프로젝트형 데이터 분석 서비스 개발

전공 프로젝트일정 및 프로젝트 가이드

프로젝트 일정

- ▶ 기간 : 2023년 11월 14일 ~ 12월 4일
- ▶세부일정
 - ▶ 11월 15일 1차 팀 미팅
 - ▶~ 11월 17일까지 팀별 기획안 제출메일제목 xxx팀 기획안 제출
 - ▶ 11월 17일 팀별 주제 한 줄 발표
 - ▶ 11월 24일 2차 팀 미팅
 - ▶ 12월 01일 3차 팀 미팅
 - ▶ 12월 04일 발표 및 포트폴리오 제출

프로젝트 개요

- ▶ 문제해결 빅데이터 활용 프로젝트
 - ▶ 주변에서 일어날 수 있는 문제(현황파악)를 제시하고
 - ▶해당 문제를 러닝기법의 예측을 통해 문제의 미래를 예측해보고
 - ▶ 현재를 준비하기 위한 연습을 위한 프로젝트

프로젝트 주제 및 범위

- ▶ 주제
 - ▶ 공공데이터를 활용한 시각화 분석 및 모델링
 - ▶ 공공데이터는 상업용이 아닌 누구나 이용가능한 데이터를 의미함
- ▶ 범위
 - ▶ 주제 기획
 - ▶ 데이터 수집
 - ▶ 현황 분석을 위한 데이터 전 처리 및 가공
 - ▶ 시각화 분석 및 결론
 - ▶ 모형 개발을 위한 데이터 전 처리(피처 엔지니어링)
 - ▶ 모델링 및 모델 선정
 - ▶ 향후 발전 방향

프로젝트 수행 기준

- ▶주제 기획 설명 시 주제에 대한 당위성 설명에 시각화기법 을 활용한다.
- ▶데이터 수집
 - ▶크롤링과 API 수집 데이터를 포함한다.
- ▶파이썬을 활용한 모델링을 진행한다

데이터 site

- https://data.seoul.go.kr
- https://www.data.go.kr
- http://www.index.go.kr
- http://kosis.kr
- https://bigdata.seoul.go.kr
- http://kostat.go.kr
- http://www.price.go.kr/tprice/portal/main/main.do
- https://data.kma.go.kr/cmmn/main.do
- https://www.airkorea.or.kr/web/pmRelay?itemCode=11008&pMENU_NO=109
- https://www.localdata.kr/
- ▶ 모든 데이터에는 저작권이 있을 수 있습니다. 확인 후 사용해야 합니다.

데이터 site

- https://datasetsearch.research.google.com/
- https://www.kaggle.com/datasets
- https://github.com/awesomedata/awesome-public-datasets
- https://dasl.datadescription.com/
- https://datahub.io/
- https://data.worldbank.org/
- ▶ 모든 데이터에는 저작권이 있을 수 있습니다. 확인 후 사용해야 합니다.

프로젝트 참고 사항

- ▶ 전공 수업 내용을 리뷰하는 차원의 프로젝트로 진행하시기 바랍니다
- 데이터 분석 전공이므로 현황파악에 더 중점을 두고 분석 시각화를 진행해 보면 좋을 것 같습 니다
- ▶ 러닝 예측은 관련 데이터와 서브 주제를 다시 선정해야 할 수도 있습니다
 - ▶ 일단 분석시각화를 진행 후 나온 결과에 따라 러닝 예측을 진행하는 것도 한 방법입니다
- ▶ 하루 일정은 별다른 공지를 하지 않습니다
 - ▶ 쉬는 시간 등은 자유롭게 설정하시고 다만 점심시간은 11시30분에서 1시30분내에서 1시간을 사용 하시기 바랍니다
- 특별한 사유없이 메인 세션에 오래 남아있거나 소회의실 접속이 유지 되지 않으면 결석으로 간주될 수 있습니다. 유의 바랍니다

분석 시각화 프로젝트 포트폴리오 예시

프로젝트 주제

- OECD 평균 대비 가장 취약한 3대 지표 중 하나, 교통사고
- 초고령사회가 진행되고 있는 시점에서 노인 교통사고가 큰 문제
- 2018년에서 2020년 3년동안 보행 중 교통사고 **전체 사망자의 약 58% 노인**

SAMPLE

[출처 : 한국교통안전공단(2018-2020)]

"지역별 노인 교통 사망사고 현황 분석"

