Durrett Probability

Hoang Duong

December 1, 2014

From StochasticCalculus.pdf import *

0.1 Property of Integral

Definition 0.1. A π -system on a set Ω is a collection \mathcal{P} of certain subsets of Ω such that:

- (i) $\mathcal{P} \neq \emptyset$
- (ii) $A \in \mathcal{P} \land B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$

If two probability measures agree on a π -system, then they agree on the σ -algebra generated by that π -system

Definition 0.2. A λ -system on a set Ω is a collection \mathcal{D} of certain subsets of Ω such that:

- (i) $\Omega \in \mathcal{D}$
- (ii) $A, B \in \mathcal{D} \land A \subset B \Rightarrow B \backslash A \in D$
- (iii) $A_n \in \mathcal{D}, A_n \subset A_{n+1}, \forall n \geq 1 \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{D}$

Theorem 0.1. $\pi - \lambda$ Theorem. If \mathcal{P} is a π -system and \mathcal{D} is a λ -system with $\mathcal{P} \subset \mathcal{D}$, then $\sigma \{\mathcal{P}\} \subset \mathcal{D}$.

Definition 0.3. Semi-algebra. A collection of set S is a semi-algebra if it is closed under intersection, and if $S \in S$ then S^C is a finite disjoint union of sets in S.

Lemma 0.1. If S is a semi-algebra, then $F = \{finite\ disjoint\ unions\ of\ sets\ in\ S\}$ is an algebra, called the algebra generated by S

Definition 0.4. A measure μ is said to be σ -finite if there is a sequence of sets $A_n \in \mathcal{A}$ so that $\mu(A_n) < \infty$ and $\bigcup_n A_n = \Omega$. Equivalently, $\exists A_n \uparrow \Omega$ such that $\mu(A_n) < \infty$.

More generally, a set A in \mathcal{A} is $\sigma - finite$ if there $\exists A_n \uparrow A$, such that $\mu(A_n) < \infty$. But one can prove that if this property hold for Ω , then it also hold for all sets in \mathcal{A} .

Theorem 0.2. Jensen's inequality. Suppose φ is convex, that is,

$$\lambda \varphi(x) + (1 - \lambda)\varphi(y) \ge \varphi(\lambda x + (1 - \lambda)y), \forall \lambda \in (0, 1), x, y \in \mathbb{R}.$$

If μ is a probability measure, and f and $\varphi(f)$ are integrable, then:

$$\varphi(\int f d\mu) \le \int \varphi(f) d\mu$$

Theorem 0.3. Holder's inequality. If $p, q \in (1, \infty)$ with 1/p + 1/q = 1. Then:

$$\int |fg| \, d\mu \le ||f||_p ||g||_q$$

The special case p = q = 2 is called **Cauchy-Schwarz** inequality

Theorem 0.4. Bounded Convergence Theorem. Let E be a set, $\mu(E) < \infty$. Suppose f_n vanishes on $E^c, |f_n(x)| \leq M, \text{ and } f_n \to f \text{ in measure. Then:}$

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$$

Theorem 0.5. Fatou's Lemma. If $f_n \geq 0$, then:

$$\liminf_{n \to \infty} \int f_n d\mu \ge \int \left(\liminf_{n \to \infty} f_n \right) d\mu$$

Theorem 0.6. Monotone Convergence Theorem. If $f_n \geq 0$, and $f_n \uparrow f$, then

$$\int f_n d\mu \uparrow \int f d\mu$$

Theorem 0.7. Dominated Convergence Theorem. If $f_n \to f$ a.e., $|f_n| \leq g, \forall n$, and g is integrable, then:

$$\int f_n d\mu \to \int f d\mu$$

Constructiong of Product Spaces, Product Measures

Let $(X, \mathcal{A}, \mu_1), (Y, \mathcal{B}, \mu_2)$ be two σ – finite measure spaces. Let $\mathcal{F} = \mathcal{A} \times \mathcal{B}$ be the σ – algebra generated by S.

$$\Omega = X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$

$$S = \{A \times B \mid A \in \mathcal{A}, B \in \mathcal{B}\}$$

Sets in S are called rectangles. S is a semi-algebra.

$$\Omega = X \times y$$

$$S = \{ A \times B \mid A \in \mathcal{A}, B \in \mathcal{B} \}$$

$$\mathcal{F} = \mathcal{A} \times \mathcal{B} = \sigma(\mathcal{S}).$$

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite measure spaces.

