# ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τμήμα Μαθηματικών

Αριστείδης Κοντογεώργης

Ομάδες Αυτομορφισμών Αλγεβρικών Καμπύλων

 $\Delta$ ιδακτορική  $\Delta$ ιατριβή

Εισαγωγή

Έστω C μία αλγεβριχή προβολιχή χαμπύλη γένους  $g\geq 2$ , ορισμένη πάνω από το αλγεβριχά χλειστό σώμα k, χαραχτηριστιχής  $p\geq 0$ . Είναι γνωστό ότι η ομάδα των αυτομορφισμών G της C είναι πεπερασμένη. Σε αυτή την εργασία μελετούμε την δομή των ομάδων αυτομορφισμών μεριχών συγχεχριμένων οιχογενειών χαμπύλων. Επιτρέπουμε οι οιχογένειες χαμπύλων που μελετάμε να έχουνε χαι ιδιόμορφες χαμπύλες. Στην περίπτωση αυτή, δηλαδή στην περίπτωση που μία χαμπύλη είναι ιδιόμορφη, θα εννοούμε τους αυτομορφισμούς ενός προβολιχού, πλήρους, μη ιδιόμορφου μοντέλου της ή ισοδύναμα τους αυτομορφισμούς των αντίστοιχων σωμάτων συναρτήσεων. Κρίναμε λοιπόν βολιχό να παρουσιάσουμε την θεωρία τους, σε όρους των σωμάτων συναρτήσεων χαι των αντίστοιχων θέσεων τους.

Αναλυτικά η διάρθρωση των κεφαλαίων έχει ως εξής:

Στο πρώτο χεφάλαιο μελετούμε το παραχάτω πρόβλημα: Θεωρούμε μία αβελιανή επέχταση F του σώματος συναρτήσεων  $F_0$ , με αβελιανή ομάδα  $Galois\ A$ . Ποιά είναι η σχέση της ομάδας αυτομορφισμών του  $F_0$  με την ομάδα αυτομορφισμών του F; G μεθοδος που αχολουθούμε, προχειμένου να απαντήσουμε στο παραπάνω ερώτημα είναι η εξής: Δίνουμε αναγχαίες συνθήχες, ώστε η ομάδα G να είναι χανονιχή υποομάδα της ομάδας αυτομορφισμών G του σώματος G. Έτσι το πρόβλημα υπολογισμού της δομής της ομάδας G ανάγεται σε ένα πρόβλημα επέχτασης μιας υποομάδας G της ομάδας αυτομορφισμών G0 με αβελιανό πυρήνα G0 G1 να είναι γνωστό τα προβλήματα επεχτάσεων ομάδων ανάγονται στον υπολογισμό των συνομολογιαχών χλάσεων της ομάδας G1 που αντιστοιχούν σε δεδομένη επέχταση. Επιπλέον δίνουμε χριτήρια ώστε η δομή της ομάδας G1 να εξαρτάται από τον τύπο διαχλάδωσης της επέχτασης σωμάτων G1.

Στο δεύτερο κεφάλαιο, εφαρμόζουμε τα παραπάνω εργαλεία στα σώματα συναρτήσεων των καμπύλων με επίπεδα μοντέλα της μορφής  $y^n=f(x)$  και καθορίζουμε τις δυνατές δομές των ομάδων αυτομορφισμών, κάνοντας χρήση των θεωρημάτων ταξινόμισης των πεπερασμένων υποομάδων της ομάδας αυτομορφισμών του ρητού σώματος συναρτήσεων.

Στο επόμενο κεφάλαιο, υπολογίζουμε τις ομάδες αυτομορφισμών των σωμάτων συναρτήσεων  $F_{n,m}$  των καμπύλων  $x^n+y^m-1=0$  όπου  $n\neq m$ , και η χαρακτηριστική δεν διαιρεί τα n,m. Η μέθοδος που ακολουθούμε είναι λίγο διαφορετική από τις προηγούμενες μεθόδους. Εξ΄ αιτίας της μεγάλης συμμετρίας του παραπάνου επίπεδου μοντέλου, μπορούμε να υπολογίσουμε μια βάση ολόμορφων διαφορικών καθώς και την δομή των ημιομάδων του Weierstrass σε συγκεκριμένα σημεία. Με αυτό τον τρόπο αποδεικνύουμε ότι η ομάδα  $\mu(m)$  είναι κανονική υποομάδα της ομάδας αυτομορφισμών  $F_{n,m}$ . Είναι ενδιαφερόν να παρατηρήσουμε ότι όταν m|n και το n-1 είναι δύναμη της χαρακτηριστικής τότε η ομάδα αυτομορφισμών έχει τάξη πολύ μεγαλύτερη από το φράγμα του Hurwitz στην χαρακτηριστική 0. Η περίπτωση n=m ήταν γνωστή από την εργασία του Leopoldt από τις αρχές της δεκαετίας του 70.

Στο τέταρτο κεφάλαιο, επεκτείνουμε ένα αποτέλεσμα του J.P. Serre που υπολόγισε τις ομάδες αυτομορφισμών των modular καμπύλων X(p) για p πρώτο και υπολογίζουμε τις ομάδες αυτομορφισμών των καμπύλων X(N), για κάθε φυσικό N. Όπως προέκειψε, μετά από επικοινωνία με τον J.P. Serre ο παραπάνω υπολογισμός της ομάδας αυτομορφισμών των καμπύλων X(N), ήταν γνωστός στους ειδικούς της περιοχής.

Στο τελευταίο χεφάλαιο, υπολογίζουμε τις ομάδες αυτομορφισμών των υπερεπιφανειών Fermat. Αποδειχνύουμε αρχιχά ότι χάθε αυτομορφισμός των υπερεπιφανειών Fermat είναι περιορισμός ενός αυτομορφισμού του περιβάλλοντος προβολιχού χώρου χαι στην συνέχεια υπολογίζουμε τους αυτομορφισμούς που διατηρούν την εξίσωση Fermat αναλλοίωτη. Και το αποτέλεσμα αυτό, ήτανε γνωστό από το 1987 από τον Τ. Shioda. Η μέθοδος του Shioda μου έγινε γνωστή από τον Τ. Κatsura χαι αφού η διδαχτοριχή μου διατριβή είχε ποιά ολοχληρωθεί.

Θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή κ. Γιάννη Αντωνιάδη για την βοήθεια που μου πρόσφερε σε όλη την διάρκεια των μεταπτυχιακών σπουδών μου. Επίσης θα ήθελα να ευχαριστήσω τον καθηγητή P. Roquette για το ενδιαφέρον που έδειξε για την εργασία μου καθώς και τα σχόλια και τις υποδείξεις του. Ευχαριστώ επίσης το Ίδρυμα

Κρατικών Υποτριφιών του οποίου υπήρξα υπότροφος. Ευχαριστώ ιδιαίτερα τους γονείς μου Γιάννη και Μαρία καθώς και τους φίλους και συνεργάτες μου στο πενεπιστήμιο Κρήτης Μαρίνα, Δημήτρη, Θανάση, Γιώργο.

Ηράκλειο 18  $\Delta$ εκεμβρίου 1988

# Περιεχόμενα

| Εισαγωγή |                                                                                                                                                                                                                      |                                                                           |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 1        | Αβελιανές επεχτάσεις 1.1 Συνθήχες χανονιχότητας 1.2 Επεχτάσεις ομάδων 1.3 Επεχτάσεις του Κummer 1.3.1 Διαχλαδώσεις σε επεχτάσεις του Kummer 1.4 Υπολογισμός της δομής ομάδος 1.4.1 Δομή ομάδος χαι τύπος διαχλάδωσης | 2<br>3<br>5<br>6<br>7<br>8                                                |
| 2        | Καμπύλες της μορφής $y^n=f(x)$ 2.1 Συνθήκες επεκτασιμότητας                                                                                                                                                          | 144<br>166<br>199<br>200<br>211<br>222<br>233<br>253<br>400<br>411<br>433 |
| 4        | $x^n + y^m + 1 = 0$ 3.1 Η περίπτωση $n = m$                                                                                                                                                                          | 45<br>45<br>46<br>51<br>57                                                |
| 5        | Ομάδες αυτομορφισμών των υπερεπιφανειών Fermat 5.1 Υπολογισμοί                                                                                                                                                       | <b>65</b>                                                                 |

## Κεφάλαιο 1

## Αβελιανές επεκτάσεις

Έστω  $F_0$  ένα αλγεβρικό σώμα συναρτήσεων, με βαθμό υπερβατικότητας μονάδα, ορισμένο υπέρ ενός αλγεβρικά κλειστού σώματος k, χαρακτηριστικής  $p\geq 0$ . Θεωρούμε μία πεπερασμένη αβελιανή επέκταση F του  $F_0$  γένους  $g_F\geq 2$ , με ομάδα Galois  $Gal(F/F_0)=A$ . Είναι γνωστό ότι η ομάδα αυτομορφισμών, έστω G, του F είναι πεπερασμένη. ([11] σελ. 368). Σκοπός μας είναι να συσχετίσουμε την ομάδα αυτομορφισμών G του F με την ομάδα αυτομορφισμών του  $F_0$ . Μπορούμε να γράψουμε την μικρή ακριβή ακολουθία

$$1 \longrightarrow A \longrightarrow N_G(A) \longrightarrow H \longrightarrow 1, \tag{1.1}$$

όπου  $N_G(A)$  συμβολίζει τον κανονικοποιητή του A στην G και H, είναι μια πεπερασμένη υποομάδα της ομάδας αυτομορφισμών του  $F_0$ .

Κάτω από κατάλληλες συνθήκες έχουμε ότι  $A \lhd G$  συνεπώς  $N_G(A) = G$ . Το γεγονός αυτό μας επιτρέπει να μελετήσουμε την ομάδα των αυτομορφισμών του F σαν ένα πρόβλημα επεκτάσεων πεπερασμένων υποομάδων της ομάδας αυτομορφισμών του  $F_0$ , οι οποίες εμφανίζονται σαν πηλίκα G/A. Οι Brandt και Stichtenoth [4] χρησιμοποίησαν παρόμοιες τεχνικές προκειμένου να υπολογίσουν τις ομάδες αυτομορφισμών υπερελλειπτικών καμπύλων, δηλαδή κυκλικών επεκτάσεων βαθμού δύο, ενός ρητού σώματος συναρτήσεων. Επίσεις ο Brandt [3] στην διδακτορική διατριβή του, μελέτησε γενικότερα κυκλικές επεκτάσεις του ρητού σώματος συναρτήσεων βαθμού πρώτου αριθμού.

Ας υποθέσουμε προς το παρόν ότι  $A \triangleleft G$ . Γράφουμε την ομάδα A σαν ένα ευθύ άθροισμα  $A = A_{reg} \oplus A_p$ , όπου  $A_p$  είναι το p-χομμάτι της αβελιανής ομάδας A, δηλαδή η μέγιστη αβελιανή p-υποομάδα της ομάδας A,  $A_{reg} = A/A_p$ ,  $(|A_{reg}|,p)=1$ . Παρατηρούμε ότι  $A_p$  είναι επίσης μια χανονιχή υποομάδα της G χαι έτσι λαμβάνουμε την ομάδα αυτομορφισμών G σε δύο βήματα

$$1 \longrightarrow A_p \longrightarrow G_p \longrightarrow H \longrightarrow 1,$$
  
$$1 \longrightarrow A_{reg} \longrightarrow G \longrightarrow G_p \longrightarrow 1,$$

όπου  $G_p$  συμβολίζει την επέχταση της H με A. Αφού το σώμα k είναι αλγεβρικά χλειστό, χάθε αβελιανή επέχταση με ομάδα Galois τάξης πρώτης προς την χαραχτηριστική είναι επέχταση του Kummer και κάθε αβελιανή επέχταση με Galois p-ομάδα, όπου p είναι η χαραχτηριστική, είναι επέχταση του Artin-Schreir .

Συνοψίζοντας, θα πρέπει να απαντήσουμε στα παρακάτω ερωτήματα:

- Κάτω από ποιες προϋποθέσεις μπορούμε να εξασφαλίσουμε ότι  $A \lhd G$ .
- Πως μπορούμε να περιγράψουμε την δομή της ομάδος G, δεδομένου ότι  $A \lhd G$ .
- Ποια είναι η υποομάδα H, των αυτομορφισμών του σώματος  $F_0$ , που επεχτείνονται σαν αυτομορφισμοί του F, δηλαδή ποιό είναι το πηλίχο G/A.

## 1.1 Συνθήκες κανονικότητας

Γράφουμε την αβελιανή ομάδα A σαν ευθύ άθροισμα  $^1$  χυχλιχών υποομάδων

$$A = \bigoplus_{i=1}^{s} \bigoplus_{i=1}^{r_i} \mathbb{Z}_{n_i}.$$

Παρατηρούμε ότι,  $A \triangleleft G$  αν και μόνο αν

$$A_i := \bigoplus_{j=1}^{r_i} \mathbb{Z}_{n_i} \triangleleft G,$$

αφού συζυγή στοιχεία έχουν την ίδια τάξη.

Θα επεχτείνουμε ένα θεώρημα του Accola [1] το οποίο θα μας δώσει μια ιχανή συνθήχη ώστε η ομάδα  $A_i$  να είναι χανονιχή σε ολόχληρη την ομάδα αυτομορφισμών. Έστω  $A_i$  ευθύς προσθεταίος στην ανάλυση της A, όπως ορίστηχε παραπάνω. Η ομάδα  $A_i$  γράφεται σαν ευθύ άθροισμα χυχλιχών ομάδων ισόμορφων με την  $\mathbb{Z}_{n_i}$ . Έστω  $T_\lambda$ ,  $\lambda=1,...,r_i$  οι γεννήτορες των χυχλιχών προσθετέων της  $A_i$ . Ενδεχομένως οι παραπάνω γεννήτορες να σταθεροποιούν διαφορετιχό πλήθος θέσεων. Για χάθε s φυσιχό θα συμβολίζουμε με  $A_i^s$  την υποομάδα της  $A_i$  που παράγεται από τα  $T_\lambda$  που σταθεροποιούν s το πλήθος θέσεις. Δυό συζυγείς αυτομορφισμοί έχουν το ίδιο πλήθος σταθερών σημείων. Έτσι η ομάδα  $A_i$  είναι χανονιχή υποομάδα της ομάδας G αν χαι μόνο αν όλες οι υποομάδες  $A_i^s$  είναι χανονιχές υποομάδες της G.

Στην συνέχεια θα συμβολίζουμε με A μια αβελιανή ομάδα ισόμορφη με  $\bigoplus_{i=1}^t \mathbb{Z}_{n_i}$  τέτοια ώστε οι t, το πλήθος γεννήτορες της A,  $\{T_1,...,T_t\}$  να σταθεροποιούν το ίδιο πλήθος s θέσεων του F. Θέτουμε  $T=T_1$  και έστω Q μια θέση του F που να σταθεροποιείται από τον T. Κατά την διάρχεια της απόδειξης αυτής θα συμβολίζουμε με n την τάξη του T.

Θεωρούμε το συζυγές  $\widetilde{T}:=\sigma T\sigma^{-1}$  του T με ένα τυχαίο αυτομορφισμό  $\sigma$  της G. Είναι σαφές ότι  $\widetilde{T}$  σταθεροποιεί την θέση  $\sigma(Q)$ . Έστω  $\widetilde{F}^A$  το σώμα των σταθερών στοιχείων του F υπό την  $\sigma A\sigma^{-1}$ .

**Λήμμα 1.1.1** Υπάρχει συνάρτηση  $f \in \tilde{F}^A$ , με μοναδικό πόλο στο  $q := rest|_{\bar{F}^A} \sigma(Q)$  ο οποίος επιπλέον είναι πόλος τάξης  $\kappa \leq \gamma + 1$ , όπου  $\gamma$  είναι το γένος του  $\tilde{F}^A$ 

Απόδειξη: Θεωρούμε τον χώρο συναρτήσεων

$$\mathcal{L}((\gamma + 1)q) = \{ f \in \tilde{F}^A : (f) + (\gamma + 1)q \ge 0 \}.$$

Από το θεώρημα των Riemann-Roch υπολογίζουμε ότι η διάσταση του παραπάνω χώρου είναι μεγαλύτερη ή ίση με δύο, δηλαδή το ζητούμενο.  $\Box$ 

O divisor της f, σαν συνάρτηση του F είναι

$$div_F(f) = (f)_0 - n\kappa \sum_{\tau \in \sigma A \sigma^{-1}/\widetilde{T}} \tau(\sigma(Q)).$$

Έχουμε λοιπόν ότι  $\deg f \leq n^t(\gamma+1)$ . Ας θεωρήσουμε τώρα τις συναρτήσεις  $h_i := f - T_i \circ f$  και ας υποθέσουμε ότι μία από αυτές, έστω η  $h_i$ , δεν είναι σταθερή. Τότε

$$\deg h_i \le 2 \deg f - r_i \le 2n^t(\gamma + 1) - r_i,$$

<sup>&</sup>lt;sup>1</sup>Οι ομάδες αυτομορφισμών θεωρούνται πολλαπλασιαστικές. Ο παραπάνω προσθετικός συμβολισμός είναι καταχρηστικός αλλά τον προτιμούμε διότι καθιστά περισσότερο σαφή την αναλογία με την γραμμική άλγεβρα

όπου  $r_i$  είναι ο αριθμός των πόλων της f, λαμβάνοντας υπόψην την πολλαπλότητα. Πράγματι, για μια θέση P του F

$$v_P(h_i) = v_P(f - T_i \circ f) \ge \min \left\{ v_P(f), v_P(T \circ f) \right\},\,$$

άρα αν η θέση P είναι ένας πόλος της  $h_i$  τότε η P είναι ένας πόλος της f ή της  $T_i \circ f$ . Επιπλέον αν P είναι ένας χοινός πόλος των  $f, T_i \circ f$  τότε δεν είναι πόλος της  $h_i$ .

Υπενθυμίζουμε ότι με s συμβολίζουμε το πλήθος των θέσεων του F που σταθεροποιούντε από το  $T_i$ . Στην περίπτωση που

$$2n^t(\gamma + 1) < s$$

τότε

$$\deg h_i \le 2n^t(\gamma + 1) - r_i < s - r_i \le \deg h_i,$$

αφού κάθε σταθερή θέση του  $T_i$  η οποία δεν είναι πόλος της f είναι ρίζα της  $h_i$ , άτοπο. Συνεπώς οι συναρτήσεις  $h_i$  είναι όλες σταθερές και ίσες με μηδέν.

Αποδείξαμε ότι η f μένει αναλλοίωτη υπό την δράση της A, δηλαδή  $k(f)\subseteq \tilde{F}^A$ . Αν το σώμα  $\tilde{F}^A\cong F^A$  είναι ρητό, τότε η συνάρτηση f του  $\tilde{F}^A$  έχει πόλο τάξης 1 στο q, δηλαδή  $\tilde{F}^A=k(f)$ . Ο γεννήτορας του συζυγούς σώματος  $F^A$  είναι σ $f\sigma^{-1}=f$ , δηλαδή  $\tilde{F}^A=F^A$  και συνεπώς  $A\lhd G$ .

Παρατηρούμε ότι η A αφήνει αναλλοίωτο το σύνολο των διαφορετικών θέσεων του F οι οποίες βρίσκονται υπεράνω της q. Το σύνολο των διαφορετικών θέσεων του F οι οποίες βρίσκονται υπεράνω της q αποτελείται από τους πόλους της f. Το πλήθος τους είναι  $n^{t-1}$ , συνεπώς αφού η ομάδα A με  $n^t$  το πλήθος στοιχεία, αφήνει αναλλοίωτο ένα σύνολο με  $n^{t-1}$  στοιχεία, υπάρχει ένα στοιχείο  $T' \in A$ , τέτοιο ώστε το T' και το  $\tilde{T}$  να έχουν το ίδιο σύνολο σταθερών θέσεων.

Έστω G(Q) η ομάδα ανάλυσης στην θέση Q. Στην περίπτωση που (p,|G(Q)|)=1, (και  $\gamma$  τυχαίο) έχουμε ότι  $T'=T^i$  αφού γεννούν κυκλικές υποομάδες της κυκλικής ομάδας ανάλυσης κάθε θέσης που σταθεροποιούν.

Αποδείξαμε δηλαδή την

**Πρόταση 1.1.2** Έστω  $F/F_0$  αβελιανή επέχταση με ομάδα Galois

$$Gal(F/F_0) = A = \bigoplus_{i=1}^{s} \bigoplus_{j=1}^{r_i} \mathbb{Z}_{n_i}.$$

Θέτουμε  $A_i = \bigoplus_{j=1}^{r_i} \mathbb{Z}_{n_i}$  και έστω  $A_i^{s_j}$  η υποομάδα της  $A_i$  που γεννάται από τα στοιχεία που σταθεροποιούν  $s_j$  θέσεις. Θα συμβολίζουμε με  $\gamma(A_i^{s_j})$  το γένος των σωμάτων συναρτήσεων  $F^{A_i^{s_j}}$ .

 $A \nu$  για χάθε  $i, s_i \neq 0$  έχουμε ότι

$$2 |A_i^{s_j}| (\gamma(A_i^{s_j}) + 1) < s_j,$$

και οι τάξεις των ομάδων ανάλυσης των θέσεων που σταθεροποιούνται από τα  $A_i^{s_j}$  είναι p-ελεύθερες, ή  $\gamma(A_i^{s_j})=0$  τότε  $A \lhd G$ .

Θα χρησιμοποιήσουμε χυρίως το παραχάτω

Πόρισμα 1.1.3 Έστω  $F/F_0$  χυχλιχή επέχταση με ομάδα Galois

$$Gal(F/F_0) \cong C_n$$

όπου  $F_0$  ρητό σώμα συναρτήσεων. Έστω s το πλήθος των θέσεων που σταθεροποιεί ο γεννήτορας της χυχλιχής ομάδας  $C_n$ . Στην περίπτωση που 2n < s έχουμε ότι  $C_n \triangleleft Aut(F)$ .

**Παρατήρηση:** Αν το F είναι ένα υπερελλειπτικό σώμα συναρτήσεων, τότε η υπερελλειπτική involution ορίζει μια κανονική υποομάδα τάξης δύο της ομάδας των αυτομορφισμών.

## 1.2 Επεκτάσεις ομάδων

Το πρόβλημα της επέχτασης της πεπερασμένης ομάδας H με αβελιανό πυρήνα A, είναι η εύρεση όλων των ομάδων G που δέχονται την A σαν χανονιχή υποομάδα χαι επιπλέον  $G/A \cong H$ . Τα παραπάνω εχφράζονται με την μιχρή αχολουθία

$$1 \longrightarrow A \longrightarrow G \xrightarrow{\pi} H \longrightarrow 1$$

Η αβελιανή ομάδα ( $\mathbb{Z}$ -module) A αποχτά την δομή H-module μέσω της δράσης δια συζυγίας. Αχριβέστερα, αφού ο ομομορφισμός  $\pi$  είναι επί, μπορούμε να διαλέξουμε μία section  $\rho$  της H στην G, δηλαδή για χάθε  $h \in H$  να διαλέξουμε ένα στοιχείο  $\rho(h) \in \pi^{-1}(h)$ . Στην συνέχεια ορίζουμε δράση της H στην A:

$$a^h := \rho(h)a\rho(h^{-1})$$
, για κάθε  $a \in A$ , και  $h \in H$ .

Παρατηρούμε ότι ο ορισμός της δράσης είναι ανεξάρτητος της section. Η δράση μπορεί να θεαθεί ως μια παράσταση  $\beta$  του H πάνω στους αυτομορφισμούς της A:

$$\beta: H \longrightarrow Aut(A).$$

Η αβελιανή ομάδα A γράφεται σαν ευθύ άθροισμα χυχλιχών υποομάδων:

$$A = \bigoplus_{i=1}^{s} \bigoplus_{j=1}^{r_i} \mathbb{Z}_{n_i},$$

συνεπώς  $Aut(A)=\oplus_{i=1}^s GL_{r_i}(\mathbb{Z}_{n_i})$ , όπου με  $GL_{r_i}(\mathbb{Z}_{n_i})$  συμβολίζουμε τους αντιστρέψιμους  $r_i\times r_i$  πίναχες με στοιχεία από τον δαχτύλιο  $\mathbb{Z}_{n_i}$ . Η αναπαράσταση  $\beta$  λοιπόν, μπορεί να αναλυθεί σε ένα ευθύ άθροισμα  $\beta=\oplus_{i=1}^s\beta_i$  όπου  $\beta_i\in GL_{r_i}(\mathbb{Z}_{n_i})$  είναι αντιστρέψιμοι  $r_i\times r_i$  πίναχες με συντελεστές στον δαχτύλιο  $\mathbb{Z}_{n_i}$ . Θα συμβολίζουμε με  $\{\beta_i(\sigma)\}_{k,l}\ 1\leq k,l\leq r_i$ , τον πίναχα που αντιστοιχεί στην  $\beta_i(\sigma)$ .

Στην ειδιχή περίπτωση  $r_i = 1$ , έχουμε ότι  $GL_1(\mathbb{Z}_{n_i}) \cong \mathbb{Z}_{n_i}^*$ .

Θα ονομάζουμε δυο επεκτάσεις  $G_1$  και  $G_2$  ισοδύναμες (ο αναγνώστης μπορεί να ελέγξει ότι πρόκειται πραγματικά για μία σχέση ισοδυναμίας) αν υπάρχει ομομορφισμός  $\phi$  που να κάνει το παρακάτω διάγραμμα

$$1 \longrightarrow A \stackrel{\nearrow}{\searrow} \begin{matrix} G \\ \phi \downarrow \\ G' \end{matrix} \xrightarrow{\nearrow} H \longrightarrow 1$$

αντιμεταθετικό. Είναι γνωστό ότι οι ισοδύναμες, κατά την παραπάνω έννοια, επεκτάσεις ταξινομούνται από τις κλάσεις συνομολογίας  $H^2(H,A)$ .

Αξίζει να παρατηρήσουμε ότι είναι δυνατόν σε δυο μη ισοδύναμες επεχτάσεις οι «μεσαίες» ομάδες να είναι ισόμορφες. Για παράδειγμα όλες οι επεχτάσεις της χυχλιχής ομάδας  $C_p$  με  $C_p$ , όπου p πρώτος αριθμός, είναι ομάδες τάξης  $p^2$ , συνεπώς αβελιανές. Δηλαδή υπάρχουν μόνο δύο δυνατότητες για την «μεσαία» ομάδα, οι  $C_{2p}$  χαι  $C_p \times C_p$ . Από την άλλη υπολογίζεται ότι  $H^2(C_p,C_p)\cong C_p$ . Φυσιχά, λόγω του 5-λήμματος ο ομομορφισμός  $\phi$  είναι ισομορφισμός, από όπου έχουμε το παραχάτω φράγμα:

$$i(H,A) \le |H^2(H,A)|$$

όπου i(H,A) συμβολίζει το πλήθος των μη ισόμορφων «μεσαίων» ομάδων που πέρνουμε επεχτείνοντας την ομάδα H με A.

## 1.3 Επεκτάσεις του Kummer

Υπενθυμίζουμε μερικά βασικά στοιχεία από τις επεκτάσεις του Kummer.

Έστω  $F/F_0$  αβελιανή επέχταση αλγεβριχών σωμάτων συναρτήσεων, με αβελιανή ομάδα Galois A. Έστω m ο εχθέτης της A, δηλαδή το ελάχιστο χοινό πολλαπλάσιο των τάξεων των στοιχείων της A. Θα ονομάζουμε την επέχταση  $F/F_0$  m-επέχταση του Kummer , όταν το σώμα  $F_0$  έχει m το πλήθος διαφορετιχές m-ρίζες της μονάδας. Η υπόθεση αυτή έχει ως επαχόλουθο, το ότι (|A|,p)=1. Θα συμβολίζουμε με  $\hat{A}$  την ομάδα των χαραχτήρων της A, δηλαδή  $\hat{A}=Hom(A,\mathbb{C})$ ). Αφού η ομάδα A είναι αβελιανή έχουμε ότι  $A\cong \hat{A}$ .

Η παρακάτω πρόταση χαρακτηρίζει τις επεκτάσεις του Kummer.

Πρόταση 1.3.1 Έστω  $F/F_0$  επέχταση του Kummer της οποίας η ομάδα Galois έχει εχθέτη  $m'\mid m$ . Θα συμβολίζουμε με  $M(F^*)$  την υποομάδα του  $F^*$ , των στοιχείων των οποίων οι m δυνάμεις ανήχουν στο  $F_0^*$  και με  $N(F_0^*) < F_0$  την υποομάδα του  $F_0$  των m δυνάμεων του  $M(F^*)$ . Έχουμε την αχριβή αχολουθία

$$1 \longrightarrow F_0^* \longrightarrow M(F^*) \stackrel{\lambda}{\longrightarrow} \hat{A} \longrightarrow 1,$$

όπου η συνάρτηση  $\lambda$  στέλνει το στοιχείο  $\rho$  στον χαρακτήρα  $\chi_{\rho}$ , ορισμένο από

$$\chi_{\rho}(s) := \frac{s(\rho)}{\rho}, \quad s \in A.$$

Ισχύει ότι  $M(F^*)/F_0^*\cong A$ . Επίσης  $F=F_0(M(F^*))$  και το σώμα F είναι πεπερασμένα παραγώμενο

$$F = F_0(y_1, ..., y_r),$$

από τα  $y_i \in M(F^*)$ , αν και μόνο αν τα cosets  $y_i F_0$  γεννούν την ομάδα  $M(F^*)/F^*$ . Επιπλέον η συνάρτηση

$$\mu: \left\{ \begin{array}{ccc} M(F^*) & \longrightarrow & N(F^*)/F^{*m} \\ y & \longmapsto & y^m F^{*m} \end{array} \right.$$

είναι επιμορφισμός με πυρήνα  $\ker \mu = F_0^*$ . Συνεπώς

$$\frac{M(F^*)}{F_0^*} \cong \frac{N(F^*)}{F_0^{*m}} \cong A.$$

Τέλος αν τα στοιχεία  $u_1,...,u_r$  είναι τέτοια ώστε τα cosets  $u_iF_0^{*m}$  γεννούν την ομάδα  $N(F^*)/F_0^{*m}$ , τότε  $F=F_0(\sqrt[m]{u_1},...,\sqrt[m]{u_r})$ .

Απόδειξη: Jacobson [15] χεφ. 8.9 ΙΙ τόμος.

Ας υποθέσουμε ότι η F είναι μια επέχταση του Kummer του  $F_0$  με αβελιανή ομάδα Galois  $A:=Gal(F/F_0)$ , της οποίας ο εχθέτης είναι m. Υποθέτουμε επίσης ότι η ομάδα A είναι χανονιχή υποομάδα της πλήρους ομάδας αυτομορφισμών G του F, με άλλα λόγια η παραχάτω αχολουθία

$$1 \longrightarrow A \longrightarrow G \longrightarrow H \longrightarrow 1, \tag{1.2}$$

είναι ακριβής. H είναι μια υποομάδα της ομάδος αυτομορφισμών του σώματος συναρτήσεων  $F_0$ . Γράφουμε την αβελιανή ομάδα A σαν ένα ευθύ άθροισμα χυχλιχών υποομάδων

$$A = \bigoplus_{i=1}^{s} \bigoplus_{j=1}^{r_i} \mathbb{Z}_{n_i}.$$

Το σώμα F γράφεται

$$F = F_0(y_1, ..., y_t)$$

όπου  $y_i \in M(F^*)$ , αν και μόνο αν τα cosets  $y_i F_0^*$  γεννούν την  $M(F^*)/F_0^*$ , ή ισοδύναμα αν

$$F = F_0(\sqrt[m]{u_1}, \sqrt[m]{u_2}, \dots, \sqrt[m]{u_t}),$$

όπου  $\sqrt[m]{u_i}$  είναι μια m-οστή ρίζα του  $u_i$ , αν και μόνο αν τα  $u_1,...,u_t$  είναι στοιχεία του  $N(F^*)$  τέτοια ώστε τα cosets  $u_iF_0^{*m}$  να γεννούν  $N(F^*)/F_0^{*m}$ .

Θα συμβολίζουμε με  $\tilde{y}_i$  το διάνυσμα  $(y_{1,i},...,y_{r_i,i})$   $1 \leq i \leq s$ , των αντιπροσώπων από cosets τέτοια ώστε τα  $y_{1,i}F^*,...,y_{r_i,i}F^*$  να γενούν την  $\bigoplus_{j=1}^{r_i} \mathbb{Z}_{n_i} < A$  και  $\tilde{u}_i$  το διάνυσμα  $(u_{1,i},...,u_{r_i,i})$   $1 \leq i \leq s$ , τέτοιο ώστε

$$\tilde{y}_i^m = \tilde{u}_i$$
 δηλαδή  $y_{i,i}^m = u_{i,i}$   $1 \leq j \leq r_i, 1 \leq i \leq s$ .

Για ένα διάνυσμα  $a=(a_i)_{i=1,\dots,\lambda}$  από εδώ και στο εξής θα συμβολίζουμε με  $a^m$  το διάνυσμα  $(a_i^m)_{i=1,\dots,\lambda}$ . Τέλος με  $\bar{y}=(\tilde{y}_1,\dots,\tilde{y}_s)$  (αντίστ.  $\bar{u}=(\tilde{u}_1,\dots,\tilde{u}_s)$ ) συμβολίζουμε το διάνυσμα που αποτελείται από όλα τα  $\tilde{y}_i$  (αντις.  $\tilde{u}_i$ ),  $i=1,\dots,s$ . Ο ισομορφισμός του Kummer  $A\cong M(F^*)/F_0^*$  μας επιτρέπει να γράψουμε την δράση της G επί της G σε όρους των γεννητόρων  $\tilde{y}_i$ , κατά τον ακόλουθο τρόπο:

$$\sigma(\tilde{y}_1, ..., \tilde{y}_s) \bmod F_0^* = (\tilde{y}_1^{\beta_1(\sigma)}, ..., \tilde{y}_s^{\beta_s(\sigma)}) \bmod F_0^*,$$

όπου  $\tilde{y}_i^{\beta_i(\sigma)} = (\prod_{\nu=1}^{r_i} y_{\nu,i}^{\beta_i(\sigma)_{1,\nu}},...,\prod_{\nu=1}^{r_i} y_{\nu,i}^{\beta_i(\sigma)_{1,r_i}}) \bmod F_0^*$  και  $\beta_i(\sigma) \in GL_{r_i}(\mathbb{Z}_{n_i}).$ 

Συνεπώς υπάρχει ένα διάνυσμα  $\bar{B}(\sigma)=(\tilde{B}_1(\sigma),...,\tilde{B}_s(\sigma))$  στο  $F_0^{*(r_1+...+r_s)},$  τέτοιο ώστε

$$\sigma(\bar{y}) = \bar{y}^{\beta(\sigma)} \bar{B}(\sigma).$$

Τα στοιχεία  $\bar{B}(\sigma)$  μπορούν να προσδιοριστούν από την εξίσωση  $\bar{y}^m=\bar{u}$ . Πράγματι,

$$\sigma(\tilde{y}_{i})^{m} = \left(\prod_{\nu=1}^{r_{i}} y_{\nu,i}^{\beta_{i}(\sigma)_{1,\nu}}, ..., \prod_{\nu=1}^{r_{i}} y_{\nu,i}^{\beta_{i}(\sigma)_{1,r_{i}}}\right)^{m} \operatorname{mod} F_{0}^{*} = \left(\prod_{\nu=1}^{r_{i}} u_{\nu,i}^{\beta_{i}(\sigma)_{1,\nu}}, ..., \prod_{\nu=1}^{r_{i}} u_{\nu,i}^{\beta_{i}(\sigma)_{1,r_{i}}}\right) \operatorname{mod} F_{0}^{*m}.$$

$$(1.3)$$

Συνεπώς,

$$\sigma(\tilde{u}_i) = \sigma(\tilde{y}_i)^n = \left(\prod_{\nu=1}^{r_i} u_{\nu,i}^{\beta_i(\sigma)_{1,\nu}} B_{i,1}(\sigma), \dots, \prod_{\nu=1}^{r_i} u_{\nu,i}^{\beta_i(\sigma)_{1,r_i}} B_{i,r_i}(s)\right) = \tilde{u}_i^{\beta_i(\sigma)} \tilde{B}_i(\sigma)^m. \tag{1.4}$$

Η παραπάνω εξίσωση μας δίνει μια ικανή και αναγκαία συνθήκη για να μπορούμε να επεκτείνουμε αυτομορφισμούς του σώματος  $F_0$  σε αυτομορφισμούς του F. Συγκεκριμένα ισχύει η παρακάτω πρόταση:

**Πρόταση 1.3.2** O αυτομορφισμός  $\sigma_0$  του  $F_0$ , επεχτείνεται σε αυτομορφισμό της Kummer επέχτασης F αν χαι μόνο αν οι εξισώσεις:

$$\sigma_0(\tilde{u}_i) = \tilde{u}_i^{\beta_i(\sigma)} \cdot \tilde{x}_i^m, \quad i = 0, ..., s,$$

έχουν λύσεις  $\tilde{x}_i$  στο  $F_0^*$ .

#### 1.3.1 Διακλαδώσεις σε επεκτάσεις του Kummer

Σε χυχλιχές επεχτάσεις του Kummer ισχύει η παραχάτω πρόταση ([26], σελ. 111)

Πρόταση 1.3.3 Έστω  $F_0/k$  αλγεβρικό σώμα συναρτήσεων, ορισμένο υπέρ το αλγεβρικά κλειστό σώμα σταθερών k. Έστω n φυσικός αριθμός. Υποθέτουμε ότι  $u \in F_0$  είναι στοιχείο που να ικανοποιεί  $u \neq w^d$  για κάθε  $w \in F_0$  και για κάθε  $d \mid n, d > 1$ . Στην κυκλική επέκταση του Kummer

$$F_0' = F_0(y), y^n = u$$

ο δείκτης διακλάδωσης  $e_P$  και το πλήθος των θέσεων  $r_P$  του  $F_0'$  που επεκτείνουν μια θέση P του  $F_0$ , υπολογίζονται ως εξής:

$$r_P = (n, v_P(u)), \quad e_P = \frac{n}{r_P},$$
 (1.5)

όπου  $v_P$  είναι η διαχριτή εχτίμηση του  $F_0$  που αντιστοιχεί στη  $\vartheta$ έση P.

Στην συνέχεια F θα είναι μία αβελιανή επέχταση του  $F_0$ , με ομάδα Galois A. Έστω Q μια θέση του F η οποία διαχλαδίζεται στην επέχταση  $F/F_0$  χαι έστω P ο περιορισμός της στο σώμα  $F_0$ . Θα συμβολίζουμε με A(Q) < A, την υποομάδα ανάλυσης που αντιστοιχεί στην θέση Q. Η ομάδα A(Q) είναι ισόμορφη με την ομάδα αδρανείας  $A_0(Q)$ , αφού το σώμα των σταθερών k, είναι αλγεβριχά χλειστό. Παρατηρούμε ότι η A(Q) περιέχεται μόνο σε ένα ευθύ χυχλιχό προσθεταίο της A. Έστω  $yF^*$  ένας γεννήτορας αυτού του χυχλιχού προσθεταίου, και  $y_1F^*,...,y_nF^*$  οι γεννήτορες των άλλων χυχλιχών προσθεταίων της ομάδας A, χάτω από την ταύτιση του Kummer , όπως αυτή δίνεται στην (1.3.1). Στην επέχταση  $F_0(y_1,...,y_n)/F_0$  η θέση P δεν διαχλαδίζεται, άρα διαχλαδίζεται μόνο στην επέχταση  $F_0(y)/F_0$  χαι αναλύεται πλήρως στην επέχταση  $F/F_0(y)$ . Το σύνολο των θέσεων που διαχλαδίζονται στην επέχταση  $F/F_0$  λοιπόν, μπορεί να υπολογιστεί χάνοντας χρήση της θεωρίας των χυχλιχών επεχτάσεων του Kummer (πρόταση 1.3.3). Η παραπάνω παρατήρηση αποδειχνύει την αχόλουθη

Πρόταση 1.3.4 Έστω  $u_1,...,u_t$  στοιχεία του  $N(F^*)$ , τέτοια ώστε τα cosets  $u_iF_0^{*m}$  να γενούν την  $N(F^*)/F_0^{*m}$ . Για κάθε  $u_i$  και κάθε θέση P του  $F_0$  θέτουμε  $r_i(P):=(n_i,v_P(\sqrt[m/n]{u_i}))$ , όπου  $n_i$  είναι η τάξη του  $u_iF_0^{*m}$  στην  $N(F^*)/F_0^{*m}$ . Αν Q είναι μια θέση του F υπέρ το P έχουμε ότι

$$e(Q/P) = n_i/r_i(P),$$

και υπάρχουν  $\frac{|A|}{e(Q/P)}$  θέσεις του F, υπέρ το P.

## 1.4 Υπολογισμός της δομής ομάδος

Όπως είδαμε στην παράγραφο (1.3) η δομή του A σαν H-module περιγράφεται πλήρως από την αντιστοιχία Kummer .

Η ίδια θεωρία μας δίνει την δυνατότητα να περιγράψουμε τον συνομολογιακό κύκλο  $\alpha \in H^2(H,A)$  σε όρους των γεννοποιόντων ριζικών.

Από την πρόταση (1.3.2) έχουμε ότι οι συντεταγμένες του  $\bar{B}(\sigma)$  είναι n-οστές ρίζες του  $\sigma(\bar{u})/\bar{u}^{\beta(\sigma)}$ . Διαφορετικές επιλογές n-οστών ριζών καταλήγουν σε διαφορετικές επεκτάσεις του αυτομορφισμού  $\sigma$  σε αυτομορφισμό του F. Στην γλώσσα των επεκτάσεων ομάδων, η επιλογή των n-οστων ριζών οδηγεί σε μία section

$$\rho: H \longrightarrow G$$
.

