Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

AFOSR MURI Kick off meeting

The Ohio State University Nov 4, 2009

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding and DMB control number.	tion of information. Send comments tarters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of to s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 04 NOV 2009		2. REPORT TYPE		3. DATES COVE 00-00-2009	ered 9 to 00-00-2009
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
Fundamental Mech	vel Aerospace	5b. GRANT NUMBER			
Applications of Plasma Assisted Combustion				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Drexel University, A. J. Drexel Plasma Institute, 34th St. and Lancaster Ave, Philadelphia, PA, 19104				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distribut	ion unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	49	3.13.22.12.10011

Report Documentation Page

Form Approved OMB No. 0704-0188

Drexel Group: Main Tasks

Thrust 1. Experimental studies of nonequilibrium air-fuel plasma kinetics using advanced non-intrusive diagnostics

- Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-dependent radical species concentration and temperature measurements in nanosecond pulse plasmas in a variety of fuel-air mixtures pressures (P=0.5-5 atm), and equivalence ratios
- Task 4: Moderate-to-high (T=800 1800 K) temperature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures up to 10 bar
- Task 5: PAC oxidation and combustion initiation at high pressure, high temperature conditions

Thrust 2. Kinetic model development and validation

- Task 8: Development and validation of a predictive kinetic model of non-equilibrium plasma fuel oxidation and ignition
- Task 9: Mechanism Reduction and Dynamic Multi-time Scale Modeling of Detailed Plasma-Flame Chemistry
- Thrust 3. Experimental and modeling studies of fundamental nonequilibrium discharge processes
 - Task 10: Characterization and Modeling of Nsec Pulsed Plasma Discharges
- Thrust 4. Studies of diffusion and transport of active species in representative twodimensional reacting flow geometries
 - Task 13: Ignition and flameholding in high-speed non-premixed flows
 - Task 14: High Fidelity Modeling of Plasma Assisted Combustion in Complex Flow Environments

Drexel Group: International Collaboration

International Collaborators

```
Svetlana Starikovskaya (Ecole Pol) — Thrust 1
Alexander Rakitin (NEQLab) — Thrust 1
Boris Potapkin (KIAE) — Thrust 2
Alexander Konnov (VUB) — Thrust 2
Nickolay Aleksandrov (MIPT) — Thrust 3
Sergey Pancheshnyi (Univ Toulouse) — Thrust 3
Sergey Leonov (IVTAN) — Thrust 4
```

Range of Parameters – Combustion Kinetics

Problems of Plasma-Chemical Models

Availability and accuracy of data on electron collision cross sections

$$+ \qquad \qquad \mathsf{H_2} \quad \mathsf{CH_4} \quad \mathsf{C_2H_6} \qquad \mathsf{C_3H_8}$$

? $C_4H_{10} C_5H_{12} ...$

Availability and accuracy of chemical models below self-ignition point

$$+$$
 H_2

?
$$CH_4 C_2H_6 C_3H_8 C_4H_{10} C_5H_{12} ...$$

Availability and accuracy of physical and chemical models for non-equilibrium conditions

- + Radical's mechanism
- ? Ionic chain mechanism
- ? Energy chain mechanism

Models for Low-Temperature Plasma **Assisted Combustion**

800 K: autoignition gives 1 s

Starikovskii et al...

Plasma Physics Reports, 2000 (26) 701

$$O_{2} + e^{-} + M \rightarrow O_{2}^{-} + M$$
 $H_{2} + O_{2}^{-} \rightarrow OH^{-} + OH$
 $OH + H_{2} \rightarrow H_{2}O + H$
 $OH^{-} + H \rightarrow H_{2}O + e^{-}$
 $H + O_{2} + M \rightarrow HO_{2} + M$
 $OH^{-} + HO_{2} \rightarrow H_{2}O + O_{2} + e^{-}$

Initial temperature, K

Starikovskii.

