

- Introduction
- Preliminaries
- Online graph dictionary learning
- Experiments
- Conclusion

- Introduction
- Preliminaries
- Online graph dictionary learning
- Experiments
- Conclusion

Introduction

- Graphs has been of great interest in the last decades
 - molecule compounds
 - brain connectivity
 - ♦ Social networks
 - ♦ ...

- Designing good representations for these data is challenging
 - non-vectorial
 - requires dedicated modelling of their representing structures
- Introduce an unsupervised representation learning algorithm

- Introduction
- Preliminaries
 - Dictionary Learning
 - (Fused) Gromov-Wasserstein for structured data
- Online graph dictionary learning
- Experiments
- Conclusion

Preliminaries

- Dictionary learning
 - A field of unsupervised learning that aims at estimating a linear representation of the data. The linear subspace is defined by the span of a family of vectors, called atoms, which constitute a dictionary
 - These atoms are inferred from the input data by minimizing a reconstruction error
- Linear modeling of graph:
 - \Diamond Given: a graph G = (C, h) with intra-cost matrices $C \in \mathbb{R}^{N \times N}$, node weight $h \in \mathbb{R}^N$ and a dictionary $\{\overline{C}_s\}_{s \in [S]}$
 - \Diamond Output: a linear representation $\sum_{s \in [S]} \omega_s \overline{C}_s$ of graph G with minimized reconstruction error

Preliminaries

$$\sum_{x} T(x, y) = P_{r}(y),$$

$$\sum_{y} T(x, y) = P_{\theta}(x)$$

• Earth Mover's Distance: $EMD(P_r, P_\theta) = min \sum_{x,y} ||x - y|| T(x, y)$

Preliminaries

- \Diamond Given two graphs $G^X = (\mathbf{C}^X, \mathbf{h}^X), G^Y = (\mathbf{C}^Y, \mathbf{h}^Y)$
 - $C^X \in \mathbb{R}^{N^X \times N^X}$ and $C^Y \in \mathbb{R}^{N^Y \times N^Y}$ are the intra-cost matrices.

Distribution density

- h^X , h^Y is a vector of node weights in graph, usually define $h^X = \frac{1}{N^X} \mathbf{1}_{N^X}$ if without any prior knowledge
- \Diamond The GW_p distance between G^X and G^Y is defined as:

$$\min_{\substack{\boldsymbol{T} \in \Pi(\boldsymbol{h}^{X}, \boldsymbol{h}^{Y}) \\ k, l \in G^{Y}}} \left(\sum_{\substack{i,j \in G^{X} \\ k, l \in G^{Y}}} \left(C_{i,j}^{X} - C_{k,l}^{Y} \right)^{p} T_{ik} T_{jl} \right)$$

 $\Diamond \quad \Pi(\boldsymbol{h}^{X}, \boldsymbol{h}^{Y}) := \{\boldsymbol{T} \in \mathbb{R}^{N^{X} \times N^{Y}} | \boldsymbol{T} \boldsymbol{1}_{N^{Y}} = \boldsymbol{h}_{X}, \boldsymbol{T} \boldsymbol{1}_{N^{X}} = \boldsymbol{h}_{Y} \}$

T act as a probabilistic matching of nodes which tends to associate pairs of nodes that have similar pairwise relations in C^X and C^Y

$$\lozenge \quad \text{FGW distance:} \min_{\boldsymbol{T} \in \Pi(\boldsymbol{h}^{X}, \boldsymbol{h}^{Y})} (\sum_{\substack{i,j \in G^{X} \\ k,l \in G^{Y}}} ((1-\alpha) \|X_{i}^{X} - X_{k}^{Y}\|_{2}^{2} + \alpha (C_{i,j}^{X} - C_{k,l}^{Y})^{p}) T_{ik} T_{jl})$$

- Introduction
- Preliminaries
- Online graph dictionary learning
 - ♦ GW unmixing
 - Dictionary learning and online algorithm
- Experiments
- Conclusion

