

DETECTING ZERO-DAY AND TARGETED ATTACKS AGAINST ICS

DINA HADZIOSMANOVIC DAMIANO BOLZONI

DISTRIBUTED AND EMBEDDED SECURITY GROUP

THE CONTEXT

- > Hermes, Castor and Midas
 - □ 3 projects sponsored by the (former) Dutch Ministry of Internal affairs

MOTIVATIONS: current countermeasures cannot detect the latest cyber threats against industrial control systems

- □ Stuxnet
- ☐ Vulnerabilities disclosed by "independent researchers"
- □ Project Basecamp

GOALS: enhance current approaches and develop new techniques

☐ Using data mining and anomaly detection techniques

PARTNERS

UNIVERSITEIT TWENTE.

THE CYBER SECURITY PROBLEM

0-day and targeted attacks

HERMES

HOST-BASED EVENT MINING IN SCADA SYSTEMS

THE PROBLEM

- > SCADA systems log thousands of events per day
 - ☐ User/system activities
- Logs are hardly analyzed/processed by operators
 - ☐ Too much work
 - ☐ Lack of skills
- ➤ A good deal of information is lost...

THREATS AND CURRENT SECURITY TOOLS

☐ Leverage vulnerabilities in the application logic

detection

☐ A higher semantic understanding of inputs is needed for

NIDS/HIDS mainly address system-related threats Buffer overflows Virus/Worms
 What about: □ Authorized users that make mistakes □ Unauthorized users that gain enough privileges and perform malicious actions
We call those "process-related threats"

DETECTING PROCESS RELATED THREATS

- > System logs provide a complete overview of the processes
 - ☐ We look for *rare* log entries
- ➤ Malicious/anomalous events are supposed to happen *rarely*
- > Use visualization to ease the task of IT (security) operators
 - ☐ Support operators with little security skills

LOG NORMALIZATION

- A typical log entry
 - □ 31/07/2011 21:56:10,System Simple Event,Controller_Alg (2001) Interval time in ordinary tasks inc. 1.3,X.Y.Z.W-_SW1131Task,CSPAWPK01
- > Each log entry has several attributes
 - ☐ Some are not relevant ("locale")
 - ☐ Some are incomplete ("user account")
 - □ Some require pre-processing ("timestamp" → working shift)
- ➤ Together with process engineers we selected the most "interesting" ones
 - ☐ Timestamp (Working shift), SCADA node, Object_path, Type of event, Aspect of event and User account

EXPERIMENTS

- > We plot a graphical representation of the events
 - ☐ 14 days of logs, ~100K events
- ➤ No intrusion had been reported during the chosen days

□ But...

CASTOR

CONTROLLING ACCESS TO SCADA NETWORKED SYSTEMS

THE PROBLEM

- ➤ At some point in time, despite the organization's policies, an unauthorized device is connected to the network
 - ☐ A technician that needs to run some maintenance, perhaps with a malware-infected laptop
- A disgruntled employee could use his knowledge and trust level to plant a malware into some systems (e.g., an HMI client)

APPROACH

- > Approach
 - ☐ Add seamlessly "smart" ACLs to current installations
 - Automatically build a model of the network that describes
 communication patters and protocols used among hosts
 - o For some protocols, enforce function codes normally used
 - ☐ Communications with an **abnormal pattern** are flagged as anomalous

BENCHMARKS IN REAL-LIFE ENVIRONMENTS

CURRENT STATUS

> The system has been deployed in a real-life production site ☐ MMS, OPC and SMB ☐ Training for 5 minutes, 2 false alerts over 7 days of testing > Then we re-deployed it in a testing environment ☐ This environment was supposed to be a copy of the production site, actually it wasn't → the system spotted the inconsistency ☐ We connected an unauthorized device → **detected** ☐ We simulated a hacked authorized device using a different set of protocols/function codes \rightarrow **detected**

MIDAS

INTRUSION DETECTION FOR SCADA SYSTEMS

PROBLEM

exploit

Current NIDS are mainly based on signatures
☐ Blacklisting
Cannot detect 0-day exploitations, because they lack the proper signatures
☐ Some implementations use heuristics to improve detection, but with little success
Anomaly detection (whitelisting) has been advocated as the definite solution for years
☐ So far, only flow-based anomaly detection systems managed to

penetrate the market → cannot detect in general a data injection

☐ Too many false alerts in real-life environments

APPROACH

- ➤ Include a (partial) specification of the protocol to monitor
 - ☐ Lower false alerts, increases detection capabilities
- If a network message is not protocol-compliant an alert is raised
- ➤ The detection engine "learns" normal values for all of the protocol message fields
 - \circ Numbers/Lengths: enumerations, ranges (for instance, 0 < x < 100)
 - Strings: regular expressions
 - Binary buffers: byte frequency distribution

> Messages with abnormal field values are flagged as attacks

FIRST BENCHMARKS IN CONTROLLED ENVIRONMENT CURRENT STATUS

- We use data sets collected at four production sites from project partners
 - ✓ Modbus tests
- > Detects the RPC exploits used by Stuxnet
 - ✓ The system detects that the RPC functions exploited have not been seen before
 - ✓ We then simulated the use of the "NetprPathCompare" function (MS-08-067),
 and re-run the exploit -(too much data is sent compared to normal usage)
- Tested against Wurldtech's Achilles
 - Modbus → all tests cleared with success

SUMMARY

- ➤ HERMES detect legitimate but undesirable commands on the application level
- CASTOR monitor your plant and derive models of communication
- MIDAS monitor message fields and look for anomalous packets

QUESTIONS

?

