Outline

- Best-first search
 - Greedy best-first search
 - A* search
 - Heuristics
- Local search algorithms
 - Hill-climbing search
 - Beam search
 - Simulated annealing search
 - Genetic algorithms
- Constraint Satisfaction Problems
 - Constraints
 - Constraint Propagation
 - Backtracking Search
 - Local Search

Constraint Satisfaction Problems

Special Type of search problem:

- state is defined by variables X_i with values from domain D_i
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Examples:
 - Sudoku

cryptarithmetic SENDpuzzle + MOREMONEY

n-queens

Graph/Map-Coloring

Real-world:

- assignment problems
- timetables
 - classes, lecturers rooms, studies

..

Constraint Graph

- nodes are variables
- edges indicate constraints between them

Constraint Graph

- nodes are variables
- edges indicate constraints between them

Types of Constraints

- Unary constraints involve a single variable,
 - e.g., South Australia \neq green
- Binary constraints involve pairs of variables,
 - e.g., South Australia ≠ Western Australia
- Higher-order constraints involve 3 or more variables
 - e.g., $2 \cdot W + X_1 = 10 \cdot X_2 + U$
- Preferences (soft constraints)
 - e.g., red is better than green
 - are not binding, but task is to respect as many as possible
 - → constrained optimization problems

Solving CSP Problems

Two principal approaches:

- Constraint Propagation:
 - maintain a set of possible values D_i for each variable X_i
 - try to reduce the size of D_i by identifying values that violate some constraints

Search:

- successively assign values to variable
- check all constraints
- if a constraint is violated → backtrack
- until all variables have assigned values

Constraint Propagation - Sudoku

- Problem
 - CSP with 81 variables
- Constraints
 - some values are assigned in the start (unary constraints)
 - 27 constraints on 9 values that must all be different (9 rows, 9 columns, 9 squares)
- Constraint Propagation
 - People often write a list of possible values into empty fields
 - try to successively eliminate values
- Status
 - Automated constraint solvers can solve the hardest puzzles in no time

Figure 6

Node Consistency

Node Consistency

- the possible values of a variable must conform to all unary constraints
- can be trivially enforced
- Example:
 - Soduko: Some nodes are constrained to a single value

More General Idea: Local Consistency

- make each node in the graph consistent with its neighbors
- by (iteratively) enforcing the constraints corresponding to the edges

Arc Consistency

every domain must be consistent with the neighbors:

A variable X_i is arc-consistent with a variable X_j if

- for every value in its domain D_i
- there is some value in D_i
- that satisfies the constraint on the arc (X_i, X_j)

- can be generalized to n-ary constraints
 - each tuple involving the variable X_i has to be consistent

- Idea: establish arc consistency for every new variable
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable has no more legal values

- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable no legal values

- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable no legal values

- Idea:
 - keep track of remaining legal values for unassigned variables
 - terminate search when any variable no legal values

Constraint Propagation

Problem:

- forward checking propagates information from assigned to unassigned variables
- but doesn't look ahead to provide early detection for all failures

Maintaining Arc Consistency (MAC)

 After each new assignment of a value to a variable, possible values of the neighbors have to be updated:

If one variable (NSW) looses a value (blue), we need to recheck its neighbors as well:

Arc Consistency Algorithm

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_j) then
                                                                      If X loses a value,
                                                                      neigbors of X need
         for each X_k in Neighbors [X_i] do
                                                                      to be rechecked.
            add (X_k, X_i) to queue
function Remove-Inconsistent-Values (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in Domain[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from Domain[X_i]; removed \leftarrow true
   return removed
```

Run-time: $O(n^2d^3)$ (can be reduced to $O(n^2d^2)$)
more efficient than forward checking (see later)

Path Consistency

- Arc Consistency is often sufficient to
 - solve the problem (all domains have size 1)
 - show that the problem cannot be solved (some domains empty)
- but may not be enough
 - there is always a consistent value in the neighboring region
- → Path consistency
 - tightens the binary constraints by considering triples of values

A pair of variables (X_i, X_j) is path-consistent with X_m if

- for every assignment that satisfies the constraint on the arc (X_i, X_j)
- there is an assignment that satisfies the constraints on the arcs (X_i, X_m) and (X_j, X_m)
- Algorithm AC-3 can be adapted to this case (known as PC-2)

k-Consistency

- The concept can be generalized so that a set of k values need to be consistent
 - 1-consistency = node consistency
 - 2-consistency = arc consistency
 - 3-consistency = path consistency
 -
- May lead to faster solution (O(n²d))
 - but checking for k-Consistency is exponentional in k in the worst case
- therefore arc consistency is most frequently used in practice

Sudoku

- simple puzzles can be solved with AC-3
 - the 9-valued AllDiff constraints can be converted into pairwise binary constraints (36 each)
 - therefore 27x36 = 972 arc constraints
- somewhat more with PC-2
 - there are 255,960 path constraints
- however, not all problems can be solved with constraint progapagation alone
 - to solve all puzzles we need a bit of search

Search Tree for CSP

Backtracking Search

- CSP are typically solved with backtracking
 - add one constraint at a time without conflict
 - succeed if a legal assignment is found

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints[csp] then
           add \{var = value\} to assignment
           result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

Worst-Case Complexity of Backtracking Search

- Assumptions
 - we have n variables
 - \rightarrow all solutions are a depth n in the search tree
 - all variables have v possible values
- Then
 - at level 1 we have $n \cdot v$ possible assignments (we can choose one of n variables and one of v values for it)
 - at level 2, we have (n-1)·v possible assignments for each previously assigned variable
 (we can choose one of the remaining n-1 variables and one

(we can choose one of the remaining n-1 variables and one of the v values for it)

- In general: branching factor at depth $l: (n-l+1)\cdot v$
- Hence
 - The search tree has $n!v^n$ leaves

Note: If the order of variable assignments does not matter the n! may be saved

→ heuristics for selecting variables (Select Unassigned Variable) and for ordering values (Order Domain Values)

General Heuristics for CSP

- Domain-Specific Heuristics
 - Depend on the particular characteristics of the problem
 - Obviously, a heuristic for the 8-puzzle can not be used for the 8-queens problem

General-purpose heuristics

- For CSP, good general-purpuse heuristics are known:
- Mininum Remaining Values Heuristic
 - choose the variable with the fewest consistent values
- Degree Heuristic
 - choose the variable that imposes the most constraints on the remaining values
- Least Constraining Value Heuristic
 - Given a variable, choose the value that rules out the fewest values in the remaining variables
- used in this order, these three can greatly speed up search
 - e.g., n-queens from 25 queens to 1000 queens

Integrating Constraint Propagation and Backtracking Search

- Performance of Backtracking can be further sped up by integrating constraint propagation into the search
- Key idea:
 - each time a variable is assigned, a constraint propagation algorithm is run in order to reduce the number of choice points in the search
- Possible algorithms
 - Forward Checking
 - AC-3, but initial queue of constraints only contains constraints with the variable that has been changed

Local Search for CSP

- Modifications for CSPs:
 - work with complete states
 - allow states with unsatisfied constraints
 - operators reassign variable values

Min-conflicts is the

heuristic that we studied

for the 8-queens problems.

Min-conflicts Heuristic:

- randomly select a conflicted variable
- choose the value that violates the fewest constraints
- hill-climbing with h(n) = # of violated constraints

Performance:

- can solve randomly generated
 CSPs with a high probability
- except in a narrow range of

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

