(1) $P(x_0 = a_0, x_1 = a_1, x_2 = a_1,, x_n = a_n)$ = $P(x_n = a_n \mid x_{n-1} = a_{n-1}) \cdot P(x_{n+1} = a_{n-1} \mid x_{n-2} = a_{n-2})$ $P(x_1 = a_1 \mid x_0 = a_0) P(x_0 = a_0)$ (1) $P(x_n = a_1) \equiv j^{th}$ state in Solid Probabity Step State Given $V_0 \Rightarrow V_1 = V_0 P$, $V_2 = V_1 P$, $V_{n+1} = V_n \cdot P$ $V_$	Bobabilitin with Mc: X(t) ao,a,, a, , an
= $P(x_n = a_n \mid x_{n-1} = a_{n-1}) \cdot P(x_{n+1} = a_{n-1} \mid x_{n-2} = a_{n-2})$ $P(x_1 = a_1 \mid x_0 = a_0) P(x_0 = a_0)$ (1) $P(x_n = a_1) \equiv j^{tm}$ state in state j^{tm} $j^$	(1) P(x0=au, x1=a1,x2=a1,, xn=an)
(1) $P(X_1 = a_1 X_0 = a_0)$ $P(X_0 = a_0)$ Step Static Step Static Given $V_0 \Rightarrow V_1 = V_0 P$, $V_2 = V_1 P$, Vector Classification of Static. The state of a M.C can be classified as recurrent or transferd based on whether they are visited again on that state. 1) Recurrent: State a_i of a M.C is said to be recurrent if starting from a_i , the return to state a_i in centain. 2) Transient: State a_i of a M.C is said to be transient of starting from a_i , the return to state a_i in centain. 2) Transient: State a_i of a M.C is said to be transient of starting from a_i , the return to state a_i in centain.	= P(xn=an 2n-1=an-1). P(xn-1=an-1 xn-2=an-2)
Step State Step State Step State Step State Given $V_0 \Rightarrow V_1 = V_0 P$, $V_2 = V_1 P$, — Vector V	$P(x_1 = a_1 x_0 = a_0) P(x_0 = a_0)$
Step State Step State Given $V_0 \Rightarrow V_1 = V_0 P$, $V_2 = V_1 P$, $V_{n+1} = V_n \cdot P$ V_{n	(11) P(Xn=a) = jth state in work Vop'
Given $V_0 \Rightarrow V_1 = V_0 P$, $V_2 = V_1 P$, $V_{n+1} = V_n \cdot P$ $= V_{n+1} = []_n^n$	20 Shal Probabit
Classification of Status: The state of a M.C can be classified as recurrent or transiend based on whether they are visited again on that state. 1) Recurrent: State a, of a MC is said to be recurrent if startly from ai, the return to state a; is certain. 2) Transient: State ai of a MC is said to be transient if startly from ai, the return to state a; is certain.	Step Stew
Classification of Status: The state of a M.C can be classified as recurrent or transiend based on whether they are visited again on that state. 1) Recurrent: State a, of a M.C is said to be recurrent if startly form a; the return to state a; is certain. 2) Transient: State a; of a M.C is said to be transient if startly from a; the return to state a; is certain.	Given Vo => V, = Vo r, V2 - V. P
The state of a M.C can be classified as The state of a M.C can be classified as recurrent or transjend based on whether they are visited again on that state. 1) Recurrent: State a; of a MC is said to be recurrent if starting from a; the return to state a; is certain. 2) Transjent: State a; of a MC is said to be transjent: State a; of a MC is said to be transjent of starting from a; the return to state a; is uncertain.	J_{n+1}
The state of a M.C can be classified as The state of a M.C can be classified as recurrent or transjend based on whether they are visited again on that state. 1) Recurrent: State a; of a MC is said to be recurrent if starting from a; the return to state a; is certain. 2) Transjent: State a; of a MC is said to be transjent: State a; of a MC is said to be transjent of starting from a; the return to state a; is uncertain.	$= Vn+1=Lj^{n}$
on visited again on that stale. 1) Recurrent: State a, of a MC is said to be recurrent if startly from a; the return to stale a; is certain. 2) Transient: State a; of a MC is said to be transient if startly from a; the return transient if startly from a; the return transient if startly from a; the return	Classification of Status.
on visited again on that stale. 1) Recurrent: State a, of a MC is said to be recurrent if startly from a; the return to stale a; is certain. 2) Transient: State a; of a MC is said to be transient if startly from a; the return transient if startly from a; the return transient if startly from a; the return	The state of a mile based on whether they
recurrent if startly from ai, the return successful is certain. to state ai in certain. Transient: State ai of a mc is soud to be transient if startly from ai, the return transient if startly from ai, the return	necurios met State.
to state a: is certain. 2) Transient: State a: of a mc is said to be transient of starty from ai, the return transient of starty from ai, the return	
to state a: in contain. 2) Transient: State ai of a mc in said to be transient if startly from ai, the return to startly from ai, the return	securoret if startly from ai, the return
2) Transient: State ai of a mc mossent starty from ai, the return transient of starty from ai, the return to start ai is uncertain.	
A. State a: is writing.	2) Transient: State ai of a mc is souther return
The State Q: 15 which will be state Q: (1) Find $F_{ii} = Probability of redwing to State Q: = f_{ii} + f_{ii} + \cdots = \sum_{n=1}^{\infty} f_{ii}^{(n)}$	transient of Staring journ
$= f_{11} + f_{11} + \cdots = \sum_{n=1}^{\infty} f_{n1}^{(n)}$	A. State a: is writing.
$(2) i C -1 \mathcal{U}_{1} (3) (4) (5) (7) $	$= f(1) + f(2) + \cdots = f(n)$
(2) M MI 21, Then recurred 1 MI SI HEM ARMS IN F	(2) if Fii =1, then recurrent I fii <1, then transle t

