# **Kernel Ridge Regression**

**Introduction**: Implementation of Kernel Ridge Expression for polynomial and radial kernels

### Results:

- 1. Without Normalization
  - a. Radial Kernels

| GAMMA   | MSE      |
|---------|----------|
| 0.00001 | 6.945512 |
| 0.00003 | 4.56309  |
| 0.00005 | 3.7847   |
| 0.00007 | 3.606197 |
| 0.00009 | 3.654706 |
| 0.0001  | 3.720106 |
| 0.0003  | 6.491944 |
| 0.0005  | 9.720727 |
| 0.0007  | 13.26568 |
| 0.0009  | 17.15971 |
| 0.001   | 19.22906 |

## RadialKernel MSE wrt gamma without normalizati



b. Polynomial Kernel without regularisation

Degree = 2 , MSE = 0.3526

### 2. With Normalization

| GAMMA   | MSE      |
|---------|----------|
| 0.00001 | 8.79725  |
| 0.00003 | 6.42651  |
| 0.00005 | 5.349803 |
| 0.00007 | 4.774777 |
| 0.00009 | 4.456962 |
| 0.0001  | 4.352904 |
| 0.0003  | 4.267085 |
| 0.0005  | 4.862891 |
| 0.0007  | 5.559816 |
| 0.0009  | 6.273054 |
| 0.001   | 6.624348 |

### RadialKernel MSE wrt gamma



### c. Polynomial Kernel MSE with different degrees

| Degrees | MSE      |
|---------|----------|
| 1       | 21.13168 |
| 2       | 19.2124  |
| 3       | 17.82129 |
| 4       | 16.96763 |
| 5       | 16.42973 |
| 6       | 16.06593 |
| 7       | 15.8037  |
| 8       | 15.60458 |
| 9       | 15.44779 |
| 10      | 15.32113 |
| 11      | 15.21659 |
| 12      | 15.12863 |
| 13      | 15.05344 |
| 14      | 14.98856 |
| 15      | 14.93243 |
| 16      | 14.88414 |
| 17      | 14.84314 |
| 18      | 14.80905 |
| 19      | 14.78157 |
| 20      | 14.7604  |
| 21      | 14.74524 |
| 22      | 14.73576 |
| 23      | 14.73161 |
| 24      | 14.73244 |
| 25      | 14.73788 |
| 26      | 14.74759 |
| 27      | 14.76122 |
| 28      | 14.77847 |
| 29      | 14.79902 |
| 30      | 14.82261 |

# PolynomialKernel MSE wrt degrees



## PolynomialKernel MSE wrt lamda



#### RadialKernel MSE wrt lambda with normalizatio



#### **Observations:**

- 1. Radial kernel gives MSE less than polynomial kernel
- 2. For more than degree 2 polynomial kernel does not gives value as it becomes non invertible. For that we have to use normalization to get values for polynomial kernel with more than degree 2.
- 3. After degree 20 polynomial kernel does not improve by much
- 4. Normalization is not always reducing MSE
- 5. For radial kernel, lambda = 0.0005 gives lowest MSE
- 6. For polynomial kernel, lambda = 0.0001 gives lowest MSE