COLLEGE OF APPLIED BUSINESS AND TECHNOLOGY Chabahil, Gangahity, Kathmandu

Network Security PRACTICAL EXAM-2081

Submitted by:

Name: AZ Kafle (106)

College of Applied Business and Technology

B.Sc.CSIT 7th Semester

Submitted to:

Indra Chaudhary

Table of Contents

TA	SK		1
P	repa	aring Lab Environment:	1
	a)	Installing VMware Workstation	1
	b)	Creating Virtual Machine of AlmaLinux9	3
	c)	Assign the hostname of Linux machine as <yourname>.ns.local</yourname>	9
	d)	Configure your network interface with static ip address and start the network service	9
	e)	Map your static ip address to your hosts name in configuration file /etc/hosts	10
TA	SK	2	11
U	sers	s, Groups, Permission:	11
	a)	Create a user named student.	11
	b) d→	Login from student user then create files and folders according to following tree structure. [who directory and $f \rightarrow file$]	
	c)	Change the permission of the file fI so that the owner will get full permission, group member w	vill get
	read	d and execute permission and others will get read-only permissions.	12
	d)	Change permission of the file $f2$ such that the owner's and group members will get read and wr	
	perr	mission but others will get no permission	12
TA	SK	3	13
U	ser	and Group Administration:	13
	Tas	k below are based on following structure	13
	a)	Create group for each department (production, marketing, sales).	13
	b) assi	Create user account (user1, user2, user3, user4, user5, user6, manager, boss) for each employe gning them respective group.	
	c)	Create common directory (production, marketing and sales) for each department	13
	d)	Change ownership of group directories such that boss will become the owner and the respective	e
	grou	ups will be group owner	14
	e)	Change the permission of the group directories such that only the owner and group member wil	l get
	full	permission and other will not get any permission.	14
	f)	Set SGID and sticky bits on the departmental directories.	14

g)	Assign special permission (ACL) to anonymous called david such that it can see what's inside the
con	nmon directory for sales group i.e., /root/sales
TASK	
Firev	vall Configuration in Linux:15
a)	Install firewalld package as well as start and enable firewall services
b) = 2	Add the following services and ports to allow packets through the firewall. [Service = http, smtp port 5 /tcp, 25/udp, 110/tcp]
c) = 2	Remove the following services and ports to block packets through the firewall. [Service = smtp port 5 /tcp, 25/udp]
TASK	517
Conf	iguring SSH Server to allow/deny root login and allow/deny users login: 17
a)	Install required package for OpenSSH server
b)	Allow ssh packets to enter through the firewall
c)	Start and enable ssh service
d)	Configure OpenSSH server to deny direct root login
e)	Configure OpenSSH Server to block login from users i.e., ram, sita.
TASK	
Conf	iguring SSH Server to allow/deny SSH login from selected hosts only: 19
a)	Configure OpenSSH server to deny all hosts except the host (i.e., 192.168.10.10)
TASK	720
Conf	iguring SSH Server for direct SSH login by generating and publishing private
and]	oublic key:
a)	Generate SSH key pair (public and private) in local host
b)	Send a copy of the public key to the ssh server in which you want to direct login
TASK	821
Secu	re Network Copy using "SCP":21
a)	Copy remote file into the local system (consider your own example)
b)	Copy local files to the remote host (consider your won example)

Secu	rity Enhanced Linux (SE Linux):2
a)	Check the current status of SE Linux.
b)	Configure the server to enable (enforcing) SE Linux.
c)	Configure SELinux for a custom HTTP port 8090 and custom SSH port 4455
d)	Change SELinux context of /mystite1 to httpd_sys_content_t using semanage and chcon respectively
e)	Change the SELinux context of /mysite2 using reference context of /var/www/html
SK	10
1011	110
	figuring SSL-Enabled Apache (HTTPS) Server (self-signed):
Conf	figuring SSL-Enabled Apache (HTTPS) Server (self-signed):
C on f a)	figuring SSL-Enabled Apache (HTTPS) Server (self-signed):
a) b)	Figuring SSL-Enabled Apache (HTTPS) Server (self-signed):
a) b) c) d)	Install required package for HTTPS server (httpd, mod_ssl). Also, start and enable web service2 Allow https (port 443) packets to enter through the firewall