Ο αυτομορφισμός  $\rho(\sigma)$  ορίζεται ως εξής:

$$\rho(\sigma) = \left\{ \begin{array}{ccc} y & \longmapsto & y^{\beta(\sigma)} B_{\sigma} \\ u & \longmapsto & \sigma(u) \ \forall u \in F_{0} \end{array} \right..$$

Από την θεωρία των επεχτάσεων ομάδων, ο 2-συνχύχλος που ορίζει την συνομολογιαχή χλάση  $\alpha \in H^2(H,A)$  που αντιστοιχεί στην επέχταση (1.2) δίνεται από

$$[\cdot,\cdot]: \left\{ \begin{array}{ccc} G_0 \times G_0 & \longrightarrow & A \\ \sigma,\tau & \longmapsto & B_{\sigma}^{\beta(\tau)}\sigma(B_{\tau})B_{\sigma\tau}^{-1} \end{array} \right.$$
 (1.6)

### 1.4.1 Δομή ομάδος και τύπος διακλάδωσης

Σε αυτή την παράγραφο, θα προσπαθήσουμε να εξετάσουμε την επιρροή του τύπου διαχλάδωσης στην δομή της ομάδας αυτομορφισμών. Είναι γνωστό από τις εργασίες των Brand και Stichtenoth [4], [3] ότι αν  $A=C_q$  είναι κυχλιχή ομάδα τάξης πρώτου αριθμού, τότε η δομή της επέχτασης G χαθορίζεται αποχλειστιχά από την σχετιχή διαχλάδωση στις επεχτάσεις  $F/F_0$  και  $F_0/F^G$ . Θα αναζητήσουμε συνθήχες για να ισχύει αυτό στην γενιχή περίπτωση.

Υπενθυμίζουμε ότι η αβελιανή ομάδα A έχει τάξη που δεν διαιρείται από την χαρακτηριστική p.

Θα ξεκινήσουμε την μελέτη μας από την «τοπική» περίπτωση: Θεωρούμε την θέση P του  $F_0$ , και έστω H(P) η υποομάδα της H που κρατά σταθερή την θέση P. Είναι γνωστό ότι ([20] σελ. 68)

$$H(P) \cong \mathcal{E}_p(t) \rtimes C_m$$

όπου η ομάδα  $\mathcal{E}_p(t)$  είναι στοιχειώδης αβελιανή p-ομάδα, τάξης  $p^t$ , και η  $C_m$ , είναι κυκλική ομάδα τάξης m. Αν  $\alpha$  είναι η συνομολογιακή κλάση που αντιστοιχεί στην επέκταση (1.2) η συνομολογιακή κλάση που αντιστοιχεί στην υποεπέκταση

$$1 \longrightarrow A \longrightarrow \pi^{-1}(H(P)) \longrightarrow H(P) \longrightarrow 1, \tag{1.7}$$

ισούται με  $res_{H o H(P)}(\alpha)$ . Δεδομένης της μιχρής αχριβούς αχολουθίας

$$1 \longrightarrow \mathcal{E}_p(t) \longrightarrow \mathcal{E}_p(t) \rtimes C_m \longrightarrow C_m \longrightarrow 1,$$

και του ότι  $H^1(\mathcal{E}_p(t),A)=0$  (υπενθυμίζουμε ότι (p,|A|)=1), η restriction-inflation ακολουθία δίνει

$$1 \longrightarrow H^2\left(\frac{\mathcal{E}_p(t) \rtimes C_m}{\mathcal{E}_p(t)}, A^{\mathcal{E}_p(t)}\right) \longrightarrow H^2(\mathcal{E}_p(t) \rtimes C_m, A) \longrightarrow H^2(\mathcal{E}_p(t), A) \longrightarrow 1.$$

Άρα, αφού  $H^2(\mathcal{E}_p(t),A)=0$  (υπενθυμίζουμε ότι (p,|A|)=1), έχουμε ότι

$$H^2(\mathcal{E}_p(t) \rtimes C_m, A) \cong H^2(C_m, A^{\mathcal{E}_p(t)}),$$

οπότε προχειμένου να υπολογίσουμε την δομή ομάδος  $\pi^{-1}(H(P))$ , αρχεί να υπολογίσουμε την δομή ομάδος  $G':=\pi_1^{-1}(C_m)$  στην επέχταση:

$$1 \longrightarrow A^{\mathcal{E}_p(t)} \longrightarrow G' \xrightarrow{\pi_1} C_m \longrightarrow 1.$$

Χωρίς περιορισμό της γενικότητας λοιπόν θα υποθέτουμε ότι H(P) είναι κυκλική. Έστω Q μια θέση του F υπεράνω της θέσεως P. Θα αποδείξουμε το παρακάτω

**Λήμμα 1.4.1** Στην περίπτωση που η θέση Q αναλύεται πλήρως στην επέχταση  $F/F_0$ , δηλαδή αν A(Q)=1, τότε η μιχρά αχριβής αχολουθία

$$1 \longrightarrow A \longrightarrow \pi^{-1}(H(P)) \longrightarrow H(P) \longrightarrow 1,$$

διασπάται και, ισοδύναμα, η αντίστοιχη συνομολογιακή κλάση

$$res_{H\to H(P)}\alpha$$

είναι τετριμμένη.

 $\mathbf{A}$ πόδειξη: Θεωρούμε τον πυρήνα  $ker\beta$  της παράστασης

$$\beta: H(P) \longrightarrow Aut(A).$$

Σύμφωνα με την παραπάνω παρατήρηση μπορούμε να υποθέσουμε ότι  $H(P)\cong C_m$ . Η ομάδα  $\ker\beta$  είναι πεπερασμένη υποομάδα της χυχλιχής ομάδας  $H(P)\cong C_m$ . Έστω  $S\in\pi^{-1}(H(P))$ , τέτοιο ώστε η ειχόνα του  $\pi(S)$  να είναι γεννήτορας της χυχλιχής ομάδας  $C_m$ . Μπορούμε να διαλέξουμε για γεννήτορα του  $\ker\beta< H(P)$ , το στοιχείο  $\pi(S)^r$  με  $r\mid m$ . Εξ ορισμού το  $\pi(S)^r$  δρα στο τυχαίο  $a\in A$  ως εξής:

$$a^{\pi(S)^r} = S^r a S^{-r}$$
.

Από την άλλη αφού  $S^r \in ker\beta$  έχουμε ότι

$$S^r a S^{-r} = a$$

και συνεπώς η ομάδα  $\pi^{-1}(ker\beta)$  που παράγεται από τα στοιχεία της A και από το  $S^r$  είναι αβελιανή.

Έστω  $T_1, T_2..., T_\kappa$  οι γεννήτορες της αβελιανής ομάδας A και έστω  $n_i$  η τάξη του  $T_i$ . Θα συμβολίζουμε με  $G_i$  την αβελιανή ομάδα που παράγεται από τα  $T_i, S^r$ .

Ισχυριζόμαστε ότι κάθε p-Sylow υποομάδα της  $G_i$  είναι ισόμορφη με την  $C_{p^{v_1}} \times C_{p^{v_2}}$ , όπου  $v_1, v_2$  είναι οι εκθέτες του p στην ανάλυση του  $n_i$  και m/r σε πρώτους παράγοντες.

Πράγματι, έστω p ένας πρώτος διαιρέτης του  $(n_i,m/r)$ . Έστω  $G_i^p$  μια p-Sylow υποομάδα του  $G_i$ , και  $A^i$  η ομάδα που παράγεται από τα  $T_j,\ j=1,...,k,\ j\neq i$  Σχηματίζουμε τον παρακάτω πύργο σωμάτων



Όπου  $p_1$  είναι ο περιορισμός της θέσης  $P_1$  στο  $F_0^{C_p v_2}$ , και  $Q_1,...,Q_{p^{v_1}}$  οι επεκτάσεις της θέσης  $P_1$  του  $F_0$  στο  $F^{\langle A^i,T_i^{n_i/p^{v_1}}\rangle}=:L$ . Η ομάδα  $Gal(L/F_0)\cong C_{p^{v_1}}$ . Αν C είναι μια κυκλική υποομάδα του  $G_i^p$  που περιέχει την  $Gal(L/F_0)$ 

$$Gal(L/F_0) < C < G_i^p$$

τότε  $C = Gal(L/F_0)$ . Διαφορετικά, θα υπήρχε ένα ενδιάμεσο σώμα

$$L^C < L_T(Q_1) < L$$

που θα αντιστοιχούσε στην ομάδα ανάλυσης  $C(Q_1)$  τέτοιο ώστε η  $Q_1$  να αναλύεται στην επέχταση  $L_T(Q_1)/L^C$  και να διαχλαδίζεται στην  $L/L_T(Q_1)$ . Το παραπάνω όμως είναι αδύνατον, αφού οι υποομάδες μιας χυχλιχής p-ομάδος C είναι πλήρως διατεταγμένες ως προς τον εγχλεισμό. Η παρατήρηση αυτή μαζί με το θεώρημα ταξινόμισης αβελιανών ομάδων μας δίνουν ότι  $G_p^1 \cong C_{p^{v_1}} \times C_{p^{v_2}}$ . Κάνοντας χρήση του θεωρήματος ταξινόμησης αβελιανών ομάδων άλλη μια φορά, παίρνουμε  $G_i = C_n \times \ker \beta$  άρα

$$\pi^{-1}(\ker \beta) = A \times \ker \beta.$$

Συνεπώς

$$A \cap \langle S^r \rangle = \{1\}. \tag{1.8}$$

Επιστρέφουμε στην μελέτη της  $\pi^{-1}(C_m)$ . Η ομάδα  $\pi^{-1}(C_m)$  μπορεί να γραφεί με την βοήθεια γεννητόρων και σχέσεων:

$$\pi^{-1}(C_m) = \langle T_i^{n_i} = 1, ST_i S^{-1} = T_1^{\beta_{i1}(S)} \cdots T_{\kappa}^{\beta_{i\kappa}(S)}, S^x = 1 \rangle.$$
 (1.9)

Απομένει να υπολογίσουμε την τάξη x του S. Γνωρίζουμε ότι το  $\pi(S)$  έχει τάξη m, άρα  $S^m \in A$ . Από την άλλη όμως  $S^m = (S^r)^{m/r} \in A$  συνεπώς  $(S^m) \in A \cap \langle S^r \rangle$  οπότε κατ΄ ανάγκη  $S^m = 1$  από την (1.8). Από την γραφή της  $\pi^{-1}$  σε γεννήτορες και σχέσεις, πιστοποιούμε ότι η ομάδα  $\pi^{-1}$  είναι ένα ημιευθύ γινόμενο.  $\square$ 

Έστω P θέση του  $F_0$ , και H(P) η ομάδα ανάλυσης της. Υπάρχουν εν γένει s το πλήθος διαφορετικές θέσεις  $Q_1,...,Q_s$  που επεκτείνουν την P στο F. Η ομάδα A είναι αβελιανή άρα όλες οι ομάδες ανάλυσης των θέσεων  $Q_1,...,Q_s$  είναι ίσες. Έστω λοιπόν

η ομάδα ανάλυσης μιας από αυτές. Αφού η θέση P διακλαδίζεται πλήρως στην επέκταση  $F_0/F_0^{H(P)}$  έχουμε ότι οι θέσεις  $Q_1,...,Q_s$  και μόνον αυτές επεκτείνουν την θέση  $p:=P\cap F_0^{H(P)}$  στο F.

Η ομάδα  $Gal(F/F_0^{H(P)})$  που επεκτείνει την H(P) με A, δρα δια συζυγίας και μεταβατικά επί των ομάδων ανάλυσης  $A(Q_i)$ . Δηλαδή για κάθε  $\sigma \in Gal(F/F_0^{H(P)})$  το  $\sigma A(Q)\sigma^{-1} = A(Q)$ . Συνεπώς η A(Q) δέχεται την δομή ενός H(P)-module .

**Λήμμα 1.4.2** Αν το H(P)-module Α γράφεται σαν ευθύ άθροισμα  $A=A(Q)\oplus A/A(Q)$ , τότε η δομή της ομάδας  $\pi^{-1}(H(P))$  καθορίζεται από την διακλάδωση της θέσης P στην επέκταση  $F/F_0$ .

Απόδειξη: Η διάσπαση  $A=A(Q)\oplus A/A(Q)$  μας επιτρέπει την διάσπαση των ομάδων συνομολογίας και ιδιαίτερα της συνομολογιακής κλάσης που αντιστοιχεί στην επέκταση ομάδων 1.7

$$H^{2}(H(P), A) = H^{2}(H(P), A(Q)) \oplus H^{2}(H(P), A/A(Q)).$$

Συνεπώς, η συνομολογιακή κλάση

$$\alpha \in H^2(H(P), A)$$

που αντιστοιχεί στην επέχταση 1.7 διασπάται σε άθροισμα  $\alpha=\alpha_1+\alpha_2$ , με  $\alpha_1\in H^2(H(P),A(Q))$  και  $\alpha_2\in H^2(H(P),A/A(Q))$ .

Εφαρμόζοντας το λήμμα 1.4.1 στην αβελιανή επέχταση  $F^{A(Q)}/F_0$ , έχουμε ότι  $\alpha_2=0$ .  $\square$  Παρατήρηση: Η διάσπαση  $A=A(Q)\oplus A/A(Q)$  είναι ισοδύναμη με το ότι οι χυχλιχές ομάδες ανάλυσης A(Q) είναι μέγιστες χυχλιχές υποομάδες στην A, δηλαδή δεν υπάρχει χυχλιχή υποομάδα της A, που να περιέχει γνήσια την A(Q).

Παρατήρηση: Το πρόβλημα εύρεσης της συνομολογιακής κλάσης  $\alpha \in H^2(H(P),A)$  μπορεί να λάβει και μια δεύτερη μορφή «τοπικότητας». Θεωρούμε τις θέσεις p,P,Q των  $F_0^{H(P)},F_0$  και F αντίστοιχα που αποτελούν η κάθε μία περιορισμό της άλλης. Θα συμβολίζουμε με  $Com_p(F_0^{H(P)}),Com_P(F_0),Com_Q(F)$  αντίστοιχα, τις πληρώσεις (σώματα Laurent αναπτυγμάτων) των σωμάτων  $F_0^{H(P)},F_0,F$  ως προς τις θέσεις p,P,Q αντίστοιχα.



Δηλαδή έχουμε ανάγει το πρόβλημα της επέχτασης στον υπολογισμό της ομάδας Galois στα τοπικά σώματα. Φυσικά και πάλι μπορούμε να έχουμε μια αχριβή γραφή για τον συνκύκλο, η οποία προκύπτει από την εξίσωση (1.6) θεωρώντας κάθε όρο στην τοπικοποίηση

$$[\cdot,\cdot]: \left\{ \begin{array}{ccc} H(P) \times H(P) & \longrightarrow & A(P) \\ \sigma,\tau & \longmapsto & \hat{B}_{\sigma}^{\beta(\tau)} \sigma(\hat{B}_{\tau}) \hat{B}_{\sigma\tau}^{-1} \end{array} \right., \tag{1.10}$$

όπου για ένα στοιχείο  $f \in F$  με  $\hat{f}$  θα συμβολίζουμε το ανάπτυγμα Laurent του.

Ο τύπος διαχλάδωσης καθορίζει την συνομολογιαχή κλάση  $res_{G\to G(P)}\alpha$  τοπικά. Προκειμένου να απαντήσουμε στο καθολικό ερώτημα, συγκεντρώνουμε τις απαντήσεις από όλα τα τοπικά προβλήματα μαζί: Θεωρούμε τον ομομορφισμό

$$\begin{array}{ccc}
H^{2}(H,A) & \xrightarrow{\Phi} & \prod_{P} H^{2}(H(P),A) \\
\alpha & \longmapsto & \prod_{P} res_{H \to H(P)} \alpha
\end{array} (1.11)$$

Για να καθορίζεται η ολική συνομολογιακή κλάση  $\alpha$  από τον «τύπο διακλάδωσης» αρκεί ο  $\Phi$  να είναι «ένα προς ένα» ή ισοδύναμα

$$\ker \Phi = \bigcap_{P} \ker res_{H \to H(P)} \alpha = \{1\}$$

Θα δώσουμε μία ικανή συνθήκη που να εξασφαλίζει ότι η συνάρτηση  $\Phi$ , όπως αυτή ορίζεται στην (1.11), να είναι μονομορφισμός.

Είναι γνωστό ότι αν η S είναι μια υποομάδα της πεπερασμένης ομάδας H τότε η σύνθεση  $cor_{S,H} \circ res_{H,S}$  είναι πολλαπλασιασμός με [H:S] ([32], πόρισμα 2-4-9) . Δηλαδή για S=H(P) έχουμε το παραχάτω μεταθετιχό διάγραμμα

$$\begin{array}{ccc} H^2(H,A) & \stackrel{[H:H(P)]}{\longrightarrow} & H^2(H,A) \\ res \searrow & & \nearrow cor \\ & & & & \end{array}$$

Ο δείχτης |H:H(P)| ταυτίζεται με τον αριθμό  $r_p$  των θέσεων του σώματος  $F_0$  που επεχτείνουν μια θέση p του  $F_0^H$ . Ισχύει λοιπόν το παραχάτω

**Λήμμα 1.4.3** Αν  $r_p$  συμβολίζει τον αριθμό των θέσεων του σώματος  $F_0$ , υπεράνω μιας θέσης p του  $F_0^H$  και επιπλέον ο μέγιστος κοινός διαιρέτης όλων των  $r_p$  είναι μονάδα, όταν το p διατρέχει τις θέσεις του  $F_0^H$ , τότε ο μορφισμός  $\Phi$  είναι μονομορφισμός.

 $\Delta$ υστυχώς, ο  $\ker \Phi$  δεν είναι σε όλες τις περιπτώσεις μονάδα, και συνεπώς η δομή ομάδας της επέκτασης δεν καθορίζεται από τον τύπο διακλάδωσης. Αν για παράδειγμα, το  $F_0$  είναι ένα σώμα συναρτήσεων γένους αυστηρά μεγαλύτερου του μηδενός, τότε μπορεί να υπάρχουν αυτομορφισμοί του  $F_0$ , οι οποίοι να μην σταθεροποιούν καμμία θέση του  $F_0$ , συνεπώς οι επεκτάσεις τους σε αυτομορφισμούς μιας αβελιανής επέκτασης F του  $F_0$ , δεν γίνεται να

επηρεάζονται από τον τύπο διακλάδωσης. Από τον τύπο των Riemann-Hurwitz προκύπτει ότι αν η ομάδα H δρα χωρίς σταθερά σημεία επί του σώματος F, τότε

$$2g_F - 2 = |H| \cdot (2g_{FH} - 2),$$

δηλαδή η τάξη της ομάδας H διαιρεί την χαρακτηριστική του Euler.

**Παράδειγμα:** Έστω  $F_0$  ένα ελλειπτικό σώμα συναρτήσεων, ορισμένο επί ενός αλγεβρικά κλειστού σώματος k. Η ομάδα αυτομορφισμών του  $F_0$  είναι άπειρη, αφού κάθε θέση  $P \in E := \mathbb{P}(F_0)$  επάγει ένα αυτομορφισμό

$$P: \left\{ \begin{array}{ccc} F_0 & \longrightarrow & F_0 \\ Q & \longmapsto & Q+P \end{array} \right.$$

Δηλαδή το σύνολο των θέσεων E του  $F_0$ , αποτελεί υποομάδα της  $Aut(F_0)$ . Η ομάδα των αυτομορφισμών G(0) που χρατά σταθερό το ουδέτερο στοιχείο της ελλειπτικής καμπύλης E, είναι ισόμορφη με ([25], σελ. 103)

$$G(0) \cong \left\{ \begin{array}{cccc} \mathbb{Z}_2 & \text{an} & j(E) \neq 0,1728 \\ \mathbb{Z}_4 & \text{an} & j(E) = 1728, \ p \neq 2,3 \\ \mathbb{Z}_6 & \text{an} & j(E) = 0, \ p \neq 2,3 \\ \mathbb{Z}_3 \rtimes \mathbb{Z}_4 & \text{an} & j(E) = 0,1728, \ p = 3 \\ (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_3 & \text{an} & j(E) = 0,1728, \ p = 2. \end{array} \right.$$

Ολόκληρη δε η ομάδα αυτομορφισμών είναι ισόμορφη με

$$Aut(F_0) \cong E \rtimes G(0).$$

Θεωρούμε H μια πεπερασμένη υποομάδα της ομάδας αυτομορφισμών ενός ελλειπτιχού σώματος συναρτήσεων  $F_0$ , η οποία να επεχτείνεται σε αυτομορφισμούς μιας αβελιανής επέχτασης  $F/F_0$ . Υποθέτουμε επιπλέον, ότι το γένος του F είναι μεγαλύτερο του F0. Από την δομή της F1 έχουμε ότι

$$H \cong H_{tor} \rtimes H(0),$$

όπου  $H_{tor}$  είναι υποομάδα πεπερασμένης τάξης της E και  $H(0) \triangleleft G(0)$ . Οι αυτομορφισμοί που επεκτείνουν την  $H_{tor}$  σχηματίζουν μια υποομάδα των αυτομορφισμών του F με τάξη  $|A| \cdot |H_{tor}|$  η οποία δρα ελεύθερα επί του F. Συνεπώς το  $|A| \cdot |H_{tor}|$  θα πρέπει να διαιρεί το  $2g_F - 2$ . Στην ειδική περίπτωση που  $H_{tor} = \{1\}$ , έχουμε ότι η συνάρτηση  $\Phi$  είναι μονομορφισμός.

## Κεφάλαιο 2

## Καμπύλες της μορφής $y^n = f(x)$

Έστω αλγεβρικά κλειστό σώμα k. Σε αυτό το κεφάλαιο θα θεωρήσουμε κυκλικές επεκτάσεις του ρητού σώματος συναρτήσεων k(x). Θεωρούμε το σώμα συναρτήσεων F της καμπύλης  $y^n=f(x)$ , όπου το  $f(x)\in k[x]$  δεν είναι δ-δύναμη για κάθε  $\delta\mid n$ . Το F είναι μια κυκλική Kummer επέκταση του ρητού σώματος συναρτήσεων k(x). Αφού το σώμα σταθερών k είναι αλγεβρικά κλειστό, στην επέκταση F/k(x) δεν εμφανίζεται αδράνεια. Η διακλάδωση και η ανάλυση των θέσεων υπολογίζεται ως εξής:

Έστω P μία θέση του k(x) και έστω  $v_P$  η διακριτή εκτίμηση που της αντιστοιχεί. Το πλήθος  $r_P$  των θέσεων του F που βρίσκονται υπεράνω της P είναι

$$r_P = (n, v_P(f(x)) \tag{2.1}$$

ενώ ο αντίστοιχος βαθμός διακλάδωσης είναι  $e_P=n/r_P$ .

Αναλύουμε το f(x) σε γινόμενο αναγώγων παραγόντων στο k[x].

$$f(x) = \prod_{i=1}^{s} (x - \rho_i)^{d_i}.$$

Έχουμε ότι

$$\upsilon_P(f) = \begin{cases} d_i & \text{an } P = P_{x=\rho_i} \\ -d := \sum_{i=1}^s d_i & \text{an } P = P_{\infty} \\ 0 & \text{diagoretiká} \end{cases} \tag{2.2}$$

Aπό τις (2.1) και (2.2) έχουμε ότι

$$e_{P} = \begin{cases} n/(n, d_{i}) & \text{an} \quad P = P_{x = \rho_{i}} \\ n/(n, d) & \text{an} \quad P = P_{\infty} \\ 1 & \text{diagoretiká} \end{cases}$$
 (2.3)

Έστω  $A_1,...,A_n$  οι θέσεις του F που επεχτείνουν το  $P_{x=0}$ , χαι  $Q_{\rho_i,j}/j=1,...,(n,d_i)$  οι θέσεις που επεχτείνουν την  $P_{x=\rho_i}$  χαι  $\Gamma_i$  i=1,...,(n,d) οι θέσεις που επεχτείνουν το  $P_{\infty}$ . Από τα παραπάνω μπορούμε να υπολογίσουμε τους divisors των συναρτήσεων x,y.

$$(x) = \sum_{i=1}^{n} A_i - \frac{n}{(n,d)} \sum_{i=1}^{(n,d)} \Gamma_i$$
 (2.4)

$$(y) = \sum_{i=1}^{s} \frac{d_i}{(n, d_i)} \sum_{i=1}^{(n, d_i)} Q_{\rho_i, j} - \sum_{i=1}^{(d, n)} \frac{d}{(n, d)} \Gamma_j.$$
 (2.5)

Πράγματι, για τους συντελεστές του divisor (y), αρχεί να παρατηρήσουμε ότι

$$n \cdot v_Q(y) = v_Q(f(x)) = e(Q/P) \cdot v_P(f(x)).$$

Η διαφορίζουσα της διαχωρίσιμης επέχτασης F/k(x) υπολογίζεται

$$D(F/k(x)) = \sum_{i=1}^{s} \left(\frac{n}{(n,d_i)} - 1\right) \sum_{i=1}^{(n,d_i)} Q_{\rho_i,j} + \sum_{i=1}^{(n,d)} \left(\frac{n}{(n,d)} - 1\right) \Gamma_i$$
 (2.6)

Από τον τύπο  $(dx) = D(F/k(x)) - 2(x)_{\infty}$  ([13], σελ. 455) και την (2.6) έχουμε

$$(dx) = \sum_{i=1}^{s} \left( \frac{n}{(n,d_i)} - 1 \right) \sum_{j=1}^{(n,d_i)} Q_{\rho_i,j} + \sum_{j=1}^{(n,d)} \left( \frac{n}{(n,d)} - 1 - \frac{2n}{(n,d)} \right) \Gamma_i. \tag{2.7}$$

Από την παραπάνω εξίσωση μπορούμε να υπολογίσουμε το γένος του F. Πράγματι  $\deg dx=2g_F-2,$  άρα

$$g_F = 1 + \frac{1}{2} \left( ns - \sum_{i=1}^{s} (n, d_i) - n - (n, d) \right).$$
 (2.8)

Θέτουμε  $\omega:=dx/y^{n-1}$ , και παρατηρούμε ότι για να είναι ένα διαφορικό της μορφής

$$x^{\kappa}y^{\lambda}\omega$$
,

ολόμορφο πρέπει και αρκεί

$$nd - d - n - (n, d) - \lambda d - \kappa n \ge 0, \tag{2.9}$$

$$\lambda d_i + n - nd_i + d_i - (n, d_i) \ge 0, \quad \kappa \ge 0$$
 (2.10)

Στην γενική περίπτωση τα ολόμορφα διαφορικά είναι πολύ περισσότερα από αυτά της μορφής  $x^{\kappa}y^{\lambda}\omega$ . Στην ειδική όμως περίπτωση  $d_i=1$ , δηλαδή όταν κανένα πεπερασμένο σημείο της αφινικής καμπύλης  $y^n=f(x)$  δεν είναι ιδιόμορφο, τότε οι συνθήκες 2.10 ανάγονται στις  $\kappa\geq 0, \lambda\geq 0$ , και ο Towse [28] απέδειξε ότι το σύνολο

$$I := \left\{ (\kappa, \lambda) \in \mathbb{N}^2 : nd - d - n - (n, d) - \lambda d - \kappa n \ge 0 \right\}$$

έχει πληθάριθμο ακριβώς  $g_F$ . Άρα το σύνολο

$$x^{\kappa} y^{\lambda} \omega, (\kappa, \lambda) \in I,$$
 (2.11)

αποτελεί μία βάση ολόμορφων διαφορικών.

Θα περιοριστούμε σε επεκτάσεις για τις οποίες ισχύει η συνθήκη  $(n,d_i)=1$  για όλα τα i=1,...,s, ή ισοδύναμα σε κυκλικές Kummer επεκτάσεις, στις οποίες οι θέσεις που διακλαδίζονται, διακλαδίζονται πλήρως.

Χωρίς περιορισμό της γενικότητας μπορούμε να περιοριστούμε σε συναρτήσεις

$$f(x) = \prod_{i=1}^{s} (x - \rho_i)^{d_i}, d_i \in \mathbb{Z}$$

τέτοιες ώστε  $0 < d_i < n$  και  $d := \sum_{i=1}^s d_i \equiv 0 \bmod n$ , δηλαδή το επάπειρο σημείο της καμπύλης δεν διακλαδίζεται.

Από την εξίσωση (2.8) και λαμβάνοντας υπόψην ότι  $(n,d_i)=1,\ (n,d)=n$  λαμβάνουμε τον παρακάτω τύπο γένους:

$$g = \frac{(n-1)(s-2)}{2}.$$

Αποδείξαμε στο πόρισμα 1.1.3 ότι υπό την προϋπόθεση 2n < s, η ομάδα  $Gal(F/F_0) \triangleleft G$ . Η συνθήκη 2n < s είναι ισοδύναμη με την  $(n-1)^2 < g_F$ .

Στην ειδική περίπτωση  $k=\mathbb{C}$  και n=p είναι πρώτος, οι Victor Gonzalez και Rubi Rodriguez [7] έδωσαν μία καλύτερη συνθήκη: Χρησιμοποίησαν το γνωστό αποτέλεσμα ότι μία καμπύλη C είναι ένα p-κυκλικό κάλυμμα της προβολικής ευθείας αν και μόνο αν έχει ένα  $g_p^1$  ελεύθερο βάσης γραμμικό σύστημα και το ότι η ομάδα αυτομορφισμων μεταθέτει όλα τα γραμμικά συστήματα της μορφής  $g_p^1$ . Συνεπώς αν το γραμμικό σύστημα  $g_p^1$ , είναι μοναδικό, τότε η χυκλική ομάδα Galois  $Gal(C/\mathbb{P}^1)$ , είναι κανονική στην G. Μία ικανή συνθήκη ώστε ένα γραμμικό σύστημα  $g_p^1$  να είναι μοναδικό είναι:

$$2 \le p \le \frac{g}{2} + 1,\tag{2.12}$$

όπως απέδειξαν οι Arbarello-Cornalba στο [2], άρα, αν ισχύει η (2.12), τότε  $C_p \triangleleft G$ .

## 2.1 Συνθήκες επεκτασιμότητας

Θα αντιμετωπίσουμε σ΄ αυτή την παράγραφο το αντίστροφο πρόβλημα.  $G_0$  είναι μία τυχαία πεπερασμένη υποομάδα της ομάδας αυτομορφισμών του ρητού σώματος συναρτήσεων  $F_0$ . Είναι δυνατόν να επεχτείνουμε χάθε αυτομορφισμό του  $G_0$ , σε ένα αυτομορφισμό του F;

Η παράσταση δράσης στην περίπτωση μας, όπου η επέχταση του Kummer παράγεται από ένα γεννοποιόν ριζικό μόνο, ανάγεται σε ένα ομομορφισμό

$$\beta: \left\{ \begin{array}{ccc} H & \longrightarrow & Aut(C_n) \cong \mathbb{Z}_n^* \\ \sigma & \longmapsto & \beta(\sigma) \bmod n \end{array} \right. , \tag{2.13}$$

Η παρακάτω πρόταση δίνει μία ικανή και αναγκαία συνθήκη.

**Πρόταση 2.1.1** Έστω  $D = div(f(x))_0$  ο ριζικός divisor του πολυωνύμου f(x) του σώματος  $F_0$ . Υποθέτουμε ότι  $\deg(D) = d \equiv 0 \bmod n$  Έστω  $\sigma_0$  ένας αυτομορφισμός του  $F_0$ .

- (α) Τα παρακάτω είναι ισοδύναμα:
  - Για κάθε αυτομορφισμό  $\sigma_0$  της  $G_0$  ισχύει

$$\sigma_0(D) \equiv \beta(\sigma_0)D \bmod n$$

- Υπάρχει ένας αυτομορφισμός  $\sigma$  του σώματος συναρτήσεων F τέτοιος ώστε  $\sigma|_{F_0}=\sigma_0$ .
- (β) Τα παρακάτω είναι ισοδύναμα:
  - Υπάρχει ένας αυτομορφισμός σ του σώματος συναρτήσεων F τέτοιος ώστε  $\sigma|_{F_0} = \sigma_0$  και  $\sigma T = T\sigma$  όπου T είναι γεννήτορας της κυκλικής ομάδας  $Gal(F/F_0)$ .
  - $\sigma(D) = D$ .

όπου γράφοντας  $D \equiv D' \mod n$ , για δυο divisors με τον ίδιο φορέα, εννοούμε ότι  $u_P(D) \equiv u_P(D')$  για χάθε P|D, D'.

#### Απόδειξη:

(α) Η γενική συνθήκη επεκτασιμότητας που δώσαμε στην πρόταση 1.3.2 μας δίνει ότι ότι ο αυτομορφισμός  $\sigma_0$  του  $F_0$  επεκτείνεται σε σε αυτομορφισμό της Kummer επέκτασης  $F=F_0(y), y^n=f(x)$  αν και μόνο αν η συνάρτηση

$$\frac{\sigma_0(f(x))}{f(x)^{\beta(\sigma_0)}}$$

είναι n-οστή δύναμη ρητής συνάρτησης στο σώμα k(x). Δηλαδή κάθε συντελεστής του κυρίου divisor της παραπάνω συνάρτησης είναι πολλαπλάσιο του n. Έχουμε λοιπόν για u=f(x)

$$\begin{aligned} div_{F_0}\left(\frac{\sigma_0(u)}{u^{\beta(\sigma_0)}}\right) &= \sigma_0(div_{F_0}(u)) - \beta(\sigma_0)div_{F_0}(u) \\ &= \sigma_0(div_0(u)) - \sigma_0(div_\infty(u)) - \beta(\sigma_0)div_0(u) + \beta(\sigma_0)div_\infty(u). \end{aligned}$$

Όμως έχουμε προυποθέσει ότι  $div_{\infty}(u)=deg(f(x))$  είναι πολλαπλάσιο του n, συνεπώς και το

$$\sigma_0(div_0(u)) - \beta(\sigma_0)div_0(u)$$

είναι πολλαπλάσιο του n.

(β) Αφού η επέχταση  $\sigma$  στο F του  $\sigma_0$  μετατίθεται με τον γεννήτορα T έχουμε ότι  $\beta(\sigma_0)=1$ , χαι συνεπώς ισχύει:

$$\sigma_0(D) \equiv D \mod n$$
.

Το αποτέλεσμα προχύπτει τελικά από το ότι  $0 < d_i < n$ .  $\square$ 

Υπενθυμίζουμε ότι  $D=div(f(x))_0$ . Το supp(D) ισούται με το σύνολο των θέσεων του  $F_0$  που διακλαδίζονται στην επέκταση  $F/F_0$ . Αφού  $C_n \lhd G$ , κάθε αυτομορφισμός  $\sigma$  της G, μεταθέτει τις θέσεις του supp(D). Οι σταθερές θέσεις του supp(D) υπό την δράση του  $G_0$  διακλαδίζονται στην επέκταση  $F_0/F_0^{G_0}$ .

**Ορισμός 2.1.2** Έστω  $G_0$  μία πεπερασμένη ομάδα αυτομορφισμών του ρητού σώματος συναρτήσεων  $F_0$  και έστω  $A:=\{P_1,...,P_f\}$  το σύνολο των θέσεων του  $F_0$  που διακλαδίζονται στην  $F_0/F_0^{G_0}$ . Έστω επίσης  $A_R\subset A$  ένα  $G_0$ - αναλλοίωτο υποσύνολο του A και  $\beta:G_0\longrightarrow \mathbb{Z}_n^*$  ένας ομομορφισμός ομάδων. Με

$$\mathcal{D}_n(G_0, A_R \subset A, \beta) \subset Div(F_0),$$

 $\vartheta \alpha$  συμβολίζουμε το υποσύνολο των divisors~D του  $F_0$  τέτοιο ώστε:

- Η ομάδα  $G_0$  αφήνει το supp(D) αναλλοίωτο,
- $A \cap \operatorname{supp}(D) = A_R$ ,
- $(v_P(D), n) = 1$  yia óleς τις θέσεις  $P \in \text{supp}(D)$ .
- $\sigma(D) \equiv \beta(\sigma)D \mod n$  για όλα τα  $\sigma \in G_0$ .

Παρατήρηση: Έστω  $D\in\mathcal{D}_n(G_0,A_R\subset A,\beta)$ . Οι σταθερές θέσεις του  $\mathrm{supp}(D)$  υπό την δράση της ομάδας  $G_0$  διαχλαδίζονται στην επέχταση  $F_0/F_0^{G_0}$ . Αν  $\sigma\in G_0$  σταθεροποιεί μία θέση  $P\in\mathrm{supp}(D)$  τότε  $\beta(\sigma)\equiv 1\bmod n$ . Πράγματι ,  $\sigma(D)\equiv\beta(\sigma)D\bmod n$  χαι  $v_P(D)\equiv\beta(\sigma)v_P(D)\bmod n$  άρα  $\beta(\sigma)\equiv 1\bmod n$  αφού  $v_P(D)\in\mathbb{Z}_n^*$ .

**Λήμμα 2.1.3**  $A \lor \beta(\sigma) \equiv 1 \bmod n$  για όλα τα P τέτοια ώστε  $\sigma(P) = P$  και για όλα τα  $\sigma \in G_0$ , τότε το σύνολο  $\mathcal{D}_n(G_0, A_R \subset A, \beta)$  δεν είναι κενό.

Απόδειξη: Θα κατασκευάσουμε καταρχήν το σύνολο  $\operatorname{supp}(D)$ . Έστω μία θέση  $Q_1$  του  $F_0$  και έστω η τροχιά  $O(Q_1,G_0)$  του  $Q_1$  υπό την δράση του  $G_0$ . Διαλέγουμε μία θέση  $Q_2$  εκτός του  $O(Q_1,G_0)$  και θεωρούμε την τροχιά  $O(Q_2,G_0)$ .

Με αυτό τον τρόπο μπορούμε να κατασκευάσουμε ένα σύνολο τροχιών  $O(Q_i,G_0)$  τέτοιες ώστε

$$O(Q_i, G_0) \cap O(Q_i, G_0) = \emptyset$$
 yia  $i \neq j$ 

και  $A_R \subset \bigcup_{i=1}^s O(Q_i, G_0)$ . Θεωρούμε ένα divisor D ο οποίος να έχει σαν φορέα του D

$$\operatorname{supp}(D) := \bigcup_{i=1}^{s} O(Q_i, G_0).$$

Για χάθε  $P\in O(Q_i,G_0)$  θέτουμε  $v_P(D):=\lambda(Q_i)\cdot\beta(\sigma)$ , όπου  $\sigma$  είναι το στοιχείο της  $G_0$  τέτοιο ώστε  $\sigma(Q_i)=P$ , χαι  $\lambda(Q_i)$  είναι οποιοσδήποτε αχέραιος πρώτος με τον n. Αργότερα θα διαλέξουμε χατάλληλα  $\lambda(Q_i)$  έτσι ώστε να εξασφαλίσουμε  $\deg(D)\equiv 0 \bmod n$ . Ο divisor D είναι χαλά ορισμένος αφού αν  $\sigma,\sigma'\in G_0$  τέτοια ώστε  $\sigma(Q_i)=\sigma'(Q_i)=P$  τότε  $\sigma'\cdot\sigma^{-1}(Q_i)=Q_i$  συνεπώς  $\beta(\sigma')\equiv\beta(\sigma)\bmod n$ .  $\square$ 

Ορισμός 2.1.4 Έστω  $G_0$  μια πεπερασμένη ομάδα αυτομορφισμών του ρητού σώματος συναρτήσεων  $F_0$  και έστω  $A=\{P_1,...,P_f\},\ A_R\subset A$  όπως και στον ορισμό 2.1.2. Θα λέμε ότι ο τύπος διακλάδωσης  $(G_0,A_R\subset A,\beta)$  υλοποιείται, αν υπάρχει κυκλική επέκταση F του  $F_0$  ορισμένη όπως στην σελίδα 15, τέτοια ώστε  $C_n=Gal(F/F_0)$  να είναι μία κανονική υποομάδα ολόκληρης της ομάδας αυτομορφισμών  $G,G/C_n\cong G_0$  και το σύνολο  $A_R$  να αποτελείται από τις θέσεις του A που διακλαδίζονται στην επέκταση  $F/F_0$ .

Αν ο divisor  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$  μπορεί να κατασκευαστεί έτσι ώστε

$$\deg D \equiv 0 \bmod n$$

και η άπειρη θέση  $P_{\infty} \notin \text{supp } D$ , τότε ο τύπος διακλάδωσης  $(G_0, A_R \subset A, \beta)$  υλοποιείται. Πράγματι, θέτουμε  $F = F_0(y)$ , όπου

$$y^n = \prod_{P \in \text{supp}(D)} (x - x(P))^{v_p(D)},$$

και  $x(P) \in k$  συμβολίζει το πεπερασμένο σημείο του  $\mathbb{P}^1(k)$ , που αντιστοιχεί στην θέση P. Ο ισχυρισμός προχύπτει από την πρόταση 2.1.1. Ας σημειωθεί ότι προχειμένου να εξασφαλίσουμε ότι  $G_0 \triangleleft G$  αρχεί να πάρουμε

$$\# \operatorname{supp}(D) > [n/2] + 1.$$

Στην περίπτωση που  $\deg D\equiv 0 \bmod n$  και  $P_\infty\in \operatorname{supp} D$ , μπορούμε να βρούμε ένα μετασχηματισμό Möbius  $a\in PGL(2,k)$  τέτοιο ώστε  $P_\infty\notin Q(\operatorname{supp} D)$ , έτσι ώστε ο τύπος διακλάδωσης  $(QG_0Q^{-1},Q(A_R)\subset Q(A),\beta)$  να είναι υλοποιήσιμος.

