Algorithm 6.5 The outermost skeleton of the back-propagation algorithm. This portion does simple setup and cleanup work. Most of the important work happens in the build_grad subroutine of algorithm 6.6

Require: \mathbb{T} , the target set of variables whose gradients must be computed. **Require:** \mathcal{G} , the computational graph **Require:** z, the variable to be differentiated Let \mathcal{G}' be \mathcal{G} pruned to contain only nodes that are ancestors of z and descendents of nodes in \mathbb{T} . Initialize grad_table, a data structure associating tensors to their gradients grad_table[z] $\leftarrow 1$

 $\texttt{grad_table}[z] \leftarrow 1$ $\texttt{for V} \text{ in } \mathbb{T} \text{ do}$ $\texttt{build_grad}(\mathbf{V}, \mathcal{G}, \mathcal{G}', \texttt{grad_table})$ end for $\texttt{Return grad_table restricted to } \mathbb{T}$

In section 6.5.2, we explained that back-propagation was developed in order to avoid computing the same subexpression in the chain rule multiple times. The naive algorithm could have exponential runtime due to these repeated subexpressions. Now that we have specified the back-propagation algorithm, we can understand its computational cost. If we assume that each operation evaluation has roughly the same cost, then we may analyze the computational cost in terms of the number of operations executed. Keep in mind here that we refer to an operation as the fundamental unit of our computational graph, which might actually consist of very many arithmetic operations (for example, we might have a graph that treats matrix multiplication as a single operation). Computing a gradient in a graph with n nodes will never execute more than $O(n^2)$ operations or store the output of more than $O(n^2)$ operations. Here we are counting operations in the computational graph, not individual operations executed by the underlying hardware, so it is important to remember that the runtime of each operation may be highly variable. For example, multiplying two matrices that each contain millions of entries might correspond to a single operation in the graph. We can see that computing the gradient requires as most $O(n^2)$ operations because the forward propagation stage will at worst execute all n nodes in the original graph (depending on which values we want to compute, we may not need to execute the entire graph). The back-propagation algorithm adds one Jacobian-vector product, which should be expressed with O(1) nodes, per edge in the original graph. Because the computational graph is a directed acyclic graph it has at most $O(n^2)$ edges. For the kinds of graphs that are commonly used in practice, the situation is even better. Most neural network cost functions are