Homework 5: Ramsey's theorem and indiscernible sequences

Advanced Model Theory

Due March 31, 2022

Let \mathbb{M} be a monster model elementary extension of $(\mathbb{R}, +, \cdot, -, 0, 1, \leq)$. Let a_1, a_2, a_3, \ldots be a non-constant indiscernible sequence of singletons/elements in \mathbb{M} .

- 1. Show that a_1, a_2, \ldots is not totally indiscernible.
- 2. Show that $a_1a_2 > 0$. Hint: more generally, $a_ia_j > 0$. Think about what this means, concretely.
- 3. Suppose $a_2 a_1 \ge 1$. Show that $a_2 a_1 \ge 7$. Hint: (a_1, a_8) has the same type as (a_1, a_2) .
- 4. Show that at least one of the following is true: $a_2 < (1.01) \cdot a_1$ or $a_2 > 200 \cdot a_1$. Hint: proof by contradiction, compound interest.
- 5. Show that $a_i + a_j \neq a_k$ for any i, j, k (possibly equal). *Hint:* there are probably clever ways to prove this, but the most routine way to do this is to break into cases depending on the relative order of i, j, k.
- 6. Show that there is an indiscernible sequence b_1, b_2, b_3, \ldots such that $b_2 > 200 \cdot b_1$. Hint: extract an indiscernible sequence from a well-chosen sequence in \mathbb{R} .

For these problems, you don't need to explain that properties of \mathbb{R} extend to properties of \mathbb{M} because it's an elementary extension.