Задача о неприводимим представлении

Определения:

Определение 1: ротатор — это квантовый объект, который имеет только вращательные степени свободы. Может быть описан тензором второго ранга.

Определение 2: квантовое число момента вращения (или просто момент) - это целое или полуцелое число, которое характеризует полный момент импульса ротатора. Оно обозначается буквой l и связано с измеряемым квадратом вектора момента импульса L^2 следующим соотношением:

$$L^2 = \hbar^2 l(l+1) \tag{1}$$

Определение 3: магнитное квантовое число — это целое или полуцелое число, которое характеризует один из возможных результатов измерения момента вращения ротатора вокруг выбранной оси ψ . Она обозначается буквой m и связана с измеряемой проекцией вектора момента линейным соотношением:

$$l_{\psi} = m\hbar, \qquad m = -l, -l+1, -l+2, \dots, l-1, l$$
 (2)

Определение 4: матрица плотности ρ — это квадратная матрица, которая несёт полную информацию о вращении ротатора с моментом l. Размерность матрицы равна 2l+1 и совпадает с количеством возможных значений магнитного квантового числа m: каждая строка соответствует некоторому своему магнитному квантовому числу m_s и каждый столбец соответствуют некоторому своему магнитному квантовому числу m_c . Удобнее всего выстроить строки и столбцы с одинаковым порядком следования магнитного квантового числа:

```
• m=l \rightarrow строка 1 (столбец 1)
```

- ullet m=l-1 ullet строка 2 (столбец 2)
- m=l-2 \rightarrow строка 3 (столбец 3)

• • •

- m=-l+1 \rightarrow строка 2l (столбец 2l)
- m=-l \rightarrow строка 2l+1 (столбец 2l+1)

Определение 5: неприводимым представлением группы вращения для матрицы плотности ротатора мы называем набор ортогональных матриц T_q^k , суперпозицией которых можно представить исходную матрицу плотности. Матрицы T_q^k при поворотах системы координат преобразуются друг через друга так же как, как сферические функции. Коэффициенты разложения матрицы плотности перед каждой матрицей T_q^k называются неприводимыми компонентами матрицы плотнсоти и имеют определённый физический смысл.

Комментарии:

Комменатрий 1: диагональные элементы ρ_{mm} на пересечении строки и столбца, соответствующих одному и тому же числу m, равны вероятностям измерения проекции момента $m\hbar$ на выбранную ось квантования ψ . Недиагональные элементы $\rho_{m_sm_c}$ характеризуют когерентные связи между состояниями вращения с проекциями момента $m_s\hbar$ и $m_c\hbar$, где номер строки соответствует магнитному квантовому числу m_s , а номер столбца — магнитному квантовому числу m_c . Недиагональные элементы содержат инфомрацию об анизотропных свойствах ротатора в плоскости,

перпендикулярной оси, вдоль которой происходит измерение проекции момента.

Комментарий 2: в матрице плотности ρ число k может принимать целые значения от 0 до 2l, q может принимать целые значения от -l до l. Таким образом, количество неприводимых компонент матрицы плотности совпадает с количеством элементов исходной квадратной матрицы плотности в представлении проекций момента.

Комментарий 3: Ортогональными матрицами плотности называются такие матрицы, след произведения которых равен нулю, при этом след произведения матрицы самой на себя нормирован на некоторое значение, чаще всего на единицу.

Комментарий 4: формула для элемента базисной матрицы неприводимого представления T_q^k , находящегося на пересечении строки m_s и столбца m_c имеет вид:

$$(T_q^k)_{m_s m_c} = \sqrt{2k+1}(-1)^{l-m_s} \begin{pmatrix} l & l & k \\ -m_s & m_c & q \end{pmatrix}$$
 (3)

где двухэтажное выражение в скобках — это 3j символ (просто некоторое число), формулу для которого предлагается найти самостоятельно.

Комментарий 5: Представление группы вращений с помощью матриц T_q^k называется неприводимым, потому что матрицы T_q^k не могут быть записаны с помощью тензорного произведения двух векторов в пространстве вращательных состояний ротатора. Отметим, что исходная квадратная матрица плотности ρ в представлении проекций момента является суперпозицией базисных матриц $E_{m_sm_c}$, у которых один элемент равен единице на пересечении некоторой строки m_s и столбца m_c , остальные элементы равны нулям; в таком представлении каждую базисную матрицу можно представить как тензорное произведение вектора состояния

с проекцией m_s , и вектора состояния с проекцией m_c , причём эти векторы имеют единственную отличную от нуля компоненту номер m_s или m_c соответственно, равную единице.

Постановка задачи:

Требуется написать программу, которая осуществляет линейное преобразование матрицы плотности ρ ротатора при повороте системы координат на углы Эйлера. Ось квантования ψ удобно выбрать совпадающей с осью z. То есть на входе программа принимает $(2l+1)^2$ элементов матрицы плотности в старой системе координат и три угла Эйлера, а на выходе программа возвращает новые элементыматрицы плотности ρ' .

Алгоритм решения задачи:

Ниже приведена последовательность действий, которая позволяет осуществить требуемое преобразование:

- Записать некоторую матрицу плотности ротатора, проверить её на наличие противоречий.
- С помощью матриц T_q^k найти коэффициенты разложения матрицы плотности по неприводимым компонентам ρ_q^k
- Зная правило преобразования матриц T_q^k при вращении системы координат, найти неприводимые компоненты $\rho_q^{\prime k}$ матрицы плотности в новой системе координат, повёрнутой на заданные углы Эйлера
- Используя неприводимые компоненты матрицы плотности построить матрицу плотности ρ' в первоначальном представлении проек-

ций момента, но в новой системе координат