Agricultural Classification of Multi-Temporal MODIS Imagery in Northwest Argentina Using Kansas Crop Phenologies

September 17, 2014

background.pdf

Jarrett Keifer Department of Geography

./logo.eps

RESEARCH QUESTIONS

Can I...

- develop a phenological classification toolset?
- extract crop signatures from Kansas data?
- classify an Argentina study area with the Kansas signatures?

RESEARCH QUESTIONS

Can I...

- develop a phenological classification toolset?
- extract crop signatures from Kansas data?
- classify an Argentina study area with the Kansas signatures?

RESEARCH QUESTIONS

Can I...

- develop a phenological classification toolset?
- extract crop signatures from Kansas data?
- classify an Argentina study area with the Kansas signatures?

OUTLINE

- 1. Background
- 2. Study Areas
- 3. Data and Methods
- 4. Results and Discussion
- 5. Concluding Remarks

- ▶ 1998 to 2002: 940,000 ha deforested
- ► Ley de Bosques passed in 2007
 - ► Classified red, yellow, and green areas

- ▶ 1998 to 2002: 940,000 ha deforested
- ► Ley de Bosques passed in 2007
 - ► Classified red, yellow, and green areas

- ▶ 1998 to 2002: 940,000 ha deforested
- ► Ley de Bosques passed in 2007
 - $\,\blacktriangleright\,$ Classified red, yellow, and green areas

Table: Deforestation in Argentina, 2006 to 2011

Time Period	Hectares Deforested
2006 to <i>Ley de Bosques</i> (2007)	573,296
Ley de Bosques to OTBN (2009)	473,001
OTBN to 2011	459,108
Total	1,505,405

- ► Deforestation has remained extremely high
- ► The effect of the the *Ley de Bosques* has been questioned

- ► Argentina's soybean cultivation has continually increased
 - ▶ 5 million ha in 1993 to 19 million ha in 2011

- Soy production highly mechanized
- Over 99 percent of Argentine soy is genetically modified
 - ► Resistance to glyphosate = heavy pesticide use
- ► Capital requirements cut out small producers

- ► Soy production highly mechanized
- ► Over 99 percent of Argentine soy is genetically modified
 - ► Resistance to glyphosate = heavy pesticide use
- ► Capital requirements cut out small producers

- Soy production highly mechanized
- ► Over 99 percent of Argentine soy is genetically modified
 - ► Resistance to glyphosate = heavy pesticide use
- ► Capital requirements cut out small producers

- Soy production highly mechanized
- ► Over 99 percent of Argentine soy is genetically modified
 - ► Resistance to glyphosate = heavy pesticide use
- Capital requirements cut out small producers

- Prevailing perception that soy drives deforestation
- ► Deforestation research has neglected to analyze specific crop cover

- ► Prevailing perception that soy drives deforestation
- ► Deforestation research has neglected to analyze specific crop cover

Goal

Develop a crop mapping toolset which is efficient and economical

Goal

Develop a crop mapping toolset which is efficient and economical

Why is this important?

- ► Better understanding of the dynamics of deforestation
- ► More effective land management policies

Goal

Develop a crop mapping toolset which is efficient and economical

Why is this important?

- ► Better understanding of the dynamics of deforestation
- ► More effective land management policies

Goal

Develop a crop mapping toolset which is efficient and economical

Why is this important?

- ► Better understanding of the dynamics of deforestation
- ► More effective land management policies

Problem

Problem

- ► A Vegetation Index (VI) can help with crop identification
 - ► Normalized Difference Vegetation Index (NDVI)

Problem

- ► A Vegetation Index (VI) can help with crop identification
 - ► Normalized Difference Vegetation Index (NDVI)

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

- ► is a ratioing index
- minimizes multiplicative noise
- ▶ has issues with non-linearity and additive noise

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

- ► is a ratioing index
- ► minimizes multiplicative noise
- ▶ has issues with non-linearity and additive noise

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

- ► is a ratioing index
- minimizes multiplicative noise
- ► has issues with non-linearity and additive noise

Problem

Problem

Must be able to classify crops by type

Questions

- ► What if two crops have similar VI values on a single date?
- ► How to determine the VI values of a crop in an image?

Question

What if two crops have similar VI values on a single date?

Answer

Use imagery from multiple dates.

Question

What if two crops have similar VI values on a single date?

Answer

Use imagery from multiple dates.

TIME SERIES IMAGES

NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor

- ► Terra and Aqua satellites
- ► Each images the Earth once per day
- ► Composite 16-day NDVI imagery at 250-meter resolution

TIME SERIES IMAGES

NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor

- ► Terra and Aqua satellites
- ► Each images the Earth once per day
- ► Composite 16-day NDVI imagery at 250-meter resolution

TIME SERIES IMAGES

Time Series Image (TSI)

- ► Each band is a 16-day VI composite
- Bands are sequential composites
- Contains enough bands to cover an entire growing season

TIME SERIES IMAGES

Time Series Image (TSI)

- ► Each band is a 16-day VI composite
- Bands are sequential composites
- Contains enough bands to cover an entire growing season

TIME SERIES IMAGES

Time Series Image (TSI)

- ► Each band is a 16-day VI composite
- ► Bands are sequential composites
- Contains enough bands to cover an entire growing season

Graphics/wardlowCropSignatures.png

(From Wardlow and Egbert 2005)

Question

How to determine the VI values of a crop in an image?

Answer

Existing approaches require training sites.

Question

How to determine the VI values of a crop in an image?

Answer

Existing approaches require training sites.

Problem

What if you don't have training sites?

DEPARTMENT OF PELLEGRINI

