ÁLGEBRA LINEAR

ISBN 978-85-915683-0-7

ROBERTO DE MARIA NUNES MENDES

Professor do Departamento de Matemática e Estatística e do Programa de Pós-graduação em Engenharia Elétrica da PUCMINAS

Belo Horizonte Edição do Autor 2013

Sumário

Prefácio					
1	Esp	aços Vetoriais	2		
	1.1	Definições e Exemplos	2		
	1.2	Subespaços	5		
	1.3	<u>.</u>	7		
	1.4	Espaços Produto e Quociente	11		
	1.5	Somas e Somas Diretas	13		
	1.6	Exercícios do Capítulo 1	16		
2	Aplicações Lineares 18				
	2.1^{-2}	Definições e Exemplos	18		
	2.2	Composição e Inversão de Aplicações Lineares	23		
	2.3	Álgebra das Aplicações Lineares	28		
	2.4		30		
3	Matrizes 33				
	3.1	Definições	32		
	3.2	Produto de Matrizes	34		
	3.3		35		
	3.4	Mudança de Bases	42		
	3.5		47		
4	For	mas Lineares. Dualidade	49		
	4.1	Definição	49		
	4.2		52		
	4.3	Transposição	53		
	4.4		57		
5	Determinantes 58				
	5.1	Aplicações r-lineares alternadas	58		

SUMÁRIO ii

	5.2	Determinante de um Operador Linear	. 63		
	5.3	Desenvolvimento em relação aos elementos de uma coluna (ou			
		de uma linha)			
	5.4	Matrizes Elementares	. 71		
	5.5	Equações Lineares	. 78		
6	Autovalores e Autovetores 84				
	6.1	Definições	. 84		
	6.2	Diagonalização			
	6.3	Polinômios de Operadores e Matrizes			
	6.4	Exercícios do Capítulo 6	. 98		
7	Produto Interno 9				
	7.1	Definições e Exemplos	. 99		
	7.2	Bases Ortonormais			
	7.3	Relações entre V e V^*			
	7.4	Adjunta			
	7.5	Exercícios do Capítulo 7	. 113		
8	Operadores Unitários e Normais 11				
	8.1	Definições			
	8.2	Operadores Positivos			
	8.3	Matrizes Simétricas Positivas. Decomposição de Cholesky			
	8.4	Teorema dos Valores Singulares			
	8.5	Exercícios do Capítulo 8	. 128		
9	Form	mas Bilineares e Quadráticas	130		
	9.1	Generalidades			
	9.2	Matriz de uma forma bilinear			
	9.3	Mudanças de Bases			
	9.4	Formas Quadráticas			
	9.5	Formas Bilineares Simétricas Reais	. 133		
10	Mis	celânea	137		
	10.1	Orientação	. 137		
	10.2	Volume de Paralelepípedo	. 138		
	10.3	Matriz de Gram	. 139		
	10.4	Produto Vetorial	. 140		
Ex	ercío	cios de Revisão	142		
Bi	Bibliografia				

Prefácio

A origem desse livro de Álgebra Linear remonta a um curso feito para alunos do Bacharelado em Matemática da UFMG. Na ocasião, fizemos uma primeira redação revista pelos professores do ICEx-UFMG, Michel Spira e Wilson Barbosa, a quem muito agradecemos. Mais recentemente, retomamos o trabalho e, após várias mudanças, aproveitamos parte do material na disciplina "Métodos Matemáticos" do Programa de Pós-Graduação em Engenharia Elétrica da PUCMINAS. A versão final do livro foi revista pela professora Mariana Cornelissen Hoyos, a quem agradecemos a generosa assistência.

A leitura do Sumário mostra que se trata de um livro básico de Álgebra Linear que procura desenvolver o assunto com cuidado no aspecto teórico, visando a boa formação do profissional. Para aprofundamento na matéria deve-se recorrer aos livros indicados na Bibliografia, que utilizamos livremente.

A digitação do manuscrito foi feita, com eficiência e boa vontade, por Eric Fernandes de Mello Araújo, a quem agradecemos. Ao leitor, bom proveito.

Belo Horizonte, janeiro de 2013 Roberto N. Mendes

Capítulo 1

Espaços Vetoriais

1.1 Definições e Exemplos

Seja K um corpo com elementos neutros distintos 0 e 1, por exemplo, $K=\mathbb{R}$ ou $K=\mathbb{C}.$

Definição 1.1 Um espaço vetorial sobre K é um conjunto V munido de duas leis:

$$V \times V \longrightarrow V \quad e \quad K \times V \longrightarrow V$$

 $(u, v) \longmapsto u + v \qquad (a, v) \longmapsto av$

tais que, para quaisquer $u, v, w \in V$ e $a, b \in K$, se tenha:

- (1) u + v = v + u
- (2) (u+v)+w=u+(v+w)
- (3) existe $0 \in V$, chamado o vetor zero, tal que v + 0 = v
- (4) dado $v \in V$, existe $(-v) \in V$, chamado o oposto de v, tal que v+(-v)=0
- $(5) \ 1 \cdot v = v$
- $(6) \ a(bv) = (ab)v$
- (7) a(u+v) = au + av
- (8) (a+b)v = av + bv.

Exemplo 1.1.1 Seja $V = K^n$, onde $n \in \mathbb{N}$, com as leis:

$$(x_1,...,x_n) + (y_1,...,y_n) = (x_1 + y_1,...,x_n + y_n)$$

e

$$a(x_1, ..., x_n) = (ax_1, ..., ax_n).$$

É fácil verificar que, com estas leis, K^n é um espaço vetorial sobre K.

Observação: Os elementos de um espaço vetorial V são chamados de vetores, enquanto que os de K são chamados de escalares. Essa nomenclatura deriva do exemplo acima. As leis são chamadas de adição e multiplicação por escalar, respectivamente.

No exemplo 1.1.1, se n=1, vemos que K é um espaço vetorial sobre si mesmo, de modo que seus elementos são, ao mesmo tempo, escalares e vetores.

Exemplo 1.1.2 Seja $V = P_n$, onde $n \in \mathbb{N}$, o conjunto das funções polinomiais de grau estritamente menor que n, com coeficientes em K, juntamente com a função zero. Se $p = a_0 + a_1t + ... + a_{n-1}t^{n-1}$ e $q = b_0 + b_1t + ... + b_{n-1}t^{n-1}$, definimos $p + q \in V$ e $cp \in V$, onde $c \in K$, por:

$$p + q = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_{n-1} + b_n - 1)t^{n-1}$$
$$cp = ca_0 + ca_1t + \dots + ca_{n-1}t^{n-1}$$

Resulta que P_n é um espaço vetorial sobre K.

Exemplo 1.1.3 Seja V = K[t] o conjunto de todos os polinômios a uma variável, com coeficientes em K. Definindo as leis como no exemplo 1.1.2, é imediato que K[t] é um espaço vetorial sobre K.

Exemplo 1.1.4 Seja $V = \mathcal{F}(I, \mathbb{R})$ o conjunto das funções $f : I \longrightarrow \mathbb{R}$, onde $I \subset \mathbb{R}$ é um intervalo. Se $f, g \in V$ e $a \in \mathbb{R}$, definimos f + g e af por:

$$(f+g)(x) = f(x) + g(x)$$
$$(af)(x) = a \cdot f(x)$$

para todo $x \in I$. Verifica-se imediatamente que essas leis tornam $\mathcal{F}(I,\mathbb{R})$ um espaço vetorial real, isto é, sobre \mathbb{R} .

Consequências Imediatas da Definição

(a) Se $u, v \in V$ definimos:

$$u - v = u + (-v)$$

Se $a \in K$, então

$$a(u-v) + av = a[(u-v) + v] = a[u + (-v) + v] = a(u+0) = au.$$

Somando -av aos dois membros, vem:

$$a(u-v) + av - av = au - av,$$

donde:

$$a(u-v) = au - av.$$

Fazendo u = v, obtemos

$$a \cdot 0 = 0$$

e também

$$a(-v) = a(0 - v) = a \cdot 0 - av = -av.$$

(b) Se $a, b \in K$ e $v \in V$, então:

$$(a-b)v + bv = (a-b+b)v = av,$$

donde:

$$(a-b)v = av - bv$$

Fazendo a = b, vem

$$0 \cdot v = 0$$

e também

$$(-a)v = (0-a)v = 0 \cdot v - av = -av.$$

(c) Para todo $a \in K$ e todo $v \in V$ vimos que

$$0 \cdot v = a \cdot 0 = 0$$

Suponhamos que av = 0. Se $a \neq 0$ então

$$0 = a^{-1} \cdot 0 = a^{-1}(av) = 1 \cdot v = v.$$

Portanto, av = 0 implica ou a = 0 ou v = 0.

Exercícios

- 1. O conjunto de todos os polinômios de grau 3, com coeficientes reais e munido das leis usuais, juntamente com o polinômio zero, forma um espaço vetorial real?
- 2. Dê exemplo de um conjunto M que verifique todos os axiomas de espaço vetorial, exceto $1 \cdot v = v$ para todo $v \in M$.

3. O conjunto das sequências complexas $z=(z_n)_{n\geq 1}$ tais que

$$z_{n+2} = z_{n+1} + z_n, \ n \ge 1,$$

munido das leis usuais, forma um espaço vetorial complexo?

- 4. O conjunto das funções $f: \mathbb{R} \longrightarrow \mathbb{R}$ duas vezes continuamente deriváveis e tais que f'' + af' + bf = 0 ($a \ e \ b$ reais fixos), munido das leis usuais, forma um espaço vetorial real?
- 5. Prove que o conjunto das funções limitadas $f: \mathbb{R} \longmapsto \mathbb{R}$, munido das leis usuais, é um espaço vetorial real.
- 6. Seja $l_1(\mathbb{N})$ o conjunto das sequências $x = (x_n)_{n \geq 1}$ onde $x_n \in \mathbb{C}$ e $\sum_{n=1}^{\infty} |x_n| < \infty.$ Prove que, com as leis usuais, $l_1(\mathbb{N})$ é um espaço vetorial complexo.

1.2 Subespaços

Seja V um espaço vetorial sobre o corpo K.

Definição 1.2 Dizemos que $W \subset V$ é um subespaço de V se:

- $(a) \ 0 \in W$
- (b) $u, v \in W \Longrightarrow u + v \in W$
- (c) $a \in K, v \in W \Longrightarrow av \in W$

É claro que W, com as leis induzidas pelas de V, é um espaço vetorial sobre K.

Exemplo 1.2.1 $Em V = K^n$ verifica-se imediatamente que $W = \{(x_1, ..., x_n) \in K^n; x_1 = 0\}$ é um subespaço.

Exemplo 1.2.2 Em $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$, espaço vetorial real das funções $f : \mathbb{R} \to \mathbb{R}$, o subconjunto formado pelas funções contínuas é um subespaço.

Proposição 1.1 Seja V um espaço vetorial sobre K. A interseção de uma família qualquer de subespaços de V é um subespaço de V.

Dem. Seja $(W_{\alpha})_{\alpha \in A}$ uma família de subespaços de V, e seja $W = \bigcap_{\alpha \in A} W_{\alpha}$. Então:

- (a) $0 \in W$ pois $0 \in W_{\alpha}$ para todo $\alpha \in A$.
- (b) $u, v \in W \iff u, v \in W_{\alpha}$ para todo $\alpha \in A \implies (u+v) \in W_{\alpha}$ para todo $\alpha \in A \implies (u+v) \in W$.
- (c) $\alpha \in K, v \in W \Longrightarrow av \in W_{\alpha} \text{ para todo } \alpha \in A \Longrightarrow av \in W.$

Definição 1.3 Seja X um subconjunto não-vazio do espaço vetorial V sobre

K. Todo elemento da forma $a_1v_1 + ... + a_mv_m = \sum_{i=1}^m a_iv_i$, onde $m \in \mathbb{N}$, $v_i \in$

 $X, a_i \in K, 1 \leq i \leq m$, é chamado de <u>combinação linear</u> de elementos de X. É fácil verificar que o conjunto de todas as combinações lineares de elementos de X é um subespaço de V, chamado de subespaço gerado por X.

Proposição 1.2 O subespaço gerado por $X \subset V$, $X \neq \emptyset$, é a interseção de todos os subespaços de V contendo X, ou seja, é o "menor" (para a inclusão de conjuntos) subespaço de V contendo X.

Dem. Seja $(W_{\alpha})_{\alpha \in A}$ a família de todos os subespaços de V contendo X. Sabemos que $W = \bigcap_{\alpha \in A} W_{\alpha}$ é um subespaço de V. É claro que W contém X e, portanto, que W contém todas as combinações lineares de elementos de X, ou seja, W contém o subespaço S gerado por X. Como S é um subespaço de V contendo X, temos que $W \subset S$. Resulta W = S.

Exercícios

- 1. Seja $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ o espaço vetorial real das funções $f : \mathbb{R} \to \mathbb{R}$. Verifique se W é subespaço de V nos seguintes casos:
 - (a) W = conjunto das funções pares
 - (b) W = conjunto das funções ímpares
 - (c) W = conjunto das funções deriváveis
 - (d) W = conjunto das funções C^{∞}
- 2. Qual a expressão do elemento genérico do subespaço de K[t] gerado pelos polinômios t^2 e t^3 ?
- 3. Verifique se $W = \{(x, y, z) \in \mathbb{R}^3; x = 2y\}$ é subespaço de \mathbb{R}^3 .
- 4. Mostre que $W=\{(0,y,z)\in\mathbb{R}^3\}$ é gerado por (0,1,1) e (0,2,-1).
- 5. Mostre que o conjunto das funções $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 tais que f'' + af' + bf = 0 (a e b reais fixos) é um subespaço de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- 6. Mostre que, em geral, a união de dois subespaços não é um subespaço.

1.3 Independência Linear. Bases. Dimensão

Definição 1.4 Sejam $X \neq \emptyset$, $X \subset V$, V um espaço vetorial sobre K. Dizemos que X é <u>linearmente independente</u> se, quaisquer que sejam $v_1, ..., v_m \in X$, $m \in \mathbb{N}$, a equação $a_1v_1 + ... + a_mv_m = 0$, onde $a_1, ..., a_m \in K$, implica $a_1 = a_2 = ... = a_m = 0$. Se X não é linearmente independente (LI) dizemos que X é <u>linearmente dependente</u> (LD); neste caso, existem $v_1, ..., v_p \in X, p \in \mathbb{N}$, e escalares não todos nulos, $a_1, ..., a_p$, tais que $a_1v_1 + ... + a_pv_p = 0$.

Exemplo 1.3.1 $Em K^n$ consideremos os vetores

$$e_1 = (1, 0, ..., 0)$$

 $e_2 = (0, 1, ..., 0)$
 \vdots
 $e_n = (0, ..., 0, 1)$

Esses vetores são LI, pois $a_1e_1 + ... + a_ne_n = (a_1, ..., a_n) = 0 = (0, ..., 0) \Leftrightarrow a_1 = 0, ..., a_n = 0.$

Exemplo 1.3.2 Em P_n os vetores $1, t, ..., t^{n-1}$ são LI pois $a_0 + a_1 t + ... + a_{n-1}t^{n-1} = 0$ implica $a_0 = a_1 = ... = a_{n-1} = 0$.

Exemplo 1.3.3 No espaço das funções $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 consideremos os vetores $f_1(t) = e^{r_1 t}$, $f_2(t) = e^{r_2 t}$ onde $r_1 \neq r_2$ são reais. f_1 , f_2 são LI pois se $a_1 f_1 + a_2 f_2 = 0$ então $a_1 e^{r_1 t} + a_2 e^{r_2 t} = 0$ para todo $t \in \mathbb{R}$, donde $a_1 e^{(r_1 - r_2)t} + a_2 = 0$ para todo $t \in \mathbb{R}$. Derivando: $a_1(r_1 - r_2)e^{(r_1 - r_2)t} = 0$ para todo $t \in \mathbb{R}$, donde $a_1 = 0$ e, portanto, $a_2 = 0$.

Exemplo 1.3.4 Consideremos os elementos 1 e i de \mathbb{C} . Considerando \mathbb{C} como um espaço vetorial <u>real</u>, 1 e i são LI. Considerando \mathbb{C} como um espaço vetorial complexo, 1 e i são LD.

Proposição 1.3 Se $v_1, ..., v_n$ são vetores LI em V e

$$a_1v_1 + ... + a_nv_n = b_1v_1 + ... + b_nv_n$$

 $com \ a_i \in K, \ b_i \in K \ (1 \le i \le n), \ ent \ a_i = b_i \ para \ todo \ i.$

Dem. A relação dada é equivalente a $(a_1 - b_1)v_1 + ... + (a_n - b_n)v_n = 0$, donde $a_1 - b_1 = ... = a_n - b_n = 0$, isto é, $a_i = b_i$ para i = 1, 2, ..., n.

Definição 1.5 Seja V um espaço vetorial sobre K. Dizemos que $G \subset V$ gera V ou que $G \subset V$ é um <u>conjunto de geradores</u> de V se todo $v \in V$ é combinação linear de vetores de G, ou seja, se o subespaço gerado por G é V. Dizemos que o conjunto de geradores G é **mínimo** se, qualquer que seja $g \in G$, o conjunto $G_1 = G - \{g\}$ não gera V.

Exemplo 1.3.5 Em K^n os vetores $e_1 = (1, 0, ..., 0), ..., e_n = (0, ..., 0, 1)$ formam um conjunto de geradores mínimo.

Definição 1.6 Seja $X \subset V$ um conjunto LI no espaço vetorial V. Dizemos que X é um conjunto linearmente independente $\underline{m\'{a}ximo}$ se, para todo $v \in V$, $v \notin X$, o conjunto $X_1 = X \cup \{v\}$ é LD.

Exemplo 1.3.6 Os vetores $e_1 = (1, 0, ..., 0), ..., e_n = (0, ..., 0, 1)$ de K^n formam um conjunto LI máximo.

Proposição 1.4 Sejam $v_1, ..., v_m$ vetores LI do espaço vetorial V gerado por $w_1, ..., w_p$. Então $m \leq p$ e, alterando-se eventualmente a numeração dos w_i , os vetores $v_1, ..., v_m, w_{m+1}, ..., w_p$ ainda geram V.

Dem. Seja $v_1 = a_{11}w_1 + ... + a_{p1}w_p$; sem perda de generalidade podemos supor $a_{11} \neq 0$ e, então:

$$w_1 = b_{11}v_1 + b_{21}w_2 + \dots + b_{p1}w_p.$$

Logo, toda combinação linear de $w_1, ..., w_p$ também é combinação linear de $v_1, w_2, ..., w_p$, ou seja, estes vetores geram V.

Seja $v_2 = a_{12}v_1 + a_{22}w_2 + ... + a_{p2}w_p$; ao menos um dos escalares $a_{22}, ..., a_{p2}$ é diferente de zero pois v_1 e v_2 são LI. Podemos supor $a_{22} \neq 0$ e, então:

$$w_2 = b_{12}v_1 + b_{22}v_2 + b_{32}w_3 + \dots + b_{p2}w_p,$$

e toda combinação linear de $v_1, w_2, ... w_p$ é também combinação linear de $v_1, v_2, w_3, ..., w_p$, ou seja, estes vetores geram V.

Repetindo essa operação um número finito de vezes, vemos que, para $r \leq min(m,p)$, os vetores $v_1,...,v_r,w_{r+1},...,w_p$ geram V. Se fosse m>p, tomando r=p, teríamos que $v_1,...,v_p$ gerariam V e, portanto, $v_{p+1},...,v_m$ seriam combinações lineares de $v_1,...,v_p$, o que é absurdo já que $v_1,...,v_m$ são LI. Portanto, $m \leq p$ e, ao fim de um número finito de operações, obteremos o conjunto de geradores $v_1,...,v_m,w_{m+1},...,w_p$.

