Machine Learning & Data Mining

Linear Regression

Kyung-Ah Sohn

Ajou University

Content

- Linear regression model
- Variable selection
- Regularized linear model

LINEAR REGRESSION

Supervised Learning

Task: Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

Regression

Supervised learning: predict one variable Y given a set of other variables X

Classification: Y is categorical

Regression: Y is numeric

Assume a linear or non-linear model

Applications

Sales forecasting Stock market prediction

Example: user behavior at social networking site

Number of new friends	Time spent (sec)
7	276
3	43
4	82
6	136
10	417
9	269

Looking kind of linear

Regression in general

Technique used for the modeling and analysis of numerical data

 Exploits the relationship between two or more variables so that we can gain information about one of them through knowing values of the other

Simple linear regression

Find a linear line that best fits the data points (x₁,y₁), (x₂,y₂), ...,(x_n,y_n)

Which line is the best fit?

Basic idea:

Estimate the parameters that minimize the sum of differences between the actual y value and the predicted value

Simple Linear Regression Model

Simple linear regression

Least squares

- "Best fit" means a Difference Between Actual Y Values & Predicted Y Values is a Minimum
- Find the coefficients that minimizes Residual Sum of Squares

Estimating model parameter

- Training data: n samples
- Goal: minimize the difference between the actual and predicted target

$$\min \sum_{i=1}^{n} \epsilon_i^2 = \min \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \min \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2$$

X ₁	y ₁
X ₂	y ₂
<i>X</i> ₃	<i>y</i> ₃
X _n	Уn

Least Squares Regression

• Find β_0 , β_1 that minimize the following objective function (Sum of Squared Errors, SSE)

$$f(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

- How to get such coefficients?
 - Convex function
 - Unique minimum point

Derivation of parameters

Minimize

$$f(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Second order polynomial equation

 Take the derivative of f with respect to each coefficient:

Derivation of Parameters (1)

Least Squares (L-S):

Minimize squared error

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}$$

$$0 = \frac{\partial \sum_{i=1}^{n} \varepsilon_{i}^{2}}{\partial \beta_{0}} = \frac{\partial \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}}{\partial \beta_{0}}$$

$$= -2 (n\overline{y} - n\beta_{0} - n\beta_{1}\overline{x})$$

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}$$

Derivation of Parameters (1)

Least Squares (L-S):

Minimize squared error

$$0 = \frac{\partial \sum \varepsilon_{i}^{2}}{\partial \beta_{1}} = \frac{\partial \sum (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}}{\partial \beta_{1}}$$

$$= -2\sum x_{i} (y_{i} - \beta_{0} - \beta_{1}x_{i})$$

$$= -2\sum x_{i} (y_{i} - \overline{y} + \beta_{1}\overline{x} - \beta_{1}x_{i})$$

$$\beta_{1}\sum x_{i} (x_{i} - \overline{x}) = \sum x_{i} (y_{i} - \overline{y})$$

$$\beta_{1}\sum (x_{i} - \overline{x})(x_{i} - \overline{x}) = \sum (x_{i} - \overline{x})(y_{i} - \overline{y})$$

$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}}$$

Coefficient Equations

Prediction equation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• Sample Slope
$$\hat{\beta}_{1} = \frac{SS_{xy}}{SS_{xx}} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{\sum_{i=1}^{n} x_{i}}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{\sum_{i=1}^{n} x_{i}}{n}}$$
• Sample Y - intercent
$$\hat{\beta}_{0} = \overline{y} = \hat{\beta}_{1} \overline{y}$$

• Sample Y - intercept $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$

Multiple Linear Regression

 Fit a linear equation between a dependent variable Y and a set of predictors X=(X₁, ..., X_p)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \epsilon$$
 Noise, unexplained

Parameter estimation:

$$\min \sum_{i=1}^{n} \epsilon_i^2 = \min \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$= \min \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi}))^2$$