Algorithm overview

- Minimization of the GW distance between the intra-cost matrix associated to the input graph and its linear representation in the dictionary
- Given a set of graph $\left\{G^{(k)}:\left(\boldsymbol{C}^{(k)},\boldsymbol{h}^{(k)}\right)\right\}_{k\in[K]}$

- Output the optimal embedding vector $\omega \in \Sigma_S$ of each graph G and a dictionary $\{\overline{C}_S\}_{S \in [S]}$

Algorithm overview

- Given a set of graph $\{G^{(k)}: (\mathbf{C}^{(k)}, \mathbf{h}^{(k)})\}_{k \in [K]}$
 - Output the optimal embedding vector $\omega \in \Sigma_S$ of each graph G and a dictionary $\{\overline{C}_S\}_{S \in [S]}$
- Workflow of algorithm:

```
1 Randomly initialize \{\overline{\pmb{C}}_S\}_{S\in[S]}
2 For each batch of graph:
3 Initialize \pmb{\omega}=\frac{1}{S}\pmb{1}_S
4 repeat
5 Fix dictionary \{\overline{\pmb{C}}_S\}_{S\in[S]} and embedding vector \pmb{\omega}, update transport plan \pmb{T}
6 Fix dictionary \{\overline{\pmb{C}}_S\}_{S\in[S]} and transport plan \pmb{T}, update embedding vector \pmb{\omega}
1 until converge 8 Fix \pmb{\omega} and \pmb{T}, update \{\overline{\pmb{C}}_S\}_{S\in[S]}, projected gradient step
```


GW Unmixing

- Minimization of the GW distance between the similarity matrix associated to the graph and its linear representation in the dictionary
- - Given a graph G = (C, h) a dictionary $\{\overline{C}_S\}_{S \in [S]}$ with S atoms of which each atom contains N_S nodes
 - Output the optimal transport matrix T, embedding vector ω of graph G
- Object function of unmixing problem given dictionary:

$$\min_{\boldsymbol{\omega} \in \Sigma_{S}} \left(GW_{2}^{2} \left(\boldsymbol{C}, \sum_{S \in [S]} \omega_{S} \overline{\boldsymbol{C}}_{S} \right) - \lambda \|\boldsymbol{\omega}\|_{2}^{2} \right)$$
 is the negative quadratic regularization promoting sparsity [1]

When C_s is adjacency matrix, this represent the probabilities of connection between the nodes in linear representation

Fix $\{\overline{C}_S\}_{S\in[S]}$, ω – update T

$$\Diamond \quad \min_{\boldsymbol{\omega} \in \Sigma_{S}} \left(GW_{2}^{2} \left(\boldsymbol{C}, \sum_{S \in [S]} \omega_{S} \overline{\boldsymbol{C}}_{S} \right) - \lambda \|\boldsymbol{\omega}\|_{2}^{2} \right) \quad (1)$$

Algorithm 3 BCD for GW unmixing problem

- 1: Initialize $w = \frac{1}{S} \mathbf{1}_S$
- 2: repeat
- 3: Compute OT matrix T of $GW_2^2\left(C,\widetilde{C}(\boldsymbol{w})\right)$, with CG algorithm (Vayer et al., 2018, Alg.1 & 2).
- 4: Compute the optimal w solving equation 1 for a fixed T with CG algorithm 4
- 5: until convergence
 - $\phi \quad GW_2^2\left(\mathbf{C}, \sum_{s \in [S]} \omega_s \overline{\mathbf{C}}_s\right) = \min_{\mathbf{T} \in \Pi(\mathbf{h}, \overline{\mathbf{h}}_s)} \langle \mathbf{L}, \mathbf{T} \rangle; \mathbf{L} = \mathbf{C}^2 \mathbf{h} \mathbf{1}_N^T + \mathbf{1}_{N_S} \mathbf{h}_S^T (\widetilde{\mathbf{C}}(\boldsymbol{\omega})^2)^T 2\mathbf{C} \mathbf{T} \widetilde{\mathbf{C}}(\boldsymbol{\omega})^T \text{ according to equation (5) in [3]}$

