PROBABILITY AND STATISTICS (UCS401)

Lecture-18

(Conditional mean and variance, Correlation and regression)
Two-dim. r.v.'s and Joint Distributions (Unit -V)

Dr. Rajanish Rai
Assistant Professor
School of Mathematics
Thapar Institute of Engineering and Technology, Patiala

Contents:

- Independent Random Variables
- Conditional Means
- Conditional Variances
- Examples

Independent Random Variables

Let (X,Y) be two dimensional random variable with joint probability function $f_{(X,Y)}(x,y) = P[X = x, Y = y]$. Then (X,Y) is said to be independent if

$$f_{(X,Y)}(x,y) = f_X(x).f_Y(y)$$

Note: If X,Y are independent, then

- a) $f_{X/Y}(x/y) = f(x)$,
- $b) \quad f_{Y/X}(y/x) = f(y),$

Example 1: Let X,Y have following joint probability distribution, $f_{(X,Y)}(x,y)$. Show that X,Y are independent.

	X=2	X= 4
Y=1	0.10	0.15
Y=3	0.20	0.30
Y=5	0.10	0.15

Solution:

r\X	2	4	P(Y=y)
1	0.10	0.15	0.25
3	0.20	0.30	0.50
5	0.10	0.15	0.25
P(X = x)	0.40	0.60	dilipsoon

From the above table we can see that

$$f_X(x).f_Y(y) = P(X=x).P(Y=y) = f_{(X,Y)}(x,y)$$
 for each pair of values (x,y) .

e.g for Pair (2,1), we have $f_{(X,Y)}(2,1)$ =0.10 and P(X=2)=0.40 and P(Y=1)=0.25

$$f_X(x). f_Y(y) = P(X=x).P(Y=y)=0.25*0.40=0.10= f_{(X,Y)}(x,y)$$

Example 2: If X,Y have the joint PDF

$$f(x) = \begin{cases} x + y, & 0 < x < 1, & 0 < y < 1 \\ 0 & otherwise \end{cases}$$

Check whether X and Y are independent or not.

Solution: The marginal density function of X is given by

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_0^1 (x + y) dy = x + \frac{1}{2},$$
 $0 < x < 1$

The marginal density function of Y is given by

all density function of Y is given by
$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx = \int_0^1 (x+y) dx = y + \frac{1}{2}, \qquad 0 < y < 1$$

Now,

$$f(x).f(y) = (x+1/2)(y+1/2) \neq f(x, y)$$

Ans: X and Y are not independent.

Conditional Mean and Variance

If (X,Y) is a two-dimensional random variable, then the mean or expectation of (X,Y) is defined as follows

Case 1: when X,Y are discrete random variables, then

$$E(X) = \sum_{x_i} x_i . P(X = x_i)$$

$$E(Y) = \sum_{y_j}^{t} y_j . P(Y = y_j)$$

$$E(X/Y) = \sum_{x_i} x_i.P(X = x_i/Y = y_j)$$

$$E(Y/X) = \sum_{y_j} y_j.P(Y = y_j/X = x_i)$$

$$E(XY) = \sum_{x_i} \sum_{y_j} x_i y_j P(X = x_i, Y = y_j)$$

Case 2: When X,Y are continuous random variables, then

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy$$

Conditional Expected Values

$$E(X/Y) = \int_{-\infty}^{\infty} x f(x/y) dx$$

$$E(Y/X) = \int_{-\infty}^{\infty} y f(y/x) dy$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y) \, dx \, dy$$

Conditional Variance: If (X,Y) is a two-dimensional random variable, then the conditional variance of (X,Y) is

$$Var(Y/X) = E(Y^2/X) - [E(Y/X)]^2$$

$$Var(X/Y) = E(X^2/Y) - [E(X/Y)]^2$$

Notes: If X and Y are independent random variables, then

$$E(X/Y) = E(X)$$

$$E(Y/X) = E(Y)$$

$$E[E(Y/X)] = E(Y)$$

$$E[E(X/Y)] = E(X)$$

Example 1: The joint distribution of X and Y is given by

$$f(x, y) = \frac{x+y}{21}, x = 1,2,3, y = 1,2$$

Find the marginal distributions of X and Y. Find the mean of X and Y also.

