Chapitre 30

Déterminant

30.4 Exemple	2
	2
	2
50.10 Caracterisation parties transpositions	
30.19Une forme alternée change de signe par transposition	
30.21Image d'une famille liée par une forme alternée	(
30.22Forme n -linéaire d'un espace de dimension n	
30.25Exemple	
30.26Description du déterminant par les coordonnées	
30.28Effet d'un changement de base sur le déterminant	
30.30Caractérisation des bases par le déterminant	
30.36Déterminant d'un produit	(
30.40Expression des déterminants classiques	
30.41Invariance du déterminant par transposée	
30.42Déterminant d'un endomorphisme	
30.44Déterminant et conjugaison	
30.45Déterminant d'une matrice triangulaire	
30.47Détrminant des matrices de codage des opérations	
30.50Exemple	
30.51 Exemple	
30.52Déterminant d'une matrice triangulaire par blocs	
30.57Exemple	

30.4 Exemple

Exemple 30.4

On considrée l'application :

$$\delta: \mathbb{K}^2 \times \mathbb{K}^2 \to \mathbb{K}; ((a,b),(c,d)) \mapsto ad - bc$$

Montrer que cette application est bien 2-linéaire.

$$\begin{split} \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} + \lambda \begin{pmatrix} c' \\ d' \end{pmatrix}\right) &= \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c + \lambda c' \\ d + \lambda d' \end{pmatrix}\right) \\ &= a(d + \lambda d') - b(c + \lambda c') \\ &= ad - bc + \lambda (ad' - bc') \\ &= \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix}\right) + \lambda \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c' \\ d' \end{pmatrix}\right) \end{split}$$

30.11 Détermination d'une application n-linéaire sur une base

Propostion 30.11

Soit pour tout $i \in [1, n]$, $(e_{i,j})_{1 \le j \le d}$ une base de E_i et pour tout $(j_1, \ldots, j_n) \in [1, d_1] \times \cdots \times [1, d_n]$, $f_i, j \in F$.

Alors il existe une unique application n-linéaire $f: E_1 \times \cdots \times E_n \to F$ telle que :

$$\forall (j_1, \dots, j_n) \in [1, d_1] \times \dots \times [1, d_n], \varphi(e_{1,j_1}, \dots, e_{n,j_n}) = f_{j_1, \dots, j_n}$$

Si $(e_{i,j})_{1 \leq j \leq d}$ est une base de E_i alors $((e_{1,2},0,\ldots,0,\ldots,e_{1,d},0,\ldots,0),\ldots,(0,\ldots,0,e_{n,1},\ldots,(0,\ldots,0,e_{n,d})))$ est une base de $E_1 \times \cdots \times E_n$. (22.16), théorème de rigidité.

30.18 Caractérisation par les transpositions

Lemme 30 18

Pour qu'une forme f soit antisymétrique, il faut et il suffit que l'échange de deux variables quelconques provoque un changement de signe.

Par hypothèse, si τ est une transposition alors $\varphi(x_{\tau_1}, \dots, x_{\tau_n}) = -\varepsilon(\tau)(x_1, \dots, x_n)$. Soit $\sigma \in S_n$. On écrit $\sigma = \tau_1 \circ \dots \circ \tau_k$ avec τ_i des transpositions. Alors:

$$\varphi(x_{\sigma_1}, \dots, x_{\sigma_n}) = \varphi(x_{\tau_1 \circ \dots \circ \tau_k(1)}, \dots, x_{\tau_1 \circ \dots \circ \tau_k(n)})$$

$$= \varepsilon(\tau_1) \varphi(x_{\tau_2 \circ \dots \circ \tau_k(1)}, \dots, x_{\tau_2 \circ \dots \circ \tau_k(n)})$$

$$= \varepsilon(\tau_1 \circ \dots \circ \tau_k) \varphi(x_1, \dots, x_n)$$

$$= \varepsilon(\sigma) \varphi(x_1, \dots, x_n)$$

30.19 Une forme alternée change de signe par transposition

Lemme 30.19

Soit φ une forme alternée. Alors pour tout $(x_1,\ldots,x_n)\in E^n$ et tout $(i,j)\in [1,n]^2$ avec $i\neq j$:

$$\varphi(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n) = -\varphi(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)$$

