* Laurent's Series Expansion!

let C1 and C2 be two circle of radii r, and r2 with centre Zo

let f(z) be analytic on c_1 , c_2 and between c_1 and c_2 —then Laurent's series expansion of f(z) is

$$f(z) = \sum_{n=0}^{\infty} a_n (z_{-z_0})^n + \sum_{n=1}^{\infty} b_n (z_{-z_0})^n$$

where,
$$a_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(w)}{(w-z_0)^{n+1}} dw$$

$$b_n = \frac{1}{2\pi i} \oint_{C_1} \frac{f(w)}{(w-z_0)^{-n+1}} dw$$

* some Important power series:

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{6!} + \cdots , |z| < \infty$$

$$\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \frac{z^{7}}{7!} + \cdots , |z| < \infty$$

$$\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{6}}{4!} - \frac{z^{6}}{6!} + \cdots , |z| < \infty$$

$$\sinh z = z + \frac{z^{3}}{3!} + \frac{z^{5}}{5!} + \frac{z^{7}}{7!} + \cdots , |z| < \infty$$

$$\cosh z = 1 + \frac{z^{2}}{2!} + \frac{z^{4}}{4!} + \frac{z^{6}}{6!} + \cdots , |z| < \infty$$

$$\log(1+z) = z - \frac{z^{2}}{2} + \frac{z^{3}}{3!} - \frac{z^{4}}{4!} + \cdots , |z| < \infty$$

Example 1) find Laurent's scries for
$$f(z) = \frac{e^{8z}}{(z-1)^3}$$

about $z=1$

Solution! Given:
$$f(z) = \frac{e^{gz}}{(z-1)^3}$$

since, we want expansion around z=1, therefore we have to obtain Laurent's series in the power of (z-1).

$$f(z) = \frac{e}{(z-1)^3} = \frac{e^{3(z-1)+3}}{(z-1)^3}$$

$$= \frac{e^3 e^{3(z-1)}}{(z-1)^3}$$

$$= \frac{e^3}{(z-1)^3} \left[e^{3(z-1)} \right]$$

$$= \frac{e^3}{(z-1)^3} \left[1 + 3(z-1) + \frac{3(z-1)^2}{2!} + \frac{3(z-1)^3}{3!} + \frac{3(z-1)^4}{4!} + \cdots \right]$$

$$= e^3 \left[\frac{1}{(z-1)^3} + \frac{3(z-1)}{(z-1)^3} + \frac{3(z-1)^2}{2!(z-1)^5} + \frac{3(z-1)^3}{3!} + \frac{3(z-1)^4}{4!} + \cdots \right]$$

$$= e^3 \left[\frac{1}{(z-1)^3} + \frac{3(z-1)}{(z-1)^3} + \frac{3^2}{2!(z-1)^5} + \frac{3^3}{3!} + \frac{3^4}{4!} \cdot (z-1) + \cdots \right]$$

$$= e^3 \left[\frac{1}{(z-1)^3} + \frac{3}{(z-1)^2} + \frac{3^2}{2!(z-1)} + \frac{3^3}{3!} + \frac{3^4}{4!} \cdot (z-1) + \cdots \right]$$

ie
$$f(z) = e^3 \left[\frac{1}{(z-1)^3} + \frac{3}{(z-1)^2} + \frac{3^2}{2!(z-1)} + \frac{3^3}{3!} + \frac{3^4}{4!} \cdot (z-1) + \cdots \right]$$

