CSE 6339 SPECIAL TOPICS IN ADVANCED DATABASE SYSTEMS

PROJECT 1 GROUP 107

DHRUV PRAJAPATI	1001051824
GURKAMAL DEEP SINGH RAKHRA	1001049557
NAMRATHA SURYANARAYANA IYER	1001112730
PUNEETH UMESH BHARADWAJ	1001106478

Task 1	3
1. The most common disease for each age group. (Code task11.py)	3
2. In Hospital Mortality	
3. Demographics	
4. Effect of Length of Stay	
Task 2	
1. Relational Schema.	
2. Import Data	32
3. SQL queries	
a. Query to get back the original csv file from the DB	
b. Coverage Ratio	35
c. Variation and Length of Stay	
d. DRG_PRICE vs TOTAL_CHARGES	38
Task 3	
A. Appropriate Number of Clusters	39
B. Calculate Number of Clusters	
C. Interesting Profiles	41
D. Supervised vs Unsupervised	41
Task 4	42
a. Method to find DRG_PRICE_BINARY	42
b. Clinicians/Administrators know the following details	42
c. Scenarios	43
1. Exclude 7, 10 and 11	43
2. CfsSubsetEval	43
3. Classifiers	45
4. Accuracy	49
a. Overall Accuracy	49
b. Greater than \$80000	
c. Less than \$80000	50

Task 1.

```
1. The most common disease for each age group. (Code task11.py)
SQL Query
(SELECT
   AGE, DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
FROM
   'disease'
WHERE
   AGE = '1' AND DIAGNOSIS CODE != 'NULL'
GROUP BY DIAGNOSIS CODE
ORDER BY T DESC
LIMIT 1) UNION (SELECT
   AGE, DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
FROM
   'disease'
WHERE
   AGE = '2' AND DIAGNOSIS CODE != 'NULL'
GROUP BY DIAGNOSIS CODE
ORDER BY T DESC
LIMIT 1) UNION (SELECT
   AGE, DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
FROM
   'disease'
WHERE
   AGE = '3' AND DIAGNOSIS CODE != 'NULL'
GROUP BY DIAGNOSIS CODE
ORDER BY T DESC
LIMIT 1) UNION (SELECT
   AGE, DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
FROM
```

```
'disease'
WHERE
   AGE = '4' AND DIAGNOSIS CODE != 'NULL'
GROUP BY DIAGNOSIS CODE
ORDER BY T DESC
LIMIT 1) UNION (SELECT
   AGE, DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
FROM
   'disease'
WHERE
   AGE = '5' AND DIAGNOSIS_CODE != 'NULL'
GROUP BY DIAGNOSIS CODE
ORDER BY T DESC
LIMIT 1) UNION (SELECT
   AGE, DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
FROM
   'disease'
WHERE
   AGE = '6' AND DIAGNOSIS_CODE != 'NULL'
GROUP BY DIAGNOSIS CODE
ORDER BY T DESC
LIMIT 1) UNION (SELECT
   AGE, DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
FROM
   'disease'
WHERE
   AGE = '7' AND DIAGNOSIS CODE != 'NULL'
GROUP BY DIAGNOSIS CODE
ORDER BY T DESC
LIMIT 1) UNION (SELECT
   AGE, DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
```

FROM

'disease'

WHERE

AGE = '8' AND DIAGNOSIS CODE != 'NULL'

GROUP BY DIAGNOSIS_CODE

ORDER BY T DESC

LIMIT 1) UNION (SELECT

AGE, DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T

FROM

'disease'

WHERE

AGE = '9' AND DIAGNOSIS_CODE != 'NULL'

GROUP BY DIAGNOSIS_CODE

ORDER BY T DESC

LIMIT 1)