프로젝트 컨셉

주요 분석 내용

- 연령대별 사상자수 대비 사망자 비율
- 사고 유형별 노인교통사고 사망 발생건수
- 지역별 노인 인구비율과 노인 사망자수
 - <u>- 노의교</u>통사망자수가 높은지역
 - 별,월별 노인교통사고 사망자수
 - 시역별 응급실 현황
 - 노인교통사고 다발지역
- 노인교통사고 다발지역과 응급실거리와의 관계

03-2 데이터 명세

출처	데이터 이름	제공형태	요약
ᄐ게ᅯ	연령별 지역별 인구수	CSV	2019년 전국 연령별, 지역별 인구수 데이터(1838X5)
통계청	시도별 요양기관 현황	CSV	2019년 전국 시도별, 종별 요양기관 현황 데이터 (20X17)
	전국 연령층별 교통사고 사상자	xls	연령층별 사상자수 대비 사망자 비율(21X3)
	차대사람 전국 노인 교통사고 사망자 현황	xls	차대사람 전국 노인 교통사망 사고유형 사망자수 (39X9)
교통사고분석시스템 (TAAS)	요일별 노인교통사고	xls	2019년 전국 요일별 노인 교통사고 데이터 (56X10)
	월별 노인교통사고	xls	전국 월별 노인 교통사고 데이터 (56X15)
	시간대별 노인	SAMPLE	국 시간대별 노인 교통사고 데이터 (56X15)
충청남도 통합 복지	충남응급의 교기판	크롤링	충남 의료기관 현황(16x5)
	전라남도 응급의료기관	CSV	전라남도 응급의료기관 현황 (39x13)
공공데이터 포털	제주특별자치도 응급의료기관	CSV	제주특별자치도 응급의료기관 현황 (9x5)
	도로교통공단 보행 노인 사고다발 지역 정보 서비스	API	충남교통사고다발지역 (20x1) 전남교통사고다발지역 (23x1) 제주교통사고다발지역 (10x1)
직접 데이터 수집	병원과 사고다발 지역 거리	CSV	제주병원사망다발지역거리 (13x4) 전남병원사망다발지역거리 (33x4) 충남병원사망다발지역거리 (24x4)

데이터 전처리

03-3 데이터 전처리 및 탐색

<전국 연령층별 교통사고 사상자 수>

연령층별	기준년도	2019
	사망자수	3,349
합계	부상자수	341,712
421101	사망자수	28
12세이하	부상자수	14,115
13-20세	사망자수	108
13-204	부상자수	19,884
21-30세	사망자수	247
21-30/	부상자수	58,010
31-40세	사망자수	231
31-40/	부상자수	59,022
41-50세	사망자수	324
41-30/	부상자수	60,127
51-60세	사망자수	614
31-00/	부상자수	64,455
61-64세	사망자수	271
01-047	부상자수	21 600
65세이상	사망자수	
03/11/01/0	부상자수	
불명	사망자수	
20	부상자수	101

		사망자수	부상자수	사상자수대비 사망자 비율
	연령층별			
	12세이하	28.0	14115.0	0.20
	13-20세	108.0	19884.0	0.54
	21-30세	247.0	58010.0	0.42
	31-40세	231.0	59022.0	0.39
,	41-50세	324.0	60127.0	0.54
	51-60세	614.0	455.0	0.94
	DIE		608.0	1.24
SAM	PLE		7 73 90.0	3.32
			'	

NaN값 제거	age_data.dropna(inplace=True)
연령층 별로 인덱스 설정	age_data.set_index(age_data['연령층별'],inplace=True)
사망자수만 추출	die_data = age_data[0::2]
부상자수만 추출	nondie_data = age_data[1::2]
사상자 수 대비 사망자 비율 구하기	nondie_per_die_result["사상자수대비 사망자 비율"] = (nondie_per_die_result['사망자수'] / nondie_per_die_result["사망자수"] + nondie_per_die_result["부상자수"] * 100).round(2)

데이터시각화 SAMPLE

03-4 데이터 시각화

03-4 데이터 시각화

결론

#연령대별 #사상자수대비 #사망자비율 #65세이상

#10만명당 #노인사망자수 #제주도 #충남,전남

#사고유형별 #노인사망자수 #횡단중

SAMPLE

#제주3월 #충남,전남10월 #6시~8시 #18시~20시

#응급실현황과 #사고다발지역

#시장 #병원 #교차로,회전차로

모델링 포트폴리오 예시

"에어비앤비 호스트를 위한 숙소 가격 예측 모델링 구현"

