

Школа Data analyst Занятие 12

Статистический анализ Тема 2

Disclaimer

Все формулировки далее нестрогие, за более строгими определениями обращайтесь к специализированной литературе

План занятия

- Оценка распределения по выборке
- Важные характеристики распределений
- Важные статистики
- Доверительные интервалы
- Центральная предельная теорема
- Статистический вывод

Зачем оценивать распределение по выборке?

- Чтобы получить некое представление о мире
- Чтобы делать базовые прогнозы на основе полученных распределений (при этом имея численное, а не качественное выражение)
- Часто нас не интересуют супер точные результаты, да мы и не можем учесть такое кол-во переменных у себя в голове
- Некоторые алгоритмы машинного обучения (например, Байесовские алгоритмы классификации), основываются на знании априорных (предопределенных, доопытных) вероятностях классов

В общем виде задача формулируется так:

"Требуется оценить плотность распределения р(х) по выборке независимых случайных векторов, распределенных по этому закону р(х)."

Выборка случайной величины Х:

$$X^n = (X_1, \dots, X_n),$$
 n – объем выборки

 X^n - независимы и распределены одинаково (i.i.d.)

 $T(X^n)$ - статистика, функция от выборки, возвращающая какое-то число

^{*} independent and identically-distributed

Воспоминание:

Распределение дискретной случайной величины задается функцией вероятности:

$$X \in \Omega = \{\omega_1, \omega_2, \omega_3, \dots\}, \qquad P(X = \omega_k) = pk$$

$$\bar{p}_k = \frac{1}{n} \sum_{i=1}^n [Xi = \omega_k]$$

Для дискретной выборки функцию вероятности можно оценить частотами событий

Но что делать для непрерывной случайной величины?

$$X \sim F(x)$$

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n [X_i \le x]$$
 - эмпирическая функция распределения

$$X \sim f(x)$$

$$f(x): \int_{a}^{b} f(x)dx = P(a \le x \le b)$$

Формула Стерджесса

$$bins = 1 + [log_2 N]$$

 $bins = 1 + 3.322 lg N$

Colab? Colab!

Характеристики и статистики

Математическое ожидание

Дисперсия и среднеквадратическое отклонение

$$\mathbb{D}X = \mathbb{E}\big((X - \mathbb{E}X)^2\big)$$
 Дисперсия *

$$\sigma = \sqrt{\mathbb{D}X}$$

Стандартное отклонение

$$IQR = X_{0.75} - X_{0.25}$$

Интерквартильный размах

 $^{^*}$ Средний квадрат отклонения от среднего значения $\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n} \;\; n o \infty$

 X_{α} Квантиль порядка α \in (0, 1):

$$\mathbb{P}(X \le X_{\alpha}) \ge \alpha$$

$$\mathbb{P}(X \ge X_{\alpha}) > 1 - \alpha$$

Медиана — квантиль с α = 0.5. Т.е. элементы выборки с одинаковой вероятностью попадают по обе стороны медианы.

$$\mathbb{P}(X \le X_{\alpha}) \ge 0.5$$

$$\mathbb{P}(X \ge X_{\alpha}) > 0.5$$

Мода — «наиболее вероятное» (частое) значение случайной величины

$$modeX = egin{cases} argmax \, p_i & X - \ Auckpetha \ argmax \, f(x), & X - \ Heпpepывна \ x^. & \end{pmatrix}$$

$$X \sim N(\mu, \sigma^2) \implies \mathbb{E}X = \mu = mode X = med X$$

$$\mathbb{D}X = \sigma^2$$

$$X \sim U(a, b) \implies \mathbb{E}X = med X = \frac{a+b}{2}$$

 $mode\ X$ — не определена (любое число на отрезке [a,b])

$$\mathbb{D}X = \frac{(b-a)^2}{12}$$

$$X \sim Ber(p) \implies \mathbb{E}X = p$$

 $\mathbb{D}X = pq$

$$X \sim Ber(p) \implies \mathbb{E}X = p$$
 $X \sim Binom(n, p) \implies \mathbb{E}X = np$ $\mathbb{D}X = pq$ $\mathbb{D}X = pq$

$$X \sim Pois(\lambda) \implies \mathbb{E}X = \lambda$$
 $\mathbb{D}X = \lambda$ При больших $\lambda \times \mathbb{N}(\lambda, \lambda)$

Why not to trust statistics?

pandas.DataFrame.describe ??? scipy.stats??? numpy???

count	1.000000e+03			
mean	1.446043e-14			
std	2.150399e+00			
min	-3.719016e+00			
25%	-1.859508e+00			
50%	1.421085e-14			
75%	1.859508e+00			
max	3.719016e			

Как пользоваться?

Сегментировать!

