

① Veröffentlichungsnummer: 0 672 731 A1

(2) EUROPÄISCHE PATENTANMELDUNG

(2) Anmeldenummer: 94118099.4

(61) Int. Cl.6: C09C 1/30

2 Anmeldetag: 17.11.94

Priorität: 27.01.94 DE 4402370

 Veröffentlichungstag der Anmeldung: 20.09.95 Patentblatt 95/38

Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE Anmelder: Degussa Aktiengesellschaft Weissfrauenstrasse 9
D-60311 Frankfurt (DE)

© Erfinder: Ettinger, Manfred, Dr. Stifterstrasse 22 D-63791 Karlstein (DE) Erfinder: Kerner, Dieter, Dr. Am Hexenpafad 21 D-63450 Hanau (DE) Erfinder: Meyer, Jurgen, Dr. Thomaring 6 D-79618 Rheinfelden (DE)

Silanisierte Kleselsäuren.

② Die silanisierte, pyrogen hergestellte Kieselsäuren werden hergestellt, indem man pyrogen hergestellte Kieselsäuren mit einem Organosilan aus der Gruppe (RO)₂SiC₆H_{2n+1}, wobei n = 10 bis 18 und R = Alkyl bedeuten, behandelt.

EP 0 672 731 A1

FP 0 672 731 A1

Die Erfindung betrifft silanisierte Kieselsäuren, das Verfahren zu ihrer Herstellung sowie ihre Verwendung als Verdickungsmittel.

Es ist bekannt, eine silanisierte, pyrogen hergestellte Kieselsäure herzustellen, indem man die pyrogen hergestellte Kieselsäure mit Dimethyldichlorsilan behandelt (DE-AS 11 63 784).

Weiterhin sind pyrogen hergestellte Kieselsäuren bekannt, die an der Oberfläche chemisch gebundene -SiC₈H₁-/Gruppen, Trimethylsilygruppen oder Polydimethylsiloxangruppen tragen (Schriftenreihe Pigmente Nr. 11, Seite 15, Ausgabe August 1991).

Gegenstand der Erfindung sind silanisierte, pyrogen hergestellte Kieselsäuren, welche dadurch gekennzeichnet sind, daß die pyrogen hergestellten Kieselsäuren mit einer Verbindung aus der Gruppe (RO)zeichnet, sind, daß die pyrogen hergestellten Kieselsäuren mit einer Verbindung aus der Gruppe (RO)zeichnet, sind, daß die pyrogen hergestellten Kieselsäuren mit einer Verbindung aus der Gruppe (RO)zeichnet, webei die Kieselsäuren mit einer Verbindung aus der Gruppe (RO)zeichnet State (RO)zeichnet Stat

Als pyrogen hergestellte Kieselsäure kann eine auf hochtemperaturhydrolytischem Wege aus SiCl₄ + H₂ und O₂ hergestellte Kieselsäure verwendet werden.

Insbesondere kann eine temperaturhydrolytisch hergestellte Kieselsäure eingesetzt werden, die die 15 folgenden physikalisch-chemischen Kenndaten aufweist:

