TD3 Architecture des ordinateurs CY TECH ING 1

LOGIQUE COMBINATOIRE

Exercice 1: Demi-additionneur

L'additionneur est un circuit réalisant l'addition de deux nombres binaires.

- 1) Donner la table de vérité d'un demi-additionneur.
- 2) Donner les équations de la somme et de la retenue.
- 3) Donner le circuit élémentaire réalisant cette opération d'addition (demi-additionneur).

Exercice 2 : Additionneur complet

L'additionneur est un circuit réalisant l'addition de deux nombres binaires.

- 1) Donner la table de vérité d'un additionneur complet.
- 2) Donner les équations de la somme et de la retenue.
- 3) Donner le circuit élémentaire réalisant cette opération d'addition de deux mots (Additionneur complet).
- 4) Donner le circuit d'un additionneur n bits.

Exercice 3: Soustracteur

- 1) Réaliser un demi-soustracteur (table de vérité et circuit)
- 2) Réaliser un soustracteur binaire complet (ou étage de soustracteur) selon deux modes :
 - a. avec deux demi-soustracteurs;
 - b. avec un demi-additionneur et un demi-soustracteur.

Exercice 4:

À quoi correspondent les circuits ci-dessous:

a)

Exercice 5 : Multiplexeur

Soit la fonction:

$$F(abcd) = (a+\overline{b}) \cdot (\overline{c+\overline{d}})$$

- 1) Donner la table de vérité de cette fonction.
- 2) Réaliser cette fonction à l'aide d'un multiplexeur à 3 bits d'adresses (abc).
- 3) Réaliser cette fonction à l'aide d'un multiplexeur à 2 bits d'adresses (ab).

LOGIQUE SEQUENTIELLE

Les bascules sont les éléments de base de la construction d'un système séquentiel synchrone. Il en existe un certain nombre, dont certainement les plus importantes, les bascules D et JK. Les bascules JK sont d'un usage plus général que les bascules D.

a) Equation JK

J	K	\mathbf{Q}_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$\overline{Q_n}$

Rappeler l'équation que vérifie la bascule JK après chaque top d'horloge () en vous aidant de la table de vérité.

Compléter le chronogramme ci-dessous.

b) Equation D

D	Q_{n+1}
0	0
1	1

Déterminer l'équation de la bascule.

Compléter le chronogramme ci-dessous.

(on rappelle que l'état d'une bascule D positive edge triggered ne change que sur front montant de H; en dehors du front, la sortie (Q_{n+1}) garde sa valeur (Q_n)).

Exercice: Automate d'état

Les étapes de synthèse (Analyse + Construction) d'un circuit séquentiel sont les suivantes:

- 1. Traduire le problème en un automate d'états
- 2. Construire la table d'état
- 3. Réduire la table d'états afin d'obtenir un automate réduit, supprimer les états redondants
- 4.Déterminer le nombre de bascules à utiliser. Si le nombre d'état est N alors m sera le nombre de bascule tel que: $2^{m-1} \le N \le 2^m$
- 5. Construire la table d'excitation, en choisissant le type de bascule. Trouver les équations des entrées des bascules en fonction des variables d'entrées (primaires et secondaires), de la manière suivante.
- 6. Simplifier les expression obtenues (équations des entrées des bascules) avec la table de karnaugh
- 7. Tracer le circuit séquentiel

Voici un automate à état d'un système qui est composé de 6 états, 2 entrées primaires et 2 sorties primaires. Réaliser le circuit séquentiel en partant de cet automate à l'aide de bascules T.

Rappel: Bascule T

Le schéma fonctionnel de la bascule T est donné par cette figure

La bascule T change d'état si T=1 et ne change pas d'état si T=0. La Table suivante résume son fonctionnement.

T	Q	Q _{n+1}
0	0	0
0	1	1
1	0	1
1	1	0