। ঘন থেকে লঘু মাধ্যমে প্রবেশ করার জন্ম প্রতিসরণ কোণ আপতন কোণের চেয়ে বড় হবে। আলো-রশ্মি যতই নিচের দিকে নামবে, প্রতিসরণ কোণ ততই বাড়তে থাকবে। আলো-রশ্মি যথন এমন কোনও স্তরে এসে পৌছবে যেথানে আপতন কোণ সংকট কোণের চেয়ে বড় সেথানে রশ্মিটি প্রতিহত না হয়ে সেই স্তরেই পূর্ণ প্রতিফলিত হবে। এইবার আলো-রশ্মি ক্রমশ উপর দিকে উঠতে থাকবে অর্থাৎ লঘু থেকে ঘন মাধ্যমে যাবে ও প্রতিহত রশ্মি অভিলয়ের দিকে সরে র্যাবে। এই ভাবে উপর দিকে উঠতে উঠতে শেষে মাহ্মের চোথে এসে পড়বে। মনে হবে যেন রশ্মিটি T বিন্দুর প্রতিবিয়।

তাপমাত্রার ক্রত পরিবর্তনের জন্ম বিভিন্ন স্তরের ঘনত ও প্রতিসরাক ক্রত পরিবর্তিত হয়। এই পরিবর্তনের জন্ম জলে বিম্ব যেমন কাঁপে সেইভাবে প্রতিবিম্বটি কাঁপছে মনে হয়। ফলে গাছের পাশে জল আছে ভ্রম হয়।

(থ) শীতের দেশের মরী চিকা: শীতের দেশে বাতাদের ঘনত উপর দিকে কম। ফলে দূরের কোন বস্তু থেকে আলোর রশ্মি যথন উপর দিকে যায়



চিত্ৰ 7.16

তথন ঘন মাধ্যম থেকে লঘু মাধ্যমে যাওয়ায় প্রতিস্ত রশ্মি অভিলম্ব থেকে দ্বে দরে যায় এবং প্রতিদরণ কোণ আপতন কোণের চেয়ে বড় হয়। এইভাবে ক্রমশ উপর দিকে ওঠার পর কোন স্তরে আপতন কোণ সংকট কোণের চেয়ে বড় হলে পূর্ণ প্রতিফলন হয়। এই স্তরের পর আলো-রশ্মি নিচের দিকে নামতে থাকে এবং প্রতিস্তত রশ্মি অভিলম্বের দিকে সরতে থাকে। শেষে যখন কোন লোকের চোথে এসে পড়ে তখন মনে হয় রশ্মিটি S' বিন্দু থেকে আসছে। S' বিন্দু S বিন্দুর প্রতিবিম্ব (চিত্র 7.16)। বস্তুটি উলটো হয়ে আকাশে ঝুলছে মনে হয়।

#### লেন্স

লেন্দের ব্যবহার বছ যুগ আগে থেকে প্রচলিত আছে। এক ধরনের লেন্দের প্রচলিত নাম আতশী কাচ। লিউয়েন হোক নামে একজন বৈজ্ঞানিককে লেন্দের ব্যবহার করতে দেখে গ্যালিলিও লেন্দের ব্যবহার শিথে নেন। তিনি 1618 প্রীন্টান্দে এই লেন্দ দিয়ে দ্রবীন তৈরি করেন ও পরে বৃহস্পতির উপগ্রহ, চাঁদের পিঠ, শনির বলয় প্রভৃতি গ্রহ-উপগ্রহগুলি পর্যবেক্ষণ করেন। শোনা যায় আতশী কাচের সাহায়ে কাগজ পুড়িয়ে সময় দেখার ব্যবহারও সেয়্গে প্রচলিত ছিল। বর্তমান কালে চশমা, ক্যামেরা, অণুবীক্ষণ, দ্রবীক্ষণ প্রভৃতি নানারকম যন্ত্রে লেন্দ্ ব্যবহার করা হয়ে থাকে।

### বিভিন্ন প্রকারের লেন্স

কোন স্বচ্ছ প্রতিদারক মাধ্যমকে যদি তুটো গোলাকার তল অথবা একটা গোলাকার ও অহা একটা সমতল দিয়ে সীমাবদ্ধ করা যায় তবে সেই



চিত্ৰ 7.17

মাধ্যমকে লেন্স বলে। লেন্সকে সাধারণত

ছ শ্রেণীতে ভাগ করা যায়—(ক) উত্তল
বা কনভেন্স লেন্স ও (থ) অবতল বা
কনকেভ লেন্স। উত্তল লেন্সের
মাঝথান মোটা ও ছই প্রান্ত সক্র এবং
অবতল লেন্সের মাঝথান সক্র ও ছই

প্রান্ত মোটা ( চিত্র 7.17 )। লেন্স কাচ, প্লান্তিক, কোয়ার্টজ ইত্যাদি দিয়ে তৈরি হতে পারে। কাচের লেন্সই বেশি ব্যবহার করা হয়ে থাকে।

সমান্তরাল আলো-রশ্মি উত্তল লেন্দে এসে পড়লে প্রথমে একটি বিন্দুতে এসে কেন্দ্রীভূত হয় ও তারপর অপদারী আলো রশ্মির মত ছড়িয়ে পড়ে। উত্তল লেন্স সূর্যের আলোয় ধরে কাগজ পোড়াতে তোমরাও দেখে থাকবে। উত্তল লেন্সকে অভিসারী লেন্সও বলা হয়। অবতল লেন্সে আলোর সমান্তরাল রশিগুচ্ছ প্রতিস্তত হবার পর মনে হয় একটি বিন্দু থেকে যেন অপস্ত হচ্ছে। এইজন্ম অবতল লেন্সকে অপসারী লেন্স বলে।

#### লেন্সের সংজ্ঞা

ৰক্ততা কেন্দ্ৰ ও বক্ততা ব্যাসার্ধ : লেন্সের ছদিক যদি গোলাকার হয় তবে প্রত্যেক দিকই একটি নির্দিষ্ট গোলকের অঙ্গ (7.18 চিত্র)। গোলক

ছটি ফুটকি দিয়ে দেখান হয়েছে।
মনে কর MQS গোলকের কেন্দ্র

С1 এবং PRS গোলকের কেন্দ্র

С2। С1 ও С2 বিন্দুকে বাক্ততা
কেন্দ্র বলে। যদি কোন তল
সমতল হয় তাহলে তার বক্রতা
কেন্দ্র দেখা যাবে না। বলা যেতে
পারে যে সেই তলের বক্রতা কেন্দ্র
অসীমে অবস্থিত।



চিত্ৰ 7.18

লেনের কোন তল যে গোলকের অংশ সেই গোলকের ব্যাদার্থকে লেনের বক্তেতা ব্যাদার্থ বলে।  $C_1Q$  ও  $C_2R$  রেথা ছটি যথাক্রমে ছই তলের বক্ততা-ব্যাদার্থ অদীম।

প্রধান অক্ষ: কোন লেন্সের গোলাকার তল ছটোর বক্রতা-কেন্দ্র যোগ করলে যে সরলরেথা পাওয়া যায় তাকে লেন্সটির প্রধান অক্ষ বলে।  $C_1C_2$  সরলরেথা প্রধান অক্ষ। লেন্সের একটি তল সমতল হলে বক্রতলের বক্রতাক্রের থেকে সমতলের উপর লম্ব টানলে যে রেথা পাওয়া যায় সেটিই এই লেন্সের প্রধান অক্ষ।

আলোক কেন্দ্র: লেন্সে আলোকরশ্মি পড়লে যদি আপতিত রশ্মি ও নির্গত রশ্মি পরস্পরের সমান্তরাল হয় তবে লেন্সের ভিতরের প্রতিহত রশ্মি প্রধান অক্ষকে যে বিন্দৃতে ছেদ করে তাকে আলোক কেন্দ্র বলে। মনে কর AB রশ্মি লেন্সের B বিন্দৃতে আপতিত হওয়ার পর BC পথে প্রতিহত হয়ে CD পথে

লেন্দ থেকে বাইরে এনেছে (চিত্র 7.18)। এক্ষেত্রে আপতিত রশ্মি AB ও নির্গত রশ্মি CD পরম্পর সমান্তরাল। প্রতিস্থত রশ্মি BC প্রধান অক্ষ  $C_1C_2$ কে O বিন্তুতে ছেদ করেছে। O হল এই লেন্দের আলোক-কেন্দ্র। যদি লেন্দের উভয় তলের গোলাক্বতি সমান হয় তবে আলোক-কেন্দ্র লেন্দের কেন্দ্রে থাকবে। চিত্রে AB ও CD সমান্তরাল হলেও নির্গত রশ্মি, আপতিত রশ্মি থেকে থানিকটা সরে গিয়েছে। কিন্তু সক লেন্দের বেলায় এই বিচ্যুতি থুব কম হওয়ায় আপতিত রশ্মি আলোক-কেন্দ্রের ভিতর দিয়ে সোজান্তুজি বেরিয়ে যায়। কোকাস ও কোকাস-দূরত্ব: কোন সমান্তরাল রশ্মিগুচ্ছ উত্তল লেন্দে প্রতিসরণের পর লেন্দের অহা পাশে প্রধান অক্ষের উপর কোন বিন্তুতে



চিত্ৰ 7.19

চিত্ৰ 7.20

কেন্দ্রীভূত হয়। এই বিন্দুটিকে ঐ লেন্দের ফোকাদ বলে। উত্তল লেন্দের ফোকাদ 7.19 চিত্রে F বিন্দুতে অবস্থিত দেখানো হয়েছে।

উত্তল লেন্দের প্রধান অক্ষের উপর কোন বিন্দু থেকে আলোর রশ্মিগুচ্ছ অপসত হয়ে লেন্দে প্রতিদরণের পর যদি প্রধান অক্ষের সমান্তরাল হয়ে অগ্র পাশ দিয়ে বেরিয়ে যায় তবে এই বিন্দুটিকেও উত্তল লেন্দের ফোকাদ বলে। 7.20 চিত্রে দেখানো F বিন্দু উত্তল লেন্দের ফোকাদ।

কোন লেন্সের ফোকাস থেকে আলোকবিন্দুর দূরত্বকে ফোকাস দূরত্ব বলে। 7.19 চিত্রে OF দূরত্ব ফোকাস দূরত্ব। কোন লেন্সের ফোকাস দূরত্ব বিজ্ঞান কিয়ে প্রকাশ করা হয়।

## লেন্সের প্রতিবিশ্ব

আলোক রশ্মি কোন মাধ্যমে প্রতিস্থত হলে প্রতিবিদ্ধ স্বষ্টি করে। লেন্স প্রতিসারক বন্ধ, স্থতরাং লেন্সও প্রতিবিদ্ধ স্বষ্টি করতে পারে। কোন লেন্সের ফোকাস-দূরত্ব এবং বস্তুর আকৃতি ও অবস্থান জানা থাকলে কিভাবে প্রতিবিশ্বের আকৃতি ও অবস্থান জানা যেতে পারে দেখ।

উত্তল লেকা: মনে কর PQ বস্ত একটা উভোত্তল লেকের দামনে আছে। OF লেকের ফোকাদ দ্রত্ব (চিত্র 7.21)। P বিন্দু থেকে কোন রশ্মি প্রধান অক্ষের দমান্তরাল হয়ে লেকে প্রতিদরণের পর অন্ত পাশের ফোকাদের মধ্যে দিয়ে গেল। PO রশ্মি আলোক-কেন্দ্রের ভিতর দিয়ে দোজা যায়। এই তুটো রশ্মি p বিন্দুতে ছেদ করে। p বিন্দু P বিন্দুর প্রতিবিম্ব। Q



हिज 7.21

বিন্দু থেকে কোন বশ্মি লেন্দের মধ্য দিয়ে সোজা অন্ত দিক দিয়ে বেরিয়ে যায়। এখন pq, PQ-এর প্রতিবিম্ব। এই প্রতিবিম্বের অবস্থিতি আছে বলে একে পর্দায় ধরা যাবে। এই জাতীয় প্রতিবিম্বটি সং, উলটো এবং আকারে ছোট হয়। লেন্দের জন্ত বস্তুর যে প্রতিবিম্ব হয় তার আকৃতি নির্ভর করে বস্তুর অবস্থানের



किंव 7.22

উপর। প্রতিবিষের দৈর্ঘ্য ও বস্তুর দৈর্ঘ্যের অনুপাতকে **রৈখিক বিবর্ধ**ন বলে। বৈথিক বিবর্ধন m হলে  $m = \frac{pq}{PO}$ ।

বম্ব যথন উত্তল লেন্সের ফোকাস দূরত্বের মধ্যে থাকে জ্যামিতির সাহায্যে



প্রতিবিদ্ধ আঁকলে দেখা যাবে দেটি অসৎ, দোজা এবং আকারে বড় (চিত্র 7.22)। যে কোন উত্তল লেন্সের এক পাশে যে কোন একটি বস্তু রেখে অন্থ পাশের কাছে চোখ নিয়ে দেখলে আকারে বড় অসদিদ্ধ দেখা যায় (চিত্র 7.23)। এই জন্ম উত্তল লেন্সকে বিবর্ধক কাচ বা অনেক সময় সহজ অণুবীক্ষণ যন্ত্র বলা হয়। উত্তল লেন্স দিয়ে ক্যামেরা, অণুবীক্ষণ, দূরবীক্ষণ ও নানা ধরনের যন্ত্রপাতি তৈরি হয়।

চিত্ৰ 7.23

লেন্দের পাওয়ার: চশমার জন্ত যে লেন্দ বাবহার হয় তার নানা রকম

পাওয়ারের কথা শোনা যায়। কোনটি আবার প্লাদ, কোনটি মাইনাদ। উত্তল লেন্দের ক্ষেত্রে প্লাদ এবং অবতল লেন্দের জন্ম মাইনাদ বলাই প্রচলিত বীতি। এবং

লেন্দের পাওয়ার= 
$$\frac{1}{\text{মিটারে ফোকাস দূরত্ব}}$$

$$\text{অথবা} = \frac{100}{\text{সেন্টিমিটারে ফোকাস দূরত্ব}}$$

চশমার পাওয়ার + 4 এর অর্থ লেন্সটি উত্তল এবং তার ফোকাস দ্বত্ব 25 cm।

# আলোও শক্তি

আলো এক ধরনের শক্তি। অন্তান্ত শক্তির মত আলোও অন্ত শক্তিতে রূপান্তরিত হতে পারে। তুটো পাথুর ঘষলে বা একটা পাথুরে লোহা দিয়ে আঘাত করলে আঞ্চন দেখা যায়। ছবি, কাঁচি শান দেওয়ার সময় যুরন্ত পাথুর থেকে আলোর ফুলকি বেরিয়ে আদতে তোমরা অনেকেই দেখে থাকুবে। একটা মোমবাতি জালালে বা অ্যাসিটিলিন গ্যাস পোড়ালে রাদায়নিক শক্তি থেকে আলোক শক্তি পাওয়া যায়। আলোকচিত্রের ফলকে আলো পড়ে রাসায়নিক শক্তিতে পরিণত হয়। ইলেকট্রিক আলোর বাল্বে বিত্যুৎশক্তি আলোক শক্তিতে রূপান্তরিত হয়। কয়েক শ্রেণীর ধাতৃ আছে যেমন পট্যাদিয়ম, দিজিয়ম ইত্যাদি যাদের উপরে আলো পড়লে ইলেকট্রন বেরিয়ে আদে। আলোর স্পর্শে এই সব ধাতুর ব্যবহার কাজে লাগিয়ে ফোটোইলেকট্রিক সেল বা আলোক-তড়িৎ-কোষে বিত্যুৎপ্রবাহের স্বাষ্টি হয়। আধুনিক বিভিন্ন যন্ত্রপাতিতে আলোক-তড়িৎ-কোষের ব্যবহার হয়ে থাকে। খুব সামান্ত হলেও আলোচাপ স্বাষ্টি করতে পারে। 1900 খ্রীন্টান্দে লেবেডিউ এই তথ্য প্রমাণ করেন। 1918 খ্রীন্টান্দে মেঘনাদ সাহা আলোর চাপ মেপে দেখান। এই চাপ প্রায়  $4 \times 10^{-4}$  dyne-এর সমান।

### আলোর সঞ্চরণ ও বেগ

স্থের কাছ থেকে আমরা আলো পাই। স্থের কাছ থেকে এই শক্তি কি ভাবে আমাদের কাছে আদে? এই প্রশ্নের প্রথম উত্তর দেবার চেষ্টা

করেন একজন ওলন্দাজ
বৈজ্ঞানিক গ্রীক্টিয়ান হয়গেনদ
(1629-95)। তিনি বলেন

এই শক্তি আদে তরঙ্গ মাধ্যমে।
এই ধারণা তাঁর প্রথম হয়



চিত্ৰ 7.24

জলের তরক্ষ লক্ষ্য করে। জলে যথন কোন ঢিল ফেলা হয় তথন ঢিলের শক্তি তরক্ষের সৃষ্টি করে এবং দেই শক্তি তরক্ষ মাধ্যমে চারিদিকে ছড়িয়ে পড়ে। শুর্থু আলো নয়, সূর্য থেকে অক্যান্ত বিকিরণ শক্তিও তরক্ষ মাধ্যমে পৃথিবীতে আদে। এই দব বিকিরণ শক্তি হৈছে রেডিও তরক্ষ, অবলোহিত আলো, দৃশ্য আলো, অতি বেগুনি আলো, এক্স রিমি, গামা রিমি প্রভৃতি। এই দব বিকিরণ শক্তির দাধারণ নাম তড়িচ্চুম্বকীয় তরক্ষ। এদের মধ্যের পার্থক্য এদের তরক্ষের দৈর্ঘা। তরক্ষদৈর্ঘ্য কাকে বলে। একটি পূর্ণ তরক্ষের দৈর্ঘ্যকে তরক্ষদ কৈর্ঘা কলে। 7.24 চিত্রে OA দৈর্ঘ্য হচ্ছে তরক্ষদৈর্ঘ্য। ছবি দেখে নিশ্চয় বৃষ্ণতে পারছ তরক্ষ OX পথে স্বাধারিত হচ্ছে। অর্থাৎ তরক্ষণ্ডলি ক্রমাগত পুনরাবৃত্তিক্ষ পর OX পথে এগিয়ে যাচ্ছে। প্রতি দেকেণ্ডে যতগুলি মোট তরক্ষ হতে পারে

বম্ব যথন উত্তল লেন্দের ফোকাস দুরত্বের মধ্যে থাকে জ্যামিতির সাহাযো



সোজা এবং আকারে বড় ( চিত্র 7.22 )।

যে কোন উত্তল লেন্সের এক পাশে যে
কোন একটি বস্তু রেথে অন্থ পাশের কাছে
চোথ নিয়ে দেখলে আকারে বড় অসম্বিদ্ধ
দেখা যায় (চিত্র 7.23)। এই জন্ম উত্তল লেসকে বিবর্ধক কাচ বা অনেক সময়
সহজ অণুবীক্ষণ যন্ত্র বলা হয়। উত্তল লেস দিয়ে ক্যামেরা, অণুবীক্ষণ,
দূরবীক্ষণ ও নানা ধরনের যন্ত্রপাতি
তৈরি হয়।

প্রতিবিম্ব আঁকলে দেখা যাবে দেটি অসৎ,

চিত্ৰ 7,23

লেন্সের পাওয়ার: চশমার জন্ত যে লেন্স ব্যবহার হয় তার নানা রকম

পাওয়ারের কথা শোনা যায়। কোনটি আবার প্লাদ, কোনটি মাইনাদ। উত্তল লেন্দের ক্ষেত্রে প্লাদ এবং অবতল লেন্দের জন্ম মাইনাদ বলাই প্রচলিত বীতি। এবং

লেন্দের পাওয়ার= 
$$\dfrac{1}{ মিটারে ফোকাদ দ্রত্ব }$$
  $\dfrac{1}{ avail} = \dfrac{100}{ cদেটি মিটারে ফোকাদ দ্রত্ব }$ 

চশমার পাওয়ার + 4 এর অর্থ লেসটি উত্তল এবং তার ফোকাস দ্বত্ব 25 cm।

## আলো ও শক্তি

আলো এক ধরনের শক্তি। অন্যান্ত শক্তির মত আলোও অন্য শক্তিতে রূপান্তরিত হতে পারে। তুটো পাথুর ঘষলে বা একটা পাথুরে লোহা দিয়ে আঘাত করলে আগুন দেখা যায়। ছুরি, কাঁচি শান দেওয়ার সময় সুরন্ত পাথুর থেকে আলোর ফুলকি বেরিয়ে আসতে তোমরা অনেকেই দেখে থাকবে। একটা মোমবাতি জালালে বা আাসিটিলিন গ্যাস পোড়ালে রাদায়নিক শক্তি থেকে আলোক শক্তি পাওয়া যায়। আলোকচিত্রের ফলকে আলো পড়ে রাসায়নিক শক্তিতে পরিণত হয়। ইলেকট্রিক আলোর বাল্বে বিছাৎশক্তি আলোক শক্তিতে রূপান্তরিত হয়। কয়েক শ্রেণীর ধাতৃ আছে যেমন পট্যাদিয়ম, দিজিয়ম ইত্যাদি যাদের উপরে আলো পড়লে ইলেকট্রন বেরিয়ে আদে। আলোর স্পর্দে এই দব ধাতুর ব্যবহার কাজে লাগিয়ে ফোটোইলেকট্রিক সেল বা আলোক-তড়িৎ-কোষে বিছাৎপ্রবাহের স্পষ্ট হয়। আধুনিক বিভিন্ন যন্ত্রপাতিতে আলোক-তড়িৎকোষের ব্যবহার হয়ে থাকে। খুব সামান্ত হলেও আলোচাপ স্পষ্ট করতে পারে। 1900 খ্রীন্টাব্দে লেবেডিউ এই তথ্য প্রমাণ করেন। 1918 খ্রীন্টাব্দে মেঘনাদ সাহা আলোর চাপ মেপে দেখান। এই চাপ প্রায়  $4 \times 10^{-4}$  dyne-এর সমান।

#### আলোর সঞ্চরণ ও বেগ

স্থের কাছ থেকে আমরা আলো পাই। স্থের কাছ থেকে এই শক্তি কি ভাবে আমাদের কাছে আদে? এই প্রশ্নের প্রথম উত্তর দেবার চেষ্টা

করেন একজন ওলন্দাজ বৈজ্ঞানিক এফ্রিয়ান হয়গেনস (1629-95)। তিনি বলেন এই শক্তি আদে তরঙ্গ মাধ্যমে। এই ধারণা তাঁর প্রথম হয়



জলের তরক্ষ লক্ষ্য করে। জলে যথন কোন ঢিল ফেলা হয় তথন ঢিলের শক্তি তরক্ষের স্বাষ্টি করে এবং দেই শক্তি তরক্ষ মাধ্যমে চারিদিকে ছড়িয়ে পড়ে। শুরু আলো নয়, স্থা থেকে অফ্যান্স বিকিরণ শক্তিও তরক্ষ মাধ্যমে পৃথিবীতে আলে। এই দব বিকিরণ শক্তি হচ্ছে রেডিও তরক্ষ, অবলোহিত আলো, দৃশ্য আলো, অতি বেগুনি আলো, এক্স রিমা, গামা রিমা প্রভৃতি। এই দব বিকিরণ শক্তির সাধারণ নাম তড়িচ্চুম্বকীয় তরক্ষ। এদের মধ্যের পার্থক্য এদের তরক্ষের দৈর্ঘ্য। তরক্ষদৈর্ঘ্য কাকে বলে? একটি পূর্ণ তরক্ষের দৈর্ঘ্যকে তরক্ষ্য কর্মান বলে। 7.24 চিত্রে OA দৈর্ঘ্য হচ্ছে তরক্ষদৈর্ঘ্য। ছবি দেখে নিশ্চয় বৃন্ধতে পারছ তরক্ষ OX পথে দক্ষারিত হচ্ছে। অর্থাৎ তরক্ষণ্ডলি ক্রমাগত পুনরার্তিক্ষ

সেই সংখ্যাকে কম্পাস্ক বা ফ্রিকোয়েন্সি বলে। ধর c যদি আলোর বেগ,  $\nu$  যদি কম্পাক ও  $\lambda$  যদি তরঙ্গদৈর্ঘ্য হয় তবে সংজ্ঞা অনুযায়ী  $c=\nu\lambda$ ।

স্থতরাং আলোর বেগ যথন নির্দিষ্ট তথন কম্পান্ধ বাড়লে তরঙ্গদৈর্ঘ্য কমবে এবং কম্পান্ধ কমলে তরঙ্গদৈর্ঘ্য বাড়বে। তড়িচ্চ, মকীয় তরঙ্গের কম্পান্ধ বা তরঙ্গদৈর্ঘ্য অহুষায়ী বিকিরণ শক্তির শ্রেণীবিক্তাস হয়ে থাকে। দৃশ্য আলোর তরঙ্গদৈর্ঘ্য 4000 Å থেকে 7500Åর মধ্যে। সাধারণত তরঙ্গদৈর্ঘ্য আংশ্রীম এককে প্রকাশ করা হয়। এই এককের প্রতীক Å।  $1 Å = 10^{-10} m$ ।

আলোর বেগ মাপার প্রথম চেষ্টা করেন গ্যালিলিও। কিন্তু তথন সময়ের স্ক্রের ব্যবধান মাপার কোন পদ্ধতি না থাকায় তাঁকে চেষ্টা ছেড়ে দিতে হয়। 1775 প্রীস্টান্দে ওলাফ রোমার নামে একজন বিজ্ঞানী প্রথম আলোর গতিবেগ মাপেন। তিনি বৃহস্পতির একটি উপগ্রহের গ্রহণ লক্ষ্য করতে থাকেন। পৃথিবী যথন বৃহস্পতির দব থেকে কাছে এবং দব থেকে দ্বে, এই তুই অবস্থায় উপগ্রহটির গ্রহণ লাগার সময়ের ব্যবধান মাপেন। পৃথিবীর কক্ষপথের গড় ব্যাস জানা আছে। এই দ্রজকে ঐ সময় দিয়ে ভাগ করে রোমার আলোর গতিবেগ বার করেন প্রতি দেকেণ্ডে 1,86,000 মাইল অর্থাৎ 2.98 × 108 m।

1926 ঐন্টাব্দে মাইকেলদন নামে আর একজন বিজ্ঞানী প্রায় 35 km দুরে ছটো ঘূর্ণ্যমান আয়নার দাহায়ে আলোর বেগ মাপেন। শুক্তে অলোর বেগ প্রায়  $3.0 \times 10^8$  m/s। ঘন মাধ্যমে আলোর বেগ কমে। জলে আলোর বেগ  $2.75 \times 10^8$  m/s।

স্তরাং দেখতে পাচ্ছ আলোক শক্তি তরঙ্গের আকারে এক স্থান থেকে অক্ত স্থানে নির্দিষ্ট বেগে যেতে পারে। সূর্য থেকে পৃথিবীতে আলো আসতে মাত্র আট মিনিট সময় লাগে। বায়ুশ্ব্য স্থানেও আলো তরঙ্গ আকারে যায়। আইনস্টাইনের তত্ত্ব অন্ত্যারে কোন কিছুই শ্ব্যে আলোর বেগের চেয়ে বেশি বেগে যেতে পারে না।

## আলোর বিচ্ছুরণ

আকাশে রামধন্থ নিশ্চয়ই দেখেছ। বর্ষাকালে আকাশের গায়ে স্থের বিপরীত দিকে চাইলে অনেক সময় ধন্থকের মত বাঁকা সাতটি রং দেখতে পাবে। স্থের আলো ভেঙে সাতটি রঙের স্ঠি হয়েছে। জলের উপর তেলের পাতলা শুর যথন ভাসে তথন সেদিকে চাইলেও সাতটি রঙ দেখতে পাওয়া যায়। সাবানের

9702

ফেনার, মৌমাছি বা ফড়িং-এর পাথার, মুক্তোর উপরের স্তরে, মাছের আঁশেও স্থরের আলো পড়লে একাধিক রঙ দেখা যায়। গ্রাম অঞ্চলে প্রাচীন জমিদার বাড়ির ঝাড় লগুনে এক ধরনের ত্রিকোণাকৃতি কাচ দেখতে পাওয়া যায়। এই কাচকে প্রিজম বলে। পরীক্ষাগারে যে প্রিজম ব্যবহার করা হয় দেটা অনেকটা এই রকম দেখতে। যদি কোন দাদা আলো প্রিজমের কোন এক তলে এদে পড়ে তবে অন্য তল থেকে নির্গত হয়ে দাতিট রঙের স্পষ্ট করে।

প্রিজমে প্রতিসরণের ফলে সাদা রঙ ভেঙে সাতটি মূল রঙ পাওয়ার প্রণালীকে বলে বিচ্ছুরণ বা ডিদপারশন। সাতটি রঙের আলোক পটিকে বলা হয় বর্ণালী বা স্পেকটাম।

# পরীক্ষাগারে বর্ণালী স্বষ্টি

কোন উৎস থেকে সাদা আলোর সমান্তরাল রশ্মি ছবিতে চিহ্নিত পথে প্রিজমে পড়লে প্রতিসরিত রশ্মি প্রিজমের ভিতর দিয়ে অপর তলে দ্বিতীয়বার প্রতিসরিত হয়ে যথন P পর্দার উপর পৌছোয় তথন সাদা আলো পর পর সাতটি রঙে পাশাপাশি ছড়িয়ে পড়ে। শুদ্ধ বর্ণালী পেতে হলেআলোর উৎস Sএর পর একটি উত্তল লেন্স  $L_1$  রেথে রশ্মি সমান্তরাল করতে হয় এবং প্রিজমের অন্ত পাশে আর একটি উত্তল লেন্স  $L_2$  রেথে লেন্সের ফোকাস দ্রুত্বে পর্দা রাথলে ভিন্ন



চিত্ৰ 7.25

ভিন্ন রঙগুলি ঠিকমত আলাদা ও স্পষ্ট হয় (চিত্র 7.25)। বর্ণালী লক্ষ্য করলে দেখবে প্রতিটি আলো-বশ্মি প্রিজমের ভূমির দিকে বেঁকেছে। বেগুনি আলো

সবচেয়ে বেশি বেঁকেছে এবং লাল আলো সবচেয়ে কম। মাঝের রঙগুলো লাল ও নীলের মধ্যে বেঁকেছে। রঙগুলি কি পরিমাণে বাঁকবে অর্থাৎ তাদের চ্যুতি কত হবে তা নির্ভর করে প্রিজমের প্রতিসরাদ্ধ ও আলোর রঙের উপর। প্রতিসরণের দ্বিতীয় স্থ্র পড়ার সময় তোমরা এ তথ্য জেনেছ। বেগুনি রঙের চ্যুতি সবচেয়ে বেশি এবং তার প্রতিসরাদ্ধ সবচেয়ে কম। লালের চ্যুতি সবচেয়ে কম, প্রতিসরাদ্ধ সবচেয়ে বেশি। পরীক্ষাগারে বর্ণালী লক্ষ্য করলে দেখবে বর্ণালীর পটিতে লাল রঙ উপরে থাকে কারণ তার চ্যুতি কম এবং বেগুনি রঙ সবচেয়ে নিচে থাকে কারণ তার চ্যুতি সবচেয়ে বেশি।

