Advanced Course in Marketing 06 Descriptive statistics and data visualization

Takumi Tagashira

Email: takumi.tagashira@r.hit-u.ac.jp

Data summary

- This session focuses on data summary and visualization.
- We will use a package called "ggplot2" for visualization.
 - Included in tidyverse
- Download idpos_customer.csv data via manaba.

```
library(tidyverse)
idpos_cust <- readr::read_csv("data/idpos_customer.csv")</pre>
```

Data type and summary

- Quantitative variable
 - Sensible to calculation
 - E.g. Ratio scale (Interval scale)
- Categorical variable
 - Identification and classification of objects
 - Not sensible calculation
 - e.g. Nominal scale, ordinal scale
- We should carefully select methods to summarize data based the variable types

Quantitative variable and summary

- We often use descriptive statistics for quantitative variables.
 - Cross tabulation tables are often used for categorical variables
- Various measurements of descriptive statistics can be shown with summary() function.

summary(idpos_cust)

Interpretation of Summary() results

- Frequency
 - minimum: 1, maximum: 31, mean: 2.017
- Monetary
 - minimum: 1,503, maximum: 305,665, mean: 16622
- Recency
 - minimum: 1, maximum: 31, mean: 13.95
- R reports DS of other variables automatically, but there are not that informative.
 - It is important to ensure the variable types before the analysis.
- For qualitative variables, DS is informative.
 - We can check whether illogical or unnatural observations are included.

Descriptive statistics: Numerical approach

- We can also numerically summary the data.
- Calculating a value that represents the distribution.
 - Median
 - Mean
 - Variance

Median

- Median is a middle value separating the greater and lesser halves of a dataset.
- e.g. In a dataset [1, 3, 2, 5, 4], the median is 3.
- Put them in order: 1, 2, 3, 4, 5 and the middle number (median) is 3.

Mean

- The most useful representative value.
- Mean of variable $x(x_1,...,x_n)$ can be defined as:
- $\bar{x} = \frac{1}{n} \sum_{i} x_i$
- Mean represents center of distribution.
- Sum of deviation from mean is 0.
- $\bullet \sum_{i} (x_i \bar{x}) = 0$
- Is mean everything?

Is mean everything?

- Suppose the followings are test scores in a class:
 - Mathematics: (3, 3, 5, 5, 5, 5, 5, 7, 7)
 - Japanese: (2, 3, 3, 5, 5, 5, 7, 7, 8)
 - Let the above vectors are the scores of Maths (x) and Japanese (y) exams among 9 students (Full marks: 10).
- The mean values of both exams are 5.
 - \bar{x} = 19(3+3+5+5+5+5+5+7+7)=5
 - \bar{y} = 19(2+3+3+5+5+5+7+7+8)=5
- x distributes from 3 to 7.
- y distributes from 2 to 8.

Measures of dispersion

- Measurements shows how 'spread out' a set of data is.
 - Variance
 - Standard deviation
- Degree of 'spread out': Larger deviation from mean represents more 'spread out' situation.
- Lower deviation means that observations are distributed near mean.

Variance

- Deviation from mean: $x_i \bar{x}$
- Sum of deviation from mean is 0.
 - → Positive and negative values off-set each other.
- Why don't we take quadratic value of deviation? That value increases as the sample size increase.
 - Dividing the value by sample size n (or n-1).

•
$$S^2 = \frac{1}{n} \sum_i (x_i - \bar{x})^2$$

- S²: Variance of x
- Variance is squared value and the unit of variance is different from original value. Square root of variance ($\sqrt{\cdot}$) is called standard deviation.

