

Europäisches Patentamt European Patent Office Office européen des brevets

① Veröffentlichungsnummer: 0 419 944 A2

℗

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90117567.9

2 Anmeldetag: 12.09.90

(1) Int. Cl.5: **C07D** 263/34, C07D 277/56, A01N 43/76, A01N 43/78

3 Priorität: 26.09.89 DE 3932052

Veröffentlichungstag der Anmeldung: 03.04.91 Patentblatt 91/14

Benannte Vertragsstaaten: BE CH DE ES FR GB IT LI NL

(71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

2 Erfinder: Ditrich, Klaus, Dr. Paray-le-Moniai-Strasse 12 W-6702 Bad Duerkheim(DE) Erfinder: Maywald, Volker, Dr. Berner Weg 24

W-6700 Ludwigshafen(DE)

Erfinder: Hamprecht, Gerhard, Dr.

Rote-Turm-Strasse 28 W-6940 Weinheim(DE)

Erfinder: Harreus, Albrecht, Dr.

Teichgasse 13

W-6700 Ludwigshafen(DE) Erfinder: Wuerzer, Bruno, Dr.

Ruedigerstrasse 13 W-6701 Otterstadt(DE)

Erfinder: Westphalen, Karl-Otto, Dr.

Mausbergweg 58 W-6720 Speyer(DE)

(4) Oxazoi- bzw. Thiazolcarbonsäureamide.

Oxazol- bzw. Thiazolcarbonsäureamide der Formeln la und lb

Ib

in denen die Substituenten folgende Bedeutung haben:

X Sauerstoff oder Schwefel;

R¹ Wasserstoff; Halogen; gegebenenfalls substituiertes C1-C6-Alkyl, Benzyl, Cycloalkyl, Alkenyl, Alkinyl, Phenyl, Phenoxy oder Phenylthio; Alkoxy; Alkylthio; Halogenalkoxy; Halogenalkylthio; oder einen gegebenenfalls substituierten 5- bis 6-gliedrigen heterocyclischen Rest;

R² Formyl, 4,5-Dihydrooxazol-2-yl oder den Rest -COYR⁵;

Y Sauerstoff oder Schwefel;

R⁵ Wasserstoff; Cycloalkyl; gegebenenfalls substituiertes Alkyl, Phenyl, Benzyl, Alkenyl, Cycloalkenyl oder Alkinyl;

einen gegebenenfalls substituierten 5- oder 6-gliedrigen heterocyclischen Rest; Phthalimido; Tetrahydrophthalimido; Succinimido; Maleinimido;

ein Äquivalent eines Kations;

einen Rest -N = CR⁶ R⁷:

R⁶, R⁷ Wasserstoff; Alkyl; Cycloalkyl; Phenyl; Furyl oder zusammen eine Methylenkette mit 4 bis 7 Kettengliedem;

R³ Wasserstoff oder gegebenenfalls substituiertes Alkyl oder Cycloalkyl;

R4 Hydroxy; Alkoxy;

gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkinyl, Phenyl oder Naphthyl;

einen gegebenenfalls substituierten 5- bis 6-gliedrigen heterocyclischen Rest; oder R³ und R⁴ gemeinsam einen Rest der Struktur -(CH₂)_n-Y_p-(CH₂)_q-, wobei n und q 1, 2 oder 3, p 0 oder 1 und Y Sauerstoff, Schwefel oder N-Methyl bedeuten oder den Rest der Formel -(CH₂)₃-CO- bilden, sowie deren umweltverträgliche Salze,

wobei in der Formel Ib X nicht Schwefel bedeutet, wenn R¹ 3-Pyridyl, R² CO₂CH₂CH₃ oder R³ Wasserstoff bedeutet, und wobei in der Formel Ia X nicht Schwefel oder R¹ nicht Thien-2-yl bedeutet, wenn YR⁵ für OH steht und R³ Wasserstoff und R⁴ Methyl bedeutet, Verfahren zur Herstellung und herbizide Mittel, die die Verbindungen der Formeln Ia oder Ib als Wirkstoffe enthalten.

OXAZOL- BZW. THIAZOLCARBONSÄUREAMIDE

Die vorliegende Erfindung betrifft Oxazol- bzw. Thiazolcarbonsäureamide der Formeln la und lb

Ib

10

5

in denen die Substituenten folgende Bedeutung haben:

X Sauerstoff oder Schwefel;

R¹ Wasserstoff; Halogen; C1-C6-Alkyl, welches ein bis fünf Halogenatome und/oder einen oder zwei der folgenden Reste tragen kann: C3-C6-Cycloalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-

15 C4-Halogenalkylthio oder Cyano; Benzyl, welches ein bis drei der folgenden Reste tragen kann: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, Halogen, Cyano oder Nitro;

C3-C8-Cycloalkyl, welches ein bis drei der folgenden Reste tragen kann: C1-C4-Alkyl oder Halogen;

C2-C6-Alkenyl, welches ein bis drei der folgenden Reste tragen kann: Halogen, C1-C3-Alkoxy und/oder ein 20 Phenyl, das seinerseits eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, Halogen, Cyano oder Nitro; C2-C6-Alkinyl, welches ein bis drei der folgenden Reste tragen kann: Halogen oder C1-C3-Alkoxy und/oder ein Phenyl, das seinerseits eine bis drei der folgenden Gruppen tragen kann: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, Halogen, Cyano oder Nitro;

C1-C4-Alkoxy; C1-C4-Alkylthio; C1-C4-Halogenalkoxy; C1-C4-Halogenalkylthio;

Phenoxy oder Phenylthio, welches ein bis drei der folgenden Reste tragen kann: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, Halogen, Cyano oder Nitro;

ein 5- bis 6-gliedriger heterocyclischer Rest, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei der Ring ein oder zwei der folgenden Reste tragen kann: C₁-C₃-Alkyl, Halogen, C₁-C₃-Alkoxy oder C₁-C₃-Alkoxycarbonyl;

Phenyl, welches eine bis drei der folgenden Gruppen tragen kann: C1-C6-Alkyl, C1-C6-Halogenalkyl, C1-C6-Alkoxy, C1-C6-Halogenalkoxy, C1-C6-Alkylthio, C1-C6-Halogenalkylthio, Halogen, Nitro und Cyano,

35 R² Formyl, 4,5-Dihydrooxazol-2-yl oder den Rest -COYR⁵;

Y Sauerstoff oder Schwefel;

R5 Wasserstoff;

C1-C6-Alkyl, welches ein bis fünf Halogenatome oder Hydroxygruppen und/oder einen der folgenden Reste tragen kann: C1-C4-Alkoxy, C2-C4-Alkoxy-C1-C4-alkoxy, Cyano, Trimethylsilyl, C1-C3-Alkylthio, C1-C3-Alkytamino, C1-C3-Dialkylamino, C3-C7-Cycloalkylamino, C1-C3-Alkylsulfinyl, C1-C3-Alkylsulfonyl, Carboxyl, C1-C₃-Alkoxycarbonyl, C₁-C₃-Dialkylaminocarbonyl, C₁-C₃-Dialkoxyphosphonyl, Alkaniminoxy, Thienyl, Furyl, Tetrahydrofuryl, Phthalimido, Pyridyl, Benzyloxy, Benzoyl, wobei die cyclischen Reste ihrerseits eine bis drei der folgenden Gruppen tragen können: C1-C3-Alkyl, C1-C3-Alkoxy oder Halogen;

Benzyl, das eine bis drei der folgenden Gruppen tragen kann: C1-C3-Alkyl, C1-C3-Alkoxy, C1-C3-Halogenalkyl, Halogen, Nitro und Cyano;

C₃-C₈-Cycloalkyl;

Phenyl, das eine bis drei der folgenden Gruppen tragen kann: C1-C4-Alkyl, C1-C4-Alkoxy, C1-C4-Halogenalkyl, C1-C4-Halogenalkoxy, C1-C4-Alkoxycarbonyl, Halogen, Nitro und Cyano;

C₃-C₈-Alkenyl, C₅-C₅-Cycloalkenyl oder C₃-C₈-Alkinyl, wobei diese Reste eine der folgenden Gruppen tragen können: Hydroxy, C1-C4-Alkoxy, Halogen oder einen Phenylring, welcher seinerseits eine bis drei der folgenden Gruppen tragen kann: C1-C4-Alkyl, C1-C4-Alkoxy, C1-C4-Halogenalkyl, Halogen, Nitro und Cyano;

einen fünf- bis sechsgliedrigen heterocyclischen Rest enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff oder einen Benzotriazolrest;

Phthalimido; Tetrahydrophthalimido; Succinimido; Maleinimido;

ein Äquivalent eines Kations aus der Gruppe der Alkali- oder Erdalkalimetalle, Mangan, Kupfer, Eisen, Ammonium und substituiertes Ammonium;

einen Rest -N = CR6R7;

- Formel -(CH₂)_m- mit m = 4 bis 7 Kettengliedern;
 - R^3 Wasserstoff; C_1 - C_6 -Alkyl, das einen bis drei der folgenden Substituenten tragen kann: Hydroxy, Halogen, C_1 - C_4 -Alkylthio oder Di- C_1 - C_3 -Alkylamino;
- C₃-C₈-Cycloalkyl, welches ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, Halogen und C₁-C₄
 Halogenalkyl;
 - R⁴ Hydroxy; C₁-C₄-Alkoxy;
 - C₁-C₆-Alkyl, das eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Dialkylamino, Halogen, C₃-C₈-Cycloalkyl oder Phenyl, welches seinerseits ein bis drei der folgenden Reste tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio;
 - C_3 - C_8 -Cycloalkyl, das eine bis drei der folgenden Grupen tragen kann: C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Halogen, Nitro oder Cyano;
 - C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl, das ein- bis dreimal durch Halogen und/oder einmal durch Phenyl substituiert sein kann, wobei der Phenylring seinerseits eine bis drei der folgenden Gruppen tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -C
- G₁-G₄-Alkyl, G₁-G₄-Halogenalkyl, G₁-G₄-Alkoxy, G₁-G₄-Halogenalkoxy, G₁-G₄-Alkylthio, G₁-G₄-Halogenalkylthio, G₁-G₄-Halogenalkylth
 - ein 5- bis 6-gliedriger heterocyclischer Rest enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, welcher ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder Halogen;
- 25 Phenyl, das eine bis vier der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxycarbonyl;
 C₄-Alkanoyl, C₁-C₄-Halogenalkanoyl oder C₁-C₄-Alkoxycarbonyl;
 - Naphthyl, das ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein kann, oder
- R³ und R⁴ gemeinsam einen Rest der Struktur -(CH₂)_n-Y_p-(CH₂)_q-, wobei n und q 1, 2 oder 3, p 0 oder 1 und Y Sauerstoff, Schwefel oder N-Methyl bedeuten oder den Rest der Formel -(CH₂)₃-CO- bilden, sowie deren umweltverträgliche Salze,
 - wobei in der Formel Ib X nicht Schwefel bedeutet, wenn R¹ 3-Pyridyl, R² CO₂CH₂CH₃ oder R³ Wasserstoff bedeutet und wobei in der Formel Ia X nicht Schwefel und R¹ nicht Thien-2-yl bedeutet, wenn YR⁵ für OH steht und R³ Wasserstoff und R⁴ Methyl bedeutet.

Weiterhin betrifft die Erfindung Verfahren zur Herstellung dieser Verbindungen, sowie herbizide Mittel, welche mindestens eine Verbindung la oder Ib enthalten, in denen die Substituenten die vorstehend gegebene Bedeutung haben und X Schwefel bedeuten kann, wenn R¹ 3-Pyridyl, R² CO₂CH₂CH₃ und R² Wasserstoff bedeutet, oder wenn R¹ Thien-2-yl, YR⁵ Hydroxy, R³ Wasserstoff und R⁴ Methyl bedeutet.

Oxazol- und Thiazolcarbonsäuren bzw. deren Derivate sind bekannt (DE-A 22 54 944, Bull. Soc. Chim. Fr., 1989, 2152 sowie DE-A 22 21 647). Mögliche Anwendungen dieser Substanzen als herbizide Mittel sind nicht beschrieben.

Aufgabe der vorliegenden Erfindung war es, neue herbizid wirksame Verbindungen zu finden und zu synthetisieren.

Demgemäß wurden die eingangs definierten Oxazol- bzw. Thiazolcarbonsäureamide la und lb gefunden.

Außerdem wurden Verfahren zu ihrer Herstellung gefunden und herbizide Mittel, welche Oxazol- bzw. Thiazolcarbonsäureamide la und lb enthalten, in denen die Substituenten vorstehend gegebene Bedeutung haben.

Die erfindungsgemäßen Oxazol- bzw. Thiazolcarbonsäureamide la und lb sind auf verschiedenen Wegen herstellbar. Man erhält sie beispielsweise nach den folgenden Verfahren:

1. Verfahren zur Herstellung der Verbindungen la und lb, in denen R² CO₂R⁵ und R⁵ C₁-C₅-Alkyl bedeutet

55

$$- \frac{R^{3}}{R^{1} \times CO_{2}R^{5}} = \frac{R^{1} \times CO_{2}R^{5}}{R^{1} \times CO_{2}R^{5}}$$
Ia
$$(R^{5} = C_{1} - C_{6} - A1ky1)$$

Man erhält diese Oxazol- bzw. Thiazolcarbonsäureamide la und lb dadurch, daß man einen Diester der Formel II in an sich bekannter Weise mit einem Äquivalent einer wäßrigen Base zum Monoester IIIa bzw. IIIb hydrolysiert und IIIa und IIIb danach getrennt oder im Gemisch zunächst in das Halogenid oder eine andere aktivierte Form der Carbonsäure überführt und diese Derivate anschließend mit einem Amin IV amidiert.

Die einzelnen Reaktionsschritte A und B dieser Synthesesequenz können wie folgt durchgeführt werden:

Reaktionsschritt A:

10

15

35

50

55

Die partielle Verseifung des Diesters II zum Monoester Va und Vb wird üblicherweise bei Temperaturen von -20 bis 60°C, vorzugswelse -10 bis 30°C, in einem inerten, mit Wasser mischbaren organischen Lösungsmittel in Gegenwart von 1,0 bis 1,2 mol-äq. einer Base durchgeführt.

Als Basen eignen sich insbesondere Hydroxyde von Alkalimetall-Kationen. Die Base wird im allgemeinen als 5 bis 20 %ige wäßrige Lösung zugesetzt.

Bevorzugte Lösungsmittel für diese Umsetzung sind beispielsweise Dioxan oder der der Esterkomponente in der Formel II entsprechende Alkohol.

Zur Aufarbeitung wird das Reaktionsgemisch üblicherweise angesäuert, wobei sich das gewünschte Produkt als Feststoff oder als ÖI abscheidet. Die Isolierung erfolgt in üblicher Weise durch Filtration bzw. Extraktion.

Das Gemisch der beiden isomeren Monoester Illa und Illb kann durch fraktionierte Kristallisation oder auf chromatographischem Wege getrennt werden oder es kann ohne Trennung weiter umgesetzt werden.

Reaktionsschritt B:

Man erhält die Verbindungen la bzw. Ib aus den Monoestern IIIa und IIIb, in dem man IIIa und IIIb zunächst in an sich bekannter Weise in das Halogenid oder eine andere aktivierte Form der Carbonsäurefunktion überführt und diese Derivate anschließend mit einem Amin IV amidiert.

Aktivierte Formen der Carbonsäure sind neben Halogeniden wie insbesondere den Chloriden und den

Bromiden beispielsweise auch Imidazolide. Im allgemeinen werden die Halogenide bevorzugt.

Man erhält sie durch Umsetzung der Carbonsäuren Illa und Illb mit einem Halogenierungsmittel wie Thionylchlorid, Thionylbromid, Phosphoroxychlorid bzw. -bromid, Phosphortri- und -pentachlorid bzw. bromid, Phosgen sowie elementarem Chlor und Brom.

Das Halogenierungsmittel wird in 1 bis 5 mol-äq., vorzugsweise 1 bis 2 mol.äq., eingesetzt.

Die Umsetzung verläuft bei Temperaturen von 0°C bis zum Siedepunkt des Halogenierungsmittels bzw. sofem man in Gegenwart eines inerten organischen Lösungsmittels arbeitet, auch dessen Siedepunkt, vorzugsweise 20 bis 120°C.

Als Lösungsmittel eignen sich beispielsweise Kohlenwasserstoffe und Halogenkohlenwasserstoffe wie Tetrachlorethan, Methylenchlorid, Chloroform, Dichlorethan, Chlorbenzol, 1,2-Dichlorbenzol, Benzol, Toluol und Xvlol.

Üblicherweise werden die aktivierten Carbonsäurederivate isoliert, beispielsweise durch abdestillieren des Halogenierungsmittels und sofern vorhanden des Lösungsmittels und erst anschließend mit den Aminen IV umgesetzt.

In diesem Fall wird die Amidierung bei Temperaturen von -20 bis 100 °C, vorzugsweise -10 bis 20 °C in einem inerten aprotisch polaren organischen Lösungsmittel durchgeführt.

Für diese Umsetzung eignen sich insbesondere Halogenkohlenwasserstoffe wie Dichlormethan und Ether wie Diethylether und tert.-Butylmethylether als Lösungsmittel.

Da bei der Amidierung von Säurehalogeniden Halogenwasserstoff gebildet wird, empfiehlt es sich, das Amin IV in 2 bis 5 mol.-äq. Überschuß, vorzugsweise 2 bis 3 mol.-äq. zuzusetzen. Sofern das Amin in äquimolaren Mengen (1 bis 1,2 mol-äq.) eingesetzt wird, sollte zum Binden des Halogenwasserstoffs eine Base, insbesondere ein tertiäres Amin wie Triethylamin oder Pyridin zugegeben werden.

Sofern man von einem Gemisch der Monoester Illa und Illb ausgeht erhält man bei der Umsetzung ein Gemisch aus den Isomeren Carbonsäureamiden la und Ib. Dieses Gemisch kann auf herkömmliche Weise, beispielsweise durch fraktionierte Kristallisation oder Chromatographie in die Einzelkomponenten aufgetrennt werden.

Die für diese Synthesesequenz benötigten Edukte II sind bekannt (Bull. Soc. Chim. Fr. 1974, 2079) oder nach bekannten Methoden (Bull. Soc. Chim. Fr. 1969, 1762; J. Chem. Soc., 1953, 93) zugänglich.

2. Verfahren zur Herstellung der Verbindungen la und lb, in denen X Schwefel und R2 CO2H bedeutet

5

30

35

50

Ib

Man erhält diese Thiazolcarbonsäureamide la und lb besonders vorteilhaft, indem man ein Dicarbonsäureanhydrid der Formel V in an sich bekannter Weise mit einem Amin der Formel IV zu den Isomeren la und Ib umsetzt und anschließend das Gemisch in die Isomeren auftrennt.

Die Umsetzung wird üblicherweise bei Temperaturen von -10 bis 150°C, vorzugsweise 20 bis 120°C in einem inerten aprotisch polaren organischen Lösungsmittel durchgeführt.

Insbesondere kommen als Lösungsmittel Halogenkohlenwasserstoffe, z.B. Tetrachlorethan, Methylenchlorid, Chloroform, Dichlorethan, Chlorbenzol und 1,2-Dichlorbenzol; Ether z.B. Diethylether, Methyl-tert.butylether, Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran und Dioxan; dipolare aprotische Lösungsmittel, z.B. Acetonitril, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon und 1,3-Dimethylimidazolidin-2-on; Aromate, z.B. Benzol, Toluol, Xylol, Pyridin und Chinolin; Ketone, z.B. Aceton, Methylethylketon oder entsprechende Gemische zur

Anwendung.

10

15

Das Amin IV wird im allgemeinen in äuqimolaren Mengen oder im Überschuß, vorzugsweise in Mengen von 1,0 bis 5,0 mol-äq. bezogen auf V eingesetzt.

Die für dieses Verfahren benötigten Dicarbonsäureanhydride sind bekannt oder können nach bekannten Methoden hergestellt werden (Bull. Soc. Chim. Fr. 1969, 1762; CS-A-195 369; CS-A-195 370).

3. Verfahren zur Herstellung der Verbindungen la und Ib in denen R¹ nicht Halogen und R² Carboxyl oder Formyl bedeutet

$$R^{1} = R^{2} R^{2}$$

$$R^{2} R^{2}$$

$$R^{2} R^{2}$$

$$R^{3} R^{2} R^{2}$$

$$R^{4} R^{2} R^{2}$$

$$R^{2} R^{2}$$

$$R^{3} R^{2} R^{2}$$

$$R^{4} R^{2$$

Man erhält diese isomeren Oxazol- bzw. Thiazolcarbonsäureamide, indem man eine Carbonsäure IIIc bzw. IIId gemäß den unter 1 B geschilderten Bedingungen aktiviert und amidiert und die so erhaltenen Amide Vla und Vlb anschließend in an sich bekannter Weise in Gegenwart eines Carboxylierungs-oder Formylierungsreagens' umsetzt.

Der Reaktionsschritt A. dieser Synthesesequenz wird im allgemeinen und im besonderen entsprechend den im Verfahren 1 unter Punkt B beschriebenen Bedingungen durchgeführt.

Reaktionsschritt B.

40

50

Die Carboxylierung bzw. Formylierung der Oxazol- bzw. Thiazolcarbonsäureamide VIa bzw. VIb erfolgt in der Regel bei Temperaturen von 0 bis -100°C, vorzugsweise -50 bis -80°C in einem aprotisch polaren inerten organischen Lösungsmittel in Gegenwart einer Base unter Ausschluß von Feuchtigkeit.

Bevorzugtes Carboxylierungsreagens ist gasförmiges oder festes Kohlendioxid, als Formylierungsreagens dient insbesondere Dimethylformamid und N-Formylmorpholin.

Geeignete Lösungsmittel sind insbesondere Ether, z.B. Diethylether, Methyl-tert.-butylether, Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran und Dioxan.

Als Basen finden bevorzugt Organometallverbindungen Methyllithium, n-Butyllithium, s-Butyllithium, t-Butyllithium oder Phenyllithium Verwendung.

Die Umsetzung wird üblicherweise so durchgeführt, daß zunächst eine Lösung des Oxazol- bzw. Thiazolcarbonsäureamids VIa bzw. VIb mit bis 3 mol-äq der gelösten Base versetzt wird, wobei ein am Heterocyclus metalliertes Derivat entsteht, welches bei der anschließenden Zugabe des elektrophilen Carboxylierungs- bzw. Formylierungsreagens' zum gewünschten Produkt la bzw. Ib abreagiert.

Sofern R³ Wasserstoff bedeutet werden entsprechend mehr mol-äq, der Base benötigt, da in diesem Fall zunächst der Amid-Stickstoff deprotoniert wird. Vorzugsweise verwendet man daher bei der Umetzung von Carbonsäureamiden Vla bzw. Vlb, in denen R³ Wasserstoff bedeutet 2 bis 2,5 mol-äq der Base.

Verbindungen VIa bzw. VIb, in denen R¹ Wasserstoff bedeutet werden bei der Umsetzung mit der Base zunächst in 2-Position des Heterocyclus' metalliert.

Um in diesem Fall den Carboxyl- bzw. Formylrest in Nachbarstellung zur Amidgruppe einzuführen ist es notwendig, von Oxazol- bzw. Thiazolcarbonsäureamiden VIa bis VIb auszugehen, in denen R³ Wasserstoff bedeutet.

Oxazol- bzw. Thiazolcarbonsäureamide la bzw. Ib in denen R¹ Wasserstoff und R³ nicht Wasserstoff bedeutet erhält man aus den nach dem vorstehenden Verfahren zugänglichen Verbindungen, in denen R¹ und R³ Wasserstoff bedeutet, in an sich bekannter Weise durch nachträgliche Alkylierung oder Cycloalkylierung.

Die für das vorstehende Verfahren benötigten Carbonsäuren IIIc und IIId sind literaturbekannt Beilstein, (Band 27, 1.-5. Erg.Werte) oder sie können nach bekannten Methoden, beispielsweise durch Oxidation der entsprechenden Alkohole oder Aldehyde oder durch Hydrolyse der entsprechenden Nitrile hergestellt werden (J.V. Metzger in "The Chemistry of Heterocyclic Compounds, Vol. 34, Part 1, Thiazol and its Derivatives", Arnold Weissberger and E.D. Ward C. Taylor (Editors), John Wiley and Sons, S. 519 ff, I.J. Turchi in "The Chemistry of Heterocyclic Compounds, Vol. 45, Oxazoles", Arnold Weissberger and E.D. Ward, C. Taylor (Editors), John Wiley and Sons).

4. Verfahren zur Herstellung der Verbindungen la und lb, in denen R² Carboxyl bedeutet.

Man erhält diese Oxazol- bzw. Thiazolcarbonsäureamide la und lb beispielsweise dadurch, daß man ein entsprechendes Carbonsäureamid la bzw. lb, in dem R² für CO₂R⁵ und R⁵ für C₁-C₆-Alkyl steht in an sich bekannter Weise mit einem Äquivalent einer wäßrigen Base hydrolysiert. Die Umsetzung ist im folgenden Schema lediglich für die Carbonsäureamide la gezeigt. Sofern man von den entsprechenden Carbonsäureamiden lb ausgeht verläuft sie analog.

Diese Synthese wird im allgemeinen und im besonderen entsprechend den im Verfahren 1 unter Punkt A beschriebenen Bedingungen durchgeführt.

5. Verfahren zur Herstellung der Verbindungen la und lb, in denen R2 COYR5 bedeutet:

Man erhält diese Carbonsäureamide la und lb, in dem man eine entsprechende Carbonsäure la bzw. $B = CO_2H$ aktiviert und anschließend in an sich bekannter Weise mit einer Verbindung VII umsetzt.

45

50

10

20

25

35

15

20

25

30

35

40

45

50

55

Die Umsetzung kann bei Temperaturen von -20°C bis zur Rückflußtemperatur des Lösungsmittels bzw. -gemisches, vorzugsweise bei 0 bis 60°C durchgeführt werden.

Zweckmäßigerweise verwendet man für diese Umsetzungen Lösungsmittel wie Halogenkohlenwasserstoffe, z.B. Tetrachlorethan, Methylenchlorid, Chloroform, Dichlorethan, Chlorbenzol und 1,2-Dichlorbenzol; Ether z.B. Diethylether, Methyl-tert.-butylether, Dimethoxiethan, Diethylenglykoldimethylether, Tetrahydrofuran und Dioxan; Aromaten z.B. Benzol, Toluol oder Xylol; oder entsprechende Gemische.

Als wasserentziehende Mittel kommen Dicyclohexylcarbodiimid oder Propanphosphonsäureanhydrid in Betracht.

Die molaren Verhältnisse, in denen die benötigten Ausgangsverbindungen miteinander umgesetzt werden, betragen im allgemeinen 0,5:1 bis 2:1 für das Verhältnis von Carbonsäure IVa zu Alkohol oder Thiol und 1:1 bis 1:3 für das Verhältnis von Carbonsäure IVa zu wasserentziehendem Mittel.

Die Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5 mol/l, bevorzugt 0,2 bis 2 mol/l.

Besonders bevorzugt arbeitet man in Ethern wie Diethylether, Tetrahydrofuran oder Dioxan; mit Propanphosphonsäureanhydrid als wasserentziehendem Mittel bei 20 bis 60°C.

6. Verfahren zur Herstellung der Verbindungen la und lb, in der R² eine 4,5-Dihydro-oxazol-2-yl-gruppe bedeutet

Man erhält diese Verbindungen dadurch, daß man ein entsprechendes Carbonsäurederivat la bzw. lb, in dem R² eine Gruppe CO₂R′ oder COOH und R′ C₁-C₄-Alkyl bedeutet, in an sich bekannter Weise mit einem Aminoalkohol der Formel VIII umsetzt.

9

5
$$R^3$$
 oder R^3 R^4 R^4 R^3 R^4 R^3 R^4 R^3 R^4 R^3 R^4 R^4 R^3 R^4 R^4

Die Reaktion wird so durchgeführt, daß man die Verbindungen bei 0 bis 180°C, vorzugsweise bei Rückflußtemperatur des verwendeten Gemisches mit einem Aminoalkohol VIII, gegebenenfalls in Gegenwart eines inerten Lösungsmittels umsetzt. Ester oder Carbonsäure la bzw. Ib und Aminoalkohol VIII werden dabei im Verhältnis 1:1 bis 1:2,5, vorzugsweise 1:1 bis 1:1,5 eingesetzt.

Als Lösungsmittel verwendet man zweckmäßigerweise Halogenkohlenwasserstoffe wie Chlorbenzol und 1,2-Dichlorbenzol, Ether, z.B. Methyl-tert.-butylether, 1,2-Dimethoxyethan, Diethylenglykol-dimethylether, Tetrahydrofuran und Dioxan; Alkohole wie Methanol, Ethanol, Propanol oder Ethylenglykol, dipolare aprotische Lösungsmittel, z.B. Acetonitril, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrollidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon und 1,3-Dimethylimidazolin-2-on oder Aromaten, z.B. Benzol, Toluol und Xylol. Die Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5,0 mol/l, bevorzugt 0,2 bis 2,0 mol/l.

Die Umsetzung ist im allgemeinen nach 14 Stunden beendet; die Carbonsäureamide la und Ib werden dann gegebenenfalls durch Zugabe von Wasser ausgefällt, abgesaugt oder mit einem organischen Lösungsmittel extrahiert und mit üblichen Standardmethoden wie Umkristallisation oder Chromatographie gereinigt.

Man erhält die Verbindungen der Formel VIa, in denen R¹ einen Alkohol oder Thiolrest -ZR³ bedeutet, in an sich bekannter Weise (Helv. Chim. Acta, 37, 2059 (1954)) durch Umsetzung eines 2-Halogen-thiazol-4-carbonsäureamids VIa (DE 22 41 035) in einem inerten organischen Lösungsmittel in Gegenwart einer Base mit einem Alkohol oder Thiol.

Hal
$$X$$
 H R^4 + H ZR^8 Base R^8Z X H R^4 YIa'

40

45

Hal in Formel VIa bedeutet dabei ein Halogenatom wie Fluor, Chlor, Brom und lod; insbesondere eignen sich Verbindungen VIa, in denen Hal, Chlor oder Brom bedeutet.

R¹ in Formel Vla´ bedeutet C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, die bis zu dreimal mit Halogen substituiert sein können, insbesondere Methoxy, Ethoxy, 1-Methyl-ethoxy, 1,1-Dimethylethoxy, Trifluormethoxy, Methylthio, Ethylthio, Difluormethylthio; oder Phenoxy oder Phenylthio, die bis zu dreimal durch C₁-C₄-Alkyl, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro substituiert sein können, insbesondere 2,4-Dichlorphenoxy, 2,4-Difluorphenoxy, 2,4,6-Trifluorphenoxy, p-Trifluormethylphenoxy, 2-Chlor-4-Trifluorphenoxy, 3-Cyanophenoxy, 4-Cyano-2-methoxyphenoxy, 4-Nitrophenoxy, 2-Fluorthiophenyl, 4-Trifluormethylthiophenyl, 3-Cyanothiophenyl.

Zweckmäßigerweise verwendet man für diese Umsetzungen Lösungsmittel wie Halogenkohlenwasserstoffe, z.B. Tetrachlorethan, Methylenchlorid, Chloroform, Dichlorethan, Chlorbenzol und 1,2-Dichlorbenzol; Ether, z.B. Diethylether, Methyl-tert.-butylether, Dimethoxiethan, Diethylenglykoldimethylether, Tetrahydrofuran und Dioxan; dipolare aprotische Lösungsmittel, z.B. Acetonitril, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon und 1,3-

Dimethylimidazolidin-2-on; Aromaten, z.B. Benzol, Toluol, Xylol, Pyridin und Chinolin; Ketone, z.B. Aceton, Methylethylketon; Alkohole, z.B. Methanol, Ethanol, iso-Propanol und tert.-Butanol oder entsprechende Gemische.

Die Umsetzung kann bei Temperaturen von -100°C bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches, vorzugsweise bei -60°C bis 150°C, durchgeführt werden.

Als Basen dienen Hydride und Alkoxide von Alkali- und Erdalkalimetallkationen, insbesondere NaH, KH, CaH₂, LIH und KO-t.-Bu. Mitunter ist es auch nützlich Kombinationen der oben angeführten Basen zu verwenden.

Die molaren Verhältnisse, in denen die benötigten Ausgangsverbindungen miteinander umgesetzt werden, betragen im allgemeinen 3:1 bis 1:1 für das Verhältnis von Alkohol oder Thiol zu 2-Halogen-thiazol-4-carbonsäureamid Vla und 1:1 bis 1:3 für das Verhältnis von Alkohol oder Thiol zur wirksamen Base.

