编译原理 第十四周作业 12月17日 周四

PB18151866 龚小航

ENTRY

(2) b=2

(3) c=a+b

(4) d=c-a

(8) b=a+b(9) e=c-a

(10) a=b*d

(11) b=a-d

EXIT

 B_1

 B_2

 B_5

 B_6

- 9.1 对于本题中的流图,回答下列问题:
 - (a) 识别该流图中的循环。
 - (b) 块 B₁ 中的语句 (1) 和 (2) 都是复写语句,并且它们给 a 和 b 赋的都是常量。可以对 a 和 b 的哪些引用实施复写传播并将这些引用替换成对常量的引用?
 - (c) 识别每个循环的全局公共子表达式。
 - (d) 识别每个循环的归纳变量,不要忘记把(b) 的复写传播引入的常量考虑进去。
 - (e) 识别每个循环的不变计算。

解: 对每一问分析如下

(a) 列表如下,参考幻灯片 15 页循环的定义。

循环节点集合 L	唯一的入口节点
$\{B_2,B_5\}$	B_2
$\{B_3,B_4\}$	B_2
$\{B_2, B_3, B_5\}$	B_2
$\{B_2, B_3, B_4, B_5\}$	B_2

(5) d=b+d

(6) d=a+b

(7) e=e+1

(b) 只有对那些在引用时,沿任意一条可能的路径都不会对 a 或 b 重新赋值的引用点才可以实施复写传播。在本例中,循环中没有对 a 赋值的语句,但是语句 (8) 对 b 重新定值,因此循环内以及循环以下都不能对 b 实施复写传播,即本例(2)中定值的 b 不能在任意一处引用时采用复写传播;而语句 (10) 对 a 定值,它在循环外,因而可以对 a 采取复写传播的语句有: (3)(4)(6)(8)(9)

复写语句	可实施复写传播的语句
(1) $a = 1$	(3)(4)(6)(8)(9)
(2) $b = 2$	无

(c) 对每个循环分别分析即可,找出表达式右值的相同形式并判断到执行点时是否改变。列表如下:

 B_2 是这四个循环的入口,支配 B_3 , B_4

循环节点集合 L	全局公共子表达式			
$\{B_2, B_5\}$	(8)(9)			
$\{B_3, B_4\}$	(6)			
$\{B_2,B_3,B_5\}$	(8)(9)			
$\{B_2, B_3, B_4, B_5\}$	(6)(8)(9)			

(d) 只需要在每个循环内找循环一轮后值+1的变量即可。作出复写传播后的循环流图,列表如下:

循环节点集合 <i>L</i>	归纳变量
$\{B_2, B_5\}$	c, d, b, e
$\{B_3, B_4\}$	е
$\{B_2, B_3, B_5\}$	c, b, e
$\{B_2, B_3, B_4, B_5\}$	c,b

(e) 对于本题的四个循环,显然只有 { B_3 , B_4 } 中的 (5)(6) 是循环不变计算,每次得到的结果都是相同的。 在其他循环中没有循环不变计算。

9.2 对右图所示的计算向量 A 和 B 点积的中间代码完成下列优化:

删除公共子表达式、归纳变量上的强度削弱、尽量删除归纳变量。

解:每一步的操作如下所示:

标记公共子表达式 删除公共子表达式 dp = 0dp = 0i = 0i = 0L: L: t1 = i * 8t1 = i * 8t2 = A[t1]t2 = A[t1]t3 = i * 8t4 = B[t1]t5 = t2 * t4t4 = B[t3]t5 = t2 * t4dp = dp + t5dp = dp + t5i = i + 1if i < n goto (L) i = i + 1if i < n goto (L)

归纳变量上的强度削弱

```
dp = 0
i = 0
t1 = i * 8
L:
t2 = A[t1]
t4 = B[t1]
t5 = t2 * t4
dp = dp + t5
i = i + 1
t1 = t1 + 8
t6 = n * 8
```

if t1 < t6 goto (L)

尽量删除归纳变量

图 9.33 计算点积的中间代码

9.3 对给出的流图, 计算:

- (a) 为到达-定值分析, 计算每个块的 gen、kill、IN、OUT 集合。
- (c) 为活跃变量分析, 计算每个块的 def、use、IN、OUT 集合。

解:对两问分别分析:记标号 (i) 的语句为 d_i ,与教材相对应。

(a) 到达-定值分析求 IN、OUT 集合算法如下:

 $OUT[ENTRY] = \emptyset$ $OUT[B] = gen[B] \cup (IN[B] - kill[B])$ $IN[B] = \bigcup_{P \not\equiv B} OUT[P]$

列表如下: IN,OUT 集合按照所属块插入了空格。

块	gen	kill	IN ¹	OUT ¹	IN ²	OUT ²	IN ³	OUT ³
B_1	d_1, d_2	d_8 , d_{10} , d_{11}	00 00 0 00 00 00	11 00 0 00 00 00	00 00 0 00 00 00	11 00 0 00 00 00	00 00 0 00 00 00	11 00 0 00 00 00
B_2	d_3 , d_4	d_5 , d_6	11 00 0 00 00 00	11 11 0 00 00 00	11 11 1 00 11 00	11 11 0 00 11 00	11 11 1 00 11 00	11 11 0 00 11 00
B_3	d_5	d_4 , d_6	11 11 0 00 00 00	11 10 1 00 00 00	11 11 0 11 11 00	11 10 1 01 11 00	11 11 0 11 11 00	11 10 1 01 11 00
B_4	d_6, d_7	d_4, d_5, d_9	11 10 1 00 00 00	11 10 0 11 00 00	11 10 1 01 11 00	11 10 0 11 10 00	11 10 1 01 11 00	11 10 0 11 10 00
B_5	d_8 , d_9	d_2, d_7, d_{11}	11 11 1 00 00 00	10 11 1 00 11 00	11 11 1 01 11 00	10 11 1 00 11 00	11 11 1 01 11 00	10 11 1 00 11 00
B_6	d_{10} , d_{11}	d_1, d_2, d_8	10 11 1 00 11 00	00 11 1 00 01 11	10 11 1 00 11 00	00 11 1 00 01 11	10 11 1 00 11 00	00 11 1 00 01 11

计算发现第二、三次迭代后 IN、OUT 集合已经不变,因此最后一次求出的结果就是题中要求结果。

(c) 活跃变量分析求 IN、OUT 集合算法如下:

 $IN[EXIT] = \emptyset$

 $OUT[B] = \cup_{S \not\equiv B} \inf_{S \mapsto S} IN[S]$

 $IN[B] = use[B] \cup (OUT[B] - def[B])$

⑥ 活跃变量分析 ○ 中国科学技术方 □定义

- ❖ x的值在p点开始的某条执行路径上被引用,则说 x在p点活跃,否则称x在p点已经死亡
- ❖ IN[B]: 块B开始点的活跃变量集合
- ❖ OUT[B]:块B结束点的活跃变量集合
- ❖ use_B: 块B中有引用,且在引用前在B中没有被定值的变量集

先计算 OUT 再计算 INT, 先计算下方的块再计算上方的块。

块	use	def	OUT ¹	IN ¹	OUT ²	IN ²	OUT ³	IN ³
B_1	/	a, b	a, b, e	е	a, b, e	e	a,b,e	е
B_2	a, b	c, d	a, b, c, d, e	a, b, e	a, b, c, d, e	a,b,e	a, b, c, d, e	a,b,e
B_3	b, d	/	a, b, c, d, e	a, b, c, d, e	a, b, c, d, e	a, b, c, d, e	a, b, c, d, e	a, b, c, d, e
B_4	a,b,e	d	/	a, b, e	a, b, c, d, e	a, b, c, e	a, b, c, d, e	a, b, c, e
B_5	a,b,c	e	b, d	a, b, c, d	a, b, d, e	a, b, c, d	a, b, d, e	a, b, c, d
B_6	b, d	а	/	b, d	/	b, d	/	b, d

最后一次迭代已经得到不变的结果,因此这就是最终要求的结果。

for (除了EXIT以外的每个块B) { $OUT[B] = \bigcup_{S \neq B \text{ the } f \neq k} IN[S]$