Zadanie 1.

Dana jest asymptotyczna charakterystyka amplitudowa układu otwartego minimalno – fazowego.

Wyznacz jego transmitancję operatorową, dorysuj charakterystyki fazowe. Sprawdź, czy po zamknięciu jednostkowego sprzężenia zwrotnego, układ zamknięty będzie stabilny?

Z rysunku wynika, że $\lim_{\omega \to 0} |G_0(j\omega)| \to \infty$, a nachylenie charakterystyki $-20 \frac{dB}{dek}$. W układzie jest element całkujący $G_1(s) = \frac{1}{s}$.

Po narysowaniu charakterystyki elementu całkującego różnica pomiędzy nią, a charakterystyką daną wynosi 10*dB*. W układzie jest element proporcjonalny

$$G_2(s) = \frac{1}{\sqrt{10}}.$$

Dla pulsacji $\omega_1 = 10^{-1} \frac{rad}{s}$, następuje zmiana nachylenia z $-20 \frac{dB}{dek}$ na 0, czyli kolejnym elementem będzie regulator PD o transmitancji $G_3(s) = 10s + 1$

Dla pulsacji $\omega_2 = \sqrt{0.1} \frac{rad}{s}$, następuje zmiana nachylenia z 0 na $-20 \frac{dB}{dek}$, czyli następnym elementem będzie element inercyjny I rzędu o transmitancji

$$G_4(s) = \frac{1}{\sqrt{10}s + 1}.$$

Kolejna zmiana nachylenia z $-20\frac{dB}{dek}$ na $-60\frac{dB}{dek}$, nastąpi dla pulsacji $\omega_2 = 10\frac{rad}{s}$ czyli następnym elementem będzie element inercyjny II rzędu o transmitancji $G_5(s) = \frac{1}{(0,1s+1)^2}$. Ostatecznie poszukiwana transmitancja jest postaci $G_0(s) = \frac{10s+1}{\sqrt{10}s(\sqrt{10}s+1)(0,1s+1)^2}$

$$G_0(s) = \frac{10s+1}{\sqrt{10}s(\sqrt{10}s+1)(0,1s+1)^2}$$

