Latent class analysis

Classification and covariates

DL Oberski & L Boeschoten

(Putting people into boxes, while admitting uncertainty)

Classification

Classification

 After estimating a LC model, we may wish to classify individuals into latent classes

• The latent classification or **posterior** class membership probabilities P(X = x | y) can be obtained from the LC model parameters using Bayes' rule:

$$P(X = x \mid \mathbf{y}) = \frac{P(X = x)P(\mathbf{y} \mid X = x)}{P(\mathbf{y})} = \frac{P(X = x)\prod_{k=1}^{K} P(y_k \mid X = x)}{\sum_{c=1}^{C} P(X = c)\prod_{k=1}^{K} P(y_k \mid X = c)}$$

Small example: posterior classification

Y1	Y2	Y 3	P(X=1 Y)	P(X=2 Y)	Most likely (but not sure!)
1	1	1	0.002	0.998	2
1	1	2	0.071	0.929	2
1	2	1	0.124	0.876	2
1	2	2	0.832	0.169	1
2	1	1	0.152	0.848	2
2	1	2	0.862	0.138	1
2	2	1	0.920	0.080	1
2	2	2	0.998	0.003	1

Classification quality

Classification Statistics

- classification table: true vs. assigned class
- overall proportion of classification errors

Other reduction of "prediction" errors measures

- How much more do we know about latent class membership after seeing the responses?
- Comparison of P(X=x) with P(X=x | Y=y)
- R-squared-like reduction of prediction (of X) error

```
posteriors <- data.frame(M4$posterior, predclass=M4$predclass)

classification_table <-
          ddply(posteriors, .(predclass), function(x) colSums(x[,1:4])))

> round(classification_table, 1)
```

predclass post.1 post.2 post.3 post.4

1 1824.0 34.9 0.0 11.1

2 7.5 87.4 1.1 3.0

3 0.0 1.0 19.8 0.2

4 4.0 8.6 1.4 60.1

Classification table for 4-class

	post.1	post.2	post.3	post.4
1	0.99	0.26	0.00	0.15
2	0.00	0.66	0.05	0.04
3	0.00	0.01	0.89	0.00
4	0.00	0.07	0.06	0.81
	1	1	1	1

Total classification errors:

```
> 1 - sum(diag(classification_table)) / sum(classification_table)
[1] 0.0352
```

Entropy R²

```
entropy <- function(p) sum(-p * log(p))
error_prior <- entropy(M4$P) # Class proportions
error_post <- mean(apply(M4$posterior, 1, entropy))

R2_entropy <- (error_prior - error_post) / error_prior
> R2_entropy
[1] 0.741
```

This means that we know a lot more about people's political participation class after they answer the questionnaire.

Compared with if we only knew the overall proportions of people in each class

Classify-analyze can give some bias

- You might think that after classification it is easy to model people's latent class membership
- "Just take assigned class and analyze it as though observed"

 Unfortunately, -> biased estimates and wrong se's (Still relatively little-known among practicioners?)

Predicting latent class membership

(using covariates; concomitant variables)

Fitting a LCM in poLCA with gender as a covariate

This gives a **multinomial logistic regression** with X as dependent and gender as independent ("concomitant"; "covariate")

Predicting latent class membership from a covariate

$$P(X = x \mid Z = z) = \frac{\exp(\gamma_{0x} + \gamma_{zx})}{\sum_{c=1}^{C} \exp(\gamma_{0c} + \gamma_{zc})}$$

 γ_{0x} Is the logistic intercept for category x of the latent class variable X

 γ_{zx} Is the logistic slope predicting membership of class x for value z of the covariate Z

```
Fit for 4 latent classes:
2 / 1
          Coefficient Std. error t value Pr(>|t|)
(Intercept) -0.35987
                       0.37146 - 0.969
                                          0.335
                                      0.395
gndrFemale -0.34060 0.39823 -0.855
3 / 1
          Coefficient Std. error t value Pr(>|t|)
(Intercept) 2.53665
                       0.21894 11.586
                                         0.000
                       0.24789 0.877 0.383
gndrFemale
             0.21731
4 / 1
          Coefficient Std. error t value Pr(>|t|)
(Intercept) -1.57293
                        0.39237 -4.009 0.000
gndrFemale -0.42065
                       0.57341 -0.734 0.465
```

One possible interpretation

Class 1 Modern political participation
Class 2 Traditional political participation

Class 3 No political participation

Class 4 Every kind of political participation

Women more likely than men to be in classes 1 and 3 Less likely to be in classes 2 and 4

Multinomial logistic regression refresher

For example:

- Logistic multinomial regression coefficient equals -0.3406
- Then log odds ratio of being in class 2 (compared with reference class 1) is -0.3406 smaller for women than for men
- So odds ratio is smaller by a factor exp(-0.3406) = 0.71
- The women's odds of being in class 2 (vs class 1) are about 71% of the odds for men.

Even more (re)freshing:

AN INTRODUCTION TO CATEGORICAL DATA ANALYSIS

Problems you will encounter when doing latent class analysis (and some solutions)

Some problems

Local maxima

Boundary solutions

Non-identification

Problem: Local maxima

Problem: there may be different sets of "ML" parameter estimates with different L-squared values we want the solution with lowest L-squared (highest log-likelihood)

Solution: multiple sets of starting values

```
poLCA(cbind(Y1, Y2, Y3)~1, antireli, nclass=2, nrep=100)

Model 1: llik = -3199.02 ... best llik = -3199.02

Model 2: llik = -3359.311 ... best llik = -3199.02

Model 3: llik = -2847.671 ... best llik = -2847.671

Model 4: llik = -2775.077 ... best llik = -2775.077

Model 5: llik = -2810.694 ... best llik = -2775.077

....
```


Problem: boundary solutions

Problem: estimated probability becomes zero/one, or logit parameters extremely large negative/positive

```
$badge

Pr(1) Pr(2)

Class 1: 0.8640 0.1360

class 2: 0.1021 0.8979

class 3: 0.4204 0.5796

class 4: 0.0000 1.0000
```

Solutions:

- Not really a problem, just ignore it;
- 2. Use priors to smooth the estimates
- 3. Fix the offending probabilities to zero (classical)

Bayes Constants	
Latent Variables	1
Categorical Variables	1
Poisson Counts	1
Error Variances	1

Problem: non-identification

- Different sets of parameter estimates yield the same value of L-squared and LL value: estimates are not unique
- Necessary condition DF>=0, but not sufficient
- Detection: running the model with different sets of starting values or, formally, checking whether rank of the Jacobian matrix equals the number of free parameters
- "Well-known" example: 3-cluster model for 4 dichotomous indicators

What we did not cover

- 1 step versus 3 step modeling
- Ordinal, continuous, mixed type indicators
- Hidden Markov ("latent transition") models
- Mixture regression

What we did cover

- Latent class "cluster" analysis
- Model formulation, different parameterizations
- Model interpretation, profile
- Model fit evaluation: global, local, and substantive
- Classification
- Common problems with LCM and their solutions