Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Problem class 3:

Hypothesis tests; Inference under model uncertainty; Hierarchical Bayes

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

1 Hypothesis test

Exercise 1. $(\star\star)$ Consider a Bayesian model

$$\begin{cases} x_i | \lambda & \stackrel{\text{iid}}{\sim} \text{Pn}(\lambda), \ \forall i = 1, ..., n \\ \lambda & \sim \Pi(\lambda) \end{cases}$$

Hint-1 Poisson distribution has PMF: $Pn(x|\lambda) = \frac{1}{x!}\lambda^x \exp(-\lambda)1_{\mathbb{N}}(x)$

 $\textbf{Hint-2} \ \ \text{Gamma distribution has PDF: } \ \text{Ga}(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) \mathbf{1}_{(0,\infty)}(x), \ \text{with } \ \mathbf{E}(x) = a/b, \ \text{Var}(x) = a/b^2.$

Hint-3 Negative Binomial distribution has PMF: $Nb(x|r,\theta) = {r+x-1 \choose r-1}\theta^r(1-\theta)^x 1_{\mathbb{N}}(x)$. with $\theta \in (0,1), r \in \mathbb{N}$.

Consider that we are interested in testing the hypothesis whether $\lambda = \lambda_0$, (where λ_0 is a fixed known number), or not. Let $\pi_j = P(H_j)$ be the marginal prior probability of hypothesis H_j .

- 1. Design the test of hypotheses in Bayesian framework: Namely, set pair of hypotheses, specify priors, and compute the associated Bayes Factor.
- 2. Compute the posterior probability that $\lambda = \lambda_0$.
- 3. Perform the hypothesis test to test if $\lambda = 2$ or not based on the Jeffrey's scaling rule, by considering that
 - we have collected two observations $x_1 = 2$, $x_2 = 3$,
 - a priori the probability that $\{\lambda = 2\}$ is 0.5,
 - given $\{\lambda \neq 2\}$, the prior distr. of λ is a conjugate one with $E(\lambda) = 2$, and $Var(\lambda) = 1$.

1.

• The pair of hypotheses for this test is

$$\begin{cases} \mathbf{H}_0: & x_i \overset{\mathrm{IID}}{\sim} \Pr(\lambda_0 = 2), \; \text{ for all } i = 1, ..., n \\ \mathbf{H}_1: & x_i \overset{\mathrm{IID}}{\sim} \Pr(\lambda), \; \lambda > 0 \; \text{for all } i = 1, ..., n \end{cases} \tag{1}$$

where H_0 is a single hypothesis, and H_1 is the general alternative.

· The overall prior can be specified as

$$\pi(\lambda) = \pi_0 1_{\{\lambda_0\}}(\lambda) + (1 - \pi_0) \operatorname{Ga}(\lambda|a, b)$$

for $\pi_0 > 0$, which in this case is $\pi_0 = 1/2$, and $\lambda_0 = 2$.

• Do not get confused that the above notation in H_1 in (1) states $\lambda > 0$. Given H_1 , λ is a continuous random variable. Because λ is a continuous random variable and $\lambda \sim \text{Ga}(a,b)$ given H_1 , the probability that $\lambda = 2$ given on H_1 .

• The Bayes factor is

$$B_{01}(x_{1:n}) = \frac{p_0(x_{1:n})}{p_1(x_{1:n})} = \frac{\prod_{i=1}^n \Pr(x_i | \lambda_0)}{\int \prod_{i=1}^n \Pr(x_i | \lambda) \operatorname{Ga}(\lambda | a, b) d\lambda}$$

where

$$p_0(x_{1:n}) = \prod_{i=1}^n \Pr(x_i | \lambda_0) = \frac{1}{\prod_{i=1}^n x_i!} \lambda_0^{n\bar{x}} \exp(-n\lambda_0)$$

and

$$p_1(x_{1:n}) = \int \prod_{i=1}^n \Pr(x_i|\lambda) \operatorname{Ga}(\lambda|a,b) d\lambda = \frac{1}{\prod_{i=1}^n x_i!} \frac{b^a}{\Gamma(a)} \int_0^\infty \lambda^{n\bar{x}+a-1} \exp(-(n+b)\lambda) d\lambda$$
$$= \frac{1}{\prod_{i=1}^n x_i!} \frac{\Gamma(n\bar{x}+a)}{\Gamma(a)} \frac{b^a}{(n+b)^{n\bar{x}+a}}$$

