Extracción de Características en el Procesamiento Digital de una Señal para el Mejoramiento del Reconocimiento Automático de Habla usando Wavelets

Jorge Luis Guevara Díaz

Universidad Nacional de Trujillo, Escuela de Informática, Trujillo, Perú jorge.jorjasso@gmail.com

and

Juan Orlando Salazar Campos

Universidad Nacional de Trujillo, Escuela de Informática, Trujillo, Perú josc_orlando@hotmail.com

Que veremos?

- 1. Introducción
- 2. Trabajos Previos
- 3. Procesamiento de la Señal
- 4. Coeficientes MFCC
- 5. Trasformada Wavelet
- 6. Extracción de características usando wavelets
- 7. Experimentos y Resultados
- 8. Conclusiones

1. Introducción

Podriamos conversar con las maquinas como lo hacemos con los humanos?

1. Introducción

Speech Recognition

¿Cómo hacer que las computadoras puedan convertir a texto la palabra hablada?

Problemas:

algoritmos de bajo costo computacional extracción de "buenas" características correcta clasificación

1. Introducción

• Extracción de características

Complejidad computacional Cual es la mejor representación de características?

Reducción de la dimensionalidad conjunto mas pequeño que contenga la información mas esencial presente en los atributos originales

$$\mathbf{x} = (x_1, \dots, x_n) \longmapsto \phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \dots, \phi_d(\mathbf{x})), d < n,$$

2. Trabajos Previos

2. Trabajos Previos

Diversas Técnicas

Bandos de Energias de la Trasformada de Fourier

LPC Coeficientes de Prediccion Lineal [Atal, and Schroeder]

LPC-Cepstrum [Atal, and Schroeder] [Bogert and Tukey]

PLP Coeficientes de Prediccíon Lineal Perceptuales

MFCC Coeficientes Cepstrales en Frecuencia Mel [Davis and Mermelstein]

Propuestas Basada en Wavelets

 Diversos algoritmos para procesar la señal digital de habla en una computadora

Ejemplo:

Eliminacion de ruido, analisis de frecuencias, etc

Capturar la señal analógica y digitalizarla para poder usarla en la computadora

$$x[n] = x_0(nT).$$

3.1 Transformada de Fourier

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}$$

Donde:

$$e^{j\phi} = \cos\phi + j\sin\phi$$

Transformada Discreta de Fourier.

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi nk}{N}}$$

Complejidad computacional: O(n2)

Transformada Rápida de Fourier.

Algoritmo radix-2 con diezmado en frecuencia y reordenamiento de la salida de bits mezclados, cuya complejidad es O(n log n).

Complejidad computacional.

$$T[n] = \begin{cases} 2T(n/2) + Cn & \text{si } 2^n \ge 2\\ 0 & n = 1 \end{cases}$$

Resolviendo la ecuación de recurrencia se tiene:

$$O(n \log n)$$

3.2 Ventaneamiento

Se puede cortar la señal por partes para un análisis más cómodo

Idea: utilizar ventanitas

Problema : ¿Qué tipo de ventana usar?

• Caso ventana rectangular

$$w[n] = 1, \qquad 0 \le n \le N - 1$$

Caso ventana Hamming

$$w[n] = 0.54 - 0.46cos\left(\frac{2\pi n}{N-1}\right), \quad 0 \le n \le N-1$$

• Por que hamming? Caso ventana rectangular

$$w[n] = 0.54 - 0.46\cos\left(\frac{2\pi n}{N-1}\right), \quad 0 \le n \le N-1$$

Comparación de Ventanas.

 Es un método (el más famoso) para extracción de características

La idea esta inspirada en un modelo biológico

Usa Trasformada de Fourier

Complejidad Computacional O(n Log n)

Producción y Percepción del Habla

Frecuencia Mel.

Es una escala basada en como oímos, y se ha construido, a través de experimentos fisiológicos.

4. Coeficientes MFCC Frecuencia Mel.

Cepstrum.

