组合优化与凸优化作业1

胡冠宇

1. a) 不是凸集, 理由如下:

如图 1 所示, 取图中 $s_1 \in S_1$, $s_2 \in S_2$ 两点, $\lambda s_1 + (1 - \lambda)s_2$ 为图中红色虚线段. 由于该线段不在 $S_1 \cup S_2$ 内, 因此 $S_1 \cup S_2$ 不是凸集.

b) 是凸集, 理由如下:

 $\forall s_1, s_2 \in S_1 + S_2$, s.t.

$$s_1 = x_1 + y_1$$
, $s_2 = x_2 + y_2$, $x_1, x_2 \in S_1$, $y_1, y_2 \in S_2$.

 $\forall \lambda \in [0, 1], \text{ s.t.}$

$$\lambda s_1 + (1 - \lambda)s_2 = \lambda(x_1 + y_1) + (1 - \lambda)(x_2 + y_2)$$
$$= [\lambda x_1 + (1 - \lambda)x_2] + [\lambda y_1 + (1 - \lambda)y_2],$$

由于 S_1, S_2 均为凸集, 因此 $\lambda x_1 + (1-\lambda)x_2 \in S_1$, $\lambda y_1 + (1-\lambda)y_2 \in S_2$, 则

$$\lambda s_1 + (1 - \lambda)s_2 \in S_1 + S_2,$$

因此 $S_1 + S_2$ 是凸集.

c) 是凸集, 理由如下:

$$\forall s_1, s_2 \in S_1 - S_2$$
, s.t.

$$s_1 = x_1 - y_1$$
, $s_2 = x_2 - y_2$, $x_1, x_2 \in S_1$, $y_1, y_2 \in S_2$.

 $\forall \lambda \in [0, 1], \text{ s.t.}$

$$\lambda s_1 + (1 - \lambda)s_2 = \lambda(x_1 - y_1) + (1 - \lambda)(x_2 - y_2)$$
$$= [\lambda x_1 + (1 - \lambda)x_2] - [\lambda y_1 + (1 - \lambda)y_2],$$

由于 S_1, S_2 均为凸集, 因此 $\lambda x_1 + (1 - \lambda)x_2 \in S_1, \lambda y_1 + (1 - \lambda)y_2 \in S_2$, 则

$$\lambda s_1 + (1 - \lambda)s_2 \in S_1 - S_2,$$

因此 $S_1 - S_2$ 是凸集.

2. a) 不是凸集, 理由如下:

如图 2,取图中两点连成线段,该线段不在 S 内,因此 S 不是凸集.

b) 是凸集, 理由如下:

 $\forall s_1 = (x_1, y_1), s_2 = (x_2, y_2) \in S$, 要证 S 是凸集, 即证 $\forall \lambda \in [0, 1]$, s.t.

$$\lambda s_1 + (1 - \lambda)s_2 = (x, y) = (\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2) \in S.$$

因为

$$x + y = \lambda(x_1 + y_1) + (1 - \lambda)(x_2 + y_2) \le 6,$$

$$-2x + 3y = \lambda(-2x_1 + 3y_1) + (1 - \lambda)(-2x_2 + 3y_2) \ge 2,$$

$$4x - y = \lambda(4x_1 - y_1) + (1 - \lambda)(4x_2 - y_2) \le 12,$$

则 $(x,y) \in S$, 因此 S 是凸集.

c) 是凸集, 理由如下:

 $\forall s_1 = (x_1, y_1), s_2 = (x_2, y_2) \in S$, 要证 S 是凸集, 即证 $\forall \lambda \in [0, 1]$, s.t.

$$\lambda s_1 + (1 - \lambda)s_2 = (x, y) = (\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2) \in S.$$

易证 $x + y \ge 3, x \ge 1$, 因此只需证明 $-(x - 1)^2 + y \ge 1$ 即可.

令 $f(x) = -(x-1)^2$, 则 $f''(x) = -2 \le 0$, 因此函数 f(x) 是凹函数, 即

$$-(x-1)^2 \ge -\lambda(x_1-1)^2 - (1-\lambda)(x_2-1)^2.$$

又因为 $y = \lambda x_2 + (1 - \lambda)y_2$, 所以

$$-(x-1)^2 + y \ge \lambda[-(x_1-1)^2 + y_1] + (1-\lambda)[-(x_2-1)^2 + y_2] \ge 1.$$

因此 S 是凸集.

d) 不是凸集, 理由如下:

如图 3,取图中两点连成线段,该线段不在 S内,因此 S不是凸集.

