Wha	it is the k	cinetic en	ergy of a	proton th	at is trave	eling at a	speed of	2850	m/s?
K =		J							

$$K = \frac{1}{2}mv^2$$

= 6.782e-21 J

If the kinetic energy of an electron is 4.8e-18 J, what is the speed of the electron? (You can use the approximate (nonrelativistic) formula here.)

$$k = \frac{1}{2} m v^{2}$$

$$\frac{2k}{m} = v^{2}$$

$$V = \sqrt{\frac{2k}{m}}$$

$$= 3.246e - 6 \%$$

You move from location i at < 4, 3, 8 > m to location f at < 3, 5, 13 > m. All along this path there is a nearly uniform electric field \vec{E} = < 800, 230, -520 > N/C. Calculate $\Delta V = V_f - V_i$, including sign

$$\Delta \vec{x} = \vec{F} - \vec{k}$$

$$\Delta \vec{x} = \vec{F} - \vec{k}$$

$$= (-1, 2, 5)$$

$$\Delta \vec{V} = -(-800 + 460 - 2600)$$

$$= 2940 \text{ y}$$

 c^{\times}

Locations A, B, and C are in a region of uniform electric field, as shown in the diagram above. Location A is at < -0.3, 0, 0 > m. Location B is at < 0.5, 0, 0 > m. In the region the electric field $\vec{E} = \langle 750, 0, 0 \rangle \text{ N/C}.$

For a path starting at B and ending at A, cal	alculate:
---	-----------

(a) The displacement vector $\Delta \vec{l}$

$$\Delta \vec{l} = m$$

(b) the change in electric potential:

$\Delta V =$	volts

(c) the potential energy change for the system when a proton moves from B to A:

joules

(d) the potential energy change for the system when an electron moves from B to A:

$\Delta U = $	joules				I I	ı	ı	I I
Part	One							
	= A - B)						
\7 X	= A - 15)						
	= \(-0.\)	8,0,0	>m					
Part '	Two							
A 1/	= - E/	۱ ۷						
ΔV		7 X						
	= 600 \	/						
Payt 5	Three							
ΔU	= q A	٧						
		1.0						
	= 1.6	e-19.	ΔV					
	= 9.6	e-17	5					

Locations A, B, and C are in a region of uniform electric field, as shown in the diagram above. Location B is at < 0.4, 0.4, 0.5 m. Location C is at < 0.4, 0.4, 0.5 m. In the region the electric field $\vec{E} = < 650$, 0.5 N/C.

For a path starting at B and ending at C, calculate:

(a) The displacement vector $\Delta \vec{l}$

$$\Delta \vec{l} = m$$

(b) the change in electric potential:

 $\Delta V =$ volts

(c) the potential energy change for the system when a proton moves from B to C:

 $\Delta U =$ joules

(d) the potential energy change for the system when an electron moves from B to C:

 $\Delta U =$ joules

Which of the following statements are true in this situation? Check all that apply.

- $\hfill \square$ When a proton moves along this path, the electric force does zero net work on the proton
- $\hfill \Box$ The potential difference cannot be zero because the electric field is not zero along this path
- \square $\Delta \vec{l}$ is perpendicular to \vec{E}

Part One				
DE = (2-B			
= <	0, -0.4, 0)	> m		
Part Tu	c, Thue, Fo	W		
V= - E	7			
= - (<650,0,0	> < 0, -0	4,07)	
=0				

Locations A and B are in a region of uniform electric field, as shown. Along a path from A to B, the change in potential is 3000 V. The distance from A to B is 0.23 m.

What is the magnitude of the electric field in this region?

An electron starts from rest in a vacuum, in a region of strong electric field. The electron moves through a potential difference of 45 volts. What is the kinetic energy of the electron in electron volts (eV)?

What if the particle were a proton? (Select all that apply.)

- $\hfill \square$ Its kinetic energy would be negative.
- $\hfill \square$ It would move in the opposite direction from the electron.
- $\hfill \square$ Its kinetic energy would be positive.

It would move in the same direction as the proton.

$$V = \frac{\Delta V}{q}$$

$$\Delta V = Vq$$

$$\Delta k = -\Delta V$$

$$Q \text{ is the charge of an electron. It charges the argues to be positive and because the argues is in electron.

$$= 45 \text{ eV}$$

$$Volls the electron's charge is not included in the argues.$$$$

2 and 3 are correct for the lest question

Potential difference along a wire

The potential difference from one end of a 1 cm long wire to the other in a circuit is $\Delta V = V_{\mathcal{B}} - V_{\mathcal{A}} = 1.7$ volts, as shown in the figure.

(a) Which end of the wire is at the higher potential?

- \bigcirc A
- Ов
- \bigcirc They are at the same potential
- (b) What is the magnitude of the electric field E inside the wire?
- *E* = V/m
- (c) What is the direction of the electric field inside the wire?
- \bigcirc to the right
- \bigcirc to the left
- \bigcirc no direction because E = 0

O no direction	on because $E = 0$									
Pourt	One									
B pe	must sitive.	t he	at l	righer	pe t	un-lia l	hecc	use	Volta	se is
Part	Tuo									
	h = - E									
E	= 1- Vol	2								
	= 170	V/m								
art	Three	,								
70	the	left	hecu	se E	ìS	Nege	tive	in	the	auswer
C	nove.									

Electrons in a television picture tube

In a television picture tube electrons are boiled out of a very hot metal filament placed near a negative metal plate (see the figure). These electrons start out nearly at rest and are accelerated toward a positive metal plate. They pass through a hole in the positive plate on their way toward the picture screen. If the high-voltage supply in the television set maintains a potential difference of 15700 volts between the two plates, what speed do the electrons reach? (You can use the nonrelativistic approximation here.)

	Hot filament C	
$V = \frac{\Delta V}{q}$		
$\Delta U = V_{q}$		
$\Delta k = -\Delta U$		
DK = - Vq		
12 K = - Vq		
1 100 × 2 = - 17 0		
2 ///		
$\frac{1}{2} mv^2 = -Vq$ $V^2 = -\frac{2Vq}{m}$		
$V = \sqrt{\frac{-2vq}{m}}$		
= 7.43e7 m/s		