Отчёт о выполненой лабораторной работе Исследование взаимной диффузии газов (2.2.1)

Каплин Артём Б01-402

20 апреля 2025

1 Введение

Цель работы: определение коэффициента диффузии гелия в воздухе.

Оборудование: форвакуумный насос; баллон с гелием; манометр; источник питания; магазин сопротивления; мультиметр; измерительная установка; компьютер с программой для проведения измерений.

2 Теоретические сведения

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии. В системе, состоящей из двух компонентов а и b (бинарная смесь), плотности потоков частиц в результате взаимной диффузии определяются законом Фика:

$$j_a = -D\frac{\partial n_a}{\partial x}, j_b = -D\frac{\partial n_b}{\partial x},$$
 (1)

В данной работе исследуется взаимная диффузия гелия и воздуха. Отметим, что давление и температура в системе предполагаются неизменным: $P_0 = (n_{He} + n_{Air})kT = const$, где n_{He} и n_{Air} – концентрации диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta n_{Air} = -\Delta n_{He}$. Следовательно, достаточно ограничиться описанием диффузии одного из компонентов, например гелия.

Приведём теоретическую оценку для коэффициента диффузии. В работе концентрация гелия, как правило, мала $(n_{He} \ll n_{Air})$. Кроме того, атомы гелия легче молекул, составляющих воздух $(m_{He} \ll m_{N_2}, m_{O_2})$, значит их средняя тепловая скорость велика по сравнению с остальными частицами. Поэтому перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц Не на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен

$$D = \frac{1}{3}\lambda \langle v \rangle,\tag{2}$$

где $\lambda=\frac{1}{n\sigma}$ — длина свободного пробега диффундирующих частиц; $\langle v \rangle=\sqrt{\frac{8kT}{\pi m}}$ — их средняя тепловая скорость.

Предполагая, что процесс диффузии будет квазиостационарным, покажем, что разность концентраций будет убывать по экспоненциальному закону

$$\Delta n = \Delta n_0 e^{-t/\tau},\tag{3}$$

где $\tau = \frac{VL}{2DS}$ – характерное время выравнивания концентраций между сосудами, Δn_0 – разность концентраций примеси в сосудах в начальный момент времени.

2.1 Метод измерения

Рассмотрим подзадачу о диффузии в соединительной трубке. Предположим сперва, что концентрации примеси (гелия) на её торцах поддерживаются постоянными и равными n_1 и n_2 соответственно. Тогда через некоторое время (оценку этого времени см. ниже формулу (9)) в трубке установится стационарный поток частиц, одинаковый в каждом сечении трубки (в противном случае, если бы поток зависел от x, частицы бы накапливались в трубке, и процесс перестал бы быть стационарным). Применяя закон Фика в трубке, получим

$$j = -D\frac{\partial n}{\partial x} = \text{const.} \tag{4}$$

Следовательно, распределение концентрации в трубке n(x) — линейная функция:

$$n(x) = \frac{\Delta n}{L}x,\tag{5}$$

и плотность потока частиц всюду постоянна и равна:

$$j = -D\frac{\Delta n}{L},\tag{6}$$

где $\Delta n = n_2 - n_1$ — разность концентраций гелия на концах трубки.

Теперь вернёмся к процессу выравнивания концентраций в сосудах. Частицы перетекают из сосуда 2 в сосуд 1 по трубке, и концентрации $n_1(t)$ и $n_2(t)$ меняются во времени. Предположим, что этот процесс происходит достаточно медленно, так что в трубке в любой момент времени успевает установиться практически стационарное течение, описываемое формулами (3), (4). Такое приближение называют квазистационарным.

Кроме того, будем считать, что в пределах каждого сосуда частицы распределены равномерно, так что концентрации примеси вблизи трубки и в остальных частях сосуда отличаются мало. Тогда полное число частиц примеси в сосудах равно соответственно $N_1 = n_1 V$ и $N_2 = n_2 V$. Произведение плотности потока (4) на площадь сечения трубки S даёт количество частиц, пересекающих в единицу времени любое поперечное сечение трубки. Поэтому:

$$\frac{dN_1}{dt} = jS, \quad \frac{dN_2}{dt} = -jS. \tag{7}$$

Вычитая из второго равенства первое и деля результат на объём сосуда V, с учётом (6), получим:

$$\frac{d(\Delta n)}{dt} = -\frac{\Delta n}{\tau},\tag{8}$$

где введено обозначение:

$$\tau = \frac{1}{D} \cdot \frac{VL}{2S}.\tag{9}$$

Интегрируя (8), получаем, что разность концентраций будет убывать по экспоненциальному закону:

$$\Delta n = \Delta n_0 e^{-t/\tau},\tag{10}$$

где Δn_0 — разность концентраций примеси в сосудах в начальный момент времени.