Theorem 0.8. Product Measure. There is a unique measure μ on \mathcal{F} with:

$$\mu(A \times B) = \mu_1(A)\mu_2(B)$$

Theorem 0.9. Fubini's Theorem. Given $p.m \mu_1$ on S_1, S_1 and μ_2 on S_2, S_2 , and product measure $\mu = \mu_1 \times \mu_2$ on $S_1 \times S_2$. Then:

- (i) $\mu(A \times B) = \mu_1(A)\mu_2(B); A \in S_1, B \in S_2$
- (ii) $\mu(D) = \int_{S_1} \mu_2(D_{s_1}) \mu_1(ds_1); D \in \mathcal{S}_1 \times \mathcal{S}_2.$ For $D_{s_1} = \{s_2 \mid (s_1, s_2) \in D\},$ and equivalently for the other direction

(iii) If $f \ge 0$ or $\int |f| d\mu < \infty$ then:

$$\int_{X} \int_{Y} f(x, y) \mu_{2}(dy) \mu_{1}(dx) = \int_{X \times Y} f d\mu = \int_{Y} \int_{X} f(x, y) \mu_{1}d(x) \mu_{2}(dx)$$

1 Laws of Large Number

1.1 Independence

Definition 1.1. $(\Omega, \mathcal{F}, \mathbb{P})$; $A, B \in \mathcal{F}$ are called independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)]\mathbb{P}(B)$

Two σ – fields \mathcal{G} , \mathcal{H} are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)[\mathbb{P}(B), \forall A \in \mathcal{G}, B \in \mathcal{H}$.

Two random variable X, Y are independent iff $\sigma(X)$, $\sigma(Y)$ are independent.

Definition 1.2. \mathcal{A} is a π – system if it is closed under intersection. \mathcal{L} is a λ – system if (i) $\Omega \in \mathcal{L}$, (ii) $\forall A, B \in \mathcal{L}, A \subset B$ then $B - A \in \mathcal{L}$, and (iii) If $A_n \in \mathcal{L}, A_n \uparrow A$ then $A \in \mathcal{L}$.

Theorem 1.1. $\pi - \lambda$ Theorem. If \mathcal{P} is a π -system and \mathcal{L} is a λ -system that contains \mathcal{P} then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Theorem 1.2. Suppose $A_1, A_2, ..., A_n$ are independent and each A_i is a π -system, then $\sigma(A_1), \sigma(A_2), ..., \sigma(A_n)$ are independent.

Theorem 1.3. In order for $X_1, X_2, ..., X_n$ to be independent, it is sufficient that for all $x_1, ..., x_n \in \mathbb{R}$,

$$\mathbb{P}[X_1 \le 1, ..., X_n \le x_n] = \prod_{i=1}^n \mathbb{P}[X_i \le x_i]$$

Theorem 1.4. Suppose $X_1, ..., X_n$ are independent random variables and X_i has distribution μ_i , then $(X_1, ..., X_n)$ has distribution $\mu_1 \times \mu_2 ... \times \mu_n$.

Theorem 1.5. If X and Y are independent, then:

$$\mathbb{P}\left[X + Y \le z\right] = \int F(z - y)dG(y)$$

1.2 Weak Laws of Large Number

Definition 1.3. We say Y_n converges to Y in probability if $\forall \epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}[|Y_n - Y| < \epsilon] = 0$.

Lemma 1.1. If p > 0 and $\mathbb{E} |Z_n|^p \to 0$ then $Z_n \to 0$ in probability.

Theorem 1.6. L^2 weak law. Let $X_1, X_2, ...$ be uncorrelated random variables with $\mathbb{E}X_i = \mu$ and $Var(X_i) \leq C < \infty$. If $S_n = X_1 + ... + X_n$ then $S_n/n \to \mu$ in L^2 and in probability.

Theorem 1.7. L^1 weak law. Let $X_1, X_2, ...$ be i.i.d with $\mathbb{E}|X_i| < \infty$. Then $S_n/n \to \mathbb{E}X_1$ in probability

1.3 Borel-Cantelli Lemmas

Definition 1.4. $A_n \subset \Omega$.

$$\limsup A_n = \lim_{m \to \infty} \bigcup_{n=m}^{\infty} A_n = \{ \omega \text{ that are in infinitely many } A_n \}$$

$$\liminf A_n = \lim_{m \to \infty} \bigcap_{n=m}^{\infty} A_n = \{ \omega \text{ that are in all but finitely many } A_n \}$$

Theorem 1.8. The First Borel-cantelli Lemma. If $\sum_{n=1}^{\infty} \mathbb{P}A_n < \infty$ then:

$$\mathbb{P}\left[A_n \ i.o.\right] = 0$$

Theorem 1.9. Relation between Convergence in Probability and Almose Surely.

 $X_n \to X$ in probability iff for every subsequence $X_{n(m)}$ there is a further subsequence $X_{n(m_k)}$ that converges almost surely to X.

Theorem 1.10. If f is continuous and $X_n \to X$ in probability then $f(X_n) \to f(X)$ in probability. If, in addition, f is bounded then $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$.

Theorem 1.11. L⁴ Strong Law of Large Number 1. Let $X_1, X_2, ...$ be i.i.d with $\mathbb{E}X_i = \mu$ and $\mathbb{E}X_i^4 < \infty$. Then $S_n/n \to \mu$ a.s.

