Introduction and Basic Implementation for Finite Element Methods

Chapter 5: Finite elements for 2D steady linear elasticity equation

Xiaoming He
Department of Mathematics & Statistics
Missouri University of Science & Technology

Outline

- Weak/Galerkin formulation
- PE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Outline

- Weak/Galerkin formulation
- 2 FE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Consider the 2D linear elasticity equation:

$$\begin{cases} -\nabla \cdot \sigma(\mathbf{u}) = \mathbf{f} & \text{in } \Omega, \\ \mathbf{u} = \mathbf{g} & \text{on } \partial \Omega. \end{cases}$$

where

$$\mathbf{u}(x_1,x_2)=(u_1, u_2)^t, \ \mathbf{g}(x_1,x_2)=(g_1, g_2)^t, \ \mathbf{f}(x_1,x_2)=(f_1, f_2)^t.$$

• The stress tensor $\sigma(\mathbf{u})$ is defined as

$$\sigma(\mathbf{u}) = \begin{pmatrix} \sigma_{11}(\mathbf{u}) & \sigma_{12}(\mathbf{u}) \\ \sigma_{21}(\mathbf{u}) & \sigma_{22}(\mathbf{u}) \end{pmatrix}, \quad \sigma_{ij}(\mathbf{u}) = \lambda \left(\nabla \cdot \mathbf{u} \right) \delta_{ij} + 2\mu \epsilon_{ij}(\mathbf{u}),$$

where λ and μ are Lamé parameters.

Target problem

• The strain tensor is defined as

$$\epsilon = \begin{pmatrix} \epsilon_{11} & \epsilon_{12} \\ \epsilon_{21} & \epsilon_{22} \end{pmatrix}, \qquad \epsilon_{ij}(\mathbf{u}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right),$$

where

$$\delta_{ij} = \left\{ \begin{array}{ll} 1, & i = j, \\ 0, & i \neq j. \end{array} \right.$$

Hence the stress tensor can be written as

$$\sigma(\mathbf{u}) = \begin{pmatrix} \lambda \frac{\partial u_1}{\partial x_1} + 2\mu \frac{\partial u_1}{\partial x_1} + \lambda \frac{\partial u_2}{\partial x_2} & \mu \frac{\partial u_1}{\partial x_2} + \mu \frac{\partial u_2}{\partial x_1} \\ \mu \frac{\partial u_1}{\partial x_2} + \mu \frac{\partial u_2}{\partial x_1} & \lambda \frac{\partial u_1}{\partial x_1} + \lambda \frac{\partial u_2}{\partial x_2} + 2\mu \frac{\partial u_2}{\partial x_2} \end{pmatrix}$$

Weak/Galerkin formulation

• First, take the inner product with a vector function $\mathbf{v}(x_1, x_2) = (v_1, v_2)^t$ on both sides of the original equation:

$$\begin{aligned}
-\nabla \cdot \sigma(\mathbf{u}) &= \mathbf{f} & \text{in } \Omega \\
\Rightarrow & -(\nabla \cdot \sigma(\mathbf{u})) \cdot \mathbf{v} &= \mathbf{f} \cdot \mathbf{v} & \text{in } \Omega \\
\Rightarrow & -\int_{\Omega} (\nabla \cdot \sigma(\mathbf{u})) \cdot \mathbf{v} \, dx_1 dx_2 &= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dx_1 dx_2.
\end{aligned}$$

Dirichlet boundary condition

• $\mathbf{u}(x_1, x_2)$ is called a trail function and $\mathbf{v}(x_1, x_2)$ is called a test function.

• Second, using integration by parts in multi-dimension:

$$\int_{\Omega} (\nabla \cdot \sigma(\mathbf{u})) \cdot \mathbf{v} \ dx_1 dx_2 = \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds - \int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2,$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial \Omega$, we obtain

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

Here,

$$A:B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} : \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
$$= a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22},$$

and

$$\nabla \mathbf{v} = \begin{pmatrix} \frac{\partial \mathbf{v}_1}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{v}_1}{\partial \mathbf{x}_2} \\ \frac{\partial \mathbf{v}_2}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{v}_2}{\partial \mathbf{x}_2} \end{pmatrix}.$$

- Since the solution on the domain boundary $\partial\Omega$ are given by $\mathbf{u}=\mathbf{g}$, then we can choose the test function $\mathbf{v}(x_1,x_2)$ such that $\mathbf{v}=0$ on $\partial\Omega$.
- Hence

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

Weak/Galerkin formulation

 Weak formulation in the vector format: find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ such that

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2$$

for any $\mathbf{v} \in H_0^1(\Omega) \times H_0^1(\Omega)$.

- Let $a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2$ and $(\mathbf{f}, \mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2$.
- Weak formulation: find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ such that

$$a(\mathbf{u},\mathbf{v})=(\mathbf{f},\mathbf{v})$$

for any $\mathbf{v} \in H_0^1(\Omega) \times H_0^1(\Omega)$.

In details,

$$\sigma(\mathbf{u}) : \nabla \mathbf{v} = \begin{pmatrix} \sigma_{11}(\mathbf{u}) & \sigma_{12}(\mathbf{u}) \\ \sigma_{21}(\mathbf{u}) & \sigma_{22}(\mathbf{u}) \end{pmatrix} : \begin{pmatrix} \frac{\partial v_1}{\partial x_1} & \frac{\partial v_1}{\partial x_2} \\ \frac{\partial v_2}{\partial x_1} & \frac{\partial v_2}{\partial x_2} \end{pmatrix} \\
= \sigma_{11}(\mathbf{u}) \frac{\partial v_1}{\partial x_1} + \sigma_{12}(\mathbf{u}) \frac{\partial v_1}{\partial x_2} + \sigma_{21}(\mathbf{u}) \frac{\partial v_2}{\partial x_1} + \sigma_{22}(\mathbf{u}) \frac{\partial v_2}{\partial x_2} \\
= \left(\lambda \frac{\partial u_1}{\partial x_1} + 2\mu \frac{\partial u_1}{\partial x_1} + \lambda \frac{\partial u_2}{\partial x_2} \right) \frac{\partial v_1}{\partial x_1} \\
+ \left(\mu \frac{\partial u_1}{\partial x_2} + \mu \frac{\partial u_2}{\partial x_1} \right) \frac{\partial v_1}{\partial x_2} + \left(\mu \frac{\partial u_1}{\partial x_2} + \mu \frac{\partial u_2}{\partial x_1} \right) \frac{\partial v_2}{\partial x_1} \\
+ \left(\lambda \frac{\partial u_1}{\partial x_1} + \lambda \frac{\partial u_2}{\partial x_2} + 2\mu \frac{\partial u_2}{\partial x_2} \right) \frac{\partial v_2}{\partial x_2}$$

Then

$$\begin{split} & \int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 \\ = & \int_{\Omega} \left(\lambda \frac{\partial u_1}{\partial x_1} \frac{\partial v_1}{\partial x_1} + 2\mu \frac{\partial u_1}{\partial x_1} \frac{\partial v_1}{\partial x_1} + \lambda \frac{\partial u_2}{\partial x_2} \frac{\partial v_1}{\partial x_1} \right. \\ & + \mu \frac{\partial u_1}{\partial x_2} \frac{\partial v_1}{\partial x_2} + \mu \frac{\partial u_2}{\partial x_1} \frac{\partial v_1}{\partial x_2} + \mu \frac{\partial u_1}{\partial x_2} \frac{\partial v_2}{\partial x_1} + \mu \frac{\partial u_2}{\partial x_1} \frac{\partial v_2}{\partial x_1} \\ & + \lambda \frac{\partial u_1}{\partial x_1} \frac{\partial v_2}{\partial x_2} + \lambda \frac{\partial u_2}{\partial x_2} \frac{\partial v_2}{\partial x_2} + 2\mu \frac{\partial u_2}{\partial x_2} \frac{\partial v_2}{\partial x_2} \right) \ dx_1 dx_2. \end{split}$$

Also, we have

$$\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2 = \int_{\Omega} (f_1 v_1 + f_2 v_2) \ dx_1 dx_2.$$