Chemical Physics Reports, 2003 (11) 1

$$N_2O^* + H \rightarrow N_2^* + OH$$
 $CO + OH \rightarrow CO_2^* + H$
 $CO_2^* + N_2O \rightarrow N_2O^* + CO_2$
 $N_2^* + N_2O \rightarrow N_2O^* + N_2$

Mechanisms of Plasma Influence

- 2. Turbulization
- 3. Momentum Transfer

5. Dissociation, Ionization

Shock Wave - Nonequilibrium Plasma Interaction

Relaxation of Nonequilibrium Plasma. Air. $P_1 \sim 20$ Torr

Relaxation of Nonequilibrium Plasma. Air. $P_1 \sim 20$ Torr

Mechanism of fast heating in discharge plasmas (low E/N)

Low (< 20 Td) E/N:

$$e + N_2, O_2$$

- elastic scattering
- rotational excitation

Mechanism of fast heating in discharges (moderate E/N)

Moderate (20 - 200 Td) E/N:

Popov (2001) heating \rightarrow 28 % of power spent on $N_2^* + O_2^*$

$$e + O_2 \rightarrow e + 2O + \Delta E$$

$$e + N_2 \rightarrow e + N_2^*(A, B, C, a', ...)$$

$$N_2^*(A, B, C, a', ...) + O_2 \rightarrow N_2 + 2O + \Delta E$$

$$O(^1D) + N_2 \rightarrow O + N_2 + \Delta E$$

$$k \sim 10^{-10} \text{ cm}^3/\text{s}$$

Mechanism of fast heating in discharge plasmas (high E/N)

Aleksandrov et al. (2009)

High (> 200 Td) E/N:

electron-ion and ionion recombination kinetics

$$e + O_2^+ \rightarrow O + O^* + \Delta E$$

$$O_2^- + O_2^+ + M \rightarrow 2O_2 + M + \Delta E$$

Heat Release and Shock Waves Formation by "Nonequilibrium" Plasma

Energy Distribution in Gas Discharge

Molecular Oxygen Excitation

To directly observe the influence of SDO on the combustion of H_2 - O_2 mixture

Delivering sufficient amount of SDO Minimizing the effect of O atom Lower the inlet temperature

SDO kinetic analysis

The ignition time as a function of SDO mole fraction in oxygen. T=775 K and P=10 Torr in the H₂:O₂=5:2 mixture

SDO kinetic analysis

The evolution in time of the mole fractions of the main component for autoignition (a) and ignition with 6% singlet delta oxygen. The gas temperature evolution is represented by the thick red line.

SDO kinetic analysis Possible reasons

Auto	SDO
O_2 +M=O+O+M (slow) H_2 +O=OH+H O_2 +H=OH+O OH+OH= H_2 O+O 	$O_2(a^1 \Delta_g) + H_2 = OH + OH \text{ (fast)}$ $OH + H_2 = H_2O + H$ $O_2(a^1 \Delta_g) + H = OH + O$ $O_2 + H = OH + O$ $OH + OH = H_2O + O$

Radical generation efficiency

Energy Distribution in O₂-Ar (15%:85%) Mixture

■74% energy in excitation of singlet oxygen at E/n= 5 Td
■Approximately 53% in singlet delta state
■About 21% in singlet sigma state

SDO Excitation efficiency in air plasma

Air Plasma

⁻¹⁷ Vcm ²)
1.8 %
4 %
49 %
7.3 %
1.4 %
0.2 %
0.3 %
0.2 %
17 %
11 %
4.1 %
4.1 % 1.4 %

Shock Tube with Discharge Section. U ≤ 0.3 MV, M ≤ 3

Starikovskaya et al

Test Section of the Shock Tube

Main Processes During Discharge Phase

Physics of Nonequilibrium Systems Laboratory

Time, ns

Radicals Production in Discharge CH₄-containing mixture

Ignition Delay Time: Methane-Containing Mixture

Physics of Nonequilibrium Systems Laboratory

RAMEC (for C1) + Westbrook (C2-C7) + High Pressure Adjustment

Experiment and Calculations inH₂-Air Mixture

Modeling of Radicals Formation vs E/n (W=14 mJ/cm³)

H2:O2:N2=29.5:14.75:55.75

Delay time for autoignition and plasma assisted ignition in CH₄-containing mixture

Aleksandrov et al. (2009)