Preparing Lab Environment:

a) Installing VMware Workstation

To install VMware Workstation follow the following steps:

<u>Step1</u>: Go to <u>Download VMware Workstation Pro</u> and download Workstation Pro for Windows or Linux according to the OS you have.

Step2: Run the installer as "VMware-workstation-full-16.1.0-17198959.exe".

Step3: Follow the steps:

b) Creating Virtual Machine of AlmaLinux9

To create the CentOS & virtual machine follow the following steps:

Step1: Open VMware Workstation, and select Create a new a Virtual Machine.

Step2: Choose Typical (recommended) then Next.

Step3: Choose I will install the Operating System later then Next.

Step4: Choose Linux operating system and AlmaLinux 64-bit as version and Next.

Step5: Add name for virtual machine and choose location for VM.

Step6: Specify Processor Configuration and Disk Capacity

Step7: Customize hardware as per need and finish

Step8: Download AlmaLinux9 iso file.

Step9: Go to Edit virtual machine setting

<u>Step10</u>: Go to CD/DVD ide, check **connect at power on**, and choose **use iso image file** and OK.

Step11: Now click power on this virtual machine.

Step12: Select Install CentOS 7 and press Enter.

Step13: Select Language you like to use and press continue.

<u>Step14</u>:. Configure options Date and time, Language, Keyboard, Network and Hostname.

<u>Step15</u>: Choose the software **Software Selection > Server with GUI > Done**.

Step16: Choose Installation Destination as default and then Done.

Step17: Select Begin Installation.

Step18: Set password for root and create a user and wait for installation.

<u>Step19</u>: After completion of installation **Reboot**.

<u>Step20</u>: After reboot **Accept License agreement > Done**.

After following all the steps mentioned above our Virtual Machine of AlmaLinux 9 is created successfully.

c) Assign the hostname of Linux machine as <yourname>.ns.local

```
[root@kafleaz /]# hostnamectl set-hostname kafleaz.ns.local
[root@kafleaz /]# hostnamectl
Static hostname: kafleaz.ns.local
Icon name: computer-desktop
Chassis: desktop 
Machine ID: 913d2b2c82ec48cd8fce6eaa198f5cd9
Boot ID: f475ff3a686148fb85976fd2c3ee4c98
Operating System: AlmaLinux 9.5 (Teal Serval)
CPE OS Name: cpe:/o:almalinux:almalinux:9::baseos
Kernel: Linux 5.14.0-427.13.1.el9_4.x86_64
Architecture: x86-64
Firmware Version: A10
[root@kafleaz /]# |
```

d) Configure your network interface with static ip address and start the network service.

```
[root@localhost ~]# nmcli conn show

NAME UUID TYPE DEVICE
enp3s0 98bcb92f-001e-48a2-86f9-a88f097d27c5 ethernet enp3s0
lo 0f92afcc-b63b-4ba5-a724-a0a058d0a6d1 loopback lo
enp2s0 5ef42321-5344-40f6-a6f3-a49785b370bc ethernet --
[root@localhost ~]# nmcli connection mod enp3s0 ipv4.addresses 192.168.0.105/
4 ipv4.gateway 192.168.0.1 ipv4.dns "8.8.8.8" ipv4.method manual
[root@localhost ~]# nmcli connection up enp3s0
```

e) Map your static ip address to your hosts name in configuration file /etc/hosts

```
[root@kafleaz /]# vi /etc/hosts
[root@kafleaz /]# |
```

```
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4::1 localhost localhost.localdomain localhost6 localhost6.localdomain6 192.168.0.105 kafleaz.ns.local
```