• Weak formulation in the scalar format: find $u_1 \in H^1(\Omega)$ and $u_2 \in H^1(\Omega)$ such that

$$\begin{split} &\int_{\Omega} \left(\lambda \frac{\partial u_1}{\partial x_1} \frac{\partial v_1}{\partial x_1} + 2\mu \frac{\partial u_1}{\partial x_1} \frac{\partial v_1}{\partial x_1} + \lambda \frac{\partial u_2}{\partial x_2} \frac{\partial v_1}{\partial x_1} \right. \\ &+ \mu \frac{\partial u_1}{\partial x_2} \frac{\partial v_1}{\partial x_2} + \mu \frac{\partial u_2}{\partial x_1} \frac{\partial v_1}{\partial x_2} + \mu \frac{\partial u_1}{\partial x_2} \frac{\partial v_2}{\partial x_1} + \mu \frac{\partial u_2}{\partial x_1} \frac{\partial v_2}{\partial x_1} \\ &+ \lambda \frac{\partial u_1}{\partial x_1} \frac{\partial v_2}{\partial x_2} + \lambda \frac{\partial u_2}{\partial x_2} \frac{\partial v_2}{\partial x_2} + 2\mu \frac{\partial u_2}{\partial x_2} \frac{\partial v_2}{\partial x_2} \right) \, dx_1 dx_2 \\ &= \int_{\Omega} (f_1 v_1 + f_2 v_2) \, dx_1 dx_2. \end{split}$$

for any $v_1 \in H_0^1(\Omega)$ and $v_2 \in H_0^1(\Omega)$.

Galerkin formulation

- Assume there is a finite dimensional subspace $U_h \subset H^1(\Omega)$. Define U_{h0} to be the space which consists of the functions of U_h with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $\mathbf{u}_h \in U_h \times U_h$ such that

$$a(\mathbf{u}_h, \mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h)$$

$$\Leftrightarrow \int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2 = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$.

- Basic idea of Galerkin formulation: use finite dimensional space to approximate infinite dimensional space.
- Here $U_h = span\{\phi_i\}_{i=1}^{N_b}$ is chosen to be a finite element space where $\{\phi_j\}_{j=1}^{N_b}$ are the global finite element basis functions, such as those defined in Chapter 2.

Galerkin formulation

 For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ such that

$$a(\mathbf{u}_h, \mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h)$$

$$\Leftrightarrow \int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2 = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2$$

Dirichlet boundary condition

for any $\mathbf{v}_h \in U_h \times U_h$.

Galerkin formulation

 In details, the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later) is to find $u_{1h} \in U_h$ and $u_{2h} \in U_h$ such that

$$\int_{\Omega} \left(\lambda \frac{\partial u_{1h}}{\partial x_{1}} \frac{\partial v_{1h}}{\partial x_{1}} + 2\mu \frac{\partial u_{1h}}{\partial x_{1}} \frac{\partial v_{1h}}{\partial x_{1}} + \lambda \frac{\partial u_{2h}}{\partial x_{2}} \frac{\partial v_{1h}}{\partial x_{1}} \right) \\
+ \mu \frac{\partial u_{1h}}{\partial x_{2}} \frac{\partial v_{1h}}{\partial x_{2}} + \mu \frac{\partial u_{2h}}{\partial x_{1}} \frac{\partial v_{1h}}{\partial x_{2}} + \mu \frac{\partial u_{1h}}{\partial x_{2}} \frac{\partial v_{2h}}{\partial x_{1}} + \mu \frac{\partial u_{2h}}{\partial x_{1}} \frac{\partial v_{2h}}{\partial x_{1}} \\
+ \lambda \frac{\partial u_{1h}}{\partial x_{1}} \frac{\partial v_{2h}}{\partial x_{2}} + \lambda \frac{\partial u_{2h}}{\partial x_{2}} \frac{\partial v_{2h}}{\partial x_{2}} + 2\mu \frac{\partial u_{2h}}{\partial x_{2}} \frac{\partial v_{2h}}{\partial x_{2}} \right) dx_{1} dx_{2} \\
= \int_{\Omega} (f_{1}v_{1h} + f_{2}v_{2h}) dx_{1} dx_{2}.$$

for any $v_{1h} \in U_h$ and $v_{2h} \in U_h$.

Outline

- Weak/Galerkin formulation
- 2 FE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Recall the following definitions from Chapter 2:

- N: number of mesh elements.
- N_m : number of mesh nodes.
- E_n $(n = 1, \dots, N)$: mesh elements.
- Z_k ($k = 1, \dots, N_m$): mesh nodes.
- N_I : number of local mesh nodes in a mesh element.
- P:information matrix consisting of the coordinates of all mesh nodes.
- T: information matrix consisting of the global node indices of the mesh nodes of all the mesh elements.

Weak/Galerkin formulation

- this course.
- N_{lb} : number of local finite element nodes (=number of local finite element basis functions) in a mesh element.
- N_b : number of the finite element nodes (= the number of unknowns = the total number of the finite element basis functions).
- X_j $(j = 1, \dots, N_b)$: finite element nodes.
- P_b: information matrix consisting of the coordinates of all finite element nodes.
- T_b: information matrix consisting of the global node indices of the finite element nodes of all the mesh elements.

Discretization formulation

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_j\}_{j=1}^{N_b}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j$$

for some coefficients u_{1j} and u_{2j} $(j = 1, \dots, N_b)$.

- If we can set up a linear algebraic system for u_{1j} and u_{2j} $(j=1,\cdots,N_b)$, then we can solve it to obtain the finite element solution $\mathbf{u}_h = (u_{1h},u_{2h})^t$.
- We choose $\mathbf{v}_h = (\phi_i, 0)^t$ $(i = 1, \dots, N_b)$ and $\mathbf{v}_h = (0, \phi_i)^t$ $(i = 1, \dots, N_b)$ in the Galerkin formulation. That is, in the first set of test functions, we choose $v_{1h} = \phi_i$ $(i = 1, \dots, N_b)$ and $v_{2h} = 0$; in the second set of test functions, we choose $v_{1h} = 0$ and $v_{2h} = \phi_i$ $(i = 1, \dots, N_b)$.

Discretization formulation

• Set $\mathbf{v}_h = (\phi_i, 0)^t$, i.e., $v_{1h} = \phi_i$ and $v_{2h} = 0$ $(i = 1, \dots, N_b)$. Then

$$\int_{\Omega} \lambda \left(\sum_{j=1}^{N_{b}} u_{1j} \frac{\partial \phi_{j}}{\partial x_{1}} \right) \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} + 2 \int_{\Omega} \mu \left(\sum_{j=1}^{N_{b}} u_{1j} \frac{\partial \phi_{j}}{\partial x_{1}} \right) \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2}
+ \int_{\Omega} \lambda \left(\sum_{j=1}^{N_{b}} u_{2j} \frac{\partial \phi_{j}}{\partial x_{2}} \right) \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} + \int_{\Omega} \mu \left(\sum_{j=1}^{N_{b}} u_{1j} \frac{\partial \phi_{j}}{\partial x_{2}} \right) \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2}
+ \int_{\Omega} \mu \left(\sum_{j=1}^{N_{b}} u_{2j} \frac{\partial \phi_{j}}{\partial x_{1}} \right) \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2}
= \int_{\Omega} f_{1} \phi_{i} dx_{1} dx_{2}.$$

Weak/Galerkin formulation

• Set $\mathbf{v}_h = (0, \phi_i)^t$, i.e., $v_{1h} = 0$ and $v_{2h} = \phi_i$ $(i = 1, \dots, N_b)$. Then

$$\int_{\Omega} \mu \left(\sum_{j=1}^{N_b} u_{1j} \frac{\partial \phi_j}{\partial x_2} \right) \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \left(\sum_{j=1}^{N_b} u_{2j} \frac{\partial \phi_j}{\partial x_1} \right) \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2
+ \int_{\Omega} \lambda \left(\sum_{j=1}^{N_b} u_{1j} \frac{\partial \phi_j}{\partial x_1} \right) \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \lambda \left(\sum_{j=1}^{N_b} u_{2j} \frac{\partial \phi_j}{\partial x_2} \right) \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2
+ 2 \int_{\Omega} \mu \left(\sum_{j=1}^{N_b} u_{2j} \frac{\partial \phi_j}{\partial x_2} \right) \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2
= \int_{\Omega} f_2 \phi_i dx_1 dx_2.$$

