Vv417 Lecture 12

Jing Liu

UM-SJTU Joint Institute

October 21, 2019

ullet Given a matrix ${f A}$ of $m \times n$, the solutions of the homogeneous linear system

$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
, is a subset of \mathbb{R}^n .

- Q: Is the solution set a subspace?
- If so, we have a useful insight into the geometric structure of the solution set

The solution set is "flat".

Theorem

Given a matrix **A** of $m \times n$, the solutions of the homogeneous linear system

$$\mathbf{A}\mathbf{x} = \mathbf{0}$$

is a subspace of \mathbb{R}^n , and it is called the null space of A, denoted by

 $null(\mathbf{A})$

- Let \mathcal{H} be the solution set of the system. \mathcal{H} is not empty since it contains $\mathbf{0}$.
- \mathcal{H} is a subset of \mathbb{R}^n , to show that \mathcal{H} is a subspace of \mathbb{R}^n , we must show that it is closed under addition and scalar multiplication.
- ullet Let \mathbf{x}_1 and \mathbf{x}_2 be any vectors in \mathcal{H} , so $\mathbf{A}\mathbf{x}_1=\mathbf{0}$ and $\mathbf{A}\mathbf{x}_2=\mathbf{0}$. Consider

$$\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{A}\mathbf{x}_1 + \mathbf{A}\mathbf{x}_2 \qquad \mathbf{A}(\alpha\mathbf{x}_1) = \alpha(\mathbf{A}\mathbf{x}_1)$$
$$= \mathbf{0} + \mathbf{0} = \mathbf{0} \qquad = \alpha(\mathbf{0}) = \mathbf{0} \quad \Box$$

Theorem

Given a matrix ${\bf A}$ of $m \times n$, the solutions of the homogeneous linear system

 $\mathbf{A}^{\mathrm{T}}\mathbf{y} = \mathbf{0}$, is a subspace of \mathbb{R}^m , denoted, $\mathrm{null}(\mathbf{A}^{\mathrm{T}})$.

ullet The vector space $\operatorname{null}(\mathbf{A}^T)$ is sometime called the left-hand null space of \mathbf{A} for it is the set of all solutions to the left-hand homogeneous system

$$\mathbf{y}^{\mathrm{T}}\mathbf{A} = \mathbf{0}^{\mathrm{T}}$$

Exercise

Find a spanning set for
$$null(\mathbf{A})$$
, where $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$.

Solution

 \bullet Since $\mathrm{null}\left(\mathbf{A}\right)$ is simply the general solution of

$$\mathbf{A}\mathbf{x} = \mathbf{0}$$

• Applying Gaussian elimination, we have $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$, so

$$x_1 = -2x_2 - 3x_3$$

- In the vector form, we have $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_2 3x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ \mathbf{v}_1
- Therefore, the subspace $\operatorname{null}(\mathbf{A})$ is spanned by $\{\mathbf{v}_1, \mathbf{v}_2\}$.

Definition

For a given matrix ${\bf A}$ of $m \times n$, we have the followings

1. The column space is the set of all linear combinations of the columns of ${\bf A}$,

$$col(\mathbf{A}) = span\{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_n\}$$

2. The row space is the set of all linear combinations of the rows of A, denoted,

$$row(\mathbf{A}) = span\{\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_m\}$$

where c_i and r_i are columns and rows of A respectively.

Q: Why is the following theorem clearly true.

Theorem

The column space and the row space of an $m \times n$ matrix **A** are subspaces.

- ullet There are six important vector spaces associated with a matrix ${f A}$ and ${f A}^{
 m T}$
 - row space of A
 - column space of A
 - null space of A

- ullet row space of ${f A}^{
 m T}$
- \bullet column space of \mathbf{A}^T
- ullet null space of ${f A}^{
 m T}$
- However, transposing a matrix converts row vectors into column vectors.
- \bullet So the row space of \mathbf{A}^{T} is the same as the column space of $\mathbf{A},$

$$row(\mathbf{A}^{\mathrm{T}}) = col(\mathbf{A})$$

and the column space of \mathbf{A}^{T} is the same as the row space of \mathbf{A} .

$$\mathrm{col}(\mathbf{A}^{\mathrm{T}}) = \mathrm{row}(\mathbf{A})$$

• The remaining spaces $\operatorname{null}(\mathbf{A})$, $\operatorname{null}(\mathbf{A}^T)$, $\operatorname{col}(\mathbf{A})$ and $\operatorname{row}(\mathbf{A})$ are called the four fundamental subspaces of \mathbf{A} .

 $\mathsf{Q}\colon$ How to determine whether two matrices A and B have the same row space?

