Insurance Cost Analysis Project

Background Information

Insurance companies are always interested in how they can maximize their profit based on the risk level of their customers. In this analysis I will be creating a predictive neural network based on the data provided from this Kaggle Page in order to accurately predict how much a customer should be charged based on the given explanatory variables. Furthermore, I will be creating a linear/logistic regression model to determine which variable is most significantly affecting the charges of the customer.

✓ Imports

```
import tensorflow as tf
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
import seaborn as sns
import statsmodels.formula.api as smf
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
```

Reading the dataset into pandas

insurance = pd.read_csv("https://raw.githubusercontent.com/stedy/Machine-Learning-with-R-datasets/refs/heads/master/insurance.csv")
insurance

₹		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520
	1333	50	male	30.970	3	no	northwest	10600.54830
	1334	18	female	31.920	0	no	northeast	2205.98080
	1335	18	female	36.850	0	no	southeast	1629.83350
	1336	21	female	25.800	0	no	southwest	2007.94500
	1337	61	female	29.070	0	yes	northwest	29141.36030
	1338 rc	ws ×	7 column	s				

Note: The data contains string values which the model will not be able to process; therefore, the data values will be one-hot encoded.

```
# One-hot encoding the data
insurance_one_hot_encoded = pd.get_dummies(insurance, dtype = int)
```

Creating the training and test datasets

```
# Separating explanatory variables (expvar) and response (charges)
expvar = insurance_one_hot_encoded.drop("charges", axis = 1)
charges = insurance_one_hot_encoded["charges"]
expvar_train, expvar_test, charges_train, charges_test = train_test_split(expvar, charges, test_size = .2, random_state = 10) # random_state
len(expvar test) / len(expvar) # Make sure the split worked
```

→ 0.20029895366218237

Creating a basic neural network model

This first model will have 1 layer, use SGD as its optimizer, and run for 100 epochs.

```
# Set random seed (for reproducibility)
tf.random.set_seed(10)
# 1. Create the model
insurance_model_1 = tf.keras.Sequential([
    tf.keras.layers.Dense(1)
])
# 2. Compile the model
insurance_model_1.compile(loss = tf.keras.losses.mae,
                          optimizer = tf.keras.optimizers.SGD(),
                          metrics = ["mae"])
# 3. Fit the model
history = insurance_model_1.fit(expvar_train, charges_train, epochs = 100, verbose = 0) # verbose = 0 to reduce clutter, since I will be eva
# Evaluating the model
insurance_model_1.evaluate(expvar_test, charges_test)
                             - 0s 2ms/step - loss: 6816.2783 - mae: 6816.2783
     [7177.03076171875, 7177.03076171875]
# Plotting the loss
pd.DataFrame(history.history).plot()
plt.ylabel("loss")
plt.xlabel("epochs")
    Text(0.5, 0, 'epochs')
         13000
                                                                           loss
                                                                           mae
         12000
```


Making a function

Now to, hopefully, expedite the process of creating multiple models and evaluating them, I will create a function to:

- 1. Create the models
- 2. Report the MAE of the evaluation using the test data
- 3. Plot the loss over time.

```
optimizer = "SGD", # sets optimizer to SGD by default
                 learning_rate = .001, # sets learning_rate if using Adam optimizer
                 epochs = 100): # epochs is set to 100 by default
A function that creates a neural network with num_layers additional hidden layers, each of which has num_units hidden units. The optimizer
tf.random.set_seed(seed)
# 1. Create dummy model
dummy_model = tf.keras.Sequential([])
# 2. Add hidden layers
for i in range(num_layers):
 dummy_model.add(tf.keras.layers.Dense(num_units))
dummy_model.add(tf.keras.layers.Dense(1))
# 3. Compile the model
if optimizer == "SGD":
  dummy_model.compile(loss = tf.keras.losses.mae,
                      optimizer = tf.keras.optimizers.SGD(),
                      metrics = ["mae"])
else:
  dummy_model.compile(loss = tf.keras.losses.mae,
                      optimizer = tf.keras.optimizers.Adam(learning_rate = learning_rate),
                      metrics = ["mae"])
# 4. Fit the model
history = dummy_model.fit(expvar_train, charges_train, epochs = epochs, verbose = 0) # This function is specific to this project so it wil
# 5. Evaluate the model
test_mae = dummy_model.evaluate(expvar_test, charges_test)
# 6. Plot the loss over time
pd.DataFrame(history.history).plot()
plt.xlabel("epochs")
plt.ylabel("loss")
# 7. Return evaluation metric
print(test_mae)
```

Improving the model

The first model is never the best, so now I will attempt to create 3 more models that will (hopefully) have improved performance.

