מתמטיקה דיסקרטית 20283

תקציר פתרון בחינה סמסטר 2006ב מועד 93

שאלה 1

 $a \in f^*(f_*(X))$ -ש. עלינו להוכיח ש, $a \in X$ א. יהי

 $f(a) \in f_*(X)$ נובע , f_* יחד עם הגדרת $a \in X$ מהנתון

 $Y = f_*(X)$ נסמן

 $a \in f^*(Y)$ -ש f^* ש-, $f(a) \in Y$ מכיון ש-

. כמבוקש , $a \in f^*(f_*(X))$ כלומר

, $a_1,a_2\in A$ שקיימים פירושה ערכית חד-חד-ערכית אינה fש ב. ב.

. $f(a_1) = f(a_2)$ -ו $a_1 \neq a_2$ כך ש-

: (מתקיים (השלימו מדוע) . $X = \{a_1\}$

 $a_2 \in f^*(f_*(X))$

. $X \neq f^*(f_*(X))$ - נובע ש- , $a_2 \notin X$ - מכך , ביחד עם העובדה ש

ג. נניח בשלילה ש- fחד-חד-ערכית, ו-Xהיא חד-חד-ערכית ל- f

 $. \ X \neq f^*(f_*(X))$

. $X \subseteq f^*(f_*(X))$ -בסעיף א ראינו כללית ש

 $X \neq f^*(f_*(X))$ לכן, אם מתקיים

X-אייך שייך איבר $f^*(f_*(X))$ -שייך ל-

. איבר כזה a

, f_* הטענה f^* והגדרת מהגדרת $a \in f^*(f_*(X))$ הטענה

X -ם הוא מקור של תמונה של איבר כלשהו a -ש

. $f(a_1)=f(a)$ -פך ער כך $a_1\in X$ פיים אחרות, קיים

. $a_1 = a$ נובע הד-חד-ערכית, מכיוון ש

 $a \in X$ משמע, $a_1 \in X$ כאמור

X -אינו שייך אינו סתירה להנחה למעלה ש- a

 $X = f^*(f_*(X))$ אז ערכית אז חד-חד-ערכית, שאם הראינו אפוא בשלילה,

שאלה 2

.C התשובה היא

 $oldsymbol{N}$ בעיון ההוכחה: תהי $oldsymbol{K}$ קבוצת יחסי השקילות מעל

(פדיוק מדוע מדוע אחד, $|K| \leq C$ מדוע!) ולכן $K \subseteq P(\mathbf{N} \times \mathbf{N})$

 $P(\mathbf{N})$ מצד שני, נמצא קבוצה חלקית של K שעוצמתה של קבוצה מצד שני, נמצא אוני, נמצא החלקית של

השלימו את בניית הקבוצה, לא לגמרי טריביאלי, נדרשת קצת זהירות. להמשך דיון בפורום.

C כעת לפי קנטור (-שרדר)-ברנשטיין, נקבל שעוצמת K היא בדיוק

שאלה 3

יי פאורך ייריצוף איריקה הריקה הסדרה וועך ייריצוף מור פאורך ייריקה וו $a_0=1$

. ברור : $a_1 = 2$

, ירוק, סגול), שלוש אפשרויות (אדום, ירוק, סגול): באורך באורך : מרצפת אחת באורך : $a_2=7$

שתי מרצפות באורך 1: ארבע אפשרויות (שחור-שחור, לבן-לבן, שחור-לבן, לבן-שחור).

: n יחס הנסיגה: נתבונן בריצוף באורך

- ריצוף (נ) אם הוא מסתיים במרצפת באורך 2 (2 אפשרויות) אז לפני מרצפת זו יכול לבוא כל ריצוף (נ) אם הוא מסתיים במרצפת זו תורמת $2a_{n-1}$ זו תורמת אפשרות זו תורמת האפשרות זו תורמת (נ)
- יכול לבוא כל ריצוף (ג אפשרויות) אז לפני מרצפת באורך (מו) במרצפת באורך (מו) אם הוא מסתיים במרצפת באורך (מו) . a_{n-2} באורך . n-2

. $a_n = 2a_{n-1} + 3a_{n-2}$ קיבלנו

. $7 = 2 \cdot 2 + 3 \cdot 1$: בדיקה עבור הערכים שמצאנו

. $\lambda^2 - 2\lambda - 3 = 0$ ב. קיבלנו יחס נסיגה ליניארי. המשוואה האפיינית היא ב. $\lambda = 3, -1$. פתרונותיה: $\lambda = 3, -1$

.(*) $a_n = A \cdot 3^n + B \cdot (-1)^n$: מרצורה הוא הנסיגה הוא לכן פתרון יחס הנסיגה

:את A,B נמצא מתנאי ההתחלה

$$a_0$$
: $1 = A \cdot 3^0 + B \cdot (-1)^0 = A + B$

$$a_1: 2 = A \cdot 3^1 + B(-1)^1 = 3A - B$$

A=3/4 כלומר 3=4, כלומר אגף-אגף: B=1/4 כלומר B=1/4

 $a_n = \frac{3}{4} \cdot 3^n + \frac{1}{4} \cdot (-1)^n = \frac{1}{4} (3^{n+1} + (-1)^n)$: (*) נציב בנוסחה

 $a_4 = 2 \cdot 20 + 3 \cdot 7 = 61$, $a_3 = 2 \cdot 7 + 3 \cdot 2 = 20$, הנסיגה, הנסיגה משימוש חוזר ביחס הנסיגה,

. $a_4 = \frac{1}{4}(3^5 + (-1)^4) = 61$: ומהנוסחה המפורשת

שאלה 4

- 24 .א
- **2**.24 ع
- $3^4 \cdot 4^3$.

שאלה 5

- *d* .×
- *a* .⊐
- *ل*ا. *d*
- *b* .т