Relational Algebra

Relational Algebra

Relational Algebra is a procedural data manipulation language (DML).

It specifies operations on relations to define new relations:

Unary Relational Operations: Select, Project

Operations from Set Theory: Union, Intersection, Difference,

Cartesian Product

Binary Relational Operations: Join, Divide.

SELECT

• The SELECT operation is used to choose a *subset* of the tuples (rows) from a relation that satisfies a **selection condition**, denoted by:

$$\sigma_{< selection\ condition>}(R)$$

• The Boolean expression specified in <selection condition> is made up of a number of **selection clauses** of the form

```
<attribute name> <comparison op> <constant value> or <attribute name> <comparison op> <attribute name>
```

- <comparison op> is normally one of the comparison operators $\{=, <, \le, >, \ge, \ne\}$
- Selection clauses can be connected by the standard Boolean operators <u>and</u>, <u>or</u>, and <u>not</u> to form a general selection condition.

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

COURSE:

Department	Degree
Psychology	Ph.D.
Comp.Sci.	Ph.D.
Comp.Sci.	M.Sc.
Psychology	M.Sc.

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

Q: Select the enrolment records for the students whose supervisor is Person 1

$$\sigma_{(Supervisor=1)}(ENROLMENT)$$

Enrolment#	Supervisee	Supervisor	Department	Degree
2	3	1	Comp.Sci	Ph.D.
3	4	1	Comp.Sci	M.Sc.
4	5	1	Comp.Sci	M.Sc.

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

Q: Select the enrolment records for Person 1's non-Ph.D. students

$$\sigma_{(Supervisor=1\ AND\ Degree\neq'Ph.D.')}(ENROLMENT)$$

$$\sigma_{(Supervisor=1\ AND\ NOT\ Degree='Ph.D.')}(ENROLMENT)$$

Enrolment#	Supervisee	Supervisor	Department	Degree
3	4	1	Comp.Sci	M.Sc.
4	5	1	Comp.Sci	M.Sc.

Properties of SELECT

• Commutative:

$$\sigma_{< cond1>}(\sigma_{< cond2>}(R)) = \sigma_{< cond2>}(\sigma_{< cond1>}(R))$$

• Consecutive selects can be combined:

$$\sigma_{< cond1>}(\sigma_{< cond2>}(R)) = \sigma_{< cond1> AND < cond2>}(R))$$

PROJECT

• The PROJECT operation is used to project a subset of the attributes (column) of a relation, denoted by:

$$\pi_{< attribute\ list>}(R)$$

- The result of the PROJECT operation has only the attributes specified in <attribute list> in the *same order as they appear in the list*. Hence, it's **degree** is equal to the number of attributes in <attribute list>.
- The PROJECT operation *removes any duplicate tuples*, so the result of the PORJECT operation is a set of distinct tuples, and this is known as **duplicate elimination**.

ENROLMENT:

Enrolment#	Supervisee	Supervisor	Department	Degree
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

Q: Find departments and degree requirements for the courses that students enroll.

$$\pi_{\{department, degree\}}(ENROLMENT)$$

Department	Degree
Psychology	Ph.D.
Comp.Sci	Ph.D.
Comp.Sci	M.Sc.

Properties of PROJECT

• if if if it1> then

$$\pi_{\langle listl \rangle}(\pi_{\langle list2 \rangle}(R)) = \pi_{\langle listl \rangle}(R)$$

else

The operation is not well defined.

• commutes with selection:

$$\pi_X(\sigma_{\mathbf{B}}(R)) = \sigma_{\mathbf{B}}(\pi_{\mathbf{X}}(R)) \ (?)$$

Commutes follows if and only if the attribute names used in SELECT is a subset of the attribute list in PROJECT

Check the example below:

$$\pi_{\{degree\}}(\sigma_{(Department='Psychology')}(ENROLMENT)) = egin{array}{c} ext{Degree} \ ext{Ph.D.} \end{array}$$

$$\sigma_{(Department='Psychology')}(\pi_{\{degree\}}(ENROLMENT)) =$$
Error as SELECT cannot find Degree

Questions:

1)
$$\pi$$
 (*R U S*)) = π (*R*) $U \pi$ (S)?

2)
$$\pi$$
 ($R \cap S$)) = π (R) \cap π (S)?

