SCRUM Project Optimization Model

Gemini AI

September 4, 2025

Contents

1	Sets (Entities)	1
2	Indices	2
3	Goals	3
4	Conditions	4
5	Decision Variables	5

1 Sets (Entities)

This section defines the fundamental sets of the optimization model, derived from the Entities.csv file. Each set represents a core component of the SCRUM process.

- Project (P): The product or initiative to be developed.
- Team (T): Self-organized, cross-functional development team.
- Worker (W): Individual team member working on the project.
- Feature (F): Mid-sized functionality.
- Skill (S): Professional or social competence of a worker.
- Role (R): Defined responsibilities within the Scrum team.
- ProductOwner (PO): Responsible for product vision and Product Backlog.
- ScrumMaster (SM): Supports the team in applying Scrum.
- ProductBacklog (PB): Ordered list of all requirements.
- Sprint (SP): Fixed time period for creating an increment.
- SprintPlanning (SPP): Kick-off meeting for Sprint preparation.
- DailyScrum (DS): Daily 15-minute team meeting.
- \bullet SprintReview (SR): Presentation and acceptance of results.
- SprintRetrospective (SRE): Retrospective for process improvement.
- SprintBacklog (SBL): Selected backlog items + implementation plan.
- SprintGoal (SG): Objective to be achieved within the sprint.
- Epic (E): Large requirement that can be split into stories.
- UserStory (US): Requirement from the perspective of a user.
- Task (TSK): Smallest unit of work within a sprint.
- DevelopmentSnapshot (DEV): Product at the end of a sprint.
- Blocker (BL): Obstacle hindering progress.
- Stakeholder (SH): Interested party in the product (internal/external).
- Velocity (VEL): Average amount of work per sprint.
- ReleasePlan (*REP*): Plan for releasing specific features.
- Roadmap (RM): Long-term planning across releases.
- ScrumBoard (SCB): Visual representation of tasks during the sprint.
- FeatureDocumentation (FED): Documentation for a specific feature.

2 Indices

The following indices are used to iterate over the elements of their corresponding sets.

- $p \in P$: Index for the set of Projects.
- $t \in T$: Index for the set of Teams.
- $w \in W$: Index for the set of Workers.
- $f \in F$: Index for the set of Features.
- $s \in S$: Index for the set of Skills.
- $r \in R$: Index for the set of Roles.
- $po \in PO$: Index for the set of Product Owners.
- $sm \in SM$: Index for the set of Scrum Masters.
- $pb \in PB$: Index for the set of Product Backlogs.
- $sp \in SP$: Index for the set of Sprints.
- $spp \in SPP$: Index for the set of Sprint Plannings.
- $ds \in DS$: Index for the set of Daily Scrums.
- $sr \in SR$: Index for the set of Sprint Reviews.
- $sre \in SRE$: Index for the set of Sprint Retrospectives.
- $sbl \in SBL$: Index for the set of Sprint Backlogs.
- $sg \in SG$: Index for the set of Sprint Goals.
- $e \in E$: Index for the set of Epics.
- $us \in US$: Index for the set of User Stories.
- $tsk \in TSK$: Index for the set of Tasks.
- $dev \in DEV$: Index for the set of Development Snapshots.
- $bl \in BL$: Index for the set of Blockers.
- $sh \in SH$: Index for the set of Stakeholders.
- $vel \in VEL$: Index for the set of Velocities.
- $rep \in REP$: Index for the set of Release Plans.
- $rm \in RM$: Index for the set of Roadmaps.
- $scb \in SCB$: Index for the set of Scrum Boards.
- $fed \in FED$: Index for the set of Feature Documentations.

3 Goals

This section outlines the objective functions of the optimization model, based on Goals.csv. Let $X_{i,\text{attr}}$ denote the value of attribute 'attr' for an element i of set X.

• G0: maximize_feature_priority

Maximize the weighted sum of priorities for features selected for a release. Let $\delta_{f,rep}$ be a binary variable indicating if feature f is in release plan rep.

maximize
$$1.5 \sum_{f \in F} \sum_{rep \in REP} X_{f,priority} \cdot \delta_{f,rep}$$

• G2: maximize_story_points_per_sprint

Maximize the total story points from user stories assigned to a sprint. Let $\delta_{us,sp}$ be a binary variable indicating if user story us is in sprint sp.

maximize
$$1.2 \sum_{us \in US} \sum_{sp \in SP} X_{us, \text{story_points}} \cdot \delta_{us, sp}$$

• G3: minimize_task_effort

Minimize the total effort for all planned tasks.

minimize
$$0.8 \sum_{tsk \in TSK} X_{tsk,effort}$$

• G4: maximize_team_velocity

Maximize the average team velocity.

$$\text{maximize} \quad 1.3 \sum_{t \in T} X_{vel(t), \text{avg._story_points}}$$

where vel(t) is the velocity record associated with team t.