■ kaggle

Create

Home

Competitions

Discussions

Courses

More

Datasets

<> Code

출처	데이터 이름	제공형태	요약
kaggle	AB_NYC_2019	CSV	2019 뉴욕 에어비앤비 데이터 (48895*16)

- 데이터 명세

수행 절차 및 방법 - EDA 및 전처리

)	d name	host_id	host_name	neighbourhood_group	neighbourhood	latitude	longitude	room_type	price	minimum_nights	number_of_reviews last_rev	iew reviews_per_month	calculated_host_listings_count	availability_365
0 253	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237	Private room	149	1	9 2018-1	0-19 0.21	6	365
1 259	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	1	45 2019-0	5-21 0.38	2	355
2 364	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3	0	NaN NaN	1	365

	변수 이름	변수 의미	전처리 방법	
1	id	고객 식별 번호		
2	name	에어비앤비 숙소이름		
3	host_id	호스트 식별 번호		
4	host_name	호스트 이름	도메인 지식 하에	
5	neighborhood	TI+I	필요없는 변수 삭제	
6	latitude	SAMPLE		
7	longtitude	성도		
8	last_review	마지막 리뷰 날짜		
9	neighborhood_group	뉴욕 자치구	범주형 변수 인코딩	
10	room_type	숙소 타입		
11	price	1박 당 가격	로그 변환	
12	minimum_nights	최소 예약 일수	이상치 제거	
13	reviews_per_month	월 평균 리뷰 수	NaN 값 '0'으로 대체	
14	availability_365	365일 중 이용 가능한 날짜 수	3가지 유형으로 전처리	
15	calculated_host_listings_count	호스트가 운영중인 숙소 개수	-	
16	number_of_reviews	사용자 리뷰 개수	-	

- EDA 및 전처리

<뉴욕 자치구별 에어비앤비 개수 시각화>

가장 많은 에어비앤비를 가지고 있는 지역은 맨해튼, 브루클린유명한 관광지가 맨해튼과 브루클린에 모여있기 때문

df.shape

(48895, 16)

df.describe()

	id	host_id	latitude	longitude	price	minimum_nights	number_of_reviews	reviews_per_month	calculated_host_listings_count	availability_365
count	4.889500e+04	4.889500e+04	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000	38843.000000	48895.000000	48895.000000
mean	1.901714e+07	6.762001e+07	40.728949	-73.952170	152.720687	7.029962	23.274466	1.373221	7.143982	112.781327
std	1.098311e+07	7.861097e+07	0.054530	0.046157	240.154170	20.510550	44.550582	1.680442	32.952519	131.622289
min	2.539000e+03	2.438000e+03	40.499790	-74.244420	0.000000	1.000000	0.000000	0.010000	1.000000	0.000000
25%	9.471945e+06	7.822033e+06	40.690100	-73.983070	69.000000	1.000000	1.000000	0.190000	1.000000	0.000000
50%	1.967728e+07	3.079382e+07	40.723070	-73.955680	106.000000	3.000000	E AAA	.720000	1.000000	45.000000
75 %	2.915218e+07	1.074344e+08	40.763115	-73.936275	175.000	CAR	MPLE	020000	2.000000	227.000000
max	3.648724e+07	2.743213e+08	40.913060	-73.712990	1	SAI	20000	58.500000	327.000000	365.000000

☆ 공유하기 ♡ 저장

₩13,698,49 ₩10,273,868/

Hotel 48 Lex, The House

최대 인원 2명 · 침실 2개 · 침대 2개 · 욕실 2개

(1) price : '0' (달러)

- 삭제

(2) minimum_nights: 1250

- 이상치로 판단되어 365 이상 삭제

(3) availability_365: '0'값

- 평균값, 중위수, 365 세 가지 케이스로 수행

<Pearson 상관계수>

피어슨 상관계수 R	상관관계 정도
± 0.9 이상	매우 높은 상관관계
$\pm 0.9 \sim \pm 0.7$	높은 상관관계
± 0.7 ~ ± 0.4	다소 높은 상관관계
± 0.4 ~ ± 0.2	낮은 상관관계
± 0.2 미만	상관관계 없음