Θα υπολογίσουμε τον βαθμό του  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$ . Έστω  $\sigma_0$  ένας τυχαίος αυτομορφισμός του  $G_0$  τάξης m. Το σύνολο  $\mathrm{supp}(D)$  διαχωρίζεται σε τροχιές υπό την δράση του  $\sigma_0$ :

$$\operatorname{supp}(D) = \bigcup_{i=1}^{k_{\sigma_0}} O(P_i, \langle \sigma_0 \rangle).$$

Έστω  $P \in \text{supp}(D)$ , και μία P θέση που να μην σταθεροποιείται από τον  $\sigma_0$ . Η τροχιά του P υπό την δράση του  $\langle \sigma_0 \rangle$  είναι

$$O(P, \langle \sigma_0 \rangle) = \{P, \sigma_0(P), ..., \sigma_0^{m-1}(P)\}$$

(παρατηρούμε ότι αν P δεν σταθεροποιείται από τον μετασχηματισμό Möbius  $\sigma_0$  τότε δεν σταθεροποιείται από χαμία δύναμη του  $\sigma_0$ .) Η παραπάνω τροχιά αντιστοιχεί στον divisor

$$\sum_{i=0}^{m-1} \lambda \beta(\sigma_0^i) \sigma_0^i(P) :$$

του οποίου ο βαθμός υπολογίζεται modulo  $p^a$ 

$$\sum_{i=0}^{m-1} \lambda \beta(\sigma_0^i) = \begin{cases} \lambda \frac{\beta(\sigma_0)^m - 1}{\beta(\sigma_0) - 1} \equiv 0 \operatorname{mod} p^a & \text{av} \quad \beta(\sigma_0) \not\equiv 1 \operatorname{mod} p^a \\ \lambda m \operatorname{mod} p^a & \text{av} \quad \beta(\sigma_0) \equiv 1 \operatorname{mod} p^a \end{cases}, \tag{2.14}$$

για κάθε  $p^a \mid n$  τέτοιο ώστε  $p^{a+1} \nmid n$ .

**Π**αρατήρηση 2.1.5 Παρατηρούμε ότι αν  $P \in \text{supp}(D)$ , όπου

$$D \in \mathcal{D}_n(G_0, A_R \subset A, \beta),$$

είναι divisor βαθμού  $\deg(D)\equiv 0 \bmod n$ , και P είναι μία σταθερή θέση του  $\sigma\in G_0$ , τότε  $\beta(\sigma)\equiv 1 \bmod n$ . Αν  $\sigma$  έχει δυο σταθερές θέσεις  $P_1,P_2$  και  $P_1\in \mathrm{supp}(D),P_2\notin \mathrm{supp}(D)$  τότε κατ ανάγκην έχουμε (n,m)=1, όπου m είναι η τάξη του  $\sigma$ . Πράγματι, ο βαθμός του D είναι

$$\deg(D) = v_{P_1}(D) + \sum \lambda_i m \equiv 0 \bmod n.$$

 $Θα πρέπει λοιπόν (n, m)|v_{P_1}(D), άτοπο, εκτός αν (n, m) = 1.$ 

**Λήμμα 2.1.6** Αν υπάρχει  $\sigma \in G_0$  τέτοιο ώστε  $\beta(\sigma) \not\equiv 1 \bmod p^a$ , για κάθε πρώτο p, όπου  $p^a \mid n, p^{a+1} \nmid n$ , τότε κάθε divisor  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$  έχει βαθμό  $0 \bmod n$ .

Απόδειξη: Ο  $\sigma$  δρα επί του supp(D) χωρίς σταθερά σημεία, αφού

$$\beta(\sigma) \not\equiv 1 \bmod n$$
.

Το αποτέλεσμα προκύπτει από την εξίσωση 2.14.

**Λήμμα 2.1.7** Στην περίπτωση που  $A_R = \emptyset$ , δηλαδή καμία από τις θέσεις που διακλαδίζονται στην επέκταση  $F_0/F_0^{G_0}$  δεν διακλαδίζεται στην επέκταση  $F/F_0$  τότε μπορούμε να κατασκευάσουμε ένα divisor  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$  βαθμού  $0 \bmod n$ .

Απόδειξη: Παρατηρούμε ότι η ομάδα  $G_0$  δρα χωρίς σταθερά σημεία στο  $\mathrm{supp}(D)$ , αφού  $A_R=\emptyset$ . Άρα μπορούμε να πάρουμε άρτιο αριθμό από τροχιές  $O(Q_i,G_0)$  i=1,...,r και να θέσουμε  $\lambda(Q_i)\equiv -\lambda(Q_{r-i}) \bmod n$ . Η κατασκευή αυτή μας δίνει ότι  $\deg D\equiv 0 \bmod n$ .  $\square$ 

## 2.2 Δομή ομάδος

### ${f 2.2.1}$ Πεπερασμένες υποομάδες της PGL(2,k)

Οι πεπερασμένες ομάδες αυτομορφισμών ενός ρητού σώματος συναρτήσεων δίνονται από το παρακάτω

Θεώρημα 2.2.1 [30] Έστω  $F_0=k(x)$  ένα ρητό σώμα συναρτήσεων με σώμα σταθερών k αλγεβρικά κλειστό, χαρακτηριστικής  $p\geq 0$ . Έστω  $G_0$  μία μη-τετριμένη πεπερασμένη ομάδα αυτομορφισμών του  $F_0$  και  $F_1:=F_0^{G_0}$  το σώμα των σταθερών στοιχείων της  $G_0$ . Έστω r το πλήθος των θέσεων του  $F_1$  που διακλαδίζονται στην επέκταση  $F_0/F_1$  και  $e_1,...,e_r$  οι αντίστιχοι δείκτες διακλάδωσης. Η ομάδα  $G_0$  είναι μία από τις παρακάτω ομάδες και η επέκταση  $F_0/F_1$  έχει ένα από τους παρακάτω τύπους διακλάδωσης

- 1. Κυκλική ομάδα  $C_m$  τάξης m πρώτης προς την χαρακτηριστική p με τύπο διακλάδωσης  $r=2,\,e_1=e_2=|G_0|$
- 2. Στοιχειώδης αβελιανή p-ομάδα με τύπο διακλάδωσης  $r=1,\,e=|G_0|$
- 3. Διεδρική ομάδα  $D_m$  τάξης 2m όπου p=2, (p,m)=1, με τύπο διακλάδωσης r=2,  $e_1=2$ ,  $e_2=n$  ή  $p\neq 2$ , (p,m)=1, με τύπο διακλάδωσης r=3,  $e_1=e_2=2$ ,  $e_3=m$ .
- 4. Η εναλλάσουσα ομάδα  $A_4$  στην περίπτωση χαρακτηριστικής  $p \neq 2, 3$  με τύπο διακλάδωσης  $r=3, e_1=2, e_2=e_3=3.$
- 5. Η συμμετρική ομάδα  $S_4$  στην περίπτωση χαρακτηριστικής  $p \neq 2, 3$  με τύπο διακλάδωσης  $r = 3, e_1 = 2, e_2 = 3, e_3 = 4.$
- 6. Η εναλλάσουσα ομάδα  $A_5$  όπου p=3, με τύπο διαχλάδωσης  $r=2, e_1=6, e_2=5$ , ή  $p \neq 2, 3, 5$  με τύπο διαχλάδωσης  $r=3, e_1=2, e_2=3, e_3=5$ .
- 7. Ημιευθύ γινόμενο στοιχειώδους αβελιανής p-ομάδας τάξης q με χυχλιχή ομάδα τάξης m όπου m|q-1 χαι τύπο διαχλάδωσης  $r=2,\ e_1=|G_0|,\ e_2=m.$
- 8. PSL(2,q) στην περίπτωση χαραχτηριστικής  $p \neq 2, q = p^m$  και τύπο διακλάδωσης r = 2,  $e_1 = \frac{q(q-1)}{2}, e_2 = \frac{q+1}{2}.$
- 9. PGL(2,q) στην περίπτωση χαρακτηριστικής  $q=p^m$  και τύπο διακλάδωσης  $r=2,e_1=q(q-1),e_2=q+1.$

#### 2.2.2 Συνομολογιακοί υπολογισμοί

Αν η ομάδα  $C_n$  είναι ένα τετριμμένο  $G_0$  module δηλαδή η συνάρτηση  $\beta$  όπως ορίστηκε στην (2.13) είναι τετριμμένη, τότε είναι σχετικά εύκολο να υπολογίσουμε την ομάδα συνομολογίας κάνοντας χρήση του «παγκοσμίου θεωρήματος συντελεστών»: [3]

$$H^{2}(G_{0}, C_{n}) \cong Hom(H_{2}(G_{0}, \mathbb{Z}), C_{n}) \oplus Ext(H_{1}(G_{0}, \mathbb{Z}), C_{n}),$$
 (2.15)

όπου ο δαχτύλιος  $\mathbb Z$  θεωρείται εδώ σαν τετριμμένο  $G_0$ -module . Η ομολογιχή ομάδα  $H_2(G,\mathbb Z)$  είναι ο πολλαπλασιαστής του Schur ο οποίος είναι γνωστός για όλες τις πεπερασμένες υποομάδες PGL(2,k) [3] που εμφανίζονται στο θεώρημα 2.2.1. Η ομάδα ομολογίας  $H_1(G_0,\mathbb Z)$  είναι η αβελιανοποίηση  $\frac{G_0}{[G_0,G_0]}$  της  $G_0$ . Κάνοντας χρήση των παραπάνω αποτελεσμάτων μπορούμε να υπολογίσουμε τον παραχάτω πίναχα συνομολογίας

| Ομάδα $G_0$ | $H^2(G_0, C_n)$                                                                |
|-------------|--------------------------------------------------------------------------------|
| $C_m$       | $\mathbb{Z}_{(n,m)}$                                                           |
|             | $0 \qquad \qquad \alpha \nu \qquad \qquad (n,2) = 1$                           |
| $D_m$       | $\mathbb{Z}_2$ $\qquad \text{an}  (n,2) = 2, (m,2) = 1$                        |
|             | $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and $(n,2) = (m,2) = 2$ |
| $A_4$       | $\mathbb{Z}_{(n,2)} \times \mathbb{Z}_{(n,3)}$                                 |
| $A_5$       | $\mathbb{Z}_{(2,n)}$                                                           |
| $S_4$       | $\mathbb{Z}_{(2,n)} \times \mathbb{Z}_{(2,n)}$                                 |
|             | $1 	 \alpha v 	 p = 2, p^f \neq 4$                                             |
| PSL(2,q)    | $\mathbb{Z}_{(2,n)}$ αν $p>2, p^f eq 9, p^f=4$ , όπου $q=p^f$                  |
|             | $\mathbb{Z}_{(6,n)}$ an $p^f=9$                                                |
| PGL(2,q)    | $\mathbb{Z}_{(2,n)} \times \mathbb{Z}_{(2,n)}$                                 |

Θα αναφέρουμε επίσης την παρακάτω πρόταση, την οποία και θα χρησιμοποιήσουμε αργότερα

Πρόταση 2.2.2 [32, σελ. 93] Υπάρχει μονομορφισμός

$$\begin{array}{ccc} H^2(G,A) = \bigoplus_{p \mid s} H^2(G,A)_p & \stackrel{\Phi}{\longrightarrow} & \bigoplus_{p \mid s} H^2(G_p,A) \\ a = \sum_{p \mid s} a_p & \longmapsto & \sum_{p \mid s} res_{(G \rightarrow G_p)} a_p \end{array},$$

όπου η  $G_p$  διατρέχει τις p-Sylow υποομάδες της G, ενώ η  $H^2(G,A)_p$  θα συμβολίζει το p-χομμάτι της πεπερασμένης αβελιανής ομάδας  $H^2(G,A)$ , s=|G|.

#### 2.2.3 Κυκλικές ομάδες

Ανάμεσα σε όλες ομάδες που μπορεί να εμφανιστούν ως ομάδες αυτομορφισμών ενός ρητού σώματος συναρτήσεων, απλούστερη είναι η χυχλιχή. Θα αποδείξουμε το παραχάτω

Θεώρημα 2.2.3 Έστω ότι  $G_0:=G/C_n$  είναι ισόμορφη με την χυχλιχή ομάδα  $C_m$  τάξεως m, όπου το m είναι πρώτο προς την χαραχτηριστιχή του σώματος k. Το σύνολο A των σταθερών θέσεων του  $F_0=k(x)$ , υπό την δράση της  $G_0$ , αποτελείται από δύο θέσεις  $A=\{P_1,P_2\}$ . Η ομάδα των αυτομορφισμών G είναι ισόμορφη με:

- **a)**  $C_{nm}$  αν τουλάχιστον μία από τις θέσεις  $P_1, P_2$ , έστω η  $P_1$ , διακλαδίζεται πλήρως στην επέκταση  $F/F_0$ , δηλαδή όταν  $A_R \neq \emptyset$ .
- **b)**  $C_n \rtimes C_m$  αν καμία από τις θέσεις του A δεν διακλαδίζεται στην επέκταση  $F/F_0$ , δηλαδή όταν  $A_R=\emptyset$ .

#### Απόδειξη:

- **a)** Στην περίπτωση αυτή, μία τουλάχιστον από τις θέσεις  $P_1, P_2$ , έστω η  $P_1$ , διακλαδίζεται πλήρως στην επέκταση  $F/F_0$ . Αν Q είναι η μοναδική θέση του F η οποία επεκτείνει την  $P_1$ , τότε η ομάδα ανάλυσης G(Q) είναι κυκλική [20, σελ. 68] και ίση με G. Η ομάδα G είναι αβελιανή και η συνάρτηση δράσης  $\beta: C_m \longrightarrow \mathbb{Z}_n^*$  είναι τετριμμένη.
- **b)** Στην περίπτωση αυτή καμία από τις δύο θέσεις  $P_1, P_2$  δεν διακλαδίζεται στην επέκταση  $F/F_0$ . Θα συμβολίζουμε με  $\pi$ , την φυσική προβολή  $\pi: G \to G_0$ .

Από το λήμμα 1.4.1 έχουμε ότι η μιχρά αχριβής αχολουθία

$$1 \longrightarrow C_n \longrightarrow G \longrightarrow C_m \longrightarrow 1$$

διασπάται, δηλαδή  $G\cong C_n\rtimes C_m$ . Επιπλέον αν S και T είναι γεννήτορες των ομάδων  $C_m$  και  $C_n$  αντίστοιχα, τότε η μεταχυχλική ομάδα G, δέχεται μία παράσταση σε γεννήτορες και σχέσεις:

$$G \cong \langle S, T | S^m = 1, T^n = 1, STS^{-1} = T^{\beta(S)} \rangle$$

(βλέπε και εξίσωση (1.9) ). □.

Θα αποδείξουμε ότι οι παραπάνω τύποι διαχλάδωσης είναι υλοποιήσιμοι, χατασχευάζοντας ένα divisor εντός του  $\mathcal{D}_n(C_m,A_R\subset A,1)$  τέτοιο ώστε  $\deg(D)\equiv 0 \bmod n$ . Ας υποθέσουμε πρώτα ότι χαι οι δύο θέσεις  $P_1,P_2$  διαχλαδίζονται στην επέχταση  $F/F_0$ . Οι δύο τροχιές  $O(P_i,C_m)=\{P_i\},\ i=1,2$  των σταθερών θέσεων  $P_1,P_2$ , ανήχουν στο  $A_R$  χαι  $A_R=A=\{P_1,P_2\}$ . Ο τυχαίος divisor  $D\in\mathcal{D}_n(C_m,A_R\subset A,1)$  είναι της μορφής

$$D=\lambda(P_1)P_1+\lambda(P_2)P_2+\sum_{i=1}^r\lambda(Q_i)\sum_{P\in O(Q_i,C_m)}P$$
, για χάποιον  $r$ 

όπου  $Q_i \notin A$  για όλα τα i=1,...,r. Για να επιλέξουμε divisor βαθμού  $0 \bmod n$ , θέτουμε  $\lambda(P_1) \equiv -\lambda(P_2) \bmod n$ , διαλέγουμε τον r άρτιο και  $\lambda(Q_i) \equiv -\lambda(Q_{r-i+1}) \bmod n$ .

Ας υποθέσουμε τώρα ότι η θέση  $P_1$  διακλαδίζεται και ότι η θέση  $P_2$  αναλύεται στην επέκταση  $F/F_0$ , δηλαδή  $A_R=\{P_1\}$ . Ο τυχαίος divisor στο  $\mathcal{D}_n(C_m,A_R\subset A,1)$  έχει την μορφή

$$D = \lambda(P_1)P_1 + \sum_{i=0}^r \lambda(Q_i) \sum_{P \in O(Q_i, C_m)} P.$$

Έχουμε δει ότι η περίπτωση αυτή μπορεί να συμβεί μόνο όταν (n,m)=1, δηλαδή υπάχουν αχεραίοι  $\kappa,\lambda$  τέτοιοι ώστε  $\kappa n+\lambda m=1$ . Διαλέγουμε r άρτιο, χαι θέτουμε  $\lambda(P_1)=1$ ,  $\lambda(Q_0)=\lambda$  χαι  $\lambda(Q_i)\equiv -\lambda(Q_{r-i+1})$  mod n,i=1,...,r. Αυτό μας δίνει ότι  $\deg D\equiv 0$  mod n. Τέλος, η περίπτωση  $A_R=\emptyset$  είναι υλοποιήσιμη όπως προχύπτει από το λήμμα 2.1.7.

Πόρισμα 2.2.4 Έστω G η ομάδα αυτομορφισμών του σώματος συναρτήσεων F, και  $G_0=G/C_n$  η πεπερασμένη πηλικοομάδα αυτομορφισμών του ρητού σώματος συναρτήσεων  $F_0$ . Θα συμβολίζουμε με  $\pi$  την φυσική συνάρτηση  $G\to G_0$ . Έστω επίσης  $G_0(P)$  η ομάδα ανάλυσης της θέσης P του  $F_0$ . Αν  $G_0(P)$  είναι κυκλική τάξης πρώτης προς την χαρακτηριστική p, τότε η ομάδα  $G_\pi(P)$  που ορίζεται ως

$$G_{\pi}(P) := \{ S \in G : \pi(S)P = P \},$$

είναι χυχλιχή τάξης  $n\cdot |G_0(P)|$  στην περίπτωση που η θέση P διαχλαδίζεται στην επέχταση  $F/F_0$ . Διαφορετιχά, δηλαδή όταν η θέση P αναλύεται στην επέχταση  $F/F_0$ , η ομάδα  $G_\pi(P)$  είναι το ημιευθές γινόμενο της  $C_n \rtimes G_0(P)$  με δράση που να δίνεται από την  $T^\sigma = T^{\beta(\sigma)}$ , όπου σ είναι γεννήτορας της χυχλιχής ομάδας  $G_0(P)$ . Στην πρώτη περίπτωση  $\beta(\sigma) \equiv 1 \bmod n$ .

**Απόδειξη:** Παρατηρούμε απλά ότι η  $G_{\pi}(P)$  είναι η ομάδα που αντιστοιχεί στην υποεπέκταση:

και ότι  $G_{\pi}(P)$  είναι μία επέκταση της κυκλικής ομάδας  $G_{0}(P)\square$ .

Στο παραπάνω πόρισμα παρατηρούμε ότι αν η θέση P αναλύεται στην επέχταση  $F/F_0$  ενώ η άλλη επέχταση της χυχλιχής ομάδας  $G_0(P)$  διαχλαδίζεται στην επέχταση  $F/F_0$  τότε  $G_\pi(P)$  είναι χυχλιχή τάξης  $n\cdot |G_0(P)|$ . Αυτό είναι δυνατόν αφού αναγχαστιχά  $(n, |G_0(P)|)=1$  χαι  $C_n\times G_0(P)\cong C_{n\cdot |G_0(P)|}$ .

### 2.2.4 Στοιχειώδεις αβελιανές ομάδες

Θεώρημα 2.2.5 Έστω ότι η ομάδα  $G_0 = G/C_n$  είναι ισόμορφη με μία στοιχειώδης αβελιανή ομάδα  $\mathcal{E}_p(t)$  τάξεως  $p^t$ , όπου p είναι η χαρακτηριστική του k. Τότε η ομάδα G είναι ισόμορφη με την  $C_n \rtimes G_0$ . Εάν επιπλέον η μοναδική σταθερή θέση  $P_1$  της  $G_0$  διακλαδίζεται στην επέκταση  $F/F_0$ , τότε η ομάδα G είναι ισόμορφη με την  $C_n \rtimes G_0$ .

Απόδειξη: Στην επέχταση  $F_0/F_0^{G_0}$  μόνο μία θέση  $P_1$  του  $F_0$  διαχλαδίζεται. Αφού  $(n,|G_0|)=1$  η πλήρης ομάδα αυτομορφισμών G είναι ένα ημιευθύ γινόμενο,  $G=C_n\rtimes G_0$ . Η δράση δίνεται από την συνάρτηση  $\beta$ .

Στην περίπτωση που η θέση  $P_1$  διακλαδίζεται πλήρως στην επέκταση  $F/F_0$ , έχουμε ότι

$$G = C_n \times G_0$$
.

Πράγματι, έστω Q η μοναδιχή θέση του F που επεχτείνει την  $P_1$ . Η ομάδα ανάλυσης G(Q)=G ταυτίζεται με την ομάδα αδρανείας, αφού το σώμα k είναι αλγεβριχά χλειστό. Έτσι  $G\left(Q\right)$  είναι το ημιευθές γινόμενο μιας χυχλιχής ομάδας τάξης πρώτης με το p με μία p-ομάδα  $G_1(Q)=G_0$ . Δηλαδή το γινόμενο είναι ευθύ χαι η συνάρτηση  $\beta$  είναι τετριμμένη.  $\square$ 

Ένας divisor στην  $\mathcal{D}_n(G_0, A_R \subset \{P_1\}, \beta)$  δίνεται από

$$D = \sum_{P \in A_R} \lambda(P)P + \sum_{i=1}^s \lambda(Q_i) \sum_{P \in O(Q_i, G_0)} P,$$

όπου  $Q_i \notin A, i = 1,...s$ . Προχειμένου να αποδείξουμε ότι και οι δύο τύποι διακλάδωσης εμφανίζονται θα πρέπει να διαλέξουμε τον παραπάνω divisor να έχει βαθμό  $0 \bmod n$ . Στην περίπτωση της πλήρους διαχλάδωσης έχουμε  $A_R=\{P_1\}$  , οπότε παίρνουμε s τροχιές  $O(Q_i,G_0)$ με  $\lambda(P_1) = \lambda(Q_i) = 1$ , τέτοιες ώστε

$$\deg(D) = 1 + sp^a \equiv 0 \bmod n,$$

όπου  $p^a$  είναι η τάξη της  $G_0$ . Αυτό είναι δυνατόν, αφού (n,p)=1. Στην δεύτερη περίπτωση  $A_R = \emptyset$  και το επιθυμητό αποτέλεσμα προκύπτει από το λήμμα 2.1.7.

#### 2.2.5Ημιευθέα γινόμενα κυκλικών ομάδων με στοιχειώδεις αβελιανές ομάδες

Στην περίπτωση αυτή η ομάδα πηλίχο  $G_0=G/C_n$  είναι ισόμορφη με το ημιευθές γινόμενο μιας στοιχειώδους αβελιανής p-ομάδας τάξης  $p^t$ , όπου p είναι η χαρακτηριστική του k, με μία κυκλική ομάδα  $C_m$  τάξης m, και  $m|p^t-1$ . Στην επέκταση  $F_0/F_0^{G_0}$  διακλαδίζονται δύο θέσεις  $p_1,p_2$  του  $F_0^{G_0}$ , με δείκτες διακλάδωσης  $e_1=|G_0|$  και  $e_2=m,$  αντίστοιχα.

**Θεώρημα 2.2.6** Έστω ότι η ομάδα  $G_0 = G/C_n$  είναι ισόμορφη με το ημιευθές γινόμενο μίας στοιχειώδους αβελιανής ομάδας  $\mathcal{E}_p(t)$  τάξεως  $p^t$ , όπου p είναι η χαρακτηριστική του σώματος k, με μία χυχλιχή ομάδα  $C_m$  τάξεως m,  $m|p^t-1$ . Η ομάδα αυτομορφισμών G τότε, είναι ισόμορφη με  $C_n \rtimes G_0$  αν  $A_R = \emptyset$  ή  $\mathcal{E}_p(t) \rtimes C_{nm}$  αν  $A_R \neq \emptyset$ .

#### Απόδειξη:

Αν και στην περίπτωση αυτή ενδιαφερόμαστε για στοιχειώδεις αβελιανές ομάδες τάξης δύναμης της χαραχτηριστιχής, θα αποδείξουμε ένα πιό γενιχό αποτέλεσμα επιτρέποντας στο p να μην είναι δύναμη της χαρακτηριστικής.

τάξης  $p^t$ , όπου p δεν είναι απαραίτητα η χαρακτηριστική του σώματος k.  $\Theta$ εωρούμε την ομάδα  $G_0 = \mathcal{E}_p(t) \rtimes C_m$ , με (m,p) = 1, που δρα πάνω στο ρητό σώμα συναρτήσεων  $F_0$ . Ας υποθέσουμε ότι η υποεπέκταση

$$1 \longrightarrow C_n \longrightarrow \pi^{-1}(\mathcal{E}_n(t)) \longrightarrow \mathcal{E}_n(t) \longrightarrow 1 \tag{2.16}$$

της επέχτασης

$$1 \longrightarrow C_n \longrightarrow G \xrightarrow{\pi} \mathcal{E}_p(t) \rtimes C_m \longrightarrow 1 \tag{2.17}$$

διασπάται, δηλαδή  $\pi^{-1}(\mathcal{E}_p(t)) = C_n \rtimes \mathcal{E}_p(t)$ . Τότε η ομάδα G είναι ισόμορφη με την  $C_n \rtimes (\mathcal{E}_p(t) \rtimes C_m)$ αν και οι δυο σταθερές θέσεις του  $F_0$ , υπό την δράση της  $C_m$ , αναλύονται στην επέκταση  $F/F_0$ ή είναι ισόμορφη με την  $G\cong \mathcal{E}_p(t)\rtimes C_{nm}$  αν μία από τις σταθερές θέσεις του  $F_0$ , υπό την δράση της  $C_m$ , διακλαδίζεται στην επέκταση  $F/F_0$ .

Απόδειξη: Σύμφωνα με την μελέτη των χυχλιχών επεχτάσεων, έχουμε δύο δυνατότητες για την ομάδα  $\pi^{-1}(C_m)$ .

$$\pi^{-1}(C_m) \cong C_n \rtimes C_m \ \acute{\eta} \ \pi^{-1}(C_m) \cong C_{nm}.$$

Αν  $\pi^{-1}(C_m) \cong C_n \rtimes C_m$  τότε κάνοντας χρήση του μονομορφισμού  $\Phi$  όπως αυτός ορίστηκε στην πρόταση 2.2.2,

$$H^2(\mathcal{E}_p(t) \rtimes C_m, C_n) \stackrel{\Phi}{\longrightarrow} \bigoplus_{q \mid \mid G_0 \mid} H^2(H_q, C_n),$$

όπου η  $H_q$  διατρέχει τις q-Sylow υποομάδες της  $G_0$ , έχουμε ότι η πλήρης επέχταση (2.17) διασπάται, αφού  $H_q$  είναι είτε υποομάδα του  $\mathcal{E}_p(t)$  είτε του  $C_m$ .

Αν  $\pi^{-1}(C_m) \cong C_{nm}$  τότε θα δείξουμε ότι  $G \cong \mathcal{E}_p(t) \rtimes C_{nm}$ . Πράγματι, σε αυτή την περίπτωση υπάρχει ένα στοιχείο  $R \in G$  τάξης nm, το οποίο γεννά μία υποομάδα της G ισόμορφη προς την χυχλιχή ομάδα  $C_{nm}$ . Αφού η επέχταση (2.16) διασπάται υπάρχει ομομορφισμός

$$j: \mathcal{E}_p(t) \hookrightarrow \pi^{-1}(\mathcal{E}_p(t)) \hookrightarrow G.$$

Επιπλέον  $\mathcal{E}_p(t)\cong j(\mathcal{E}_p(t))$  και  $j(\mathcal{E}_p(t))\cap C_{nm}=1$ . Πράγματι αν  $x\in j(\mathcal{E}_p(t))\cap C_{nm}$  τότε  $x^m\in j(\mathcal{E}_p(t))\cap C_n=1$  άρα  $x^m=1$ , και x=1 αφού (p,m)=1. Αυτό αποδυκνείει το επιθυμητό αποτέλεσμα.  $\square$ 

Επιστρέφουμε στην απόδειξη του θεωρήματος 2.2.6. Ο πρώτος p θα είναι η χαραχτηριστιχή του k. Έχουμε ότι (p,n)=1, άρα η επέχταση (2.16) διασπάται. Αν, επιπλέον, μία από τις θέσεις που σταθεροποιείται από την  $C_m$ , διαχλαδίζεται στην  $F/F_0$  τότε  $G\cong C_n\rtimes (\mathcal{E}_p(t)\rtimes C_m)$  διαφορετιχά  $G\cong \mathcal{E}_p(t)\rtimes C_{nm}$ .  $\square$ .

Προχειμένου να αποδείξουμε την υλοποιήση αυτών των τύπων διακλάδωσης θα πρέπει να επιλέξουμε τον divisor διακλάδωσης

$$D = \sum_{P \in A_R} \lambda(P)P + \sum_{i=1}^s \lambda(P_i) \sum_{Q \in O(P_i, G_0)} P,$$

του  $\mathcal{D}_n(G_0,A_R\subset A,\beta)$  έτσι ώστε να έχει βαθμό  $0 \bmod n$ . Θα συμβολίζουμε με Q την μοναδιχή θέση του  $F_0$  υπεράνω της  $p_1$  και με  $Q_1,...,Q_{p^t}$  τις θέσεις του  $F_0$  υπέρανω της  $p_2$ . Παρατηρούμε επίσης ότι

$$O(Q, G_0) = \{Q\}, O(Q_1, G_0) = \{Q_1, ..., Q_{p^t}\}.$$

 $\Delta$ ιαχρίνουμε τις παραχάτω περιπτώσεις για το  $A_R$ 

- $A_R = \emptyset$ . Ο τύπος διακλάδωσης είναι υλοποιήσιμος λόγω του λήμματος 2.1.7.
- $A_R=O(Q,G_0)=\{Q\}$ . Στην περίπτωση αυτή ο ομομορφισμός  $\beta$  είναι τετριμμένος. Παρατηρούμε ότι οι σταθερές θέσεις της χυχλιχής ομάδας  $C_m$  είναι Q,Q' όπου  $Q'\in O(Q_1,G_0)$ . Άρα, από την παρατήρηση 2.1.5, έχουμε ότι (n,m)=1. Θέτουμε  $\lambda(P_i)=1$ , χαι διαλέγουμε τον αριθμό s των τροχιών τέτοιον ώστε

$$\deg(D) = 1 + s \cdot |G_0| \equiv 0 \bmod n.$$

Αυτό είναι δυνατόν αφού  $(|G_0|, n) = (n, m) = 1$ .

•  $A_R = O(Q_1, G_0)$ . Έχουμε ότι  $C_m < \ker \beta$ . Όπως και στην προηγούμενη περίπτωση έχουμε την (n,m)=1 σαν μία αναγκαία συνθήκη για να είναι αυτός ο τύπος διακλάδωσης υλοποιήσιμος. Ο βαθμός του divisor που αντιστοιχεί στην τροχιά  $O(P_i, G_0)$  είναι

$$\sum_{P\in O(Q_i,G_0)} v_P(D) \equiv \left\{ \begin{array}{ccc} 0 \bmod p^a & \text{an} & \beta(\sigma) \not\equiv 1 \bmod p^a \\ \lambda |G_0| \bmod p^a & \text{an} & \beta(\sigma) \equiv 1 \bmod p^a \end{array} \right.$$

όπου  $p^a \mid n, p^{a+1} \nmid n$ . Έστω  $n_0 = \prod_{p \mid n, \beta(\sigma) \equiv 1 \bmod p^a} p^a$ . Θα πρέπει να διαλέξουμε το πλήθος των τροχιών s τέτοιο ώστε  $\deg(D) \equiv 0 \bmod n_0$ . Αυτό είναι δυνατόν θέτοντας

 $\lambda(P)=1$  για όλα τα  $P\in \mathrm{supp}(D)$  αφού ο  $(n_0,|G_0|)$  διαιρεί το (n,mp)=(n,m)=1 και συνεπώς η εξίσωση

$$\deg(D) = p^t + s \cdot |G_0| \equiv 0 \bmod n_0,$$

έχει μία λύση  $mod n_0$ .

•  $A_R=O(Q,G_0)\cup O(Q_1,G_0)$ . Στην περίπτωση αυτή ο ομομορφισμός  $\beta$  πρέπει να είναι τετριμμένος. Θέτουμε  $\lambda(Q)\equiv -1 \bmod n,\ \lambda(P_i)=\lambda(Q_1)\equiv 1 \bmod n,\$ χαι διαλέγουμε το s, τέτοιο ώστε

$$\deg(D) = -1 + p^t + s \cdot |G_0| \equiv 0 \bmod n.$$

Αυτό είναι δυνατόν αφού  $(n, |G_0|) \mid m$  και  $m \mid p^t - 1$ .

### 2.2.6 Διεδρικές ομάδες

Στην περίπτωση αυτή υποθέτουμε ότι η ομάδα πηλίχο είναι η διεδρική ομάδα  $D_m$  η οποία δέχεται μία παράσταση σε γεννήτορες και σχέσεις

$$D_m = \langle a, b/a^m = 1, b^2 = 1, ab = ba^{-1} \rangle.$$

Ο ομομορφισμός δράσης  $\beta:D_m\longrightarrow \mathbb{Z}_n^*$  ορίζεται από τις τιμές του στους γεννήτορες a και b

$$\beta: \left\{ \begin{array}{ccc} a & \longmapsto & \beta (a) \\ b & \longmapsto & \beta (b) \end{array} \right.$$

Αφού ο β είναι ομομορφισμός ομάδων έχουμε ότι

$$\beta(a)^m \equiv 1 \mod n$$
,  $\beta(b)^2 \equiv 1 \mod n$ ,  $\beta(a)\beta(b) \equiv \beta(b)\beta(a)^{-1} \mod n$ .

Ισχυριζόμαστε ότι  $ord\left(\beta(a)\right)\leq 2$ . Πράγματι, αν  $ord\left(\beta(a)\right)>2$  τότε  $ord\left(\beta(b)\right)=1$ , αφού η πολλαπλασιαστική ομάδα  $\mathbb{Z}_n^*$  είναι αβελιανή και δεν μπορεί να περιέχει την διεδρική ομάδα  $D_{ord(\beta(a))}$ . Αλλά τότε  $\beta(ab)=\beta(a)\beta(b)=\beta(a)$  άτοπο, αφού η τάξη του  $\beta(ab)$  είναι το πολύ 2. Επιπλέον αν  $ord(\beta(a))=2$  τότε 2|m αφού  $1=\beta(a^m)=\beta(a)^m$ .

 $\Delta$ ιαχρίνουμε τρεις περιπτώσεις για την  ${\rm Im}(\beta)$ .

$$\operatorname{Im}(\beta) = \{1\} \quad \acute{\eta} \quad \operatorname{Im}(\beta) \cong \mathbb{Z}_2 \quad \acute{\eta} \quad \operatorname{Im}(\beta) \cong V_4.$$

Η τρίτη περίπτωση μπορεί να εμφανιστεί μόνο αν  $m\equiv 0\ \mathrm{mod}\ 2$ . Θα χρειαστούμε το παραχάτω

**Λήμμα 2.2.8** Έστω  $n \in N$  και  $\ell$  ακέραιος τέτοιος ώστε

$$\ell^2 - 1 \equiv 0 \bmod n$$
.

Υπάρχουν αχέραιοι  $n^+(\ell), n^-(\ell)$  τέτοιοι ώστε

$$n = n^+(\ell) \cdot n^-(\ell) \qquad \acute{o}\pi o \upsilon \qquad \left(n^+(\ell), n^-(\ell)\right) = \left\{ \begin{array}{ll} 2 & \alpha \nu & n \equiv 0 \, \mathrm{mod} \, 2 \\ 1 & \alpha \nu & n \equiv 1 \, \mathrm{mod} \, 2 \end{array} \right.$$

με την επιπλέον ιδιότητα:

$$\ell \equiv 1 \mod n^+(\ell)$$
  $\times \alpha i$   $\ell \equiv -1 \mod n^-(\ell)$ .

Απόδειξη: Ο αριθμός  $n^+(\ell)$   $(n^-(\ell)$  αντίστοιχα) είναι ο μέγιστος διαιρέτης του n τέτοιος ώστε  $n^+(\ell)|\ell-1$   $(n^-(\ell)|\ell+1,$  αντίστοιχα). Αν  $\delta$  είναι ένας διαιρέτης του n τότε  $\delta|\ell^2-1=(\ell-1)(\ell+1)$  και ο  $\delta$  διαιρεί και το  $\ell-1$  και το  $\ell+1$  αν και μόνο αν  $\delta=2$   $\square$ 

Θα εξετάσουμε τις δύο περιπτώσεις του θεωρήματος 2.2.1 για τις δύο διαφορετικές υλοποιήσεις του τύπου διακλάδωσης στην επέκταση  $F_0/F_0^{G_0}$ , ξεχωριστά.

Περίπτωση A) Η χαραχτηριστιχή p του σώματος k είναι  $p \neq 2$ , (p,m)=1. Τρεις θέσεις του  $F_1:=F_0^{G_0}$ , έστω  $p_1,p_2,p_3$ , διαχλαδίζονται στην επέχταση  $F_0/F_0^{G_0}$  με δείχτες διαχλάδωσης 2,2,m αντίστοιχα. Θα συμβολίζουμε με  $P_{1,i},P_{2,i},P_{3,j}$ , όπου i=0,...,m-1,j=0,1 τις θέσεις του  $F_0$  που επεχτείνουν τις  $p_1,p_2,p_3$  αντίστοιχα.

**Θεώρημα 2.2.9** Έστω ότι η ομάδα  $G_0 = G/C_n$  είναι ισόμορφη με την διεδρική ομάδα  $D_m$ , όπου  $p \nmid m$  και  $p \neq 2$ . Ξεχωρίζουμε τις παρακάτω περιπτώσεις για την δομή της ομάδας G:

1. Υποθέτουμε ότι  $\{P_{1,i}\}_{0 \leq i < m} \cup \{P_{3,j}\}_{j=0,1} \subset A_R$ . Σε αυτή την περίπτωση θα πρέπει  $(n,m) \mid 2$  ενώ η ομάδα αυτομορφισμών G δέχεται την παραχάτω παράσταση σε γεννήτορες και σχέσεις:

$$G = \langle R, S | R^2 = S^m, S^{nm} = 1, RSR^{-1} = S^r \rangle,$$

όπου r είναι μία λύση του συστήματος

$$r \equiv 1 \bmod n, \quad r \equiv -1 \bmod m.$$
 (2.18)

Aν (n,m)=1 η λύση r είναι μοναδική. Aν (n,m)=2 τότε ξεχωρίζουμε δύο υποπεριπτώσεις:

- $n \equiv 2 \mod 4$ . Σε αυτή την περίπτωση η μία λύση του (2.18) προχύπτει όταν  $\{P_{2,i}\}_{0 \le i \le m} \cap A_R = \emptyset$  και η άλλη όταν  $\{P_{2,i}\}_{0 \le i \le m} \cap A_R \neq \emptyset$ .
- $n \equiv 0 \mod 4$ . Σε αυτή την περίπτωση  $\{P_{2,i}\}_{0 \le i < m} \cap A_R = \emptyset$  και υπάρχουν δύο μη ισόμορφες ομάδες που αντιστοιχούν στον ίδιο τύπο διακλάδωσης.
- 2.  $A_R = \{P_{3,j}\}_{j=1,2}$ . Η ομάδα G είναι ισόμορφη με το ημιευθές γινόμενο  $C_{nm} \rtimes C_2$ .
- 3.  $A_R=\{P_{1,i}\}_{0\leq i< m}\cup\{P_{2,i}\}_{i=1,\ldots,m}$   $\Sigma \varepsilon$  αυτή την περίπτωση η συνάρτηση  $\beta$  είναι τετριμμένη και η ομάδα G είναι ισόμορφη με την  $C_n\times D_m$  αν (n,2)=1 και η G δίνεται απο

$$G = \langle R, S | R^{2n} = 1, S^m = 1, RSR^{-1} = S^{-1} \rangle,$$

 $\alpha v(n,m)=2.$ 

- 4.  $A_R = \emptyset$ . Σε αυτή την περίπτωση η G είναι ισόμορφη μ την  $C_n \rtimes D_m$ , όπου η δράση της  $D_m$  στην  $C_n$  δίνεται απο την  $\beta$ .
- 5.  $A_R = \{P_{1,i}\}_{0 \le i \le m}$  Σε αυτή την περίπτωση η G δέχεται την παρακάτω παράσταση

$$G = \langle R, S | R^{2n} = 1, S^m = 1, (RS)^2 = 1 \rangle.$$

Απόδειξη: Θα ξεκινήσουμε με την ακόλουθη

Παρατήρηση 2.2.10  $A_{\zeta}$  υποθέσουμε ότι το  $b\in D_m$  σταθεροποιεί την θέση  $P_{1,0}$ . Οι άλλες θέσεις  $P_{1,i}$  μπορούν να αριθμηθούν έτσι ώστε  $P_{1,i}=a^iP_{1,0}$ . Οι ομάδες ανάλυσης  $D_m(P_{1,i})$  κάθε θέσης  $P_{1,i}$  είναι της μορφής

$$D_m(P_{1,i}) = D_m(a^i P_{1,0}) = a^i D_m(P_{1,0}) a^{-i} = \langle a^{2i} b \rangle.$$

Κάθε αυτομορφισμός  $ba^k \in D_m$  έχει δύο σταθερές θέσεις. Κάθε θέση της μορφής  $P_{1,i}$  σταθεροποιείται από τον  $ba^k \neq 1$ , αν και μόνο αν  $ba^k \in \langle a^{2i}b \rangle$  και αφού  $ord(a^{2i}b) = 2$  αυτό είναι ισοδύναμο με την

$$a^{2i}b = ba^k = a^{-k}b \Leftrightarrow 2i \equiv -k \bmod m. \tag{2.19}$$

Aν (m, 2) = 2 τότε η εξίσωση (2.19) έχει δύο λύσεις αν ο k είναι άρτιος, και καμία λύση αν ο k είναι περιττός. Τα παραπάνω αποδεικνύουν ότι οι δύο σταθερές θέσεις του αυτομορφισμού  $ba^k$  περιορίζονται στην ίδια θέση  $p_1$  (αν ο  $k \equiv 0 \bmod 2$ ) ή  $p_2$  (αν  $k \equiv 1 \bmod 2$ ). Στην περίπτωση (m, 2) = 1 η εξίσωση (2.19) έχει μοναδική λύση, έτσι μία από της δύο σταθερές θέσεις του  $ba^k$  περιορίζεται στην  $p_1$  και η άλλη στην  $p_2$ .