Discretization formulation

Weak/Galerkin formulation

Simplify the above two sets of equations, we obtain

$$\begin{split} &\sum_{j=1}^{N_b} u_{1j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + 2 \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right) \\ &+ \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right) \\ &= \int_{\Omega} f_1 \phi_i dx_1 dx_2 \\ &\sum_{j=1}^{N_b} u_{1j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 \right) \\ &+ \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + 2 \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right) \\ &= \int_{\Omega} f_2 \phi_i dx_1 dx_2. \end{split}$$

Matrix formulation

Define

$$\begin{split} A_1 &= \left[\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 \right]_{i,j=1}^{N_b}, \quad A_2 &= \left[\int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 \right]_{i,j=1}^{N_b}, \\ A_3 &= \left[\int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right]_{i,j=1}^{N_b}, \quad A_4 &= \left[\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 \right]_{i,j=1}^{N_b}, \\ A_5 &= \left[\int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right]_{i,j=1}^{N_b}, \quad A_6 &= \left[\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right]_{i,j=1}^{N_b}, \\ A_7 &= \left[\int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 \right]_{i,j=1}^{N_b}, \quad A_8 &= \left[\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right]_{i,j=1}^{N_b}. \end{split}$$

- Each matrix above can be obtained by Algorithm I-3 in Chapter 3.
- Then

$$A = \begin{pmatrix} A_1 + 2A_2 + A_3 & A_4 + A_5 \\ A_6 + A_7 & A_8 + 2A_3 + A_2 \end{pmatrix}$$

Matrix formulation

Define the load vector

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \end{array}
ight)$$

where

$$\vec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx_1 dx_2 \right]_{i=1}^{N_b}, \quad \vec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx_1 dx_2 \right]_{i=1}^{N_b}.$$

ullet Each of $ec{b}_1$ and $ec{b}_2$ can be obtained by Algorithm II-3 in Chapter 3.

Matrix formulation

Define the unknown vector

$$\vec{X} = \left(\begin{array}{c} \vec{X}_1 \\ \vec{X}_2 \end{array} \right)$$

where

$$\vec{X}_1 = [u_{1j}]_{j=1}^{N_b}, \quad \vec{X}_2 = [u_{2j}]_{j=1}^{N_b}.$$

• Then we obtain the linear algebraic system

$$A\vec{X} = \vec{b}$$
.

Outline

- Weak/Galerkin formulation
- 2 FE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

- Basically, the Dirichlet boundary condition $\mathbf{u} = \mathbf{g}$ (i.e., $u_1 = g_1$ and $u_2 = g_2$) provides the solutions at all boundary finite element nodes.
- Since the coefficient u_{1i} and u_{2i} in the finite element solutions $u_{1h} = \sum_{i=1}^{N_b} u_{1i}\phi_i$ and $u_{2h} = \sum_{i=1}^{N_b} u_{2i}\phi_i$ are actually the numerical solutions at the finite element node X_i $(i = 1, \dots, N_b)$ when nodal basis functions are used, we actually know those u_{1i} and u_{2i} which are corresponding to the boundary finite element nodes.
- Recall that boundarynodes(2,:) store the global node indices of all boundary finite element nodes.
- If $m \in boundarynodes(2,:)$, then the m^{th} equation is called a boundary node equation for u_1 and the $(N_b + m)^{th}$ equation is called a boundary node equation for u_2 .
- Set nbn to be the number of boundary nodes;

Weak/Galerkin formulation

 One way to impose the Dirichlet boundary condition is to replace the boundary node equations in the linear system by the following equations

$$u_{1m} = g_1(X_m)$$

$$u_{2m} = g_2(X_m).$$

Dirichlet boundary condition

for all $m \in boundary nodes(2, :)$.

This is similar to $u_m = g(X_m)$ in Chapter 3.

Dirichlet boundary condition

Based on Algorithm III in Chapter 3, we obtain Algorithm III-3:

Deal with the Dirichlet boundary conditions:

```
FOR k = 1, \dots, nbn:
     If boundarynodes(1, k) shows Dirichlet condition, then
          i = boundary nodes(2, k);
         A(i,:) = 0;
         A(i, i) = 1:
         b(i) = g_1(P_b(:,i));
         A(N_b + i, :) = 0;
         A(N_b + i, N_b + i) = 1.
         b(N_b + i) = g_2(P_b(:, i)):
     FNDIF
END
```

Outline

- Weak/Galerkin formulation
- 2 FE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Universal framework of the finite element method

Recall from Chapter 3:

- Generate the mesh information: matrices *P* and *T*;
- Assemble the matrices and vectors: local assembly based on P and T only;
- Deal with the boundary conditions: boundary information matrix and local assembly;
- Solve linear systems: numerical linear algebra.

Recall from Chapter 3:

- Generate the mesh information matrices P and T.
- Assemble the stiffness matrix A by using Algorithm I. (We will choose Algorithm I-3 in class)
- Assemble the load vector \vec{b} by using Algorithm II. (We will choose Algorithm II-3 in class)
- Deal with the Dirichlet boundary condition by using Algorithm III-3.
- Solve $A\vec{X} = \vec{b}$ for \vec{X} by using a direct or iterative method.

Recall Algorithm I-3 from Chapter 3:

- Initialize the matrix: $A = sparse(N_b, N_b)$;
- Compute the integrals and assemble them into A:

```
FOR n = 1, \dots, N:
         FOR \alpha = 1, \dots, N_{lb}:
                  FOR \beta = 1, \dots, N_{lb}:
                           Compute r = \int_{E_n} c \frac{\partial^{r+s} \psi_{n\alpha}}{\partial x^r \partial y^s} \frac{\partial^{p+q} \psi_{n\beta}}{\partial x^p \partial y^q} dx_1 dx_2;
                           Add r to A(T_b(\beta, n), T_b(\alpha, n)).
                   END
         END
FND
```

- Call Algorithm I-3 with r=1, s=0, p=1, and q=0 and $c=\lambda$ to obtain A_1 .
- Call Algorithm I-3 with r=1, s=0, p=1, and q=0 and $c=\mu$ to obtain A_2 .
- Call Algorithm I-3 with r=0, s=1, p=0, and q=1 and $c=\mu$ to obtain A_3 .
- Call Algorithm I-3 with r = 0, s = 1, p = 1, and q = 0 and $c = \lambda$ to obtain A_4 .
- Call Algorithm I-3 with r=1, s=0, p=0, and q=1 and $c=\mu$ to obtain A_5 .
- Call Algorithm I-3 with r=1, s=0, p=0, and q=1 and $c=\lambda$ to obtain A_6 .
- Call Algorithm I-3 with r = 0, s = 1, p = 1, and q = 0 and $c = \mu$ to obtain A_7 .
- Call Algorithm I-3 with r=0, s=1, p=0, and q=1 and $c=\lambda$ to obtain A_8 .
- Then the stiffness matrix $A = [A_1 + 2A_2 + A_3 \ A_4 + A_5; A_6 + A_7 \ A_8 + 2A_3 + A_2].$ <ロティ部ティミティミテー語

Recall Algorithm II-3 from Chapter 3:

- Initialize the vector: $b = sparse(N_b, 1)$;
- Compute the integrals and assemble them into b:

```
FOR n = 1, \dots, N:
       FOR \beta = 1, \cdots, N_{lb}:
               Compute r = \int_{E_n} f \frac{\partial^{p+q} \psi_{n\beta}}{\partial x^p \partial y^q} dx_1 dx_2;
               b(T_b(\beta, n), 1) = b(T_b(\beta, n), 1) + r;
       END
END
```

• Call Algorithm II-3 with p = q = 0 and $f = f_1$ to obtain b_1 .

- Call Algorithm II-3 with p = q = 0 and $f = f_2$ to obtain b_2 .
- Then the load vector $\vec{b} = [b_1; b_2]$.

