Graphs: Representation and Elementary Algorithms

Antonio Carzaniga

Faculty of Informatics
Università della Svizzera italiana

May 4, 2023

Outline

- Graphs: definitions
- Representations
- Breadth-first search
- Depth-first search

Same Example (Better Layout)

Many Models and Applications

- Social networks: who knows who
- The Web graph: which page links to which
- The Internet graph: which router links to which
- Citation graphs: who references whose papers
- Planar graphs: which country is next to which
- Well-shaped meshes: *pretty pictures with triangles*
- Geometric graphs: who is near who
- Random graphs: whichever...

Examples and descriptions taken from Daniel A. Spielman's course "Graphs and Networks."

Example (1)

Example (2)

Definitions

■ A graph

$$G = (V, E)$$

- *V* is the set of *vertices* (also called *nodes*)
- *E* is the set of *edges*

A graph

$$G = (V, E)$$

- V is the set of **vertices** (also called **nodes**)
- *E* is the set of *edges*
 - $ightharpoonup E \subseteq V \times V$, i.e., E is a relation between vertices
 - ▶ an edge $e = (u, v) \in V$ is a pair of vertices $u \in V$ and $v \in V$

A graph

$$G = (V, E)$$

- V is the set of **vertices** (also called **nodes**)
- *E* is the set of *edges*
 - $ightharpoonup E \subseteq V \times V$, i.e., E is a relation between vertices
 - ▶ an edge $e = (u, v) \in V$ is a pair of vertices $u \in V$ and $v \in V$
- An *undirected* graph is characterized by a *symmetric* relation between vertices
 - ▶ an edge is a set $e = \{u, v\}$ of two vertices

Graph Representation

■ How do we represent a graph G = (E, V) in a computer?

Graph Representation

- How do we represent a graph G = (E, V) in a computer?
- Adjacency-list representation
- $V = \{1, 2, \dots |V|\}$
- *G* consists of an array *Adj*
- A vertex $u \in V$ is represented by an element in the array Adj

Graph Representation

- How do we represent a graph G = (E, V) in a computer?
- Adjacency-list representation
- $V = \{1, 2, \dots |V|\}$
- G consists of an array Adj
- A vertex $u \in V$ is represented by an element in the array Adj
- \blacksquare Adj[u] is the **adjacency list** of vertex u
 - the list of the vertices that are adjacent to u
 - i.e., the list of all v such that $(u, v) \in E$

Accessing a vertex u?

- Accessing a vertex u?
 - optimal

0(1)

- Accessing a vertex u?
 - optimal
- Iteration through *V*?

10•

- Accessing a vertex u?
 - optimal
- Iteration through *V*?
 - optimal

0(1)

11•

10•

- Accessing a vertex u?
 - optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?

9

10 11

12

11•

- Accessing a vertex u?
 - optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?
 - okay (not optimal)

- 0(1)
- $\Theta(|V|)$

9

10 11

12

- 12•

- Accessing a vertex u?
 - optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?
 - okay (not optimal)
- Checking $(u, v) \in E$?

 $\Theta(|V|)$

 $\Theta(|V| + |E|)$

9

10 11

12

- Accessing a vertex u?
 - optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?
- okay (not optimal)
- Checking $(u, v) \in E$?

- O(1)
- $\Theta(|V|)$
- $\Theta(|V| + |E|)$

O(|V|)

- 6 8

9

10 11

12

- 11•

10●

- 10●

12•

10•

- Accessing a vertex u?
 - optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?
 - okay (not optimal)
- Checking $(u, v) \in E$?
- bad

- O(1)
- $\Theta(|V|)$
- $\Theta(|V| + |E|)$

O(|V|)

- 8 9

6

10

11

12

- 10●
- 12•

11•

Graph Representation (2)

- Adjacency-matrix representation
- $V = \{1, 2, \dots |V|\}$
- \blacksquare G consists of a $|V| \times |V|$ matrix A
- \blacksquare $A = (a_{ij})$ such that

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3	4	5	6	7	8	9	10	11	12
1					1	1						
2			1				1					
3				1			1					
4							1					
5									1			
6		1					1		1			
7								1		1	1	
8											1	1
9										1		
10												
11												1
12												

Accessing a vertex u?

