5 Double integrals in polar coordinated (r, θ)

Consider a function $f(r,\theta)$ of the polar coordinates r, θ which is to be integrated over a certain region R bounded by lines $\theta = \theta_1$, $\theta = \theta_2$ and curves $r = f_1(\theta)$, $r = f_2(\theta)$. That is to evaluate $\iint_R f(r,\theta) dr d\theta$, where R is the region bounded by $\theta = \theta_1$, $\theta = \theta_2$ and curves $r = f_1(\theta)$, $r = f_2(\theta)$.

Consider a region ABCDA bounded by above lines and curves as shown in figure.

Now, consider a integrating strip starting from origin with a small angle $d\theta$ which covers the region R. Here, ABCDA is an integrating region therefore we take integrating strip PQ as shown in fig. The point P lies on $r = f_1(\theta)$ and Q lies on $r = f_2(\theta)$. Therefore r varies from $f_1(\theta)$ to $f_2(\theta)$. Now, if we rotate strip from $\theta = \theta_1$ to $\theta = \theta_2$, then it covers region ABCDA. Therefore θ varies from θ_1 to θ_2 . Thus, we get

$$I = \iint_R f(r, \theta) dr d\theta = \int_{\theta_1}^{\theta_2} \int_{f_1(\theta)}^{f_2(\theta)} f(r, \theta) dr d\theta$$

To evaluate above, we have to integrate with respect to r first taking θ constant and then integrate with respect to θ . Following are the examples:

Evaluation of double integral in polar coordinates over given region

Example 1. Evaluate $\iint_R \frac{r}{\sqrt{r^2 + a^2}} dr d\theta$ over one loop of lemniscate $r^2 = a^2 \cos 2\theta$. **Solution:** Consider,

$$I = \iint_R \frac{r}{\sqrt{r^2 + a^2}} \mathrm{d}r \,\mathrm{d}\theta$$

Consider the one loop of Lemniscate which lies between $\theta = -\frac{\pi}{4}$ and $\theta = \frac{\pi}{4}$ and integrating strip from origin as shown in the figure.

The point O lies on origin i.e. r=0 and P lies on $r^2=a^2\cos 2\theta$ i.e. $r=a\sqrt{\cos 2\theta}$. Therefore r varies from 0 to $a\sqrt{\cos 2\theta}$. To complete the loop we have vary θ from $-\frac{\pi}{4}$ to $\frac{\pi}{4}$. Therefore,

$$I = \iint_{R} \frac{r}{\sqrt{r^{2} + a^{2}}} dr d\theta = \int_{-\pi/4}^{\pi/4} \int_{0}^{a\sqrt{\cos 2\theta}} \frac{r}{\sqrt{r^{2} + a^{2}}} dr d\theta$$

$$= \frac{1}{2} \int_{-\pi/4}^{\pi/4} \int_{0}^{a\sqrt{\cos 2\theta}} \frac{2r}{\sqrt{r^{2} + a^{2}}} dr d\theta$$

$$= \frac{1}{2} \int_{-\pi/4}^{\pi/4} \left[2\sqrt{r^{2} + a^{2}} \right]_{0}^{2\sqrt{\cos 2\theta}} d\theta \qquad \left(\because \int \frac{f'(r)}{\sqrt{f(r)}} dr = 2\sqrt{f(r)} \right)$$

$$= \int_{-\pi/4}^{\pi/4} \left[\sqrt{a^{2} + a^{2} \cos 2\theta} - \sqrt{a^{2}} \right] d\theta$$

$$= \int_{-\pi/4}^{\pi/4} \left[a\sqrt{2 \cos^{2}\theta} - a \right] d\theta$$

$$= \int_{-\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta$$

$$= 2a \int_{0}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta$$

$$= 2a \left[\sqrt{2} \sin \theta - \theta \right]_{0}^{\pi/4}$$

$$= 2a \left[1 - \frac{\pi}{4} \right] = \frac{a}{2} (4 - \pi)$$

Example 2. Evaluate $\iint_R r^3 dr d\theta$ over the region between the circles $r = 2\cos\theta$ and $r = 4\cos\theta$. Solution: Consider,