So

$$B_{01}(x_{1:n}) = \frac{\lambda_0^{n\bar{x}} \exp(-n\lambda_0)}{\frac{b^a \Gamma(n\bar{x}+a)}{\Gamma(a)(n+b)^{n\bar{x}+a}}} = \lambda_0^{n\bar{x}} (n+b)^{n\bar{x}+a} \exp(-n\lambda_0) \frac{1}{b^a} \frac{\Gamma(a)}{\Gamma(n\bar{x}+a)}$$

$$= \lambda_0^{n\bar{x}} \exp(-n\lambda_0) \frac{(n+b)^{n\bar{x}+a}}{b^a} \frac{\Gamma(a)}{(n\bar{x}+a-1)\cdots a\Gamma(a)}$$

$$= \frac{\lambda_0^{n\bar{x}} \exp(-n\lambda_0)}{(n\bar{x}+a-1)\cdots a} \frac{(n+b)^{n\bar{x}+a}}{b^a}$$

2. Obviously, for the posterior probability that $\pi(\lambda = \lambda_0 | x_{1:n})$, it is

$$\pi(\lambda = \lambda_0 | x_{1:n}) = \pi(\mathbf{H}_0 | x_{1:n}) = \left(1 + \frac{1 - \pi_0}{\pi_0} \frac{p_1(x_{1:n})}{p_0(x_{1:n})}\right)^{-1}$$

$$= \left(1 + \frac{1 - \pi_0}{\pi_0} \frac{b^a(n\bar{x} + a - 1) \cdots a}{\lambda_0^{n\bar{x}}(n+b)^{n\bar{x}+a} \exp(-n\lambda_0)}\right)^{-1}$$

$$= \frac{\pi_0 \lambda_0^{n\bar{x}}(n+b)^{n\bar{x}+a} \exp(-n\lambda_0)}{\pi_0 \lambda_0^{n\bar{x}}(n+b)^{n\bar{x}+a} \exp(-n\lambda_0) + (1 - \pi_0)b^a(n\bar{x} + a - 1) \cdots a}$$

- 3. This is actually the aforesaid hypothesis test with $\lambda_0 = 2$.
 - Based on the prior information, it is a=4, and b=2 because

$$\left\{ \begin{array}{ll} E^{\mathrm{Ga}(a,b)}(\lambda) = 2 \\ Var^{\mathrm{Ga}(a,b)}(\lambda) = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} a/b = 2 \\ a/b^2 = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} a/b = 2 \\ 2/b = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} a = 4 \\ b = 2 \end{array} \right.$$

- Based on the sample I have $n\bar{x} = 2 + 3 = 5$, n = 2
- · Hence,

$$B_{01}(x_{1:n}) = \frac{\lambda_0^{n\bar{x}}(n+b)^{n\bar{x}+a} \exp(-n\lambda_0)}{b^a(n\bar{x}+a-1)\cdots a}$$

$$= \frac{2^5(2+2)^{5+4} \exp(-2\times 2)}{2^4(5+4-1)\cdots 4} = \frac{2^5\times 4^9\times \exp(-4)}{16\times 8\times 7\times 6\times 5\times 4}$$

$$\approx 1.42$$

• Then $B_{01}(x_{1:n}) \approx 1.42$, and $\log_{10}(\mathbf{B}_{01}(x_{1:n})) \approx 0.15$. According to Jeffrey's scaling rule, \mathbf{H}_0 is supported

2 Inference under model uncertainty

Exercise 2. $(\star\star)$ Let $B_{k,j}(y)$ be the Bayes factor of model \mathscr{M}_k against model \mathscr{M}_j , for all $\forall k,i,j\in\mathcal{K}$. Show that $B_{k,j}(y)=B_{k,i}(y)B_{i,j}(y)$, for all $\forall k,i,j\in\mathcal{K}$.