3. a) 是凸函数, 理由如下:

 $\forall x_1, x_2 \in \mathbb{R}, \lambda \in [0, 1], \mathbb{N}$

$$\begin{split} g(\lambda x_1 + (1-\lambda)x_2) &= \max_{1 \leq i \leq n, i \in \mathbb{Z}} \{f_i(\lambda x_1 + (1-\lambda)x_2)\} \\ &\leq \max_{1 \leq i \leq n, i \in \mathbb{Z}} \{\lambda f_i(x_1) + (1-\lambda)f_i(x_2)\} \\ &\leq \lambda \max_{1 \leq i \leq n, i \in \mathbb{Z}} f_i(x_1) + (1-\lambda) \max_{1 \leq i \leq n, i \in \mathbb{Z}} f_i(x_2) \\ &= \lambda g(x_1) + (1-\lambda)g(x_2), \end{split}$$

因此 g(x) 是凸函数.

b) 不是凸函数, 理由如下:

如图 4 所示, 取 $g(x) = \min\{x^2, (x-2)^2\}$, 即图中红色部分. $\forall x_1, x_2 \in [0,2]$ 时,

$$g(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda g(x_1) + (1 - \lambda)g(x_2), \quad \lambda \in [0, 1],$$

因此 g(x) 不是凸函数.

c) 是凸函数, 理由如下:

$$\forall \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)} \in \mathbb{S}, \mathbb{S} = \left\{ [x_1, x_2, \cdots, x_n]^T \,\middle|\, x_i > 0, \sum_{i=1}^n x_i = 1 \right\}, \lambda \in [0, 1], \tilde{\boldsymbol{\pi}}$$

$$\begin{split} \text{LHS} &= g \left(\lambda \boldsymbol{x}^{(1)} + (1-\lambda) \boldsymbol{x}^{(2)} \right) \\ &= \sum_{i=1}^n \left(\lambda x_i^{(1)} + (1-\lambda) x_i^{(2)} \right) \log \left(\lambda x_i^{(1)} + (1-\lambda) x_i^{(2)} \right), \end{split}$$

$$\begin{split} \text{RHS} &= \lambda g\left(\boldsymbol{x}^{(1)}\right) + (1-\lambda)g\left(\boldsymbol{x}^{(2)}\right) \\ &= \lambda \sum_{i=1}^n x_i^{(1)} \log x_i^{(1)} + (1-\lambda) \sum_{i=1}^n x_i^{(2)} \log x_i^{(2)}. \end{split}$$

令 $h(x) = x \log x$, 易知 $h''(x) = \frac{1}{x} > 0$, 则 h(x) 为凸函数, 因此有

$$h(\lambda x_1 + (1 - \lambda)x_2) \le \lambda h(x_1) + (1 - \lambda)h(x_2),$$

则

LHS
$$\leq \sum_{i=1}^{n} \lambda x_i^{(1)} \log x_i^{(1)} + (1 - \lambda) x_i^{(2)} \log x_i^{(2)}$$

= RHS,

因此 g(x) 是凸函数.

d) 不是凸函数, 理由如下:

如图 5 所示, 取 g(x) 上的点 (0.8,0) 和 (3.2,3) 并连成如图中所示的红色虚线段, 可观察到在 [0.8,3.2] 中有存在于线段上方的值, 因此 g(x) 不是凸函数.

e) 是凸函数, 理由如下:

函数 g(x) 可等价地表示为

$$g(x) = \max_{\substack{S \subseteq \mathbb{Z} \cap [1,n] \\ |S|=k}} \sum_{x \in S} x_i.$$

又因为 $f_1(x) = \max x 与 f_2(x) = x$ 均为凸函数,则 g(x) 也为凸函数.

f) 是凸函数, 理由如下:

 $\forall x_1, x_2 \in \mathbb{R}, \lambda \in [0, 1], \hat{\eta}$

LHS =
$$g(\lambda x_1 + (1 - \lambda)x_2)$$

= $(\lambda x_1 + (1 - \lambda)x_2)^2$
= $\lambda^2 x_1^2 + (1 - \lambda)^2 x_2^2 + 2\lambda(1 - \lambda)x_1x_2$,

RHS =
$$\lambda g(x_1) + (1 - \lambda)g(x_2)$$

= $\lambda x_1^2 + (1 - \lambda)x_2^2$,

LHS - RHS =
$$\left[\lambda^2 x_1^2 + (1-\lambda)^2 x_2^2 + 2\lambda(1-\lambda)x_1x_2\right] - \left[\lambda x_1^2 + (1-\lambda)x_2^2\right]$$

= $-\lambda(1-\lambda)(x_1+x_2)^2$
 ≤ 0 ,

因此 g(x) 是凸函数.

