CCS6224 Network Security

Lecture 5 Virtual Private Network (VPN)

Outline

- > Introduction to VPN
- > IPsec VPN Components and Operations
- > Implementing Site-to-Site IPsec VPNs

Introduction to VPN Layer 3 IPsec VPNs

VPN Benefits:

- Cost Savings
- Security
- Scalability
- Compatibility

Types of VPNs

Remote-Access VPN

Site-to-Site VPN Access

Components of Remote-Access VPNs

Components of Site-to-Site VPNs

IPsec VPN Components and Operations IPsec Technologies

- IPsec Protocols
 - AH (Authentication Header)
 - ESP (Encapsulated Security Payload)
- AH offers integrity and authentication but does not offer any encryption
- ESP not only offers authentication and integrity, but also encrypts the payload

π IPsec Technologies

IPsec Framework

IPsec Framework Choices ESP + IPsec Protocol AH Confidentiality SEAL DES 3DES **AES** Integrity Authentication Diffie-Hellman DH1 DH2 DH5 DH...

IPsec Implementation Examples

Confidentiality

Confidentiality with Encryption:

Confidentiality

Encryption Algorithms:

Integrity

Hash Algorithms

Security of Hash Algorithms

Authentication

Peer Authentication Methods

PSK (Pre-shared Key)

Authentication - PSK

- At the local device, the authentication key and the device identity are sent through a hash algorithm to form hash_L (Authenticating Hash). One-way authentication is established by sending hash_L to the remote device. If the remote device computes the same hash, then the local device is authenticated
- > For the authentication in the opposite direction, the remote device combines its identity with the preshared-based key and send it through the hash algorithm to form hash_R, then hash_R is sent to the local device. If the local device can compute the same hash, the remote device is authenticated.

Authentication

RSA (Rivest-Shamir-Adleman)

Authentication - RSA

- At the local device, the authentication key and the device identity are sent through a hash algorithm to form hash_L. hash_L is encrypted using the local device's private encryption key creating a digital signature. The public encryption key for decrypting the signature is included in the digital certificate.
- > The remote device verifies the digital signature by decrypting it using the public encryption key. The result is hash_L.
- Next, the remote device creates hash_L from stored information. If the computed hash_L = decrypted hash_L, then the local device is authenticated. After that, the authentication process in the opposite direction begins by repeating the same steps.

Secure Key Exchange

Diffie-Hellman Key Exchange

IPsec Protocols

AH Protocols

ESP Protocols

Authentication Header

Peer Router hashes the IP header and data payload, then compares this Recomputed Hash to Received Hash

Router Creates Hash and Transmits to Peer

ESP Encrypts and Authenticates

Transport and Tunnel Modes

ESP in Two Modes

Transport and Tunnel Modes (Cont.)

ESP in Tunnel Mode

Transport Mode

- Provides protection primarily for upper-layer protocols
 - Examples include a TCP or UDP segment or an ICMP packet
- Typically used for end-to-end communication between two hosts
- ESP in transport mode encrypts and optionally authenticates the IP payload but not the IP header
- AH in transport mode authenticates the IP payload and selected portions of the IP header

Tunnel Mode

- Provides protection to the entire IP packet
- Used when one or both ends of a security association (SA) are a security gateway
- A number of hosts on networks behind firewalls may engage in secure communications without implementing IPsec
- ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet, including the inner IP header
- AH in tunnel mode authenticates the entire inner IP packet and selected portions of the outer IP header

The Internet Key Exchange (IKE) Protocol

IKE Phase 1 and 2

IKE Phase 1 – 1st Exchange

Negotiates matching IKE policies to protect IKE exchange

IKE Phase 1 – 2nd Exchange

A DH exchange is performed to establish keying material.

IKE Phase 1 – 3rd Exchange

A bidirectional IKE SA is now established.

IKE Phase 2: Negotiating SAs

- > IKE negotiates matching IPsec policies
- Upon completion, IPsec Security Associations (SAs) are established for each protocol and algorithm combination

Implementing Site-to-Site IPsec VPNs

- IPsec negotiation and the five steps of IPsec configuration.
- Configure compatible ACLs.
- Configure the ISAKMP policy.
- Configure IPsec transform set
- Create a crypto ACL
- Configure and apply a crypto map.

IPsec Negotiation & 5-steps of IPsec Configuration

Step 1 - Host A sends interesting traffic to Host B.

Step 2 - R1 and R2 negotiate an IKE Phase 1 session.

Step 3 - R1 and R2 negotiate an IKE Phase 2 session.

IPsec Negotiation & 5-steps of IPsec Configuration

Information is exchanged via IPsec tunnel.

Step 5 - The IPsec tunnel is terminated.