Cela revient à dire que pour toute transposition $\tau \in S_n$, on a :

$$\varphi(x_1,\ldots,x_n) = -\varepsilon(\tau)\varphi(x_{\tau_1},\ldots,x_{\tau_n})$$

Réciproquement, si cette condition est satisfaite et si \mathbb{K} n'est pas de caractéristique 2, alors φ est alternée.

Soit φ alternée.

Soit $(x_1,\ldots,x_n)\in E^n$.

$$0 = \varphi(x_1, \dots, x_i + x_j, \dots, x_j + x_i, \dots, x_n)$$

$$= \varphi(x_1, \dots, x_i, \dots, x_i, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_j, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

$$= \varphi(x_1, \dots, x_j, \dots, x_n) + \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

On suppose que $\operatorname{carac}(\mathbb{K}) \neq 2$.

On a:

$$\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n) = \varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)$$
 (antisymétrie)

Donc:

$$2\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0$$

Donc:

$$\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0$$

30.21 Image d'une famille liée par une forme alternée

Propostion 30.21

Soit (x_1,\ldots,x_n) une famille liée et φ une forme alternée. Alors :

$$\varphi(x_1,\ldots,x_n)=0$$

Si (x_1, \ldots, x_n) est liée, alors on peut écrire par exemple :

$$x_1 = \sum_{i=2}^{n} \lambda_i x_i$$

Donc:

$$\varphi(x_1, \dots, x_n) = \varphi\left(\sum_{i=2}^n \lambda_i x_i, x_2, \dots x_n\right)$$
$$= \sum_{i=2}^n \lambda_i \varphi(x_i, x_2, \dots, x_n)$$

30.22 Forme n-linéaire d'un espace de dimension n

Théorème 30.22

Soit E un espace vectoriel de dimension n non nulle et (e_1, \ldots, e_n) une base de E.

- 1. Il existe une unique forme n-linéaire φ sur E telle que $\varphi(e_1,\ldots,e_n)=1$.
- 2. Cette forme n-linéaire est entièrement décrite sur les vecteurs de la base par :

$$\begin{cases} \varphi(e_{i_1},\dots,e_{i_n}) = 0 & \text{s'il existe } j \neq k \text{ tel que } i_j = i_k \\ \varphi(e_{\sigma(1)},\dots,e_{\sigma(n)}) = \varepsilon(\sigma) & \text{où } \sigma \in \mathcal{S}_n \end{cases}$$

3. Toute autre forme n-linéaire alternée sur E est de la forme $\lambda \varphi$, où $\lambda \in \mathbb{K}$.

1,2

On utilise le théorème de rigidité des applications n-linéaires (30.11) en fixant l'image de chaque $(e_{i_1}, \ldots, e_{i_n})$ avec $(i_1, \ldots, i_n) \in [1, n]^n$.

$$\begin{split} & - \varphi(e_{i_1}, \dots, e_{i_n}) = 0 \text{ s'il existe } i_j - i_k \text{ avec } j \neq k. \\ & - \varphi(\underbrace{e_{\sigma(1)}, \dots, e_{\sigma(n)}}_{(i_1, \dots, i_n) \text{ fournit alors une permutation } \sigma \in \mathcal{S}_n}) = \varepsilon(\sigma) \times \underbrace{1}_{\varphi(e_1, \dots, e_n)}. \end{split}$$

Le théorème nous fournit l'existence de la forme alternée et l'unicité.

Soit ψ une forme *n*-linéaire alternée. On pose $\lambda = \psi(e_1, \dots, e_n)$.

— si $\lambda=0$, par alternance (et anitsymétrie) on a $\psi(e_{i_1},\ldots,e_{i_n})=0$ pour tout i_1,\ldots,i_n .