1666 খ্রীস্টাব্দে নিউটন প্রথম সাদা আলো ভেঙে সাতটি রঙ হতে দেখেন। কেছি জ সহরে তাঁর বাজির জানালার থড়থড়ি দিয়ে অন্ধকার ঘরে আলো এসে পড়লে তিনি একটি প্রিজমের ভিতর দিয়ে আলো–রশ্মি পাঠিয়ে সাতটি রঙ করেন। তিনি এই সিদ্ধান্তে আসেন যে সাদা রঙ কোন রঙ নয়, সাতটি মূল রঙের সমষ্টি। এই মূল রঙের আলোকে বলে মৌলিক একবর্ণ রশ্মি বা মনোক্রোমেটিক রে।

এই সাতি বঙ হল—বেগুনি (ভায়োলেট), সমুদ্র নীল (ইণ্ডিগো), আকাশী নীল (রু), সবুজ (গ্রীন), হলুদ (ইয়েলো), কমলা (অরেঞ্জ) ও লাল (রেড)। মনে রাথার জন্ম প্রতিটি রঙের ইংরেজী প্রতিশব্দের আন্থ অক্ষর নিলে কথাটি দাঁড়ায় VIBGYOR। বাংলায় প্রথম অক্ষরগুলো পর পর সাজালে শোনায় 'বেনীআাসহকলা'।

#### রামধন্য

মেঘলা দিনে আকাশের জল-কণার উপর রোদ পড়লে আলোর বিজুরণে বর্ণালীর স্পষ্ট হয়। এই বর্ণালীই রামধন্ত। রামধন্ত অর্ধর্ত্তের আকারে দেখা যায়। বৃষ্টি হওয়ার পরে অথবা আকাশে গুঁড়িগুঁড়ি বৃষ্টি হচ্ছে এবং সূর্যও আছে এই রকম অবস্থায় সূর্যের দিকে পিছন ফিরে আকাশের দিকে চাইলে অনেক সময় রামধন্ত দেখা যায়।

জলপ্রপাত থেকে উপরে ছিটকে আদা জলের কণায় আলোর বিচ্ছুরণে রামধকু দেখা যায়। এক মৃথ জল নিয়ে রোদের দিকে ফুঁ দিয়ে ক্রুত ছড়িয়ে দিলে জলকণাগুলোর মধ্যে রামধক্র মত দেখা যায়। তোমরা নিজেরাও পরীক্ষা করে দেখতে পার সভ্যি সভ্যি দেখা যায় কিনা। রামধন্থ কেন দেখা যায় বড় হয়ে ভোমরা পরে পড়বে।

#### বিচ্ছুরণের কারণ

আলোর প্রতিটি রঙের একটি নির্দিষ্ট তরঙ্গ-দৈর্ঘ্য আছে। বর্ণালীতে যে সাতটি রঙ তোমরা দেখেছ আংস্ট্রম এককে তাদের তরঙ্গ-দৈর্ঘ্য হল: বেগুনি (4000—4500), সমৃদ্র নীল (4500—4600), আকাশী নীল (4600—5000), সবুজ (5000—5820), হলুদ (5820—5900), কমলা (5900—6200), লাল (6200—7500)।

সাদা আলো হল ভিন্ন তরঙ্গ-দৈর্ঘ্য বিশিষ্ট এই সাতটি রঙের মিশ্রণ। যথন কোন প্রিজমের ভিতর দিয়ে আলো-রশ্মি যায় তথন এই সাতটি তরঙ্গ পৃথক হয়ে পড়ে। সাদা আলোর মিশ্রণ থেকে বিভিন্ন মূল রঙগুলির তরঙ্গের পৃথকীকরণকে আলোর বিচ্ছুরণ বলে।

আলোর প্রতিসরণ নির্ভর করে সংশ্লিষ্ট মাধ্যম ছটির উপর এবং আলোর রঙের উপর। দেইজন্ম প্রিজমের ভিতর বিভিন্ন তরঙ্গ-দৈর্ঘ্যের আলো যথন এনে পড়ে তথন প্রতিসরণের জন্ম তাদের চ্যুতি এক না হওয়ায় তারা একে অন্যের কাছ থেকে পৃথক হয়ে পড়ে ও বিচ্ছুরিত হয়।

আলোক-তরঙ্গের বিচ্ছুরণের কারণ তোমরা পড়লে। বাতাদে অসংখ্য ধূলিকণা আছে। স্থের আলো যখন এই কণাগুলির উপর এদে পড়ে তখন চারদিকে ছড়িয়ে পড়ে। স্বচ্ছ বস্তুর অথবা তরলের ভিতর দিয়ে আলো গেলেও চারদিকে ছড়িয়ে পড়ে। এই ঘটনাকে বলে আলোর বিক্ষেপণ। বিক্ষেপণের ফলে আলোর তরঙ্গেদৈর্ঘ্য পরিবর্তিত হয়। ভারতীয় বৈজ্ঞানিক দি. ভি. রামন বিক্ষেপণের উপর গবেষণা করে 1930 সালে নোবেল পুরস্কার পান। রামন ও তাঁর আবিক্ষারের কথা বড় হয়ে তোমরা পড়বে।

#### **বস্তুর রঙ**

কোন বস্তুর রঙ নির্ভর করে বস্তু নিজে রঙিন হলে অথবা তার উপর রঙিন আলো পড়লে। কোন অনচ্ছ বস্তুর উপর সাদা আলো আপতিত হলে বস্তু সাদা আলোর এক বা একাধিক রঙ শোষণ করে এবং বাকি রঙগুলিকে প্রতিফলিত করে। যেমন ধর, গাছের পাতা দেখতে সবুজ। পাতার উপরে যথন সাদা আলো এসে পড়ে তথন পাতাটি সাদা আলোর সবুজ রও ছাড়া অন্ত সব রঙকে শোষণ করে এবং সবুজ রঙ পাতার গায়ে প্রতিফলিত হয়ে আমাদের চোথে এসে পড়লে সবুজ মনে হয়। সেই রকম একই কারণে লাল বস্তকে লাল, হলুদ বস্তুকে হলুদ দেখাবে। কোন বস্তু সব কয়টি রঙকে প্রতিফলিত করলে সাদা এবং সব কয়টি রঙকে শোষণ করলে কালো দেখায়। সাদা বা কালো কোন রঙ নয়।

আবার স্বচ্ছ বস্তর ভিতর দিয়ে সাদা আলো গেলে বস্তুটি কোন একটি রঙ
ছাড়া অন্ত সব কয়টি রঙ শোষণ করলে বস্তুটির রঙ নির্গত রশ্মির রঙের মত
দেখাবে। যেমন ধর, একটি লাল ,কাচ। এর ভিতর দিয়ে সাদা আলো
যাবার সময় লাল রঙ ছাড়া অন্তপ্তলি শোষিত হয়। লাল রঙ কাচের ভিতর
দিয়ে শোষিত না হয়ে বেরিয়ে যায়। সেজন্য কাচটাকে লাল দেখায়।

একটা সবুজ কাচের ভিতর দিয়ে যদি লাল জবা ফুল দেথ তবে কেমন দেখাবে ? ফুলটা কালো দেখাবে। কারণ জবা ফুল লাল রঙ প্রতিফলিত করে আর সবুজ কাচ সবুজ রঙ ছাড়া সব রঙকে শোষণ করে এবং এই লাল রঙকেও শোষণ করবে। সেই কারণে ফুলটি কালো দেখাবে।

# 🤝 পদার্থের বিভিন্ন অবস্থা ও তার রূপান্তরের কারণ

#### পদার্থের কঠিন অবন্থা

ত্তীয় অধ্যায়ে তোমরা পড়েছ, পদার্থ তিনটি অবস্থায় থাকে—কঠিন, তরল ও গ্যাস। যে সব রাদায়নিক মৌল বা যৌগ সাধারণ চাপে ও তাপমাত্রায় কঠিন, তাদেরও মোটাম্টি ত্ই শ্রেণীতে ভাগ করা যায়। থাজলবণ, তুঁতে, ফটকিরি, মিছরি প্রভৃতি অধিকাংশ যৌগে নির্দিষ্ট আকার থাকে। এই আকার ছোট বা বড় অবস্থায় একই থাকে। একটি বড় টুকরো ভাঙলে একই আকারে ছোট টুকরো পাওয়া যাবে। এদের বলে কেলাস বা ক্রুন্টাল। NaCl বা CuSO4 ক্রুন্টাল আকারে পাওয়া যায়। জলের দ্রবণ থেকে জল ভকিয়ে ফেললে, যথন NaCl বা CuSO4 তলানি পড়ে লক্ষ্য করে দেখবে দেগুলিও ক্রুন্টাল হয়ে পড়ে। কাচ, আলকাতরা, ছাই প্রভৃতি আরও এক ধরনের কঠিন বস্তু আছে যাদের কোন নির্দিষ্ট আকার নেই। অনিয়তাকার এই বস্তুগুলিকে অকেলাসিত, ননক্রুন্টালাইন বা অ্যামরফাস বলা হয়।

কুন্টালে যৌগদের অণু ও পরমাণুগুলি একটি জ্যামিতিক আকারে দাজানো থাকে। প্রাকৃতিক অবস্থায় অনেক সময় বড় বড় কুন্টাল পাওয়া যায়। তামার থনিতে অনেক সময় যে তামার কুন্টাল পাওয়া যায় তার এক একটি তলের দৈর্ঘ্য এক দেন্টিমিটার পর্যন্ত হয়। যে কোন ধাতুপাতকে পালিশ করে মাইক্রোদকোপের দাহায্যে তলগুলি দেখলে কুন্টাল আকার পরিকার দেখা যায়। যে কোন অ্যামরফাদ পাউভার মাইক্রোদকোপে দেখলে কোন বিশেষ আকার দেখা যায় না। নানা আকারে কুন্টালে অণুপ্রমাণুগুলি যে ভাবে দাজানো থাকে তাকে ছয় রকম তিন্ন ধরনের জ্যামিতিক আকারে ভাগ করা যায়। 8.1 চিত্রে জ্যামিতিক আকারগুলি দেখানো হল।

যে কোন একটি ক্নস্টালের ক্ষেত্রে তার সব থেকে ছোট আকারটি তার ইউনিট এবং সেই ইউনিট জুড়ে জুড়ে বড় আকারের ক্নস্টাল হয়। এইভাবে জোট বাঁধার কারণ অণুর মধ্যের পরমাণুগুলির নিজেদের মধ্যে আকর্ষণ বল। প্রত্যেকটি পরমাণু তাদের আশেপাশের পরমাণুগুলির সঙ্গে যুক্ত থাকে। তাদের বিচ্ছিন্ন করতে যে শক্তি লাগে তাকে বদ্ধান- শক্তি বলে। প্রত্যেক কুস্টালের এই বন্ধন-শক্তি তার বৈশিষ্ট্য এবং দেটা ঐ কুস্টালের ধর্ম বলেই ধরা হয়। বাইরে থেকে শক্তি প্রয়োগ না করলে ঐ কুস্টালের বিশিষ্ট আকার বদলানো যায় না।



অণুগুলি কেমন ভাবে সাঞ্জান আছে তার উপর বস্তুটির আকার এবং
অক্যান্ত ভোত গুণ নির্ভর করে। এর সব থেকে ভাল উদাহরণ প্রাফাইট এবং
হীরা। তুটি বস্তুই কার্বন অণু দিয়ে তৈরি। প্রাফাইট দিয়ে পেনসিলের সীস
তৈরি হয়। প্রাফাইটের রং কালো। ঘষলেই উঠে আসে ও দামে সস্তা।
আর হীরা সচ্ছ, অধাতু হওয়া সত্তেও সব থেকে শক্ত বস্তু এবং তুমুলা রত্ন।
৪.2 চিত্রে হীরা আর প্রাফাইটের আণবিক গঠন দেখ, তাহলে এই ভিন্ন ধর্মের



কারণ বুঝতে পারবে। ভূপৃষ্ঠের অনেক নিচে চাপ ও তাপের কোন একটি বিশেষ অবস্থায় কয়লার মধ্যেই হীরা তৈরি হয়। আফ্রিকার অনেক নাম করা হীরার থনির কথা তোমরা পড়ে থাকবে। আবার প্রাকৃতিক অবস্থায় নীলা বলে এক ধরনের দামী পাথর পাওয়া যায় যার মূল উপাদান আলুমিনিয়ম অক্সাইড বা আলুমিনা। আলুমিনা এক ধরনের দাদা গুঁড়ো পাউডার কিন্তু প্রায় 2000°C তাপমাত্রায় গলিয়ে কৃত্রিম নীলা করা যায়। কৃত্রিম উপায়ে হীরা তৈরি ব্যবদায়িক ভিত্তিতে এথনও সম্ভব হয়নি।

#### কুস্টাল, ভরল ও গ্যাস

অণুগঠন দিয়ে বিচার করলে রুস্টাল, তরল ও গ্যাস এ তিনটির মধ্যে পার্থক্য বেশ ভাল করে বোঝা যাবে। রুস্টালের ক্ষেত্রে অণু পরমাণুদের মধ্যে পারস্পরিক বন্ধন-শক্তিই তাদের বিশিষ্ট আকার দেয়। তরলে এই বন্ধন-শক্তি অত্যন্ত কম এবং এত কম যে অণুগুলিকে বিশেষ আকার দিতে পারে না, তাই তরলের কোন নিজম্ব আকার নেই। কোন অহুভূমিক তলে ফেললে ছড়িয়ে পড়ে। যে কোন পাত্রে রাথলে পাত্রের আকার নেয়। তরলের অণুদের মধ্যে কিছুটা বন্ধন আছে বলে তারা নিজে নিজে আলাদা হয় না। তরলের সব থেকে উপরের তলের অণুগুলি তাদের ছপাশের নিচের তলের অণুদের সঙ্গে বাঁধা। এই বন্ধন কম হলেই অণুগুলি ছিন্ন হয়ে বাতাসে উঠে যায় এবং বাঙ্পায়ন হয়। অকেলাসিত বস্তুগুলিকে রুস্টাল ও তরলের অন্তর্বর্তী অবস্থা বলা চলে। এদের অণুদের মধ্যের বন্ধন-শক্তি রুস্টাল তৈরির মত যথেষ্ট নয় আবার তরলের থেকে বেশি। গ্যাদের অণুরা মৃক্ত, যে যেমন খুদী দিকে বিচরণ



করতে পারে, তাই গ্যাদের কোন আকার বা আয়তন নেই। অণুর গঠন দিয়ে বিচার করলে ক্লুটাল, তরল ও গ্যাস 8.3 চিত্রের মত দেখাবে।

কুস্টালে পরমাণ্গুলি চলাফেরা করতে পারে না, নিজের চারপাশে ভাল

করে ঘ্রতে পারে না, কেবল একটি মধ্যবর্তী কেন্দ্রবিদ্র চারপাশে স্পন্দিত হতে পারে। গ্যাসে পরমাণুগুলি একদম ছাড়া। যে কোন দিকে ছুটে বেড়াবার, ঘুরবার বা স্পন্দিত হবার পূর্ণ স্বাধীনতা তাদের।

#### গরম করলে কি হয়?

কেলাসিত বস্তু গ্রম করতে থাকলে বস্তুর প্রমাণুগুলি তাপ শোষণ করে ও তাদের গতিশক্তি তাপমাত্রার অহপাতে বাড়তে থাকে। গতিশক্তি বাড়লে পরমাণুগুলি চারপাশের অন্য পরমাণুর দক্ষে বাঁধা থাকার জন্য কেবল মাত্র নিজের একটি গড় অবস্থানের ত্পাশে স্পন্দিত হতে থাকে। তাপ বাড়তে থাকলে এমন একটা সময় আদে যথন গতিশক্তি পরমাণুটির বন্ধন-শক্তির সমান বা কাছাকাছি হয় ফলে বন্ধন আলগা হয়ে পড়ে। কুন্টালের আকার ভেঙে পড়তে শুকু করে এবং গলন শুকু হয়। নির্দিষ্ট কুন্টালে পরমাণুদের বন্ধন-শক্তি নির্দিষ্ট, স্থতরাং যে তাপমাত্রায় গলন শুকু হয় তাও নির্দিষ্ট তাপমাত্রা। গলতে সময় লাগে, হঠাৎ সমস্ত কুন্টাল গলে যায় না। একবার গলন শুকু হলে বাকি অংশ তাপ শোষণ করে কুন্টাল থেকে তরলে পরিবর্তিত হতে থাকে, তথন আর পরমাণুগুলির গতিশক্তি বাড়ে না, ফলে তাপমাত্রা বাড়ে না। গলন শুকু হওয়া থেকে শেষ হওয়া পর্যন্ত হাত লাগে ভাই গলনের লীন তাপ।

পিচ, রবার প্রভৃতি অনিয়তাকার রাসায়নিকগুলির ক্ষেত্রে প্রমাণুগুলির বন্ধন-শক্তি অপেক্ষাকৃত কম এবং নির্দিষ্ট নয়। তাই এদের গলনান্ধ নির্দিষ্ট নয় এবং গলন শুরু হলেও তাপমাত্রা বাড়তে থাকে।

বস্তুটি তরল হয়ে যাবার পরও তাপ প্রয়োগ করতে থাকলে পরমাণুদের গতিশক্তি আরও বাড়বে। এই অবস্থায় অণুগুলো চলাচল করতে পারে, অল্ল মাত্রায় নিজের চারপাশে ঘূরতে পারে এবং গড় অবস্থানের তুপাশে স্পালিত হতে পারে। অণুর গতিশক্তি বাড়ার সঙ্গে সঙ্গে তরলের তাপমাত্রাও বাড়তে থাকবে। গতিশক্তি বাড়তে বাড়তে এমন একটা সময় আসবে যথন অণুগুলি আশেপাশের অণুদের থেকে সম্পূর্ণ বিচ্ছিন্ন হয়ে পড়ে তরল থেকে গ্যাস হবে, ফুটন শুক হবে। স্ফুটনও সময়সাপেক। একবার ফুটন শুক হলে শোষিত তাপ অণুগুলিকে বিচ্ছিন্ন করার কাজে ব্যবহৃত হবে, ফুটনের লীন তাপ শোষণ করে ফুটন শেষ না হওয়া পর্যন্ত তাপমাত্রা বাড়বে না। ফুটনাঙ্ক একটি

নির্দিষ্ট তাপমাত্রা। গ্যাদকে গরম করতে থাকলে কি হবে ? গ্যাদের অণুগুলির গতিশক্তি এবং দেই দক্ষে তাপমাত্রা বাড়বে। নির্দিষ্ট আয়তনে গ্যাদে তাপমাত্রা বাড়লে দমাত্রপাতিক হারে চাপ বাড়বে। এই বিষয়ে বয়েলের স্থৃত্র তোমরা পরের বছর পড়বে।

আরও গরম করলে কি হবে—আমাদের জানা অধিকাংশ বস্তুই কয়েক হাজার ডিগ্রি সেলিনিয়াস তাপমাত্রার মধ্যে গলে, ফুটে, গ্যাস হয়ে যায়। তাপমাত্রা আরও বাড়তে থাকলে বস্তুর আর কি কি পরিবর্তন হতে পারে এ প্রশ্ন মনে আসা স্বাভাবিক। এক সময় অণুগুলি ভেঙে উপাদান মোলের পরমাণু হয়ে পড়বে। আরও বেশি গরম করলে পরমাণুগুলি থেকে ইলেকট্রন বিচ্ছিন্ন হয়ে পরমাণুর আয়ন ও ইলেকট্রন আলাদা হয়ে পড়বে। তাপ প্রয়োগে আয়ন স্বৃষ্টি করাকে বলেতাপ আয়নন। তাপ-আয়নন তত্ব আবিকার করে বিজ্ঞানী মেঘনাদ সাহা বিশ্ববিখ্যাত হন। কয়েক হাজার ডিগ্রি সেলিনিয়াস তাপমাত্রায় অধিকাংশ মোলের পরমাণুতে তাপ-আয়নন হয়। এই অবস্থায় বস্তুর সাধারণ ধর্ম বদলাতে থাকে। গ্যাস তথন পজিটিভ তড়িতাহিত আয়ন ও নেগেটিভ তড়িতাহিত ইলেকট্রনের স্রোতে পরিণত হয় এবং বস্তুর ভোত ও রাসায়নিক ধর্ম সম্পূর্ণ পরিবর্তিত হয়। বস্তুর এই অবস্থাকে প্রাজমাণ্বলে। প্রাজমাণ্বন্তর চতুর্থ অবস্থা।

এখন গবেষণাগারে উচ্চ তাপমাত্রা স্বষ্টি করা সম্ভব হয়েছে এবং প্লাজমা প্রবাহ ব্যবহার করে ব্যবসায়িক ভিত্তিতে তড়িৎ উৎপাদনের চেষ্টা চলেছে। এর নাম ম্যাগনেটো-হাইড্রো-ডাইনামিক-পাওয়ার-জেনারেশন বা সংক্ষেপে এম এইচ ডি।

আরও তাপ বাড়ালে কি হবে? তাপ আয়নন-তত্ত্ব প্রয়োগ করে দেখা গেছে যে স্থ্ বা অন্যান্ত নক্ষত্রের দেহের তাপমাত্রা দশ লক্ষ বা কোটি ডিগ্রি দেলদিয়াদ। এই উত্তাপে হাইড্রোজেন, হিলিয়ম, লিথিয়ম থেকে শুকু করে কার্বন, নাইট্রোজেন ইত্যাদি পরমাণ্র সমস্ত ইলেকটন বিচ্ছিন্ন হয়ে থালি নিউক্লিয়মগুলি ঘূরে বেড়ায় এবং এদের গতিশক্তি এত বেশি সেগুলি পরস্পরের দক্ষে আঘাত করে নিউক্লিয়ার বিজ্যাকশন বা কেন্দ্রীণ বিক্রিয়া করতে সক্ষম। কেন্দ্রীণ বিক্রিয়ার ফলে বস্তু লুগু হয়ে শক্তি বেরোয়। এগুলি শুধুমাত্র কল্পনা বা থাতায় কষা অঙ্কের কথা নয়—পৃথিবীতে পরমাণ্ বোমা ও হাইড্রোজেন বোমার বিস্ফোরণে তা প্রমাণ হয়েছে। পরে এসব বিস্তারিত ভাবে পড়বে।

# ক্র ভৌত ও রাসায়নিক পরিবর্তন

# পদার্থ কিভাবে সনাক্ত করা যায়: ভৌত ও রাসায়নিক ধর্ম

জল এবং তেল উভয়েই তরল পদার্থ। এদের রঙ কিন্তু এক নয়। স্পর্শেপ্ত যে পৃথক, হাতে নিলেই বেশ বোঝা যায়। আবার বাদাম তেল এবং নারকোল তেল উভয়েই দেখতে অনেকটা এক হলেও গন্ধ কিন্তু আলাদা। কয়লা দেখতে কালো, তুঁতে দেখতে নীল, লোহা দেখতে বাদামী, লবণ অনেকটা সাদা, মিছরি দানাও সাদা। তামার রঙ লালাভ, অ্যালুমিনিয়ম উজ্জল সাদা, সোনার রঙ উজ্জল হলুদ। সোনা, লোহা বা অ্যালুমিনিয়মের কোন স্বাদ নেই। কিন্তু লবণ স্বাদে লবণাক্ত বা লোণা, মিছরি মিষ্টি মিষ্টি, তুঁতে ক্ষ ক্ষ। কিন্তু সাবধান, না জানা কোন জিনিদ খেয়ে দেখো না, তুঁতে বিষ।

আবার দোনা, কপো, লোহা বা আালুমিনিয়ম কোনটাই জলে গুলে যায় না। অথচ তুঁতে, লবণ, মিছরি, ফটকিরি সহজেই জলে গুলে যায়। কার্বন ডাইঅক্সাইড গ্যাদ এবং কিছু পরিমাণে অক্সিজেন জলে গুলে যেতে পারে।

অক্সিজেন, হাইডোজেন, নাইটোজেন গ্যাসগুলির কোনটির কোন গদ্ধ নেই। ক্লোরিন, অ্যামোনিয়া গ্যাদে ঝাঁঝালো গদ্ধ। নানা রকম পদার্থের মধ্যে শুধুমাত্র লোহা, নিকেল, কোবান্ট প্রভৃতি কয়েকটি পদার্থ চুম্বক দ্বারা আক্লুই হয়।

জল, তেল, পেট্রল প্রভৃতির আপেক্ষিক ঘনান্ধ কম। অথচ পারদের আপেক্ষিক ঘনান্ধ বেশ বেশি।

বেদম, ময়দা, এরাকট ওঁড়ো গুঁড়ো পাউডারের মত। এদের কোন বিশিষ্ট আকার নেই। কিন্তু চিনি, মিছরি, লবণ, ফটকিরি প্রভৃতি দানা-দানা। বড় দানা ভাঙলে ছোট দানা পাওয়া যায়, এবং যত ছোটই হোক এদের প্রত্যেকের নিজস্ব আকার বজায় রাথে।

এখন দেখা যাচ্ছে—স্থাদে, গদ্ধে, বর্ণে, স্পর্শে, আকারে, ঘনাঙ্কে, দ্রবণীয়তায় ভিন্ন ভিন্ন দব পদার্থের ধর্মও ভিন্ন। পদার্থের এই ধর্মগুলিই তাদের ভৌত ধর্ম। কোন বস্তুর উপাদান পরিবর্তিত হয়ে অন্তু কোন বস্তুতে রূপাস্তুরিত না হওয়া পর্যস্ত যে সব গুণের দ্বারা আমরা বস্তুটিকে সনাক্ত করতে পারি সেই সব গুণকে বস্তুর ভৌত ধর্ম বলে।

ভৌত গুণের দ্বারা পদার্থের শুধু বাহ্নিক অবস্থা বা বাইরের গুণের পরিচয় পাওয়া যায়। পদার্থের ভৌত ধর্ম নির্ণয়ের জন্ম দাধারণত জানতে হয়: (ক) তার অবস্থা—কঠিন, তরল, না গ্যাদ, (থ) বর্ণ, (গ) গন্ধ, (ঘ) স্বাদ, (ঙ) স্পর্ম, (চ) জলে বা অন্য তরলে দ্রবণীয়তা, (ছ) জল বা বায়ুর তুলনায় ঘনায়, (জ) গলনায় ও স্ফুটনায়, (ঝ) চুম্বকের সঙ্গে সম্পর্ক, (ঞ) ভাপ ও বিতাৎ পরিবহুণের ক্ষমতা, (ট) স্থিতিস্থাপকতা ইত্যাদি।

পদার্থের ভৌত ধর্ম ছাড়াও আরো একরকম স্বভাবের পরিচয় পাওয়া যায়।

যেমন সাধারণ আদিডের স্পর্শে সোনার কোন পরিবর্তন হয় না। অথচ
তামার উপর কয়েক ফোঁটা নাইট্রিক আদিড ফেললেই একরকম বাদামী
রঙ্কের গ্যাদ তৈরি হয়। দস্তার উপর লঘু সালফিউরিক আদিড ফেলামাত্রই
ভূরভূর করে গ্যাদ বেকতে থাকে। চিনির উপর সালফিউরিক আদিড ঢাললে

চিনি কালো হয়ে যায়। থোলা হাওয়ার সংস্পর্শে এলে সোডিয়ম ধাতু জলে
ভঠে। সব ক্ষেত্রেই মূল পদার্থ কিন্তু পরিবর্তিত হচ্ছে।

পদার্থের এই জাতীয় স্বভাবকে তার রাসায়নিক গুণ বা ধর্ম বলে। বস্তুর রাসায়নিক উপাদান বা রাসায়নিক বিক্রিয়া সংক্রান্ত ধর্মকে বস্তুর রাসায়নিক ধর্ম বলে। যে কোন পদার্থকে ঠিকভাবে সনাক্ত করতে রাসায়নিক ধর্ম জানাও বিশেষ প্রয়োজন। এবং তা জানতে হলে (ক) জল, (খ) বায়ু, (গ) অ্যাসিড, ক্লারক ইত্যাদির সংস্পর্শে এলে পদার্থটির কি পরিবর্তন ঘটে দেখতে হবে। তা ছাড়া পদার্থটি উচ্চ তাপে বা অক্যান্ত পদার্থের সংস্পর্শে এলে কোন পরিবর্তন হয় কিনা তাও জানা প্রয়োজন। এছাড়া পদার্থ কী উপাদান দিয়ে তৈরি সেটাও তার রাসায়নিক ধর্ম থেকে জানা যায়।

স্থতরাং অজ্ঞানা একটি পদার্থকে দনাক্ত করতে হলে তার ভৌত ও রাসায়নিক ধর্ম বিশ্লেষণ করতে হবে।

# ভৌত ও রাসায়নিক পরিবর্তন

বস্তুর ভৌত ধর্মের পরিবর্তনকে ভৌত পরিবর্তন এবং রাদায়নিক ধর্মের পরিবর্তনকে রাদায়নিক পরিবর্তন বলে। ভৌত পরিবর্তন অস্থায়ী এবং এই পরিবর্তনে নতুন কোন বস্তু তৈরি হয় না। ভৌত পরিবর্তনে পদার্থের ওজনের পরিবর্তন হয় না এবং আণবিক গঠন একই থাকে। বস্তুর রাদায়নিক পরিবর্তনে সম্পূর্ণ নতুন বস্তুর উদ্ভব হয় এবং মূল বস্তুর আণবিক গঠনের পরিবর্তন হয়। রাদায়নিক পরিবর্তনে ওজন ও তাপেরও পরিবর্তন হতে পারে।

একটা সহজ পরীক্ষা কর। ছুটো কাচের পাত্র নাও। একটা পাত্রে কিছু অ্যালুমিনিয়মের টুকরো ও অক্ত পাতে কিছু চিনির টুকরো নাও। ছটো পাত্রকেই বেশ কিছুক্ষণ গ্রম কর। দেখবে আালুমিনিয়মের বাহ্যিক চেহারার কোন পরিবর্তন হয় নি, কেবল গরম হয়েছে। এটি ধাতৃটির ভৌত পরিবর্তন। কিন্তু চিনির পাত্র গরম হওয়ার সঙ্গে সঙ্গে তা থেকে জল বার হবে। পরে জল বাষ্প হওয়ার পর কালো কার্বন পাত্রে পড়ে থাকবে। এটি চিনির বাসায়নিক পরিবর্তন। আালুমিনিয়ম টুকরোগুলোকে যদি 660·2°C পর্যন্ত গরম করা সম্ভব হয় তাহলে দেখবে ধাতুটি গলে যাবে। এটি আালুমিনিয়মের অবস্থার পরিবর্তন, স্থতরাং এটিও আালুমিনিয়মের ভৌত পরিবর্তন, কারণ এতে ধাতুটির বাদায়নিক গঠন অর্থাৎ আণবিক গঠন একই আছে। জল কঠিন, তরল ও গ্যামীয় অবস্থায় থাকতে পারে। কিন্তু জলের আণবিক গঠন তিনটি অবস্থাতে একই থাকে। সামাগ্র অ্যাসিড মেশানো জলে তড়িৎ প্রবাহিতকরলে জল ভেঙে হাইডোজেন ও অক্সিজেন গ্যাদ বেরোয়। এটি জলের রাসায়নিক পরিবর্তন, কারণ এতে জলের আণবিক গঠনের পরিবর্তন হয়েছে। মরচে এক ধরনের লোহার অক্সাইড। অক্সিজেনের সঙ্গে লোহার রাদায়নিক বিক্রিয়ায় মরচে পড়ে। তামার পাত্র বেশ কিছুদিন ব্যবহার না করলে উপরে একটা সবুজ স্তর পড়ে। এটি তামার অক্সাইড –রাদায়নিক পরিবর্তনের ফল। আমাদের শরীরে রাদায়নিক পরিবর্তন কম হয় না। আমরা যে থাবার থাই পাকস্থলীতে তার রাদায়নিক পরিবর্তন ঘটে। নিঃশ্বাদের দঙ্গে যে অক্সিজেন আমরা নিই তার হিমোগোবিনের দঙ্গে যুক্ত হয়ে শরীরে বহু রক্ম রাসায়নিক বিক্রিয়া ঘটায়।

