HW01 for ECE 9343

Tongda XU, N18100977

September 17, 2018

1 Question 1: Prove the Symmetry property

$$\begin{array}{l} f(n) = \Theta(g(n)) \rightarrow \exists c_1, c_2, n_0, \forall n > n_0, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \\ \leftrightarrow \forall n > n_0, 0 \leq \frac{f(n)}{c_2} \leq g(n) \leq \frac{f(n)}{c_1} \\ \leftrightarrow g(n) = \Theta(f(n)) \end{array}$$

2 Question 2: Problem 3-2

A	В	O	O	Ω	ω	Θ
$lg^k n$	n^{ϵ}	yes	yes	no	no	no
n^k	c^n	yes	yes	no	no	no
$n^{\frac{1}{2}}$	n^{sinn}	no	no	no	no	no
2^n	$2^{\frac{1}{2}n}$	no	no	yes	yes	no
n^{lgc}	c^{lgn}	yes	no	yes	no	yes
lg(n!)	$lg(n^n)$	yes	yes	no	no	no

3 Question 3: Problem 3-3-a

$$2^{2^{n+1}} > 2^{2^n} > (n+1)! > n! > e^n > n2^n$$

$$> 2^n > \frac{3}{2}^n > n^{lglgn} = lgn^{lgn} > (lgn)! > n^3$$

$$> n^2 = 4^{lgn} > lg(n!) = nlgn > 2^{lgn} = n >$$

$$(2^{\frac{1}{2}})^{lgn} > 2^{(2lgn)^{1/2}} > lg^2n > lnn > (lgn)^{\frac{1}{2}} > ln(lnn)$$

$$> 2^{lg^*n} > lg^*n > lg^*lgn > lglg^*n > n^{\frac{1}{lgn}} > 1$$

Some procedure: $n^n = 2^{nlgn} < 2^{2^n}$ $((2^{1/2})^{lgn}) = n^{1/2}$ $(g^2n = 2^{2lglgn} < 2^{(2lgn)^{1/2}} < (2^{1/2})^{lgn}$ $n^{\frac{1}{lgn}} = 2^{\frac{lgn}{lgn}} = 2$ $4^{lgn} = n^{lg4} = n^2$ $n^{lglgn} = lgn^{lgn} = e^{lnnlglgn} = 2^{lgnlglgn} > 2^{(2lgn)^{(1/2)}}$ $n! > \frac{n^n}{e^n} = e^{nlnn-n} > e^{lnnlglgn}$

```
\begin{array}{l} lgn! = lgn^{1/2} \frac{lgn^{lgn}}{e^{lgn}} (1 + \frac{1}{n}) < (lgn)^{lgn} \\ lnlnn = 2^{lglnlnn} > 2^{lg*n} \end{array}
```

4 Question 4: Problem 3-4-c-d-e-f

4.1 c

True.
$$\begin{split} &f(n) = O(g(n)) \rightarrow \exists c, n_0, \forall n > n_0, 1 \leq f(n) \leq cg(n) \\ &\rightarrow 0 \leq lg(f(n)) \leq lg(cg(n)) = lgc + lg(g(n)) \\ &\rightarrow \exists c^{'}, lgc + lg(g(n)) \leq c^{'}lg(g(n)) \\ &\rightarrow lg(f(n)) = O(lg(g(n))) \end{split}$$

4.2 d

False.

Suppose that $f(n) = n, g(n) = \frac{1}{2}n$, never find $c, n_0, \forall n > n_0, 2^n \le c2^{\frac{1}{2}n}$

4.3 e

False, consider any f(x), $\lim_{n\to\infty} f(x) < 1$, such as e^{-x}

4.4 f

True. $f(n) = O(g(n)) \rightarrow \exists c, n_0, \forall n > n_0, 0 \leq f(n) \leq cg(n)$ $\rightarrow \exists c^{'} = \frac{1}{c}, 0 \leq c^{'}f(n) \leq g(n)$ $\rightarrow g(n) = \Omega(f(n))$

5 Question 5: verify

Proof: T(n) = O(n)Suppose $\forall k < n, \exists c_2, T(k) \le c_2 k - 10$ $\rightarrow T(n) = c_2 \alpha n + c_2 (1 - \alpha) n - 20 + 10 \le c_2 n - 10$ $\rightarrow T(n) = O(c_2 n - 10)$ $\rightarrow T(n) = O(n)$ Proof: $T(n) = \Omega(n)$ Suppose $\forall k < n, \exists c_1, T(k) \ge c_1 k$ $\rightarrow T(n) = c_1 \aleph n + c_1 (1 - \alpha) n + 10 \ge c_1 n$ $\rightarrow T(n) = \Omega(n)$ $T(n) = O(n), T(n) = \Omega(n) \rightarrow T(n) = \Theta(n)$

