MAP 433 : Introduction aux méthodes statistiques. Cours 3

11 Septembre 2015

Aujourd'hui

- 1 Modélisation statistique
 - Expérience statistique
 - Expériences dominées
 - Modèle de densité
- 2 Méthodes d'estimation pour le modèle de densité
 - Méthode des moments
 - Z-estimation
 - M-estimation
 - Principe de maximum de vraisemblance

Consiste à identifier :

Des observations

$$x_1, x_2, \ldots, x_n$$

considérées comme des réalisations de variables aléatoires $Z = (X_1, \dots, X_n)$ de loi \mathbb{P}^Z .

Une famille de lois

$$\{\mathbb{P}_{\theta}, \, \theta \in \Theta\}$$
.

• Une problématique : retrouver le paramètre θ tel que $\mathbb{P}^Z = \mathbb{P}_{\theta}$ (estimation) ou bien prendre une décision sur une propriété relative à θ (test).

- Approche paramétrique : on suppose que F appartient à une famille de lois connue indexée par un paramètre θ de dimension finie : $\theta \in \Theta \subset \mathbb{R}^d$.
 - **Exemple** : $\Theta = \mathbb{R}$,

$$X_i = \theta + \xi_i, \quad i = 1, \ldots, n,$$

 ξ_i v.a. i.i.d. de densité connue f sur \mathbb{R} et $\mathbb{E}(X_i) = \theta$. Question : en utilisant cette information supplémentaire, peut-on construire un estimateur plus performant que l'estimateur \bar{X}_n basé sur l'approche empirique?

■ En écrivant

$$X_i = \theta + \xi_i, \quad i = 1, \ldots, n,$$

 ξ_i v.a. i.i.d. de densité connue f, nous précisons la forme de la loi \mathbb{P}_{θ} de (X_1, \ldots, X_n) :

$$\mathbb{P}_{\theta}\left[A\right] = \int_{A} \left(\prod_{i=1}^{n} f(x_{i} - \theta)\right) dx_{1} \dots dx_{n},$$

pour tout $A \in \mathcal{B}(\mathbb{R}^n)$.

Definition

Une expérience (un modèle) statistique ${\mathcal E}$ est le triplet

$$\mathcal{E} = (\mathfrak{Z}, \mathcal{Z}, \{ \mathbb{P}_{\theta}, \theta \in \Theta \}),$$

avec

- $(\mathfrak{Z}, \mathcal{Z})$ espace mesurable (souvent $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$),
- $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ famille de probabilités définies simultanément sur le même espace $(\mathfrak{Z}, \mathcal{Z})$,
- θ est le paramètre inconnu, et Θ est l'ensemble des paramètres connu.

Experience engendrée par (X_1, \ldots, X_n)

■ Traitement sur un exemple : on observe

$$Z = (X_1, \ldots, X_n), \qquad X_i = \theta + \xi_i,$$

 ξ_i v.a. i.i.d. de densité connue f.

lacksquare La famille de lois $ig\{ \mathbb{P}^n_{ heta}, heta \in \Theta = \mathbb{R} ig\}$ est définie sur $\mathfrak{Z} = \mathbb{R}^n$ par

$$\mathbb{P}_{\theta}^{n}\left[A\right] = \int_{A} \left(\prod_{i=1}^{n} f(x_{i} - \theta)\right) dx_{1} \dots dx_{n},$$

pour $A \in \mathcal{Z} = \mathcal{B}(\mathbb{R}^n)$ (et \mathbb{P}^Z est l'une des \mathbb{P}^n_{θ}).

Expérience engendrée par l'observation Z :

$$\mathcal{E}^{n} = (\mathbb{R}^{n}, \mathcal{B}(\mathbb{R}^{n}), \{\mathbb{P}_{\theta}^{n}, \theta \in \Theta\}).$$

Expérience (modèle) paramétrique, non-paramétrique

- Si Θ peut être « pris » comme un sous-ensemble de \mathbb{R}^d : expérience (=modèle) paramétrique.
- Sinon (par exemple si le paramètre θ est un élément d'un espace fonctionnel) : expérience (=modèle) non-paramétrique.

Expériences dominées

On fait une hypothèse minimale de « complexité » sur le modèle statistique. But : ramener l'étude de la famille

$$\{\mathbb{P}_{\theta}, \, \theta \in \Theta\}$$

à l'étude d'une famille de fonctions

$$\{z \in \mathfrak{Z} \leadsto f(\theta, z) \in \mathbb{R}_+, \theta \in \Theta\}$$
.

■ Via la notion de domination. Si μ, ν sont deux mesures σ -finies sur \mathfrak{Z} , alors μ domine ν (notation $\nu \ll \mu$) si

$$\mu[A] = 0 \Rightarrow \nu[A] = 0.$$

Théorème de Radon-Nikodym

Théorème

Si $\nu \ll \mu$, il existe une fonction positive

$$z \rightsquigarrow p(z) \stackrel{notation}{=} \frac{d\nu}{d\mu}(z),$$

définie μ -p.p., μ - intégrable, telle que

$$\nu[A] = \int_A p(z)\mu(dz) = \int_A \frac{d\nu}{d\mu}(z)\mu(dz), \quad A \in \mathcal{Z}.$$