## বে কারণে বস্তুর পরিবর্তন ঘটে

অনেকগুলি কারণে বস্তুর ভৌত পরিবর্তন ঘটতে পারে। তাপ প্রয়োগে বস্তুর প্রসারণ ঘটে আবার যথেষ্ট তাপ শোষণে বস্তুর অবস্থার পরিবর্তন ঘটতে পারে। বিত্যুৎ প্রবাহিত করলে পরিবাহী গরম হয়। বায়ুশ্ন পরিবেশে যথেষ্ট গরম হলে পরিবাহী প্রথমে লাল ও পরে দাদা আলো দেয়। এই পদ্ধতিতেই ইলেকট্রিক বাল্ব আলো দেয়। কয়েকটি বিশেষ ধাতুকে চুম্বক দিয়ে ঘ্রলে ধাতুটি চুম্বকের মত ব্যবহার করে। কোন কোন বস্তু জলে দ্রবীভূত হয়। এগুলি বস্তুর ভৌত পরিবর্তন। এতে বস্তুর উপাদানের কোন পরিবর্তন হয় না।

আলো, উত্তাপ, বিতাৎ ও চাপের প্রয়োগে এমন কি ভিন্ন ভিন্ন বস্তুর স্পর্শেও বস্তুর রাদায়নিক পরিবর্তন ঘটতে পারে। জল, বায়ু, আাদিড, ক্ষার প্রভৃতির সংস্পর্শে এলে অনেক বস্তুর রাদায়নিক পরিবর্তন ঘটে। ক্যামেরার ফিল্মে আলো এদে পড়লে রাদায়নিক পরিবর্তন ঘটে—এই পদ্ধতিতে ফোটোগ্রাফ তৈরি হয়। আলোর প্রভাবে হাইড্রোজেন ও ক্লোরিন গ্যাদ যুক্ত হয়ে হাইড্রোক্লোরিক আাদিড হয় এবং নাইট্রোজেন অক্লাইড ভেঙে নাইট্রাদ অক্লাইড এবং অক্লিজেন হয়। আলোর প্রভাবে রাদায়নিক পরিবর্তনকে ফোটো-কেমিন্ত্রী বলে। মারকিউরিক অক্লাইডকে গরম করলে পারদ ও অক্লিজেন পাওয়া যায়। তড়িৎ প্রবাহ দিয়ে জল থেকে হাইড্রোজেন ও অক্লিজেন পাওয়া যায় একটু আগেই বলা হয়েছে। ভুঁই পটকা যখন মাটিতে সজোরে ছুড়ে ফেলা হয় তখন চাপের প্রভাবে পটকার ভিতরের পট্যাদিয়ম ক্লোরেট ও গদ্ধকের মধ্যে রাদায়নিক বিক্রিয়া ঘটে ও বিস্ফোরণ হয়। আয়োডিন ও ফদফরাদ যতক্ষণ আলাদা থাকে কোন বিক্রিয়া হয় না, কিন্তু এদের স্পর্শ করালেই ফদফরাদ অলে ওঠে।

# ভাপগ্রাহী ও ভাপমোচী রাসায়নিক বিক্রিয়া

ছটি বস্তুর রাদায়নিক বিক্রিয়ায় নতুন যৌগিক বস্তু গঠনের দময় যদি তাপ শোষিত হয় তবে দেই রাদায়নিক বিক্রিয়াকে তাপগ্রাহী বিক্রিয়া বলে। এইভাবে তৈরি যৌগিক বস্তুকে তাপগ্রাহী যৌগ বলে। নাইট্রোজেন ও অক্সিজেনের বিক্রিয়ার দময় তাপ শোষিত হয় এবং নাইট্রিক অক্সাইড তৈরি হয়। এই বিক্রিয়া তাপগ্রাহী এবং নাইট্রিক অক্সাইড তাপগ্রাহী বস্তু। কার্বন ডাইদালফাইড, ক্লোরিন মোনোক্দাইডও তাপগ্রাহী।

অনেক রাসায়নিক বিক্রিয়ায় তাপ উৎপন্ন হয়। এই বিক্রিয়াকে তাপমোচী বিক্রিয়া বলে। উভূত বস্তুকে তাপমোচী বস্তু বলে। হাইড্রোজেন ও অক্সিজেনের বিক্রিয়ায় যথন জল উৎপন্ন হয় তথন তাপ উৎপন্ন, হয়। কার্বন ডাইঅক্সাইড তাপমোচী বস্তু। কয়লা যথন পোড়ান হয় তথন কার্বনের সঙ্গে অক্সিজেনের বিক্রিয়ায় তাপ উৎপন্ন হয়। পাথ্রে চুন জলে দিলে এত তাপ উৎপন্ন হয় যে জল ফুটতে থাকে। বাড়িতে চুনকাম হওয়ার সময় লক্ষ্য রেথ।

### অনুঘটক ও তার কাজ

এতক্ষণ রাসায়নিক পরিবর্তনের কথা পড়লে। ছটি বস্তুর বিক্রিয়ার পর তাদের মিলনে নতুন বস্তু তৈরি হয়। কিন্তু কয়েকটি বস্তু আছে যারা রাসায়নিক বিক্রিয়ায় অংশ গ্রহণ করে না, কিন্তু তাদের উপস্থিতিতে রাসায়নিক বিক্রিয়া ঘটে। এদের অনুঘটক বলে। প্র্যাটিনমের পাতের উপস্থিতিতে অ্যামোনিয়া গ্যাস থেকে নাইট্রিক অক্রাইড তৈরি হয়। এথানে প্র্যাটিনম অনুঘটক।

# ভৌত ও রাসায়নিক পরিবর্তনের তুলনা

#### ভৌত পরিবর্তন

- (1) ভৌত পরিবর্তনের ফলে
  পদার্থের মৃল গঠনে কোন পরিবর্তন
  হয় না। পদার্থের অবস্থার রূপান্তর
  অর্থাৎ তার ভৌত ধর্মের পরিবর্তন
  ঘটে মাত্র, কোন নতুন পদার্থ গঠিত
  হয় না।
- (2) ভোত পরিবর্তন অস্থায়ী এবং পরিবর্তিত পদার্থকে সহজেই আবার আগের পদার্থে ফিরিয়ে আনা যায়।
- (3) ভৌত পরিবর্তনে পদার্থের ওজনের কোন পরিবর্তন অর্থাৎ হ্রাদ বা বৃদ্ধি হয় না।
- (4) ভৌত পরিবর্তনের সময় সাধারণত তাপের উদ্ভব বা অভাব হয় না। (অবশু ব্যতিক্রম আছে।)

### রাসায়নিক পরিবর্তন

- (1) রাসায়নিক পরিবর্তনের ফলে পদার্থের মূল গঠনে পরিবর্তন হয়। মূল পদার্থ পরিবর্তিত হয়ে নতুন পদার্থ গঠিত হয় এবং তার ধর্মেরও পরিবর্তন হয়।
- (2) রাদায়নিক পরিবর্তন স্থায়ী এবং পরিবর্তিত পদার্থকে আবার রাদায়নিক পরিবর্তন ছাড়া আগের পদার্থে ফিরিয়ে আনা যায় না।
- (3) রাদায়নিক পরিবর্তনের ফলে গঠিত নতুন পদার্থের ওজনের অবশ্রুই পরিবর্তন অর্থাৎ হ্রাদ বা বৃদ্ধি হয়।
- (4) রাসায়নিক পরিবর্তনে পদার্থের মধ্যে তাপের উদ্ভব হয়় অথবা শোষণ ঘটে।

# 50 त्रोन ও योग

পদার্থের মোলিক উপাদান কি কি? আমরা চারপাশে যে সব জিনিস দেখতে পাই যেমন ইট, কাঠ, পাথর, লোহা, কাপড়-জামা, জীবজন্ত, মানবদেহ—এসব কি কি মূল উপাদানের সাহায্যে গড়ে উঠেছে? একটি একটি ইট বসিয়ে যেমন বাড়ি তৈরি হয়—তেমনি অন্ত সব বস্ত কি কয়েকটি মূল বস্তুর সমন্বয়ে তৈরি—যেগুলি বরাবরই ছিল, আছে এবং থাকবে—মেগুলি অন্ত কিছু দিয়ে তৈরি নয়? আড়াই হাজার বছর আগে থেকে প্রাচীন ভারতীয় ও গ্রীক পণ্ডিতেরা অনেক মাথা ঘামিয়েছেন এ বিষয়ে। এক সময়ে প্রাচীন ভারতীয়রা মনেকরতেন—ক্ষিতি (মাটি), অপ্ (জল), তেজ (আগুন), মকুৎ (হাওয়া), ব্যোম (আকাশ)—এই পঞ্চূত দিয়ে সকল বস্ত স্প্রি হয়েছে। এসব বিজ্ঞানের ইতিহাস পড়লে জানতে পারবে।

যে সব মৃল উপাদান দিয়ে অন্ত সব বস্ত তৈরি, যাকে বিশ্লেষণ করে নতুন কোন উপাদান পাওয়া যায় না, তাদের মৌলিক পদার্থ বা মৌল বলা হয়। পৃথিবীতে প্রাকৃতিক অবস্থায় 92টি মৌল আছে। এদের প্রত্যেকের রাসায়নিক নামকরণ করা হয়েছে। হাইড্রোজেন, হিলিয়ম, লিথিয়ম, বেরিলয়ম, বোরন, কার্বন, নাইট্রোজেন, অক্সিজেন, লোহা, তামা, সোনা, প্রাটিনম, ইউরেনিয়ম এদব মৌলদের নাম। তালিকায় প্রথম দব থেকে হালকা হাইড্রোজেন গ্যাদ, আবার দব থেকে ভারী বিরানক্ষইতম মৌল ইউরেনিয়ম। আগেই বলা হয়েছে যে, পৃথিবীতে প্রাকৃতিক অবস্থায় পাওয়া যায় 92টি মৌল। বিজ্ঞানীরা অবশ্য গবেষণাগারে ইউরেনিয়মের পরেও অনেক মৌল তৈরি করেছেন এবং আরও করার চেষ্টা করে চলেছেন। এগুলি দবই অস্থায়ী এবং প্রাকৃতিক পরিবেশে পাওয়া যায় না। মোট 103টি মৌলের নাম দর্বজনস্বীকৃত। 104 ও 105 নম্বর মৌলও সম্প্রতি আবিক্ষার হয়েছে। এদের নাম দেওয়া হয়েছে রাদারফোর্ডিয়ম আর ফ্রানিয়ম। মৌলদের নামের তালিকা পরের অধ্যায়ের শেবে দেওয়া আছে।

মৌলগুলি নাধারণ তাপমাত্রায় কঠিন, তরল ও গ্যাস তিন অবস্থাতেই পাওয়া যায়। সোনা, রুপো, লোহা, তামা, দস্তা, দীসা, টিন, কার্বন, গন্ধক, ক্যালিসিয়ম, আয়োডিন, নিকেল, ম্যাঙ্গানিজ, দিলিকন, ফদফরাস, পট্যাসিয়ম, সোডিয়ম, অ্যালুমিনিয়ম, ম্যাগনেসিয়ম, প্রাটিনম, রেডিয়ম, ইউরেনিয়ম প্রভৃতি এরা সবই কঠিন। পারদ, রোমিন প্রভৃতি তরল। অক্সিজেন, নাইট্রোজেন, হাইড্রোজেন, হিলিয়ম, ক্লোরিন, নিয়ন, জিনন প্রভৃতি মৌল গ্যাস।

এক বা একাধিক মৌল মিলে যে পদার্থ তৈরি হয় তাকে যৌগিক পদার্থ বা যৌগ বলে। যৌগকে বিশ্লেষণ করলে তার উপাদান মৌলগুলি সবসময়ই পাওয়া যাবে। যৌগ জৈব এবং অজৈব তুইই হতে পারে। সাধারণত অধিকাংশ পদার্থ যৌগ অবস্থায় থাকে। প্রাকৃতিক অবস্থায় প্রায় কুড়িটি মৌল পাওয়া যায়। পৃথিবীতে যত রকমের বিভিন্ন যৌগ আছে—তার মধ্যে নিরানক্ষই শতাংশ কম-বেশি কুড়িটি মৌল দিয়ে তৈরি। সমস্ত মৌলদের মধ্যে প্রায় 50 শতাংশ শুধু অক্সিজেন।

জল, লবণ, চিনি, লোহার মরচে, তুঁতে এগুলি দবই যোগের উদাহরণ।
হাইড্রোজেন ও অক্সিজেন মৌল দিয়ে জল তৈরি। সোডিয়ম ও ক্লোরিন দিয়ে
তৈরি থাত লবণ। কার্বন, হাইড্রোজেন ও অক্সিজেন দিয়ে চিনি, লোহা ও
অক্সিজেন দিয়ে মরচে এবং তামা, গদ্ধক ও অক্সিজেন দিয়ে তুঁতে তৈরি।
তোমরা নিজেরা চেটা করলে অজ্ঞ উদাহরণ বার করতে পারবে।

যৌগ ও মিশ্রণ এক নয়: ছই বা তার বেশি মৌল যে কোন অনুপাতে মেশালে সেটা হবে মিশ্রণ, সেটা যৌগ নাও হতে পারে। যে সব মৌল দিয়ে যৌগ তৈরি, তাদের নিজেদের গুণ যৌগে থাকে না, যৌগের নিজস্ব গুণ থাকে। যেমন, হাইড্রোজেন বা অক্রিজেন ছই গ্যাস, কিন্তু মিলে তৈরি হয় জল, যা সাধারণ তাপমাত্রায় তরল। জলের নিজস্ব অনেক ধর্ম আছে—যার সঙ্গে হাইড্রোজেন বা অক্রিজেনের ধর্মের কোন সম্পর্ক নেই।

তাছাড়া জলে হাইড়োজেন ও অক্সিজেনের অনুপাত সবসময় নির্দিষ্ট থাকে। বাসায়নিক বিক্রিয়া না ঘটিয়ে জলের উপাদান মৌলদের আলাদা করা যায় না। আবার বাতাস নাইট্রোজেন, অক্সিজেন, জলীয় বাষ্প ও আরও নানা গ্যাদের মিশ্রণ। এই মিশ্রণে নাইট্রোজেন বা অক্সিজেনের নিজ নিজ ধর্মগুলি বর্তমান। এই মিশ্রণে নাইট্রোজেন বা অক্সিজেনের অনুপাত নির্দিষ্ট নয়, পরিবর্তিত হতে পারে। রাসায়নিক বিক্রিয়া না করেও বাতাস থেকে নাইট্রোজেন ও অক্সিজেন আলাদা করা সম্ভব তোমরা পরে পড়বে।

আরও একটি সহজ উদাহরণ নিজেরা পরীক্ষা করে দেখতে পার। লোহার গুঁড়ো আরগন্ধকের গুঁড়ো খুব ভাল করে মেশাও। এটা হবে মিশ্রণ।এর থেকে ছুম্বকের সাহায্যে সমস্ত লোহা আলাদা করে নিতে পারবে। কিন্তু মিশ্রণটি বুনদেন দীপের তাপে গলিয়ে যথন একটি নতুন যৌগ তৈরি হয়—তার রঞ্জ কালো। গলা পিওটি গুঁ ড়িয়ে দেখ এর সঙ্গে লোহা ও গদ্ধকের কোন গুণের মিল নেই। চুম্বক দিয়ে পরীক্ষা কর, দেখবে চুম্বকে কিছুই ধরছে না। সোরা (পট্যাসিয়ম নাইট্রেট), গদ্ধক ও কয়লা মিশিয়ে বারুদ তৈরি। বারুদ অবস্থায় এটি মিশ্রণ। বিভিন্ন তরলে গলিয়ে এবং ছেঁকে উপাদানগুলি আলাদা করা যায়। কিন্তু আগুল দিলে দপ করে বারুদ জলে উঠবে, তাপ ও গ্যাস স্পষ্টি হবে, কিছুই পড়ে থাকবে না—তথন যৌগে পরিণত হয়েছে। মিশ্রণের একটি বিশেষ রূপ দ্রবণ—লবণ বা চিনি জলে দিলে একদম গুলে গিয়ে লবণের বা চিনির দ্রবণ হয়। মনে রেথ দ্রবণও এক ধরনের মিশ্রণ, যৌগ নয়। ধ্রাক্ত ও অধাতু

মোলগুলি কয়েকটি সাধারণ ধর্ম অন্থায়ী তুই শ্রেণীতে ভাগ করা হয়—ধাতু বা মেটাল এবং অধাতু বা ননমেটাল। পৃথিবীতে যে 92টি মোল পাওয়া যায় তার অধিকাংশই ধাতৃ। সব থেকে বেশি ব্যবহার হয় লোহা, তামা, দস্তা, দীসা, টিন, আালুমিনিয়ম, মাাগনেসিয়ম, সোনা, রুপো, নিকেল, পারদ—এদের অনেকগুলিই তোমরা দেখে থাকবে। আবার অধাতুর মধ্যে কার্বন, গন্ধক আয়োডিন প্রভৃতি মৌলগুলি কঠিন, হাইড্রোজেন, অক্সিজেন, নাইট্রোজেন, হিলিয়ম, নিয়ন, জিনন ইত্যাদি গ্যাস এবং ব্রোমিন তরল—এদের নামও তোমরা ভনে থাকবে। ধাতু ও অধাতুর সাধারণ ধর্ম অন্থায়ী পার্থক্য নিচেদেওয়া হল:

## ধাতু ও অধাতুর পার্থক্য

# শাধারণ তাপমাত্রায় পারদ ছাড়া সব ধাতৃই কঠিন অবস্থায় থাকে। পারদ তরল।

ধাতু

(2) ধাতু নির্মিত তল পালিশ করা হলে চকচকে দেখায় এবং আলো প্রতিফলন করে। তরল হলেও পারদ তলও চকচকে।

### অধাতু

- অধাতু কঠিন, তরল এবং
   গ্যাস তিন অবস্থাতেই পাওয়া যায়।
- (2) অধাতু কোন অবস্থাতেই চকচকে নয় এবং আলো প্রতিফলন করে না।

## ধাতু

(3) ধাতৃ ভারী, শক্ত, নমনীয় ও প্রদারণক্ষম। ধাতু পিটিয়ে পাত করা যায়।

ব্যতিক্রম: পট্যাসিয়ম ও সোডিয়ম জলের থেকে হালকা, অ্যান্টিমনি ও বিসমাথ ভদুর।

- (4) ধাতু তাপ ও বিহাৎ পরিবাহী।
- (5) লঘু থনিজ আাদিডে ধাতুর সঙ্গে রাদায়নিক বিক্রিয়া ঘটে।
- (6) ধাতু সাধারণত বিজারক বস্তু।
  - (7) ধাতু ইলেকট্রোপজিটিভ।

# অধাতু

(3) অধাতুর মধ্যে কঠিন মৌল-গুলি হালকা ও ভন্নুর, নমনীয় বা প্রসারণক্ষম নয়; এগুলি পিটিয়ে পাত তৈরি করা যায় না।

ব্যতিক্রম: হীরা যদিও অধাতু তরু বস্তদের মধ্যে সব থেকে শক্ত।

- (4) অধাতু তাপ ও বিছাৎ পরিবহণের উপযোগী নয়।
- (5) লঘু খনিজ আাসিডের সঙ্গে অধাতুর কোন বিক্রিয়া ঘটে না।
- (6) হাইড্রোজেন ছাড়া সকল অধাতু জারক বস্তু।
- (7) অধাতু ইলেক্টোনেগেটিত।ব্যতিক্রম—হাইড্রোজেন ইলেক্টো-পজিটিত।

উপরে লিথিত ধাতু ও অধাতুর গুণগুলি দাধারণভাবে থাটে; তবে ব্যতিক্রম আছে একথা মনে রাথতে হবে। আাদিডে বিক্রিয়া, জারক, বিজারক বস্তু এবং ইলেকটো-পজিটিভ ও ইলেকটো-নেগেটিভ কাকে বলে তোমরা এই বইতেই কিছু পরে পড়বে। তালিকাটি মোটাম্টি সম্পূর্ণ করার জন্ম এখনই বলে রাথা হল। তালিকায় বলা হয়েছে যে ধাতু বিহাৎপরিবাহী এবং অধাতু বিহাৎ অপরিবাহী। কিন্তু এর মাঝামাঝি কিছু মোল আছে যেগুলি স্বন্ধ-পরিবাহী যেমন জারমেনিয়ম ও দিলিকন। জেনে রাথ যে এই স্বন্ধ-পরিবাহী বস্তু দিয়েই ট্রান-জিস্টর তৈরি হয়।

# সংকর ধাতৃ

অনেক সময় একাধিক ধাতু মিলিয়ে মিশ্র বা সংকর ধাতু তৈরি করা হয়।
অনেক কাজে বিশুদ্ধ ধাতুর চেয়ে সংকর ধাতু কাজের উপযোগী। ইম্পাত তৈরি
হয় লোহাতে নির্দিষ্ট পরিমাণ কার্বন মিশিয়ে। পিতল তৈরি হয় প্রধানত তামার
30 শতাংশ দস্তা মিশিয়ে। কাঁসায় থাকে তামা ও 20 শতাংশ টিন। ইম্পাত,

পিতল, কাঁসা, এগুলি সংকর ধাতু। নরম ধাতুতে সামান্ত পরিমাণ অন্ত ধাতু মেশালে সেটি বেশ শক্ত হয়। অল্প পরিমাণ অন্ত ধাতু মেশানোকে 'পান' দেওয়া বলে। সোনা খুবই নরম। গয়না তৈরির জন্ত সোনাকে শক্ত করা হয় তার সঙ্গে তামার পান দিয়ে। স্টেনলেস স্তীল, যাতে মরচে পড়ে না, তাতে লোহার সঙ্গে প্রায় 12—15 শতাংশ ক্রোমিয়ম এবং 0·1—0·7 শতাংশ কার্বন মেশান থাকে।

## অণু ও পরমাণু

কোন এক ট্করো মোল নিয়ে তাকে অর্ধেক করা হোল। অর্ধেক অংশটি আবার অর্ধেক করা হোল। সেই অর্ধেককে আবার অর্ধেক। কত দূর পর্যস্ত অর্ধেক করা সম্ভব? মোলের সব থেকে ছোট অবস্থা—যথন পর্যস্ত মোলটির ভৌত ও রাদায়নিক গুণ দিয়ে তাকে সনাক্ত করা যাবে—তাকে বলা হয় মোলটির পরমাণু। পরমাণু কথাটি ইংরেজীতে অ্যাটম—এসেছে গ্রীক শব্দ আটমদ থেকে। গ্রীক ভাষায় কথাটির মানে যাকে ভাঙা যায় না। অবশ্য এখন পরমাণুকেও ভাঙা হয়েছে, যদিও ভাঙবার পর সেটি আর ঐ বিশেষ মোলের পরমাণু থাকবে না।

এক বা একাধিক মৌলের পরমাণু দিয়ে তৈরি হয়—যৌগের অণু বা মালিকিউল। অণু যে কোন যৌগের ক্ষুত্তম অবস্থা। জল একটি যৌগ। জলের অণুতে থাকে ছটি হাইড্রোজেন এবং একটি অক্সিজেন পরমাণু। থাত লবণ দোডিয়ম ক্লোরাইডের অণুতে থাকে একটি দোডিয়ম ও একটি ক্লোরিন পরমাণু। আবার ছটি হাইড্রোজেন পরমাণু দিয়ে হয় হাইড্রোজেন অণু। যে কোন যৌগের অণুতে যৌগটির ভৌত ও রাদায়নিক ধর্ম বিভ্যমান থাকে। কোন ভৌত বা রাদায়নিক প্রক্রিয়ায় অণ্টিকে ভেঙে ফেললে দেটি তার উপাদান মৌলগুলির পরমাণু হয়ে বিচ্ছিন্ন হয়ে পড়বে, তথন আর যৌগের গুণ থাকবে না। একটি ছটি বা একণা ছশো নয়, কয়েক হাজার পরমাণু দিয়ে অতিকায় অণুও সম্ভব —পরে জানবে। রক্তে যে হিমোগ্রোবিন থাকে তার অণুতেই কয়েক হাজার পরমাণু থাকে।

মোলের পরমাণ্ড বস্তু গঠনের মোলিক উপাদান নয়। সকল মোলই তৈরি হয় তিনটি মোলিক কণা—প্রোটন, নিউট্রন ও ইলেকট্রন—দিয়ে। এ বিষয়ে তোমরা সামনের বছর ভালো করে পড়বে।

# **১১** দ্ৰবণ, জাব, জাবক

#### দ্ৰবণ

একাধিক বস্তুর সমসত্ব মিশ্রণকে জবন বা সলিউশন বলে। দ্রবণ কথাটি সাধারণত জল বা অন্য তরলে নানা বস্তুর মিশ্রণের জন্য ব্যবহৃত হয়। ধর, এক চামচ থাল্য লবণ আধ বীকার জলে দেওয়া হল। লবণ গুলে জলের মধ্যে মিলিয়ে যাবে। এখন জলে লবণের দ্রবণ তৈরি হল। লবণকে আর চোথে দেখা যাবে না। অথবা অনেকক্ষণ রেখে দিলেও লবণ তলায় থিতিয়ে পড়বে না। এইভাবে মিলিয়ে যাওয়াকে দ্রবীভূত হওয়া বলে। দ্রবণ জলে দ্রবীভূত হয়। এই দ্রবণের যে কোন অংশ সমান নোনতা। এই দ্রবণটি অনেক ভাগে সমান সমান ভাগ করে যদি জল শুকিয়ে ফেলা হয় তবে প্রত্যেক ভাগে সমান পরিমাণ লবণ পাওয়া যাবে। সমানভাবে মিশে যাওয়াই সমসত্ব মিশ্রণ।

ন্ত্রবণের উপাদান নির্দিষ্ট নয়। লবণের দ্রবণের উপাদান কত পরিমাণ লবণ দেওয়া হল তার উপর নির্ভর করে। দ্রবণ কোন দংকেতের সাহায্যে প্রকাশ করা যায় না।

জবন কত রকম হতে পারে—(1) তরলে কঠিনের দ্রবণ, যেমন জলে লবণ বা জলে চিনি; (2) তরলে তরলের দ্রবণ, যেমন জলের মধ্যে গ্লিসারিন, আালকোহল, দালফিউরিক আাদিড; (3) তরলে গ্যাদের দ্রবণ, যেমন জলের মধ্যে আামোনিয়া, কার্বন ডাইঅক্সাইড, অক্সিজেন, নাইটোজেন গ্যাদ ইত্যাদি; (4) গ্যাদে গ্যাদের দ্রবণ,—যাদের মধ্যে বিক্রিয়া ঘটে না এমন যে কোন ছই বা তার বেশি গ্যাদ যে কোন অহপাতে মিশে যেতে পারে এবং মিপ্রিত অবস্থা স্থাহিত হলে তাকে গ্যাদের দ্রবণ বলে; (5) কঠিনে কঠিনের দ্রবণ, য়েমন কাঁলা (তামা ও টিন), পিতল (তামা ও দন্তা) ইত্যাদি; (6) কঠিনে গ্যাদের দ্রবণ, যেমন প্যালেডিয়ম ধাতুতে হাইড্রোজেন গ্যাদ।

#### জাব ও জাবক

জবণের ছটি অংশ দ্রাব ও দ্রাবক। যে ছটি বস্ত দিয়ে দ্রবণ তৈরি তাদের মধ্যে যেটি পরিমাণে বেশি তাকে দ্রাবক বা সলভেণ্ট বলে, যেটির পরিমাণ কম

তাকে বলা হয় জাব বা দলিউট। চিনি জলে দিয়ে যে দ্রবণ তাতে জল জাবক এবং চিনি জাব। কাঁদায় তামা জাবক ও টিন জাব। মনে রাখতে হবে দ্রবণে জাবকের পরিমাণ জাবর তুলনায় বেশি।

জল পৃথিবীর সর্বশ্রেষ্ঠ দ্রাবক। সমৃদ্রের জলে যত রক্ষের বস্তু দ্রবীভূত আছে তার রাসায়নিক বিশ্লেষণ করে প্রায় প্রয়ষ্টিটি মৌল পাওয়া গেছে।

# সম্পূক্ত ও অসম্পূক্ত দ্ৰবণ

যে দ্রবণে আরও দ্রাব যোগ করলে দেটি দ্রবীভূত হয়, তাকে অসম্পৃত্ত দ্রবণ বা আনস্যাচ্রেটেড সলিউশন বলে। আধ বীকার জলে এক চামচ থাত লবণ দিলে দেটি দ্রবীভূত হয়। এটি অসম্পৃত্ত দ্রবণ কারণ আর এক চামচ লবণ দিলেও তা দ্রবীভূত হবে। ঐ দ্রবণে আরও কয়েক চামচ লবণ দিলে তাও দ্রবীভূত হবে। তথনও দ্রবণটি অসম্পৃত্ত দ্রবণ থাকবে। দ্রবণটিতে ক্রমাগত লবণ যোগ করতে থাকলে দেখবে এক সময়লবণ আর দ্রবীভূত না হয়ে দ্রবণের নিচে জমা হতে থাকবে। নির্দিষ্ট তাপমাত্রায় যে কোন দ্রাবকের দ্রাব গ্রহণ করবার একটি সীমা থাকে যার বেশি দ্রাব যোগ করলে দেটি দ্রবীভূত হয় না। যে দ্রবণে আরও দ্রাব যোগ করলে দেটি দ্রবীভূত হয় না। যে দ্রবণে আরও দ্রাব যোগ করলে দেটি দ্রবীভূত হয় না তাকে সম্পৃত্ত দ্রবণ বা স্থাচরেটেড সলিউশন বলে।

যে দ্রবণে অল্ল পরিমাণ দ্রাব আছে তাকে লছু দ্রবণ বা ডাইলিউট দলিউশন বলা হয়। যে দ্রবণে দ্রাবর পরিমাণ খুব বেশি, প্রায় সম্পৃক্ত করার কাছাকাছি তাকে গাঢ় দ্রবণ বা কনদেনটেটেড সলিউশন বলে।

#### দ্ৰবণীয়তা

একটি নির্দিষ্ট তাপমাত্রায় যত প্রাম দ্রাব কোন দ্রাবকের একশো প্রাম ভবের দক্ষে মিশে সম্প্রক দ্রবন তৈরি করে সেই সংখ্যাকে ঐ দ্রাবের দ্রবনীয়তা বা সলিউবিলিটি বলে। যদি বলা হয় 30°C ইতাপমাত্রায় থাছ লবণের দ্রবনীয়তা 36·3 তবে ব্রুতে হবে 30°C তাপমাত্রায় 100 g জলে 36·3 g থাছ ইলবণ দ্রবীভূত হয়ে সম্প্রক দ্রবন তৈরি করবে। স্বতরাং থাছ লবণের (NaCl) দ্রবনীয়তা 30°C তাপমাত্রায় 36·3। ঐ একই তাপমাত্রায় তুঁতের (CuSO ) জলে দ্রবনীয়তা 25।