Theorem 1.12. The Second Borel-Cantelli Lemma. If A_n are independent then $\sum \mathbb{P}A_n = \infty$ implies $\mathbb{P}\left[A_n \ i.o.\right] = 1.$

Theorem 1.13. "Anti" LLN. If X_i are i.i.d with $\mathbb{E}|X_i| = \infty$, then $\mathbb{P}[|X_n| \ge n \text{ i.o.}] = 1$. So $\mathbb{P}[\lim S_n/n = a \in (-\infty, \infty)] = 1$

Theorem 1.14. If $A_1, A_2, ...$ are pairwise independent and $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$ then as $n \to \infty$

$$\sum_{m=1}^{n} \mathbb{I}[A_m] / \sum_{m=1}^{n} \mathbb{P}[A_m] \to 1 \ a.s.$$

Strong Law of Large Numbers

Theorem 1.15. SLLN. Let $X_1, X_2, ...$ be pairwise independent identically distributed random variables with $\mathbb{E}|X_i| = \mu < \infty$. Then $S_n/n \to \mu$ a.s. as $n \to \infty$.

Lemma 1.2. Let $X_1, X_2, ...$ be i.i.d with $\mathbb{E}X_i^+ = \infty$ and $\mathbb{E}X^- < \infty$. Then $S_n/n \Rightarrow \infty$ a.s.

Lemma 1.3. Renewal Theory. Let $X_1, X_2, ...$ be i.i.d with, $T_n = X_1 + X_2 + ... + X_n$. Let $N_t = \sup\{n : T_n \le t\}$. If $\mathbb{E}X_i = \mu \leq \infty$, then as $t \to \infty$, $N_t/t \to 1/\mu$ a.s.

Lemma 1.4. Empirical Distribution Functions. Let $X_1, X_2,...$ be i.i.d. with distribution F and let:

$$F_n(x) = n^{-1} \sum_{m=1}^n \mathbb{I}(X_m \le x).$$

The Glivenko-Cantelli theorem states that as $n \to \infty$, $\sup_{x} |F_n(x) - F(x)| \to 0$ a.s.

Convergence of Random Series

Definition 1.5. Tail $\sigma - field$. $\mathcal{F}'_n := \sigma(X_n, X_{n+1}, ...)$. Tail $\sigma - field$ is defined as $\mathcal{T} = \bigcap_n \mathcal{F}'_n$. E.g. If $B_n \in \mathbb{R}$ then $\{X_n \in B_n i.o.\} \in \mathcal{T}$. Thus $\{A_n i.o.\} \in \mathcal{T}$.

Theorem 1.16. Kolmogorov's 0-1 law. If $X_1, X_2, ...$ are independent and $A \in \mathcal{T}$ then $\mathbb{P}A = 0$ or 1.

Theorem 1.17. Kolmogorov's maximal inequality. Suppose $X_1, ..., X_n$ are independent with $\mathbb{E}X_i = 0$ and $Var(X_i) < \infty$. If $S_n = X_1 + ... + X_n$ then:

$$\mathbb{P}\left[\max_{1\leq k\leq n}|S_k|\geq x\right]\leq x^{-2}\mathrm{Var}(S_n)$$

This is slightly better than Chebyshev's inequality.

Theorem 1.18. $X_1, X_2, ...$ are independent and have $\mathbb{E}X_n = 0$. If $\sum_{n=1}^{\infty} \text{Var}(X_n) < \infty$ then with probability one $\sum_{n=1}^{\infty} X_n(\omega)$ converges.

Theorem 1.19. Kolmogorov's Three-series Theorem. Let X_1, X_2 ... be independent. Let A > 0 and let $Y_i = X_i \mathbb{I}\{|X_i| \leq A\}$. In order that $\sum X_n$ converges a.s., it is necessary and sufficient that:

- (i) $\sum_{n=1}^{\infty} \mathbb{P}[|X_n| > A] < \infty$ (ii) $\sum \mathbb{E}Y_n \ converges$ (iii) $\sum \operatorname{Var}Y_n < \infty$

Theorem 1.20. Kronecker's lemma. If $a_n \uparrow \infty$ and $\sum_{n=1}^{\infty} x_n/a_n$ converges then: $a_n^{-1} \sum_{m=1}^n x_m \to 0$.

Theorem 1.21. The SLLN. Let $X_1, X_2, ...$ be i.i.d random variables with $\mathbb{E}|X_i| < \infty$. Let $\mathbb{E}X_i = \mu$ and $S_1 = X_1 + X_2 + ... + X_n$. Then $S_n/n \to \mu$ a.s. as $n \to \infty$.

Theorem 1.22. Rates of Convergence. Let $X_1, X_2, ...$ be i.i.d random variables with $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i^2 = \sigma^2 < \infty$. Let $S_1 = X_1 + X_2 + ... + X_n$. If $\epsilon > 0$ then:

$$S_n/n^{1/2}(\log n)^{1/2+\epsilon} \to 0a.s.$$

Theorem 1.23. Let $X_1, X_2, ...$ be i.i.d with $\mathbb{E}X_1 = 0$ and $\mathbb{E}|X_1|^p < \infty$ where $1 . Then <math>S_n/n^{1/p} \to 0$ a.s.

Theorem 1.24. Infinite Mean. Let $X_1, X_2, ...$ be i.i.d with $\mathbb{E}|X_i| = \infty$. Let a_n be a sequence of positive numbers with a_n/n increasing. Then $\limsup_{n\to\infty} |S_n|/a_n = 0$ or ∞ according as $\sum_n \mathbb{P}[|X_1| \ge a_n] < \infty$ or $= \infty$.