- Model 2:1 add. hidden layer with 100 units, 100 epochs
- Model 3: Same as Model 2 but with 200 epochs
- Model 4:2 add. hidden layers with 100 units, 100 epochs

Optimizer: If necessary the optimizer will be changed to Adam if SGD is unable to return an MAE value.

```
# Creating Model 2
insurance_model_2 = create_neural_network(num_layers = 1, num_units = 100, optimizer = "Adam") # The model seemed to struggle to learn using
```

9/9 ——— 0s 3ms/step - loss: 6521.8691 - mae: 6521.8691 [6885.44677734375, 6885.44677734375]

Creating Model 3
insurance_model_3 = create_neural_network(num_layers = 1, num_units = 100, optimizer = "Adam", epochs = 200) # The model seemed to struggle

Creating Model 4
insurance_model_4 = create_neural_network(num_layers = 2, num_units = 100, optimizer = "Adam", epochs = 100) # The model seemed to struggle

Best performing model so far

Model 4 performed the best with an MAE of ~3700. The model's learning appeared to drop-off drastically at 60 epochs, but there is definite decrease until 100 epochs. Therefore, it could be said that 200 epochs would result in an even better MAE, which I will be testing.

Enhancing Model 4
insurance_model_4_enhanced = create_neural_network(num_layers = 2, num_units = 100, optimizer = "Adam", epochs = 200) # Same as Model 4, but

Too many epochs! The tail-end of the graph shows a slight increase in MAE, possibly a result of the model overfitting for the training data. Around 125 epochs seems to still be decreasing... time to test it.

insurance_model_4_enhanced_2 = create_neural_network(num_layers = 2, num_units = 100, optimizer = "Adam", epochs = 125) # Reducing number of

Neural Network Conclusions

Despite trying to optimize the number of epochs manually, insurance_model_4 seems to perform the best compared to either of its 'enhanced' counterparts. The final, best model (Model 4) has an MAE of ~3700 with 2 additional hidden layers each with 100 hidden units. It uses the Adam optimizer with the default learning rate and runs for 100 epochs.

Additional Notes:

- 1. Early Stopping Callback (or other methods) can be used to better optimize the number of epochs the model runs compared to guessing based on the loss graph. *Although this will not be explored in this project.*
- 2. The training and test data is not Normalized or Standardized which could further improve the MAE value and should be tested.
- 3. Only 6 neural networks were created. There is a decent likelihood that changing the number of additional hidden layers and the number of hidden units could reduce the MAE further.
- 4. The function used to create the neural networks, while handy, does not allow for additional hidden layers to have a different number of hidden units. This means the optimization of the neural network is slightly one-dimensional when it comes to changing the number of hidden layers and units.

For the Linear Regression Model:

- 1. Use a Backwards Elimination Algorithm to determine which model has the greatest R^2 value.
- 2. Make sure the model satisfies the linearity assumption.

sns.pairplot(insurance) # Pairplot of all the variables

Note: Visually, there do not seem to be any explanatory variables that have a significant effect on how much the charges are (although having more than 3 children seems to lead to lower charges).

bmi

insurance_one_hot_encoded # to check the var names

40

age

60

20

20000

children

40000

charges

60000

_ →		age	bmi	children	charges	sex_female	sex_male	smoker_no	smoker_yes	region_northeast	region_northwest	region_southea:
	0	19	27.900	0	16884.92400	1	0	0	1	0	0	
	1	18	33.770	1	1725.55230	0	1	1	0	0	0	
	2	28	33.000	3	4449.46200	0	1	1	0	0	0	
	3	33	22.705	0	21984.47061	0	1	1	0	0	1	
	4	32	28.880	0	3866.85520	0	1	1	0	0	1	
	1333	50	30.970	3	10600.54830	0	1	1	0	0	1	
	1334	18	31.920	0	2205.98080	1	0	1	0	1	0	
	1335	18	36.850	0	1629.83350	1	0	1	0	0	0	
	1336	21	25.800	0	2007.94500	1	0	1	0	0	0	
	1337	61	29.070	0	29141.36030	1	0	0	1	0	1	
1	338 ro	ws ×	12 colum	ns								
1	338 ro	ws ×	12 colum	ns								1

