PRINCIPLE OF MATHEMATICAL INDUCTION:

Let P(n) be a propositional function defined for all positive integers n. P(n) is true for every positive integer n if

1.Basis Step:

The proposition P(1) is true.

2.Inductive Step:

If P(k) is true then P(k + 1) is true for all integers $k \ge 1$.

i.e.
$$\forall k$$
 $p(k) \rightarrow P(k+1)$

EXAMPLE:

Use Mathematical Induction to prove that

$$1+2+3+\cdots+n = \frac{n(n+1)}{2} \quad \text{for all integers n } \ge 1$$
SOLUTION:

$$P(n): 1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

Let
$$P(n): 1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

1.Basis Step:

P(1) is true.

For n = 1, left hand side of P(1) is the sum of all the successive integers starting at 1 and ending at 1, so LHS = 1 and RHS is

$$R.H.S = \frac{1(1+1)}{2} = \frac{2}{2} = 1$$

so the proposition is true for n = 1.

2. Inductive Step: Suppose P(k) is true for, some integers $k \ge 1$.

$$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$
 (1)

To prove P(k + 1) is true. That is,

$$1+2+3+\dots+(k+1) = \frac{(k+1)(k+2)}{2}$$
 (2)

Consider L.H.S. of (2)

$$1+2+3+\dots+(k+1) = 1+2+3+\dots+k+(k+1)$$

$$= \frac{k(k+1)}{2} + (k+1) \quad \text{using (1)}$$

$$= (k+1) \left[\frac{k}{2} + 1 \right]$$

$$= (k+1) \left[\frac{k+2}{2} \right]$$

$$= \frac{(k+1)(k+2)}{2} = \text{RHS of (2)}$$

Hence by principle of Mathematical Induction the given result true for all integers greater or equal to 1.

EXERCISE:

Use mathematical induction to prove that $1+3+5+...+(2n-1) = n^2$ for all integers $n \ge 1$.

SOLUTION:

Let P(n) be the equation $1+3+5+...+(2n-1) = n^2$

1. Basis Step:

$$P(1)$$
 is true
For n = 1, L.H.S of $P(1) = 1$ and
R.H.S = 12 = 1

Hence the equation is true for n = 1

2. Inductive Step:

Suppose P(k) is true for some integer
$$k \ge 1$$
. That is,
 $1 + 3 + 5 + ... + (2k - 1) = k^2$(1)

To prove P(k+1) is true; i.e.,

$$1+3+5+\ldots+[2(k+1)-1]=(k+1)^2$$
(2)

Consider L.H.S. of (2)

$$1+3+5+\cdots+[2(k+1)-1]=1+3+5+\cdots+(2k+1)$$

$$=1+3+5+\cdots+(2k-1)+(2k+1)$$

$$=k^2+(2k+1) \qquad \text{using (1)}$$

$$=(k+1)^2$$

$$= R.H.S. \text{ of (2)} \qquad \text{Page 2 of 9}$$

Thus P(k+1) is also true. Hence by mathematical induction, the given equation is true for all integers $n\geq 1$.

EXERCISE:

Use mathematical induction to prove that

$$1+2+22 + ... + 2n = 2n+1 - 1$$
 for all integers n ≥0

SOLUTION:

Let P(n):
$$1 + 2 + 22 + ... + 2n = 2n+1 - 1$$

1. Basis Step:

P(0) is true.

For n = 0

L.H.S of P(0) = 1

R.H.S of P(0) = 20+1 - 1 = 2 - 1 = 1

Hence P(0) is true.

2. Inductive Step:

Suppose P(k) is true for some integer
$$k \ge 0$$
; i.e.,

$$1+2+22+...+2k = 2k+1-1....(1)$$

To prove P(k+1) is true, i.e.,

$$1+2+22+...+2k+1 = 2k+1+1-1...$$
 (2)

Consider LHS of equation (2)

$$1+2+22+...+2k+1 = (1+2+22+...+2k) + 2k+1$$

$$= (2k+1-1) + 2k+1$$

$$= 2 \cdot 2k+1 - 1$$

$$= 2k+1+1 - 1 = R.H.S of (2)$$

Hence P(k+1) is true and consequently by mathematical induction the given propositional function is true for all integers $n \ge 0$.

EXERCISE:

Prove by mathematical induction

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
 for all integers n ≥1.

