Logistic and binomial regression

Ben Bolker

October 3, 2018

Licensed under the Creative Commons attribution-noncommercial license (http:

//creativecommons.org/licenses/by-nc/3.0/). Please share & remix noncommercially,

modeling

data analysis road map

(McCullagh and Nelder, 1989)

from Hadley Wickham

(https://jules32.github.io/2016-07-12-0xford/dplyr_tidyr/)

These are good, but they don't address the data snooping problem.

- 1. figure out the (subject-area) question
- 2. design experiment/data collection (power analysis; simulation)
- 3. collect data
- 4. understand the data
- 5. specify the model; write it down!
- 6. inspect data (Q/A) (return to 5?
- 7. fit model
- 8. graphical & quantitative diagnostics (return to 5?
- 9. interpret parameters; inference; plot results

basics

Can use *any* smooth function from $(0,1) \to \mathbb{R}$ as the link function

- logistic regression: binary data with a logit link (inverse-link=logistic)
- binomial (or aggregated binomial regression: binomial data (maybe logit link, maybe other)
- probit regression: probit link

Binary data and aggregated (N > 1 data) are handled slightly differently.


```
library(ggplot2)
theme_set(theme_bw())
library(grid)
zmargin <- theme_update(panel.spacing=unit(0,"lines"))</pre>
library(dotwhisker)
library(descr) ## for R^2 measures
library(aods3) ## for overdispersion
library(arm)
               ## binnedplot
library(dplyr) ## tidyverse!
library(DescTools)
```

Contraception data example

```
data("Contraception",package="mlmRev")
head(Contraception)
```

```
woman district use livch
                                   age urban
## 1
         1
                  1
                           3+
                               18.4400
         2
## 2
                  1
                      Ν
                            0
                              -5.5599
                                           Υ
## 3
         3
                  1
                            2
                               1.4400
                                           Υ
## 4
         4
                  1
                      N
                           3+
                                8.4400
## 5
         5
                      N
                            0 -13.5590
                                           Υ
                  1
                  1
                            0 -11.5600
```

See here for more documentation.

Given these variables, what model do we think we want to use?

Visualize! Try some ggplots (univariate graphs are OK but multivariate graphs are almost always more informative ...)

```
gg0 <- ggplot(Contraception, aes(age, use, colour=urban))+
    stat_sum(alpha=0.5)+facet_wrap(~livch,labeller=label_both)
gg0 + geom_smooth(aes(group=1))
```

Hard to summarize o/1 values!

Alternative approach: binning (also see Faraway). (Transform!)

```
## transform via tidyverse ...
cc <- (Contraception
    %>% mutate(
            ## numeric (0/1) version of 'uses contraception'
            use_n=as.numeric(use)-1)
cc_agg0 <- (cc
    %>% group_by(livch,urban,age)
    %>% summarise(prop=mean(use_n),
            n=length(use),
            se=sqrt(prop*(1-prop)/n))
```

Plot:

```
ggplot(cc_agg0,aes(age,prop,colour=urban))+
    geom_pointrange(aes(ymin=prop-2*se,
                        ymax=prop+2*se))+
    facet_wrap(~livch,labeller=label_both)
```

Bin more coarsely:

```
## specify categories; compute midpoints as well
age\_breaks <- seq(-15,20,by=5)
age_mids <- (age_breaks[-1]+age_breaks[-length(age_breaks)])/2
```

```
## discrete age categories
            age_cat=cut(age,breaks=age_breaks))
cc_agg <- (cc
    %>% mutate(age_cat=cut(age,breaks=age_breaks))
    %>% group_by(age_cat,urban,livch)
    %>% summarise(
            prop=mean(use_n),
            n=length(use),
            se=sqrt(prop*(1-prop)/n)
    ## numeric values of age categories
    %>% mutate(age_mid=age_mids[as.numeric(age_cat)])
## Error: <text>:5:47: unexpected ')'
                 ## discrete age categories
                 age_cat=cut(age,breaks=age_breaks))
```

Plot:

```
## use numeric response rather than Y/N response
gg0B <- ggplot(cc,aes(age,use_n,colour=urban))+
    stat_sum(alpha=0.5)+facet_wrap(~livch,labeller=label_both)
gg_bin <- gg0B+geom_pointrange(data=cc_agg,</pre>
                    aes(x=age_mid,
                        y=prop,
                        ymin=prop-2*se,
                        ymax=prop+2*se,
                        size=n),
                    alpha=0.5)+
    scale\_size(range=c(0.5,2))
## Error in fortify(data): object 'cc_agg' not found
```

How should we adjust our model specification based on this information?