Квартет Анскомбе	A	В	С	D
Среднее значение х	9.00	9.00	9.00	9.00
Дисперсия х	11.00	11.00	11.00	11.00
Среднее значение у	7.50	7.50	7.50	7.50
Дисперсия у	4.21	4.21	4.21	4.21
R ²	0.67	0.67	0.67	0.67
Прямая линейной регрессии	y = 3 + 0.5 x			

Квартет Анскомбе

Парадокс Симпсона

Всегда смотрите на гистограммы/функции вероятности!

Характеристики могут привести в заблуждение!

Но, если мы работаем в одном и том же пространстве событий, то характеристики помогают сравнивать различные подходы, показатели, препараты, продукты...

Выборочное среднее считается по такой формуле

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Выборочная медиана, необходимо просто отсортировать выборку и выбрать значение в середине

$$X_{n} = (X_{1}, X_{2}, ..., X_{n})$$

$$X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$$

$$M(1) = \begin{cases} X_{(2)} & \text{if } n = 2k + 1 \\ X_{(k)} & \text{if } x = 2k \end{cases}$$

$$M(1) = \begin{cases} X_{(k)} & \text{if } n = 2k + 1 \\ X_{(k)} & \text{if } x = 2k \end{cases}$$

Выборочная дисперсия считается по такой формуле, деля на n-1, а не на n мы получаем так называемую "несмещенную оценку" — это точечная оценка, математическое ожидание которой равно оцениваемому параметру.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Colab? Colab!

Предсказательный интервал

Зная как распределена случайная величина Х, мы можем понять в каком

диапазоне она скорее всего окажется

$$\mathbb{P}(X_{\frac{\alpha}{2}} \le X \le X_{1-\frac{\alpha}{2}})$$

Доверительные интервалы

$$\mathbb{P}(C_L \leq \theta \leq CR) \geq 1 - \alpha$$

Левый предел

Оцениваемый параметр

Правый предел Уровень доверия

Технология

Зная как распределена статистика, мы, используя алгебраические преобразования можем понять в каком диапазоне будет изменяться неизвестный параметр. Диапазон при этом чаще всего задается квантилями распределений и другими статистиками по выборке

https://habr.com/ru/post/471198/

http://datascientist.one/central-limit-theorem/

https://www.youtube.com/watch?v=InXimz8zikc

Распределение выборочного среднего набора независимых одинаково распределенных случайных величин хорошо приближается нормальным распределением:

$$\bar{X}_n \approx \sim \mathcal{N}(\mathbb{E}X, \frac{\mathbb{D}X}{n})$$

Центральная предельная теорема Предсказательный интервал для \overline{X}

$$P(\mu - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \overline{X_n} \le \mu + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

Доверительный интервал для μ

$$P(\overline{X_{n}} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X_{n}} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

Доверительный интервал для $\mathbb{E} X$

$$P(\overline{X_{n}} - z_{1-\alpha/2} \sqrt{\frac{\mathbb{D}X}{n}} \leq \mathbb{E}X \leq \overline{X_{n}} + z_{1-\alpha/2} \sqrt{\frac{\mathbb{D}X}{n}}) = 1 - \alpha$$

Распределение Бернулли

$$X \sim Ber(p)$$

$$P(X = 1) = p$$

 $P(X = 0) = 1 - p = q$

Распределение Бернулли

$$ar{p} pprox \sim N(\mathbb{E}X, \frac{\mathbb{D}X}{n})$$
 $X \sim Ber(p) \Longrightarrow \mathbb{E}X = p, \mathbb{D}X = p(1-p)$

$$\bar{p} \approx \sim N(p, \frac{p(1-p)}{n})$$

$$\sigma = \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$

$$P(\bar{p} - 2\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \le \bar{p} \le \bar{p} + 2\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}) \approx 95\%$$

Пример:

Эксперимент 1: 30 подбрасываний, \bar{p} = 0.467 **95%** доверительный интервал: **0.285...0.649**

Эксперимент 2: 700 подбрасываний, $\overline{p}=0.556$ **95%** доверительный интервал: **0.519...0.594**

Биномиальное распределение

$$P(X = n) = p^{n} *$$

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$

^{*} вероятность попасть n-раз

^{**} вероятность попасть k-раз из n

Биноминальное распределение

$$P(X = n) = p^{n}$$

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$

^{*} вероятность попасть n-раз

^{**} вероятность попасть k-раз из n

ЦПТ. Машина Гальтона

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 6$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$
 $2^{1} = 1$

Colab? Colab!

Резюме

- Узнали как оценивать распределение по выборке
- Рассмотрели важные характеристики распределений
- Посмотрели на важные статистики
- Узнали что такое Центральная предельная теорема и чем она может быть полезна

Обратная связь

Спасибо за внимание!