ĐỀ THI MÔN HỌC TÍN HIỆU VÀ HỆ THỐNG 2019-2020 (HK phụ)

(Thời gian làm bài 90 phút Sinh viên không được phép sử dụng tài liệu)

Câu 1: (2 điểm)

Cho một hệ thống liên tục trong miền thời gian có quan hệ giữa đầu vào x(t) và đầu ra y(t) như sau:0-0

$$y(t) = Kx(t).u(t)$$

Trong đó là u(t) là xung nhảy bậc đơn vị và K là một hằng số bất kỳ có giá trị khác 0.

- a) Chứng minh hệ thống trên là biến đổi theo thời gian
- b) Chứng minh hệ thống trên là tuyến tính

Câu 2: (4 điểm)

Cho một hệ thống tuyến tính bất biến nhân quả (LTI) rời rạc được mô tả bởi phương trình sai phân sau đây:

$$-6y[n] - 5y[n-1] - y[n-2] = x[n-1]$$

- a) Xác định đáp ứng tần số H(w)
- b) Xác định tín hiệu đầu ra khi đầu cho tín hiệu đầu vào là một xung $x[n] = \delta[n-1]$
- c) Vẽ giản đồ điểm cực- điểm không của hệ thống

Câu 3: (4 điểm)

Xét một hệ thống LTI nhân quả, liên tục được mô tả bởi phương trình vi phân sau đây với K là 1 hằng số:

$$y''(t) - 6y'(t) + Ky(t) = x(t)$$

- a) Xác định hàm truyền của hệ thống
- b) Tìm khoảng giá trị của K để hệ thống ổn định
- c)

Bảng tra biến đổi Laplace

No.	x(t)	X(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$

$$\begin{array}{lll}
5 & e^{\lambda t}u(t) & \frac{1}{s-\lambda} \\
6 & te^{\lambda t}u(t) & \frac{1}{(s-\lambda)^2} \\
7 & t^n e^{\lambda t}u(t) & \frac{n!}{(s-\lambda)^{n+1}} \\
8a & \cos bt u(t) & \frac{s}{s^2+b^2} \\
8b & \sin bt u(t) & \frac{b}{s^2+b^2} \\
9a & e^{-at}\cos bt u(t) & \frac{b}{(s+a)^2+b^2} \\
9b & e^{-at}\sin bt u(t) & \frac{b}{(s+a)^2+b^2} \\
10a & re^{-at}\cos (bt+\theta) u(t) & \frac{(r\cos\theta)s+(ar\cos\theta-br\sin\theta)}{s^2+2as+(a^2+b^2)} \\
10b & re^{-at}\cos (bt+\theta) u(t) & \frac{0.5re^{i\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb} \\
10c & re^{-at}\cos (bt+\theta) u(t) & \frac{As+B}{s^2+2as+c} \\
& \theta = \tan^{-1}\left(\frac{Aa-B}{A\sqrt{c-a^2}}\right) \\
& b = \sqrt{c-a^2} \\
10d & e^{-at}\left[A\cos bt + \frac{B-Aa}{b}\sin bt\right] u(t) & \frac{As+B}{s^2+2as+c}
\end{array}$$

Bảng tra biến đổi Z

No.	x[n]	X[z]
1	$\delta[n-n]$	z^{-k}
2	u[n]	$\frac{z}{z-1}$
3	nu[n]	$\frac{z}{(z-1)^2}$
4	$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$
5	$n^3u[n]$	$\frac{z(z^2+4z+1)}{(z-1)^4}$
6	$\gamma^n u[n]$	$\frac{z}{z-\gamma}$
7	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-\gamma}$
8	$n\gamma^nu[n]$	$\frac{\gamma z}{(z-\gamma)^2}$

10
$$\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^{m}m!}\gamma^{n}u[n] \qquad \frac{z}{(z-\gamma)^{m+1}}$$
11a
$$|\gamma|^{n}\cos\beta n u[n] \qquad \frac{z(z-|\gamma|\cos\beta)}{z^{2}-(2|\gamma|\cos\beta)z+|\gamma|^{2}}$$
11b
$$|\gamma|^{n}\sin\beta n u[n] \qquad \frac{z|\gamma|\sin\beta}{z^{2}-(2|\gamma|\cos\beta)z+|\gamma|^{2}}$$
12a
$$r|\gamma|^{n}\cos(\beta n+\theta)u[n] \qquad \frac{rz[z\cos\theta-|\gamma|\cos(\beta-\theta)]}{z^{2}-(2|\gamma|\cos\beta)z+|\gamma|^{2}}$$
12b
$$r|\gamma|^{n}\cos(\beta n+\theta)u[n] \qquad \gamma=|\gamma|e^{j\beta} \qquad \frac{(0.5re^{j\theta})z}{z-\gamma}+\frac{(0.5re^{-j\theta})z}{z-\gamma^{*}}$$
12c
$$r|\gamma|^{n}\cos(\beta n+\theta)u[n] \qquad \frac{z(Az+B)}{z^{2}+2az+|\gamma|^{2}}$$

$$r = \sqrt{\frac{A^2 |\gamma|^2 + B^2 - 2AaB}{|\gamma|^2 - a^2}} \qquad \beta = \cos^{-1} \frac{-a}{|\gamma|} \qquad \theta = \tan^{-1} \frac{Aa - B}{A\sqrt{|\gamma|^2 - a^2}}$$