Corolário 1.4.1 Se $w_1, ..., w_p$ geram V e n > p, então $v_1, ..., v_n$ são LD. Em particular, p+1 vetores que são combinações lineares de p vetores quaisquer são LD.

Proposição 1.5 Seja X um subconjunto não-vazio do espaço vetorial V sobre K. As propriedades sequintes são equivalentes:

- (a) X é LI e gera V
- (b) X é um conjunto de geradores mínimo
- (c) X é um conjunto LI máximo

Dem. $(a) \Rightarrow (b)$: Sejam $x \in X$, $Y = X - \{x\}$. Se x fosse combinação linear de vetores de Y, $x = \sum_{i=1}^{n} a_i y_i$, $y_i \in Y$, $a_i \in K$, $1 \le i \le n$, então X seria LD, contradição. Portanto, Y não gera V, o que mostra que X é mínimo.

 $(b)\Rightarrow (c)$: Se X fosse LD existiriam vetores $x,x_1,...,x_n$ de X e escalares $a,a_1,...,a_n$, não todos nulos, tais que $ax+a_1x_1+...+a_nx_n=0$. Sem perda de generalidade podemos supor $a\neq 0$, donde $x=b_1x_1+...+b_nx_n$ e, portanto, X não seria mínimo, contradição. Além disso, X é (um conjunto LI) máximo

pois, dado $v \in V$, temos $v = \sum_{i=1}^{m} a_i x_i$, $x_i \in X$, $a_i \in K$, $1 \le i \le m$, ou seja, $X \cup \{v\} \notin LD$.

 $(c) \Rightarrow (a)$: Seja $v \in V, v \notin X$, então $Y = X \cup \{v\}$ é LD e existem vetores $x_1, ..., x_n$ de X e escalares $a, a_1, ..., a_n$, não todos nulos, tais que

$$av + a_1x_1 + \dots + a_nx_n = 0.$$

Se fosse a = 0 resultaria X LD. Então $a \neq 0$ e $v = b_1x_1 + ... + b_nx_n$, isto é, X gera V (e é LI).

Definição 1.7 Seja V um espaço vetorial sobre K. $X \subset V$, $X \neq \emptyset$, é uma <u>base</u> de V se X possui uma das (e portanto as três) propriedades da proposição 1.5.

Se V tem uma base finita $X = \{v_1, ..., v_n\}$ dizemos que V tem <u>dimensão</u> finita; neste caso, se $v \in V$, então v se escreve de modo único na forma $v = a_1v_1 + ... + a_nv_n$, $a_i \in K$, $1 \le i \le n$.

Proposição 1.6 Sejam $\{v_1,...,v_n\}$ e $\{w_1,...,w_p\}$ bases do espaço vetorial V sobre K. Então:

Dem. Como $v_1, ..., v_n$ são LI e $w_1, ..., w_p$ geram V, temos $n \leq p$. Por simetria, $p \leq n$. Logo, n = p.

Definição 1.8 Sejam V um espaço vetorial sobre K e $\{v_1, ..., v_n\}$ uma base de V. Dizemos que \underline{n} é a <u>dimensão</u> de V <u>sobre</u> K. Por definição a dimensão de $V = \{0\}$ é zero.

Notação: $n = dim_K V$ ou n = dim V

Exemplo 1.3.7 K^n tem dimensão \underline{n} e $\{e_1, ..., e_n\}$ é uma base de K^n , chamada de base canônica.

Exemplo 1.3.8 $\{1, t, ..., t^{n-1}\}$ é base de P_n , donde dim $P_n = n$.

Exemplo 1.3.9 V = K[t] não tem dimensão finita sobre K.

Exemplo 1.3.10 $dim_{\mathbb{R}}\mathbb{C} = 2$ $e \{1, i\}$ \acute{e} uma base.

 $dim_{\mathbb{C}}\mathbb{C} = 1 \ e \ \{1\} \ \acute{e} \ uma \ base.$

Uma base de \mathbb{C}^n sobre \mathbb{R} é $\{e_1, ie_1, e_2, ie_2, ..., e_n, ie_n\}$.

Corolários:

- (1) Se $dim\ V = n$ e $v_1, ..., v_n$ são LI, então $\{v_1, ..., v_n\}$ é base de V (pois é um conjunto LI máximo).
- (2) Se W é subespaço de V e $dim\ W = dim\ V$, então W = V (pois toda base de W é também base de V).
- (3) Se $dim\ V = n$ e m > n então os vetores $v_1, ..., v_m$ são LD (pois o número máximo de vetores LI é n).

Proposição 1.7 Seja V um espaço vetorial de dimensão \underline{n} sobre K. Sejam $v_1,...,v_r,\ r< n$, vetores LI. Então existem $v_{r+1},...,v_n\in V$ tais que $\{v_1,...,v_r,v_{r+1},...,v_n\}$ seja base de V.

Dem. Como r < n, $\{v_1, ..., v_r\}$ não é um conjunto LI máximo; logo, existe $v_{r+1} \in V$ tal que $\{v_1, ..., v_r, v_{r+1}\}$ seja LI. Se r+1 < n podemos repetir o argumento. Após um número finito de repetições obteremos \underline{n} vetores LI, $v_1, ..., v_n$, ou seja $\{v_1, ..., v_n\}$ é base de V.

Exercícios

1. Mostre que $t^3 - t^2 + 1$, $q = t^2 - 1$ e $r = 2t^3 + t - 1$ são LI em P_4 .

2. Prove que $f, g, h \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ são LI, onde

$$f(t) = t, \ g(t) = e^t \ e \ h(t) = sen \ t.$$

- 3. Ache uma condição necessária e suficiente para que $u=(a,b)\in K^2$ e $v=(c,d)\in K^2$ sejam LD.
- 4. Seja W o subespaço de P_4 gerado por $u=t^3-t^2+1,\ v=t^2-1\ e\ w=t^3-3t^2+3.$ Ache uma base para W.
- 5. Existe alguma base de P_4 que não contenha nenhum polinômio de grau 2?
- 6. Seja $(v_1, ..., v_m)$ uma sequência de vetores não-nulos do espaço vetorial V. Prove que se nenhum deles é combinação linear dos <u>anteriores</u> então o conjunto $\{v_1, ..., v_m\}$ é LI.
- 7. Seja V um espaço vetorial de dimensão finita. Prove que todo conjunto de geradores de V contém uma base.

1.4 Espaços Produto e Quociente

Sejam V_1 e V_2 espaços vetoriais sobre K e $V=V_1\times V_2=\{(v_1,v_2);v_1\in V_1,\ v_2\in V_2\}$ seu produto cartesiano. Vamos introduzir em V uma estrutura vetorial, definindo:

$$(v_1, v_2) + (u_1, u_2) = (v_1 + u_1, v_2 + u_2)$$

 $a(v_1, v_2) = (av_1, av_2) , a \in K$

É imediato verificar que, com estas leis, $V=V_1\times V_2$ é um espaço vetorial sobre K. A definição do espaço produto se estende a um número finito qualquer de espaços vetoriais. Se $V_1,...,V_n$ são espaços vetoriais sobre K e $V=V_1\times...\times V_n$, definimos:

$$(v_1, ..., v_n) + (u_1, ..., u_n) = (v_1 + u_1, ..., v_n + u_n)$$

 $a(v_1, ..., v_n) = (av_1, ..., av_n) , a \in K$

Desta maneira V fica munido de uma estrutura vetorial sobre K.

Proposição 1.8 Se V_1 e V_2 têm dimensão finita sobre K, então

$$dim(V_1 \times V_2) = dim \ V_1 + dim \ V_2.$$

Dem. Sejam $\{v_1, ..., v_n\}$ e $\{u_1, ..., u_p\}$, respectivamente, bases de V_1 e V_2 . Vamos provar que $\{(v_1, 0), ..., (v_n, 0), (0, u_1), ..., (0, u_p)\}$ é base de $V_1 \times V_2$. Se $v \in V_1$ e $u \in V_2$, existem escalares a_i, b_j tais que $v = a_1v_1 + ... + a_nv_n$ e $u = b_1u_1 + ... + b_pu_p$. Então:

$$(v, u) = (a_1v_1 + \dots + a_nv_n, b_1u_1 + \dots + b_pu_p) =$$

$$= a_1(v_1, 0) + \dots + a_n(v_n, 0) + b_1(0, u_1) + \dots + b_n(0, u_p),$$

o que mostra que os vetores $(v_1,0),...,(0,u_p)$ geram $V_1\times V_2$.

Se tivermos $a_1(v_1,0) + ... + a_n(v_n,0) + b_1(0,u_1) + ... + b_p(0,u_p) = 0$ então $(a_1v_1 + ... + a_nv_n, b_1u_1 + ... + b_pu_p) = (0,0)$, donde $a_1v_1 + ... + a_nv_n = 0$ e $b_1u_1 + ... + b_pu_p = 0$, que implicam $a_1 = ... = a_n = 0$ e $b_1 = ... = b_p = 0$, ou seja, os vetores $(v_1,0),...,(0,u_p)$ são LI.

Definição 1.9 Sejam V um espaço vetorial sobre K e W um seu subespaço. Se $v \in V$ definimos v + W por:

$$v + W = \{v + w; w \in W\}$$

 $Observemos \ que \ v+W=u+W \Leftrightarrow v-u \in W.$

Seja $\frac{V}{W} = \{v + W; v \in V\}$. Para introduzir uma estrutura vetorial sobre $\frac{V}{W}$ definamos:

$$(v+W) + (u+W) = (v+u) + W$$
$$a(v+W) = av + W \quad , a \in K.$$

Essas leis estão bem definidas pois se $u+W=u_1+W$ e $v+W=v_1+W$, então

$$(v_1 + W) + (u_1 + W) = (u_1 + v_1) + W = (u + v) + W =$$

= $(v + W) + (u + W)$, $j\acute{a}$ que $(u_1 + v_1) - (u + v) =$
= $(u_1 - u) + (v_1 - v) \in W$.

Analogamente, se $a \in K$ e $v_1 + W = v + W$, temos:

$$a(v_1 + W) = av_1 + W = av + W = a(v + W)$$

pois $av_1 - av = a(v_1 - v) \in W$.

É pura rotina verificar que, com estas leis, $\frac{V}{W}$ se torna um espaço vetorial sobre K. O elemento neutro da adição em $\frac{V}{W}$ é a classe W=0+W. $\frac{V}{W}$ é chamado de espaço vetorial quociente de V por W.

Exemplo 1.4.1 Sejam $V = \mathbb{R}^2$ e W uma reta pela origem de \mathbb{R}^2 . Um elemento típico de $\frac{V}{W}$ é uma reta v + W paralela a W, e $\frac{V}{W}$ consiste de todas as retas paralelas a W em \mathbb{R}^2 .

Exercícios

- 1. Prove que se $v_1 + W, ..., v_n + W$ são LI em $\frac{V}{W}$, então $v_1, ..., v_n$ são LI em V.
- 2. Sejam V um espaço vetorial e W um subespaço. Para $u,v\in V$ definamos $u\approx v$ se $u-v\in W$. Prove que \approx é uma relação de equivalência em V e que o conjunto das classes de equivalência é o espaço quociente $\frac{V}{W}$.

1.5 Somas e Somas Diretas

Definição 1.10 Sejam V um espaço vetorial sobre K, U e W subespaços de V. A soma de U e W é definida por:

$$U+W=\{u+w,\ u\in U,\ w\in W\}.$$

É fácil ver que U+W é um subespaço de V. De fato, se $u_1,u_2\in U$, $w_1,w_2\in W$ e $a\in K$, temos:

- (a) $0 = 0 + 0 \in U + W$
- (b) $(u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2) \in U + W$
- (c) $a(u_1 + w_1) = au_1 + aw_1 \in U + W$

Dizemos que V é <u>soma direta</u> de U e W, e escrevemos $V=U\oplus W$, se todo elemento $v\in V$ <u>se escreve</u>, de <u>modo único</u>, na forma v=u+w, com $u\in U$ e $w\in W$.

Proposição 1.9 $V = U \oplus W$ se, e só se, V = U + W e $U \cap W = \{0\}$.

Dem. Se $V = U \oplus W$ é claro que V = U + W. Além disso, se $v \in U \cap W$ temos, de modo único, v = v + 0 = 0 + v, donde v = 0, isto é $U \cap W = \{0\}$.

Reciprocamente, seja $v \in V$ arbitrário. Como V = U + W temos v = u + w, com $u \in U$, $w \in W$. Se tivéssemos também $v = u_1 + w_1$, $u_1 \in U$, $w_1 \in W$, então teríamos $u - u_1 = w_1 - w \in U \cap W = \{0\}$, donde $u = u_1$ e $w = w_1$, ou seja, a representação de v na forma u + w é única. Logo, $V = U \oplus W$.

Proposição 1.10 Sejam V um espaço vetorial sobre K, de dimensão finita, e W um subespaço de V. Existe subespaço U de V tal que $V = U \oplus W$.

Dem. Seja $\{w_1, ..., w_r\}$ base de W. Sabemos que existem vetores $u_1, ..., u_s \in V$ tais que $\{w_1, ..., w_r, u_1, ..., u_s\}$ seja base de V. Seja U o subespaço gerado por $u_1, ..., u_s$. É claro que $V = U \oplus W$.

Obs.: Em geral existem muitos subespaços U de V tais que $V = U \oplus W$. Dizemos que um tal U é um subespaço suplementar de W.

Proposição 1.11 Sejam V um espaço vetorial de dimensão finita sobre K, U e W dois de seus subespaços. Se $V = U \oplus W$ então dim $V = \dim U + \dim W$.

Dem. Sejam $\{u_1,...,u_r\}$ e $\{w_1,...,w_s\}$ bases de U e W, respectivamente. Provemos que $\{u_1,...,u_r,w_1,...w_s\}$ é base de V. Se $v \in V$ então v = u + w, com $u \in U$ e $w \in W$, ou seja, $u = a_1u_1 + ... + a_ru_r$ e $w = b_1w_1 + ... + b_sw_s$. Portanto,

$$v = a_1u_1 + ... + a_ru_r + b_1w_1 + ... + b_sw_s$$

e os vetores $u_1, ..., u_r, w_1, ..., w_s$ geram V.

Seja $a_1u_1 + ... + a_ru_r + b_1w_1 + ... + b_sw_s = 0$. Então:

$$a_1u_1 + \dots + a_ru_r = -b_1w_1 - \dots - b_sw_s.$$

Como $U \cap W = \{0\}$ resulta $a_1u_1 + ... + a_ru_r = 0$ e $b_1w_1 + ... + b_sw_s = 0$, donde $a_1 = ... = a_r = 0$ e $b_1 = ... = b_s = 0$, ou seja, $u_1, ..., u_r, w_1, ..., w_s$ são LL.

Logo, $\{u_1,...,u_r,w_1,...,w_s\}$ é base de V e dim $V=r+s=\dim U+\dim W$.

O conceito de soma direta se estende à soma de vários subespaços $V_1,...,V_n$ do espaço vetorial V. Dizemos que V é a soma direta de $V_1,...,V_n$, e escrevemos $V=V_1\oplus V_2\oplus ...\oplus V_n$, se todo $v\in V$ se escreve, de modo único, na forma $v=v_1+v_2+...+v_n$, onde $v_i\in V_i,\ i=1,2,...,n$.

Proposição 1.12 Sejam V um espaço vetorial de dimensão finita sobre K, $V_1, ..., V_r$ subespaços de V e, para cada i = 1, ..., r, $\{v_{i1}, ..., v_{in_i}\}$ base de V_i . $V = V_1 \oplus ... \oplus V_r$ se, e só se, $B = \{v_{11}, ..., v_{1n_1}, ..., v_{r1}, v_{r2}, ..., v_{rn_r}\}$ é base de V.

Dem. Se $V = V_1 \oplus ... \oplus V_r$ então todo $v \in V$ se escreve de modo único na forma $v = v_1 + ... + v_r$, onde $v_i \in V_i$, $1 \le i \le r$. Mas

$$v_i = \sum_{k=1}^{n_i} a_{ki} v_{ik}, \ 1 \le i \le r.$$

Logo:

$$v = \sum_{i=1}^{r} \sum_{k=1}^{n_i} a_{ki} v_{ik} \ e \ B \ gera \ V.$$

Suponhamos que $\sum_{i=1}^{r} \sum_{k=1}^{n_i} a_{ki} v_{ik} = 0$. Pondo $v_i = \sum_{k=1}^{n_i} a_{ki} v_{ik}$, temos que $v_i \in V_i$, i = 1, ..., r. Então: $v_1 + ... + v_r = 0$ e, como a soma é direta, temos $v_i = 0$, isto é, $\sum_{k=1}^{n_i} a_{ki} v_{ik} = 0$, donde $a_{ki} = 0$ pois $v_{i1}, ..., v_{in_i}$ são LI. Logo, B é LI e, portanto, B é base de V.

Reciprocamente, se B é base de V, então $v = \sum_{i=1}^r \sum_{k=1}^{n_i} a_{ki} v_{ik} = \sum_{i=1}^r v_i$, onde $v_i = \sum_{k=1}^{n_i} a_{ki} v_{ik}$ pertence a V_i , $i \leq i \leq r$. Logo: $V = V_1 + ... + V_r$. A soma

é direta pois se $v_1 + ... + v_r = 0$, $v_i \in V_i$, então $\sum_{i=1}^r \sum_{k=1}^{n_i} a_{ki} v_{ik} = 0$, donde $a_{ki} = 0$ e, portanto, $v_i = 0$, $1 \le i \le r$.

Exercícios

- 1. Sejam U, V, W os seguintes subespaços de \mathbb{R}^3 : $U = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}; V = \{(x, y, z) \in \mathbb{R}^3; x = z\}$ e $W = \{(0, 0, z) \in \mathbb{R}^3; z \in \mathbb{R}\}$. Mostre que $\mathbb{R}^3 = U + V$, $\mathbb{R}^3 = U + W$, $\mathbb{R}^3 = V + W$. Quando é que a soma é direta?
- 2. Sejam $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$, U o subespaço das funções pares e W o das ímpares. Mostre que $V = U \oplus W$.
- 3. Sejam U e W subespaços de V. Se

$$V = U + W \ e \ dim \ V = dim \ U + dim \ W < \infty$$

prove que $V = U \oplus W$.

4. Sejam V um espaço vetorial de dimensão finita sobre K, U e W subespaços de V. Prove:

$$dim(U+W) \le dim\ U + dim\ W$$

1.6 Exercícios do Capítulo 1

- 1. Determine uma base para o subespaço de \mathbb{R}^4 descrito por $x=(x_1,x_2,x_3,x_4)$ tal que $x_1=x_2-3x_3,\ x_3=2x_4$. Complete a base obtida a uma base do \mathbb{R}^4 .
- 2. Em $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ considere $f_k(t) = e^{r_k t}$ onde $r_k \in \mathbb{R}, \ 1 \le k \le n$. Prove que $f_1, ..., f_n$ são LI se, e só se, $r_1 \ne r_2 \ne ... \ne r_n$.
- 3. Sejam $v_1, ..., v_n$ LI e $u = b_1 v_1 + ... + b_j v_j + ... + b_n v_n$ com $b_j \neq 0$. Prove que $v_1, ..., v_{j-1}, u, v_{j+1}, ..., v_n$ são LI.
- 4. Seja W um subespaço do espaço vetorial V. Suponha que $v_1, ..., v_n \in V$ sejam LI e gerem um subespaço U tal que $U \cap W = \{0\}$. Prove que os vetores $v_1 + W, ..., v_n + W$ são LI em $\frac{V}{W}$.

