#### **Y36SAP-3**

# Logické obvody sekvenční Formy popisu Příklady návrhu

2008-Kubátová

Y36SAP-Logické obvody

1

### Kombinační x sekvenční obvody

- Kombinační vystup je dán kombinací vstupů, "nezáleží" na čase
- <u>Sekvenční</u> výstup závisí na posloupnosti (sekvenci) hodnot na vstupech, realizuje se tzv. zpětnou vazbou
- Vše lze matematicky popsat
  - Logická funkce f
  - Konečný automat FSM (Finite State Machine)

2008-Kubátová

Y36SAP-Logické obvody

2







# Sekvenční logický obvod – konečný automat - FSM

Množina možných kombinací hodnot vstupních proměnných KA; př: 3 vstup. prom. => X obs. 2³=8 možných kombinací

Y ... Množina možných kombinací výstupních hodnot KA

Množina možných kombinací hodnot vnitřních proměnných KA (množina stavů)

Q<sub>0</sub> ... Počáteční stav (kombinace hodnot vnitřních proměnných KA v počátečním stavu)

δ ... Stavově přechodová funkce:

 $\delta: X \times Q \rightarrow Q \dots$  definuje příští stav KA

λ Výstupní funkce:

 $\lambda$  : a) X x Q  $\rightarrow$  Y  $\dots$  typ Mealy

b)  $Q \rightarrow Y \dots typ Moore$ 

2008-Kubátová Y36SAP-Logické obvody

Lekce 3

6



### Postup návrhu sekvenčního obvodu

- 1. Slovní popis
- 2. Graf přechodů
- 3. Tabulky přechodů a výstupů
- 4. Zakódování vstupů, výstupů a vnitřních stavů
- 5. (Zakódované tabulky přechodů a výstupů)
- 6. Minimalizace výrazů pro budící vstupy vybraného typu klopných obvodů (mapy)
- 7. Minimalizace výrazů pro výstupní funkce
- 8. Realizace z (předepsaného typu) hradel
- 9. Výpočet hodinové frekvence

2008-Kubátová

Y36SAP-Logické obvody

8



#### Příklad 1

- Navrhněte SSO se dvěma vstupy a, z a
   jedním výstupem b, který bude převádět
   sériově vstupující binární číslo A v
   doplňkovém kódu na číslo B opačné k A.
   A vstupuje nejnižším řádem napřed, z
   indikuje začátek čísla A. (jestliže je z=1,
   na vstupu je nejnižší řád A).
- Poznámka: automat není iniciální

2008-Kubátová Y36SAP-Logické obvody 10









| Q <sub>next</sub> | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| Α                 | Α  | Α  | В  | В  |
| В                 | В  | Α  | В  | В  |

| b | 00 | 01 | 11 | 10 |
|---|----|----|----|----|
| Α | 0  | 0  | 1  | 1  |
| В | 1  | 0  | 1  | 0  |

2 stavy ... pro rozlišení stačí 2 bity, např. A ... 0, B ... 1

| Q <sub>next</sub> | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| 0                 | 0  | 0  | 1  | 1  |
| 1                 | 1  | 0  | 1  | 1  |

2008-Kubátová

Y36SAP-Logické obvody

14

# Realizace pomocí hradel a klopných obvodů ....

| Q <sub>next</sub> | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| 0                 | 0  | 0  | 1  | 1  |
| 1                 | 1  | 0  | 1  | 1  |

Co je klopný obvod???

| b | 00 | 01 | 11 | 10 |
|---|----|----|----|----|
| Α | 0  | 0  | 1  | 1  |
| В | 1  | 0  | 1  | 0  |

2008-Kubátová

Y36SAP-Logické obvody

15



### Klopné obvody - asynchronní

"Podobné" chování má obvod složený z hradel NAND:



Jde o asynchronní R-S klopný obvod s inverzními vstupy, pamatuje při vstupech 11 a při kombinaci 00 závisí na předchozím stavu,

0 na S nastavuje Q do 1.