State 3 (3)

No. of Step Path

$$f_{11}^{(n)}$$
 $f_{23} = \sum_{j=1}^{\infty} f_{23}^{(n)}$

No. of Step Path

 $f_{33} = \sum_{j=1}^{\infty} f_{23}^{(n)}$

No. of Step Path

 $f_{33} = \sum_{j=1}^{\infty} f_{23}^{(n)}$

No. of Step Path

 $f_{33} = \sum_{j=1}^{\infty} f_{23}^{(n)}$
 $f_{33} = \sum_{j=1}^{\infty} f_{23}^{(n)}$
 $f_{33} = \sum_{j=1}^{\infty} f_{33}^{(n)}$
 $f_{33} = \sum_{j=1}^{\infty} f_{33}^{(n)}$

* Toreducible MC: 97 all states are recheble from all other statis, then Mc is called irreducible. es Consider the Mc given in follow diagram, Prine that it is irreducible.

2:2-3-1

3:3-1

(HW) (1) 2:2 -3 -) 3:3 -) Not woop HW (3 -> 3.) Temis (3) 1: 1-22-3

=> All states are reclubble from all other states of MC

=> Cilven Mc is l'meducible.

Poisson Process: 24 X(t) be the no of occurance of a certain event in (0,t), then the underlyty foress is called Poisson Process if it satisty the followy postulates: (1) P(1) occurance in $(t, t+\Delta t) = (2)\Delta t + o(\Delta t)$ >> parameters (11) P(20 more occurance in (t, ++1) = ocat) -> 0 (11) X(t) is independent of occurrences of the event i'n any internal poster or after (0, ±). (V) Probability that the event occurs a specified no of time in (to, to+t) depends only on to but not Instability Low for rr.

Istandar PMF: Pn(t) - P(X(t) = n) = e^{-\lambda t} (\lambda t)^n \tag{O(\lambda t)} Probability Low for PP: 70=0,1,2,--PP -> (Ats) 2nd arder PMF $P_{m,n}(t) = P[X(t_1) = m, X(t_L) = n]$ $= \begin{cases} \frac{e^{-\lambda t_{-}}(\lambda t_{1})^{m}(t_{1}-t_{1})^{m-m}}{L^{m}}; \end{cases}$

Statished of PP: (1) $E(x(t)) = \lambda t$ (2) $Vow(x(t)) = \lambda t$ (2) $R(t_1,t_2) = \lambda^2 t_1 t_2 + \lambda \min(t_1,t_2)$ $R = \lambda^2 t_1 t_2 t_2$

