The problem we are trying to analyse, post-ReLU low rank matrix completion, can be formulated as follows:

The d by n true data matrix M can be given as the product of an orthogonal d by r matrix U and a r by n weight matrix W. We are able to observe M through the mask $\Omega = M \ge 0$. So $\Omega = UW \ge 0$.

So $\Omega_{a,b}$ is defined by $sign(U_{a,:} \cdot W_{:,b})$, where only the +1s are sampled. We will assume that W is generated as follows: Each column of W is a random unit vector in \mathbb{R}^r , and each column of W is generated independently from other columns of W.

Given that, consider some set S of entries of Ω where S_{1a} is the first index of the first element of S and S_{1b} is the second index. So $S_1 = \Omega_{S_{1a}, S_{1b}}$.

Let's suppose that all elements in the set have a different second index, so $\forall i, j \in \{1..|S|\}, i \neq j, S_{i_b} \neq S_{j_b}$. Then for a bunch of z, let $z_i = \{-1, 1\}$ arbitrarily.

For some i, $P(S_i = z_0 | \forall S_j \neq S_i, S_j = z_j) = P(S_i = z_0)$ is the independence criteria we're trying to prove: basically, we want the same probability despite knowing all other entries. $z_j = S_j = sign(U_{S_{ja},:} \cdot W_{:,S_{jb}})$. Because z_j is completely defined by this equation, knowing z_j at best reveals $U_{S_{ja},:}$ and $W_{:,S_{jb}}$. Because $i_b \neq j_b$ for all j, $W_{:,S_{ib}}$ is independent from all observed $W_{:,S_{jb}}$ because of the way in which W was sampled. $W_{:,S_{ib}}$ is also clearly independent from the $U_{S_{ja},:}$. So because the z_j are entirely determined by those columns of W and rows of U, and $W_{:,S_{ib}}$ is independent from those items, $P(W_{:,S_{ib}} = x | \forall S_j \neq S_i, S_j = z_j) = P(W_{:,S_{ib}} = x)$; that is, the column of W is independent from all observations made which use different columns of W.

```
P(S_{i} = z_{0} | \forall S_{j} \neq S_{i}, S_{j} = z_{j})
= P(sign(U_{S_{i_{a},:}} \cdot W_{:,S_{i_{b}}}) = z_{0} | \forall S_{j} \neq S_{i}, S_{j} = z_{j})
= \sum_{V \in Gr(r,d)} P(U = V | \forall S_{j} \neq S_{i}, S_{j} = z_{j}) P(sign(U_{S_{i_{a},:}} \cdot W_{:,S_{i_{b}}}) = z_{0} | U = V, \forall S_{j} \neq S_{i}, S_{j} = z_{j})
```

- = $\sum_{V \in Gr(r,d)} P(U = V | \forall S_j \neq S_i, S_j = z_j) * \frac{1}{2}$ because the probability that an independent uniform random unit vector lies on one side of a fixed half plane is always $\frac{1}{2}$
- $=\frac{1}{2}$ because we are summing over the entire Grassmanian distribution. So any set in the mask where each element has a unique second index is independent.