北京工业大学 2022 ——2023 学年第 一 学期

《 模拟电子技术 》 考试试卷 A 卷

考试说明:_	考试时间:	95 分钟	考试形式:	开卷	
	适用专业:	通信工程、	电子信息工程 (实验班)、	电子信息工程	

承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过 程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反, 愿接受相应的处分。

承诺人:	学号:	班号:

注: 本试卷共 九 大题, 共 7 页, 满分100分, 考试时必须使用统一答题纸或草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	_	_	三	四	五.	六	七	八	九	总成绩
满分	20	14	10	10	8	10	12	12	4	
得分										

得	分	

一、选择题(每题2分,共20分)

1. 括号中正确的是 。

在纯净本征半导体中掺入三价硼元素后,形成____(a. P型, b. N型)半导体;其电导率 (c. 增大, d. 减小, e. 不变); 这种半导体的多数载流子是_____(f. 空穴, g. 自由电子)。

A. a c f

B. bcf

C. a e f

D. a c g

2. 括号中正确选择是。

A. 增大,减小

B. 增大,不变

C. 减小,不变 D. 增大,增大

3. 在图示稳压电路中, 稳压管的稳定电压 $U_Z=6\,\mathrm{V}$, 最大耗散功率 $P_{ZM}=240\,\mathrm{mW}$, 最小稳定电流 I_Z = 5 mA,正向导通电压 U_D = 0.7 V。 U_I = 15 V,R = 2 k Ω , R_L = 1 k Ω ,则 U_O = _____。

A. 6V

B. 5V

C. 0.7V

D. 0V

第1页共7页

4. 下列计算图示电路的输出电阻 R₀的公式正确的是。。

- A. $R_o = R_e / / \frac{r_{be} / / R_b}{1 + \beta}$ C. $R_o = R_e / / \frac{r_{be}}{1 + \beta}$
- B. $R_0 = R_e // R_L$
- D. $R_{\rm o} = R_{\rm e} / / \frac{r_{\rm be} + R_{\rm b}}{1 + \beta}$
- 5. 为了避免 50 Hz 电网电压的干扰进入放大器,应选用_____ 滤波器。
 - A. 低通
- B. 高通
- C. 带通
- D. 带阻

- 6. 下列哪种说法是错误的。
 - A. 引入直流负反馈可以稳定静态工作点。
 - B. 引入电流负反馈可以提高放大电路的输入电阻。
 - C. 引入并联负反馈可以减小放大电路的输入电阻。
 - D. 引入交流负反馈可以展宽频带。
- 7. 阻容耦合放大电路在高频信号作用时放大倍数数值下降的原因是
 - A. 半导体管的非线性特性。
 - B. 耦合电容和旁路电容的存在。
 - C. 半导体管极间电容和分布电容的存在。
 - D. 放大电路的静态工作点不合适。
- 8. 如下图所示各电路中,不能产生正弦波振荡的电路是

9. 如图所示电路,为产生正弦波振荡, R'w 阻值应满足

10. 在下图所示电路中,已知变压器副边电压 u_2 有效值为 U_2 , R_L C≥3T/2(T 为电网电压周期)。若输 出电压平均值 $U_{o(AV)} = \sqrt{2}U_2$,则电路为此时的工作状态可能为_____。

- A. 电路空载
- B. $D_1 \sim D_4$ 中一只管子开路
- C. 电容 C 开路 D. 工作正常

- 二、填空题(每空2分,共14分)
- 1. 直接耦合与阻容耦合多级放大电路之间主要不同点是__
- A. 所放大的信号不同
- B. 交流通路不同
- C. 直流通路不同
- 2. 在两边完全对称的差分放大电路中,若两输入端电压 $u_{I1} = -u_{I2} = 1 \text{ mV}$,则双端输出电压 $u_{O} = 100$ mV; 若 $u_{II} = 1 mV$, $u_{I2} = 0 mV$,则差分放大电路的双端输出电压 $u_{O} = ___ mV$ 。
- 3. 已知图示电路中三只晶体管的 $\beta = 100$, $U_{BEQ} = 0.7 \text{ V}$,晶体管 T_3 集电结静态电流约 $I_R = 100 \text{ mA}$, $R_b = 1000 \Omega$,静态时通过负载 R_L 的电流 $I_{R_I} = 50$ mA,则 U_{IQ} 约为_____。

4. 已知某放大电路的波特图如图所示。该放大电路为_____级放大电路(填入一、两、三……), 当 f = 10 Hz 时,附加相移为____。

- 5. 预使放大电路实现电压-电流转换功能,应在放大电流中引入_____负反馈。
- 6. 某运算电路如图所示,集成运放和模拟乘法器均为理想元件,且 $u_I < 0$,则模拟乘法器的乘法因子 k 的极性是______(填入 k > 0 或 k < 0)。

得 分

三、分析计算题(10分)

已知图示电路中晶体管的 β = 100, $r_{bb'}$ = 100 Ω , U_{BEQ} = 0.7 V, R_L = 4.7 k Ω ,要求电路静态 V_{CC} = 12 V, I_{CQ} = 1.3 mA, U_{CEQ} = 5.9 V,电容的容量足够大,对交流信号可视为短路。

- (1) 估算 Rb、Rc的值;
- (2) 画出电路的交流等效电路;
- (3) 求输入电阻 R_i 、输出电阻 R_o 、电压放大倍数 \dot{A}_u 。

得 分

四、分析计算题(10分)

如图所示电路中, 设集成运放均为理想集成运放。

- (1) 写出输出电压 u_0 与输入电压 u_{II} 、 u_{I2} 的运算关系式;
- (2) 若以 u_{11} 与 u_{12} 作为输入端,则电路的输入电阻为多少?
- (3) 该电路可以等效成差分放大电路中四种接法的哪一种?

得 分

五、分析计算题(8分)

某放大电路如下图所示。

- (1) 试合理连线,引入合适组态的交流负反馈,以减小放大电路从信号源索取的电流,并增强带负载能力;
- (2) 在深度负反馈条件下,写出该放大电路的电压放大倍数表达式。

资料由公众号【工大喵】收集整理并免费分享

得 分

六、分析计算题(10分)

电路如下图所示,已知 $R_1 = R_2 = 20$ kΩ, $R_3 = 1$ kΩ, $R_W = 10$ kΩ,C = 0.1 μF, $\pm U_Z = \pm 6$ V。

uo1的占空比为 25%。

- (1) 求出 A_1 构成的滞回比较器的阈值电压± U_T , 并画出电压传输特性;
- (2) 求出 R_{W1} 和 R_{W2} 数值,并求解 u_{O1} 的高电平时间 T_1 和低电平时间 T_2 ;
- (3) 画出 uo1 和 uo的波形,并在波形中标出幅度和周期。

得 分

七、分析计算题(12分)

电路如下图所示。已知 T_1 和 T_2 的饱和管压降 $|U_{CES}|=2$ V,直流功耗可忽略不计,集成运放为理想运放。求解以下问题:

- (1) D₁和 D₂的作用是什么?
- (2) 负载上可能获得的最大输出功率 P_{om} 和电路的转换效率 η 各为多少?
- (3) T_1 和 T_2 的两个极限参数 I_{CM} 、 P_{CM} 至少应选多少?
- (4) 电路中引入了哪种组态的交流负反馈?若最大输入电压的有效值为 1 V,则为使负载获得最大输出功率 P_{om} ,电阻 R_2 至少应取多少欧姆?

得 分

八、分析计算题(12分)

直流稳压电源如图所示。已知 U_1 的波动范围为 10%,调整管的饱和管压降 $U_{CES}=1.5~\mathrm{V}$,

输出电压 U_0 的调节范围为 $5 \sim 20 \text{ V}$, $R_1 = 1 \text{ k}\Omega$, D_Z 的稳压值 $U_Z = 4 \text{ V}$ 。

- (1) 说明电路的整流电路、滤波电路、调整管、基准电压电路、比较放大电路、采样电路等部分各由哪些元件组成。
- (2) 标出集成运放的同相输入端和反相输入端。
- (3) R₂和 R_W 取值各为多少?
- (4) 考虑了 U₁的波动范围, U₁额定值的最小值为多少?

得 分

九、设计题(4分)

工作于室温条件下的某种型号的温度控制设备(比如电冰箱),它的设定温度为 4 度,当温度高于设定温度时开启制冷功能,当温度低于设定温度关闭制冷功能。但在实际的控制实施中,为了避免启停动作的频繁发生,需要增加一定温度容差,要求容差的大小为±1 度。温度的传感器为热电阻 Pt1000,温度对应电阻变化的数值如表 1 所示。按照如下要求完成可行的温度控制方案,参数可合理近似估算。(PT1000 铂热电阻分度表读数如下列例子:-11 度对应电阻值 956 欧;8 度对应电阻值 1031 欧)

- (1)温度采集电路为文氏桥电路,设计桥臂电阻和电压源的大小,画出电路图。
- (2) 文氏桥电路采集的信号较弱,设计合适的放大电路结构和参数,画出电路图。
- (3)如果输出负电平信号制冷功能开启,设计合适的驱动机制,并画出整个温控方案的电路图(包括前两个要求的电路图)。

PT1000 铂热电阻分度表										
温度	0	1	2	3	4	5	6	7	8	9
(度)	电阻值(欧姆)									
-20	921	917	913	909	905	901	897	894	890	886
-10	960	956	953	949	945	941	937	933	929	925
0	1000	996	992	988	984	980	976	972	968	964
0	1000	1003	1007	1011	1015	1019	1023	1027	1031	1035
10	1039	1042	1046	1050	1054	1058	1062	1066	1070	1074

第7页共7页