Markov_Chains

Eduardo de Jesús Cuellar Chávez

3/3/2022

¿Por qué son importantes las cadenas de Markov?

Muchos procesos estocásticos son usados para modelar el comportamiento de activos financieros (Pequeño spoiler del final del curso) y otros modelos usados en análisis de supervivencia (Modelos multiestado de riesgos competitivos), seguros (Vida múltiple), marketing (Visitas de una página o perfil de internet), lo cual hace relativamente fácil simular estos procesos.

En este pequeño Rmarkdown presentaremos una breve introducción a la simulación de estas famosas Cadenas de Markov, ¡Sí, como el perrito del cartel del curso!

Figure 1: ¡Markov!

Haremos énfasis en las cadenas con estados y tiempos discretos, que son los que hemos estado viendo en clase.

¿Por qué es de utilidad la simulación?

Ayuda a aterrizar los conceptos teóricos en algo práctico, además de que nos ayuda bastante a visualizar qué es lo que está pasando "en la práctica", con la teoría.

Pequeño recordatorio

Sea $\mathbb S$ un conjunto discreto el espacio de estados, y π la distribución inicial de la cadena, así como P_{ij} la probabilidad de ir del estado i al j, con $i, j \in \mathbb S$.

Decimos que un proceso estocástico $\{X_n : n \in \mathbb{N}\}$ es una cadena de Markov si cumple que $\forall n \geq 0$ y estados $i, j \in \mathbb{S}$:

$$\mathbb{P}(X_{n+1} = j | X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}, X_n = i) = \mathbb{P}(X_{n+1} = j | X_n = i) = P_{ij}$$

Recordemos que:

 P_{ij} denota la probabilidad de que la cadena, **estando actualmente en tiempo n en el estado i**, se mueva en el siguiente paso ("unidad de tiempo"), al estado j. A esta probabilidad también se le conoce como **probabilidad de transición de un paso**

Si unimos todas estas probabilidades para cada i en un vector, y los acomodamos como renglones de una matriz, **obtenemos una matriz cuadrada** $\mathbb{M} = P_{ij} \forall i, j \in \mathbb{S}$. A esta matriz la llamamos **matriz de transición de un paso**, ya que cuando la cadena deja el estado i, debe moverse a algún estado $j \in \mathbb{S}$

Con lo comentado anteriormente, es fácil darnos cuenta de que hay una distribución para cada estado inicial a tiempo n, es decir, cada renglón debe sumar uno:

$$\sum_{j \in \mathbb{S}} P_{ij} = 1$$

Con esto, estamos asumiendo que las probabilidades **no** dependen del tiempo, sino **únicamente del estado en el que nos encontramos actualmente**

Algoritmo para simular

- 1. Definir la distribución inicial π , así como la matriz de transición \mathbb{M} , así como definir el espacio de estados.
- 2. Obtener una muestra de tamaño 1 de la distribución inicial y asignársela a la variable X_0
- 3. Hacemos un subsetting para quedarnos con el renglón donde estamos parados (es decir, del renglín i-ésimo)
- 4. Usaremos la función sample para obtener los estados
- 5. Repetimos desde 3 hasta que hayamos realizado las niteraciones que queremos

Implementación

```
# pi es la distribución inicial
# m la matriz de transición a un paso
# n el número de simulaciones
# s el vector de estados
Markov<-function(pi,m,s,n){
    #Número posible de estados
    num_estados <- nrow(m) # o la longitud del vector o bien: length(s)
#Estados que va tomando
    estados <- numeric(n)
    #inicializamos la primera entrada
    estados[1] <-sample(s, 1, prob = pi)
    #Ahora usamos la matriz de transición
    for(t in 2:n) {
        # Obtenemos el vector de probabilidades correspondiente</pre>
```

```
#a dicho estado en el que caímos
p <- m[estados[t-1], ]
# una muestra al azar de los estados
  estados[t] <- sample(s, 1, prob = p)
}
return(estados)
}</pre>
```