Age	Diagnosis
1	2153
2	V6284
3	486
4	5856
5	486
6	486
7	486
8	5990
9	5849

Prevelance

SQL Query

SELECT

TOTAL.AGE,

TOTAL.T,

```
T1.DIAGNOSIS_CODE,
   T1.T,
   (T1.T / TOTAL.T) AS FIRST_COUNT,
   T2.DIAGNOSIS CODE,
   T2.T,
   (T2.T / TOTAL.T) AS SECOND_COUNT,
   T3.DIAGNOSIS CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '1') AS TOTAL,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '1' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '1' AND DIAGNOSIS_CODE != 'NULL'
```

```
GROUP BY DIAGNOSIS_CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 1) AS T2,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '1' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 2) AS T3
UNION SELECT
   TOTAL.AGE,
   TOTAL.T,
   T1.DIAGNOSIS_CODE,
   T1.T,
   (T1.T / TOTAL.T) AS FIRST COUNT,
   T2.DIAGNOSIS_CODE,
   T2.T,
   (T2.T / TOTAL.T) AS SECOND_COUNT,
   T3.DIAGNOSIS CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD_COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '2') AS TOTAL,
```

```
(SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '2' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '2' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS_CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 1) AS T2,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '2' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS_CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 2) AS T3
UNION SELECT
   TOTAL.AGE,
   TOTAL.T,
   T1.DIAGNOSIS_CODE,
```

```
T1.T,
   (T1.T / TOTAL.T) AS FIRST COUNT,
   T2.DIAGNOSIS_CODE,
   T2.T,
   (T2.T / TOTAL.T) AS SECOND_COUNT,
   T3.DIAGNOSIS_CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD_COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '3') AS TOTAL,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '3' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '3' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS_CODE
```

```
ORDER BY T DESC
   LIMIT 1 OFFSET 1) AS T2,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
    WHERE
       AGE = '3' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 2) AS T3
UNION SELECT
   TOTAL.AGE,
   TOTAL.T,
   T1.DIAGNOSIS_CODE,
   T1.T,
   (T1.T / TOTAL.T) AS FIRST COUNT,
   T2.DIAGNOSIS CODE,
   T2.T,
   (T2.T / TOTAL.T) AS SECOND_COUNT,
   T3.DIAGNOSIS_CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '4') AS TOTAL,
   (SELECT
```

```
DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '4' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS_CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '4' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 1) AS T2,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '4' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS_CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 2) AS T3
UNION SELECT
   TOTAL.AGE,
   TOTAL.T,
   T1.DIAGNOSIS_CODE,
   T1.T,
```

```
(T1.T / TOTAL.T) AS FIRST_COUNT,
   T2.DIAGNOSIS CODE,
   T2.T,
   (T2.T / TOTAL.T) AS SECOND COUNT,
   T3.DIAGNOSIS_CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD_COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '5') AS TOTAL,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '5' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS_CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '5' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
```

```
LIMIT 1 OFFSET 1) AS T2,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '5' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 2) AS T3
UNION SELECT
   TOTAL.AGE,
   TOTAL.T,
   T1.DIAGNOSIS CODE,
   T1.T,
   (T1.T / TOTAL.T) AS FIRST_COUNT,
   T2.DIAGNOSIS CODE,
   T2.T,
   (T2.T / TOTAL.T) AS SECOND_COUNT,
   T3.DIAGNOSIS_CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '6') AS TOTAL,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
```

```
FROM
       'disease'
   WHERE
       AGE = '6' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '6' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 1) AS T2,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '6' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 2) AS T3
UNION SELECT
   TOTAL.AGE,
   TOTAL.T,
   T1.DIAGNOSIS_CODE,
   T1.T,
   (T1.T / TOTAL.T) AS FIRST_COUNT,
```

```
T2.DIAGNOSIS_CODE,
   T2.T,
   (T2.T / TOTAL.T) AS SECOND_COUNT,
   T3.DIAGNOSIS CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD_COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '7') AS TOTAL,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '7' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '7' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS_CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 1) AS T2,
```

```
(SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '7' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 2) AS T3
UNION SELECT
   TOTAL.AGE,
   TOTAL.T,
   T1.DIAGNOSIS CODE,
   T1.T,
   (T1.T / TOTAL.T) AS FIRST_COUNT,
   T2.DIAGNOSIS_CODE,
   T2.T,
   (T2.T / TOTAL.T) AS SECOND COUNT,
   T3.DIAGNOSIS_CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD_COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '8') AS TOTAL,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
```

```
'disease'
   WHERE
       AGE = '8' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '8' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 1) AS T2,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '8' AND DIAGNOSIS_CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 2) AS T3
UNION SELECT
   TOTAL.AGE,
   TOTAL.T,
   T1.DIAGNOSIS CODE,
   T1.T,
   (T1.T / TOTAL.T) AS FIRST_COUNT,
   T2.DIAGNOSIS_CODE,
```

```
T2.T,
   (T2.T / TOTAL.T) AS SECOND_COUNT,
   T3.DIAGNOSIS_CODE,
   T3.T,
   (T3.T / TOTAL.T) AS THIRD_COUNT
FROM
   (SELECT
       AGE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'DISEASE'
   WHERE
       AGE = '9') AS TOTAL,
   (SELECT
       DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '9' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS_CODE
   ORDER BY T DESC
   LIMIT 1) AS T1,
   (SELECT
       DIAGNOSIS CODE, COUNT(DIAGNOSIS CODE) AS T
   FROM
       'disease'
   WHERE
       AGE = '9' AND DIAGNOSIS CODE != 'NULL'
   GROUP BY DIAGNOSIS CODE
   ORDER BY T DESC
   LIMIT 1 OFFSET 1) AS T2,
   (SELECT
```