모든 피처가 가격(price)와 상관 관계가 없음

<모델링 수행 방법>

회귀분석 모델링 종류

- 모델링

- 1. 선형회귀
- 2. 다항회귀
- 3. 릿지, 라쏘
- 4. 5-fold 교차거주(6)

SAMPLE

- v. 포궬 온합
- 7. 스태킹

<선형 회귀>


```
from sklearn.linear model import Linear
lr = LinearRegression() # 객체 생성
lr.fit(X_train, y_train) # 학습
# 예측
y preds = lr.predict(X_test)
y_preds
# 평가
mse = mean_squared_error(y_test, y_preds) # 예측 오류 값 계산 (실제값과 예측값의 차이)
rmse = np.sqrt(mse) # 사이킷런이 루트를 지원하지 않기 때문에 np.sqrt()로 루트씌워서 계산
print('MSE : {0:.3f} , RMSE : {1:.3F}'.format(mse , rmse))
print('Variance score : {0:.3f}'.format(r2_score(y_test, y_preds)))
```

<선형 회귀>

	학습 및 테스트 데이터 분리 비율						
	8:2	7:3					
availability_365 평균	LinearRegression RMSE : 0.507	LinearRegression RMSE : 0.509					
availability_365 중위수	LinearRegression RMSE : 0.505	LinearRegression RMSE : 0.507					
availability_365 365	LinearRegression R SAMPL	LinearRegression RMSE : 0.514					

- availability_365 '0'값을 중위수로 대체하고, 8:2 비율로 모델링했을 때 성능이 가장 좋음

<다항 회귀>

(1) degree = 2

(2) degree = 2, 편향성 제외

```
# (2) degree=2, include_bias \( \frac{\pi}{8} \)

p_model = Pipeline([ ('poly', PolynomialFeatures degree=2, include_bias=False \( \frac{\pi}{8} \)

# pipeline() data \( \frac{\pi}{8} \) \( \frac{\pi}{8} \)

p_model.fit(X_train, y_train)

# () \( \frac{\pi}{8} \)

y_preds = p_model.predict(X_test)

mse = mean_squared_error(y_test, y_preds)

rmse = np.sqrt(mse)

print('MSE : {0:.3f} , RMSE : {1:.3F}'.format(mse , rmse))

print('Variance score : {0:.3f}'.format(r2_score(y_test, y_preds)))
```

(3) degree = 3, 편향성 제외

<다항 회귀 - 2차>

	학습 및 테스.	트 데이터 분리 비율		
	8:2	7:3		
availability_365 평균		MSE: 0.249 RMSE: 0.499 Variance Score: 0.479		
availability_365 중위수	MSE: 0.247 RMSE: 0.497 Variance Score: 0.485	MSE: 0.247 RMSE: 0.497 pre: 0.484		
availability_365 365	MSE: 0.255 RMSE: 0.505 Variance Score: 0.466	RMSE: 0.504 Variance Score: 0.468		

<다항 회귀 - 2차, 편향성 제외>

	학습 및 테스.	트 데이터 분리 비율		
	8:2	7:3		
availability_365 평균	MSE: 0.249 RMSE: 0.499 Variance Score: 0.481	MSE: 0.249 RMSE: 0.499 Variance Score: 0.479		
availability_365 중위수	RMSE : 0.497 Variance Score : 0.485	MSE: 0.247 RMSE: 0.497 pre: 0.484		
availability_365 365	MSE: 0.255 RMSE: 0.505 Variance Score: 0.400	RMSE: 0.504 Variance Score: 0.468		

<다항 회귀 - 3차, 편향성 제외>

	학습 및 테스트 데이터 분리 비율	
	8:2	7:3
availability_365 평균	MSE: 0.248 RMSE: 0.498 Variance Score: 0.482	MSE: 0.247 RMSE: 0.497 Variance Score: 0.484
L availability 365	RMSE : 0.498 Variance Score : 0.482	MSE: 0.247 RMSE: 0.497 pre: 0.484
availability_365 365	MSE: 0.254 RMSE: 0.504 Variance Score: 0.4	RMSE : 0.502 Variance Score : 0.473

