OPTIMIZATION OF HYBRID EVAPORATIVE COOLING AND AIRCONDITIONING SYSTEMS - AN ECONOMIC APPROACH

by K. SEKAR

ME

1986

M

DEPARTMENT OF MECHANICAL ENGINEERING OF TECHNOLOGY KANPUR INDIAN INSTITUTE MAY, 1986

OPTIMIZATION OF HYBRID EVAPORATIVE COOLING AND AIRCONDITIONING SYSTEMS - AN ECONOMIC APPROACH

A Thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

by K. SEKAR

to the

DEPARTMENT OF MECHANICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

MAY, 1986

Certified that this work on 'Optimization of Hybrid Evaporative Cooling and Airconditioning Systems - An Economic Approach' by K. Sekar has been carried out under my supervision and that this has not been submitted elsewhere for a degree.

May, 1986

(Dr. Manohar Prasad)
Assistant Professor
Department of Mechanical Engineering
Indian Institute of Technology, Kanpur

ACKNOWLEDGEM FNTS

The author wishes to express deep gratitude and veneration to Dr. Manohar Prasad for his meticulous guidance and constant encouragement. His interesting suggestions and constructive criticisms have been of great value, throughout the course of this work. It has been a great privilege to work under him.

The author would also like to thank Dr. K.K. Saxena for his valuable advices and moral encouragement during the tenure of this work.

In the same breathe, the author wishes to extend his gratitude to Mr.P.N. Mishra for his technical help, rendered during this period.

The author wishes to thank his friends and all others for their cooperation and assistance, throughout his stay at I.I.T., Kanpur.

Finally, the author would like to thank Mr.U.S.Misra for his neat, speedy, flawless typing and Mr. B.K. Jain for his meticulous drawings.

CONTENTS

<u>Chapter</u>		Page
LIST	OF FIGURES	٧i
NOME	ENCLATURE	viii
ABST	PRACT	xii
1 INTE	RODUCTION	
1 1		
	Airconditioning System Selection of Environmental Zones	1
	and Outdoor Temperatures	2
	1.2.1 Analysis of Cooling Load Calculations	3
	1.2.2 Method of Optimization	5
1.3	Present Study	6
2 COOI	LING LOAD ESTIMATION	
2.1	Introduction	8
	Selection of Indoor Conditions	9
	Hourly Cooling Load	<u>.</u> 9
2.4		10
2 5	Conditions	10 11
2.5	Solar Radiation 2.5.1 Estimation of Sol-air	11
	Temperature	12
2.6	Heat Transfer Through Structures	14
	Heat Transmission Through Glass	
	Windows	17
	Infiltration Load	21
	Ventilation Load	21 22
2.10	Miscellaneous Load	22
3 PROP	BLEM FORMULATION AND OPTIMIZATION	
3.1	Introduction	25
3.2		25
3.3		27
3.4		28 29
3.5	Optimization Technique 3.5.1 The Penalty Function Approach	29
	3.5.2 Interior Penalty Function	
	Method	30
3.6		_
	Component of the System	35
3.7	Evaporative Cooling Process	42
	Constraints for the Problem Estimation of Initial Cost	43 44
3.10	Estimation of Initial Cost Estimation of Running Cost	45

Chapter		Page
4	RESULTS AND DISCUSSION	
	4.1 Theoretical and Actual TemperatureVariation4.2 Effect of Heat Capacity and	49
	Timelag Factory on the Cooling Loads 4.3 Optimum Results for Various	53
	Indoor Conditions	57
5	CONCLUSIONS AND SUGGESTIONS	
	5.1 Conclusions 5.2 Suggestions	68 69
	REFERENCES	70
	APPENDIX-A	72
	APPENDIX-B	79
	APPENDIX-C	81
	APPENDIX-D	84
	APPENDIX-E	86
	APPENDIX-F	88
		90

LIST OF FIGURES

FIGURE		PAGE
2.1(a)	Structural Details of the Wall	15
2.1(b)	Structural Details of the Ceiling	15
2.2(a)	Shading of Window for a Building	18
2.2(b)	Heat Transfer Through the Glass Window	18
2.3	Building Model for Cooling Load Estimation	23
3.1(a)	Single-stage Vapour-compression System	26
3.1(b)	P-h Diagram for Single-stage Vapour-compression Cycle	26
3.2	Flow Chart for the Interior Penalty Function Method using Davidon-Fletcher- Powell's Unconstrained Optimization Technique	33
3.3	Flow Chart for Cubic Interpolation	34
3.4	Experimental Set-up of an Airconditioner	36
3.5(a)	Evaporating Cooling Arrangement in Room	41
3.5(b)	Evaporative Cooling Process	41
4.1	Variation in Outside Air Temperature with Respect to Time in May at Kanpur	54
4.2	Variation in Sol-air Temperature and Outside Air-temperature w.r.t. Time at Kanpur	55
4.3(a)	Variation in Cooling Load with Respect to Time (Wall Thickness = 40 cm, Roof Thickness = 20 cm)	56
4.3(b)	Variation in Cooling Load with Respect to Time (Wall Thickness = 20 cm, Roof Thickness = 10 cm)	56

FIGURE		PAGE
4.4	Variation in Cost with Rise in Condensing Temperature (Refrigerant=R-22, Δ T _a = 10°C, T _{db} = 24°C, \emptyset = 65%)	61
4.5	Variation in Cost with Rise in Condensing Temperature (Refrigerant=R-12, Δ T _a = 10°C, T _{db} = 24°C, \emptyset = 65%)	62
4.6	Variation in Cost with Rise in Condensing Temperature (Refrigerant = R-12, $\Delta T_a = 10^{\circ}\text{C}$, $T_{db} = 27.5^{\circ}\text{C}$, $\emptyset = 56\%$)	63
4.7	Variation in Cost with Rise in Condensing Temperature (Refrigerant = R-12, $\Delta T_a = 10^{\circ}\text{C}$, $T_{db} = 30^{\circ}\text{C}$, $\emptyset = 60\%$)	64
4.8	Variation in Cost with Fall in Evaporating Temperature (Refrigerant=R-12, $\Delta T_a = 10^{\circ}\text{C}$, $T_{db} = 30^{\circ}\text{C}$, $\emptyset = 60\%$)	65
4.9(a)	Variation in Cost with Degree of Superheating	66
4.9(b)	Variation in Cost with Degree of Subcooling	66
4.10	Variation in Optimum Total Cost with Approach Temperature.	67

NOMENCLATURE

A	Cross-sectional area of the structures, m^2
a g	Absorptivity of the glass
a _{t.}	Absorptivity of the structures
C	Costs, Rs/year
Ср	Specific heat capacity, kJ/kg.°C
c _{th}	Thermal capacity of the wall, kJ/kg.°C
d	Declination angle
Fs	Sunlit fraction
F ss	Angle factor between the surface and sky
h h	Enthalpy, kJ/kg
ha	Enthalpy of air, kJ/kg
h _{i,a}	Enthalpy of inside room air, kJ/kg
h _i	Inside convection heat transfer coefficient of the wall, $kW/m^2 \circ C$
h _o	Outside convection heat transfer coefficient of the wall, kW/m^2 °C
h _{i,g}	Inside convective heat transfer coefficient of the glass, $kJ/m^2 \circ C - h$
h _{o,g}	Outside heat transfer coefficient of the glass, kJ/m^2 °C-S
I _{DN}	Incident direct solar radiation, kW/m ²
I_R	Reflected radiation, kW/m ²
I _d	Diffused radiation, kW/m ²
It	Total intensity of solar radiation, kW/m^2
K	Thermal conductivity of the material, kW/m°C

```
L
           Life of the machineries, years
L_{d}
           Life of the desert cooler, years
Ls
           Life of the airconditioning system, years
1
           Latitude angle
           Mass of the wall, kg
m
^{m}air
           Mass flow rate of air, kg/s
^{\mathring{\text{m}}}ref
           Mass flow rate of the refrigerant, kg/s
           Power, kW
           Design cooling load, kW
Q_{C}
à
           Total heat transfer, kW
           Heat transfer through walls, kW/m<sup>2</sup>
a
           Relative humidity
RH
           Reflectivity of the glass
ra
           Penalty parameter
r_k
           Apparatus dew point temperature, °C
Tadp
           Dry bulb temperature, °C
T<sub>db</sub>
           Dry bulh temperature of the air leaving
^{\mathrm{T}}đ_{\mathrm{a}}
           the desert cooler, °C
           Temperature of the inside surface of the glass, °C
^{\mathrm{T}}q,i
           Condensing temperature, °C
^{\mathrm{T}}h
           Inside room temperature, °C
T;
           Evaporator temperature, °C
T_1
           Outside air temperature, °C
T_{O}
m^{\mathrm{T}}
           Mean outside air temperature, °C
           Sol-air temperature, °C
^{\mathrm{T}}sol
           Wet bulb temperature, °C
\mathbf{dw}^{\mathbf{T}}
Tw,o
           Temperature of outside surface of the wall, °C
```

Time, hours t Transmittivity tr Overall heat transfer coefficient, kJ/m²-h-°C U Volume of the room, m^3 Vroom Velocity of inside air, m/s v Design velocity of outside air, km/h V_{w} Volair Volume of the air, m³/min Specific volume, m³/kg Specific humidity at apparatus dew point $^{\mathbb{W}}$ adp temperature, kg/kg of dry air Specific humidity at inside condition, Wi kg/kg of dry air X Design vector Thickness, m x Incidence angle Relative humidity Ø Ø₊ Angle of tilt Wall solar azimuth angle α α_{h} Hour angle Altitude angle β Ψ Sun's Zenith angle Azimuth angle γ Profile angle δp Density, kg/m³ ρ

Decrement factor

λ

Timelag factor

 η Efficiency

 $\eta_{_{\mathbf{C}}}$ Compressor efficiency

η D Efficiency of the desert cooler

 $\eta_{\,\mathrm{m}}$ Mechanical efficiency

ABSTRACT

OPTIMIZATION OF HYBRID EVAPORATIVE COOLING AND AIRCONDITIONING SYSTEMS - AN ECONOMIC APPROACH

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

by

K. SEKAR

to the

Department of Mechanical Engineering Indian Institute of Technology Kanpur

May, 1986

A generalised computer programme has been developed for the cooling load calculations on hourly basis and the sol-air temperature variation for different orientation of walls. The effect of heat capacity and timelag factor of the structures on the cooling load estimation has also been studied.

The single-stage vapour-compression airconditioning system has been optimised to get the minimum total cost, for refrigerants R-12 and R-22. This is compared with a

hybrid system of evaporative cooling and airconditioning as to what extent, the latter is more economical than the former. The optimum results have been found out for the inside design conditions of 24°C, 65%; 27.5°C, 56% and 30°C, 60% (dry bulb temperature and relative humidity) being obtained on the basis of Fanger's comfort equation [6]. Various combinations of the operating parameters are also studied.

CHAPTER 1

INTRODUCTION

1.1 AIRCONDITIONING SYSTEM:

Airconditioning is constantly absorbing and applying the latest discoveries of science and engineering in an effort to ease man's environmental problems on earth and in space. The term, airconditioning means the act of putting the air in the proper condition for the desired use. This may mean cleanliness, the temperature and humidity of the air. Airconditioning for human comfort is becoming almost a prerequisite for success in the merchandising field in all except the cooler regions of the country. The gain in customer's good-will is reflected by such an increase in business that the airconditioning pays more than for itself. As any other engineering system, the airconditioning system is controlled by various system parameters. To achieve maximum utilisation and effective implementation, an airconditioning system has to be economical. In view of this, the operating parameters of the system are optimised on the basis of cost as well as functional energy constraints whichever is contemplated. To carry out this objective, there are alternatives available, namely modification of an existing system and design of a new system. The present work is

done on the basis of the former.

1.2. SELECTION OF ENVIRONMENTAL ZONES AND OUTDOOR TEMPERATURES:

Eventhough, there are many applications, the primary function of an airconditioner unit is considered to create temperatures artificially which will be comfortable for human beings. Many investigators have done extensive work on temperature zones for human comfort. Fanger [6] elaborated the methods of getting comfort conditions and also suggested a comfort equation after carrying out extensive field studies. In India, Ramamoorthi [15] has analysed the equation for the Indian weather conditions after taking into account of several variables and suggested the comfort conditions, namely inside drybulb temperature, relative humidity and velocity of air. Singh and Prakash [14] presented a new ASHRAE comfort chart and recommended a region of design conditions for the comfort environment. The result of the field studies carried out by Malhotra [10] for the conducive atmosphere pertaining to Indian environment has also been taken into consideration. Based on the energy cost, Whitner [18] has got the higher comfort conditions. Several investigators [1] assumed the daily to outdoor temperature variation as a sinusoidal function which results in Fourier series. India, Ramamoorthi [15] suggested that the airconditioning

system can be substituted by evaporative cooling system, whenever feasible.

The design of an airconditioning plant is mainly dependent on the cooling load, a function of indoor and outdoor temperatures and internal energy release. indoor temperatures are chosen on the basis of comfort industrial requirement. The size of the building and various capacities of the equipments are also the primary factors influencing the cooling load calculations. So, great care should be taken in proper selection of the equipments to get the total cost as minimum. It has been a common practice to use air-cooled condensing unit for both residential and commercial applications. dispenses with water piping, cooling water tower and water treatment, thereby eliminating their costs. But the head pressure of the air-cooled system is usually 10% to 20% higher than that of the water cooled system. Hence the air-cooled system is not used in case of large cooling requirement. For smaller units, the cost and conveniences

dominate over other factors. Hence, the air-cooled system is considered in the present analysis.

1.2.1 ANALYSIS OF COOLING LOAD CALCULATIONS:

There are number of parameters affecting cooling load calculations, often difficult to define precisely, and always intricately interrelated. Most of these parameters

can be assembled under the classification of space heat gain. This is necessary because different fundamental principles and equations are used to calculate different modes of energy transfer. The major parts of the space heat gain are (a) heat transfer through the structure of the building, (b) heat generated within space by occupants, lights and appliances and (c) ventilation and infiltration of outdoor air . For the evaluation of structural heat gain, there are different techniques available, namely (a) sol-air temperature method, (b) cooling load temperature difference method, (c) finite difference method and (d) finite element method. Among these, sol-air temperature technique is mostly preferred due to its simple algorithm. The cooling load temperature difference method [3] is implemented by using the transfer function method to compute the one-dimensional transient heat flow through the building structure. Kadambi and Hutchinson [9] have described the finite difference method applied for the heat transfer through the walls. Huebner [7] has elaborated the finite element method in the application of heat flow through structures. The thermal capacity and thickness of the structure are interrelated and presented in the graphical form [2]. The relation between the infiltration load and the volume of the conditioned space is explained in [3,4,12]. Woods et al [19] have modified the ventilation standards by giving emphasis on

energy saving. The heat generation within the conditioned space has been elaborately given in [12] taking into account of metabolic ratings. The procedure for hourly cooling load calculation is elaborated in [3].

1.2.2 METHOD OF OPTIMISATION:

In general, optimisation can be defined as the act of obtaining the best result under the given circumstances. In design, construction and maintenance of any engineering system, engineers have to take many technological decisions. The ultimate goal of all such decisions is to either minimize the effort required or maximise the desired benefit. Since the required effort or desirable benefit in any practical situation can be expressed as a function of certain design variables, optimisation, in particular, may be considered as the process of finding the conditions that results in the maximum or minimum value of the function, known as objective function. It is very rare that a practical design problem to be unconstrained. Considering this fact, if the expression for the objective function and the constraints are fairly simple in terms of design variables, the classical methods of optimisation technique can be used to solve the problem. On the other hand, if the problem involves the objective function and the constraints which are not stated as explicit functions of design variables or which are too complicated to

manipulate, we should go in for some specialised numerical methods of optimisation. The basic philosophy of these methods to produce a sequence of improved approximations to the optimum value. In the present work, one of such methods called as 'Penalty Function Method' [16] is adopted to obtain the optimum design variables of the airconditioning system for the minimum total cost. The application of this iterative procedure is made possible due to the availability of the computer. These methods are clearly elaborated in [16].

1.3 PRESENT STUDY:

In the present study, a generalised computer programme has been developed for the accurate evaluation of the cooling load considering daily outdoor temperature variation based on actual as well as approximate. In this regard, the effect of timelag factor and heat capacity of the structures on the structural load has also been found out. The cooling loads have been calculated on the basis of actual hourly daily temperature variations and the sinusoidal temperature variation based on maximum and minimum temperatures. The multiplier has been developed to facilitate the utilisation of the suggested sinusoidal temperature variation; because these data are available for most of Indian cities [11].

versatile computer programme has been developed which takes care of various factors involved in the total cost of a vapour compression system. Even though there are large number of operating variables present in an air conditioning system, the most important factors have been selected as design variables, giving emphasis on the feasibility of control. For these variables, the constraints are formulated on the basis of practical consideration.

A comparative study has also been carried out between the airconditioning systems operating with and without evaporative cooling, for the duration, April to June, in terms of total cost. This aspect is studied for both R-12 and R-22 refrigerants.

CHAPTER 2

COOLING LOAD ESTIMATION

2.1 INTRODUCTION:

The design of an airconditioning plant for a building depends on the use of the building. The cooling load calculation needs the size of the building, its structural details and orientation. In addition, the following quantities are considered:

- i) Design conditions: Indoor and outdoor conditions,
- ii) Instantaneous heat load: Sensible and latent. For the given inside design condition, the cooling loads are calculated as follows:

Sensible cooling load: It comprises the heat transfer through structure including solar heat gain. The sensible heat part of the infiltration and ventilation is calculated from the known amount of the air and subsequent difference between enthalpies of the inside and outside air. The sensible heat part of the heat release from the occupants is calculated from the standard data available giving heat release from human beings, ratings of fans, lights, etc.

The latent heat part of the cooling load has been calculated from the infiltration and ventilation air, latent heat release from the occupants inside the room.

2.2 SELECTION OF INDOOR CONDITIONS:

The variation in the weather, building occupancy, and other factors, affecting the load, necessitate carefully coordinated controls to regulate simultaneously the components and equipments to maintain the desired inside conditions. The design indoor conditions play a key role in the design of any comfort airconditioning system. The field studies [10], reveal that in India, for hot humid climates, the comfort zone is between 22°C and 24.5°C, effective temperatures. The analysis [15] carried out on the basis of Fanger's comfort equation recommends the comfort conditions for Indian people as Tdb = 24°C, RH = 0.65, $V = 0.8 \text{ m/min; } T_{db} = 27.5^{\circ}C$, RH = 0.56, V = 1.1 m/s, and $T_{dh} = 30^{\circ}\text{C}$, RH = 0.60, V = 0.7 m/s. Since, these results lie in the comfort zones recommended in [5,6,14], in the present analysis the same combinations are taken into consideration.

2.3 HOURLY COOLING LOAD:

Most of the factors of the cooling load vary in magnitude over a wide range during a twenty four hour period. As the cyclic changes in the load components are not usually in phase with each other, the analysis is required to establish the resultant maximum cooling load for a building.

2.4 HOURLY VARIATION OF OUTDOOR CONDITIONS:

Hourly variation in the outdoor conditions is available for the limited cities. But the cooling load depends greatly on the ambient temperature variations as compared to that obtained on the basis of design conditions. So a mathematic model [1] has been adopted which gives a close approximation to an average value equal to the mean daily temperature plus an oscillating component with an amplitude equal to one half the mean daily range. For most practical applications, this can further be approximated by a constant with a superimposed sine wave having a 24-hour period. So, the final form of the expression comes out to be a harmonic series of first order:

$$T_{C} = A + B \cos (15 t - C)$$
 (2.1)

where T = outside air temperature at any time, °C

t = time in hours

A,B,C = the constants being obtained by applying the boundary conditions,

$$\frac{dT_{o}}{dt} = 0 \text{ when } \begin{cases} T_{o} = T_{max} \\ T_{o} = T_{min} \end{cases}$$
 (2.2)
$$T_{min} \text{ occurs at (Sunrise-1)} \text{ hrs; } T_{max} \text{ occurs 12 hrs thereafter.}$$

T_{min} occurs at (Sunrise-1) hrs; T_{max} occurs 12 hrs thereafte 50, the above model is solved for the outdoor air temperature variation by knowing the minimum and maximum temperatures with their corresponding timings, in a day. The result of

this equation has also been verified with actual variation of the temperature and the comparative study has been done in a graphical form, Fig.4.1, for Kanpur. For this purpose, the data for the actual variation of the temperature and relative humidity for the period 1982, 1983 and 1985 have been procured [8] and given in tabular form in Appendix-A.

2.5 SOLAR RADIATION:

The solar radiation is the sole factor for the summer airconditioning system. The total incident solar radiation is given by:

$$I_{t} = I_{DN} \cos \theta + I_{d}, \quad k \text{ W/m}^{2}$$
 (2.3)

where the product of I_{DN} , direct normal radiation and the cosine of the incident angle Θ , stands for the irradiation on a surface from the sun and I_d refers to the diffused radiation. Simplified general relations for I_{DN} and I_d for a clear sky are given approximately by,

$$I_{DN} = A_1/\exp(B_1/\sin\beta), k W/m^2$$
2.4(a)

$$I_d = C_1 \cdot I_{DN} \cdot F_{ss} , k W/m^2$$
 2.4(b)

where,

 A_1 = apparant solar irradiation at an air mass = 0, k W/m² B₁ = atmospheric extinction coefficient,

 C_1 = diffuse radiation factor,

 F_{SS} = the angle factor between the surface and the sky,

= 0.5 for vertical surfaces,

= 1.0 for horizontal surfaces,

 $= (1 + \cos \beta)/2 \text{ for any other inclined surfaces}$ and β = the altitude angle.

The values of A_1 , B_1 and C_1 of $\begin{bmatrix} 3 \end{bmatrix}$ are given in the Appendix-B.

2.5.1 ESTIMATION OF SOL-AIR TEMPERATURE:

For heat transmission calculations, it is convenient to combine the effects of outside air temperature and solar radiation clustered into a single fictitious quantity called sol-air temperature (T_{sol}). The rate of heat transfer, q, from outside to inside surfaces of a sunlit structure may be written as,

$$q = h_0 (T_0 - T_{W,0}) + a_t \cdot I_t$$
 (2.5)

where,

 h_0 = outside air convective heat transfer coefficient, k W/m² - °C

T = outside air temperature, °C

Tw.o = temperature of the outside surface, °C

2.7(a)

 a_t = absorptivity of the structure, and I_t = total intensity or solar radiation, k W/m².

The total intensity of radiation is calculated by the primary angles namely, the latitude (1), hour angle (α_h) and the sun's declination, d. Besides this, there are several other angles as the sun's zenith angle Ψ , altitude angle β , and azimuth angle γ . In Appendix-C, the equations for the estimation of these angles are given.

The equation (2.5) can be modified as

$$q = h_0 (T_{sol} - T_{w,0})$$
 (2.6)

where,

$$T_{sol} = T_o + a_t - I_t/h_o$$

The outside air convection heat transfer coefficient, h[9] is calculated as follows:

$$h_0 = 14.278 + 3.559 \cdot V_W$$
 for very smooth surfaces, 2.7(a)

=
$$18.423+3.81.V_{\rm W}$$
 for smooth surfaces, 2.7(b)

=
$$26.55+5.0663.V_{W}$$
 for rough surfaces, 2.7(c)

=
$$28.64+6.364.V_{\rm w}$$
 for very rough surfaces,

where $V_{\rm W}$ is the design velocity of the outside air in Km/h. In the present study, the variations in the solair temperature for a day, on different orientation of the

surfaces presented in a graphical form, Fig.4.2.

2.6 HEAT TRANSFER THROUGH STRUCTURES:

A fraction of the total heat energy is absorbed by the structural material and there is also a timelag for the heat transfer from the outside surface to the inside surface of the structure. The thermal capacity of the walls and ceilings, $c_{\rm th}$, is taken as,

$$c_{th} = m \cdot c_p = \rho \cdot A \cdot x \cdot c_p$$
 (2.8)

where m, c_p , ρ , A and x are mass, specific heat, density, cross-sectional area and thickness of the structure, respectively.

Taking into account of timelag and decrement factor,[2] the actual heat transfer through the structure at any time 't' is given by

$$Q_{t} = \sum_{j=1}^{5} [U_{j} A_{j} (T_{om} - T_{i}) + U_{j} A_{j} A_{j} (T_{o(t-\tau)} - T_{om})]$$

$$j=1$$
(2.9)

where T_{om} , λ and τ are the mean sol-air temperature, decrement factor and timelag factor, respectively. In the above expression, U, A, and $T_{o(t-\tau)}$ refer to the overall heat transfer coefficient, cross sectional area and temperature at time $(t-\tau)$, respectively. Here summation symbol stands for four walls and the ceiling.

Fig. 2.1(a) Structural details of the wall.

Fig. 2.1(b) Structural details of the ceiling.

Referring to the Fig. 2.1, the heat conduction through structure can be written as,

$$q_{st} = h_{o} (T_{o} - T_{w,o}) = \frac{(T_{w,o} - T_{w,i})}{i=3} = h_{i} (T_{w,i} - T_{i})$$

$$\sum_{i=1}^{E} (x_{i}/K_{i})$$
(2.10)

The above equation can also be written as,

$$q_{st} = U \cdot (T_{o} - T_{i})$$
 (2.11)

with

$$U = \frac{1}{(\frac{1}{h_{0}} + \sum_{i=1}^{i=3} \frac{x_{i}}{K_{i}} + \frac{1}{h_{i}})}$$

T = outside air temperature, °C

T; = indoor temperature, °C

 x_i and K_i = thickness and thermal conductivity of the 'i' th layer of the structural material

 h_i = inside convective heat transfer coefficient, $kJ/m^2 - h - ^{\circ}C$

 $J = \text{overall heat transfer coefficient, } kJ/m^2-h-^\circ C.$

In the present study, the values of K_i 's are taken from [3]. The inside convective heat transfer coefficient is found to be function of temperature difference ($\Delta T = T_{w,i} - T_i$).

For walls:

$$h_i = 4.25 (\Delta T)^{1/4}, kJ/h - m^2 - {}^{\circ}C$$
 2.120

For ceiling:

$$h_i = 3.48 (\Delta T)^{1/4}$$
, kJ/h - m² - °C 2.12(1

The Newton-Raphson iterative procedure has been used to get the values of 'h_i'. Equation 2.9 is used to calculate the heat transfer through the structure: after considering time lag and decrement factors [2]. The effect of these factors on the cooling loads has been discussed, in Chapter 4.

2.7 HEAT TRANSMISSION THROUGH GLASS WINDOWS:

The incident radiation may be reflected, partly absorbed and the remainder transmitted through the glass materials. Thus, in general, it may be written as:

$$r_{g} + a_{g} + t_{r} = 1$$
 (2.13)

where r_g , a_g and t_r are the reflectivity, absorptivity and transmittivity, respectively. The equations for calculating these thermal properties for the glass windows are given in Appendix-D.

From the basic concept of heat transfer, the rate of heat gain through the glass is given by,

Fig. 2.2(a) Shading of window for a building.

Fig. 2.2(b) Heat transfer through the glass window

where F_s is the sunlit fraction of the window surface, t_{rD} , t_{rd} , and t_{rR} are the transmittivities of the direct, diffused and reflected radiations, respectively. I_D , I_d , and I_R are the intensities of direct, diffused and reflected radiation. $T_{g,i}$ and T_i are the temperatures of inside surface of the glass and indoor conditions, respectively.

In reality, a glass window is not fully exposed to direct sunlight, but partially shaded. Referring to Fig. 2.2(a), it can be written as:

$$X = b \cdot \tan \alpha \qquad 2.15(a)$$

$$Y = b \cdot \tan \delta_{p}$$
 2.15(b)

where the profile angle δ $_p$ is related to the sun's altitude angle β and wall solar azimuth angle α by,

$$\tan \delta_{p} = \frac{\tan \beta}{\cos \alpha} \tag{2.16}$$

Finally, the value of sunlit fraction, F_s , is given by,

$$F_{s} = 1-P_{1} \cdot \tan \delta_{p} - P_{2} \cdot \tan \alpha + P_{1} \cdot P_{2} \cdot \tan \delta_{p} \tan \alpha \quad (2.17)$$
 where,

$$P_1 = b/a \text{ and } P_2 = b/c.$$

Referring to Fig.2.2(b), the energy balance for the glass sheet can be written as,

$$F_{s^*}I_{D^*}a_{gD}^{-1}I_{d^*}a_{gd}^{-1} + I_{R^*}a_{gR}^{-1} = h_{i,g}(T_{g,i}^{-1}I_i) + h_{o,g}(T_{g,o}^{-1}I_o)$$
(2.18)

where $h_{i,g}$ and $h_{o,g}$ are the surface coefficients given by

$$h_{o,g} = 3.96 \times 10^{-3} + 9.892 \times 10^{-4} \cdot v_o, kJ/m^2 - c-s$$
 2.19(a)

$$h_{i,q} = 0.237 + (v_i/Height)^{0.5}, kJ/m^2 - c-h$$
 2.19(b)

where V_{0} is the outside air velocity in Km/h and V_{1} is the indoor air velocity in m/h.

Combining the equations (2.14) and (2.18), the heat transfer through windows and doors including solar heat gain is calculated as

$$Q_{g} = \sum_{k=1}^{N} \left[(F_{s} \cdot t_{rD} \cdot I_{D} + t_{rd} \cdot I_{d} + t_{rR} I_{R}) + \frac{(F_{s} \cdot a_{qD} \cdot I_{D} + a_{qd} \cdot I_{d} + a_{qR} I_{R})}{(1 + h_{o,g}/h_{i,g})} + U (T_{o} - T_{i}) \right]_{k}$$
 (2.20)

where,

$$U = \frac{1}{\left(\frac{1}{h_{i,g}} + \frac{1}{h_{o,g}}\right)}$$

N = number of windows and doors.

The details of windows and doors are given in Appendix-E.

The total heat transfer through the structure is given

by the sum of equations (2.9) and (2.20) as:

$$Q_{st} = Q_t + Q_g$$
 (2.21)

2.8 INFILTRATION LOAD:

Infiltration is the leakage of outdoor air into a building through cracks and opening caused by pressure difference across the boundary surfaces. The net exchange of air may lead to both heat and moisture gain for the space. The volume of infiltration is related in terms of the room volume and tapular values are available in [3]. The expression for the infiltration load is:

$$O_{infil} = \frac{V_{room}}{v_{air}} \times N_{ACH} (h_a - h_{i,a})/24, k W$$
 (2.22)

where V_{room} is the volume of the room, v_{air} , is the specific volume of air at outside temperature, N_{ACH} is the number of air changes/day, h_a and h_i , are the enthalpies of outside and inside air, respectively.

2.9 VENTILATION LOAD:

The introduction of outside air into the conditioned space is an important factor, which is necessary to maintain oxygen and odour levels as per standard practice. Ventilation

codes and standards recommend a minimum rate of 30 cfm/person. But the recent analysis shows that it is more efficient at 5 cfm/person [19] on the basis of economic consideration. Since the present problem deals with economic aspect, this value has been adopted for the ventilation load calculation, which is given by

$$Q_{\text{ventil}} = \frac{N_{\text{occupants}}}{V_{\text{air}}} \times (\text{Ventil/person}) \times (h_{\text{a}} - h_{\text{i,a}})$$
(2.23)

where v is the specific volume of air and h_a , $h_{i,a}$ are the enthalpies of outside and inside air.

2.10 MISCELLANEOUS LOAD:

Apart from transmission, there is a considerable amount of heat energy generated inside the conditioned space from the occupants, lights, electrical equipments and appliances. The thermal energy release from human body at different degree of activities is taken from [12]]. In the present analysis, the degree of activity is taken as the average of all activities and the corresponding heat release has been calculated. The instant rate of heat gain from lights and other electrical appliances are calculated as,

D-DOOR; GW-GLASS WINDOW; XW-0.4m; XR-0.2m

Fig. 2.3 Building model for cooling load estimation.

In the present work, the cooling load factor is taken as 0.88 [15] . So the miscellaneous load is calculated as

$$Q_{\text{misc}} = Q_{\text{elec}} + Q_{\text{occupants}}$$
 (2.25)

The total cooling load is calculated from:

$$Q_{total} = Q_{st} + Q_{infil} + Q_{ventil} + Q_{misc}$$
 (2.26)

Using this procedure, in the present analysis, hourly cooling load calculations have been carried out for a building model, Fig.2.3, for Kanpur. For this estimation, a generalized computer programme has been developed with great care and is given in Appendix-G.

CHAPTER 3

PROBLEM FORMULATION AND OPTIMIZATION

3.1 INTRODUCTION:

The problem formulation for optimization is done on the massis of total cooling load based on the design condition for the equipment selection. The total cost calculated on the basis of fixed and running costs for comfort airconditioning constitutes the objective function in terms of the operating variables having a set of constraints. The optimization problem can be stated as $\vec{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$ which maximizes or minimizes $f(\vec{X})$ subject to

the constraints $g_m(x) \le 0$, $m = 1, 2, \dots, n$, where X is an n-dimensional vector called as the design vector, f(x) is the objective function and $g_m(x)$ are the constraints.

3.2 DESIGN VARIABLES:

Any engineering system is described by a set of quantities some of which are viewed as variables during the design process. In general, certain quantities are usually fixed at the outset, known as preassigned parameters and all the other quantities are treated as variables in the design process and collectively represented by the vector \vec{X} . Even though there are many variables which control

Fig. 3.1 (a) Single-stage vapour-compression system
(b) P-h diagram for single-stage vapourcompression cycle.

the airconditioning performance, inclusion of all these variables will lead to enormous computational effort.

Here, an optimal prediction effort has been made to select the variables judiciously.

3.3 SYSTEM DESCRIPTION:

In the present study, a single-stage vapour compression refrigeration system is taken for the analysis having refrigerants R-12 and R-22. The cycle is shown schematically in Fig.3.1. To simulate the cycle close to represent actual processes, a pressure drop in the compressor valves, heat rejection in the compression discharge line and the degrees of subcooling of condensate and superheating of evaporator vapour are considered. The pressure drops in the condenser, evaporator and piping are ignored. In the present analysis, air-cooled condenser has been incorporated in the system.

In the design of the cycle, the pressure drop at the suction line is assumed as 0.2 ber [17]. The increase in pressure at the delivery of the compressor is taken as 0.4 ber [17]. In the present optimization analysis, four variables are considered. They are,

- X(1): Degrees of rise in the condensing temperature, T_h , ${}^{\circ}C$
- X(2) : Degrees of fall in evaporator temperature, T₁,°C

X(3): Degree of superheating, T_{s} , $^{\circ}C$

X(4): Degree of subcooling, T_{C} , $^{\circ}C$.

3.4 ESTIMATION OF OBJECTIVE FUNCTION:

In the present study, the objective function is taken as the total cost for the comfort airconditioning system, which combines the initial and running costs of the system. If $C_{\rm I}$ and $C_{\rm R}$ are the initial and running costs per year respectively, then the total cost/year ($C_{\rm T}$) is given by

$$C_{T} = C_{I} + C_{R}$$
, Rs/year (3.1)

where $C_{I} = C_{comp} + C_{evap} + C_{cond} + C_{blower}$ 3.1(a) $C_{comp} = Cost of the compressor, Rs/year$

C = Cost of the evaporator, Rs/year

C_{cond} = Cost of the condenser, Rs/year

Cplower = Cost of the blower , Rs/year

and
$$C_R = C_1 + C_2 + C_3 + C_4$$
 3.1(b)

C₁ = Cost of the compressor power, Rs/year

C₂ = Cost of the blower power, Rs/year

 C_3 = Cost of the fan power, Rs/year

 $C_A = Maintenance cost, Rs/year.$

The 'Present Worth Method' is used for the analysis of the economic model.

3.5 OPTIMIZATION TECHNIQUE:

The presence of constraints in a nonlinear programming problem creates more problems while finding the minimum. Several situations can be identified depending on the effect of constraints on the objective function.

The simplest situation is when the constraints do not have any influence on the minimum point. From the application point of view on the real problems, there is a possibility of having two or more local minima for the minimisation of the problem. This situation is entirely due to the nature of the objective function contours. By taking into account of all these possibilities, in the present analysis, one of the indirect methods of non-linear programming constrained optimization technique, known as 'Interior Penalty Function' [16] is used.

3.5.1 THE PENALTY FUNCTION APPROACH:

Penalty Function Methods transform the basic optimization problem into alternative formulations such that numerical solutions are sought by solving a sequence of unconstrained minimization problem. For analysis purposes, a basic optimization problem is taken such that \vec{x} minimizes the objective function, $f(\vec{x})$ subject to the constraints $g_m(\vec{x}) \leq 0$, $m=1,2,\ldots n$. This problem is converted into a unconstrained minimization problem by:

$$\emptyset_{k} = \emptyset(\overset{\rightarrow}{\mathbf{x}}, \mathbf{r}_{k}) = \mathbf{f}(\overset{\rightarrow}{\mathbf{x}}) + \mathbf{r}_{k} = \overset{\mathbf{n}_{1}}{\overset{\rightarrow}{\mathbf{x}}} = \mathbf{G}_{j} [g(\overset{\rightarrow}{\mathbf{x}})]$$
 (3.2)

where G_j is the function the constraints, $g(\vec{x})$, and r_k is the positive constant known as the 'Penalty Parameter'. The function, $g(\vec{x}, r_k)$, is optimised for a decreasing sequence values of the penalty parameter, r_k . Evideatly, if the ' r_k ' is very small, the optimization of $g(\vec{x}, r_k)$ amounts to optimization of the objective function, $f(\vec{x})$.

3.5.2 INTERIOR PENALTY FUNCTION METHOD:

In this method, the function $G_j[g(\vec{x})]$ of the equation (3.2), is substituted by $-\frac{1}{g_m(\vec{x})}$. The unconstrained minima of $\emptyset(\vec{x}, r_k)$, all lie in the feasible region and converge to the solution of $f(\vec{x})$ as r_k is varied in the decreasing sequence. So the function $\emptyset(\vec{x}, r_k)$ is defined as,

$$\emptyset(\vec{x}, \mathbf{r}_k) = \mathbf{f}(\vec{x}) - \mathbf{r}_k \qquad \begin{array}{c} n_1 \\ \Sigma \\ m=1 \end{array} \qquad \begin{array}{c} 1 \\ g_m(\vec{x}) \end{array}$$
 (3.3)

Here, the values of function \emptyset will always be greater than f, since $g_m(\vec{x})$ is negative for all feasible points, \vec{x} . Since the unconstrained minimization of $\emptyset(\vec{x}, r_k)$ is to be achieved by changing the sequence of penalty parameter, r_k , in the decreasing order, its initial value should be chosen such that quick convergence is obtained.

Thus, for any feasible starting point, \vec{x}_1 , the value of r_1 can be taken as,

$$\frac{0.1 \text{ f } (\overset{\rightarrow}{\mathbf{x}_1})}{-\overset{n_1}{\sum}} \leq \mathbf{r}_1 \leq \frac{\mathbf{f } (\overset{\rightarrow}{\mathbf{x}_1})}{-\overset{n_1}{\sum}} \qquad (3.4)$$

$$= \frac{1}{m=1} \overset{\rightarrow}{\mathbf{g}_m} (\overset{\rightarrow}{\mathbf{x}_1})$$

Once, the initial value of \boldsymbol{r}_k is chosen, the subsequent values of \boldsymbol{r}_k have to chosen such that

$$r_{k+1} < r_k$$
 3.5(a)

In this regard, for convenience purposes, it is taken as,

$$r_{k+1} = D r_{k'}$$
 where $0 < D < 1$ 3.5(b)

where in the present analysis, D has been taken to be 0.1.

In the present analysis, the unconstrained minimization of the penalty function $\emptyset(\vec{x}, r_k)$ is done by 'Davidon-Fletcher-Powell's Method' [16]. This is the best general purpose optimization technique making use of the derivatives that is currently available. The algorithm for this iterative technique is as follows:

(a) Start with an initial feasible point \vec{x}_1 and a nxn positive definite symmetric matrix, [H₁] which is taken as [I] •

(b) Compute the gradient of the function, $\nabla \emptyset_i$ at the point X_1 and set $S_i = -\begin{bmatrix} H_i \end{bmatrix} \cdot \nabla \emptyset_i$. Normalising this, we obtain, $S_{Ni} = \frac{S_i}{\sum\limits_{i=1}^n \left[\left(\nabla \emptyset_i\right)^2\right]^{1/2}}$, where 'n' is the number of variables.

In the present formulation, central difference scheme has been adopted for gradient evaluation.

- (c) Find the optimal step length T_i^* in the direction of S_{Ni} and set $X_{i+1}^* = (X_i^* + T_i^* S_{Ni}^*)$. In the present study, the determination of T_i^* is done by 'Cubic Interpolation Method' [16].
- (d) Test the new point X_{i+1} for optimality using $(\nabla y_{i+1} \nabla y_i)$ the condition $X_{i+1} \leq \varepsilon_1$, where ε_1 is very small. In the present case, the termination criteria is $\varepsilon_1 \leq 10^{-3}$. If this criteria is not satisfied [H] is updated as follows:

$$[H_{i+1}] = [H_{i}] + [M_{i}] + [N_{i}]$$

where,

$$M_{i} = \frac{T_{i}^{*} \cdot S_{Ni} \cdot S_{Ni}^{T}}{(S_{Ni}^{T} \cdot Q_{i})}$$

$$N_{i} = \frac{-(H_{i}Q_{i}) (H_{i}Q_{i})^{T}}{(Q_{i}^{T}H_{i}Q_{i})}^{T}$$

$$Q_{i} = \nabla \emptyset (X_{i+1}) - \nabla \emptyset (X_{i})$$

Fig. 3.2 Flow chart for the interior penalty function method using Davidon-Fletcher-Powell's unconstrained optimisation technique.

Fig. 3.3 Flow chart for cubic interpolation.

(e) Set the iteration number as i = i+1 and repeat the procedure from the step 'b', until convergence is achieved. Flow charts for 'Interior Penalty Function Method' and 'Cubic Interpolation' are schematically presents in Figs. 3.2 and 3.3, respectively.

3.6 ESTIMATION OF LOADS ON EACH COMPONENT OF THE SYSTEM:

The components of a refrigeration system have to be selected on the basis of the design conditions. The power requirements of the apparatus are evaluated for the design conditions and a factor of safety is multiplied to ensure the capacities of various components from the safety point of view. The condensing and evaporator temperatures of the vapour-compression systems are considered to be the sole factors which influence effectively the design of the airconditioning system. The evaporator temperature is selected on the basis of the indoor conditions whereas the condensing temperature is selected on the basis of design temperature.

So the condenser temperature is taken as,

$$T_h = T_o + \Delta T_a + X(1)$$
 (3.6)

wnere,

 T_O = the design outside air temperature, °C ΔT_A = the approach temperature of the condenser, °C

X(1) = degrees of rise in condensing temperature, taken as a variable, °C.

Fig. 3.4 Experimental set-up of an airconditioner.

The evaporator temperature is chosen on the basis of inside room temperature. So it is taken as,

$$T_1 = T_i - \Delta T_a - X(2)$$
 (3.7)

where,

T; = the inside room temperature, °C

 $\Delta T_a =$ the approach temperature, °C

X(2) = the variation in the lower temperature which is taken as a variable. °C.

In the present analysis, the values of the approach temperature have been as 6°C, 10°C and 14°C. To justify these values, experiment has been done on an airconditioner. The pressure gauges were fitted in the suction and discharge line, Fig. 3.4. The airconditioner has been operated and temperatures of air leaving the condenser and evaporator were taken. The air was supplied to both at about 30°C. The average approach temperatures for the condenser and evaporator sides were found to be about 10°C.

The value of T_1 is also checked up in the basis of the apparatus dew point temperature, $T_{\rm adp}$. Because the lower temperature, T_1 , should always be less than $T_{\rm adp}$. The $T_{\rm adp}$ is calculated in terms of effective sensible heat factor, ESHF, which is given by

ESHF =
$$\frac{1.026 (T_{i} - T_{adp})}{1.026 (T_{i} - T_{adp}) + 2410 (W_{i} - W_{adp})}$$
(3.8)

where,

 $ESHF = \frac{ERSH}{(ERSH + ERLci)}$

 $ERSH = RSH + (BPF) \cdot OASH$

ERLH = RLH + (BPF) . OALH

 W_{i} = Specific humidity inside the room, kg/kg of dry a

Wadp = Specific humidity at apparatus dew point temperature, kg/kg of dry air.

RSH and RLH represent the room sensible and latent heats respectively. OASH and OALH denote the outside air sensible and latent heats, respectively. The effect of the bypass factor (B_F) on the performance of the cooling apparatus is discussed in [4] and 0.15 is the value recommended for row coil. By using Newton-Raphson iterative procedure, the value of Tadp' is obtained, for the known values of ESHF.

Referring to the Fig.3.1, after taking the degree of superheat X(3), the temperature at the state point '1' is given by,

$$T_1 = T_1 + X(3) - \Delta T_1$$
 (3.9)

where $\wedge T_1$ is the decrease in the lower temperature before compression, $^{\circ}C_{\bullet}$

Similarly,
$$T_2 = T_h + \Delta T_h$$
 (3.10)

where ΔT_h is the increase in the condensing temperature after compression, °C.

The enthalpy values, h of the refrigerants, R-12 and R-22, have been computed from the functional relations of the temperature of the state. These relations are given in the Appendix-F.

From the Fig. 3.1,
$$T_3 = T_3 - X(4)$$
 (3.11)

where X(4) is the degree of subcooling, °C.

The mass flow rate of the refrigerants, m_{ref} , is found from :

$$m_{\text{ref}} = \frac{Q_{\text{c}} \times \text{SF}}{(h_1 - h_4)}$$
 (3.12)

where $\Omega_{\rm C}$ is the cooling load as given in Sec.2.10 and SF is the factor of safety taken as 1.25 [4].

The compressor power is given by:

The second secon

$$P_{comp} = \frac{m_{ref} (h_2 - h_1)}{\eta_m}, kW$$
 (3.13)

where η_{m} is the mechanical efficiency of the compressor taken as 0.85 [12].

For the air-cooled condenser, the load is

$$Q_{cond} = m_{ref} (h_2 - h_3), kW$$

$$having h_2 = h_1 + (\Delta h)_{isentropic} \eta_c$$
(3.14)

The equation (3.13) can also be equated to the heat gain by the cooling air as

$$Q_{cond} = M_{air} \times C_{p_{air}} (T_{o,c} - T_{air,i}), kW$$
 3.15(a)

where,

mair mass flow rate of cooling air, kg/s

cpair

To,c the outlet temperature of the air, °C

Tair,i the inlet temperature of the air, °C.

In the above equation, the temperature differential is also equal to the variation in the condensing temperature (T_h) denoted by X(1). So the equation 3.15(a) can be rewritten as,

$$Q_{cond} = M_{air} \times Q_{p_{air}} \times X(1), kW$$
 3.15(p)

By combining equations 3.14 and 3.15b,

$$m_{air} = \frac{m_{ref} (h_2 - h_3)}{c_{p_{air}}}, kg/s$$
 (3.16)

From equation (3.16), the volume of the air handled by the fan for the condenser is calculated as.

$$Vol_{air} = \frac{m_{air} \times 60}{\rho_{air}}, m^3/min \qquad (3.17)$$

The fan power is correlated with its capacity (m³/min) in the form of a quadratic equation. For the purpose, a

Fig. 3.5 (a) Evaporative cooling arrangement in room (b) Evaporative cooling process.

set of volume flow rate and power consumption readings have been taken for three blowers, experimentally. These readings are plugged in the quadratic equation and they have been solved for the constants. So this procedure finally results in the form:

$$P_{blower} = \frac{3.429 (vol_{air})^2 + 1.143 (vol_{air}) + 37.67}{1000 \times \eta_{m}}, kW$$
(3.18)

where,

 Vol_{air} = The volume flow rate of air, m^3/s η_m = The mechanical efficiency of the fan (0.85)

3.7 EVAPORATIVE COOLING PROCESS:

Figure 3.5(a) exhibits the evaporative cooling arrangement for the room. The unsaturated outside air comes in contact with the wetted surface where the evaporation of the water lowers the humidified air temperature. This process is schematically represented by process AB in 3.5 (b). The temperature of the humidified air is related to the desert cooler efficiency $(^{\eta}_{D})$ as

$$T_{dq} = T_{db} - \eta_D (T_{db} - T_{wb})$$
 (3.19)

where,

T_{db} = dry bulb temperature of the outside air, °C

Twb = wet bulb temperature of the outside air, °C

Tdg = dry bulb temperature of the air leaving the desert cooler. °C.

The volume of humidified air for the airconditioning is calculated from:

$$V_{d,air} = \frac{Q_{c}}{\rho_{air} (h_{a,o} - h_{a,i})}$$

$$= \frac{Q_{c}}{\rho_{air} \cdot 1.026 \cdot (T_{i} - T_{dg})}$$
(3.20)

where ρ_{air} is the density of the humid air.

3.8 CONSTRAINTS FOR THE PROBLEM:

As mentioned earlier, four variables, being restricted between some practical values, are taken into consideration for the optimization. So, these constraints are mathematically expressed as follows:

4.0	≤.	X(T)	<u> </u>	15.0	3.21(a)
2.0	≤	ж(2)	<u><</u>	5.0	3.21(b)
1.0	<u><</u>	X(3)	<u> </u>	4.0	3.21(c)
1.0	<	x(4)	~	4.0	3-21(3)

The constraints are transformed into equality constraints by taking the lower and upper limits, separately. As a result, they are transformed in the following form:

It, they are transformed in the following form:

$$GG(1) = 4.0-X(1)$$
 $GG(2) = X(1) - 15.0$
 $GG(3) = 2.0 - X(2)$
 $GG(4) = X(2) - 5.0$

3.22(d)

$$GG(5) = 1.0 - X(3)$$
 3.22(e)
 $GG(6) = X(3) - 4.0$ 3.22(f)
 $GG(7) = 1.0 - X(4)$ 3.22(g)
 $GG(8) = X(4) - 4.0$ 3.22(h)

After normalising the equations, the constraints are considered for the optimization of the problem.

3.9 ESTIMATION OF INITIAL COST:

As mentioned in Sec. 3.6, the design cooling load is calculated for Kanpur, in May as in [9]. After evaluating these loads, the equipments are selected on the basis of their capacities. In this regard, a due consideration has been given to purchase the equipments on the basis of recommended capacity ranges available in the market. A stepwise variation is adopted for the costs and capacities of the various equipments. This feature is very well incorporated in the computer programme.

Thus, the total initial cost for the system is expressed as

$$CI = (C_{comp} + C_{evap} + C_{cond} + C_{blower}) \times MF/L_s$$
(3.23)

where,

C_{comp} = cost of the compressor, Rs
C_{evap} = cost of the evaporator, Rs

C_{cond} = cost of the condenser, Rs

C_{blower} = cost of the blower, Rs

 L_s = life of the system, years.

When a hybrid system airconditioning and desert cooler is adopted between the months April and June, if feasible, the initial cost, $C_{\rm I}$, is considered to be higher and given by,

$$C_{I}' = C_{I} + C_{Desert}/L_{d}$$
 (3.24)

where,

CDesert = cost of the desert cooler, Rs

 L_d = life of the desert cooler , years.

In the present work, both these cases are studied separately and results are compared.

3.10 ESTIMATION OF RUNNING COST:

For the running cost, the electricity cost is the primary factor to be considered. Keeping in view, the variation in electricity cost, a futuristic statistical approach has been adopted to make the whole formulation as a generalised algorithm [13]. Proceeding as in [13], the electric charge, (C_e) , is found to be:

$$C_{e} = \frac{1.293}{0.97986 + \exp(-0.09338 I)}$$
 (3.25)

where, I refers to the duration of the years from the present one.

The effective electricity cost is given by [15]:

$$C_{E} = \frac{1}{L} \sum_{i=1}^{L} \frac{C_{e}}{(1+R)^{i-1}}$$
 (3.26)

where,

C_e = cost of electricity in the ith year, Rs/kWh

R = interest rate

L = lite of the machineries, years

So, the running cost for compressor (C_1) is given by,

$$C_1 = P_{como} \times C_E, Rs/h \qquad (3.27)$$

For the evaporator fan,

$$C_2 = P_{fan} \times C_E, Rs/h \qquad (3.28)$$

For the condenser fan,

$$C_3 = P_{fan} \times C_E, Rs/h \qquad (3.29)$$

The running cost of all these accessories is calculated on the hourly basis by taking into account by sinusoidal variation of outside air temperature and summed upto get the running cost/year. The maintenance cost is taken to be 10% of the initial investment [15].

Mathematically, it can be expressed as ,

$$C_4 = (4.1) \quad C_{I} \quad \frac{(1+R)^{L} - 1}{R(1+R)^{L} - 1}$$
 (3.30)

The total running cost is given by:

$$C_R = C_1 + C_2 + C_3 + C_4$$
, Rs/year (3.31)

In the case of combined operation of airconditioning and desert cooler the running cost includes for the desert cooler only for the feasible period during April to June.

Then the total running cost becomes,

$$C_R = C_E \times D \cdot C_{\text{rating}} + (C_1 + C_2 + C_3)^{**} + C_4$$
 (3.32)

where $C_{\rm E}$ the effective electricity cost, Rs/kwh D.C rating The desert cooler rating, kW.

Thus, the total cost of the system, C_{T} , is given by

$$C_{\rm T} = C_{\rm R} + C_{\rm T}, \, \text{Rs/year} \qquad (3.33)$$

In Eq.(3.30) when desert cooler is also used, $C_{\rm I}$ is replaced by $C_{\rm T}$ of Eq.(3.24).

^{**} This operative cost is for the period during which it operates alone.

In the case of hybrid system, it is

$$C_{T} = C_{R} + C_{I}'$$
, Rs/year (3.34)

For generalisation purpose, the equations 3.33 and 3.34 are modified as,

$$\frac{C_{T}}{C_{E}} = \frac{(C_{R} + C_{I})}{C_{E}}, \text{ kWh/year}$$
 3.35(a)

$$\frac{C_{T}}{C_{E}} = \frac{(C_{R} + C_{I})}{C_{E}}, \text{ kWh/year}$$
 3.35(b)

Thus the ratio C_T/C_E can be written in functional form as, $C_T/C_E = f(x_1, x_2, x_3, x_4)$, where x_i 's are the variables taken for the present study to get the optimum values for the minimum of the ratio C_T/C_E .

In the present analysis, all these possible combinations are incorporated in a generalised computer programme for optimization and the same is incorporated in Appendix-G.

CHAPTER 4

RESULTS AND DISCUSSION

This chapter deals with the calculation of cooling loads on the basis of the theoretical and actual temperature variations having the effect of heat capacity and timelag factor of the structures. The economic criterion has been adopted for the optimum choice of the airconditioning systems using R-12 and R-22 refrigerants. A comparison of a hybrid system (evaporative cooling and airconditioning systems) with a conventional airconditioning system is discussed under optimum conditions. For estimation of the optimum cost, $C_{\rm T}/C_{\rm E}$, the life of the airconditioner and the desert cooler are taken as 20 years and 10 years, respectively. The following are the results obtained in the present work.

4.1 THEORETICAL AND ACTUAL TEMPERATURE VARIATION:

Figure 4.1 gives the actual temperature variation with time as well as the suggested sinusoidal variation in temperature based on maximum and minimum temperatures of the day. The actual temperature is slightly higher from 8 A.M. to 3 P.M. than the theoretical value before the peak hour. Thereafter, the actual temperature is lower than that of the theoretical value. The areas under both curves reveal small difference (about 4 to 7%). For the airconditioning

INSIDE CONDITIONS OF 24°C DB AND 65% RH TABLE: 4.1(a): INSIDE CONDITIONS OF 24°C DE

Year	Ontside air		Tot	tal Runni	nd Loads f	Total Running Loads for 10 Fours (In www	(Tr. kki)	
	temperature						(TII VM)	
	variation	April	May	June	July	August	September	October
1982	Actual	88.66	96.29	86.68	69.09	65.17	64.66	47.28
	Theoretical	84.44	88.72	79.64	63.96	64.26	58.19	44.35
	% difference	4.76	7.86	8.12	7.43	1.39	10.01	6.19
1983	Actual	75.34	85.80	79.51	66.20	62.75	58.29	30.29
	Theoretical	70.95	82.39	76.50	60.94	54.01	57.36	29.23
	% difference	5.83	3.97	3.78	7.95	13.92	1.59	3.49
1985	Actual	59.75	84.21	82,32	69.88	71.32	74.01	41.32
	Theoretical	58.29	82.90	78,91	68.32	69.09	71.85	38.10
	% difference	2.48	1.55	4.14	2.23	3.13	2. 88	7.79

TABLE:4.1(b) : FOR INSIDE CONDITIONS OF 27.5°C DB AND 56% RH

Year	Outside air temperature		Total Rur	nning Load	ls for 10	Total Running Loads for 10 Hours (In kw)	(W)	
	variation	Ap⊭il	May	June	July	August	September	October
1982	Actual Theoretical % difference	77.05 72.33 6.13	82.20 75.68 7.93	75.89 66.92 11.82	57,24 51,13 10,67	52,57 49,65 5,55	51.68 55.75 11.47	35.78 33.25 7.07
1983	Actual Theoretical % difference	68.52 65.71 4.10	78.35 74.29 5.18	68.91 63.90 7.42	59.06 54.66 7.45	55.09 50.44 8.44	51.64 49.32 4.49	28.40 25.36 10.7
1985	Actual Theoretical % difference	55.78 53.37 4.32	78.92 76.01 3.68	74.65 71.92 3.66	66.39 64.09 4.19	69,19 67,72 2,17	71.22 68.82 3.49	38.57 35.09 9.02
						Parameter Street, Square, San Street,		

52

TABLE: 4.1(c): FOR INSIDE CONDITIONS 30°C DB AND 60% RH

Year	Outside air temperature		Tota	l Running	Loads for	Total Running Loads for 10 Hours (In kW)	(In kW)	
	variation	April	May	June	July	August	September	October
1982	Actual	68.68	73.71	67.68	48.65	43.77	41.47	28.36
	Theoretical	63.58	68.91	58.29	42.27	38.05	36.82	24.64
	% difference	7.43	6.51	13.82	13.11	13.07	11.21	13.12
1983	Actual	55.89	65.88	56.31	46.08	40.5	41.88	18.17
	Theoretical	50.18	61.63	55.34	40.52	35.90	37.58	15.71
	% difference	10.08	6.45	1.70	12.06	11.4	10.36	13.54
1985	Actual	51.02	78.43	72.61	67.45	68.33	69.02	38•11
	Theoretical	49.81	73.92	68.88	62.21	64.66	67.11	37•31
	% difference	2.37	5.75	5.13	7.77	5.38	2.84	2•10

こうとうからいっていたというないのではないではないできるというないできるというないないできるというないできるというないできるというないというないというないというないというないというないというないという

system, the working hours have been taken to be 8 A.A. to 5 P.M.*. An underestimation of cooling loads by using sinusoidal variation is found in this. This deviation is calculated for three years, 1982, 1983, 1985 and the same are tabulated in Tables 4.1a to c, for different indoor conditions. From these values, the average deviation is calculated as 6%. Sc a multiplier 1.06 can be used to get the actual total running loads for 10 hours.

The variation in the sol-air temperatures for different directions is shown in Fig. 4.2. It indicates that the maximum sol-air temperature occurs on the western facing wall at 3 P.M.

4.2 EFFECT OF HEAT CAPACITY AND TIMELAG FACTOR ON THE COOLING LOADS:

Figures 4.3(a) and 4.3(b) represent the effect of the heat capacity and timelag of the structures on the hourly cooling load estimation. From this, it is found out that the estimation of the cooling load without taking into account of heat capacity of the structures leads to an overestimation of 20.29% than that of the cooling load

^{*} The computer programme is quite general and can be used for any duration.

Fig. 4.1 Variation in outside air temperature with respect to time in May at Kanpur.

Fig. 4.2 Variation in sol-air temperature and outside air temperature w.r.t. time at Kanpur.

Fig. 4.3 (a) & (b) Variation in cooling load with respect to time.

calculated for the structure with the heat capacity. This difference is quite pronounce. When the wall thickness was halved, the above is found to be 18.02%.

4.3 OPTIMUM RESULTS FOR VARIOUS INDOOR CONDITIONS:

For the indoor conditions of 24°C DB and 65% RH, the design cooling load is 9.8% and 24.5% higher than that for the indoor conditions of 27.5°C. DB, 56% RH and 30°C DB, 60% RH, respectively. Figures 4.4 and 4.5 represent the variations in initial, running and total costs with respect to the rise in condensing temperature $(T_{\rm h})$ of the system, for R-22 and R-12 refrigerants, respectively. In this case, the approach temperature is taken as 10°C, while the other design variables, the fall in lower temperature Δ $T_{\rm l}$, the degree of superheat Δ $T_{\rm sup}$ and the degree of subcooling Δ $T_{\rm sub}$ are maintained at the optimum values. The optimum total cost, $C_{\rm T}/C_{\rm E}$, for R-12 refrigerant system is 4.752% less than that of R-22 refrigerant system for the same operating variables.

Figure 4.6 shows that the optimum total cost, $(C_{\rm T}/C_{\rm E})\,,\,\,{\rm for\ a\ hybrid\ system\ of\ evaporative\ cooling\ and\ R-12}$ airconditioning system yields 4% gain over the conventional airconditioner used from April to October, every year. This is applicable for the indoor conduction of 27.5°C dry-bulb temperature and 56% RH, with approach temperature as 10°C.

では、中からやすることとなるとははは個人の意味をあると言いとはないのでは、一般などのないでは、これにはないのでは、

Figure 4.7 depicts the comparison of the optimum total cost between a conventional airconditioning system and the system with evaporative cooling. The optimum total cost for the conventional airconditioning system is 5.562% higher than that the system used with evaporative cooling facility. The variation in the optimum total cost $(\mathbf{C_T}/\mathbf{C_E})$ with respect to the fall in the lower temperature of the system, $\Delta \mathbf{T_1}$ is displayed in Fig.4.8. The effect of $\Delta \mathbf{T_1}$ on the optimum total cost is less than that of $\Delta \mathbf{T_h}$. Figures 4.9(a) and (b) show that the degrees of superheat and subcooling have relatively little effect on the optimum total cost of the system.

Figure 4.10 represents the variation in the optimum total cost with respect to the approach temperature of the systems for various indoor conditions. The approach temperature is almost proportional to the optimum total cost or vice versa. The various values of optimum variables for R-12 and R-22 refrigerant systems are given in the Table 4.2, along with the optimum total cost, penalty function values and the penalty parameters.

OPTIMUM QUANTITIES FOR R-12 AND R-22 AIRCONDITIONING SYSTEMS TABLE : 4.2

Inside Ref	Refriger-	System	Approach temper-		Optimal	Values	Optimum	Penalty function	Penalty para-
	used		ature °C	$^{\Delta \mathrm{Th}}_{\mathrm{c}}$	$\overset{\Delta T_1}{\circ}_{\text{C}}$	$\Delta \Gamma_{ m Sup} \stackrel{!}{\sim} \Gamma_{ m Sub}$	J. L.	value	meter (r _k)
9	R- 12	Without D.C.	4	4.6851	2.0012	1.0154 2.4445	7456,88	7456.38	0.7571331 E-
	R-12	Without D.C.	9	4.2686	2.1681	1.3740 2.0965	7837.30	7836,96	0.7748814
24°C DB	R-12	Without D.C.	10	5.3756	2.1658	1,3011 1,8798	8149.68	8149.09	0.81142484 E-1
65% RH	R-12	Without D.C.	14	5,8004	2.1595	1,7935 2,4925	8318,55	8318,12	0.84640565 E-3
	R-22	Without D.C.	10	4.6015	2,5301	2,0103 2,6841	8556.29	8555.89	0.84401342 E-3
	R-12	Without D.C.	9	4.4252	2,0345	1,0098 1,6621	7571.74	7571.30	0.71192785 E-3
	R-12	Without D.C.	14	4.4801	2.0418	1,0092 1,7339	80.00.28	7999,93	0.79684238 E-3
27.5°C DB	R-12	Without D.C.	10	5.5781	2.1485	1.0021 2.4295	7801.22	7801,12 C	0.74332218 E-3
56% RH	R-12	With D.C.	10	4.5720	1.8991	2,0154 1,9901	7510,78	7510,70 C	73155271
	R-22	Without D.C.	10	4.2888	2.0462	1.0154 2.4433	8234.25	8234.13 C	0.92393118 E-3
	R-22	With D.C.	10	4.1410	2.0175	1.1411 1.7911	7768,50	7768.25 C	O.84332185
							- Contraction of the Contraction		ਹ ਾ

CONTINUED...

TABLE : 4.2 : (CONTINUED)

Inside condition	Refriger- ant used	System	Approach temper-		Optimal Values	Values		Optimum ratio	Penalty function	Penalty paramet
			ature °C	$\Delta T_{\rm h}$	ΔT_1	Δ T sup	Δ T sub	J	value	규 사
Charge of the Control	R-12	Without D.C.	9	5.0153	2.4381	2.11	2.3499	6671.19	6670.86	6670.86 0.7956137 F-
	R-12	Without D.C.	10	5.8265	2.5198	2,5217	2.1589	6930.44	6930.31	6930.31 0.6225771
30°C DB	R-12	With D.C.	10	5.1702	2.1132	2.0113	1.7245	6565.21	6565.15 (E-0.6013766
	R-12	Without D.C.	14	4.0503	2.0159	1.1352	1.6303	7347.08	7346.80 (E-7346.80 0.8332145
	R-22	With D.C.	10	4.3707	2.5105	1.5361	1.8311	7150,71	7150.48 0.7954137	,7954137
	R-22	Without D.C.	10	4.0336	2.0077	1.0607	1.6987	7550.78	7550,56 0	E-: 0.76484276 E-:

D.C. refers to desert cooler.

Fig. 4.4 Variation in cost with rise in condensing temperature.

Fig. 4.5 Variation in cost with rise in condensing temperature.

Fig. 4.6 Variation in cost with rise in condensing temperature.

Fig. 4.7 Variation in cost with rise in condensing temperature.

Fig. 4.8 Variation in cost with fall in evaporating temperature.

Fig. 4.9 (a) Variation in cost with degree of superheating (b) Variation in cost with degree of subcooling .

Fig. 4.10 Variation in optimum total cost with approach temperature.

CHAPTER 5

CONCLUSIONS AND SUGGESTIONS

5.1 CONCLUSIONS:

- i) A multiplication factor has been found out for the estimation of actual cooling load with the help of maximum and minimum temperatures of a given location.
- ii) The heat capacity and timelag factor render the cooling load about 20% less than that of without these factors.
- iii) The evaporative cooling system can be substituted for the conventional air-conditioner during the period of April to June in the case of inside design condition of $T_{\rm db} = 30^{\circ}{\rm C}$, $\emptyset = 60\%$ and $T_{\rm db} = 275^{\circ}{\rm C}$, $\emptyset = 56\%$.
- iv) The implementation of the hybrid evaporative cooling and airconditioning system is found to be more economical than the conventional airconditioner, under optimum conditions.
- v) For the inside conditions of 27.5°C DB, 56% RH and 30°C DB, 60% RH, the suggested hybrid system yields a gain of 4% and 5.6% over the conventional airconditioning system, respectively.

- vi) The optimum total cost of the comfort airconditioning using R-12 is cheaper than that of R-22 system by 4.75% for the inside design conditions of 24°C DB and 65% RH.
- vii) The variations in condensing and evaporator temperatures have more influence on the total cost of the system than the degrees of sub-cooling and superheating.
- viii) The variation in total cost of the airconditioning system is almost proportional to the approach temperature.

5.2 SUGGESTIONS:

- i) A combination of evaporative cooling and conventional airconditioner can be fabricated as a single unit. The overall cost can be estimated on the basis of actual cost for commercial venture.
- ii) The cost of the building may also be included in the optimization in order to make the approach even more general.
- iii) This approach can also be extended to the vapour-absorption system under optimum conditions.

REFERENCES

- [1] ALFORD, J.S., RYAN, J.E. and URBAN, F.O., Effect of heat storage and variation in outdoor temperature and solar intensity of heat transfer through walls, ASHVE Transactions, Vol. 45, 1939, pp. 393-407.
- [2] ARORA, C.P., Refrigeration and Airconditioning, Tata McGraw-Hill Publishing Co. Ltd., 1981, pp. 477 - 84.
- [3] ASHRAE, Handbook of Fundamentals, Published by the American Society of Heating, Refrigerating and Airconditioning Engineers, Inc., New York, 1982, Chaps. 5,6,8,22-27.
- [4] Carrier Airconditioning Company, Handbook of Airconditioning System Design, McGraw-Hill Book Co., 1965, Chaps. 4,5 and 8.
- [5] Energy, Heating and Thermal Comfort, Practical Studies from the Building Research Establishment, The Construction Press, Vol. 4, 1978, pp.205-13.
- [6] FANGER, P.O., Thermal Comfort analysis and application in Environmental Engineering, McGraw-Hill Book Co., 1970, pp. 19-105.
- and
 [7] HUEBNER, K.H., THORNTON, E.A., The Finite Element
 Method for Engineers, John Wiley and Sons, New York,
 1982; pp. 406-433.
- [8] J.K. Synthetics Ltd., Daily Temperature and Relative Humidy Data, Kanpur.
- [9] KADAMBI, V., and HUTCHINSON, F.W., Refrigeration, Airconditioning and Environmental Control in India, Prentice-Hall of India Pvt. Ltd., New Delhi, 1968, pp. 14-69.
- [10] MALHOTRA, M.S., The effect of Thermal Environment on the Physical Performance of Indian People, All India Symposium on Refrigeration, Airconditioning and Environmental Control, IIT, Kanpur, 1967, pp.25-30.
- [11] MANI, A., Handbook of Solar radiation for India, Allied Publishers, 1981, pp. 22-89.

- [12] PRASAD, M., Refrigeration and Airconditioning, Wiley Eastern Ltd., 1983, pp. 296-366, 393-400, 536-40.
- [13] PRASAD, R., Optimum Design of Multistage Vapour Compression Refrigeration System, M.Tech. Thesis, Department of Mechanical Engineering, I.I.T., Kanpur, December, 1983.
- [14] RAJENDRA SINGH AND RAJENDRA PRAKASH, New Thermal Comfort Indices, Proceedings of the Second National Symposium on Refrigeration and Airconditioning, March, 1973, pp. 147-157.
- [15] RAMAMOORTHI, R., Economic Model of Optimum Operating Parameters and Indoor Design Conditions for Comfort Airconditioning, M. Tech. Thesis, Department of Mechanical Engineering, I.I.T. Kanpur, March, 1985.
- [16] RAO, S.S., Optimisation Theory and Application, Wiley Eastern Ltd., 1984, Chaps. 5-7.
- [17] THRELKELD, J.L., Thermal Environmental Engineering, McGraw-Hill Book Cc., 1972, pp. 279-380.
- [18] WHITNER, L.B., Minimising Space Energy Requirements subject to Thermal Comfort Conditions, ASHRAE J., Vol. 18, March, 1976, pp. 32-36.
- [19] WOODS, EDUARDO, J.E., MALDONADO, A.B., and REYNOLDS, G.L., How Ventilation Influences Energy Consumption and Indoor Air Quality, ASHRAE, J. Sept. 1981, pp.40-43.

APPENDIX -A

73

TEMPERATURE AND RELATIVE HUMIDITY OF THE OUTSIDE AIR FOR THE YEAR 1982, AT KANPUR

TABLE

		I													
oe r	80	a a	3 %	8 48	86	06	92	90	62	09	58	53	50	50	48
October	EH o	26	2.5	25	25	25	25	24	1 7	53) (2)	30	31	32	32
September	8.0	06	9. 80	100	95	90	90	88	76	89	09	64	58	58	56
Sept	f.°	30	29	29	56	28	28	30	31	35	35	35	36	37	37
August	% Ø	95	95	98	95	26	100	90	. 68	9 8	80	70	89	68	62
Au	Η°	32	32	32	32	31	31	32	33	34	35	36	37	38	38
July	% Ø	44	44	46	47	47	48	48	45	42	39	36	31	28	26
J.	₽° O	35	35	35	35	35	35	37	37	38	39	40	40	41	41
June	× &	41	44	44	42	42	44	40	40	20	46	38	36	33	53
JL	F+°	35	35	34	34	34	34	35	36	38	38	40	41	41	42
Мау	8 %	54	20	20	20	20	46	40	36	40	35	34	32	31	30
Σ .	e.	33	33	34	35	34	35	38	40	40	41	42	43	44	44
April	8,0	59	09	64	99	70	74	78	19	74	48	46	46	41	40
Ap.	T O _C	30	30	30	53	53	56	26	28	30	35	35	37	38	38
ime	rs		2	co Co	4	ນ	9	7	ω	6	9	17	1.2	E.J	4

CONTINUED

APP ENDIX A (TABLE A-1) (CONTINUED);

October	Ø %	44 44 44 44 44 44 44 44 44 44 44 44 44
September	<i>8</i> %	53 34 60 33 66 34 72 34 76 34 85 32 80 30 90 29
Sept	T. C.	37 34 34 32 32 31 31 30
August	% Ø	64 63 64 64 67 80 82 83 89 89
Aug	₽°	6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
July	% Ø	22 22 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25
D	F °	44688888888888888888888888888888888888
June	% B	23 116 20 20 25 29 34 37 39
,	ti °	44444888888888888888888888888888888888
May	8.8	08 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1	H°	4444466464 45744183966
April	8.0	98 98 98 98 98 98 98 98 98
Ap	FI O	40 40 34 32 32 30 30
Time	hrs	15 116 118 119 22 23 24

APPENDIX A

TABLE A-2

TEMPERATURE AND RELATIVE HUMIDITY OF THE OUTSIDE AIR FOR THE YEAR 1983, AT KANPUR

	1		
	ber	8.8	78 86 84 84 87 78 66 66 64 48 33
	October	H.	20 19 19 19 19 22 24 25 28 28
	September	% Ø	89 92 86 90 72 72 66 66 52 52 52 53
	Sept	T C	34 34 34 33 33 35 35 37 37 37
	August	8.8	95 97 98 92 82 90 90 97 74 70
	Āuģ	H°.	32 31 31 31 32 30 30 30 30
	July	8 0	56 662 72 72 72 72 64 62 46 46
		₽°.	31 30 30 29 29 32 34 35 37 37
	June	8.0	23 24 25 26 27 22 22 19 17 16
	٠,	Η°	88888888888888888888888888888888888888
The state of the s	Мау	8.0	36 38 38 30 30 30 30
	4	H O	333 331 331 332 338 40 42
	April	80	64 72 72 73 73 74 75 76 76 77 78 78 78 78 78 78 78 78 78
	- 3	E.	28 27 27 27 32 33 33 33 34 35
	ime	ដូ	4321008401264

CONTINUED.

APPENDIX A (TABLE A-2) ; CONTINUED;

		88	Ol on on o
	October	100	32 36 42 50 50 56 74 74 74
		H.O.	30 32 32 27 27 28 25 22 22 22 22
	September	8.0	52 68 68 84 86 82 84 84 87
	Sej	H _O	36 35 35 34 34 34 34 34 34
	August	8.0	72 70 76 90 88 91 92 92
1	Auc	t°.	33 34 35 35 35 35 35 35 35 35 35
	> 4	80	38 38 38 44 44 50 50 50 50
	July	Η°	38 36 36 36 37 37 37 37 37
	June	8.0	16 16 16 18 22 23 23
	ני	F.O.	0440 0888 098 098 098 097 098
	May	8.0	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30
	Σ	H O	. 444442222 33333445522 34554
1	April	88	337 344 344 550 560 608
,	A.	H°O	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	in	hrs	15 116 117 118 119 22 23 24

APPENDIX A

TABLE A-3

TEMPERATURE AND RELATIVE HUMIDITY OF THE OUTSIDE AIR FOR THE YEAR 1985, AT KANPUR

		-		-	-		-	-		-	-	-		
Time	April	111	May	γ	ŋ	June	ŋ	July	August	ust	Sep.	September	Octo	October
hrs	F O	8.0	T°.	%.Ø	e.	8%	₽°:	%.Ø	Ħ°Ω	88	F°.	8.0	e e	8.0
1	28	37	32	44	33	42	32	69	30	76	32	89	25	76
8	28	38	30	44	32	39	32	16	30	78	31	72	25	80
ო	27	36	53	47	32	38	32	74	9	8	30	71	24	83
4	56	40	53	51	32	37	32	78	30	83	30	72	24	82
ហ	56	40	28	54	53	36	31	78	31	82	53	76	24	68
9	28	44	28	26	59	36	31	99	31	84	59	78	23	86
7	30	48	53	26	31	36	32	70	33	72	30	75	24	89
ω	31	42	32	54	33	33	34	81	34	64	34	68	26	74
σ	32	30	36	44	32	27	32	64	36	09	37	56	28	44
10	34	30	41	38	37	24	36	84	37	59	37	52	29	30
근	36	26	43	32	36	22	37	70	38	52	38	48	30	22
12	38	23	43	26	39	20	39	52	33	20	38	45	31	23
13	40	22	44	24	40	18	39	27	38	48	38	£ 13	31	23
14	38	50	45	22	41	15	40	50	36	48	37	43	31	23

CONTINUED...

APPENDIX A (TABLE A-3) (CONTINUED);

- 1	Мау Ј	June	July	Aug	August	Sept	September	October	ber
F° % C°		8.0	or T	Η°	8.0	Η°	8,0	Η̈́Ω	88
44 20 40 45 20 40 44 23 39 39 26 39 37 29 38 36 32 38 35 37 32 40 34 32 40 34		15 15 16 20 28 32 38 38	40 46 35 48 34 52 34 61 33 70 33 72 32 72	35 34 33 33 30 30 30	44 44 52 52 75 75 75	38 37 34 33 33 32 32	52 52 52 58 64 68 68	30 29 29 28 28 24 23	20 25 29 42 50 60 64 72

APPENDIX - B

APPENDIX-B

Table-B

VALUES FOR SOLAR INTENSITY CALCULATIONS

Month.	Equation of time/minutes	Declination of angle degrees	A1 W/m ²	^B 1	c ₁
Jan.	-11.2	-20.0	1230	0.142	0.058
Feb.	-13.9	-10.8	1214	0.144	0.060
March	- 7 . 5	0.0	1185	0.156	0.071
April	1.1	11.6	1135	0.180	0.097
May	3.3	20.0	1103	0.196	0.121
June	-1.4	23.45	1088	0.205	0.134
July	-6.2	20.6	1085	0.207	0.136
August	-2.4	12.3	1107	0.201	0.122
Septembe	r 7.5	0.0	1151	0.177	0.092
October	15.4	-10.6	1192	0.160	0.073
November	13.8	- 19.8	1220	0.149	0.063
December	1.6	-23.45	1233	0.142	0.057

 A_1 = Apparant solar irradiation at air mass = 0, W/m²

B₁ = Atmospheric extinction coefficient

C₁ = Diffuse radiation factor.

APPENDIX - C

APP ENDIX - C

EQUATIONS FOR THE ESTIMATION OF PRIMARY ANGLES

The equation for LST, local solar time

$$LST = LCT + Equation of time$$
 (C-1)

where,

LCT = IST
$$\pm$$
 (82.5-Longitude of the location)/15, hrs (c-2)

The equations for the hour angle α_{h} , are given by

$$\alpha_{h}$$
 = (LST - 12.0).15, for LST < 12.0
= (12.0 - LST).15, for LST > 12.0

The relationships between the latitude angle 1, the hour angle α_h , declination angle d, altitude angle β , and azimuth angle γ are,

$$\sin \beta = (\cos 1 \cdot \cos h \cdot \cos d + \sin 1 \cdot \sin d)$$
 (C-4)

$$\cos \gamma = \sin (\cos 1. \sin - \cos d. \sin 1. \cos \alpha_h)$$
 (C-5)

For wall solar azimuth angle α ,

$$\alpha = \frac{\pi}{2} - \gamma$$
], for east and west facing walls,

=
$$\gamma$$
 , for north facing walls,
= $|(\gamma - \pi)|$, for south facing walls, (C-6)

The relationship for the incidence angle, e, is

 $\label{eq:cosphi} \cos \Theta \ = \ (\cos \beta) \ (\cos \alpha) \ (\cos \beta) \ + \ (\sin \beta) \ (\sin \beta) \ \text{for}$ tilted surfaces, with tilt angle β_{t}

- = $(\cos\beta)$ $(\cos\alpha)$, for vertical surfaces
- = $\sin \beta$, for horizontal surfaces. (C-7)

APPENDIX - D

APPENDIX-D

EQUATIONS FOR THERMAL PROPERTIES OF GLASS

The relationships for the thermal properties of the glass, transmittivity, $\mathbf{t_r}$, reflectivity, $\mathbf{r_g}$ and absorptivity, $\mathbf{a_g}$,

$$t_r = (1-r')^2 \cdot a_c/(1-r^2 \cdot a_c^2)$$
 (D-1)

$$r_g = r' + \frac{(1 - r')^2 \cdot a_c^2}{(1 - r'^2 \cdot a_c^2)}$$
 (D-2)

$$a_g = 1 - r' - \frac{(1 - r')^2 \cdot a_c}{(1 - r' \cdot a_c)}$$
 (D-3)

where,

$$r' = \frac{1}{2} \left[\frac{\sin^2(\theta_g - \theta_g')}{\sin^2(\theta_g + \theta_g')} + \frac{\tan^2(\theta_g - \theta_g')}{\tan^2(\theta_g - \theta_g')} \right]$$

$$a_c = \exp^{-E_c x_g / (1 - \frac{\sin^2 \theta_g}{n^2})}$$

where a Angle of incidence

 $\mathbf{e}_{\mathbf{G}}^{\mathsf{T}}$ Angle of refracted rays

E_C Extinction coefficient

x Thickness of the glass (m)

n Refraction index.

APPENDIX-E

APPENDIX-E

BUILDING PARTICULARS FOR COOLING LOAD CALCULATIONS

Room Size = $8.4 \times 4.0 \times 3.8$, m³

Thickness of the wall = 0.4 m

Thickness of the roof = 0.2 m

Number of windows:

On the Northern wall = 2

On the Southern wall = 2

On the Eastern wall = 0

On the Western wall = 0

Area of the windows = 1.08 m^2

Number of doors:

On Western walls = 1

On the other sides = 0

Number of occupants = 25

Number of fans inside the room = 4

Number of lights inside the room = 8

Ratings:

Fans = 100 watts

Lights = 40 watts.

APPENDIX-F

APP ENDIX-F

PROPERTIES OF REFRIGERANTS

Refrigerant R-12:

$$c_{p}(T) = 0.59524 + 0.00181715 (T+15)$$

$$s_{f}(T) = 0.142093 + 0.33747 (T/100) - 0.0399606 (T/100)^{2} + 0.019868 (T/100)^{3} + 0.014023 (T/100)^{4}$$

$$h_{g}(T) = 188.86 + 0.440278 (T) - 7.02007 (T/100)^{2} - 5.07651 (T/100)^{3} - 3.82545 (T/100)^{4}$$

$$h_{f}(T) = 36.1554 + 0.928108 (T) + 6.89916 (T/100)^{2} + 3.73414 (T/100)^{3} + 5.91673 (T/100)^{4}$$

Refrigrant R-22:

$$c_{p}(T) = 0.60 + 0.0005246 (T+45+0.043686 (T+45)^{2}),$$
 for -60= 0.70114 + 0.0029529 (T-10+0.010472(T-10)^{2}) for 10 < T < 50
$$s_{f}(T) = 0.181332 + 0.43667 (T/100) - 0.0596756 (T/100)^{2}$$

$$- 0.0234343 (T/100)^{3} + 0.0638047 (T/100)^{4}$$

$$h_{g}(T) = 251.06 + 35.4577 (T/100) - 19.4993 (T/100)^{2}$$

$$- 7.62005 (T/100)^{3} - 11.6756 (T/100)^{4}$$

$$h_{f}(T) = 46.2102 + 1.20394 (T) + 6.828 (T/100)^{2}$$

$$- 8.99387 (T/100)^{3} + 20.0612 (T/100)^{4}$$
 where, T in °C, c_{p} in kJ/kg.°C, s_{f} in kJ/kg.°K, h_{g} , h_{f} in kJ/kg.

APPENDIX - G

. .

```
| TIBLIGGONDS FOR FRE NOTED | JULY | 3A, | 1.98, | 1.7.43 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44 | 1.7.44
33
     15
  35
37
     39
```

```
t legge
                                                                                                   AATH=AIRT+AAIR
CAL=ALST+CALR
CARR=GAM+GGAMA
CALSF=PISES+RRISE
SETS=SSET+SETS
CARTANET+BETAA
                                                                                                 AIR=AAIR/4.0

GAMA=GGAMA/4.0

RISE=RRISE/4.0

SEF=SETS/4.0

ALST=CAL/4.0

SEIA=(BETAA/4.0)*CI

D=Z(I)

TMAX=TM(I)

FULL TMAX=TMA(I)
                                                                                          TOSONSOLAS-TI-TOSOS
TOSONS
45
```

```
1.73
               1.7
      5 D
      51
      53
      54
      55
      35
      3 7
      58
                STOPIEND
                SUBROUTINE FOR OUTSIDE AIR FEMPERATURE VARIATION SUBROUTINE TODISM(FMAX, FMIN, R.I.C. TO) B=(TMAX-TMIN)/(I-CDS((15*(R-N.6)-15*(R+11.0))*C)) A=TMAX-B D=15*(R+11.0)
TO=A+B*COS((15*I=0)*C)
RETURN; ENO
  in his ini ita jas isa
A er | cor | cor | cos | cos | cos | cos
                SUBROUTING FOR SOL-AIR TEMPERATURES

SUBROUTING SOLAIR(A, B, G, R, S, ALST, D, C, VED, TD, AB, SOLAE, SOLAM, SOLAM, SOLAM, SOLAM, MD, HDA, ALPS, ALPN, DM, DS, DIFE, DAINN, DAIMS)

IF (AUST, GT, R, AMD, ALST, LT, S) JD TO 1

SOLAE=TO:SOLAM=TO:SOLAM=TO:SOLAM=TO, SOLAH=TO
X = = = = =
```

```
pager 5
                                          GU TO 2
ALPE=(ABS(90-G))*C;
D=COS(B)*COS(ALPE)
DAINE=A*D
DIFE=Z*A*O.5
IF(ALST.GE.12.0.AND.ALST.LE.6)DAINE=0.0
TOTINE=DAINE+DIFE
DAINW=A*D
DAINW=A*D
TOTINW=DAINW+DIFE
TOTINW=DAINW+DIFE
ALPN=G*C
                                                                    TO
                                           IF (ALST.GT.R.AND.ALST.LE.42.0))AINW=0.0

TOTINW=DAINW+DIFE

ALPN=G*C

DN=COS(B)*COS(ALPN)

DAINM=A*DN

IF(ALST.GT.12.0)DAINN=0.0

TOTINW=DAINW+DIFE

ALPS=(ABS(G-N80.0))*C

IF(ALST.GT.12.0)ALPS=(ABS(G+180.0))*C

OALST.GT.12.0)ALPS=(ABS(G+180.0))*C

OIF(ALPS.LT.G.1415926/2.0)DAINS=A*COS(B)*COS(ALPS)

TOTINS=DAINS+DIFE

DIFH=Z*A

TOTINH=A*SIN(8)+DIFH!

H0=(18.423+3.81*VEL0/3600

HOH=(4.1897*(8.G4+1.21*VEL0)/3600

SOLAE=TO+AB*TOTINN/H0

SOLAE=TO+AB*TOTINN/H0

SOLAE=TO+AB*TOTINN/H0

SOLAE=TO+AB*TOTINN/H0

SOLAE=TO+AB*TOTINN/H0

SOLAE=TO+AB*TOTINN/H0

SOLAE=TO+AB*TOTINN/H0

DN=COS(B)*COS(ALPS)

RETURN:ENO
                    SUBROUTINE FOR CONVECTIVE HEAT PASSER COFF

SUBROUTINE FOR CONVECTIVE HEAT PASSER COFF

SUBROUTINE CONTENT (FI, FG VIL)

H = 12 4 2 3 3 18 * VEL) / 160

AKI = 0.00072; AK2 = 0.0013

TCDNO=X1/AK1+X2/AK2+X3/AK3

C1 = 0.00118055

C2 = 1/H0+FCOND

OT = 1.00

EM = C1 * C2 * (DT * * 1.25) * D1 * T3 * C1

FDN = 1.25 * C1 * C2 * (OT * * 0.05) * L.0

VAL = FN/FD

OTAL * ABS (OT * VAL)

IF (ABS (OT NEW = DF) . GC. 0.01) GD * T3 2 1

DT = DT NEW

GO TO

H = C1 * (DT ) * * 0.25

II = 1/(1/H1+TCDNO+1/H0)

RETURN FMO
SUBROUTINE FOR CONVECTIVE REAR TRANSFER COEFFICIENT( 1608)

SUBROUTINE COHTRF(TI, TO, VZD, JR)

HOM=t4.7897*(6.34+1.21*VZD) / 73600

X1 = 0.0157 x2 = 0.071 x = 0.0157

AK1 = 0.0007274 x 2 = 0.013

TCOMB = x174K1+ x27AK2+ x37AK1

CT = 1.4873500.0

CZ = 1.480+ 1.230R

DT = 10.0
```

```
FN=C1*C2*(D1**1.25)+D1-T3+T1
FDN=1.25*C1*C2*(OT**0.25)+1.0
VALR=FN/F3N
DTNEW=A8S(D1-VALR)
IF(A8S(D1NEW-D1).U1.0.01) 5D FD 2
        GO TO 1
HIR=C1*(DF**0.25)
UR=1/(1/HIR+F25NR+1/H)H)
RETURN; END
          SUBROUTINE FOR PROPERTIES OF GLASS
SUBROUTINE PROGLS(C.Ox.BETA, ALP.FS, THOU, ALPHA)
AL=0.0064; AK=0.474/0.0254; AN=1.626
AL=0.0064; AK=0.474/0.0254; AN=1.025
R1=0/H
AIC=ACDS(DX)
DELTA=ABS(ATAN(SIN(BEFA)/(CDS(BEFA)*COS(ALP))))
IF(DELTA-ABS(ATAN(SIN(BEFA)/(CDS(BEFA)*COS(ALP))))
Y=R1*(ABS(SIN(DELTA)/CDS(DELFA)))
IF(Y.OR.Z.GF.4.0)GD TD 1
IF(Y.OR.Z.GF.4.0)GD TD 1
FS=1*X.Z
GD TD 2
FS=0.0
X=SORT(1*SIN(AEC)**2.0/(AN*AN))
ALN=AL/X
ABS=EXP(-AK*ALN)
THETA=ACDS(X)
ADD=THETA+ACC
ANES=AIC-THETA
REFY*(SIN(AEC)**2.0/SIN(ADD)**2.0*((SIN(ANEN)**2.0)*(CUS(ADD)**2.0)*(CDS(AEN)**2.0)*(ABS/(I-KREFY*ABS)**2.0)*(CUS(ADD)**2.0)*(CDS(AEN)**2.0)*(ABS/(I-KREFY*ABS)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(ADD)**2.0)*(AD
             R1=0/H
     SUBROUTINE FOR THE MISCELLANEOUS LOAD

SUBROUTINE MISCROPH, TI, 10, 01, 20, 801, 500)

RO=0.45; RI=0.65; NJCCUP=25; SPVENT=5.8

CALL AIRPRO(TI, RI, HIAIR, SV3, V)

CALL AIRPR
                                                                                            SUBROUTINE FOR AIR PROCESTIES
          SUBROUTINE AIRPRO(IDB, RR, A. SPUDU, MS)

SUBROUTINE AIRPRO(IDB, RR, A. SPUDU, MS)

CPA=1.004; RA=287 4

L=1.1526+5-(4.7875-9)*(IDB+273.45)
V=(7.21379+(K*(IDB-210.0)**2.0))*(647.31/(IDB+273.45)-1.02)
PS=(221.228/EXP(V))
FS=1.004505+(2.07075-5)*IDB+(9.445E-7)*(IDB)**2.0

MS=0.022*FSKPS/(1.013/62-FSKPS)
MS=0.022*FSKPS/(1.013/62-FSKPS)
MS=1.004*IDB+M3*(2501.441.88*IDB)
SOVO((#PA*(IDB+273.15)/(I1.013/62-RH*PS)*18+5)
```

```
RETURN; END Page 3

SUBROUTINE FOR NUMBER OF AIR CHANGES

SUBROUTINE AIRCNG(VRDDM, ANDENG)
DIMENSION VOL(31), AIRCNG(31)
DATA (AIRCNG(VRDDM, ANDENG)
DIMENSION VOL(31), AIRCNG(31)
DATA (AIRCNG(1), 1=1,31)/22.6, 20.5, 19.25, 16.25, 17.37, 16.6, 15.91,
111, 43, 10.26, 9.22, 8.44, 8.43, 7.85, 7.37, 6.99, 6.42, 6.3, 6.01, 5.8,

DATA (VOL(1), 1=1,31)/5, 10.15, 20, 25, 30, 35, 40, 45, 50, 50, 65, 75, 75,
180, 85, 90, 95, 100, 120, 140, 155, 150, 180, 200, 240, 250, 280, 300, 360/

I = I+1
```

```
COMPUTER PROGRAM FOR NON-LILVEAR PROGRAMMING OPTIMINATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            赤
                                                                                                                                                                                                                 This Whe optimisation is done
                                                                                                                      "INTERIOR PENALTY FINITION METHOD"
with INEQUALITY JONSTRAINTS
Unconstrained minimisation is done by
"DAVIDON-FLETCHER-POWELL'S METHOD"
one dimensional minimisation is done by
"JUBIC INTERPOLATION FECHNIQUE"
"SUBIC INTERPOLATION FECHNIQUE"
"Humber of design variables.
"Number of penalty parameter reductions desire
  盡
 *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              邀
  容
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              串
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             *
 雄
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             串
 32
 NR Number of design variables.

NR Number of constraints.

NR Number of penalty parameter reductions desired.

ITLIM: Maximum number of D.F.P. iterations required.

Limbility value for the panalty parameter.

Zinitial value for the panalty parameter(R1).

RF Reduction factor for panalty parameter(R1).

EPSS :Accuracy for the potianum design variables.

EPC :Accuracy for the gradients

ZZ :Initial value for the step length.

(X(I).IEI.N): Starting values for the design variables.

(X(I).IEI.N): Starting values for the design variables.

(X(I).IEI.N): Starting values for the design variables.
                                                               ANTHOR RECORDING CONTROL OF THE PENALTY PARAMETER CONTROL OF CONTR
              Burgh be a section of the section of MAIN PROGRAM and a section is a section of the section of t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                INSIDE PEMPAKATUKE 1 . PA 13
NITH R22 REPRIJERATE)
```

```
CONTINUE
STOP
END
*************************
SUBROUTINE FOR D.F.P. 4ETHOD
   SUBROUTINE OPTIM(X, II, EPSM, ITLIM, NSTART, F, OBJ)
```

```
pagel 14
                                                       A=0.0

DO 23 J=1, V

A=A+H(I,J)*GRAD(J)

S(I)=A
                                             S(1) =-A

SNL=0.0

DD 25 I=1 V

SNL=(SNL+5(I)**2.0)

SNL=SQRT(SNL)

DD 26 I=1 V

SN(I)=S(I)/ABS(SNL)

DD 27 I=1 V

GRADP(I)=GRAD(I)

ITER=ITER+1

The street of partings of partings street language.
     25
                                  GRAPP(I)=GRAD(I)

GRAPP(I)=GRAD(I)

ITRE=ITER+1

**ine 28 IFER

FORMAT(5x, 12,5x, 2NFERS JUBE')

CALL INPOL(x,G,F,JBJ,SN, 5RAD, 1FLAG,T)

X8(1)=X(1)-T*SN(I)

FORMAT(10x, 120MES DUT OF JUBE')

DO 29 1=10

SUM=00

DO 31 1=1 V

SUM=00

SUM=0
     2.7
 29
 37
```

```
STIEEEC
                                                                            STY=0.0
00 43 I=1,V
STY=STY+(SN(I)*YQ(I))
                                                                      STY=STY/T
DO 45 1=1, V
A=0.0
DO 44 J=1, V
A=4+(1, J)*YO(J)
HX(I)=A
YHY=0.0
DO 46 I=1, V
YHY=YHY+HY(I)*YO(I)
DO 48 I=1, V
MO(I, J)=(SN(I)*SN(J))/STY
NO(I, J)=-(HY(I)*HY(JD)/YHY
HO(I, J)=-(HY(I)*HY(JD)/YHY
HO(I, J)=+(H(I, J)+MO(I, J)+MO(I, J))
CDM INUE
GD TO 22
CONTINUE
RRITE(25,50)
PDRMAT(//,20x, VALUES FOR THE CONSTRAINTS: ',/,20x,47('-'
WRITE(25,51)(G(I),I=1,C)
FORMAT(20x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8,5x,E16.8
                                                             SUBROUTINE FOR PENALTY FINETISM.

SUBROUTINE PENAL(X, C, Nov. RK, JSJ, GG, F3, SUM)

DIMENSION GG(10), K(20)

CALL DBJF(X, GG, DBJJ)

CALL DBJF(X, GG, DBJJ)

SUM=0.0

IF (GG(1), GE, U, S), GJ, FJ, I

SUM=SUM+1 * GG(1)

CONTINUE
FE=UBJ-RK+SUM
RETURN
COD
        53.
SUBROUTIVE FOR THE DAUECRIVE FUNCTION EVALUATION.

SUBROUTIVE FOR THE DAUECRIVE FUNCTION EVALUATION.

Let a constitute to a constitute the contraction of the cost of the cost
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      AUREUS)
                                                        SOURCE LISTING: Temperature & Relative multiple of Edg. aft
```

```
page: 18
inside: the room.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Temperature & Relative numidity of the air outside the room.

Efficiencials of the compressor, Morar fan & Mechanical respectively.

Number of months & nours in which the system
                                                                                                                                                                                                               TOUT, ROUT
  DEEFF, YETAF, YETAK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Number of months & hours in with a content of the Desert Cooler.

Sall Unicoless of the Condenser & Evalorator.

If a Rate of interest for the System.

Pactor of safety for the system.

Reference index.

Ital (system working with R12 referlerant)

Ital (system working with R22 referlerant)

Ital (system working with Desert Cooler)

Ital (system working with R12 reference)

Ital (system working with R12 re
                                                                                                                                                                                                                  MMON, NRUM-
                                                                                                         FREEL SAINES
                                                                                                                                                                                                                                                                                                                 JN, KN
                                                                                                                                                                                                                                                                                                       DELFA
                                                                                                                                                                                                                                         TOI(I,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               the system.

Sensible hear load.

Jorgal Copilly load.

Live the system of the system 
SUBROUTINE DBJF(X,GG,CFDF)

REAL MREF, IRATE, MAIR

DINEASION X(10), GG(10)

GINENSION FOI(6,10), RMI(S,10), SLOADI(6,10), SENVERCE, 10), FLOADI

(6,10), CDM-OS(5), CMLCOS(3), DDMCAP(10), CMLCAP(3),

22, ACCUS(5), EVICOS(5), EVAJAP(3), EVICAP(5), CDNCOS(5), ZNICJS(5),

320, CAP(S), CNICAP(S), RUDOAP(3), SLOCOS(5),

CREDELLO

FORMAT(4X,15), RMROUT, RMN, M, YELSKA, DELDA, VP, NOCCUP, CDFBLO, VALUE

1, TOUT, RHOUT, RMN, M, YELSKA, DELDA, VP, NOCCUP, CDFBLO, VALUE

2, ACCUS(24, ACCUS), RMIOSE

ACCUS (24, ACCUS), RMIOSE

ACCUS (24, ACCUS), RMIOSE

ACCUS (24, ACCUS), RMIOSE

ACCUS (24, ACCUS), RMIOSE

ACCUS (25, ACCUS), 
                                                                                                                                               EAD(24,4) PSS (1,3), RHI(1,3), SENVEI(1,3), SEOADICE, THIOADICE, THE EADICE, THE EADICE, THE EADICE, THE EADICE, THE EADICE RESERVED FOR THE EADICE REPORT OF THE EADIC REPORT OF THE E
                                                                                                                                             REPLACE 24

SIGNO 24

SIGNO 24

SIGNO 24

SIGNO 25

SIGN
                                                                                                                                                                                                                                                                                                                                                                                                                        ... Calculation of initial cost......
```

```
T1=1L+X(3)
SUBT=TH-X(4)
IF(JN.EO.2)GO FD 6
CALL R12VAL(TH.TL.T1.SUBT.CDMEFF.H1.H2.H3)
CALL R22VAL(TH.TL.T1.SUBT.CDMEFF.H1.H2.H3)
MREF=OLDAD/(H1-H3)
PCOMPI=MREF*(H2-H1)/(3.5*YEFAM)
EVAPR=OCDND+3.5/(CPA+X(1))
VAIR=(MAIR*60.0)/RHJ
VAIR=(MAIR*60.0)/RHJ
CALL CDSTIN(JN.PCDMP1.QCDNO.EVAPR.VAIR.CTDTAL)
IF(KN.EO.1)GD FD 8
CALL CDSTIN(JN.PCDMP1.QCDNO.EVAPR.VAIR.CTDTAL)
CTOTAL=CTOTAL+CDEST
CALL ELEC(IRATE.LIFE.CE)
RUNDES=RATDES*ZE*90
                                                                           HUNDES=RAIDER* ZE*90

ME 4

GO TO 9

CALL ELEC(!RATE, LIFE, CE)

CONTINUE

CREO TO 13 1=M, MADA

TO 12 3=1, MRUN

TO 12 3=1, MRUN

TO 12 3=1, MRUN

TO TO 11

CALL REPART (1)

TO TO 11

CALL REVALCTH, TL, TL, SUBT, CDMEFF, HI, H2, H3)

GO TO 11

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

GO TO 12

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

GO TO 12

CALL REVALCTH, TL, TL, SUBT, CDMEFF, H1, H2, H3)

CALL REVALCH AND COLUMN TO SUBTRIBUTE TO SUBTRIB
SUBMOUTINE FOR THE CONSTRAINTS.
SUBMOUTINE CONSTRAINTS.
```

```
DIMENSION GG(10),X(20)
GG(1)=1.0-X(1)/4.0
GG(2)=X(1)/15.0-1.0
GG(3)=1.0-X(2)/2.3
GG(4)=X(2)/5.0-1.0
GG(5)=1.0-X(3)
GG(6)=X(3)/4.0-1.0
GG(7)=1.0-X(4)
GG(8)=X(4)/4.0-1.0
RETURN
END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9agel 15
                                                                                                           SUBROUTINE FOR SUBICITATION

SUBROUTINE SUBPLICATION

SUBROUTINE SUPPLICATION

SUBROUTINE SUPPLI
dr 170 40 60 000 as ter ter on ter so
                                                            123355
                                           10
                                12
```

```
11
15
15
13
0.04
19
221
```

```
LIHG=0.0

DO 28 I=1, V

LTHG=LTHG+GRAOF(I)**2

LTHG=SORT(LIHG)

TSTA=STG/(LTHS+LTHG)

IF(1PR2.NE.0) NRIFE(22,29) , TSTA, STG, LTHS, LTHG.
FORMAT(11H QUOFTENT =, £12.5, 3%, 7HSLOPE =, £12.5, 2%, 9HLIHS

1E(ABS(TSTA).4F.EPSS) GO TO 34

IF(QO.GT.LIMFIT) GO TO 34

IF(QO.GT.LIMFIT) GO TO 34

IF(ABS(STG).4E.EPCD GO TO 30

A=T

FAP=STG
GO TO 22

B=T
F8=0
                                                                                                                                                                                                                                                                                                                     Daje: 1.7
      28
      23
                                                      GO TO 22
B=T
FB=D
FBP=STG
GO TO 22
CONTINUE
FB=D
GO TO 16
If (LOCMIN.EQ.O) WRITE(20.20
LOCMIN=1
GO TO 13
WRITE(20.5)
WRITE(20.5)
WRITE(20.1), (J.XT(J).J=1.V)
WRITE(20.1), (J.GT(J).J=1.V)
      30
      31
      3.3
34
        35:
        38
```

SUBROUTINE FOR SUPPE.

```
INTEGER C.V
COMMON/BLOCK1/EPSS,R,11ER,1N1,V,C,LIMFIT
CALL GRAON(X,V,C,R,J,F,GR)
00 1 1=1,V
FBP=FBP+S(I)*GR(I)
                                        1
                                                                                                             RETURN
                                                                                                             END
                                                                                                                                                                            SUBROUTINE FOR AIR PROPERTIES.
                                                                                                  400 400 300 400 500
                                                                                                         SUBROUTINE AIRPRI(TD8,RH,PS,SPVDL,MS,W,H)

CPA=1.004

RA=287.2

X=1.152E+5=(4.787E-9)*(FD8+273.45)

Y=(7.21379+(X*(TD8-210.0)*(FD8-210.0)))*(647.31/(FD8+273.45)-1.75)=(221.228/EXP(Y))

SPVDL=RA*(TD8+273.45)/((1.013962-RH*PS)*1E+5)

FS=1.004505=(2.0707E-5)*FD8+(9.445E-7)*(FD8)**2

MS=0.622*FS*PS/(1.013962-FS*PS)

H=1.004*TD8+W5*(2501.4+1.88*FD8)

Z=FS*PS/1.013962

DEGGAT=RH*(1.0-Z)/(1.0-RH*Z)

M=DEGSAT*WS

RETURN

END
SUBROUTINE ELECICR.L.COST)

DIMENSION CE(20)

CE(1)=1.293/(0.97985+EXP(-D.09338*I))

CONTINUE

CEFF=0.0

DO 2 7=1.L

CEFF=0.0

CONTINUE

                                                                                                                  SUBROUTINE IR(R,L,25)
X1=(1.0+R)**L-1.0
X2=R*(1.0+R)**(L-1)
C5=X1/X2
RETURN
END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         R22 COUIPMENTS
                                                                                                                    CAPACITY AND COST OF RIZ
                                                                                                               SUBROUTING COSTING, PCDAPI, SCOWD, EVAPR, VAIR, CODST)
DIMENSION CONCAP(S), CONCAP(S), EVACAP(S), COMCOS(S), CUNCOS(S)
DIMENSION CONCAP(S), CONCAP(S), EVACAP(S), COMCOS(S), CUNCOS(S)
DIMENSION CAICAP(S), CAICAP(S), EVICAP(S), CM1 CDS(S), CM1 CDS(
```

```
oals 19
                I=0
                I=0

I=I+1

IF(PCOMP1-COMCAP(I))2,2,1

PCOMP=COMCAP(I)

CPCOMP=COMCOS(I)

I=I+1

IF(OCOND-CONCAP(I))4,4,3

OCOND=CONCAP(I)

CTOTA=CONCOS(I)+CPCOST

I=I+1
    Sheet.
    3
    800
                T=1+1
TF(EVAPR-EWACAP(I))5,5,5
EVAPR=EVACAP(I)
CEOP=EVACAS(I)+CTOTA
I=0
    5
    5
               10
11
                I=0
I=1+1
IF(OCOND=CN1CAP(I))13,13,12
OCOND=CN1CAP(I)
CTOTA=CN1COS(I)+CPCOST
I=0
I=1+1
IF(EVAPR=EVICAP(I))15,15,14
EVAPR=EVICAP(I)
CEOP=EVICOS(I)+CTOTA
I=1+1
IF(VAIR-BLOCAP(I))17,17,15
VAIR=BLOCAP(I)
CCOST=BLOCOS(I)+CEOP
RETURN
END
 12
 13
 14
15
  15
                 SUBROUTINE FOR PROPERTIES OF RIZ REFRIGERANT
                SUBROUTINE RIZVAL(T4, TG, 74, SUBR, EVF, H1, H2, H3)

H1=HG(TL)+CP(TD)*(T1-TG)

H1=HG(TL)-HF(TL))/(TL+273, H5)+SF(TL)+CP(TL)*ALGER

1(T1+273, 15)/(TL+273, 15))

H=TH+4.0

S2D=(AG(TH)-NF(TH))/(TH+273, H5)+SF(TH)

F34=(TH+273, 15)*EXP((S1-S20)/CP(TH))

P20=T21*273, H5

HZD=HG(TH)+CP(TH)*(T20-TH)
```

```
H2=(H2D-H1)/EFF+H1
T100=TH-4.0
H3=HF(SUBI)
             RETURN
            END
           *FÜNCTION HG(T)

HG=188.86+0.440278*T/100.0*100.0*7.02007*(T/100.0)**2-5
            RETURN
            END

FUNCTION HF(T)

HF=36.1554+0.928108*T/101.0*13D.0+6.89916*T/100.0*T/100.0

1+3.73414*(T/100.0)**3+5.91573*(T/100.0)**4

END

END

FUNCTION CP(T)

CP=0.59524+0.0018175*(T+150)

FETURN
            END

END

EUNCTION SF(T)

SF=0.142093+0.33747*T/100.0.D.0309606*T/100.0*T/100.0

1+0.019869*(T/100.0)**3+3.014023*(T/100.0)**4

RETURN

END
          FUNCTION HF1(T)
FUNCTION HF1(T)
F1:26.2101+7*1.20394+(T/100)*(1/100)*(6.828-(T/100)*(8.993)).
1(T/100)*20.0612)
            RETURN

ROTOTION CP1(T)

CP1 = 0.70114+0.0029529*(I-M0.0+0.010472*((T-10.0)**2.0))

ROTOR

FORCTION SF1(T)

SF1 = 0.181132+(T/100)*(0.13657-(T/100)*(0.0596753+(I/100)*, 0.02

RETURN

SF1 = 0.161132+(T/100)*(0.13657-(T/100)*(0.0596753+(I/100)*, 0.02

RETURN
```

92000

ME-1906-M-SEK-OPT