

Algorithmen II Vorlesung am 22.10.2013

Algorithmen II - Team

Vorlesung:

Prof. Dr. Dorothea Wagner

Übung:

- Thomas Bläsius (thomas.blaesius@kit.edu)
- Benjamin Niedermann (benjamin.niedermann@kit.edu)
- Sprechzeiten: Termin nach Vereinbarung

Homepage und Forum

- http://illwww.iti.kit.edu
- Aktuelle Informationen/Termine
- Skripte, Folien, Übungsblätter
- Literaturempfehlungen
- Forum
 - Für Fragen an die Übungsleiter.
 - Für Fragen untereinander.
 - erreichbar unter: https://ilias.studium.kit.edu

account erforderlich

Übungsbetrieb

- In der Regel findet jede zweite Woche eine Übung statt.
- Besprechung von Übungsblättern.
- Übungsblätter werden auf der Homepage rechtzeitig online gestellt.
- Übungsblätter können/sollten bearbeitet werden.

► Helfen den Stoff zu vertiefen + gute Vorbereitung für Klausur

1. Übungsblatt bereits online, Besprechung in der 1. Übung am 29. Oktober

Klausur

- Umfasst zwei Stunden.
- Orientierung: Vorlesung Algorithmen II des Vorjahres + Vorlesung Algorithmentechnik behandelte ähnlichen Stoff.
- Hauptklausur: vorausichtlich am 24.02.2014
- Nachklausur: Termin noch nicht bekannt.

Genaue Klausurtermine werden rechtzeitig bekannt gegeben.

Ziele der Vorlesung

Die Vorlesung soll ein vertieftes Verständnis von Algorithmen vermitteln:

1. Es werden verschiedene Arten von Algorithmen betrachtet, u.a.:

Graphenalgorithmen

Kombinatorische Optimierung

 $\begin{array}{|c|c|c|}
\hline
5 \\
\hline
4 \\
\hline
3
\end{array}$

gorithmen für fortgeschrittene

Algorithmische Geometrie

Ziele der Vorlesung

Die Vorlesung soll ein vertieftes Verständnis von Algorithmen vermitteln:

2. Es werden verschiedene Methodiken betrachtet, u.a.:

Randomisierte Algorithmen

Approximierende Algorithmen

Parallele Algorithmen

Online Algorithmen

1. Beispiel: Transportnetzwerke

Waren optimal durch Netzwerk schicken?

Flaschenhals: Wie berechnen?

Basierend auf "On the history of the transportation and maximum flow problems" von Alexander Schrijver

Wie Waren optimal durch das Netz schicken?

	Arkhangelsk	Yaroslavl'	Murom	Balakhonikha	Dzerzhinsk	Kishert'	Sverdlovsk	Artemovsk	Iledzhk	Dekonskaya	demand:
Agryz				709	1064	693					2
Aleksandrov					397			1180			4
Almaznaya								81		65	1.5
Alchevskaya								106		114	4
Baku								1554		1563	10
Barybino						12		985		968	2
Berendeevo		135			430						10
Bilimbai						200	59				1
Bobrinskaya								655		663	10
Bologoe		389						1398			1
Verkhov'e								670		CI	
					_			-			

- 1930: Sowjetischer Wissenschaftler Tolstoi versucht Transportproblem auf konkretem Schienennetz zu lösen.
- Erster Ansatz: Ausschließlich zwei Quellen.
- Zweiter Ansatz: Produzenten und Konsumenten liegen entlang einer ringförmingen Bahnstrecke.
- Ergebnis: Findet optimale Lösung, beweist aber nicht, dass die Lösung optimal ist.

Flaschenhals: Wie berechnen?

- 1954–1955: Harris and Ross formulieren in Fundamentals of a Method for Evaluating Rail Net Capacities Flussproblem in Transportnetzwerken.
- Motivation ist das sowjetische Schienennetz: Finde minimalen Schnitt.