<선형, 릿지, 라쏘 회귀>

```
# 단일 모델의 RMSE 값 반환
def get rmse(model): # 학습된 모델을 받아서 예측
   pred = model.predict(X test)
   mse = mean squared error(y test , pred)
   rmse = np.sqrt(mse)
   print('{0} 로그 변환된 RMSE: {1}'.format(model. class . name , np.round(rmse, 3)))
   return rmse
# 여러 모델의 RMSE 값 반환
def get rmses(models) :
   rmses = []
   for model in models :
       rmse = get rmse(model) # 단일 모델의 RMSE 값 반환 함수 = get rmse
       rmses.append(rmse)
                                             SAMPLE
   return rmses
# 일반 선형 회귀 = linear regression
lr reg = LinearRegression() # 1차 선형 3
lr reg.fit(X train, y train)
# 릿찌 회귀 = ridge regression
ridge reg = Ridge()
ridge_reg.fit(X_train, y_train)
# 라쏘 회귀 = lasso regression
lasso reg = Lasso()
lasso reg.fit(X train, y train)
models = [lr reg, ridge reg, lasso reg]
get rmses(models) # 학습된 모델 전달하고 # rmse값 반환
```

	학습 및 테스트 데이터 분리 비율	
	8:2	7:3
availability_365 평균	LinearRegression RMSE : 0.507 Ridge RMSE : 0.507 Lasso RMSE : 0.686	LinearRegression RMSE : 0.509 Ridge RMSE : 0.509 Lasso RMSE : 0.685
availability_365 중위수	LinearRegression RMSE : 0.505 Ridge RMSE : 0.505 Lasso RMSE : 0.685	LinearRegression RMSE : 0.507 Ridge RMSE : 0.507 : 0.684
availability_365 365	LinearRegression R Ridge RMSE : 0.512 Lasso RMSE : 0.687	Ridge RMSE : 0.514 Lasso RMSE : 0.686

- availability_365 '0'값을 중위수로 대체하고, 8:2 비율로 모델링했을 때 성능이 가장 좋 - 라쏘 모델만 0.68대로 다른 두 모델에 비해 성능이 떨어짐을 확인

<선형, 릿지, 라쏘 회귀 시각화>

```
def get top bottom coef(model) :
   coef = pd.Series(model.coef , index=X features.columns)
   coef high = coef.sort values(ascending=False).head(10)
   coef low = coef.sort values(ascending=False).tail(10)
   return coef high, coef low
# 모델별 회귀 계수 시각화 함수
def visualize coefficient(models) :
   # 3개 회귀 모델의 시각화를 위해 3개의 컬럼을 가지는 subplot 생성
   fig, axs = plt.subplots(figsize=(20,10),nrows=1, ncols=3)
   fig.tight layout()
   # 입력인자로 받은 list객체인 models에서 차례로 model을 추출하여 회귀 계수 시각화
   for i num, model in enumerate(models) :
       # 상위 10개, 하위 10개 회귀 계수를 구하고, <u>이를 파다</u>
                                              SAMPLE
       coef high, coef low = get top
       coef concat = pd.concat( [coef
   # 순차적으로 ax subplot에 barchar로 표현. 안 화면에 표현하기 위해 tick label 위치와 font 크기
       axs[i num].set title(model. class . name +' Coefficeents', size=25)
       axs[i num].tick params(axis="y",direction="in", pad=-190) # 안쪽, 패딩값
       for label in (axs[i num].get xticklabels() + axs[i num].get yticklabels()) :
           label.set fontsize(13)
       sns.barplot(x=coef concat.values, y=coef concat.index , ax=axs[i num])
models = [lr reg, ridge reg, lasso reg]
visualize coefficient(models)
```

<선형, 릿지, 라쏘 회귀 시각화>

선형, 릿지보다 라쏘 회귀 값이 작게 나옴을 확인

<5-퐄드 교차 검증>


```
from sklearn.model selection import cross val score
                                        SAMPLE
def get_avg_rmse_cv(models) :
   for model in models:
      # 데이터 분할하지 않고, 전체 데이터 세
      rmse list = np.sqrt(-cross val
                                    rmse_avg = np.mean(rmse_list)
      print('\n{0} CV RMSE 값 리스트: {1}'.format( model.__class__.__name__, np.round(rmse_list, 3)))
      print('{0} CV 평균 RMSE 값: {1}'.format( model.__class_.__name__, np.round(rmse_avg, 3)))
# 앞에서 학습한 1r reg, ridge reg, lasso reg 모델의 CV RMSE값 출력
models = [lr_reg, ridge_reg, lasso_reg]
get_avg_rmse_cv(models)
```