Par rigidité, $\psi = 0 = 0 \times \varphi$.

— si $\lambda \neq 0$, alors $\frac{1}{\lambda}\psi(1,\ldots,e_n) = 1$. Par unicité (1), $\frac{1}{\lambda}\psi = \varphi$.

Donc $\psi = \lambda \varphi$.

30.25 Exemple

Exemple 30.25

On considère $E = \mathbb{R}^2$, muni de sa base canonique $e = (e_1, e_2) = ((1, 0), (0, 1))$. Soit $((a, b), (c, d)) \in E^2$. Montrer que :

$$\det_e((a,b),(c,d)) = ad - bc$$

$$e = ((1,0), (0,1)).$$

 $((a,b), (c,d)) \in (E)^2.$

$$\begin{aligned} \det_e((a,b),(c,d)) &= \det_e(ae_1 + be_2,ce_1 + de_2) \\ &= ac \times \det_e(e_1,e_1) + ad \times \det_e(e_1,e_2) + bc \times \det_e(e_2,e_1) + bd \times \det_e(e_2,e_2) \\ &= ad \times \det_e(e_1,e_2) - bc \times \det_e(e_1,e_2) \\ &= (ad - bc) \end{aligned}$$

30.26 Description du déterminant par les coordonnées

Théorème 30.26

Soit E un espace vectoriel de dimension n non nulle et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. Soit (x_1, \ldots, x_n) une famille d'éléments de E, dont les coordonnées sont :

$$\forall j \in [1, n], x_j = \sum_{i=1}^n a_{i,j} e_i \quad \text{donc} \quad \operatorname{Mat}_{\mathcal{B}}(x_j) = \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix}$$

On a alors:

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} \cdots a_{\sigma(n),n} = \sum_{\tau \in \mathcal{S}_n} \varepsilon(\tau) a_{1,\tau(1)} \cdots a_{n,\tau(n)}$$

$$\det_{\mathcal{B}}(x_{1},\ldots,x_{n}) = \det_{\mathcal{B}}\left(\sum_{i=1}^{n}a_{i_{1},1}e_{i_{1}},\ldots,\sum_{i=1}^{n}a_{i_{n},n}e_{i_{n}}\right)$$

$$= \sum_{i_{1}=1}^{n}\cdots\sum_{i_{n}=1}^{n}a_{i_{1},1}\cdots a_{i_{n},n}\det_{\mathcal{B}}(e_{i_{1}},\ldots,e_{i_{n}}) \text{ (multilinéarité)}$$

$$= \sum_{\{i_{1},\ldots,i_{n}\}=[\![1,n]\!]}a_{i_{1},1}\cdots a_{i_{n},n}\det_{\mathcal{B}}(e_{i_{1}},\ldots,e_{i_{n}}) \text{ (alternance)}$$

$$= \sum_{\sigma\in\mathcal{S}_{n}}a_{\sigma(1),1}\cdots a_{\sigma(n),n}\underbrace{\det_{\mathcal{B}}(e_{\sigma(1)},\ldots,e_{\sigma(n)})}_{=\varepsilon(\sigma)} \text{ (reformulation)}$$

$$= \sum_{\sigma\in\mathcal{S}_{n}}\varepsilon(\sigma)a_{1,\sigma^{-1}(1)}\cdots a_{n,\sigma^{-1}(n)}$$

$$= \sum_{\tau\in\mathcal{S}_{n}}\epsilon(\tau)a_{1,\tau(1)}\cdots a_{n,\tau(n)}$$

30.28 Effet d'un changement de base sur le déterminant

Propostion 30 28

Soit \mathcal{B} et \mathcal{B}' deux bases de E. Alors :

$$\det_{\mathcal{B}} = \det_{\mathcal{B}}(\mathcal{B}') \times \det_{\mathcal{B}'}$$

D'après le corollaire (30.27), on écrit :

$$\det_{\mathcal{B}'} = \lambda \det_{\mathcal{B}} \text{ avec } \lambda \in \mathbb{K}$$

En particulier:

$$\det_{\mathcal{B}'}(\mathcal{B}) = \lambda \det_{\mathcal{B}}(\mathcal{B}) = \lambda$$

30.30 Caractérisation des bases par le déterminant

Propostion 30.30

Soit E un espace vectoriel de dimension n non nulle, muni d'une base \mathcal{B} . Une famille \mathcal{F} de cardinal n est une base si et seulement si $\det_{\mathcal{B}}(\mathcal{F}) \neq 0$.