 - This corresponds to an optimal transport problem, can be solved iteratively by the entropic regularization-based method

Fix $\{\overline{C}_S\}_{S\in[S]}$, T – update ω

$$\varepsilon(\boldsymbol{C}, \widetilde{\boldsymbol{C}}(\boldsymbol{\omega}), \boldsymbol{T}) = GW_2^2(\boldsymbol{C}, \sum_{s \in [S]} \omega_s \overline{\boldsymbol{C}}_s) - \lambda \|\boldsymbol{\omega}\|_2^2$$

Algorithm 4 CG for solving GW unmixing problem w.r.t w given T

- 1: repeat
- 2: Compute g, gradients w.r.t w of $\mathcal{E}(C, \widetilde{C}(w), T)$ following equation 2
- 3: Find direction $\boldsymbol{x}^{\star} = \arg\min_{\boldsymbol{x} \in \Sigma_S} \boldsymbol{x}^T \boldsymbol{g}$
- 4: Line-search: denoting $z(\gamma) = \gamma x^* + (1 \gamma)w$, #ensure the constrain of $\|\omega\|_1 = 1$

$$\gamma^{\star} = \operatorname*{arg\,min}_{\gamma \in (0,1)} \mathcal{E}(\boldsymbol{C}, \widetilde{\boldsymbol{C}}(\boldsymbol{z}(\gamma)), \boldsymbol{T}) = \operatorname*{arg\,min}_{\gamma \in (0,1)} a \gamma^2 + b \gamma + c$$

- 5: $\boldsymbol{w} \leftarrow \boldsymbol{z}(\gamma^{\star})$
- 6: until convergence

$\varepsilon(C, \widetilde{C}(\omega), T)$ can be converted to second-order polynomial equation with coefficients as below

Partial derivates of the GW objective ε

$$\hat{\nabla} \frac{\partial \varepsilon}{\partial \omega_{s}} (\mathbf{C}, \widetilde{\mathbf{C}}(\boldsymbol{\omega}), \mathbf{T}) = 2tr \left\{ \left(\overline{\mathbf{C}}_{s} \odot \widetilde{\mathbf{C}}(\boldsymbol{\omega}) \right) \mathbf{h} \mathbf{h}^{T} - \overline{\mathbf{C}}_{s} \mathbf{T}^{T} \mathbf{C}^{T} \mathbf{T} \right\}$$
(2)

$$a = tr\{\left(\widetilde{\boldsymbol{C}}(\boldsymbol{x}^{\star} - \boldsymbol{w}) \odot \widetilde{\boldsymbol{C}}(\boldsymbol{x}^{\star} - \boldsymbol{w})\right) \boldsymbol{h} \boldsymbol{h}^{T}\} - \lambda \|\boldsymbol{x}^{\star} - \boldsymbol{w}\|_{2}^{2}$$
$$b = 2tr\{\left(\widetilde{\boldsymbol{C}}(\boldsymbol{x}^{\star} - \boldsymbol{w}) \odot \widetilde{\boldsymbol{C}}(\boldsymbol{w})\right) \boldsymbol{h} \boldsymbol{h}^{\top} - \widetilde{\boldsymbol{C}}(\boldsymbol{x}^{\star} - \boldsymbol{w}) \boldsymbol{T}^{\top} \boldsymbol{C}^{T} \boldsymbol{T}\} - 2\lambda \langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{w} \rangle$$

