# **Garbled Circuits**For Secure Computation

### Mike Rosulek Oregon State



# **Garbled Circuits**For Secure Computation

### Mike Rosulek Oregon State



# Garbled Circuits For Secure Computation

Mike Rosulek
Oregon State



### Roadmap

7

#### Standard garbled circuits: core concepts & constructions

 Yao's construction, security definitions, optimized constructions (row reduction, free XOR, half-gates)

### New directions beyond boolean circuits

Garbled arithmetic circuits & RAM programs







### Garbling a circuit:

▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire



#### Garbling a circuit:

▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire



#### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate



#### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates



#### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Carbled encoding =** one label per wire



#### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Garbled encoding =** one label per wire

#### Garbled evaluation:

Only one ciphertext per gate is decryptable



#### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire



### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire



### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire



#### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

# Syntax & Security (informal)



Key idea: Given garbled circuit + garbled input . . .

# Syntax & Security (informal)



**Key idea:** Given garbled circuit + garbled input . . .

• ... Only thing you can do is (blindly) evaluate circuit on that input

# Syntax & Security (informal)



**Key idea:** Given garbled circuit + garbled input . . .

- ... Only thing you can do is (blindly) evaluate circuit on that input
- Learn only 1 label per wire: hard to guess "complementary" label
- Seeing a single label hides logical value on wire, although . . .
- ▶ Revealing both labels on *output wires* leaks *only* circuit output







#### Formal security properties:

Privacy: (F, X, d) reveals nothing beyond f and f(x)

Obliviousness: (F, X) reveals nothing beyond f

Authenticity: given (F, X), hard to find  $\widetilde{Y}$  that decodes  $\notin \{f(x), \bot\}$ 



### Formal security properties:

Privacy: (F, X, d) reveals nothing beyond f and f(x)

Obliviousness: (F, X) reveals nothing beyond f

Authenticity: given (F,X), hard to find Y that decodes  $\notin \{f(x),\bot\}$ 

Other interesting notions we won't discuss:

Adaptive security: choice of input can depend on garbled circuit

Gate-hiding: (F, X, d) reveals nothing beyond *topology of f* and f(x)









▶ **Oblivious transfer:** Alice has  $m_0, m_1$ ; Bob has b and learns  $m_b$ 



- **Oblivious transfer:** Alice has  $m_0, m_1$ ; Bob has b and learns  $m_b$
- ► Given garbled f + garbled inputs + all output labels  $\Rightarrow$  Bob learns **only** f(x,y)

# Optimizing garbled circuits

### Size of garbled circuits . . .

- ... is the most important parameter
  - Applications of garbled circuits are network-bound
  - Garbled circuit computations are very fast (typically hardware AES)

# Average bits per garbled gate



# Average bits per garbled gate





Position in this list leaks semantic value!



Position in this list leaks semantic value!



Position in this list leaks semantic value!

⇒ Need to randomly permute ciphertexts



Position in this list leaks semantic value!

- ⇒ Need to randomly permute ciphertexts
- ⇒ Need to **detect** [in]correct decryption



#### Position in this list leaks semantic value!

- ⇒ Need to randomly permute ciphertexts
- ⇒ Need to **detect** [in]correct decryption
- ⇒ Need encryption scheme with *ciphertext expansion* (size doubles)

# Point-and-permute [BeaverMicaliRogaway90]





- Assign color bits & to wire labels
- ► Association between  $(\bullet, \bullet) \leftrightarrow (T, F)$  is random for each wire
- A wire label reveals its own color (e.g., as last bit)



- Assign color bits & to wire labels
- ► Association between  $(\bullet, \bullet) \leftrightarrow (T, F)$  is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys



- Assign color bits & to wire labels
- ► Association between  $(\bullet, \bullet) \leftrightarrow (T, F)$  is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys



- Assign color bits & to wire labels
- ► Association between  $(\bullet, \bullet) \leftrightarrow (T, F)$  is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors



- Assign color bits & to wire labels
- ► Association between  $(\bullet, \bullet) \leftrightarrow (T, F)$  is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors



- Assign color bits & to wire labels
- ► Association between  $(\bullet, \bullet) \leftrightarrow (T, F)$  is random for each wire
- A wire label reveals its own color (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors

No need for trial decryption  $\Rightarrow$  no need for ciphertext expansion!

# Scoreboard

|                             | size ( $\times \lambda$ ) | garble cost | eval cost |
|-----------------------------|---------------------------|-------------|-----------|
| Classical [Yao86,GMW87]     | 8                         | 4           | 2.5       |
| P&P [BeaverMicaliRogaway90] | 4                         | 4           | 1         |

### Garbled Row Reduction [NaorPinkasSumner99]



#### Garbled Row Reduction [NaorPinkasSumner99]



Instead of choosing all wire labels uniformly ...



 $\mathbb{E}_{A_0,B_0}(C_0^{\bullet})$   $\mathbb{E}_{A_1,B_1}(C_0^{\bullet})$ 

- Instead of choosing all wire labels uniformly ...
- $\triangleright$  ... choose so that first ciphertext is  $0^n$



- Instead of choosing all wire labels uniformly ...
- $\triangleright$  ... choose so that first ciphertext is  $0^n$

#### Garbled Row Reduction [NaorPinkasSumner99]



- Instead of choosing all wire labels uniformly ...
- $\triangleright$  ... choose so that first ciphertext is  $0^n$
- No need to include 1st ciphertext in garbled gate



- Instead of choosing all wire labels uniformly ...
- $\triangleright$  ... choose so that first ciphertext is  $0^n$
- No need to include 1st ciphertext in garbled gate
- ► To evaluate, just imagine ciphertext 0<sup>n</sup> if you have label combination ...

# Scoreboard

|                             | size ( $\times \lambda$ ) | garble cost | eval cost |
|-----------------------------|---------------------------|-------------|-----------|
| Classical [Yao86,GMW87]     | 8                         | 4           | 2.5       |
| P&P [BeaverMicaliRogaway90] | 4                         | 4           | 1         |
| GRR3 [NaorPinkasSumner99]   | 3                         | 4           | 1         |

## $Free \ XOR \ _{\text{[KolesnikovSchneider08]}}$

$$\begin{array}{c|c} A_0, A_1 \\ \hline B_0, B_1 \end{array} \qquad \begin{array}{c|c} C_0, C_1 \\ \hline \end{array}$$

▶ Define **offset of a wire** ≡ XOR of its two labels

$$\underbrace{A, A \oplus \Delta_A}_{B, B \oplus \Delta_B} \underbrace{C, C \oplus \Delta_C}_{C, C \oplus \Delta_C}$$

▶ Define **offset of a wire** ≡ XOR of its two labels

$$\begin{array}{c}
A,A \oplus \Delta \\
\hline
B,B \oplus \Delta
\end{array}$$

- ▶ Define **offset of a wire**  $\equiv$  XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset  $\Delta$

$$C \leftarrow \{0,1\}^n$$

$$B, B \oplus \Delta$$

$$C, C \oplus \Delta$$

- Define offset of a wire ≡ XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset  $\Delta$



$$\underbrace{A \oplus B}_{\text{FALSE}} \oplus \underbrace{B \oplus B}_{\text{FALSE}} = \underbrace{A \oplus B}_{\text{FALSE}}$$

- ▶ Define **offset of a wire**  $\equiv$  XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset  $\Delta$
- ► Choose false output = false input ⊕ false input

$$C := A \oplus B$$

$$B \oplus \Delta$$

$$\underbrace{A \oplus B \oplus \Delta}_{\mathsf{TRUE}} \oplus \underbrace{B \oplus \Delta}_{\mathsf{TRUE}} = \underbrace{A \oplus B \oplus \Delta}_{\mathsf{TRUE}}$$

- ▶ Define **offset of a wire**  $\equiv$  XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset  $\Delta$
- ► Choose false output = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)



$$\underbrace{A \oplus \Delta}_{\mathsf{TRUE}} \oplus \underbrace{B}_{\mathsf{FALSE}} = \underbrace{A \oplus B \oplus \Delta}_{\mathsf{TRUE}}$$

- ▶ Define **offset of a wire** ≡ XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset  $\Delta$
- ► Choose false output = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)

$$C := A \oplus B$$

$$B \oplus \Delta$$

$$\underbrace{A \oplus \Delta}_{\mathsf{TRUE}} \oplus \underbrace{B \oplus \Delta}_{\mathsf{TRUE}} = \underbrace{A \oplus B}_{\mathsf{FALSE}}$$

- Define offset of a wire ≡ XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset  $\Delta$
- ► Choose false output = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)