Παρατήρηση 2.2.11  $A \varphi o \dot{\upsilon}$  οι επεκτάσεις  $F/F_0$  και  $F_0/F_0^{D_m}$  είναι και οι δυο Galois, οι θέσεις  $P_i$  του  $F_0$  πάνω από μία κοινή θέση  $p \in F_0^{G_0}$  στην επέκταση  $F/F_0$  ή διακλαδίζονται όλες πλήρως ή αναλύονται όλες πλήρως,

Ας υποθέσουμε ότι μία από τις θέσεις  $P_{3,j}$ , έστω η  $P_{3,1}$  διακλαδίζεται στην επέκταση  $F/F_0$ . Έστω  $Q_{3,j}$  η μοναδική θέση του F πάνω από  $P_{3,j}$  (j σταθερό). Αφού (m,p)=1 έχουμε ότι η ομάδα ανάλυσης  $G(Q_{3,1})$  είναι κυκλική τάξης nm. Συνεπώς  $\beta(a)\equiv 1 \bmod n$ . Παρατηρούμε ότι ο δείκτης  $|G:G(Q_{3,1})|=2$  άρα  $G(Q_{3,1})\lhd G$  και G είναι μία μετακυκλική ομάδα. Διαλέγουμε  $S,R\in G$ , τέτοια ώστε  $\pi(R)=b,\pi(S)=a$ . Μπορούμε να διαλέξουμε  $S\in\pi^{-1}(a)$  τέτοιο ώστε  $\langle S\rangle=G(Q_{3,1})$ . Αφού  $G(Q_{3,1})\lhd G$ , υπάρχει ακέραιος r τέτοιος ώστε

$$RSR^{-1} = S^r.$$
 (2.20)

Παρατηρούμε ότι η ομάδα  $C_n$  γεννάται από τον  $\langle S^m \rangle$ . Αρά από την (2.20) και την δράση του b στην  $C_n$ , έχουμε

$$S^{\beta(b)m} = RS^m R^{-1} = S^{rm},$$

το οποίο δίνει την σχέση

$$r \equiv \beta(b) \bmod n. \tag{2.21}$$

Ισχύει  $G/C_n \cong D_n$  άρα από την (2.20) έχουμε

$$RSR^{-1}S = S^{r+1} \in \langle S^m \rangle$$

και αυτό οδηγεί στην σχέση

$$r \equiv -1 \bmod m. \tag{2.22}$$

Το σύστημα των εξισώσεων (2.21)(2.22) έχει λύσεις αν και μόνο αν  $(n,m)|\beta(b)+1$ . Διαγωρίζουμε δύο επιπλέον περιπτώσεις

(1)  $\{P_{1,i}\}_{0\leq i< m}\cup \{P_{3,j}\}_{j=0,1}\subset A_R$ , δηλαδή μία από τις θέσεις  $P_{1,i}, i=0,...,m-1$ , έστω η  $P_{1,0}$ , διακλαδίζεται πλήρως στην επέκταση  $F/F_0$ . Θα συμβολίζουμε με  $Q_{1,0}$  την θέση υπεράνω της  $P_{1,0}$ . Όπως στην παρατήρηση 2.2.10 μπορούμε να υποθέσουμε ότι η  $P_{1,0}$  σταθεροποιείται από το  $b\in D_m$  ( αν χρειαστεί διαλέγουμε σαν γεννήτορα b της  $D_m$  ένα άλλο στοιχείο τάξης δύο). Η ομάδα ανάλυσης  $G(Q_{1,0})$  είναι κυκλική τάξης 2n. Διαλέγουμε ένα γεννήτορα  $R\in\pi^{-1}(b)$  της  $G(Q_{1,0})$ .

Η ομάδα  $C_n$ , είναι η μοναδική υποομάδα τάξης n της κυκλικής ομάδας  $\langle R \rangle$ , άρα παράγεται από το  $R^2$ . Συνεπώς  $R^2=S^{mi}$  για κάποιο (i,n)=1. Απλοποιούμε τον συμβολισμό διαλέγοντας κατάλληλο γεννήτορα S της ομάδας  $G(Q_{3,1})$  για τον οποίο  $R^2=S^m$ . Επίσης παρατηρούμε ότι  $\beta(b)\equiv 1 \bmod n$ . Η ομάδα G σαν μετακυκλική ομάδα δέχεται την παρακάτω παράσταση σε γεννήτορες και σχέσεις

$$G = \langle R, S/R^2 = S^m, S^{nm} = 1, RSR^{-1} = S^r \rangle,$$
 (2.23)

όπου το r ορίζεται να είναι λύση του συστήματος

$$r \equiv 1 \bmod n r \equiv -1 \bmod m.$$
 (2.24)

Το παραπάνω σύστημα δέχεται (n,m) λύσεις αν και μόνο αν (n,m)|2. Στην περίπτωση (n,m)=1 η λύση r καθορίζεται μονοσήμαντα  $\mathrm{mod}\ nm$ . Στην περίπτωση (n,m)=2 έχουμε δύο λύσεις  $\mathrm{mod}\ nm$  τις

$$r_0, r_1 = r_0 + \frac{nm}{2}.$$

Υποθέσαμε ήδη ότι οι θέσεις στην τροχιά του  $P_{1,0}$  διακλαδίζονται πλήρως στην επέκταση  $F/F_0$ . Είναι ενδιαφέρον να δούμε πως ο τύπος διακλάδωσης των θέσεων  $P_{2,i}$  καθορίζει την επιλογή της ρίζας  $r_0$ .

Έστω  $P=P_{2,k}$  μία θέση του  $F_0$  στην τροχιά του  $P_{2,0}$ , συνεπώς, σύμφωνα με την παρατήρηση 2.2.10, σταθεροποιείται από τον  $ba^i\in D_m$ , για κάποιο  $i\equiv 1\bmod 2$  (υπενθυμίζουμε ότι  $2|m\rangle$ . Σύμφωνα με το πόρισμα 2.2.4, η P αναλύεται (αντίστοιχα διακλαδίζεται) αν  $G_\pi(P)=C_2\times C_n$  (αντίστοιχα  $C_{2n}$ ). Η συνάρτηση

$$\Phi_P : \left\{ \begin{array}{ccc} G_\pi(P) & \longrightarrow & G_\pi(P) \\ x & \longmapsto & x^2 \end{array} \right.$$

είναι ομομορφισμός ομάδων και αφού 2|n έχουμε  $\ker \Phi_P=C_2\times C_2$  αν η P αναλύεται, διαφορετικά (δηλαδή αν η P διακλαδίζεται)  $\ker \Phi_P=C_2$ . Υπολογίζουμε ότι

$$G_{\pi}(P) = \left\{RS^{i+sm}, S^{sm}/s = 0,...,n-1\right\}$$
 για κάποιο  $i \equiv 1 \bmod 2$ .

Τα στοιχεία  $\{1,S^{nm/2}\}$  ανήκουν στον  $\ker\Phi_P$ . Επιπλέον χρησιμοποιώντας την (2.23) έχουμε

$$(RS^{i+sm})^2 = S^{m(1+\frac{r+1}{m}(i+sm))}.$$

Συνεπώς η P αναλύεται στην επέχταση  $F/F_0$  αν και μόνο αν η εξίσωση

$$-(r+1)s \equiv 1 + i\frac{r+1}{m} \bmod n$$

έχει λύση s. Η εξίσωση αυτή έχει (r+1,n)=2 διαφορετικές  $\mathrm{mod}\,n$  λύσεις αν και μόνο αν  $(r+1,n)=2|\ 1+i\frac{r+1}{m}$ . Αφού  $i\equiv 1\ \mathrm{mod}\,2$  έχουμε την ισοδυναμία

$$1 + i \frac{r+1}{m} \equiv 0 \mod 2 \iff \frac{r+1}{m} \not\equiv 0 \mod 2.$$

Στην περίπτωση που  $n\equiv 2\bmod 4$  το n/2 είναι περιττό και το 2 διαιρεί ή το  $\frac{r_0+1}{m}$  ή το  $\frac{r_1+1}{m}=\frac{r_0+1}{m}+\frac{n}{2}$ . Συνεπώς αν  $n\equiv 2\bmod 4$  οι δύο λύσεις του συστήματος (2.24) αντιστοιχούν στους διαφορετικούς τύπους διακλάδωσης των θέσεων  $P_{2,i}$  στην επέκταση  $F/F_0$ .

Στην περίπτωση  $n\equiv 0\bmod 4$  έχουμε  $\frac{r+1}{m}\not\equiv 0\bmod 2$  και για τις δύο λύσεις του (2.24). Πράγματι αν  $2|\frac{r+1}{m}$  τότε 4|r+1 (υπενθυμίζουμε ότι 2|m) και 4|n|r-1 έτσι 4|(r+1)-(r-1)=2, άτοπο. Λοιπόν, αν  $n\equiv 0\bmod 4$  τότε και για τις δύο λύσεις του (2.24) έχουμε ότι όλες οι θέσεις  $P_{2,i}$  αναλύονται στην επέκταση  $F/F_0$ . Στην περίπτωση αυτή ο τύπος διακλάδωσης αδυνατεί να προσδιορίσει την δομή της ομάδας αυτομορφισμών.

**Παράδειγμα:** Σαν παράδειγμα θα δώσουμε δύο καμπύλες με τα ίδια σημεία διακλάδωσης, αλλά με διαφορετικές ομάδες αυτομορφισμών. Θεωρούμε τις καμπύλες  $V_1, V_2$  ορισμένες υπέρανω του σώματος των μιγαδικών αριθμών  $\mathbb C$  που δίνονται από τις σχέσεις

$$V_1: y^4 = x(x^{10}-1)$$
 xal  $V_2: y^4 = x^3(x^{10}-1)$ 

και έστω  $F_1, F_2$  τα αντίστοιχα σώματα συναρτήσεων τους. Η θεωρία διακλάδωσης κυκλικών επεκτάσεων δίνει ότι στις επεκτάσεις  $F_1/\mathbb{C}(x)$  και  $F_2/\mathbb{C}(x)$  οι θέσεις που διακλαδίζονται είναι οι

$$\{P_{x=0},P_{x=\zeta^i},P_\infty\},$$

όπου το  $\zeta^i$  διατρέχει τις 10 ρίζες της μονάδας. Το κριτήριο κανονικότητας του πορίσματος 1.1.3 δίνει ότι η ομάδα Galois

$$C_4 \cong Gal(F_1/\mathbb{C}(x)) \cong Gal(F_2/\mathbb{C}(x))$$

είναι κανονική σε ολόκληρη την ομάδα αυτομορφισμών  $G_i$ , και των δύο σωμάτων συναρτήσεων  $F_1$  και  $F_2$ . Το πηλίκο  $H_i=G_i/C_4$  είναι η μεγαλύτερη πεπερασμένη υποομάδα του  $PGL(2,\mathbb{C})$  της οποίας τα στοιχεία μπορούν να επεκταθούν σε αυτομορφισμούς του σώματος  $F_i$ . Θα αποδείξουμε ότι η ομάδες  $H_i$  γεννούνται από τους παρακάτω μετασχηματισμούς Möbius

$$\tau: x \longmapsto 1/x, \sigma: x \longmapsto \zeta x,$$

όπου  $\zeta$  είναι μία πρωταρχική 10-ρίζα της μονάδας, δηλαδή  $H_i \cong D_{10}$ . Έστω c μία πρωταρχική 40-ρίζα της μονάδος. Οι αυτομορφισμοί:

$$R_1: \left\{ \begin{array}{c} y \longmapsto c^5 y/x^3 \\ x \longmapsto 1/x \end{array} \right., \quad S_1: \left\{ \begin{array}{c} y \longmapsto cy \\ x \longmapsto c^4 x \end{array} \right..$$

επεχτείνουν τους  $\tau$ ,  $\sigma$  στο  $F_1$  χαι οι αυτομορφισμοί

$$R_2: \left\{ \begin{array}{c} y \longmapsto c^{15}y/x^4 \\ x \longmapsto 1/x \end{array} \right., \quad S_2: \left\{ \begin{array}{c} y \longmapsto c^3y \\ x \longmapsto c^4x \end{array} \right.,$$

επεχτείνουν τους  $\tau$ ,  $\sigma$  στην  $F_2$  αντίστοιχα. Δηλαδή,  $D_{10} < H_i$ . Από τις δυνατές επιλογές των ομάδων αυτομορφισμών της  $PGL(2,\mathbb{C})$  έχουμε ότι  $H_i \cong D_{10i}$ . Έστω  $\rho$  ένα στοιχείο τάξης 10i στην  $D_{10i}$  και  $R \in G_i$  τέτοιο ώστε  $R|_{\mathbb{C}(x)} = \rho$ . Ο αυτομορφισμός  $\rho$  είναι της μορφής

$$\rho: x \longmapsto ax,$$

όπου a είναι μία πρωταρχική 10i-ρίζα της μονάδας  $[27, \sigma$ ελ. 87]. Από την θεωρία των κυκλικών επεκτάσεων του Kummer έχουμε ότι  $R(y)=y^\ell g, \ (\ell,4)=1, g\in k(x)$ . Συνεπώς,

$$\left(\frac{R(y)}{y^{\ell}}\right)^{4} = \frac{a^{k_{i}}x^{k_{i}}(a^{10}x^{10} - 1)}{x^{\ell k_{i}}(x^{10} - 1)^{\ell}},$$
(2.25)

όπου  $k_1 = 1, k_2 = 3$  και  $R(y)/y^{\ell} = g \in k(x)$ . Από την (2.25) παίρνουμε ότι

$$k_i(\ell-1) \equiv 0 \mod 4$$

και αφού  $(\ell,4)=1$  έχουμε τελικά ότι  $\ell=1$ . Συγκρίνοντας τις πολλαπλότητες των ριζών και των πόλων του δεξιού μέλους της (2.25) πέρνουμε ότι  $\zeta=\zeta^i/a$ , και συνεπώς η τάξη του  $\rho$  είναι 10 και  $H_i\cong D_{10}$ .

Από τους τύπους των  $R_i, S_i$ , μπορούμε να ελέγξουμε ότι οι ομάδες  $G_i$ , δέχονται παραστάσεις σε όρους γεννητόρων-σχέσεων ώς εξής:

$$G_1 = \langle R_1, S_1 | S_1^{40} = 1, R_1^2 = S_1^{10}, R_1 S_1 R_1^{-1} = S_1^{29} \rangle$$

και

$$G_2 = \langle R_2, S_2 | S_2^{40} = 1, R_2^2 = S_2^{10}, R_2 S_2 R_2^{-1} = S_2^9 \rangle.$$

Οι ομάδες  $G_1$  και  $G_2$  δεν είναι ισόμορφες. Πράγματι, ας υποθέσουμε ότι υπάρχει ένας ισομορφισμός  $\phi:G_1\longrightarrow G_2$ . Κάθε στοιχείο στην  $G_2$  είναι της μορφής  $R_2S_2^j$  ή της μορφής  $S_2^j$ . Όμως

$$(R_2 S_2^j)^2 = S^{10+10j},$$

άρα  $R_2S_2^j$  έχει τάξη το πολύ 8 και αυτό αποδεικνύει ότι  $\phi(S_1)=S_2^j$  (j,40)=1. Επιπλέον έχουμε

$$S_2^{29j} = \phi(S_1^{29}) = \phi(R_1 S_1 R_1^{-1}) = R_2 S_2^j R_2^{-1} = S_2^{9j}.$$

Δηλαδή πρέπει  $20j \equiv 0 \bmod 40$ , άτοπο αφού (40,j) = 1.  $\square$ 

(2)  $A_R = \{P_{3,j}\}_{j=1,2}$ . Σε αυτή την περίπτωση οι θέσεις  $P_{i,j}$  i=1,2 j=0,...,m-1 του  $F_0$  αναλύονται όλες στην επέκταση  $F/F_0$ . Σύμφωνα με το πόρισμα 2.2.4 έχουμε

$$G_{\pi}(P_{i,j}) \cong C_n \rtimes C_2.$$

Μπορούμε να διαλέξουμε  $R \in \pi^{-1}(b)$  τέτοιο ώστε  $R^2 = 1$ . Η ομάδα G δίνεται από

$$\langle R, S/S^{nm} = 1, R^2 = 1, RSR^{-1} = S^r \rangle$$

όπου r είναι η λύση του συστήματος των εξισώσεων (2.21)(2.22),

$$r \equiv \beta(b) \bmod n, r \equiv -1 \bmod m. \tag{2.26}$$

 $\mathbf{H}$  ομάδα G είναι ένα ημιευθύ γινόμενο

$$C_{nm} \rtimes C_2$$
,

με δράση να καθορίζεται από το r. Αν (n,m)>1 τότε το σύστημα 2.26 μπορεί να έχει περισσότερες από μία λύσεις  $\mathrm{mod}\,nm$  οι οποίες οδηγούν σε περισσότερες από μία μη ισόμορφες ομάδες αυτομορφισμών G.

Ας υποθέσουμε ότι οι θέσεις  $P_{3,j}$  j=1,2 δεν διακλαδίζονται στην επέκταση  $F/F_0$ . Από το πόρισμα 2.2.4 έχουμε ότι

$$G_{\pi}(P_{3,1}) \cong C_n \rtimes C_m$$

αφού η  $D_m(P_{3,j})=\langle a\rangle$  είναι χυχλιχή. Η ομάδα  $G_\pi(P_{3,1})$  έχει δείχτη 2 στην G, άρα  $C_n\rtimes C_m \lhd G$ . Έστω T ένας γεννήτορας της χυχλιχής ομάδας  $C_n$ , χαι S ένας γεννήτορας της  $C_m$  τέτοιος ώστε  $\pi(S)=a$ . Αν  $R\in\pi^{-1}(b)$  αφού  $|G:C_n\rtimes C_m|=2$  το στοιχείο  $R^2\in C_n\rtimes C_m$  άρα  $R^2=T^\mu S^z$ . Αλλά  $\pi(R^2)=a^z$  έτσι  $z\equiv 0 \bmod m$  χαι  $R^2=T^\mu$ . Αυτό μας δίνει

$$R^{2}SR^{-2} = T^{\mu}ST^{-\mu} = T^{\mu(1-\beta(a))}S. \tag{2.27}$$

Μπορούμε να υπολογίσουμε το αριστερό μέλος της (2.27) και με διαφορετικό τρόπο. Αφού  $C_n \rtimes C_m \lhd G$  έχουμε

$$RSR^{-1} = T^{\lambda}S^{r}$$
.

Από την άλλη  $G/\langle T \rangle \cong D_m$  άρα

$$RSR^{-1}S = T^{\lambda}S^{r+1} \in \langle T \rangle$$
 συνεπώς  $r \equiv -1 \mod m$  (2.28)

και αυτό μας δίνει

$$R^{2}SR^{-2} = RT^{\lambda}S^{-1}R^{-1} = T^{\lambda(\beta(b)-\beta(a))}S. \tag{2.29}$$

Συνδυάζοντας τις (2.27) και (2.29) πέρνουμε

$$\mu(1 - \beta(a)) \equiv \lambda(\beta(b) - \beta(a)) \bmod n. \tag{2.30}$$

Οι γεννήτορες  $T, R, S \in G$  ικανοποιούν τις παρακάτω σχέσεις:

$$S^{m} = 1, T^{n} = 1, R^{2} = T^{\mu}, RTR^{-1} = T^{\beta(b)}, STS^{-1} = T^{\beta(a)}, RSR^{-1} = T^{\lambda}S^{-1}.$$
 (2.31)

για κάποια  $\lambda, \mu$  που ικανοποιούν την (2.30). Παρατηρούμε ότι δεν απαιτούνται επιπρόσθετες σχέσεις στον ορισμό της ομάδας G, γιατί οι σχέσεις (2.31) ορίζουν ομάδα τάξης 2nm.

Θέλουμε να απλοποιήσουμε την σχέση  $RSR^{-1}=T^{\lambda}S^{-1}$  διαλέγοντας ένα διαφορετικό γεννήτορα  $S_1=T^xS$ . Υπολογίζουμε:

$$RS_1 R^{-1} = RT^x S R^{-1} = T^{x\beta(b) + \lambda} S^{-1} = T^{x(\beta(a) + \beta(b)) + \lambda} S_1^{-1}. \tag{2.32}$$

**Λήμμα 2.2.12** Έστω P μία θέση του  $F_0$  η οποία σταθεροποιείται από το ba. Επιπλέον υποθέτουμε ότι  $R^2=T^\mu$ . Αν 2|n τότε

$$(n, \beta(b)\beta(a) + 1)|\lambda + \mu\beta(a), \tag{2.33}$$

αν και μόνο αν η θέση P αναλύεται στην επέκταση  $F/F_0$ . Αν (2,n)=1 τότε η εξίσωση (2.33) ισχύει σε κάθε περίπτωση.

**Απόδειξη:** Υποθέτουμε πρώτα ότι 2|n. Από το πόρισμα (2.2.4) έχουμε

$$G_\pi(P) = Gal(F/F_0^{\langle ba \rangle}) = \left\{ \begin{array}{ll} C_{2n} & \text{an $P$ dianhabitetal sthn $F/F_0$} \\ C_n \rtimes C_2 & \text{an $P$ anahustal sthn $F/F_0$} \end{array} \right.$$

Στην πρώτη περίπτωση υπάρχει μόνο ένα στοιχείο τάξης δύο στην ομάδα  $Gal(F/F_0^{\langle ba \rangle})$  ενώ στην δεύτερη περίπτωση υπάρχουν περισσότερα του ενός στοιχεία τάξης δύο στην  $G_\pi(P)$ . Υπενθυμίζουμε ότι η ομάδα  $G_\pi(P)$  είναι η

$$G_{\pi}(P) = \{ \sigma \in G/\pi(\sigma)P = P \} = \{RST^k, T^k/k = 0, ..., n-1 \}.$$

Αφού το n είναι άρτιος, ένα στοιχείο τάξης δύο της  $G_{\pi}(P)$  είναι το  $T^{n/2}$ . Αν το  $RST^k$  είναι ένα άλλο στοιχείο τάξης δύο τότε

$$1 = (RST^{k})^{2} = T^{k(\beta(b)\beta(a)+1)+\lambda+\mu\beta(a)}$$
(2.34)

άρα για κάποιο  $k \in \{0,...,n-1\}$ 

$$k(\beta(b)\beta(a) + 1) + \lambda + \mu\beta(a) \equiv 0 \bmod n, \tag{2.35}$$

Όμως η εξίσωση (2.35) έχει λύσεις ως προς k αν και μόνο αν

$$(n, \beta(b)\beta(a) + 1)|\lambda + \mu\beta(a).$$

Στην περίπτωση (n,2)=1, το μοναδικό στοιχείο τάξης δύο στην ομάδα  $Gal(F/F^{\langle ba \rangle})$  είναι της μορφής  $RST^k$  άρα η (2.34) έχει μία λύση, και το επιθυμητό αποτέλεσμα προκύπτει ακριβώς όπως και στην περίπτωση άρτιου  $n.\square$ 

Θα θεωρήσουμε τώρα τις τρείς τελευταίες περιπτώσεις του θεωρήματος

(3)  $A_R = \{P_{1,i}\}_{0 \leq i < m-1} \cup \{P_{2,i}\}_{0=1,\dots,m-1}$  Όλες οι θέσεις  $P_{i,j}$  διαχλαδίζονται στην επέχταση  $F/F_0$ . Υποθέτουμε όπως χαι στην παρατήρηση 2.2.10 ότι  $D_m(P_{1,0}) = \langle b \rangle$ . Εξ αιτίας του πορίσματος 2.2.4 μπορούμε να διαλέξουμε  $R \in \pi^{-1}(b)$  τέτοιο ώστε  $R^2 = T$ , δηλαδή  $\mu = 1$ . Επιπλέον η επέχταση είναι χεντριχή σε αυτή την περίπτωση δηλαδή

$$\beta(a) \equiv \beta(b) \equiv 1 mod n.$$

Θεωρούμε δύο αχόμα υποπεριπτώσεις

• (n,2)=1. Αφού η επέχταση είναι χεντριχή έχουμε  $H^2(D_m,C_n)=1$ , δηλαδή υπάρχει μόνο μία επέχταση της  $D_m$  με  $C_n$ , η

$$G \cong C_n \times D_m$$
.

• (n,2) = 2. Η εξίσωση (2.32), σε αυτή την περίπτωση, έχει την μορφή

$$RS_1 R^{-1} = T^{2x+\lambda} S_1^{-1}. (2.36)$$

Από το λήμμα 2.2.12 έχουμε ότι  $(n, \beta(a)\beta(b)+1)=2 \nmid \lambda+1$ , Συνεπώς  $2|\lambda$  και έτσι η εξίσωση

$$2x + \lambda \equiv 0 \bmod n$$

έχει μία λύση x. Η σχέση (2.36) για την συγκεκριμένη αυτή λύση x γράφεται ως

$$RS_1R^{-1} = S_1^{-1}$$
.

Έστω t η τάξη του  $S_1$ . Η ομάδα G είναι μία μεταχυχλιχή ομάδα που δέχεται την παραχάτω παράσταση σε γεννήτορες χαι σχέσεις:

$$\langle R, S_1 | R^{2n} = 1, S_1^t = 1, RS_1 R^{-1} = S_1^{-1} \rangle,$$

αλλά τότε |G|=2nt, συνεπώς t=m.

(4)  $A_R=\emptyset$ . Όλες οι θέσεις  $P_{i,j}$  αναλύονται στην επέχταση  $F/F_0$ . Ας υποθέσουμε ότι  $D_m(P_{1,0})=\langle b \rangle$ . Εξ αιτίας του πορίσματος 2.2.4 μπορούμε να διαλέξουμε  $R\in\pi^{-1}(b)$  τέτοιο ώστε  $R^2=1$ , και  $\mu=0$ . Αφού όλες οι θέσεις του  $F_0$  οι οποίες επεχτείνουν τις  $p_1,p_2$  αναλύονται στην  $F/F_0$  από το λήμμα 2.2.12 έχουμε ότι  $(n,\beta(b)\beta(a)+1)|\lambda$ . Αλλά  $(\beta(b),n)=1$ , έτσι  $(n,\beta(ba)+1)=(n,\beta(b)\beta(b)\beta(a)+\beta(b))=(n,\beta(a)+\beta(b))|\lambda$ . Συνεπώς υπάρχει ένα x τέτοιο ώστε

$$x(\beta(a) + \beta(b)) + \lambda \equiv 0 \mod n$$

και για αυτό το x, η εξίσωση (2.32) γίνεται

$$RS_1R^{-1} = T^{x(\beta(a)+\beta(b))+\lambda}S_1^{-1} = S_1^{-1}.$$

Θα συμβολίζουμε με t την τάξη του  $S_1=T^xS$ . Η ομάδα σε αυτή την περίπτωση δίνεται από τους παραχάτω γεννήτορες χαι σχέσεις

$$\langle R, T, S_1 | R^2 = 1, RTR^{-1} = T^{\beta(b)}, S_1TS_1^{-1} = T^{\beta(a)}, RS_1R^{-1} = S_1^{-1}, S_1^t = 1, T^n = 1 \rangle,$$

και είναι τάξης 2nt, από όπου έχουμε t=m και η ομάδα G είναι ισόμορφη με το ημιευθύ γινόμενο

$$C_n \rtimes D_m$$

όπου η δράση του  $D_m$  στην  $C_n$  καθορίζεται από τον μορφισμό  $\beta$ .

(5)  $A_R = \{P_{1,i}\}_{0 \leq i < m}$ . Σε αυτή την περίπτωση υποθέτουμε ότι το σύνολο των θέσεων  $P_{1,i}$ , υπέρ της  $p_1$  διακλαδίζονται στην επέκταση  $F/F_0$  και το σύνολο των θέσεων  $P_{2,i}$  υπέρ της  $p_2$  αναλύονται. Μπορούμε να διαλέξουμε  $R \in \pi^{-1}(b)$  τέτοιο ώστε  $R^2 = T$  συνεπώς  $\mu = 1$ . Επιπλέον  $\beta(b) \equiv 1 \bmod n$ .

Από το λήμμα 2.2.12 έχουμε ότι  $(\beta(b)\beta(a)+1,n)=(\beta(a)+1,n)$   $|\lambda+\beta(a)|$ . Άρα υπάρχει x έτσι ώστε

$$x(\beta(a) + 1) + \lambda \equiv -\beta(a) \bmod n$$

και για αυτό το x η εξίσωση (2.32) γράφεται

$$RS_1R^{-1} = T^{x(\beta(a)+\beta(b))+\lambda}S_1^{-1} = T^{-\beta(a)}S_1^{-1} = S_1^{-1}T^{-1}.$$

Αφού  $T=R^2$  η παραπάνω σχέση είναι ισοδύναμη με την

$$(RS_1)^2 = 1.$$

Θα συμβολίζουμε με t την τάξη του  $S_1$ . Η ομάδα G δέχεται την παρακάτω παράσταση σε γενήτορες και σχέσεις:

$$G = \langle R, S_1 | R^{2n} = 1, S_1^t = 1, (RS_1)^2 = 1 \rangle.$$

Παρατηρούμε ότι η ομάδα που γεννάται από το  $R^2$  είναι η ομάδα  $Galois\ Gal(F/F_0)$  η οποία είναι κανονική υποομάδα της G. Το πηλίκο

$$\overline{G} := \frac{G}{\langle R^2 \rangle} = \langle \overline{R}, \overline{S}_1 | \overline{R}^2 = 1, \overline{S}_1^t = 1, (\overline{RS}_1)^2 = 1 \rangle$$

είναι ισόμορφο με μία διεδρική ομάδα τάξης 2t. Συνεπώς η ομάδα G έχει τάξη 2nt και t=m.  $\Box$ 

Θα αποδείξουμε τώρα ότι οι παραπάνω τύποι διακλάδωσης υλοποιούνται, δηλαδή θα πρέπει να επιλέξουμε  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$  βαθμού  $0 \bmod n$ .

(1) Ξεχωρίζουμε τις παρακάτω υποπεριπτώσεις:

•  $n \equiv 2 \mod 4, \ m \equiv 0 \mod 2$ . Σε αυτή την περίπτωση έχουμε στον φορέα του D το παραχάτω σύνολο  $A_R$  σταθερών θέσεων  $D_m$ 

$$A_R = \{P_{3,1}, P_{3,2}, P_{1,0}, P_{1,1}, ..., P_{1,i-1}\}$$

ή

$$A_R = \{P_{3,1}, P_{3,2}, P_{1,0}, P_{1,1}, ..., P_{1,i-1}, P_{2,0}, P_{2,1}, ...., P_{2,i-1}\}$$

και φυσικά s τροχιές  $O(P_j,D_m)$  όπου η θέση  $P_j$  δεν σταθεροποιείται από την  $D_m$ . Εδώ για απλοποίηση του συμβολισμού γράφουμε δύο περιπτώσεις μαζί, την δεύτερη εντός παρενθέσεων. Υπενθυμίζουμε ότι στην περίπτωση αυτή, η συνάρτηση δράσης  $\beta$  είναι τετριμμένη, οπότε παίρνοντας  $\lambda(Q)=1$  για όλα τα  $Q\in \mathrm{supp}(D)$  έχουμε ότι

$$\deg(D) = 2 + m + 2ms \ \acute{\eta} \ \deg(D) = 2 + 2m + 2ms.$$

Αφού (2m,n)=2 το οποίο διαιρεί το 2+m (2+2m) αντίστοιχα), μπορούμε να διαλέξουμε το s έτσι ώστε  $\deg(D)\equiv 0 \bmod n$ .

•  $n\equiv 0\, \mathrm{mod}\, 4, m\equiv 0\, \mathrm{mod}\, 2.$  Στην περίπτωση αυτή έχουμε στον φορέα του D το παραχάτω σύνολο  $A_R$  σταθερών θέσεων  $D_m$ 

$$A_R = \{P_{3,1}, P_{3,2}, P_{1,0}, P_{1,1}, ..., P_{1,i-1}\},$$

και s τροχιές  $O(P_j,D_m)$  όπου οι θέσεις  $P_j$  δεν σταθεροποιούνται από τον  $D_m$ . Παίρνουμε  $\lambda(Q)=1$  για όλα τα Q στο  $\mathrm{supp}(D)$ , έτσι

$$\deg(D) = 2 + m + 2ms.$$

Στην περίπτωση αυτή (2m,n)=4 το οποίο διαιρεί το 2+m (υπενθυμίζουμε ότι αφού  $(n,m)=2,\ m\equiv 2\bmod 4),$  οπότε μπορούμε να διαλέξουμε το s έτσι ώστε  $\deg(D)\equiv 0\bmod n.$ 

Με όμοιο τρόπο μπορούμε να δείξουμε ότι μπορούμε να διαλέξουμε  $\deg(D) \equiv 0 \bmod n$  στην περίπτωση (n,m)=1.

(2) Στην περίπτωση αυτή έχουμε  $A_R = \{P_{3,1}, P_{3,2}\}$ . Αναλύουμε το n σε γινόμενο πρώτων παραγόντων  $n = p_1^{a_1} \dots p_t^{a_t}$ . Σύμφωνα με το λήμμα 2.2.8 γράφουμε  $n = n^+(\beta(b)) \cdot n^-(\beta(b))$ , ααι  $(n^+(\beta(b)), n^-(\beta(b))) = 1$  ή 2. Η εξίσωση (2.14), μας δίνει  $\deg(D) \equiv 0 \bmod p_i^{a_i}$  για  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$  και για  $p_i \mid n^-(\beta(b)), p_i \neq 2$ . Αν  $2 \mid n$ , και  $p_{i_0} = 2$  τότε  $\deg(D) \equiv 0 \bmod p_{i_0}^{a_{i_0}}$ , όπου  $a'_{i_0} = v_2(n^-\beta(b)) < a_{i_0}$ . Ο τυχαίος divisor  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$  γράφεται

$$D = \lambda(P_{3,1} + P_{3,2}) + \sum_{i=1}^{s} \lambda(P_i) \sum_{P \in O(P_i, D_m)} P.$$

Θα πρέπει να διαλέξουμε τον D έτσι ώστε  $\deg(D)\equiv 0 \bmod n^+(\beta)$ . Θέτουμε  $\lambda=\lambda(P_i)\equiv 1 \bmod n$ . Μπορούμε να διαλέξουμε τον αριθμό τον τροχιών s και τον divisor  $D\in\mathcal{D}_n(G_0,A_R\subset A,\beta)$ , κατά τέτοιο τρόπο

$$\deg(D) = 2 + ms \equiv 0 \bmod n^+(\beta),$$

αφού  $(n^+(\beta), m) \mid 2$  (υπενθυμίζουμε ότι  $(n, m) \mid \beta(b) + 1$ ).

(3) Έχουμε ότι  $A_R=\{P_{i,j}/i=1,2\ j=0,...,m-1\}$ . Συνεπώς διαλέγουμε D με s το πλήθος τροχίες  $O(P_i,D_m)$  όπου  $P_i$  δεν σταθεροποιείται από την  $D_m$ , και θέτοντας  $\lambda(Q_i)\equiv 1 \bmod n$  υπολογίζουμε

$$\deg(D) = 2m + s2m.$$

Μπορούμε να διαλέξουμε το s κατάλληλα ώστε ο παραπάνω βαθμός να είναι  $0 \bmod n$ .

(4) Έχουμε  $A_R = \emptyset$  και η υλοποίηση προκύπτει από το λήμμα 2.1.7. (5) Έχουμε  $A_R = \{P_{1,0},...,P_{1,m-1}\}$ . Παρατηρούμε ότι  $\beta(b) \equiv 1 \bmod n$ . Αναλύουμε το n σε  $n^+(\beta(a)), n^-(\beta(a))$  όπως μας δίνονται από το λήμμα 2.2.8. Από την εξίσωση (2.14) έχουμε ότι  $\deg(D) \equiv 0 \bmod p_i^{a_i}$  για  $p_i \mid n^-(\beta(a))$  και για όλους τους divisors  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$ . Οπότε μπορούμε να διαλέξουμε τον D έτσι ώστε

$$\deg D \equiv 0 \bmod n^+ (\beta(a)).$$

Υπολογίζουμε

$$\deg D = m + 2ms \bmod n^+(\beta(a)), \tag{2.37}$$

Από την εξίσωση (2.37) καταλήγουμε στο ότι η συνθήκη  $(n^+(\beta(a)), 2m) \mid m$ , είναι αναγκαία για να είναι η περίπτωση 3 υλοποιήσιμη.

Περίπτωση Β Σε αυτή την περίπτωση η χαραχτηριστιχή του σώματος k είναι 2. Έχουμε ότι  $G/C_n=D_m,\ (2,m)=1$ . Από τον χαραχτηρισμό των πεπερασμένων ομάδων αυτομορφισμών του ρητού σώματος συναρτήσεων, στο θεώρημα 2.2.1 έχουμε ότι οι δύο θέσεις  $p_1,p_2$  του  $F^G=F_0^{D_m}$  διαχλαδίζονται στην επέχταση  $F_0/F_0^{D_m}$ , με δείχτες διαχλάδωσης 2 χαι m, αντίστοιχα. Έστω  $P_{1,i}$  i=1,...,m  $(P_{2,j}$  j=1,2 αντίστοιχα) το σύνολο των θέσεων του  $F_0$  υπέρ της  $p_1$   $(p_2$  αντίστοιχα).

Θεώρημα 2.2.13 Έστω ότι η ομάδα  $G_0 = G/C_n$  είναι ισόμορφη με την διεδρική ομάδα  $D_m$ ,  $p \nmid m, p = 2$ . Ξεχωρίζουμε τις παρακάτω περιπτώσεις για την δομή της ομάδας G:

- 1.  $A_R \supset \{P_{1,i}\}_{0 \le i \le m}$ . Τότε η β είναι τετριμμένη και  $G \cong C_n \times D_m$ .
- 2.  $A_R = \{P_{2,i}\}_{i=1,2}$ . Τότε  $G \cong C_{nm} \rtimes C_2$ .
- 3.  $A_R = \emptyset$ . Τότε  $G \cong C_n \rtimes D_m$ .

#### Απόδειξη:

1  $A_R\supset\{P_{1,i}\}_{0\le i< m}$ . Στην περίπτωση αυτή οι θέσεις  $P_{1,i}$  i=1,...,m που επεχτείνουν την  $p_1$  διαχλαδίζονται στην επέχταση  $F/F_0$ . Παρατηρούμε ότι αν μία από αυτές, ας πούμε η  $P_{1,i_0}$ , διαχλαδίζεται τότε όλες οι  $P_{1,i}$  διαχλαδίζονται επίσης, αφού οι επέχτασεις  $F/F_0$  χαι  $F_0/F^G$  είναι χαι οι δύο Galois. Παρατηρούμε επίσεις ότι η ομάδα Galois  $Gal(F/F_0^{\langle ba^i\rangle})$  της επέχτασης  $F/F_0^{\langle ba^i\rangle}$  είναι μία επέχταση της ομάδας  $\langle ba^i\rangle\cong C_2$ . Από την μελέτη των επεχτάσεων στοιχειωδών αβελιανών ομάδων, έχουμε ότι  $\beta(ba^i)\equiv 1 \bmod n$ , για όλα τα i=0,...,m-1, αφού η μοναδιχή σταθερή θέση του  $ba^i$  διαχλαδίζεται στην  $F/F_0$ . Αυτό ισχύει για όλα τα i έτσι η ομάδα G είναι μία χεντριχή επέχταση του  $D_m$  με  $C_n$ . Αφού  $n\equiv 1 \bmod 2$  έχουμε ότι  $H^2(D_m,C_n)=1$ , συνεπώς

$$G \cong C_n \times D_m$$
.

