

Universidad Simón Bolívar Septiembre - Diciembre 2018 Sartenejas, 09 de enero de 2019

Nombre:	Carnet:	

- 1. Un monopolo magnético es una partícula hipotética propuesta inicialmente por P.A.M. Dirac en 1931, que tendría únicamente un polo magnético, siendo el equivalente a una "carga magnética" en el campo magnético. Éste se define por una sigularidad del campo magnético de la forma $\vec{B} = g\vec{r}/r^3$, donde g es una constante relacionada con la carga magnética. Suponga que una partícula de masa m se mueve en el campo de un monopolo magnético y de una fuerza central derivada de un potencial V(r) = -k/r
 - (a) (2 ptos.) Use coordenadas esféricas para escribir el Hamiltoniano del sistema. Recuerde que la fuerza de Lorentz viene dada por $\vec{F} = q[\vec{E} + (\vec{v} \times \vec{B}].$
 - (b) (2 ptos.) Construya la ecuación de Hamilton-Jacobi (HJ) correspondiente. Discuta una posible forma de volver la ecuación HJ separable.
 - (c) (3 ptos.) Demuestre que

$$\vec{D} = \vec{J} - \frac{qg}{c} \frac{\vec{r}}{r} \tag{1}$$

se conserva.

- (d) (3 ptos.) Muestre que hay un vector conservado análogo al vector de Lagrange-Runge-Lenz $\vec{A} \equiv \vec{p} \times \vec{J} \kappa m \frac{\vec{r}}{r}$ en el que \vec{D} juega el mismo papel que \vec{J} en el problema de Kepler.
- 2. Una partícula puntual se mueve bajo la interacción de una cierta fuerza conservativa.
 - (a) (5 ptos.) Construya la ecuación de Hamilton-Jacobi (HJ) en coordenadas elipsoidales $\{u, v, \theta\}$, definidas en términos de las coordenadas cilíndricas usuales $\{r, \theta, z\}$ por

$$r = a \sinh v \sin u, \qquad z = a \cosh v \cos u$$
 (2)

¿Cuál es la forma que debe tener el potencial $V(u, v, \theta)$ para que la ecuación sea separable?

- (b) (5 ptos.) Use los resultados anteriores para reducir a cuadraturas el problema de una partícula puntual de masa m que se mueve en el campo gravitacional de dos masas m_1 y m_2 ijadas en el eje z separados por una distancia 2a.
- 3. Una partícula de masa m=1 está constreñida a moverse en D=1 y está sujeta a un potencial $V=a\sec^2(x/l)$, donde a y l son constantes.
 - (a) (4 ptos.) Resuelva la ecuación de Hamilton-Jacobi, obteniendo una expresión integral para S. Determine x(t) a partir de la solución de la ecuación HJ.
 - (b) (6 ptos.) Determine las variables de Ángulo-Acción (ϕ, J) y la frecuencia ν . Obtenga la dependencia en la amplitud de ν . Verifique que el límite de amplitud pequeña es el mismoque el dado por la teoría de pequeñas oscilaciones visto al inicio del curso.