基于 ARIMA 的黄金价格的预测

大数据 2 班 谭润 20238131027

1 数据来源

本研究使用的黄金价格数据涵盖了 1969 年至 2024 年的年份、平均值、最高值和最低值。

2 方法

2.1 原始数据分析

2.1.1 相关性分析

首先检查数据,无缺失值。然后对数据进行描述性统计分析,结果如下表所示:

指标	年份	平均值(美元/克)	最高值(美元/克)	最低值(美元/克)
count	56	56	56	56
mean	1996.5	23.602036	27.008107	20.802143
std	16.309506	20.755998	23.438294	18.353789
min	1969	1.268	1.382	1.227
25%	1982.75	10.7155	11.853	9.55925
50%	1996.5	13.549	15.8465	13.0255
75%	2010.25	41.47475	46.254	37.04625
max	2024	84.267	98.411	70.267

表 1 描述性统计分析结果

计算平均价格与最高价、最低价之间的相关系数,结果如下表所示:

平均价格与最高值的相关系数	平均价格与最低值的相关系数
0.9966307123436292	0.9970121356741926

表 2 相关系数结果

发现相关系数接近1 代表平均价格与最高值和最低值之间存在很强的正线性关系

平均价格、最高价和最低价的时间序列图如下图所示:

图 1 1969-2024 年黄金变化结果

2.2 ARIMA 模型建立与预测

2.2.1 平稳性检验

对平均价格序列进行平稳性检验,本研究采取 ADF 检验,发现 ADF 值为-1.867,代表序列不平稳。于是进行差分处理,使序列变平稳。

2.2.2 确定模型参数

本研究通过自相关函数(ACF)和偏自相关函数(PACF)图,确定 ARIMA 模型的参数 自回归阶数 p、移动平均阶数 q。

本研究通过观察 ACF 和 PACF 图确定参数值如下表所示:

表 3 模型参数

2.2.3 模型训练与评估

本研究使用训练数据拟合 ARIMA 模型,并对模型进行评估,计算均方误差 (MSE)、平均绝对误差 (MAE)等。计算结果如下图所示:

均方误差	平均绝对误差
230.815	14.532

表 4 误差结果

可见,均方误差和平均绝对误差都很大,即 ATIMA 模型的效果非常差

2.2.4 预测未来价格

本研究利用建立好的 ARIMA 模型,对黄金未来 10 年的平均价格进行预测,结果如下图所示:

图 2 黄金价格预测结果

但是,由于前面已证明 ARIMA 模型不适合运用于黄金价格这种不平稳的时间序列,所以以上预测结果仅为错误示范,无实际参考价值。

3. 总结

本研究运用 ARIMA 模型对 1969 年至 2024 年的黄金价格数据进行分析与预测。但从模型效果评估来看,本研究中 ARIMA 模型的均方误差和平均绝对误差都较大,这表明模型的预测值与实际值之间存在较大偏差,预测效果较差。

根据分析,是因为黄金的平均价格序列的不平稳性,ARIMA 模型并不适合黄金价格的预测。虽可通过差分处理使其平稳,但这一过程可能丢失了部分重要的经济意义和长期趋势信息。实际黄金的价格,受多种复杂因素影响,如全球经济形势、货币政策调整、市场供需关系等 , 这些因素的动态变化使得黄金价格

序列呈现出复杂的波动模式,难以简单地用 ARIMA 模型的自回归和移动平均结构来刻画。

对于黄金价格的预测,可考虑使用更复杂、适应性更强的模型。例如,深度学习模型中的长短期记忆网络(LSTM)。其他方法,如支持向量机(SVM)等也可尝试……

PS: 本文数据和代码均可从: tanrun0 的 Github 仓库获取: https://github.com/tanrun0/school homework code/tree/main