Pochodna Frecheta (pochodna mocna)

Z rachunku różniczkowego funkcji jednej zmiennej wiemy, że dla funkcji różniczkowalnych prawdziwe jest twierdzenie o przedstawieniu przyrostu funkcji. Możliwość odpowiedniego przedstawienia przyrostu funkcji, może być wykorzystana jako alternatywny sposób zdefiniowania różniczkowalności. To podejście do różniczkowalności można łatwo uogólnić na funkcje wielu zmiennych.

Def. Funkcja $f: R^k \supset Ot(\mathbf{x}, \delta) \ni \mathbf{x} \to f(\mathbf{x}) \in R$ jest różniczkowalna w punkcie \mathbf{x} jeżeli istnieją stałe $A_1, ..., A_k$ takie, że dla dostatecznie małych przyrostów $\mathbf{h} = (h_1, ..., h_k)$

$$f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=A_1h_1+...+A_kh_k+r(\mathbf{x},\mathbf{h})$$
, przy czym $\lim_{\mathbf{h}\to 0}\frac{r(\mathbf{x},\mathbf{h})}{\|\mathbf{h}\|}=0$.

Wyrażenie $A_1h_1+...+A_kh_k$ można zapisać w postaci macierzowej \mathbf{A} \mathbf{h} , gdzie $\mathbf{A}=[A_1,...,A_k]$, $\mathbf{h}=\begin{bmatrix}h_1\\ \vdots\\ h_k\end{bmatrix}$.

Pochodną funkcji f w punkcie x nazywamy odwzorowanie liniowe L: $R^n \rightarrow R$ reprezentowane przez macierz A, czyli warunek różniczkowalności można zapisać

$$f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=\mathbf{L} \mathbf{h}+r(\mathbf{x},\mathbf{h})$$
, przy czym $\lim_{\mathbf{h}\to 0}\frac{r(\mathbf{x},\mathbf{h})}{\|\mathbf{h}\|}=0$.

Fakty:

- jeżeli f jest różniczkowalna w punkcie \mathbf{x} , to jest ona ciągła w punkcie \mathbf{x}
- jeżeli f jest różniczkowalna w \mathbf{x} , to f ma w \mathbf{x} pochodne kierunkowe w dowolnym kierunku, więc ma także pochodne cząstkowe, przy czym $A_i = \frac{\partial f}{\partial x_i}(\mathbf{x})$
- jeżeli f ma w $Ot(\mathbf{x}, \delta)$ pochodne cząstkowe ciagle w x, to f jest różniczkowalna w x
- jeżeli f jest różniczkowalna, to $f_k(x) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}) k_i$ w zapisie macierzowym

$$f_{k}(x) = \mathbf{A}\mathbf{k}$$

Uzasadnienia powyższych faktów

Tw. Jeżeli f jest różniczkowalna w punkcie x, to jest ona ciągła w punkcie x.

Jest to natychmiastowa konsekwencja definicji różniczkowalności

Pochodne cząstkowe i kierunkowe a różniczkowalność.

$$f \text{ jest różniczkowalna w punkcie } \mathbf{x} \Rightarrow f(\mathbf{x} + t\mathbf{k}) - f(\mathbf{x}) = \mathbf{f}'(\mathbf{x}) \cdot t\mathbf{k} + r(x, t\mathbf{k}) \quad /: t \quad r(\mathbf{x}, t\mathbf{k}) = \sigma(\|t\mathbf{k}\|)$$

$$\frac{f(\mathbf{x} + t\mathbf{k}) - f(\mathbf{x})}{t} = \mathbf{f}'(\mathbf{x}) \cdot \mathbf{k} + \frac{r(\mathbf{x}, t\mathbf{k})}{t}$$

$$\left|\frac{r(\mathbf{x}, t\mathbf{k})}{t}\right| = \frac{|r(\mathbf{x}, t\mathbf{k})|}{\|t\mathbf{k}\|} \|\mathbf{k}\| \to 0, \text{ gdy } t \to 0 \Rightarrow f_{\mathbf{k}}'(\mathbf{x}) = \mathbf{f}'(\mathbf{x}) \mathbf{k}$$

