Fuzzy System for Software Reliability Classification using Object Oriented Metrics

University of Michigan Dearborn Presented by Juan C. Garcia Fall 2010

Outline

- Introduction
- Software Requirements
- Based-Rule Fuzzy System Design
- Fuzzy sets
- Fuzzy Rules
- Experiments and Results
- Conclusion
- Q&A

Introduction

- Managers have been focusing on process improvement in the software development area.
- Metrics focus in OO concepts like classes, objects, instance, method, message passing, inheritance, multiple inheritance, abstraction, encapsulation, polymorphism, decoupling, complexity.
- OO metrics measure computational complexity as well as psychological complexity factors that affect the ability of a programmer to create, comprehend, modify and maintain software.
- They provide a quantitative basis for the development and validation of models during the software development process
- They are used to monitor the software and its areas that need corrective or management action to improve productivity, reliability, usability, testability and quality

Software Requirements

- System to classify java applications based on OO metrics.
 - Automatic extraction of OO metrics from java code
 - Default/base set of rules
 - XML configuration and Framework Application for final users to adjust/add/remove:
 - Fuzzy sets
 - Fuzzy Rules
 - OO Metrics
 - General classification of the software application and fine grain classification of the java classes based on OO Metrics.
 - GUI and command interfaces provided.

Based-Rule Fuzzy System Design Use cases

Use Cases

- Load Configuration
- Extract Metrics
- Fuzzy Diagnose
- Generation Report
- Decomposition tree Generation

Based-Rule Fuzzy System Design OO Metrics Framework

Metrics Engine Framework

OO Metrics can be added or removed depending on the needs of the final user.

For new OO Metrics the Metric Interface will need to be implemented in the new class and added to the configuration file

Based-Rule Fuzzy System Design Fuzzy Engine

Fuzzy System Design – Block Diagram

Fuzzy Inputs - 00 Metrics

Measurement	Metrics
Complexity	LOC - Lines of Code WMC - Weighted Methods Per Class RFC - Response for a Class
Cohesion	LCOM2 - Lack of Cohesion
Coupling	CBO – Coupling between Object Classes COF – Coupling factor
Inheritance Tree	NOC - Number of Children DIT - Depth of Inheritance Tree
Encapsulation	MHF - Method Hiding Factor AHF - Attribute Hiding Factor
Class inheritance	MIF - Method Inheritance Factor AIF - Attribute Inheritance Factor
Polymorphism	POF - Polymorphism Factor

Fuzzy Outputs and Definitions

- Output OODC= Software classification.
- Definitions:
 - C- Critical
 - H High
 - M Medium
 - N Normal
 - L Low
 - VL Very Low

Fuzzy Membership Functions

OO Metrics	Fuzzy Membership Functions
WMC	normal (x:10,20), medium (x:10,20,30) and high(x:20,30)
RFC	normal (x:30,40), medium (x:30,40,50) and high (x:40, 50)
LCOM ₂	normal (x:60,70), medium (x:60,70,80) and high (x:70,80)
СВО	normal (x: 5, 10), medium(x: 5, 10, 15), high(x: 10, 15)
DIT	normal (x:3,6), medium (x:3,6,9) and high (x:6,9)
NOC	normal (x:10,20), medium (x:10,20,30) and high(20,30)
LOC	(x:750,1000), medium (x:750,1000,1250) and high (x:1000,1250)
MHF	very low (x:5,10), low (x:5,10,15), normal (x:10,15,20,25), medium(20,25,30) and high (x:25,30)
AHF	normal (x:80,90), medium (70,80,90) and high (70,80)
MIF	very low(x:15,20), low(15,20,25), normal(x:20,25,75,80), medium (x:75,80,85) and high (80,85)
AIF	normal(x:40,50), medium(x:40,50,55,65) and high (x:55,65)
COF	normal (x:10,20), medium (x:10,20,30) and high (x:20,30)
POF	rmal (x:0,10), medium (x:0,10,20) and high (x:10,20)

Fuzzy Membership Functions (Cont..) Example

MIF

COF

Fuzzy Rules – Groups Definition

Group #	Metrics	Objective
1	LOC, WMC,	Complexity
	RFC	
2	DIT, NOC	Hierarchical tree.
3	LCOM2	Cohesion
4	CBO, CFO	Coupling
5	MIF, AIF	Inheritance
6	MHF, AHF	Encapsulation
7	POF	Polymorphism

Application Classification:

MHF, AHF, MIF, AIF, COF, POF, DIT, NOC

Single Java Class Classification:

NOC, DIT, LOC, WMC, RFC, LCOM2, CBO

Fuzzy Rules - Conditions (Cont...)