Expérience dominée

Definition

Une expérience statistique $\mathcal{E} = (\mathfrak{J}, \mathcal{Z}, \{ \mathbb{P}_{\theta}, \theta \in \Theta \})$ est dominée par la mesure σ -finie μ définie sur \mathfrak{J} si

$$\forall \theta \in \Theta : \mathbb{P}_{\theta} \ll \mu.$$

On appelle densités de la famille $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ la famille de fonctions (définies μ - p.p.)

$$z \rightsquigarrow \frac{d \mathbb{P}_{\theta}}{d \mu}(z), \ z \in \mathfrak{Z}, \ \theta \in \Theta.$$

Expériences dominées

Densité, régression

Deux classes d'expériences statistiques dominées fondamentales :

- Le modèle de densité
- Le modèle de régression

Modèle de densité (paramétrique)

- On observe un *n*-échantillon de v.a.r. X_1, \ldots, X_n .
- La loi des X_i appartient à $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$, famille de probabilités sur \mathbb{R} , dominée par une mesure $(\sigma$ -finie) $\mu(dx)$ sur \mathbb{R} .
- La loi de $(X_1, ..., X_n)$ s'écrit

$$\mathbb{P}_{\theta}^{n}(dx_{1}\cdots dx_{n}) = \mathbb{P}_{\theta}(dx_{1})\otimes\cdots\otimes\mathbb{P}_{\theta}(dx_{n})$$

$$\ll \mu(dx_{1})\otimes\cdots\otimes\mu(dx_{n})$$

$$\stackrel{\text{notation}}{=} \mu^{n}(dx_{1}\cdots dx_{n})$$

Modèle de densité (paramétrique)

■ Densité du modèle : on part de

$$f(\theta, x) = \frac{d \mathbb{P}_{\theta}}{d\mu}(x), \ \ x \in \mathbb{R}$$

et

$$\frac{d\mathbb{P}_{\theta}^{n}}{d\mu^{n}}(x_{1},\ldots,x_{n})=\prod_{i=1}^{n}f(\theta,x_{i}), \ x_{1},\ldots,X_{n}\in\mathbb{R}.$$

■ L'expérience statistique engendrée par $(X_1, ..., X_n)$ s'écrit :

$$\mathcal{E}^n = \Big(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \big\{ \mathbb{P}^n_{\theta}, \theta \in \Theta \big\} \Big), \ \Theta \subset \mathbb{R}^d.$$

Exemple 1 : modèle de densité gaussienne univariée

 $X_i \sim \mathcal{N}(m, \sigma^2)$, avec

$$\theta = (m, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+ \setminus \{0\}.$$

$$\mathbb{P}_{\theta}(dx) = f(\theta, x)dx = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx$$
$$\ll \mu(dx) = dx.$$

Puis

$$\frac{d \mathbb{P}_{\theta}^{n}}{d\mu^{n}}(x_{1},\ldots,x_{n}) = \prod_{i=1}^{n} f(\theta,x_{i})$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mathbf{m})^{2}\right),$$

avec $x_1, \ldots, x_n \in \mathbb{R}$.

Exemple 2 : modèle de Bernoulli

• $X_i \sim \text{Bernoulli}(\theta)$, avec $\theta \in \Theta = [0, 1]$.

$$\begin{split} \mathbb{P}_{\theta}(\mathit{dx}) &= (1-\theta)\,\delta_0(\mathit{dx}) + \theta\,\delta_1(\mathit{dx}) \\ &\ll \mu(\mathit{dx}) = \delta_0(\mathit{dx}) + \delta_1(\mathit{dx}) \ \ \text{(mesure de comptage)}. \end{split}$$

Puis

$$\frac{d \mathbb{P}_{\theta}}{d\mu}(x) = (1 - \theta) \mathbb{1}_{\{x=0\}} + \theta \mathbb{1}_{\{x=1\}} = \theta^{x} (1 - \theta)^{1-x}$$

avec $x \in \{0, 1\}$ (et 0 sinon), et

$$\frac{d\mathbb{P}_{\theta}^{n}}{d\mu^{n}}(x_{1}\cdots x_{n})=\prod_{i=1}^{n}\theta^{x_{i}}(1-\theta)^{1-x_{i}},$$

avec $x_i \in \{0,1\}$ (et 0 sinon).

Exemple 3 : temps de panne « arrêtés »

- On observe X_1, \ldots, X_n , où $X_i = Y_i \wedge T$, avec Y_i lois exponentielles de paramètre θ et T temps fixe (censure).
- $lacksymbol{\blacksquare}$ Cas $1:T=\infty$ (pas de censure). Alors $heta\in\Theta=\mathbb{R}_+\setminus\{0\}$ et

$$\mathbb{P}_{\theta}(dx) = \theta \exp(-\theta x) \mathbb{1}_{\{x \ge 0\}} dx \ll \mu(dx) = dx$$

et

$$\frac{d\mathbb{P}_{\theta}^{n}}{d\mu^{n}}(x_{1},\ldots,x_{n})=\theta^{n}\exp\Big(-\theta\sum_{i=1}^{n}x_{i}\Big),$$

avec $x_i \in \mathbb{R}_+$ (et 0 sinon).

■ Cas 2 : Comment s'écrit le modèle dans la cas où $T < \infty$ (présence de censure)? Comment choisir μ ?

