S-5 SERVICE NOTES First Edition

SPECIFICATIONS

: 61 Key (C to C)

Memory Capacity : a. Patch x8

b. Tones x16

(Bank A - 8 Tones, Bank B - 8 Tones)

Memory System : 3.5 inch 2DD

(double sided, double density, double track)

Micro Floppy Disk

AUDIO IN : Level

-59dBm (MIC) to +4dBm (LINE)

Impedance

1.8K Ω (MIC) to 150K Ω (LINE)

OUTPUT : MIX OUT

 $H = +10dBm max/3.3K\Omega$ $M = -4dBm max/10K\Omega$ $L = -20 dBm max/4.6 K\Omega$

INDIVIDUAL OUT

 $A = +1.5dBm max/0.8K\Omega$

 $B = +2dBm max/1K\Omega$ $C = +3dBm max/1.6K\Omega$

D = $+6dBm max/3.3K\Omega$

PHONES

20mW/8 Ω

HOLD/REC START : OFF - 0V ; ON - 5V CONTROL DP-2 OFF - OV ; ON - 5V

PEDAL EV-5 0V - 5V

DISPLAY OUT RGB TTL level Horizontal Freq. 15.75KHz

MONOCHROME COMPOSITE 1Vp-p

EXT CONTROLLER : TTL level

OPTIONS

: 1,106 (W) x 328 (D) x 93 (H) mm **Dimensions**

43-7/16 x 12-15/16 x 3-11/16 in.

13 kg/28 lb, 11 oz. : 36W Power Consumption

Accessories Connection Cord x 1

3.5 inch Floppy Disk x 5

Floppy Disk Case Owner's manual

Instructions on CRT Guide Book "MIDI"

Pedal Switch: DP-2

Digitizer : DT-100

Expression Pedal EV-5

Carrying Case

RGB Connection Cable :

RGB 251 For 9 pin sub

RGB Connection Cable :

RGB 25N For 8 pin square

LETTER	KEYTOP ASSY	PART NO.	LETTER	KEYTOP ASSY	PART NO.
A	FUNCTION, MIDI	22493104	М	P7, P8	22493102
В	REC, AUX	22493103	N	SHIFT	22475661
С	4	22475664	0	EDIT, DISK	22493105
D	7	22475665	P	PLAY	22493108
E	8, 9	22473795	Q	1	22475663
F	5, 6	22473796	R	0	22475662
G	- PAGE, + PAGE	22473793	S	ENTER	22475666
Н	A	22493106	T	2, 3	22473797
I	PATCH	22475660	U	▼	22493107
J	P1, P2	22473798	v	∢ ,▶	22473794
K	P3, P4	22473799			
L	P5, P6	22493101			

NO.	PART NAME	DESCRIPTION	PART NO.
1	α-Dial Knob		22485102
	Rotary Encoder	EC 16B 40B	13279792
2	Slide Pot.	EWA NFEX10 B14	13339467
3	Slide Pot.	EWA NFEX10 B54	13339468
4	Knob		22485122
5	Bender Unit		23273800

TABLE OF CONTENTS

	Page		Page
CAUTIONS	2	ADJUSTMENT	9
PARTS LIST	2,3	KEYBOARD	9
DISASSEMBLY	3	CPU BOARD	10—13
KEYBOARD PARTS	3	JACK BOARD	14,15
BLOCK DIAGRAM	4	VOLUME BOARD	15
CIRCUIT DESCRIPTION	5-7	PANEL BOARD	16,17
CHANGE INFORMATION	8,9	POWER SUPPLY BOARD	18,19
SOFTWARE VERSION		RGB CABLES	20
IDENTIFICATION	9	RGB SIGNALS TIMING DIAGRAM	20
DISK LOAD		IC DATA:	21,22
ERRORMESSAGES	9	MIDI	23,24

CAUTION

Terminal lugs (battery terminal) on the bottom of CPU and Jack board serve as ground paths of magnetic shield circuit preventing EMI. Restore them in place if removed.

Please check for change information on page 8.

There are some important design changes.

注意事項

- CPUボード及びジャックボードの裏面に取り付けてある端子は、EMI 対策用です。(電磁シールドのアース) 取り外した場合は必ず元通りに取り付け直して下さい。
- ●重要な変更についての案内を8頁に掲載していますので、必ず参照して下さい。

PARTS LIST

RTS LIST		
PANEL, CASIN		
22213514	Top Panel	
22213778	Bender Panel	
22813554	Chassis	
21123244	Side Panel	(LEFT)
21123245	Side Panel	(RIGHT)
22215771	DD Panel	
KNOB, BUTTO	N	
22485122	Knob	(VOLUME, REC LEVEL, CONTROLLER/BEND RANGE)
22485102	Knob	(@dial)
22475660	Button 247-660	(PATCH)
22475661	Button 247-661	(SHIFT)
22475662	Button 247-662	(0)
22475663	Button 247-663	(1)
22475664	Button 247-664	(4)
22475665	Button 247-665	(7)
22475666	Button 247-666	(ENTER)
22473793	Button 247-793	(-PAGE +PAGE)
22473794	Button 247-794	(
22473795	Button 247-795	(8, 9)
22473796	Button 247-796	(5, 6)
22473797	Button 247-797	(2, 3)
22473798	Button 247-798	(P1, P2)
22473799	Button 247-799	(P3, P4)
22493101	Button 249-101	(P5, P6)
22493102	Button 249-102	(P7, P8)
22493103	Button 249-103	(REC, AUX)
22493104	Button 249-104	(FUNCTION, MIDI)
22493105	Button 249-105	(EDIT, DISK)
22493106	Button 249-106	(🛕)
22493107	Button 249-107	(▼)
22493108	Button 249-108	(PLAY)
SWITCH		
13149102	1801-0121	(Power)
13159335	SSP 12240A	(Slide)
13169633	SKH HAD 039A	(Tact)
13279792	EC 16B 40B	(Rotary Encoder, adia1)
JACK, SOCKET	<u>.</u>	
13429710	AC Inlet PA-126	(117/220V)
13429708	AC Inlet CM-3	(240V)
13449148	YKB21-5009	(Stereo) [Headphone]
13449149	YKB21-5011	(Mono) [Output, Pedal]
13449263	YKB21-5005	(Stereo with SW.) [Pedal Control (EV-5)]
13429168	MIDI3-NS	(5P DIN, Triplet) [MIDI IN, OUT, THRU]
13429167J0	DBLC-J25SAF-22L8	(25P, D-Sub)
13429648	YKF51-5001	(8P DIN for RGB OUT)
13449622	YKB11-0252	(Pin Jack for Monochrome OUT)
13429182	YKF42-5001	(9P D-Sub for AUX Input Connector)
POWER TRANS	SFORMER	
22453455U0	245-455U0	(100/220/240V)
22453465U0	245-465U0	(100/117/220/240V)

