Solutions 1 E.

Problems 1,3.

Show:
$$A(\pi_1) = A(\pi_3)$$

$$A(\pi_{\lambda}) = A(\pi_{4})$$

We have:
$$A \times = med(A) \Longrightarrow B \times = \times C \Longrightarrow \frac{1}{2}BC = B \times$$
.

$$A(\Delta ABX) = \underbrace{BX \cdot alt(A)}_{2} = \underbrace{\frac{1}{2}BC \cdot alt(A)}_{2} = \underbrace{\frac{1}{2}\left(\underbrace{BC \cdot alt(A)}_{2}\right)}_{2} = \underbrace{\frac{1}{2}A(\Delta ABX)}_{2}$$

Comparing these yields $A(\Delta ABX) = A(\Delta ABX)$.

Now, absence that $A(\Delta ABX) = A(\pi_1) + A(\pi_2)$ $A(\Delta ABX) = A(\pi_1) + A(\pi_4)$.

Since A(DABY)=A(DABX), me have

 $A(\pi_1) + A(\pi_2) = A(\pi_1) + A(\pi_4) \Longrightarrow A(\pi_2) = A(\pi_4)$

To conclude, we require $A(\Delta ABX) = A(\Delta ACX)$:

 $A(\Delta ABX) = \frac{1}{a}BX \cdot Alt(A) = \frac{1}{a}XC \cdot alt(A) = A(\Delta ACX)$ BX = XC

Now, we note that $A(\Delta ABX) = A(\pi_1) + A(\pi_4)$

 $A(\Delta ACX) = A(\pi_2) + A(\pi_3)$.

Since the quantites are equal, and since $A(\overline{v_a}) = A(\overline{v_4})$,

we have $A(\pi_1) + A(\pi_4) = A(\pi_3) + A(\pi_3) = A(\pi_1) + A(\pi_3)$

Solution.

Law of sinh :
$$\frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow b = \frac{a \sin B}{\sin A}$$
 $\Rightarrow A = \frac{1}{2} a^2 \sin B \sin C$ $\Rightarrow A = \frac{1}{2} a^2 \sin B \sin C$

We now anchible:
$$A = \frac{1}{2} a^2 \frac{\sin b \sin c}{\sin (191° - (b+c))}$$

Hence, we have sin (180-(B+C)) = sh(B+C).