5. Sejam V um espaço vetorial, U e W seus subespaços. Se U e W têm dimensões finitas, prove que:

$$dim\ U + dim\ W = dim(U + W) + dim(U \cap W).$$

- 6. Sejam V um espaço vetorial real e $u, v \in V$. O <u>segmento de reta</u> de extremidades \underline{u} e \underline{v} é o conjunto $[u, v] = \{(1 t)u + tv; 0 \le t \le 1\}$. $X \subset V$ é convexo se $u, v \in X \Rightarrow [u, v] \subset X$. Prove:
 - (a) Se $X, Y \subset V$ são convexos, então $X \cap Y$ é convexo.
 - (b) Se $X \subset V$ é convexo e r, s, t são reais não negativos tais que r + s + t = 1, então $u, v, w \in X \Rightarrow ru + sv + tw \in X$.
 - (c) Se $X \subset V$, a <u>envoltória convexa</u> de X é o conjunto C(X) das combinações $t_1x_1 + ... + t_nx_n$, onde $t_i \geq 0$, $\sum_{i=1}^n t_i = 1$, $n \in \mathbb{N}$, chamadas combinações convexas dos elementos de X. Prove que C(X) é convexo, que $X \subset C(X)$ e que se C' é convexo e $X \subset C'$ então $C(X) \subset C'$.
- 7. Seja V um espaço vetorial real. $A \subset V$ é uma <u>variedade afim</u> se $u, v \in A$, $t \in \mathbb{R} \Rightarrow (1-t)u + tv \in A$. Prove:
 - (a) Se $A, B \subset V$ são variedades afins, então $A \cap B$ é variedade afim.
 - (b) Se $A \neq \emptyset$ é uma variedade afim em V, existe um único subespaço vetorial $W \subset V$ tal que para todo $x \in A$ tem-se

$$A = x + W = \{x + w; w \in W\}.$$

8. Dado o conjunto finito $X = \{a_1, ..., a_n\}$, ache uma base para o espaço vetorial real $\mathcal{F}(X, \mathbb{R}) = \{f : X \to \mathbb{R}\}$.

Capítulo 2

Aplicações Lineares

2.1 Definições e Exemplos

Definição 2.1 Sejam V e W espaços vetoriais sobre K. Dizemos que uma aplicação $T:V \to W$ é linear se:

$$T(u+v) = T(u) + T(v)$$

$$T(av) = a \cdot T(u),$$

quaisquer que sejam $u, v \in V$ e $a \in K$.

Exemplo 2.1.1 A aplicação identidade $I: V \to V$, I(v) = v é linear, bem como a aplicação zero, $0: V \to V$, 0(v) = 0 para todo $v \in V$.

Exemplo 2.1.2 Seja V = K[t] o espaço vetorial dos polinômios na variável \underline{t} com coeficientes em K. A aplicação derivada $D: V \to V$, definida por $D(a_0 + a_1t + a_2t^2 + ... + a_mt^m) = a_1 + 2a_2t + ... + ma_mt^{m-1}$, é uma aplicação linear.

Exemplo 2.1.3 Se V_1 e V_2 são espaços vetoriais sobre K e $V = V_1 \times V_2$, as aplicações $p_1: V \to V_1$ e $p_2: V \to V_2$ definidas por $p_1(v_1, v_2) = v_1$ e $p_2(v_1, v_2) = v_2$ são lineares.

Exemplo 2.1.4 Seja W um subespaço do espaço vetorial V. A aplicação $\pi: V \to \frac{V}{W}, \ \pi(v) = v + W, \ \'e \ linear.$

Exemplo 2.1.5 Seja $V = C^0([0,1], \mathbb{R})$ o espaço vetorial real das funções contínuas $f: [0,1] \to \mathbb{R}$. A aplicação $f \in V \longmapsto T(f) \in V$, onde

$$(Tf)(x) = \int_0^x f(t)dt, \ x \in [0, 1],$$

é linear. É também linear a função $f \in V \longmapsto \int_0^1 f(t)dt \in \mathbb{R}$.

Proposição 2.1 Sejam V e W espaços vetoriais sobre K e $(v_1, v_2, ..., v_n)$ uma base ordenada de V. Dada a sequência $(w_1, ..., w_n)$ de vetores de W, existe uma e uma única aplicação linear $T: V \to W$ tal que $T(v_i) = w_i$, $1 \le i \le n$.

Dem. Seja $v \in V$. Então v se escreve, de modo único, como $v = a_1v_1 + ... + a_nv_n$. Definamos $T: V \to W$ por $T(v) = a_1w_1 + ... + a_nw_n$. É claro que $T(v_i) = w_i$, $1 \le i \le n$. Mostremos que T é linear. Se $u = b_1v_1 + ... + b_nv_n$, então:

$$T(u+v) = T[(a_1+b_1)v_1 + \dots + (a_n+b_n)v_n] = (a_1+b_1)w_1 + \dots + (a_n+b_n)w_n =$$
$$= (a_1w_1 + \dots + a_nw_n) + b_1w_1 + \dots + b_nw_n = T(v) + T(u).$$

Se $c \in K$, temos

$$T(cv) = T(ca_1v_1 + \dots + ca_nv_n) = ca_1w_1 + \dots + ca_nw_n = c(a_1w_1 + \dots + a_nw_n) = c \cdot T(v).$$

Logo, T é linear. Se $L: V \to W$ é aplicação linear tal que

$$L(v_i) = w_i, \ 1 < i < n,$$

então $L(a_1v_1 + ... + a_nv_n) = a_1w_1 + ... + a_nw_n = T(v)$ para todo $v \in V$, ou seja, T = L, o que mostra a unicidade de T.

Proposição 2.2 Seja $T: V \to W$ linear. Então:

- (a) T(0) = 0 , T(-v) = -v.
- (b) Se $U \subset V$ é subespaço, então $T(U) \subset W$ é subespaço.
- (c) Se $U' \subset W$ é subespaço, então $T^{-1}(U') \subset V$ é subespaço.

Dem. (a) Como T é linear, T(av) = aT(v) para todo $a \in K$ e todo $v \in V$. Fazendo a = 0, vem:

$$T(0 \cdot v) = 0 \cdot T(v), \ donde: \ T(0) = 0.$$

Fazendo a = -1, vem:

$$T(-v) = -T(v)$$

(b) $T(U) \subset W$ é subespaço pois:

- 1. $0 = T(0) \in T(U)$
- 2. Se $T(u), T(v) \in T(U)$ então $T(u) + T(v) = T(u+v) \in T(U)$
- 3. Se $a \in K$ e $T(v) \in T(U)$ então $aT(v) = T(av) \in T(U)$
- (c) $T^{-1}(U') \subset V$ é subespaço pois:
 - 1. $0 \in T^{-1}(U')$ já que $T(0) = 0 \in U'$
 - 2. Se $u, v \in T^{-1}(U')$ então $T(u), T(v) \in U'$, donde $T(u) + T(v) = T(u + v) \in U'$, donde $u + v \in T^{-1}(U')$
 - 3. Se $a \in K$ e $v \in T^{-1}(U')$ então $aT(v) = T(av) \in U'$ e, portanto, $av \in T^{-1}(U')$.

Definição 2.2 Seja $T: V \to W$ linear. O subespaço $T(V) \subset W$ é chamado de <u>imagem</u> de T e anotado Im T. O subespaço $T^{-1}(0) \subset V$ é chamado de núcleo de T e anotado $\mathcal{N}(T)$. Assim,

$$Im T = \{T(v) \in W; \ v \in V\}$$

$$\mathcal{N}(T) = \{ v \in V; \ T(v) = 0 \}$$

Obs.: Por definição T é <u>sobrejetora</u> se Im T = W e T é <u>injetora</u> se $u \neq v$ implica $T(u) \neq T(v)$.

Proposição 2.3 Seja $T: V \to W$ linear. São equivalentes:

- $(a) \mathcal{N}(T) = \{0\}$
- (b) T é injetora
- (c) T transforma cada conjunto LI de vetores de V em conjunto LI de vetores de W.

Dem. (a) \Leftrightarrow (b): $\mathcal{N}(T) = \{0\} \Leftrightarrow T(w) = 0$ implica $w = 0 \Leftrightarrow T(u - v) = 0$ implica $u - v = 0 \Leftrightarrow T(u) = T(v)$ implica $u = v \Leftrightarrow T$ é injetora.

- (b) \Rightarrow (c): Seja $X \subset V$ um conjunto LI e seja Y = T(X). Vamos provar que $Y \notin LI$. De fato, se $a_1y_1 + ... + a_ry_r = 0$ onde $r \in \mathbb{N}$ e $y_i = T(x_i)$, $1 \leq i \leq r$, $x_i \in X$, $a_i \in K$, então $a_1T(x_1) + ... + a_rT(x_r) = 0$ $\therefore T(a_1x_1 + ... + a_rx_r) = 0$, donde $a_1x_1 + ... + a_rx_r = 0$ (pois $\mathcal{N}(T) = \{0\}$), o que implica $a_1 = ... = a_r = 0$ (pois $X \notin LI$), resultando Y ser LI.
- $(c) \Rightarrow (a)$: Todo vetor $v \neq 0$ é LI, donde T(v) é LI, ou seja, $T(v) \neq 0$. Portanto: $\mathcal{N}(T) = \{0\}$.

Obs.: Se $T: V \to W$ é linear e $v_1, ..., v_n$ geram V, então é claro que

 $T(v_1),...,T(v_n)$ geram $Im\ T$ pois todo $w\in Im\ T$ é da forma w=T(v) para algum $v\in V$ e $v=a_1v_1+...+a_nv_n$. Resulta que, se V tem dimensão finita, então dim $Im\ T\leq dim\ V$.

Definição 2.3 Seja $T: V \to W$ linear, V de dimensão finita. O <u>posto</u> de T é a dimensão de Im T:

$$r = posto(T) = dim \ Im \ T, \ donde \ r < dim \ V.$$

Proposição 2.4 Seja $T: V \to W$ linear. São equivalentes:

- (a) T é sobrejetora
- (b) T transforma conjunto de geradores de V em conjunto de geradores de W.

Dem. $(a) \Rightarrow (b)$:

Sejam X um conjunto de geradores de V e Y = T(X). Vamos provar que Y gera W. Se $w \in W$ e T é sobrejetora, existe $v \in V$ tal que w = T(v).

Mas
$$v = \sum_{i=1}^{m} a_i x_i, \ a_i \in K, \ x_i \in X. \ Logo, \ T(v) = \sum_{i=1}^{m} a_i T(x_i) = \sum_{i=1}^{m} a_i y_i \ com y_i \in Y, \ ou \ seja, \ Y \ gera \ W.$$

$$(b) \Rightarrow (a)$$
:

Sejam X um conjunto de geradores de V e Y = T(X). Então Y gera W.

Se
$$w \in W$$
, temos $w = \sum_{i=1}^{p} a_i y_i$, $a_i \in K$, $y_i \in Y$, $y_i = T(x_i)$, $x_i \in X$. Logo,

$$w = \sum_{i=1}^{p} a_i T(x_i) = T\left(\sum_{i=1}^{p} a_i x_i\right) = T(v) \ com \ v \in V, \ isto \ \acute{e}, \ T \ \acute{e} \ sobrejetora.$$

Exemplo 2.1.6 Seja $T: \mathbb{C}^3 \to \mathbb{C}^3$, $T(x_1, x_2, x_3) = (x_1 - x_2, 2x_1 + x_2 + 3x_3, -x_1 - 2x_2 - 3x_3)$. $T \in linear \ e \ Im \ T \in gerada \ por \ T(1, 0, 0) = (1, 2, -1) = w_1, T(0, 1, 0) = (-1, 1, -2) = w_2 \ e \ T(0, 0, 1) = (0, 3, -3) = w_3$. É fácil ver que $w_1 \ e \ w_2 \ são \ LI \ e \ que \ w_3 = w_1 + w_2$. Portanto, $\{w_1, w_2\} \in base \ de \ Im \ T \ e \ posto(T) = r = 2$. O núcleo de $T \in definido \ pelas \ equações$:

$$x_1 - x_2 = 0$$
$$2x_1 + x_2 + 3x_3 = 0$$
$$-x_1 - 2x_2 - 3x_3 = 0$$

A solução deste sistema é dada por $x_1 = x_2 = -x_3$. Logo: $\mathcal{N}(T) = \{(-t, -t, t) \in \mathbb{C}^3; t \in \mathbb{C}\}$ e, por exemplo, (-1, -1, 1) é base de $\mathcal{N}(T)$.

Observemos que dim $\mathbb{C}^3 = 3 = \dim \mathcal{N}(T) + \dim \operatorname{Im} T$, o que ilustra o teorema seguinte.

Proposição 2.5 (Teorema do núcleo e da imagem)

Sejam V, W espaços vetoriais sobre K e $T:V\to W$ linear. Se V tem dimensão finita, então:

 $dim\ V = dim\ \mathcal{N}(T) + dim\ Im\ T.$

Dem. Seja $\{v_1, ..., v_s\}$ base de $\mathcal{N}(T)$ e sejam $v_{s+1}, ..., v_n \in V$ tais que $\{v_1, ..., v_s, v_{s+1}, ..., v_n\}$ seja base de V. Se $w = T(v) \in Im \ T \ e \ v = a_1v_1 + ... + a_nv_n$, então $w = a_{s+1}T(v_{s+1}) + ... + a_nT(v_n)$ já que $T(v_1) = ... = T(v_s) = 0$; logo $T(v_{s+1}), ..., T(v_n)$ geram $Im \ T$.

Além disso, esses vetores são LI; de fato, se $b_{s+1}T(v_{s+1})+....+b_nT(v_n)=0$, então $T(b_{s+1}v_{s+1}+...+b_nv_n)=0$, ou seja, $b_{s+1}v_{s+1}+...+b_nv_n\in\mathcal{N}(T)$. Portanto, podemos escrever $b_{s+1}v_{s+1}+...+b_nv_n=b_1v_1+...+b_sv_s$.

Como $v_1, ..., v_s, v_{s+1}, ..., v_n$ são LI, resulta $b_{s+1} = ... = b_n = 0$ (e também $b_1 = ... = b_s = 0$). Resulta que $\{T(v_{s+1}), ..., T(v_n)\}$ é base de Im T e dim Im $T = n - s = \dim V - \dim \mathcal{N}(T)$, donde a tese.

Corolário 2.5.1 Sejam $T:V\to W$ linear, dim V=n, dim W=p. Então:

- (a) $T \notin injetora \Leftrightarrow r = posto(T) = n$. Neste caso, $dim\ V \leq dim\ W$.
- (b) $T \in sobrejetora \Leftrightarrow r = posto(T) = p$. Neste caso, $dim \ V \ge dim \ W$.

Corolário 2.5.2 Seja $T:V\to W$ linear, com dim $V=\dim W<\infty$. São equivalentes:

- (a) T é bijetora;
- (b) T é injetora;
- (c) T é sobrejetora;
- (d) se $\{v_1,...,v_n\}$ é base de V, então $\{Tv_1,...,Tv_n\}$ é base de W;
- (e) existe base $\{v_1, ..., v_n\}$ de V tal que $\{Tv_1, ..., Tv_n\}$ seja base de W.

Dem. $(a) \Rightarrow (b)$: \acute{E} $\acute{o}bvio$.

- $(b)\Rightarrow (c)\colon Como\ T\ \'e\ injetora,\ temos\ posto(T)=dim\ V=dim\ W=n,$ donde $Im\ T=W$.
- $(c) \Rightarrow (d)$: $Tv_1, ..., Tv_n$ geram $Im\ T = W$. Como $dim\ W = n$, resulta que $\{Tv_1, ..., Tv_n\}$ é base de W.
 - $(d) \Rightarrow (e)$: É óbvio.
- $(e) \Rightarrow (a)$: Seja $\{v_1,...,v_n\}$ base de V tal que $\{Tv_1,...,Tv_n\}$ seja base de W. Como $Tv_1,...,Tv_n \in Im\ T$ e geram W resulta que $W \subset Im\ T$, donde $Im\ T=W$, ou seja, T é sobrejetora.

Se $v = a_1v_1 + ... + a_nv_n$ é tal que T(v) = 0, então

$$a_1T(v_1) + \dots + a_nT(v_n) = 0,$$

donde $a_1 = ... = a_n = 0$ pois $Tv_1, ..., Tv_n$ são LI. Logo, v = 0 e T é <u>injetora</u>. Portanto, T é bijetora.

Exercícios

- 1. Seja $T:V\to W$ linear. Prove que são equivalentes:
 - (a) T é injetora;
 - (b) para toda decomposição $V = V_1 \oplus V_2$ tem-se $T(V) = T(V_1) \oplus T(V_2)$
- 2. Ache $T: \mathbb{R}^2 \to \mathbb{R}$ linear tal que T(1,1) = -1 e T(1,0) = 3.
- 3. Seja $T:V\to W$ linear. Prove que se $T(v_1),...,T(v_n)$ são LI, então $v_1,...,v_n$ são LI.
- 4. Ache $T:\mathbb{R}^3\to\mathbb{R}^4$ linear cuja imagem seja gerada por (1,0,2,-4) e (0,2,-1,3).
- 5. Seja $T:V\to V$ linear. Prove que se $Tv_1,...,Tv_n$ geram V, então $v_1,...,v_n$ geram V.
- 6. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(x,y)=(ax+by,cx+dy), com $ad-bc \neq 0.$ Prove:
 - (a) $v \neq 0 \Rightarrow Tv \neq 0$.
 - (b) Toda reta $l \subset \mathbb{R}^2$ é transformada por T numa reta.
 - (c) T transforma retas paralelas em retas paralelas.

2.2 Composição e Inversão de Aplicações Lineares

Proposição 2.6 Sejam U, V, W espaços vetoriais sobre o corpo K e T: $U \to V$, $L: V \to W$ aplicações lineares. Então a composta $L \circ T: U \to W$ é linear.

Dem. Se $u, v \in U$, então

$$(L \circ T)(u+v) = L(T(u+v)) = L(Tu+Tv) = L \circ T(u) + L \circ T(v).$$

Se $a \in K$ e $u \in U$, então

$$(L \circ T)(au) = L(T(au)) = L(aT(u)) = aL(T(u)) = a(L \circ T)(u).$$

Resulta que $L \circ T$ é linear.

Proposição 2.7 Seja $T: V \to W$ linear bijetora. Então a aplicação inversa $T^{-1}: W \to V$ também é linear (e bijetora).

Dem. Sejam $w_1 = T(v_1)$ e $w_2 = T(v_2)$ elementos arbitrários de W. Então:

$$T^{-1}(w_1+w_2) = T^{-1}(Tv_1+Tv_2) = T^{-1}(T(v_1+v_2)) = v_1+v_2 = T^{-1}(w_1)+T^{-1}(w_2).$$

Se $a \in K$ e $w = T(v) \in W$, então: $T^{-1}(aw) = T^{-1}(aT(v)) = T^{-1}(T(av)) = av = aT^{-1}(w)$.

Resulta que $T^{-1}: W \to V$ é linear.

Definição 2.4 Uma aplicação <u>linear</u> $T: V \to W$ é um <u>isomorfismo</u> de V sobre W se T é <u>bijetora</u>. Se, além disso, V = W então diremos que T é um <u>automorfismo</u> de V. Se existe um isomorfismo de V sobre W dizemos que V e W são isomorfos.

Corolário 2.7.1 A composta de dois isomorfismos é um isomorfismo. A inversa de um isomorfismo é um isomorfismo.

Obs.: Representamos por $\mathcal{L}(V,W)$ o conjunto das aplicações lineares de V em W. No caso em que V=W é usual chamar uma aplicação linear $T:V\to V$ de <u>operador linear</u> em V e representar $\mathcal{L}(V,V)$ simplesmente por $\mathcal{L}(V)$ e por GL(V) o conjunto dos automorfismos de V.

Proposição 2.8 Seja V um espaço vetorial sobre o corpo K. Se $T, L \in GL(V)$ então $T \circ L \in GL(V)$ e $(T \circ L)^{-1} = L^{-1} \circ T^{-1}$.

Dem. Já vimos que a composta de automorfismos é automorfismo. Basta então verificar que

$$(T\circ L)\circ (L^{-1}\circ T^{-1})=(L^{-1}\circ T^{-1})\circ (T\circ L)=I,$$

operador identidade de V, o que é imediato.

