Задача А. Длина пути

 Имя входного файла:
 wave.in

 Имя выходного файла:
 wave.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

В неориентированном графе требуется найти длину минимального пути между двумя вершинами.

Формат входного файла

Во входном файле записано сначала число N - количество вершин в графе ($1\leqslant N\leqslant 100$). Затем записана матрица смежности (0 обозначает отсутствие ребра, 1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной.

Формат выходного файла

В выходной файл выведите одно число - длину пути (количество ребер, которые нужно пройти).

Если пути не существует, выведите одно число -1.

Примеры

. P.,	римеры					
			1	wave.in	wave.out	
5					3	
0	1	0	0	1		
1	0	1	0	0		
0	1	0	0	0		
0	0	0	0	0		
1	0	0	0	0		
3	5					
5					-1	
0	1	0	0	1		
1	0	1	0	0		
0	1	0	0	0		
0	0	0	0	0		
1	0	0	0	0		
4	5					

Задача В. Путь

 Имя входного файла:
 path.in

 Имя выходного файла:
 path.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

В неориентированном графе требуется найти минимальный путь между двумя вершинами.

Подсказка В этой задаче нужно, сначала вычислив длины путей до вершин, затем "раскрутить" путь (в обратном направлении)

Формат входного файла

Во входном файле записано сначала число N - количество вершин в графе ($1 \leqslant N \leqslant 100$). Затем записана матрица смежности (0 обозначает отсутствие ребра, 1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной.

Формат выходного файла

В выходной файл выведите сначала L - длину пути (количество ребер, которые нужно пройти). А затем выведите L+1 число - вершины в порядке следования вдоль этого пути. Если пути не существует, выведите одно число -1.

Примеры

path.out
3
3 2 1 5

Задача С. Числа в вершинах

Имя входного файла: vnums.in
Имя выходного файла: vnums.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В неориентированном графе без кратных ребер и петель расставить в вершинах числа так, чтобы если вершины соединены ребром, то числа имели общий делитель, а если нет - то нет.

Формат входного файла

В файле записано число N (0 < N < 7) - количество вершин в графе. Затем записана матрица смежности.

Формат выходного файла

В файл вывести N натуральных чисел из диапазона [1,2147483647], которые вы предлагаете приписать вершинам.

Пример

vnums.in	vnums.out
3	6 2 3
0 1 1	
1 0 0	
1 0 0	

Задача D. Компоненты связности

Имя входного файла: comp.in
Имя выходного файла: comp.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В неориентированном графе посчитать количество компонент связности. В графе могут быть петли и кратные ребра.

Формат входного файла

Во входном файле записаны сначала два числа N и M, задающие соответственно количество вершин и количество ребер ($1 \leqslant N \leqslant 100, 0 \leqslant M \leqslant 10000$), а затем перечисляются ребра. Каждое ребро задается номерами вершин, которые оно соединяет.

Формат выходного файла

В выходной файл выведите одно число - количество компонент связности.

Примеры

comp.in	comp.out
3 4	1
1 1 1 2 1 3 2 3	
5 3	4
1 1 1 2 2 1	
5 0	5