Die Konzentration der Edukte im Lösungsmittel berägt im allgemeinen 0,1 bis 5 mol/l, bevorzugt 0,2 bis 2 mol/l.

Besonders bevorzugt arbeitet man in aprotisch dipolaren Solventien wie Acetonitril, Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon, 1,3-Dimethylimidazolidin-2-on oder Ethern wie 1,2-Dimethoxiethan, Diethylenglykoldimethylether, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 50°C und 150°C unter Verwendung von NaH oder KO-t.-Ba als Basen.

Die für die Umsetzung benötigten 2-Halogen-thiazol-4-carbonsäureamide der Formel IIIa können nach literaturbekannten Methoden aus den entsprechenden Carbonsäurehalogeniden durch Umsetzung mit Aminen gewonnen werden (DE-A 22 41 035).

Die zum Einsatz kommenden Alkohole oder Thiole sind in vielen Fällen kommerziell erhältlich oder können in an sich bekannter Weise hergestellt werden.

Des weiteren erhält man die Verbindungen der Formel VIb in an sich bekannter Weise (Helv. Chim. Acta, 37, 2059 (1954)) durch Umsetzung eines 2-Halogen-thiazol-5-carbonsäureamids IIIb in einem inerten organischen Lösungsmittel in Gegenwart einer Base mit einem Alkohol oder Thiol gemäß Schema 2:

30

35

Hal in Formel VIb bedeutet dabei ein Halogenatom wie Fluor, Chlor, Brom und lod; insbesondere eignen sich Verbindungen VIb, in denen Hal, Chlor oder Brom bedeutet.

R¹ in Formel VIb bedeutet C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, die bis zu dreimal mit Halogen substituiert sein können;

insbesondere Methoxy, Ethoxy, 1-Methyl-ethoxy, 1,1-Dimethylethoxy, Trifluormethoxy, Methylthio, Ethylthio, Difluormethylthio; oder Phenoxy oder Phenylthio, die bis zu dreimal durch C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro substituiert sein können; insbesondere 2,4-Dichlorphenoxy, 2,4-Difluorphenoxy, 2,4,6-Trifluorphenoxy, p-Trifluormethylphenoxy, 2-Chlor-4-Trifluorphenoxy, 3-Cyanophenoxy, 4-Cyano-2-methoxyphenoxy, 4-Nitrophenoxy, 2-Fluorthiophenyl, 4-Trifluormethylthiophenyl, 3-Cyanothiophenyl.

Zweckmäßigerweise verwendet man für diese Umsetzungen Lösungsmittel wie Halogenkohlenwasserstoffe, z.B. Tetrachlorethan, Methylenchlorid, Chloroform, Dichlorethan, Chlorbenzol und 1,2-Dichlorbenzol; Ether, z.B. Diethylether, Methyl-tert.-butylether, Dimethoxiethan, Diethylenglykoldimethylether, Tetrahydrofuran und Dioxan; dipolare aprotische Lösungsmittel, z.B. Acetonitril, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon und 1,3-Dimethylimidazolidin-2-on; Aromaten, z.B. Benzol, Toluol, Xylol, Pyridin und Chinolin; Ketone, z.B. Aceton, Methylethylketon; Alkohole, z.B. Methanol, Ethanol, iso-Propanol und tert.-Butanol oder entsprechende Gemische.

Die Umsetzung kann bei Temperaturen von -100°C bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches, vorzugsweise bei -60°C bis 150°C, durchgeführt werden.

Als Basen dienen Hydride und Alkoxide von Alkali- und Erdalkalimetallkationen, insbesondere NaH, KH, CaH₂, LiH und KO-t-Bu. Mitunter ist es auch nützlich Kombinationen der oben angeführten Basen zu verwenden.

Die molaren Verhältnisse, in denen die benötigten Ausgangsverbindungen miteinander umgesetzt werden, betragen im allgemeinen 3:1 bis 1:1 für das Verhältnis von Alkohol oder Thiol zu 2-Halogen-thiazol-

4-carbonsäureamid VIb und 1:1 bis 1:3 für das Verhältnis von Alkohol oder Thiol zur wirksamen Base.

Die Konzentration der Edukte im Lösungsmittel berägt im allgemeinen 0,1 bis 5 mol/l, bevorzugt 0,2 bis 2 mol/l.

Besonders bevorzugt arbeitet man in aprotisch dipolaren Solventien wie Acetonitril, Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, 1,3- Dimethyltetrahydro-2(1H)-pyrimidinon, 1,3-Dimethylimidazolidin-2-on oder Ethem wie 1,2-Dimethoxiethan, Diethylenglykoldimethylether, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 50°C und 150°C unter Verwendung von NaH oder KO-t.-Butylat als Basen.

Die für die Umsetzung benötigten 2-Halogen-thiazol-4-carbonsäureamide der Formel VIb können nach literaturbekannten Methoden aus den entsprechenden Carbonsäurehalogeniden durch Umsetzung mit Aminen gewonnen werden (US-A-4 001 421).

Verbindungen der Formel IVb können gewonnen werden, indem man Dicarbonsäureester der Formel XI in an sich bekannter Weise mit Arninen umsetzt und die resultierenden Arnide IXb gemäß Schema G verseift:

Zweckmäßigerweise geht man dabei so vor, daß man den Diester II in einem inerten organischen Lösungsmittel löst und mit einem Amin umsetzt.

Als Lösungsmittel verwendet man für diese Umsetzungen Ether, z.B. Diethylether, Methyl-tert.-butylether, Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran und Dioxan; Aromaten, z.B. Benzol, Toluol, Xylol oder Mesitylen; Alkohole, z.B. Methanol, Ethanol, iso-Propanol und tert.-Butanol oder entsprechende Gemische.

Die Umsetzung kann bei Temperaturen von -100°C bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches, vorzugsweise bei -60°C bis 150°C, durchgeführt werden.

Das molare Verhältnis, in dem Diester II und Amin eingesetzt werden, beträgt 1:1 bis 1:2, vorzugsweise 1:1 bis 1:1,2.

Die Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5 mol/l, bevorzugt 0,2 bis 2,0 mol/l.

Besonders bevorzugt arbeitet man in Alkoholen wie Ethanol in Gegenwart von einem Äquivalent Amin bei 50 bis 100°C. Die für die Umsetzung benötigten Diester XI, sind literaturbekannt oder können in Anlehnung an beschriebene Methoden hergestellt werden (Bull. Soc. Chim. Fr., 1969, 1762; J. Chem. Soc., 1953, 93).

Neben den vorstehend geschilderten Verfahren 1-7 zur Herstellung der Verbindungen la, Ib und Ic gibt es weitere Synthesemöglichkeiten, die den folgenden Literaturstellen zu entnehmen sind:

Beilstein, Hauptwerk sowie 1.-5. Erg.Werk, Band 27; R.W. Wiley, The Chemistry of Heterocyclic Compounds, Five- and Six-Membered Compounds with Nitrogen and Oxygen, Interscience Publishers, New York, London (1962), Heterocyclic Chemistry, Vol. 6, Five-membered Rings with Two or More Oxygen, Sulfur or Nitrogen Atoms, Pergamon Press, 1984, J. March, Advanced Organic Chemistry, Third Adition, John Wiley and Sons, 1985, Houben-Weyl, Methoden der organischen Chemie, 4. Auflage, Thieme Verlag, Bände IV, VI, VII, VIII, X.

Im Hinblick auf die bestimmungsgemäße Verwendung der Verbindungen la' und lb' kommen als Substituenten bevorzugt folgende Reste in Betracht:

X Sauerstoff oder Schwefel

R1. Wasserstoff;

35

40

Halogen wie Fluor, Chlor, Brom und lod, insbesondere Fluor und Chlor;

C₁-C₆-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sek.-Butyl, iso-Butyl und tert.-Butyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, insbesondere Methyl, Ethyl, Propyl und iso-Propyl, welches ein bis fünf Halogenatome, insbesondere Fluor-

und/ oder Chloratome oder einen oder zwei der folgenden Reste tragen kann: Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl, insbesondere Cyclopropyl; Alkoxy wie Methoxy, Ethoxy, n-Propoxy, 2-Methylethoxy, n-Butoxy, 1-Methylpropoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy, insbesondere Methoxy, Ethoxy, 1-Methylethoxy und 1,1-Dimethylethoxy; Halogenalkoxy wie Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Dichlorfluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, insbesondere Trifluormethoxy und Pentafluorethoxy; Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie Difluormethylthio, Trifluormethylthio, Chlordifluormethylthio, 1-Fluorethylthio, 2-Fluorethylthio, 2,2-Difluorethylthio, 2,2-Dichlor-2-fluorethylthio, 2,2,2-Trifluorethylthio, insbesondere Difluormethylthio und Pentafluorethylthio oder Cyano;

Benzyl, welches ein bis drei der folgenden Reste tragen kann: Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und iso-Propyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Pentafluorethoxy und Trichlormethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Pentafluorethylthio und Trifluormethylthio; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor; Cyano oder Nitro;

Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, und Cyclooctyl, insbesondere Cyclopropyl, Cyclopentyl und Cyclohexyl, welches ein bis drei der folgenden Reste tragen kann: Alkyl wie vorstehend genannt, insbesondere Methyl oder Halogen wie vorstehend genannt, insbesondere Chlor und Fluor:

Alkenyi wie Ethenyi, 1-Propenyi, 2-Propenyi, 1-Methylethenyi, 1-Butenyi, 2-Butenyi, 3-Butenyi, 1-Methyl-1propenyl, 1-Methyl-2-propenyl, 2-Methyl-1-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-pentenyi, 4-Pentenyi, 1-Methyi-1-butenyi, 2-Methyi-1-butenyi, 3-Methyi-2-butenyi 1-Methyi-2-butenyi, 2-Methyi-2butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,1-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Mehyl-3-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl tenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl tenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2methyl-2-propenyl, insbesondere Allyl, welches ein bis drei der folgenden Reste tragen kann: Halogen wie . oben genannt, insbesondere Fluor und Chlor; Alkoxy wie obengenannt, insbesondere Methoxy und Ethoxy. und/oder ein Phenyl, das seinerseits eine bis drei der folgenden Gruppen tragen kann: Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und iso-Propyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Pentafluorethoxy und Trichlormethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Pentafluorethylthio und Trifluormethylthio; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor, Cyano oder Nitro;

Alkinyl wie Ethinyl, 1-Propinyl, Propargyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Alkinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-4-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, insbesondere Propargyl, welches ein bis drei der folgenden Reste tragen kann: Halogen wie oben genannt, insbesondere lod; Alkoxy wie oben genannt, insbesondere Methoxy und Ethoxy, und/oder ein Phenyl, das seinerseits eine bis drei der folgenden Gruppen tragen kann: Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und iso-Propyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie vorstehend genannt, insbesondere

dere Trifluormethoxy, Pentafluorethoxy und Trichlormethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Pentafluorethylthio und Trifluormethylthio; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor, Cyano oder Nitro;

- 5 C1-C4-Alkoxy wie obenstehend genannt, insbesondere Methoxy und Ethoxy;
 - C₁-C₄-Halogenalkoxy wie obenstehend genannt, insbesondere Trifluormethoxy, Pentafluorethoxy und Trichlormethoxy;
 - C1-C4-Alkylthio wie obenstehend genannt, insbesondere Methylthio und Ethylthio;
- C₁-C₄-Halogenalkylthio wie obenstehend genannt, insbesondere Difluormethylthio, Pentafluorethylthio und Trifluormethylthio;
 - Phenoxy oder Phenyithio, wobei diese Reste ein bis drei der folgenden Gruppen tragen können: Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und iso-Propyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Pentafluorethoxy und Trichlormethoxy; Alkyithio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Pentafluorethylthio und Trifluormethylthio; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor, Cyano oder Nitro;
- ein 5- bis 6-gliedriger heterocyclischer Rest enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff wie 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 4-Tetrahydropyranyl, 2-Tetrahydropyranyl, 3-Tetrahydropyranyl, 3-Furanyl, 2-Thienyl, 3-Thienyl, 2-Furanyl, 3-Tetrahydrothienyl, 2-Tetrahydropyranyl, 5-Isoxazolyl, 4-Isoxazolyl, 5-Isothiazolyl, 4-Isothiazolyl, 3-Isothiazolyl, 2-Oxazolyl, 4-Thiazolyl, 4-Oxazolyl, 2-Thiazolyl, 5-Oxazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 3-Pyrrolyl, 3-Pyrrolyl, 3-Pyrrazolyl, 4-Pyrazolyl, 4-Pyrazolyl, 4-Pyrazolyl, 4-Pyrazolyl, 4-Pyridyl, 3-Pyridyl und 2-Pyridyl, wobei dieser Ring ein oder zwei der folgenden Reste tragen kann: Alkyl wie oben genannt, insbesondere Methoxy und Etoxy oder Alkoxycarbonyl wie Methoxycarbonyl und Ethoxycarbonyl, insbesondere Methoxycarbonyl, welches eine bis drei der folgenden Gruppen tragen kann: Alkyl wie bei R¹ genannt, insbesondere
- Methyl, Ethyl und iso-Propyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Meth oxy und Ethoxy; Halogenalkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Pentafluorethoxy und Trichlormethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Pentafluorethylthio und Trifluormethylthio; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor, Cyano oder Nitro;

R² Formyl, 4,5-Dihydroxazol-2-yl oder den Rest -COYR⁵

35 und

Y Sauerstoff oder Schwefel;

R5 Wasserstoff:

Alkyl, wie unter R1 genannt, insbesondere Methyl, Ethyl, n-Propyl, iso-Propyl und n-Hexyl, welches ein bis fünf Halogenatome wie unter R1 genannt, insbesondere Fluor und Chlor oder Hydroxygruppen und/oder einen der folgenden Reste tragen kann: Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Alkoxy-alkoxy wie Methoxy-ethoxy, Ethoxy-ethoxy, Propoxy-ethoxy, insbesondere Methoxy-ethoxy; Cyano; Trimethylsilyl; Alkylthio wie unter R¹ genannt, insbesondere Methylthio und Ethylthio; Alkylamino wie Methylamino, Ethylamino, Propylamino, iso-Propylamino, insbesondere Methylamino und Ethylamino; Dialkylamino wie Dimethylamino, Diethylamino, Dipropylamino, Disopropylamino, Methylethylamino, insbesondere Dimethylamino und Methylethylamino; Cycloalkylamino wie Cyclopropylamino, Cyclobutylamino, Cyclopentylamino, Cyclohexylamino und Cycloheptylamino, insbesondere Cyclopropylamino; Alkylsulfinyl wie Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, iso-Propylsulfinyl, insbesondere Methylsulfinyl und Ethylsulfinyl; Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, iso-Propylsulfonyl, insbesondere Methylsulfonyl und Ethylsulfonyl; Carboxyl; Alkoxycarbonyl wie unter R1 genannt, insbesondere Methoxycarbonyl; Dialkylaminocarbonyl wie Dimethylaminocarbonyl, Diethylaminocarbonyl, Dipropylaminocarbonyl, Disopropylaminocarbonyl, Dicyclopropylaminocarbonyl, Methylethylaminocarbonyl, Insbesondere Dimethylaminocarbonyl und Diethylaminocarbonyl; Dialkoxyphosphonyl wie Dimethoxyphosphonyl, Diethoxyphosphonyl, Dipropoxyphosphonyl, Diisopropoxyphosphonyl, insbesondere Dimethoxyphosphonyl und Diethoxyphosphonyl; Alkaniminoxy wie insbesondere 2-Propaniminoxy; Thlenyl, Furanyl, Tetrahydrofuranyl, Phthalimido, Pyridyl, Benzyloxy; Benzoyl, wobel die cyclischen Reste ihrerseits eine bis drei der folgenden Gruppen tragen können: Alkyl wie unter R¹ genannt, insbesondere Methyl und Ethyl; Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy, oder Halogen wie unter R1 genannt, insbesondere Fluor und Chlor;

Benzyl, das eine bis drei der folgenden Gruppen tragen kann: Alkyl wie unter R¹ genannt, insbesondere

Methyl und Ethyl; Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Halogenalkyl wie unter R¹ genannt, insbesondere Trifluormethyl; Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor, Nitro und Cyano;

- C₃-C₈-Cycloalkyl wie unter R¹ genannt, insbesondere Cyclopentyl und Cyclohexyl;
- Phenyl, das eine bis drei der folgenden Gruppen tragen kann: Alkyl wie unter R¹ genannt, insbesondere Methyl und Ethyl; Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Halogenalkyl wie unter R¹ genannt, insbesondere Trifluormethyl; Halogenalkoxy wie unter R¹ genannt, insbesondere Trifluormethoxy; Alkoxycarbonyl wie vorstehend genannt, insbesondere Methoxycarbonyl; Halogen wie unter R¹ genannt, insbesondere Fluor, Chlor und Brom, Nitro und Cyano;
- 10 C₃-C₅-Alkenyl wie unter R¹ genannt, insbesondere Allyl und Methallyl, C₅-C₅-Cycloalkenyl wie 2-Cyclopentenyl und 2-Cyclohexenyl, insbesondere 2-Cyclohexenyl oder C₃-C₆-Alkinyl wie unter R¹ genannt, insbesondere Propargyl, wobei diese Reste eine der folgenden Gruppen tragen können: Hydroxy; Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Halogen wie unter R¹ genannt, insbesondere lod, oder Phenyl, welches seinerseits eine bis drei der folgenden Gruppen tragen kann: Alkyl wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Halogenannt, insbesondere Methoxy und Ethoxy; Halogenannt,
- insbesondere Methyl und Ethyl; Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Halogenalkyl wie unter R¹ genannt, insbesondere Trifluormethyl; Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor, Nitro oder Cyano;
 - einen fünf- bis sechsgliedrigen heterocyclischen Rest enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff wie unter R¹ genannt, insbesondere Tetrahydrofuranyl und Tetrahydropyranyl oder einen Benzotriazolrest;
 - Phthalimido; Tetrahydrophthalimido; Succinimido; Maleinimido;
 - ein Äquivalent eines Kations aus der Gruppe der Alkali- oder Erdalkalimetalle, Mangan, Kupfer, Eisen, Ammonium und substitulertes Ammonium
- oder einen Rest -N = CR⁶R⁷, wobei R⁶ und R⁷ unabhängig voneinander Wasserstoff, Alkyl wie unter R¹ genannt, insbesondere Methyl, Ethyl und iso-Propyl; Cycloalkyl wie unter R¹ genannt, insbesondere Cyclopropyl; Phenyl oder Furyl bedeuten oder zusammen eine Methylenkette der Formel -(CH₂)_m- mit m = 4 bis 7 Kettengliedern,
 - R3 Wasserstoff.
- C₁-C₆-Alkyl, wie unter R¹ genannt, insbesondere Methyl, Ethyl, iso-Propyl, das einen bis drei der folgenden Substituenten tragen kann: Hydroxy; Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor; Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Alkylthio wie unter R¹ genannt, insbesondere Methylthio und Ethylthio, oder Dialkylamino wie unter R⁵ genannt, insbesondere Dimethylamino;
 - Cycloalkyl wie unter R¹ genannt, insbesondere Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl, welches ein bis drei der folgenden Reste tragen kann: Alkyl wie unter R¹ genannt, insbesondere Methyl, Ethyl und Isopropyl; Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor, oder Halogenalkyl wie unter R¹ genannt, insbesondere Trifluormethyl;
 - R4 Hydroxy;
 - Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy;
- Alkyl wie unter R¹ genannt, insbesondere Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sek.-Butyl, iso-Butyl und tert.-Butyl; das eine bis drei der folgenden Gruppen tragen kann: Alkoxy wie unter R¹ genannt, insbesondere Methoxy; Halogenalkoxy wie unter R¹ genannt, insbesondere Trifluormethoxy; Alkylthio wie unter R¹ genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie unter R¹ genannt, insbesondere Dimethylamino und Diethylamino; Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor; Cycloalkyl wie unter R¹ genannt, insbesondere Cyclopropyl, Cyclopentyl und Cyclohexyl, oder Phenyl, welches seinerseits ein bis drei der folgenden Beste tragen kann; Halogen, wie bei R¹ genannt, insbesondere Fluor und Chlor; Cyano;
- drei der folgenden Reste tragen kann: Halogen, wie bei R¹ genannt, insbesondere Fluor und Chlor; Cyano; Nitro; Alkyl wie unter R¹ genannt, insbesondere Methyl und Ethyl; Halogenalkyl wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie unter R¹ genannt, insbesondere Methoxy; Halogenalkoxy wie unter R¹ genannt, insbesondere Methoxy; Alkylthio wie unter R¹ genannt, insbesondere Methylthio und Ethylthio, oder Halogenalkylthio wie unter R¹ genannt, insbesondere Trifluormethylthio;
 - Cycloalkyl wie unter R¹ genannt, insbesondere Cyclopropyl, Cyclobutyl, Cyclopentyl und CyclohexyL, das eine bis drei der folgenden Gruppen tragen kann: Alkyl wie unter R¹ genannt, insbesondere Methyl, Ethyl und Isopropyl; Halogenalkyl wie unter R¹ genannt, insbesondere Trifluormethyl; Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie unter R¹ genannt, insbesondere Trifluormethoxy; Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor, Nitro oder Cyano;
 - Alkenyl oder C₃-C₆-Alkinyl wie unter R¹ genannt, insbesondere Allyl, Methallyl, Propargyl und 1.1-Dimethyl2-2-propinyl, das ein- bis dreimal durch Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor, und/oder einmal durch Phenyl substituiert sein kann, wobei der Phenylrest seinerseits eine bis drei

der folgenden Gruppen tragen kann: Alkyl wie unter R¹ genannt, insbesondere Methyl und Ethyl: Halogenalkyl wie unter R¹ genannt, Insbesondere Trifluormethyl; Alkoxy wie unter R¹ genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie unter R¹ genannt, insbesondere Trifluormethoxy; Alkylthio wie unter R¹ genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie unter R¹ genannt, insbesondere

- Trifluormethylthio; Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor, Cyano oder Nitro; ein 5- bis 6-gliedriger heterocyclischer Rest enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff wie unter R¹ genannt, welcher ein bis drei der folgenden Gruppen tragen kann: Alkyl wie unter R¹ genannt, insbesondere Methyl, Ethyl und iso-Propyl, oder Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor;
- Phenyl, das eine bis vier der folgenden Gruppen tragen kann: Alkyl wie unter R¹ genannt, insbesondere Methyl, Ethyl und Isopropyl; Halogenalkyl wie unter R¹ genannt, insbesondere Trifluormethyl; Alkoxy wie unter R¹ genannt, insbesondere Methoxy; Halogenalkoxy wie unter R¹ genannt, insbesondere Trifluormethoxy; Alkylthio wie unter R¹ genannt, insbesondere Methylthio; Halogenalkylthio wie unter R¹ genannt, insbesondere Trifluormethylthio; Halogen wie unter R¹ genannt, insbesondere Fluor und
- Chlor; Nitro; Cyano; Formyl; Alkanoyl wie Acetyl, Propionyl, Butyryl, insbesondere Acetyl; Halogenalkanoyl, wie Trifluoracetyl, Trichloracetyl, Pentafluorpropionyl, insbesondere Trifluoracetyl, oder Alkoxycarbonyl wie unter R¹ genannt, insbesondere Methoxycarbonyl;
 - Naphthyl, das ein- bis dreimal durch Alkyl wie unter R¹ genannt, insbesondere Methyl und Ethyl, oder Halogen wie unter R¹ genannt, insbesondere Fluor und Chlor substituiert sein kann,
- 20 oder

R³ und R⁴ gemeinsam einen Rest der Struktur - $(CH_2)_n$ - V_p - $(CH_2)_q$ -, wobei n und q 1, 2 oder 3, p 0 oder 1 und Y Sauerstoff, Schwefel oder N-Methyl wie - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_5$

sowie deren umweltverträglichen Salze.

Insbesondere bevorzugt sind Verbindungen la und lb, in denen R³ Wasserstoff bedeutet sowie solche, in denen die Substituenten folgende Bedeutung haben:
R¹ Wasserstoff;

Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl;

Methoxy, Ethoxy, Propyloxy, 1-Methylethoxy, Butyloxy, 1-Methylpropyloxy, 2-Methylpropyloxy und 1,1-Dimethylethoxy;

Difluormethoxy und Trifluormethoxy;

Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio;

Difluormethylthio und Trifluormethylthio;

R² einen Rest -COYR⁵;

R⁵

Wasserstoff; Phthalimido; Succinimido; Maleinimido, oder einen Rest -N = CR^6R^7 ; R^6 , R^7

40 Wasserstoff;

Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl; Cyclopropyl, Cyclopentyl, Cyclohexyl und Cycloheptyl;

R⁴ Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl; Cyclopropyl, Cyclopentyl, Cyclohexyl und Cycloheptyl;

oder gemeinsam eine 4- bis 7-gliedrige Alkylenkette wie -CH2CH2CH2CH2-, -CH2CH2CH2CH2-,

Beispiele für sehr aktive Verbindungen der Formeln la und Ib sind in den nachstehenden Tabellen aufgeführt:

Tabelle A

	•	•	
R1	R2	R3	R4
Н	СООН	н	tertButyl
F	СООН	Н	tertButyl
Cl	COOH	H	tertButyl
Methy1	соон	H	tertButyl
Ethyl	СООН	H	tertButyl
n-Propyl	СООН	H	tertButyl
iso-Propyl	COOH	н	tertButyl
n-Buty l	СООН	н	tertButyl
iso-Butyl	СООН	Н	tertButyl
sekButyl	COOH	н	tertButyl
tertButyl	COOH	н	tertButyl
cyclo-Propyl	СООН	н	tertButyl
cyclo-Butyl	СООН	н	tertButyl
cyclo-Pentyl	СООН	н	tertButyl
cyclo-Hexyl	COOH	н	tertButyl
cyclo-Heptyl	COOH	н	tertButyl
cyclo-Octyl	СООН	н	tertButyl
1-Methylcyclopropyl	СООН	н	tertButyl
Trifluormethyl	СООН	Н	tertButyl
Chlordifluormethyl	СООН	Н	tertButyl
Pentafluorethyl	COOH	Н	tertButyl
Methoxymethy1	COOH	Н	tertButyl
1-Methylmethoxymethyl	СООН	Н	tertButyl
1-Methylmethoxyethyl	COOH	H	tertButyl
Ethoxymethy l	COOH	Н	tertButyl
Vinyl	COOH	н	tertButyl
Allyl	СООН	Н	tertButyl
Methallyl	COOH	н	tertButyl
Crotyl	СООН	H	tertButyl
Ethinyl	СООН	H	tertButyl
Propargyl	COOH	н	tertButyl
Phenylethinyl	СООН	н	tertButyl
Methoxy	СООН	н	tertButyl
Ethoxy	СООН	н	tertButyl
Taifluamathavu	СООН	н	tertButyl
Trifluormethoxy	COON	51	tertButyl

55

<u>R1</u>	R2	R3	R4
Trifluormethylthio	СООН	н .	tertButyl
Phenoxy	СООН	н	tertButyl
4-C1-Phenoxy	СООН	н	tertButyl
2,4-(C1,C1)-Phenoxy	СООН	н	tertButyl
4-CF ₃ -Phenoxy	СООН	н	tertButyl
Pheny l	СООН	н	tertButyl
2-F-Phenylthio	СООН	н	tertButyl
3-F-Phenyl	СООН	н	tertButyl
2, 4-(F, F)-Pheny l	СООН	н	tertButyl
2-Cl-Phenyl	СООН	н	tertButyl
3-Cl-Phenyl	СООН	н	tertButyl
2,4-(Cl,Cl)-Phenyl	СООН	н	tertButyl
2-CH ₃ -Pheny l	СООН	н	tertButyl
3-CH ₃ -Phenyl	СООН	н	tertButyl
4-CH ₃ -Pheny l	СООН	н	tertButyl
2, 4-(CH ₃ , CH ₃)-Phenyl	COOH	н	tertButyl
2, 4, 6-(CH ₃ , CH ₃ , CH ₃)-Phenyl	СООН	н	tertButyl
2-CF ₃ -Phenyl	СООН	н	tertButyl
2-OCH ₃ -Phenyl	СООН	н	tertButyl
2,4-(OCH ₃ ,OCH ₃)-Phenyl	СООН	н	tertButyl
4-OCF ₃ -Phenyl	СООН	н	tertButyl
4-SCH ₃ -Pheny1	СООН	н	tertButyl
3-SCF ₃ -Phenyl	СООН	н	tertButyl
2, 4- (NO ₂ , NO ₂)-Pheny l	COGH	н	tertButyl
4-NO ₂ -Pheny l	СООН	н	tertButyl
2-Thienyl	СООН	н	tertButyl
.3-Thienyl	COOH	н	tertButyl
2-Furanyl	СООН	н	tertButyl
3-Furanyl	СООН	н	tertButyl
2-Tetrahydrofuranyl	СООН	н	tertButyl
3-Tetrahydrofuranyl	СООН	н	tertButyl
2-Pyridyl	СООН	н	tertButyl
3-Pyridyl	СООН	н	tertButyl
4-Pyridyl	COOH	н	tertButyl
2-Tetrahydropyranyl	СООН	Н	tertButyl
3-Tetrahydropyranyl	COOH-	Н	tertButyl
4-Tetrahydropyranyl	СООН	Н	tertButyl
iso-Propoxy	СООН	н	tertButyl
Н	СООН	Н	cyclo-Propyl
F	COOH	H	cyclo-Propyl
Cl	СООН	H	cyclo-Propyl

R1	. R2	R3	R4
Methyl	СООН	н	cyclo-Propyl
Ethyl	СООН	н	cyclo-Propyl
	СООН	Н	cyclo-Propyl
n-Propyl iso-Propyl	СООН	н	cyclo-Propyl
n-Butyl	COOH	н	cyclo-Propyl
iso-Butyl	СООН	H	cyclo-Propyl
sekButyl	СООН	Н	cyclo-Propyl
tertButyl	СООН	Н	cyclo-Propyl
cyclo-Propyl	соон	н	cyclo-Propyl
cyclo-Butyl	СООН	н	cyclo-Propyl
cyclo-Bucyl	СООН	н	cyclo-Propyl
cyclo-Hexyl	соон	н	cyclo-Propyl
cyclo-Heptyl	СООН	Н	cyclo-Propyl
cyclo-Octyl	СООН	H	cyclo-Propyl
1-Methylcyclopropyl	СООН	н	cyclo-Propyl
Trifluormethyl	СООН	Н	cyclo-Propyl
Chlordifluormethyl	СООН	Н	cyclo-Propyl
Pentafluorethyl	COOH	Н	cyclo-Propyl
Methoxymethyl	соон	н	cyclo-Propyl
1-Methylmethoxymethyl	соон	н	cyclo-Propyl
1-Methylmethoxyethyl	соон	н	cyclo-Propyl
Ethoxymethyl	соон	н	cyclo-Propyl
Vinyl	соон	Н	cyclo-Propyl
Allyl	соон	H	cyclo-Propyl
Methallyl	СООН	Н	cyclo-Propyl
Crotyl	соон	Н	cyclo-Propyl
Ethinyl	СООН	н	cyclo-Propyl
Propargyl	СООН	н	cyclo-Propyl
Phenylethinyl	СООН	Н	cyclo-Propyl
Methoxy	СООН	н	cyclo-Propyl
Ethoxy	соон	н	cyclo-Propyl
Trifluormethoxy	СООН	н	cyclo-Propyl
Methylthio	СООН	н	cyclo-Propyl
Trifluormethylthio	СООН	Н	cyclo-Propyl
Phenoxy	СООН	Н	cyclo-Propyl
4-Cl-Phenoxy	СООН	H	cyclo-Propyl
2,4-(C1,C1)-Phenoxy	СООН	н	cyclo-Propyl
4-CF ₃ -Phenoxy	СООН	н	cyclo-Propyl
Pheny l	COOH	н	cyclo-Propyl
2-F-Phenylthio	СООН	н	cyclo-Propyl
3-F-Phenyl	соон	H	cyclo-Propyl
2,4-(F,F)-Phenyl	СООН	н	cyclo-Propyl

