Approximate Differential Privacy

Approximate differential privacy, also called (ϵ, δ) -differential privacy, has the following definition:

$$\Pr[F(x) = S] \le e^{\epsilon} \Pr[F(x') = s] + \delta$$

The new privacy parameter, δ , represents a "failure probability" for the definition. With probability $1-\delta$, we will get the same guarantee as pure differential privacy; with probability δ , we get no guarantee. In other words:

- With probability $1-\delta$, $\frac{\Pr[F(x)=S]}{\Pr[F(x')=s]} \leq e^{\epsilon}$
- With probability δ , we get no guarantee at all

This definition should seem a little bit scary! With probability δ , anything at all could happen - including a release of the entire sensitive dataset! For this reason, we typically require δ to be very small - usually $\frac{1}{n^2}$ or less, where n is the size of the dataset. In addition, we'll see that the (ϵ, δ) -differentially private mechanisms in practial use don't fail catastrophically, as allowed by the definition - instead, they fail gracefully, and don't do terrible things like releasing the entire dataset.

Such mechanisms *are* possible, however, and they do satisfy the definition of (ϵ, δ) -differential privacy. We'll see an example of such a mechanism later in this section.

The Gaussian Mechanism

The Gaussian mechanism is an alternative to the Laplace mechanism, which adds Gaussian noise instead of Laplacian noise. The Gaussian mechanism does *not* satisfy pure ϵ -differential privacy, but does satisfy (ϵ, δ) -differential privacy. According to the Gaussian mechanism, for a function f(x) which returns a number, the following definition of F(x) satisfies (ϵ, δ) -differential privacy:

$$F(x) = f(x) + \mathcal{N}(\sigma^2)$$
where $\sigma^2 = \frac{2s^2 \log(1.25/\delta)}{\epsilon^2}$

where s is the sensitivity of f, and $\mathcal{N}(\sigma^2)$ denotes sampling from the Gaussian (normal) distribution with center 0 and variance σ^2 . Note that here (and elsewhere in these notes), \log denotes the natural logarithm.

For real-valued functions $f:D\to\mathbb{R}$, we can use the Gaussian mechanism in exactly the same way as we do the Laplace mechanism, and it's easy to compare what happens under both mechanisms for a given value of ϵ .

```
In [3]: %matplotlib inline
   import matplotlib.pyplot as plt
   plt.style.use('seaborn-whitegrid')
   import pandas as pd
   import numpy as np

        epsilon = 1
        vals_laplace = [np.random.laplace(loc=0, scale=1/epsilon) for x in range(100)

        delta = 10e-5
        sigma = np.sqrt(2 * np.log(1.25 / delta)) * 1 / epsilon
        vals_gauss = [np.random.normal(loc=0, scale=sigma) for x in range(100000)]

        plt.hist(vals_laplace, bins=50, label='Laplace')
        plt.hist(vals_gauss, bins=50, alpha=.7, label='Gaussian');
        plt.legend();
```


Here, we graph the empirical probability density function of the Laplace and Gaussian mechanisms for $\epsilon = 1$, with $\delta = 10^{-5}$ for the Gaussian mechanism.

Compared to the Laplace mechanism, the plot for the Gaussian mechanism looks "squished." Differentially private outputs which are far from the true answer are much more likely using the Gaussian mechanism than they are under the Laplace mechanism (which, by comparison, looks extremely "pointy").

So the Gaussian mechanism has two major drawbacks - it requires the use of the the relaxed (ϵ, δ) -differential privacy definition, and it's less accurate than the Laplace mechanism. Why would we want to use it?

Vector-Valued Functions and their Sensitivities

So far, we have only considered real-valued functions (i.e. the function's output is always a single real number). Such functions are of the form $f:D\to\mathbb{R}$. Both the Laplace and Gaussian mechanism, however, can be extended to vector-valued functions of the form $f:D\to\mathbb{R}^k$, which return vectors of real numbers. We can think of histograms as vector-valued functions, which return a vector whose elements consist of histogram bin counts.

