

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт искусственного интеллекта Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 10

Изучение работы триггеров **по дисциплине** «ИНФОРМАТИКА»

Выполнил студент групп	ты <i>ИКБО-09-22</i>	Гришин А. В.
Принял		Смирнов С. С.
Старший преподаватель	ь кафедры ОИ	Смирнов С. С.
Практическая работа выполнена	«»2022 г.	
«Зачтено»	«»2022 г.	

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ НА ПРАКТИЧЕСКУЮ РАБОТУ 3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ
2.1 Одноступенчатый асинхронный RS-триггер на элементах И-НЕ 4
2.2.Одноступенчатый асинхронный RS-триггер на элементах ИЛИ-HE 5
2.3 Одноступенчатый синхронный RS-триггер на элементах И-НЕ 6
2.4 Двухступенчатый синхронный RS-триггер с асинхронными входами
предустановки, выполненный на элементах И-НЕ7
2.5 Одноступенчатый D-триггер, выполненный на элементах И-НЕ 8
2.6 Динамический RS-триггер, работающий по переднему фронту,
выполненный на элементах И-НЕ9
2.7 Динамический RS-триггер, работающий по заднему фронту,
выполненный на элементах ИЛИ-НЕ10
2.8 Т-триггер с асинхронными входами предустановки, выполненный на
основе двухступенчатого RS-триггера11
2.9 ЈК-триггер
3 ВЫВОДЫ
4 СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

1 ПОСТАНОВКА ЗАДАЧИ НА ПРАКТИЧЕСКУЮ РАБОТУ

Изучить на практике работу:

- -одноступенчатого асинхронного RS-триггера на элементах И-НЕ;
- -одноступенчатого асинхронного RS-триггера на элементах ИЛИ-НЕ;
- -одноступенчатого синхронного RS-триггера на элементах И-НЕ;
- -двухступенчатого синхронного RS-триггера с асинхронными входами предустановки, выполненного на элементах И-НЕ;
- -одноступенчатого D-триггера, выполненного на элементах И-НЕ;
- -динамического RS-триггера, работающего по переднему фронту, выполненный на элементах И-НЕ;
- -динамического RS-триггера, работающего по заднему фронту, выполненного на элементах ИЛИ-НЕ;
- -Т-триггера с асинхронными входами предустановки, выполненного на основе двухступенчатого RS-триггера;

-ЈК-триггера;

Собрать в Logisim-е все перечисленные виды триггеров, изучить режимы их работы, разобраться, как работает статическая и динамическая синхронизация, проверить на правильность собранные схемы и понять, как из одного триггера собрать другой.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Одноступенчатый асинхронный RS-триггер на элементах И-НЕ

RS-триггер или SR-триггер (Logisim) – асинхронный триггер, который сохраняет своё предыдущее состояние при неактивном состоянии обоих входов и изменяет своё состояние при подаче на один из его входов активного уровня. При подаче на оба входа активного уровня состояние триггера, вообще говоря, неопределённо, но в конкретных реализациях на логических элементах оба выхода принимают состояния либо логического 0, либо логической 1. В зависимости от конкретной реализации активным входным уровнем может быть, как логическая 1, так и логический 0.

При подаче активного уровня на вход S (от англ. Set – установить) выходное состояние становится равным логической единице. А при подаче активного уровня на вход R (от англ. Reset – сбросить) выходное состояние становится равным логическому нулю. Состояние, при котором на оба входа R и S одновременно поданы активные уровни не определено и зависит от реализации. Так в RS-триггере, выполненном на 2 элементах И-НЕ (рис. 1), активным входным уровнем является логический 0 (табл. 1). Одновременный перевод обоих входов в неактивный режим вызовет запрещенную комбинацию.