- Accessing a vertex u?
 - ▶ optimal
- O(1)

Accessing a vertex u?

0(1)

- optimal
- Iteration through *V*?

- Accessing a vertex u? O(1)
 - optimal
- Iteration through *V*?
 - optimal

0 (1141)

Accessing a vertex u? O(1)

 $\Theta(|V|)$

- optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?

- Accessing a vertex u? O(1)
 - optimal
- Iteration through V? $\Theta(|V|)$

 $\Theta(|V|^2)$

- optimal
- Iteration through *E*?
 - possibly very bad

11 12

Accessing a vertex u? O(1)

 $\Theta(|V|)$

 $\Theta(|V|^2)$

- optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?
 - possibly very bad
- Checking $(u, v) \in E$?

	1	2	3	4	5	6	7	8	9	10	11	12
1					1	1						
2			1				1					
3				1			1					
4							1					
5									1			
6		1					1		1			
7								1		1	1	
8											1	1
9										1		
10												
11												1
12												

- Accessing a vertex u? O(1)
 - optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?
 - possibly very bad
- Checking $(u, v) \in E$?

 $\Theta(|V|)$

 $\Theta(|V|^2)$

O(1)

8 9

10

11

12

5 6

7 8 9 10 11 12

Accessing a vertex u? O(1)

 $\Theta(|V|)$

 $\Theta(|V|^2)$

O(1)

- optimal
- Iteration through *V*?
 - optimal
- Iteration through *E*?
 - possibly very bad
- Checking $(u, v) \in E$?
 - optimal

■ Adjacency-list representation

■ Adjacency-list representation

$$\Theta(|V| + |E|)$$

■ Adjacency-list representation

 $\Theta(|V| + |E|)$

optimal

■ Adjacency-list representation

 $\Theta(|V| + |E|)$

optimal

■ Adjacency-matrix representation

■ Adjacency-list representation

 $\Theta(|V| + |E|)$

optimal

■ Adjacency-matrix representation

■ Adjacency-list representation

 $\Theta(|V| + |E|)$

optimal

■ Adjacency-matrix representation

 $\Theta(|V|^2)$

possibly very bad

Adjacency-list representation

 $\Theta(|V| + |E|)$

optimal

■ Adjacency-matrix representation

 $\Theta(|V|^2)$

possibly very bad

■ When is the adjacency-matrix "very bad"?

Choosing a Graph Representation

- Adjacency-list representation
 - generally good, especially for its optimal space complexity
 - bad for *dense* graphs and algorithms that require random access to edges
 - ▶ preferable for *sparse* graphs or graphs with *low degree*

Choosing a Graph Representation

- Adjacency-list representation
 - generally good, especially for its optimal space complexity
 - bad for *dense* graphs and algorithms that require random access to edges
 - preferable for sparse graphs or graphs with low degree
- Adjacency-matrix representation
 - suffers from a bad space complexity
 - good for algorithms that require random access to edges
 - preferable for dense graphs

Breadth-First Search

■ One of the simplest but also a fundamental algorithm

Breadth-First Search

- One of the simplest but also a fundamental algorithm
- Input: G = (V, E) and a vertex $s \in V$
 - explores the graph, touching all vertices that are reachable from s
 - ▶ iterates through the vertices at increasing distance (edge distance)
 - computes the distance of each vertex from s
 - produces a breadth-first tree rooted at s
 - works on both directed and undirected graphs


```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```



```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                     \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 1$$

$$Q = \emptyset$$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
          \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
               if color[v] == WHITE
13
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                     \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 1$$

$$Q = \{5\}$$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
          \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
                if color[v] == WHITE
13
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                     \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 1$$

$$Q = \{5, 6\}$$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                     \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 5$$
$$Q = \{6\}$$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 5$$
 $Q = \{6, 9\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 6$$
$$Q = \{9\}$$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 6$$