Modèle de densité

Exemple : temps de panne « arrêtés »

Loi $\mathbb{P}_{\theta}(dx)$ de $X=Y\wedge T$: $Y\sim$ exponentielle de paramètre $\overline{\theta}$: $\overline{X=Y1_{\{Y<T\}}+T1_{\{Y>T\}}}$

$$\begin{split} \mathbb{P}_{\theta}(dx) &= \theta e^{-\theta x} \mathbf{1}_{\{0 \leq x < T\}} dx + \Big(\int_{T}^{+\infty} \theta e^{-\theta y} dy \Big) \delta_{T}(dx) \\ &= \theta e^{-\theta x} \mathbf{1}_{\{0 \leq x < T\}} dx + e^{-\theta T} \delta_{T}(dx) \\ &\ll \mu(dx) = dx + \delta_{T}(dx) \quad \text{(par exemple)}. \end{split}$$

Exemple : temps de panne « arrêtés » (fin)

Alors, pour ce choix de mesure dominante

$$\boxed{\frac{d \mathbb{P}_{\theta}}{d \mu}(x) = \theta e^{-\theta x} \mathbb{1}_{\{0 \le x < T\}} + e^{-\theta T} \mathbb{1}_{\{x = T\}}}$$

Finalement,

$$\mathbb{P}_{\theta}^{n}(dx_{1},\ldots dx_{n}) \ll \mu^{n}(dx_{1}\ldots dx_{n}) = \bigotimes_{i=1}^{n} \left[dx_{i} + \delta_{T}(dx_{i})\right]$$

et

$$\frac{d \mathbb{P}_{\theta}^{n}}{d \mu^{n}}(x_{1}, \dots, x_{n}) = \prod_{i=1}^{n} \left(\theta e^{-\theta x_{i}} 1_{\{0 \leq x_{i} < T\}} + e^{-\theta T} 1_{\{x_{i} = T\}}\right)
= \theta^{N_{n}(T)} e^{-\theta \sum_{i=1}^{n} x_{i} 1_{\{x_{i} < T\}}} e^{-\theta T (n - N_{n}(T))},$$

avec $0 \le x_i \le T$ et 0 sinon, et $N_n(T) = \sum_{i=1}^n 1_{\{x_i \le T\}}$

Méthodes d'estimation

- Méthode de substitution (ou des moments)
- Z-estimation
- *M*-estimation
- Le principe du maximum de vraisemblance

└ Méthode des moments

Méthode des moments : dimension 1

- $X_1, \ldots, X_n \sim_{\mathsf{i.i.d.}} \mathbb{P}_{\theta}$, avec $\theta \in \Theta \subset \mathbb{R}$.
- Principe: trouver $g: \mathbb{R} \to \mathbb{R}$ (en général $g(x) = x^k$) et $h: \mathbb{R} \to \mathbb{R}$ régulières de sorte que

$$\theta = h(\mathbb{E}_{\theta}[g(X)]) = h(\int_{\mathbb{R}} g(x) dF_{\theta}(x)) = T(F_{\theta})$$

et T fonctionnelle régulière de la distribution inconnnue F_{θ} .

■ Estimateur : « plug-in »

$$\widehat{\theta}_n = h(\frac{1}{n}\sum_{i=1}^n g(X_i)).$$

Méthode des moments

Méthode des moments

■ Précision d'estimation via les techniques empiriques :

$$\sqrt{n}\big(\widehat{\theta}_n - \theta\big) \overset{d}{\to} \mathcal{N}\big(0, h'(\mathbb{E}_{\theta}[g(X)])^2 \mathrm{Var}_{\theta}[g(X)]\big)$$

en loi sous \mathbb{P}_{θ} et la variance asymptotique dépend en général de $\theta \to$ élimination par estimation préliminaire licite via le lemme de Slutsky.

■ Exemple : $X_1, \ldots, X_n \sim_{\text{i.i.d.}}$ exponentielle de paramètre θ . On

$$\mathbb{E}_{\theta}\left[X\right] = \frac{1}{\theta},$$

l'estimateur par moment associé s'écrit

$$\widehat{\theta}_n = \frac{1}{\overline{X}_n}.$$

Méthode des moments

Exemple en dimension d > 1

• $X_1, \ldots, X_n \sim_{\text{i.i.d.}} \text{B\'eta}(\alpha, \beta)$, de densité

$$x \rightsquigarrow \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} 1_{\{0 < x < 1\}},$$

- Le paramètre est $\theta = (\alpha, \beta) \in \Theta = \mathbb{R}_+ \setminus \{0\} \times \mathbb{R}_+ \setminus \{0\}$.
- On a

$$\boxed{\mathbb{E}_{\theta}\left[X\right] = \frac{\alpha}{\alpha + \beta}, \ \mathbb{E}_{\theta}\left[X^2\right] = \frac{\alpha(\alpha + 1)}{(\alpha + \beta + 1)(\alpha + \beta)}}$$

└ Méthode des moments

Exemple en dimension d > 1

L'estimateur par moment $\widehat{\theta}_n = (\widehat{\theta}_n^{(1)}, \widehat{\theta}_n^{(2)})$ associé est défini par

$$\begin{cases}
\overline{X}_{n} = \frac{\widehat{\theta}_{n}^{(1)}}{\widehat{\theta}_{n}^{(1)} + \widehat{\theta}_{n}^{(2)}} \\
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} = \frac{\widehat{\theta}_{n}^{(1)}(\widehat{\theta}_{n}^{(1)} + 1)}{(\widehat{\theta}_{n}^{(1)} + \widehat{\theta}_{n}^{(2)} + 1)(\widehat{\theta}_{n}^{(1)} + \widehat{\theta}_{n}^{(2)})}.
\end{cases}$$

■ Etude asymptotique via le TCL multidimensionnel et la méthode « delta » multidimensionnelle.