EAiIB-Informatyka-Wykład 10- dr Adam Ćmiel - cmiel@.agh.edu.pl

Niech e_i - *i*-ty wektor bazy kanonicznej

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = f'_{\mathbf{e}_i}(\mathbf{x}) = \begin{bmatrix} A_1, \dots, A_k \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \leftarrow \{\text{i-te miejsce }\} = A_i$$

$$\mathbf{f'}(\mathbf{x}) = \mathbf{grad} \ f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial x_k}(\mathbf{x})\right] - \text{gradient funkcji } f \text{ w punkcie } \mathbf{x}$$

Ogólnie dla $\mathbf{f}: R^k \supset D \to R^m$

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix} = \sum_{j=1}^m f_j(\mathbf{x}) \overline{\mathbf{e}}_j \qquad \mathbf{f}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f_1}{\partial x_k}(\mathbf{x}) \\ \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}), \dots, \frac{\partial f_m}{\partial x_k}(\mathbf{x}) \end{bmatrix}_{m \times k}$$

Pokazano więc fakt: Jeżeli funkcja $\mathbf{f}: R^k \supset D \to R^m$, $\mathbf{x} \in D$ - otwarty, jest różniczkowalna w punkcie $\mathbf{x} \in D$, to istnieją pochodne cząstkowe $\frac{\partial f_j}{\partial x_i}(\mathbf{x}), j=1,...,m$ i=1,...,n.

Twierdzenie odwrotne nie zachodzi, tzn. istnienie pochodnych cząstkowych nie gwarantuje różniczkowalności (a nawet nie gwarantuje ciągłości)

$$\mathbf{x} = (x_1, x_2)$$
 $\mathbf{h} = (h_1, h_2)$ $f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2) = f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2 + h_2) + f(x_1, x_2 + h_2) - f(x_1, x_2) = z$ tw. Lagrange'a o wartości średniej

$$=\frac{\partial f}{\partial x_1}(\mathbf{c}_1)h_1+\frac{\partial f}{\partial x_2}(\mathbf{c}_2)h_2=$$

$$= \frac{\partial f}{\partial x_1}(\mathbf{x})h_1 + \frac{\partial f}{\partial x_2}(\mathbf{x})h_2 + \left(\frac{\partial f}{\partial x_1}(\mathbf{c}_1) - \frac{\partial f}{\partial x_1}(\mathbf{x})\right)h_1 + \left(\frac{\partial f}{\partial x_2}(\mathbf{c}_2) - \frac{\partial f}{\partial x_2}(\mathbf{x})\right)h_2$$

Wystarczy pokazać, że $r(\mathbf{x}, \mathbf{h}) = o(||\mathbf{h}||)$ czyli, że

$$\lim_{(h_1,h_2)\to(0,0)} \left| \frac{\partial f}{\partial x_1}(\mathbf{c}_1) - \frac{\partial f}{\partial x_1}(\mathbf{x}) \right| \frac{|h_1|}{\sqrt{h_1^2 + h_2^2}} + \left| \frac{\partial f}{\partial x_2}(\mathbf{c}_2) - \frac{\partial f}{\partial x_2}(\mathbf{x}) \right| \frac{|h_2|}{\sqrt{h_1^2 + h_2^2}} = 0.$$

