이 력 서

이름	레네이	영문	UMEH RENE		
국적	나이지리아			나이	22살
전공	기계공학과				
E - mail	dubemrene@gmail.com				
주소	서울특별시 성동구				

학리	취사항	(최종학력:	한양대학교(4년)	재학)

재학기간	학교명, 위치 - 전공	학점	비고
2020.03~2024.08	한양대학교, 서울 - 기계공학과	4.01/4.5	2024 졸업
2022.01~2022.05	텍사스 오스틴의 대학, 텍사스 미국-기계공학과	4.5/4.5	교환 학기
	한양국제교육원, 서울	4.0/4.0	한국어 교육, 우수상 땄음
2015.09~2018.06	세인트그레고리고등학교, 라고스 나이지리아	Α	최우수 졸업생

경력

기간	역할 및 내용	기관 및 장소	
09/2023~현재	연구조교- 25,000개 이상의 RSO(우주 궤도 물체)를 시각화하고,	스페이스맵 - 서울	
03/2023~ 단세	3D 보로노이 다이어그램을 통해 생성된 충돌 회피 전략을	프페이프립 - 시물	
2023.06~2023.08	인턴-PiFU 기반의 3D 재구성 모델 훈련을 위해 200개의 3D	과학기술연구원	
	모델링 및 렌더링된 캐릭터 데이터베이스를 생성했습니다.	인고이능연구단 - 서울	
2022.06~2022.08	IT 인턴-프로그래밍 언어, 깃, 3D 인쇄, 그래픽 디자인, CAD와	라이스 대학교/라베나 교육-	
	같은 IT 개념을 연령과 기술 수준에 따라 수업을 가르쳤습니다.	텍사스, 미국	
2021.10~2021.12	식당 알바생-식료품과 식기류의 목록을 작성했습니다. 고객과	하랄 가이스 - 서울	
	관리자 사이에서 중재됩니다.		

자격증 및 어학 자격증

언어/기술	시험/자격증	점수/등급	기관
한국어	TOPIK	5급	국립국제교육원
영어	TOEFL	113/120	ETS
기계 작업	기계 작업장 인증	합격	텍사스 오스틴의 대학

홬	동	Y	ㅏ항

기간	내용	비고
2022~2024	삼성꿈장학재단 (www.sdream.or.kr)	회장
2020~2022	한양대학교 레이스 동아리 (www.racehanyang.com)	자작자동차 동아리 -기계설계 및 분석 팀
2020	한양대학교 토론 협회	KIDA x KUDC 토론 대회 준준결승 진출
2022.03~2022.05	오스틴 동물 센터	봉사 활동

레네이

● 한양대학교 기계공학부

: reneumeh.github.io

자작자동차 트러스 구조 개선 – 레이스 동아리

• 자동차의 이전 트러스 구 조를 분석하고 구조적 강성 을 높이기 위해 더 나은 트 러스 구조를 제안합니다 **과정** • Catia 를 사용하여 트러스 구조 및

하중에 따른 구조 강성을 분석합니다 • 작업장에서 파이프를 자르고 용접합니다 • 구조 강성을 9%

증가시켰습니다.

RC 자동차 프로젝트 - 기계요소 강의

• 50달러의 예산으로 RC 자 동차를 만듭니다.

• RC 차량이 동적으로 안전 하도록 설계하고 속도를 최 적화합니다.

과정 ∙SOLIDWORKS 를 사용하여 섀시 및

액슬, 스티어링, 드라이브트레인 및 조인트를 설계하고 분석합니다 • 3D 프린팅하거나 공급업체에 부품을 주문합니다. • 최고 속도 10m/s 의 충돌을 견딜 수 있도록 제작되었습니다.

• 대회 3 등

자동화된 온실 프로젝트 - 기계공학실험및설계 강의

• 10만원의 예산으로 자동화 된 온실을 위한 모델을 만듭 니다

• LABVIEW 를 사용하여 센서의 빛, 습도 및 온도 신호를 처리하는 프로그램을 창조합니다.

• 공급업체에 모터, 브레드보드, 센서 및 아크릴을 구입합니다.

• 예정된 시간과 예산 내에 모델을 완성했습니다.

결과

학사 학위 졸업 논문 - 한양대학교

• LPCVD(저압 화학 기상 증 착) 배치형로에서 Venturi 효 과가 온도에 미치는 영향에 대한 수치 해석.[실리콘 웨이 퍼의 균일성 향상]

목표

• 반응기 형상을 변경했을 때의 예상 효과를 계산했습니다. 계산 결과를 확인하기 위해 ANSYS Fluent 를 사용하여 시뮬레이션을 수행했습니다. MATLAB을 사용하여 온도 변화가 증착 균일성에 미치는 영향을 계산했습니다.

과정

• 온도 분포가 웨이퍼의 산화층 두께에 미치는 영향을 결정했습니다. 이 반응기 형상의 최적 반경을 얻었습니다.

결과

기밀 - 한국과학기술연구원

• PiFu 인프라를 기반으로2D 인스턴스의 3D 표현을생성할 수 있는 모델을 만들고 훈련한다.

목표

• MATLAB 을 사용하여 디스크의 자연 진동수, 시간 및 진동수 응답을 계산하는 코드를 만듭니다.

과정

200 개의 캐릭터와
가구가 포함된 고유한
장면으로 구성된 데이터셋을
생성하고, 3D 예측 모델을
훈련했습니다.

결과

가상 RC 자동차- 기계공학 디자인 강의

목표	과정	결과
• 만두 반죽을 반죽하고 운	• 나사에 대한 설계 고려 사항을	• 비행 각도, 간격 및 나사
반하는 데 사용되는 나사를	수립했습니다 (모듈성, 속도, 식품	피치를 조정하여 식품
재설계하다.	입자의 유지, 고전단 속도 영역). 설계	입자의 잔여를 줄이고
	조정을 수행하고 설계 조정의 예상	고전단 속도 영역을
	효과를 계산했습니다. ANSYS Fluent 와	확대했습니다. 나사의
	축소 모델을 사용하여 시뮬레이션을	모듈화와 유지 보수를
	수행하고 계산 결과를 검증했습니다.	용이하게 하는 디자인을
		새롭게 설계했습니다.