 $\mathbf{2} \ A_R = \{P_{2,j}\}_{j=1,2}.$  Οι δύο θέσεις  $P_{2,i}$  του  $F_0$  υπέρ της  $P_2$  διαχλαδίζονται πλήρως στην  $F/F_0$ .  $D_m(P_{2,i}) = \langle a \rangle$ , έτσι από το πόρισμα (2.2.4) μπορούμε να βρούμε  $S \in \pi^{-1}(a)$  η οποία να έχει τάξη nm. Η δράση του a στην  $Gal(F/F_0) \cong \langle S^m \rangle$  είναι τετριμμένη δηλαδή  $\beta(a) \equiv 1 \bmod n$ . Έστω  $R \in \pi^{-1}(b)$ . Παρατηρούμε ότι  $|G:\langle S \rangle| = 2$  οπότε  $\langle S \rangle \lhd G$ . Συνεπώς υπάρχει r τέτοιο ώστε,

$$RSR^{-1} = S^r$$
.

Παρατηρούμε ότι η  $S^m$  γεννά την ομάδα  $Gal(F/F_0) \cong C_n$ , οπότε

$$S^{\beta(b)m} = RS^m R^{-1} = S^{mr}.$$

συνεπώς

$$\beta(b) = r \bmod n. \tag{2.38}$$

Από την άλλη, έχουμε

$$RSR^{-1}S = S^{r+1} \Rightarrow 1 = \pi(RSR^{-1}S) = \pi(S^{r+1}),$$

οπότε

$$r \equiv -1 \bmod m \tag{2.39}$$

Το σύστημα των (2.38)(2.39) έχει μία λύση r αν και μόνο αν  $(n,m)|\beta(b)+1$  και η ομάδα δίνεται από τις παρακάτω σχέσεις:

$$\langle R, S | R^2 = 1, S^{nm} = 1, RSR^{-1} = S^r \rangle.$$

Παρατηρούμε ότι η G είναι ισόμορφη με την

$$G \cong C_{nm} \rtimes C_2$$
.

 ${\bf 3}$   $A_R=\emptyset$ . Σε αυτή την περίπτωση όλες οι θέσεις,  $P_{1,i},\,P_{2,j}$  του  $F_0$  υπέρ της  $p_1$  και της  $p_2$  αντίστοιχα, αναλύονται στην  $F/F_0$ . Παρατηρούμε ότι (n,2)=(m,2)=1. Θα χρησιμοποιήσουμε την εμφύτευση της πρότασης 2.2.2,

$$\begin{array}{cccc} H^2(D_m,C_n) = \bigoplus_{p|2m} H^2(D_m,C_n)_p & \longrightarrow & \bigoplus_{p|2m} H^2(H_p,C_n) \\ a = \sum a_p & \longmapsto & \sum res_{D_m \to H_p}(a_p) \end{array}$$

Αφού (n,2)=1 από το θεώρημα του Zassenhaus ([14], σελ. 163) έχουμε ότι  $H^2(H_2,C_n)=1$ . Αν  $p\neq 2$ , p|m τότε η p-Sylow υποομάδα  $H_p$  είναι υποομάδα της χυχλιχής υποομάδας  $\langle a\rangle\cong C_m$  της  $D_m$ . Αφού η  $\langle a\rangle$  σταθεροποιεί την  $P_{2,j}$ , η οποία αναλύεται στην  $F/F_0$ , η υποεπέχταση

$$1 \longrightarrow C_n \longrightarrow \pi^{-1}(\langle a \rangle) \longrightarrow \langle a \rangle \longrightarrow 1,$$

διασπάται. Όλες οι υποεπεχτάσεις που αντιστοιχούν στις p-Sylow υποομάδες του  $\langle a \rangle$  διασπώνται επίσης, άρα  $H^2(H_p,C_n)=1$  για  $p\neq 2$ . Αυτό μας δίνει ότι  $H^2(D_m,C_n)=1$  χαι τελιχά έχουμε

$$G \cong C_n \rtimes D_m$$

όπου η δράση της  $D_m$  στο  $C_n$  καθορίζεται από την συνάρτηση  $\beta$ .  $\square$ 

Για να αποδείξουμε ότι αυτός ο τύπος διαχλάδωσης είναι υλοποιήσιμος θα πρέπει να διαλέξουμε  $D \in \mathcal{D}_n(G_0, A_R \subset A, \beta)$  βαθμού  $0 \bmod n$ .

1 Παίρνουμε s τροχιές  $O(P_i,D_m)$ , έτσι ώστε η θέση  $P_i$  να μην σταθεροποιείται από την  $D_m$  και θέτουμε  $\lambda(P_i)\equiv 1 \bmod n$ . Έχουμε  $A_R=\{P_{1,1},...,P_{1,m},P_{2,1},P_{2,2}\}$  (ή  $A_R=\{P_{1,1},...,P_{1,m}\}$  άρα ο βαθμός του D είναι

$$\deg D = m + 2 + 2ms \ \acute{\eta} \ \deg D = m + 2ms.$$

Προφανώς, αφού (2m,n)=(n,m) μπορούμε να βρούμε s έτσι ώστε  $\deg D\equiv 0 \bmod n$  στην περίπτωση  $A_R=\{P_{1,1},...,P_{1,m},\}$ . Στην περίπτωση  $A_R=\{P_{1,1},...,P_{1,m},P_{2,1},P_{2,2}\}$ , βλέπουμε ότι  $(n,m)\mid 2$  είναι αναγχαία συνθήχη ώστε να υλοποιήται αυτός ο τύπος διαχλάδωσης. Παρατηρούμε ότι η συνθήχη  $(n,m)\mid 2$  είναι ισοδύναμη με (n,m)=1 αφού (n,2)=(m,2)=1.

**2** Από το λήμμα 2.1.6 αρχεί να κατασχευάσουμε D βαθμού  $0 \bmod n^+(b)$ . Παίρνουμε s τροχιές  $O(P_i,D_m)$ , όπου η  $P_i$  δεν σταθεροποιείται από τον  $D_m$  και θέτουμε  $\lambda(P)\equiv 1 \bmod n$  για όλα τα P στο  $\mathrm{supp}(D)$ . Έχουμε

$$\deg(D) = 2 + 2ms \bmod n^+(b).$$

Μπορούμε να διαλέξουμε s τέτοιο ώστε  $\deg(D) \equiv 0 \bmod n^+(b)$ , αφού  $(n,2) = (n^+(b),2) = 1$ . **3** Ο τύπος διακλάδωσης σε αυτή την περίπτωση υλοποιήται από το λήμμα 2.1.7, αφού  $A_R = \emptyset$ .

## 2.2.7 Η ομάδα $A_4$

Υποθέτουμε ότι  $G/C_n\cong A_4$ . Από το θεώρημα ταξινόμησης 2.2.1 έχουμε ότι τρεις θέσεις του  $F_1:=F^G=F_0^{A_4}$  διακλαδίζονται στην  $F_0/F_1$ , οι  $p_1,p_2,p_3$  με δείκτες διακλάδωσης  $e_1=2,e_2=e_3=3$  αντίστοιχα. Επιπλέον θα πρέπει η χαρακτηριστική  $p\neq 2,3$ . Θα συμβολίζουμε με  $P_{1,i}$  i=1,...,6,  $P_{2,j},P_{3,j}$  j=1,...,4 το σύνολο των θέσεων του  $F_0$  που επεκτείνουν τις  $p_1,p_2,p_3$ , αντίστοιχα.

Η ομάδα  $A_4$  δέχεται μία παράσταση σε γεννήτορες και σχέσεις

$$A_4 = \langle a, b/a^2 = b^3 = 1, (ab)^3 = 1 \rangle.$$

Παρατηρούμε επίσεις ότι η ομάδα  $A_4$  έχει μία κανονική 2-Sylow υποομάδα ισόμορφη με την ομάδα  $V_4$  του Klein, η οποία σαν υποομάδα της  $A_4$  μπορεί γραφεί σε όρους των γεννητόρων της  $A_4$ 

$$V_4 = \{1, a, bab^{-1}, b^2ab^{-2}\}.$$

Τέλος, η ομάδα  $A_4$  μπορεί να γραφεί και ως ημιευθές γινόμενο  $A_4 \cong V_4 \rtimes \langle b \rangle$ . Ο ομομορφισμός δράσης

$$\beta: A_4 \longrightarrow \mathbb{Z}_n^*$$

δεν γίνεται να είναι μονομορφισμός, αφού η  $A_4$  δεν είναι αβελιανή. Έχουμε δύο δυνατότητες για τον  $\ker \beta$  :

$$\ker \beta = V_4$$
, ή  $\ker \beta = A_4$  (κεντρική επέκταση)

Σε κάθε περίπτωση, αφού  $A_4/V_4\cong\mathbb{Z}_3$  και το a έχει τάξη δύο στην  $A_4$ , έχουμε ότι  $\beta(a)\equiv 1 \bmod n$ .

Θεώρημα 2.2.14 Έστω ότι  $G_0=G/C_n\cong A_4$ , τότε η ομάδα αυτομορφισμών G είναι ισόμορφη κατά περίπτωση με:

- a)  $A_R = \emptyset$  τότε  $G \cong C_n \rtimes A_4$ .
- b)  $A_R = \{P_{2,i}\}_{1 \le i \le 4}$  τότε  $G \cong V_4 \rtimes C_{3n}$ .
- c)  $A_R = \{P_{1,i}\}_{1 \le i \le 6}$  τότε  $G \cong G' \rtimes C_3$ , όπου G' ορίζεται μέσω γεννητόρων και σχέσεων:

$$G' := \langle R, S/R^2 = S^2, S^{2n} = 1, RSR^{-1} = S^r \rangle.$$

d)  $\{P_{1,i}\}_{i=1,...,6} \subsetneq A_R$  τότε η ομάδα G δέχεται την παρακάτω αναπαράσταση μέσω γεννητόρων και σχέσεων:

$$G = \langle R, S | R^{2n} = 1, R^2 = S^3, (RS)^3 = R^{2k} \rangle,$$

 $\gamma$ ια κάποιο  $k \in \{1,...,n\}$ .

#### Απόδειξη:

**a)**  $A_R = \emptyset$ . Όλες οι θέσεις του  $F_0$  που επεκτείνουν τις  $p_1, p_2, p_3$  αναλύονται στην επέκταση  $F/F_0$ . Σε αυτή την περίπτωση ισχυριζόμαστε ότι

$$G \cong C_n \rtimes A_4$$

όπου η δράση του  $A_4$  επί της  $C_n$  καθορίζεται από την συνάρτηση  $\beta$ . Για να αποδείξουμε τον ισχυρισμό παρατηρούμε ότι η  $A_4$  είναι το ημιευθύ γινόμενο  $V_4 \rtimes \langle b \rangle$  και ότι η  $V_4$  είναι στοιχειώδης αβελιανή ομάδα της μορφής  $\mathcal{E}_2(2)$ . Σύμφωνα με την μελέτη επεκτάσεων διεδρικών ομάδων, αφού οι σταθερές θέσεις της  $V_4=D_2$  αναλύονται, έχουμε ότι η υποεπέκταση

$$1 \longrightarrow C_n \longrightarrow \pi^{-1}(V_4) \longrightarrow V_4 \longrightarrow 1, \tag{2.40}$$

διασπάται, και από το λήμμα 2.2.7 έχουμε  $G \cong C_n \rtimes A_4$ .

**b)**  $A_R=\{P_{2,j}\}_{1\leq j\leq 4}.$  Δηλαδή το σύνολο των σταθερών θέσεων  $P_{1,i}$  i=1,...,6 αναλύεται και τουλάχιστον μία από τις θέσεις  $P_{2,j},P_{3,j},$  ας πούμε η  $P_{2,j}$  j=1,...,4 διακλαδίζεται στην  $F/F_0$ . Σύμφωνα με το πόρισμα 2.2.4, αφού οι σταθερές θέσεις του b διακλαδίζονται, έχουμε ότι  $\beta(b)\equiv 1 \bmod n$  άρα η επέκταση είναι κεντρική. Η ομάδα  $A_4$  είναι ένα ημιευθύ γινόμενο  $V_4 \rtimes \langle b \rangle$  και όπως και στην περίπτωση **a)** έχουμε ότι η μικρή ακριβής ακολουθία (2.40) διασπάται. Χρησιμοποιόντας το λήμμα 2.2.7 έχουμε ότι

$$G \cong V_4 \rtimes C_{3n}$$

όπου η δράση του γεννήτορα R της χυχλιχής ομάδας  $C_{3n}$  στο  $x\in V_4$  δίνεται από

$$x^R := R^n x R^{-n} = x^{\beta(R^n)}.$$

Το δεξί μέλος έχει νόημα αφού  $R^n \in C_3 < A_4$ . Παρατηρούμε ότι αν οι θέσεις  $P_{3,j}$  j=0,...,4 του  $F_0$  δεν διακλαδίζονται, τότε από την παρατήρηση 2.1.5 έχουμε ότι (n,3)=1.

c)  $A_R=\{P_{1,i}\}_{1\leq i\leq 6}$ . Στην περίπτωση αυτή οι θέσεις  $P_{1,i}$  i=1,...,6 διακλαδίζονται και οι θέσεις  $P_{i,j}$  i=1,2, j=1,...,4 αναλύονται. Από την μελέτη των διεδρικών επεκτάσεων έχουμε ότι η ομάδα  $G':=\pi^{-1}(V_4)$  γράφεται μέσω γεννητόρων και σχέσεων ως

$$G' = \langle R, S/R^2 = S^2, S^{2n} = 1, RSR^{-1} = S^r \rangle,$$

όπου r είναι η μοναδική λύση του συστήματος  $r\equiv 1 \bmod n, r\equiv -1 \bmod 2$  αν (n,2)=1, και η μοναδική λύση του συστήματος  $r\equiv 1 \bmod n, r\equiv -1 \bmod 2$  έτσι ώστε  $\frac{r+1}{2}$  να είναι άρτιος, διαφορετικά. Παρατηρούμε επίσης ότι στην περίπτωση (n,2)=2 αυτός ο τύπος διακλάδωσης εμφανίζεται μόνο αν  $n\equiv 2 \bmod 4$ . Ισχυριζόμαστε ότι  $G\cong G'\rtimes \langle b\rangle\cong G'\rtimes C_3$ . Παρατηρούμε ότι  $G' \lhd G$  αφού  $V_4 \lhd A_4$ . Από την άλλη, από το πόρισμα 2.2.4 έπεται ότι η υποεπέκταση

$$1 \longrightarrow C_n \longrightarrow \pi^{-1}(\langle b \rangle) \longrightarrow \langle b \rangle \longrightarrow 1 \tag{2.41}$$

διασπάται, συνεπώς υπάρχει ένας ομομορφισμός

$$j: \langle b \rangle \hookrightarrow C_n \rtimes \langle b \rangle \hookrightarrow G$$

τέτοιος ώστε  $j(\langle b \rangle) \cap C_n = \{1\}$ . Για να αποδείξουμε τον ισχυρισμό θα πρέπει να δείξουμε ότι  $j(\langle b \rangle) \cap G' = 1$ . Έστω  $x \in j(\langle b \rangle) \cap G'$ . Αν  $x \neq 1$  τότε  $x \in (\langle b \rangle)$  έχει τάξη 3. Τέλος παρατηρούμε ότι το τετράγωνο χάθε στοιχείου της G' ανήχει στην  $\langle S \rangle$ . Αυτό μας δίνει ότι για το x, που γράφεται στην μορφή  $R^iS^j$ , έχουμε  $x^3 = xx^2 = R^iS^jS^k$  άρα  $x \in \langle S \rangle$  χαι  $x^2 \in C_n$ . Αφού  $j(\langle b \rangle) \cap C_n = \{1\}$  έχουμε  $x^2 = 1$  χαι x = 1.

**d)**  $\{P_{1,i}\}_{i=1,\dots,6}\subsetneq A_R$ . Στην περίπτωση αυτή όλες οι θέσεις  $P_{1,i}$   $i=1,\dots,6$  και τουλάχιστον μία από τις  $P_{2,j}$  και  $P_{3,j}$   $j=1,\dots,4$  διακλαδίζεται στην επέκταση  $F/F_0$ . (Υπενθυμίζουμε ότι οι θέσεις  $P_{2,j}$   $P_{3,j}$  έχουν διαφορετικό τύπο διακλάδωσης αν και μόνο αν

(3,n)=1. Υποθέτουμε ότι η  $P_{1,1}$  σταθεροποιείται από το a και ότι  $P_{2,1}$ σταθεροποιείται από το b. Χρησιμοποιώντας το πόρισμα 2.2.4 έχουμε ότι ο ομομορφισμός  $\beta$  είναι τετριμμένος και η επέκταση ομάδων είναι κεντρική. Επιπλέον υπάρχουν στοιχεία  $R\in\pi^{-1}(a)$  και  $S\in\pi^{-1}(b)$  τέτοια ώστε

$$\langle R \rangle \cong C_{2n}, \langle S \rangle \cong C_{3n}.$$

Η ομάδα  $Gal(F/F_0) \cong C_n$  είναι χοινή υποομάδα των  $\langle R \rangle, \langle S \rangle$  οπότε, διαλέγοντας χατάλληλους γεννήτορες R, S, έχουμε τις παραχάτω σχέσεις μεταξύ των R, S,

$$R^{2n} = 1, R^2 = S^3.$$

Συμβολίζουμε με  $\pi$  την προβολή  $G\to G/C_n$ . Αφού το  $\pi(RS)=ab$  έχει τάξη 3 στην  $A_4$  έχουμε και την επιπρόσθετη σχέση  $(RS)^3=R^{2k}$  μεταξύ των R,S. Ορίζουμε την ομάδα  $G_1$ 

$$G_1 := \langle R, S | R^{2n} = 1, R^2 = S^3, (RS)^3 = R^{2k} \rangle.$$
 (2.42)

Προφανώς  $\langle R^2 \rangle$  είναι μία κανονική υποομάδα της  $G_1$  και  $G_1/\langle R^2 \rangle \cong A_4$  άρα  $G_1 \cong G$ . Θα αποδείξουμε ότι υπάρχει μόνο μία ομάδα με τον τύπο διακλάδωσης της περίπτωσης d), δηλαδή υπάρχει μόνο μία ομάδα που να ορίζεται από τις σχέσεις της (2.42). Δυστυχώς, δεν μπορέσαμε να βρούμε ένα τρόπο προσδιορισμού του k σε κλειστή μορφή. Με την βοήθεια του προγράμματος υπολογιστικής άλγεβρας MAGMA [18] υπολογίσαμε την τιμή του k για διαφορετικές τιμές του n:

Θα αποδείξουμε τώρα ότι υπάρχει μόνο μία ομάδα G με τον τύπο διακλάδωσης της περίπτωσης d. Αφού η επέκταση στην περίπτωση d) είναι κεντρική έχουμε

$$H^2(A_4, C_n) \cong \mathbb{Z}_{(n,2)} \times \mathbb{Z}_{(n,3)}$$
.

Θα μετρήσουμε το πλήθος  $i(A_4,C_n)$  των μη ισομόρφων ομάδων G, που παίρνουμε επεκτείνοντας την ομάδα  $A_4$  με  $C_n$ . Στην περίπτωση (n,3)=(n,2)=1 από τον παραπάνω τύπο συνομολογίας έχουμε ότι η επέχταση διασπάται και η ομάδα G είναι ισόμορφη με την  $C_n \times A_4$ . Στην περίπτωση (n,2)=1, (n,3)=3 η υποεπέχταση

$$1 \longrightarrow C_n \longrightarrow \pi^{-1}(V_4) \longrightarrow V_4 \longrightarrow 1$$

διασπάται από το θεώρημα Zassenhaus , ([14], σελ. 162) και, σύμφωνα με το λήμμα 2.2.7, έχουμε δύο δυνατότητες για την δομή της G:

$$G \cong C_n \rtimes A_4 \, \acute{\eta} \, G \cong V_4 \rtimes C_{3n}$$
.

Στην περίπτωση (n,2)=2, (n,3)=1 έχουμε  $H^2(A_4,C_n)\cong \mathbb{Z}_2$ . Οι δύο ομάδες που εμφανίζονται είναι ισόμορφες με τις δύο ομάδες που βρήκαμε στην περίπτωση c).

Ας υποθέσουμε ότι (n,2)=2, (n,3)=3. Θα αποδείξουμε ότι το πλήθος των μη ισόμορφων κεντρικών επεκτάσεων της  $A_4$  με  $C_n$  είναι  $i(A_4,C_n)=4$ . Γράφουμε το  $n=2^a3^bm$  με (m,2)=(m,3)=1. Υπάρχουν μόνο δύο μη ισόμορφες επεκτάσεις  $G_i'$  i=1,2 της μορφής

$$1 \longrightarrow C_{3^b m} \longrightarrow G'_i \longrightarrow A_4 \longrightarrow 1,$$

όπως δείξαμε στην περίπτωση (n,2)=1, (n,3)=3. Η ομάδα G δίνεται σαν μία επέχταση των  $G_i'$ , δηλαδή

$$1 \longrightarrow C_{2^a} \longrightarrow G \longrightarrow G'_i \longrightarrow 1.$$

Ισχυριζόμαστε ότι η G έχει δύο δυνατότητες για κάθε επιλογή των  $G'_i$  i=1,2. Πράγματι,

$$H^1(C_{3^b m}, C_{2^a}) = Hom(C_{3^b m}, C_{2^a}) \cong 0$$

συνεπώς η παρακάτω ακολουθία (restriction - inflation)

$$0 \longrightarrow H^2\left(\frac{G_i'}{C_{2^bm}}, C_{2^a}\right) \longrightarrow H^2(G_i', C_{2^a}) \longrightarrow H^2(C_{3^bm}, C_{2^a}) \cong 0$$

είναι αχριβής, το οποίο μας δίνει ότι  $H^2(G_i',C_{2^a})\cong \mathbb{Z}_2$  αφού

$$H^2\left(\frac{G_i'}{C_{3^b m}}, C_{2^a}\right) = H^2(A_4, C_{2^a}) \cong \mathbb{Z}_2.\Box$$

Προκειμένου να αποδείξουμε ότι ο τύπος διακλάδωσης είναι υλοποιήσιμος κατά περίπτωση θα πρέπει να βρούμε ένα divisor  $D\in\mathcal{D}_n(A_4,A_R\subset A,\beta)$  βαθμού  $0 \bmod n$ .

- a) Ο τύπος διακλάδωσης σε αυτή την περίπτωση υλοποιήται από το λήμμα 2.1.7.
- b) Αν  $A_R=\{P_{2,1},...,P_{2,4},P_{3,1},...,P_{3,4}\}$  παίρνουμε s τροχιές  $O(P_i,A_4)$  όπου  $P_i$  δεν σταθεροποιείται από την  $A_4$  και θέτουμε  $\lambda(P_i)\equiv 1 \bmod n,\ \lambda(P_{2,j})\equiv -\lambda(P_{3,j})\bmod n.$  Έτσι  $\deg(D)\equiv 12s$  και μπορούμε να διαλέξουμε το πλήθος των τροχιών s κατά τέτοιο τρόπο ώστε  $\deg(D)\equiv 0 \bmod n.$  Αν  $A_R=\{P_{2,1},...,P_{2,4}\}$  παίρνουμε s τροχιές  $O(P_i,A_4)$  όπου  $P_i$  δεν σταθεροποιείται από την  $A_4$  και θέτουμε  $\lambda(P)\equiv 1 \bmod n$  για όλα τα  $P\in \mathrm{supp}(D).$  Ο βαθμός του D είναι

$$\deg(D) = 4 + 12s.$$

Συνεπώς, αφού (n,3)=1 έχουμε ότι  $(n,12)\mid 4$ , άρα μπορούμε να βρούμε s τέτοιο ώστε  $D\equiv 0 \bmod n$ .

c) Έχουμε  $A_R = \{P_{1,1}, ..., P_{1,6}\}$ . Έστω  $n_0$  το χομμάτι του n για το οποίο

$$\beta(b) \equiv 1 \bmod n_0.$$

Από το λήμμα 2.1.6 είναι αρχετό να αποδείξουμε ότι  $\deg(D)\equiv 0 \bmod n_0$ . Παίρνουμε s το πλήθος τροχιές  $O(P_i,A_4)$  όπου  $P_i$  δεν παραμένει σταθερό από την  $A_4$  και θέτουμε  $\lambda(P)\equiv 1 \bmod n$  για όλα τα  $P\in \mathrm{supp}(D)$ . Υπολογίζουμε ότι

$$\deg(D) = 6 + 12s.$$

Αφού  $n \equiv 2 \mod 4$  ή  $n \equiv 1 \mod 2$  έχουμε ότι  $(n_0, 12) \mid 6$ , συνεπώς μπορούμε να βρούμε ένα s τέτοιο ώστε  $\deg(D) \equiv 0 \mod n_0$ .

d)  $\{P_{1,i}\}_{i=1,\dots,6} \subsetneq A_R$ . Επιλέγουμε s τροχιές  $O(P_i,A_4)$  όπου  $P_i$  δεν σταθεροποιείται από την  $D_m$ . Αν

$$A_R = \{P_{1,1}, ..., P_{1,6}, P_{2,1}, ..., P_{2,4}\}$$

τότε θέτουμε  $\lambda(P_{1,i}) \equiv 1 \bmod n$  για i=1,...,6,  $\lambda(P_{2,j}) \equiv -1 \bmod n$  για j=1,...,4. Αν  $A_R=\{P_{1,1},...,P_{1,6},P_{2,1},...,P_{2,4},P_{3,1},...,P_{3,4}\}$  τότε θέτουμε  $\lambda(P_{1,i}) \equiv 1 \bmod n$  και  $\lambda(P_{2,i}) \equiv -\lambda(P_{3,i}) \bmod n$  i=1,...,6, j=1,...,4. Οι βαθμοί των παραπάνω divisors είναι

$$deg(D) = 2 + 12s \text{ xal } deg(D) = 6 + 12s.$$

Μπορούμε να πάρουμε το s έτσι ώστε  $\deg(D)\equiv 0 \bmod n$ . Πράγματι, όπως στις περιπτώσεις, b) και c) παρατηρούμε  $n\equiv 2 \bmod 4$  ή  $n\equiv 1 \bmod 2$  και, αν οι θέσεις  $P_{3,1},\ldots,P_{3,4}$  δεν διακλαδίζονται στην  $F/F_0$  τότε (n,3)=1 από την παρατήρηση 2.1.5

### 2.2.8 Η ομάδα $A_5$

Η ομάδα  $A_5$  εμφανίζεται ως ομάδα αυτομορφισμών του ρητού σώματος συναρτήσεων με τους παρακάτω τύπους διακλάδωσης, τους οποίους θα χειριστούμε ταυτόχρονα:

- α) Στην επέχταση  $F_0/F_0^{A_5}$  τρεις θέσεις  $p_1,p_2,p_3$  της  $F_0^{A_5}$  διαχλαδίζονται, με δείχτες διαχλάδωσης  $e_1=2,e_2=3,e_3=5$  αντίστοιχα. Για την χαραχτηριστιχή p θα πρέπει να υποθέσουμε ότι  $p\neq 2,3,5$ .
- β) Στην επέχταση  $F_0/F_0^{A_5}$  δύο θέσεις  $p_1,p_2$  διακλαδίζονται με βαθμούς διακλάδωσης  $e_1=6,e_2=5$  αντίστοιχα. Σε αυτή την περίπτωση η χαρακτηριστική p=3.

Θεώρημα 2.2.15  $A_{\zeta}$  υποθέσουμε ότι η ομάδα  $G_0=G/C_n$  είναι ισόμορφη με την  $A_5$ . H συνομολογιακή κλάση  $\alpha\in H^2(A_5,C_n)$  που περιγράφει την G καθορίζεται από την συνομολογιακή κλάση που αντιστοιχεί στην υποεπέκταση μιάς 2-Sylow υποομάδας  $H_2$ .

Στην περίπτωση που (n,2)=1 ή που όλες οι θέσεις του  $F_0$  υπέρ του  $p_1$  αναλύονται στην επέχταση  $F/F_0$  τότε  $G\cong C_n\times A_5$ . Διαφορετικά η ομάδα G δέχεται μία παράσταση μέσω γεννητόρων και σχέσεων ως εξής:

$$\left\langle \begin{array}{ccc} X,Y,Z,T \mid & T^n = X^3 = 1, Y^2 = T, Z^2 = T, (XY)^3 = T^l, (YZ)^3 = T^o, \\ & (XZ)^2 = T^m, XTX^{-1} = T, ZTZ^{-1} = T, YTY^{-1} = T \end{array} \right\rangle,$$

για χάποιους αχέραιους  $m, l, o \in \{1, ..., n\}$ .

#### Απόδειξη:

Η ομάδα  $A_5$  είναι μία απλή μη αβελιανή ομάδα άρα ο ομομορφισμός δράσης

$$\beta: A_5 \longrightarrow \mathbb{Z}_n^*$$

είναι τετριμμένος και η επέκταση

$$1 \longrightarrow C_n \longrightarrow G \longrightarrow A_5 \longrightarrow 1 \tag{2.43}$$

κεντρική. Υπολογίσαμε ότι  $H^2(A_5,C_n)\cong \mathbb{Z}_{(n,2)}$ . Αν ο n είναι περιττός τότε

$$G \cong C_n \times A_5$$
.

Υποθέτουμε τώρα ότι ο n είναι άρτιος. Από τη πρόταση (2.2.2) έχουμε ότι η συνάρτηση περιορισμού

$$\mathbb{Z}_2 \cong H^2(A_5, C_n) = H^2(A_5, C_n)_{(2)} \stackrel{1-1}{\longrightarrow} H^2(H_2, C_n) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2,$$

$$\alpha \longmapsto res_{A_5 \to H_2}(\alpha)$$
(2.44)

όπου  $H_2 \cong V_4$  είναι η 2-Sylow υποομάδα της  $A_5$ , είναι «1-1».

Θεωρούμε την επέχταση  $F_0/F_0^{H_2}$  η οποία είναι βαθμού 4. Οι θέσεις του  $F_0^{H_2}$  που διαχλαδίζονται στην επέχταση  $F_0/F_0^{H_2}$  βρίσχονται υπεράνω της θέσης  $p_1$ . Για να μελετήσουμε την ομάδα  $\pi^{-1}(H_2)$  θα ξεχωρίσουμε τις παραχάτω περιπτώσεις: είτε όλες οι θέσεις  $F_0$  υπέρ την  $p_1$  αναλύονται στην επέχταση  $F/F_0$ , είτε όλες οι θέσεις του  $F_0$  υπέρ της  $p_1$  διαχλαδίζονται στην  $F/F_0$ .

Στην πρώτη περίπτωση από την μελέτη των διεδρικών επεχτάσεων έχουμε  $(H_2\cong V_4\cong D_2)$  και η συνομολογιαχή κλάση  $res_{A_5\to H_2}(a)$  στην  $H^2(H_2,C_n)$  είναι τετριμμένη, και αφού η συνάρτηση περιορισμού (2.44) είναι «1-1» η συνομολογιαχή κλάση a είναι επίσης τετριμμένη. Άρα

$$G \cong C_n \times A_5$$
.

Στην περίπτωση που όλες οι θέσεις του  $F_0$  υπέρ της  $p_1$  διακλαδίζονται στην  $F/F_0$ , απο την μελέτη των επεκτάσεων διεδρικών ομάδων, έχουμε ότι η περίπτωση αυτή μπορεί να εμφανιστεί

μόνο όταν  $n\equiv 2mod4$ . Θα εχφράσουμε την ομάδα G μέσω γεννητόρων και σχέσεων. Είναι γνωστό [14] σελ. 138 ότι η ομάδα  $A_5$  δέχεται την παρακάτω παράσταση μέσω γεννητόρων και σχέσεων:

$$A_5 = \langle x, y, z \mid x^3 = y^2 = z^2 = (xy)^3 = (yz)^3 = (xz)^2 \rangle.$$
 (2.45)

Έστω T ένας γεννήτορας της χυχλιχής ομάδας  $C_n$ . Η ομάδα ανάλυσης των θέσεων του F που επεχτείνουν την θέση  $p_1$  έχει μία χυχλιχή υποομάδα τάξης 2n. Έστω X,Y στοιχεία τάξης 2n, τέτοια ώστε  $\pi(X)=x$ ,  $\pi(Y)=y$ . Μπορούμε να επιλέξουμε τα X,Y έτσι ώστε  $Y^2=X^2=T$ . Εφαρμόζοντας την  $\pi$  στα γινόμενα των X,Y και χρησιμοποιόντας τις σχέσεις μεταξύ των γεννητόρων της  $A_5$  όπως αυτές δίνονται στην (2.45) χαταλήγουμε στην παραχάτω παράσταση της G:

$$\left\langle \begin{array}{ccc} X,Y,Z,T \mid & T^n = X^3 = 1, Y^2 = T, Z^2 = T, (XY)^3 = T^l, (YZ)^3 = T^o, \\ & (XZ)^2 = T^m, XTX^{-1} = T, ZTZ^{-1} = T, YTY^{-1} = T \end{array} \right\rangle,$$

όπου  $m,l,o\in\{1,...,n\}$ . Οι τιμές των αχέραιων m,l,o μπορούν να υπολογιστούν χάνοντας χρήση της παράστασης της  $\pi^{-1}(V_4)$  μέσω γεννητόρων και σχέσεων. Η πραγματοποίηση αυτών των υπολογισμών είναι δύσκολη, και δεν μπορέσαμε να βρούμε ένα τρόπο να τις πραγματοποιήσουμε γενικά. Κάνοντας χρήση του προγράμματος υπολογιστικής άλγεβρας MAGMA [18] για συγκεκριμένες τιμές του n, μπορέσαμε να υπολογίσουμε «πειραματικά» ότι μπορούμε να επιλέξουμε m=1=l=1 για n=2 και  $m=1,o=3,l=2+\frac{n-2}{4}$  για n>2,  $n\equiv 2 \bmod 4$ .  $\square$ 

Έστω D ένας divisor στο σύνολο  $\mathcal{D}_n(A_5, A_R \subset A, \beta)$ 

$$D = \sum_{i=1}^{3} a_i \sum_{P|p_i} P + \sum_{i=1}^{s} \lambda(P_i) \sum_{P \in O(P_i, A_5)} P$$

όπου  $a_i=0$  αν οι θέσεις  $p_i$  δεν ανήκουν στο  $A_R$  και  $a_i=\lambda(P_{i,j})$  αν οι θέσεις του  $F_0$  υπέρ της  $p_i$  ανήκουν στο  $A_R$ . Με  $P_{i,j}$  θα συμβολίζουμε μια τυχαία θέση  $p_i$ . Ο βαθμός του D στην περίπτωση α) είναι

$$\deg(D) = a_1 30 + a_2 20 + a_3 12 + 60 \sum_{i=1}^{s} \lambda_i(P_i),$$

Αυτό μας δίνει ότι η συνθήκη

$$(60, n) \mid a_1 30 + a_2 20 + a_3 12,$$

είναι αναγκαία και ικανή για να εμφανίζεται αυτός ο τύπος διακλάδωσης. Ομοίως στην περίπτωση b) η συνθήκη

$$(60, n) \mid a_1 10 + a_2 12,$$

είναι αναγκαία και ικανή για να εμφανίζεται ο τύπος διακλάδωσης της περίπτωσης b).

#### 2.2.9 Η ομάδα $S_4$

Υποθέτουμε ότι  $G/C_n\cong S_4$ . Η περίπτωση αυτή εμφανίζεται μόνο στις χαραχτηριστιχές  $p\neq 2,3$ . Στην επέχταση  $F_0/F_0^{S_4}$  διαχλαδίζονται τρεις θέσεις  $q_1,q_2,q_3$  του σώματος  $F_0$ , με βαθμούς διαχλάδωσης  $e_1=2,e_2=3,e_3=4$ . Έστω  $\{P_{1,i}\}_{1\leq i\leq 12},\{P_{2,j}\}_{1\leq j\leq 8},\{P_{3,k}\}_{1\leq k\leq 6}$  τα σύνολα των θέσεων του  $F_0$  που βρίσχονται υπεράνω των  $q_1,q_2,q_3$ , αντίστοιχα. Η ομάδα  $S_4$  δέχεται την παραχάτω παράσταση σε γεννήτορες χαι σχέσεις:

$$S_4 = \langle x, y \mid y^2, x^4, (x^{-1}y)^3 = 1 \rangle,$$
 (2.46)

ενώ η  $A_4$  είναι η υποομάδα της  $S_4$  που παράγεται απο τα στοιχεία  $x^2,yx.$ 

 $\mathrm O$  τύπος διαχλάδωσης της  $S_4$  συγχρινόμενος με αυτόν της  $A_4$  δίνεται από το παραχάτω διάγραμμα

**Θεώρημα 2.2.16** Έστω ότι η ομάδα  $G/C_n=G_0$  είναι ισόμορφη με την συμμετρική ομάδα  $S_4$ . Διαχρίνουμε τις παραχάτω περιπτώσεις για την ομάδα αυτομορφισμών της G. a)  $\{P_{1,i}\}_{1\leq i\leq 12}\cup\{P_{3,k}\}_{1\leq k\leq 6}\subset A_R$ . Η δράση της  $S_4$  επί της  $C_n$  είναι τετριμμένη. Αν (n,2)=1 τότε  $G\cong C_n imes S_4$  ενώ αν  $(n,2)=2,\ n\equiv 2mod4$  τότε η ομάδα G δέχεται την παραχάτω παράσταση σε όρους γεννητόρων σχέσεων

$$G = \langle X, Y, T \mid T^n = 1, Y^2 = X^4 = XTX^{-1} = YTY^{-1} = T, (X^{-1}Y)^3 = T^k \rangle,$$

για κάποιο  $k \in \{1, ..., n\}$ .

b)  $G \cong C_n \rtimes S_4$  σε όλες τις υπόλοιπες περιπτώσεις.

**Απόδειξη:** Η συνάρτηση  $\Phi$  της πρότασης 2.2.2

$$H^{2}(S_{4}, C_{n}) = \bigoplus_{p=2,3} H^{2}(S_{4}, C_{n})_{(p)} \xrightarrow{\Phi} H^{2}(H_{2}, C_{n}) \oplus H^{2}(H_{3}, C_{n})$$

$$\alpha = \alpha_{2} + \alpha_{3} \longmapsto res_{S_{4} \to H_{2}}(\alpha_{2}) + res_{S_{4} \to H_{3}}(\alpha_{3})$$

είναι ένα προς ένα, όπου  $H_2$  (αντις.  $H_3$ ) είναι οποιαδήποτε 2-Sylow υποομάδα (αντις. 3-Sylow). Θα αποδείξουμε το παρακάτω

**Λήμμα 2.2.17**  $A \lor G/C_n \cong S_4$ , τότε η συνάρτηση:

$$H^{2}(S_{4}, C_{n}) = \longrightarrow H^{2}(H_{2}, C_{n})$$

$$\alpha = \alpha_{2} + \alpha_{3} \longmapsto res_{S_{4} \to H_{2}}(\alpha_{2})$$

είναι επίσης ένα προς ένα.

**Απόδειξη:** Αν  $A_R \supset \{P_{2,j}\}_{1 \le j \le 8} \cup \{P_{3,k}\}_{1 \le k \le 6}$ ή  $A_R \supset \{P_{1,i}\}_{1 \le i \le 12}$  τότε η δράση της  $S_4$ επί της  $C_n$  είναι τετριμμένη, συνεπώς  $H^2(S_4,\overline{C}_n)=\mathbb{Z}_{(2,n)}\times\mathbb{Z}_{(2,n)}$ . Αν  $A_R\cap\{P_{2,j}\}_{1\leq j\leq 8}=\emptyset$ τότε από την μελέτη των επεκτάσεων κυκλικών ομάδων, έχουμε ότι  $res_{S_4 o H_3}(\alpha) = 0$ . Τέλος  $αν A_R ⊃ \{P_{2,j}\}_{1 < j < 8}$   $ανδ A_R ∩ \{P_{3,k}\}_{1 < k < 6} = \emptyset$ , τότε απο την μελέτη της περίπτωσης b) στην μελέτη της  $A_4$  έχουμε ότι (n,3)=1, και συνεπώς  $H^2(H_3,C_n)=0$ .  $\square$ 

 ${
m A}$ ποδείξαμε ότι η δομή της ομάδας G καθορίζεται από την δομή της υποεπέκτασης

$$1 \longrightarrow C_n \longrightarrow \pi^{-1}(D_4) \longrightarrow D_4 \longrightarrow 1.$$

Θεωρούμε τον παρακάτω πύργο επεκτάσεων:

Ο τύπος διακλάδς<br/>σης του  $q_2$  στην επέκταση  $F_0/F_0^{S_4}$  δεν επηρεάζει τον τύπο διακλάδωσης της επέχτασης  $F_0/F_0^{D_4}$ . Θα πρέπει να θεωρήσουμε τις παραχάτω περιπτώσεις:  $1. \ A_R \cap \{P_{1,i}\}_{1 \leq i \leq 12} = \emptyset \text{ χαι } \{P_{3,k}\}_{1 \leq k \leq 6} \subset A_R \text{ ή}$ 

1. 
$$A_R \cap \{P_{1,i}\}_{1 \leq i \leq 12} = \emptyset$$
 and  $\{P_{3,k}\}_{1 \leq k \leq 6} \subset A_R$  if  $A_R \cap \{P_{3,k}\}_{1 \leq k \leq 6} = \emptyset$  and  $\{P_{1,i}\}_{1 \leq i \leq 12} \subset A_R$ .

