Задания экспериментального тура IV этапа Всеукраинской олимпиады по физике 2011 года

8 класс

Задача №1

Материалы и оборудование:

Индивидуальное:

- пластилин,
- зубочистка,
- кусок пробки,
- 8 г соли в колбе (колба в эксперименте не используется),
- миллиметровая бумага,
- стакан с водой,
- стакан пустой.

Групповое:

- сосуд с раствором соли неизвестной концентрации,
- мензурка,
- маркер.

Залание:

С помощью предложенного оборудования:

- 1. Изготовьте прибор для определения концентрации соли в водном растворе.
- 2. Измерьте концентрацию соли данного раствора.

Справка:

концентрация - отношение массы соли к массе воды.

Задача №2

Материалы и оборудование:

Индивидуальное:

- кусочки льда,
- два стакана,
- миллиметровая бумага или линейка,
- прозрачная трубка с внутренним диаметром 5мм,

Групповое:

- маркер,
- часы.

Задание:

- 1. С помощью предложенного оборудования разработайте метод определения тепловой мощность собственной ладони как нагревателя. Определите мощность такого нагревателя.
- 2. При каких условиях можно получить максимальную мощность?

Справка:

- объем цилиндра высотой h и радиусом r вычисляется по формуле: $V = \pi \cdot r^2 \cdot h$;
- удельная теплота плавления льда $330 \cdot 10^3$ Дж/кг.

Задания экспериментального тура IV этапа Всеукраинской олимпиады по физике 2011 года 9 класс

Задание 1

Оборудование

Групповое:

- ножницы;
- лист картона с начерченным на нем «контрольным» углом (a, β или γ в зависимости от аудитории), который нужно будет измерить.

Индивидуальное:

- полоска бумаги с нанесенными через равные интервалы параллельными тонкими линиями;
- полоска прозрачной пленки с такими же линиями;
- картон;
- деревянная линейка;
- несколько кусочков скотча (отрезать самостоятельно).

Задание:

- 1. Из перечисленного выше индивидуального оборудования изготовьте прибор для измерения малых (до 10 градусов) углов (прибор должен быть сдан в рабочем состоянии вместе с тетрадью!).
- 2. В отчете приведите инструкцию по использованию Вашего прибора.
- 3. С помощью Вашего прибора измерьте «контрольный» угол (обозначение угла должно быть сохранено).
- 4. Оцените обеспечиваемую точность измерений.

Задание 2

Оборудование

Групповое

метроном, настроенный на 60 ударов минуту.

Индивидуальное

- шприц на 20 мл без иглы и поршня;
- два пластиковых стаканчика, один из которых наполнен водой;
- маркер или фломастер, пишущий по пластику;
- линейка;
- миллиметровая бумага.

Задание.

- 1. Пользуясь предложенным оборудованием, исследуйте зависимость высоты уровня воды в вертикально расположенном шприце от времени ее вытекания h(t). Уровень воды отмерять от нижнего края носика шприца.
- 2. По графику h(t) найти зависимость скорости вытекания воды от высоты уровня воды $v_{\mathfrak{IRC}}(h)$ и построить график этой зависимости на отдельном листе.
- 3. На этом же листе нанесите теоретическую зависимость $\upsilon_{meop}(h) = \sqrt{2gh}$ и сравните её с экспериментальной зависимостью.
- 4. Проанализируйте полученные результаты и сделайте выводы. В случае несовпадения $v_{9\kappa c}(h)$ и $v_{meop}(h)$ укажите его возможные причины.

Задания экспериментального тура IV этапа Всеукраинской олимпиады по физике 2011 года 10 класс

Задание 1

Оборудование

Групповое

- метроном, настроенный на 60 ударов минуту, маркер.

Индивидуальное

- шприц на 20 мл без иглы и поршня;
- два одноразовых пластиковых стаканчика, один из которых наполнен водой;
- пластиковая трубочка длиной 100 мм;
- линейка;
- миллиметровая бумага.

Задание:

- 1. Пользуясь предложенным оборудованием, исследуйте зависимость высоты уровня воды, вытекающей из вертикально расположенного шприца, от времени. Высоту отсчитывайте от нижнего края «носика» шприца, для измерения времени используйте удары метронома.
- 2. Постройте график полученной зависимости.
- 3. Из графика определите зависимость скорости истечения воды из «носика» от высоты столба.
- 4. На отдельном листе постройте график зависимости скорости истечения воды от высоты столба.
- 5. На том же графике постройте зависимость, даваемую формулой Торричелли: $\mathbf{v} = \sqrt{\mathbf{2gh}}$, где v скорость истечения, g ускорение свободного падения, h высота столба жидкости.
- 6. Сравните графики экспериментальной и теоретической зависимостей, предложите объяснение наблюдаемых различий.
- 7. Опишите полученную Вами зависимость скорости истечения воды от высоты столба с помощью эмпирической формулы вида $\mathfrak{p} = a \cdot \sqrt{2g(h-b)}$, определив численные значения параметров a и b по двум точкам на экспериментальной зависимости.
- 8. Объясните, какие факторы влияют на величину параметров a и b.
- 9. Наденьте на наконечник шприца пластиковую трубочку.
- 10. Повторите измерение зависимости скорости вытекания воды от высоты столба (отсчитываемого от прежнего уровня).
- 11. Постройте график полученной зависимости (на том же листе миллиметровой бумаги).
- 12. Объясните влияние трубочки, надетой на наконечник шприца, на скорость истечения воды.

