多元统计分析 作业 4 聚类分析

地信一班 罗皓文 15303096

实验环境:

OS: Windows 7 Pro SP1 x64

CPU: Intel Xeon E3-1241 v3 @ 3.50GHz 3.50GHz

RAM: 8.00 Gb

Soft: SPSS Statistics 19

一、系统聚类分析

用"例 5.2.sav"数据做系统聚类分析;

部分数据示例:

	地区		单位地区生产 总值电消耗量	
1	北京	.80	828.5	1.50
2	天津	1.11	1040.8	1.45
3	河北	1.96	1487.6	4.41
4	山西	2.95	2264.2	6.57
5	内蒙古	2.48	1714.1	5.67

数据变量视图:

	名称	类型	宽度	小数	标签	值	缺失	列	对齐	度量标准	角色
1	地区	字符串	6	0		无	无	6	≣左	♣ 名义(N)	> 输入
2	单位地区生产总值煤消耗量	数值(N)	8	2		无	无	8	≣右		▶ 輸入
3	单位地区生产总值电消耗量	数值(N)	8	1		无	无	8	≣右		> 輸入
4	单位工业增加值煤消耗量	数值(N)	8	2		无	无	8	≣右		▶ 輸入

- (1) 使用 SPSS 系统聚类模块: 分析(A) 分类(F) 系统聚类...(H)
- (2) 选择变量,指定输出和聚类参数,选择组间连接方法,使用欧氏距离

得到聚类结果:

1.凝聚过程表:

如表 1, 从该表"凝聚顺序表"可知具体的聚类过程。

表 1 Agglomeration Schedule

	Cluster C	ombined	₹ 1 Aggiomeratio		First Appears	
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage
1	16	23	2.233	0	0	12
2	8	9	3.372	0	0	13
3	10	19	8.775	0	0	6
4	15	18	12.107	0	0	7
5	2	7	18.742	0	0	7
6	10	30	40.632	3	0	11
7	2	15	82.564	5	4	13
8	11	17	153.252	0	0	11
9	6	26	338.923	0	0	19
10	13	22	382.170	0	0	16
11	10	11	502.346	6	8	16
12	16	20	641.040	1	0	18
13	2	8	958.731	7	2	15
14	14	21	2916.311	0	0	20
15	2	12	3212.477	13	0	20
16	10	13	3979.857	11	10	18
17	24	27	4957.292	0	0	24
18	10	16	7879.253	16	12	23
19	3	6	8514.451	0	9	23
20	2	14	10646.757	15	14	22
21	5	25	11995.307	0	0	26
22	1	2	36827.193	0	20	25
23	3	10	50584.899	19	18	25
24	4	24	54879.839	0	17	28
25	1	3	85388.787	22	23	26
26	1	5	292360.596	25	21	28
27	28	29	1430209.203	0	0	29
28	1	4	1573615.897	26	24	29
29	1	28	10036226.822	28	27	0

2.各聚集组员

如表 2 所示,该表显示了在不同聚类数条件下,各个样本的聚类标签。

3.垂直冰柱图

如图 1 所示,看图时应从下往上看,两个省份之间的黄柱所对应的聚类数,即为两个省份在划分为此聚类数时属于同一类,并且在此以后一直属于同一类。

表 2 Cluster Membership

Case	5 Clusters	4 Clusters	3 Clusters	Case	5 Clusters	4 Clusters	3 Clusters
1:北京	1	1	1	16:河南	1	1	1
2:天津	1	1	1	17:湖北	1	1	1
3:河北	1	1	1	18:湖南	1	1	1
4:山西	2	2	2	19:广东	1	1	1
5:内蒙古	3	1	1	20:广西	1	1	1
6:辽宁	1	1	1	21:海南	1	1	1
7:吉林	1	1	1	22:重庆	1	1	1
8:黑龙江	1	1	1	23:四川	1	1	1
9:上海	1	1	1	24:贵州	2	2	2
10:江苏	1	1	1	25:云南	3	1	1
11:浙江	1	1	1	26:陕西	1	1	1
12:安徽	1	1	1	27:甘肃	2	2	2
13:福建	1	1	1	28:青海	4	3	3
14:江西	1	1	1	29:宁夏	5	4	3
15:山东	1	1	1	30:新疆	1	1	1