Solution:

X Y	1	2 .	$P(X=x_i)$	From the
1	$\frac{2}{21}$	3 21	5 21	P(X=1)
2	3 21	4 21	$\frac{7}{21}$	P(X=2)
3	$\frac{4}{21}$	5 21	$\frac{9}{21}$	P(X=3)
$P(Y=y_j)$	9 21	12 21	1 =1	
	P(Y=1)	P(Y=2)	- ver transifi	hard T.

The marginal distributions of X are

$$P(X=1) = \frac{5}{21}, P(X=2) = \frac{7}{21}, P(X=3) = \frac{9}{21}$$

The marginal distributions of Y are

$$P(Y = 1) = \frac{9}{21}, \ P(Y = 2) = \frac{12}{21}$$

$$E(X) = \sum_{x=1}^{3} xP(X = x) = 1P(X = 1) + 2P(X = 2) + 3P(X = 3)$$

$$= \frac{5}{21} + \frac{14}{21} + \frac{27}{21} = \frac{46}{21}$$

$$E(Y) = \sum_{y=1}^{2} yP(Y = y) = 1P(Y = 1) + 2P(Y = 2)$$

$$= \frac{9}{21} + \frac{24}{21} = \frac{33}{21} = \frac{11}{7}$$

Example 2: The joint PDF of (X,Y) is given by

$$f(x,y) = \begin{cases} 24xy, & 0 < x, \\ 0 & otherwise \end{cases}$$

Find the conditional mean and variance of Y given X.

Solution:

Given:
$$f(x, y) = 24xy$$
, $x > 0$, $y > 0$, $x + y \le 1$

$$f_{X}(x) = \int_{0}^{1-x} 24xy \, dy = 24x \int_{0}^{1-x} y \, dy,$$

$$= 24x \left[\frac{y^{2}}{2} \right]_{0}^{1-x} = 24x \frac{(1-x)^{2}}{2}$$

$$= 12x (1-x)^{2}, \quad 0 < x < 1$$

$$f(y/x) = \frac{f(x, y)}{f_{X}(x)} = \frac{2y}{(1-x)^{2}}, \quad 0 < y < 1-x$$

$$E(Y/X) = \int_{0}^{1-x} yf(y/x)dy$$

$$= \int_{0}^{1-x} \frac{2y^{2}}{(1-x)^{2}} dy = \frac{2}{(1-x)^{2}} \left[\frac{y^{3}}{3} \right]_{0}^{1-x} = \frac{2}{3}(1-x), \quad x > 0$$

$$E(Y^{2}/X = x) = \int_{0}^{1-x} y^{2} f(y/x)dy$$

$$= \int_{0}^{1-x} y^{2} \frac{2y}{(1-x)^{2}} dy = \frac{2}{(1-x)^{2}} \left[\frac{y^{4}}{4} \right]_{0}^{1-x} = \frac{1}{2}(1-x)^{2}, \quad x > 0$$

$$Var(Y/X) = E(Y^{2}/X) - [E(Y/X)]^{2}$$

$$= \frac{1}{2}(1-x)^{2} - \frac{4}{9}(1-x)^{2} = \frac{1}{18}(1-x)^{2}, \quad x > 0$$

Correlation and regression

Covariance: Let X and Y be two random variables defined on the same probability space. The

covariance of X and Y, denoted as cov(X, Y), is defined as

$$cov(X,Y) = E[\{X - E[X]\}\{Y - E[Y]\}]$$
 OR
$$cov(X,Y) = E[XY] - E[X].E[Y]$$

Correlation coefficient: The correlation coefficient of two random variables X and Y, denoted by $\rho(X,Y)$,

is defined as
$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{var[X].var[Y]}} = \frac{cov(X,Y)}{\sqrt{\sigma_X.\sigma_Y}}$$
, where $\sigma_X > 0$ and $\sigma_Y > 0$.