1.6 Large Deviation

Let $X_1, X_2, ...$ be i.i.d. and let $S_n = X_1 + X_2 + ... + X_n$. We are interested in the rate at which $\mathbb{P}[S_n > na] \to 0$ for $a > \mu = \mathbb{E}X_i$. We will ultimately conclude that if $\varphi(\theta) = \mathbb{E}\exp(\theta X_i) < \infty$ for some $\theta > 0$, $\mathbb{P}[S_n \ge na] \to 0$ exponentially rapidly and we will identify:

$$\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left[S_n \ge na\right] (1)$$

The first step is to prove that the limit exists. Let $\pi_m = \mathbb{P}[S_n \ge na]$. Then $\pi_{m+n} \ge \pi_m \pi_n$.

Lemma 1.5. If $\gamma_{m+n} \geq \gamma_m + \gamma_n$ then as $n \to \infty, \gamma_n/n \to \sup_m \gamma_m/m$.

This Lemma implies that $\lim_{n\to\infty} \frac{1}{n} \log \mathbb{P}[S_n \geq na]$ exists. (1) can also be rewritten as $\mathbb{P}[S_n \geq na] \leq \exp(n\gamma(a))$

Note that the following are equivalent:

- 1. $\gamma(a) = -\infty$
- 2. $\mathbb{P}[X_1 \ge a] = 0$
- 3. $\mathbb{P}[S_n \geq na] = 0, \forall n$

From the definition, we can conclude that $\forall \lambda \in \mathbb{Q} \cap [0,1]$, then $\gamma(\lambda a + (1-\lambda)b) \geq \lambda \gamma(a) + (1-\lambda)\gamma(b)$. Thus by the argument of monotonicity, we have this inequality holds for all $\lambda \in [0,1]$. So γ is concave and hence Lipschitz continuous on compact subset of $\{a \mid \gamma(a) > -\infty\}$.

Now we make the assumption:

(H1) $\varphi(\theta) = \mathbb{E} \exp(\theta X_i) < \infty \text{ for some } \theta > 0.$

Let $\theta_+ = \sup \{\theta \mid \varphi(\theta) < \infty\}$, $\theta_- = \inf \{\theta \mid \varphi(\theta) < \infty\}$ then $\varphi(\theta) < \infty$, $\forall \theta \in (\theta_-, \theta_+)$. We note that $\varphi(0) = 0$ so the interval (θ_-, θ_+) contains a neighborhood around 0. If $\theta > 0$, Chebysev's inequality implies:

$$\exp(\theta na) \mathbb{P}[S_n \ge na] \le \mathbb{E} \exp M(\theta S_n) = \varphi^n(\theta)$$

Let $\kappa(\theta) = \log \varphi(\theta)$ then:

$$\mathbb{P}\left[S_n \ge na\right] \le \exp\left(-n\left(a\theta - \kappa(\theta)\right)\right)$$

Lemma 1.6. If $a > \mu$ and $\theta > 0$ is small then $a\theta - \kappa(\theta) > 0$.

So we were able to find an upper bound for $\mathbb{P}[S_n \geq na]$ (which is meaningful as it is <1 by the Lemma). We now find the optimal θ by setting the first derivative equal to zero, and checking the second derivative of $a\theta - \kappa(\theta)$. We find θ to be the solution to $a = \varphi'(\theta)/\varphi(\theta)$.

Theorem 1.25. Suppose in addition to (H1) and (H2) that there is a $\theta_a \in (0, \theta_+)$ so that $a = \varphi'(\theta)/\varphi(\theta)$. Then as $n \to \infty$:

$$n^{-1}\log \mathbb{P}\left[S_n \ge na\right] \to -a\theta_a + \log \varphi(\theta_a).$$

Note that we already prove that part $\limsup LHS \leq RHS$ from above. We can also prove that $\liminf LHS \geq RHS$, which will complete the proof for Theorem 1.25.

1.7 Stopping Times

General Setting: X_i i.i.d on (S, S). $S_n = X_1 + ... + X_n$

$$\Omega = \{(\omega_1, \omega_2, \dots) \mid \omega_i \in S\}$$

$$\mathcal{F} = \mathcal{S} \times \mathcal{S} \times \dots$$

$$\mathbb{P} = \mu \times \mu \times \dots$$

$$X_n(\omega) = \omega_n$$

$$\mathcal{F}_n = \sigma(X_1, \dots, X_n)$$

Definition 1.6. A Stopping Time T is a random variable from \mathcal{F} to $\mathbb{N} \cap \{\infty\}$ such that: $\{T = n\} \in \mathcal{F}_n, \forall n \in \mathbb{N}$.

E.g. The random variable $T = \inf \{ n \mid S_n \in A \}$ is a stopping time. Because:

$$\{T = n\} = \{S_1 \in A^c, ... S_{n-1} \in A^c, S_n \in A\} \in \mathcal{F}_n$$

The minimum of two stopping times S, T is denoted as $S \wedge T$, while the maximum is $S \vee T$. Both of them are stopping time. Also S+T is a stopping time. In the discrete setting that we are on ST is also a stopping time, however in the continuous case it might not as S or T can be smaller than 1, making the other possible to be larger than n. The difference S-T is not a stopping time in both discrete and continuous case.