R1	R2	R3	R4 ·
2-C1-Phenyl	СООН	н	cyclo-Propyl
3-C1-Phenyl	СООН	 Н	cyclo-Propyl
2,4-(C1,C1)-Pheny1	СООН	н	cyclo-Propyl
2-CH ₃ -Phenyl	СООН	н	cyclo-Propyl
3-CH ₃ -Phenyl	СООН	 H	cyclo-Propyl
4-CH ₃ -Phenyl	СООН	н	cyclo-Propyl
2, 4-(CH ₃ , CH ₃)-Phenyl	СООН	н	cyclo-Propyl
2, 4, 6-(CH ₃ , CH ₃ , CH ₃)-Phenyl	СООН	н	cyclo-Propyl
2-CF ₃ -Phenyl	СООН	H	cyclo-Propyl
2-OCH ₃ -Phenyl	СООН	Н	cyclo-Propyl
2, 4-(OCH ₃ , OCH ₃)-Phenyl	COOH	н	cyclo-Propyl
4-OCF ₃ -Phenyl	COOH	Н	cyclo-Propyl
4-SCH ₃ -Phenyl	СООН	H	cyclo-Propyl
3-SCF ₃ -Phenyl	СООН	H	cyclo-Propyl
2, 4-(NO ₂ , NO ₂)-Pheny l	СООН	H	cyclo-Propyl
4-NO ₂ -Phenyl	СООН	Н	cyclo-Propyl
2-Thienyl	СООН	Н	cyclo-Propyl
3-Thienyl	СООН	Н	cyclo-Propyl
2-Furanyl	СООН	H	cyclo-Propyl
3-Furanyl	СООН	Н	cyclo-Propyl
2-Tetrahydrofuranyl	СООН	н	cyclo-Propyl
3-Tetrahydrofuranyl	СООН	н	cyclo-Propyl
2-Pyridyl	COOH	Н	cyclo-Propyl
3-Pyridyl	СООН	н	cyclo-Propyl
4-Pyridyl	СООН	н	cyclo-Propyl
2-Tetrahydropyranyl	COOH	н	cyclo-Propyl
3-Tetrahydropyranyl	СООН	н	cyclo-Propyl
4-Tetrahydropyranyl	СООН	н	cyclo-Propyl
iso-Propoxy	СООН	н	cyclo-Propyl
Н	СООН	Methyl	tertButyl
F	СООН	Methyl	tertButyl
Cl	СООН	Methyl	tertButyl
Methyl	СООН	Methyl	tertButyl
Ethyl	СООН	Methyl	tertButyl
n-Propyl	СООН	Methyl	tertButyl
iso-Propyl	СООН	Methyl	tertButyl
n-Butyl	СООН	Methyl	tertButyl
iso-Butyl	СООН	Methyl	tertButyl
sekButyl	СООН	Methyl	tertButyl
tertButyl	COOH	Methyl	tertButyl
cyclo-Propyl	СООН	Methyl	tertButyl
cyclo-Butyl	СООН	Methyl	tertButyl
		=	

<u>R1</u>	R2	R3	R4
cyclo-Pentyl	СООН	Methyl	tertButyl
cyclo-Hexyl	СООН	iso-Propyl	tertButyl
cyclo-Heptyl	СООН	iso-Propyl	tertButyl
cyclo-Octyl	СООН	iso-Propyl	tertButyl
1-Methylcyclopropyl	СООН	iso-Propyl	tertButyl
Trifluormethyl	СООН	iso-Propyl	tertButyl
Chlordifluormethyl	СООН	iso-Propyl	tertButyl
Pentafluorethyl	соон	iso-Propyl	tertButyl
Methoxymethyl	соон	iso-Propyl	tertButyl
1-Methylmethoxymethyl	соон	iso-Propyl	tertButyl
1-Methylmethoxyethyl	соон	iso-Propyl	tertButyl
Ethoxymethyl	СООН	iso-Propyl	tertButyl
Vinyl	СООН	iso-Propyl	tertButyl
Allyl	соон	iso-Propyl	tertButyl
Methallyl	СООН	iso-Propyl	tertButyl
Crotyl	СООН	iso-Propyl	tertButyl
Ethinyl	СООН	iso-Propyl	tertButyl
Propargyl	СООН	iso-Propyl	tertButyl
Phenylethinyl	соон	iso-Propyl	tertButyl
Methoxy	СООН	iso-Propyl	tertButyl
Ethoxy	соон	iso-Propyl	tertButyl
Trifluormethoxy	соон	iso-Propyl	tertButyl
Н	СООН	Methy1	cyclo-Propyl
F	соон	Methyl	cyclo-Propyl
Cl	СООН	Methyl	cyclo-Propyl
Methyl	СООН	Methyl	cyclo-Propyl
Ethyl	соон	Methyl	cyclo-Propyl
n-Propyl	СООН	Methyl	cyclo-Propyl
iso-Propyl	СООН	Methyl .	cyclo-Propyl
n-Butyl	соон	Methyl	cyclo-Propyl
iso-Butyl	соон	iso-Propyl	cyclo-Propyl
sekButyl	СООН	iso-Propyl	cyclo-Propyl
tertButyl	СООН	iso-Propyl	tertButyl
cyclo-Propyl	СООН	iso-Propyl	cyclo-Propyl
cyclo-Butyl	соон	iso-Propyl	cyclo-Propyl
cyclo-Pentyl	СООН	iso-Propyl	cyclo-Propyl
cyclo-Hexyl	соон	Methyl	cyclo-Propyl
cyclo-Heptyl	СООН	Methyl	cyclo-Propyl
cyclo-Octyl	СООН	Methy l	cyclo-Propyl
1-Methylcyclopropyl	COOH	Methyl	cyclo-Propyl
Trifluormethyl	COOH	Methyl	cyclo-Propyl
Chlordifluormethyl	СООН	Methyl	cyclo-Propyl

<u>R1</u>	R 2	R3	R4
Pentafluorethyl	СООН	Methyl	cyclo-Propyl
Methoxymethyl	СООН	iso-Propyl	cyclo-Propyl
1-Methylmethoxymethyl	СООН	iso-Propyl	cyclo-Propyl
1-Methylmethoxyethyl	СООН	iso-Propyl	cyclo-Propyl
Ethoxymethyl	СООН	iso-Propyl	cyclo-Propyl
Vinyl	СООН	iso-Propyl	cyclo-Propyl
Allyl	COOH	iso-Propyl	cyclo-Propyl
Methallyl	COOH	iso-Propyl	cyclo-Propyl
Crotyl	COOH	Methyl	cyclo-Propyl
Ethinyl	СООН	Methyl	cyclo-Propyl
Propargyl	СООН	Methyl	cyclo-Propyl
Phenylethinyl	СООН	Methyl	cyclo-Propyl
Methoxy	СООН	Methyl	cyclo-Propyl
Ethoxy	СООН	Methyl	cyclo-Propyl
Trifluormethoxy	COOH	Methyl	cyclo-Propyl

Tabell	е В
--------	-----

Tabelle B		•	
	N R2		<pre>Ib (X = 0 oder</pre>
	R1 X N	R 3	Ib (X = 0 oder
	0	R+	
R1	R 2	R3	R4
Н	соон	н	tertButyl
F	СООН	н	tertButyl
Cl	СООН	н	tertButyl
Methyl	СООН	Н	tertButyl
Ethyl	СООН	н	tertButyl
n-Propyl	СООН	Н	tertButyl
iso-Propyl	СООН	н	tertButyl
n-Butyl	СООН	Н	tertButyl
iso-Butyl	соон	H	tertButyl
sekButyl	СООН	н	tertButyl
tertButyl	соон	н	tertButyl
cyclo-Propyl	СООН	н	tertButyl
cyclo-Butyl	СООН	н	tertButyl
cyclo-Pentyl	СООН	н	tertButyl
cyclo-Hexyl	СООН	н	tertButyl
cyclo-Heptyl	соон	н	tertButyl
cyclo-Octyl	СООН	н	tertButyl
1-Methylcyclopropyl	СООН	н	tertButyl
Trifluormethyl	соон	н	tertButyl
Chlordifluormethyl	соон	н	tertButyl
Pentafluorethyl	СООН	н	tertButyl
Methoxymethy l	СООН	н	tertButyl
1-Methy Imethoxymethy l	СООН	н	tertButyl
1-Methylmethoxyethyl	соон	н	tertButyl
Ethoxymethyl	СООН	н	tertButyl
Vinyl	соон	н	tertButyl
Allyl	соон	н	tertButyl
Methallyl	СООН	н	tertButyl
Crotyl	СООН	н	tertButyl
Ethinyl	СООН	н	tertButyl
Propargyl	соон	Н	tertButyl
Phenylethinyl	СООН	н	tertButyl
Methoxy	СООН	н	tertButyl
Ethoxy	СООН	н	tertButyl
Trifluormethoxy	соон	H	tertButyl
Methylthio	СООН	н	tertButyl

5	R1	R2	R3 ·	R4
	Trifluormethylthio	СООН	н	tertButyl
	Phenoxy	СООН	Н	tertButyl
	4-Cl-Phenoxy	СООН	H	tertButyl
10	2,4-(C1,C1)-Phenoxy	СООН	H	tertButyl
	4-CF ₃ -Phenoxy	СООН	H	tertButyl
	Phenyl	СООН	Н	tertButyl
	2-F-Phenylthio	СООН	Н	tertButyl
15	3-F-Phenyl	СООН	н	tertButyl
	2,4-(F,F)-Phenyl	СООН	н	tertButyl
	2-C1-Phenyl	COOH	н	tertButyl
	3-Cl-Phenyl	СООН	н	tertButyl
20	2,4-(Cl,Cl)-Phenyl	СООН	н	tertButyl
	2-CH ₃ -Pheny l	СООН	н	tertButyl
	3-CH ₃ -Pheny l	СООН	Н	tertButyl
	4-CH ₃ -Pheny l	СООН	н	tertButyl
25	2, 4-(CH ₃ , CH ₃)-Pheny l	COOH	н	tertButyl
	2, 4, 6-(CH ₃ , CH ₃ , CH ₃)-Phenyl	СООН	Н	tertButyl
	2-CF ₃ -Phenyl	COOH	Н	tertButyl
	2-OCH ₃ -Phenyl	COOH	Н	tertButyl
	2,4-(OCH3,OCH3)-Phenyl	COOH	H	tertButyl
30	4-OCF 3-Pheny l	COOH	H	tertButyl
	4-SCH ₃ -Phenyl	СООН	Н	tertButyl
	3-SCF ₃ -Phenyl	СООН	Н	tertButyl
	2, 4-(NO ₂ , NO ₂)-Pheny l	COOH	Н	tertButyl
35	4-NO ₂ -Pheny l	COOH	Н	tertButyl
	2-Thienyl	COOH	Н	tertButyl
	3-Thienyl	COOH	Н	tertButyl
	2-Furanyl	СООН	Н	tertButyl
40	3-Furanyl	COOH	Н	tertButyl
	2-Tetrahydrofuranyl	СООН	Н	tertButyl
	3-Tetrahydrofuranyl	COOH	Н	tertButyl
	2-Pyridy1	COOH	Н	tertButyl
45	3-Pyridyl	COOH	Н	tertButyl
	4-Pyridyl	COOH	Н	tertButyl
	2-Tetrahydropyranyl	СООН	H	tertButyl
	3-Tetrahydropyranyl	СООН	H	tertButyl
50	4-Tetrahydropyranyl	COOH	Н	tertButyl
55	iso-Propoxy	COOH	Н	tertButyl
	н	СООН	н .	cyclo-Propyl
	F	COOH	Ĥ	cyclo-Propyl
	C1	СООН	H	cyclo-Propyl
55	Methyl	COOH	н	cyclo-Propyl

5		R2	R3	R4
•	Ethyl	СООН	н	cyclo-Propyl
	n-Propyl	СООН	н	cyclo-Propyl
	iso-Propyl	соон	н	cyclo-Propyl
10	n-Butyl	СООН	н	cyclo-Propyl
	iso-Butyl	COOH	н	cyclo-Propyl
	sekButyl	СООН	н	cyclo-Propyl
	tertButyl	СООН	н	cyclo-Propyl
15	cyclo-Propyl	СООН	H	cyclo-Propyl
	cyclo-Butyl	СООН	H	cyclo-Propyl
	cyclo-Pentyl	СООН	Н	cyclo-Propyl
	cyclo-Hexyl	СООН	Н	cyclo-Propyl
	cyclo-Heptyl	СООН	Н	cyclo-Propyl
20	cyclo-Octyl	СООН	Н	cyclo-Propyl
	1-Methylcyclopropyl	COOH	н	cyclo-Propyl
	Trifluormethyl	СООН	Н	cyclo-Propyl
	Chlordifluormethyl	СООН	Н	cyclo-Propyl
25	Pentafluorethyl	СООН	Н	cyclo-Propyl
	Methoxymethy l	СООН	н	cyclo-Propyl
	1-Methylmethoxymethyl	COOH	Н	cyclo-Propyl
	1-Methylmethoxyethyl	СООН	Н	cyclo-Propyl
30	Ethoxymethy l	COOH	Н	cyclo-Propyl
	Vinyl	СООН	н	cyclo-Propyl
	Allyl	СООН	Н	cyclo-Propyl
	Methallyl	СООН	Н	cyclo-Propyl
35	Crotyl	СООН	Н	cyclo-Propyl
	Ethinyl	СООН	Н	cyclo-Propyl
		COOH	н .	cyclo-Propyl
	Propargyl Phenylethinyl	COOH	Н	cyclo-Propyl
40	Methoxy	СООН	Н	cyclo-Propyl
40	Ethoxy	COOH	Н	cyclo-Propyl
	Trifluormethoxy	СООН	н	cyclo-Propyl
	Methylthio	СООН	н	cyclo-Propyl
	Trifluormethylthio	СООН	н	cyclo-Propyl
45	Phenoxy	СООН	н	cyclo-Propyl
	4-C1-Phenoxy	COOH	н	cyclo-Propyl
	2,4-(Cl,Cl)-Phenoxy	СООН	н	cyclo-Propyl
	4-CF ₃ -Phenoxy	соон	н	cyclo-Propyl
50	Pheny 1	COOH	н	cyclo-Propyl
	2-F-Phenylthio	COOH	H	cyclo-Propyl
	3-F-Phenyl	СООН	н	cyclo-Propyl
	2,4-(F,F)-Phenyl	СООН	нī	cyclo-Propyl
55	2-Cl-Phenyl	СООН	Н	cyclo-Propyl
	2 of 1 mond .			

5	<u>R1</u>	R2	R3	R4
	3-C1-Pheny l	СООН	н	cyclo-Propyl
	2, 4-(C1, C1)-Pheny l	СООН	н	cyclo-Propyl
	2-CH ₃ -Phenyl	СООН	н	cyclo-Propyl
10	3-CH ₃ -Phenyl	СООН	н	cyclo-Propyl
	4-CH ₃ -Phenyl	СООН	н	cyclo-Propyl
	2, 4-(CH ₃ , CH ₃)-Phenyl	СООН	Н	cyclo-Propyl
	2, 4, 6- (CH ₃ , CH ₃ , CH ₃)-Phenyl	COOH	H	cyclo-Propyl
16	2-CF ₃ -Phenyl	СООН	Н	cyclo-Propyl
	2-OCH ₃ -Phenyl	СООН	н	cyclo-Propyl
	2, 4-(OCH ₃ , OCH ₃)-Phenyl	СООН	н	cyclo-Propyl
	4-OCF ₃ -Phenyl	СООН	н	cyclo-Propyl
20	4-SCH ₃ -Phenyl	COOH	Н	cyclo-Propyl
	3-SCF ₃ -Phenyl	СООН	н	cyclo-Propyl
	2, 4-(NO ₂ , NO ₂)-Pheny l	COOH	н	cyclo-Propyl
	4-NO ₂ -Phenyl	СООН	н	cyclo-Propyl
05	2-Thienyl	COOH	H	cyclo-Propyl
25	3-Thienyl	СООН	Н	cyclo-Propyl
	2-Furanyl	COOH	Н	cyclo-Propyl
	3-Furanyl	СООН	Н	cyclo-Propyl
	2-Tetrahydrofuranyl	COOH	Н	cyclo-Propyl
30	3-Tetrahydrofuranyl	COOH	н	cyclo-Propyl
	2-Pyridyl	COOH	Н	cyclo-Propyl
	3-Pyridyl	COOH	Н	cyclo-Propyl
	4-Pyridyl	COOH	Н	cyclo-Propyl
35	2-Tetrahydropyranyl	COOH	н	cyclo-Propyl
	3-Tetrahydropyranyl	COOH	Н	cyclo-Propyl
	4-Tetrahydropyranyl	COOH	н	cyclo-Propyl
	iso-Propoxy	COOH	Н	cyclo-Propyl
40	H	COOH	Methyl .	tertButyl
	F	COOH	Methyl	tertButyl
	Cl	COOH	Methyl	tertButyl
	Methyl	COOH	Methyl	tertButyl
45	Ethyl	COOH	Methyl	tertButyl
	n-Propyl	COOH	Methyl	tertButyl
	iso-Propyl	COOH	Methy l	tertButyl
	n-Butyl	COOH	Methyl	tertButyl
50	iso-Butyl	COOH	Methyl	tertButyl
50	sekButyl	COOH	Methy l	tertButyl
	tertButyl;	COOH	Methyl	tertButyl
	cyclo-Propyl	COOH	Methyl	tertButyl
	cyclo-Butyl	COOH	Methy l	tertButyl
55	cyclo-Pentyl	COOH	Methyl	tertButyl

5	R1	R2	R3 .	R4
J		COOH	ica-Dmanul	Anna -Burkul
	cyclo-Hexyl	COOH	iso-Propyl iso-Propyl	tertButyl tertButyl
	cyclo-Heptyl	COOH	iso-Propyl	tertButyl
10	cyclo-Octyl	COOH	• •	tertButyl
	1-Methylcyclopropyl	COOH	iso-Propyl	tertButyl
	Trifluormethyl		iso-Propyl iso-Propyl	tertButyl
	Chlordifluormethyl	COOH	iso-Propyl	tertButyl
	Pentafluorethyl	COOH	iso-Propyl	tertButyl
15	Methoxymethy l		• •	tertButyl
	1-Methylmethoxymethyl	COOH	iso-Propyl	tertButyl
	1-Methylmethoxyethyl	COOH	iso-Propyl	tertButyl
	Ethoxymethy1	COOH	iso-Propyl	tertButyl
20	Vinyl	COOH	iso-Propyl	tertButyl
	Allyl	COOH	iso-Propyl iso-Propyl	tertButyl
	Methallyl	COOH	iso-Propyl	tertButyl
	Crotyl		• •	tertButyl
25	Ethinyl	COOH	iso-Propyl	tertButyl
	Propargyl	COOH	iso-Propyl	tertButyl
	Phenylethinyl	COOH	iso-Propyl	tertButyl
	Methoxy	COOH	iso-Propyl	tertButyl
30	Ethoxy	COOH	iso-Propyl	tertButyl
•	Trifluormethoxy	COOH	iso-Propyl	cyclo-Propyl
	Н	COOH	Methyl	cyclo-Propyl
	F	СООН	Methyl	•
	C1	COOH	Methyl	cyclo-Propyl
35	Methyl	СООН	Methyl	cyclo-Propyl
	Ethyl	COOH	Methyl	cyclo-Propyl
	n-Propyl	СООН	Methyl	cyclo-Propyl
	iso-Propyl	СООН	Methyl	cyclo-Propyl
40	n-Buty l	COOH	iso-Propyl	cyclo-Propyl
	i so-Buty l	СООН	iso-Propyl	cyclo-Propyl
	sekButyl	СООН	iso-Propyl	cyclo-Propyl
	tertButyl	СООН	iso-Propyl	tertButyl
45	cyclo-Propyl	СООН	iso-Propyl	cyclo-Propyl
	cyclo-Butyl	СООН	iso-Propyl	cyclo-Propyl
	cyclo-Pentyl	СООН	iso-Propyl	cyclo-Propyl
•	cyclo-Hexyl	COOH	Methyl	cyclo-Propyl
50	cyclo-Heptyl	COOH	Methyl	cyclo-Propyl
	cyclo-Octyl	COOH	Methyl	cyclo-Propyl
	1-Methylcyclopropyl	COOH	Methyl	cyclo-Propyl
_	Trifluormethyl	СООН	Methyl	cyclo-Propyl
	Chlordifluormethyl	COOH	Methyl	cyclo-Propyl cyclo-Propyl
65	Pentafluorethyl.	COOH	Methyl	cyclo-riopy i

R1	R2	R3 ·	R ⁴
Methoxymethy l	СООН	iso-Propyl	cyclo-Propyl
1-Methylmethoxymethyl	COOH	iso-Propyl	cyclo-Propyl
1-Methylmethoxyethyl	СООН	iso-Propyl	cyclo-Propyl
Ethoxymethy1	СООН	iso-Propyl	cyclo-Propyl
Vinyl	СООН	iso-Propyl	cyclo-Propyl
Allyl	СООН	iso-Propyl	cyclo-Propyl
Methallyl	СООН	iso-Propyl	cyclo-Propyl
Crotyl	СООН	Methyl	cyclo-Propyl
Ethinyl	СООН	Methyl	cyclo-Propyl
Propargyl	COOH	Methyl	cyclo-Propyl
Pheny lethiny l	СООН	Methyl	cyclo-Propyl
Methoxy	COOH	Methyl	cyclo-Propyl
Ethoxy	СООН	Methyl	cyclo-Propyl
Trifluormethoxy	COOH	Methyl	cyclo-Propyl

5		> ×	0 s	o s	0 S	o s	o s	o s	s 0	o s	o s	s 0	s 0	o s	0 S	o s	o s	o s	o s	o s	o s
10																					
15	<u>e</u>		-2-butinyl	~	-C 3H5) 2	lno	nimino	nimino		2-Furyl-methanimino	H3) 2	CH ₃) 3I ⁻					СН3) з	=C (CH3) 2	H5)2	(осн3) 2	2H5) 2
20		RS	4-Hydroxy-2-butinyl	N=C(C2H5)2	N=C(cyclo-C3H5)2	2-Butanimino	Cyclohexanimino	Cyclooctanimino	N=CH-C6H5	2-Furyl-m	CH ₂ CH ₂ N(CH ₃) ₂	CH2CH2N+(CH3) 3I	CH ₂ CF ₃	CH ₂ CH ₂ C1	CH ₂ CH ₂ CN	CH ₂ CC1 ₃	СН 2СН 2S і (СН 3) з	CH2CH20-N=C(CH3)	CH2PO(0C2H5)2	сн(сн ₃)сн(осн ₃)	CH2-CON(C2H5) 2
25	N==																				
30	bzw.																		_	_	_
35	e	75 ¢	tertButvl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButy	tertButy	tertButy	tertButy	tertButyl	tertButy	tertButy	tertButy]	tertButy
40	2 × × × × × × × × × × × × × × × × × × ×	R ³ f		: =	I	I	I	I	Ŧ	I	I	I	I	I	I	I	I	æ	I	I	I
4 5	≠ =₹																				
50				. La	La		; .		<u>ا</u>	אן	Methv1	l vd	Methv1	Methyl	Methyl	-Propyl	isa-Propyl	so-Propy]	so-Propy]	iso-Propvl	so-Propyl
55		18	{	Chlor	5	5	5	Chlor	Methy	Methyl	Met	Me	Met	Ret	M	İSC		7	i v		Š

- 55	50	45	40	35	30	25	20	15	10		5
R1			R3	# 4			25			×	-
iso-Propyl			I	tertButyl			Benzyl			တ	0
CVC10-Propy	17		I	tertButyl			2,4-(C1,C1)-Benzyl	-Benzyl		S	0
cyclo-Propyl	, v 1 v		I	tertButyl			3-Pyridyl-methyl	nethyl		S	0
cyclo-Propy	l A		I	tertButyl			2-Thienyl-methyl	nethy l		S	0
cyclo-Propy	. 1 <u>.</u>		I	tertButyl			2-Tetrahyd	2-Tetrahydrofuranyl-methyl	thyl	S	0
cyclo-Propy	ly		Ŧ	tertButyl			2-Furanyl-methyl	nethyl		S	0
cyclo-Propy	y.		I	tertButyl			2-Pyridyl-methyl	nethyl		S	0
cyclo-Propy	ıyı		Ŧ	tertButyl			Pheny 1			S	0
Allyl	•		=	tertButyl			4-F-Phenyl			S	0
Allyl			Ŧ	tertButyl			4-Trifluor	4-Trifluormethylphenyl		S	0
Allyl			I	tertButyl			2-NO ₂ -4-F-Pheny	henyl		တ	0
Allyl			I	tertButyl			3, 5-(CF3, CF3)-Phenyl	F3)-Phenyl		S	0
Allyl			I	tertButyl			4-0CH ₃ -Pheny	ny l		S	0
Allyl			I	tertButyl			4-0CF 3-Pheny l	ny l		S	0
Allyl			I	tertButyl			4-NHCOCH ₃ -Phenyl	Phenyl		S	0
Ethinyl			I	tertButyl			2-Tetrahydropyranyl	ropyranyl		S	0
Ethinyl			Ŧ	tertButyl			2-Tetrahydropyranyl	ropyranyl		S	0
Ethinyl			×	tertButyl			1-Benzotriazolyl	azolyl		S	0
Ethinyl			=	tertButyl			Methyl			S	0
Ethinyl			I	tertButyl			Ethyl			S	0
Ethinyl			Ŧ	tertButyl			n-Propyl			S	0
Ethinyl			I	tertButyl			iso-Propyl			S	0
Methoxy			I	tertButyl			n-Butyl			S	0
Methoxy			I	tertButyl			iso-Butyl			S	0
Methoxy			Ŧ	tertButyl			sekButyl			ဟ	0

50 55	45	40	35	30	25	20	15	10	J	5	
R 1	~	.	R4			RS			×	>	1
									. •	•	
Methoxy	I	_	tertButyl			tertButyl			n	ɔ :	
Methoxy.	Ξ	_	tertButyl			cyclo-Hexyl			S	0	
Methoxy	I		tertButyl			Cyclopropylmethyl	methyl		S	0	
Methoxy	I	_	tertButyl			Ethoxymethyl	-		S	0	
4-C1-Phenoxy	I	_	tertButyl			2-Methoxy-ethoxy-methyl	thoxy-meth	yl	S	0	
4-C1-Phenoxy	Ξ	_	tertButyl			Benzyloxymethyl	thyl		S	0	
4-C1-Phenoxy	**************************************	_	tertButyl			(4-Brombenz	(4-Brombenzoyl)-methyl	_	S	0	
4-C1-Phenoxy	=	_	tertButyl			(4-Methoxyb	(4-Methoxybenzoyl)-methyl	thyl	S	0	
4-C1-Phenoxy	I	_	tertButyl			Phthalimidomethyl	omethyl		S	0	
4-C1-Phenoxy	_	_	tertButyl			Methylthiomethyl	nethyl		S	0	
4-C1-Phenoxy	_	Ŧ	tertButyl		•	2-Thiomethyl-ethyl	/l-ethyl		S	0	
Phenvlthio	_	Ŧ	tertButyl			сн(с ₆ н ₅)соосн ₃	JCH ₃		S	0	
Phenylthio	•	I	tertButyl			Phenylethyl	_		S	0	
Phenylthio	••	÷	tertButyl			4-F-Phenylethyl	ethyl		S	0	
Phenylthio	-	I	tertButyl			Phthalimido	•		S	0	
Pheny I thio	-	I	tertButyl			Tetrahydrop	Tetrahydrophthalimido		S	0	
Phenylthio	-	I	tertButyl			Maleinimido			S	0	
Phenylthio	-	I	tertButyl			Succinimido	•		တ	0	
2, 4-(C1, C1)-Phenyl	_	I	tertButyl		٠	Piperidino			S	0	
2, 4-(Cl,Cl)-Phenyl	_	I	tertButyl			Li +			S	0	
2. 4-(Cl, Cl) -Phenyl		I	tertButyl			Na⁺			S	0	
2, 4-(C1, C1) -Phenyl		I	tertButyl			+			S	0	
2, 4-(Cl, Cl)-Phenyl		I	tertButyl			+ * HN			S	0	
2, 4-(Cl, Cl)-Phenyl		I	tertButyl			Diisopropylammonium	l ammon i um		S	0	
2,4-(C1,C1)-Phenyl	_	I	tertButyl			2-Hydroxye	2-Hydroxyethyl-aṃmonium	ED.	S	0	

50 - 55	4 5	40	<i>30</i>	25	20	15	10	5	
R1	R3	3 R4			R5		ļ	×	>
2-Thienyl	Ξ	tert, -Butyl	tyl	•	Allyl			v	0
2-Thienyl	I	tertButyl	tyl	•	Methallyl			S	0
2-Thienyl	I	tertButyl	tyl	••	2-Chlorallyl			S	0
2-Thienyl	I	tertButyl	tyl	_	Propargyl			s	0
2-Thienyl	I	tertButyl	tyl	•••	3-Iodpropargyl	_		S	0
Chlor	Ξ	cyclo-Propyl	opyl	7	4-Hydroxy-2-butinyl	utinyl [.]		s	0
Chlor	x	cyclo-Propyl	opyl	-	N=C (C ₂ H ₅) ₂			, vs	0
Chlor	I	cyclo-Propyl	pyl		N=C(cyclo-C3H5)	5)2		S	0
Chlor	Ξ	cyclo-Propyl	pyl		2-Butanimino			S	0
· Chlor	I	cyclo-Propyl	pyl		Cyclohexanimino	90		s	0
Chlor	=	cyclo-Propyl	pyl		Cyclooctanimino	9		s	0
Methyl		cyclo-Propyl	pyl		N=CH−C ₆ H ₅			s	0
Methyl	I	cyclo-Propyl	pyl	•	2-Furyl-methanimino	nimino		s	0
Methyl	*	cyclo-Propyl	pyl		CH2CH2N(CH3)2			s	0
Methyl	I	cyclo-Propyl	pyl		CH2CH2N+(CH3)31	3I_		S	0
Methyl	*	cyclo-Propyl	pyl		CH ₂ CF ₃			s	0
Methyl	I	cyclo-Propyl	pyl		CH ₂ CH ₂ C1			S	0
Methyl	I	cyclo-Propyl	pyl	•	CH ₂ CH ₂ CN			s	0
iso-Propyl	I	cyclo-Propyl	pyl	0	CH ₂ CC1 ₃			S	0
iso-Propyl	I	cyclo-Propyl	pyl	•	СН ₂ СН ₂ Si (СН3) 3	æ		s	0
iso-Propyl	I	cyclo-Propy	opyl	•	CH2CH20-N=C(CH3)	H3)2		s	0
iso-Propyl	=	cyclo-Propyl	opyl		CH2PO(OC2H5)2			s	0
iso-Propyl		cyclo-Propy]	l ydo'	•	сн(сн3)сн(осн3)	3)2		S	0
iso-Propyl	*	cyclo-Propyl	opyl	0	CH2-CON(C2H5)2	7		s	0
iso-Propyl	I	cyclo-Propyl	opyl		Benzy l			s	0

55	50	45	40	35	30	25	20	15	10	5		
R1			R3	R4			R5	·		×	>	
cvclo-Probvl	<u>د</u>		I	cyclo-Propyl			2, 4-(C1, C1)-Benzyl)-Benzyl		S	0	
cvclo-Propy			I	cyclo-Propyl			3-Pyridyl-methyl	methyl		S	0	
cvclo-Prop	, A.		=	cyclo-Propyl			2-Thienyl-methyl	methy1		S	0	
cyclo-Propyl	l Á		Ŧ	cyclo-Propyl			2-Tetrahyd	2-Tetrahydrofuranyl-methyl	nethyl	S	0	
cyclo-Propy	yı		Ŧ	cyclo-Propyl			2-Furanyl-methy	methy		တ	0	
cyclo-Propy	ıyı		I	cyclo-Propyl			2-Pyridyl-methyl	methyl		S	0	
cyclo-Propy	y l		I	cyclo-Propyl			Pheny l			S	0	
Allyl	ì		Ŧ	cyclo-Propyl			4-F-Phenyl			S	0	
Allyl			Ŧ	cyclo-Propyl			4-Trifluor	4-Trifluormethylphenyl	T T	S	0	
Allyl			I	cyclo-Propyl			2-NO ₂ -F-Phenyl	enyl		S	0	
Allyl			I	cyclo-Propyl			3, 5-(CF3, CF3)-Phenyl	F ₃)-Phenyl		S	0	
Allyl			Ŧ	cyclo-Propyl			4-OCH ₃ -Phenyl	nyl		S	0	
Allyl			I	cyclo-Propyl			4-0CF ₃ -Phenyl	ny l		S	0	
Allyl			I	cyclo-Propyl			4-NHCOCH ₃ -Pheny	Pheny l		S	0	
Ethinvl			×	cyclo-Propyl			2-Tetrahydropyranyl	ropyranyl		S	0	
Ethinyl			I	cyclo-Propyl			2-Tetrahydrofuranyl	rofuranyl		S	0	
Ethinyl			I	cyclo-Propyl			1-Benzotriazolyl	azolyl		S	0	
Ethinyl			I	cyclo-Propyl			Methyl			S	0	
Ethinyl			I	cyclo-Propyl			Ethyl			S	0	
Ethinyl			I	cyclo-Propyl			n-Propyl			w.	0	
Ethinyl			I	cyclo-Propyl			iso-Propyl			S	0	
Methoxv			Ŧ	cyclo-Propyl			n-Butyl			S	0	
Methoxy			I	cyclo-Propyl			iso-Butyl			S	0	
Methoxy			I	cyclo-Propyl			sekButyl			S	0	
Methoxy			I	cyclo-Propyl			tertButyl	_		S	0	

