Техническое задание на разработку системы автоматизации прочностных расчётов стержневых систем, испытывающих растяжение-сжатие

(срок подготовки системы – к лабораторной работе № 5)

1. Требования к конструкции

Конструкция должна представлять собой плоскую стержневую систему, составленную из прямолинейных стержней, последовательно соединённых друг с другом вдоль общей оси.

Каждый стержень i характеризуется длиной L_i , площадью поперечного сечения A_i . Материал стержней должен характеризоваться модулем упругости E_i , допускаемым напряжением $[\sigma]_i$.

2. Требования к нагрузкам

На любое сечение конструкции могут быть наложены нулевые кинематические граничные условия (жёсткие опоры), запрещающие перемещения и повороты этих сечений во всех направлениях.

Конструкция может быть нагружена в глобальных узлах j статическими сосредоточенными продольными усилиями F_i .

Каждый стержень конструкции может быть нагружен постоянной вдоль его оси статической погонной нагрузкой q_i .

3. Требования к задачам

Система должна обеспечивать решение линейной задачи статики для плоских стержневых конструкций.

4. Общесистемные требования

Система должна работать на персональных компьютерах, работающих под управлением операционной системы Microsoft Windows.

5. Требования к системе

5.1. Требования к препроцессору *(срок подготовки – к лабораторной работе № 3)*

Препроцессор системы должен обеспечивать:

- ввод массивов данных, описывающих конструкцию и внешние воздействия;
- формальную диагностику данных, описывающих конструкцию и внешние воздействия;
- визуализацию конструкции и нагрузок;
- формирование файла проекта.

5.2. Требования к процессору (срок подготовки – к лабораторной работе № 4)

Процессор системы должен обеспечивать расчёт компонент напряжённо-деформированного состояния конструкции (продольные силы N_x , нормальные напряжения σ_x , перемещения u_x).

5.3. Требования к постпроцессору (срок подготовки – к лабораторной работе N_2 5)

Постпроцессор системы должен обеспечивать:

- формирование файла результатов расчёта;
- анализ результатов расчёта;
- отображение результатов расчёта в табличном виде;
- возможность получения всех компонент напряжённо-деформированного состояния в конкретном сечении конструкции;
- отображение результатов расчёта в виде графиков, на оси ординат которых отложены интересующие пользователя компоненты напряжённо-деформированного состояния конструкции, а на оси абсцисс – локальные координаты стержней;
- отображение результатов расчёта на конструкции в виде эпюр компонент напряжённодеформированного состояния.