Fiche d'entraînement : suites

Exercice 1:

 $(u_n) \text{ est la suite définie par } \begin{cases} u_0 = 4 \\ u_{n+1} = 2u_n + 3 \end{cases}$

- 1) Calculer u_1 .
- **2)** Calculer u_4 .

Exercice 2:

 (u_n) est la suite définie par $\begin{cases} u_1 = 7 \\ u_{n+1} = -3u_n + 5 \end{cases}$

- 1) Calculer u_2 .
- **2)** Calculer u_4 .

Exercice 3:

 (u_n) est la suite définie par $\begin{cases} u_0=4\\ u_1=2\\ u_{n+2}=2u_{n+1}-u_n+2 \end{cases}$

- 1) Calculer u_2 .
- **2)** Calculer u_4 .

Exercice 4:

 $(u_n) \text{ est la suite définie par } \begin{cases} u_0 = 3 \\ u_1 = -2 \\ u_{n+2} = u_{n+1} - 3u_n + 5 \end{cases}$

- 1) Calculer u_2 .
- **2)** Calculer u_4 .

Exercice 5:

 (u_n) est la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 5n + 7$.

- 1) Calculer u_{n+1} .
- 2) Calculer $u_{n+1} u_n$.
- **3)** En déduire le sens de variation de la suite (u_n) .

Exercice 6:

 (u_n) est la suite définie pour tout $n \in \mathbb{N}$ par $u_n = -4n + 2$.

- 1) Calculer u_{n+1} .
- **2)** Calculer $u_{n+1} u_n$.
- 3) En déduire le sens de variation de la suite (u_n) .

Exercice 7:

 (u_n) est la suite arithmétique de premier terme $u_0=3$ et de raison r=4.

- 1) Calculer u_6 .
- **2)** Calculer u_{10} .
- 3) Calculer u_{15} .

Exercice 8:

 (u_n) est la suite arithmétique de premier terme $u_1 = 7$ et de raison r = 2.

- 1) Calculer u_6 .
- **2)** Calculer u_{10} .
- **3)** Calculer u_{15} .

Exercice 9:

 (u_n) est une suite arithmétique telle que $u_9 = 67$ et $u_{16} = 116$.

- 1) Calculer la raison r de cette suite.
- **2)** Calculer u_0 .

Exercice 10:

 (u_n) est une suite arithmétique telle que $u_{11} = 53$ et $u_{14} = 68$.

- 1) Calculer la raison r de cette suite.
- **2)** Calculer u_0 .

Exercice 11:

 (u_n) est la suite arithmétique de premier terme $u_0 = 6$ et de raison r = 5. Déterminer le rang n à partir duquel la suite (u_n) dépasse 75.

Exercice 12:

 (u_n) est la suite arithmétique de premier terme $u_0 = 4$ et de raison r = 7. Déterminer le rang n à partir duquel la suite (u_n) dépasse 110.

Solutions

Exercice 1:

1)
$$u_1 = 2u_0 + 3 = 2 \times 4 + 3 = 11$$
.

2)
$$u_2 = 2u_1 + 3 = 2 \times 11 + 3 = 25$$

 $u_3 = 2u_2 + 3 = 2 \times 25 + 3 = 53$
 $u_4 = 2u_3 + 3 = 2 \times 53 + 3 = 109$.

Exercice 2:

1)
$$u_2 = -3u_1 + 5 = -3 \times 7 + 5 = -16$$
.

2)
$$u_3 = -3u_2 + 5 = -3 \times (-16) + 5 = 53$$

 $u_4 = -3u_2 + 5 = -3 \times 53 + 5 = -154$.

Exercice 3:

1)
$$u_2 = 2u_1 - u_0 + 2 = 2 \times 2 - 4 + 2 = 2$$
.

2)
$$u_3 = 2u_2 - u_1 + 2 = 2 \times 2 - 2 + 2 = 4$$

 $u_4 = 2u_3 - u_2 + 2 = 2 \times 4 - 2 + 2 = 8.$

Exercice 4:

1)
$$u_2 = u_1 - 3u_0 + 5 = -2 - 3 \times 3 + 5 = -6$$
.

2)
$$u_3 = u_2 - 3u_1 + 5 = -6 - 3 \times (-2) + 5 = 5$$

 $u_4 = u_3 - 3u_2 + 5 = 5 - 3 \times (-6) + 5 = 28$.

Exercice 5:

1)
$$u_{n+1} = 5(n+1) + 7 = 5n + 5 + 7 = 5n + 12$$

2)
$$u_{n+1} - u_n = \underbrace{(5n+12)}_{u_{n+1}} - \underbrace{(5n+7)}_{u_n} = 5n + 12 > 5n - 7 = 5$$

3) $u_{n+1} - u_n = 5 > 0$ donc la suite (u_n) est croissante.

Exercice 6:

1)
$$u_{n+1} = -4(n+1) + 2 = -4n - 4 + 2 = -4n - 2$$

2)
$$u_{n+1} - u_n = \underbrace{(-4n-2)}_{u_{n+1}} - \underbrace{(-4n+2)}_{u_n} = -4\pi - 2 + 4\pi - 2 = -4$$

3) $u_{n+1} - u_n = -4 < 0$ donc la suite (u_n) est décroissante.

Exercice 7:

1)
$$u_6 = u_0 + 6 \times r = 3 + 6 \times 4 = 27$$
.

2)
$$u_{10} = u_0 + 10 \times r = 3 + 10 \times 4 = 43.$$

3)
$$u_{15} = u_0 + 15 \times r = 3 + 15 \times 4 = 63$$
.

Exercice 8:

1)
$$u_6 = u_1 + 5 \times r = 7 + 5 \times 2 = 17$$
.

2)
$$u_{10} = u_1 + 9 \times r = 7 + 9 \times 2 = 25$$
.

3)
$$u_{15} = u_1 + 14 \times r = 7 + 14 \times 2 = 35$$
.

Exercice 9:

1)
$$u_{16} = u_9 + 7 \times r = 116$$

donc $67 + 7 \times r = 116$

donc
$$7 \times r = 116 - 67 = 49$$

donc
$$r = \frac{49}{7} = 7$$
.

2)
$$u_0 = u_9 - 9 \times r = 67 - 9 \times 7 = 4$$
.

Exercice 10:

1)
$$u_{14} = u_{11} + 3 \times r = 68$$

 $donc 53 + 3 \times r = 68$
 $donc 3 \times r = 68 - 53 = 15$
 $donc r = \frac{15}{3} = 5$.

2)
$$u_0 = u_{11} - 11 \times r = 53 - 11 \times 5 = -2.$$

Exercice 11:

Il faut résoudre $u_n > 75$, c'est-à-dire $u_0 + n \times r > 75$ ce qui donne en fait $6 + n \times 5 > 75$.

Donc
$$n \times 5 > 75 - 6$$

donc $n \times 5 > 69$

donc
$$n > \frac{69}{5} = 13,8$$

C'est donc à partir de n = 14 que la suite dépassera 75.

Exercice 12:

Il faut résoudre $u_n > 110$, c'est-à-dire $u_0 + n \times r > 110$ ce qui donne en fait $4 + n \times 7 > 110$.

Donc
$$n \times 7 > 110 - 4$$

donc $n \times 7 > 106$

donc
$$n > \frac{106}{7} \approx 15,14$$

C'est donc à partir de n = 16 que la suite dépassera 110.