Classification	Fuzzy Conditions
Critical	At least three of the clusters being evaluated have high value;
High	At least two of the clusters being evaluated have high value;
Medium	At least one of the clusters being evaluated have high value;

Fuzzy Rules Single Java Class Classification

	С	COMPLEXITY		INHERITA	NCE TREE	COHESION	COUPLING	
Rule#	LOC	WMC	RFC	DIT	NOC	LCOM2	СВО	Results
1		Н		HIM	MΝ	HIMIN	HIMIN	medium
2	HIMIN			F	1	HIMIN	HIMIN	medium
3	HIMIN			HIM	MIN	Н	HIMIN	medium
4	HIMIN			HIM	MIN	HIMIN	Н	medium
5	Н			ŀ	1	HIMIN	HIMIN	high
6	Н		HIMIN		H	HIMIN	high	
7	Н		HIM	ΜN	HIMIN	Н	high	
8	HIMIN		Н		Н	HIMIN	high	
9	HIMIN		Н		HIMIN	Н	high	
10	HIMIN		HIMIN		Н	Н	high	
11	Н		Н		Н	HIMIN	critical	
12	Н		Н		HIMIN	Н	critical	
13		Н		HIMIN		Н	Н	critical
14		HIMIN		Н		Н	Н	critical

Fuzzy Rules Application Classification

יַן	Inher. Tree		Inher. Class		Encapsulation		Coupling	Polimorphism	
Rule#	NOC	DIT	MIF	AIF	MHF	AHF	COF	POF	Results
1	Н		HJN	1 N	HJMJN		HIMIN	HIMIN	medium
2	HJN	1 N	Н		HIMIN		HIMIN	HIMIN	medium
3	HIMIN		HIV	4 N	Н		HIMIN	HIMIN	medium
4	HJN	1 N	HIN	4N			Н	HIMIN	medium
5	HJN		HIN		HIMIN		HIMIN	Н	medium
6	Н Н			HIMIN		HIMIN	HIMIN	high	
7	H HIMIN		Н		HIMIN	HIMIN	high		
8	H		HIMIN		HIMIN		Н	HIMIN	high
9	H	ı	HIMIN		HIMIN		HIMIN	Н	high
10	HJN	1 N	Н		Н		HIMIN	HIMIN	high
11	HJN		H		HIMIN		Н	HIMIN	high
12	HJN	•	H		HIMIN		HIMIN	Н	high
13	HJN	1 N	HIMIN		Н		Н	HIMIN	high
14	HIM	1 N	HIMIN		Н		HIMIN	Н	high
15	ΗN	1 N	HIMIN		німін німін		Н	Η	high
16	_	Н		Н		1	HIMIN	HIMIN	critical
17	_	Н		1	H HJMJN		Н	HIMIN	critical
18	_	l	H	1	HI	HIMIN		Н	critical
19	_	l	HJN	4 N	Н		Н	HIMIN	critical
20	Н		HJN	4 N	Н		HIMIN	Н	critical
21	Н	H HIMIN		4 N	НМИ		Н	Н	critical
22	HIMIN		H	1	Н		Н	HIMIN	critical
23	HIMIN		H	1	1	1	HIMIN	Н	critical
24	HIM	1 N	HIM	4IN		Н		Н	critical

Experiments & results – 00 Diagnose Application

Classification- Normal Application

Java Classes

Decomposition Tree – 00 Diagnose App

Experiments & Results – ETLF App

Classification - High Application

Java Classes

Decomposition Tree – ETLF App

Experiments & Results - BIE Portal

Classification - Medium Application

Java Classes

Conclusion

- Appropriate default set of fuzzy sets and fuzzy rules to classify java applications.
- Results are reliable and no additional analysis is needed.
- The decomposition tree useful to address issues with classes with similar metric values.
- The results help enforce the use of object oriented principles in the design and development of java applications.
- Fuzzy system does not prevent metrics to report false-positives and manual analysis is needed for abnormal results.
- The system does not report low values in NOC and DIT at the application level, modifications of these rules and fuzzy sets are expected if needed by the user.
- The fuzzy rules did not entirely utilize medium and normal membership functions, but included if more accurate results are needed.
- System provides objective results because they contain information from statistical sources and several human experts in contrast to human analysis that is bias and can vary depending on the knowledge and experience of the expert.

Q&A