1:北京 2:天津 7:吉林 15:山东 18:湖南 12:安徽 12:安徽 12:安徽 12:安徽 12:安徽 13:河北 3:河北 3:河北 3:河北 3:河北 10:江苏 10:江苏

图 1 垂直冰柱图

4.树状图/谱系图

与冰柱图类似,结果如图 2 所示。

图 2 垂直冰柱图

最终结果发现,依据煤电使用情况,可将各省市分为 4 类: 青海、宁夏各自成一类,贵州、甘肃、山西为一类,其余省市为一类。

二、K均值聚类分析

用 "作业 k 均值聚类.sqn" 数据做 K 均值聚类分析。 部分数据示例:

	公司编号	固定支出综合率	资产收益率	每千瓦容量成本	每年使用的能源	是否使用核能源
1	1	1.06	9.20	351	9077	0
2	2	.89	13.60	202	5088	1
3	3	1.43	8.90	521	9212	C
4	4	.78	11.20	168	6423	1
5	5	.66	16.30	192	3300	1
6	6	.75	13.50	111	1127	1

数据变量视图:

	名称	类型	宽度	小数	标签	值	缺失	列	对齐	度量标准	角色
1	公司编号	数值(N)	8	0		无	无	8	≣右		> 输入
2	固定支出综合率	数值(N)	8	2		无	无	10	畫右		> 输入
3	资产收益率	数值(N)	8	2		无	无	8	≣右		> 输入
4	每千瓦容量成本	数值(N)	8	0		无	无	10	≣右		> 输入
5	每年使用的能源	数值(N)	8	0		无	无	10	≣右		> 输入
6	是否使用核能源	数值(N)	8	0		无	无	10	三 右		▶ 輸入

- (1) 使用 SPSS 的 K-均值聚类模块:分析(A) 分类(F) K 均值聚类...(K)
- (2) 选择变量,指定聚类参数,选择组间连接方法,使用欧氏距离

结果分析

1.初始聚类中心

从表 3 可知初始和最终的聚类中心, 3 类中心位置同初始位置相比, 均发生了变化。 2.聚类成员分析

从表 4 知,每一个样品属于哪一类,还可以知道每一个样品到最终聚类中心的距离。 3.每个聚类中的样本数

从表 5 知,聚类 1 所包含样本数最多,聚类 3 包含样本数最少。

AC CHARLES									
	Init	ial Cluster Cent	ters	Final Cluster Centers					
	1	2	3	1	2	3			
固定支出综合率	1.09	.36	1.25	1.13	.67	1.17			
资产收益率	6.10	16.30	7.50	7.72	14.51	7.88			
每千瓦容量成本	296	184	376	527	170	319			
每年使用的能源	9673	1093	17441	8153	2744	15005			
是否使用核能源	0	1	0	0	1	0			

表 3 Cluster Centers

表 4 Cluster Membership

Case Number	公司编号	Cluster	Distance
1	1	1	940.697
2	2	2	2343.881
3	3	1	1059.020
4	4	1	1766.950
5	5	2	556.092
6	6	2	1618.422
7	7	1	1283.657
8	8	3	1924.654
9	9	1	262.947
10	10	2	711.170
11	11	3	2436.429
12	12	1	2000.241
13	13	2	1569.596
14	14	1	1537.520
15	15	2	276.423
16	16	3	987.993
17	17	2	1969.967
18	18	1	1994.825
19	19	3	1500.523
20	20	2	465.877
21	21	1	1505.427
22	22	2	1651.391

表 5 Final Cluster Centers

	Cluster						
	1	2	3				
固定支出综合率	1.13	.67	1.17				
资产收益率	7.72	14.51	7.88				
每千瓦容量成本	527	170	319				
每年使用的能源	8153	2744	15005				
是否使用核能源	0	1	0				