```
import numpy as np
        import pandas as pd
        pd.set_option('display.max_columns', None)
In [2]: import pandas as pd
        df_country= pd.read_csv("Dataset/country_names_area.csv", sep=';')
        df country = df country.drop(["country code"], axis=1)
        df asfr= pd.read csv("Dataset/age specific fertility rates.csv", sep=';')
        df asfr = df asfr.drop(["country code"], axis=1)
        df_asfr= pd.read_csv("Dataset/age_specific_fertility_rates.csv", sep=';')
        df_asfr = df_asfr.drop(["country_code"], axis=1)
        df_mypas= pd.read_csv("Dataset/midyear_population_age_sex.csv", sep=';')
        df mypas = df mypas.drop(["country code"], axis=1)
        df_mle= pd.read_csv("Dataset/mortality_life_expectancy.csv", sep=';')
        df mle = df mle.drop(["country code"], axis=1)
        df bdgr = pd.read csv("Dataset/birth death growth rates.csv", sep=';')
        df bdgr = df bdgr.drop(["country code"], axis=1)
        df_myp = pd.read_csv("Dataset/midyear_population.csv", sep=';')
        df_myp = df_myp.drop(["country_code"], axis=1)
In [3]:
       df_myp5= pd.read_csv("Dataset/midyear_population_5yr_age_sex.csv", sep=';')
        df myp5 = df myp5.drop(["country code"], axis=1)
        list flag=[]
        for j in range(len(df_myp5)):
              list1=[df_myp5.iloc[j].total_flag,df_myp5.iloc[j].starting_age,df_myp5.i
        loc[j].age group indicator,df myp5.iloc[j].ending age,df myp5.iloc[j].midyear
        population,df_myp5.iloc[j].midyear_population_male,df_myp5.iloc[j].midyear_pop
        ulation femalel
              list flag.append(list1)
        df_myp5['flag']=list_flag
        df_myp5.drop(['total_flag','starting_age','age_group_indicator','ending_age',
        'midyear_population','midyear_population_male','midyear_population_female'],ax
        is=1,inplace=True)
        df myp5 = df myp5.groupby(['country name','year'])['flag'].apply(list).reset i
        ndex(name='flag')
In [ ]: #On fait le choix de négliger cette table qui est une permutation de la table
         midyear_population_age_sex et d'une autre table que nous n'avons pas
        #df_mypac= pd.read_csv("midyear_population_age_country_code.csv", sep=';')
        #df mypac = df mypac.drop(['country code','permutation role','age','populatio
        n'], axis=1)
        #df_mypac
```

import json

In [1]:

```
In [4]: df_all=df_myp.merge(df_myp5, on=['country_name','year'],how="outer")
    df_all=df_all.merge(df_mypas, on=['country_name','year'],how="outer")
    df_all=df_all.merge(df_bdgr, on=['country_name','year'],how="outer")
    df_all=df_all.merge(df_asfr,on=['country_name','year'],how="outer")
    df_all=df_all.merge(df_country,on=['country_name'],how="outer")
    df_all=df_all.merge(df_mle,on=['country_name','year'],how="outer")
    df_all=df_all.merge(df_mle,on=['country_name','year'],how="outer")
    df_all.to_csv('finalmerge.csv',index=False)
```

```
In [6]: df_all=df_all.fillna("null",axis=0)
```

In [7]: list_fm= []
 for j in range(len(df_all)):

if(df_all.iloc[j].sex=='Female'):