Si imaginamos la señal de voz como producto de la convolución del aire que fluye de nuestros pulmones y varios filtros correspondientes al tracto vocal.

$$\hat{x}[n] = \hat{e}[n] + \hat{h}[n]$$

Objetivo: Desconvolucionar la señal de voz

$$\hat{x}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln|X(e^{jw})| e^{jwn}$$

• Algoritmo

Se hace un análisis por frames de la señal

$$\chi^m[n] = \chi[n - mF]\omega[n].$$

Con una ventana Hamming

$$\omega[n] = 0.54 - 0.46 \cos \frac{2\Pi n}{N}$$

Algoritmo

 Se aplica una Trasformada de Fourier a cada
 Frame (Trasformada Corta de Fourier) con un algoritmo rápido O(n log n)

$$X_m(e^{jw}) = \sum \chi_m[n]e^{-jw} = \sum \omega[m-n]\chi[n]e^{-jw}$$

En nuestro caso un algoritmo Radix-2 con decimación en frecuencia y reordenamiento de bits mezclados

Algoritmo

 Se traspasa de la escala de frecuencias a la escala Mel, mediante un ventaneamiento con ventanas triangulares (bins)

$$H = \begin{cases} 0 & \text{si } k < f(m-1) \\ \frac{k-f(m-1)}{f(m)-f(m-1)} & f(m-1) \le k \le f(m) \\ \frac{k-f(m-1)}{f(m+1)-f(m)} & f(m) \le k \le f(m+1) \\ 0 & k > f(m+1) \end{cases}$$

$$f(m) = \frac{N}{F_s} \beta^{-1} (\beta(f_1) + m \frac{\beta(f_h) - \beta(f_1)}{M+1})$$

Algoritmo

Se obiente el Cepstrum de las frecuencias en escala Mel

$$S(m) = ln(\sum |X(k)|H_m(k)), 0 < m < M$$

Finalmente se una trasformada de Coseno II es calculada

$$c(m) = \sum S(m)\cos(\pi n(\frac{m + \frac{1}{2}}{M}))$$

"La Transformada Wavelet es una herramienta matemática que corta los datos, funciones o operadores en diferentes componentes de frecuencia y estudia cada componente a una resolución ubicada a esa escala."

Ingrid Daubechies
Ten Lectures of Wavelets

transformada wavelet continua de una función f está dada por:

$$(T^{wav}f)(a,b) = |a|^{-\frac{1}{2}} \int \delta t f(t) \psi(\frac{t-b}{a})$$

la familia de wavelets se puede construir dilatando y trasladando

$$\psi^{a,b}(x) = |a|^{-\frac{1}{2}}\psi(\frac{t-b}{a})$$

$$f = C_{\psi}^{-1} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\delta a \delta b}{a^2} \psi(T^{wav} f)(a, b) \psi^{a, b}$$

T. Fourier vs T. Wavelet

$$T^{win}(w,t) = \int \delta s f(s) g(s-t) e^{-i\omega s}$$

$$CWT(a,b) = \frac{1}{\sqrt{a}} \int x(t)\psi(\frac{t-b}{a})\delta t$$

Wavelets en el Dominio de la Frecuencia

5. Trasformada Wavelet

Wavelets Discretas.

$$\psi^{m,n}(x) = a_0^{-\frac{m}{2}} \psi(a_0^{-m}(x - nb_0 a_0^m))$$

$$\psi^{m,n}(x) = a_0^{-\frac{m}{2}} \psi(a_0^{-m}x - nb_0)$$

en particular si escogemos $a_0=2$ y $b_0=1$ entonces:

$$\psi^{m,n}(x) = 2^{-\frac{m}{2}}\psi(2^{-m}x - n)$$

5. Trasformada Wavelet

Filtro Pasa Banda

$$H(f(at)) = \frac{1}{|a|}H(\frac{\omega}{a})$$

5. Trasformada Wavelet

Algoritmo de Banco de Filtros Iterativo

$$T(n) = 2cn - 2c$$

La Transformada wavelet con banco de filtros tiene una complejidad de O(n).

Wavelets Packets

6. Extracción de Características usando Wavelets

Extracción de características con Wavelets

Arbol de descomposición.

Extracción de Características con Wavelets **Packet Perceptuales**

A rbol de descomposición.

Extracción de Características con Wavelets Packet Perceptuales

Filtros Usados

Haar

$$h(n) = [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]$$

Wavelets de Daubechies 4

$$h(n) = [\frac{1+\sqrt{3}}{4\sqrt{2}}, \frac{3+3\sqrt{3}}{4\sqrt{2}}, \frac{3-3\sqrt{3}}{4\sqrt{2}}, \frac{1-\sqrt{3}}{4\sqrt{2}}]$$

Wavelets de Daubechies 6

$$h(n) = [0,3326,0,8068,0,4598,-0,1350,-0,0854,0,0352]$$

Wavelet Coiflet 6

$$h(n) = [\frac{1-\sqrt{7}}{16\sqrt{2}}, \frac{5+\sqrt{7}}{16\sqrt{2}}, \frac{14+2\sqrt{7}}{16\sqrt{2}}, \frac{14-2\sqrt{7}}{16\sqrt{2}}, \frac{1-\sqrt{7}}{16\sqrt{2}}, \frac{-3+\sqrt{7}}{16\sqrt{2}}]$$

