Lineare Algebra 2 — Übungsblatt 6

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Fr 12.06.2020 um 9:15 Uhr

22. Aufgabe: (3+3 Punkte, Die Jordansche Normalform)

(a) Man bestimme die Jordansche Normalform der Matrix

$$A = \begin{pmatrix} 10 & -11 & -11 & -32 \\ -1 & 0 & -2 & 4 \\ 1 & -1 & 1 & -4 \\ 2 & -2 & -2 & -6 \end{pmatrix} \in M_{4,4}(\mathbb{Q})$$

aus Aufgabe 17.

(b) Sei $n \in \mathbb{N}$ und sei $A \in M_{n,n}(\mathbb{Q})$ eine Matrix mit den Invariantenteilern

$$c_1(A) = \dots = c_5(A) = 1$$
, $c_6(A) = t + 1$, $c_7(A) = t^2 + t$, $c_8(A) = t^5 + 3t^4 + 3t^3 + t^2$

wie in Aufgabe 20. Man bestimme die Jordansche Normalform von A.

Bemerkung: Die Ergebnisse aus Aufgabe 17 und Aufgabe 20 dürfen ohne erneuten Beweis verwendet werden.

23. Aufgabe: $(2+4 \ Punkte, Faktormoduln \ "uber Faktorringen")$ Seien R ein Ring, $I \subseteq R$ ein Ideal und M ein R-Modul. Dann ist nach Bemerkung 6.11 die Menge

$$IM = \left\{ \sum_{i=1}^n a_i m_i \mid a_i \in I, m_i \in M, n \in \mathbb{N} \right\} \subseteq M$$

ein R-Untermodul von M. Man zeige:

(a) Mit der natürlichen Addition und der skalaren Multiplikation $R/I \times M/IM \rightarrow M/IM$, $(\overline{a}, \overline{m}) \mapsto \overline{a} \cdot \overline{m} := \overline{a \cdot m}$ wird M/IM zu einem R/I-Modul.

Hinweis: Man verwende, dass M/IM ein R-Modul ist.

(b) Ist $n \in \mathbb{N}$ und $\varphi \colon M \to R^n$ ein R-Modulisomorphismus, so ist $\varphi|_{IM} \colon IM \to I^n$ eine Bijektion und φ induziert einen R/I-Modulisomorphismus $\overline{\varphi} \colon M/IM \to (R/I)^n$.

Definition: Sei R ein Ring und M ein R-Modul. Sei $(x_i)_{i \in I}$ ein Erzeugendensystem von M. Dann heißt $(x_i)_{i \in I}$ minimal, wenn für jede echte Teilmenge $J \subseteq I$ das System $(x_i)_{i \in I}$ kein Erzeugendensystem von M ist.

24. Aufgabe: (4 Punkte, Minimale Erzeugendensysteme und Basen) Man zeige, dass die Menge $S := \{t+1, t^2+1\}$ ein minimales Erzeugendensystem von $\mathbb{Q}[t]$ als $\mathbb{Q}[t]$ -Modul, aber keine Basis ist.

25. Aufgabe: (4+3+1 Punkte, Freie Moduln) Man zeige:

- (a) Sei R ein Ring und $I \neq 0$ ein Ideal in R. Dann sind äquivalent:
 - (i) *I* ist ein Hauptideal, welches von einem Nicht-Nullteiler erzeugt wird.
 - (ii) I ist frei als R-Modul.
- (b) Das Ideal (2, 1 + $\sqrt{-3}$) in $\mathbb{Z}[\sqrt{-3}]$ ist nicht frei als $\mathbb{Z}[\sqrt{-3}]$ -Modul.

Hinweis: Man erinnere sich an Aufgabe 10.

(c) Man gebe ein Beispiel eines Ringes *R*, eines freien *R*-Moduls *M* und eines *R*-Untermoduls *N* von *M*, sodass *N* nicht frei ist.