Proposição 2.9 Se $T:V\to W$ é <u>linear sobrejetora</u>, então W é isomorfo ao espaço quociente $\frac{V}{\mathcal{N}(T)}$.

Dem. Seja $\pi:V\to \frac{V}{\mathcal{N}(T)}$ a aplicação quociente, isto é, $\pi(v)=v+\mathcal{N}(T),\ v\in V.$ É imediato que π é linear.

 $\mathcal{N}(T),\ v\in V.\ \acute{E}\ imediato\ que\ \pi\ \acute{e}\ linear.$ $Seja\ L: \dfrac{V}{\mathcal{N}(T)} \to W\ definida\ por\ L(v+\mathcal{N}(T)) = T(v),\ ou\ seja,\ L\circ\pi = T$ (dizemos então que o diagrama abaixo comuta). Mostremos que L está \underline{bem} definida e \acute{e} injetora:

$$L(u + \mathcal{N}(T)) = L(v + \mathcal{N}(T)) \Leftrightarrow T(u) = T(v) \Leftrightarrow T(u - v) = 0 \Leftrightarrow$$
$$\Leftrightarrow u - v \in \mathcal{N}(T) \Leftrightarrow u + \mathcal{N}(T) = v + \mathcal{N}(T).$$

Além disso, L é sobrejetora pois, dado $w \in W$, existe $v \in V$ tal que T(v) = w (já que T é sobrejetora) e, portanto, $L(v + \mathcal{N}(T)) = w$. Logo, L é bijetora. Resta provar que L é linear. Sejam $u, v \in V$, então: $L(u + \mathcal{N}(T) + v + \mathcal{N}(T)) = L(u + v + \mathcal{N}(T)) = T(u + v) = T(u) + T(v) = L(u + \mathcal{N}(T)) + L(v + \mathcal{N}(T))$. Se $a \in K$ e $v \in V$, então: $L(a(v + \mathcal{N}(T))) = (av + \mathcal{N}(T)) = T(av) = aT(v) = aL(v + \mathcal{N}(T))$. Resulta que $L : \frac{V}{\mathcal{N}(T)} \to W$ é um isomorfismo.

Corolário 2.9.1 Sejam V um espaço vetorial sobre K, U e W subespaços de V tais que $V=U\oplus W$. Então, $\frac{V}{U}$ é isomorfo a W.

Dem. Seja $p: V \to W$ definida por p(v) = w, onde v = u + w com $u \in U$ e

 $w \in W$. É imediato que p é linear sobrejetora e

$$\mathcal{N}(p) = \{ v \in V; \ p(v) = 0 \} = U.$$

Portanto, pela proposição 2.9, temos que $\frac{V}{U}$ é isomorfo a W.

Corolário 2.9.2 Sejam $T:V\to W$ linear e $U\subset V$ subespaço tal que $V=\mathcal{N}(T)\oplus U$. Então U é isomorfo a $Im\ T$.

Dem. Decorre da proposiçã 2.9 que $\frac{V}{\mathcal{N}(T)}$ é isomorfo a $Im\ T$. Pelo corolário 2.9.1 temos que $\frac{V}{\mathcal{N}(T)}$ é isomorfo a U. Resulta que U e $Im\ T$ são isomorfos.

Proposição 2.10 Sejam U e W subespaços do espaço vetorial V de dimensão finita sobre o corpo K. Então:

$$dim\ U + dim\ W = dim\ (U + W) + dim\ (U \cap W).$$

Dem. Seja $T: U \times W \to V$, T(u, w) = u - w. É imediato que T é linear. Além disso,

$$Im \ T = \{v = u - w; \ u \in U, \ w \in W\} = U + W$$

$$\mathcal{N}(T) = \{(u,w) \in U \times W; \ u = w\} = \{(u,u) \in U \times W, \ u \in U \cap W\}.$$

É fácil ver que a aplicação $u \in U \cap W \longmapsto (u, u) \in \mathcal{N}(T)$ é um isomorfismo. Portanto, dim $\mathcal{N}(T) = \dim (U \cap W)$. Pela proposição 2.5, temos: $\dim (U \times W) = \dim (U + W) + \dim (U \cap W)$, ou seja,

$$dim \ U + dim \ W = dim \ (U + W) + dim(U \cap W).$$

Proposição 2.11 Todo espaço vetorial de dimensão n sobre K é isomorfo a K^n .

Dem. Seja V um espaço vetorial de dimensão n sobre K. Seja $\{v_1, ..., v_n\}$ uma base de V. Se $v \in V$, então $v = a_1v_1 + ... + a_nv_n$, onde $a_i \in K$, $1 \le i \le n$. Seja $T: V \to K^n$ definida por $T(v) = T(a_1v_1 + ... + a_nv_n) = (a_1, ..., a_n) \in K^n$. É fácil verificar que T é um isomorfismo.

Corolário 2.11.1 Todos os espaços vetoriais de mesma dimensão finita n sobre K são isomorfos entre si.

Exemplo 2.2.1 Seja $T: V \to V$ linear tal que $T^3 = 0$. Prove que I - T é um automorfismo de V.

A igualdade formal $\frac{1}{1-x}=1+x+x^2+x^3+\dots$ nos sugere que $(I-T)^{-1}=I+T+T^2+T^3+\dots=I+T+T^2$ já que $T^3=0$, donde $T^n=0$ para $n\geq 3$. De fato, temos:

$$(I-T)(I+T+T^2) = I+T+T^2-T-T^2-T^3 = I$$

 $(I+T+T^2)(I-T) = I-T+T-T^2+T^2-T^3 = I$

Portanto, I-T é um automorfismo de V e $(I-T)^{-1} = I + T + T^2$.

Exemplo 2.2.2 U e W sendo dois subespaços suplementares do espaço vetorial V, isto \acute{e} , $V = U \oplus W$, todo $v \in V$ se escreve, de <u>modo único</u>, na forma v = u + w, onde $u \in U$ e $w \in W$. Consideremos $T : U \times W \to U \oplus W$ definida por T(u, w) = u + w. É fácil ver que T \acute{e} <u>linear bijetora</u>, ou seja, T \acute{e} um isomorfismo de $U \times W$ sobre $U \oplus W$.

Reciprocamente, dados dois espaços vetoriais U e W sobre K, para todo v = (u, w) de $V = U \times W$ temos, de modo único: (u, w) = (u, 0) + (0, w). Se U' e W' são, respectivamente, os <u>subespaços</u> de V descritos por (u, 0) e (0, w), então é claro que U' é isomorfo a U e que W' é isomorfo a W. Então, $V = U \times W = U' \oplus W'$. Se identificarmos U com U' bem como W com W', então poderemos considerar U e W como subespaços suplementares de $U \times W$, o que significa identificar os dois espaços isomorfos $U \times W$ e $U \oplus W$. Nestas condições, a aplicação de $U \oplus W$ sobre U dada por $u + w \longmapsto u$, se identifica com $p_1 : U \times W \to U$, $p_1(u, w) = u$, e é a <u>projeção</u> de $V = U \oplus W$ sobre o subespaço U, <u>paralelamente</u> ao subespaço suplementar W. Analogamente, a aplicação $u + w \longmapsto w$ se identifica com a projeção $p_2 : U \times W \to W$, $p_2(u, w) = w$ de V sobre o subespaço W paralelamente a U.

Em particular, se $V = U \oplus W$ tem dimensão finita, então: dim $(U \times W) = \dim (U \oplus W) = \dim U + \dim W$, já visto anteriormente.

Exercícios

- 1. Sejam $T, L \in \mathcal{L}(V)$ tais que $L \circ T = T \circ L$. Prove:
 - (a) $L(\mathcal{N}(T) \subset \mathcal{N}(T);$
 - (b) $L(Im\ T) \subset Im\ T$.

- 2. Sejam $L:V\to U,\ T:U\to W$ lineares. Se U, V e W têm dimensão finita, prove que:
 - (a) $posto(T \circ L) \leq posto(T)$;
 - (b) $posto(T \circ L) \leq posto(L)$.
- 3. Sejam V um espaço vetorial de <u>dimensão finita</u> sobre K, L e T elementos de $\mathcal{L}(V)$ tais que $L \circ T = I$. Mostre que L é invertível e que $T = L^{-1}$.
- 4. Sejam $T:V\to U$ linear e $W\subset V$ subespaço. Seja $T|_W=L:W\to U$ a restrição de T a W, isto é, T(w)=L(w) para todo $w\in W$. Prove:
 - (a) L é linear;
 - (b) $\mathcal{N}(L) = \mathcal{N}(T) \cap W$;
 - (c) $Im \ L = T(W)$.
- 5. Seja $V = P_{n+1}$ o espaço vetorial dos polinômios de grau menor ou igual a n, com coeficientes reais. Ache um suplementar do subespaço W de V formado pelos polinômios p(t) tais que p(1) = 0 e prove que $\frac{V}{W}$ é isomorfo a \mathbb{R} .

2.3 Álgebra das Aplicações Lineares

Se V e W são espaços vetoriais sobre o corpo K, vimos que $\mathcal{L}(V, W)$ representa o conjunto das aplicações lineares de V em W. Se $L, T \in \mathcal{L}(V, W)$ e $a \in K$, definimos L + T e aT, aplicações de V em W, por:

$$(L+T)(v) = L(v) + T(v)$$
$$(aT)(v) = aT(v),$$

para todo $v \in V$. É fácil verificar que L+T e aT são lineares, isto é, elementos de $\mathcal{L}(V,W)$. Assim, no conjunto $\mathcal{L}(V,W)$ temos duas leis, $(L,T) \longmapsto L+T$ e $(a,T) \longmapsto aT$, e deixamos aos cuidados do leitor provar que são satisfeitos os oito postulados que definem uma estrutura vetorial. Lembramos apenas que a aplicação linear zero é a aplicação 0(v)=0 para todo $v \in V$ e que a oposta de $T \in \mathcal{L}(V,W)$ é a aplicação (-T) tal que (-T)(v)=-T(v) para todo $v \in V$. Concluímos que $\mathcal{L}(V,W)$, munido das leis de adição $(L,T) \longmapsto L+T$ e de multiplicação por escalar $(a,T) \longmapsto aT$, é um espaço vetorial sobre K.

Estrutura de Anel de $\mathcal{L}(V)$

Se $L, T \in \mathcal{L}(V)$, vimos que L + T e $L \circ T$ são elementos de $\mathcal{L}(V)$. Assim, $\mathcal{L}(V)$ está munido de duas leis, $(L, T) \longmapsto L + T$ e $(L, T) \longmapsto L \circ T$, que

tornam $\mathcal{L}(V)$ um <u>anel com identidade</u>, isto é: (a) para a adição $\overline{\mathcal{L}(V)}$ é um grupo abeliano:

- 1. L + T = T + L;
- 2. (L+T) + S = L + (T+S);
- 3. existe $0 \in \mathcal{L}(V)$ tal que T + 0 = T;
- 4. dado $T \in \mathcal{L}(V)$ existe $(-T) \in \mathcal{L}(V)$ tal que T + (-T) = 0, quaisquer que sejam $L, T, S \in \mathcal{L}(V)$.
- (b) o "produto" $(L,T) \longmapsto L \circ T$ tem as propried ades:
 - 1. $(L \circ T) \circ S = L \circ (T \circ S);$
 - 2. existe $I \in \mathcal{L}(V)$ tal que $I \circ T = T \circ I = T$;
 - 3. $(L+T)\circ S=L\circ S+T\circ S$ e $L\circ (T+S)=L\circ T+L\circ S$, quaisquer que sejam $L,T,S\in\mathcal{L}(V)$.

Estrutura de Grupo de GL(V)

O conjunto GL(V) dos automorfismos do espaço vetorial V é um subconjunto de $\mathcal{L}(V)$; se $L, T \in GL(V)$ vimos que $L \circ T$ e T^{-1} pertencem a GL(V) e a identidade I de V também pertence a GL(V). Portanto, GL(V) munido da operação $(L,T) \longmapsto L \circ T$ é um grupo, chamado grupo linear de V. GL(V) é o grupo dos elementos invertíveis do anel $\mathcal{L}(V)$.

Estrutura de Álgebra de $\mathcal{L}(V)$

Se V é um espaço vetorial sobre K, $\mathcal{L}(V)$ está munido das leis:

- (1) adição: $(L,T) \longmapsto L + T$;
- (2) multiplicação por escalar: $(a, T) \longmapsto aT$;
- (3) produto: $(L,T) \longmapsto L \circ T$.

Para as leis (1) e (2), $\mathcal{L}(V)$ tem uma estrutura de espaço vetorial sobre K. Para as leis (1) e (3), $\mathcal{L}(V)$ tem uma estrutura de anel. Além disso, é fácil ver que $a(L \circ T) = (aL) \circ T = L \circ (aT)$, quaisquer que sejam $L, T \in \mathcal{L}(V)$ e $a \in K$. Vemos assim que $\mathcal{L}(V)$ tem uma estrutura de <u>álgebra</u> (linear) sobre K, de acordo com a seguinte definição.

Definição 2.5 Sejam K um corpo a A um conjunto munido de uma <u>adição</u>, de uma <u>multiplicação por escalar</u> e de um <u>produto</u>. Dizemos que A é uma álgebra sobre K se:

- (1) A, munido da adição e da multiplicação por escalar, é um espaço vetorial sobre K.
- (2) A, munido da adição e do produto, é um anel.
- (3) $a(L \cdot T) = (aL) \cdot T = L \cdot (aT)$, quaisquer que sejam $L, T \in A$ e $a \in K$.

Exemplo 2.3.1 O corpo \mathbb{C} dos complexos \acute{e} uma álgebra sobre \mathbb{R} .

Exemplo 2.3.2 $\mathcal{F}(\mathbb{R}, \mathbb{R})$ munido das leis f + g, $f \cdot g$, $af \notin uma \text{ álgebra sobre } \mathbb{R}$.

Exemplo 2.3.3 No espaço vetorial $\mathcal{L}(V)$ consideremos o produto $(L, T) \longmapsto [L, T] = L \circ T - T \circ L$ (colchete de Lie de L e T). É imediato que:

$$(1)\left[[L,T],S\right] = \left[L,[T,S]\right]$$

(2)
$$[L + T, S] = [L, S] + [T, S] e [L, T + S] = [L, T] + [L, S]$$

(3) [aL, T] = [L, aT] = a[L, T], quaisquer que sejam $L, T, S \in \mathcal{L}(V)$ e $a \in K$. Portanto o espaço $\mathcal{L}(V)$, munido do produto $(L, T) \longmapsto [L, T]$, é uma álgebra sobre K, anotada gl(V).

2.4 Exercícios do Capítulo 2

- 1. Sejam V_1 , V_2 espaços vetoriais isomorfos entre si, bem como W_1 e W_2 . Prove que $\mathcal{L}(V_1, W_1)$ é isomorfo a $\mathcal{L}(V_2, W_2)$.
- 2. Sejam V, M espaços vetoriais sobre K, $V = V_1 \oplus V_2$. Prove que $\mathcal{L}(V_1 \oplus V_2, W)$ é isomorfo a $\mathcal{L}(V_1, W) \times \mathcal{L}(V_2, W)$.
- 3. Seja V o espaço vetorial real das funções $t \longmapsto x(t)$ de [0,1] em \mathbb{R} , de classe C^{∞} . Consideremos em V os operadores $x \longmapsto f(x) = \frac{dx}{dt}$ e $x \longmapsto g(x)$ com $g(x)(t) = \int_0^t x(u)du$. Prove que se $x(0) \neq 0$ então $(g \circ f)(x) \neq (f \circ g)(x)$.
- 4. Sejam V um espaço vetorial e $\{v_1, ..., v_n\}$ uma base de V. Prove que r vetores $u_1, ..., u_r \in V$, $r \leq n$, são LI se, e só se, existe um automorfismo T de V tal que $T(v_j) = u_j$, $1 \leq j \leq r$.
- 5. Sejam $f:V\to W$ linear e $\varphi:V\times W\to V\times W$ tal que $\varphi(v,w)=(v,w-f(v))$. Prove que φ é um automorfismo de $V\times W$.
- 6. Dois operadores lineares $S, T \in \mathcal{L}(V)$ são semelhantes se existe operador invertível $P \in GL(V)$ tal que $S = P^{-1}TP$. Se V tem dimensão finita, prove que operadores semelhantes têm o mesmo posto.

- 31
- 7. Seja V um espaço vetorial de dimensão n sobre K. Para k = 1, 2, ..., n, exiba $T: V \to V$ linear tal que $T^k = 0$ mas $T^j \neq 0$ se j < k.
- 8. Sejam V e W espaços vetoriais de dimensão finita e $T: V \to W$ linear. Prove:
 - (a) T é injetora \Leftrightarrow existe $S: W \to V$ linear tal que $S \circ T = id_V$
 - (b) T é sobrejetora \Leftrightarrow existe $S:W\to V$ linear tal que $T\circ S=id_W$
- 9. Seja V um espaço vetorial de dimensão infinita enumerável de base $(v_1, v_2, ..., v_n, ...)$. Seja $T: V \to V$ o operador linear definido por $T(v_{2k+1}) = 0, \ T(v_{2k}) = v_k, \ k \in \mathbb{N}.$
 - (a) Prove que T é sobrejetora mas não injetora.
 - (b) Prove que existe $S:V\to V$ linear injetora, mas não sobrejetora, tal que $T \circ S = id$.
- 10. Sejam V um espaço vetorial de dimensão finita, $V' \subset V$ um subespaço, W um espaço vetorial, $W' \subset W$ um subespaço, e $T: V \to W$ linear. Prove:
 - (a) $dim\left(T(V')\right) = dim\ V' dim\ (\mathcal{N}(T) \cap V')$ (b) $dim\ T^{-1}(W') = dim\ \mathcal{N}(T) + dim\ (Im\ T \cap W').$
- 11. $E_0, E_1, ..., E_n$ sendo espaços vetoriais sobre o mesmo corpo K $(n \ge 2)$ dizemos que o diagrama

$$E_0 \xrightarrow{f_0} E_1 \to \dots \to E_{k-1} \xrightarrow{f_{k-1}} E_k \xrightarrow{f_k} E_{k+1} \to \dots \to E_{n-1} \xrightarrow{f_{n-1}} E_n$$

é uma sequência exata se para $0 \le k \le n-2$ tem-se $\mathcal{N}f_{k+1} = Im f_k$, as aplicações f_k sendo lineares $(0 \le k \le n-1)$. Se E_0 (resp. E_n) é igual a $\{0\}$, que escrevemos 0, não escreveremos f_0 (resp. f_{n-1}) pois só existe uma aplicação linear de 0 em E_1 (resp. de E_{n-1} em 0).

- (a) Prove:
- $[0 \to E \xrightarrow{f} F$ é uma sequência exata] \Leftrightarrow f é injetora

 $[E \xrightarrow{f} F \to 0$ é uma sequência exata] \Leftrightarrow f é sobrejetora.

(b) Prove que os diagramas seguintes são sequências exatas:

$$0 \to F \xrightarrow{i} E \xrightarrow{j} \frac{E}{F} \to 0$$

$$0 \to \mathcal{N}f \xrightarrow{i} E \xrightarrow{f} F \xrightarrow{j} \frac{F}{Im \ f} \to 0$$

(f aplicação linear, i injeção canônica, j sobrejeção canônica).

Capítulo 3

Matrizes

3.1 Definições

Definição 3.1 Sejam K um corpo, m e n inteiros positivos e $I_n = \{1, 2, ..., n\}$. Uma <u>matriz</u> $m \times n$ sobre K é uma função $(i, j) \in I_m \times I_n \longmapsto a_{ij} \in K$. Em geral os escalares a_{ij} são dispostos em m linhas e n colunas, o primeiro índice indicando a linha e o segundo a coluna ocupadas por a_{ij} :

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = (a_{ij}), \ 1 \le i \le m, \ 1 \le j \le n$$

Os escalares a_{ij} são os <u>elementos</u> da matriz $A = (a_{ij})$. Observemos que duas matrizes, $A = (a_{ij})$ e $B = (b_{ij})$, ambas $m \times n$, são <u>iguais</u> se, e só se, $a_{ij} = b_{ij}$ para todo par (i, j).

