

Localizing Visual Sounds the Easy Way

Shentong Mo¹, Pedro Morgado^{1,2}

¹Carnegie Mellon University & ²University of Wisconsin-Madison

Paper, code, and data are available: https://github.com/stoneMo/EZ-VSL

Contributions

- ★ We present a simple yet effective multiple instance learning framework for unsupervised sound source visual localization, which we call EZ-VSL.
- ♦ We propose a novel object-guided localization scheme that favors object regions, which are more likely to contain sound

- **Training**: the audio-visual feature extractor computes global audio and localization visual features. Audio-visual alignment is learned by a *multiple instance contrastive learning* objective.
- Inference: At inference time, we use another visual encoder pre-trained on object recognition to compute object

localization maps, which are combined with audio-visual localization maps for the final prediction.

Comparison with state-of-the-arts

Ablation Study

AVL	L1-OGL	CLS-OGL	Flickr So CIoU(%)	${ m AUC}(\%)$	VGC CIoU(%)	G-SS AUC(%)
√			78.31	61.74	35.96	38.20
	\checkmark		78.31	61.17	36.77	38.69
		\checkmark	75.10	58.18	35.13	38.08
\checkmark		\checkmark	81.93	62.50	38.58	39.59
\checkmark	\checkmark		$\bf 83.94$	63.60	39.34	39.78

Qualitative Visualizations

Cross-dataset Generalization

Test set	Training set	Method	CIoU(%)	AUC(%)
	VGG-Sound 10k	LVS [6] EZ-VSL	61.80 78.71	53.60 61.56
Flickr SoundNet	VGG-Sound 144k	LVS [6] EZ-VSL	71.90 84.34	58.20 63.77
	VGG-Sound Full	LVS [6] EZ-VSL	73.59 83.94	59.00 63.60
MOO GG	Flickr 10k	LVS [6] EZ-VSL	18.71 35.54	30.29 38.18
VGG-SS	Flickr 144k	LVS [6] EZ-VSL	26.95 38.62	34.30 39.20

Open Set Source Localization

Test class	Method	CIoU(%)	AUC(%)
Heard 110	LVS [6]	28.90	36.20
	EZ-VSL	37.25	38.97
Unheard 110	LVS [6]	26.30	34.70
	EZ-VSL	39.57	39.60

A-V Matching Strategies

AV matching strategy	Flickr SoundNet CIoU(%) AUC(%)		VGG-SS CIoU(%) AUC(%)	
	0100(70)	A00(70)	0100 (70)	HOO(70)
$ extstyle{sim}(\operatorname{MaxPool}_{xy}(V_{xy}),A)$	49.40	48.97	12.72	27.10
$\operatorname{AvgPool}_{xy}(\operatorname{\texttt{sim}}(V_{xy},A))$	33.33	37.56	6.03	19.44
$\operatorname{MaxPool}_{xy}(exttt{sim}(V_{xy},A))$	78.31	$\boldsymbol{61.74}$	35.96	38.20

Project Website

Feel free to scan for more details!

