

Offenlegungsschrift 25 19 509 11 **(3)**

Aktenzeichen:

P 25 19 509.9

Anmeldetag:

2. 5.75

Offenlegungstag:

20.11.75

3 Unionspriorität:

32 33 33

7. 5.74 Schweiz 6172-74

<u> 5</u> Bezeichnung:

Verfahren und Vorrichtung zur Steuerung eines elektrischen

Kleinstmotors

Anmelder:

Portescap. La Chaux-de-Fonds (Schweiz)

Vertreter:

Bauer, R., Dr.; Hubbuch, H., Dipl.-Ing.; Pat.-Anwälte, 7530 Pforzheim

Erfinder:

Schaffer, Rodolphe, La Chaux-de-Fonds (Schweiz)

DR. RUDOLF BAUER • DIPL.-ING. HELMUT HUBBUCH

PATENTANWÂLTE

753 PFORZHEIM. 30.4.1975 I/20
WESTLICHE 31 (AM LEOPOLDPLATZ)
TEL. (07231) 24280

2519509

Fa. Fortescap, La Chaux-de-Fonds (Schweiz)

"Verfahren und Vorrichtung zur Steuerung eines elektrischen Kleinstmotors"

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung eines elektrischen Kleinstmotors, dem Antriebsimpulse aus einer Gleichspannungsquelle zugeführt werden und der einen eine parallel zur Motorwicklung geschaltete Schaltvorrichtung aufweisenden Bremskreis enthält. Die Schaltvorrichtung wird dabei so gesteuert, dass dem in der Motorwicklung induzierten Strom in einem unmittelbar auf den Antriebsimpuls folgenden Zeitintervall ein sehr kleiner Widerstand entgegensteht und diesem Strom während der Dauer des Antriebsimpulses ein hoher Widerstand entgegensteht.

9

Die Erfindung betrifft ferner eine Vorrichtung zur Ausübung eines solchen Verfahrens.

In verschiedenen Anwendungsgebieten der elektrischen Kleinstmotoren ist es wesentlich, dass der Energieverbrauch des Motors so klein wie möglich gehalten wird. Dies ist insbesondere der Fall auf dem Gebiet der Uhrentechnik, der Zähler und anderer batteriegespeister Geräte. Bei den bestehenden Steuervorrichtungen weist der elektronische Steuerkreis für den Antrieb und die Bremsung des Motors selbst einen nicht vernachlässigbaren Energieverbrauch während der ganzen Betriebsdauer auf, das heisst also auch während der Dauer der Antriebsimpulse. Dies ist darauf zurückzuführen, dass bei diesen Vorrichtungen die Transistoren des Steuerkreises stark vorgespannd sein müssen, um die Spannungsabfälle zwischen der Batterie und dem Motor während des Antriebsimpulses klein zu halten, und dassferner zur Bremsung des Rotors dem durch die gegen-elektromotorische Kraft des Motors erzeugten Strom nach dem Antriebsimpuls nur ein sehr kleiner Widerstand entgegengesetzt werden soll. Es ist im allgemeinen notwendig oder wünschbar bei solchen Kleinstmotoren die Wicklung während einiger Hundertstelsekunden nach jedem Antriebsimpuls kurzzuschliessen, um eventuelle Schwingungen um die Gleichgewichtslage zu dämpfen, und um im Fall von Schrittmotoren hoher Schrittfrequenz zu vermeiden, dass der Rotor trotz des vorhandenen, die Gleichgewichtsstellung bestimmenden magnetischen Moments um zwei Schritte statt eines einzigen weiterdreht.

Der Erfindung liegt die Aufgabe zugrunde, eine bedeutende Einsparung an elektrischer Energie bei der Steuerung eines Kleinstmotors vom eingangs genannten Typ zu erzielen. Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass die Schaltvorrichtung des Bremskreises durch die Entladung eines Kondensators gesteuert wird, welcher während der Dauer des Antriebsimpulses aus der Gleichspannungsquelle aufgeladen wird.

Die Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass der an die Gleichspannungsquelle angeschlossene Ladekreis des genannten Kondensators zumindest die Serienschaltung des Kondensators und einer Schaltvorrichtung enthält, wobei diese Schaltvorrichtung so gesteuert wird, dass sie während der Dauer des Antriebsimpulses geschlossen ist, und dass der Entladekreis des Kondensators zumindest eine weitere Schaltvorrichtung enthält und so ausgebildet ist, dass die Schaltvorrichtung des Bremskreises bei der Entladung des Kondensators geschlossen wird, während die genannte Schaltvorrichtung des Entladekreises so gesteuert wird, dass sie in dem unmittelbar auf den Antriebsimpuls folgenden Zeitintervall geschlossen ist.

