

New Test Beam Results of 3D and Pad Detectors Constructed with Poly-Crystalline CVD Diamond

Vienna Conference on Instrumentation

Michael Reichmann 19th of February, 2019

Table of Contents

- Motivation
- 2 Introduction
- 3 3D Pixel Detectors
- Pad Detectors (Rate Studies)
- Conclusion
- 6 Outlook

Section 1

Motivation

- \bullet innermost tracking layers \rightarrow highest radiation damage $\mathcal{O}\left(\text{GHz/cm}^2\right)$
- ullet current detectors is designed to survive $\sim\!12\,\mathrm{month}$ in High-Luminosity LHC
- $\bullet \to R/D$ for more radiation tolerant detector designs and/or materials

M. Reichmann (FIHzürich)

Diamond as Detector Material

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ullet current detectors is designed to survive $\sim\!12\,\mathrm{month}$ in High-Luminosity LHC
- $\bullet \to R/D$ for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - ▶ isolating material
 - ▶ high charge carrier mobility
 - ► smaller signal than in silicon with same thickness (large bandgap)

M. Reichmann (FIHzürich)

Diamond as Detector Material

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2
 ight)$
- ullet current detectors is designed to survive $\sim\!12\,\mathrm{month}$ in High-Luminosity LHC
- ullet \to R/D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - isolating material
 - ▶ high charge carrier mobility
 - ► smaller signal than in silicon with same thickness (large bandgap)

Work of RD42:

- investigate signals and radiation tolerance in various detector designs:
 - ▶ pad → full diamond as single cell readout
 - ightharpoonup pixel ightarrow diamond sensors on state-of-the-art pixel chips
 - ightharpoonup 3D pixel ightharpoonup detector with design to reduce drift distance

M. Reichmann (31Hzürich) 3D Diamond Detectors 19th of February, 2019

2 / 23

Section 2

Introduction

Diamond as Particle Detector

(b) 15 cm pCVD Diamond Wafer

- detectors operated as ionisation chambers
- poly-crystals produced in large wafers
- metallisation on both sides

Working Principle

- after large radiation fluence all detectors become trap limited
- bias and readout electrode inside detector material
- ullet same thickness D o same amount of induced charge o shorter drift distance L
- increase collected charge in detectors with limited mean free path

M. Reichmann (FIHzürich)

Laser drilling

- \bullet "drilling" columns with ${\sim}15\,\mu m$ gap to the surface using fs-laser (Oxford)
- convert diamond into resistive mixture of carbon phases (i.a. DLC, graphite, ...)
- usage of spatial light modulation (SLM) to correct for aberration
- initial column yield $\sim 90 \% \rightarrow \text{now} \geq 99 \%$
- ullet initial column diameter 6 \sim 10 μ m \to now 2.6 μ m

Bump Bonding

(b) 3×2 bump pads

- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- small gap to the surface to avoid a break-through

Bump Bonding

- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- small gap to the surface to avoid a break-through

Progress in Diamond Detectors

3D Detectors:

- proved that 3D works in pCVD diamond
- ullet scale up the number of columns per detector: $\mathcal{O}\left(100
 ight)
 ightarrow \mathcal{O}\left(1000
 ight)$ (x40)
- reducing the cell size: $150\,\mu m \times 150\,\mu m \to 50\,\mu m \times 50\,\mu m \to 25\,\mu m \times 25\,\mu m$ (soon)
- reducing the diameter of the columns: 6 \sim 10 µm \rightarrow 2.6 µm \rightarrow 1 \sim 2 µm (soon)
- ullet \rightarrow increasing column yield: \sim 90 % \rightarrow \geq 99 %
- recently tested first irradiated 50 $\mu m \times 50 \, \mu m$ 3D detector $(3.5 \cdot 10^{15} \, n/cm^2)$

3D Pixel Detectors:

- visible improvements with each step reducing the cell size
- all worked as expected (to first order)

Rate Studies in Pad Detectors:

- particle fluxes from 1 kHz/cm² up to 20 MHz/cm²
- ullet irradiations up to $4 \cdot 10^{15} \, \text{n/cm}^2$

Section 3

3D Pixel Detectors

1 × 5 Ganging

Figure: Final Detector

- readout chip (ROC): ATLAS FEI4
- Size: 5 mm × 5 mm
- \bullet active area $3 \, \text{mm} \times 3 \, \text{mm}$
- tin-silver bump bonding at IFAE (Barcelona)

