



# **NORTH SOUTH UNIVERSITY**

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING SPRING 2022

# CSE 331/ EEE 332 / EEE 453

Microprocessor Interfacing & Embedded System

# **Project Report**

'Analysis of Power Consumption of different Microcontrollers'

Faculty: Dr. Dihan Md. Nuruddin Hasan

Section: 4
Group: 2

| Names and IDs of the Group Member | ers: | Remarks: |  |  |
|-----------------------------------|------|----------|--|--|
|                                   |      |          |  |  |
|                                   |      |          |  |  |
|                                   |      |          |  |  |
|                                   |      |          |  |  |
|                                   |      |          |  |  |

# **Table of Contents**

| 1. Introduction                                   | 4  |
|---------------------------------------------------|----|
| 1.1 Main Objective                                | 4  |
| 2. Method of Derivation                           | 5  |
| 2.1 Truth Table                                   | 5  |
| 2.2 Boolean Expression using Karnaugh Map (K-Map) | 5  |
| 2.3 LogiSim Simulation                            | 6  |
| 3. Circuit Design & Simulation                    | 7  |
| 3.1 Circuit Design Procedure                      | 7  |
| 3.2 Simulation Procedure                          | 7  |
| 3.3 Program Logic Flow Chart                      | 8  |
| 3.4 Arduino Uno R3 Simulation                     | 9  |
| 3.5 Arduino Nano Simulation                       | 9  |
| 3.6 NodeMCU V3 Schematic                          | 10 |
| 4. Circuit Operation                              | 11 |
| 4.1 Working Principle                             | 11 |
| 5. Hardware Implementation                        | 12 |
| 5.1 Equipment & Components Used                   | 12 |
| 5.2 Arduino Uno R3 Implementation                 | 12 |
| 5.3 Arduino Nano Implementation                   | 13 |
| 5.4 NodeMCU V3 Implementation                     | 13 |
| 6. Data Collection & Graphical Analysis           | 14 |
| 6.1 Data Collection Procedure*                    | 14 |
| 6.2 IDLE State Power Consumption                  | 16 |
| Graphical Analysis                                | 16 |
| 6.3 Input Side Power Consumption                  | 17 |
| Graphical Analysis:                               | 20 |
| 6.4 Total System Power Consumption                | 21 |
| Graphical Analysis                                | 24 |
| 6.5 Total System Power Consumption without LEDs   | 25 |
| Graphical Analysis                                | 28 |
| 7. Question & Answers                             | 29 |
| 7.1 Arduino Uno R3                                | 29 |
| 7.2 Arduino Nano                                  | 30 |
| 7.3 NodeMCU V3                                    | 31 |
| 8. References                                     | 32 |

| Appendix A: Software Specifications | 33 |
|-------------------------------------|----|
| Arduino IDE                         | 33 |
| Proteus 8 Professional              | 33 |
| LogiSim                             | 33 |
| Appendix B: Hardware Specification  | 34 |
| Arduino Uno R3                      | 34 |
| Arduino Nano                        | 36 |
| NodeMCU V3                          | 38 |
| ANENG AN8009 Multimeter             | 41 |
| Variable Breadboard Power Supply    | 42 |
| Appendix C: Codes                   | 43 |
| Arduino Uno R3                      | 43 |
| Arduino Nano                        | 45 |
| NodeMCU V3                          | 47 |
| Appendix D: Resources               | 49 |
| Project Demonstration               | 49 |
| Hex Codes                           | 49 |
| LogiSim File                        | 49 |
| Proteus Files                       | 49 |

# 1. Introduction

### 1.1 Main Objective

- The main objective of this project was to analyze the power consumption of different microcontroller boards (which are commercially available in the market.) for a special case.
- The **special case** is to apply a **4 bit logic input** in the microcontrollers.
- The microcontroller then would apply an **encryption algorithm** according a given **truth table** (**Table 2.1.1**) and give **a 4 bit output** which can be displayed with **LEDs**.
- The **scope** of this experiment is to observe the current drawn by the circuit for each possible logic applied to the **input** and the **total system**. As for 4 bit input, there are **16 possible inputs** (from 0000 to 1111) and current in the circuit is measured for all these combinations. This is done for a minimum of **3 microcontroller boards** with different specification.
- The **data** is collected for all the boards and a **graphical analysis** was done to build a **comparison** between the three boards.
- To get **valid results** all the input conditions of the microcontrollers must be kept **constant**. For example, a constant power supply to the circuit.

# 2. Method of Derivation

## 2.1 Truth Table

|    | Input     |           |    |    | Out | put |    |
|----|-----------|-----------|----|----|-----|-----|----|
| 10 | <b>I1</b> | <b>I2</b> | 13 | 00 | 01  | 02  | 03 |
| 0  | 0         | 0         | 0  | 1  | 1   | 0   | 1  |
| 0  | 0         | 0         | 1  | 1  | 1   | 0   | 1  |
| 0  | 0         | 1         | 0  | 0  | 0   | 0   | 1  |
| 0  | 0         | 1         | 1  | 0  | 0   | 0   | 0  |
| 0  | 1         | 0         | 0  | 0  | 0   | 1   | 1  |
| 0  | 1         | 0         | 1  | 0  | 0   | 1   | 0  |
| 0  | 1         | 1         | 0  | 1  | 1   | 1   | 1  |
| 0  | 1         | 1         | 1  | 0  | 0   | 1   | 0  |
| 1  | 0         | 0         | 0  | 1  | 0   | 1   | 1  |
| 1  | 0         | 0         | 1  | 1  | 0   | 0   | 0  |
| 1  | 0         | 1         | 0  | 0  | 0   | 1   | 0  |
| 1  | 0         | 1         | 1  | 0  | 0   | 1   | 1  |
| 1  | 1         | 0         | 0  | 0  | 0   | 0   | 1  |
| 1  | 1         | 0         | 1  | 0  | 1   | 1   | 0  |
| 1  | 1         | 1         | 0  | 0  | 0   | 1   | 1  |
| 1  | 1         | 1         | 1  | 1  | 0   | 1   | 1  |

Table 2.1.1: Truth Table

# 2.2 Boolean Expression using Karnaugh Map (K-Map)

We have to derive the **Boolean expression** for the outputs according to the Truth Table (**Table 2.1.1**). So for each output we will get one Boolean expression. The Boolean expression were derive using **K-map**.

The Boolean expressions are:

$$00 = (I1 + I2')(I1' + I2)(I0 + I2' + I3')(I0' + I2' + I3)$$
  
$$01 = (I0'.I1'.I2') + (I0'.I1.I2.I3') + (I0.I1.I2'.I3)$$

$$02 = (I0'.I1) + (I1.I3) + (I0.I2) + (I0.I1'.I3')$$

$$\mathbf{03} = (\mathbf{I0'}.\mathbf{I3'}) + (\mathbf{I2'}.\mathbf{I3'}) + (\mathbf{I1}.\mathbf{I3'}) + (\mathbf{I0'}.\mathbf{I1'}.\mathbf{I2'}) + (\mathbf{I0}.\mathbf{I2}.\mathbf{I3})$$

## 2.3 LogiSim Simulation

To **confirm** that the Boolean expressions derived are working, we build the logic circuit in *LogiSim* (specification in **Appendix A**) and tested the expressions. And the expressions are working fine. These expression will be implemented in the microcontroller.



Figure 2.2.1: Logic Circuit for the derived Boolean Expressions.

# 3. Circuit Design & Simulation

### 3.1 Circuit Design Procedure

Every commercial microcontroller boards have some specific number of **General Purpose Input Output (GPIO)** pins which can be used to handle digital inputs and outputs. Some GPIO pins are **Digital** & a few are **Analog**. We will be using the digital GPIO pins. For digital I/O the pins can operate at only two states: **Logic 1 (High)** & **Logic 0 (Low)**.

### Circuit Connection Methodology:

- A single 5V constant power supply is used to power the whole system.
- We need **8 Digital GPIO pins** of the microcontroller: **4 for digital input** & **4 for digital output**.
- We connected 4 input pins with **4 toggle switches** (4 bit dip switch) with 4 **pull down resistors** (10 K $\Omega$  each) to provide the logic input sequence.
- We connected **4 LEDs** to the 4 digital output pins.
- This procedure is followed for all the microcontroller boards being used for the experiment.

We have done the experiment using 3 microcontroller boards:

- 1. Arduino Uno R3 (16 MHz)
- 2. Arduino Nano (16MHz)
- 3. NodeMCU V3 (80MHz)

(Specifications of these boards are given in **Appendix B**).

#### 3.2 Simulation Procedure

Simulation is done using **Proteus 8 Professional** (**Appendix A**). We cannot simulate Arduino directly in Proteus, first we need to install some specific **libraries** which include the simulation libraries for both the Arduino Uno and Nano.

\*\*NodeMCU V3 cannot be simulated using Proteus as simulation library for the board is not present.\*\*

We have to write our **code** (all codes are given in **Appendix C**) to implement the Boolean expression that we have derived. This code will be converted into a **hex file** by the **Arduino IDE** (**Appendix A**) to be used to simulate the circuit in Proteus.

After performing the simulation of the two boards (Uno & Nano) we saw that our code was working fine and we were getting our desired output. The

snapshots of our circuit diagram for the three boards is given in the following section.

Now we will see the logic behind the codes.

## 3.3 Program Logic Flow Chart

All the codes for the design are given in **Appendix C**. All the codes for the three boards use this **same concept** and the codes for Arduino Uno and Nano are **exactly same**. A small difference is there for NodeMCU V3 in defining the pins.



Figure 3.3.1: Program Logic Flow Chart

# 3.4 Arduino Uno R3 Simulation



Circuit 3.3.1: Circuit diagram for Arduino Uno R3.

# 3.5 Arduino Nano Simulation



Circuit 3.4.1: Circuit diagram for Arduino Nano.

# 3.6 NodeMCU V3 Schematic



Circuit 3.5.1: Circuit diagram for NodeMCU V3.