 $Q = \{9, 2, 7\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 6$$

 $Q = \{9, 2, 7\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 9$$
$$Q = \{2, 7\}$$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 9$$

 $Q = \{2, 7, 10\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                     color[v] = GRAY
15
                     d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 2$$
 $Q = \{7, 10\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 2$$

 $Q = \{7, 10, 3\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 7$$

 $Q = \{10, 3\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 7$$
 $Q = \{10, 3, 8\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 7$$
 $Q = \{10, 3, 8, 11\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 10$$

 $Q = \{3, 8, 11\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 3$$
 $Q = \{8, 11\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
    d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 3$$

 $Q = \{8, 11, 4\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 8$$
 $Q = \{11, 4\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 8$$
 $Q = \{11, 4, 12\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 11$$
 $Q = \{4, 12\}$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 4$$
$$Q = \{12\}$$

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
          d[u] = \infty
         \pi[u] = NIL
     color[s] = GRAY
     d[s] = 0
     \pi[s] = NIL
     Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
          u = \mathbf{DEQUEUE}(Q)
12
          for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                     ENQUEUE(Q, v)
18
          color[u] = BLACK
```


$$u = 12$$

$$Q = \emptyset$$

Complexity of BFS

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
      d[u] = \infty
     \pi[u] = NIL
    color[s] = GRAY
    d[s] = 0
     \pi[s] = NIL
    Q = \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
         u = \mathbf{DEQUEUE}(Q)
12
     for each v \in Adj[u]
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                   d[v] = d[u] + 1
16
                   \pi[v] = u
17
                    ENQUEUE(Q, v)
          color[u] = BLACK
18
```

BFS(G,s)**for** each vertex $u \in V(G) \setminus \{s\}$ color[u] = WHITE $d[u] = \infty$ $\pi[u] = NIL$ color[s] = GRAYd[s] = 0 $\pi[s] = NIL$ $0 = \emptyset$ **ENQUEUE**(Q, s)10 while $Q \neq \emptyset$ 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in Adj[u]$ 12 13 **if** color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ 17 **ENQUEUE**(Q, v)18 color[u] = BLACK

Complexity of BFS

We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once

```
BFS(G,s)
     for each vertex u \in V(G) \setminus \{s\}
          color[u] = WHITE
       d[u] = \infty
        \pi[u] = NIL
    color[s] = GRAY
    d[s] = 0
     \pi[s] = NIL
     0 = \emptyset
     ENQUEUE(Q, s)
10
     while Q \neq \emptyset
11
          u = \mathbf{DEQUEUE}(Q)
     for each v \in Adj[u]
12
13
               if color[v] == WHITE
14
                    color[v] = GRAY
15
                    d[v] = d[u] + 1
16
                    \pi[v] = u
17
                    ENQUEUE(Q, v)
18
          color[u] = BLACK
```

Complexity of BFS

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once
- So, the (dequeue) while loop executes O(|V|) times

BFS(G,s)**for** each vertex $u \in V(G) \setminus \{s\}$ color[u] = WHITE $d[u] = \infty$ $\pi[u] = NIL$ color[s] = GRAYd[s] = 0 $\pi[s] = NIL$ $0 = \emptyset$ **ENQUEUE**(Q, s)10 while $Q \neq \emptyset$ 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in Adi[u]$ 12 13 **if** color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ 17 **ENQUEUE**(Q, V)18 color[u] = BLACK

Complexity of BFS

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once
- So, the (dequeue) while loop executes O(|V|) times
- For each vertex u, the inner loop executes $\Theta(|E_u|)$, for a total of O(|E|) steps

