Similarity / Distance Measures

CSE 5334 Data Mining, Spring 2020

Won Hwa Kim

(Slides courtesy of Pang-Ning Tan, Michael Steinbach and Vipin Kumar)

Similarity and Dissimilarity

Similarity

- o Numerical measure of how alike two data objects are
- o Is higher when objects are more alike
- o Often falls in the range [0,1]

Dissimilarity

- o Numerical measure of how different are two data objects
- o Lower when objects are more alike
- o Minimum dissimilarity is often 0
- o Upper limit varies

Proximity refers to a similarity or dissimilarity

Similarity and Dissimilarity of Simple Attributes

Dissimilarity between Objects

- o Distance
- o Set Difference
- 0 ...

Similarity between Objects

- o Binary Vectors
- o Vectors
- 0 ...

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio	d = p - q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$	
		$s = 1 - \frac{d - min_d}{max_d - min_d}$	

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

Euclidean Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k-th attributes (components) or data objects p and q.

Minkowski Distance: Examples

r = 1. City block (Manhattan, taxicab, L₁ norm) distance.

A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors

- r=2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.

This is the maximum difference between any component of the vectors

 \diamond Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

Data

point	X	\mathbf{y}
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Distance Matrix

L1	p1	p2	р3	р4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	р4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p 1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
р4	5	3	2	0

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

* A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- \diamond Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities

 M_{01} = the number of attributes where p was 0 and q was 1

 M_{10}° = the number of attributes where \hat{p} was 1 and \hat{q} was 0

 M_{00}^{0} = the number of attributes where p was 0 and q was 0

 M_{11}° = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes = $(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

$$p = 100000000000$$

$$q = 0000001001$$

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

$$SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$


```
If d_1 and d_2 are two document vectors, then \cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||, where \bullet indicates vector dot product and ||d|| is the length of vector d.
```

Example:

$$\begin{aligned} d_1 &= 3205000200 \\ d_2 &= 1000000102 \\ d_1 &\bullet d_2 &= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ ||d_1|| &= (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| &= (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245 \end{aligned}$$

$$\cos(d_1, d_2) = .3150$$

Pearson Correlation Coefficient

* Correlation measures the linear relationship between objects

standard deviation

$$\begin{split} \mathbf{E}[X] &= \mu. \\ & \sigma = \sqrt{\mathbf{E}[(X - \mu)^2]} \\ &= \sqrt{\mathbf{E}[X^2] + \mathbf{E}[-2\mu X] + \mathbf{E}[\mu^2]} = \sqrt{\mathbf{E}[X^2] - 2\mu \, \mathbf{E}[X] + \mu^2} \\ &= \sqrt{\mathbf{E}[X^2] - 2\mu^2 + \mu^2} = \sqrt{\mathbf{E}[X^2] - \mu^2} \\ &= \sqrt{\mathbf{E}[X^2] - (\mathbf{E}[X])^2} \end{split}$$

covariance

$$\begin{aligned} \text{cov}(X, Y) &= \text{E}[(X - \text{E}[X]) (Y - \text{E}[Y])] \\ &= \text{E}[XY - X \text{E}[Y] - \text{E}[X]Y + \text{E}[X] \text{E}[Y]] \\ &= \text{E}[XY] - \text{E}[X] \text{E}[Y] - \text{E}[X] \text{E}[Y] + \text{E}[X] \text{E}[Y] \\ &= \text{E}[XY] - \text{E}[X] \text{E}[Y]. \end{aligned}$$

Pearson Correlation Coefficient

Correlation measures the linear relationship between objects population correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y},$$

sample correlation

$$egin{aligned} r &= rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}} \ r &= r_{xy} = rac{n\sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n\sum x_i^2 - (\sum x_i)^2}\,\sqrt{n\sum y_i^2 - (\sum y_i)^2}} \ . \ r &= r_{xy} = rac{\sum x_i y_i - nar{x}ar{y}}{\sqrt{(\sum x_i^2 - nar{x}^2)}\,\sqrt{(\sum y_i^2 - nar{y}^2)}} \ . \end{aligned}$$

$$r = r_{xy} = rac{1}{n-1} \left[\sum_{i=1}^n \left(rac{x_i - ar{x}}{s_x}
ight) \left(rac{y_i - ar{y}}{s_y}
ight)
ight] \longleftarrow ext{dot product}$$
 $r = r_{xy} = rac{\sum x_i y_i - nar{x}ar{y}}{(n-1)s_x s_y}$ $s_x = \sqrt{rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2}$

Visually Evaluating Correlation

Scatter plots showing the similarity from –1 to 1.

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
 - 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
 - 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:
 - $\delta_k = \begin{cases} 0 & \text{if the } k^{th} \text{ attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the } k^{th} \text{ attribute} \\ & 1 & \text{otherwise} \end{cases}$
 - 3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^{n} \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
- o Use weights w_k which are between 0 and 1 and sum to 1.

$$similarity(p,q) = rac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^{n} w_k |p_k - q_k|^r\right)^{1/r}$$