# yesterday

DP definition, properties

Randomized Response

Laplace Mechanism

reportNoisyMax

Ok, but I wanted to use my data for a scenario where direct noise addition doesn't make sense

selecting from among discrete set of alternatives

small perturbation in outcome space could be disastrous for outcome quality Example: Items for sale



Could set the price of apples at \$1.00 for profit: \$4.00

Could set the price of apples at \$4.01 for profit \$4.01

Best price: \$4.01

2<sup>nd</sup> best price: \$1.00

Profit if you set the price at \$4.02: \$0 Profit if you set the price at \$1.01: \$1.01



- A mechanism  $M: \mathbb{N}^{|X|} \to R$  for some abstract range R.
  - i.e.  $R = \{\text{Red, Blue, Green, Brown, Purple}\}$
  - $R = \{\$1.00, \$1.01, \$1.02, \$1.03, \dots\}$
- Paired with a quality score:

$$q: \mathbb{N}^{|X|} \times R \to \mathbb{R}$$

q(D,r) represents how good output r is for database D.

- Relative parameters for privacy, solution quality:
  - Sensitivity of q:

$$GS(q) = \max_{r \in R, D, D': ||D - D'||_{1} \le 1} |q(D, r) - q(D', r)|$$

- Size and structure of R.
  - How many elements of R are high quality? How many are low quality?

Exponential( $D, R, q: \mathbb{N}^{|X|} \to R, \epsilon$ ):

- 1. Let  $\Delta = GS(q)$ .
- 2. Output  $r \sim R$  with probability proportional to:

$$\Pr[r] \sim \exp\left(\frac{\epsilon q(D,r)}{2\Delta}\right)$$

$$\Pr[r] = \frac{\exp(\frac{\epsilon q(D, r)}{2\Delta})}{\sum_{r' \in R} \exp(\frac{\epsilon q(D, r')}{2\Delta})}$$

Exponential( $D, R, q: \mathbb{N}^{|X|} \to R, \epsilon$ ):

- 1. Let  $\Delta = GS(q)$ . 2. Output  $r \sim R$ 
  - 2. Output  $r \sim R$  with probability proportional to:

$$\Pr[r] \sim \exp\left(\frac{\epsilon q(D, r)}{2\Delta}\right)$$

Idea: Make high quality outputs exponentially more likely at a rate that depends on the sensitivity of the quality score (and the privacy parameter)

Thm. The exponential mechanism preserves  $(\epsilon, 0)$ -differential privacy.

Exponential 
$$(D, R, q: \mathbb{N}^{|X|} \to R, \epsilon)$$
:

- 1. Let  $\Delta = GS(q)$ .
- 2. Output  $r \sim R$  with probability proportional to:

$$\Pr[r] \sim \exp\left(\frac{\epsilon q(D,r)}{2\Delta}\right)$$

**Theorem**: The Exponential Mechanism preserves  $(\epsilon, 0)$ -differential privacy.

**Proof**: Fix any  $D, D' \in \mathbb{N}^{|X|}$  with  $\big| |D, D'| \big|_1 \le 1$  and any  $r \in R$ ...

 $\Pr[\mathsf{Exponential}(D,R,q,\epsilon)=r]$ 

 $\frac{1}{\Pr[\text{Exponential}(D', R, q, \epsilon) = r]} =$ 

$$\frac{\left(\frac{\exp(\frac{\epsilon q(D,r)}{2\Delta})}{\sum \exp(\frac{\epsilon q(D',r')}{2\Delta})}\right)}{\left(\frac{\exp(\frac{\epsilon q(D',r')}{2\Delta})}{\sum \exp(\frac{\epsilon q(D',r')}{2\Delta})}\right)} = \left(\frac{\exp(\frac{\epsilon q(D,r)}{2\Delta})}{\exp(\frac{\epsilon q(D',r)}{2\Delta})}\right) \left(\frac{\sum_{r'} \exp(\frac{\epsilon q(D',r')}{2\Delta})}{\sum_{r'} \exp(\frac{\epsilon q(D,r')}{2\Delta})}\right)$$

Exponential  $(D, R, q: \mathbb{N}^{|X|} \to R, \epsilon)$ :

- Let Δ = GS(q).
   Output r ~ R with probability proportional to:

$$\Pr[r] \sim \exp\left(\frac{\epsilon q(D, r)}{2\Delta}\right)$$

**Theorem**: The Exponential Mechanism preserves  $(\epsilon, 0)$ -differential privacy. **Proof**:

$$= \left( \frac{\exp(\frac{\epsilon q(D,r)}{2\Delta})}{\exp(\frac{\epsilon q(D',r)}{2\Delta})} \right) =$$

$$\exp\left( \frac{\epsilon(q(D,r) - q(D',r))}{2\Delta} \right) \le$$

$$\exp\left( \frac{\epsilon\Delta}{2\Delta} \right) = \exp\left( \frac{\epsilon}{2} \right)$$

Exponential( $D, R, q: \mathbb{N}^{|X|} \to R, \epsilon$ ):