# Scoreboard

|                                  | size ( $\times \lambda$ ) |     | garble cost |     | eval cost |     |
|----------------------------------|---------------------------|-----|-------------|-----|-----------|-----|
|                                  | XOR                       | AND | XOR         | AND | XOR       | AND |
| Classical [Yao86,GMW87]          | 8                         | 8   | 4           | 4   | 2.5       | 2.5 |
| P&P [BeaverMicaliRogaway90]      | 4                         | 4   | 4           | 4   | 1         | 1   |
| GRR3 [NaorPinkasSumner99]        | 3                         | 3   | 4           | 4   | 1         | 1   |
| Free XOR [KolesnikovSchneider08] | 0                         | 3   | 0           | 4   | 0         | 1   |

## Row reduction $\times 2$ [PinkasSchneiderSmartWilliams09]

Garble a gate @ 2 ciphertexts per gate:

$$\begin{array}{c} A_0, A_1 \\ \hline B_0, B_1 \end{array}$$

$$K_{1} = \mathbb{E}_{A_{0},B_{0}}^{-1}(0^{n})$$

$$K_{2} = \mathbb{E}_{A_{0},B_{1}}^{-1}(0^{n})$$

$$K_{3} = \mathbb{E}_{A_{1},B_{0}}^{-1}(0^{n})$$

$$K_{4} = \mathbb{E}_{A_{1},B_{1}}^{-1}(0^{n})$$

$$A_0, A_1$$
 $B_0, B_1$ 
 $C_0, C_1$ 

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$\begin{array}{c|c} \hline A_0, A_1 \\ \hline B_0, B_1 \\ \hline \end{array}$$

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$A_0, A_1$$
 $B_0, B_1$ 
 $C_0, C_1$ 

$$\bullet^{(3,\,K_3)}$$
 
$$\bullet^{(4,\,K_4)}$$

$$(1, K_1), (3, K_3), (4, K_4)$$

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$A_0, A_1$$
 $B_0, B_1$ 
 $C_0, C_1$ 



P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ 

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$
  
 $K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$   
 $K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$   
 $K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$ 





$$P = \text{uniq deg-2 poly thru}$$
  
 $(1, K_1), (3, K_3), (4, K_4)$ 

$$(2, K_2), (5, P(5)), (6, P(6))$$

Idea: Evaluator can know exactly one of:

$$K_{1} = \mathbb{E}_{A_{0},B_{0}}^{-1}(0^{n}) \rightsquigarrow \text{learn } C_{0}$$

$$K_{2} = \mathbb{E}_{A_{0},B_{1}}^{-1}(0^{n}) \rightsquigarrow \text{learn } C_{1}$$

$$K_{3} = \mathbb{E}_{A_{1},B_{0}}^{-1}(0^{n}) \rightsquigarrow \text{learn } C_{0}$$

$$K_{4} = \mathbb{E}_{A_{1},B_{1}}^{-1}(0^{n}) \rightsquigarrow \text{learn } C_{0}$$

$$A_0,A_1$$
 $B_0,B_1$ 
 $C_0,C_1$ 



P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ 

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$C_0 = P(0); C_1 = Q(0)$$





P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ 

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$
  
 $K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$   
 $K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$   
 $K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$ 



P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ 

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$
  
 $K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$   
 $K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$   
 $K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$ 

#### To evaluate a gate:

► Compute relevant *K<sub>i</sub>* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero



P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ 

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$
  
 $K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$   
 $K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$   
 $K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$ 

#### To evaluate a gate:

Compute relevant K<sub>i</sub> & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero



$$P = \text{uniq deg-2 poly thru}$$
  
 $(1, K_1), (3, K_3), (4, K_4)$ 

$$Q = \text{uniq deg-2 poly thru}$$
  
 $(2, K_2), (5, P(5)), (6, P(6))$ 

 $\bullet$  P(5)

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

#### To evaluate a gate:

► Compute relevant *K<sub>i</sub>* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero



$$P = \text{uniq deg-2 poly thru}$$
  
 $(1, K_1), (3, K_3), (4, K_4)$ 

$$Q = \text{uniq deg-2 poly thru}$$
  
 $(2, K_2), (5, P(5)), (6, P(6))$ 

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

#### To evaluate a gate:

► Compute relevant *K<sub>i</sub>* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero



P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ 

Garble a gate @ 2 ciphertexts per gate:

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

#### To evaluate a gate:

► Compute relevant *K<sub>i</sub>* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero



P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ 

Q = uniq deg-2 poly thru $(2, K_2), (5, P(5)), (6, P(6))$  Garble a gate @ 2 ciphertexts per gate:

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_2 = \mathbb{E}_{A_0, B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$$

$$K_3 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

$$K_4 = \mathbb{E}_{A_1, B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$

#### To evaluate a gate:

► Compute relevant *K<sub>i</sub>* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero



$$P = \text{uniq deg-2 poly thru}$$
  
 $(1, K_1), (3, K_3), (4, K_4)$ 

$$Q = \text{uniq deg-2 poly thru}$$
  
 $(2, K_2), (5, P(5)), (6, P(6))$ 

Garble a gate @ 2 ciphertexts per gate:

Idea: Evaluator can know exactly one of:

$$K_1 = \mathbb{E}_{A_0,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$$
  
 $K_2 = \mathbb{E}_{A_0,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_1$   
 $K_3 = \mathbb{E}_{A_1,B_0}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$   
 $K_4 = \mathbb{E}_{A_1,B_1}^{-1}(0^n) \rightsquigarrow \text{learn } C_0$ 

#### To evaluate a gate:

► Compute relevant *K<sub>i</sub>* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero



P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$ 

Q = uniq deg-2 poly thru $(2, K_2), (5, P(5)), (6, P(6))$ 

# Scoreboard

|                                       | size ( $\times \lambda$ ) |     | garble cost |     | eval cost |     |
|---------------------------------------|---------------------------|-----|-------------|-----|-----------|-----|
|                                       | XOR                       | AND | XOR         | AND | XOR       | AND |
| Classical [Yao86,GMW87]               | 8                         | 8   | 4           | 4   | 2.5       | 2.5 |
| P&P [BeaverMicaliRogaway90]           | 4                         | 4   | 4           | 4   | 1         | 1   |
| GRR3 [NaorPinkasSumner99]             | 3                         | 3   | 4           | 4   | 1         | 1   |
| Free XOR [KolesnikovSchneider08]      | 0                         | 3   | 0           | 4   | 0         | 1   |
| GRR2 [PinkasSchneiderSmartWilliams09] | 2                         | 2   | 2           | 2   | 1         | 1   |

#### Scoreboard

|                                              | size ( $\times \lambda$ ) |     | garble cost |     | eval cost |     |
|----------------------------------------------|---------------------------|-----|-------------|-----|-----------|-----|
|                                              | XOR                       | AND | XOR         | AND | XOR       | AND |
| Classical [Yao86,GMW87]                      | 8                         | 8   | 4           | 4   | 2.5       | 2.5 |
| P&P [BeaverMicaliRogaway90]                  | 4                         | 4   | 4           | 4   | 1         | 1   |
| GRR3 [NaorPinkasSumner99]                    | 3                         | 3   | 4           | 4   | 1         | 1   |
| Free XOR [KolesnikovSchneider08]             | 0                         | 3   | 0           | 4   | 0         | 1   |
| <b>GRR2</b> [PinkasSchneiderSmartWilliams09] | 2                         | 2   | 2           | 2   | 1         | 1   |

- ▶ Depending on circuit, either Free-XOR or GRR2 may be better
- ▶ Two techniques are **incompatible!** (can't guarantee  $C_0 \oplus C_1 = \Delta$ )

$$A, A \oplus \Delta$$

$$B, B \oplus \Delta$$

$$C, C \oplus \Delta$$



$$A \qquad C, C \oplus \Delta$$

$$B, B \oplus \Delta$$
if  $a = 0$ :
$$0 \mid 0$$

$$1 \mid 0$$
unary gate  $b \mapsto 0$ 

$$A \qquad C, C \oplus \Delta$$

$$B, B \oplus \Delta$$
if  $a = 0$ :
$$B \qquad C \qquad B \oplus \Delta \qquad C$$
unary gate  $b \mapsto 0$ 

$$A \qquad C, C \oplus \Delta$$

$$B, B \oplus \Delta$$
if  $a = 0$ :
$$\mathbb{E}_{B} \quad (C)$$

$$\mathbb{E}_{B \oplus \Delta} (C)$$
unary gate  $b \mapsto 0$ 

$$\begin{array}{c|c}
\hline
B,B \oplus \Delta
\end{array}$$

$$\begin{array}{c|c}
C,C \oplus \Delta
\end{array}$$



$$\begin{array}{c|c}
A \oplus \Delta \\
\hline
B, B \oplus \Delta
\end{array}$$

$$\begin{array}{c|c}
C, C \oplus \Delta \\
\hline
\text{if } a = 1: \\
B \oplus \Delta & C \oplus \Delta \\
\hline
\text{unary gate } b \mapsto b$$

$$C, C \oplus \Delta$$

$$if \ a = 1:$$

$$\mathbb{E}_{B} \ (C)$$

$$\mathbb{E}_{B \oplus \Delta} (C \oplus \Delta)$$
unary gate  $b \mapsto b$ 

$$\begin{array}{c|c} A \oplus \Delta & C, C \oplus \Delta \\ \hline B, B \oplus \Delta & \\ \hline \\ \text{if } a = 0 : & \text{if } a = 1 : \\ \hline \\ \mathbb{E}_{B} & (C) \\ \mathbb{E}_{B \oplus \Delta} (C) & \mathbb{E}_{B \oplus \Delta} (C \oplus \Delta) \\ \hline \\ \text{unary gate } b \mapsto 0 & \text{unary gate } b \mapsto b \\ \hline \end{array}$$









What if garbler knows in advance the truth value on one input wire?



