GEOMETRÍA MODERNA I

2019-1 (23 noviembre 2018)

EXAMEN PARCIAL 05

INSTRUCCIONES: Justificar y argumentar todos los resultados que se realicen. Resolver únicamente cinco ejercicios, de entregar más de cinco ejercicios se anulará el ejercicio de mayor puntaje.

- 1. Demostrar que si l y m son dos rectas distintas en el plano, $\{A,C,E\}\subseteq l$ distintos, $\{B,D,E\}\subseteq m$ distintos y $\overline{AB}\cap \overline{DE}=\{P\}$, $\overline{BC}\cap \overline{EF}=\{Q\}$, $\overline{CD}\cap \overline{AF}=\{R\}$ entonces $\{P,Q,R\}$ es un conjunto de puntos colineales.
- 2. Demostrar que si $\zeta(O,r)$ es la circunferencia que inscribe al cuadrado $\Box ABCD$ (con los vértices ordenados levógira o dextrógiramente sobre la circunferencia) entonces para cualquier $P \in \zeta(O,r) \setminus \{A,B,C,D\}$ se tiene que $P(\overline{PA},\overline{PC};\overline{PB},\overline{PD})$.
- 3. Demostrar que cada unos de los triángulos formados por tres de los cuatro lados de un cuadrilátero completo está en perspectiva con el triángulo diagonal del cuadrilátero.
- 4. Construir un cuadrángulo completo que tenga un triángulo dado como triángulo diagonal.
- 5. Sea $\Box ABCD$ un cuadrángulo. Demostrar que existe $\zeta(O,r)$ tal que $\{A,B,C,D\}\subseteq \zeta(O,r)$ si y solo si $AD\cdot BC+AB\cdot CD=AC\cdot BD$.
- 6. Sean $\triangle ABC$, $\zeta(O,r)$ la circunferencia que lo inscribe y $P \in \zeta(O,r) \setminus \{A,B,C\}$. Demostrar que si l_{XY} es la recta ortogonal a \overline{XY} incidente en P con $\{X,Y\} \subseteq \{A,B,C\}$ y $X \neq Y$ y $l_{AB} \cap \overline{AB} = \{Q\}$, $l_{BC} \cap \overline{BC} = \{R\}$, $l_{AC} \cap \overline{AC} = \{S\}$ entonces $\{Q,R,S\}$ es un conjunto de puntos colineales.