

## PROJECT SPECIFICATION

# **Dog Breed Classifier**

## Files Submitted

| CRITERIA        | MEETS SPECIFICATIONS                        |
|-----------------|---------------------------------------------|
| Subission Files | The submission includes all required files. |

## Step 1: Detect Humans

| CRITERIA                                          | MEETS SPECIFICATIONS                                                                                                         |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <b>Question 1:</b> Assess the Human Face Detector | The submission returns the percentage of the first 100 images in the dog and human face datasets with a detected human face. |
| Question 2: Assess the<br>Human Face Detector     | The submission opines whether Haar cascades for face detection are an appropriate technique for human detection.             |

## Step 2: Detect Dogs

| CRITERIA                               | MEETS SPECIFICATIONS                                                                                                  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Question 3: Assess the Dog<br>Detector | The submission returns the percentage of the first 100 images in the dog and human face datasets with a detected dog. |

## Step 3: Create a CNN to Classify Dog Breeds (from Scratch)

| CRITERIA           | MEETS SPECIFICATIONS                                                       |
|--------------------|----------------------------------------------------------------------------|
| Model Architecture | The submission specifies a CNN architecture.                               |
| Train the Model    | The submission specifies the number of epochs used to train the algorithm. |
| Test the Model     | The trained model attains at least 1% accuracy on the test set.            |

# Step 5: Create a CNN to Classify Dog Breeds

| CRITERIA                                        | MEETS SPECIFICATIONS                                                                                                                               |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Obtain Bottleneck Features                      | The submission downloads the bottleneck features corresponding to one of the Keras pre-trained models (VGG-19, ResNet-50, Inception, or Xception). |  |  |  |
| Model Architecture                              | The submission specifies a model architecture.                                                                                                     |  |  |  |
| <b>Question 5</b> : Model<br>Architecture       | The submission details why the chosen architecture succeeded in the classification task and why earlier attempts were not as successful.           |  |  |  |
| Compile the Model                               | The submission compiles the architecture by specifying the loss function and optimizer.                                                            |  |  |  |
| Train the Model                                 | The submission uses model checkpointing to train the model and saves the model weights with the best validation loss.                              |  |  |  |
| Load the Model with the<br>Best Validation Loss | The submission loads the model weights that attained the least validation loss.                                                                    |  |  |  |
| Test the Model                                  | Accuracy on the test set is 60% or greater.                                                                                                        |  |  |  |
| Predict Dog Breed with the<br>Model             | The submission includes a function that takes a file path to an image as input and returns the dog breed that is predicted by the CNN.             |  |  |  |

# Step 6: Write Your Algorithm

| CRITERIA             | MEETS SPECIFICATIONS                                                                                                                                                                                              |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Write your Algorithm | The submission uses the CNN from Step 5 to detect dog breed. The submission has different output for each detected image type (dog, human, other) and provides either predicted actual (or resembling) dog breed. |  |  |  |

## Step 7: Test Your Algorithm

| CRITERIA                                 | MEETS SPECIFICATIONS                                                                     |
|------------------------------------------|------------------------------------------------------------------------------------------|
| Test Your Algorithm on<br>Sample Images! | The submission tests at least 6 images, including at least two human and two dog images. |

### Suggestions to Make Your Project Stand Out!

| (Presented | l in no | particu | lar ord | ler) |
|------------|---------|---------|---------|------|
|------------|---------|---------|---------|------|

### (1) AUGMENT THE TRAINING DATA

Augmenting the training and/or validation set might help improve model performance.

### (2) TURN YOUR ALGORITHM INTO A WEB APP

Turn your code into a web app using Flask or web.py!

#### (3) OVERLAY DOG EARS ON DETECTED HUMAN HEADS

Overlay a Snapchat-like filter with dog ears on detected human heads. You can determine where to place the ears through the use of the OpenCV face detector, which returns a bounding box for the face. If you would also like to overlay a dog nose filter, some nice tutorials for facial keypoints detection exist here.

#### (4) ADD FUNCTIONALITY FOR DOG MUTTS

Currently, if a dog appears 51% German Shephard and 49% poodle, only the German Shephard breed is returned. The algorithm is currently guaranteed to fail for every mixed breed dog. Of course, if a dog is predicted as 99.5% Labrador, it is still worthwhile to round this to 100% and return a single breed; so, you will have to find a nice balance.

#### (5) EXPERIMENT WITH MULTIPLE DOG/HUMAN DETECTORS

Perform a systematic evaluation of various methods for detecting humans and dogs in images. Provide improved methodology for the dog\_detector and dog\_detector functions.