Student's Name:	•••••
T11- I	4°-1

BHC* • WMD
 JYR • JZT
 • VAB • LMD
 • RAS • JWH
 • RJW • ARP
 THURSDAY 16TH AUGUST
 TERM 3, 2018
 PERIOD 4, 6
 TIME: 50 MINUTES

255 COPIES

There are three parts to this assessment

PART A: COORDINATE GEOMETRY 12 marks

PART B: TRIGONOMETRY 16 marks

PART C: GEOMETRY 26 marks

TOTAL: 54 marks

INSTRUCTIONS TO STUDENTS:

- Write ALL answers in the spaces provided.
- * ALL NECESSARY working for each question must be shown to gain full marks.
- * Write your name and teacher's initials in the space provided.
- Marks may not be awarded for careless or badly arranged working.
- Diagrams are not drawn to scale.
- * Approved calculators may be used.
- * A formula sheet at the end of this paper should be separated and used throughout.

PART A: COORDINATE GEOMETRY [12 MARKS]

Question 1 (4 marks)

The equation of a line in general form is 6x + 2y + 12 = 0

(i) What is the gradient of this line?

(ii) What is the x-intercept?

1

(iii) What is the *y*-intercept?

(iv) If the point (-4, k) lies on this line, what is the value of k?

Question 2 (3 marks)

What is the equation of the line perpendicular to y = 2x - 1 and passing through the point (3, 5)?

Write your answer in general form. 3

2

Question 3 (2 marks)

The line y = mx passes through the origin and the point (2, 3) as shown in the diagram below.

What is the value of *m*?

Question 4 (3 marks)

The points P and Q both lie in the first quadrant on the line y = 2x + 1. P is (1, 3).

The distance from P to Q is $\sqrt{80}$. Find the coordinates of Q.

3

PART B: TRIGONOMETRY [16 MARKS]

Question 1 (1 mark)

Evaluate sin 72°17' correct to 3 decimal places.

1

Question 2 (2 marks)

Find the value of $\cos\theta$ where θ is shown in the following diagram. Leave your answer in fraction form.

2

Question 3 (2 marks)

Find the value of y correct to 2 decimal places.

2

End of Part A

Question 4 (2 marks)

Find two possible values for *B* if $\sin B^o = 0.2$

2

2

Give your answers rounded to the nearest degree.

Question 5 (6 marks)

A bushwalker leaves from Hornsby, H, and walks 15 km on a bearing of 020° to get to P. From P she walks 3 km on a bearing of 150° to get to Q.

(i) Complete this diagram showing all this information.

(ii) What is the shortest distance of Q from H? Give your answer correct to 2 decimal places. 2

(iii) What is the area of the triangle HPQ? Give your answer correct to 2 decimal places.

Question 6 (3 marks)

Find θ correct to the nearest minute.

End of Part B

3

5

6

PART C: GEOMETRY [26 MARKS]

Question 1 (3 marks)

A circle has centre O. C is the midpoint of AB. Giving full reasons, prove that $\triangle ACO \equiv \triangle BCO$ by completing the following:

In $\triangle ACO$ and $\triangle BCO$,

1.

2.

3.

$$\triangle ACO \equiv \triangle BCO$$

Question 2 (5 marks)

PQ||ST

$$PQ = 8 \text{ cm}$$
 $QR = 6 \text{ cm}$

$$ST = 10 \text{ cm}$$
 $RS = y \text{ cm}$

(i) Prove that $\triangle PQR | | | \triangle RST$

(ii) Hence, find y.

2

Question 3 (3 marks)

- (i) A polygon has 10 sides. What is its mathematical name?
- (ii) What is the value of the sum of all the interior angles of a 10-sided polygon?
- (iii) If the 10-sided polygon is regular, what is the size of each interior angle?

Question 4 (2 marks)

A regular polygon has an exterior angle of 18°. How many sides does this regular polygon have?

2

1

Question 5 (3 marks)

Which plane shape am I? Give the most specific answer possible.

- (i) I am a rhombus with a right-angle.
- (ii) I am a rectangle with adjacent sides equal.
- (iii) The ratio of the sum of all my exterior angles to the sum of all my interior angles is 2:5.

Question 6 (3 marks)

$$\angle RQS = 40^{\circ}$$

 $\angle TUW = 30^{\circ}$ 3
Find $\angle QSU$ giving reasons.

3

Question 7 (3 marks)

Prove that Δ *ABE* = Δ *BCE*, and hence deduce that the diagonals of a rhombus are perpendicular to each another.

Question 8 (4 marks)

The ratio of side lengths of two similar solids is 2 : 5.

(i) If the surface area of the smaller solid is 120 cm², what is the surface area of the bigger solid? 2

(ii) If the volume of the larger solid is 400 cm³, what is the volume of the smaller solid?

