entre 100 a 120 minutos.

(A) 0.25

inferior a 112 minutos?

estimativa cêntrica de θ é

(B) 2

(A) 0.5

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA DEPARTAMENTO DE FÍSICA E MATEMÁTICA LICENCIATURA EM ENGENHARIA INFORMÁTICA (LEI, LEI-PL, LEICE)

 $2^{\underline{a}}$ Frequência de Métodos Estatísticos

28 de Junho de 2021	$ m Vers ilde{a}o~101$	Duração: 1h00mi
---------------------	------------------------	-----------------

Na resolução de todas as questões que não sejam de escolha múltipla justifique todos os cálculos e deduções.

(a) Sabendo que, por motivo de obras na autoestrada, o tempo de viagem irá ser superior a 110 minutos,

(b) Numa amostra aleatória de 31 viagens, qual a probabilidade de a média dos tempos de viagem ser

(C) 0.75

(**D**) 0.6667

(D) Nenhuma das anteriores

(2.5) 1. Considere que o tempo de viagem de autocarro entre Coimbra e Lisboa segue uma distribuição Uniforme

a probabilidade do autocarro terminar a viagem no máximo ao fim de 115 minutos será

(B) 0.5

(3.0) 2	méd		automóveis defende os 100 km, em circu nição Normal.	-	-	-	~
	(a)		ade de, numa amost as decimais, igual a	ra aleatória de 20	automóveis, o g	asto médio ser su	perior a 10 litro
			(A) 0.38	(B) 0.91	(C) 0	(D) 0.	09
	(b)	-	rá ser a dimensão da or a 10 litros?	amostra para ob	oter, com pelo me	enos 90% probabi	lidade, um gasto
(2.5) 3	muit de 6	to sedentária. .1 kg. Para te	nista concebeu um no Com este novo pro star a veracidade de o uma perda média o	grama ele afirma tal afirmação, an	que a perda mé	dia de peso, ao fi	im de um mês,
	Admita que a perda de peso segue uma distribuição Normal com um desvio padrão de 1.8 kg.						
	(a)	Com 95% de peso?	e confiança, concord	a com a afirmaçã	o do nutricionista	a relativamente à	perda média de
	(b)		dos os dados restan m grau de confiança		m efetuar cálculo	os, poderá alterar	a sua opinião se
(2.0) 4	cido	$\theta, \theta \in]0$	vel aleatória real cuj $,1[$. Sabe-se que $E($.	$X) = \frac{\theta}{4}.$			
	(a)	Recolheu-se estimador cê	uma amostra de X , ntrico de θ ?	$X_1 X_2, \cdots, X_n$ co	om $n > 2$. O estin	$nador T = \frac{nX_1 - nA_2}{nA_2}$	$\frac{-2X_2 - X_n}{2} $ é un
		(A) Sir	n	(B) Não		(C) Depende de	o valor de n

(b) Foi recolhida uma amostra de X, de dimensão 40, cuja média é 0.125. A partir desta amostra uma

(C) 1

isec Engenharia

entre 100 a 120 minutos.

(A) 0.25

inferior a 112 minutos?

estimativa cêntrica de θ é

(B) 2

(A) 0.5

Instituto Superior de Engenharia de Coimbra Departamento de Física e Matemática Licenciatura em Engenharia Informática (LEI, LEI-PL, LEICE)

 $2^{\underline{a}}$ Frequência de Métodos Estatísticos

28 de Junho de 2021 Versão 102 Duração: 1h00min

Na resolução de todas as questões que **não sejam** de escolha múltipla justifique todos os cálculos e deduções.

(a) Sabendo que, por motivo de obras na autoestrada, o tempo de viagem irá ser superior a 110 minutos,

(b) Numa amostra aleatória de 31 viagens, qual a probabilidade de a média dos tempos de viagem ser

(C) 0.75

(**D**) 0.6667

(D) Nenhuma das anteriores

(2.5) 1. Considere que o tempo de viagem de autocarro entre Coimbra e Lisboa segue uma distribuição Uniforme

a probabilidade do autocarro não terminar a viagem ao fim de 115 minutos será

(B) 0.5

(3.0) 3	m	édia 9.7 litro	de automóveis defendo os aos 100 km, em circ cribuição Normal.	-	•	-	0
	(-	oilidade de, numa amos casas decimais, igual a	tra aleatória de 20	automóveis, o gast	o médio ser supe	erior a 10 litros
			(A) 0.38	(B) 0.91	(C) 0	(D) 0.09)
	(everá ser a dimensão d ferior a 10 litros?	a amostra para ob	ter, com pelo meno	s 90% probabilio	dade, um gasto
(2.5)	$\det \det$	uito sedentár e 6.1 kg. Para ndo-se verific	cionista concebeu um n ria. Com este novo pro a testar a veracidade de cado uma perda média perda de peso segue un	ograma ele afirma e tal afirmação, an de peso de 3.4 kg.	que a perda média alisaram-se os resul	de peso, ao fim tados obtidos po	n de um mês, é or 50 pacientes,
	((a) Com 95% peso?	6 de confiança, concord	la com a afirmaçã	o do nutricionista r	elativamente à p	perda média de
	(o todos os dados restan r um grau de confiança	- :	m efetuar cálculos,	poderá alterar a	, sua opinião se
(2.0)		•	ariável aleatória real cuj $\in]0,1[$. Sabe-se que $E($	^ -	probabilidade deper	de de um parân	netro desconhe-
	(-se uma amostra de X , r cêntrico de θ ?	$X_1 X_2, \cdots, X_n$ co	m > 2. O estimad	$dor T = \frac{nX_1 - 2}{nX_1 - 2}$	$\frac{2X_2 - X_n}{2} \text{ é um}$
		(\mathbf{A})	Sim	(B) Depende	do valor de n		(C) Não
	(b) Foi recoll	hida uma amostra de <i>X</i>	K, de dimensão 40	, cuja média é 0.12	5. A partir dest	a amostra uma

(C) 1