- 55	45 50	40	35	30	25	20	15	10	5	_
R1		83	R4			R5			×	>
Mothow		I	cvclo-Probvl			cyclo-Hexyl			S	0
Methoxy		.	CYC 10-Propy 1	-		Cyclopropylmethyl	Imethy1		S	0
Methoxy		I	cyclo-Propy	=		Ethoxymethyl			S	0
4-C1-Phenoxy	ХУ	I	cyclo-Propyl			2-Methoxy-6	2-Methoxy-ethoxy-methyl		S	0
4-C1-Phenoxy	, xx	I	cyclo-Propy	=		Benzyloxymethyl	ethyl		S	0
4-C1-Phend	xy	I	cyclo-Propyl	=		(4-Brompen	(4-Brombenzoyl)-methyl		S	0
4-C1-Phenoxy	ХХ	I	cyclo-Propyl	=		(4-Methoxy	[4-Methoxybenzoyl]-methyl	ıyı	S	0
4-C1-Phend	λχι	I	cyclo-Propy	=		Phthalimidomethyl	omethyl		S	0
4-C1-Phenc	λ×c	I	cyclo-Propyl	Į.		Methylthiomethyl	nethyl		S	0
4-C1-Phenoxy	λ×ο	I	cyclo-Propyl	=		2-Thiomethyl-ethyl	/l-ethyl		S	0
Phenylthio		I	cyclo-Propyl	ľ		сн(с ₆ н ₅)соосн ₃	эсн з		S	0
Phenylthio	0	I	cyclo-Propyl	7		Phenylethyl	_		S	0
Phenylthio	0	I	cyclo-Propyl	oy l		4-F-Phenylethyl	ethyl		S	0
Phenylthio	0	I	cyclo-Propyl	lyd		Phthal imido	0		S	0
Phenylthio	0	I	cyclo-Propyl	py 1		Tetrahydro	Tetrahydrophthalimido		S	• _.
Phenylthio	•	I	cyclo-Propyl	pyl		Maleinimido	•		S	0
Pheny 1 thi	•	±	cyclo-Propyl	١١		Succinimido	•		S	0
2, 4-(01,0	1)-Phenyl	I	cyclo-Propy	۲,		Piperidimo			S	0
2, 4-(01,0	1)-Phenyl	I	cyclo-Propyl			Li+			S	0
2, 4-(C1, C1)-Phenyl	1)-Phenyl	I	cyclo-Propy	7,1		Na+			S	0
2,4-(01,0	1)-Phenyl	I	cyclo-Propy	, i		+ *			S	0
2,4-(01,0	1)-Phenyl	Ξ	cyclo-Propy	yl		NH¢+			S	0
2,4-(01,0	1)-Phenyl	I	cyclo-Propyl	yı		Diisopropylammonium	l ammon i um		S	0
2, 4-(C1, C	2, 4-(C1, C1)-Phenyl	I	cyclo-Propy	yı		2-Hydroxye	2-Hydroxyethyl-ammonium	=	S	0
2-Thienyl		I	cyclo-Propy	l k		Allyl			S	0

	R3	R4		RS		×	>
	Ŧ	cyclo-Propyl		Methallyl		S	0
	I	cyclo-Propyl		2-Chlorallyl	_	ဟ	0
	I	cyclo-Propyl		Propargyl		S	0
	I	cyclo-Propyl		3-Iodpropargyl	ly1	S	0
	I	tertButyl		-N=C(CH ₃) ₂		S	0
	I	tertButyl		-N=C(CH3)2		S	0
	Ŧ	tertButyl		-N=C(CH ₃) ₂		S	0
	I	tertButyl		-N=C(CH ₃) ₂		ဟ	0
	I	tertButyl		-N=C(CH ₃) ₂		s	0
	I	tertButyl		-N=C(CH3)2		S	0
	I	tertButyl		-N=C(CH3)2		S	0
	I	tertButyl		-N=C(CH ₃) ₂		S	0
	I	tertButyl		-N=C(CH ₃) ₂		S	0
	I	tertButyl		-N=C(CH3)2		S	0
	I	tertButyl		-N=C(CH ₃) ₂		S	0
	I	tertButyl		-N=C(CH3)2		S	0
	I	tertButyl		-N=C(CH3)2		S	0
	I	tertButyl		-N=C(CH3)2		S	0
	I	tertButyl		-N=C(CH ₃) ₂		S	0
	Ξ	tertButyl		-N=C(CH ₃) ₂		S	0
cvclo-Octvl	I	tertButyl		-N=C(CH3)2		S	0
1-Methylcyclopropyl	I	tertButyl		-N=C(CH ₃) ₂		S	0
rifluormethyl	I	tertButyl		-N=C(CH3)2		S	0
Chlordifluormethyl	I	tertButyl		-N=C(CH3)2		S	0
Don't at Incompthy	=	tertButvl		-N=C(CH ₃),		v	0

6 5	50	45	40		35	30	25	20	15	10	5	
181			R3	۳. د	-		R5		·		×	>
										l		
i so-Propoxy	>-		×	tertButy	Butyl		*	-N=C(CH3)2			S	•
Methoxymethyl	hyl		Ŧ	tertButy	Butyl		¥	-N=C(CH ₃) ₂			S	0
1-Methylme	1-Methylmethoxymethyl		x	tertButy	Butyl		4	-N=C (CH3) 2			S	0
1-Methylme	1-Methylmethoxyethyl		I	tertButy	Butyl		¥-	-N=C (CH3) 2			S	0
Ethoxymethyl	,		I	tertButy	Butyl		7	-N=C (CH3) 2			s	0
Vinvl	1		I	tertButy	Butyl		¥	-N=C(CH ₃) ₂			S	0
Allvl			Ŧ	tertButy	Butyl		7	-N=C(CH3)2			S	0
Methallyl			I	tertButy	Butyl		ä	-N=C(CH3)2			S	0
Crotvl			I	tertButy	Butyl		ž	-N=C(CH3)2			s	0
Ethinyl			Ŧ	tertButy	Butyl		۲	-N=C(CH3)2			s	0
Proparay			I	tertButy	Butyl		Ÿ	-N=C(CH3)2			S	0
Phenyleethinyl	ıinyl		I	tertButy	Butyl		Ÿ	-N=C (CH3) 2			S	0
Methoxv	•		Ŧ	tertButy	Butyl		Ÿ	-N=C(CH ₃) ₂			S	0
Ethoxy			÷	tertButy	Butyl		Ÿ	-N=C (CH3) 2			S	0
Trifluormethoxv	thoxv		Ŧ	tertButy	Butyl		Ÿ	-N=C(CH ₃) ₂			S	0
Methylthio	,		I	tertButy	Butyl		Ÿ	-N=C (CH3) 2			S	0
Trifluormethylthio	ethvlthio		I	tertButy	Butyl		Ÿ	-N=C(CH ₃) ₂			တ	0
Phenoxv			Ŧ	tertButy	Butyl		Ž	-N=C (CH3) 2			S	0
4-C1-Pheno	> XG		I	tertButy	·Buty1		Ÿ	-N=C (CH3) 2			S	0
2. 4- (C1, C	2, 4-(C1, C1)-Phenoxy		I	tertButy	Butyl		Ž	-N=C (CH3)2			S	0
4-CF a-Phenoxy	AXOL		I	tertButy	Butyl		Ÿ	-N=C (CH3) 2			ဟ	0
Phenyl	•		I	tertButy	-Butyl		Ž	-N=C(CH3)2			S	0
2-F-Phenvlthio	lthio		I	tertButy	-Butyl		Ž	-N=C (CH3) 2			S	0
3-F-Phenyl	-		I	tertButy	-Butyl		Ž	-N=C(CH3)2			S	0
2, 4-(F, F)-Phenyl	-Phenyl		I	tertButy	-Butyl		Ž	-N=C(CH3) ₂			ဟ	0

	£	R4		R5		*	_
2-C1-Bheav1	I	tertButyl		-N=C(CH3)2		s	0
	: =	tertButyl		-N=C(CH ₃) ₂		S	0
) . 1-Pheny	=	tertButyl		-N=C(CH ₃) ₂		S	0
. ()	.	tertButyl		-N=C(CH ₃) ₂		S	0
3-CH:-Phenv]	=	tertButyl		-N=C(CH ₃) ₂		S	0
. לייי וארן	I	tertButyl		-N=C(CH ₃) ₂		S	0
2 4- (CH ₂ , CH ₂) -Phenvl	I	tertButyl		-N=C(CH ³) 2		S	0
Ha, CHa, CHa) -Phenyl	I	tertButyl		-N=C(CH ₃) ₂		ဟ	0
2-CF Phenv1	I	tertButyl		-N=C(CH ₃) ₂		ဟ	0
henvl	Ŧ	tertButyl		-N=C(CH ₃) ₂		ဟ	0
2 4- (OCH 1, OCH 1) -Phenyl	I	tertButyl		-N=C(CH3)2		S	0
4-0CF3-Pheny	I	tertButyl		-N=C(CH3)2		ဟ	0
6-SCH3-Pheny]	I	tertButyl		-N=C(CH ₃) ₂		တ	0
3-SCF Pheny	I	tertButyl		-N=C (CH3) 2		S	0
NO.1-Phenyl	I	tertButyl		-N=C (CH3) 2		s	0
/, + (m, /, m, /,,, /, /,, /, /, /, /, /, /, /, /, /, /, /, /, /,	I	tertButyl		-N=C (CH3) 2		S	0
7-Thienvi	I	tert, -Butyl		-N=C (CH3) 2		s	0
2-mich). 3-Thienvi	I	tertButyl		-N=C(CH ₃) ₂		S	0
)	I	tertButyl		-N=C (CH3) 2		S	0
7 man 1 - 7 man	=	tertButyl		-N=C (CH ₃) ₂		S	0
J-ful mij i J-Totrahudrofiiranvl	.	tertButyl		-N=C (CH3) 2		s	0
2-rectanglerers.	.	tertButyl		-N=C (CH3) 2		S	0
	I	tertButyl		-N=C (CH ₃) ₂		S	0
2-01-14: 3-0-ride:	I	tertButyl		-N=C (CH ₃) ₂		S	0
יין און ועץ י	;			,			•

- 55	50	45	40	35	30	25	20	15	10	•	5
R1			R3	7 2 4			R5			*	>
2-Tetrahydropyranyl	[ropyrany]		I	tertButyl			-N=C(CH ₃) ₂			S	0
3-Tetrahydropyranyl	Iropyranyl		I	tertButyl			-N=C(CH ₃) ₂			S	0
4-Tetrahydropyranyl	Iropyranyl		I	tertButyl			-N=C(CH ₃) ₂			S	0
, =	•		I	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
Ŀ			I	cyclo-Propyl			-N=C (CH ₃) 2			S	0
15			I	cyclo-Propyl			-N=C (CH3) 2			S	0
Methyl			I	cyclo-Propyl			-N=C (CH ₃) ₂			S	0
Ethyl			I	cyclo-Propyl			-N=C (CH3) 2			S	0
n-Propyl			I	cyclo-Propyl			-N=C (CH3) 2			S	0
iso-Propyl	_		I	cyclo-Propyl			-N=C(CH3)2			S	0
n-Butyl			I	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
iso-Butyl			I	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
sek. +Buty	_		I	cyclo-Propyl			-N=C (CH3) 2			S	0
tertButyl	٧.		I	cyclo-Propyl			-N=C(CH3)2			S	0
cyclo-Propyl	lyd		Ŧ	cyclo-Propyl			-N=C(CH ₃) ₂			S	o _
cyclo-Butyl	y		I	cyclo-Propyl			-N=C(CH3)2			S	0
cyclo-Pentyl	tyl		I	cyclo-Propyl			-N=C(CH3)2			S	0
cyclo-Hexyl	y		I	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
cyclo-Hep	tyl		I	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
cyclo-Octyl	yı		I	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
1-Methylc	1-Methylcyclopropyl		I	cyclo-Propyl			-N=C(CH ₃) ₂			S	O
Trifluormethyl	ethyl		I	cyclo-propyl			-N=C(CH ₃) ₂			ဟ	0
Chlordifl	Chlordifluormethyl		I	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
Pentafluorethyl	rethyl		I	cyclo-Propyl			-N=C(CH3)2			S	0
iso-Propoxy	ху		I	cyclo-Propyl			-N=C(CH ₃) ₂			ဟ	0

Rethoxymethy	50 55	45	40	35	30	25	20	15	10	5	
thoxymethy! thoximethy! thoxymethy! thoximethy! thoximethy! thoximethy! thoxymethy! thoximethy! thoximethy! thoximethy! thoximethy! thoxymethy! thoximethy! thoxi			•				יר			×	>-
gymethy! H cyclo-Propy! -N=C(CH3)2 S C nylmethoxyethy! H cyclo-Propy! -N=C(CH3)2 S C methy! H cyclo-Propy! -N=C(CH3)2 S C methy! H cyclo-Propy! -N=C(CH3)2 S C 11yl H cyclo-Propy! -N=C(CH3)2 S C	R1		22	X 4			2				
Variable	10000000000000000000000000000000000000		I	cyclo-Propyl			-N=C(CH3)2			S	0
The control of contr	Methodymethy:	ן יק ויין	: =	cvclo-Propvl			-N=C(CH ₃) ₂			S	0
	1-Herny (mermoxymer)		: =	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
11y1	I-Methy line choxyetic		: 1	rvrlo-Pronvl			-N=C(CH3)2			S	0
11y1	Ethoxymethy!		: =	cyclo-Probyl			-N=C(CH3)2			S	0
11y1	Vinyl		: =	cvclo-Propvl			-N=C(CH ₃) ₂			S	0
	Allyl		: =	cvclo-Propyl			-N=C(CH3)2			S	0
H	Methally:		: =	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
thiny!	c10ty1		=	cvclo-Propyl			-N=C(CH3)2			S	0
thinyl	Bronardy		: I	cyclo-Propyl			-N=C (CH3) 2			S	0
H Cyclo-Propy	Phonylothiny]		.	cyclo-Propyl			-N=C (CH3) 2			S	0
H Cyclo-Propy	Mothorus .		: =	cyclo-Propyl			-N=C (CH3) 2			s	0
Compact Cyclo-Propy	necions.		I	cyclo-Propyl			-N=C (CH3) 2			S	0
hio H cyclo-Propyl -N=C(CH ₃) ₂ hio H cyclo-Propyl -N=C(CH ₃) ₂	Trifluormothory		: =	cvclo-Propyl			-N=C(CH3)2			S	0
thylthio	if it itto me check		: I	cvclo-Propyl			-N=C(CH3)2		•	S	0
y	To (s) nomethal this		: I	cvclo-Propyl			-N=C(CH3)2			S	0
Phenoxy		•	: =	cvclo-Propvl			-N=C(CH3)2			S	0
Phenoxy H cyclo-Propyl -N=C(CH3)2 S y H cyclo-Propyl -N=C(CH3)2 S io H cyclo-Propyl -N=C(CH3)2 S io H cyclo-Propyl -N=C(CH3)2 S ienyl H cyclo-Propyl -N=C(CH3)2 S H cyclo-Propyl -N=C(CH3)2 S	Frienday.		: 1	cyclo-Propyl			-N=C(CH3)2			S	0
H cyclo-Propyl -N=C(CH ₃) ₂ S	4-CI-Frienday	j	: =	cyclo-Pronvl			-N=C(CH ₃) ₂			S	0
H cyclo-Propyl S	2, 4-(C1, C1)-rueno.	₹	: 3	cyclo-propyl			-N=C(CH ₃) ₂			S	0
ylthio	4-CF 3-Phenoxy		= :	efert order			-N=(CH3)			s	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Phenyl		I	cyclo-Propyl			7 ((() () ()			u	•
yl	2-F-Phenylthio		I	cyclo-Propyl			-N=C(CH3)2			n (.
Phenyl H cyclo-Propyl $-N=C(CH_3)_2$ S $_1$ $_1$ $_2$ S $_2$ S $_3$	3-F-Phenvl		I	cyclo-Propyl			-N=C(CH3)2			S	0
H cyclo-Propyl -N=C(CH ₃) ₂	2 4-(F.F)-Phenyl		I	cyclo-Propyl			-N=C (CH ₃) ₂			S	0
	2-C1-Phenv]		I	cyclo-Propyl			-N=C(CH ₃) ₂			ဟ	0

50 55	45	40	35	30	25	20	15	10	5	
R1	R3	8				RS			×	>
3-F	I	Ž	cvclo-Propvl			-N=C(CH3),			S	0
2. 4-(C1, C1)-Phenyl	=	7 5	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
2-CH ₃ -Phenyl	I	ָרָ יָּ בּרָ	cyclo-Propyl			-N=C(CH3)2			S	0
3-CH ₃ -Phenyl	I	Ş	cyclo-Propyl			-N=C (CH3) 2			S	0
4-CH3-Phenyl	I	Cy	cyclo-Propyl			-N=C (CH3) 2			S	0
2, 4-(CH ₃ , CH ₃)-Phenyl	I	cy	cyclo-Propyl			-N=C (CH3) 2			S	0
2, 4, 6-(CH ₃ , CH ₃ , CH ₃)-	Phenyl H	Š	cyclo-Propyl			-N=C (CH3) 2			S	0
2-CF ₃ -Phenyl	I	Š	cyclo-Propyl			-N=C (CH3) 2			S	0
2-0CH ₃ -Phenyl	I	Č	cyclo-Propyl			-N=C (CH ₃) ₂			S	0
2, 4-(OCH ₃ , OCH ₃)-Phenyl	ly1 H	Š	cyclo-Propyl			-N=C (CH3) 2			S	0
4-OCF ₃ -Phenyl	I	C	cyclo-Propyl			-N=C (CH ₃) ₂			S	0
4-SCH ₃ -Phenyl	=	Cy	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
3-SCF 3-Pheny l	I	C y	cyclo-Propyl			-N=C (CH ₃) ₂			s	0
2, 4-(NO ₂ , NO ₂)-Phenyl	I	cy	cyclo-Propyl			-N=C (CH ₃) ₂			S	0
4-NO ₂ -Phenyl	I	Сy	cyclo-Propyl			-N=C(CH3)2			S	0
2-Thienyl	I	Сy	cyclo-Propyl			-N=C (CH3) 2			S	0
3-Thienyl	I	cy	cyclo-Propyl			-N=C (CH3) 2			S	0
2-Furanyl	I	Сy	cyclo-Propyl		•	-N=C(CH ₃) ₂			S	0
3-Furanyl	I	сy	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
2-Tetrahydrofuranyl	I	C,	cyclo-Propyl		·	-N=C (CH3)2			S	0
3-Tetrahydrofuranyl	I	Сy	cyclo-Propyl			-N=C(CH ₃) ₂			s	0
2-Pyridyl	I	C	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
3-Pyridyl	I	СУ	cyclo-Propyl	•		N=C(CH3)2			S	0
4-Pyridyl	I	C,	cyclo-Propyl			-N=C(CH ₃) ₂			S	0
2-Tetrahydropyranyl	I	C	cyclo-Propyl			-N=C (CH ₃) ₂			ဟ	0

5 <i>0</i>	45	~~	40	35	30	25	20	15	10	5	_
100		8	8			E	R5			×	>
				,		•				u	c
3-Tetrahydropyranyl	ıyı	I	cyclo-Propyl	ropyl		7	-N=C(CH3)2			0	>
4-Tetrahydropyranyl	. [2	Ξ	cyclo-Propyl	ropyl		Ŧ	-N=C(CH3)2			S	0
chlor	,	=	Methvl	2		Ξ				S	0
		: 3	Fthv			I				S	0
Chior		: =	n-Propy]		•	I				S	0
Chior		: 3	iso-Propv	. [^0		I				S	0
Chlor Chlor	•	: :	n-Butvl			I				S	0
		: =	iso-Butv	7		. I				S	0
cater.		: =	sekButv]	tv]		I				S	0
Metny (: I	n-Pentyl	; -		I				S	0
Methy!		: =	2-Penty	,		I				S	0
Mothyl		: I	3-Pentyl	_		=				S	0
Rothell		=	n-Hexyl			I				S	0
Moth		Ė	2-Hexyl			I				S	0
ico-Pronvi		I	3-Hexyl			±				တ	0
iso-Proby]		I	2-Methy	2-Methyl-2-pentyl		I				တ	0
iso-Propy]		I	cyclo-f	cyclo-Propylmethyl	y1	x				S	0
1so-Propy		Ŧ	cyclo-Butyl	3uty]		I				S	0
iso-Propy]		I	cyclo-Pentyl	entyl		I			•	S	0
iso-Propy]		I	cyclo-Hexyl	texy1		I				S	0
cuclo-Bronvl		I	1-Meth	1-Methylcyclohexyl	, y II	I				S	0
cyclo-Propyl		I	3-Trif	luormethyl	3-Trifluormethylcyclohexyl	I				s	0
cyclo-Bronyl		=	A11y1			I				S	0
cyclo Floby:		I	1-Buten-3-yl	n-3-y1		I				S	0
cyclo-Propyl		I	Crotyl			I				S	0

							;	,
	R.3	R4		RS			×	-
cvclo-Propyl	I	Propargyl		I			S	0
Allvl	I	1-Butin-3-yl	3-y1	I			S	0
Allyl	Ξ	3-Methyl	3-Methyl-1-butin-3-yl	Ŧ			S	0
A11v1	Ξ	2-Pentin-4-yl	-4-y1	I		•	S	0
Allyl	I	Benzyl		I			S	0
Allyl	I	2-Phenylethyl	ethyl	I			S	0
l v l A	I	2-Methyl	2-Methylthioethyl	I			S	0
Ethinvl	I	2-Chlorethyl	thyl	I			ဟ	0
Ethinyl	I	2-Methoxyethyl	yethyl	I			S	0
Ethinyl	I	2-(N, N-D	2-(N, N-Dimethylamino)ethyl	I	•		S	0
Ethinyl	I	Pheny 1		Ŧ			S	0
Ethinyl	I	2-CH ₃ -Phenyl	enyl	I			S	0
Ethinyl	I	4-CH ₃ -Phenyl	enyl	I			S	0
Methoxv	I	2, 4- (CH ₃	2, 4-(CH ₃ , CH ₃)-Phenyl	I			S	0
Methoxv	I	2, 3, 5-(c	2, 3, 5- (CH ₃ , CH ₃ , CH ₃)-Phenyl	I			S	o .
Methoxy	Ξ	3-CF ₃ -Phenyl	enyl	I			S	0
Methoxy	I	3-F-Pheny l	ly.	I			S	0
Methoxy	I	2-C1-Phenyl	nyl	I			S	0
Methoxv	I	4-C1-Phenyl	inyl	I			S	0
4-C1-Phenoxy	Ξ	2, 4-(F, F	2, 4-(F, F)-Phenyl	I			S	0
4-C1-Phenoxy	I	2, 3, 5- (0	2, 3, 5-(c1, c1, c1)-Phenyl	I			S	0
4-C1-Phenoxy	Ξ	2-CN-Pheny1	ny 1	I			s	0
4-C1-Phenoxy	I	2-0CH ₃ -Phenyl	henyl	I			S	0
4-C1-Phenoxy	Ξ	2, 3- (OCH	2, 3-(OCH ₃ , OCH ₃)-Phenyl	I			S	0
4-C1-Phenoxy	I	3, 4, 5-(0	3, 4, 5-(0CH3, 0CH3, 0CH3)-Phenyl	I			S	0

	R 3	7 .			R5		×	>
	I	3-0CF ₃ -Phenyl		I			S	0
	=	4-0CF 2CHF 3-Pheny l	ienyl	I			ဟ	0
	: =	2-SCH ₃ -Phenyl		I			S	0
	=	2, 4-(SCH ₃ , SCH ₃)-Pheny	43)-Phenyl	I			S	0
	I	2-SCF 3-Pheny l		I			S	0
	I	4-NO ₂ -Phenyl		I			S	0
-Phenvl	I	2, 4-(NO ₂ , NO ₂)-Phenyl	-Pheny1	I			S	0
2, 4-(Cl, Cl) -Phenyl	I	2-CHO-Pheny 1		I			S	0
-Phenyl	I	3-COCH ₃ -Pheny	1	I			S	0
-Pheny 1	±	3-COCF ₃ -Pheny	7	I			S	0
)-Phenyl	I	1-Naphthyl		I			S	0
)-Phenyl	Ŧ	2-Naphthyl		I			ဟ	0
,	I	Piperidino		x			S	0
	I	3-Tetrahydrofuranyl	furanyl	I			S	0
	I	4-Tetrahydropyranyl	pyranyl	I			S	0
	I	2-Thiazolyl		I			S	0
	I	5-CH ₃ -2-Thiazolyl	zolyl	I			S	0
	I	4-CH ₃ -5-C00H-2-Thiazolyl	-2-Thiazolyl	I			S	0
	I	Methyl		I			S	0
	· I	Ethyl		I			S	0
	=	n-Propyl		I			S	0
	=	iso-Propyl		I			S	0
	.	n-Butyl		=			S	0
	I	iso-Butylyl		I			S	0
	Methy1	1 sekButyl		I			S	0

50 55	45	40	35	30	25	20	15	10	5	
					•				>	>
R1		R3	R4		RS				<	_
					:				U	c
iso-Propy]		Methyl	n-Pentyl		=				י פ	,
teo-Brond		Methyl	2-Pentyl		I				v	0
to propil		Mothyl	3-Pentyl		I				S	0
1so-Propy I		Methy!			1	1			S	0
iso-Propy!		Metnyl	ח-חבא) ו		: 3				S	0
iso-Propyl		Methyl	2-Hexyl		c :				. v.	
iso-Propyl		Methyl	3-Hexyl		E '					
Chlor		I	Methyl		Ž	-N=C(CH ₃) ₂			n	.
10142		=	Ethyl		ř	-:N=C (CH3) 2			S	0
	·	: =	n-Propvl		2	-N=C(CH ₃) ₂			s	0
Culor		; 2	iso-Pronvl	٠	7	-N=C(CH3)2			S	0
Chlor		E 3	יייייייייייייייייייייייייייייייייייייי		7	-N=C(CH3)2			S	0
Chlor		= 3	iso-Butvl		7	-N=C(CH ₃) ₂			s	0
Chlor		E :	130-bacy i		7	-N=C (CH ₂) ,			တ	0
Methyl		E :	Sekbury:		: 2	N=C(CH3) 2			S	0
Methyl		I	n-Penty I			-c(cm3)2-			V.	c
Methyl		I	2-Pentyl		F	-N=C(CH3)2			, (, (
Methyl		I	3-Pentyl		7	-N=C(CH3)2			n ·	5 (
Methyl		Ŧ	n-Hexyl		7	-N=C(CH ₃) ₂			S	0
Mothy!		Ŧ	2-Hexyl		7	-N=C(CH ₃) ₂			S	0
מפרוול נייים בייים		.	3-Hexv]		7	-N=C(CH ₃) ₂			S	0
150-F1 opy 1		: 3	2-Methvl-2-pentvl	, ,	Ī	-N=C(CH ₃) ₂			S	0
1so-Propy 1		: :	omylacad of one	, q	-	-N=C(CH1),			s	0
iso-Propyl		I	cyclo-rroplymerny	1 6117		2 (5 m2) 5 m			v.	c
iso-Propy1		I	cyclo-Butyl		โ	-(cn3)2 -(cn3)2			, u	, (
iso-Propy]		=	cyclo-Pentyl		ī	-N=C(CH3)2			n (,
isa-Propyl		I	cyclo-Hexyl		Ť	-N=C(CH3)2			S)	0
cyclo-Propyl		=	1-Methylcyclohexyl	exyl	Ť	-N=C (CH3) 2			S	0

R4 3-Trifluormethylcyclohexyl
Allyl 1-Buten-3-yl
Crotyl
Propargyl 1-Butin-3-yl
3-Methyl-1-butin-3-yl
2-Pentin-4-yl
Benzyl
2-Frieny (ethy) (2-Nethy)
2-Chlorethyl
2-Methoxyethy
2-(n, N-Dimetny Lamino) ethy Pheny
2-CH ₃ -Phenyl
4-CH ₃ -Pheny l
2, 4-(CH ₃ , CH ₃)-Phenyl
2, 3, 5- (CH ₃ , CH ₃ , CH ₃) -Pheny l
3-CF ₃ -Pheny
3-F-Phenyl
2-Cl-Phenyl
4-C1-Phenyl
2, 4–(F,F)-Phenyl
2, 3, 5-(cl, cl, cl)-Phenyl

55	50	45	40 .	3 5	25 30	20	15	10	5	
R1			R 3	₽. •		RS			×	>
,			:	•					•	•
4-Cl-Phenoxy	-		I	7-CN-Pineny I		-N=C(CH3)2			n	>
4-C1-Phenoxy			I	2-OCH ₃ -Phenyl		-N=C (CH3) 2			S	0
4-Cl-Phenox	. >-		±	2, 3-(OCH ₃ , OCH ₃)-Phenyl)-Phenyl	-N=C (CH3) 2			S	0
4-C1-Phenoxy	-		I	3, 4, 5- (OCH ₃ , OC	3, 4, 5-(0CH3, 0CH3, 0CH3)-Phenyl	-N=C (CH3) 2			S	0
Phenylthio			Ŧ	3-OCF ₃ -Phenyl		-N=C (CH3) 2			S	0
Phenylthio			I	4-OCF ₂ CHF ₂ -Phenyl	ny l	-N=C(CH ₃) ₂			S	0
Phenylthio			I	2-SCH ₃ -Pheny1		-N=C (CH3) 2			S	0
Phenylthio			×	2, 4-(SCH ₃ , SCH ₃)-Pheny)-Phenyl	-N=C (CH ₃) ₂			S	0
Phenylthio			Ŧ	2-SCF ₃ -Phenyl		-N=C (CH ₃) ₂			S	0
Phenylthio			I	4-NO ₂ -Pheny1		-N=C (CH ₃) ₂			s	0
2, 4-(C1, C1)	-Pheny l		I	2, 4-(NO ₂ , NO ₂)-Phenyl	Phenyl	-N=C (CH3) 2			s	0
2, 4-(c1, c1)	-Phenyl		I	2-CHO-Pheny1		-N=C (CH3) 2			တ	0
2, 4-(C1, C1)	-Pheny1		I	3-COCH ₃ -Phenyl		-N=C (CH ₃) ₂			S	0
2, 4-(01,01)	-Phenyl		Ĭ	3-COCF ₃ -Phenyl		-N=C (CH ₃) ₂			S	0
2, 4-(C1, C1)-Phenyl	-Phenyl		I	1-Naphthyl		-N=C (CH ₃) ₂			S	0
2, 4-(C1, C1)	-Phenyl		I	2-Naphthyl		-N=C (CH3) 2			လ	0
2-Thienyl	•		I	Piperidinyl		-N=C (CH3) 2			S	0
2-Thienyl			I	3-Tetrahydrofuranyl	ranyl	-N=C (CH3) 2			S	0
2-Thienyl			I	4-Tetrahydropyranyl	ranyl	-N=C (CH ₃) ₂			s	0
2-Thienyl			I	2-Thiazolyl		-N=C (CH3) 2			S	0
2-Thienyl			I	5-CH ₃ -2-Thiazolyl	lyl	-N=C (CH3) 2			S	0
2-Thienyl			I	4-CH ₃ -5-C00H-2-Thiazoly ¹	-Thiazolyl	-N=C (CH3) 2			s	0
3-Pyridyl			I	Methyl		-N=C (CH ₃) ₂			s	0
3-Pyridyl			I	Ethyl		-N=C(CH ₃) ₂			S	0
3-Pyridyl			I	n-Propyl		-N=C(CH ₃) ₂			S	0

