# Dimple Kochar

Contact Information

Department of Electrical Engineering Indian Institute of Technology Bombay N604, Hostel 10, IIT Bombay

Powai, Mumbai, India 400 076

Phone: (+91) 998 766 8804 E-Mail: 16d070010@iitb.ac.in

dimplekochar99@gmail.com

Webpage: https://dimplekochar.github.io/

EDUCATION

Indian Institute of Technology Bombay, Mumbai, India

July, 2016 - Present

Dual Degree (Bachelor & Master of Technology), Department of Electrical Engineering

Specialization:  $Microelectronics \ & VLSI$ 

GPA: 9.29 / 10.0 (After 9 semesters), Specialization Rank: 3

Completed a minor degree's curriculum in Computer Science & Engineering

Publications

- T. Samadder, N. Choudhury, S. Kumar, D. Kochar, N. Parihar, S. Mahapatra, A Physical Model for Bulk Gate Insulator Trap Generation During Bias-Temperature Stress in Differently Processed P-Channel FETs - IEEE Transactions on Electron Devices (T-ED) [paper]
- D. Kochar, T. Samadder, S. Mukhopadhyay, S. Mahapatra, Modeling of HKMG Stack Process Impact on Gate Leakage, SILC and PBTI - IEEE International Reliability Physics Symposium (IRPS) 2021 (Accepted for Oral presentation)
- D. Kochar, A. Kumar, Estimation of Time to Failure Distribution in SRAM due to Trapped Oxide Charges - IEEE International Symposium on Circuits and Systems (ISCAS) **2021** (Accepted for Poster presentation)

Research Projects

HKMG Stack Process Impact on Gate Leakage, SILC & PBTI

IIT Bombay

Advisor: Prof. Souvik Mahapatra, Electrical Engineering Department May '18 - Present Introduction: The primary impediment to channel length scaling is gate leakage. PBTI and SILC also get worse at scaled EOT. Recently, RD and RDD models are used for NBTI interface and bulk trap generation in PMOS. This project aims to model direct tunneling leakage, SILC & PBTI along with the traps generated in NMOS with deeply scaled (down to EOT~7Å) HKMG stacks.

- Quantified impact of IL & HK thickness, channel/IL & IL/HK barriers on gate leakage & SILC
- Extracted bulk trap densities from SILC measurements of differently processed NMOS using a WKB tunneling model & used a Reaction-Diffusion-Drift (RDD) framework to model them
- Modelled the traps generated from PBTI stress using the double interface H/H<sub>2</sub> RD framework
- Analysed impact of gate stack process (pre-clean, IL, IL/HK interface, HK & post-HK nitridation) on gate leakage, SILC and PBTI trap generation (using DCIV) at IL/HK interface

Method for Time To Failure (TTF) Estimation of SRAM due to RTN IIT Bombay Advisor: Prof. Animesh Kumar, Electrical Engineering Department Dec '18 - Present <u>Introduction</u>: Trapping and detrapping of charges in the oxide interface of a MOSFET leads to a random telegraphic noise (RTN) injection and this phenomenon negatively affects the reliability of circuits. The objective of this project is to develop a reproducible strategy to obtain TTF distribution & related statistics for an SRAM cell of any technology with any given RTN model.

- Proposed a method to estimate TTF distribution of a stored bit in an SRAM cell due to single or multi-level RTN by composition of Monte-Carlo simulations & circuit-level abstraction
- Showcased results of this procedure on an SRAM cell made from 45 nm technology with a singletrap RTN model at various supply voltages using Cadence, Ocean and Python scripting
- Indicated via circuit-level simulations that the TTF distribution worsens due to process variations

#### Dipole-Exchange Spin Waves in Thin Ferromagnetic Films

TU Delft

Advisors: Prof. Gerrit Bauer, Kavli Institute of Nanoscience

May '19 - Jul '19

Prof. Yaroslav Blanter, Kavli Institute of Nanoscience

Introduction: Dispersion characteristics of spin waves in ferromagnetic films taking into account both the dipole-dipole and the exchange interactions are obtained by a sixth-order differential equation. The objective of this project is to solve it considering pinned and unpinned boundary conditions & study their variation with thickness in this transition region.

