P342/P745 Computer Lab

End-Semester examination (special), 2021 NISER, Bhubaneswar

Full marks: 25 Time: 3 hours

Marks are given in bold along with the questions. Attempt all.

- 1. A spring is attached to a rigid wall at one end and a force of F=2.5 Newton is applied at the other. The spring constant increases with distance as $k(x)=\exp(x)$. For an arbitrary displacement x, the force acting on the system is $F(x)=F-x\exp(x)$. Find, using Newton-Raphson method, how far the spring can be stretched. [5]
- 2. Planck's spectral distribution of emissive power is given by

$$\epsilon_{\lambda} d\lambda = \frac{C_1}{\lambda^5} \frac{1}{e^{C_2/\lambda T} - 1} d\lambda$$

where $C_1 = 1.2 \times 10^{-16}$ and $C_2 = 1.4 \times 10^{-2}$ in S.I. unit. Use Simpson integration technique for N = 10 to determine total power emitted by sun at 6000 K within the visual range 400 - 700 nm. [6]

3. A certain 0.5 kg object is falling vertically freely through a given fluid. The table below is the data generated from this fall

net force f
(N)
4.5
4.4
4.2
4.1
3.8
3.6
3.0
2.6
2.3
2.0
1.1
0.8
0.5
0.2

Use least-square method to fit the above data with the functions (i) f = av + b and (ii) $f = av^b$. Determine a, b and the quality of fit for both the functions by calculating the *Pearson's* r,

$$r^2 = \frac{S_{xy}^2}{S_{xx} S_{yy}}$$

[8]

where the symbols have their usual meaning.

4. Equation for heat conduction in a thin, un-insulated rod of length L = 10 m is

$$\frac{d^2T}{dx^2} + \alpha(T_a - T) = 0$$

where the heat transfer coefficient $\alpha = 0.01 \,\mathrm{m}^{-2}$ parametrizes heat dissipated to the surrounding air and $T_a = 20^{\circ}\mathrm{C}$ is the ambient temperature. If $T(x=0) = 40^{\circ}\mathrm{C}$ and $T(x=L) = 200^{\circ}\mathrm{C}$, solve the boundary value problem using *Shooting Method* with RK4 integrator and determine at what x the temperature $T = 100^{\circ}\mathrm{C}$. [6]