NATIONAL UNIVERSITY OF SINGAPORE

CS2105 – INTRODUCTION TO COMPUTER NETWORKS

(Semester 2: AY2014/2015)

Please DO NOT upload questions and answers onto the Internet.

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This assessment paper contains 7 questions and comprises 10 printed pages, including this page.
- 2. This is a **CLOSE BOOK** assessment. You are allowed to bring in ONE (1) piece of single-layer, double-sided, A4 size, handwritten reference sheet.
- 3. The maximum possible score is **60 marks**.
- 4. Calculators are allowed, but not laptops, PDAs, or other electronic devices.
- 5. Write all your answers on the **ANSWER SHEET** attached at the back of this paper.
- 6. Detach the **ANSWER SHEET** for submission at the end of the assessment. You may keep the question paper.
- 7. Do **NOT** look at the questions until you are told to do so.

[Total: 20 marks]

Q1. Multiple Choice Questions (MCQs)

Each MCQ has one correct answer and is worth 2 marks.

- 1.1 Which of the following protocols run at application layer?
 - i. HTTP
 - ii. UDP
 - iii. DHCP
 - iv. DNS
 - A. (i) and (iii) only
 - **B.** (i) and (iv) only
 - C. (i), (ii) and (iv) only
 - **D.** (i), (iii) and (iv) only
 - E. None of the above
- 1.2 1s complement is used as checksum in _____. Given two bytes 01010101 and 11111111, the 1s complement of the sum of them is _____.
 - **A.** TCP but not UDP, 10101010
 - **B.** UDP but not TCP, 10101010
 - C. Both TCP and UDP, 10101011
 - **D.** Both TCP and UDP, 01010101
 - E. None of the above
- 1.3 Which of the following statement about IP datagram is <u>FALSE</u>?
 - **A.** Routing protocols determine the routes that datagrams take between sources and destinations.
 - **B.** TTL field of IP header prevents a datagram from circulating in the network forever
 - **C.** When a big datagram is fragmented into a series of smaller fragments, transport layer header will be replicated in each fragment.
 - **D.** On the Internet, datagrams from the same source may take different routes towards the destination.
 - **E.** MTU of the link-layer protocol places a limit on the length of a datagram.

1.4		channel has bandwidth in the range between 200 KHz - 260 KHz, and a signal to
	noi	se ratio of 31. What is the Shannon capacity of the channel?
	A.	1.15 Mbps
	В.	300 Kbps
	C.	1.92 Mbps
	D.	1.86 Mbps

- 1.5 10 packets are continuously sent over a 1 Mbps link. Each packet is of 1000 bits long and RTT is 10 ms. What is the throughput of the link?
 - **A.** 511.856 bps
 - **B.** 511.856 Kbps
 - **C.** 500 bps
 - **D.** 500 Kbps
 - **E.** None of the above.

E. None of the above

1.6 Void

- 1.7 If the baud rate for n-PSK signal is 1000 and the bit rate is 5000, what is n?
 - **A.** 5
 - **B.** 4
 - **C.** 32
 - **D.** 2
 - E. None of the above

- 1.8 In a subnet, the first IP address is 172.18.176.0 and the last IP address is 172.18.183.255. What is the length of network prefix of this subnet?
 - **A.** 28
 - **B.** 29
 - **C.** 21
 - **D.** 22
 - E. None of the above

1.9 Void

1.10 A device (D) is used to connect a sender (S) and a receiver (R). Transmission rates of the links between sender and the device and between the device and receiver are r_1 and r_2 ($r_1 > r_2$) respectively. Ignore other types of delay, what is the end-to-end delay to send a packet of length L?

- **A.** $\frac{Lr_1r_2}{r_1+r_2}$, if this device is a store-and-forward packet switch.
- **B.** $\frac{L}{2r_1} + \frac{L}{2r_2}$, if this device is a store-and-forward packet switch.
- **C.** $\frac{L(r_1+r_2)}{r_1r_2}$, if this device acts on individual bits and repeats every bit to receiver once receives it from sender.
- **D.** $\frac{L}{r_1} + \frac{1}{r_2}$, if this device acts on individual bits and repeats every bit to receiver once receives it from sender.
- **E.** $\frac{1}{r_1} + \frac{L}{r_2}$, if this device acts on individual bits and repeats every bit to receiver once receives it from sender.

