Parametric Discrete Morse Theory

Luca Nyckees

Parametric Discrete Morse Theory

Luca Nyckees

A project supervised by Celia Hacker & Stefania Ebli Directed by Kathryn Hess Bellwald

June 2021 - Laboratory for Topology and Neuroscience

Contents

Parametric Discrete Morse Theory

- Introduction
- 2 Discrete Morse Theory
- 3 Parametric Morse Theory
- 4 An Application
- 5 Results
- 6 Future Work

Introduction

Parametric Discrete Morse Theory

- 1 Why parametric Morse theory?
- 2 Developped by H. King, K. Knudson and N. Mramor.
- **3** Analogy with the smooth setting.

Discrete Morse Theory

Parametric Discrete Morse Theory

Luca Nyckees

Definition (Discrete Morse function)

Let $f: K \to \mathbb{R}$ be a real-valued function. If conditions (1) and (2) below are satisfied, we say f is a discrete Morse function on K.

- (1) $\sum_{\beta \in \mathcal{B}_{\alpha}^F} \mathbb{1}_{\{f(\beta) \geq f(\alpha)\}} \leq 1, \ \forall \alpha \in K$
- (2) $\sum_{\beta \in \mathcal{B}_{\alpha}^{c}} \mathbb{1}_{\{f(\beta) \leq f(\alpha)\}} \leq 1, \forall \alpha \in K$

If both sums are zero for the same given simplex $\alpha \in K$, then we say that $\alpha \in K$ is a **critical simplex**.

Discrete Morse Theory

Parametric Discrete Morse Theory

Luca Nyckees

Let $f: K \to \mathbb{R}$ be a discrete Morse function on K.

Definition (Discrete gradient vector field)

The discrete gradient vector field of f is the set of all pairs $\{\alpha^{(p)} < \beta^{(p+1)}\}\$ with $f(\alpha) \geq f(\beta)$.

Let V be the discrete gradient vector field of f.

Definition (Gradient path)

A gradient path of f is a family $\{\alpha_1^{(p)}, \beta_1^{(p+1)}, ..., \alpha_n^{(p)}, \beta_n^{(p+1)}, \alpha_{n+1}^{(p)}\}$ with $(\alpha_i, \beta_i) \in V$, $\alpha_i < \beta_i > \alpha_{i+1}$ and $\alpha_i \neq \alpha_{i+1}$ for all $i \in \{1, ..., n\}$.

Discrete Morse Theory

Parametric Discrete Morse Theory

Parametric Discrete Morse Theory

Luca Nyckees

Context.

- \blacksquare A simplicial complex K,
- 2 a sequence $\{(f_i, V_i)\}_{i=1}^n$,

where each function $f_i: K \to \mathbb{R}$ is a discrete Morse function on K with associated gradient vector field V_i .

Idea. Tracking critical cells along $\{(f_i, V_i)\}_{i=1}^n$.

Parametric Discrete Morse Theory

Luca Nyckees

Definition (Forward and strong connections)

- **1** k-cells α_i and α_j , with $i \neq j$
- **2** critical for f_i and f_j respectively

We say there is a **forward connection** from α_i to α_j , if there is a k-cell γ with a V_i -path $\{\alpha_i,...,\gamma\} \subseteq K^{k-1} \cup K^k$ and a V_j -path $\{\gamma,...,\alpha_j\} \subseteq K^k \cup K^{k+1}$. If there is a forward connection from α_i to α_j and vice-versa, then there is a **strong connection** between α_i and α_j .

Parametric Discrete Morse Theory

Luca Nyckees

Finite Morse parametrization and birth-death diagram.

Parametric Discrete Morse Theory

Luca Nyckees

Definition (Birth and death)

We say α is born (resp. dies) at index i if no strong connection exists between α and any cell that is critical for V_{i-1} (resp. V_{i+1}). If there is cell $\beta \in K$ that is critical for V_{i+1} , such that the only strong connection of α and β is between themselves, then we say α moves (or mutes) to β .

Parametric Discrete Morse Theory

Luca Nyckees

Birth-death diagram and parametric persistence diagram.

A note on Building Discrete Morse Functions

Parametric Discrete Morse Theory

Luca Nyckees

- Real datasets with node values
- Need to generate Morse functions

We use a simple algorithm to extend a node function $g: G = K^{(0)} \to \mathbb{R}$ on a simplicial complex K to a discrete Morse function $f: K \to \mathbb{R}$. The algorithm is designed with complexity O(m), where m is the number of simplices in K.

A note on Building Discrete Morse Functions

Parametric Discrete Morse Theory

Luca Nyckees

Remark

We consider examples where the initial node function $g:G=K^{(0)}\to\mathbb{R}$ is **injective**. This way, the algorithm produces significantly less critical cells.

Method and pipeline

Parametric Discrete Morse Theory

Sampling Process

Parametric Discrete Morse Theory

- 1 Input mapping $\mathbf{h}:G \to \mathcal{C}^0(\mathbb{R})$
- 2 Input parameters $(x_0, \delta, T) \in \mathbb{R} \times \mathbb{R}_+ \times \mathbb{N}$
- **3** Assigning node values at time $t \in [T]$ with

$$g_t: \begin{cases} G \to \mathbb{R} \\ i \to g_t(i) := h_i(x_0 + t\delta) \end{cases}$$

Sampling Process

Parametric Discrete Morse Theory

$$\delta = 0.5$$

$$x_0 = 0$$

$$h_i: x \mapsto 5 \cos(x)$$

$$g_t(i) := 5 \cos(1)$$

Input example

Parametric Discrete Morse Theory

Luca Nyckees

Firing models amongst populations of neurons.

Results: Parametric Persistence Diagrams

Parametric Discrete Morse Theory

Luca Nyckees

Stochastic block model.

Results: Parametric Persistence Diagrams

Parametric Discrete Morse Theory

Stability Analysis

Parametric Discrete Morse Theory

Results : Stability Curves

Parametric Discrete Morse Theory

Luca Nyckees

Different periodicity in sampling node functions.

Results : Stability Curves

Parametric Discrete Morse Theory

Luca Nyckees

Same periodicity in sampling node functions.

Interpretation

Parametric Discrete Morse Theory

- Same periodicity yields constant Bottleneck distances (linear curve).
- 2 Indicates that changes happen when both an increase and a decrease in vertex values happen at the same time.
- 3 For Lipschitz functions, a perturbation $\varepsilon \to 0$ leads to no change in the output except at local maxima and minima.

Future Work

Parametric Discrete Morse Theory

- Extension algorithms
- 2 Interpreting complex examples
- Real-world datasets
- 4 Discontinuous functions identify time of firing.

Thank you for listening!

Parametric Discrete Morse Theory

Luca Nyckees

AND SO, I WAS WONDERING, SPEAKING-ABOUT ALL THAT CW-COMPLEX STUFF... HUW WELL CAN WE DO?

WELL, MY FRIEND, ONE THING IS FOR SURE ...

AND WHAT'S THAT?

AIN'T NOBODY GONNA BEAT THE BETTIS!

Bonus

Parametric Discrete Morse Theory

Luca Nyckees

Assuming that $\varepsilon_3 < \varepsilon_2 < \varepsilon_1$

Bonus

Parametric Discrete Morse Theory

Luca Nyckees

With $m = max(g(\beta_1), g(\beta_3))$

Bonus: the stochastic block model

Parametric Discrete Morse Theory