2.2 Экспериментальная установка

Схема измерительной части установки приведена на рис. 1. Она соединена с системой откачки и напуска воздуха и гелия. Для откачки используется форвакуумный насос. Конструкции системы откачки и напуска могут быть различны в зависимости от установки (схемы и описания см. на столах); один из вариантов изображён на рис. 2.

Часть установок компьютеризировано, что позволяет записывать зависимость показаний вольтметра U(t) в реальном времени (на остальных установках фиксация U(t) ведётся вручную с помощью секундомера).

Измерительная часть установки состоит из двух сосудов V_1 и V_2 , размещённых вертикально. Краны K_1 и K_2 служат для управления откачкой и подачей воздуха/гелия в сосуды. Диффузия осуществляется через тонкую короткую трубку, соединяющую сосуды, оснащённую краном K_3 . К соединительным трубкам подключён манометр M, измеряющий разность давлений между соединительными трубками и атмосферой и позволяющий измерять давления в разных частях системы (в зависимости от положения кранов).

Выравнивание давлений в сосудах V_1 и V_2 без изменения состава газов в них может быть осуществлено через обводные трубки посредством кратковременного открытия кранов K_1 и K_2 (при закрытом K_3).

Гелий содержится в баллоне (не изображён на рисунке) под давлением, превышающим атмосферное. Для предотвращения избыточного расхода гелия и его неконтролируемого проникания в установку предусмотрен металлический кран K_7 , отделяющий её от баллона с гелием. Его открывают только на время непосредственного заполнения установки гелием, остальное время он должен быть закрыт.

Для подачи малых порций гелия предусмотрен двухходовой кран с дозатором (рис. 3). При повороте рычажка P в положение I гелий в небольшом количестве поступает в дозатор (если открыт K_7), а при повороте P в положение II порция из дозатора поступает в установку.

Датчики теплопроводности $Д_1$ и Z_2 , расположенные в сосудах V_1 и V_2 соответственно, включены в мостовую электрическую схему согласно рис. 4. В одну из диагоналей моста включён высокочувствительный вольтметр (гальванометр) G, к другой подключается источник небольшого постоянного напряжения. Сопротивления проволок датчиков составляют одно из плеч моста. Второе плечо составляют переменные сопротивления R_1 , R_2 и R, служащие для установки показаний вольтметра G на нуль (балансировка моста).

Сопротивления R_1 и R_2 спарены (их подвижные контакты находятся на общей оси) и изменяются одновременно при повороте ручки грубой регулировки. Точная балансировка выполняется потенциометром R. Балансировку необходимо проводить перед каждым экспериментом заново: при этом установка заполняется чистым газом (воздухом без гелия) при давлении, близком «рабочему» (при котором затем будут проводиться измерения).

3 Приборы и данные

- Цифровой мульиметр Вольтметр универсальный B7-78, погрешность измерения постоянного напряжения 0.0035% + 0.0005% диапазона мВ;
- Форвакуумный насос Адвавак 2, скорость откачки 2 м $^3/$ час;
- Источник постоянного напряжения GW Instek GPS-2303, погрешность 0,5% + 10 мВ;
- Вакуумметр образцовый ГОСТ 6521-60, класс точности 0,4.

4 Ход работы

1. Ознакомление с установкой:

- Изучили схему подачи воздуха и гелия, а также схему откачки установки согласно дополнительному описанию, расположенному на рабочем столе.
- Ознакомились с особенностями измерительных приборов: манометра и вольтметра. Определили цену деления шкалы манометра в торрах: 1 деление = 7,45 торр.

2. Подготовка установки к работе:

- Подсоединили установку к форвакуумному насосу согласно схеме откачки и провели откачку до давления порядка 0,1 торр.
- После откачки выключили насос в два этапа:
 - (а) Сначала выключили питание насоса.
 - (b) Затем соединили насос с атмосферой, чтобы избежать попадания масла в установку.