Siendo los filtros g correspondientes: $g_n = (-1)^n h_{-n+1}$

Extracción de características

 Cálculo de energias por nivel del resolución aproximadamente igual a la escala Mel

$$E_{i} = \frac{\sum_{j=1}^{N} (W_{i}^{p} f(j))^{2}}{N_{i}}$$

Aplicación de un "Cepstrum"

$$F(i) = \sum_{i=1}^{N} \log E_n \cos(\frac{i(\frac{n-1}{2})}{N})$$

Dynamic Time Warping DTW

Experimentos y Resultados

Resultados Wavelets O(n)

DISTRIBUCION DE 900 PALABRAS PRONUNCIADAS POR 60 PERSONAS SEGUN SU IDENTIFICACION Y NO IDENTIFICACION POR LA COMPUTADORA CON EL MÉTODO DE FOURIER Y EL MÉTODO PROPUESTO BASADO EN LAS WAVELET HAAR.

TRUJILLO 2006.

	MÉTODO D		
MÉTODO WAVELET HAAR	Palabras identificadas	Palabras no identificadas	TOTAL
- Palabras identificadas	262	13	275
Palabras no identificadas	172	453	625
TOTAL	434	466	900

📜 : Prueba ji-cuadrado de Mc Nemar para datos correlacionados

χ_{se.} = 136.65 p < 0.01

DISTRIBUCION DE 900 PALABRAS PRONUNCIADAS POR 60 PERSONAS SEGUN SU IDENTIFICACION Y NO IDENTIFICACION POR LA COMPUTADORA CON EL METODO DE FOURIER Y EL MÉTODO PROPUESTO BASADO EN LAS WAVELETS DE DAUBECHIES 6.

TRUJILLO 2006.

		MÉTODO D		
M	ÉTODO WAVELET DAUB 6	Palabras identificadas	Palabras no identificadas	TOTAL
	Palabras identificadas	430	93	523
	Palabras no identificadas	4	373	377
_	TOTAL	434	466	900

χ₁₁₈: Prueba ji-cuadrado de Mc Nemar para datos correlacionados

χ_{st.} = 81.66 p < 0.01

Eficiencia relativa de aciertos = 523 / 434 x 100

Resultados Wavelets Packets O(n log n)

DISTRIBUCION DE 900 PALABRAS PRONUNCIADAS POR 60 PERSONAS SEGUN SU DISTRIBUCION DE 900 PALABRAS PRONUNCIADAS POR 60 PERSONAS SEGUN IDENTIFICACION Y NO IDENTIFICACION POR LA COMPUTADORA DE FOURIER Y EL MÉTODO PROPUESTO BASADO EN LAS WAVELETS PACKET CON EL METODO DE FOURIER Y EL METODO PROPUESTO BASADO EN LAS WAVELETS PACKET PERCEPTUAL CON DAUBECHIES 4.

TRUJILLO 2006.

TRUJILLO 2006.

	MÉTODO D	EFOURIER				MÉTODO D	E FOURIER	
IÉTODO WAVELET ACKET DAUB6	Palabras identificadas	Palabras no identificadas	TOTAL		IÉTODO WAVELET ACKET PERCEPTUAL	Palabras identificadas	Palabras no identificadas	TOTA
Palabras identificadas	425	220	645		Palabras identificadas	420	183	603
Palabras no identificadas	9	246	255	-	Palabras no identificadas	14	283	297
TOTAL	434	466	900	- 5 <u>E</u>	TOTAL	434	466	900

22: Prueba ji-cuadrado de Mc Nemar para datos correlacionados

χ²_{una}: Prueba ji-cuadrado de Mc Nemar para datos correlacionados

 $\chi^2_{let} = 194.41$ p < 0.01

χ_{se.} = 144.98 p < 0.01

Eficiencia relativa de aciertos = 645 / 434 x 100

Eficiencia relativa de aciertos = 603 / 434 x 100

ER-aciertos = 148.62

Comparaciones con MFCC

$M\'etodo$	Tasa aceptación	Error
Coeficientes Cepstrales en Escala Mel	85.32%	14.68%
Wavelet Haar	34.47%	65.53%
Wavelet Daubechies 4	51.79%	48.21%
Wavelet Daubechies 6	61.32~%	38.68%
Wavelet Coiflets 6	55.46~%	44.54%
Wavelet Packet Perceptuales Walsh	55.79~%	44.21 %
Wavelet Packet Perceptuales Daubechies 4	69.14~%	30.86%
Wavelet Packet Perceptuales Daubechies 6	74.43~%	25.57%
Wavelet Packet Perceptuales Daubechies 4 (22)	71.21~%	28.79%

