Lecture 9: Graph Algorithms (III)

Dr. Tsung-Wei Huang
Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT

Maximum Flow

- ☐ Find a maximum feasible s-t flow in a graph
 - ☐ s is a source node
 - ☐ t is a target (sink) node

Problem Formulation

■ Network flow problem

- □ A flow network G=(V,E): a directed graph, where each edge $(u,v) \in E$ has a nonnegative capacity c(u,v) >= 0.
- \square If $(u,v) \notin E$, we assume that c(u,v)=0.
- ☐ two distinct vertices :a source s and a sink t.

Flow Constraint

- \Box G=(V,E): a flow network with capacity function c.
- \square s -- the source and t -- the sink.
- \Box A flow f(u, v) in G must satisfy
 - 1. Capacity constraint
 - For all $u,v \in V$, we require $f(u,v) \leq c(u,v)$.
 - 2. Flow conservation
 - For all $u \in V-\{s,t\}$, we require

$$\sum_{e.in.v} f(e) = \sum_{e.out.v} f(e)$$

Objective

- ☐ The quantity f (u,v) is called the net flow from vertex u to vertex v.
- ☐ The value of a flow is defined as

$$|f| = \sum_{v \in V} f(s, v)$$

- ☐ The total flow from source to any other vertices.
- ☐ The same as the total flow from any vertices to the sink.

A flow f in G with value

$$|f| = 19$$

Recap

- ☐ Given a flow network G with source s and sink t
- ☐ Find a flow of maximum flow value from s to t.
- ☐ How to solve it efficiently?
 - ☐ Brute force ...?

Ford-Fulkerson Framework

```
FORD-FULKERSON-FRAMEWORK(G, s, t)
initialize flow f to 0
while there exists an augmenting path p
   do augment flow f along p
return f
```

Why Framework not Algorithm?

- ☐ The framework is iterative
- □ Augmenting flow has different implementations
 - ☐ Each implementation is a different algorithm
- Augmenting flow is equivalent to finding a path
 - \square u \rightarrow v is connected if there remains capacity (non-zero)
 - \square u \rightarrow v is disconnected if the capacity is zero

☐ What is the maximum flow?

☐ Let's do DFS to augment flow: iter1 finds flow 1

□ Update remaining capacity

☐ Let's do DFS to augment flow: iter2 finds flow 1

□ Update remaining capacity

☐ Can we augment any flow through DFS?

☐ Maximum flow: 2

What is the Problem?

- ☐ DFS has no order guarantee!
 - ☐ Order you visit vertices is up to the graph data structure
 - ☐ Different orders may update capacity differently
 - In turn affect the solution

☐ DFS finds another route in the first iteration

□ Update remaining capacity

☐ DFS to augment the flow? Maximum flow = 1?

Residual Network

- ☐ Residual network defines edges to admit net flow
 - ☐ The amount of additional net flow from u to v before exceeding the capacity c(u,v) is the residual capacity of (u,v), given by:
 - In the regular direction: $c_f(u,v)=c(u,v)-f(u,v)$
 - In the opposite direction: $c_f(v, u) = c(v, u) + f(u, v)$.

☐ DFS augments a unit flow in the first iteration

☐ Update the residual network

☐ Residual network gives a chance to "circle back"

☐ DFS augments another unit flow in the second iter

□ Update residual network

☐ Maximum flow: 2

Initial

(a) Maximum flow: 4

(b) Maximum flow: 4 + 7

(c) Maximum flow: 4 + 7 + 8

Code Snippet

```
while(1) {
  // ... initialize BFS storage
  while(!BFS.empty()) {
    now = BFS.front();
    for(next=0; next<n; next++) {</pre>
       if(visited[next])continue;
      if(mat[now][next]-flow[now][next]>0) { // Positive direction
         p[next] = now, visited[next] = true;
         BFS.push(next);
       else if(flow[next][now]>0) {
                                          // Opposite direction
          p[next] = -now, visited[next] = true;
          BFS.push(next);
    BFS.pop();
 if(!visited[sink]) break; //If not find the augmenting path.
  for(minf=INF, i=sink; i!=source; i=abs(p[i])) {
    if(p[i]>=0) minf = min(minf, mat[p[i]][i]-flow[p[i]][i]);
    else minf = min(minf, flow[i][-p[i]]);
    for(i=sink; i!=source; i=abs(p[i])) {
      if(p[i] \ge 0) flow[p[i]][i] += minf;
      else flow[i][-p[i]] -= minf;
  for(i=0; i<n; i++) MAX FLOW += flow[source][i];</pre>
  return MAX_FLOW;
```

Bipartite Matching

- ☐ A matching in a *Bipartite Graph* is a set of the edges chosen in such a way that no two edges share an endpoint.
- ☐ A maximum matching is a matching of maximum size (maximum number of edges).
- In a maximum matching, if any edge is added to it, it is no longer a matching. There can be more than one maximum matchings for a given Bipartite Graph.

Tremendous real applications ...

Maximum Bipartite Matching

Maximum Bipartite Matching

s-t Cut

☐ A s-t cut of a graph G consists of an edge set E such that G - E separate s and t in two components

Minimum s-t Cut

☐ The s-t cut set with the minimum weight

Minimum s-t Cut

☐ The s-t cut set with the minimum weight

Observation

- Can we give upper bounds on the maximum flow value before finding any augmenting paths?
- One possible upper bound is the total capacity of the arcs leaving the source:
- Another upper bound is the total capacity of the arcs entering the sink:

Note that this upper bound is equal to the maximum flow value.

Thus, we could recognize that the algorithm output is optimal simply by comparing the flow value with the upper bound.

☐ Maximum flow: 5

☐ Find the upper bound of the flow value

- ☐ Residual network tells us the separation!
 - ☐ For brevity, we only show normal directions

☐ All nodes reachable from s belong to the same side!

- ☐ We can do another traversal to find the partition
 - ☐ Cut on s side: {S, A}
 - ☐ Cut on t side: {B, C, D, T}

Summary

- Maximum flow
- **☐** Bipartite matching
- ☐ Minimum s-t cut