Users, Groups, Permission:

a) Create a user named student.

```
[root@kafleaz /]# useradd student
[root@kafleaz /]# passwd student
Changing password for user student.
New password:
BAD PASSWORD: The password is shorter than 8 characters
Retype new password:
passwd: all authentication tokens updated successfully.
[root@kafleaz /]# |
```

b) Login from student user then create files and folders according to following tree structure. [where, $d \rightarrow$ directory and $f \rightarrow$ file]


```
[student@kafleaz ~]$ mkdir d1
[student@kafleaz ~]$ mkdir d1/{d2,d3,d4}
[student@kafleaz ~]$ touch d1/f1
[student@kafleaz ~]$ mkdir d1/d2/{d5,d6}
[student@kafleaz ~]$ touch d1/d2/d5/f2
[student@kafleaz ~]$ touch d1/d2/d5/f3
[student@kafleaz ~]$ touch d1/d2/d6/f4
[student@kafleaz ~]$ touch d1/d2/d6/f5
[student@kafleaz ~]$ mkdir d1/d3/d8
[student@kafleaz ~]$ mkdir d1/d4/d7
[student@kafleaz ~]$ touch d1/d4/d7
```

c) Change the permission of the file f1 so that the owner will get full permission, group member will get read and execute permission and others will get read-only permissions.

```
[student@kafleaz ~]$ chmod 754 d1/f1
[student@kafleaz ~]$ ls -l d1/f1
-rwxr-xr--. 1 student student 0 Jan 19 11:42 d1/f1
[student@kafleaz ~]$
```

d) Change permission of the file f2 such that the owner's and group members will get read and write permission but others will get no permission.

```
[student@kafleaz ~]$ chmod 660 d1/d2/d5/f2
[student@kafleaz ~]$ ls -l d1/d2/d5/f2
-rw-rw----. 1 student student 0 Jan 19 11:43 d1/d2/d5/f2
[student@kafleaz ~]$
```

e) Change permission of directory d3 such that all categories of users will get full permissions.

```
[student@kafleaz ~]$ chmod 777 d1/d3
[student@kafleaz ~]$ ls -l d1
total 0
drwxr-xr-x. 4 student student 26 Jan 19 11:42 d2
drwxrwxrwx. 3 student student 16 Jan 19 11:44 d2
drwxr-xr-x. 3 student student 16 Jan 19 11:44 d4
-rwxr-xr--. 1 student student 0 Jan 19 11:42 f1
[student@kafleaz ~]$
```

User and Group Administration:

Task below are based on following structure.

a) Create group for each department (production, marketing, sales).

```
[root@kafleaz ~]# groupadd production
[root@kafleaz ~]# groupadd marketing
[root@kafleaz ~]# groupadd sales
[root@kafleaz ~]# |
```

b) Create user account (user1, user2, user3, user4, user5, user6, manager, boss) for each employee assigning them respective group.

```
[root@kafleaz ~]# useradd -G production user1
[root@kafleaz ~]# useradd -G production user2
[root@kafleaz ~]# useradd -G marketing user3
[root@kafleaz ~]# useradd -G marketing user4
[root@kafleaz ~]# useradd -G sales user5
[root@kafleaz ~]# useradd -G sales user6
[root@kafleaz ~]# useradd -G production,marketing,sales manager
[root@kafleaz ~]# useradd boss
[root@kafleaz ~]# |
```

c) Create common directory (production, marketing and sales) for each department.

```
[root@kafleaz ~]# pwd
/root
[root@kafleaz ~]# mkdir {production,marketing,sales}
```

d) Change ownership of group directories such that boss will become the owner and the respective groups will be group owner.

```
[root@kafleaz ~]# chown boss:production production/
[root@kafleaz ~]# chown boss:marketing marketing/
[root@kafleaz ~]# chown boss:sales sales/
[root@kafleaz ~]# |
```