Fine print: permute ciphertexts with permute-and-point.

$$A, A \oplus \Delta$$

$$B, B \oplus \Delta$$

$$C, C \oplus \Delta$$

$$A, A \oplus \Delta$$

$$B$$

$$C, C \oplus \Delta$$

What if evaluator knows in advance the truth value on one input wire?

$$A, A \oplus \Delta$$

$$B$$

$$C, C \oplus \Delta$$

Evaluator has *B* (knows false):

 $\Rightarrow$  should obtain C (FALSE)

What if evaluator knows in advance the truth value on one input wire?



Evaluator has *B* (knows false):

 $\Rightarrow$  should obtain C (FALSE)

What if evaluator knows in advance the truth value on one input wire?

$$\begin{array}{c|c}
A, A \oplus \Delta \\
\hline
B \oplus \Delta
\end{array}$$

$$\begin{array}{c|c}
C, C \oplus \Delta \\
\hline
\mathbb{E}_B(C)
\end{array}$$

Evaluator has *B* (knows FALSE):

Evaluator has  $B \oplus \Delta$  (knows TRUE):

 $\Rightarrow$  should obtain C (FALSE)

What if evaluator knows in advance the truth value on one input wire?



Evaluator has *B* (knows false):

 $\Rightarrow$  should obtain C (FALSE)

Evaluator has  $B \oplus \Delta$  (knows TRUE):

⇒ should be able to *transfer* truth value from "a" wire to "c" wire

What if evaluator knows in advance the truth value on one input wire?



Evaluator has B (knows FALSE):

 $\Rightarrow$  should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
- ▶ Suffices to learn  $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?



Evaluator has *B* (knows false):

 $\Rightarrow$  should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
- ▶ Suffices to learn  $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?



Evaluator has B (knows FALSE):

 $\Rightarrow$  should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
- ▶ Suffices to learn  $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?



Evaluator has B (knows FALSE):

 $\Rightarrow$  should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
- ▶ Suffices to learn  $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?



Evaluator has B (knows FALSE):

 $\Rightarrow$  should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
- ▶ Suffices to learn  $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?



Evaluator has B (knows FALSE):

 $\Rightarrow$  should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
  - ▶ Suffices to learn  $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?



Evaluator has B (knows FALSE):

 $\Rightarrow$  should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
  - ▶ Suffices to learn  $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?



Evaluator has B (knows FALSE):

 $\Rightarrow$  should obtain C (FALSE)

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
  - ▶ Suffices to learn  $A \oplus C$

What if evaluator knows in advance the truth value on one input wire?



Evaluator has *B* (knows false):

 $\Rightarrow$  should obtain C (FALSE)

Evaluator has  $B \oplus \Delta$  (knows TRUE):

- ⇒ should be able to *transfer* truth value from "a" wire to "c" wire
  - ▶ Suffices to learn  $A \oplus C$

Fine print: no need for permute-and-point here

# Two halves make a whole!

 $a \wedge b$ 

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

Garbler chooses random bit r



$$a \wedge b = (a \oplus r \oplus r) \wedge b$$
  
=  $[(a \oplus r) \wedge b] \oplus [r \wedge b]$ 

Garbler chooses random bit r

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$
  
=  $[(a \oplus r) \wedge b] \oplus [r \wedge b]$ 

- Garbler chooses random bit r
- ▶ Arrange for evaluator to learn  $a \oplus r$  in the clear

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

$$= \underbrace{[(a \oplus r) \wedge b]}_{\text{one input known to evaluator}} \oplus [r \wedge b]$$

- Garbler chooses random bit r
- ▶ Arrange for evaluator to learn  $a \oplus r$  in the clear

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

$$= [(a \oplus r) \wedge b] \oplus \underbrace{[r \wedge b]}_{\text{one input known to garbler}}$$

- Garbler chooses random bit r
- ▶ Arrange for evaluator to learn  $a \oplus r$  in the clear

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

$$= [(a \oplus r) \wedge b] \oplus \underbrace{[r \wedge b]}_{\text{one input known to garbler}}$$

- Garbler chooses random bit r
- ▶ Arrange for evaluator to learn  $a \oplus r$  in the clear
- Total cost = 2 "half gates" + 1 XOR gate = 2 ciphertexts

$$a \wedge b = (a \oplus r \oplus r) \wedge b$$

$$= [(a \oplus r) \wedge b] \oplus \underbrace{[r \wedge b]}_{\text{one input known to garbler}}$$

- Garbler chooses random bit r
  - ightharpoonup r = color bit of FALSE wire label A
- ▶ Arrange for evaluator to learn  $a \oplus r$  in the clear
  - ►  $a \oplus r$  = color bit of wire label evaluator gets (A or  $A \oplus \Delta$ )
- ► Total cost = 2 "half gates" + 1 XOR gate = 2 ciphertexts

### Scoreboard

|                                       | size ( $\times \lambda$ ) |     | garble cost |     | eval cost |     |
|---------------------------------------|---------------------------|-----|-------------|-----|-----------|-----|
|                                       | XOR                       | AND | XOR         | AND | XOR       | AND |
| Classical [Yao86,GMW87]               | 8                         | 8   | 4           | 4   | 2.5       | 2.5 |
| P&P [BeaverMicaliRogaway90]           | 4                         | 4   | 4           | 4   | 1         | 1   |
| GRR3 [NaorPinkasSumner99]             | 3                         | 3   | 4           | 4   | 1         | 1   |
| Free XOR [KolesnikovSchneider08]      | 0                         | 3   | 0           | 4   | 0         | 1   |
| GRR2 [PinkasSchneiderSmartWilliams09] | 2                         | 2   | 2           | 2   | 1         | 1   |
| Half gates [ZahurRosulekEvans15]      | 0                         | 2   | 0           | 4   | 0         | 2   |

### Can we do better than half-gates?

NO

[Zahur Rosulek Evans 15]

Can't garble an AND gate with < 2 ciphertexts

### Can we do better than half-gates?

NO

[ZahurRosulekEvans15]

Can't garble an AND gate with < 2 ciphertexts

YES

[BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can garble an AND gate with 1 ciphertext

### Can we do better than half-gates?

#### NO

[ZahurRosulekEvans15]

Can't garble an AND gate with < 2 ciphertexts. . .

... using "standard techniques" (details to follow)

#### YES

[BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can garble an AND gate with 1 ciphertext

### Can we do better than half-gates?

#### NO

[ZahurRosulekEvans15]

Can't garble an AND gate with < 2 ciphertexts. . .

... using "standard techniques" (details to follow)

#### YES

[BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can garble an AND gate with 1 ciphertext...

... but the construction doesn't compose with itself or Free-XOR

# Can we do better than half-gates? in any useful way?

#### NO

[Zahur Rosulek Evans 15]

Can't garble an AND gate with < 2 ciphertexts...

... using "standard techniques" (details to follow)

#### YES

[BallMalkinRosulek16, KempkaKikuchiSuzuki16]

Can garble an AND gate with 1 ciphertext...

... but the construction doesn't compose with itself or Free-XOR

### Lower bound in more detail

Theorem [ZahurRosulekEvans 15]

A garbled AND gate requires 2 ciphertexts using "standard techniques."

### Lower bound in more detail

Theorem [ZahurRosulekEvans15]

A garbled AND gate requires 2 ciphertexts using "standard techniques."

**Standard techniques:** point-permute + calls to random oracle + everything else linear.

Important: only the constructions, not adversary, must be linear!

 $\$_{\mathbb{F}}$ 

#### Garbler:

samples field elements

\$<sub>F</sub>

- samples field elements
- calls random oracle

\$<sub>F</sub>

```
A^{\bullet} = \text{true}
A^{\bullet} = \text{false}
B^{\bullet} = \text{false}
B^{\bullet} = \text{true}
```

- samples field elements
- calls random oracle
- picks secret "color mapping"



- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination

RO resp.  $A^{\bullet}$  $A^{\circ}$  $B^{\bullet}$ R° gb gate Cfalse **C**true

#### **Evaluator:**

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination

RO resp.