Méthodes d'estimation pour le modèle de densité

Méthode des moments

Limites de la méthode des moments

- Méthode non systématique
- Représentation pas toujours explicite
- Choix de la fonction *g*, notion d'optimalité parmi une classe d'estimateurs...
- Généralisation : Z-estimation (ou estimation par méthode des moments généralisés, GMM= generalized method of moments).

MAP 433 : Introduction aux méthodes statistiques. Cours 3

Méthodes d'estimation pour le modèle de densité

∠ Z-estimation

Z-estimation

 La méthode des moments (en dimension 1) est basée sur l'inversibilité de la fonction

$$m_{g}(\theta) = \int_{\mathbb{R}} g(x) \, \mathbb{P}_{\theta}(dx)$$

i.e. pour tout $\theta \in \Theta$

$$\int_{\mathbb{R}} (m_{g}(\theta) - g(x)) \mathbb{P}_{\theta}(dx) = 0.$$

Principe de construction d'un Z-estimateur : remplacer $\overline{m_g(\theta)-g(x)}$ par une fonction $\phi(\theta,x):\Theta\times\mathbb{R}\to\mathbb{R}$ arbitraire telle que

$$\forall \theta \in \Theta, \int_{\mathbb{R}} \phi(\theta, x) \mathbb{P}_{\theta}(dx) = 0.$$

MAP 433: Introduction aux méthodes statistiques. Cours 3

Méthodes d'estimation pour le modèle de densité

∠ Z-estimation

Z-estimation

■ Résoudre l'équation empirique associée :

$$\boxed{\frac{1}{n}\sum_{i=1}^n \phi(a,X_i) = 0 \text{ pour } a \in \Theta.}$$

Definition

On appelle Z-estimateur associé à ϕ tout estimateur $\widehat{\theta}_n$ satisfaisant

$$\sum_{i=1}^n \phi(\widehat{\theta}_n, X_i) = 0$$

- Il n'y a pas unicité de $\widehat{\theta}_n$ (à ce niveau).
- \blacksquare Programme Etablir des conditions sur ϕ et sur la famille

∠ Z-estimation

Z-estimation : à quoi ça sert?

- Exemple. $\Theta = \mathbb{R}$, $\mathbb{P}_{\theta}(dx) = f(x \theta)dx$, et f symétrique : f(-x) = f(x), $\forall x \in \mathbb{R}$.
- Il n'y a pas de bornitude des moments!
- On pose

$$\phi(a,x) = \operatorname{Arctg}(x-a).$$

La fonction

$$a \rightsquigarrow \mathbb{E}_{\theta} [\phi(a, X)] = \int_{\mathbb{R}} \operatorname{Arctg}(x - a) f(x - \theta) dx$$

est strictement décroissante et s'annule seulement en $a = \theta$.

Z-estimateur associé : solution $\widehat{\theta}_n$ de

$$\sum_{i=1}^n \operatorname{Arctg}(X_i - \widehat{\theta}_n) = 0$$

(unicité).

Méthodes d'estimation pour le modèle de densité

∠ Z-estimation

Le cas multidimensionnel

Si $\Theta \subset \mathbb{R}^d$ avec d > 1, la fonction ϕ est remplacée par

$$\Phi = (\phi_1, \dots, \phi_d) : \Theta \times \mathbb{R} \to \mathbb{R}^d$$
.

Definition

On appelle Z-estimateur associé à Φ tout estimateur $\widehat{\theta}_n$ satisfaisant

$$\sum_{i=1}^n \phi_{\ell}(\widehat{\theta}_n, X_i) = 0, \quad \ell = 1, \ldots, d.$$

Z-estimation $\rightarrow M$ -estimation

■ En dimension 1 : si

$$\boxed{\phi(\theta, x) = \partial_{\theta} \psi(\theta, x)}$$

pour une certaine fonction ψ , résoudre $\sum_{i=1}^{n} \phi(\theta, X_i) = 0$ revient à chercher un point critique de

$$\theta \rightsquigarrow \sum_{i=1}^n \psi(\theta, X_i).$$

- En dimension $d \ge 1$, il faut $\phi(\theta, x) = \nabla_{\theta} \psi(\theta, x)$ (moins facile à obtenir).
- Invite à généraliser la recherche d'estimateurs via la maximisation d'un critère $\rightarrow M$ -estimation.

Méthodes d'estimation pour le modèle de densité

M-estimation

M-estimation

■ Principe : Se donner une application $\psi: \Theta \times \mathbb{R} \to \mathbb{R}_+$ telle que, pour tout $\theta \in \Theta \subset \mathbb{R}^d$,

$$a \leadsto \mathbb{E}_{\theta} \left[\psi(a, X) \right] = \int \psi(a, x) \, \mathbb{P}_{\theta}(dx)$$

admet un maximum en $a = \theta$.

Definition

On appelle M-estimateur associé à ψ tout estimateur $\widehat{\theta}_n$ satisfaisant

$$\sum_{i=1}^{n} \psi(\widehat{\theta}_{n}, X_{i}) = \max_{a \in \Theta} \sum_{i=1}^{n} \psi(a, X_{i}).$$

■ Il n'y a pas unicité de $\widehat{\theta}_n$ (à ce niveau).

