CPSC 340: Machine Learning and Data Mining

Regularization

Fall 2019

Admin

- Midterm is Thursday.
 - October 17th at 6:30pm.
 - Last names starting with A-L: West Mall Swing Space Room 121.
 - Last names starting with M-Z: West Mall Swing Space Room 221.
 - 80 minutes.
 - Closed-book.
 - One doubled-sided 'cheat sheet'.
 - Auditors do not take the midterm.
- There will be two types of questions on the midterm:
 - 'Technical' questions requiring things like pseudo-code or derivations.
 - Similar to assignment questions, and will only be on topics related to those in assignments.
 - 'Conceptual' questions testing understanding of key concepts.
 - All lecture slide material except "bonus slides" is fair game here.

Last Time: Feature Selection

- Last time we discussed feature selection:
 - Choosing set of "relevant" features.

- Most common approach is search and score:
 - Define "score" and "search" for features with best score.
- But it's hard to define the "score" and it's hard to "search".
 - So we often use greedy methods like forward selection.
- Methods work ok on "toy" data, but are frustrating on real data.
 - Different methods may return very different results.
 - Defining whether a feature is "relevant" is complicated and ambiguous.

My advice if you want the "relevant" variables.

- Try the association approach.
- Try forward selection with different values of λ .
- Try out a few other feature selection methods too.

- Discuss the results with the domain expert.
 - They probably have an idea of why some variables might be relevant.

Don't be overconfident:

- These methods are probably not discovering how the world truly works.
- "The algorithm has found that these variables are helpful in predicting y_i."
 - Then a warning that these models are not perfect at finding relevant variables.

Related: Survivorship Bias

Plotting location of bullet holes on planes returning from WW2:

- Where are the "relevant" parts of the plane to protect?
 - "Relevant" parts are actually where there are no bullets.
 - Planes shot in other places did not come back (armor was needed).

Related: Survivorship Bias

Plotting location of bullet holes on planes returning from WW2:

- This is an example of "survivorship bias":
 - Data is not IID because you only sample the "survivors".
 - Causes havoc for feature selection, and ML methods in general.

Related: Survivorship Bias

Plotting location of bullet holes on planes returning from WW2:

- People come to wrong conclusions due to survivor bias all the time.
 - Article on "secrets of success", focusing on traits of successful people.
 - But ignoring the number of non-super-successful with the same traits.
 - Article hypothesizing about various topics (allergies, mental illness, etc.).

"Feature" Selection vs. "Model" Selection?

- Model selection: "which model should I use?"
 - KNN vs. decision tree, depth of decision tree, degree of polynomial basis.
- Feature selection: "which features should I use?"
 - Using feature 10 or not, using x_i^2 as part of basis.
- These two tasks are highly-related:
 - It's a different "model" if we add x_i^2 to linear regression.
 - But the x_i^2 term is just a "feature" that could be "selected" or not.
 - Usually, "feature selection" means choosing from some "original" features.
 - You could say that "feature" selection is a special case of "model" selection.

Can it help prediction to throw features away?

- First, note that linear regression can overfit with large 'd'.
 - Even though it's "just" a hyper-plane.

- Consider using d=n, with completely random features.
 - With high probability, you will be able to get a training error of 0.
 - But the features were random, this is completely overfitting.

- You could view "number of features" as a hyper-parameter.
 - Model gets more complex as you add more features.

(pause)

Recall: Polynomial Degree and Training vs. Testing

We've said that complicated models tend to overfit more.

But what if we need a complicated model?

Controlling Complexity

- Usually "true" mapping from x_i to y_i is complex.
 - Might need high-degree polynomial.
 - Might need to combine many features, and don't know "relevant" ones.
- But complex models can overfit.
- So what do we do????

- Our main tools:
 - Model averaging: average over multiple models to decrease variance.
 - Regularization: add a penalty on the complexity of the model.

Would you rather?

Consider the following dataset and 3 linear regression models:

• Which line should we choose?

Would you rather?

Consider the following dataset and 3 linear regression models:

- What if you are forced to choose between red and green?
 - And assume they have the same training error.
- You should pick green.
 - The slope is smaller, so predictions are less sensitive to having 'w' exactly right.
 - Since green 'w' is less sensitive to data, test error might be lower.

Size of Regression Weights are Overfitting

- The regression weights w_i with degree-7 are huge in this example.
- The degree-7 polynomial would be less sensitive to the data, if we "regularized" the w_j so that they are small.

$$\hat{y}_i = 0.0001(x_i)^7 + 0.03(x_i)^3 + 3 \qquad VS. \quad \hat{y}_i = 1000(x_i)^7 - 500(x_i)^6 + 890x_i$$

L2-Regularization

Standard regularization strategy is L2-regularization:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2} + \frac{1}{2} \sum_{j=1}^{d} w_{j}^{2}$$
 or $f(w) = \frac{1}{2} ||Xw - y||^{2} + \frac{1}{2} ||w||^{2}$

- Intuition: large slopes w_i tend to lead to overfitting.
- Objective balances getting low error vs. having small slopes 'w_i'.
 - "You can increase the training error if it makes 'w' much smaller."
 - Nearly-always reduces overfitting.
 - Regularization parameter $\lambda > 0$ controls "strength" of regularization.
 - Large λ puts large penalty on slopes.