<u>Справочная информация:</u> внутренний диаметр отверстия наконечника шприца 1,6 мм <u>Примечание:</u> эмпирическая формула – это формула, содержащая численные параметры, подобранные так, чтобы получить наилучшее соответствие с экспериментальными данными.

Задание №2 Оборудование:

- две монеты достоинством 5 коп;
- две монеты достоинством 25 коп;
- лист А4 прозрачной бумаги;
- 2 листа А4;
- миллиметровка;
- две пластиковые линейки;
- 2 3 книжки.

Групповое:

- скотч;

- ножницы;

Задание:

Изучите зависимость угла разлета двух одинаковых монет при нецентральном частично упругом ударе от прицельного расстояния 1 .

:ототе клД

1. Предложите и теоретически обоснуйте методику определения коэффициента восстановления² при центральных соударениях одинаковых монет.

соединяющую их центры, u_2, u_1 – проекции конечных скоростей монет на эту линию.

¹ Справка. Прицельное расстояние (в данном случае) – минимальное расстояние центра неподвижной монеты от прямой, вдоль которой движется центр налетающей монеты.

 $^{^{2}}$ Справка. Коэффициент восстановления $k=\dfrac{u_{2}-u_{1}}{v_{2}-v_{1}}$, где v_{2},v_{1} – проекции начальных скоростей монет на линию,

- 2. Проведите эксперименты по центральному соударению двух 5-копеечных монет и двух 25-копеечных монет.
- 3. Определите коэффициенты восстановления в каждом случае.
- 4. Предложите методику измерения угла разлёта при нецентральном соударении одинаковых монет.
- 5. Проведите эксперименты по нецентральному соударению: 5-5, 25-25 для различных прицельных расстояний. Измерьте углы разлёта.
- 6. Проанализируйте, от каких параметров зависит угол разлёта, и представьте выводы.

Задания экспериментального тура IV этапа Всеукраинской олимпиады по физике 2011 года 11 класс

Залача №1

Оборудование: 1. деревянная палочка; 2. пластилин; 3. миллиметровая бумага;

4. линейка; 5. карандаш массой 3,9 г; 6. тело неизвестной массы; 7. секундомер.

Групповое: леска, скотч, ножницы.

Задание

- 1. Тонкую деревянную палочку укрепите на угол парты так, чтобы свободные концы палочки выступали за края парты. К палочке подвесьте горизонтально карандаш на двух параллельных лесках.
- На качественном уровне изучите характер горизонтальных колебаний вокруг вертикальной оси, проходящей через центр масс карандаша, и опишите, как изменяется частота колебаний в зависимости от расстояния между нитями подвеса.
- Получите теоретическую зависимость частоты колебаний карандаша от параметров колебательной системы.
- 4. Предложите методику определения массы тела с помощью изготовленной вами установки и определите с ее помощью массу тела, которое Вам выдадут организаторы олимпиады.
- Проанализируйте полученные результаты и укажите основные факторы, повлиявшие на точность измерений.

В отчете представьте:

- план проведения эксперимента;
- теоретические выкладки и обоснование выбора методики измерений;
- полученное значение массы тела;
- расчеты погрешности;
- анализ и оценку полученных результатов, выводы.

Задача №2.

Оборудование: семь леденцов в обертке, две тонкие деревянные палочки;

мерная лента, секундомер.

Групповое: пластилин; леска.

Задание. Из предложенного оборудования соберите установку для определения коэффициента трения лески по деревянной палочке: две параллельные деревянные палочки крепятся горизонтально на некотором расстоянии друг от друга к столешнице парты так, что их концы выступают за ее край на несколько сантиметров. Если вы сочтете, что высоты недостаточно, то можно использовать ученический стул, расположенный на столешнице ученического стола.

- 1. Предложите методику измерения коэффициента трения скольжения тонкой рыболовной лески по деревянным палочкам.
- 2. Приведите план проведения исследований и последовательность обработки результатов и расчетов погрешности получаемой величины.
- 3. Проведите измерения и приведите результаты обработки полученных данных.
- 4. Проанализируйте полученный результат.
- 5. Предложите меры по повышению точности измерений.

5. Предложите меры по повышению точности измерении. **Справка.** Впервые задача о трении каната о цилиндр была рассмотрена великим математиком, механиком, физиком и астрономом Леонардом Эйлером (1707—1783) . Он показал, что натяжение каната T в зависимости от угла охвата опоры канатом α изменяется по закону $T = T_0 e^{-\mu\alpha}$, где e = 2,72... — основание натурального логарифма, T_0 — начальное натяжение каната (еще не навитого на опору).