Lecture-07

Feature Extraction

Second Derivative Operators

• The Laplacian L(x,y) of an image with pixel intensity values f(x,y) is given by:

$$\nabla^2 f = L(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

The gradient of f in both x and y direction are:

$$G_{x} \cong f[i, j+1] - f[i, j]$$

$$G_{v} \cong f[i, j] - f[i+1, j]$$

The second derivatives along the x and y directions are

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial G_x}{\partial x} = \frac{\partial (f[i,j+1] - f[i,j])}{\partial x}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial (f[i,j+1])}{\partial x} - \frac{\partial (f[i,j])}{\partial x}$$

$$\frac{\partial^2 f}{\partial x^2} = f[i, j+2] - f[i, j+1] - (f[i, j+1] - f[i, j])$$

$$\frac{\partial^2 f}{\partial x^2} = f[i, j+2] - 2f[i, j+1] + f[i, j]$$

• However, this approximation is centered about the pixel [i,j+1]. Therefore, by replacing j with j-1, we obtain

$$\frac{\partial^2 f}{\partial x^2} = f[i, j+1] - 2f[i, j] + f[i, j-1]$$

• which is the desired approximation to the second partial derivative centered about [i,j]. Similarly,

$$\frac{\partial^2 f}{\partial y^2} = f[i+1,j] - 2f[i,j] + f[i-1,j]$$

 By combining these two equations into a single operator, the following mask can be used to approximate the Laplacian:

$$\nabla^2 f = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

• Using one of these kernels, the Laplacian can be calculated using standard convolution methods.

0	_1	0	-1	_1	_1
_1	4	-1	-1	8	_1
0	_1	0	-1	-1	-1

LoG ('Laplacian of Gaussian')

• The 2-D LoG function centered on zero and with Gaussian standard deviation σ has the form:

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

LoG ('Laplacian of Gaussian')

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

LoG ('Laplacian of Gaussian')

A discrete kernel that approximates this function (for a

Gaussian $\sigma = 1.4$)

0	1	1	2	2	2	1	1	0
1	2	4	5	5	5	4	ณ	7
1	4	5	Э	0	Э	5	4	1
2	5	Э	-12	-24	- 12	Э	ឆ	2
2	Ð.	0	-24	-40	-24	0	G.	2
2	5	ភ	-12	-24	- 12	n	5	2
1	4	5	ភ	0	9	5	4	1
1	2	4	5	5	5	4	2	1
0	1	1	2	2	2	1	1	٥