Problemdefinition von Harris und Ross:

Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other.

1955: Ford und Fulkerson präsentieren allgemeine Lösung für Flussproblem und minimalen Schnitt.

Vorüberlegungen für Modellierung

- Vereinfachende Annahme: Ein Produzent (Quelle s) und ein Konsument (Senke t).
- Jeder Weg zwischen zwei Stationen besitzt eine Kapazität, die der Warenfluss nicht überschreiten darf.
- Was an eine Zwischenstation transportiert wird, muss auch von dort abtransportiert werden.
- Es darf von einer Zwischenstation nicht mehr abtransportiert werden, als dort ankommt.

Modellierung

Modelliere Transportnetzwerk als ein Tupel (D, s, t, c), so dass:

- D = (V, E) ist ein einfacher gerichteter Graph.
- s und t sind Knoten in V (Quelle und Senke).
- $lackbox{c}: E
 ightarrow \mathbb{R}_0^+$ ist Kantengewichtsfunktion.

Modelliere den Warenfluss in (D, s, t, c) als eine Funktion $f: E \to \mathbb{R}_0^+$, so dass folgende zwei Bedingungen gelten:

Kapazitätsbedingung:

Für alle $(i, j) \in E$ gilt: $0 \le f(i, j) \le c(i, j)$

Flusserhaltung:

Für alle
$$i \in V \setminus \{s, t\}$$
 gilt:
$$\sum_{(i,j) \in E} f(i,j) - \sum_{(j,i) \in E} f(j,i) = 0$$

In der Vorlesung behandelte Fragestellungen

- Wie können maximale Flüsse in einem Netzwerk effizient berechnet werden?
 - Ford-Fulkerson-Algorithmus
 - Algorithmus von Edmonds und Karp
 - Algorithmus von Goldberg und Tarjan
- Wie hängen Flüsse und Schnitte in einem Netzwerk (Graph) zusammen?
- Kann man Flussnetzwerke verwenden, um andere algorithmische Probleme zu lösen?

2. Beispiel: Periodische Fahrpläne

Aushangfahrplan der Linie S1 an der Station Städtisches Klinikum

10	09 _D	29 _D	39	59
11	09 _D	29 _D	39	59
12	09 _D	29_{D}	39	59
13	09 _D	29 _D	39	59
14	09 _D	29_{D}	39	59
15	09 _D	29 _D	39	59
16	09 _D	29_{D}	39	59
17	09 _D	29 _D	39	59
18	09 _D	29_{D}	39	59
19	09 _D	29 _D	39 _D	59
20	09 _D	29 _D	39 _D	59

Fahrplan ist periodisch

Fragestellung: Wie Fahrplan aller Linien berechnen, so dass

- Aushangfahrpläne periodisch sind,
- kurze Umstiegszeiten zu anderen Linien entstehen,
- Bahnen eine gewisse Aufenthaltszeit pro Station haben,
- und viele weitere Bedingungen.

Modellierung als Graph

r.O OKurt-Schumacher-Str.
weg O OAugust-Bebel-Str.
ertzstr.O OKnielinger Allee
IBmaulstr.O Städtisches Klinikum/
Moltkestr.

- Für jede Linie führe Kanten und Knoten für Hin- und Rückrichtung ein.
- Für jede Richtung führe Knoten für Ankunft und Abfahrt ein.
- Führe für mögliche Umstiege Kanten ein.
- Annotiere jede Kante mit Zeitinterval [minimale Dauer,maximale Dauer]

Städtisches Klinikum

Problemstellung

T-PERIODIC EVENT SCHEDULING PROBLEM

gegeben: gerichteter Graph G = (V, A) und Vektoren $I, u \in \mathbb{Q}^{|A|}$.

gesucht: Vektor $\pi \in [0, T)^V$, so dass für jede Kante $a = (u, v) \in A$ gilt:

$$(\pi_v - \pi_u - I_a) \mod T \le u_a - I_a (\text{oder } \pi_v - \pi_u \in [I_a, u_a]_T)$$

Erklärung:

- G ist aus Liniennetz extrahierter Graph.
- T ist gewünschte Periode (im Beispiel 10 min).
- I gibt minimale Dauer und u gibt maximale Dauer der einzelnen Kanten an.
- π enthält für jeden Knoten $v \in V$ einen Zeitpunkt wann Ereignis von v auftritt (bezüglich der Periode T).