Και στις δύο παραπάνω περιπτώσεις, η δράση της  $S_4$  στην  $C_n$  είναι τετριμμένη. Επιπλέον το  $y\in S_4$  σταθεροποιεί μια θέση του  $F_0$  υπέρ του  $q_1$  και μια θέση του  $F_0$  υπέρ του  $q_3$ . Συνεπώς από την παρατήρηση 2.1.5 έχουμε ότι (n,2)=1. Δηλαδή η ομάδα συνομολογίας  $H^2(S_4,C_n)=0$ , και  $G\cong C_n\times S_4$ .

- 2.  $A_R \cap \{P_{1,i}\}_{1 \leq i \leq 12} = A_R \cap \{P_{3,k}\}_{1 \leq k \leq 6} = \emptyset$ . Σε αυτή την περίπτωση από την μελέτη των επεχτάσεων διεδριχών ομάδων έχουμε  $res_{S_4 \to D_4}(\alpha) = 0$ , δηλαδή  $\alpha = 0$  χαι  $G \cong C_n \rtimes S_4$ .
- 3.  $\{P_{1,i}\}_{1\leq i\leq 12}\cup \{P_{3,k}\}_{1\leq k\leq 6}\subset A_R$ . Σε αυτή την περίπτωση η δράση του  $S_4$  επί της  $C_n$  είναι τετριμμένη. Συνεπώς αν (n,2)=1 τότε  $G\cong C_n\times S_4$ . Αν (n,2)=2 τότε από την μελέτη των επεκτάσεων διεδρικών ομάδων, η περίπτωση αυτή μπορεί να εμφανιστεί μόνο  $n\equiv 2mod4$ .

Έστω T γεννήτορας της χυχλιχής ομάδας  $C_n$ . Θεωρούμε στοιχεία X,Y στο G τάξεων 4n χαι 2n αντίστοιχα, τέτοια ώστε  $\pi(X)=x$  χαι  $\pi(Y)=y$ . Μπορούμε να διαλέξουμε τα X,Y χατά τέτοιο τρόπο ώστε  $X^4=T$  χαι  $Y^2=T$ . Επιπλέον, έχουμε τις σχέσεις  $XTX^{-1}=T$  χαι  $YTY^{-1}=T$ . Εφαρμόζοντας την  $\pi$  στα γινόμενα των X,Y χαι χάνοντας χρήση της παράστασης (2.46) χαταλήγουμε στην παραχάτω παράσταση για την G:

$$G = \langle X, Y, T \mid T^n = 1, Y^2 = X^4 = XTX^{-1} = YTY^{-1} = T, (X^{-1}Y)^3 = T^k, \rangle,$$

για κάποιο  $k\in\{1,...,n\}$ . Αν και η δομή της G μπορεί να προσδιορισθεί από την δομή της  $\pi^{-1}(V_4)$  είναι πολύ δύσκολο να υπολογίσουμε την ακριβή τιμή του k γενικά. Κάνοντας χρήση του προγράμματος MAGMA [18] υπολογίσαμε το k για διάφορες τιμές του  $n,\,n\equiv 2\,\mathrm{mod}\,4$ . Σε όλα τις τιμές του n που υπολογίσαμε  $k=2+\frac{n-2}{4}$ .  $\square$ 

Προκειμένου να αποδείξουμε ότι οι παραπάνω τύποι διακλάδωσης είναι υλοποιήσιμοι θα πρέπει να βρούμε ένα divisor  $D\in\mathcal{D}_n(S_4,A_R\subset A,\beta)$  με  $deg D\equiv 0 \bmod n$ . Όπως και στην περίπτωση της ομάδας  $A_5$  καταλήγουμε στην παρακάτω συνθήκη

$$(n_0, 24) \mid a_1 12 + a_2 8 + a_3 6,$$

ως ικανή και αναγκαία συκνθήκη για  $\deg(D) \equiv 0 \bmod n_0$ , όπου  $a_i = 0$  αν οι θέσεις  $P_{i,j}$  του  $F_0$  που επεκτείνουν το  $p_i$  δεν διακλαδίζονται στην επέκταση και  $a_i = \lambda(P_{i,j}) \neq 0$ ,, διαφορετικά.

## 2.2.10 Οι ομάδες PSL(2,q) και PGL(2,q).

Στην περίπτωση αυτή η ομάδα  $G_0=G/C_n$  είναι ισόμορφη με την PSL(2,q) ή με την PGL(2,q). Στην επέχταση  $F_0/F_0^{G_0}$  διαχλαδίζονται μόνο δύο θέσεις  $p_1,p_2$ . Είναι αδύνατον να δωθεί μία γενιχή παράσταση της G μέσω γεννητόρων χαι σχέσεων αφού δεν υπάρχει όσον γνωρίζουμε, ανάλογη γενιχή παράσταση των ομάδων PSL(2,q) χαι PGL(2,q) σε όρους γεννητόρων σχέσεων.

Θα αποδείξουμε το παρακάτω:

Θεώρημα 2.2.18 Έστω  $G_0 = G/C_n$  ομάδα ισόμορφη με την PSL(2,q) ή με την PGL(2,q), όπου q είναι δύναμη της χαρακτηριστικής. Η συνομολογιακή κλάση  $\alpha \in H^2(G_0,C_n)$  καθορίζεται από τον περιορισμό  $res_{G_0 \to H_2}(\alpha)$  σε μία 2-Sylow υποομάδας  $H_2$ .

Ιδιαίτερα, όταν (n,2)=1, ή όταν οι θέσεις του  $F_0$  που επεχτείνουν τις  $p_1,p_2$  αναλύονται στην επέχταση  $F/F_0$  τότε  $G\cong C_n\rtimes G_0$ .

Απόδειξη: Θα αποδείξουμε πρώτα το παρακάτω

**Λήμμα 2.2.19** Για  $G_0 = PSL(2,q), PGL(2,q), η$  ομάδα  $H^2(G_0,C_n)$  είναι μία 2-ομάδα.

Απόδειξη: Ξεχωρίζουμε τις παρακάτω δύο περιπτώσεις:

Περίπτωση 1.  $G_0 = PSL(2,q), (q,2) = 1$  ή  $G_0 = PGL(2,2^f) = PSL(2,2^f).$ 

Αφού PSL(2,q), όπου  $q=p^f$  είναι δύναμη της χαρακτηριστικής, είναι απλή ομάδα, η δράση της  $G_0$  επί της  $C_n$  είναι τετριμμένη.

Υπολογίσαμε ότι

$$H^2(PSL(2,q),C_n) \cong \left\{ \begin{array}{lll} \mathbb{Z}_{(2,n)} & \text{an} & p^f \neq 9 \\ \mathbb{Z}_{(6,n)} & \text{an} & p^f = 9 \end{array} \right.$$

Παρατηρούμε ότι αν  $p^f=9$  τότε (n,6)=(n,2) αφού υποθέσαμε ότι η χαρακτηριστική p δεν διαιρεί το n, συνεπώς  $H^2(PSL(2,q),C_n)=\mathbb{Z}_{(2,n)}$ .

**Περίπτωση 2.**  $G_0 = PGL(2,q), (q,2) = 1.$  Ο πυρήνας του ομομορφισμού δράσης

$$\beta: PGL(2,q) \longrightarrow \mathbb{Z}_n^*$$

είναι ή  $\ker \beta = PGL(2,q)$  ή  $\ker \beta = PSL(2,q)$ . Στην πρώτη περίπτωση η επέχταση είναι χεντριχή και  $H^2(PGL(2,q),C_n) = \mathbb{Z}_{(n,2)} \times \mathbb{Z}_{(n,2)}$ . Παρατηρούμε ότι

$$H^{1}(PSL(2,q), C_{n}) \cong Hom(PSL(2,q), C_{n}) = 0,$$

αφού η PSL(2,q) είναι απλή και μη αβελιανή. Γράφουμε την ακολουθία inflation-restriction

$$0 \longrightarrow H^2\left(\frac{PGL(2,q)}{PSL(2,q)},C_n\right) \longrightarrow H^2(PGL(2,q),C_n) \longrightarrow H^2(PSL(2,q),C_n) \cong \mathbb{Z}_{(2,n)}$$

και αφού  $PGL(2,q)/PSL(2,q)\cong \mathbb{Z}_2$  έχουμε ότι  $H^2(PGL(2,q),C_n)$  είναι μία 2-ομάδα.  $\square$  Επιστρέφουμε στην απόδειξη του 2.2.18. Ο μονομορφισμός  $\Phi$  της πρότασης 2.2.2

$$H^{2}(G_{0},C_{n}) = \bigoplus_{t|q(q^{2}-1)} H^{2}(PGL(2,q),C_{n})_{(t)} \xrightarrow{\Phi} \bigoplus_{t-Sylow} H^{2}(H_{t},C_{n})$$

όπου η  $H_t$  διατρέχει τις t-Sylow υποομάδες της  $G_0$  είναι ένα προς ένα και συνεπώς η συνάρτηση περιορισμού

$$\begin{array}{ccc} H^2(G_0, C_n) & \longrightarrow & H^2(H_2, C_n) \\ \alpha & \longmapsto & \beta = res_{G_0 \to H_2}(\alpha) \end{array}$$

είναι επίσης ένα προς ένα. Η 2-Sylow υποομάδα  $H_2$  είναι ισόμορφη με μία διεδρική ομάδα  $D_{2^K}$ , τάξης  $2^{K+1}$ , όπου  $K = \max\{v_2(e_1), v_2(e_2)\}$ .

Επιπλέον αν (n,2)=2 τότε η ομάδα συνομολογίας μηδενίζεται, συνεπώς  $G\cong C_n\rtimes G_0$ , ενώ από την μελέτη των επεκτάσεων των διεδρικών ομάδων έχουμε ότι αν όλες οι θέσεις του  $F_0$  υπεράνω των  $p_1,p_2$  αναλύονται στην επέκταση  $F/F_0$ , τότε  $\beta=res_{G_0\to H_2}(\alpha)=1$ , συνεπώς  $G\cong C_n\rtimes G_0$  επίσης.  $\square$ 

Έστω D ένας divisor στο  $\mathcal{D}_n(G_0,A_R\subset A,\beta)$ , και  $n_0$  ο μεγαλύτερος διαιρέτης του n, τέτοιος ώστε  $\beta(\sigma)\equiv 1 \bmod n_0$ . Σύμφωνα με το λήμμα 2.1.7 έχουμε ότι  $\deg(D)\equiv 0 \bmod n \Leftrightarrow \deg(D)\equiv 0 \bmod n_0$ . Συνεπώς η παρακάτω συνθήκη

$$(n_0, q(q-1)(q+1)) \mid a_1q(q-1) + a_2(q+1)$$

είναι ικανή και αναγκαία για να έχουμε  $\deg(D) \equiv 0 \bmod n_0$ , όπου  $a_i = 0$  αν οι θέσεις του  $F_0$  υπεράνω των  $p_i$  ανήκουν στο  $A_B$  και  $a_i = \lambda(P)$ ,  $P \mid p_i$  διαφορετικά.

# Κεφάλαιο 3

$$x^n + y^m + 1 = 0$$

## 3.1 Η περίπτωση n=m

Η περίπτωση αυτή μελετήθηκε στις αρχές της δεκαετίας του 70 από τον Leopold, αλλά δημοσιεύτηκε πρόσφατα. Η δε περίπτωση n=q-1, όπου q είναι δύναμη της χαρακτηριστικής του σώματος είναι ιδιαίτερα ενδιαφέρουσα, αφού τα σώματα συναρτήσεων αυτών των καμπύλων είναι αμφίρητα ισοδύναμα με τα σώματα συναρτήσεων του Hermit, σώματα με υπερβολικά μεγάλο πλήθος αυτομορφισμών σε σχέση με το γένος τους, και μέγιστα όσων αφορά το πλήθος των  $\mathbb{F}_q$  ρητών σημείων τους.

Ο Leopold απόδειξε ότι η ομάδα αυτομορφισμών G των σωμάτων συναρτήσεων των καμπύλων Fermat είναι ισόμορφη προς

$$G \cong \left\{ \begin{array}{ll} \mu(n)^2 \rtimes S_3 & \text{an} & n-1 \neq q \\ PGU(3,q^2) & \text{an} & n-1 = q \end{array} \right.$$

# 3.2 Η περίπτωση $n \neq m$

Στα επόμενα θα συμβολίζουμε με  $F_{n,m}$  το σώμα συναρτήσεων μίας αλγεβρικής καμπύλης της μορφής  $x^n+y^m+1=0$ , ορισμένης υπέρ το αλγεβρικά κλειστό σώμα k χαρακτηριστικής  $p\geq 0$ .

Παρατηρούμε ότι το σώμα  $F_{n,m}$  αποτελεί χυχλιχή επέχταση του Kummer των σωμάτων k(x) και k(y). Έστω  $P_{(x=a)}, (P_{(y=b)}$  αντίστοιχα) οι θέση του  $k(x), \ (k(y)$  αντίστοιχα ) που αντιστοιχεί στο σημείο x=a, (y=b αντίστοιχα) του  $\mathbb{P}^1(k)$ . Θα συμβολίζουμε με  $v_p$  την εχτίμηση του k(x) που αντιστοιχεί στην θέση P.

$$\upsilon_P(x^n+1) = \upsilon_P\left(\prod_{i=1}^n (x-\zeta_i)\right) = \left\{ \begin{array}{ll} 1 & \text{ an } & P = P_{(x=\zeta_i)} \\ -n & \text{ an } & P = P_{(x=\infty)} \\ 0 & & \text{διαφορετικά} \end{array} \right.$$

συνεπώς ο αριθμός  $r_P$  των θέσεων υπεράνω της P και οι αντίστοιχοι βαθμοί διακλάδωσης  $e_p$  υπολογίζονται:

$$r_P = \left\{ \begin{array}{lll} 1 & \text{an} & P = P_{(x=\zeta_i)} \\ (n,m) & \text{an} & P = P_{(x=\infty)} \\ m & \text{diamoreticá} \end{array} \right. \quad e_P = \left\{ \begin{array}{lll} m & \text{an} & P = P_{(x=\zeta_i)} \\ \frac{m}{(n,m)} & \text{an} & P = P_{(x=\infty)} \\ 1 & \text{diamoreticá} \end{array} \right.$$

όπου  $(\zeta_i)_{i=1,\dots,n}$  είναι οι n-οστές ρίζες του -1. Εξ αιτίας της συμμετρίας ανάμεσα στα m

και η έχουμε:

$$r_P = \left\{ \begin{array}{lll} 1 & \text{an} & P = P_{(y=\epsilon_j)} \\ (n,m) & \text{an} & P = P_{(y=\infty)} \\ n & \text{διαφορετικά} \end{array} \right. \quad e_P = \left\{ \begin{array}{lll} n & \text{an} & P_{(y=\epsilon_j)} \\ \frac{n}{(n,m)} & \text{an} & P_{(y=\infty)} \\ 1 & \text{διαφορετικά} \end{array} \right.$$

όπου  $(\epsilon_j)_{j=1,\dots,m}$  είναι οι m-οστές ρίζες του -1. Οι χύριοι divisors των δύο γενοποιών συναρτήσεων x,y του σώματος  $F_{n,m}$  είναι:

$$(x) = P_{(x=0)} - P_{(x=\infty)} = \sum_{i=1}^{m} \alpha_i - \frac{m}{(n,m)} \sum_{j=1}^{(n,m)} \gamma_j$$

$$(y) = P_{(y=0)} - P_{(y=\infty)} = \sum_{i=1}^{n} \beta_i - \frac{n}{(n,m)} \sum_{j=1}^{(n,m)} \delta_j,$$

όπου  $\alpha_i, \gamma_j, \beta_i, \delta_j$  είναι οι επεκτάσεις, στο σώμα  $F_{n,m}$ , των θέσεων  $P_{(x=0)}, P_{(x=\infty)} \in k(x)$  και  $P_{(y=0)}, P_{(y=\infty)} \in k(y)$  αντίστοιχα. Υπολογίσαμε επίσεις ότι μία βάση του χώρου των ολόμορφων διαφορικών είναι η

$$x^i y^j \omega, (i, j) \in I.$$

όπου Ι είναι το σύνολο των δεικτών:

$$I := \left\{ (i,j) \in \mathbb{N}^2 : \frac{2g-2}{(n,m)} - \frac{im+nj}{(n,m)} \ge 0 \right\}.$$
 (3.1)

και

$$\omega := \frac{dx}{my^{m-1}} = -\frac{dy}{nx^{n-1}}.$$

## 3.3 Υπολογισμός ημιομάδων του Weierstrass

Ορίζουμε για μία θέση P την ημιομάδα του Weierstrass

$$E(P) := \{ \nu \in \mathbb{N} : \exists f \in F_{n,m}/(f)_{\infty} = \nu P \}.$$

Τα στοιχεία του E(P) ονομάζονται πολιχοί αριθμοί στο P και τα στοιχεία του  $\mathbb{N}\backslash E(P)$  ονομάζονται πηδήματα στο P. Για κάθε divisor D του σώματος συναρτήσεων  $F_{n,m}$  ορίζουμε τον πεπερασμένης διάστασης k διανυσματικό χώρο  $\mathcal{L}(D):=\{f:(f)+D\geq 0\}$ . Θέτουμε  $\ell(D):=\dim_k \mathcal{L}(D)$ . Παρατηρούμε ότι  $s\in E(P)$  αν και μόνο αν  $\ell(sP)=\ell((s-1)P)+1$ .

Σκοπός αυτής της παραγράφου είναι ο υπολογισμός ενός κομματιού του συνόλου E(P) για τις θέσεις  $P=\alpha_1$  ή  $\beta_1$ . Παρατηρούμε ότι οι θέσεις  $\alpha_s,\ s=1,...,m,\ \beta_t,\ t=1,...,n$  έχουν την ίδια ημιομάδα του Weierstrass. Τα σύνολα

$$x^i y_1^j \omega \ \ \acute{\eta} \ x_1^i y^j \omega \ \ (i,j) \in I,$$

όπου  $x_1=x-\zeta_1,\ y_1=y-\epsilon_1,$  είναι επίσης βάσεις του χώρου των ολόμορφων διαφορικών. Επιπλέον ισχύει ότι:

$$\upsilon_{\alpha_1}(x^iy_1^j\omega)=i+nj,\quad \upsilon_{\beta_1}(x_1^iy^j\omega)=mi+j.$$

Από το θεώρημα Riemann-Roch έχουμε ότι

$$s \in E(P) \Leftrightarrow \ell(sP) = \ell((s-1)P) + 1 \Leftrightarrow \ell(W - (s-1)P) - \ell(W - sP) = 0,$$

όπου W είναι ένας κανονικός divisor του σώματος  $F_{n,m}$ . Διαλέγουμε για W τον divisor του  $\omega$ . Η διάσταση του χώρου  $\mathcal{L}(W-sP)$  μπορεί να θεαθεί σαν το πλήθος των γραμμικώς ανεξαρτήτων ολομόρφων διαφορικών που έχουν ρίζα στην θέση P τάξης  $\geq s$ , αφού

$$\mathcal{L}(W - sP) := \{ f : (f) \ge -(\omega) + sP \} = \{ (f\omega) \ge sP \}.$$

Από την άλλη, αφού 3.1) έχουμε  $0 \le i < n$  και  $0 \le j < m$ , για  $(i,j) \in I$ , το οποίο αποδεικνύει ότι οι συναρτήσεις

$$\Phi_n: \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{N} \\ (i,j) & \longmapsto & i+nj+1 \end{array} \right. \quad \Psi_m: \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{N} \\ (i,j) & \longmapsto & mi+j+1 \end{array} \right.$$

είναι «ένα προς ένα». Συνεπώς οι εχτιμήσεις  $v_{a_1}(x^iy_1^j\omega)$  παίρνουν διαφορετικές τιμές για διαφορετικά (i,j) και το ίδιο ισχύει και για τις εχτιμήσεις  $v_{\beta_1}(x_1^iy^j\omega)$ , άρα η εχτίμηση ενός ολόμορφου διαφορικού είναι

$$v_{a_1}\left\{\sum_{(i,j)\in I}\lambda_{i,j}x_1^iy^j\omega\right\}=\min_{\lambda_{i,j}\neq 0}v_{a_1}(\lambda_{i,j}x_1^iy^j\omega)=\min_{(i,j)\text{ tétola áste }\lambda_{i,j}\neq 0}\{i+nj\}.$$

Άρα

$$\ell(W - s\alpha_1) = |\{i + nj \ge s, (i, j) \in I\}|$$

και ομοίως

$$\ell(W - s \ \beta_1) = |\{mi + j \ge s, (i, j) \in I\}|$$

Συμπερένουμε ότι  $\ell(W-(s-1)\alpha_1)\neq \ell(W-s\alpha_1)$  αν και μόνο αν υπάρχει  $(i,j)\in I:i+nj=s-1$ . Ο πληθάριθμος του συνόλου  $\{i+nj+1,(i,j)\in I\}=\Phi_n(I)$  είναι g, άρα τα πηδήματα στην θέση  $\alpha_1$  είναι  $\Phi_n(I)$ . Ομοίως τα πηδήματα στην θέση  $\beta_1$  είναι  $\Psi_n(I)$ .

Για τις ανάγκες μας είναι αρχετή η μελέτη ενός μιχρού μόνο μέρους της ημιομάδας του Weierstrass. Θα περιοριστούμε στην μελέτη των πηδημάτων στην θέση  $\alpha_1$  τα οποία είναι ειχόνες, της συνάρτησης  $\Phi_n$ , του συνόλου  $I_1=\{(i,0)\in I\}$ . Σύμφωνα με την εξίσωση (3.1) το  $(i,0)\in I_1$  αν χαι μόνο αν

$$i \le n - 1 - \frac{n + (n, m)}{m}.$$
 (3.2)

Διαιρούμε το n+(n,m) με  $m:n+(n,m)=\kappa m+r,$  όπου  $0\leq r< m.$  Αν θέσουμε

$$t := \left\{ egin{array}{lll} n-\kappa & ext{ dtan} & r=0 \ n-\kappa-1 & ext{ dtan} & r>0 \end{array} 
ight. ,$$

τότε από την (3.2) έχουμε ότι  $i \leq t-1$ . Επιπλέον  $n+1=\Phi_n((0,1))$  είναι ένα πήδημα για την θέση  $a_1$ . Τέλος, η δομή των πολιχών αριθμών χαι των πηδημάτων στο  $\alpha_1$  μέχρι το n+1 είναι:

$$0, \underbrace{1, 2, \dots t}_{\text{phhiata}}, \underbrace{t+1, \dots n}_{\text{policol ariduol}}, \underbrace{n+1}_{\text{phhia}}, \dots$$

$$\underbrace{n+1}_{\text{phhiata}}, \dots$$

$$(3.3)$$

Ομοίως για την θέση  $P=\beta_1$  υπολογίζουμε το χομμάτι του  $E(\beta_1)$  το οποίο είναι της μορφής  $\Psi_n((0,j)),\,(0,j)\in I.$  Διαιρούμε το m+(n,m) με  $n\colon m+(n,m)=\lambda n+v,\,0\leq v< n.$  Αφού m< n, το  $\lambda$  πρέπει να είναι μηδέν η ένα. Όπως και στην μελέτη του  $E(\alpha_1)$  αν θέσουμε

$$t' := \left\{ \begin{array}{ccc} m - \lambda & \text{ όταν} & \upsilon \ = 0 \\ m - \lambda - 1 & \text{ όταν} & \upsilon \ > 0 \end{array} \right.$$

τότε  $j \leq t'-1$ . Παρατηρούμε ότι  $\lambda=1$  αν και μόνο αν v=0, συνεπώς t'+1=m και η δομή της ημιομάδας του Weierstrass στην θέση  $\beta_1$ , μέχρι το m+1 είναι:

$$0, \quad \underbrace{1, \quad 2, \quad \dots, \quad m-1}_{\pi\eta\delta\eta\mu\alpha\tau\alpha}, \quad \underbrace{m}_{\pi\circ\lambda\iota\kappa\acute{o}\varsigma}, \quad \underbrace{m+1}_{\pi\dot{\eta}\delta\eta\mu\alpha}, \quad \dots$$

$$(3.4)$$

**Λήμμα 3.3.1** Εστω  $n = m\kappa_1 + r_1, 0 \le r_1 < m, \eta$  διαίρεση του n με m. O αριθμός t ισούτε με  $n - \kappa_1 - 1$ . Επιπλέον αν m + 1 < n τότε m < t + 1. Στην περίπτωση m + 1 = n έχουμε m = t + 1.

Απόδειξη: Θα εξετάσουμε δύο περιπτώσεις:

- 1. m|n άρα (n,m)=m. Αυτό σημαίνει ότι  $\kappa=\kappa_1+1$  χαι r=0, συνεπώς  $t=n-\kappa_1-1$ .
- 2.  $m \nmid n$  άρα (n, m) < m. Προφανώς

$$n + (n, m) = \kappa_1 m + r_1 + (n, m).$$

Διαχωρίζουμε τις παραχάτω υποπεριπτώσεις:

- Αν  $r_1 + (n, m) = m$ , τότε  $\kappa = \kappa_1 + 1$ , r = 0 και συνεπώς  $t = n \kappa_1 1$ .
- Αν  $r_1 + (n, m) < m$ , τότε  $\kappa = \kappa_1, r > 0$  και συνεπώς  $t = n \kappa_1 1$ .
- Η περίπτωση  $r_1 + (n, m) > m$  δεν μπορεί να συμβεί αφού  $(n, m) | r_1$ .

Τελικά η ανισότητα m< t+1 είναι ισοδύναμη με την  $\frac{m-r_1}{m-1}<\kappa_1$ , αφού m>1. Το αριστερό μέρος της παραπάνω ανισότητας είναι μικρότερο της μονάδας εκτός αν  $r_1=0,1$ . Συνεπώς  $\frac{m-r_1}{m-1}\geq\kappa_1$  μόνο αν  $\kappa_1=1$  και  $r_1=0,1$  (n>m άρα  $\kappa_1\geq 1$ ). Άρα η ισότητα t+1=m ισχύει αν και μόνο αν n=m+1.  $\square$ 

**Λήμμα 3.3.2** Δεν υπάρχει αυτομορφισμός  $\sigma$  τέτοιος ώστε:  $\sigma(\alpha_i) = \beta_i$ .

Απόδειξη: Για χάθε θέση P χαι για χάθε αυτομορφισμό  $\sigma \in G$   $E(P) = E(\sigma P)$ . Προχειμένου να αποδείξουμε τον παραπάνω ισχυρισμό παρατηρούμε ότι  $E(\alpha_1) \neq E(\beta_1)$ . Πράγματι,  $m \in E(\beta_1)$  χαι αν m+1 < n τότε από το λήμμα 3.3.1 m < t+1 άρα  $m \notin E(\alpha_1)$ . Στην περίπτωση που m+1=n,  $n \notin E(\beta_1)$  άλλα  $n \in E(\alpha_1)$ .  $\square$ 

**Λήμμα 3.3.3**  $A \lor P$  είναι μια θέση του  $F_{n,m}$  και

$$P \notin \{\{\alpha_i\}_{i=1,\dots,m} \cup \{\beta_j\}_{j=1,\dots,n} \cup \{\gamma_k\}_{k=1,\dots,(n,m)}\}$$

τότε για χάθε αυτομορφισμό  $\sigma \in Aut(F_{n,m})$  ισχύει ότι  $\sigma(P) \notin \{\beta_i\}_{j=1,\dots,n}$ .

**Απόδειξη:** Θα αποδείξουμε ότι  $E(P) \neq E(\beta_j)$ . Για αυτό θα δουλέψουμε με τον χώρο των γραμμικών μορφών  $\mathcal{L}(W)^*$  δηλαδή με τις μορφές

$$\Phi: \mathcal{L}(W) \longrightarrow k.$$

Η θέση P περιορίζεται στις πεπερασμένες θέσεις  $P_{(x=a)}, P_{(y=b)}$  των σωμάτων συναρτήσεων k(x), k(y) αντιστοίχως. Θέτουμε  $\tilde{x}:=x-a, \quad \tilde{y}:=y-b.$  Το σύνολο  $\{\tilde{x}^i \tilde{y}^j \omega, \ (i,j) \in I\}$  σχηματίζει μία βάση του χώρου των ολόμορφων διαφοριχών, άρα χάθε ολόμορφο διαφοριχό  $\omega_1$  μπορεί να γραφεί σαν:

$$\omega_1 = \sum_{(i,j)\in I} \gamma_{i,j} \tilde{x}^i \tilde{y}^j \omega, \qquad \gamma_{i,j} \in k.$$

Έστω T μία τοπική παράμετρος του δακτυλίου εκτίμησης στην θέση P. Οι συναρτήσεις  $\tilde{x}, \tilde{y}$  μπορούν να εκφραστούν σαν τυπικές δυναμοσειρές του T:

$$\tilde{x} = \sum_{k \ge 1} a_k T^k , \quad \tilde{y} = \sum_{l \ge 1} b_l T^l.$$

Επιπλέον, αφού η θέση P δεν διαχλαδίζεται σε χαμία επέχταση  $F_{n,m}/k(x)$ ,  $F_{n,m}/k(y)$  έχουμε ότι  $a_1b_1 \neq 0$ . Οι s δυνάμεις των δυναμοσειρών  $\tilde{x}, \tilde{y}$  συμβολίζονται με:

$$\tilde{x}^s = \sum_{k>1} a_k^{(s)} T^k, \quad \tilde{y}^s = \sum_{l>1} b_l^{(s)} T^l.$$

Από τον νόμο πολλαπλασιασμού δυναμοσειρών υπολογίζουμε:

$$\begin{cases} a_k^{(s)} = b_k^{(s)} = 0, & \text{av} \quad k < s \neq 0 \\ a_s^{(s)} = a_1^s, b_s^{(s)} = b_1^s, & \text{av} \quad k = s \neq 0 \end{cases} \qquad \begin{cases} a_k^{(0)} = b_k^{(0)} = 1 & \text{av} \quad k = 0 \\ a_k^{(0)} = b_k^{(0)} = 0 & \text{av} \quad k > 0 \end{cases}$$
 (3.5)

Ορίζουμε τις γραμμικές μορφές:

$$\Phi^{(s)} := \left\{ \begin{array}{ccc} \mathcal{L}(W) & \longrightarrow & k \\ & \omega_1 & \longmapsto & \langle \omega_1, \Phi^{(s)} \rangle := \sum_{(i,j) \in I} \gamma_{i,j} \phi_{i,j}^{(s)} \end{array} \right.$$

όπου

$$\phi_{i,j}^{(s)} := \sum_{k+l=s} a_k^{(i)} b_l^{(j)}, \qquad (i,j) \in I,$$
(3.6)

Το τυχαίο ολόμορφο διαφορικό γράφεται:

$$\omega_1 = \left(\sum_{s \ge 0} \langle \omega_1, \Phi^{(s)} \rangle T^s \right) \omega.$$

Από την επιλογή της θέσης P έχουμε ότι  $P \nmid (\omega)$  άρα ο διανυσματικός χώρος  $\mathcal{L}(W-sP)$  χαρακτηρίζεται από τις εξισώσεις:  $0=\langle \omega,\Phi^{(s_1)}\rangle, \forall \ 0\leq s_1\leq s-1$ . Είναι σαφές ότι:

$$\mathcal{L}(W - s_1 P) = Ker \Phi^{(s_1 - 1)}|_{\mathcal{L}(W - (s_1 - 1)P)} < \mathcal{L}(W - (s_1 - 1)P).$$

Άρα  $\mathcal{L}(W-(s-1)P)\neq\mathcal{L}(W-sP)$  αν και μόνο αν  $\Phi^{(s-1)}$  είναι γραμμικά ανεξάρτητη από τις μορφές  $\Phi^{(s_1)},\ 0\leq s_1\leq s-2,$  συνεπώς:

$$s \in E(P) \Leftrightarrow \exists \xi_0,...,\xi_{s-2} : \Phi^{(s-1)} = \sum_{k=0}^{s-2} \xi_k \Phi^{(k)}.$$

Παρατηρούμε ότι κάθε γραμμική μορφή  $\Phi^{(s)}$  αντιστοιχεί σε ένα  $1 \times g$  πίνακα, τον

$$\Phi^{(s)} \leftrightarrow (\phi_{(0,0)}^{(s)}, \phi_{(1,0)}^{(s)}, ..., \phi_{(t-1,0)}^{(s)}, ..., \phi_{(i,j)}^{(s)}, ...) \qquad (i,j) \in I$$

Από τις (3.6) και (3.5) έχουμε ότι

$$\phi_{i,0}^{(s)} = \sum_{k+l=s} = a_k^{(i)} b_l^{(0)} = a_s^{(i)},$$

άρα το αριστερό επάνω κομάτι του πίνακα των πρώτων t-1 μορφών είναι

|           | (0,0) | (1,0) |   | (t-1,0)     |    |
|-----------|-------|-------|---|-------------|----|
| s = 0     | 1     | 0     |   | 0           |    |
| s=1       | *     | $a_1$ |   | 0           |    |
| :         | :     | :     | ٠ | 0           |    |
| s = t - 1 | *     | *     |   | $a_1^{t-1}$ | *  |
| :         | *     | *     |   | :           | ٠. |

δηλαδή οι πρώτες t-1 μορφές  $\Phi^{(s)}$  είναι γραμμικά ανεξάρτητες και έτσι  $1,...,t\notin E(P)$ . Στην περίπτωση που m+1< n ο ισχυρισμός μας έχει αποδειχτεί. Πράγματι,  $m\in E(\beta_i)$  και από το λήμμα 3.3.1 έχουμε ότι m< t+1 άρα  $m\notin E(P)$  και  $E(P)\neq E(\beta_i)$ .

Ας υποθέσουμε τώρα ότι n=m+1. Για να αποδείξουμε ότι  $E(P)\neq E(\beta)$  θα πρέπει να υπολογίσουμε ένα μεγαλύτερο χομμάτι της ημιομάδας του Weierstrass E(P). Ο υπολογισμός αυτός είναι αρχετά πολύπλοχος για τυχαία n,m. Θα χρησιμοποιήσουμε ένα θεώρημα του Leopoldt σχετιχά με τα σώματα συναρτήσεων του γενιχού τύπου Fermat.

Θεώρημα 3.3.4 Έστω F/k ένα σώμα συναρτήσεων με ένα μοντέλο στο  $\mathbb{A}^2(k)$  ορισμένο από ένα ανάγωγο πολυώνυμο δύο μεταβλητών  $F_n(x,y)=0$  βαθμού  $n\geq 4$  χωρίς ιδιομορφίες σε πεπερασμένα σημεία ή στο άπειρο. Αν P είναι μία θέση τέτοια ώστε  $P\nmid (x)_\infty, (y)_\infty, \mathrm{Diff}(F/k(y), \mathrm{Diff}(F/k(x))$  τότε  $\ell(\nu P)=1$  για  $\nu=0,...,n-2$ . Επιπλέον  $\ell((n-1)P)=2$  αν και μόνο αν

οποτεδήποτε  $\tilde{x} - \theta \tilde{y} \equiv 0 \mod P^2$ τότε  $\tilde{x} - \theta \tilde{y} \equiv 0 \mod P^{n-1}$ ,

όπου  $\theta \in k$ , και  $\tilde{x} = x - a$ ,  $\tilde{y} = y - b$ , a = x(P), b = y(P).

Απόδειξη: Πρόχειται για την πρόταση 4 στο άρθρο του Leopoldt ([17], σελ. 267) μαζί με τον χαραχτηρισμό των σωμάτων συναρτήσεων του «γενιχού τύπου Fermat », σε όρους των επιπέδων μοντέλων τους, όπως γίνεται στις σελίδες 262,263 του άρθρου του Leopoldt.  $\square$ 

Παρατηρούμε ότι τα σώματα συναρτήσεων  $F_{m+1,m}$ , είναι γενικού τύπου Fermat αφού το επίπεδο μοντέλο τους που δίνεται από την  $x^{m+1}+y^m+1=0$  δεν είναι ιδιόμορφο σε πεπερασμένα σημεία ή στο άπειρο. Για την θέση P έγουμε

$$P \nmid (x)_{\infty}, (y)_{\infty}, \text{Diff}(F/k(y), \text{Diff}(F/k(x)))$$

οπότε από το θεώρημα 3.3.4 έχουμε ότι  $t+1=n-1\in E(P)$  αν και μόνο αν

όταν 
$$\tilde{x} - \theta \tilde{y} \equiv 0 \mod P^2$$
 τότε  $\tilde{x} - \theta \tilde{y} \equiv 0 \mod P^{t+1}$ . (3.7)

Θέτουμε  $y_*:=\tilde{y}/b,\ x_*:=\tilde{x}/a$  όπου a=x(P),b=y(P) τα αλγεβρικά σημεία που αντιστοιχούν στην θέση P. Το πολυώνυμο ορισμού  $x^{m+1}+y^m+1$  της καμπύλης μπορεί να μετασχηματισθεί

$$(1+y_*)^m - 1 = \theta_* [(1+x_*)^{m+1} - 1], \qquad \theta_* = -\frac{a^{m+1}}{b^m} \neq 0, \infty.$$

Συνεπώς, κάνοντας χρήση του δυονυμικού θεωρήματος έχουμε

$$my_* - \theta_*(m+1)x_* = -\sum_{\nu=2}^m \left[ \binom{m}{\nu} y_*^{\nu} - \theta_* \binom{m+1}{\nu} x_*^{\nu} \right] + \theta_* x_*^n$$
 (3.8)

Τα στοιχεία  $x_*, y_*$  είναι τοπικές παράμετροι στην θέση P, άρα από την ( 3.8)

$$y_* - \theta_* \frac{m+1}{m} x_* \equiv 0 \operatorname{mod} P^2.$$
 (3.9)

Υποθέτουμε ότι  $n \ge 4$  και  $t+1=n-1 \in E(P)$  τότε από τις (3.7) και (3.9) έχουμε

$$y_* - \theta_* \frac{m+1}{m} x_* \equiv 0 \mod P^{t+1}.$$
 (3.10)

Επιπλέον από την (3.9) έχουμε  $y_*^{\nu} - \theta_*^{\nu} \left(\frac{m+1}{m}\right)^{\nu} x_*^{\nu} \equiv 0 \, \mathrm{mod} \, P^{\nu}$  συνεπώς κάνοντας χρήση του δεξιού μέρους της (3.8) καταλήγουμε στις παρακάτω συνθήκες:

$$\binom{m}{\nu} \frac{(m+1)^{\nu}}{m^{\nu}} \theta_*^{\nu} - \theta_* \binom{m+1}{\nu} = 0 \text{ yia } \nu = 1, ..., t+1 = n-1 = m.$$
(3.11)

Η περίπτωση m>3 (3.11) για  $\nu=2$  δίνει  $\binom{m}{2}\frac{(m+1)^2}{m^2}\theta_*^2-\theta_*\binom{m+1}{2}=0$ . Αφού  $p\nmid m,m+1$ ,  $\binom{m+1}{2}\neq 0$  συνεπώς  $\binom{m}{2}\neq 0$ . Αυτό δίνει  $p\nmid m-1$  άρα  $\theta_*=\frac{m^2}{(m-1)(m+1)}$ . Συνεχίζουμε με τον επόμενο συντελεστή  $\nu=3$ . Ισχύει ότι  $\binom{m}{3}\frac{(m+1)^3}{m^3}\theta_*^3-\theta_*\binom{m+1}{3}=0$  από όπου έχουμε ότι  $1\equiv 0 \bmod p$ , άτοπο. Έτσι  $t+1=n-1=m\notin E(P)$  άρα  $E(P)\neq E(\beta)$ . Χρησιμοποιήσαμε ότι  $p\neq 2,3$  και ότι 3< n-1. Δηλαδή το επιχείρημα μας δεν ισχύει για τις καμπύλες  $x^4+y^3+1=0$ ,  $x^3+y^2+1=0$  και  $x^2+y+1=0$ . Οι δύο τελευταίες καμπύλες δεν μας απασχολούν αφού έχουν γένη  $x^4+y^3+1=0$ . Οι Κlassen και Schaefer [16], απέδειξαν πρόσφατα ότι η καμπύλη  $x^4+y^3+1=0$  έχει  $x^4+y^3+1=0$ 

# 3.4 Τοπική μελέτη

Στην συνέχεια θα συμβολίζουμε με G την ομάδα των αυτομορφισμών, και με F το σώμα συναρτήσεων Fermat  $F_{n,m}$  ενώ με  $G(\beta)$  την ομάδα ανάλυσης της ομάδας G στην θέση  $\beta$ , όπου  $\beta=\beta_i$  για κάποιο i=1,...,n. Θα συμβολίζουμε με  $P_\zeta$  τον περιορισμό της θέσης  $\beta$  στο ρητό σώμα συναρτήσεων k(x). Θυμίζουμε ότι η ομάδα ανάλυσης ισούτε με την ομάδα αδράνειας  $G(\beta)=G_0(\beta)$ , αφού το σώμα ορισμού k είναι αλγεβρικά κλειστό. Θα αποδείξουμε ότι:

$$G(\beta) = \left\{ \begin{array}{cccc} C_m & \text{an} & m \not\mid n \\ C_{2m} & \text{an} & m \mid n, \; n-1 \; \text{den einal} \; p-\text{dúnalh} \\ \mathcal{E}_q \rtimes C_{m(q-1)} & \text{an} & m \mid n, \; n-1 = q \; \text{einal mia} \; p\text{-dúnalh} \\ \end{array} \right.,$$

όπου,  $C_x$  συμβολίζει μια χυχλιχή ομάδα τάξης x, και το  $\mathcal{E}_q$  συμβολίζει μια στοιχειώδης αβελιανή ομάδα τάξης q.

