

Estimación de anomalías de temperatura del aire en el departamento de Antioquia

Modelos supervisados

Valentina Sánchez Castaño

Para recordar...

- Evaporación total (m of water equivalent)
- Temperatura del suelo (K)
- Cobertura de nubes (%)
- Velocidad del viento (m/s)
- Tipo de cobertura (-)
- NDVI (-)
- Modelo digital de elevación

- Temperatura del aire

Datos desde 2003 hasta el 2014 y 36 estaciones

Técnicas de preprocesamiento

Random Under Sampler

sampling_strategy='majority'

I. Análisis discriminante lineal

Linear Discriminant Analysis

Test_size = 0.3

1175	591
19	15

Accuracy de LDA para validación: 0.66

	12.000				
		precision	recall	f1-score	support
	0	0.98	0.67	0.79	1766
	1	0.02	0.44	0.05	34
accur	racy			0.66	1800
macro	avg	0.50	0.55	0.42	1800
weighted	avg	0.97	0.66	0.78	1800

[0.60387812 0.61403509 0.65497076 0.6754386 0.64035088]

La precisión del modelo es: 63.77 %

Solo se tiene <mark>un</mark> componente discriminante

Linear Discriminant Analysis y KFold

Con KFold incrementa la precisión del modelo, pero no mejora en la predicción de I.

1122	644
16	18

[0.68421053 0.57894737 0.78947368 0.89473684 0.57894737] La precisión del modelo es: 70.53 %

		precision	recall	f1-score	support
	0	0.99	0.64	0.77	1766
	1	0.03	0.53	0.05	34
accur	acy			0.63	1800
macro	avg	0.51	0.58	0.41	1800
weighted	avg	0.97	0.63	0.76	1800

2. Regresión logística

Regresión Logística con Statsmodels

Optimization terminated successfully.

Current function value: 0.622321

Iterations: 14

Function evaluations: 1143

Logit Regression Results

Dep. Varia	ble: /	AirTempCatego	ory	No. Ob	servations	:	186
Model:		Log	git	Df Res	iduals:		179
Method:		1	MLE	Df Mod	el:		6
Date:	We	ed, 07 Dec 20	222	Pseudo	R-squ.:		0.1022
Time:		18:17	:01	Log-Li	kelihood:		-115.75
converged:		Tr	rue	LL-Nul	1:		-128.93
Covariance	Type:	nonrobi	ust	LLR p-	value:		0.0001918
=======	coef	std err		===== Z	P> z	[0.025	0.975]
LandCover	-0.0015	0.005	-0.	278	0.781	-0.012	0.009
Wind	-1.8132	0.617	-2.	941	0.003	-3.022	-0.605
DEM	0.0006	0.000	1.	871	0.061	-2.81e-05	0.001
NDVI	-0.9273	1.947	-0.	476	0.634	-4.744	2.890
Clouds	-7.2772	1.773	-4.	105	0.000	-10.752	-3.802
Temp	0.2424	0.104	2.	332	0.020	0.039	0.446
Eva	-1032.0064	376.998	-2.	737	0.006	-1770.910	-293.103

Se obtuvieron valores P favorables para unas variables, las otras no son suficientes para tener una buena predicción

Regresión Logística con Statsmodels

Logit Regression Results

Dep. Varia	ble:	AirTempCat	egory No	. Observation	s:	186
Model:			Logit Df	Residuals:		179
Method:			MLE Df	Model:		6
Date:		Wed, 07 Dec	2022 Ps	eudo R-squ.:		0.1011
Time:		18:	34:47 Lo	g-Likelihood:		-115.89
converged:			False LL	-Null:		-128.93
Covariance	Type:	nonr	robust LL	R p-value:		0.0002151
=======	coef	std err	,	z P> z	[0.025	0.975]
LandCover	-0.0018	0.005	-0.35	2 0.725	-0.012	0.008
Wind	-1.7961	0.612	-2.93	4 0.003	-2.996	-0.596
DEM	0.0005	0.000	1.57	4 0.116	-0.000	0.001
NDVI	-1.3408	1.948	-0.68	8 0.491	-5.159	2.477
Clouds	-6.9107	1.739	-3.97	4 0.000	-10.319	-3.502
Temp	0.2396	0.104	2.31	0.021	0.036	0.443
Eva	-1079.9883	377.515	-2.86	1 0.004	-1819.905	-340.072

Empleando el parámetro de máximas interacciones se disminuye el P-value, haciéndolas más significativas a la hora de predecir.

