특1999-0049879

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. Cl. ⁸ G09G 3/36	(11) 공개번호 특1999-0049879 (43) 공개일자 1999년07월05일
(21) 출원번호	10-1997-0068884
(22) 출원일자	1997년 12월 15일
(71) 출원인	오리온전기 주식회사 김영남
(72) 발명자	경북 구미시 공단동 165 박순모
	경상북도 구미시 형곡동 미구 로얄맨션 2차 201동 1103호
	정창훈
(74) 대리인	경상북도 구미시 공단동 265-9 이정훈, 이권희

丛水卷子: 없음

(54) 네.티.엔. 액정표시장치의 구동방법

29

본 발명은 비.티.엔 액정 표시장치의 구동방법에 관한 것으로, 주사 신호와 데이터 신호의 한 프레임 (frame) 중에서 한 화소에 활당되는 구간을 펼스 전압을 인가하지 않는 구간과 펼스 전압이 인가되는 구간으로 나누어 비.티.엔 액정표시장치의 기본 구동파형을 만들고 이를 이용하여 비.티.엔 액정표시장치를 구동함으로써 주사 전국수의 증가 또는 주파수 변조법을 이용한 다계조 표시를 위해 프레임 주파수의 증가에 의해 한 화소에 활당되는 구간의 폭이 좁아지더라도 비.티.엔 액정표시장치를 스위청시킬 수 있는 선택 구간에서의 온/오프 전압의 차를 넓게 할 수 있으므로 셀내의 두께 편차나 온도 변화에 의해 야기되는 크로스 토크를 억제하면서 대용량의 정보 표시가 가능할 뿐만 아니라 주파수 변조법을 이용하여 대용량의 정보를 다계조로 표시 할 수 있는 구동 방법에 관한 기술이다.

四里至

至11

21 AI AI

도면의 관관환 설명

도 1 는 종래기술에 따른 BTN LCD 구동파형의 기본구성을 도시한 파형도.

도 2 내지 도 5 는 종래기술에 따른 BTN LCD 의 구동파형을 도시한 파형도로서, 세이코 엡슨사에서 제안한 것을 도시함.

도 6 은 BTN LCD 의 기본 구성을 도시한 단면도.

도 7 은 도 6 의 BTN LCD 기본 구성에 따른 구동파형을 도시한 파형도.

도 8 내지 도 10 는 중래기술에 따른 BTN LCD 의 구동파형 인가시 BTN LCD 의 천택 전압에 따른 투과율 곡선을 도시한 그래프도.

도 11 은 본 발명에 따른 새로운 구동파형의 기본구성을 도시한 파형도.

도 12 내지 도 15 는 본 발명의 실시예에 따른 구동파형을 도시한 파형도.

도 16 내지 도 18 은 본 발명에 따른 구동파형 인가시 BTN LCD의 선택전압에 따른 투과율을 도시한 그 래프도.

<도면의 주요부분에 대한 부호의 설명>

11 : 편광판

13 : 기판

15 : 투명전극

17 : 배향막

19 : 액정분자

발명의 상세환 설명

발명의 목적

监督이 속하는 기술 및 그 분야의 중계기술

본 발명은 비.티.엔. (Bistable Twisted Nematic, 이하에서 BTN 이라 함) 액정표시장치 (Liquid Crystal Display, 이하에서 LCD 라 함) 의 구동방법에 관한 것으로, 특히 주사 전국 수의 증가 또는 주 파수 변조법을 이용한 다계조 표시를 위해 프레임 주파수의 증가에 의해 한 화소에 할당되는 구간의 폭이 좁아지더라도 BTN LCD를 스위청시킬 수 있는 선택 구간에서의 온/오프 (on/off) 전압의 차를 넓게 할 수 있으므로 셀내의 두께 편차나 온도 변화에 의해 야기되는 크로스 토크(crosstalk)를 억제하면서 대용량의 정보 표시가 가능할 뿐만 아니라 주파수 변조법을 이용하여 대용량의 정보를 다계조로 표시 할수 있는 구동 방법에 관한 것이다.

