『電磁場とベクトル解析』(第16刷)のノート・誤植表

Toshi2019

2024年2月3日

1 誤植表

■凡例

- 1.-4 は下から 4 行目の意味.
- ページ数の横に?がついているものは間違いかどうか曖昧なもの. (意図を汲むとこう書きたかったのかも? というものも含む)

p	位置	誤	正	備考
7	1.12	$\ \boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w}) \ $	$ oldsymbol{u}\cdot(oldsymbol{v} imesoldsymbol{w}) $	実数なので
18	13, 4	$m{l} \colon [m{0}, m{\pi}] o \mathbb{R}^2$	$m{l} \colon [m{a}, m{b}] o \mathbb{R}^2$	
165	問 1	$oldsymbol{u},oldsymbol{v}$	$oldsymbol{v},oldsymbol{w}$	もとの問 (p.5) の記号に合わせる.

2 問 解答

2.1 第1章

問 5. $\boldsymbol{l}(t)=(e^t\cos t,e^t\sin t),\, \boldsymbol{V}(x,y)=(x,y)$ とするとき、線積分 $\lim_{T\to\infty}\int_{-T}^0 \boldsymbol{V}\cdot d\boldsymbol{l}$ を計算せよ、解答.

$$\lim_{T \to \infty} \int_{-T}^{0} \mathbf{V} \cdot d\mathbf{l} = \lim_{T \to \infty} \int_{-T}^{0} \left(e^{t} \cos t, e^{t} \sin t \right) \cdot \left(e^{t} \cos t - e^{t} \sin t, e^{t} \sin t + e^{t} \cos t \right) dt$$

$$= \lim_{T \to \infty} \int_{-T}^{0} \left(e^{2t} \cos^{2} t - e^{2t} \cos t \sin t + e^{2t} \sin^{2} t + e^{2t} \sin t \cos t \right) dt$$

$$= \lim_{T \to \infty} \int_{-T}^{0} e^{2t} dt$$

$$= \lim_{T \to \infty} \frac{1}{2} \left(1 - e^{-2T} \right) = \frac{1}{2}.$$