Theorem 1.26. Assume $\mathbb{P}[T < \infty] > 0$. Then conditional on $\{T < \infty\}$, $\{X_{N+n}, n \ge 1\}$ is independent of \mathcal{F}_N and has the same distribution as the original sequence.

Theorem 1.27. Wald's equation. Let $\mathbb{E}|X_i| < \infty$, $\mathbb{E}T < \infty$. Then $\mathbb{E}S_T = \mathbb{E}X_1\mathbb{E}T$

Theorem 1.28. Wald's second equation. Let $\mathbb{E}X_n = 0$, $\mathbb{E}X_n^2 = \sigma^2 < \infty$, $\mathbb{E}T < \infty$. Then $\mathbb{E}S_T^2 = \sigma^2 \mathbb{E}T$.

2 Conditional

2.1 Constructing Random Variable

(From David Aldous note)

A r.v. X with values in a measurable space (S, \mathcal{S}) has a distribution ν .

$$\nu(A) = \mathbb{P}(X \in A), \forall A \in \mathcal{S}$$

Now given a p.m ν , does there exists a r.v. X whose distribution is ν . Uninteresting answer: Yes, we can take $\Omega = S$ and X = identity. To get something more interesting

Lemma 2.1. Probability Integral Transform. Let μ be a p.m on \mathbb{R} , let $F(x) = \mu((-\infty, x])$ be its distribution function, let:

$$F^{-1}(u) = \inf \{ x \mid F(x) \ge u, 0 \le u \le 1 \}$$

be the inverse distribution function. Then $F^{-1}(U)$ has distribution μ , where U has U(0,1) distribution.

Definition 2.1. A measurable space (X, A) is called standard if it sastifies the following equivalent conditions:

- (i) (X, A) is isomorphic to some compact metric space with the Borel σ -algebra
- (ii) (X, A) is isomorphic to some separable complete metric space with the Borel $\sigma algebra$
- (iii) (X, A) is isomorphic to some Borel subset of some separable complete metric space with the Borel $\sigma algebra$.

Lemma 2.2. (??) A pair (X, A) of set and collection of subset is a Standard measurable space iff it is a Polish space.

Any uncountable Polish space is homeomorphic to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$

Lemma 2.3. Let ν be a p.m on a standard Borel space, then there exists measurable $h:[0,1] \to S$ such that h(U) has distribution ν .

Corollary 2.1. Let $X_1, X_2, ...$ be r.v. Then there exists measurable $h_1, h_2, ...$ such that $(h_1(U), h_2(U), ...)$ has the same joint distribution as $(X_1, X_2, ...)$.

Corollary 2.2. Let $\theta_1, \theta_2, ...$ be p.m on \mathbb{R} . Then there exists independent r.v. $X_1, X_2, ...$ such that X_i has distribution θ_i .

Definition 2.2. Absolutely Continuous. We say a measure ν is absolutely continuous w.r.t μ , and write $\nu \ll \mu$ if $\mu(A) = 0$ implies $\nu(A) = 0$.

Definition 2.3. Radon-Nikodym Theorem. If μ, ν are $\sigma - finite$ measures and ν is absolutely continuous w.r.t μ , then there is a $g \geq 0$ so that $\nu(E) = \int_E g d\mu$. If g is another such function then g = h, μ a.e. The function g is denoted $d\nu/d\mu$.

2.2 Conditional Distribution

Definition 2.4. $(S_1, \mathcal{S}_1), (S_2, \mathcal{S}_2)$ are measure spaces, and $(S_1 \times S_2, \mathcal{S}_1, \mathcal{S}_2)$ are their product space. And $(S_1 \times S_2, \mathcal{S}_1 \times \mathcal{S}_2)$ is their product space. A kernel Q from S_1 to S_2 is a map $Q: S_1 \times \mathcal{S}_2 \to \mathbb{R}$ such that:

- (i) $B \to Q(s_1, B)$ is a p.m. on (S_2, S_2) for each fixed $s_1 \in S_1$
- (ii) $s_1 \to Q(s_1, B)$ is a measurable function $S_1 \to \mathbb{R}$ for each fixed $B \in \mathcal{S}_2$.

Proposition 2.1. Given a p.m. μ on $S_1 \times S_2$, a p.m. μ_1 on S_1 and a kernel Q from S_1 to S_2 , the following are equivalent.

- (i) $\mu(A \times B) = \int_A Q(s, B) \mu_1(ds); A \in \mathcal{S}_1, B \in \mathcal{S}_2$
- (ii) $\mu(D) = \int_{S_1} Q(s_1, D_{s_1}) \mu(ds_1); D \in \mathcal{S}_1 \times \mathcal{S}_2 \text{ where } D_{s_1} = \{s_2 \mid (s_1, s_2) \in D\}$
- (iii) $\int_{S_1 \times S_2} h(s_1, s_2) \mu(ds) = \int_{S_1} \left(\int_{S_2} h(s_1, s_2) Q(s_1, ds_2) \right) \mu_1(ds_1)$

for all measurable $h_1: S_1 \times S_2 \to \mathbb{R}$ for which either $h \geq 0$ or $\int |h| d\mu < \infty$.

