Exercise Session 04

Exercise 1.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

You can follow these steps:

- 1. Identify if the recurrence is in the proper format T(n) = aT(n/b) + f(n) (where $a \ge 1$ and b > 1)
- 2. Simplify $n^{\log_b a}$ by plugging in the values of a and b
- 3. Check if one of the 3 cases holds:

1.
$$f(n) = O(n^{\log_b a - \epsilon}) = O(n^{\log_b a}/n^{\epsilon})$$
 for some $\epsilon > 0$

2.
$$f(n) = \Theta(n^{\log_b a})$$

- 3. $f(n) = \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{\log_b a} \cdot n^{\epsilon})$ for some $\epsilon > 0$. Moreover, check if there exist $n_0 \in \mathbb{N}$ and 0 < c < 1 such that $af(n/b) \le cf(n)$ for all $n \ge n_0$.
- 4. Simplify the corresponding conclusion of the Theorem by plugging in the values of a, b, and f(n)

Consider the following recurrence $T(n) = T(2n/3) + \Theta(1)$. Prove that $T(n) = O(\lg n)$.

$$a = 1, b = \frac{3}{2}$$

$$f(n) = \Theta(1) = (n^{\log_b(a)}) = (n^{\log_{\frac{3}{2}}(1)}) = (n^0) = 1$$

$$T(n) = \Theta(n^{\log_b(a)} \cdot \log(n))$$

$$= \Theta(n^{\log_{\frac{3}{2}}(1)} \cdot \log(n))$$

$$= \Theta(1 \cdot \log(n))$$

$$= \Theta(\log(n))$$

Using the seconds case of the master theorem and substituting the values of a and b into the equation we get that $\Theta T(n) = \Theta(\log(n))$

Exercise 2.

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ T(n-1) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Prove that $T(n) = O(n^2)$ using the substitution method.

$$T(n) = O(n^2)$$

$$T(n) = T(n-1) + \Theta(n)$$

$$T(m) \le cn^2, \forall n_0 \le m < n$$

$$T(m) \le c(n-1)^2 + \Theta(n)$$

$$= c(n^2 + 1 - 2n) + \Theta(n)$$

$$= cn^2 - 2cn + c + \Theta(n)$$

$$< cn^2$$

In order to complete the proof we need to show that the hypothesis holds for some $n \geq n_0$.

T(1) = 1 We can verify our hypothesis by choosing some $c \geq 1$

$$T(1) \le 1 \cdot 1^2 = 1$$

This shows that the inequality $T(1) \leq T'(1)$ hold which proves that our hypothesis holds for $c \geq 1$ Exercise 3.

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil - 1) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Use the substitution method to prove that $T(n) = O(n \lg n)$.

Hint: be careful when you choose the base case because n = 0 and n = 1 may not work

$$\begin{split} T(m) &\leq cm \cdot log(m) \\ T(n) &= T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil - 1) + \Theta(n) \\ &\leq c(\lfloor n/2 \rfloor) \cdot log(\lfloor n/2 \rfloor) + c(\lceil n/2 \rceil - 1) \cdot log(\lceil n/2 \rceil - 1) + \Theta(n) \\ &\leq c(\lfloor n/2 \rfloor) \cdot log(n/2) + c\lceil n/2 \rceil \cdot log(n/2) + \Theta(n) \\ &\leq c(\lfloor n/2 \rfloor) \cdot log(n) - c(\lfloor n/2 \rfloor) \cdot log(2) + c\lceil n/2 \rceil \cdot log(n) - c\lceil n/2 \rceil \cdot log(2) + \Theta(n) \\ &\leq c(\lfloor n/2 \rfloor) \cdot log(n) - c(\lfloor n/2 \rfloor) + c\lceil n/2 \rceil \cdot log(n) - c\lceil n/2 \rceil + \Theta(n) \\ &= cn \cdot log(n) - c(\lfloor n/2 \rfloor) - c\lceil n/2 \rceil + \Theta(n) \\ &\leq cn \cdot log(n) \end{split}$$

In order to complete the proof we need to show that the hypothesis holds for some $n \geq n_0$.

$$T(1) = 1 \cdot log(1) \neq 1$$

This shows that it doesn't hold for n=1. So we need to try a larger n_0

$$T(2) = 2 \cdot log(2) = 2$$

We can verify our hypothesis by choosing some $c \geq 1$

This shows that the inequality $T(2) \le 1 \cdot 2 \cdot log(2) = 2 \cdot 1 = 2$ holds for $n \ge 2$. Proving our hypothesis correct

Exercise 4.

The factorial of n, is usually recursively defined as

$$n! = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot (n-1)! & \text{if } n > 0 \end{cases}$$

- (a) Prove that $n! = \Omega(2^n)$.
- (b) Prove that $n! = O(n^n)$.
- (c) Prove that $\lg n! = O(n \lg n)$.

a)

$$m! \ge c2^n$$

$$n! = n \cdot (n-1)!$$

$$\ge n \cdot c2^{(n-1)}$$

$$\ge c2^n$$

b)

$$m! \le cn^n$$

$$n! = n \cdot (n-1)!$$

$$\le n \cdot c(n-1)^{n-1}$$

$$\le n \cdot cn^{n-1}$$

$$= cn^n$$

c)

$$\begin{split} log(m!) &\leq cn \cdot log(n)) \\ log(n!) &= log(n \cdot (n-1)!) \\ &= log(n) + log((n-1)!) \\ &\leq log(n) + c(n-1) \cdot log(n-1) \\ &\leq log(n) + c(n-1) \cdot log(n) \\ &\leq c \cdot log(n) + c(n-1) \cdot log(n) \\ &= cn \cdot log(n) \end{split}$$

★ Exercise 5.

Consider the recurrence

$$T(n) = \begin{cases} b & \text{if } n = 1 \text{ or } n = 0 \\ T(\lfloor 9n/10 \rfloor) + T(\lfloor n/10 \rfloor) + cn & \text{if } n \ge 1 \end{cases}$$

where b and c are constants such that b, c > 0. Prove that $T(n) = O(n \lg n)$.