Probabilidades e Estatística E

STICA E 2018/2019 **Duração**: 1h 00m + 30m

Teste 3 A

14 de Junho de 2019 **Duração**: 1h (

Ι	Nome comp	oleto:					
Ι	N.º aluno: .	Curs	50:		Nota: _		
$corres$ $A \ cot$	spondente. tação para	Se pretender anu uma resposta cor	s respostas está con lar uma resposta recta e o descont i vale nem descon	já assinalada, ras o por uma respos	ure por completo ta incorrecta assa	o respectivo quad nala-se à esquere	lrado.
	p de cham dimensão r m e um to	tadas com duraçã $n = 100$, dela resu	se estimar o temp ão superior a 4 m ultando uma médi das com duração n valor 2.25.	ninutos. Para essa amostral de 2.5	se efeito foi recol m, um desvio pa	hida uma amostr dr ão amostral s =	ra de = 1.6
(2.0/0.2)	` '	imativa por inte imento/chamada	rvalo com aproxi é:	madamente 85%	de confiança, pa	ra o tempo médi	io de
	A	[2.26, 2.74] B	$[2.4844\ ,\ 2.5156]$	C [2.18896, 2	.81104] D [2.28	84, 2.716] E	n.a.
(1.5/0.1)	. , –		estimação por inte 0.5 minutos, a din	_			cuja
		$lacksquare$ $n \geq 81$	$\boxed{\mathtt{B}} n \geq 139$	$\boxed{\mathtt{C}}$ $n \leq 11$	$\boxed{\mathtt{D}}$ $n \geq 35$	E n.a.	
(1.0/0.2)	(c) A est	imativa pontual o	centrada de p é:				
		A 0.01	B 0.9		D 0.1	E n.a.	
(1.5/0.2)	(d) Consi de tes		nipóteses $H_0: p =$	$=0.2 \ vs \ H_1: \ p \neq$	4 0.2. Represente-	se por W a estati	ística
	i. P	ara um nível de s	significância de ap	roximadamente 2	0%, rejeitamos H	o se	
		$\overline{\underline{\mathbf{A}}} \ w_{obs} \notin [-0.84 ,$	$[0.84]$ B $w_{obs} \in$	$]1.28 , +\infty[$	$w_{obs} \in]-\infty \; , \; -1.28$	$B[\cup]1.28 , +\infty[$	n.a.
(2.0/0.1)	ii. C) valor aproximad	lo do p-value resu	lta da determina	ção de		
		$\boxed{\texttt{A}} \ \ 2-2P$	$(Z \le 2.5) \qquad \boxed{B} 2$	$P\left(Z \le 3.33\right)$	\square $P(Z>2.5)$	D n.a.	

Continua no verso

2.	A legislação impõe que uma carcaça de pão deve ter um peso médio de 60 ou mais gramas. Numa inspecção ao peso das carcaças fabricadas na padaria AA, foi obtida a seguinte amostra de pesos (em gramas) de 25 carcaças:
	62 60 63 66 65 66 59 63 65 61 62 60 59 61 61 59 62 62 63 62 62 62 64 63 63
	$\sum_{i=1}^{25} x_i = 1555 \qquad \sum_{i=1}^{25} (x_i - \bar{x})^2 = 96$
	Admita que o peso/carcaça (em gramas) fabricada por AA, tem distribuição $N\left(\mu,\sigma^2\right)$.
(1.5/0.2)	(a) Para se testar se o peso médio das carcaças fabricadas por AA está em conformidade com a legislação, as hipóteses a considerar são: $\boxed{\mathbb{A} H_0: \ \mu \leq 60 \ vs \ H_1: \ \mu > 60} \qquad \boxed{\mathbb{B} H_0: \ \mu \geq 60 \ vs \ H_1: \ \mu < 60}$
	$\boxed{\mathbb{C}} \ H_0: \ \bar{x} = 60 \ vs \ H_1: \ \bar{x} \neq 60 \qquad \boxed{\mathbb{D}} \ H_0: \ \mu \geq 62.2 \ vs \ H_1: \ \mu < 62.2$
(2.0/0.2)	 (b) Considere o teste das hipóteses H₀: μ ≤ 62 vs H₁: μ > 62. i. Admitindo que o desvio padrão do peso/carcaça é conhecido e tem valor 2.2, a estatística de teste e correspondente distribuição são:
	$ \boxed{ \textbf{A} } \ 5 \frac{\overline{X} - 62}{S} \underset{\mu = 62}{\overset{a}{\sim}} N \left(0, 1 \right) \boxed{ \textbf{B} } \ 5 \frac{\overline{X} - 62}{2.2} \underset{\mu = 62}{\overset{\sim}{\sim}} N \left(0, 1 \right) \boxed{ \textbf{C} } \ \sqrt{25} \frac{\overline{X} - 62.2}{2.2} \underset{\mu = 62.2}{\overset{\sim}{\sim}} t_{25} \boxed{ \textbf{D} } \ \text{n.a.} $
	Nas alíneas ii. iii. e iv. que se seguem, considere a seguinte estatística de teste e a correspondente distribuição: $5\frac{\overline{X}-62}{S} \underset{\mu=62}{\sim} t_{24}$
(2.0/0.1)	ii. Para um nível de 20% de significância, a região de rejeição é:
(1.5/0.2)	$\boxed{ \mathbb{A} } \ R_{0.2} =]-\infty, -0.856 [\qquad \boxed{ \mathbb{B} } \ R_{0.2} =]1.32, +\infty [\qquad \boxed{ \mathbb{C} } \ R_{0.2} =]0.857, +\infty [\qquad \boxed{ \mathbb{D} } \ \text{n.a.}$ iii. A estatística de teste tem valor observado:
(1.5/0.1)	iv. Para uma amostra de igual dimensão e com a mesma variância, ao nível de 20% de significância não rejeitamos H_0 se:

(c) A estimativa por intervalo de 95% de confiança para a variância do peso por carcaça é: (2.0/0.2)

> $\boxed{ \texttt{A} \ \left[\frac{3.84}{39.4} \,,\, \frac{3.84}{12.4} \right] } \qquad \boxed{ \texttt{B} \ \left[\frac{96}{13.1} \,,\, \frac{96}{40.6} \right] } \qquad \boxed{ \texttt{C} \ \left[\frac{96}{39.4} \,,\, \frac{96}{12.4} \right] }$ D n.a.

(d) Considere o teste das hipóteses $H_0: \sigma^2 \geq 6.25 \ vs \ H_1: \sigma^2 < 6.25$.

A decisão estatística deste teste é:

 $\boxed{\mathbb{A}}\;$ Rejeitar H_0 ao nível 5% de significância B Rejeitar H_0 ao nível 10% de significância

 $\boxed{\mathbb{C}}\,$ Não Rejeitar H_0 ao nível 20% de significância D n.a.