2

End of Paper

YEAR 10 - FORMULA SHEET

Gradient-intercept form of a line

$$y = mx + b$$

m is gradientb is y-intercept

Slope (gradient) of a line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Distance between two points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Point-gradient of the equation of a line

$$y - y_1 = m(x - x_1)$$

Angle sum of a polygon

$$S = (n-2) \times 180^{\circ}$$

Trigonometric Ratios

 $\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$ $\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$ $\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$

Sine rule

In $\triangle ABC$, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine Rule

In
$$\triangle ABC$$
,
$$c^2 = a^2 + b^2 - 2ab\cos C$$
 or
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Area of a triangle

In
$$\triangle ABC$$
,
$$A = \frac{1}{2}ab\sin C$$

PartA	Year 10 5.3 Assessmen	t Task 3 student Solutions
Q1		z2-2x-15=0
	y = -3x - 6 grad interupt form	
	i) m=-3	x = 5, -3 but only in 1st quadrant
	ii) when y=0: 0=-3x-6	$x=5$ $y=2\times(5)+1$
	x = -2 → (-2,0)	=> Q(5,11)
	ii) when > = 0: y = -3 × (0) - 6	
	$y = -6 \rightarrow (0, -6)$	Part B
	iv) plug (-4, k) into equation	Ql sin 72° 17' = 0, 95257
	$k = -3 \times (-4) - 6$	= 0.953
	k = 6	
	: k must equal 6 when x = -4 to	$Q2 x^2 = 15^2 - 8^2$ 15/8
	satisfy the equation of the line	$x = \sqrt{161}$
	<i>y v</i>	cos 0 = 1161 ==
Q2	perpendicular to y=2x-1 and through (3,5)	cos 0 = 161
	perpendicular lines: m, xm2 = -1	Q3 <u>y</u> = 8
	.: m, × 2 = -1	sin47 sin52
	$m_1 = -\frac{1}{2}$	y = 8 sin 47
	point-gradient: $y-5=-\frac{1}{2}(x-3)$	$y = \frac{8\sin 47}{\sin 52}$
	24-10=-(x-3)	= 7.4248
	25-10 = -2+3	= 7.42
	x+2y-13=0	
		Q4 B = sin-1 (0.2)
Q3	m = rise	= 11.5369
	$m = \frac{1}{100}$ $m = \frac{3}{100}$ $m = \frac{3}{100}$ $m = \frac{3}{100}$ $m = \frac{3}{100}$	= 12*
	2-0	acute B=12" obtuse B= 180-12=168"
Q4	d= \((x2-x1)2 + (y2-y1)2 let Q(x,y)	4
	$\sqrt{80} = \sqrt{(x-1)^2 + (y-3)^2}$	Q5 i) 150°
	$80 = (x-1)^2 + (y-3)^2$	20 30
	$80 = (x-1)^2 + (2x+1-3)^2$	20/30 3km
	$80 = (x^2 - 2x + 1) + (4x^2 - 8x + 4)$	
	$80 = 5x^2 - 10x + 5$	
	$16 = x^2 - 2x + 1$	н

12

	Q5 continued	Q3i) decagon
	i) $(HQ)^2 = 15^2 + 3^2 - 2 \times 15 \times 3 \cos 50^\circ$	i) (10-2) × 180 = 1440
	(HQ) ² = 176.1491	is) 1440 ÷10 = 144.
	HQ = 13.2721	,
	= 13.27km	Q4 360 ÷ 16 = 20
	iii) AHPQ area = 2×15×3 sin 50°	
	= 17.23599	Q5 i) square
	= 17.24 km²	ii) oquare
	2 2 2	iii) exterior angle sum always equals 360°
06	$\cos \theta = 9^2 + 8^2 - 15^2$	ratio 2:5
	2×9×8 = -59	: interior 2 sum = 360 +2 x 5
	= -29	* 900
	$\theta = \cos^{-1}\left(-\frac{5}{9}\right)$	$(n-2) \times 180 = 900 n = 7$
	= 123 44 56.36	=> septazon or heptagon
	= 123* 45'	P
		Q6
- 1	PART C OR	2050=206X + 2X5V 8
Q	In AACO + ABCO In AACO + ABCO	(alt. 2's PR//XY) 7 100 V
	AC = BC (given) AC = BC (given)	
	OA = OB (radii of circle) LOAC = LOBC (base 1's	: LQSV = 30+40 = 70*
	OC (common) OC (common)	
	.: △ACO = △BCO (SSS) :: △ACO = △BCO (SAS)	Q7 In DABE + DCBE
02	i) In APQR + ARST	
U.Z	LPRQ = LTRS (vert. opp. 4's)	AB = CB (given) LABE = LCBE (Heart interior C's)
	LPQR = 4TSR (alt. 1's PQ//5T)	DE (south to)
	: APAR III ARST (2 pairs of equal L's)	.: AABE = ACBE (SAS) do 535
	AFOR III AND (2 pours of equal 23)	LAEB+LCEB = 180 (straight line)
	ii) u 10 (corresp. sides sim. 45)	LAEB = LCEB (corresp. L's congruent L's)
	ii) u = 10 (corresp. sides sim. As) in same ratio	2 × ∠AEB = 180
	y = 7.5	alex hus diagonals
	J	: LAEB-90" -> rhombor perpendicular to each other
		10 000

Q8 i) ratio of sides 2:5		
Q8 i) ratio of sides 2:5		
⇒ 4:25		
: 120 cm² = x		
4 25		
$x = 750 \text{cm}^2$		
ii) ratio of volumes 23:53		
⇒ 8:125		
: 4 = 400cm3		
8 125		
y= 25.6cm3		