It can be verify that $-1 \le \rho(X, Y) \le 1$.

Two random variables X and Y are uncorrelated if

$$\rho(X,Y) = 0 \quad or \quad cov(X,Y) = 0$$

⇒ X and Y are independent random variables.

Correlation and regression contd...

In particular, $E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \cdot f_{X,Y}(x,y) \, dxdy$, $E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot f_{X,Y}(x,y) \, dxdy$ and $E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \cdot f_{X,Y}(x,y) \, dxdy$.

Conditional Expectation: Let (X,Y) be a two dimensional continuous random variable with joint continuous density function $f_{X,Y}(x,y)$, then the conditional expectation of g(X,Y) given X=x, denoted by E[g(X,Y)|X=x], is defined as $E[g(X,Y)|X=x]=\int_{-\infty}^{\infty}g(x,y).f_{Y|X}(y|x)\,dy$.

In particular, $E[Y|X=x] = \int_{-\infty}^{\infty} y \cdot f_{Y|X}(y|x) dy$.

Regression curve:

- 1. The relation y = E[Y|X = x] is called the regression curve of Y on X = x.
- 2. The relation x = E[X|Y = y] is called the regression curve of X on Y = y.

Example 2. Let the joint p.d.f. of X and Y be $f(x,y) = \begin{cases} (x+y), & 0 \le x \le 1, & 0 \le y \le 1 \\ 0, & otherwise. \end{cases}$

Find (i) $P\left[0 < X < \frac{1}{2}, 0 < Y < \frac{1}{4}\right]$, (ii) E[X], E[Y], E[XY] and E[X + Y] (iii) $\sigma(X, Y)$.

Solution: We have $P\left[0 < X < \frac{1}{2}, 0 < Y < \frac{1}{4}\right] = \int_0^{\frac{1}{2}} \left[\int_0^{\frac{1}{4}} (x + y) \, dy \right] dx$

$$= \int_0^{1/2} \left| xy + \frac{1}{2} y^2 \right|_0^{1/4} dx = \int_0^{1/2} \left(\frac{1}{4} x + \frac{1}{32} \right) dx = \frac{3}{64} \,.$$

Now $E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot f(x, y) \, dx dy = \int_{0}^{1} \int_{0}^{1} x \cdot (x + y) \, dx dy = \int_{0}^{1} \left(x^{2} + \frac{1}{2}x\right) dx = \frac{7}{12}$

Similarly, $E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \cdot f(x, y) dxdy = \int_{0}^{1} \int_{0}^{1} y \cdot (x + y) dxdy = \frac{7}{12}$.

Now $E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \cdot f(x, y) \, dx dy = \int_{0}^{1} \int_{0}^{1} xy \cdot (x + y) \, dx dy = \frac{1}{3}$.

$$E[X+Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) \cdot f(x,y) \, dx dy = \int_{0}^{1} \int_{0}^{1} (x+y) \cdot (x+y) \, dx dy = \frac{7}{6}.$$

We have $cov[X, Y] = E[XY] - E[X] \cdot E[Y] = -\frac{1}{144}$.

$$E[X^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 \cdot f(x, y) \, dx dy = \int_{0}^{1} \int_{0}^{1} x^2 \cdot (x + y) \, dx dy = \frac{5}{12}.$$

$$E[Y^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y^2 \cdot f(x, y) \, dx dy = \int_{0}^{1} \int_{0}^{1} y^2 \cdot (x + y) \, dx dy = \frac{5}{12}.$$

Now
$$var[X] = E[X^2] - (E[X])^2 = \frac{5}{12} - (\frac{7}{12})^2 = \frac{11}{144}$$
.

$$var[Y] = E[Y^2] - (E[Y])^2 = \frac{11}{144}$$

Hence
$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{var[X].var[Y]}} = \frac{\frac{1}{144}}{\sqrt{\frac{11}{144}\frac{11}{144}}} = -\frac{1}{11}$$
.

THANK YOU