Learning Algorithms in Al

Lecture 4:

Deep Neural Networks

Tomas Kulvicius

Large portion of slides are adopted from Nasrullah Memon, Florentin Wörgötter, Honglak Lee, Geoffrey Hinton, Yann LeCun and Marc'Aurelio Ranzato

Outline of the Course

- Introduction to AI and Learning Algorithms (week 5)
- Artificial Neural Networks and Perceptrons (week 6)
- Multilayer Perceptrons (week 7)
- Reexams no lecture (week 8)
- Deep Learning (week 9)
- Genetic Algorithms (week 10; 09.03)
- Self-Organizing Maps (week 10; 10.03)
- Correlation-based Learning (week 11)
- Easter holiday no lecture (week 12)
- Reinforcement Learning I (week 13)
- Reinforcement Learning II (week 14)
- Working on Assignments (week 15 onward)

References

- http://deeplearning.net/
- Deep Learning, Yoshua Bengio, Ian Goodfellow, Aaron Courville, MIT Press, In preparation (http://www.deeplearningbook.org/)

Motivation: Mammalian Visual Cortex

The recognition pathway in the visual cortex has multiple stages

Learning Hierarchical Representations

- Natural progression from low level to high level structures
- Each module transforms its input representation into a higher-level one
- High-level features are more global and more invariant
- Low-level features are shared among categories
- A good lower level representation can be used for many distinct tasks

Generalisable Learning

Shared low level representations

Partial feature sharing

Examples of Hierarchical Representations

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- Image recognition
 - Pixel → edge → texton → motif → part → object
- Text
 - Character → word → word group → clause → sentence
 → story
- Speech
 - Sample → spectral band → sound → ... → phone → phoneme →word

Learning Hierachical Representations

Purely Supervised

- Initialize parameters randomly
- Train in supervised mode using backpropagation
- Used in most practical systems for speech and image recognition

Learning Hierachical Representations (cont.)

- Unsupervised, layerwise + supervised classifier on top
 - Train each layer unsupervised, one after the other
 - Train a supervised classifier on top, keeping the other layers fixed
 - Good when very few labeled samples are available

Learning Hierachical Representations (cont.)

- Unsupervised, layerwise + global supervised fine-tuning
 - Train each layer unsupervised, one after the other
 - Add a classifier layer, and retrain the whole network supervised
 - Good when label set is poor (e.g., pedestrian detection)

Deep Neural Networks and Backpropagation

Simple to construct

- Sigmoid nonlinearity for hidden layers
- Softmax for the output layer

But, backpropagation does not work well (if randomly initialized)

Deep networks trained with backpropagation (no pretraining) perform worse than shallow nets

	train.	valid.	test
DBN, unsupervised pre-training	0%	1.2%	1.2%
Deep net, auto-associator pre-training	0%	1.4%	1.4%
Deep net, supervised pre-training	0%	1.7%	2.0%
Deep net, no pre-training	.004%	2.1%	2.4%
Shallow net, no pre-training	.004%	1.8%	1.9%

Bengio et al., NIPS 2007

Problems with Backpropagation

Gradient is progressively getting more dilute

- Below top few layers, correction signal is minimal
- Gets stuck in local minima
- Especially if they start out far from 'good' regions (i.e., random initialization)

In usual settings, we can use only labeled data

- Almost all data is unlabeled
- The brain can learn from unlabeled data

Deep Network Training

- Use unsupervised learning (greedy layer-wise training)
 - Allows abstraction to develop naturally from one layer to another
 - Help the network initialize with good parameters
- Perform supervised top-down training as final step
 - Refine the features (intermediate layers) so that they become more relevant for the task

Deep Network Training (cont.)

Bengio, 2009

Deep Neural Networks

Deep Believe Networks (DBNs)

Convolutional Neural Networks (CNNs)

Deep Belief Networks (DBNs)

Deep architecture – multiple layers

Unsupervised pre-learning provides a good initialization of the network

Supervised fine-tuning

DBN Structure

DBN Greedy Learning

• First step:

- Construct an Restricted Bolzmann Machine (RBM) with an input layer v and a hidden layer h
- Train the RBM

DBN Greedy Learning

Second step:

- Stack another hidden layer on top of the RBM to form a new RBM
- Fix W¹, sample h¹ from Q(h¹|v) as input. Train W² as
 RBM

DBN Greedy Learning

Third step:

 Continue to stack layers on top of the network, train it as previous step, with sample sampled from Q(h²|h¹)

And so on ...

Restricted Bolzmann Machine

- We restrict the connectivity to make learning easier
 - Only one layer of hidden units
 - No connections between hidden units

Smolensky, 1986

Learning an RBM

Start with a training vector on the visible units.

Update all the hidden units in parallel.

Update the all the visible units in parallel to get a "reconstruction".

