DTE 2 125

Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems on 2D Geometries

Hélène Barucq², Michel Duprez¹, Florian Faucher², Emmanuel Franck³, **Frédérique Lecourtier**¹, Vanessa Lleras^{1,4}, Victor Michel-Dansac³ and Nicolas Victorion²

> ¹Project-Team MIMESIS, Inria, Strasbourg, France ²Project-Team Makutu, Inria, TotalEnergies, Pau, France ³Project-Team MACARON, Inria, Strasbourg, France ⁴IMAG, University of Montpellier, Montpellier, France

February 20, 2025

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.

accurate quick + parameterized

Parametric linear elliptic PDE : For one or several $m{\mu} \in \mathcal{M}$, find $u:\Omega \to \mathbb{R}$ such that

$$\mathcal{L}(u; \mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}, \boldsymbol{\mu}), \tag{P}$$

where ${\cal L}$ is the parametric differential operator defined by

$$\mathcal{L}(\cdot; \mathbf{x}, \boldsymbol{\mu}) : u \mapsto R(\mathbf{x}, \boldsymbol{\mu})u + C(\boldsymbol{\mu}) \cdot \nabla u - \frac{1}{\mathsf{Pe}} \nabla \cdot (D(\mathbf{x}, \boldsymbol{\mu}) \nabla u),$$

and some Dirichlet, Neumann or Robin BC (which can also depend on μ).

Ω	Spatial domain		Dielet beendeide
d	Spatial dimension	J	Right-hand side
$\mathbf{x} = (x_1, \dots, x_d)$	Spatial coordinates	R	Reaction coefficient
<u> </u>	Parameter space	С	Convection coefficient
301	•	D	Diffusion matrix
p	Number of parameters	Pe	Péclet number
$\boldsymbol{\mu} = (\mu_1, \dots, \mu_p)$	Parameter vector		. celet ilailisei

Pipeline of the Enriched FEM

Correction: Enriched continuous Lagrange finite element approximation spaces using the PINN prediction.

Physics-Informed Neural Networks

Standard PINNs (Weak BC) : Find the optimal weights θ^{\star} that satisfy

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \omega_b J_b(\theta) \right), \tag{P_{\theta}}$$

with the residual loss function and the boundary loss function defined by

$$J_r(\theta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} \left(u_{\theta}(\mathbf{x}, \boldsymbol{\mu}); \mathbf{x}, \boldsymbol{\mu} \right) - f(\mathbf{x}, \boldsymbol{\mu}) \right|^2 d\mathbf{x} d\boldsymbol{\mu},$$

$$J_b(\theta) = \int_{\mathcal{M}} \int_{\partial\Omega} \left| u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) - g(\mathbf{x}, \boldsymbol{\mu}) \right|^2 d\mathbf{x} d\boldsymbol{\mu},$$

where u_{θ} is a neural network, $\mathbf{g}=0$ is the Dirichlet BC. In (\mathcal{P}_{θ}) , the weights ω_{r} and ω_{b} (hyperparameters) are used to balance the different terms of the loss function.

Monte-Carlo method: Discretize the cost functions by random process.

Physics-Informed Neural Networks

Improved PINNs¹ (Strong BC): Find the optimal weights θ^* that satisfy

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \underline{\omega_b} J_{\overline{b}}(\theta) \right),$$

with $\omega_r = 1$ and the residual loss function defined by

$$J_r(heta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} ig(u_{ heta}(\mathbf{x}, oldsymbol{\mu}); \mathbf{x}, oldsymbol{\mu} ig) - f(\mathbf{x}, oldsymbol{\mu})
ight|^2 d\mathbf{x} doldsymbol{\mu}, \ rac{\partial \Omega}{\partial \Omega} = \{ arphi = 0 \}$$

where u_{θ} is a neural network defined by

$$u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) = \varphi(\mathbf{x})w_{\theta}(\mathbf{x}, \boldsymbol{\mu}) + g(\mathbf{x}, \boldsymbol{\mu}),$$

 $M = \{\varphi < 0\}$ $\varphi > 0$

with φ a level-set function, w_{θ} a NN and g=0 the Dirichlet BC. Thus, the Dirichlet BC is imposed exactly in the PINN : $u_{\theta}=g$ on $\partial\Omega$.

