Ch	print(X.shape, y.shape) (506, 6) (506, 5) (506,) Check this video for better understanding of the computational graphs and back propagation from IPython.display import YouTubeVideo YouTubeVideo('i940vYb6noo', width="1000", height="500") CS231n Winter 2016: Lecture 4: Backpropagation, Neural Networks 1
	The state of the
	ei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 27 13 Jan 2016 Watch on
т. Т	 If you observe the graph, we are having input features [f1, f2, f3, f4, f5] and 9 weights [w1, w2, w3, w4, w5, w6, w7, w8, w9]. The final output of this graph is a value L which is computed as (Y-Y')^2 Task 1: Implementing Forward propagation, Backpropagation and Gradient checking Task 1.1
asy 1 </td <td>Forward propagation rd propagation(Write your code in def forward_propagation()) sy debugging, we will break the computational graph into 3 parts. Solution Propagation Propaga</td>	Forward propagation rd propagation(Write your code in def forward_propagation()) sy debugging, we will break the computational graph into 3 parts. Solution Propagation Propaga
1	from math import * def sigmoid(z): '''In this function, we will compute the sigmoid(z)''' # we can use this function in forward and backward propagation # write the code to compute the sigmoid value of z and return that value t=1+exp(-z) return 1/t def grader_sigmoid(z):
Т	#if you have written the code correctly then the grader function will output true val=sigmoid(z) assert(val==0.8807970779778823) return True grader_sigmoid(2) True def forward_propagation(x, y, w): '''In this function, we will compute the forward propagation ''' # X: input data point, note that in this assignment you are having 5-d data points # y: output varible # W: weight array, its of length 9, W[0] corresponds to w1 in graph, W[1] corresponds to w2 in graph,, W[8] corresponds to w9 in graph. # you have to return the following variables # exp= part1 (compute the forward propagation until exp and then store the values in exp)
	<pre># tanh =part2(compute the forward propagation until tanh and then store the values in tanh) # sig = part3(compute the forward propagation until sigmoid and then store the values in sig) # we are computing one of the values for better understanding val_1= (w[0]*x[0]+w[1]*x[1]) * (w[0]*x[0]+w[1]*x[1]) + w[5] part_1 = np.exp(val_1) part_2=tanh(part_1 + w[6]) val_3=(sin(w[2]*x[2]))*((w[3]*x[3])+(w[4]*x[4])) + w[7] part_3=sigmoid(val_3) y_pred = part_3*w[8] + part_2 loss=(y-y_pred)**2 dy_pred=-2*(y-y_pred)</pre>
	<pre># after computing part1, part2 and part3 compute the value of y' from the main Computational graph using required equations # write code to compute the value of L = (y-y')^2 and store it in variable loss # compute derivative of L w.r.to y' and store it in dy_pred # Create a dictionary to store all the intermediate values i.e. dy_pred ,loss, exp, tanh, sigmoid # we will be using the dictionary to find values in backpropagation, you can add other keys in dictionary as well forward_dict={} forward_dict['exp']= part_1 forward_dict['sigmoid'] = part_3 forward_dict['tanh'] = part_2 forward_dict['tanh'] = part_2 forward_dict['loss'] = loss forward_dict['dy_pred'] = dy_pred forward_dict['y_pred'] = dy_pred</pre>
\ (<pre>def grader_forwardprop(data): dl = (data['dy_pred']==-1.9285278284819143) loss=(data['loss']==0.9298048963072919) part1=(data['exp']==1.1272967040973583) part2=(data['tanh']==0.8417934192562146) part3=(data['sigmoid']==0.5279179387419721) assert(dl and loss and part1 and part2 and part3) return True w=np.ones(9)*0.1 d1=forward_propagation(X[0],y[0],w) grader_forwardprop(d1)</pre>
