

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-22, 14-03-2018

Discussed topics.....

Werner's work: Coordination sphere, Coordination No, Primary

➤ EAN, EAN violation, Stability of complexes, Effect of chelation, Chelate formation, and isomerism

Discussed topics.....

$$[Ni(NH_3)_6]^{2+} + 3 NH_2CH_2CH_2NH_2 (en) \longrightarrow [Ni(en)_3]^{2+} + 6NH_3$$

 $[Ni(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Ni(NH_3)_6]^{2+} + 6H_2O$

- > en and NH₃ have similar N-donor environment
- > en is bidentate and chelating ligand
- \triangleright reaction proceeds towards right, ΔG negative
- $\triangleright \Delta G = \Delta H T\Delta S$ ($\Delta H ve, \Delta S + + ve$)
- > reaction proceeds due to entropy gain
- $\triangleright \Delta S$ ++ve is the major factor behind chelate effect

Re-visit VBT

The language of valence bonding:

The nature of bond types, Promotion, Hybridization, Resonance

Drawbacks of VBT

- ✓ This theory does not discuss energies of electrons.
- ✓ The assumptions about the electrons being localized to specific locations
- ✓ Cannot account for colour of complexes
- ✓ May predict magnetism wrongly
- ✓ Cannot account for spectrochemical series

Crystal Field Theory

- Model for bonding in transition metal complexes
- > Focuses on d-orbitals
- > Ligands are considered as *point negative charges*
- > Assumes ionic bonding: *electrostatic interactions*
- ➤ Electrostatic interactions: metal ions (+ve centre) attracted to ligands (-ve centre)

d-orbital expressions

$$\begin{array}{rcl} \Psi_{3d_{\pm 1}} &=& M{\rm r}^2 e^{-Zr/3a_0}{\rm sin}2\theta{\rm e}^{\pm{\rm i}\phi} \\ \Psi_{3d_{\pm 2}} &=& M{\rm r}^2 e^{-Zr/3a_0}{\rm sin}^2\theta{\rm e}^{\pm{\rm 2i}\phi} \\ \\ \Psi_{3d_{xz}} &=& M{\rm r}^2 e^{-Zr/3a_0}{\rm sin}2\theta{\rm cos}\phi \\ \\ \Psi_{3d_{yz}} &=& M{\rm r}^2 e^{-Zr/3a_0}{\rm sin}2\theta{\rm sin}\phi \\ \\ \Psi_{3d_{x^2-y^2}} &=& M{\rm r}^2 e^{-Zr/3a_0}{\rm sin}^2\theta{\rm cos}2\phi \\ \\ {\rm n=3, l=2} && \Psi_{3d_{xy}} &=& M{\rm r}^2 e^{-Zr/3a_0}{\rm sin}^2\theta{\rm sin}2\phi \end{array}$$

(not in syllabus)

Shapes of d-orbital

CFT: Accounts for observed properties of transition metal complexes focuses on d-orbitals

Octahedral Crystal Field

(-) Ligands attracted to (+) metal ion; provides stability

d orbital e⁻'s repulsed by (–) ligands; increases <u>d orbital potential energy</u>

ligands approach along x, y, z axes

Lobes are directed towards ligands

greater electrostatic repulsion = higher potential energy

Lobes are directed between the ligands

less electrostatic repulsion = lower potential energy

Octahedral crystal field

- ✓ e_g orbitals $(d_x^2-d_y^2, d_z^2)$ are <u>along Inter Nuclear Axes</u> (Metal-Ligand bond axes): more repulsion: high energy
- ✓ t_{2g} orbitals (d_{xy}, d_{yz}, d_{zx}) are <u>away</u> from Inter Nuclear Axis (Metal-Ligand bond axes): less repulsion : low energy
- ✓ We don't refer to isolated metal atom/ion any more; The weighted mean of these two levels is assumed to be zero; called Bari center.

 $\Delta_{\text{oct}} = \Delta_{\text{o}} = 10$ Dq (different notations for the splitting)

6 Dq =
$$0.6 \Delta_O$$
 and 4 Dq = $0.4 \Delta_O$

Estimation of Δ_{o}

 $\Delta_{\rm o}$ can be measured directly from electronic spectra for d¹ and d⁹ systems;

In other dⁿ cases we can obtain it from calculations using the spectral data.

Consider $[Ti(H_2O)_6]^{3+}$, Ti^{3+} : $3d^1$ therefore, $t_{2g} \rightarrow e_g$ transition

___ e,

Estimation of Δ_{o}

$$[Ti(H_2O)_6]^{3+}$$

$$\Delta_0 = 20,300/83.7 = 243 \text{ kJmol}^{-1}$$

Complex is <u>reddish violet in color</u>;

Yellow and green light are absorbed and hence the complementary color is seen.

