

Contents

- Embedding Layer in DNN
- NDP: HW Architecture for Embedding Layer
- TensorDIMM: Practical accelerator

Emerging DNN Applications

■ Non-conventional DNN layers cause bottlenecks

- Attention module (BERT)
- Collaborative filter (<u>Recommendation System</u>)

BERT Architecture

Collaborative Filtering

Recommendation System

- Personalized recommendation for contents
 - Sparse embedding layers are bottleneck

추천시스템의 예: 사용자에게 컨텐츠를 추천하는 YouTube

Embedding Layers: Projection to vector space

- Words or phrases from the vocabulary are mapped to vectors of real numbers
 - Word embedding (Word2Vec)
 - Neural Item Embedding for Collaborative Filtering (Item2Vec)

단어를 벡터로 바꾸는 모델: 임베딩 모델 (Word2Vec)

- Goal: Predicting preference of user-item pair
 - Movie recommendation

Movie_1

Movie_2

Movie_3

Movie_4

Movie_5

Movie_6

Movie_7

Embedding Table

User_A

Prediction

- Goal: Predicting preference of user-item pair
 - Movie recommendation

Harry Porter

Batman

Ironman

Movie_0

Movie_1

Movie_2

Movie_3

Movie_4

Movie_5

Movie_6

Movie_7

Embedding Table

User_A

Prediction

- Goal: Predicting preference of user-item pair
 - Movie recommendation

- Goal: Predicting preference of user-item pair
 - Movie recommendation

- Goal: Predicting preference of user-item pair
 - Movie recommendation

Recommendation System: Embedding layer

- Copy target embeddings into contiguous address space
 - Called "Gather"

Gather Operation: (Left) Algorithm level, (Right) Hardware level (DRAM)[1]

Recommendation System: Embedding layer

- Averaging multiple embeddings, element-wise addition/multiplication
 - Called "Reduction"

Recommendation System: Embedding layer

- Gather/Reduction operation in Embedding layer
 - This is memory-bandwidth sensitive operation

Embedding Layer

Contents

- Embedding Layer in DNN
- NDP: HW Architecture for Embedding Layer
- TensorDIMM: Practical accelerator

Near Data Processing (NDP): von Neumann

Data movement and Power efficiency

- CPU: Integrated multi-core (Good for complex problem)
- GPU: Many parallel computing unit (Simple and Massive problem)
- NPU: Under 10⁴ processing element (Optimized for matrix multiplication)

Near Data Processing (NDP): Bottleneck in Memory

Most Al algorithm is memory bandwidth bounded

- Recent NN accelerators use internal memory to reduce bottleneck, but not sufficient
- More than 60% of power is consumed by data movement

Roofline graph according to neural network^[2]

Near Data Processing (NDP): Overview

Moving computation to Data

- NDP can reduce energy for data transfer by locating computation unit where data lives
- Pros: Overcome bandwidth limitation between logic and memory devices with low power consumption
- Cons: Not backward compatible with legacy software stack

Near Data Processing (NDP): Example

- HBM (High-bandwidth Memory) and HMC (Hybrid Memory Cube)
 - HBM: Require less power consumption and latency compared to GDDR
 - HMC: Computation logic under DRAM

HBM in Pascal GPU

HMC Concept

Contents

- Embedding Layer in DNN
- NDP: HW Architecture for Embedding Layer
- TensorDIMM: Practical accelerator

TensorDIMM: Overview

- Buffer device to add NMP cores for embedding gather/reduction
 - DIMM (Dual-in-line memory module)
 - NMP (Near-memory processing processor)
 - Vector ALU: Vector multiplication/addition unit

DRAM module (DIMM) and TensorDIMM concept

TensorDIMM: Overview

- Buffer device to add NMP cores for embedding gather/reduction
 - DIMM (Dual-in-line memory module)
 - NMP (Near-memory processing processor)
 - Vector ALU: Vector multiplication/addition unit

DRAM module (DIMM) and TensorDIMM concept

TensorDIMM: Overview

Buffer device to add NMP cores for embedding gather/reduction

- DIMM (Dual-in-line memory module)
- NMP (Near-memory processing processor)
 - Vector ALU: Vector multiplication/addition unit

TensorDIMM: How to work

- Key advantage of TensorDIMM
 - Effieve memory bandwidth scales proportional to the # of DIMMs

Conventional system VS TensorDIMM approach

TensorDIMM: How to work

Mapping embedded tables in DRAM

Rank-level parallelislm for maximal bandwidth utilization

TensorDIMM: How to work

Mapping embedded tables in DRAM

Rank-level parallelislm for maximal bandwidth utilization

TensorDIMM: System architecture

Putting everything together

- Platform for scablable expansion of both memory bandwidth and capacity
- Utilize high-speed link (NVLINK) for inter-device communication

Overview of TensorDIMM Architecture

Combination of cycle-level simulation and emulation on real ML system

- It is hart to implement real hardware and software
 - Using computer architecture simulator (Gem5, DRAM-Sim, Etc.)
- Cycle-level DRAM simulator
- Utilize high-speed link (NVLINK) for inter-device communication

Combination of cycle-level simulation and emulation on real ML system

- It is hart to implement real hardware and software
 - Using computer architecture simulator (Gem5, DRAM-Sim, Etc.)
- Cycle-level DRAM simulator
 - Memory bandwidth for embedding gather/reduction under restrict addess mapping
- Utilize high-speed link (NVLINK) for inter-device communication

Bandwidth utilization

- Gather (Collect embedding line), Element (), Reduce (Reduction)
- Average 4x incresese compared to CPU acceleration

Combination of cycle-level simulation and emulation on real ML system

- It is hart to implement real hardware and software
 - Using computer architecture simulator (Gem5, DRAM-Sim, Etc.)
- Cycle-level DRAM simulator
 - Memory bandwidth for embedding gather/reduction under restrict addess mapping
- Utilize high-speed link (NVLINK) for inter-device communication
 - Intel's Math Kernel Library (MKL)
 - NVIDIA cuDNN/cuBLAS
 - In-house CUDA implmentation of other layers
 - NVIDIA DGX-1V (8 V100 GPUs, Two Xeon E5-2698 v4)

TensorNode system modeling

- Proof of concept software prototype to emulate TensorDIMM
- No APIs to control NMP
 - In emulation, NMP is mapped to CUDA's streaming multiprocessor (SM)

Latency breakdown

- Four system design point
 - CPU-only, Hybrid CPU-GPU, TensorDIMM, GPU-only (Oracle)
- TensorDIMM helps reduce both embedding/MLP latency
 - Overall 6~9x speedup compared to baseline

Network	Lookup tables	Max reduction	FC/MLP layers
NCF	4	2	4
YouTube	2	50	4
Fox	2	50	1
Facebook	8	25	6

Conclusion

More memory-centric

- Graphccore's IPU
 - Large on-chip memory

COLOSSUS MK2

the worlds most complex processor

59.4Bn transistors, TSMC 7nm @ 823mm²

250TFlops Al-Float | 900MB In-Processor-Memory

1472 independent processor cores

8832 separate parallel threads

>8x step-up in system performance vs Mk1

GC200 - IPU

Reference

- [1] Rank-Level Parallelism in DRAM, IEEE Transaction on Computers, 2017
- [2] In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA, 2017

감사합니다