- Calculated the wave function, magnetization & dipolar field profiles for various modes of spin waves by solving Landau-Lifshitz & Maxwells' equations & appropriate boundary conditions
- Showed how chirality changes with thickness; obtained the dispersion relation ( $\omega$  vs  $\vec{k}$ ) for a film
- Obtained isofrequency curves & showed their change with increase in magnetic field in  $\vec{k}$  space

Model for Time Dependent Dielectric Breakdown of HKMG stacks IIT Bombay May '18 - Present Advisor: Prof. Souvik Mahapatra, Electrical Engineering Department Introduction: Time-dependent dielectric breakdown (TDDB) is characterized by its Weibull slope. In this project, the change in the slope is explained by a percolation model with different defect generation rates in the bulk & channel/oxide and gate/oxide interfaces, also considering SILC slope changes with thickness & trap size. The model is then extended for high-k with interfacial SiO<sub>2</sub>.

- Designed a cell based oxide percolation model which stochastically creates bulk & interface traps
- Procured time to failure distribution & analysed the relation of its Weibull slope with oxide thickness & obtained results obeying empirical claims & experimental data; verified area scaling
- Extending the model to a bilayer stack & including the effect of PBTI generated interface traps

#### SCHOLASTIC Achievements

- Bestowed the 'Desai-Sethi Scholarship' awarded to the top 5 girls admitted to IIT Bombay
- Achieved All India Rank 102 in JEE Main and All India Rank 295 in JEE Advanced out of 1.2 & 0.2 million candidates respectively; stood first in both in the state of Maharashtra among girls
- Selected for Indian National Chemistry Olympiad (InChO) from among 40K students
- Stood in the top 1% in both National Standard Examination of Physics (NSEP) and National Standard Examination of Chemistry (NSEC) Olympiad in the state of Maharashtra
- Conferred a letter of appreciation by Minister of School Education, Maharashtra for brilliant performance in the Secondary School Certificate examination; acquired a 96% score in the exam

# Projects

#### Power Amplifier Design for function at 520 MHz

Solid State Microwave Devices

- Constructed matching networks for the given amplifier IC AFIC901N with appropriate bias tees at source and load, using microstrip transmission lines and fabricated it on FR4 substrate
- $\bullet$  Tested the circuit to obtain a gain of 2.5 dB at 520 MHz with S  $_{11}$  & S  $_{12}$  values -18 dB & -35 dB

#### Broadband $4 \times 4$ Butler Matrix Circuit

Microwave Integrated Circuits

- Constructed the circuit with 90° hybrids & phase delay lines using microstrip transmission lines to equally divide power at output ports of every input port at an operation frequency of 5.4 GHz
- Fabricated on FR4 substrate & tested it to obtain equal power division and input port isolation

#### Layout and Back-extraction of 16 bit Brent Kung Adder

- Started from the schematic & layout of basic CMOS logic gates to build increasingly complex modules; combined them accordingly to obtain the layout of 16 bit Brent Kung adder in Cadence
- Passed the DRC & LVS, and did Parasitic Extraction of each module of adder & the final adder; conducted post layout simulation tests and successfully obtained accurate adder functionality

## Pipelined RISC Microprocessor

*Microprocessors* 

- Devised IITB-RISC, an 8-register, 16-bit system with standard 6 stage pipelines capable of executing 15 instructions and equipped it with control flow, data forwarding & hazard mitigation
- Programmed the design in VHDL, synthesized in Altera Quartus & tested it on DE0-Nano FPGA

#### Dot-Product Accelerator & Processor in Aa

Algorithmic Digital System Design

- Implemented an accelerator for parallel dot product of a data matrix with a kernel matrix in Algorithm Assembly (Aa), a description language developed by the guide, Prof. Madhav Desai
- Coded and verified a processor with given ISA in Aa, converted it to VHDL using AHIR tools, and tested it on a Basys-3 FPGA using Xilinx Vivado and communicated with it using UART