Die beigefügte Zeichnung stellt zwei Ausführungsbeispiele der erfindungsgemässen Steuervorrichtung dar.

- Figur 1 zeigt die Schaltung einer Steuervorrichtung, die für Speisespannungen von mehr als 1,7 V geeignet ist.
- Figur 2 zeigt die Schaltung einer ähnlichen Steuervorrichtung, die für Speisespannungen zwischen 0,9 und 1,7 V geeignet ist.

Im Schaltbild nach Figur 1 ist die Wicklung eines Kleinstmotors M in Serie mit der Emitter-Kollektorstrecke eines Steuertransistors T₁ an die Klemmen +, - einer Batterie angeschlossen, welche eine Speisespannung von mehr als 1,7 V. liefert. Der Motor M ist beispielsweise ein Schrittmotor, der durch Antriebsimpulse gleicher Polarität weiter geschaltet wird, wobei diese Antriebsimpulse beispielsweise eine Dauer von 5 Millisekunden und eine Wiederholungsfrequenz von ein Hz außweisen und durch das Offnen und Schliessen des Transistors T_{γ} bestimmt werden.

Der Motor M besitzt einen Bremskreis, der durch die Parallelschaltung eines Transistors T₂ zur Motorwicklung gebildet wird, wobei dieser Transistor so gesteuert wird, dass er unmittelbar nach dem Antriebsimpuls leitend wird.

In der Schaltung nach Figur 1 erfolgt die Steuerung des Motors mit Hilfe der Transistoren T₁ und T₂ auf folgende Weise. Die Basis des Transistors T₁ ist über einen Widerstand R₁ mit dem Kollektor eines Transistors T₃ verbunden, dessen Emitter an eine der Belegungen eines Kondensators C angeschlossen ist. Die andere Belegung dieses Kondensators ist mit der negativen Klemme der Speisebatterie verbunden. Die Basis des Transistors T₃ ist über einen Widerstand R₃ mit einer Eingangsklemme I verbunden, welche an eine nichtdargestellte Steuerimpulsquelle für den Motor angeschlossen ist. Ein Widerstand R₆, dessen Grösse so gewählt ist, dass sein Energieverbrauch während des Steuerimpulses klein bleibt, ist zwischen den Punkt I und den negativen Pol der Speisebatterie geschaltet.

Während des Auftretens eines Steuerimpulses im Punkt I wird der Transistor T₃ leitend, wodurch ein Stromfluss durch die Basis von T₁ ensteht und gleichzeitig ein den Motor antreibender Kollektorstrom auftritt. Im selben Zeitpunkt wird der Kondensator C aus der Batterie durch den über R₁ und den

- BEST AVAILABLE COPY

Transistor T_3 fliessenden Strom geladen. Am Ende des Steuerimpulses sind die Transistoren T_3 und T_1 neuerlich gesperrt, da das Potential des Punktes I über den Widerstand R_6 auf das jenige des negativen Batteriepoles zurück_gebracht wird.

Die Basis des Transistors T, ist über einen Widerstand R, an den Kollektor eines Transistors T_A angeschlossen, dessen Emitter an den gemeinsamen Verbindungspunkt des Kondensators ${\tt C}$ und des Emitters des Transistors ${\tt T}_{\tt 3}$ angeschlossen ist. Die Basis des Transistors T_A ist über einen Widerstand R_A an die Eingangsklemme I angeschlossen, welcher die Steuerimpulse zugeführt werden. Während dieser Impulse sind die Transistoren T_A und T_2 gesperrt. Am Ende jedes Steuerimpulses wird der Transistor T_{A} leitend und die im Kondensator Cangesammelte Energie fliesst in Form eines Entladestromes über TA, R2 und die Basis-Emitterdiode des Transistors T2 ab. Der Transistor To wird dadurch leitend und bildet für den in der Motorwicklung induzierten Strom einen Pfad sehr geringen Widerstandes. Die Dauer der Offnung des Transistors To wird durch die Werte von R_2 und C bestimmt und beträgt beispielsweise umgefähr 50 Millisekunden.

