← Final Exam

Quiz, 10 questions

1	
point	
1. Consid apply.]	er a connected undirected graph with distinct edge costs. Which of the following are true? [Check all that
	Suppose the edge e is the most expensive edge contained in the cycle C . Then e does not belong to any minimum spanning tree.
	Suppose the edge e is not the cheapest edge that crosses the cut (A,B) . Then e does not belong to any minimum spanning tree.
	Suppose the edge e is the cheapest edge that crosses the cut (A,B) . Then e belongs to every minimum spanning tree.
	The minimum spanning tree is unique.
1	
point	
2.	
also giv	e given a connected undirected graph G with distinct edge costs, in adjacency list representation. You are wen the edges of a minimum spanning tree T of G . This question asks how quickly you can recompute the we change the cost of a single edge. Which of the following are true? [RECALL: It is not known how to ministically compute an MST from scratch in $O(m)$ time, where m is the number of edges of G .] [Check all apply.]
	Suppose $e\in T$ and we increase the cost of e . Then, the new MST can be recomputed in $O(m)$ deterministic time.
	Suppose $e otin T$ and we decrease the cost of e . Then, the new MST can be recomputed in $O(m)$ deterministic time.
	Suppose $e otin T$ and we increase the cost of e . Then, the new MST can be recomputed in $O(m)$ deterministic time.
	Suppose $e \in T$ and we decrease the cost of e . Then, the new MST can be recomputed in $O(m)$ deterministic time.
1 point	
3.	
Which	of the following graph algorithms can be sped up using the heap data structure?
	Dijkstra's single-source shortest-path algorithm (from Part 2).
	Our dynamic programming algorithm for computing a maximum-weight independent set of a path graph.

	Greedy Algorithms, Minimum Spanning Trees, and Dynamic Programming - Home Coursera Prim's minimum-spanning tree algorithm.
	አራመkal's minimum-spanning tree algorithm.
Quiz, 10 que	estions
1 poin	t
	of the following problems reduce, in a straightforward way, to the minimum spanning tree problem?
	Given a connected undirected graph $G=(V,E)$ with positive edge costs, compute a minimum-cost set $F\subseteq E$ such that the graph $(V,E-F)$ is acyclic.
	The minimum bottleneck spanning tree problem. That is, among all spanning trees of a connected graph with edge costs, compute one with the minimum-possible maximum edge cost.
	The maximum-cost spanning tree problem. That is, among all spanning trees of a connected graph with edge costs, compute one with the maximum-possible sum of edge costs.
	The single-source shortest-path problem.
1 poin 5. Recall	t the greedy clustering algorithm from lecture and the max-spacing objective function. Which of the
	ng are true? [Check all that apply.]
	This greedy clustering algorithm can be viewed as Prim's minimum spanning tree algorithm, stopped early.
	If the greedy algorithm produces a k -clustering with spacing S , then every other k -clustering has spacing at most S .
	If the greedy algorithm produces a k -clustering with spacing S , then the distance between every pair of points chosen by the greedy algorithm (one pair per iteration) is at most S .
	Suppose the greedy algorithm produces a k -clustering with spacing S . Then, if x,y are two points in a common cluster of this k -clustering, the distance between x and y is at most S .
1 poin	t

6.

We are given as input a set of n jobs, where job j has a processing time p_j and a deadline d_j . Recall the definition of $completion\ times\ C_j$ from the video lectures. Given a schedule (i.e., an ordering of the jobs), we $Fine \ The complete \ The$

