k-Means Homework

k-Means Clustering Using Manhattan Distance

Data Set:

Pattern	x	у
а	0.9	8.0
b	0.2	0.2
С	0.7	0.6
d	-0.1	-0.6
е	0.5	0.5

Parameters:

Number of clusters (k): 2

Initial centroids: First two instances

• Centroid 1: a (0.9, 0.8)

• **Centroid 2:** b (0.2, 0.2)

Iteration 1

Assignment Step

Calculate Manhattan distance from each instance to each centroid.

Manhattan Distance Formula:

$$d((x_1,y_1),(x_2,y_2)) = |x_1-x_2| + |y_1-y_2|$$

Distances to Centroid 1 (a):

• **a:**
$$d(a,a) = |0.9 - 0.9| + |0.8 - 0.8| = 0 + 0 = 0$$

• **b:**
$$d(b,a) = |0.2 - 0.9| + |0.2 - 0.8| = 0.7 + 0.6 = 1.3$$

• **c**:
$$d(c,a) = |0.7 - 0.9| + |0.6 - 0.8| = 0.2 + 0.2 = 0.4$$

• **d:**
$$d(d,a) = |-0.1 - 0.9| + |-0.6 - 0.8| = 1.0 + 1.4 = 2.4$$

• **e:**
$$d(e, a) = |0.5 - 0.9| + |0.5 - 0.8| = 0.4 + 0.3 = 0.7$$

Distances to Centroid 2 (b):

• **a:**
$$d(a,b) = |0.9 - 0.2| + |0.8 - 0.2| = 0.7 + 0.6 = 1.3$$

• **b**:
$$d(b,b) = |0.2 - 0.2| + |0.2 - 0.2| = 0 + 0 = 0$$

• **c**:
$$d(c,b) = |0.7 - 0.2| + |0.6 - 0.2| = 0.5 + 0.4 = 0.9$$

• **d:**
$$d(d,b) = |-0.1 - 0.2| + |-0.6 - 0.2| = 0.3 + 0.8 = 1.1$$

• **e:**
$$d(e,b) = |0.5 - 0.2| + |0.5 - 0.2| = 0.3 + 0.3 = 0.6$$

Cluster Assignments:

Pattern	Distance to Centroid 1	Distance to Centroid 2	Assigned Cluster
а	0	1.3	Cluster 1
b	1.3	0	Cluster 2
С	0.4	0.9	Cluster 1
d	2.4	1.1	Cluster 2
е	0.7	0.6	Cluster 2

Update Step

Recalculate centroids based on current cluster assignments.

Cluster 1: {a, c}

Centroid 1:

•
$$x = \frac{0.9 + 0.7}{2} = 0.8$$

•
$$y = \frac{0.8 + 0.6}{2} = 0.7$$

• New Centroid 1: (0.8, 0.7)

Cluster 2: {b, d, e}

Centroid 2:

•
$$x = \frac{0.2 + (-0.1) + 0.5}{3} = \frac{0.6}{3} = 0.2$$

•
$$y = \frac{0.2 + (-0.6) + 0.5}{3} = \frac{0.1}{3} \approx 0.0333$$

• New Centroid 2: (0.2, 0.0333)

Iteration 2

Assignment Step

Calculate Manhattan distance from each instance to updated centroids.

Distances to Centroid 1 (0.8, 0.7):

- **a:** d(a, Centroid 1) = |0.9 0.8| + |0.8 0.7| = 0.1 + 0.1 = 0.2
- **b**: d(b, Centroid 1) = |0.2 0.8| + |0.2 0.7| = 0.6 + 0.5 = 1.1
- **c**: d(c, Centroid 1) = |0.7 0.8| + |0.6 0.7| = 0.1 + 0.1 = 0.2
- **d:** d(d, Centroid 1) = |-0.1 0.8| + |-0.6 0.7| = 0.9 + 1.3 = 2.2
- **e:** d(e, Centroid 1) = |0.5 0.8| + |0.5 0.7| = 0.3 + 0.2 = 0.5

Distances to Centroid 2 (0.2, 0.0333):

- **a:** d(a, Centroid 2) = |0.9 0.2| + |0.8 0.0333| = 0.7 + 0.7667 = 1.4667
- **b:** d(b, Centroid 2) = |0.2 0.2| + |0.2 0.0333| = 0 + 0.1667 = 0.1667
- **c**: d(c, Centroid 2) = |0.7 0.2| + |0.6 0.0333| = 0.5 + 0.5667 = 1.0667
- **d:** d(d, Centroid 2) = |-0.1 0.2| + |-0.6 0.0333| = 0.3 + 0.6333 = 0.9333
- **e**: $d(e, {
 m Centroid}\ 2) = |0.5 0.2| + |0.5 0.0333| = 0.3 + 0.4667 = 0.7667$

Cluster Assignments:

Pattern	Distance to Centroid 1	Distance to Centroid 2	Assigned Cluster
а	0.2	1.4667	Cluster 1
b	1.1	0.1667	Cluster 2
С	0.2	1.0667	Cluster 1
d	2.2	0.9333	Cluster 2
е	0.5	0.7667	Cluster 1

Update Step

Recalculate centroids based on current cluster assignments.

Cluster 1: {a, c, e}

Centroid 1:

•
$$x = \frac{0.9 + 0.7 + 0.5}{3} = \frac{2.1}{3} = 0.7$$

•
$$y = \frac{0.8 + 0.6 + 0.5}{3} = \frac{1.9}{3} \approx 0.6333$$

• New Centroid 1: (0.7, 0.6333)

Cluster 2: {b, d}

Centroid 2:

•
$$x = \frac{0.2 + (-0.1)}{2} = \frac{0.1}{2} = 0.05$$

•
$$y = \frac{0.2 + (-0.6)}{2} = \frac{-0.4}{2} = -0.2$$

• New Centroid 2: (0.05, -0.2)

Summary After Two Iterations

Final Centroids:

• Centroid 1: (0.7, 0.6333)

• Centroid 2: (0.05, -0.2)

Cluster Assignments:

• Cluster 1: {a, c, e}

• Cluster 2: {b, d}

Closest Instances to Each Centroid:

- **Centroid 1:** Instances **a** and **c** are equally closest (distance = 0.2), and **e** is also close (distance = 0.5).
- **Centroid 2:** Instance **b** is the closest (distance = 0.1667), followed by **d** (distance = 0.9333).