ELEC-313 Lab 6: MOSFET Characterization

November 5, 2013

Date Performed: October 30, 2013 Partners: Charles Pittman

Stephen Wilson

1 Objective

The objective is to construct and observe the operation of a CMOS inverter and NAND gate.

2 Equipment

Transistor: 1N4007 Power supply: HP E3631A Resistors: 330 Ω (x3), 2.2 k Ω , 33 k Ω Multimeters: Fluke 8010A (x2)

3 Schematics

Figure 1: Circuit used in this lab.

4 Procedure

4.1 DC Characteristics

- 1. Obtain the 2N7000 MOSFET transistor and resistors needed to build the circuit shown.
- 2. Construct the circuit of figure 2. Use the HP multi-meter to measure the drain current, I_D , and the Fluke multi-meters to measure V_{DS} and V_{GS} . Use the +6 V power supply for V_{GG} and the +25 V supply for V_{DD} .
- 3. Set V_{GG} to 0 V and V_{DD} to 5 V and measure V_{DS} and I_D .

- 4. Slowly increase V_{GG} until the transistor just begins to conduct current as evidenced by a small drop in V_{DS} . Record the value of V_{GS} as the Gate Threshold Voltage, V_{TN} .
- 5. Adjust V_{GG} to increase V_{GS} by 0.2 V above the threshold. Readjust V_{DD} to return V_{DS} to 5 V, and then measure the drain current (I_D) . Record the value of V_{GS} in the first column of table1, and record the value of I_D in the second column (the $V_{DS} = 5$ V column).
- 6. Continue to increase V_{GS} in steps of 0.2 V while maintaining V_{DS} at 5 V. Measure the drain current at each step. Record the values of V_{GS} and I_D in table 1. Stop this process when the drain current reaches approximately 80mA.
- 7. Complete the entries in table 1 by adjusting V_{DD} and V_{GG} to obtain the various required V_{DS} and V_{GS} values, then measuring I_D at each value. Do not exceed 80mA drain current.

4.2 Small-Signal Transconductance

- 1. Adjust V_{GG} and V_{DD} to obtain $V_{DS} = 5$ V and $I_D = 10$ mA.
- 2. Record the value of V_{GS} as V_{G1} .
- 3. Record the exact measured value of I_D and assign it to I_{D1} . Use the full resolution of the HP multimeter.
- 4. Increase V_{GS} by 10 mV and record it value as V_{G2} .
- 5. Measure I_D , recording it as I_{D2} .
- 6. Compute the small signal transconductance (Eq 1).

5 Results

Table 1: k'_n

Figure 2: Graph

6 Conclusion

7 Equations

$$g_m = \frac{I_{D2} - I_{D1}}{V_{GS2} - V_{GS1}} \tag{1}$$

$$\frac{k_n'}{2} \cdot \frac{W}{L} = \frac{I_{D1}}{(V_{GS1} - V_{TN})^2} \tag{2}$$