Multivariate linear regression

Hours studying (x ₁)	Hours sleeping (x ₂)	Exam scores (y)		
4	2	60		
1	5	10		
10	0.5	64		
14	0.1	75		
4	3	50		
7	1	70		
22	0.1	95		
3	4	27		
8	1.5	49		

60	
10	
64	
75	
50	
70	
95	
27	
49	

1	4	2
1	1	5
1	10	0.5
1	14	0.1
1	4	3
1	7	1
1	22	0.1
1	3	4
1	8	1.5
	\ \	

β_0
β_1
β_2

Y

X

β

Least Squares Estimation

• Choose the value of β that minimizes the sum of squared errors

$$(Y - X\beta)'(Y - X\beta)$$

• The least squares estimate of β

$$\hat{\beta} = (X'X)^{-1}X'Y$$

Exploring the Housing Dataset

https://archive.ics.uci.edu/ml/datasets/Housing

- Information about houses in the suburbs of Boston collected by D. Harrison and D.L. Rubinfeld in 1978
- 506 samples
- Features:

г												Company to the same to the sam			TO DOMESTIC OF THE PARTY OF THE
		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	0	0.00632	18	2.31	О	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
	1	0.02731	0	7.07	О	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
	2	0.02729	О	7.07	О	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
					6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4		
51C	idential land zoned for lots larger than				7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2		

- CRIM: This is the per capita crime rate by town
- ZN: This is the proportion of residential land zoned for lots larger than 25,000 sq.ft.
- INDUS: This is the proportion of non-retail business acres per town
- CHAS: This is the Charles River dummy variable (this is equal to 1 if tract bounds river; 0 otherwise)
- NOX: This is the nitric oxides concentration (parts per 10 million)
- RM: This is the average number of rooms per dwelling
- AGE: This is the proportion of owner-occupied units built prior to 1940
- DIS: This is the weighted distances to five Boston employment centers
- RAD: This is the index of accessibility to radial highways
- TAX: This is the full-value property-tax rate per \$10,000
- PTRATIO: This is the pupil-teacher ratio by town
- B: This is calculated as 1000(Bk 0.63)^2, where Bk is the proportion of people of African American descent by town
- LSTAT: This is the percentage lower status of the population
- MEDV: This is the median value of owner-occupied homes in \$1000s

Target variable (y)

Housing dataset: EDA

```
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> sns.set(style='whitegrid', context='notebook')
>>> cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
>>> sns.pairplot(df[cols], size=2.5);
>>> plt.show()
```

Scatter plot

Pearson's Correlation coefficient

$$r = \frac{\sum_{i=1}^{n} \left[\left(x^{(i)} - \mu_{x} \right) \left(y^{(i)} - \mu_{y} \right) \right]}{\sqrt{\sum_{i=1}^{n} \left(x^{(i)} - \mu_{x} \right)^{2}} \sqrt{\sum_{i=1}^{n} \left(y^{(i)} - \mu_{y} \right)^{2}}} = \frac{\sigma_{xy}}{\sigma_{x} \sigma_{y}}$$

- A measure of the linear correlation between two variables X and Y
- A value between +1 and −1, where 1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative linear correlation

Pearson's Correlation coefficient

Housing dataset: correlation

>>> plt.show()

Housing dataset: Regression Model fitting

X:RM Y:MEDV

Regression line: $Y = \beta_0 + \beta_1 x$

$$\beta_1 = 9.102$$

 $\beta_0 = -34.671$

Coefficient Interpretation

1. Slope (β_1)

Price (Y) is expected to increase by 9.102 units (in \$1000) for each increase in average number of rooms (X)

