Université Kasdi Merbah, Ouargla Faculté de mathématiques et sciences des matériaux Module: Calcul stochastique TD N° Martingale discrets

Département de Mathématiques Master-1. Probabilités et statistique 2022/2023

Exercice 1

Que dire d'une martingale (resp sous martingale, sur-martingale) par rapport à une filtration constatute?

Soit $(\mathcal{F}_n)_{n>0}$ une filtration et $(M_n)_{n>0}$ un processus tel que M_n est \mathcal{F}_n -mesurable pour tout $n \geq 0$. Montrer que $(M_n)_{n\geq 0}$ est une martingale ssi

$$\mathbb{E}\left(\left.M_{n+1} - M_n\right| \mathcal{F}_n\right) = 0$$

Exercice 3.

Soit $(M_n)_{n\geq 0}$ une martingale par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$ et soit $\mathcal{G}_n=\sigma\left(M_0,...,M_n\right)$. Montrer que $(M_n)_{n>0}$ est une $(\mathcal{G}_n)_{n>0}$ -martingale.

Exercice 4

Soit $M_1, M_2, ...$ de variable aléatoire indépendantes et de même loi. On note $m = \mathbb{E}(M_n) < \infty$ aissi que $\mathcal{F}_n = \sigma(M_0, ..., M_n)$ et

$$N_n$$
: $=\sum_{i=1}^n iM_i - \frac{n(n+1)}{2}m.$

Calculer $\mathbb{E}(N_n|\mathcal{F}_{n-1})$. Que peut dire du processus $(N_n)_{n\geq 1}$.

Exercice 5_

Soit $(X_i)_{i\geq 1}$ une suite des variable aléatoire indépendantes idéntiquement distributées tells que

$$\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}.$$

Pour $n \geq 0$ on note $\mathcal{F}_n = \sigma(X_1, ..., X_n)$ $(\mathcal{F}_0 = \{\emptyset, \Omega\})$ et on note

$$S_n = \sum_{i=1}^n X_i.$$

Montrer que $(S_n^2 - n)_{n>0}$ est une martingale par rapport a $(\mathcal{F}_n)_{n>0}$.

Exercice 6_Soit $(X_i)_{i=1}^{i=N}$ une suite des variable aléatoire indépendantes tel que

$$\mathbb{P}(X_i = 1) = p \text{ et } \mathbb{P}(X_i = -1) = 1 - p,$$

avec 0 . Monter que

$$M_n = \left(\frac{1-p}{p}\right)^{\sum_{i=1}^{i=n} X_i} \text{ tel que } M_0 = 1,$$

est une sous-martingale par rapport a $\mathcal{F}_n = \sigma(X_1, ..., X_n)$.

Exercice 7

Soit $(M_n)_{n\geq 0}$ une martingale par rapport à la filtration \mathcal{F}_n , et soit Θ une fonction convexe telsque, pour tout $n \in \mathbb{N}, \Theta(M_n)$ –est intégrable, i.e. $\mathbb{E}(|\Theta(M_n)| < \infty)$. Alors $(\Theta(M_n))_{n \in \mathbb{N}}$ est une sous-martingale.