DHCP Starvation and Spoofing Attack CSE-406

Submitted by

Md. Miraj Hasan ID: 2005084 Wahid Al Azad Navid ID: 2005089

July 27, 2025

Contents

1	Introduction	3
2	Attack Methodology2.1 Steps of the Attack2.2 NS-3 Simulation Environment2.3 Simulation Code	3 3 4
3	Simulation Results 3.1 Observed Outputs	4 4 5 5 5 7 9
4	Analysis	10
5	Why the Attack is Successful	10
6	Implemented Defense Mechanisms6.1 Server-side Starvation Defense6.2 Client-side Spoofing Defense6.3 Evaluation of Defenses	11 11 11 11
7	Conclusion	12
8	Contribution of Team Members	13

1 Introduction

In this project, we simulate a DHCP Starvation and Spoofing Attack using NS-3. This attack exploits vulnerabilities in the DHCP protocol, where a rogue client exhausts the IP pool of a legitimate DHCP server and then sets up a rogue DHCP server to serve fake IPs, potentially redirecting victim traffic.

2 Attack Methodology

2.1 Steps of the Attack

The attack was implemented in the following steps:

- 1. **DHCP Starvation:** The attacker sends multiple DHCP DISCOVER messages with spoofed MAC addresses to exhaust the legitimate server's IP pool.
- 2. **DHCP Spoofing:** After the starvation, the attacker runs a rogue DHCP server to respond faster than the legitimate server to new clients.
- 3. **Hijacking:** New clients receive IP configurations from the rogue server, potentially with malicious gateway/DNS settings.

Figure 1: Timing Diagram of the Attack

2.2 NS-3 Simulation Environment

The simulation was built using NS-3 with the following structure:

- Number of Clients: Up to 140
- Legitimate DHCP Server: Responds with slower delay (3ms)
- Rogue DHCP Server: Responds with faster delay (1ms) and a large pool
- Topology: All nodes connected over CSMA network
- Attacker: First client node acts as attacker

2.3 Simulation Code

Below is a snippet of the main simulation code:

Listing 1: NS-3 Simulation Code Snippet

Ptr <DhcpServerApp > rogue = CreateObject <DhcpServerApp > ();
rogue -> Setup(Ipv4Address("192.168.100.1"), rogue_pool, port, MilliSeconds(1));

Ptr <DhcpServerApp > legit = CreateObject <DhcpServerApp > ();
legit -> Setup(Ipv4Address("10.10.10.1"), 100, port, MilliSeconds(3));

for (uint32_t i = 0; i < numClients; ++i) {
 Ptr <Node > node = clients.Get(i);
 Ptr <DhcpClientApp > client = CreateObject <DhcpClientApp > ();
 client -> Setup(broadcastAddr, 67);

 if (i == 0) client -> SetIsAttacker(true); // attacker node

 double jitter = (rand() % 100) / 1000.0;
 client -> SetStartTime(Seconds(2.0 + i * 0.2 + jitter));
 client -> SetStopTime(Seconds(20.0));

3 Simulation Results

node -> AddApplication(client);

3.1 Observed Outputs

Attacker

}

The attacker was able to send multiple DHCP requests with spoofed MACs, causing the legitimate server pool to be exhausted.

Victim Clients

Many clients received IP addresses from the rogue server, indicating the attack's success.

Server Logs

The legitimate server stopped responding after pool exhaustion, while the rogue server continued to assign IPs.

3.2 Snapshots

3.2.1 DHCP Starvation Phase

During the starvation phase, the attacker floods the network with a large number of DHCPDISCOVER packets, each of which carries a spoofed MAC address. This rapidly exhausts the legitimate DHCP server's IP address pool, making it unable to serve legitimate clients. In particular, the rogue DHCP server initially remains silent, allowing the legitimate server to deplete its pool. Once starvation is complete, the rogue server begins responding to client requests, ensuring that it becomes the only responder in the network.

