MATH 3240 Topology 1.

Last day we ended with a generalization of compactness:

A space X is Lindelöf if every open cover has a countable subcover.

Example: The Sorgenfrey line is not compact, but is Lindelöf. Note it is not second countable, because...

Proposition: (Lindelöf lemma) Every second countable space of Lindelöf.

Proof: Let X be a second countable space and W ap open cover of X. Let B be a countable basis of X. Each $W \in W$ is a union of elements of B, so create a new countable cover V of X that consists of all $B \in B$ that are used in writing some $W \in W$ as a union of basic elements. I.e, if $W = \bigcup_{i \in I} B_i$, then $\{B_i\}_{i \in I} \subset V$.

Now choose a countable subcover $W' \subseteq W$ as follows: for each $V \notin V$, choose $W \in W$ s.t. $V \subseteq W$. Then the collection of all such W's is W', which is countable.

Example: This shows that R is Lindelöf, but is not compact.

Recall the Bolzano Weierstrass theorem:

Every bounded sequence in Rn has a convergent subsequence.

Inspired by this, we define a Bolzano-Weierstrass space (or BW space), to be a space X in which every infinite subset has an accumulation point.

First, we note:

Def: x is an occumulation point of A if every open subset containing x contains a point of A other than x.

Lemma: Suppose X is Hausdorff and $A \subseteq X$. If $p \in X$ is an accumulation point of A, then every neighbourhood of p contains infinitely many points of A.

Proof: Construct infinitely many points {xn} as follows, given a nbhd U of p:

 $\exists x_i \in U \cap A \text{ since } p \text{ is an accumulation point. Now suppose we have } x_1,..., x_k$. For each x_i , $\exists \text{ nbhds } U_i \text{ of } x_i$ and V_i of p such that $U_i \cap V_i = \emptyset$. Set

V=(NVi) NU, which is an open neighbourhood of

p and so contains a point x_{kH} of A and not any of $x_1,...,x_k$.

Proposition: Suppose that X is a Hausdorff space. Then X is a BW-space iff it is countably compact.

Proof: (=>) Suppose X is a BW-space. Let $U=\{U_1,U_2,...\}$ be a countable open covering of X, assume that no Ui is contained in $U_1 \cup U_2 \cup ... \cup U_{i-1}$ (eliminate redundancy). Suppose U has no finite subcovering.

Then there's a set $A = \{x_n \in X \mid x_n \in U_n \setminus \bigcup_{i=1}^n U_i\}_{i=1}^n,$

and the set A is infinite since $x_i \neq x_j$ if $i \neq j$. Since X is a BW space, A has an accumulation point x_i .

Since U is a cover, there exists in such that $x \in U_n$, and therefore U_n contains infinitely many points of A (here use the lemma). However for $m \geq n$, $x_m \notin U_n$ by construction, a contradiction.

 But then some Ui must contain infinitely many of the ai's, a contradiction.

Proposition: Every compact space is a BW space.

Proof: Suppose X is not a BW space. Then there is an infinite subset of A without accumulation points in X. Thus, A contains all its accumulation points and so is closed.

Now if X is compact, then A is compact since it is closed. Moreover since A has no accumulation points, for each aeA I la an open nobal of a such that $Ua \cap A = \{a\}$. Then $\{Ua\}_{a \in A}$ is an open cover of A, so we choose a finite subcover $\{Ua_1, ..., Ua_n\}$. Then $A = (\bigcup_{i=1}^n Ua_i) \cap A = \bigcup_{i=1}^n (An Ua_i) = \{a_1, ..., a_n\}$, so that

A 1s finite, a contradiction.

Our goal now is to show that for metric spaces, the converse also holds: If (X,d) is a Bolzano-W. Space, then X is compact. This requires a famous lemma

Lemma (Les begne (Lebesgue number lemma)

For every Let (X,d) be a BW-metric space, and suppose that W is an open cover of X.

Then $\exists \varepsilon>0$ s.t. $\forall x \varepsilon X \exists W \varepsilon W$ with $B(x, \varepsilon) \subset W$. (ie. There's a radius $\varepsilon>0$ called the Lebesgue number such that every ε -ball is contained in some elements of the cover).

Proof: Let X be a BW-space with metric d, W an open cover, and assume that $\exists x \in X$ st $\forall \, E > 0$ the ball B(x, E) is not a subset of any $U \in W$. In particular, for every $E = \frac{1}{n}$, $n \in \mathbb{N}^+$, there is a point $x_n \in X$ such that $B(x_n, t_n)$ is not contained in any $U \in W$. First, note that $\{x_i\}_{i=1}^{\infty}$ is an infinite set. If not, then $x_m = x_n \ \forall m \ge n$ for some n, and the statement " $B(x_m, t_n)$ is not a member of any $U \in W$ $\forall m \ge n$ " contradicts the fact that the balls $\{B(x_n, t_n)\}_{m \in W}$ form a local basis.

So, since X is a BW-space the sequence $\{X_i\}_{i=1}^{\infty}$ has an accumulation point, say $x \in X$. Choose $U \in W$ containing X, and a ball $B(x,r) \subset U$. Since X is there a metric space, $B(x,\frac{1}{2})$ contains infinitely many of the points $\{x_i\}_{i=1}^{\infty}$. Choose we such that $\frac{1}{m} < \frac{r}{2}$, southfact $x_m \in B(x_1r)$. Then $B(x_m, \frac{1}{m}) \subset B(x_1r) \subset U \in W$, contradicting our choice of x_m .

MATH 3240 Topology 1.

Recall:

Zorn's Lemma: Let P be a partially ordered set. If every totally ordered subset of P has an upper bound, then P contains a maximal element.

then P contains a maximal element.

I.e. $\exists x \in P$ st. if x is comparable to $y \in P$, then y < x.

