Graded Assignment #1

1 [2 points each] Which of the following are binary operations on the given sets? If it is not an operation, explain why.

(a). $S = \mathbb{R}^+$ with $a * b = a \ln b$

A binary operation must be uniquely defined and closed.

Proof. Consider a=1 and $b=\frac{1}{e}$. Both a and $b\in\mathbb{R}^+$, but

$$a * b = a \ln b = 1 \ln \frac{1}{e} = 1 \cdot -1 = -1 \notin \mathbb{R}^+.$$

Thus S is not closed under *, and * cannot be a binary operation.

(b). $S = \mathbb{R}$ where a * b is the root of the equation $x^2 - a^2b^2 = 0$

A binary operation must be uniquely defined and closed.

Proof. Consider a = 2 and b = 1.

$$a * b = x^2 - a^2b^2 = 0$$
$$x^2 - 2^21^2 = 0$$

$$x^2 - 2^2 1^2 = x^2 - 4 = 0$$

$$(x-2)(x+2) = 0$$

$$r - \pm 2$$

Since there are two solutions, S is not uniquely defined under *, and * cannot be a binary operation. \square

2 [2 points each] Consider the binary operation * defined on \mathbb{R}^+ by $a*b=\frac{ab}{a+b+1}$

(a). Is * commutative? Explain.

* is commutative.

Proof. Consider a * b and b * a for $a, b \in \mathbb{R}^+$:

$$a*b = \frac{ab}{a+b+1} = \frac{ba}{b+a+1} = b*a$$

Since a * b = b * a for all $a, b \in \mathbb{R}^+$, * is commutative.

(b). Is * associative? Explain.

* is associative.

Proof. Consider $a, b, c \in \mathbb{R}^+$:

$$(a*b)*c = \frac{ab}{a+b+1}*c = \frac{\frac{ab}{a+b+1}c}{\frac{ab}{a+b+1}+c+1} = \frac{abc}{(a+b+1)(\frac{ab}{a+b+1}+c+1)}$$
$$= \frac{abc}{ab+ac+bc+a+b+c+1}$$

$$a*(b*c) = a*\frac{bc}{b+c+1} = \frac{a\frac{bc}{b+c+1}}{a+\frac{bc}{b+c+1}+1} = \frac{abc}{(b+c+1)(a+\frac{bc}{b+c+1}+1)}$$
$$= \frac{abc}{ab+ac+bc+a+b+c+1}$$

Thus (a * b) * c = a * (b * c), and * is associative.

3 [3 points] Let E denote the set of all even integers. Prove that $\langle \mathbb{Z}, + \rangle \simeq \langle E, + \rangle$.

Proof. An isomorphism must be one-to-one, onto, and operation preserving. Consider $\phi : \mathbb{Z} \to E$ such that $\phi(n) = 2n$.

1. One-to-one: Assume $\phi(n_1) = \phi(n_2)$ for $n_1, n_2 \in \mathbb{Z}$.

$$\phi(n_1) = \phi(n_2)$$
$$2n_1 = 2n_2$$
$$n_1 = n_2$$

Thus ϕ is one-to-one.

2. Onto: Let $m \in E$ Let us find $n \in \mathbb{Z}$ such that $m = \phi(n)$. Since m is an even integer, it can be represented as m = 2k, where $k \in \mathbb{Z}$.

$$m = \phi(n)$$
$$2k = 2n$$
$$k = n$$

Choose n = k. Thus ϕ is onto.

3. Operation Preserving: Need to show that $\phi(n+m) = \phi(n) + \phi(m)$

$$\phi(n+m) = 2(n+m)$$

$$= 2n + 2m$$

$$= \phi(n) + \phi(m)$$

Thus ϕ is operation preserving.

Since ϕ is one-to-one, onto, and operation preserving, thus ϕ is an isomorphism of $\langle \mathbb{Z}, + \rangle$ and $\langle \mathbb{Z}, + \rangle \simeq \langle E, + \rangle$.

4 [3 points each] Prove that isomorphism is an equivalence relation among binary structures. To do this, you need to prove the following three properties:

(a).	Reflexive: Every binary structure is isomorphic to itself. Hint: let $\langle S, * \rangle$ be a binary structure and define $\phi: S \to S$ by $\phi(x) = x$. Prove that ϕ is an isomorphism.
	answer
(b).	Symmetric: For binary structures $\langle S_1, * \rangle$ and $\langle S_2, * \rangle$, if $S_1 \simeq S_2$ then $S_2 \simeq S_1$. Hint: assume $\phi: S_1 \to S_2$ is an isomorphism and prove that $\phi^{-1}: S_2 \to S_1$ is also an isomorphism.
	answer
(c).	Transtiive: For binary structures $\langle S_1, * \rangle$, $\langle S_2, *' \rangle$, and $\langle S_3, *'' \rangle$, if $S_1 \simeq S_2$ and $S_2 \simeq S_3$ then $S_1 \simeq S_3$. Hind: assume $\phi_1: S_1 \to S_2$ and $\phi_2: S_2 \to S_3$ are isomorphisms and prove that $\phi_2 \circ \phi_1: S_1 \to S_3$ is also an isomorphism.
	answer