We saw earlier that the sensitivity of a function is:

$$GS(f) = \max_{d(x,x') \le 1} |f(x) - f(x')|$$

How do we define sensitivity for vector-valued functions?

Consider the expression f(x) - f(x'). If f is a vector-valued function, then this expression represents the difference between two vectors, which can be computed as the difference between their corresponding elements (the difference of two length-k vectors is thus a new length-k vector). This new vector is the distance between f(x) and f(x'), represented as a vector.

The magnitude of this vector is the sensitivity of f. There are several ways to compute the magnitude of a vector; we'll use two of them: the L1 norm and the L2 norm.

L1 and L2 Norms

The L1 norm of a vector V of length k is defined as $||V||_1 = \sum_{i=1}^k |V_i|$ (i.e. it's the sum of the vector's elements). In 2-dimensional space, the L1 norm of the difference between two vectors yields the "manhattan distance" between them.

The L2 norm of a vector V of length k is defined as $\|V\|_2 = \sqrt{\sum_{i=1}^k V_i^2}$ (i.e. the square root of the sum of the squares). In 2-dimensional space, this is the "Euclidian distance," and it's always less than or equal to the L1 distance.

L1 and L2 Sensitivities

The L1 sensitivity of a vector-valued function f is:

$$GS(f) = \max_{d(x,x') \le 1} ||f(x) - f(x')||_1$$

This is equal to the sum of the *elementwise* sensitivities. For example, if we define a vector-valued function f that returns a length-k vector of 1-sensitive results, then the L1 sensitivity of f is k.

Similarly, the L2 sensitivity of a vector-valued function f is:

$$GS_2(f) = \max_{d(x,x') \le 1} ||f(x) - f(x')||_2$$

Using the same example as above, a vector-valued function f returning a length-k vector of 1-sensitive results has L2 sensitivity of \sqrt{k} . For long vectors, the L2 sensitivity will obviously be much lower than the L1 sensitivity! For some applications, like machine learning algorithms (which sometimes return vectors with thousands of elements), L2 sensitivity is *significantly* lower than L1 sensitivity.

Choosing Between L1 and L2

As mentioned earlier, both the Laplace and Gaussian mechanisms can be extended to vector-valued functions. However, there's a key difference between these two extensions: the vector-valued Laplace mechanism **requires** the use of L1 sensitivity, while the vector-valued Gaussian mechanism allows the use of either L1 or L2 sensitivity. This is a major strength of the Gaussian mechanism. For applications in which L2 sensitivity is much lower than L1 sensitivity, the Gaussian mechanism allows adding *much* less noise.

- The **vector-valued Laplace mechanism** releases $f(x) + (Y_1, \dots, Y_k)$, where Y_i are drawn i.i.d. from the Laplace distribution with scale $\frac{s}{\epsilon}$ and s is the L1 sensitivity of f
- The **vector-valued Gaussian mechanism** releases $f(x)+(Y_1,\ldots,Y_k)$, where Y_i are drawn i.i.d. from the Gaussian distribution with $\sigma^2=\frac{2s^2\log(1.25/\delta)}{\varepsilon^2}$ and s is the L2 sensitivity of f

The Catastrophe Mechanism

The definition of (ϵ, δ) -differential privacy says that a mechanism which satisfies the definition must "behave well" with probability $1-\delta$. That means that with probability δ , the mechanism can do anything at all. This "failure probability" is concerning, because mechanisms which satisfy the relaxed definition may (with low probability) result in very bad outcomes.

Consider the following mechanism, which we will call the catastrophe mechanism:

F(q, x) =Sample a number r from the uniform distribution between 0 and 1 If $r < \delta$, return xOtherwise, return $q(x) + \text{Lap}(s/\epsilon)$, where s is the sensitivity of q

With probability $1-\delta$, the catastrophe mechanism satisfies ϵ -differential privacy. With probability δ , it *releases the whole dataset with no noise*. This mechanism satisfies the definition of approximate differential privacy, but we probably wouldn't want to use it in practice.

