Synthetic Control Method

Professor Song YaoOlin Business School

Customer Analytics

Diff-in-Diff Revisit

EXAMPLE: Seattle Soda Tax, using Bellevue as the Control Group

- One key assumption: Parallel Trends (another one is SUTVA)
 - ▶ The treated and control groups must follow similar trends in the outcome variable before the intervention.
 - ▶ Key Implication: Any post-treatment differences can be attributed to the treatment rather than pre-existing trends.
- Testing:
 - ▶ Visual inspection: Plot the outcome over time for both groups
 - ▶ Statistical tests: Regressions using pre-treatment periods
- However
 - ▶ This test may not always pass—invalid control
 - ► Even if it passes, we cannot be 100% sure (merely a necessary condition for being a good control unit)

Matching Revisit

EXAMPLE: Matching students with and without emails

- Two key requirements/assumptions
 - Match on observables: Observed features can accout for confounders
 - ▶ Sufficient overlap/balance in features/propensity scores between the two groups.
- These two requirements may not always satisfy
 - ▶ Poor balance/match and inaccurate causal inference results

3

Synthetic Control Method (SCM)

EXAMPLE: California Tabacco Tax 1989

- California Proposition 99 (the only state at the time)
 - ▶ Increasing cigarette taxes 1989 to discourage smoking
- Goal: Did the tax reduce per capita cigarette consumption?
 - ▶ Data: Per capita consumption (and other info) of each state from 1970-2000

	state	year	cigsale	Inincome	beer	age15to24	retprice
741	California	1989	82.400002	10.142313	23.700001	0.153525	126.400000
17	California	1970	123.000000	NaN	NaN	0.178158	38.799999
110	Connecticut	1972	110.800000	9.981137	NaN	0.166379	51.299999
224	Indiana	1975	162.399990	9.743661	NaN	0.183795	36.700001
83	Ohio	1972	124.400000	9.779579	NaN	0.175860	38.400002
330	West Virginia	1978	131.600010	9.687846	NaN	0.176877	53.900002
765	Wisconsin	1989	100.300000	9.965262	30.200001	0.149157	138.300000
631	Rhode Island	1986	136.300000	10.002565	26.000000	0.168093	101.800000
725	Virginia	1988	129.500000	10.078459	23.299999	0.160865	102.100000
963	North Carolina	1994	112.700000	9.966932	20.799999	NaN	135.899990

Synthetic Control Method (SCM)

EXAMPLE: California Tabacco Tax

California: Treated/Intervened; Other states: Control (often called donor units)

5

Test using Regressions with Interactions

```
for state in donor_states:
   # Create subset of data for California and current control state
   state_data = df[df['state'].isin(['California', state])].copy()
   # Create dummy for California
   state_data['California'] = (state_data['state'] == 'California').astype(int)
   # Create formula for regression
   formula = 'cigsale ~ year*California'
   # Run regression
   model = sm.OLS.from_formula(formula, data=state_data)
    results = model.fit()
```

Significant year*California interactions by control state:

Rhode Island: True

Tennessee: True

All interaction terms btw year and California are significant. Indiana: True

What does it imply? Nevada: True

Louisiana: True

Synthetic Control Method (SCM)

What can we do: Construct a "Synthetic California"

Core Idea of SCM

Consider the California Tabacco Tax example

- Lack proper control group
- Use other states to create a synthetic control (SC)
 - ▶ Weights determined by pre-treatment data
 - ▶ Minimize pre-treatment differences btw California and synthetic control
 - ▶ Still need SUTVA to hold
- Effect of the tax: Compare California's post-treatment consumptions with the Synthetic Control's consumptions

8

Formalize the Implementation of SCM

Approximate Y_{1t}^N as it is not observed

Use the donor pool to approximate

- For the weights $W = \{w_2, w_3, \dots, w_{J+1}\}$
- The estimate of Y_{1t}^N is

$$\hat{Y}_{1t}^{N} = \sum_{j=2}^{J+1} w_j Y_{jt},$$

- Donors are not treated
- $ightharpoonup Y_{jt'}$ observed and untreated outcomes of donors
- ullet Use the weighted sum of Y_{jt} to approximate Y_{1t}^N
- But, how to determine $W = \{w_2, w_3, \dots, w_{J+1}\}$
 - If a donor has more similar outcomes to California, more weight
 - If not, less weight

Simple Solution: Obtain Weights using Regression on the <u>Pre-treatment</u> Data