COIL			
12449251	244-251	(for FIP driver)	
12449244	SC-02-15E	(Line Filter)	
RESONATOR			
12389744	HC 49/U	8MHz	(Crystal)
12389758	HC 49/U	14.3496MHz	(Crystal)
	HC 49/U	24MHz	
12389759			(Crystal)
12389760	HC 49/U	26.880MHz	(Crystal)
12389748	CSB 600P	600KHz	(Ceralock)
PCB ASSY			
7617110000	CPU board		(pcb 22923344)
7617109000	Jack board		(pcb 22923343)
7617113000	Power Supply board		(pcb 22923340)
7617108000	Volume board		(pcb 22923341)
7617115000	Panel board		(pcb 22923342)
7617112200	Filter board	100/117V	(pcb 22923369)
7617112400	Filter board	220V	(pcb 22923369)
7617112500	Filter board	240V	(pcb 22923369)
POTENTIOMET	ER		
13339467	EWA-NFEX10 B14	(Slide)	
13339468	EWA-NFEX10 B54	(Slide)	
13279802	EVU-E20E25 CF5	(Rotary, Input Gain	1)
13299193	EVN-D4AA00 B54	(Trimmer, CPU board	
13299201	EVN-D4AA00 B53	(Trimmer, Power Sup	
	LVN-D4MOO DJJ	(IIImmer, rower but	opiy board)
IC		(
15179246	18095-90	(CPU)	
15219173	TMS 3556NL	(Video Display Proc	cessor)
15219171	EHK-MD6209	(D/A Converter)	
15179343	HM6116ASP-12	(C-MOS S-RAM)	
15179364	TMS4464-15NL	$(64 \times 4 D-RAM)$	
15179775	EP-ROM 27128		
15179374B0	M5M5256P-12	$(32 \times 8 \text{ S-RAM})$	
15179365	M5M4256L-12	(256k D-RAM)	
15229830	MB63H149PF-G-BND	(Gate Array)	
15229840	RF5C36	(Gate Array)	
15229846	μPD65006CW-071	(Gate Array)	
15219160	WD1770-00	(Floppy Disk Contro	oller)
	or 15219158 WD1772-		
15169514B0	M74HC04P	(C-MOS Hex Inverter	•)
15159113НО	HD14051BP	(8-Channel Analog M	Multiplexer)
15169544NO	μPD74HC573C	(Octal Noninverting	D-Type Latch)
15169515B0	M74HC00P	(2-Input NAND)	
15169548B0	M74HC14P	(Hex Schmitt Trigge	r Inverter)
15169549NO	µPD74HC32C	(2-Input OR)	•
15169550B0	M74HC138P	(1-of-8 Decoder)	
15169552B0	M74HC245P		nverting Bus Transceiver)
15169556NO	μ PD74HC574C		nverting D-Flip-Flop)
15169555B0	M74HC393P	(Dual 4-State Binar	
15169513B0	M74HC74P	(Dual D-Type Flip-F	
15169340B0	M74LS374		nverting D-Flip-Flop)
15179240	μPD7538 A-013	(CPU on Panel board	.)
15219159	μPD6300C	(FIP Latch Driver)	
15229836	NJU7302	(Sample & Hold)	
15189150	M5220L	(OP Amp)	
15189193	M5238P	(OP Amp)	
15199109N0	μPC78L05	(+5V Regulator)	
15189158	μ PC4082C	(OP Amp)	
15199118N0	µРС7815Н	(+15V Regulator)	
15199102N0	₽PC7915	(-15V Regulator)	
15199106NH	μ P C7805H	(+5V Regulator)	
15189186	μPC4570C	(OP Amp)	
15189111P0	IR-9311	(Comparator)	
15219174	NJU201AD	(Analog SW.)	
		5 °,	

JAN, 1987

PANEL DISASSEMBLY KEYBOARD DISASSEMBLY 1. Open the top panel and then remove the CPU board. 2. Remove screws D and E in Fig. 4. 鍵盤の取り外し方

2. ● Remove Screws B from the right side panel. (Fig. 2) Grasp the top of side panel. Screw C Note that the side panel has 3 4x8mm Truss BLK 2 each "snap locks" inside. Snap Lock Pull the side panel in a direction as shown by arrows 1 and 2 Screw B in Fig. 2. • Remove Screws C. 3x8mm Binding BLK 3 each Repeat for the left side panel. 2. (Fig.2参照) ●右側板をとめているビスBを取り外す。 ● 右側板を図中の矢印の番号と、向きに従って取り外す。 Side Panel (Right) (注:側板上部は本体シャーシにツメで固定されてあります) (Fig.2) ●ビスCを取り外す。 ●左側も同様に行なう。

S-50

	225/5216	NATURAL KEY C,F 257-216
•	22575214	NATURAL KEY D 257-214
①	22575217	NATURAL KEY E,B 257-217
1	22575215	NATURAL KEY G 257-215
	22575213	NATURAL KEY A 257-213
	22575218	NATURAL KEY C'F' 257-218
2	22575212	SHARP KEY 257-212
(2)	22175176	KEY SPRING 217-176 (NATURAL KEY)
3	22175177	KEY SPRING 217-177 (SHARP KEY)
(4)	22575212	CHASSIS
(5)	22265451	FELT 226-451
6	23165663	AFTER TOUCH ASSY
(7)	22265403	FELT 226-403
8	22155716	GUIDE BUSHING
9	22185218	KEY SWITCH 12P 218-218
9	22185219	KEY SWITCH 13P 218-219
10	22245144	SWITCH COVER 29P 224-144
(U)	22245145	SWITCH COVER 32P 224-145
(1)	7616122000	KEY SWITCH ASSY 32P LOWER (pcb 22925249)
<u> </u>	7616123000	KEY SWITCH ASSY 29P UPPER (pcb 22925248)
	22135415	KEY STOPPER A 213-415
(12)	22135416	KEY STOPPER B 213-416
	22135417	KEY STOPPER C 213-417
(13)	22035128	STAND A 203-128
(14)	22035129	STAND B 203-129
(15)	22035132	STAND C 203-132