20

25

30

35

40

50

55

Tabelle 1

	AEROSTI.	AEROSTI.	AEROSTT.	AEROSIT.	APROSTT.	APPOSTT	PEDOCIT	AFDOCTT
	96	130	150	200	300	380	0X 20	TT 600
Verhalten gegenüber Wasser				hydr	hydrophil			
Aussehen				lockeres we	lockeres weißes Pulver			
Oberfläche nach BET 1) m2/g	90 ± 15	130 ± 25	150 ± 15	200 ± 25	200 ± 25 300 ± 30 380 ± 30	380 ± 30	50 ± 15	200 ± 50
Mittlere Größe der nm	20	16	14	12	7	7	40	40
Primärteilchen								
Stampfdichte 2)								
normale Ware g/l	ca. 80	ca. 50	ca. 50	ca. 50	ca. 50	ca. 50	ca. 130	ca. 60
verdichtete Ware g/1	1	ca. 120	ca. 120	ca. 120	ca. 120	ca. 120		_
(Zusatz "V")								
Trocknungsverlust 3)								
(2 Stunden bei 1000 °C) %	< 1,0	< 1,5	< 0,5 9)	< 1,5	< 1,5	< 1,5	< 1,5	< 2,5
bei Verlassen des Lieferwerkes								
Glühverlust 4)7) 8	v 1	< 1	۲,	۷ ا	< 2	< 2,5	· 1	< 2,5
(2 Stunden bei 1000 °C)								
pH-Wert 5) (in 4 %iger	3,6-4,5	3,6-4,3	3,6-4,3	3,6-4,3	3,6-4,3	3,6-4,3	3,8-4,8	3,6-4,5
waßriger Dispersion)								
S10, 8) 8	8,66 <	8'66 <	8,66 <	8,66 <	8'66 <	8,66 <	8 66 <	8 '66 <
A120, 8) 8	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	80'0 >	< 0,05
Fe ₂ O ₃ ⁸) 8	< 0,003	< 0,003	< 0,003	£00'0 >	£00'0 >	< 0,003	< 0,01	< 0,003
T10, 8) 8	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03
HCl 8) 9) 8	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025
Siebrückstand 6) 8	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,2	< 0,05
(Nach Mocker, 45 µm)								
1) in Anlehnung an DIN 66131			(9)	in Anlehnung	6) in Aniehnung an DIN ISO 787/XVIII, JIS K 5101/20	SIC, JIIVX/18	K 5101/20	
2) in Anlehnung an DIN ISO 787/XI, JIS K 5101/18 (nicht gesiebt)	5101/18 (nic	ht gesiebt)	.7	pezoden auf o	ite 2 Stunden	be1 105 °C g	7) bezogen auf die 2 Stunden bei 105 °C getrocknete Substanz	stanz
3) in Anlehnung an DIN ISO 787/II, ASTM D 280, JIS K 5101/21	D 280, JISK	5101/21	6 6	bezogen auf	8) bezogen auf die 2 Stunden bei 1000 °C geglüh	bei 1000 °C	8) bezogen auf die 2 Stunden bei 1000 °C geglühte Substanz	anz
5) in Anlehnung an DIN ISO 787/IX, ASTM D 1208, JIS K 5101/24	D 1208, JIS K	5101/24		77	Tanner and the	Teaming can	80000	

Derartige pyrogene Kieselsäuren sind bekannt. Sie werden unter anderem beschrieben in:
Winnacker-Kücher, Chemische Technologie, Band 3 (1983), 4 Auflage, Selte 77 und
Ullmanns Encyklopädie der technischen Chemie, 4, Auflage (1982), Band 21, Seite 462.

Die pyrogen hergestellten Kieselsäuren werden mit einer Verbindung aus der Gruppe (RO)₃ SiC_nH_{2n+1}, wobei n = 10 bis 18 und R = Alkyl-, wie zum Beispiel Methyl-, Ethyl- oder ähnliches bedeuten, behandelt.

FP 0 672 731 A1

Insbesondere können die folgenden Verbindungen eingesetzt werden:

Silan I (CH₃O)₃SiC₁₆H₃₃ (Hexadecyltrimethoxysilan)

Silan II (CH₃O)₃SiC₁₈H₃₇ (Octadecyltrimethoxysilan)

5

20

25

30

35

40

45

50

55

Die erfindungsgemäßen Kieselsäuren können hergestellt werden, indem man die pyrogen hergestellten Kieselsäuren in einen Mischer vorlegt, unter intensivem Mischen die Kieselsäuren gegebenenfalls zunächst mit Wasser und anschließend mit der Vorbindung (Organosilan) aus der Gruppe (RO)s-SiG₂H_{bart}, besprüht, 5 bis 30 Minuten nachmischt und anschließend bei einer Temperatur von 100 bis 160 °C über einen 70 Zeitzaum von 1 bis 3 Stunde tempert.

Das eingesetzte Wasser kann mit einer Säure, zum Beispiel Salzsäure, bis zu einem pH-Wert von 7 bis 1 angesäuert sein.

Das eingesetzte Organosilan kann in einem Lösungsmittel, wie zum Beispiel Ethanol, gelöst sein.

Die Temperung kann in einer Schutzgasatmosphäre, wie zum Beispiel unter Stickstoff, durchgeführt 15 werden.