DIAGNOSIS_CODE, COUNT(DIAGNOSIS_CODE) AS T

FROM

'disease'

WHERE

AGE = '9' AND DIAGNOSIS_CODE != 'NULL'

GROUP BY DIAGNOSIS_CODE

ORDER BY T DESC

LIMIT 1 OFFSET 2) AS T3

	Total Diagnosis			Prevalence =
Age	Count per Age	Diagnosis Code	Count	Count/Total x
	(Total)			100%
		2153	1	12.5
1	8	2767	1	12.5
		4168	1	12.5
		V6284	5	3.67
2	136	34590	4	2.94
		486	3	2.20
		486	15	3.28
3	456	5849	13	2.85
		5856	13	2.85
		5856	25	5.68
4	440	486	14	3.18
		4019	13	2.95
		486	14	3.24
5	432	389	13	3.01
		51881	12	2.77
		486	22	5.18
6	424	5849	12	2.83
		5990	12	2.83
7	440	486	22	5

		5849	14	3.19
		389	13	2.96
		5990	20	5.31
8	376	5849	14	3.72
		486	13	3.46
		5849	11	4.54
9	242	486	8	3.31
		5990	8	3.31

2. In Hospital Mortality

In hospital excel formula

=IF(OR(AND(C2,A2="N"),AND(C2,A2=0),AND(D2,B2="N"),AND(D2,B2=0)),"Y","N
")

C2 = DC1

A2 = POA 1

D2 = DC2

B2 = POA 2

Y = PRESENT

N = NOT PRESENT DURING HOSPITAL, IT WAS AT THE TIME OF ADMISSION

In hospital mortality formula

IN HOSITAL MORTALITY: =IF(AND(E2="Y",G2="B"),"Y","N")

Y = DEAD

N = ALIVE / DEAD BUT NOT BECAUSE OF THE DISEASE

E2 = RESULT OF FIRST FORMULA

G2 = DISCHARGE STATUS

i. Total In Hospital Mortality from above formulas = 14

Men =
$$4/14 = 28.57\%$$

Women = 10/14 = 71.42%

ii. In hospital mortality of top 3 diseases

The top 3 diseases are 486, 5849 and 389. As per our analysis there were no in hospital deaths as for diseases are as follows.

Disease Code	Count of Death	Sex
389	2	Females
5849	1	Male
486	0	NA

3. Demographics

i. We can see from the below tables that across the patient demographics, they have stayed for a shorter time in the hospital.

Following are the queries.

```
SELECT
```

SHORT_STAY.AGE, SHORT_STAY.S, LONG_STAY.L

FROM

(SELECT

AGE, COUNT(STAY INDICATOR) AS S

FROM

'HOSPITAL'

WHERE

STAY INDICATOR = 'S'

GROUP BY AGE) AS SHORT STAY

LEFT JOIN

(SELECT

AGE, COUNT(STAY_INDICATOR) AS L

FROM

'HOSPITAL'

WHERE

STAY_INDICATOR = 'L'

GROUP BY AGE) AS LONG_STAY ON SHORT_STAY.AGE =

LONG_STAY.AGE

AGE	S	L
1	4	NULL
2	62	6
3	211	17
4	211	9
5	199	17
6	195	17
7	206	14
8	174	14
9	110	11

SELECT

SHORT_STAY.SEX, SHORT_STAY.S, LONG_STAY.L

FROM

(SELECT

SEX, COUNT(STAY_INDICATOR) AS S

FROM

'HOSPITAL'

WHERE

STAY INDICATOR = 'S'

GROUP BY SEX) AS SHORT_STAY

LEFT JOIN

(SELECT

SEX, COUNT(STAY_INDICATOR) AS L

FROM

'HOSPITAL'

WHERE

STAY_INDICATOR = 'L'
GROUP BY SEX) AS LONG_STAY ON SHORT_STAY.SEX =
LONG_STAY.SEX

SEX	S	L
1	594	50
2	778	55

SELECT

SHORT_STAY.RACE, SHORT_STAY.S, LONG_STAY.L

FROM

(SELECT

RACE, COUNT(STAY_INDICATOR) AS S

FROM

'HOSPITAL'

WHERE

STAY_INDICATOR = 'S'

GROUP BY RACE) AS SHORT_STAY

LEFT JOIN

(SELECT

RACE, COUNT(STAY_INDICATOR) AS L

FROM

'HOSPITAL'