list1=[df all.iloc[j].sex,df all.iloc[j].infant mortality female,df al 1.iloc[j].life_expectancy_female,df_all.iloc[j].mortality_rate_under5_female,d f_all.iloc[j].mortality_rate_1to4_female,df_all.iloc[j].max_age,df_all.iloc[j] .population_age_0,df_all.iloc[j].population_age_1,df_all.iloc[j].population_ag e_2,df_all.iloc[j].population_age_3,df_all.iloc[j].population_age_4,df_all.ilo c[j].population_age_5,df_all.iloc[j].population_age_6,df_all.iloc[j].populatio n_age_7,df_all.iloc[j].population_age_8,df_all.iloc[j].population_age_9,df_all .iloc[j].population_age_10,df_all.iloc[j].population_age_11,df_all.iloc[j].pop ulation_age_12,df_all.iloc[j].population_age_13,df_all.iloc[j].population_age_ 14,df_all.iloc[j].population_age_15,df_all.iloc[j].population_age_16,df_all.il oc[j].population_age_17,df_all.iloc[j].population_age_18,df_all.iloc[j].popula tion age 19,df all.iloc[j].population age 20,df all.iloc[j].population age 21, df_all.iloc[j].population_age_22,df_all.iloc[j].population_age_23,df_all.iloc[j].population_age_24,df_all.iloc[j].population_age_25,df_all.iloc[j].populatio n_age_26,df_all.iloc[j].population_age_27,df_all.iloc[j].population_age_28,df_ all.iloc[j].population_age_29,df_all.iloc[j].population_age_30,df_all.iloc[j]. population age 31,df all.iloc[j].population age 32,df all.iloc[j].population a ge_33,df_all.iloc[j].population_age_34,df_all.iloc[j].population_age_35,df_all .iloc[j].population_age_36,df_all.iloc[j].population_age_37,df_all.iloc[j].pop ulation age 38,df all.iloc[j].population age 39,df all.iloc[j].population age 40,df_all.iloc[j].population_age_41,df_all.iloc[j].population_age_42,df_all.il oc[j].population_age_43,df_all.iloc[j].population_age_44,df_all.iloc[j].popula tion age 45,df all.iloc[j].population age 46,df all.iloc[j].population age 47, df all.iloc[j].population age 48,df all.iloc[j].population age 49,df all.iloc[j].population_age_50,df_all.iloc[j].population_age_51,df_all.iloc[j].populatio n_age_52,df_all.iloc[j].population_age_53,df_all.iloc[j].population_age_54,df_ all.iloc[j].population_age_55,df_all.iloc[j].population_age_56,df_all.iloc[j]. population_age_57,df_all.iloc[j].population_age_58,df_all.iloc[j].population_a ge 59,df all.iloc[j].population age 60,df all.iloc[j].population age 61,df all .iloc[j].population_age_62,df_all.iloc[j].population_age_63,df_all.iloc[j].pop ulation_age_64,df_all.iloc[j].population_age_65,df_all.iloc[j].population_age_ 66,df_all.iloc[j].population_age_67,df_all.iloc[j].population_age_68,df_all.il oc[j].population_age_69,df_all.iloc[j].population_age_70,df_all.iloc[j].popula tion_age_71,df_all.iloc[j].population_age_72,df_all.iloc[j].population_age_73, df_all.iloc[j].population_age_74,df_all.iloc[j].population_age_75,df_all.iloc[j].population age 76,df all.iloc[j].population age 77,df all.iloc[j].populatio n_age_78,df_all.iloc[j].population_age_79,df_all.iloc[j].population_age_80,df_ all.iloc[j].population_age_81,df_all.iloc[j].population_age_82,df_all.iloc[j]. population_age_83,df_all.iloc[j].population_age_84,df_all.iloc[j].population_a ge_85,df_all.iloc[j].population_age_86,df_all.iloc[j].population_age_87,df_all .iloc[j].population_age_88,df_all.iloc[j].population_age_89,df_all.iloc[j].pop ulation_age_90,df_all.iloc[j].population_age_91,df_all.iloc[j].population_age_ 92,df_all.iloc[j].population_age_93,df_all.iloc[j].population_age_94,df_all.il oc[j].population_age_95,df_all.iloc[j].population_age_96,df_all.iloc[j].popula tion_age_97,df_all.iloc[j].population_age_98,df_all.iloc[j].population_age_99, df_all.iloc[j].population_age_100]

elif(df_all.iloc[j].sex=='Male'):

