RoBERTa

A Robustly Optimized BERT Pretraining Approch

ROBERTA

By Facebook AI (fairseq Team)

A Robustly Optimized BERT Pretraining Approach

View on Github

Open on Google Colab

```
import torch
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large')
roberta.eval() # disable dropout (or leave in train mode to finetune)
```

RoNLPa: my Rapid Optimized NLP approch

1 Attention is all you need

Figure 1: The Transformer - model architecture.

② BERT MNLI NER SQUAD Start/End Span BERT BERT Question Answer Pair Fine-Tuning Pre-training ③ RoBERTa under-fitting over-fitting under-parameterized over-parameterized Test risk Test risk Risk "classical" "modern" regime interpolating regime Training risk Training risk: sweet spot. interpolation threshold Complexity of H Complexity of \mathcal{H}

Reconciling modern machine learning and the bias-variance trade-off https://arxiv.org/pdf/1812.11118v1.pdf

(b) "double descent" risk curve

(a) U-shaped "bias-variance" risk curve

Knowledge Distillation: Model Compression

BERT was undertrainded

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE} with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7
XLNet _{LARGE}						
with BOOKS + WIKI	13GB	256	1M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

- 1) Training the model longer with bigger batches over more data(+CC-News)
- 2) Removing the next sentence prediction objective
- 3) Training on longer sequence
- 4) Dynamically changed mask positions

BERT_{base}

- [CLS] Task-specific한 정보를 줌
- [SEP] Token A, B를 구분하는 token
- [SEP] Token A, B의 끝을 알리는 token
- [MASK] 예측할 마스크 토른

is_next: True

Masked_P: 4, 10

Label: Single, double

- 1) 2개의 이상의 문장을 결합한 입력 데이터
- 2) 2개 이상의 문장이 1개의 문장처럼 Token과 함께 입력됨 [CLS], X1, ... ,Xn [SEP], Y1, ... ,Ym, [EOS]
- 3) M + N ⟨ T, 훈련하는 동안 문장 길이를 조절 (T = 512)
- 4) Word Piece embedding, Position embedding
- 5) 16GB data

BERT_{base}

BERT_{base}

- 1) Using only Transformer's encoder
- 2) BERT_large: L layer=24, Hidden deimension=1024,

self-attention head=16, Parameters = 340M

BERT_base: L=12, H=768, A=12, Parameters = 110M

Before		After	
80%	My dog is hairy	My dog is [MASK]	
10%	My dog is hairy	My dog is apple	
10%	My dog is hairy	My dog is hairy	

- 3) Training obectives
 - masked langauge model: Cross entropy loss (15% of Input Tokens, masking 80%, changing 10%)
 - next sentence prediction: Binary classification loss (from same or different documents)

Adam Optimizer

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

- 1) Adam Optimizer : $\beta_1 = 0.9$, $\beta_2 = 0.99 \rightarrow \beta_2 = 0.98$, $\epsilon = 1e^{-6}$
- 2) L2 weight decay of 0.01
- 3) Learning rate = 10,000 step 1e⁻⁴ than linealy decayed
- 4) dropout 0.1 on all layer, attention weight
- 5) GELU
- 6) 1,000,000 updates, 256 minibatches

More and More Data

- 1) Book Corpus + English wikipedia (16GB)
- 2) Common Crawl News(76GB): 영문 기사 (2016.09 ~2019.02)
- 3) Open Web Text (38GB): 적어도 3개 이상 upvote된 Redis의 web context를 추출함

Static vs Dynamic Masking

Masking	SQuAD 2.0	MNLI-m	SST-2
reference	76.3	84.3	92.8
Our reimp	lementation:		
static	78.3	84.3	92.5
dynamic	78.7	84.0	92.9

- 1) Base Bert는 전처리 단계에서 한번 Masking 처리를 함
 - 동일한 문장이 epoch를 반복할 때 같은 마스크를 갖는 것을 피하기 위해 10번 복재를 하고 다른 Masking을 적용한 뒤 40 epoch 를 동작하도록 함
- 2) RoBERTa는 매번 문장을 feeding 할 때 마스크 패턴을 바꿔서 적용함

Model Input Format & Next Sentence Prediction

SEGMENTS-PAIR(with NSP)

- original input format in BERT
- a pair of arbitrary spans of text

SENTENCE-PAIR(with NSP)

- a pair of natural sentences
- increase the batch size

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE
Our reimplementation	on (with NSP loss):			
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0
Our reimplementation	on (without NSP lo	ss):		111
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6
BERTBASE	88.5/76.3	84.3	92.8	64.3
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1
$XLNet_{BASE}$ (K = 6)	-/8 1.0	85.6	93.4	66.7

FULL-SENTENCES

- 512 token의 연속된 문장
- EOD token

DOC-SENTENCES

- 하나의 문서만 연속 추출
- 문서의 마지막 부분 잘릴 수 있음

- 문장의 길이를 채워서 input을 넣는 것만으로도 NSP를 넣은 것보다 좋아짐
- FULL-SENTENCE와 토탈 토큰 수를 맞추기 위해 배치사이즈를 크게 증가시킴
- DOC-SENTENCES 형식은 배치 크기가 다양하기 때문에 쉽게 비교하기 위해 Full sentences를 사용