# 4. Circuit Operation

### 4.1 Working Principle

- The whole system is powered by a  $5V(V_{cc})$  power supply.
- Current from the  $V_{cc}$  is branched off in **two directions**:
  - 1. Vin pin of the microcontroller boards.
  - 2. Into the Switch branch (Input Side of the Circuit).
- In the switch branch there are 4 sub branches which represent the 4 logic inputs and each branch has a **10** K $\Omega$  pull down resistor. The pull down resistors keep the **input at ground level** (Logic Low) when the switch is off.
- When the switch is **on**, current flows in all the 4 branches. **Internal resistance** of the input pins is much higher (in the range of  $\mathbf{M}\Omega$ ) than 10 K $\Omega$  so a **small current flows into the input pins**. The rest of the current flows through the resistor to ground.
- The output LEDs are connect to 4 GPIO pins of microcontrollers.
- Power delivered in the Vin pins is used to power the LEDs. (A small amount of current also goes into the board through the input pins)
- The microprocessor processes the input values received from the switch branch and delivers the appropriate logic to the output pins, hence light up the LEDs accordingly.

# 5. Hardware Implementation

# 5.1 Equipment & Components Used

| Serial No. | Name                                | Quantity    |
|------------|-------------------------------------|-------------|
| 1          | Variable DC Breadboard Power Supply | 1           |
| 2          | 12 Volt Adapter (To run the PS)     | 1           |
| 3          | Breadboard                          | 2           |
| 4          | 8-bit DIP Switch                    | 1           |
| 5          | Resistor (10 K $\Omega$ )           | 4           |
| 6          | LED (Red)                           | 4           |
| 7          | Arduino Uno R3                      | 1           |
| 8          | Arduino Nano                        | 1           |
| 9          | NodeMCU V3 (ESP8266)                | 1           |
| 10         | ANENG AN8009 Multimeter             | 1           |
| 11         | Jumper Wires                        | As required |

Table 5.1.1: Equipment & Components used.

# 5.2 Arduino Uno R3 Implementation



Circuit 5.2.1: Implementation of Arduino Uno and Current for 0010 as input

# 5.3 Arduino Nano Implementation



Circuit 5.3.1: Implementation of Arduino Nano and Current for **0010** as input.

<u>5.4 NodeMCU V3 Implementation</u>



Circuit 5.4.1: Implementation of NodeMCU V3 and Current for 0010 as input.

# 6. Data Collection & Graphical Analysis

#### 6.1 Data Collection Procedure\*

- 1. Since we are powering with a fixed 5V constant power supply, the power can be found by only measure the current using the formula:  $P = V \times I$
- 2. For rigorous analysis, current is measured in different situations and positions (explained below).
- 3. The most important focus was given to the fact that the experimental environment remains constant for all the boards.

#### **IDLE State Current:**

Follow the ammeter in the below circuit diagram.



Circuit 6.1.1: IDLE State Current Measurement

## **Input Side Current:**

Follow the ammeter in circuit diagram below.



Circuit 6.1.2: Input Side Current Measurement

# **Total System Current:**

Follow the ammeter in circuit diagram below.



Circuit 6.1.3: Total System Current Measurement

# **Total System Power without LEDs:**

Follow the ammeter in circuit diagram below.



Circuit 6.1.4: Total System without LEDs Current Measurement

#### 6.2 IDLE State Power Consumption

| CSE331.4 Group-2 (Spring 2022)                                                    |                |             |                 |                  |     |       |  |  |  |
|-----------------------------------------------------------------------------------|----------------|-------------|-----------------|------------------|-----|-------|--|--|--|
|                                                                                   | Idle Condition | Power Consu | ımption with Mi | nimum Code Runni | ing |       |  |  |  |
| Board Name MCU Frequency Current (mA) Avg Current (mA) Ref. Voltage (V) Power (mW |                |             |                 |                  |     |       |  |  |  |
|                                                                                   |                |             | 10.9            |                  |     |       |  |  |  |
| Arduino Nano                                                                      | ATmega328      | 16 MHz      | 11.1            | 11.0             | 5.0 | 55.0  |  |  |  |
|                                                                                   |                |             | 11.1            |                  |     |       |  |  |  |
|                                                                                   |                |             | 30.3            |                  |     |       |  |  |  |
| Arduino Uno R3                                                                    | ATmega328P     | 16 MHz      | 31.7            | 31.2             | 5.0 | 156.0 |  |  |  |
|                                                                                   |                |             | 31.5            |                  |     |       |  |  |  |
|                                                                                   |                |             | 81.2            |                  |     |       |  |  |  |
| NodeMCU V3                                                                        | ESP8266        | 80 MHz      | 81.1            | 81.1             | 5.0 | 405.5 |  |  |  |
|                                                                                   |                |             | 81.1            | 1                |     |       |  |  |  |

Table 6.2.1: IDLE State Power Consumption.

#### **Graphical Analysis**



*Graph 6.2.2: Comparison between three boards IDLE state power consumption.* 

• Here we can see that the power consumption in **idle state** is:

- For this case **NodeMCU** has the **highest power consumption in idle state** because its clock frequency is higher (**80 MHz**, **Appendix B**) than Arduino Uno and Nano (both **16 MHz**).
- Another reason also contributes to this higher power consumption is the fact that NodeMCU has **WiFi** and Arduino Uno and Nano doesn't.
- Although Uno and Nano both have same clock frequency (16 MHz), there are more components present in Arduino Uno than Nano. As a result in idle state Uno has to power greater number of components than Nano so power consumption of Uno is higher.

# 6.3 Input Side Power Consumption

|             | CSE331.4 Group-2 (Spring 2022) |              |                   |             |            |  |  |
|-------------|--------------------------------|--------------|-------------------|-------------|------------|--|--|
|             |                                | •            | Side Power Consu  |             |            |  |  |
| Input Logic | Output Logic                   | Current (mA) | Avg. Current (mA) | Voltage (V) | Power (mW) |  |  |
|             |                                | 0.04         |                   |             |            |  |  |
| 0000        | 1101                           | 0.05         | 0.04              | 5.0         | 0.20       |  |  |
|             |                                | 0.04         |                   |             |            |  |  |
|             |                                | 51.7         |                   |             |            |  |  |
| 0001        | 1101                           | 51.9         | 51.6              | 5.0         | 258.0      |  |  |
|             |                                | 51.3         |                   |             |            |  |  |
|             |                                | 26.0         |                   |             |            |  |  |
| 0010        | 0001                           | 25.9         | 26.0              | 5.0         | 130.0      |  |  |
|             |                                | 26.0         |                   |             |            |  |  |
|             |                                | 22.4         |                   |             |            |  |  |
| 0011        | 0000                           | 22.3         | 22.4              | 5.0         | 112.0      |  |  |
|             |                                | 22.4         |                   |             |            |  |  |
|             |                                | 29.3         |                   |             |            |  |  |
| 0100        | 0011                           | 29.4         | 29.4              | 5.0         | 147.0      |  |  |
|             |                                | 29.4         |                   |             |            |  |  |
|             |                                | 36.8         |                   |             |            |  |  |
| 0101        | 0010                           | 36.7         | 36.8              | 5.0         | 184.0      |  |  |
|             |                                | 36.8         |                   |             | 101.0      |  |  |
|             |                                | 68.4         |                   |             |            |  |  |
| 0110        | 1111                           | 68.5         | 68.5              | 5.0         | 342.5      |  |  |
|             |                                | 68.7         |                   |             |            |  |  |
|             |                                | 39.6         |                   |             |            |  |  |
| 0111        | 0010                           | 39.5         | 39.5              | 5.0         | 197.5      |  |  |
| 0111        | 0010                           | 39.5         |                   |             |            |  |  |
|             |                                | 31.9         |                   |             |            |  |  |
| 1000        | 1011                           | 31.5         | 31.7              | 5.0         | 158.5      |  |  |
| 1000        | 1011                           | 31.7         |                   |             |            |  |  |
|             |                                | 39.6         |                   |             |            |  |  |
| 1001        | 1000                           | 39.9         | 39.8              | 5.0         | 199.0      |  |  |
| 1001        | 1000                           | 39.8         | 39.8              | 3.0         | 199.0      |  |  |
|             |                                | 63           |                   |             |            |  |  |
| 1010        | 0010                           |              | 62.4              | F 0         | 217.0      |  |  |
| 1010        | 0010                           | 63.5         | 63.4              | 5.0         | 317.0      |  |  |
|             |                                | 63.7         |                   |             |            |  |  |
| 1011        | 0011                           | 39.4         | 20 F              | F 0         | 107 5      |  |  |
| 1011        | 0011                           | 39.5         | 39.5              | 5.0         | 197.5      |  |  |
|             |                                | 39.7         |                   |             |            |  |  |
| 1100        | 0004                           | 47.5         | 45.5              | <b>5</b> 0  | 227.5      |  |  |
| 1100        | 0001                           | 47.5         | 47.5              | 5.0         | 237.5      |  |  |
|             |                                | 47.6         |                   |             |            |  |  |
| 4.0.        | 2115                           | 72.8         |                   |             | 0.5.5      |  |  |
| 1101        | 0110                           | 73.4         | 73.3              | 5.0         | 366.5      |  |  |
|             |                                | 73.6         |                   |             |            |  |  |
|             |                                | 61.8         |                   |             |            |  |  |
| 1110        | 0011                           | 62           | 62.0              | 5.0         | 310.0      |  |  |
|             |                                | 62.2         |                   |             |            |  |  |
|             |                                | 85.3         |                   |             |            |  |  |
| 1111        | 1011                           | 85.9         | 85.7              | 5.0         | 428.5      |  |  |
|             |                                | 86           |                   |             |            |  |  |