A matriz zero, $m \times n$, é a que tem todos seus elementos iguais a zero.

A matriz A é <u>quadrada</u> quando o número de linhas é igual ao de colunas, isto é, quando ela é do tipo $n \times n$; n é a <u>ordem</u> da matriz quadrada A. Numa matriz quadrada os elementos a_{ii} , que têm os índices iguais, formam a diagonal principal.

A matriz <u>identidade</u> (ou unidade) de ordem n é a matriz quadrada I_n na qual todos <u>os elementos</u> da diagonal principal são iguais a 1 e os demais

iguais a zero. Por exemplo, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. O elemento genérico de I_n é o

símbolo de Kronecker, definido por:

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & se & i = j \\ 0 & se & i \neq j \end{array} \right.$$

Assim, $I_n = (\delta_{ij})_{1 \leq i,j \leq n}$.

Vamos introduzir no conjunto $M_{m\times n}(K)$, das matrizes $m\times n$ sobre K, uma estrutura vetorial. Para isto precisamos definir a adição de matrizes e o produto de uma matriz por um escalar.

Definição 3.2 Sejam $A = (a_{ij})$ e $B = (b_{ij})$ matrizes $m \times n$. A <u>soma</u> C = A + B é a matriz $m \times n$, $C = (c_{ij})$, tal que $c_{ij} = a_{ij} + b_{ij}$ para todo par (i, j).

Aadição matricial goza das seguintes propriedades de verificação imediata:

- (1) A + B = B + A
- (2) A + (B + C) = (A + B) + C
- (3) A + 0 = A, onde 0 é a matriz zero $m \times n$
- (4) A + (-A) = 0 onde, sendo $A = (a_{ij})$, temos $(-A) = (-a_{ij})$.

Definição 3.3 Sejam $c \in K$ e $A = (a_{ij}) \in M_{m \times n}(K)$. A matriz $B = (b_{ij})$, onde $b_{ij} = c \cdot a_{ij}$ para todo par (i, j), é o produto de c por A, anotado $B = c \cdot A$. É claro que $B \in M_{m \times n}(K)$.

A multiplicação de matriz por escalar tem as seguintes propriedades, de fácil verificação:

- (1) $1 \cdot A = A$
- (2) $c \cdot (A+B) = c \cdot A + c \cdot B$
- (3) $(c+d) \cdot A = c \cdot A + d \cdot A$
- $(4) c(d \cdot A) = (cd) \cdot A,$

quaisquer que sejam $A, B \in M_{m \times n}(K)$ e $c, d \in K$.

Vemos assim que $M_{m\times n}$, munido das leis de adição e de multiplicação por escalar, é um espaço vetorial sobre K. Quando m=n escrevemos apenas $M_n(K)$ ou simplesmente M_n .

Vamos achar uma <u>base</u> para $M_{m\times n}(K)$. Para isso, consideremos as matrizes E_{ij} , $1 \le i \le m$, $1 \le j \le n$, onde cada E_{ij} é $m \times n$ e tem todos os elementos iguais a zero, exceto o situado na linha i e na coluna j, que é igual a um:

$$E_{ij} = \begin{pmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \dots & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

Proposição 3.1 O conjunto $\{E_{11},...,E_{1n},...,E_{m1},...,E_{mn}\}$ é uma base de $M_{m\times n}(K)$.

Dem. Se $A = (a_{ij})$ é $m \times n$ é claro que $A = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij}$, ou seja, as matrizes E_{ij} geram $M_{m \times n}(K)$. Além disso, elas são LI, pois se $\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij} = 0$, então $A = (a_{ij}) = 0$, donde $a_{ij} = 0$ para todo par (i, j).

Corolário 3.1.1 $dim\ M_{m\times n}(K) = m\cdot n$.

3.2 Produto de Matrizes

Definição 3.4 Sejam $A = (a_{ij}) - m \times n - e B = (b_{ij}) - n \times p$, ou seja, o número de <u>colunas</u> de A é igual ao número de <u>linhas</u> de B. O produto $C = A \cdot B$ é a matriz $m \times p$, $C = (c_{ij})$, tal que $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$.

Exemplo 3.2.1

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 6 & 8 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 8 \end{pmatrix}$$

o que mostra que o produto não é comutativo.

Proposição 3.2 (a)
$$(AB)C = A(BC)$$

(b) $A(B_1 + B_2) = AB_1 + AB_2$; $(A_1 + A_2)B = A_1B + A_2B$

(c)
$$I_n A = A I_n = A$$
,

onde se supõem definidos os produtos e somas (das matrizes) indicados, e em (c) $A \notin m \times n$.

Dem. (a) Sejam:
$$A = (a_{ij})$$
 do tipo $m \times n$.
 $B = (b_{ij})$ do tipo $n \times p$
 $C = (c_{ij})$ do tipo $p \times q$

Então:
$$AB = (d_{ij}) \notin m \times p \ e \ (AB)C = (e_{ij}) \notin m \times q$$

 $BC = (f_{ij}) \notin n \times q \ e \ A(BC) = (g_{ij}) \notin m \times q$

ou seja, se o primeiro membro está definido, então o segundo também, e é do mesmo tipo.

Temos:
$$e_{ij} = \sum_{k=1}^{p} d_{ik} c_{kj} = \sum_{k=1}^{p} c_{kj} \sum_{r=1}^{n} a_{ir} b_{rk}$$

 $g_{ij} = \sum_{r=1}^{n} a_{ir} f_{rj} = \sum_{r=1}^{p} a_{ir} \sum_{k=1}^{p} b_{rk} c_{kj},$

o que mostra que $e_{ij} = g_{ij}$ para todo i e todo j. As demonstrações de (b) e (c) são deixadas a cargo do leitor.

3.3 Aplicação Linear \times Matriz

Sejam V e W espaços vetoriais sobre o corpo K, $\mathcal{E} = (v_1, ..., v_n)$ e $\mathcal{F} = (w_1, ..., w_m)$ bases ordenadas de V e W, respectivamente, e $T: V \longrightarrow W$ linear.

Se
$$v = x_1v_1 + ... + v_nv_n = \sum_{j=1}^n x_jv_j$$
, $T(v) = y_1w_1 + ... + y_mw_m = \sum_{i=1}^m y_iw_i$

e
$$T(v_j) = \sum_{i=1}^m a_{ij} w_i$$
, então:

$$T(v) = \sum_{j=1}^{n} x_j T(v_j) = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} x_j w_i.$$

Portanto:

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 $(i = 1, 2, ..., m)$

Pondo:

$$\begin{bmatrix} v \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ [Tv]_{\mathcal{F}} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \ e \ [T]_{\mathcal{F}}^{\mathcal{E}} = (a_{ij}) \ \underset{1 \le i \le m}{1 \le i \le m},$$

o sistema acima pode ser escrito na forma matricial

$$[T(v)]_{\mathcal{F}} = [T]_{\mathcal{F}}^{\mathcal{E}} \cdot [v]_{\mathcal{E}}.$$

Assim, fixadas as bases ordenadas \mathcal{E} e \mathcal{F} , a toda aplicação linear $T:V\longrightarrow W$ podemos associar uma matriz $[T]_{\mathcal{F}}^{\mathcal{E}}=(a_{ij})$ definida por $T(v_j)=\sum_{i=1}^m a_{ij}w_i$, ou seja,

$$[T]_{\mathcal{F}}^{\mathcal{E}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

 $[T]_{\mathcal{F}}^{\mathcal{E}}$ é a matrix de T em relação às bases \mathcal{E} de V e \mathcal{F} de W. Ela é do tipo $m \times n$ e, para cada j, as componentes de $T(v_j)$ na base \mathcal{F} formam a coluna j dessa matriz.

Reciprocamente, dada uma matriz $m \times n$, $A = (a_{ij})$, consideremos os vetores u_j , $1 \le j \le n$, definidos por $u_j = \sum_{i=1}^m a_{ij} w_i$. Seja $T: V \longrightarrow W$ a única aplicação linear tal que $T(v_j) = u_j$, $1 \le j \le n$. Então é claro que $[T]_{\mathcal{F}}^{\mathcal{E}} = A$. Existe, pois, uma bijeção entre $\mathcal{L}(V, W)$ e $M_{m \times n}(K)$, bijeção esta que depende da escolha das bases ordenadas \mathcal{E} de V e \mathcal{F} de W.

Exemplo 3.3.1 Sejam V um espaço vetorial sobre K e $B = \{v_1, ..., v_n\}$ uma base de V. Sejam os operadores lineares I(v) = v e 0(v) = 0 para todo $v \in V$. É claro que $[I]_B^B = I_n$ e $[0]_B^B = 0$.

Exemplo 3.3.2 Seja $V = P_n$ o espaço vetorial dos polinômios a uma variável e de grau menor que n, com coeficientes em K, juntamente com o

polinômio zero. Sejam $B = \{1, t, ..., t^{n-1}\}$ base de V e D : $V \longrightarrow V$ a aplicação derivada:

$$D(a_0 + a_1t + \dots + a_{n-1}t^{n-1}) = a_1 + 2a_2t + \dots + (n-1)a_{n-1}t^{n-2}.$$

Então:

$$[D]_{B}^{B} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & n-1 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

Exemplo 3.3.3 Sejam $I : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ a identidade, $\mathcal{E} = \{(1,0,0), (0,1,0), (0,0,1)\}$ $e \mathcal{F} = \{(1,0,0), (1,1,0), (1,1,1)\} \text{ bases de } \mathbb{R}^3. \text{ Vamos achar } [I]_{\mathcal{F}}^{\mathcal{E}}.$ Temos:

$$I(1,0,0) = (1,0,0);$$
 $I(0,1,0) = (1,1,0) - (1,0,0);$ $I(0,0,1) = (1,1,1) - (1,1,0).$

Portanto:

$$\begin{bmatrix} I \end{bmatrix}_{\mathcal{F}}^{\mathcal{E}} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

Exemplo 3.3.4 Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por T(x, y, z) = (x + y + z, y + z, y)(z,z). É claro que T é linear. Sejam \mathcal{E} e \mathcal{F} as bases do exemplo 3.3.3. Vamos achar $[T]_{\mathcal{F}}^{\mathcal{E}}$ e $[T]_{\mathcal{E}}^{\mathcal{E}}$. Temos: $T(1,0,0) = (1,0,0); \quad T(0,1,0) = (1,1,0); \quad T(0,0,1) = (1,1,1).$

Portanto:

$$[T]_{\mathcal{F}}^{\mathcal{E}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$$

E:

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Exemplo 3.3.5 Seja $A = (a_{ij}) \ m \times n \ sobre \ K.$ Seja $T_A : K^n \longrightarrow K^m \ tal \ que$

$$T_A(X) = A \cdot X$$
, onde $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$. É claro que T_A é linear e que $[T]_{\mathcal{F}}^{\mathcal{E}} = A$,

onde \mathcal{E} e \mathcal{F} são as bases canônicas de K^n e K^m , respectivamente.

Exemplo 3.3.6 (Rotação)

Sejam
$$\mathcal{E} = (e_1, e_2)$$
 a base canônica do \mathbb{R}^2 e $\mathcal{F} = (f_1, f_2)$ onde

$$f_1 = \cos \alpha \cdot e_1 + sen \ \alpha \cdot e_2$$

$$f_2 = -sen \ \alpha \cdot e_1 + \cos \alpha \cdot e_2, \ \alpha \in \mathbb{R}$$

Definamos $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ linear por meio de:

$$Te_1 = f_1$$
$$Te_2 = f_2$$

Então:

$$[T]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

A imagem de $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ por T é o vetor

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x \cdot \cos \alpha - y \cdot \sin \alpha \\ x \cdot \sin \alpha + y \cdot \cos \alpha \end{bmatrix} \in \mathbb{R}^2.$$

A transformação linear T é a rotação de α em torno da origem.

Proposição 3.3 Sejam V e W espaços vetoriais sobre K, $\mathcal{E} = (v_1, ..., v_n)$ e $\mathcal{F} = (w_1, ..., w_m)$ bases ordenadas de V e W, respectivamente. A aplicação $T \longmapsto [T]_{\mathcal{F}}^{\mathcal{E}}$, que a cada elemento de $\mathcal{L}(V, W)$ associa sua matriz em relação às bases dadas, é um isomorfismo de $\mathcal{L}(V, W)$ sobre $M_{m \times n}(K)$.

Dem. Sejam T e S elementos de

$$\mathcal{L}(V, W), \ T(v_j) = \sum_{i=1}^{m} a_{ij} w_i, \ S(v_j) = \sum_{i=1}^{m} b_{ij} w_i,$$

isto é,
$$[T]_{\mathcal{F}}^{\mathcal{E}} = (a_{ij}) \ e \ [S]_{\mathcal{F}}^{\mathcal{E}} = (b_{ij}).$$

$$Como \ (T+S)(v_j) = \sum_{i=1}^{\infty} (a_{ij} + b_{ij}) w_i \ resulta \ que$$

$$[T+S]_{\mathcal{F}}^{\mathcal{E}} = (a_{ij} + b_{ij}) \ \underset{1 \leq i \leq m}{1 \leq i \leq m} = [T]_{\mathcal{F}}^{\mathcal{E}} + [S]_{\mathcal{F}}^{\mathcal{E}}.$$

Se
$$c \in K$$
 temos $(cT)(v_j) = \sum_{i=1}^m ca_{ij}w_i$, isto \acute{e} , $[cT]_{\mathcal{F}}^{\mathcal{E}} = (ca_{ij}) = c \cdot [T]_{\mathcal{F}}^{\mathcal{E}}$.

Portanto, a aplicação $T \longmapsto [T]_{\mathcal{F}}^{\mathcal{E}}$ é linear (e bijetora), ou seja, um isomorfismo.

Corolário 3.3.1 $dim \mathcal{L}(V, W) = dim \ V \cdot dim \ W$.

Proposição 3.4 Sejam U, V, W espaços vetoriais sobre K, $\mathcal{E} = (u_1, ..., u_m)$, $\mathcal{F} = (v_1, ..., v_n)$ e $\mathcal{G} = (w_1, ..., w_p)$ bases ordenadas de U, V, W, respectivamente. Se $U \xrightarrow{S} V \xrightarrow{T} W$ são lineares, então:

$$\left[T \circ S\right]_{\mathcal{G}}^{\mathcal{E}} = \left[T\right]_{\mathcal{G}}^{\mathcal{F}} \cdot \left[S\right]_{\mathcal{F}}^{\mathcal{E}}.$$

Dem. Sejam:

$$\left[T\right]_{\mathcal{G}}^{\mathcal{F}} = (a_{ij}) - p \times n$$

$$\left[S\right]_{\mathcal{F}}^{\mathcal{E}} = (b_{ij}) - n \times m$$

$$[T \circ S]_{\mathcal{G}}^{\mathcal{E}} = (c_{ij}) - p \times m$$

Então:

$$T(v_k) = \sum_{i=1}^p a_{ik} w_i$$

$$S(u_j) = \sum_{k=1}^{n} b_{kj} v_k$$

$$(T \circ S)(u_j) = \sum_{i=1}^{p} c_{ij} w_i$$

Portanto:

$$T(S(u_j)) = \sum_{k=1}^{n} b_{kj} T(v_k) = \sum_{k=1}^{n} \sum_{i=1}^{p} a_{ik} b_{kj} w_i,$$

donde:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj},$$

que é a tese.

O conjunto $M_n(K)$ das matrizes de ordem n, munido das leis de adição e multiplicação por escalar, é um espaço vetorial sobre K de dimensão n^2 . $M_n(K)$, munido das operações de adição e multiplicação matriciais, é um anel (com unidade). Além disso, é fácil verificar que

$$c(AB) = (cA)B = A(cB)$$

quaisquer que sejam $A, B \in M_n(K)$ e $c \in K$. Resulta que $M_n(K)$ tem uma estrutura de álgebra sobre K. Vimos que o anel $M_n(K)$ não é comutativo; o exemplo

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

mostra que ele tem divisores de zero.

Seja V um espaço vetorial sobre K, de dimensão n. Vimos que $\mathcal{L}(V)$ $e\ M_n(K)$ são duas álgebras sobre K. Fixada uma base B de V, a aplicação bijetora $T \in \mathcal{L}(V) \xrightarrow{\phi} [T]_B^B \in M_n(K)$ goza das seguintes propriedades: (1) $[L+T]_B^B = [L]_B^B + [T]_B^B$, isto \acute{e} , $\phi(L+T) = \phi(L) + \phi(T)$

(1)
$$[L+T]_B^B = [L]_B^B + [T]_B^B$$
, isto \acute{e} , $\phi(L+T) = \phi(L) + \phi(T)$

(2)
$$[aT]_B^B = a[T]_B^B$$
, isto é, $\phi(aT) = a \cdot \phi(T)$

(3) $[L \circ T]_B^B = [L]_B^B \cdot [T]_B^B$, isto é, $\phi(L \circ T) = \phi(L) \cdot \phi(T)$, quaisquer que sejam $L, T \in \mathcal{L}(V)$ e $a \in K$.

Uma tal ϕ chama-se um isomorfismo de álgebras, ou seja, $\mathcal{L}(V)$ e $M_n(K)$ são álgebras isomorfas.

Exemplo 3.3.7 Vamos achar o centro do anel $M_n(K)$, isto é, vamos determinar as matrizes $A = (a_{ij})$ de $M_n(K)$ que comutam com toda ma $triz P = (p_{ij}) de M_n(K)$, ou seja, tais que AP = PA. Devemos ter $\sum_{k=1}^{n} a_{ik} p_{kj} = \sum_{k=1}^{n} p_{ik} a_{kj} \ para \ todo \ par \ (i,j). \ Se \ P = E_{ii}, \ isto \ \acute{e}, \ p_{ii} = 1 \ e$ $p_{rs} = 0$ para $r \neq i$ ou $s \neq i$, então $i \neq j$ implica $a_{ij} = 0$. Se $P = E_{ij}$ com $i \neq j$, isto é, $p_{ij} = 1$ e $p_{rs} = 0$ para $r \neq i$ ou $s \neq j$, então $a_{ii} = a_{jj}$. Logo, se A comuta com toda matriz de $M_n(K)$ ela é da forma $A = a \cdot I_n$, e é evidente que toda matriz $a \cdot I_n$, $a \in K$, comuta com toda matriz de $M_n(K)$. Estas matrizes têm o nome de matrizes escalares.

Definição 3.5 Uma matriz quadrada A, $n \times n$, \acute{e} <u>invertível</u> se existe matriz quadrada B, de mesma ordem, tal que $AB = BA = I_n$.

Se uma tal matriz B existe, ela é única, pois se $AC = I_n$ e $BA = I_n$, temos: $B = B \cdot I_n = B(AC) = (BA)C = I_n \cdot C = C$. esta matriz B, caso exista, chama-se a inversa de A, e é anotada $B = A^{-1}$. Assim,

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n$$

o que mostra também que $(A^{-1})^{-1} = A$.

Se A e B, ambas $n \times n$, são invertíveis, então AB é invertível e

$$(AB)^{-1} = B^{-1}A^{-1}.$$

De fato, $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A \cdot A^{-1} = I_n \ e \ (B^{-1}A^{-1})(AB) = B^{-1}(A^{-1} \cdot A)B = B^{-1}B = I_n$. É claro que $I_n^{-1} = I_n$.

