Quantitative Economics Workshop Paris Prelude to Dynamic Programming

John Stachurski

September 2022

Introduction

Summary of this lecture:

- Linear equations
- Fixed point theory
- Infinite horizon job search

Operations on real numbers such as $|\cdot|$ and \vee are applied to vectors element-by-element

Example.

$$a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \quad \Longrightarrow \quad |a| = \begin{pmatrix} |a_1| \\ \vdots \\ |a_n| \end{pmatrix}$$

$$a \lor b = \begin{pmatrix} a_1 \lor b_1 \\ \vdots \\ a_n \lor b_n \end{pmatrix}$$
 and $a \land b = \begin{pmatrix} a_1 \land b_1 \\ \vdots \\ a_n \land b_n \end{pmatrix}$

etc.

Linear Equations

Given one-dimensional equation x = ax + b, we have

$$|a| < 1$$
 \Longrightarrow $x^* = \frac{b}{1-a} = \sum_{k \geqslant 0} a^k b^k$

How can we extend this beyond one dimension?

We define the **spectral radius** of square matrix A as

$$r(A) := \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}$$

Key idea:

• r(A) < 1 is a generalization of |a| < 1

Neumann Series Lemma

Suppose b is a column vector in \mathbb{R}^n and A is $n \times n$

Let I be the $n \times n$ identity matrix

Theorem. If r(A) < 1, then

- 1. I A is nonsingular,
- 2. the sum $\sum_{k \ge 0} A^k$ converges,
- 3. $(I-A)^{-1} = \sum_{k \geqslant 0} A^k$, and
- 4. the vector equation x = Ax + b has the unique solution

$$x^* := (I - A)^{-1}b = \sum_{k \ge 0} A^k b$$

Intuitive idea: with $S := \sum_{k \geqslant 0} A^k$, we have

$$I + AS = I + A(I + A + \cdots) = I + A + A^{2} + \cdots = S$$

Rearranging
$$I + AS = S$$
 gives $S = (I - A)^{-1}$

The equation x = Ax + b is equivalent to (I - A)x = b

Unique solution is $x^* = (I - A)^{-1}b = Sb$, as claimed

Fixed Points

To solve more complex equations we use fixed point theory

Recall that, if S is any set then

- T is a self-map on S if T maps S into itself
- $x^* \in S$ is called a **fixed point** of T in S if $Tx^* = x^*$

Example. Every x in set S is fixed under the **identity map**

$$I \colon x \mapsto x$$

Example. If $S = \mathbb{N}$ and Tx = x + 1, then T has no fixed point

Example. If $S = \mathbb{R}$ and $Tx = x^2$, then T has fixed points at 0,1

Example. If $S = \mathbb{R}^n$ and Tx = Ax + b, then

$$r(A) < 1 \implies x^* := (I - A)^{-1}b$$
 is the unique f.p. of T in S

Example. If $S \subset \mathbb{R}$, $Tx = x \iff T$ meets the 45 degree line

Figure: Graph and fixed points of $G: x \mapsto 2.125/(1+x^{-4})$

Given self-map T on S, common to

- write Tx instead of T(x) and
- call T an operator rather than a function

Key idea:

solving equation $x = Tx \iff$ finding fixed points of T

Example. If $S = \mathbb{R}^n$ and Tx = Ax + b, then

 x^* solves equation $x = Ax + b \iff x^*$ is a fixed point of T

(But fixed point theory is mainly for nonlinear equations)

Point on notation:

- $T^2 = T \circ T$
- $T^3 = T \circ T \circ T$
- etc.