- 모델링

<5-폴드 교차 검증>

	학습 및 테스트 데이터 분리 비율		
	8:2	7:3	
availability_365 평균	LinearRegression CV 평균 RMSE : 0.507 Ridge CV 평균 RMSE : 0.507 Lasso CV 평균 RMSE : 0.686	LinearRegression CV 평균 RMSE : 0.507 Ridge CV 평균 RMSE : 0.507 Lasso CV 평균 RMSE : 0.686	
availability_365 중위수	Ridge CV 평균 RMSE : 0.505 Lasso CV 평균 RMSE : 0.686	LinearRegression CV 평균 RMSE : 0.505 Ridge CV 평균 RMSE : 0.505 균 RMSE : 0.686	
availability_365 365	LinearRegression C Ridge CV 평균 RMS Lasso CV 평균 RMS	Ridge CV 평균 RMSE : 0.514 Ridge CV 평균 RMSE : 0.514 Lasso CV 평균 RMSE : 0.687	

- availability_365 '0'값을 중위수로 대체하고, 8:2 비율로 모델링했을 때 성능이 가장 좋음 - 5-폴드 교차검증을 했음에도 여전히 라쏘 모델만 성능이 떨어짐을 확인

<릿지, 라쏘 모델 alpha 하이퍼 파라미터 튜닝>

```
for i in range(len(alpha)) :
    print(alpha[i], get params(ridge reg, alpha)[i]) # 0.05 0.5076497800675304
1e-05 0.5076497450442649
0.0001 0.5076497451072713
0.001 0.5076497457373452
0.005 0.507649748537884
0.01 0.507649752039039
0.05 0.5076497800675304
0.1 0.5076498151512664
1 0.507650455781342
5 0.507653509858632
7 0.5076551616019265
10 0.5076577920327185
                                                 SAMPLE
for i in range(len(alpha )) :
    print(alpha[i], get_params(lasso_re
1e-05 0.5076504258686468
0.0001 0.5076557831609503
0.001 0.5078215088561538
0.005 0.5101572297319558
0.01 0.5133823201276145
0.05 0.5310503621742259
0.1 0.578562122360455
1 0.6871396246833519
5 0.6928072369262379
7 0.6932286767833257
10 0.6932357326606897
```

<최적 alpha값을 릿지, 라쏘 모델에 대입>

```
lr_reg = LinearRegression()
lr_reg.fit(X_train, y_train)
                             # 위에서 구한 최적의 알파 값(0.05)을 릿지에 대입
ridge_reg = Ridge(alpha=0.05)
ridge_reg.fit(X_train, y_train)
lasso_reg = Lasso(alpha=0.0001) # 위에서 구하 최저이 아
                                            SAMPLE
lasso_reg.fit(X_train, y_train)
# 모든 모델의 RMSE 출력
models = [lr_reg, ridge_reg, lasso_reg]
get_rmses(models)
```

- 모델링

<최적 alpha값을 릿지, 라쏘 모델에 대입>

	학습 및 테스트 데이터 분리 비율		
	8:2	7:3	
availability_365 평균	Ridge RMSE : 0.507 Lasso RMSE : 0.507	Ridge RMSE : 0.509 Lasso RMSE : 0.509	
	Ridge RMSE : 0.505 Lasso RMSE : 0.505	Ridge RMSE: 0.507 Lasse Pt : 0.507	
availability_365 365	Ridge RMSE : 0.512 Lasso RMSE : 0.512	Lasso RMSE: 0.514	

- availability_365 '0'값을 중위수로 대체하고, 8:2 비율로 모델링했을 때 성능이 가장 좋음 - 라쏘 모델 성능 좋아짐 확인(0.685 -> 0.505)

