Санкт-Петербургский Государственный Электротехнический Университет «ЛЭТИ»

кафедра физики

Задание №1 по разделу "Электростатика"

Название: Численное решение уравнения Лапласа.

Фамилия И.О.: Николаев В.Ю.

группа: 4395

Преподаватель: Альтмарк А.М.

Итоговый балл:

Крайний срок сдачи: 17.04

Условие задания

Дана электростатическая система, состоящая из трех электродов. Внешний электрод обладает потенциалом 0 В. Внутренние электроды обладают потенциалами, отличными от 0. Найти длину силовой линии (линия, ортогональная эквипотенциалям или линия, касательно к которой направлены вектора напряженности электрического поля) проходящую через заданную точку и записать её в файл IDZ1.txt. Контуры электродов можно построить по формулам, указанным в таблице и сравнить с соответствующим изображением в јред — файле. Координаты в данном задании можно считать безразмерными.

Bap.:	14
Уравнение внешнего электрода:	$x^2 + y^2 = 25$
Уравнения электрода 1:	$\frac{3 \frac{9}{5}+x ^3}{10} + \frac{4 y ^3}{5} = \frac{1}{2}$
Уравнения электрода 2:	$\left \frac{\left -\frac{9}{5} + x \right ^2}{2} + y ^2 = \frac{4}{5} \right $
Точка силовой линии:	$\{0, -2\}$
Потенциал на электроде 1, В:	7
Потенциал на электроде 2, В:	-8

Физическая постановка задачи

В данной задаче необходимо найти распределение электростатического потенциала в двумерной области, содержащей три электрода:

- Внешний электрод, задающий граничные условия $\varphi = 0$ на окружности $x^2 + y^2 = 25$.
- Электрод 1, имеющий потенциал 7 B, описывается неявным уравнением $(3|\frac{9}{5}+x|^3)/10+(4|y|^3)/5=1/2$.
- Электрод 2, имеющий потенциал -8 B, описывается уравнением $|\frac{-9}{5}+x|^2/2+|y|^2=4/5$.

Внутри области потенциал удовлетворяет уравнению Лапласа:

$$\nabla^2 \varphi = 0.$$

Далее необходимо построить **силовую линию**, проходящую через точку (0, -2). Силовые линии в электростатике определяются направлением вектора напряжённости поля $\mathbf{E} = -\nabla \varphi$.

Метод решения

Решение уравнения Лапласа. Численно используется метод Якоби на равномерной сетке (241×241) в квадрате $[-6, 6] \times [-6, 6]$. На узлах, соответствующих электродам, потенциал фиксирован в соответствии с граничными условиями $(0\,\mathrm{B}, 7\,\mathrm{B}\,\mathrm{u}$ -8 B).

Построение силовой линии. Силовая линия определяется уравнением

$$\frac{d\mathbf{r}}{ds} = \frac{-\nabla \varphi}{\|\nabla \varphi\|}.$$

Интегрирование производится в двух направлениях от заданной точки, пока траектория не достигнет какого-либо электрода.

Краткие фрагменты кода

Ниже приведены небольшие выдержки из кода для иллюстрации принципа работы.

Решение уравнения Лапласа (Jacobi)

```
def solve_potential(x_min, x_max, y_min, y_max, nx, ny, tol_bound):
1
        x = np.linspace(x_min, x_max, nx)
2
        y = np.linspace(y_min, y_max, ny)
3
        X, Y = np.meshgrid(x, y)
4
        V = np.zeros((ny, nx))
6
        # Boundary conditions
        # ... (setting potentials for electrodes)
8
9
        # Jacobi iterations
10
        for it in range (5000):
11
            V_old = V.copy()
12
13
            if np.max(np.abs(V - V_old)) < 1e-4:</pre>
15
        return x, y, V
16
```

Построение силовой линии

```
def compute_field_line(x, y, V, start_point, tol_bound):
1
2
        dx, dy = compute_gradient(x, y, V)
        interp_dx = RegularGridInterpolator((y, x), dx)
3
        interp_dy = RegularGridInterpolator((y, x), dy)
5
        def integrate_direction(pt0, sign):
6
            # ...
7
            return length, path
8
9
       L_forward, path_forward = integrate_direction(start_point, +1)
10
       L_backward, path_backward = integrate_direction(start_point, -1)
11
12
        return total_length, field_line_path
13
```

Результаты и примеры работы

В результате программа вычисляет распределение потенциала в заданной области, строит карту потенциала, стрелки поля и отображает силовую линию, проходящую через точку (0, -2).

Скрипт сохраняет длину силовой линии в файл IDZ1.txt. Для варианта 14, длина силовой линии составила (примерно) 3.659 условных единиц.

Выводы

• Метод Якоби позволяет решить уравнение Лапласа с заданными граничными условиями для электродов и найти потенциал в узлах сетки.

- ullet По градиенту потенциала определяется электрическое поле ${f E}$, а силовая линия это интегральная кривая, касательная к полю во всех точках.
- Численно проинтегрировав траекторию из заданной точки, удалось получить искомую силовую линию и вычислить её длину.
- Результаты визуализации наглядно показывают расположение электродов, распределение потенциала и направление силовой линии.