• G5: minimize_blocker_severity

Minimize the sum of severities for all unresolved blockers.

minimize
$$1.0 \sum_{bl \in BL} X_{bl,\text{severity}} \cdot \mathbb{I}(X_{bl,\text{status}} \neq \text{'resolved'})$$

where $\mathbb{I}(\cdot)$ is the indicator function.

• G7: minimize_project_duration

Minimize the project end date.

minimize
$$1.1 \cdot X_{p,\text{project_end}}$$

• G9: maximize_sprint_goal_achievement

Maximize the achievement status of sprint goals.

maximize
$$1.4 \sum_{sq \in SG} X_{sg,achievement_status}$$

4 Conditions

This section specifies the constraints of the model, derived from Conditions.csv. These must be satisfied in any feasible solution.

• C0: constrain_team_size_max

The size of any team must not exceed 9 members.

$$\forall t \in T : X_{t,\text{team_size}} \leq 9$$

• C1: constrain_team_size_min

The size of any team must be at least 5 members.

$$\forall t \in T : X_{t,\text{team_size}} \geq 5$$

• C2: constrain_project_budget

The total spent budget must not exceed the allocated budget for a project.

$$\forall p \in P : \text{SpentBudget}_p \leq X_{p, \text{budget}}$$

• C3: require_active_worker

A worker can only be assigned to a task if their status is 'active'. Let $\alpha_{w,tsk}$ be the assignment variable.

$$\forall w \in W, \forall tsk \in TSK : \alpha_{w,tsk} = 1 \implies X_{w,\text{status}} = \text{`active'}$$

• C4: sprint_story_points_le_velocity

The sum of story points in a sprint backlog cannot exceed the team's velocity. Let t(sp) be the team assigned to sprint sp.

$$\forall sp \in SP : \sum_{us \in US} X_{us, \text{story_points}} \cdot \delta_{us, sp} \leq X_{vel(t(sp)), \text{avg_story_points}}$$

• C5: require_acceptance_criteria

A user story can only be selected for a sprint if its acceptance criteria are defined (not NULL).

$$\forall us \in US, \forall sp \in SP: \quad \delta_{us,sp} = 1 \implies X_{us,\text{acceptance_criteria}} \neq \text{NULL}$$

• C10: task_must_not_be_blocked

A task's status cannot be 'in progress' if it has any unresolved blockers. Let B_{tsk} be the set of blockers for task tsk.

$$\forall tsk \in TSK : X_{tsk, \text{status}} = \text{'in progress'} \implies (\forall bl \in B_{tsk} : X_{bl, \text{status}} = \text{'resolved'})$$

• C12: limit_sprint_backlog_effort

The total effort in a sprint backlog must not exceed a given threshold E_{max} .

$$\forall sbl \in SBL : X_{sbl, \text{total_effort}} \leq E_{\text{max}}$$

5 Decision Variables

These are the variables that the optimization model will determine, based on DecisionVariables.csv.

• DV0: assign_worker_to_task

Let $\alpha_{w,tsk}$ be a binary decision variable.

$$\alpha_{w,tsk} = \begin{cases} 1 & \text{if Worker } w \text{ is assigned to Task } tsk \\ 0 & \text{otherwise} \end{cases} \quad (\forall w \in W, \forall tsk \in TSK)$$

• DV1: select_user_story_for_sprint

Let $\delta_{us,sp}$ be a binary decision variable.

$$\delta_{us,sp} = \begin{cases} 1 & \text{if User Story } us \text{ is selected for Sprint } sp \\ 0 & \text{otherwise} \end{cases} \quad (\forall us \in US, \forall sp \in SP)$$

• DV2: set_feature_priority

Let π_f be an integer variable for the priority of Feature f.

$$\pi_f \in \{1, 2, 3, 4, 5\}, \quad \forall f \in F$$

• DV3: adjust_team_size

Let σ_t be an integer variable for the size of Team t.

$$\sigma_t \in \{3, 4, ..., 9\}, \quad \forall t \in T$$

• DV6: set_story_points_for_user_story

Let ρ_{us} be an integer variable representing the story points for User Story us.

$$\rho_{us} \in \{1, 2, 3, 5, 8, 13\}, \quad \forall us \in US$$

• DV9: approve_project_budget

Let β_p be a continuous variable for the budget of Project p.

$$\beta_p \in \mathbb{R}^+, \quad 50000 \le \beta_p \le 2000000, \quad \forall p \in P$$

• DV10: select_feature_for_release

Let $\gamma_{f,rep}$ be a binary decision variable.

$$\gamma_{f,rep} = \begin{cases} 1 & \text{if Feature } f \text{ is selected for Release Plan } rep \\ 0 & \text{otherwise} \end{cases} \quad (\forall f \in F, \forall rep \in REP)$$