Vemos assim que o conjunto das matrizes invertíveis de $M_n(K)$, com a operação de multiplicação matricial, é um grupo. O isomorfismo ϕ : $\mathcal{L}(K^n) \longrightarrow M_n(K)$ visto acima, transforma o grupo $GL(K^n) = GL(n,K)$ isomorficamente sobre o grupo das matrizes invertíveis de $M_n(K)$. Em particular,

$$\left[T^{-1}\right]_{B}^{B} = \left(\left[T\right]_{B}^{B}\right)^{-1}.$$

Exemplo 3.3.8 Seja A, de ordem n, tal que $a_0I_n + a_1A + ... + a_nA^n = 0$ com $a_0 \neq 0$. Então A é invertível.

De fato, temos:

$$\left(-\frac{a_1}{a_0}I_n - \dots - \frac{a_n}{a_0}A^{n-1}\right) \cdot A = A \cdot \left(-\frac{a_1}{a_0}I_n - \dots - \frac{a_n}{a_0}A^{n-1}\right) = I_n.$$

$$Logo, A^{-1} = -\frac{a_1}{a_0} \cdot I_n - \dots - \frac{a_n}{a_0} \cdot A^{n-1}$$

Proposição 3.5 Seja $A \in M_n(K)$. Se existe $B \in M_n(K)$ tal que $BA = I_n$ (ou $AB = I_n$), então A é invertível e $B = A^{-1}$.

Dem. Sejam $T_A: K^n \longrightarrow K^n$ e $T_B: K^n \longrightarrow K^n$ as aplicações lineares associadas a A e B, respectivamente. $BA = I_n$ equivale a $T_B \cdot T_A = id_{K^n}$, que implica ser T_A injetora e T_B sobrejetora e, portanto, ambas são bijetoras e $T_B = T_A^{-1}$, donde $A^{-1} = B$.

Exercícios

- 1. Dê uma base para $M_3(K)$.
- 2. Seja W o subespaço de $M_n(K)$ formado pelas matrizes cujos elementos são iguais a zero, exceto talvez os da diagonal principal. Qual a dimensão de W?
- 3. Seja $A \in M_n(\mathbb{R})$. $A = (a_{ij})$ é simétrica (resp. antissimétrica) se $a_{ij} = a_{ji}$ (resp. $a_{ij} = -a_{ji}$) para todo (i, j). Ache uma base para o espaço das matrizes simétricas (resp. antissimétricas) 3×3 .
- 4. Seja $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ dada por $T(x_1, x_2, x_3, x_4) = (x_2, x_4)$. Ache uma matriz associada a T.
- 5. Sejam $\mathcal{E} = ((1,1,0),(-1,1,1),(0,1,2))$ e $\mathcal{F} = ((2,1,1),(0,0,1),(1,1,1))$ bases de \mathbb{C}^3 . Ache $[I]_{\mathcal{F}}^{\mathcal{E}}$, onde $I:\mathbb{C}^3\longrightarrow\mathbb{C}^3$ é a identidade.
- 6. Seja V o subespaço de $\mathcal{F}(\mathbb{R},\mathbb{R}) = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}$ gerado pelas funções 1, t, e^t , e^{2t} , te^{2t} e seja $D : V \longrightarrow V$ o operador de derivação. Se $B = (1, t, e^t, e^{2t}, te^{2t})$ é base de V, ache $[D]_B^B$.
- 7. Estabeleça um isomorfismo entre o espaço vetorial real das matrizes simétricas $n \times n$ e o espaço das matrizes reais triangulares inferiores $(a_{ij} = 0 \text{ se } i < j)$. Idem entre as matrizes antissimétricas e as triangulares inferiores com a diagonal principal nula.

3.4 Mudança de Bases

Sejam V um espaço vetorial sobre K, $\mathcal{E} = (v_1, ..., v_n)$ e $\mathcal{F} = (w_1, ..., w_n)$ bases ordenadas de V. Se $v \in V$, então $[v]_{\mathcal{E}} = P \cdot [v]_{\mathcal{F}}$, onde $P = [I]_{\mathcal{E}}^{\mathcal{F}} = (p_{ij})$ é tal que $w_j = \sum_{i=1}^n p_{ij} v_i$.

Definição 3.6 $P = \begin{bmatrix} I \end{bmatrix}_{\mathcal{E}}^{\mathcal{F}}$ é a <u>matriz de passagem</u> da base \mathcal{E} para a base \mathcal{F} .

Exemplo 3.4.1 Sejam $V = \mathbb{R}^3$, $\mathcal{E} = (e_1, e_2, e_3)$ – base canônica, $\mathcal{F} = ((1, -1, 1), (1, 0, 0), (1, 1, 1)) = (f_1, f_2, f_3)$. Então:

$$P = \begin{bmatrix} I \end{bmatrix}_{\mathcal{E}}^{\mathcal{F}} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

$$Se \ v = 2f_1 + f_2 + 3f_3, \ ent \~ao \ [v]_{\mathcal{E}} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ 5 \end{bmatrix}, \ isto \ \'e, v = 6e_1 + e_2 + 5e_3.$$

Proposição 3.6 Sejam V e W espaços vetoriais sobre K,

$$\mathcal{E} = (v_1, ..., v_n), \ \mathcal{E}' = (v_1', ..., v_n')$$

bases ordenadas de V,

$$\mathcal{F} = (w_1, ..., w_m), \ \mathcal{F}' = (w'_1, ..., w'_m)$$

bases ordenadas de W,

$$P = \left[id_v\right]_{\mathcal{E}}^{\mathcal{E}'}$$

a matriz de passagem de \mathcal{E} para \mathcal{E}' , $Q = \begin{bmatrix} id_W \end{bmatrix}_{\mathcal{F}}^{\mathcal{F}'}$ a matriz de passagem de \mathcal{F} para \mathcal{F}' .

Se $T: V \longrightarrow W$ é linear, então:

$$[T]_{\mathcal{F}'}^{\mathcal{E}'} = Q^{-1} \cdot [T]_{\mathcal{F}}^{\mathcal{E}} \cdot P.$$

Dem. Temos $T = id_W \cdot T \cdot id_V$. Pela proposição 3.4, vem:

$$[T]_{\mathcal{F}'}^{\mathcal{E}'} = [id_W]_{\mathcal{F}'}^{\mathcal{F}} \cdot [T]_{\mathcal{F}}^{\mathcal{E}} \cdot [id_V]_{\mathcal{E}}^{\mathcal{E}'}$$

Mas:

$$I_{n} = \left[id_{W}\right]_{\mathcal{F}'}^{\mathcal{F}'} = \left[id_{W}\right]_{\mathcal{F}'}^{\mathcal{F}} \cdot \left[id_{W}\right]_{\mathcal{F}}^{\mathcal{F}'}$$

e

$$I_n = \left[id_W\right]_{\mathcal{F}}^{\mathcal{F}} = \left[id_W\right]_{\mathcal{F}}^{\mathcal{F}'} \cdot \left[id_W\right]_{\mathcal{F}'}^{\mathcal{F}},$$

o que mostra que $\left[id_W\right]_{\mathcal{F}'}^{\mathcal{F}} = Q^{-1}$. Resulta:

$$\left[T\right]_{\mathcal{F}'}^{\mathcal{E}'} = Q^{-1} \cdot \left[T\right]_{\mathcal{F}}^{\mathcal{E}} \cdot P$$

Corolário 3.6.1 Sejam V um espaço vetorial sobre K, \mathcal{E} e \mathcal{E}' bases de V e $P = \begin{bmatrix} id_V \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}'}$ a matriz de passagem de \mathcal{E} para \mathcal{E}' . Se $T: V \longrightarrow V$ é linear, então:

$$\left[T\right]_{\mathcal{E}'}^{\mathcal{E}'} = P^{-1} \cdot \left[T\right]_{\mathcal{E}}^{\mathcal{E}} \cdot P$$

Definição 3.7 Dizemos que as matrizes $A, B \in M_{m \times n}(K)$ são <u>equivalentes</u> se existem matrizes $Q \in GL(m, K)$ e $P \in GL(n, K)$ tais que B = QAP.

Obs.: A proposição 3.6 nos diz que se A e B são matrizes associadas à mesma aplicação linear $T: V \longrightarrow W$, então A e B são equivalentes. Reciprocamente, suponhamos A e B equivalentes, isto é, B = QAP onde $A, B \in M_{m \times n}(K), P \in GL(n, K)$ e $Q \in GL(m, K)$.

Sejam $\mathcal{E} = (v_1, ..., v_n)$ e $\mathcal{F} = (w_1, ..., w_m)$ bases ordenadas dos espaços vetoriais $V \in W \in T : V \longrightarrow W$ linear tal que $A = [T]_{\mathcal{F}}^{\mathcal{E}}$. Definamos

$$\mathcal{E}' = (v'_1, ..., v'_n) \ e \ \mathcal{F}' = (w'_1, ..., w'_m) \ por \ v'_j = \sum_{i=1}^n p_{ij} v_i \ e \ w'_j = \sum_{i=1}^m q_{ij} w_i,$$

onde $P = (p_{ij}) \ e \ Q^{-1} = (q_{ij}).$

Como P e Q são invertíveis, \mathcal{E}' e \mathcal{F}' são bases de V e W, respectivamente, $P = \begin{bmatrix} id_V \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}'}$ e $Q^{-1} = \begin{bmatrix} id_W \end{bmatrix}_{\mathcal{F}}^{\mathcal{F}'}$.

Pela proposição 3.6, temos:

$$[T]_{\mathcal{F}'}^{\mathcal{E}'} = QAP$$
, isto \acute{e} , $B = [T]_{\mathcal{F}'}^{\mathcal{E}'}$,

o que mostra que A e B representam a mesma aplicação linear $T:V\longrightarrow W$.

Definição 3.8 Dizemos que as matrizes $A, B \in M_n(K)$ são <u>semelhantes</u> se existe $P \in GL(n, K)$ tal que $B = P^{-1} \cdot A \cdot P$. Como na observação, acima é fácil ver que $A, B \in M_n(K)$ são semelhantes se, e só se, elas representam um mesmo operador linear $T: V \longrightarrow V$, onde $\dim_K V = n$.

Obs.: É fácil verificar que as relações "A e B são equivalentes" e "A e B são semelhantes", são relações de equivalência (isto é, reflexivas, simétricas e transitivas).

Exemplo 3.4.2 Seja $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $T(x_1, x_2, x_3) = (x_1 + 2x_3, 3x_1 + 2x_2 + x_3, x_2 + 4x_3)$ e sejam $\mathcal{E} = (e_1, e_2, e_3)$ – base canônica e $\mathcal{F} = ((1, 0, 0), (1, 1, 0), (1, 1, 1))$ bases de \mathbb{R}^3 .

Temos:

$$T(1,0,0) = (1,3,0)$$

 $T(0,1,0) = (0,2,1)$
 $T(0,0,1) = (2,1,4)$

Portanto:

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 0 & 1 & 4 \end{bmatrix} = A.$$

Por outro lado, se $\mathcal{F} = (f_1, f_2, f_3)$, temos:

$$T(f_1) = (1,3,0) = -2f_1 + 3f_2$$

 $T(f_2) = (1,5,1) = -4f_1 + 4f_2 + f_3$
 $T(f_3) = (3,6,5) = -3f_1 + f_2 + 5f_3$

Portanto:

$$[T]_{\mathcal{F}}^{\mathcal{F}} = \begin{bmatrix} -2 & -4 & -3 \\ 3 & 4 & 1 \\ 0 & 1 & 5 \end{bmatrix} = B.$$

A matriz de passagem de \mathcal{E} para \mathcal{F} é $P = \begin{bmatrix} I \end{bmatrix}_{\mathcal{E}}^{\mathcal{F}}$, ou seja, $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, e é imediato verificar que

$$AP = PB = \begin{bmatrix} 1 & 1 & 3 \\ 3 & 5 & 6 \\ 0 & 1 & 5 \end{bmatrix}$$
, isto é, $B = P^{-1} \cdot A \cdot P$.

Posto de uma Matriz

Seja $A = (a_{ij})$ matriz $m \times n$ sobre K. Os vetores-coluna de A são os vetores $A_1, ..., A_n \in K^m$ definidos por

$$A_{j} = \begin{bmatrix} a_{ij} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix} \quad (1 \le j \le n)$$

Definição 3.9 O <u>posto</u> de uma matriz A é a dimensão do subespaço de K^m gerado pelos vetores-coluna de A, ou seja, o posto de A é o número máximo de vetores-coluna de A linearmente independentes.

Proposição 3.7 Sejam V, W espaços vetoriais sobre K, $\mathcal{E} = (v_1, ..., v_n)$ e $\mathcal{F} = (w_1, ..., w_m)$ bases ordenadas de V e W, respectivamente, e $T: V \longrightarrow W$ linear. Se $A = [T]_{\mathcal{F}}^{\mathcal{E}}$, então:

$$posto(A) = posto(T).$$

Dem. Seja $A = (a_{ij})$. Dizer que $A = [T]_{\mathcal{F}}^{\mathcal{E}}$ significa dizer que $T(v_j) = \sum_{i=1}^{m} a_{ij}w_i$, ou seja, $A_j = [T(v_j)]_{\mathcal{F}}$ (j = 1, ..., n), e o isomorfismo de K^m sobre W que leva a base canônica de K^m na base \mathcal{F} de W, transforma o espaço gerado pelos vetores-coluna $A_1, ..., A_n$ de A sobre o espaço gerado pelos vetores $T(v_1), ..., T(v_n)$ de W, ou seja, estes espaços têm a mesma dimensão e, portanto, posto(A) = posto(T).

Proposição 3.8 Seja $A \in M_{m \times n}(K)$ de posto r. Então $r \leq m$, $r \leq n$ e A é equivalente à matriz $m \times n$:

Dem. Seja $T: K^n \longrightarrow K^m$ linear tal que $A = [T]_{\mathcal{F}}^{\mathcal{E}}$, onde \mathcal{E} e \mathcal{F} são as bases canônicas de K^n e K^m , respectivamente.

Como $n = \dim \mathcal{N}(T) + \dim \operatorname{Im} T$ temos que $\dim \mathcal{N}(T) = n - r \geq 0$. Podemos, então, escolher uma base $\mathcal{E}' = (v_1, ..., v_n)$ de K^n de modo que $(v_{r+1}, ..., v_n)$ seja base de $\mathcal{N}(T)$. É claro que os vetores $T(v_1), ..., T(v_r)$ são LI em K^m (verifique!), donde $r \leq m$ e podemos considerar uma base de K^m da forma $\mathcal{F}' = (Tv_1, ..., Tv_r, w_{r+1}, ..., w_m)$. Obtemos:

$$[T]_{\mathcal{F}'}^{\mathcal{E}'} = matriz \ da \ figura \ 3.8.$$

Resulta que $A = \begin{bmatrix} T \end{bmatrix}_{\mathcal{F}}^{\mathcal{E}}$ é equivalente a B = matriz da figura 3.8 :

$$B = QAP, \ Q = \begin{bmatrix} id \end{bmatrix}_{\mathcal{E}'}^{\mathcal{F}}, \ P = \begin{bmatrix} id \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}'}$$

Corolário 3.8.1 Duas matrizes $A, B \in M_{m \times n}(K)$ são equivalentes se, e só se, elas têm o mesmo posto.

Dem. Se A e B são equivalentes, elas representam, em relação a bases diferentes, a mesma aplicação linear $T: K^n \longrightarrow K^m$. Portanto,

$$posto(A) = posto(T) = posto(B).$$

Reciprocamente, se posto(A) = posto(B) = r, então A e B são equivalentes à matriz da figura 3.8 e, portanto, elas são equivalentes.

Corolário 3.8.2 A matriz $A \in M_{m \times n}(K)$ é invertível se, e só se,

$$posto(A) = n.$$

Dem. A matriz A representa um operador linear

$$T: K^n \longrightarrow K^m \ e \ posto(T) = posto(A) = n$$

se, e só se, T é sobrejetora (donde bijetora), isto é, se, e só se, $T \in GL(n, K)$ e, portanto, se, e só se, A é invertível.

3.5 Exercícios do Capítulo 3

1. Obtenha bases \mathcal{E} de \mathbb{R}^2 e \mathcal{F} de \mathbb{R}^3 de modo que $\begin{bmatrix} T \end{bmatrix}_{\mathcal{F}}^{\mathcal{E}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, onde

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 2x + y \\ 3x - 2y \\ x + 3y \end{bmatrix}.$$

2. Calcule o posto das matrizes:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}; \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0 \end{bmatrix}.$$

Mostre que os espaços gerados pelas linhas e colunas de A coincidem, o que não ocorre com B.

3. Seja a matriz $n \times n$ cujas linhas são os vetores

$$v_1 = (1, 2, ..., n), v_2 = (2, 3, ..., n, n + 1), etc.$$

Prove que o posto da matriz é 2 e que o espaço-linha coincide com o espaço-coluna.

- 4. Ache reais a, b, c tais que ax + by + cz = 0 seja o plano gerado pelas linhas da matriz $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{bmatrix}.$
- 5. Prove que toda matriz antissimétrica 3×3 não-nula tem posto 2. Dê exemplo de uma matriz antissimétrica invertível 4×4 .
- 6. Sejam V um espaço vetorial de dimensão n sobre K e $T:V\longrightarrow V$ linear. T é <u>nilpotente</u> de <u>índice p</u> se existe $p\in\mathbb{N}$ tal que $T^{p-1}\neq 0$ e $T^p=0$.
 - (a) Prove que se T é nilpotente e existem $\lambda \in K$, $x \in V$, $x \neq 0$ tais que $T(x) = \lambda x$, então $\lambda = 0$.
 - (b) Prove que se T é nilpotente de índice p e $T^{p-1}(x) \neq 0$, então os vetores $x, T(x), ..., T^{p-1}(x)$ são LI.
 - (c) T é nilpotente de índice n \Leftrightarrow existe base \mathcal{E} de V tal que na matriz $A = \begin{bmatrix} T \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}} = (a_{ij}) n \times n$ se tenha $a_{ij} = 0$ exceto $a_{i,i+1} = 1$ $(1 \leq i \leq n-1)$.
- 7. Seja $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$; ache $A^n, n \in \mathbb{N}$.
- 8. Prove que $\begin{bmatrix} \cos\theta & -sen\ \theta \\ sen\ \theta & \cos\theta \end{bmatrix} \in \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$ são semelhantes sobre $\mathbb C$.
- 9. Seja $A = (a_{ij}) n \times n$. O <u>traço</u> de A é o número $tr(A) = \sum_{i=1}^{n} a_{ii}$. Prove que $tr : M_n(K) \longrightarrow K$ é linear, que tr(AB) = tr(BA), e que $tr(P^{-1}AP) = tr(A)$, quaisquer que sejam $A, B \in M_n(K)$ e $P \in GL(n, K)$.
- 10. Sejam $T: M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$ tal que T(A) = PA, onde $P \in M_2(\mathbb{R})$ é fixa. Prove que tr(T) = 2tr(P).

Capítulo 4

Formas Lineares. Dualidade

4.1 Definição

Seja V um espaço vetorial sobre o corpo K. Considerando K um espaço vetorial sobre si mesmo, $\mathcal{L}(V,K)$ é um espaço vetorial sobre K, designado por V^* e chamado de <u>dual</u> de V; seus elementos são chamados de <u>formas</u> (ou <u>funcionais</u>) <u>lineares</u> em V. O dual de V^* é o <u>bidual</u> de V, anotado V^{**} . Os elementos de V^* serão designados por letras gregas tais como α, β, ω , etc. Assim, uma forma linear $\omega \in V^*$ é uma aplicação linear $\omega : V \longrightarrow K$.

Se $\mathcal{E} = \{v_1, ..., v_n\}$ é uma base de V e se $v = x_1v_1 + ... + x_nv_n$, então $\omega(v) = x_1\omega(v_1) + ... + x_n\omega(v_n)$. Pondo $\omega(v_i) = a_i$, temos: $\omega(v) = a_1x_1 + ... + a_nx_n$, que é a representação de ω na base \mathcal{E} .

