Colégio Técnico de Campinas Departamento de Processamento de Dados

ID:FAKE: Ferramenta para auxílio no reconhecimento de Fake News

André Yuhji Terada Pedro Henrique Perez Dias Rafael Lacerda Silva

> Campinas - SP 2022

André Yuhji Terada Pedro Henrique Perez Dias Rafael Lacerda Silva

ID:FAKE: Ferramenta para auxílio no reconhecimento de Fake News

Trabalho de Conclusão de Curso apresentado ao Departamento de Processamento de Dados do Colégio Técnico de Campinas, localizado em R. Culto à Ciência, 177 - Centro, Campinas - SP, 13020-060

Orientadora: Simone Pierini Facini Rocha

Campinas - SP

2022

Sumário

1. Introdução	4
2. Problema	5
3. Objetivos	5
3.1 Objetivo Geral	5
3.2 Objetivos Específicos	5
4. Desenvolvimento	5
4.1 Definição Inicial	5
4.2 Pesquisa	6
4.3 Identidade	6
4.4 Prototipagem	7
4.4.1 Procedimentos	7
4.4.2 Testes	9
4.5 Custos	10
5. Resultados	10
6. Conclusões	13
7. Referências	13

Resumo

O ID:FAKE busca idealizar e desenvolver uma ferramenta que possa ser utilizada como auxílio no combate à disseminação de notícias falsas na internet, que vem afetando desde o debate político nacional e internacional, até a saúde dos brasileiros. O projeto tem como base o uso de uma inteligência artificial capaz de avaliar a probabilidade de uma notícia se enquadrar como *fake news*. Em cima dessa tecnologia, desenvolvemos uma aplicação para WhatsApp que recebe mensagens em diversas formas de mídia, as converte para texto, realiza a análise da mensagem e retorna qual a probabilidade da mensagem ser uma notícia falsa. As funcionalidades já desenvolvidas apresentaram uma boa acurácia na transcrição para texto, e os testes com a inteligência artificial mostraram resultados promissores. Junto com a acessibilidade e praticidade fornecida pelo WhatsApp, é possível afirmar que o projeto desenvolvido possui grande potencial no combate à desinformação na internet.

Palavras-chave: Desinformação, Inteligência Artificial, Social

1. Introdução

Atualmente, vivemos na era da informação, em que recebemos inúmeras notícias de diversas mídias e as consumimos desenfreadamente e de forma irresponsável. Grande parte dessas notícias circula pelas redes sociais, meio em que informações como autor e fontes se tornam irrelevantes para a maioria das pessoas. Isso as levam a acreditar nas chamadas *fake news*, notícias falsas, que fazem com que o leitor tome conclusões equivocadas em relação aos fatos.

Para impedir que pessoas caiam em *fake news*, buscamos identificar o que as levam a acreditar nestas notícias. Durante nossas pesquisas, dois tópicos se destacaram bastante, as "bolhas sociais" e a "pós-verdade". O primeiro, responsável por isolar o usuário em um único ambiente da internet, fazendo com que seja mais fácil manipulá-lo com notícias falsas ou tendenciosas. O segundo, sendo referente à ideia de usar o apelo emocional e as crenças pessoais para convencer o usuário, ao invés de fatos e argumentos sólidos. Ambos tópicos combinados criam um ambiente ideal para a propagação de *fake news*, onde dificilmente as informações verdadeiras chegam.

Este projeto tem como foco agir no ambiente de bolha social. Buscando proporcionar auxílio rápido e acessível às pessoas na identificação de informações de qualidade.

2. Problema

Como facilitar o reconhecimento de *fake news* e levar essa técnica de maneira acessível às pessoas?

3. Objetivos

3.1 Objetivo Geral

Desenvolver uma ferramenta prática, acessível e confiável que ajude as pessoas a validarem a veracidade das informações *online*.

3.2 Objetivos Específicos

- Estudar e compreender as ferramentas existentes de combate a fake news
- Estudar o comportamento e o impacto da difusão das *fake news* nos tempos modernos
- Ajudar na democratização do acesso à informação de qualidade

4. Desenvolvimento

4.1 Definição Inicial

Antes de começar efetivamente a desenvolver o projeto, foi dedicado tempo a pensar nas funcionalidades que o mesmo teria, levando em consideração as principais ferramentas de combate às notícias falsas existentes.

As ferramentas existentes analisadas foram: o "Fato ou Fake" do grupo Globo, a "Agência Lupa" e a ferramenta desenvolvida pelo projeto "Contributions to the Study of Fake News in Portuguese: New Corpus and Automatic Detection Results". Os dois primeiros são ferramentas profissionais que contam com a checagem manual de informações, sendo mais confiáveis em suas conclusões, porém mais demoradas em divulgá-las. No projeto citado por último foi desenvolvida uma ferramenta que consiste em uma inteligência artificial que analisa textos e gera uma resposta automática, indicando a provável classificação deste texto em verdadeiro ou falso, com uma taxa de 89% de acerto. Este, porém, não é muito

acessível por estar presente em um site e verificar apenas um tipo de notícia, as enviadas em textos.