D'après (30.29), si \mathcal{F} est une base alors $\det_{\mathcal{B}}(\mathcal{F}) \neq 0$. Si \mathcal{F} n'est pas une base, alors elle est liée ($|\mathcal{F}| = n$) Donc $\det_{\mathcal{B}}(\mathcal{F}) = 0$ (30.21).

30.36 Déterminant d'un produit

Théorème 30.36

Soit A et B dans $\mathcal{M}_n(\mathbb{K})$. Alors:

$$\det(AB) = \det(A)\det(B) = \det(BA)$$

Soit A, B dans $\mathcal{M}_n(\mathbb{K})$. On note A_1, \ldots, A_n les colonnes de A et B_1, \ldots, B_n les colonnes de B. On considère l'application :

$$\varphi: (\mathbb{K}^n)^n \to \mathbb{K}; (X_1, \dots, X_n) \mapsto \det_{\mathcal{B}_{\mathcal{C}}}(AX_1, \dots, AX_n)$$

 φ est une forme n-linéaire alternée.

On choisit donc $\lambda \in \mathbb{K}$ tel que $\varphi = \lambda \det_{\mathcal{B}_C}$ On a :

$$\varphi(\mathcal{B}_C) = \lambda \det_{\mathcal{B}_C}(\mathcal{B}_C)$$

$$= \lambda$$

$$= \det_{\mathcal{B}_C} \left(A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, A \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right)$$

$$= \det_{\mathcal{B}_C}(A_1, \dots, A_n)$$

$$= \det(A)$$

Ainsi $\varphi = \det(A) \det_{\mathcal{B}_C}$.

Donc:

$$\det(A)\det(B) = \det(A)\det_{\mathcal{B}_C}(\mathcal{B}_1, \dots, \mathcal{B}_n)$$

$$= \varphi(\mathcal{B}_1, \dots, \mathcal{B}_n)$$

$$= \det_{\mathcal{B}_C}(AB_1, \dots, AB_n)$$

$$= \det(AB)$$

30.40 Expression des déterminants classiques

Propostion 30.40

1. On a:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

2.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - gec - hfa - idb$$

Soit : diagonales descendantes moins les diagonales ascendantes.

2.
$$S_3 = \{ id, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \end{pmatrix} \}$$

$$\begin{split} \det(A) &= \sum_{\sigma \in \mathcal{S}_3} \varepsilon(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} a_{3,\sigma(3)} \\ &= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{33} - a_{11} a_{23} a_{32} \end{split}$$

30.41 Invariance du déterminant par transposée

Théorème 30.41

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

$$\det({}^t A) = \det(A)$$

RAF avec (30.34)

30.42 Déterminant d'un endomorphisme

Théorème 30.42

Soit $f \in \mathcal{L}(E)$, où E est une espace vectoriel de dimension finie non nulle. Soit \mathcal{B} une base de E. Le scalaire $\det(\operatorname{Mat}_{\mathcal{B}}(f))$ ne dépud pas de la base \mathcal{B} choisie. On appelle ce scalaire **déterminant de** f et est noté $\det(f)$.

Si \mathcal{B} et \mathcal{B}' sont deux bases de E, alors $\mathrm{Mat}_{\mathcal{B}'}(f)$ et $\mathrm{Mat}_{\mathcal{B}'}(f)$ sont semblables, donc elles ont le même déterminant (30.37).