5	λ×	c		o s	o s	o s	o s	o s	0 S	0 S	0 S	o s	S	s	s	S	S	S	S	s,	, u	n	S S	S	s	S	S	s s
10																												
15													-Pheny 1								•)-Phenyl					
20	RS		-N=C(CH3)2	-N=C (CH3) 2	-N=C(CH ₃) ₂	-N=C (CH3) 2	-N=C (CH3) 2	-N=C (CH3) 2	-N=C (CH3) 2	2, 4-(c1, c1)-Phenyl	2-Pyridyl	Ethyl	iso-Propyl	Butyl	tertButyl	Phenvl	Lucado 1	4-r-rneny L	3-CF 3-Pheny I	2, 4-(C1, C1)-Phenyl	2-Pyridyl	Methyl	Ethyl	iso-Propyl	Butyl			
25																												
30														_							_	_	_		-		· <u></u>	_
35	R4		iso-Propyl	n-Butyl	iso-Butyl	sekButvl	n-Pentvl	2-Pentyl	3-Pentyl					tertButy	tertButy	tertButv	tert -Butv	tort -Butv	tone	tertbuty	tertButy	tertButy]	tertButy	tertButy	tertButv	tertButv	tertButy	tertButyl
40	R3		I	I	I	Methyl	Mothv	Methyl	Methyl	Methyl	Mothv	Methyl		: =	: #	: I	: =	= =	c :	E	I	I	=	Ξ	: =	: I	: I	I
45		٠														•												
50			3-Pyridyl	3-Puridu]	יולאי.	J-ryi lay i	ropy	Iso-Propy I	lso-riopy:	Sd-rr opy	So-Fropy I	So-Propy	ISO-Fropy (16.	1 Å1		1 ć r	ا لار	ly I	ارار	iso-Phenyl	So-Pheny	so-Pronvl	- CP-1	Iso-riopy:	So-Propy	So-Propy 1	iso-riopyi cyclo-Propyl
55	18		3-PVI	3-0-6			150	-051	001	000	-051	150-	-051	Metny	Metriy	Metny	Metnyl	Metny	Methyl	Methyl	i so.	400	2		00.	120	150	cyc

55	50	45	40	35	30	25	20	15	10	5	
R1			R3	R4			RS			×	>
cyclo-Propyl	۱,	_	Ŧ	tertButyl			tertButyl			တ	S
cvclo-Prop		_	=	tertButyl			Pheny l			S	S
cvclo-Propyl	, ₁	_	I	tertButyl			4-F-Phenyl			S	S
cyclo-Propyl	, L	-	I	tertButyl			3-CF ₃ -Phenyl		•	ဟ	S
cyclo-Propyl		_	I	tertButyl			2, 4-(Cl, Cl)-Phenyl	Phenyl		S	S
cyclo-Propyl	. [×	_	I	tertButyl			2-Pyridyl			S	ဟ
Allyl	•	_	I	tertButyl			Methyl			ဟ	S
Ally		_	I	tertButyl			Ethyl			ဟ	ဟ
Ally			I	tertButyl		•	iso-Propyl			ဟ	S
Allyl		_	I	tertButyl			Butyl			တ	S
Allyl		_	I	tertButyl			tertButyl			တ	S
Allyl			I	tertButyl			Phenyl			S	S
Methoxy			Ŧ	tertButyl	•		Methyl			κi	s
Methoxy			I	tertButyl			Ethyl			S	s
Methoxy			I	tertButyl			iso-Propyl			S	σ _.
Methoxy			×	tertButyl			Butyl			S	s
Methoxy	٠		I	tertButyl			tertButyl			S	S
Methoxy			I	tertButyl			Phenyl			S	s
Methoxy			I	tertButyl			4-F-Phenyl			S	s
4-C1-Phenoxy	λ×		I	tertButyl			3-CF ₃ -Phenyl			S	s
4-C1-Phenoxy	λχ		I	tertButyl			2, 4-(Cl, Cl)-Phenyl	Phenyl		S	\$
4-C1-Phenoxy	×κ		I	tertButyl			2-Pyridyl			S	s
4-C1-Phenoxy	λ×c		I	tertButyl			Methyl			S	S
4-C1-Phenoxy	oxy		Ŧ	tertButyl			Ethyl			S	s
4-C1-Phenoxy	·		I	tertButyl			iso-Propyl			S	S

50	40 E	35 *	30	25	20 10	15	10	5 ×	> 0
	x :	tertButyl			Butyl tost _Butul			s s	s s
2, 4-(cl, cl)-Phenyl	I	tertButyl			tertbuty:			, <i>u</i>	, <i>u</i>
2, 4-(C1, C1)-Phenyl	I	tertButyl			Pheny 1			n (n (
4-(C1, C1)-Phenyl	I	tertButyl			4-F-Phenyl			s ·	vo •
. 4-(C1, C1)-Phenyl	Ŧ	tertButyl			3-CF ₃ -Phenyl			ဟ	ဟ
, 4-(C1, C1)-Phenyl	I	tertButyl			2, 4-(c1, c1)-Phenyl	henyl		S	S
2, 4-(Cl, Cl)-Phenyl	Ŧ	tertButyl			2-Pyridyl			S	S
2, 4-(Cl, Cl)-Phenyl	I	tertButyl			Ethyl			S	S
	I	tertButyl			iso-Propyl			S	S
•	I	tertButyl			Butyl			S	S
	I	tertButyl			tertButyl			တ	S
	I	tertButyl			Phenyl			w.	S
	Ŧ	tertButyl			4-f-Phenyl			ဟ	S
	I	tertButyl			3-CF ₃ -Phenyl			S	S
	I	cyclo-Propyl			2, 4-(Cl, Cl)-Phenyl	henyl		S	s
	I	cyclo-Propyl			2-Pyridyl			S	S
	I	cyclo-Propyl			Ethyl			S	S
	I	cyclo-Propyl			iso-Propyl			S	S
	I	cyclo-Propyl			Butyl			S	S
	I	cyclo-Propyl			tertButyl			S	S
	I	cyclo-Propyl			Phenyl			S	s
	I	cyclo-Propyl			4-F-Phenyl			S	s
	===	cvclo-Propyl			3-CF ₃ -Phenyl			S	s
	: I	cyclo-Propyl			2, 4-(Cl, Cl)-Phenyl	henyl		S	S
	I	cyclo-Propyl			2-Pyridyl			S	S
	;								

50 55	45	40	35	30	25	20	15	10	5	
R1		R3	R4			R5			×	>
									U	U
iso-Propyl		I	cyclo-Propyl			Metnyl			,	י ר
iso-Propy]		I	cyclo-Propyl			Ethyl			S	S
iso-Propy]		I	cyclo-Propyl			iso-Propyl			S	S
		: 3	cvelo-Propvl			Butyl			S	s
cyclo-rropy i		: :	- fact of other			tertButv]			S	s
cyclo-Propy!		E :	cyclo-riopy:			Ohenvl			S	S
cyclo-Propyl		E	cyclo-Propyl			rnengi				· u
cyclo-Propyl		x	cyclo-Propyl			4-F-Phenyl			n (n (
cvclo-Propyl		I	cyclo-Propyl			3-CF ₃ -Phenyl			'n	en i
cvclo-Propvl		I	cyclo-Propyl			2, 4-(c1, c1)-Phenyl	henyl		S	ဟ
cyclo riopy:		I	cyclo-Propyl			2-Pyridyl			S	S
41141		I	cvclo-Propyl			Methyl			S	S
A1191		: =	cyclo-Propyl			Ethyl	٠		S	S
A11v1		.	cyclo-Propyl			iso-Propyl			S	S
A1131		: =	cvclo-Propyl			Butyl			S	S
Allyl		: =	cyclo-Propyl			tertButyl			s	S
A11,71		: =	cvclo-Propvl			Pheny 1			s	s
Mothoru		: I	cvclo-Propyl			Methyl			S	S
Mechoxy		: I	cvclo-Propyl			Ethyl			S	S
Me chear		. I	cvclo-Propvl			iso-Propyl			S	S
Methoxy		: 3	cyclo-Propyl			Butyl			S	S
Methoxy		=				+or+ -butv1			v	v,
Methoxy		x	cyclo-Propyl			rer touty 1			, (, (
Methoxv		I	cyclo-Propyl			Phenyl			n	n
Methoxy		I	cyclo-Propyl			4-F-Phenyl			S	S
4-C1-Phenoxv		I	cyclo-Propyl			3-CF ₃ -Phenyl			S	S
Coupur 15 +		Ι	cyclo-Propyl			2, 4-(cl, cl)-Phenyl	Phenyl		S	S
4-C1-F116110Ay		:	*** ****							

5 × 10 15		ridyl S S	S S	s s	iso-Propyl S S	S S	tertButyl S S	ک ک	4-F-Phenyl S S	3-CF ₃ -Phenyl S S	2, 4-(C1, C1)-Phenyl S S	2-Pyridyl S S	S S	iso-Propyl S S	v	tertButyl S S	ν	•	enyl	enyl S	enyl S S S S S S S S S S S S S S S S S S S	enyl S Phenyl S oxy-2-butinyl O	enyl S Phenyl S oxy-2-butinyl 0 H5)2 0	enyl S Phenyl S oxy-2-butinyl 0 H5)2 0 clo-C ₃ H5) ₂ 0	enyl Phenyl 3xy-2-butinyl 65 15 15 15 16 16 17 17 18 18 18 18 19 19 19 19 19 19	enyl S S S S S S S S S S S S S S S S S S S	enyl S S S S S S S S S S S S S S S S S S S
ະດ 25		2-Pyridyl	Methyl	Ethyl	iso-Pr	Butyl	tert.	Phenyl	4-F-P	3-CF 3	2, 4-(2-Pyr	Ethyl	iso-P	Butyl	tert.	Phenyl	•	, d-4-4	4-F-P 3-CF ₃	4-F-P 3-CF ₃ 4-Hyd	4-F-P 3-CF3 4-Hyd N=C(C	4-F-P 3-CF3 4-Hyd N=C(C N=C(C	4-F-P 3-CF ₃ 4-Hyd N=C(C N=C(C	4-F-P 3-CF3 4-Hyd N=C(C N=C(C Cyclc	4-F-P 3-CF3 4-Hyd N=C(C N=C(C CCC Cyclc	4-F-P 3-CF3 4-Hyd 4-Hyd N=C(C N=C(C CCC Cyclc Cyclc Cyclc
35		cyclo-Propyl	cvclo-Propyl	cvclo-Propyl	cvclo-Propvl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl		cyclo-Propyl	cyclo-Propyl cyclo-Propyl	cyclo-Propyl cyclo-Propyl tertButyl	cyclo-Propyl cyclo-Propyl tertButyl	cyclo-Propyl cyclo-Propyl tertButyl tertButyl	cyclo-Propyl cyclo-Propyl tertButyl tertButyl tertButyl	cyclo-Propyl cyclo-Propyl tertButyl tertButyl tertButyl tertButyl	cyclo-Propyl cyclo-Propyl tertButyl tertButyl tertButyl tertButyl tertButyl	cyclo-Propyl cyclo-Propyl tertButyl tertButyl tertButyl tertButyl tertButyl
40	1	Ŧ	.	: I	: I	: =	: =	=	I	I	=	Ŧ	I	Ŧ	Ė	=	=		I	I I	= = =	IIII	= = = =	= = = = =			:
45							env]	env l	env l	lenv1	nenv l	heny l	neny 1	•													
50	R1	/Cl-Dhenoxv	4-C1-Phonoxy	4-ci-rienoxy	4-CI-Fuenoxy	4-C1-Phenoxy	4-CI-riledoxy	2, 4-(C1, C1) -Ph	2,4-(C1,C1)-Ph	2,4-(C1 C1)-Ph	2,4-(C1,C1)-Ph	2,4 (C1,C1) -Phenyl	2, 4-(C1, C1)-Ph	2-Thienvl	2-Thienvl	2-inieny: 2-Thienyl	3-Puridul		3-Pvridvl	3-Pyridyl	3-Pyridyl 3-Pyridyl	3-Pyridyl 3-Pyridyl Chlor	3-Pyridyl 3-Pyridyl Chlor Chlor	3-Pyridyl 3-Pyridyl Chlor Chlor Chlor	3-Pyridyl 3-Pyridyl Chlor Chlor Chlor Chlor	3-Pyridyl 3-Pyridyl Chlor Chlor Chlor Chlor Chlor	3-Pyridyl 3-Pyridyl Chlor Chlor Chlor Chlor Chlor Chlor

5 <i>0</i>	4 5 50	40	35	30	25	20	15	10	5	
R1		R3	R4			R5			×	>
Kothul		3	tertButyl			2-Furyl-methanimino	animino		0	0
Methy!		: =	tertButyl			CH ₂ CH ₂ N(CH ₃) ₂	7		0	0
Methy!		: =	tertButyl			CH2CH2N+(CH3)3I-	1) 31_		0	0
Methyl		I	tertButyl			CH ₂ CF ₃			0	0
Methy]		I	tertButyl			CH2CH2C1			0	0
Methyl		I	tertButyl			CH2CH2CN			0	0
iso-Propvl		I	tertButyl			CH ₂ CCl ₃			0	0
iso-propyl		I	tertButyl			СН2СН2Si (СН3) 3	3)3		0	0
iso-propy]		I	tertButyl			CH2CH20-N=C(CH3)	(CH ₃) ₂		0	0
iso-propy)		Ŧ	tertButyl			CH2PO(OC2H5)2	12		0	0
iso-propy]		I	tertButyl			сн(сн3)сн(осн3)	:H3)2		0	0
iso-propy!		I	tertButyl			CH2-CON(C2H5)2	5)2		0	0
iso-propy]		I	tertButyl			Benzyl			0	0
reclo-Probe	-	I	tertButyl			2, 4-(C1, C1)-Benzyl	-Benzyl		0	0
cvr10-Propv		x	tertButyl			3-Pyridyl-methyl	ethyl		0	0
cyclo-Pronv		Ŧ	tertButyl			2-Thienyl-methyl	ethyl		0	0
cyclo-Propy		I	tertButyl			2-Tetrahydrofuranyl-methyl	ofuranyl-me	thyl	0	0
cvclo-Propy	ي ،	I	tertButyl			2-Furanyl-methyl	ethyl		0	0
CVC 10-PropV	_	I	tertButyl			2-Pyridyl-methyl	ethyl		0	0
cyclo-Propvl	-	I	tertButyl			Pheny1			0	0
A)141		I	tertButyl			4-F-Phenyl			0	0
יוני		I	tertButyl			4-Trifluormethylphenyl	ethylphenyl		0	0
A1131		: :	tertButyl			2-NO ₂ -4-F-Pheny	heny l		0	0
1171		: =	tertButyl			3, 5-(CF ₃ , CF ₃)-Phenyl	3)-Phenyl		0	0
ולווא		I	tertButyl			4-0CH ₃ -Phenyl	yl ·		0	0
16118		;								

5	>	0	0	0		> 0	o (0 (o '	0	0	0	0	0	c	.	٠. د	0	0	0	0	0	c	.	>	0	0	0	0	1
J	×	0	0	0	• •	> (-	0 (>	0	0	0	0	0	<	•	-	0	0	0	0	0	<	> (>	0	0	0	0)
10																				ethyl		hvl		ше спу і						
15		ny l	-Phenyl	tropyranyl	. Charles	2-Tetrahydropyranyl	iazolyl							_		1 k	ı A	ylmethyl	hyl	2-Methooxy-ethoxy-methyl	methvl	// / / / / / / / / / / / / / / / / / /		(4-Methoxybenzoy!)-methy!	domethy!	iomethyl	2-Thiomethyl-ethyl	200CH 3	[ne	
20	R5	4-ocF ₁ -Phenyl	4-NHCOCH 3-Phenyl	2_Totrohudronuranul	ל - וברו מוולי	2-Tetrahy	1-Benzotriazolyl	Methyl	Ethyl	n-Propyl	iso-Propyl	n-Butyl	iso-Butvl	Sok -Rutvl	מבעי מפני	tertButyl	cyclo-Hexyl	Cyclopropy Imethyl	Ethoxymethy	2-Methoox	Renzvloxvmethvl	funifation		(4-Methox	Phthalimidomethy!	Methylthiomethyl	2-Thiomet	CH/CeHe)COCH3	1+01,0040	ruenyteenyt
25																														
30																				_		.	_			-	_			=
35	R4	17+10-	tert butyl	tertbuty	tertButy	tertButyl	tertButyl	tertButyl	tertButyl	tertButy	tert -Butv	+or - buty	tert. buty	tertbuty	tertButy	tertButyl	tertButy	tertButy	tertButy	+o+ -b=+x	tel to buch	tertButy	tertButyl	tertButyl	tertButyl	tertButy	tont -Butv	יפור פערן	tertbuty	tertButyl
40	R3	3	c :	I	I	I	I	Ŧ	Ξ	=	: 3	= =	E :	E	I	I	I	×	: =	: :	E :	I	r	I	I	I	: :	E :	I	Ŧ
45																														
50				<u>-</u>	nyl	ny l	ָּער. אַנוּ	i ny l	[> [1 m 1	iny t	ınyı	Methoxy	Methoxy	Methoxy	Methoxy	Methoxv	Mothoxy	toky Toky	Methoxy	4-C1-Phenoxy	4-C1-Phenoxy	4-C1-Phenoxy	4-C1-Phenoxy	S Toppool	t ruenay)	4-CI-Fuenoxy	4-C1-Phenoxy	Phenylthio	Phenylthio
55	<u>.</u>	;	Ally	Allyl	Ethiny	Ethiny	Ethiny	Ethiny	Ethiny		Echiny	Ethiny	Met	Met	Met	Met	Mot	2	E	Met	7-4	7-4)-4	7-77	,)- ₁		ŧ)- 	Ę	Ę

Phenylthio	50 55	45	40	35	30	25	20	15	10	5	
H tertButyl H cyclo-Propyl	R1	R3	R 4				RS			×	>
H tertButyl H cyclo-Propyl	Phenvlthio	I	tert.	-Butyl		4	-F-Phenylethy			0	0
H tertButyl H cyclo-Propyl	Phenylthio	I	tert.	-Butyl		a .	hthalimido			0	0
H. tertButyl H cyclo-Propyl	Phenylthio	Ŧ	tert.	-Butyl		-	etrahydrophth	al imi do		0	0
H tertButyl H cyclo-Propyl	Pheny 1 thio	Ŧ	tert	-Butyl		2.	laleinimido			0	0
H tertButyl H cyclo-Propyl	Phenylthio	=	tert.	-Butyl		S	uccinimido			0	0
H tertButyl H cyclo-Propyl	2,4-(C1,C1)-Phenyl	I	tert.	-Butyl		-	iperidino			0	0
H tertButyl H cyclo-Propyl	2, 4-(C1, C1)-Phenyl	I	tert.	-Butyl		_	+:-			0	0
H tertButyl H cyclo-Propyl	2, 4-(C1, C1)-Phenyl	Σ	tert.	-Butyl		~	1a ⁺			0	0
H tertButyl H tertButyl H tertButyl H tertButyl H tertButyl H tertButyl H cyclo-Propyl	2, 4-(C1, C1)-Phenyl	I	tert.	-Butyl		_	t,			0	0
H tertButyl H tertButyl H tertButyl H tertButyl H tertButyl H cyclo-Propyl	2.4-(Cl.Cl)-Phenyl	Ξ	tert.	-Butyl		~	H4+			0	0
H tertButyl H tertButyl H tertButyl H tertButyl H tertButyl H cyclo-Propyl	2, 4-(Cl, Cl)-Phenyl	I	tert.	-Butyl		J	oiisopropylamm	non i um		0	0
H tertButyl H tertButyl H tertButyl H tertButyl H cyclo-Propyl	2, 4-(C1, C1)-Phenyl	Ξ	tert.	-Butyl			2-Hydroxyethy]	-ammonium		0	0
H tertButyl H tertButyl H tertButyl H cyclo-Propyl	2-Thienyl	I	tert.	-Butyl		•	ıllyl			0	0
enyl enyl H tertButyl enyl H cyclo-Propyl	2-Thienyl	I	tert.	-Butyl		_	Aethallyl			0	0
enyl H tertButyl H cyclo-Propyl	2-Thienyl	I	tert.	-Butyl		••	2-chlorallyl			0	o .
enyl H	2-Thienyl	I	tert.	-Butyl			ropargyl			0	0
H cyclo-Propyl	2-Thienvl	I	tert.	-Butyl		•••	3-Iodpropargy]	_		0	0
H cyclo-Propyl	Chlor	I	cyclo	-Propyl		7	4-Hydroxy-2-bı	utinyl		0	0
H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl	Chlor	Ξ	cyclo	-Propyl		_	N=C(C ₂ H ₅) ₂			0	0
H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl	Chlor	I	cyclo	-Propyl			N=C(cyclo-C ₃ H;	5)2		0	0
H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl	Chlor	Ξ	cyclo	-Propy1			2-Butanimino			0	0
H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl	Chlor	I	cyclo	-Propy1			Cyclohexanimir	01		0	0
H cyclo-Propyl H cyclo-Propyl	Chlor	Ι	cyclo	-Propyl		_	Cyclooctanimi	10		0	0
H cyclo-Propyl	Methyl	I	cyclo	-Propyl			N=CH-C ₆ H ₅			0	0
	Methyl	I	cyclo	-Propyl			2-Furyl-metha⊓	nimino		0	0

55	4 5 50	40	35	30	25	20	15	10	5	
18		æ 3	4 .			R5			×	>
Methyl		I	cyclo-Propyl			CH ₂ CH ₂ N(CH ₃) ₂) 2		0	0
Methyl		I	cyclo-Propyl			CH ₂ CH ₂ N ⁺ (CH ₃) ₃ I	3) 31-		0	0
Methy!		I	cyclo-Propyl			CH ₂ CF ₃			0	0
Methyl		I	cyclo-Propyl			CH ₂ CH ₂ C1			0	0
Methyl		I	cyclo-Propyl			CH ₂ CH ₂ CN			0	0
iso-Propvi		I	cyclo-Propyl			CH ₂ CC1 ₃			0	0
iso-Probvi		I	cyclo-Propyl			CH ₂ CH ₂ Si (CH ₃) ₃	3)3		0	0
iso-Probyl		×	cyclo-Propyl			CH2CH20-N=C(CH3)2	(CH ₃) ₂		0	0
iso-Propy		I	cyclo-Propyl			CH2PO(0C2H5)2	.)2		0	0
iso-Propvl		I	cyclo-Propyl			СН(СН3)СН(ОСН3)2	CH3) 2		0	0
iso-Propyl		I	cyclo-Propyl			CH2-CON(C2H5)2	15)2		0	0
iso-Propvl		I	cyclo-Propyl			Benzyl			0	0
cvclo-Propvl	1^(I	cyclo-Propyl			2, 4-(C1, C1)-Benzy	-Benzyl		0	0
cvclo-Propv	1 > 0	I	cyclo-Propyl			3-Pyridyl-methyl	nethyl		0	0
cvclo-Prop	1 ^6	I	cyclo-Propyl			2-Thienyl-methyl	nethyl		0	0
cyclo-Propyl		I	cyclo-Propyl			2-Tetrahydr	2-Tetrahydrofuranyl-methyl	y J	0	0
cvclo-Prog	5. 0.v1	I	cyclo-Propyl			2-Furanyl-methyl	nethy1		0	0
cvclo-Propyl	pyl	I	cyclo-Propyl			2-Pyridyl-methyl	nethyl		0	0
cvclo-Propv	[^0	Ξ	cyclo-Propyl			Phenyl			0	0
41 1v1	2	I	cyclo-Propyl			4-F-Phenyl			0	0
١٠:١٨ م		I	cyclo-Propyl			4-Trifluor	4-Trifluormethylphenyl		0	0
A11v1		I	cyclo-Propyl	٠		2-NO ₂ -4-F-Pheny	Phenyl		0	0
A11v1		I	cyclo-Propyl			3, 5-(CF ₃ , CF ₃)-Phenyl	F ₃)-Phenyl		0	0
A11v1		I	cyclo-Propyl			4-0CH ₃ -Phenyl	nyl		0	0
Allyl		I	cyclo-Propyl			4-OCF ₃ -Pheny l	ny l		0	0

														_	_	_	_	_	_	_	_	_	_	_	•	•	•	
5	>	0	0	0	0	· C	•	•)	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	
	×	0	0	0	0	• •	•	-	o	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10																		ethyl		ethyl)-methyl							
15		2-Phenvl	2-Tetrahydropyranyl	2-Tetrahydropyranyl	riazolvi	. (1048)				yl			yl	ıtyl	xyl	Cyclopropylmethyl	thyl	2-Methoxy-ethoxy-methyl	ymethyl	(4-Brombenzoxyl)-methyl	(4-Methoxybenzoxyl)-methyl	Phthalimidomethyl	Methylthiomethyl	2-Thiomethyl-ethyl	С00СН3	thyl	4-F-Phenylethyl	
20	RS	4-NHCOCH 2-Phenv I	2-Tetrah	2-Tetrah	1-Renzotriazolvl	I-Bell Zug	Metny	Ethyl	n-Propyl	iso-Propyl	n-Butyl	iso-Butyl	sekButyl	tertButyl	cyclo-Hexyl	Cyclopro	Ethoxymethyl	2-Methox	Benzyloxymethyl	(4-Bromp	(4-Metho	Phthalin	Methy1th	2-Thiome	сн(сен5)соосн3	Phenylethyl	4-F-Pher	
25																												
30		-				-		۲,	y.	۲	. L	. <u>-</u>	. L	ly	l k	, l	y.	ıyı	ly.	Jyl	, y 1	Iyl		· –	. =	. =		_
35	R4			cyclo-riopy	cyclo-riopy	cyclo-Propy	cyclo-Propyl	cyclo-Propy	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cvclo-Propyl	cvclo-Propyl	cvclo-Probvl	Cvc 10-Propv	cvclo-Propvl	cyclo-Propyl	•								
40	R3		= =	E 3	E :	E	I	I	I	I	I	=	I	I	Ξ	Ŧ	I	x	I	I	Ι	: :	1	: =	: I	: 1	: =	•
45																					-							
50			Allyl	Ethiny!	Ethinyl	Ethinyl	Ethinyl	Ethinyl	Ethinyl	Ethinyl	Methoxv	Methoxy	Methoxy	Methoxy	Methoxy	Methoxy	Methoxy	A-CILOX) 4-CI-Phenoxy	4-C1-Phenoxv	4-C1-Phenoxy	tenentist.	4-C1-Fnenoxy 4-C1-Phenoxy	4-C1 FECTIONS	ol phonoxy	4-C1-Filenday	Pnenyltnio Pterilthio	Prieny Linio	neny tente
55	R1		¥	E C	Ħ	H	Ħ	m II	H T	H T	3	2 3	3	. S	. 3	1 2	1	, 4	4	, 4	r <	•	t <	•	+ 7	<u> </u>	<u>.</u> ē	-

H cyclo-Propyl H tertButyl				
	RS		×	>
	Ph	Phthalimido	0	0
	Te	Tetrahydrophthalimido	0	0
	æ	Maleinimido	0	0
	ΝS	Succinimido	0	0
	i.	Piperidino	0	0
	ti,	+	0	0
	Na+	+	0	0
	+		0	0
	7HN	+ *	0	0
	io	Diisopropylammonium	0	0
	2-	2-Hydroxyethyl-ammonium	0	0
	Al	Allyl	0	0
	X e	Methallyl	0	0
	2-	2-chlorallyl	0	0
	Pr	Propargyl	0	0
	- k	3-Iodpropargyl	0	0
	~	-N=C (CH ₃) ₂	0	0
	F	-N=C(CH ₃) ₂	0	0
• • • •	-	-N=C(CH ₃) ₂	0	0
•	1	-N=C(CH ₃) ₂	0	0
	¥1	-N=C (CH ₃) ₂	0	0
	Ī	-N=C(CH ₃) ₂	0	0
•	1	-N=C (CH ₃) ₂	0	0
•	1	-N=C (CH ₃) ₂	0	0
H tertButy]	ī	-N=C(CH ₃) ₂	0	0

55	4 5	40	40	35	30	25	20	15	10	5	
R1		R3	84				R5			×	>
sok -Rutv]			tertButy	ıtyl		• •	-N=C (CH ₃) ₂			0	0
tert -Butv		.	tertButy	ıtyl		•	-N=C (CH3) 2			0	0
cvelo-Propvl		I	tertButy	ıtyl		•	-N=C (CH3) 2			0	0
cyclo-Butyl	, -	Ŧ	tertButy	ıtyl		•	-N=C (CH3) 2			0	0
cvclo-Pentyl	, A1	I	tertButy	ıtyl		•	-N=C (CH3) 2			0	0
CVC10-Hexy1	, <u>-</u>	I	tertButy	ıtyl		•	-N=C (CH3) 2			0	0
cvclo-Hepty	14:	I	tertButy	utyl		•	-N=C (CH ₃) ₂			0	0
cyclo-Octyl	, -	I	tertButy	utyl		•	-N=C (CH3) 2			0	0
1-Methylcyclopropyl	clopropyl	I	tertButy	utyl		•	-N=C (CH3) 2			0	0
Trifluormethyl	thyl	I	tertButy	utyl		•	-N=C (CH3) 2			0	0
Chlordifluormethyl	ormethyl	I	tertButy	utyl		•	-N=C (CH3) 2			0	0
Pentafluorethyl	ethyl	I	tertButy	utyl		•	-N=C (CH3) 2			0	0
i so-Propoxy	· >	I	tertButy	utyl		·	-N=C (CH3) 2			0	0
Methoxymethyl	thyl	I	tertButy	utyl			-N=C (CH3) 2			0	0
1-Methylme	1-Methylmethoxymethyl	I	tertButy	utyl			-N=C (CH3) 2			0	0
1-Methylme	1-Methylmethoxyethyl	I	tertButy	utyl			-N=C(CH ₃) ₂			0	0
Ethoxymethyl	hyl	I	tertButy	utyl			-N=C (CH3) 2			0	0
Vinvl	•	I	tertButy	utyl			-N=C (CH ₃) ₂			0	0
Allvl		I	tertButy	utyl			-N=C (CH3) 2			0	0
Methallvl		x	tertButy	utyl			-N=C (CH3) 2			0	0
Crotyl		I	tertButy	utyl			-N=C (CH3) 2			0	0
Ethinvl		=	tertButy	utyl			-N=C (CH3) 2			0	0
Proparavl		I	tertButy	utyl			-N=C (CH3) 2			0	0
Phenylethinyl	inyl	Ξ	tertButyl	utyl			-N=C (CH ₃) ₂			0	0
Methoxy	,	I	tertButyl	utyl			-N=C(CH ₃) ₂			0	0

5	× ×	c		0	0	0	0	c				0	0	0	0	0	0					0	0	0	0			0	0	0	
10																															
15			7	2	7	, -	, ,	•	7	7	2	2	2	2	٠ ,		7 (2 (7.5) 2) 2) 2) 2) 2		7	.) 2	2 (1	1) 2		7
20	R5		-N=C(CH3)	-N=C (CH3)	-N=C (CH ₃)	-N=C (CH ₂)	(EH2)2-N	(10)0-11	-N=C (CH3)	-N=C(CH3)	-N=C (CH3) 2	-N=C (CH3)	-N=C (CH3)	-N=C (CH3)	-N=C (CH ₃)	CHU JENT	N-C (CH3	-N=-(CH3)	-N=C (CH3)	-N=C(CH3)	-N=C (CH3) 2	-N=C (CH3)	-N=C (CH3)	-N=C (CH3)	(*HJ) J-N-	5 113 3-N-	-N=C (CH3)	-N=C (CH3)	-N=C (CH3)	r (CH2) J=N=	
25																															
30																			_	1	-		_	-		-	-	-		_ •	=
35	R 4		tertButyl	tertButyl	tort -Buty	tel trapation	tertButy	tertButyl	tertButy]	tertButy]	tertButy	tertButv]	tertButv	+ort -Butv	tent. Buty	rertbuty	tertButy	tertButy	tertButy	tertButy	tertButy	tertButy	tert -Buty	+on+ -bii+v	ובו וי-םחרא	tertButy	tertButy]	tertButv]	+or+ -Butv]	יבו ני - חמים	tertButy
40	R 3		I	I	: :	-	£	I	I	Ŧ	Ξ	=	: =	: 3	= ;	E	I	Ŧ	I	I	I	Ξ	: 3	: :	ığı	I	I	2	: :	E	I
45							hio			enoxy	•				,	y.			enyl	•				-rueny i	3, CH3)-Phen			10000	3)-riletiy t		
50			> >		IFITIUOFIRETIONY	Methylthio	Trifluormethylthio	Phenoxy	4-C1-Phenoxy	-(c1,c1)-Phe	A-CEPhenoxv	. 3 . nenenj	iny i Tetamateki	Z-F-Pneny Ltn 10	3-F-Pheny 1	4-(F, F)-Phen	cl-Phenyl	3-Cl-Phenyl	4-(C1, C1)-Ph	2-CH ₂ -Pheny	CH3 themy:	J-Cu3-ruenyi	Cn3-ruenyı	Z, 4-(CH3, CH3)-rileny i	2, 4, 6-(CH3, CH3, CH3)-Pneny I	2-CF 1-Phenyl	[viado-curo	Z-Octig timens.	4-(OCH3, OCH	4-0CF ₃ -Phenyl	4-SCH ₃ -Phenyl
55	10		1+ POX ×		ı	Met	Tri	Phe	7-7	. 4	ָרָ עָרָ קרייניייייייייייייייייייייייייייייייייי	•	Phe	7-7	3-6	2,4	7-(3-(,	7	, 0	7	+ (7,	2,	2-	, ,	7	7,	-†7	-4