Example.
$$Tx = Ax + b$$
 implies $T^2x = A(Ax + b) + b$

Self-map T is called **globally stable** on S if

- 1. T has a unique fixed point x^* in S and
- 2. $T^k x \to x^*$ as $k \to \infty$ for all $x \in S$

Example. If $S = \mathbb{R}^n$ and Tx = Ax + b, then

$$T^{k}x = A^{k}x + A^{k-1}b + A^{k-2}b + \dots + Ab + b \qquad (x \in S, k \in \mathbb{N})$$

If r(A) < 1, then $A^k x \to 0$ and $\sum_{i=0}^k A^i \to (I-A)^{-1}$, so

$$\lim_{k \to \infty} T^k x = \lim_{k \to \infty} \left[A^k x + \sum_{i=0}^k A^{i-1} b \right] = (I - A)^{-1} b = x^*$$

Example. Consider Solow-Swan growth dynamics

$$k_{t+1} = g(k_t) := sAk_t^{\alpha} + (1 - \delta)k_t, \qquad t = 0, 1, \dots,$$

where

- k_t is capital stock per worker,
- $A, \alpha > 0$ are production parameters, $\alpha < 1$
- s > 0 is a savings rate, and
- $\delta \in (0,1)$ is a rate of depreciation

Iterating with g from k_0 generates a time path for capital stock The map g is globally stable on $(0,\infty)$

Note from last slide

- If g is flat near k^* , then $g(k) \approx k^*$ for k near k^*
- ullet A flat function near the fixed point \Longrightarrow fast convergence

Conversely

- If g is close to the 45 degree line near k^* , then $g(k) \approx k$
- Close to 45 degree line means high persistence, slow convergence

Given a self-map T on S, we typically ask

- Does T have at least one fixed point on S (existence)?
- Does T have at most one fixed point on S (uniqueness)?
- How can we compute fixed points of T?

For the last question, we seek an algorithm

Then we investigate its properties

Successive Approximation

A natural algorithm for approximating the fixed point in S:

fix x_0 and k=0**while** some stopping condition fails **do** $\begin{array}{c|c} x_{k+1} \leftarrow Tx_k \\ k \leftarrow k+1 \end{array}$ **end**

return x_k

 $\underline{\operatorname{If}}\ T$ is globally stable on S, then $(x_k)=(T^kx_0)$ converges to x^*

hence output $\approx x^*$

The algorithm just described is called successive approximation

```
import numpy as np
def successive approx(T,
                                           # Operator (callable)
                                           # Initial condition
                      x Θ,
                      tolerance=1e-6,
                                          # Frror tolerance
                     max iter=10 000,
                                          # Max iteration bound
                      print step=25,
                                           # Print at multiples
                     verbose=False):
    Implements successive approximation by iterating on the operator T.
    x = x \theta
    error = np.inf
    k = 1
    while error > tolerance and k <= max iter:
       x new = T(x)
       error = np.max(np.abs(x new - x))
       if verbose and k % print step == 0:
            print(f"Completed iteration {k} with error {error}.")
       x = x new
       k += 1
    if error > tolerance.
       print(f"Warning: Iteration hit upper bound {max iter}.")
    elif verbose:
       print(f"Terminated successfully in {k} iterations.")
    return x
```


Figure: Successive approximation from different initial conditions

Newton's Method

Let h be a differentiable real-valued function on $(a,b)\subset\mathbb{R}$

We seek a **root** of h, which is an x^* such that $h(x^*) = 0$

We start with guess x_0 and then update it

To do this we use $h(x_1) \approx h(x_0) + h'(x_0)(x_1 - x_0)$

Setting the RHS = 0 and solving for x_1 gives

$$x_1 = x_0 - \frac{h(x_0)}{h'(x_0)}$$

Continuing in the same way, we set

$$x_{k+1} = q(x_k)$$
 where $q(x) := x - \frac{h(x)}{h'(x)}$,

Figure: Successive approximation vs Newton's method

Comments:

- The map q is flat close to the fixed point k^*
- Hence Newton's method converges quickly <u>near</u> k^*
- But Newton's method is not globally convergent
- Successive approximation is slower but more robust