Depois dessas análises, a versão pensada para desenvolvimento teria que contar com ferramentas para verificação de notícias falsas contidas em vários tipos de mídia (como áudios, imagens e textos) e consistiria em um sistema acessível de respostas automáticas, conhecido como *bot*. A plataforma escolhida para conter nosso *bot* foi o WhatsApp devido ao gigantesco alcance desse aplicativo em território nacional, segundo inúmeras pesquisas. Como observado na pesquisa realizada pelo instituto Statista em 2021, que indica que o aplicativo possui cerca de 120 milhões de usuários no Brasil e na realizada pelo instituto Opinion Box que o coloca como o software mais presente nos celulares brasileiros.

4.2 Pesquisa

A primeira parte do desenvolvimento do trabalho foi inteiramente dedicada à pesquisa de ferramentas existentes na internet que pudessem ser integradas para gerar uma ferramenta completa que alcançasse o objetivo proposto e obedecesse à definição inicial.

4.3 Identidade

Durante o desenvolvimento desse projeto, foi necessária a criação da identidade do mesmo, contando com um nome e um logotipo. O nome, "ID:FAKE", foi pensado para transmitir a ideia por trás do projeto ("ID": identificação e "FAKE": falso). A primeira versão do logotipo contém as iniciais do nome do projeto, além de uma lupa que traz a ideia de investigação e descoberta. O logotipo pode ser visto abaixo:

Figura 1. Logo do projeto. Fonte: Autoral

4.4 Prototipagem

4.4.1 Procedimentos

Foram identificadas duas maneiras para a criação do *bot*: a primeira, utilizando o sistema Venom que foi desenvolvido em Javascript e permitiria o desenvolvimento de maneira simples e livre. A segunda, utilizando as API¹s da Twilio, programáveis através da linguagem Python e Node, que permitiriam desenvolver o projeto de maneira mais profissional. Inicialmente, a maneira escolhida foi a primeira.

Para fazer a análise das notícias em texto, foi decidido utilizar a inteligência artificial desenvolvida pelo projeto acima citado, disponibilizada abertamente no GitHub² do projeto. A análise consistiria no recebimento de um texto pelo *bot* e envio de uma resposta para o usuário, classificando o texto como verdadeiro ou falso, através da classificação gerada pela inteligência artificial.

Para realizar a análise de textos contidos em imagens, modo comum de se divulgar *fake news*, será utilizada a API Vision AI da Google para realizar a extração destes textos e, posteriormente, analisá-los com o processo acima citado.

¹ Em ciência da computação, a Interface de Programação de Aplicações (em inglês, API) é um conjunto de serviços que foram programadas em um software, que são disponibilizados para que aplicativos possam utilizar dessas funcionalidades diretamente, sem envolver-se em detalhes da implementação do software.

² GitHub é uma plataforma de hospedagem de código-fonte e arquivos com controle de versão

Para a análise de imagens sem textos, será utilizada a ferramenta do site TinEye para realizar a busca dessas imagens na internet e encontrar ocorrências da mesma. Serão enviados ao usuário alguns *links* de lugares na internet que contenham a imagem recebida.

Por último, para tratar de notícias enviadas por áudios, será utilizada a API Speech-To-Text da Google para transcrever o áudio para texto e posteriormente analisá-lo com a inteligência artificial especificada anteriormente.

O esquema de funcionamento da ferramenta seria assim:

Figura 2. Esquema de funcionamento do projeto. Fonte: Autoral

Para organização do desenvolvimento do projeto, foi elaborado o cronograma abaixo:

Tarefas	Meses									
	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dec
Escolha do tema	X									
Planejamento e Pesquisa	X	X	X							

Revisão Bibliográfica	X	X	X	X	X	X	X	X		
Desenvolvimento do Plano de pesquisa			X	X						
Diário de Bordo	X	X	X	X	X	X	X	X	X	
Criação do <i>bot</i>				X	X					
Implementar I.A projeto				X	X					
Implementar Vision AI						X	X			
Implementar uso do TinEye							X	X		
Implementar Speech-to-Text									X	X
Testes para protótipos				X	X	X	X	X	X	X
Relatório do projeto								X	X	X

4.4.2 Testes

Os testes realizados se deram paralelamente ao desenvolvimento do projeto para contribuir com o desenvolvimento. Eles foram feitos em pequena escala, através de amigos e familiares.

