(Q10) (a)

Proof. Let C be the set of points on the unit circle, $x^2 + y^2 = 1$. Using the above definition,

$$\forall (x,y) \in C, x^2 + y^2 = 1$$

By the definition of sin and cos,

$$\sin^2\theta + \cos^2\theta = 1$$

1

(b)

Proof. Considering the Cartesian plane, θ is the angle formed by the x-axis and a line from the origin to a point (x, y), measured counterclockwise from the x-axis. Thus, $-\theta$ is the same angle, measured from the same point reflected on the x-axis.

Reflecting (x, y) on the x-axis corresponds to the following transformation:

$$(x,y) \to (x,-y)$$

Since $\cos(\theta) = x$, $\cos(-\theta)$ is the x-coordinate of the point reflected on the x-axis, which is x.

(c)

Proof. Considering (b), a reflection of θ on the x-axis corresponds to the transformation of $(x,y) \to (x,-y)$. Since $sin(\theta) = y$, $sin(-\theta)$ is the y-coordinate of the point reflected on the x-axis, which is -y.