Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Film Deposition Part II: Si Oxidation

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

CMOS Transistors

Properties of SiO₂

- Very stable
 - □ for Ge, GeO₂ is soluble in water, and decompose at 450 °C
 - ☐ for GaAs, GaO_x and AsO_x have many defects
- Easily etched
 - wet etch (HF solution) or dry etch (F based plasma)
- Good diffusion barrier (low dopant diffusivity D_{ox} << D_{Si})
- High quality insulator
 - **□** band gap ~ 8 eV, resistivity > $10^{16} \Omega$ *cm
- High dielectric strength (> 500 V/μm)
- Low interface state / defect density (< 10¹⁰ cm⁻²)

Properties of SiO₂

TABLE 9.3 Properties of Thermal Silicon Dioxide

DC resistivity (Ω · cm), 25°C	1014-1016	Melting point (°C)	~1700
Density (g/cm ³)	2.27	Molecular weight	60.08
Dielectric constant	3.8-3.9	Molecules/cm3	2.3×10^{22}
Dielectric strength (V/cm)	$5-10 \times 10^{6}$	Refractive index	1.46
Energy gap (eV)	~8	Specific heat (J/g · °C)	1.0
Etch rate in buffered HF (nm/min) ^a	100	Stress in film on Si (N/m ²)	2–4 × 10 ⁸ Compression
Infrared absorption peak (µm)	9.3		•
Linear expansion coefficient (°C-1)	5.0×10^{-7}	Thermal conductivity (W/cm · °C)	0.014

Source: After Wolf and Tauber (1986).

Table 7.2 Diffusivities of Elements in SiO₂*

Element	D at 1100°C (cm ² /s)	D at 1200°C (cm ² s)		
В	3×10^{-17} to 2×10^{-14}	2×10^{-16} to 5×10^{-14}		
Ga	5.3×10^{-11}	5×10^{-8}		
P	2.9×10^{-16} to 2×10^{-13}	2×10^{-15} to 7.6×10^{-13}		
Sb	9.9×10^{-17}	1.5×10^{-14}		
Ar	1.2×10^{-16} to 3.5×10^{-15}	2×10^{-15} to 2.4×10^{-14}		

^{*}Buffered HF:28 ml HF, 170 ml H₂O, 113 g NH₄F.

Native Oxide

clean Si (oxide removed by HF) hydrophobic

Si with native oxide hydrophilic

Si forms native oxide in the air (1~2 nm, a few hours)

Q: amorphous or crystalline SiO₂?

Thermal Oxide Growth

dry oxidation wet oxidation

Si (s) +
$$O_2$$
 (g) = SiO_2 (s)
Si (s) + H_2O (g) = SiO_2 (s) + H_2 (g)

The Deal-Grove (D-G) Model

F: oxygen flux –
 the number of oxygen molecules that crosses a plane per unit area per second

The Deal-Grove (D-G) Model

$$X_{ox} = \frac{A}{2} \left\{ \sqrt{1 + \left(\frac{t + \tau}{A^2 / 4B}\right)} - 1 \right\}$$

A related to reaction
 B related to diffusion
 τ initial pot

Thermal Oxidation

Process Parameters

- Time
- Temperature
- Gas type (O₂, H₂O, ...)
- Gas pressure
- Crystal orientation
- Dopant (B, P, As, ...)

$$X_{ox} = \frac{A}{2} \left\{ \sqrt{1 + \left(\frac{t + \tau}{A^2 / 4B}\right)} - 1 \right\}$$

Control Parameters

- Oxide thickness
- **□** Film quality (defects, dielectric strength, ...)

Dry vs. Wet Oxidation

wet oxidation is 10~100 times faster than dry oxidation because H₂O has higher solubility/diffusivity in SiO₂

Crystal Orientation

Si (111) has smaller A, but same B with Si (100)

higher growth rate at initial stage

why??

Crystal Orientation

similar rates at long time oxidation (diffusion limited)

Thermal Oxidation - Simulation

SiO₂ Film Thickness Measurement

SiO₂ Film Thickness Measurement

Spectroscopic Ellipsometer

gate oxide for transistors

Local Oxidation of Si (LOCOS) Metal2 Metal1 Metal1 a) Contact Contact Pad Oxide Nitride Nitride Poly gate Silicon Wafer Buried Oxide Thermal Cxidation **b**) Silicon Substrate H Oxide "Bird's beak" Nitride Removal $\mathbf{e})$ Oxide For isolation

transistor region

other methods to deposit SiO₂

temperature

Q: why?

$$C = \frac{\kappa \mathcal{E}_0 A}{t}$$

low κ dielectric for insulating reduce RC delay

high κ dielectric for gate oxide

$$I_{D,Sat} = \frac{W}{L} \mu C \frac{(V_G - V_{th})^2}{2}$$

Oxide for High κ Dielectric

$$I_{D,Sat} = \frac{W}{L} \mu C \frac{(V_G - V_{th})^2}{2}$$

$$C = \frac{\kappa \varepsilon_0 A}{t}$$

Film Type	Thermal	Al_2O_3	Ta ₂ O ₅	ZrO_2	HfO_2
	SiO_2				
Dielectric Constant	3.95	9	26	25	25-40
Bandgap (eV)	8.9	8.7	4.5	7.8	5.7
Barrier Height to Silicon	3.2	2.8	1-1.5	1.4	1.5
Deposition Technique	Thermal Growth	CVD	CVD	CVD	CVD

Porous SiO₂ for Low κ Dielectric

SiO₂ in Biointegrated Devices

Thermal oxide is an ideal moisture barrier

useful for implantable devices

At room temperature, it will take > 100 years to dissolve 1 μ m thermal SiO₂ in water