SK-361-OW

TRANSISTOR 15119108 15129602 2SD667C 15119602 2SB647C 15119601 2SB605L 15129606 2SD844Y 15129615 2SD1293M 15119106 2SA733Q 15129150 DTC114EF (Digital Transistor) 15129107 2SC945Q 15129136 2SC2878 DIODE, LED, PHOTO COUPLER 15019125 1SS-133 15019208 1SR35-200A 15229706S0 (Photo Coupler) PC-910 15029222 SLR 55VC 3F 15019243 (Rectifier) 1B4B1 15019274 D5FB-20 (Rectifier) 15019603 05Z 9.1Z (Zener) 15019143 1S-116 (Fluorescent Indicator Panel) 15029718 FIP32B6R RESISTOR 13919147 RMLS 4-103J (10k x 4) 13919310 RMLS 8-103J $(10k \times 8)$ 13919312 RMLS 8-153J $(15k \times 8)$ 13919313 RMLS 8-104J $(100k \times 8)$ 13919118R0 RKM 10L 104F (Ladder Network) 13919336 RMLS 8-224J $(220k \times 8)$ 13919168 RMLS 4-224J $(220k \times 4)$ 13919322 $(1k \times 4)$ RMLS 4-102J CAPACITOR 13529104 DE7150F472MVA1 (Line Capacitor) RPE132F104Z50V 13529108 (Ceramic 0.1μ) 13529115 EXFP8101MW $(100P \times 8)$ 13529113 B7ZC0724-32N $(22P \times 6)$ 13529118 B5RC0139 $(22P \times 4)$ **FUSE, FUSEHOLDER** (100/117V) (220/240V) 12559409 SD6 630mA CEE-400mAT 12559510 12199552 UF0005-02 (Fuse Holder) HOLDER Jack MIDI Socket 22193886 22195889 22193875 FCD Cover (FIP Cover) 22193874 α dial AC CORD, CORD SET 13439801 P-VFF 2.5m 12369504 Cord Bush SR-4N-4 (100V) 22193885 Cord Holder (100V) 13439812F0 UC704-J01 (117V) 13439813F0 EC210-J06 (220V) 13439814F0 SC415-J06 (240V 3P, Australian) 13439846 BH-301-J01 (240V 3P, England) COVER 22023748 (FIP Cover) FCD Cover 22023315 (25pin D-sub Connector) Connector Cover 22253126 Bender Shield Cover 22243150 Slide Cover 22245142 Mask (for α dial) 22023318 Jack Shield Cover

IC3 BUFFER

LPF1

IC7 BUFFER

+5.2V +5.2V

VR1 VOLUME

VR3

CONTROLLER BEND RANGE

VOLUME BOARD

±15V +5.2V

Q4,Q5 ±7.5V

+5.2V ↑ ↑+6.2V

CN2 ----

POWER SUPPLY

TRANS-FORMER POWER SUPPLY BOARD

(FILTER)

FILTER BOARD

MATRIX

8 x 5

IC3 BUFFER

Q9 BUFFER

Q8 BUFFER

REC TP IC7
HAED AMP

JACK BOARD

IC47 DRAM

CV BUS

LED ×8

X1 600kHz CPU

PANEL BOARD

IC50 DIVIDER

X2 14.3496MHz

Q6

RGB MONOCHROME

- DISPLAY OUT -

IC41 BUFFER

IC71,72,73 BUFFER

DISK

DISK UNIT

AFT1, AFT2

IC42 RAM
HM6116
ASP-12
IC49
KEY
ASSIGNER

CN6 CN7 CN8 34P FLAT CABLE

¥ ¥

KEYBOARD

IC59 I/O DECODER

DIVIDER

X4 24MHz

Q3 MIDI RESET

MIDI

CPU BOARD

IC1

IC52

I/O GATE

ARRAY

IC11 INVERTER

BENDER

BENDER UNIT

 $lpha_{ ext{-}}$

EXT CONTROLLER BOTH STORY

CIRCUIT DESCRIPTIONS

General

The S-50 is a 16-voice sampling keyboard consisting of the following major sections.

■Control Section

CPU 8095 (IC68) having a 16 bit data bus. Controls the following function and the chips.

- Transfer of MIDI messages
- Wave Gate Array RF5C36
- Keyboard Gate Array MB63H149
- Keyboard Assigner Gate Array MB63H149
- Floppy Disk Controller (FDC) WD1770
- Video Display Processor (VDP) TMS3556
- FIP CPU μPD7538A

Waveform Storage Section

Manages storage of the sound in the 24 256k-bit DRAMs through wave gate array RF5C36.

System Operations

Software

The internal ROM program contains the initial setup and the basic subroutines. Figure 1 shows the program flow diagram. The system program is to be loaded from the disk.

回路解説

概要

S-50は、16ボイスのディジタル・サンプリング・キーボードで主な構成は次の通りです。

■制御部

メイン CPUには8095 が使用されており、下記のものを制御しています。

- MIDIメッセージの送受信
- ●ウェーブ・ゲートアレイRF5C36
- キーボード・アサイナ・ゲートアレイ MB6 3H149
- ◆FDC [フロッピー・ディスク・コントローラ]WD1770
- ◆VDP [ビデオ・ディスプレイ・プロセッサ]TMS3556
- F I P用CPU #PD7538A

■波形記憶部

ウェーブ・ゲートアレイRF5C36により、入力音の 波形データを256KビットのDRAM24個に記憶さ せています。

詳細

(Fig. 1)

■システム動作

●ソフトウェアについて

システムソフトウェアはディスクにより本体に供給されます。本体ROM内には、システムの初期設定プログラム及び基本サブルーチン等が格納されています。 ROMのシステム初期設定プログラムの流れをFig. 1に示します。

• Data From the Floppy Disk ●フロッピーディスクからのデータ読み込み WAVE GATE ARRAY CPU FDC 0 IC74 8 bit IC68 8 bit IC15 i8095 WD1770 FD RF5C36 IC62.63 IC16-39 SRAM DRAM CPU BOARD (Fig.2)

The waveform data are writen into DRAMs (ICs 16-39) while the system program and parameters are into SRAMs (ICs 62 and 63).

波形データは、DRAM(IC16~39)へ、システム プログラム及びその他のパラメータはSRAM(IC 62, 63)へ格納されます。

The A/D converter consisting of gate array (IC15), D/A converter (IC14) and comparator (IC4) converts the input signal into a digital data using the successive approximation method and stores the data into DRAMs (ICs 16-39).

The CPU monitors the input level in the IC15 and sends it to VRAMs (ICs 45 and 47) and FIP CPU (IC1) for use as level meter data.

ウェーブゲートアレイ(IC15)、D/Aコンバータ(IC14)、コンパレータ(IC4)で逐次比較型のA/Dコンバータを構成しています。入力信号はこのA/Dコンバータによりディジタルデータに変換され、DRAM(IC16~39)へ格納されます。
CPU(IC68)はINPUTレベルを監視し、VRAM(IC45, 47)及びFIP用CPU(IC1)にレベルメータのデータを転送します。

The CPU (IC63) sends the gate array (IC15) the information containing Note, Envelope, Loop concerning a sound to be played.

