

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

3 9 3 9 0 4 2 5 8 2

CO-ORDINATED SCIENCES

0654/41

Paper 4 Theory (Extended)

May/June 2023

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 is a diagram of a cross-section of skin.

Fig. 1.1

(i)	State the letter in Fig. 1.1 that identif	ïes a part:
	of the peripheral nervous system	
	that produces sweat	
	that requires energy for contraction.	[3]
(ii)	Describe how the blood vessels lab body temperature if internal body ter	pelled in Fig. 1.1 try to maintain a constant internal mperature increases .
		[3]
(iii)	State the term used to describe the body temperature.	e homeostatic mechanism used to control internal
		[1]

(b)	The	control of glucose concentration in the blood is an example of homeostasis.
	(i)	State the name of the hormone that reduces the concentration of glucose in the blood.
		[1]
	(ii)	State the type of organs that produce hormones.
		[1]
(c)	Stim	nuli cause the body to make responses.
	(i)	State the name of the organ that detects the change in temperature of the blood.
		[1]
	(ii)	State the name of the characteristic of living organisms that describes the detection and response to stimuli.
		[1]
		[Total: 11]

2 (a) (i) Fig. 2.1 shows the three states of matter.

Complete the labels on Fig. 2.1.

Fig. 2.1

[2]

(ii) Describe what happens to the kinetic energy of the particles in a gas when it is heated.

[1]

(b) A scientist analyses a food colouring X.

The scientist also analyses four dyes A, B, C, and D.

Fig. 2.2 shows the chromatogram produced.

Fig. 2.2

(i) State why the start line is drawn using pencil instead of ink.

[1]

(ii) Identify which of the dyes, A, B, C and D, are in the food colouring X.

.....[2]

(iii)	One of the substances in dye D	remains on the pencil line.	
	Explain why.		
			[1]
(iv)	Use Fig. 2.2 to calculate the R_f v	value for dye A .	
		R _f value =	[2]
(c) Tab	le 2.1 shows the melting points of	f tin, silver and the alloy sold	er.
		Table 2.1	
	substance	melting point /°C	
	tin	232	
	silver	962	
	solder	220–229	
Exp	lain how the melting points show	that solder is a mixture, but	tin and silver are not.
	3		
			[2]
			[Total: 11]

BLANK PAGE

- 3 An Olympic triathlon event consists of a 1500 m swim, a 40 km cycle ride and a 10 km run.
 - (a) Fig. 3.1 shows an athlete swimming at a constant speed.

Fig. 3.1

(i)	Describe how the size of force A compares with the size of force B .	
		[1]
(ii)	The athlete has a weight of 750 N and moves with a kinetic energy of 13.5 J.	
	Calculate the speed of the athlete.	
	The gravitational field strength, g , is 10 N/kg.	

speed =	 m/s	[2]
-		[-1

(b) Fig. 3.2 shows a speed–time graph for the start of the cycle ride.

Fig. 3.2

(i) Show that the maximum speed of the athlete during the first 40 seconds of the cycle ride is $12.5\,\text{m/s}$.

[1]

(ii) Calculate the acceleration of the athlete during the first 25 seconds of the cycle ride. Give your answer in m/s^2 .

acceleration = m/s² [2]

(iii)	Calculate	the	distance	covered	by	the	athlete	during	the	first	35	seconds	of	the	cycle
	ride.														

distance =	m	[2	2]
------------	---	----	---	---

(iv) Fig. 3.3 shows the pedal of the bicycle as the athlete pedals.

Fig. 3.3

The moment of the force applied by the athlete is 35.7 Nm.

Use Fig. 3.3 to calculate the force exerted by the athlete on the pedal.

(c)	During the run, the athlete starts to sweat.
	Explain, in terms of the motion and energy of water molecules, how sweating cools the athlete's skin.
	[3]
	[Total: 13]

BLANK PAGE

4 (a) Oxygen is one of the products of photosynthesis.

Complete the balanced symbol equation for photosynthesis.

(b) Complete the energy transfer that takes place using chlorophyll.

..... energy
$$\rightarrow$$
 energy [2]

- (c) State the name of the cells in a leaf that contain the highest concentration of chlorophyll.
 -[1]
- (d) A student investigates the effect of light intensity on the rate of photosynthesis.