Answer:

2)
$$\pi$$
 $(R \cap S)$) $\neq \pi$ $(R) \cap \pi$ (S)

Example:

$$R = (Animal, Cat), S = (Animal, Dog)$$

 π : project on the first column

$$\pi (R \cap S)) = \{\}$$

$$\pi$$
 (*R*) \cap π (*S*) = {Animal}

UNION

• UNION is a relation that includes all tuples that are either in the left relation or in the right relation or in both relations, denoted by

$$R \cup S = \{t : t \in R \text{ or } t \in S\}$$

Note: Union requires R and S to be union compatible:
 that there is a 1-1 correspondence between their attributes,
 in which corresponding attributes are over the same domain

Example:

R1
$$\leftarrow$$
 $\sigma_{(Supervisor=2)}(ENROLMENT)$
R2 \leftarrow $\sigma_{(Name='M.Sc')}(ENROLMENT)$
R1 \cup R2 =

Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psych.	Ph.D.
3	4	1	Comp.Sci	M.Sc
4	5	1	Comp.Sci	M.Sc

Example: $STUDENT \cup RESEARCHER =$

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledhill
5	Ms B.K.Lee
2	Dr R.G.Wilkinson

INTERSECTION

• INTERSECTION is a relation that includes all tuples that are in both relations, denoted by

$$R \cap S = \{t : t \in R \ and \ t \in S\}$$

• Example:

$$R_1 \leftarrow \sigma_{(Supervisor=1)}(ENROLMENT) \ R_2 \leftarrow \sigma_{(Degree='Ph.D.')}(ENROLMENT) \ R_1 \cap R_2 =$$

Enrolment#	Supervisee	Supervisor	Department	Name
2	3	1	Comp.Sci.	Ph.D.

STUDENT:

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledill
5	Ms B.K.Lee

RESEARCHER:

Person#	Name
1	Dr C.C.Chen
2	Dr R.G.Wilkinson

Example: STUDENT \cap RESEARCHER =

Person#	Name
1	Dr C.C. Chen

DIFFERENCE

• SET DIFFERENCE is a relation that includes all tuples that are in the left relation but not in the right relation, denoted by

$$R-S=\{t:t\in R\ and\ t
otin S\}$$

• Example: STUDENT – RESEARCHRER =

Person#	Name
3	Ms K. Juliff
4	Ms J. Gledhill
5	Ms B.K. Lee

CARTESIAN PRODUCT

$$R imes S=\{t_1||t_2:t_1\in R\ and\ t_2\in S\}$$

- Where $t_1||t_2|$ indicates the concatenation of tuples.
- Example: STUDENT X RESEARCHRER =

E'ment#	S'ee	S'or	D'ment	Degree	Person#	Name
1	1	2	Psych.	Ph.D.	1	Dr C.C. Chen
1	1	2	Psych.	Ph.D.	2	Dr R.G.Wilkinson
2	3	1	Comp.Sci	Ph.D.	1	Dr C.C. Chen
2	3	1	Comp.Sci	Ph.D.	2	Dr R.G.Wilkinson
3	4	1	Comp.Sci	M.Sc.	1	Dr C.C. Chen
3	4	1	Comp.Sci	M.Sc.	2	Dr R.G.Wilkinson
4	5	1	Comp.Sci	M.Sc.	1	Dr C.C. Chen
4	5	1	Comp.Sci	M.Sc.	2	Dr R.G.Wilkinson

More useful is:

$$R_1 \leftarrow ENROLMENT \times RESEARCHER$$

 $\sigma_{(Supervisor=Person\#)}(R_1) =$

E'ment#	S'ee	S'or	D'ment	E'ment. Name	Person#	R'cher. Name
1	1	2	Psych.	Ph.D.	2	Dr R.G.Wilkinson
2	3	1	Comp.Sci.	Ph.D.	1	Dr C.C. Chen
3	4	1	Comp.Sci.	M.Sc.	1	Dr C.C. Chen
4	5	1	Comp.Sci.	M.Sc.	1	Dr C.C. Chen

Or even better:

$$R_1 \leftarrow ENROLMENT \times RESEARCHER$$
 $R_2 \leftarrow \sigma_{(Supervisor=Person\#)}(R_1)$
 $\pi_{\{E'ment\#,S'ee,S'or,Name,D'ment,Degree\}}(R_2) =$

E'ment#	S'ee	S'or	Name	D'ment	Degree
1	1	2	Dr R.G.Wilkinson	Psych.	Ph.D.
2	3	1	Dr C.C. Chen	Comp.Sci.	Ph.D.
3	4	1	Dr C.C. Chen	Comp.Sci.	M.Sc.
4	5	1	Dr C.C. Chen	Comp.Sci.	M.Sc.

The last of these is also known as natural join, the next to last is equi-join.

JOIN

- JOIN is used to combine related tuples from two relations into single "longer" tuples.
- Theta-join

$$R \bowtie_{< join\ condition>} S = \{t_1 | | t_2: t_1 \in R\ and\ t_2 \in S\ and\ < join\ condition>\}$$

A general join condition is of the form:

• where each condition is of the form $A_i \theta B_j$, in which A_i is an attribute of R, B_j is an attribute of S, A_i and B_j have the same domain, and θ is a comparison operator. A JOIN operation with such a general join condition is called a **THETA JOIN**.