Table 6.3.1: Arduino Uno R3 Input Side Power

|             | CSE331.4 Group-2 (Spring 2022) |              |                   |             |            |  |  |
|-------------|--------------------------------|--------------|-------------------|-------------|------------|--|--|
|             | Arduin                         | Nano Input   | Side Power Consur | nption      |            |  |  |
| Input Logic | Output Logic                   | Current (mA) | Avg. Current (mA) | Voltage (V) | Power (mW) |  |  |
|             |                                | 0.40         |                   |             |            |  |  |
| 0000        | 1101                           | 0.40         | 0.43              | 5.0         | 2.15       |  |  |
|             |                                | 0.50         |                   |             |            |  |  |
|             |                                | 43.3         |                   |             |            |  |  |
| 0001        | 1101                           | 43.1         | 43.2              | 5.0         | 216.0      |  |  |
|             |                                | 43.1         |                   |             |            |  |  |
|             |                                | 34.4         |                   |             |            |  |  |
| 0010        | 0001                           | 34.6         | 34.5              | 5.0         | 172.5      |  |  |
|             |                                | 34.4         |                   |             |            |  |  |
|             |                                | 28.9         |                   |             |            |  |  |
| 0011        | 0000                           | 28.5         | 28.4              | 5.0         | 142.0      |  |  |
|             |                                | 27.9         |                   |             |            |  |  |
|             |                                | 35.8         |                   |             |            |  |  |
| 0100        | 0011                           | 35.9         | 35.9              | 5.0         | 179.5      |  |  |
|             |                                | 36.0         |                   |             |            |  |  |
|             |                                | 50.6         |                   |             |            |  |  |
| 0101        | 0010                           | 51.2         | 51.0              | 5.0         | 255.0      |  |  |
|             |                                | 51.2         |                   |             |            |  |  |
|             |                                | 64.0         |                   |             |            |  |  |
| 0110        | 1111                           | 63.8         | 64.0              | 5.0         | 320        |  |  |
|             |                                | 64.2         |                   |             |            |  |  |
|             |                                | 65.9         | 66.3              |             |            |  |  |
| 0111        | 0010                           | 66.4         |                   | 5.0         | 331.5      |  |  |
|             |                                | 66.5         |                   |             |            |  |  |
|             |                                | 42.3         |                   |             |            |  |  |
| 1000        | 1011                           | 42.5         | 42.4              | 5.0         | 212        |  |  |
|             |                                | 42.4         |                   |             |            |  |  |
|             |                                | 57.6         |                   |             |            |  |  |
| 1001        | 1000                           | 57.8         | 57.8              | 5.0         | 289.0      |  |  |
|             |                                | 58.1         |                   |             |            |  |  |
|             |                                | 54.2         |                   |             |            |  |  |
| 1010        | 0010                           | 54.5         | 54.4              | 5.0         | 272.0      |  |  |
|             |                                | 54.5         |                   |             |            |  |  |
|             |                                | 79.2         |                   |             |            |  |  |
| 1011        | 0011                           | 79.4         | 79.3              | 5.0         | 396.5      |  |  |
|             |                                | 79.4         |                   |             |            |  |  |
| 1100        | 0004                           | 55.0         | FF 4              | <b>.</b>    | 077.5      |  |  |
| 1100        | 0001                           | 55.2         | 55.1              | 5.0         | 275.5      |  |  |
|             |                                | 55.2         |                   |             |            |  |  |
| 1101        | 0110                           | 81.8         | 02.0              | F 0         | 440        |  |  |
| 1101        | 0110                           | 82.1         | 82.0              | 5.0         | 410        |  |  |
|             |                                | 82.0         |                   |             |            |  |  |
| 1110        | 0011                           | 75.3         | 75.0              | F 0         | 277.5      |  |  |
| 1110        | 0011                           | 75.4         | 75.3              | 5.0         | 376.5      |  |  |
|             |                                | 75.3         |                   |             |            |  |  |
| 1111        | 1011                           | 98.6         | 00.0              | F 0         | 404        |  |  |
| 1111        | 1011                           | 98.9         | 98.8              | 5.0         | 494        |  |  |
|             |                                | 99.0         |                   |             |            |  |  |

Table 6.3.2: Arduino Nano Input Side Power Consumption

|                  | CSE331.4 Group-2 (Spring 2022)  NodeMCU V3 Input Side Power Consumption |             |                   |                  |            |  |  |  |
|------------------|-------------------------------------------------------------------------|-------------|-------------------|------------------|------------|--|--|--|
| Tourist Transfer |                                                                         |             |                   |                  | D(         |  |  |  |
| Input Logic      | Output Logic                                                            |             | Avg. Current (mA) | Ref. Voltage (V) | Power (mW) |  |  |  |
| 0000             | 1101                                                                    | 0           | 0                 | 5.0              | 0.00       |  |  |  |
| 0000             | 1101                                                                    | 0           | -                 | 3.0              | 0.00       |  |  |  |
|                  |                                                                         | 0.44        |                   |                  |            |  |  |  |
| 0001             | 1101                                                                    | 0.44        | 0.44              | 5.0              | 2.20       |  |  |  |
| 0001             | 1101                                                                    | 0.44        |                   | 3.0              | 2.20       |  |  |  |
|                  |                                                                         | 0.63        |                   |                  |            |  |  |  |
| 0010             | 0001                                                                    | 0.63        | 0.63              | 5.0              | 3.15       |  |  |  |
| 0010             | 0001                                                                    | 0.63        | 0.00              |                  | 5.15       |  |  |  |
|                  |                                                                         | 0.5         |                   |                  |            |  |  |  |
| 0011             | 0000                                                                    | 0.6         | 0.53              | 5.0              | 2.65       |  |  |  |
|                  |                                                                         | 0.5         |                   |                  |            |  |  |  |
|                  |                                                                         | 0.45        |                   |                  |            |  |  |  |
| 0100             | 0011                                                                    | 0.45        | 0.45              | 5.0              | 2.25       |  |  |  |
|                  |                                                                         | 0.45        |                   |                  |            |  |  |  |
|                  |                                                                         | 0.9         |                   |                  | 4.50       |  |  |  |
| 0101             | 0010                                                                    | 0.9         | 0.9               | 5.0              |            |  |  |  |
|                  |                                                                         | 0.9         |                   |                  |            |  |  |  |
|                  |                                                                         | 0.6         |                   |                  | 2.85       |  |  |  |
| 0110             | 1111                                                                    | 0.5         | 0.57              | 5.0              |            |  |  |  |
|                  |                                                                         | 0.6         |                   |                  |            |  |  |  |
| •                |                                                                         | 1           | 0.97              | 5.0              | 4.85       |  |  |  |
| 0111             | 0010                                                                    | 0.9         |                   |                  |            |  |  |  |
|                  |                                                                         | 1           |                   |                  |            |  |  |  |
|                  |                                                                         | 0.44        |                   | 5.0              | 2.20       |  |  |  |
| 1000             | 1011                                                                    | 0.44        | 0.44              |                  |            |  |  |  |
|                  |                                                                         | 0.44        |                   |                  |            |  |  |  |
|                  |                                                                         | 0.91        |                   | 5.0              | 4.55       |  |  |  |
| 1001             | 1000                                                                    | 0.91        | 0.91              |                  |            |  |  |  |
|                  |                                                                         | 0.91        |                   |                  |            |  |  |  |
|                  |                                                                         | 0.4         |                   |                  |            |  |  |  |
| 1010             | 0010                                                                    | 0.5         | 0.5               | 5.0              | 2.50       |  |  |  |
|                  |                                                                         | 0.6         |                   |                  |            |  |  |  |
| 1011             | 0011                                                                    | 1           | 0.07              | <b>5</b> 0       | 4.05       |  |  |  |
| 1011             | 0011                                                                    | 0.9         | 0.97              | 5.0              | 4.85       |  |  |  |
|                  |                                                                         | 1           |                   |                  |            |  |  |  |
| 1100             | 0001                                                                    | 0.9         |                   | 5.0              | 4.50       |  |  |  |
| 1100             | 0001                                                                    | 0.9<br>0.91 | 0.9               | 5.0              | 4.50       |  |  |  |
|                  |                                                                         | 0.91        |                   |                  |            |  |  |  |
| 1101             | 0110                                                                    | 0.8         | 0.83              | 5.0              | 4.15       |  |  |  |
| 1101             | 0110                                                                    | 0.8         |                   | 5.0              | 7.13       |  |  |  |
|                  |                                                                         | 1           |                   |                  |            |  |  |  |
| 1110             | 0011                                                                    | 0.9         | 0.9               | 5.0              | 4.50       |  |  |  |
| 1110             | 0011                                                                    | 0.8         | - 0.7             | 3.0              | 7.50       |  |  |  |
|                  |                                                                         | 1.5         |                   |                  |            |  |  |  |
| 1111             | 1011                                                                    | 1.4         | 1.47              | 5.0              | 7.35       |  |  |  |
|                  |                                                                         | 1.5         | 1                 | 3.0              |            |  |  |  |

Table 6.3.3: NodeMCU V3 Input Side Power Consumption

#### Graphical Analysis:



Graph 6.3.4: Input Side Current Consumption Comparison between the three boards.

- Here we can see that **Arduino Nano** has the **highest power consumption** in this case.
- We initially thought Nano will consume the lowest power however we can see NodeMCU V3 consume such low currents in this case.
- Although Arduino Uno and Nano have almost the exact same specifications, this difference in power might be due to the fact that Arduino Uno has a more power efficient chip which is ATmega328P which is a slight upgraded version of ATmega328 which is in the Nano.
- ATmega328P consumes less power than ATmega328.
- Notice the difference for when **one switch is ON**, for the logic: 0001, 0010 and 0100. There is a difference in current in the input branch! This difference may be due to the **output side** of the circuit and it is **affecting** the **input side**.

• Maximum consumption is for the logic 1111 and minimum for 0000 for all boards.

