

Ziel: Kleinste Anzahl an Zügen

Idee

- Feedback Arc Set Problem (FAS) ist ähnlich zum Spiel mit unbegrenzter Höhe
- o Konstruktion des Spiels (SCBT) als Graphen
- Reduktion des Problems auf FAS
- o FAS ist NP-vollständig, somit auch SCBT

Definitionen

- \circ Menge an Farben $C = \{1, \dots c\}$ mit festem $c \in \mathbb{N}$
- o c+1 Tuben der Höhe $h_i \in \mathbb{N}$ in den Farben und eine farblos
- o Bis zu h_i Bälle pro Farbe
- \circ Konfiguration S einer Tube ist eine Sequenz (b_1,\ldots,b_l) mit $l\leq h$
- \circ Tube-Rack (T_0, T_1, \ldots, T_c) hat Höhenprofil $H = (h_0, \ldots, h_c)$ und Ersatztube T_0

Definitionen

- o Konfiguration eines Tube-Racks ist $S = (S_0, \dots, S_c)$ mit $|S_i| \leq h_i$
- \circ Zug (i,j) heißt valide, falls $|S_i| \geq 1$ und $|S_j| < h_j$
- o Finale Konfiguration ist $S=(S_0,\ldots,S_0)$ mit $S_0=()$ und $S_i=(i,\ldots,i)$ für $1\leq i\leq c$
- \circ *i*-farbiger Ball ist in finaler Position, falls er in Tube *i* ist und alle Bälle darunter Farbe *i* haben

Probleme

- o SCBT-Problem:
 - \Rightarrow Instanz (H, S, k) mit k validen Zügen
- Restricted SCBT-Problem (RSCBT):
 - \Rightarrow Anzahl Bälle der Farbe i gleich der Höhe $h \in \mathbb{N}$ mit dem Höhenprofil $H = (h, \dots, h)$

Lemma 1

FAS

Lemma 2

Beweis (Hinrichtung)

Beweis (Rückrichtung)

Beweis (Rückrichtung)

Definition DFVS

Lower Bounds

Algorithmus

Related Work

- Sortieren von farbigen Bällen in farblosen Tuben. Bälle nur auf Bälle gleicher Farbe oder in leere Tuben (Reduktion von 3-Partition)
- k i-farbige Bälle in umgekehrter Reihenfolge. Nur adjazente Bälle können getauscht werden
- Reales Problem: Container in Terminalen, um Effizienz im Lagerplatz zu steigern, unproduktive Züge beim Stapeln zu vermeiden und sich an Planungseinschränkungen zu halten

Fin