Příklad

Dokažte výroky "Má-li relace R na konečné množině vlastnost X, pak má inverzní relace R^{-1} už nutně také vlastnost X," kde $X \in \{\text{reflexivita, tranzitivita, symetrie, antisymetrie}\}$. Pokud nevíte jak na to, nebojte – podobné příklady budeme dělat na začátku příštího cvika.

Zapišme si definici R^{-1} takto: $\forall x,y:xRy \Leftrightarrow yR^{-1}x$. A pomocí ní dokážeme, že definice vlastnosti X pro R je ekvivalentní definici vlastnosti X pro R^{-1} .

Důkaz (Reflexivita)

$$(\forall x: xRx) \overset{\boxed{\text{Z definice } R^{-1} xRx \Leftrightarrow xR^{-1}x}}{\Leftrightarrow} (\forall x: xR^{-1}x)$$

Důkaz (Tranzitivita)

$$\forall x,y,z: xRy \wedge yRz \implies xRz \overset{\boxed{\text{\mathbb{Z} definice R^{-1}}}}{\Leftrightarrow} \forall x,y,z: yR^{-1}x \wedge zR^{-1}y \implies zR^{-1}xi$$

$$\overset{\boxed{\text{\mathbb{P} \'rezna\'c\'ime $x \leftrightarrow z$}}}{\Leftrightarrow} \forall x,y,z: yR^{-1}z \wedge xR^{-1}y \implies xR^{-1}z$$

Důkaz (Symetrie)

$$\forall x, y : xRy \implies yRx \overset{\boxed{\text{z definice } R^{-1}}}{\Leftrightarrow} \forall x, y : yR^{-1}x \implies xR^{-1}y$$

$$\overset{\boxed{\text{Přeznačíme } x \leftrightarrow y}}{\Leftrightarrow} \forall x, y : xR^{-1}y \implies yR^{-1}x$$

Důkaz (Antisymetrie)

$$\forall x,y: xRy \land yRx \implies x = y \overset{\text{$\left[z$ definice R^{-1}}\right]}{\Leftrightarrow} \forall x,y: yR^{-1}x \land xR^{-1}y \implies x = y$$