ЛАБОРАТОРНА РОБОТА № 15

Тема: Шаблони функцій.

Мета: Навчитися створювати та використовувати шаблони функцій.

Порядок виконання роботи

та методичні рекомендації до її виконання:

- створити новий консольний проект (Win32 Console Application) для виконання лабораторної роботи та зберегти його на власному мережевому диску;
- написати програмний код для виконання поставленого завдання згідно індивідуального варіанту;
- провести тестування програми з різним набором вхідних даних;
- побудувати блок-схему до написаної програми;
- оформити звіт до лабораторної роботи.

Зразок виконання завдання

Розробити програму, яка знаходить суму від'ємних елементів масиву. Продемонструвати роботу програми для двох типів даних. Для виконання завдання скористатись шаблонами функцій.

Програмний код:

```
□#include <iostream>
 #include <windows.h>
 using namespace std;
 template <class T> T Negative(T *mas, int lenght);
 template <class T> T* CreateArray(int size, int min, int max);
 template <class T> void ShowArray(T *mas, int arraySize, char* type);
□int main()
    setlocale(LC_ALL, "Ukrainian");
    cout<<"-----"<<endl;
    cout<<"----- "<<endl;
    int size=8;
    int *intMas = CreateArray<int>(size, -3, 3);
    ShowArray<int>(intMas, size, "int");
    cout << "Сума від'ємних елементів: "<< Negative<int>(intMas,size)<<endl<<endl;
    float *floatMas= CreateArray<float>(size, -3, 3);
    ShowArray<float>(floatMas, size, "float");
    cout << "Cyma Bid'ємних елементів: "<< Negative<float>(floatMas,size)<<endl<<endl;
    system("pause");
    return 0;
```

```
template <class T>
□T Negative(T *mas, int lenght)
          T sum=0;
          for(int i=0; i<lenght; i++)</pre>
                  if(mas[i]<0)
                      sum+=mas[i];
          return sum;
 }
 template <class T>
□T* CreateArray(int size, int min, int max)
     T *mas = new T[size];
     int i=0;
     while(i<size)
          mas[i]=min + rand() % (1000*(max-min))/ 1000.0f;
      return mas:
 }

☐ template <class T> void ShowArray(T *mas, int arraySize, char* type)

     cout << "Масив типу "<< type << endl;
     for(int i=0; i<arraySize; i++)</pre>
         cout << mas[i] << "\t";</pre>
     cout << endl <<endl;
 }
```

Результати виконання:

```
C:\Windows\system32\cmd.exe
                            Лабораторна робота Н14
                               -Шаблони функцій
Масив типу
           int
                                  -1
                                          0
                                                            2
Сума від'ємних елементів: -7
Масив типу float
-0.0380001
                 -2.536
                         2.705
                                  1.145
                                          2.281
                                                   1.827
                                                            0.961
                                                                    -2.509
Сума від'ємних елементів: -5.083
Press any key to continue . . .
```

Варіанти індивідуальних завдань

Для усіх варіантів: Розробити програму для роботи з двовимірним масивом згідно з варіантом, розмір масиву зчитувати з файлу, елементи масиву згенерувати випадковим чином. Продемонструвати роботу програми на трьох різних типах двовимірних масивів. Для вибору типу даних, з яким необхідно працювати, розробити консольне меню. Для виконання завдання використати шаблони функцій.

Варіант№1. Дана матриця А. Всі елементи головної діагоналі обнулити, вище і нижче - замінити знак на протилежний.

Варіант№2. Знайти суму додатніх елементів матриці А у непарних рядках матриці.

Варіант№3. Знайти кількість від'ємних елементів матриці А на непарних позиціях у парних стовпцях.

Варіант№4. Переписати елементи головної діагоналі матриці В в одновимірний масив С. Підрахувати кількість від'ємних елементів у масиві С.

Варіант№5. Знайти кількість додатніх елементів, розташованих під головною діагоналлю матриці А.

Варіант№6. Дано масив А. Знайти мінімальний елемент серед елементів, розташованих в непарних рядках масиву.

Варіант№7. Дано масив А. Побудувати масив В за наступним правилом: В (J) привласнити максимальний елемент. J - стовпці масиву А.

Варіант№8. Дано масив А. Знайти кількість позитивних елементів побічної діагоналі та вивести рядки, в яких елемент побічної діагоналі є парним.

Варіант№9. Дано масив А. Знайти максимальний елемент серед елементів, розташованих вище побічної діагоналі.

Варіант№10. Дано масив А. Знайти максимальний елемент серед елементів, розташованих нижче побічної діагоналі. Поміняти місцями елементи рядка і стовпчика, на перетині яких знаходиться максимальний елемент.

Варіант№11. Дано масив А. Знайти максимум серед елементів, що повторюються більш ніж один раз.

Варіант№12. Дано масив А. Знайти максимальний елемент серед елементів кожного з рядків.

Варіант№13. Знайти кількість нульових елементів матриці A, розташованих над головною діагоналлю.

Варіант№14. Знайти середнє арифметичне від'ємних елементів матриці А.

Варіант№15. У матриці А знайти кількість нульових елементів.