Algorithm

Recall Algorithm III-3 from this Chapter:

Deal with the Dirichlet boundary conditions:

```
FOR k = 1, \dots, nbn:
     If boundarynodes(1, k) shows Dirichlet condition, then
          i = boundary nodes(2, k);
         A(i,:) = 0;
         A(i, i) = 1:
         b(i) = g_1(P_b(:,i));
         A(N_b + i, :) = 0;
         A(N_b + i, N_b + i) = 1;
         b(N_b + i) = g_2(P_b(:, i));
     FNDIF
END
```

Weak/Galerkin formulation

• I^{∞} norm error:

$$\begin{split} \|\mathbf{u} - \mathbf{u}_h\|_{\infty} &= \max \left(\|u_1 - u_{1h}\|_{\infty}, \|u_2 - u_{2h}\|_{\infty} \right), \\ \|u_1 - u_{1h}\|_{\infty} &= \sup_{\Omega} |u_1 - u_{1h}|, \\ \|u_2 - u_{2h}\|_{\infty} &= \sup_{\Omega} |u_2 - u_{2h}|. \end{split}$$

• L² norm error:

$$\|\mathbf{u} - \mathbf{u}_h\|_0 = \sqrt{\|u_1 - u_{1h}\|_0^2 + \|u_2 - u_{2h}\|_0^2},$$

$$\|u_1 - u_{1h}\|_0 = \sqrt{\int_{\Omega} (u_1 - u_{1h})^2 dx_1 dx_2},$$

$$\|u_2 - u_{2h}\|_0 = \sqrt{\int_{\Omega} (u_2 - u_{2h})^2 dx_1 dx_2}.$$

Measurements for errors

• H^1 semi-norm error:

$$|\mathbf{u} - \mathbf{u}_{h}|_{1} = \sqrt{|u_{1} - u_{1h}|_{1}^{2} + |u_{2} - u_{2h}|_{1}^{2}},$$

$$|u_{1} - u_{1h}|_{1} = \sqrt{\int_{\Omega} \left(\frac{\partial(u_{1} - u_{1h})}{\partial x_{1}}\right)^{2} + \left(\frac{\partial(u_{1} - u_{1h})}{\partial x_{2}}\right)^{2} dx_{1} dx_{2}},$$

$$|u_{2} - u_{2h}|_{1} = \sqrt{\int_{\Omega} \left(\frac{\partial(u_{2} - u_{2h})}{\partial x_{1}}\right)^{2} + \left(\frac{\partial(u_{2} - u_{2h})}{\partial x_{2}}\right)^{2} dx_{1} dx_{2}}.$$

• Basic idea: call Algorithm IV and Algorithm V in Chapter 3 for each of u_1 and u_2 ; then plug the results into the above formulas for the errors of \mathbf{u} .

• Example 1: Use the finite element method to solve the following equation on the domain $\Omega = [0,1] \times [0,1]$:

$$-\nabla \cdot \sigma(\mathbf{u}) = \mathbf{f} \quad \text{ on } \Omega,$$

$$u_1 = 0, u_2 = 0 \quad \text{ on } \partial\Omega,$$

with

$$f_1 = -(\lambda + 2\mu)(-\pi^2 \sin(\pi x)\sin(\pi y)) -(\lambda + \mu)((2x - 1)(2y - 1)) - \mu(-\pi^2 \sin(\pi x)\sin(\pi y)),$$

$$f_2 = -(\lambda + 2\mu)(2x(x - 1)) - (\lambda + \mu)(\pi^2 \cos(\pi x)\cos(\pi y)) - \mu(2y(y - 1)).$$

Here $\lambda = 1$ and $\mu = 2$.

- The analytic solution of this problem is $u_1 = \sin(\pi x)\sin(\pi y)$ and $u_2 = x(x-1)y(y-1)$, which can be used to compute the errors of the numerical solution. We can also verify f_1 and f_2 above by plugging the analytic solutions into the elasticity equation.
- Let's code for the linear and quadratic finite element method of the 2D linear elasticity equation together!
- Open your Matlab!

h	$\left\ \mathbf{u} - \mathbf{u}_h \right\ _{\infty}$	$\left\ \mathbf{u} - \mathbf{u}_h \right\ _0$	$\left u - u_h \right _1$
1/8	$5.1175 imes 10^{-2}$	2.2934×10^{-2}	4.3382×10^{-1}
1/16	1.3250×10^{-2}	5.9217×10^{-3}	2.1821×10^{-1}
1/32	3.3437×10^{-3}	1.4938×10^{-3}	1.0926×10^{-1}
1/64	8.3793×10^{-4}	3.7431×10^{-4}	5.4649×10^{-2}

Table: The numerical errors for linear finite element.

- Any Observation?
- Second order convergence $O(h^2)$ in L^2/L^∞ norm and first order convergence O(h) in H^1 semi-norm, which match the optimal approximation capability expected from piecewise linear functions.

h	$\left\ \mathbf{u} - \mathbf{u}_h \right\ _{\infty}$	$\ \mathbf{u} - \mathbf{u}_h\ _0$	$ \mathbf{u} - \mathbf{u}_h _1$
1/8	1.4862×10^{-3}	5.0157×10^{-4}	3.3555×10^{-2}
1/16	1.8944×10^{-4}	6.2157×10^{-5}	8.4431×10^{-3}
1/32	2.3799×10^{-5}	7.7475×10^{-6}	2.1142×10^{-3}
1/64	2.9797×10^{-6}	9.6770×10^{-7}	5.2876×10^{-4}

Table: The numerical errors for quadratic finite element.

- Any Observation?
- Third order convergence $O(h^3)$ in L^2/L^∞ norm and second order convergence $O(h^2)$ in H^1 semi-norm, which match the optimal approximation capability expected from piecewise quadratic functions.

Outline

- Weak/Galerkin formulation
- 2 FE discretization
- 3 Dirichlet boundary condition
- 4 FE Method
- More Discussion

Consider

$$\left\{ \begin{array}{ll} -\nabla \cdot \sigma(\mathbf{u}) = \mathbf{f} & \text{in } \Omega, \\ \sigma(\mathbf{u})\mathbf{n} = \mathbf{p} & \text{on } \partial \Omega. \end{array} \right.$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial \Omega$ and

$$\mathbf{p}(x_1,x_2)=(p_1,\,p_2)^t,\,\,\mathbf{f}(x_1,x_2)=(f_1,\,f_2)^t.$$

Recall

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

Hence

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} \mathbf{p} \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

Is there anything wrong? The solution is not unique!

Recall that

$$\sigma(\mathbf{u}) = \begin{pmatrix} \lambda \frac{\partial u_1}{\partial x_1} + 2\mu \frac{\partial u_1}{\partial x_1} + \lambda \frac{\partial u_2}{\partial x_2} & \mu \frac{\partial u_1}{\partial x_2} + \mu \frac{\partial u_2}{\partial x_1} \\ \mu \frac{\partial u_1}{\partial x_2} + \mu \frac{\partial u_2}{\partial x_1} & \lambda \frac{\partial u_1}{\partial x_1} + \lambda \frac{\partial u_2}{\partial x_2} + 2\mu \frac{\partial u_2}{\partial x_2} \end{pmatrix}$$

• Then, if $\mathbf{u} = (u_1, u_2)^t$ is a solution, then $\mathbf{u} + \mathbf{c}$ is also a solution where \mathbf{c} is a constant vector.

Consider

$$-\nabla \cdot \sigma(\mathbf{u}) = \mathbf{f} \quad \text{in} \quad \Omega,$$

$$\sigma(\mathbf{u})\mathbf{n} = \mathbf{p} \text{ on } \Gamma_{\mathcal{S}} \subset \partial \Omega,$$

$$\mathbf{u} = \mathbf{g} \text{ on } \Gamma_{\mathcal{D}} = \partial \Omega / \Gamma_{\mathcal{S}}.$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of Γ_S .

Recall

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

• Since the solution on $\Gamma_D = \partial \Omega / \Gamma_S$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x_1, x_2)$ such that $\mathbf{v} = 0$ on $\partial \Omega / \Gamma_S$.

