Stable Ramsey's theorem and measure

Damir D. Dzhafarov University of Chicago

SouthEastern Logic Symposium 28 February 2010

Definition

Let $X \subseteq \omega$ be an infinite set and let $n, k \in \omega$.

- $[X]^n := \{Y \subset X : |Y| = n\}.$
- A coloring on X is a function $f: [X]^n \to k = \{0, ..., k-1\}.$
- A set $H \subseteq X$ is homogeneous for f if $f \upharpoonright [H]^n$ is constant.
- A coloring $f: [X]^2 \to k$ is *stable* if for all $x \in X$, $\lim_{y \in X} f(x, y)$ exists.

 (RT^n_k) Every $f:[\omega]^n\to k$ has an infinite homogeneous set.

 (SRT_k^2) Every stable $f: [\omega]^2 \to k$ has an infinite homogeneous set.

We deal only with stable colorings, and only with k = 2.

Fact

- For every computable stable $f: [\omega]^2 \to 2$, there is a Δ_2^0 set every infinite subset or cosubset of which computes an infinite homogeneous set for f.
- For every Δ_2^0 set A, there is a computable stable $f: [\omega]^2 \to 2$ such that every infinite homogeneous set of f is a subset or cosubset of A.

Theorem (Hirschfeldt, 2006)

Every Δ_2^0 set has an infinite subset or cosubset $H <_T \emptyset'$.

Theorem (Hirschfeldt, 2006)

Every Δ_2^0 set has an infinite subset or cosubset $H <_T \emptyset'$.

Theorem (Downey, Hirschfeldt, Lempp, and Solomon, 2001)

There is a Δ_2^0 set with no low infinite subset or cosubset.

Theorem (Hirschfeldt, 2006)

Every Δ_2^0 set has an infinite subset or cosubset $H <_T \emptyset'$.

Theorem (Downey, Hirschfeldt, Lempp, and Solomon, 2001)

There is a Δ_2^0 set with no low infinite subset or cosubset.

Theorem (Cholak, Jockusch, and Slaman, 2001)

Every Δ_2^0 set has a low₂ infinite subset or cosubset.

Definition (Mileti, 2005)

Let d be a degree.

- Let $\mathscr{C}_{\mathbf{d}}$ be the class of all Δ_2^0 sets with an infinite subset or cosubset of degree $\leq \mathbf{d}$.
- Say **d** is *s-Ramsey* if $\mathscr{C}_{\mathbf{d}} = \Delta_2^0$.

Definition (Mileti, 2005)

Let **d** be a degree.

- Let $\mathscr{C}_{\mathbf{d}}$ be the class of all Δ_2^0 sets with an infinite subset or cosubset of degree $\leq \mathbf{d}$.
- Say **d** is *s-Ramsey* if $\mathscr{C}_{\mathbf{d}} = \Delta_2^0$.

Theorem (Mileti, 2005)

- There is no s-Ramsey degree $\mathbf{d} < \mathbf{0}'$.
- There is no low₂ s-Ramsey degree.

Definition

lacksquare A martingale is a map $M:2^{<\omega} o\mathbb{Q}^{\geq0}$ such that for all $\sigma\in2^{<\omega}$,

$$M(\sigma) = \frac{M(\sigma 0) + M(\sigma 1)}{2}$$

- A martingale *succeeds* on a set X if $\limsup_{n\to\infty} M(X \upharpoonright n) = \infty$.
- A class $\mathscr C$ of Δ_2^0 sets is Δ_2^0 *null* if there is a martingale $M \leq_T \emptyset'$ that succeeds on every $X \in \mathscr C$.

Theorem (Hirschfeldt and Terwijn, 2008)

The class of low sets is not Δ_2^0 null.

Corollary

The class of Δ_2^0 sets having a low infinite subset or cosubset is not Δ_2^0 null.

Definition

A degree \boldsymbol{d} is almost s-Ramsey if $\mathscr{C}_{\boldsymbol{d}}$ is not Δ_2^0 null.

Definition

A degree \mathbf{d} is almost s-Ramsey if $\mathscr{C}_{\mathbf{d}}$ is not Δ^0_2 null.

Theorem (Dzhafarov)

There is no almost s-Ramsey degree $\mathbf{d} < \mathbf{0}'$.

Measu<u>re</u>

Theorem (Dzhafarov)

There is an almost s-Ramsey degree that is not s-Ramsey.

Theorem (Dzhafarov)

There is an almost s-Ramsey degree that is not s-Ramsey.

Proof idea.

- Fix $A \in \Delta_2^0$ with no low infinite subset or cosubset.
- Let M_0, M_1, \ldots list all \emptyset' -computable martingales.
- For all i, fix L_i on which M_i does not succeed and $\bigoplus_{i \le i} L_i$ is low.
- Let $D^{[0]} = L_0$.
- If $(\exists x \notin A)(\exists F \text{ finite})[F^{[0]} \upharpoonright \max F = D^{[0]} \upharpoonright \max F \land \Phi_0^F(x) \downarrow = 1]$: let $r_1 = \varphi_0^F(x)$, make $F \subset D$, and let $D^{[1]} = F^{[1]} \cup \{x \in L_1 : x > r_1\}$.
- If not, let $D^{[1]} = L_1$.
- Continue.

Theorem (Dzhafarov)

There is an almost s-Ramsey degree $\mathbf{d} < \mathbf{0}''$ which is not s-Ramsey.

Theorem (Dzhafarov)

There is an almost s-Ramsey degree d < 0'' which is not s-Ramsey.

Question

Is there a low₂ almost s-Ramsey degree?

Recall the following principles:

(COH) For every family $\langle X_i : i \in \mathbb{N} \rangle$ there is a set C such that for all i, $C \subseteq^* X_i$ or $C \subseteq^* \overline{X_i}$.

(DNR) For every set X there is an f such that for all e, $\Phi_e^X(e) \neq f(e)$.

Recall the following principles:

(COH) For every family $\langle X_i : i \in \mathbb{N} \rangle$ there is a set C such that for all i, $C \subseteq^* X_i$ or $C \subseteq^* \overline{X_i}$.

(DNR) For every set X there is an f such that for all e, $\Phi_e^X(e) \neq f(e)$.

Theorem (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman, 2006)

Over RCA_0 , $SRT_2^2 \implies DNR$.

Question

Over RCA₀, does $SRT_2^2 \implies WKL_0$ or $SRT_2^2 \implies COH$?

Define the following principles:

(SRAM) For every set X there is a set Y such that every stable coloring $f \leq_T X$ has an infinite homogeneous set $H \leq_T Y$.

(ASRAM) For every set X there is a set Y such that for every X-computable approximation to a martingale M there is a stable coloring $f \leq_T X$ on which M does not succeed and which has an infinite homogeneous set $H \leq_T Y$.

(ASRT₂) For every approximation M_s to a martingale M there is a stable coloring $f \leq_T M_s$ on which M does not succeed and which has an infinite homogeneous set.

Theorem (Dzhafarov)

Over RCA₀, the following implications hold:

(Double arrows are not reversible in RCA_0 .)

Thank you for your attention.