DS9

3h00

- Les calculatrices sont <u>interdites</u> durant les cours, TD et a fortiori durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amené·e ·s à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les réponses finales.)
- Vérifiez vos résultats.
- Le résultat d'une question peut être admis et utilisé pour traiter les questions suivantes en le signalant explicitement sur la copie.

Exercice 1. Soit E un \mathbb{R} -espace vectoriel non réduit à son vecteur nul. On s'intéresse aux endomorphismes f de E tel qu'il existe f de E tel qu'il existe

$$f^{p-1} \neq 0_{\mathcal{L}(E)}$$
 et $f^p = 0_{\mathcal{L}(E)}$ (*)

Premier exemple On définit l'application :

$$g \mid \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

 $(x,y) \mapsto (3x-y,9x-3y)$

- 1. Montrer que g est un endomorphisme de \mathbb{R}^2 .
- 2. Calculer $g \circ g$ et vérifier que g est solution de (*) pour p = 2.
- 3. Soit $F = \ker(g)$ donner une base de F.
- 4. Soit u = (1, 2), calculer v = g(u), et montrer que B = (u, v) est une base de \mathbb{R}^2 .
- 5. Déterminer la matrice N de g dans la base B

Deuxième exemple On définit l'application :

$$g \mid \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x, y, z) \mapsto (-4x + 2y + 2z, -2x + y + z, -6x + 3y + 3z)$$

On admet que $g \in \mathcal{L}(\mathbb{R}^3)$

- 1. Donner la matrice M de g dans la base canonique et calculer M^2 .
- 2. En déduire que g est solution de (*) pour p=2
- 3. Soit $F = \ker(q)$ donner une base de F et sa dimension.
- 4. Soit u = (0, 1, 0), calculer v = g(u) et montrer que B = (u, v) est libre.
- 5. Déterminer $w \in \ker(f)$ tel que B = (u, v, w) soit une base de \mathbb{R}^3
- 6. Déterminer la matrice N de q dans la base B

Etude générale On se place désormais dans le cas général et on s'intéresse à l'équation (*). Soit $p \ge 1$ et f une solution de (*)

- 1. Montrer que f n'est pas bijective.
- 2. Déterminer le noyau de f^p .
- 3. Soit $x \in E \setminus \ker(f^{p-1})$. Montrer que $(x, f(x), ..., f^{p-1}(x))$ est une famille libre. On pourra composer par f^{p-1} la relation de liberté d'une famille de vecteurs...

On suppose désormais que E est de dimension finie et on note $n = \dim(E), (n \in \mathbb{N}^*)$

- 4. Montrer que $p \leq n$.
- 5. Cas 1: p = n

On suppose que f est solution de (*) avec p = n. C'est-à-dire :

$$f^{n-1} \neq 0_{\mathcal{L}(E)}$$
 et $f^n = 0_{\mathcal{L}(E)}$ (*)

- (a) Justifier que $(x, f(x), ..., f^{p-1}(x))$ est une base de E.
- (b) Déterminer la matrice de f dans la base précédente.
- 6. Cas 2: p < n. Cas bien plus compliqué et pas vraiment accessible avec le programme de BCPST1!
- 1. On dit qu'un tel endomorphisme est nilpotent d'ordre p

Exercice 2. On considère une urne contenant 1 boule blanche et 1 boule noire indiscernables au toucher.

On répète l'expérience suivante : on tire au hasard une boule dans l'urne que l'on remet avec une autre boule de la couleur obtenue.

À l'issue de la première expérience, l'urne contient donc 3 boules et l'on note X_1 la variable aléatoire égale au nombre de boules blanches présentes dans l'urne. À l'issue de la deuxième expérience, l'urne contient donc 4 boules et l'on note X_2 la variable aléatoire égale au nombre de boules blanches présentes dans l'urne.

Plus généralement, pour tout entier naturel n non nul, on note X_n la variable aléatoire égale au nombre de boules blanches présentes dans l'urne à l'issue de la n-ième expérience.

Pour tout n non nul, on note B_n l'évènement "la boule tirée lors de la n-ième expérience est blanche".

- 1. Déterminer la loi de X_1 .
- 2. Déterminer la loi de X_2 .
- 3. Soit $n \in \mathbb{N}^*$. On note Y_n le nombre de boules noires dans l'urne à l'issue de la n-ième expérience.
 - (a) Exprimer Y_n , en fonction de X_n et de n seulement.
 - (b) Donner l'univers image de la variable aléatoire X_n pour tout $n \in \mathbb{N}^*$.
 - (c) Soit $k \in X_{n+1}(\Omega)$ fixé. Déduire de la question précédente l'expression de la probabilité conditionnelle $P_{[X_n=i]}(X_{n+1}=k)$, en distinguant des cas selon si $i \in k-1, k$ ou non.
- 4. Soit $n \in \mathbb{N}^*$. Prouver que X_n suit une loi uniforme sur [1, n+1].

 On pourra faire une récurrence et utiliser le système complet $([X_n = i])_{1 \le i \le n+1}$ pour déterminer la loi de X_{n+1} .
- 5. Soit $n \in \mathbb{N}^*$. Déterminer la probabilité de B_{n+1} . On pourra utiliser la question précédente et la formule des probabilités totales.
- 6. Pour tout entier n non nul, on considère la variable aléatoire $Z_n = \frac{X_n 1}{n}$.
 - (a) Soit $n \in \mathbb{N}^*$. Donner la loi de Z_n .
 - (b) Soit $x \in [0, 1]$. Donner le cardinal de l'ensemble $\left\{k \in [0, n] \text{ tels que } \frac{k}{n} \le x\right\}$.
 - (c) Prouver que, pour tout entier n, on a $P(Z_n \le x) = \frac{1}{n+1} \lfloor nx+1 \rfloor$, où l'on note $\lfloor \cdot \rfloor$ la partie entière.
 - (d) Pour tout entier $n \in \mathbb{N}^*$, on note F_{Z_n} la fonction de répartition de Z_n . Déduire de ce qui précède, que pour tout réel x, on a $\lim_{n \to +\infty} F_{Z_n}(x) = x$.