# 6.4 Total System Power Consumption

| CSE331.4 Group-2 (Spring 2022) |              |                |                   |                  |            |  |  |
|--------------------------------|--------------|----------------|-------------------|------------------|------------|--|--|
|                                | Arduin       | o Uno R3 Total | Power Consumption | 1                |            |  |  |
| Input Logic                    | Output Logic | Current (mA)   | Avg. Current (mA) | Ref. Voltage (V) | Power (mW) |  |  |
|                                |              | 114.2          |                   |                  |            |  |  |
| 0000                           | 1101         | 117.8          | 116.6             | 5.0              | 583.00     |  |  |
|                                |              | 117.9          |                   |                  |            |  |  |
|                                |              | 141.1          |                   |                  |            |  |  |
| 0001                           | 1101         | 139,4          | 140.1             | 5.0              | 700.5      |  |  |
|                                |              | 139.1          |                   |                  |            |  |  |
|                                |              | 88.1           |                   |                  |            |  |  |
| 0010                           | 0001         | 87.7           | 87.9              | 5.0              | 439.5      |  |  |
|                                |              | 87.9           |                   |                  |            |  |  |
| •                              |              | 46.9           |                   |                  |            |  |  |
| 0011                           | 0000         | 47             | 47                | 5.0              | 235.0      |  |  |
|                                |              | 47             |                   |                  |            |  |  |
|                                |              | 123.1          |                   |                  |            |  |  |
| 0100                           | 0011         | 122.5          | 122.6             | 5.0              | 613.0      |  |  |
|                                |              | 122.3          |                   |                  |            |  |  |
|                                |              | 101            |                   |                  |            |  |  |
| 0101                           | 0010         | 100.7          | 100.8             | 5.0              | 504.0      |  |  |
|                                |              | 100.8          |                   |                  |            |  |  |
|                                |              | 176.4          |                   |                  | 876        |  |  |
| 0110                           | 1111         | 174.8          | 175.2             | 5.0              |            |  |  |
|                                |              | 174.5          |                   |                  |            |  |  |
|                                |              | 108.5          | 108.5             | 5.0              | 542.5      |  |  |
| 0111                           | 0010         | 108.5          |                   |                  |            |  |  |
|                                |              | 108.6          |                   |                  |            |  |  |
|                                |              | 148.1          |                   | 5.0              |            |  |  |
| 1000                           | 1011         | 148            | 148.5             |                  | 742.5      |  |  |
|                                |              | 149.4          |                   |                  |            |  |  |
|                                |              | 97.7           |                   |                  |            |  |  |
| 1001                           | 1000         | 97.9           | 97.8              | 5.0              | 489.0      |  |  |
|                                |              | 97.7           |                   |                  |            |  |  |
|                                |              | 106            |                   |                  |            |  |  |
| 1010                           | 0010         | 105.9          | 106               | 5.0              | 530.0      |  |  |
|                                |              | 106            |                   |                  |            |  |  |
|                                |              | 148.7          |                   |                  |            |  |  |
| 1011                           | 0011         | 148.8          | 148.8             | 5.0              | 744        |  |  |
|                                |              | 148.8          |                   |                  |            |  |  |
|                                |              | 102.9          |                   |                  |            |  |  |
| 1100                           | 0001         | 103.1          | 103.3             | 5.0              | 516.5      |  |  |
|                                |              | 103.1          |                   |                  |            |  |  |
|                                |              | 139.5          |                   |                  |            |  |  |
| 1101                           | 0110         | 140.2          | 140               | 5.0              | 700        |  |  |
|                                |              | 140.4          |                   |                  |            |  |  |
|                                |              | 145.9          |                   |                  |            |  |  |
| 1110                           | 0011         | 145.8          | 145.8             | 5.0              | 729.0      |  |  |
|                                |              | 145.6          |                   |                  |            |  |  |
|                                |              | 176            |                   |                  |            |  |  |
| 1111                           | 1011         | 176            | 175.5             | 5.0              | 877.5      |  |  |
|                                |              | 174.6          |                   |                  |            |  |  |

Table 6.4.1: Arduino Uno R3 Total Power Consumption with LED

| CSE331.4 Group-2 (Spring 2022)  Arduino Nano Total Power Consumption with LED |              |                |                   |                  |              |  |  |  |
|-------------------------------------------------------------------------------|--------------|----------------|-------------------|------------------|--------------|--|--|--|
| T 4 T •                                                                       |              |                |                   |                  | D ( 110)     |  |  |  |
| Input Logic                                                                   | Output Logic |                | Avg. Current (mA) | Ref. Voltage (V) | Power (mW)   |  |  |  |
| 0000                                                                          | 1101         | 91             | 0.1               | 5.0              | 455.00       |  |  |  |
| 0000                                                                          | 1101         | 91.1           | 91                | 5.0              | 455.00       |  |  |  |
| ,                                                                             |              | 90.9           |                   |                  |              |  |  |  |
| 0001                                                                          | 1101         | 122.7          | 122.4             | <b>.</b> .       | <b>613</b> 0 |  |  |  |
| 0001                                                                          | 1101         | 122.3          | 122.4             | 5.0              | 612.0        |  |  |  |
| ,                                                                             |              | 122.2          |                   |                  |              |  |  |  |
| 0010                                                                          | 0001         | 49.5           | 40.2              | 5.0              | 246.5        |  |  |  |
| 0010                                                                          | 0001         | 49.1           | 49.3              | 5.0              | 246.5        |  |  |  |
| ,                                                                             |              | 49.2           |                   |                  |              |  |  |  |
| 0011                                                                          | 0000         | 33.6           | 22.6              | 5.0              | 160.0        |  |  |  |
| 0011                                                                          | 0000         | 33.7           | 33.6              | 5.0              | 168.0        |  |  |  |
| ,                                                                             |              | 33.6           |                   |                  |              |  |  |  |
| 0100                                                                          | 0011         | 85.7           | 26.4              | 5.0              | 192.0        |  |  |  |
| 0100                                                                          | 0011         | 86.6<br>86.8   | 36.4              | 5.0              | 182.0        |  |  |  |
|                                                                               |              |                |                   |                  |              |  |  |  |
| 0101                                                                          | 0010         | 90.4           | 00.6              | 5.0              | 452.0        |  |  |  |
| 0101                                                                          | 0010         | 90.7<br>90.6   | 90.6              | 5.0              | 453.0        |  |  |  |
| ,                                                                             |              |                |                   |                  |              |  |  |  |
| 0110                                                                          | 1111         | 118.5<br>117.5 | 117.9             | 5.0              | 589.5        |  |  |  |
| 0110                                                                          | 1111         |                | 117.9             | 3.0              | 369.3        |  |  |  |
|                                                                               |              | 117.6          |                   |                  |              |  |  |  |
| 0111                                                                          | 0010         | 101.9<br>101.6 | 101.7             | 5.0              | 508.5        |  |  |  |
| 0111                                                                          | 0010         |                |                   | 3.0              |              |  |  |  |
|                                                                               |              | 101.7<br>94.5  |                   |                  |              |  |  |  |
| 1000                                                                          | 1011         | 94.3           | 92.7              | 5.0              | 463.5        |  |  |  |
| 1000                                                                          | 1011         | 92.3           | 92.1              | 3.0              | 403.3        |  |  |  |
|                                                                               |              | 87.3           |                   |                  |              |  |  |  |
| 1001                                                                          | 1000         | 87.9           | 87.7              | 5.0              | 438.5        |  |  |  |
| 1001                                                                          | 1000         | 88             | 67.7              | 3.0              | 436.3        |  |  |  |
|                                                                               |              | 87.5           |                   |                  |              |  |  |  |
| 1010                                                                          | 0010         | 88.1           | 87.9              | 5.0              | 439.5        |  |  |  |
| 1010                                                                          | 0010         | 88.1           | 07.5              | 3.0              | 137.3        |  |  |  |
|                                                                               |              | 134.1          |                   |                  |              |  |  |  |
| 1011                                                                          | 0011         | 133.6          | 133.7             | 5.0              | 668.5        |  |  |  |
| 1011                                                                          | 0011         | 133.5          | 10017             |                  | 000.2        |  |  |  |
|                                                                               |              | 90             |                   |                  |              |  |  |  |
| 1100                                                                          | 0001         | 90.3           | 90.1              | 5.0              | 450.5        |  |  |  |
| 1100                                                                          | 0001         | 90.1           | , , , , , ,       | 3.0              | 150.5        |  |  |  |
|                                                                               |              | 131.4          |                   |                  |              |  |  |  |
| 1101                                                                          | 0110         | 133.5          | 132.8             | 5.0              | 664          |  |  |  |
|                                                                               |              | 133.4          | 102.0             |                  |              |  |  |  |
|                                                                               |              | 124.9          |                   |                  |              |  |  |  |
| 1110                                                                          | 0011         | 125            | 124.9             | 5.0              | 624.5        |  |  |  |
| -                                                                             |              | 124.8          | 1                 |                  |              |  |  |  |
|                                                                               |              | 164            |                   |                  |              |  |  |  |
| 1111                                                                          | 1011         | 163.3          | 163.3             | 5.0              | 816.5        |  |  |  |
| -                                                                             |              | 162.6          | 1                 |                  |              |  |  |  |

Table 6.4.2: Arduino Nano Total Power Consumption with LED

|             | CSE331.4 Group-2 (Spring 2022) |              |                     |                  |            |  |  |  |
|-------------|--------------------------------|--------------|---------------------|------------------|------------|--|--|--|
|             |                                |              | Power Consumption v |                  |            |  |  |  |
| Input Logic | Output Logic                   | Current (mA) | Avg. Current (mA)   | Ref. Voltage (V) | Power (mW) |  |  |  |
|             |                                | 138          |                     |                  |            |  |  |  |
| 0000        | 1101                           | 137.7        | 137.9               | 5.0              | 689.50     |  |  |  |
|             |                                | 137.9        |                     |                  |            |  |  |  |
| •           |                                | 121          |                     |                  |            |  |  |  |
| 0001        | 0001 1101                      | 124.3        | 123.2               | 5.0              | 616.0      |  |  |  |
|             |                                | 124.4        |                     |                  |            |  |  |  |
|             |                                | 98.9         |                     |                  |            |  |  |  |
| 0010        | 0001                           | 99           | 98.9                | 5.0              | 494.5      |  |  |  |
|             |                                | 98.9         |                     |                  |            |  |  |  |
| •           |                                | 81.3         |                     |                  |            |  |  |  |
| 0011        | 0000                           | 81.6         | 89.6                | 5.0              | 448.0      |  |  |  |
|             |                                | 82.1         |                     |                  |            |  |  |  |
|             |                                | 113.5        |                     |                  |            |  |  |  |
| 0100        | 0011                           | 113.8        | 113.8               | 5.0              | 569.0      |  |  |  |
|             |                                | 114.1        |                     |                  |            |  |  |  |
|             |                                | 101.2        |                     |                  | 503.0      |  |  |  |
| 0101        | 0010                           | 100.2        | 100.6               | 5.0              |            |  |  |  |
|             |                                | 100.4        |                     |                  |            |  |  |  |
|             |                                | 127.6        |                     |                  | 630.5      |  |  |  |
| 0110        | 1111                           | 125.1        | 126.1               | 5.0              |            |  |  |  |
|             |                                | 125.5        |                     |                  |            |  |  |  |
|             |                                | 103.6        |                     |                  |            |  |  |  |
| 0111        | 0010                           | 103.7        | 103.6               | 5.0              | 518        |  |  |  |
| 0111        | 0010                           | 103.5        |                     |                  |            |  |  |  |
|             |                                | 119.6        |                     |                  |            |  |  |  |
| 1000        | 1011                           | 118.9        | 119.2 5.0           | 596              |            |  |  |  |
| 1000        | 1011                           | 119          | 117.2               | 3.0              | 270        |  |  |  |
|             |                                | 100.5        |                     |                  |            |  |  |  |
| 1001        | 1000                           | 100.7        | 100.7               | 5.0              | 503.5      |  |  |  |
| 1001        | 1000                           | 100.8        | 100.7               | 3.0              | 303.3      |  |  |  |
|             |                                | 105.1        |                     |                  |            |  |  |  |
| 1010        | 0010                           | 105.1        | 105.1               | 5.0              | 525.5      |  |  |  |
| 1010        | 0010                           | 105.2        | 103.1               | 5.0              | 323.3      |  |  |  |
|             |                                | 114          |                     |                  |            |  |  |  |
| 1011        | 0011                           | 113.9        | 114                 | 5.0              | 570        |  |  |  |
| 1011        | 0011                           | 114          | 117                 | 3.0              | 370        |  |  |  |
|             |                                | 99           |                     |                  |            |  |  |  |
| 1100        | 0001                           | 96.6         | 97.8                | 5.0              | 489        |  |  |  |
| 1100        | 0001                           | 97.7         | 97.6                | 3.0              | 409        |  |  |  |
|             |                                | 105.2        |                     |                  |            |  |  |  |
| 1101        | 0110                           | 105.2        | 105.3               | 5.0              | 526.5      |  |  |  |
| 1101        | 0110                           | 105.3        | 105.5               | 3.0              | 320.3      |  |  |  |
|             |                                |              |                     |                  |            |  |  |  |
| 1110        | 0011                           | 112.7        | 112.6               | 5.0              | 563.0      |  |  |  |
| 1110        | 0011                           | 112.6        | 112.6               | 5.0              | 303.0      |  |  |  |
|             |                                | 112.5        |                     |                  |            |  |  |  |
| 1111        | 1011                           | 116.3        | 1165                | 5.0              | E92 E      |  |  |  |
| 1111        | 1011                           | 116.4        | 116.5               | 5.0              | 582.5      |  |  |  |
|             |                                | 116.8        |                     |                  |            |  |  |  |