3. Балансировка измерительного моста:

- Напустили в установку воздух до суммарного давления $P_{\Sigma} \approx 50$ торр.
- При избыточном давлении произвели частичную откачку до нужного значения.
- Изолировали рабочие объемы, закрыв краны К1 и К2, оставив открытым кран К3.
- Сбалансировали измерительный мост:
 - Использовали ручки «грубой» и «точной» настройки.
 - Добились того, чтобы показания вольтметра флуктуировали около нулевого значения.

4. Приготовление рабочих газовых смесей:

- Повторно откачали всю установку до давления порядка 0,1 торр.
- Изолировали объем V_2 , закрыв краны K2 и K3 важно, чтобы в этот сосуд не попал гелий.
- Напустили в установку гелий до давления $P_{\rm He} = 0.2 \cdot P_{\Sigma}$.
- При превышении давления удалили избыточное количество гелия форвакуумным насосом.
- Изолировали объем V_1 с помощью крана K1.
- Перекрыли кран подачи гелия К7.
- Произвели откачку гелия из всех патрубков установки, затем остановили откачку.
- Присоединили объем V_2 к установке (открыли кран K2) и напустили воздух до давления, превышающего рабочее (примерно $1,7 \cdot P_{\Sigma}$).
- Уравняли давления между V_1 и V_2 :
 - Открыли краны K1 и K2 при закрытых K3 и K4.
 - Подождали 30–60 секунд, чтобы температуры в сосудах сравнялись.
 - Не допускали слишком долгой выдержки, чтобы избежать диффузии гелия в обратном направлении.
- Зафиксировали точное значение установившегося давления P_{Σ} .
- Изолировали объёмы V_1 и V_2 , закрыв краны K1 и K2.

5. Проведение измерений:

- Подготовили компьютерную программу для записи зависимости напряжения U(t) от времени.
- Открыли кран К3 и начали процесс диффузии.
- Продолжали измерения до тех пор, пока напряжение не уменьшилось минимум на 40-50%.

6. Повторение эксперимента:

- Повторили шаги по приготовлению смеси и измерению при других значениях P_{Σ} .
- Провели 6 серий измерений в диапазоне $50 \div 220$ торр.

5 Обработка результатов и измерений

1. По полученным данным построим графики зависимости напряжения от времени U(t), а также эту же зависимость в логарифмическом масштабе по оси оридинат.

Рис. 5: Экспоненциальная зависимость напряжения от времени

2. По угловым коэффициентам и известным геометрическим параметрам установки рассчитали коэффициенты взаимной диффузии при выбранных рабочих давлениях (формулы (9) и (10)). Полученные данные в таблице.

$$\sigma_D = D\sqrt{\left(\frac{\sigma_{L/S}}{L/S}\right)^2 + \left(\frac{\sigma_V}{V}\right)^2 + \left(D\frac{\sigma_k}{k}\right)^2}$$

Рис. 6: Зависимость логарифма напряжения от времени

Р, дел	P, Topp	τ , c	$D, \frac{\mathrm{cm}^2}{\mathrm{c}}$	$\sigma_D, \frac{\mathrm{cm}^2}{\mathrm{c}}$	$\varepsilon_D,\%$
6.5 ± 0.4	48.4 ± 3.0	258.44 ± 0.20	7.31	0.19	2.63
8.0 ± 0.4	59.5 ± 3.0	301.88 ± 0.19	6.26	0.16	2.63
11.5 ± 0.4	85.6 ± 3.0	406.68 ± 0.22	4.65	0.12	2.63
14.5 ± 0.4	108.0 ± 3.0	494.21 ± 0.23	3.82	0.10	2.63
19.0 ± 0.4	141.5 ± 3.0	692.70 ± 0.33	2.73	0.07	2.63
28.5 ± 0.4	212.3 ± 3.0	946.35 ± 0.51	2.00	0.05	2.63

Таблица 1: Зависимость времени релаксации au и диаметра пятна D от давления P

- 3. По получненным коэффициентам диффузии построим по методу χ^2 зависимость $D(\frac{1}{P})$.
- 4. Исходя из известных параметров, рассчитаем концентрацию молекул воздуха n_0^1 при давлении P_1 , а также длину свободного пробега λ_{He} и эффективное сечение столкновений $\sigma_{He_{\text{возд}}}$:

$$n_0^1 = \frac{P_1}{kT_0} = \frac{48.4 \cdot 133,322}{1,38 \cdot 10^{-23} \cdot 298} \approx 1,57 \cdot 10^{24} \text{ m}^{-3}$$

$$\sigma_{n_0^1} = n_0^1 \cdot \frac{\sigma_{P_1}}{P_1} = 1,57 \cdot 10^{24} \cdot \frac{3}{48.4} = 9.8 \cdot 10^{22} \text{ m}^{-3}$$