4. a) 将问题化为标准型:

$$\begin{cases} \max & 2x_1' + x_2 - 2x_3' + 2x_3'' \\ \text{s.t.} & x_1' + x_2 + x_3' - x_3'' = 4, \\ & x_1' + x_2 - x_3' + x_3'' + x_4 = 6, \\ & x_1', x_2, x_3', x_3'', x_4 \ge 0, \end{cases}$$

讨论过程如表 1 所示, 最优解为 (5 0 0 1 0)^T, 最优值为 12.

b) 将问题化为标准型:

$$\begin{cases} \max & -2x_1 + x_2' - 3x_3 - x_4' + x_4'' \\ \text{s.t.} & x_1 - x_2' + x_3 + x_4' - x_4'' + x_5 = 7, \\ & -2x_1 - 3x_2' - 5x_3 = 8, \\ & x_1 - 2x_3 + 2x_4' - 2x_4'' - x_6 = 1, \\ & x_1, x_2', x_3, x_4', x_4'', x_5, x_6 \ge 0, \end{cases}$$

表 1

В	B^{-1}	$oldsymbol{x}_B = oldsymbol{B}^{-1} oldsymbol{b}$	基本解	值
$(P_1 P_2), (P_3 P_4)$	-	-	- . T	-
$\begin{pmatrix} \boldsymbol{P}_1 & \boldsymbol{P}_3 \end{pmatrix}, \begin{pmatrix} \boldsymbol{P}_2 & \boldsymbol{P}_3 \end{pmatrix}$	$\frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 5 & -1 \end{pmatrix}^{\mathrm{T}}$	$ \begin{pmatrix} 5 & 0 & -1 & 0 & 0 \end{pmatrix}^{T} $ $ \begin{pmatrix} 0 & 5 & -1 & 0 & 0 \end{pmatrix}^{T} $	-
$\begin{pmatrix} \boldsymbol{P}_1 & \boldsymbol{P}_4 \end{pmatrix}, \begin{pmatrix} \boldsymbol{P}_2 & \boldsymbol{P}_4 \end{pmatrix}$	$\frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$	$\begin{pmatrix} 5 & 1 \end{pmatrix}^{T}$	$\begin{pmatrix} 5 & 0 & 0 & 1 & 0 \end{pmatrix}^{\mathrm{T}}$ $\begin{pmatrix} 0 & 5 & 0 & 1 & 0 \end{pmatrix}^{\mathrm{T}}$	12
$\begin{pmatrix} \boldsymbol{P}_1 & \boldsymbol{P}_5 \end{pmatrix}, \begin{pmatrix} \boldsymbol{P}_2 & \boldsymbol{P}_5 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$	$\begin{pmatrix} 4 & 2 \end{pmatrix}^{T}$	$ \begin{pmatrix} 4 & 0 & 0 & 0 & 2 \end{pmatrix}^{T} $ $ \begin{pmatrix} 0 & 4 & 0 & 0 & 2 \end{pmatrix}^{T} $	8
$\begin{pmatrix} \boldsymbol{P}_3 & \boldsymbol{P}_5 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 4 & 10 \end{pmatrix}^{T}$	$\begin{pmatrix} 0 & 0 & 3 & 0 & 10 \end{pmatrix}^{T}$	-8
$egin{pmatrix} egin{pmatrix} \egn{pmatrix} \e$	$-\begin{pmatrix}1&0\\1&1\end{pmatrix}$	$\begin{pmatrix} -4 & -10 \end{pmatrix}^{T}$	$\begin{pmatrix} 0 & 0 & 0 & -4 & -10 \end{pmatrix}^{T}$	-

则
$$\mathbf{A} = (\mathbf{P}_1 \ \mathbf{P}_2 \ \mathbf{P}_3 \ \mathbf{P}_4 \ \mathbf{P}_5 \ \mathbf{P}_6 \ \mathbf{P}_7) = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 & 1 & 0 \\ -2 & -3 & -5 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 2 & -2 & 0 & -1 \end{pmatrix},$$
 $\mathbf{b} = (7 \ 8 \ 1)^{\mathrm{T}}$. 由约束可知,当 $x_1, x_2', x_3 \ge 0$ 时, $-2x_1 - 3x_2' - 5x_3 = 8$ 不成立,因此该问题无解.

5. a) 如图 6 所示, 可行域为空, 因此无解.

b) 如图 7 所示, 可行域为红色区域. $f = -x_1 + 3x_2$ 在可行域内可以无限小, 因此无解.

图 7

6. 问题可写成

$$\begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ -1 & 1 & -3 & 2 & -1 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 4 \\ -5 \end{pmatrix},$$

基本解见表 2.

表 2

$\overline{}$	B^{-1}	$oldsymbol{x}_B$	基本解		
$\begin{pmatrix} oldsymbol{P}_1 & oldsymbol{P}_2 \end{pmatrix}$	$\frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}$	$\left(\frac{14}{3} -\frac{1}{3}\right)^{\mathrm{T}}$	$\left(\frac{14}{3} - \frac{1}{3} \ 0 \ 0 \ 0\right)^{\mathrm{T}}$		
$\begin{pmatrix} m{P}_1 & m{P}_4 \end{pmatrix}$	$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 3 & -1 \end{pmatrix}^{T}$	$\begin{pmatrix} 3 & 0 & 0 & -1 & 0 \end{pmatrix}^{T}$		
$\begin{pmatrix} m{P}_2 & m{P}_3 \end{pmatrix}$			$\left(0 \ -\frac{1}{3} \ -\frac{14}{9} \ 0 \ 0\right)^{\mathrm{T}}$		