평판표시장치(flat pannel display)의 일종인 LCD 는 액체의 유동성과 결정의 광학적 성질을 겸비하는 액정에 전계를 가하여 광학적 이방성을 변화시키는 장치로서, 종래 음극선관(Cathode Ray Tube)에 비해 소비전력이 낮고, 부피가 작으며, 대형화 칼라화 및 고정세화가 가능하며 널리 사용되고 있다.

일반적으로 LCD 는 각각 투명전국 패턴들이 형성되어있는 상.하촉 기판의 사이에 액정이 밀봉되어 있는 형태로 구성되며, 상기의 LCD는 반사광을 이용하는 반사형 LCD 미외에는 이 엘 (Electro luminescence) 판넬이나 발광다이오드 (Light Emitting Diode) 판넬 또는 냉음극선관 (Cold Cathode Flourescence Lamp) 판넬 등의 광원을 구비하는 모듈의 형태로 사용된다.

상기 LCD 모듈은 일반적으로 STN LCD 와 같은 단순 격자 구동 LCD 를 사용하며 형성되었다.

그러나, 소자가 고집적화되고 빠른 처리속도를 필요로 하게 되어 LCD 의 시야각 확보, 고속응답속도 및 고 대비비 등의 뛰어난 성능을 갖는 새로운 모드의 LCD 를 필요로 하게 되었다:

그리하여, 쌍안정성의 BTN LCD 와 같은 새로운 모드의 LCD 소자를 필요로 하게 되었다.

일반적인 BTN LCD는 STN LCD 와 같은 기존의 단순 격자 구동 (simple matrix addressing) LCD 에 비해 넓은 시야각 특성 및 고속 응답 특성과 고 대비비등의 뛰어난 성능을 갖는 새로운 모드의 액정 표시소자 로서 동작 원리는 다음과 같다.

액정의 비틀림 각이 ø 이고, 방향자 반전벽 (alignment inversion wall) 의 생성조건을 만족하는, 초기 배열상태에 충분히 높은 전압을 민가하면 초기 배열상태는 셀 내부에 생성되는 방향자 반전벽의 변형이 심화되어 에너지적으로 매우 불안정한 상태가 되므로 경사 불연속 (disclination) 의 생성과 함께, 높은 전기장하여서 불기 배열상태에 비해 에너지적으로 안정하며 위상학적으로 (topologically) 전혀 다른 수직 배열상태로 전이된다.

이때, 다시 전압을 감소시키면, 전압이 감소되는 방법에 따라, 초기 배열상태와는 위상학적으로 전혀 다른 그러나 수직 배열상태와는 위상학적으로 동일한 비틀림 각이 ø -x 또는 ø +x 인 배열상태로 빠르게 스위치 된다.

또한, 스위청된 두 배열상태들은 초기 배열상태와는 위상학적으로 전혀 다른 배열상태이므로 초기 배열 상태와 스위청된 두 배열상태들 사이에는 경사 불연속에 해당하는 에너지 장벽이 존재하며, 이 에너지 장벽은 스위청된 두 배열상태들이 초기 배열상태로 재전이 되는 것을 지연시키는 역할을 한다.

다라서 스위칭된 두 배열상태들은 안정성을 유지할 수 있는데, 이때 적정 전압을 인가하면 더 오랜 동안 안정성을 유지시킬 수도 있다. 즉 비틀림 각이 Φ 인 초기 배열상태에 충분히 높은 전압을 인가하며 경 사 불연속의 생성과 함께 초기 배열상태와는 위상학적으로 전혀 다른 수직 배열상태로 전이시킨 후 전압 을 급격히 제거하면 역류 (backflow) 효과가 유도 되어 비틀림 각이 Φ +π 인 배열상태로, 전압을 서 서히 제거하면 비틀림 각이 Φ -π 인 배열상태로, 10 msec 이하의 빠른 속도로 스위칭된다.

