Note on Deal Contingent Trades

Youngsuk Lee

26 July 2020

1 Structure

The firm enters a derivative trade such as FX forwards or FX options with a counterparty where the trade is contingent on an agreed deal such as merger, regulatory approval, etc.

Consider such a deal-contingent trade (DCT) and its hedge trade, both of which are booked in the trading book. Figure 1 illustrates two situations:

- Deal succeeds where DCT is well hedged throughout its life.
- Deal fails where there is a potential sudden P&L due to (i) the mark-to-market is *released* from DCT and the PV changes from the *naked* hedge.

2 Risk-Not-In-VaR

2.1 Risk-Not-In-VaR P&L

For typical VaR models, it is not easy to incorporate the risk of deal failures.

To express the P&L of this missing risk, let

- V: mark-to-market of DCT
- \bar{V} : today's mark-to-market
- ΔV : random variable to represent the total P&L in V
- ΔV^{iv} : the part of ΔV included in VaR.

For example, if DCT is a simple FX forward on the spot rate z,

$$\Delta V^{\rm iv} = \delta_z \cdot \Delta Z \tag{1}$$

where δ_z is the first-order sensitivity and ΔZ is the random variable representing the change in z.

- ΔV^{niv} : the part of ΔV not included in VaR
- \bullet F is the random variable indicating the deal failure:

$$F = \begin{cases} 1, & \text{if the deal has failed.} \\ 0, & \text{otherwise} \end{cases}$$
 (2)

Figure 1: If we put them into the reg VaR and realise the P&Ls.

Then, we have

$$\Delta V = -\bar{V} \cdot F + \Delta V^{\text{iv}} \cdot (1 - F) \tag{3}$$

and

$$\Delta V^{\text{niv}} = \Delta V - \Delta V^{\text{iv}}$$

$$= -\bar{V} \cdot F - \Delta V^{\text{iv}} \cdot F$$
(4)

$$= -\bar{V} \cdot F - \Delta V^{iv} \cdot F \tag{5}$$

With multiple deals, each of which denoted by i,

$$\Delta V^{\text{niv}} = \sum_{i=1}^{I} \left[-\bar{V}_i \cdot F_i - \Delta V_i^{\text{iv}} \cdot F_i \right]$$
 (6)

Figure 2: If we put them outside the reg VaR and hold the P&Ls..

2.2 Model

To move Eq (6), we use a simple multi-variate normal distribution.

2.2.1 Failure Indicator

To model F_i , we can use a standard framework used for credit default modelling.

Let P_i be the probability of the deal failure. To simulate the deal failure events, let X_i be an N(0,1)

random variable, indicating the deal quality and set

$$F_i := \begin{cases} 1, & \text{if } \Phi(X_i) < P_i, \\ 0, & \text{otherwise} \end{cases}$$
 (7)

For joint simulations of $\{F_i\}_{i=1}^I$, the correlation should be specified:

$$\rho_{i,j}^F := \operatorname{corr}(F_i, F_j). \tag{8}$$

2.2.2 VaR P&Ls

To model ΔV_i^{iv} , without loss of generality, assume that it can be written as a function of $\Delta \mathbf{Z}$, the return distribution of a set of risk factors $\mathbf{z} = [z_1, \dots, z_K]$ included in VaR:

$$\Delta V_i^{\text{iv}} := \Delta V_i^{\text{iv}}(\Delta \mathbf{Z}) \tag{9}$$

As an example, see Eq (1).

Remark 2.1: VaR P&L functions

 ΔV_i^{iv} is the same P&L (approximation) function used in VaR.

We assume that ΔZ follows a multi-variate normal distribution with

$$\Delta Z_k \sim N(\mu_k, \sigma_k^2)$$
 and $\operatorname{corr}(\Delta Z_k, \Delta Z_l) = \rho_{k,l}^Z$. (10)

2.2.3 Correlation: Deal Failures and Risk Factors

Finally, the correlations among deal quality indices X_i 's and VaR risk factors Z_k 's should be specified:

$$\rho_{i,k}^{F,Z} = \operatorname{corr}(X_i, Z_k) \tag{11}$$

2.3 Model Parameter Estimations

Postulations: The following parameters are postulated by appropriate *experts*:

- Failure Probability and Correlations: $\{P_i\}$ and $\{\rho_{i,j}^F\}$ where $i, j = 1, \dots, I$
- Deal vs market correlations: $\{\rho_{i,k}^{F,Z}\}$ for $i=1,\cdots,I$ and $k=1,\cdots,K$. Due to the nature of typical deal contingent trades, they would be set to zero.

Calibrations: The following risk factor model parameters

$$\{\mu_k\}, \{\sigma_k\}$$
 and $\{\rho_{k,l}^Z\}$ where $k, l = 1, \dots, I$:

would be calibrated to simulated returns of the relevant historical VaR models.

2.4 Quantification

1. Run standard Monte Carlo simulations on

$$\{X_i\}_{i=1}^I$$
 and $\{Z_k\}_{k=1}^K$. (12)

- 2. Generate scenarios of the risk-not-in-VaR P&L $\Delta V^{\rm niv}$ using Eq (6).
- 3. Calculate the 99th tail measure.