Από την μελέτη των ημιομάδων του Weierstrass στην θέση  $\beta$  βλέπουμε ότι ο χώρος  $\mathcal{L}(m\beta)$  είναι διδιάστατος και μια βάση δίνεται από τις συναρτήσεις  $\left\{1,\frac{1}{x-\zeta}\right\}$ . Η ομάδα  $G(\beta)$  αφήνει το χώρο  $\mathcal{L}(m\beta)$  αναλλοίωτο. Συνεπώς  $\sigma(\frac{1}{x-\zeta})=\mu+\lambda\frac{1}{x-\zeta},\ \mu,\lambda\in k$ . Το παραπάνω αποδεικνύει ότι κάθε αυτομορφισμός  $\sigma\in G(\beta)$  αφήνει το σώμα k(x) αναλλοίωτο. Θα συμβολίζουμε με  $\overline{G}(P_\zeta)$  την εικόνα της συνάρτησης περιορισμού

$$Res: \left\{ egin{array}{ll} G(eta) & \longrightarrow & \overline{G}(P_{\zeta}) \\ \sigma & \longmapsto & Res_{k(x)}\sigma \end{array} \right.$$

Προφανώς ο πυρήνας του περιορισμού είναι  $\mu(m) \triangleleft G(\beta)$ .

Ένα γεννοποιόν ριζικό του F υπέρ το σώμα k(x) είναι της μορφής  $y^\ell z$  όπου  $(\ell,m)=1$  και  $z\in k(x)$  ([12] σελ. 38). Για κάθε  $\sigma\in G(\beta),\, \sigma(k(x))=k(x),\,$  έτσι  $\sigma(y)$  είναι επίσης ένα γεννοποιόν ριζικό για την επέκταση  $F/k(x).\, \sigma(y)=y^{\ell\sigma}z_\sigma$  για ένα στοιχείο  $z_\sigma$  στο k(x). Έστω  $\tau$  ένας γεννήτορας της χυχλικής ομάδας  $\mu(m)=Gal(F/k(x)).\,$  Παρατηρούμε ότι

$$\sigma^{-1}\tau\sigma = \tau^{\ell_{\sigma}} \ \forall \sigma \in G(\beta)$$
 (3.12)

Θα συμβολίζουμε με  $G_1(\beta)$  την πρώτη ομάδα διαχλάδωσης της θέσης  $\beta$ . Η ομάδα  $G(\beta)=G_0(\beta)$  μπορεί να γραφεί σαν ένα ημιευθές γινόμενο μιας χυχλιχής ομάδας  $E:=G_0(\beta)/G_1(\beta)$  τάξεως πρώτης με το p με την p-ομάδα  $G_1(\beta)$ . Θα συμβολίζουμε με  $\pi$  την προβολή  $G_0(\beta)\longrightarrow G_0(\beta)/G_1(\beta)$ . Εφαρμόζοντας την  $\pi$  χαι στα δύο μέλη της (3.12)

$$\pi(\sigma^{-1}) \cdot \pi(\tau) \cdot \pi(\sigma) = \pi(\tau)^{\ell_{\sigma}} \quad \forall \sigma \in G(\beta).$$

Αφού E είναι αβελιανή και  $ord(\pi(\tau)) = ord(\tau) = m$  έχουμε ότι  $\ell_{\sigma} \equiv 1 \bmod m$  άρα

$$\sigma \tau = \tau \sigma$$
.

Επιπλέον, αφού  $\ell_{\sigma} \equiv 1 \mod m$ , όλοι οι αυτομορφισμοί  $\sigma$  του F που επεκτείνουν το τυχαίο  $\sigma_0 \in \overline{G}(P_{\zeta})$  είναι της μορφής

$$\sigma(y) = \theta_{\sigma} \cdot y \cdot z_{\sigma_0}, \ \sigma(x) = \sigma_0(x) \tag{3.13}$$

όπου  $z_{\sigma_0} \in k(x)$  και  $\theta_{\sigma}$  διατρέχει τις m-οστές ρίζες της μονάδας. Τα παραπάνω αποδυκνείουν ότι

 $k(x) \ni z_{\sigma}^{m} = \left(\frac{\sigma(y)}{y}\right)^{m} = \frac{\sigma(x^{n}+1)}{x^{n}+1}.$ 

Αντιστρόφως, αν  $\sigma_0 \in PGL(2,k)$ ,  $\sigma_0(P_\zeta) = P_\zeta$  και  $\frac{\sigma_0(x^n+1)}{x^n+1} = z_{\sigma_0}^m$  είναι μία m δύναμη για κάποιο  $z_{\sigma_0} \in k(x)$ , τότε οι αυτομορφισμοί  $\sigma$  του F που δίνονται από

$$\sigma(y) = \theta y z_{\sigma_0}, \sigma(x) = \sigma_0(x),$$

επεκτείνουν τον σ<sub>0</sub>. Αποδείξαμε το παρακάτω:

**Λήμμα 3.4.1** Έστω  $P_{\zeta}$  ο περιορισμός της θέσης  $\beta$  στο k(x). Ένα στοιχείο  $\sigma_0 \in PGL(2,k)$  τέτοιο ώστε  $\sigma_0(P_{\zeta}) = P_{\zeta}$  επεκτείνεται σε αυτομορφισμό του F αν και μόνο αν  $\sigma_0(x^n+1)$  διαφέρει από το  $x^n+1$  με ένα m-οστό παράγοντα  $z^m$ . Οι επεκτάσεις του  $\sigma_0$  στο F δίνονται από την (3.13).

Σύμφωνα με το λήμμα 3.4.1 θα πρέπει να προσδιορίσουμε τους αυτομορφισμούς  $\sigma$  του k(x) οι οποίοι σταθεροποιούν το  $P_{\zeta}$  και για τους οποίους

$$\sigma(x)^n + 1 = z^m \cdot (x^n + 1) \ \mu\varepsilon \ z \in k(x). \tag{3.14}$$

Αρχεί να γνωρίζουμε ότι η παραπάνω σχέση ισχύει μέχρι σταθερά στο k(x), αφού το k είναι αλγεβρικά κλειστό και κάθε στοιχείο στο k είναι μία m δύναμη. Γι αυτό αντί της (3.14) απαιτούμε την σχέση

$$\sigma(x)^n + 1 = c \cdot z^m \cdot (x^n + 1) \text{ as } c \in k, z \in k(x). \tag{3.15}$$

Αυτή είναι ισοδύναμη με την αντίστοιχη σχέση για τους κύριους divisors των συναρτήσεων. Ο κύριος divisor της  $x^n+1$  είναι (θα συμβολίζουμε χάριν απλότητας  $P_{\zeta_i}=P_{(x=\zeta_i)}$ )

$$(x^{n} + 1) = \sum_{1 \le i \le n} P_{\zeta_i} - nP_{\infty}.$$
 (3.16)

Παρατηρούμε ότι κάθε αυτομορφισμός  $\sigma$  του k(x) που είναι επεκτάσιμος στο F μεταθέτει τις θέσεις του k(x) που διακλαδίζονται στην επέκταση F/k(x) με τον ίδιο βαθμό.

Οι διακλαδιζόμενες θέσεις στην επέκταση F/k(x), είναι τα σημεία  $P_{\zeta_i}$ , τα οποία έχουν κοινό δείκτη διακλάδωσης m. Επίσεις, το σημείο στο άπειρο  $P_{\infty}$  έχει δείκτη διακλάδωσης  $\frac{m}{(n,m)}$ .

**Λήμμα 3.4.2** Κάθε αυτομορφισμός  $\sigma \in G(\beta)$  που σταθεροποιεί το  $P_{\infty}$  είναι ο ταυτοτικός.

Απόδειξη: Έστω  $\sigma_0 = \sigma|_{k(x)}$ , τέτοιος ώστε  $\sigma(P_\infty) = P_\infty$ . Από την (3.16) έχουμε ότι οι χύριοι divisors των συναρτήσεων  $\sigma(x^n+1), x^n+1$  είναι ίσοι, συνεπώς η (3.15) ισχύει με  $z \in k$ . Επιπλέον αφού ο  $\sigma_0$  χρατάει το  $P_\infty$  σταθερό έχουμε

$$\sigma_0(x) = a + bx$$
 όπου  $a, b \in k, b \neq 0$ .

Συνπεπώς,

$$\sigma(x)^{n} + 1 = (a + bx)^{n} + 1 = c \cdot (x^{n} + 1).$$

Αναλύουμε το αριστερό μέλος της παραπάνω εξίσωσης χρησιμοποιώντας το δυονιμικό θεώρημα. Αφού  $p \nmid n$  υπάρχει τουλάχιστον ένας δυονιμικός συντελεστής  $\binom{n}{i} \neq 0$ , όπου 0 < i < n. Συγκρίνοντας τους συντελεστές του  $x^i$  και στις δύο πλευρές της παραπάνω εξίσωσης βλέπουμε ότι

 $\binom{n}{i} a^{n-i} b^i = 0$ 

από όπου έχουμε a=0, δηλαδή  $\sigma(x)=bx$ . Άρα ο  $\sigma$  εκτός από το  $P_\infty$  σταθεροποιεί και το  $P_0$ . Άρα ο  $\sigma_0$  σταθεροποιεί τρία σημεία του ρητού σώματος συναρτήσεων k(x) και συνεπώς  $\sigma=1.\square$ 

Προχειμένου να μελετήσουμε την ομάδα  $\overline{G}(P_{\zeta})$  θα διαχρίνουμε τρεις περιπτώσεις:

Περίπτωση (i): 1<(n,m)< m. Στην περίπτωση αυτή, η  $P_{\infty}$  είναι η μοναδική θέση του k(x) η οποία έχει βαθμό διακλάδωσης  $\frac{m}{(n,m)}$ , συνεπώς η θέση  $P_{\infty}$  σταθεροποιείται από όλους τους επεκτάσιμους αυτομορφισμούς  $\sigma_0$  που σταθεροποιούν  $P_{\zeta}$ . Το λήμμα 3.4.2 εξασφαλίζει ότι  $\overline{G}(P_{\zeta})=1$ .

Περίπτωση (ii): (n,m)=m, δηλαδή m|n. Στην περίπτωση αυτή ένας μη τετριμμένος επεχτάσιμος αυτομορφισμός  $\sigma$  του k(x) που σταθεροποιεί το  $P_{\zeta}$  δίνεται από την

$$\sigma(x) = \frac{\zeta^2}{x} \tag{3.17}$$

όπου  $\zeta^n = -1$ . Πράγματι, αφού  $\zeta^{2n} = 1$  έχουμε

$$\sigma(x)^n + 1 = \frac{1}{x^n} + 1 = \frac{1 + x^n}{x^n}.$$

Παρατηρούμε ότι η (3.15) ισχύει με c=1 και  $z=\frac{1}{x^n/m}\cdot$  θυμίζουμε ότι m|n στην περίπτωση (ii). Επίσης ο αυτομορφισμός που δίνεται από την (3.17) αντιμεταθέτει τις θέσεις  $P_\infty$  και  $P_0$ . Κάθε άλλος αυτομορφισμός  $\sigma\in\overline{G}(P_\zeta)$  μεταθέτει τις θέσεις  $P_\zeta$ , αφού αυτές είναι ακριβώς οι θέσεις που διακλαδίζονται στην F, με βαθμό διακλάδωσης m. Θέτουμε

$$P_{\eta} = \sigma(P_{\infty})$$

με  $\eta \notin \{\zeta_1,...,\zeta_n\}$ . Υποθέτουμε επίσεις ότι  $\eta \neq \infty$  γιατί διαφορετικά η θέση  $P_\infty$  θα σταθεροποιούνταν από τον  $\sigma$  και από το λήμμα 3.4.2 θα είχαμε  $\sigma=1$ . Υπολογίζουμε

$$\sum_{1 \leq i \leq n} \sigma(P_{\zeta_i}) - n\sigma(P_{\infty}) = \sum_{1 \leq i \leq n} P_{\zeta_i} - nP_{\eta} = n(P_{\infty} - P_{\eta}) + \sum_{1 \leq i \leq n} P_{\zeta_i} - nP_{\infty}.$$

Εδώ,  $P_{\infty}-P_{\eta}$  είναι ο χύριος divisor της συνάρτησης  $\frac{1}{x-\eta}$ . Άρα η συνθήχη (3.15) ισχύει με  $z=\left(\frac{1}{x-\eta}\right)^{n/m}$ . (Υπενθυμίζουμε ότι στην περίπτωση αυτή m|n.) Από την άλλη, αφού  $\sigma(P_{\infty})=P_{\eta}$  έχουμε ότι ο  $\sigma$  είναι της μορφής

$$\sigma(x) = \frac{a+bx}{x-n}. (3.18)$$

Αντικαθιστώντας στην (3.15) και πολλαπλασιάζοντας με  $(x-\eta)^n$  βλέπουμε ότι η

$$(a+bx)^n + (x-\eta)^n = c \cdot (x^n+1) \tag{3.19}$$

είναι αναγκαία και ικανή συνθήκη για να επεκτείνεται ο αυτομορφισμός  $\sigma$  σε αυτομορφισμό του F. Όπως και παραπάνω, θέτουμε 0 < i < n τέτοιο ώστε  $\binom{n}{i} \neq 0$ . Συγκρίνοντας τους συντελεστές του  $x^i$  και στα δυο μέλη της (3.19) βλέπουμε ότι

$$a^{n-i}b^i = -(-\eta)^{n-i}. (3.20)$$

Αν  $\eta=0$  τότε  $a\neq 0$  ( διαφορετικά  $\sigma=1$ ) και συνεπώς b=0. Αφού ο  $\sigma$  αφήνει το  $P_{\zeta}$  σταθερό, η specialization  $x\longmapsto \zeta$  δίνει ότι  $\sigma(x)\longmapsto \zeta$  το οποίο με την σειρά του δίνει  $a=\zeta^2$ . Συνεπώς αν  $\eta=0$  παίρνουμε την involution που ήδη γράψαμε στην (3.17).

Υποθέτουμε τώρα ότι  $\eta \neq 0$ · τότε  $a \neq 0$  και  $b \neq 0$  σύμφωνα με την (3.20). Ας υποθέσουμε ότι υπάρχει ένα i τέτοιο ώστε και οι δύο συντελεστές  $\binom{n}{i} \neq 0$  και  $\binom{n}{i+1} \neq 0$ . Τότε η εξίσωση (3.20) ισχύει ταυτόχρονα για i και για i+1. Περνώντας στο πηλίκο έχουμε ότι  $ab^{-1} = -\eta$  και συνεπώς λόγω της (3.18) έχουμε  $\sigma(x) = \frac{b(x-\eta)}{x-\eta} = b$ , άτοπο. Άρα, αν υπάρχει ένας επιπλέον μη τετριμμένος αυτομορφισμός  $\sigma \in \overline{G}(P_\zeta)$ , ο οποίος να διαφέρει από την involution (3.17) δεν υπάρχουνε δυο διαδοχικοί ενδιάμεσοι διονυμικοί συντελεστές  $\binom{n}{i}$ ,  $\binom{n}{i+1}$  που να είναι ταυτόχρονα  $\neq 0$ .

**Λήμμα 3.4.3** Αν για όλα τα i = 1, ..., n - 2

$$\binom{n}{i} \neq 0 \Longrightarrow \binom{n}{i+1} = 0$$

και  $p \nmid n$  τότε n = 1 + q όπου q είναι μία p-δύναμη.

Απόδειξη: Συμβολίζουμε με  $a=\sum a_ip^i,b=\sum b_ip^i,\ 0\leq a_i,b_i< p$ , το p-αδιχό ανάπτυγμα δύο αχαιρέων αριθμών a,b. Αν  $a_i\leq b_i$  για όλα τα i τότε γράφουμε  $a\leq_p b$ . Είναι γνωστό ότι  $\binom{n}{i}\neq 0$  αν χαι μόνο αν  $i\leq_p n,[22]$  σελ. 73. Έστω  $n=n_0+n_1q_1+\ldots+n_sq_s$  το p-αδιχό ανάπτυγμα του n, όπου  $q_i=p^{s_i}$  χαι  $0< n_i<0$ . Παρατηρούμε ότι  $q_i\leq_p n$  χαι  $1+q_1\leq_p n$  άρα  $\binom{n}{q_i}\neq 0$  χαι  $\binom{n}{1+q_i}\neq 0$ . Από την συνθήχη του λήμματος έχουμε ότι  $n-2< q_i$ . Αφού δε η χαραχτηριστιχή είναι πρώτη προς το n,s=1 χαι  $n-1=q_1$ .  $\square$ 

Κάνοντας χρήση του λήμματος 3.4.3 παίρνουμε ότι

Στην περίπτωση (ii), αν n-1 δεν είναι δύναμη της χαραχτηριστικής p, τότε  $\overline{G}(P_{\zeta})$  είναι τάξης 2, και περιέχει μόνο την involution που δίνεται από την (3.17).

Απομένει να μελετήσουμε την περίπτωση (ii) όταν n-1=q είναι μία p-δύναμη. Είναι βολικό να αντικαταστήσουμε το ριζικό του Kummer με ένα άλλο ριζικό για την επέκταση F/k(x) το οποίο θα είναι ευκολότερο στο χειρισμό.

Θέτουμε

$$t := \frac{\zeta}{x - \zeta}, \qquad \text{arg } x = \zeta \cdot \frac{t + 1}{t}$$
 (3.21)

και

$$u := -t^n(x^n + 1). (3.22)$$

Αφού m|n, έχουμε ότι  $t^n$  είναι μία m δύναμη και συνεπώς το u είναι ένα επιτρεπτό ριζικό για την επέκταση του Kummer F/k(x). Χωρίς περιορισμό της γενικότητας μπορούμε να υποθέσουμε ότι  $\zeta=\zeta_1$ . Ο κύριος divisor του u είναι

$$(u) = n \cdot (t) + (x^{n} + 1) = n(P_{\infty} - P_{\zeta}) + \sum_{1 \le i \le n} P_{\zeta_{i}} - nP_{\infty} =$$

$$= \sum_{2 \le i \le n} P_{\zeta_{i}} - (n - 1)P_{\zeta}$$

Από την άλλη γνωρίζουμε ότι στην περίπτωση (ii) οι θέσεις  $P_{\zeta_i}$  μετατίθενται κάτω από την δράση του  $\sigma \in \overline{G}(P_\zeta)$ , και η θέση  $P_\zeta$  παραμένει σταθερή. Δηλαδή ο κύριος divisor του u μένει σταθερός από το  $\sigma$ .

Εξ ορισμού του t έχουμε ότι k(x)=k(t), και ότι ο πόλος του t είναι  $P_{\zeta}$ . Το στοιχείο u έχει την θέση  $P_{\zeta}$  σαν μοναδικό πόλο, με τάξη n-1=q. Συνεπώς το u είναι ένα πολυώνυμο

του t, βαθμού q. Το πολυώνυμο αυτό μπορεί να υπολογιστεί αχριβώς, χρησιμοποιόντας την (3.21) και την (3.22), έχοντας φυσικά υπόψην ότι n=q+1:

$$u = -t^n \left( \frac{\zeta^n (t+1)^n}{t^n} + 1 \right) = (t+1)^n - t^n = t^q + t + 1.$$

Είναι βολιχό να ξαναλλάξουμε την μεταβλητή t ώστε να απλοποίησουμε την μορφή του παραπάνω πολυωνύμου. Θέτουμε λοιπόν  $t=a_1+b_1t_1$  με  $a_1,b_1\in k$  τέτοια ώστε  $a_1^q+a_1=-1$  και  $b_1^q=-b_1$ , όπου  $b_1\neq 0$ . Στην συνέχεια θέτουμε  $u_1=-b_1^{-1}u$  και τελικά καταλήγουμε στην

$$u_1 = t_1^q - t_1$$
.

Από εδώ και στο εξής θα γράφουμε t αντί για  $t_1$  και u αντί για  $u_1$ . Αποδείξαμε ότι

Στην περίπτωση (ii) με n=q+1 υπάρχει ένας γεννήτορας t του k(x)=k(t) ο οποίος έχει την θέση  $P_{\zeta}$  σαν μοναδικό πόλο, και επιπλέον το πολυώνυμο  $u=t^q-t$  είναι ένα ριζικό για την επέκταση F/k(t). Ο κύριος divisor του u παραμένει αναλλοίωτος κάτω από κάθε  $\sigma \in \overline{G}(P_{\zeta})$ .

Αφού κάθε  $\sigma \in \overline{G}(P_{\zeta})$  αφήνει τον πόλο του t σταθερό είναι της μορφής

$$\sigma(t) = a + bt,$$

με  $a,b\in k$  και  $b\neq 0$ . Ένας τέτοιος αυτομορφισμός ανήκει στο  $\overline{G}(P_\zeta)$  αν και μόνο αν  $\sigma(u)=cu$  όπου  $0\neq c\in k$ , το οποίο σημαίνει

$$\sigma(t)^q - \sigma(t) = (a+bt)^q - (a+bt) = c \cdot (t^q - t)$$

με  $c \neq 0 \in k$ . Δηλαδή ισχύουν οι συνθήκες

$$a^{q} = a, c = b, b^{q} = b$$

Καταλήξαμε στο παρακάτω συμπέρασμα:

Στην περίπτωση (ii)με n=q+1, η ομάδα  $\overline{G}(P_{\zeta})$  αποτελείται αχριβώς από τους μετασχηματισμούς  $t\longmapsto a+bt$  των οποίων οι συντελεστές a,b περιέχονται στο σώμα  $\mathbb{F}_q$  με q-στοιχεία. Η ομάδα αυτή είναι ισόμορφη με την ομάδα των πινάχων

$$\left(\begin{array}{cc} 1 & 0 \\ a & b \end{array}\right) \qquad \text{ a. } a,b \in \mathbb{F}_q\,, b \neq 0.$$

Ιδιαίτερα η τάξη του $\overline{G}(P_{\zeta})$  είναι (q-1)q.

Περίπτωση (iii): (n,m)=1. Στην περίπτωση αυτή οι n+1 θέσεις  $P_{\zeta_1},...,P_{\zeta_n},P_{\infty}$  είναι αχριβώς οι θέσεις που διαχλαδίζονται στο F, όλες με βαθμό διαχλάδωσης m. Κάθε  $\sigma\in\overline{G}(P_{\zeta})$  αφήνει το  $P_{\zeta}$  αναλλοίωτο χαι συνεπώς μεταθέτει τα  $P_{\zeta_2},...,P_{\zeta_n},P_{\infty}$ .

Έστω  $\sigma(P_\infty)=P_\eta$ . Αν  $\eta=\infty$  τότε από το λήμμα 3.4.2 έχουμε ότι  $\sigma=1$ . Υποθέτουμε τώρα ότι  $\sigma\ne 1$  το οποίο σημαίνει ότι  $\eta\in\{\zeta_2,...,\zeta_n\}$ . Ο χύριος divisor του  $x^n+1$  απειχονίζεται μέσω της  $\sigma$  στον divisor

$$\sum_{1 \le i \le n} \sigma(P_{\zeta_i}) - nP_{\eta}.$$

Στο παραπάνω άθροισμα δεν εμφανίζεται ο όρος  $P_{\eta}$ , ενώ εμφανίζεται ένας όρος  $P_{\infty}$ . Αν από αυτό αφαιρέσουμε τον χύριο divisor του  $x^n+1$  τότε παίρνουμε

$$\left(\frac{\sigma(x^n+1)}{x^n+1}\right) = (n+1)(P_{\infty} - P_{\eta}). \tag{3.23}$$

Το δεξί μέλος είναι ο κύριος divisor της συνάρτησης  $(\frac{1}{x-\eta})^{n+1}$ . Από την άλλη, γνωρίζουμε ότι το δεξί μέλος είναι ο divisor μιας m δύναμης. Έτσι καταλήγουμε

$$m|n+1$$

σαν μια αναγκαία συνθήκη ώστε να υπάρχει ένας μη τετριμμένος αυτομορφισμός στην  $\overline{G}(P_{\zeta})$ . Η εξίσωση (3.23) μας δίνει ότι

$$σ(x)^n = \frac{c(x^n+1) - (x-\eta)^{n+1}}{(x-\eta)^{n+1}},$$
όπου  $c \in k$ .

Ο χύριος divisor του πολυωνύμου  $f(x) := c(x^n+1) - (x-\eta)^{n+1}$ , το οποίο είναι βαθμού n+1, είναι

$$\sum_{1 \le i \le n} A_i + P_{\eta} - (n+1)P_{\infty},$$

όπου  $A_i$ ,  $P_\eta$  είναι οι θέσεις, όχι κατ ανάγκην διαφορετικές, που αντιστοιχούν στις ρίζες του f(x). Από την άλλη, ο κύριος divisor του  $(x-\eta)^{n+1}$  είναι  $(n+1)(P_\eta-P_\infty)$  και αυτό μας δίνει ότι ο κύριος divisor του  $\sigma(x)^n$  είναι

$$(\sigma(x)^n) = \sum_{1 \le i \le n} A_i - nP_{\eta} .$$

Συνεπώς το πολυώνυμο f(x) έχει μία πολλαπλή ρίζα τάξης n. Αν  $\rho$  είναι αυτή η ρίζα, τότε

$$f(x) = c(x^{n} + 1) - (x - \eta)^{n+1} = c_1 \cdot (x - \eta)(x - \rho)^n, \tag{3.24}$$

για κάποιο  $c_1 \in k$ . Ξεχωρίζουμε δυο περιπτώσεις:

**α)**  $\rho = 0$ . Τότε η (3.24) γίνεται

$$c(x^{n}+1) - (x-\eta)^{n+1} = c_1(x-\eta)x^n = c_1x^{n+1} - c_1\eta x^n.$$
(3.25)

Αναπτύσουμε το αριστερό μέλος χρησιμοποιόντας τον διονυμικό τύπο

$$c(x^{n}+1) - (x-\eta)^{n+1} =$$

$$= -x^{n+1} + (-(n+1)(-\eta) + c) x^n - \sum_{i=1}^{n-1} {n+1 \choose i} (-\eta)^{n+1-i} x^i + c - (-\eta)^{n+1}.$$

Συγκρίνοντας τους συντελεστές του  $x^{n+1}$  στα δύο μέλη της (3.25) παίρνουμε  $c_1=-1$ , ενώ συγκρίνοντας τους συντελεστές του  $x^n$  και του σταθερού όρου παίρνουμε  $c=\eta$ . Επιπλέον για κάθε i=1,...,n έχουμε ότι

$$\binom{n+1}{i} = 0$$

το οποίο μαζί με το κριτήριο μηδενισμού ενός διονυμικού συντελεστή που δώθηκε στο λήμμα 3.4.3, δίνει ότι n+1=q είναι μία δύναμη της χαρακτηριστικής p. Αυτό όμως είναι αδύνατον αφού m|n+1 και (m,p)=1.

β)  $ρ \neq 0$ . Παρατηρούμε ότι το  $(x - ρ)^{n-1}$  διαιρεί το πολυώνυμο

$$g(x) := (n+1)f(x) - \frac{df(x)}{dx}(x-\eta) = c(x^n + n\eta x^{n-1} + (n+1)).$$

Επιπλέον έχουμε ότι το  $\eta$  είναι μία ρίζα του g(x), αφού  $\eta^n=-1$ , έτσι για μία σταθερά c' έχουμε

$$c(x^{n} + n\eta x^{n-1} + (n+1)) = c'(x - \eta)(x - \rho)^{n-1}.$$
(3.26)

Συγκρίνοντας τους συντελεστές του  $x^n$  και στα δύο μέλη της (3.26) καταλήγουμε στο ότι c'=c. Συγκρίνοντας τους συντελεστές του x και  $x^2$  και στα δύο μέλη της (3.26) παίρνουμε

$$(-\rho)^{n-2}(-\rho - \eta(n-1)) = 0 \Rightarrow -\rho = (n-1)\eta \tag{3.27}$$

$$(-\rho)^{n-3} \left( -\eta \binom{n-1}{2} - \rho(n-1) \right) = 0.$$
 (3.28)

Αντικαθιστούμε την (3.27) στην (3.28) για να πάρουμε

$$(-\rho)^{n-3}\eta \frac{(n-1)n}{2} = 0,$$

το οποίο είναι άτοπο, αφού από την (3.27)  $n-1 \neq 0$  (υπενθυμίζουμε ότι έχουμε υποθέσει για την χαρακτηριστική ότι  $p \neq 2$  και  $p \nmid n$ ).

Έχουμε υπολογίσει όλα τα στοιχεία στην ομάδα  $G(\beta)$ . Η ομάδα αυτή είναι τάξης

$$\mid \overline{G}(P_{\zeta} \mid) \mid \cdot \mid \mu(m) \mid = \left\{ \begin{array}{ccccc} m & \text{ an } & m \nmid n \\ 2m & \text{ an } & m \mid n \text{ και } n-1 \text{ den eίναι μία } p \text{ δύναμη} \\ mq(q-1) & \text{ an } & m \mid n \text{ και } n-1 = q \text{ είναι μία } p \text{ δύναμη} \end{array} \right.$$

Επιπλέον στις πρώτες δύο περιπτώσεις η τάξη του  $G(\beta)$  είναι πρώτη προς την χαραχτηριστιχή του σώματος p (υπενθυμίζουμε ότι έχουμε υποθέσει ότι  $p \neq 2$ ), συνεπώς η ομάδα  $G(\beta)$  είναι ισόμορφη με μία χυχλιχή ομάδα τάξης m (αντίστοιχα 2m). Στην τρίτη περίπτωση η ομάδα  $G(\beta)$  είναι το ημιευθές γινόμενο μιας χυχλιχής ομάδας τάξης m(q-1) με μία χανονιχή υποομάδα τάξης q[20, σελ. 68].

# 3.5 Δομή της ομάδας αυτομορφισμών

Θα συμβολίζουμε με  $O(\beta,G)$  την τροχιά της θέσης  $\beta$  κάτω από την δράση της G. Θα υπολογίσουμε την τάξη του |G| υπολογίζοντας την τάξη της  $O(\beta,G)$ . Έχουμε καθορίσει ποιες θέσεις του F δεν γίνεται να ανήκουν στην τροχιά  $\beta$  (λήμματα 3.3.2 και 3.3.3), συνεπώς

$$O(\beta,G)\subseteq\{\beta_1,\beta_2,...,\beta_n,\gamma_1,\gamma_2,...,\gamma_{(n,m)}\}.$$

Παρατηρούμε ότι τα  $\beta_i \in O(\beta,G)$  για i=1,...,n και ότι αν  $\gamma_{i_0} \in O(\beta,G)$  για κάποιο  $i_0$  τότε  $\gamma_i \in O(\beta,G)$  για όλες τις θέσεις  $\gamma_i$  i=1,...,(n,m) που επεκτείνουν την  $P_\infty$ .

Περίπτωση 1) Υποθέτουμε ότι  $m \nmid n$ . Τότε  $|O(\beta,G)| = n$  ή n+(n,m). Ας υποθέσουμε ότι  $|O(\beta,G)| = n+(n,m)$  και έστω  $H:=\mu(n)\times\mu(m)$ . Προφανώς η τάξη της τροχιάς της  $\beta$  υπό την δράση της H είναι  $|O(\beta,H)| = |H:H(\beta)| = n$ . Έχουμε αποδείξει ότι  $|G(\beta)| = \mu(m) = |H(\beta)|$  έτσι

$$\frac{n+(n,m)}{n} = \frac{|G:G(\beta)|}{|H:H(\beta)|} = \frac{|G|}{|H|} \in \mathbb{N}.$$

Από το αριστερό μέρος της παραπάνω εξίσωσης παίρνουμε ότι n|(n,m), το οποίο εί ναι άτοπο αφού n>m. Δηλαδή  $|O(\beta,G)|=n$  και η ομάδα G έχει τάξη

$$|G| = |O(\beta, G)| \cdot |G(\beta)| = nm.$$

Περίπτωση 2) Υποθέτουμε ότι m|n. H involution  $\sigma$  που δίνεται από την (3.17) στέλνει μία θέση  $\gamma_i$  που επεχτείνει την  $P_\infty$  σε μία θέση  $\alpha_j$  υπέρ το  $P_0$ . Αυτό μας δίνει ότι  $O(\beta,G)=\{\beta_1,\beta_2,...,\beta_n\}$ , γιατί αν υπήρχε ένα  $\tau\in G$  τέτοιο ώστε  $\tau(\beta)=\gamma_i$  τότε  $\tau\sigma(\beta)=\alpha_j$  το οποίο είναι αδύνατον από το λήμμα 3.3.2. Συνεπώς η τάξη του G, σε αυτή την περίπτωση υπολογίζεται:

$$|G| = |G:G(\beta)| \cdot |G(\beta)| = |O(\beta,G)| \cdot |G(\beta)| =$$

$$= \begin{cases} 2nm & \text{an } n-1 \text{ den einal mid dinaminatou } p \\ nmq(q-1) & \text{an } n-1 \text{ einal mid dinaminatou } p \end{cases}$$

Θα μελετήσουμε τώρα την δομή της ομάδας των αυτομορφισμών. Υποθέτουμε καταρχήν ότι  $m \nmid n$ . Σε αυτή την περίπτωση η ομάδα G είναι το ευθύ γινόμενο των ομάδων  $\mu(n)$  και  $\mu(m)$ , αφού  $|G| = n \cdot m$  και  $\mu(n) \times \mu(m) \le G$ .

Ας υποθέσουμε ότι m|n. Παρατηρούμε ότι  $\mu(m) < Z(G)$ . Πράγματι, έστω  $G_1$  η υποομάδα του G που παράγεται από όλα τα γινόμενα  $x\cdot y,\ x\in G(\beta), y\in \mu(n)$ . Η ομάδα  $G_1< G$  έχει τουλάχιστον  $|G(\beta)|\cdot |\mu(n)|=|G|$  στοιχεία, αφού  $G(\beta)\cap \mu(n)=1$ . Άρα  $|G_1|=|G|$  και τελικά  $G_1=G$ . Αυτό αποδεικνύει το επιθυμητό αποτέλεσμα, αφού τα στοιχεία του  $\mu(m)$  αντιμετατίθενται με τα στοιχεία του  $G(\beta)$  και  $G(\beta)$  και  $G(\beta)$ 

Αφού δε  $\mu(m) \lhd G$  χάθε αυτομορφισμός  $\sigma \in G$  περιορίζεται σε ένα αυτομορφισμό του ρητού σώματος συναρτήσεων  $k(x) = F^{\mu(m)}$ . Άρα η συνάρτηση περιορισμού της σελίδας 51 μπορεί να επεχταθεί σε μία συνάρτηση

$$\mathcal{F}: \left\{ \begin{array}{ccc} G & \longrightarrow & \mathcal{F}(G) < PGL(2,k) \\ \sigma & \longmapsto & res_{k(x)}\sigma. \end{array} \right.$$

Προφανώς ο πυρήνας της  $\mathcal{F}$  είναι  $\ker \mathcal{F} = \mu(m)$ . Θα ξεχωρίσουμε αχόμα δύο περιπτώσεις:

i) Το n-1 δεν είναι δύναμη του p. Τότε σύμφωνα με τον υπολογισμό της τάξης του G, η τάξη του  $\mathcal{F}(G)$  είναι 2n. Παρατηρούμε ότι η ομάδα  $\mathcal{F}(G)$  περιέχει την κυκλική ομάδα  $\mu(n)$  που παράγεται από το  $\tau_0: x \longmapsto \zeta^2 x$  και την involution  $\sigma_0: x \longmapsto \zeta^2/x$ . Αφού  $\sigma_0 \notin \langle \tau_0 \rangle = \mu(n)$  και  $\sigma_0 \tau_0 = \tau_0^{-1} \sigma_0$ , η ομάδα που γεννάται από τα  $\sigma_0, \tau_0$  είναι μία διεδρική ομάδα τάξης  $2 \cdot n$ . Αυτή είναι η τάξη της  $\mathcal{F}(G)$ , άρα  $\mathcal{F}(G) \cong D_n$  και η ομάδα G δίνεται σαν κεντρική επέκταση της  $D_n$  με αβελιανό πυρήνα  $\mu(m)$ .

Η ομάδα ανάλυσης γενάται από τους αυτομορφισμούς

$$\sigma: \left\{ \begin{array}{ccc} y & \longmapsto & \frac{y}{x^{n/m}} \\ x & \longmapsto & \frac{\zeta^2}{x} \end{array} \right.$$

αφού  $\sigma$  έχει τάξη 2m. Η ομάδα  $\mu(n) < G$  γεννάται από τον

$$\tau: \left\{ \begin{array}{ccc} y & \longmapsto & y \\ x & \longmapsto & \zeta^2 x \end{array} \right.$$

και μπορούμε να ελέγξουμε ότι η ομάδα G δέχεται μία παράσταση

$$\langle \sigma, \tau/\sigma^{2m} = 1, \tau^n = 1, \sigma^3 \tau^{-1} = \tau \sigma, \sigma^2 \tau = \tau \sigma^2 \rangle.$$

Παρατηρούμε ότι αν μία χεντρική επέχταση διασπάται, δηλαδή αντιστοιχεί στην τετριμμένη συνομολογιακή κλάση, τότε είναι το ευθύ γινόμενο των παραγόντων της. Θα αποδείξουμε ότι η επέχταση

$$1 \longrightarrow \mu(n) \longrightarrow G \longrightarrow D_n \longrightarrow 1 \tag{3.29}$$

διασπάται ή ισοδύναμα  $G\cong \mu(n)\times D_n$  αν και μόνο αν το m είναι περιττό.

Έστω m περιττό. Η συνάρτηση

$$H^{2}(D_{n}, \mu(m)) = \bigoplus_{p|2n} H^{2}(D_{n}, \mu(m))_{p} \longrightarrow \bigoplus_{p|2n} H^{2}(H_{p}, \mu(m))$$

$$\alpha = \sum_{p|2n} \alpha_{p} \longmapsto \sum_{p|2n} res_{(D_{n} \to H_{p})} \alpha_{p}$$

όπου το  $H_p$  διατρέχει τις p-Sylow υποομάδες της  $D_n$  είναι «1-1» [32, σελ. 93]. Αν p=2 τότε  $(|H_2|,m)=1$  άρα  $res_{(D_n\to H_2)}\alpha_2=1$  από το θεώρημα του Zassenhaus[14, σελ. 126]. Από την άλλη αν  $H_p$  είναι μία p-Sylow υποομάδα για  $p\neq 2$ , τότε  $res_{(D_n\to H_p)}\alpha_p=1$  αφού  $H_p<\mu(n)$  και η υποεπέκταση

$$1 \longrightarrow \mu(m) \longrightarrow G_1 \longrightarrow \mu(n) \longrightarrow 1$$

διασπάται.

Έστω m άρτιος. Θεωρούμε την υποομάδα που γεννάτε από την involution  $\sigma$  που δίνεται από την (3.17) και την υποεπέκταση που δίνεται από το παρακάτω διάγραμμα

Έστω  $\alpha \in H^2(D_n,\mu(m))$  η συνομολογιακή κλάση που αντιστοιχεί στην επέκταση G. Στην υποεπέκταση  $\pi^{-1}(\langle \sigma \rangle)$  αντιστοιχεί η συνομολογιακή κλάση  $res_{(D_n \to \langle \sigma \rangle)}\alpha$ . Αλλά  $\pi^{-1}(\langle \sigma \rangle) = G(\beta)$  η οποία είναι μία χυχλική ομάδα τάξης 2m. Συνεπώς  $res_{(D_n \to \langle \sigma \rangle)}\alpha \neq 1$  αφού μία χυχλική ομάδα τάξης 2m δεν είναι ισόμορφη με το γινόμενο  $\mu(m) \times \langle \sigma \rangle$  όταν 2|m.

ii) Σε αυτή την περίπτωση το  $n-1=p^s=q$ , είναι δύναμη της χαραχτηριστικής. Ισχυριζόμαστε ότι  $\mathcal{F}(G)< PGL(2,q^2)$ . Παίρνουμε σαν γεννήτορα του σώματος k(x) το στοιχείο t όπως αυτό ορίστηκε στην σελίδα 55. Έχουμε αποδείξει ότι  $\mathcal{F}(G(\beta))=\overline{G}(P_\zeta)$  είναι μία ομάδα από Möbius μετασχηματισμούς της μορφής  $t\longmapsto a+bt,$   $a,b\in\mathbb{F}_q\subset\mathbb{F}_{q^2}$ . Τα στοιχεία στην  $\mu(n)$  ορίζονται υπέρ το  $\mathbb{F}_{q^2}$  επίσης. Πράγματι, η αλλαγή μεταβλητών  $x\longmapsto t$  εμπλέχει τα  $\zeta,a_1,b_1$  τα οποία ανήχουν στο σώμα  $\mathbb{F}_{q^2}$  αφού

$$b_1^q = -b_1 \Rightarrow b_1^{q^2} = b_1 \text{ (το } q \text{ είναι περιττό )}$$
 
$$\zeta^n = -1 \Rightarrow \zeta^{q+1} = -1 \Rightarrow \zeta^q = -\frac{1}{\zeta} \Rightarrow \zeta^{q^2} = \zeta$$
 
$$a_1^q = -1 - a_1 \Rightarrow a_1^{q^2} = (-1 - a_1)^q = (-1)^q + (-1)^q a_1^q = a_1$$

και συνεπώς η αλλαγή μεταβλητών  $x \mapsto t$  είναι ένας Möbius μετασχηματισμός στο  $PGL(2,q^2)$ . Από την άλλη η  $\mathcal{F}(\mu(n))$  γεννάται από τους αυτομορφισμούς  $x \mapsto \zeta^2 x$  που ανήκουν στην  $PGL(2,q^2)$ .