또한 스위청된 배열상태들은 초기 배열상태로의 전이시에는 경사 불연속에 해당하는 에너지 장벽이 존재하여 안정성이 유지되는데, 적정 전압을 인가하면 거의 1초 이상 안정성을 유지할 수도 있다. 이때, 셀두께(d)와 액정의 굴절을 이방성(Δ n)을 적절히 조절하면 스위청되는 두 배열상태는 비틀림 각에 따른 실효 복굴절 (effect d· Δ n) 이 달라지는 효과나 액정 셀의 복굴절 (d· Δ n) 이 빛의 파장보다 짧을 때 Mauguin 조건이 만족되지 못하여 광학 활성이 없어지는 효과로 인하여 직교 편광자하에서 광학적으로 확실히 구분되어 진다.

BTN LCO 는 미러한 전기광학적 특성을 미용한 액정표시소자로서 실제로 도 1 과 같은 시분할 구동법을 미용하여 비틀림 각이 ϕ - π 인 배열상태와 비틀림 각이 ϕ + π 인 배열상태 사미를 스위청시킬 수 있 Cł.

도 1 은 BTN LOD 의 구동파형의 기본 구성을 도시한 파형도이다.

먼저, 리셋 (reset) 구간 (T_e) 은 초기 배열상태를 위상학적으로 전혀 다른 배열상태로 전이시키는 역 할을 하고, 선택 (selection) 구간(T₅)은 전압의 세기에 따라 두 개의 준안정한 상태중 한 배열상태를 선택하는 역할, 즉 비.티.엔 액정표시소자를 ON/OFF 시키는 역할을 하며, 유지 (retention) 구간 (T.) 은 선택되어진 배열상태를 일정기간 동안 유지시키는 역할을 한다.

이때, 한 화소에 인가되는 실제 파형, 즉 주사 신호와 데이터 신호를 합성한 파형에서의 선택 구간에 기준 전압 (이하 '선택 문턱치 전압' 이라 청할) 보다 낮은 전압을 인가하면 비틀림각이 Φ +π 인 배열상 태로 스위청되며, 선택 구간에 선택 문턱치 전압 보다 높은 전압을 인가하면 비틀림각이 Φ -π 인 배열상 태로 스위청된다.

이는 선택 전압이 선택 문턱치 전압 보다 낮거나 높은 것은 리셋 전압 인가 후 전압을 급격히 또는 서서 히 감소시키는 것과 같으므로 역류 효과가 유도 또는 저지되기 때문이다. 여기서 온('ON')과 오프('OFF')는 단지 비틀림각에 관한 것으로서, 온은 비틀림각이 ø -π 인 배열상태로 스위칭되는 것을 의미하며 오프는 비틀림각이 ø +π 인 배열상태로 스유칭되는 것을 의미한다. 이때 초기 배열상태의 비틀

림각이 180。이면 온상태는 비틀림각이 0。인 배열상태를, 오프상태는 비틀림각이 360。인 배열상태를 나타낸다. 따라서 셀의 두께나 액정의 굴절률 이방성 그리고 편광자와 검광자의 배치 각도에 따라 스위 청되어진 두 배열상태의 광 투과도(또는 반사율)는 달라질 수 있다. 즉 셀의 조건에 따라 온과 오프의 광 투과도(또는 반사율)는 '명' 과 '암'이거나 반대로 '암' 과 '명'의 상태일 수도 있다.

이와 같이 BTN LCD는 단지 비틀림각의 전이에 의해 스위청되므로 TN LCD나 STN LCD에 비해 시야각 특성 이 우수할 뿐만 아니라 응답 특성과 대비비도 무수한 백정표시소자로서, 단순 격자 구동 만으로도 동작 이 가능하다.