Suppose we use a model with a quadratic function of age plus all three-way interactions:

```
model1 <- glm(use_n ~ urban*(age+I(age^2))*livch,</pre>
               data=cc,
               family=binomial,
```

```
x=TRUE ## include model matrix in output
```

Explore diagnostics (plot(); DHARMa::simulateResiduals(); arm::binnedplot; mgcv::qq.gam).

Quantile residuals 1 overcome many of the problems of GLM diagnostics, at the price of lots more computation.

```
plot(model1) ## ugh!
arm::binnedplot(fitted(model1), residuals(model1))
DHARMa::simulateResiduals(model1,plot=TRUE)
mgcv::qq.gam(model1,pch=1)
```

If you really need a global goodness-of-fit test: Hosmer-Lemeshow test (very common) dominated by Cessie-van Houwelingen test ².

```
DescTools::HosmerLemeshowTest(fit=fitted(model1),
                               obs=model1$v,
                               X=model1$x)
```

pseudo-R² measures

The UCLA statistics site has a very nice description of pseudo- R^2 measures.

- fraction of variance explained
- model improvement
- fraction of deviance explained: (dev(null)-dev(model))/dev(null) ("McFadden"):

```
with(model3,1-deviance/null.deviance)
## Error in with(model3, 1 - deviance/null.deviance):
object 'model3' not found
```

• correlation ("Efron"):

```
cor(cc$use_n,predict(model3,type="response"))^2
## Error in predict(model3, type = "response"): object
'model3' not found
```

- ¹ Ben, M. G. and V. J. Yohai (2004, March). Quantile-Quantile Plot for Deviance Residuals in the Generalized Linear Model. Journal of Computational and Graphical Statistics 13(1), 36-47; and Hartig, F. (2018). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.2.0
- ² le Cessie, S. and J. C. van Houwelingen (1991, December). A goodness-of-fit test for binary regression models, based on smoothing methods. Biometrics 47(4), 1267–1282; and Hosmer, D. W., T. Hosmer, S. L. Cessie, and S. Lemeshow (1997, May). A Comparison of Goodness-of-Fit Tests for the Logistic Regression Model. Statistics in Medicine 16(9), 965-980

• Cox and Snell: average deviance explained

$$1 - (L(\text{null})/L(\text{full}))^{2/n}$$

(i.e. look at proportion on the likelihood scale, not the log-likelihood scale)

• Nagelkerke: Cox and Snell, adjusted to max=1

```
descr::LogRegR2(model3)
## Error in descr::LogRegR2(model3): object 'model3' not
found
```

Plot predictions

```
gg_bin+geom_smooth(method="glm",
                   method.args=list(family=binomial),
                    formula=y \sim x + I(x^2)
## Error in eval(expr, envir, enclos): object 'gg_bin' not
found
```

Or by hand: predict function.

Confidence intervals: get new model matrix and compute XVX^T to get variances on the link-function scale. Then compute Normal CIs on the link scale, *then* back-transform. Or use se=TRUE in predict.

```
pvar <- newX %*% vcov(g1) %*% t(newX)</pre>
## Error in eval(expr, envir, enclos): object 'newX' not
found
pse <- sqrt(diag(pvar))</pre>
## Error in diag(pvar): object 'pvar' not found
```

