Idée. Une suite est une liste infinie de nombres, par exemple (1; 3; 5; 7; 9; 11; ...).

Définition. Une suite numérique est une fonction u à valeurs dans \mathbb{R} et définie sur \mathbb{N} (tous les entiers).

Le *n*-ième nombre d'une suite est noté u_n (au lieu de u(n)). Une suite u est parfois notée (u_n) .

Attention : Il ne faut pas confondre u_n qui est en général un nombre et (u_n) qui désigne la fonction u.

Exemples.

- (1; 2; 3; 4; ...) est une suite.
- (-3, -4, -5, ...) est une suite.
- (1; 2; 3; 4) n'est pas une suite.

$$u_n = n^2 - 1$$
.

On a
$$u = (-1:0:3:8:15:24:...)$$

• La suite
$$(u_n)_{n>\epsilon}$$
 définie par

$$u_n = \frac{1}{n}$$
 (pour $n \ge 6$).

• La suite
$$(u_n)$$
 définie par $u_n = n^2 - 1$. On a $u = (-1; 0; 3; 8; 15; 24; ...)$
• La suite $(u_n)_{n \ge 6}$ définie par $u_n = \frac{1}{n-5}$ (pour $n \ge 6$). On a $u = (u_6; u_7; u_8; ...) = \left(1; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; ...\right)$

• La suite (u_n) définie par $u_0 = -6$ et $u_{n+1} = 3u_n + 15$. (Terme suivant = $3 \times$ Terme actuel + 15)

$$u_0 = -6$$

Pour
$$n = 0$$
, on a $u_{0+1} = 3u_0 + 15$, c'est-à-dire :

$$u_1 = 3 \times (-6) + 15 = -3$$

Pour
$$n = 1$$
, on a $u_{1+1} = 3u_1 + 15$, c'est-à-dire : $u_2 = 3 \times (-3) + 15 = 6$

On a
$$u = (-6; -3; 6; 33; ...)$$

Remarque. Attention à ne pas confondre u_{n+1} qui désigne le terme suivant u_n , et $u_n + 1$.

Méthode. Pour représenter une suite dans un repère (voir 1.), on place les points de coordonnées $(n; u_n)$. **Méthode.** Si la suite est définie par $u_{n+1} = f(u_n)$, alors (voir 2.) on peut construire les termes à l'aide de la courbe représentative de la fonction f et de la droite d'équation y = x

1 On considère la suite (u_n) définie par $u_n = 2n - 1$. 2 On considère la suite (u_n) définie par $u_{n+1} = f(u_n)$.

Définition. Une suite (u_n) est **croissante** si, pour tout entier n, $u_{n+1} \ge u_n$.

Définition. Une suite (u_n) est **décroissante** si, pour tout entier n, $u_{n+1} \le u_n$.

Définition. Une suite (u_n) est **constante** si, pour tout entier n, $u_{n+1} = u_n$.

Définition. Comme pour les fonctions, si on remplace les inégalités larges par des inégalités strictes, on parle de suite strictement croissante, strictement décroissante.

Exemples. • (1; 3; 5; 19; 33; 200; ...) est une suite croissante (strictement).

- (1; 3; 5; 5; 5; 6; 8; 8; 10; 11; ...) est une suite croissante mais pas strictement croissante.
- (1; 0; -1; -3; -10; ...) est une suite décroissante.
- (1; -1; 2; -2; 3; -3; ...) n'est ni croissante, ni décroissante.
- (3; 3; 3; 3; 3; 3; 3; ...) est une suite constante.
- Soit (u_n) la suite définie par $u_0=5$ et, $u_{n+1}=u_n+n^2+1$ pour tout $n\in\mathbb{N}$.

 $n^2 + 1 > 0$ donc $u_{n+1} > u_n$, donc la suite (u_n) est strictement croissante.

Exemples. Allure d'une suite croissante, d'une suite décroissante, et d'une suite non monotone.

Remarque. Il existe des suites qui ne sont pas croissantes ni décroissantes, comme la suite (u_n) définie par $u_n = (-1)^n$.

Définition. Une **suite** (u_n) **est arithmétique** si la différence de deux termes consécutifs est <u>constante</u>. Autrement dit (u_n) est arithmétique si pour passer d'un terme au suivant, on <u>ajoute</u> toujours <u>le même</u> nombre : $u_{n+1} = u_n + r$ pour tout $n \in \mathbb{N}$. r est appelé **raison de la suite arithmétique** (u_n) .

Exemple. La suite (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$ est arithmétique de raison 3.

Propriété. Terme général d'une suite arithmétique. Soit (u_n) une suite arithmétique de raison r. Pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$ (Deux termes distants de n range diffèrent de n fois la raison)

Quand la suite commence à u_1 il faut adapter : $u_n = u_1 + (n-1)r$ pour tout $n \in \mathbb{N}$

Exemple. Soit (v_n) la suite définie par $v_0 = 3$ et $v_{n+1} = v_n - 0.5$ pour tout $n \in \mathbb{N}$.

Cette suite est arithmétique de raison -0.5 et de premier terme 3. Donc, $v_n = 3 - 0.5n$.

Définition. Une **suite** (u_n) **est géométrique** si le quotient de deux termes consécutifs est <u>constant</u>. Autrement dit (u_n) est géométrique si pour passer d'un terme au suivant, on <u>multiplie</u> toujours par <u>le même</u> nombre : $u_{n+1} = q \times u_n$ pour tout $n \in \mathbb{N}$. q est appelé **raison de la suite géométrique** (u_n) .

Exemple. La suite (u_n) définie par $u_0 = 0.5$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n$ est la suite géométrique de raison q = 2 et de premier terme $u_0 = 0.5$.

Propriété. Terme général d'une suite géométrique. Soit (u_n) une suite géométrique de raison q. Pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n$

Quand la suite commence à u_1 il faut adapter : $u_n = u_1 \times q^{n-1}$ pour tout $n \in \mathbb{N}$

Exemple. La suite (u_n) définie par $u_0=0.5$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n$ est géométrique de raison q=2 et de premier terme $u_0=0.5$, donc, pour tout $n\in\mathbb{N}$, $u_n=u_0\times q^n=0.5\times 2^n$.

Propriété. Somme des termes d'une suite <u>arithmétique</u> = nombre de termes $\times \frac{(1^{er} \text{ terme} + \text{dernier terme})}{2}$

Exemple. $1 + 2 + \dots + n = \frac{n \times (n+1)}{2}$

Propriété. Somme des termes d'une suite <u>géométrique</u> = 1^{er} terme $\times \frac{1-raison^{nombre de termes}}{1-raison}$

Exemple. Soit $q \text{ un r\'eel} \neq 1$. $1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$