SOLUTION:

Let P(n) denotes the given equation

1. Basis step:

For
$$n = 1$$

L.H.S of
$$P(1) = 12 = 1$$

R.H.S of P(1) =
$$\frac{1(1+1)(2(1)+1)}{6}$$

= $\frac{(1)(2)(3)}{6} = \frac{6}{6} = 1$

So L.H.S = R.H.S of P(1).Hence P(1) is true

2.Inductive Step:

Suppose P(k) is true for some integer $k \ge 1$;

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$
(1)

To prove P(k+1) is true; i.e.;

$$1^{2} + 2^{2} + 3^{2} + \dots + (k+1)^{2} = \frac{(k+1)(k+1+1)(2(k+1)+1)}{6} \dots (2)$$

Consider LHS of above equation (2)

$$1^{2} + 2^{2} + 3^{2} + \dots + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= (k+1) \left[\frac{k(2k+1)}{6} + (k+1) \right]$$

$$= (k+1) \left[\frac{k(2k+1)}{6} + (k+1) \right]$$

$$= (k+1) \left[\frac{2k^{2} + k + 6k + 6}{6} \right]$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)(k+1)(2(k+1)+1)}{6}$$

EXERCISE:

Prove by mathematical induction

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
 for all integers $n \ge 1$

SOLUTION:

Let P(n) be the given equation.

1.Basis Step:

P(1) is true
For n = 1
L.H.S of P(1) =
$$\frac{1}{1 \cdot 2} = \frac{1}{1 \times 2} = \frac{1}{2}$$

R.H.S of P(1) = $\frac{1}{1+1} = \frac{1}{2}$

Hence P(1) is true

2.Inductive Step:

Suppose P(k) is true, for some integer $k \ge 1$. That is

To prove P(k+1) is true. That is

Now we will consider the L.H.S of the equation (2) and will try to get the R.H.S by using equation (1) and some simple computation.

Consider LHS of (2)

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(k+1)(k+2)}$$

$$= \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k(k+2)+1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{(k+2)}$$
= RHS of (2)

Hence P(k+1) is also true and so by Mathematical induction the given equation is true for all integers $n \ge 1$.

EXERCISE:

Use mathematical induction to prove that

$$\sum_{i=1}^{n+1} i 2^i = n \cdot 2^{n+2} + 2, \qquad \text{for all integers } n \ge 0$$

SOLUTION:

1.Basis Step:

To prove the formula for n = 0, we need to show that

$$\sum_{i=1}^{0+1} i \cdot 2^i = 0 \cdot 2^{0+2} + 2$$
Now, L.H.S =
$$\sum_{i=1}^{1} i \cdot 2^i = (1)2^1 = 2$$
R.H.S = $0 \cdot 2^2 + 2 = 0 + 2 = 2$
Hence the formula is true for n = 0

2.Inductive Step:

Suppose for some integer $n=k \ge 0$

$$\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{k+2} + 2 \qquad \dots (1)$$

We must show that

$$\sum_{i=1}^{k+2} i \cdot 2^{i} = (k+1) \cdot 2^{k+1+2} + 2 \qquad \dots (2)$$

Consider LHS of (2)

$$\sum_{i=1}^{k+2} i \cdot 2^{i} = \sum_{i=1}^{k+1} i \cdot 2^{i} + (k+2) \cdot 2^{k+2}$$

$$= (k \cdot 2^{k+2} + 2) + (k+2) \cdot 2^{k+2}$$

$$= (k+k+2)2^{k+2} + 2$$

$$= (2k+2) \cdot 2^{k+2} + 2$$

$$= (k+1)2 \cdot 2^{k+2} + 2$$

$$= (k+1) \cdot 2^{k+1+2} + 2$$

$$= \text{RHS of equation (2)}$$

Hence the inductive step is proved as well. Accordingly by mathematical induction the given formula is true for all integers n≥0.