Online algorithm

- Assume the dictionary is unknown and need to be estimated from dataset
- Given K graphs $\{G^{(k)}: (\mathbf{C}^{(k)}, \mathbf{h}^{(k)})\}_{k \in [K]}$
 - Output the optimal embedding vector ω of each graph G and a dictionary $\{\overline{C}_S\}_{S\in[S]}$
- Object function:

$$\phi \min_{\left\{\boldsymbol{\omega}^{(k)}\right\}_{k \in [K]}} \sum_{k=1}^{K} (GW_2^2(\boldsymbol{C}^{(k)}, \sum_{S \in [S]} \omega_S^{(k)} \overline{\boldsymbol{C}}_S) - \lambda \|\boldsymbol{\omega}^{(k)}\|_2^2) \\
\{\overline{\boldsymbol{C}}_S\}_{S \in [S]}$$

$$\diamond \quad \boldsymbol{\omega}^{(k)} \epsilon \Sigma_S, \ \overline{\boldsymbol{C}}_S \epsilon S_N(\mathbb{R})$$

Fix T, ω – update $\{\overline{C}_S\}_{S \in [S]}$

$$\min_{\substack{\left\{\boldsymbol{\omega}^{(k)}\right\}_{k\in[B]}\\ \left\{\overline{\boldsymbol{c}}_{S}\right\}_{S\in[S]}}} \sum_{k=1}^{B} (GW_{2}^{2}(\boldsymbol{C}^{(k)}, \sum_{S\in[S]} \omega_{S}^{(k)} \, \overline{\boldsymbol{c}}_{S}) - \lambda \|\boldsymbol{\omega}^{(k)}\|_{2}^{2})$$

Algorithm 5 GDL: stochastic update of atoms $\{\overline{C}_s\}_{s\in[S]}$

- 1: Sample a minibatch of graphs $\mathcal{B} := \{ \boldsymbol{C}^{(k)} \}_{k \in \mathcal{B}}$.
- 2: Compute optimal $\{(\boldsymbol{w}^{(k)}, \boldsymbol{T}^{(k)})\}_{k \in [B]}$ by solving B independent unmixing problems with Alg.3.
- 3: Projected gradient step with estimated gradients $\widetilde{\nabla}_{\overline{C}_s}$ (see equation 54), $\forall s \in [S]$:

$$\overline{m{C}}_s \leftarrow Proj_{S_N(\mathbb{R})}(\overline{m{C}}_s - \eta_C \widetilde{\nabla}_{\overline{m{C}}_s})$$
 # ensure constrain of $\overline{m{c}}_s$, need to be symmetric matrix

Estimated gradients w.r.t $\{\overline{C}_s\}$ over a minibatch of graphs $\mathcal{B} := \{C^{(k)}\}_{k \in \mathcal{B}}$ given unmixing solutions $\{(\boldsymbol{w}^{(k)}, \boldsymbol{T}^{(k)})\}_{k \in [B]}$ read:

$$\widetilde{\nabla}_{\overline{C_s}} \left(\sum_{k \in \mathcal{B}} \mathcal{E}(C^{(k)}, \widetilde{C}(\boldsymbol{w}^{(k)}), \boldsymbol{T}^{(k)}) \right) = \frac{2}{B} \sum_{k \in \mathcal{B}} w_s^{(k)} \{ \widetilde{C}(\boldsymbol{w}^{(k)}) \odot \boldsymbol{h} \boldsymbol{h}^{\top} - \boldsymbol{T}^{(k)\top} \boldsymbol{C}^{(k)\top} \boldsymbol{T}^{(k)} \}$$
(54)

Algorithm overview

- Given a set of graph $\left\{G^{(k)}:\left(\boldsymbol{C}^{(k)},\boldsymbol{h}^{(k)}\right)\right\}_{k\in[K]}$
 - Output the optimal embedding vector $\omega \in \Sigma_S$ of each graph G and a dictionary $\{\overline{C}_S\}_{S \in [S]}$
- Workflow of algorithm:

```
1 Randomly initialize \{\overline{C}_s\}_{s\in[S]}

2 For each batch of graph:

3 Initialize \omega = \frac{1}{s} \mathbf{1}_S Algorithm 3

4 repeat

5 Fix dictionary \{\overline{C}_s\}_{s\in[S]} and embedding vector \omega, update transport plan T

6 Fix dictionary \{\overline{C}_s\}_{s\in[S]} and transport plan T, update embedding vector \omega

7 until converge

8 Fix \omega and T, update \{\overline{C}_s\}_{s\in[S]}, projected gradient step

Algorithm 5
```

