

planetmath.org

Math for the people, by the people.

algebraic

Canonical name Algebraic

Date of creation 2013-11-05 18:32:06 Last modified on 2013-11-05 18:32:06

Owner drini (3) Last modified by pahio (2872)

Numerical id 8

Author drini (2872)
Entry type Definition
Classification msc 13B05
Classification msc 11R04
Classification msc 11R32

Related topic AlgebraicNumber Related topic FiniteExtension

 $Related\ topic \qquad ProofOfTranscendental RootTheorem$

Let K be an extension field of F and let $a \in K$.

If there is a nonzero polynomial $f \in F[x]$ such that f(a) = 0 (in K) we say that a is algebraic over F.

For example, $\sqrt{2} \in \mathbb{R}$ is algebraic over \mathbb{Q} since there is a nonzero polynomial with rational coefficients, namely $f(x) = x^2 - 2$, such that $f(\sqrt{2}) = 0$.

If all elements of K are algebraic over F, one says that the *field extension* K/F is algebraic.