TECHNICAL

### Monitor Honking Rate to reduce Noise Pollution

Electronic Design

- Built a device to count a specific vehicle's honks by an amplitude-frequency threshold circuit amid all the traffic noise; transmitted this data to a server wirelessly using ESP8266 WiFi module
- Provided for detection if the vehicle's owner tampered with the device to hide his honk count

#### Music Genre Identification

Machine Learning

- Perused literature to find that the timbre feature corresponding to the loudest parts of the song gives better clustering of audio samples & used Principal Component Analysis (PCA) to show it
- Achieved an accuracy of 56% and an F1 score of 50.65% using the Random Forest algorithm

## Heart Rate Variability Analysis

Digital Signal Processing

- Processed the ECG signal & extracted the PSD to predict the risk of myocardial infarction
- Stood among the top 5 teams in the Make in India presentation organised for TEQIP-III

### Touchless Gesture Recognition using Sensors

Analog Circuits

- Designed and implemented an audio volume controller, motion tracker (using LED matrix) & a pattern lock by gesture detection using infrared emitters & sensors and CPLD for digital logic
- Part of a 2 membered team that was awarded the **best project** from among 70+ projects

TEACHING & MENTORING EXPERIENCE

### Teaching Assistant for IIT Bombay Courses

| • EE302: Control Systems, Department of EE                         | Jan '21 - Present |
|--------------------------------------------------------------------|-------------------|
| • EE325: Probability and Random Processes, Department of EE        | Aug '20 - Dec '20 |
| • MA108: Differential Equations, Department of Mathematics         | Mar '18 - Apr '18 |
| • PH107: Quantum Mechanics and Applications, Department of Physics | Jul '17 - Nov '17 |

## Mentor, Department Academic Mentorship Program, IIT Bombay Apr '19 - Present

- Mentoring & motivating 11 students over 2 years & playing a key role in their overall development
- Selected through extensive peer reviews & interviews to help academically weak students improve

TECHNICAL SKILLS Languages Software

C, C++, Python, Julia, VHDL, Assembly, HTML, Latex Cadence, Advanced Design System, TCAD Sentaurus, Bluespec, Altera Quartus, Xilinx Vivado, Code Composer Studio, Modelsim, GNURadio, AutoCAD, SolidWorks, MATLAB, Scilab, Octave, Origin, SPICE

LEADERSHIP IN JOURNALISM Recipient of the Institute Journalism Special Mention Award for outstanding contribution

#### Editor, Insight, IIT Bombay

Apr '18 - Mar '19

Official Print Media Body | Circulated to 10K+ students & 650+ faculty | Online readership 0.4M+

- Part of a 22 member team responsible for managing Insight's online presence & newsletter
- Led the Univ Series by collecting testimonials from IITB alumni doing their graduate degree

## Convenor, IIT Bombay Broadcasting Channel

Apr '17 - Mar '18

Official Multimedia Journalism Body | 50K+ YouTube Subscribers | 25K+ Facebook Followers

- Part of a 7 member team responsible for the regular broadcast of events occurring in the institute
- Interviewed professors for the Know Your Prof series to enhance student-faculty interaction

# EXTRA-CURRICULAR ACTIVITIES

- EXTRA-CURRICULAR Awarded 'Hostel 10 Cultural Colour' for exceptional contribution to film-making in the institute
  - Aided in setting up self-defence workshops for women as social initiative of Techfest, IIT Bombay
  - Assisted in Techfest's Sanitary Health Education campaign distributing 0.2M sanitary pads
  - Part of the 13 member Institute Women's Volleyball Team for the Inter-IIT camp, 2016

References

**Prof. Souvik Mahapatra**, EE IITB | E-Mail | Webpage

**Prof. Gerrit Bauer**, Applied Sciences TU Delft | E-Mail | Webpage **Prof. Animesh Kumar**, EE IITB | E-Mail | Webpage

**Prof. Yaroslav Blanter**, Applied Sciences TU Delft | E-Mail | Webpage