Q is called conditional probability kernel for μ .

Lemma 2.4. For each $D \in \mathcal{S}_1 \times \mathcal{S}_2$

- (i) $D_{s_1} \in \mathcal{S}_2, \forall s_1 \in \mathcal{S}_1$
- (ii) $s_1 \to Q(s_1, D_{s_1})$ is measurable.

Theorem 2.1. Let μ_1 be a p.m. on S_1 and let Q be a kernel from S_1 to S_2 . Then there exists a unique p.m. μ on $S_1 \times S_2$ such that the relations of Proposition 2.1 hold.

Conversely, let μ be a p.m. on $S_1 \times S_2$. Define μ_1 by $\mu_1(A) = \mu(A \times S_2)$. Then provided S_2 is a standard Borel space, there exists a kernel Q from S_1 to S_2 such that the relations of Proposition 5 hold.

Note the Fubini theorem follows from this theorem.

Theorem 2.2. Conditional Density. Suppose (X,Y) has joint density f(x,y). Define $f(y \mid x) = f(x,y)/f_X(x)$ where $f_X(x) > 0$. Define $Q(x,\cdot)$ to be the distribution with density $f(\cdot \mid x)$. Then Q is the conditional probability kernel for Y given X.

Theorem 2.3. Kolmogorov Extension. Let $(\mu_n; 1 \le n < \infty)$ be a p.m. on \mathbb{R}^n . Suppose they are consistent in the following sense. For each n, regard μ_{n+1} as a measure on $\mathbb{R}^n \times \mathbb{R}$: then the marginal of μ_{n+1} is μ_n . Then there exists a unique p.m. μ_{∞} on \mathbb{R}^{∞} such that writing $\mathbb{R}^{\infty} = \mathbb{R}^n \times \mathbb{R}^{\infty}$, the marginal of μ_{∞} is μ_n .

2.3 Conditional Expectation

Definition 2.5. For X with $\mathbb{E}|X| < \infty$, for $sub - \sigma - field \mathcal{G}$, $\mathbb{E}X \mid \mathcal{G}$ is a random variable Z such that:

- (i) Z is \mathcal{G} -measurable
- (ii) $\mathbb{E}\left[Z\mathbb{I}_{\{G\}}\right] = \mathbb{E}\left[X\mathbb{I}_{\{G\}}\right], \forall G \in \mathcal{G}$

Existence of Conditional Expectation: for $G \in \mathcal{G}$, define $\nu(G) = \mathbb{E}\left[X\mathbb{I}_{\{G\}}\right]$. Then $\nu \ll P$ as measure on Ω, \mathcal{G} . Consider $Z(\omega)$ as the Radon-Nikodym density $\frac{d\nu}{dP}(\omega)$.

Lemma 2.5. If $\mathbb{E}|Y| < \infty$, if Y is \mathcal{G} -measurable, if $\mathbb{E}[Y \mid G] > 0, \forall G \in \mathcal{G}$, then $Y \geq 0$ a.s.

Lemma 2.6. (a) If $Z = \mathbb{E}[X \mid \mathcal{G}]$ then, for any bounded \mathcal{G} -measurable RVV, $\mathbb{E}[ZV] = \mathbb{E}[XV]$.

(b) If Z is G-measurable, to prove $Z = \mathbb{E}[X \mid G]$ it is enough to prove $\mathbb{E}[Z\mathbb{I}_A] = \mathbb{E}[X\mathbb{I}_A]$, $\forall A \in A$, where A is some π -class with $G = \sigma(A)$.

Theorem 2.4. Rules for Conditional Expectation.

```
(a) \mathbb{E}[aX + Y \mid \mathcal{F}] = a\mathbb{E}[X \mid \mathcal{F}] + \mathbb{E}[Y \mid \mathcal{F}], \text{ for } \mathbb{E}[X \mid \mathcal{F}] < \infty
```

(b)
$$X \leq Y, \mathbb{E}|X| < \infty, \mathbb{E}|Y| < \infty \Rightarrow \mathbb{E}[X \mid \mathcal{F}] \leq \mathbb{E}[Y \mid \mathcal{F}]$$

(c)
$$X_n \geq 0, X_n \uparrow X, \mathbb{E}X < \infty \Rightarrow \mathbb{E}[X_n \mid \mathcal{F}] \uparrow \mathbb{E}[X \mid \mathcal{F}] \text{ a.s.}$$

(d)
$$\mathbb{E}[VX \mid \mathcal{G}] = V\mathbb{E}[X \mid \mathcal{G}], \forall V \text{ bounded and } \mathcal{G}\text{-measurable}$$

(e)
$$|\mathbb{E}[X \mid \mathcal{G}]| \leq \mathbb{E}[|X| \mid \mathcal{G}]$$

(f) If
$$\mathcal{F}_1 \subset \mathcal{F}_2$$
 and $\mathbb{E}[X \mid \mathcal{G}] \in \mathcal{F}$ then $\mathbb{E}[X \mid \mathcal{F}] = \mathbb{E}[X \mid \mathcal{G}]$

(g) Tower Property.

