Automi e Linguaggi (M. Cesati)

Facoltà di Ingegneria, Università degli Studi di Roma Tor Vergata

Compito scritto del 24 gennaio 2023

Esercizio 1 [6] Determinare un automa deterministico che riconosca il linguaggio generato dalla espressione regolare $((ab)^*bb)^*aa$.

Soluzione: L'esercizio si può risolvere in modo totalmente meccanico derivando innanzi tutto un NFA dalla espressione regolare, e successivamente trasformando lo NFA in un DFA. Applicando poche semplificazioni allo NFA derivato meccanicamente dalla espressione regolare si ottiene:

Un automa deterministico equivalente è il seguente:

Esercizio 2 [6] Determinare una espressione regolare per il linguaggio riconosciuto dal seguente automa deterministico:

Soluzione: Trasformiamo l'automa in un GNFA aggiungendo gli stati q_S e q_A , e rimuoviamo nell'ordine i nodi q_0, q_2 e q_1 :

Una espressione regolare che genera il linguaggio riconsciuto dall'automa è quindi:

$$\varepsilon \cup \{[\mathtt{b} \cup \mathtt{a}(\mathtt{a} \cup \mathtt{b})] \, [\mathtt{a}\mathtt{b} \cup (\mathtt{b} \cup \mathtt{a}\mathtt{a})(\mathtt{a} \cup \mathtt{b})]^*\mathtt{a}\}.$$

Cambiando l'ordine di eliminazione dei nodi si ottengono espressioni regolari diverse ma equivalenti. Ad esempio:

$$\{[\mathtt{b} \cup \mathtt{a}(\mathtt{a} \cup \mathtt{b})][\mathtt{b}(\mathtt{a} \cup \mathtt{b})]^*\mathtt{a}\}^* \quad \text{(ordine: } q_2, \, q_1, \, q_0) \\ \{\mathtt{ba} \cup (\mathtt{a} \cup \mathtt{bb})[(\mathtt{a} \cup \mathtt{b})\mathtt{b}]^*(\mathtt{a} \cup \mathtt{b})\mathtt{a}\}^* \quad \text{(ordine: } q_1, \, q_2, \, q_0)$$

Esercizio 3 [6.5] Si consideri il linguaggio $A = \{w \in \{0,1\}^+ \mid w = w_1w_2, |w_1| = |w_2|, \text{ e il numero di zero in } w_1 \text{ è uguale al numero di uno in } w_2\}$. Ad esempio, $01 \in A$, $011 \notin A$, $0110 \in A$, $0100 \notin A$, $0010 \notin A$, $0011 \in A$. Il linguaggio A è regolare? Giustificare la risposta con una dimostrazione.

Soluzione: Il linguaggio A non è regolare; per dimostrarlo, supponiamo per assurdo che lo sia, e che quindi valga per esso il pumping lemma con un opportuno valore p > 0.

Consideriamo la stringa $s=0^p101^p\in A$, di lunghezza 2p+2. Il pumping lemma afferma che esiste una suddivisione s=xyz con $|xy|\leq p$ e |y|>0 tale che $xy^iz\in A$ per qualsiasi $i\geq 0$. Si osservi ora che A non contiene la stringa nulla e non contiene stringhe di lunghezza dispari. Pertanto la lunghezza |y| deve essere un numero pari, altrimenti la lunghezza |xz| sarebbe dispari, e quindi xy^0z non potrebbe far parte di A. Quindi possiamo scrivere |y|=2k con k>0. Di conseguenza, $|xy^iz|=2p+2+2k(i-1)$.

Consideriamo ora il valore particolare i=0: la corrispondente stringa xy^0z ha lunghezza |xz|=2p+2-2k. Se $xz=w_1w_2$, con $|w_1|=|w_2|$, allora $|w_1|=|w_2|=p+1-k$. Perciò necessariamente $w_2=1^{p+1-k}$, in quanto $k\geq 1$. D'altra parte, w_1 contiene esattamente p-2k+1 zero, e dunque dovremmo imporre

$$p-2k+1 = p+1-k$$
.

che implica k = 0. Ma ciò è impossibile in quanto |y| = 2k > 0. La contraddizione deriva dall'aver supposto che per A valga il pumping lemma, e dunque A non può essere regolare.

