International Seminar on Automorphic Forms

Slope of Siegel modular forms: Geometric applications

Riccardo Salvati Manni

24 January 2023

In this talk we will consider the slope of Siegel modular forms and I will discuss some applications to the moduli space of complex principally polarized abelian varieties

$$X = A_g = \{(A, \Theta), /A \text{ abelian variety}, \Theta \text{ principal polarization}\}$$

and possibly to the generalized Kuga's varieties.

The orbifold \mathcal{A}_g can be written as an arithmetic quotient

Definitions

$$\begin{split} \mathcal{H}_g &:= \{\tau \in \mathsf{Mat}_{g \times g}(\mathbb{C}) : \tau^t = \tau; \mathsf{Im}\, \tau > 0 \} \text{ the Siegel space} \\ \mathsf{Sp}(2g,\mathbb{R}) \text{ the symplectic group} \\ \mathsf{Sp}(2g,\mathbb{R}) \times \mathcal{H}_g &\to \mathcal{H}_g \text{ the action as} \\ \tau \to \sigma \tau := (A\tau + B)(C\tau + D)^{-1}, \ \sigma = \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right) \\ \mathcal{A}_g &:= \mathcal{H}_g/\mathsf{Sp}(2g,\mathbb{Z}) \ . \end{split}$$

Modular Forms

Scalar modular forms, i.e $f:\mathcal{H}_g\to,\mathbb{C}$ holomorphic such that

$$f(\sigma \cdot \tau) = det(C\tau + D)^k f(\tau), \ \ \sigma \in Sp(2g, \mathbb{Z})$$

plus a condition at ∞ when g = 1.

Modular forms have Fourier and Fourier-Jacobi expansions. I will use the second

$$\tau = \left(\begin{smallmatrix} \tau' & \mathbf{z} \\ \mathbf{z}' & \mathbf{w} \end{smallmatrix}\right)$$

 $au' \in \mathcal{H}_{g-1}, z \in \mathbb{C}^{g-1}, w \in \mathcal{H}_1, q = exp(2\pi i w)$

$$f(\tau) = \sum_{r>0} f_r(\tau', z) q^r$$

They are cusp forms $\iff r \geq 0$.

The vanishing order of f at the boundary is given by

$$b = (1/2) \min_{r \in \mathbb{Z}} \{ f_r(\tau', z) \neq 0 \}$$

The value b indicates the order of the vanishing of the modular form along the boundary

We define the slopes

$$sl(f) = k/b$$

$$sl(A_g) = inf\{sl(f)/f modular form\}$$

Geometric interpretation

We consider the partial compactification of \mathcal{A}_g given by t he blow up of the partial Satake compactification $\mathcal{A}_g \cup \mathcal{A}_{g-1}$ along the boundary component .

Set-theoretically it is $\mathcal{A}_{g}^{p}=\mathcal{A}_{g}\cup\mathcal{X}_{g-1}/\pm1$

When $g \geq 3$, $Pic(\mathcal{A}_g^p)$ is equal to

$$\mathbb{Z}\lambda\oplus\mathbb{Z}\delta$$

with λ the class of cocycle det(CZ + D) and δ the class of the boundary divisor. Thus the class of the strictly transform of the divisor of a modular form f is

$$(f) = k\lambda - b\delta$$

Around 50 years ago Mumford raised the question about the Kodaira dimension of \mathcal{A}_g .

 $\Omega^N(\tilde{\mathcal{A}}_g)$ is the space of holomorphic differential forms of top degree, i.e. N=g(g+1)/2.

 $\tilde{\mathcal{A}}_g$ is a smooth compactification of \mathcal{A}_g

The general question about the Kodaira dimension of A_g is:

How does

$$\dim\Omega^{N}(\tilde{\mathcal{A}}_{g})^{\otimes k} = ck^{t}, \ t \leq N$$

grow?

Tai (1982) proved that, when $g \geq 5$,

$$\omega \in \Omega^{N}(\mathcal{A}_{g}^{0})^{\otimes k}$$

a section of the k-canonical bundle on the smooth part of $\mathcal{A}_{\mathbf{g}}$

$$\omega = f(\tau)d\tau^{\otimes k}, \quad d\tau = \wedge_{1 \leq i \leq j \leq g} d\tau_{ij}$$

with $f(\tau)$ a modular form of weight k(g+1) extends to a smooth compactification $\iff sl(f) \leq g+1$.

 \mathcal{A}_g is of general type if t = N, i.e $\kappa(\mathcal{A}_g) = N \iff$ there exists f with sl(f) < g + 1.

$$\kappa(\mathcal{A}_g) = -\infty \iff \mathit{sl}(\mathcal{A}_g) > g+1.$$

If
$$sl(\mathcal{A}_g) = g + 1$$
, then $\kappa(\mathcal{A}_g) \geq 0$

At the begin of 80's Tai, Freitag, Mumford proved that \mathcal{A}_g is of general type if $g \geq 7$.

