ПРОТОКОЛ № 6

Проведения испытаний программного алгоритма по распознаванию движения в видеозаписях

г. Саранск 11 ноября 2024 г.

1 Рабочая группа

Рабочая группа в составе: Макаров О. С. – аспирант 4-го года очной формы обучения Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва»

2 Данные об испытании

2.1 Цель испытаний

Цель испытаний – определить количественные характеристики работы программного обеспечения.

2.2 Объект испытаний

Программное обеспечение, разработанное по алгоритму медианного фильтра для распознавания движения в видеозаписях. Источник алгоритма: https://www.sciencedirect.com/science/article/pii/S131915782030327X

2.1 Предмет испытаний

Количественные характеристики работы программного обеспечения, определяющие эффективность программного алгоритма, а именно: показатели точности и потребления вычислительных ресурсов. Количественные показатели точности распознавания:

- 1) Процент корректных распознаваний (РСС)
- 2) Чувствительность (Rcl)
- 3) Точность (Ргс)
- 4) F-балл

Подробнее показатели точности с методиками их расчета представлены в Приложении А.

Количественные показатели потребляемых вычислительных ресурсов:

- 1) Количество потребляемой памяти
- 2) Количество кадров, обрабатываемых в секунду (FPS)

2.3 Ход испытаний

2.3.1 Используемое оборудование и среда испытаний

Все испытания проводились на персональном компьютере со следующими характеристиками:

- 1) Центральный процессор: Intel Core 2 Duo E7500, 2 x 2.93 ГГц
- 2) Оперативная память: 4 GB, DDR3
- 3) Видеопроцессор: NVIDIA GEFORCE 9600 GT
- 4) Жесткий диск: 512GB, HDD
- 5) Операционная система Windows 7 Home Premium

2.3.2 Перечень входных данных

Программное обеспечение запускалось для десяти видеозаписей пяти различных категорий из коллекции Change Detection 2014, указанных в таблице 1. Оригинальный источник данных: https://www.kaggle.com/datasets/maamri95/cdnet2014. Каждая видеозапись этого набора содержит входные кадры, которые подаются на вход алгоритма (подпапка /input) и

вручную сегментированные ожидаемые маски распознавания, приближенные к реальности (подпапка /groundtruth).

Таблица 1 – Видеозаписи для проведения испытаний

№	Видеозапись	Разрешение	Количество	Категория	Путь до видеокадров
			кадров		
1	PETS 2006	720 x 576	1200	PETS 2006	baseline\PETS2006
2	pedestrians	360 x 240	1099	Обычные	baseline\pedestrians
				видеозаписи	
3	office	360 x 240	2050	Обычные	baseline\office
				видеозаписи	
4	highway	320 x 240	1700	Обычные	baseline\highway
				видеозаписи	
5	fall	720 x 480	4000	Динамический	dynamicBackground\fall
				фон	
6	canoe	320 x 240	1189	Динамический	dynamicBackground\canoe
				фон	
7	tramstop	432 x 288	3200	Прерывистое	intermittentObjectMotion\tramstop
				движение	
				объектов	
8	sofa	320 x 240	2750	Прерывистое	intermittentObjectMotion\sofa
				движение	
				объектов	
9	bungalows	360 x 240	1700	Тень	shadow\bungalows
10	cubicle	352 x 240	7400	Тень	shadow\cubicle

2.3.3 Замечания

Для достижения объективных результатов программное обеспечение для каждой видеозаписи запускалось 5 раз. Отказов, сбоев и аварийных ситуаций в ходе проведения испытаний не возникло. Корректировка параметров испытуемого алгоритма в ходе испытаний не вносилась.

3 Результаты испытаний

В таблицах 2 и 3 продемонстрированы показатели эффективности программного обеспечения, установленные в ходе проведения испытаний. Данные в таблице 2 для каждой видеозаписи усреднены по количеству запусков.

Таблица 2 – Результаты испытаний показателей точности

№	TP	TN	FP	FN	Prc	Rcl	PCC	F-балл
1	35788035	429302605	15443999	17129361	0,70	0,68	93,5%	0,69
2	5233913	83400981	2752429	3566277	0,66	0,59	93,3%	0,62
3	9821645	156259440	6165198	4873717	0,61	0,67	93,8%	0,64
4	8671533	112378868	5695662	3813937	0,60	0,69	92,7%	0,65
5	41284817	1099806710	61044040	180264433	0,40	0,19	82,5%	0,25
6	3043674	74160569	3237511	10873446	0,48	0,22	84,5%	0,30
7	15721234	347715503	11459323	23235140	0,58	0,40	91,3%	0,48
8	7221446	188633945	5070377	10274232	0,59	0,41	92,7%	0,48
9	4830398	132875918	2674322	6499362	0,64	0,43	93,8%	0,51
10	23192704	561164219	14045031	26750046	0,62	0,46	93,5%	0,53
Среднее					0,59	0,47	91,2%	0,52

Таблица 3 – Результаты испытаний показателей потребления вычислительных ресурсов

№	Память, сред. (МБ)	FPS, мин. (c)	FPS , макс. (c)	FPS, средн. (c)
1	47	65,1	69,7	67,2
2	9	90,0	94,1	90,2
3	13	90,1	95,4	93,3
4	14	89,4	93,8	92,3
5	27	64,2	72,9	70,3

6	10	82,3	86,2	85,4
7	19	72,3	76,0	75,3
8	9	92,0	92,5	92,2
9	8	89,4	93,9	93,1
10	9	90,1	92,5	92,1

Инженер-испытатель:

Макаров О. С.

(подпись)

Приложение А

Показатели точности распознавания

Количество истинно отрицательных пикселей (TN) – количество пикселей в кадре, правильно классифицированных как пиксели фоновой модели.

Количество истинно положительных пикселей (TP) – количество пикселей в кадре, правильно классифицированных как пиксели объектов переднего плана.

Количество ложно положительных пикселей (FP) — количество пикселей в кадре, неправильно классифицированных как пиксели объектов переднего плана, на самом деле являющихся фоновыми пикселями;

Количество ложно отрицательных пикселей (FN) — количество пикселей в кадре, неправильно классифицированных как фоновые пиксели, на самом деле являющихся пикселями объектов переднего плана;

Процент правильных классификаций (PCC) – показатель, определяющий общую долю правильных классификаций:

$$PCC = \frac{TP + TN}{TP + TN + FP + FN} \cdot 100\%$$

Чувствительность (Rcl) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей объектов переднего плана:

$$Rcl = \frac{TP}{TP + FN}$$

Точность (Prc) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей, классифицированных алгоритмом как пиксели объектов переднего плана:

$$Prc = \frac{TP}{TP + FP}$$

F-балл – это среднее гармоническое взвешенное показателей чувствительности и точности:

$$F = \frac{2 \cdot Pr \cdot Rcl}{Pr + Rcl}$$