 $A^{\circ}$ 

*B*<sup>●</sup> gb gate

#### **Evaluator:**

knows subset of garbler's values (and knows colors)

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination









$$(\mathbf{v} - \mathbf{v}')(\mathbf{M} - \mathbf{M}') = 0$$

## Lower bound (part 2)

$$(\mathbf{v} - \mathbf{v'})(\mathbf{M} - \mathbf{M'}) = 0$$

#### Rest of proof:

- ▶ v, v' distinct (otherwise privacy can be violated)
- $\Rightarrow$  dim(ker(M M'))  $\ge 1$

## Lower bound (part 2)

$$(\mathbf{v} - \mathbf{v'})(\mathbf{M} - \mathbf{M'}) = 0$$

#### Rest of proof:

- ▶ v, v' distinct (otherwise privacy can be violated)
- $\Rightarrow$  dim(ker(M M'))  $\ge 1$
- ► *M*, *M'* distinct (otherwise correctness is violated)
- $\Rightarrow$  dim(rowspace(M M'))  $\ge 1$

## Lower bound (part 2)

$$(\mathbf{v} - \mathbf{v'})(\mathbf{M} - \mathbf{M'}) = 0$$

#### Rest of proof:

- ▶ v, v' distinct (otherwise privacy can be violated)
- $\Rightarrow$  dim(ker(M M'))  $\geq 1$
- ► *M*, *M'* distinct (otherwise correctness is violated)
- $\Rightarrow$  dim(rowspace(M M'))  $\ge 1$
- $\Rightarrow$  M, M' have at least 2 rows
- $\Rightarrow$  garbled gate has at least  $2\lambda$  bits

#### **Limitation:**

point-and-permute is sole source of non-linearity

#### **Opportunity:**

smaller GC by using alternatives to point-and-permute?
[BallMalkinRosulek16,KempkaKikuchiSuzuki16]

#### Limitation:

point-and-permute is sole source of non-linearity

optimal for gate-by-gate garbling, in {AND, XOR, NOT} basis

#### **Opportunity:**

smaller GC by using alternatives to point-and-permute?
[BallMalkinRosulek16,KempkaKikuchiSuzuki16]

smaller GC by garbling larger "chunks" of a circuit at a time?

[MalkinPastroShelat16,BallMalkinRosulek16]

#### **Limitation:**

point-and-permute is sole source of non-linearity

optimal for gate-by-gate garbling, in {AND, XOR, NOT} basis

model doesn't allow nested calls to random oracle

#### **Opportunity:**

smaller GC by using alternatives to point-and-permute?
[BallMalkinRosulek16,KempkaKikuchiSuzuki16]

smaller GC by garbling larger "chunks" of a circuit at a time?

[MalkinPastroShelat16,BallMalkinRosulek16]

maybe nesting leads to smaller GC? e.g.:  $H(H(A) \oplus B)$ 

#### Limitation:

point-and-permute is sole source of non-linearity

optimal for gate-by-gate garbling, in {AND, XOR, NOT} basis

model doesn't allow nested calls to random oracle

linear!

#### **Opportunity:**

smaller GC by using alternatives to point-and-permute?
[BallMalkinRosulek16,KempkaKikuchiSuzuki16]

smaller GC by garbling larger "chunks" of a circuit at a time?

[MalkinPastroShelat16,BallMalkinRosulek16]

maybe nesting leads to smaller GC? e.g.:  $H(H(A) \oplus B)$ 

maybe non-linear (but still practical) techniques lead to smaller GC? e.g., compute  $GF(2^{\lambda})$ -inverse of a wire label

### How to circumvent lower bound

[KempkaKikuchiSuzuki16]: indirection between color bits & non-linearity

- Based on color bits, evaluator decrypts appropriate 1-bit ciphertext
- 1-bit payload determines choice of linear combination

[BallMalkinRosulek16]: more non-linearity than 1 bit / wire

- Instead of color bit, wire labels have color ternary value
- (details follow)

### How to circumvent lower bound

#### [KempkaKikuchiSuzuki16]: indirection between color bits & non-linearity

- ▶ Based on color bits, evaluator decrypts appropriate 1-bit ciphertext
- 1-bit payload determines choice of linear combination

#### [BallMalkinRosulek16]: more non-linearity than 1 bit / wire

- ► Instead of color *bit*, wire labels have color **ternary value**
- (details follow)

#### Neither construction is **self-composable**:

- ▶ Input wire labels must have special form:  $(A, A + \Delta), (B, B + \Delta)$
- Garbled gate produces output labels that don't have special form

## Summary

|                                       | size ( $\times \lambda$ ) |     | garble cost |     | eval cost |     |
|---------------------------------------|---------------------------|-----|-------------|-----|-----------|-----|
|                                       | XOR                       | AND | XOR         | AND | XOR       | AND |
| Classical [Yao86,GMW87]               | 8                         | 8   | 4           | 4   | 2.5       | 2.5 |
| P&P [BeaverMicaliRogaway90]           | 4                         | 4   | 4           | 4   | 1         | 1   |
| GRR3 [NaorPinkasSumner99]             | 3                         | 3   | 4           | 4   | 1         | 1   |
| Free XOR [KolesnikovSchneider08]      | 0                         | 3   | 0           | 4   | 0         | 1   |
| GRR2 [PinkasSchneiderSmartWilliams09] | 2                         | 2   | 2           | 2   | 1         | 1   |
| Half gates [ZahurRosulekEvans15]      | 0                         | 2   | 0           | 4   | 0         | 2   |

## Summary

|                                       | size ( $\times \lambda$ ) |     | garble cost |     | eval cost |     |
|---------------------------------------|---------------------------|-----|-------------|-----|-----------|-----|
|                                       | XOR                       | AND | XOR         | AND | XOR       | AND |
| Classical [Yao86,GMW87]               | 8                         | 8   | 4           | 4   | 2.5       | 2.5 |
| P&P [BeaverMicaliRogaway90]           | 4                         | 4   | 4           | 4   | 1         | 1   |
| GRR3 [NaorPinkasSumner99]             | 3                         | 3   | 4           | 4   | 1         | 1   |
| Free XOR [KolesnikovSchneider08]      | 0                         | 3   | 0           | 4   | 0         | 1   |
| GRR2 [PinkasSchneiderSmartWilliams09] | 2                         | 2   | 2           | 2   | 1         | 1   |
| Half gates [ZahurRosulekEvans15]      | 0                         | 2   | 0           | 4   | 0         | 2   |
| Your next great idea?                 | 0                         | 1   |             |     |           |     |

# Can we do better than half-gates in any useful way?

## Roadmap

1

#### Standard garbled circuits: core concepts & constructions

 Yao's construction, security definitions, optimized constructions (row reduction, free XOR, half-gates)

7

#### New directions beyond boolean circuits

► Garbled arithmetic circuits & RAM programs

### Beyond Boolean Circuits

What about all the interesting things that are clunky to write as a boolean circuit?

[BallMalkinRosulek16]

### Beyond Boolean Circuits

## What about all the interesting things that are clunky to write as a boolean circuit?

[BallMalkinRosulek16]

- New generalizations of garbled circuit constructions
- Improved garbling for arithmetic computations
- ► Improved garbling for high-fan-in boolean computations

#### Free XOR:

Wire carries a truth value from  $\{0,1\}$ 

Wire labels are bit strings  $\{0,1\}^{\lambda}$ .

Global wire-label-offset  $\Delta \in \{0,1\}^{\lambda}$ 

FALSE wire label is A TRUE wire label is  $A \oplus \Delta$ 

#### **Free XOR:**

Wire carries a *truth value* from  $\{0,1\}$ 

Wire labels are bit strings  $\{0,1\}^{\lambda}$ .

Global wire-label-offset  $\Delta \in \{0,1\}^{\lambda}$ 

False wire label is A true wire label is  $A \oplus \Delta$ 

#### **Generalized Free XOR:**

Wire carries a *truth value* from  $\mathbb{Z}_m$ 

#### **Free XOR:**

Wire carries a *truth value* from  $\{0,1\}$ 

Wire labels are bit strings  $\{0,1\}^{\lambda}$ .

Global wire-label-offset  $\Delta \in \{0,1\}^{\lambda}$ 

False wire label is A true wire label is  $A \oplus \Delta$ 

#### **Generalized Free XOR:**

Wire carries a *truth value* from  $\mathbb{Z}_m$ 

Wire labels are tuples  $(\mathbb{Z}_m)^{\lambda}$ .