insurance_full_model_linreg = smf.ols(formula='charges~age+bmi+children+sex_female+sex_male+smoker_no+smoker_yes+region_northeast+region_nor insurance_full_model_linreg.summary()

__

OLS Regression Results

Dep. Variable: charges R-squared: 0.751 Model: OLS Adj. R-squared: 0.749 Method: F-statistic: 500.8 Least Squares Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00 Time: 01:19:56 Log-Likelihood: -13548. 2.711e+04 No. Observations: 1338 AIC: Df Residuals: 1329 BIC: 2.716e+04

Df Model: Covariance Type: nonrobust

coef std err P>|t| [0.025 0.975] t Intercept -296.4168 430.507 -0.689 0.491 -1140.964 548.130 age 256.8564 11.899 21.587 0.000 233.514 280.199 bmi 339.1935 28.599 11.860 0.000 283.088 395.298 children 475.5005 137.804 3.451 0.001 205.163 745.838 sex_female -82.5512 269.226 -0.307 0.759 -610.706 445.604 sex_male -213.8656 274.976 -0.778 0.437 -753.299 325.568 -1.207e+04 282.338 -42.759 0.000 -1.26e+04 -1.15e+04 smoker_no smoker_yes 1.178e+04 313.530 37.560 0.000 1.12e+04 1.24e+04 region_northeast 512.9050 300.348 1.708 0.088 -76.303 1102.113 region_northwest 159.9411 301.334 0.531 0.596 -431.201 751.083 region_southeast -522.1170 330.759 -1.579 0.115 -1170.983 126.749 region_southwest -447.1459 310.933 -1.438 0.151 -1057.119 162.827

Omnibus: 300.366 Durbin-Watson: 2.088 Prob(Omnibus): 0.000 Jargue-Bera (JB): 718.887 Skew: 1.211 Prob(JB): 7.86e-157 Kurtosis: 5.651 Cond. No. 6.51e+17

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 8.3e-30. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

```
# scatter plot of the residuals
plt.scatter(insurance_full_model_linreg.fittedvalues, insurance_full_model_linreg.resid)
plt.axhline(y=0, color='r')
plt.show()
```


The model's residuals seem to have an even spread above and below the x-axis, therefore it meets the linearity assumption.

Creating predictive models using Backwards Elimination

insurance_train, insurance_test = train_test_split(insurance_one_hot_encoded, test_size=.2, random_state=10) # splitting the data to test th len(insurance_test) / len(insurance_one_hot_encoded) # check split

→ 0.20029895366218237

insurance_train

→ *		age	bmi	children	charges	sex female	sex male	smoker no	smoker ves	region_northeast	region northwest	region southeas
	559	19	35.530		1646.42970	0	1	1	0	0	1	(
	273	50	27.455	1	9617.66245	0	1	1	0	1	0	(
	471	18	30.115	0	2203.47185	1	0	1	0	1	0	(
	22	18	34.100	0	1137.01100	0	1	1	0	0	0	
	939	53	29.480	0	9487.64420	0	1	1	0	0	0	,
	1180	42	41.325	1	7650.77375	1	0	1	0	1	0	(
	1147	20	31.920	0	2261.56880	1	0	1	0	0	1	(
	527	51	25.800	1	9861.02500	1	0	1	0	0	0	(
	1149	42	34.100	0	5979.73100	0	1	1	0	0	0	(
	1289	44	34.320	1	7147.47280	0	1	1	0	0	0	,
	1070 rov	ws ×	12 columi	ns								

```
# scaling the training data and making a data frame
scaler = StandardScaler()
scaled_train_data = scaler.fit_transform(insurance_train)
df_train_scaled = pd.DataFrame(scaled_train_data, columns = insurance_train.columns)
df_train_scaled
```