Q2. [Total: 3 marks]

Suppose there is a 10 Mbps microwave link between a geostationary satellite and its base station on Earth, which are 3.6×10^7 meters apart. The satellite takes a digital photo once a while and then sends it to the base station. Assume a propagation speed of 2.4×10^8 meters/second.

- (a) [1 mark] What is the propagation delay (in seconds) of the link?
- (b) [2 marks] Suppose the satellite takes a photo every 24 seconds and let x denote the size of the photo. What is the minimum value of x (in bits) for the microwave link to be fully utilized (i.e. always busy transmitting)?

Q3. [Total: 5 marks]

Consider a datagram network using 8-bit IP addresses. Suppose a router uses longest prefix matching and has the following forwarding table:

Prefix Match	Interface
11	3
101	4
100	1
1101	2
otherwise	0

For each of the five interfaces, give the associated range of destination IP addresses and the number of destination IP addresses in that range.

Q4. [Total: 6 marks]

On **Sunfire** server, we type the command

dig -t a www.duke.edu +trace

and observe the following outputs:

```
; <<>> DiG 9.6-ESV-R8 <<>> www.duke.edu +trace
;; global options: +cmd
                           IN
                                   NS
                                            b.root-servers.net.
                   155852
                                   NS
                  155852
                           ΙN
                                            c.root-servers.net.
                                   NS
                   155852
                          IN
                                            d.root-servers.net.
                  155852
                           IN
                                   NS
                                            e.root-servers.net.
                  155852
                                            f.root-servers.net.
                           ΙN
                                   NS
                  155852
                          ΙN
                                   NS
                                            g.root-servers.net.
                  155852
                                   NS
                                            h.root-servers.net.
                          IN
                                   NS
                  155852
                          IN
                                            i.root-servers.net.
                  155852
                           ΙN
                                   NS
                                            i.root-servers.net.
                   155852
                          ΙN
                                   NS
                                            k.root-servers.net.
                  155852
                          ΙN
                                   NS
                                            1.root-servers.net.
                  155852
                          ΙN
                                   NS
                                            m.root-servers.net.
                   155852
                           ΙN
                                   NS
                                            a.root-servers.net.
;; Received 492 bytes from 137.132.85.2#53(137.132.85.2) in 13 ms
edu.
                                   NS
                                            a.edu-servers.net.
                  172800
                           ΙN
edu.
                  172800
                                   NS
                                            f.edu-servers.net.
edu.
                  172800
                           ΙN
                                   NS
                                            d.edu-servers.net.
edu.
                                            c.edu-servers.net.
                  172800
                           ΙN
                                   NS
edu.
                                            g.edu-servers.net.
                  172800
                           ΙN
                                   NS
edu.
                  172800
                           ΙN
                                   NS
                                            1.edu-servers.net.
;; Received 265 bytes from 192.33.4.12#53(192.33.4.12) in 182 ms
duke.edu.
                                            avallone.stanford.edu.
                  172800
                           ΙN
                                   NS
duke.edu.
                  172800
                           IN
                                   NS
                                            dns-auth-01.oit.duke.edu.
duke.edu.
                                   NS
                                            dns-auth-02.oit.duke.edu.
                  172800
                           ΙN
;; Received 194 bytes from 192.31.80.30#53(192.31.80.30) in 259 ms
```

www.duke.edu.	21600	IN	CNAME	duke.edu.
duke.edu.	21600	IN	Α	54.191.241.8
duke.edu.	21600	IN	Α	54.68.155.51
duke.edu.	21600	IN	NS	dns-auth-02.oit.duke.edu.
duke.edu.	21600	IN	NS	dns-auth-01.oit.duke.edu.
;; Received 164	bytes fro	m 152.3.	105.232#	53(152.3.105.232) in 270 ms

Answer the following questions.