Global wire-label-offset  $\Delta \in (\mathbb{Z}_m)^{\lambda}$ 

#### **Free XOR:**

Wire carries a *truth value* from  $\{0,1\}$ 

Wire labels are bit strings  $\{0,1\}^{\lambda}$ .

Global wire-label-offset  $\Delta \in \{0,1\}^{\lambda}$ 

False wire label is A true wire label is  $A \oplus \Delta$ 

#### **Generalized Free XOR:**

Wire carries a *truth value* from  $\mathbb{Z}_m$ 

Wire labels are tuples  $(\mathbb{Z}_m)^{\lambda}$ .

Global wire-label-offset  $\Delta \in (\mathbb{Z}_m)^{\lambda}$ 

Wire label encoding truth value  $a \in \mathbb{Z}_m$  is  $A + a\Delta$ 

#### **Free XOR:**

Wire carries a *truth value* from  $\{0,1\}$ 

Wire labels are bit strings  $\{0,1\}^{\lambda}$ .

Global wire-label-offset  $\Delta \in \{0,1\}^{\lambda}$ 

False wire label is A true wire label is  $A \oplus \Delta$ 

 $\oplus$  is componentwise addition mod 2

#### **Generalized Free XOR:**

Wire carries a *truth value* from  $\mathbb{Z}_m$ 

Wire labels are tuples  $(\mathbb{Z}_m)^{\lambda}$ .

Global wire-label-offset  $\Delta \in (\mathbb{Z}_m)^{\lambda}$ 

Wire label encoding truth value  $a \in \mathbb{Z}_m$  is  $A + a\Delta$ 

+ is componentwise addition mod m

**Idea:** Truth value  $a \in \mathbb{Z}_m$  encoded by wire label  $\underline{A + a\Delta} \in (\mathbb{Z}_m)^{\lambda}$ 

**Idea:** Truth value  $a \in \mathbb{Z}_m$  encoded by wire label  $\underline{A + a\Delta} \in (\mathbb{Z}_m)^{\lambda}$ 

$$A + a\Delta$$
 $B + b\Delta$ 
 $\mathbb{Z}_m$ 

**Idea:** Truth value  $a \in \mathbb{Z}_m$  encoded by wire label  $\underline{A + a\Delta} \in (\mathbb{Z}_m)^{\lambda}$ 

$$\begin{array}{c|c} \hline A+a\Delta \\ \hline B+b\Delta \end{array} \boxed{\mathbb{Z}_m} \begin{array}{c} (A+B)+(a+b)\Delta \\ \hline \end{array}$$

Evaulator can simply add wire labels

**Idea:** Truth value  $a \in \mathbb{Z}_m$  encoded by wire label  $\underline{A + a\Delta} \in (\mathbb{Z}_m)^{\lambda}$ 

$$\begin{array}{c|c}
A + a\Delta \\
\hline
B + b\Delta
\end{array}$$

$$\begin{array}{c|c}
C + (a+b)\Delta
\end{array}$$

Evaulator can simply add wire labels  $\Rightarrow$  free garbled addition mod m

**Idea:** Truth value  $a \in \mathbb{Z}_m$  encoded by wire label  $\underline{A + a\Delta} \in (\mathbb{Z}_m)^{\lambda}$ 

$$A + a\Delta$$
 $B + b\Delta$ 
 $C + (a + b)\Delta$ 

Evaulator can simply add wire labels  $\Rightarrow$  free garbled addition mod m

Free multiplication by public constant c, if gcd(c, m) = 1





▶ Different "preferred modulus" on each wire  $\Rightarrow$  different offsets  $\Delta$ 



▶ Different "preferred modulus" on each wire  $\Rightarrow$  different offsets  $\Delta$ 

$$\begin{array}{c|c} \text{labels } \{A+a\Delta_m\}_{a\in\mathbb{Z}_m} & \text{blabels } \{C+c\Delta_\ell\}_{c\in\mathbb{Z}_\ell} \\ \hline \text{truth value} \in \mathbb{Z}_m & \text{truth value} \in \mathbb{Z}_\ell \\ \hline \mathbb{E}_A & (C+\phi(0)\Delta_\ell) \\ \mathbb{E}_{A+\Delta_m}(C+\phi(1)\Delta_\ell) \\ \mathbb{E}_{A+2\Delta_m}(C+\phi(2)\Delta_\ell) \\ \vdots & \vdots \\ \end{array}$$

- ▶ Different "preferred modulus" on each wire  $\Rightarrow$  different offsets  $\Delta$
- Cost: m ciphertexts
- ► Generalized point-and-permute: "color bit" from  $\mathbb{Z}_m$

$$\begin{array}{c|c} \text{labels } \{A+a\Delta_m\}_{a\in\mathbb{Z}_m} & \phi & \text{labels } \{C+c\Delta_\ell\}_{c\in\mathbb{Z}_\ell} \\ \hline \text{truth value} \in \mathbb{Z}_m & \text{truth value} \in \mathbb{Z}_\ell \\ \hline \mathbb{E}_A & (C+\phi(0)\Delta_\ell) \\ \mathbb{E}_{A+\Delta_m}(C+\phi(1)\Delta_\ell) \\ \mathbb{E}_{A+2\Delta_m}(C+\phi(2)\Delta_\ell) \\ \vdots & \vdots \\ \end{array}$$

- ▶ Different "preferred modulus" on each wire  $\Rightarrow$  different offsets  $\Delta$
- Cost: m ciphertexts
- ▶ Generalized point-and-permute: "color bit" from  $\mathbb{Z}_m$
- ightharpoonup m-1 using standard row reduction technique

## Generalized garbling tools

We can efficiently garble any computation/circuit where:

- ▶ Each wire has a preferred modulus  $\mathbb{Z}_m$ 
  - $\Rightarrow$  Wire-label-offset  $\Delta_m$  global to all  $\mathbb{Z}_m$ -wires
- Addition gates: all wires touching gate have same modulus
  - ⇒ Garbling cost: free
- Mult-by-constant gates: input/output wires have same modulus
  - ⇒ Garbling cost: free
- ▶ Unary gates:  $\mathbb{Z}_m$  input and  $\mathbb{Z}_\ell$  output
  - $\Rightarrow$  Garbling cost: m-1 ciphertexts

## Generalized garbling tools

We can efficiently garble any computation/circuit where:

- **Each** wire has a preferred modulus  $\mathbb{Z}_m$ 
  - $\Rightarrow$  Wire-label-offset  $\Delta_m$  global to all  $\mathbb{Z}_m$ -wires
- Addition gates: all wires touching gate have same modulus
  - ⇒ Garbling cost: free
- Mult-by-constant gates: input/output wires have same modulus
  - ⇒ Garbling cost: free
- ▶ Unary gates:  $\mathbb{Z}_m$  input and  $\mathbb{Z}_\ell$  output
  - $\Rightarrow$  Garbling cost: m-1 ciphertexts

Better basis for many computations than traditional boolean circuits!

#### **Example Scenario**

Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are addition, multiplication, etc

#### **Example Scenario**

Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are addition, multiplication, etc

#### "Standard approach"

- Represent 32-bit integers in binary
- ▶ Build circuit from boolean addition/multiplication subcircuits
- Garble with half-gates (AND costs 2, XOR costs 0)

#### Example Scenario

Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are addition, multiplication, etc

#### "Standard approach"

- Represent 32-bit integers in binary
- Build circuit from boolean addition/multiplication subcircuits
- Garble with half-gates (AND costs 2, XOR costs 0)

|                                   | cost (# ciphertexts) |
|-----------------------------------|----------------------|
| addition                          | 62                   |
| multiplication by public constant | 758                  |
| multiplication                    | 1200                 |
| squaring, cubing, etc             | 1864                 |

#### Using generalized garbling techniques:

lacksquare Think of arithmetic circuit: wires carry values in  $\mathbb{Z}_{2^{32}}$ 

#### Using generalized garbling techniques:

- lacktriangle Think of arithmetic circuit: wires carry values in  $\mathbb{Z}_{2^{32}}$
- Garbled addition, multiplication by constant is free

|                                   | standard | ours |
|-----------------------------------|----------|------|
| addition                          | 62       | 0    |
| multiplication by public constant | 758      | 0    |
| multiplication                    | 1200     |      |
| squaring, cubing, etc             | 1864     |      |

### Using generalized garbling techniques:

- lacktriangle Think of arithmetic circuit: wires carry values in  $\mathbb{Z}_{2^{32}}$
- Garbled addition, multiplication by constant is free
- ► Multiplication mod *m* costs *O*(*m*) ciphertexts!