Fortunately, most (ϵ, δ) -differentially private mechanisms don't have such a catastrophic failure mode. The Gaussian mechanism, for example, doesn't ever release the whole dataset. Instead, with probability δ , the Gaussian mechanism doesn't *quite* satisfy ϵ -differential privacy - it satisfies $c\epsilon$ -differential privacy instead, for some value ϵ .

The Gaussian mechanism thus fails *gracefully*, rather than catistrophically, so it's reasonable to have far more confidence in the Gaussian mechanism than in the catastrophe mechanism. Later, we will see alternative relaxations of the definition of differential privacy which distinguish between mechanisms that fail gracefully (like the Gaussian mechanism) and ones that fail catastropically (like the catastrophe mechanism).

Advanced Composition

We have already seen two ways of combining differentially private mechanisms: sequential composition and parallel composition. It turns out that (ϵ, δ) -differential privacy admits a new way of analyzing the sequential composition of differentially private mechanisms, which can result in a lower privacy cost.

The advanced composition theorem is usually stated in terms of mechanisms which are instances of k-fold adaptive composition. A k-fold adaptive composition is a sequence of mechanisms m_1, \ldots, m_k such that:

- Each mechanism m_i may be chosen based on the outputs of all previous mechanisms m_1, \ldots, m_{i-1} (hence adaptive)
- The input to each mechanism m_i is both the private dataset and all of the outputs of previous mechanisms (hence *composition*)

Iterative programs (i.e. loops or recursive functions) are nearly always instances of k-fold adaptive composition. A for loop that runs 1000 iterations, for example, is a 1000-fold adaptive composition. As a more specific example, an averaging attack is a k-fold adaptive composition:

```
In [8]: # works for sensitivity-1 queries
def avg_attack(query, epsilon, k):
    results = [query + np.random.laplace(loc=0, scale=1/epsilon) for i in ra
    return np.mean(results)

avg_attack(10, 1, 500)
```

Out[8]: 10.070538197421769

In this example, the sequence of mechanisms is fixed ahead of time (we use the same mechanism each time), and k = 500.

The standard sequential composition theorem says that the total privacy cost of this mechanism is $k\epsilon$ (in this case, 500ϵ).

The advanced composition theorem says:

- If each mechanism m_i in a k-fold adaptive composition m_1, \ldots, m_k satisfies ϵ -differential privacy
- Then for ϵ' , $\delta \geq 0$, the total privacy cost of the entire k-fold adaptive composition is equal to ϵ' , δ , where:

$$\epsilon' = 2\epsilon \sqrt{2k \log(1/\delta)}$$

Plugging in $\epsilon = 1$ from the example above, and setting $\delta = 10^{-5}$, we get:

$$\epsilon' = 2\sqrt{1000 \log(100000)}$$

\$\approx 214.59

So advanced composition derives a much lower bound on ϵ' than sequential composition, for the same mechanism. What does this mean? It means that the bounds given by sequential composition are loose - they don't tightly bound the actual privacy cost of the computation. In fact, advanced composition also gives loose bounds - they're just slightly less loose than the ones given by sequential composition.

It's important to note that the two bounds are technically incomparable, since advanced composition introduces a δ . When δ is small, however, we will often compare the ϵ s given by both methods.

So, should we *always* use advanced composition? It turns out that we should *not*. Let's try the experiment above for different values of k, and graph the *total privacy cost* under both sequential composition and advanced composition.

```
In [13]: epsilon = 1
    delta = 10e-5

def adv_comp(k):
        return 2*epsilon*np.sqrt(2*k*np.log(1/delta))

def seq_comp(k):
        return k*epsilon

plt.plot([seq_comp(k) for k in range(100)], label='Sequential Composition')
    plt.plot([adv_comp(k) for k in range(100)], label='Advanced Composition')
    plt.legend();
```


Standard sequential composition, it turns out, beats advanced composition for k smaller than about 70. Thus, advanced composition is only really useful when k is large (e.g. more than 100). When k is very large, though, advanced composition can make a big difference.

In [14]: plt.plot([seq_comp(k) for k in range(10000)], label='Sequential Composition'
 plt.plot([adv_comp(k) for k in range(10000)], label='Advanced Composition')
 plt.legend();

