Lec 1/10

Wednesday, January 10, 2018 14:21

Let <. |.. > be an inner product on avis. V/K=R or C.

V, WEV are orthogonal if (VIW) = 0.

Suppose first that K=R

 $V \perp W$ iff ||V+W|| = ||V-W||.

The "real" scase.

This happens iff $\|v+w\|^2 = \|v-w\|^2$ $\|v\|^2 + \langle v | w \rangle + \langle w | v \rangle + \|w\|^2 = \|v\|^2 - \langle v, w \rangle - \langle w, v \rangle + \|w\|^2$ $\langle v, w \rangle = 0$

Now suppose k=C. Iff $\forall \alpha, \beta \in C$, $\langle \alpha v \mid \beta w \rangle = 0$, iff $\forall \alpha, \beta \in C$, $\alpha v \perp \beta w$ in the real sense (planes are orthogonal).

VIW in the "real" sense iff Re <VIW> = 0

the geometrical menning is stronger in C sense.

Pythogorean Theorem:

Let $V, w \in V$ with $\langle v, w \rangle = 0$.

then $\|V+W\|^2 = \|V\|^2 + \|W\|^2$.

Let $V_1, \dots, V_n \in V$ with $\langle V_j | V_n \rangle = 0$ $\forall j \neq k$ then $\|V_1 + \dots + V_n\|^2 = \|V_1\|^2 + \dots + \|V_n\|^2$

Note: $\langle V|W\rangle = V^*W$,
antilinear in the first argument
linear in the second.

Schwarz's Inequality:

Let v, w e V. Then | (VIW>) = | VIII | WIII

Proof: moose $c \in K$ s.t. $\langle V | W - cV \rangle = 0$. if V = 0, any $c \in W \cap V = 0$.

Lif $V \neq 0$ then $\langle V | V \rangle \neq 0$ and $c = \frac{\langle V | W \rangle}{\langle V | V \rangle}$ will do.

Then $\| w - cv \|^2 + \| cv \|^2 = \| w \|^2$ by pyth.

 $|\langle V | \omega \rangle| = |\langle V | (\omega - c v) + c v \rangle| = |\langle V | c v \rangle| = |c| ||V||^2 = ||V|| ||c v||$ $\leq ||V|| \left(||w||^2 + ||w - c v|| \right)^{\frac{1}{2}} = ||V|| ||w||.$

Corollary: even if <.1..) is only positive semidefinite we still have Schwarz's inequality.

Example of $\langle \cdot | \cdot \rangle$ which is $f(x) = \int_{0}^{1} \overline{f}(x) g(x) dx$

Pf of cor: let $v_1w \in V$. wto $|\langle V|w \rangle| \in ||V||||w||$. if $\langle U|V \rangle = 0$, entire pf good through. suppose $\langle V|V \rangle = 0$. Then $\forall c \in K$, we have $0 \in ||w-cv||^2 = ||w||^2 - 2Re\langle cv|w \rangle + |c|^2||v||^2$ $= ||w||^2 - 2Re\langle \overline{c} \langle v|w \rangle \rangle.$

Considering
$$c = t < V \mid w >$$
, we see that $\forall \epsilon \in \mathbb{R}$, we have $2t \mid \langle v \mid w \rangle \mid^2 = \|w\|^2$, where $|\langle v \mid w \rangle| = 0$.

Adjoints:

Suppose V is a finite-dim wher product space over C.

Let T be a linear operator on V. Then there is a unique

map T* s.t. $\langle V | Tw \rangle = \langle T^* V | w \rangle$ $\forall V, w \in V.$ T* is a linear map, the adjoint of T.

$$(cT)^* = cT^*, (T_1 + T_2)^* = T_1^* + T_2^*$$

$$(T_1T_2)^* = T_2^*T_1^*$$

$$(T^*)^* = T$$

suppose K=C.

Spectral Theorem: There is an orthonormal basis for V consisting of eigenvectors for T iff T*T = TT* (T is normal.)

 $V = Ker(T^*)$ iff $T^*V = 0$ iff $\langle V | T\omega \rangle = 0$ $\forall \omega \in \mathbb{C}$. (not necessarily worms) iff $V \in Rng(T)^{\perp}$.

Thus
$$Ker(T^*) = Rng(T)^{\perp}$$

 $Ker(T) = Rng(T^*)^{\perp}$

If T is normal then

 $\|Tv\|^2 = \langle Tv|Tv\rangle = \langle T^*Tv|V\rangle = \langle T^*v|V\rangle = \langle T^*v|T^*v\rangle = \|T^*v\|$

Thus $\ker(T) = \ker(T^*)$ and $\ker(T) = \operatorname{Rng}(T)^{\perp}$.

eignspace witt.

- Paper Suppose T normal. Let $\lambda \in \mathbb{C}$. Let $M = \S \times \in V : T \times = \lambda \times \mathfrak{Z}$.

 T maps M into itself. M is also equal to $\S \times \in V : T_{\times}^* = \overline{\lambda} \times \mathfrak{Z}$ and T also maps M^{\perp} into itself.
- of $M = \ker(T-\lambda I)$, $(T-\lambda I)^* = T^* \lambda I$, and $T-\lambda I$ is normal too $= \ker(T^* \overline{\lambda} I)$. This proves first part. Then T^* also maps M to itself. Let $V \in M^{\perp}$. Thun $\forall w \in M$, $\langle Tv | w \rangle = \langle v | T^* w \rangle = 0$ hence $Tv \in M^{\perp}$.
- Peop Suppose T is normal and $\lambda_1, \lambda_2 \in C$ with $\lambda_1 \neq \lambda_2$. Let $M_K = \{x \in V : Tx = \lambda_k \times \}$ for k=1,2. Then $M_1 \perp M_2$.