Or equivalently for any model type where predict has an se.fit argument:

```
pse <- predict(g1,newdata=newdata,se.fit=TRUE)$se.fit</pre>
## Error in predict(g1, newdata = newdata, se.fit = TRUE):
object 'g1' not found
lwr0 <- pred0-2*pse ## or qnorm(0.025)</pre>
```

```
## Error in eval(expr, envir, enclos): object 'pred0' not
found
upr0 <- pred0+2*pse ## or gnorm(0.975)
## Error in eval(expr, envir, enclos): object 'pred0' not
found
lwr <- plogis(lwr0)</pre>
## Error in plogis(lwr0): object 'lwr0' not found
upr <- plogis(upr0)</pre>
## Error in plogis(upr0): object 'upr0' not found
```

Note:

- back-transforming the standard errors via a logistic usually doesn't make sense: if you want to back-transform them (approximately), you have to multiply them by $(d\mu/d\eta)$, i.e. use dlogis.
- if you use response=TRUE and se.fit=TRUE, R computes the standard errors, scales them as above, and uses them to compute (approximate) symmetric confidence intervals. Unless your sample is very large and/or your predicted probabilities are near 0.5 (so the CIs don't get near o or 1), it's probably best to use the approach above

```
## prediction frame: all combinations of variables
pframe <- with(Contraception,</pre>
                expand.grid(age=unique(age),
                              livch=levels(livch),
                              urban=levels(urban)))
predfun <- function(model) {</pre>
    pp <- predict(model, newdata=pframe, type="link", se.fit=TRUE)</pre>
    linkinv <- family(model)$linkinv</pre>
    pframe$use_n <- linkinv(pp$fit)</pre>
    pframe$lwr <- linkinv(pp$fit-2*pp$se.fit)</pre>
    pframe$upr <- linkinv(pp$fit+2*pp$se.fit)</pre>
    return(pframe)
pp1 <- predfun(model1)</pre>
```

Posterior predictive simulations

Pick a summary statistic that matters (e.g.

```
ppfun <- function(dd) {</pre>
    w <- which(dd$urban=="Y" & dd$livch=="0" & abs(dd$age)<1)</pre>
    return(mean(dd$use_n[w]))
}
ppfun(cc)
## [1] 0.5
ss <- simulate(model1,1000)</pre>
simres <- rep(NA,1000)</pre>
newcc <- cc
for (i in 1:1000) {
    newcc$use_n <- ss[,i]</pre>
    simres[i] <- ppfun(newcc)</pre>
}
```

Plot results:

```
par(las=1)
hist(simres,col="gray")
points(ppfun(cc),0,col="red",cex=2,pch=16)
p_upr <- mean(simres>=ppfun(cc))
p_lwr <- mean(simres<=ppfun(cc))</pre>
text(0.6,150,paste0("prop>=obs=",round(p_upr,2)))
```

Histogram of simres


```
## 2-tailed p-value
2*min(p_upr,p_lwr)
## [1] 0.784
```