∟ *M*-estimation

Un exemple classique : paramètre de localisation

■ $\Theta = \mathbb{R}$, $\mathbb{P}_{\theta}(dx) = f(x - \theta)dx$, et $\int_{\mathbb{R}} xf(x)dx = 0$, $\int_{\mathbb{R}} x^2 \mathbb{P}_{\theta}(dx) < +\infty$ pour tout $\theta \in \mathbb{R}$. On pose

$$\psi(a,x) = -(a-x)^2$$

La fonction

$$a \rightsquigarrow \mathbb{E}_{\theta}\left[\psi(a,X)\right] = -\int_{\mathbb{R}} (a-X)^2 f(x-\theta) dx$$

admet un maximum en $a = \mathbb{E}_{\theta} [X] = \int_{\mathbb{D}} x f(x - \theta) dx = \theta.$

■ *M*-estimateur associé :

$$\sum_{i=1}^n (X_i - \widehat{\theta}_n)^2 = \min_{a \in \mathbb{R}} \sum_{i=1}^n (X_i - a)^2.$$

Paramètre de localisation

■ C'est aussi un Z-estimateur associé à $\phi(a,x)=2(x-a)$: on résout

$$\sum_{i=1}^{n} (a - X_i) = 0 \text{ d'où } \widehat{\theta}_n = \overline{X}_n.$$

- Dans cet exemple très simple, tous les points de vue coïncident.
- Si, dans le même contexte, $\int_{\mathbb{R}} x^2 \mathbb{P}_{\theta}(dx) = +\infty$ et f(x) = f(-x), on peut utiliser Z-estimateur avec $\phi(a,x) = \operatorname{Arctg}(x-a)$. Méthode robuste, mais est-elle optimale? Peut-on faire mieux si f est connue? A suivre...

∟ M-estimation

Lien entre Z- et M- estimateurs

- Pas d'inclusion entre ces deux classes d'estimateurs en général :
 - lacksquare Si ψ non-régulière, M-estimateur \Rightarrow Z-estimateur
 - Si une équation d'estimation admet plusieurs solutions distinctes, Z-estimateur ⇒ M-estimateur (cas d'un extremum local).
- Toutefois, si ψ est régulière, les M-estimateurs sont des Z-estimateurs : si $\Theta \subset \mathbb{R}$ (d=1), en posant

$$\phi(\mathsf{a},\mathsf{x})=\partial_{\mathsf{a}}\psi(\mathsf{a},\mathsf{x}),$$

on a

$$\left|\sum_{i=1}^n \partial_a \psi(\theta, X_i)\right|_{a=\widehat{\theta}_n} = \sum_{i=1}^n \phi(\widehat{\theta}_n, X_i) = 0.$$

-Méthodes d'estimation pour le modèle de densité

Principe de maximum de vraisemblance

Maximum de vraisemblance

- Principe fondamental et incontournable en statistique. Cas particuliers connus depuis le XVIIIème siècle. Définition générale : Fisher (1922).
- Fournit une première méthode systématique de construction d'un *M*-estimateur (souvent un *Z*-estimateur, souvent aussi *a posteriori* un estimateur par substitution simple).
- Procédure optimale (dans quel sens?) sous des hypothèses de régularité de la famille $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ (Cours 6).
- Parfois difficile à mettre en oeuvre en pratique → méthodes numériques, statistique computationnelle.

Méthodes d'estimation pour le modèle de densité

Principe de maximum de vraisemblance

Fonction de vraisemblance

■ La famille $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ est dominée par une mesure σ -finie μ . On se donne, pour $\theta \in \Theta$

$$f(\theta,x) = \frac{d \mathbb{P}_{\theta}}{d\mu}(x), x \in \mathbb{R}.$$

Definition

Fonction de vraisemblance du n-échantillon associée à la famille $\{f(\theta,\cdot), \theta \in \Theta\}$:

$$\theta \rightsquigarrow \mathcal{L}_n(\theta, X_1, \dots, X_n) = \prod_{i=1}^n f(\theta, X_i)$$

■ C'est une fonction aléatoire (définie μ-presque partout). ■ ■ ೨९৫

Exemples

■ Exemple 1 : Modèle de Poisson. On observe

$$X_1, \ldots, X_n \sim_{\mathsf{i.i.d.}} \mathsf{Poisson}(\theta),$$

$$\theta \in \Theta = \mathbb{R}_+ \setminus \{0\}$$
 et prenons $\mu(dx) = \sum_{k \in \mathbb{N}} \delta_k(dx)$.

lacksquare La densité de $\mathbb{P}_{ heta}$ par rapport à μ est

$$f(\theta, x) = e^{-\theta} \frac{\theta^x}{x!}, \quad x = 0, 1, 2, \dots$$

■ La fonction de vraisemblance associée s'écrit

$$\theta \rightsquigarrow \mathcal{L}_n(\theta, X_1, \dots, X_n) = \prod_{i=1}^n e^{-\theta} \frac{\theta^{X_i}}{X_i!}$$
$$= \frac{1}{\prod_{i=1}^n X_i!} e^{-n\theta} \theta^{\sum_{i=1}^n X_i}.$$

Méthodes d'estimation pour le modèle de densité

Principe de maximum de vraisemblance

Exemples

■ Exemple 2 Modèle de Cauchy. On observe

$$X_1, \ldots, X_n \sim_{\text{i.i.d.}} \text{Cauchy},$$

$$\theta \in \Theta = \mathbb{R}$$
 et $\mu(dx) = dx$ (par exemple).