 $CH_4:O_2:N_2:Ar = 1:4:15:80$

Plasma Recombination at High Pressures and Temperatures

Physics of Nonequilibrium Systems Laboratory

Evolution in Time of Electron DensityDuring Plasma Decay

Dissociative electron-ion recombination $e + O_2^+ \rightarrow O + O$

Electron attachment and detachment $e + O_2 + M \rightarrow O_2^- + M$ $O_2^- + O \rightarrow e + O_3$

Types of Gas Discharges and Their Applications

Discharge Development at Different Overvoltage and Plasma Generation

Setup for OH Dynamic Measurements in Streamer Channel Afterglow

Physics of Nonequilibrium Systems Laboratory

LIF Diagnostics Setup: **OH Profile Control**

Excitation: $Q_1(6)$ 282.92 nm; **Emission: 315nm**, $\delta\lambda$ =**1.8** нм; Registration – **PicoStar LaVision**

LIF Emission of OH at 300 K

600 500 OH LIF, 500 K, 1 atm 400 300 200 Methane lean Ethane lean Propane lean 100 Butane lean 0 100 10 Time, μs

LIF Emission of OH at 500 K

E-3-1E-4-1E-5-1E-7-1E-7-1E-7-1E-7-1E-7-1E-7-1E-7-1E-7-1E-7-1E-8-1E-9-1E

300 K Versus 500 K LIF of OH

Methane

High-pressure Conditions: Always Non-Uniform

Pancheshnyi et al

Rapid Compression Machine: High-Pressure, Low-Temperature

PAC at High Pressure: ER = 1 (Rakitin et al)

Temperature,

Propane,
Surface DBD,
< 50mJ

T2 = 713 KP2 = 26.5 bar

PAC at High Pressure: ER = 0.4 (Rakitin et al)

T2 = 794 KP2 = 32 bar

Propane, Surface DBD, < 50mJ

Propane-Butane-Air Lean Mixtures. $\phi = 0.5 (C_3:C_4=85:15)$

Propane-Butane-Air Mixture Ignition. $\varphi = 0.5$ (C₃:C₄=85:15). Calculations

Propane-Butane-Air Mixture Ignition. Experiment vs Calculations.

Channels of Kinetic Scheme Optimization

Reaction	Т	k
$C_3H_8 + HO_2 = C'H_2C_2H_5 + H_2O_2$	1200	2.5
$C_3H_8 + HO_2 = CH_3C`HCH_3 + H_2O_2$	1200	2.5
$O_2C_3H_7 = HOOCH_2C`HCH_3$	800-1000	0.2
CH ₃ CHO ₂ CH ₃ = CH ₃ CH(OOH)C`H ₂	800-1000	0.2
OCHCH(OOH)CH ₃ = CH ₃ CHO + HCO + OH	800	0.2
OCHCH ₂ CH(OOH) ₂ = CH ₂ O + CH ₂ CHO + OH	800	0.2
CH ₃ COCH ₂ (OOH) = CH ₂ O + CH ₃ CO + OH	800	0.2

Konnov, Potapkin

Mixture $C_3H_8:C_4H_{10}:Air = 1.8:0.3:97.9$

Discharge Formation and Flame Stabilization in High Speed Flow

IVTAN (Sergey Leonov):

M = 2

Maximal stagnation pressure 1.8 Bar Stagnation temperature 670 K Discharge Power ~ 1 kW

Physics of Nonequilibrium Systems Laboratory

DPI Shock Tunnel:

M = 2-5
Static pressure 0.1 - 1 Bar
Static temperature 700-1000 K
Discharge Power ~ 1 kW

Summary

Range of Parameters

$$P = 0.1 - 70 atm$$

$$T = 300 - 2000 K$$

$$M = 0 - 5$$

$$\phi = 0.01 - 1$$

E/n = 200-500 Td (Air)

Fuels: H_2 , $C_1 - C_4$

Acetones, Alcohols, CO

Experiment:

Shock Tube
Shock Tunnel
Rapid Compression Machine
Premixed Flow Nozzle

Theory:

Discharge Models
Plasma Models
Chemical Kinetic Models