T	True Task 1.2 Backward propagation def backward_propagation(x,y,w,forward_dict): '''In this function, we will compute the backward propagation ''' # forward_dict: the outputs of the forward_propagation() function # write code to compute the gradients of each weight [w1, w2, w3,, w9] # Hint: you can use dict type to store the required variables
	<pre># dw1 = # in dw1 compute derivative of L w.r.to w1 # dw2 = # in dw2 compute derivative of L w.r.to w2 # dw3 = # in dw3 compute derivative of L w.r.to w3 # dw4 = # in dw4 compute derivative of L w.r.to w4 # dw5 = # in dw4 compute derivative of L w.r.to w4 # dw5 = # in dw5 compute derivative of L w.r.to w5 # dw6 = # in dw6 compute derivative of L w.r.to w6 # dw7 = # in dw7 compute derivative of L w.r.to w7 # dw8 = # in dw8 compute derivative of L w.r.to w8 # dw9 = # in dw9 compute derivative of L w.r.to w9 dw1=(forward_dict['dy_pred'])*(1-(pow(forward_dict['tanh'],2)))*forward_dict['exp']*2*((w[0]*x[0])+(w[1]*x[1]))*x[0] dw2=(forward_dict['dy_pred'])*(1-(pow(forward_dict['tanh'],2)))*forward_dict['exp']*2*((w[0]*x[0])+(w[1]*x[1]))*x[1] dw3=forward_dict['dy_pred']*(forward_dict['sigmoid']*(1-forward_dict['sigmoid']))*w[8]*sin(x[2]*w[2])*x[3] dw4=forward_dict['dy_pred']*(forward_dict['sigmoid']*(1-forward_dict['sigmoid']))*w[8]*sin(x[2]*w[2])*x[4]</pre>
	<pre>dw6=forward_dict['dy_pred']*(1-(forward_dict['tanh']**2))*forward_dict['exp'] dw7=forward_dict['dy_pred']*(1-(forward_dict['tanh']**2)) dw8=forward_dict['dy_pred']*forward_dict['sigmoid']*(1-forward_dict['sigmoid'])*w[8] dw9=forward_dict['dy_pred']*forward_dict['sigmoid'] backward_dict['dy_pred']*forward_dict['sigmoid'] backward_dict={} #store the variables dw1, dw2 etc. in a dict as backward_dict['dw1']= dw1, backward_dict['dw2']= dw2 backward_dict['dw1']=dw1 backward_dict['dw2']=dw2 backward_dict['dw3']=dw3 backward_dict['dw4']=dw4 backward_dict['dw4']=dw4 backward_dict['dw6']=dw6 backward_dict['dw6']=dw6 backward_dict['dw8']=dw8 backward_dict['dw8']=dw8 backward_dict['dw9']=dw9</pre>
(<pre>return backward_dict def grader_backprop(data): dw1=(np.round(data['dw1'],6)==-0.229733) dw2=(np.round(data['dw2'],6)==-0.021408) dw3=(np.round(data['dw3'],6)==-0.005625) dw4=(np.round(data['dw3'],6)==-0.004658) dw5=(np.round(data['dw5'],6)==-0.004658) dw5=(np.round(data['dw5'],6)==-0.633475) dw7=(np.round(data['dw6'],6)==-0.561942) dw8=(np.round(data['dw7'],6)==-0.048063) dw9=(np.round(data['dw9'],6)==-1.018104) assert(dw1 and dw2 and dw3 and dw4 and dw5 and dw6 and dw7 and dw8 and dw9)</pre>
T G	return True w=np.ones(9)*0.1 forward_dict=forward_propagation(X[0],y[0],w) backward_dict=backward_propagation(X[0],y[0],w,forward_dict) grader_backprop(backward_dict) True Task 1.3 Gradient clipping
W	Check this blog link for more details on Gradient clipping we know that the derivative of any function is $\lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$ • The definition above can be used as a numerical approximation of the derivative. Taking an epsilon small enough, the calculated approximation will have an error in the range of epsilon squared. • In other words, if epsilon is 0.001, the approximation will be off by 0.00001. Therefore, we can use this to approximate the gradient, and in turn make sure that backpropagation is implemented properly. This forms the basis of gradient checking!