Training with Large Batches

bsz	steps	lr	ppl	MNLI-m	SST-2
256	1 M	1e-4	3.99	84.7	92.7
2K	125K	7e-4	3.68	85.2	92.9
8K	31K	1e-3	3.77	84.6	92.8

Table 3: Perplexity on held-out training data (*ppl*) and development set accuracy for base models trained over BOOKCORPUS and WIKIPEDIA with varying batch sizes (*bsz*). We tune the learning rate (*lr*) for each setting. Models make the same number of passes over the data (epochs) and have the same computational cost.

- 1) BERTBASE for 1M steps with a batch size of 256 sequences. This is equivalent in computational cost, via gradient accumulation, to training for 125K steps with a batch size of 2K sequences, or for 31K steps with a batch size of 8K
- 2) 두 가지 간과한 것은 전 학습에 사용된 데이터와 훈련 횟수
 - XLNet은 10배 많은 데이터를 사용
 - 최적화 스탭은 반이었는데 배치 사이즈는 8배 였음

Byte-Pair Encoding

BERT: A character level BPE vocabulary size of 30K, learned after preprocessing the input with heuristic tokenization rules.

RoBERTa: BPE subword vocabulary size of 50K

This adds approximately 15M and 20M additional parameters for BERT BASE and BERT LARGE, respectively

Evaluation

GLUE 9 datasets

- MNLI: Multi-Genre Natural Langage Inference
 현재 문장 다음에 이어지는 문장이 문맥상 이어지는 문장인지, 반대인지, 상관 없는 문장인지 분류
- QQP: Quora Question Pairs두 질문이 의미상 같은지 다른 지 분류
- QNLI: Question Natural Language Inference 질의응답 데이터셋
- SST-2: The Stanford Sentiment Treebank 영화 리뷰 문장에 관한 감정 분석을 위한 데이터셋
- CoLA: The Corpus of Linguistic Acceptability
 문법적으로 맞는 문장인지 틀린 문장인지 분류
- STS-B: The Semantic Textual Similarity Benchmark
 뉴스 헤드라인과 사람이 만든 paraphrasing 문장이 의미상 같은 문장인지 비교
- MRPC: Microsoft Research Paraphrase Corpus
 뉴스의 내용과 사람이 만든 문장이 의미상 같은 문장인지 비교
- RTE: Recognizing Textual Entailment
 MNLI와 유사하나 상대적으로 훨씬 적은 학습 데이터셋
- WNLI: Winograd NLI 문장 분류

Result

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of	July 25,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

Table 5: Results on GLUE. All results are based on a 24-layer architecture. BERT_{LARGE} and XLNet_{LARGE} results are from Devlin et al. (2019) and Yang et al. (2019), respectively. RoBERTa results on the development set are a median over five runs. RoBERTa results on the test set are ensembles of *single-task* models. For RTE, STS and MRPC we finetune starting from the MNLI model instead of the baseline pretrained model. Averages are obtained from the GLUE leaderboard.

Result

Model	SQuA	D 1.1	SQuAD 2.0		
Model	EM	F1	EM	F1	
Single models	on dev	, w/o do	ıta augm	entation	
$BERT_{LARGE}$	84.1	90.9	79.0	81.8	
XLNet _{LARGE}	89.0	94.5	86.1	88.8	
RoBERTa	88.9	94.6	86.5	89.4	
Single models	on test	t (as of .	July 25, 1	2019)	
XLNet _{LARGE}			86.3 [†]	89.1	
RoBERTa			86.8	89.8	
XLNet + SG-	Net Ve	rifier	87.0 [†]	89.9 [†]	

Table 6: Results on SQuAD. † indicates results that depend on additional external training data. RoBERTa uses only the provided SQuAD data in both dev and test settings. BERT_{LARGE} and XLNet_{LARGE} results are from Devlin et al. (2019) and Yang et al. (2019), respectively.

Model	Accuracy	Middle	High
Single models	s on test (as o	of July 25,	2019)
BERTLARGE	72.0	76.6	70.1
XLNet _{LARGE}	81.7	85.4	80.2
RoBERTa	83.2	86.5	81.3

Table 7: Results on the RACE test set. BERT_{LARGE} and XLNet_{LARGE} results are from Yang et al. (2019).

Hyperparam	RACE	SQuAD	GLUE
Learning Rate	1e-5	1.5e-5	{1e-5, 2e-5, 3e-5}
Batch Size	16	48	{16, 32}
Weight Decay	0.1	0.01	0.1
Max Epochs	4	2	10
Learning Rate Decay	Linear	Linear	Linear
Warmup ratio	0.06	0.06	0.06

Table 10: Hyperparameters for finetuning RoBERTa_{LARGE} on RACE, SQuAD and GLUE.

감사합니다