The gate array (IC15), upon receiving the data, reads the corresponding 12-bit wave data from DRAMs, processes the data with the envelope data to generate a 16-bit data and passes it onto the next stage, DAC (IC14).

CPU(IC68)はウェーブゲートアレイ(IC15) にNOTE情報、ENVELOPE, LOOPの各情報を送 ります。

ウェーブゲートアレイ(IC15)は前記のデータを受け とると、DRAMからの12 bit データを ENVELOPE 値 との演算により16 bit データに変換し、DAC(IC 14)へ送ります。

The DAC (IC14) splits 16 voices into 8 groups and outputs a set of 2 voices one by one in a timesharing fashion. Being a current producing type, its outputs are converted to voltage through I/V converter (IC13). The NUX (IC3) routes each 2-voice to the correct channel's S/H circuit. Shown below is the timing diagram of the MUX.

DAC(IC14)は、16ボイスを8組に分け、2ボイスづつをミックスして時分割で出力します。この出力は電流型であるため、I/Vコンバータ(IC13)で電圧型に変換されます。

(Fig.5)

●マルチプレクサ、S/H回路

MUX(IC8)は、この時分割信号を8組に再分離し、 S/H回路へ送ります。

MUXのタイミングチャートをFig. 6に示します。

■ Disk Read/Write

■ディスクの読み書き

On a read or write command from the CPU, the FDC pulls MOTOR ON low to let the FDD (Floppy Disk Drive) starts the motor. When the motor running has reached stable condition, the FDD signals the CPU through I/O gate with a low READY. The low READY allows the CPU to issue a command which enables reading or writing to/from the disk.

In the read mode the FDC reads data from FDD in serial format and sends it to the CPU in parallel 8 bits.

In the write mode the FDC first pulls and keeps WG high and then places a data on WD line.

FDCはCPUからリード又はライトコマンドを受けると、FDD(フロッピーディスクドライブ)に対してMOTOR ON信号を送りFDDのモーターを回転させます。

FDDはモーターの回転が安定すると、CPUに READY 信号を I/Oゲートアレイを介して送ります。

CPUはREADY信号を受けとると読み込み又は書き込み動作を開始させます。

リード時、FDCはRD端子よりFDDからのシリアル データを受けとりCPUに転送します。

また、ライト時FDCはWG信号をHighレベルにし、WD端子を通じてデータをFDDに書き込みます。

JAN. 1987

FDC Pin Description

S-50

(Table 1)

PIN NUMBER	MNEMONIC	SIGNAL NAME	I/O	DESCRIPTION
1	CS	CHIP SELECT	ı	A logic low on this input selects the chip and enables Host communication with the device. Low LevelでCPUとのコミュニケーションが可能になります。
2	R/W	READ/WRITE	ı	A logic high on this input controls the placement of data on the D0-D7 lines from a selected register. While a logic low causes a write operation to a selected register. リード・サイクルのときは High Level ライト・サイクルのときは Low Level にします。
3, 4	A0, A1	ADDRESS 0, 1		These two inputs select a register to Read/Write data: 次に示すように、この2つの入力によってリード、またはライト・サイクルにおけるFDC内部のレジスタを選択します。
				CS A1 A0 R/W=1 R/W=0 0 0 0 Status Reg Command Reg 0 0 1 Track Reg Track Reg 0 1 0 Sector Reg Sector Reg 0 1 1 Data Reg Data Reg
5—12	DALO-DAL7	DATA ACCESS LINES 0 THROUGH 7	1/0	Eight-bit bi-directional bus used for transfer of data, control, or status. This bus is enabled by CS and R/W. Each line will drive one TTL load. 8 bitのデータ・バスで、データのやりとりに使用されます。
13	MR	MASTER RESET		A logic low pulse on this line resets the device and initializes the Status Register (internal pull-up). Low Levelで、FDCをリセットします。
14	GND	GROUND		Ground. 電源グランドに接続します。
15	Vcc	POWER SUPPLY	1	+5V ±5% power supply input. +5V電源に接続します。
16	STEPP	STEP	0	The Step output contains a pulse for each step of the drive's R/W head. ディスク・ドライブにヘッドを動かすためのパルスを送ります。
17	DIRC	DIRECTION	0	The Direction output is high when stepping in towards the center of the diskette, and low when stepping out. ディスク・ドライブのヘッドをHigh Levelでディスクの内側へ、Low Levelでディスクの外側へステップさせるための方向を設定します。
18	CLK	CLOCK	1	This input requires a free-running 50% duty cycle clock (for internal timing) at 8MHz ±0.1%. 8 MHz ±0.1% 50%デューティサイクルのクロックを入力します。
19	RD	READ DATA	I	This active low input is the raw data line containing both clock and data pulses from the drive. ディスク・ドライブからデータを受けます。
20	МО	MOTOR ON	0	This active high output turns on the motor. ディスク・ドライブのモータを制御します。
21	WG	WRITE GATE	0	This output is made valid prior to writing on the disk. ディスク・データを書き込むときに High Level になります。
22	WD	WRITE DATA		FM or MFM clock and data pulses are placed on this line to be written on the diskette. データをディスク・ドライブへ送ります。
23	TROO	TRACK 00	•	This active low input informs the WD1770-00 that the drive's R/W heads are positioned over Track zero (internal pull-up). トラック∮∮信号を受けます。Low Level のときディスク・ドライブのヘッドがディスクの最も外側に位置します。
24	ĪΡ	INDEX PULSE		This active low input informs the WD1770-00 when the physical index hole has been encountered on the diskette (internal pull-up). インデックス信号を受けます。この信号はディスクが1回転するごとにディスク・ドライブから送られてきます。
25	WPRT	WRITE PROTECT	. 1	This input is sampled whenever a Write Command is received. A logic low on this line will prevent any Write Command from executing (internal pull-up) ライト・プロテクト信号を受けます。この信号は、ディスクにライト・プロテクトがかかっているときにディスク・ドライブから送られてきます。
26	DDEN	DOUBLE DENSITY ENABLE	I	This input pin selects either single (FM) or double (MFM) density. When DDEN=0, double density is selected (internal pull-up). High Level で単密度(FM)に、Low Level で倍密度(MFM)に設定されます。
27	DRQ	DATA REQUEST	0	This active high output indicates that the Data Register is full (on a Read) or empty (on a Write) operation. この出力の立ち上がリでデータ・レジスタがリードのときはフル、ライトのときはエンフティであることをCPUに知らせます。
28	INTRO	INTERRUPT REQUEST	0	This active high output is set at the completion of any command or reset at a read of the Status Register. この出力の立ち上がりで、コマンドの実行終了をCPUに知らせます。

■ Video Display Processor (VDP) TMS-3556

CHARAC-TER CPU BOARD DATA VRAM BIT MAP VDP 320x210 dot IC74 DATA IC45 IC47 IC64 IC65 IC68 1 bit (Fig.9) CŘT

The figure 9 below shows the block diagram of the VDP, IC74 and associated circuits. The VDP operates either of TEXT and BIT MAP modes.