그러나 BTN LCD 의 구동 파형에서의 리셋 구간과 선택 구간 그리고 유지 구간의 전압 세기와 폭은 시분할 구동법의 특성상 서로 밀접한 관계를 갖고 있다. 이를 바탕으로 세이고 앱슨사에서는 1993년에 도 2 내지 도 5와 같은 파형을 제안하였는데, 이 구동 파형에 의하면 리셋 구간의 폭(To)은 일반적인 단순 격자 구동과는 달리 한 화소에 할당되는 구간의 폭에 무관하며, 리셋 전압(Vo)은 리셋 구간에서의 주사 신호와 데이터 신호의 각 필스의 전압 차가 된다. 그러나 주사 신호(scanning signal)와 데이터 신호(data signal)에서 한 화소에 할당되는 구간의 폭은 일정하므로 주사 신호와 데이터 신호를 합성한 파형(scanning signal - data signal)에서의 선택 구간, 그리고 유지 구간(T.)중 한 화소에 할당되는 구간(To)의 폭은 동일하며, 선택 전압(Voice) 또는 Voice) 과 유지 전압(Voice) 선택 구간과 유지 구간에서의 주사 신호와 데이터 신호의 각 필스의 전압차가 된다.

따라서 합성 파형에서 리셋 구간의 폭 및 전압 세기는 주사 신호에서의 리셋 구간의 폭 및 전압 세기를 변화시켜 조절할 수 있으므로 어떠한 조건에서든지 초기 배열상태를 위상학적으로 전혀 다른 수직 배열 상태로 전미시키기에 충분히 높은 실효 전압 Values 가 인가될 수 있도록 임의로 조절할 수 있다.

그러나 어떠한 경우라도 합성 파형에서 선택 전압의 최대 절대값(|½|μω)은 선택 전압의 최소값(|½|μω)에 유지 전압의 최대 절대값(|½|μω)의 두배를 더한 값을 초과할 수 없으므로(즉, |½|μω ≤ |½|μω + 2 × |½|μω OD므로) 선택 구간에서의 온 전압의 절대값(|½σω|)과 오프 전압의 절대값(|½σω|)의 차 역시유지 전압의 최대 절대값의 두 배를 초과할 수 없다.(즉 |½σω| - |½σω|) ≤ 2× |½|μω 이다.)

도 1의 경우를 예를 들면 유지 전압의 최대 절대값은 |¼| 가 되며, 온 전압의 절대값은 |¼|, 오프 전압의 절대값은 0 V되므로 선택 구간에서의 온 전압과 오프 전압의 차는 |¼| 가 된다. 또한 도 3 의 경우, 유지 전압의 최대 절대값은 |¼| 가 되며, 온 전압의 절대값은 |¼+¼|, 오프 전압의 절대값은 |¼-¼| 가 되므로 선택 구간에서의 온 전압과 오프 전압의 차는 2+|¼| 가 된다.

이와 같이 유지 전압의 최대 절대값에 의해 선택 구간에서의 온 전압과 오프 전압의 차가 결정되는데, Y. J. Kim, S. M. Park, S. W. Suh and S. D. Lee, 'International Display Research Conference, 16', 337 (1996) 에 발표된 것처럼 BTN LCD의 전기 광학적 특성은 d/p값 및 온도 의존성이 있으므로 온/오프 전압의 차가 크지 않으면 셀내의 두께 편차나 온도 변화에 의한 스위청 문턱치 전압의 변화에 의해 원하 지 않는 상태로 스위청되어 크로스-토크가 발생할 수 있다. 따라서 셀내의 두께 편차나 온도 변화에 의 해 야기되는 크로스-토크를 억제하기 위해서는 BTN LCD의 구동 파형에서의 선택 구간에서의 온/오프 전 압의 차는 커이만 한다.

그러나 선택 구간에서의 온/오프 전압의 차를 크게 하려면 유지 전압도 같이 높아 지게 되는데, 유지 전압이 액정의 프레데릭스 문턱치 전압 보다 높으면, 이 유지 전압에 의해 스위칭된 배열상태의 액정 분자들이 전압 인가 방향으로 배열하게 되어 '명' 상태에서의 빛의 투과율이 감소하여 대비비가 저하될 뿐만아니라 시마각 특성도 저하된다. 따라서 유지 전압은 액정의 프레데릭스 문턱치 전압 보다 낮아야 하며, 이는 선택 구간에서의 온/오프 전압의 차를 제한하는 요인이 된다.