WHERE

STAY_INDICATOR = 'L'

GROUP BY RACE) AS LONG_STAY ON SHORT_STAY.RACE =

LONG_STAY.RACE

RACE	S	L
0	5	NULL
1	1103	88
2	187	14

3	21	NULL
4	13	NULL
5	36	3
6	7	NULL

Most common Long Stay

SELECT

DIAGNOSIS_CODE_1, COUNT(DIAGNOSIS_CODE_1) AS TOTAL

FROM

'hospital'

WHERE

STAY_INDICATOR = 'L'

GROUP BY DIAGNOSIS_CODE_1

ORDER BY TOTAL DESC

LIMIT 1;

DIAGNOSIS CODE	COUNT
V5789	18

Most Common Short Stay

SELECT

DIAGNOSIS_CODE_1, COUNT(DIAGNOSIS_CODE_1) AS TOTAL

FROM

'hospital'

WHERE

STAY_INDICATOR = 'S'

GROUP BY DIAGNOSIS_CODE_1

ORDER BY TOTAL DESC

LIMIT 1

DIAGNOSIS CODE	COUNT

|--|

4. Effect of Length of Stay

i. As per the following graph of Length of Stay vs Total Cost, we can infer that just a longer stay does not mean a higher cost after discharge. It also depends on the patient's condition on admission, recovery rate, charges during the treatment etc. (Code task141.py)

ii. As per the graph of Length of Stay vs In Hospital Mortality (IHM), the IHM depends on whether the disease was contracted after the patient was admitted and subsequently died because of it.

The maximum length of stay for patients was 110. Of those 14 had died with in hospital mortality. Majority of the in hospital deaths were for patients who stayed for shorter period of time.

LENGTH_OF_STAY	IN_HOSPITAL_MORTALITY
1	1
2	1

2	1
2	1
3	1
6	1
6	1
7	1
7	1
11	1
13	1
18	1
23	1
23	1

- 1. Relationship between the Discharge Destination and the Age Group Following are the steps to get the graphs as shown below.
 - i. Open weka tool
 - ii. Choose weka explorer

- iii. Choose 'open file' and import the dataset
- iv. Choose AGE and DISCHARGE DESTINATION
- v. Click invert
- vi. Click remove
- vii. Choose all the attributes
- viii. From filter choose NumericToNominal
- ix. Click visualize all to get the following pic 1.

After looking at the graphs, we can infer that, DISCHARGE_DESTINATION = 1 had the highest number of discharges.

As per the AGE group also, DISCHARGE_DESTINATION = 1 had the highest among all the DISCHARGE_DESTINATIONs.

Name	d attribute e: DISCHARGE_DESTINATION g: 0 (0%)	Distinct: 16		Type: Nominal Unique: 1 (0%)	
No.	18	abel		Count	
	1	3001	754	Count	
	2		36		
2	3		256		
	4		32		
	5		4		
6	6		239		
7	7		6		
8	20		47		
	43		1		
10	50		19		
11	51		20		
12	61		7		
	62		36		
	63		10		
15	65		8		
	70		2		
	SCHARGE_DESTINATION (Nom)				▼ Visualize
ss: Di	SCHARGE_DESTINATION (Nom)				Visualize

Task 2.