55	50	45	40	3 5	30	25	20	15	10	5	
R1			R3	R4			R5			×	-
3-SCF ₃ -Phenyl	ıy 1		¥	tertButyl			-N=C (CH3) 2			0	0
2, 4-(NO ₂ , NO ₂)-Phenyl	2)-Phenyl		I	tertButyl			-N=C(CH3)2			0	0
4-NO ₂ -Phenyl	· -		=	tertButyl			-N=C (CH3) 2			0	0
2-Thienyl			Ŧ	tertButyl			-N=C(CH ₃) ₂			0	0
3-Thienyl			×	tertButyl			-N=C(CH3)2			0	0
2-Furanyl			Ŧ	tertButyl			-N=C(CH3)2			0	0
3-Furanyl			Ŧ	tertButyl			-N=C(CH ₃) ₂			0	0
2-Tetrahydrofurany	ofuranyl		×	tertButyl			-N=C(CH ₃) ₂			0	0
3-Tetrahydrofurany	rofuranyl		×	tertButyl			-N=C (CH3) 2			0	0
2-Pyridyl			I	tertButyl			-N=C(CH ₃) ₂			0	0
3-Pyridyl			Ŧ	tertButyl			-N=C (CH3) 2			0	0
4-Pyridyl	٠		×	tertButyl			-N=C(CH ₃) ₂			0	0
2-Tetrahydropyrany	ropyranyl		x	tertButyl			-N=C(CH3)2			0	0
3-Tetrahydropyrany	ropyranyl		I	tertButyl			-N=C (CH ₃) ₂			0	0
4-Tetrahydropyrany	ropyranyl		Ŧ	tertButyl			-N=C (CH ₃) ₂			0	0
·	•		Ŧ	cyclo-Propyl			-N=C (CH ₃) ₂			0	0
L			Ŧ	cyclo-Propyl			-N=C (CH3) 2			0	0
CI			I	cyclo-Propyl			-N=C (CH ₃) ₂			0	0
Methyl			I	cyclo-Propyl			-N=C (CH ₃) ₂			0	0
Ethyl		•	I	cyclo-Propyl			-N=C (CH ₃) ₂			0	0
n-Propyl			I	cyclo-Propyl			-N=C (CH3) 2			0	0
iso-Propyl			I	cyclo-Propyl			-N=C (CH ₃) ₂			0	0
n-Butyl			I	cyclo-Propyl			-N=C(CH ₃) ₂			0	0
iso-Butyl			I	cyclo-Propyl			-N=C(CH ₃) ₂			0	0
sekButyl			I	cyclo-Propyl			-N=C (CH ₃) ₂			0	0

Right Righ	55	50	45	40		35	30	25	20	15	10	5	
Harring									•			;	,
H cyclo-Propyl -N=C(CH3)2	12			R3	R4				85			~	-
H Cyclo-Propyl	r.ifluorm	ethoxv		I	cyclo-f	ropyl			-N=C (CH3) 2			0	0
H Cyclo-Propyl	dothy]thic	,		=	cyc lo-i	ropyl			-N=C(CH3)2			0	0
H cyclo-Propyl	rifluorm	ethvlthio		=	cyc lo-l	ropyl			-N=C (CH3) 2			0	0
H cyclo-Propyl	Phenoxv	•		I	cyclo-	Propyl			-N=C (CH3) 2			0	0
H cyclo-Propyl	4-C1-Phen	λ×ο		I	cyclo-	Propyl			-N=C (CH3) 2			0	0
H cyclo-Propyl -N=C(CH3)2	7 4-(C1.C	1)-Phenoxy		I	cyclo-	Propyl			-N=C(CH3)2			0	0
H cyclo-Propyl	-, · · · · · · · · · · · · · · · · · · ·	noxv		I	cyclo-	Propyl			-N=C(CH3)2			0	0
H cyclo-Propyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₂ -N=C(CH ₃) ₂ -N=C(CH ₃) ₂ H cyclo-Propyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₃ -N=C(C	Phenvl	•		I	cyclo-	Propyl			-N=C(CH3)2			0	0
H Cyclo-Propyl	2-F-Pheny	lthio		Ŧ	cyclo-	Propyl			-N=C(CH ₃) ₂			0	0
H Cyclo-Propyl	3-F-Pheny			I	cyclo-	Propy1			-N=C(CH ₃) ₂			0	0
H cyclo-Propyl	7.4-(F.F)	-Phenyl		×	cyclo-	Propyl			-N=C(CH3)2			0	0
H cyclo-Propyl Cyclo-Propyl H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl L cyclo-Propyl H cyclo-Propyl Cyclo-Propyl H cyclo-Propyl	2-C1-Phen			I	cyclo-	Propyl			-N=C (CH3) 2			0	0
H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl -N=C(CH3) 2	3-C1-Phen	-		×	cyc 10-	Propyl			-N=C(CH ₃) ₂			0	0
H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl -N=C(CH3) 2	2. 4-(C1.C	1)-Phenyl		I	cyc 10-	Propyl			-N=C (CH3) 2			0	0
H cyclo-Propyl C cyclo-Propyl H cyclo-Propyl -N=C(CH3) 2 -N=C(CH3) 2 -N=C(CH3) 2 -N=C(CH3) 2 H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl -N=C(CH3) 2	2-CH ₃ -Phe	inyl		Ŧ	cyclo-	Propyl			-N=C(CH3)2			0	0
H cyclo-Propyl -N=C(CH3) 2	3-CH ₃ -Phe	inyl		I	cyclo-	Propyl			-N=C (CH3) 2			0	0
H cyclo-Propyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₂ H cyclo-Propyl -N=C(CH ₃) ₂ H cyclo-Propyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₂ -N=C(CH ₃) ₂ -N=C(CH ₃) ₂	4-CH3-Phe	ıny1		Ŧ	cyc 10-	Propyl			-N=C (CH3) 2		•	0	0
Phenyl -N=C (CH3) 2 H cyclo-Propyl H cyclo-Propyl yl H cyclo-Propyl -N=C (CH3) 2 H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl H cyclo-Propyl	2. 4- (CH ₃ ,	CH ₃)-Phenyl		I	cyclo-	Propyl			-N=C (CH ₃) ₂			0	0
H cyclo-Propyl H cyclo-Propyl Cyclo-Propyl Cyclo-Propyl Cyclo-Propyl Cyclo-Propyl Cyclo-Propyl Cyclo-Propyl Cyclo-Propyl N=C(CH ₃) ₂ -N=C(CH ₃) ₂	2 4 6-(CF	42, CH2, CH2)-	-Phenyl	I	cyclo-	Propyl			-N=C (CH ₃) ₂			0	0
H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl H Cyclo-Propyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₂ -N=C(CH ₃) ₂	2, 7, 5 (c. 2-CF 3-Phe	3, 23, 23, and a	•	I	cyc lo-	Propyl			-N=C (CH3) 2			0	0
H cyclo-Propyl H cyclo-Propyl -N=C(CH ₃) ₂ H cyclo-Propyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₂	2-0CH 2-PE	nenvl		I	cyc lo-	Propyl			-N=C (CH ₃) 2			0	0
н сусlo-Propyl Н сусlo-Propyl н сусlo-Propyl -N=C(CH ₃) ₂	2, 4- (осн	3, OCH 3) -Pher	lyı	I	cyc 10-	Propyl			-N=C(CH ₃) ₂			0	0
H cyclo-Propyl H cyclo-Propyl	4-0CF 1-P	henyl		I	cyclo-	Propyl			-N=C(CH ₃) ₂			0	0
H cyclo-Propyl	4-SCH3-PI	henyl		I	cyclo-	-Propy]			-N=C(CH ₃) ₂			0	0
	3-SCF ₃ -Pl	henyl		I	cyclo-	-Propyl			-N=C(CH ₃) ₂			0	0

5	> ×		0	0	0	0	0					0	0	0	0	0	0	0	0						0	0				
10																														
15																		•												
20	R5		-N=C (CH3) 2	-N=C (CH3) 2	-N=C (CH 1) 2	* (*HJ)J=N-	2 (5 H2) 2 - N	-N-c(cn3)2	-N=C(CH3)2	-N=C (CH3) 2	-N=C (CH3) 2	-N=C (CH ₃) ₂	-N=C (CH3) 2	-N=C (CH ₃) ₂	-N=C (CH ₃)	-N=C (CH 3)	-N=C (CH3) 2		: 3	E :	Į į	I	I.	Ŧ	I	3	: :	E :	= :	æ
25																														
30																														
35	8 4		cyclo-Propyl	cvclo-Probvl	cyclo-bronyl	rycto-riopyt	cyclo-Propy i	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cvclo-Propyl	cyclo-Propyl	cyclo-Pronyl	cyclo-Propyl	eyelo nopyl	cyclo-riopy i	cyclo-riopy i	Metnyl	Ethyl	n-Propyl	iso-Propyl	n-Butyl	iso-Butyl	cak Butvl	. fana . voc	n-Penty1	2-Pentyl	3-Pentyl	n-Hexyl
40	æ	1	I	1	: 3	Ε.	I	I	I	=	I	=	: 1	: 3	: 3	= :	E :	z :	I	I	I	I	I	I	3	5	I	Ŧ	I	I
45			henvl							ranyl	anv]					ranyı	rany l	ranyl				•	•							
50			/ / / / / / / / / / / / / / / / / / /	- (20 %) · ·	4-NU2-Frieny I	2-Thienyl	3-Thienyl	2-Furanyl	uranvl	2-Tetrahvdrobfuranyl	3-Tetrahydrofuranvl	in the second	Z-Pyridyi 2 Gunidus	3-Pyridy 1	4-Pyridyi	2-Tetrahydropyrany	3-Tetrahydropyrany	4-Tetrahydropyrany	Chlor	Chlor	Chlor	Chlor	Chlor	GF 10.		Methyl	Methyl	Methyl	Methy1	Methyl
55	10	٤	2	1, 1	Z 1	7-1	3-1	2-F	3-6	7-	, ,	, ר	7	<u>, </u>	-	7-	4	-+	5	చ	ວ	ວົ	5	5 6	5	¥	¥	¥	¥	Ĭ

5 10	X	ć		0	0	0	0 0	0 0	0	0 0						0	•	0 0 .	0		0 0	0 0	0 0	0 0	0 0	0 0	
20	R5	:	E	I	I	I	I	I	Ŧ	Ŧ	I	I	I	I	I	I	I	r	I	I	I	I	I	I	I	I	
25					_	۲,				r y	cyclohexyl						-3-y1							mino)ethyl			
35	R4		2-Hexyl	3-Hexyl	2-Methyl-2-pentyl	cyclo-Propylmethyl	cyclo-Butyl	cyclo-Pentyl	cyclo-Hexyl	1-Methylcyclohexyl	3-Trifluormethylcyclohexyl	Allyl	1-Buten-3-y1	Crotyl	Propargyl	1-Butin-3-yl	3-Methyl-1-butin-3-y	2-Pentin-4-yl	Benzyl	2-Phenylethyl	2-Methylthioethyl	2-Chlorethyl	2-Methoxyethyl	2-(N, N-Dimethylamino)ethyl	Phenyl	2-CH ₃ -Phenyl	,
40	R3		I	Ŧ	=	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	
4 5																		•									
50			_	ropyl	ropyl	ropyl	ropyl	ropyl	ropyl	-Propyl	cyclo-Propyl	-Propyl	cyclo-Propyl	-Propyl	-Propyl	•	Allyl						[21	. []	ָּרְ עָּרְ רְּיִרְ רְי	. į.	
55	R1		Methyl	iso-Propy	iso-Propy	iso-Propy]	iso-Propv]	i so-P	iso-Propyl	cvc lo	cyclo	cyclo	cyclo	cyclo	cyclo	Allyl	Allyl	Allyl	A11v1	Allyl	Allyl	Ethinv	Fthiny	Fthinv	Fthinyl	Ethiny 1	נ

5	> ×	o	0					0	0	0 0	0	0	0		0	o .	0	0	0 0	0	0	0 0	0 0	0 0	0	0 0	0
15																											
20	RS	1	: 1	: 3	c	=	Ŧ	Ŧ	×	Ŧ	x	I	Ŧ	I	=	I	I	Ŧ	×	Ŧ	I	=	I	Ŧ	×	Ŧ	Ŧ
25			[August							y)-Pheny1				_									
30		Landad	(3) . nen) . Cu . Cu .) - P	ons, ons,	_				henyl	1, C1) -Phen		ly1	CH ₃)-Pheny	3, ОСН3, ОСН3	ıyı	-Phenyl	ıyı	SCH ₃)-Pheny	ny 1	7	0 ₂)-Phenyl	yl	enyl	enyl			
35	R4	7007 7	2,7-(cm3,cm3) mem3. 2,3-(cm2,cm2,cm2)=Bhenv]	z, J, J- (cn3,	3-CF 3-Pneny	3-F-Phenyl	2-Cl-Phenyl	4-Cl-Phenyl	2,4-(F,F)-Phenyl	2, 3, 5-(c1, c1, c1)-Phenyl	2-CN-Phenyl	2-OCH ₃ -Phenyl	2, 3-(OCH3, OCH3)-Phenyl	3, 4, 5- (OCH ₃ , OCH ₃ , OCH ₃)-Phenyl	3-OCF 3-Pheny l	4-OCF 2CHF 2-Pheny l	2-SCH ₃ -Phenyl	2, 4-(SCH3, SCH3)-Phenyl	2-SCF ₃ -Phenyl	4-NO ₂ -Phenyl	2, 4-(NO ₂ , NO ₂)-Phenyl	2-CHO-Phenyl	3-COCH ₃ -Pheny	3-COCF 3-Phenyl	1-Naphthyl	2-Naphthyl	Piperidimo
40	R3	•		E :	I	I	=	I	I	Ŧ	I	I	I	I	I	=	I	I	I	I	I	Ŧ	I	I	I	Ŧ	I
4 5																					henyl	henyl	henyl	henvl	phenyl	Phenyl	•
50			метпоху	Methoxy	Methoxy	Methoxy	Methoxy	Methoxy	4-C1-Phenoxy	4-C1-Phenoxy	:1-Phenoxy	4-C1-Phenoxy	:1-Phenoxy	4-C1-Phenoxy	Phenylthio	Phenylthio	Phenylthio	Phenylthio	Phenylthio	Phenylthio	2. 4-(C1. C1)-Pheny	4-(C1,C1)-F	4-(C1,C1)-F	2 4-(Cl. Cl)-Phenyl	(12 (13) - 7	2, 4-(Cl.Cl)-Phenyl	2, (st.) 2, 2
55 .	R1		Het.	Tet.	Met	Met	Het	Met	7-7	7-7	. 4-C	7-4	7-4	7-4	Phe	Phe	P	Ę	ğ	Ĕ	7	7	,	` ~	; ~	· ~	, ,

55	50	45	40	35	30	25	20	15	10	5	
R1			R3 F	R4		R.5	2			×	>
2-Thienyl			I	3-Tetrahydrofuranyl	iny l	I				0	0
2-Thienyl			I	4-Tetrahydrofuranyl	inyl	I				0	0
2-Thienyl			I	2-Thiazolyl		I				0	0
2-Thienyl			I	5-CH ₃ -2-Thiazolyl	-	I				0	0
2-Thienyl			I	4-СН ₃ -5-СООН-2-Thiazolyl	hiazolyl	I				0	0
3-Pyridyl			I	Methyl		I				0	0
3-Pyridyl			I	Ethyl		I				0	0
3-Pyridyl			I	n-Propyl		I				0	0
3-Pyridyl			I	iso-Propyl		I				0	0
3-Pyridyl			I	n-Butyl		I				0	0
3-Pyridyl			=	iso-Butyl		I				0	0
iso-Propyl		-	Methyl :	sekButyl		I				0	0
iso-Propyl		•	Methylı	n-Pentyl		I				0	0
iso-Propyl		-		2-Pentyl		I				0	0
iso-Pentyl			Methyl	3-Pentyl		x				0	0
iso-Propyl		_	Methyl	n-Hexyl		I				0	0
iso-Propyl		_	Methyl	2-Hexyl		I				0	0
iso-Propyl		~	Methyl	3-Hexyl		Ξ			•	0	0
Chlor			I	Methyl		•	-N=C(CH3)2			0	0
Chlor			I	Ethyl		,	-N=C (CH3) 2			0	0
Chlor			I	n-Propyl		1	-N=C(CH ₃) ₂			0	0
Chlor			Ŧ	iso-Propyl		1	-N=C(CH ₃) ₂			0	0
Chlor			I	n-Butyl		1	-N=C(CH ₃) ₂			0	0
Chlor			Ŧ	iso-Butyl		1	-N=C (CH ₃) ₂			0	0
Methyl			I	sekButyl		1	-N=C (CH3) 2			0	0

5	×	0	0	0	0	0	0	0	0	0	0	0	0	0	•. •	0	0	0 0	0	0 0	0 0	0	0	0			
10																											
15		7	2	. 7	7	2	7	7	2	2	7	2	2	2	2) 2) 2) 2) 2) 2) 2) 2	· (2 /	12	12
20	R5	-N=C (CH3) 2	-N=C(CH ₃) ₂	-N=C (CH ₃) 2	-N=C (CH3) 2	-N=C (CH3)	-N=C(CH3)	-N=C (CH3)	-N=C (CH3)	-N=C (CH3)	-N=C (CH3)	-N=C (CH3)	-N=C (CH3)	-N=C (CH3)	-N=C (CH3) 2	-N=C (CH3) 2	-N=C (CH3) 2	-N=C(CH3)2	-N=C (CH ₃) ₂	-N=C (CH3) 2	-N=C (CH ₃) ₂	-N=C (CH ₃) ₂	-N=C (CH3) 2	2 (CHJ) J=N-	-N-C/CII3	-N=C(CH3)2	-N=C(CH3)2
25														lohexyl						-y]							
30 35		-	-		1			2-Methyl-2-pentyl	cyclo-Propylmethyl	utyl	entyl	lexy1	1-Methylcyclohexyl	3-Trifluormethylcyclohexyl		1-3-y1	•	ζ	n-3-y1	3-Methv]-1-butin-3-y]	2-Pentin-4-vl	•	2-ohenvlethvl	y iceny (2-Metnylthloetnyl	rethyl	2-Methoxyethyl
40	R4	n-Pentv]	2-Pentyl	3-Pentvl	n-Hexv1	2-Hexyl	3-Hexyl	2-Methy	cyclo-P	cyclo-Butyl	cyclo-Pentyl	cyclo-Hexyl	1-Methy	3-Trif	Allyl	1-Buten-3-y1	Crotyl	Propardy	1-Butin-3-yl	3-Meth	2-Pent	Renzvl	2-phon	7 - L IICII	2-Meth	2-Chlorethyl	2-Meth
45	R3	#	: =	: I	: I	.	=	x	=	*	.	I	I	I	I	.	.	: I	.	=	: I	: 1	: 3	5	I	I	I
50							5		: 5				. ה סטיגו	. f.do	. (do	opy:	i Sport	l Kdo	. 645								
55	R	4	Methy I	Methyl	Metny 1	Mothy 1	i co-Pronv	iso-propy	teo-Brony	teo-Bronk	iso-Pronv	iso-Pronv	ryclo-Propy	Cyclo-Propy	Cyclo Topy	cyclo-riopy	cyclo-riopy	cyclo-riopy i	1 01 1 C	1111	A1131	Allyl	Ailyi	Allyl	Allyl	Ethinyl	Ethinyl

R1		R3	R4		R5		×	>
1447	-	3	2_(N N_Dimethylamino)_c		-N=C(CH3),		0	0
Ethiny!	-	: I	Phenyl		-N=C(CH ₃) ₂		0	0
Ethinvl.	•	· =	2-CH ₃ -Phenyl		-N=C(CH ₃) ₂		0	0
Ethinyl	_	Ŧ	4-CH ₃ -Phenyl		-N=C (CH3) 2		0	0
Methoxy	-	I	2, 4-(CH3, CH3)-Phenyl		-N=C (CH ₃) ₂		0	0
Methoxy	_	Ŧ	2, 3, 5-(CH3, CH3, CH3)-Phenyl		-N=C (CH3) 2		0	0
Methoxy	-	I	3-CF3-Phenyl		-N=C (CH ₃) ₂		0	0
Methoxy	_	I	3-F-Phenyl		-N=C (CH3) 2		0	0
Methoxv	_	I	2-C1-Phenyl		-N=C (CH3) 2		0	0
Methoxy	_	I	4-C1-Phenyl		-N=C(CH ₃) ₂		0	0
4-C1-Phenoxy	_	I	2, 4-(F, F)-Phenyl		-N=C(CH ₃) ₂		0	0
4-C1-Phenoxy		I	2, 3, 5-(c1, c1, c1) -Phenyl		-N=C(CH3)2		0	0
4-C1-Phenoxy		I	2-CN-Pheny1		-N=C(CH ₃) ₂		0	0
4-C1-Phenoxy		I	2-OCH ₃ -Phenyl		-N=C (CH ₃) ₂		0	0
4-C1-Phenoxy		×	2, 3-(OCH ₃ , OCH ₃)-Phenyl		-N=C (CH3) 2		0	0
4-C1-Phenoxy		Ŧ	3, 4, 5-(0CH ₃ , 0CH ₃ , 0CH ₃)-Pheny ¹	iny l	-N=C (CH ₃) ₂		0	0
Phenylthio		I	3-0CF ₃ -Phenyl		-N=C (CH ₃) ₂		0	0
Phenylthio		I	4-OCF 2CHF 2-Pheny l		-N=C (CH3) 2		0	0
Phenylthio		I	2-SCH ₃ -Pheny1		-N=C (CH ₃) ₂		0	0
Phenylthio		I	2, 4-(SCH ₃ , SCH ₃)-Phenyl		-N=C (CH3) 2		0	0
Phenylthio		I	2-SCF ₃ -Phenyl		-N=C (CH3) 2		0	0
Phenylthio		I	4-NO ₂ -Phenyl		-N=C(CH ₃) ₂		0	0
2.4-(C1.C1)-Pheny	~	I	2, 4-(NO ₂ , NO ₂)-Phenyl		-N=C(CH ₃) ₂		0	0
2, 4-(C1, C1)-Pheny	~	I	2-CHO-Phenyl		-N=C(CH ₃) ₂		0	0
2, 4-(C1, C1)-Pheny	. =	I	3-COCH ₃ -Phenyl		$-N=C(CH_3)_2$		0	0

H 1-Naphthy!(CH3)2 H 2-Naphthy!(CH3)2 H 3-Tetrahydrofurany!(CH3)2 H 4-Tetrahydropyrany!(CH3)2 H 4-CH3-D-Ch3-Z-Thiazoly!(CH3)2 H 4-CH3-D-COOH-Z-Thiazoly!(CH3)2 H 4-CH3-D-COOH-Z-Thiazoly!(CH3)2 H 4-CH3-D-COOH-Z-Thiazoly!(CH3)2 H 6-CH3-D-COOH-Z-Thiazoly!(CH3)2 H 7-CH3-D-COOH-Z-Thiazoly!(CH3)2 H 150-Propy!(CH3)2 H	55 T ₂	40 E C	35	30	25	20 Sg N	15	10	× o	5
H 1-Naphthy! H 2-Naphthy! H 2-Naphthy! H 3-Tetrahydropurany! H 4-Tetrahydropyrany! H 2-Thiazoly! H 4-CH3-2-COOH-2-Thiazoly! H 4-CH3-5-COOH-2-Thiazoly! H 6-CH3-5-COOH-2-Thiazoly! H 7-CH3-5-COOH-2-Thiazoly! H 6-CH3-5-COOH-2-Thiazoly! H 7-CH3-5-COOH-2-Thiazoly! H 6-CH3-5-COOH-2-Thiazoly! H 7-CH3-5-COOH-2-Thiazoly! H 150-Propy! H 150-Propy! H 150-Propy! H 150-Propy! H 150-Propy! H 150-Propy! Nethy! 2-Penty! Nethy! 3-Penty! Nethy! 4-Penty! Nethy! 5-Penty! Net		= :	3-cocr3-rneny	_		-N=C(CH3)2			0	0
H 2-Naphthyl H 2-Naphthyl H 2-Naphthyl H 3-Tetrahydrofuranyl H 4-Tetrahydropyranyl H 2-Thiazolyl H 2-Thiazolyl H 4-CH ₃ -2-COOH-2-Thiazolyl H 4-CH ₃ -2-COOH-2-Thiazolyl H 4-CH ₃ -2-COOH-2-Thiazolyl H 4-CH ₃ -2-COOH-2-Thiazolyl H 6-CH ₃ -2-COOH-2-Thiazolyl H 7-CH ₃ -2-COOH-2-Thiazolyl H 150-Propyl Nethyl 3-Pentyl Nethyl 3-Pentyl Nethyl 3-Pentyl H 150-Propyl H 150-Propyl Nethyl 3-Pentyl H 150-Propyl H 150-Propyl Nethyl 3-Pentyl Nethyl 3-Pentyl H 150-Propyl H 150-Propyl H 150-Propyl H 150-Propyl Nethyl 3-Pentyl H 150-Propyl H 150-Propyl H 150-Propyl H 150-Propyl Nethyl 3-Pentyl H 150-Propyl H 150-Propyl H 150-Propyl Nethyl 3-Pentyl H 150-Propyl H 1		Ŧ	I -Naphtny I			7 (5113) 2-11			ج ر	•
Piperidino -N=C(CH3) 2 4-Tetrahydrofurany1 -N=C(CH3) 2 2-Thiazoly1 -N=C(CH3) 2 5-CH3-2-Thiazoly1 -N=C(CH3) 2 4-CH3-5-COOH-2-Thiazoly1 -N=C(CH3) 2 -N=C(CH3) 2 Nethy1 -N=C(CH3) 2 -N=		I	2-Naphthyl			-N=C(CH3)2			> (> 0
3-Tetrahydrofuranyl -N=C(CH3)2 -N		I	Piperidino			-N=C(CH ₃) ₂			0	0
4-Tetrahydropyranyl -N=C(CH ₃) ₂ 2-Thiazolyl -N=C(CH ₃) ₂ 5-CH ₃ -2-Thiazolyl -N=C(CH ₃) ₂ A-CH ₃ -5-COOH-2-Thiazolyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₃ -N		r	3-Tetrahydrof	uranyl		-N=C(CH ₃) ₂			0	0
2-Thiazolyl -N=C(CH ₃) ₂ 5-CH ₃ -2-Thiazolyl -N=C(CH ₃) ₂ 4-CH ₃ -5-COOH-2-Thiazolyl -N=C(CH ₃) ₂ Ethyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₃ -		r	4-Tetrahydrop	yranyl		-N=C(CH3)2			0	0
5-CH ₃ -2-Thiazolyl -N=C(CH ₃) ₂ Methyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₃ -N=C(CH ₃		Ξ	2-Thiazolyl			-N=C(CH ₃) ₂			0	0
4-CH ₃ -5-COOH-2-Thiazolyl -N=C(CH ₃) ₂ Methyl -N=C(CH ₃) ₂ Ethyl -N=C(CH ₃) ₂ n-Propyl -N=C(CH ₃) ₂ iso-Propyl -N=C(CH ₃) ₂ iso-Butyl -N=C(CH ₃) ₂ sekButyl -N=C(CH ₃) ₂ n-Pentyl -N=C(CH ₃) ₂ 2-Pentyl -N=C(CH ₃) ₂ n-Hexyl -N=C(CH ₃) ₂ 2-Hexyl -N=C(CH ₃) ₂ n-Hexyl -N=C(CH ₃) ₃ n-Hexyl -N=C(CH ₃) n-Hexyl -N=C(CH ₃) ₃ n-Hexyl -N=C(CH ₃) n-H		I	5-CH ₃ -2-Thiaz	colyl		-N=C(CH ₃) ₂			0	0
-N=C(CH3)2		Ξ	4-CH 3-5-COOH-	-2-Thiazolyl		-N=C(CH ₃) ₂			0	0
Ethy! n-Propy! n-Propy! iso-Propy! n-Buty! iso-Buty! iso-Buty! n-Buty! n-Penty! 2-Penty! 2-Penty! 2-Penty! 2-Hexy! 2-Hexy! 2-Hexy! 4-Hexy! 4-Hexy! 4-Hexy! 4-Hexy! 5-Hexy! 4-Hexy! 5-Hexy! 6-Hexy! 6-Hexy! 7-Hexy! 7-Hexy! 6-Hexy! 7-Hexy! 7-Hexy! 6-Hexy! 7-Hexy! 7-Hexy! 6-Hexy! 7-Hexy! 7-Hexy! 6-Hexy! 7-Hery! 6-Hy! 6-Hy!		: =	Methyl	1		-N=C(CH ₃) ₂			0	0
n-Propyl iso-Propyl iso-Propyl -N=C(CH3) 2		±	Ethyl			-N=C (CH3) 2			0	0
iso-Propyl n-Butyl iso-Butyl iso-Butyl sekButyl -N=C(CH3)2 -N=C(CH3)2 -N=C(CH3)2 -N=		Ŧ	n-Propy1			-N=C(CH ₃) ₂			0	0
iso-Butyl iso-Butyl sekButyl -N=C(CH ₃) ₂ sekButyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₃ -N=C(CH ₃) -N=C(CH ₃) -N=C(CH ₃)		I	iso-Propyl			-N=C (CH3) 2			0	0
iso-Butyl sekButyl -N=C(CH ₃) ₂ n-Pentyl 2-Pentyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₃ -N=C(CH ₃) -N=C(CH ₃) -N=C(CH ₃) -N=C(CH ₃) -N=C(CH ₃) -N=C(CH ₃) -N=C(CH ₃		I	n-Butyl			-N=C(CH3)2			0	0
sekButyl n-Pentyl 2-Pentyl 2-Pentyl 3-Pentyl -N=C(CH ₃) ₂ -N=C(CH ₃) ₃ -N=C(CH ₃) -N=C(CH ₃) -N=C(CH ₃) -N=C(C		Ι	iso-Butyl			-N=C(CH3)2			0	0
n-Pentyl 2-Pentyl 2-Pentyl 3-Pentyl -N=C(CH ₃) ₂ 3-Hexyl 3-Hexyl 4-ErtButyl 2-Pyridyl 4-ErtButyl 5-Pyridyl 6-Ethyl		Methyl	sekButyl			-N=C(CH3)2			0	0
2-Pentyl -N=C(CH ₃) ₂ 3-Pentyl -N=C(CH ₃) ₂ n-Hexyl -N=C(CH ₃) ₂ 2-Hexyl -N=C(CH ₃) ₂ 3-Hexyl -N=C(CH ₃) ₂ tertButyl 2,4-(Cl,Cl)-Phenyl 2-Pyridyl Ertyl		Methyl				-N=C(CH3)2			0	0
3-Pentyl -N=C(CH ₃) ₂ n-Hexyl -N=C(CH ₃) ₂ 2-Hexyl -N=C(CH ₃) ₂ 3-Hexyl -N=C(CH ₃) ₂ tertButyl 2,4-(Cl,Cl)-Phenyl 2-Pyridyl Ertyl		Methy!				-N=C (CH3) 2			0	0
n-Hexyl 2-Hexyl 3-Hexyl 4-tertButyl 2-Pyridyl 5-Phenyl 6-thyl 6-thyl		Methyl				-N=C(CH ₃) ₂			0	0
2-Hexyl 3-Hexyl 4-KrtButyl 5-Phenyl 5-Pyridyl 6-Ftyl 6-Ftyl		Methyl				-N=C (CH ₃) ₂			0	0
ethyl 3-Hexyl H tertButyl A tertButyl H tertButyl H tertButyl Ethyl		Mothy I				-N=C(CH ₃) ₂			0	0
tertButyl 2,4-(Cl,Cl)-Phenyl tertButyl 2-Pyridyl tertButyl		Hothi:				-N=C(CH3)			0	0
tertButyl 2-Pyridyl tertButyl Ethyl		Merny				2 (L) (J) -7 C	-Phenyl		0	S
tertButyl Z-Pyridy! tertButyl Ethyl		I	tertButyl			2,4-101,01,			• •	
tertButyl Ethyl		I	tertButyl			2-Pyr1dy1			•	י נ
		Ŧ	tertButyl			Ethy 1			>	n