Update the hidden units again.

$$\Delta w_{ij} = \varepsilon \left(\langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^1 \right)$$

RBM Weight Update

Procedure

for all hidden units i do

- compute $Q(\mathbf{h}_{1i}=1|\mathbf{x}_1)$ (for binomial units, sigm $(\mathbf{c}_i + \sum_j W_{ij}\mathbf{x}_{1j})$)
- sample $\mathbf{h}_{1i} \in \{0,1\}$ from $Q(\mathbf{h}_{1i}|\mathbf{x}_1)$

end for

for all visible units j do

- compute $P(\mathbf{x}_{2j} = 1 | \mathbf{h}_1)$ (for binomial units, sigm $(\mathbf{b}_j + \sum_i W_{ij} \mathbf{h}_{1i})$)
- sample $\mathbf{x}_{2j} \in \{0,1\}$ from $P(\mathbf{x}_{2j} = 1 | \mathbf{h}_1)$

end for

for all hidden units i do

• compute $Q(\mathbf{h}_{2i} = 1 | \mathbf{x}_2)$ (for binomial units, sigm $(\mathbf{c}_i + \sum_j W_{ij} \mathbf{x}_{2j})$)

end for

- $W \leftarrow W + \epsilon(\mathbf{h}_1\mathbf{x}_1' Q(\mathbf{h}_2) = 1|\mathbf{x}_2)\mathbf{x}_2'$
- $\mathbf{b} \leftarrow \mathbf{b} + \epsilon(\mathbf{x}_1 \mathbf{x}_2)$
- $\mathbf{c} \leftarrow \mathbf{c} + \epsilon(\mathbf{h}_1 Q(\mathbf{h}_2) = 1|\mathbf{x}_2)$

 \mathbf{x}_1 is a sample ϵ is a learning rate W is the RBM weight matrix \mathbf{b} is the RBM offset vector for input units \mathbf{c} is the RBM offset vector for hidden units $Q(\mathbf{h}_2 = 1|\mathbf{x}_2)$ is the vector with elements $Q(\mathbf{h}_{2i} = 1|\mathbf{x}_2)$

Demo: RBM for Handwritten Digits

Weights 49 x 16x16 obtained from training on digit "2" (16x16px)

Demo: RBM for an Image

Original image

Reconstruction from binary features

Weights 49 x 10x10 obtained from training on image patches 10x10px

Reconstruction of unseen image

Demo: RBM for an Image

Original image

Reconstruction from non-binary features

Weights 49 x 10x10 obtained from training on image patches 10x10px

Reconstruction of unseen image

Deep Neural Networks

Deep Believe Networks (DBNs)

Convolutional Neural Networks

Are deployed in many practical applications

 Image recognition, speech recognition, Google's and Baidu's photo taggers

Have won several competitions

 ImageNet, Kaggle Facial Expression, Kaggle Multimodal Learning, German Traffic Signs, Connectomics, Handwriting....

Are applicable to array data where nearby values are correlated

Images, sound, time-frequency representations, video, volumetric images, RGB-Depth images,.....

CNN Structure

LeCun at al., 1989

CNN Structure (cont.)

Stacking multiple stages of convolution and pooling/subsampling

Fully Connected vs. Convolutional Net

• Example: 200x200 image

- Fully-connected, 400,000 hidden units = 16 billion parameters
- Locally-connected, 400,000 hidden units 10x10 fields = 40 million parameters
- Only few inputs per neuron: helps gradients to propagate through so many layers without diffusing so much

Convolution

Convolution with a kernel (filter):

$$A_{ij} = \sum_{kl} W_{kl} X_{i+k,j+l}$$

Note: All nodes share the same weight matrix

Multiple Convolutions with Different Kernels

- Detects multiple motifs at each location
- The result is a 3D array, where each slice is a feature map

Demo: Convolution

Feature Maps for an Image Using RBM

Feature maps 49 x 166x166px

Weights 49 x 10x10px

Pooling/Subsampling

 Small rectangular blocks from the convolutional layer are subsampled to produce single outputs from those blocks

Pooling/Subsampling (cont.)

Subsampling with 2x2 filter and stride 2

Max pooling

1	2	0	3
4	3	6	5
3	4	1	2
2	7	2	0

Averaging pooling

1	2	0	3
4	3	6	5
3	4	1	2
2	7	2	0

Pooling/Subsampling (cont.)

Subsampling with 4x4 filter and stride 4

Example of Convolutional Net

Multistage Hubel-Wiesel system (LeCun et al., 89; LeCun et al., 98)

Example of Convolutional Net (cont.)

Feature visualization of convolutional net trained on ImageNet (Zeiler & Fergus 2013)

Comparison of Classifiers on MNIST Dataset

CLASSIFIER Knowledge-free methods	ERROR
2-layer NN, 800 HU, CE 3-layer NN, 500+300 HU, CE, reg SVM, Gaussian Kernel	1.60 1.53 1.40
Unsupervised Stacked RBM + backprop	0.95
Convolutional nets	
Convolutional net LeNet-5, Convolutional net LeNet-6,	0.80 0.70
Conv. net LeNet-6- + unsup learning	0.60
368179669	5
21797/284	5
481901889	4
761864156	O Yann LeCu

Yann LeCun

Comparison of Classifiers on Object Recognition

Linear Classifier on raw stereo images: 30.2% error

K-Nearest-Neighbors on raw stereo images: 18.4% error

K-Nearest-Neighbors on PCA-95: 16.6% error

Pairwise SVM on 96x96 stereo images: 11.6% error

Pairwise SVM on 95 Principal Components: 13.3% error

Convolutional Net on 96x96 stereo images: 5.8% error

Training instances

Test instances

Yann LeCun

Summary

Backpropagation for MLP learning

- Easy to implement
- Becomes slow when using many hidden layers due to diluting gradient
- Can get stuck in local optima when starting with random initialization

Deep neural networks

- Hierarchical learning
- Unsupervised layerwise learning
- Supervised learning for final tuning of weights and classification
- Deep Belief Networks
- Convolutional Neural Networks

Homework

- Task 1
 - Train RBM on digits from 1 to 5
 - Do reconstruction on digits from 1 to 9

- Task 2
 - Train RBM on an image from one category (e.g., dog)
 - Do reconstruction on an image from other category (e.g., cat)