1. Relational Schema

The SQL query to create all the tables for our schema are as below. We have used MySQL as our DB server.

```
CREATE DATABASE 'cse6339';
USE DATABASE 'cse6339';
CREATE TABLE IF NOT EXISTS 'admission' (
  'ADMISSION ID' int(5) NOT NULL AUTO INCREMENT,
  'AGE' int(5) NOT NULL,
  'SEX' int(5) NOT NULL,
  'RACE' int(5) NOT NULL,
  'DAY OF ADMISSION' int(5) NOT NULL,
  'DISCHARGE STATUS' varchar(5) NOT NULL,
  'STAY INDICATOR' varchar(5) NOT NULL,
  'DRG CODE' int(5) NOT NULL,
  'LENGTH OF STAY' int(5) NOT NULL,
  'DRG PRICE' int(10) NOT NULL,
  'TOTAL CHARGES' int(10) NOT NULL,
  'COVERED CHARGES' int(10) NOT NULL,
  'DISCHARGE DESTINATION' int(5) NOT NULL,
  'SOURCE OF ADMISSION' int(5) NOT NULL,
  `TYPE_OF_ADMISSION` int(5) NOT NULL,
  'ADMITTING DIAGNOSIS CODE' varchar(10) NOT NULL,
 PRIMARY KEY ('ADMISSION ID')
) ENGINE=InnoDB DEFAULT CHARSET=LATIN1 AUTO INCREMENT=1478;
```

```
CREATE TABLE IF NOT EXISTS 'procedure' (
  'PROCEDURE ID' int(5) NOT NULL AUTO INCREMENT,
  'PROCEDURE CODE' int(10) NOT NULL,
  PRIMARY KEY ('PROCEDURE ID')
) ENGINE=InnoDB DEFAULT CHARSET=LATIN1 AUTO INCREMENT=385;
CREATE TABLE IF NOT EXISTS 'diagnosis' (
  'DIAGNOSIS ID' int(5) NOT NULL AUTO INCREMENT,
  'DIAGNOSIS CODE' varchar(10) DEFAULT NULL,
 PRIMARY KEY ('DIAGNOSIS ID')
) ENGINE=InnoDB DEFAULT CHARSET=LATIN1 AUTO INCREMENT=808;
CREATE TABLE IF NOT EXISTS 'admission diagnosis' (
  'ADMISSION ID' int(5) NOT NULL,
  'DIAGNOSIS ID' int(5) NOT NULL,
  'POA INDICATOR' varchar(5) NOT NULL,
 PRIMARY KEY ('ADMISSION ID', 'DIAGNOSIS ID'),
 KEY 'DIAGNOSIS ID' ('DIAGNOSIS ID')
) ENGINE=InnoDB DEFAULT CHARSET=LATIN1;
CREATE TABLE IF NOT EXISTS 'admission procedure' (
    'ADMISSION ID' INT(5) NOT NULL,
    'PROCEDURE ID' INT(5) NOT NULL,
   PRIMARY KEY ('ADMISSION ID', 'PROCEDURE ID'),
   KEY 'PROCEDURE ID' ('PROCEDURE ID')
) ENGINE=INNODB DEFAULT CHARSET=LATIN1;
ALTER TABLE 'admission diagnosis'
  ADD CONSTRAINT 'admission diagnosis ibfk 2' FOREIGN KEY
('DIAGNOSIS ID') REFERENCES 'diagnosis' ('DIAGNOSIS ID'),
```

ADD CONSTRAINT `admission_diagnosis_ibfk_1` FOREIGN KEY (`ADMISSION ID`) REFERENCES `admission` (`ADMISSION ID`);

ALTER TABLE 'admission_procedure'

ADD CONSTRAINT 'admission_procedure_ibfk_2' FOREIGN KEY ('PROCEDURE_ID') REFERENCES 'procedure' ('PROCEDURE_ID'), ADD CONSTRAINT 'admission_procedure_ibfk_1' FOREIGN KEY ('ADMISSION_ID') REFERENCES 'admission' ('ADMISSION_ID');

Double arrow are total participation.

Single arrow is partial participation.

2. Import Data

We have used LOAD INFILE command to push data into the tables. We created 5 CSVs, 1 for each table.

LOAD DATA INFILE 'C:/Users/Dhruv/Desktop/ADMISSION.CSV' INTO TABLE 'ADMISSION' FIELDS TERMINATED BY ',' LINES TERMINATED BY '\r\n' IGNORE 1 LINES

LOAD DATA INFILE 'C:/Users/Dhruv/Desktop/DIAGNOSIS.CSV' INTO TABLE 'DIAGNOSIS' FIELDS TERMINATED BY ',' LINES TERMINATED BY '\r\n' IGNORE 1 LINES

LOAD DATA INFILE 'C:/Users/Dhruv/Desktop/PROCEDURE.CSV' INTO TABLE 'PROCEDURE' FIELDS TERMINATED BY ',' LINES TERMINATED BY '\r\n' IGNORE 1 LINES

LOAD DATA INFILE 'C:/Users/Dhruv/Desktop/ADMISSION_DIAGNOSIS.CSV' INTO TABLE 'ADMISSION_DIAGNOSIS' FIELDS TERMINATED BY ',' LINES TERMINATED BY '\r\n' IGNORE 1 LINES

LOAD DATA INFILE 'C:/Users/Dhruv/Desktop/ADMISSION_PROCEDURE.CSV' INTO TABLE `ADMISSION_PROCEDURE` FIELDS TERMINATED BY ',' LINES TERMINATED BY '\r\n' IGNORE 1 LINES

Following is Query used to combine DIAGNOSIS_CODE_1 and DIAGNOSIS_CODE_2 into a single column.

```
SSELECT

ADMISSION_ID, PROCEDURE_ID

FROM

ADMISSION AS H,

PROCEDURE AS P

WHERE

P.PROCEDURE_CODE = H.PROCEDURE_CODE_1

OR P.PROCEDURE_CODE = H.PROCEDURE_CODE_2

AND PROCEDURE_CODE != 0;
```

