杭州电子科技大学学生考试卷(A)卷

考试课程	高等数学 A1		考试日期		2020年1月5日		成		
课程号	A0714201	任	课教师	节姓名				绩	
考生姓名			学号 (8 位)			专业			

题号	- 1-8	= 9-12	≡ 13-18	四 19-20	五 21	六 22
得分						

注意: 本卷总共 4 页, 总分 100 分, 时间 120 分钟

得分

一、选择题 (本题共8小题,每小题3分,共24分)

- 1、设 $f(x) = x \cos \frac{2}{x} + x^2$,则 x = 0 是 f(x) 的(B)
- (A) 连续点; (B) 可去间断点; (C) 无穷间断点; (D) 震荡间断点.
- 2、若过曲线 $y = x^3 3x$ 上一个点的切线平行于 x 轴,则曲线上这个点为(C)
 - (A) (0,0); (B) (1,2); (C) (1,-2);
- (D) (2,2).
- 3、设 f(x) 的一个原函数为 $\ln x$,则 f'(x) = (C)

 - (A) $\frac{1}{x}$; (B) $x \ln x x + c$; (C) $-\frac{1}{x^2}$; (D) e^{x^2} .

- 4、下列反常积分收敛的是(D)

- (A) $\int_{-\infty}^{+\infty} \sin x dx$; (B) $\int_{0}^{+\infty} x e^{x} dx$; (C) $\int_{-1}^{1} \frac{1}{x} dx$; (D) $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^{2}}}$.

- 5、设 f(x) 连续,则 $\lim_{x\to a} \frac{x}{x-a} \int_a^x f(t)dt$ 的值为(D)
 - (A) 0;
- (B) a;
- (C) f(a);
 - (D) af(a).
- 6、曲线 $y = x^2$ 绕直线 y = 1 旋转所得旋转体体积封闭部分体积为(A)
 - (A) $V = \int_{-1}^{1} \pi (x^2 1)^2 dx$; (B) $V = \int_{-1}^{1} \pi \sqrt{x^2 1} dx$;
 - (C) $V = \int_{-1}^{1} \pi(x^2 1) dx$; (D) $V = \int_{-1}^{1} \pi(x^2 + 1) dx$.
- 7、有两个解为 $y_1 = e^{-x}$, $y_2 = 3e^{2x}$ 的二阶常系数齐次线性微分方程为(C)

 - (A) y'' y' + y = 0; (B) y'' 2y' + y = 0;

 - (C) y'' y' 2y = 0; (D) y'' y' + 2y = 0.
- 8、若f(0) = 0, $\lim_{x \to 0} \frac{f(x)}{x^2} = 2$,则f(x)在x = 0处(D)
 - (A) 不可导; (B) 可导,且 $f'(0) \neq 0$; (C) 取极大值; (D) 取极小值.

得分

二、填空题 (本题共4小题,每小题3分,共12分)

- 9、设 $y = \ln(e^x + \sqrt{1 + e^{2x}})$,则 $dy = \underline{\qquad}$. $\left(\frac{e^x}{\sqrt{1 + e^{2x}}} dx$ 或者 $\frac{1}{e^x + \sqrt{1 + e^{2x}}} \left(e^x + \frac{e^{2x}}{\sqrt{1 + e^{2x}}}\right) dx\right)$
- 10. $\int_{-1}^{1} (x + |x|)^2 dx = \underline{\qquad}$ ($\frac{4}{3}$)
- 11、心形线 $\rho = a(1 + \cos \theta)$ (a > 0) 的全长 s =______. (8a)
- 12、微分方程 $y''+2y'+y=xe^{-x}$ 的特解的形式应设为_____. ($(Ax+B)x^2e^{-x}$)

得分

三、简单计算题(共6小题,每题5分,共30分)

13、设 f "存在, $y = f(e^{-x})$, 求 y".

15、求不定积分
$$\int \frac{\ln \sin x}{\cos^2 x} dx$$
.
解: $\int \frac{\ln \sin x}{\cos^2 x} dx = \int \ln \sin x d \tan x$ 2分

$$= \tan x \ln \sin x - \int \tan x \frac{\cos x}{\sin x} dx = \tan x \ln \sin x - x + C \qquad ...$$

14、求函数 $y = e^{\arctan x}$ 的凹凸区间和拐点.

解:
$$y' = e^{\arctan x} \cdot \frac{1}{1+x^2}$$

$$y'' = e^{\arctan x} \left(\frac{1}{1+x^2}\right)^2 + e^{\arctan x} \cdot \frac{-2x}{(1+x^2)^2} = e^{\arctan x} \cdot \frac{1-2x}{(1+x^2)^2}$$

对应曲线的拐点为 $(\frac{1}{2}, e^{\arctan\frac{1}{2}})$

16、证明不等式: $2x \arctan x \ge \ln(1+x^2)$.