Таблица 1 – Таблица переходов триггера

Ī	R	Q(t + 1)	$\overline{Q(t+1)}$	Режим
0	0	1	1	Запрещенная комбинация
0	1	1	0	Установка 1
1	0	0	1	Установка 0
1	1	Q(t)	$\overline{Q(t)}$	Хранение

Рисунок 1 — Одноступенчатый асинхронный RS-триггер на элементах И-НЕ

2.2 Одноступенчатый асинхронный RS-триггер на элементах ИЛИ-НЕ

В триггере на элементах ИЛИ-НЕ (табл. 2) оба выхода переходят в состояние логической 0, которое сохраняется пока на входах удерживаются логические 1. Перевод одного из входов в неактивное состояние, в данном примере в логическую 0, переводит триггер в одно из разрешённых устойчивых состояний. Одновременный перевод обоих входов из активного в неактивное состояние вызывает непредсказуемое переключение триггера в одно из устойчивых состояний, смотреть схему (рис. 2).

Таблица 2 – Таблица переходов триггера

S	R	$\mathbf{Q}(\mathbf{t} + 1)$	$\overline{\mathbf{Q}(\mathbf{t}+1)}$	Режим
0	0	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
0	1	0	1	Установка 0
1	0	1	0	Установка 1
1	1	0	0	Запрещенная комбинация

Рисунок 2-Одноступенчатый асинхронный RS-триггер на элементах ИЛИ-НЕ

2.3 Одноступенчатый синхронный RS-триггер на элементах И-НЕ

Синхронные RS-триггеры. Триггерные ячейки – это основа делителей частоты, счетчиков и регистров. В этих устройствах записанную ранее информацию по специальному сигналу, называемому тактовым, следует передать на выход и переписать в следующую ячейку. Для осуществления такого режима в RS-триггер необходимо ввести дополнительный вход C, который может быть статическим или динамическим, т. е. получим синхронный RS-триггер.

Если на вход С подать сигнал логической единицы C=1, то работа триггера аналогична работе простейшего асинхронного RS-триггера. При C=0 входы S и R не оказывают влияние на состояние триггера. Комбинация сигналов S=R=C=1 является запрещенной. Таблица 3 отражает состояния такого триггера. Схема показывает работу данного триггера в программе Logisim (рис. 3).

Таблица 3 – Таблица переходов триггера

C	S	R	Q(t + 1)	$\overline{Q(t+1)}$	Режим
0	*	*	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
1	0	0	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
1	0	1	0	1	Установка 0
1	1	0	1	0	Установка 1
1	1	1	1	1	Запрещенная комбинация

Рисунок 3 — Одноступенчатый синхронный RS-триггер на элементах И-НЕ

2.4 Двухступенчатый синхронный RS-триггер с асинхронными входами предустановки, выполненный на элементах И-НЕ

Двухступенчатый синхронный RS-триггер — триггер, в состав которого входят 2 одноступенчатых синхронных RS-триггера и элемент И-НЕ. Данный триггер предназначен для тактирования триггера фронтом импульса или перепадом потенциала (табл. 4).

Каждая ступень представляет собой синхронный RS-триггер. При наличии на шине С логической 1 триггер T1 воспринимает информацию, поступившую по шинам S и R которая и определяет его состояние. В это время за счет инвертора на входе С триггера T2 действует 0 и его состояние не меняется. В момент, когда C=0 на выходе инвертора появляется логическая единица, которая разрешает перезапись в триггер T2 информации из триггера T1. Таким образом, информация в триггере T1 записывается по фронту синхроимпульса, а в триггере T2 – по его срезу.

Когда инверсные входы S и R равны единице — включается режим хранения и нет разницы, что подается на вход S и R. Подключение тактового генератора в качестве входа C, включает синхронные установки. Для расширения возможности триггеров возможно объединение синхронных и асинхронных триггеров (рис. 4).