또한 대용량의 정보 표시를 위한 주사 전국수의 증가, 또는 주파수 변조법을 이용한 다계조 표시를 위해 프레임 주파수의 증가에 의해 한 화소에 할당되는 구간의 폭이 좁아지면, C. Kim, G. J. Choi, Y. S. Kim, K. H. Kang, T. H. Yoon, K. G. Nam, H.S. Kim, E. S. Lee, 'Society for Information Display Symposim Digest, 28', 33 (1997) 에 발표된 것처럼, 비틀림 각이 ♦ +π 인 배열상태로 스위청시키기 위하며 선택 구간에 스위청 문턱치 전압 보다 낮은 전압을 인가하더라도 바로 뒤이어 인가되는 유지 전압에 의해, 역류 효과가 저지되어, 비틀림 각이 ♦ -π 인 원하지 않은 배열상태로 스위청되어 크로스 토크가 유발된다. 이때 선택 구간의 폭이 좁아질수록 오프 파형 인가시 원하지 않은 배열상태로 스위청되기 시작하는 유지 전압의 세기는 점점 낮아 지며, 이 또한 선택 구간에서의 온/오프 전압의 차를 제한하는 요인이 된다.

이와 같이 상기의 문제점들에 의해 증래의 구동 파형은 유지 전압의 세기를 크게 하는 데에는 한계가 있으므로 선택 구간에서의 온/오프 전압의 차는 좁아지며, 이에 의해 셀내의 두께 편차나 온도 변화에 의한 크로스-토크가 야기될 수 있다. 따라서 셀내의 두께 편차나 온도 변화까지 고려하면, 증래의 구동 파형으로는 대용량의 정보를 표시하기 어려울 뿐만 아니라 주파수 변조법을 이용하여 대용량의 정보를 다계조로 표시하는 것은 불가능하다.

도 6 은 BTN LCD의 기본 구성, 도 7 은 종래 구동 파형의 일례를 도시하며, 도 8 내지 도 10은 상기 도 7의 구동 파형에서의 유지 전압의 최대 절대값을 고정하고 선택 전압만을 변화시키면서 BTN LCD의 투과율을 도시한 관계도이다.

상기 도 6 은 상,하 측 기판(13)의 바깥쪽에 편광판(11)이 부착되고, 내측에 투명 전극(15)과 액정 배향 막(17)이 구비되며, 상기 상,하측 기판 사이에 액정 분자(19)가 주입되되, 상기 액정 분자(19)는 상,하측의 액정 배향막(17)에 대해 각각 θ , θ , 의 각도를 갖고 구비된 일반적인 BTN LCD 의 단면도이다.

이때 상,하측 러빙 방향이 반평행 (anti-parallel) 하고, 셀 두께가 2 ළ 이고, 셀내의 액정 (Merck 사의 ZLI-1557) 의 d/p값 (단, d는 셀의 두께, p는 셀내의 주입된 액정의 피치) 이 0.58 로서 초기의 비틀림 각이 180°이고, 전면의 편광판은 전면의 러빙 방향에 45°로 놓고, 후면의 검광판은 전면의 판 광판에 대해 수직하게 놓았다.

상기 도 7은 주사 신호에서의 리셋 구간의 폭이 한 화소에 활당되는 구간의 폭에 네 배인 경우의 파형도 이다.

상기 도 8 은 상기 도 6의 구조로 형성된 BTN LCD에, 주사 신호에서의 리셋 구간의 전압(|\| |\| |\) 이 30 V이고, 한 화소에 할당되는 구간의 폭이 각각 0.5, 0.25, 0.125 msec 인 상기 도 7의 구동 파형의 |\| |\| |\| 전압을 1.4 V로 고정하고, |\| |\| |\| |\| 건압만을 변화시키면서 BTN LCD의 투과율을 도시한 관계도이고, 도 9 내지 도 10 은 상기의 |\| |\| |\| |\| 건압이 각각 1.5, 1.6 V 인 경우의 BTN LCD의 투과율을 도시한 관계도이다.