let fro	Each checking example ets understand the concept with a simple example: $f(w1,w2,x1,x2)=w_1^2.x_1+w_2.x_2$ from the above function , lets assume $w_1=1,w_2=2,x_1=3,x_2=4$ the gradient of f w.r.t w_1 is $\frac{df}{dw_1}=dw_1 = 2.w_1.x_1 = 2.1.3 = 6$ et calculate the approximate gradient of w_1 as mentinoned in the above formula and considering $\epsilon=0.0001$
Th	$dw_1^{approx} = \frac{f(w1+\epsilon,w2,x1,x2)-f(w1-\epsilon,w2,x1,x2)}{2\epsilon}$ $= \frac{((1+0.0001)^2.3+2.4)-((1-0.0001)^2.3+2.4)}{2\epsilon}$ $= \frac{(1.00020001.3+2.4)-(0.99980001.3+2.4)}{2*0.0001}$ $= \frac{(11.00060003)-(10.99940003)}{0.0002}$ $= 5.9999999999$ Then, we apply the following formula for gradient check: $gradient_check = \frac{\ (dW-dW^{approx})\ _2}{\ (dW)\ _2+\ (dW^{approx})\ _2}$ The equation above is basically the Euclidean distance normalized by the sum of the norm of the vectors. We use normalization in case that one of the vectors is very small. As a value for epsilon, we have the sum of the vectors are the contraction of the vectors in the contraction of the vectors is very small. As a value for epsilon, we have the contraction of the vectors is very small.
ex in	or 1e-7. Therefore, if gradient check return a value less than 1e-7, then it means that backpropagation was implemented correctly. Otherwise, there is potentially a mistake in your implementation. If exceeds 1e-3, then you are sure that the code is not correct. In our example: $gradient_check = \frac{(6-5.9999999994898)}{(6+5.9999999994898)} = 4.2514140356330737e^{-13}$ For u can mathamatically derive the same thing like this $dw_1^{approx} = \frac{f(w1+\epsilon,w2,x1,x2)-f(w1-\epsilon,w2,x1,x2)}{2\epsilon}$ $= \frac{((w1+\epsilon)^2x_1+w_2x_2)-(((w_1-\epsilon)^2x_1+w_2,x_2)}{2\epsilon}$ $= \frac{4.\epsilon \cdot w_1 \cdot x_1}{2\epsilon}$ $= 2 \cdot w_1 \cdot x_2$
(V	mplement Gradient checking Write your code in def gradient_checking()) Algorithm W = initilize_randomly def gradient_checking(data_point, W):
	<pre># compute the L value using forward_propagation() # compute the gradients of W using backword_propagation() approx_gradients = [] for each wi weight value in W:</pre>
	<pre>def gradient_checking(x,y,w,eps): # compute the dict value using forward_propagation() # compute the actual gradients of W using backword_propagation() forward_dict=forward_propagation(x,y,w) backward_dict=backward_propagation(x,y,w,forward_dict) #we are storing the original gradients for the given datapoints in a list original_gradients_list=list(backward_dict.values()) # make sure that the order is correct i.e. first element in the list corresponds to dw1 , second element is dw2 etc. # you can use reverse function if the values are in reverse order w=np.add(w,eps)</pre>
	w2=np.subtract(w,eps) forward_dict_1=forward_propagation(x,y,w) forward_dict_2=forward_propagation(x,y,w2) approx_gradients_list=(forward_dict_1['loss']-forward_dict_2['loss'])/(2*eps) #now we have to write code for approx gradients, here you have to make sure that you update only one weight at a time #write your code here and append the approximate gradient value for each weight in approx_gradients_list #performing gradient check operation original_gradients_list=np.array(original_gradients_list) approx_gradients_list=np.array(approx_gradients_list)
١	<pre>gradient_check_value = (original_gradients_list-approx_gradients_list)/(original_gradients_list+approx_gradients_list) return gradient_check_value def grader_grad_check(value): print(value) assert(np.all(value <= 10**-3)) return True w=[0.00271756, 0.01260512, 0.00167639, -0.00207756, 0.00720768, 0.00114524, 0.00684168, 0.02242521, 0.01296444] eps=10**-7</pre>
T	value= gradient_checking(X[0],y[0],w,eps) grader_grad_check(value) [-0.98417591 -0.99851478 -1.00000486 -0.99998429 -0.9999966 -0.23635657 -0.23690899 -0.990408 -0.1416402] True Task 2 : Optimizers As a part of this task, you will be implementing 2 optimizers(methods to update weight) Use the same computational graph that was mentioned above to do this task
