ZADANIE 1: Wygeneruj trajektorię rozwiązania SDE

$$dX_t = 2X_t dt + X_t dB_t; X_0 = 1,$$

stosując następującą aproksymację:

$$X_{t_{i+1}} = X_{t_i} + 2X_{t_i}(t_{i+1} - t_i) + X_{t_i}(B_{t_{i+1}} - B_{t_i}).$$

Ponadto

- sprawdź, że $X_t = \exp(\frac{3}{2}t + B_t)$,
- $\bullet\,$ wyznacz funkcję średniej i wariancji X_t oraz rozkład zmiennej losowej $\log(X_t).$

ZADANIE 2: Wygeneruj trajektorię procesu z zadania 1. wykorzystując tzw. metodę Milsteina:

$$X_{t_{i+1}} = X_{t_i} + 2X_{t_i}(t_{i+1} - t_i) + X_{t_i}(B_{t_{i+1}} - B_{t_i}) + \frac{1}{2}X_{t_i}((B_{t_{i+1}} - B_{t_i})^2 - (t_{i+1} - t_i)).$$

Ponadto

- sprawdź, że $X_t = \exp(\frac{3}{2}t + B_t)$,
- porównaj dokładność obu metod poprzez estymację wielkości

$$\mathbf{E}|X_T - X_T^{\text{mil}}|; \ \mathbf{E}|X_T - X_T^{\text{eul}}|,$$

gdzie X_T^{mil} i X_T^{eul} oznaczają trajektorie generowane metodą odpowiednio Milsteina i Eulera.