list1=[df_all.iloc[j].sex,df_all.iloc[j].infant_mortality_male,df_all.
iloc[j].life_expectancy_male,df_all.iloc[j].mortality_rate_under5_male,df_all.
iloc[j].mortality_rate_1to4_male,df_all.iloc[j].max_age,df_all.iloc[j].populat
ion_age_0,df_all.iloc[j].population_age_1,df_all.iloc[j].population_age_2,df_a
ll.iloc[j].population_age_3,df_all.iloc[j].population_age_4,df_all.iloc[j].pop
ulation_age_5,df_all.iloc[j].population_age_6,df_all.iloc[j].population_age_7,

df_all.iloc[j].population_age_8,df_all.iloc[j].population_age_9,df_all.iloc[j] .population_age_10,df_all.iloc[j].population_age_11,df_all.iloc[j].population_ age_12,df_all.iloc[j].population_age_13,df_all.iloc[j].population_age_14,df_al 1.iloc[j].population_age_15,df_all.iloc[j].population_age_16,df_all.iloc[j].po pulation_age_17,df_all.iloc[j].population_age_18,df_all.iloc[j].population_age _19,df_all.iloc[j].population_age_20,df_all.iloc[j].population_age_21,df_all.i loc[j].population_age_22,df_all.iloc[j].population_age_23,df_all.iloc[j].popul ation_age_24,df_all.iloc[j].population_age_25,df_all.iloc[j].population_age_26 ,df_all.iloc(j).population_age_27,df_all.iloc(j).population_age_28,df_all.iloc [j].population_age_29,df_all.iloc[j].population_age_30,df_all.iloc[j].populati on_age_31,df_all.iloc[j].population_age_32,df_all.iloc[j].population_age_33,df _all.iloc[j].population_age_34,df_all.iloc[j].population_age_35,df_all.iloc[j] .population_age_36,df_all.iloc[j].population_age_37,df_all.iloc[j].population_ age_38,df_all.iloc[j].population_age_39,df_all.iloc[j].population_age_40,df_al 1.iloc[j].population_age_41,df_all.iloc[j].population_age_42,df_all.iloc[j].po pulation_age_43,df_all.iloc[j].population_age_44,df_all.iloc[j].population_age 45,df all.iloc[j].population age 46,df all.iloc[j].population age 47,df all.i loc[j].population_age_48,df_all.iloc[j].population_age_49,df_all.iloc[j].popul ation_age_50,df_all.iloc[j].population_age_51,df_all.iloc[j].population_age_52 ,df_all.iloc(j).population_age_53,df_all.iloc(j).population_age_54,df_all.iloc [j].population_age_55,df_all.iloc[j].population_age_56,df_all.iloc[j].populati on age 57,df all.iloc[j].population age 58,df all.iloc[j].population age 59,df _all.iloc[j].population_age_60,df_all.iloc[j].population_age_61,df_all.iloc[j] .population_age_62,df_all.iloc[j].population_age_63,df_all.iloc[j].population_ age_64,df_all.iloc[j].population_age_65,df_all.iloc[j].population_age_66,df_al 1.iloc[j].population_age_67,df_all.iloc[j].population_age_68,df_all.iloc[j].po pulation_age_69,df_all.iloc[j].population_age_70,df_all.iloc[j].population_age _71,df_all.iloc[j].population_age_72,df_all.iloc[j].population_age_73,df_all.i loc[j].population age 74,df all.iloc[j].population age 75,df all.iloc[j].popul ation_age_76,df_all.iloc[j].population_age_77,df_all.iloc[j].population_age_78 ,df_all.iloc[j].population_age_79,df_all.iloc[j].population_age_80,df_all.iloc [j].population_age_81,df_all.iloc[j].population_age_82,df_all.iloc[j].populati on_age_83,df_all.iloc[j].population_age_84,df_all.iloc[j].population_age_85,df _all.iloc[j].population_age_86,df_all.iloc[j].population_age_87,df_all.iloc[j] .population age 88,df all.iloc[j].population age 89,df all.iloc[j].population age_90,df_all.iloc[j].population_age_91,df_all.iloc[j].population_age_92,df_al 1.iloc[j].population_age_93,df_all.iloc[j].population_age_94,df_all.iloc[j].po pulation_age_95,df_all.iloc[j].population_age_96,df_all.iloc[j].population_age _97,df_all.iloc[j].population_age_98,df_all.iloc[j].population_age_99,df_all.i loc[j].population_age_100] elif(df all.iloc[j].sex=='null'): list1="null" list_fm.append(list1) #df_all['sexe']=list_fm

