Algorithmic Aspects of the Brascamp Lieb Inequality

Jacob Denson

University of Wisconsin Madison

September 29, 2021

- Classical Complexity and Quantum Entanglement Gurvits, 2004.
- Algorithmic and Optimization Aspects of Brascamp-Lieb Inequalities, Via Operator Scaling
 Garg, Gurvits, Oliveira, Wigderson, 2016.
- ➤ A Deterministic Polynomial Time Algorithm For Non-Commutative Rational Identity Testing Garg, Gurvits, Oliveira, Wigderson, 2016.

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B,p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

► (Lieb, 1990) To calculate BL(B,p), plug in Gaussians.

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

- ► (Lieb, 1990) To calculate BL(B,p), plug in Gaussians.
- If $f_i(x) = e^{-\pi(A_ix)\cdot x}$ for $A_i \succ 0$, then

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B,p) \cdot \prod_{i=1}^m \|f_i\|_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

- ► (Lieb, 1990) To calculate BL(B,p), plug in Gaussians.
- If $f_i(x) = e^{-\pi(A_ix)\cdot x}$ for $A_i > 0$, then

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx = \det(\sum p_i B_i^* A_i B_i)^{-1/2}$$

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m \|f_i\|_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

- ► (Lieb, 1990) To calculate BL(B,p), plug in Gaussians.
- If $f_i(x) = e^{-\pi(A_ix)\cdot x}$ for $A_i \succ 0$, then

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx = \det(\sum p_i B_i^* A_i B_i)^{-1/2}$$

$$\prod_{i=1}^m \|f_i\|_{L^1(\mathbb{R}^{n_i})}^{p_i} = (\prod_{i=1}^m \det(A_i)^{p_i})^{-1/2}.$$

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

- ▶ (Lieb, 1990) To calculate BL(B,p), plug in Gaussians.
- ▶ If $f_i(x) = e^{-\pi(A_i x) \cdot x}$ for $A_i \succ 0$, then

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx = \det(\sum p_i B_i^* A_i B_i)^{-1/2}$$

$$\prod_{i=1}^m \|f_i\|_{L^1(\mathbf{R}^{n_i})}^{p_i} = (\prod_{i=1}^m \det(A_i)^{p_i})^{-1/2}.$$

Thus

$$\det(\sum p_i B_i^* A_i B_i)^{-1/2} \le \mathsf{BL}(B, p) \cdot (\prod_{i=1}^m \det(A_i)^{p_i})^{-1/2}$$

► Rearranging gives

$$\mathsf{BL}(B,p) = \left(\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i B_i^* A_i B_i)}\right)^{1/2}.$$

► Rearranging gives

$$\mathsf{BL}(B,p) = \left(\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i B_i^* A_i B_i)}\right)^{1/2}.$$

Non convex objective, so tricky to optimize (NP hard).

► Rearranging gives

$$\mathsf{BL}(B,p) = \left(\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i B_i^* A_i B_i)}\right)^{1/2}.$$

- Non convex objective, so tricky to optimize (NP hard).
- Checking finiteness efficiently also non-obvious.

Rearranging gives

$$\mathsf{BL}(B,p) = \left(\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i B_i^* A_i B_i)}\right)^{1/2}.$$

- Non convex objective, so tricky to optimize (NP hard).
- Checking finiteness efficiently also non-obvious.
 - BCCT gives a family of conditions to check finiteness.

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

Rearranging gives

$$\mathsf{BL}(B,p) = \left(\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i B_i^* A_i B_i)}\right)^{1/2}.$$

- Non convex objective, so tricky to optimize (NP hard).
- Checking finiteness efficiently also non-obvious.
 - BCCT gives a family of conditions to check finiteness.

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

Since $0 \le \dim(V) \le n$ and $0 \le \dim(B_i V) \le n_i$, only finitely many linear conditions on the exponents p_i .

Rearranging gives

$$\mathsf{BL}(B,p) = \left(\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i B_i^* A_i B_i)}\right)^{1/2}.$$

- Non convex objective, so tricky to optimize (NP hard).
- Checking finiteness efficiently also non-obvious.
 - BCCT gives a family of conditions to check finiteness.

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

Since $0 \le \dim(V) \le n$ and $0 \le \dim(B_i V) \le n_i$, only finitely many linear conditions on the exponents p_i .

► Can be exponentially many constraints, so inefficient.

Geometric Brascamp Lieb

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \le BL(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbf{R}^{n_i})}^{p_i}$$

Geometric Brascamp Lieb

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \le \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbf{R}^{n_i})}^{p_i}$$

- ► A Brascamp-Lieb inequality is *geometric* if
 - ▶ (Projection Property): $B_i B_i^* = I$.
 - (Isotropy Property): $\sum_i p_i B_i^* B_i = I$.

Geometric Brascamp Lieb

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \le \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbf{R}^{n_i})}^{p_i}$$

- ► A Brascamp-Lieb inequality is *geometric* if
 - ▶ (Projection Property): $B_i B_i^* = I$.
 - (Isotropy Property): $\sum_i p_i B_i^* B_i = I$.
- ▶ (Barthe, 1998), generalizing (Ball, 1989), showed that if (B, p) is geometric, BL(B, p) = 1.

▶ What happens to BL(B, p) if we 'change coordinates'.

- \blacktriangleright What happens to BL(B, p) if we 'change coordinates'.
- Fix invertible matrices M and M_1, \ldots, M_m , and consider the Brascamp-Lieb inequality with matrices $B'_i = M_i B_i M$,

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(M_i B_i M x)|^{p_i} dx \leq \mathsf{BL}(B', p) \cdot \prod_{i=1}^m \|f_i\|_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

- \blacktriangleright What happens to BL(B, p) if we 'change coordinates'.
- Fix invertible matrices M and M_1, \ldots, M_m , and consider the Brascamp-Lieb inequality with matrices $B'_i = M_i B_i M$,

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(M_i B_i M x)|^{p_i} dx \leq \mathsf{BL}(B', p) \cdot \prod_{i=1}^m \|f_i\|_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

$$\mathsf{BL}(B',p) = \left(\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum_i p_i M^* B_i^* M_i^* A_i M_i B_i M)}\right)^{1/2}$$
$$= \det(M)^{-1} \prod_i \det(M_i)^{-p_i} \cdot \mathsf{BL}(B,p).$$

$$\mathsf{BL}(B',p) = \mathsf{det}(M)^{-1} \prod_{i} \mathsf{det}(M_i)^{-p_i} \cdot \mathsf{BL}(B,p)$$

$$\mathsf{BL}(B',p) = \mathsf{det}(M)^{-1} \prod_{i} \mathsf{det}(M_i)^{-p_i} \cdot \mathsf{BL}(B,p)$$

▶ If (B', p) is geometric, BL(B', p) = 1, so

$$\mathsf{BL}(B,p) = \mathsf{det}(M) \prod_i \mathsf{det}(M_i)^{p_i}.$$

$$\mathsf{BL}(B',p) = \mathsf{det}(M)^{-1} \prod_{i} \mathsf{det}(M_i)^{-p_i} \cdot \mathsf{BL}(B,p)$$

▶ If (B', p) is geometric, BL(B', p) = 1, so

$$BL(B, p) = det(M) \prod_{i} det(M_i)^{p_i}.$$

▶ (BCCT) Geometric rescaling possible iff extremizers exist.

▶ (Garg, Gurvits, Oliveira, Wigderson, 2016) If $BL(B, p) < \infty$, we can rescale to (B', p) with $BL(B', p) \le 1 + \varepsilon$, for any $\varepsilon > 0$.

- ▶ (Garg, Gurvits, Oliveira, Wigderson, 2016) If $BL(B,p) < \infty$, we can rescale to (B',p) with $BL(B',p) \le 1 + \varepsilon$, for any $\varepsilon > 0$.
 - ▶ For $\varepsilon \ll 1$, BL $(B, p) \approx \det(M)^2 \prod_i \det(M_i)^{2p_i}$.

- ▶ (Garg, Gurvits, Oliveira, Wigderson, 2016) If $BL(B, p) < \infty$, we can rescale to (B', p) with $BL(B', p) \le 1 + \varepsilon$, for any $\varepsilon > 0$.
 - ► For $\varepsilon \ll 1$, BL $(B, p) \approx \det(M)^2 \prod_i \det(M_i)^{2p_i}$.
 - We can do this algorithmically, i.e. if p_i are rationals, with common denominator d, a computer can compute a ε -approximate geometric rescaling in Poly(Bits(B, p), d, $1/\varepsilon$) computations.

- ▶ (Garg, Gurvits, Oliveira, Wigderson, 2016) If $BL(B, p) < \infty$, we can rescale to (B', p) with $BL(B', p) \le 1 + \varepsilon$, for any $\varepsilon > 0$.
 - ► For $\varepsilon \ll 1$, BL $(B, p) \approx \det(M)^2 \prod_i \det(M_i)^{2p_i}$.
 - We can do this algorithmically, i.e. if p_i are rationals, with common denominator d, a computer can compute a ε -approximate geometric rescaling in Poly(Bits(B, p), d, $1/\varepsilon$) computations.
 - ▶ Conversely, we can determine if $BL(B, p) = \infty$, and find a violating subspace V to the condition $\dim(V) \leq \sum p_i \dim(B_i V)$ in this case, in Poly(Bits(B, p), d) computations.

- ▶ (Garg, Gurvits, Oliveira, Wigderson, 2016) If $BL(B, p) < \infty$, we can rescale to (B', p) with $BL(B', p) \le 1 + \varepsilon$, for any $\varepsilon > 0$.
 - ► For $\varepsilon \ll 1$, BL $(B, p) \approx \det(M)^2 \prod_i \det(M_i)^{2p_i}$.
 - We can do this algorithmically, i.e. if p_i are rationals, with common denominator d, a computer can compute a ε -approximate geometric rescaling in $Poly(Bits(B, p), d, 1/\varepsilon)$ computations.
 - ▶ Conversely, we can determine if $BL(B, p) = \infty$, and find a violating subspace V to the condition $\dim(V) \leq \sum p_i \dim(B_i V)$ in this case, in Poly(Bits(B, p), d) computations.
 - ▶ Open Problem: Can we can improve this to Poly(Bits(B, p), d, log($1/\varepsilon$)) computations?

Typing a single digit is a single unit of computation.

- Typing a single digit is a single unit of computation.
 - ▶ Thus given (B, p), either $BL(B, p) < \infty$, or

$$\mathsf{BL}(B,p) \leq 2^{\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/\varepsilon))}.$$

$$\mathsf{BL}(B,p) \geq 2^{-\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/arepsilon))}$$

- Typing a single digit is a single unit of computation.
 - ▶ Thus given (B, p), either $BL(B, p) < \infty$, or

$$\mathsf{BL}(B,p) \leq 2^{\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/\varepsilon))}.$$

and

$$\mathsf{BL}(B,p) \geq 2^{-\mathsf{Poly}(\mathsf{Bits}(B,p),d,\mathsf{log}(1/arepsilon))}$$

Calculation is also stable.

- Typing a single digit is a single unit of computation.
 - ▶ Thus given (B, p), either $BL(B, p) < \infty$, or

$$\mathsf{BL}(B,p) \leq 2^{\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/\varepsilon))}.$$

$$\mathsf{BL}(B,p) \geq 2^{-\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/arepsilon))}$$

- Calculation is also stable.
 - ► Thus we conclude a *continuity bound*:

- Typing a single digit is a single unit of computation.
 - ▶ Thus given (B, p), either $BL(B, p) < \infty$, or

$$\mathsf{BL}(B,p) \leq 2^{\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/\varepsilon))}.$$

$$\mathsf{BL}(B,p) \geq 2^{-\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/\varepsilon))}$$

- Calculation is also stable.
 - Thus we conclude a continuity bound:
 - ▶ For each (B, p) with $BL(B, p) < \infty$, and each $\varepsilon > 0$,

- ▶ Typing a single digit is a single unit of computation.
 - ▶ Thus given (B, p), either $BL(B, p) < \infty$, or

$$\mathsf{BL}(B,p) \leq 2^{\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/\varepsilon))}.$$

$$\mathsf{BL}(B,p) \geq 2^{-\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/\varepsilon))}$$

- Calculation is also stable.
 - Thus we conclude a continuity bound:
 - ▶ For each (B, p) with $BL(B, p) < \infty$, and each $\varepsilon > 0$, if

$$\|B_1 - B\| \le \exp\left(-\frac{\mathsf{Poly}(\mathsf{Bits}(B, p), d)}{\varepsilon^3}\right),$$

- Typing a single digit is a single unit of computation.
 - ▶ Thus given (B, p), either $BL(B, p) < \infty$, or

$$\mathsf{BL}(B,p) \leq 2^{\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/\varepsilon))}$$
.

and

$$\mathsf{BL}(B,p) \geq 2^{-\mathsf{Poly}(\mathsf{Bits}(B,p),d,\log(1/arepsilon))}$$

- Calculation is also stable.
 - Thus we conclude a continuity bound:
 - ▶ For each (B, p) with $BL(B, p) < \infty$, and each $\varepsilon > 0$, if

$$\|B_1 - B\| \le \exp\left(-\frac{\mathsf{Poly}(\mathsf{Bits}(B, p), d)}{\varepsilon^3}\right),$$

then

$$(1-\varepsilon)\mathsf{BL}(B,p) \leq \mathsf{BL}(B_1,p) \leq (1+\varepsilon)\mathsf{BL}(B,p).$$

 \blacktriangleright Given an $n \times n$ matrix A with non-negative entries, define

$$\mathsf{Perm}(A) = \sum_{\sigma \in S_n} \prod_i A_{i\sigma(i)}.$$

▶ Given an $n \times n$ matrix A with non-negative entries, define

$$\mathsf{Perm}(A) = \sum_{\sigma \in S_n} \prod_i A_{i\sigma(i)}.$$

▶ This is (surprisingly) NP hard to compute.

▶ Given an $n \times n$ matrix A with non-negative entries, define

$$\mathsf{Perm}(A) = \sum\nolimits_{\sigma \in S_n} \prod\nolimits_i A_{i\sigma(i)}.$$

- ► This is (surprisingly) NP hard to compute.
 - ► If

$$R = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} \gamma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \gamma_n \end{pmatrix},$$

then

$$Perm(RAC) = Perm(\lambda_i A_{ij} \gamma_j)$$

$$= (\lambda_1 \dots \lambda_n)(\gamma_1 \dots \gamma_n) Perm(A)$$

$$= det(R) det(C) Perm(A).$$

Perm(RAC) = det(R) det(C) Perm(A).

$$Perm(RAC) = det(R) det(C) Perm(A).$$

► (Egorychev, 1981), (Falikman, 1981) If A is doubly stochastic, $e^{-n} \leq \text{Perm}(A) \leq 1$.

$$Perm(RAC) = det(R) det(C) Perm(A)$$
.

- ► (Egorychev, 1981), (Falikman, 1981) If A is doubly stochastic, $e^{-n} \leq \text{Perm}(A) \leq 1$.
- ▶ If *RAC* is doubly stochastic, then

$$\operatorname{Perm}(A) \leq \det(R)^{-1} \det(C)^{-1} \leq e^n \cdot \operatorname{Perm}(A),$$

so $Perm(A) \approx det(R)^{-1} det(C)^{-1}$.

The Algorithm

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

▶ Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- ▶ Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- ▶ Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $\text{Per}(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot \text{Per}(A_i)$.
- ► Two Key Facts Ensuring Convergence:

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- ▶ Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- ► Two Key Facts Ensuring Convergence:
 - (1) $Per(A) \leq 1$ if A is partially normalized.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- ▶ Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- ► Two Key Facts Ensuring Convergence:
 - (1) $Per(A) \le 1$ if A is partially normalized.
 - (2) If $\Delta_i = \sum_j (\gamma_{ij} 1)^2$, $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- ▶ Claim: If $Per(A_0) > 0$, $d(A_i, \mathbf{S}) \to 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ij} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- ► Two Key Facts Ensuring Convergence:
 - (1) $Per(A) \le 1$ if A is partially normalized.
 - (2) If $\Delta_i = \sum_j (\gamma_{ij} 1)^2$, $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$.
- ▶ Thus $Per(A_i)$ is bounded, monotonic, converges to $P \le 1$.

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \dots$$

- ▶ Claim: If $Per(A_0) > 0$, $d(A_i, S) \rightarrow 0$, where **S** is the family of doubly stochastic matrices.
- For even (odd) i, let γ_{ii} be the jth row (column) sum of A_i , so that $Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} \cdot Per(A_i)$.
- ► Two Key Facts Ensuring Convergence:
 - (1) $Per(A) \leq 1$ if A is partially normalized.
 - (2) If $\Delta_i = \sum_i (\gamma_{ii} 1)^2$, $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$.
- ▶ Thus $Per(A_i)$ is bounded, monotonic, converges to P < 1.
- ▶ If $Per(A_i) > P \varepsilon$ for $\varepsilon \ll 1$, then

$$P > \operatorname{Per}(A_{i+1}) > (1 + C \cdot \Delta_i) \cdot \operatorname{Per}(A_i) > (1 + C \cdot \Delta_i)(P - \varepsilon).$$

Thus $\Delta_i \lesssim \varepsilon$. Taking $\varepsilon \to 0$ shows $\Delta_i \to 0$.

▶ Proof that $Per(A_i) \le 1$:

- ▶ Proof that $Per(A_i) \le 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.

- ▶ Proof that $Per(A_i) \le 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.
- ▶ Proof that $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$:

- ▶ Proof that $Per(A_i) \le 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.
- ▶ Proof that $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$:
 - Really just more robust form of AGM inequality.

- ▶ Proof that $Per(A_i) \le 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.
- ▶ Proof that $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$:
 - Really just more robust form of AGM inequality.
 - If γ_{ij} are the row sums, then because the column sums are all one,

$$\frac{1}{n}\sum_{i}\gamma_{ij}=1.$$

- ▶ Proof that $Per(A_i) \le 1$:
 - Simple inductive argument: the hypothesis is that if each row of a matrix B all sum up to less than one, then $Per(B) \leq 1$.
- ▶ Proof that $Per(A_{i+1}) \ge (1 + C\Delta_i) \cdot Per(A_i)$:
 - Really just more robust form of AGM inequality.
 - If γ_{ij} are the row sums, then because the column sums are all one,

$$\frac{1}{n}\sum_{j}\gamma_{ij}=1.$$

AGM implies $\gamma_{i1} \dots \gamma_{in} \geq 1$, and monotonicity follows from

$$Per(A_{i+1}) = (\gamma_{i1} \dots \gamma_{in})^{-1} Per(A_i).$$

$$\mathsf{BL}(B,p) = \sqrt{\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i \cdot B_i^* A_i B_i)}}.$$

$$\mathsf{BL}(B,p) = \sqrt{\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i \cdot B_i^* A_i B_i)}}.$$

Goal: Rescale our inputs so that

$$\mathsf{BL}(B,p) = \sqrt{\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \mathsf{det}(A_i)^{p_i}}{\mathsf{det}(\sum p_i \cdot B_i^* A_i B_i)}}.$$

- ► Goal: Rescale our inputs so that

$$\mathsf{BL}(B,p) = \sqrt{\sup_{A_1,\ldots,A_m \succ 0} \frac{\prod_i \det(A_i)^{p_i}}{\det(\sum p_i \cdot B_i^* A_i B_i)}}.$$

- ► Goal: Rescale our inputs so that
 - ► (Isotropy) $\sum p_i B_i^* B_i = I$.
 - ▶ (Projection) $B_i B_i^* = I$ for each i.

► Sinkhorn: Alternately apply the following two procedures:

- ► Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)

- ► Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - $\blacktriangleright \text{ Let } M = \sum_i p_i B_i^* B_i.$

- ► Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - $\blacktriangleright \text{ Let } M = \sum_i p_i B_i^* B_i.$
 - ▶ Replace B_i with $B'_i = B_i M^{-1/2}$.

- ► Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - $\blacktriangleright \text{ Let } M = \sum_i p_i B_i^* B_i.$
 - ▶ Replace B_i with $B'_i = B_i M^{-1/2}$.
 - ► Then $\sum p_i(B_i')^*B_i' = 1$, i.e. isotropy holds.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - $\blacktriangleright \text{ Let } M = \sum_i p_i B_i^* B_i.$
 - ▶ Replace B_i with $B'_i = B_i M^{-1/2}$.
 - ▶ Then $\sum p_i(B'_i)^*B'_i = 1$, i.e. isotropy holds.
 - (Projection Normalization)

- ► Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - $\blacktriangleright \text{ Let } M = \sum_i p_i B_i^* B_i.$
 - ▶ Replace B_i with $B'_i = B_i M^{-1/2}$.
 - ▶ Then $\sum p_i(B'_i)^*B'_i = 1$, i.e. isotropy holds.
 - (Projection Normalization)
 - $\blacktriangleright \text{ Let } M_i = B_i B_i^*.$

- ► Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - $\blacktriangleright \text{ Let } M = \sum_i p_i B_i^* B_i.$
 - ▶ Replace B_i with $B'_i = B_i M^{-1/2}$.
 - ▶ Then $\sum p_i(B'_i)^*B'_i = 1$, i.e. isotropy holds.
 - ► (Projection Normalization)
 - $\blacktriangleright \text{ Let } M_i = B_i B_i^*.$
 - Replace B_i with $B'_i = M_i^{-1/2}B_i$.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - $\blacktriangleright \text{ Let } M = \sum_i p_i B_i^* B_i.$
 - ▶ Replace B_i with $B'_i = B_i M^{-1/2}$.
 - ► Then $\sum p_i(B_i')^*B_i' = 1$, i.e. isotropy holds.
 - ► (Projection Normalization)
 - ightharpoonup Let $M_i = B_i B_i^*$.
 - ▶ Replace B_i with $B'_i = M_i^{-1/2}B_i$.
 - Then $(B'_i)^*B'_i = I$ for each i.

- Sinkhorn: Alternately apply the following two procedures:
 - (Isotropy Normalization)
 - $\blacktriangleright \text{ Let } M = \sum_i p_i B_i^* B_i.$
 - ▶ Replace B_i with $B'_i = B_i M^{-1/2}$.
 - ► Then $\sum p_i(B'_i)^*B'_i = 1$, i.e. isotropy holds.
 - ► (Projection Normalization)
 - ightharpoonup Let $M_i = B_i B_i^*$.
 - ▶ Replace B_i with $B'_i = M_i^{-1/2}B_i$.
 - ► Then $(B'_i)^*B'_i = I$ for each i.
 - We obtain a sequence $B \to B_1 \to B_2 \to \dots$

► Two Key Facts Ensuring Convergence:

- ► Two Key Facts Ensuring Convergence:
 - (1) $BL(B, p) \ge 1$ if (B, p) is partially normalized.

- ► Two Key Facts Ensuring Convergence:
 - (1) $BL(B, p) \ge 1$ if (B, p) is partially normalized.
 - (2) For some $r \leq \text{Poly}(\text{Bits}(B), d, n)$, if

$$BL(B_i, p) \geq 1 + \varepsilon,$$

then

$$\mathsf{BL}(B_{i+1},p) \leq (1-C\varepsilon^r)\mathsf{BL}(B_i,p).$$

- ► Two Key Facts Ensuring Convergence:
 - (1) $BL(B, p) \ge 1$ if (B, p) is partially normalized.
 - (2) For some $r \leq Poly(Bits(B), d, n)$, if

$$BL(B_i, p) \geq 1 + \varepsilon,$$

then

$$\mathsf{BL}(B_{i+1},p) \leq (1-C\varepsilon^r)\mathsf{BL}(B_i,p).$$

Thus convergence occurs as with Sinkhorn iteration provided that $BL(B, p) < \infty$.

- ► Two Key Facts Ensuring Convergence:
 - (1) $BL(B, p) \ge 1$ if (B, p) is partially normalized.
 - (2) For some $r \leq Poly(Bits(B), d, n)$, if

$$BL(B_i, p) \geq 1 + \varepsilon,$$

then

$$\mathsf{BL}(B_{i+1},p) \leq (1-C\varepsilon^r)\mathsf{BL}(B_i,p).$$

- Thus convergence occurs as with Sinkhorn iteration provided that $BL(B, p) < \infty$.
- ▶ (1) and (2) follow from techniques in the study of positive operators.

▶ A linear map $T: M_n \to M_n$ is completely positive if there are $n \times n$ matrices B_1, \ldots, B_K and $p_i > 0$ such that

$$T(A) = \sum p_i B_i A B_i^*.$$

A linear map $T: M_n \to M_n$ is completely positive if there are $n \times n$ matrices B_1, \ldots, B_K and $p_i > 0$ such that

$$T(A) = \sum p_i B_i A B_i^*.$$

▶ $T: M_n \to M_n$ is *positive* if $A \succeq 0$ implies $T(A) \succeq 0$.

A linear map $T: M_n \to M_n$ is completely positive if there are $n \times n$ matrices B_1, \ldots, B_K and $p_i > 0$ such that

$$T(A) = \sum p_i B_i A B_i^*.$$

- ▶ $T: M_n \to M_n$ is *positive* if $A \succeq 0$ implies $T(A) \succeq 0$.
- Can reduce the study of non-negative matrices to positive operators: For a non-negative matrix S, T(A) is the diagonal matrix whose entries are precisely the vector Sa, where a is the vector formed from the diagonal entries of A.

A linear map $T: M_n \to M_n$ is completely positive if there are $n \times n$ matrices B_1, \ldots, B_K and $p_i > 0$ such that

$$T(A) = \sum p_i B_i A B_i^*.$$

- ▶ $T: M_n \to M_n$ is *positive* if $A \succeq 0$ implies $T(A) \succeq 0$.
- Can reduce the study of non-negative matrices to positive operators: For a non-negative matrix S, T(A) is the diagonal matrix whose entries are precisely the vector Sa, where a is the vector formed from the diagonal entries of A.
- ▶ Given T, we have $T^*(A) = \sum p_i B_i^* A B_i$.

Further Connections

For simplicity, look at Brascamp Lieb where all spaces have the same dimension (all B_i are square matrices).

Further Connections

- For simplicity, look at Brascamp Lieb where all spaces have the same dimension (all B_i are square matrices).
- ▶ $BL(B, p) < \infty$ can only hold if $\sum p_i = 1$.

Further Connections

- ► For simplicity, look at Brascamp Lieb where all spaces have the same dimension (all *B_i* are square matrices).
- ▶ $BL(B, p) < \infty$ can only hold if $\sum p_i = 1$.
- Consider optimizing the quantity

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

analogous to

$$\mathsf{BL}(B,p) = \sup_{A_1,\dots,A_m \succ 0} \sqrt{\frac{\prod_i \mathsf{det}(A_i)^{p_i}}{\mathsf{det}(\sum p_i \cdot B_i^* A_i B_i)}},$$

if all A_i are equal.

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

▶ (Gurvits, 2004) The *capacity* of $T: M_n \to M_n$ is

$$\mathsf{Cap}(T) = \inf_{A \succ 0} \frac{\det(TA)}{\det(A)}.$$

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

▶ (Gurvits, 2004) The *capacity* of $T: M_n \to M_n$ is

$$\mathsf{Cap}(T) = \inf_{A \succ 0} \frac{\det(IA)}{\det(A)}.$$

For any Brascamp-Lieb data (B, p), there exists a positive $T: M_n \to M_n$ and k such that $Cap(T) = 1/BL(B, p)^{2k}$.

$$\inf_{A\succ 0}\frac{\det(\sum p_iB_i^*AB_i)}{\det(A)}$$

▶ (Gurvits, 2004) The *capacity* of $T: M_n \to M_n$ is

$$\mathsf{Cap}(T) = \inf_{A \succ 0} \frac{\det(IA)}{\det(A)}.$$

- For any Brascamp-Lieb data (B, p), there exists a positive $T: M_n \to M_n$ and k such that $Cap(T) = 1/BL(B, p)^{2k}$.
- Positive operators are well studied in the quantum information theory literature, so reduction of BL to this theory is useful.

▶ (Isotropy) Let $T(A) = \sum p_i B_i^* A B_i$.

- (Isotropy) Let $T(A) = \sum p_i B_i^* A B_i$.

- (Isotropy) Let $T(A) = \sum p_i B_i^* A B_i$.
 - $ightharpoonup \sum p_i B_i^* B_i = I$ holds iff T(I) = I.
- ▶ (Projection) Let $T(A) = B_i^*AB_i$.

- (Isotropy) Let $T(A) = \sum p_i B_i^* A B_i$.
 - $\triangleright \sum p_i B_i^* B_i = I$ holds iff T(I) = I.
- ▶ (Projection) Let $T(A) = B_i^* A B_i$.
 - ▶ $B_i B_i^* = I$ if and only if $T^*(I) = I$.

- (Isotropy) Let $T(A) = \sum p_i B_i^* A B_i$.
 - $ightharpoonup \sum p_i B_i^* B_i = I$ holds iff T(I) = I.
- ▶ (Projection) Let $T(A) = B_i^*AB_i$.
 - $ightharpoonup B_i B_i^* = I$ if and only if $T^*(I) = I$.
- ▶ If (B, p) is a Brascamp-Lieb datum with associated operator $T: M_n \to M_n$, then (B, p) is geometric if and only if T is doubly stochastic, i.e. T(I) = I and $T^*(I) = I$.

▶ If T is doubly stochastic, Cap(T) = 1.

- ▶ If T is doubly stochastic, Cap(T) = 1.
- ▶ We can rescale. If

$$T_{M_1M_2}(A) = M_2^* T(M_1^* A M_1) M_2,$$

then $\operatorname{Cap}(T_{M_1,M_2}) = \det(M_1)^2 \det(M_2)^2 \cdot \operatorname{Cap}(T)$.

- ▶ If T is doubly stochastic, Cap(T) = 1.
- ▶ We can rescale. If

$$T_{M_1M_2}(A) = M_2^* T(M_1^* A M_1) M_2,$$

then $Cap(T_{M_1,M_2}) = det(M_1)^2 det(M_2)^2 \cdot Cap(T)$.

Sinkhorn says to iterate

$$T \mapsto T_{I,T(I)^{-1/2}}$$
 and $T \mapsto T_{T^*(I)^{-1/2},I}$.

- ▶ If T is doubly stochastic, Cap(T) = 1.
- ▶ We can rescale. If

$$T_{M_1M_2}(A) = M_2^* T(M_1^* A M_1) M_2,$$

then $Cap(T_{M_1,M_2}) = det(M_1)^2 det(M_2)^2 \cdot Cap(T)$.

Sinkhorn says to iterate

$$T\mapsto T_{I,T(I)^{-1/2}}$$
 and $T\mapsto T_{T^*(I)^{-1/2},I}$.

▶ If Cap(T) > 0, iteration yields a rescaling arbitrarily close to a doubly stochastic operator, in Poly(Bits(B), $1/\varepsilon$) time.

► To guarantee efficiency, we need to show that for partially normalized T, Cap $(T) \ge 1/e^{\text{Poly}(\text{Bits}(B))}$.

- ▶ To guarantee efficiency, we need to show that for partially normalized T, Cap $(T) \ge 1/e^{\text{Poly}(\text{Bits}(B))}$.
- ▶ (Gurvits, 2004) If $T(A) = \sum_{i} B_i A B_i^*$, and $det(\sum_i B_i) \neq 0$, then $Cap(T) \gtrsim (Bits(B) \cdot n)^{-O(n)}$.

- ▶ To guarantee efficiency, we need to show that for partially normalized T, Cap $(T) \ge 1/e^{\text{Poly}(\text{Bits}(B))}$.
- ► (Gurvits, 2004) If $T(A) = \sum B_i A B_i^*$, and $\det(\sum B_i) \neq 0$, then $Cap(T) \gtrsim (Bits(B) \cdot n)^{-O(n)}$.
- ▶ If Cap(T) > 0, there is d > 0 and $d \times d$ matrices C_i s.t.

$$\det(\sum C_i \otimes B_i) \neq 0$$
 and $\operatorname{Bits}(C) \leq \operatorname{Poly}(d,\operatorname{Bits}(B))$.

- ▶ To guarantee efficiency, we need to show that for partially normalized T, Cap $(T) \ge 1/e^{\text{Poly}(\text{Bits}(B))}$.
- ► (Gurvits, 2004) If $T(A) = \sum_{i=1}^{n} B_i A B_i^*$, and $\det(\sum_{i=1}^{n} B_i) \neq 0$, then $Cap(T) \gtrsim (Bits(B) \cdot n)^{-O(n)}$.
- ▶ If Cap(T) > 0, there is d > 0 and $d \times d$ matrices C_i s.t.

$$\det(\sum C_i \otimes B_i) \neq 0$$
 and $\operatorname{Bits}(C) \leq \operatorname{Poly}(d,\operatorname{Bits}(B))$.

▶ 'Fairly simple' to show that if $S(A) = \sum C_i A C_i^*$, and $(S \otimes T)(A) = \sum (C_i \otimes B_i) A (C_i \otimes B_i)^*$, then

$$Cap(S \otimes T) \leq Cap(S)^n Cap(T)^d$$
.

- ▶ To guarantee efficiency, we need to show that for partially normalized T, Cap $(T) \ge 1/e^{\text{Poly}(\text{Bits}(B))}$.
- ► (Gurvits, 2004) If $T(A) = \sum_{i=1}^{n} B_i A B_i^*$, and $\det(\sum_{i=1}^{n} B_i) \neq 0$, then $Cap(T) \gtrsim (Bits(B) \cdot n)^{-O(n)}$.
- ▶ If Cap(T) > 0, there is d > 0 and d × d matrices C_i s.t.

$$\det(\sum C_i \otimes B_i) \neq 0$$
 and $\operatorname{Bits}(C) \leq \operatorname{Poly}(d,\operatorname{Bits}(B)).$

Fairly simple' to show that if $S(A) = \sum C_i A C_i^*$, and $(S \otimes T)(A) = \sum (C_i \otimes B_i) A (C_i \otimes B_i)^*$, then

$$Cap(S \otimes T) \leq Cap(S)^n Cap(T)^d$$
.

▶ Since Cap(L) ≤ 1, it follows that

$$Cap(T) \ge Cap(S \otimes T)^{1/d} \gtrsim (Poly(d, Bits(B))n)^{-O(n)}.$$

- ▶ To guarantee efficiency, we need to show that for partially normalized T, Cap(T) > $1/e^{Poly(Bits(B))}$.
- (Gurvits, 2004) If $T(A) = \sum B_i A B_i^*$, and $det(\sum B_i) \neq 0$, then $Cap(T) \geq (Bits(B) \cdot n)^{-O(n)}$.
- ▶ If Cap(T) > 0, there is d > 0 and d × d matrices C_i s.t.

$$\det(\sum C_i \otimes B_i) \neq 0$$
 and $\operatorname{Bits}(C) \leq \operatorname{Poly}(d,\operatorname{Bits}(B)).$

▶ 'Fairly simple' to show that if $S(A) = \sum C_i A C_i^*$, and $(S \otimes T)(A) = \sum (C_i \otimes B_i) A (C_i \otimes B_i)^*$, then

$$Cap(S \otimes T) \leq Cap(S)^n Cap(T)^d$$
.

▶ Since Cap(L) ≤ 1, it follows that

$$Cap(T) > Cap(S \otimes T)^{1/d} \ge (Poly(d, Bits(B))n)^{-O(n)}$$
.

Invariant theory shows we can choose $d \leq n^4 [(n+1)!]^2$.

We have a group action of $SL_n \times SL_n$ on tuples $B = (B_1, \dots, B_m)$, such that

$$(M,N)\circ B=(MB_1N,\ldots,MB_mN).$$

We have a group action of $SL_n \times SL_n$ on tuples $B = (B_1, \dots, B_m)$, such that

$$(M,N)\circ B=(MB_1N,\ldots,MB_mN).$$

Invariant Theory: Find the ring R of all 'invariant polynomials' f(B) such that

$$f((M,N)\circ B)=f(B)$$

for all $(M, N) \in SL_n \times SL_n$ and all tuples B.

We have a group action of $SL_n \times SL_n$ on tuples $B = (B_1, \dots, B_m)$, such that

$$(M,N)\circ B=(MB_1N,\ldots,MB_mN).$$

Invariant Theory: Find the ring R of all 'invariant polynomials' f(B) such that

$$f((M,N)\circ B)=f(B)$$

for all $(M, N) \in SL_n \times SL_n$ and all tuples B.

Note: $f_C(B) = \det(\sum C_i \otimes B_i)$ is an invariant homogeneous polynomial under this action for any C_i .

Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.

- Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - ▶ (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.

- Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - ▶ (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.
 - ► (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \lesssim n^4[(n+1)!]^2$.

- Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - ▶ (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.
 - ► (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \lesssim n^4[(n+1)!]^2$.
 - Suppose there are $d \times d$ matrices C_i (with d minimal) such that $f_C(B) \neq 0$.

- Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - ▶ (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.
 - ► (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \lesssim n^4[(n+1)!]^2$.
 - Suppose there are $d \times d$ matrices C_i (with d minimal) such that $f_C(B) \neq 0$.
 - Find families of matrices $C(1), \ldots, C(n)$ of dimension at most d_0 such that

$$f_C(B) = \sum c_{\alpha} f_{C(1)}(B)^{\alpha_1} \dots f_{C(n)}(B)^{\alpha_n}.$$

- Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - ▶ (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.
 - ► (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \lesssim n^4[(n+1)!]^2$.
 - Suppose there are $d \times d$ matrices C_i (with d minimal) such that $f_C(B) \neq 0$.
 - Find families of matrices $C(1), \ldots, C(n)$ of dimension at most d_0 such that

$$f_{\mathcal{C}}(B) = \sum c_{\alpha} f_{\mathcal{C}(1)}(B)^{\alpha_1} \dots f_{\mathcal{C}(n)}(B)^{\alpha_n}.$$

Since $f_C(B) \neq 0$, there must exist i with $f_{C(i)}(B) \neq 0$.

- Nayak and Subrahmanyam, 2010) R is a ring generated by the homogeneous polynomials $f_C(A) = \det(\sum C_i \circ A_i)$, for $d \times d$ matrices C_i , for all d > 0.
 - ▶ (1890) Hilbert showed that for a fairly general family of group actions, R is finitely generated, so we should expect there is some d_0 such that R is generated by the polynomials above for $d \le d_0$. Killed the field for 100 years.
 - (Ivanyos, Qiao, Subrahmanyam, 2015) $d_0 \lesssim n^4[(n+1)!]^2$.
 - Suppose there are $d \times d$ matrices C_i (with d minimal) such that $f_C(B) \neq 0$.
 - Find families of matrices $C(1), \ldots, C(n)$ of dimension at most d_0 such that

$$f_C(B) = \sum c_{\alpha} f_{C(1)}(B)^{\alpha_1} \dots f_{C(n)}(B)^{\alpha_n}.$$

- Since $f_C(B) \neq 0$, there must exist i with $f_{C(i)}(B) \neq 0$.
- ▶ Thus $d \leq d_0$.

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m ||f_i||_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m \|f_i\|_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

▶ (Bennett et al, 2008) implies that $BL(B, p) < \infty$ if and only if $\sum p_i n_i = n$, and for any subspace $V \subset \mathbf{R}^n$,

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m \|f_i\|_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

▶ (Bennett et al, 2008) implies that $BL(B, p) < \infty$ if and only if $\sum p_i n_i = n$, and for any subspace $V \subset \mathbf{R}^n$,

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

▶ An operator $T: M_n \to M_n$ is rank non-decreasing if for any $A \succeq 0$, Rank $(TA) \ge \text{Rank}(A)$.

$$\int_{\mathbf{R}^n} \prod_{i=1}^m |f_i(B_i x)|^{p_i} dx \leq \mathsf{BL}(B, p) \cdot \prod_{i=1}^m \|f_i\|_{L^1(\mathbf{R}^{n_i})}^{p_i}.$$

▶ (Bennett et al, 2008) implies that $BL(B, p) < \infty$ if and only if $\sum p_i n_i = n$, and for any subspace $V \subset \mathbf{R}^n$,

$$\dim(V) \leq \sum p_i \dim(B_i V).$$

- ▶ An operator $T: M_n \to M_n$ is rank non-decreasing if for any $A \succeq 0$, Rank $(TA) \geq \text{Rank}(A)$.
- ▶ (Gurvits, 2004) $T: M_n \to M_n$ is rank non-decreasing if and only if Cap(T) > 0.

(Gurvits, 2004) $T: M_n \to M_n$ is rank non-decreasing if and only if Cap(T) > 0.

▶ Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.

- ▶ Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- ▶ Given an orthonormal basis $U = \{u_1, ..., u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.

- ▶ Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- ▶ Given an orthonormal basis $U = \{u_1, ..., u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- ▶ Define $T_U = D_U \circ T$.

- ▶ Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- ▶ Given an orthonormal basis $U = \{u_1, ..., u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- ▶ Define $T_U = D_U \circ T$.
- Result follows from the following two facts:

- ▶ Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- ▶ Given an orthonormal basis $U = \{u_1, ..., u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- ▶ Define $T_U = D_U \circ T$.
- Result follows from the following two facts:
 - (1) T is rank non-decreasing if and only if T_U is rank non-decreasing for all U.

- ▶ Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- ▶ Given an orthonormal basis $U = \{u_1, ..., u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- ▶ Define $T_U = D_U \circ T$.
- Result follows from the following two facts:
 - (1) T is rank non-decreasing if and only if T_U is rank non-decreasing for all U.
 - (2) $Cap(T) = inf_U Cap(T_U)$.

- ▶ Results from (Gurvits and Samorodnitsky, 2002) show the result is true if $T(X) = \sum X_{ii}A_i$, where $A_i \succeq 0$. The general case can be reduced to this case.
- ▶ Given an orthonormal basis $U = \{u_1, ..., u_N\}$, we define the decoherence operator $D_U(A) = \sum \langle Au_i, u_i \rangle \cdot u_i u_i^*$.
- ▶ Define $T_U = D_U \circ T$.
- Result follows from the following two facts:
 - (1) T is rank non-decreasing if and only if T_U is rank non-decreasing for all U.
 - (2) $Cap(T) = inf_U Cap(T_U)$.
- ▶ To prove (1) and (2), use a simple trick: Given $A \succeq 0$, find U diagonalizing T(A). Then $T(A) = T_U(A)$.

Thanks For Listening!