영상처리 실제 Image Processing Practice

신재혁

naezang@cbnu.ac.kr

1장 영상처리 개요

Camera

- 렌즈
- 2. 영상센서 3. 메모리
- 메모리

- 1. 수정체
- 2. 망막 3. 시신경 시신경

- 영상 센서 (Image Sensor)
 - 빛 (light) 을 전자 (electron) 으로 변환
 - 1) CCD (charge coupled device)
 - 고화질
 - 2) CMOS (complementary metal oxide semiconductor)
 - 저전력, 저렴

• 색 (Color)

- 가시광선의 파장: 400 ~ 750 nm (17c, 뉴턴)

- 모든 컬러는 Red, Green, Blue 의 기본 컬러를 이용하여 생성될수 있음 (19c, 맥스웰)
- 인간 망막에는 3 개의 기본 컬러를 감지하는 추상체 (cone) 존재

<u>Tristimulus</u>

- 카메라의 컬러 필터
 - R, G, B 를 통과시키는 Color Filter Array (CFA)
 - 각 위치 별 R, G, B 빛의 강도 출력 (analog)

표본화와 양자화

- 디지털 영상 (digital image)
 - 영상을 숫자로 표현한 2차원 배열 데이터

카메라 센서가 출력하는 전압신호 (analog) 를 표본화 (sampling)및 양자화 (quantization) 하여 2차원 배열로 변환

표본화와 양자화

- 표본화 (Sampling)
 - 2차원 sampling
 - X 축 및 Y 축의 픽셀 수 제한

영상의 해상도 결정
(ex) 원영상: 1200 x 800 => sampling: 256x256, 128x128, 64x64,...

(a) 256×256 영상

(b) 128×128 영상

(c) 64×64 영상

(d) 32×32 영상

표본화와 양자화

- 양자화 (Quantization)
 - 픽셀의 아날로그 값을 n 비트 2진수로 표현(ex) n=2: 0~1, n=3: 0~7, n=4: 0~15, ..., n=8: 0~255

[그림 1.11] 다양한 양자화에 따른 영상의 변화(256, 129, 64, 32, 16, 8, 4, 2)

디지털 영상

1 Frame = M x N pixels

$$- f(x, y), \quad 0 \le x \le M - 1, \ 0 \le y \le N - 1$$

K bits / pixel

Gray image: max K = 8

Color image: max K = 8 (red) + 8 (green) + 8 (blue) = 24

디지털 영상

영상처리

• 정의

- 영상 데이터를 처리하여 원하는 출력 데이터를 얻는 기술

(예) 포토샵

• 구분

- 저수준 처리 Low-level image processing
 - 영상 잡음 제거, 영상 대비 개선, 영상 선명화 등
- 중수준 처리 Mid-level image processing
 - 영상 특징 추출 등
- 고수준 처리 High-level image processing
 - 영상 분할, 사물 인식 등

영상처리

• 영상처리 시스템

• 영상 처리 분야

- 영상 조작 (image manipulation)
- 영상 분석 (image analysis)
- 영상 인식 (image recognition)
- 영상 압축 (image compression)

영상처리 응용 분야

- 자율 주행
- 공장 자동화
- 문서 자동 인식
- 생체 인식
- 의료 영상 처리 등

강의 계획

주차

- 개요 (1주)
- OpenCV 기초 (2주)
- Low-level 영상처리 (4주)
- Mid-level 영상처리 (5주)
- High-level 영상처리 (1주)

1	컴퓨터 비전 개요
2	OpenCV 기초 1 (OpenCV Basics 1)
3	OpenCV 기초 2 (OpenCV Basics 2)
4	화소처리와 히스토그램 (point processing & histogram)
5	공간 필터링 (spatial filtering)
6	기하학적 변환 (geometric transformation)
7	형태학적 처리 (morphology)
8	중간시험
9	컬러영상처리 (Color Image Processing)
10	주파수영역처리 (Frequency Domain Processing)
11	영상분할 (Segmentation)
12	특징추출 (1) (Feature Extraction 1)
13	특징추출 (2) (Feature Extraction 2)
14	영상분류 (Classification)
15	기말시험

수업내용

- ▶ 강의 & 실습 병행
- ➤ 실습: Python IDLE & Python & OpenCV
- ▶ 개인 노트북 지참

교재

- 도서명: 컴퓨터 비전과 딥러닝

- ISBN: 979-11-5664-548-1 93000

- 저자: 오일석

- 출판사: 한빛아카데미㈜

- 페이지 / 정가: 664p / 39,000원

➤ 강의자료 : eCampus

부교재: (C++ 참고용)

평가

- 시험: 60~70%
 - 중간
 - 기말
- 프로젝트/HW: 30~40%
 - Python 사용 필수
- 출석:
 - 지각/결석 시 감점