Theorem

For matrices ${\bf A}$ and ${\bf B}$ of the same size, ${\rm row}({\bf A})={\rm row}({\bf B})$ if and only if ${\bf A}\sim {\bf B}.$

Proof

ullet First let $A\sim B$, so there exists a invertible matrix E such that

$$A = EB$$

- ullet It is clear each row of A is a linear combination of rows of B, and vice versa.
- Recall we have shown

$$\mathrm{span}\left(\mathcal{S}\right) = \mathrm{span}\left(\mathcal{S}^{\star}\right)$$

if and only if each vector in \mathcal{S} is a linear combination of those in \mathcal{S}^* and each vector in \mathcal{S}^* is a linear combination of those in \mathcal{S} .

Hence we can conclude

$$row(\mathbf{A}) = row(\mathbf{B})$$

ullet Conversely, let ${f a}_i$ and ${f b}_i$ be the rows of ${f A}$ and ${f B}$, and ${
m row}({f A})={
m row}({f B})$,

$$\operatorname{span}(\mathbf{a}_1,\ldots,\mathbf{a}_m)=\operatorname{span}(\mathbf{b}_1,\ldots,\mathbf{b}_m),$$

- ullet By the same theorem, each ${f a}_i$ is a linear combination of ${f b}_i$, and vice versa.
- ullet Hence there is an invertible matrix ${f E}$ such that ${f A}={f E}{f B}$, and ${f A}\sim{f B}$.

Q: How to determine whether two matrices have the same column space?

Theorem

For matrices A and B of the same size, $\mathrm{col}(A)=\mathrm{col}(B)$ if and only if $A^T\sim B^T.$

- Q: Rows of $\bf A$ span ${\rm row}({\bf A})$ and columns of $\bf A$ span ${\rm col}({\bf A})$, but is it possible to span these spaces with fewer vectors than the full set of rows and columns?
- Q: Do row operations change the null space of a matrix?
- Q: Do row operations change the row space of a matrix?
- Q: Do row operations change the column space of a matrix?

Consider

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} = \mathbf{B}$$

Notice that

$$\operatorname{col}\left(\mathbf{A}\right)=\operatorname{span}\left\{\begin{bmatrix}1\\2\end{bmatrix}\right\}\qquad\text{while}\qquad\operatorname{col}\left(\mathbf{B}\right)=\operatorname{span}\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\}$$

Exercise

Find the smallest spanning sets for the column space and the row space of

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{B}$$

Solution

• It is clear that the first and the second row of B span the row space of A since row operations do not alter the row space.

Solution

Now the columns space, one way at the moment is to use the fact that

$$\operatorname{col}\left(\mathbf{A}\right) = \operatorname{row}\left(\mathbf{A}^{\mathrm{T}}\right)$$

- $\bullet \ \, \text{By the gaussian elimination, } \mathbf{A}^T = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 1 & 1 \\ 3 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{C}$
- ullet It is clear that the first and the second row of C span the row space of A^{T} , thus they also span the column space of A.
- Q: Row operations alter the column space, however, why row operations will not alter the linear dependency among the columns?

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathbf{B}$$

Matlab

>> format rational

-1/3

2/3

- Q: How to find a spanning set for $nul(\mathbf{A}^T)$?
- Of course, we could obtain it from the general solution of

$$\mathbf{A}^{\mathrm{T}}\mathbf{y}=\mathbf{0}$$

• However, $\mathbf{A}^{\mathrm{T}}\mathbf{y} = \mathbf{0}$ is connected to $\mathbf{A}\mathbf{x} = \mathbf{0}$, and we don't need to start from scratch and compute a new echelon form.

Theorem

Let ${\bf A}$ be a matrix of size $m \times n$, and ${\rm rank}({\bf A}) = r$, and suppose

 ${f E}{f A}={f U},$ where ${f E}$ is non-singular and ${f U}$ is in row echelon form, then the last (m-r) rows of ${f E}$ span ${
m null}({f A}^{
m T}).$ In other words, if

$$\mathbf{E} = egin{bmatrix} \mathbf{E}_1 \ \mathbf{E}_2 \end{bmatrix}$$
 where \mathbf{E}_2 is $(m-r) imes m$,

then

$$\text{null}(\mathbf{A}^{\mathrm{T}}) = \text{row}(\mathbf{E}_2)$$

$$ullet$$
 If $\mathbf{U} = egin{bmatrix} \mathbf{C} \ \mathbf{0} \end{bmatrix}$, where $\mathbf{C}_{r imes n}$, then

$$\mathbf{E}\mathbf{A} = \mathbf{U} \implies \mathbf{E}_2\mathbf{A} = \mathbf{0} \implies \mathbf{A}^\mathrm{T}\mathbf{E}_2^\mathrm{T} = \mathbf{0}^\mathrm{T} \implies \mathrm{row}(\mathbf{E}_2) \subset \mathrm{null}(\mathbf{A}^\mathrm{T})$$

To show equality, we demonstrate containment in the opposite direction

$$\operatorname{null}(\mathbf{A}^{\mathrm{T}}) \subset \operatorname{row}(\mathbf{E}_2)$$

