Le lemme de Cesàro

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle convergeant vers 0. On se propose de démontrer que la suite $\left(\frac{\sum_{k=1}^n u_k}{n}\right)_{n\in\mathbb{N}^*}$ converge également vers 0. Il s'agit donc de démontrer $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n \geqslant N, \left|\frac{\sum_{k=1}^n u_k}{n}\right| < \varepsilon$

Soit $\varepsilon > 0$, puisque $\lim_{n \longrightarrow +\infty} u_n = 0$, on sait qu'il existe $N_1 \in \mathbb{N}^*$ vérifiant $\forall n \geqslant N_1$, $|u_n| < \frac{\varepsilon}{2}$

Montrons alors $\forall n \geqslant N_1, \left| \frac{\sum_{k=N_1}^n u_k}{n} \right| < \frac{\varepsilon}{2}$

Soit donc $n \ge N_1$, on peut dès lors affirmer :

$$\left|\frac{\sum_{k=N_1}^n u_k}{n}\right| \leqslant \frac{\sum_{k=N_1}^n |u_k|}{n} < \frac{(n-N_1+1) \cdot \frac{\varepsilon}{2}}{n} \leqslant \frac{n \cdot \frac{\varepsilon}{2}}{n} = \frac{\varepsilon}{2}$$

De même, puisque $\lim_{n \to +\infty} \frac{\sum_{k=1}^{N_1-1} u_k}{n} = 0$, on sait qu'il existe $N_2 \in \mathbb{N}^*$ vérifiant $\forall n \geqslant N_2$, $\left|\frac{\sum_{k=1}^{N_1-1} u_k}{n}\right| < \frac{\varepsilon}{2}$. En posant $N = \max(N_1, N_2)$, on déduit de ce qui précède que pour tout $n \geqslant N$ on a la majoration :

$$\left| \frac{\sum_{k=1}^{n} u_k}{n} \right| = \left| \frac{\sum_{k=1}^{N_1 - 1} u_k}{n} + \frac{\sum_{k=N_1}^{n} u_k}{n} \right| \le \left| \frac{\sum_{k=1}^{N_1 - 1} u_k}{n} \right| + \left| \frac{\sum_{k=N_1}^{n} u_k}{n} \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$