Recall from Calculus

Omid Safarzadeh

January 11, 2022

(ロ) (리) (리) (본) (본) (본) (인()

Omid Safarzadeh Rosell Bour Carollis January 11, 2022

Set theory Operations

- Union: The union of A and B is the set of elements that belong to either A or B or both.
- Intersection: The intersection of A and B is the set of elements that belong to both A and B.
- Complement: The complement of A is the set of all elements that are not in Α.

$$A^c = \{x : x \notin A\}.$$

Introduction

- Derivative
 - Chain rule
- 2 Integral
 - Techniques of Integration
 - Substitution
 - Integration by parts

Newton-Raphson

Omid Safarzadeh Resultinan Calculus January 11, 2022

Derivative

Definition 1.1

Derivative of f(x) at x = a defined as:

$$\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=f'(a)$$

Higher-order derivatives are defined as:

$$f'(x) = \frac{df(x)}{dx}, \ f''(x) = f^2(x) = \frac{d}{dx}(\frac{df(x)}{d(x)}) = \frac{d^2f(x)}{dx^2}, ...,$$

And so

$$f^n(x) = \frac{d^n f(x)}{dx^n}$$

Omid Safarzadeh

Some important derivative formula is summarized as bellow:

$$(f+g)'=f'+g' \tag{1}$$

$$(a.f)' = a.f' \tag{2}$$

$$(f.g)' = f'g + f.g' \tag{3}$$

$$\left(\frac{1}{f}\right)' = \frac{-f'}{f^2} \tag{4}$$

$$f'(a) = 0 (5)$$

$$f'(ax) = a (6)$$

$$(\frac{1}{af(x)})' = \frac{-f'(x)}{(af(x))^2} \tag{7}$$

Derivative

$$(asin(bx))' = abcos(bx)$$
 (8)

$$(a\cos(bx))' = -ab\sin(bx) \tag{9}$$

$$(atan(bx))' = ab(1 + tan2(x))$$
(10)

$$(acot(bx))' = -ab(1 + cot^2(x))$$
(11)

$$\left(e^{ax}\right)' = ae^{ax} \tag{12}$$

Omid Safarzadeh Secons Conculus January 11, 2022

Derivative

$$(asinh(bx))' = abcosh(bx)$$
 (13)

$$(a\cosh(bx))' = ab\sinh(bx) \tag{14}$$

$$(\sqrt{f(x)})' = \frac{f'(x)}{2\sqrt{f(x)}} \tag{15}$$

Omid Safarzadeh Focult from Colonius January 11, 2022

Chain rule

The chain rule provides us a technique for finding the derivative of composite functions, with the number of functions that make up the composition determining how many differentiation steps are necessary.

Definition 1.2

Suppose that x = g(t) and y = h(t) are differentiable functions of t and z = f(x, y) is a differentiable function of x and y. Then z = f(x(t), y(t)) is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

For example

$$f(g(x))' = g'(x).f'(g(x))$$

Omid Safarzadeh Scarll-House Gelatius January 11, 2022 8/18

Integral

- Integration can be used to find areas, volumes, central points and many useful things.
- It is necessary to mention that an Integral is the reverse of finding a
 Derivative

Figure: Integral vs Derivative

Omid Safarzadeh Rocall Visur Calculus January 11, 2022

Some important integration formula is summarized as bellow:

$$\int u^n du = \frac{1}{n+1} u^{n+1} + c \tag{16}$$

$$\int \sin x dx = -\cos x + c \tag{17}$$

$$\int \cos x dx = \sin x + c \tag{18}$$

$$\int \frac{du}{u} = \ln|u| + c \tag{19}$$

$$\int a^u du = \frac{a^u}{\ln a} + c \tag{20}$$

Omid Safarzadeh Rocali Iran Colonica January 11, 2022 10

Integral

$$\int \tan x dx = -\ln|\cos x| + c = \ln|\sec x| + c \tag{21}$$

$$\int \cot x dx = \ln|\sin x| \tag{22}$$

$$\int \frac{du}{1+u^2} = \tan^{-1} u + c \tag{23}$$

$$\int \frac{du}{\sqrt{1-u^2}} = \sin^{-1} u + c \tag{24}$$

Omid Safarzadeh Rosell Florin Schools January 11, 2022 1:

Substitution

Needless to say, most problems we encounter will not be so simple. Here's a slightly more complicated example: find

$$\int 2x\cos\left(x^2\right)dx.$$

This is not a "simple" derivative, but a little thought reveals that it must have come from an application of the chain rule. Multiplied on the "outside" is 2x, which is the derivative of the "inside" function x^2 . Checking:

$$\frac{d}{dx}\sin(x^2) = \cos(x^2)\frac{d}{dx}x^2 = 2x\cos(x^2),$$

SO

$$\int 2x\cos(x^2)dx = \sin(x^2) + C$$

Substitution

Example 2.1

Evaluate $\int x \sin(x^2) dx$.

• First we compute the antiderivative, then evaluate the definite integral. Let $u = x^2$ so du = 2xdx or xdx = du/2. Then

$$\int x \sin(x^2) dx = \int \frac{1}{2} \sin u du = \frac{1}{2} (-\cos u) + C = -\frac{1}{2} \cos(x^2) + C.$$

Omid Safarzadeh Real Trans Calabas January 11, 2022 13 / 18

Integration by parts

Definition 2.1

integration by parts is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found.

• Start with the product rule:

$$\frac{d}{dx}f(x)g(x) = f'(x)g(x) + f(x)g'(x).$$

• We can rewrite this as

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx,$$

and then

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx.$$

Omid Safarzadeh Brazilitzena Gizelles January 11, 2022 14/18

Integration by parts

• If we let u = f(x) and v = g(x) then du = f'(x)dx and dv = g'(x)dx and

$$\int u dv = uv - \int v du.$$

• To use this technique we need to identify likely candidates for u = f(x) and dv = g'(x)dx.

Omid Safarzadeh Rocal View Calculus January 11, 2022

Integration by parts

Example 2.2

Evaluate $\int x \sin x dx$.

Let

$$u = x \xrightarrow{f} du = dx$$

$$dy = \sin x dx \xrightarrow{\int} y = -\cos x$$

SO

$$\int x \sin x dx = -x \cos x - \int -\cos x dx = -x \cos x + \sin x + C.$$

(ロ > 《圖 > 《필 > 《필 > _ 필 _ 씨익()

Omid Safarzadeh Secret Franciscus January 11, 2022 16/18

Newton-Raphson

Omid Safarzadeh

$$\mathbf{x} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{bmatrix} \quad \pi = \begin{bmatrix} \pi_1(x_1; \beta^{old}) \\ \pi_1(x_2; \beta^{old}) \\ \vdots \\ \pi_1(x_n; \beta^{old}) \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

W =

$$\begin{bmatrix} \pi(x_1; \beta^{old})(1 - \pi(x_1; \beta^{old})) & 0 & \cdots & 0 \\ 0 & \pi(x_2; \beta^{old})(1 - \pi(x_2; \beta^{old})) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \pi(x_n; \beta^{old})(1 - \pi(x_n; \beta^{old})) \end{bmatrix}$$

Newton-Raphson

$$\beta^{new} = \beta^{old} + (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{y} - \pi)$$

$$= \underbrace{(\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W}}_{\text{weighted least squares}} \mathbf{z}$$

where $\mathbf{z} = \mathbf{X}\beta^{old} + \mathbf{W}^{-1}(\mathbf{y} - \pi)$ is the adjusted response. $\beta^{new} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \mathbf{z}$ is the solution to

$$\beta^{\textit{new}} \leftarrow \arg\min_{\beta} (\mathbf{z} - \mathbf{X}\beta)^{\mathsf{T}} \mathbf{W} (\mathbf{z} - \mathbf{X}\beta)$$

This is called iteratively reweighted least squares.

- How to start? Ex: take $\beta = [0, 0, ..., 0]^T$ initially
- ullet Update eta until convergence