도 9 와 도 10 을 참조하면, 상기의 |%| 전압이 1.5 V 인 경우에는 한 화소에 할당되는 구간의 폭이 0.25 msec 이하에서 360° 비틀린 배열상태로 스위칭되지 않으며, |%| 전압이 1.6 V 인 경우에는 한 화소에 할당되는 구간의 폭이 0.5 msec 이하이면 360° 비틀린 배열상태로 스위칭되지 않음을 알 수 있다. 이는 선택 구간의 뒤이어 인가되는 유지 전압에 의해 역류 효과가 저지되기 때문으로, 선택 구간의 폭이 좁아질수록 역류 효과를 저지하는 유지 전압은 낮아진다.

따라서 선택 구간의 폭이 좁아질수록 허용되는 유지 전압의 세기는 낮아지므로 선택 구간에서의 온/오프 전압의 차 역시 좁아지며, 이는 셀내의 두께 편차나 온도 변화에 의한 선택 문턱치 전압의 변화에 의해 크로스-토크를 야기시킨다. 즉, 한 화소에 활당되는 구간의 폭이 0.25 msec인 경우에는 허용되는 유지 전압은 1.4 V로서, 선택 구간에서의 온/오프 전압의 차는 2.8 V 가 된다. 따라서 이때 셀내의 두께 편차 나 온도 변화에 의한 선택 문턱치 전압의 변화가 이 범위를 벋어나게 되면 크로스-토크가 야기된다.

미와 같이 종래의 BTN LCD 구동 파형으로는 선택 구간에서의 온/오프 전압의 차를 크게 하면서 한 화소에 할당되는 구간의 폭을 좁게하는 데에는 한계가 있다. 따라서 종래의 구동파형으로는 셀내의 두께 편 다나 온도 변화에 의해 야기되는 크로스 토크를 억제하면서 대용량의 정보를 표시하는 데에는 한계가 있

발명이 어루고자하는 기술적 폐제

본 발명은, 상기한 문제점을 해결하기 위하여, 한 화소에 할당되는 구간의 폭이 좁아지더라도 비.티.엔 액정표시장치를 스위청시킬 수 있는 선택 구간에서의 온/오프 전압의 차를 크게 할 수 있으므로 셀내의 두께 편차나 온도 변화에 의해 야기되는 크로스 토크를 억제하면서 대용량의 정보 표시가 가능할 뿐만 아니라 주파수 변조법을 이용하여 대용량의 정보를 다계조로 표시 할 수 있는 BTN LCD의 구동 방법을 제 공하는데 목적이 있다.

발명의 구성 및 작용

이상의 목적을 달성하기 위해 본 발명에 [다른 BTN LCD의 구동 방법은,

구동 파형의 주사 신호와 데이터 신호를 합성한 파형에서의 선택 구간(T_s)과, 상기 유지 구간중 한 화소에 활당되는 구간 (T_s) 을 다시 펼스 전압이 인가되지 않는 구간 (T_{so} , T_{so}) 과 필스 전압이 인가 되는 구간 (T_{so} , T_{so}) 으로 나눈 것과,

상기 BTN LCD 는 비틀림 각이 ♥ 인 초기 배열상태를 다른 수직 배열상태로 전이시키는 실효 전압 ₩□≠□ 이 인가되도록 리셋구간의 폭이 주사 신호 및 데이터 신호에서의 한 화소에 할당하는 구간의 폭보다 큰 것과,

상기 선택 구간(T_s)와 유지 구간(T_s)에서 펄스 전압이 인가되지 않는 구간 (T_{ss} , T_{ss}) 의 전압 절대값이 펄스 전압이 인가 되는 구간 (T_{ss} , T_{ss}) 의 전압 절대값 보다 낮은 것을 특징으로한다.

이하, 첨부된 도면을 참고로 하며 본 발명을 삼세히 설명하기로 한다.