- 7. 由题可知, $\mathbf{A} = \begin{pmatrix} \mathbf{P}_1 & \mathbf{P}_2 & \mathbf{P}_3 & \mathbf{P}_4 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 2 & 2 \\ 4 & 10 & 6 & 8 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 4 \\ 12 \end{pmatrix}$. 基本解及 \mathbf{B} , \mathbf{B}^{-1} , \mathbf{N} , \mathbf{x}_B , \mathbf{x}_N 见表 3.
- 8. **必要性**: 若 $\boldsymbol{x} = \begin{pmatrix} x_1 & \cdots & x_m & 0 & \cdots 0 \end{pmatrix}^T \in \mathbb{R}^n$ 为基本可行解,且 $x_1, \cdots, x_m \geq 0$, 对应的 $\boldsymbol{B} = \begin{pmatrix} \boldsymbol{P}_1 & \boldsymbol{P}_2 & \cdots & \boldsymbol{P}_m \end{pmatrix}$. 因为 \boldsymbol{x} 是可行解,设其中正分量的个数为 k,则 $k \leq m$,因此有

$$(P_1 \quad P_2 \quad \cdots \quad P_k) \subseteq (P_1 \quad P_2 \quad \cdots \quad P_m).$$

又因为 P_1, P_2, \cdots, P_m 线性无关, 因此 P_1, P_2, \cdots, P_k 线性无关.

表 3

B	N	$oldsymbol{B}^{-1}$	$oldsymbol{x}_B$	$oldsymbol{x}_N$	基本解	
$\begin{pmatrix} oldsymbol{P}_1 & oldsymbol{P}_2 \end{pmatrix}$	$\begin{pmatrix} m{P}_3 & m{P}_4 \end{pmatrix}$	$\frac{1}{2} \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$	$\begin{pmatrix} -2 & 2 \end{pmatrix}^{T}$	$\begin{pmatrix} 0 & 0 \end{pmatrix}^T$	$\begin{pmatrix} -2 & 2 & 0 & 0 \end{pmatrix}^{T}$	
$\begin{pmatrix} \boldsymbol{P}_1 & \boldsymbol{P}_3 \end{pmatrix}$	$\begin{pmatrix} m{P}_2 & m{P}_4 \end{pmatrix}$	$\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 2 \end{pmatrix}^T$	$\begin{pmatrix} 0 & 0 \end{pmatrix}^T$	$\begin{pmatrix} 0 & 0 & 2 & 0 \end{pmatrix}^{T}$	

充分性: 若 $\boldsymbol{x} = \begin{pmatrix} x_1 & \cdots & x_k & 0 & \cdots 0 \end{pmatrix}^{\mathsf{T}} \in \mathbb{R}^n$ 为可行解, $x_1, \cdots, x_k > 0$, 且 $\boldsymbol{P}_1, \boldsymbol{P}_2, \cdots, \boldsymbol{P}_m$ 线性无关, $\mathrm{rank}(\boldsymbol{A}) = m$, 则显然有 $k \leq m$.

- 当 k < m 时,有 P_1, P_2, \cdots, P_k 线性无关.因为 rank(A) = m,所以必定可以从 $P_{k+1}, P_{k+2}, \cdots, P_n$ 中选出 m k 个线性无关向量,与 P_1, P_2, \cdots, P_k 组成线性无关的向量组,因此 x 是基本可行解.
- 9. a) 将问题化为标准型:

$$\begin{cases} \max & 6x_1+14x_2+13x_3\\ \text{s.t.} & x_1+4x_2+2x_3+x_4=48,\\ & x_1+2x_2+4x_3+x_5=60,\\ & x_1,x_2,x_3,x_4,x_5\geq 0. \end{cases}$$

使用单纯形表, 如表 4 所示. 因此原问题的最优解为 $x = \begin{pmatrix} 36 & 0 & 6 \end{pmatrix}^T$, 最优值为 294.

b) 将问题化为标准型:

$$\begin{cases} \max & -3x_1+2x_2+4x_3\\ \text{s.t.} & 4x_1+5x_2-2x_3+x_4=22,\\ & x_1-2x_2+x_3+x_5=30,\\ & x_1,x_2,x_3,x_4,x_5\geq 0. \end{cases}$$

使用单纯形表, 如表 5 所示. 因此原问题的最优解为 $x = \begin{pmatrix} 0 & 82 & 194 \end{pmatrix}^T$, 最优值为 940.

表 4

Co	v 5	b	6	14	13	0	0	$oldsymbol{ heta}_i$
$oldsymbol{c}_B$	$oldsymbol{x}_B$	U	x_1	x_2	x_3	x_4	x_5	
0	x_4	48	1	(4)	2	1	0	12
0	x_5	60	1	2	4	0	1	30
_	- z	0	6	14*	13	0	0	
14	x_2	12	$\frac{1}{4}$	1	$\frac{1}{2}$	$\frac{1}{4}$	0	24
0	x_5	36	$\frac{1}{2}$	0	(3)	$-\frac{1}{2}$	1	12
_	- z	-168	$\frac{5}{2}$	0	6*	$-\frac{7}{2}$	0	
14	x_2	6	$\left(\frac{1}{6}\right)$	1	0	$\frac{1}{3}$	$-\frac{1}{6}$	36
13	x_3	12	$\frac{1}{6}$	0	1	$-\frac{1}{6}$	$\frac{1}{3}$	72
_	- <i>z</i>	-240	$\frac{3}{2}$ *	0	0	$-\frac{5}{2}$	-2	
6	x_1	36	1	6	0	2	-1	
13	x_3	6	0	-1	1	$-\frac{1}{2}$	$\frac{1}{2}$	
_	- z	-294	0	-9	0	$-\frac{11}{2}$	$-\frac{1}{2}$	

c) 将问题化为标准型:

$$\begin{cases} \max & x_1 + x_2 + x_3 \\ \text{s.t.} & -x_1 - x_3 + x_4 = 5, \\ & 2x_1 - 3x_2 + x_3 + x_5 = 3, \\ & 2x_1 - 5x_2 + 6x_3 + x_6 = 5, \\ & x_1, x_2, x_3, x_4, x_5, x_6 \ge 0. \end{cases}$$

使用单纯形表, 如表 6 所示. 因此最优解不存在.

10. 使用大 M 法, 得到

$$\begin{cases} \max & 4x_1 + 2x_2 + 8x_3 - Mx_5 \\ \text{s.t.} & 2x_1 - x_2 + 3x_3 + x_4 = 30, \\ & x_1 + 2x_2 + 4x_3 + x_5 = 40, \\ & x_1, x_2, x_3, x_4, x_5 \ge 0. \end{cases}$$

使用单纯形表, 如表 7 所示.

因此原问题的最优解为 $x = \begin{pmatrix} 20 & 10 & 0 \end{pmatrix}$, 最优值为 100.

表 5

C.D.	$oldsymbol{x}_B$	b	-3	2	4	0	0	$oldsymbol{ heta}_i$
$oldsymbol{c}_B$		U	x_1	x_2	x_3	x_4	x_5	
0	x_4	22	4	5	-2	1	0	
0	x_5	30	1	-2	(1)	0	1	30
_	-z	0	-3	2	4*	0	0	
0	x_4	82	6	(1)	0	1	2	82
4	x_3	30	1	-2	1	0	1	
_	-z	-120	-7	10*	0	0	-4	
2	x_2	82	6	1	0	1	2	
4	x_3	194	13	0	1	2	5	
_	- <i>z</i>	-940	-67	0	0	-10	-24	

表 6

c_B	$oldsymbol{x}_B$	b	1	1	1	0	0	0	$oldsymbol{ heta}_i$
	\mathbf{u}_B		x_1	x_2	x_3	x_4	x_5	x_6	
0	x_4	5	-1	0	1	1	0	0	
0	x_5	3	(2)	-3	1	0	1	0	$\frac{3}{2}$
0	x_6	5	2	-5	6	0	0	1	$\frac{5}{2}$
_	-z	0	1*	1	1	0	0	0	
0	x_4	$\frac{13}{2}$	0	$-\frac{3}{2}$	$\frac{3}{2}$	1	$\frac{1}{2}$	0	
1	x_1	$\frac{3}{2}$	1	$-\frac{3}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0	
0	x_6	2	0	-2	5	0	-1	1	
_	-z	0	0	$\frac{5}{2}$ *	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	

使用两阶段法,第一阶段得到

$$\begin{cases} \max & -x_4 - x_5 \\ \text{s.t.} & 2x_1 - x_2 + 3x_3 + x_4 = 30, \\ & x_1 + 2x_2 + 4x_3 + x_5 = 40, \\ & x_1, x_2, x_3, x_4, x_5 \ge 0. \end{cases}$$

如表 8 所示, 使用单纯形表得到原问题的基本可行解 $\boldsymbol{x} = \begin{pmatrix} 0 & 0 & 10 \end{pmatrix}$. 如表 9 所示, 使用单纯形表继续计算, 得到原问题的最优解 $\boldsymbol{x} = \begin{pmatrix} 20 & 10 & 0 \end{pmatrix}$, 最优

表 7

Cr	$oldsymbol{x}_B$	b	4	2	8	0	-M	$oldsymbol{ heta}_i$
$oldsymbol{c}_B$	\boldsymbol{u}_B		x_1	x_2	x_3	x_4	x_5	
0	x_4	30	2	-1	3	1	0	10
-M	x_5	40	1	2	(4)	0	1	10
	z	0	M+4	2M + 2	4M + 8*	0	0	
0	x_4	0	$\left(\frac{5}{4}\right)$	$-\frac{5}{2}$	0	1	$-\frac{3}{4}$	0
8	x_3	10	$\frac{1}{4}$	$\frac{1}{2}$	1	0	$\frac{1}{4}$	40
	z	-80	2*	-2	0	0	-M - 2	
4	x_1	0	1	-2	0	$\frac{4}{5}$	$-\frac{3}{5}$	
8	x_3	10	0	(1)	1	$-\frac{1}{5}$	$\frac{2}{5}$	10
	z	-80	0	2*	0	$-\frac{8}{5}$	$-M - \frac{4}{5}$	
4	x_1	20	1	0	2	$\frac{2}{5}$	$\frac{1}{5}$	
2	x_2	10	0	1	1	$-\frac{1}{5}$	$\frac{2}{5}$	
	\overline{z}	-100	0	0	-2	$-\frac{6}{5}$	$-M-\frac{8}{5}$	

值为 100.

11. 对于线性规划问题

$$(LP) \quad egin{cases} \max & oldsymbol{c}^{\mathsf{T}} oldsymbol{x} \ \mathrm{s.t.} & oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}, \ & oldsymbol{x} \geq oldsymbol{0}, \end{cases}$$

其对偶问题为

$$(DP) \quad egin{cases} \min & oldsymbol{b}^{\mathrm{T}} oldsymbol{y} \ \mathrm{s.t.} & oldsymbol{A}^{\mathrm{T}} oldsymbol{y} \geq oldsymbol{c}, \ oldsymbol{y} \geq oldsymbol{0}, \end{cases}$$

则 DP 的对偶问题为

$$egin{cases} \max & oldsymbol{c}^{ ext{T}} oldsymbol{x} \ ext{s.t.} & oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}, \ & oldsymbol{x} \geq oldsymbol{0}, \end{cases}$$

证毕.

12. 原问题与其对偶问题之间的核心联系体现在对偶定理.

表 8

$oldsymbol{c}_B$	$oldsymbol{x}_B$	b	0	0	0	-1	-1	$oldsymbol{ heta}_i$
c_B			x_1	x_2	x_3	x_4	x_5	
-1	x_4	30	2	-1	3	1	0	10
-1	x_5	40	1	2	(4)	0	1	10
_	- z	70	3	1	7*	0	0	
0	x_3	10	$\frac{2}{3}$	$-\frac{1}{3}$	1	$\frac{1}{3}$	0	
-1	x_5	0	$-\frac{5}{3}$	$\left(\frac{10}{3}\right)$	0	$-\frac{4}{3}$	1	0
_	z	0	$-\frac{5}{3}$	$\frac{10}{3}$ *	0	$-\frac{7}{3}$	0	
0	x_3	10	$\frac{1}{2}$	0	1	$\frac{1}{5}$	$\frac{1}{10}$	
0	x_2	0	$-\frac{1}{2}$	1	0	$-\frac{2}{5}$	$\frac{3}{10}$	
_	-z	0	0	0	0	-1	-1	

表 9

Co	T 5	b	4	2	8	$oldsymbol{ heta}_i$
c_B	$oldsymbol{x}_B$		x_1	x_2	x_3	
8	x_3	10	$\left(\frac{1}{2}\right)$	0	1	20
2	x_2	0	$-\frac{1}{2}$	1	0	
_	- <i>z</i>	-80	1*	0	0	
4	x_1	20	1	0	2	
2	x_2	10	0	1	1	
_	- z	-100	0	0	-2	

定理 1 (弱对偶定理). 对于任何原问题的可行解 x 及其对偶问题的可行解 y, 总有

$$oldsymbol{c}^{\mathsf{T}}oldsymbol{x} \leq oldsymbol{b}^{\mathsf{T}}oldsymbol{y}$$

定理 2 (强对偶定理). 若原问题及其对偶问题均有可行解且分别为 x^* 和 y^* , 则

$$\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^* = \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^*$$

原问题与其对偶问题之间的区别在于:

- 目标函数的区别
 - 原问题是最大化问题 $\max c^{\mathsf{T}}x$.
 - 其对偶问题是最大化问题 $\min b^{T}y$.

• 约束条件的转换

- 原问题的约束右端项 **b** 变成其对偶目标函数的系数.
- 原问题的目标函数系数 c 变成其对偶约束的右端项.
- 原问题的约束方向 < 变成对偶问题的 >.

• 变量的物理意义

在资源分配问题中,原问题变量 x 表示实际分配方案,而其对偶变量 y 可以解释为资源的影子价格,表示单位资源的价值.

• 计算难度

若原问题有 n 个变量和 m 个约束, 当 $m \ll n$ 时求解对偶问题可能更简单.

13. a) 错.

考虑问题

$$\begin{cases} \max & x_1 + x_2 \\ \text{s.t.} & x_1 + x_2 \le 2, \\ & x_1, x_2 \ge 0. \end{cases}$$

易知该问题的最优解解集合为 $\{(x_1, x_2) \mid x_1 + x_2 = 2, x_1, x_2 \ge 0\}$, 其中 (2, 0) 和 (0, 2) 为基本可行解, 因此最优解不一定是最优基本可行解.

b) 对.

线性规划问题的可行域是凸集,且目标函数为线性.若存在多个不同的最优解 x_1, x_2, \dots, x_k ,则它们的凸组合也是最优解,因此形成无穷多个解.

c) 错.

考虑问题

$$\begin{cases} \max & x_1 + x_2 \\ \text{s.t.} & x_1 + x_2 \le 2, \\ & x_1, x_2 \ge 0. \end{cases}$$

易知该问题的最优解解集合为 $\{(x_1,x_2) \mid x_1+x_2=2,x_1,x_2\geq 0\}$. 考虑最优解 (1,1), 它有两个变量值为正, 因此不一定存在最多 m 个变量值为正.

d) 对.

可行域内的顶点构成基本可行解, 其最多有m个正分量. 非基变量共有n-m个, 因此基变换过程中可选择的入基变量最多有n-m个, 因此每个顶点至多有n-m个相邻顶点.

- 14. 代码见附件,运行结果如图 8 所示.
- 15. 代码见附件.

```
Ouestion 1:
\max 6.0x_1 + 14.0x_2 + 13.0x_3 + 0.0x_4 + 0.0x_5
s.t. x_1 + 4.0x_2 + 2.0x_3 + x_4 + 0.0x_5 = 48.0
    x_1 + 2.0x_2 + 4.0x_3 + 0.0x_4 + x_5 = 60.0
    x_1, x_2, x_3, x_4, x_5 >= 0
Optimal solution: [36. 0. 6. 0. 0.]
Optimal value:
                294.0
Question 2:
max -3.0x_1 + 2.0x_2 + 4.0x_3 + 0.0x_4 + 0.0x_5
s.t. 4.0x 1 + 5.0x 2 - 2.0x 3 + x 4 + 0.0x 5 = 22.0
    x_1 - 2.0x_2 + x_3 + 0.0x_4 + x_5 = 30.0
    x_1, x_2, x_3, x_4, x_5 >= 0
Optimal solution: [ 0. 82. 194. 0. 0.]
Optimal value: 940.0
Question 3:
\max x_1 + x_2 + x_3 + 0.0x_4 + 0.0x_5 + 0.0x_6
s.t. -x_1 + 0.0x_2 - x_3 + x_4 + 0.0x_5 + 0.0x_6 = 5.0
    2.0x_1 - 3.0x_2 + x_3 + 0.0x_4 + x_5 + 0.0x_6 = 3.0
    2.0x_1 - 5.0x_2 + 6.0x_3 + 0.0x_4 + 0.0x_5 + x_6 = 5.0
    x_1, x_2, x_3, x_4, x_5, x_6 >= 0
Optimal solution: None
Optimal value:
                 None
Question 4:
\max 4.0x 1 + 2.0x 2 + 8.0x 3 + 0.0x 4
s.t. 2.0x_1 - x_2 + 3.0x_3 + x_4 = 30.0
    x_1 + 2.0x_2 + 4.0x_3 + 0.0x_4 = 40.0
    x_1, x_2, x_3, x_4 >= 0
Optimal solution: [20. 10. 0. 0.]
Optimal value: 100.0
```

设各长度的钢管数量构成 $x \in \mathbb{R}^3$, 使得

$$(2.9 \ 2.1 \ 1.5)$$
 $x \le 7.4$, x_1, x_2, x_3 为正整数.

遍历所有可能的情况,得到如表 10 中所示的 21 种可能的方案,表中的前三列构成矩阵 $A \in \mathbb{R}^{3 \times 21}$,第五列构成向量 $c \in \mathbb{R}^{21}$.

2.9m 钢管数量	2.1m 钢管数量	1.5m 钢管数量	消耗长度 (m)	剩余长度 (m)	方案执行次数
0	0	1	5.9	1.5	0
0	0	2	4.4	3.0	0
0	0	3	2.9	4.5	0
0	0	4	1.4	6.0	0
0	1	0	5.3	2.1	0
0	1	1	3.8	3.6	0
0	1	2	2.3	5.1	0
0	1	3	0.8	6.6	0
0	2	0	3.2	4.2	0
0	2	1	1.7	5.7	0
0	2	2	0.2	7.2	0
0	3	0	1.1	6.3	0
1	0	0	4.5	2.9	0
1	0	1	3.0	4.4	0
1	0	2	1.5	5.9	0
1	0	3	0.0	7.4	30
1	1	0	2.4	5.0	0
1	1	1	0.9	6.5	0
1	2	0	0.3	7.1	50
2	0	0	1.6	5.8	0
2	0	1	0.1	7.3	10

表 10 制作 100 套钢架问题中可能的方案

设每种方案执行次数构成 $y \in \mathbb{R}^{21}$, 为了使材料最省, 则只需让 $c^{\mathsf{T}}y$ 最小, 因此得到 优化问题

$$\begin{cases} \min & \boldsymbol{c}^{\mathsf{T}} \boldsymbol{y} \\ \text{s.t.} & \boldsymbol{A} \boldsymbol{y} = 100 \boldsymbol{J}, \\ & y_1, y_2, \cdots, y_{21}$$
 为正整数, (1)

其中 $J \in \mathbb{R}^{21}$ 为全 1 向量.