4.5 Custos

Para ser possível realizar o projeto em larga escala, teriam que ser custeados os usos das APIs Speech-to-Text e Vision AI da Google, atualmente desconsiderados por contar com período de testes gratuito. Os custos estão apresentados abaixo:

Custos de uso da API Vision AI:

Recurso	Preço por 1.000 unidades							
	Primeiras 1.000 unidades/mês	1.001 - 5.000.000 unidades/mês	5.000.001 unidades/mês ou um número maior					
Detecção de rótulos	Grátis	US\$ 1,50	US\$ 1,00					
Detecção de texto	Gratuito	US\$ 1,50	US\$ 0,60					
Detecção de texto de documentos	Grátis	US\$ 1,50	US\$ 0,60					

Figura 3. Tabela de custos de uso da API Vision AI. Fonte nas referências

Custos de uso da API Speech-to-Text:

Seleção de		drão odelos, exceto chamadas s de telefone e vídeo)	Modelos aprimorados (chamada de telefone, vídeo)		
	De 0 a 60 minutos	Mais de 60 minutos até 1 milhão de minutos	De 0 a 60 minutos	Mais de 60 minutos até 1 milhão de minutos	
Reconhecimento de fala (sem geração de registros de dados — padrão)	Grátis	US\$ 0,006/15 segundos **	Gratuito	US\$ 0,009/15 segundos **	
Reconhecimento de fala (com possibilidade da ativação da geração de registros de dados)	Grátis	US\$ 0,004/15 segundos **	Grátis	US\$ 0,006/15 segundos **	

Figura 4. Tabela de custos de uso da API Speech-to-Text. Fonte nas referências

5. Resultados

Os resultados alcançados até o momento são bastante promissores. Faltando apenas o desenvolvimento da implementação da API Speech-to-Text ao projeto (que deve ser realizado até o fim do ano), o protótipo atual do projeto já contém quase todas as funcionalidades planejadas inicialmente.

Os resultados preliminares podem ser observados abaixo:

Figura 5 - Resposta indicada pelo *bot* perante uma notícia em texto comprovadamente falsa. Fonte: Autoria própria

Figura 6 - Resposta indicada pelo *bot* perante uma notícia em texto comprovadamente verdadeira. Fonte: Autoria própria

Figura 6 - Resposta indicada pelo *bot* perante uma notícia contida em imagem, comprovadamente falsa. Fonte: Autoria própria

Figura 7 - Resposta indicada pelo *bot* perante uma imagem que não contém texto. Fonte: Autoria própria

6. Conclusões

Com base nos dados apresentados em relação à presença e impacto das notícias falsas na nossa sociedade atual, pode-se concluir a necessidade de uma ferramenta que possa auxiliar na identificação dessas em meio à grande quantidade de informações que circulam *online*.

A pesquisa encontra-se em sua fase final, com previsão de término até o final do ano. No entanto, os resultados parciais já indicam o potencial da mesma em ser de grande ajuda no combate à desinformação.

Para o futuro, pretende-se alterar o projeto para a plataforma da Twilio indicada no item 4.5.1, para tornar possível ampliar o alcance do projeto. Para isso, seria necessária uma rede de apoio e investimento, para lidar com os custos indicados. Além disso, podem ser pensadas mais formas de incrementar a ferramenta, como a verificação de notícias contidas em vídeos e em *links* recebidos.

7. Referências

Empresa 'Statista'. **Messenger: Whatsapp in Brasilien 2022 Brand Report** (nome original da pesquisa). Dados referenciados disponíveis em: https://www.messengerpeople.com/pt-br/whatsapp-no-brasil/#:~:text=Com%20 quase%20120%20 milkozawases%20de,meio%20 predileto%20para%20 andar%20 mensagens.

Monteiro, R. A. Contributions to the Study of Fake News in Portuguese: New Corpus and Automatic Detection Results. Disponível em: https://link.springer.com/chapter/10.1007/978-3-319-99722-3 33

OpinionBox. **Pesquisa sobre aplicativos no Brasil: apps mais populares, hábitos e preferências dos brasileiros.** Dados disponíveis em: https://blog.opinionbox.com/pesquisa-sobre-aplicativos-no-brasil/#:~:text=Uso%20de%20sm arrtphones%20e%20aplicativos%20no%20Brasil&text=Al%C3%A9m%20disso%2C%2098 https://docume.arrtphones%20e%20aplicativos%20no%20Brasil&text=Al%C3%A9m%20disso%2C%2098 https://docume.arrtphones%20dos%20usu%C3%A1rios,manteve%20a%20propor%C3%A7%C3%A3o%20de%20 155%25

Vision AI API. Dados de custo disponíveis em: https://cloud.google.com/vision/pricing/

Speech-to-Text API. Dados de custo disponíveis em: https://cloud.google.com/speech-to-text/pricing

Ferramenta TinEye. Dados e funções disponíveis em: https://tineye.com/

Ferramenta Venom. Código e informações disponíveis em: https://github.com/orkestral/ven