 \bullet Suppose $\mathbf{y} \in \mathrm{null}(\mathbf{A}^T)$, and let $\mathbf{E}^{-1} = \begin{bmatrix} \mathbf{F}_1 & \mathbf{F}_2 \end{bmatrix}$, then

$$\begin{aligned} \mathbf{0}^{\mathrm{T}} &= \mathbf{y}^{\mathrm{T}} \mathbf{A} = \mathbf{y}^{\mathrm{T}} \mathbf{E}^{-1} \mathbf{U} = \mathbf{y}^{\mathrm{T}} \begin{bmatrix} \mathbf{F}_{1} & \mathbf{F}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{0} \end{bmatrix} = \mathbf{y}^{\mathrm{T}} \mathbf{F}_{1} \mathbf{C} \implies \mathbf{C}^{\mathrm{T}} \mathbf{F}_{1}^{\mathrm{T}} \mathbf{y} = \mathbf{0} \\ \implies \mathbf{0} &= \mathbf{F}_{1}^{\mathrm{T}} \mathbf{y} \end{aligned}$$

 \bullet The last step used the fact ${\rm rank}({\bf A})={\rm rank}({\bf A}^{\rm T})$ and ${\bf C}$ is full rank, so

$$\text{null}(\mathbf{C}^{\mathrm{T}}) = \{\mathbf{0}\}\$$

- \bullet In order to show $\mathbf{y} \in \mathrm{row}\left(\mathbf{E}_{2}\right)$ from $\mathbf{0} = \mathbf{F}_{1}^{\mathrm{T}}\mathbf{y}$, we need the following result.
- Notice $\mathbf{E}\mathbf{E}^{-1} = \mathbf{I} = \mathbf{E}^{-1}\mathbf{E}$, where

$$egin{bmatrix} \left[\mathbf{F}_1 & \mathbf{F}_2
ight] & \left|\mathbf{E}_1
ight| \\ \mathbf{E}_2 & \end{bmatrix} = \mathbf{I} \implies \mathbf{F}_1\mathbf{E}_1 + \mathbf{F}_2\mathbf{E}_2 = \mathbf{I} \implies \mathbf{F}_1\mathbf{E}_1 = \mathbf{I} - \mathbf{F}_2\mathbf{E}_2$$

ullet Now back to $\mathbf{0} = \mathbf{F}_1^\mathrm{T} \mathbf{y}$ from which, we have

$$\begin{aligned} \mathbf{0}^{\mathrm{T}} &= \mathbf{y}^{\mathrm{T}} \mathbf{F}_{1} \implies \mathbf{0}^{\mathrm{T}} = \mathbf{y}^{\mathrm{T}} \mathbf{F}_{1} \mathbf{E}_{1} = \mathbf{y}^{\mathrm{T}} (\mathbf{I}_{m} - \mathbf{F}_{2} \mathbf{E}_{2}) \\ &\implies \mathbf{y}^{\mathrm{T}} = \mathbf{y}^{\mathrm{T}} \mathbf{F}_{2} \mathbf{E}_{2} = (\mathbf{y}^{\mathrm{T}} \mathbf{F}_{2}) \mathbf{E}_{2} \\ &\implies \mathbf{y}^{\mathrm{T}} \in \mathrm{row}(\mathbf{E}_{2}) \quad \text{and thus} \quad \mathbf{y} \in \mathrm{row}(\mathbf{E}_{2}) \end{aligned}$$

• Since \mathbf{y} is any vector $\in \text{null}(\mathbf{A}^T)$,

$$\text{null}(\mathbf{A}^{\mathrm{T}}) \subset \text{row}(\mathbf{E}_2) \quad \Box$$

Exercise

Find a spanning set for
$$\operatorname{null}(\mathbf{A}^T)$$
, where $\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix}$.

Solution

ullet We want to find the matrix ${f E}$ such that

$$\mathbf{E}\mathbf{A} = \mathbf{U}$$
 where \mathbf{U} is a row echelon form of \mathbf{A} .

• Thus let us consider the following matrix, and apply row operations on it

$$\begin{bmatrix} 1 & 2 & 2 & 3 & 1 & 0 & 0 \\ 2 & 4 & 1 & 3 & 0 & 1 & 0 \\ 3 & 6 & 1 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 1 & -1/3 & 2/3 & 0 \\ 0 & 0 & 1 & 1 & 2/3 & -1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & -5/3 & 1 \end{bmatrix} \leftarrow_{\mathbf{X}} = \begin{bmatrix} \mathbf{C} & \mathbf{E}_1 \\ \mathbf{0} & \mathbf{E}_2 \end{bmatrix}$$

Therefore

$$\text{null}(\mathbf{A}^{T}) = \text{row}(\mathbf{E}_{2}) = \text{span}(\mathbf{x})$$