A visual illustration

Imagine there are 6 *pre-treatment* periods and 4 donors (j = 2,3,4,5)

Hence,
$$W^* = \arg\min_{W} \|Y_1 - Y_{donor}W\|^2$$

11

Go back to the California Tabacco Tax Example

state	year	cigsale	lnincome	beer	age15to24	retprice
Rhode Island	1970	123.9			0.18315789	39.299999
Tennessee	1970	99.800003			0.17804381	39.900002
Indiana	1970	134.60001			0.17651588	30.6
Nevada	1970	189.5			0.16155419	38.900002
Louisiana	1970	115.9			0.18518518	34.299999

÷

Colorado	1970	124.8	0.19095023	29.4
Minnesota	1970	104.3	0.17472412	39.099998
California	1970	123	0.17815833	38.799999
Texas	1970	106.4	0.18314135	40.400002
Kentucky	1970	155.8	0.18131015	28.299999

Go back to the California Tabacco Tax Example

Flip the data

```
# Create wide-format data for regression (rows: years, columns: states)
wide_data = df.pivot(index="year", columns="state", values="cigsale")
wide_data.head(10)

# Define California as the target and donors as predictors
y = wide_data.loc[wide_data.index < 1989, "California"].values
X = wide_data.loc[wide_data.index < 1989, donor_states].values</pre>
```

Alabama	Arkansas	California	Colorado	Connecticut	Delaware	Georgia
89.800003	100.300003	123.000000	124.800003	120.000000	155.000000	109.900002
95.400002	104.099998	121.000000	125.500000	117.599998	161.100006	115.699997
101.099998	103.900002	123.500000	134.300003	110.800003	156.300003	117.000000
102.900002	108.000000	124.400002	137.899994	109.300003	154.699997	119.800003
108.199997	109.699997	126.699997	132.800003	112.400002	151.300003	123.699997
111.699997	114.800003	127.099998	131.000000	110.199997	147.600006	122.900002
116.199997	119.099998	128.000000	134.199997	113.400002	153.000000	125.900002
117.099998	122.599998	126.400002	132.000000	117.300003	153.300003	127.900002
123.000000	127.300003	126.099998	129.199997	117.500000	155.500000	130.600006
121.400002	126.500000	121.900002	131.500000	117.400002	150.199997	131.000000
	89.800003 95.400002 101.099998 102.900002 108.199997 111.699997 117.099998 123.000000	89.800003 100.300003 95.400002 104.099998 101.099998 103.900002 102.900002 108.000000 108.199997 109.699997 111.699997 119.099998 117.099998 122.599998 123.000000 127.300003	89.800003 100.300003 123.000000 95.400002 104.099998 121.000000 101.099998 103.900002 123.500000 102.900002 108.00000 124.400002 108.199997 109.699997 126.699997 111.699997 114.800003 127.099998 116.199997 119.099998 128.000000 117.099998 122.599998 126.400002 123.000000 127.300003 126.099998	89.800003 100.300003 123.000000 124.800003 95.400002 104.099998 121.000000 125.500000 101.099998 103.900002 123.500000 134.300003 102.900002 108.00000 124.400002 137.899994 108.199997 109.699997 126.699997 132.800003 111.699997 114.800003 127.099998 131.000000 116.199997 119.099998 128.000000 134.199997 117.099998 122.599998 126.400002 132.00000 123.000000 127.300003 126.099998 129.199997	89.800003 100.300003 123.000000 124.800003 120.000000 95.400002 104.099998 121.000000 125.500000 117.599998 101.099998 103.900002 123.500000 134.300003 110.800003 102.900002 108.000000 124.400002 137.899994 109.300003 108.199997 109.699997 126.699997 132.800003 112.400002 111.699997 114.800003 127.099998 131.00000 110.199997 116.199997 119.099998 128.00000 134.199997 113.400002 117.099998 122.599998 126.400002 132.00000 117.300003 123.000000 127.300003 126.099998 129.199997 117.500000	89.800003 100.300003 123.000000 124.800003 120.000000 155.000000 95.400002 104.099998 121.000000 125.500000 117.599998 161.100006 101.099998 103.900002 123.500000 134.300003 110.800003 156.300003 102.900002 108.00000 124.400002 137.899994 109.300003 154.699997 108.199997 109.699997 126.699997 132.800003 112.400002 151.300003 111.699997 114.800003 127.099998 131.000000 110.199997 147.600006 117.099998 122.599998 126.400002 132.000000 117.300003 153.300003 123.000000 127.300003 126.099998 129.199997 117.500000 155.500000