We'll use this to prove

Theorem (Alexander subbase theorem). Let X be a space with topology T having subbases S. If every collection of set from S that covers X has a finite subcover, then X is compact.

Lemma: Proof: By contradiction. Suppose that every cover by elements of S has a finite subcover, yet X is not compact.

Let F = {W | W is an open cover of X with }.

no finite subcover

Then \mathcal{F} is nonempty, and it is partially ordered by inclusion (saty $W_1 < W_2$ if both are in \mathcal{F} and $W_1 \subset W_2$).

We would like to apply Zorn's Lemma, so let & Wities be a totally ordered subset of F. Then

Claim: W= U Wi is an upper bound for WilieI.

Certainly we have $Wi \subseteq W$ $\forall i$, so we only need to check that W is an open cover with no finite subcover.

Obviously W covers X, so suppose W,,..., W, of a finite subcover. Each Wik is contained in some cover Wik, and since Wi, , Wiz, ..., Win are totally ordered by inclusion, there exists a largest Wik. Then W,..., W, & Win and W,..., W, is a finite subcover of Wik, a contradiction.

Thus, Zorn's Lemma gives us a maximal element of F, call it U. Set

S'= Uns,

then our next claim is:

Claim: S' covers X.

If not, choose $x \notin UB$. Then $\exists U \in U$ with $x \in U$, since U covers X. Since S is a subbasis and U is open, $\exists V_1, ..., V_n \in S$ s.t. $x \in \bigcap_{t \in U} V_t = U$, moreover $V_t \notin U$ to since then x would be in $\bigcup_{B \in S'} B$.

But then by maximality of U, every cover $U \cup \{V_i\}$ must contain a finite subcover. Say $X = U_i \cup V_i$, where U_i is the union of all sets in the finite subcover of $U \cup \{V_i\}$ (except V_i). Then

$$U \circ (\mathring{U} u_i) \supseteq (\mathring{U} v_i) \circ (\mathring{U} u_i) \supseteq \mathring{U} (v_i \circ u_i) = X.$$

This is
$$\left(\bigcap_{i=1}^{n}V_{i}\right)U\left(\bigcup_{j=1}^{n}U_{j}\right)=\bigcap_{i=1}^{n}\left(V_{i}U\bigcup_{j=1}^{n}U_{i}\right)$$
 replace with $V_{i}UU_{i}$ since already $V_{i}UU_{i}=X$

Which is impossible, since U is not supposed to have any finite subcovers.

Therefore, $S' = S \cap U$ is a cover of X. But then S' has a finite subcover since $S' \subset S$ (by assumption). But since $S' \subset U$ this would mean U has a finite subcover. Thus our collection F must be empty in order to avoid this contradiction. Thus, X is compact.

Theorem (Tychonoff). If (X_i, T_i) are compact spaces $\forall i \in I$, then $T_i \times X_i$ if also compact.

Proof:

Lemma: Any open cover of TIXi containing only elements of the form $p_i^*(U)$ ($U \in T_i$) admits a finite subcover.

Proof of Lemma: Let U be such a cover, and set $U_i = \{U \in T_i \mid p_i^*(u) \in U\}.$

Claim: There's at least one if I such that U is a cover of Xi. If not, then for each i Ixi eXi s.t. xif UU; consider (xi) e TI Xi. The point (xi) cannot be contained in any set pi'(U) by construction, this contradicts the fact that U is a cover of TIXi.

So by our claim, we can choose it I such that U_i is a cover of X_i . But X_i is compact, so \exists $V_1,...,V_n \in U_i$ s.t. $X_i \subset \bigcup_{j=1}^n V_j$. But then $\{p_i^{-1}(V_i), p_i^{-1}(V_2), ..., p_i^{-1}(V_n)\}$ is a finite subcover of U_i and it covers $T_i X_i$. The lemma is proved

Proof of Tychonff's theorem:

Recall that a subbasis for the product topology is $S = \{p_i^*(u) \mid u \in T_i, i \in I\}$.

By our lemma, any collection of sets of this form must have a finite subcover if it covers X. By Alexander's subbasis theorem, πX_i is compact.

DONE!

Example: Recall the middle-thirds construction of the Cantor set, C:

- was trend um ferrettettettet am (men) was

the remaining points after these successive deletions form

We saw by a clever base 3 expansion argument that there is a homeomorphism

 $h: C \longrightarrow \prod_{i=1}^{\infty} \{0, 2\}$

where {0,2} has the discrete topology. Note {0,2} is compact, and thus by Tychonoff's theorem, the Cantor set C is compact.

Example: The power set of a set X can be identified with Tt 90,13, a sequence (yx) corresponds xeX to a subsetA of X as follows:

 $y_x = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

Then the power set $P(x) = TL\{0,1\}$ inherits a "natural" topology which makes it a compact topological space.

Applications mentioned in text:

- · The space R° is metrizable.
- · Ramsey theory?

Sketch of content to come:

We define a bunch of properties that are variations of Hausdorff-ness, the are named as follows:

To Complete list:

To, T, T2, T21, completely T2,

T3, T312, T4, T5, T6

normal < variations of this are 4-6, usually. regular.

We'll give many examples of spaces that have one properly, but not the other. "Separation axioms"

Definition: A space X 13 a To-space if for every X,y \in X there are open sets U, V such that \in \in U, y \in V and either \in \in U or \in \in V.

Or equivalently: For all \in \in X \in U open that corrtains exactly one of \in x,y.

Example: The trivial topology {\$\phi\$, \$\times\$} on any set \$\times\$ with more than two points \$\tau\$ not \$\tau_0\$.

· Give R_t the trivial topology, R the usual topology. Then $R_t \times R$ with the product topology is not T_o , points (a,b) and (c,b) fail the condition