Exemplo 4.1.1 Se $V = K^n$, a aplicação $\pi_i(x_1, ..., x_n) \longmapsto x_i \ (1 \le i \le n)$ é uma forma linear em K^n , chamada a i-ésima forma coordenada.

Exemplo 4.1.2 Se $V = C^0([0,1],\mathbb{R})$ é o espaço vetorial real das funções contínuas $f:[0,1] \longrightarrow \mathbb{R}$ a função $f \in V \longmapsto \int_0^1 f(t)dt \in \mathbb{R}$ é uma forma linear em V.

Proposição 4.1 Sejam V um espaço vetorial sobre K e $(v_1, ..., v_n)$ uma base ordenada de V. Para cada \underline{i} , $1 \leq i \leq n$, seja $\omega_i : V \longrightarrow K$ a forma linear definida por $\omega_i(v_j) = \delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \leq j \end{cases}$ $(1 \leq i \leq n)$.

Então, $(\omega_1, ..., \omega_n)$ é uma base de V^* e as coordenadas de $\omega \in V^*$ nesta base, são $\omega(v_1), ..., \omega(v_n)$.

Dem. Sabemos que dim $V^* = \dim \mathcal{L}(V, K) = n$ e que as condições $\omega_i(v_j) = \delta_{ij}$ (j = 1, ..., n) determinam univocamente a forma ω_i . Basta então provar

que $\omega_1, ..., \omega_n$ são LI. Para isso, suponhamos que $\omega = a_1\omega_1 + ... + a_n\omega_n = 0$. Então, para j = 1, ..., n, temos $\omega(v_j) = 0$, ou seja, $\sum_{i=1}^n a_i\omega_i(v_j) = 0$, ou $\sum_{i=1}^n a_i\delta_{ij} = 0$, donde $a_j = 0$. Este cálculo mostra também que se

$$\omega = a_1 \omega_1 + \dots + a_n \omega_n$$
, então $a_j = \omega(v_j)$

.

Definição 4.1 Se $(v_1, ..., v_n)$ é base ordenada de V, a base $(\omega_1, ..., \omega_n)$ de V^* , tal que $\omega(v_j) = \delta_{ij}$ $(1 \le j \le n)$, chama-se base dual da base $(v_1, ..., v_n)$.

Exemplo 4.1.3 Sejam $V = K^n$ e $(e_1, ..., e_n)$ a base canônica de K^n . Seja $\pi_i : K^n \longrightarrow K$ a i-ésima forma coordenada, isto é, $\pi_i(x_1, ..., x_n) = x_i$. É claro que $\pi_i(e_j) = \delta_{ij}$, de modo que a base dual da base canônica de K^n é a base $(\pi_1, ..., \pi_n)$ de $(K^n)^*$.

Obs. Se V e W têm a <u>mesma</u> dimensão <u>finita</u> sobre K, a escolha de bases \mathcal{E} de V e \mathcal{F} de W nos permite definir um isomorfismo que leva \mathcal{E} sobre \mathcal{F} , e todo isomorfismo entre V e W é obtido dessa forma. Assim, em geral, há mais de um isomorfismo entre V e W e não temos uma maneira natural para preferir um ou outro desses isomorfismos. Entretanto, no caso de V e V^{**} , podemos distinguir um isomorfismo $J:V\longrightarrow V^{**}$ definido independente da escolha de bases, isto é, um isomorfismo canônico, que nos permite identificar V a V^{**} .

Proposição 4.2 Seja V um espaço vetorial de dimensão <u>finita n</u> sobre K. A aplicação canônica

$$J: V \longrightarrow V^{**}$$

$$v \longmapsto J_v: V^* \longrightarrow K$$

$$\omega \longmapsto \omega(v)$$

é um isomorfismo entre V e V**.

Dem. É fácil verificar que $J_v = J(v)$ é um elemento de V^{**} , bem como que J é linear. Basta então provar que J é injetora, já que dim $V = \dim V^{**} = n$. Para isto, seja $v \neq 0$; tomemos uma base de V da forma $(v, v_1, ..., v_{n-1})$ e

consideremos a base dual correspondente $(\omega, \omega_1, ..., \omega_{n-1})$. Então, $\omega(v) = 1 = J_v(\omega)$, ou seja, $J_v \neq 0$. Assim, $v \neq 0$ implica $J_v \neq 0$, o que mostra ser \underline{J} injetora.

Obs. (1) Identificando-se $v \in V$ a $J_v \in V^{**}$, a igualdade $J_v(\omega) = \omega(v)$ se escreve $v(\omega) = \omega(v)$, e é usual usar-se a notação $\langle v, \omega \rangle$ para este escalar. (2) No caso em que V é de dimensão infinita, prova-se que $J: V \longrightarrow V^{**}$ é injetora, mas <u>nunca</u> sobrejetora, ou seja, J <u>não</u> é um isomorfismo neste caso.

Exercícios

- 1. Sejam $B_1 = (v_1, ..., v_n)$, $B_2 = (u_1, ..., u_n)$ bases do espaço vetorial V, $B_1^* = (\alpha_1, ..., \alpha_n)$ e $B_2^* = (\beta_1, ..., \beta_n)$ as bases duais correspondentes. Se $v_j = \sum_{i=1}^n a_{ij}u_i$ e $\alpha_j = \sum_{i=1}^n b_{ij}\beta_i$, $i \leq j \leq n$, qual a relação entre as matrizes $A = (a_{ij})eB = (b_{ij})$?
- 2. Estude a independência linear das formas lineares sobre \mathbb{R}^4 , onde $ab \neq 0$:

$$f_1(x_1, x_2, x_3, x_4) = x_1 - ax_3,$$

$$f_2(x_1, x_2, x_3, x_4) = x_2 - \frac{1}{a}x_4,$$

$$f_3(x_1, x_2, x_3, x_4) = x_1 - bx_4,$$

$$f_4(x_1, x_2, x_3, x_4) = x_2 - \frac{1}{b}x_4.$$

- 3. Sejam V um espaço vetorial de dimensão finita e $W \subset V$ um subespaço. Se $f \in W^*$ mostre que existe $g \in V^*$ tal que $g|_W = f$.
- 4. Sejam V um espaço vetorial real de dimensão finita, e $v_1, v_2, ..., v_p$ vetores não nulos de V. Prove que existe $f \in V^*$ tal que $f(v_i) \neq 0$, i = 1, 2, ..., p.
- 5. Seja $f: V \longrightarrow \mathbb{R}$ uma forma linear não-nula. Prove que existe $v_0 \in V$ tal que $f(v_0) = 1$. Seja $W = \mathbb{R}v_0$ a reta gerada por v_0 . Prove que $V = W \oplus \mathcal{N}(f)$.
- 6. Sejam $f, g: V \longrightarrow \mathbb{R}$ formas lineares não-nulas e $\dim V = n$. Prove que $\mathcal{N}(f) = \mathcal{N}(g) \Leftrightarrow f$ é múltiplo de g.

4.2 Anulador de um Subespaço

Definição 4.2 Sejam V um espaço vetorial sobre K e $U \subset V$ um subespaço. Chama-se <u>anulador</u> de U ao conjunto $U^0 = \{\omega \in V^*; \ \omega(u) = 0 \ para \ todo \ u \in U\}$. É <u>fácil ver</u> que $U^0 \subset V^*$ é um subespaço.

Se $\omega \in V^*$ pode-se mostrar sem dificuldade que $\omega \in U^0$ se, e só se, ω se anula numa base de U.

Proposição 4.3 Sejam V um espaço vetorial de dimensão <u>finita</u> sobre K e $U \subset V$ um subespaço. Então:

$$dim U + dim U^0 = dim V.$$

Dem. Como o caso $U = \{0\}$ é trivial, vamos supor $U \neq \{0\}$. Seja $(v_1, ..., v_n)$ base de V tal que $(v_1, ..., v_p)$ seja base de U. Se $(\omega_1, ..., \omega_n)$ é a base dual, então $\langle v_j, \omega_i \rangle = \omega_i(v_j) = 0$ para i = 1, ..., p e i = p + 1, ..., n, ou seja, as formas $\omega_{p+1}, ..., \omega_n$ pertencem a U^0 . Vamos provar que elas formam uma base de U^0 . Como elas são LI, basta provar que elas \underline{geram} U^0 . Para isto, seja $\omega \in U^0$. Se $\omega = a_1\omega_1 + ... + a_n\omega_n$, então, para j = 1, ..., p temos:

$$0 = \omega(v_j) = \sum_{i=1}^{n} a_i \omega_i(v_j) = \sum_{i=1}^{n} a_i \delta_{ij} = a_j,$$

ou seja, $\omega = a_{p+1}\omega_{p+1} + ... + a_n\omega_n$, como queríamos.

Corolário 4.3.1 Nas hipóteses da proposição 4.3, temos $(U^0)^0 = U$ (supondose identificados $V \in V^{**}$).

Dem. $(U^0)^0 = \{v \in V; <\omega, v >= 0 \ \forall \omega \in U^0\}$. Portanto, se $u \in U$, então $u \in (U^0)^0$, isto é, $U \subset (U^0)^0$.

Por outro lado,

$$dim (U^0)^0 = dim V^* - dim U^0 = dim V - dim U^0 = dim U,$$

donde $U=(U^0)^0$.

Obs. Se $\omega \in V^*$, $\omega \neq 0$, o subespaço de V, $H = \{v \in V; \langle \omega, v \rangle = 0\}$, tem dimensão igual a $(\dim V - 1)$ e chama-se um <u>hiperplano</u> de V.

Exemplo 4.2.1 Seja W o subespaço de \mathbb{R}^4 gerado pelos vetores $v_1 = (1, 2, 0, 1)$, $v_2 = (2, 1, 3, 0)$ e $v_3 = (0, 3, -3, 2)$. Vamos achar uma base para o anulador W^0 .

Se $(v, y, z, t) \in \mathbb{R}^4$ e $\omega \in (\mathbb{R}^4)^*$, então $\omega(x, y, z, t) = ax + by + cz + dt$, onde $a, b, c, d \in \mathbb{R}$, $e \omega \in W^0$ se, e so se, $\omega(v_1) = \omega(v_2) = \omega(v_3) = 0$, ou seja, se e só se,

$$\begin{cases} a+2b+d=0 \\ 2a+b+3c=0 \\ 3b-3c+2d=0 \end{cases} se, \ e \ so \ se, \ \begin{cases} a=-2c+\frac{d}{3} \\ b=c-\frac{2d}{3} \end{cases}.$$

Resulta que ω_1 e ω_2 , tais que $\omega_1(x,y,z,t) = -2x + y + z$, $\omega_2(x,y,z,t) =$ x-2y+3t, formam uma base de W^0 (obtidas fazendo-se $c=1,\ d=0$ e c = 0, d = 3, respectivamente).

Exemplo 4.2.2 Seja V um espaço vetorial de dimensão n sobre K. Todo subespaço W de V é a interseção de um número finito de hiperplanos de V. De fato, seja $(v_1,...,v_n)$ base de V tal que $(v_1,...,v_n)$ seja base de W. Seja $(\omega_1,...,\omega_n)$ a base dual de $(v_1,...,v_n)$. Então:

$$v \in W \Leftrightarrow \omega_{p+1}(v) = \dots = \omega_n(v) = 0,$$

ou seja, $W = \bigcap_{j=p+1}^{n} H_j$, onde $H_j = \mathcal{N}(\omega_j)$ é o hiperplano definido por ω_j .

Exercícios

- 1. Seja $W \subset \mathbb{R}^5$ o subespaço gerado pelos vetores $\omega_1 = (2, -2, 3, 4, -1), \ \omega_2 =$ (-1,1,2,5,2) $\omega_3=(0,0,-1,-2,3)$ e $\omega_4=(1,-1,2,3,0)$. Ache uma base para o anulador W^0 de W.
- 2. Sejam V um espaço vetorial de dimensão finita sobre K, U e W subespaços de V. Prove:

(a)
$$(U+W)^0 = U^0 \cap W^0$$
; $(U\cap W)^0 = U^0 + W^0$
(b) $V = U \oplus W \Rightarrow V^* = U^0 \oplus W^0$.

(b)
$$V = U \oplus W \Rightarrow V^* = U^0 \oplus W^0$$
.

Transposição 4.3

Sejam V, W espaços vetoriais sobre K e $T:V\longrightarrow W$ linear. Se $\beta\in W^*$ então $\beta \circ T : V \longrightarrow K$ é linear, isto é, $\beta \circ T \in V^*$.

Definição 4.3 A aplicação $T^t: W^* \longrightarrow V^*$ definida por $T^t(\beta) = \beta \circ T$ para toda $\beta \in W^*$, chama-se a transposta de T:

Assim, $\langle T^t(\beta), v \rangle = \langle \beta, T(v) \rangle$ para todo $v \in V$.

Proposição 4.4 A transposta $T^t: W^* \longrightarrow V^*$ da aplicação linear $T: V \longrightarrow W$, é uma aplicação linear.

Dem.

$$T^{t}(\alpha + \beta) = (\alpha + \beta) \circ T = \alpha \circ T + \beta \circ T = T^{t}(\alpha) + T^{t}(\beta)$$
$$T^{t}(\alpha\beta) = (\alpha\beta) \circ T = \alpha(\beta \circ T) = \alpha T^{t}\beta,$$

quaisquer que sejam $\alpha, \beta \in W^*$ e $a \in K$.

Exemplo 4.3.1 Se V = W e $T = id_V$, então:

$$(id_V)^t(\beta) = \beta \circ id_V = \beta \ para \ todo \ \beta \in V^*,$$

ou seja, $(id_V)^t = id_{V^*}$.

Proposição 4.5 Sejam U, V, W espaços vetoriais sobre K.

- (a) A aplicação $T \in \mathcal{L}(U, V) \longmapsto T^t \in \mathcal{L}(V^*, U^*)$ é linear.
- (b) Se $T \in \mathcal{L}(U, V)$ e $S \in \mathcal{L}(V, W)$, então $(S \circ T)^t = T^t \circ S^t$. Além disso, se T é bijetora então T^t é bijetora e $(T^{-1})^t = (T^t)^{-1}$.
- (c) Se U e V têm dimensão finita, então $T \mapsto T^t$ é um isomorfismo entre $\mathcal{L}(U,V)$ e $\mathcal{L}(V^*,U^*)$ e $(T^t)^t = T$ (supondo-se identificados U com U^{**} e V com V^{**}).

Dem. (a) Sejam $L, T \in \mathcal{L}(U, V)$ $e \ a \in K$. Para todo $\beta \in V^*$ temos: $(L+T)^t(\beta) = \beta \circ (L+T) = \beta \circ L + \beta \circ T = L^t(\beta) + T^t(\beta)$ $(aT)^t(\beta) = \beta \circ (aT) = a(\beta \circ T) = aT^t(\beta)$ Resulta: $(L+T)^t = L^t + T^t \ e \ (aT)^t = a \cdot T^t$.

(b) $(S \circ T)^t(\omega) = \omega \circ (S \circ T) = (\omega \circ S) \circ T = T^t(\omega \circ S) = T^t(S^t(\omega)) = (T^t \circ S^t)(\omega)$ para todo $\omega \in W^*$. Logo: $(S \circ T)^t = T^t \circ S^t$. Se $T \notin um$ isomorfismo temos $T \circ T^{-1} = id_V$, $T^{-1} \circ T = id_V$ e, como $(id_V)^t = id_{V^*}$, vem:

$$T^t \circ (T^{-1})^t = id_{U^*} \ e \ (T^{-1})^t \circ T^t = id_{V^*},$$

donde resulta que $(T^t)^{-1} = (T^{-1})^t$.

(c) Se U e V têm dimensão finita, podemos identificar U com U^{**} e V com V^{**}, de modo que $(T^t)^t \in \mathcal{L}(U, V)$. Se $u \in U$ e $\beta \in V^*$, então:

$$\langle (T^t)^t u, \beta \rangle = \langle u, T^t(\beta) \rangle = \langle \beta, T(u) \rangle,$$

donde $(T^t)^t = T$. Resulta que $T \longmapsto T^t$ é sobrejetora e, como $\mathcal{L}(U,V)$ e $\mathcal{L}(V^*,U^*)$ têm a mesma dimensão finita, esta aplicação é um isomorfismo.

Proposição 4.6 Seja $T: V \longrightarrow W$ linear. Então: $(Im \ T)^0 = \mathcal{N}(T^t)$.

Dem. $\omega \in (Im\ T)^0 \Leftrightarrow <\omega, T(v)>=0\ \forall v\in V\Leftrightarrow < v, T^t(\omega)>=0$ $\forall v\in V\Leftrightarrow T^t(\omega)=0\Leftrightarrow \omega\in\mathcal{N}(T^t).$

Proposição 4.7 Sejam V e W espaços vetoriais de dimensão finita sobre K e $T:V\longrightarrow W$ linear. Então:

$$posto(T) = posto(T^t).$$

Dem. Sejam $n = \dim V$, $p = \dim W$. Como $(\operatorname{Im} T)^0 = \mathcal{N}(T^t)$ temos: $\operatorname{posto}(T^t) = \dim W^* - \dim \mathcal{N}(T^t) = \dim W^* - \dim (\operatorname{Im} T)^0 = = \dim W^* - (\dim W^* - \dim \operatorname{Im} T) = \dim \operatorname{Im} T = \operatorname{posto}(T)$.

Proposição 4.8 Sejam V e W espaços vetoriais de dimensão finita sobre K, $\mathcal{E} = (v_1, ..., v_n)$ base de V, $\mathcal{F} = (w_1, ..., w_m)$ base de W, $\mathcal{E}^* = (\alpha_1, ..., \alpha_n)$ e $\mathcal{F}^* = (\beta_1, ..., \beta_m)$ as bases duais correspondentes. Se $T: V \longrightarrow W$ é linear

 $e\left[T\right]_{\mathcal{F}}^{\mathcal{E}}=A=(a_{ij}),\ ent\tilde{a}o\left[T^{t}\right]_{\mathcal{E}^{*}}^{\mathcal{F}^{*}}=B=(b_{ij})\ \acute{e}\ tal\ que\ b_{ij}=a_{ji}\ para\ todo\ par\ (i,j).$

Dem. Temos:

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i \ e \ \beta_j \circ T = T^t(\beta_j) = \sum_{i=1}^{n} b_{ij} \alpha_i.$$

Então:

$$\beta_j(T(v_k)) = \sum_{i=1}^m a_{ik}\beta_j(w_i) = \sum_{i=1}^m a_{ik}\delta_{ji} = a_{jk}.$$

E:

$$\beta_j(T(v_k)) = \sum_{i=1}^n b_{ij}\alpha(v_k) = \sum_{i=1}^n b_{ij}\delta_{ik} = b_{kj}.$$

Portanto:

$$a_{jk} = b_{kj}$$
 $(j = 1, ..., m; k = 1, ..., n).$

Definição 4.4 Seja $A = (a_{ij})$ $m \times n$ sobre K. A matriz $B = (b_{ij})$ $n \times m$ sobre K, tal que $b_{ij} = a_{ji}$ para todo par (i, j), chama-se a <u>transposta</u> de A, anotada $B = A^t$.

A proposição 4.8 nos diz que
$$[T^t]_{\mathcal{E}^*}^{\mathcal{F}^*} = ([T]_{\mathcal{F}}^{\mathcal{E}})^t$$
.

Corolário 4.8.1 (a) Se $A, B \in M_{m \times n}(K)$ e $c \in K$, então:

$$(A+B)^t = A^t + B^t$$

$$(cA)^t = c \cdot A^t$$

(b) Se $A \in M_{m \times n}(K)$ e $B \in M_{n \times p}(K)$, então:

$$(AB)^t = B^t \cdot A^t$$

(c) Se $A \in M_n(K)$ é invertível, então:

$$(A^{-1})^t = (A^t)^{-1}$$

(d) Se $A \in M_{m \times n}(K)$, então:

$$posto(A) = posto(A^t),$$

ou seja, o número de vetores-coluna de A linearmente independentes coincide com o número de vetores-linha de A linearmente independentes.