- (a) [1 mark] Write down one IP address of a local DNS server
- (b) [1 mark] Write down one IP address of a root DNS server
- (c) [1 mark] Write down one IP address of a top-level domain DNS server
- (d) [1 mark] Write down one IP address of www.duke.edu
- (e) [1 mark] What is the canonical name of www.duke.edu?
- (f) [1 mark] What port number does a DNS server listen to?

Q5. [Total: 8 marks]

(a) [1 mark] The correct drawing of NRZ-L for bit pattern 11010011 is shown in the grid below. Is corresponding Manchester encoding correctly drawn? Answer "Yes" or "No".

- (b) [3 marks] Suppose the propagation delay between furthest nodes is d and link rate is r. What is the minimal frame size L to ensure collision will always be detected in CSMA/CD protocol?
- (c) [4 marks] Source and destination are connected by a single link that has packet loss probability of p. If at most k (re)transmissions are allowed until the source gives up, what is the probability that a packet would be successfully delivered to destination?

Q6. [Total: 9 marks]

Host A sends 5 data packets to host B using TCP protocol. Each data packet contains 10 bytes of application data.

Answer the following 3 questions. They are independent of each other.

- (a) [3 marks] Suppose 5 data packets arrive in order and all are accepted by B. The last ACK packet sent by B has ACK number 99. What is the sequence number of the first data packet sent by A?
- (b) [3 marks] Suppose 5 data packets arrive at *B* out of order. Their sequence numbers (shown in the order of arrival) are 200, 240, 210, 230 and 220 respectively. Assume *B* will buffer out-of-order packets for later in-order delivery to application. Write down ACK numbers of the corresponding ACK packets sent by *B*.
- (c) [3 marks] Within 100 ms duration, *B* receives 5 in-order data packets and accepts all of them. How many ACK packets will *B* send out?

Q7. [Total: 9 marks]

10 students want to communicate with each other confidentially (i.e., messages between any two students shouldn't be understandable to a third student).

Answer the following 3 questions. They are independent of each other.

- (a) [2 marks] In symmetric key cryptography, how many secret keys are needed in total?
- (b) [3 marks] Suppose every student trusts the teacher. If a student needs to send a message to another, he first sends it to the teacher; the teacher then sends the message to the other student. The teacher is allowed to understand all messages sent to her. At a minimum how many keys are needed in total? State clearly if symmetric or public key cryptography is used.
- (c) [4 marks] Suppose every student has a pair of public/private keys, so does the teacher. Now the teacher has a short announcement for all the students. In no more than 80 words, write down the steps the teacher performs to ensure confidentiality and authenticity of this announcement.

=== END OF PAPER ===

										_	l I
STUDENT NO:											
	(Writ	te dow	n your	studen	ıt numl	ber leg	ibly usi	ng a P I	EN)		TOTAL

Write all your answers on this answer sheet. Detach and submit it at the end of the assessment.

1.1	D	1.2	Е	1.3	С	1.4	В	1.5	E
1.6		1.7	С	1.8	С	1.9		1.10	E
2. (a))	0.:	15 s		(b)	2	.4 * 1	.08 b	

3.

Interface	IP Range	No. of IP
3	1100 0000 - 1100 1111 1110 0000 - 1111 1111	32+16=48
4	1010 0000 - 1011 1111	32
1	1000 0000 - 1001 1111	32
2	1101 0000 - 1101 1111	16
0	0000 0000 - 0111 1111	128

4.	(a)	(b)
	137.132.85.2	192.33.4.12

4.	(c)		(d)	
		192.31.80.30	54.191.241.8	
	(e)		(f)	
		duke.edu	53	

5. (a) Yes 2 * d * r (c) (1-p) + p * $(1-p) + p^2$ * $(1-p) + ... + p^{k-1}$ * (1-p)

6. (a) (b) 210, 210, 220, 220, 250 (c) 3

7. (a) (b)
45 10 (symmetric key cryptography)
(c)

Any reasonable answer will be accepted. State your assumptions clearly.

Please DO NOT upload questions and answers onto the Internet.