Open Ended Lab

LAB # 13

Fall 2024 CSE-310L Control Systems Lab

Submitted by: Ali Asghar

Registration No.: 21PWCSE2059

Class Section: C

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Submitted to:

Dr. Muniba Ashfaq

Date:

10th January 2025

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

Task:

Design negative feedback system both in MATLAB & Simulink and control the step response of given system. Performance requirement of the closed loop system is that the steady state error is zero and overshoot less than 30%.

Given System is:

$$G(s) = \frac{1}{s^2 + 3s + 1}$$

Solution:

Make a negative feedback system, find its step response and record all characteristic values Code:

```
Editor - D:\GitHUb\UET_CSE_DataPack4\7thSemester\Control Systems-Lab\ControlSystemLab13\Tasks.m
Tasks.m X
1
          num = 1;
          denum = [1 \ 3 \ 1];
2
          g = tf(num,denum);
3
4
          sys = feedback(g,1);
          step(sys)
5
6
          info = stepinfo(sys);
7
          disp(info);
8
          hold on
```

Output:

RiseTime: 2.5901
TransientTime: 4.6002
SettlingTime: 4.6002
SettlingMin: 0.4511
SettlingMax: 0.4996
Overshoot: 0
Undershoot: 0
Peak: 0.4996
PeakTime: 7.7827

Make a PID Controller and connect it in series with the given system.

Code:

```
9
          Kp = 1;
10
          Ki = 1;
11
          Kd = 1;
12
13
          p = pid(Kp,Ki,Kd);
          %p = pidtune(g, 'pid');
14
          sys_new = feedback(p*g,1);
15
          step(sys_new)
16
          info1 = stepinfo(sys_new);
17
          disp(info1)
18
```

Output:

RiseTime: 2.5901
TransientTime: 4.6002
SettlingTime: 4.6002
SettlingMin: 0.4511
SettlingMax: 0.4996
Overshoot: 0
Undershoot: 0
Peak: 0.4996
PeakTime: 7.7827

RiseTime: 3.0664
TransientTime: 14.5730
SettlingTime: 14.5730
SettlingMin: 0.9028
SettlingMax: 1.1529
Overshoot: 15.2913
Undershoot: 0
Peak: 1.1529
PeakTime: 6.1113

Kp	Ki	Kd	Rise time	Overshoot	Settling time
1	1	1	3.0664	15.2913	14.5730
2	1	1	2.6355	4.5423	8.6536
3	1	1	2.1970	0	3.9121
4	1	1	1.7348	0	6.6004
5	1	1	1.3212	0	8.5893
6	1	1	1.0402	0	9.9991
7	1	1	0.8623	0	11.1156
8	1	1	0.7435	0	12.0324
9	1	1	0.6588	1.1576	12.7951
10	1	1	0.5949	3.1044	13.4306

Kp	Ki	Kd	Rise time	Overshoot	Settling time
1	2	1	2.0151	30.8734	17.9779
1	3	1	1.6116	41.5970	21.8559
1	4	1	1.3847	49.9383	28.1483
1	5	1	1.2347	56.8391	39.0038
1	6	1	1.1264	62.7645	61.0010
1	7	1	1.0433	67.9772	125.2505

Kp	Ki	Kd	Rise time	Overshoot	Settling time
1	1	2	3.6468	13.6957	16.8929
1	1	3	4.1326	12.8097	18.9431
1	1	4	4.5664	12.2312	20.7995
1	1	5	4.9623	11.8131	22.5090
1	1	6	5.3282	11.4893	24.1024
1	1	7	5.6692	11.2257	25.6008
1	1	8	5.9890	11.0032	27.0199
1	1	9	6.2903	10.8102	28.3712
1	1	10	6.5753	10.6391	29.6636

Using pidtune for Tuning the values for PID Controller

Code:

```
10
          %Kp = 1;
          %Ki = 1;
11
12
          %Kd = 10;
13
          %p = pid(Kp,Ki,Kd);
14
          p = pidtune(g, 'pid');
          sys_new = feedback(p*g,1);
15
          step(sys_new)
16
          info1 = stepinfo(sys_new);
17
          disp(info1)
18
```

Output:

RiseTime:	2.4007
TransientTime:	8.3902
SettlingTime:	8.3902
SettlingMin:	0.9128
SettlingMax:	1.0697
Overshoot:	6.9695
Undershoot:	0
Peak:	1.0697
PeakTime:	5.1772

Property *	Value
Ⅱ Кр	1.8052
	1.0434
	0.6605
Ⅲ Tf	0

Simulink:

Conclusion:

A PID Controller was designed successfully for reducing the steady state error of the given system.