Таблица 4 – Таблица переходов триггера

C	Ŝ	$\overline{\mathbf{R}}$	S	R	Q(t + 1)	$\overline{\mathbf{Q}(\mathbf{t}+1)}$	Режим
*	0	0	*	*	1	1	Запрещенная комбинация
*	0	1	*	*	1	0	Асинхронный 1
*	1	0	*	*	0	1	Асинхронный 0
0	1	1	*	*	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
1	1	1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
۲	1	1	0	1	0	1	Синхронная установка 0
۲	1	1	1	0	1	0	Синхронная установка 1
۲	1	1	1	1	1	1	Запрещенная комбинация

Рисунок 4 — Двухступенчатый синхронный RS-триггер с асинхронными входами предустановки, выполненный на элементах И-НЕ

2.5 Одноступенчатый D-триггер, выполненный на элементах И-НЕ

D-триггеры имеют, как минимум, два входа: информационный D и синхронизации C. Вход синхронизации C может быть статическим (потенциальным) и динамическим. У триггеров со статическим входом C, информация записывается в течение времени, при котором уровень сигнала C=1, такие триггеры иногда называют "прозрачной защёлкой". В триггерах с динамическим входом C информация записывается со входа D в состояние триггера только в момент перепада напряжения на входе C.

Таблица истинности D-триггера достаточно проста (табл. 5). Как видно из этой таблицы, данный триггер способен запоминать двоичный сигнал по синхросигналу и хранить один бит двоичной информации.

Одноступенчатый D-триггер, реализующий характеристическое уравнение, может быть построен из одноступенчатого синхронного RS-триггера и элемента И-НЕ (рис. 5).

Таблица 5 – Таблица переходов триггера

С	D	Q(t + 1)	$\overline{Q(t+1)}$	Режим
0	*	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
1	0	0	1	Установка 0
1	1	1	0	Установка 1

Рисунок 5 – Одноступенчатый D-триггер, выполненный на элементах И-НЕ

2.6 Динамический RS-триггер, работающий по переднему фронту, выполненный на элементах И-НЕ

Отличительной чертой триггеров с динамическим управлением записью является то, что информация в триггер поступает только в момент изменения сигнала на входе С или из 0 в 1 или из 1 в 0. В первом случае триггер имеет прямой динамический вход С, а во втором – инверсный динамический вход С.

Проанализировав функциональную схему (рис. 6) синхронного RS-триггера с динамическим управлением, убедимся в том, что состояние триггера не меняется как при изменении сигналов на входах S и R при C=0, так и при C=1, если триггер переключился по фронту синхронизирующего импульса.

При C=0 на выходах элементов будут сигналы логической единицы, и состояние на выходе триггера изменяться не будет при любых изменениях сигналов на входах R и S (табл. 6).

Таблица 6 – Таблица переходов триггера

C	Ī	$\overline{\mathbf{R}}$	Q(t + 1)	$\overline{Q(t+1)}$	Режим
0	*	*	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
1	*	*	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
7	0	0	0	0	Запрещенная комбинация
۲	0	1	1	0	Синхронная установка 1
۲	1	0	0	1	Синхронная установка 0
*	1	1	Q(t)	$\overline{Q(t)}$	Хранение

Рисунок 6 – Динамический RS-триггер, работающий по переднему фронту, выполненный на элементах И-НЕ

2.7 Динамический RS-триггер, работающий по заднему фронту, выполненный на элементах ИЛИ-НЕ

Разница между двумя видами этих триггеров в том, что один работает на передний фронт благодаря логической единице И-НЕ, а другой по заднему из-за логического нуля ИЛИ-НЕ (табл. 7). Схема показывает работу данного триггера в программе Logisim (рис. 7).

Таблица 7 – Таблица переходов триггера

C	Ī	R	Q(t + 1)	$\overline{Q(t+1)}$	Режим
0	*	*	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
_	1	1	1	1	Запрещенная комбинация
٦	0	1	1	0	Синхронная установка 1
	1	0	0	1	Синхронная установка 0
*	0	0	Q(t)	$\overline{Q(t)}$	Хранение

Рисунок 7— Динамический RS-триггер, работающий по переднему фронту, выполненный на элементах ИЛИ-НЕ

2.8 Т-триггер с асинхронными входами предустановки, выполненный на основе двухступенчатого RS-триггера

RST-триггер (счетный триггер с раздельной установкой по входам R и S) – схема с двумя устойчивыми состояниями и тремя входами.