Key ideas

- There is almost always a trade-off between robustness and speed
- Speed requires assumptions, and assumptions can fail

Newton's method extends naturally to multiple dimensions

When h is a map from $S \subset \mathbb{R}^n$ to itself, we use

$$x_{k+1} = x_k - [J(x_k)]^{-1}h(x_k)$$

Here $J_h(x_k) :=$ the Jacobian of h evaluated at x_k

Comments

- Typically faster but less robust
- Matrix operations can be parallelized
- Automatic differentiation can be helpful

Job Search

A model of job search created by John J. McCall

We model the decision problem of an unemployed worker

Job search depends on

- current and likely future wage offers
- impatience, and
- the availability of unemployment compensation

We begin with a very simple version of the McCall model

(Later we consider extensions)

Set Up

An agent begins working life at time t=0 without employment

Receives a new job offer paying wage w_t at each date t

She has two choices:

- 1. accept the offer and work permanently at w_t or
- 2. **reject** the offer, receive unemployment compensation c, and reconsider next period

Assume $\{w_t\}$ is $\stackrel{ ext{ iny IID}}{\sim} \varphi$, where

- \bullet $W\subset\mathbb{R}_+$ is a finite set of wage outcomes and
- $\varphi \in \mathfrak{D}(\mathsf{W})$

The agent cares about the future but is **impatient**

Impatience is parameterized by a time discount factor $\beta \in (0,1)$

• Present value of a next-period payoff of y dollars is βy

Trade off:

- $\beta < 1$ indicating some impatience
- hence the agent will be tempted to accept reasonable offers, rather than always waiting for a better one
- The key question is how long to wait

The worker who aims to maximize

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}Y_{t}, \quad Y_{t}\in\{c,W_{t}\} \text{ is earnings at time } t \tag{1}$$

- $\{W_t\} \stackrel{\text{\tiny IID}}{\sim} \varphi \text{ for } \varphi \in \mathfrak{D}(\mathsf{W})$
- W $\subset \mathbb{R}_+$ with $|W| < \infty$
- ullet c and eta are positive and eta < 1
- jobs are permanent

What is max EPV of each option when lifetime is infinite?

What if we accept $w \in W$ now?

EPV = stopping value =
$$w + \beta w + \beta^2 w + \dots = \frac{w}{1-\beta}$$

What if we reject?

EPV = continuation value

= EPV of optimal choice in each subsequent period

But what are optimal choices?!

Calculating optimal choice requires knowing optimal choice!

The Value Function

Let $v^*(w) := \max$ lifetime EPV given wage offer w

We call v^* the value function

Suppose that we know v^*

Then the (maximum) continuation value is

$$h^* := c + \beta \sum_{w' \in \mathsf{W}} v^*(w') \varphi(w')$$

= max EPV conditional on decision to continue

The optimal choice is then

$$\mathbb{1}\left\{\mathsf{stopping\ value}\geqslant\mathsf{continuation\ value}\right\}=\mathbb{1}\left\{\frac{w}{1-\beta},\ h^*\right\}$$

But how can we calculate v^* ?

Key idea: We can use the Bellman equation to solve for v^*

Theorem. The value function v^* satisfies the **Bellman equation**

$$v^*(w) = \max \left\{ \frac{w}{1-\beta}, c + \beta \sum_{w' \in W} v^*(w') \varphi(w') \right\} \qquad (w \in W)$$

Intuition:

- If accept, get $w/(1-\beta)$
- If reject and then choose optimally, get max continuation value
- Max value today is max of these alternatives

So how can we use the Bellman equation

$$v^*(w) = \max\left\{\frac{w}{1-\beta}, c+\beta \sum_{w' \in W} v^*(w')\varphi(w')\right\} \qquad (w \in W)$$

to solve for v^* ?