$$I = \iint_R r^3 \mathrm{d}r \; \mathrm{d}\theta$$

We have $x = r \cos \theta$. This gives $\cos \theta = \frac{x}{r}$. Putting this value in $r = 2 \cos \theta$, we get $r = 2\frac{x}{r}$. This gives $r^2 = 2x \implies x^2 + y^2 = 2x$ i.e. $(x-1)^2 + y^2 = 1$. This shows that $r = 2 \cos \theta$ is a circle with radius 1 and center at (1,0). Similarly, $r = 4\cos\theta$ represents a circle with radius 2 and center at (2,0).

Now, consider the region bounded by $r = 2\cos\theta$ and $r = 4\cos\theta$ and the integrating strip from origin as shown in the following figure.

Here the point P lies on $r=2\cos\theta$ and point Q lies on $r=4\cos\theta$ and the whole region is covered by moving strip from $\theta=-\pi/2$ to $\pi/2$. Therefore, r varies from $2\cos\theta$ to $4\cos\theta$ and θ varies from $-\pi/2$ to $\pi/2$. Hence,

$$I = \int_{-\pi/2}^{\pi/2} \int_{2\cos\theta}^{4\cos\theta} r^3 dr \, d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{r^4}{4} \right]_{2\cos\theta}^{4\cos\theta} d\theta$$

$$= \frac{1}{4} \int_{-\pi/2}^{\pi/2} \left[256\cos^4\theta - 16\cos^4\theta \right] d\theta$$

$$= \frac{240}{4} \int_{-\pi/2}^{\pi/2} \cos^4\theta d\theta = 60 \times 2 \int_0^{\pi/2} \cos^4\theta \, d\theta \qquad (\because \text{ even function})$$

$$= 120 \frac{1}{2} \beta \left(\frac{1}{2}, \frac{5}{2} \right) \qquad \left(\because \int_0^{\pi/2} \sin^p x \cos^q x dx = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2} \right) \right)$$

$$= \frac{60\Gamma(1/2)\Gamma(5/2)}{\Gamma(3)}$$

$$= \frac{60\sqrt{\pi} \frac{3}{2} \frac{1}{2} \sqrt{\pi}}{2}$$

$$= \frac{45\pi}{2}$$

Example 3. Evaluate $\iint_R r \sin \theta \, dr d\theta$ over cardioide $r = a(1 + \cos \theta)$ above initial line. **Solution:** Consider,

$$I = \iint_{R} r \sin \theta \, \mathrm{d}r \mathrm{d}\theta$$

Consider the region of integration above initial line bounded by cardioide and the integrating strip as shown in the figure.

The point O of integrating strip lies on origin i.e. r = 0 and P lies on $r = a(1 + \cos \theta)$. Therefore, r varies from 0 to $a(1 + \cos \theta)$. The region above the initial line is covered by rotating integrating strip from 0 to π . i.e. θ varies from 0 to π . Therefore,

$$I = \int_0^{\pi} \int_0^{a(1+\cos\theta)} r \sin\theta \, dr d\theta = \int_0^{\pi} \sin\theta \left[\frac{r^2}{2} \right]_0^{a(1+\cos\theta)} d\theta$$

$$= \frac{1}{2} \int_0^{\pi} \sin\theta [a^2 (1+\cos\theta)^2] d\theta$$

$$= \frac{a^2}{2} \int_0^{\pi} \sin\theta [(1+\cos\theta)^2] d\theta$$

$$= \frac{a^2}{2} \int_2^0 [t^2] (-dt) \qquad (\text{put} 1 + \cos\theta = t \Rightarrow \sin\theta d\theta = -dt)$$

$$= -\frac{a^2}{2} \left[\frac{t^3}{3} \right]_2^0 = -\frac{a^2}{2} \left[0 - \frac{8}{3} \right] = \frac{4a^2}{3}$$