H	bootp											
No		Source	Destination	Protocol	Length Info							
	1 0.000000	10.1.1.1	255.255.255.255	DHCP	290 DHCP	Discover	-	Transa	ction	ID	0x7df	f9d09
lг	4 0.004055	10.1.1.141	10.1.1.1	DHCP	290 DHCP	Offer	-	Transa	ction	ID	0x7df	f9d09
	5 0.010000	10.1.1.1	255.255.255.255	DHCP	290 DHCP	Discover	-	Transa	ction	ID	0x69e	7f3e5
	6 0.013030	10.1.1.141	10.1.1.1	DHCP	290 DHCP	Offer	-	Transa	ction	ID	0x69e	7f3e5
	7 0.020000	10.1.1.1	255.255.255.255	DHCP	290 DHCP	Discover	-	Transa	ction	ID	0x181	6f8c4
	8 0.024030	10.1.1.141	10.1.1.1	DHCP	290 DHCP	Offer	-	Transa	ction	ID	0x181	6f8c4
Н	9 0.030000	10.1.1.1	255.255.255.255	DHCP	290 DHCP	Discover	-	Transa	ction	ID	0x7ab	49daf
	10 0.034030	10.1.1.141	10.1.1.1	DHCP	290 DHCP	Offer	-	Transa	ction	ID	0x7ab	49daf
	11 0.040000	10.1.1.1	255.255.255.255	DHCP	290 DHCP	Discover	٠.	Transa	ction	ID	0x61e	74ea3
	12 0.043030	10.1.1.141	10.1.1.1	DHCP	290 DHCP	Offer	-	Transa	ction	ID	0x61e	74ea3
	13 0.050000	10.1.1.1	255.255.255.255	DHCP	290 DHCP		-	Transa	ction	ID	0xf81	9e7f
	14 0.054030	10.1.1.141		DHCP	290 DHCP			Transa				
	15 0.060000	10.1.1.1	255.255.255.255	DHCP	290 DHCP							
	16 0.063030	10.1.1.141	10.1.1.1	DHCP	290 DHCP			Transa				
Ш	17 0.070000	10.1.1.1	255.255.255.255	DHCP	290 DHCP	Discover	-	Transa	ction	ID	0x78b	5e776
	18 0.074030	10.1.1.141	10.1.1.1	DHCP	290 DHCP			Transa	ction	ID	0x78b	5e776
,	Frame 14: 290 by	tes on wire (232	0 bits), 290 bytes	canture	d (2320 hit			00 00	രെ രെ	01	00 00	00 0
			:8d (00:00:00:00:00					10 00				00 0
			:: 10.1.1.141, Dst:					01 00				00 0
			: 67, Dst Port: 491					7f 00				00 0
	Dynamic Host Con							00 00				22 0
	5)11411125- 11031 0011	rigaracion i loco	(0.10.)				00	00 00	00 00	00	00 00	00 0
							00	00 00	00 00	00	00 00	00 0
							00	00 00	00 00	00	00 00	00 0
							രെ	00 00	<u> </u>	00	00 00	00 0

Figure 2: Wireshark Snapshot: Attacker Flooding DISCOVER Packets with Spoofed MACs, Forcing Starvation

3.2.2 DHCP Spoofing and Starvation Phases

The hybrid attack consists of two key phases - spoofing during availability and spoofing after starvation — both of which highlight the dominance of the rogue DHCP server over the IP allocation process.

Phase 1: Rogue Wins the Race (Spoofing with Available Legit Server) In this phase, the legitimate DHCP server still has valid IP addresses in its pool, but the rogue server, acting as a man-in-the-middle, responds faster to client DHCPDISCOVER messages. Due to this faster response, clients accept the DHCPOFFER of the rogue server and subsequently are assigned fake IP addresses, completely bypassing the legitimate server.