#df_all.drop(['sex','infant_mortality_male','infant_mortality_female','life_ex
pectancy_male','life_expectancy_female','mortality_rate_under5_female','mortal
ity_rate_under5_male','mortality_rate_1to4_male','mortality_rate_1to4_femal
e','max_age','population_age_0','population_age_1','population_age_2','populat
ion_age_3','population_age_4','population_age_5','population_age_6','populatio
n_age_7','population_age_8','population_age_9','population_age_10','populatio
age_11','population_age_12','population_age_13','population_age_14','populat
ion_age_15','population_age_16','population_age_17','population_age_18','popula
tion_age_19','population_age_20','population_age_21','population_age_22','population_age_26','po
pulation_age_27','population_age_28','population_age_29','population_age_3

0','population_age_31','population_age_32','population_age_33','population_age _34','population_age_35','population_age_36','population_age_37','population_a ge_38', 'population_age_39', 'population_age_40', 'population_age_41', 'population _age_42', 'population_age_43', 'population_age_44', 'population_age_45', 'populati on_age_46', 'population_age_47', 'population_age_48', 'population_age_49', 'popula tion_age_50', 'population_age_51', 'population_age_52', 'population_age_53', 'population_age_ lation_age_54', 'population_age_55', 'population_age_56', 'population_age_57', 'po pulation_age_58','population_age_59','population_age_60','population_age_6 1','population_age_62','population_age_63','population_age_64','population_age _65','population_age_66','population_age_67','population_age_68','population_a ge_69', 'population_age_70', 'population_age_71', 'population_age_72', 'population _age_73','population_age_74','population_age_75','population_age_76','populati on_age_77', 'population_age_78', 'population_age_79', 'population_age_80', 'popula tion_age_81','population_age_82','population_age_83','population_age_84','popu lation_age_85', 'population_age_86', 'population_age_87', 'population_age_88', 'po pulation_age_89','population_age_90','population_age_91','population_age_9 2', 'population_age_93', 'population_age_94', 'population_age_95', 'population_age _96','population_age_97','population_age_98','population_age_99','population_a ge 100'],axis=1,inplace=True)

#df_all=df_all.groupby(['country_name','year','infant_mortality','life_expecta
ncy','mortality_rate_under5','mortality_rate_1to4','midyear_population','ferti
lity_rate_15_19','fertility_rate_20_24','fertility_rate_25_29','fertility_rate
_30_34','fertility_rate_35_39','fertility_rate_40_44','fertility_rate_45_4
9','total_fertility_rate','gross_reproduction_rate','sex_ratio_at_birth','coun
try_area','crude_birth_rate','crude_death_rate','net_migration','rate_natural_
increase','growth_rate'])['sexe'].apply(list).reset_index()
#df_all=df_all.merge(df_myp5,on=['country_name','year'],how="outer")
#df_all

```
In [8]: | df_all['sexe']=list_fm
```

```
In [12]: df_all=df_all.merge(df_myp5,on=['country_name','year'],how="outer")
```

```
In [13]:
         df all.infant mortality = df all.infant mortality.map(lambda x: str(x).replace
         (",","."))
         df all.life expectancy = df all.life expectancy.map(lambda x: str(x).replace(
            ","."))
         df all.mortality rate under5 = df all.mortality rate under5.map(lambda x: str(
         x).replace(",","."))
         df all.mortality rate 1to4 = df all.mortality rate 1to4.map(lambda x: str(x).r
         eplace(",","."))
         df all.fertility rate 15 19 = df all.fertility rate 15 19.map(lambda x: str(x)
         .replace(",","."))
         df all.fertility rate 20 24 = df all.fertility rate 20 24.map(lambda x: str(x)
          .replace(",","."))
         df_all.fertility_rate_25_29 = df_all.fertility_rate_25_29.map(lambda x: str(x)
         .replace(",","."))
         df all.fertility rate 30 34 = df all.fertility rate 30 34.map(lambda x: str(x)
         .replace(",","."))
         df all.fertility rate 35 39 = df all.fertility rate 35 39.map(lambda x: str(x)
         .replace(",","."))
         df_all.fertility_rate_40_44 = df_all.fertility_rate_40_44.map(lambda x: str(x)
         .replace(",","."))
         df all.fertility rate 45 49 = df all.fertility rate 45 49.map(lambda x: str(x)
         .replace(",","."))
         df all.total fertility rate = df all.total fertility rate.map(lambda x: str(x)
         .replace(",","."))
         df_all.gross_reproduction_rate = df_all.gross_reproduction_rate.map(lambda x:
         str(x).replace(",","."))
         df all.sex ratio at birth = df all.sex ratio at birth.map(lambda x: str(x).rep
         lace(",","."))
         df all.crude birth rate = df all.crude birth rate.map(lambda x: str(x).replace
         (",","."))
         df all.crude death rate = df all.crude death rate.map(lambda x: str(x).replace
         df all.net migration = df all.net migration.map(lambda x: str(x).replace(",",
         "."))
         df_all.rate_natural_increase = df_all.rate_natural_increase.map(lambda x: str(
         x).replace(",","."))
         df all.growth rate = df all.growth rate.map(lambda x: str(x).replace(",","."))
         df all.country area = df all.country area.map(lambda x: str(x).replace(",","."
         ))
```

