

STRUCTURAL CALCULATIONS FOR

LIFTING DEVICE #DL-426 (LIFTING DEVICE FOR RIMS)

FOR

S.A. DE C.V.
MEXICALI, BAJA
CALIFORNIA, MEXICO

SEPTEMBER 18, 2019

Prepared By:

Grantham Engineering, Inc. 7807 Hillandale Drive San Diego, CA 92120 (619) 994-0748

16	(b) Design factors for Design Category B lifting devices shall be not less than 3.00 for limit states of yielding or buckling and 3.60 for limit states of fracture and for connection design.			
17	Job Load, J _{load} (kg)	100.0	Weight lifted by device (defined by client on drawings)	
18	Job Load, J _{load} (lbs)	220.4	J _{load} x 2.2 lbs/kg	
19	Using Solidworks, a model is created of the handling device			
20				
21	Rated Force on Upper Connection Point, F (lbs)	220.4	Job Load	
22	Design factor, Df	3	For Structure	
23	Applied Force, AF (lbs)	661.20	F x Df	
24	Applied Force per Load Point Aft, (lbs)	330.60	AF/2	

32	Fatigue Analysis			
33		shown in solidwork f. Table 3-4.4.1, AS	ks simulation above). See Fatigue Stress Categories SME BTH-1-2017):	
34				
35		Potential Crack MPa) Site Initiation tion 1 — Plain Material Away Fi Away from all welds or structural connections	Illustrative Typical Examples rom Any Welding (a) (b)	
36	Max Rated Load, W _{max} (lbs)	220.4	Assumed loading 100% of time	
37	Max Rated Lift Point Load, W _{mc} (lbs)	110.20	W _{max/2}	
38	Service Class	4	Per drawing	
39	0 1 2 3	Load Cycles 0-20,000 20,001-100,000 100,001-500,000 500,001-2,000,000 Over 2,000,000		
40	Allowable Stress Range, Fs (ksi)	16()	Table 3-4.3-1, based on Service Class and worst case Stress Category for fatigue	

	Stress Category		-	rvice Class		
	(From Table 3-4.4-1)	1	2	3	4	
	A 63 (435) B 49 (340)	49 (340)	37 (255) 29 (200)	24 (165) 18 (125)	24 (165) 16 (110)	
1	C B'	39 (270) 35 (240)	23 (160) 21 (145)	15 (100) 13 (90)	12 (80) 10 (70) [Note (1)]	
	D E E'	28 (190) 22 (150) 16 (110)	16 (110) 13 (90) 9 (60)	10 (70) 8 (55) 6 (40)	7 (48) 5 (34) 3 (20)	
	F G	15 (100) 16 (110)	12 (80) 9 (60)	9 (60) 7 (48)	8 (55) 7 (48)	
	NOTE: (1) Flexural stress range of 12 ksi (80 MPa) permitted at the toe of stiffener welds on flanges.					
2	Parts Connections Component Contacts Fixtures Fixed-1 External Loads Force-1 (:Per item: 28.52 Force-3 (:Per item: -106.) Mesh					Mises (ksi) 20 18 17 15 13 12 10 8.3 6.7 5 3.3 1.7 0.0023 d strength: 32
3	Actual Stress, F _a (ksi)		7	See abo	ove, loading is also a cassumption	conservative

45	Connection Weld Analysis -Top Lift Tab			
46	VISTA FRONTAL SCALE 5:16			
47	(b) The design strength of fillet or partial-joint-penetration groove welds subject to shear shall be equal to the effective area of the weld multiplied by the allowable stress F_v given by eq. (3-55). Stresses in the base metal shall not exceed the limits defined in section 3-2. $F_v = \frac{0.60Exx}{1.20N_d} \tag{3-55}$			
48	Allowable Stress, F _v (ksi)	11.667	See above Eqn. 3-55	
49	Nominal Tensile Strength of weld material, E_{xx} (ksi)		Typical Value	
50	Table 3-3.4.3-1 Minimum Sizes of Fillet Welds Material Thickness of Thicker Part Joined, in. (mm) To ${}^{1}\!\!/_{\!\!4}$ (6) ${}^{1}\!\!/_{\!\!4}$ (6) to ${}^{1}\!\!/_{\!\!2}$ (13) ${}^{3}\!\!/_{\!\!16}$ (5) Over ${}^{1}\!\!/_{\!\!4}$ (6) to ${}^{3}\!\!/_{\!\!4}$ (19) ${}^{3}\!\!/_{\!\!4}$ (6) Over ${}^{3}\!\!/_{\!\!4}$ (19) ${}^{5}\!\!/_{\!\!16}$ (8)			
51	Tensile Load on weld, T _n (kips)	0.50	Iterative until safety factor met	
52	Length of Tab, L (in)	2.50	See below	
53	Thickness of Tab, t (in)	0.19		
54	Length of Fillet Weld, L (in)	2.50	L	

65	Shear stress, τ (psi)	3,367.46	τ = F/A
66	Tensile Strength of Material, ft (psi)	21,300.0	Tensile strength of alloy steel (Grade 8) cap screws
67	Shear Strength of Material, v (psi)	12,290.10	0.577 x f _y
68	Safety Factor	3.65	=V/τ >1 OK
69		Shear Analys	sis
70			
71	Max Rated Load, W _{max} (lbs)	661.2	Assumed loading 100% of time
72	Max Rated Lift Point Load, W _{mc} (lbs)	661.20	W _{max}
73	Surface Area, A (in²)	0.196	A = πr^2 x 2, 1/2" socket head screw
74	Shear stress, τ (psi)	3,367.46	τ = F/A
75	Tensile Strength of Material, ft (psi)	21,300.0	Tensile strength of alloy steel (Grade 8) cap screws
76	Shear Strength of Material, v (psi)	12,290.10	0.577 x f _y
77	Safety Factor	3.65	=V/τ >1 OK