দ্রবণীয়তা একটি রাসায়নিক ধর্ম এবং বস্তুর সনাক্তকরণে কাজে লাগে।
দ্বনীয়তার উপর তাপের প্রভাব: একটি নির্দিষ্ট তাপমাত্রায় সম্পৃক্ত দ্রবণকে
মারও গরম করলে দেখা যায় যে দ্রবণটি অসম্পৃক্ত হয়ে পড়ে অর্থাৎ তথন
মারও দ্রাব গ্রহণ করতে পারে। গরম অবস্থায় জলে লবণ দিয়ে দ্রবণটি আরও
গাঢ় করা সম্ভব। কিন্তু দ্রবণটি ঠাণ্ডা হতে দিলে দেখা যাবে যে দ্রবণের নিচে
দাব জমা হতে শুক্র করেছে। তার অর্থ দ্রবণটি আবার সম্পৃক্ত হয়ে পড়েছে।
স্থতরাং দ্রাবের দ্রবণীয়তা তাপমাত্রার উপর নির্ভরশীল। উদাহরণম্বরূপ খাছ



লবণের দ্রবণীয়তা 10°C-এ 35·7, 30°C-এ 36·3, 50°C-এ 37, 70°C-এ 37·8। আবার ত্তের দ্রবণীয়তা 10°C-এ 14·3, 30°C-এ 25,50°C-এ

33·3, 80°C-এ 55। দ্রবণীয়তার উপর তাপমাত্রার প্রভাব লেথের সাহায্যে প্রকাশ করা হয়। লেথের X-অক্ষ বরাবর তাপমাত্রা এবং Y-অক্ষ বরাবর দ্রবণীয়তা জাকা হয়। 11.1 চিত্রে দ্রবণীয়তা-লেথ বা দ্রবণীয়তা-রেথা দেখ। ইংরেজীতে একে সলিউবিলিটি কার্ভ বলে। তিনটি ভিন্ন দ্রাবের জলে দ্রবণীয়তা তাপমাত্রা বৃদ্ধির সঙ্গে কি ভাবে পরিবর্ভিত হয় দেখান হয়েছে। খাছ্ম লবণের (NaCl) দ্রবণীয়তা O°C থেকে 100°C তাপমাত্রা পর্যন্ত বিশেষ কিছু বাড়ে না। পট্যাদিয়ম নাইট্রেটের (KNO₃) দ্রবণীয়তা তাপমাত্রা বাড়ার সঙ্গে খ্রবণী বাড়ে। আবার সোডিয়ম সালফেটের (Na₂SO₄) দ্রবণীয়তা O°C থেকে 35°C তাপমাত্রা পর্যন্ত বাড়ে বটে কিন্তু তাপমাত্রা 35°C থেকে বেশি বাড়ালে দ্রবণীয়তা কমতে থাকে। তরলে গ্যাদের দ্রবণীয়তা কমে থায়। জল গরম করলে দ্রবীভূত গ্যাদ জল থেকে বেরিয়ে যায়। চাপের প্রভাবে গ্যাদের দ্রবণীয়তা বাড়ে। সোডা-ওয়াটার তৈরির সময় চাপ বাড়িয়ে বেশি পরিমাণ কার্বন ডাইঅক্সাইড দ্রবীভূত করে বোতলে ভর্তি করা হয়। বোতলের ছিপি খুললেই চাপ কমে যাওয়ায় কিছু গ্যাদ বেরিয়ে যায়।

THE PARTY HAVE BEEN AS TO SEE STATE

THE WAR TO BE THE REPORT OF THE PARTY AND THE PARTY AND THE

# ৯২ প্রতীক চিহ্ন, সংকেত ও সমীকরণ

## প্রভীক-চিক্ত

তোমরা দেখেছ মৌলগুলির বা যৌগগুলির নাম বার বার উল্লেখ করার বা লেখার পক্ষে বেশ বড়। বহুকাল ধরেই লোকে এই অস্থবিধা ভোগ করে অনেকে অনেক রকম সংকেত ব্যবহার করে থাকতেন। আধুনিক বিজ্ঞানের পত্তনের প্রথম যুগে জন ডালটন প্রত্যেকটি মৌলের জন্ম একরকম প্রতীক চিহ্ন ব্যবহার আরম্ভ করেন। কার্বনের জন্ম কালো বৃত্ত, কপোর জন্ম অর্ধচন্দ্র প্রভৃতি। কিন্ত এতে বিশেষ স্থবিধে হয় নি। এখন যে প্রতীক-চিহ্ন ব্যবহার হয় তা সমস্ত আন্তর্জাতিক বৈজ্ঞানিক সভায় স্বীকৃত। মোলের রাসায়নিক প্রতীক-চিহ্ন হিসাবে সাধারণত মৌলটির ইংরেজী বা ল্যাটিন নামের আগু অক্ষর রোমান হরফে লেথা হয়। একাধিক মৌলের আগু অক্ষর এক হলে ছটি অক্ষরও নেওয়া হয়। যেমন হাইড্রোজেন ( Hydrogen ) H, হিলিয়ম ( Helium ) He, লিপিয়ম ( Lithium ) Li, বেরিলিয়ম ( Beryllium ) Be, বোরন (Boron) B, কার্বন (Carbon) C, নাইটোজেন (Nitrogen) N, অক্সিজেন (Oxygen ) O, ফোরিন (Fluorine) F, দোভিয়ম (Sodium-ল্যাটিনে Natrum ) Na. পট্যাদিয়ম (Potassium ল্যাটিনে Kalium) K, তামা (Copper বা Cuprum) Cu, টিন (Tin বা Stannum) Sn, লেড (Lead বা Plumbum) Pb, পারদ (Mercury বা Hydragyrum) Hg, লোহা (Iron বা Ferrum) Fe, জিহ্ব (Zinc ) Zn প্রভৃতি। এই অধ্যায়ের শেষে মৌলদের তালিকা ও প্রতীক-চিহ্ন দেওয়া আছে।

প্রতীক-চিছের দাহায্যে কোন মোল ও কতগুলি পরমাণু বোঝান সম্ভব।
একটি হাইড্রোজেন পরমাণু—H, ছটি অক্সিজেন পরমাণু 20, তিনটি
ইউরেনিয়ম পরমাণু 3U। মনে রেথ রাদায়নিক প্রতীক রোমান হরফে
(থাড়া) লেখা হয়। প্রতীক-চিছের পর কোন ফণ চিছ (.) থাকবে না।

#### সংকেত

তোমরা আগেই জেনেছ হাইড্রোজেন অণুতে তৃটি পরমাণু থাকে। প্রতীক চিহ্ন 2H বললে তৃটি H পরমাণু বোঝাবে। হাইড্রোজেন অণু বোঝাতে ব্যবহার করতে হবে সংকেত বা ফরম্লা। হাইড্রোজেন অণুর সংকেত  $H_2$ । লক্ষ্য করবে H2 নয়। H এর ডানদিকে একটু নিচে ছোট হরফে 2 লিথতে হবে। একই নিয়মে  $O_2$ ,  $N_2$  যথাক্রমে অঞ্জিন ও নাইট্রোজেন মোলের অণুর সংকেত। তামা, লোহা, নিকেল প্রভৃতি ধাতুর অণুতে একটিই পরমাণ্ থাকে, তাই সংকেতগুলি যথাক্রমে Cu, Fe, Ni। আবার একাধিক অণু বোঝাতে সংখ্যাবাচক রাশিটি সংকেতের বাঁ দিকে বসবে। যেমন 3Cu,  $4H_2$ । যোগগুলির অণু বোঝাতে সংকেত বিশেষ কাজে লাগে। যেমন জল  $H_2O$ , কার্বন ডাই অক্সাইড  $CO_2$ , সালফার ডাইঅক্সাইড  $SO_2$ , হাইড্রোজেন সালফাইড  $H_2S$ , হাইড্রোক্রোরিক আাদিড HCl, সালফিউরিক আাদিড  $H_2SO_4$ , নাইট্রিক আাদিড  $HNO_3$ , তুঁতে বাকপার সালফেট  $CuSO_4$ , থাছা-লবণ NaCl, কঙ্কিক সোডা NaOH, ক্যালিদিয়ম কার্বনেট (মার্বেল পাথর)  $CaCO_3$  প্রভৃতি।

যোগের সংকেতের সাহায্যে জানা যায় কি কি মোল দিয়ে যোগটি গঠিত এবং মোলগুলি কি অন্থপাতে কেমনভাবে আছে। এ ছাড়া জানা যায় আণবিক ভার যার কথা ভোমরা প্রের বছর পড়বে।

#### যোজ্যভা

যৌগপরমাণুর সংকেত লিখতে হলে মৌলগুলির পরস্পরের সঙ্গে যুক্ত হবার ক্ষমতা জানলে স্থবিধা হয়। যে কোন মৌল যে কয়টি হাইড্রোজেন বা সেই রকম অন্ত মৌলের সঙ্গে যুক্ত হতে পারে সেই সংখ্যাকে মৌলটির যোজ্যতা বা ভ্যালেন্দি বলে। হাইড্রোজেনের যোজ্যতা এক ধরা হয়। উদাহরণস্থরপ একটি Cl পরমাণু একটি H পরমাণুর সঙ্গে যুক্ত হয়, স্থতরাং Cl এর যোজ্যতা এক। একটি O পরমাণুর সঙ্গে ছটি H পরমাণু যুক্ত হয়, তাই O এর যোজ্যতা তুই। যোজ্যতা পরমাণুর একটি রাসায়নিক ধর্ম।

যোজ্যতা এক থেকে সাত হতে পারে। কোন কোন পরমাণুর যোজ্যতা একের বেশি হয়, যেমন নাইটোজেন দিয়ে  $N_2O$ , NO,  $N_2O_3$ ,  $N_2O_4$ ,  $N_2O_5$  যোগগুলি হয়। মনে রাখার স্থবিধার জন্ম যোজ্যতার একটি তালিকা দেওয়া হল।

| যোজ্যতা | মৌলের নাম                     |
|---------|-------------------------------|
| 1       | H, F, Cl, Br, I, Na, K, Ag, N |
| 2       | N, O, Mg, Fe, Ca, Zn, S, Pb   |

| যোজ্যভা | মৌলের নাম                |  |  |
|---------|--------------------------|--|--|
| 3       | N, Al, Fe, Cr, Au, P, B. |  |  |
| 4       | N, C, Si, Sn, Pb         |  |  |
| 5       | N, P, As, Sb             |  |  |
| 6       | S, Br                    |  |  |
| 7       | Mn                       |  |  |
| 8       | Os                       |  |  |

যে সব মোল নিজ্ঞিয় তাদের যোজ্যতা শৃত্য ধরা হয়— যেমন, হিলিয়ম, নিয়ন, আরগন, ক্রিপটন, জিনন প্রভৃতি—এইগুলি সবই সাধারণ তাপ ও চাপে গ্যাদ অবস্থায় থাকে।

মূলক: যৌগের সংকেত ঠিক মত লিখতে ও তাদের নাম জানতে আরও একটি বিষয় জানলে স্থবিধে হয়। কয়েকটি মৌলের পরমাণু নিজেদের মধ্যে জোট বেঁধে থাকে। এগুলি ঠিক যৌগ নয়, কিন্তু যৌগ তৈরির সময় অংশ নেয়। যৌগটিকে বিশ্লেষণ করার সময় এরা একসঙ্গেই আলাদা হয়। রাসায়নিক বিক্রিয়াতেও এরা জোট হিদাবে কাজ করে। এদের বলা হয়— মূলক বা র্যাডিকাল। সব থেকে সাধারণ উদাহরণ: OH (হাইড্র্ক্লাইড), NO3 (নাইট্রেট), NH4 (আামোনিয়ম), CO3 (কার্বনেট), PO4 (ফদফেট) ইত্যাদি। যৌগ তৈরির সময় OH মূলক K-র সঙ্গে যুক্ত হয়ে তৈরি করে KOH (পট্যাদিয়ম হাইড্র্লাইড বা বাজারের কঙ্কিক পটাশ) এবং Na-র সঙ্গে যুক্ত হয়ে হয় NaOH (সোডিয়ম হাইড্র্লাইড বা বাজারের নাম কঙ্কিক সোডা)। OH এর যোজ্যতা এক। সিলভার নাইট্রেট AgNO3, আামোনিয়ম নাইট্রেট NH4NO3, ক্যালিম্বয়ম কার্বনেট CaCO3, সোডিয়ম ফদফেট Na3 PO4। স্তেরাং NO3, NH4 মূলকগুলির যোজ্যতা তুই এবং PO4 মূলকের যোজ্যতা তিন।

পরমাণুর গঠন সম্বন্ধে যথন বিস্তারিতভাবে পড়বে তথন জানতে পারবে যে যোজ্যতা, মৃলক গঠন ইত্যাদি বিষয়ে ইলেকট্রনের ভূমিকা অত্যন্ত গুরুত্বপূর্ণ এবং যোগের সংকেত লেখাও তথন তোমাদের কাছে সহজ অভ্যাদে দাঁড়িয়ে যাবে।

#### রাসায়নিক সমীকরণ

বীজগণিতে সমীকরণ তোমরা পড়েছ এবং অনেক সমীকরণের সমাধানও করেছ। রসায়নে সমীকরণ বলতে কি বোঝায়? তোমরা রাসায়নিক পরিবর্তনের কথা পড়েছ। ধরা যাক ছটি রাসায়নিক বস্তু A এবং B মিলিভ হবার পর রাসায়নিক পরিবর্তনে C এবং D বস্তুতে পরিণত হল। তাহলে রাসায়নিক সমীকরণে লেখা যাবে

#### A+B=C+D

যে প্রক্রিয়াতে পরিবর্তনটি হল তাকে বলে রাগায়নিক বিজিয়া। এখন
নিশ্চয় বুঝতে পারছ যে একমাত্র বিজিয়া দিয়েই রাগায়নিক পরিবর্তন সম্ভব।
যে সমীকরণ, সংকেতের সাহায্যে রাগায়নিক বিজিয়ায় অংশগ্রহণকারী বস্তদের
ও বিজিয়ালক বস্তদের বর্ণনা করে, তাকেই রাগায়নিক সমীকরণ বলে। H
এবং Cl মিলে HCl হয় তাহলে সেই বিজিয়ার রাগায়নিক সমীকরণ হবে

 $H_2 + Cl_2 = 2HCl$ 

আরও কয়েকটি রাদায়নিক সমীকরণের উদাহরণ

 $2H_2 + O_2 = 2H_2O$ 

 $N_2 + 3H_2 = 2NH_3$  ( आंत्रांनिया )

4P+5O<sub>2</sub>=2P<sub>2</sub>O<sub>5</sub> (ফদফরাদ পেণ্টকাইড

 $Zn+H_2SO_4=ZnSO_4+H_2$ 

 $NH_3 + H_2O = NH_2OH$  ( আমোনিয়ম হাইজ্ঞাইড )

সমীকরণে সমতা রক্ষা—বাদায়নিক সমীকরণ শুদ্ধ করে লিখতে হলে মনে রাখতে হবে—(1) যে বিক্রিয়াটি বর্ণনা করা হচ্ছে, দেটি বাস্তব হতে হবে, (2) বিক্রিয়ায় অণুরা অংশ গ্রহণ করে, স্বতরাং মৌলদের ক্ষেত্রে আণবিক সংকেত ব্যবহার করতে হবে, (3) সমান চিহ্নের ছই দিকে মৌলদের পরমাণ্ড সংখ্যা সমান থাকবে। একটি উদাহরণ নেওয়া যাক। জানা আছে যে খাছল্বণ সোভিয়ম ক্রোরাইজ সোডিয়ম ধাতু ও ক্রোরিন গ্যাস দিয়ে গঠিত। অত্রেব সমীকরণ হবে—

গোভিয়ম+ক্লোরিন= গোভিয়ম ক্লোরাইড  $Na+Cl_2=NaCl$ ।

এতে এক নম্বর ও হু নম্বর সর্ভ ঠিক আছে, তবু সমীকরণে সমতা নেই,

কারণ সমান চিহ্নের বাঁদিকে ক্লোরিন অণু ছটি এবং ডান দিকে একটি। ভাই সমতা বক্ষার জন্ম লিখতে হবে

#### 2Na+Cl<sub>2</sub>=2NaCl

অর্থাৎ প্রতিটি থাত্ত-লবণ অণু তৈরি করতে একটি ক্লোরিন অণু ও ছটি সোডিয়ম অণু প্রয়োজন। এর আগে যে দব দমীকরণের উদাহরণ আছে, সেগুলি মিলিয়ে দেথ একইভাবে দমতা রক্ষা করা হয়েছে। দমীকরণ লেথার দমর যোজ্যতা কত দেটা মনে রাখলে নিভূল দমীকরণ লিথতে পারবে। আবার লক্ষ্য করলে দেখবে মূলকগুলি জোট বেঁধেই বিক্রিয়ায় অংশ নেয়। এছাড়াও দমান চিহ্নের হই দিকের বস্তুর ভর-দাম্যও বজায় রাখতে হবে।

বাসায়নিক সমীকরণে কি কি থবর জানতে পারা যায়—(1) কোন কোন বস্থ পরম্পর বিজিয়া করে, (2) কোন কোন বস্ত ধারা কোন কোন বস্ত তৈরি হয়, (3) বিজিয়ায় অংশ নিচ্ছে যে সব বস্ত তাদের কতগুলি করে অণু দরকার এবং বিজিয়ার পর যে সব বস্ত তৈরি হচ্ছে, তাদের কতগুলি করে অণু পাওয়া যায়। পরমাণ্ ভার ও আণবিক ভার সম্বন্ধে পড়া হলে জানবে (4) সমীকরণের সাহায্যে সমান চিহ্নের ঘুই দিকের বস্তদের ভার এবং গ্যাদের ক্ষেত্রে আয়তনও জানা সম্ভব।

দমীকরণে কি কি থবর জানা যায় না—(1) বিক্রিয়াটি তাপগ্রাহী বা তাপমোচী কি না, (2) যে যে বস্তু দিয়ে যা যা তৈরি হচ্ছে তাদের ভৌত অবস্থা—কঠিন, তরল না গ্যাস, (3) চাপ, তাপ ইত্যাদির কোন বিশেষ অবস্থায় বিক্রিয়াটি ঘটে, (4) কি হারে বিক্রিয়াটি ঘটে।

চার নম্বর থবরটি বিশেষ গুরুত্বপূর্ণ। কয়লা পুড়ে তাপ স্বষ্ট হয়। আবার বারুদ পুড়েও তাপ স্বষ্টি হয়। কয়লা পোড়ে আস্তে আস্তে তাই কয়লা জালানি। আবার বারুদ পোড়ে এক নিমেষে তাই বারুদ বিস্ফোরক।

## মৌলদের নাম ও প্রভীক চিহ্ন

| 1 | হাইড়োজেন        | Hydrogen  | Н  |
|---|------------------|-----------|----|
| 2 | <b>हि</b> लिग्नम | Helium    | He |
| 3 | <b>नि</b> थिग्रम | Lithium   | Li |
| 4 | বেরিলিয়ম        | Beryllium | Ве |
| 5 | বোরন             | Boron     | В  |

|          |                       |                    | C   |
|----------|-----------------------|--------------------|-----|
| 6        | কার্বন                | Carbon             | N   |
| 7        | नारेखांकन             | Nitrogen           | 0   |
| 8        | অক্সিজেন              | Oxygen<br>Fluorine | F   |
| 9        | ফ্রোরিন               | Neon               | Ne  |
| 10       | नियन                  | Sodium             | Na  |
| 11       | সোডিয়ম               | Magnesium          | Mg  |
| 12       | ম্যাগনে দিয়ম         |                    | Al  |
| 13       | অ্যালুমিনিয়ম         | Aluminium          | Si  |
| 14       | সিলিকন                | Silicon            | P P |
| 15       | ফদফরাস                | Phosphorus         |     |
| 16       | সালফার, গন্ধক         | Sulphur            | S   |
| 17       | ক্লোরিন               | Chlorine           | Cl  |
| 18       | আর্গন                 | Argon              | [Ar |
| 19       | পট্যাসিয়ম            | Potassium          | K   |
| 20       | ক্যালসিয়ম            | Calcium            | Ca  |
| 21       | <b>স্ক্যাণ্ডিয়</b> ম | Scandium           | Sc  |
| 22       | টাইটেনিয়ম            | Titanium           | Ti  |
| 23       | ভানেডিয়ম             | Vanadium           | V   |
| 24       | ক্রোমিয়ম             | Chromium           | Cr  |
| 25       | ग्रांशानिज            | Manganese          | Mn  |
| 26       | আয়রন, লোহা           | Iron               | Fe  |
| 27       | কোৰাণ্ট               | Cobalt             | Co  |
| 28       | निर्कल                | Nickel             | Ni  |
|          | কপার, তামা            | Copper             | Cu  |
| 29       |                       | Zinc               | Zn  |
| 30       | ब्रिंक, पर्छ।         | Gallium            | Ga  |
| 31       | গ্যালিয়ম             | Germanium          | Ge  |
| 32       | জার্মেনিয়ম           | Arsenic            | As  |
| 33       | আর্দেনিক<br>সেলেনিয়ম | Selenium           | Se  |
| 34<br>35 | রোমিন<br>ব্রোমিন      | Bromine            | Br  |
|          |                       | Krypton            | Kr  |
| 36       | ক্রিপটন               | Rubidium           | Rb  |
| 37       |                       | Strontium          | Sr  |
| 38       |                       | Yttrium            | Y   |
| 39       | <b>इ</b> ियम          | Titlium Harris     |     |

# বিজ্ঞান পরিচয়: পদার্থবিতা ও রদায়ন ৩

350

| 40 | জারকোনিয়ম                              | Zirconium    | Zr |
|----|-----------------------------------------|--------------|----|
| 41 | লায়োবির <b>ম</b>                       | Niobium      | Nb |
| 42 | <b>মলিবডেনম</b>                         | Molybdenum   | Mo |
| 43 | টেকনিসিয়ম                              | Technetium   | Tc |
| 44 | রুখেনিয়ম                               | Ruthenium    | Ru |
| 45 | রোডির্ম                                 | Rhodium      | Rh |
| 46 | প্যালেডিয়ম                             | Palladium    | Pd |
| 47 | দিলভার, রুপো                            | Silver       | Ag |
| 48 | ক্যাডমিয়ম                              | Cadmium      | Cd |
| 49 | ইণ্ডিয়ম                                | Indium       | In |
| 50 | টিন                                     | Tin          | Sn |
| 51 | আাণ্টিমনি                               | Antimony     | Sb |
| 52 | <b>टिन्</b> त्रियम                      | Tellurium    | Te |
| 53 | আয়োডিন                                 | Iodine       | I  |
| 54 | किनन                                    | Xenon        | Xe |
| 55 | <b>দিজিয়</b> ম                         | Caesium      | Cs |
| 56 | বেরিয়ম                                 | Barium       | Ba |
| 57 |                                         | Lanthanum    | La |
| 58 | 1 M (4 7 7 7 10)                        | Cerium       | Ce |
| 59 | 100 100 100 100 100 100 100 100 100 100 | Praseodymium | Pr |
| 60 | নিওডিমিয়ম                              | Neodymium    | Nd |
| 61 | প্রমিথিয়ম                              | Promethium   | Pm |
| 62 | স্থামারিরম                              | Samarium     | Sm |
| 63 | ইউরোপিয়ম                               | Europium     | Eu |
| 64 | গ্যাডোলিনিয়ম                           | Gadolinium   | Gd |
| 65 | টাবিয়ম                                 | Terbium      | Tb |
| 66 | ডিস <b>ে</b> পাসিয়ম                    | Dysprosium   | Dy |
| 67 | হোলমিয়ম                                | Holmium      | Но |
| 68 | আরবিয়ম                                 | Erbium       | Er |
| 69 | থুলিয়ম                                 | Thulium      | Tm |
| 70 | ইটারবিয়ম                               | Ytterbium    | Yb |
| 71 | नू रहे नियम                             | Lutetium     | Lu |
| 72 | হাফনিয়ম                                | Hafnium      | Hf |
| 73 | <b>ोा</b> ग्टोनम                        | Tantalum     | Та |
|    |                                         |              | ~  |

| 74  | টাংস্টেন           | Tungsten      | w  |
|-----|--------------------|---------------|----|
| 75  | রিনিয়ম            | Rhenium       | Re |
| 76  | অসমিয়ম            | Osmium        | Os |
| 77  | ইরিডিয়ম           | Iridium       | Ir |
| 78  | <b>भा</b> षिनम     | Platinum      | Pt |
| 79  | গোল্ড, দোনা        | Gold          | Au |
| 80  | মার্কারি, পারদ     | Mercury       | Hg |
| 81  | থ্যালিয়ম '        | Thallium      | TI |
| 82  | লেড, সীসা          | Lead          | Рь |
| 83  | বিসমাথ             | Bismuth       | Bi |
| 84  | পোলোনিয়ম          | Polonium      | Po |
| 85  | আসটেটাইন           | Astatine      | At |
| 86  | রেড্ব              | Radon         | Rn |
| 87  | ক্রান্সিয়ম        | Francium      | Fr |
| 88  | রেডিয়ম            | Radium        | Ra |
| 89  | আক্টিনিয়ম         | Actinium      | Ac |
| 90  | থোরিয়ম            | Thorium       | Th |
| 91  | প্রোটোঅ্যাকটিনিয়ম | Protoactinium | Pa |
| 92  | ইউরেনিয়ম}         | Uranium       | U  |
| 93  | নেপচুনিয়ম?        | Neptunium     | Np |
| 94  | প্রটোনিয়ম         | Plutonium     | Pu |
| 95  | আমেরিসিয়ম         | Americium     | Am |
| 96  | কুরিয়ম            | Curium        | Cm |
| 97  | বার্কেলিয়ম        | Berkelium     | Bk |
| 98  | ক্যালিফোর্নিয়ম    | Californium   | Cf |
| 99  | আইনস্তাইনিয়ম      | Einsteinium   | Es |
| 100 | ফার্মিয়ম          | Fermium       | Fm |
| 101 | মেণ্ডেলেভিয়ম      | Mendelevium   | Md |
| 102 |                    | Nobelium      | No |
| 103 | লরেন্সিয়ম         | Lawrencium    | Lw |
| 104 | রাদারফোর্ডিয়ম     | Rutherfordium | R  |
| 105 | হানিয়ম            | Hahnium       | Ha |
|     |                    |               |    |

# ১০ তড়িৎ বিশ্লেষণ

বিদ্বাৎ বা তড়িৎ তোমাদের কাছে অজানা নয়। কোন কোন বস্তু তড়িৎ চলাচলের পক্ষে উপযোগী আবার কোন কোন বস্তু উপযোগী নয়। সাধারণত ধাতব বস্তু তড়িৎ প্রবাহের উপযোগী। তড়িৎ পরিবাহী হিদেবে সর্বশ্রেষ্ঠ কপো, তার পর তামা। কপো মূল্যবান ধাতু। আমাদের দেশে তামা ও কপো স্লভ নয় তাই এদের পরিবর্তে আলুমিনিয়মের তার ব্যবহার হয়। অধাতৃগুলি তড়িৎ অপরিবাহী। উপযোগী না হলেও সকল বস্তুতেই তড়িৎ প্রবাহিত হয়। মাত্রা খ্বই সামাত্ত হলেও। তরলের ভিতর দিয়েও তড়িৎ প্রবাহিত হয়। নানা জাতীয় আাদিড, ক্ষার বা দ্রবণের ভিতর দিয়ে তড়িৎ প্রবাহিত করা যায়। আবার রবার, তারপিন তেল, পেট্রল প্রভৃতি থনিজ তেল, অনেক ধরনের জৈব তেলের মধ্যে তড়িৎ চলাচল করে না বললেই চলে। যে সব বস্তুর ভেতর দিয়ে তড়িৎ চলাচল করে না, তাদের অন্তর্রক বা ইন্স্লেটর বলে।

দেখা গেছে যে, কয়েক রকমের তরলে তড়িং প্রবাহিত করলে তড়িতের প্রভাবে তরলটিতে রাদায়নিক পরিবর্তন হতে থাকে এবং তরলটি উপাদান মৌল এবং মূলকে বিশ্লিষ্ট হয়। অনেক দ্রবণে এই প্রভাব দেখা যায়। থাছ লবণ জলে দ্রবীভূত করে, দেই দ্রবণে তড়িং প্রবাহ পাঠালে থাছ লবণ Na এবং Cl উপাদান মৌলে বিশ্লিষ্ট হয়। আবার এও দেখা গেছে যে NaCl গরম করে গলিয়ে ফেললে তরল NaClএ তড়িং প্রবাহিত করলেও দেটি Na ও Cl এ বিশ্লিষ্ট হয়। যে সকল যৌগ দ্রবণে বা তরল অবস্থায় তড়িং প্রবাহে বিশ্লিষ্ট হয়, তাদের তড়িদ্বিশ্লেম্ব বা ইলেকটোলাইট বলে। ইলেকটোলাইটের উদাহরণ NaCl, AgNO, CuSO, HCl, HNO, H2SO, NaOH, KOH, ইতাদি।

যে সকল যোগ দ্বেলে বা তরল অবস্থায় তড়িং প্রবাহে বিশ্লিষ্ট হয় না তাদের তড়িদ্-অবিশ্লেষ্ট বা নন্-ইলেকট্রোলাইট বলে। চিনি, গ্লুকোজ, আালকোহল, ইউরিয়া ইত্যাদি নন-ইলেকট্রোলাইট।

তড়িৎ প্রবাহের দাহায্যে দ্রবণে বা তরল অবস্থায় যোগের রাদায়নিক বিশ্লেষণকে ভড়িদ্-বিশ্লেষণ বা ইলেক্ট্রোলিদিদ বলে।

#### আয়ন ও আয়নন

তড়িদ্-বিশ্লেষণ যে হয় এই সত্য পরীক্ষা করে জানা গেছে। কিন্তু কেন হয় এবং কি করে হয় এর ব্যাখ্যা প্রথম করেন স্থইডিশ বিজ্ঞানী আরহেনিয়স 1884 প্রীস্টাব্দে। আরহেনিয়সের বয়স তথন মাত্র পঁটিশ বছর। আরহেনিয়স বলেন যে সকল বস্তু তড়িদ্-বিশ্লেয় বা ইলেক্ট্রোলাইট তাদের মধ্যে তড়িৎ ধর্ম বর্তমান। দ্রবণে বা তরলে এরা পজিটিভ ও নেগেটিভ—এই তুটি বিপরীত তড়িৎ-ধর্মী উপাদানে বিয়োজিত হয় (চিত্র 13.1)। বিয়োজিত হলেও একেবারে আলাদা হয় না এবং তথনও তড়িৎ ধর্ম দেখা দেয় না। কিন্তু তরলে তড়িদ্-ঘারের সাহায্যে তড়িৎ ক্ষেত্র প্রয়োগ করলে পজিটিভ অংশটি নেগেটিভ তড়িদ্-ঘারের দিকে এবং নেগেটিভ অংশটি পজিটিভ তড়িদ্-ঘারের দিকে আরুষ্ট হয়। তড়িদ্-বিভব যথেষ্ট হলে পজিটিভ ও নেগেটিভ অংশগুলি সম্পূর্ণ বিযুক্ত

