

With user graphical interface
 IGV – Integrative Genome Viewer

Software http://software.broadinstitute.org/software/igv/

Data https://software.broadinstitute.org/gatk/blog?id=9044

2017 Feb workshop presentation slides and tutorial materials

Germline Data Bundle (Day 2)

- Open IGV
- Genomes
 - Load Genome from File
- File
 - Load from file
 - Load from file
 - Load from file
- Go
- Zoom in

data/ref/ref.fasta

data/bams/son.bam

data/bams/mother.bam

data/bams/father.bam

20:10,020,000-10,050,000

- Questions
 - Do we look at Paired End (PE) or Single End (SE) data?
 - What is the coverage?

 Tip: Put the mouse pointer on the coverage track
 - What do the colors mean?
 Tip: Put the mouse pointer on the colored reads
 - Does it look like Whole Genome Sequencing (WGS) or targeted sequencing?
 - What's about other BAM files available from the mother? *Tip: Go to* 20:15,870,000-15,876,500

Read in pairs

Large insert size

Small insert size

fastq bam

Viewing a BAM file

Soft-clipped bases

Special cases

BAM file quality control

- Picard
 - Set of (command line) tools to
 - Manipulate NGS data
 - SAM/BAM/CRAM
 - VCF/BCF
 - Compute metrics

http://broadinstitute.github.io/picard/

Two examples

Region A

Region B

Region C

Next-Generation

Sequencing Adaptor

- Example 1
 Finding the genetic cause of a disease
 - Targeted assay (Nimblegen capture)
 - ~ 5,800 genes linked to Mendelian disorders
 - Illumina PE 126bp

Figure adapted from Nimblegen

Two examples

- Example 2
 Fingerprinting of xenocrafts
 - Amplicon sequencing
 - 31 SNPs
 - Illumina PE 151bp

Trace platform, http://www.uzleuven-kuleuven.be/lki/trace/ Figure adapted from Peter Hohenstein, EMBO Molecular Medicine: 5 (1), 2013

BAM file quality control

Picard CollectAlignmentSummaryMetrics

```
java -jar ~/bin/picard.jar CollectInsertSizeMetrics
    I=sample.bam
    O=sample_sum_metrics.txt
    R=ref.fasta
```


Insert size

Picard CollectInsertSizeMetrics

java -jar ~/bin/picard.jar CollectInsertSizeMetrics
 I=sample.bam
 O=sample_insert_size_metrics.txt
 H=sample_insert_size_histogram.pdf

Metrics Targeted sequencing

Picard HS metrics

```
java -jar ~/bin/picard.jar CollectHsMetrics
    I=sample.bam
    O=sample_hs_metrics.txt
    R=reference.fasta
    BAIT_INTERVALS=bait.intervals_list
    TARGET_INTERVALS=target.intervals_list
```

	Mean target coverage	Median target coverage	Selected bases	Fold enrichment	
TS_1	120.70	114	0.798	86.93	

Metrics Targeted sequencing

Metrics Targeted sequencing

Example 1

Metrics Amplicon sequencing

Picard PCR metrics

```
java -jar ~/bin/picard.jar CollectInsertSizeMetrics
    I=sample.bam
    O=sample_ipcr_metrics.txt
    R=ref.fasta
    AMPLICON_INTERVALS=amplicon.intervals_list
    TARGET INTERVALS=target.intervals list
```

	Mean target coverage	Median target coverage	Fold enrichment
AS_1	0.78	0	5.43
AS_2	359.9	97	44.25

Metrics Amplicon sequencing

Metrics Whole genome sequencing

Picard WGS metrics

java -jar ~/bin/picard.jar CollectWgsMetrics.jar
 I=sample.bam
 O=sample_wgs_metrics.txt
 R:ref.fasta

	Mean coverage	Median coverage
WGS_1	30.32	31
WGS_2	30.69	31
WGS_3	30.76	31

Metrics Whole genome sequencing