Solution. It is

$$B_{k,j}(y) = \frac{\pi \left(\mathcal{M}_k | y \right) / \pi \left(\mathcal{M}_k \right)}{\pi \left(\mathcal{M}_j | y \right) / \pi \left(\mathcal{M}_j \right)} = \frac{\pi \left(\mathcal{M}_k | y \right) / \pi \left(\mathcal{M}_k \right)}{\pi \left(\mathcal{M}_i | y \right) / \pi \left(\mathcal{M}_i \right)} \frac{\pi \left(\mathcal{M}_i | y \right) / \pi \left(\mathcal{M}_i \right)}{\pi \left(\mathcal{M}_j | y \right) / \pi \left(\mathcal{M}_j \right)} = B_{k,i}(y) B_{i,j}(y)$$

3 Hierarchical Bayes

Exercise 3. $(\star\star\star)$ [Relevance Vector Machine]

Regarding the statistical model: Long story short (supplementary material)

Consider that we are interested in recovering the mapping

$$x \stackrel{\eta}{\longmapsto} \eta(x)$$

in the sense that $y \in \mathbb{R}$ is the response (output quantity) that depends on $x = (x_1, ..., x_d) \in \mathcal{X} \subseteq \mathbb{R}^d$ which is the independent variable (input quantity) in a procedure; E.g.:,

- y: precipitation in log scale
- x = (longitude, latitude): geographical coordinates.

Consider a set of observed data $\{(y_i, x_i)\}_{i=1}^n$, which may be contaminated by additive noise of unknown variance; i.e.

$$y_i = \eta(x_i) + \epsilon_i,$$

where $\epsilon_i \stackrel{\text{IID}}{\sim} \text{N}\left(0,\sigma^2\right)$ and $\sigma^2>0$ is unknown. We wish to recover $\eta(x)$ by using the Tikhonov regularization on the functional space $\mathcal H$ such that

$$\eta = \arg\min_{\forall \tilde{\eta} \in \mathcal{H}} \left\{ \sum_{i=1}^{n} L(y_i - \tilde{\eta}(x_i)) + \lambda \|\tilde{\eta}\|_{\mathcal{H}}^2 \right\}$$
 (2)

By assuming that \mathcal{H} is a Reproducing Kernel Hilbert Space (RKHS), the solution to (2) is such that

$$\eta(x) = \beta_0 + \sum_{i=1}^{n} k(x, x_i) \beta_i = k(x)^{\top} \beta$$

where $k(x) = (1, k(x, x_1), ..., k(x, x_n))^{\top}$, $k(x, x_j)$ is the reproducing kernel (such as $k_{\phi}(x, x_j) = \exp\left(-\phi \|x - x_j\|^2\right)$ for some known parameter $\phi > 0$), and $\beta \in \mathbb{R}^{n+1}$ is an unknown vector.

Consider the following Bayesian model¹

$$\begin{cases} y|\beta,\sigma^2 & \sim \mathrm{N}\left(K\beta,I\sigma^2\right) \\ \beta|\lambda & \sim \mathrm{N}\left(0,D^{-1}\right), \quad D=(\lambda_0,\lambda_1,...,\lambda_n) \\ \lambda_i & \stackrel{\mathrm{iid}}{\sim} \mathrm{d}\Pi\left(\lambda_i\right) \propto \lambda_i^{a-1} \exp\left(-b\lambda_i\right) \mathrm{d}\lambda_i, \quad \forall i=1,...,n \\ \sigma^2 & \sim \mathrm{d}\Pi\left(\sigma^2\right) \propto \left(\sigma^2\right)^{c-1} \exp\left(-\frac{1}{\sigma^2}d\right) \mathrm{d}\sigma^2 \\ \beta,\sigma^2 & \text{a priori independent} \end{cases}$$

where K is a known matrix with size $n \times (n+1)$ such that

$$K = \begin{bmatrix} 1 & k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & k(x_n, x_1) & \cdots & k(x_n, x_n) \end{bmatrix}.$$

The quantities a > 0, b > 0, c > 0, d > 0, and $\phi > 0$ are considered as fixed.

¹Dixit, A., & Roy, V. (2021). Posterior impropriety of some sparse Bayesian learning models. Statistics & Probability Letters, 171, 109039.