- Introduction
- Preliminaries
- Online graph dictionary learning
- Experiments
 - With synthesis graph
 - With real-life graph
 - With Stream graph
- Conclusion

With synthesis graph

$$\min_{\substack{\left\{\boldsymbol{\omega}^{(k)}\right\}_{k\in[K]}\\ \left\{\overline{\boldsymbol{C}}_{S}\right\}_{S\in[S]}}} \sum_{k=1}^{K} (GW_{2}^{2}(\boldsymbol{C}^{(k)}, \sum\nolimits_{S\in[S]} \omega_{S}^{(k)} \, \overline{\boldsymbol{C}}_{S}) - \lambda \left\|\boldsymbol{\omega}^{(k)}\right\|_{2}^{2})$$

- Three different generative structures: dense, two clusters and three clusters.
- Nodes are assigned to clusters into equal proportions.
- For each generative structure 100 graphs are sampled.

With synthesis graph

Estimate on D2 a dictionary with 2 atoms of order 12. The interpolation between the two
estimated atoms for some samples is reported.

On the top, a random sample of real graphs from D2 (two blocks).

On the bottom, reconstructed graphs as linear combination of two estimated atoms (varying proportions for each atom).

With real-life graph

Graph clustering

Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.

	NO ATTRIBUTE		DISCRETE ATTRIBUTES		REAL ATTRIBUTES			
MODELS	IMDB-B	IMDB-M	MUTAG	PTC-MR	BZR	COX2	ENZYMES	PROTEIN
GDL (ours)	51.32(0.30)	55.08(0.28)	70.02(0.29)	51.53(0.36)	62.59(1.68)	58.39(0.52)	66.97(0.93)	60.22(0.30)
GDL_{λ} (ours)	51.64(0.59)	55.41(0.20)	70.89(0.11)	51.90(0.54)	66.42 (1.96)	59.48 (0.68)	66.79(1.12)	60.49(0.71)
GWF-r	51.24 (0.02)	55.54(0.03)	68.83(1.47)	51.44(0.52)	52.42(2.48)	56.84(0.41)	72.13(0.19)	59.96(0.09)
GWF-f	50.47(0.34)	54.01(0.37)	58.96(1.91)	50.87(0.79)	51.65(2.96)	52.86(0.53)	71.64(0.31)	58.89(0.39)
GW-k	50.32(0.02)	53.65(0.07)	57.56(1.50)	50.44(0.35)	56.72(0.50)	52.48(0.12)	66.33(1.42)	50.08(0.01)
SC	50.11(0.10)	54.40(9.45)	50.82(2.71)	50.45(0.31)	42.73(7.06)	41.32(6.07)	70.74(10.60)	49.92(1.23)

With negative quadratic regularization

Stream graph

Dataset: TWITCH-EGOS with 2 atoms of 14 nodes each (top)
 TRIANGLES with 4 atoms of 17 nodes each (bottom).

- Introduction
- Preliminaries
- Online graph dictionary learning
- Experiments
- Conclusion

Conclusion

- Introduction
- Preliminaries
 - Dictionary Learning
 - (Fused) Gromov-Wasserstein for structured data
- Online graph dictionary learning
 - ♦ GW unmixing
 - Dictionary learning and online algorithm
- Experiments
 - With synthesis graph
 - With real-life graph
 - With Stream graph

Reference

- [1] Vincent-Cuaz, Cédric, et al. "Online graph dictionary learning." International Conference on Machine Learning. PMLR, 2021.
- [2] Peyré, Gabriel, Marco Cuturi, and Justin Solomon. "Gromov-wasserstein averaging of kernel and distance matrices." International conference on machine learning. PMLR, 2016.
- [3] Xu, Hongtengl. "Gromov-Wasserstein factorization models for graph clustering." Proceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 04. 2020.

Thanks!