হয়ে বিপরীতধর্মী তড়িদ্-দ্বারের দিকে চলে যায়।
আয়নগুলি প্রবাহিত হয়ে বিদ্যুৎ প্রবাহ স্বাষ্টি
করে। যতক্ষণ পর্যন্ত সমস্ত পজিটিভ অংশ
নেগেটিভ তড়িদ্-দ্বারে এবং নেগেটিভ অংশ
পজিটিভ দ্বারে না যাবে ততক্ষণ তড়িৎ প্রবাহ
চলবে। দ্রবণে বা তরলে বিয়োজন হলে
বিয়োজিত তড়িদ্-ধর্মবিশিষ্ট অংশগুলির আরহেনিয়দ নাম দেন আয়ন। যে আয়নগুলি
নেগেটিভ তড়িদ্-দার বা ক্যাথোডের দিকে যায়



हिंख 13.1

তাদের বলা হয় ক্যাটায়ন এবং এগুলি + চিহ্ন দিয়ে দেখান হয়। আর যেগুলি পজিটিভ তড়িদ্-দার বা আানোডের দিকে যায় তাদের বলা হয় আানায়ন এবং এগুলি – চিহ্ন দিয়ে দেখান হয়।

দ্রবণে বা তরলে যৌগের বিপরীতধর্মী আয়নে বিয়োজনকে বলা হয় আয়নন।

আয়ন বা আয়নন কথাগুলি প্রথম ব্যবহৃত হয় তড়িদ্-বিশ্লেষণ ব্যাখ্যা করার জন্ম। পরে অবশ্ব এর ব্যবহার অনেক ব্যাপক হয়েছে, তোমরা ক্রমে ক্রমে জানতে পারবে। নানা বকমের দ্রবণে ও তরলে তড়িং প্রয়োগ করে কোনটি ক্যাটায়ন বা অ্যানায়ন জানা গেছে। আয়নগুলি মৌল ও মূলক। তোমাদের পরিচিত যোগ, যারা তড়িদ্-বিশ্লেষ্য, তাদের আয়ন পরিচিতি দেওয়া হল।

| NaCl                           | $\rightarrow$ | Na <sup>+</sup>     | Cl-                 |
|--------------------------------|---------------|---------------------|---------------------|
| CuSO <sub>4</sub>              | <b>→</b>      | Cu <sup>++</sup>    | (SO <sub>4</sub> )- |
| AgNO <sub>3</sub>              | $\rightarrow$ | Ag <sup>+</sup>     | (NO <sub>3</sub> )  |
| NH <sub>4</sub> Cl             | <b>→</b>      | (NH <sub>4</sub> )+ | Cl-                 |
| HCl                            | $\rightarrow$ | H <sup>+</sup>      | Cl-                 |
| HNO <sub>3</sub>               | $\rightarrow$ | H <sup>+</sup>      | (NO <sub>3</sub> )- |
| H <sub>2</sub> SO <sub>4</sub> | <b>→</b>      | 2H+                 | (SO <sub>4</sub> )- |
| H <sub>2</sub> O               | <b>→</b>      | H <sup>+</sup>      | (OH) <sup>-</sup>   |
| NaOH                           | $\rightarrow$ | Na <sup>+</sup>     | (OH)-               |
| кон                            | ->            | K+                  | (OH)-               |
|                                |               |                     |                     |

আয়ন, আয়নন ইত্যাদি আরও পরিকারভাবে বুঝতে পারবে পরমাণুর গঠনে ইলেকট্রনের ভূমিকা জানার পর। কিন্তু মনে রেথ আরহেনিয়দ যথন আয়ন ও আয়নন প্রচলন করেন তথনও ইলেকট্রনের আবিকার হয়নি। ইলেকট্রন আবিকার করেন জে. জে. টমসন, 1897 থ্রীস্টাব্দে।

জলে তড়িং-প্রবাহের প্রভাব: বিশুদ্ধ জল তড়িং প্রবাহের খুব উপযোগী নয়। কিন্তু অল্ল পরিমাণ লবণ বা অ্যাসিড দিলে তড়িং প্রবাহের



চিত্ৰ 13,2

উপযোগী হয়। একটি বীকারে জল নিয়ে তাতে কয়েক কেঁটা দালফিউরিক আাদিড দাও। তারপর হুটি লম্বা জলভর্তি টেস্ট টিউব উলটো করে বীকারের মধ্যে দাঁড় করাও (চিত্র 13.2)। হুটি ধাতব দণ্ড বা দক্ষ প্লেট টিউব হুটির মধ্যে পুরে দে হুটি অন্তরক তারের দাহায্যে জলের বাইরে এনে তড়িৎ বর্তনীতে যোগ কর। এখন বর্তনীতে চাবি বা স্থইচ দিলেই জলের মধ্যে দিয়ে

<u> ७ ज़िंद श्रेवाहिक इरव । करन त्नर्राहिक क ज़िन-बारव होहेर्ड्वारकन ग्राम वर्</u>द

পজিটিভ তড়িদ্-দ্বারে অক্সিজেন গ্যাদ জমা হতে থাকবে। টেস্ট টিউবগুলি যদি অংশান্ধিত হয় তবে দেখা যাবে প্রতি ছই ভাগ হাইড্রোজেন গ্যাদ যে সময়ে জমা হয় সেই সময়ে এক ভাগ অক্সিজেন গ্যাদ জমা হবে।

আয়ননের সাহায্যে জলের বিশ্লেষণ খুব সরল নয়। প্রথমে  $\mathbf{H_2O} = \mathbf{H^+}$  এবং  $\mathbf{OH^-}$  হয়।  $\mathbf{H^+}$ টি :নেগেটিভ তড়িদ্-ছারে গিয়ে  $\mathbf{H_2}$  গ্যাস হিসেবে আহরিত হয়।  $(\mathbf{OH})^-$  মূলকটি পজিটিভ তড়িদ্-ছারে এসে প্রশমিত হয়। পরে চারটি  $(\mathbf{OH})$  মূলক নিজেদের মধ্যে বিক্রিয়ায় জল ও অক্সিজেন তৈরি করে এবং  $\mathbf{O_2}$  গ্যাস পজিটিভ তড়িদ্-ছারে জমা হয়।

তড়িৎ প্রয়োগে জল বিশ্লেষিত হয়, কিন্তু জল কি ইলোক্টোলাইট ? জল জতি মৃছ ইলেকটোলাইট। বিশুদ্ধ জলে প্রতি এক কোটি অণুতে একটি H+ আয়ন হয়। সাধারণ তড়িৎ পরিবাহীর সঙ্গে ইলেক্টোলাইটের পার্থক্য এই যে, পরিবাহীতে ইলেক্টনের প্রবাহ তড়িৎ প্রবাহ স্পষ্ট করে আর ইলেকটোলাইটে আয়ন প্রবাহ তড়িৎ প্রবাহ স্পষ্ট করে। পরিমাণে অত্যন্ত কম হলেও জলে তড়িৎ আয়ন বারা প্রবাহিত হয়। সেই হিসেবে জল ইলেক্টোলাইট।

তড়িৎ প্রবাহের ব্যবহারিক সংজ্ঞা: তড়িদ্-বিশ্লেষণের সাহায্যে তড়িৎ প্রবাহের আন্তর্জাতিক ব্যবহারিক সংজ্ঞা দেওয়া হয়। AgNOয়র দ্রবণ তড়িদ্ বিশ্লেষণে নেগেটিভ তড়িদ্-ছারে Ag গচ্ছিত করে। দিলভার নাইট্রেটের দ্রবণে যে প্রবাহ প্রতি দেকেওে 0.001118 g দিলভার নেগেটিভ তড়িদ্-ছারে গচ্ছিত করে তাকে এক অ্যাম্পিয়র বলে। সংজ্ঞাটি লক্ষ্য করে দেথ কেবলমাত্র ভর ও সময় মেণে তড়িৎ প্রবাহের মান নির্ণয় করা হয়।

# ভড়িৎ লেপন

তড়িদ্-বিশ্লেষণের নানাবিধ ব্যবহারিক প্রয়োগের একটি হল তড়িৎ লেপন বা ইলেকট্রোপ্রেটিং করা। যে সমস্ত ধাতুর উপরিতল হাওয়ার বা জলের সংস্পর্শে এলে অক্সাইড তৈরি হয়ে অমলিন হয়ে পড়ে এবং কয়ে যেতে থাকে, সেগুলির উপরে হাওয়া বা জলে মলিন হয় না এমন ধাতু লেপন করা হয়। তড়িদ্-বিশ্লেষণের সাহাযে ধাতুলেপনকে তড়িং লেপন বলে। যে কোন শহরে থোঁজ করলেই কোথায় ইলেকটোপ্লেটিং হয় জানতে পারবে এবং পারলে

গিয়ে দেখে এদো। সাধারণত লোহা, তামা, পিতল প্রভৃতি দিয়ে তৈরি
বস্তুকে ক্ষয় থেকে বাঁচাবার জন্ম এবং দেখতে স্থন্দর করার জন্ম অনেক সময়
নিকেল, ক্রোমিয়ম, রুপো বা সোনা দিয়ে লেপন করা হয়। স্টেনলেদ স্থালে
মরচে পড়ে না বা দাগ ধরে না। কিন্তু অন্ম যে কোন ধাতু বা সংকর ধাতু
দিয়ে তৈরি কাঁটা, চামচে নিকেল প্লেট করা হয়। অনেক গাড়ির বাশ্পার
ক্রোমিয়ম প্লেট করা থাকে। অনেক দিন ব্যবহারের পর নিকেল উঠে গেলে
আবার নিকেল প্লেটিং করান হয়।

লেপনের জন্ম নিকেল, ক্রোমিয়ম, রুপো এবং কোন কোন জিনিদে সোনাও ব্যবহার হয়। সোনা লেপন করাকে গিণ্টি করাও বলা হয়। যে ধাতু লেপন করা হবে দেই ধাতুর লবণ ও স্থবিধামত অ্যাসিড দিয়ে দ্রবণ তৈরি করা হয়। তড়িদ্-বিশ্লেষণের জন্ম ঐ ধাতুরই আানোড ব্যবহার করা হয় এবং যে বস্তুটিতে ধাতুলেপন করা হবে তাকে ক্যাথোড হিদাবে ব্যবহার করা হয়। প্রথমে বস্তুটি কৃষ্টিক দিয়ে ধুয়ে তেল, গ্রীজ ইত্যাদি তুলে ফেলা হয়। তারপর লঘু হাইড্রোক্লোরিক অ্যাসিড বা দালফিউরিক অ্যাসিডে চুবিয়ে অক্সাইডের স্তর উঠিয়ে ফেলে ভাল করে জল দিয়ে ধুয়ে মুছে পালিশ করে তারপর ইলেকট্রো-প্লেটিং-এর দলিউশনে চোবান হয়। তারপর পূর্ব অভিজ্ঞতা অহ্যায়ী নির্দিষ্ট সময় ধরে প্রয়োজনীয় প্রবাহ পাঠালে বস্তুটিতে ধাতুলেপন সম্পন্ন হবে। তামা লেপন করতে ব্যবহার করা হয় তামার তৈরি অ্যানোড ও কপার সালফেট সলিউশন। রুপোর জন্ম চাই রুপোর তৈরি অ্যানোড ও দিলভার নাইট্রেট অথবা পট্যাদিয়ম আর্জেণ্টা সায়ানাইড সলিউশন। নিকেলের জন্ম নিকেল স্মানোড ও বরিক স্মানিড মিশ্রিত নিকেল দালফেট দ্রবণ। ক্রোমিয়মের জন্ম ক্রোমিয়ম আনোড ও ক্রোমিক আদিত এবং দোনার জন্ম দোনার অ্যানোড এবং পট্যাসিয়ম অরোসায়ানাইড সলিউশন।

অবশ্য হাতে কলমে বড় বড় ইলেকট্রোপ্লেটিং-এর কাজ করতে হলে আরও অনেক থবর জানা দরকার। তার জন্ম ইলেকট্রোপ্লেটিং দম্বন্ধে ভাল ভাল বই আছে, দেগুলি পড়ে নেওয়াই ভাল।

with the state of applicable and application, white the party for

# 为 🕿 অ্যাসিড, ক্ষারক ও লবণ

পৃথিবীতে দকল যৌগ 92টি মৌল দিয়ে তৈরি। যৌগদের মোটাম্টি ছভাগ করা যায়—অজৈব ও জৈব। আমরা অজৈব যৌগের কথা এথানে আলোচনা করছি। প্রায় চল্লিশ হাজার অজৈব যৌগ জানা আছে। এদের তিন ভাগে ভাগ করা যায়: (1) আাদিড, (2) ক্ষারক বা বেদ, (3) লবণ বা দল্ট।

ভ্যাসিড—ভ্যাসিড শব্দের অর্থ অম। প্রাচীন কিমিয়াবিদ্রা লক্ষ্য করেন যে বেশ কয়েক ধরনের পদার্থকে জলে গুললে দ্রবন অম স্থাদ দেয় এবং কোন ধাতুর সঙ্গে বিক্রিয়ায় হাইড্রোজেন গ্যাস উৎপন্ন করে। তাঁরা এদের নাম দেন ভ্যাসিড। এথন জানা গিয়েছে যে, কোন দ্রবণে হাইড্রোজেন আয়নের উপস্থিতিই হচ্ছে সেই বস্তুর অমত্বের কারণ। সেইজন্য হাইড্রোজেন আয়ন কোন যৌগিক পদার্থের জলীয় দ্রবণ বিয়োজিত হয়ে হাইড্রোজেন আয়ন উৎপন্ন করলে সেই যৌগিক পদার্থকে অ্যাসিড বলে। উদাহরণ স্বরূপ—

# $HCl \rightarrow H^+ + Cl^-$ ; $H_2SO_4 \rightarrow 2H^+ + SO_4^-$

স্থতবাং HCl এবং  $H_2SO_4$  যোগিক পদার্থ ঘৃটি আাদিছ। যে আদিছ জলীয় দ্রবণে যত বেশি  $H^+$  আয়ন উৎপন্ন করে দেই আাদিছ তত বেশি তার। কয়েক ধরনের আাদিছ ও তাদের রাদায়নিক সংকেত দেওয়া হল : হাইড্রোক্লোরিক আাদিছ HCl, দালফিউরিক আাদিছ  $H_2SO_4$ , নাইট্রিক আাদিছ  $HNO_3$ , দালফিউরাদ আাদিছ  $H_2SO_3$ । এগুলি দবই অজৈব বা খনিছ আাদিছ।

খেতে টক এমন যে কোন বস্তুতে আাদিড আছে। লেব্, দই, তেঁতুল সবেতেই আাদিড আছে। লেব্তে আছে দাইট্রিক আাদিড, দই-এ আছে ল্যাকটিক আাদিড, তেঁতুলে আছে টারটারিক আাদিড। ভিনিগারও এক ধরনের আাদিড। এগুলি কিন্তু জৈব আাদিডের উদাহরণ।

হাইড়োক্লোরিক আাসিভ, নাইট্রিক আাসিভ ও সালফিউরিক আাসিভের ধাতৃ গলাতে,গ্যাদ উৎপাদনে এবং বিভিন্ন কাজে ব্যবহার হয়েথাকে। আাসিভের ধর্ম ধাতুর দক্ষে বিক্রিয়ায় হাইড্রোজেন গ্যাস উৎপন্ন করা। একটা বীকারে এক টুকরো দস্তা নাও এবং কিছুটা লঘু হাইড্রোক্লোরিক অ্যাসিড ঢাল। দেখবে হাইড্রোজেন গ্যাস বুদবুদ আকারে বার হচ্ছে।

 $Zn+2HCl=ZnCl_2+H_2$ 

↑ हिरू मिर्य ग्राम दोकान रम।

ক্ষারক—যে বস্তু আাদিডের দক্ষে রাদায়নিক বিক্রিয়ার পর লবণ ও জল তৈরি করে তাকে ক্ষারক বলে। যদি দোডিয়ম হাইডুক্সাইডে হাইড্রোক্লোরিক অ্যাদিড ঢাল দেখবে দোডিয়ম ক্লোৱাইড অর্থাৎ থাবার লবণ ও জল পাবে।

#### NaOH+HCl=NaCl+H2O

দোভিয়ম হাইড্রাইডের মত ক্যালিসিয়ম হাইড্রাইড, জিংক হাইড্রাইড, পট্যাদিয়ম হাইড্রাইডও কারক। দেখা গিয়েছে বস্তুর কারতের কারণ হচ্ছে  $OH^-$  মূলকের আয়নের উপস্থিতি।  $OH^-$  আয়নকে হাইড্রাল বা হাইড্রাইড আয়ন বলে। স্থতরাং যে দব যৌগিক পদার্থের জলীয় ত্রবণ বিয়োজিত হয়ে হাইড্রাইড আয়ন উৎপন্ন করে দেই যৌগিক পদার্থকে ক্ষারক বলে। প্রায় দকল ধাতুর হাইড্রাইড হচ্ছে কারক। LiOH, NaOH, KOH প্রভৃতিকে ক্ষার বা অ্যালকালি বলা হয়। এরা জলে গলে যায়। স্থতরাং দব কারক কিন্তু কার নাও হতে পারে।  $Ba(OH)_2$ ,  $Mg(OH)_2$  প্রভৃতিকে ক্ষার স্থিতিকা বলে। যে কোন কারের ত্রবণকে ক্ষারীয় জবণ বলা হয়।

স্থাক — আাসিড বা কারকের ধর্ম হচ্ছে—কোন কোন জৈব যৌগিক পদার্থের রঙ পান্টানোর ক্ষমতা। এক কাপ চায়ের গাঢ় রঙে যদি লেবুর রস ঢাল দেখবে রঙ হালকা হয়ে গিয়েছে। আবার চায়ের সেই হালকা রঙে যদি কারীয় দ্রবন যোগ কর দেখবে রঙ আবার গাঢ় হয়ে উঠেছে। আাসিড বা ক্ষারের প্রয়োগে যে সব বস্তু রঙ পান্টায় তাদের বলা হয় স্থাচক বা ইণ্ডিকেটর।

পরীক্ষাগারে লিটমাদ দ্রবণ বা লিটমাদ কাগজ হচ্ছে অতি পরিচিত স্চক।
আাদিত দ্রবণে নীল লিটমাদ কাগজ লাল রঙ হয়। ক্ষারীয় দ্রবণে লাল লিটমাদ
কাগজ নীল রঙে পরিবর্তিত হয়। ফেনফথ্যালিন ও মিথাইল অরেঞ্জ নামে
আরও হুটো তরল স্ফক পরীক্ষাগারে ব্যবহার করা হয়ে থাকে। এই হুটোই
জৈব যৌগিক পদার্থ। আাদিত দ্রবণে ফেনফথ্যালিন বর্ণহীন এবং ক্ষারীয় দ্রবণে

গোলাপী দেখায়। মিথাইল অরেঞ্জের নিজের রঙ কমলা, এক ফোঁটা মেশালে অ্যাসিডকে লাল ও ক্ষারককে হলুদ রঙে পরিবর্তিত করে।

লবণ—লবণ বলতে তোমরা থাবার লবণকেই বোঝ। কিন্তু থাবার লবণই
একমাত্র লবণ নয়। অনেক রকম লবণ আছে। লবণ অর্থে কি বোঝায় দেথ।
আাসিডের সঙ্গে কোন ধাতুর রাসায়নিক বিক্রিয়ার ফলে আাসিডের প্রতিস্থাপনযোগ্য হাইড্রোজেন সম্পূর্ণভাবে বা আংশিকভাবে ধাতুর দ্বারা প্রতিস্থাপিত
হলে যে যৌগ তৈরি হয় তাকে লবণ বা সন্ট বলে। যেমন—

 $Zn+H_2SO_4=ZnSO_4+H_2$ 

ZnSO₄ একটি লবণ।

আাদিড ও ক্ষারকের সংযোগেও লবণ তৈরি হয়।

 $NaOH+HCl=NaCl+H_2O$   $NH_4OH+HCl=NH_4Cl+H_2O$  $H_2SO_4+NaOH=NaHSO_4+H_2O$ 

NaCl, NH₄Cl এবং NaHSO₄ नवन।

লবণদের তিনভাগে ভাগ করা হয়—(1) আাদিড লবণ, (2) ক্ষারকীয় লবণ এবং (3) শমিত লবণ।

আাসিড লবণ: আাসিডের হাইড্রোজেন আংশিকভাবে ধাতু বা ধাতুমূলক দিয়ে প্রতিস্থাপিত হয়ে যে লবণ তৈরি হয় তাকে আাসিড লবণ বলে।  $NaCl+H_2SO_4=NaHSO_4+HCl$ । এখানে  $NaHSO_4$  আাসিড লবণ।

ক্ষারকীয় লবণ: আাসিড ও ক্ষারকের বিক্রিয়ায় প্রয়োজনের অতিরিক্ত ক্ষারক ব্যবহৃত হয়ে যে লবণ তৈরি হয় তাকে ক্ষারকীয় লবণ বলে।  $Pb(OH)_2 + HCl = Pb(OH)Cl + H_2O$ । Pb(OH)Cl ক্ষারকীয় লবণ।

শামিত লবণ: ধাতু বা ধাতবমূলক দিয়ে অ্যাসিডের হাইড্রোজেন সম্পূর্বভাবে প্রতিস্থাপিত হয়ে যে লবণ তৈরি হয় তাকে শামিত লবণ বলে।  $H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O$ ।  $Na_2SO_4$  শমিত লবণ।

প্রশাসন—অ্যাসিড ও ক্ষারের রাসায়নিক বিক্রিয়ার ফলে লবণ ও জল তৈরি হয়। এই রাসায়নিক বিক্রিয়ার পর যদি কোন অ্যাসিড বা ক্ষার অবশিষ্ট না থাকে অর্থাৎ ক্ষারের ও অ্যাসিডের সবটুকুই রাসায়নিক বিক্রিয়ায় অংশ গ্রহণ করে তবে সেক্ষেত্রে অ্যাসিড ও ক্ষারক একে অন্তকে প্রশমিত বা নিউট্রালাইজ করেছে বলা হয়। এই পদ্ধতিকে প্রশমন বা নিউট্রালাইজেশন বলে। প্রশমনের পর দ্রবণের অমতা বা ক্ষারত্ব থাকে না এবং স্ফকের রঙ পান্টাতে পারে না।

# অ্যাসিড ও ক্ষারকের পার্থক্য

#### অ্যাসিড

- (1) জলে গলে এবং জলীয় দ্রবণে বিয়োজনের পর H<sup>+</sup> উৎপন্ন হয়।
  - (2) স্বাদ অম।
- (3) ধাতু ও ক্ষারকের দক্ষে বাসায়নিক বিক্রিয়ায় লবণ তৈরি করে।
- (4) নীল লিটমাস কাগজ লাল হয়।
  - (5) ফেনফথ্যালিন বর্ণহীন থাকে।
  - (6) মিথাইল অরেঞ্জ লাল হয়।

#### ক্ষারক

- জলে গলে এবং জলীয় দ্রবণে
   বিয়োজনের পর OH<sup>-</sup> উৎপন্ন হয়।
  - (2) স্বাদ ক্ষা।
- (3) অ্যাসিডের সঙ্গে রাসায়নিক বিক্রিয়ায় লবণ তৈরি করে।
- (4) লাল লিটমাস কাগজ নীল হয়।
  - (5) ফেনফথ্যালিন গোলাপী হয়।
- (6) মিথাইল অরেঞ্জ হলুদ রঙের হয়।

# 🧽 জারণ ও বিজারণ

জারণ

জারণ কথাটিতে বোঝায় অক্সিজেনের সঙ্গে প্রত্যক্ষ সংযোগ। কোন পদার্থের সঙ্গে অক্সিজেনের যথন বিক্রিয়া হয় তথন তাকে জারণ বা অক্সিডেশন বলে। হাইড্রোজেন অক্সিজেনের সঙ্গে মিলিত হয়ে জল তৈরি করে। এক্ষেত্রে হাই-ড্রোজেন জারিত হয়েছে। যে পদার্থ জারণ করে তাকে জারক জব্য বলে। আরও ত্-একটি উদাহরণ নাও। যথন কয়লা পোড়ে তথন  $CO_2$  তৈরি হয়। ম্যাগনেসিয়মের একটি তার বাতাদে পোড়ালে ম্যাগনেসিয়ম অক্সাইড MgO তৈরি হয়। প্রথমটি কার্বন ও দ্বিতীয়টিতে ম্যাগনেসিয়ম জারিত হয়েছে। সমীকরণ তুটি নিচে দেওয়া হল:

 $C + O_2 = CO_2$   $2Mg + O_2 = 2MgO$ 

লোহা, গন্ধক, ফদফরাস যথন অক্সিজেনের দঙ্গে বিক্রিয়ার পর নিজেদের অক্সাইড তৈরি করে তথন তাদের জারিত হয়েছে বলা হয়।

জারণ অর্থে হাইড্রোজেনের অপসারণও বোঝায়। যেমন ক্লোরিন গ্যাস তৈরির সময় MnO<sub>2</sub>তে গাঢ় HCl অ্যাসিড যোগ করা হয়।

4HCl + MnO<sub>2</sub> = Cl<sub>2</sub> + MnCl<sub>2</sub> + 2H<sub>2</sub>O

এখানে MnO2 জারক দ্রব্য, জারণ করেছে গাঢ় HCl আাদিডকে।

অক্সিজেন একটি অধাতু মৌল। তড়িদ্বিশ্লেষণের সময় দেখা গিয়েছে অক্সিজেন তড়িদ্বিশ্লেষরে ভিতর দিয়ে পজিটিভ তড়িদ্বারের দিকে যায়। এই জাতীয় পদার্থগুলিকেবলা হয় ইলেকট্রোনেগেটিভ মৌল। কোরিন, ব্রোমিন, আয়োডিন প্রভৃতি এই জাতীয় মৌল। কোন রাদায়নিক প্রক্রিয়ায় অক্সিজেনের সংযোজন ছাড়াও অক্স কোন ইলেকট্রোনেগেটিভ পদার্থের সংযোজন ঘটলেও সংযোজন ছাড়াও অক্স কোন ইলেকট্রোনেগেটিভ পদার্থের সংযোজন ঘটলেও সংযোজন ছাড়াও ক্রারণ বলে। উদাহরণস্বরূপ ফেরাসক্রোরাইড ক্লোরিন গ্যাস দেই প্রক্রিয়াকে জারণ বলে। উদাহরণস্বরূপ ফেরাসক্রোরাইড ক্লোরিন গ্যাস

2FeCl<sub>2</sub>+Cl<sub>2</sub>=2FeCl<sub>3</sub>

বেশির ভাগ ধাতুই ইলেকট্রোপজিটিভ মোলিক পদার্থ। হাইড্রোজেনের মত ইলেকট্রোপজিটিভ পদার্থের অপসারণকেও জারণ বলে। থেমন পট্যানিয়ম আয়োডাইডের দঙ্গে হাইড্রোজেন পেরক্সাইডের সংযোগ ঘটলে ইলেট্রোপজিটিভ পট্যানিয়ম ধাতু অপসারিত হয়।  $2KI+H_2O_2=I_2+2KOH$ 

স্কতরাং জারণ বলতে বোঝায়—(ক) অক্সিজেনের সংযোজন, (থ) হাইড্রোজেনের অপদারণ, (গ) ইলেট্রোনেগেটিভ মোলের বা মূলকের সংযোজন ও ইলেকট্রোপজিটিভ মোলের বা মূলকের অপদারণ।
বিজ্ঞারণ

বিজারণ বিক্রিয়া জারণ বিক্রিয়ার ঠিক বিপরীত। বিজারণ বা রিডাকদন বলতে বোঝায় অক্সিজেনের অপদারণ বা হাইড্রোজেনের সংযোজন। হাইড্রোজেন গ্যাদের পরিবেশে যথন কপার অক্সাইডকে গরম করা হয় তথন কপার অক্সাইড বিজারিত হয়ে তামা পাওয়া যায়। এখানে হাইড্রোজেন গ্যাদ বিজারক দ্রব্য বা রিডিউদিং এজেট। ক্লোরিন দ্রবণের ভিতর দিয়ে দালফিউরেটেড হাইড্রোজেন পাঠালে, ক্লোরিন গ্যাদে বিজারিত হয়ে হাইড্রোক্লোরিক অ্যাদিড তৈরি হয়। নিচের দমীকরণ ছটি দেখলে বুঝতে পারবে।

 $CuO + H_2 = Cu + H_2O$   $H_2S + Cl_2 = 2HCl + S$ 

অক্সিজেনের মত যে কোন ইলেকটোনেগেটিভ মৌলের অপসারণ বা হাইড্রোজেনের মত যে কোন ইলেকটোপজিটিভ মৌলের সংযোজনকেও বিজারণ বলে। AlCl3-র দঙ্গে সোডিয়মের বিক্রিয়ায় যৌগিক বস্তুটি বিজারিত হয়ে Al ধাতু পাওয়া যায়। এক্ষেত্রে ইলেকটোনেগেটিভ মৌল ক্লোরিন অপসারিত হয়। AlCl3+3Na=Al+3NaCl

দেইরকম মারকিউরাস ক্লোরাইডের সঙ্গে ইলেকট্রোপজিটিভ পারদের সংযোজনে মারকিউরাস ক্লোরাইড বিজারিত হয়ে মারকিউরিক ক্লোরাইড উৎপন্ন হয়।  $HgCl_2+Hg=Hg_2Cl_2$ 

স্কৃতরাৎ বিজারণ বলতে বোঝায়—(ক) হাইড্রোজেনের সংযোজন, (থ) অক্সিজেনের অপদারণ, (গ) ইলেকট্রোনেগেটিভ মৌলের অপদারণ ও ইলেকট্রোপজিটিভ মৌলের সংযোজন।

জারণ বা বিজারণ বস্তুর রাদায়নিক ধর্ম। এটা মনে রেখো জারণ হলেই তার সঙ্গে বিজারণ হবে। কারণ জারক বস্তুটি বিজারিত হয়।

# তরল বায়ৣ, নাইট্রোজেন চক্র ও কার্বন ডাই য়য়াইড চক্র

ভরল বায়ু

বায়ুমণ্ডলে বাতাস বিভিন্ন গ্যাসের একটি মিশ্রণ। এর একটা বড় অংশ নাই-টোজেন ও অক্সিজেন, অন্ন মাত্রায় আরগন ও কার্বন ডাইঅক্সাইড এবং অতি অন্ন মাত্রায় নিয়ন, হিলিয়ম, ক্রিপটন, হাইড্রোজেন, মিথেন ও নাইট্রাদ অক্সাইড। অবশু জলীয় বাষ্প ত আছেই আবহাওয়ার অবস্থা অন্থায়ী। তরল বায়ু বলতে তরল নাইট্রোজেন ও তরল অক্সিজেনই বোঝায়। বায়ুমণ্ডলে নাইট্রোজেন ও অক্সিজেন ই বোঝায়। বায়ুমণ্ডলে নাইট্রোজেন ও অক্সিজেন গ্রামণ্ডলে আয়তনের 78.048 এবং 20.946 শতাংশ। নানাবিধ শিল্পে নাইট্রোজেন গ্রামণ, অক্সিজেন গ্রামণ, তরল নাইট্রোজেন এবং তরল অক্সিজেনের চাহিদা প্রচুর। বায়ু তরল করে এই গ্রাদ তৃত্তির উৎপাদন অপেক্ষাকৃত কম খরচে করা যায়। ভারতের অনেক বড় শহরে তরল বায়ু তৈরির জন্ম ফ্রান্টির আছে। কলকাতাতেই একটির বেশি কার্থানা তরল বায়ু বিক্রী করেন। দাম প্রতি লিটার প্রায় চার টাকা। অনেক গ্রেষণাগারে নিজম্ব তরল বায়ু তৈরির প্রাণ্ট আছে।