Table 6.4.3: NodeMCU V3 Total Power Consumption with LED

## **Graphical Analysis**



Table 6.4.4: Total System Current with LEDs Consumption Comparison between the three boards.

- Here we can see that **Arduino Uno** has the **highest total power consumption** compared to the others in this case.
- And the Arduino Nano is consuming the lowest total power in most of the cases except few.
- We also the similar trend as before for the 1 switch on situation.
- Maximum power is for input logic 1111 for Arduino Uno and Nano. For NodeMCU it is for the logic 0000.
- **Minimum** is at **0011** for all the boards and this is logical because at this level all the LEDs are off.

# 6.5 Total System Power Consumption without LEDs

| CSE331.4 Group-2 (Spring 2022)                                                                                                      |              |              |                   |                  |            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------|------------------|------------|--|--|
| Arduino Uno R3 Total Power Consumption without LED Input Logic   Output Logic   Current (mA)   Avg. Current (mA)   Ref. Voltage (V) |              |              |                   |                  |            |  |  |
| Input Logic                                                                                                                         | Output Logic | Current (mA) | Avg. Current (mA) | Ref. Voltage (V) | Power (mW) |  |  |
| 0000                                                                                                                                | 1101         | 28.9         | 29                | 7.0              | 145.00     |  |  |
|                                                                                                                                     | 1101         | 29           |                   | 5.0              |            |  |  |
|                                                                                                                                     |              | 29.1         |                   |                  |            |  |  |
| 0001                                                                                                                                | 1101         | 41.7         | 41.8              | 5.0              | 209.0      |  |  |
| 0001                                                                                                                                | 1101         | 42           |                   |                  |            |  |  |
|                                                                                                                                     |              | 41.8         |                   |                  |            |  |  |
| 0010                                                                                                                                | 0001         | 40.9         | 40.9              | 5.0              | 204.5      |  |  |
| 0010                                                                                                                                | 0001         | 40.9         |                   |                  |            |  |  |
|                                                                                                                                     |              | 43.2         |                   |                  |            |  |  |
| 0011                                                                                                                                | 0000         | 43.2         | 43.2              | 5.0              | 216.0      |  |  |
| 0011                                                                                                                                | UUUU         | 43.2         |                   |                  | 210.0      |  |  |
|                                                                                                                                     |              | 41.6         | 41.6              | 5.0              | 208.0      |  |  |
| 0100                                                                                                                                | 0011         | 41.5         |                   |                  |            |  |  |
|                                                                                                                                     | 0011         | 41.8         |                   |                  |            |  |  |
|                                                                                                                                     |              | 44.3         |                   |                  |            |  |  |
| 0101                                                                                                                                | 0010         | 44.2         | 44.3              | 5.0              | 221.5      |  |  |
| 0101                                                                                                                                | 0010         | 44.3         |                   |                  |            |  |  |
|                                                                                                                                     |              | 48.4         | 48.5              | 5.0              | 242.5      |  |  |
| 0110                                                                                                                                | 1111         | 48.5         |                   |                  |            |  |  |
| 0 0                                                                                                                                 | 1111         | 48.5         |                   |                  |            |  |  |
|                                                                                                                                     |              | 51.9         |                   |                  |            |  |  |
| 0111                                                                                                                                | 0010         | 52           | 52                | 5.0              | 260        |  |  |
|                                                                                                                                     | 0010         | 52           | 1                 |                  |            |  |  |
|                                                                                                                                     |              | 42.7         |                   | 5.0              | 213.5      |  |  |
| 1000                                                                                                                                | 1011         | 42.6         | 42.7              |                  |            |  |  |
|                                                                                                                                     |              | 42.8         |                   |                  |            |  |  |
|                                                                                                                                     | 1000         | 49.7         | 49.7              | 5.0              | 248.5      |  |  |
| 1001                                                                                                                                |              | 49.8         |                   |                  |            |  |  |
|                                                                                                                                     |              | 49.7         |                   |                  |            |  |  |
|                                                                                                                                     | 0010         | 50.3         | 50.1              | 5.0              | 250.5      |  |  |
| 1010                                                                                                                                |              | 50.2         |                   |                  |            |  |  |
|                                                                                                                                     |              | 49.9         |                   |                  |            |  |  |
|                                                                                                                                     | 0011         | 53.9         | 54                | 5.0              | 270        |  |  |
| 1011                                                                                                                                |              | 54.1         |                   |                  |            |  |  |
|                                                                                                                                     |              | 54.1         |                   |                  |            |  |  |
|                                                                                                                                     | 0001         | 49.4         | 49.6              | 5.0              | 248        |  |  |
| 1100                                                                                                                                |              | 49.6         |                   |                  |            |  |  |
|                                                                                                                                     |              | 49.7         |                   |                  |            |  |  |
|                                                                                                                                     | 0110         | 53.4         | 53.7              | 5.0              | 268.5      |  |  |
| 1101                                                                                                                                |              | 53.7         |                   |                  |            |  |  |
|                                                                                                                                     |              | 53.9         |                   |                  |            |  |  |
|                                                                                                                                     | 0011         | 53.9         | 54                | 5.0              | 270.0      |  |  |
| 1110                                                                                                                                |              | 54.1         |                   |                  |            |  |  |
|                                                                                                                                     |              | 54.1         |                   |                  |            |  |  |
| 1111                                                                                                                                | 1011         | 56.8         | 56.8              | 5.0              | 284        |  |  |
|                                                                                                                                     |              | 56.7         |                   |                  |            |  |  |
|                                                                                                                                     |              | 57           |                   |                  |            |  |  |

Table 6.5.1: Arduino Uno R3 Total Power Consumption without LEDs

| CSE331.4 Group-2 (Spring 2022)  Arduino Nano Total Power Consumption without LED |              |            |                   |                  |             |  |  |
|----------------------------------------------------------------------------------|--------------|------------|-------------------|------------------|-------------|--|--|
| Input Logic                                                                      | Output Logic |            | Avg. Current (mA) | 1                | Power (mW)  |  |  |
| Input Logic                                                                      | Output Logic | 11.8       | Avg. Current (mA) | Kei. Voltage (V) | rower (mvv) |  |  |
| 0000                                                                             | 1101         | 11.7       | 11.8              | 5.0              | 59.00       |  |  |
|                                                                                  | 1101         | 11.7       | - 11.0            | 3.0              | 39.00       |  |  |
| •                                                                                |              | 27.3       |                   |                  |             |  |  |
| 0001                                                                             | 1101         | 27.5       | 27.4              | 5.0              | 137.0       |  |  |
|                                                                                  | 1101         | 27.5       | 27.4              | 3.0              | 137.0       |  |  |
| 0010                                                                             | 0001         | 27.4       | 27.5              | 5.0              | 137.5       |  |  |
|                                                                                  |              | 27.6       |                   |                  |             |  |  |
| ***                                                                              |              | 27.6       |                   |                  |             |  |  |
|                                                                                  | 0000         | 31.9       | 32                | 5.0              | 160.0       |  |  |
| 0011                                                                             |              | 32         |                   |                  |             |  |  |
| **                                                                               |              | 32.2       |                   |                  |             |  |  |
| •                                                                                |              | 27.8       |                   | 5.0              | 139.5       |  |  |
| 0100                                                                             | 0011         | 27.9       | 27.9              |                  |             |  |  |
|                                                                                  |              | 28         | _                 |                  |             |  |  |
|                                                                                  |              | 32.8       | 33.1              | 5.0              | 165.5       |  |  |
| 0101                                                                             | 0010         | 33.2       |                   |                  |             |  |  |
|                                                                                  |              | 33.3       |                   |                  |             |  |  |
| •                                                                                | 1111         | 33.4       | 33.6              | 5.0              | 168         |  |  |
| 0110                                                                             |              | 33.7       |                   |                  |             |  |  |
|                                                                                  |              | 33.7       |                   |                  |             |  |  |
|                                                                                  | 0010         | 34.9       |                   | 5.0              | 175.5       |  |  |
| 0111                                                                             |              | 35.2       | 35.1              |                  |             |  |  |
|                                                                                  |              | 35.1       |                   |                  |             |  |  |
|                                                                                  |              | 27.9       |                   |                  |             |  |  |
| 1000                                                                             | 1011         | 28.1       | 28                | 5.0              | 140         |  |  |
|                                                                                  |              | 28         |                   |                  |             |  |  |
|                                                                                  |              | 33.2       |                   |                  |             |  |  |
| 1001                                                                             | 1000         | 33.4       | 33.3              | 5.0              | 166.5       |  |  |
|                                                                                  |              | 33.4       |                   |                  |             |  |  |
| 1010                                                                             | 0010         | 33.4       | 22.4              | 7.0              | 167.0       |  |  |
|                                                                                  | 0010         | 33.3       | 33.4              | 5.0              | 167.0       |  |  |
|                                                                                  |              | 33.6<br>35 |                   |                  |             |  |  |
| 1011                                                                             | 0011         | 35.2       | 35.2              | 5.0              | 176         |  |  |
|                                                                                  | 0011         | 35.4       | - 33.2            | 3.0              | 170         |  |  |
|                                                                                  |              | 34.1       |                   |                  |             |  |  |
| 1100                                                                             | 0001         | 34.3       | 34.2              | 5.0              | 171         |  |  |
| 1100                                                                             | 0001         | 34.2       | J <del>4</del> .2 | 3.0              | 1/1         |  |  |
|                                                                                  | 0110         | 34.4       | 34.8              | 5.0              | 174         |  |  |
| 1101                                                                             |              | 34.8       |                   |                  |             |  |  |
| 1101                                                                             |              | 35.1       |                   |                  |             |  |  |
| 1110                                                                             | 0011         | 34.8       | 35.2              | 5.0              |             |  |  |
|                                                                                  |              | 35.1       |                   |                  | 176.0       |  |  |
|                                                                                  |              | 35.7       |                   |                  |             |  |  |
| 1111                                                                             | 1011         | 36.3       | 36.2              | 5.0              | 181         |  |  |
|                                                                                  |              | 36.1       |                   |                  |             |  |  |
|                                                                                  |              | 36.3       |                   |                  |             |  |  |