Ejemplo:

```
s < -c(1,2,3,4)
pi < -c(1/4, 1/4, 1/4, 1/4)
p1 < -c(0,0,1/3,2/3)
p2 < -c(0, 1/2, 0, 1/2)
p3<-c(1/3,1/3,1,1/3)
p4 < -c(1/2,0,1/2,0)
m \leftarrow matrix(c(p1, p2, p3, p4), nrow=4, ncol=4, byrow = T); m
##
               [,1]
                          [,2]
                                     [,3]
                                                [,4]
## [1,] 0.0000000 0.0000000 0.3333333 0.6666667
## [2,] 0.0000000 0.5000000 0.0000000 0.5000000
## [3,] 0.3333333 0.3333333 1.0000000 0.3333333
## [4,] 0.5000000 0.0000000 0.5000000 0.0000000
simulaciones<-Markov(pi,m,s,n)</pre>
```

Visualizamos:

```
library(ggplot2)
tiempo<-seq(from=0,to=(n-1),by=1)
datos<-data.frame("Tiempo"=tiempo,"Estado"=simulaciones);datos</pre>
```

```
##
       Tiempo Estado
## 1
             0
## 2
             1
                     3
## 3
             2
                     1
             3
## 4
## 5
             4
                    3
             5
                    4
## 6
## 7
             6
                    3
             7
## 8
                    1
## 9
             8
                    4
## 10
             9
                     1
            10
                    3
## 11
                     1
## 12
            11
## 13
            12
                    3
                    3
## 14
            13
                    4
## 15
            14
                    3
## 16
            15
## 17
            16
                    3
                     3
## 18
            17
```

## 19	18	1
## 20	19	3
		2
## 21	20	
## 22	21	4
## 23	22	1
## 24	23	4
## 25	24	1
## 26	25	3
## 27	26	3
## 28	27	3
## 29	28	2
## 30	29	4
		3
## 31	30	
## 32	31	2
## 33	32	2
## 34	33	2
## 35	34	2
## 36	35	2
## 37	36	2
## 38	37	2
## 39	38	4
## 40	39	1
## 41	40	4
## 42	41	3
## 43	42	3
## 44	43	3
## 45	44	1
## 46	45	4
## 47	46	1
## 48	47	3
## 49	48	1
## 50	49	4
## 51	50	3
## 52	51	2
## 53	52	4
## 54	53	3
## 55	54	3
## 56	55	2
## 57	56	4
## 58	57	3
## 59	58	1
## 60	59	3
## 60	60	3
	61	4
## 63	62	3
## 64	63	2
## 65	64	4
## 66	65	3
## 67	66	3
## 68	67	3
## 69	68	4
## 70	69	1
## 71	70	4
## 72	71	3

```
## 73
            72
                     3
## 74
            73
                     2
                     2
## 75
            74
## 76
            75
                     2
                     2
## 77
            76
                     2
## 78
            77
## 79
                     2
            78
## 80
            79
                     2
                     2
## 81
            80
                     2
## 82
            81
## 83
                     4
            82
## 84
            83
                     3
                     2
## 85
            84
## 86
                     2
            85
## 87
            86
                     4
## 88
            87
                     1
## 89
            88
                     3
## 90
                     3
            89
## 91
            90
                     4
## 92
                     3
            91
## 93
                     1
            92
## 94
            93
                     3
## 95
            94
                     3
## 96
            95
                     1
## 97
            96
                     3
## 98
            97
                     1
## 99
            98
                     3
## 100
            99
                     4
## 101
                     3
           100
## 102
           101
                     3
## 103
           102
                     3
## 104
           103
                     1
## 105
           104
                     4
## 106
           105
                     1
## 107
           106
                     3
## 108
           107
                     3
## 109
                     3
           108
## 110
           109
                     3
## 111
                     3
           110
## 112
           111
                     1
## 113
                     3
           112
## 114
                     2
           113
## 115
           114
                     4
## 116
           115
                     1
```

#Podemos ver cómo va saltando
ggplot(datos,aes(x=Tiempo,y=Estado))+geom_line()

