Лабораторная работа по теме "Boosting".

Хомец Семен

```
title: "Boosting"
author: "Хомец Семен"
date: "2023-01-16"
```

Задание 1.

Исследуйте зависимость тестовой ошибки от количества деревьев в ансамбле для алгоритма adaboost.М1 на наборе данных Vehicle из пакета mlbench (обучающая выборка должна состоять из 7/10 всех прецедентов, содержащихся в данном наборе данных). Постройте график зависимости тестовой ошибки при числе деревьев, равном 1, 11, 21, . . . , 301, объясните полученные результаты.

```
```{r get_data_task1, eval=TRUE}
data(Vehicle)
head(Vehicle)
```

Desc	cription: df [6 x 19]									
	Comp <dbl></dbl>	Circ <dbl></dbl>	D.Circ <dbl></dbl>	Rad.Ra <dbl></dbl>	Pr.Axis.Ra <dbl></dbl>	Max.L.Ra <dbl></dbl>	Scat.Ra <dbl></dbl>	Elong <dbl></dbl>	Pr.Axis.Rect <dbl></dbl>	
l	95	48	83	178	72	10	162	42	20	
2	91	41	84	141	57	9	149	45	19	
3	104	50	106	209	66	10	207	32	23	
4	93	41	82	159	63	9	144	46	19	
5	85	44	70	205	103	52	149	45	19	
6	107	57	106	172	50	6	255	26	28	

```
```{r split_data_task1, eval=TRUE}
n <- dim(Vehicle)[1]

data_rand1 <- Vehicle[order(runif(n)),]
df_train1 <- data_rand1[1:as.integer(n*0.7),]
df_test1 <- data_rand1[(as.integer(n*0.7)+1):n,]</pre>
```

```
```{r show_graph_task1, eval=TRUE}
plot(mfinal, error, type='l', xlab = "Число деревьев",
 ylab = "Ошибка", col = "blue")
```
```


Выше представлен график зависимости тестовой ошибки от числа деревьев. Из него видим, что наименьшее значение ошибки, равное 0.2283465, наблюдается при 291 дереве, в то время как при 1 и 21 дереве видим самую большую ошибку = 0.3110236.

Задание 2.

Исследуйте зависимость тестовой ошибки от количества деревьев в ансамбле для алгоритма bagging на наборе данных Glass из пакета mlbench (обучающая выборка должна состоять из 7/10 всех прецедентов, содержащихся в данном наборе данных). Постройте график зависимости тестовой ошибки при числе деревьев, равном 1, 11, 21, . . . , 201, объясните полученные результаты.

```
'``{r get_data_task2, eval=TRUE}
data(Glass)
head(Glass)
```
```

Description: df [6 x 10]

	RI <dbl></dbl>	Na <dbl></dbl>	Mg <dbl></dbl>	AI <dbl></dbl>	Si <dbl></dbl>	K <dbl></dbl>	Ca <dbl></dbl>	Ba <dbl></dbl>	Fe <dbl> ▶</dbl>
1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0	0.00
2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0	0.00
3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0	0.00
4	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0	0.00
5	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0	0.00
6	1.51596	12.79	3.61	1.62	72.97	0.64	8.07	0	0.26

6 rows | 1-10 of 10 columns

```
'``{r split_data_task2, eval=TRUE}
n <- dim(Glass)[1]

data_rand2 <- Glass[order(runif(n)),]
df_train2 <- data_rand2[1:as.integer(n*0.7),]
df_test2 <- data_rand2[(as.integer(n*0.7)+1):n,]</pre>
```

```
```{r show_graph_task2, eval=TRUE}
plot(mfinal, error, type='l', xlab = "Число деревьев",
    ylab = "Ошибка", col = "blue")
```


Выше представлен график зависимости тестовой ошибки от числа деревьев. Из него видим, что наименьшее значение ошибки, равное 0.2615385, наблюдается при 41, 51 и 91 дереве, в то время как при 1 дереве видим самую большую ошибку = 0.4. После 41 дерева, увеличение их количества не приводило к уменьшению ошибки, но увеличивало требуемую производимость.

Задание 3.

Реализуйте бустинг алгоритм с классификатором К ближайших соседей. Сравните тестовую ошибку, полученную с использованием данного классификатора на наборах данных Vehicle и Glass, с тестовой ошибкой, полученной с использованием единичного дерева классификации.

```
"``{r get_errors_with_one_tree, eval=TRUE}
maxdepth <- 5

Vehicle.rpart <- rpart(Class~., data=df_train1, maxdepth=maxdepth)
Glass.rpart <- rpart(Type~., data=df_train2, maxdepth=maxdepth)

Vehicle.rpart.pred <- predict(Vehicle.rpart,newdata=df_test1,type="class")
Glass.rpart.pred <- predict(Glass.rpart,newdata=df_test2,type="class")

tb1 <- table(Vehicle.rpart.pred,df_test1$Class)
error1.rpart <- 1-(sum(diag(tb1))/sum(tb1))

tb2 <- table(Glass.rpart.pred,df_test2$Type)
error2.rpart <- 1-(sum(diag(tb2))/sum(tb2))

cat("Тестовая ошибка (с использованием единичного дерева классификации), Vehicle: ", error1.rpart, "\n")
cat("Тестовая ошибка (с использованием единичного дерева классификации), Glass: ", error2.rpart)