On a alors

$$\mathbb{P}_{\theta}(dx) = f(\theta, x)dx = \frac{1}{\pi(1 + (x - \theta)^2)}dx.$$

La fonction de vraisemblance associée s'écrit

$$\theta \rightsquigarrow \mathcal{L}_n(\theta, X_1, \dots, X_n) = \frac{1}{\pi^n} \prod_{i=1}^n (1 + (X_i - \theta)^2)^{-1}.$$

Méthodes d'estimation pour le modèle de densité

Principe de maximum de vraisemblance

Principe de maximum de vraisemblance

■ Cas d'une famille de lois restreinte à deux points

$$\Theta = \{\theta_1, \theta_2\} \subset \mathbb{R},$$

avec \mathbb{P}_{θ_i} discrète et $\mu(dx)$ la mesure de comptage.

■ A priori, pour tout $(x_1, ..., x_n)$, et pour $\theta \in \{\theta_1, \theta_2\}$,

$$\mathbb{P}_{\theta}\left[X_{1}=x_{1},\ldots,X_{n}=x_{n}\right]=\prod_{i=1}^{n}\mathbb{P}_{\theta}\left[X_{i}=x_{i}\right]$$

$$=\prod_{i=1}^{n}f(\theta,x_{i}).$$

La probabilité d'avoir la réalisation fixée (x_1, \ldots, x_n) .

Principe de maximum de vraisemblance

■ A posteriori, on observe $(X_1, ..., X_n)$. L'événement

$$\left\{ \prod_{i=1}^{n} f(\theta_1, X_i) > \prod_{i=1}^{n} f(\theta_2, X_i) \right\} \quad (Cas 1)$$

ou bien l'événement

$$\left\{ \prod_{i=1}^{n} f(\theta_2, X_i) > \prod_{i=1}^{n} f(\theta_1, X_i) \right\} \quad (\text{Cas 2})$$

est réalisé. (On ignore le cas d'égalité.)

■ Principe de maximum de vraisemblance :

$$\widehat{\theta}_{\mathsf{n}}^{\,\mathsf{mv}} = heta_1 \mathbb{1}_{\{\mathsf{Cas}\ 1\}} + heta_2 \mathbb{1}_{\{\mathsf{Cas}\ 2\}}.$$

Estimateur du maximum de vraisemblance

- On généralise le principe précédent pour une famille de lois et un ensemble de paramètres quelconques.
- <u>Situation</u>: $X_1, \ldots, X_n \sim_{\text{i.i.d.}} \mathbb{P}_{\theta}$, $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ dominée, $\Theta \subset \mathbb{R}^d$, $\theta \leadsto \mathcal{L}_n(\theta, X_1, \ldots, X_n)$ vraisemblance associée.

Definition

On appelle estimateur du maximum de vraisemblance tout estimateur $\widehat{\theta}_n^{\text{mv}}$ satisfaisant

$$\mathcal{L}_n(\widehat{\theta}_n^{\,\mathrm{mv}}, X_1, \dots, X_n) = \max_{\theta \in \Theta} \mathcal{L}_n(\theta, X_1, \dots, X_n).$$

Existence, unicité...

Remarques

■ Log-vraisemblance :

$$\theta \leadsto \ell_n(\theta, X_1, \dots, X_n) = \log \mathcal{L}_n(\theta, X_1, \dots, X_n)$$

$$= \sum_{i=1}^n \log f(\theta, X_i).$$

Bien défini si $f(\theta, \cdot) > 0$ μ -pp.

Max. vraisemblance = max. log-vraisemblance.

- L'estimateur du maximum de vraisemblance ne dépend pas du choix de la mesure dominante μ .
- Notion de racine de l'équation de vraisemblance : tout estimateur $\widehat{\theta}_n^{rv}$ vérifiant

$$\nabla_{\theta}\ell_n(\widehat{\theta}_n^{\mathrm{rv}},X_1,\ldots,X_n)=0.$$

Méthodes d'estimation pour le modèle de densité

Principe de maximum de vraisemblance

Modèle binomial

L'expérience statistique est générée par un n-échantillon de loi de Bernoulli de paramètre $\theta \in \Theta = [0,1]$.

Vraisemblance

$$\mathcal{L}_n(\theta) = \prod_{i=1} \theta^{X_i} (1-\theta)^{1-X_i} = \theta^{n\bar{X}_n} (1-\theta)^{n(1-\bar{X}_n)}.$$

où $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ est la moyenne empirique.

■ Log-vraisemblance

$$\ell_n(\theta) = n\bar{X}_n \log(\theta) + n(1 - \bar{X}_n) \log(1 - \theta).$$

Modèle binomial

Equations de vraisemblance : pour $\theta \in (0,1)$,

$$\frac{n\bar{X}_n}{\theta} - \frac{n(1-\bar{X}_n)}{1-\theta} = 0$$

- \blacksquare Si $0 < \bar{X}_n < 1$, cette équation admet une solution unique, \bar{X}_n .
- Si $\bar{X}_n = 0$, alors $\mathcal{L}_n(\theta) = (1 \theta)^n$: la vraisemblance est maximum en $\theta = 0$.
- Si $\bar{X}_n = 1$ alors $\mathcal{L}_n(\theta) = \theta^n$: la vraisemblance est maximum en $\theta = 1$.

Exemple: modèle normal

L'expérience statistique est engendrée par un n-échantillon de loi $\mathcal{N}(\mu, \sigma^2)$, le paramètre est $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+ \setminus \{0\}$.

