The
$$\varepsilon-\delta$$
 game. §3.1

- (1) Play the $\varepsilon \delta$ game. Rules:
 - Player 0 starts by graphing a function f (like a familiar one from calculus) and specifies an x-value a and a y-value L that (based on previous calculus knowledge) they think makes $\lim_{x\to a} f(x) = L$ **true**.

The graph should be large.

- Player 1 choses an ε . This is how close we would like our function to be to L. Thus, ε goes up and down from L. Draw horizontal dotted lines with y-values $L \varepsilon$ and $L + \varepsilon$. The ε should be large enough for people to see and have room to work in the picture.
- Player 2 must find a δ such that every $x \in (a \delta, a) \cup (a, a + \delta)$ is
 - in the domain of f, and
 - has an output f(x) within $(L \varepsilon, L + \varepsilon)$.

Draw vertical dotted lines for the x-values $a - \delta$ and $a + \delta$.

Everyone in the team can assist player 2!

- (2) Repeat with another function.
- (3) Now play except player 0 graphs an f with an L that makes $\lim_{x\to a} f(x) = L$ false.
- (4) Now play except player 0 "chooses" $f(x) = \frac{2x-2}{x-1}$, a=1, and L=2. Play with actual numbers ε and δ .