55	50	40 45	40	35	30	25	20	15	10	5	
R1		R3	R4				R5			×	-
Methyl		I	tertButy]	Butyl			iso-Propyl			0	S
Methyl		I	tertButy]	Butyl			Butyl			0	S
Methyl		I	tertButy	Butyl			tertButyl			0	S
Methyl		I	tertButy	Butyl	·		Phenyl			0	S
iso-Propyl		I	tertButyl	Butyl			4-F-Pheny l			0	ဟ
iso-Propyl		I	tertButy	Butyl			3-CF ₃ -Phenyl			0	S
iso-Propyl		I	tertButy	Butyl			2, 4- (C1, C1)-Phenyl	henyl		0	ဟ
iso-Propyl		=	tertButy	Butyl			2-Pyridyl			0	S
iso-Propyl		I	tertButy	Buty]			Methyl			0	S
iso-Propyl		I	tertButy	Butyl			Ethy1			0	s
iso-propyl		I	tertButy	-Butyl			iso-Propyl			0	S
cyclo-Prop	lk	Ι	tertButy	-Butyl			Butyl			0	S
cyclo-Prop	ب اج	I	tertButy]	Butyl			tertButyl			0	S
cyclo-Proply	J,	I	tertButy	-Butyl			Pheny l			0	S
cyclo-Prop	الإر	I	tertButy	-Butyl			4-F-Phenyl			0	S
cyclo-Prop	الإ	I	tertButy	-Butyl			3-CF ₃ -Phenyl			0	S
cyclo-Propyl	l y l	I	tertButy	-Butyl			2, 4-(c1, c1)-Phenyl	Phenyl		0	S
cyclo-Propyl	191	I	tertButy]	-Butyl			2-Pyridyl			0	S
Allyl		I	tertButy	-Butyl			Methyl			0	S
Allyl		I	tertButy	-Butyl			Ethy1			0	S
Allyl		I	tertButy	-Butyl			iso-Propyl			0	S
Allyl		I	tertButy	-Butyl			Butyl			0	s
Allyl		Ι	tert.	tertButyl			tertButyl	:		0	s
Allyl		I	tert.	tertButyl			Phenyl			0	S
Methoxy		I	tert.	tertButyl			Methyl			0	S

5	> ×	s 0	s 0	0	s 0	s O	s O	s 0	s O	s O	s O	s O	s o	s o	s O	s 0	s 0	s 0	s o	s O	s 0	s o	s 0	0	s 0	s 0
10																			_							
15			1		tyl		<u>, 1</u>	enyl	2, 4-(C1, C1)-Phenyl	,			yl		tyl		yl	eny l	2, 4-(Cl, Cl)-Phenyl	_		ıyı		ıtyl		ıyı
20	RS	Ethyl	iso-Propyl	Butyl	tertButyl	Pheny1	4-F-Phenyl	3-CF ₃ -Phenyl	2, 4-(C1,	2-Pyridyl	Methyl	Ethyl	iso-Propyl	Butyl	tertButyl	Phenyl	4-F-Phenyl	3-CF ₃ -Pheny l	2, 4-(C1,	2-Pyridyl	. Ethyl	iso-Propyl	Butyl	tertButy	Pheny l	4-F-Phenyl
25									•																	
30					_		_		_	_		فنيتن	_		_			_			_	_	=	=	1	1,
35	R4	tertButy]	tertButy	tertButy	tertButyl	tertButy	tertButyl	tertButyl	tertButyl	tertButy	tertButy	tertButy	tertButy	tertButy	tertButy	tertButy	tertButy	tertButyl	tertButyl	tertButy	tertButy	tertButy	tertButy	tertButy	tertButy	tertButyl
	R3	I	.	Ŧ	I	I	I	I	Ŧ	I	I	I	I	I	Ė	I	I	I	I	Ξ	Ŧ	I	Ŧ	I	I	I
45															phenyl	Pheny 1	Pheny 1	Phenyl	Phenyl	Phenyl	Pheny 1	•				
50		4 + 0 A	Methoxy	Methoxy	Methoxy	Methoxy	Methoxy	4-C1-Phenoxy	4-C1-Phenoxy	4-C1-Phenoxy	4-C1-Phenoxy	4-C1-Phenoxy	4-C1-Phenoxy	4-C1-Phenoxy	2. 4-(Cl. Cl)-Phenyl	. 4-(c1. c1)-l	. 4-(c1, c1)-i	., 4-(c1, c1)-	2, 4-(C1, C1)-Phenyl	(C1 C1)-	2, 4-(C1, C1)-Pheny]	2-Thienvl	2-Thienvl	2-Thienv]	3-Pvridvl	3-Pyridyl
55	2	3	1	Š	Ĭ	Ĭ	ž	.	4	· 4	4	4	• 4	4	7	. ~	. ~	. ~	. ~	, ~		•		•	- •	,

55	45 50		40	35	30	25	20	15	10	5	
•		1	7				u G			>	>
R1		R3	4				2			<	_
3-Pyridyl		I	tertButyl	Butyl			3-CF ₃ -Phenyl			0	S
Methyl		I	cyclo-Propyl	Propyl			2, 4-(cl, cl)-Phenyl	-Phenyl		0	s
Methyl		I	cyclo-Propyl	Propyl			2-Pyridyl			0	S
Methyl		I	cyclo-Propyl	Propyl			Ethyl			0	S
Methyl		I	cyclo-Propyl	Propyl			iso-Propyl			0	s
Methyl		I	cyclo-Propyl	Propyl			Butyl			0	S
Methyl		I	cyclo-Propyl	Propyl			tertButyl			0	S
Methyl		I	cyclo-Propyl	Propyl			Pheny l			0	S
iso-Propyl		I	cyclo-Propyl	Propy1			4-F-Phenyl			0	S
iso-Propyl		I	cyclo-Propyl	Propyl			3-CF ₃ -Pheny1			0	S
iso-Propyl		I	cyclo-Propyl	Propyl			2, 4-(cl, cl)-Phenyl	Phenyl		0	S
iso-Propyl		I	cyclo-Propyl	Propyl			2-Pyridyl			0	S
iso-Propyl		I	cyclo-Propyl	Propyl			Methyl			0	S
iso-Propyl		I	cyclo-Propy	Propyl			Ethyl			0	s
iso-Propyl		I	cyclo-Propyl	Propyl			iso-Propyl			0	S
cyclo-Propy	-	±	cyclo-Propyl	Propyl			Butyl			0	S
cyclo-Propy		I	cyclo-Propyl	Propyl			tertButyl			0	S
cyclo-Propy		I	cyclo-Propyl	Propyl			Phenyl			0	S
cyclo-Propy	٦,	Ξ	cyclo-Propy	Propyl			4-F-Phenyl			0	S
cyclo-Propy	۷۱	I	cyclo-	cyclo-Propyl			3-CF ₃ -Phenyl	_		0	S
cvclo-Propy		I	cyclo-Propy	Propyl			2,4-(Cl,Cl)-Phenyl	-Phenyl		0	s
cyclo-Propy	, A	I	cyclo-	cyclo-Propyl			2-Pyridyl			0	S
Allyl	•	I	cyclo-	cyclo-Propyl			Methyl			0	s
Allyl		I	cyclo-	cyclo-Propyl			Ethy]			0	S
Allyl		I	cyclo-	cyclo-Propyl			iso-Propyl			0	ဟ

•							
	R3	R4		R5		×	>
						c	u
	I	cyclo-Propyl		Butyl		>	n
A11v1	I	cyclo-Propyl		tertButyl		0	S
. f	Ξ	cyclo-Propyl		Phenyl		0	S
Methoxv	I	cyclo-Propyl		Methyl		0	S
Methoxy	I	cyclo-Propyl		Ethyl		0	S
Methoxy	I	cyclo-Propyl		iso-Propyl		0	S
Methoxy	I	cyclo-Propyl		Butyl		0	S
Methoxy	Ξ.	cyclo-Propyl		tertButyl		0	S
Mothoxy	I	cyclo-Propyl		Phenyl		0	S
Mothoxu	: :	cyclo-Propyl		4-F-Pheny l		0	S
A-C1-Phenoxv	Ŧ	cyclo-Propyl		3-CF ₃ -Phenyl		0	S
4-C1-Phenoxv	Ι	cyclo-Propyl		2, 4-(Cl, Cl)-Phenyl	henyl	0	S
4-C1-Phenoxy	Ŧ	cyclo-Propyl		2-Pyridyl		0	S
4-C1-Phengxv	I	cyclo-Propyl		Methy1		0	S
4-C1-Phenoxv	I	cyclo-Propyl		Ethyl		0	S
4-C1-Phenoxy	Ŧ	cyclo-Propyl		iso-Propyl		0	S
4-C1-Phenoxy	I	cyclo-Propyl		Butyl		0	S
2.4-(C1.C1)-Phenyl	I	cyclo-Propyl		tertButyl		0	S
4-(C1, C1)-Phenyl	I	cyclo-Propyl		Phenyl		0	S
2, 4-(C1, C1)-Phenyl	I	cyclo-Propyl		4-F-Phenyl		0	S
4-(Cl. Cl)-Phenyl	Ι	cyclo-Propyl		3-CF ₃ -Phenyl		0	S
4-(C1, C1)-Phenyl	I	cyclo-Propyl		2, 4-(C1, C1)-Phenyl	henyl	0	S
2, 4-(C1, C1)-Phenyl	r	cyclo-Propyl		2-Pyridyl		0	S
2, 4-(Cl. Cl)-Phenyl	I	cyclo-Propyl		Ethyl		0	S
2-Thienyl	Ŧ	cyclo-Propyl		iso-Propyl		0	S

5			>	s 0	s 0	s 0	s 0	so .
10								
15					tyl			enyl
20			RS	Butyl	tertBu	Phenyl	4-F-Phen	3-CF ₃ -Phenyl
25								
30 35	•			pyl	lydo	lydo	pyl	pyl
40			R4	cyclo-Pro	cyclo-Propyl	cyclo-Pro	cyclo-Pro	cyclo-Propyl
4 5			R3	I	=	I	I	Ξ
50								
55		·	R1	2-Thienvl	2-Thienvl	3-Pvridyl	3-Pyridyl	3-Pyridyl

Die Oxazol- bzw. Thiazolcarbonsäureamide la' und lb' bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen la und Ib eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen. Als inerte Zusatzstoffe kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin-und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpoly glykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen la und lb können beispielsweise wie folgt formuliert werden:

45

50

- I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 1.003 mit 10 Gewichtsteilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.
- II. 20 Gewichtsteile der Verbindung Nr. 1.010 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Richnusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtstellen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- III. 20 Gewichtsteile der Verbindung Nr. 1.004 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- IV. 20 Gewichtsteile des Wirkstoffs Nr. 1.011 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280 C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch

Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

V. 20 Gewichtsteile des Wirkstoffs Nr. 1.011 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.

VI. 3 Gewichtsteile des Wirkstoffs Nr. 1.003 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

VII. 30 Gewichtsteile des Wirkstoffs Nr. 1.004 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

VIII. 20 Gewichtsteile des Wirkstoffs Nr. 1.010 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtstellen eines parafflnischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 5, vorzugsweise 0,01 bis 2 kg/ha aktive Substanz (a.S.).

In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel in einer großen Zahl von Kulturplfanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden.

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Oxazol- bzw. Thiazolcarbonsäureamide la und Ib mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beisplelsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate, Chinolincarbonsäurederivate, Aryloxy-, Heteroaryloxyphenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen la und Ib allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs-und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Synthesebeispiele

45

5

10

15

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen benutzt. Die so erhaltenen Verbindungen sind in den nachstehenden Tabellen mit physikalischen Angaben aufgeführt.

50

1. Verfahren zur Herstellung der Vorprodukte

Beispiel 1.1

55

4(5)-Ethoxycarbonyl-2-methyl-oxazol-5-(4)-carbonsäure

Zu 33,8 g (0,15 mol) 2-Methyl-oxazol-4,5-dicarbonsäureester in 300 ml Ethanol tropfte man bei -10 °C unter N₂ innerhalb von 4 h eine Lösung von 6,0 g (0,15 mol) Natriumhydroxid in 150 ml Wasser und rührte 2 h bei -10 °C nach. Man engte die Lösung ein, nahm den Rückstand in 300 ml Wasser auf, stellte mit Salzsäure auf pH = 8 bis 9 ein und extrahierte zweimal mit je 300 ml Diethylether. Anschließend säuerte man mit konz. HCl auf pH = 2 an und extrahierte die wäßrige Phase viermal mit je 250 ml Dichlormethan. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen. Man erhielt 26,4 g (88 %) 4(5)-Ethoxycarbonyl-2-methyl-oxazol-5-(4)-carbonsäure als weißen Feststoff (Isomerenverhältnis: 3:1 (¹H-NMR, HPLC). Zu isomerenreiner 4-Ethoxycarbonyl-2-methyl-oxazol-5-carbonsäure gelangte man durch fraktionierte Kristallisation aus Cyclohexan/ Ethylacetat 2:1 oder Säulenchromatographie an Kieselgel (Lösungsmittel: Toluol, THF, Eisessig (7:3:1). ¹H-NMR (250 MHz, D₆-DMSO); Hauptisomer: δ = 1,28 (t; 3H), 2,52 (s; 3H), 4,30 (q; 2H), 14,00 (bs; 1H).

Beispiel 1.2

15

3

4-Ethoxycarbonyl-2-methylthio-thiazol-5-carbonsäure

Eine Lösung von 7,00 g (25 mmol) 2-Methylthio-thiazol-4,5-dicarbonsäurediethylester in 100 ml Ethanol/Wasser (2:1) wurde bei Raumtemperatur innerhalb von einer Stunde mit einer Lösung von 1,10 g (27,5 mmol) Natriumhydroxid in 10 ml Wasser versetzt. Man rührte eine Stunde nach, entfernte dann das Lösungsmittelgemisch im Vakuum, nahm den Rückstand mit 100 ml Wasser auf, extrahierte einmal mit 50 ml Diethylether und säuerte die wäßrige Phase mit konzentrierter Salzsäure an. Das ausgefallene Produkt wurde abgesaugt und getrocknet.

Ausbeute: 4,50 g (73 %). Schmelzpunkt: 104 °C.

Die in der folgenden Tabelle genannten Carbonsäuren wurden gemäß dem vorstehenden Beispiel erhalten:

•	Beisp.	R¹	R⁵	×	phys. Daten
0	1.9(b)	Phenyl	CH₃	s	Fp.: 127-137
	1.4(a)	n-Butylthio	C ₂ H ₅	s	0,95 (t;3H), 1,40 (t;3H), 1,50(sext;2H), 1,80 (quint;2H), 3,40 (t;2H), 4,35 (q;2H)
5	1.5(b)	n-Butylthio	C₂H₅	s	0,95 (t;3H), 1,35 (t;3H), 1,50 (sect;2H), 1,80 (quint;2H), 3,30 (t;2H), 4,45 (q;2H)
,	2.6(b)	iso-Propylthio	C ₂ H ₅	s	1,50 (d;6H), 1,45 (t;3H), 3,90 (hept;1H), 4,55 (q;2H), 12,50 (s;1H)
	1.7(a)	iso-Propylthio	C₂H₅	s	1,45 (t;3H), 1,50 (d;6H), 4,05 (hept;1H), 4,50 (q;2H), 12,50 (s;1H)
o	1.8(a)	Methylthio	CH₃	s	2,80 (s;3H), 4,05 (s;3H)

Beispiel 1.9

2-Methylthiothiazol-4.5-dicarbonsäure-diethylester

Eine Lösung von 9,2 g (0,03 mol) 2-Chlor-thiazol-4,5-dicarbonsäure-diethylester in 30 ml Ethanol wurde bei 0°C tropfenweise mit einer Lösung von 2,1 g (0,03 mol) Natrium-methylthiolat in 10 ml Ethanol versetzt. Man ließ das Gemisch auf 25°C erwärmen und rührte zwei Stunden nach. Danach entfernte man das Lösungsmittel bei vermindertem Druck, nahm den Rückstand in 100 ml Diethylether auf und wusch nacheinander mit je 50 ml 5 %iger Natronlauge und Wasser. Man trocknete über Natriumsulfat, engte ein und behielt 7,2 g (87 %) Produkt als farbloses Öl zurück.

1H-NMR (CDCl₃, 250 MHz, TMS als interner Standard): 1,35 (t, J=7,0 Hz, 3H), 1,45 (t, J=7,0 Hz; 3H), 2,75

(s, 3H), 4,30 (q, J=7.0 Hz; 2H), 4,50 (q, J=7.0 Hz; 2H).

2. Verfahren zur Herstellung der Verbindungen Vla und Vlb

Beispiel 2.1

10

2-Methoxythiazol-4-carbonsäure-tert.-butylamid

Eine Lösung von 12,00 g (46 mmol) 2-Brom-thiazol-4-carbonsäure-tert.-butylamid in 150 ml Methanol wurde bei 25 °C mit 8,90 g einer 30 %igen Lösung (49 mmol) von Natriummethanolat in Methanol versetzt. Man hielt das Gemisch vier Stunden unter Rückfluß auf Siedetemperatur, engte dann die klare Lösung ein, nahm den Rückstand in 300 ml Diethylether auf, filtrierte und entfernte das Lösungsmittel bei vermindertem Druck. Man erhielt 9,60 g (98 %) Produkt als gelbes Öl. ¹H-NMR (CDCl₃, 250 MHz, TMS als interner Standard): 1,45 (s; 9H), 4,10 (s; 3H), 7,00 (s, breit, 1H), 7,48 (s;

Beispiel 2.2

1H).

25

30

2-Isopropyl-oxazol-4-carbonsäure-cyclopropylamid

Zu einer Lösung von 31,0 g (0,20 mol) 2-Isopropyl-oxazol-4-carbonsäure in 200 ml Toluol und 2 ml Dimethylformamid tropfte man bei Raumtemperatur 47,6 g (0,40 mol) Thionylchlorid und rührte 1 h bei 80°C. Man zog die Solventien im Vakuum ab, löste den Rückstand in 300 ml Dichlormethan und tropfte bei 0 bis 10°C 24,0 g (0,42 mol) Cyclopropylamin in 20 ml Dichlormethan zu. Man rührte 12 h bei Raumtemperatur, gab 150 ml Wasser zu, trennte die Phasen, wusch die organische Phase einmal mit gesättigter Natriumhydrogencarbonatlösung, trocknete über Magnesiumsulfat und zog das Solvens im Vakuum ab. Man erhielt 37,2 g (96 %) 2-Isopropyl-oxazol-4-carbonsäure-cyclopropylamid. 1 H-NMR (CDCl₃, 250 MHz): Δ = 0,62 (m; 2H), 0,88 (m; 2H), 1,34 (d; 6H), 2,86 (m; 1H), 3,09 (m; 1H), 6,93 (bs; 1H; NH), 8,09 (s; 1H).

Die in der folgenden Tabelle genannten Amide wurden gemäß den vorstehenden Beispielen oder analog der zitierten Literatur erhalten:

45

40

50

55	50	45	40	35	30	25	20	15	10	5	
	. 18		æ 33	R 4		×	phys. Daten [Fp. (°C);	phys. Daten [Fp. (°C); NMR (0 in ppm)]	in ppm)]	-	
2.3(a)	Phenylthio	•	I	tertButyl		ဟ	1,50 (s;9H), 7,65 (m;2H),	1,50 (s;9H), 7,00 (s;1H) 7,65 (m;2H), 7,85 (s;1H)	7,00 (s;1H), 7,45 (m;3H), 7,85 (s;1H)	5 (m;3H)	<u>``</u>
2.4(a)	Brom		Ŧ	tertButyl		s	19-79	•			
2.5(a)	Pheny 1		Ŧ	4-C1-Phenyl		S	223				
2.6(a)	Brom		I	cyclo-Propyl		S	83-88				
2.7(a)	Methoxy		I	cyclo-Propyl		S	62-65				
2.8(a)	Methyl		I	tertButyl		S	1,48 (s	1,48 (s;9H), 2,72 (s;3H),	(s;3H),		
600							7, 25 (s	7,25 (s;14,NH), 7,91 (s;1H)	, 91 (s;1н)		
(6)0.6	Pheny		Ŧ	tertButyl		S	1,50 (s	;9н), 7,40	(s;9H), 7,40 (s;1H,NH),		
(3) (1)	•						7,40-7,	90 (m;5H),	7,40-7,90 (m;5H), 8,03 (s;1H)	,	
2.10(b)	Methoxy		I	tertButyl		S	126-129				
2,11(a)	Methyl		I	tertButyl		0	60- 63				
2,12(a)	cvclo-Propvl	l vac	I	tertButyl		0	72- 74				
2 13(a)	Fthvl	·	I	tertButyl		0	1,36 (t	;3н), 1,48	(t;3H), 1,48 (s;9H), 2,80 (q;2H),	10 (q;2H	<u>`</u>
(5) (2) (3)				•			6, 78 (s	;1H, NH),	(s;1H, NH), 8,01 (s;1H)		
2,14(a)	Ethvl		I	cyclo-Propyl		0	50- 55				
2.15(a)	Ethyl		I	3-CF ₃ -Phenyl		0	40- 43				
2.15(a)	i so-Propv	, >	I	tertButyl		0	1,36 (d	1,6н), 1,48	1,36 (d;6H), 1,48 (s;9H), 3,06 (m;1H),)6 (m;1H	<u>`</u>
	-						6, 78 (s	;1H, NH), 8	1,00 (s;1H)		
(4)(1)	iso-Pronvi	~~	I	cyclo-Propyl		0	0,58-0,	, (н; ш) 96	0,58-0,96(m;4H), 1,34(d;6H),	2,86 (m;	::
(m) / : - 7				•			1H), 3,	08 (m;1H),	3,08 (m;1H), (s;1H,NH),	8,09	(s;1H)
2,18(a)	iso-Propyl	٨١	Ŧ	iso-Propyl		0	38- 41				
2 19(a)	cvclo-Propv	opvl	I	iso-Propyl		0	27- 60				
2 20(a)	cvelo-Propyl	opyl	Ξ	cyclo-Propyl		0	80- 83	_			
2.20(d)	cyclo ropy	י נאס	Ξ.	4-C1-Phenyl		0	147-150	_			
7.21(0)	r) c) c)	1640	:								

	4 5 50	40	35	30	. 25	20	15	10	5
<u>ج</u>		R3	R.4.		*	phys.	Daten (oc). NWD	Daten (oc). www (4 in numl)	5
		:		ļ		•	03		
<u> </u>	Pheny I	E	rertbury,	•	>	2	2		
۵	Phenyl	I	iso-propyl	•	0	-89	74		
<u>-</u>	Phenyl	I	cyclo-Propyl		0	-06	76		
۵.	Phenyl	I	3-CF ₃ -Pheny		0	127-129	29		
Œ	Methyl	I	cyclo-Propy	_	S	109-114	14		
	D-F-Benzvl	Ξ	tertButyl		S	63-	79		
	2,6-Cl,Cl-Benzyl	×	Cyanomethyl		S	82-	85		
-	tertButyl	I	tertButyl		S	85-	98		
•	2-Pyridyl	Ξ	tertButyl		S	93	_		
	3-CF ₃ -Benzyl	I	tertButyl		S	97- 99	66		
•	2-Phenyl-ethyl	I	Cyano-methy		S	100			
_	4-C1-Phenoxy-methyl	I	tertButyl		S	102	•		
•	2,6-C1,C1-Benzyl	I	tertButyl		S	105-	105-106		
_	Benzyl	I	tertButyl		v	1,48	1,48 (s;9H), 4,30 7 15-7 42 (m.6H)	,30 (s;3H), H) 7.90 (s:1H)	. (H) S
	2-Methoxy-ethyl	I	tertButyl		S	1,48	(s;9H),		(t;2H), 3,4 (s;3H),
	2 4-C1 C1-Renzv1	=	tertButvl		S	1,48	(5,24), 1,23 (8,94), 4,40		(m) (c) (c) (
	. [7, 13-	7,13-7,48 (m;4H),	н), 7,92 (s;1н)	s;1Н)
	2-Phenyl-ethyl	x	tertButyl		S	1,48	1,48 (s;9H), 3,10		(t;2H), 3,30 (t;2H),
	Methyl-thiomethyl	I	tertButyl		w	1,48	(s;9H),		з, 3, 95 (s;2H),
	tertButyl	Ŧ	tertButyl		s	1,50	(s; h), (s; 9H),		(s;1H), (s;9H), 7,20 (s;1H),
	•					7, 45	(s;1H)		

55	4 5	40	35	30	25	20	15	10	5	
Nr.		R3	R 4		*	phys. [Fp.	phys. Daten [Fp. (°C); NMR (& in ppm)]	8 in ppm)]	1	
2.41(a)	Methoxymethyl	±	tertButyl		v	1,49	1,49 (s;9H), 3,5 7,10 (s;1H), 8,0	1,49 (s;9H), 3,52 (s;3H), 4,7 (s; 2H), 7,10 (s;1H), 8,04 (s;1H)	,,7 (s; 2h	Ť
2.42(a)	l-Phenyl-ethyl	=	tertButyl		S	1,48	(s;9H), 1,7 7,43 (m;6H)	1,48 (s;9H), 1,76 (d;2H), 4,43 (q; 1H), 7,15-7,43 (m;6H), 7,93 (s;1H)	,, 43 (q; 1 (H)	Œ,
2.43(a)	cyclo-Hexyl	I	cyclo-Propyl		0	88- 91	91			
2.44(a)	cyclo-Hexyl	r	tertButyl		0	46- 50	20			
2.45(a)	n-Propyl	I	tertButyl		0	1,00	(t;3H), 1,4	1,00 (t;3H), 1,44 (s;9H), 1,81 (m; 2H),	(, 81 (m;	2н),
						2,74 8.05	2,74 (t;2H), 6,7 8.05 (s;1H)	6,/N,(HI;SG) ट/,ð	, E	
2,46(a)	n-Propyl	I	cyclo-Propyl	_	0	- 79	57			
2,47(a)	n-Propy]	I	2, 4-(CH ₃) ₂ -Phenyl	henyl	0	L7 -77	14			
2 48(a)	4-C1-Phenyl	Ξ	cyclo-Propyl	_	0	164-166	166			
2.49(a)	4-C1-Phenyl		tertButyl		0	131-133	133			
2.50(a)	4-C1-Phenyl	I	iso-Propyl		0	101-105	105			
2.51(a)	4-C1-Phenyl	Ξ	4-Cl-Phenyl		0	165-168	168			
2.52(a)	Methoxymethy1	I	tertButyl		0	1,46	(s;9H), 3, E	1,46 (s;9H), 3,50 (s;3H), 4,50 (s;2H),	4,50 (s;2	Ŧ
	•					6, 80	(bs;1H,NH),	8,12 (s;1)	Î	
2.53(a)	tertButyl	I	tertButyl		0	83-	83- 87			
2.54(a)	tertButyl	Ξ	cyclo-Propyl		0	78-	78- 80			
2.55(a)	tertButyl	Ξ	CH(cyclo-Propyl) ₂ CH ₃	opyl) ₂ CH ₃	0	132-134	134			
2.55(a)	Methoxymethy!	=	cyclo-Propyl	1	0	-09'0	0,90 (m;4H)	0,60-0,90 (m;4H), 2,88 (m;1H),	1H),	
			,			3,44	3,44 (s;3H), 4,53 (s;2H),	53 (s;2H),	1	
						9, 94	(PS;IH,NH)	6,94 (bs;1H,NH), 8,21 (s;1H)	Î	

3. Verfahren zur Herstellung der Verbindungen la und Ib

Beispiel 1

5

4-Cyclopropylaminocarbonyl-2-isopropyl-oxazol-5-carbonsäure

Zu einer Lösung von 10,4 g (0,054 mol) 2-Isopropyl-oxazol-4-carbonsäurecyclopropylamid in 250 ml Tetrahydrofuran tropfte man unter Stickstoffatmosphäre bei -70° C 0,12 mol n-Butyllithium (80,0 ml einer 1,5 molaren Lösung in Hexan) und rührte 30 min bei dieser Temperatur. Anschließend goß man das Reaktionsgemisch auf 500 g festes CO₂ und ließ über Nacht stehen. Man engte ein, nahm den Rückstand in 200 ml Wasser und 30 ml 2N NaOH auf, extrahierte zweimal mit je 100 ml Diethylether, säuerte die wäßrige Phase mit konz. Salzsäure auf pH 2 an und extrahierte dreimal mit je 200 ml Ethylacetat. Man trocknete über Magnesiumsulfat und zog das Solvens im Vakuum ab.

Man erhielt 10,4 g (81 %) 4-Cyclopropylaminocarbonyl-2-isopropyl-oxazol-5-carbonsäure als weißes Pulver vom Smp. 109 bis 112°C. (Wirkstoffbeispiel 3.007).

Beispiel 2

25

40

45

4-tert.-Butylaminocarbonyl-2-methoxy-thiazol-5-carbonsäure

Zu einer Lösung von 8,00 g (37 mmol) 2-Methoxy-thiazol-4-carbonsäure-tert.-butylamid in 150 ml Tetrahydrofuran tropfte man bei -70°C 65 ml einer 1,5 m Lösung (97 mmol) von n-Butyllithium in n-Hexan und rührte 30 Minuten bei dieser Temperatur. Anschließend goß man das Reaktionsgemisch auf 500 g festes Kohlendioxid und ließ innerhalb von 14 Stunden auf Raumtemperatur erwärmen. Man entfernte das Lösungsmittel im Vakuum, nahm den Rückstand in einer Mischung aus 150 ml Wasser und 16 ml 2 m Natronlauge auf, filtrierte, säuerte das Filtrat mit konzentrierter Salzsäure an und saugte die ausgefallene Carbonsäure ab.

Man erhielt 7,80 g (82 %) 4-tert.-Butylaminocarbonyl-2-methoxythiazol-5-carbonsäure als weißes Pulver vom Fp.: 120 bis 122° C. (Wirkstoffbeispiel 1.003).

Beispiel 3

5-tert.-Butylaminocarbonyl-2-methoxy-thiazol-4-carbonsäure

Zu einer Lösung von 5,4 g (25,2 mmol) 2-Methoxy-thiazol-4-carbonsäure-tert.-butylamid in 150 ml Tetrahydrofuran tropfte man unter Stickstoffatmosphäre bei -70 °C 56 mmol n-Butyllithium (37,3 ml einer 1,5 molaren Lösung in Hexan) und rührte 30 min bei dieser Temperatur. Anschließend goß man das Reaktionsgemisch auf 500 g festes CO₂ und ließ über Nacht stehen. Man engte ein, nahm den Rückstand in 150 ml Wasser und 10 ml 2N NaOH auf, extrahierte zweimal mit je 50 ml Diethylether, säuerte die wäßrige Phase mit konz. Salzsäure auf pH 2 an und extrahierte dreimal mit je 100 ml Ethylacetat. Man trocknete über Magnesiumsulfat und zog das Solvens im Vakuum ab.

Man erhielt 3,9 g (60 %) 5-tert.-Butylaminocarbonyl-2-methoxy-thiazol-4-carbonsäure als weißes Pulver vom Smp. 105 bis 110° C.

(Wirkstoffbeispiel 2.001)

Beispiel 4

a) 4-Ethoxycarbonyl-2-methyl-oxazol-5-carbonsäurechlorid

Zu 12,2 g (61,3 mmol) 4-Ethoxycarbonyi-2-methyl-oxazol-5-carbonsäure tropfte man bei 0°C 40 ml Thionylchlorid und 1 ml Dimethylformamid und erhitzte 1 h unter Rückfluß. Man zog das überschüssige Thionylchlorid im Vakuum ab und destillierte den Rückstand im Ölpumpenvakuum.

Man erhielt 10,9 g (82 %) 4-Ethoxycarbonyl-2-methyl-oxazol-5-carbonsäurechlorid als gelbes Öl vom Sdp. 103 bis 105 $^{\circ}$ C/0,1 Torr. 1 H-NMR (250 MHz, CDCl₃): δ = 1,42 (t; 3H), 2,66 (s; 3H), 4,66 (q; 2H).