Vraisemblance

$$\mathcal{L}_n((\mu, \sigma^2), X_1, \dots, X_n) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right).$$

■ Log-vraisemblance

$$\ell_n((\mu, \sigma^2), X_1, \dots, X_n) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu)^2.$$

Exemple: modèle normal

Equation(s) de vraisemblance

$$\begin{cases} \partial_{\mu}\ell_{n}((\mu,\sigma^{2}),X_{1},\ldots,X_{n}) & = & \frac{1}{\sigma^{2}}\sum_{i=1}^{n}(X_{i}-\mu) \\ \\ \partial_{\sigma^{2}}\ell_{n}((\mu,\sigma^{2}),X_{1},\ldots,X_{n}) & = & -\frac{n}{2\sigma^{2}}+\frac{1}{2\sigma^{4}}\sum_{i=1}^{n}(X_{i}-\mu)^{2}. \end{cases}$$

Solution de ces équations (pour $n \ge 2$) :

$$\widehat{\theta}_n^{\text{rv}} = (\overline{X}_n, \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2)$$

et on vérifie que $\widehat{\theta}_n^{\text{rv}} = \widehat{\theta}_n^{\text{mv}}$.

Exemple : modèle de Poisson

Vraisemblance

$$\mathcal{L}_n(\theta, X_1, \dots, X_n) = \frac{1}{\prod_{i=1}^n X_i!} e^{-n\theta} \theta^{\sum_{i=1}^n X_i}.$$

Log-vraisemblance

$$\ell_n(\theta, X_1, \ldots, X_n) = c(X_1, \ldots, X_n) - n\theta + \sum_{i=1}^n X_i \log \theta.$$

Equation de vraisemblance

$$-n + \sum_{i=1}^{n} X_i \frac{1}{\theta} = 0$$
, soit $\widehat{\theta}_n^{\text{rv}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n$

et on vérifie que $\widehat{\theta}_n^{rv} = \widehat{\theta}_n^{mv}$.

Exemple : modèle de Laplace

L'expérience statistique est engendrée par un n-échantillon de loi de Laplace de paramètre $\theta \in \Theta = \mathbb{R}$. La densité par rapport à la mesure de Lebesgue :

$$f(\theta, x) = \frac{1}{2\sigma} \exp\left(-\frac{|x - \theta|}{\sigma}\right),$$

où $\sigma > 0$ est connu.

Vraisemblance

$$\mathcal{L}_n(\theta, X_1, \dots, X_n) = (2\sigma)^{-n} \exp\left(-\frac{1}{\sigma} \sum_{i=1}^n |X_i - \theta|\right)$$

Log-vraisemblance

$$\ell_n(\theta, X_1, \ldots, X_n) = -n \log(2\sigma) - \frac{1}{\sigma} \sum_{i=1}^n |X_i - \theta|.$$

Exemple : modèle de Laplace

Maximiser $\mathcal{L}_n(\theta, X_1, \dots, X_n)$ revient à minimiser la fonction $\theta \leadsto \sum_{i=1}^n \left| X_i - \theta \right|$, dérivable presque partout de dérivée constante par morceaux. Equation de vraisemblance :

$$\sum_{i=1}^n \operatorname{sign}(X_i - \theta) = 0.$$

Soit $X_{(1)} \leq \ldots \leq X_{(n)}$ la statistique d'ordre.

- n pair : $\widehat{\theta}_n^{\text{mv}}$ n'est pas unique; tout point de l'intervalle $\left[X_{\left(\frac{n}{2}\right)}, X_{\left(\frac{n}{2}+1\right)}\right]$ est un EMV.
- n impair : $\widehat{\theta}_{\mathbf{n}}^{\,\mathrm{mv}} = X_{\left(\frac{n+1}{2}\right)}$, l'EMV est unique. Mais $\widehat{\theta}_{n}^{\,\mathrm{rv}}$ n'existe pas.
- pour tout *n*, la médiane empirique est un EMV.

MAP 433 : Introduction aux méthodes statistiques. Cours 3

Méthodes d'estimation pour le modèle de densité

Principe de maximum de vraisemblance

Exemple : modèle de Cauchy

Vraisemblance

$$\mathcal{L}_n(\theta, X_1, \dots, X_n) = \pi^{-n} \prod_{i=1}^n \frac{1}{1 + (X_i - \theta)^2}.$$

Log-vraisemblance

$$\ell_n(\theta, X_1, \dots, X_n) = -n \log \pi - \sum_{i=1}^n \log \left(1 + (X_i - \theta)^2\right)$$

Equation de vraisemblance

$$\sum_{i=1}^n \frac{X_i - \theta}{1 + (X_i - \theta)^2} = 0$$

pas de solution explicite et admet en général plusieurs solutions.

Maximum de vraisemblance = M-estimateur

• Une inégalité de convexité : μ mesure σ -finie sur \mathbb{R} ; f,g deux densités de probabilités par rapport à μ . Alors

$$\int_{\mathbb{R}} f(x) \log f(x) \mu(dx) \ge \int_{\mathbb{R}} f(x) \log g(x) \mu(dx)$$

(si les intégrales sont finies) avec égalité ssi f=g μ -pp.