30.44 Déterminant et conjugaison

Propostion 30.44

Soit $\psi: E \to F$ un isomorphisme d'espaces vectoriels de dimension finie non nulles et $u \in \mathcal{L}(E)$. Alors:

$$\det(\underbrace{\psi \circ u \circ \psi^{-1}}_{\in \mathcal{L}(F)}) = \det(u)$$

Soit e une base de E et f une base de F.

$$\det(\psi \circ u \circ \psi^{-1}) = \det(\operatorname{Mat}_{f}(\psi \circ u \circ \psi^{-1})) \ (30.42)$$

$$= \det(\operatorname{Mat}_{e,f}(\psi) \times \operatorname{Mat}_{e}(u) \times \operatorname{Mat}_{f,e}(\psi^{-1})) \ (28.42)$$

$$= \det(\operatorname{Mat}_{e,f}(\psi)) \times \det(\operatorname{Mat}_{e}(u)) \times \det(\operatorname{Mat}_{f,e}(\psi^{-1})) \ (30.36)$$

$$= \det(\underbrace{\operatorname{Mat}_{\psi} \times \operatorname{Mat}_{f,e}(\psi^{-1})}_{I_{n}}) \times \det(\operatorname{Mat}_{e}(u)) \ (30.36)$$

$$= \det(\operatorname{Mat}_{e}(u))$$

30.45 Déterminant d'une matrice triangulaire

Propostion 30.45

Le déterminant d'une matrice triangulaire est égal au produit de ses coefficients diagonaux.

Soit T une matrice triangulaire supérieure (on passe à la transposée sinon). Ainsi :

$$\forall (i,j) \in [1,n]^2, i > j \Rightarrow t_{i,j} = 0$$

D'après la formule sur les coefficients (30.34) :

$$\det(T) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n t_{\sigma(i),i}$$

$$= \sum_{\sigma \in \mathcal{S}_n, \sigma(i) \le i \equiv \mathrm{id}} \varepsilon(\sigma) \prod_{i=1}^n t_{\sigma(i),i}$$

$$= \sigma(\mathrm{id}) \prod_{i=1}^n t_{ii}$$

30.47 Détrminant des matrices de codage des opérations

Lemme 30.47

On a:

$$\det(P_{ij}) = -1$$
, $\det(Q_i(\lambda)) = \lambda$ et $\det(R_{ij}(\lambda)) = 1$

 $Q_i(\lambda)$ et $R_{ij}(\lambda)$ sont triangulaires. D'après (30.45):

$$\det(Q_{i}(\lambda)) = \lambda$$

$$\det(R_{ij}(\lambda)) = 1$$

$$\det(P_{ij}) = \det_{\mathcal{B}_{C}}(C_{1}, \dots, C_{j}, \dots, C_{i}, \dots, C_{n})$$

$$= \det_{\mathcal{B}_{C}}(C_{\tau_{ij}(1)}, \dots, C_{\tau_{ij}(n)}) \text{ où } \tau_{ij} = \begin{pmatrix} i & j \end{pmatrix}$$

$$= \varepsilon(\tau_{ij}) \det_{\mathcal{B}_{C}}(C_{1}, \dots, C_{n})$$

$$= -1$$

30.50 Exemple

Exemple 30.50

Calculer:

$$\begin{vmatrix} 1 & -2 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & -2 & 0 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & -4 & -3 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$= -1$$

30.51Exemple

Calculer pour $a \in \mathbb{R}$:

$$\begin{bmatrix} a & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & a \end{bmatrix}$$

$$\Delta_{n}(a) = \begin{vmatrix} a & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & a \end{vmatrix}$$

$$= \begin{vmatrix} a & 1 & \cdots & \cdots & 1 \\ 1 - a & a - 1 & 0 & \cdots & 0 \\ 1 - a & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 1 - a & 0 & \cdots & 0 & a - 1 \end{vmatrix}$$

$$= (a - 1)^{n-1} \begin{vmatrix} a & 1 & \cdots & \cdots & 1 \\ -1 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ -1 & 1 & \cdots & \cdots & 1 \end{vmatrix}$$