6 Question 6: solve and verify

Notice that
$$TreeHeight = h = log_{\frac{3}{2}}n$$

For branch $\Theta(n) = \sum_{1}^{h+1} n(\frac{4}{3})^h = n\frac{(\frac{4}{3})^{h-1}}{\frac{4}{3}-1} = \Theta(n^{\frac{ln2}{ln3-ln2}})$
For leaf $\Theta(n) = 2^h = \Theta(n^{\frac{ln2}{ln3-ln2}})$
 $\rightarrow T(n) = \Theta(n^{\frac{ln2}{ln3-ln2}}) = \Theta(n^{\log_{\frac{3}{2}}2}) = \Theta(2^{\log_{\frac{3}{2}}n})$
Proof: $T(n) = O(2^{\log_{\frac{3}{2}}n}) - 3n$
Suppose $\forall k < n, \exists c_2, T(k) \le c_2 2^{\log_{\frac{3}{2}}n} - 3n$
 $\rightarrow T(n) = c_2 2 \cdot 2^{\log_{\frac{3}{2}}\frac{2}{3}n} - 4n + n \le c_2 2^{\log_{\frac{3}{2}}n} - 3n$
 $\rightarrow T(n) = O(2^{\log_{\frac{3}{2}}n})$
 $\rightarrow T(n) = O(2^{\log_{\frac{3}{2}}n})$
Proof: $T(n) = \Omega(n^{\log_{\frac{3}{2}}2})$
Suppose $\forall k < n, \exists c_1, T(k) \ge c_1 n^{\log_{\frac{3}{2}}2}$
 $\rightarrow T(n) = c_1 2(\frac{2}{3}n)^{\log_{\frac{3}{2}}2} + \frac{4}{3}n = c_1 2 \cdot (\frac{3}{2})^{\log_{\frac{3}{2}}2} \cdot n^{\log_{\frac{3}{2}}2} + \frac{4}{3}n = c_1 n^{\log_{\frac{3}{2}}2} + \frac{4}{3}n = c_1 n^{\log_{\frac{3}{2}}2} + \frac{4}{3}n = c_1 n^{\log_{\frac{3}{2}}2}$
 $\rightarrow T(n) = \Omega(n^{\log_{\frac{3}{2}}2})$
 $T(n) = O(2^{\log_{\frac{3}{2}}n}), T(n) = \Omega(n^{\log_{\frac{3}{2}}2}) \rightarrow T(n) = \Theta(n^{\log_{\frac{3}{2}}2})$

7 Question 7: solve and verify

Notice that for iterative tree: $\Theta(n^2) = 2T(\frac{1}{4}n) + n^2 \le T(n) \le 2T(\frac{1}{2}n) + n^2 = \Theta(n^2)$ Proof: $T(n) = O(n^2)$, Suppose $\forall k < n, T(k) = O(k^2)$ $\rightarrow \exists c_2 > \frac{16}{11}, T(k) \le c_2 n^2, T(n) \le (\frac{5}{16}c_2 + 1)n^2 \le c_2 n^2, c_2 > \frac{16}{11}$ Proof: $T(n) = \Omega(n^2)$, Suppose $\forall k < n, T(k) = \Omega(k^2)$ $\rightarrow \exists c_1 < \frac{16}{11}, T(k) \ge c_1 n^2, T(n) \ge (\frac{5}{16}c_1 + 1)n^2 \ge c_1 n^2, c_1 < \frac{16}{11}$ $\rightarrow T(n) = \Theta(n^2)$

8 Question 8: solve

Let
$$n = 2^m$$
, Then $T(2^m) = 9T(2^{\frac{m}{6}}) + m^2$
 $\to S(m) = 9S(\frac{1}{6}m) + m^2$
From Branch: $S(m) = m^{\log_6 \frac{3}{2} + 2}$
From Leave: $S(m) = m^{\log_6 9}$
So, $S(m) = \Theta(m^{\log_6 \frac{3}{2} + 2})$

```
\to T(n) = T(2^m) = \Theta((lg(n))^{\log_6 \frac{3}{2} + 2})
```

9 Question 9: solve and justify

9.1 a

```
For leaf \Theta(n)=n^{log_32}

For branch, Notice that n^{\frac{1}{2}}< n^{\frac{1}{2}}lgn< n^{\frac{1}{2}+\epsilon}

\to 2S(\frac{1}{3}n)+n^{\frac{1}{2}}< T(n)< S(n)=2S(\frac{1}{3}n)+n^{\frac{1}{2}+\epsilon}

Notice that the branch complexity of \Theta(n^{log_32})\leq S(n)=n^{\frac{1}{2}+\epsilon}\leq \Theta(n^{log_32})

\to T(n) is equally dominated by branch and leaf, T(n)=\Theta(n^{log_32})
```

9.2 b

```
For branch T(n) = \Theta(hn^2) = \Theta(lognn^2)
For leaf T(n) = \Theta(n^2)
\to T(n) is dominated by branch, T(n) = \Theta(lognn^2)
```

9.3 c

```
For leaf T(n) = \Theta(4^{\log_2 n}) = \Theta(n^2)
For branch, notice that 4 * (\frac{1}{2})^{\frac{5}{2}} = 2^{-\frac{1}{2}} < 1, T(n) = \Theta(n^{\frac{5}{2}})
\to T(n) is dominated by branch, T(n) = \Theta(n^{\frac{5}{2}})
```

9.4 d

```
For branch TreeHeight = h = \frac{n}{2}, T(n) = \frac{1}{2} \sum_{1}^{h+1} \frac{1}{n} = \frac{1}{2}(lnn - ln2) = \Theta(lnn)
For leaf T(n) = \Theta(c)
\to T(n) is dominated by branch, T(n) = \Theta(lnn)
```