বায়ু তরল করার জন্ত যন্ত্র উদ্ভাবন করেন ছজন বিজ্ঞানী একই দময়ে— 1895 দালে—লিণ্ডে জার্মানিতে এবং হাম্পদন ইংল্যাণ্ডে। যে পদ্ধতিতে যন্ত্রটি কাজ করে, নিচে বলা হল। খুব উচ্চচাপে থাকা অবস্থায় গ্যাদকে যদি হঠাৎ একটি দক্ষ মুখ নলের মধ্যে দিয়ে প্রদারিত করা হয়, তবে গ্যাদটি ঠাণ্ডা হয়ে পড়ে। একে জুল-টমদন প্রভাব বলে। লিণ্ডে যন্ত্রে এই প্রভাবের দাহাঘ্যেই বায়ু তরল করা হয়। প্রথমে বায়ু থেকে ধুলো, জলীয় বাষ্প এবং কার্বন ডাইবায়ু তরল করা হয়। কার্বন ডাইঅক্সাইড অতি অল্প তাপমাত্রায় জমে যায় বলে বাতাদে থাকলে জমে গিয়ে লিক্উইফায়ারের দক্ষ নলের মুখ বন্ধ করে দেবে।  $C_1$  কম্প্রেদরের সাহাঘ্যে বাতাদ প্রথমে বায়ুমণ্ডলের অপেক্ষা 20 গুণ চাপে সংনমিত করা হয় (চিত্রে 16.1)। চাপে বায়ুর তাপমাত্রা বেড়ে যায় এবং ঠাণ্ডা জলে ডোবানো  $T_1$  নলের মধ্যে দিয়ে পাঠিয়ে বাতাদের তাপমাত্রা

কমিয়ে আনা হয়। এবারে কষ্টিক সোডাপূর্ণ কক্ষ Pর মধ্যে দিয়ে পাঠিয়ে CO2 দূর করা হয়। জলীয় বাষ্প দূর করারও প্রয়োজন মত ব্যবস্থা থাকে।



এরপর বাতাদকে দ্বিতীয় কম্প্রেসর C2র সাহায্যে বায়ুমণ্ডল অপেকা 200 গুণ বেশি চাপে সংনমিত করা হয়। উচ্চচাপে বাভাদের তাপমাত্রা বাড়ে এবং হিমমিশ্রণে वांथा T2 नलात मस्या मिरा अहे বাতাদ পাঠিয়ে তাপমাত্রা কমান হয়। উচ্চচাপের এই বাতাদকে পরে A প্রদারণ কক্ষে সরুম্থ নল Vর মুখে হঠাৎ প্রদারিত করা হয়। ফলে তাপমাত্রা কমে। এই ঠাণ্ডা বাতাদকে C<sub>2</sub> কম্প্রেদর কক্ষে পুনরায় নিয়ে এনে সংনমিত

করা হয় ও  $T_2$  নলের সাহাযো ঠাণ্ডা করে আবার V সরুমুখ নলে প্রসারিত করা হয়। এই ভাবে তাপমাত্রা ধাপে ধাপে কমতে থাকে। ঐ ঠাণ্ডা বায়ু আবার সংনমিত ও প্রদারিত করা হয়। তাপমাত্রা নামতে নামতে এক সময়ে বায়ু তরল হয় এবং নিচে রাথা পাত্রে জমা হতে থাকে। তাপমাত্রা

প্রায় - 200°C হয়।

তরল বায়ু সাধারণ পাত্রে রাথা চলে না। থার্মোক্লাস্ক জাতীয় পাত্রে রাথতে হয়। সাধারণ থার্মোক্লাস্ক কাচের তৈরি ও সাধারণত মাপে ছোট বলে উপযোগী নয়। জার্মান সিলভার জাতীয় ধাতুর পাত (যাতে তাপ বিশেষ পরিবাহিত হয় না) দিয়ে তৈরি হটো দেওয়ালের ফ্লাস্কে তরল বায় (চিত্র 16.2) রাখা হয়। তুটি দেওয়ালের মধ্যে ভ্যাকুয়াম করে বন্ধ করা থাকে। ভ্যাকুয়াম



চিত্ৰ 16.2

নষ্ট হয়ে হাওয়া চুকে গেলে পাত্র আর কাজ করবে না। তরল হাওয়া থেকে

ক্রমাগত বাষ্পায়ন হতে থাকে। তবল নাইটোজেনের ফুটনাফ —195.7°C এবং অক্সিজেনের —182.9°C। স্থতরাং প্রথমেই নাইটোজেন উপে যেতে থাকে। এই গ্যাস ধরে উচ্চচাপে গ্যাস দিলিগুরে ভর্তি করে রাখা যায়। নাইটোজেন উপে যাবার পর পড়ে থাকে তবল অক্সিজেন। সেটি থেকেও বাষ্পায়ন চলতে থাকে। অক্সিজেন উচ্চচাপে গ্যাস দিলিগুরে ভর্তি করে বিক্রী করা হয়। এইভাবে প্রস্তুত অক্সিজেন প্রায় 96 শতাংশ শুদ্ধ। নিয় তাপমাত্রা স্কৃষ্টির জন্ত ও শিল্পের বহু কাজে, বিজ্ঞানের গবেষণায় তবল নাইটোজেন ও তবল অক্সিজেন ব্যবহার হয়। কলকাতায় সাহা ইন্ষ্টিটিউটের গবেষণাগারে একটি ছোট বায়ু তবল করার যন্ত্র আছে।

নিম তাপমাত্রায় বস্তব ধর্ম বিশেষভাবে পরিবর্তিত হয়। এই তাপমাত্রায় সীসায় স্থিতিস্থাপকতা ধর্ম দেখা দেয়, ববার শক্ত এবং ভঙ্গুর হয়ে পড়ে। একটি আঙুব তরল বায়তে ছুবিয়ে রাখলে এত শক্ত হয়ে পড়ে যে তাকে গুঁড়ো করতে হাতুড়ি দিয়ে পেটাবার প্রয়োজন হয়। তাপমাত্রা কমার সঙ্গে পরিবাহী বস্তব বোধ কমতে থাকে।

# নাইট্রোজেন চক্র

উদ্ভিদ ও প্রাণীদের বেঁচে থাকার মূলে যেমন অক্সিজেন যা আমরা প্রতি নিঃখাদে গ্রহণ করি, তেমনি আবার উদ্ভিদ ও প্রাণিদেহ গঠনে নাইট্রোজেন একটি মূল উপাদান। উদ্ভিদ প্রোটিন এবং জীব প্রোটিনে নাইট্রোজেনের ভূমিকা অত্যন্ত প্রয়োজনীয়। ফদল ফলানোর জন্ম যে দার দরকার, নাইট্রোজেন তারও একটি মূল উপাদান। প্রতিদিন লক্ষ্ণ লক্ষ্ণ টন দার তৈরি হচ্ছে এবং ব্যবহার হচ্ছে। এই নাইট্রোজেনের অনেকটাই আদে বায়ুমগুলের নাইট্রোজেন থেকে। বায়ুমগুলে অনেক নাইট্রোজেন আছে বটে, তবে এই হারে থরচ করতে থাকলে ফ্রিয়ে যাবার সম্ভাবনা বাতিল করা যায় না। তবে প্রকৃতি দব দময় দমতা বজায় রাথার ব্যবস্থা করে, নাইট্রোজেন যেমন থরচ হচ্ছে, তেমনি আবার তৈরিও হচ্ছে।

নাইটোজেন দাধারণত খুব সক্রিয় গ্যাস নয়। বায়ুমণ্ডলে অক্সিজেনের পাশাশাশি থেকেও তার সঙ্গে কোন বিক্রিয়া করে না। কিন্তু বজ্র ও বিহাৎ সংস্পর্শে এলে বা কিছু কিছু ব্যাক্টিরিয়ার সংস্পর্শে এলে নাইটোজেন সক্রিয়হয়।

আকাশে যথন বিদ্যুৎ ক্ষরণ হয়, তথন নাইট্রোজেন অক্সিজেনের সঙ্গে মিলে হয় নাইটিক অক্সাইড No+Oo=2NO। তারপর সেটি অক্সিজেনের দঙ্গে মিলে হয় 2 NO+O<sub>0</sub>=2NO<sub>0</sub> নাইটোজেন ডাইঅকাইড। জলের দঙ্গে মিলে 3NO₂ + H₂O = 2HNO₂ + NO। নাইট্রিক আাদিত বৃষ্টির জলের দঙ্গে পড়ে



মাটিতে ক্ষার জাতীয় বস্তুর সংপর্ণে আদে এবং নাইট্রেটে পরিণত হয়। অন্সান করা হয় যে প্রত্যহ এইভাবে আড়াই লক্ষ টন নাইট্রিক অ্যানিড বৃষ্টির জলের সঙ্গে মাটিতে পড়ে। এটাই দার, এছাড়া দার আদে চিলির লবণ থেকে ও কৃত্রিম

উপায়ে তৈরি করে। উদ্ভিদ মাটি থেকে এই নাইট্রেট গ্রহণ করে, উদ্ভিদ দেহে প্রোটিন তৈরি করে। শিম জাতীয় কোন কোন উদ্ভিদ সোজাস্থজি বায়্মণ্ডল থেকে নাইট্রোজেন আহরণ করে নিতে পারে। উদ্ভিদ থেয়ে বাঁচে যে সব প্রাণী নাইট্রোজেন তাদের দেহের জীবপ্রোটনের অংশ হয়ে পড়ে। প্রাণিদেহ থেকে মলম্ত্র ও প্রাণিদেহের পচনে তৈরি হয় অ্যামোনিয়া, যা মাটিতে মিশে আবার নাইট্রেটে পরিণত হয়। এর কিছুটা আবার উদ্ভিদ দেহে ফিরে যায়, বাকিটা জিনাইট্রিফাইংব্যাক্টিরিয়ারসাহায়ে নাইট্রোজেন গ্যাদে পরিণত হয়ে বায়্মণ্ডলে ফিরে যায়। আবার যে সব উদ্ভিদপ্রোটিন প্রচণ্ড চাপে ও তাপে ফদিল হয়ে গিয়েছিল সেগুলি কয়লা হিদেবে থনি থেকে তোলা হচ্ছে। কয়লার অন্তর্ধুম পাতনেও অ্যামোনিয়া তৈরিহয় যায় কিছুটা ব্যাক্টিরিয়ার সাহায়ে নাইট্রোজেনে রূপান্ডরিত হয়। 16.3 চিত্রে নাইট্রোজেন চক্র দেখানো হয়েছে। এইভাবেই বায়মণ্ডলের নাইট্রোজেনের সমতা রক্ষা চলেছে।

# কাৰ্বন ডাইঅক্সাইড চক্ৰ

বায়ুমগুলে কার্বন ডাইঅক্সাইড আছে অল্প পরিমানে, আয়তনের মাত্র 0.033 শতাংশ। কমআছে বলে এর প্রয়োজনীয়তা কিছুকমনয়। কার্বন ডাইঅক্সাইডের একটি বিশেষ ভৌত ধর্ম প্র্যকিরণ থেকে তাপ ধরে রাখা। এর বর্তমান মাত্রা জীবজগতের ঠিক উপযোগী। মাত্রা কমে গেলে সাধারণ তাপমাত্রা এখনকার থেকে কমে যাবে এবং মাত্রা বেড়ে গেলে তাপমাত্রা বাড়বে। স্থতরাং খ্ব বেশি বাড়লে জীবজগতের উপযোগী নাও হতে পারে। গত পঞ্চাশ বছরে পৃথিবীতে কলকারখানা বেড়ে যাওয়ার ফলে প্রতিদিন পরিমাণে অনেক বেশি কয়লা, পেট্রল ও কেরোদিন পোড়ানো হচ্ছে, ফলে বায়ুমগুলে  $CO_2$ -র মাত্রা কিছুটা বেড়েছে। অনেকে মনে করেন এজন্য গড় তাপমাত্রাও বেড়েছে।

আবার উদ্ভিদ জগতে থান্ত প্রস্তুতের প্রধান উপকরণ  $CO_2$ । উদ্ভিদ ক্লোরোফিলের সান্নিধ্যে স্থালোকে  $CO_3$  ও  $H_3O$  থেকে কার্বোহাইডেট থান্ত তৈরি করে—একে বলে সালোক-সংশ্লেষ বা ফোটোসিনথেসিস। হিসেব করলে দেখা যাবে পৃথিবীতে যত উদ্ভিদ আছে তাদের বায়ুমণ্ডলের সমস্ত  $CO_2$  থেয়ে ফেলতে লাগবে মাত্র চল্লিশ বছর। কিন্তু তা হয়নি কারণ তার সমতা বজায় রাথার ব্যবস্থা প্রকৃতি করেই রেথেছে। যে হারে  $CO_2$  থরচ হচ্ছে

প্রায় সেই হারেই  $CO_2$  জমা হচ্ছে। থরচ ও জমা কি ভাবে হয় কার্বন ডাইঅক্সাইড চক্রে দেখানো হয়েছে (চিত্র 16.4)।



উদ্ভিদ বাযুমগুল থেকে  $CO_2$  গ্রহণ করে,থাল প্রস্তুত করে। দিনের বেলায় কর্যালোকে আবার রাতে নিঃখাদের দক্ষে ছাড়ে, ফলে  $CO_2$  বায়ুমগুলে কিরে যায়। তাছাড়া উদ্ভিদ দেহ দহনে বা পচনেও  $CO_2$  পরিণত হয়ে বায়ুমগুলে ফিরে যায়। বহু যুগ ধরে উদ্ভিদ দেহে যে কার্বন জমা হয়েছে, চাপে ও তাপে ফদিল কয়লায় পরিণত হয়েছে এবং দেই কয়লা য়থন আমরা পোড়াই আবার  $CO_2$  বায়ুমগুলে ফিরে য়ায়। এছাড়া বায়ুমগুলের থেকে বেশি পরিমাণে  $CO_2$  মজুদ আছে দমুদ্রের জলে জবণে, তার থেকেও  $CO_2$  বেরিয়ে বায়ুমগুলে দমতা বজায় রাথে। অনেক খনিজ য়েমন ক্যালিদিয়ম কার্বনেট—এগুলি থেকেও কলকারখানায় রাদায়নিক বিক্রিয়ার দময়  $CO_2$  বায় হয়ে বায়ুমগুলে মেশে।

তাছাড়া সমস্ত প্রাণী শ্বাস নেয় অক্সিজেন এবং নিঃশ্বাসের সঙ্গে বার করে কার্বন ডাইঅক্সাইড যা বাতাসে ফিরে যায়। এইভাবে বায়ুমণ্ডলে কার্বন ডাই-অক্সাইডের জমাথরচের সমতা রক্ষা চলে।

# বাডালে বিরল গ্যাস, নিয়ন আলো

বাতাদে আরও কয়েকটি গ্যাদের উপস্থিতির কথা বলা হয়েছে। তাদের মধ্যে আরগন (Ar) বাতাদের আয়তনের 0.934 শতাংশ। এছাড়া আরও কতক-গুলি গ্যাদ মৌল অবস্থার পাওয়া যায়, তাদের শতাংশে প্রকাশ করা হয় না, বলা হয় প্রতি 10 লক্ষ ভাগের হিদাবে অর্থাৎ পার্ট্ দ পার মিলিয়ন বা পি পি এম-এ। এই হিদাবে নিয়ন (Ne) 18.18, হিলয়ম (He) 5.24, ক্রিপটন (Kr) 1.14, জিনন (Xe) 0.087। এত অল্প মাত্রায় পাওয়া যায় বলে এদের বিরল বা রেয়ার গ্যাদ বলা হয়। তাছাড়া এগুলি নিজ্রিয় অর্থাৎ রাদায়নিক বিক্রিয়ায় অংশ গ্রহণ করে না। এই গ্যাদগুলির মধ্যে আরগন খুব তুর্লভ নয়; এটি ইলেকট্রিক বাল্বে ব্যবহার করা হয়। একেবারে বায়্শ্রু করলে বাল্বটি ভেঙে যাবার দস্ভাবনা বলে তার মধ্যে অল্প পরিমাণ আরগন গ্যাদ দেওয়া হয়। নিজ্রিয় গ্যাদ বলে যথন বাল্বের ফিলামেন্ট গরম হয়ে দাদা হয়ে যায় তথনও আরগনের দঙ্গে কোন বিক্রিয়া করে না। নিয় চাপে নিয়ন গ্যাদে বিত্রাৎ ক্রণে স্থলর লালচে আলো হয়। নানান আকারের টিউব তৈরি করে তাতে নিয়চাপে নিয়ন গ্যাদ ভরে বিজ্ঞাপনের কাজে ও দহরের সাজসজ্জায় ব্যবহার হয়। নিয়ন আলো ও ফুরোদেন্ট আলো কিন্তু এক নয়।

হিলিয়ম সব থেকে নিজ্ঞিয় গ্যাস। সেইজন্ম টাইম ক্যাপসিউল নামে যে সমস্ত পাত্রে ঐতিহাসিক নিদর্শন ভরে মাটির তলায় পোঁতা হয়, সেই পাত্রে হাওয়া সরিয়ে হিলিয়ম গ্যাস ভর্তি করা হয়। হিলিয়ম গ্যাস বাতাসের তুলনায় খুব হালকা। তাই বড় বড় বেলুন আকাশে ওড়ানোর জন্মে ব্যবহৃত হয়। অবশ্য খেলনার বেলুনের জন্ম নয়। মহাজাগতিক রশ্মির গবেষণার জন্ম য়য়পাতি ও ফোটোগ্র্যাফিক প্লেট উধ্বকাশে তোলার জন্ম এবং আবহাওয়া সংক্রান্ত নানা গবেষণায় এই ধরনের বেলুন ব্যবহৃত হয়। এখন অবশ্য এর অনেক কাজ রকেটের সাহায্যে করা সন্তব হয়েছে। হিলিয়ম গ্যাসের স্ফুটনায় — 269°C এবং হিমায় — 272°2°C। এর থেকে কম তাপমাত্রায় পোঁছানো মান্থ্রের পক্ষে

সম্ভব হয়নি। তারল হিলিয়ম যদিও তারল বায়ুর মত ব্যবহার হয় না, তারু দিন
দিন এর চাহিদা বাড়ছে। বর্তমানে অনেক গবেষণায় অতি নিয় তাপমাত্রার
প্রয়োজন হয়। দেখা গেছে তারল হিলিয়মের তাপমাত্রায় পরিবাহীর তড়িৎ
রোধ অসম্ভব কমে যায় এবং পরিবাহিতা হাজার হাজার গুণ বাড়ে। এই
অবস্থায় তাদের বলে অতি-পরিবাহী বা স্থপার-কণ্ডাক্টার। ব্যবহারিক ক্ষেত্রে
এদের প্রয়োজনীয়তা ক্রমেই বাড়ছে তাই তারল হিলিয়মের চাহিদাও বাড়ছে।
কলকাতার সাহা ইন্ষ্টিটিউটে গবেষণার উপযোগী হিলিয়ম তারল করার যন্ত্র
আছে। বায়মগুল ছাড়াও আমেরিকায় প্রাকৃতিক গ্যাসের দঙ্গে হিলিয়ম
পাওয়া যায়। তাছাড়া পাওয়া যায় তেজজ্রিয় আকরিকে। কলকাতায়
ইণ্ডিয়ান আাদোদিয়েশন ফর দি কালটিভেদন অফ.সায়েন্দের বিজ্ঞানী ড
খ্যামাদাদ চট্টোপাধ্যায় বক্রেশ্বর উষ্ণ প্রস্রবণের মধ্যে হিলিয়ম গ্যাদ পেয়েছেন
এবং তার থেকে হিলিয়ম আলাদা করার ব্যবস্থা করেছেন।



# 🚄 কয়েকটি গ্যানের প্রস্তুত প্রণালী ও তানের ধর্ম

## অক্সিজেন

অক্সিজেন একটি মৌল, দাধারণ তাপমাত্রায় গ্যাদ, মুক্ত অবস্থায় বায়ুমণ্ডলে পাওয়া যায়। এছাড়া অক্তাক্ত মোলের দঙ্গে রাসায়নিক বিক্রিয়ায় যৌগ রূপে থাকে। গ্রীক ভাষায় এর অর্থ অ্যাদিড প্রস্তুতকারক। প্রিস্টলি এবং শীলি তুজনেই পথকভাবে 1774 খ্রীদ্টান্দে প্রথম অক্সিজেন আবিষ্কার করেন। অক্সিজেনের প্রতীক্চিহ্ন O, অণুর সংকেত O, ।

গবেষণাগারে কিভাবে তৈরি হয়—অক্সিজেন তৈরির জন্য যে চুটি যৌগিক পদার্থের প্রয়োজন তাদের নাম পট্যাদিয়ম ক্লোরেট ও ম্যাঙ্গানিজ ডাই-অক্সাইড। বস্তু চুটির সংকেত যথাক্রমে KClO3 এবং MnO2। এক ভাগ MnO. ও পাঁচ ভাগ KClO, ভালভাবে মিশিয়ে নিয়ে একটি শক্ত কা:চর টেফ টিউবে রাখ। লক্ষ্য রাথবে কাচের নলটি মিশ্রণে সম্পূর্ণ ভর্তি হয়ে না



চিত্ৰ 17.1

যায়। টেস্ট টিউবের ম্থ ছিপি দিয়ে আটকিয়ে তার ভিতরে একটা নির্গম নল প্রবেশ করাও। নির্গম নলের একটা মৃথ জল ভর্তি কাচের পাত্রে রাথ এবং জল ভতি একটা গ্যাদ জার উলটিয়ে নলের ম্থের উপর 17.1 চিত্রে ঘেভাবে प्रिथान चार्ट्स कारव वाथ। अकिंग में गिएं दिमें हिंडेव चाहिकित्य वाथ.  ব্নসেন দীপের সাহায্যে টিউবের ম্থের দিকটা প্রথমে ও পরে আন্তে আন্তে টিউবের সর্বত্ত গরম করতে থাক। দেখবে, তাপমাত্রা যথন 200°C – 340°C – এর মাঝে তথন বৃদ্বুদের আকারে নির্গম নলের ম্থ দিয়ে গ্যাস বেরিয়ে জারের জল সন্পূর্ণ সরিয়ে ফেলেছে তথন কাচের একটা ঢাকনির সাহায্যে জারের ম্থ বন্ধ করে জারটিকে জল থেকে বার করে এনে সোজা করে বসাও। জারটি এখন অক্সিজেন গ্যাসে ভর্তি।

অক্সিজেন উৎপন্ন হওয়ার সময় KCIO<sub>3</sub> পরিবর্তনের বাদায়নিক সমীকরণ নিচে দেওয়া হল:

# $2KClO_3 = 2KCl + 3O_2$

MnO2 অনুষ্টকের কাজ করে অর্থাৎ নিজে পরিবর্তিত হয় না, কিন্তু বাসায়নিক বিক্রিয়াকে স্বরায়িত করে। KClO3 কে 370° – 380°C পর্যন্ত উত্তপ্ত করলেও অক্সিজেন পাওয়া যায়, কিন্তু MnO2 র উপস্থিতিতে এই তাপমাত্রা 200°C – 340°C এর মাঝামাঝি কোন এক তাপমাত্রায় নেমে আদে।

গ্যাস ভৈরি করার সময় নিম্নলিখিত বিষয়ে সতর্ক থাকবে—
(ক) টিউবের ম্থের দিকটা প্রথমে ও পরে পিছনের দিকটা গরম করা উচিত
নতুবা পিছনের দিক আগে গরম করলে দেদিকে  $O_2$  উৎপন্ন হয়ে গ্যাদের চাপে
নির্গমনলের ম্থ বন্ধ হতে পারে। (থ) টিউবটির ম্থ থানিকটা পিছনের দিকে
ঢালু অবস্থায় রাথা ভাল যাতে নির্গমনলের ম্থ বন্ধ না হয়। (গ) MnO<sub>2</sub>
বিশুদ্ধ নেওয়া প্রয়োজন। কার্বনের কণা থাকলে উচ্চ তাপে জলে উঠে
বিস্ফোরণ ঘটাতে পারে।

ধর্ম—অক্সিজেন বর্ণহীন, স্বাদহীন, গন্ধহীন গ্যাস। বাতাদের চেয়ে অল্প ভারী। প্রাণিজগৎ নিঃশাদের দক্ষে অক্সিজেন নিয়ে বেঁচে আছে। অক্সিজেন জলে অল্প দ্রবীভূত হয়। এই দ্রবীভূত অক্সিজেন মাছেরা বা অন্য জলজ প্রাণীরা জল থেকে নিয়ে বেঁচে থাকে। সোনা, কণো প্রভৃতি কয়েক ধরনের ধাতু অতি উচ্চ তাপমাত্রায় অক্সিজেন শোষণ করতে ও নিম্ন তাপমাত্রায় এই গ্যাস আবার বর্জন করতে পারে। হাইড্রোজেন গ্যাসের দক্ষে যুক্ত হয়ে জল তৈরি করে।  $2H_2+O_2=2H_2O$ । অক্সিজেন নিজে দাহ্য বস্তু নম্ম কিন্তু দহন কাজে সাহায্য করে।  $-183^{\circ}$ C তাপমাত্রায় অক্সিজেন গ্যাস নীলাভ তরলে পরিণত হয়

এবং  $-218.4^{\circ}$ C তাপমাত্রায় নীলাভ কেলাসিত কঠিন বস্ততে পরিণত হয়। আমরা যে থাবার থাই নিঃশাসের নেওয়া অন্সিজেনের সঙ্গে তার রাদায়নিক বিক্রিয়ায় দেহের প্রয়োজনীয় তাপ উৎপন্ন হয়। অন্সিজেন রাদায়নিক বিক্রিয়ায় অত্যন্ত সক্রিয়। অধিকাংশ বস্তর সঙ্গে অন্সিজেনের বিক্রিয়া হয়। অন্সিজেন জারক বস্তু।  $C+O_2=CO_2$ 

ব্যবহার—(ক) খাদ প্রখাদের কট হচ্ছে এমন রোগীর জন্ম অক্সিজেন ব্যবহার করা হয়। (থ) হাইড্রোজেনের দক্ষে মিশিয়ে জালালে 2800°C তাপমাত্রা উৎপন্ন হয়। এই শিথাকে অক্সি-হাইড্রোজেন শিথা বলে। এই তাপমাত্রায় প্র্যাটিনম ধাতুও গলে। অক্সি-হাইড্রোজেন শিথা থুব দাবধানে ব্যবহার করতে হয় কারণ বিক্ফোরণের সম্ভাবনা থাকে। (গ) অ্যাদিটিলিন গ্যাদের দক্ষে মিশিয়ে জালালে প্রায় 3300°C তাপমাত্রা উৎপন্ন হয়। অক্সিআাদিটিলিন শিথা কারথানার ধাতুর মোটা পাত গলিয়ে কাটার কাজে বা ওয়েল্ডিং করতে ব্যবহৃত হয়। (ঘ) বিভিন্ন যৌগ বস্ত তৈরির জন্ম অক্সিজেন ব্যবহার করা হয়।

# হাইড্রোজেন

হাইড্রোজেন একটি মৌল, সাধারণ তাপমাত্রায় গ্যাদীয় পদার্থ। পদার্থের মধ্যে স্বচেয়ে হালকা। যোড়শ শতাব্দীর প্রথম ভাগেই বিজ্ঞানীরা এর থোঁজ পান। 1781 খ্রীন্টাব্দে বিজ্ঞানী ক্যাভেণ্ডিশ দেখান যে অক্সিজেনের সঙ্গে হাইড্রোজেন যুক্ত হয়ে জল তৈরি হয়। তিনি নাম দেন জলন গ্যাদ বা ইনফ্র্যামেবল গ্যাদ। 1788 খ্রীন্টাব্দে লাভয়দিয়ে প্রথম হাইড্রোজেন নাম দেন। গ্রীক ভাষায় এর অর্থ জল উৎপাদক। হাইড্রোজেন বায়ুমণ্ডলে মুক্ত অবস্থায় কম পাওয়া যায়। আগ্রেয়গিরি থেকে বেরিয়ে আদা গ্যাদে, থনি অঞ্চলের গ্যাদে পাওয়া যায়। জানা গেছে স্থ্য ও অক্যান্ত নক্ষত্রদেহে মুক্ত অবস্থায় হাইড্রোজেন থাকে। হাইড্রোজেন জল, আ্যাদিড, ক্ষারক ও অন্তান্ত:অনেক যৌগিক পদার্থের অন্তত্ম উপাদান। হাইড্রোজেনের প্রতীক চিহ্ন H, অণুর দংকেন্ড H2।

গবেষণাগারে কি ভাবে তৈরি হয়—গবেষণাগারে  $H_2$  তৈরির সব থেকে সাধারণ উপাদান অশুদ্ধ অর্থাৎ বাজারে কেনা দন্তা এবং লঘু সালফিউরিক

আাদিত। ছবিতে (চিত্র 17.2) তু মুথের যে বোতল দেখতে পাচ্ছ তার নাম উল্ফ বোতল। এই রকম একটা বোতল নাও। এক মুথে একটা দীর্ঘ নল ফানেল অক্তমুথে একটা নির্গম-নল ছিপির সাহায্যে আটকাও। ছিপি বন্ধ করার আগেই বোতলের ভিতর কয়েক টুকরো বাজার থেকে কেনা দন্তার টুকরো রাথ। দীর্ঘ-নল ফানেলের ভিতর দিয়ে বোতলের মধ্যে জল ঢাল বেন ফানেলের নিচের প্রান্ত জলে ডুবে থাকে কিন্তু নির্গম-নলের নিচের প্রান্ত জলের উপরে থাকে। হাইড্রোজেন, অক্সিজেনের সংস্পর্শে এলে বিস্ফোরণ ঘটতে পারে সেজতা বোতলের মুথ দিয়ে যাতে বাতাস যেতে না পারে তার জত্য



চিত্ৰ 17.2

সব বকম ব্যবস্থা নিতে হবে। বোতলটি বায়ু-নীবন্ধ কিনা হাইড্রোজেন উৎপন্ন হওয়ার আগে পরীক্ষা করে দেখে নেওয়া ভাল। নির্গম-নলের মৃক্ত প্রাস্তে মৃথ দিয়ে ফুঁ দিলে দেখতে পাবে দীর্ঘ-নল ফানেলের নল দিয়ে জল কিছুটা উপরে উঠেছে। এই বার হাত দিয়ে মৃথপ্রান্ত চেপে ধরে দেখ নলে জলের উচ্চতা নেমে আদছে কিনা। যদি না নামে তবে বোতলটি বায়ু-নীবন্ধ । এইবার ফানেলে লঘু সালফিউরিক আাদিড ঢাললেই বুদবুদের আকারে হাইড্রোজেন উৎপন্ন হতে দেখা যাবে। বাসায়নিক বিক্রিয়া