Regresión Logística con SKlearn

Precision en entrenamiento: 0,6881720430107527 precision recall f1-score support 0 0.99 0.64 0.77 1766 0.03 0.59 0.06 34 accuracy 0.64 1800 0.51 0.61 0.42 1800 macro avg weighted avg 0.97 0.76 1800 0.64

Penalidad LI (Lasso)

El KFold no mejora la predicción para la clase I

Valor medio: 0.631578947368421

Desviacion estandar: 0.06657426652986059

Regresión Logística con SKlearn

Precision e	n	entrenamien ⁻	to: 0.6827	9569892473	11	
Precision e	n	validacion:				Penalidad L2
		precision	recall	f1-score	support	(Ridge Regression)
	0	0.99	0.65	0.78	1766	
	1	0.03	0.56	0.06	34	
accurac	У			0.64	1800	
macro av	g	0.51	0.60	0.42	1800	
weighted av	g	0.97	0.64	0.77	1800	

Disminuye el recall

3. K-nearest neighbors

KNeighborsClassifier

N_neighbors = 15

	precision	recall	f1-score	support
6	0.59	0.46	0.52	93
1	0.56	0.68	0.61	93
accuracy	,		0.57	186
macro ava	0.57	0.57	0.56	186
weighted ava	0.57	0.57	0.56	186

Precision para entrenamiento: 0.5698924731182796 Precision para validacion: 0.398888888888888

Validation Curve

GridSearchCV

Best leaf_size: 1

Best p: 2

Best n_neighbors: 1

1023	835
16	18

support	†1-score	recall	precision	р
1766	0.72	0.57	0.99	0
34	0.05	0.65	0.03	1
1800	0.57			accuracy
1800	0.39	0.61	0.51	macro avg
1800	0.71	0.57	0.97	weighted avg

La precisión del modelo es: 43.33 %

4. Support Vector Machine

SVC

Kernel = sigmoid Kfold = 3 Probability =True

862	887
27	24

La precisión del modelo es: 50.61 %

	precision	recall	f1-score	support
0	0.97	0.49	0.65	1749
1	0.03	0.47	0.05	51
accuracy			0.49	1800
macro avg	0.50	0.48	0.35	1800
weighted avg	0.94	0.49	0.64	1800

5. Redes neuronales

MLPClassifier

Kernel = sigmoid Kfold = 3 Probability =True

	precision	recall	f1-score	support
0	0.96	0.07	0.14	1765
1	0.02	0.86	0.04	35
accuracy			0.09	1800
macro avg	0.49	0.47	0.09	1800
weighted avg	0.94	0.09	0.14	1800

6. Ensambles

Decision Tree Classifier

Decision Tree Classifier

	1.0 -					
		support	f1-score	recall	precision	
	0.8 -	2.2			77.	
		1761	0.80	0.67	0.99	0
	0.6 − ∝	39	0.07	0.62	0.04	1
1 1	TPR					
/ John Committee of the	0.4 -	1800	0.67			accuracy
- Japan	0.2 -	1800	0.43	0.64	0.51	macro avg
for the same of th	0.2	1800	0.78	0.67	0.97	weighted avg
Real Control of the C						

min_samples_split=2 min_samples_leaf=2

Bagging Classifier

		precision	recall	f1-score	support
	0	0.99	0.59	0.74	1761
	1	0.03	0.64	0.06	39
accur	acy			0.59	1800
macro	avg	0.51	0.62	0.40	1800
weighted	avg	0.97	0.59	0.73	1800

base_estimator=dtc n_estimators=10

Random Forest Classifier

	precision	recall	f1-score	support
0	0.99	0.63	0.77	1757
1	0.04	0.65	0.08	43
accuracy			0.63	1800
macro avg	0.51	0.64	0.42	1800
weighted avg	0.96	0.63	0.75	1800


```
[('LandCover', 0.04),
('Wind', 0.17),
('DEM', 0.1),
('NDVI', 0.13),
('Clouds', 0.24),
('Temp', 0.16),
('Eva', 0.17)]
```

