第1题答案:

记 (X_1, X_2) 的联合分布列为

X_1 X_2	- 1	0	1
- 1	P ₁₁	P ₁₂	P ₁₃
0	p_{21}	p_{22}	p_{23}
1	P 31	P ₃₂	P ₃₃

由 $P(X_1X_2=0)=1$ 知: $p_{12}+p_{21}+p_{22}+p_{23}+p_{32}=1$,所以 $p_{11}=p_{13}=p_{31}$ 又由分布列的正则性得 $p_{22}=0$,因此 $p_{33} = 0. \, \mathbb{R}$

X_1 X_2	- 1	0	1
- 1	0	P ₁₂	0
0	P 21	p_{22}	P 23
1	0	P ₃₂	0

又因为

$$0.25 = P(X_1 = -1)$$

$$= P(X_1 = -1, X_2 = -1) + P(X_1 = -1, X_2 = 0) + P(X_1 = -1, X_2 = 1)$$

$$= p_{11} + p_{12} + p_{13} = p_{12},$$

同理由 $P(X_1 = 1) = P(X_2 = -1) = P(X_2 = 1) = 0.25$ 可知 $p_{32} = p_{21} = p_{23} = 0.25$,即

X ₁ X ₂	- 1	0	1
- 1	0	0. 25	0
0	0. 25	p_{22}	0. 25
1	0	0. 25	0

$$P(X_1 = X_2) = p_{11} + p_{22} + p_{33} = 0.$$

第2题答案:

解 (1) 由 $\int_0^2 \int_2^4 k(6-x-y) \, dy dx = k \int_0^2 (6-2x) \, dx = 8k = 1$,解得 k = 1/8.

(2)
$$P(X < 1, Y < 3) = \frac{1}{8} \int_{0}^{1} \int_{2}^{3} (6 - x - y) \, dy dx = \frac{1}{8} \int_{0}^{1} (3.5 - x) \, dx = \frac{3}{8}$$

(3)
$$P(X < 1.5) = \frac{1}{8} \int_{0.0}^{1.5} \left(6 - x - y\right) dy dx = \frac{1}{8} \int_{0}^{1.5} \left(6 - 2x\right) dx = \frac{27}{32}.$$

(4) p(x,y) 的非零区域与 $\{x + y \le 4\}$ 的交集如图 3.1 的阴影部分,

由图 3.1 得

$$P(X + Y \le 4) = \frac{1}{8} \int_0^2 \int_2^{4-x} (6 - x - y) \, dy dx$$
$$= \frac{1}{8} \int_0^2 (0.5x^2 - 4x + 6) \, dx = \frac{2}{3}.$$

第3题答案:

解

(1) p(x,y) 的非零区域与 $\{x > 0.5, y > 0.5\}$ 的交集为图 3.3(a) 阴影部分,所以

$$P(X > 0.5, Y > 0.5) = 6 \int_{0.5 \times 0.5}^{1} (1 - y) dx dy$$
$$= 6 \int_{0.5}^{1} (-y^2 + 1.5y - 0.5) dy = \frac{1}{8}.$$

(2) p(x,y) 的非零区域与 $\{x < 0.5\}$ 的交集为图 3.3(b) 阴影部分,所以

$$P(X < 0.5) = 6 \int_0^{0.5} \int_x^1 (1 - y) \, dy dx = 6 \int_0^{0.5} \frac{1}{2} x^2 - x + \frac{1}{2} dx = \frac{7}{8}.$$

又因为p(x,y) 的非零区域与 $\{y < 0.5\}$ 的交集为图 3.3(c) 阴影部分,所以

$$P(Y < 0.5) = 6 \int_{0}^{0.5} \int_{x}^{0.5} (1 - y) \, dy dx = 6 \int_{0}^{0.5} \left(\frac{1}{2} x^{2} - x + \frac{3}{8} \right) \, dx = \frac{1}{2}.$$

(3) p(x,y) 的非零区域与 $\{x+y<1\}$ 的交集为图 3.3(d) 阴影部分,所以

$$P(X+Y<1)=6\int_0^{0.5}\int_x^{1-x}(1-y)\,\mathrm{d}y\mathrm{d}x=6\int_0^{0.5}\left(\frac{1}{2}-x\right)\,\mathrm{d}x=\frac{3}{4}.$$

图 3.3

第4题答案:

解 因为区域 D 的面积为(如图 3.7)

$$S_D = \int_1^{e^2} \int_0^{1/x} dy dx = \int_1^{e^2} \frac{1}{x} dx = (\ln x)_1^{e^2} = 2.$$