Cł	The weights have been initialized from normal distribution with mean=0 and std=0.01. The initialization of weights is very important otherwiswe you can face vanishing gradient and exploding gradient. Check below video for reference purpose from IPython.display import YouTubeVideo YouTubeVideo('gYpoJMlgyXA', width="1000", height="500")
Al	Algorithm for each epoch(1-20): for each data point in your data:
,	using the functions forward_propagation() and backword_propagation() compute the gradients of weights update the weigts with help of gradients mplement below tasks Task 2.1: you will be implementing the above algorithm with Vanilla update of weights Task 2.2: you will be implementing the above algorithm with Momentum update of weights Task 2.3: you will be implementing the above algorithm with Adam update of weights
2.	Algorithm with Vanilla update of weights 2.1 Algorithm with Vanilla update of weights from sklearn.metrics import mean_squared_error vanila_epochs=[] rate=0.001 w=np.ones(9)*0.1#crating a temperoray weights mu=0 std=0.01 w=np.random.normal(mu, std,9) loss_values_vanila=[] epochs=20
	<pre>for i in range(epochs): vanila_epochs.append(i) y_pred=[] for j in range(len(data)): forward=forward_propagation(X[j],y[j],w) y_pred.append(forward['y_pred']) backward=backward_propagation(X[j],y[j],w,forward) for k in range(len(w)):</pre>
	## Graph plot for epoch vs loss plt.grid() plt.plot(vanila_epochs,loss_values_vanila,label="loss") plt.title("epochs vs loss") plt.xlabel("epochs") plt.ylabel("loss") plt.legend() <matplotlib.legend.legend 0x27da305eeb0="" at=""> epochs vs loss 07 06 07 06 07 06 07 06 07 06 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08</matplotlib.legend.legend>
	2.2 Algorithm with Momentum update of weights
He	rate=0.01 w=np.random.normal(mu,std,9) m=np.zeros(9) b=0.9 momentum_epochs=[] loss_values_momentum=[] for i in range(epochs): momentum_epochs.append(i)
-	<pre>y_pred=[] for point in range(len(data)): forward=forward_propagation(X[point],y[point],w) y_pred.append(forward['y_pred']) backward=backward_propagation(X[point],y[point],w,forward) for j in range(len(m)): m[j]=b*m[j]+(1-b)*backward["dw"+str(j+1)] w[j]=w[j]-rate*m[j] loss=mean_squared_error(y,y_pred) loss_values_momentum.append(loss)</pre> ## Graph plot for epoch vs loss plt.grid()
	plt.title("epochs, loss_values_momentum, label="loss") plt.title("epochs vs loss") plt.ylabel("loss") plt.ylabel("loss") plt.legend() <matplotlib.legend.legend 0x27da3305c10="" at=""> epochs vs loss 014 012 010 010 010 010 010 010 010 010 010</matplotlib.legend.legend>
2.	2.3 Algorithm with Adam update of weights
	<pre>v = beta2*v + (1-beta2)*(dx**2) x += - learning_rate * m / (np.sqrt(v) + eps) m=np.zeros(9) v=np.zeros(9) rate=0.001 beta1=0.9 beta2=0.999 w=np.random.normal(mu,std,9)</pre> adam_epochs=[] loss_values_adam=[]
	<pre>loss_values_adam=[] for i in range(epochs): adam_epochs.append(i) y_pred=[] for point in range(len(data)): forward=forward_propagation(X[point], y[point], w) y_pred.append(forward['y_pred']) backward=backward_propagation(X[point], y[point], w, forward) for j in range(len(m)): m[j]=beta1*m[j] + (1-beta1) * backward['dw'+str(j+1)] v[j]=beta2*v[j] + (1-beta2) * (backward['dw'+str(j+1)]**2) w[j]=w[j]- rate*m[j]/(np.sqrt(v[j])+eps) loss=mean_squared_error(y,y_pred) loss_values_adam.append(loss)</pre>
	## Graph plot for epoch vs loss plt.grid() plt.plot(adam_epochs,loss_values_adam,label="loss") plt.title("epochs vs loss") plt.xlabel("epochs") plt.ylabel("loss") plt.legend() <matplotlib.legend.legend 0x27da358b9a0="" at=""> epochs vs loss 016 pres Pres </matplotlib.legend.legend>
SSO	
<i>3</i>	
	epochs vs loss epochs vs loss other depochs
	You can go through the following blog to understand the implementation of other optimizers . Gradients update blog](https://cs231n.github.io/neural-networks-3/)