2008-Kubátová

Y36SAP-Logické obvody

17











# Rozdíl v chování hladinového a hranového D-KO



Poznámka: Klopný, též někdy paměťový obvod, angl. často jen latch nebo FF

2008-Kubátová

Y36SAP-Logické obvody

23

### Příklad 2

- Navrhněte SSO s jedním vstupem x a jedním výstupem y, který bude detekovat zda jsou v tříbitových vstupních posloupnostech binární čísla 4 nebo 5. Počáteční podmínky – na vstupu je nejnižší řád prvního tříbitového čísla.
- Poznámka1: automat je iniciální
- Poznámka2: řešení a realizace je na tabuli

2008-Kubátová

Y36SAP-Logické obvody

24



### Další postup

- 2. Z grafu tabulky pro přechodovou a výstupní funkci
- 3. Kódování a zakódované tabulky
- 4. mapy,
- 5. minimalizace
- 6. budící funkce pro vstupy klopných obvodů a pro výstupy
- 7. realizace
- časování výpočet maximální hodinové frekvence

2008-Kubátová

Y36SAP-Logické obvody

26





## časování – výpočet maximální hodinové frekvence

- Záleží na:
  - Technologii
  - Typu hradel
  - Počtu vstupů
  - Větvení
  - Klopných obvodech (v podstatě nyní jen D-KO)
  - Délce spojů (vodičů)
- Návrhové systémy

2008-Kubátová

Y36SAP-Logické obvody

29

Na dalších snímcích:

Tabulka 1: knihovna základních hradel

Tabulka 2: standardní logická hradla s více

vstupy

Popis tabulky (technologie CMOS):

| Název  | grafický | funkce | Cena         | Zpoždění |
|--------|----------|--------|--------------|----------|
| hradla | symbol   |        | (počet       | (ns)     |
|        |          |        | transistorů) |          |

2008-Kubátová

Y36SAP-Logické obvody

30

| Inverter | $x \longrightarrow F$     | F = x'           | 2  | 1   |
|----------|---------------------------|------------------|----|-----|
| Driver   | $x \longrightarrow F$     | F = x            | 4  | 2   |
| AND      | x $y$ $F$                 | F = xy           | 6  | 2.4 |
| OR       | x $y$ $F$                 | F = x + y        | 6  | 2.4 |
| NAND     | $y$ $\longrightarrow$ $F$ | F=(xy)'          | 4  | 1.4 |
| NOR      | $x \longrightarrow F$     | F = (x + y)'     | 4  | 1.4 |
| XOR      | $x \longrightarrow F$     | $F = x \oplus y$ | 14 | 4.2 |
| XNOR     | $x \longrightarrow p$     | $F = x \odot y$  | 12 | 3.2 |

| 3-input AND  | $\begin{array}{c} x \\ y \\ z \end{array}$                       | F = xyz              | 8  | 2.8 |
|--------------|------------------------------------------------------------------|----------------------|----|-----|
| 4-input AND  | $\begin{bmatrix} x \\ x \\ z \end{bmatrix}$ $F$                  | F = xyzw             | 10 | 3.2 |
| 3-input OR   | $\begin{array}{c} x \\ y \\ z \end{array}$                       | F = x + y + z        | 8  | 2.8 |
| 4-input OR   | X $X$ $Y$ $Z$ $F$                                                | F = x + y + z + w    | 10 | 3.2 |
| 3-input NAND | $\begin{array}{c} x \\ y \\ z \end{array}$                       | F = (xyz)'           | 8  | 1.8 |
| 4-input NAND | $\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix}$ $\rightarrow F$ | F = (xyzw)'          | 10 | 2.2 |
| 3-input NOR  | $\begin{array}{c} x \\ y \\ z \end{array}$                       | F = (x + y + z)'     | 8  | 1.8 |
| 4-input NOR  | $\begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix}$ $\rightarrow F$ | F = (x + y + z + w)' | 10 | 2.2 |









#### Hodinová frekvence=1/maxWi

- W1 ze vstupu X na vstup KO, zpoždění na hradlech + nestabilita vstupů + předstih
- W2 výstup KO výstup Y, zpoždění na hradlech
   + zpoždění KO + požadavek na stabilitu výstupu
- W3 ze vstupu X na výstup Y, zpoždění na hradlech + nestabilita vstupů + požadavek na stabilitu výstupu
- W4 mezi dvěma KO, zpoždění na hradlech + předstih + zpoždění KO (Clock-to-Q)

2008-Kubátová

Y36SAP-Logické obvody

37