Fig. 4.1 shows the apparatus she uses.

Fig. 4.1

The student:

- places the lamp at 10 cm from the aquatic plant
- counts the number of oxygen bubbles released in 2 minutes
- repeats this two more times and calculates a mean
- repeats the process with the lamp at different distances from the aquatic plant.

Table 4.1 shows the results.

The number of oxygen bubbles released indicates the rate of photosynthesis.

Table 4.1

distance of lamp	number of oxygen bubbles released in 2 minutes								
from aquatic plant /cm	test 1	test 2	test 3	mean					
10	78	77	80	78					
20	31	33	32	32					
30	14	15	17						
40	5	6	5	5					
50	5	5	5	5					

(i)	Calculate the mean	number o	f oxygen	bubbles	released	when	the	lamp	is	30 cm	from
	the aquatic plant.										

Give your answer to the nearest whole number.

Write your answer in Table 4.1.

(ii)	Describe the effect of light intensity on the rate of photosynthesis using the data in Table 4.1.
	[2]
	[2]
(iii)	The aquatic plant releases less oxygen into the water than it produces during photosynthesis.
	Suggest one reason for this difference.
	[1]

[2]

[Total: 10]

5 (a) Fig. 5.1 shows a diagram of a lithium atom.

Fig. 5.1

(i) Complete the labels on Fig. 5.1. [3](ii) State the electronic structure of a lithium atom.

......[1]

(b) (i) A lithium atom bonds with a chlorine atom by ionic bonding.

Fig. 5.2 shows the formation of a lithium ion, Li⁺, from a lithium atom.

Fig. 5.2

Draw a similar diagram to show the formation of a chloride ion, Cl^- , from a chlorine atom.

ii)	Ionic compou	ınds, such as lithium	chioride, nave a lati	iice structure.	
	Describe the	lattice structure of io	nic compounds.		
	You may inclu	ude a labelled diagra	m if you wish.		
					[2
(i)	Carbon has t	hree naturally occurr	ing isotopes: carbon	ı-12, carbon-13 and	carbon-14.
	Complete Tall	ole 5.1 to show the noe.	umbers of protons,	neutrons and electro	ons in an ator
		oe.	numbers of protons,	neutrons and electro	ns in an ator
		oe.	·	neutrons and electro	ns in an ator
	of each isoto	oe. T	able 5.1	I	ons in an ator
	of each isotope	protons	able 5.1	electrons	ns in an ator
	isotope carbon-12	protons	able 5.1	electrons 6	ons in an ator
	isotope carbon-12 carbon-13	protons	able 5.1 neutrons 6	electrons 6	
ii)	isotope carbon-12 carbon-13 carbon-14 Explain, in te	protons	able 5.1 neutrons 6 8 these isotopes have	electrons 6 6 ethe same chemical	[2 properties.
ii)	isotope carbon-12 carbon-13 carbon-14 Explain, in te	protons 6	able 5.1 neutrons 6 8 these isotopes have	electrons 6 6 the same chemical	[2 properties.

Fig. 6.1 shows a boiler that uses combustion of natural gas to heat water.

	Fig. 6.1	
(a)	Natural gas is a non-renewable energy source.	
	Describe one environmental impact of using natural gas in this way.	
	[1]
(b)	The boiler has an efficiency of 90%.	
	The combustion of natural gas provides an input energy of 1.50 kJ.	
	Calculate the useful energy output from the boiler.	
	useful energy output =kJ [2]
(c)	Thermal energy is transferred through the water in the boiler by convection.	
	Describe the process of convection in terms of density changes.	

(d)	Ligh	In the gas flame has a wavelength of $4.6 \times 10^{-7} \mathrm{m}$.
	(i)	Calculate the frequency of the light from the flame.
		fraguency = Uz [2]
		frequency = Hz [3]
	(ii)	The light from the flame is a transverse wave.
		Complete the sentences to describe the differences between a transverse wave and a longitudinal wave.
		Transverse waves are produced by vibrations acting
		Longitudinal waves are produced by vibrations acting
		An example of a longitudinal wave is a wave. [2]
		[Total: 10]

(a) Fig. 7.1 is a diagram showing the development of a strain of antibiotic resistant bacteria.