N P	ootp											
No.	Time	Source	Destination	Protocol	Length Info							
	160 0.441030	10.1.1.142	10.1.1.1	DHCP	290 DHCP (0ffer	-	Trans	action	ı ID	0x8f8	b73f
	161 0.443030	10.1.1.141	10.1.1.1	DHCP	290 DHCP (Offer	-	Trans	action	1D	0x8f8	b73f
	162 0.450000	10.1.1.1	255.255.255.255	DHCP	290 DHCP I	Discover	-	Trans	action	ı ID	0x15b	71329
	163 0.451030	10.1.1.142	10.1.1.1	DHCP	290 DHCP (Offer	-	Trans	action	1D	0x15b	71329
	164 0.453030	10.1.1.141	10.1.1.1	DHCP	290 DHCP (0ffer	-	Trans	action	ı ID	0x15b	71329
	165 0.460000	10.1.1.1	255.255.255.255	DHCP	290 DHCP I	Discover	-	Trans	action	1D	0x69d	3947c
	166 0.462030	10.1.1.142	10.1.1.1	DHCP	290 DHCP (0ffer	-	Trans	action	ı ID	0x69d	3947c
	167 0.464030	10.1.1.141	10.1.1.1	DHCP	290 DHCP (Offer	-	Trans	action	1D	0x69d	3947c
	168 0.470000	10.1.1.1	255.255.255.255	DHCP	290 DHCP	Discover		Trans	actior	ı ID	0x706	b674e
	169 0.472030	10.1.1.142	10.1.1.1	DHCP	290 DHCP (0ffer	-	Trans	action	ı ID	0x706	b674e
	170 0.474030	10.1.1.141	10.1.1.1	DHCP	290 DHCP (0ffer	-	Trans	action	ı ID	0x706	b674e
	171 0.480000	10.1.1.1	255.255.255.255	DHCP	290 DHCP I		-	Trans	action	ı ID	0x545	ee5d3
	172 0.482030	10.1.1.142	10.1.1.1	DHCP	290 DHCP (0ffer	-	Trans	action	ı ID	0x545	ee5d3
	173 0.484030	10.1.1.141	10.1.1.1	DHCP	290 DHCP (0ffer	-	Trans	action	ı ID	0x545	ee5d3
	174 0.490000	10.1.1.1	255.255.255.255	DHCP	290 DHCP I	Discover	-	Trans	action	ı ID	0x639	defac
4	175 0.492030	10.1.1.142	10.1.1.1	DHCP	290 DHCP (Offer	-	Trans	action	_TD	0x639	defac
, 6	rame 1: 200 hvt	es on wire (2320	bits), 290 bytes c	antured	(2320 hits		ff ·	ff ff	ff ff	ff	00 00	00 00
			:01 (00:00:00:00:00						00 00		40 11	00 00
			: 10.1.1.1, Dst: 25								00 fc	00 00
			: 49153, Dst Port:		33.233						00 00	00 00
		figuration Proto		07							00 11	22 00
, 0	ynamic nost con	riguracion Froto	cot (biscover)					00 00				00 00
								00 00				00 00
							00 (00 00	00 00	00	00 00	00 00
						0080	00 (00 00	00 00	00	00 00	00 00

Figure 3: Wireshark Capture: Rogue Server Responding Faster Than Legitimate Server Despite Available IPs

Phase 2: Starvation Complete (Only Rogue Offers Remain) After the legitimate server's IP pool is exhausted via DHCP starvation, it no longer responds to client DHCPDISCOVER messages. At this point, only the rogue server sends DHCPOFFER packets, effectively taking over the DHCP process without competition. Clients have no alternative but to accept IPs from the rogue server.

b	ootp												
No.	Time	Source	Destination	Protocol Le	ength Info								
	294 7.581055	10.1.1.142	10.1.1.39	DHCP	290 DHCP	0ffer	-	Trar	sact.	ion	ID	0x2463	3b9ea
	297 7.584111	10.1.1.39	10.1.1.142	DHCP	296 DHCP	Request	-	Trar	sact	ion	ID	0x2463	3b9ea
	298 7.585141	10.1.1.142	10.1.1.39	DHCP	290 DHCP	ACK	-	Trar	sact	ion	ID	0x2463	3b9ea
	299 7.764000	10.1.1.40	255.255.255.255	DHCP	290 DHCP	Discover	-	Trar	sact	ion	ID	0x51ea	ad36b
	302 7.768055	10.1.1.142	10.1.1.40	DHCP	290 DHCP	Offer	-	Trar	sact	ion	ID	0x51ea	ad36b
	305 7.770111	10.1.1.40	10.1.1.142	DHCP	296 DHCP	Request	-	Trar	sact	ion	ID	0x51ea	ad36b
	306 7.771141	10.1.1.142	10.1.1.40	DHCP	290 DHCP	ACK	-	Trar	sact	ion	ID	0x51ea	ad36b
	307 7.922000	10.1.1.41	255.255.255.255	DHCP	290 DHCP	Discover	-	Trar	sact	ion	ID	0x580l	bd78f
	310 7.928055	10.1.1.142	10.1.1.41	DHCP	290 DHCP	Offer		Trar	ısact.	ion	ID	0x580l	bd78f
	313 7.934111	10.1.1.41	10.1.1.142	DHCP	296 DHCP	Request	-	Trar	sact	ion	ID	0x580l	bd78f
	314 7.935141	10.1.1.142	10.1.1.41	DHCP	290 DHCP	ACK	-	Trar	sact	ion	ID	0x580l	bd78f
	315 8.192000	10.1.1.42	255.255.255.255	DHCP	290 DHCP	Discover	-	Trar	sact	ion	ID	0x385	5585c
	318 8.202055	10.1.1.142	10.1.1.42	DHCP	290 DHCP	Offer	-	Trar	sact	ion	ID	0x385	5585c
	321 8.211111	10.1.1.42	10.1.1.142	DHCP	296 DHCP	Request	-	Trar	sact	ion	ID	0x385	5585c
	322 8.212141	10.1.1.142	10.1.1.42	DHCP	290 DHCP	ACK	-	Trar	sact	ion	ID	0x385	5585c
	323 8.398000	10.1.1.43	255.255.255.255	DHCP	290 DHCP		-	Trar	sact	ion	ID	0x6a23	342ec
	romo 14, 200 byt	toc on wire (2220	bits), 290 bytes	antured	(2220 hit		00	00 6	0 00	00	01	00 00	00 00
			Bd (00:00:00:00:00									40 11	
			10.1.1.141, Dst: :		00.00.0							00 fc	
												00 00	00 00
			67, Dst Port: 491	00								00 11	22 00
→ D	ynamic Host Com	figuration Protoco	it (orrer)									00 00	00 00
												00 00	00 00
									0 00			00 00	00 00
												00 00	00 00

