Macquarie University Department of Computing

PROJECT REPORT

Static Type Analysis of Dynamically Typed Programming Language

Author: Stepan Sindelar

Student ID: 43600220

Supervisor of the project: Matthew Roberts

Study programme: exchange student

Contents

1	Intr	oduction	2
	1.1	The Problem	2
	1.2	Thesis structure	2
2	Ana	dysing PHP Code	4
	2.1	PHP semantics	4
		2.1.1 Local Variables	4
		2.1.2 Global and Local Scope	4
		2.1.3 Closures	4
		2.1.4 Interesting Control Flow Structures	5
		2.1.5 Conditional Declarations	5
		2.1.6 Auto-loading	5
		2.1.7 PHPDoc Annotations	5
	2.2	Static Code Analysis	5
		2.2.1 Terminology	5
		2.2.2 Data Flow Analysis	6
		2.2.3 Intra Procedural Analysis	6
	2.3	Control Flow for Phalanger Approach	7
3	Res	ults	8
	3.1	PhpUnit	8
	3.2	Zend Framework	8
	3.3	Nette	8
	3.4	WordPress	8
	3.5	Drupal	8
4	Con	slusion	9
	4.1	Future Work	9
Bi	bliog	graphy	10
List of Tables			11
ы	St OI	Tables	
Δí	tach	ments	12

1. Introduction

1.1 The Problem

Three out of top ten programming languages in TIOBE index[1] are dynamically typed languages. One of the reasons for their popularity is that they are usually easier to use and suitable for quick prototyping. But at the same time the possibility to omit type information, which might be helpful during the early stages of a software project, can lead to more error prone code, and eventually to problems in later phases of the development and maintenance. Dynamic typing is also challenging for the compilers or interpreters designers. With the type information, a compiler is usually able to emit more efficient code.

Programmers are aware of the possible problems with the maintenance of dynamically typed code and they often document the type information in documentation comments. However, the correspondence of the documentation and the actual code is not checked, and moreover the compiler usually does not take any advantage of having type hints in the comments.

The PHP programming language is one of the mentioned popular dynamic languages and Phalanger [2] is an implementation of a PHP compiler that compiles PHP code into the .NET intermediate code. Phalanger was developed at the Department of Software Engineering of the Charles University in Prague. A part of the Phalanger project is also an implementation of PHP tools for Visual Studio.

Because of its dynamic nature, PHP code is more difficult to analyse than code written in a statically typed language, especially if we want the analysis to be reasonably fast so that it can be used in everyday development. There is an ongoing research of the static analysis methods for many different families of programming languages, including dynamic languages. The problem this project is addressing is to adapt and apply those methods on a real world and widely used programming language PHP. The result is a library that is capable of performing a static analysis of PHP code and can be integrated into the Phalanger project. The library should allow to plug in any kind of analysis, for example constant propagation. However, the main goal is to provide a type analysis in order to discover possible type related errors and mismatches with the type information in the documentation comments. Furthermore, in the future the library might be integrated into the Phalanger back-end.

This project and the library has a code name Control Flow for Phalanger and we refer to it using this name in the following text.

1.2 Thesis structure

The following chapter describes the challenges connected with analysing source code written in the PHP programming language and also approaches to static analysis of source code in general. In chapter 3, we briefly discuss existing software of this kind. Chapter 4 provides more detailed description of our implementation.

The analysis has been evaluated on several middle to large sized open source PHP projects and the results are presented in chapter 5.

2. Analysing PHP Code

The PHP programming language first appeared in 1995[3]. Over the years the language has involved and so have the ways how programmers were using it. This project focuses on PHP version 5.5^1 and the aim for the analysis is to work well on PHP source code written in an object oriented manner, using modern PHP patterns and idioms that are described later in this text. The analysis, however, should work reasonably good on any valid PHP code. We do not focus only on websites, but also on PHP libraries and frameworks that by themselves do not contain any PHP files that produce HTML or any other output for the user.

2.1 PHP semantics

This section describes some important parts of the semantics of the PHP programming language, especially those that represent a challenge for static analysis.

In PHP, local or global variables, object fields and function or method parameters are dynamically typed, which means that they can hold values of completely different types at different times of execution.

2.1.1 Local Variables

Local variables in PHP do not need to be declared explicitly. Instead the first usage of a variable is also its declaration. If a variable's value is used before the variable got any value assigned, then the interpreter generates a notice, however the execution continues and value null is used instead. A variable can get a value assigned to it when it appears on a left hand side of an assignment or when a reference to that variable is created, in which case it gets value null. Note: references are discussed in one of the following subsections.

The scope of a local variable is always its parent function not the parent code block as in other languages like C or Java. So in the following example, the usage of variable \$y\$ at the end of the function can generate uninitialized variable notice, however, if \$x\$ was equal to 3, \$y\$ will have a value although it was declared in the nested code block.

```
function foo($x) {
  if ($x == 3) { $y = 2; }
  echo $y; // uninitialized variable if x != 3
}
```

2.1.2 Global and Local Scope

2.1.3 Closures

PHP also supports anonymous functions. An anonymous function has its own scope as any other function and its local variables are not visible to the scope where it was declared

¹From this point, if the PHP version is not stated explicitly, it is implicitly 5.5.

2.1.4 Interesting Control Flow Structures

Arbitrary expressions in continue and break.

