Analysis of Beta-lactam Resistance Mechanisms in Clinical E. coli Isolates

Introduction:

The increasing prevalence of antimicrobial resistance (AMR) in Escherichia coli poses a significant challenge in clinical settings. This study aimed to analyze the resistance mechanisms in five E. coli isolates, focusing on penicillin-binding proteins (PBPs), β-lactamase genes, and efflux-mediated resistance. Notably, NDM-5 indicates high-level resistance to carbapenems, a class of last-resort antibiotics. The findings help understand the genetic basis of resistance, particularly to beta-lactams, aiding in clinical decision-making for effective treatment strategies.

Methods:

- **Genome Annotation:** The genomes were annotated using Prokka.
- **PBP Gene Extraction:** Key penicillin-binding protein genes (PBP1a, PBP1b, PBP2, PBP3, PBP4, PBP5, PBP6, PBP7) were extracted using Biopython.
- Multiple Sequence Alignment (MSA): PBP sequences were aligned against the wild-type reference to identify mutations.
- ResFinder & RGI (CARD) Analysis: AMR gene detection and phenotypic resistance prediction were performed.
- Antibiotic Sensitivity Testing (AST): Resistance profiles were analyzed for β-lactams and other antibiotic classes.

Results:

Isolate Description

All five isolates were Escherichia coli, exhibiting multidrug resistance, with a strong focus on β-lactam resistance.

Key Findings from PBP Analysis

- In all isolates, an insertion mutation (ATTAACTATCGA) was identified in PBP3, correlating with resistance to aztreonam and avibactam.
- Other mutations in PBPs were also observed, potentially contributing to altered β-lactam binding.

1008

1020

<u>β-lactamase Enzymes Identified (ResFinder & CARD RGI Results):</u>

Gene	Resistance to	Mechanism			
blaNDM-5	Carbapenems, cephalosporins, penicillins	Metallo-Beta-Lactamase (MBL) hydrolyses Beta lactams			
blaCMY-42	Extended-spectrum cephalosporins, penicillins	AmpC beta-lactamase production			
blaTEM-1B	Penicillins, aminopenicillins	Hydrolyzes narrow spectrum beta-lactams but not ESBL			
blaCTX-M-15	Cephalosporins	Extended-spectrum Beta-lactamase (ESBL)			

Cultural Sensitivity Report & Resistance Profile:

1	sample_id	Zone	Specimen_coll	Ertapenem	Imipenem	Meropenem	Ceftazidime	Ceftriaxone	Cefepime	Aztreonam	icillin.Clavulan	i azidime.Aviba	racillin.Tazobactam
2	EC031	Northern	blood	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant
3	EC040	Northern	blood	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant
4	ECBN29	Western	blood	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant		Resistant
5	ECBN31	Western	blood	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant		Resistant
6	ECBN32	Western	blood	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant	Resistant		Resistant

Conclusion:

This study confirms the presence of CTX-M, TEM β -lactamases, NDM-5, CMY-42 β -lactamases, PBP3 mutations, and efflux-mediated resistance as primary drivers of β -lactam resistance in these E. coli isolates. The findings suggest that standard β -lactam treatments may be ineffective, necessitating alternative therapeutic strategies. Further clinical correlation is advised to optimize treatment outcomes.