A travailler en classe et à rendre par trinôme

EXERCICE 1

Soit $n \in \mathbb{N}^*$. On considère le polynôme

$$P = (X+1)^{2n} + (X-1)^{2n}.$$

- 1. Développer le polynôme P. Quel est son degré, son coefficient dominant ?
- **2.** Décomposition sur $\mathbb{C}[X]$:

Mathématiques

- a) Résoudre dans \mathbb{C} l'équation P(z) = 0. On donnera les solutions à l'aide de tangentes.
- b) En déduire la décomposition de P sur $\mathbb{C}\left[X\right]$.
- **3.** Décomposition sur $\mathbb{R}[X]$:
 - a) Si $k \in [0, n-1]$, quel est le signe de tan $\frac{(2k+1)\pi}{4n}$?
 - b) En déduire que P se décompose sur $\mathbb{R}\left[X\right]$ sous la forme :

$$P = 2 \prod_{k=0}^{n-1} \left(X^2 + \tan^2 \frac{(2k+1)\pi}{4n} \right).$$

4. Applications : en calculant P pour des valeurs particulières, déterminer les valeurs de

$$\prod_{k=0}^{n-1}\tan^2\frac{\left(2k+1\right)\pi}{4n}\quad\text{et de}\quad\prod_{k=0}^{n-1}\cos^2\frac{\left(2k+1\right)\pi}{4n}$$

5. On considére les polynômes

$$Q = \prod_{k=0}^{n-1} \left(X + \tan^2 \frac{\left(2k+1\right)\pi}{4n} \right) \quad \text{et} \quad R = \sum_{k=0}^n \binom{2n}{2k} X^k$$

- a) Montrer que $Q(X^2) = R(X^2)$, et en déduire que Q = R.
- b) Montrer alors que

$$\sum_{k=0}^{n-1} \tan^2 \frac{(2k+1)\pi}{4n} = n(2n-1)$$

EXERCICE 2

Polynôme de Legendre. On note $P_n = \left(X^2 - 1\right)^n$ et $L_n = P_n^{(n)}$

- 1. Montrer que L_n est un polynôme de degré n et déterminer son coefficient dominant.
- **2.** Vérifier que $(X^2 1) P'_n 2nXP_n = 0$. En dérivant n + 1 fois cette égalité, montrer que $(X^2 - 1) L''_n + 2XL'_n - n(n+1) L_n = 0$.
- **3.** Pour tout $k \in [0, n]$, on note a_k le coefficient d'ordre k de L_n .

Montrer que $a_{n-1} = 0$ et que pour tout $k \in [0, n-2]$

$$a_k = -\frac{(k+2)(k+1)}{n(n+1) - k(k+1)} a_{k+2}$$

4. Justifier que -1 et 1 sont racines d'ordre exactement n de P_n .

En déduire que -1 et 1 ne sont pas racines de L_n .

PCSI 1