$$= (a - 1)^{n-1} \begin{vmatrix} a + n - 1 & 1 & \cdots & 1 \\ 1 & & & \ddots & \ddots \\ & & & & & 1 \end{vmatrix}$$

$$= (a + n - 1)(a - 1)^{n-1}$$

30.52 Déterminant d'une matrice triangulaire par blocs

Propostion 30.52

Soit T une matrice triangulaire par blocs, c'est-à-dire de la forme :

$$T = \begin{pmatrix} A_1 & \times & \cdots & \times \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & \cdots & 0 & A_k \end{pmatrix}$$

où les A_i sont des matrices carrées. Alors :

$$\det(T) = \prod_{i=1}^{k} \det(A_i)$$

On montre le résultat dans le cas où $T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$.

On généralisera alors par récurrence et transposée.

Soit (A_1,\ldots,A_n) les colonnes de A et (B_1,\ldots,B_p) les lignes de B.

On définit :

$$\varphi: (\mathbb{K}^n)^n \to \mathbb{K}$$

$$(X_1, \dots, X_n) \mapsto \begin{vmatrix} X_1 & \dots & X_n & C \\ 0 & \dots & 0 & B \end{vmatrix}$$

 φ est une forme n-linéaire alternée.

Donc on choisit $\lambda \in \mathbb{K}$ tel que :

$$\varphi = \lambda \det_{\mathcal{B}_n}$$

Donc:

$$\varphi(\mathcal{B}_n) = \lambda \det_{\mathcal{B}_n}(\mathcal{B}_n)$$
$$= \lambda$$

On cherche donc:

$$\varphi(\mathcal{B}_n) = \begin{vmatrix} 1 & & C \\ & \ddots & \\ & & B \end{vmatrix}$$

On définit :

$$\psi: (\mathbb{K}^p)^p \to \mathbb{K}$$

$$(Y_1, \dots, Y_p) \mapsto \begin{vmatrix} 1 & & C \\ & \ddots & \\ & & 1 & Y_1 \\ & & & \vdots \\ & & & Y_p \end{vmatrix}$$

 ψ est une forme p-linéaire alternée donc on choisit $\alpha\in\mathbb{K}$ tel que :

$$\psi = \alpha \det_{\mathcal{B}_n}$$

On a :

$$\alpha = \psi(\mathcal{B}_p)$$

$$= \begin{vmatrix} 1 & & & & \\ & & 1 & & \\ 0 & & & 1 & \\ 0 & 0 & & & \\ 0 & 0 & 0 & & & 1 \end{vmatrix}$$

$$= 1$$

Ainsi:

$$\psi = \det_{\mathbb{B}_p}$$

 $\mathbf{Donc}:$

$$\lambda = \varphi(\mathcal{B}_n)$$

$$= \psi(B_1, \dots, B_p)$$

$$= \det(B)$$

Donc:

$$\varphi = \det(B) \times \det_{\mathcal{B}_n}$$

Donc:

$$\varphi(A_1,\ldots,A_n) = \det(B) \det_{\mathcal{B}_n}(A_1,\ldots,A_n)$$

Soit:

$$\det(T) = \det(B) \det(A)$$

30.57 Exemple

Exemple 30.57

Déterminer la comatrice de
$$M = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 & 1 \\ -1 & 0 & 3 \end{pmatrix}$$
.

$$\Delta_{11}(M) = \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} = 6$$

$$\Delta_{12}(M) = \begin{vmatrix} 0 & 1 \\ -1 & 3 \end{vmatrix} = 1$$

$$\Delta_{13}(M) = \begin{vmatrix} 0 & 2 \\ -1 & 0 \end{vmatrix} = 2$$

$$\Delta_{21}(M) = \cdots$$

$$\operatorname{Com}(M) = \begin{pmatrix} 6 & -1 & 2 \\ -6 & 2 & -2 \\ 4 & -1 & 2 \end{pmatrix}$$