Die erfindungsgemäßen, mit Silan I silanisierten, pyrogen hergestellten Kieselsäuren weisen die in Tabelle 2 aufgeführten ohvsikalisch-chemischen Kenndaten auf:

8
(0)
Ţe
ᅼ
ě
a
Ë

Edukt	A 90	д 130	A 150	A 200	A 300	A 380	0X 20	II 600
Mittlere Größe der Primärteilchen [nm]	20	16	14	12	7	7	40	40
Oberfläche nach BET [m²/g] 40-90	40-90	60-130	75-150	100-200	100-200 150-300 200-380 20-50	200-380	20-50	100-250
Stampfdichte [g/l]	40-140 40-140	1	40-140	40-140	40-140 40-140		40-140	40-140
Trocknungsverlust [8]	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Glühverlüst [8]	0,1-10	0,1-10 0,1-10 0,1-10 0,5-15	0,1-10		0,5-20 0,5-25 0,1-10 0,5-20	0,5-25	0,1-10	0,5-20
C-Gehalt [%]	0,1-10	0,1-10 0,1-10 0,5-15	0,1-10		0,5-20	0,5-25	0,1-10	0,5-20
pH-Wert	3,5-5,5	3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5 3,5-5,5	3,5-5,5	3,5-5,5	3,5-5,5	3,5-5,5	3,5-5,5	3,5-5,5

Die erfindungsgemäßen Kieselsäuren können als Verdickungsmittel in Flüssigkeiten, wie wasserverdinnbare Lacke, und Harze, wie zum Beispiel Epoxyharze, eingesetzt werden. Weiterhin können die
erfindungsgemäßen Kieselsäuren in Silikonkautschuk, Gummi, Kosmetikartikel, Tonerpulvern sowohl als
Mittel zur Verbesserung der Rieselfähigkeit als auch als Verstärkerfullstoff eingesetzt werden.

EP 0 672 731 A1

Beispiele

10

20

25

30

35

40

50

55

Die eingesetzten, pyrogen hergestellten Kieselsäuren weisen die physikalisch-chemischen Kenndaten, die in der Tabelle 1 aufgeführt sind, auf.

Als Organosilane werden die folgenden Verbindungen der allgemeinen Formel (RO) $_3$ SiC $_n$ H $_{2n+1}$ eingesetzt:

(Silan I) (CH₃O)₃SiC₁₆H₃₃

(Silan II) (CH₃O)₃SiC₁₈H₃₇

Die Kieselsäure wird in einem Mischer vorgelegt und unter intensivem Mischen zunächst mit Wasser und anschließend mit Organosilan besprüht.

Nachdern das Besprühen beendet ist, wird noch 15 bis 30 Minuten nachgemischt und anschließend 1 bis 3 Stunden bei 100 bis 160 °C getempert. Die Temperung kann auch unter Schutzgas, zum Beispiel 5 Stickstoff, erfolgen.

Die einzelnen Reaktionsbedingungen können der Tabelle 3 entnommen werden.

Die physikalisch-chemischen Kenndaten der erhaltenen silanisierten Kieselsäuren sind in der Tabelle 3 bis 4 aufgeführt.

Tabelle 3

Temper- temperatur (°C)	120	120	140	140	140	140	140
Temperzeit (h)	2	2	2	2	2	2	2
Ethanolmenge (g/100 g Aerosil)	0	o	0	0	0	0	0
Wassermenge (/100 g Aerosil)	0	0	0	5	2,5	1,25	1,25
Silarmenge (g/100 g Aerosil)	15	н	2,5	20	10	5	2,5
Silan	Silan II	Silan I					
Aerosil	A 200	A 300	A 200				
Beispiel	Т	2	3	4	5	9	7

Tabelle 4

Beispiel	pH-Wert	Stampfdichte (g/l)	C-Gehalt (%)	Oberfläche (m²/g)	Trocknungs- verlust (%)	Glühverlust (%)
П	4,8	52	6'L	127	5'0	5,2
2	4,3	20	1,3	253	0,4	1,8
ю	7'5	49	1,7	176	6,3	2,5
4	4,6	89	10,1	116	9,0	12,7
ъ	4,5	72	5,7	144	9'0	7,1
9	4,7	52	2,6	167	9'0	3,4
7	4,5	51	1,9	171	0,7	2,5

An den erfindungsgemäß hergestellten Kieselsäuren wird die Verdickungswirkung untersucht. Als Modellsystem wird ein PropanofWasser-Gemisch 1 : 1 gewählt, 150 g Ansätze, Einwaage 7,5 g.Kieselsäure 55 (5 Gew-59), 5 Minuten bei 2500 U/min mit Disolver dispergiert und mit Brookfield-Viskosimeter RVT (Spindel 4) gemessen:

FP 0 672 731 ∆1

Beispiel	System bzw. Kieselsäure	Viskosität
8	Propanol/Wasser 1:1	80
9	Aerosil 200	200
10	gemäß Beispiel 3	400
11	gemäß Beispiel 4	14000
12	gemäß Beispiel 5	9800
13	gemäß Beispiel 6	800
14	gemäß Beispiel 7	400

Es ist ersichtlich, daß die erfindungsgemäßen silanisierten Kieselsäuren bezüglich Verdickung der unbehandelten Ausgangskieselsäure A 200 überlegen sind.

Patentansprüche

6

10

25

4n

50

55

- Silanisierte, pyrogen hergestellte Kieselsäuren, dadurch gekennzeichnet, da3 die pyrogen hergestellten Kieselsäuren mit einer Verbindung aus der Gruppe (RO)₃SIC_aH_{2n+1}, wobei n = 10 bis 18 und R = Alkyl bedeuten, behandelt sind.
- Silanisierte, pyrogen hergestellte Kieselsäuren gemäß Anspruch 1, dadurch gekennzeichnet, daß die pyrogen hergstellten Kieselsäuren mit der Verbindung (OH₂O)₂SiC₁₆H₃₂ (Hexadecyltrimethoxysilan) behandelt wurden.
 - Silanisierte, pyrogen hergestellte Kieselsäuren gemäß Anspruch 1, dadurch gekennzeichnet, daß die pyrogen hergestellten Kieselsäuren mit der Verbindung (CH₂O)₂SiC₁₈H₂₇ (Octadecyltrimethoxysilan) behandelt wurden.
- 4. Verfahren zur Herstellung der silanisierten, pyrogen hergestellten Kieselsäuren gemäß den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man die pyrogen hergestellten Kieselsäuren in einem Mischer vorlegt, unter intensivern Mischen die Kieselsäuren, gegebenenfalls zunächst mit Wasser und anschließen die Verbindung aus der Gruppe (RO)₂SiC_nH_{2n+1} besprüht, 15 bis 30 Minuten nachmischt und anschließend bei einer Temperatur von 100 bis 160 °C über einen Zeitraum von 1 bis 3 Stunden tempert.
 - 5. Verwendung der silanisierten, pyrogen hergestellten Kieselsäuren zum Verdicken von Flüssigkeiten.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 94 11 8099

	EINSCHLÄGIGE DOKUMENTE		
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
X	EP-A-0 216 047 (THE SHERWIN-WILLIAMS COMPANY) * Seite 5, Zeile 12 - Zeile 24 * * Seite 5, Zeile 27 - Zeile 29 * * Seite 8, Zeile 27 - Zeile 30 *	1-3,5	C09C1/30
A	* Anspruch 1 *	4	
X	PATENT ABSTRACTS OF JAPAN vol. 12, no. 258 (C-513) 20. Juli 1988 & JP-A-63 043 976 (ASAHI CHEM. IND. CO.) 25. Februar 1988	1-3,5	
A	* Zusammenfassung *	4	
A	WORLD SURFACE COATINGS ABSTRACTS, Bd.64, Nr.583, 1991, OXFORD GB Seite 1, Nr. 91/00002 * ZUSAMMENFASSUNG * & LANGMUIR Bd.6, Nr.4, 1990 Seiten 792 - 801 BADLEY R. D. ET AL. 'SURFACE MODIFICATION OF COLLOIDAL SILICA'	1,3	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
A	EP-A-0 475 132 (IDEMITSU KOSAN COMPANY) * Spalte 2, Zeile 50 - Spalte 3, Zeile 25	1	
	orliegende Recherchenbericht wurde für alle Patentansprüche erstellt	1	

			Profer
	Reckerchenort	Abschlubdstum der Recherche	PTUM
Ì	DEN HAAG	15. Februar 1995	Van Bellingen, I

KATEGORIE DER GENANNTEN DOKUMENTE

- X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verblodung mit einer anderen Veröffentlichung derseiben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur
- T: der Erfiodung zugrunde liegende Theorien oder Gruodsätze E: älteres Patentohument, das jedoch erst am oder nach dem Anneddedaum veröffentlicht worden ist D: in der Anneddeung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

 - & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument