Total No. of Questions: 8]		f Questions: 8]	200	SEAT No.:							
P757	7			[Total	No. of Pages : 3						
		[5870]	1061								
T.E. (Electronics & Telecommunication)											
DIGITAL COMMUNICATION											
(2019 Pattern) (Semester - I) (304181)											
		20,00		,							
Time: 2	2½ I	Hours]		[.	Max. Marks: 70						
Instruct	tion	s to the condidates:									
1)		nswers Q1 or Q2, Q3 or Q4, Q5 or Q		<i>Q8</i> .							
2)		Sigures to the right side indicate full	marks.	9							
3)	\boldsymbol{A}	ssume suitable data, if necessary.									
Q1) a))	Explain how eye pattern can be	used to study	FSI	[4]						
Q1) u)	,	Dapidin now eye pattern can be	used to study	y JIST.	[*]						
b)) 🔯	Find the maximum value of en		-							
		(orthogonal) and 16-QAM if energ) - (\)								
		sided power spectral density (PS	D) of AWGN	I is 10-9 W/I	Hz. [6]						
		Given:									
		Given.	9,								
		$\operatorname{erfc}(3.1622) = 0.00000774819$	y`								
		arfa (1.0624275) = 0.00540			ý						
		$\operatorname{erfc}(1.9634375) = 0.00549$									
		erfc $(7.0710678) = 1.5239709 \times$	10^{-23}								
		%			200						
c)		Describe with the help of block									
		waveforms. Mention the bandwi	dth requirem	ent.	[8]						
		OR									
				0,00	,						
Q2) a))	Compare MSK & QPSK.			[4]						
b))	With the help neat block diagram	explain OH	M transmitt	er and receiver						
0,	_	system.	схрішії оті	S. C.	[8]						
		•									
c)		Write short note on: Raised cos		a solution to	·						
		Interference (ISI) and mention its	s limitations.		[6]						

P.T.O.

Q 3)	a)	A BPSK-DSSS system using coherent detection is used to transmit data at 250bps & system has to work in a hostile jamming environment with minimum error performance of one error in 20000 bits. Determine the minimum chipping rate if the jamming signal is 300 times stronger than the received signal. [9]								
	b)	Write a short note on: i) PN sequence Generator [8]								
		ii) Frequency hop Spread spectrum OR								
Q4)	a)	Information bit duration of DS-BPSK SS system is 1 MHz. Assuming an average error probability of 10^{-5} . Calculate jamming margin if $Q(4.25) = 10^{-5}$. [9]								
	b)	Explain DSSS	S based CD	MA.		[8]				
Q 5)	a)	Given the messages X_1 , X_2 , X_3 , X_4 , X_5 with respective probabilities of 0.4, 0.19, 0.16, 0.15 and 0.1 Construct codeword by minimum variance Huffman code. Compute source entropy, codeword length, efficiency, redundancy and variance. [10]								
	b)	Calculate the capacity of an AWGN channel whose bandwidth is 1 MHz and S/N ratio of 40 dB.								
	c)									
Q6)	a)	OR Compute Shannon Fano code for following message ensemble. [10]								
		Symbols	X_1	X_2	X ₃ X ₄					
		Probabilities	0.4	0.3	0.2					
		Compute aver	ficiency.							
	b)	State and explain Information Capacity theorem. [
	c)	Compare between source coding and channel coding. [4]								
[587	[0]- 1	1061		2	5.					

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- Construct a generator matrix. i)
- Find code vectors for messages [1 1 0 0] and [0 0 1 1] ii)
- If the received code vector is $R = [0 \ 1 \ 1 \ 1 \ 0 \ 1]$, find the corrected codeword
- Explain the generation of systematic and non systematic cyclic code. b)

[8]

Define following terms for LBC **Q8**) a)

[9]

- Code vector i)
- Code rate ii)
- Hamming distance iii)
- Hamming weight iv)
- Systematic code v)
- What are Turbo codes? Explain its bit error performance for uncoded transmission. 3 P. Mariance b)