- 2.1.5 Conditional Declarations
- 2.1.6 Auto-loading
- 2.1.7 PHPDoc Annotations

2.2 Static Code Analysis

Static analysis of source code is an analysis that is performed without executing the code. This means that we do not have to have a web server for example in order to analyse code of a web application. We can also guarantee some properties that would not be possible to guarantee if we executed the code. Namely the halting property and upper bounds on time and space complexity. Arbitrary code may not halt if executed, but static analysis of such code can still halt and give us some results.

Static analysis can be used to get possible types of an expression in a dynamically typed language, to find out expressions that have constant value through constant propagation and many other problems. Static analyses usually do not give accurate solution, but its approximation, which can be over-approximation or under-approximation and it is up to the designer and user of the analysis which one is acceptable for his or her² purposes.

2.2.1 Terminology

Static analyses are usually described in the form of inference rules. An example of an inference rule can be "if the types of expressions e_1 and e_2 are integers, then the type of expression $e_1 + e_2$ is integer". Those rules can be more formally described with the following notation

$$\frac{\vdash e_1: Integer \quad \vdash e_2: Integer}{\vdash e_1 + e_2: Integer}$$

where above the horizontal line we have hypothesis and below is the conclusion. The exact notation is not important we will be using it intuitively to illustrate the ideas that we describe.

Flow Sensitivity. The example inference rule is not valid, if we admit that evaluation of expression e_1 can influence the type of expression e_2 or vice versa. In such case, the ordering of the expressions is important, but not captured in the inference rule. Therefore this rule is *flow insensitive*. If we make the hypotheses more complex to capture the ordering it will be *flow sensitive*.

² "His" or "he" should be read as "his or her" or "he or she" through the rest of the text.

Path Sensitivity. If we admit conditional control flow statements, like if-thenelse, we can have more possible paths through the program. In our example, let us say that there is an if statement before the expression e_1 is to be evaluated. The expression e_1 can evaluate to different type if the then branch of the if-thenelse statement is taken than if the else branch is taken. If the inference rules do not model this, like in our example, we say that the inference system is path insensitive, otherwise we say that it is path sensitive.

Abstraction. Another example of problem that can be partly solved with static analysis is the sing of integral variables. We can have inference rules of the following form.

$$\frac{\vdash v_1 : -10(sign : \ominus) \quad \vdash v_2 : 3(sign : \ominus)}{\vdash v_1 + v_2 : -7(sign : \ominus)}$$

However, the implementation would not be very efficient and we sometimes do not have the full information about variables values, but in some cases we can deduce another useful piece of information by other means. For example, variable of type unsigned integer will always be positive, we can count on that even if we do not know the actual value. What we can do is to abstract the possible integral values with set $\{0, \ominus, \oplus\}$ and rewrite the inference rules as follows.

$$\frac{\vdash v_1 : \ominus \vdash v_2 : \ominus}{\vdash v_1 + v_2 : \ominus}$$

Nonetheless, there is another problem. What to do when we have \ominus and \oplus in the hypothesis.

$$\frac{\vdash v_1 : \ominus \vdash v_2 : \ominus}{\vdash v_1 + v_2 :?}$$

The solution is to extend the domain so that it is closed under all operations.

- \ominus represents all negative integers,
- \oplus represents all positive integers,
- 0 represents zero,
- T represents an unknown value (either positive, negative, or zero).

The the rule will be:

$$\frac{\vdash v_1 : \ominus \vdash v_2 : \ominus}{\vdash v_1 + v_2 : \top}$$

And for example another rule dealing with \top in hypothesis:

$$\frac{\vdash v_1 : \ominus \vdash v_2 : \top}{\vdash v_1 + v_2 : \top}$$

2.2.2 Data Flow Analysis

2.2.3 Intra Procedural Analysis

Wikipedia: context-sensitive analysis is an interprocedural analysis that considers the calling context when analyzing the target of a function call. In particular, using context information one can jump back to the original call site, whereas without that information, the analysis information has to be propagated back to all possible call sites, potentially losing precision. TODO: rewrite it, more details, relevance the other things like path-sensitivity etc.

2.3 Control Flow for Phalanger Approach

Description of the analysis used in our case using the terminology built up in the previous section.

3. Results

The project has been evaluated on the following open source PHP frameworks and websites.

- PhpUnit: a port of JUnit unit testing framework for PHP.
- Zend Framework: popular general purpose PHP framework.
- Nette: another popular PHP framework for building websites.
- WordPress: on of the most popular content management systems.
- Drupal: another popular content management system.

An evaluation always started with downloading a git repository with the latest source code of given PHP project. Than the analysis was run and all the discovered errors were rectified and recorded as commits in the git repository.

3.1 PhpUnit

- 3.2 Zend Framework
- 3.3 Nette
- 3.4 WordPress
- 3.5 Drupal

4. Conslusion

4.1 Future Work

Branched Data Flow analysis, integer interval analysis, integration with the compiler back-end.

Bibliography

- [1] "Tiobe index for march 2014." http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html. Accessed: 2014-09-03.
- [2] J. Benda, T. Matousek, and L. Prosek, "Phalanger: Compiling and running php applications on the microsoft .net platform," .NET Technologies 2006, 2006.
- [3] "Php: History of php." http://www.php.net/manual/en/history.php.php. Accessed: 2014-02-04.

List of Tables

Attachments