|                                   | standard | ours       |
|-----------------------------------|----------|------------|
| addition                          | 62       | 0          |
| multiplication by public constant | 758      | 0          |
| multiplication                    | 1200     | 8589934590 |
| squaring, cubing, etc             | 1864     | 4294967295 |

```
instead of \mathbb{Z}_{4294967296} \downarrow use \mathbb{Z}_{6469693230}
```

instead of 
$$\mathbb{Z}_{4294967296} = \mathbb{Z}_{2^{32}}$$
   
 use  $\mathbb{Z}_{6469693230}$ 

instead of 
$$\mathbb{Z}_{4294967296}=\mathbb{Z}_{2^{32}}$$
   
  $\downarrow$    
 use  $\mathbb{Z}_{6469693230}=\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7\cdot \cdot \cdot 29}$ 

#### CRT residue number system!

- Generalized garbling scheme supports many moduli in same circuit
- Represent 32-bit integer x as x % 2, x % 3, x % 5,..., x % 29
- ► Do all arithmetic in each residue (each with small modulus)

|                         | standard | madness     |  |
|-------------------------|----------|-------------|--|
| addition                | 62       | 0           |  |
| mult by public constant | 758      | 0           |  |
| multiplication          | 1200     | 25769803776 |  |
| squaring, cubing, etc   | 1864     | 4294967296  |  |

#### CRT residue number system!

- ► Generalized garbling scheme supports many moduli in same circuit
- Represent 32-bit integer x as x % 2, x % 3, x % 5,..., x % 29
- ► Do all arithmetic in each residue (each with small modulus)

|                         | standard | madness     | CRT                           |
|-------------------------|----------|-------------|-------------------------------|
| addition                | 62       | 0           | 0                             |
| mult by public constant | 758      | 0           | 0                             |
| multiplication          | 1200     | 25769803776 | <b>238</b> $\approx 2(2+3+5+$ |
| squaring, cubing, etc   | 1864     | 4294967296  | 119                           |

#### CRT residue number system!

- Generalized garbling scheme supports many moduli in same circuit
- Represent 32-bit integer x as x % 2, x % 3, x % 5,..., x % 29
- Do all arithmetic in each residue (each with small modulus)

|                         | standard | madness     | CRT                           |
|-------------------------|----------|-------------|-------------------------------|
| addition                | 62       | 0           | 0                             |
| mult by public constant | 758      | 0           | 0                             |
| multiplication          | 1200     | 25769803776 | <b>238</b> $\approx 2(2+3+5+$ |
| squaring, cubing, etc   | 1864     | 4294967296  | 119                           |

works well for arithmetic on  $\mathbb{Z}$ , unless you like working mod 6469693230

#### **Example Scenario**

Securely compute boolean circuit with **high-fan-in threshold gates**.

▶ fan-in-100: AND, OR, majority, threshold, etc.

#### **Example Scenario**

Securely compute boolean circuit with high-fan-in threshold gates.

► fan-in-100: AND, OR, majority, threshold, etc.

### "Standard approach"

- Express threshold gates in terms of fan-in-2 gates
- ► Garble with half-gates (AND costs 2, XOR costs 0)

### **Example Scenario**

Securely compute boolean circuit with high-fan-in threshold gates.

► fan-in-100: AND, OR, majority, threshold, etc.

### "Standard approach"

- Express threshold gates in terms of fan-in-2 gates
- ► Garble with half-gates (AND costs 2, XOR costs 0)

|          | cost (# ciphertexts) |
|----------|----------------------|
| AND/OR   | 198                  |
| majority | 948                  |

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100]$$

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{101}]$$

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{101}]$$

- ▶ Represent each bit on a  $\mathbb{Z}_{101}$ -wire
- ▶ Cost to garble sum in  $\mathbb{Z}_{101}$  is **free**
- " $v \stackrel{?}{=} 100$ " is simple  $\mathbb{Z}_{101}$ -unary gate  $\Rightarrow$  cost = 100

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{\equiv} 100 \pmod{101}]$$

- ▶ Represent each bit on a  $\mathbb{Z}_{101}$ -wire
- ▶ Cost to garble sum in  $\mathbb{Z}_{101}$  is **free**
- " $v \stackrel{?}{=} 100$ " is simple  $\mathbb{Z}_{101}$ -unary gate  $\Rightarrow$  cost = 100

|          | standard | better |
|----------|----------|--------|
| AND/OR   | 198      | 100    |
| majority | 948      |        |

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{101}]$$

- ▶ Represent each bit on a  $\mathbb{Z}_{101}$ -wire
- ▶ Cost to garble sum in  $\mathbb{Z}_{101}$  is **free**
- " $v \stackrel{?}{=} 100$ " is simple  $\mathbb{Z}_{101}$ -unary gate  $\Rightarrow$  cost = 100

|          | standard | better |
|----------|----------|--------|
| AND/OR   | 198      | 100    |
| majority | 948      | 100    |

Same logic for 
$$MAJ(x_1,...,x_{100}) = [\sum_i x_i \stackrel{?}{>} 50]$$

```
instead of \mathbb{Z}_{101} \downarrow use \mathbb{Z}_{210}
```

instead of 
$$\mathbb{Z}_{101}$$
 
$$\downarrow$$
 
$$\text{use } \mathbb{Z}_{210} = \mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$$

### Insight: take advantage of multiple moduli

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$

### Insight: take advantage of multiple moduli

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$
$$= AND([\sum x_i \stackrel{?}{=} 100 \pmod{2}], [\sum x_i \stackrel{?}{=} 100 \pmod{3}],...)$$

### Insight: take advantage of multiple moduli

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$
$$= AND([\sum x_i \stackrel{?}{=} 100 \pmod{2}], [\sum x_i \stackrel{?}{=} 100 \pmod{3}],...)$$

### Residue number system approach

▶ Represent each bit redundantly mod 2, mod 3, mod 5, . . .

### Insight: take advantage of multiple moduli

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$
$$= AND([\sum x_i \stackrel{?}{=} 100 \pmod{2}], [\sum x_i \stackrel{?}{=} 100 \pmod{3}],...)$$

- ▶ Represent each bit redundantly mod 2, mod 3, mod 5, . . .
- ► Compute summations mod 2, 3, 5,  $7 \Rightarrow cost = free$
- ► Compute equality tests mod 2, 3, 5, 7  $\Rightarrow$  cost = 2 + 3 + 5 + 7

### Insight: take advantage of multiple moduli

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$
$$= AND([\sum x_i \stackrel{?}{=} 100 \pmod{2}], [\sum x_i \stackrel{?}{=} 100 \pmod{3}],...)$$

- ▶ Represent each bit redundantly mod 2, mod 3, mod 5, . . .
- ► Compute summations mod 2, 3, 5,  $7 \Rightarrow \cos t = \mathbf{free}$
- ► Compute equality tests mod 2, 3, 5,  $7 \Rightarrow \cos t = 2 + 3 + 5 + 7$
- ► Compute AND of 4 equality test results ⇒ cost = 4 (via prev method)

### Insight: take advantage of multiple moduli

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$
$$= AND([\sum x_i \stackrel{?}{=} 100 \pmod{2}], [\sum x_i \stackrel{?}{=} 100 \pmod{3}],...)$$

- ▶ Represent each bit redundantly mod 2, mod 3, mod 5, . . .
- ► Compute summations mod 2, 3, 5,  $7 \Rightarrow \cos t = \mathbf{free}$
- ► Compute equality tests mod 2, 3, 5,  $7 \Rightarrow \cos t = 2 + 3 + 5 + 7$
- ► Compute AND of 4 equality test results  $\Rightarrow$  cost = 4 (via prev method)

|          | standard | better | CRT |
|----------|----------|--------|-----|
| AND/OR   | 198      | 100    | 21  |
| majority | 948      | 100    |     |

### Insight: take advantage of multiple moduli

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$
$$= AND([\sum x_i \stackrel{?}{=} 100 \pmod{2}], [\sum x_i \stackrel{?}{=} 100 \pmod{3}],...)$$

- ▶ Represent each bit redundantly mod 2, mod 3, mod 5, . . .
- ► Compute summations mod 2, 3, 5,  $7 \Rightarrow \cos t = \mathbf{free}$
- ► Compute equality tests mod 2, 3, 5,  $7 \Rightarrow \cos t = 2 + 3 + 5 + 7$
- ► Compute AND of 4 equality test results  $\Rightarrow$  cost = 4 (via prev method)

|          | standard | better | CRT |
|----------|----------|--------|-----|
| AND/OR   | 198      | 100    | 21  |
| majority | 948      | 100    | 137 |











- **Row-reduction:** choose  $C_0$  to make 1st ciphertext zero
  - ⇒ doesn't need to be sent



- **Row-reduction:** choose  $C_0$  to make 1st ciphertext zero
  - ⇒ doesn't need to be sent
- Stopping there allows **composability**:  $C_1 = C_0 + \Delta$
- ▶ Instead, further choose  $C_1$  so that remaining 2 ciphertexts are equal
  - ⇒ don't need to send both

    [PinkasSchneiderSmartWilliams09,GueronLindellNofPinkas15]

What about case of fan-in 2 AND gate? Can garble with 1 ciphertext!



