Applied Machine Learning

Classification - Nearest Neighbor Learning

Nearest Neighbor Learning

- Nearest Neighbor Learning
- k-Nearest Neighbor Learning
- How to address some issues of the NN algorithms

Nearest Neighbor Overview

- During training: store the Training Set of feature vectors (x, y)
 - defer processing until a new data point must be classified
 - Instance-Based Learning
- During classification of item x_c
 - compute distance between x_c and stored date
 - report label y of closest stored item

Nearest Neighbor Classification

- Training:
 - Store N feature vectors of fixed size in dataset: pairs (\boldsymbol{x}_i, y_i)
- Classification
 - Distance metrics: $dist(\cdot, \cdot)$
 - Input: Query vector x
 - Algorithm
 - Find the example vector $(\mathbf{x}_c, \mathbf{y}_c)$ in dataset so that $dist(\mathbf{x}, \mathbf{x}_c)$ is the smallest
 - Report label y_c

Nearest Neighbor Classification

- If the dataset had one less item
- The classification changes

k-Nearest Neighbor Classification

- Training:
 - Store N feature vectors of fixed size in dataset: pairs (\boldsymbol{x}_i, y_i)
- Classification
 - Distance metrics: $dist(\cdot, \cdot)$
 - Input: Query vector x
 - Algorithm
 - Find the set of k example vectors $k_{\text{closest}} = \{(x_{c1}, y_{c1}), (x_{c2}, y_{c2}), ..., (x_{ck}, y_{ck})\} \text{ in dataset so that their distances to the query vector } dist(x, x_{ci}) \text{ are the } k \text{ smallest}$
 - Report label $y_c \in k_{\text{closest}}$ that is repeated the most

Key Component: Distance Metrics

- Euclidean distance metrics
- Feature normalization
 - recenter the feature around 0
 - rescale so that the variance is 1

Key Component: Nearest Neighbors Computation

- Computing distance to the N members of the dataset is time consuming
- N may need to be large for the classifier to be effective
- Data points lie in high-dimensional spaces
- Some approaches to speed up nearest neighbors computation
 - kd-tree
 - locality-sensitive hashing

UIUC - Applied Machine Learning

Nearest Neighbors

- Additional refinements
 - ullet weight the contribution of the k neighbors according to their distance to the query
- Sensitive to potentially irrelevant features

Nearest Neighbor Learning

- Nearest Neighbor Learning
- k-Nearest Neighbor Learning
- How to address some issues of the NN algorithms

Applied Machine Learning

Classification - Nearest Neighbor Learning