A. Planing

Selection:

In each node, agent select action a^k accordingto the UCB score: $a^k = rg \max_a \left[Q(s,a) + P(s,a) \cdot \frac{\sqrt{\sum_b N(s,b)}}{1+N(s,a)} \left(c_1 + \log \left(\frac{\sum_b N(s,b) + c_2 + 1}{c_2} \right) \right) \right]$

Expansion:

At the leaf node (i.e. final timestep l), the reward and hidden state are computed by the dynamics r^l , $s^l = g(^{l-1}, a^l)$ and stored in the corresponding tables. The policy and value are computed by the prediction function, p^l , $v^l = f(s^l)$.

A new node, corresponding to state s^l is added to the search tree. Each edge (s^l, a) from the newly expanded node is initialized to $\{N(s^l, a) = 0, Q(s^l, a) = 0, P(s^l, a) = \mathbf{p}^l\}$

Backup:

For $k=l\dots 1$, we update the statistics for each edge $\left(s^{k-1},a^k\right)$ in the simulation path as follows, $Q\left(s^{k-1},a^k\right):=rac{N(s^{k-1},a^k)\cdot Q(s^{k-1},a^k)+G^k}{N(s^{k-1},a^k)+1},$ $N\left(s^{k-1},a^k\right):=N\left(s^{k-1},a^k\right)+1,$

where, in hypothetical step k, we utilize the l-k bootstapped estimate Q value:

$$G^k = \sum_{ au=0}^{l-1-k} \gamma^ au r_{k+1+ au} + \gamma^{l-k} v^l$$

B. Acting

C. Training

D. Loss

$$l_t(heta) = \sum_{k=0}^K l^r \left(u_{t+k}, oldsymbol{r_t^k}
ight) + l^v \left(z_{t+k}, oldsymbol{v_t^k}
ight) + l^p \left(\pi_{t+k}, oldsymbol{\mathbf{p}_t^k}
ight) + c \| heta\|^2$$

where, u_{t+k} is the observaed reward, π_{t+k} is the MCTS serched policy, z_{t+k} is the bootstrapped n-step target:

$$z_{t+k} = u_{t+k+1} + \gamma u_{t+k+2} + \ldots + \gamma^{n-1} u_{t+k+n} + \gamma^n v_{t+k+n},$$

 v_{t+k+n} is the MCTS serched value.

In Atari, l^r and l^v is cross-entopy loss, while in board games, l^v is MSE loss and there is no l^r due to no intermediate reward. l^p is cross-entopy loss for both.