Research Article Spring 2017 - I524 1

Weather Data Analysis

VISHWANATH KODRE¹, SABYASACHI ROY CHOUDHURY¹, AND ABHIJIT THAKRE¹

¹ School of Informatics and Computing, Bloomington, IN 47408, U.S.A.

project-000, March 14, 2017

The project aims to analyze any relationship between change in climate, geo- magnetic field and natural disasters with focusing on use of Hadoop Framework for data analysis and Ansible for automating deployment and monitoring.

© 2017 https://creativecommons.org/licenses/. The authors verify that the text is not plagiarized.

Keywords: Cloud, 1524

https://github.com/cloudmesh/classes/blob/master/docs/source/format/report/report.pdf

INTRODUCTION

The study of environmental science and climatic changes around has been done for decades, the study has always been predictive based on the past experiences and forecasting of the weather conditions around us. With use of modern days technologies it determining the climatic changes and with analysis done around it has helped human being to prepare and face the natural calamities. Though with current equipment weather department has strengthen their arms but has not been able to be full proof and many time its not been able to predict/ forecast the climatic changes effectively. The study of the whether data and geo graphical changes is ongoing evolving process. Thus more and more researcher needs modern days tools and technologies to leverage it and forecast more accurately.

Objective

The goal of this is to study the weather data and analyze the relationship between the geo graphical changes such change in geo magnetic field and/or natural disaster. With use of Hadoop for distributed data analysis aims to finds any pattern that might exists between these parameters. The course of the analysis will also provides visualization of these parameters in order to identify any pattern in a more intuitive way. By leveraging the power ansible for application deployment over cluster and monitoring the application performance to determine scalability and throughput. The conclusion will be determine by establishing any existing pattern, analysis done over it and by visualizing it.

DATA SOURCES

Weather data has been recorded since 19th century. This data can be used to estimate climate changes and forecasting. The same data can be can be used to find any existing pattern with natural disasters. Following sources has been compiled for weather, natural disaster and geo magnetic fields.

- Weather-Data[1]
- Natural Disaster[2]
- Geo Magnetic Field[3]

HIGH LEVEL DESIGN

The design of the application is thought of leveraging power of Hadoop as main processing unit of analysis with deployment on the cluster environment where application requires multiple processing units for execution, database for persistence and visualization tools for graphical outputs. The project is divided into following steps:

- Data cleaning and persistence The raw data cannot be use directly for analysis. First data has to be parsed and required parameters will be extracted. Then this extracted data will be dumped into a NoSql database.
- Core Analysis Program Core analysis program will be responsible for figuring out any hidden patterns between aforesaid parameters. Program will compare natural disasters occurred, geo-magnetic orientation and climate data set on a given location and duration and compute relationship between them. The program will be an MapReduce implementation and is the heart of the application. The program will be executed through Hadoop framework. Hadoop will execute the program in a distributed manner.
- Deployment and Monitoring The application needs multiple processing units and monitoring system. Ansible will be used for deployment and manage nodes for program execution. Ansible will be responsible for following tasks i) Deployment and configuration of Hadoop on the multiple nodes. ii) Starting Hadoop servers, inserting/reading data. iii) Execution of the commands to run the analysis using

 $^{^1}$ Corresponding authors: sabyasachi087@gmail.com, vkodre@gmail.com, athakre@gmail.com

Research Article Spring 2017 - I524 2

Fig. 1. Architecture

Hadoop to filter the input data and write response to HDFS or some output file. iv) This output can be then passes to the visualization step as the input data.

- Visualization Finally once the programs completes execution, using the scikit-tool or other visualization tool kit and the output file, graphs and patterns depicting the relationship can be plotted more intuitive representation.
- BenchMarking The application can be benchmarked for the scalability by addition more nodes and checking the performance for strong scaling. The report will be represented in tabular format.

REFERENCES

- [1] "Weather data," Web page. [Online]. Available: https://www.ncdc.noaa.gov/
- [2] "Natural disaster," Web page. [Online]. Available: http://www.emdat.be/
- [3] "Geo magnetic field data," Web page. [Online]. Available: https://geohazards.usgs.gov/mailman/listinfo/geomag-data