- 1. Let  $\Delta = GS(q)$ . 2. Output  $r \sim R$  with probability proportional to:

$$\Pr[r] \sim \exp\left(\frac{\epsilon q(D,r)}{2\Delta}\right)$$

**Theorem**: The Exponential Mechanism preserves  $(\epsilon, 0)$ -differential privacy. **Proof**:

$$= \left(\frac{\sum_{r'} \exp(\frac{\epsilon q(D', r')}{2\Delta})}{\sum_{r'} \exp(\frac{\epsilon q(D, r')}{2\Delta})}\right) \le \left(\frac{\sum_{r'} \exp(\frac{\epsilon q(D, r') + \Delta}{2\Delta})}{\sum_{r'} \exp(\frac{\epsilon q(D, r')}{2\Delta})}\right) = \left(\frac{\exp(\frac{\epsilon q(D, r')}{2\Delta})}{\sum_{r'} \exp(\frac{\epsilon q(D, r')}{2\Delta})}\right) = \exp(\frac{\epsilon q(D, r')}{2\Delta})$$

Exponential  $(D, R, q: \mathbb{N}^{|X|} \to R, \epsilon)$ :

- 1. Let  $\Delta = GS(q)$ . 2. Output  $r \sim R$  with probability proportional to:

$$\Pr[r] \sim \exp\left(\frac{\epsilon q(D, r)}{2\Delta}\right)$$

**Theorem**: The Exponential Mechanism preserves  $(\epsilon, 0)$ -differential privacy.

**Proof**: Recall:

$$\frac{\Pr[\text{Exponential}(D,R,q,\epsilon)=r]}{\Pr[\text{Exponential}(D',R,q,\epsilon)=r]} = 4$$

$$\leq \exp\left(\frac{\epsilon}{2}\right) \exp\left(\frac{\epsilon}{2}\right)$$

$$= \exp(\epsilon)$$

```
Exponential(D, R, q: \mathbb{N}^{|X|} \to R, \epsilon):

1. Let \Delta = GS(q).

2. Output r \sim R with probability proportional to:

\Pr[r] \sim \exp\left(\frac{\epsilon q(D, r)}{2\Delta}\right)
```

But is the answer any good?

```
Exponential(D, R, q: \mathbb{N}^{|X|} \to R, \epsilon):

1. Let \Delta = GS(q).

2. Output r \sim R with probability proportional to:

\Pr[r] \sim \exp\left(\frac{\epsilon q(D, r)}{2\Delta}\right)
```

But is the answer any good?

It depends...

#### **Define:**

$$OPT_q(D) = \max_{r \in R} q(D,r)$$
  
 $R_{OPT} = \{r \in R : q(D,r) = OPT_q(D)\}$   
 $r^* = \text{Exponential}(D,R,q,\epsilon)$ 

#### Theorem:

$$\Pr\left[q(r^*) \le OPT_q(D) - \frac{2\Delta}{\epsilon} \left(\log\left(\frac{|R|}{|R_{OPT}|}\right) + t\right)\right] \le e^{-t}$$

#### Theorem:

$$\Pr\left[q(r^*) \le OPT_q(D) - \frac{2\Delta}{\epsilon} \left(\log\left(\frac{|R|}{|R_{OPT}|}\right) + t\right)\right] \le e^{-t}$$

#### **Corollary:**

$$\Pr\left[q(r^*) \le OPT_q(D) - \frac{2\Delta}{\epsilon}(\log(|R|) + t)\right] \le e^{-t}$$

#### **Proof**:

 $|R_{OPT}| \ge 1$  by definition.

#### Theorem:

$$\Pr\left[q(r^*) \le OPT_q(D) - \frac{2\Delta}{\epsilon} \left(\log\left(\frac{|R|}{|R_{OPT}|}\right) + t\right)\right] \le e^{-t}$$

#### **Corollary:**

$$E[q(r^*)] \ge OPT_q(D) - \frac{2\Delta}{\epsilon} \left( \log(|R|) + \log(OPT_q(D)) \right) - 1$$

#### **Proof:**

$$\begin{split} &\Pr\left[q(r^*) \leq OPT_q(D) - \frac{2\Delta}{\epsilon} \left(\log(|R|) + \log(OPT_q(D))\right] \leq \frac{1}{OPT_q(D)} \\ &\Pr\left[q(r^*) \geq OPT_q(D) - \frac{2\Delta}{\epsilon} \left(\log(|R|) + \log(OPT_q(D))\right] \geq 1 - \frac{1}{OPT_q(D)} \end{split} \right] \end{split}$$

#### Theorem:

$$\Pr\left[q(r^*) \le OPT_q(D) - \frac{2\Delta}{\epsilon} \left(\log\left(\frac{|R|}{|R_{OPT}|}\right) + t\right)\right] \le e^{-t}$$

#### **Corollary:**

$$E[q(r^*)] \ge OPT_q(D) - \frac{2\Delta}{\epsilon} \left( \log(|R|) + \log(OPT_q(D)) \right) - 1$$

#### **Proof**:

$$\begin{split} &E[q(r^*)] \geq (x \cdot \Pr[q(r^*) \geq x]) \\ &\geq \left( OPT_q(D) - \frac{2\Delta}{\epsilon} \left( \log(|R|) + \log\left(OPT_q(D)\right) \right) \right) \cdot \left( 1 - \frac{1}{OPT_q(D)} \right) \\ &> OPT_q(D) - \frac{2\Delta}{\epsilon} \left( \log(|R|) + \log\left(OPT_q(D)\right) \right) - 1 \end{split}$$