Московский государственный технический университет имени Н. Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Программное обеспечение ЭВМ и информационные технологии

Математическая статистика Лекции

1 Предельные теоремы теории вероятностей

1.1 Неравенства Чебышева

Теорема 1.1 (первое неравенство господина Чебышева).

- *X* случайная величина;
- $P\{X \le 0\} = 0$ так как $X \ge 0$.

Доказательство. Для непрерывной случайное величины X и зная, что при $X \geq 0 \Rightarrow f(x) = 0, \, x < 0$

$$MX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x f(x) dx = \underbrace{\int_{0}^{\varepsilon} x f(x) dx}_{>0} + \int_{\varepsilon}^{+\infty} x f(x) dx$$

учитывая $x \ge \varepsilon$

$$\underbrace{\int_{0}^{\varepsilon} x f(x) dx}_{>0} + \int_{\varepsilon}^{+\infty} x f(x) dx \ge \int_{\varepsilon}^{+\infty} x f(x) dx \ge \varepsilon \cdot \int_{\varepsilon}^{+\infty} f(x) dx$$

где

$$\varepsilon \cdot \int_{\varepsilon}^{+\infty} f(x) \, dx = \varepsilon \cdot \mathsf{P}\{X \ge \varepsilon\}$$

таким образом

$$MX \ge \varepsilon \cdot \mathsf{P}\{X \ge \varepsilon\} \ \Rightarrow \ \mathsf{P}\{X \ge \varepsilon\} \le \frac{MX}{\varepsilon}$$

Теорема 1.2 (второе неравенство лорда Чебышева).

$$\exists MX, \exists DX \Rightarrow \forall \varepsilon > 0, \ \mathsf{P}\{|X - MX| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$$
 (2)

• X — случайная величина.

Доказательство. Выпишем дисперсию

$$DX = M[(X - MX)^2]$$

Рассмотрим случайную величину $Y=(X-MX)^2$, где $Y\geq 0$. Тогда из *первого неравенства Чебышева* следует, что $\forall \delta\geq 0,\, MY\geq \delta\, \mathsf{P}\{Y\geq \delta\}$, где получается, что $\delta=\varepsilon^2$.

$$\left[DX = M\left[(X - MX)^2\right]\right] \ge \left[\varepsilon^2 \cdot \mathsf{P}\left\{(X - MX)^2 \ge \varepsilon^2\right\} = \varepsilon^2 \cdot \mathsf{P}\left\{|X - MX| \ge \varepsilon\right\}\right]$$

таким образом

$$DX \ge \varepsilon^2 \cdot \mathsf{P}\{|X - MX| \ge \varepsilon\} \ \Rightarrow \ \mathsf{P}\{|X - MX| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$$

Пример 1.1. Предельно допустимое давление в пневмосистеме ракеты равна 200 (Πa). После проверки большого количество ракет было получено среднее значение давления 150 (Πa). Оценить вероятность того, что давление в пневмосистеме очереденой ракеты будет больше 200 (Πa), если по результатам проверки ракет было получено среднеквадратичное отклонение 5 (Πa).