In der Vorlesung behandeltes Problem

Lösungsansätze des Periodic Event Scheduling Problem werden nicht direkt behandelt, sondern nur ein Teilproblem:

Ein Teilgraph $C = (V_C, E_C)$ von G = (V, E) heißt **Kreis** in G, falls alle Knoten aus V_C in C geraden Grad haben.

Problemstellung: Finde minimal große Menge C an Kreisen in G, so dass sich alle Kreise in G aus C zusammensetzen lassen.

3. Beispiel: Volltextsuche

Gegeben: Zwei Folgen T und P von Zeichen mit Länge n und m ($m \le n$).

Gesucht: Alle Vorkommen von P in T.

- 1. Beobachtung: Ohne Vorwissen über P und T benötigt jeder Algorithmus $\Omega(m+n)$ Zeit:
 - Alle Zeichen von T müssen mindestens einmal betrachtet werden $\to \Omega(n)$.
 - Alle Zeichen von P müssen mindestens einmal betrachtet werden $\to \Omega(m)$.

Naiver Ansatz

Matching(Text T, Muster P)

- 1. Setze n = Länge von T und setze m = Länge von P.
- 2. Für i = 0 bis n m führe aus
 - (a) Falls P[1 ... m] = T[i + 1 ... i + m], dann gebe aus: Muster P taucht mit Verschiebung i in T auf.

Analyse:

- Schleife benötigt n m Schritte.
- Vergleich in Schleife benötigt m Schritte

Algorithmus benötigt $\Theta((n-m+1)\cdot m)$

Hinweis: Trotz schlechter theoretischer Laufzeit, in der Praxis nahezu lineare Laufzeit: In natürlichsprachlichen Texten kann der Vergleich P[1 ... m] = T[i + 1 ... i + m] häufig bereits nach den ersten zwei Zeichen abgebrochen werden. (In der englischen Sprache im Durchschnitt nach 1.07 Zeichen.)

In der Vorlesung behandelte Algorithmen

Idee: Investiere Zeit in Vorberchnungsschritt, um bei Anfrage Zeit zu sparen.

	Vorbereitungszeit	Suchzeit	typische Anwendung
Naiver Ansatz		$\Theta((n-m+1)\cdot m)$	АВ
Rabin-Karp-Algorithmus	⊖(<i>m</i>)	average $\Theta(n + m)$ worst $\Theta((n-m+1)\cdot m)$	
Endlicher Automat	$\mathcal{O}(m\cdot \Sigma)$	⊖(<i>n</i>)	Α
Knuth-Morris-Pratt	$\Theta(m)$	Θ(<i>n</i>)	
Suffix Trees	Θ(<i>n</i>)	$\Theta(m)$	В

A: Ein Muster, verschiedene Texte.

B: Ein Text, verschiedene Muster.

 Σ = Alphabet der Zeichenfolgen

4. Beispiel: Knotenüberdeckung

Definition: Knotenüberdeckung (Vertex Cover)

Gegeben ein Graph G = (V, E). Eine *Knotenüberdeckung* $S \subseteq V$ ist eine Teilmenge von V, so dass

für alle $\{u, v\} \in E$ gilt $u \in S$ oder $v \in S$.

VERTEX COVER PROBLEM

Gegeben ein Graph G = (V, E). Gibt es eine Knotenüberdeckung S mit maximal k Knoten?

Problem ist \mathcal{NP} -vollständig.

Knotenüberdeckung

minimal