Meanwhile Clemens, Donagi, Verra, etc.. proved that if $g \leq 5$, then $\kappa(\mathcal{A}_g) = -\infty$.

Using estimate of the dimensions of space of Jacobi's forms appearing in the Fourier- Jacobi's expansion

Tai proved that there are sufficiently many pluri-canonical forms which extend when $g \ge 9$,

so that in these cases \mathcal{A}_g is of general type.

Short description of the methods used by Freitag and Mumford, since I will use later

In \mathcal{A}_g there is a distinguish divisor N_0 parametrizing principally polarized abelian varieties (X,Θ) such that the divisor Θ is singular.

We have that this divisor has two irreducible components

$$N_0 = \theta_{null} \cup N'_0$$
.

 θ_{null} parametrizes p.p.a.v. (A,Θ) with a singular point of order two;

 N_0' parametrizes the other cases.

In the general case of θ_{null} the theta divisor has only a singular point that is an ordinary singularity, i.e,. the hessian matrix has maximal rank.

2) In the general case has of N_0' the theta divisor has two singular points $\pm x$ that are ordinary

We have two modular forms F_{θ} and F' vanishing exactly on these divisors

Freitag proved that $sl(F_{theta}) = 8 + \frac{1}{2^{g-3}}$ Mumford proved that $sl(F') \approx 6 + \frac{12}{g+1}$

Meanwhile Tai proved also that

$$lim_{g o \infty} sl(\mathcal{A}_g) = 0$$

Thus it remained the case of Kodaira's dimension of \mathcal{A}_g when g=6

Recently, we proved the following

Theorem (Dittmann,, Scheithauer)

The Kodaira dimension of A_6 is non-negative.

Idea of the proof

We gave an explicit section of the bicanonical bundle on A_6 , i.e a modular form f of degree 6, weight 14 and vanishing order 2.

We used theta series with pluriharmonic coefficients

V is an euclidean vector space of dimension m, <, > is the scalar product and $L \subset V$ is an even unimodular lattice, $h = (h_1, \ldots, h_g)$ a sequence of g vectors in $V_{\mathbb{C}}$ such that

$$Q(h) := Q(h, h) = \langle h_i, h_j \rangle = 0, \quad Q(h, \overline{h}) = \langle h_i, \overline{h_j} \rangle > 0$$

$$\Theta_{L,h,k} = \sum_{x \in L^g} det((Q(x,h))^k exp(\pi i Tr(Q(x)\tau))$$

is a Siegel cusp form of weight m/2 + k with Fourier coefficients

$$a(T) = \sum_{x \in L^g/Q(x) = T} det(Q(x, h)^k)$$

 $\Theta_{L,h,k} \neq 0$ implies vanishing order $\geq (1/2) \min_{0 \neq x \in L} Q(x)$.

Candidate when g = 6

 $\Lambda = \text{Leech's lattice}$, hence m = 24, k = 2, thus $\Theta_{\Lambda,h,2}$ has weight 14 and vanishing at least 2 since Leech's lattice is even and has no roots,i.e $Q(x) \geq 4$.

We proved that $\Theta_{\Lambda,h,2} \neq 0$.

What is known about the slope of \mathcal{A}_g . Few cases are known

g	1	2	3	4	5	6
sl	12	10	9	8	54/7	$5.3 \leq \cdot \leq 7$
form	Δ	F_{null}	F_{null}	F'	F'	?

For $g \le 4$, these divisors are rigid, i.e. up to a power or a multiplicative constant these are unique with this slope. When g = 5 it is unknown.

Moving Slope

E an effective divisor on \mathcal{A}_g^p ;

$$[E] = a\lambda - b\delta$$

We say that it is moving if the base locus of the linear system |nE| has codimension at least 2 for n >> 0.

This is equivalent to require the existence of a rational map $\mathcal{A}_g^p o \mathbb{P}^1$

Obviously, up to a scalar multiple, to E corresponds a modular form f of weight na and vanishing nb.

Hence we can define the moving slope of A_g as

$$sI_{mov}(A_g) = inf\{sI(E)/E \text{ is moving}\}$$

$$sI_{mov}(\mathcal{A}_g) \geq sI(\mathcal{A}_g)$$

We have the equality if and only if $sl(A_g)$ is not realized by a rigid divisor .

What is known about the moving slope

Candidate for the moving slope

Theorem (Grushevsky, Ibukiyama, Mondello, ————) For every $g \geq 2$ and every integer $a \geq \frac{g}{2}$ there exists a differential operator $\mathcal{D}_{g,a}$ acting on the space of genus g Siegel modular forms of weight a that satisfies the following properties:

- (i) if F is a genus g Siegel modular form of weight a and vanishing order b along the boundary, then $\}$, \dashv (\mathcal{F}) is a Siegel modular form of weight ga+2 and of vanishing order $\beta \geq gb$ along the boundary;
- (ii) the restriction of $\mathcal{D}_{g,a}(F)$ to the zero locus of F is equal to the restriction of $g! \det(\partial F)$.