e) Change the permission of the group directories such that only the owner and group member will get full permission and other will not get any permission.

```
[root@kafleaz ~]# chmod 770 production marketing sales
[root@kafleaz ~]# |
```

f) Set SGID and sticky bits on the departmental directories.

```
[root@kafleaz ~]# chmod g+s,+t production
[root@kafleaz ~]# chmod g+s,+t marketing
[root@kafleaz ~]# chmod g+s,+t sales
[root@kafleaz ~]#
```

g) Assign special permission (ACL) to anonymous called david such that it can see what's inside the common directory for sales group i.e., /root/sales..

```
[root@kafleaz ~]# useradd -m david
[root@kafleaz ~]# setfacl -m david:rx /root/sales
[root@kafleaz ~]#
```

Firewall Configuration in Linux:

a) Install firewalld package as well as start and enable firewall services.

```
[root@kafleaz ~]# yum -y install firewalld
Last metadata expiration check: 2:50:10 ago on Wed 22 Jan 2025 07:30:56 AM EST.
Package firewalld-1.3.4-7.el9.noarch is already installed.
Dependencies resolved.
Nothing to do.
Complete!
[root@kafleaz ~]# systemctl enable firewalld
[root@kafleaz ~]# systemctl start firewalld
[root@kafleaz ~]# systemctl status firewalld

    firewalld.service - firewalld - dynamic firewall daemon

     Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled; preset
     Active: active (running) since Sat 2025-01-18 08:36:42 EST; 4 days ago
       Docs: man:firewalld(1)
   Main PID: 94503 (firewalld)
      Tasks: 2 (limit: 99751)
     Memory: 26.5M
        CPU: 558ms
     CGroup: /system.slice/firewalld.service
               └94503 /usr/bin/python3 -s /usr/sbin/firewalld --nofork --nopid
Jan 18 08:36:41 localhost.localdomain systemd[1]: Starting firewalld - dynamic >
Jan 18 08:36:42 localhost.localdomain systemd[1]: Started firewalld - dynamic f>
lines 1-13/13 (END)
```

b) Add the following services and ports to allow packets through the firewall. [Service = http, smtp port = 25 /tcp, 25/udp, 110/tcp].

```
[root@kafleaz ~]# firewall-cmd --permanent --add-service=http
[root@kafleaz ~]# firewall-cmd --permanent --add-port=25/tcp
[root@kafleaz ~]# firewall-cmd --permanent --add-port=25/udp
[root@kafleaz ~]# firewall-cmd --permanent --add-port=110/tcp
[root@kafleaz ~]# firewall-cmd --reload
success
[root@kafleaz ~]# firewall-cmd --list-all
public (active)
  target: default
  icmp-block-inversion: no
 interfaces: enp3s0
 services: cockpit dhcpv6-client http ssh
 ports: 25/tcp 25/udp 110/tcp
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
  icmp-blocks:
  rich rules:
[root@kafleaz ~]#
```

c) Remove the following services and ports to block packets through the firewall. [Service = smtp port = 25 /tcp, 25/udp].

```
[root@kafleaz ~]# firewall-cmd --remove-service=http --permanent
success
[root@kafleaz ~]# firewall-cmd --remove-port=25/tcp --permanent
[root@kafleaz ~]# firewall-cmd --remove-port=25/udp --permanent
[root@kafleaz ~]# firewall-cmd --reload
success
[root@kafleaz ~]# firewall-cmd --list-all
public (active)
  target: default
  icmp-block-inversion: no
  interfaces: enp3s0
 sources:
 services: cockpit dhcpv6-client ssh
 ports: 110/tcp
 protocols:
  forward: yes
 masquerade: no
  forward-ports:
  source-ports:
  icmp-blocks:
  rich rules:
[root@kafleaz ~]#
```