## $Zn + H_2SO_4 = ZnSO_4 + H_2 \uparrow$

এইবার নির্গম-নলের মৃক্ত প্রাস্ত একটি জলপূর্ণ পাত্রে রেথে তার উপর একটা জলভরা জার উলটিয়ে রাথলে হাইড্রোজেন গ্যাস জাবের জল সরিয়ে ভিতরে এসে জমা হবে। সম্পূর্ণ জল সরে গেলে কাচের একটা ঢাকনি দিয়ে জাবের মৃথ বন্ধ করে সোজা করে বসাও। জারটি এখন হাইড্রোজেন ভর্তি। কি বিষয়েসভর্ক হবে—উল্ফ বোতলের ভিতর বায়্শৃল্য আছে কিনা দেখা দরকার। কারণ হাইড়োজেন ও অক্সিজেন মিশ্রণ অত্যন্ত বিস্ফোরক।

ধর্ম—হাইড্রোজেন গ্যাস বর্ণহীন, স্বাদহীন এবং গন্ধহীন। সমস্ত মোলিক পদার্থের মধ্যে সবচেয়ে হালকা। বাতাস হাইড্রোজেনের চেয়ে প্রায় চোদগুণ ভারী। —252.7°C এর নিচে তরল ও —259°C এর নিচে কঠিন বস্তুতে পরিণত হয়। তরল হাইড্রোজেন সমস্ত তরলের মধ্যে সবচেয়ে হালকা। কেলাসিত কঠিন হাইড্রোজেনের ঘনাস্ক 0.008 g/cc।  $H_2$  জলে দ্রবীভূত হয় না বললেই চলে। হাইড্রোজেন দাহ্য বস্তু এবং শিখার রঙ অভি হালকা নীল। যথন জলে তথন অক্সিজেনের সঙ্গে রাসায়নিক বিক্রিয়ায় জল উৎপাদন করে। হাইড্রোজেন অতি উত্তম বিজারক।  $CuO+H_2=Cu+H_2O$ । নিকেল, কোবান্ট, সোনা, রুপো বিশেষ করে প্যালেডিয়ম ধাতু হাইড্রোজেন শোষণ করতে পারে এবং অল্প উত্তাপ দিলে আবার বার করে দিতে পারে। একে অন্তর্ধ্ব তি বা অক্সুসান বলে।

ব্যবহার—(ক) অক্সি-হাইড্রোজেন শিথা তৈরিতে ব্যবহার হয়, (থ) জৈব ও অজৈব তেলের দক্ষে ব্যবহার করে বনস্পতি তৈরি করা হয় যা আমরা রানায় ব্যবহার করি, (থ) হালকা বলে বেলুনে ব্যবহার করা হয়, (ঘ) বিভিন্ন যৌগিক বস্তু তৈরির কাজে লাগে।

## নাইটোজেন

নাইটোজেন একটি মৌল, দাধারণ তাপমাত্রায় গ্যাদ। এই গ্যাদের প্রথম দন্ধান পান ড্যানিয়েল রাদারফোর্ড নামে একজন বিজ্ঞানী 1772 থ্রীস্টাব্দে। নাইট্রোজেন দাহ্য বস্তু নয় এবং নিঃশ্বাদ প্রশ্বাদের কাজে না লাগায় তিনি এর নাম দেন বিষাক্ত বায়। একটি ইছুর নিয়ে পরীক্ষা করে দেখান এতে প্রাণী বাঁচতে পারে না। লাভয়সিয়ে নাম দেন 'নিপ্রাণ বায়'। শীলি 1772 থ্রীস্টাব্দে রাদারফোর্ডের সমসাময়িক কালে এর নাম দেন 'অপবায়'। সোরা বা নাইটার থেকে এই গ্যাস তৈরি করে প্রথম নাইট্রোজেন নাম দেন চ্যাপটাল নামে একজন বিজ্ঞানী। বাতাদে মৃক্ত অবস্থায় নাইট্রোজেন পাওয়া যায়। বায়্যওলের প্রায় শতকরা 78 ভাগ নাইট্রোজেন। অনুমান  $4 \times 10^{15}$  টন নাইট্রোজেন বাতাদে মৃক্ত আছে। আগ্রেয়গিরি থেকে বেরিয়ে আদা গ্যাদে ও খনির

ভিতরেও মৃক্ত নাইটোজেন পাওয়া যায়। এছাড়া অসংখ্য জৈব ও অজৈব পদার্থের সঙ্গে যৌগিক অবস্থায় নাইটোজেন থাকে। প্রোটিনের মূল উপাদান নাইটোজেন। নাইটোজেনের প্রতীক N এবং অণুর সংকেত N<sub>2</sub>।

গবেষণাগারে কি ভাবে তৈরি হয় লাদের নাম নিশাদল বা আামোনিয়ম কোরাইড ও লোডিয়ম নাইটাইট। একটা ছোট ফ্লাস্কে এই তুইটি যোগিক পদার্থের একটি গাঢ় জবন নাও। ফ্লাস্কের ম্থ ছিপি দিয়ে আটকিয়ে তার ভিতর দিয়ে একটা দীর্ঘ-নল ফানেল ও একটা নির্গম নল প্রবেশ করাও (চিত্র 17.3)। লক্ষ্য রাখবে দীর্ঘ-নল ফানেলের নিচের প্রাস্ত জবনে ভালভাবে ভূবে থাকে। নির্গমনলের প্রাস্ত একটা জলভরা পাত্রে ভূবিয়ে রাথ এবং ফ্লাস্কের ভিতরের প্রাস্ত তরলের বেশ উপরে রাথ। এবারে ব্নদেন দীপের শাহাযে ফ্লাস্কটিকে ধীরে ধীরে গরম করতে থাক। নাইটোজেন গ্যাদ বেরিয়ে



চিত্ৰ 17.3

আসা মাত্র ব্নদেন দীপ সরিয়ে নাও। জলভরা গ্যাস জার নির্গম নলের মুথে উলটিয়ে ধরলে নাইট্রোজেন গ্যাস জারের জল সরিয়ে ভিতরে এসে জমা হতে থাকবে। যথন জল সম্পূর্ণ সরে যাবে একটি ঢাকনির সাহায্যে জারের মুথ বন্ধ করে জারটিকে সোজা করে বসাও। জারে এখন যে নাইট্রোজেন গ্যাস সংগ্রহ করা হল ততেে কিছু পরিমাণ জলীয় বাষ্প ও অল্প পরিমাণ নাইট্রিক-অক্সাইড

গ্যাদ (NO) থাকবে। গাঢ় দালফিউরিক অ্যাদিডের দাহায্যে জলীয় বাষ্প এবং উত্তপ্ত তামার চোকলার দাহায্যে নাইট্রিক-অ্রাইড গ্যাদ দূর করা হয়। নাইট্রোজেন বেরিয়ে আদার দময়ের রাদায়নিক বিক্রিয়া নিচে দেওয়া হল—

NH<sub>4</sub>Cl+NaNO<sub>2</sub>=NH<sub>4</sub>NO<sub>2</sub>+NaCl

আবার, NH4NO2=N2+2H2O।

অ্যামোনিয়ম নাইট্রাইট সরাসরি গ্রম করলেও নাইট্রোজেন পাওয়া যায় কিন্তু রাসায়নিক বিক্রিয়া এত জ্রুত হয় যে বিস্ফোরণ হতে পারে।

কি কি বিষয়ে সতর্ক হবে—(ক) বৃন্দেন দীপ প্রয়োজন মত ফ্রাস্কের
নিচে এনে বা সরিয়ে নিয়ে তাপ নিয়ন্ত্রণ করা প্রয়োজন। (খ) দীর্ঘ-নল
ফানেলের নিচের প্রাস্ত তরলে ডুবে থাকা দরকার। গ্যাদের চাপ বেড়ে গিয়ে
নলের ভিতর দিয়ে তরল উপরে উঠলে তাপ-নিয়ন্ত্রণ করে চাপ কমানো
প্রয়োজন। নতুবা বিস্ফোরণ হতে পারে।

ধর্ম—নাইটোজেন বর্ণহীন, গন্ধহীন, খাদহীন গ্যাদ। বাতাদের চেয়ে অল হালকা এবং জলে থুব কম মাত্রায় দ্রবীভূত হয়। নাইটোজেন গ্যাদ নিঃখাদ প্রখাদে সাহায্য করে না তবে নিজে বিধাক্ত নয়। দাধারণ তাপমাত্রায় পদার্থের সঙ্গে যৌগ গঠনের প্রবণতা কম। তবে উচ্চ তাপমাত্রায় অক্সিজেন ক্যালিদিয়ম, ম্যাগনেসিয়ম-প্রভৃতির সঙ্গে বাদায়নিক ভাবে যুক্ত হয়। 1000°C তাপমাত্রায় নাইটোজেন অক্সিজেনের সঙ্গে যুক্ত হয়।

N2+O2=2NO |

Ca, Mg, Al প্রভৃতি ধাতু লাল উত্তপ্ত অবস্থায় নাইটোজেন শোষণ করে।

 $3Ca + N_2 = Ca_3N_2$  |  $3Mg + N_2 = Mg_3N_2$  |

নাইটোজেন দাহ্য নয় এবং দহন কাজে দাহায্য করে না। -195.8°C তাপমাত্রায় তরলে এবং -207.8°C তাপমাত্রায় কঠিনে পরিণত হয়।

ব্যবহার—অ্যামোনিয়া, নাইট্রিক অ্যাসিড, জমির সার প্রভৃতি তৈরির কাজে লাগে। কিছু কিছু বিস্ফোরক তৈরির কাজে নাইটোজেন ব্যবহার হয়।

অ্যানোনিয়া

মধ্য এশিয়ার আগ্নেয়গিরিগুলি থেকে নিশাদল (NH<sub>4</sub>Cl) এবং আামোনিয়ম

সালফেট (NH<sub>4</sub>)<sub>2</sub> SO<sub>4</sub> পাওয়া যেত। প্রাচীনকালে এইগুলি কারকের সঙ্গে মিশিরে গরম করে আমোনিয়া সংগ্রহ করা হত। প্রাচীন মিশর দেশে উটের মলম্ত্র পুড়িরে আমোনিয়া সংগ্রহ করার রীতি ছিল। 1774 প্রীফালে প্রিফলি এই গাাদ প্রস্তুত করেন ও নাম দেন 'কারীয় বাতাদ'। আমোনিয়া নাম দেন অষ্টিন 1788 প্রীফালে। বাতাদে মৃক্ত অবস্থায় অল্প আমোনিয়া পাওয়া যায়। অগ্যুৎপাতের সঙ্গে আমোনিয়ম লবণ পাওয়া যায়। উদ্ভিদে, প্রাণিদেহে, রক্তে, মলম্ত্রে থ্ব অল্প পরিমাণ আমোনিয়া লবণ পাওয়া যায়। কৈব বস্তু যথা হাড়, শিং প্রভৃতি গরম করলে বা জীবজন্তু বা গাছপালা পচলে আমোনিয়া হয়। পচা বস্তু থেকে যে ঝাঝালো গন্ধ আদে সেটা আমোনিয়া গ্যানের। আমোনিয়া লেখা হয় NH<sub>3</sub> সংকেত দিয়ে।

গবেষণাগারে কিভাবে তৈরি হয়—পরীক্ষাগারে যে কোন অ্যামোনিয়া লবণকে যে কোন তীত্র ক্ষারকের সঙ্গে মিশিয়ে গরম করলেই অ্যামোনিয়া গ্যাস পাবে। এক ভাগ নিশাদল অর্থাৎ অ্যামোনিয়ম ক্লোরাইডের সঙ্গে তিন ভাগ গুঁড়ো কলিচুন বা ক্যালিসিয়ম হাইড্রন্সাইড  $Ca(OH)_3$  মেশাও এবং একটা ক্লাস্কের মুথ ছিপি দিয়ে আটকাও ও ভিতরে একটা নির্গম নল প্রবেশ করাও।



চিত্ৰ 17.4

ফ্রাস্কটি একটা স্টায়ণ্ডে আটকানো তারের জালের উপর রাথ যাতে নিচে থেকে বুনসেন দীপ দিয়ে গরম করা যায়। নির্গম নলের এক প্রান্ত কর্কের একটু নিচে প্রবেশ করা অবস্থায় আছে এবং অক্সপ্রান্ত ক্যালিনিয়ম অক্সাইডপূর্ণ (CaO) একটি কাচের লম্বা ছুমুখো নলে লাগান আছে (চিত্র 17.4)। এই লম্বা নলের অপর মুখে ছিপির ভিতর দিয়ে নির্গমনল বেরিয়ে এসেছে। CaO বা চুনা পাথর  $NH_3$  গ্যাসকে শুষ্ক করে। এইবারে ফ্রাস্কটি বুন্সেন দীপ দিয়ে গ্রম করতে থাক।

গ্যাদ উৎপন্ন হয়ে লম্বা পাত্রের ভিতরের ক্যালসিয়ম অক্সাইডের ভিতর দিয়ে বেরিয়ে আসবে। একটি উলটিয়ে রাথা জারে নির্গম নল ধরলে  $NH_3$  গ্যাদ বাতাদ সরিয়ে দেখানে জমা হতে থাকবে। কিছুক্ষণ পর একটি লাল লিটমাদ কাগজ জারের মুথে ধরলে যদি নীল হয় তবে বোঝা যাবে জারটি অ্যমোনিয়া গ্যাদে ভর্তি হয়েছে। এইবার একটা ঢাকনি দিয়ে জারের মুথ ঢেকে উলটিয়ে রাথলেই এক জার  $NH_3$  গ্যাদ পাওয়া যাবে।  $NH_3$  উৎপন্ন হওয়ার সময়ে রাশায়নিক বিক্রিয়া নিচে দেওয়া হল।

# $2NH_4Cl + Ca(OH)_2 = CaCl_2 + 2NH_3 + 2H_2O$

ধর্ম—আামোনিয়ার কোন রঙ নেই, তীত্র ঝাঁঝালো গন্ধ আছে। চোখে লাগলে প্রায় জল আদে। সহজেই জলে দ্রবীভূত হয় এবং দ্রবণ আামোনিয়ম হাইছুন্মাইছে পরিণত হয়।  $NH_3+H_2O=NH_4OH$ । দেইজন্ম জল সরিয়ে সংগ্রহ করা সম্ভব নয়। তরলে দ্রবীভূত অবস্থায় স্বাদ ক্ষার সাবানের মত। সহজেই গ্যাদ থেকে তরলে পরিণত করা যায়। গলনাম্ম  $-77.7^{\circ}$ C ফুটনাম্ম  $-33.4^{\circ}$ C। আামোনিয়া দাহ্য বস্তু নয় বা দহনে সহায়তা করে না। অক্সিজেনের সঙ্গে মিশিয়ে জালালে হলুদ রঙের শিথা নিয়ে জলে।  $4NH_3+3O_2=6H_2O+2N_2$ । অক্সিজেন ও আামোনিয়ার মিশ্রণ বিক্ষোরক। আামোনিয়া একটি ক্ষারক, লাল লিটমাদ কাগজ নীল করে এবং আাদিডের সঙ্গে যৌগিক লবণ তৈরি করে।

ব্যবহার—তরল আমোনিয়া বরফ তৈরির কাজে লাগে। জলে দ্রবীভূত আমোনিয়া তৈলাক্ত ময়লা পরিষ্কারের কাজে লাগে। এছাড়া দার, নাইলন, ববার, স্মেলিং দল্ট এবং বহু প্রকার লবণ তৈরির কাজে লাগে।

# কাৰ্বন ডাইঅক্সাইড

কার্বন ভাইঅক্সাইড গ্যাদ প্রথম প্রস্তুত করেন ভ্যান হেলমোন্ট I630 থ্রীন্টাবে, কিন্তু গ্যাদটির সঠিক পরিচয় তিনি জানতেন না। 1783 থ্রীন্টাবে লাভয়নিয়ে এটি যে কার্বনের অক্সাইড তা ব্যুতে পারেন। কার্বন ডাইঅক্সাইড গ্যাস
মৃক্ত অবস্থায় বাতাদে পাওয়া যায়। উন্থন, বা বড় বড় চুন্নির ধোঁয়া থেকে
প্রাণীদের নিঃশাস প্রশাসের সঙ্গে অনবরত বাতাসে এসে মিশছে। চুনাপাথর
কোন রকমে আাদিডের সংস্পর্শে এলে এই গ্যাস তৈরি হয়। জলে কার্বন
ডাইঅক্সাইড দ্রবীভূত অবস্থায় থাকে। পৃথিবীর ভিতর থেকেও কোন কোন
জায়গায় কার্বন ডাইঅক্সাইড বেরিয়ে আসে। যবদ্বীপের 'বিষাক্ত উপত্যকার'
এবং নেপলসের একস্থানে এই গ্যাস জমা হয় এবং কোন জীবজন্ত সেথানে গেলে
মারা যায়। চিনি ও মদ তৈরির সময়ও কার্বন ডাইঅক্সাইড গ্যাস উৎপন্ন
হয়। কার্বন ডাইঅক্সাইডের সংকেত CO2।

গবেষণাগারে কি ভাবে তৈরি হয়—কয়েক টুকরো চুনা পাথর ও কিছু জল একটা উল্ফ বোতলে নাও। বোতলের এক মৃথে ছিপির দাহায্যে একটা দীর্ঘ-নল ফানেল আটকাও। লক্ষ্য রাথবে ফানেলের নিচের প্রান্ত জলে ডুবে থাকে। বোতলের অন্ত মৃথে একটা নির্গম নল ছিপির দাহায্যে আটকাও (চিত্র 17.5)। এইবার ফানেলে লঘু হাইড্রোক্লোরিক অ্যাদিড ঢাল। দেথবে বুদব্দের আকারে গ্যাস উৎপন্ন হচ্ছে। নির্গম নলের নিচে একটি গ্যাদ জারের মৃথ ধরলেই জারে কার্বন ডাইঅক্সাইড জমা হতে থাকরে। কার্বন



চিত্ৰ 17.5

ভাইঅক্সাইড বাতাদের চেয়ে ভারী হাওয়ায় বাতাদ দরিয়ে দেখানে জমা হবে। রাদায়নিক বিক্রিয়া দেওয়া হল:

CaCO<sub>3</sub>+2HGl=CaCl<sub>2</sub>+CO<sub>2</sub>+H<sub>2</sub>O

এই গ্যাদে কিছু পরিমাণ HCl বাষ্প থাকে। উৎপন্ন গ্যাদকে সোভিয়ম বাইকার্বনেটের দ্রবণের ভিতর প্রবেশ করিয়ে পরে গাঢ় সালফিউরিক স্মাদিডের ভিতর দিয়ে প্রবেশ করালে HCl বাষ্প ও জলকণা দ্র করা সম্ভব হবে।

ধর্ম—কার্বন ডাইঅক্সাইড একটি বর্ণহীন গ্যাস। অল্ল ঝাঁঝালো গন্ধ আছে এবং খাদ ঈবং অম। বাতাদের চেয়ে 1.53 গুণ ভারী। এই গ্যাস বিষাক্তন্য কিন্তু এতে খাদ গ্রহণ করা দন্তব নয়। এই গ্যাস নিজে দহনশীল নয় এবং দহনে সাহায্য করে না। এই জন্ম আগুন নেভানোর কাজে এই গ্যাস ব্যাপক ভাবে ব্যবহার করা হয়। বড় বড় অফিসে বা কার্যানায় লাল রঙের শংক্র মত যে দব আগুন নেভানো যন্ত্র তোমরা দেখতে পাও তার ভিতর প্রয়োজনের সময় কার্বন ডাইঅক্সাইড প্রস্তুত করা হয়। কার্বন ডাইঅক্সাইড গ্যাস বেশ পরিমাণে জলে দ্রবীভূত হয় এবং কিছুটা কার্বনিক আাসিডে পরিণত হয়।  $CO_2+H_2O=H_2CO_3$ । এই দ্রবণ নীল লিটমাদ কাগজকে লাল করে। তাপ ও চাপের সঙ্গে দ্রবণের পরিমাণ বাড়ে। সোডা ওয়াটারে কার্বন ডাই-অক্সাইড দ্রবীভূত অবস্থায় থাকে, সোডা নয়। এই গ্যাস তরল ও কঠিন বন্ধতে পরিণত করা যায়। কঠিন কার্বন ডাইঅক্সাইডের নাম 'ড্রাই আইস' বা শুকনো বরফ। মাছ বা পচনশীল বন্ধর পচন বন্ধ করতে ব্যবহার করা হয়। 'ড্রাই আইসের' স্থবিধা উপ্রপাতনে একেবারে গ্যাসে পরিণত হয়।

ব্যবহার—(ক) কাপড় কাচা সোডা (সোডিয়ম কার্বনেট), সোডা ওয়াটার প্রভৃতি তৈরিতে লাগে। (থ) আশুন নেভানোর কাজে লাগে। (গ) পচনশীল বস্তুকে পচনের হাত থেকে বক্ষা করার জন্ম ড্রাই আইদ কাজে লাগে।

# শালফার ডাইঅক্সাইড

গন্ধকের ইংরেজী নাম সালফার এবং সালফারের একটি অক্সাইডের নাম সালফার ভাইঅক্সাইড। মৃত মাতুষের দৈছে পচন বৃদ্ধ করার জন্ম এই গ্যাদের ব্যবহারেক উল্লেখ হোমারের কাব্যে আছে। প্রাচীনকালে নতুন কাপড়কে বিশুদ্ধ বা বিরঞ্জন করার জন্ম সালফার ডাইঅক্সাইড গ্যাস ব্যবহার করা হত। সেকালে এর নাম ছিল হীরাক্ষ তেল। 1774 প্রীক্টান্দে প্রিক্টলি পারদের সঙ্গে গাড় সালক্ষিউরিক অ্যাদিড গ্রম করে এই গ্যাস পান কিন্তু কোন উপাদানে গ্যাস্টি

তৈরি তিনি জানতেন না। 1777 থ্রীস্টাব্দে লাভয়দিয়ে এর উপাদানগুলি জানতে পাবেন এবং এর রাসায়নিক সংকেত দেন SO.,। বাতাদে গন্ধক পোড়ালেই দালফার ডাইঅকাইড গ্যাদ পাওয়া যায়।

গবেষণাগারে কিভাবে তৈরি হয়—একটি ফ্লাম্বে কিছ তামার চোকলা ও গাত দালফিউরিক আাদিড নাও (চিত্র 17.6)। ফ্রাস্কটির মুথের ছিপির



চিত্ৰ 17-6

ভিতর দিয়ে একটি দীর্ঘ-নল ফানেল ও একটি নির্গমনল প্রবেশ করাও। ধীরে ধীরে তাপ দিলে গ্যাদ উৎপন্ন হতে শুরু করবে। গ্যাদ উৎপন্ন হওয়া মাত্র বুনদেন দীপশিথা সরিয়ে নেওয়া দরকার। নির্গমনলের মুথে একটা গ্যাস জার নোজাভাবে ধরলেই SO ু দেখানে জমা হতে থাকবে। বাতাদের চেয়ে প্রায়

দ্বিগুণ ভারী হওয়ায় বাতাদ দরিয়ে SO2 গ্যাদ দেখানে জমা হবে। এই **দঞ্চিত গ্যাদে কিছু পরিমাণ দালফার ট্রাইঅক্সাইড থাকায় প্রথমে জল ও পরে** গাঢ় সালফিউরিক অ্যাসিডের ভিতর দিয়ে প্রবাহিত করতে হয়। ফলে উৎপন্ন গাাস বিশুদ্ধ ও শুষ্ক হয়।

$$Cu + 2H_2SO_4 = CuSO_4 + SO_2 + 2H_2O$$

ধর্ম — দালফার ডাই অক্সাইড বর্ণহীন, পোড়া গন্ধকের মত ঝাঁঝালো গন্ধযুক্ত এবং विषाक गाम। জলে महर्ष्करे खवनीय अवः खवन मानिक उदाम ज्यामिरण পরিণত হয়।  ${
m SO}_2 + {
m H}_2 {
m O} {
ightleftharping} {
m H}_2 {
m SO}_3$  বাতাদের চেয়ে প্রায়  $2\cdot 3$  গুণ ভারা। निष्फ परनगीन नम्र थवः माधादण्ड पर्दा मारामा कदा ना। তবে উত্তপ্ত পট্যাদিয়ম, উত্তপ্ত টিন বা লোহার গুঁড়ো এতে জলতে পারে। বরফ ও লবণের হিম মিশ্রণের দাহাযো - 10°C এর নিচে এনে অতি দহজেই তরলে পরিণত করা যায়। -72·7°C এর নিচে কঠিন বস্তুতে পরিণত হয়। তাপের প্রয়োগে SO2 ভেঙে গিয়ে অক্সিজেন উৎপন্ন হয়। ক্ষারের সঙ্গে বিক্রিয়ায়

থে। গিক লবণ তৈরি করে।

 $NaOH + SO_2 = NaHSO_3$  $NaHSO_3 + NaOH = NO_2SO_3 + H_2O$ 

এই গ্যাস একটি বিজারক বস্তু।

ব্যবহার—কীটনাশক হিসেবে ব্যবহার হয়ে থাকে। বদন্ত বা কলেরা রোগীর ঘরে গন্ধকের ধুনো দিতে নিশ্চয়ই দেখেছ। গন্ধক পুড়ে দালফার ডাইঅল্লাইড তৈরি হয়। SO₂ কীটনাশক। জৈব বস্তুর রঙ পালটায় অর্থাৎ বিরঞ্জক বা ব্লিচিং এজেণ্ট হিদাবে কাজ করে। একটা জবা ফুলকে গন্ধকের ধুনোয় কিছুক্ষণ ধরলেই দেখাবে লাল রঙ ক্রমশ মিলিয়ে যাচ্ছে। কাপড় জামা বা কাগজ তৈরিতে বিরঞ্জক হিসেবে ব্যবহৃত হয়।

## সালফিউরেটেড হাইড্রোজেন বা হাইড্রোজেন সালফাইড

ভিমের সাদা অংশ বা গন্ধক আছে এমন কোন শাক্সবজি কোন জায়গায় পচলে একটা তীব্র গন্ধ নাকে আসে। এটিই হাইড্রোজেন সালফাইভ বা সালফিউরেটেড হাইড্রোজেন গ্যাস। আগ্নেমগিরি থেকে বেরিয়ে আসা গ্যাস ও অনেক ঝরনার জলে সামান্ত পরিমাণে দ্রবীভূত অবস্থায় এই গ্যাস পাওয়া যায়। ফুটস্ত গন্ধকের ভিতর হাইড্রোজেন গ্যাস প্রবাহিত করলে এই গ্যাস পাওয়া যায়। লেখা হয়  $\mathbf{H}_2\mathbf{S}$  সংকেত দিয়ে।

গবেষণাগারে কিন্তাবে তৈরি হয়—একটি উল্ফ বোতলে কিছু ফেরাস সালফাইড নাও। বোতলের এক মুথে একটি দীর্ঘনল ফানেল ও অন্ত মুথে একটি নির্গম নল লাগাও। এইবার ফানেলের মুথ দিয়ে ফেরাস সালফাইডের প্রায় তিনগুণ লঘু হাইড্রোক্লোরিক বা লঘু সালফিউরিক অ্যাসিড ঢাল। দেখবে  $\mathbf{H}_2\mathbf{S}$  গ্যাস উৎপন্ন হচ্ছে। রাসায়নিক বিক্রিয়া হল:

 $FeS+2HCl=H_2S+FeCl_2$  ( ফেরাস ক্লোরাইড )।  $FeS+H_2SO_4=H_2S+FeSO_4$  ( ফেরাস সালফেট )। বাতাসের চেয়ে অল্ল ভারী হওয়ায় গ্যাস জারে নির্গমনলের ভিতর দিয়ে এসে স্ক্রমা হতে থাকবে।

পরীকাগারে রাদায়নিক বিশ্লেষণের জন্ম H2S গ্যাদ অত্যন্ত প্রয়োজন হয়।

অধিক পরিমাণে প্রয়োজন মত H2S গ্যাস পাবার জন্ম যে যন্ত্র ব্যবহার করা



হয় তার নাম কিপ্স অ্যাপ্যারেটাদ (চিত্র 16.7)

ধর্ম—দালফিউরেটেড হাইড্রোজেন বর্ণহীন গ্যাদ, গন্ধ পচা ডিমের মত, এবং বিষাক্ত। ডিমের দাদা অংশ পচলে  $H_2S$  গ্যাদ উৎপন্ন হয়। বাতাদের চেয়ে 1·2 গুণ ভারী। ঠাগু জলে দহজেই দ্রবীভূত হয় কিন্তু তাপমাত্রা বৃদ্ধির দক্ষে দ্রবনীয়তা কমে। জলীয় দ্রবণের ঈষৎ অ্যাদিড ধর্ম আছে। বাতাদে 364°C তাপমাত্রায় উত্তপ্ত করলে নীল শিখায় জলে এবং শিখার

মধোই হাইড্রোজেন ও সালফাইড বিশ্লিষ্ট হয়ে যায়।

ব্যবহার—পরীক্ষাগারে রাদায়নিক বিশ্লেষণের জন্য  $\mathbf{H}_2\mathbf{S}$  গ্যাদ ব্যবহার করা হয়।

在1000年中的日本計畫社会的1000年中的社会中国共和国

# প্রশাবলী

### প্রথম অধ্যায়

- 1 ্রিভৌত রাশি বলতে কা বোঝায়? ভেক্টর ও ক্রেলার রাশির পার্থকা উদাহরণ দিয়ে বোঝাও।
- 2 প্রাথমিক একক ও লব্ধ একক বলতে কী বোঝার? এদ স্বাই পদ্ধতিতে রাশির প্রতীক ও তাদের এককগুলি লেখ।
- 3 স্কেলের সাহায়ে বস্তুর দৈর্ঘ্য মাপার সময় কি ভাবে ভুল আসতে পারে? ভুল দুর করতে কি করবে?
- 4 একটি দাঁড়িপালার ছই বাহ অনমান। একটি বাহ 10 cm অক্টট 12 cm। একটি 10 g ওদ্ধনের সাহায্যে পালার উভয় প্রান্ত থেকে যদি অক্ত একটি বস্তুর ওদ্ধন নাও তবে ছটি মাপের পার্থকা কত হবে?
- 5 নিচের লেখাগুলিতে কোনটি মাপ ও কোনটি একক বল: 10 cm, 5 ft, 100 km, 30 yd, 10-om.
- 6 একটি স্বেল নিয়ে তোমার হাতের মাপ নাও পরে তোমার বন্ধুর হাতের মাপ নাও। মোপগুলি কি এক? ঠিক সেইভাবে তোমার পা ও বিঘতের মাপ নাও ও বন্ধুদের পা এবং বিঘতের মাপের সঙ্গে মিলিয়ে দেখ।
- 7 তোমার ক্লাস্বরের পিছনের দেয়াল কত মিটার লম্বা ! চোথের আন্দাজে বল। এবার একটি স্কেল নিয়ে মেপে দেখ তোমার আন্দাজ ঠিক কি না।
- 8 কুত্ব মিনারের উচ্চতা 72 m হলে কত কিলোমিটার হবে ?
- 9 কয়েকটি পোষ্টকার্ড নিয়ে প্রত্যেকটির দৈর্ঘ্য ও প্রস্থ মাপ। তাদের মাপ কি সমান?
- 10. নিচের দূরজগুলি 10-এর ঘাতে দেওয়া আছে। এগুলি 1 এর পরে শৃক্ত বসিয়ে প্রকাশ কর।

পৃথিবীর সবচেয়ে কাছের তারার দূরছ=1018km পৃথিবী থেকে স্থের দূরছ=1.5×108km পৃথিবী থেকে চাঁদের দূরছ=4×108km পৃথিবীর ব্যাস=1.3×104km

11 তোমাকে একটি স্কেন দেওরা হল। যে কোন বই-এর প্রতিটি পাতা কতথানি পুরু কি করে বলবে? (মলাট বাদ দাও।)

## দ্বিভীয় অধ্যায়

- পদার্থ ও শক্তি কাকে বলে? শক্তি কি কি রূপে প্রকাশ পেতে পারে? শক্তি এক রূপ থেকে অহ্য রূপে রূপান্তরিত হতে পারে উদাহরণের সাহায্যে বল।
- 2 ভর ও ভার কাকে বলে ? এদের মধ্যে পার্থক্য কোধার ? ভরের: নিত্যতা হত্র বলতে কি বোঝ ?
- 3 গ্রাম এককে ভর, আর্গ এককে শক্তি এবং প্রতি সেকেণ্ডে সেন্টিমিটারে আলোর গতিবেগ ধরে এক গ্রাম বস্তু বিলুপ্ত হলে কত শক্তি পাওয়া যাবে বার কর।

## তৃতীয় অধ্যায়

- পদার্থের তিন অবস্থা কি কি? এদের মধ্যে পোর্থক্য কোথায়? 'জল, বরফ এবং জলীয় বাপা—একই পদার্থের তিনটি পৃথক অবস্থা মাত্র'— এই উক্তি আলোচনা কর।
- বস্তুর গলন ও গলনাক্ষ এবং হিমায়ন ও হিমায় বলতে কি বোঝায়? বরফের গলনাক্ষ এবং ফাপথালিনের হিমায় কি ভাবে নির্ণয় করবে? নির্দিষ্ট গলনাক্ষ নেই এমন কয়েকটি বস্তুর নাম কর।
- 3 বাঙ্গীভবন বলতে কি বোঝার? কি কি ভাবে বাঙ্গীভবন হতে পারে উদাহরণসহ আলোচনা কর। যে যে কারণে বাঙ্গায়ন প্রভাবিত হতে পারে তার উল্লেখ কর।
- 4 नीन जान की, भनदनत अवर क्रिंदनत्र नीन जान वनटा कि दावाता ?
- 5 কি কি কারণে পদার্থের অবস্থার পরিবর্তন হতে পারে উদাহরণসহ বল।
- 6 युक्ति मिरत वार्था कत :
  - (a) কোন বস্তুর হিমান্ধ এবং গলনান্ধ—এই ছুয়ের তাপমাত্রা এক।
  - (b) শীতের দেশে খুব বেশি ঠাণ্ডা পড়লে জলের পাইপ ফেটে যায়।
  - (c) গলনাত্ব, হিমাত্ব ও লীন তাপের উপর চাপের প্রভাব সম্বন্ধে যা জান লেখ।
- 7 मारकाल बालांग्ना कतः
  - (a) বাতাস করলে বা ফুঁ দিলে গরম বস্তু তাড়াতাড়ি ঠাণ্ডা হয়। (b) হিমমিশ্রণ,
  - (c) বাষ্পায়ন, (d) উধ্বপিতন, (e) উদ্বায়ী বস্তু, (f) লীন ভাগ

## চতুৰ্থ অধ্যায়

- 1 দূরত্ব ও সরণে তফাৎ কী? দ্রুতি ও বেগে তফাৎ কী? একটি ট্রেনের গতিকে দ্রুতি বলবে না বেগ বলবে ? কেন ?
- 2 তুমি ও তোমার বন্ধু একই দিকে একই বেগে ছুটছ। প্রত্যেকের মাথায় একটি মৌমাছি বসে আছে। তোমাদের ছুটন্ত অবস্থায় মৌমাছি ছুটো একে অন্তকে কিভাবে দেখতে পাবে? যদি তোমরা একই বেগে উলটো দিকে ছুটতে থাক তবে তাদের মধ্যে গতির সম্পর্ক কেমন হবে?

