STAT 215A Fall 2017 Week 10

Rebecca Barter 10/27/2017

Evaluating classification algorithms

There are many ways to evaluate the accuracy of a classification algorithm

Evaluating classification algorithms

There are many ways to evaluate the accuracy of a classification algorithm

- Test/validation set
- Cross-validation

- Confusion matrix
- TP, FP, TN, FN
- ROC curve
- Confidence interval for error

Confusion matrix

Fig. 1. Confusion matrix and common performance metrics calculated from it.

Ref: Fawcett (2005)

Confusion matrix

Fig. 1. Confusion matrix and common performance metrics calculated from it.

Ref: Fawcett (2005)

Confusion matrix

Fig. 1. Confusion matrix and common performance metrics calculated from it.

Ref: Fawcett (2005)

Used to depict the tradeoff between "hit rates" and "false alarm rates"

of classifiers.

Fig. 2. A basic ROC graph showing five discrete classifiers.

When can we generate an ROC curve?

 When the output of a classifier is a probability and we must choose a threshold for the final predicted class.

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

When can we generate an ROC curve?

 When the output of a classifier is a probability and we must choose a threshold for the final predicted class.

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Questions:

Would this method give an accurate reflection when there is class imbalance?

(e.g. 10% of the observations are in group 1 and 90% are in group 2)

The area under the curve (AUC) is a method for comparing algorithms

The area under the curve (AUC) is a method for evaluating classifier accuracy.

The AUC has an important statistical property:

 the AUC of a classifier is equivalent to the probability that the classifier will rank a randomly chosen positive instance higher than a randomly chosen negative instance

Care should be taken when using ROC curves to compare classifiers

 The ROC graph is often used to select the best classifiers simply by graphing them in ROC space and seeing which ones dominate.

Care should be taken when using ROC curves to compare classifiers

- The ROC graph is often used to select the best classifiers simply by graphing them in ROC space and seeing which ones dominate.
- This is misleading; it is analogous to taking the maximum of a set of accuracy figures from a single test set.

Care should be taken when using ROC curves to compare classifiers

- The ROC graph is often used to select the best classifiers simply by graphing them in ROC space and seeing which ones dominate.
- This is misleading; it is analogous to taking the maximum of a set of accuracy figures from a single test set.
- Without a measure of <u>variance</u> we cannot compare the classifiers.

Care should be taken when using ROC curves to compare classifiers

- The ROC graph is often used to select the best classifiers simply by graphing them in ROC space and seeing which ones dominate.
- This is misleading; it is analogous to taking the maximum of a set of accuracy figures from a single test set.
- Without a measure of <u>variance</u> we cannot compare the classifiers.

It is a good idea to take the **average** of multiple ROC curves (e.g. via cross validation)

See Fawcett (2005) for examples on how to average.

Example: classify.R

Lab 4: cloud detection

Groups

lab4_groups.csv

name	group	name	group
Hongxu Ma	1	Yizhou Zhao	7
Alexander Brandt	1	Miyabi Ishihara	7
Jordan Prosky	1	Olivia Angiuli	7
Chandan Singh	2	Zhiyi You	8
Ningning Long	2	DA XU	8
Zoe Vernon	2	Orhan Ocal	8
Nan Yang	3	Xiaoqi Zhang	9
Rosanna Neuhausler	3	Aniket Kesari	9
Runjing Liu	3	Mingjia Chen	9
Junyu Cao	4	Meng QI	10
Xu Rao	4	Feynman Liang	10
Max Gardner	4	Weicheng Kuo	10
Alan Dong	5	Shuhui Huang	11
Xiao Li	5	Lily Xue Gong	11
Amy Ko	5	Jake Soloff	11
Donghyeon Ko	6	Hector Roux de Bezieux	12
Eric Kim	6	Briton Park	12
Ruonan Hao	6		

Figure 1. Cartoon illustration of the Terra satellite with the view directions of the nine MISR cameras. Image is courtesy of the MISR science team at the Jet Propulsion Laboratory.

Figure 2. Registration of surface features and clouds to the reference ellipsoid. Note that only three of the nine MISR cameras are illustrated and that surface objects are registered to the same location, whereas clouds are registered to different locations.

Figure 3. Data collected by the MISR An-camera for three consecutive orbits (i.e., 13257, 13490, and 13723) over blocks 20–22 of path 26.

Figure 4. Expert labels for blocks 20–22 of MISR orbits (a) 13257, (b) 13490, and (c) 13723. White represents high confidence cloudy; gray, high confidence clear; and black, unlabeled pixels.

Example: cloud_data.R