

✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Optimization algorithms

LATEST SUBMISSION GRADE

100%

100 / 0						
1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?	1/1 point				
	$igcolon{a}{[8]{3}(7)}$					
	$\bigcirc \ a^{[8]\{7\}(3)}$					
	$\bigcirc \ a^{[3]\{7\}(8)}$					
	$igo a^{[3]\{8\}(7)}$					
	✓ Correct					
2.	Which of these statements about mini-batch gradient descent do you agree with?	1 / 1 point				
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.					
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.	g				
	O You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).					
	✓ Correct					

3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?

1 / 1 point

If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

4. Suppose your learning algorithm's cost *J*, plotted as a function of the number of iterations, looks like this:

1/1 point

Which of the following do you agree with?

1 / 1 point

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $v_2 = 10, v_2^{corrected} = 10$
- $igotimes v_2 = 7.5$, $v_2^{corrected} = 10$
- $v_2 = 7.5, v_2^{corrected} = 7.5$
- $\bigcirc v_2 = 10, v_2^{corrected} = 7.5$

- 6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.
 - $\alpha = 0.95^t \alpha_0$
 - $\alpha = \frac{1}{\sqrt{t}}\alpha_0$
 - $\alpha = \frac{1}{1+2*t}\alpha_0$
 - $igotimes lpha = e^t lpha_0$

✓ Correct

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1 / 1 point

- \square Decreasing β will shift the red line slightly to the right.
- Increasing β will shift the red line slightly to the right.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

 $\hfill \square$ Decreasing β will create more oscillation within the red line.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

- \square Increasing β will create more oscillations within the red line.
- 8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm? (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β) (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β) (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β) (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent ✓ Correct 9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply) Try using Adam ✓ Correct Try better random initialization for the weights Correct Try mini-batch gradient descent ✓ Correct Try initializing all the weights to zero ightharpoonup Try tuning the learning rate α

Correct

10.	Which	of the	following	statements	about	Adam	is	False?

 \bigcirc The learning rate hyperparameter α in Adam usually needs to be tuned.

igcomes We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9,eta_2=0.999,arepsilon=0.999$), arepsilon=0.999, arepsilon 10^{-8})

Adam combines the advantages of RMSProp and momentum

Adam should be used with batch gradient computations, not with mini-batches.

✓ Correct