又因为(X,Y) 服从 D 上的均匀分布,所以(X,Y) 的联合密度函数为

图 3.7

$$p(x,y) = \begin{cases} 1/2, & 1 < x < e^2, 0 < y < 1/x, \\ 0, & \text{ i.e.} \end{cases}$$

由此得,当 $1 < x < e^2$ 时,

$$p_X(x) = \int_{-\infty}^{+\infty} p(x,y) \, \mathrm{d}y = \int_{0}^{1/x} \frac{1}{2} \mathrm{d}y = \frac{1}{2x}.$$

所以X的边际密度函数为

$$p_{\chi}(x) = \begin{cases} \frac{1}{2x}, & 1 < x < e^{2}, \\ 0, & \text{!!} \text{!!} \text{!!} \end{cases}$$

若此题要求出 Y 的边际密度,则从图 3.7 中可以看出: 当 $0 < y < e^{-2}$ 时,有

$$p(y) = \int_{1}^{e^{2}} \frac{1}{2} dx = \frac{1}{2} (e^{2} - 1).$$

当 e^{-2} < y < 1 时,有

$$p(y) = \int_{1}^{1/y} \frac{1}{2} dx = \frac{1}{2} \left(\frac{1}{y} - 1 \right).$$

所以Y的边际密度为

$$p_{\gamma}(\gamma) = \begin{cases} \frac{1}{2} (e^{2} - 1), & 0 < \gamma < e^{-2}, \\ \frac{1}{2} (\frac{1}{\gamma} - 1), & e^{-2} < \gamma < 1, \\ 0, & \sharp \text{ th.} \end{cases}$$

第5题答案:

(1) 因为 X 与 Y 的密度函数分别为

$$p_{\chi}(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{ i.e.} \end{cases} \qquad p_{\gamma}(y) = \begin{cases} e^{x}, & y > 0, \\ 0, & \text{ i.e.} \end{cases}$$

所以由 X 与 Y 的独立性知 , X 与 Y 的联合密度函数为

$$p(x,y) = p_X(x)p_Y(y) = \begin{cases} e^{-y}, & 0 < x < 1, y > 0, \\ 0, & \text{ i.e.} \end{cases}$$

(2)
$$P(Y \le X) = \int_0^1 \int_0^x e^{-y} dy dx = \int_0^1 \left(1 - e^{-x}\right) dx = 1 - \left[-e^{-x}\right]_0^1 = e^{-1}.$$

(3)
$$P(X + Y \le 1) = \int_0^1 \int_0^{1-x} e^{-y} dy dx = \int_0^1 \left(1 - e^{-(1-x)}\right) dx$$

= $1 - \left[e^{x-1}\right]_0^1 = e^{-1}$. 第6题答案:

先对联合分布列按行、按列求和,求出边际分布列如下:

X	<i>y</i> ₁	<i>y</i> ₂	у,	$P(X = x_i)$
x,	а	1/9	с	a + c + 1/9
x ₂	1/9	b	1/3	b + 4/9
$P(Y = y_j)$	a + 1/9	b + 1/9	c + 1/3	1

由 X = Y的独立性,从上表的第2行、第2列知b = (b + 4/9)(b + 1/9),从中 解得 b = 2/9.再从上表的第 2 行、第 1 列知 1/9 = (b + 4/9)(a + 1/9),从中解得 a = 1/18. 最后由联合分布列的正则性知: a + b + c = 4/9, 由此得 c = 1/6.

第7题答案:

解 可以看出 $U = \max\{X,Y\}$ 的可能取值为 1,2,3,并且

$$P(U=1) = P(X=0,Y=1) + P(X=1,Y=1) = 0.05 + 0.07 = 0.12$$

$$P(U=2) = \sum_{i=0}^{2} P(X=i, Y=2) + P(X=2, Y=1)$$

= 0.15 + 0.11 + 0.07 + 0.04 = 0.37,

$$P(U=3) = \sum_{i=0}^{2} P(X=i, Y=3) = 0.20 + 0.22 + 0.09 = 0.51,$$

即U的分布列为

U	1	2	3
P	0.12	0. 37	0.51

又可以看出 $V = \min \{X, Y\}$ 的可能取值为 0,1,2,并且

$$P(V=0) = \sum_{j=1}^{3} P(X=0, Y=j) = 0.05 + 0.15 + 0.20 = 0.40,$$

$$P(V=1) = \sum_{j=1}^{3} P(X=1, Y=j) + P(X=2, Y=1)$$

$$= 0.07 + 0.11 + 0.22 + 0.04 = 0.44,$$

$$P(V=2) = P(X=2, Y=2) + P(X=2, Y=3) = 0.07 + 0.09 = 0.16$$

即V的分布列为

第8题答案:

解 因为

$$4/7 = P(X \ge 0) = P(X \ge 0, Y \ge 0) + P(X \ge 0, Y < 0)$$
$$= 3/7 + P(X \ge 0, Y < 0),$$

由此得 $P(X \ge 0, Y < 0) = 1/7$,同理由 $P(Y \ge 0) = 4/7$,可得 $P(X < 0, Y \ge 0) = 1/7$,再由

$$P(X \ge 0, Y \ge 0) + P(X \ge 0, Y < 0) + P(X < 0, Y \ge 0) + P(X < 0, Y < 0) = 1,$$

得
$$P(X < 0, Y < 0) = 2/7$$
,所以
$$P(\max\{X,Y\} \ge 0) = 1 - P(\max\{X,Y\} < 0)$$

$$= 1 - P(X < 0, Y < 0) = 1 - 2/7 = 5/7.$$

证 当|x| < 1时, $f_X(x) = \int_{-1}^1 \frac{1+xy}{4} dy = \frac{1}{2}$; 当 $|x| \ge 1$ 时, $f_X(x) = 0$. 故

$$f_X(x) = \begin{cases} \frac{1}{2}, & |x| < 1 \\ 0, & \text{其他} \end{cases}$$

同理
$$f_Y(y) = \begin{cases} \frac{1}{2}, & |y| < 1 \\ 0, & 其他 \end{cases}$$

显然, 当 0<|x|<1, 0<|y|<1 时,

$$f(x, y) \neq f_X(x) f_Y(y)$$
,

所以X与Y不相互独立.

设 X^2 的分布函数为 $F_1(x)$, 在 $0 \le x \le 1$ 内,

$$F_1(x) = P\{X^2 \le x\} = \int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{2} dx = \sqrt{x},$$

即

$$F_{1}(x) = \begin{cases} 0, & x < 0 \\ \sqrt{x}, & 0 \le x < 1, F_{2}(y) = \begin{cases} 0, & y < 0 \\ \sqrt{y}, & 0 \le y < 1. \\ 1, & y \ge 1 \end{cases}$$

设 (X^2, Y^2) 的分布函数为 $F_3(x, y)$.

当 x < 0 或 y < 0 时, $F_3(x, y) = 0$.

当 0≤x<1, y≥1 时,

$$F_3(x, y) = P(X^2 \le x, Y^2 \le y) = P(X^2 \le x) = \sqrt{x}$$

当 0 \leq y<1, x \geqslant 1 时, $F_3(x, y) = \sqrt{y}$.

当 0 冬
$$x$$
 < 1, 0 冬 y < 1 时, $F_3(x, y) = \int_{-\sqrt{x}}^{\sqrt{x}} ds \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1+st}{4} dt = \sqrt{xy}$.

当 $x \ge 1$, $y \ge 1$ 时, $F_3(x, y) = 1$.

所以
$$F_3(x, y) = \begin{cases} 0, & x < 0$$
 或 $y < 0 \end{cases}$ $\sqrt{x}, & 0 \le x < 1, y \ge 1$ $\sqrt{y}, & 0 \le y < 1, x \ge 1$ $\sqrt{xy}, & 0 \le x < 1, 0 \le y < 1$ $1, & x \ge 1, y \ge 1$

经验证 $F_3(x, y) = F_1(x)F_2(y)$ 对所有 x, y 成立, 所以 X^2 与 Y^2 独立.

第十题:

解:

设 $F_Y(y)$ 是Y的分布函数,由全概率公式可知,对于U = X + Y的分布函数有,

$$G(u) = P(X + Y \le u) = P(X = 1)P(X + Y \le u | X = 1) + P(X = 2)P(X + Y \le u | X = 2)$$

$$= 0.3P(X + Y \le u | X = 1) + 0.7P(X + Y \le u | X = 2)$$

$$= 0.3P(Y \le u - 1 | X = 1) + 0.7P(Y \le u - 2 | X = 2)$$

由于X,Y独立,所以有

$$G(u) = 0.3P(Y \le u - 1) + 0.7P(Y \le u - 2) = 0.3F_Y(u - 1) + 0.7F_Y(u - 2)$$

所以U的概率密度函数为

$$g(u) = 0.3f_{\gamma}(u-1) + 0.7f_{\gamma}(u-2)$$