도 11 내지 도 18 은 본 발명의 실시에에 따른 BTN LCD의 구동 방법 및 전기광학적 특성을 도시한 관계도로서, 도 11 은 본 발명이 제안한 새로운 구동 파형의 기본 구성을 도시한 파형도이고, 도 12 내지 도 15 는 본 발명에 의해 새로 고안된 기본 구동파형을 기준으로 하며 새로 고안한 구동 파형의 예를 도시한 파형도이고, 도 16 내지 도 18 은 본 발명에서 고안한 새로운 구동 파형 인가시 BTN LCD 의 선택 전압에 따른 투과율을 도시한 그래프도이다.

도 11 을 참조하면, 주사 신호와 데이터 신호를 합성한 파형에서의 선택 구간과 유지 구간중 한 화소에 할당되는 구간을 펼스 전압이 인가되지 않는 구간 (T_{sr}, T_{Jr}) 으로 나는다.

본 발명에 의한 새로운 구동 파형으로 먼저, 리셋 구간의 폭 및 전압의 세기는 종래의 구동 파형과 마찬 가지로 선택 구간과 유지 구간의 폭 및 전압의 세기에 비해 다소 독립적으로 조절할 수 있으므로 어떠한 조건에서든지 리셋시키기에 충분히 높은 전압을 인가할 수 있다.

그러나 선택 파형 인가시 유지 구간중 한 화소에 할당하는 구간내에 펄스 전압이 인가되지 않는 구간

(Tim) 이 존재하므로 좀래 구동 파형에 비해 유지 구간에서의 실효전압 세기는 낮아진다.

또한 오프 파형의 인가서 실효 선택 구간의 폭 $(T_s + T_{in})$ 이 넓어지므로 원하지 않는 배열상태로 스위칭 되어지기 시작하는 유지 전압의 세기는 높아진다.

이때 펄스 전압이 인가되지 않는 구간 (T_{sr}, T_{sr}) 의 전압의 절대값이 펄스 전압이 인가되는 구간 (T_{sr}, T_{sr}) 의 절대값 보다 낮으면 상기와 동일한 효과를 얻을 수도 있다.

상기한 바와 같이 본 발명에 의한 새로운 구동파형은, 종래의 구동파형에 비해 유지 전압의 세기를 더높여줄 수 있다. 따라서 본 발명에 의한 새로운 구동파형에 의하면 선택 구간에서의 온/오프 전압의 차를 크게 할 수 있으므로 셀내의 두께 편차나 온도 변화에 의해 야기되는 크로스 토크를 억제하면서 대용량의 정보 표시가 가능할 뿐만 아니라 주파수 변조법을 이용하여 대용량의 정보를 다계조로 표시 할 수 있다.

도 16 내지 도 18 을 참조하면, 셀 조건이 앞에서와 같으며, 리셋 구간의 폭과 전압의 세기가 각각 2 msec 와 \pm 30 V 이고, 선택 구간 (T_s) 및 유지 구간내의 한 화소에 할당되는 구간 (T_s) 에서 필스 전압이 인가되는 구간 (T_s , T_s ,) 이 필스 전압을 인가하지 않는 구간 (T_s , T_s) 의 1/4 이고, 주사신호와 데이터 신호에서 한 화소에 할당되는 구간의 폭이 0.5, 0.25, 0.125 msec 이고, $|V_s|$ 전압이 각각 4.5 V, 5 V, 5.5 V 인 구동 파형을 인가시 선택 전압에 따른 전기광학적 특성 변화를 나타낸 것이다.

이와 같이 본 발명에 의한 새로운 구동 파형을 적용하면, 한 화소에 활당되는 구간의 폭이 0.125 msec 인 경우에도 허용되는 유지 전압의 세기는 5 V 로서, 종래의 구동 파형에 비해 높아진다. 따라서 선택 구간의 온/오프 전압의 차도 10 V 로 넓어지므로 스위칭이 가능한 선택 전압의 범위가 넓어 진다는 것을 알 수 있다.