Efficiencies

(a) High treshold

(b) Low threshold

efficiencies

Time over Threshold

Figure: Time over Threshold

tot

2 × 3 Ganging

Figure: Final Detector

19th of February, 2019

11 / 23

- readout chip (ROC): CMS PSI46digv2.1repspin
- Size: $5 \, \text{mm} \times 5 \, \text{mm}$
- active area 3.5 mm × 3.5 mm
- indium bump-bonding (Princeton)

Efficiencies - First PSI Beam Test

(a) Efficiency Map Diamond

(b) Efficiency Map Silicon

- top right corner of the diamond badly bump bonded
- efficiency in red fiducial area: Diamond: 99.1 %, Silicon: 99.9 %

Efficiencies - First PSI Beam Test

- top right corner of the diamond badly bump bonded
- effective efficiency in red fiducial area: 99.2%
- already fully efficient at 20 V
- ROC malfunctioned after this beam test

Efficiencies - CERN Beam Test

- high resolution measurement at CERN
- sensor twice re-bump-bonded with the same indium (no reprocessing)
- reduced efficiency

Efficiencies - Second PSI Beam Test

(a) Efficiency Map Diamond

- (b) Efficiency Map Silicon
- sensor twice re-bump-bonded with the same indium (no reprocessing)
- efficiency in red fiducial area: Diamond: 97.3 %, Silicon: 100.0 %

Efficiencies - Second PSI Beam Test

- (b) Efficiency vs. voltage
- sensor twice re-bump-bonded with the same indium (no reprocessing)
- ullet effective efficiency in red fiducial area: 97.3 %
- already fully efficient at 20 V
- ullet only very small area working well o many bump bond problems

M. Reichmann (FIHzürich)

Pulse Height - Second Beam Test

- wrong pulse height calibration in first beam test
- full charge collection also at 20 V
- mean pulse height lower than expected: 11 000 e
- probably connected to bad bump bonding

Section 4

Pad Detectors (Rate Studies)

Leakage Currents

Figure: Leakage Current of a non-irradiated pCVD diamond

- leakage current of most of the diamonds linear in flux
- ullet very low base leakage current (no beam) of $\mathcal{O}(1\,\mathrm{nA})$

M. Reichmann (311 zürich) 3D Diamond Detectors 19th of February, 2019

16 / 23

Signal Maps

- (a) scCVD (6dB attenuation)
- uniform signal distribution in scCVD
- region dependent signal in pCVD

Non-Irradiated scCVD

- rate scaled to the mean
- scCVD diamond shows now rate dependence within the measurement precision
- noise stays constant

Non-Irradiated scCVD

- rate scaled to the mean
- scCVD diamond shows now rate dependence within the measurement precision
- noise stays constant

Non-Irradiated pCVD

- rate scaled to the mean
- most non-irradiated pCVD diamonds have slight rate dependence (<5 %)
- behaviour very similar for both positive and negative bias voltage

M. Reichmann (IIII zürich) 3D Diamond Detectors

19 / 23

Non-Irradiated pCVD

- rate scaled to the mean
- most non-irradiated pCVD diamonds have slight rate dependence (<5 %)
- behaviour very similar for both positive and negative bias voltage

M. Reichmann (=111/zürich) 3D Diamond Detectors

A Special Case

- very large rate dependence at the first measurement (>90 %)
- after reprocessing and surface cleaning with RIE very stable behaviour (\sim 2%)
- feasible to "fix" bad diamonds

M. Reichmann (FIHzürich)

Rate Studies in Irradiated pCVD

- rate scaled to the mean
- pulse height very stable after irradiation
- noise stays the same

Section 5

Conclusion

Conclusion

- strongly improved fabrication of 3D diamonds
 - ▶ 40x more cells
 - ▶ smaller cell size
 - ▶ smaller columns
- 3D Detectors work well in pCVD diamond
 - ▶ 99.2 % efficiency
 - ▶ nearly full charge collection
- possible to repair pCVD diamonds with surface issues
- \bullet rate tests of irradiated pCVD diamonds up to $4\cdot 10^{15}\,\text{n/cm}^2$
- irradiated pCVD diamond does not show rate dependence to $\mathcal{O}(2\%)$

Section 6

Outlook

Outlook

- \bullet results of $3.5 \cdot 10^{15} \, n/cm^2$ irradiated $50 \, \mu m \times 50 \, \mu m$ detectors
- \bullet continue irradiation up to $1 \cdot 10^{16} \, \text{n/cm}^2$
- test both 50 μ m imes 50 μ m and 25 μ m imes 25 μ m pixel detectors
- \bullet reduce cell diameter to $1\sim 2\,\mu\text{m}$
- build pixel device on newest RD53 chip (50 μ m imes 50 μ m pixel pitch)
- continue scale up by 10x

