Design of a PA for a linear transponder on a CubeSat

Semester thesis

Linear transponder

Prototype PCB

Prototype PCB v1.0 (left) Testing RC chain (top)

Previous Work

 Prototype PCB with 2.4 GHz PA stage with combined gain of 52 dB

Altium PA layout

PA devices

Measurements

RF output power vs RF input power

P1dB:

Measured: 31.7 dBm

datasheet: 32.8 dBm

Gain:

Measured: 45.7 dB

Expected: 52 dB

Supply current vs RF output power

P_out:

30.5 dBm

Isup:

781 mA (including preamp)

~ 681 mA (without preamp)

Power consumption

~3.4 W

Power dissipation

~2.28 W

Issues

- Overheating: Prototype wasn't designed with a heatsink
- TQP9111 reached 150°C at at DC operation
- With small heat sink taped onto vias: 87°C
- → Design an adequate cooling system

Thermal image (not in vacuum, capture after 1 min of DC operation)

UZH Physik-Institut Elektronik
Camera sn: 85903196

Bad impedance matching:

- TL lengths must be adapted (Manufacturer Dev board uses NELCO substrate, we use FR4) → 6.3 dB gain difference compared to expected gain
- → simulate adapted matching in Qucs

Qucs simulation of adapted TL lengths for FR4 substrate

Plan

- Failure Analysis → already done
- Redefine system requirements for PA, since there are no clear defined requirements and check if correct PA choice was made

Gain: 52 dB

P out: 30 dBm

ACLR, Linearity requirements?

- Redesign a prototype PA PCB
- Implement on Cubesat PCB

Cubesat PCB

 Space constraints (only 20x30 mm approximately)