Hence

$$\begin{split} \int_{\partial\Omega} & (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds &= \int_{\Gamma_S} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds + \int_{\partial\Omega/\Gamma_S} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds \\ &= \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v} \ ds, \end{split}$$

• The weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ such that

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_{\mathcal{S}}} \mathbf{p} \cdot \mathbf{v} \ ds,$$

for any $\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$. Here

$$\int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v} \ ds = \int_{\Gamma_S} p_1 v_1 \ ds + \int_{\Gamma_S} p_2 v_2 \ ds,$$

$$H^1_{0D}(\Omega) = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D \}.$$

ullet Then the Galerkin formulation is to find $oldsymbol{u}_h \in U_h imes U_h$ such that

$$\int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2 = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_s} \mathbf{p} \cdot \mathbf{v}_h \ ds.$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$.

• For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ such that

$$\int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2 = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v}_h \ ds.$$

for any $\mathbf{v}_h \in U_h \times U_h$.

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_i\}_{i=1}^{N_b}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j} \phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j} \phi_j$$

Dirichlet boundary condition

for some coefficients u_{1i} and u_{2i} $(j = 1, \dots, N_b)$.

• For the test function, we choose $\mathbf{v}_h = (\phi_i, 0)^t$ $(i = 1, \dots, N_b)$ and $\mathbf{v}_h = (0, \phi_i)^t \ (i = 1, \dots, N_h).$

 Then by the same procedure to derive the matrix formulation before, we obtain the following linear system

$$\begin{split} &\sum_{j=1}^{N_b} u_{1j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + 2 \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right) \\ &+ \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right) \\ &= \int_{\Omega} f_1 \phi_i dx_1 dx_2 + \int_{\Gamma_{\mathbf{S}}} \mathbf{p}_1 \phi_i d\mathbf{s} \\ &\sum_{j=1}^{N_b} u_{1j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 \right) \\ &+ \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + 2 \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right) \\ &= \int_{\Omega} f_2 \phi_i dx_1 dx_2 + \int_{\Gamma_{\mathbf{S}}} \mathbf{p}_2 \phi_i d\mathbf{s}. \end{split}$$

Recall

$$A_{1} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{2} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{3} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{4} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{5} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{6} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{7} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{8} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}.$$

and

$$A = \begin{pmatrix} A_1 + 2A_2 + A_3 & A_4 + A_5 \\ A_6 + A_7 & A_8 + 2A_3 + A_2 \end{pmatrix}$$

Recall

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \end{array}
ight)$$

where

$$\vec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx_1 dx_2 \right]_{i=1}^{N_b}, \quad \vec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx_1 dx_2 \right]_{i=1}^{N_b}.$$

Recall

$$\vec{X} = \left(\begin{array}{c} \vec{X}_1 \\ \vec{X}_2 \end{array} \right)$$

where

$$\vec{X}_1 = [u_{1j}]_{j=1}^{N_b}, \quad \vec{X}_2 = [u_{2j}]_{j=1}^{N_b}.$$

 Define the additional vector from the stress boundary condition:

$$ec{v} = \left(egin{array}{c} ec{v}_1 \ ec{v}_2 \end{array}
ight)$$

where

$$\vec{v}_1 = \left[\int_{\Gamma_S} p_1 \phi_i \ ds \right]_{i=1}^{N_b}, \quad \vec{v}_2 = \left[\int_{\Gamma_S} p_2 \phi_i \ ds \right]_{i=1}^{N_b}.$$

- Define the new vector $\stackrel{\sim}{\vec{b}} = \vec{b} + \vec{v}$.
- Then we obtain the linear algebraic system

$$A\vec{X} = \widetilde{\vec{b}}.$$

• Since each of \vec{v}_1 and \vec{v}_2 is similar to the \vec{v} for the Neumann condition in Chapter 3, we essentially only need repeat the code of Neumann condition in Chapter 3 for \vec{v}_1 and \vec{v}_2 .

More Discussion

Based on Algorithm VI in Chapter 3, we obtain Algorithm VI-2:

- Initialize the vector: $v = sparse(2N_h, 1)$;
- Compute the integrals and assemble them into v:

```
FOR k = 1, \dots, nbe:
       IF boundaryedges (1, k) shows stress boundary, THEN
              n_k = boundarvedges(2, k);
              FOR \beta = 1, \dots, N_{lh}:
                     Compute r=\int_{e_k}p_1rac{\partial^{a+b}\psi_{n_k\beta}}{\partial x_-^a\partial x_-^b}\ ds;
                      v(T_b(\beta, n_k), 1) = v(T_b(\beta, n_k), 1) + r;
                      Compute r = \int_{e_k} p_2 \frac{\partial^{a+b} \psi_{n_k \beta}}{\partial x_1^a \partial x_2^b} ds;
                      v(N_b + T_b(\beta, n_k), 1) = v(N_b + T_b(\beta, n_k), 1) + r;
               END
       ENDIF
END
```

Consider

$$-\nabla \cdot \sigma(\mathbf{u}) = \mathbf{f} \quad \text{in} \quad \Omega,$$

$$\sigma(\mathbf{u})\mathbf{n} + r\mathbf{u} = \mathbf{q} \text{ on } \Gamma_R \subseteq \partial \Omega,$$

$$\mathbf{u} = \mathbf{g} \text{ on } \Gamma_D = \partial \Omega / \Gamma_R.$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of Γ_R .

Recall

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

• Since the solution on $\Gamma_D = \partial \Omega / \Gamma_R$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x_1, x_2)$ such that $\mathbf{v} = 0$ on $\partial \Omega / \Gamma_R$.

Hence

$$\begin{split} \int_{\partial\Omega} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds &= \int_{\Gamma_R} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds + \int_{\partial\Omega/\Gamma_R} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds \\ &= \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \ ds - \int_{\Gamma_R} r \mathbf{u} \cdot \mathbf{v} \ ds, \end{split}$$

• The weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ such that

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_R} r \mathbf{u} \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \ ds,$$

for any $\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$. Here

$$\begin{split} &\int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \ ds = \int_{\Gamma_R} q_1 v_1 \ ds + \int_{\Gamma_R} q_2 v_2 \ ds, \\ &\int_{\Gamma_R} r \mathbf{u} \cdot \mathbf{v} \ ds = \int_{\Gamma_R} r u_1 v_1 \ ds + \int_{\Gamma_R} r u_2 v_2 \ ds, \\ &H^1_{0D}(\Omega) = \{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D \}. \end{split}$$

• Then the Galerkin formulation is to find $\mathbf{u}_h \in U_h \times U_h$ such that

$$\int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_R} r \mathbf{u}_h \cdot \mathbf{v}_h \ ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v}_h \ ds.$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$.

 For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ such that

$$\int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_R} r \mathbf{u}_h \cdot \mathbf{v}_h \ ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v}_h \ ds.$$

for any $\mathbf{v}_h \in U_h \times U_h$.

Weak/Galerkin formulation

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_i\}_{i=1}^{N_b}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j$$

Dirichlet boundary condition

for some coefficients u_{1i} and u_{2i} $(j = 1, \dots, N_h)$.

• For the test function, we choose $\mathbf{v}_h = (\phi_i, 0)^t$ $(i = 1, \dots, N_h)$ and $\mathbf{v}_h = (0, \phi_i)^t \ (i = 1, \dots, N_h).$

 Then by the same procedure to derive the matrix formulation before, we obtain the following linear system

$$\begin{split} &+\sum_{j=1}^{N_{b}}u_{2j}\left(\int_{\Omega}\lambda\frac{\partial\phi_{j}}{\partial x_{2}}\frac{\partial\phi_{i}}{\partial x_{1}}dx_{1}dx_{2}+\int_{\Omega}\mu\frac{\partial\phi_{j}}{\partial x_{1}}\frac{\partial\phi_{i}}{\partial x_{2}}dx_{1}dx_{2}\right)\\ &=\int_{\Omega}f_{1}\phi_{i}dx_{1}dx_{2}+\int_{\Gamma_{S}}q_{1}\phi_{i}\ ds\\ &\sum_{j=1}^{N_{b}}u_{1j}\left(\int_{\Omega}\lambda\frac{\partial\phi_{j}}{\partial x_{1}}\frac{\partial\phi_{i}}{\partial x_{2}}dx_{1}dx_{2}+\int_{\Omega}\mu\frac{\partial\phi_{j}}{\partial x_{2}}\frac{\partial\phi_{i}}{\partial x_{1}}dx_{1}dx_{2}\right)\\ &+\sum_{j=1}^{N_{b}}u_{2j}\left(\int_{\Omega}(\lambda+2\mu)\frac{\partial\phi_{j}}{\partial x_{2}}\frac{\partial\phi_{i}}{\partial x_{2}}dx_{1}dx_{2}+\int_{\Omega}\mu\frac{\partial\phi_{j}}{\partial x_{1}}\frac{\partial\phi_{i}}{\partial x_{1}}dx_{1}dx_{2}+\int_{\Gamma_{R}}r\phi_{j}\phi_{i}\ ds\right)\\ &=\int_{\Omega}f_{2}\phi_{i}dx_{1}dx_{2}+\int_{\Gamma}q_{2}\phi_{i}\ ds. \end{split}$$