Descriptive statistics in R

- Specifying the first column of dataset X.
 - Median: median(X[,1])
 - Mean: mean(X[,1])
 - Variance: var(X[,1])
 - R returns the calculation of variance with $\frac{1}{(n-1)}\sum_i (x_i \bar{x})^2$.
 - This definition is called unbiased sample variance and has statistically desirable features.
 - Standard deviation: sd(X[,1])
- When specifying with a variable name (variablename) in the dataset X:
 - X\$variablename
 - E.g., Mean: mean(X\$variablename)

```
mean(idpos_cust$monetary)
[1] 16622.26
```

Summary of categorical variables

- Descriptive statistics are not informative for categorical variables.
 - We often use frequency of occurrence or cross tabulation tables.
- table() is the fundamental function
- with() function provides better presentation.
 - E.g. with(data, table(varname))

```
table(idpos_cust$gender)
with(idpos_cust, table(gender))
```

Cross turbulence table

 Cross tabulation table can be created by specifying two variables in table() function.

```
with(idpos_cust, table(gender,decile_rank))
```

- We can summarize information of the observations that match a certain condition.
 - Checking the gender ratio within the decile rank ten customers.

```
idpos_cust %>%
  filter(decile_rank == 10) %>%
  with(table(gender))
```

Category and quantitative variables

- Summarizing quantitative variables based on a focal categorical variable.
- You have already conducted this procedure.
 - Combination of group_by() and summarize()

Data visualization

Introducing several graphs

- This session introduces visualization methods by using a package called "ggplot2" that is included in tidyverse.
- Graphs:
 - Histogram
 - Boxplot
 - Violin plot
- We will use diamonds dataset (included in ggplot2).

head(diamonds)

ggplot() function

- ggplot() in ggplot2 is the fundamental function.
- ggplot()arguments:
 - 1. data:referred dataframe
 - 2. mapping: Arguments specifying the relationship between variables used and the figure to be displayed.
 - aes() function (aesthetics) connects variables and plotting factors within ggplot commands.
- Adding a layer to an object created by ggplot() function.
- Graphical layers are specified as geom_... (geometry).
 - E.g. geom_point(): scatter plot、geom_histogram():histogram

Histogram

- Visualizing the distribution of data in a discretized form.
 - A continuous variable is divided into several classes
- Since only one variable is used, thus aes should specify only x.
- geom_histogram() function is used.
- Visualizing the frequency of the price range of diamonds.

```
p1 <- ggplot(diamonds, mapping = aes(x = price))
p1 + geom_histogram() +
  labs(x = "Price", y = "Frequency",
        title = "Histogram1: Diamond price")</pre>
```

Example: histogram

Density plot

- geom_density() can show a density.
- "fill" argument specifies the color to paint.

```
p1 + geom_density(fill = "black", alpha = 0.5) +
  labs(x = "Price", y = "Frequency",
      title = "Density1: Diamond price")
```


Boxplot

- Boxplot is a graphical representation of quartiles, quartile ranges.
- Quartiles represent the values that divide data into four equal part.
 - First quartile: Q1, Second quartile: Q2, Third quartile: Q3, Maximum value: Q4
 - Quartile range: A range between from Q3 to Q1.
- Checking price distribution for each cut quality (Fair, Good, Very Good, Premium, Ideal).

Boxplot

Violin plot

- Violin plots contain more detailed information about the distribution than box-plot.
- Using geom_violin() function
- Width of the plot shows the frequency of occurrence.
- If a plot distributes wide horizontally, it can be interpreted as most data gathered in a narrow area.

```
p2 + geom_violin() +
  geom_boxplot(fill = "gray", width = 0.1) +
  labs(x = "Cut", y = "Price",
      title = "Boxplot1: Price of diamond")
```

Violin plot

Relationship between two variables

Relationship between two variables

- Graphical approach
 - Scatter plot
- Numerical approach
 - Covariance: $S_{xy} = \frac{1}{n} \sum (x_i \bar{x})(y_i \bar{y})$
 - Correlation: $\rho_{xy} = \frac{S_{xy}}{\sqrt{S_x^2} \cdot \sqrt{S_y^2}}$
 - S_x^2 and S_y^2 are variance of x and y respectively
 - i.e. Standardized value of covariance

Standardization

- Standard deviation represents the scatter of distribution, and its unit is the same as original value.
- Z (standardized value of x) is defined as follows.

•
$$Z_{x} = \frac{(x_i - \bar{x})}{\sqrt{S^2}}$$

- Standardized value contributes to compare values of different variables.
- Z indicates the relative position of each observation from mean per standard deviation.

Standardization

- Standard deviation represents the scatter of data and its unit is the same as original value.
- Z (standardized value of x) is defined as follows.