- 1. When b = 0, show that a necessary condition for a valid posterior inference is $a \in (-1/2, 0)$ for any choice of prior for τ (i.e. any choice of (c, d)).
- 2. Let $P = K (K^{T}K)^{-1} K^{T}$. Show that (2a) and (2b) are sufficient conditions for the Bayesian model to lead to a valid posterior inference
 - (a) if a > 0 and b > 0, or
 - (b) if $y^{\top} (I P) y + 2d > 0$ and $c > -\frac{n}{2}$
- 3. Does the the improper Uniform prior on the joint $\log (\lambda_i)$ and $\log (\sigma^2)$, i.e. $\pi (\log (\lambda_i), \log (\sigma^2)) \propto 1$, lead to a valid inference?
- 4. Does the Jeffreys' prior $\pi(\lambda_i) \propto 1/\lambda_i$ lead to a valid inference?

Hint-1:

$$(y - K\beta)^{\top}(y - K\beta) + (\beta - \mu)^{\top}V^{-1}(\beta - \mu) = (\beta - \mu^*)^{\top}(V^*)^{-1}(\beta - \mu^*) + S^*;$$

$$S^* = \mu^{\top}V^{-1}\mu - (\mu^*)^{\top}(V^*)^{-1}(\mu^*) + y^{\top}y; \qquad V^* = (V^{-1} + K^{\top}K)^{-1}; \qquad \mu^* = V^*(V^{-1}\mu + K^{\top}y)$$

Hint-2: Sherman-Morrison-Woodbury formula:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1} VA^{-1}$$

Hint-3:

$$-\frac{y^{\top}y}{2\sigma^2} \le -\frac{y^{\top} \left(I\sigma^2 + KD^{-1}K^{\top}\right)^{-1}y}{2} \le -\frac{1}{2\sigma^2}y^{\top} \left(I - P\right)y$$

where $P = K (K^{\top} K)^{-1} K$.

Hint-4: It is given that $\int_{(0,\infty)} \frac{t^{-(a+1)}}{(\xi+t)^{1/2}} dt < \infty$ if and only if $a \in (-1/2,0)$.

Solution. The posterior pdf is given by

$$\pi\left(\beta, \sigma^2, \lambda | y\right) = \frac{f\left(y | \beta, \sigma^2\right) \pi\left(\beta, \sigma^2, \lambda\right)}{f\left(y\right)}$$

and is proper iff $f(y) < \infty$ where

$$f\left(y\right) = \int \left(\underbrace{\int \left(\underbrace{\int f\left(y|\beta,\sigma^{2}\right)\pi\left(\beta,\sigma^{2}\right)\mathrm{d}\beta}_{=f\left(y|\alpha,\sigma^{2}\right)}\right)\pi\left(\lambda\right)\mathrm{d}\lambda}_{=f\left(y|\sigma^{2}\right)}\right)\pi\left(\lambda\right)\mathrm{d}\lambda\right)$$

It is

$$\begin{split} f\left(y|\lambda,\sigma^2\right) &= \int f\left(y|\beta,\sigma^2\right) \pi \left(\beta,\sigma^2\right) \mathrm{d}\beta \\ &= (2\pi)^{-\frac{n+n+1}{2}} \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} \det\left(D\right)^{\frac{1}{2}} \int \exp\left(-\frac{1}{2\sigma^2} \left((y-K\beta)^\top \left(y-K\beta\right) + \beta^\top \left(D\sigma^2\right)\beta\right)\right) \mathrm{d}\beta \\ &= (2\pi)^{-\frac{n+n+1}{2}} \left(\frac{1}{\sigma^2}\right)^{\frac{1}{2}} \det\left(D\right)^{\frac{1}{2}} \left[\int \exp\left(-\frac{1}{2\sigma^2} \left(\beta-\mu^*\right)^\top V^* \left(\beta-\mu^*\right)\right) \mathrm{d}\beta\right] \left[\exp\left(-\frac{1}{2\sigma^2} S^*\right)\right] \end{split}$$