Die Schaltung nach Figur 1 erlaubt somit die Emergie, welche im Basisstrom des Transistors 1, des Speisekreises enthalten ist und die sonst nicht nützlich verwendet würde, zu speichern und am Ende des Steuerimpulses verfügbar zu machen. Die Schaltung verbraucht demnach keine Energie ausserhalb der Zeitdauer des Antriebsimpulses, wodurch eine in den meisten Tällen sehr bedeutende Ersparnis erwielt werden kann. In dem slie Boispiel angeführten Täll, in dem lie Dauer des Antriebstütless 5 Millisekunles beträgt und eine Wiederholungsfrom Diese 5 Millisekunles beträgt und eine Stelle Filler vertigt werden der Diese 5 Millisekunles beträgt und eine Bergeichte der Diese 5 Millisekunles bei beträgt und eine Bergeichte der Diese 5 Millisekunles b

6.4 3 3/893.3

des Arbeitszyklus eingespart.

Die in Figur 1 ærgestellte Vorrichtung erfordet im Hinblick auf die ærgestellte Schaltung der Transistoren T₁ und T₃ einerseits und T₂ und T₄ andrerseits eine Speisespannung von mehr als 1,7 V. Für verschiedene Anwendungen ist es jedoch wünschbar Miniaturbatterien von geringerer Spannung zu verwenden, beispielsweise Eatterien von 1,35 oder 1,5 V. In diesem Fall erlaubt die in Figur 2 dargestellte Ausführungsform die Anwendung des Grundprinzips der erfindungsgemässen Vorrichtung.

In der Schaltung nach Figur 1 sind die Schaltelemente, deren Funktion analog derjeniger der enteprechenden Elemente der Figur 1 ist in der gleicher Weise bezeichnet und die Beschreibung der Schaltung wird zur Vermeidung von Wiederholungen auf die Unterschiede gegenüber der vorhergehenden Anordnung beschränkt.

Nachdem die Transistoren T₁ und T₃ in dem nun betrachteten Fall nicht mehr so geschaltet werden können, dass die Emitter-Basisdiode des einen in Serie mit der Emitter-Kollektorstrekte des anderen liegt, ist as nicht möglich den Basisstrom von T₁ zur Aufladung des Konfensators C zu verwenden. Der Emitter von T₃ ist daher direkt mit dem negativen Pol der Batterie verbunden und die Basen von T₁ und T₃ werden parallel gesteuert, und zwar mit Eilfe eines durch den Transistor T₅ und einen Widerstand F₅ gebildeten Hilfssteuerkreises. Die Emitter-Kollektorstreche des Erensistors T₅ ist zwischen dem gemeinsamen Verbinfungspunkt der Widerstände R₁ und R₅ und den megativen Pol der Batteria geschaltet, währeld der Widerstand R₅ die Basis von T₅ mit der Eingangsklemme I verbinders

BEST AVAILABLE COPY

Während des Steuerimpulses sind die Transistoren T_5 , T_5 und T_1 leitend, wobei der Transistor T_5 den Ladekreis des Kondensators C schliesst und der Basisstrom des Transistors T_1 über R_1 und T_5 zum negativen Pol der Batterie fliesst. Am Ende des Impulses ist der Bremskreis in der gleichen Weise wie in Figur 1 geschlossen.

Die mit der Schaltung nach Figur 2 erzielte Einsparung ergibt sich wiederum aus der Tatsache, dass die Vorrichtung keine Energie in den Ruhezeiten zwischen den Antriebsimpulsen verbraucht, da die jeweils zur Steuerung des Bremskreistransistors notwendige Energie während des vorhergehenden Impulses gespeichert wurde.