```</pre>
```

Тестовая ошибка (с использованием единичного дерева классификации), Vehicle: 0.2874016

Тестовая ошибка (с использованием единичного дерева классификации), Glass: 0.3846154

```
'''{r knn method, eval=TRUE}
calculate_weighted_frequencies <- function(train, trainlabels, n_number, w) {
 myfreq <- data.frame(names = levels(trainlabels), freq = rep(0, length(levels(trainlabels))))</pre>
 for (t in n_number) {
 myfreq[myfreq$names == trainlabels[t],][2] <- myfreq[myfreq$names == trainlabels[t],][2]</pre>
 w[t]
 return(myfreq)
knn_predict <- function(clfier, testdata) {</pre>
 n = nrow(testdata)
 pred = rep(NA_character_, n)
 trainlabels = clfier$train[, clfier$target]
 train <- clfier$train[, !(names(clfier$train) %in% clfier$target)]</pre>
 test <- testdata[, !(names(testdata) %in% clfier$target)]</pre>
 for (i in 1:n) {
 n_number \leftarrow order(apply(train, 1, function(x) sum((test[i,] - x)^2)))[1:clfier$k]
 myfreq <- calculate_weighted_frequencies(train, trainlabels, n_number, clfier$w)
 most_frequent <- clfier$levels[myfreq$freq == max(myfreq$freq)]</pre>
 pred[i] <- sample(most_frequent, 1)</pre>
 factor(pred, levels = levels(trainlabels))
```

```
```{r boosting_algorithm, eval=TRUE}
                                                                                                                          ⊕ ¥ ▶
knn\_boosting \leftarrow function(target, data, k = 7, mfinal = 1) {
  n <- nrow(data)
 w <- rep(1/n, each = n)
classifiers <- list()
  alphas <- vector()
  for (t in 1:mfinal) {
   clfier \gets list(target = target, \; train = data, \; levels = levels(data[, \; target]), \; k = k, \; w = w)
    knn_predicted <- knn_predict(clfier, data)</pre>
    error <- w[data[[target]] != knn_predicted]
    if (sum(error) >= 0.5) {
   break()
    classifiers[[t]] <- clfier</pre>
    alphas[[t]] \leftarrow log((1 - sum(error)) \ / \ sum(error)) \ / \ 2
    for (i in 1:n) {
     if (knn_predicted[i] != data[[target]][i]) {
      w[i] <- w[i]*exp(alphas[[t]])
} else(
       w[i] \leftarrow w[i]*exp(-alphas[[t]])
  result <- list()
  result$classifiers <- classifiers
  result$alphas <- alphas
  result$levels <- levels(data[, target])
 return(result)
```

```
boosting_predict <- function(clfier, testdata) {
    n <- nrow(testdata)
    pred <- rep(NA_character_, n)

for (i in 1:n) {
    myfreq <- data.frame(names = clfier$levels, freq = rep(0, length(clfier$clavels)))

    for (j in 1:length(clfier$classifiers)) {
        prediction <- knn_predict(clfier$classifiers[[j]], testdata[i, ])
        myfreq[myfreq$names == prediction, ][2] <- myfreq[myfreq$names == prediction, ][2] + clfier$alphas[j]
    }

    most_frequent <- clfier$levels[myfreq$freq == max(myfreq$freq)]
    pred[i] <- sample(most_frequent, 1)
}

factor(pred, levels = clfier$levels)
}
</pre>
```

```
```{r get_Vehicle_pred, eval=TRUE}
knn_boost_model <- knn_boosting('Class', df_train1)
pred1 <- boosting_predict(boosting, df_test1)
```</pre>
```

```
```{r get_Vehicle_error, eval=TRUE}
tb_knn1 <- table(df_test1$Class, pred1)
print(tb_knn1)
error1.knn <- 1 - sum(diag(tb_knn1)) / sum(tb_knn1)
cat("Тестовая ошибка (с использованием бустинг алгоритма с классификатором К
ближайших соседей), Vehicle: ", error1.knn, "\n")</pre>
```

```
pred1
 bus opel saab van
 3
 14
bus
 55
opel
 6
 14
 36
 11
 5
 15
 29
 8
saab
 2
 0 54
van
 0
```

Тестовая ошибка (с использованием бустинг алгоритма с классификатором К ближайших соседей), Vehicle: 0.4015748

```
```{r get_Glass_pred, eval=TRUE}
knn_boost_model <- knn_boosting('Type', df_train2)
pred2 <- boosting_predict(knn_boost_model, df_test2)

```{r get_Glass_error, eval=TRUE}
tb_knn2 <- table(df_test2$Type, pred2)
print(tb_knn2)
error2.knn <- 1 - sum(diag(tb_knn2)) / sum(tb_knn2)
cat("Тестовая ошибка (с использованием бустинг алгоритма с классификатором К ближайших соседей), Glass: ", error2.knn, "\n")</pre>
```

```
pred2
 2
 3
 5
 6
 7
 1
 5
 0
1 15
 0
 0
 0
 1
2
 8 12 0
 0
 0
3
 4
 0
 1 0
 0
 0
5
 2
 0 1
 0
 1 0
 1
6
 1
 1
 0
 0
7
 2
 0
 0
 0
 0 10
```

Тестовая ошибка (с использованием бустинг алгоритма с классификатором К ближайших соседей), Glass: 0.3692308

Заметим, что выбор метода зависит от набора данных. Для набора Glass лучше оказался KNN. Для набора Vehicle – дерево решений.