Because

$$\int \exp\left(-\frac{1}{2\sigma^2} \left(\beta - \mu^*\right)^\top V^* \left(\beta - \mu^*\right)\right) d\beta = (2\pi)^{\frac{n+1}{2}} \det\left(V^*/\sigma^2\right)^{-\frac{1}{2}}$$
$$= (2\pi)^{\frac{n+1}{2}} \det\left(K^\top K + D\sigma^2\right)^{-\frac{1}{2}}$$

$$\begin{split} \exp\left(-\frac{1}{2\sigma^{2}}S^{*}\right) &= \exp\left(-\frac{1}{2\sigma^{2}}\mu^{\top}\left(D\sigma^{2}\right)\mu - \left(\mu^{*}\right)^{\top}\left(V^{*}\right)^{-1}\left(\mu^{*}\right) + y^{\top}y\right) \\ &= \exp\left(-\frac{1}{2\sigma^{2}}\left(y^{\top}y - y^{\top}K\left(K^{\top}K + D\sigma^{2}\right)^{-1}K^{\top}y\right)\right) \\ &= \exp\left(-\frac{1}{2\sigma^{2}}\left(y^{\top}\left(I - K\left(K^{\top}K + D\sigma^{2}\right)^{-1}K^{\top}\right)y\right)\right) \\ &= \exp\left(-\frac{1}{2\sigma^{2}}\left(y^{\top}\left(K^{\top}D^{-1}K + I\sigma^{2}\right)^{-1}y\right)\right) \end{split}$$

So

$$\begin{split} f\left(y|\lambda,\sigma^2\right) &= \left(2\pi\right)^{-\frac{n}{2}} \left(\frac{1}{\sigma^2}\right)^{\frac{1}{2}} \det\left(D\right)^{\frac{1}{2}} \det\left(K^\top K + \sigma^2 D\right)^{-\frac{1}{2}} \\ &\times \exp\left(-\frac{1}{2\sigma^2} \left(y^\top \left(I\sigma^2 + K^\top D^{-1}K\right)^{-1}y\right)\right) \end{split}$$

1. I have

$$\begin{split} f\left(y|\sigma^2\right) &= \int f\left(y|\lambda,\sigma^2\right) \pi(\lambda) \mathrm{d}\lambda \\ &= (2\pi)^{-\frac{n}{2}} \left(\sigma^2\right)^{\frac{1}{2}} \int \left[\det\left(D\right)^{\frac{1}{2}}\right] \left[\det\left(K^\top K + D\sigma^2\right)^{-\frac{1}{2}}\right] \\ &\times \exp\left(-\frac{1}{2} \left(y^\top \left(I\sigma^2 + K^\top D^{-1}K\right)^{-1}y\right)\right) \left[\prod_{i=0}^n \lambda_i^{a-1}\right] \mathrm{d}\lambda_0 \dots \mathrm{d}\lambda_n \end{split}$$

- It is $\exp\left(-\frac{y^\top y}{2\sigma^2}\right) \le \exp\left(-\frac{y^\top \left(I\sigma^2 + K^\top D^{-1}K\right)^{-1}y}{2}\right)$
- It is $\det(D)^{\frac{1}{2}} = \prod_{i=0}^n \lambda_i^{\frac{1}{2}}$.
- If $\{e_j\}_{j=0}^{n=1}$ are eigenvalues of $K^\top K$ and $e_{\max} = \max(\{e_j\})$, then $K^\top K + D\sigma^2 \leq Ie_{\max} + D\sigma^2$, consequently $\det(K^\top K + D\sigma^2)^{-\frac{1}{2}} \geq \prod_{j=0}^n (\lambda_j \sigma^2 + e_{\max})^{-\frac{1}{2}}$.