Table 6.5.2: Arduino Nano Total Power Consumption without LEDs

| CSE331.4 Group-2 (Spring 2022)  NodeMCU V3 Total Power Consumption without LED |              |              |                   |     |            |  |  |
|--------------------------------------------------------------------------------|--------------|--------------|-------------------|-----|------------|--|--|
| Input Logic                                                                    | Output Logic |              | Avg. Current (mA) |     | Power (mW) |  |  |
| Trans a g                                                                      |              | 79.7         | , g ,             | ( ) |            |  |  |
| 0000                                                                           | 1101         | 79.6         | 79.6              | 5.0 | 398.00     |  |  |
|                                                                                |              | 79.5         |                   |     |            |  |  |
| 0001                                                                           | 1101         | 79.9         | 80                | 5.0 | 400.0      |  |  |
|                                                                                |              | 80           |                   |     |            |  |  |
|                                                                                |              | 80.1         |                   |     |            |  |  |
| 0010                                                                           | 0001         | 80.7         | 80.7              | 5.0 | 403.5      |  |  |
|                                                                                |              | 80.8         |                   |     |            |  |  |
|                                                                                |              | 80.5         |                   |     |            |  |  |
| 0011                                                                           | 0000         | 82           | 82.2              | 5.0 | 411.0      |  |  |
|                                                                                |              | 82.8         |                   |     |            |  |  |
|                                                                                |              | 81.8         |                   |     |            |  |  |
|                                                                                |              | 80.8         |                   | 5.0 | 404.0      |  |  |
| 0100                                                                           | 0011         | 80.7         | 80.8              |     |            |  |  |
|                                                                                |              | 81           |                   |     |            |  |  |
|                                                                                |              | 81.1         | 81                | 5.0 | 405.0      |  |  |
| 0101                                                                           | 0010         | 80.8         |                   |     |            |  |  |
|                                                                                |              | 81           |                   |     |            |  |  |
|                                                                                | 1111         | 80.7         | 80.8              | 5.0 | 404        |  |  |
| 0110                                                                           |              | 80.9         |                   |     |            |  |  |
| ,                                                                              |              | 80.9         |                   |     |            |  |  |
|                                                                                | 0010         | 81.1         |                   | 5.0 | 406        |  |  |
| 0111                                                                           |              | 81.2         | 81.2              |     |            |  |  |
|                                                                                |              | 81.3         |                   |     |            |  |  |
|                                                                                | 1011         | 79           |                   | 5.0 | 395.5      |  |  |
| 1000                                                                           |              | 79           | 79.1              |     |            |  |  |
|                                                                                |              | 79.3         |                   |     |            |  |  |
| 1001                                                                           | 1000         | 79.5         | 80.2              | 5.0 | 401.0      |  |  |
| 1001                                                                           |              | 80.6         |                   |     |            |  |  |
|                                                                                |              | 80.4         |                   |     |            |  |  |
| 1010                                                                           | 0010         | 81.2         | 81.2              | 5.0 | 406.0      |  |  |
| 1010                                                                           |              | 81.3         |                   |     |            |  |  |
|                                                                                |              | 81.1         |                   |     |            |  |  |
| 1011                                                                           | 0011         | 82.2         | 82.1              | 5.0 | 410.5      |  |  |
| 1011                                                                           |              | 82.1<br>81.9 |                   |     |            |  |  |
|                                                                                |              |              |                   |     |            |  |  |
| 1100                                                                           | 0001         | 81.2<br>81.4 | 81.4              | 5.0 | 407        |  |  |
| 1100                                                                           |              | 81.7         |                   |     |            |  |  |
|                                                                                | 0110         | 82.1         | 82.1              | 5.0 |            |  |  |
| 1101                                                                           |              | 82.1         |                   |     | 410.5      |  |  |
| 1101                                                                           |              | 82.2         |                   |     | 110.5      |  |  |
| 1110                                                                           | 0011         | 82.1         | 82                | 5.0 |            |  |  |
|                                                                                |              | 82           |                   |     | 410.0      |  |  |
|                                                                                |              | 81.9         |                   |     | 110.0      |  |  |
|                                                                                |              | 82.3         |                   |     |            |  |  |
| 1111                                                                           | 1011         | 82.4         | 82.3              | 5.0 | 411.5      |  |  |
| 1111                                                                           |              | 82.3         |                   |     |            |  |  |

Table 6.5.3: NodeMCU V3 Total Power Consumption without LEDs

### **Graphical Analysis**



Table 6.5.4: Total System Current without LEDs Consumption Comparison between the three boards.

- For the **0000 input sequence**, we can see the **IDLE current** which is logic.
- As you can see the **trend** of the values are **fairly constant** and **horizontal**.
- This can be due to the effect of **frequency overpowering the logic implementation.**
- The slight difference is due to the difference in **computation complexity** for each logic.
- The maximum is for the input 1111 and this consumes the highest power. So complexity to calculate the output can be said to be the highest.
- Similarly the minimum is for 0000 so complexity to calculate the output can be said to be the lowest.

# 7. Question & Answers

## 7.1 Arduino Uno R3

## 1. What is the clock frequency of the microcontroller used?

Answer: 16 MHz.

### 2. What is the data bus width of the microcontroller used?

Answer: 8 bit.

# 3. What is the size of your hex file generated? Attach the hex codes in your report.

Answer: 3.38 KB. Hex file is attached in Appendix D.

### 4. Can the project be implemented by using interrupt?

Answer: Yes, since all the pins of the Arduino Uno R3 can be used as interrupts.

# 5. Is the main routine required to be an infinite loop? Provide explanation in favor of your answer.

Answer: Yes the main routine is required to be an infinite loop. This is because we need to continuously check the input status and at the same time provide a constant output logic all the time. If it were not an infinite loop the program would execute and the finish and after that if you change the input logic no output will be given.

# 6. Is there any difference between level triggered and edge triggered operation for the given project?

Answer: Since we are using a toggle switch, there is no difference between level triggering and edge triggering.

# 7. Is the project referring encryption or decryption from input to output?

Answer: This is like an encryption circuit. We are applying an encryption algorithm to an information we have. This algorithm can be used to decrypt and find the original information.

#### 7.2 Arduino Nano

## 1. What is the clock frequency of the microcontroller used?

Answer: 16 MHz.

### 2. What is the data bus width of the microcontroller used?

Answer: 8 bit.

# 3. What is the size of your hex file generated? Attach the hex codes in your report.

Answer: 3.38 KB. Hex file is attached in Appendix D.

### 4. Can the project be implemented by using interrupt?

Answer: Yes, since all the pins of the Arduino Nano can be used as interrupts.

# 5. Is the main routine required to be an infinite loop? Provide explanation in favor of your answer.

Answer: Yes the main routine is required to be an infinite loop. This is because we need to continuously check the input status and at the same time provide a constant output logic all the time. If it were not an infinite loop the program would execute and the finish and after that if you change the input logic no output will be given.

# 6. Is there any difference between level triggered and edge triggered operation for the given project?

Answer: Since we are using a toggle switch, there is no difference between level triggering and edge triggering.

# 7. Is the project referring encryption or decryption from input to output?

Answer: This is like an encryption circuit. We are applying an encryption algorithm to an information we have. This algorithm can be used to decrypt and find the original information.

#### 7.3 NodeMCU V3

## 1. What is the clock frequency of the microcontroller used?

Answer: 80 MHz.

### 2. What is the data bus width of the microcontroller used?

Answer: 32 bit.

# 3. What is the size of your hex file generated? Attach the hex codes in your report.

Answer: We were not able to generate the hex file for this board in the Arduino IDE.

## 4. Can the project be implemented by using interrupt?

Answer: Yes, pin D0-D8 support interrupt for the NodeMCU. So it can be used.

# 5. Is the main routine required to be an infinite loop? Provide explanation in favor of your answer.

Answer: Yes the main routine is required to be an infinite loop. This is because we need to continuously check the input status and at the same time provide a constant output logic all the time. If it were not an infinite loop the program would execute and the finish and after that if you change the input logic no output will be given.

# 6. Is there any difference between level triggered and edge triggered operation for the given project?

Answer: Since we are using a toggle switch, there is no difference between level triggering and edge triggering.

# 7. Is the project referring encryption or decryption from input to output?

Answer: This is like an encryption circuit. We are applying an encryption algorithm to an information we have. This algorithm can be used to decrypt and find the original information.