(c)	Components of blood are responsible for protecting the body from disease-causing organisms including some strains of bacteria.
	State the name of the component of blood responsible for:
	antibody production
	blood clotting.
	[2]
	[Total: 9]

8 A student investigates the rate of reaction between dilute hydrochloric acid, HC*l*, and magnesium, as shown in Fig. 8.1.

Magnesium chloride, $MgCl_2$, and hydrogen gas, H_2 , are made.

Fig. 8.1

· · · · · · · · · · · · · · · · · · ·	
	rΩ

(b) The student repeats the experiment with five different temperatures of the dilute hydrochloric acid.

The same volume and concentration of hydrochloric acid and the same mass of magnesium ribbon are used in each experiment.

She measures the time for the magnesium to completely react at each temperature.

Table 8.1 shows her results.

Table 8.1

temperature /°C	time /s
20	119
25	76
30	60
35	39
40	31

(i)	The reaction gets faster as the temperature increases.	
	Explain how you can tell this from Table 8.1.	
		[1]

(ii) Tick (✓) two reasons in Table 8.2 which explain why reactions get faster as the temperature increases.

Table 8.2

reason	tick (✓)
particles are closer together	
particles collide more often	
particles have less energy	
particles have a larger surface area	
particles move faster	

[2]

(c) The reaction between magnesium and dilute hydrochloric acid is an **exothermic** reaction.

Use the axes shown in Fig. 8.2 to draw and label the energy level diagram for this reaction.

Label:

- the energy of the reactants and the products
- the energy change in the reaction
- the activation energy of the reaction.

Fig. 8.2

[3]

(d)	Zinc reacts with	sulfuric acid.	H _o SO ₄	to make	zinc sulfate.	ZnSO ₄ .	and hydro	aen a	as
١	Υ,	ZIIIO I CACIO WILLI	ounand adia,	112001	, to make	Zirio danato,	$Z \cap C \cup A$	and myard	gong	uo.

$$\rm Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

3.35 g of zinc reacts with excess dilute sulfuric acid to make 0.1 g of hydrogen gas.

Calculate the volume occupied by 0.1 g of hydrogen gas.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

volume of hydrogen gas =dm³ [3]

[Total: 11]

9 A student investigates how the resistance of a wire changes with length.

Fig. 9.1 shows the equipment she uses.

Fig. 9.1

(a) The student moves the crocodile clips to change the length of the wire.

She measures this length with the ruler and uses the ammeter reading to calculate the resistance of the wire.

When the wire is made longer, the reading on the ammeter decreases.

Explain why the reading on the ammeter decreases.	
[2	2]

(b) Fig. 9.2 shows a length of wire connected in series with another component labelled X.

Fig. 9.2

(i) State the name of the component labelled **X** in Fig. 9.2.

.....[1]

(ii) The student uses the component labelled **X** to vary the potential difference across the length of wire.

The student records the potential difference across the wire and the current in the wire.

Fig. 9.3 shows her results.

Fig. 9.3

Use Fig. 9.3 to determine the resistance of the wire.

	resistance = Ω	[2]
(c)	The student chooses to use a maximum electromotive force (e.m.f.) of 1.5 V.	
	State the meaning of the term electromotive force (e.m.f.).	
		[2]

(d) On Fig. 9.4, draw the shape and direction of the magnetic field around the current-carrying wire.

Fig. 9.4

[2]

[Total: 9]

10 Fig. 10.1 shows two red blood cells after they have been immersed in different solutions for an hour.

Cell A was immersed in a concentrated salt solution.

Cell **B** was immersed in blood plasma.

Fig. 10.1

(a)	Complete the sentences to explain the appearance of cell A in Fig. 10.1.	
	The concentrated salt solution has a lower than cell A	
	Water crosses the and leaves the cell by osmosis.	
	Water molecules move from a more solution to a m	nore
	solution.	[3]
(b)	Immersion of cell A in concentrated salt solution changes the shape of the cell.	
	Suggest how this change in shape affects the function of red blood cells in the body.	
		[2]
(c)	Concentration gradients affect the rate of osmosis.	
	Suggest two other factors that affect the rate of osmosis.	
	1	
	2	
		[2]

(d) Plant cells have additional cell structures that are not present in animal cells.								
	(i)	State the names of two cell structures present in plant cells but not in animal cells.						
		1						
		2						
			[2]					
	(ii)	State the name of the type of plant cell that is specialised for absorption of water.						
			[1]					
		[Total:	10]					

11 Look at the structures of the carbon compounds shown in Fig. 11.1.

Fig. 11.1

- State which compound is made by the catalytic addition of steam to compound A. Choose from B, C, D or E.
 - State which compound is made when compound A reacts with hydrogen gas, H₂. (ii) Choose from B, C, D or E. [1]

[1]

- State which compound reacts with bromine to form $C_2H_4Br_2$. Choose from A, B, C, D or E.
- [1]
- (iv) State which compound forms compound E in an addition polymerisation reaction. Choose from A, B, C or D.

