# 8. b – HTTP

### **Out Layers**

Layer 7: HTTP

c.

| Layer7 |  |  |
|--------|--|--|
| Layer6 |  |  |
| Layer5 |  |  |
| Layer4 |  |  |
| Layer3 |  |  |
| Layer2 |  |  |
| Layer1 |  |  |

#### **Out Layers**

| Layer 7: HTTP                             |               |
|-------------------------------------------|---------------|
| Layer6                                    |               |
| Layer5                                    |               |
| Layer 4: TCP Src Po<br>Port: 80           | rt: 1032, Dst |
| Layer 3: IP Header 192.168.1.10, Dest.    |               |
| Layer 2: Ethernet II<br>00D0.97EA.B9B2 >: |               |
| 000D.BD3B.E055                            |               |
| Layer 1: Port(s):                         |               |

d.

Layer 4: TCP Src Port: 1032, Dst Port: 80

e.

Layer 3: IP Header Src. IP: 192.168.1.10, Dest. IP: 192.168.1.2

## f. 1. Wspólne informacje:

Src IP: 192.168.1.10Dest IP: 192.168.1.2

## Porównanie z zakładką OSI Model:

Te same dane (adres źródłowy i docelowy IP) widzimy w warstwie **3 – Network (IP Header)** w zakładce OSI Model.

#### Warstwa:

→ Warstwa 3 (Network Layer)

## 2. Wspólne informacje:

• Source Port: 1032

• Destination Port: 80

## Porównanie z zakładką OSI Model:

W OSI Model te same dane widnieją w Layer 4: TCP Src Port: 1032, Dst Port: 80

#### Warstwa:

→ Warstwa 4 (Transport Layer)

## 3. Pole "Host":

Zazwyczaj w sekcji HTTP PDU Details pojawia się linia np.

Host: 192.168.1.2

#### **Warstwa OSI:**

→ Warstwa 7 (Application Layer)

### g. 1.

Główne różnice występują w warstiwe 4

| Layer 4: TCP Src Port: 1033, Dst<br>Port: 80 | Layer 4: TCP Src Port: 80, Dst Port: 1033 |
|----------------------------------------------|-------------------------------------------|
|----------------------------------------------|-------------------------------------------|

g. 2.



j. Zakładki, które zostały wyświetlone to **OSI Model** i **Inbound PDU Details**. Wyświetlają się tylko te dwie, ponieważ PC0 **odbiera** (Inbound) ostatnią ramkę, deenkapsulując ją na warstwach OSI, a po jej przetworzeniu nie wysyła już żadnych dalszych danych (brak Outbound PDU).

Część 2.

b.

DNS, TCP, HTTP,

d.



#### e. Server



f.



g. Celem tego zdarzenia jest **rozpoczęcie formalnego zamknięcia połączenia TCP** z serwerem.

Komputer PC0 wysyła segment **FIN+ACK** z numerem sekwencyjnym \$118\$ i numerem potwierdzenia (ACK) \$557\$, co sygnalizuje serwerowi, że **nie ma więcej danych do wysłania** i inicjuje czterostopniowy proces rozłączania.

| Numer portu, na którym nasłuchuje serwer WWW (Web Server) na żądania stron WW | /W, |
|-------------------------------------------------------------------------------|-----|
| to <b>80</b>                                                                  |     |
|                                                                               |     |
|                                                                               |     |