scaling the test data and making a data frame
scaler2 = StandardScaler()
scaled_test_data = scaler2.fit_transform(insurance_test)
df_test_scaled = pd.DataFrame(scaled_test_data, columns = insurance_test.columns)
df_test_scaled

	age	bmi	children	charges	sex_female	sex_male	smoker_no	smoker_yes	region_northeast	region_northwest	region_so
0	-0.181626	-0.465506	1.573706	-0.529499	1.0	-1.0	0.519752	-0.519752	-0.525538	1.732051	-0
1	-0.254932	-0.610518	-0.946732	-0.699534	1.0	-1.0	0.519752	-0.519752	-0.525538	1.732051	-0
2	1.431123	1.121988	-0.106586	-0.101755	-1.0	1.0	0.519752	-0.519752	-0.525538	-0.577350	-0
3	1.577736	-0.916653	-0.946732	0.925534	1.0	-1.0	0.519752	-0.519752	-0.525538	-0.577350	1
4	-0.768080	-0.755529	-0.946732	-0.828842	1.0	-1.0	0.519752	-0.519752	-0.525538	1.732051	-0
263	0.771362	0.630136	0.733560	2.474477	-1.0	1.0	-1.923994	1.923994	-0.525538	-0.577350	-0
264	-0.988000	1.645216	-0.946732	-0.874035	1.0	-1.0	0.519752	-0.519752	-0.525538	1.732051	-0
265	-1.501147	-0.546068	0.733560	0.755013	-1.0	1.0	0.519752	-0.519752	-0.525538	1.732051	-0
266	1.284509	1.774115	-0.946732	-0.167691	-1.0	1.0	0.519752	-0.519752	1.902811	-0.577350	-0
267	0.184908	0.930335	0.733560	-0.539731	-1.0	1.0	0.519752	-0.519752	-0.525538	-0.577350	1
268 rc	ws × 12 colu	umns									
4											▶

Non-Regularized Linear Regression Full Model

```
train_expvar = df_train_scaled.drop('charges', axis=1) # only the explanatory variables of the training data train_target = df_train_scaled['charges'] # the target variable

test_expvar = df_test_scaled.drop('charges', axis=1) # only the explanatory variables of the test data test_target = df_test_scaled['charges'] # target variable

linreg = LinearRegression() # instantiating the Linear Regression model
linreg.fit(train_expvar, train_target) # fitting the model with training data
linreg.score(test_expvar, test_target) # checking R^2 value with test data

...

0.6969180450282757
```

Backwards Elimination Algorithm

- 1. Make multiple Linear Regression models while removing one explanatory variable
- 2. Check each models' R^2 value
- 3. Select the best model

check variable names
train_expvar

	age	bmi	children	sex_female	sex_male	smoker_no	smoker_yes	${\tt region_northeast}$	region_northwest	${\tt region_southeast}$	r
0	-1.423960	0.784788	-0.899332	-0.987000	0.987000	0.504377	-0.504377	-0.575192	1.774059	-0.605425	
1	0.767917	-0.529475	-0.071916	-0.987000	0.987000	0.504377	-0.504377	1.738550	-0.563679	-0.605425	
2	-1.494665	-0.096542	-0.899332	1.013171	-1.013171	0.504377	-0.504377	1.738550	-0.563679	-0.605425	
3	-1.494665	0.552045	-0.899332	-0.987000	0.987000	0.504377	-0.504377	-0.575192	-0.563679	1.651733	
4	0.980034	-0.199892	-0.899332	-0.987000	0.987000	0.504377	-0.504377	-0.575192	-0.563679	1.651733	
1065	0.202271	1.727966	-0.071916	1.013171	-1.013171	0.504377	-0.504377	1.738550	-0.563679	-0.605425	
1066	-1.353254	0.197235	-0.899332	1.013171	-1.013171	0.504377	-0.504377	-0.575192	1.774059	-0.605425	
1067	0.838622	-0.798838	-0.071916	1.013171	-1.013171	0.504377	-0.504377	-0.575192	-0.563679	-0.605425	
1068	0.202271	0.552045	-0.899332	-0.987000	0.987000	0.504377	-0.504377	-0.575192	-0.563679	-0.605425	