- Price when X = 0
 - difficult to explain in many cases

Performance measure

$$MSE = \frac{1}{n} \sum_{i} (y_i - \hat{y_i})^2$$

$$= \frac{1}{n} \sum_{i} (y_i - (\hat{\beta_0} + \hat{\beta_1} x_{1i} + \dots + \hat{\beta_p} x_{pi})^2)$$

$$MAE = \frac{1}{n} \sum_{i} |y_i - \hat{y_i}|$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$
$$R_{adj}^{2} = 1 - \frac{n-1}{n-p-1} (1 - R^{2})$$

The proportion of variance explained by our model

 P-values: if the p-value is low (e.g. below 0.05), then the coefficient is highly likely to be nonzero and therefore significant

Measures of Fit: R²

- Some of the variation in Y can be explained by variation in the X's and some cannot.
- R² tells you the fraction of variance that can be explained by X.

$$R^2 = 1 - \frac{RSS}{\sum (Y_i - \overline{Y})^2} \approx 1 - \frac{\text{Ending Variance}}{\text{Starting Variance}}$$

 R^2 is always between 0 and 1. Zero means no variance has been explained. One means it has all been explained (perfect fit to the data).

Model evaluation

MSE on the training set = 19.96 MSE of the test set = 27.20, which is an indicator that our model is overfitting the training data.

$$R^{2}_{training} = 0.765$$

 $R^{2}_{test} = 0.673$

Or do cross-validation by looking at the Mean Squared Error (MSE)

Model assumption

- If the model assumptions do not hold
 - Prediction can be systematically biased
- Variance Stabilizing Transformation
 - log(Y): If Y has only positive values, take log(Y)
 - Sqrt(Y) is another useful transformation
 - Or Y/X

In general, think about in what scale you expect linearity

Log Transform example

Reconsider the regression of truck price onto year

2005

Log-transformation

Before
Histogram of pickupdata\$price

After Histogram of log(pickupdata\$price)

Modeling nonlinear regression

Polynomial regression

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_d x^d$$

d: degree of the polynomial

 Smallest R² for cubic regression, but with increased complexity, so careful about overfitting

Modeling nonlinear regression

Linear regression combined with feature transformation

- Log-transformation
- Square root

Nonlinear regression models

Decision tree/Random forest regression

KNN regression

• Support vector regression 등

Example: Advertising data set

- Suppose that in our role as statistical consultants we are asked to suggest, on the basis of this data, a marketing plan for next year that will result in high product sales.
- What information would be useful in order to provide such a recommendation?

Some important questions

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media contribute to sales
- How accurately can we estimate the effect of each medium on sales
- How accurately can we predict future sales
- Is the relationship linear
- Is there synergy among the advertising media?

Linear model

 $sales \approx \beta_0 + \beta_1 \times TV$

$$sales \approx \beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times Newspaper$$

Estimate the coefficients by minimizing the least squares

Is $\beta_j=0$ i.e. is X_j an important variable?

- We use a hypothesis test to answer this question
- H_0 : $\beta_j = 0$ vs H_a : $\beta_j \neq 0$
- Calculate $t = \frac{\hat{\beta}_j}{SE(\hat{\beta}_i)}$
- If t is large (equivalently p-value is small) we can be sure that $\beta_i \neq 0$ and that there is a relationship

41

Testing Individual Variables

Is there a (statistically detectable) linear relationship between Newspapers and Sales after all the other variables have been accounted for?

Regression coeffic	ients				
	Coefficient	Std Err	t-value	p-value	
Constant	2.9389	0.3119	9.4223	0.0000	
TV	0.0458	0.0014	32.8086	0.0000	
Radio	0.1885	0.0086	21.8935	0.0000	
Newspaper	-0.0010	0.0059	-0.1767	0.8599	No: big p-value
Regression coeffic	ients				2.9 p
	Coefficient	Std Err	t-value	p-value	
Constant	12.3514	0.6214	19.8761	0.0000	Cmall n value in
Newspaper	0.0547	0.0166	3.2996	0.0011 🛧	— Small p-value in
					simple regression

Almost all the explaining that Newspapers could do in simple regression has already been done by TV and Radio in multiple regression!