Then

$$f(y|\sigma^{2}) \geq (2\pi)^{-\frac{n}{2}} (\sigma^{2})^{\frac{1}{2}} \int \prod_{j=0}^{n} \lambda_{j}^{\frac{1}{2}} \prod_{j=0}^{n} (\lambda_{j}\sigma^{2} + e_{\max})^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^{2}}y^{\top}y\right) \prod_{j=0}^{n} \lambda_{j}^{a-1} d\lambda_{0} \dots d\lambda_{n}$$

$$= (2\pi)^{-\frac{n}{2}} (\sigma^{2})^{\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^{2}}y^{\top}y\right) \int \dots \int \prod_{j=0}^{n} \left[\lambda_{j}^{\frac{1}{2}}\right] \left[\prod_{j=0}^{n} (\lambda_{j}\sigma^{2} + e_{\max})^{-\frac{1}{2}}\right] \left[\prod_{j=0}^{n} \lambda_{j}^{a-1}\right] d\lambda_{0} \dots d\lambda_{n}$$

$$= (2\pi)^{-\frac{n}{2}} (\sigma^{2})^{\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^{2}}y^{\top}y\right) \prod_{j=0}^{n} \int \frac{\lambda_{j}^{a-\frac{1}{2}}}{(\lambda_{j}\sigma^{2} + e_{\max})^{\frac{1}{2}}} d\lambda_{j}$$

Let $t_i = 1/\lambda_i$, then

$$f(y|\sigma^2) \ge (2\pi)^{-\frac{n}{2}} (\sigma^2)^{\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2} y^{\top} y\right) \prod_{j=0}^n \int \frac{t_{jj}^{-a-1}}{\left(t_j + \frac{\sigma^2}{e_{\max}}\right)^{\frac{1}{2}}} d\lambda_j$$

which is finite if and only if $a \in (-1/2, 0)$.

2.

- (a) If a>0, b>0 then $\lambda_i \stackrel{\text{iid}}{\sim} \text{Ga}\,(a,b)$ for all i=1,...,n, and if c>0, d>0 then $\tau \stackrel{\text{iid}}{\sim} \text{Ga}\,(c,d)$ which are proper. So $\Pi\left(\beta,\sigma^2,\lambda,\tau\right)$ is a proper prior, and hence it leads to proper posterior.
- (b) I have

$$\begin{split} f\left(y|\sigma^2\right) &= \left(2\pi\right)^{-\frac{n}{2}} \left(\sigma^2\right)^{\frac{1}{2}} \int \left[\det\left(D\right)^{\frac{1}{2}}\right] \left[\det\left(K^\top K + D\sigma^2\right)^{-\frac{1}{2}}\right] \\ &\times \exp\left(-\frac{1}{2} \left(y^\top \left(I\sigma^2 + K^\top D^{-1}K\right)^{-1}y\right)\right) \pi\left(\lambda\right) \mathrm{d}\lambda \end{split}$$

It is $\det(D)^{\frac{1}{2}} = \prod_{i=0}^n \lambda_i^{\frac{1}{2}}$. Also, it is $K^\top K + D\sigma^2 \geq D\sigma^2$ then $\det\left(K^\top K + D\sigma^2\right)^{-\frac{1}{2}} \leq \prod_{j=0}^n \left(\lambda_j \sigma^2\right)^{-\frac{1}{2}}$. Hence

$$f\left(y|\sigma^{2}\right) \leq (2\pi)^{-\frac{n}{2}}\left(\sigma^{2}\right)^{\frac{n}{2}}\exp\left(-\frac{1}{2\sigma^{2}}y^{\top}\left(I-P\right)y\right)\int\pi\left(\lambda\right)\mathrm{d}\lambda$$

which implies that $f\left(y|\sigma^{2}\right)<\infty$ if $\pi\left(\lambda\right)$ is proper. Yet,

$$f(y) = \int f(y|\sigma^2) \pi(\sigma^2) d\sigma^2$$

$$\leq (2\pi)^{-\frac{n}{2}} \int (\sigma^2)^{-\frac{n}{2} + c + 1} \exp\left(-\frac{1}{\sigma^2} \left(\frac{y^\top (I - P) y}{2} + d\right)\right) d\sigma^2$$

which is finite if $y^{\top} (I - P) y + 2d > 0$ and $c > -\frac{n}{2}$.

- (c) No. This implies $\pi\left(\lambda,\sigma^2\right) \propto \sigma^2 \prod_{j=0}^n \lambda_j^{-1}$. It is improper prior as $\int \pi\left(\lambda,\sigma^2\right) \mathrm{d}\left(\lambda,\sigma^2\right) = \infty$, and (a,b,c,d) = (0,0,0,0) which violates the necessary conditions.
- (d) No, it violates the necessary conditions.