Course #4:

Recurrent Neural Networks

Roadmap

• Recap from course #3

Auto-encoders

Recurrents Neural Networks

Lecture. #3 Things to know (AE)

- Auto-encoder
- Latent variable
- UNet
- ResNet

Recurrent Neural Networks

Application to text data

Language Translation

Encoder-Decoder Architecture

https://towardsdatascience.com/understanding-neural-machine-translation-encoder-decoder-architecture-80f205643ba4

Applications to geoscience

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

A Deep Learning Method With Merged LSTM Neural Networks for SSHA Prediction

Tao Song O, Senior Member, IEEE, Jingyu Jiang, Wei Li, and Danya Xu

AGU100 EARTHAND SPACE SCIENCE

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1029/2018JD028375

Key Points:

- Artificial intelligence techniques are useful tools in support of forecasting complex precipitation in short range ID-6 bd
- Long Short-Term Memory structure is capable of learning spatial and temporal correlations, efficiently
- The framework provides accurate precipitation forecasts, especially for

Short-Term Precipitation Forecast Based on the PERSIANN System and LSTM Recurrent Neural Networks

Ata Akbari Asanjan¹ (0), Tiantian Yang^{1,2} (0), Kuolin Hsu^{1,3}, Soroosh Sorooshian¹ (0), Jungjang Lin⁴, and Oidong Peng⁴

¹Department of Civil and Environmental Engineering, Center for Hydrometeorology and Remote Sensing, University of California, Irvine, CA, USA, ²School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA, ³Center for Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan, ⁴China Institute of Water Resources and Hydropower Research, Beijing, China

2853

Recurrent Neural Networks

Applications:

- Time-series forecasting
- Audio processing
- Translation

•

Do CNNs also apply?

RNN: Underlying formulation (similar to state-space representation)

```
x \rightarrow \text{input vector}
                                                               h \rightarrow hidden state
                                                               t \rightarrow \text{index (time, index, etc...)}
y \rightarrow \text{output vector}
     W_{hy}
                                                             W_{hy}
                                                                                 W_{hv}
                                                                                                     W_{hy}
                                                                                      W_{hh}
            W_{hh}
     W_{xh}
                                                             W_{xh}
                                                                                 W_{xh}
                                                                                                     W_{xh}
  X_{t-1}
                                                         X_{t-1}
Fold
                                                                        Unfold
```

 $h_t = f(W_{hh}h_{t-1} + W_{xh}x_t)$ and $y_t = g(W_{hy}h_t)$

RNN: Underlying formulation (similar to state-space representation)

Classic RNN Architectures

Conventional RNN with sigmoid

- The sensitivity of the input values decays over time
- The network forgets the previous input

Long-Short Term Memory (LSTM) [2]

- The cell remember the input as long as it wants
- The output can be used anytime it wants

Dense and convolutional versions of LSTM and GRU exist (depending on the structure of the hidden state)

Short-term forecasting application (L63 case-study)

https://github.com/CIA-Oceanix/DLCourse_MOi_2022/blob/main/notebooks/notebook_PytorchLightning_Forecasting_L63_students.ipynb

Lecture. #3 Things to know (RNN)

- Recurrent Neural Network
- LSTM
- Unfloded and folded representations

Physics-informed/theoryguided networks

General question

How to exploit physical knowledge in the design of neural networks?

Bridging physics & Al: a broader picture

Physical model

$$\frac{\partial u}{\partial t} + \langle \nabla u, v \rangle = \kappa \Delta u$$

Representation learning

Trainable representation

Making the most of AI and Physics Theory

- Model-Driven/Theory-Guided & Data-Constrained schemes
- Data-Driven & Physics-Aware schemes (eg, Ouala et al., 2019)

15

Bridging Physics & Al: a broader picture

Physics-informed & Data-constrained

Data-driven & Physics-aware

Bridging physics & Al: a broader picture

Physical model

$$\frac{\partial u}{\partial t} + \langle \nabla u, v \rangle = \kappa \Delta u$$

Representation learning

Trainable representation

Making the most of AI and Physics Theory

- Model-Driven/Theory-Guided & Data-Constrained schemes
- Data-Driven & Physics-Aware schemes (eg, Ouala et al., 2019)

17

How to embed physics-driven priors in DL models?

An illustration through L63 dynamics: numerical experiments (Fablet et al., 2018)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \sigma \left(y(t) - x(t) \right)$$

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = x(t) \left(\rho - z(t) \right) - y(t)$$

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = x(t) y(t) - \beta z(t)$$

Associated Euler integration scheme $d_t X(t) = F_{\theta} (X(t))$

How to embed physics-driven priors in DL models?

An illustration through L63 dynamics: numerical experiments (Fablet et al., 2018)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = \sigma\left(y(t) - x(t)\right)$$

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = x(t)\left(\rho - z(t)\right) - y(t)$$

$$\frac{\mathrm{d}z(t)}{\mathrm{d}t} = x(t)y(t) - \beta z(t)$$
Lorenz-63 equations

Generalization to higher-order integration schemes (eg, RK4)

$$d_t X(t) = F_{\theta} \left(X(t) \right)$$

$$X(t+\delta) = X(t) + \sum_i \beta_i k_i$$
 with $k_i = F_{\theta} \left(X(t) + \delta \alpha_i k_{i-1} \right)$

NB: Same number of trainable model parameters as the Euler-based architecture

How to embed physics-driven priors in DL models?

An illustration through L63 dynamics: numerical experiments (Fablet et al., 2018)

Forecasting experiments					
Noise-free training data					
Forecasting time step	t _o +h	t ₀ +4h	t ₀ +8h		
Analog forecasting	<10-6	0.002	0.005		
Sparse regression	<10-6				
MLP	<10-6	0.018	0.044		
Bi-NN(4)	<10-6	<10-6	<10-6		
Noisy training data (σ =0.5)					
Forecasting time step	t _o +h	t ₀ +4h	t ₀ +8h		
Analog forecasting	<10-6	2.01	2.2		
Bi-NN(4)	<10-6	0.054	0.14		
-					

Assimilation experiment (1 obs. every 8 time steps)					
Noise standard deviation in training data		-	1		
True model	<u>0.50</u>	-	-		
Analog forecasting	0.65	1.17	1.81		
Bi-NN(4)	0.60	0.75	0.86		

NN Generator from Symbolic PDEs

(Pannekoucke et al., 2020)

Transformer Networks Some links

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Leading architectures for image classification and natural language processing https://arxiv.org/abs/1706.03762

Deep Learning & DTO

Deep Learning and EDITO Model Lab

Deep Learning and EDITO Model Lab

WP2. Deep Differentiable Emulators for Ocean Modeling and Forecasting

WP2.2 DDE for ocean forecasting/simulation

Objective: Deep learning models to emulate the simulation of specific variables

Deep Learning and EDITO Model Lab

WP2. Deep Differentiable Emulators for Ocean Modeling and Forecasting

WP2.3 DDE for ocean data assimilation

Deep Learning and EDITO Model Lab

WP2. Deep Differentiable Emulators for Ocean Modeling and Forecasting

WP2.1 DDE for the calibration of OGCM components

Approach: learning a DL architecture to emulate the system to calibrate param#2 while accounting to impact/interactions with other components of the system