ELEC 533: Homework 1

Due on Please check the Course Timetable

Professor Behnaam Aazhang

Problem 1

Using axioms of probability prove the following properties of probability

i)
$$A_1, A_2, ..., \in \mathcal{F} \Rightarrow P\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} P(A_i)$$

ii) If $A_n \nearrow A$ then $P(A_n) \to P(A)$

iii) If
$$P(B) > 0$$
 and $A_1, A_2, ... \in \mathcal{F}$ and $A_i A_j = \emptyset$ for $i \neq j$ then $P\left(\bigcup_{i=1}^{\infty} A_i | B\right) = \sum_{i=1}^{\infty} P(A_i | B)$

Problem 2

Show that the following are valid probability mass functions

i)
$$p_X(a) = \begin{cases} \frac{n!}{(n-a)!a!} \Theta^a (1-\Theta)^{n-a} &: a = 0, 1, 2, ..., n \quad 0 \le \Theta \le 1\\ 0 &: otherwise \end{cases}$$

ii)
$$p_X(a) = \begin{cases} \frac{e^{-\lambda}\lambda^a}{a!} &: a = 0, 1, 2, \dots \\ 0 &: otherwise \end{cases} \lambda \geq 0$$

Problem 3

Suppose X is a random variable with cdf F_X . Prove the following

- i) F_X is nondecreasing
- ii) $\lim_{a\to\infty} F_X(a) = 1$
- iii) $\lim_{a \to -\infty} F_X(a) = 0$
- iv) F_X is right continuous

v)
$$P(a < X \le b) = F_X(b) - F_X(a) \text{ if } b > a$$

vi)
$$P(X = a) = F_X(a) - \lim_{\substack{b \to a \\ b < a}} F_X(b)$$

vii) Find expressions for $P(a \le X \le b)$, $P(a \le X < b)$ and P(a < X < b) in terms of F_X

1