使用 Julia 编写程序并求解公式 (1), 得到表 10 中的第六列, 该列表示公式 (1) 的最

优解 y^* .

因此,最优值为

$$\boldsymbol{c}^{\mathrm{T}}\boldsymbol{y}^{*}=16,$$

即浪费了 16m 的钢管, 共消耗了 $J^{T}y^{*} = 90$ 根钢管.

21× 6	DataFra	me				
Row	2.9m	2.1m	1.5m	Spend	Remain	Count
	Int64	Int64	Int64	Float64	Float64	Int64
1	0	0	1	г о	1 [0
2	0	0	2	5.9	1.5 3.0	0
3	0		3	4.4 2.9		0
		0			4.5	_
4	0	0	4	1.4	6.0	0
5	0	1	0	5.3	2.1	0
6	0	1	1	3.8	3.6	0
7	0	1	2	2.3	5.1	0
8	0	1	3	0.8	6.6	0
9	0	2	0	3.2	4.2	0
10	0	2	1	1.7	5.7	0
11	0	2	2	0.2	7.2	0
12	0	3	0	1.1	6.3	0
13	1	0	0	4.5	2.9	0
14	1	0	1	3.0	4.4	0
15	1	0	2	1.5	5.9	0
16	1	0	3	0.0	7.4	30
17	1	1	0	2.4	5.0	0
18	1	1	1	0.9	6.5	0
19	1	2	0	0.3	7.1	50
20	2	0	0	1.6	5.8	0
21	2	0	1	0.1	7.3	10
Total:	_					
	aste:16.	0				

图 9

程序运行输出如图 9 所示.

16. (a) 线性优化与非线性优化 线性优化形如

$$egin{cases} \max & oldsymbol{c}^{ ext{T}} oldsymbol{x} \ ext{s.t.} & oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}, \end{cases}$$

它的目标函数和约束条件都是线性的.

非线性优化形如

$$\begin{cases} \max & f(\boldsymbol{x}) \\ \text{s.t.} & g_i(\boldsymbol{x}) \leq 0, \\ & h_j(\boldsymbol{x}) = 0. \end{cases}$$

它的目标函数或约束条件中至少有一个是非线性的.

线性优化是非线性优化的一种特例,即非线性优化更一般.

(b) 凸优化与非凸优化

凸优化需要满足三点: (1) 目标函数是凸函数; (2) 约束是凸集; (3) 具有唯一全局最优解. 非凸优化的目标函数或约束可能是非凸的.

凸优化是非凸优化的一个特例, 很多非凸问题可以通过凸化转化为凸优化问题.

(c) 光滑优化与非光滑优化

光滑优化中的目标函数可微,并且通常具有连续的一阶或高阶导数. 非光滑优化中的目标函数不可微,如 |x| 在 0 点处不可导.

许多非光滑优化可以通过光滑化处理, 使其变成光滑优化.

(d) 线性化: 通过泰勒展开, 一阶近似等方式, 把非线性问题转化为线性问题, 如

$$f(\boldsymbol{x}) \approx f(\boldsymbol{x}_0) + \nabla^{\mathrm{T}} f(\boldsymbol{x}_0) (\boldsymbol{x} - \boldsymbol{x}_0)$$

可将非线性函数近似成线性函数.

凸化: 凸化是使非凸优化问题变成凸优化问题的常见方法, 如松弛, 变量变换, 凸包逼近等.

光滑化: 通过引入平滑函数逼近非光滑函数, 如 σ 平滑

$$H(x) = \begin{cases} \frac{1}{2}x^2, & |x| \le \sigma, \\ \sigma\left(|x| - \frac{1}{2}\sigma\right), & |x| > \sigma, \end{cases}$$

或 Softmax 近似等.

(e) 近年来, 随着深度学习的快速发展, 非凸优化也更加受到重视.

神经网络的损失函数通常是非凸的,且神经网络权重空间往往复杂,存在多个局部最优和鞍点,在训练过程使用的梯度下降方法并不保证找到全局最优解.但近年来的研究发现,即使深度学习的优化问题是非凸的,实践中仍然可以找到可接受的解决方案,比如有研究表明,大规模神经网络的局部最优点往往表现良好.

17. 内点法的核心思想为通过迭代更新,从多面体的内部逐渐接近最优解,而不是像单纯形法那样沿着可行域的边界移动.

对于标准的线性规划问题

$$\begin{cases} \min & c^{T}x \\ \text{s.t.} & Ax = b, \\ & x > 0, \end{cases}$$

它的可行域为

$$\mathcal{F} = \{ \boldsymbol{x} \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \geq \boldsymbol{0} \}.$$

如图 10 所示, 可行域 F 大致分为边界和内部.

图 11 不同方法搜索过程示意图

如图 11 所示,单纯形法往往从多面体的一个顶点 (基本可行解) 出发,沿着边界寻找最优解,而内点法是从多面体的内部出发,沿着搜索方向寻找最优解,因此通常情况下,内点法比单纯形法的效率更高.