Configuring SSH Server to allow/deny root login and allow/deny users login:

a) Install required package for OpenSSH server.

```
[root@kafleaz ~]# yum -y install openssh-server
Last metadata expiration check: 1:01:37 ago on Wed 22 Jan 2025 11:12:56 AM EST.
Package openssh-server-8.7p1-43.el9.x86_64 is already installed.
Dependencies resolved.
Nothing to do.
Complete!
```

b) Allow ssh packets to enter through the firewall.

```
[root@kafleaz ~]# firewall-cmd --add-service=ssh --permanent
Warning: ALREADY_ENABLED: ssh
success
[root@kafleaz ~]# firewall-cmd --reload
success
```

c) Start and enable ssh service.

```
[root@kafleaz ~]# systemctl start sshd
[root@kafleaz ~]# systemctl enable sshd
[root@kafleaz ~]# systemctl status sshd

• sshd.service - OpenSSH server daemon
    Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled; preset: enabled: preset: enab
```

d) Configure OpenSSH server to deny direct root login.

```
[root@kafleaz ssh]# grep Root sshd_config
PermitRootLogin prohibit-password
PermitRootLogin no
PermitRootLogin no
# the setting of "PermitRootLogin without-password".
[root@kafleaz ssh]#
```

```
kafleaz@Kafle MINGW64 ~

$ ssh root@192.168.0.105

root@192.168.0.105's password:

Permission denied, please try again.

root@192.168.0.105's password:
```

e) Configure OpenSSH Server to block login from users i.e., ram, sita.

To deny logins from specific user into the server, we can modify the 'sshd config' file to add a block of 'DenyUsers' as follows:

```
[root@kafleaz ssh]# grep DenyUsers sshd_config
#DenyUsers Block
DenyUsers ram sita
[root@kafleaz ssh]# |
```

```
kafleaz@Kafle MINGW64 ~

$ ssh ram@192.168.0.105

ram@192.168.0.105's password:

Permission denied, please try again.

ram@192.168.0.105's password:

Permission denied, please try again.

ram@192.168.0.105's password:

ram@192.168.0.105: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,pas

sword).
```

```
kafleaz@Kafle MINGW64 ~
$ ssh sita@192.168.0.105
sita@192.168.0.105's password:
Permission denied, please try again.
sita@192.168.0.105's password:
Permission denied, please try again.
sita@192.168.0.105's password:
sita@192.168.0.105's password:
sita@192.168.0.105's Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
```

Configuring SSH Server to allow/deny SSH login from selected hosts only:

a) Configure OpenSSH server to deny all hosts except the host (i.e., 192.168.10.10).

First, we updated the sshd_config file by adding the following entry at the bottom of the file as:

```
[root@kafleaz ssh]# vi sshd_config
[root@kafleaz ssh]# systemctl restart sshd
[root@kafleaz ssh]# cat sshd_config | grep AllowUsers
AllowUsers *@127.0.0.1
[root@kafleaz ssh]# |
```

Then, we try to ssh into the machine from the host device itself as:

```
kafleaz@Kafle MINGW64 ~
$ ssh root@192.168.0.105
root@192.168.0.105's password:
Permission denied, please try again.
root@192.168.0.105's password:
Permission denied, please try again.
root@192.168.0.105's password:
root@192.168.0.105's password:
root@192.168.0.105's password:
root@192.168.0.105: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
```

And then, we tried from inside the virtual machine itself:

```
[root@kafleaz ~]# ssh root@127.0.0.1
root@127.0.0.1's password:
Activate the web console with: systemctl enable --now cockpit.socket

Last failed login: Sun Jan 26 04:46:31 EST 2025 from 192.168.20.2 on ssh:notty
There were 4 failed login attempts since the last successful login.
Last login: Sun Jan 26 04:41:05 2025
[root@kafleaz ~]#
```

