数据挖掘和大数据分析


```
import numpy as np
from sklearn import linear model
from mpl toolkits.mplot3d import Axes3D
import matplotlib. pyplot as plt
xx, yy = np. meshgrid(np. linspace(0, 10, 10), np. linspace(0, 100, 10))
zz = 1.0 * xx + 3.5 * yy + np. random. randint (0, 100, (10, 10))
X, Z = np. column stack((xx. flatten(), yy. flatten())), zz. flatten()
regr = linear model.LinearRegression()
regr. fit(X, Z)
a = regr. coef
b = regr. intercept
x = np. array([[5.8, 78.3]])
print(np. sum(a * x) + b)
print (regr. predict(x))
fig = plt.figure()
ax = fig.gca(projection='3d')
ax. scatter(xx, yy, zz)
plt.show()
```


B. What is Big Data? In your answer, address the following: (a) Describe three features of Big data (1Points) (4)

(b) Please explain the Spark, the Hadoop, the MapReduce. (1Points) (4)

- The Most Significant feature of Big Data is ()
- A Large Data Scale
 - **B** Diverse Data Types
- **C** Fast Data Processing

Outline

1 Review (Assignments & Process of DM)

② Overview of ML

3 Data Cleaning

Do you finish your Homework by yourself?

[1] [2] [3]

作业清单 (4/29、5/4)

根据下列数据集(数据表存为 csv 格式)建立线性回归 模型。

No	square_feet	price
1	150	6450
2	200	7450
3	250	8450
4	300	9450
5	350	11450
6	400	15450
7	600	18450

- 预测面积为1000平方英尺的房子价格。 要求:完成2遍,第1遍可以参考课堂笔记、查阅 网络资料等方式完成;第2遍不参考任何辅助方 式,限定15分钟内独立编写代码,完成此回归模型。
- (2) 建立多元回顾模型。至少增加2项房子价格的特征,例如:地段、新旧等因素。
- 3) 将(1)和(2)整理成实验报告。5月6日上课检

Do you finish your Homework by yourself?

[4]

B No

Review Model of Data Mining

- ① Data Cleaning 数据清理
- ② Data Integration数据集成
- ③ Data Selection 数据选择
- ④ Data Transformation数据变换~
- ⑤ Data Mining Method 挖掘方法 —— Data Model 数据模型
- ⑥ Pattern Assessment 模式评估
- ⑦ Knowledge Representation 知识表示

Data Preparation 数据预处理

Feature Selection 特征提取

Normalization 归一化

Data Exploration 数据探索

Data Mining

数据分析与挖掘架构系统 Data Analysis and Data Mining Structural System

- 1、需求调研 BUSINESS UNDERSTANDING
- 2、架构定义 ARCHITECTURE DEFINITION [©]
- 3、数据库准备 DATABASE PREPARATION
- 4、数据挖掘 MODEL BUILIDNG

Apriori Algorithm

Data Mining

数据分析与挖掘架构系统 Data Analysis and Data Mining Structural System

- 1、需求调研 BUSINESS UNDERSTANDING
- 2、架构定义 ARCHITECTURE DEFINITION
- 3、数据库准备 DATABASE PREPARATION
- 4、数据挖掘 MODEL BUILIDNG
- 5、测试评审 TESTING
- 6、上线部署 DEPLOYMENT
- 7、监控测评 MONITORING

- SUPERVISED LEARNING 4.3.3、无监督学习 UNSUPERVISED LEARNING
- 4.3.4、集成学习

ENSEMBLE LEARNING

- 4.4、模型评估 ASSESSMENT AND OPTIMIZATION
- 4.5、目标回归
- TARGET VALIDATION
- 4.6、封装固化 MODEL ENCAPSULATION

Data Mining

Beer←→Paper Diaper

wal*mart*

Beer→←Paper Diaper

Data Mining

可以通过对交易数据的分析可能得出"86%买'啤酒'的人同时也买

'尿布'"这样一条"啤酒"和"尿布"之间的关联规则。

Apriori Algorithm

信用卡公司可以将持卡人的信誉度分类为:良好、普通和较差三类。分类分析通

过对这些数据类的分析给出一个信誉等级的显式模型: "信誉良好的持卡人是年收入

在30000元到50000元之间,年龄在30至45岁之间,居住面积达90M2 左右的人"。

这样对于一个新的持卡人,就可以根据他的特征 预测 其信誉度。

Do you think we might build a data mining model?

DATA ANALYTICS:

DATA MINING AND BIG DATA

—— Machine Learning 1

ST Method = Model + Strategy + Algorithm

Supervised Learning

 $\sqrt{}$

Unsupervised learning

Annotation /Tagging?

半监督学习

 \sqrt{I}

强化学习

X

111 == RESTART: C:\Users\鲁/ Figure 1
周-5月6日\最小二乘法和梯 ×一分析 [0.65368836 0.70955523 70955 8.0 193454 1.84603897] [0.9 GradientDescent sklearn 7.5 Leastsquare True 7.0 6.5 6.0 5.5 5.0 4.5 5 10 15 20 25 30

```
from sklearn.datasets.samples_generator import make
import numpy as np
import matplotlib.pyplot as plt
centers=[[-2, 2], [2, 2], [0, 4]]
X, y=make S Figure 1
                                                       #为聚
orint(X.
plt. fig
c=np. arr
olt. scat
olt. scat
olt. show
from skl
x=5#这个
clf=KNei
clf. fit(
X sample
temp = n
v sample ♣ ←
```


Lab 4: Data Cleaning


```
import pandas
data = pandas.read_csv("test5-t.csv")
data = data.dropna()
print(data)
            mean 平均值
                              cs-training.csv
             median Prizza
               mode tita
```

Lab 4: Data Cleaning

	0 : 01	D 1: 1		N	D. L. D. C		N	N 1 01	N		1 O(D)
	SeriousDlq		_					NumberOf	Numberke	NumberOf N	umberOfDe
1	1	0.766127	45	2	0.802982	9120	13	0	6	0	2
2	0	0.957151	40	0	0.121876	2600	4	0	0	0	1
3	0	0.65818	38	1	0.085113	3042	2	1	0	0	0
4	0	0.23381	30	0	0.03605	3300	5	0	0	0	0
5	0	0.907239	49	1	0.024926	63588	7	0	1	0	0
6	0	0.213179	74	0	0.375607	3500	3	0	1	0	1
7	0	0.305682	57	0	5710	NA	8	0	3	0	0
8	0	0.754464	39	0	0.20994	3500	- 8	0	0	0	0
9	0	0.116951	27	0	46	NA	2	0	0	0 N	Α
10	0	0.189169	57	0	0.606291	23684	9	0	4	0	2
11	0	0.644226	30	0	0.309476	2500	5	0	0	0	0
12	0	0.018798	51	0	0.531529	6501	7	0	2	0	2
13	0	0.010352	46	0	0.298354	12454	13	0	2	0	2
14	1	0.964673	40	3	0.382965	13700	9	3	1	1	2
15	0	0.019657	76	0	477	0	6	0	1	0	0
16	0	0.548458	64	0	0.209892	11362	7	0	1	0	2
17	0	0.061086	78	0	2058	NA	10	0	2	0	0

贵在坚持!