(4)
$$C(\lambda_1, t_1) = \lambda \min(t_1, t_1) = \begin{cases} \lambda t_1 & t_1 \leq t_2 \\ \lambda t_2 & t_1 \leq t_1 \end{cases}$$
(5) $\Upsilon(t_1, t_1) = \frac{C(t_1, t_1)}{\sqrt{\text{Vow}(\chi(t_1))}\sqrt{\text{Vow}(\chi(t_2))}}$

$$= \frac{\lambda \min(t_1, t_1)}{\sqrt{\lambda t_1}\sqrt{\lambda t_2}} = \begin{cases} \sqrt{\lambda t_1} & t_1 \leq t_2 \\ \sqrt{\lambda t_1}\sqrt{\lambda t_2} & t_2 \leq t_2 \end{cases}$$

Boperties:

- (1) PP is a MP. => Memory lus
- (2) Sun of two independs PP so a PP.
- (3) Diff " " is not a PP.
- (4) The interaminal time of app (interned between two Successive occurace) with parameter it has an exponential distribution.
 - * The two consecutive occurance of events be Ei and Eix, with The the internal blu occurance of Ei and Eix, Then, The a RV and follow exponents of distribution.

PDF of T: f(+)= 7 = 7 = (t >0)

(5) 9t the # of occurance of an event E is an interval of length of t is a PP with it and if each occurred of E has a constant probability to of being recorded. If every recording is inalpended, then number N(4) of recorded occurrence in t is also a PP with (1) P).

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t = \lambda t$$

$$P(N(t)=n) = \frac{e^{-\Lambda Pt}}{(1+t)^n} \qquad \lambda \quad t =$$

$$P(X_{1}(A) \ge 27) = P(X_{1}(A) = 27) + P(X_{1}(A) = 78) + - - \cdot V$$

$$I - P(X_{1}(A) \le 26) = \sum_{i=27}^{\infty} P(X_{i}(A) = i)$$

$$= I - \sum_{i=0}^{26} P(X_{i}(A) = i)$$

= 0.3706

Birth and Death Process:

X(t) -> population at time t

Pn(t) -> Prob. n individual birth/death at time

Birth -> increases the population

Death -> decreases the population

To: time until next birth = Birth process follow the PP

To = Exponential distributed RV - with parametr (700)

To: time until next deeth/Uniny time

= Exponential distributed RV with paratr (Mn)

Population Transition Digram:

Rate of change in the population: (n state) $P_n'(t) = \frac{P_{n-1}(t)}{N_{n+1}} + \frac{P_{n+1}(t)}{N_{n+1}} + \frac{P_{n}(t)}{N_{n+1}} - \frac{P_{n}(t)}{N_{n+1}} - \frac{P_{n}(t)}{N_{n+1}}$ (かかナルか) anflow at n owthro Po(4) = P1(4) M1 - Po(4) 20 eg "(1) & eq" (20) together is called Broth and Death posicess model. Steady state of BDP: No vote of charge. Pn(x) =0 47 => Po!(+) =0 from eq " (1) K(2) P(オ) ル, + Po(オ) かっこっ ES inthe BDP. E44 (3) 44) Birth -> Amiral of a contoner Death -> Department a served contemer.

Quening theory:

and the waiting time of astomers.

balance blu current demand of a particular sorrice and the capacity to provide the service.

Assume: Birth = Arrival of a costomer.

Death = Departur of a served costomer.

Single Service Desk Cosc.

M/M/1 Queuny Model

-s m stand for 'markor' indicating the no of arrival at t and completed service in to arrival at the PPIMP/MC.

follow the PPIMP/MC. 20/FIFO
M/M/I Model KIFIFO

Rate of change in the population: (n State) $P_n'(t) = P_{n-1}(t) \lambda_{n+1} + P_{n+1}(t) \mu_{n+1} - P_n(t) - (1)$ (かかナルか) anflow at n outto Po(+) = P(+) M1 - Po(+) 20 eq "(1) 4 eq" (2) together is called Broth and Deth process model. Steady state of BDP: No vote of charge. アルカーのせか => Po!(+) =0 from eq " (1) 4 (2) Pm(4) nn+ Pn+1(+) Un+1 - Pn(+) (n+Un) == 2-(3) P(オ)ル、+ Po(オ)かっこの ES inthe BDP. E44 (3) 44) /AX=0 Birth -> Aminal of a conomer

Death -> Department a served contemer.

Multiple Service Dek (in Parally)

Multiple Service Desk (1h Sonies)

MIMIS model (with Senies)