BEST AVAILABLE COPY

PATENTANSPRUCHE

- 1. Verfahren zur Steuerung eines elektrischen Kleinstmotors, dem Antriebsimpulse aus einer Gleichspannungsquelle zugeführt werden und der einen eine parallel zur Motorwicklung geschaltete Schaltvorrichtung aufweisenden Bremskreis enthält, wobei die Schaltvorrichtung so gesteuert wird, dass dem in der Motorwicklung induzierten Strom in einem unmittelbar auf den Antriebsimpuls folgenden Zeitintervall ein sehr kleiner Widerstand entgegensteht, und diesem Strom während der Dauer des Antriebsimpulses ein hoher Widerstand entgegensteht, dadurch gekennzeichnet, dass die Schaltvorrichtung (T2) des Bremskreises durch die Entladung eines Kondensators (C)gesteuert wird, welcher während der Dauer des Antriebsimpulses aus der Gleichspannungsquelle (+, -) aufgeladen wird.
- 2. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, dass der an die Gleichspannungsquelle angeschlossene Ladekreis des genannten Kondensators zumindest die Serienschaltung des Kondensators (C) und einer Schaltvorrichtung (T₃) enthält, wobei diese Schaltvorrichtung (T₃) so gesteuert wird, dass sie während der Dauer des Antriebsimpulses geschlossen ist, und dass der Entladekreis des Kondensators (C) zumindest eine weitere Schaltvorrichtung (T₄) enthält und so ausgebildet ist, dass die Schaltvorrichtung (T₂) des Bremskreises bei der Entladung des Kondensators geschlossen wird, während die genannte Schaltvorrichtung (T₄) des Entladekreises so gesteuert wird, dass sie in dem unmittelbar auf den Antriebsimpuls folgenden Zeitintervall geschlossen ist.
- 3. Vorrichtung nach Anspruch 2, in der die Schaltvorrichtung des Bremskreises ein Transistor ist, dessen Emitter-Kollektor

strecke parallel zur Motorwicklung liegt, dadurch gekennzeichnet, dass der Entladekreis des Kondensators (C) die Basis-Emitterstrecke oder Basis-Kollektorstrecke dieses Transistors (T_2) enthält.

- 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Schaltvorrichtung des Entladekreises des Kondensators ein Transistor (T_4) ist, dessen Emitter-Kollektorstrecke über einen Widerstand (R_2) mit der Basis des Bremskreistransistors (T_2) verbunden ist, während die Basis des Transistors (T_4) des Entladekreises des Kondensators so gesteuert wird, dass dieser Transistor in dem unmittelbar auf den Antriebsimpuls folgenden Zeitintervall leitend wird.
- 5. Vorrichtung nach Anspruch 2, in welcher der Speisekreis des Motors die Serienschaltung der Gleichspannungsquelle, der Emitter-Kollektorstrecke eines Steuertransistors und der Motorwicklung enthält und der Antrieb des Motors durch die Öffnung und Schliessung des Steuertransistors unter der Einwirkung von aus einer Steuerimpulsquelle stammenden Impulsen erfolgt, dadurch gekennzeichnet, dass der Ladekreis des Kondensators (C) die Serienschaltung des Kondensators (C), der Emitter-Kollektorstrecke eines die Schaltvorrichtung des Ladekreises bilden den Transistors (T3), eines Widerstandes (R₁) und der Basis-Emitterstrecke oder Basis-Kollektorstrecke des Steuertransistors (\mathbf{T}_1) des Speisekreises aufweist, und dass die Basis des Ladekreistransistors (T_3) und die Basis des Entladekreistransistors (T_4) über Widerstände (R_3, R_4) an die Steuerimpulsquelle angeschlossen sind, so dass der Ladekreistransistor (T_3) nur während der Dauer der Steuerimpulse leitet, während welcher Dauer der Entladekreistransistor (T_A) gesperrt ist, und dass der Entladekreistransistor während eines unmittelbar auf den Steuerimpuls folgenden Zeitintervalls leitet.

- 6. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die genannte Serienschaltung des Ladekreises direkt an die Gleichspannungsquelle angeschlossen ist.
- 7. Vorrichtung nach Anspruch 6, in der der Speisekreis des Motors die Serienschaltung der Gleichspannungsquelle, der Emitter-Kollektorstrecke eines Steuertransistors und der Motorwicklung enthält, wobei der Antrieb des Motors durch die Offnung und Schliessung des Steuertransistors unter der Einwirkung von aus einer Steuerimpulsquelle stammenden Impulsen erfolgt, dadurch gekennzeichnet, dass die Basis des Steuertransistors (T_1) des Speisekreises, die Basis des Ladekreistransistors (T_3) und die Basis des Entladekreistransistors (T_4) über einen Hilfssteuerkreis an die Steuerimpulsquelle angeschlossen sind, so dass die beiden ersteren $(T_1,$ ${f T_3}$) dieser Transistoren nur während der Dauer des Steuerimpulses leiten und der dritte Transistor (T_4) zumindest während dieser Dauer gesperrt ist, und dass dieser dritte Transistor $(\mathtt{T_4})$ in einem unmittelbar auf den Steuerimpuls folgenden Zeitintervall leitet.