 $\sum_{i=1}^{n_b} u_{1j} \left(\int_{\Omega} (\lambda + 2\mu) \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} r \phi_j \phi_i ds \right)$

Recall

$$A_{1} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{2} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{3} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{4} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{5} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{6} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{7} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{8} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}.$$

and

$$A = \begin{pmatrix} A_1 + 2A_2 + A_3 & A_4 + A_5 \\ A_6 + A_7 & A_8 + 2A_3 + A_2 \end{pmatrix}$$

Recall

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \end{array}
ight)$$

Dirichlet boundary condition

where

$$\vec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx_1 dx_2 \right]_{i=1}^{N_b}, \quad \vec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx_1 dx_2 \right]_{i=1}^{N_b}.$$

Recall

$$\vec{X} = \left(\begin{array}{c} \vec{X}_1 \\ \vec{X}_2 \end{array} \right)$$

where

$$\vec{X}_1 = [u_{1j}]_{j=1}^{N_b}, \quad \vec{X}_2 = [u_{2j}]_{j=1}^{N_b}.$$

Define the additional vector from the Robin boundary

condition:

$$\vec{w} = \left(\begin{array}{c} \vec{w}_1 \\ \vec{w}_2 \end{array} \right)$$

where

$$\vec{w}_1 = \left[\int_{\Gamma_S} q_1 \phi_i \ ds\right]_{i=1}^{N_b}, \quad \vec{w}_2 = \left[\int_{\Gamma_S} q_2 \phi_i \ ds\right]_{i=1}^{N_b}.$$

- Define the new vector $\vec{\vec{b}} = \vec{b} + \vec{w}$.
- Since each of \vec{w}_1 and \vec{w}_2 is similar to the \vec{w} for the Robin condition in Chapter 3, we essentially only need repeat the code of \vec{w} in Chapter 3 for \vec{w}_1 and \vec{w}_2 .

Define the additional matrix from the Robin boundary condition

$$R = [r_{ij}]_{i,j=1}^{N_b} = \left[\int_{\Gamma_R} r \phi_j \phi_i \ ds \right]_{i,j=1}^{N_b}.$$

Define the new matrix:

$$\widetilde{A} = \begin{pmatrix} A_1 + 2A_2 + A_3 + R & A_4 + A_5 \\ A_6 + A_7 & A_8 + 2A_3 + A_2 + R \end{pmatrix}$$

Then we obtain the linear algebraic system

$$\widetilde{A}\vec{X} = \widetilde{\vec{b}}.$$

- Since R is the same as the R in Chapter 3, the code for R is the same. But R needs to be added to the matrix A twice as showed above to obtain A.
- Pseudo code? (Part of a project for you)

Consider

$$\begin{split} -\nabla \cdot \sigma(\mathbf{u}) &= \mathbf{f} & \text{in } \Omega, \\ \sigma(\mathbf{u})\mathbf{n} &= \mathbf{p} \text{ on } \Gamma_{\mathcal{S}} \subset \partial \Omega, \\ \sigma(\mathbf{u})\mathbf{n} + r\mathbf{u} &= \mathbf{q} \text{ on } \Gamma_{\mathcal{R}} \subseteq \partial \Omega, \\ \mathbf{u} &= \mathbf{g} \text{ on } \Gamma_{\mathcal{D}} = \partial \Omega / (\Gamma_{\mathcal{S}} \cup \Gamma_{\mathcal{R}}). \end{split}$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\Gamma_S \bigcup \Gamma_R$.

Recall

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

• Since the solution on $\Gamma_D = \partial \Omega/(\Gamma_S \cup \Gamma_R)$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x_1, x_2)$ such that $\mathbf{v} = 0$ on $\partial \Omega/(\Gamma_S \cup \Gamma_R)$.

Dirichlet/stress/Robin mixed boundary condition

 Combining the above derivation for stress and Robin boundary conditions, we obtain

$$\begin{split} & \int_{\partial\Omega} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds \\ = & \int_{\Gamma_S} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds + \int_{\Gamma_R} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds \\ & + \int_{\partial\Omega/(\Gamma_S \cup \Gamma_R)} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \ ds \\ = & \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v} \ ds + \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \ ds - \int_{\Gamma_R} r \mathbf{u} \cdot \mathbf{v} \ ds, \end{split}$$

• The weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ such that

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_R} r \mathbf{u} \cdot \mathbf{v} \ ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_R} \mathbf{q} \cdot \mathbf{v} \ ds + \int_{\Gamma_S} \mathbf{p} \cdot \mathbf{v} \ ds.$$

Dirichlet boundary condition

for any
$$\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$$
. Here $H^1_{0D}(\Omega) = \{ w \in H^1(\Omega) : w = 0 \text{ on } \Gamma_D \}.$

Code?

Weak/Galerkin formulation

 Combine all of the subroutines for Dirichlet/stress/Robin boundary conditions.

Stress boundary condition in normal/tangential directions

Consider

$$\begin{split} -\nabla \cdot \sigma(\mathbf{u}) &= \mathbf{f} & \text{in } \Omega, \\ \mathbf{n}^t \sigma(\mathbf{u}) \mathbf{n} &= p_n, \ \tau^t \sigma(\mathbf{u}) \mathbf{n} = p_\tau \ \text{on } \Gamma_S \subset \partial \Omega, \\ \mathbf{u} &= \mathbf{g} \ \text{on } \Gamma_D = \partial \Omega / \Gamma_S. \end{split}$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of Γ_S and $\tau = (\tau_1, \tau_2)^t$ is the corresponding unit tangential vector of Γ_S .

Recall

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

• Since the solution on $\Gamma_D = \partial \Omega / \Gamma_S$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x_1, x_2)$ such that $\mathbf{v} = 0$ on $\partial \Omega / \Gamma_S$.

Stress boundary condition in normal/tangential directions

Dirichlet boundary condition

 Using the above conditions, orthogonal decomposition of a vector, and the definition of unit normal/tangential vector, we obtain

$$\int_{\partial\Omega} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds + \int_{\partial\Omega/\Gamma_{S}} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} \left[(\mathbf{n}^{t}\sigma(\mathbf{u})\mathbf{n})\mathbf{n} + (\tau^{t}\sigma(\mathbf{u})\mathbf{n})\tau \right] \cdot \left[(\mathbf{n}^{t}\mathbf{v})\mathbf{n} + (\tau^{t}\mathbf{v})\tau \right] \, ds$$

$$= \int_{\Gamma_{S}} (\mathbf{n}^{t}\sigma(\mathbf{u})\mathbf{n})(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} (\tau^{t}\sigma(\mathbf{u})\mathbf{n})(\tau^{t}\mathbf{v}) \, ds$$

$$= \int_{\Gamma_{S}} p_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} p_{\tau}(\tau^{t}\mathbf{v}) \, ds.$$

Stress boundary condition in normal/tangential directions

Dirichlet boundary condition

• Then the weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ such that

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_S} p_n(\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_S} p_{\tau}(\tau^t \mathbf{v}) \ ds.$$

for any
$$\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$$
.

• Then the Galerkin formulation is to find $\mathbf{u}_h \in U_h \times U_h$ such that

$$\int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2
= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_S} p_n(\mathbf{n}^t \mathbf{v}_h) \ ds + \int_{\Gamma_S} p_{\tau}(\tau^t \mathbf{v}_h) \ ds.$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$.

• For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ such that

$$\int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_s} p_n(\mathbf{n}^t \mathbf{v}_h) \ ds + \int_{\Gamma_s} p_{\tau}(\tau^t \mathbf{v}_h) \ ds.$$

for any $\mathbf{v}_h \in U_h \times U_h$.