[1]

© UCLES 2023 0654/41/M/J/23

(iii)

(b) Fig. 11.2 represents the formation of the polymer nylon from two monomers, X and Y.Nylon is made in a condensation polymerisation reaction.

Fig. 11.2

Describe how monomer **X** and monomer **Y** react together to make nylon.

Use the information in Fig. 11.2 in your answer.

[Total: 7]

12 A student investigates the penetrating abilities of ionising radiation.

Fig. 12.1 shows the equipment used by the student.

Fig. 12.1

(a) The student places different shielding materials between the source and the detector and uses the counter to record the number of counts in 1 minute.

Table 12.1 shows the student's results.

Table 12.1

shielding material	counts in 1 minute
no material (air only)	2560
paper	2555
thin aluminium	23
thick aluminium	24
thin lead	22
thick lead	17

i)	Use Table 12.1 to state and explain which type of ionising radiation is emitted by the source.
	type of ionising radiation
	explanation

[3]

	(11)	The source used in Fig. 12.1 has a half-life of 29 years.
		Calculate the time it will take for the activity of the source to drop to 12.5% of the original
		value.
		time = years [2]
(b)	The	lead used in the student's investigation is a solid.
	The	melting point of lead is 327 °C. When lead melts, it turns from a solid into a liquid.
	Des	scribe the changes in the forces between particles when a solid melts.
		[1]
(c)	The	density of liquid lead is 10.6 g/cm ³ .
	A sa	ample of liquid lead has a mass of 37.1g.
	Cal	culate the volume of the sample of liquid lead.
		volume = cm ³ [2]
		[Total: 8]
		[Total: 0]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

\equiv	2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon	118	Og	oganesson -
=																					
5																					E
>				7	z	nitrogen 14	15	۵	hosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	: <u>ā</u>	bismuth 209	115		
2																					
=				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204	113	Ł	nihonium —
										30	Zu	zinc 65	48	В	cadmium 112	80	운	mercury 201	112	5	opernicium
																					meitnerium d
	- :	I	hydrogen 1							26	Ьe	iron 56	4	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					<u></u>					24	ပ်	chromium 52	42	Mo	nolybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	mic number	ic symbo	name re atomic mass															
				atc	aton	relativ				22				Zr	zirconium 91	72	士	hafnium 178	104	弘	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	_
=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium -
_				3	:-	lithium 7	#	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ᇁ	francium -
	IIA IA AI			1 III IV V VII VIII Hydrogen 1 1 1 V V VII VIII	III IV V VI VII	II	II	III IV V VII VIII VIII	II	III	II	II	III IV VI VII VII	II	III IV V VI VII VI	11 17 17 17 17 17 17 17	11 1 1 1 1 1 1 1 1	11 17 17 18 19 19 19 19 19 19 19	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	Harmonian Harm

71 Lu	lutetium 175	103	۲	lawrencium	1
⁶ X	ytterbium 173	102	9	nobelium	ı
e9 Tm	thulium 169	101	Md	mendelevium	1
₈₈ <u>п</u>	erbium 167	100	Fm	ferminm	I
67 Ho	holmium 165	66	Es	einsteinium	1
°6 Dy	dysprosium 163	86	Ç	californium	1
es Tb	terbium 159	97	Ř	berkelium	1
² Gd	gadolinium 157	96	Cm	curium	_
e3 Eu	europium 152	92	Am	americium	_
Sm	samarium 150	94	Pu	plutonium	-
Pm	promethium -	93	d d	neptunium	1
9 9 8	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ъа	protactinium	231
Se Oe	cerium 140	06	Ч	thorium	232
57 La	lanthanum 139	89	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).