

Доклад на тему «Средства построения трехмерных графиков»

Выполнила Коняева М.А. НФИбд-01-21 Преподаватель Кулябов Д.С.

Цель работы

• Изучить способы построения трехмерных графиков в Octave

Задачи

- Разобрать построение графиков поверхностей
- Разобрать построение графиков поверхностей заданных, параметрически
- Разобрать дополнительные возможности при построении графиков

Построение графиков поверхностей

• Для построения каркасного графика следует обратиться к функции mesh

$$z(x,y)=3x^2-2\sin^2 y$$

>> [x y]=meshgrid(-2:0.1:2,-3:0.1:3);
>> z=3*x.*x-2*sin(y).^2;
>> mesh(x,y,z);

Построение графиков поверхностей

• Для построения поверхностей, кроме функции mesh, есть функция surf, которая строит каркасную поверхность, заливая ее каждую клетку цветом, который зависит от значения функции в узлах сетки.

$$z(x, y) = \sqrt{\sin^2 x + \cos^2 y}$$

```
>> [x y]=meshgrid(-2:0.2:2,0:0.2:4);
>> z=sqrt(sin(x).^2+cos(y).^2);
>> surf(x,y,z);
```


Построение графиков поверхностей

• Построение графики двух поверхностей в одной системе координат (hold on, surf и mesh)

$$z(x, y) = \pm (2x^2 + 3y^4) - 1$$

>> h=figure(); >> [x y]=meshgrid(-2:0.1:2,-3:0.1:3); >> z=2*x.^2+3*y.^4-1; >> z1=-2*x.^2-3*y.^4-1; >> surf(x,y,z); >> hold on >> surf(x,y,z1);

• Построение поверхности однополостного гиперболоида, $x(u,v)=ch(u)cos(v), \ y(u,v)=ch(u)sin(v), \ z(u,v)=sh(u), \ u\in[0,\pi], \ v\in[0,2\pi]$


```
>> h=3.14/50;

>> u=[0:h:3.14]';

>> v=[0:2*h:6.28];

>> X=cosh(u)*cos(v);

>> Y=cosh(u)*sin(v);

>> Z=sinh(u)*ones(size(v));

>> surf(X,Y,Z);

>> grid on;

>> title('Plank hyperboloid');

>> xlabel('X');

>> zlabel('Z');
```


• Построение поверхности сферы с центром (x0, y0, z0) и радиусом R параметрически (или [X,Y,Z]=sphere(n); surf(X,Y,Z))

```
x(u, v) = x_0 + R\sin(u)\cos(v), y(u, v) = y_0 + R\sin(u)\sin(v), z(u, v) = z_0 + R\cos(u)
```



```
>> h=pi/30;
>> u=[-0:h:pi]';
>> v=[0:2*h:2*pi];
>> x=1+4*sin(u)*cos(v);
>> y=1+4*sin(u)*sin(v);
>> z=1+4*cos(u)*ones(size(v));
>> surf(x,y,z);
>> grid on;
>> title('SPHERE');
>> xlabel('X');
>> ylabel('Y');
```


• Построение поверхности эллипсоида, где a, b, c – полуоси эллипсоида,

$$x0$$
, $y0$, $z0$ — центр эллипсоида


```
x(u, v) = x_0 + a \sin(u) \cos(v),

y(u, v) = y_0 + b \sin(u) \sin(v),

z(u, v) = z_0 + c \cos(u)
```

```
>> h=pi/30;
>> u=[-0:h:pi]';
>> v=[0:2*h:2*pi];
>> a=3;b=7;c=1;
>> x0=y0=z0=10;
>> x=x0+a*sin(u)*cos(v);
>> y=y0+b*sin(u)*sin(v);
>> z=z0+c*cos(u)*ones(size(v));
>> surf(x,y,z);
>> grid on;
>> title('ELLIPSOID');
>> xlabel('Y');
>> ylabel('Y');
>> zlabel('Z');
```


• Построение поверхности цилиндра радиуса R=4 и высотой h=1


```
>> [x, y, z] = cylinder ([4,4],25);
>> grid on;
>> surf(x, y, z);
>> title ("Cylinder")
```


• Построение поверхности усеченного кругового конуса и кругового


```
>> [x, y, z] = cylinder (2:1:10,25);
>> grid on;
>> surf (x, y, z);
>> title ("Cone")
>> xlabel('X');
>> ylabel('Y');
>> zlabel('Z');
```

```
>> [x, y, z] = cylinder ([5,4,3,2,1,0,1,2,3,4,5],25);
>> grid on;
>> mesh(x, y, z);
>> title ("Cone")
>> xlabel('X');
>> ylabel('Y');
>> zlabel('Z');
```


Дополнительные возможности при построении графиков

• Для вывода символов маркеров и греческих букв, для изменения цвета

линий

Символ маркера	Изображение маркера
	точка
*	*
х	×
+	+
o	0
S	
d	•
v	▼
٨	A
<	∇
>	Δ
p	□
h	♦

Команда	Символ	Команда	Символ
\alpha	α	\upsilon	υ
\beta	β	\phi	φ
\gamma	γ	\chi	χ
\delta	δ	\psi	Ψ
\epsilon	3	\omega	ω
\zeta	ζ	\Gamma	Γ
\eta	η	\Delta	Δ
\theta	θ	\Theta	Θ
\iota	ι	\Lambda	Λ
\kappa	κ	\Xi	Ξ
\lambda	λ	\Pi	П
\mu	μ	\Sigma	Σ
\nu	ν	\Upsilon	Y
\xi	ξ	\Phi	Φ
\pi	π	\Psi	Ψ
\rho	ρ	\Omega	Ω
\sigma	σ	\forall	A
\varsigma	ς	\exists	3
\tau	τ	\approx	≈
\int	ſ	\in	П

Команда	Символ	Команда	Символ
\neq	≠	\downarrow	1
\nabla	Δ	\circ	o
\wedge	^	\sim	~
\vee	v	\leq	≤
\pm	±	\leftrightarrow	↔
\geq	≥	\leftarrow	←
\inftyo	oc	\uparrow	1
\partial	ð	\rightarrow	→

Символ	Цвет линии
y	желтый
m	розовый
c	голубой
r	красный
g	зеленый
b	синий
w	белый

Результаты:

• Были изучены способы построения трехмерных графиков в Octave. Также были разобраны дополнительные возможности при построении графиков.

Список источников:

- Программирование на Octave/Построение графиков: https://ru.wikibooks.org/wiki/Программирование_на_Octave/Построени е_графиков
- Введение в Остаvе для инженеров и математиков: / Е. Р. Алексеев, О. В. Чеснокова М.: ALT Linux, 2012. 368 с.: ил. (Библиотека ALT Linux).