86	Shear Strength of Material, v (psi)	80,780.00	0.577 x f _y	
87	Safety Factor	75.20	=V/τ >1 OK	
88	Top Lift Tab Analysis			
89	R	21 1/4"	Direction of applied load Curved edge Curved edge CL hole Fig. C3-3 Pin-Connected Plate Notation	
90	Lifting Lug Design Per ASME BTH-1-2017 (Static Strength of the Plates)			
91	CHECK #1 - ALLOWABLE TENSILE STRENGTH THROUGH PINHOLE (Sect. 3-3.3.1)			
92	The allowable tensile strength through the pinhole, P_t , shall be calculated as follows: $P_t = C_r \frac{F_u}{1.20N_d} 2t b_{\rm eff} \tag{3-45}$			
93	Allowable Tensile Strength through the pinhole, P _t (kips)	17.02	See above equation and parameters below	
94	C _r	0.7330	$C_r = 1 - 0.275 \sqrt{1 - \frac{D_p^2}{D_h^2}}$ (3-46)	
95	Hole Diameter, D _h (in)	1.25	See drawing clip above	
96	Pin Diameter, D _p (in)	0.3 Reasonable assumption or measured		
97	The effective width shall be taken as the smaller of the values calculated as follows: $ b_{\rm eff} = 4t \le b_e $			
	where beff = effective width to each side of pinhole, and; b_e = actual width of a pin-connected plate between the edge of the hole and the edge of the plate			

			equation 3-47 (width limit of <= b _e does not apply		
98			if plates are stiffened or otherwise prevented from		
	b _{eff} (in)	2.00	buckling)		
99	b _{eff} (in)	0.99	equation 3-48		
100	Plate Thickness, t (in)	0.5	See drawing		
101	b _e (in)	0.88	See drawing above		
102	Ultimate Strength of Plate Material, F _u (ksi)	95	4140 Alloy Steel		
103	Yield Strength of Plate Material, F _y (ksi)	60	A36 Steel		
104	b _{eff} used in calculations, b _{eff min} (in)	0.88	Pick lowest beff of Eqns. 3-47 and 3-48 or b _e		
105	CHECK #2 - ALLOWABLE DOUBLE PLANE SHEAR STRENGTH BEYOND THE PINHOLE (Sect. 3-3.3.1)				
106	The allowable double plane shear strength beyond the pinhole P_v is $P_v = \frac{0.70 F_u}{1.20 \ N_d} A_v \tag{3-50}$				
107	Allowable double plane shear strength beyond pinhole, P _v (kips)	16.236	See above equation		
108	$A_v = $ total area of the two shear planes beyond the pinhole				
	$A_v = 2 \left[a + \frac{D_p}{2} (1 - \cos \phi) \right] t $ (3-51)				
109	A _v	0.879	See above		
110	a (in)	0.875	See above		
111	φ :	13.20	$\phi = 55 \frac{D_p}{D_h}$		
112	cos ϕ :	0.974			

113	CHECK #3 - ALLOWABLE SINGLE PLANE FRACTURE STRENGTH BEYOND THE PINHOLE (Sect. 3-3.3.1)			
114	Allowable Single Plan Fracture strength beyond the pinhole, P _b (kips)	23.71	See below	
115	The allowable single plane fracture strength beyond the pinhole P_b is $P_b = C_r \frac{F_u}{1.20N_d} \left[1.13 \left(R - \frac{D_h}{2} \right) + \frac{0.92b_e}{1 + b_e/D_h} \right] t \qquad (3-49)$ where $R = \text{distance from the center of the hole to the edge}$ of the plate in the direction of the applied load			
116	R	1.50	a + D _h /2	
117	CHECK #4 - BEARING STI	RESS BETWEEN PII	N AND PLATE TAB (Sect. 3-3.3.4)	
118	3-3.3.4 Bearing Stress. The bearing stress between the pin and the plate, based on the projected area of the pin, shall not exceed the value given by eq. (3-53), where F_y is the yield stress of the pin or plate, whichever is smaller. The bearing stress between the pin and the plate in connections that will rotate under load for a large number of load cycles (Service Class 1 or higher) shall not exceed the value given by eq. (3-54). $F_p = \frac{1.25F_y}{N_d} \qquad (3-53)$			
119	Allowable Bearing Load, F _p (kips)	3.75	See above eqn x t x D_p (Allowable Stress x area)	
120	Sumr	mary of Loads - To	pp Lifting Tab	
121	Allowable Tensile Strength through the pinhole, P _t (kips)	17.02	See above	
122	Allowable double plane shear strength beyond pinhole, P _v (kips)	16.236	See above	
123	Allowable Single Plan Fracture strength beyond the pinhole, P _b (kips)	23.71	See below	
124	Bearing Load, F _p (kips)	3.75	See above	
125	Max Load, P (lbs)	3,750.00	Choose lowest & Convert to lbs by X 1000	
126	Applied Force, AF (lbs)	661.20	F x Df	
	Safety Factor	5.67	P/AF > 1 OK	