■ <u>Preuve</u> : à montrer

$$\int_{\mathbb{R}} f(x) \log \frac{g(x)}{f(x)} \mu(dx) \le 0.$$

(avec une convention de notation appropriée)

Méthodes d'estimation pour le modèle de densité

Principe de maximum de vraisemblance

Une inégalité de convexité

- On a $\log(1+x) \le x$ pour $x \ge -1$ avec égalité ssi x = 0.
- Donc

$$\log \frac{g(x)}{f(x)} = \log \left(1 + \left(\frac{g(x)}{f(x)} - 1\right)\right) \le \frac{g(x)}{f(x)} - 1$$

(avec égalité ssi f(x) = g(x)).

Finalement

$$\int_{\mathbb{R}} f(x) \log \frac{g(x)}{f(x)} \mu(dx) \le \int_{\mathbb{R}} f(x) \left(\frac{g(x)}{f(x)} - 1\right) \mu(dx)$$

$$= \int_{\mathbb{R}} g(x) \mu(dx) - \int_{\mathbb{R}} f(x) \mu(dx)$$

$$= 0.$$

Conséquence pour l'EMV

On pose

$$\psi(a,x) := \log f(a,x), \ a \in \Theta, \ x \in \mathbb{R}$$

(avec une convention pour le cas où on n'a pas $f(a, \cdot) > 0$.)

La fonction

$$a \rightsquigarrow \mathbb{E}_{\theta} \left[\psi(a, X) \right] = \int_{\mathbb{R}} \log f(a, x) f(\theta, x) \mu(dx)$$

a un maximum en $a = \theta$ d'après l'inégalité de convexité.

lacktriangle Le \emph{M} -estimateur associé à ψ maximise la fonction

$$a \rightsquigarrow \sum_{i=1}^{n} \log f(a, X_i) = \ell_n(a, X_1, \dots, X_n)$$

c'est-à-dire la log-vraisemblance. C'est l'estimateur du maximum de vraisemblance.

■ C'est aussi un Z-estimateur si la fonction $\theta \leadsto \log f(\theta, \cdot)$ est régulière, associé à la fonction

$$\phi(\theta, x) = \partial_{\theta} \log f(\theta, x) = \frac{\partial_{\theta} f(\theta, x)}{f(\theta, x)}, \ \theta \in \Theta, x \in \mathbb{R}$$

lorsque $\Theta \subset \mathbb{R}$, à condition que le maximum de log-vraisemblance n'est pas atteint sur la frontière de Θ . (Se généralise en dimension d.)

《日》《問》《意》《意》。 達

Un M-estimateur qui n'est pas un Z-estimateur

- On observe $X_1, \ldots, X_n \sim_{\mathsf{i.i.d.}}$ uniformes sur $[0, \theta]$, $\theta \in \Theta = \mathbb{R}_+ \setminus \{0\}$.
- On a

$$\mathbb{P}_{\theta}(dx) = \theta^{-1} 1_{[0,\theta]}(x) dx$$

et

$$\mathcal{L}_n(\theta, X_1, \dots, X_n) = \theta^{-n} \prod_{i=1}^n 1_{[0,\theta]}(X_i)$$
$$= \theta^{-n} 1_{\{\max_{1 \le i \le n} X_i \le \theta\}}$$

- La fonction de vraisemblance n'est pas régulière.
- L'estimateur du maximum de vraisemblance est $\widehat{\theta}_n^{\text{mv}} = \max_{1 < i < n} X_i$.

4 D F 4 D F 4 D F 4 D F 5

Estimation des paramètres de la loi Gamma

Soit (X_1, X_2, \dots, X_n) n observations i.i.d. de loi $\mathsf{Gamma}(\theta = (\alpha, \beta) \in \Theta = (\mathbb{R}_+^* \times \mathbb{R}_+^*))$

$$f_{\theta}(x) = \Gamma(\alpha)^{-1} \beta^{\alpha} x^{\alpha - 1} e^{-\beta x}$$
.

On montre aisément que

$$\alpha = \frac{(\mathbb{E}_{\theta}[X_1])^2}{\operatorname{Var}_{\theta}(X_1)}$$
 et $\beta = \frac{\mathbb{E}_{\theta}[X_1]}{\operatorname{Var}_{\theta}(X_1)}$

Estimateurs de moments

$$\hat{\alpha}_n = \frac{\bar{X}_n^2}{S_n^2}$$
 et $\hat{\beta}_n = \frac{\bar{X}_n}{S_n^2}$

où $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ est la moyenne empirique et $S_n^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ est la variance empirique.

Estimateur du maximum de vraisemblance

■ log-vraisemblance

$$\ell_n(\alpha,\beta) = -n\log\Gamma(\alpha) + n\alpha\log(\beta) + (\alpha-1)\sum_{i=1}^n\log(X_i) - \beta\sum_{i=1}^nX_i.$$

Le maximum ne se calcule pas explicitement.

- La minimimisation par rapport à β pour α fixée est explicite : $\hat{\beta}_n(\alpha) = \alpha/\bar{X}_n$. L'estimateur du MV est obtenu en maximisant par rapport à α la fonction $\alpha \mapsto \ell_n(\alpha, \hat{\beta}_n(\alpha))$.
- On apprendra bientôt que l'estimateur du maximum de vraisemblance est préférable à l'estimateur des moments.

- Méthodes d'estimation pour le modèle de densité

Principe de maximum de vraisemblance

Boxplot

FIGURE – Boxplot : paramètres $\alpha=3$, $\beta=2$, n=100, 5000 réplications 990

- -Méthodes d'estimation pour le modèle de densité
- Principe de maximum de vraisemblance

Distribution

FIGURE – Boxplot : paramètres $\alpha = 3$, $\beta = 2$, n = 500 distribution