L2-Regularization

Standard regularization strategy is L2-regularization:

$$f(w) = \frac{1}{4} \sum_{i=1}^{6} (w^{T}x_{i} - y_{i})^{2} + \frac{1}{4} \sum_{j=1}^{d} w_{j}^{2}$$
 or $f(w) = \frac{1}{4} ||Xw - y||^{2} + \frac{1}{4} ||w||^{2}$

- In terms of fundamental trade-off:
 - Regularization increases training error.
 - Regularization decreases approximation error.
- How should you choose λ?
 - Theory: as 'n' grows λ should be in the range O(1) to (\sqrt{n}).
 - Practice: optimize validation set or cross-validation error.
 - This almost always decreases the test error.

L2-Regularization "Shrinking" Example

Solution to a "least squares with L2-regularization" for different λ:

λ	w_1	W ₂	w ₃	\mathbf{w}_4	W ₅
0	-1.88	1.29	-2.63	1.78	-0.63
1	-1.88	1.28	-2.62	1.78	-0.64
4	-1.87	1.28	-2.59	1.77	-0.66
16	-1.84	1.27	-2.50	1.73	-0.73
64	-1.74	1.23	-2.22	1.59	-0.90
256	-1.43	1.08	-1.70	1.18	-1.05
1024	-0.87	0.73	-1.03	0.57	-0.81
4096	-0.35	0.31	-0.42	0.18	-0.36

Xw - y ²	w ²	
285.64	15.68	
285.64	15.62	
285.64	15.43	
285.71	14.76	
286.47	12.77	
292.60	8.60	
321.29	3.33	
374.27	0.56	

- We get least squares with $\lambda = 0$.
 - But we can achieve similar training error with smaller | |w| |.
- ||Xw -y || increases with λ , and ||w|| decreases with λ .
 - Though individual w_i can increase or decrease with lambda.
 - Because we use the L2-norm, the large ones decrease the most.

Regularization Path

• Regularization path is a plot of the optimal weights ' w_i ' as ' λ ' varies:

• Starts with least squares with λ = 0, and w_i converge to 0 as λ grows.

L2-regularization and the normal equations

- When using L2-regularized squared error, we can solve for ∇ f(w) = 0.
- Loss before: $f(w) = ||Xw y||_2^2$
- Loss after: $f(w) = ||Xw y||_2^2 + \lambda ||w||_2^2$
- Gradient before: $\nabla f(w) = X^T X w X^T y$
- Gradient after: $\nabla f(w) = X^T X w X^T y + \lambda w$
- Linear system before: $X^T X w = X^T y$
- Linear system after: $(X^TX + \lambda I)w = X^Ty$
- But unlike X^TX , the matrix $(X^TX + \lambda I)$ is always invertible:
 - Multiply by its inverse for unique solution: $w = (\chi^{T} \chi + \chi \chi)^{-1} (\chi^{T} \chi)$

Gradient Descent for L2-Regularized Least Squares

The L2-regularized least squares objective and gradient:

$$f(n) = \frac{1}{2} || X_n - y ||^2 + \frac{1}{2} || w ||^2$$
 $\nabla f(n) = X^T (X_n - y) + \frac{1}{2} || w ||^2$

Gradient descent iterations for L2-regularized least squares:

$$w^{t+1} = w^{t} - \alpha^{t} \left[\chi^{T} \left(\chi_{w}^{t} - \gamma \right) + \lambda w^{t} \right]$$

$$\nabla f(w^{t})$$

- Cost of gradient descent iteration is still O(nd).
 - Can show number of iterations decrease as λ increases (not obvious).

Why use L2-Regularization?

- It's a weird thing to do, but Mark says "always use regularization".
 - "Almost always decreases test error" should already convince you.

- But here are 6 more reasons:
 - 1. Solution 'w' is unique.
 - 2. X^TX does not need to be invertible (no collinearity issues).
 - 3. Less sensitive to changes in X or y.
 - 4. Gradient descent converges faster (bigger λ means fewer iterations).
 - 5. Stein's paradox: if $d \ge 3$, 'shrinking' moves us closer to 'true' w.
 - 6. Worst case: just set λ small and get the same performance.

(pause)

Features with Different Scales

Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It doesn't matter for decision trees or naïve Bayes.
 - They only look at one feature at a time.
 - It doesn't matter for least squares:
 - $w_i^*(100 \text{ mL})$ gives the same model as $w_i^*(0.1 \text{ L})$ with a different w_i .

Features with Different Scales

Consider continuous features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It matters for k-nearest neighbours:
 - "Distance" will be affected more by large features than small features.
 - It matters for regularized least squares:
 - Penalizing (w_i)² means different things if features 'j' are on different scales.