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_j\}_{j=1}^{N_b}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j$$

for some coefficients u_{1j} and u_{2j} $(j = 1, \dots, N_b)$.

• For the test function, we choose $\mathbf{v}_h = (\phi_i, 0)^t$ $(i = 1, \dots, N_b)$ and $\mathbf{v}_h = (0, \phi_i)^t$ $(i = 1, \dots, N_b)$.

Then by the same procedure to derive the matrix formulation before, we obtain the following linear system

$$\begin{split} &\sum_{j=1}^{N_b} u_{1j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + 2 \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right) \\ &+ \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \right) \\ &= \int_{\Omega} f_1 \phi_i dx_1 dx_2 + \int_{\Gamma_S} p_n \phi_i n_1 \ ds + \int_{\Gamma_S} p_\tau \phi_i \tau_1 \ ds \\ &\sum_{j=1}^{N_b} u_{1j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 \right) \\ &+ \sum_{j=1}^{N_b} u_{2j} \left(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + 2 \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 + \int_{\Gamma_S} p_n \phi_i n_2 \ ds + \int_{\Gamma_S} p_\tau \phi_i \tau_2 \ ds. \end{split}$$

Recall

$$A_{1} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{2} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{3} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{4} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{5} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{6} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}},$$

$$A_{7} = \left[\int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}, \quad A_{8} = \left[\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} \right]_{i,j=1}^{N_{b}}.$$

and

$$A = \begin{pmatrix} A_1 + 2A_2 + A_3 & A_4 + A_5 \\ A_6 + A_7 & A_8 + 2A_3 + A_2 \end{pmatrix}$$

Recall

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \end{array}
ight)$$

where

$$\vec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx_1 dx_2 \right]_{i=1}^{N_b}, \quad \vec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx_1 dx_2 \right]_{i=1}^{N_b}.$$

Recall

$$\vec{X} = \left(\begin{array}{c} \vec{X}_1 \\ \vec{X}_2 \end{array} \right)$$

where

$$\vec{X}_1 = [u_{1j}]_{i=1}^{N_b}, \quad \vec{X}_2 = [u_{2j}]_{j=1}^{N_b}.$$

Define the additional vector from the stress boundary condition:

$$\vec{v} = \left(\begin{array}{c} \vec{v}_1 + \vec{v}_2 \\ \vec{v}_3 + \vec{v}_4 \end{array}\right)$$

where

$$\vec{v}_{1} = \left[\int_{\Gamma_{S}} p_{n} \phi_{i} n_{1} \ ds \right]_{i=1}^{N_{b}}, \ \vec{v}_{2} = \left[\int_{\Gamma_{S}} p_{\tau} \phi_{i} \tau_{1} \ ds \right]_{i=1}^{N_{b}},$$

$$\vec{v}_{3} = \left[\int_{\Gamma_{S}} p_{n} \phi_{i} n_{2} \ ds \right]_{i=1}^{N_{b}}, \ \vec{v}_{4} = \left[\int_{\Gamma_{S}} p_{\tau} \phi_{i} \tau_{2} \ ds \right]_{i=1}^{N_{b}}.$$

- Define the new vector $\vec{\vec{b}} = \vec{b} + \vec{v}$.
- Then we obtain the linear algebraic system

$$A\vec{X} = \widetilde{\vec{b}}.$$

- Since each of \vec{v}_i (i = 1, 2, 3, 4) is similar to the \vec{v} for the Neumann condition in Chapter 3, we can borrow the code of Neumman condition in Chapter 3 for \vec{v}_i (i = 1, 2, 3, 4).
- The major difference between \vec{v}_i (i = 1, 2, 3, 4) here and the \vec{v} for the Neumann condition in Chapter 3 is that here we need to provide the unit normal/tangential vectors. That is, we need to provide $\mathbf{n} = (n_1, n_2)^t$ and $\tau = (\tau_1, \tau_2)^t$, in the information matrix boundaryedges.

Based on Algorithm VI in Chapter 3, we obtain Algorithm VI-3:

- Initialize the vector: $v = sparse(2N_b, 1)$;
- Compute the integrals and assemble them into v:

```
FOR k = 1, \cdots, nbe:
           IF boundaryedges (1, k) shows stress boundary in
normal/tangential directions, THEN
                      n_k = boundaryedges(2, k);
                      FOR \beta = 1, \cdots, N_{lb}:
                                 Compute r = \int_{e_k} p_n \frac{\partial^{a+b} \psi_{n_k \beta}}{\partial x_i^a \partial x_b^b} n_1 \ ds + \int_{e_k} p_\tau \frac{\partial^{a+b} \psi_{n_k \beta}}{\partial x_i^a \partial x_b^b} \tau_1 \ ds;
                                 \begin{split} v(T_b(\beta,n_k),1) &= v(\tilde{T}_b(\beta,n_k),1) + r;\\ \text{Compute } r &= \int_{e_k} p_n \frac{\partial^{a+b}\psi_{n_k\beta}}{\partial x_i^a \partial x_b^b} n_2 \ ds + \int_{e_k} p_r \frac{\partial^{a+b}\psi_{n_k\beta}}{\partial x_i^a \partial x_b^b} \tau_2 \ ds; \end{split}
                                  v(N_b + T_b(\beta, n_k), 1) = v(N_b + T_b(\beta, n_k), 1) + r;
                       END
           ENDIF
```

Consider

$$\begin{split} -\nabla \cdot \sigma(\mathbf{u}) &= \mathbf{f} & \text{in } \Omega, \\ \mathbf{n}^t \sigma(\mathbf{u}) \mathbf{n} + r \mathbf{n}^t \mathbf{u} &= q_n, \ \tau^t \sigma(\mathbf{u}) \mathbf{n} + r \tau^t \mathbf{u} = q_\tau \ \text{on } \Gamma_R \subseteq \partial \Omega, \\ \mathbf{u} &= \mathbf{g} \ \text{on } \Gamma_D = \partial \Omega / \Gamma_R. \end{split}$$

Recall

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

• Since the solution on $\Gamma_D = \partial \Omega / \Gamma_R$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x_1, x_2)$ such that $\mathbf{v} = 0$ on $\partial \Omega / \Gamma_R$.

 Using the above conditions, orthogonal decomposition of a vector, and the definition of unit normal/tangential vector, we obtain

$$\int_{\partial\Omega} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_R} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_R} \left[(\mathbf{n}^t \sigma(\mathbf{u})\mathbf{n})\mathbf{n} + (\tau^t \sigma(\mathbf{u})\mathbf{n})\tau \right] \cdot \left[(\mathbf{n}^t \mathbf{v})\mathbf{n} + (\tau^t \mathbf{v})\tau \right] \, ds$$

$$= \int_{\Gamma_S} (\mathbf{n}^t \sigma(\mathbf{u})\mathbf{n})(\mathbf{n}^t \mathbf{v}) \, ds + \int_{\Gamma_S} (\tau^t \sigma(\mathbf{u})\mathbf{n})(\tau^t \mathbf{v}) \, ds$$

$$= \left[\int_{\Gamma_R} q_n(\mathbf{n}^t \mathbf{v}) \, ds + \int_{\Gamma_R} q_\tau(\tau^t \mathbf{v}) \, ds \right]$$

$$- \left[\int_{\Gamma_R} (r\mathbf{n}^t \mathbf{u})(\mathbf{n}^t \mathbf{v}) \, ds + \int_{\Gamma_R} (r\tau^t \mathbf{u})(\tau^t \mathbf{v}) \, ds \right],$$

Dirichlet boundary condition

• Then the weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ such that

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_R} (r \mathbf{n}^t \mathbf{u}) (\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_R} (r \tau^t \mathbf{u}) (\tau^t \mathbf{v}) \ ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_R} q_n(\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_R} q_{\tau}(\tau^t \mathbf{v}) \ ds.$$

for any
$$\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$$
.

ullet Then the Galerkin formulation is to find $oldsymbol{u}_h \in U_h imes U_h$ such that

$$\begin{split} & \int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_R} (r \mathbf{n}^t \mathbf{u}_h) (\mathbf{n}^t \mathbf{v}_h) \ ds + \int_{\Gamma_R} (r \tau^t \mathbf{u}_h) (\tau^t \mathbf{v}_h) \ ds \\ & = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_R} q_n (\mathbf{n}^t \mathbf{v}_h) \ ds + \int_{\Gamma_R} q_\tau (\tau^t \mathbf{v}_h) \ ds. \end{split}$$

for any $\mathbf{v}_h \in U_{h0} \times U_{h0}$.

