I. Prim

GRAPH	STEPS	MINIMUM SPANNING TREE
(2) 6 (4) (3) 4	Choose an arbitrary vertex: 3 Put 3's edges in priority queue. Queue: -(3, 4) - 4 -(3, 1) - 6 -(3, 2) - 9	3
	Get (3, 4) - 4 -> safe edge Put 4's edges in priority queue (no more edges). Queue: -(3, 1) - 6 -(3, 2) - 9	3
	Get (3, 1) - 6 -> safe edge Put 1's edges in priority queue. Queue: - (1, 2) - 5 - (3, 2) - 9	(1) 6 (4) 3
	Get (1, 2) - 5 -> safe edge Put 2's edges in priority queue (no more edges). Queue:	2 6 4 3 4

GRAPH	STEPS	MINIMUM SPANNING TREE
(2) 6 (4) (3) 4	Initial Step. Ordered Edges: - (3, 4) - 4 - (1, 2) - 5 - (1, 3) - 6 - (2, 3) - 9	 (1) (2) (3)
	Get (3, 4) - 4 -> safe edge Ordered Edges: -(1, 2) - 5 -(1, 3) - 6 -(2, 3) - 9	 (1) (2) (3)
	Get (1, 2) - 5 -> safe edge Ordered Edges: - (1, 3) - 6 - (2, 3) - 9	(1) (2) (4)
	Get (1, 3) - 6 -> safe edge Ordered Edges: -(2, 3) - 9 DONE	(2) 5 (4) (3) 4