Standardizing Features

X= average of

- It is common to standardize continuous features:
 - For each feature:
 - 1. Compute mean and standard deviation:

viation:
$$M_{ij} = \frac{1}{n} \sum_{j=1}^{n} X_{ij}$$
 $Q_{ij} = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (x_{ij} - u_{ij})^{2}}$

2. Subtract mean and divide by standard deviation ("z-score")

Replace
$$X_{ij}$$
 with $\frac{X_{ij} - M_{ij}}{O_{ij}}$

- Now changes in 'w_i' have similar effect for any feature 'j'.
- How should we standardize test data?
 - Wrong approach: use mean and standard deviation of test data.
 - Training and test mean and standard deviation might be very different.
 - Right approach: use mean and standard deviation of training data.

Standardizing Features

- It is common to standardize continuous features:
 - For each feature:
 - 1. Compute mean and standard deviation: $M_{ij} = \frac{1}{n} \sum_{j=1}^{n} X_{ij} \qquad O_{j} = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (X_{ij} M_{j})^{2}}$
 - 2. Subtract mean and divide by standard deviation ("z-score")

- Now changes in 'w_i' have similar effect for any feature 'j'.
- If we're doing 10-fold cross-validation:
 - Compute μ_i and σ_i based on the 9 training folds (e.g., average over 9/10s of data).
 - Standardize the remaining ("validation") fold with this "training" μ_j and σ_j .
 - Re-standardize for different folds.

Standardizing Target

- In regression, we sometimes standardize the targets y_i.
 - Puts targets on the same standard scale as standardized features:

Replace y; with
$$\frac{y_i - u_y}{\sigma_y}$$

- With standardized target, setting w = 0 predicts average y_i :
 - High regularization makes us predict closer to the average value.
- Again, make sure you standardize test data with the training stats.
- Other common transformations of y_i are logarithm/exponent:

Use
$$log(y_i)$$
 or $exp(\Upsilon y_i)$

Makes sense for geometric/exponential processes.

Regularizing the y-Intercept?

Should we regularize the y-intercept?

- No! Why encourage it to be closer to zero? (It could be anywhere.)
 - You should be allowed to shift function up/down globally.
- Yes! It makes the solution unique and it easier to compute 'w'.
- Compromise: regularize by a smaller amount than other variables.

$$f(w, w_0) = \frac{1}{2} || x_0 + w_0 - y ||^2 + \frac{1}{2} ||w||^2 + \frac{1}{2} w_0^2$$

(pause)

Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mile/

Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

We need to be Cantians about doing this.

https://gravityandlevity.wordpress.com/2009/04/22/the-fastest-possible-mihttps://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le/

Predicting 100m times 400 years in the future?

Predicting 100m times 400 years in the future?

Interpolation vs Extrapolation

- Interpolation is task of predicting "between the data points".
 - Regression models are good at this if you have enough data and function is continuous.
- Extrapolation is task of prediction outside the range of the data points.
 - Without assumptions, regression models can be embarrassingly-bad at this.
- If you run the 100m regression models backwards in time:
 - They predict that humans used to be really really slow!
- If you run the 100m regression models forwards in time:
 - They might eventually predict arbitrarily-small 100m times.
 - The linear model actually predicts negative times in the future.
 - These time traveling races in 2060 should be pretty exciting!
- Some discussion here:
 - http://callingbullshit.org/case studies/case study gender gap running.html

No Free Lunch, Consistency, and the Future

Ockham's Razor vs. No Free Lunch

- Ockham's razor is a problem-solving principle:
 - "Among competing hypotheses, the one with the fewest assumptions should be selected."
 - Suggests we should select linear model.

Fundamental trade-off:

- If same training error, pick model less likely to overfit.
- Formal version of Occam's problem-solving principle.
- Also suggests we should select linear model.

No free lunch theorem:

 There exists possible datasets where you should select the green model.

19"Universally consistent" methods converge to best model here as n-900

Summary

- Regularization:
 - Adding a penalty on model complexity.
- L2-regularization: penalty on L2-norm of regression weights 'w'.
 - Almost always improves test error.
- Standardizing features:
 - For some models it makes sense to have features on the same scale.
- Interpolation vs. Extrapolation:
 - Machine learning with large 'n' is good at predicting "between the data".
 - Without assumptions, can be arbitrarily bad "away from the data".

Next time: learning with an exponential number of irrelevant features.

L2-Regularization

Standard regularization strategy is L2-regularization:

$$f(w) = \frac{1}{4} \sum_{i=1}^{6} (w^{T}x_{i} - y_{i})^{2} + \frac{1}{4} \sum_{j=1}^{d} w_{j}^{2}$$
 or $f(w) = \frac{1}{4} ||Xw - y||^{2} + \frac{1}{4} ||w||^{2}$

• Equivalent to minimizing squared error but keeping L2-norm small.

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts :
 - 1. Choose some arbitrary location '0'.
 - 2. Measure distances from darts to '0'.

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts :
 - 1. Choose some arbitrary location '0'.
 - 2. Measure distances from darts to '0'.
 - 3. Move misses towards '0', by *small* amount proportional to distance from 0.
- If small enough, darts will be closer to center on average.

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts :
 - 1. Choose some arbitrary location '0'.
 - 2. Measure distances from darts to '0'.
 - 3. Move misses towards '0', by *small* amount proportional to distance from 0.
- If small enough, darts will be closer to center on average.

