Preferred Textbooks: 1. Theory of open quantum systems by H.P. Breuer and F. Petruccione, 2. Modern quantum mechanics by J J Sakurai.

Reference Books: Lecture notes on quantum dynamical semigroups and applications by R. Alicki and k. Lendi (2nd edition 2007)

E-book Links : 1.

https://books.google.co.in/books/about/The Theory of Open Quantum Systems.html?id=0Yx5 VzaMYm8C&redir esc=y

2. https://link.springer.com/book/10.1007/3-540-70861-8

Grading Plan: (The table is only indicative)

Type of Evaluation	Weightage (in %)	
Quiz-1	10%	
Mid SemExam	20%	
Quiz-2	10%	
End Sem Exam	30%	
Assignments	10%	
Project	20%	
Term Paper	NA	
Other Evaluation	NA	

Mapping of Course Outcomes to Program Objectives: (1 – Lowest, 2—Medium, 3 – Highest, or a '-' dash mark if not at all relevant). Program outcomes are posted at

0.0.0	dustriality in the de differential in Togram outcomes are posted de															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	1	1	1	2	2	1	2	1	1	1	1	1	1	1
CO2	1	1	2	1	1	1	2	1	1	3	1	1	1	1	1	1
CO3	1	2	2	2	1	1	1	1	1	1	1	1	1	3	1	2
CO4	1	1	1	1	1	1	2	1	1	1	1	1	2	1	1	1
CO5	1	1	1	1	2	1	1	3	3	1	2	2	1	2	1	2

Teaching-Learning Strategies in brief (4-5 sentences):

The course is also self-evolving. Since this course is a pre-PhD level course, it is heavily dependent on the evolution of current research in said topics. Therefore, I have to modify and upgrade the course structure in regular intervals of a few years.

Title of the Course: Operating Systems and Networks

Name of the Faculty: Karthik Vaidhyanathan

Course Code: CS3.301

Name of the Academic Program: B.Tech. in CSE

L-T-P: **3-1-0**.

Credits: 4

(L= Lecture hours, T=Tutorial hours, P=Practical hours)

1. Prerequisite Course / Knowledge:

Programming languages, Digital Logic Design, Computer Organization

2.Course Outcomes (COs)

After completion of this course successfully, the students will be able to,

- CO-1. Extend the concepts of layering and modularity to build new software systems
- CO-2. Develop appropriate scheduling/synchronization/memory management/ virtual memory/protection module for a new task-specific operating system.
- CO-3: Implement an application on the top of given operating system in an efficient manner based on process and thread framework available in the given operating system.
- CO-4. Architect the given system on the top of operating systems by exploiting the system calls of the given operating system services as far as possible.
- CO-5. Develop a network-based application by exploiting networking related system calls.

3. Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs) – Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1	2	-	-	-	3	2	2	3	3	2	1	2
CO2	3	3	3	2	2	-	1	-	2	2	2	3	2	1	2	2
CO3	3	3	3	2	2	2	1	-	3	2	2	3	3	2	1	2
CO4	2	2	3	2	2	3	2	-	3	2	2	2	3	3	2	3
CO5	3	2	1	1	2	-	-	-	3	2	2	3	3	2	1	2
CO6	3	3	3	3	2	2	1	-	2	2	3	2	3	3	3	3

Note '3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low'-level' mapping

4. Detailed Syllabus:

Unit 1: Introduction, Process and Memory Virtualization – Scheduling, Memory addressing and Paging, and Networking Overview (10 hours);

Unit 2: Concurrency – Threads and locking mechanisms, Common concurrency problems, Data transmission and Network Technologies (10 hours);

Unit 3: Persistence – File Systems, Protection, Network File Systems and basics of Network Security (6 hours);

Four mini projects and one overall project related to the above syllabus will be done by students in the laboratory

Reference Books:

- 1. Operating systems in three easy pieces by Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau, 2018 (https://pages.cs.wisc.edu/~remzi/OSTEP/)
- 2. Computer Networks (5th Edition) Andrew S. Tanenbaum, David J. Wetherall Prentice Hall, 2013
- 3. Wlliam Stallings, Operating Systems, Prentice-Hall, 2018.
- 4. Tanenbaum, A., Modern Operating Systems, Prentice-Hall, Second Edition (latest edition, 2015.

5. Teaching-Learning Strategies in brief

Lectures by integrating ICT into classroom teaching, weekly tutorials involving problem solving and active learning by students on a Unix-based OS like xv6 and Project-based Learning by doing 4 miniprojects and one overall project.

6.Assessment methods and weightages in brief (Tentative)

Component	<u>Weightage</u>
<u>Final Exam</u>	35%
Mid-term Exam	15%
Quizzes	10%
Mini-projects	25%
In-class activities	<u>5%</u>
Final Project	10%

Note: Instructor reserves the right to make any changes in the above distribution based on the progress of the course

Title of the Course : Physics of Early Universe

Name of the Faculty : Diganta Das