Configuring SSH Server for direct SSH login by generating and publishing private and public key:

a) Generate SSH key pair (public and private) in local host.

```
kafleaz@Kafle MINGW64 ~/.ssh
$ ssh-keygen
Generating public/private ed25519 key pair.
Enter file in which to save the key (/c/Users/user/.ssh/id_ed25519): /c/Users/us
er/.ssh/alma9
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /c/Users/user/.ssh/alma9
Your public key has been saved in /c/Users/user/.ssh/alma9.pub
The key fingerprint is:
SHA256:H1Cj4wtobzixW9/wqq76ggsJMsmC6qPg7w7QkaBb7vg kafleaz@Kafle
The key's randomart image is:
+--[ED25519 256]--+
          0
          ο.
| . . .
o* . . . o
|X.0 + . S.
*= . = . 0 .
*0. + + 0 .
*oo = . +
|++EB+00.0.0
+----[SHA256]----+
kafleaz@Kafle MINGW64 ~/.ssh
$ ls | grep alma
alma9
alma9.pub
```

b) Send a copy of the public key to the ssh server in which you want to direct login.

```
kafleaz@Kafle MINGW64 ~
$ ssh-copy-id -i .ssh/alma9.pub root@192.168.0.105
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: ".ssh/alma9.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter
out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompt
ed now it is to install the new keys
root@192.168.0.105's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'root@192.168.0.105'"
and check to make sure that only the key(s) you wanted were added.
```

Secure Network Copy using "SCP":

a) Copy remote file into the local system (consider your own example).

A file named "scp" is created in remote server.

```
[root@kafleaz ~]# mkdir -p CAB/NS/lab8
[root@kafleaz ~]# touch CAB/NS/lab8/scp
[root@kafleaz ~]#
```

The remote file is copied into my local system using SCP

```
kafleaz@Kafle MINGW64 /D/CAB/NS

$ scp root@192.168.0.105:/root/CAB/NS/lab8/scp .

root@192.168.0.105's password:

kafleaz@Kafle MINGW64 /D/CAB/NS

$ ls

scp
```

b) Copy local files to the remote host (consider your won example).

File named "Localhost" is copied to the remote host.

```
kafleaz@Kafle MINGW64 /D/CAB/NS

$ scp localhost root@192.168.0.105:/root/CAB/NS/lab8/

root@192.168.0.105's password:

localhost 100% 0 0.0KB/s 00:00
```

```
[root@kafleaz ~]# cd CAB/NS/lab8/
[root@kafleaz lab8]# ls
localhost scp
[root@kafleaz lab8]#|
```

Security Enhanced Linux (SE Linux):

a) Check the current status of SE Linux.

To check the status of SE Linux use can use **getenforce** or **sestatus**

```
[root@kafleaz ~]# getenforce
Enforcing
[root@kafleaz ~]# sestatus
SELinux status:
                                   enabled
SELinuxfs mount:
                                   /sys/fs/selinux
                                   /etc/selinux
SELinux root directory:
Loaded policy name:
                                   targeted
                                   enforcing
Current mode:
Mode from config file:
                                   enforcing
Policy MLS status:
                                   enabled
Policy deny_unknown status:
                                  allowed
Policy deny_unknown status:
Memory protection checking:
                                   actual (secure)
Max kernel policy version:
                                   33
|[root@kafleaz ~]#
```

b) Configure the server to enable (enforcing) SE Linux.

We can enable (enforcing) SE Linux by setting **SELINUX=enforcing** in file /etc/sysconfig/selinux.

```
[root@kafleaz ~]# cat /etc/sysconfig/selinux | grep SELINUX
# SELINUX= can take one of these three values:
# NOTE: Up to RHEL 8 release included, SELINUX=disabled would also
SELINUX=enforcing
# SELINUXTYPE= can take one of these three values:
SELINUXTYPE=targeted
[root@kafleaz ~]#
```

c) Configure SELinux for a custom HTTP port 8090 and custom SSH port 4455.