Figure 4: Wireshark Capture: Rogue Server Offers IPs After Legitimate Server is Starved

3.3 Graphical Analysis

The following graphs analyze the DHCP starvation and spoofing attack in terms of the rogue coverage percentage (i.e., the percentage of clients served by the rogue server out of all clients). These plots help visualize how different parameters (number of clients, rogue pool size, and simulation time) influence the attack's effectiveness.

Impact of Number of Clients (Fixed Running Time = 25s) As shown in Figure 5, the rogue coverage increases as the number of clients increases from 100 to 140 though the rogue coverage percentage is decreasing. The rogue server's ability to handle more clients is evident, especially when the rogue pool size is larger (250). This is because a higher client count creates more opportunities for the rogue server to dominate the DHCP offer-response race, and a larger rogue pool ensures it doesn't run out of IPs.

Figure 5: Rogue Coverage % vs Number of Clients (Fixed Running Time = 25s)

Impact of Running Time (Fixed Clients = 120) Figure 6 demonstrates that increasing simulation time allows more clients to complete the DHCP transaction, thereby giving the rogue server more chances to respond first. This results in increased rogue coverage, especially when the rogue pool size is sufficient to support the client load. The attack becomes nearly fully successful at longer durations when paired with a rogue pool of 250.

Figure 6: Rogue Coverage % vs Running Time (Fixed Clients = 120)

Impact of Running Time (Fixed Rogue Pool = 250) In Figure 7, with a large rogue pool fixed at 250, the attack's success is predominantly influenced by simulation time and number of clients. For lower client counts, full coverage is achieved quickly. But for higher numbers like 140, extended time is needed to reach near-complete coverage. This suggests that when the rogue server is not limited by IP pool exhaustion, it can dominate the DHCP process over time.

Figure 7: Rogue Coverage % vs Running Time (Fixed Rogue Pool Size = 250)

3.4 Tabular Summary

Table 1: DHCP Attack Simulation Summary

numClients	roguePool	runningTime	rogueAssigned	legitAssigned	totalAssigned	${\bf rogue Success Percent}$	${\bf rogue Coverage Percent}$
100	200	15	57	2	59	96.61	57.00
100	200	20	82	2	84	97.62	82.00
100	200	25	97	2	99	97.98	97.00
100	200	30	97	2	99	97.98	97.00
100	250	15	57	2	59	96.61	57.00
100	250	20	82	2	84	97.62	82.00
100	250	25	97	2	99	97.98	97.00
100	250	30	97	2	99	97.98	97.00
120	200	15	57	2	59	96.61	47.50
120	200	20	82	2	84	97.62	68.33
120	200	25	98	2	100	98.00	81.67
120	200	30	98	2	100	98.00	81.67
120	250	15	57	2	59	96.61	47.50
120	250	20	82	2	84	97.62	68.33
120	250	25	107	2	109	98.17	89.17
120	250	30	117	2	119	98.32	97.50
140	200	15	59	0	59	100.00	42.14
140	200	20	84	0	84	100.00	60.00
140	200	25	100	0	100	100.00	71.43
140	200	30	100	0	100	100.00	71.43
140	250	15	59	0	59	100.00	42.14
140	250	20	84	0	84	100.00	60.00
140	250	25	109	0	109	100.00	77.86
140	250	30	134	0	134	100.00	95.71