If
$$\mathcal{F}_1 \subset \mathcal{F}_2$$
, then $\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{F}_1\right] \mid \mathcal{F}_2\right] = \mathbb{E}\left[X \mid \mathcal{F}_1\right]$.

And
$$\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{F}_{2}\right]\mid\mathcal{F}_{1}\right]=\mathbb{E}\left[X\mid\mathcal{F}_{1}\right]$$

So the smaller σ -field always win

(h) $\mathbb{E}X^2 < \infty$, $\mathbb{E}[X \mid \mathcal{F}]$ is the variable $Y \in \mathcal{F}$ that minimizes the mean square error $\mathbb{E}(X - Y)^2$.

(i) $\mathcal{G} \subset \mathcal{F}, \mathbb{E}X^2 < \infty$, then:

$$\mathbb{E}\left[\left(X - \mathbb{E}\left[X \mid \mathcal{F}\right]\right)^{2}\right] + \mathbb{E}\left[\left(\mathbb{E}\left[X \mid \mathcal{F}\right] - \mathbb{E}\left[X \mid \mathcal{G}\right]\right)^{2}\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X \mid \mathcal{G}\right]\right)^{2}\right]$$

When $\mathcal{G} = \{\emptyset, \Omega\}$, this becomes the bias variance formula as follow:

(j) Let
$$\mathbb{V}[X \mid \mathcal{F}] = \mathbb{E}[X^2 \mid \mathcal{F}] - \mathbb{E}[X \mid \mathcal{F}]^2$$
. Then:

$$\mathbb{V}X = \mathbb{E}\left[\mathbb{V}\left[X \mid \mathcal{F}\right]\right] + \mathbb{V}\left[\mathbb{E}\left[X \mid \mathcal{F}\right]\right]$$

3 Martingale

3.1 Definitions

Definition 3.1. Martingale. Let $(\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_n\})$ be a filtration. $X_n \in \mathcal{F}_n$ is a martingale w.r.t \mathcal{F}_n iff:

- (i) $\mathbb{E}|X_n| < \infty$
- (ii) X_n is adapted to \mathcal{F}_n
- (iii) $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = X_n, \forall n$

If in the last condition = is replaced by \geq , we have submartingale, if replaced by \leq , we have super martingale.

Using an induction argument, we have the a similar statement in (iii) for X_{n+k} and X_n for k > 0 is true.

Theorem 3.1. If X_n is a martingale w.r.t \mathcal{F}_n and φ is a convex function with $\mathbb{E}|\varphi(X_n)| < \infty$ for all n then $\varphi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n . (by Jensen inequality)

Theorem 3.2. If X_n is a submartingale w.r.t. \mathcal{F}_n and φ is an increasing convex function with $\mathbb{E} |\varphi(X_n)| < \infty$, $\forall n$, then $\varphi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n . Consequently, (i) If X_n is a submartingale then $(X_n - a)^+$ is a submartingale. (ii) If X_n is a supermartingale then $X_n \wedge a$ is a supermartingale.

Definition 3.2. Predictable. H_n is predictable iff H_n is adapted to \mathcal{F}_{n-1}

Theorem 3.3. Let $X_n, n \ge 0$ be a supermartingale. If $H_n \ge 0$ is predictable and each H_n is bounded then $(H \cdot X)_n$ is a supermartingale.

Theorem 3.4. If N is a ST and X_n is a supermartingale, then $X_{N \wedge n}$ is a supermartingale.

Definition 3.3. Upcrossing. Let $X_n, n \ge 0$ is a submartingale. Let $a < b, N_0 = -1$, and for $k \ge 1$ let:

$$N_{2k-1} = \inf \{ m > N_{2k-2} \mid X_m \le a \}$$

$$N_{2k} = \inf \{ m > N_{2k-1} \mid X_m \ge b \}$$

Then N_j are stopping times. $U_n = \sup\{k \mid N_{2k} \leq n\}$ is defined as the number of upcrossings completed by time n.

Theorem 3.5. Upcrossing inequality. If $X_m, m \ge 0$ is a submartingale then:

$$(b-a)\mathbb{E}U_n \leq \mathbb{E}\left[X_n-a\right]^+ - \mathbb{E}\left[X_0-a\right]^+$$

Theorem 3.6. Martingale Convergence Theorem. If X_n is a submartingale with $\sup \mathbb{E}X_n^+ < \infty$ then as $n \to \infty, X_n$ converges a.s. to a limit X with $\mathbb{E}|X| < \infty$.

Corollary 3.1. If $X_n \geq 0$ is a supermartingale then as $n \to \infty$, $X_n \to X$ a.s. and $\mathbb{E}X_n \leq \mathbb{E}X_0$

Theorem 3.7. Doob's decomposition. Any submartingale X_n , $n \ge 0$ can be written in a unique way as $X_n = M_n + A_n$, where M_n is a martingale and A_n is predictable increasing sequence with $A_0 = 0$.