## 8. References

- 1. Project materials provided by Dr. Dihan Md. Nuruddin Hassan.
- 2. <a href="https://www.elprocus.com/what-is-arduino-uno-r3-pin-diagram-specification-and-applications/">https://www.elprocus.com/what-is-arduino-uno-r3-pin-diagram-specification-and-applications/</a>
- 3. https://www.elprocus.com/an-overview-of-arduino-nano-board/
- 4. https://www.elprocus.com/esp8266-wi-fi-module/
- 5. https://www.make-it.ca/nodemcu-details-specifications/
- 6.https://techshopbd.com/detail/2060/Breadboard\_Variable\_Power\_Supply\_techshop\_bangladesh
- 7. https://www.techtarget.com/whatis/definition/routine
- 8. https://circuitdigest.com/microcontroller-projects/arduino-interrupt-tutorial-with-examples
- $9. \, \underline{https://www.electronicwings.com/nodemcu/nodemcu-gpio-interrupts-with-arduino-}\\$
- ide#:~:text=NodeMCU%20based%20ESP8266%20has%20an,except%20the%20D0%2FGPIO16%20pin.
- 10. <a href="https://comparecamp.com/arduino-ide-review-pricing-pros-cons-features/">https://comparecamp.com/arduino-ide-review-pricing-pros-cons-features/</a>
- 11. <a href="https://en.wikipedia.org/wiki/Proteus\_Design\_Suite">https://en.wikipedia.org/wiki/Proteus\_Design\_Suite</a>
- 12. <a href="https://study.com/academy/lesson/introduction-to-logisim-setup-overview.html">https://study.com/academy/lesson/introduction-to-logisim-setup-overview.html</a>

# Appendix A: Software Specifications

#### Arduino IDE

Arduino IDE is an open-source tool that makes it possible for users to write as well as upload code to a work environment in real-time. Since the written code will be moved to the cloud, it's frequently used by those who need an additional level of redundancy. Arduino IDE offers full compatibility to any Arduinobased software board. The software can easily be deployed in any Linux, Mac, or Windows operating systems. Most of its parts are written within JavaScript for seamless compilation and editing. While the tool's main aim is based on code writing, it offers several noteworthy functionalities. For instance, Arduino IDE lets users share important project information to company stakeholders. Users are given the freedom to make internal layouts and schematic modifications when needed. Comprehensive guides are available for those who need help in the installation process. Tutorials are present for users who have little experience dealing with the tool's framework. Arduino IDE is highly rated by users for its ease of use. It can conduct complex processes while keeping computer resources to a minimum. The tool makes it easy for users to access their libraries. At the same time, it offers updated support for the latest Arduino boards, which can help users with their sketches using the latest IDE version.

Website: <a href="https://www.arduino.cc/en/software">https://www.arduino.cc/en/software</a>

### Proteus 8 Professional

The Proteus Design Suite is a proprietary software tool suite used primarily for electronic design automation. The software is used mainly by electronic design engineers and technicians to create schematics and electronic prints for manufacturing printed circuit boards.

Website: https://www.labcenter.com/downloads/

### **LogiSim**

When learning computer architecture and logic circuits, you will need a real-world, graphical example of what you are studying. Text and diagrams only go so far. A helpful tool for designing and simulating logic circuits is Logisim.

Because the tool lets you create large circuits from smaller circuits, you can design entire CPUs using Logisim. Further, the tool will run on any computer!

The interface itself is very intuitive and the use of color-coding of wires and elements allows for easy analysis and testing of circuits. You can also save the completed file as an image, or as a .circ file (core to Logisim).

Website: http://www.cburch.com/logisim/download.html

# Appendix B: Hardware Specification

#### Arduino Uno R3

The Arduino UNO R3 is frequently used microcontroller board in the family of an Arduino. This is the latest third version of an Arduino board and released in the year 2011. The main advantage of this board is if we make a mistake we can change the microcontroller on the board. The main features of this board mainly include, it is available in DIP (dual-inline-package), detachable and ATmega328 microcontroller. The programming of this board can easily be loaded by using an Arduino computer program. This board has huge support from the Arduino community, which will make a very simple way to start working in embedded electronics, and many more applications. Please refer the link to know about Arduino – Basics, and Design.

### **Arduino Uno R3 Specifications**

The Arduino Uno R3 board includes the following specifications.

- It is an ATmega328P based Microcontroller
- The Operating Voltage of the Arduino is 5V
- The recommended input voltage ranges from 7V to 12V
- The i/p voltage (limit) is 6V to 20V
- Digital input and output pins-14
- Digital input & output pins (PWM)-6
- Analog i/p pins are 6
- DC Current for each I/O Pin is 20 mA
- DC Current used for 3.3V Pin is 50 mA
- Flash Memory -32 KB, and 0.5 KB memory is used by the boot loader
- SRAM is 2 KB
- EEPROM is 1 KB
- The speed of the CLK is 16 MHz
- In Built LED
- Length and width of the Arduino are 68.6 mm X 53.4 mm
- The weight of the Arduino board is 25 g

# Pin Diagram:



#### Arduino Nano

Arduino Nano is one type of microcontroller board, and it is designed by Arduino.cc. It can be built with a microcontroller like Atmega328. This microcontroller is also used in Arduino UNO. It is a small size board and also flexible with a wide variety of applications. Other Arduino boards mainly include Arduino Mega, Arduino Pro Mini, Arduino UNO, Arduino YUN, Arduino Lilypad, Arduino Leonardo, and Arduino Due. And other development boards are AVR Development Board, PIC Development Board, Raspberry Pi, Intel Edison, MSP430 Launchpad, and ESP32 board.

This board has many functions and features like an Arduino Duemilanove board. However, this Nano board is different in packaging. It doesn't have any DC jack so that the power supply can be given using a small USB port otherwise straightly connected to the pins like VCC & GND. This board can be supplied with 6 to 20volts using a mini USB port on the board.

### **Arduino Nano Specifications**

- ATmega328P Microcontroller is from 8-bit AVR family
- Operating voltage is 5V
- Input voltage (Vin) is 7V to 12V
- Input/Output Pins are 22
- Analog i/p pins are 6 from A0 to A5
- Digital pins are 14
- Power consumption is 19 mA
- I/O pins DC Current is 40 mA
- Flash memory is 32 KB
- SRAM is 2 KB
- EEPROM is 1 KB
- CLK speed is 16 MHz
- Weight-7g
- Size of the printed circuit board is 18 X 45mm
- Supports three communications like SPI, IIC, & USART

## Pin Diagram:



Pinout of Arduino Nano

### NodeMCU V3

An ESP8266 Wi-Fi module is a SOC microchip mainly used for the development of end-point IoT (Internet of things) applications. It is referred to as a standalone wireless transceiver, available at a very low price. It is used to enable the internet connection to various applications of embedded systems.

Espressif systems designed the ESP8266 Wi-Fi module to support both the TCP/IP capability and the microcontroller access to any Wi-Fi network. It provides the solutions to meet the requirements of industries of IoT such as cost, power, performance, and design.

It can work as either a slave or a standalone application. If the ESP8266 Wi-Fi runs as a slave to a microcontroller host, then it can be used as a Wi-Fi adaptor to any type of microcontroller using UART or SPI. If the module is used as a standalone application, then it provides the functions of the microcontroller and Wi-Fi network.

The ESP8266 Wi-Fi module is highly integrated with RF balun, power modules, RF transmitter and receiver, analog transmitter and receiver, amplifiers, filters, digital baseband, power modules, external circuitry, and other necessary components. The ESP8266 Wi-Fi module is a microchip shown in the figure below.

A set of AT commands are needed by the microcontroller to communicate with the ESP8266 Wi-Fi module. Hence it is developed with AT commands software to allow the Arduino Wi-Fi functionalities, and also allows loading various software to design the own application on the memory and processor of the module.

The processor of this module is based on the Tensilica Xtensa Diamond Standard 106 micro and operates easily at 80 MHz. There are different types of ESP modules designed by third-party manufacturers. They are,

ESP8266-01 designed with 8 pins (GPIO pins -2)

ESP8266-02 designed with 8 pins (GPIO pins -3)

ESP8266-03 designed with 14 pins (GPIO pins-7)

ESP8266-04 designed with 14 pins (GPIO pins-7)

The ESP8266 Wi-Fi module comes with a boot ROM of 64 KB, user data RAM of 80 KB, and instruction RAM of 32 KB. It can support 802.11 b/g/n Wi-Fi network at 2.4 GHz along with the features of I2C, SPI, I2C interfacing with DMA, and 10-bit ADC. Interfacing this module with the microcontroller can be done easily through a serial port. An external voltage converter is required only

if the operating voltage exceeds 3.6 Volts. It is most widely used in robotics and IoT applications due to its low cost and compact size.

## **NodeMCU V3 Specifications**

- It is a powerful Wi-Fi module available in a compact size at a very low price.
- It is based on the L106 RISC 32-bit microprocessor core and runs at 80 MHz
- It requires only 3.3 Volts power supply
- The current consumption is 100 m Amps
- The maximum Input/Output (I/O) voltage is 3.6 Volts.
- It consumes 100 mA current
- The maximum Input/Output source current is 12 mA
- The frequency of built-in low power 32-bit MCU is 80 MHz
- The size of flash memory is 513 kb
- It is used as either an access point or station or both
- It supports less than 10 microAmps deep sleep
- It supports serial communication to be compatible with several developmental platforms such as Arduino
- It is programmed using either AT commands, Arduino IDE, or Lua script
- It is a 2.4 GHz Wi-Fi module and supports WPA/WPA2, WEP authentication, and open networks.
- It uses two serial communication protocols like I2C (Inter-Integrated Circuit) and SPI (Serial Peripheral Interface).
- It provides 10- bit analog to digital conversion
- The type of modulation is PWM (Pulse Width Modulation)
- UART is enabled on dedicated pins and for only transmission, it can be enabled on GPIO2.
- It is an IEEE 802.11 b/g/n Wi-Fi module with LNA, power amplifier, balun, integrated TR switch, and matching networks.
- GPIO pins 17
- Memory Size of instruction RAM 32 KB
- The memory size of instruction cache RAM 32 KB
- Size of User-data RAM- 80 KB
- Size of ETS systems-data RAM 16 KB



## **ANENG AN8009 Multimeter**

Generic GB Digital Multimeter AN8009 LCD Display 9999 Counts AC/DC Tester-Black.