In [14]: df_all=df_all.fillna("null",axis=0)

Out[14]:

•		country_name	year	infant_mortality	life_expectancy	mortality_rate_under5	mortality_rate
	0	Afghanistan	1950	null	null	null	
	1	Afghanistan	1951	null	null	null	
	2	Afghanistan	1952	null	null	null	
	3	Afghanistan	1953	null	null	null	
	4	Afghanistan	1954	null	null	null	
	23074	Zimbabwe	2046	15.08	65.52	22.66	
	23074	Zillibabwe	2040	13.00	03.32	22.00	
	22075	Zinah ahuus	2047	44.70	CE 02	22.42	
	23075	Zimbabwe	2047	14.72	65.92	22.12	
	23076	Zimbabwe	2048	14.35	66.33	21.55	
	23077	Zimbabwe	2049	13.98	66.75	20.98	
	23078	Zimbabwe	2050	13.62	67.17	20.41	

23079 rows × 25 columns

In [15]: df_all.to_csv('out3.csv',index=False)

```
In [17]: def flag dict(i):
             full flag=[]
             #for i in range(len(df all)): #if 1 one country one year
                 #print(df all.iloc[i])
             if(df all.flag[i]=="null"):
                 return ("null");
             else :
                 for j in range(len(df all.iloc[i].flag)):
                     #print(df_all.iloc[i].flag[j])
                     dict1={'total_flag': str(df_all.iloc[i].flag[j][0]), 'starting_ag
         e': str(df_all.iloc[i].flag[j][1]), 'age_group_indication': str(df_all.iloc[i]
         .flag[j][2]), 'ending_age': str(df_all.iloc[i].flag[j][3]),'midyear_populatio
         n': str(df_all.iloc[i].flag[j][4]), 'midyear_population_male': str(df_all.iloc
         [i].flag[j][5]), 'midyear population female': str(df all.iloc[i].flag[j][6])}
                     full_flag.append(dict1)
                     x=len(df_all.iloc[i].flag)-1
                     if j!=x:
                         full_flag=full_flag+', '"""
             return(full flag)
         def Male index(i):
             if((df all.iloc[i].sexe[0][0])=="Male"):
                 return '0'
             else: return '1'
         def Female index(i):
             if((df all.iloc[i].sexe[0][0])=="Female"):
                 return '0'
             else: return '1'
         def Male dict(i):
             if(df_all.sexe[i][0]!="null"):
                 mix=int(Male_index(i))
                 fix=int(Female index(i))
                 dict1={'infant_mortality_male': str(df_all.iloc[i].sexe[mix][1]).repla
         ce(",",".") , 'life_expectancy_male': str(df_all.iloc[i].sexe[mix][2]).replace
         (",","."), 'mortality_rate_under5_male': str(df_all.iloc[i].sexe[mix][3]).repl
         ace(",","."), 'mortality rate 1to4 male': str(df all.iloc[i].sexe[mix][4]).rep
         lace(",","."),'max_age': str(df_all.iloc[i].sexe[mix][5]).replace(",",".")}
                 for j in range(101):
                     key='population age %s'%(j)
                     key value=str(df all.iloc[i].sexe[mix][j+5]).replace(",",".")
                     dict1[key] = key value
             else : dict1="null"
             return (dict1)
         def Female dict(i):