• For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in U_h \times U_h$ such that

$$\int_{\Omega} \sigma(\mathbf{u}_h) : \nabla \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_R} (r \mathbf{n}^t \mathbf{u}_h) (\mathbf{n}^t \mathbf{v}_h) \ ds + \int_{\Gamma_R} (r \tau^t \mathbf{u}_h) (\tau^t \mathbf{v}_h) \ ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_h \ dx_1 dx_2 + \int_{\Gamma_R} q_n (\mathbf{n}^t \mathbf{v}_h) \ ds + \int_{\Gamma_R} q_\tau (\tau^t \mathbf{v}_h) \ ds.$$

for any $\mathbf{v}_h \in U_h \times U_h$.

Dirichlet boundary condition

• Since u_{1h} , $u_{2h} \in U_h = span\{\phi_j\}_{j=1}^{N_b}$, then

$$u_{1h} = \sum_{j=1}^{N_b} u_{1j}\phi_j, \quad u_{2h} = \sum_{j=1}^{N_b} u_{2j}\phi_j$$

for some coefficients u_{1i} and u_{2i} $(j = 1, \dots, N_b)$.

• For the test function, we choose $\mathbf{v}_h = (\phi_i, 0)^t$ $(i = 1, \dots, N_b)$ and $\mathbf{v}_h = (0, \phi_i)^t \ (i = 1, \dots, N_h).$

 Then by the same procedure to derive the matrix formulation before, we obtain the following linear system:

$$\begin{split} &\sum_{j=1}^{N_b} u_{1j} \Big(\int_{\Omega} (\lambda + 2\mu) \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \\ &+ \int_{\Gamma_R} (r n_1 \phi_j) (\phi_i n_1) \ ds + \int_{\Gamma_R} (r \tau_1 \phi_j) (\phi_i \tau_1) \ ds \Big) \\ &+ \sum_{j=1}^{N_b} u_{2j} \Big(\int_{\Omega} \lambda \frac{\partial \phi_j}{\partial x_2} \frac{\partial \phi_i}{\partial x_1} dx_1 dx_2 + \int_{\Omega} \mu \frac{\partial \phi_j}{\partial x_1} \frac{\partial \phi_i}{\partial x_2} dx_1 dx_2 \\ &+ \int_{\Gamma_R} (r n_2 \phi_j) (\phi_i n_1) \ ds + \int_{\Gamma_R} (r \tau_2 \phi_j) (\phi_i \tau_1) \ ds \Big) \\ &= \int_{\Omega} f_1 \phi_i dx_1 dx_2 + \int_{\Gamma_R} q_n \phi_i n_1 \ ds + \int_{\Gamma_R} q_\tau \phi_i \tau_1 \ ds, \end{split}$$

and

$$\begin{split} &\sum_{j=1}^{N_{b}} u_{1j} \Big(\int_{\Omega} \lambda \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} + \int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \\ &+ \int_{\Gamma_{R}} (r n_{1} \phi_{j}) (\phi_{i} n_{2}) ds + \int_{\Gamma_{R}} (r \tau_{1} \phi_{j}) (\phi_{i} \tau_{2}) ds \Big) \\ &+ \sum_{j=1}^{N_{b}} u_{2j} \Big(\int_{\Omega} (\lambda + 2\mu) \frac{\partial \phi_{j}}{\partial x_{2}} \frac{\partial \phi_{i}}{\partial x_{2}} dx_{1} dx_{2} + \int_{\Omega} \mu \frac{\partial \phi_{j}}{\partial x_{1}} \frac{\partial \phi_{i}}{\partial x_{1}} dx_{1} dx_{2} \\ &+ \int_{\Gamma_{R}} (r n_{2} \phi_{j}) (\phi_{i} n_{2}) ds + \int_{\Gamma_{R}} (r \tau_{2} \phi_{j}) (\phi_{i} \tau_{2}) ds \Big) \\ &= \int_{\Omega} f_{2} \phi_{i} dx_{1} dx_{2} + \int_{\Gamma_{R}} q_{n} \phi_{i} n_{2} ds + \int_{\Gamma_{R}} q_{\tau} \phi_{i} \tau_{2} ds. \end{split}$$

- Matrix formulation? Pesudo code? (Part of a project for you)
- Similar to the previous ones for Robin condition, we need to add eight sub-matrices and four sub-vectors into the block linear system.
- The major difference is that here we need to provide the unit normal/tangential vectors. That is, we need to provide $\mathbf{n} = (n_1, n_2)^t$ and $\tau = (\tau_1, \tau_2)^t$, in the information matrix boundaryedges.

Consider

$$\begin{split} -\nabla \cdot \sigma(\mathbf{u}) &= \mathbf{f} & \text{in } \Omega, \\ \mathbf{n}^t \sigma(\mathbf{u}) \mathbf{n} &= p_n, \ \tau^t \sigma(\mathbf{u}) \mathbf{n} = p_\tau \ \text{on } \Gamma_S \subset \partial \Omega, \\ \mathbf{n}^t \sigma(\mathbf{u}) \mathbf{n} &+ r \mathbf{n}^t \mathbf{u} = q_n, \ \tau^t \sigma(\mathbf{u}) \mathbf{n} + r \tau^t \mathbf{u} = q_\tau \ \text{on } \Gamma_R \subseteq \partial \Omega, \\ \mathbf{u} &= \mathbf{g} \ \text{on } \Gamma_D &= \frac{\partial \Omega}{(\Gamma_S \cup \Gamma_R)}. \end{split}$$

Recall

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 - \int_{\partial \Omega} (\sigma(\mathbf{u}) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2.$$

• Since the solution on $\Gamma_D = \partial \Omega/(\Gamma_S \cup \Gamma_R)$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x_1, x_2)$ such that $\mathbf{v} = 0$ on $\partial \Omega/(\Gamma_S \cup \Gamma_R)$.

Dirichlet/stress/Robin mixed boundary condition in normal/tangential directions

 Combining the above derivation for stress and Robin boundary conditions in normal/tangential directions, we obtain

$$\int_{\partial\Omega} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds + \int_{\Gamma_{R}} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds + \int_{\partial\Omega/(\Gamma_{S} \cup \Gamma_{R})} (\sigma(\mathbf{u})\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \left[\int_{\Gamma_{S}} p_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} p_{\tau}(\tau^{t}\mathbf{v}) \, ds \right]$$

$$+ \left[\int_{\Gamma_{R}} q_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{R}} q_{\tau}(\tau^{t}\mathbf{v}) \, ds \right]$$

$$- \left[\int_{\Gamma_{S}} (r\mathbf{n}^{t}\mathbf{u})(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} (r\tau^{t}\mathbf{u})(\tau^{t}\mathbf{v}) \, ds \right],$$

Dirichlet/stress/Robin mixed boundary condition in normal/tangential directions

• The weak formulation is to find $\mathbf{u} \in H^1(\Omega) \times H^1(\Omega)$ such that

$$\int_{\Omega} \sigma(\mathbf{u}) : \nabla \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_R} (r \mathbf{n}^t \mathbf{u}) (\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_R} (r \tau^t \mathbf{u}) (\tau^t \mathbf{v}) \ ds$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dx_1 dx_2 + \int_{\Gamma_R} q_n (\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_R} q_{\tau} (\tau^t \mathbf{v}) \ ds$$

$$+ \int_{\Gamma_S} p_n (\mathbf{n}^t \mathbf{v}) \ ds + \int_{\Gamma_S} p_{\tau} (\tau^t \mathbf{v}) \ ds.$$

for any $\mathbf{v} \in H^1_{0D}(\Omega) \times H^1_{0D}(\Omega)$.

- Code?
- Combine all of the subroutines for Dirichlet/stress/Robin boundary conditions.