Text Mode

In the text mode the CPU sends the VDP a character code and the coordinates of the character on the screen. The VDP fetches the character pattern data from the VRAM character area and displays the character in a 10 by 8 dot matrix on the 21 row by 40 character screen.

Bit Map Mode

The VRAM bit map area is divided into three portions, each corresponds to color R, G, or B of 320 by 210 dot matrix on the screen. When in this mode, the CPU writes image data into the bit map area. The VDP displays pixel by pixel with specified color.

VDP Pin Description (Table 2)

SIGNAL NAME	PIN NO.	1/0	DESCRIPTION	SIGNAL NAME	PIN NO.	1/0	DESCRIPTION
VGG	1	I	Power Supply: +5.2V +5.2V電源	MP3	40	1/0	CPU-VDP Data Bus CPU-VDPデータ・バス
MP4	2	1/0	CPU-VDP Data Bus CPU-VDPデータ・バス	MP2	39	1/0	CPU-VDP Data Bus CPU-VDPデータ・バス
MP5	3	1/0	CPU-VDP Data Bus CPU-VDPデータ・バス	MP1	38	1/0	CPU-VDP Data Bus CPU-VDPデータ・バス
MP6	4	1/0	CPU-VDP Data Bus CPU-VDPデータ・バス	MP0	37	1/0	CPU-VDP Data Bus (MSB) CPU-VDPデータ・バス(MSB)
MP7	5	1/0	CPU-VDP Data Bus (LSB) CPU-VDPデータ・バス(LSB)	SCM	36	0	Composite Sync コンポジット同期信号出力
CAS	6	0	Column Address Strobe コラム・アドレス・ストローブ信号	В	35	0	B B信号出力
RAS	7	0	Row Address Strobe ロウ・アドレス・ストローブ信号	G	34	0	G G信号出力
WR	8	0	Memory Write メモリ・ライト信号	R	33	0	R R信号出力
OE	9	0	Memory Output Enable メモリ・アウトプット・イネーブル/言号	I	32	0	Display Mode Select 表示モード切り替え信号
HIZ	10	0	Not used 使用しない	SLL	31	1/0	Horizontal Sync 水平周期信号入出力
RWM	11	I	CPU-VDP Write CPU-VDPライト信号	SCT	30	1/0	Vertical Sync 垂直同期信号入出力
HMP	12	I	Not used, pulled up to +5.2V 使用しない。+5Vにプルアップする。	OBS	29	0	Time Base Clock Xtal タイム・ベース・タイミング用振動子
ODS	13	0	DMA clock Xtal (Memory Access Timing)	OBE	28	I	接続端子(タイム・ベース・クロック)
ODE	14	I	メモリ・アクセス・タイミング用振動子 接続端子(DMAクロック)	E2	27	I	VDP Access Control VDP-アクセス・コントロール信号
READY	15	0	VDP Ready VDPレディ信号	E1	26	I	VDP Access Control VDP-アクセス・コントロール信号
D7	16	1/0	VDP-Memory Address/Data Bus (LSB) VDP-メモリ・アドレス/データ・バス(LSB)	DO	25	1/0	VDP-Memory Address/Data Bus (MSB) VDP-メモリ・アドレス/データ・バス(MSB)
D6	17	1/0	VDP-Memory Address/Data Bus VDP-メモリ・アドレス/データ・バス	D1	24	1/0	VDP-Memory Address/Data Bus VDP-メモリ・アドレス/データ・バス
D5	18	1/0	VDP-Memory Address/Data Bus VDP-メモリ・アドレス/データ・バス	D2	.23	1/0	VDP-Memory Address/Data Bus VDP-メモリ・アドレス/データ・バス
D4	19	1/0	VDP-Memory Address/Data Bus VDP-メモリ・アドレス/データ・バス	VDD	22	I	Power Supply: +3V +3V電源
D3	20	1/0	VDP-Memory Address/Data Bus VDP-メモリ・アドレス/テータ・バス	VSS	21	I	GND GND

■VDPビデオ・ディスプレイ・プロセッサ TMS3556

VDPの周辺ブロック図をFig. 9 に示します。 VDPは次の2種類のモードで動作しています。

●テキストモード

CPUから表示する座標点データと文字コードを受け取ると、VRAM内部のキャラクタ領域から、 キャラクタパターンを、読み込み41桁×21行で表示します。

●ビットマップモード

画面を、R,G,B3枚のシートに分解し、1シート $(320\times210$ ドット)の1ドットをVRAM内ビットマップ領域の1ビットに対応させて表示します。したがってCPUがVRAMのビットマップ領域へ画面データを書き込む事により、ドット毎に色を指定した各種グラフィック等を、描くことができます。

VDP TMS3556 BLOCK DIAGRAM (Fig.10) ODE O ODS DO-D7 RAS CAS RW RDY HIZ TIME BASE DECODER R G B B I

■ I/O Gate Array μPD65006-017 (IC52)

Figure 11 shows an internal block diagram of the Gate Array. The controller generates various control signals which determine the operational timings of most of the system stages.

The $\mu PD65006\text{-}017$, in addition to many I/O parts, has the ports for interfacing with $\alpha\text{-}dial$ and EXT controller.

• EXT CONTROLLER Socket

This socket enables communications with a digitizer (e.g. DT-100) in synchronous serial format. The pin assignment is as shown below.

■I/O ゲートアレイµPD65006-017(IC52)

内部ブロック図を Fig. 11 に示 します。

ポート及び コントローラ等を内蔵しており各種コントロール信号の発生、 α ダイヤル及びディジタイザのインターフェイスの役割をします。

● ディジタイザ [EXT CONTROLLER] 用端子

ディジタイザ (DT-100) と同期式のシリアル伝送を行なうための端子です。

各ピン端子機能についてTable 3に示します。

EXT CONTROLLER Pin Description

(Table 3)	١
-----------	---

_, •	• • • • • •	. • = =		Dogon ption (Tubic o						
PIN NUMBER 端子番号	SYMBOL 記号	SIGNAL NAME 信号名	1/0	FUNCTION 機 能						
1	M×0	SENSE	ı	Senses input on the digitizer pad. パネル入力検出信号						
2	M×1	EOC (End of Conversion)	ı	Indicates the end of an A/D conversion cycle. A/D変換の終了信号						
3	M×2	SI	ı	Serial data. シリアルデータ						
4	M×3	SW	1	A low on this input is signaling that the stylus(switch) is on. スタイラスのSW入力信号をONにするとLowレベルになる。						
5	+5.2V	+5.2V		+5.2V power supply. 電源+5.2V						
6	M×4	SCK	0	Clock input. クロック入力						
7	M×5	SO	0	Serial data. シリアルデータ						
8	M×6	CS	0	A low CS ebables communication with the digitizer. Lowレベル時にコミュニケーションが行なえます						
9	GND	GND		GND グランド						

CHANGE INFORMATION

IMPORTANT

The following modifications are mandatory. If any change has not been on a given unit, it must be implemented.