The magnitude (value) of Δ_0 depends on

- 1. Nature/type of the ligand
- 2. Charge on the metal ion
- 3. Size of the metal ion; i.e., whether the metal ion belongs to I, II, or III row transition elements

Nature/type of the ligand

All other factors SAME while making comparisons. Consider Cr3+ (d3 system)

Color of Transition metal comp

Compounds/complexes that have color:

- absorb specific wavelengths of visible light (400 –700 nm)
- color observed = complementary color of color absorbed

Nature/type of the ligand

From the previous data of chromium complexes, we can write the $\Delta_{\rm o}$ value for

$$Cl^{-} < H_2O < NH_3 < CN^{-}$$

weak field

strong field

This experimentally determined series is known as <u>spectrochemical</u> series

 $\Delta_{\rm o}$ values range from 7000 cm⁻¹ to 30,000 cm⁻¹

Nature/type of the ligand

- The position of λ_{max} and hence Δ_{o} varies w.r.t. the chemical nature of the ligand
- Ligands which cause only a small degree of crystal field splitting (low Δ o value) are called <u>WEAK</u> ligands
- Ligands which cause large crystal field splitting (high Δ o value) are called <u>STRONG</u> ligands

Spectrochemical series

Smallest Δ (weak) I⁻ < Br⁻ < S²⁻ < SCN⁻ < Cl⁻ < NO₃⁻ < F⁻ < OH⁻ < EtOH (ethanol) < $C_2O_4^{2-}$ (oxalate) < H₂O < EDTA < NCS⁻ < CH₃CN < NH₃ < en < bipy < phen < NO₂⁻ < PPh₃ < CN⁻ < CO (strong) Largest Δ

- > There is no visible pattern
- No charge or size correlation
- \blacktriangleright Both the sigma and pi bonding nature along with electrostatic attractions determine the crystal field splitting $\Delta_{\rm o}$
- > A pattern of increasing sigma donation

Halide donors < O donors < N donors < C donors

Spectrochemical series

Within halide donors for Δ_0 : $I^- < Br^- < Cl^- < F^-$.

This can be explained in terms of electrostatic repulsions. F^- is of small size and hence more closer bonding and more repulsion (higher Δ_0)

Spectrochemical series

Consider PPh₃ < CN⁻ < CO

- Δ_o of CN⁻ is almost double that of I⁻; This can not be explained by simple CFT. Covalent bonding of σ and π types of bonding is to be included.
- Carbonyl, phosphines are <u>neutral ligands</u> and still produce the maximum splitting of d orbitals which implies electrostatic-point charge model is not sufficient.

 π (pi) back bonding from metal t_{2g} \rightarrow vacant ligand orbital

 PPh_3 , CN^- , CO are called π acceptors.

Electronic configuration in Oh com.

Expected orbital filling tendencies for e-'s:

- ✓ occupy a set of equal energy orbitals one at a time (Hund's rule), which minimizes repulsions
- √ occupy lowest energy vacant orbitals first

d orbital occupancy depends on Δ and pairing energy, P

- If $\Delta > P$ (Δ large; strong field ligand)
 - > e's pair up in lower energy d subshell first
- If $\Delta < P$ (Δ small; weak field ligand)
 - > e's spread out among all d orbitals before any pair up

d orbital occupancy

Nature of metal cation

(i) Different Charges on the cation of the same metal:

$$\Delta_{\rm o}$$
 for $[{\rm Fe}({\rm H_2O})_6]^{2+}=10,400~{\rm cm}^{-1}$

$$\Delta_0$$
 for $[Fe(H_2O)_6]^{3+}=13,700$ cm⁻¹

The metal cation with a higher oxidation state has a larger value of Δ_o than that with lower oxidation state.

(ii) Different charges on the cation of different metal: Two different cation with the same number of d- electrons but with different charge (metals within a same period):

$$\Delta_0$$
 for $[V(H_2O)_6]^{2+}=12,400$ cm⁻¹

$$\Delta_0$$
 for $[Cr(H_2O)_6]^{3+}=17,400$ cm⁻¹

Size of the metallic species

If all other factors are same, the period to which the metal belongs matters

<u>Complex</u>	$\Delta_{\underline{o}}$ (kJ/mol)	Config.
$[Co(NH_3)_6]^{3+}$	296	$3d^6$
$[Rh(NH_3)_6]^{3+}$	406	4d ⁶
[Ir(NH ₃) ₆] ³⁺	490	5d ⁶

- > Larger the d orbital size it is easier to split
- > 5d orbitals split larger than 4d orbitals and so on

Tetrahedral complex

Splitting in tetrahedral complex

Discussed topics.....

- ✓ shapes of d orbitals
- ✓ crystal field theory
- ✓ octahedral complexes
- ✓ spectrochemical series
- √ d-orbital splitting in tetrahedral complex

d orbital electrons (supporting slide)

d-orbital energy level diagrams:

- determine oxidation number of the metal
- determine number of d e⁻'s
- determine if ligand is weak field or strong field
- draw energy level diagram

Review (supporting slide)

Which of the following species will have highest crystal field splitting?

$$[FeI_6]^{3-}$$
, $[Os(CN)_6]^{3-}$, $[Ru(H_2O)_6]^{3+}$

Ans: $[Os(CN)_6]^{3-}$

Reason: Δ_o for Fe³⁺ < Ru³⁺ < Os³⁺ and

 Δ_o for I⁻ < H₂O < CN⁻

This has strong filed ligand as well as metal with 5d electrons