13

Weights obtained from Linear Regression

```
# Fit regression model to estimate weights for synthetic control
reg = LinearRegression(fit_intercept=False)
reg.fit(X, y)
weights = reg.coef_
print(weights)

[-0.0021349    0.03645321    0.10433373    0.15493477    -0.02684126    0.00902384
    0.05063973    0.10651942    -0.07509482    0.01084678    0.10736711    0.06824316
    0.0558359    0.01604695    0.06016016    -0.1328401    -0.03033175    0.14161729
    0.11170235    0.14081065    0.00952088    0.06679391    0.07497294    -0.06623474
    -0.00923212    -0.04691422    -0.02469848    -0.02558485    -0.07344015    -0.01096634
    -0.1117164    0.0834385    0.10906902    -0.09629999    -0.02751082    0.14305213
    0.08117342    -0.02890123]
```

Approximate Post-1989 California without the Tax Hike

```
# Construct synthetic California using weighted donor states
synthetic_california_full = np.dot(wide_data[donor_states].values, weights)
```

```
California Synthetic California
Year
1984 104.800003
                            104.800003
1985
     102.800003
                            102.800003
1986
     99.699997
                             99.699997
1987
      97.500000
                             97.500000
1988
      90.099998
                             90.099998
After 1989:
      California Synthetic California
Year
1989
      82.400002
                             87.104609
1990
      77.800003
                             85.557417
1991
      68.699997
                             79.252194
1992
      67.500000
                             78.415649
1993
      63.400002
                             78.956972
```

Before 1989:

15

One problem though—Overfitting

Two key reasons:

1. Too many covariates and not enough observations:

$$A + B = 5$$

$$A - B = 3$$

2. Extrapolation too much

Extrapolation from Donor Too Much

Extrapolation from training data often causes problem

- All weights fall between 0 and 1
- All weights sum up to 1

17

Instead of Regression, Try Constrained Function

```
def loss_w(W, X, y) -> float:
   ### This loss function is the sum of the squared errors between
   ### the treated unit and the synthetic treated unit
   ## W is the weights,
   ## X is the matrix of donor units,
   ## y is the treated unit
   return np.sqrt(np.mean((y - X.dot(W))**2))
def get_w(X, y):
   ### This function is used to get the weights
   ### It uses the fmin_slsqp function from the scipy.optimize module
   ### to find the weights that minimize the loss function
   ### The constraints are that the sum of the weights is 1
   ### and the weights are between 0 and 1
   w_start = [1/X.shape[1]]*X.shape[1] # initialize the weights to be equal
   weights = fmin_slsqp(
       # given X and y, calculate the loss function
       partial(loss_w, X=X, y=y),
       # initial weights set above
       np.array(w_start),
       # sum of weights is 1 where f_eqcons is an equality constraint
       # function that np.sum(x) - 1 to be as close as possible to 0
       f_{eqcons}=lambda x: np.sum(x) - 1,
       # bounds are between 0 and 1
       bounds=[(0.0, 1.0)]*len(w_start),
       # disp=False is used to suppress the output of the optimization
       disp=False)
    return weights
```

Results of the New Algorithm

19

Treatment Effect (ATT, to be exact)

Difference between Observed and Synthetic Outcomes

```
# Calculate treatment effect (difference between actual and synthetic)
diff_cigsale = wide_data['California'] - synthetic_california_new

# Calculate average treatment effect after implementation (post-1989)
ate_post = diff_cigsale[wide_data.index >= 1989].mean()
print("\nATT after 1989:", round(ate_post, 2), "packs per capita")

# Calculate percentage change
baseline = synthetic_california_new[wide_data.index >= 1989].mean()
percent_change = (ate_post / baseline) * 100
print(f"Percent Change: {round(percent_change, 1)}%")

ATT after 1989: -19.51 packs per capita
Percent Change: -24.4%
```

Distribution the Treatment Effect

Unconventional SE Estimation: "Placebo", inspired by Fisher's Exact Test

- For each state other than California
 - Pretend it was treated and other states are donors
 - · Create its synthetic control
 - See what the "placebo" treatment effect is
- Collectively, these placebo treatment effects give <u>the distribution of sales if</u> <u>there was no treatment</u>
 - Evaluate California's effect against this distribution

21

The Probability of California's Effect Without the Tax

That is, if there was no tax, how likely to observe the effect of such a size?

The Probability of California's Effect Without the Tax

That is, if there was no tax, how likely to observe the effect of such a size?

