Problem 1

Let $f:[0,1]\to\mathbb{C}$ such that $f(x)=\frac{1}{i-x}$. Find the real and imaginary parts of f. Compute f'(x) and $\int_0^1 f(x) \, \mathrm{d}x$.

Solution

We find the real and imaginary parts of f by multiplying the numerator and denominator by the conjugate of the denominator.

$$f(x) = \frac{1}{i-x} = \frac{1}{i-x} \cdot \frac{-i-x}{-i-x} = -\frac{x+i}{x^2+1} = -\frac{x}{x^2+1} - \frac{i}{x^2+1}.$$

Since

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(-\frac{x}{1+x^2} \right) = \frac{x^2 - 1}{\left(x^2 + 1\right)^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \left(-\frac{1}{x^2 + 1} \right) = \frac{2x}{\left(x^2 + 1\right)^2}$$

we have

$$f'(x) = \frac{x^2 + 2ix - 1}{(x^2 + 1)^2} = \left(\frac{x + i}{x^2 + 1}\right)^2 = \left(\frac{1}{i - x}\right)^2.$$

Similarly, we can notice that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(-\frac{1}{2}\log\left(x^2+1\right)\right) = -\frac{x}{x^2+1} \qquad \frac{\mathrm{d}}{\mathrm{d}x}\left(-\arctan\left(x\right)\right) = -\frac{1}{x^2+1}$$

and therefore

$$\int_0^1 f(x) \, \mathrm{d}x = \left[-\frac{1}{2} \log \left(x^2 + 1 \right) - \arctan \left(x \right) \right]_0^1 = -\frac{1}{2} \log \left(2 \right) - \arctan \left(1 \right).$$

Problem 2

Show that the maps $Tf: f \mapsto f'$ and $Sf: f \mapsto \int_0^x f(t) dt$ are \mathbb{C} -linear maps from $C^1([0,1],\mathbb{C})$ to $C([0,1],\mathbb{C})$ and $C([0,1],\mathbb{C})$ to \mathbb{C} , respectively.

Solution

The problem has a typo. We should have $Sf: f \mapsto \int_0^1 f(t) dt$ although as written you can indeed show that S is linear from $C([0,1],\mathbb{C})$ to itself.

Let
$$f(x) = f_r(x) + if_i(x)$$
, $g(x) = g_r(x) + ig_i(x)$ and $z = a + ib$. Then

$$T(zf+g) = ((a+ib)(f_r+if_i) + g_r + ig_i)' = ((af_r - bf_i + g_r) + i(af_i + bf_r + g_i))'$$

which by definition is equal to

$$(af_r - bf_i + g_r)' + i(af_i + bf_r + g_i)'$$
.

Using linearity of the real-valued derivative we conclude that

$$T(zf+g) = af'_r - bf'_i + g'_r + iaf'_i + ibf'_r + ig'_i = (a+bi)(f'_r + if'_i) + (g'_r + ig_i)' = zT(f) + T(g).$$

The case of S follows similarly.

Problem 3

Using the fundamental theorem of calculus for real functions, prove the fundamental theorem of calculus for complex functions, i.e.

$$\int_0^1 f'(x) \, \mathrm{d}x = f(1) - f(0)$$

for $f \in C^1([0,1], \mathbb{C})$.

Solution

Let $f = f_r + if_i$ with f_r and f_i real-valued. Then by the definition of the complex-valued derivative and integral we have

$$\int_0^1 f'(x) \, \mathrm{d}x = \int_0^1 f'_r(x) \, \mathrm{d}x + i \int_0^1 f'_i(x) \, \mathrm{d}x.$$

Now using the fundamental theorem of calculus for real-valued functions, this is equal to

$$f_r(1) - f_r(0) + if_i(1) - if_i(0) = f(1) - f(0)$$

as required.

Problem 4

Show that

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{zt} = ze^{zt}$$

for $z \in \mathbb{C}$.

Solution

See class notes.

Problem 5

Consider the integral $I = \int_0^\infty e^{-at} \cos{(bt)} dt$ where a > 0 and $b \in \mathbb{R}$ are real numbers.

- 1. Calculate I using integration by parts.
- 2. Show that $I = \text{Re}\left[\int_0^\infty e^{-(a-ib)t} dt\right]$ where Re denotes the real part of a complex number.
- 3. Calculate I using the formula above. Which do you prefer?

Solution

Part (1) is a standard example from first-year calculus.

By the definition of the complex-valued integral, we have

$$\operatorname{Re}\left[\int_0^\infty f(t)\,\mathrm{d}t\right] = \int_0^\infty f_r(t)\,\mathrm{d}t$$

where $f(x) = f_r(x) + i f_i(x)$ for f_r and f_i real-valued.

Using exponential rules and Euler's formula, we have

$$e^{-(a-ib)t} = e^{-at}\cos(bt) + ie^{-at}\sin(bt)$$

which is of the form $f(x) = f_r(x) + if_i(x)$ with $f_r(x) = e^{-at}\cos(bt)$ as desired.

For part (3), instead of using integration by parts, we first calculate $\int_0^\infty e^{-(a-ib)t} dt$ and then take the real part.

To that end, we have

$$\int_0^\infty e^{-(a-ib)t} dt = -\frac{1}{a-ib} \int_0^\infty (ib-a)e^{-(a-ib)t} dt = -\frac{1}{a-ib} \int_0^\infty \frac{d}{dt} \left(e^{-(a-ib)t} \right) dt = \frac{1}{a-ib}.$$

Taking the real part, we find that $I = \frac{a}{a^2 + b^2}$.

Problem 6

Let V be a finite-dimensional inner product space over \mathbb{C} with inner product $\langle \cdot, \cdot \rangle$ and $b = \{b_1, \dots, b_n\}$ an orthonormal basis of V.

Using the resolution of the identity formula, i.e.

$$v = \sum_{i=1}^{n} \langle v, b_i \rangle b_i$$

for $v \in V$, show that the matrix elements of a linear operator $A: V \to V$ with respect to the basis b are given by

$$A_{ij} = \langle A(b_j), b_i \rangle$$
.

Solution

Recall that $M_b(T)$ is the matrix of T with respect to the basis b if and only if

$$T(b_j) = \sum_{i=1}^n M_b(T)_{ij} b_i$$

holds for all $j \in \{1, \dots, n\}$.

Using the resolution of the identity formula, applied to the vector $A(b_j)$,

$$A(b_j) = \sum_{i=1}^n \langle A(b_j), b_i \rangle b_i.$$

This holds for all $j \in \{1, ..., n\}$ and therefore the elements of $M_b(A)$ (denoted here A_{ij}) must be given by

$$A_{ij} = \langle A(b_j), b_i \rangle$$
.