#### Features:

- 1. Operating Temperature: 0 40 鈩?br>Operating Humidity: 鈮?5%RH
- 2. Storage Condition: -20~60 鈩?br>Storage Humidity: 鈮?0%RH
- 3. DIY Supplies: Electrical
- 4. Operating Mode: Auto/Manual Ranging
- 5. Measuring Inductance Range: no
- 6. Measuring Temperature Range: -20~1000 C/-4F-1832F

## **Descriptions:**

- 1. Measuring Capacitance Range: 9.99nF/99.99nF/999.9nF/9.99uF/999.9uF/999.9uF/9.9 99MF
- 2. Measuring Voltage Range: 999.9mV/9.999V/99.99V/999.9V
- 3. Measuring Current Range:60mA/600mA/10A
- 4. Measuring Resistance Range: 99.99/999.9/9.999k/99.99k/999.9K/999.9M
- 5. Frequency: 99.99Hz/999.9Hz/9.999KHz/99.99KHz/999.9KHz/9.999MHz
- 6. Square Wave Output: 50Hz/100Hz/200Hz/300Hz/400Hz/500Hz/600Hz/700Hz/800Hz/900Hz/1000Hz/200
- 7. DC/AC Voltage(mV): 9.999mV/99.99mV
- 8. DC/AC Voltage(V): 999.9mV/9.999V/99.99V/750ACV(999.9DCV)
- 9. DC/AC Current (mA&A): 999.9mA/9.999A
- 10. DC/AC Current (uA): 99.99 渭 A/999.9 渭 A
- 11. Display Type: Digital Display
- 12. Diode Test: Yes
- 13. Continuity: Yes
- 14. Duty Cycle: 1%-99%
- 15. Sample Rate: 3 times per second 16. Power: 2 \* 1.5V AAA batteries.

## Variable Breadboard Power Supply

•Input Voltage:7V to 25V

Variable Output Voltage: 1.3V to 23V

• Variable Output Current: 500mA (+Vout Pin)

•Constant Output Current: 800mA (+5V Pin)

•Output Current: 2A (Vin Pin)

## Pin Diagram:



# Appendix C: Codes

## Arduino Uno R3

```
// CSE331.4 (Spring 2022)
// Group-2
// Code for Arduino Uno R3:
// Declaring pins of I/O:
//Input Pins: Output Pins:
  int pin I0 = 11; int pin O0 = 4;
  int pin_I1 = 10; int pin_O1 = 5;
  int pin I2 = 9; int pin O2 = 6;
  int pin_I3 = 8; int pin_O3 = 7;
// Logical Operators of input:
  int I0 = 0;
  int I1 = 0;
  int I2 = 0;
  int I3 = 0;
void setup() {
  // Pin Mode for Input: Pin Mode for Outut:
  pinMode(pin I0, INPUT); pinMode(pin_00, OUTPUT);
   pinMode(pin I1, INPUT); pinMode(pin O1, OUTPUT);
  pinMode(pin_I2, INPUT); pinMode(pin_O2, OUTPUT);
   pinMode(pin_I3, INPUT); pinMode(pin_O3, OUTPUT);
void loop() {
  // Reading the input pins:
  I0 = digitalRead(pin I0);
  I1 = digitalRead(pin I1);
  I2 = digitalRead(pin_I2);
  I3 = digitalRead(pin I3);
  // Applying the logical expressions for output:
  // For OO = (I1+I2')(I1'+I2)(I0+I2'+I3')(I0'+I2'+I3)
  if ( (I1||!I2)&&(!I1||I2)&&(I0||!I2||!I3)&&(!I0||!I2||I3) ){
```

```
digitalWrite(pin 00, HIGH);
  }
  else{
    digitalWrite(pin_00, LOW);
  // For O1 = (I0'.I1'.I2')+(I0'.I1.I2.I3')+(I0.I1.I2'.I3)
  if ( (!I0&&!I1&&!I2) | | (!I0&&I1&&I2&&!I3) | | (I0&&I1&&!I2&&I3) ) {
    digitalWrite(pin_O1, HIGH);
  }
  else{
    digitalWrite(pin O1, LOW);
  // For O2 = (I0'.I1) + (I1.I3) + (I0.I2) + (I0.I1'.I3')
  if ((!I0&&I1)||(I1&&I3)||(I0&&I2)||(I0&&!I1&&!I3)){
    digitalWrite(pin O2, HIGH);
  else{
    digitalWrite(pin O2, LOW);
  // For O3 = (I0'.I3')+(I2'.I3')+(I1.I3')+(I0'.I1'.I2')+(I0.I2.I3)
  if ( (!I0&&!I3) | | (!I2&&!I3) | | (I1&&!I3) | | (!I0&&!I1&&!I2) | | (I0&&I2&&I3)
) {
    digitalWrite(pin_O3, HIGH);
  }
  else{
    digitalWrite(pin_O3, LOW);
```

### Arduino Nano

```
// CSE331.4 (Spring 2022)
// Group-2
// Code for Arduino Nano:
// Declaring pins of I/O:
//Input Pins: Output Pins:
  int pin I0 = 11; int pin O0 = 4;
  int pin I1 = 10; int pin O1 = 5;
  int pin I2 = 9; int pin O2 = 6;
  int pin_I3 = 8; int pin_O3 = 7;
// Logical Operators of input:
  int I0 = 0;
  int I1 = 0;
  int I2 = 0;
  int I3 = 0;
void setup() {
  // Pin Mode for Input: Pin Mode for Outut:
  pinMode(pin IO, INPUT); pinMode(pin OO, OUTPUT);
  pinMode(pin_I1, INPUT); pinMode(pin_O1, OUTPUT);
  pinMode(pin I2, INPUT); pinMode(pin O2, OUTPUT);
  pinMode(pin I3, INPUT); pinMode(pin O3, OUTPUT);
}
void loop() {
  // Reading the input pins:
  I0 = digitalRead(pin I0);
  I1 = digitalRead(pin I1);
  I2 = digitalRead(pin I2);
  I3 = digitalRead(pin I3);
  // Applying the logical expressions for output:
  // For O0 = (I1+I2')(I1'+I2)(I0+I2'+I3')(I0'+I2'+I3)
  if ( (I1||!I2) && (!I1||I2) && (I0||!I2||!I3) && (!I0||!I2||I3) ) {
    digitalWrite(pin 00, HIGH);
  }
```

```
else{
    digitalWrite(pin 00, LOW);
  // For O1 = (IO'.I1'.I2')+(IO'.I1.I2.I3')+(IO.I1.I2'.I3)
  if ((!I0&&!I1&&!I2)||(!I0&&I1&&I2&&!I3)||(I0&&I1&&!I2&&I3)){
    digitalWrite(pin_O1, HIGH);
  }
  else{
    digitalWrite(pin O1, LOW);
  // For O2 = (IO'.I1)+(I1.I3)+(I0.I2)+(I0.I1'.I3')
  if ((!I0&&I1)||(I1&&I3)||(I0&&I2)||(I0&&!I1&&!I3)) ){
    digitalWrite(pin O2, HIGH);
  }
  else{
    digitalWrite(pin_02, LOW);
  // For O3 = (I0'.I3')+(I2'.I3')+(I1.I3')+(I0'.I1'.I2')+(I0.I2.I3)
  if ((!I0&&!I3)||(!I2&&!I3)||(I1&&!I3)||(!I0&&!I1&&!I2)||(I0&&I2&&I3)
) {
    digitalWrite(pin O3, HIGH);
  }
  else{
    digitalWrite(pin_O3, LOW);
  }
```

### NodeMCU V3

```
// CSE331.4 (Spring 2022)
// Group-2
// Code for NodeMCU V3:
// Declaring pins of I/O:
//Input Pins:
#define pin I0 D1
#define pin I1 D2
#define pin_I2 D4
#define pin_I3 D7
//Output Pins:
#define pin 00 D3
#define pin_01 D5
#define pin_02 D6
#define pin_03 D8
// Logical Operators of input:
  int IO;
  int I1;
  int I2;
  int I3;
void setup() {
  // Pin Mode for Input:
  pinMode(pin_I0, INPUT);
  pinMode(pin_I1, INPUT);
  pinMode(pin I2, INPUT);
  pinMode(pin I3, INPUT);
 // Pin Mode for Output:
   pinMode(pin_O0, OUTPUT);
  pinMode(pin_O1, OUTPUT);
  pinMode(pin_O2, OUTPUT);
  pinMode(pin_O3, OUTPUT);
}
void loop() {
  // Reading the input pins:
```

```
I0 = digitalRead(pin I0);
  I1 = digitalRead(pin I1);
  I2 = digitalRead(pin_I2);
  I3 = digitalRead(pin I3);
  // Applying the logical expressions for output:
  // For OO = (I1+I2')(I1'+I2)(I0+I2'+I3')(I0'+I2'+I3)
  if ( (I1||!I2) && (!I1||I2) && (I0||!I2||!I3) && (!I0||!I2||I3) ) {
    digitalWrite(pin 00, HIGH);
  }
  else{
    digitalWrite(pin 00, LOW);
  // For O1 = (I0'.I1'.I2')+(I0'.I1.I2.I3')+(I0.I1.I2'.I3)
  if ((!I0&&!I1&&!I2)||(!I0&&I1&&I2&&!I3)||(I0&&I1&&!I2&&I3))){
    digitalWrite(pin O1, HIGH);
  }
  else{
    digitalWrite(pin O1, LOW);
  // For O2 = (IO'.I1)+(I1.I3)+(IO.I2)+(IO.I1'.I3')
  if ((!I0&&I1)||(I1&&I3)||(I0&&I2)||(I0&&!I1&&!I3))){
    digitalWrite(pin 02, HIGH);
  }
  else{
    digitalWrite(pin 02, LOW);
  // For O3 = (I0'.I3')+(I2'.I3')+(I1.I3')+(I0'.I1'.I2')+(I0.I2.I3)
  if ( (!I0&&!I3) | | (!I2&&!I3) | | (I1&&!I3) | | (!I0&&!I1&&!I2) | | (I0&&I2&&I3)
) {
    digitalWrite(pin O3, HIGH);
  }
 else{
    digitalWrite(pin O3, LOW);
```

|                       | _ |
|-----------------------|---|
| Appendix D: Resources |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
| LogiSim File          |   |
|                       |   |
| Proteus Files         |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
|                       |   |
| 49                    |   |