iz,Gø €€	d_j after its deadline that the job completes, or as 0 if d_j after its deadline that the job completes, or as 0 if d_j
Our go	al is to minimize the total lateness,
$\sum_{j} l_{j}$.	
Which	of the following greedy rules produces an ordering that minimizes the total lateness?
You ca	n assume that all processing times and deadlines are distinct.
WARN differe	NG: This is similar to but <i>not</i> identical to a problem from Problem Set #1 (the objective function is nt).
	Schedule the requests in increasing order of deadline d_{j}
	Schedule the requests in increasing order of the product $d_j \cdot p_j$
	Schedule the requests in increasing order of processing time p_{j}
	None of the other options are correct
, $f_c=$	der an alphabet with five letters, $\{a,b,c,d,e\}$, and suppose we know the frequencies $f_a=0.28$, $f_b=0.27$ 0.2 , $f_d=0.15$, and $f_e=0.1$. What is the expected number of bits used by Huffman's coding scheme to e a 1000-letter document?
	2520
	2250
	2230
	2450
	of the following extensions of the Knapsack problem can be solved in time polynomial in n , the number of and M , the largest number that appears in the input? [Check all that apply.]
	You are given n items with positive integer values and sizes, and a positive integer capacity W , as usual. You are also given a budget $k \leq n$ on the number of items that you can use in a feasible solution. The problem is to compute the max-value set of at most k items with total size at most W .
	You are given n items with positive integer values and sizes, as usual, and m positive integer capacities, W_1,W_2,\ldots,W_m . These denote the capacities of m different Knapsacks, where m could be as large as $\Theta(n)$. The problem is to pack items into these knapsacks to maximize the total value of the packed items. You are not allowed to split a single item between two of the knapsacks.
	You are given n items with positive integer values and sizes, and a positive integer capacity W , as

exists, the algorithm should correctly detect that fact.

<u>z,</u> 10 que	You are given n items with positive integer values and sizes, as usual, and two positive integer $ extbf{Xa}$ pacities, W_1 and W_2 . The problem is to pack items into these two knapsacks (of capacities W_1 and W_2) to maximize the total value of the packed items. You are not allowed to split a single item between the two knapsacks.
1	
point	
	ollowing problems all take as input two strings X and Y , of length m and n , over some alphabet $\Sigma.$ Whiem can be solved in $O(mn)$ time? [Check all that apply.]
	Assume that X and Y have the same length n . Does there exist a permutation f , mapping each $i\in\{1,2,\ldots,n\}$ to a distinct $f(i)\in\{1,2,\ldots,n\}$, such that $X_i=Y_{f(i)}$ for every $i=1,2,\ldots,n$?
	Compute the length of a longest common substring of X and Y . (A substring is a consecutive subsequence of a string. So "bcd" is a substring of "abcdef", whereas "bdf" is not.)
	Consider the following variation of sequence alignment. Instead of a single gap penalty α_{gap} , you're given two numbers a and b . The penalty of inserting k gaps in a row is now defined as $ak+b$, rather than $k\alpha_{gap}$. Other penalties (for matching two non-gaps) are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model.
	Compute the length of a longest common subsequence of X and Y . (Recall a subsequence need not be consecutive. For example, the longest common subsequence of "abcdef" and "afebcd" is "abcd".)
1 point	
freque	er an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) and its $w_1=.2,w_2=.05,w_3=.17,w_4=.1,w_5=.2,w_6=.03,w_7=.25$. What is the minimum-
Consid freque	er an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) an
Consid freque	er an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) and its $w_1=.2,w_2=.05,w_3=.17,w_4=.1,w_5=.2,w_6=.03,w_7=.25$. What is the minimume average search time of a binary search tree with these keys?
Consid freque	er an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) are notes $w_1=.2,w_2=.05,w_3=.17,w_4=.1,w_5=.2,w_6=.03,w_7=.25$. What is the minimumer average search time of a binary search tree with these keys?
Consid freque	er an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) are notes $w_1=.2,w_2=.05,w_3=.17,w_4=.1,w_5=.2,w_6=.03,w_7=.25$. What is the minimume average search time of a binary search tree with these keys? 2.33
Consid freque	er an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) and the cies $w_1=.2,w_2=.05,w_3=.17,w_4=.1,w_5=.2,w_6=.03,w_7=.25$. What is the minimume average search time of a binary search tree with these keys? 2.33 2.29
Consid freque	er an instance of the optimal binary search tree problem with 7 keys (say 1,2,3,4,5,6,7 in sorted order) are notes $w_1=.2,w_2=.05,w_3=.17,w_4=.1,w_5=.2,w_6=.03,w_7=.25$. What is the minimume average search time of a binary search tree with these keys? 2.33 2.29 2.23 2.18

Final Exam

Quiz, 10 questions