Here setting $F_{ij} = \frac{\partial F}{\partial \tau_{ij}}$ we have

$$(\partial F) = \begin{pmatrix} F_{11} & F_{21}/2 & \dots & F_{1g}/2 \\ F_{12}/2 & F_{22} & \dots & F_{2g}/2 \\ \dots & \dots & \dots \\ F_{g1}/2 & F_{g2}/2 & \dots & F_{gg} \end{pmatrix}$$

Consequence : Assume that the slope is realized by a form F such that $det(\partial F) \neq 0$ when F = 0, then

$$sl_{mov}(\mathcal{A}_g) \leq sl(\mathcal{A}_g) + \frac{2}{gb}$$

This happens in all known cases

When $g = 2,3 F_{null}$ is the form

When g = 4.5 F' is the form

In all these cases the condition about $det(\partial F)$ is satisfied.

This is consequence of Andreotti- Mayer's results on the singularities of the divisor Θ , in fact

 $x \in \Theta$ a singular point, we set

$$\theta_{ij}(\tau, x) = \frac{\partial^2 \theta(\tau, x)}{\partial z_i \partial z_j}$$

and

$$\partial^{2}\theta(\tau,x) = \begin{pmatrix} \theta_{11}(\tau,x) & \theta_{12}(\tau,x) & \dots & \theta_{1g}(\tau,x) \\ \theta_{12}(\tau,x) & \theta_{22}(\tau,x) & \dots & \theta_{2g}(\tau,x) \\ \dots & \dots & \dots & \dots \\ \theta_{1g}(\tau,x) & \theta_{2g}(\tau,x) & \dots & \theta_{gg}(\tau,x) \end{pmatrix}$$

Thus at the the generic x we get

$$\partial^2 \theta(\tau, x) = c(\partial F)$$

and it has rank g.

Comment

Recently in Slopes of Siegel cusp forms and geometry of compactified Kuga varieties,

we (Poon, Sankaran) considered Kuga's varieties

$$X_g = (\mathbb{C}^g \times \mathbb{H}_g)/(\mathbb{Z}^{2g} \ltimes \operatorname{Sp}(2g, \mathbb{Z})$$

and the *n*-folds X_g^n .

We have been able to prove a theorem similar to Tai's theorem, namely

A holomorphic differential forms of top degree

$$\omega = f(\tau)d\tau^{\otimes k}, \quad d\tau \wedge dz^{\otimes n}$$

with

$$d\tau = \bigwedge_{1 \le i \le g} d\tau_{ii}, \ dz = \bigwedge_{1 \le l \le g} dz_{l}$$

extends to a smooth compactification of X_g^n when $g + n \ge 6$ and $sl(f) \le g + n + 1$.

Thus we have

Theorem: Suppose that $g \ge 3$ and $n \ge 1$.

Then the Kodaira dimension $\kappa(X_g^n)$ of X_g^n satisfies

- $\kappa(X_g^n) = g(g+1)/2 \text{ if } g+n \ge 7 \text{ and } (g,n) \ne (3,5), (4,3) \text{ or } (3,4),$
- $\kappa(X_3^5) = \kappa(X_4^3) = 0$, and
- ho $\kappa(X_g^n) = -\infty$ otherwise, in particular $\kappa(X_3^4) = -\infty$.

•

Problems

I assume $g \ge 3$. F a modular form relative to the (full) symplectic group

F factorizes in irreducible factors

$$F = f_1^{r_1} \dots f_k^{r_k}$$

with f_j modular forms wrt any subgroup $\Gamma \subset \operatorname{Sp}(2g, \mathbb{Z})$ of finite index.

We proved in Universally irreducible subvarieties of Siegel moduli spaces

Theorem: (Mondello,) The loci in \mathbb{H}_g defined by $f_j = 0$ are irreducible

Hence it make sense to raise the following

Question Let us assume $g \ge 3$ and F a modular form whose zero set is irreducible in \mathbb{H}_g , then is $det(\partial F) \not\equiv 0$ when F = 0?

g=4 the form F' is the Schottky's form that has weight 8. It is the equation of \mathcal{M}_4 (the moduli space of smooth compact Riemann surfaces of genus 4) in \mathcal{A}_4 The form $\mathcal{D}_{4.8}(F')$ has weight 34 and vanishing 4.

It describes, in \mathcal{M}_4 , the locus θ_{null} .

This locus is described in A_4 by a form of weight 68 and vanishing 8.

Hence the restriction of $\mathcal{D}_{4,8}(F')$ to \mathcal{M}_4 (as Teichmuller modular form)

can be considered at the square root of the classical form giving θ_{null} .

Question Does this result lead to a different investigation about Teichmüller modular forms?

In fact the standard example of a Teichmüller modular form that is not the restriction of a Siegel modular form is obtained considering the square root of theta constants.