Contractions

Let

- U be a nonempty subset of \mathbb{R}^n ,
- $\|\cdot\|$ be a norm on \mathbb{R}^n , and
- ullet T be a self-map on U

T is called a **contraction** on U with respect to $\|\cdot\|$ if

$$\exists \lambda < 1 \text{ such that } \|Tu - Tv\| \leqslant \lambda \|u - v\| \quad \text{for all} \quad u, v \in U$$

Example. Tx = ax + b is a contraction on $\mathbb R$ with respect to $|\cdot|$ if and only if |a| < 1

Indeed,

$$|Tx - Ty| = |ax + b - ay - b| = |a||x - y|$$

Banach's Contraction Mapping Theorem

Theorem If

- 1. U is closed in \mathbb{R}^n and
- 2. T is a contraction of modulus λ on U with respect to some norm $\|\cdot\|$ on \mathbb{R}^n ,

then T has a unique fixed point u^* in U and

$$||T^n u - u^*|| \le \lambda^n ||u - u^*||$$
 for all $n \in \mathbb{N}$ and $u \in U$

In particular, T is globally stable on U

Proof: See the DP text

Let's now return to the job search problem

Recall that that the value function v^* solves the Bellman equation

That is,

$$v^*(w) = \max\left\{\frac{w}{1-\beta}, c+\beta \sum_{w' \in W} v^*(w')\varphi(w')\right\} \qquad (w \in W)$$

The infinite-horizon continuation value is defined as

$$h^* := c + \beta \sum_{w'} v^*(w') \varphi(w')$$

Key question: how to solve for v^* ?

We introduce the **Bellman operator**, defined at $v \in \mathbb{R}^{\mathsf{W}}$ by

$$(Tv)(w) = \max\left\{\frac{w}{1-\beta}, c+\beta\sum_{w'\in W}v(w')\varphi(w')\right\} \qquad (w\in W)$$

By construction, $Tv=v\iff v$ solves the Bellman equation

Let
$$\mathcal{V}:=\mathbb{R}_+^{\mathsf{W}}$$

Proposition. T is a contraction \mathcal{V} with respect to $\|\cdot\|_{\infty}$

In the proof, we use the elementary bound

$$|\alpha \lor x - \alpha \lor y| \le |x - y| \qquad (\alpha, x, y \in \mathbb{R})$$

Fixing f, g in \mathcal{V} fix any $w \in W$, we have

$$\begin{aligned} |(Tf)(w) - (Tg)(w)| &\leq \left| \beta \sum_{w'} f(w') \varphi(w') - \beta \sum_{w'} g(w') \varphi(w') \right| \\ &= \beta \left| \sum_{w'} [f(w') - g(w')] \varphi(w') \right| \end{aligned}$$

Applying the triangle inequality,

$$|(Tf)(w) - (Tg)(w)| \leqslant \beta \sum_{w'} |f(w') - g(w')| \varphi(w') \leqslant \beta ||f - g||_{\infty}$$

$$\therefore ||Tf - Tg||_{\infty} \leqslant \beta ||f - g||_{\infty}$$

Recall: The optimal decision at any given time, facing current wage draw $w \in W$, is

$$\mathbb{1}\left\{\frac{w}{1-\beta}\geqslant h^*\right\}$$

Let's try to write this in the language of dynamic programming

Dynamic programming centers around the problem of finding optimal policies

Optimal Policies

In general, for a dynamic program, choices consist of a sequence $(A_t)_{t\geqslant 0}$

specifies how the agent acts at each t

Since agents are not clairvoyant, so we assume that A_t cannot depend on future events

In other words, for some function σ_t ,

$$A_t = \sigma_t(X_t, A_{t-1}, X_{t-1}, A_{t-2}, X_{t-2}, \dots A_0, X_0)$$

In dynamic programming, σ_t is called a **policy function**

Key idea Design the state such that X_t is

- sufficient to determine the optimal current action
- but not so large as to be unmanagable
- Finding the state is an art!