Tabla Datos obtenidos utilizando la técnica de DTW como reconocedor, con distancia Chebyshev y con Slope Constrain P=1. Se observa la mejor performance en las Wavelet Packet Perceptuales Daubechies 6, y la mas pobre en las Wavelet Haar

Tasa de Reconocimiento por Palabra

	MFCC	W. Haar	W. Db4	W. Db6	W. Coif6	WP Walsh	WP Db4	WP Db 6	WP Perc.
Arriba	86%	17%	41%	48%	34%	31%	66%	72%	62
Cerrar	100%	45%	79%	86%	76%	97%	100%	97%	97%
Coger	90%	17%	17%	31%	17%	28%	52%	69%	62%
Cuatro	97%	48%	28%	31%	24%	62%	76%	83%	83%
Dos	86%	28%	38%	48%	48%	59%	69%	69%	72%
Eliminar	72%	24%	34%	52%	48%	24%	48%	76%	45%
Error	97%	24%	66%	93%	83%	93%	97%	97%	93%
Hola	83%	38%	48%	72%	55%	38%	52%	59%	52%
Izquierda	86%	31%	48%	62%	59%	24%	59%	72%	69%
Pez	62%	24%	52%	41%	66%	62%	59%	59%	55%
Salir	86%	66%	79%	79%	72%	76%	76%	79%	76%
Terminar	62%	24%	24%	31%	28%	41%	55%	55%	55%
Tres	83%	24%	52%	59%	45%	41%	66%	62%	66%
Tres	59%	24%	45%	59%	41%	48%	55%	59%	62%
Uno	76%	31%	79%	83%	86%	76%	72%	66%	59%

8. Conclusiones

Conclusiones.

- -El mejoramiento del espectro se da gracias al análisis tiempo frecuencia de las wavelets.
- -Una extracción de características usando solamente la Trasformada de Fourier no brinda buenos resultados.
- -Los wavelets pueden ser utilizados alternativamente, para el procesamiento digital de la señal de habla.
- -La complejidad computacional de los algoritmos de extracción de características usando las wavelets y las wavelets packets es de O(n) y de O(n log n) respectivamente.
- -La ventaja de utilizar wavelets radica, en la variedad de funciones wavelet que se puede escoger.
- Las wavelets que mejor funcionan, son aquellos que tienen su espectro parecido a un filtro paso de banda ideal.

Proyecciones

$$\psi(x) = \pi^{-\frac{1}{4}} (e^{-i\omega x} - e^{-\frac{\pi^2\alpha^2}{4}}) e^{-\frac{x^2}{\alpha^2}}$$

Parte real e imaginaria de las Wavelets de Morlet

Dominio del Tiempo

Dominio de la Frecuencia

$M\'etodo$	$Tasa\ aceptaci\'on$	Error
Coeficientes Cepstrales en Escala Mel	85.32%	14.68%
Wavelet Continuo de Morlet	87.32%	12.68%

 $O(n \log n)$.

Referencias

- Aboufadel, E. A wavelets approach to voice recognition. Grand Valley State University (2001).
- [2] Atal, and Schroeder. Predictive coding of speech signals. Report of the 6th Int. Congress on Acoustics, Tokio, Japan (1968).
- [3] BAUN, L., AND EAGON, J. Perceptual linear predictive analysis of speech. RBulletin of American Mathematical Society, 1967, 73, pp. 360-363 (1968).
- [4] Daubechies, I. Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.
- [5] GROSSMANN, A., AND MORLET, J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis 15, 4 (1984), 723-736.
- [6] Guevara, J. L. Lorito, speech recognition software, v 1.0 ed. Universidad Nacional de Trujillo, Trujillo, Enero 2007.
- [7] GUEVARA, J. L., AND SALAZAR, J. O. Extracción de Características en el Procesamiento Digital de una Señal para el Mejoramiento del Reconocimiento Automático de Habla usando Wavelets. Tesis, Trujillo, Enero 2007.
- [8] HERMANSKY, H. A an inequality with applications to statistical estimation for probabilistic functions of markov processes and to a model for ecology. J. Acoust. Soc. Am. (2005).
- [9] Huang, X., Acero, A., and Hon, H.-W. Spoken Language Processing: A Guide to Theory, Algorithm and System Development. Prentice Hall PTR, April 2001.
- [10] M. Siafarikas, Todor Ganchev, N. F. Objetive wavelet packet features for speaker verication, 2000.

Software de pruebas

LORITO version 3.14