•
$$Z_{x} = \frac{(x_i - \bar{x})}{\sqrt{S^2}}$$

- Standardized value contributes to compare values of different variables.
- Mean of Z is 0 and the standard deviation is 1.

Standardization

• Standard scores show relative position of the individuals in the data.

Correlation coefficient

- Interpretation of covariance is not easy:
 - \rightarrow Correlation coefficients (ρ)
- Correlation coefficient ρ takes value between $-1 \le \rho \le 1$.
 - Positive correlation $\leftrightarrow 0 \le \rho_{xy} \le 1$
 - Uncorrelated $\leftrightarrow \rho_{xy} = 0$
 - Negative correlation $\leftrightarrow -1 \le \rho_{xy} \le 0$

Correlation and scatter plot

- The following dataset represents a correlation coefficient of -1.
- All the observations follows a linear function (y = -2x + 10).
- Correlation indicates how the observations close to linear function.

		2			
\overline{x}	-3	-1 12	0	2	5
y	16	12	10	6	0

Correlation and scatter plot

What's the correlation coefficient of this dataset?

Correlation and scatter plot

• Following dataset represents: $\rho = 0$

• The correlation equals zero, but can you conclude that there are not inter-related?

•
$$y = x^2$$

	1	2	3	4	5
\overline{x}	-2	-1	0	1	2
y	4	1	0	1	4

Summary: correlation

- Correlation coefficient ρ takes value between $-1 \le \rho \le 1$.
 - Positive correlation $\leftrightarrow 0 \le \rho_{xy} \le 1$
 - Uncorrelated $\leftrightarrow \rho_{xy} = 0$
 - Negative correlation $\leftrightarrow -1 \le \rho_{xy} \le 0$
- Correlation represents linear relationship between two variables.
- Zero correlation coefficient does not mean there is no interrelation between variables.

R exercise

- Data: diamonds
- Calculating covariance and correlation

```
#Covariance
cov(diamonds$carat, diamonds$price)
[1] 1742.765

#Correlation
cor(diamonds$carat, diamonds$price)
[1] 0.9215913
```

• Correlation coefficient shows these two variables have strong linear relationship.

Scatter plot

Visualizing carat vs. price

Categorical variable and scatter plot

- Summarizing relationship between two numerical variables and a categorical variable.
 - E.g. Does the relationship between carat and price depend on cut quality?
- Approach:
 - 1. Painting different colors for each category within a same plot
 - Using the "color = categ_var" argument in "Mapping = aes()"
 - 2. Drawing different plots for each category
 - Using facet_grid() or facet_wrap()


```
p3 + geom_point() + facet_wrap(~cut) +
labs(x = "Carat", y = "Price",
title = "Scatter plot3: Cut vs.Carat : Price")
```



```
p3 + geom_point() + facet_grid(~ cut) +
  labs(x = "Carat", y = "Price",
      title = "Scatter plot4: Cut vs.Carat : Price")
```


Pipes and ggplot2

- Combination of pipe operators and ggplot2
 - E.g. Dividing observations into two groups:
 - 1.00 carat or more
 - 1.00 carat or less

Saving figure

- Save the created figures
- ggsave() function is used
 - Created figures should be defined as objects

```
ggsave(filename = "plot1.pdf",
plot = plot1, width = 10, height = 5, units = "cm")
```

- You can also save your figures cy clicking on the plots tab.
 - Plots -> Export -> Save as Image/ Save as PDF -> Directory -> File name

Exampled data for exercise

- tips_UTF.csv is a dataset of amounts of expense and tip in a restaurant.
- This dataset includes the following variables:
 - Total expense by a customer (total_bill)
 - Amount of tip by a customer (tips)
 - gender (sex)
 - if the customer smoke or not (smoker)
 - day (day)
 - time-zone of the visit (time)
 - number of people as a group (size)

Exercise

- Download "tips_UTF.csv" in your data folder and conduct the following analyses.
 - 1. Draw histograms of total bill and tips.
 - 2. Calculate mean values of total bill and tips.
 - 3. Calculate variances of total bill and tips.
 - 4. Calculate the covariance and correlation of total bill and tips.
 - 5. Draw a scatterplot of total bill and tips
- No submission required.