Monte-Carlo method: Discretize the residual cost function by random process.

¹Lagaris et al. [1998]; Franck et al. [2024]

Finite Element Method

Variational Problem:

Find
$$u_h \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(u_h, v_h) = I(v_h)$, (\mathcal{P}_h)

with *h* the characteristic mesh size, *a* and *l* the bilinear and linear forms given by

$$a(u_h,v_h) = \frac{1}{\text{Pe}} \int_{\Omega} D \nabla u_h \cdot \nabla v_h + \int_{\Omega} R \, u_h \, v_h + \int_{\Omega} v_h \, C \cdot \nabla u_h, \quad \textit{I}(v_h) = \int_{\Omega} f v_h,$$

and V_h the finite element space of dimension N_h defined by

$$V_h = \left\{ v_h \in C^0(\Omega), \ \forall K \in \mathcal{T}_h, \ v_h|_K \in \mathbb{P}_k, v_h|_{\partial\Omega} = 0 \right\},$$

where \mathbb{P}_k is the space of polynomials of degree at most k.

Find
$$U \in \mathbb{R}^{N_h}$$
 such that $AU = b$ with

$$A = (a(\phi_i, \phi_j))_{1 \le i, j \le N_h}$$
 and $b = (I(\phi_j))_{1 \le j \le N_h}$.

$$\mathcal{T}_h = \{K_1, \dots, K_{N_e}\}$$
(N_e : number of elements)

How improve PINN prediction with FEM?

Additive approach

Variational Problem : Let $u_{\theta} \in H^{k+1}(\Omega) \cap H^1_0(\Omega)$.

Find
$$\rho_h^+ \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(\rho_h^+, v_h) = I(v_h) - a(u_\theta, v_h)$, (\mathcal{P}_h^+)

with the enriched trial space V_h^+ defined by

$$V_h^+=\left\{u_h^+=u_\theta+p_h^+,\ p_h^+\in V_h^0
ight\}.$$

Impose BC: If our problem satisfies u=g on $\partial\Omega$, then ρ_h^+ has to satisfy

$$p_h^+ = g - u_\theta \quad \text{on } \partial\Omega,$$

with u_{θ} the PINN prior (weak BC).

Considering the strong BC, $\rho_h^+=0$ on $\partial\Omega$.

Theorerical results

Let α and γ respectively the coercivity and continuity constants of a. Let u the solution of (\mathcal{P}) .

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote $u_h \in V_h$ the solution of (\mathcal{P}_h) with V_h the standard trial space. For all $1 \leq q \leq k$,

$$||u-u_h||_{L^2} \leqslant C \frac{\gamma^2}{\alpha} h^{q+1} |u|_{H^{q+1}}.$$

Theorem 2: Convergence analysis of the enriched FEM [Barucq et al., 2025]

We denote $u_h^+ \in V_h^+$ the solution of (\mathcal{P}_h^+) with V_h^+ the enriched trial space. For all $1 \leqslant q \leqslant k$,

$$||u-u_h^+||_{L^2} \leqslant \frac{|u-u_\theta|_{H^{q+1}}}{|u|_{H^{q+1}}} \left(C\frac{\gamma^2}{\alpha}h^{q+1}|u|_{H^{q+1}}\right).$$

The same type of estimates holds for the H^1 norm.

Numerical results - 2D Poisson problem

2D Poisson problem

Numerical results - 2D anysotropic Elliptic problem

2D anysotropic Elliptic problem

Conclusion

Conclusion

References

- Hélène Barucq, Michel Duprez, Florian Faucher, Emmanuel Franck, Frédérique Lecourtier, Vanessa Lleras, Victor Michel-Dansac, and Nicolas Victorion. Enriching continuous lagrange finite element approximation spaces using neural networks. 2025.
- A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Springer New York, 2004. doi: 10.1007/978-1-4757-4355-5.
- E. Franck, V. Michel-Dansac, and L. Navoret. Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural Networks. *J. Comput. Phys.*, 512:113144, 2024. ISSN 0021-9991. doi: 10.1016/j.jcp.2024.113144.
- I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. *IEEE Trans. Neural Netw.*, 9(5):987–1000, 1998. ISSN 1045-9227. doi: 10.1109/72.712178.

Appendix

Appendix 1: Standard FEM

Appendix 1: General Idea