Jest to prawda, gdyż

$$\lim_{(h_1,h_2)\to(0,0)} \left| \frac{\partial f}{\partial x_1}(\mathbf{c}_1) - \frac{\partial f}{\partial x_1}(\mathbf{x}) \right| = 0 \text{ i } \lim_{(h_1,h_2)\to(0,0)} \left| \frac{\partial f}{\partial x_2}(\mathbf{c}_2) - \frac{\partial f}{\partial x_2}(\mathbf{x}) \right| = 0 \text{ z ciagłości pochodnych}$$

cząstkowych w **x** a wyrażenia $\frac{|h_1|}{\sqrt{h_1^2 + h_2^2}}$ i $\frac{|h_2|}{\sqrt{h_1^2 + h_2^2}}$ są ograniczone,

Interpretacja geometryczna pochodnej

Niech $f: X \supset D \to Y$. Zbiór punktów $W = \{(\mathbf{x}, f(\mathbf{x})) \in X \times Y : \mathbf{x} \in D \subset X\}$ nazywamy wykresem funkcji $f: X \supset D \to Y$.

Fakt. Jeżeli funkcja $f: X \supset D \to Y$ jest różniczkowalna w punkcie $\mathbf{a} \in D$ to wektor $\mathbf{s} \in X \times Y$ jest styczny do wykresu W funkcji f w punkcie $(\mathbf{a}, f(\mathbf{a}))$ wtedy i tylko wtedy, gdy istnieje wektor $\mathbf{h} \in X$ taki, że

$$s=(\mathbf{h}, f'(\mathbf{a})\cdot\mathbf{h})$$

Tw. Jeżeli funkcja $\mathbf{f}: X \supset E \to Y$ jest różniczkowalna w punkcie $\mathbf{a} \in E$, to hiperpłaszczyzna w $X \times Y$ o równaniu $\mathbf{y} = \mathbf{f}(\mathbf{a}) + \mathbf{f}'(\mathbf{a})(\mathbf{x} - \mathbf{a})$ jest hiperpłaszczyzną styczną do wykresu funkcji \mathbf{f} w punkcie $(\mathbf{a}, \mathbf{f}(\mathbf{a}))$.

Przypadki szczególne

• $\mathbf{r}: [\alpha, \beta] \ni t \to \mathbf{r}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} \in R^3$ jest funkcją wektorową, którą interpretujemy jako opis parametryczny krzywej w R^3 . Załóżmy, że funkcja ta jest różniczkowalna w punkcie $t_0 \in [\alpha, \beta]$

Pochodna $\dot{\mathbf{r}}(t_0)$ jest odwzorowaniem liniowym ciągłym z $R \le R^3$ reprezentowanym przez

macierz
$$\mathbf{r}'(t_0) = \begin{bmatrix} x'(t_0) \\ y'(t_0) \\ z'(t_0) \end{bmatrix}$$
. Prosta o równaniu parametrycznym $\mathbf{r} = \mathbf{r}(t_0) + \mathbf{r}'(t_0)(t - t_0)$ jest

styczną do krzywej $\mathbf{r} = \mathbf{r}(t)$ w punkcie $\mathbf{r}_0 = \mathbf{r}(t_0)$.

• $\mathbf{r}:[a,b]\times[c,d]\ni(u,v)\to\mathbf{r}(u,v)=\begin{bmatrix}x(u,v)\\y(u,v)\\z(u,v)\end{bmatrix}\in R^3$ jest funkcją wektorową, którą

interpretujemy jako opis parametryczny powierzchni w R^3 . Załóżmy, że funkcja ta jest różniczkowalna w punkcie (u_0,v_0)

Pochodna $\mathbf{r}'(u_0, v_0)$ jest odwzorowaniem liniowym ciągłym z \mathbb{R}^2 w \mathbb{R}^3 reprezentowanym

przez macierz
$$\mathbf{r}'(u_0, v_0) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{bmatrix}_{(u,v_0)}$$
.