- **Row-reduction:** choose  $C_0$  to make 1st ciphertext zero
  - ⇒ doesn't need to be sent
- Stopping there allows **composability**:  $C_1 = C_0 + \Delta$
- ▶ Instead, further choose  $C_1$  so that remaining 2 ciphertexts are equal
  - ⇒ don't need to send both

    [PinkasSchneiderSmartWilliams09,GueronLindellNofPinkas15]

### Challenges:

#### State of the art:

"If values are represented in CRT form then garbled operations are cheap."

### Challenges:

#### State of the art:

"If values are represented in CRT form then garbled operations are cheap."

But doesn't it cost something to get values into CRT form??

## Dealing with CRT

#### Claim:

It's **not hard** to convert into CRT representation  $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$ 

## Dealing with CRT

#### Claim:

It's **not hard** to convert into CRT representation  $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$ 

#### From binary $b_n b_{n-1} \cdots b_1 b_0$ :

- ► For all i, j, use unary gate  $b_i \mapsto b_i \pmod{p_j}$  (1 ciphertext each)
- For all j, add to obtain  $\sum_i b_i 2^i \pmod{p_j}$  (free)
- ► Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

## Dealing with CRT

### Claim:

It's **not hard** to convert into CRT representation  $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$ 

### From binary $b_n b_{n-1} \cdots b_1 b_0$ :

- ► For all i, j, use unary gate  $b_i \mapsto b_i \pmod{p_j}$  (1 ciphertext each)
- For all j, add to obtain  $\sum_i b_i 2^i \pmod{p_j}$  (free)
- ► Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

At the input level (e.g., OTs in Yao): (similar to [Gilboa99,KellerOrsiniScholl16])

- Outside of the circuit, convert plaintext input into CRT form
- ► Convert  $\mathbb{Z}_{p_j}$ -residue to binary, and transfer it using  $\lceil \log p_j \rceil$  OTs
- ► Total cost:  $\sum_{j} \log p_{j}$  OTs (e.g., 37 OTs for 32-bit values)

## Open Problems

### Improve the cost of any of these:

- Comparing two CRT-encoded values
- Converting CRT representation to binary
- Integer division
- Modular reduction different than the CRT composite modulus (e.g., garbled RSA)

## Open Problems

#### Improve the cost of any of these:

- Comparing two CRT-encoded values
- Converting CRT representation to binary
- Integer division
- Modular reduction different than the CRT composite modulus (e.g., garbled RSA)

```
CRT view of \mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}:
      00000
      11111
      2220 2
      3 3 0 1 3
      4410 4
      50215
      6100 6
      02117
      1421 29
      2000 30
```

#### CRT view of $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$ :

```
00000
11111
2220 2
3 3 0 1 3
4410 4
50215
6100 6
02117
1 4 2 1 29
2000 30
```

#### Theorem

CRT representation sucks for comparisons!

### CRT view of $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$ :

```
00000
                                  0
11111
2220 2
                                 10 2
3 3 0 1 3
4410 4
                                20
50215
                                2 1 5
6100 6
                               100 6
02117
                               101
1421
      29
                               421
                                    29
2000 30
                              1000 30
```

| CRT view of 2 | $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$ : | Primorial Mixed R | adix (PMR) |
|---------------|-----------------------------------------|-------------------|------------|
| 0 0 0 0       | 0                                       | 0                 | 0          |
| 1111          | 1                                       | 1                 | 1          |
| 2220          | 2                                       | 10                | 2          |
| 3 3 0 1       | 3                                       | 11                | 3          |
| 4 4 1 0       | 4                                       | 2 0               | 4          |
| 5021          | 5                                       | 2 1               | 5          |
| 6100          | 6                                       | 100               | 6          |
| 0 2 1 1       | 7                                       | 101               | 7          |
| ÷             | <b>:</b>                                | :                 | :          |
| 1421          | 29                                      | 4 2 1             | 29         |
| 2000          | 30                                      | 1000              | 30         |
| :             | :                                       | :                 | :          |

CRT values given

Convert both CRT values to PMR



Compare PMR (simple  $L \rightarrow R$  scan)

CRT values given



Convert both CRT values to PMR

PMR representation of *x*:

..., 
$$\left\lfloor \frac{x}{2 \cdot 3 \cdot 5} \right\rfloor \% 7$$
,  $\left\lfloor \frac{x}{2 \cdot 3} \right\rfloor \% 5$ ,  $\left\lfloor \frac{x}{2} \right\rfloor \% 3$ ,  $\lfloor x \rfloor \% 2$ 



Compare PMR (simple  $L \rightarrow R$  scan)

### CRT values given



#### Convert both CRT values to PMR

Simple building block:

$$(x\%p, x\%q) \mapsto \left[\frac{x}{p}\right]\%q$$

allows you to compute PMR representation of *x*:

..., 
$$\left\lfloor \frac{x}{2 \cdot 3 \cdot 5} \right\rfloor \% 7$$
,  $\left\lfloor \frac{x}{2 \cdot 3} \right\rfloor \% 5$ ,  $\left\lfloor \frac{x}{2} \right\rfloor \% 3$ ,  $\lfloor x \rfloor \% 2$ 



$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

| X     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|-------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
| x % 3 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1  | 2  | 0  | 1  | 2  |
|       |   |   |   |   |   |   |   |   |   |   |    |    |    |    | 4  |

[x/3] % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

|   | X            | 0 | 1 | 2 | 3  | 4  | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|---|--------------|---|---|---|----|----|---|----|----|----|----|----|----|----|----|----|
|   | <b>x</b> % 3 | 0 | 1 | 2 | 0  | 1  | 2 | 0  | 1  | 2  | 0  | 1  | 2  | 0  | 1  | 2  |
|   | <b>x</b> % 5 | 0 | 1 | 2 | 3  | 4  | 0 | 1  | 2  | 3  | 4  | 0  | 1  | 2  | 3  | 4  |
| Ī | x%3 - x%5    | 0 | 0 | 0 | -3 | -3 | 2 | -1 | -1 | -1 | -4 | 1  | 1  | -2 | -2 | -2 |
|   |              |   |   |   |    |    |   |    |    |    |    |    |    |    |    |    |
| - | x/3  % 5     | 0 | 0 | 0 | 1  | 1  | 1 | 2  | 2  | 2  | 3  | 3  | 3  | 4  | 4  | 4  |

1. Subtract x%3 - x%5

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

|                            |   |   |   |    |    |   |    |    |    |    |   |   |    | 13 |     |
|----------------------------|---|---|---|----|----|---|----|----|----|----|---|---|----|----|-----|
| x % 3                      | 0 | 1 | 2 | 0  | 1  | 2 | 0  | 1  | 2  | 0  | 1 | 2 | 0  | 1  | 2   |
| <b>x</b> % 5               | 0 | 1 | 2 | 3  | 4  | 0 | 1  | 2  | 3  | 4  | 0 | 1 | 2  | 3  | 2 4 |
| x%3 - x%5                  | 0 | 0 | 0 | -3 | -3 | 2 | -1 | -1 | -1 | -4 | 1 | 1 | -2 | -2 | -2  |
|                            |   |   |   |    |    |   |    |    |    |    |   |   |    |    |     |
| $\lfloor x/3 \rfloor \% 5$ | 0 | 0 | 0 | 1  | 1  | 1 | 2  | 2  | 2  | 3  | 3 | 3 | 4  | 4  | 4   |

1. Subtract x%3 - x%5

2. Result has the same "constant segments" as what we want

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

| X                          | 0 | 1 | 2 | 3  | 4  | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----------------------------|---|---|---|----|----|---|----|----|----|----|----|----|----|----|----|
|                            |   |   |   |    |    |   |    |    |    |    |    | 2  |    |    |    |
| <b>x</b> % 5               | 0 | 1 | 2 | 3  | 4  | 0 | 1  | 2  | 3  | 4  | 0  | 1  | 2  | 3  | 4  |
| x%3 - x%5                  | 0 | 0 | 0 | -3 | -3 | 2 | -1 | -1 | -1 | -4 | 1  | 1  | -2 | -2 | -2 |
| (x%3 - x%5)%7              | 0 | 0 | 0 | 4  | 4  | 2 | 6  | 6  | 6  | 3  | 1  | 1  | 5  | 5  | 5  |
| $\lfloor x/3 \rfloor \% 5$ | 0 | 0 | 0 | 1  | 1  | 1 | 2  | 2  | 2  | 3  | 3  | 3  | 4  | 4  | 4  |

