Deep learning RNN & autres architectures

Vincent Lefieux

RNN

Complément

En guise de conclusion

Plan

RNN

Compléments

En guise de conclusion

Plan

RNN

Compléments

En guise de conclusion

Motivation

RNN

Compléments

en guise d

- Les réseaux de neurones récurrents (RNN) permettent de traiter des séquences, à savoir des :
 - données liées entre elles,
 - des données de taille variable.
- Les RNN sont particulièrement adaptés au traitement de séries temporelles, de textes et de sons.
- Les neurones d'un DNN ne conservent aucune mémoire, on va considérer des neurones récurrents.

Neurone classique

RNN

Complément

En guise de conclusion

Neurone classique : représentation condensée

RNN

Complément

En guise de conclusion

Neurone récurrent

RNN

Complément

En guise de conclusion

Neurone récurrent : représentation usuelle

RNN

Compléments

En guise de conclusion

Neurone récurrent : version dépliée

RNN

Complément

En guise de conclusion

Unité récurrente

RNN

Complément

En guise de conclusion

Unité récurrente

RNN

Complémer

En guise d

Unité récurrente III

$$\mathbf{Y}_t = \varphi \left(\boldsymbol{\omega}_{\mathbf{X}}^{\top} \mathbf{X}_t + \boldsymbol{\omega}_{\mathbf{Y}}^{\top} \mathbf{Y}_{t-1} + \omega_0 \right)$$

RNN

Complément

En guise de conclusion

Unité récurrente IV

$$\mathbf{Y}_t = anh\left(oldsymbol{\omega}_{\mathbf{X}}^{ op} \mathbf{X}_t + oldsymbol{\omega}_{\mathbf{Y}}^{ op} \mathbf{Y}_{t-1} + \omega_0
ight)$$

RNN

Complément

En guise de conclusion

Des difficultés

RNN

Compléments

En guise de conclusion

- ► Convergence lente.
- ▶ Problème d'exploding gradient / vanishing gradient.
- Mémoire très faible.

LSTM

Long short-term memory (LSTM)¹
Gated recurrent unit (GRU)²

1 Sepp Hochreiter, Jürgen Schmidhuber, (1997) [LSTM]

² Kyunghyun Cho et al, (2014) [GRU]

Source : (?)

RNN

Complément

En guise de conclusion

Références

$$\begin{split} & f_{(t)} = \sigma(W_{xt}^T X_{(t)} + W_{ht}^T h_{(t-1)} + b_t) \\ & i_{(t)} = \sigma(W_{xt}^T X_{(t)} + W_{ht}^T h_{(t-1)} + b_t) \\ & g_{(t)} = \tanh(W_{xt}^T X_{(t)} + W_{ht}^T h_{(t-1)} + b_g) \\ & o_{(t)} = \sigma(W_{xo}^T X_{(t)} + W_{ho}^T h_{(t-1)} + b_o) \\ & c_{(t)} = f_{(t)} \otimes c_{(t-1)} + f_{(t)} \otimes g_{(t)} \\ & y_{(t)} = h_{(t)} = o_{(t)} \otimes \tanh(c_{(t)}) \end{split}$$

with : $X_{(t)} \in \mathbb{R}^d$ inpu

 b_k

$$\begin{split} X_{(1)} &\in \mathbb{R}^d \\ f_{(2)} &\in \mathbb{R}^h \\ f_{(2)} &\in \mathbb{R}^h \\ f_{(2)} &\in \mathbb{R}^h \\ g_{(1)} &\in \mathbb{R}^h \\ g_{(1)} &\in \mathbb{R}^h, \end{split} \ \, \text{current entry vector} \\ h_{(1)}, y_{(1)} &\in \mathbb{R}^h \text{ indiden state or output vector} \end{split}$$

 $c_{(t)} \in \mathbb{R}^h$ cell state vector \otimes Hadamard product σ sigmoid function W_k weights matrix

bias vector

Applications potentielles

Serie to serie

Example: Time serie prediction

Vector to serie

Example: Image annotation

Serie to vector

Example: Sentiment analysis

Encoder-decoder

Example: Language Translation

Source: (?)