SELECT
H.ADMISSION_ID, P.diagnosis_ID
FROM
ADMISSION AS H,

DIAGNOSIS AS P

WHERE

```
P.DIAGNOSIS_CODE = H.DIAGNOSIS_CODE_1

OR P.DIAGNOSIS_CODE = H.DIAGNOSIS_CODE_2

AND P.DIAGNOSIS_CODE != "NULL";
```

We have used the following Excel formula to combine

POA_DIAGNOSIS_INDICATOR_1 and POA_DIAGNOSIS_INDICATOR_2 into a single column POA_DIAGNOSIS_INDICATOR =INDEX(\$A\$2:\$B\$1478,INT((ROWS(F\$2:F3)-1)/2)+1,MOD(ROWS(F\$2:F3)-1,2)+1)

WHERE A2:B1478 = ARRAY RANGE

3. SQL queries

a. Query to get back the original csv file from the DB

SELECT

A.ADMISSION_ID,

A.AGE,

A.SEX,

A.RACE,

A.DAY OF ADMISSION,

A.DISCHARGE STATUS,

A.STAY_INDICATOR,

A.DRG CODE,

A.LENGTH_OF_STAY,

A.DRG PRICE,

A.TOTAL CHARGES,

A.COVERED_CHARGES,

AD.POA INDICATOR,

D.DIAGNOSIS CODE,

P.PROCEDURE CODE,

A.DISCHARGE DESTINATION,

A.SOURCE_OF_ADMISSION,

A.TYPE OF ADMISSION,

```
A.ADMITTING_DIAGNOSIS_CODE
   FROM
      'PROCEDURE' AS P,
      'ADMISSION' AS A,
      'ADMISSION DIAGNOSIS' AS AD,
      'ADMISSION_PROCEDURE' AS AP,
      'DIAGNOSIS' AS D
   WHERE
      A.ADMISSION ID = AD.ADMISSION ID
          AND A.ADMISSION ID = AP.ADMISSION ID
          AND D.DIAGNOSIS ID = AD.DIAGNOSIS ID
          AND P.PROCEDURE ID = AP.PROCEDURE ID;
b. Coverage Ratio
Coverage ratio for LENGTH_OF_STAY > 5 is 97.10%
   SELECT
      LENGTH OF STAY,
      SUM(COVERED CHARGES) / SUM(COVERED CHARGES) AS
   COVERAGE RATIO
   FROM
      `hospital`
   WHERE
      LENGTH OF STAY > 5;
   Coverage for STAY INDICATOR='L' is 97.06%.
   SELECT
      STAY INDICATOR,
      SUM(COVERED_CHARGES) / SUM(COVERED_CHARGES) AS
   COVERAGE RATIO
   FROM
      'ADMISSION'
```

WHERE

There were some cases where the COVERED_CHARGES = 0. In comparison, all 97% of the Long Stay patients had coverage ratio of 97%.

c. Variation and Length of Stay

We have used the following SQL query for this task.

SELECT

DAY_OF_ADMISSION, AVG(LENGTH_OF_STAY) AS AVERAGE

FROM

ADMISSION

GROUP BY DAY_OF_ADMISSION

The patients admitted on day 5 (Thursday) and day 7 (Saturday) have stayed longer in the hospital.

DAY	DAY_OF_ADMISSION	AVERAGE_LENGTH_OF STAY
SUNDAY	1	4.70
MONDAY	2	4.73
TUESDAY	3	5.55
WEDNESDAY	4	5.05
THURSDAY	5	6.58
FRIDAY	6	5.56
SATURDAY	7	6.75

Average patients admitted on Friday have stayed longer than those admitted on Monday. Based on our web search and personal experience, we can say that Friday is more prone towards partying and traveling. This prevalence can give rise to more admissions than on Mondays. As per this web article 'Study: Higher risk of death for patients admitted to hospitals on weekends', there is "Friday effect", where the patients undergo a planned surgery on Fridays, even though the risk is 33% higher than if they were admitted on Monday.

d. DRG_PRICE vs TOTAL_CHARGES

There is no linear relationship between DRG_PRICE and TOTAL_CHARGES. There were cases where the DRG_PRICE=0 and the TOTAL_CHARGES are still posted for the patient. (Code task23d.py)

Task 3.

A. Appropriate Number of Clusters

The appropriate number of clusters which are required to adequately describe' the discharge characteristics of the patients (discharge destination, discharge status, stay indicator). Use the elbow method to define the number, by evaluating the within cluster sum of squared errors' you get as a result in your Weka output. Draw an appropriate graph to explain your answer.