<최적 alpha값을 모델에 대입 후 시각화>

- 피처 중요도가 동일해졌으며, 라쏘 모델 성능 좋아짐을 확인

<데이터 세트 가공 후 튜닝 수행>

```
skew featrues = df ohe[features index].apply(lambda x : skew(x))
                                                    # 왜곡정도가 '1'보다 큰
skew features top = skew featrues[skew featrues > 1]
                                                   # 내림차순 정렬
print(skew features top.sort values(ascending=False))
# 로그 변환
df ohe[skew features top.index] = np.log1p(df ohe[skew features top.index])
# 원-핫 인코딩
airbnb df ohe = pd.get dummies(df ohe)
# 피처/타겟 데이터 세트 다시 생성
y target = airbnb df ohe['price']
X features = airbnb df ohe.drop('price',axis=1, inplace=False)
# 학습 데이터와 테스트 데이터 분리
                                              SAMPLE
X train, X test, y train, y test = train test
                                                                           size=0.2, random state=156)
# 피처들을 로그 변환 후 다시 최적 하이퍼 파라미터
ridge_params = { 'alpha' : [0.000001, (
                                                  0.001, 0.005, 0.01, 0.05, 0.1, 1, 5, 7, 10] }
lasso params = { 'alpha' : [0.000001, 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 1, 5, 7, 10] }
best ridge = get best params(ridge reg, ridge params)
best lasso = get best params(lasso reg, lasso params)
# 앞의 최적화 alpha값으로 학습데이터로 학습, 테스트 데이터로 예측 및 평가 수행
lr reg = LinearRegression()
lr reg.fit(X train, y train)
                               # 위에서 구한 최적의 알파 값(0.05)을 릿지에 대입
ridge reg = Ridge(alpha=0.05)
ridge reg.fit(X train, y train)
lasso_reg = Lasso(alpha=0.0001) # 위에서 구한 최적의 알파 값(0.0001)을 라쏘에 대입
lasso reg.fit(X train, y train)
```

수행 절차 및 방법

<데이터 세트 가공 전/후 최적 RMSE 비교>

데이터 세트 가공 전

		1 1 1 1 1 1 1 1 1 1
	학습 및 테스트 데이터 분리 비율	
	8:2	7:3
5 —	Ridge RMSE : 0.507 Lasso RMSE : 0.507	Ridge RMSE : 0.509 Lasso RMSE : 0.509
		Ridge RMSE : 0.507 Lasso RMSE : 0.507
_	Ridge RMSE : 0.512 Lasso RMSE : 0.512	Ridge RMSE : 0.514 Lasso RMSE : 0.514

- 모델링

데이터 세트 가고 ㅎ

	- ANDI F	네이터 제트 가능 우
	SAMPLE	나는다 비율
	J.L	7:3
<u> </u>	Ridge RMSE : 0.503 Lasso RMSE : 0.503	Ridge RMSE : 0.504 Lasso RMSE : 0.504
	Ridge RMSE : 0.501 Lasso RMSE : 0.501	Ridge RMSE : 0.502 Lasso RMSE : 0.502
	Ridge RMSE : 0.509 Lasso RMSE : 0.509	Ridge RMSE : 0.51 Lasso RMSE : 0.51

- 데이터 세트 가공 후 근소하게 RMSE 값 줄어듦을 확인

<최적 alpha값을 모델에 대입 후 시각화>

- 세 모델 모두 Entire_home/apt를 가장 중요한 피처로 보고 있음 - room type이 숙소 가격(price)에 미치는 영향이 제일 높음을 확인

<XGB, LGBM 모델 혼합 - 50:50>

```
[] xgb_reg = XGBRegressor(objective='reg:squarederror', n_estimators=1000, learning_rate=0.05, # 손실함수를 집어넣음
                         colsample_bvtree=0.5, subsample=0.8)
    lgbm_reg = LGBMRegressor(n_estimators=1000, learning_rate=0.05, num_leaves=4,
                           subsample=0.6, colsample_bytree=0.4, reg_lambda=10, n_jobs=-1)
   xgb_reg.fit(X_train, y_train)
    lgbm_reg.fit(X_train, y_train)
   xgb_pred = xgb_reg.predict(X_test)
    lgbm_pred = lgbm_reg.predict(X_test)
                                                SAMPLE
[] pred = 0.5 * xgb_pred + 0.5 * lgbm_p
    preds = {'최종 혼합': pred,
            'XGBM': xgb_pred,
            'LGBM': Igbm_pred}
   get_rmse_pred(preds)
```

- 모델링

최종 혼합 모델의 RMSE: 0.474010058627334 XGBM 모델의 RMSE: 0.47506216807301455 LGBM 모델의 RMSE: 0.48014583476722966

<XGB, LGBM 모델 혼합 - 50 : 50>

	XGB(0.5) + LGBM(0.5)	
	8:2	7:3
availability_365 평균	0.470936	0.474010
availability_365 중위수	SAMPLE	0.473722
availability_365 365	0.475897	0.479297

- 데이터 분리 비율 8:2일 때, XGB(0.5) + LGBM(0.5)의 성능이 가장 좋음