The Airplane Boarding Problem

Modulation and Simulation

Introduction

- 1. Problem
- 2. Background knowledge
- 3. Related Work
- 4. Motivation
- 5. Simulation Plan
- **6.** Implementation
- 7. Testing
- 8. Results
- 9. Conclusion
- 10. Future work

Problem

- → The cost to an airline company for each minute spent at the terminal is roughly \$30
- → Turnaround critical path is the disembarkation of passengers, cabin servicing and passenger boarding
- → Boarding process is **stressful** for everyone, passengers and crew
- → Efficient passenger boarding can save a lot of time and money
- → There are **efficient boarding methods** which are not implemented in real-life scenarios due to their **complexity** and **pre-ordering process**

Boarding Logic

Interferences

Related Work

Paper					I	Featur	res				
Index	f0	fI	f2	f3	f4	f5	f6	<i>f</i> 7	<i>f</i> 8	f9	f10
[Delcea et al., 2018b]	X	X	X	X	X	X		X	X	X	X
[Kierzkowski and Kisiel, 2017]	X	X	X	X		X				X	X
[Kalic et al., 2013]	X	X	X	X		X	X	X	X	X	
[Steffen and Hotchkiss, 2012]	X	X	X	X		X	X	X		X	
[Delcea et al., 2018a]			X	X	X	X		X	X	X	X
[Cimler et al., 2012]	X	X	X	X	X	X		X	X		
[Mas et al., 2013]	X	X	X			X		X	X		

There's a gap on researches considering both simulation and human behaviour

- f0. Considers aisle interferences;
- f1. Considers seat interferences;
- f2. Considers time for stowing luggage;
- f3. Considers a variable luggage count;
- **f4.** Analyses 4 or more boarding methods;
- **f5.** Uses a single-aisle layout;
- f6. Has a passenger satisfaction metric;
- f7. Finds an average boarding time;
- **f8.** Uses simulation instead of just observation;
- **f9.** Finds a deviation for individual boarding;
- f10. Uses human behaviour.

Motivation

- 1. Simulate airplane boarding in the most realistic way possible
- 2. Use of human behavioural metrics
- 3. Easy and cheap way to test different ways of boarding people on an aircraft

Simulation Plan

- 1. A320 30 rows, 6 seats per row, total of 180 passengers
- 2. 9 different boarding methods
- 3. Run simulations in different scenarios
- 4. Gather total boarding times
- 5. Gather total number of interferences of each type
- 6. Calculate passengers dissatisfaction level
- 7. Analyse data and conclude/confirm best method

Boarding Methods

1. Random

		Fr	ont		
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1

2. Back to front /Front to Back (row and block)

			Fron	t		
	100					
		_				
				-		
	- /					
				/ 1		
		_				13
10000						13
8	10	12		11	9	7
8	4	6		5	3	1

3.Wilma

		Fre	ont		
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1
1	2	3	3	2	1

4. Steffen

F	ront	
24		18
12		6
23		17
11		5
22		16
10	28	4
21		15
9	27	3
20		14
8	26	2
19		13
7	25	1

5. Kautzka 3

		Fron	t		
23	24			12	11
21	22			10	9
19	20		28	8	7
17	18		27	6	5
15	16		26	4	3
13	14		25	2	1

NetLogo

Default Testing Scenarios

2 Scenarios

- 1. No passenger have luggage
- 2. 50% of the passenger have luggage

- **1** Boarding Time
- **2** Number of aisle interferences
- **3** Number of seat interferences

BehaviourSpace - 100 runs

Results of default tests

Kautzka 3, **Steffen** and **WILMA** are the most performant methods in accordance with the literature studied

Human Behaviour Metrics

Passenger Luggage Stowing Variety strategy Entrance rate Human sympathy strategy

Luggage Stowing Time

Scenario	Availability of the aisle seat	Filling of the box less than 50%
1	+	+
2	+	_
3	_	+
4	-	=

Passenger Entrance Rate

People have different needs so **some of them may take some time** to enter the aircraft since they have to **show their boarding ticket** to the crew and it may **not be always on their hand ready to be shown**

Boarding Humanized Passengers

Human Behaviour Testing Scenarios

2 Scenarios

- 1. No passenger have luggage
- 2. 50% of the passenger have luggage

- **1** Boarding Time
- 2 Number of aisle interferences
- **3** Number of seat interferences
- **4** Dissatisfaction of each passenger
 - a Boarding time
 - **b** Time on aisle interferences
 - **c** Time on seat interferences

BehaviourSpace - 100 runs

Results of Boarding passenger with Human Behaviour

- 1. Best methods remain the same
- 2. WILMA takes a little more time
- 3. Methods which take less time are also the ones with better satisfaction

Conclusion

Theory

Kautzka and **Steffen** are the best methods ★

Reality

These methods don't work!

Wilma then? Maybe the best method is **not using**any method at all

Future work

Good results but...

1.

Model the time needed to solve seat interferences

2.

Deep understanding on what people really care about:

- a. Boarding in less time
- **b.** Not so many interferences
- C. ...

References

- [Anthony, 2011] Anthony, S. (2011). Astrophysicist devises super-fast but dehumanizing airplane boarding. https://www.extremetech.com/extreme/ 94492-astrophysicist-devises-dehumanizing-but-super-fast-airplane-boarding-method. [Online; accessed 26-June-2019].
- [Cimler et al., 2012] Cimler, R., Kautzká, E., Olševičová, K., and Gavalec, M. (2012). Agent-based model for comparison of aircraft boarding methods.
- [Delcea et al., 2018a] Delcea, C., Cotfas, L.-A., and Paun, R. (2018a). Agent-based evaluation of the airplane boarding strategies efficiency and sustainability. *Sustainability*, 10:1879.
- [Delcea et al., 2018b] Delcea, C., Cotfas, L.-A., Salari, M., and Milne, R. (2018b). Investigating the random seat boarding method without seat assignments with common boarding practices using an agent-based modeling. *Sustainability*, 10(12):4623.
- [Kalic et al., 2013] Kalic, M., Markovic, B., and Kuljanin, J. (2013). The airline boarding problem: Simulation based approach from different players perspective. In *1st Logistics International Conference. Belgrade, Serbia*, pages 28–30.
- [Kierzkowski and Kisiel, 2017] Kierzkowski, A. and Kisiel, T. (2017). The human factor in the passenger boarding process at the airport. *Procedia Engineering*, 187:348–355.
- [Mas et al., 2013] Mas, S., Juan, A. A., Arias, P., and Fonseca, P. (2013). A simulation study regarding different aircraft boarding strategies. In Fernández-Izquierdo, M. Á., Muñoz-Torres, M. J., and León, R., editors, Modeling and Simulation in Engineering, Economics, and Management, pages 145–152, Berlin, Heidelberg. Springer Berlin Heidelberg.
- [mkv1109, 2014] mkv1109 (2014). AirAsia A320: The Incident, The Aircraft and Theories. https://m11k09v.wordpress.com/2014/12/29/ airasia-a320-the-incident-the-aircraft-and-theories/. [Online; accessed 24-June-2019].
- [Steffen and Hotchkiss, 2012] Steffen, J. H. and Hotchkiss, J. (2012). Experimental test of airplane boarding methods. *Journal of Air Transport Management*, 18(1):64–67.

Thank you! Questions?