Płaszczyzna o równaniu parametrycznym $\mathbf{r} = \mathbf{r}(u_0, v_0) + \mathbf{r}'(u_0, v_0) \begin{bmatrix} u - u_0 \\ v - v_0 \end{bmatrix}$, które można także zapisać w postaci:

$$\mathbf{r} = \mathbf{r}(u_0, v_0) + \mathbf{r}_u(u - u_0) + \mathbf{r}_u(v - v_0)$$

gdzie \mathbf{r}_u i \mathbf{r}_v oznaczają kolumny macierzy reprezentującej pochodną $\mathbf{r}'(u_0,v_0)$ jest płaszczyzną styczną do powierzchni $\mathbf{r}=\mathbf{r}(u,v)$ w punkcie $\mathbf{r}_0=\mathbf{r}(u_0,v_0)$.

Po rozpisaniu na współrzędne w postaci równanie płaszczyzny stycznej przybiera postać

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + \begin{bmatrix} \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial u} \end{bmatrix} (u - u_0) + \begin{bmatrix} \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial v} \end{bmatrix} (v - v_0).$$

Po przemnożeniu obu stron równania $\mathbf{r} - \mathbf{r}_0 = \mathbf{r}_u (u - u_0) + \mathbf{r}_v (v - v_0)$ skalarnie przez wektor

 $\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v$ ortogonalny do \mathbf{r}_u i \mathbf{r}_v rugujemy parametry u i v i otrzymujemy ogólną postać równania płaszczyzny stycznej

$$\mathbf{n} \circ (\mathbf{r} - \mathbf{r}_0) = 0$$
, gdzie $\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v$.

W szczególności jeśli powierzchnia jest wykresem funkcji 2 zmiennych $z = f(x_1, x_2)$, to można ją zapisać parametrycznie przyjmując $u=x_1$ i $v=x_2$. Wówczas

EAiIB-Informatyka-Wykład 10- dr Adam Ćmiel - cmiel@.agh.edu.pl

$$\mathbf{r}_{u} = \begin{bmatrix} 1 \\ 0 \\ \frac{\partial f}{\partial u} \end{bmatrix}, \quad \mathbf{r}_{v} = \begin{bmatrix} 0 \\ 1 \\ \frac{\partial f}{\partial v} \end{bmatrix} \quad , \quad \mathbf{n} = \begin{bmatrix} -\frac{\partial f}{\partial u} \\ -\frac{\partial f}{\partial v} \\ 1 \end{bmatrix}. \quad \text{Stad} \qquad \text{plaszczyzna} \quad \text{o} \quad \text{r\'ownaniu}$$

$$z-b=A_1(x_1-a_1)+A_2(x_2-a_2)$$
,

gdzie
$$A_1 = \frac{\partial f}{\partial x_1}(a_1, a_2)$$
, $A_2 = \frac{\partial f}{\partial x_2}(a_1, a_2)$ $b = f(a_1, a_2)$ jest styczna do powierzchni o równaniu $z = f(x_1, x_2)$ w punkcie (a_1, a_2, b) .

Przykłady

1. Napisać równanie prostej stycznej do krzywej
$$\vec{r}(t) = \begin{cases} x(t) = 2\cos t \\ y(t) = 2\sin t, t \in R \text{ w punkcie } A(0,2,0). \\ z(t) = \frac{t^2}{\pi} - \frac{\pi}{4} \end{cases}$$

Rozwiązanie. Punktowi
$$A(0,2,0)$$
 odpowiada parametr $t_0 = \frac{\pi}{2}$. Ponadto $\vec{r}'(\frac{\pi}{2}) = \begin{bmatrix} -2\\0\\1 \end{bmatrix}$. Wobec

tego poszukiwane równanie stycznej jest następujące
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} t$$
.

2. Napisać równanie płaszczyzny stycznej do powierzchni $z=x^2+y^2$ w punkcie A(1,2,5).

Rozwiązanie. Ogólnie
$$z - z(x_0, y_0) = \frac{\partial z}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial z}{\partial y}(x_0, y_0)(y - y_0)$$
. W rozważanym przypadku $z-5=2(x-1)+4(y-2)$.