CISC455/851 - Evolutionary Optimization and Learning

5: Genetic Algorithm

- GA history and overview
- Holland's simple GA
- A SGA example
- SGA discussion
- SGA improvement
- Textbook Chapter 4.1, 4.2, 6.1

What are the different types of EAs

- Historically different flavors of EAs have been associated with different representations
 - Binary strings: Genetic Algorithms
 - Real-valued vectors: Evolution Strategies
 - Finite state machines: Evolutionary Programming
 - LISP trees: Genetic Programming
- These differences are largely irrelevant, best strategies
 - choose representation to suit problem
 - choose variation operators to suit representation
- Selection operators only use fitness and so are independent of representation

GA quick overview

- Developed: USA in the 1970's
 - Adaptation in Natural and Artificial Systems, John Holland, 1975
- Early names: J. Holland, E. Goodman, K. DeJong, D. Goldberg
- Typically applied to:
 - discrete function optimization problems
 - benchmark problems
 - straightforward problems using a binary representation

• Features:

- not very fast
- good heuristic for combinatorial problems
- traditionally emphasizes combining information from good parents
- many variants, e.g., reproduction models, operators

An example function optimization problem

$$\min f(x), f(x) = x^4 + 5x^3 + 4x^2 - 4x + 1$$

Genetic Algorithms

- Holland's original GA is now known as the simple genetic algorithm (SGA)
- Other GAs use different:
 - representations
 - mutations
 - crossovers
 - selection mechanisms
 - population management

SGA technical summary

Representation	Binary strings
Mutation	Bit flip
Recombination	One-point crossover
Parent selection	Fitness proportional - implemented using Roulette Wheel
Survivor selection	Generational

SGA representation

SGA iteration

- I. Select parents for the mating pool (size of mating pool = population size)
- 2. Shuffle the mating pool
- 3. Apply crossover tor each consecutive pair with probability p_c , otherwise copy parents
- 4. Apply mutation to each offspring (bit-flip with probability p_m independently for each bit)
- 5. Replace the whole population with the resulting offspring

SGA operators: one-point crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails
- p_c typically in range (0.6, 0.9)

SGA operators: mutation

- Alter each gene independently with a probability p_m
- p_m is called the mutation rate
 - depends on the desired outcome (all good members or one highly fit individual?)
 - typically one gene per offspring

child 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1

SGA operators: parent selection

- Main idea: better individuals get higher chance to reproduce
 - changes proportional to fitness
 - implementation: roulette wheel technique
 - Assign to each individual a part of the roulette wheel
 - Spin wheel *n* times to select *n* individuals

Example

- Maximize x^2 over $\{0, 1, 2, ..., 31\}$
- GA approach
 - representation: binary code, 5 bits
 - population size: 4
 - one-point crossover, bitwise mutation
 - roulette wheel selection
 - random initialization

Example: parent selection

String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	0 1 1 0 1	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

Example: crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	0 1 1 0 1	4	01100	12	144
2	1 1 0 0 0	4	$1\ 1\ 0\ 0\ 1$	25	625
2	$ 1 \ 1 \ \ 0 \ 0 \ 0$	2	$1\ 1\ 0\ 1\ 1$	27	729
4	10 011	2	$1\ 0\ 0\ 0\ 0$	16	256
Sum					1754
Average					439
Max					729

Example: mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$ f(x) = x^2 $
1	0 1 1 0 0	11100	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	$1\ 1\ 0\ 1\ 1$	27	729
4	$1\ 0\ 0\ 0\ 0$	$1\ 0\ 1\ 0\ 0$	18	324
Sum				2354
Average				588.5
Max				729

Simple GA

- Has been subject of many (early) studies
 - still often used as benchmark for novel GAs
- Show many shortcomings
 - representation is too restrictive
 - mutation & crossover only applicable for bit-string integer representations
 - selection mechanism sensitive for converging populations with close fitness values
 - generational population model can be improved with explicit survivor selection

Alternative crossover operators

- Performance with one-point crossover depends on the order that variables occur in the representation
 - more likely to keep together genes that are near each other
 - can never keep together genes from opposite ends of string
 - known as positional bias
 - can be exploited if we know about the structure of our problem, but this is not usually the case

n-point crossover

- Choose *n* random crossover points
- Split along those points
- Glue parts, alternating between parents
- Generalization of one-point crossover

Uniform crossover

- Assign "heads" to one parent, "tails" to the other
- Flip a coin for each gene of the first child
- Make an inverse copy of the gene for the second child
- Inheritance is independent of position

Which crossover operator to use?

- Impossible to state that one or the other of those operators performs best on any given problem
- Important to understand the types of bias exhibited by different recombination operators
- Know patterns or dependencies in the chosen representation when designing an algorithm for a particular problem

Crossover or mutation?

• Decade long debate: which one is better / necessary / main background search operator

- Answer (at least, wide agreement):
 - it depends on the problem, but
 - in general, it is good to have both
 - mutation-only-EA is possible, xover-only-EA would not work

Crossover or mutation?

- **Exploration**: discovering promising areas in the search space, i.e., gaining information on the problem
- Exploitation: optimizing within a promising area, i.e., using information
- There is co-operation and competition between them
 - crossover is explorative, it makes a big jump to an area somewhere "in between" two (parent) areas
 - mutation is exploitative, it creates random small diversions, thereby staying near (in the area of) the parent

Crossover or mutation?

- Only crossover can combine information from two parents
- Only mutation can introduce new information (alleles)
- Crossover does not change the allele frequencies of the population

The fundamental tension

- Diversity vs. convergence
- Variation operators, especially mutations, increase diversity, ensuring better search and preventing getting stuck in local optima
- GA can possibly make progress as long as it is not converged
- However, we cannot wait "forever" for a GA to converge, as we are seeking solutions
- Balancing these issues is the key

When to use a GA?

- Highly multimodal functions
- Discrete or discontinuous functions
- High-dimensionality functions, including many combinatorial ones
- Nonlinear dependencies on parameters (interactions)
- When not to use a GA?