4 Analysis

From the tabulated data and graphs, we observe:

- Effect of Time: Longer simulation time allows more clients to request IPs, increasing rogue assignment.
- Effect of Rogue Pool Size: When the rogue pool increases from 200 to 250, more clients get rogue IPs.
- Success Percentage: Rogue success rate remains consistently high (above 96%), showing the attacker replies faster.
- Coverage Limitation: Even with high success rate, coverage is limited by the total simulation time and number of clients.
- Complete Spoofing: In cases like 140 clients and rogue pool of 250, the rogue server alone handles all IP assignments.

5 Why the Attack is Successful

The success of the attack is due to some factors:

- IP Pool Exhaustion: The attacker floods the network with DHCPDISCOVER packets using spoofed MAC addresses, quickly consuming all IPs from the legitimate server. As a result, genuine clients receive no IPs from the trusted source.
- Faster Rogue Response: The rogue DHCP server is configured to respond faster than the legitimate one. Since clients accept the first DHCPOFFER they receive, the rogue server gains control over IP assignment.
- Lack of Authentication: DHCP lacks built-in authentication. Clients cannot distinguish between legitimate and rogue servers, making spoofing trivial.

6 Implemented Defense Mechanisms

To mitigate the effects of DHCP starvation and spoofing attacks, we implemented defense mechanisms on both the server and client sides.

6.1 Server-side Starvation Defense

The legitimate DHCP server was enhanced to detect a high rate of DHCPDISCOVER packets within a short time window (e.g., more than 20 requests per second). If this threshold is exceeded, the server temporarily drops incoming requests, assuming an ongoing starvation attack.

- Trigger: More than 20 DISCOVERs in 1 second.
- Effect: Excess traffic is ignored, preserving the IP pool.
- **Reasoning:** Legitimate clients do not send bursts of requests; such behavior is typical of an attack.

6.2 Client-side Spoofing Defense

Each client maintains a whitelist of trusted DHCP server IPs. When a DHCPOFFER or DHCPACK is received, the client verifies the sender's IP address. If the server is not in the whitelist, the packet is dropped and ignored.

- Trigger: DHCPOFFER/DHCPACK received from untrusted IP.
- Effect: Client ignores rogue DHCP responses.
- Reasoning: Prevents acceptance of configuration from unauthorized DHCP servers.

6.3 Evaluation of Defenses

The graph below summarizes the impact of enabling different combinations of the above defense mechanisms. Each bar shows how many clients the rogue or legitimate server served in different configurations.

Figure 8: Comparison of DHCP Assignment With/Without Defenses

As evident:

- Without defense, all clients received IPs from the rogue server.
- With only spoofing defense, few rogue responses were filtered.
- With only starvation defense, some legitimate responses were preserved.
- With both defenses, the legitimate server was able to dominate IP assignments.

7 Conclusion

The DHCP Starvation and Spoofing attack was successfully simulated in NS-3. By exhausting the legitimate server's pool and deploying a faster rogue server, the attacker could control IP allocation to clients. This highlights the importance of DHCP snooping and port security mechanisms in real-world networks.

8 Contribution of Team Members

Md. Miraj Hasan: Designed and implemented the DHCP starvation using ns-3. Assisted in the analysis of simulation results and handled parameter tuning (number of clients, rogue pool size, etc.), prepared visualization scripts using Python (Matplotlib, Seaborn, Pandas) and contributed in writing the reports. Evaluated the results of the defense.

Wahid Al Azad Navid: Designed and implemented the spoofing attack simulation using ns-3. Developed the simulation logic, analyzed the simulation results and ensured accurate logging of client-server interactions including interpretation of graphs and tables for evaluating attack success. Designed and implemented the defense. Did Wireshark analysis and contributed in writing reports.