FUSE

•100V VERSION ONLY

EFF. SN 700750-UP

F1: SD-6 630mA (12559409)

■CPU BOARD

ullet Add resistor 100 Ω to RGB terminals (Fig. A)

EFF. SN 711650 - UP

To avoid accidental shorts of power supply if connected to an unspecified cable.

●Add diode, R and C to VSYNC circuit. (Fig. B)

EFF. SN 768700 - UP

For positive sync between S-50 and CRT shorten VSYNC pulse width from 1.3ms to 0.3ms.

CAUTION:

The following S.Numbered products have been retrofitted insufficiently with a 68k resistor, getting 0.5ms pulse. Change the resistor to 47k as required.

SN 711950-712199

SN 712250-712799

SN 712900-768699

• Changing the values of CPU A/D input resistors (Fig. C)

R21 – 24 : 10 K Ω to 1 K Ω

Improve S/N ratio at A/D converter input.

(Aftertouch CV occasionally does not fall down to

OV against 0 setting.)

CPU BOARD

● Add a capacitor to WAVE GATE ARRAY CLOCK

GENERATOR (Fig. D)

EFF. SN 711650 — UP

For more stable oscillation.

• Change S/H capacitor C12 0.01μF to 0.01μF

EFF. SN 711650 — UP To improve S/N ratio.

JACK BOARD

● Change

C55 - C58 : Mylar 0.001 μ F to Ceramic 470pF C54 : Mylar 0.0022 μ F to Ceramic 470pF

C53: Ceramic 100pF to Ceramic 22pF

EFF. SN 700655 - UP (100V version)

700750 - UP (117V version)

701605 - UP (220V version)

701625 - UP (240VE version)

701635 - UP (240VA version)

To improve S/N ratio.

変更案内

重要

修理等の場合は製造番号を確認し、下記の変更が実施されているかを調べて下さい。

未実施の場合は、本枠内の変更を必ず行って下さい。

■ヒューズ

●100V仕様のみ値変更

実施 製番700750以降

F1:SD-6 630 mA (12559409)

■CPUボード

●RGB端子抵抗100Ω追加 Fig.A

実施 製番711650以降

理由:指定外ケーブル接続時における電源短絡防止

● VSYNCのパルス幅改善(抵抗、コンデンサ、ダイオー ド追加) Fig.B

1.3 ms → 0.3 ms 実施 製番 768700 以降

注意: 製番711950-712199 712250-712799

712900-768699

の製品には、すでに抵抗、コンデンサ、ダイオードが追加実装済です。しかし、抵抗値が $6.8\,\mathrm{K}\Omega$ (VSYNC パルス幅 $0.5\,\mathrm{ms}$ に設定) のため、これを $4.7\,\mathrm{K}\Omega$ に変更して下さい。

理由: 一部 CRT との同期ズレ防止

● CPU A/D 入力部の抵抗値変更 Fig.C

R2 1-24: $10 \text{K}\Omega \rightarrow 1 \text{K}\Omega$

実施 製番725750以降

理由: A/D変換部のS/N改善

[アフタータッチのCVが0Vまで下がりき らない場合があり、これが発音及びMIDI

送信データに影響を与える。〕

■CPUボード

● WAVE GATE ARRAY クロック部コンデンサ追加 Fig.D

実施 製番711650以降 理由:発振の安定化

●S/H 回路部コンデンサ(C12)定数変更

実施 製番711650以降

マイラ 0.001μ F→マイラ 0.01μ F

理由: S/Hの向上

■ジャックボード

●コンデンサ定数変更

実施 製番100V 700655以降

117V 700750以降

220V 701605以降

240VE 701625以降

240VA 701635以降

C55-C58:マイラ 0.0 01 μF →セラミック 470 pF

C54:マイラ 0.0 022 μF→セラミック470 pF

C53:セラミック 100pF →セラミック 22pF

理由:S/Hの向上

• Add resistors to headphone jack (Fig. E)

EFF. SN 723750 — UP To minimize distortion.

Change

EFF. SN 723750 — UP C1, C2, C13, C14, C25 C26, C33, C34, C63, C69 → Change to jumper wire

R80, R81 / C35, C36, C82, C83 : Ceramic 330pF to 470pF

R57, R58, R67, R68 : 33 K Ω to 15 K Ω

C27, C28, C37, C38 : Ceramic 100pF to 47pF R84 : 4.7 K Ω to 22 K Ω

To improve S/N ratio.

●ヘッドホンジャック抵抗 R119:220Ω追加 Fig. E

実施 製番723750以降

理由:ヘッドホン出力の歪防止

●抵抗及びコンデンサ定数変更

実施 製番723750以降

C1,C2,C13,C14,C25 C26,C33,C34,C63,C69 R80,R81

C35 , C36 , C82 , C83 : セラミック330 pF→セラミック 470 pF

R57, R58, R67, R68:

 $33K\Omega \rightarrow 15K\Omega$

C27, C28, C37, C38. セラミック 10pF→セラミック 47pF

R84:

 $4.7 \text{ K}\Omega \rightarrow 2.2 \text{ K}\Omega$

理由: S/Hの向上

ROM AND SYSTEM DISC **VERSION DISPLAY**

This procedure is applicable only to Disk Version 1.0.

Label Ver. 1.0 on a system disk represents software versions 1.00 to 1.09. Of these versions, Ver. 1.00 does not contain program for this mode.

System disk labelled Ver. 2.0 does not run Version Display routine in the way described here. Contact local Roland service facilities for the procedure.