- 3 পিছল মাটিতে চলা কষ্টকর কেন ?
- 4 ঘোড়ার গাড়ির ঘোড়া গাড়িকে টানে, গাড়িও ঘোড়াকে টানে। তবে ঘোড়া ইটিতে থাকলে গাড়ি চলতে থাকে কেন?
- 5 লোক ভর্তি বাস খুব জোরে চলতে চলতে হঠাৎ থেমে গেলে কী হতে পারে ?
- 6 এক নিউটন কত ডাইনের সমান? এক পাউণ্ডাল কত ডাইনের সমান?
- 7 সরণ, বেগ, ক্রতি ও ত্বরণ কাকে বলে ? প্রত্যেকটির একক লেখ।
- 8 নিউটনের গতিস্ত্র কী ? উদাহরণ দিয়ে ব্যাথা কর।
- 9 নিউটন কিদের একক? নিউটনের সঙ্গে কিলোগ্রামের সম্পর্ক কী?

## পঞ্চম অধ্যায়

- 1 কাজ, ক্ষমতা ও শক্তির সংজ্ঞা লেখ। কাজের সঙ্গে শক্তির পার্থকা কী? জ্ল কাকে বলে ?
- 2 স্থিতিশক্তি ও গতিশক্তি বলতে কী বোঝায় উদাহরণ দিয়ে বোঝাও।
- 3 সমান ভরের ছটি বস্তুর একটি h এবং অপরটি 2h উচ্চতার রাথা আছে। তাদের স্থিতি শক্তির অনুপাত কত ?
- 4 সমান ভরের ছটি বস্ত সমবেগে চলছে। একটির বেগ অপরটির দ্বিগুণ হলে তাদের গতিশক্তির অনুপাত কত ?
- 5 যন্ত্র কাকে বলে উদাহরণ দিয়ে বোঝাও। যে কোন শ্রেণীর লিভার বর্ণনা কর এবং কিভাবে যান্ত্রিক স্থাবিধা হয় দেখাও।
- 6 চাকা ও অক্ষদণ্ড এবং নত তলের কার্যপ্রণালী ছবির সাহায্যে বোঝাও।
- 7 এক জুল কত আর্গের সমান।
- 8 এক ফুট-পাউণ্ডাল কত আর্গের সমান।
- 9 মনে কর তুমি যেখানে আছ দেখান থেকে পৃথিবীর ব্যাস বরাবর একটি ছ'ফুট ব্যাসের গর্ভ করা হল, অপর প্রান্ত পর্যন্ত। একটি 5 kg ওজনের লোহার গোলক যদি ঐ গর্ভ দিয়ে ফেলে দেওয়া হয় তবে গোলকটি কোথায় যাবে?

# ষর্গ্ত অধ্যায়

- 1 তাপমাত্রা কাকে বলে ? তাপ ও তাপমাত্রায় প্রভেদ কী উদাহরণ দিয়ে বোঝাও।
- ই ডিগ্রি সেলসিয়াস মানে কী? তাপমাত্রার অক্তান্ত এককগুলি ও তাদের সম্পর্ক লেখ।
- 3 বস্তুর তাপগ্রাহিতা, জলতুল্যান্ধ এবং আপেক্ষিক তাপের মধ্যে সম্পর্ক আলোচনা কর।
- 4 তাপ যে শক্তির একটি রূপ উদাহরণ দিয়ে বোঝাও। তাপশক্তি থেকে যান্ত্রিক শক্তি কিভাবে পেতে পার ?

#### সপ্তম অধ্যায়

- 1 আলো কী ? অপসারী ও অভিসারী রিখা কাকে বলে ? ছবি এঁকে বোঝাও।
- 2 আলোর প্রভব কী ? স্বপ্রভ ও অপ্রভ বস্তু কাকে বলে ? নিচের বস্তগুলির কোনটি অপ্রভ এবং কোনটি স্বপ্রভ ?
- (क) শুক্তারা (থ) নক্ষত্র (গ) চাঁদ (ঘ) হীরার টুকরো (ঙ) জোনাকি।
- 3 প্রতিফলন কাকে বলে? প্রতিফলনের স্ত্র বল।
- 4 প্রতিফলনের হত্ত ছটি প্রমাণ করতে তোমাকে একটি সমতল দর্পণ ও ছটি দেশলাইএর কাঠি দেওয়া হল। কি ভাবে প্রমাণ করবে ?
- 5 প্রতিফলন ও প্রতিসরণ কাকে বলে? প্রতিফলন ও প্রতিসরণের মধ্যে প্রভেদ কী?
- 6 নিয়মিত ও বিক্ষিপ্ত প্রতিফলন কাকে বলে ? কোন ধরনের তলে আলোর প্রতিফলন বেশি ?
- 7 कोन बल्ल यिन जाता श्राटिक्तिल ना करत एरव कि बल्लीरिक (मथा यारव ?
- 8 (a) যদি দর্পণকে স্থির রেখে তুমি দর্পণের দিকে এগিয়ে যাও তবে প্রতিবিশ্ব কোন দিকে ও কি বেগে এগিয়ে যাবে? ছবি একৈ উত্তর দাও।
- (b) যদি স্থির হয়ে দাঁড়িয়ে দর্পণকে ভোমার দিকে নিয়ে আস তবে প্রতিবিশ্ব কোন দিকে ও কত বেগে এগিয়ে যাবে? ছবি একৈ উত্তর দাও।
- 9 লেন্স কাকে বলে ? লেন্সের সঙ্গে সমতল কাচের ভফাৎ কোথার ? উত্তল ও অবতল লেন্স কাকে বলে ? তোমাকে একটি উত্তল ও একটি অবতল লেন্স দেওয়া হল। লেন্সের গায়ে হাত না বুলিয়ে কি ভাবে বলবে কোনটি কি লেন্স ?
- 10 বক্রতা-কেন্দ্র, আলোক-কেন্দ্র, প্রধান অক্ষ, ফোকস, ফোকস-দূর্ত্ব কাকে বলে? ছবি একৈ বোঝাও।
- 11 একটি উত্তল লেসের ফোকস দ্রত্ব ছবি এঁকে দেখাও।
  তোমাকে একটি উত্তল লেস ও একটি ছেল দেওয়া হল। কি ভাবে ফোকস-দ্রত্ব বার
  করবে?
- 12 শক্তি কাকে বলে ? আলো এক ধরনের শক্তি, উদাহরণ দিয়ে বল।
- 13 তরজ-দৈর্ঘ্য কাকে বলে? তরজ-দৈর্ঘ্যের এককের নাম কী ও এককটির মিটার এককে মান কত? কম্পান্ত কাকে বলে? আলোর গতিবেগ কত?
- 14 বর্ণালী কাকে বলে? বিচ্ছুরণ কি কারণে ঘটে? পরীক্ষাগারে কি ভাবে বর্ণালী তৈরি করতে পারবে?
- 15 স্বচ্ছ ও অনচ্ছ বস্তু কি কারণে রঙীন দেখার? লাল আলোর একটি লাল ও একটি হল্যদ ফুলকে কেমন দেখাবে?

## অষ্ট্ৰম অধ্যায়

- 1 কেলাসিত ও অকেলাসিত বস্তু কাদের বলে? বন্ধনশক্তি বলতে কি বোঝ?
- 2 'কোন কেলাসিত বস্তুর গলনাত্ত ও হিমাত্ত একটি নির্দিষ্ট তাপমাত্রা'—আলোচনা কর। অকেলাসিত বস্তুর নির্দিষ্ট গলনাত্ত বা হিমাত্ত নেই কেন ?

#### নবম অধ্যায়

- 1 অজানা কোন পদার্থকে কিন্তাবে সনাক্ত করা যেতে পারে? পদার্থের ভৌত এবং রাসায়নিক ধর্ম বলতে কি বোঝায়?
- পদার্থের ভৌত এবং রাসায়নিক পরিবর্ত্তন সম্পর্কে উদাহরণসহ আলোচনা কর।
- 3 ভৌত এবং রাসায়নিক পরিবর্তনের তুলনা কর।
- 4 উদাহরণসহ আলোচনা কর:
  - (a) অনুঘটক ও তার কাজ, (b) তাপগ্রাহী ও তাপমোচী রাসায়নিক বিক্রিরা।

### দশ্য অধ্যায়

- 1 মৌল বা মৌলিক পদার্থ কাকে বলে? চোথের সামনে আমরা বেসব পদার্থ দেখি, তারা সবই কি মৌলিক? আজ পর্যন্ত পাওয়া গিয়েছে এমন মৌলের সংখ্যা কয়টি?
- 2 যৌগ বা যৌগিক পদার্থ কাকে বলে? যৌগের সঙ্গে মিশ্রণের পার্থক্য কী? মিশ্রণ এবং দ্রবণ কি এক? বায়ু মিশ্রণ মৌল না যৌগ?
- 3 ধাতু এবং অধাতু বলতে কি বোঝ? এদের পার্থক্যগুলি বল। সংকর ধাতু কী? 'পান' দেওয়া কাকে বলে?
- 4 উদাহরণ সহ আলোচনা কর:
  - (क) যোজ্যতা, (থ) মূলক, (গ) অণু ও পরমাণু।

#### একাদশ অধ্যায়

- 1 দ্রবণ বলতে কি বোঝায়? দ্রবণ কত রকম হতে পারে? দ্রবণের সঙ্গে দ্রাব ও দ্রাবকের সম্পর্ক কী? জলকে পৃথিবীর সর্বশ্রেষ্ঠ দ্রাবক বলা হয় কেন?
- 2 সম্প্রক্ত ও অসম্পৃতি দ্রবণ কাকে বলে? সম্পৃতিতার সক্ষে দ্রবণীয়তার কোন সম্পর্ক আছে? লবণের দ্রবণীয়তা 36·3 বলতে কি বোঝায়? দ্রবণীয়তার উপর তাপের প্রভাব সম্পর্কে কী জান?

#### দ্বাদশ অধ্যায়

- প্রতীক-চিহ্ন ও সংকেত বলতে কি বোঝায়? কয়েকটি রাসায়নিক সমীকয়ণের উদাহয়ণ দাও। এই সমীকয়ণে কিভাবে প্রতীক-চিহ্ন এবং সংকেতের ব্যবহার হয়েছে তার আলোচনা কয়।
- রাসায়নিক সমীকরণে কিভাবে সমতা রক্ষা করা হয় উদাহরণ সহ আলোচনা কর।
- 3 রাসায়নিক সমীকরণের সাহায্যে কি কি বিষয় জানান যায় এবং কি কি প্রকাশ করা য়য়য়না?
- 4 উनाइत्रा मह आलाहना कत :
  - (ক) যোজাতা (খ) মূলক

#### ত্ৰয়োদল অধ্যায়

- 1 তড়িৎ পরিবাহী হিসাবে তামা সর্বশ্রেষ্ঠ—এই কথা বললে কি বোঝায়? তড়িদ্ বিশ্লেষণ কাকে বলে? আয়ন ও আয়নন বলতে কী বোঝ? ক্যাটায়ন এবং অ্যানায়ন—এদের পার্থক্য কোথায়?
- 2 জলে তড়িৎ প্রবাহের প্রভাব বলতে কি বোঝায়? জলকে ইলেকট্রোলাইট বলা সম্পর্কে তোমার মতামত কি?
- 3 তড়িৎ লেপন কি ভাবে হয়? গিণ্টি করা কাকে বলে?

## চতুৰ্দশ অধ্যায়

- 1 আাসিডের ধর্ম কী? আাসিডের সঙ্গে ক্ষারকের কি সম্পর্ক আছে? কোনটা আাসিড এবং কোনটা ক্ষারক কিভাবে জানা যায়? আাসিড ও ক্ষারকের পার্থক্য কি কি?
- 2 লবণ বলতে সাধারণত আমরা কি বুঝি? কিভাবে লবণ ভৈরি হয়? কয়েকটি খুব পরিচিত লবণের নাম কর। প্রশমন কাকে বলে?
- 3 দোলের সময় তোমরা অনেকেই 'ভানিশিং কালার' ব্যবহার কর। এই রঙ তৈরি হয় আনমানিয়ম হাইছয়াইডের সলে ফেনফথালিনের বিক্রিয়ায়। রঙ উবে য়ায় কেন—বল দেখি?

#### পঞ্চদশ অধ্যায়

1 জারণ ও বিজারণ বলতে কি বোঝায় ? এদের মধ্যে পার্থকা কি কি তুলনামূলকভাবে দেখাও।

#### বোড়ল অধ্যায়

- 1 তরল বায়ু বলতে কি বোঝার? তরল বায়ু তৈরির যন্ত্র প্রথম কে আবিকার করেন? কি ভাবে বায়ুকে তরল করা হয়?
- 2 বাযুমগুলে নাইটোজেনের সমতা রক্ষার সার্থকতা কি? কি ভাবে সমতা রক্ষা হয় ?
- 3 কি ভাবে বায়ুমণ্ডলে কার্বন ডাইঅক্সাইডের সমতা রক্ষা চলে ? সমতা রক্ষা না হলে কি হত ?
- 4 বিরল গ্যাদ কি ? বায়ুমণ্ডলের কি কি বিরল গ্যাদ আমাদের কোন্ কোন্ প্রয়োজনে লাগে ?

## সপ্তদশ অধ্যায়

- 1 কি উপায়ে নিচের লেখা গ্যাসগুলি প্রস্তুত করা হয় ? তাদের ধর্ম এবং ব্যবহার লেখ।
  - (ক) অক্সিজেন, (খ) নাইট্রোজেন, (গ) আাদোলিয়া, (ঘ) কার্বন ডাইঅক্সাইড,
  - (ভ) সালফার ভাইঅক্লাইড (চ) সালফিউরেটেড হাইছোজেন।
- 2 উদাহরণ সহ সংজ্ঞা নির্দেশ কর:
  - (क) অনুষ্টক, (খ) অক্সি-হাইজোজেন শিখা, (গ) অন্তর্গতি, (ঘ) নিপ্রাণ বারু বা তাপবার, (৪) ক্মেলিং সণ্ট (চ) বিষাক্ত উপত্যকা, (ছ) সোডা ওয়াটার, (জ)

## পরিশিষ্ট

# বৈজ্ঞানিক শব্দকোষ

অকেলাসিত noncrystalline অক্ষ axis অক্ষণ্ড axle সমাক cc-axial चरेजन inorganic অণু molecule অধাতু nonmetal অনচ্ছ opaque অনুঘটক catalyst অনুপাত ratio অনুভ্মিক horizontal অন্তপুতি occlusion অপচয় dissipation অপসারী divergent অপ্রভ nonluminous অবস্থা state অবস্থার রূপান্তর change of state অভিলয় normal অভিসারী convergent আর্কিমিডিদ Archimedes

(287-212 B. C,)

আৰ্গ erg আপতন incidence.—বিন্দু point of incidence আরহেনিয়াস Arrhenius, Svante August (1859—1927) আলবার্ট আইনস্টাইন Einstein, Albert (1879—1955)

আলম্ব fulcrum আলোক কেন্দ্ৰ optical centre আলোক চক্ৰ optical disc

আলো, আলোক light. —রশ্মি ray of light. 一唿颐 beam of light. — मक्त्र propagation of light আয়তন volume আয়ন ion আয়নন ionisation. তাপ—thermal— আানায়ন anion আমিরফাস amorphous আান্পিয়র Ampere আাসিড acid. খনিজ -mineral -. গাঢ়-concentrated-. লঘ্-dilute-ইণ্টারত্যাশনাল বারো অফ ওয়েটস আতি মেজারদ International Bureau of weights & measures ঈयमञ्ज translucent উদায়ী volatile উপগ্ৰহ satellite উলফ বোতল Woulf's bottle উধ্ব পাতন sublimation একক unit. প্রাথমিক-fundamental-. বিটিশ থাৰ্মাল- British Thermal-, লক্ত — derived—. সি জি এস ইলেকট্রোম্যাগ-নেটিক— C. G. S. electromagnetic—. সি জি এস ইলেকটোষ্টাটিক- C. G. S. electrostatic-একক পদ্ধতি System of units. পি এস- F. P. S .- . এম কে এস এ-M. K.S.A. -. এস আই - S.I. -. জ্বি-

Georgi-. মেট্রিক- Metric-. সি.

জি এস — C. G. S .-

ওজন, ভার weight ওজনের বাক্স—weight box ওলাউ রোমার Roemer, Olau (1644—1710)

ওলন দড়ি plumb line ওয়াট watt ওয়েভিং welding কম্পাস্ক frequency

কডিট রামফোর্ড Rumford, Count Benjamin Thompson (1753-1814)

কিউদেক cusec
কিপদ আপোরেটদ Kipps apparatus
কিলোওয়াট-ফটা kilo-watt-hour
কেন্দ্রীণ বিক্রিয়া nuclear reaction
কেলভিন kelvin
কেলাদ crystal

কোণ angle. আপতন— incident—. চ্যুতি— angle of deviation. প্ৰতিফলন— —of reflection. প্ৰতিসরণ——of refraction.

দংকট— critical— কোষ cell ভড়িৎ— electric—. আলোক-ডড়িং— photo-electric— ক্যাণ্ডেলা candela

ক্যালরিক মতবাদ caloric theory
ক্যাটায়ন cation

ক্যালিপাস callipers. অন্তম্থী—inside

- বহিম্থী – outside—
ক্লোক্ষেল chlorophyll

ক্রান্ত্রাক্র emotophyll ক্রান্ত্রীয় বছর tropical year

কিন্তিয়ান হয়গোন্স্ Huygens, Christian (1625-95)

ক্রিরা action. প্রতি— reaction
ক্ষমতা power. অথ— horse—
ক্ষার alkali. — মৃত্তিকা alkaline earth

কারীয় ক্রণ alkaline solution
কুরধার ত্রিভূজ knife edge
ক্ষেত্রকল area
গতি motion. আপেক্ষিক— relative—.
পর্ম— absolute—, —শক্তি kinetic
energy

গলন melting গলনাত্ব melting point গোলক sphere গ্যালন gallon

গ্রাফাইট graphite চক্র cycle. কার্বন— carbon—.

নাইট্রোজেন— nitrogen—.
চোঙ নল cylinder

ছক কাগজ graph paper

জন ভাগ্টন Dalton, John (1766-1844) জন লক Locke, John (1632-1704)

জন-তুল্যান্ক water equivalent জডতা inertia

জারণ oxidation

জাড্য inertia জাড্য ভর inertial mass

জून Joule

জেমদ প্রেস্কট জুল Joule, James Prescott (1818-1889)

জৈব organic ডিভাইডার divider

তরঙ্গ wave

তরঙ্গদৈর্ঘ্য wave length. তড়িচ্চ্যুস্কীয়
— electromagnetic—. রেডিও—radio—
তল plane. অনুভূমিক— horizontal—.
উল্লম্য—vertical —. নত— inclined—
তড়িৎ লেগন electroplating.
তড়িদ্-অবিশ্লেষ্য non-electrolyte

তড়িদ্-দার electrode তড়িদ্-প্রবাহ electric current

তড়িদ্-বিলেষণ electrolysis তড়িদ্-বিশ্লেক্স electrolyte তাপ heat. আপেক্ষিক— specific ---তাপগ্রাহিতা thermal capacity তাপমাত্রা temperature তামার চোকলা copper turnings তুলা বৈদ্ৰ balance সাধারণ— common—. · শ্রিং— spring—. স্থানী— sensitive—• ফিজিক্যাল— physical— তুলামূল্যতা equivalence জরণ acceleration. অসম— non-uniform—. গড— average—. সম form-ক্ৰটি error. ব্যক্তিগত— personal—. যান্তিক— instrumental— থাৰ্থ therm থাৰ্মোকাপল thermocouple থার্মোপাইল thermopile থার্মোমিটার thermometer. ডাক্তারীclinical-. नीन lamp, burner. तूनरमन— Bunsen—. শ্পিরিট- spirit-. मीशन मिल luminous intensity দ্ৰবণ solution. অসম্প ক্ত- unsaturated-. সম্পৃত্ত- saturated-দ্ৰবণীয়তা solubility ফ্রতি speed. অসম— nonuniform —. গড- average -. সম- uniform -. দ্ৰাৰ solute দ্রাবক solvent धर्म property. एकोड- physical-. রাসায়নিক— chemical --পাতু metal. অ— non—. সংকর—alloy—. नव knob न्डम्हेन astronaut

नन tube. निर्शय- delivery-. নিতাতা হত্ৰ law of conservation. ভরের - of mass. শক্তির - of energy ভর ও শক্তির- of mass and energy. निक्किय गाम inert gas भागर्थ, वस matter পরমাণু atom পরিবাহী conductor. অতি— super— পাত্ৰ distillation. অভ্ৰুম— destructive-. আংশিক- fractional-পুনঃশিলীভবন regelation প্রতিফলন reflection. অনিয়মিত— irregular -- আভ্যন্তরীণ পূর্ণ -- total-internal -. নিয়মিত- regular-. বিকিপ্ত- irregular-, প্রতিসরণ refraction প্রতিসরাম্ব refractive index প্রতিসম symmetrical প্রতীক্চিন্ন symbol প্রধান অক্ষ principal axis প্রমাণ standard. - চাপ-pressure. - তাপ-মাত্রা—temperature. — মিটার —metre প্রশাসন neutralisation প্রশমিত neutralised প্রসারণ expansion প্রয়োগ বিন্দু point of application প্রিজ্ম prism প্লাজমা plasma প্রেটো Plato ( ? 427-347 B. C. ) প্রিস্টলি Priestley, Joseph (1733-1804) ফানেল funnel. দীর্ঘনল - thistle-.. ফারেনহাইট fahrenheit ফুট পাউণ্ডাল foot poundal ফ্রান্সিদ বেকন Bacon, Francis (1561-1626)

ফ্রেঞ্চ আকাদেমি French Academy কেনকথাৰ্ণলিন Phenolphthalein ফোকস focus ফোকস দূরত্ব focal length वक्रा curvature.—(क्रम centre of— — नामार्थ radius of —. বৰ্তনী circuit তডিদ বৰ্তনী electric— वर्गानी spectrum বাত্চক wind mill বাহু arm, ভার- load-প্রয়াস- effort-. वाष्ट्रायन evaporation বাঙ্গীভবন vaporisation বিকিরণ radiation. —শক্তি —energy বিক্রিয়া reaction. তাপগ্রাহী -endothermic-. তাপমোচী- exothermic-. পারমাণবিক nuclear . রাসায়নিক -chemical-বিক্ষেপ্ৰ scattering বিচ্ছুরণ dispersion বিচাতি deviation বিজারণ reduction ৰিপৰ্যয় inversion. পাৰ্যীয়— lateral— বিবৰ্ধক কাচ magnifying lens বিবৰ্ধন'magnification. রৈথিক— linear— विश्व image. मन्—real—. अमन्—virtual— विद्रल शाम rare gas বিরঞ্জক জবা bleaching agent বেগ velocity. অসম - non-uniform-. গড- average- मन- uniform-. বেভেল্ড স্থেল bevelled scale বুহস্পতি Jupiter ভর mass. জাড়া – inertial –. মহাকর্বজ gravitational-.

ভরবেগ momentum
ভার weight, load. —বাহু load arm
ভার weight, load. —বাহু load arm
ভেন্তর রাশি vector quantity
ভোত physical. —ধর্ম —property
—পরিবর্তন— change
রাশি—quantity
ভামক moment. বলের— — of a force
মন্দন retardation, deceleration
মহাবিধুব বিন্দু vernal equinoctical point
মরীচিকা mirage
মাইকেলসন Michelson, Albert

Abraham (1852-1931) মান magnitude, value. গড়- mean-মাগনেটো হাইছোডাইনামিক পাওয়ার বা এম এট ডি magneto-hydrodynamic power or M H D নিথাইল অরেঞ্জ Methyl orange মিশ্রণ mixture मनक radical মোল mole त्रीन element যান্ত্ৰিক তুল্যান্থ mechanical equivalent যান্ত্ৰিক মতবাদ mechanical theory যান্ত্ৰিক সুবিধা mechanical advantage যোলাতা valency योग compound त्रवार्षे छक Hooke. Robert (1635-1703)

রশি ray. অভিবেগুনি— ultraviolet— অপদারী—diverging—. অবলোহিত—infrared—. অভিদারী— converging— আপতিত— incident—. একবর্ণ—monochromatic—.

একস্-রে—X-ray. গামা— gamma—. প্রতিফলিত— reflectedপ্রতিস্ত refracted -. মহাজাগতিক cosmic -. একবৰ্ণ- monochromatic-, मगालवान- parallel-.

রাদারফোর্ড Rutherford, Ernest

(1875-1937)

রাশি ভেক্টর— vector. quantity. ভৌত— physical—ক্ষেলার— scaler—. রাসায়নিক chemical.—ধর্ম — property— পরিবর্তন —change

तियाकित reactor

नवन Salt

नाक्षात्र Laplace, Pierre Simon

(1749-1827)

लाख्यनित्य Lavoisier, Antoine

Laurent (1743-94)

লিভার lever লীন তাপ latent heat লেখ graph.

লেন্স lens. অবতল— concave—.অপসারী — diverging—. ञ्वडन— convex—. অভিসারী—converging—. —পাওয়ার power of the lens.

लिहोत्र litre

শক্তি energy, গতি- kinetic-, স্থিতি —potential—. वज्ञन—binding—

শংকু cone

শিখা flame, অক্সি-আাসিটিলিন— oxyacetylene. অক্সি-হাইডোজেন oxyhydrogen-.

भीनि Scheele, Karl Willhelm (1742 - 1786)

সমীকরণ equation नत्र displacement সংকৃচিত compressed সংকেত formula

সংন্মিত compressed मान viscous সার্ভেয়ার চেন surveyor's chain সি ভি রামন: Raman, C. V. (1888-1970) ফুচক (প) pointer -( 引) indicator পূত্ৰ law

নিউটনের গতিস্তা-Newton's laws of motion

সেলসিয়াস celcius দোরা nitre স্কেলার রাশি scaler quantity ষ্টপ ওয়াচ stop watch. - ক্লক - clock স্থাতার্ড ডিপার্টমেন্ট অফ বোর্ড অফ টেড Standard Department of Board of Trade

म्भान vibration किंग boiling ফুটনান্ধ boiling point का transparent ৰপ্ৰভ luminous স্থিতি rest. আপেফিক- relative-. পর্ম- absolute-.-শক্তি potential energy

স্থিতিস্থাপক elastic স্থিতিস্থাপকতা elasticity স্থিরান্ধ fixed point. উচ্চ- upper-निम-lower-হামফ্রে ডেভি Davy, Humphrey (1778 - 1829)

হিম মিশ্রণ freezing mixture তিমায়ন freezing হিমান্ত freezing point हिरमारशाविन haemoglobin



# অক্সফোর্ড ইউনিভার্সিটি প্রেস

Padarthavidya O Rasayan 3

Rs 4.80