- a) Select DISCHARGE_DESTINATION, DISCHARGE_STATUS and STAY INDICATOR
- b) Deselect all other attributes
- c) Change types to nominal
- d) Go to clusters tab and select SimpleKMeans
- e) Note the Sum of Squared Error values
- f) Plot the graph of Number of Clusters vs Sum of Square Error values

The elbow is point is 6 clusters. Adding more clusters does not provide a better modeling of data given to us. After 6 clusters the variation is not much and is negligible. Hence, we have chosen the elbow as 6 clusters.

B. Calculate Number of Clusters

Number of Clusters	Sum of Squared Errors
1	875
2	856
3	617
4	529
5	289
6	199
7	180
8	150
9	115
1-	90

C. Interesting Profiles

Here we are consider for number of clusters as 6.

There are two majority clusters Cluster0 and Cluster4.

In Cluster 739 out of 1477 were discharged Alive at Discharge Destination 1. We can assume that, Discharge Destination 1 is the most commonly used for discharging patients.

In Cluster4 240 out of 1477 were discharged Alive at Discharge Destination 3. We can assume that, Discharge Destination 3 is the next most commonly used for discharging patients.

D. Supervised vs Unsupervised

We have used unsupervised data mining technique. This is because of the following

- a) We change the type of the data
- b) KMeans clustering works on non-labeled data.
- c) Clustering is always a part of unsupervised learning.

Task 4.

a. Method to find DRG_PRICE_BINARY

Changing DRG PRICE to binary values

- a) Add a column next to DRG PRICE
- b) Add condition IF(DRG PRICE>80000,1,0)
- c) If DRG_PRICE is greater than \$80000, value is set as 1
- d) If DRG_PRICE is lesser than \$80000, value is set as 0
- e) Copy paste the formula to all the cells in the column

b. Clinicians/Administrators know the following details

- 1. When the patient enters the hospital
 - 1. AGE
 - 2. SEX
 - 3. RACE
 - 4. DAY OF ADMISSION
 - 5. SOURCE OF ADMISSION
 - 6. TYPE OF ADMISSION
 - 7. ADMITTING DIAGNOSIS CODE

When the patient is discharged from the hospital

- 1. AGE
- 2. SEX
- 3. RACE
- 4. DAY_OF_ADMISSION
- 5. DISCHARGE STATUS
- 6. STAY INDICATOR
- 7. DRG CODE
- 8. LENGTH OF STAY
- 9. DRG_PRICE

- 10. TOTAL CHARGES
- 11. POA DIAGNOSIS INDICATOR 1
- 12. POA_DIAGNOSIS_INDICATOR_2
- 13. DIAGNOSIS CODE 1
- 14. DIAGNOSIS CODE 1
- 15. PROCEDURE CODE 1
- 16. PROCEDURE CODE 2
- 17. DISCHARGE DESTINATION
- 18. SOURCE OF ADMISSION
- 19. TYPE OF ADMISSION
- 20. ADMITTING DIAGNOSIS CODE

c. Scenarios

1. Exclude 7, 10 and 11.

DRG_CODE, TOTAL_CHARGES and COVERED_CHARGES will be unknown at the time of admission and during hospital stay.

2. CfsSubsetEval

CfsSubsetEval and BestFirst are used to select the features. Following is the process

- i. Select the required attributes
- ii. Remove the rest of the attributes
- iii. Convert string values to nominal
- iv. Go to select attributes and select CfsSubsetEval and BestFirst

Scenario 1 - AGE, SEX, RACE, DAY_OF_ADMISSION, SOURCE_OF_ADMISSION, TYPE_OF_ADMISSION and ADMITTING DIAGNOSIS CODE.

Features selected - AGE, SEX, RACE, DAY_OF_ADMISSION, SOURCE_OF_ADMISSION, TYPE_OF_ADMISSION and ADMITTING DIAGNOSIS CODE.

These are listed, best to worst, according to their individual predictive ability of DRG_PRICE_BINARY field. These are fields have high correlation with DRG_PRICE_BINARY and will help in getting better classification.