Example. Recall retailer who chooses stock orders and prices in each period

What to include in the current state?

- level of current inventories
- interest rates and inflation?
- the rate at which inventories have changed?
- competitors prices?

So suppose state X_t determines the current action A_t

Then we can write $A_t = \sigma(X_t)$ for some function σ

Note that we dropped the time subscript on σ

No loss of generality: can include time in the current state

• i.e., expand X_t to $\hat{X}_t = (t, X_t)$

Depends on the problem at hand

- For the job search model with finite horizon, the date matters
- For the infinite horizon version of the problem, however, the agent always looks forward toward an infinite horizon

For job search model,

- state = current wage offer and
- possible actions are accept (1) or reject (0)

A policy is a map σ from W to $\{0,1\}$

Let Σ be the set of all such maps

For each $v \in \mathcal{V}$, let us define a v-greedy policy to be a $\sigma \in \Sigma$ satisfying

$$\sigma(w) = \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant c + \beta \sum_{w' \in \mathsf{W}} v(w') \varphi(w')\right\} \quad \text{for all } w \in \mathsf{W}$$

Accepts iff $w/(1-\beta) \geqslant$ continuation value computed using v

Optimal choice:

- ullet agent should adopt a v^* -greedy policy
- Sometimes called Bellman's principle of optimality

We can also express a v^* -greedy policy via

$$\sigma^*(w) = \mathbb{1} \{ w \geqslant w^* \}$$
 where $w^* := (1 - \beta)h^*$ (2)

The term w^* in (2) is called the **reservation wage**

- Same ideas as before, different language
- We prove optimality more carefully later

Computation

Since T is globally stable on \mathcal{V} , we can compute an approximate optimal policy by

- 1. applying successive approximation on T to compute v^*
- 2. calculate a v^* -greedy policy

In dynamic programming, this approach is called **value function iteration**

```
input v_0 \in \mathcal{V}, an initial guess of v^*
input \tau, a tolerance level for error
\varepsilon \leftarrow \tau + 1
k \leftarrow 0
while \varepsilon > \tau do
      for w \in W do
      v_{k+1}(w) \leftarrow (Tv_k)(w)
     end
     \varepsilon \leftarrow \|v_k - v_{k+1}\|_{\infty}k \leftarrow k+1
end
Compute a v_k-greedy policy \sigma
return \sigma
```


Figure: A sequence of iterates of the Bellman operator

Figure: The approximate value function for job search

Computing the Continuation Value Directly

We used a standard dynamic programming approach to solve this problem

Sometimes we can find more efficient ways to solve particular problems

For the infinite horizon job search problem, a more efficient way exists

The idea is to compute the continuation value directly

This shifts the problem from n-dimensional to one-dimensional

Method: Recall that

$$v^*(w) = \max\left\{\frac{w}{1-\beta'}, c + \beta \sum_{w'} v^*(w') \varphi(w')\right\} \qquad (w \in W)$$

Using the definition of h^* , we can write

$$v^*(w') = \max\{w'/(1-\beta), h^*\}$$
 $(w' \in W)$

Take expectations, multiply by β and add c to obtain

$$h^* = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta}, h^* \right\} \varphi(w')$$

How to find h^* from the equation

$$h^* = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta'}, h^* \right\} \varphi(w')$$
 (3)

We introduce the map $g\colon \mathbb{R}_+ o \mathbb{R}_+$ defined by

$$g(h) = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(w')$$

By construction, h^* solves (3) if and only if h^* is a fixed point of g

Ex. Show that g is a contraction map on \mathbb{R}_+

Figure: Computing the continuation value as the fixed point of g

New algorithm:

- 1. Compute h^* via successive approximation on g
 - Iteration in \mathbb{R} , not \mathbb{R}^n
- 2. Optimal policy is

$$\sigma^*(w) = \mathbb{1}\left\{\frac{w}{1-\beta} \geqslant h^*\right\}$$