1. Connect the CRT to the unit. 2. Turn the CRT and the unit on.

3. Load a system disk labelled Ver. 1.0.

4. Press FUNC, P1 and SHIFT in that order. (Menu 11 "MASTER" selected.)

5. Press 1 and then ENTER. The CRT will show the version number of currently installed software in the disk and ROM, respectively

バージョン確認モードについて

システムディスク上のラベルに Ver. 1.00 と印刷され てある場合、このディスクに格納されているシステム プログラムバージョンは、Ver. 1.00からVer. 1.06 までのいずれかです。(昭和62年1月現在)この内 Ver. 1.00 は本モードをサポートしておりません。ま た、 Ver. 2.00以上のシステムディスクの場合は、操 作方法が一部異なるため以下の方法では行なう事がで

きません。 Ver. 2.00以上についてはサービスインフォメーショ ンを、参照して下さい。

本モードを用いる事によりシステムディスクのシステムプ ログラムバージョン (小数点以下2桁まで表示)及び本体 内のROMのバージョンをCRTで確認する事ができます。

2. CRT及び本体の電源を入れシステム・ディスク(Ver. 1.01以上)をロードする。

3. システムプログラム起動後 **FUNC** , **P1** , SHIFT の順にボタンを押す。

1. 本体にCRTを接続する。

4. IIボタンを押し、次に ENTER ボタンを押すと、 本体内のROM及びシステム・プログラムのバージョ ンが画面に表示されます。(Fig. 1)

DISK LOAD ERROR MESSAGE NUMBER

Fig. 2 shows the bit definition of FDC internal status register. The bits 2-4 are error flags. If an error shown in Table 1 occurs, corresponding flag will be set to "1" level. Error message is represented in hexadecimal number which is converted from the value of status registers (8

ADJUSTMENT DC VOLTAGE

• Connect proves of a voltmeter to TP+5 (+5.2V) on the JACK board and TP1 (GND) on the CPU board. Adjust VR1 on the power board for +5.2V.

DC OFFSET

Softwares inplemented in the system disks labelled Ver. 2.0 and above require another procedure to work.

 Turn the unit off. • Connect an RGB type CRT to RGB socket on the

socket. • Make sure that no plug is connected to INPUT jack. Turn the CRT and unit on.

rear panel or a composite type CRT to Composite

 Load a sytem disk. After bootstrapping system program, press REC

to enter the sampling mode. Press P3 and then SHIFT.

(Section of menu 13 "WAVE SCOPE".) • Adjust TRIM1 on the CPU board so that two horizontal lines (signal and reference) overlap.

ディスク・ロード・エラー・メッセージ

Fig. 2 はFDC内部のステータスレジスタを示したもの

bit. 2,3,4 はそれぞれエラーフラグであり、Table 1 に該当するエラーが発生すると"1"にセットされます。 エラーメッセージのナンバーは、ステータスレジスタ(8 ビット)の値を、16進数に変換したものです。

調整仕様 ■電源電圧

●ディジタルボルトメータ (又はテスタ) をジャックボ ードのTP+5(+ 5.2 V)とCPUボードのTP1 (GND)に接続する。

●メータの指示が+ 5.2 Vになるようにパワーボードの VR1を調整する。

■D/Aオフセット

システムプログラム Ver. 2.00 以上のものについては 操作方法が一部異なるため、以下の操作手順では行な うことができません。詳しくはサービス インフォメー ションをご覧下さい。

●一旦すべての電源を切る。

●CRTを入力の形式に応じて、本体のRGBまたはコ ンポジット端子へ接続する。

● INPUT ジャックに何も接続されていない事を確認する。 ●CRT及び本体の電源を入れ、システムディスクを挿

●システムプログラム起動後、【REC】 ボタンを押す。

〔メニュー 13の"WAVE SCOPE"を選択〕 ● C P U 基板のTR I M 1 を調整し、Fig. 3 の様に波形 線と中央水平線を合致させる。

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

JAN. 1987

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

CPU BOARD76171100 00
(pcb 22923344 04)

View from component side

JAN. 1987

CPU BOARD 76171100 00 (pcb 22923344 04)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

View from component side

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

CIRCUIT DIAGRAM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4.

CIRCUIT DIAGRAM

CROSS REFERENCE - CIRCUIT NUMBER TO MODULE NUMBER

					(No v	value	9 011	tere	nce a	amo	ng n	nodules)		1		_
Α	СЗ	R12	Q1	R17	R11	R14	C5	R13	R15	R18			IC1a 3	R9	С9	C1 SHORT	R3
В	C4	R24	Ω2	R19	R22	R27	C8	R23	R21	R25	C7	R20	IC1b 5	R10	C10	C2 short	R2
С	C76	R33	Ω3	R39	R36	R34	C15	R35	R37	R40	C16	R38	IC2a 3	R31	C21	C13 SHORT	R4
D	C75	R46	Q4	R41	R44	R48	C18	R45	R43	R47	C17	R42	IC2b _5	R32	C22	C14 SHORT	RE

А	LPF5	C32	R64	C34 SHORT	R66	C36	R68	IC5b	5 7	R70	C38	160 O ₈	C59	R95	C55	R91
В	LPF4	C31	R63	C33 SHORT	R65	C35	R67	IC5a	2 3	R69	C37	370 O3	C60	R96	C56	R94
С	LPF3	C24	R54	C20 SHORT	R56	C82	R58	ІС4ь	5 5	R60	C28	180 O2	C61	R97	C57	R93
D	LPF2	C23	R53	C25 SHORT	R55	C83	R57	IC4a	3	R59	C27	2100	C62	R98	C58	R92

2 3

View from component side

View from foil side

JACK BOARD

76171090 00 (pcb 22923343 01)

VOLUME BOARD

76171080 00 (pcb 22923341 00)

View from component side

View from foil side

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

A PANEL BOARD

76171150 00 (pcb 22923342 00)

View from foil side

View from component side

FILTER BOARD

76171122 00 100/117V 76171124 00 220V 76171125 00 240V (pcb 22923369 00)

View from component side

View from foil side

POWER SUPPLY BOARD

76171130 00 (pcb 22923340 01)