Adding a custom port 8090 for HTTP into SE Linux.

```
[root@kafleaz ~]# semanage port -a -t http_port_t -p tcp 8090
[root@kafleaz ~]# semanage port -l | grep 8090
http_port_t tcp 8090, 80, 81, 443, 488, 8008, 8009, 8443
, 9000
[root@kafleaz ~]#
```

Adding a custom port 4455 for custom SSH into SE Linux.

```
[root@kafleaz ~]# semanage port -a -t ssh_port_t -p tcp 4455

Port tcp/4455 already defined, modifying instead

[root@kafleaz ~]# semanage port -l | grep ssh_port_t

ssh_port_t tcp 4455, 22

[root@kafleaz ~]# |
```

d) Change SELinux context of /mystite1 to httpd_sys_content_t using semanage and chcon respectively.

The semanage and choon commands can be used to modify the SELinux context of files or directories. In this lab, a folder named mysite is created at the root directory (/), and a sample **index.html** file is added to it.

Next, the SELinux context **httpd_sys_content_t** is assigned to the directory, which is the default context for **/var/www/html**, the root directory of the Apache web server. Initially, the directory and its contents are as follows:

```
[root@kafleaz /]# cd mysite/
[root@kafleaz mysite]# ls -ldZ
drwxr-xr-x. 2 root root unconfined_u:object_r:default_t:s0 24 Jan 25 22:00 .
```

First, the command **semanage fcontext -a -t httpd_sys_content_t**"/mysite(/.*)?" is used to assign the httpd_sys_content_t context to the
/mysite folder and all its contents. Then, the restorecon -Rv /mysite
command is executed to apply the new context to the directory and its files.

```
[root@kafleaz mysite]# semanage fcontext -a -t httpd_sys_content_t "/mysite(/.*)
?"
[root@kafleaz mysite]# restorecon -Rv /mysite
Relabeled /mysite from unconfined_u:object_r:default_t:s0 to unconfined_u:object_r:httpd_sys_content_t:s0
Relabeled /mysite/index.html from unconfined_u:object_r:default_t:s0 to unconfined_u:object_r:httpd_sys_content_t:s0
```

We can again test this by running the command 'ls -ldZ' to check the SE Linux context as:

```
[root@kafleaz mysite]# ls -ldZ /mysite/
drwxr-xr-x. 2 root root unconfined_u:object_r:httpd_sys_content_t:s0 24 Jan 25 2
2:00 /mysite/
[root@kafleaz mysite]#
```

e) Change the SELinux context of /mysite2 using reference context of /var/www/html.

```
[root@kafleaz mysite11]# pwd
/mysite11
[root@kafleaz mysite11]# ls -ldZ
drwxr-xr-x. 2 root root unconfined_u:object_r:var_t:s0 6 Jan 25 23:25 .
[root@kafleaz mysite11]# sudo chcon --reference=/var/www/html -R /mysite11
[root@kafleaz mysite11]# ls -ldZ
drwxr-xr-x. 2 root root system_u:object_r:httpd_sys_content_t:s0 6 Jan 25 23:25
[root@kafleaz mysite11]# |
```

Configuring SSL-Enabled Apache (HTTPS) Server (self-signed):

a) Install required package for HTTPS server (httpd, mod_ssl). Also, start and enable web service..

b) Allow https (port 443) packets to enter through the firewall.

```
[root@kafleaz ~]# firewall-cmd --add-port=443/tcp --permanent
success
[root@kafleaz ~]# firewall-cmd --add-service=http --permanent
success
[root@kafleaz ~]# firewall-cmd --reload
success
[root@kafleaz ~]# firewall-cmd --reload
```