             if(df all.sexe[i][0]!="null"):
                 mix=int(Male index(i))
                 fix=int(Female index(i))
                 dict1={'infant_mortality_female': str(df_all.iloc[i].sexe[fix][1]).rep
         lace(",",".") , 'life_expectancy_female': str(df_all.iloc[i].sexe[fix][2]).rep
         lace(",","."), 'mortality_rate_under5_female': str(df_all.iloc[i].sexe[fix][3
         ]).replace(",","."), 'mortality_rate_1to4_female': str(df_all.iloc[i].sexe[fix
```

```
[[4]).replace(",","."),'max age': str(df all.iloc[i].sexe[fix][5]).replace(","
,".")}
       for j in range(101):
            key='population age %s'%(j)
            key value=str(df all.iloc[i].sexe[fix][j+5]).replace(",",".")
            dict1[key] = key_value
   else : dict1="null"
   return (dict1)
def creation json(df all):
   fh = open("all4.json", "a+")
   all data=[]
   for i in range(len(df all)):
       y=str(df all.iloc[i].year)
        cn=str(df_all.iloc[i].country_name)
        ca=str(df all.iloc[i].country area)
        cbr=str(df all.iloc[i].crude birth rate)
        cdr=str(df_all.iloc[i].crude_death_rate)
        nm=str(df all.iloc[i].net migration)
        rni=str(df_all.iloc[i].rate_natural_increase)
        gr=str(df all.iloc[i].growth rate)
        fr1519=str(df all.iloc[i].fertility rate 15 19)
        fr2024=str(df all.iloc[i].fertility rate 20 24)
       fr2529=str(df_all.iloc[i].fertility_rate_25_29)
       fr3034=str(df_all.iloc[i].fertility_rate_30_34)
       fr3539=str(df all.iloc[i].fertility rate 35 39)
       fr4044=str(df_all.iloc[i].fertility_rate_40_44)
        fr4549=str(df all.iloc[i].fertility rate 45 49)
       tfr=str(df all.iloc[i].total fertility rate)
        grr=str(df_all.iloc[i].gross_reproduction_rate)
        srab=str(df_all.iloc[i].sex_ratio_at_birth)
       mpx=str(df_all.iloc[i].midyear_population)
        im=str(df all.iloc[i].infant mortality)
        le=str(df all.iloc[i].life expectancy)
       mru5=str(df all.iloc[i].mortality rate under5)
       mr1t4=str(df all.iloc[i].mortality rate 1to4)
       data={"_id":{"country_name": cn, "year": y},"country_stats":{"country_
area":ca, "crude birth rate":cbr, "crude death rate":cdr, "net migration":nm, "rat
e_natural_increase":rni, "growth_rate":gr, "fertility_rate_15_19":fr1519, "fertil
ity rate 20 24":fr2024, "fertility rate 25 29":fr2529, "fertility rate 30 34":fr
3034, "fertility_rate_35_39":fr3539, "fertility_rate_40_44":fr4044, "fertility_ra
te_45_49":fr4549,"total_fertility_rate":tfr,"gross_reproduction_rate":grr,"sex
_ratio_at_birth":srab,"midyear_population":mpx,"life_expectancy":le,"mortality
_rate_under5":mru5,'mortality_rate_1to4':mr1t4, "Flag":flag_dict(i),"Male":Mal
e dict(i), "Female": Female dict(i)}}
        all_data.append(data)
   fh.write(json.dumps(all data))
   fh.close()
```

```
In [18]: creation_json(df_all)
```

In []: