HOWEVER, the formulae we use for a sample and a population are different!

Most researchers almost never work with population data.

We use samples to infer the population's variance.

	Population	Estimate Based on a Sample
Variance	$\sigma^2 = \frac{\Sigma (X - \mu)^2}{N}$	$s^2 = \frac{\sum (X - \overline{X})^2}{n - 1}$
	where Σ = to sum X = a score in the distribution μ = the population mean N = the number of cases in the population	where Σ = to sum X = a score in the distribution \overline{X} = the sample mean n = the number of cases in the sample
Standard Deviation	$\sigma = \sqrt{\frac{\Sigma(X - \mu)^2}{N}}$	$s = \sqrt{\frac{\Sigma (X - \overline{X})^2}{n - 1}}$
	where Σ = to sum X = a score in the distribution μ = the population mean N = the number of cases in the Population	where Σ = to sum X = a score in the distribution \overline{X} = the sample mean n = the number of cases in the sample

HOWEVER, the formulae we use for a sample and a population are different!

Sample variance tends to be lower than the population variance that is purportedly estimates (i.e., undervalues the penalty).

Thus, we divide by n-1 (n is the data in sample) instead of n.

A smaller number in the denominator yields a higher variance.

	Population	Estimate Based on a Sample
Variance	$\sigma^2 = \frac{\Sigma (X - \mu)^2}{N}$	$s^2 = \frac{\sum (X - \overline{X})^2}{n - 1}$
	where Σ = to sum X = a score in the distribution μ = the population mean N = the number of cases in the population	where Σ = to sum X = a score in the distribution \overline{X} = the sample mean n = the number of cases in the sample
Standard Deviation	$\sigma = \sqrt{\frac{\Sigma (X - \mu)^2}{N}}$	$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$
	where Σ = to sum X = a score in the distribution μ = the population mean N = the number of cases in the Population	where Σ = to sum X = a score in the distribution \overline{X} = the sample mean n = the number of cases in the sample

Thus, we divide by **n-1** (**n** is the data in sample) instead of **n**.

A smaller number in the denominator yields a higher variance.

Standard Deviation $\sigma = \sqrt{\frac{\Sigma(X - \mu)^2}{N}}$ A = the population mean A = the number of cases in the population $A = \sqrt{\frac{\Sigma(X - \mu)^2}{N}}$ $A = \sqrt{\frac{\Sigma(X - \mu)^2}{N}}$

Population

sample