解:
$$\diamondsuit f(x) = 2x \arctan x - \ln(1+x^2)$$

当
$$x > 0$$
时, $f'(x) > 0$; 当 $x < 0$ 时, $f'(x) < 0$;

故
$$x=0$$
为唯一极小值点,是最小值

17、求曲线
$$y = \int_{-\frac{\pi}{2}}^{x} \sqrt{\cos t} dt, (-\frac{\pi}{2} \le x \le \frac{\pi}{2})$$
的弧长.

解:
$$y' = \sqrt{\cos x}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 + \cos x} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{2 \cos^2 \frac{x}{2}} dx = 4 \dots 2$$

18、求微分方程
$$x\frac{dy}{dx} = y(\ln y - \ln x)$$
 的通解.

解:
$$\frac{dy}{dx} = \frac{y}{x} \ln \frac{y}{x}$$
, $\Rightarrow \frac{y}{x} = u$, 则 $\frac{dy}{dx} = u + x \frac{du}{dx}$,

整理且分离变量得
$$\frac{du}{u(\ln u - 1)} = \frac{dx}{x}$$
,

两边积分得 $\ln u - 1 = cx$,

即
$$\ln \frac{y}{x} - 1 = cx$$
 或者 $y = xe^{cx+1}$. 3 分

四、综合题(共2小题,每题8分,共16分)

19、求
$$\int_0^2 f(x-1)dx$$
, 其中 $f(x) = \begin{cases} \frac{1}{1+e^x}, & x < 0, \\ \frac{1}{1+x}, & x \ge 0 \end{cases}$

$$\begin{aligned}
&\text{MF:} & \int_0^2 f(x-1)dx \stackrel{u=x-1}{=} \int_{-1}^1 f(u)du \\
&= \int_{-1}^0 \frac{1}{1+e^u} du + \int_0^1 \frac{1}{1+u} du \\
&= 1 + \ln(1+\frac{1}{e}) = \ln(1+e)
\end{aligned} \qquad 3 \text{ for }$$

20、已知函数
$$f(x) = \begin{cases} x, & x < 1, \\ x^2, & x \ge 1. \end{cases}$$
 求 $\int_0^x f(t)dt$.

得分

五、应用计算题(本题12分)

21、设连接两点 A(0,1), B(1,0) 的一段向上凸的曲线弧 AB ,对于弧 AB 上任意一点 P(x,y)

曲线弧 AP 与直线段 \overline{AP} 所围成图形的面积为 x^3 , 求曲线弧 AB 的方程.

根据题意
$$x^3 = \int_0^x \left[f(X) - \frac{f(x) - 1}{x} X - 1 \right] dX$$
 换用曲边梯形减去一个直角梯形

两边对 x 求导,整理得 $6x^2 = f(x) - xf'(x) - 1$,即

因为 f(1) = 0,可得 C = -5,

得分

六、证明题 (本题6分)

22、设 f'(x) 在 [a,b] 上连续, f(x) 在 (a,b) 内二阶可导, f(a) = f(b) = 0 , $\int_a^b f(x) dx = 0$, 证明: (1) 在 (a,b) 内至少存在一点 ξ , 使得 $f'(\xi) = f(\xi)$.

(2) 在(a,b)内至少存在一点 $\eta(\eta \neq \xi)$, 使得 $f''(\eta) = f(\eta)$.

证明: (1) 因为 $\int_a^b f(x)dx = 0$, f(x)在[a,b]上连续,由积分中值定理可知存在 $c \in (a,b)$,使得 $0 = \int_a^b f(x)dx = f(c)(b-a)$,从而 f(c) = 0

构造函数 $G(x) = e^{-x} f(x)$, 易知G(x)在[a,b]上连续,在(a,b)内可导,且

G(a) = G(c) = G(b) = 0,由罗尔定理可知,存在 $\xi_1 \in (a,c), \xi_2 \in (c,b)$,使得

 $G'(\xi_1) = G'(\xi_2) = 0$,而 $G'(x) = e^{-x}[f'(x) - f(x)]$,因此

(<u>注意:</u>本小题直接通过G(a)=G(b)=0,用罗尔定理证明存在 $\xi\in(a,b)$,使得 $G'(\xi)=0$,从而得到 $f(\xi)=f'(\xi)$,也给 3 分)

(2) 令 $F(x) = e^x [f'(x) - f(x)]$, F(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 由 (1) 可知

 $F(\xi_1) = F(\xi_2) = 0$,由罗尔定理可知至少存在 $\eta \in (\xi_1, \xi_2)$,使得 $F'(\eta) = 0$,而

 $F'(x) = e^x[f''(x) - f(x)]$, 因此有