Binärzahl dekrementieren

(Binärzahl dekrementieren)

Stichwörter: Turing-Maschine

Binärzahl dekrementieren

Sei $\Sigma = \{0,1\}$ und $\Gamma = \{0,1,\square\}$. Konstruiere eine Turingmaschine M, die eine in Binärform gegebene, natürliche Zahl $(\neq 0)$ um 1 dekrementiert (und wieder in Binärform ausgibt). Der Schreib-/Lesekopf steht zu Beginn der Berechnung auf dem ersten Leerzeichen links von der Eingabe und soll auch am Ende wieder dort stehen. Beachte, dass führende Nullen in der Eingabe/Ausgabe nicht vorkommen dürfen.

Lösungsvorschlag

dezimal	binär
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
16	10000

Die Maschine geht zunächst ans rechte Ende des Wortes, dann invertiert sie alle 0 Bits, bis sie auf eine 1 trifft. Diese wird durch 0 ersetzt. Damit ist der Dekrementierungsvorgang beendet. Nun sucht Sie das linke Ende des Wortes und löscht eventuell entstandene führende Nullen. Trifft Sie dabei auf das Leerzeichen, so war die Ausgabe die Zahl 0 und diese wird wieder aufs Band geschrieben. Insgesamt ergibt sich

$$TM = (\{z_0, z_1, z_2, z_3, z_4, z_5\}, \Sigma, \Gamma, \delta, z_0, \square, \{z_5\})$$

mit unten angegebener Übergangsfunktion:

δ	0	1	d	Kommentar	
z_0	Ø	Ø	$(z_1: \square, R)$	Gehe auf erstes Zeichen des Wortes	
z 1	$(z_1:0,R)$	$(z_1: 1, R)$	$(z_2: \square, L)$	Gehe ans rechte Ende des Wortes	
z2	$(z_2:1,L)$	$(z_3:0,L)$	Ø	Flippe alle 0 Bits bis die erste 1 erreicht wir	d, setzte di
z 3	$(z_3:0,L)$	$(z_3:1,L)$	$(z_4:\Box,R)$	suche linkes Ende des Wortes	
z4	$(z_4:\square,R)$	$(z_5:1,L)$	$(z_5:0,L)$	lösche führende Nullen , schreibe evtl. 0 au	fs Band
z 5	Ø	Ø	Ø	Endzustand	

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Ahifz611c

Die Bschlangaul-Sammlung

Hermine Bschlangauland Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.

Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike 4.0 International-Lizenz.

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TEX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Module/70_THEO/10_Formale-Sprachen/30_Typ-1_Kontextsensitiv/Turing-Maschine/Aufgabe_Binaerzahl-dekrementieren. tex