따라서 본 발명에 의한 새로운 구동 파형을 적용하면 주사 전극수의 증가 또는 주파수 변조법을 이용한 다계조 표시를 위해 프레임 주파수의 증가에 의해 한 화소에 활당되는 구간의 폭이 좁아지더라도 네. 티.엔 액정표시장치를 스위청시킬 수 있는 선택 구간에서의 온/오프 전압의 차를 넓게 할 수 있으므로 셀내의 두께 편차나 온도 변화에 의해 야기되는 크로스 토크를 억제하면서 대용량의 정보 표시가 가능할 뿐만 아니라 주파수 변조법을 이용하여 대용량의 정보를 다계조로 표시 할 수 있다.

生食의 夏季

상기한 바와같이 본 발명에 따른 비.티.엔. 액정표시장치의 구동방법은, 주사 신호와 데이터 신호를 합성한 파형에서의 선택 구간 (또는 비선택 구간) 과 유지 구간 중 한 화소에 활당되는 구간을 펼스 전압이 인가되지 않는 구간과 필스 전압이 인가 되는 구간으로 나누어 BTN LCD 의 기본 구동파형을 만들어 BTN LCD 을 구동합으로써 주사 전략수의 증가 또는 주파수 변조법을 이용한 다계조 표시를 위해 프레임주파수의 증가에 의해 한 화소에 활당되는 구간의 폭이 좁아지더라도 비.티.엔 액정표시장치를 스위청시킬 수 있는 선택 구간에서의 온/오프 전압의 차를 넓게 할 수 있으므로 셀내의 두께 편차나 온도 변화에 의해 야기되는 크로스 토크를 억제하면서 대용량의 정보 표시가 가능할 뿐만 아니라 주파수 변조법을 이용하여 대용량의 정보를 다계조로 표시 할 수 있는 효과가 있다.

(57) 경구의 범위

청구항 1. 비틀림 각이 Φ 인 초기 배열상태를 위상학적으로 전혀 다른 수직 배열상태로 전이시키는 역할을 하는 리셋 구간과, 비틀림 각이 Φ + π 인 배열상태나 비틀림 각이 Φ - π 인 배열상태로 스위청시키는 선택 구간과, 상기 두 배열상태의 안정성을 유지시키는 역할을 하는 유지 구간으로 구성되는 BTN LCD의 구동방법에 있어서,

구동 파형의 주사 신호와 데이터 신호를 합성한 파형에서의 선택 구간(T_s)과, 상기 유지 구간증 한 화소에 할당되는 구간 (T_s) 을 다시 펄스 전압이 인가되지 않는 구간 (T_s), 가 펄스 전압이 인가 되는 구간 (T_s), 으로 나는 것을 특징으로 하는 비.티.엔. 액정표시장치의 구동방법.

청구항 2. 제 1 항에 있어서,

상기 BTN LCD 는 비틀림 각이 ♥ 인 초기 배열상태를 다른 수직 배열상태로 전이시키는 실효 전압 V_{N→#되}이 인가되도록 리셋구간의 폭이 주사 신호 및 데이터 신호에서의 한 화소에 할당하는 구간의 폭보다 큰 것을 특징으로하는 비.티.엔. 액정표시장치의 구동방법.

참구항 3. 제 1 항에 있어서.

상기 선택 구간(T_s)와 유지 구간(T_s)에서 펄스 전압이 인가되지 않는 구간 (T_{sn} , T_{sn}) 의 전압 절대값이 펄스 전압이 인가 되는 구간 (T_{sn} , T_{sn}) 의 전압 절대값 보다 낮은 것을 특징으로하는 비.티.엔. 액정표시장 치의 구동방법.

도_면

도图1

*⊊8*2

도型3

도图7

$\{Y_0 = \pm 30 \text{ V. To} = 2 \cos \omega c, T = T_0 = 0.5 \cos \omega c\}$

도ല10

도型11

도명12

o companye na paga a companye na katalan a baran a salah a sal

도型13

도型14

도型15

{ d = 2 mm, d/p = 0.58, V_R = 30 V, T_R = 2.0 ms, V_T = 4.5 V, T_{g1}/T_g = 1/4 }

THIS PAGE BLANK (USPTO)