c++_module_1

EX.NO: 1(A) OVERVIEW & STRUCTURE

Date:

PROGRAM STATEMENT:

Write a c++ program to display "Hello World" in first line and "Welcome to C++ Programming " in next line into the output device?

ALGORITHM:

- 1. Start the program.
- 2. Include necessary header files for input/output operations.
- 3. Define the main function.
- 4. Print "Hello World" with a newline.
- 5. Print "Welcome to C++ Programming".
- 6. End the program.

PROGRAM:

#include <iostream>

using namespace std;

int main() {

```
cout << "Hello World" << endl;
cout << "Welcome to C++ Programming" << endl;
return 0;
}</pre>
```

Output:

Input Expected Got
 ✓ - Hello World Welcome to C++ Programming Welcome to C++ Programming

Result:

Thus the display of "Hello World" in first line and "Welcome to C++ Programming " in next line into the output device is executed successfully.

EX.NO-1-B-CLASS-SCOPE-AND-ACCESSING-CLASS-MEMBERS-REFERENCE-VAR IABLES

Date:

PROGRAM STATEMENT:

To write a program in C++ to calculate the volume of a cube(declare side as private member) using

class methods.

ALGORITHM:

- 1. Start the program.
- 2. Define a Cube class with private side variable and public methods to set the side length and

calculate the volume.

- 3. In main, read the side length, create a Cube object, set the side, calculate the volume, and print it.
- 4. End the program.

```
PROGRAM :
#include <iostream>
using namespace std;

class Cube {
  private:
     float side;

public:
     // Constructor to initialize side
```

Cube(float s) : side(s) {}

```
// Function to calculate the volume
     float calculateVolume() {
          return side * side * side;
     }
};
int main() {
     float side;
     cin >> side;
     // Create an object of Cube with the given side length
     Cube cube(side);
     // Display the volume
     cout << "The Volume of Cube is:" << cube.calculateVolume() << endl;</pre>
     return 0;
}
output:
```

	Input	Expected	Got	
~	5	The Volume of Cube is:125	The Volume of Cube is:125	~
~	25	The Volume of Cube is:15625	The Volume of Cube is:15625	~
~	16	The Volume of Cube is:4096	The Volume of Cube is:4096	~

RESULT:

Thus, the C++ Program to calculate the volume of a cube(declare side as private member) using class methods created successfully.

EX.NO: 1(C) C++ CONSTRUCTORS AND DESTRUCTORS

Date:

PROGRAM STATEMENT:

Write a C++ program to display "C++ constructors" using default constructors.

ALGORITHM:

- 1. Start the program.
- 2. Define a class Cont with a default constructor that prints "C++ constructors".

3. In the main function, create an object c of class Cont, which calls the default constructor and displays the message. 4. End the program. PROGRAM: #include <iostream> using namespace std; class Example { public: // Default constructor Example() { cout << "C++ constructors" << endl;</pre> } **}**; int main() { // Create an object of Example, which will call the default constructor Example obj; return 0; }

output:

		Expected	Got	
	~	C++ constructors	C++ constructors	~
Passed all tests!				

Result:

Thus, the C++ program to display "C++ constructors" using a default constructor is created successfully.

EX.NO: 1(D) C++ MEMBER FUNCTION

Date:

PROGRAM STATEMENT:

To write a C++ program to convert Celsius into Fahrenheit using inline function

ALGORITHM:

- 1. Start the program.
- 2. Define an inline function convertToFahrenheit that takes a float celsius as input and returns the

Fahrenheit equivalent using the formula (celsius * 9.0 / 5.0) + 32.

3. In the main function, declare a float variable celsius to store the temperature.

- 4. Read the Celsius temperature from the user and store it in celsius.
- 5. Call the convertToFahrenheit function with celsius as the argument and store the result in the

fahrenheit variable.

- 6. Print the converted temperature in Fahrenheit.
- 7. End the program.

```
Program:
#include <iostream>
using namespace std;
// Inline function to convert Celsius to Fahrenheit
inline float convertToFahrenheit(float celsius) {
     return (celsius *9.0/5) + 32;
}
int main() {
     float celsius;
     // Input the temperature in Celsius
     cin >> celsius;
     // Convert and display the temperature in Fahrenheit
     cout << "temperature in Fahrenheit:" << convertToFahrenheit(celsius)</pre>
```

```
<< endl;
return 0;
}
```

output:

	Input	Expected	Got		
~	40	temperature in Fahrenheit:104	temperature in Fahrenheit:104	~	
~	45	temperature in Fahrenheit:113	temperature in Fahrenheit:113	~	
~	20	temperature in Fahrenheit:68	temperature in Fahrenheit:68	~	
Passed all tests! ✓					

Result:

Thus, the C++ program to convert Celsius into Fahrenheit using inline function is implemented successfully.