Η τάξη της  $\mathcal{F}(G)$  είναι q(q-1)(q+1). Θα αποδείξουμε ότι η μοναδική υποομάδα της  $PGL(2,q^2)$  με τάξη q(q-1)(q+1) είναι η PGL(2,q). Για αυτό θα χρησιμοποιήσουμε τον χαρακτηρισμό των υποομάδων της  $PGL(2,p^f)$  ο οποίος προκύπτει από το θεώρημα 2.2.1.

#### **Θεώρημα 3.5.1** Η ομάδα $PGL(2,p^f)$ έχει τις παρακάτω υποομάδες

- 1. Στοιχειώδεις αβελιανές p-ομάδες
- 2. Κυκλικές ομάδες τάξης t όπου  $t|p^f \pm 1$ .
- 3. Διεδρικές ομάδες τάξης 2t,  $t|p^f \pm 1$ .
- 4. Ομάδες ισόμορφες με  $A_4, S_4, A_5$ .
- 5. Ημιευθέα γινόμενα από στοιχειώδεις αβελιανές ομάδες τάξης  $p^r$  με χυχλιχές ομάδες τάξης t, όπου  $t|p^r-1$  χαι  $t|p^f-1$ .
- 6. Ομάδες ισόμορφες με την  $PSL(2, p^r)$  και  $PGL(2, p^r)$  όπου r|f.

Θα χρησιμοποιήσουμε το παραπάνω θεώρημα και το γεγονός ότι  $|\mathcal{F}(G)|=q(q^2-1)$ , όπου  $q=p^s$  είναι δύναμη της χαρακτηριστικής, για να περιγράψουμε την δομή ομάδας της  $\mathcal{F}(G)$ . Παρατηρούμε ότι  $\mathcal{F}(G)$  δεν είναι p-ομάδα, και κατά συνέπεια ούτε στοιχειώδης αβελιανή. Ας υποθέσουμε ότι  $\mathcal{F}(G)$  είναι ισόμορφη με μία κυκλική ομάδα τάξης  $t,t|p^f\pm 1$ . Τότε  $|\mathcal{F}(G)|=p^s(p^{2s}-1)$  διαιρεί το  $p^f\pm 1$ , άτοπο αφού  $p\nmid 1$ . Για τον ίδιο λόγο η  $\mathcal{F}(G)$  δεν είναι διεδρική ομάδα. Οι τρεις ομάδες  $A_4,S_4,A_5$  έχουν τάξη μικρότερη η ίση του 60, ενώ από την άλλη  $|\mathcal{F}(G)|=q(q^2-1)\geq 120$  αφού  $p\geq 5$ . Δηλαδή  $\mathcal{F}(G)\not\equiv A_4,S_4,A_5$ . Ας υποθέσουμε τώρα ότι  $\mathcal{F}(G)$  είναι το ημιευθύ γινόμενο μίας στοιχειώδους αβελιανής ομάδας τάξης  $p^r$  με μία κυκλική ομάδα τάξης  $t=p^{s-r}(p^{2s}-1)$ . Ο αριθμός t θα πρέπει να διαιρεί και το t=00 και το t=01.

άτοπο. Τέλος αν  $\mathcal{F}(G)\cong \mathrm{PSL}(2,p^r)$  τότε r|f=2s και  $|\mathrm{PSL}(2,r)|=\frac{(p^{2r}-1)p^r}{2}=(p^{2s}-1)p^s$ , άτοπο. Η μόνη δυνατή περίπτωση είναι  $\mathrm{Im}(\mathcal{F})\cong \mathrm{PGL}(2,q)$ .

Η ομάδα G είναι μία κεντρική επέκταση της  $\mathrm{PGL}(2,q)$  με πυρήνα  $\mu(m)$  που να δίνεται από την παρακάτω ακριβή ακολουθία:

$$1 \longrightarrow \mu(m) \longrightarrow G \stackrel{\pi}{\longrightarrow} \mathrm{PGL}(2,q) \longrightarrow 1 \tag{3.30}$$

Χρησιμοποιώντας το παγκόσμιο θεώρημα συντελεστών, τις τιμές του πολλαπλασιαστή του Schur  $H_2(\operatorname{PGL}(2,q),\mathbb{Z})$  και την αβελιανοποίηση του  $\operatorname{PGL}(2,q)$  [3, σελ. 26] μπορούμε να υπολογίσουμε

$$H^2(\operatorname{PGL}(2,q),\mu(m)) = \left\{ \begin{array}{ll} 0 & \text{an} \quad m \equiv 1 \operatorname{mod} 2 \\ \mathbb{Z}_2 \oplus Z_2 & \text{an} \quad m \equiv 0 \operatorname{mod} 2 \end{array} \right..$$

Αυτό μας δίνει ότι για περιττό m η ομάδα G είναι ισόμορφη με

$$G \cong \mu(m) \times PGL(2, q)$$
.

Για m άρτιο, η κατάσταση είναι περισσότερο πολύπλοκη. Για να περιγράψουμε την δομή της ομάδας G, είναι αρκετό να καθορίσουμε την συνομολογιακή κλάση

$$\alpha \in H^2(\operatorname{PGL}(2,q),\mu(m))$$

η οποία αντιστοιχεί στην κεντρική επέκταση (3.30). Αυτό τον υπολογισμό όμως τον κάναμε στο προηγούμενο κεφάλαιο όταν εξετάζαμε κυκλικές επεκτάσεις της PGL(2,q).

# Κεφάλαιο 4

# Ομάδες αυτομορφισμών των modular καμπύλων X(N)

Ο J.P. Serre σε ένα γράμμα του στον Ribet υπολόγισε ότι οι ομάδες αυτομορφισμών των modular χαμπύλων X(p) για p πρώτο  $p \geq 7$ , είναι ισόμορφες με τις απλές ομάδες PSL(2,p). Σχοπός αυτού του χεφαλαίου είναι η επέχταση του αποτελέσματος του Serre χαι η μελέτη της ομάδας των αυτομορφισμών των χαμπύλων X(N), όπου N οποιοσδήποτε θετιχός αχέραιος. Όπως προέχειψε μετά από επιχοινωνία με τον J.P. Serre, το αποτέλασμα που έστειλε στον Ribet, όπως χαι η γενίχευση του, ήταν γνωστό στους ειδιχούς της περιοχής.

Υπενθυμίζουμε ότι οι καμπύλες X(N) είναι οι επιφάνειες Riemann που ορίζονται ως χώροι τροχιών  $\Gamma(N)\backslash \mathbb{H}^*$ , όπου  $\Gamma(N)$  είναι ο πυρήνας του επιμορφισμού

$$PSL(2,\mathbb{Z}) \longrightarrow PSL(2,\mathbb{Z}/N\mathbb{Z})$$

Η καμπύλη X(1) είναι ισόμορφη με την προβολική ευθεία  $\mathbb{P}^1$ , και το κάλυμμα  $X(N) \to X(1)$  είναι Galois με ομάδα Galois την  $PSL(2,\mathbb{Z}/N\mathbb{Z})$ . Ο βαθμός αυτού του καλύμματος είναι

$$\mu_N := \left\{ \begin{array}{ll} N^3/2 \prod_{p \mid N} (1-p^{-2}) & \text{an } N > 2 \\ 6 & \text{an } N = 2 \end{array} \right.$$

Επιπλέον το γένος  $g_N$  της X(N) είναι [23, σελ. 23]

$$g_N = 1 + \mu_N \frac{N - 6}{12N}. (4.1)$$

Από τον παραπάνω τύπο βλέπουμε ότι οι χαμπύλες X(2), X(3), X(4), X(5) είναι ρητές ενώ η X(6) είναι ελλειπτική. Όλες οι άλλες χαμπύλες έχουν γένος μεγαλύτερο του δύο χαι συνεπώς οι ομάδες αυτομορφισμών τους είναι πεπερασμένες χαι φραγμένες από τον τύπο του Hurwitz:

$$|Aut(X(N))| \le 84(g_N - 1).$$
 (4.2)

Είναι επίσης γνωστό ότι στο κάλυμμα  $X(N) \to X(1)$  ακριβώς τρία σημεία του X(1), διακλαδίζονται, τα  $j(i), j(\omega), j(\infty)$  με δείκτες διακλάδωσης 2,3 και N αντίστοιχα.

Αν  $PSL(2,\mathbb{Z}/N\mathbb{Z}) \lhd AutX(N)$  τότε κάθε αυτομορφισμός στην AutX(N) περιορίζεται σε αυτομορφισμό της  $X(1) \cong \mathbb{P}^1$ , που σταθεροποιεί τρία σημεία, και συνεπώς είναι ο ταυτοτικός. Δηλαδή σε αυτή την περίπτωση έχουμε  $AutX(N) \cong PSL(2,\mathbb{Z}/N\mathbb{Z})$ .

Έστω m ο δείχτης της  $PSL(2,\mathbb{Z}/N\mathbb{Z})=Gal(X(N)/X(1))$  στην AutX(N). Η εξίσωση (4.1) για  $N\neq 2$  μπορεί να γραφεί ως

$$84(g_N - 1) = |PSL(2, \mathbb{Z}/N\mathbb{Z})| \left(7 - \frac{42}{N}\right)$$
(4.3)

και αυτή συνδυασμένη με την (4.2) μας δίνει τα παρακάτω φράγματα για τον δείκτη m:

$$\begin{array}{llll} m \leq 2 & \text{ fix } & 7 \leq N < 11 \\ m \leq 3 & \text{ fix } & 11 \leq N < 14 \\ m \leq 4 & \text{ fix } & 14 \leq N < 21 \\ m < 7 & \text{ fix } & 21 \leq N \end{array} \tag{4.4}$$

Συνεπώς για  $7 \le N < 11$  έχουμε ότι  $AutX(N) \cong PSL(2,\mathbb{Z}/N\mathbb{Z})$ . Προχειμένου να αποδείξουμε γενικά ότι  $PSL(2,\mathbb{Z}/N\mathbb{Z}) \lhd AutX(N)$  θα θεωρήσουμε την παράσταση

$$\beta: PSL(2, \mathbb{Z}/N\mathbb{Z}) \longrightarrow S_m$$

όπου  $\sigma \mapsto \{\sigma a_1 PSL(2, \mathbb{Z}/N\mathbb{Z}), \sigma a_2 PSL(2, \mathbb{Z}/N\mathbb{Z}), ..., \sigma a_m PSL(2, \mathbb{Z}/N\mathbb{Z})\}$ , και

$$\{a_1 PSL(2, \mathbb{Z}/N\mathbb{Z}), ..., a_m PSL(2, \mathbb{Z}/N\mathbb{Z})\}$$

είναι η διάσπαση της ομάδας AutX(N) σε cosets της  $PSL(2,\mathbb{Z}/N\mathbb{Z})$ . Παρατηρούμε ότι  $PSL(2,\mathbb{Z}/N\mathbb{Z}) \lhd AutX(N)$  αν και μόνο αν ο  $\beta$  είναι ο τετριμμένος ομομορφισμός.

Ας υποθέσουμε ότι N=p είναι ένας πρώτος,  $p\geq 7$ . Αφού PSL(2,p) είναι απλή ομάδα έχουμε ότι  $\ker \beta$  είναι ή PSL(2,p) ή  $\{1\}$ . Η τελευταία περίπτωση είναι αδύνατη αφού δεν υπάρχουν στοιχεία τάξης p στην  $S_m$ , για  $m\leq 6$ .

Ας θεωρήσουμε τώρα τις καμπύλες  $X(p^e)$ , όπου p είναι πρώτος,  $p \geq 7$ . Θεωρούμε τον παρακάτω πύργο καλυμμάτων

$$PSL(2, \mathbb{Z}/p^{e}\mathbb{Z}) \left\{ \begin{array}{l} X(p^{e}) \\ \downarrow \\ X(p) \\ \downarrow \\ X(1) \end{array} \right\} PSL(2, p)$$

Έστω  $H:=Gal(X(p^e)/X(p)),$  τότε  $|H|=p^{3(e-1)},$  και αφού  $p\geq 7$  έχουμε  $H<\ker\beta.$  Συνεπώς μπορούμε να ορίσουμε τον ομομορφισμό  $\tilde{\beta}$ 

$$\tilde{\beta}: PSL(2,p) \cong PSL(2,\mathbb{Z}/N\mathbb{Z})/H \longrightarrow S_m.$$

Αυτό μας δίνει ότι  $\ddot{\beta}=1$  και σαφώς το ίδιο ισχύει για την  $\beta$ .

Έστω N θετικός ακέραιος πρώτος με τους 2,3,5. Ο ομομορφισμός  $\beta$  είναι τετριμμένος και σε αυτή την περίπτωση, αφού

$$PSL(2, \mathbb{Z}/N\mathbb{Z}) \cong \bigoplus_{i=1}^{s} PSL(2, \mathbb{Z}/p_i^{a_i}\mathbb{Z}),$$

όπου  $N = \prod_{i=1}^s p_i^{a_i}$  είναι η διάσπαση του N σε γινόμενο πρώτων παραγόντων.

Προκειμένου να μελετήσουμε την περίπτωση τυχαίου N θα χρειαστούμε τα καλύτερα φράγματα για τον δείκτη m. Θεωρούμε τον πύργο καλυμμάτων

$$\begin{array}{cccc} X(N) & & & \\ \downarrow & & 2 \mid & 3 \mid & N \mid \\ X(1) & j(i) & j(\omega) & j(\infty) \end{array}$$

$$\downarrow \\ X(N)^{AutX(N)}$$

Παρατηρούμε ότι αν  $PSL(2,\mathbb{Z}/N\mathbb{Z})$  δεν είναι μία κανονική υποομάδα στην AutX(N) τότε το κάλυμμα  $X(1)\cong\mathbb{P}^1\to X(N)^{AutX(N)}$  δεν είναι Galois. Από την απόδειξη του φράγματος

του Hurwitz (4.2) για την ομάδα των αυτομορφισμών αλγεβρικής καμπύλης [6, σελ. 260] βλέπουμε ότι αν το πλήθος r των σημείων της X(1) που διακλαδίζονται στο κάλυμμα  $X(N) \to X(N)^{AutX(N)}$  είναι r>3 τότε το φράγμα του Hurwitz βελτιώνεται στο

$$|AutX(N)| \le 12(g_N - 1).$$

Αυτό μας δίνει ότι  $m \leq 1$ , και συνεπώς  $PSL(2,\mathbb{Z}/N\mathbb{Z}) \triangleleft AutX(N)$ , άτοπο. Συνεπώς το πλήθος των σημείων διακλάδωσης είναι r=3. Ο τύπος του Hurwitz για το κάλυμμα  $X(N) \longmapsto X(N)^{AutX(N)}$  δίνει την

$$2(g_N - 1) = |AutX(N)| \left(1 - \frac{1}{\nu_1} + 1 - \frac{1}{\nu_2} + 1 - \frac{1}{\nu_3} - 2\right), \tag{4.5}$$

όπου  $\nu_i$  είναι οι δείχτες διακλάδωσης των σημείων που διακλαδίζονται. Ξεχωρίζουμε τις παρακάτω περιπτώσεις:

• Τα τρία σημεία  $j(i), j(\omega), j(\infty)$  περιορίζονται σε διαφορετικά σημεία  $p_1, p_2, p_3$  των οποίων οι δείκτες διακλάδωσης είναι  $e(j(i)/p_1) = \kappa, e(j(\omega)/p_2) = \lambda, e(j(\infty)/p_3) = \mu$ . Ή (4.5) σε αυτή την περίπτωση γράφεται

$$2(g_N - 1) = |AutX(N)| \left(1 - \frac{1}{2\kappa} + 1 - \frac{1}{3\lambda} + 1 - \frac{1}{N\mu} - 2\right) \ge$$
$$\ge |AutX(N)| \left(1 - 1/2 + 1 - 1/3 + 1 - 1/N - 2\right) \ge$$
$$> |AutX(N)| \left(1/6 - 1/N\right)$$

η οποία μας δίνει και το επιθυμητό αποτέλεσμα

$$|Aut(X)| \le \frac{12N}{N-6}(g_N-1) = \mu_N.$$

• Κάποια από τα τρία σημεία  $j(i), j(\omega), j(\infty)$  περιορίζονται στο ίδιο σημείο της  $X(N)^{AutX(N)}$ . Θα θεωρήσουμε την περίπτωση  $11 \leq N$ . Τα σημεία j(i) και  $j(\infty)$  δεν γίνεται να περιορίζονται στο ίδιο σημείο της  $X(N)^{AutX(N)}$ . Αφού το κάλυμμα  $X(N) \to X(N)^{AutX(N)}$  είναι Galois θα πρέπει να έχουμε  $2\kappa = N\lambda$ , όμως ο βαθμός του καλύμματος  $X(1) \to X(N)^{AutX(N)}$  είναι το πολύ 6, συνεπώς  $\kappa \leq 6$ ,  $\lambda = 1$ , δηλαδή τα j(i) και  $j(\infty)$  δεν περιορίζονται στο ίδιο σημείο, εκτός αν  $N \leq 12$ . Αλλά αν  $N \leq 12$  τότε  $m \leq 3$ , και συνεπώς  $N \leq 6$ , το οποίο αντιτίθεται στην αρχική υπόθεση  $N \geq 11$ . Με τα ίδια επιχειρήματα μπορούμε να δείξουμε ότι τα σημεία  $j(\omega)$  και  $j(\infty)$  περιορίζονται σε διαφορετικά σημεία του  $X(N)^{AutX(N)}$ .

Ας υποθέσουμε τώρα ότι τα j(i) και  $j(\omega)$  περιορίζονται στο ίδιο σημείο της  $X(N)^{AutX(N)}$ . Θα πρέπει να υπάρχει ένα σημείο p της  $X(N)^{AutX(N)}$  το οποίο διακλαδίζεται μόνο στο κάλυμμα  $X(1)\to X(N)^{AutX(N)}$  με δείκτη διακλάδωσης  $2\le \nu\le 6$ . Από τον τύπο του Hurwitz παίρνουμε

$$2(g_N - 1) = |AutX(N)| \left(1 - \frac{1}{6\psi} + 1 - \frac{1}{\phi N} + 1 - \frac{1}{\nu} - 2\right) \stackrel{\nu \ge 2, \psi = 1 \ \acute{\eta} \ 2}{\ge}$$

$$|AutX(N)| \left(\frac{1}{3} - \frac{1}{N}\right) \stackrel{N \ge 11}{\ge} |AutX(N)| \left(\frac{1}{3} - \frac{1}{11}\right)$$

το οποίο μας δίνει σε αυτή την περίπτωση

$$|AutX(N)| \le 33/4 (g_N - 1)$$

το οποίο με την σειρά του δίνει το επιθυμητό αποτέλεσμα  $m \leq 1,...$ 

Παρατήρηση 4.0.2 Είναι ενδιαφέρον να παρατηρήσουμε ότι αφού X(2), X(4), X(3), X(5), είναι ρητές χαμπύλες, η ταξινόμηση των πεπερασμένων υποομάδων αυτομορφισμών του ρητού σώματος συναρτήσεων αποδειχνύει το γνωστό αποτέλεσμα

 $PSL(2,2) \cong \mathbb{Z}_3, PSL(2,\mathbb{Z}/4\mathbb{Z}) \cong S_4, PSL(2,3) \cong A_4, PSL(2,5) \cong A_5$ 

# Κεφάλαιο 5

# Ομάδες αυτομορφισμών των υπερεπιφανειών Fermat

Οι ομάδες αυτομορφισμών των μη-ιδιομόρφων υπερεπιφανειών Fermat του  $\mathbb{P}^r(k)$  ορίζονται από τις εξισώσεις

$$F_{r,n}: X_0^n + \dots + X_r^n = 0,$$

όπου το k, είναι αλγεβρικά κλειστό, χαρακτηριστικής  $p\geq 0$ . Μπορούμε να υποθέσουμε ότι  $p\nmid n$ , αφού αν  $p\mid n$  τότε το πολυώνυμο  $\sum_{\nu=0}^r X_{\nu}^n$  είναι δύναμη του p και συνεπώς οι αντίστοιχες υπερεπιφάνειες είναι ιδιόμορφες. Οι υπερεπιφάνειες αυτές έχουν μία προφανή ομάδα αυτομορφισμών που παράγεται από τους αυτομορφισμούς

$$(X_0, ..., X_r) \longmapsto (\zeta^{i_0} X_0, ..., \zeta^{i_r} X_r), \ \zeta^n = 1$$

και από την συμμετρική ομάδα  $S_{r+1}$  που μεταθέτει τις μεταβλητές  $X_i$ . Η παραπάνω ομάδα είναι ισόμορφη με το ημιευθύ γινόμενο  $\mathbb{Z}_n^r \rtimes S_{r+1}$ . Ο Α. Weil [32] διατύπωσε την εικασία ότι η ομάδα

$$N_{r,n} := \mathbb{Z}_n^r \rtimes S_{r+1}$$

είναι η πλήρης ομάδα αυτομορφισμών των υπερεπιφανειών του Fermat .

Στην αρχή της δεκαετίας του 70, ο Leopoldt [17] μελέτησε την ομάδα αυτομορφισμών των σωμάτων συναρτήσεων του Fermat , ή ισοδύναμα τους αυτομορφισμούς των προβολικών καμπύλων  $F_{2,n}$  και απέδειξε ότι η εικασία του A. Weil δεν είναι σωστή αν το n-1 είναι δύναμη της χαρακτηριστικής.

Ο Leopoldt δεν ενδιαφέρθηκε να δημοσιεύσει τους υπολογισμούς πριν από το 1996, και μετά από μία εργασία του Π. Τζερμιά [29], ο οποίος ανεξάρτητα από τον Leopoldt υπολόγισε τους αυτομορφισμούς των καμπύλων Fermat, στην χαρακτηριστική 0.

Το πρόβλημα της δομής της ομάδας αυτομορφισμών των  $F_{n,r}$  λύθηκε από τον T.Shioda [24] το 1987. Η μέθοδος του Shioda εφαρμόζεται και στην περίπτωση των καμπύλων Fermat, και δίνει ένα τρίτο τρόπο υπολογισμού των αυτομορφισμών των καμπύλων Fermat ανεξάρτητο από τις μεθόδους των Leopoldt, Τζερμιά.

Η εργασία του Shioda μου έγινε γνωστή από τον Τ. Katsura και αφού η διδακτορική μου διατριβή είχε ποιά ολοκληρωθεί. Η μέθοδος υπολογισμού των αυτομορφισμών που παρουσιάζω σε αυτό το κεφάλαιο είναι μία παραλαγή της μεθόδου του Shioda. Συκγεκριμένα θα αποδείξουμε το παρακάτω

**Θεώρημα 5.0.3** Η ομάδα των γραμμικών αυτομορφισμών  $G_{r,n}$  των υπερεπιφανειών Fermat  $F_{r,n}, r \geq 2, n \geq 3$  είναι

$$G_{r,n} = \left\{ \begin{array}{ll} N_{r,n} = \mathbb{Z}_n^r \rtimes S_{r+1} & \text{ an } n-1 \text{ den einal dinamn the capacity pisticky} \\ PGU(r+1,p^{2h}) & \text{ an } n-1 = p^h \end{array} \right.$$

 $E \pi \pi \lambda \hat{\epsilon}$ ον για  $n \neq r+1$  και  $r \geq 4$  κάθε αυτομορφισμός του  $F_{n,r}$  είναι γραμμικός.

Προκειμένου να υπολογίσουμε την ομάδα αυτομορφισμών των υπερεπιφανειών του Fermat θα αποδείξουμε πρώτα, ότι κάτω από συγκεκριμένες συνθήκες, κάθε αυτομορφισμός μίας προβολικής μη ιδιόμορφης υπερεπιφάνειας  $V\subset\mathbb{P}^r(k)$  επάγεται από ένα γραμμικό αυτομορφισμό του  $\mathbb{P}^r(k)$ . Η απόδειξη που θα δώσουμε ακολουθεί την απόδειξη των Griffiths-Harris για μιγαδικές υπερεπιφάνειες [8, σελ. 177], και την επεκτείνει στην περίπτωση θετικής χαρακτηριστικής.

## 5.1 Υπολογισμοί

**Πρόταση 5.1.1** Έστω  $V \subset \mathbb{P}^r(k)$  μία μη ιδιόμορφη προβολιχή υπερεπιφάνεια, βαθμού  $n \neq r+1$ , όπου k είναι ένα αλγεβρικά κλειστό σώμα χαρακτηριστικής  $p \geq 0$ . Αν  $r \geq 4$  τότε κάθε αυτομορφισμός του V επάγεται από ένα αυτομορφισμό του  $\mathbb{P}^r(k)$ .

Απόδειξη: Έστω  $\mathcal{O}(1)$  το αντιστρέψιμο sheaf του  $\mathbb{P}^r(k)$  που αντιστοιχεί στο hyperplane bundle, και  $\mathcal{O}_V(1)$  ο περιορισμός του  $\mathcal{O}(1)$  στο V. Θα συμβολίζουμε με  $\mathcal{L}(-V)$  το αντιστρέψιμο sheaf που αντιστοιχεί στον divisor -V. Η μικρή ακριβής ακολουθία των sheaves

$$1 \longrightarrow \mathcal{O}(1) \otimes \mathcal{L}(-V) \longrightarrow \mathcal{O}(1) \longrightarrow \mathcal{O}_V(1) \longrightarrow 0,$$

επάγει την μακρά ακριβή ακολουθία στην συνομολογία

$$H^0(\mathbb{P}^r(k), \mathcal{O}(1)) \xrightarrow{r} H^0(V, \mathcal{O}_V(1)) \longrightarrow H^1(\mathbb{P}^r(k), \mathcal{O}(1-n)) \cong 0,$$

η οποία δίνει ότι ο περιορισμός r είναι επί, και συνεπώς το γραμμικό σύστημα στο V,

$$L = |H^0(V, \mathcal{O}_V(1))|$$

το οποίο επάγεται από τις τομές με υπερεπίπεδα είναι πλήρες.

Έστω  $\omega_V = \bigwedge^{\dim V} \Omega_{V/k}$  το κανονικό αντιστρέψιμο sheaf του V. Έχουμε ότι [13, σελ. 183]

$$\omega_V = \mathcal{O}_V(1)^{\otimes d - n - 1}$$

Κάθε αυτομορφισμός  $\phi$  του V αφήνει το χανονιχό sheaf αναλλοίωτο, συνεπώς

$$\phi^* \omega_V = \omega_V \Rightarrow \phi^* (\mathcal{O}_V(1)^{\otimes d-n-1}) = \mathcal{O}_V(1)^{\otimes d-n-1}$$

Το θεώρημα του Lefschetz [9], το οποίο εξασφαλίζει ότι  $Pic(V) \cong \mathbb{Z}$  για  $r \geq 4$ , επάγει ότι

$$\phi^*(\mathcal{O}_V(1)) = \mathcal{O}_V(1)$$

και συνεπώς  $\phi^*$  επάγει ένα αυτομορφισμό στους divisors του L, δηλαδή στο  $\mathbb{P}(L)\cong\mathbb{P}^r(k)$ . Η ομάδα των γραμμικών αυτομορφισμών είναι η υποομάδα της PGL(r+1,k) η οποία αφήνει την εξίσωση  $F_{r,n}$  αναλλοίωτη, δηλαδή πίνακες  $(a_{ij})$  τέτοιες ώστε

$$\sum_{i=0}^{r} \left( \sum_{j=0}^{r} a_{ij} X_j \right)^n = \sum_{j=0}^{r} X_j^n.$$
 (5.1)

Αντί να εργαστούμε με την PGL(2,k), θα εργαστούμε με τον αφινικό κώνο της, δηλαδή με την GL(2,k) η οποία είναι ένα βασικό αφινικό σύνολο, με αφινικό δακτύλιο

$$R := k[X_{ij}/i, j = 0, ..., r]_{\det()^{-1}}.$$

Ο R είναι η τοπικοποίηση του πολυωνυμικού δακτυλίου σε  $n^2$  μεταβλητές ως προς την ορίζουσα. Η εξίσωση (5.1) σε αυτή την περίπτωση γίνεται

$$\sum_{i=0}^{r} \left( \sum_{j=0}^{r} a_{ij} X_j \right)^n = c(a_{ij}) \sum_{j=0}^{r} X_j^n, \tag{5.2}$$

όπου

$$c: G_{r,n} \longrightarrow k^*$$

είναι μία μονοδιάστατη παράσταση της  $G_{r,n}$ . Επεκτείνοντας την (5.1) χρησιμοποιόντας τον τύπο του διωνύμου παίρνουμε

$$\sum_{i=0}^r \sum_{n_0+\ldots+n_r=n} \binom{n}{n_0,\ldots,n_r} a_{i0}^{n_0} a_{i1}^{n_1} \cdots a_{ir}^{n_r} X_0^{n_0} X_1^{n_1} \cdots X_r^{n_r} = c(a_{ij}) \sum_{j=0}^r X_j^n,$$

το οποίο με την σειρά του δίνει

$$\binom{n}{n_0, \dots, n_r} \sum_{i=0}^r a_{i0}^{n_0} a_{i1}^{n_1} \cdots a_{ir}^{n_r} = 0 \text{ an } n_i < n \text{ yia όλα τα } i$$
 (5.3)

και

$$\sum_{i=0}^{r}a_{i\kappa}^{n}=\sum_{i=0}^{r}a_{i\lambda}^{n} \text{ για όλα τα } \kappa,\lambda=0,...,r \eqno(5.4)$$

Θέτοντας  $n_{\kappa}=1,\,n_{\lambda}=n-1$  στην (5.3) καταλήγουμε

$$n\sum_{i=0}^{r} a_{i\kappa} a_{i\lambda}^{n-1} = 0$$
 για  $\kappa \neq \lambda$ 

$$\sum_{i=0}^{r} a_{i\kappa} a_{i\kappa}^{n-1} = c(a_{ij})$$

η οποία δίνει ότι

$$(a_{ij})^t(a_{ij}^{n-1}) = c(a_{ij}) \cdot I \Rightarrow (a_{ij}^{n-1}) = c(a_{ij}) \cdot (a_{ij})^{-1t}$$

Συνεπώς, η ύψωση όλων των στοιχείων ενός πίναχα  $(a_{ij}) \in G_{r,n}$  στην n-1 δύναμη, επάγει ένα μορφισμό ομάδων από την  $G_{r,n}$  στην  $G_{r,n}$ . Σταθεροποιούμε ένα στοιχείο  $(b_{ij})$  στην  $G_{r,n}$ . Για όλα τα  $(a_{ij}) \in G_{r,n}$  έχουμε

$$\sum_{\nu=0}^{r} a_{i\nu}^{n-1} b_{\nu j}^{n-1} = \left(\sum_{\nu=0}^{r} a_{i\nu} b_{\nu j}\right)^{n-1} =$$

$$= \sum_{\nu=0}^{r} a_{i\nu}^{n-1} b_{\nu j}^{n-1} + \sum_{\substack{k_1 + \dots + k_r = n-1 \\ k_1 < n-1}} \binom{n-1}{k_1, \dots, k_r} (a_{i0} b_{0j})^{k_0} \cdots (a_{ir} b_{rj})^{k_r}$$

Συνεπώς, το πολυώνυμο

$$T_{ij}(X_{i0},...,X_{ir}) := \sum_{\substack{k_1 + \dots + k_r = n-1 \\ k_i < n-1}} {n-1 \choose k_1,...,k_r} b_{0j}^{k_0} \cdots b_{rj}^{k_r} X_{i0}^{k_0} \cdots X_{ir}^{k_r}$$

μηδενίζονται ταυτοτικά στο αλγεβρικό σύνολο του  $\mathbb{A}^{n^2+1}(k)$ , που ορίζεται από (5.3) και (5.4). Από το θεώρημα Nullstellensatz του Hilbert έχουμε ότι για κάποιο ακέραιο  $\mu$ 

$$T_{ij}^{\mu} \in I$$
,

όπου I είναι το ιδεώδες του R που γεννάται από τα πολυώνυμα

$$f_{n_0,...,n_r} := \binom{n}{n_0,...,n_r} \sum_{i=0}^r X_{i0}^{n_0} X_{i1}^{n_1} \cdots X_{ir}^{n_r}$$

και

$$f_{\kappa,\lambda} := \sum_{i=0}^{r} X_{i\kappa}^{n} - \sum_{i=0}^{r} X_{i\lambda}^{n}$$

Θα αποδείξουμε, ότι το παραπάνω είναι αδύνατον εκτός αν  $T_{ij}=0$ . Πράγματι, υποθέτουμε ότι για κατάλληλα πολυώνυμα  $g_{n_0,\dots,n_r}\in R$  έχουμε

$$T_{ij}^{\mu} = \sum_{n_0, \dots, n_r} g_{n_0, \dots, n_r} \cdot f_{n_0, \dots, n_r} + \sum_{\kappa, \lambda} g_{\kappa, \lambda} \cdot f_{\kappa, \lambda}.$$

Παρατηρούμε ότι  $T^{\mu}_{ij}$  είναι ένα ομογενές πολυώνυμο βαθμού  $(n-1)\mu$  στις n μεταβλητές  $X_{i0},...,X_{ir}.$ 

Έστω a ένας μονωνυμικός προσθεταίος κάπου  $g_{n_0,\dots,n_r}$  ή  $g_{\kappa,\lambda}$  βαθμού  $\neq (n-1)\mu-n$ . Το πολυώνυμο  $a\cdot f_{n_0,\dots,n_r}$  απαλλοίφεται από γινόμενα μονωνυμικών προσθεταίων άλλων πολυωνύμων  $g_{n_0',\dots,n_r'}$  ή  $g_{\kappa',\lambda'}$  με  $f_{n_0',\dots,n_r'}$  ή  $f_{\kappa',\lambda'}$ . Συνεπώς μπορούμε να υποθέσουμε ότι  $g_{n_0,\dots,n_r}$  είναι ομογενή βαθμού  $(n-1)\mu-n$ .

Από την άλλη, αφού τα  $T_{ij}$  είναι ομογενή πολυώνυμα στις n-μεταβλητές  $X_{i0},...,X_{ir}$  μόνο, θα πρέπει να υπάρχει ένα ομογενές μονώνυμο a βαθμού  $(n-1)\mu-n$  μόνο στις  $X_{i0},...,X_{ir}$  μεταβλητές, το οποίο είναι προσθεταίος κάποιου από τα  $g_{n_0,...,n_r}$  ή  $g_{\kappa,\lambda}$ . Ας υποθέσουμε πρώτα ότι το a είναι ένας προσθεταίος κάποιου  $g_{n_0,...,n_r}$ . Οι όροι  $a\cdot X_{j_0}^{n_0}X_{j_1}^{n_1}\cdots X_{j_r}^{n_r}$   $j\neq i$  μπορούν να διαγραφούν μόνο αν το a είναι ένας προσθεταίος κάποιου  $f_{n_0,...,n_r}$  το οποίο συμβαίνει μόνο στην περίπτωση  $(n-1)\mu-n=n\Rightarrow \mu=2\frac{n}{n-1}$ , άτοπο αφού  $n\geq 3$ . Το ίδιο επιχείρημα δείχνει ότι το a δεν μπορεί να είναι προσθεταίος ούτε κάποιου  $g_{\kappa,\lambda}$ .

Οι πίναχες  $(b_{ij})$  στο  $N_{r,n}$ , οι οποίοι είναι προφανείς λύσεις της (5.3) και (5.4), είναι της μορφής

$$b_{ij} = \lambda \zeta^i \delta_{i,\sigma(j)},$$

όπου  $\zeta^n=1,\lambda$  είναι μία μη μηδενική σταθερά και  $\sigma$  είναι μία μετάθεση του  $S_{r+1}$ . Υποθέτουμε ότι υπάρχει ένα  $(b_{ij})\in G_{r,n}\backslash N_{r,n}$  συνεπώς υπάρχει ένα  $j\in\{0,...,r\}$  τέτοιο ώστε

 $T_{ij} = 0$  συνεπώς

$$\binom{n-1}{k_1, \dots, k_r} b_{0j}^{k_0} b_{1j}^{k_1} \cdots b_{rj}^{k_r} = 0.$$

Στον παραπάνω τύπο θέτουμε  $k_{i_1}=\nu,\,k_{i_2}=n-\nu-1,$  και αφού  $b_{i_1j}\neq 0,b_{i_2j}\neq 0$  έχουμε ότι  $\binom{n-1}{\nu}=0$  για όλα τα  $\nu=1,...,n-2$  το οποίο δίνει [5, σελ. 352] τότε n-1 είναι μία δύναμη της χαρακτηριστικής. Συνεπώς, όταν n-1 δεν είναι δύναμη της χαρακτηριστικής  $G_{r,n}=N_{r,n}.$ 

Στην περίπτωση  $n-1=p^h$ , η (5.1) δίνει

$$\sum_{i=0}^{r} \sum_{j=0}^{r} \sum_{\nu=0}^{r} a_{ij}^{p^{h}} a_{i\nu} X_{j}^{p^{h}} X_{\nu} = \sum_{i=0}^{r} X_{j}^{n}.$$
 (5.5)

Συγκρίνοντας συντελεστές και στα δύο μέλη της (5.5) παίρνουμε

$$\sum_{i=0}^{r} a_{ij}^{p^{h}} a_{i\nu} = \delta_{j\nu}. \tag{5.6}$$

Έστω F ο αυτομορφισμός του Frobenius, ο οποίος στέλνει τον πίνακα  $A=(a_{ij})$  στον  $F(A)=(a_{ij}^{p^h})$ . Η εξίσωση (5.6) μας δίνει ότι

$$F(A) \cdot A^t = I, (5.7)$$

και

$$A \cdot F(A)^t = I. \tag{5.8}$$

Εφαρμόζοντας τον F και στα δύο μέλη της (5.7) πέρνουμε

$$F^2(A) \cdot F(A)^t = I,$$

ενώ από την (5.8) έχουμε ότι  $F^2(A)=A$ . Συνεπώς η ομάδα αυτομορφισμών ταυτίζεται με την  $PGU(r+1,p^{2h})$  αν  $n-1=p^h$ .

# Βιβλιογραφία

- [1] Accola R. D.M. Strongly Branched Coverings of Closed Riemann Surfaces Proc. Amer. Math. Soc. 26 (1970), 315–322,
- [2] Arbarello E. Cornalba M., Footnotes to a Paper of Beniamino Segre, Math. Ann. 341-362 (1981)
- [3] Brandt R. Über die Automorphismengruppen von algebraischen Funktionenkörper, PhD Thesis, Universität-Gesamthochschule Essen 1988.
- [4] Brandt R., Stichtenoth H. Die Automorphismengruppen hyperelliptischer Kurven, manuscripta math. 55 (1986), 83-92.
- [5] Eisenbud D. Commutative Algebra Springer Verlag, New York 1994
- [6] Farkas H. M. and Kra I. , Riemann surfaces, Second edition, Springer-Verlag, New York, New York, 1992
- [7] Gonzalez Victor Rodriguez Rubi On Automorphism of Curves and Linear Series, Complex Geometry Seminar (vol III). Chile 1994
- [8] Griffiths P. Harris J., Principles of Algebraic Geometry, Wiley Classics Library Edition, New York 1994
- [9] Grothendieck, A. Séminaire de Géométrie Algébrique 2, Cohomologie Locale des Faisceaux Cohérent et Théorèmes de Lefschetz Locaux et Globaux, North-Holland, Amsterdam (1968)
- [10] Henn H.W. Funktionenkörper mit großer Automorphismengruppe, J. Reine Angew. Math. **302** (1978), 96-115.
- [11] Hartshorne R., Algebraic Geometry, Graduate Texts in Mathematics, Springer Verlag, New York 1977.
- [12] Hasse, H. Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichen Konstantenkörper, J. Reine Angewandte Math. 172, 37-54 (1934)
- [13] Hasse H. Zahlentheorie, Akademie-Verlag, Berlin 1969.
- [14] Huppert B., Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin 1967.
- [15] Jacobson N. Basic algebra. II, Second edition, W. H. Freeman and Company, New York, New York, 1989
- [16] Klassen M.J., Schaefer E.F. Arithmetic and geometry of the curve  $y^3 + 1 = x^4$ , Acta Arithmetika LXXIV.3 (1996), 241-257.

- [17] Leopoldt H.W. Über die Automorphismengruppe des Fermatkörpers, Journal of Number Theory **56** (1996), 256-282.
- [18] Magma Algebra System, Computational Algebra Group, University of Sydney. http://www.maths.usyd.edu.au:8000/u/magma/
- [19] Namba M. Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math. 5 Nr. 2 319-338 (1981).
- [20] Serre J.P., Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, New York, 1979.
- [21] Serre J.P., Letter to Prof. Ribet 1996.
- [22] Schmidt F.K. Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern Math. Z. 45, (1939),62-74
- [23] Shimura G. Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, Princeton University Press 1971
- [24] Shioda, T. Arithmetic and Geometry of Fermat Curves, Proc. of the Algebraic Geometry Seminar, Singapore 1987
- [25] J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1986
- [26] Stichtenoth H. Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin 1993.
- [27] Stichtenoth Henning Algebraische Funktionenkörper einer Variablen, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen 1978
- [28] Towse C.W. Weierstrass Points on Cyclic Covers of the Projective Line, Ph.D. Thesis, Brown University, Brown (1993).
- [29] Tzermias P. The Group of Automorphisms of the Fermat Curve, Journal of Number Theory 53, (1995), 173-178.
- [30] Valentini C. R. Madan L. M. A Hauptsatz of L.E. Dickson and Artin-Schreier extensions J. Reine Angewandte Math. 318, 156-177 (1980)
- [31] Weil A. Sommes de Jacobi et charactères de Hecke, Ouevres Scentifiques, Collected Papers Vol. III, p 329-342 Springer-Verlag, New York-Heidelberg, 1979.
- [32] Weiss E. Cohomology of Groups, Academic Press, New York 1969.