TESIS CARRERA DE MAESTRÍA EN INGENIERÍA

ANÁLISIS DEL FLUJO EN CONVECCIÓN MIXTA EN CANALES RECTANGULARES

Patricio G. Canciani Maestrando

Dr. William I. Machaca Abregu
Director

Dr. Federico Teruel Co-director

Miembros del Jurado

Dr. Christian P. Marcel (Instituto Balseiro – CNEA) Dr. Pablo Garcia Martinez (Instituto Balseiro – CNEA) Dr. César Venier (FCEIA – SIMEC)

24 de Octubre de 2024

Departamento de Mecánica Computacional (Centro Atómico Bariloche)

Instituto Balseiro Universidad Nacional de Cuyo Comisión Nacional de Energía Atómica Argentina

A mi padres

A mi hermana

A mis amigos

A todos mis seres queridos

Índice de símbolos

Índice de contenidos

ndice de símbolos		V
ndice de contenidos		vii
ndice de figuras		ix
ndice de tablas		xi
esumen		xiii
bstract		xv
Introducción		1
1.1. Motivación		1
Modelado Computacional y XC3D		3
2.1. Metodos Numéricos		3
2.2. Xcompact3D		3
2.3. Modelo Computacional		3
. Resultados de Simulaciones		5
ibliografía		7
gradecimientos		9

Índice de figuras

Índice de tablas

Resumen

Este es el resumen en castellano.

La tesis debe reflejar el trabajo desarrollado, mostrando la metodología utilizada, los resultados obtenidos y las conclusiones que pueden inferirse de dichos resultados.

Palabras clave: FLUJO TURBULENTO, CONVECCIÓN MIXTA

Abstract

This is the title in English:

The thesis must reflect the work of the student, including the chosen methodology, the results and the conclusions that those results allow us to draw.

Keywords: TURBULENT FLOW, MIXED CONVECTION

Capítulo 1

Introducción

1.1. Motivación

Si aquí va la vomitación ... digo motivación

Capítulo 2

Modelado Computacional y XC3D

- 2.1. Metodos Numéricos
- 2.2. Xcompact3D

[1]

2.3. Modelo Computacional

[2]

Capítulo 3

Resultados de Simulaciones

3.0

2.5

[-] sm_{1.5}

(+ β) 1.0

0.5

0.0

Figura 3.1: a) $\langle \theta^+ \rangle$ vs y^+ b) $\langle \theta^+ \rangle_{rms}$ vs y^+ .

 sdad

Bibliografía

- [1] KAWAMURA, H., ABE, H., AND SHINGAI, K. Dns of turbulence and heat transport in a channel flow with different reynolds and prandtl numbers and boundary conditions. *Turbulence*, *Heat and Mass Transfer 3*, 20 (2000), 0.
- [2] Moser, R. D., Kim, J., and Mansour, N. N. Direct numerical simulation of turbulent channel flow up to $Re_{\tau} = 590$. *Physics of fluids* (1999).

Agradecimientos

```
"Oh if I get lost, I know I can return ...

There's a drink awaiting me at the tavern ..."

— Lilith Max
```

A todos los que se lo merecen, por merecerlo