Solución Prueba N°2 Cálculo I (IME002)

Profesores: Mauricio Carrillo, Alex Sepúlveda.

06 de Mayo 2008.

1. Encuentre el valor de a, para que la recta 2x + ay = 4 sea tangente a la circunferencia $4x^2 + 4y^2 - 16x - 40y + 107 = 0$.

Solución.

Completando cuadrados encontramos que el cento de la circunferencia está en C(2,5) y tiene radio $r = \frac{3}{2}$. Como la recta 2x + ay = 4 es tangente a la circunferencia se debe cumplir que la distancia del centro a ella es igual al radio, luego usando la formula de distancia de un punto a una recta y una vez simplificado tenemos la ecuación,

$$\frac{|5a|}{\sqrt{4+a^2}} = \frac{3}{2}.$$

Elevando al cuadrado y despejando a obtenemos $a=\pm\frac{6}{\sqrt{91}}=\pm\frac{6\sqrt{91}}{91}$.

- 2. Considere la función $f(x) = \frac{\sqrt{x}}{1-\sqrt{x}}$. Analice,
 - a) Dominio, recorrido y ceros.
 - b) Inyectividad, sobreyectividad y biyectividad.
 - c) Determine la función inversa restringiendo el dominio y/o recorrido si es necesario.
 - d) Esboce la gráfica de f.

Solución.

a) La raíz cuadrada existe en \mathbb{R} sólo cuando la cantidad subradical es no negativa, pero el denomnador no puede ser nulo, por tanto, $Dom(f) = \mathbb{R}_0^+ \setminus \{1\}$. Escribiendo $y = \frac{\sqrt{x}}{1-\sqrt{x}}$ y despejando x obtenemos $x = \frac{y^2}{(1y^2)^2}$, de donde $Rec(f) = \mathbb{R} \setminus \{-1\}$. Respecto a los ceros de f, se encuentra fácilmente que x = 0 es el único.

- b) Para la inyectividad comenzamos de $f(x_1) = f(x_2)$, es decir, $\frac{\sqrt{x_1}}{1-\sqrt{x_1}} = \frac{\sqrt{x_2}}{1-\sqrt{x_2}}$, con $x_1, x_2 \in Dom(f)$. Eliminando denominadores y simplificando obtenemos $\sqrt{x_1} = \sqrt{x_2}$, de donde, $x_1 = x_2$, luego f es inyectiva. Claramente f no es sobreyectiva pues -1 no tiene preimagen. Por tanto, f no es biyectiva.
- c) La función $f: \mathbb{R}_0^+ \setminus \{1\} \to \mathbb{R} \setminus \{-1\}, x \mapsto f(x) = \frac{\sqrt{x}}{1-\sqrt{x}}$ es biyectiva, por tanto, invertible. Para la inversa tenemos,

$$\begin{split} \left(f \circ f^{-1}\right)(x) &= x \\ f\left(f^{-1}(x)\right) &= x \\ \frac{\sqrt{f^{-1}(x)}}{1 - \sqrt{f^{-1}(x)}} &= x, \end{split}$$

de donde, $f^{-1}(x) = \frac{x^2}{(x+1)^2}$. Concluyendo, $f^{-1}: \mathbb{R} \setminus \{-1\} \to \mathbb{R}_0^+ \setminus \{1\}, x \mapsto f^{-1}(x) = \frac{x^2}{(x+1)^2}$

d) La gráfica de f es

Figura 1: Gráfico de $f(x) = \frac{\sqrt{x}}{1-\sqrt{x}}$.

- 3. a) Si $tg(\theta) = x$, calcule $sen(\theta)$ y $cos(2\theta)$ en términos de x.
 - b) Sean f(x) = sen(x) y g(x) = 2arctg(x). Muestre que $(f \circ g)(x) = \frac{2x}{x^2+1}$. (Indicación: Use la parte a)).

Solución.

a) De la relación $tg(\theta) = x$ podemos construir el triángulo

de donde obtenemos inmediatamente $sen\left(\theta\right)=\frac{x}{\sqrt{x^2+1}}$ y $cos\left(\theta\right)=\frac{1}{\sqrt{x^2+1}}$. Reemplazando esto en la identidad $cos\left(2\theta\right)=cos^2\left(\theta\right)-sen^2\left(\theta\right)$ y operando, concluimos que $cos\left(2\theta\right)=\frac{1-x^2}{1+x^2}$.

- b) Sabemos que la función $arctg\left(x\right)$ entrega como imagen un ángulo, por tanto, hacemos $\theta=arctg\left(x\right)$. Con esto, tenemos $(f\circ g)\left(x\right)=f\left(g\left(x\right)\right)=sen\left(2arctg\left(x\right)\right)=sen\left(2\theta\right)=2sen\left(\theta\right)cos\left(\theta\right)=2\frac{x}{\sqrt{x^2+1}}\frac{1}{\sqrt{x^2+1}}=\frac{2x}{x^2+1}$. Concluyendo la demostración.
- 4. Demuestre la identidad,

$$(1 - \cos(2x)) \operatorname{ctg}^{2}(x) + \frac{\operatorname{sen}^{2}(2x) \operatorname{sec}^{2}(x)}{2} = 2.$$

Solución.

De la identidad $sen^{2}(x) = \frac{1}{2}(1 - cos(2x)) \Rightarrow 1 - cos(2x) = 2sen^{2}x$, así,

$$(1 - \cos(2x)) \cot^{2}(x) + \frac{\sec^{2}(2x) \sec^{2}(x)}{2} = 2 \sec^{2}(x) \frac{\cos^{2}(x)}{\sin^{2}(x)} + \frac{[2 \sec(x) \cos(x)]^{2}}{2} \frac{1}{\cos^{2}(x)}$$
$$= 2 \cos^{2}(x) + 2 \sec^{2}(x) = 2.$$