Coursera Capstone project

ACCIDENT SEVERITY PREDICTION IN UK

Background

- Car accidents are one of the biggest cause of injuries and deaths all over the world.
- They impact economy with increased
- commuting times
- delivery times
- Costs
- pollution

The problem

Building a model to predict car accident severity can help commuters, professional drivers or logistic planners to reduce the personal and/or business impact of car accidents

Stakeholders

- Individuals
- work commuters
- Taxi drivers
- truck drivers
- bus drivers §
- Businesses § logistic companies
- public/private passengers bus companies
- Taxi companies
- Government agencies
- urban/suburban mobility managers

DATA SOURCES

- Accident data was collected from UK
 Department of Transport downloaded in csv format
- Around 200k events

Feature Selection

- Day of Week
- > Light Conditions
- Weather Conditions
- Road Surface Conditions
- Carriage Inwards

Models

- k-nearest Neighbours algorithm
- Decision Tree
- Support Vector Machine
- Logistic Regression

Evaluation

Confronting the metrics of the different models, we look for the highest F1 score, the largest Jaccard score and the smallest log loss. Knn model is selected

Algorithm	Jaccard	F1-score	LogLoss
KNN	0.251751	0.402115	NA
SVM	0.250214	0.399372	NA
DecisionTree	0.244702	0.391529	NA
Logistic Regression	0.210959	0.333193	1.08484

Conclusion

- The model can non be used to predict the severity of an accident
- From observable features, the stakeholders can make an informed decision