Семинар 5

Общая информация:

• Декремент перестановки $\sigma \in S_n$ это

 $dec(\sigma) = n$ — количество нетривиальных циклов — количество неподвижных точек

где нетривиальный цикл – это цикл длины хотя бы 2.

• Транспозиция – это цикл длины 2.

Задачи:

- 1. Задачник. §3, задача 3.2 (в, е).
- 2. Задачник. §3, задача 3.3 (а, в).
- 3. Задачник. §3, задача 3.6 (а, д).
- 4. Найти все такие $\sigma \in S_6$, что выполнено

$$\sigma \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 6 & 4 \end{pmatrix} \sigma^{-1} = (3,4)(1,5,6)$$

- 5. Пусть $\sigma, \tau \in S_n$ причем τ транспозиция. Покажите, что $\operatorname{dec}(\sigma\tau) = \operatorname{dec}(\sigma) \pm 1$.
- 6. Пусть $\sigma \in S_n$ представлена в виде $\sigma = \tau_1 \dots \tau_d$, где τ_i –транспозиции (вообще говоря зависимые) и пусть d наименьшее из возможных таких чисел. Покажите, что $d = \operatorname{dec}(\sigma)$.
- 7. Пусть $\sigma, \tau \in S_n$, покажите
 - $\operatorname{dec}(\tau \sigma \tau^{-1}) = \operatorname{dec}(\sigma)$
 - $\operatorname{dec}(\sigma^{-1}) = \operatorname{dec}(\sigma)$
 - $dec(\sigma\tau) = dec(\tau\sigma)$
 - $dec(\sigma\tau) \leq dec(\sigma) + dec(\tau)$
- 8. Для любых $\sigma, \tau \in S_n$ обозначим $d(\sigma, \tau) = \operatorname{dec}(\sigma \tau^{-1})$. Покажите, что $d(\sigma, \tau)$ является метрикой, т.е.
 - $d(\sigma,\tau) \geqslant 0$ для любых $\sigma,\tau \in S_n$
 - $d(\sigma,\tau)=0$ тогда и только тогда, когда $\sigma=\tau$
 - $d(\sigma,\tau)=d(\tau,\sigma)$ для любых $\sigma,\tau\in \mathbf{S}_n$
 - $d(\sigma,\tau) \leqslant d(\sigma,\rho) + d(\rho,\tau)$ для любых $\sigma,\tau,\rho \in \mathbf{S}_n$