1. i) European Put values using the three methods:

```
Sig*sqrt(dt) U.4641262 0.4641415 0.4644212 0.4641527 0.4635921 0.4638726 0.4638783 0.4633168 0.4635977 0.4638783 0.4635977
```

ii) As we can see in below graphs, when dx is small, Crank-Nicolson Method performs better, with relatively small absolute errors against BS Model. As dx increases, the Explicit Finite-Difference method becomes better.

dx= Sig*sqrt(dt):

Error against Black-Scholes

dx= Sig*sqrt(3dt):

Error against Black-Scholes

dx= Sig*sqrt(4dt):

Error against Black-Scholes

Computational Finance P7

Spring 20

Minqi Tan

2. i) Values of American Calls and Puts using the three methods:

	EFD	IFD	CNFE
0.5ds	0.6540398	0.6534358	0.6537381
1.0ds	0.6230464	0.6222901	0.6226689
1.5ds	0.3622997	0.3620079	0.3621546

Puts:

	EFD	IFD	CNFE
0.5ds	0.4733277	0.4724533	0.4728893
1.0ds	0.4399789	0.4390812	0.4395300
1 5ds	0 6925425	0 6921732	0 6923577

ii) Graphs:

American Calls:

Call Prices

American Puts

Put Prices