Средняя скорость гелия при температуре $T=298~{
m K}$:

$$\bar{v} = \sqrt{\frac{8RT}{\pi\mu}} = \sqrt{\frac{8 \cdot 8,31 \cdot 298}{3,1415 \cdot 4 \cdot 10^{-3}}} = 1255,6 \frac{M}{c}$$

Длина свободного пробега:

Рис. 7: Зависимость коэффициента диффузии от обратного давления $D(\frac{1}{P})$

$$\lambda_1 = rac{3D}{ar{v}} = rac{3\cdot 7,31\cdot 10^{-4}}{1255,6} pprox 1747,3$$
 нм $\sigma_{\lambda_1} = \lambda_1\cdot arepsilon_{D_1} = 45,9$ нм

Соответствующее эффективное сечение:

$$\begin{split} \sigma_{He}^1 &= \frac{1}{n_0^1 \lambda_1} = \frac{1}{1,57 \cdot 10^{24} \cdot 1747, 3 \cdot 10^{-9}} \approx 3,65 \cdot 10^{-19} \text{ m}^2 \\ \sigma_{\sigma_{He}^1} &= \sigma_{He}^1 \cdot \sqrt{\left(\frac{\sigma_{n_0^1}}{n_0^1}\right)^2 + \left(\frac{\sigma_{\lambda_1}}{\lambda_1}\right)^2} = 2,48 \cdot 10^{-20} \text{ m}^2 \end{split}$$

P, Topp	$n_0, 10^{24} \text{ m}^{-3}$	$\sigma_{n_0}, 10^{24} \text{ m}^{-3}$	λ , HM	σ_{λ} , HM	$\sigma_{He}, 10^{-19} \text{ m}^2$	$\sigma_{\sigma_{He}}, 10^{-19} \text{ m}^2$	$\varepsilon_{\sigma_{He}}$, %
48.4 ± 3.0	1.57	0.10	1747.3	45.9	3.65	0.25	6.8
59.5 ± 3.0	1.93	0.10	1495.9	39.3	3.47	0.20	5.7
85.6 ± 3.0	2.78	0.10	1110.4	29.2	3.24	0.14	4.4
108.0 ± 3.0	3.50	0.10	913.7	24.0	3.13	0.12	3.8
141.5 ± 3.0	4.59	0.10	651.9	17.1	3.34	0.11	3.4
212.3 ± 3.0	6.88	0.10	477.2	12.5	3.04	0.09	3.0
756.0 ± 3.0	24.51	0.10	195.8	18.0	2.08	0.19	9.2
760.0 ± 3.0	24.64	0.10	195.2	18.0	2.08	0.19	9.2

Таблица 2: Результаты вычислений для различных давлений: концентрация n_0 , длина пробега λ и сечение σ_{He} .

Для сравнения воспользуемся табличным значением коэффициента диффузии $D_{\text{табл}} = 0.697 \ \frac{\text{см}^2}{\hat{c}}$:

$$\lambda_{\mathrm{табл}} = 166,\!5$$
 нм, $\sigma_{\mathrm{табл}} = \frac{1}{n_0^{760} \cdot \lambda_{\mathrm{табл}}} = 2,\!44 \cdot 10^{-19} \; \mathrm{m}^2$

6 Обсуждение результатов

- 1. Графики подтверждают выполнение закона диффузии, описываемого формулой (10).
- 2. Коэффициент диффузии обратно пропорционален давлению, что следует из графика зависимости $D(P^{-1})$.
- 3. Сравнение значения D при P = 760 торр с табличным:

Величина	Эксп. зн.	Табл. зн.
$D, \frac{cm^2}{c}$	0,818	0,697
$\sigma_D, \frac{cm^2}{c}$	0,075	0,120
$\varepsilon_D, \%$	9,2	17,2

Таблица 3: Сравнение экспериментального и табличного значений коэффициента диффузии

7 Выводы

Были выполнены измерения зависимости напряжения от времени при различных давлениях. Построены графики U(t) и $\ln U(t)$, по которым определены коэффициенты диффузии. Получена зависимость $D(P^{-1})$, по которой проведена экстраполяция на атмосферное давление. Также вычислены длина свободного пробега и сечение столкновений при каждом давлении, с последующим сравнением с табличными значениями.