

LATTICE

P2 Which of the figures (b), (c), (d) can be a sublattice of (a)?

Q3 Find the complement of each element in Do where Dn represents the set of all positive divisons of n under the relation of divisibility.

Q4 Prove or disprove that a sublattice of a bounded lattice is also bounded.

III. NUMBER THEORY
OI. Evaluate @ 5 mod 13 & 70 (mod 101)
Q_2 , a Show that $2222 + 5555$ is divisible by 7. a Show that $111^{333} + 333^{11}$ is divisibly by 7.
\$\Q3. @ Find the last digit of 7313 6) Find the last two digits of 13
94 Using Euclid's Algorithm, find z and y satisfying the following. (a) $gcd(24, 138) = 24z + 13sy$ (b) $gcd(1769, 2378) = 1769z + 2378y$
(a) $gcd(24, 138) = 242 + 1384$
(b) geq(1/69, 23/8) = 1/69x + 23/8y
Q5 a) Using Sieve of Eratosthenes find the primes upto 80. b) Find prime factors of 100, 641, 100, \$6(360)
Q6. Solve the simultaneous congruences
$\chi \equiv 2 \pmod{3}$ $\chi \equiv 5 \pmod{5}$
$\chi \equiv 3 \pmod{5}$ $\chi \equiv 8 \pmod{7}$
$n \equiv 7 \pmod{7}$ $a \equiv 2 \pmod{9}$
97. @ Find the quadratic residues of 19,23.
(b) Compute (i) $\left(\frac{27}{31}\right)$ (ti) $\left(\frac{-27}{31}\right)$