1. Subtract  $x\%3 - x\%5 \pmod{7}$  is fine)

2. Result has the same "constant segments" as what we want

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

| X                          | 0 | 1 | 2 | 3  | 4  | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----------------------------|---|---|---|----|----|---|----|----|----|----|----|----|----|----|----|
| x % 3                      | 0 | 1 | 2 | 0  | 1  | 2 | 0  | 1  | 2  | 0  | 1  | 2  | 0  | 1  | 2  |
| <b>x</b> % 5               | 0 | 1 | 2 | 3  | 4  | 0 | 1  | 2  | 3  | 4  | 0  | 1  | 2  | 3  | 4  |
| x%3 - x%5                  | 0 | 0 | 0 | -3 | -3 | 2 | -1 | -1 | -1 | -4 | 1  | 1  | -2 | -2 | -2 |
| (x%3 - x%5)%7              | 0 | 0 | 0 | 4  | 4  | 2 | 6  | 6  | 6  | 3  | 1  | 1  | 5  | 5  | 5  |
| $\lfloor x/3 \rfloor \% 5$ | 0 | 0 | 0 | 1  | 1  | 1 | 2  | 2  | 2  | 3  | 3  | 3  | 4  | 4  | 4  |

- 1. Subtract  $x\%3 x\%5 \pmod{7}$  is fine)
  - "Project" x%3 and x%5 to  $\mathbb{Z}_7$  wires
  - Subtract mod 7 for free
- 2. Result has the same "constant segments" as what we want

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

| X                          | 0 | 1 | 2 | 3  | 4  | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|----------------------------|---|---|---|----|----|---|----|----|----|----|----|----|----|----|----|
| x % 3                      | 0 | 1 | 2 | 0  | 1  | 2 | 0  | 1  | 2  | 0  | 1  | 2  | 0  | 1  | 2  |
| <b>x</b> % 5               | 0 | 1 | 2 | 3  | 4  | 0 | 1  | 2  | 3  | 4  | 0  | 1  | 2  | 3  | 4  |
| x%3 - x%5                  | 0 | 0 | 0 | -3 | -3 | 2 | -1 | -1 | -1 | -4 | 1  | 1  | -2 | -2 | -2 |
| (x%3 - x%5)%7              | 0 | 0 | 0 | 4  | 4  | 2 | 6  | 6  | 6  | 3  | 1  | 1  | 5  | 5  | 5  |
| $\lfloor x/3 \rfloor \% 5$ | 0 | 0 | 0 | 1  | 1  | 1 | 2  | 2  | 2  | 3  | 3  | 3  | 4  | 4  | 4  |

- 1. Subtract x%3 x%5 (mod 7 is fine)
  - "Project" x%3 and x%5 to  $\mathbb{Z}_7$  wires
  - Subtract mod 7 for free
- 2. Result has the same "constant segments" as what we want
  - Apply unary projection:

- 1. General  $(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$  gadget costs  $\sim 2p + 2q$  ciphertexts
- 2. PMR conversion requires this gadget between all pairs of primes
- 3. Total cost  $O(k^3)$  for k-bit integers

- 1. General  $(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$  gadget costs  $\sim 2p + 2q$  ciphertexts
- 2. PMR conversion requires this gadget between all pairs of primes
- 3. Total cost  $O(k^3)$  for k-bit integers

#### Operations on 32-bit integers:

|                                   | boolean | CRT |
|-----------------------------------|---------|-----|
| addition                          | 62      | 0   |
| multiplication by public constant | 758     | 0   |
| multiplication                    | 1200    | 238 |
| squaring, cubing, etc             | 1864    | 119 |

- 1. General  $(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$  gadget costs  $\sim 2p + 2q$  ciphertexts
- 2. PMR conversion requires this gadget between all pairs of primes
- 3. Total cost  $O(k^3)$  for k-bit integers

#### Operations on 32-bit integers:

|                                   | boolean | CRT  |
|-----------------------------------|---------|------|
| addition                          | 62      | 0    |
| multiplication by public constant | 758     | 0    |
| multiplication                    | 1200    | 238  |
| squaring, cubing, etc             | 1864    | 119  |
| comparison                        | 64      | 2541 |







"first express f as a boolean circuit . . . "



"first express f as a boolean circuit . . . "

cpu

small internal state











How to garble a RAM computation?



### How to garble a RAM computation with cost

 $\sim |mem| + |cpu| \cdot [\# \text{ mem accesses}]?$ 



### How to garble a RAM computation with cost

$$\sim |mem| + |cpu| \cdot [\# \text{ mem accesses}]?$$

### Example: *t* binary searches

- Naïve cost: ~ N ⋅ t
- ▶ Desired cost:  $\sim N + t \cdot \log N$

## Challenges for Garbled RAM



Garbled circuits are single-use!

 $\Rightarrow$  garble *t* separate copies of CPU circuit

## Challenges for Garbled RAM



Garbled circuits are single-use!

 $\Rightarrow$  garble *t* separate copies of CPU circuit

Memory accesses can depend on private data!

⇒ Compile to oblivious RAM (ORAM) [GoldreichOstrovsky96]

## Challenges for Garbled RAM



Garbled circuits are single-use!

⇒ garble t separate copies of CPU circuit

Memory accesses can depend on private data!

⇒ Compile to oblivious RAM (ORAM) [GoldreichOstrovsky96]

Memory accesses determined only at runtime!

?? How do we get wire labels encoding  $M[\ell_1]$  when  $\ell_1$  determined at run-time?

## Garbled Memory [GargLuOstrovsky15]



► Binary tree of little garbled circuits

## Garbled Memory [GargLuOstrovsky15]



- ► Binary tree of little garbled circuits
- Leaf circuits have 1 bit of RAM memory hard-coded

## Garbled Memory [GargLuOstrovsky15]



- Binary tree of little garbled circuits
- Leaf circuits have 1 bit of RAM memory hard-coded
- Internal circuits have **input wire labels** of children hard-coded (can pass secret information to a child)



#### Internal node circuits:



Given (garbled input)  $W_0, W_1, \ell$ 

Translate to child's garbled encoding, based on appropriate bit of  $\ell$ 

#### Internal node circuits:



Given (garbled input)  $W_0, W_1, \ell$ 

Translate to child's garbled encoding, based on appropriate bit of  $\ell$ 

#### Leaf node circuits:



Given (garbled input)  $W_0, W_1, \ell$ 

Output  $W_0$  or  $W_1$  in the clear, based on hard-coded bit



▶ This collection of circuits hard-codes M[1...N]



- ▶ This collection of circuits hard-codes M[1...N]
- Give it (garbled)  $\llbracket W_0, W_1, \ell \rrbracket$



- ▶ This collection of circuits hard-codes M[1...N]
- ► Give it (garbled)  $\llbracket W_0, W_1, \ell \rrbracket \Rightarrow$  it will give you  $W_{M[\ell]}$  (in the clear)
- (evaluator must know  $\ell$  to evaluate correct subcircuits)



Garble two copies of the RAM CPU circuit



- Garble two copies of the RAM CPU circuit
- ► Use same wire labels for outgoing state / incoming state ("same wire")



- Garble two copies of the RAM CPU circuit
- Use same wire labels for outgoing state / incoming state ("same wire")
- First circuit has input labels of second circuit hard-coded



- Garble two copies of the RAM CPU circuit
- Use same wire labels for outgoing state / incoming state ("same wire")
- First circuit has input labels of second circuit hard-coded
- ► On (READ, ℓ) operation, first circuit:
  - ▶ outputs ℓ in clear
  - ▶ passes **garbled**  $W_0, W_1, \ell$  to garbled memory



- Garble two copies of the RAM CPU circuit
- Use same wire labels for outgoing state / incoming state ("same wire")
- First circuit has input labels of second circuit hard-coded
- ▶ On  $(READ, \ell)$  operation, first circuit:
  - ▶ outputs ℓ in clear
  - ▶ passes **garbled**  $W_0, W_1, \ell$  to garbled memory
- ▶ Garbled memory outputs correct wire label  $W_{M[\ell]}$  in the clear

# Garbled Memory Fine Print



# Garbled Memory Fine Print



Each little garbled circuit is single-use!

# Garbled Memory Fine Print



- Each little garbled circuit is single-use!
- Solution: each node contains queue of circuits
  - Chernoff bound determines # of circuits in each queue
  - Circuits pass hard-coded information to successor in queue

# Summary / Open Problems

### Garbling beyond boolean circuits

#### New techniques for garbled arithmetic circuits:

- Comparing two CRT-encoded values?
- Converting CRT representation to binary?
- Integer division?
- Modular arithmetic (different than CRT primorial modulus)?

#### New techniques for garbled **RAM programs**:

- How do these constructions perform in real world?
- How to reduce "slack" introduced by Chernoff bound?

# the end.

any questions?