JOIN: Equi-join

EQUI-JOIN is a theta-join where the only comparison operator used is "=".

Example:

 $ENROLMENT \bowtie_{(Supervisor = Person\#)} RESEARCHER$

JOIN: Natural join

NATURAL JOIN is an equi-join which requires that the two join attributes (or each pair of join attributes) have the same name in both relations.

Example:

$$ENROLMENT \bowtie_{(Supervisor),(Person\#)} RESEARCHER$$

Question: If two relations have no join attributes, how do you define the join result? Why?

$$R(A, B) \bowtie S(B, C) \bowtie T(C, D)$$

Notes:

1. In a natural join, there may be several pairs of join attributes.

Example:

COURSE			
Department	Name	Ву	
Comp.Sci	Ph.D.	Research	
Comp.Sci.	M.Sc.	Research	
Psychology	M.Sc.	Coursework	

Calculate

 $ENROLMENT \bowtie_{(Department,Name),(Department,Name)} COURSE$

2. If the pairs of joining attributes are exactly those that are identically named, we can write

ENROLMENT ⋈ *COURSE*

The DIVISION operation is applied to two Relations

$$R(Z) \div S(X)$$

Where the attributes of R are a subset of the attributes of S.

Let Y be the set of attributes of R that are not attributes of S

R		
A	В	
a_1	b_1	
a_1	b_2	
a_2	b_1	
a_3	b_2	
a_4	b_1	
a_5	b_1	
a_5	b_2	

S		
В	Example:	$X\subseteq Z$
b ₁		$X = \{B\}, Z = \{A, B\}$
b_2		and $Y = Z - X = \{A\}$

DIVISION is a relation T(Y) that includes a tuple t if tuples t_R appear in R with $t_R[Y] = t$, and with $t_R[X] = t_S$ for every tuple t_S in S.

R			
A	В		
a_1	b_1		
a_1	b_2		
a_2	b_1		
a_3	b_2		
a_4	b_1		
a_5	b_1		
a_5	b_2		

S
В
b ₁
b_2

$$R \div S = \{t : t \times S \subseteq \mathbb{R} \}$$

Example:

$$X = \{B\}, Z = \{A, B\}, Y = \{A\}$$

$$t_R[X] = t_S = \{b_1, b_2\}$$

In R, there are two satisfied t_R pairs:

$$\{a_1b_1, a_1b_2\}$$
 and $\{a_5b_1, a_5b_2\}$

So
$$t = t_R[Y] = \{a_1, a_5\}$$

T A a₁ a₅

	R		
	A	В	
Г	a_1	b ₁	
	\mathbf{a}_1	b_2	
	a_2	b ₁	
	a_3	b_2	
	a_4	b_1	
	a_5	b_1	
	a_5 a_5	b_2	

$$R(Z) \div S(X) = \begin{array}{|c|c|}\hline T \\\hline A \\\hline a_1 \\\hline a_5 \\\hline \end{array}$$

Typical use: which courses are offered by all departments?

$$COURSE \div (\pi_{Department}COURSE)$$

Note: $\{\sigma, \pi, \cup, -, \times\}$ *are sufficient to define all these operations: this is a relationally complete set of operators.*

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R	$\sigma_{< selection\ condition>}(R)$
PROJECT	Produces a new relation with only some of the attributes of R, and removes duplicate tuples.	$\pi_{< attribute \ list>}(R)$
THETA-JOIN	Produces all combinations of tuples from R and S that satisfy the join condition.	$R \Join_{< join\ condition >} S$
EQUI-JOIN	Produces all the combinations of tuples from R and S that satisfy a join condition with only equality comparisons.	$R \Join_{< join\ condition >} S$
NATURAL-JOIN	Same as EQUIJOIN except that the join attributes of S are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R \Join_{< join\ condition>} S$
UNION	Produces a relation that includes all the tuples in R or S or both R and S; R and S must be union compatible.	$R \cup S$
INTERAECTION	Produces a relation that includes all the tuples in both R and S; R and S must be union compatible.	$R\cap S$
DIFFERENCE	Produces a relation that includes all the tuples in R that are not in S; R and S must be union compatible.	R - S
CARTESIAN PRODUCT	Produces a relation that has the attributes of R and S and includes as tuples all possible combinations of tuples from R and S.	R imes S
DIVISION	Produces a relation $T(X)$ that includes all tuples $t[X]$ in $R(Z)$ that appear in R in combination with every tuple from $S(Y)$, where $Z = X \cup Y$.	$R(Z) \div S(Y)$