3.2 Examples

Theorem 3.8. Let $X_1, X_2, ...$ be a martingale with $|X_{n+1} - X_n| \le M < \infty$. Let

$$C = \{ \lim X_n \text{ exists and is finite} \}$$

$$D = \{ \lim \sup X_n = +\infty \land \lim \inf X_n = -\infty \}$$

Then $\mathbb{P}\left[C \cup D\right] = 1$

Theorem 3.9. Second Borel-Centelli Lemma, II. Let $\mathcal{F}_n, n \geq 0$ be a filtration with $\mathcal{F}_0 = \{0, \Omega\}$ and $A_n, n \geq 0$ a sequence of events with $A_n \in \mathcal{F}_n$. Then

$$\{A_n i.o.\} = \left\{ \sum_{n=1}^{\infty} \mathbb{P}\left[A_n \mid \mathcal{F}_{n-1}\right] = \infty \right\}$$

Theorem 3.10. Radon-Nikodym Derivatives. Suppose $\mu_n \ll v_n, \forall n$. Let $X_n = d\mu_n/d\nu_n$ and let $X = \limsup X_n$. Then:

$$\mu(A) = \int_A X d\nu + \mu \left(A \cap \{X = \infty\} \right)$$

Theorem 3.11. Kakutani Dichotomy for infinite product measures. Let μ and ν be measures on a sequence space (R^N, \mathcal{R}^N) that make the coordinates $\xi_n(\omega) = \omega_n$ independent. Let $F_n(x) = \mu(\xi_n \leq x)$, $G_n(x) = \nu(\xi_n \leq x)$. Suppose $F_n \ll G_n$ and let $q_n = dF_n/dG_n$. Let $\mathcal{F}_n = \sigma(\xi_m \mid m \leq n)$, let μ_n and ν_n be the restriction of μ and ν to \mathcal{F}_n , and let:

$$X_n = \frac{d\mu_n}{d\nu_n} = \prod_{m=1}^n q_m.$$

Radon-Nikodym Derivatives Theorem implies that $X_n \to X$ $\nu - a.s.$ $\sum_{m=1}^{\infty} \log q_m > -\infty$ is a tail event, so the Kolmogorov 0-1 law implies $\nu(X=0) \in \{0,1\}$. And it follows from Radon-Nikodym theorem that either $\mu \ll \nu$ or $\mu \perp \nu$.

 $\mu \ll \nu$ or $\mu \perp \nu$, according as $\prod_{m=1}^{\infty} \int \sqrt{q_m} dG_m > 0$ or = 0.

3.3 Doob's inequality, Convergence in L^p

Theorem 3.12. If X_n is a submartingale and N is a ST with $\mathbb{P}[N \leq k] = 1$ then:

$$\mathbb{E}X_0 \leq \mathbb{E}X_n \leq \mathbb{E}X_k$$

Theorem 3.13. Doob's inequality. Let X_m be a submartingale.

$$\bar{X}_n = \max_{0 \le m \le n} X_m^+$$

 $\lambda > 0$, and $A = \{\bar{X}_n \ge \lambda\}$. Then

$$\lambda \mathbb{P}[A] \leq \mathbb{E} X_n \mathbb{I}_A \leq \mathbb{E} X_n^+$$

Theorem 3.14. L^p maximum inequality. If X_n is a submartingale then for 1 ,

$$\mathbb{E}\left[\bar{X}_{n}^{p}\right] \leq \left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left[X_{n}^{+}\right]^{p}$$

Consequently, if Y_n is a martingale and $Y_n^* = \max_{0 \le m \le n} |Y_m|$,

$$\mathbb{E}\left|Y_{n}^{*}\right|^{p} \leq \left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left|Y_{n}\right|^{p}$$

Theorem 3.15. Let X_n be a submartingale and $\log^+ x = \max(\log x, 0)$

$$\mathbb{E}\bar{X}_n \le (1 + e^{-1})^{-1} \left\{ 1 + \mathbb{E} \left[X_n^+ \log^+ (X_n^+) \right] \right\}$$

Theorem 3.16. L^p convergence theorem. If X_n is a martingale with $\sup \mathbb{E} |X_n|^p < \infty$ where p > 1, then $X_n \to X$ a.s. and in L^p .

Theorem 3.17. Orthogonality of Martingale Increments. Let X_n be a martingale with $\mathbb{E}X_n^2 < \infty, \forall n$. If $m \leq n$ and $Y \in \mathcal{F}_m$ and $\mathbb{E}Y^2 < \infty$ then:

$$\mathbb{E}\left[\left(X_n - X_m\right)Y\right] = 0$$

Theorem 3.18. Conditional Variance Formula. If X_n is a martingale with $\mathbb{E}X_n^2 < \infty, \forall n$

$$\mathbb{E}\left[\left(X_{n}-X_{m}\right)^{2}\mid\mathcal{F}_{m}\right]=\mathbb{E}\left[X_{n}^{2}\mid\mathcal{F}_{m}\right]-X_{m}^{2}$$