EXERCISE:

Use mathematical induction to prove that

$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$$
 for all integers $n \ge 2$

SOLUTION: 1. Basis Step:

For
$$n = 2$$

L.H.S =
$$1 - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4}$$

R.H.S = $\frac{2+1}{2(2)} = \frac{3}{4}$

Hence the given formula is true for n = 2

2. Inductive Step:

Suppose for some integer $k \ge 2$

$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{k^2}\right) = \frac{k+1}{2k}$$
(1)

We must show that

$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdot \cdot \cdot \left(1 - \frac{1}{(k+1)^2}\right) = \frac{(k+1)+1}{2(k+1)} \dots (2)$$

Consider L.H.S of (2)

$$\begin{aligned} & \left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{(k+1)^2}\right) \\ &= \left[\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{k^2}\right)\right] \left(1 - \frac{1}{(k+1)^2}\right) \\ &= \left(\frac{k+1}{2k}\right) \left(1 - \frac{1}{(k+1)^2}\right) \\ &= \left(\frac{k+1}{2k}\right) \left(\frac{(k+1)^2 - 1}{(k+1)^2}\right) \\ &= \left(\frac{1}{2k}\right) \left(\frac{k^2 + 2k + 1 - 1}{(k+1)}\right) \end{aligned}$$

$$= \frac{k^2 + 2k}{2k(k+1)} = \frac{k(k+2)}{2k(k+1)}$$
$$= \frac{k+1+1}{2(k+1)} = \text{RHS of (2)}$$

Hence by mathematical induction the given equation is true

EXERCISE:

Prove by mathematical induction

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1$$
 for all integers $n \ge 1$

SOLUTION:

1.Basis step:

For n = 1
L.H.S =
$$\sum_{i=1}^{n} i(i!) = (1)(1!) = 1$$

R.H.,S = $(1+1)! - 1 = 2! - 1$
= $2 - 1 = 1$

Hence
$$\sum_{i=1}^{1} i(i!) = (1+1)! - 1$$
 which proves the basis step.

2.Inductive Step:

Suppose for any integer $k \ge 1$

$$\sum_{i=1}^{k} i(i!) = (k+1)! - 1 \qquad \dots (1)$$

We need to prove that

$$\sum_{i=1}^{k+1} i(i!) = (k+1+1)!-1 \qquad (2)$$

Consider LHS of (2)

$$\sum_{i=1}^{k+1} i(i!) = \sum_{i=1}^{k} i(i!) + (k+1)(k+1)!$$

$$= (k+1)! - 1 + (k+1)(k+1)!$$

$$= (k+1)! + (k+1)(k+1)! - 1$$

$$= [1 + (k+1)](k+1)! - 1$$

$$= (k+2)(k+1)! - 1$$

$$= (k+2)! - 1$$

$$= RHS of (2)$$
Using (1)

Hence the inductive step is also true.

Accordingly, by mathematical induction, the given formula is true for all integers $n \ge 1$.

EXERCISE:

Use mathematical induction to prove the generalization of the following DeMorgan's Law:

$$\overline{\bigcap_{j=1}^{n} A_{j}} = \bigcup_{j=1}^{n} \overline{A_{j}}$$

where $A_1, A_2, ..., A_n$ are subsets of a universal set U and $n \ge 2$.

SOLUTION:

Let P(n) be the given propositional function

1.Basis Step:

P(2) is true.

L.H.S of P(2) =
$$\overline{\bigcap_{j=1}^{2} A_{j}} = \overline{A_{1} \bigcap A_{2}}$$
 By DeMorgan's Law
$$= \overline{A_{1} \bigcup A_{2}}$$

$$= \overline{\bigcup_{j=1}^{2} \overline{A_{j}}} = \text{RHS of } P(2)$$

2.Inductive Step:

Assume that P(k) is true for some integer $k \ge 2$; i.e.,

where $A_1, A_2, ..., A_k$ are subsets of the universal set U. If A_{k+1} is another set of U, then we need to show that

Consider L.H.S of (2)

$$\overline{\bigcap_{j=1}^{k+1} A_j} = \overline{\left(\bigcap_{j=1}^k A_j\right) \cap A_{k+1}}$$

$$= \left(\overline{\bigcap_{j=1}^k A_j}\right) \cup \overline{A_{k+1}}$$

$$= \left(\bigcup_{j=1}^k \overline{A_j}\right) \cup \overline{A_{k+1}}$$

$$= \left(\bigcup_{j=1}^{k+1} \overline{A_j}\right) \cup \overline{A_{k+1}}$$

$$= \bigcup_{j=1}^{k+1} \overline{A_j}$$

 $= R.H.S \ of \ (2)$ Hence by mathematical induction, the given generalization of DeMorgan's Law holds.