Simplify model

With caution!

```
drop1(model1,test="Chisq")
## Single term deletions
## Model:
## use_n \sim urban * (age + I(age^2)) * livch
                       Df Deviance AIC
                                              LRT Pr(>Chi)
## <none>
                            2400.9 2448.9
                       3 2401.2 2443.2 0.26485
## urban:age:livch
                                                    0.9665
## urban:I(age^2):livch 3 2401.8 2443.8 0.89356
                                                     0.8270
## three-way interactions NS?
model2 \leftarrow update(model1, . \sim (urban+(age+I(age^2)+livch))^2)
drop1(model2,test="Chisq")
## Single term deletions
##
## Model:
## use_n \sim urban + age + I(age^2) + livch + urban:age + urban:I(age^2) +
      urban:livch + age:I(age^2) + age:livch + I(age^2):livch
##
                 Df Deviance AIC
##
                                       LRT Pr(>Chi)
                      2402.1 2440.1
## <none>
## urban:age
                 1 2402.1 2438.1 0.0068 0.93452
## urban:I(age^2) 1 2403.0 2439.0 0.9059 0.34120
## urban:livch 3 2404.4 2436.4 2.2447 0.52320
## age:I(age^2) 1 2402.1 2438.1 0.0005 0.98302
## age:livch
                 3 2409.8 2441.8 7.6792 0.05313 .
## I(age^2):livch 3 2403.4 2435.4 1.3214 0.72405
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## two-way interactions NS?
model3 \leftarrow update(model1, . \sim (urban+(age+I(age^2)+livch)))
## or LRT
anova(model1, model2, model3, test="Chisq")
## Analysis of Deviance Table
##
## Model 1: use_n \sim urban * (age + I(age^2)) * livch
## Model 2: use_n \sim urban + age + I(age^2) + livch + urban:age + urban:I(age^2) +
      urban:livch + age:I(age^2) + age:livch + I(age^2):livch
## Model 3: use_n \sim urban + age + I(age^2) + livch
```

```
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
       1910 2400.9
       1915 2402.1 -5 -1.2276 0.9422
## 2
## 3 1927 2417.7 -12 -15.5305 0.2137
```

```
car::Anova(model3)
## Analysis of Deviance Table (Type II tests)
##
## Response: use_n
         LR Chisq Df Pr(>Chisq)
## urban
           52.849 1 3.602e-13 ***
            0.265 1
                           0.607
## age
## I(age^2) 39.070 1 4.088e-10 ***
           33.333 3 2.739e-07 ***
## livch
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
drop1(model3, test="Chisq")
## Single term deletions
##
## Model:
## use_n \sim urban + age + I(age^2) + livch
          Df Deviance AIC LRT Pr(>Chi)
## <none>
               2417.7 2431.7
## urban 1 2470.5 2482.5 52.849 3.602e-13 ***
          1 2417.9 2429.9 0.265
                                       0.607
## age
## I(age^2) 1 2456.7 2468.7 39.070 4.088e-10 ***
## livch 3 2451.0 2459.0 33.333 2.739e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
dw1 <- dwplot(model3)+geom_vline(xintercept=0,lty=2)</pre>
```

```
dw2 <- dwplot(model3,by_2sd=FALSE)+geom_vline(xintercept=0,lty=2)</pre>
```

Can compare the effect of dropping interactions (carefully!)

```
mod_list <- list(full=model1, twoway=model2, reduced=model3)</pre>
dw_comb <- dwplot(mod_list)+ geom_vline(xintercept=0,lty=2)</pre>
```

```
pp_list <- lapply(mod_list,predfun)</pre>
pp_frame <- dplyr::bind_rows(pp_list,.id="method")</pre>
gg_compare_pred <- gg0 + geom_line(data=pp_frame,</pre>
                                       aes(linetype=method))
```

```
summary(model3)
##
## Call:
## glm(formula = use_n \sim urban + age + I(age^2) + livch, family = binomial,
      data = cc, x = TRUE)
##
## Deviance Residuals:
##
      Min
              1Q Median
                              30
                                     Max
## -1.4738 -1.0369 -0.6683 1.2401 1.9765
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.9499521 0.1560118 -6.089 1.14e-09 ***
## urbanY
            ## age
            0.0045837 0.0089084 0.515 0.607
## I(age^2) -0.0042865 0.0007002 -6.122 9.23e-10 ***
            ## livch1
## livch2
            0.8549040 0.1783573 4.793 1.64e-06 ***
## livch3+
            0.8060251 0.1784817 4.516 6.30e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2590.9 on 1933 degrees of freedom
## Residual deviance: 2417.7 on 1927 degrees of freedom
## AIC: 2431.7
## Number of Fisher Scoring iterations: 4
```

plot(emmeans::emmeans(model3,~livch*urban,type="response"))

Confidence intervals on predictions etc.

(delta method; bootstrap; simulation)

References

Ben, M. G. and V. J. Yohai (2004, March). Quantile-Quantile Plot for Deviance Residuals in the Generalized Linear Model. Journal of Computational and Graphical Statistics 13(1), 36-47.

Hartig, F. (2018). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.2.0.

Hosmer, D. W., T. Hosmer, S. L. Cessie, and S. Lemeshow (1997, May). A Comparison of Goodness-of-Fit Tests for the Logistic Regression Model. Statistics in Medicine 16(9), 965–980.

le Cessie, S. and J. C. van Houwelingen (1991, December). A goodness-of-fit test for binary regression models, based on smoothing methods. *Biometrics* 47(4), 1267–1282.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. London: Chapman and Hall.