BFS(G,s)**for** each vertex $u \in V(G) \setminus \{s\}$ color[u] = WHITE $d[u] = \infty$ $\pi[u] = NIL$ color[s] = GRAYd[s] = 0 $\pi[s] = NIL$ $0 = \emptyset$ **ENQUEUE**(Q, s)10 while $Q \neq \emptyset$ 11 $u = \mathbf{DEQUEUE}(Q)$ **for** each $v \in Adi[u]$ 12 13 **if** color[v] == WHITE14 color[v] = GRAY15 d[v] = d[u] + 116 $\pi[v] = u$ 17 **ENQUEUE**(Q, V)

color[u] = BLACK

18

Complexity of BFS

- We enqueue a vertex only if it is white, and we immediately color it gray; thus, we enqueue every vertex at most once
- So, the (dequeue) while loop executes O(|V|) times
- For each vertex u, the inner loop executes $\Theta(|E_u|)$, for a total of O(|E|) steps
- \blacksquare So, O(|V| + |E|)

- Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end
 - i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited

- Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end
 - i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited
- Input: G = (V, E)
 - explores the graph, touching all vertices

- Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end
 - i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited
- Input: G = (V, E)
 - explores the graph, touching all vertices
 - produces a depth-first forest, consisting of all the depth-first trees defined by the DFS exploration

- Immediately follow the links of the most recently-visited vertex, then backtrack when you reach a dead-end
 - i.e., backtrack when the current vertex has no more adjacent vertices that have not yet been visited
- Input: G = (V, E)
 - explores the graph, touching all vertices
 - produces a depth-first forest, consisting of all the depth-first trees defined by the DFS exploration
 - associates two time-stamps to each vertex
 - \triangleright d[u] records when u is first discovered
 - ightharpoonup f[u] records when DFS finishes examining u's edges, and therefore backtracks from u

DFS Algorithm

$\mathbf{DFS}(G)$		DFS	$\mathbf{DFS\text{-}Visit}(u)$	
1	for each vertex $u \in V(G)$	1	color[u] = GREY	
2	color[u] = WHITE	2	time = time + 1	
3	$\pi[u] = NIL$	3	d[u] = time	
4	time = 0 // "global" variable	4	for each $v \in Adj[u]$	
5	for each vertex $u \in V(G)$	5	if color[v] == WHITE	
6	if color[u] == WHITE	6	$\pi[v] = u$	
7	$\mathbf{DFS-Visit}(u)$	7	$DFS ext{-}Visit(v)$	
		8	color[u] = BLACK	
		9	time = time + 1	
		10	f[u] = time	

Complexity of DFS

■ The loop in **DFS-VISIT**(u) (lines 4–7) accounts for $\Theta(|E_u|)$

Complexity of DFS

- The loop in **DFS-VISIT**(u) (lines 4–7) accounts for $\Theta(|E_u|)$
- We call **DFS-Visit**(*u*) once for each vertex *u*
 - either in DFS, or recursively in DFS-VISIT
 - because we call it only if color[u] = WHITE, but then we immediately set color[u] = GREY

Complexity of DFS

- The loop in **DFS-Visit**(u) (lines 4–7) accounts for $\Theta(|E_u|)$
- We call **DFS-Visit**(u) once for each vertex u
 - either in DFS, or recursively in DFS-VISIT
 - **because** we call it only if color[u] = WHITE, but then we immediately set color[u] = GREY
- So, the overall complexity is $\Theta(|V| + |E|)$

Applications of DFS: Topological Sort

■ **Problem:** (topological sort)

Given a directed acyclic graph (DAG)

• find an ordering of vertices such that you only end up with forward links

Applications of DFS: Topological Sort

■ **Problem:** (topological sort)

Given a directed acyclic graph (DAG)

find an ordering of vertices such that you only end up with forward links

- **Example:** dependencies in software packages
 - find an installation order for a set of software packages
 - such that every package is installed only after all the packages it depends on

Topological Sort Algorithm

Topological Sort Algorithm

TOPOLOGICAL-SORT(G)

- 1 **DFS**(*G*)
- 2 output V sorted in reverse order of $f[\cdot]$