Joshua(Yuchen) Cao

🕻 (412) 954-8151 🔼 caoyuchen.joshua@gmail.com 🕠 Github in LinkedIn

SKILLS

Programming C++, Python, C#, JavaScript, HTML/CSS, Matlab, Swift, SQL

Key Knowledge SLAM, Generative AI, NeRF, 3D Vision, NLP, Distributed System, Database, CG

Develop Tools Pytorch, OpenCV, OpenGL, AWS, ROS, SwiftUI, React.js, DynamoDB, CUDA, Docker, Git, Spark, k8s

EDUCATION

Carnegie Mellon University

MS. in Computational Design(Computer Vision Track)

University of Chinese Academy of Sciences

MS. in Computer Science

Sep 2016 - July 2020 Shanghai, China

Sep 2021 - Now

Pittsburgh, PA

EXPERIENCE

APEX(EzPT) Computer Vision Engineer & iOS Developer, Intern July 2022 - Aug 2022 Remote, USA

Experimented pose estimation OpenPose and Google MediaPipe, and a KNN method for pose classification and rep counting in Colab.

- Replanted above algorithms in an iOS app, configured with Firebase and Google Function, to work in real-time with phone camera.
- Built dataset and groundTruth pipeline with OpenCV and PyTorch, accelerated the process for producing new dataset and exercises.

Robot Labs, Carnegie Mellon University

Research Assistant, Advisor: Prof. Daniel Cardoso Llach and Prof. Katerina Fragkiadaki

Sep 2021 - Now Pittsburgh, PA

- Used customized dataset to train T5, Retro language models, and MaskRCNN vision model, to enable Alexa Virtual Assistant to parse co-referred language prompts into API-level machine instructions in a simulated virtual household environment.
- Built Husky ground-robot system with Velodyne-16 and XSens-IMU, configured onboard ROS system with 2D Gmapping and 3D LIO-SAM visual-odometry, Dijkstra* and DWA path planner packages to enable self-navigation and object avoidance.
- Constructed a simulated environment with Nvidia Isaac Sim and Blender for both pedestrian detection and RL training.

Mobile Perception Lab, ShanghaiTech University

Research Assistant, Advisor: Prof. Laurent Kneip

Sep 2016 - Dec 2020 Shanghai, China

- Developed an On-board ROS-like intermediate OS between UAV SDK and RGB sensor, to run computer vision algorithm.
- Built a simplified SLAM system with SIFT & Harris Feature Extraction, 7/8 Points Matching, and LevenBerg-Marquardt Optimization.
- Revised Particle & Kalman filter and MaskRCNN to relocate pose with semantic information under a robot hijack case.
- Modelled Camera Optical Algorithm to synthesize realistic and semantic SLAM dataset with ground truth and criterion benchmark.
- Developed a Variational Auto-Encoder with RGBD SLAM to generate complete models from partial continuous observation.

SELECTED PROJECTS

Computer Science projects website: https://caoyuchen.github.io/cs/

Amazon Alexa Prize: SimBot Challenge / Computer Vision & NLP, Human-robot Interaction

Jan 2023 - Now

- Implemented a Weakly supervised object detection model built on AlexNet with SSP and NMS, and a Transformer-based VQA.
- Enabled the virtual assistant robot with visual navigation, voice-to-instruction and interaction abilities by CloudWatch, Amazon S3, Automatic Sound Recognition API, EC2 and DynamoDB. Improved language parsing ability with NLP models.

NeRF-based 3D Style Transfer / Computer Vision & Graphics, Deep Learning

April 2022 - Jan 2023

- Built Poisson Blending and Neural Style Transfer to stylize image, Revised CycleGAN & StyleGAN to synthesize content-aware image.
- Experimented NeRF-W, Mip-NeRF and CUDA-based Instant-ngp, researched Artistic Radiance Fields with 3D style transfer.

PUBLICATIONS

Incremental Semantic Localization using Hierarchical Clustering of Object Association Sets

Lan Hu, Zhongwei Luo, Runze Yuan, **Yuchen Cao** https://arxiv.org/abs/2208.13210

ACCV 2022

Sep 2022

Representations and Benchmarking of Modern Visual SLAM Systems

Yuchen Cao, Lan Hu and Laurent Kneip. https://www.mdpi.com/1424-8220/20/9/2572

Sensors Journal Mar 2020

ACCV Workshop

Dense Object Reconstruction from RGBD Images with Embedded Deep Shape Representations

Oct 2018

Hu, Lan, Yuchen Cao, Peng Wu and Laurent Kneip. https://arxiv.org/abs/1810.04891