Scenario 2 - Select these attirbutes AGE, SEX, RACE, DAY_OF_ADMISSION, DISCHARGE_STATUS, STAY_INDICATOR, LENGTH_OF_STAY, POA_DIAGNOSIS_INDICATOR_1, POA_DIAGNOSIS_INDICATOR_2, DIAGNOSIS_CODE_1, DIAGNOSIS_CODE_2, PROCEDURE_CODE_1, PROCEDURE_CODE_2, DISCHARGE_DESTINATION, SOURCE_OF_ADMISSION, TYPE_OF_ADMISSION and ADMITTING DIAGNOSIS CODE

Features selected - AGE, DISCHARGE_STATUS, LENGTH_OF_STAY, POA_DIAGNOSIS_INDICATOR_2, PROCEDURE_CODE_1

These are listed, best to worst, according to their individual predictive ability of DRG_PRICE_BINARY field. These are fields have high correlation with DRG_PRICE_BINARY and will help in getting better classification.

3. Classifiers

i. Naive Bayes

Scenario 1 - AGE, SEX, RACE, DAY_OF_ADMISSION, SOURCE_OF_ADMISSION, TYPE_OF_ADMISSION and ADMITTING_DIAGNOSIS_CODE.

Of the 1477 values 1470 were correctly classified and 7 were incorrectly classified.

99.52% were correctly classified.

0.47% were incorrectly classified.

Scenario 2 - AGE, SEX, RACE, DAY_OF_ADMISSION, DISCHARGE_STATUS, STAY_INDICATOR, LENGTH_OF_STAY, POA_DIAGNOSIS_INDICATOR_1, POA_DIAGNOSIS_INDICATOR_2, DIAGNOSIS_CODE_1, DIAGNOSIS_CODE_2, PROCEDURE_CODE_1, PROCEDURE_CODE_2, DISCHARGE_DESTINATION, SOURCE_OF_ADMISSION, TYPE_OF_ADMISSION, ADMITTING DIAGNOSIS CODE

Of the 1477 values 1461 were correctly classified and 16 were incorrectly classified. 98.91% were correctly classified.

1.08% were incorrectly classified.

ii. Logistic Regression

Scenario 1 - AGE, SEX, RACE, DAY_OF_ADMISSION, SOURCE_OF_ADMISSION, TYPE_OF_ADMISSION and ADMITTING_DIAGNOSIS_CODE.

Of the 1477 values 1372 were correctly classified and 105 were incorrectly classified.

- 92.89% were correctly classified.
- 7.10% were incorrectly classified.

Scenario 2 - AGE, SEX, RACE, DAY_OF_ADMISSION, DISCHARGE_STATUS, STAY_INDICATOR, LENGTH_OF_STAY, POA_DIAGNOSIS_INDICATOR_1, POA_DIAGNOSIS_INDICATOR_2, DIAGNOSIS_CODE_1, DIAGNOSIS_CODE_2, PROCEDURE_CODE_1, PROCEDURE_CODE_2, DISCHARGE_DESTINATION, SOURCE_OF_ADMISSION, TYPE_OF_ADMISSION, ADMITTING DIAGNOSIS CODE

Of the 1477 values 1462 values were correctly classified and 15 were incorrectly classified.

98.98% were correctly classified.

1.01% were incorrectly classified.

4. Accuracy

a. Overall Accuracy

Formula for Accuracy = (TP + TN)/(TP + FN + FP + TN)

- a. Naive Bayes
 - i. Scenario 1 99.5261%
 - ii. Scenario 2 98.849%
- b. Logistic
 - i. Scenario 1 92.2139%
 - ii. Scenario 2 99.1198%

b. Greater than \$80000

a. Naive Bayes

Scenario 1

Accuracy =
$$TN/(TN + FP) = 0/(7+0) = 0$$

0% correctly were classified as more than \$80000.

Scenario 2

Accuracy =
$$TN/(TN + FP) = 1/(6 + 1) = .1428$$

14.28% were correctly classified as more than \$80000

b. Logistic

Scenario 1

Accuracy =
$$TN/(TN + FP) = 3/(4+3) = .42.85$$

42.85% correctly were classified as more than \$80000.

Scenario 2

Accuracy =
$$TN/(TN + FP) = 7/(7 + 0) = 0$$

0% were correctly classified as more than \$80000

c. Less than \$80000

c. Naive Bayes

Scenario 1

Accuracy =
$$TP/(TP + FN) = 1470/(1470+0) = 1$$

100% correctly were classified as less than \$80000.

Scenario 2

Accuracy =
$$TP/(TP + FN) = 1460/(1460+10) = 0.9931$$

99.31% were correctly classified as more than \$80000

d. Logistic

Scenario 1

Accuracy =
$$TP/(TP + FN) = 1369/(1369+101) = .9312$$

93.12% correctly were classified as more than \$80000.

Scenario 2

Accuracy =
$$TP/(TP + FN) = 1462/(1462+8) = .9945$$

99.45% were correctly classified as more than \$80000