View from foil side

RGB CABLE

RGB OUT TIMING CHART

RGB出力タイミングチャート

● HORIZONTAL SYNC 水平同期

● VERTICAL SYNC 垂直同期

IC DATA

S-RAM

READY

D7

D6 17 D5 18 D4 19 D3 20

M5M5256P-12

GATE ARRAY RF5C36

PIN No	PIN NAME	I/0	PIN No	PIN NAME	I/0
1	WTWR	0	51	DA9	0
2	RAS	0	52	DA10	0
3	CAS0	0	53	DAll	0
4	CASI	0 .	54	DA12	0
5	CAS2	0	55	DA13	.0
6	CAS3		56	DA14	0
7	VCC	0	57	DA15	0
8	WTAO	0	58	VCC	-
9	WTAl	0	59	SH	0
10	WTA2	0	60	MXA	0
11	WTA3	0	61	MXB	0
12	WTA4	0	62	MXC	0
13	WTA5	0	63	MXD	0
14	WTA6	0	64	INH	0
15	WTA7	0	65	RST	Ī
16	WTA8	O (NC)	66	SYNO	0
17	WTA9	0 (NC)	67	SYNI	1
18	WTA10	O (NC)	68	TEST2	Ī
19	WTAll	O (NC)	69	TEST1	Ī
20	WTA12	O (NC)	70	XTAL1	XIN
21	WTA13	0 (NC)	$\frac{70}{71}$	XTAL2	XOUT
22	WTA14	0 (NC)	72	TESTCK	1
23	WTA15	0 (NC)	73	WR.	I
24	WTA16	0 (NC)	74	RD RD	I
25	WTA17	0 (NC)	75	CS	I
26		-			
27	GND		76	Λ0	I
	WTD0	1/0	1 '' 1	Al	I
28	WTD1	1/0	78	A2	<u>1</u>
29	WTD2	I/0	79	A3	I
30	WTD3	I/0	80	GND	
31	WTD4	I/0	81	VCC	-
32	WTD5	1/0	82	۸4	I
33	WTD6	1/0	83	Λ5	I
34	WTD7	I/0	84	A6	I
35	WTD8	1/0	85	A7.	I
36	WTD9	1/0	86	A8	I
37	WTD10	1/0	87	A9	I
38	WTD11	1/0	88	A10	I
39	VCC		89	All	I
40	SARin	I	90	A12	1
41	GND	-	91	DBO	[/0
42	DAO	0	92	DB1	I/0
43	DAl	0	93	DB2	I/0
44	DA2	0	94	DB3	1/0
45	DA3	0	95	DB4	I/0
46	DA4	0	96	DB5	I/0
47	DA5	0	97	DB6	1/0
48	DAG	0	98	DB7	1/0
49	DA7	0	99	INT	0
50	DA8	0	100	GND	-
	XIN, XOUT				L

* XIN,XOUT : crystal

* OUTPUT LOAD CONDITION : CL=100pF

JAN. 1987

S-50

MIDI IMPLEMENTATION

S-50 MIDI IMPLEMENTATION

Version 1.00 Aug, 25 1986

*** S-50 MIDI IMPLEMENTATION ***

Version 1.00 Aug. 25 1986

1. TRANSMITTED DATA

Status	Second	Third	Description	· .
	Okkk kkkk	0000 0000	Note OFF kkkkkkk = 36 - 96	
1001 nnnn	Okkk kkkk	0 v v v v v v	Note 0N kkkkkkk = 36 - 96 vvvvvvv = 1 - 127	
1011 nnnn	0000 0001	0vvv vvvv	Modulation vvvvvvv = 0 (OFF) vvvvvvv = 127 (ON)	*1
1011 nnnn	0000 0111	0vvv vvvv	Volume vvvvvvv = 0 - 127	*1
1011 nnnn 1011 nnnn		0111 1111 0000 0000	Hold1 ON Hold1 OFF	*1 *1
1100 nnnn	Oppp pppp		Program Change ppppppp = 0 - 127	*1,*2
1101 nnnn	0vvv vvvv		Channel After Touch	*1
1110 nnnn	0 v v v v v v	0vvv vvvv	Pitch Bend Change	*1
1011 nnnn	0111 1011 0111 1100 0111 1111		OMNI OFF	*3 *1, *4 *1, *4

Notes :

- *1 Transmitted if the corresponding function switch is ON.
- *2 Transmitted when 'Patch Number' is changed. Program number (ppppppp) corresponding to a Patch can be set freely.
- *3 When the 'Patch Number' is changed, this message is sent.
- *4 When power is first applied, these messages are transmitted.

2. RECOGNIZED RECEIVE DATA

Status	Second	Third	Description	
1000 nnnn	Okkk kkkk		Note OFF, velocity ignored	
1001 nnnn	Okkk kkkk	0000 0000	Note OFF	
			kkkkkk = 0 - 127	
1001 nnnn	Okkk kkkk	0 v v v v v v	Note ON	
			kkkkkkk = 0 - 127	
			vvvvvv = 1 - 127	
1011 nnnn	0000 0001	0vvv_vvvv	Modulation	*1
			vvvvvv = 0 - 127	
1011 nnnn	0000 0111	0vvv vvvv	Volume	*1
			vvvvvv = 0 - 127	
1011 nnnn	0100 0000	O1xx xxxx	Hold1 ON	*1
1011 nnnn	0100 0000	OOXX XXXX	Hold1 OFF	*1
1100 nnnn	qqqq qqq0		Program Change	
			ppppppp = 0 - 127 *1 ,	*2
1101 nnnn	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Channe'l After Touch	*1
			vvvvvv = 0 - 127	
1110 nnnn	Ovvv vvvv	0vvv vvvv	Pitch Bend Change	*1
1011 nnnn	0111 1011	0000 0000	ALL NOTES OFF	
	0111 1100		OMNI OFF	*3
	0111 1101		OMNI ON	*3
	0111 1110		(MONO ON) *3,	
1011 nnnn	0111 1111	0000 0000	POLY ON	*3

Notes :

- *1 Received if the corresponding function switch is ON.
- *2 Recognized when appropriate program number corresponding to a Patch is received.
- *3 Mode Messages (123 127) are also recognized as ALL NOTES OFF.
- *4 MONO ON message is ignored.

23

MIDI IMPLEMENTATION CHART

Date: Aug. 25 1986
Model S-50 MIDI Implementation Chart Version: 1.00

	Model S-50	D MIDI Implem	entation Chart Ve	ersion : 1.00
Fui	nction		Recognized	Remarks
	Default Changed		1 - 16 1 - 16	*2 *2
Mode		Mode 3 *1 Mode 3 ******	Mode 1. 3 POLY.OMNI ON/OFF	*2 MONO ignored
Note Number ¦		36 - 96		
Velocity	Note ON Note OFF	o x 9n v= 0	•	v = 1 - 127
After Touch	Key's Ch's		X *1	
Pitch Ber	nder	*1	*1 0 - 12 semi	9 bit resolution
Control	7	*1 *1 *1	*1	Modulation Volume Hold1
Change	 			
	+	*********	0 - 127	*3
System ; ; Common ;	Song Pos Song Sel Tune	x ;	x	
System Real Time	Clock Commands	x	x !	
Aux ¦Loc ¦All	al ON/OFF Notes OFF Ive Sense	x	x	
Notes	 	<pre> *1 Can be set to o or x manually, and memorized by disk. *2 Memorized by disk. *3 Program change numbers for each Patch can be set freely.</pre>		

Mode 1: 0MNI 0N, POLYMode 2: 0MNI 0N, M0N0o: YesMode 3: 0MNI 0FF, POLYMode 4: 0MNI 0FF, M0N0x: No

MEMO