c) Generate self-signed key and cert files using openssl.

```
[root@kafleaz ~]# openssl req -newkey rsa:2048 -nodes -keyout /etc/pki/tls/priva
te/demo.localhost.com.key -x509 -days 365 -out /etc/pki/tls/certs/demo.localhost
.com.crt
...+....+...+...+...+...+...+...+...+...+...+...+...+..+..+..+...+..+..+..
 ...+...+...+...+....+.....+.....+.....
 ....+..+..+..+..+..+..+..+..+..+..+..
    .+....+....+....+....+....+....+...+...+...+...+...+...+...
   .....+.....+..+..+...+...+...+...+...+...+...+...+...
      +..+.+.....+.+....+.+...+...+...+...
   +..+...+...+...+...+...+...+...+...+...+...+...+...
 +...+....+...+..+..+..+..+..+..+..+..
 .+....+...+...+...+...+...
++++++*
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank.
Country Name (2 letter code) [XX]:
State or Province Name (full name) []:
Locality Name (eg, city) [Default City]:
Organization Name (eg, company) [Default Company Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:
Email Address []:
[Iroot@kafleaz ~1#
[root@kafleaz ~]#
```

d) Configure web server to listen from port 443 and set DocumentRoot to "/cab/ns/mystie", locate the required key and cert files. Include the necessary SELinux configuration.

```
[root@kafleaz conf.d]# cd /cab/ns/mysite/
[root@kafleaz mysite]# vi index.html
[root@kafleaz mysite]# sudo semanage fcontext -a -t httpd_sys_content_t "/cab/ns/mysite(/.*)?"
[root@kafleaz mysite]# restorecon -Rv /cab/ns/mysite
Relabeled /cab/ns/mysite from unconfined_u:object_r:default_t:s0 to unconfined_u:object_r:httpd_sys_content_t:s0
Relabeled /cab/ns/mysite/index.html from unconfined_u:object_r:default_t:s0 to unconfined_u:object_r:httpd_sys_content_t:s0
[root@kafleaz mysite]# ls -ldZ /cab/ns/mysite
drwxr-xr-x. 2 root root unconfined_u:object_r:httpd_sys_content_t:s0 24 Jan 26 0
4:59 /cab/ns/mysite
[root@kafleaz mysite]#
```

e) Host a web page called index.html on web server named .ns.local.

Hello Az, From /cab/ns/mysite

Certificate can be further inspect as:

Certificate

	Default Company Ltd
Subject Name	
Country	XX
Locality	Default City
Organization	Default Company Ltd
Issuer Name	
Country	XX
Locality	Default City
Organization	Default Company Ltd
Validity	
Not Before	Sun, 26 Jan 2025 04:44:29 GMT
Not After	Mon, 26 Jan 2026 04:44:29 GMT
Public Key Info	
Algorithm	RSA
Key Size	2048
Exponent	65537
Modulus	CE:53:BB:C6:58:D4:91:1C:0A:14:7F:66:3E:A7:01:0F:9D:58:87:4B:21:53:24:0A:
Miscellaneous	
Serial Number	2B:24:AD:31:C3:42:9B:DC:68:E6:59:70:CD:E5:8F:93:EF:89:2A:12
Signature Algorithm	SHA-256 with RSA Encryption
Version	3
Download	
Fingerprints	
SHA-256	37:30:19:DD:1C:77:FE:A9:F6:E8:6A:BF:2F:E7:87:28:2B:CC:8E:11:D4:53:01:89:
SHA-1	BC:BB:44:73:27:B7:D2:3F:D1:4C:FA:6B:A3:9C:4E:15:E5:42:2E:19
Basic Constraints	
Certificate Authority	Yes
Caldad Kar 15	
Subject Key ID	
Key ID	02:C8:EF:67:BD:16:FC:3A:7F:9D:46:8E:5D:11:16:75:6C:75:7A:A1
Authority Key ID	
	00.00.FE.07.DD.40.F0.0A.7E.0D.40.0E.FD.44.40.7E.00.7E.7A.44
Key ID	02:C8:EF:67:BD:16:FC:3A:7F:9D:46:8E:5D:11:16:75:6C:75:7A:A1