RST-триггер сочетает в себе свойство двухступенчатого асинхронного RS и Т-триггеров. Он аналогичен триггеру Т-типа и отличается от него только наличием двух установочных асинхронных входов (R и S). Из таблицы 8 следует, что если на счетном входе Т присутствуют сигналы 1, то триггер не меняет свое состояние на противоположное, а из условия, что наличие нулевых входных сигналов одновременно на любых двух входах триггера запрещено, так как это вызывает его неопределенное состояние.

Переключение в противоположное состояние осуществляется с результатом установки на асинхронных входах S и R единицы и установки на счетный вход T тактового генератора.

На рисунке 8, приведена логическая схема RST-триггера (где T – счетный вход; R, S – установочные входы для установки в состояния «0» и «1» соответственно).

Таблица 8 – Таблица переходов триггера

T	Ŝ	$\overline{\mathbf{R}}$	Q(t + 1)	$\overline{\mathbf{Q}(\mathbf{t}+1)}$	Режим
*	0	0	1	1	Запрещенная комбинация
*	0	1	1	0	Асинхронный 1
*	1	0	0	1	Асинхронный 0
0	1	1	Q(t)	$\overline{\mathrm{Q}(\mathrm{t})}$	Хранение
1	1	1	Q(t)	$\overline{Q(t)}$	Хранение
٦	1	1	$\overline{\mathrm{Q}(\mathrm{t})}$	Q(t)	Переключение в противоположное состояние

Рисунок 8 — Т-триггер с асинхронными входами предустановки, выполненный на основе двухступенчатого RS-триггера

2.9 ЈК-триггер

Триггером JK-типа называется триггер, имеющий входы J и K, который при J=K=1 выполняет режим предыдущего состояния триггера (т.е. реализуется Т-триггер), а в остальных случаях JK- триггер работает как RS-триггер, при этом вход J эквивалентен входу S, вход K эквивалентен входу R (табл. 9). Так же присутствуют и асинхронные входы S и R.

Таблица 9 – Таблица переходов триггера (реализация без инвертора)

C	Ī	$\overline{\mathbf{R}}$	J	K	Q(t + 1)	$\overline{\mathbf{Q}(\mathbf{t}+1)}$	Режим
*	0	0	*	*	1	1	Запрещенная комбинация
*	0	1	*	*	1	0	Асинхронный 1
*	1	0	*	*	0	1	Асинхронный 0
0	1	1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
1	1	1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
1	1	1	1	\neg	0	1	"Аномалия"
1	1	1		1	1	0	"Аномалия"
7	1	1	0	1	0	1	Синхронная установка 0
_	1	1	1	0	1	0	Синхронная установка 1
7	1	1	1	1	1	1	Режим Т-триггера

Схема JK-триггера может быть получена из схемы Т-триггера, если увеличить число входов схемы управления. Схема JK-триггера показана на рисунке 9. Она получена из схемы Т-триггера с внутренней задержкой путем

увеличения числа входов элементов «И-НЕ».

JK-триггер называют универсальным триггером. Его достоинство состоит в наличии развитой логике на входе. Однако большое количество внешних выводов ограничивает количество JK-триггеров, входящих в состав одной ИС.

Рисунок 9 – ЈК-триггер, выполненный по схеме без инвертора

выводы

В ходе практической работы, были реализованы комбинационные схемы представленных триггеров в лабораторном комплексе. Изучены режимы их работы и то, как работает статическая и динамическая синхронизации. Тестирование показало, что комбинационные схемы работают правильно.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Смирнов С.С., Карпов Д.А. Информатика: Методические указания по выполнению практических работ / Смирнов С.С., Карпов Д.А. Москва: МИРЭА Российский технологический университет, 2020. 102с.
- 2. Смирнов С. С. Лекционные материалы по информатике Москва: МИРЭА Российский технологический университет, 2022 лекция № 9. https://cloud.mirea.ru/index.php/s/WAdPjcJiRLs4TrT.