Practice Problems Ty Darnell

Problem 4.63

$$EZ = 0$$

$$Z = g(X) = \log(X)$$
 Since $g(X)$ is concave:
$$E(g(X)) \leq g(EX)$$

$$0 \leq g(EX)$$

$$0 \leq \log(EX)$$

$$e^0 \leq e^{\log EX}$$

$$1 \leq EX$$

EX > 1 unless for every line a+bx that is tangent to g(X) at x = EX, P(g(X) = a+bX) = 1 $\log(x)$ is linear on an interval only if the interval is a single point

Thus
$$EX > 1$$
 unless $P(X = EX) = 1$

$$Z = \log(X)$$

$$EZ = 0$$

$$X = e^{Z}$$

$$g(z) = e^{z}$$
Since e^{z} is convex :
$$EX = E(g(Z)) \ge g(EZ)$$

$$EX \ge g(0) = e^{0} = 1$$

$$E(X) \ge 1$$

E(X)=1 iff there is an interval I with $P(Z\in I)=1$ and g(z) is linear on I e^z is only linear on an interval if the interval is a single point

Thus
$$E(X) > 1$$
 unless $P(Z = EZ = 0) = 1$

Problem 4.64

(a)

$$|a+b|^2 = (a+b)(a+b) = a^2 + 2ab + b^2$$

$$(|a|+|b|)^2 = |a|^2 + 2|ab| + |b|^2$$

$$a^2 + 2ab + b^2 \le |a|^2 + 2|ab| + |b|^2$$

$$|a+b|^2 \le (|a|+|b|)^2$$

Practice Problems Ty Darnell

$$\sqrt{|a+b|^2} \le \sqrt{(|a|+|b|)^2}$$

 $|a+b| \le |a|+|b|$

(b)

WTS:
$$E|X+Y| \le E|X| + E|Y|$$

 $|X+Y| \le |X| + |Y|$ plugging X and Y into the triangle inequality
 $E|X+Y| \le E[|X| + |Y|]$ taking the expectation of both sides
 $E|X+Y| \le E|X| + E|Y|$ by linearity of expectation

Problem 4.65

WTS: $E(XY) \leq EXEY$ if X is nondecreasing, Y is nonincreasing $Cov(X,Y) = E(XY) - EXEY \leq 0$ since there is negative correlation between X and Y (or no correlation) Thus $E(XY) \leq EXEY$

If X and Y are both nonincreasing or nondecreasing:

There is positive correlation (or no correlation)

$$Cov(X,Y) = E(XY) - EXEY \ge 0$$

Thus $E(XY) \ge EXEY$