RNN

Complémei

En guise d conclusion

Motivation

- ▶ $X \in \mathbb{R}^p$: Vecteur des entrées (*inputs*).
- ▶ $\mathbf{F} \in \mathbb{R}^h$: Vecteur d'activation de la porte d'oubli (*forget gate*).
- ▶ $I \in \mathbb{R}^h$: Vecteur d'activation de la porte d'entrée (*input gate*).
- ▶ $O \in \mathbb{R}^h$: Vecteur d'activation de la porte de sortie (output gate).
- ▶ $C \in \mathbb{R}^h$: Vecteur d'état de l'unité (*cell state*).
- ▶ $\mathbf{H} \in \mathbb{R}^h$: Vecteur d'état caché (*Forget*).
- ▶ $\mathbf{Y} \in \mathbb{R}^h$: Vecteur des sorties (*ouputs*).
- \odot désigne le produit de Hadamard. σ désigne la fonction d'activation sigmoïde.

$$\begin{split} \mathbf{F}_t &= \sigma \left(\boldsymbol{\omega}_{\mathbf{F},\mathbf{C}}^\top \, \mathbf{C}_{t-1} + \boldsymbol{\omega}_{\mathbf{F},\mathbf{X}}^\top \, \mathbf{X}_t + \boldsymbol{\omega}_{\mathbf{F},0} \right) \;, \\ \mathbf{I}_t &= \sigma \left(\boldsymbol{\omega}_{\mathbf{I},\mathbf{C}}^\top \, \mathbf{C}_{t-1} + \boldsymbol{\omega}_{\mathbf{I},\mathbf{X}}^\top \, \mathbf{X}_t + \boldsymbol{\omega}_{\mathbf{I},0} \right) \;, \\ \mathbf{G}_t &= \tanh \left(\boldsymbol{\omega}_{\mathbf{G},\mathbf{C}}^\top \, \mathbf{C}_{t-1} + \boldsymbol{\omega}_{\mathbf{G},\mathbf{X}}^\top \, \mathbf{X}_t + \boldsymbol{\omega}_{\mathbf{G},0} \right) \;, \end{split}$$

RNN

Complément

En guise de conclusion

References

Plan

RNN

${\color{red}\mathsf{Compl\'ements}}$

C 4 81

En guise de

Plan

RNN

Compléments

Autoencoders GAN

En guise de conclusion

Principe

RMM

Complément

Autoencoders GAN

En guise de conclusion

Architecture I

RNN

Complément Autoencoders

GAN

conclusion

Architecture II

RNN

Complément

GAN

En guise de

Plan

RNN

Compléments

Autoencoden

GAN

En guise de conclusion

Quelques images I

RNN

Complémen

GAN

En guise de conclusion

Quelques images II

RMM

Compléments

GAN

En guise de conclusion

Quelques images III

RNN

Complémen

GAN

En guise de conclusion

Quelques images

Source : https://www.thispersondoesnotexist.com/

RNN

Compléme

GAN

En guise de conclusion

Quelques images

RNN

Compléme

GAN

conclusion

Generative Adversarial Networks

Source: (?)

RNN

Compléme

GAN

En guise de conclusion

Plan

RNN

Compléments

En guise de conclusion

Pour terminer

RNN

Complément

En guise de conclusion

- ► Un domaine en pleine effervescence. . .
- pas à l'abri d'un prochain « hiver »
- Des questions à ne pas oublier :
 - Data drift.
 - Droit et éthique.

Références

RNN

Complément

En guise de conclusion

Références

Arias, S., E. Maldonado et J.-L. Parouty. 2022, «Fidle», URL https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home.

Chollet, F. 2020, *L'apprentissage profond avec Python*, Machinelearning.fr.