Ada Boost Classifier

	precision	recall	f1-score	support
0	0.99	0.47	0.64	1761
1	0.03	0.72	0.06	39
accuracy			0.47	1800
macro avg	0.51	0.59	0.35	1800
weighted avg	0.97	0.47	0.62	1800

N_estimators = 8 random_state = I Score = 0.577

```
[('LandCover', 0.0),
('Wind', 0.12),
('DEM', 0.12),
('NDVI', 0.0),
('Clouds', 0.25),
('Temp', 0.12),
('Eva', 0.38)]
```


Gradient Boosting Classifier

	precision	recall	f1-score	support
0	0.98	0.55	0.71	1761
1	0.03	0.59	0.05	39
accuracy			0.56	1800
macro avg	0.51	0.57	0.38	1800
weighted avg	0.96	0.56	0.70	1800

N_estimators = 2 random_state = I Score = 0.55

```
[('LandCover', 0.0),
('Wind', 0.12),
('DEM', 0.12),
('NDVI', 0.0),
('Clouds', 0.25),
('Temp', 0.12),
('Eva', 0.38)]
```


Resumen

Linear Discriminant Analysis - Kfold 0.03 0.53 Regresión Logística - LI 0.03 0.59 KNeighborsClassifier 0.56 0.68 SupportVectorMachine 0.03 0.47 MLPClassifier 0.02 0.86 Decision Tree Classifier 0.04 0.62 Bagging Classifier 0.03 0.64 Random Forest Classifier 0.04 0.65 Ada Boost Classifier 0.03 0.72 Gradient Boosting Classifier 0.03 0.59			
Regresión Logística - LI 0.03 0.59 KNeighborsClassifier 0.56 0.68 SupportVectorMachine 0.03 0.47 MLPClassifier 0.02 0.86 Decision Tree Classifier 0.04 0.62 Bagging Classifier 0.03 0.64 Random Forest Classifier 0.04 0.65 Ada Boost Classifier 0.03 0.72		Precision	Recall
KNeighborsClassifier 0.56 0.68 SupportVectorMachine 0.03 0.47 MLPClassifier 0.02 0.86 Decision Tree Classifier 0.04 0.62 Bagging Classifier 0.03 0.64 Random Forest Classifier 0.04 0.65 Ada Boost Classifier 0.03 0.72	Linear Discriminant Analysis - Kfold	0.03	0.53
SupportVectorMachine0.030.47MLPClassifier0.020.86Decision Tree Classifier0.040.62Bagging Classifier0.030.64Random Forest Classifier0.040.65Ada Boost Classifier0.030.72	Regresión Logística - LI	0.03	0.59
MLPClassifier0.020.86Decision Tree Classifier0.040.62Bagging Classifier0.030.64Random Forest Classifier0.040.65Ada Boost Classifier0.030.72	KNeighborsClassifier	0.56	0.68
Decision Tree Classifier0.040.62Bagging Classifier0.030.64Random Forest Classifier0.040.65Ada Boost Classifier0.030.72	SupportVectorMachine	0.03	0.47
Bagging Classifier 0.03 0.64 Random Forest Classifier 0.04 0.65 Ada Boost Classifier 0.03 0.72	<u>MLPClassifier</u>	0.02	0.86
Random Forest Classifier 0.04 0.65 Ada Boost Classifier 0.03 0.72	Decision Tree Classifier	0.04	0.62
Ada Boost Classifier 0.03 0.72	Bagging Classifier	0.03	0.64
	Random Forest Classifier	0.04	0.65
Gradient Boosting Classifier 0.03 0.59	Ada Boost Classifier	0.03	0.72
	Gradient Boosting Classifier	0.03	0.59

Muchas Gracias