10 b) 4-Ethoxycarbonyl-2-methyl-oxazol-5-carbonsäure-tert.-butylamid

Zu 10,9 g (50,3 mmol) 4-Ethoxycarbonyl-2-methyl-oxazol-5-carbonsäurechlorid in 150 ml Dichlormethan tropfte man bei 0° C eine Lösung von 11,0 g (150 mmol) tert.-Butylamin in 20 ml Dichlormethan und rührte 12 h bei Raumtemperatur. Man nahm das Reaktionsgemisch in 200 ml Wasser auf, trennte die Phasen, wusch die organische Phase einmal mit gesättigter Natriumhydrogencarbonatlösung sowie gesättigter Natriumchloridlösung, trocknete über Magnesiumsulfat und zog das Solvens im Vakuum am Rotationsverdampfer ab.

Man erhielt 11,9 g (93 %) 4-Ethoxycarbonyl-2-methyl-oxazol-5-carbonsäure-tert.-butylamid als weißen Feststoff vom Smp. 152 bis 155 °C.

(Wirkstoffbeispiel 4.001).

Beispiel 5

25

5-tert.-Butylaminocarbonyl-2-methyl-oxazol-4-carbonsäure

Zu 7,4 g (29,1 mmol) 4-Ethoxycarbonyl-2-methyl-oxazol-5-carbonsäure-tert.-butylamid in 150 ml Ethanol und 50 ml THF tropfte man bei 0°C unter N₂ eine Lösung von 1,2 g (30,0 mmol) Natriumhydroxid in 50 ml Wasser. Man rührte 2 h bei 20°C, zog die Solventien am Rotationsverdampfer im Vakuum ab, nahm den Rückstand in 300 ml Wasser auf, stellte auf pH = 9 ein und extrahierte die wäßrige Phase dreimal mit je 100 ml Diethylether. Anschließend säuerte man mit 6N HCl auf pH = 2 an und extrahierte viermal mit je 150 ml Dichlormethan. Die organische Phase wurde über Natriumsulfat getrocknet und das Solvens im Vakuum abgezogen.

Man erhielt 6,1 g (93 %) 5-tert.-Butylaminocarbonyl-2-methyl-oxazol-4-carbonsäure als weißen Feststoff vom Smp. 186 bis 188 °C. (Wirkstoffbeispiel 4.002).

40 Beispiel 6

35

50

a) 4-Ethoxycarbonyl-2-methylthio-thiazol-5-carbonsäurechlorid

3,40 g (13,7 mmol) 4-Ethoxycarbonyl-2-methylthio-thiazol-5-carbonsäure wurden in 50 ml Thionylchlorid gelöst und bis zur Beendigung der Gasentwicklung zum Rückfluß erhitzt. Man entfernte überschüssiges Thionylchlorid im Vakuum und behielt 3,55 g (98 %) Säurechlorid als farbloses Öl zurück.

1H-NMR (CDCl₃, 250 MHz, TMS als interner Standard): 1,50 (t, J=7,0 Hz; 3H), 2,75 (s; 3H), 4,60 (q, J=7,0 Hz; 2H).

b) 4-Ethoxycarbonyl-2-methylthio-thiazol-5-carbonsäure-tert.-butylamid

3,50 g (13,2 mmol) 4-Ethoxycarbonyl-2-methylthio-thiazol-5-carbonsäurechlorid wurden in 20 ml Dichlormethan gelöst und bei 0°C zu einer Lösung von 3,20 g (44 mmol) tert.-Butylamin in 50 ml Dichlormethan getropft. Man ließ das Gemisch auf Raumtemperatur erwärmen, rührte 14 Stunden nach und gab dann 100 ml 10 %ige Salzsäure zu. Die organische Phase wurde abgetrennt, mit 50 ml Wasser gewaschen und über Natriumsulfat getrocknet. Man entfernte das Lösungsmittel im Vakuum und behielt

4,00 g (100 %) Produkt als gelben Kristallbrei zurück. 1 H-NMR (CDCl₃, 250 MHz, TMS als interner Standard): 1,45 (t, J=7,0 Hz; 3H), 1,45 (s; 9H), 2,75 (s; 3H), 4,50 (q, J=7,0 Hz; 2H), 9,90 (s, breit; 1H). (Wirkstoffbeispiel 2.007)

5

Beispiel 7

5-tert.-Butylaminocarbonyl-2-methylthio-thiazol-4-carbonsäure

4,00 g (13,2 mmol) 4-Ethoxycarbonyl-2-methylthio-thiazol-5-carbonsäure-tert.-butylamid wurden in 50 ml Wasser/Ethanol (2:1) gelöst, mit 0,82 g (14,6 mmol) Kaliumhydroxid in 10 ml Wasser versetzt und zwei Stunden zum Rückfluß erhitzt. Anschließend entfernte man das Lösungsmittelgemisch im Vakuum, nahm den Rückstand mit 50 ml Wasser auf und säuerte mit konzentrierter Salzsäure an. Das ausgefallene Produkt wurde abgesaugt und getrocknet.

Ausbeute: 3,40 g (94 %); Schmelzpunkt: 100 °C. (Wirkstoffbeispiel 2.005).

20 Beispiel 8

4-tert.-Butylaminocarbonyl-2-methoxy-thiazol-5-carbonsäure-acetonoximester

Zu einer Lösung von 3,1 g (12,0 mmol) 4-tert.-Butylaminocarbonyl-2-methoxy-thiazol-5-carbonsäure und 1,2 g (16,4 mmol) Acetonoxim in 100 ml Dichlormethan tropfte man bei Raumtemperatur 4,4 g (43,6 mmol) 4-Methylmorpholin sowie 1,5 g (12,3 mmol) 4-Dimethylaminopyridin und rührte 5 min. Anschließend fügte man 10,1 g einer 50 %igen Lösung von Propanphosphonsäureanhydrid in Dichlormethan (= 15,9 mmol) zu und erhitzte 7 h unter Rückfluß. Man engte ein, nahm den Rückstand in 100 ml Ethylacetat auf, extrahierte zweimal mit gesättigter Nariumhydrogencarbonatlösung sowie je einmal mit 5 %lger Zitronensäurelösung, gesättigter Natriumcarbonatlösung und gesättigter Natriumchloridlösung. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen.

Man erhielt 3,1 g (82 %) 4-tert.-Butylaminocarbonyl-2-methoxy-thiazol-5-carbonsäure-acetonoximester als weißes Pulver vom Smp. 128 bis 131 °C. (Wirkstoffbeispiel 1.011).

35

25

Beispiel 9

5-tert.-Butylaminocarbonyl-2-methyl-oxazol-4-carbonsäure-acetonoximester

Zu einer Lösung von 3,80 g (16,8 mmol) 5-tert.-Butylamino-carbonyl-2-methyl-oxazol-4-carbonsäure und 1,23 g (16,8 mmol) Acetonoxim in 40 ml Tetrahydrofuran tropfte man bei Raumtemperatur 3,46 g (16,8 mmol) Dicyclohexylcarbodiimid in 20 ml Tetrahydrofuran. Man rührte 14 h, saugte den ausgefallenen Niederschlag ab, zog das Solvens im Vakuum ab und chromatographierte den Rückstand an Kieselgel (Lösungsmittel: Cyclohexan:Ethylacetat (1:1)). Man erhielt 2,7 g (57 %) 5-tert.-Butylaminocarbonyl-2-methyloxazol-4-carbonsäure-acetonoximester als weißen Feststoff vom Smp. 107 bis 111 °C. (Wirkstoffbeispiel 4.003).

Die in den folgenden Tabellen aufgeführten Wirkstoffe wurden analog zu den voranstehenden Verbindungen hergestellt.

5		pm)]						Э Н),	1H),		2H),	1H.),						
10		Daten (°C); NMR (& in ppm)]), 7,55 (m; 3H),), 7,90 (s;	Î	I), 7,50 (d; 2H),		Î					
15		phys. Daten [Fp. (°C);	141-144	138-142	120-122	146-148	194-195	1,50 (s; 9H),	7,75 (m, 2H	16.60 (s; 1	1,50 (s; 9H),	7,65 (d, 2H),	16,50 (s; 1H)	137	101-107	128-131	128-131	
20		>	0	0	0	0	0	0			0			0	0	0	c) .
25	m stun	R5	I	I	r	r	I	Ŧ			I			r	-N=C (CH ₃) ₂	-N=C(CH3),	2 (CH3) J=N-	7 15 1
30	N N N N N N N N N N N N N N N N N N N	3 *	tertButyl	cyclo-Propyl	tertButyl	cyclo-Propyl	tertButyl	tertButyl			tertButyl			tertButyl	tertButyl	cvclo-Probvl	Joseph Puty]	tertbutyı
35	2	۳. 4	Ţ	υ [·]	ىد	U	4	t.			4			+	+		, ,	_
40		R 3	I	I	Ξ	I	I	I			thio H			I	-	· ·	: :	I
45		R1	Methyl	Methyl	Methoxy	Methoxy	Phenvl	Phenylthio	•		4-Cl-Phenylthio			Methylthio	Methyl	Mothoxy	Methoxy	Methoxy
50		Beispiel Nr.	1.001	1.002	1.003	1.004	1.005	1,006			1.007	•		1 008	000 1	1.003	1.010	1.011

5 10 15 20	-	γ phys. Daten {Fp. (°C); NMR (ð in ppm)]	-N=C(CH ₃) ₂ 0 0,66 (m; 2H), 0,89 (m; 2H), 2,10 (s, 3H), 2,12 (s; 3H), 2,77 (s; 3H), 2,94 (m; 1H), 8,23 (s; 1H)	-N=C(CH ₃) ₂ 0 143-146	0 71	26 0	0 93	76 0	0 100	•	0 109-110	0 128	0 132	0 142	0 148-150		0 150-153	0 158-161	0 162–164	
30	•	w W	cyclo-Propyl -N=C(tertButyl -N=C	tertButyl H	tertButyl H	tertButyl H	tertButyl H	tertButyl H	tertButyl H	tertButyl H	tertButyl H	tertButyl H	tertButyl H	tertButyl H		tertButyl H	tertButyl H	tertButyl H	
35		R3 R4	н	H ter	H ter	H ter	H ter	H ter	H ter	Ξ.	Ŧ	H ter	H ter	H ter	н ter		H ter	=	I	
40 45	Tabelle 1 (Fortsetzung)	R1	Methyl	Phenyl	n-Butyl-S-	iso-Propyl-S-	4-F-Benzyl	2-Phenyl-ethyl	Methoxy-methyl	2, 4-Cl, Cl-Benzyl	3-CF ₃ -Benzyl	Benzyl	tertButyl	cyclo-Propyl	4-C1-Phenoxy-	methyl	iso-Propy!	4-Phenoxy-phenyl	3,4,5-Trimeth-	[vznah-vvo
50	Tabelle 1	Beispiel Nr.	1.012	1.013	1.014	1.015	1.016	1.017	1.018	1.019	1.020	1.021	1.022	1.023	1.024		1.025	1.026	1.027	

6		n ppm)]				;2H), 4,40 (q;1H), 00 (s;1H),		1,50 (s;9H), 4,61 (s;2H), 7,25-7,45 (m;3H), 7,95 (s;1H), 16-70 (s;1H)
15		phys. Daten [Fp. (°C); NMR (& in ppm)]	201	199	147	1,51 (s;9H), 1,78 (d;2H), 4,40 (q;1H), 7,16-7,45 (m;5H), 8,00 (s;1H),	16-80 (s;1H)	1,50 (s;9H), 4,61 (s 7,95 (s;1H), 16-70 (
. 25		>	0	0	0	0		•
30		25	· I	Na S	I	I		x
35		84	tertButyl	tertButyl	tertButyl	tertButyl		tertButyl
40		R 3	I	I	I	I		I
45	Tabelle l (Fortsetzung)	R1	2-Pyridyl	_		1-Phenyl-ethyl	_	2,6-cl,cl-Benzyl H
55	Tabelle 1	Beispiel Nr.	1.028	1.029	1.030	1.031	٠	1.032

6									•	,5 (q, 2H),		1,45 (s,9H); 1,50 (d,6H); 3,80 ("sept.",1H);							
10			Daten (°C); NMR (å in ppm)]						•	, 75 (s, 3H); 4,		, 50 (d, бн); 3,							
20			phys. Daten [Fp. (°C); NMR	105-110	120	136	167	100	75-77	1,45 (t,3H); 2,75 (s,3H); 4,5 (q,2H), 9 9 (s,1H)	81	1,45 (s,9H); 1,	10,0 (s,1H)	7 8	105-106	115		171-071	143
25			>	0	0	0	0	0	0	o	0	0		0	0	0	Ċ	o	0
30		ጵ የ ቀ ይ	R5	Ŧ	I	Methyl	I	I	I	Ethyl	I	I		I	I	I	:	I	r
35	0=	N	R4	tertButyl	tertButyl	4-C1-Phenyl	4-Cl-Phenyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl		tertButyl	tertButyl	tertButyl	,	tertButyl	tertButyl
40			R 3	r	I	I	r	I	I	I	I	I		I	I	I		Ŧ	I
<i>4</i> 5 50			R1	Methoxy	Phenyl	Phenyl	Phenyl	Methylthio	4-Cl-Phenylthio	SCH ₃	n-Rutv1-5-	iso-Propyl-S-		cyclo-Propyl	iso-Propyl	3,4,5-Trimeth-	oxy-benzyl	Methoxy-methyl	tertButyl
55	Tabelle 2		Beispiel Nr.	2.001	. 2.002	2.003	2.004	2.005	2.006	2.007	2 008	2.009		2.010	2.011	2.012		2.013	2.014

55	45 50	40	35 _.	30	· 25	15	5
Tabelle 2	Tabelle 2 (Fortsetzung)						
Beispiel Nr.	R1	R 3	75 t	R5	>	phys. Daten [Fp. (°C); NMR (& in ppm)]	
7 015	200	æ	tertButyl	Ethyl	0	152-156	
2.016	cyclo-Propyl	: =	tertButyl	Ethyl	0	0,95-1,08 (m,;2H), 1,15-1,28 (m;2H), 1,45 (t;3H), 1,45 (s;9H), 2,28-2,42 (m;1H)	,28 (m;2H), 2,28-2,42 (m;1H)
						4,45 (q;2H), 9,92 (s;1H)	
2.017	Methoxy-methyl	I	tertButyl	I	0	1,45 (s;9H), 3,55 (s;3H), 4,75 (s;2H), 9 18-9 65 (s:1H), 9,98 (s:1H).	4,75 (s;2H), :1H).
2.018	Methoxy-methyl	I	tertButyl	Ethyl	0	1,42 (t;3H), 1,45 (s;9H), 3,50 (s;3H), 4,50 (a:2H), 4,75 (s:2H), 9,95 (s:1H)	3,50 (s;3H), 9,95 (s:1H)
2.019	4-F-Benzyl	I	tertButyl	x	0	1,45 (s;9H), 4,30 (s;2H), 6,95-7,15 (m;2H) 7,20-7,35 (m;2H), 9,95 (s;1H)	6,95-7,15 (m;2H);1H)

5																					
10			Daten (°C); NMR (å in ppm)]																		
15			phys. Daten [Fp. (°C); NMR	152-157	30-131	.35-138	169-172	117	151-153	109-112	94-10	107-109	87-90	118-120	121-125	62-65	62-92	101-104	148-151	103-106	126_120
20			,		_	0	_ _	0	0	0	0	0	~ 0	0	0	0	0	0	0	0	
25 30	m	4 m	R5	I	I	I	I	I	I		I	-N=C(CH ₃) ₂	I	-N=C(CH ₃) ₂	3						
35			R4	tertButyl	tertButyl	cyclo-Propyl	3-CF ₃ -Phenyl	tertButyl	tertButyl	cyclo-Propyl	iso-Propyl	tertButyl	cyclo-Propyl	3-CF ₃ -Phenyl	tertButyl	cyclo-Propyl	iso-propyl	tertButyl	iso-Propyl	iso-Propyl	
40			R 3	I	I	I	I	I	I	I	Ŧ	I	r	I	I	I	I	I	I	I	;
45			R1	Methyl	Ethyl	Ethyl	Ethyl	cyclo-Propyl	iso-Propyl	iso-Propyl	iso-Propyl	Ethyl	Ethyl	Ethyl	iso-Propyl	iso-Propyl	iso-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	, ,
50 55	Tabelle 3		Beispiel Nr.	3.001	3.002	3.003	3.004	3.005	3.006	3.007	3.008	3.009	3.010	3.011	3.012	3.013	3.014	3.015	3.016	3.017	

5								(t;1H),	(bs;1H,NH)															
10		n ppm)]						s;9н), 2,61	(d;2H), 8,46															
15		phys. Daten [Fp. (°C); NMR (0 in ppm)]						1,42 (d:6H), 1,44 (s:9H),	;1H), 5,00 (_						-			_	
20		phys. Daten [Fp. (°C);	108-110	213-215	103-106	93-95	107-110	1.42 (d	3, 18 (m;1H),	203-206	144-146	217-218	137-139	126-128	149-154	160-164	121-125	117-119	119-122	137-139	108-110	69-72	120-123	142-145
25		>	0	0	0	0	0	0		0	0	0	0 [0	0	0	0	0	0	0	0	0	0	0
30		ጽያ	-N=C (CH ₃) ₂	I	I	-N=C (CH ₃) ₂	-N=C(cyclo-	Propyl) ₂ CH,-C≡CH	7	I	I	I	4-CH ₃ 0-Phenyl	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	-N=C (CH ₃) ₂	-N=C (CH ₃) ₂	I	-N=C(CH ₃) ₂	-N=C (CH ₃) ₂	I	-N=C (CH ₃) ₂	I	I
35		R4	cyclo-Propyl	4-Cl-Phenyl	iso-Propyl	iso-Propyl	tertButyl	tert -Rutvl		tertButyl	iso-Propyl	cyclo-Propyl	tertButyl	4-Cl-Phenyl	tertButyl	cyclo-Propyl	tertButyl	cyclo-Propyl	cyclo-Propyl	iso-Propyl	tertButyl	tertButyl	cyclo-Propyl	$2, 4-(CH_3)_{2}$
40		ж3	¥	I	I	I	I	ı	:	r	I	I	=	r	I	Ŧ	I	I	I	I	I	I	I	I
45 50	Tabelle 3 (Fortsetzung)	R1	cyclo-Propyl	cyclo-Propyl	Ethyl	Ethyl	Ethyl	[vaord-osi	, fdo 1 oc 1	Pheny 1	Phenyl	Pheny 1	iso-Propyl	cyclo-Propyl	Phenyl	Pheny 1	cyclo-Hexyl	cyclo-Hexyl	cyclo-Hexyl	Phenyl	n-Propyl	n-Propy1	n-Propyl	n-Propyl
55	Tabelle 3 (Beispiel Nr.	3.019	3.020	3.021	3.022	3.023	3 03%	3.024	3.025	3.026	3.027	3.028	3.029	3.030	3.031	3.032	3.033	3.034	3.035	3.036	3.037	3.038	3.039

		1				
5						
10		phys. Daten [Fp. (°C); NMR (ð in ppm)]				
20		phys. Daten [Fp. (°C);	104-109 176-178 132-134	114-118	125-128 123-126	124-127
		>	000	0	0 0	0
25 30		R5			-N=C(CH ₃) ₂ -N=C(CH ₃) ₂	-N=C (CH ₃) ₂
35		4.4	tertButyl tertButyl cyclo-Propyl	-CH-CH ₃ cyclo-Propyl	tertButyl cyclo-Propyl	-CH-CH ₃ cyclo-Propyl
40		R3	= = =	I	I I	I
45	Tabelle 3 (Fortsetzung)	r8.	Methoxymethyl tertButyl tertButyl	tertButyl	tertButyl tertButyl	tertButyl
50	abelle 3	Beispiel Nr.	3.040 3.041 3.042	3.043	3.044	3.046
55	-	m Zi	ए। ए। ए।	4.1	., .,	

	•		1					
5			ppm)]					
10			phys. Daten [Fp. (°C); NMR (å in ppm)]					
15			phys. Daten [Fp. (°C); 1	152-155	186-188	107-111	155-166	230-232.
20			-	0	0	0	0	0
25		. አ ት	R 5	Ethyl	I	-N=C(CH3)2	Ethyl	I
30			R 4	ertButyl	tertButyl	tertButyl	tertButyl	tertButyl
35		. %		-	_			_
40			R 3	I	I	I	I	I
45			R1	Methyl	Methy!	Methyl	Phenyl	Phenyl
50		Tabelle 4	Beispiel R ¹ Nr.	, 001	4,002	4.003	7007	4.005

Anwendungsbeispiele

Die herbizide Wirkung der Oxazol- bzw. Thiazolcarbonsäureamide der Formeln la und lb ließ sich durch Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zwecke der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bei einer Wuchshöhe von 3 bis 15 cm mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 1,0 kg/ha a.S.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10-25°C bzw. 20-35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name

Cassia tora
Chenopodium album
Chrysanthemum coronarium
Ipomoea spp.
Triticum aestivum
Veronica spp.

Deutscher Name
Gumüse-Kassie
Weißer Gänsefuß
Kronenwucherblume
Prunkwindearten
Sommerweizen
Ehrenpreisarten

30

35

5

10

15

20

25

Mit 1,0 kg/ha a.S. im Nachauflaufverfahren eingesetzt, lassen sich mit den Beispielen 1.001, 1.003, 1.004, 1.009, 1.010, 1.011, 3,002, 3,005 und 3,024 breitblättrige unerwünschte Pflanzen sehr gut bekämpfen. Verbindungen 1.001, 1.003 und 1.009 zeigen gleichzeitig Kulturpflanzenverträglichkeit an Weizen. Verbindung 3.005 wird sehr gut von der Kulturpflanze Mais toleriert.

Ansprüche

1. Oxazol- bzw. Thiazolcarbonsäureamide der Formeln la und lb

45

in denen die Substituenten folgende Bedeutung haben:

X Sauerstoff oder Schwefel;

R¹ Wasserstoff; Halogen; C₁-C₆-Alkyl, welches ein bis fünf Halogenatome und/oder einen oder zwei der folgenden Reste tragen kann: C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio oder Cyano;

Benzyl, welches ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro;

C₃-C₈-Cycloalkyl, welches ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder Halogen; C₂-C₅-Alkenyl, welches ein bis drei der folgenden Reste tragen kann: Halogen, C₁-C₃-Alkoxy und/oder ein Phenyl, das seinerseits eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro;

- C₂-C₆-Alkinyl, welches ein bis drei der folgenden Reste tragen kann: Halogen oder C₁-C₃-Alkoxy und/oder ein Phenyl, das seinerseits eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro;
- C₁-C₄-Alkoxy; C₁-C₄-Alkylthio; C₁-C₄-Halogenalkoxy; C₁-C₄-Halogenalkylthio; Phenoxy oder Phenylthio, welches ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro;
- ein 5- bis 6-gliedriger heterocyclischer Rest, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei der Ring eln oder zwei der folgenden Reste tragen kann: C₁-C₃-Alkyl, Halogen, C₁-C₃-Alkoxy oder C₁-C₃-Alkoxycarbonyl;
 - Phenyl, welches eine bis drei der folgenden Gruppen tragen kann: C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, Halogen, Nitro und Cyano, R² Formyl, 4,5-Dihydrooxazol-2-yl oder den Rest -COYR⁵;
- 15 Y Sauerstoff oder Schwefel;
 - R5 Wasserstoff;
 - C₁-C₆-Alkyl, welches ein bis fünf Halogenatome oder Hydroxygruppen und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkoxy, C₂-C₄-Alkoxy-C₁-C₄-alkoxy, Cyano, Trimethylsilyl, C₁-C₃-Alkylthio, C₁-C₃-Alkylamino, C₁
- 20 C₃-Alkoxycarbonyl, C₁-C₃-Dialkylaminocarbonyl, C₁-C₃-Dialkoxyphosphonyl, Alkaniminoxy, Thienyl, Furyl, Tetrahydrofuryl, Phthalimido, Pyridyl, Benzyloxy, Benzoyl, wobei die cyclischen Reste ihrerseits eine bis drei der folgenden Gruppen tragen können: C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder Halogen;
 - Benzyl, das eine bis drei der folgenden Gruppen tragen kann: C₁-C₃-Alkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenal-kyl, Halogen, Nitro und Cyano;
- 25 C₃-C₈-Cycloalkyl;
 - Phenyl, das eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxycarbonyl, Halogen, Nitro und Cyano;
 - C₃-C₈-Alkenyl, C₅-C₆-Cycloalkenyl oder C₃-C₈-Alkinyl, wobei diese Reste eine der folgenden Gruppen tragen können: Hydroxy, C₁-C₄-Alkoxy, Halogen oder einen Phenylring, welcher seinerseits eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, Halogen, Nitro und Cyano;
 - einen fünf- bis sechsgliedrigen heterocyclischen Rest enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff oder einen Benzotriazolrest;
 - Phthalimido; Tetrahydrophthalimido; Succinimido; Maleinimido;
- ein Äquivalent eines Kations aus der Gruppe der Alkali- oder Erdalkalimetalle, Mangan, Kupfer, Eisen, Ammonium und substituiertes Ammonium;
 - einen Rest -N = CR6 R7;
 - R^5 , R^7 Wasserstoff; C_1 - C_4 -Alkyl; C_3 - C_6 -Cycloalkyl; Phenyl oder Furyl oder zusammen eine Methylenkette der Formel - $(CH_2)_m$ mit m=4 bis 7 Kettengliedern;
- R³ Wasserstoff; C₁-C₆-Alkyl, das einen bis drei der folgenden Substituenten tragen kann: Hydroxy, Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder Di-C₁-C₃-Alkylamino;
 - C₃-C₈-Cycloalkyl, welches ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, Halogen und C₁-C₄-Halogenalkyl;
 - R⁴ Hydroxy; C₁-C₄-Alkoxy;
- C₁-C₆-Alkyl, das eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Dialkylamino, Halogen, C₃-C₈-Cycloalkyl oder Phenyl, welches seinerseits ein bis drei der folgenden Reste tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder C₁-C₄-Halogenalkylthio;
 - C₃-C₈-Cycloalkyl, das eine bis drei der folgenden Grupen tragen kann: C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
- C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Halogen, Nitro oder Cyano; C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl, das ein- bis dreimal durch Halogen und/oder einmal durch Phenyl substituiert sein kann, wobei der Phenylring seinerseits eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro;
- ein 5- bis 6-gliedriger heterocyclischer Rest enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, welcher ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl oder Halogen;
 - Phenyl, das eine bis vier der folgenden Gruppen tragen kann: C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-

Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Nitro, Cyano, Formyl, C₁-C₄-Alkanoyl, C₁-C₄-Halogenalkanoyl oder C₁-C₄-Alkoxycarbonyl;

Naphthyl, das ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein kann, oder

F3 und R4 gemeinsam einen Rest der Struktur -(CH₂)_n-Y_p-(CH₂)_q-, wobei n und q 1, 2 oder 3, p 0 oder 1 und Y Sauerstoff, Schwefel oder N-Methyl bedeuten oder den Rest der Formel -(CH₂)₃-CO-bilden, sowie deren umweltverträgliche Salze,

wobei in der Formel Ib X nicht Schwefel bedeutet, wenn R¹ 3-Pyridyl, R² CO₂CH₂CH₃ oder R³ Wasserstoff bedeutet, und wobei in der Formel Ia X nicht Schwefel oder R¹ nicht Thien-2-yl bedeutet, wenn YR⁵ für OH steht und R³ Wasserstoff und R⁴ Methyl bedeutet.

- 2. Oxazol- oder Thiazolcarbonsäureamide der Formeln la und Ib nach Anspruch 1, in denen R³ Wasserstoff bedeutet.
- 3. Oxazol- oder Thiazolcarbonsäureamide der Formeln la und lb nach Anspruch 1, in denen die Substituenten folgende Bedeutung haben:
- R¹ Wasserstoff; C₁-C₄-Alkyl; C₁-C₄-Alkoxy; C₁-C₄-Halogenalkoxy; C₁-C₄-Alkylthio oder C₁-C₄-Halogenalkylthio;

R² einen Rest -COYR⁵;

R⁵ Wasserstoff; Phthalimido; Succinimido; Maleinimido oder ein Rest -N = R⁶R⁷

 R^6 , R^7 Wasserstoff; C_1 - C_4 -Alkyl und C_3 - C_6 -Cycloalkyl oder zusammen eine Methylenkette der Formel -- $(CH_2)_m$ - mit m=4 bis 7 Kettengliedern,

R3 Wasserstoff und

25

30

35

40

50

R⁴ C₁-C₄-Alkyl oder C₃-C₈-Cycloalkyl.

4. Verfahren zur Herstellung der Verbindungen la und Ib gemäß Anspruch 1, in denen R^2 CO_2R^5 und R^5 C_1 - C_6 -Alkyl bedeutet, dadurch gekennzeichnet, daß man einen Diester der Formel II

in an sich bekannter Weise mit einem Äquivalent einer wäßrigen Base zu einem Gemisch der Monoester Illa und Illb

hydrolysiert und IIIa und IIIb danach getrennt oder im Gemisch zunächst in das Halogenid oder eine andere aktivierte Form der Carbonsäure überführt und diese Derivate anschließend mit einem Amin der Formel IV

amidiert.

5. Verfahren zur Herstellung der Verbindungen la und Ib gemäß Anspruch 1, in denen X Schwefel und R² CO₂H bedeutet, dadurch gekennzeichnet, daß man ein Dicarbonsäureanhydrid der Formel V

in an sich bekannter Weise mit einem Amin der Formei IV gemäß Anspruch 4 zu den Isomeren la und Ib umsetzt und anschließend das Gemisch in die Isomeren auftrennt.

6. Verfahren zur Herstellung der Verbindungen la und Ib gemäß Anspruch 1, in denen R¹ nicht Halogen und R² Carboxyl oder Formyl bedeutet, dadurch gekennzeichnet, daß man eine Carbonsäure der Formel Illc bzw. Illd

in an sich bekannter Weise zunächst gemäß Anspruch 4 aktiviert und amidiert und das so erhaltene Amid Vla bzw. Vlb

anschließend in Gegenwart einer Base mit einem Carboxylierungs- oder einem Formylierungsreagens umsetzt.

- 7. Verfahren zur Herstellung der Verbindungen la und Ib gemäß Anspruch 1, in denen R^2 CO_2H bedeutet, dadurch gekennzeichnet, daß man ein Carbonsäureamid la bzw. Ib in dem R^2 CO_2R^5 und R^5 C_1 - C_6 -Alkyl bedeutet in an sich bekannter Weise mit einem Äquivalent einer wäßrigen Base hydrolysiert.
- 8. Verfahren zur Herstellung der Verbindungen la und lb, in denen R^2 COYR⁵ bedeutet, dadurch gekennzeichnet, daß man eine entsprechende Carbonsäure la bzw. lb (R^2 = CO_2H) gemäß Anspruch 4 aktiviert und anschließend in an sich bekannter Weise mit einer Verbindung VII HYR^5 VII

o umsetzt.

5

15

20

25

30

9. Verfahren zur Herstellung der Verbindungen la und lb, in denen R^2 4,5-Dihydrooxazol-2-yl bedeutet, dadurch gekennzeichnet, daß man eine entsprechende Carbonsäure la bzw. lb ($R^2 = CO_2H$, CO_2R ; $R' = C_1-C_4-Alkyl$) in an sich bekannter Weise mit 2-Aminoethanol VIII

umsetzt.

10. Herbizides Mittel, enthaltend neben inerten Zusatzstoffen mindestens ein Oxazol- bzw. Thiazolcarbon-50 säureamid der Formel la bzw. Ib

in der die Substituenten die in Anspruch 1 gegebene Bedeutung haben, und X Schwefel bedeuten kann, wenn R^1 3-Pyridyl, R^2 $CO_2CH_2CH_3$ und R^3 Wasserstoff bedeutet, oder wenn R^1 Thien-2-yl, YR^5 Hydroxy, R^3 Wasserstoff und R^4 Methyl bedeutet.

- 11. Herbizides Mittel nach Anspruch 10, enthaltend neben mindestens einem Oxazol- bzw. Thiazolcarbon-säureamid der Formel la bzw. Ib und inerten Zusatzstoffen weitere wirksame Bestandteile.
- 12. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man die unerwünschten Pflanzen und/oder die von unerwünschten Pflanzenwuchs freizuhaltende Fläche mit einer herbizid wirksamen Menge eines Oxazol- bzw. Thiazolcarbonsäureamids der Formel la bzw. Ib behandelt.