

25-347

ECHO: Enhanced Collaboration for Human-Robot Operations

Team members: Gianni Bautista, Ian Richards, Samuel Sarzaba, Ekta Shethna | Faculty advisors: Dr. Tamer Nadeem, Shawn Brixey

Problem Overview

Robots are an essential integration in laboratories, hospitals, and creative studios, traditional safety systems are proving insufficient.

Current collaborative robots (cobots) face an obvious challenge – poor sensory precision for close human interaction leads to disruptive work stoppages and reduced efficiency.

ECHO transforms these limitations into seamless human-robot collaboration, enhancing both human creativity and robotic precision - driving safer, more intuitive automation across healthcare, manufacturing, and creative sectors.

Building on Success

- Phase 1 established virtual choreography of robotic movements
- Phase 2 introduced basic proximity detection with "go/no-go" zones
- Phase 3 (ECHO) aims to revolutionize human-robot interaction

Potential Challenges and Limitations

When designing a potential solution for a safe human-robot collaboration setting, there are some challenges that appear.

- Latency in Response Time
- Human Behavior Prediction
- Maintaining Balance Between Safety and Efficiency
- Environmental Variability
- Maintenance and Sensor Degradation
- Dynamic Obstacle Recognition

Citations

- [1] Intel RealSense D455 Technical Documentation (2024)
- [2] NVIDIA Isaac Sim Development Guide (2024)
- [3] Previous VCU Capstone Projects (2022-2023) Phases 1 & 2