IPsec VPN Configuration Tasks

XYZCORP Security Policy	Configuration Tasks
Encrypt traffic with AES 256 and SHA	1. Configure compatible ACLs
Authentication with PSK	2. Configure the ISAKMP policy
Exchange keys with group 24	3. Configure IPsec transform set
ISAKMP tunnel lifetime is 1 hour	4. Create a crypto ACL
IPsec tunnel uses ESP with a 15-min. lifetime	5. Configure and apply a crypto map

Configure Compatible ACLs

Configure Compatible ACLs

Permitting Traffic for IPsec Negotiations

The Default ISAKMP Policies

Configure a New ISAKMP Policy

```
XYZCORP
          Site 1
                                                                          Site 2
       10.0.1.0/24
                                                                      192.168.1.0/24
                                         Internet
                          S0/0/0
                                                         S0/0/0
                          172.30.2.1
                                                     172.30.2.2
10.0.1.3
 R1(config)# crypto isakmp policy 1
 R1(config-isakmp)# hash sha
 R1(config-isakmp)# authentication pre-share
 R1(config-isakmp)# group 24
 R1(config-isakmp)# lifetime 3600
 R1(config-isakmp) # encryption aes 256
 R1(config-isakmp)# end
 R1# show crypto isakmp policy
 Global IKE policy
 Protection suite of priority 1
         encryption algorithm:
                                   AES - Advanced Encryption Standard (256 bit keys).
         hash algorithm:
                                   Secure Hash Standard
         authentication method:
                                   Pre-Shared Key
         Diffie-Hellman group:
                                   #24 (2048 bit, 256 bit subgroup)
                                   3600 seconds, no volume limit
         lifetime:
 R1#
```

ISAKMP Parameters

Parameter	Keyword	Accepted Values	Default Value	Description
encryption	des 3des aes aes 192 aes 256	56-bit Data Encryption Standard Triple DES 128-bit AES 192-bit AES 256-bit AES	des	Message encryption algorithm
hash	sha md5	SHA-1 (HMAC variant) MD5 (HMAC variant)	sha	Message integrity (Hash) algorithm
authenticati on	pre-share rsa-encr rsa-sig	preshared keys RSA encrypted nonces RSA signatures	rsa-sig	Peer authentication method
group	1 2 5	768-bit Diffie-Hellman (DH) 1024-bit DH 1536-bit DH	1	Key exchange parameters (DH group identifier)
lifetime	seconds	Can specify any number of seconds	86,400 sec (one day)	ISAKMP-established SA lifetime

Configuring a Pre-Shared Key

The crypto isakmp key Command

Router(config)#

crypto isakmp key keystring address peer-address

Router (config) #

crypto isakmp key keystring hostname peer-hostname

Parameter Description		
keystring	This parameter specifies the PSK. Use any combination of alphanumeric characters up to 128 bytes. This PSK must be identical on both peers.	
peer- address	This parameter specifies the IP address of the remote peer.	
This parameter specifies the hostname of the remote peer. This is the peer hostname concatenated with its domain name (for example, myhost.domain.com).		

Configuring a Pre-Shared Key

Pre-Shared Key Configuration

Configure IPsec Transform Set

The crypto ipsec transform-set Command

Configure IPsec Transform Set (Cont.)

The crypto ipsec transform-set Command

Configure the Crypto ACLs

Configure an ACL to Define Interesting Traffic

Syntax to Configure a Crypto Map

Router(config)#				
crypto map map-name seq-num [ipsec-isakmp ipsec-manual]				
Parameter	Description			
map-name	Identifies the crypto map set.			
seq-num	Sequence number you assign to the crypto map entry. Use the crypto map map-name seq-num command without any keyword to modify the existing crypto map entry or profile			
ipsec-isakmp	Indicates that IKE will be used to establish the IPsec for protecting the traffic specified by this crypto map entry.			
ipsec-manual	Indicates that IKE will not be used to establish the IPsec SAs for protecting the traffic specified by this crypto map entry			

Configure a Crypto Map

Crypto Map Configuration Commands

XYZCORP Crypto Map Configuration

Crypto Map Configuration:


```
R1(config) # crypto map R1-R2 MAP 10 ipsec-isakmp
% NOTE: This new crypto map will remain disabled until a peer
and a valid access list have been configured.
R1(config-crypto-map) # match address 101
R1(config-crypto-map) # set transform-set R1-R2
R1(config-crypto-map) # set peer 172.30.2.2
R1(config-crypto-map) # set pfs group24
R1(config-crypto-map) # set security-association lifetime seconds 900
R1(config-crypto-map) # exit
R1(config) #
```



```
R2(config) # crypto map R1-R2 MAP 10 ipsec-isakmp
% NOTE: This new crypto map will remain disabled until a peer
and a valid access list have been configured.
R2(config-crypto-map) # match address 102
R2(config-crypto-map) # set transform-set R1-R2
R2(config-crypto-map) # set peer 172.30.2.1
R2(config-crypto-map) # set pfs group24
R2(config-crypto-map) # set security-association lifetime seconds 900
R2(config-crypto-map) # exit
R2(config) #
```

XYZCORP Crypto Map Configuration

Crypto Map Configuration:

Apply the Crypto Map

Send Interesting Traffic

Use Extended Ping to Send Interesting Traffic

Verify ISAKMP and IPsec Tunnels

Verify the ISAKMP Tunnel is Established

Verify ISAKMP and IPsec Tunnels

Verify the IPsec Tunnel is Established


```
interface: Serial0/0/0
Crypto map tag: R1-R2_MAP, local addr 172.30.2.1

protected vrf: (none)
local ident (addr/mask/prot/port): (10.0.1.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
current_peer 172.30.2.2 port 500
PERMIT, flags={origin_is_acl,}
#pkts encaps: 4, #pkts encrypt: 4, #pkts digest: 4
#pkts decaps: 4, #pkts decrypt: 4, #pkts verify: 4
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
```