Example Find Laurent's series which represent the function
$$f(z) = \frac{1}{z(z+1)(z-2)}$$
 when

i) $|z| < 1$ ii) $|z| < 2$ iii) $|z| > 2$

Solution; Given: $f(z) = \frac{1}{z(z+1)(z-2)}$

consider, $\frac{1}{z(z+1)(z-2)} = \frac{A}{z} + \frac{B}{z+1} + \frac{C}{z-2}$

$$\Rightarrow \frac{1}{z(z+1)(z-2)} = \frac{A(z+1)(z-2) + Bz(z-2) + Cz(z+1)}{z(z+1)(z-2)}$$

$$\Rightarrow A(z+1)(z-2) + Bz(z-2) + Cz(z+1) = 1$$
if $z = 0$ then $A(0+1)(0-2) + B(0) + C(0) = 1 \Rightarrow A = -\frac{1}{z}$
if $z = -1$ then $A(0) + B(-1)(-1-2) + C(0) = 1 \Rightarrow B = \frac{1}{3}$
if $z = 2$ then $A(0) + B(0) + C(2)(2+1) = 1 \Rightarrow C = \frac{1}{z}$

$$\therefore f(z) = \frac{1}{z(z+1)(z-2)} = -\frac{1}{2z} + \frac{1}{3(z+1)} + \frac{1}{6(z-2)}$$

$$\Rightarrow f(z) = -\frac{1}{2z} + \frac{1}{3(z+1)} + \frac{1}{6(z-2)}$$
Since, $\frac{|z| < 1}{|z| < 2} + \frac{1}{3(z+1)} = \frac{1}{12} [1 - (\frac{z}{2})]$

$$\Rightarrow f(z) = -\frac{1}{2z} + \frac{1}{3} [1 + z]^{-1} - \frac{1}{12} [1 - (\frac{z}{2})]$$

$$\Rightarrow f(z) = -\frac{1}{2z} + \frac{1}{3} [1 - z + z^2 - z^3 + z^4 - 1]$$

$$-\frac{1}{12} [1 + (\frac{z}{2}) + (\frac{z}{2})^2 + (\frac{z}{2})^3 + \dots]$$

$$([1-z]^{1} = 1+z+z^{2}+\cdots \text{ and } [1+z]^{1}=1-z+z^{2}-z^{3}+\cdots)$$

- 12[1+(至)+(至)²+(至)³+···]

Case ii) when
$$|\langle 12| \langle 2|$$

if $|\langle 12| \rangle \Rightarrow |\langle 12| \rangle |$ and $|\langle 12| \rangle \Rightarrow |\langle 2| \rangle |$

$$|\langle 12| \rangle \Rightarrow |\langle 2| \rangle |$$

$$= -\frac{1}{2z} + \frac{1}{3z} \frac{1}{[1+(\frac{1}{2})]} - \frac{1}{[12]} \frac{1}{[1-(\frac{Z}{2})]} |$$

$$= -\frac{1}{2z} + \frac{1}{3z} \frac{1}{[1-(\frac{1}{2})]} - \frac{1}{[12]} \frac{1}{[1-(\frac{Z}{2})]} |$$

$$= -\frac{1}{2z} + \frac{1}{3z} \frac{1}{[1-(\frac{1}{2})]} + (\frac{1}{2})^2 - (\frac{1}{2})^3 + \cdots$$

case iii) when 121>2

$$f(z) = -\frac{1}{2z} + \frac{1}{3(z+1)} + \frac{1}{6(z-2)}$$

$$= -\frac{1}{2z} + \frac{1}{3z(1+\frac{1}{2})} + \frac{1}{6z(1-\frac{2}{2})}$$

Since,
$$|z|>2$$
 i.e. $|z|>2>1$ \Rightarrow $|z|>1$

$$f(z) = -\frac{1}{2z} + \frac{1}{3z} \left[1 + (\frac{1}{2}) \right] + \frac{1}{6z} \left[1 - (\frac{2}{2}) \right]$$

$$\Rightarrow f(z) = -\frac{1}{2z} + \frac{1}{3z} \left[1 - \frac{1}{2} + (\frac{1}{2})^2 - (\frac{1}{2})^3 + \cdots \right] + \frac{1}{6z} \left[1 + (\frac{2}{2}) + (\frac{2}{2})^2 + (\frac{2}{2})^3 + \cdots \right]$$