

Discrete mathematics

- Course No.: CSE 2101
- Course Title: Discrete Mathematics
- Prerequisite: None ($\sqrt{\text{CSE } 1101}$ & $\sqrt{\text{CSE } 1201}$)
- Contact hours/week: 3
- Credits: 3.00

Course Description

- Propositional Logic & Proof Techniques
 - 1st -3rd Cycle (Total 9 Classes)

- Set
- Relation
- Function
- 4th -6th Cycle (Total 9 Classes)
- Number Theory
- Introduction to counting
 - 7th -9th Cycle (Total 9 Classes)
- Introduction to graphs
 - 10th -12th Cycle (Total 9 Classes)

Grading

- Quizzes/Class Test: 20 Marks*
 - (3 best out of 4 quizzes/class tests may be taken for awarding grade)
- Homework's/Attendance: 8 Marks*
- Semester Exam: 72 Marks

* - We reserve the right to change the above grading scheme.

Homework's

- A new homework is released and is then due after 9 days.
- No grade will be given to homework submitted afterwards.
- Homework solutions should be written and submitted individually.

Referred Books

- Kenneth H. Rosen Discrete Mathematics and its Applications, Tata McGraw-Hill. (7th Edition)
- Eric Lehman, F. Thomson Leighton, Albert R. Meyer Mathematics for Computer Science.
- Rnald L. Graham, Donald E. Knuth and Oren Patashnik Concrete Mathematics.
- S. G. Telang Number Theory.
- Other...

Sessional Based on CSE 2101

- Course No.: CSE 2102
- Course Title: Sessional Based on CSE 2101
- Prerequisite: None ($\sqrt{\text{CSE } 1102 \& \sqrt{\text{CSE } 1202}}$)
- Contact hours/week: 3.00
- Credits: 1.5

Sessional Based on CSE 2101

Module No	Topics	Chapter*				
01	The Foundations: Logic and Proof					
02	Basic Structures: Sets, Functions, Sequences and Sum	02				
03	The Fundamentals: Algorithms, the Integers and Matrices					
04	Induction and Recursion	05				
05	Counting	06				
06	Advanced Counting Techniques	08				
07	Relation	09				
08	Graph	10				

*Extra:

Module No	Topics	Chapter*
09	Discrete Probability	07
10	Trees ×	11
11	Boolean Algebra	12
12	Modeling Computation	13

^{*} Ref: Kenneth H. Rosen - Discrete Mathematics and its Applications, Tata McGraw-Hill. (7th Edition)

Grading

Quiz Test: 20 Marks*

Homework's/Attendance: 8 Marks*

Others: 47 Marks*

Marks Distribution

Lab Report (Individual)*

Lab Performance(Individual)*

Example:
 Average Performance(Every Lab) – 17
 Viva – 10 (Average)

Total

47

^{* -} We reserve the right to change the above grading scheme.

Attendance

Roll No	Name	1D					
1603001		1				1 1 H	
1603002							
1603003		1					
1603004	411	1					

1603059	7				
1603060					de de

In Lab

- Individual
 - Lab Report
 - Books
 - Papers
 - Pens
 - Laptop* (if individual PC/LAPTOP is not available)

Note: Side talk or Noise Not Allowed

Class Resources

Web Link:

https://goo.gl/28B8HF

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} x = ?$$

$$\forall_{\mathbf{r}} (\Re / \mathbf{x}) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}=?$$

$$1 - 1 + 1 - 1 + 1 \dots = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$

What is Discrete Mathematics?

What is Discrete Mathematics?

Kinds of Problems Solved Using Discrete Mathematics

- How many ways can a password be chosen following specific rules?
- How many valid Internet addresses are there?
- What is the probability of winning a particular lottery?
- Is there a link between two computers in a network?
- How can I identify spam email messages?
- How can I encrypt a message so that no unintended recipient can read it?
- How can we build a circuit that adds two integers?

Kinds of Problems Solved Using Discrete Mathematics

- What is the shortest path between two cities using a transportation system?
- Find the shortest tour that visits each of a group of cities only once and then ends in the starting city.
- How can we represent English sentences so that a computer can reason with them?
- How can we prove that there are infinitely many prime numbers?
- How can a list of integers be sorted so that the integers are in increasing order?

Goals

- Mathematical Reasoning: Ability to read, understand, and construct mathematical arguments and proofs.
- Combinatorial Analysis: Techniques for counting objects of different kinds.
- Discrete Structures: Abstract mathematical structures that represent objects and the relationships between them. Examples are sets, permutations, relations, graphs, trees, and finite state machines.

Goals

• Algorithmic Thinking:

- specifying algorithms,
- analyzing the memory and time required by an execution of the algorithm, and
- verifying that the algorithm will produce the correct answer.

Applications and Modeling:

- understand the wide range of applications of the topics in discrete mathematics
- develop the ability to develop new models in various domains.
- have been applied to solve problems in many areas such as chemistry, biology, linguistics, geography, business, etc.

Discrete Mathematics is a Gateway Course

- Topics in discrete mathematics will be important in many courses that you will take in the future:
 - Computer Science: Computer Architecture, Data Structures,
 Algorithms, Programming Languages, Compilers, Computer
 Security, Databases, Artificial Intelligence, Networking,
 Graphics, Game Design, Theory of Computation,
 - Mathematics: Logic, Set Theory, Probability, Number Theory,
 Abstract Algebra, Combinatorics, Graph Theory, Game Theory,
 Network Optimization, ...
 - The concepts learned will also be helpful in continuous areas of mathematics.
 - Other Disciplines: You may find concepts learned here useful in courses in philosophy, economics, linguistics, and other departments.

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} x = ?$$

$$\forall_{\mathbf{r}} (\Re / \mathbf{x}) = ?$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

 $\sum_{x=1}^{\infty} \frac{1}{x} = ?$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}=?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$