Esercizio 4 [6.5] Si consideri il linguaggio $B = \{w_1 \# w_2 \mid w_1, w_2 \in \{0, 1\}^*, \text{ ed il numero di zero in } w_1 \text{ è uguale al numero di uno in } w_2\}$. Si osservi che w_1 e w_2 possono avere differente lunghezza. Ad esempio, $0\#1 \in B$, $0\#11 \notin B$, $11\#00 \in B$, $00\#10 \notin B$, $0\#011 \notin B$. Il linguaggio B è libero dal contesto (CFL)? Giustificare la risposta con una dimostrazione.

Soluzione: Per dimostrare che B è CFL è sufficiente esibire un PDA che riconosca tutti e soli gli elementi di B:

Solo la lettura del simbolo '#' fa transitare l'automa dallo stato q_1 allo stato q_2 , Lo stato q_1 memorizza sullo stack un simbolo '1' per ogni simbolo '0' letto in ingresso, e corrispondentemente lo stato q_2 rimuove un simbolo dallo stack per ogni simbolo '1' letto in ingresso. È possibile transitare da q_2 allo stato di accettazione q_A solo se lo stack è vuoto, e l'automa accetterà la stringa solo se si entra in q_A avendo letto tutti i caratteri della stringa in ingresso.

Esercizio 5 [6] Sia $C = \{\langle M \rangle \mid M \text{ è una TM tale che } L(M) \text{ è decidibile} \}$. C è decidibile? Giustificare la risposta con una dimostrazione.

Soluzione: Il linguaggio C non è decidibile, e per dimostrarlo è sufficiente verificare che le ipotesi del Teorema di Rice sono verificate. Si consideri come proprietà P della TM il riconoscere un linguaggio decidibile. Tale proprietà è non banale: infatti una TM M_1 che accetta tutte le stringhe riconosce Σ^* , che è decidibile; d'altra parte, sappiamo che \mathcal{A}_{TM} è ricorsivamente enumerabile ma non decidibile; dunque una TM M_0 che riconosce tale linguaggio non soddisfa la proprietà P. Inoltre, P è in effetti una proprietà del linguaggio riconosciuto dalla TM: infatti se due diverse TM riconoscono lo stesso linguaggio, per entrambe vale che il linguaggio è decidibile oppure no, dunque entrambe le TM soddisfano la priorità P oppure no. Poiché tutte le ipotesi del Teorema di Rice sono soddisfatte possiamo concludere immediatamente che il linguaggio C contenente codifiche di TM che soddisfano la proprietà P è indecidibile.

Esercizio 6 [9] Si consideri il linguaggio costituito dalle codifiche delle formule booleane che hanno almeno due assegnazioni di verità che soddisfano la formula. Dimostrare che tale linguaggio è NP-completo.

Soluzione: Questo problema è generalmente chiamato Double SAT, ed è una generalizzazione molto semplice del problema SAT.

Si dimostra facilmente che Double SAT è in NP. Infatti, data una qualunque istanza $\langle \Phi \rangle$ che codifica una formula booleana, un certificato per l'esistenza di una soluzione è costituito da due liste di valori di verità. Il verificatore controlla che ciascuna lista contenga esattamente un valore (vero o falso) per ciascuna variabile di Φ , e che entrambe le assegnazioni di verità soddisfino la formula Φ .

Per dimostrare che Double SAT è NP-hard consideriamo la seguente riduzione dal problema SAT: considerata una generica istanza $\langle \Phi \rangle$ di SAT, sia Φ' la formula booleana ottenuta da Φ aggiungendo una nuova variabile v e ponendo

$$\Phi' = \Phi \wedge (v \vee \overline{v}).$$

È immediato verificare che se la formula Φ è soddisfacibile allora esistono almeno due assegnazioni di verità che soddisfano Φ' : la assegnazione che soddisfa Φ estesa con v=T e la

stessa assegnazione estesa con v=F. Viceversa, se la formula Φ non è soddisfacibile, allora nemmeno Φ' può essere soddisfacibile, perché la variabile v non appare nella formula Φ e quindi non può contribuire a rendere quella parte della formula Φ' soddisfacibile.

Da tutto ciò si può concludere che Double SAT è NP-completo.