Dem. Imediata.

4.4 Exercícios do Capítulo 4

1. Em $V = \mathbb{R}^4$ consideremos o subespaço W gerado por

$$(1,1,1,1)$$
; $(-1,1,-2,2)$; $(-1,5,-4,8)$ $e(-3,1,-5,3)$.

- (a) Ache a dimensão de W e a dimensão de W^0 .
- (b) Mostre que a imagem de $v = (x, y, z, t) \in V$ por $f \in W^0$ pode se escrever f(v) = 4ax + 4by (3a + b)z (a + 3b)t.
- (c) Ache uma base (f_1, f_2) de W^0 , e escreva f_1 e f_2 na base dual da base canônica de V.
- 2. Seja V um espaço vetorial de dimensão finita sobre K. Prove que $f_1,...,f_p \in V^*$ são LI se, e só se, dados $\alpha_1,...,\alpha_p \in K$ quaisquer, existe $v \in V$ tal que $f_i(v) = \alpha_i, \ 1 \le i \le p$.
- 3. Sejam $\mathcal{E} = (e_1, ..., e_n)$ base do espaço vetorial V sobre K, $\mathcal{E}^* = (e_1^*, ..., e_n^*)$ a base dual de \mathcal{E} e $\varphi : V \longrightarrow V^*$ o isomorfismo definido por $\varphi(e_i) = e_i^*$, $1 \le i \le n$. Ache todos os automorfismos $u : V \longrightarrow V$ tais que $\langle x, \varphi(y) \rangle = \langle u(x), (\varphi \circ u)(y) \rangle$ para $x, y \in V$ quaisquer.

Capítulo 5

Determinantes

Obs. Neste capítulo, por motivos técnicos, vamos supor que a característica do corpo K é diferente de 2; por exemplo podemos tomar $K = \mathbb{R}$ ou $K = \mathbb{C}$.

5.1 Aplicações r-lineares alternadas

Definição 5.1 Sejam V e W espaços vetoriais sobre K. Uma aplicação f: $V \times \mathbb{Z} \times V \longrightarrow W$ é r-linear se:

(a)
$$f(v_1, ..., v_i + u_i, ..., v_r) = f(v_1, ..., v_i, ..., v_r) + f(v_1, ..., u_i, ..., u_r)$$

(b) $f(v_1, ..., av_i, ..., v_r) = a \cdot f(v_1, ..., v_i, ..., v_r)$

quaisquer que sejam $v_1,...,v_i,u_i,...,v_r \in V, \ a \in K \ e \ 1 \le i \le r.$

O conjunto de todas as aplicações r-lineares de V em W, representado por $\mathcal{L}_r(V,W)$, munido das leis naturais de adição e multiplicação por escalar, é um espaço vetorial sobre K. Por convenção, $\mathcal{L}_0(V,W) = W$ e $\mathcal{L}_1(V,W) = \mathcal{L}(V,W)$.

Definição 5.2 $f \in \mathcal{L}_r(V, W)$ é <u>alternada</u> se $f(v_1, ..., v_r) = 0$ toda vez que dois dos vetores v_i são iguais.

As aplicações r-lineares alternadas formam o subespaço $\mathcal{A}_r(V, W)$ de $\mathcal{L}_r(V, W)$. Convencionamos que $\mathcal{A}_0(V, W) = W$ e $\mathcal{A}_1(V, W) = \mathcal{L}(V, W)$.

Definição 5.3 $f \in \mathcal{L}_r(V, W)$ é <u>antissimétrica</u> se $f(v_1, ..., v_i, ..., v_j, ..., v_r) = -f(v_1, ..., v_j, ..., v_i, ...v_r), 1 \le i, j \le r, i \ne j.$

No caso em que W=K, os elementos de $\mathcal{L}(V,W)$ são chamados de formas $\underline{r\text{-lineares}}$. Em particular, $\mathcal{L}_1(V,W)=V^*$ é o dual de V. Os elementos de $\overline{\mathcal{A}_r(V,K)}$, isto é, as formas r-lineares alternadas, são também chamados de r-covetores.

Proposição 5.1 $f \in \mathcal{L}_r(V, W)$ é alternada se, e só se, f é antissimétrica.

Dem. Se $f \in \mathcal{L}_r(V, W)$ é alternada, então

$$0 = f(v_1, ..., v + u, ..., v + u, ..., v_r) =$$

$$= f(v_1, ..., v, ..., v, ..., v_r) + f(v_1, ..., u, ..., u, ..., v_r) +$$

$$+ f(v_1, ..., v, ..., u, ..., v_r) + f(v_1, ..., u, ..., v, ..., v_r) =$$

$$= f(v_1, ..., v, ..., u, ..., v_r) + f(v_1, ..., u, ..., v, ..., v_r),$$

donde resulta que f é antissimétrica.

Reciprocamente, se f é antissimétrica então

$$f(v_1,...,v,...,v,...,v_r) = -f(v_1,...,v,...,v,...,v_r)$$

donde

 $2f(v_1,...,v,...,v,...,v_r) = 0$ e, $como\ 2 \neq 0$ em K, $resulta\ f(v_1,...,v,...,v,...,v_r) = 0$, $isto\ \acute{e},\ f\ \acute{e}\ alternada$.

Definição 5.4 $Uma \ \underline{permutação} \ de \ um \ conjunto \ X \'e \ toda \ bijeção \ de \ X \ sobre \ si \ mesmo.$

O conjunto das permutações de X, munido das leis de composição de aplicações, é um grupo chamado grupo simétrico de X ou grupo de permutações de X, anotado S_X . Se $X = \{1, 2, ..., n\} = I_n$, representamos S_X por S_n ; S_n tem n! elementos.

Definição 5.5 Uma <u>transposição</u> de S_n é uma permutação τ tal que existem inteiros $i \neq j$, $i \leq i, j \leq n$, para os quais $\tau(i) = j$, $\tau(j) = i$ e $\tau(k) = k$ para $k \neq i$, $k \neq j$, ou seja, τ troca i e j mantendo os demais elementos fixos. É claro que $\tau^2 = id$ e $\tau^{-1} = \tau$.

Proposição 5.2 Toda permutação $\sigma \in \mathcal{S}_n$ pode ser expressa como um produto de transposições.

Dem. (por indução) Se n=1, não há nada a provar. Suponhamos n>1 e admitamos o teorema verdadeiro para (n-1). Se $\sigma \in \mathcal{S}_n$ e $\sigma(n)=n$, então a restrição $\sigma'=\sigma|_{I_{n-1}}$ pertence a \mathcal{S}_{n-1} . Pela hipótese de indução, existem transposições $\tau'_1, ..., \tau'_k \in \mathcal{S}_{n-1}$ tais que $\sigma'=\tau'_1...\tau'_k$. Para cada $i, i \leq i \leq k$, seja $\tau_i \in \mathcal{S}_n$ a transposição tal que $\tau_i|_{I_{n-1}}=\tau'_i$ e $\tau_i(n)=n$. Então, é claro que $\sigma=\tau_1...\tau_k$. Se $\sigma \in \mathcal{S}_n$ e $\sigma(n)=k \neq n$, seja $\tau \in \mathcal{S}_n$ a transposição tal que $\tau(k)=n$, $\tau(n)=k$. Então, $\tau\sigma=\tau_1...\tau_k$, isto é, $\sigma=\tau\tau_1...\tau_k$.

Proposição 5.3 A cada permutação $\sigma \in \mathcal{S}_n$ é possível associar um sinal, 1 ou -1, anotado $\varepsilon(\sigma)$, tal que:

- (1) se τ é uma transposição, então $\varepsilon(\tau) = -1$
- (2) se $\sigma, \rho \in \mathcal{S}_n$, então $\varepsilon(\sigma\rho) = \varepsilon(\sigma) \cdot \varepsilon(\rho)$.

Dem. Seja $\sigma \in \mathcal{S}_n$ e consideremos os números

$$\pi_n = \prod_{1 \le i < j \le n} (j - i) = (2 - 1) [(3 - 1)(3 - 2)] ... [(n - 1)(n - 2)...2 \cdot 1]$$

$$e \ \sigma(\pi_n) = \prod_{1 \le i < j \le n} \left[\sigma(j) - \sigma(i) \right].$$

Como σ é bijetora, cada fator de π_n , a menos do sinal, aparece em $\sigma(\pi_n)$ uma e uma só vez, e vemos que $\sigma(\pi_n) = \pm \pi_n$. Se $\tau \in \mathcal{S}_n$ é uma transposição, é claro que $(\tau \sigma)(\pi_n) = -\sigma(\pi_n)$.

Logo, se $\sigma = \tau_1...\tau_k$ é um produto de transposições, temos $\sigma(\pi_n) = (-1)^k \pi_n$, donde $(-1)^k = \frac{\sigma(\pi_n)}{\pi_n}$, o que mostra que a paridade do inteiro k só depende de σ e não da sua expressão como produto de transposições. Definimos o sinal de σ por $\varepsilon(\sigma) = (-1)^k$. Logo: $\sigma(\pi_n) = \varepsilon(\sigma)\pi_n$. Para uma transposição τ , $\tau(\pi_n) = -\pi_n$, donde $\varepsilon(\tau) = -1$, o que prova (1).

Se $\rho \in \mathcal{S}_n$, temos $(\sigma \rho)(\pi_n) = (\tau_1...\tau_k \rho)(\pi_n) = (-1)^k \rho(\pi_n) = \varepsilon(\sigma)\rho(\pi_n) = \varepsilon(\sigma)\varepsilon(\rho)\pi_n$.

Por outro lado, $(\sigma\rho)(\pi_n) = \varepsilon(\sigma\rho) \cdot \pi_n$. Resulta: $\varepsilon(\sigma\rho) = \varepsilon(\sigma) \cdot \varepsilon(\rho)$, o que prova (2).

Corolário 5.3.1 Se $\sigma \in \mathcal{S}_n$ se exprime como produto de transposições de duas maneiras distintas, $\sigma = \tau_1...\tau_k = \tau'_1...\tau'_s$, então k e s têm a mesma paridade (pois $\varepsilon(\sigma) = (-1)^k = (-1)^s$).

Definição 5.6 Seja $\sigma \in \mathcal{S}_n$. Se $\varepsilon(\sigma) = 1$ dizemos que σ é uma permutação par; se $\varepsilon(\sigma) = -1$ dizemos que σ é uma permutação impar.

Se uma permutação <u>par</u> se escreve como produto de transposições, $\sigma = \tau_1...\tau_k$, é claro que k é um número par, e reciprocamente.

Proposição 5.4 Sejam V e W espaços vetoriais sobre K e $f \in \mathcal{L}_r(V, W)$. f é antissimétrica se, e só se,

$$f(v_{\sigma(1)},...,v_{\sigma(r)}) = \varepsilon(\sigma)f(v_1,...,v_r)$$

quaisquer que sejam $v_1, ..., v_r \in V$ e $\sigma \in \mathcal{S}_r$.

Dem. Por definição, $f \in \mathcal{L}_r(V, W)$ é antissimétrica se, e só se,

$$f(v_{\tau(1)}, ..., v_{\tau(r)}) = \varepsilon(\tau) f(v_1, ..., v_r)$$

qualquer que seja a transposição $\tau \in \mathcal{S}_r$.

Se $\sigma \in \mathcal{S}_r$, podemos escrever σ como um produto de transposições: $\sigma = \tau_1...\tau_k$. Então, f é antissimétrica se, e só se,

$$\begin{split} f(v_{\sigma(1)},...,v_{\sigma(r)}) &= f(v_{\tau_1...\tau_k(1)},...,v_{\tau_1...\tau_k(r)}) = \\ &= \varepsilon(\tau_k) f(v_{\tau_1...\tau_{k-1}(1)},...,v_{\tau_1...\tau_{k-1}(r)}) = ... = \\ &= \varepsilon(\tau_k)...\varepsilon(\tau_1) f(v_1,...,v_r) = \varepsilon(\sigma) f(v_1,...,v_r). \end{split}$$

Proposição 5.5 Sejam V um espaço vetorial sobre K e $f \in \mathcal{A}_r(V, K)$. Se $v_1, ..., v_r \in V$ são linearmente dependentes (LD), então $f(v_1, ..., v_r) = 0$.

Dem. Existem escalares $a_1, ..., a_r$, não todos nulos, tais que $a_1v_1 + ... + a_rv_r = 0$. Se, por exemplo, $a_i \neq 0$, temos:

$$0 = f(v_1, ..., v_{i-1}, 0, v_{i+1}, ..., v_r) =$$

$$= f(v_1, ..., v_{i-1}, \sum_{k=1}^r a_k v_k, v_{i+1}, ..., v_r) =$$

$$= a_i f(v_1, ..., v_{i-1}, v_i, v_{i+1}, ..., v_r),$$

donde $f(v_1, ..., v_r) = 0$.

Proposição 5.6 Se $dim_K V = n$ então $dim_K A_n(V, K) = 1$.

Dem. Para maior clareza, comecemos com o caso n = 2. Sejam (e_1, e_2) base de V, $v_1 = a_{11}e_1 + a_{21}e_2$, $v_2 = a_{12}e_1 + a_{22}e_2$. Se $f \in \mathcal{A}_2(V, K)$, então:

$$f(v_1, v_2) = f(a_{11}e_1 + a_{21}e_2, a_{12}e_1 + a_{22}e_2) =$$

$$= a_{11}a_{12}f(e_1, e_1) + a_{11}a_{22}f(e_1, e_2) + a_{21}a_{12}f(e_2, e_1) + a_{21}a_{22}f(e_2, e_2) =$$

$$= (a_{11}a_{22} - a_{12}a_{21})f(e_1, e_2).$$

Se $D: V \times V \longrightarrow K$ é definida por $D(v_1, v_2) = a_{11}a_{22} - a_{12}a_{21}$, é fácil ver que $D \in \mathcal{A}_2(V, K)$. Além disso, $D(e_1, e_2) = 1$. O cálculo acima nos mostra que f = aD $(a = f(e_1, e_2))$, ou seja, que D é uma base de $\mathcal{A}_2(V, K)$.

Consideremos agora o caso geral. Seja $(e_1, ..., e_n)$ uma base de V. Se $v_j = \sum_{i=1}^n a_{ij}e_i$ e $f \in \mathcal{A}_n(V, K)$, temos:

$$f(v_1, ..., v_n) = f\left(\sum_{i_1=1}^n a_{i_1 1} e_{i_1}, ..., \sum_{i_n=1}^n a_{i_n n} e_{i_n}\right) =$$

$$= \sum_{i_1, ..., i_n=1}^n a_{i_1 1} ... a_{i_n n} \cdot f(e_{i_1}, ..., e_{i_n}).$$

Como f é alternada temos que $f(e_{i_1},...,e_{i_n})=0$ sempre que $i_j=i_k$ com $j\neq k$, de forma que teremos na soma acima apenas as parcelas onde $\{i_1,...,i_n\}$ for uma permutação de $\{1,...,n\}$. Assim,

$$f(v_1, ..., v_n) = \sum_{\sigma \in \mathcal{S}_n} a_{\sigma(1)1} ... a_{\sigma(n)n} \cdot f(e_{\sigma(1)}, ..., e_{\sigma(n)}) =$$

$$= f(e_1, ..., e_n) \cdot \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1)1} ... a_{\sigma(n)n},$$

soma de n! parcelas, cada uma correspondente a uma permutação de S_n .

Seja
$$D: V \times \mathbb{N} \times V \longrightarrow K$$
 definida por $D(v_1, ..., v_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1)1} ... a_{\sigma(n)n}$.

Então:

$$(a) \ \underline{D} \ \underline{e} \ \underline{n}\text{-}linear: \ D(v_1, ..., v'_i + cv''_i, ..., v_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1)} 1 ... (a'_{\sigma(i)i} + ca''_{\sigma(i)i}) ... a_{\sigma(n)n} = D(v_1, ..., v'_i, ..., v_n) + cD(v_1, ..., v''_i, ..., v_n).$$

(b) D é antissimétrica: se i < j e $v_i = v_j$, temos:

$$D(v_1, ..., v_i, ..., v_j, ..., v_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1)1} ... a_{\sigma(i)i} ... a_{\sigma(j)j} ... a_{\sigma(n)n}.$$

Seja τ a transposição de S_n tal que $\tau(i) = j$, $\tau(j) = i$ e seja $\sigma \tau = \alpha$. Então, $\varepsilon(\alpha) = -\varepsilon(\sigma)$ e

$$\begin{split} D(v_1,...,v_i,...,v_j,...,v_n) &= \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma\tau(1)1}...a_{\sigma\tau(j)i}...a_{\sigma\tau(i)j}...a_{\sigma\tau(n)n} = \\ &= -\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\alpha) a_{\alpha(1)1}...a_{\alpha(j)i}...a_{\alpha(i)j}...a_{\alpha(n)n} = \\ &= -D(v_1,...,v_j,...,v_i,...,v_n). \end{split}$$

(c)
$$D(e_1,...,e_n)=1$$
.

Como
$$e_j = \sum_{i=1}^n \delta_{ij} e_i$$
, temos:

$$D(e_1, ..., e_n) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \delta_{\sigma(1)1} ... \delta_{\sigma(n)n} = \varepsilon(id) \delta_{11} ... \delta_{nn} = 1.$$

Logo, se $f \in \mathcal{A}_n(V, K)$ temos:

 $f(v_1,...,v_n) = f(e_1,...,e_n)D(v_1,...,v_n)$, ou seja, f = aD, onde $a = f(e_1,...,e_n)$. Portanto, D gera o espaço vetorial $\mathcal{A}_n(V,K)$ e dim $\mathcal{A}_n(V,K) = 1$.

Obs. Dado $a \in K$, f = aD é a única forma n-linear alternada em V tal que $f(e_1, ..., e_n) = a$.

Corolário 5.6.1 Sejam V um espaço vetorial de dimensão n sobre K e $f \in \mathcal{A}_n(V,K), f \neq 0$. Os vetores $v_1,...,v_n \in V$ são LD se, e só se, $f(v_1,...,v_n)=0$.

Dem. Já vimos, na proposição 5.5, que se $v_1, ..., v_n$ são LD então $f(v_1, ..., v_n) = 0$. Reciprocamente, suponhamos que $v_1, ..., v_n$ sejam LI, ou seja, uma base de V. Seja $D \in \mathcal{A}_n(V, K)$ tal que $D(v_1, ..., v_n) = 1$. Então:

$$f = f(v_1, ..., v_n) \cdot D$$

donde $f(v_1, ..., v_n) \neq 0$ (pois $f \neq 0$).

5.2 Determinante de um Operador Linear

Se V e W são espaços vetoriais sobre K e $T:V\longrightarrow W$ é linear, então T induz uma aplicação linear $T^*:\mathcal{A}_r(W,K)\longrightarrow \mathcal{A}_r(V,K)$ definida por

$$(T^*f)(v_1, ..., v_r) = f(Tv_1, ..., Tv_r),$$

onde $f \in \mathcal{A}_r(W, K)$ e $v_1, ..., v_r \in V$.

Se $L: V \longrightarrow W$ e $T: U \longrightarrow V$ são lineares, então $(L \circ T)^* = T^* \circ L^*$ já que $(L \circ T)^* f(u_1, ..., u_r) = f(LTu_1, ..., LTu_r) = L^* f(Tu_1, ..., Tu_r) = T^*(L^* f)(u_1, ..., u_r)$ quaisquer que sejam $u_1, ..., u_r \in U$ e $f \in \mathcal{A}_r(W, K)$.

Definição 5.7 Sejam V um espaço vetorial de dimensão n sobre K e T: $V \longrightarrow V$ linear. Como dim $\mathcal{A}_n(V,K) = 1$, existe um único escalar \underline{a} tal que $T^*(f) = af$ para todo $f \in \mathcal{A}_n(V,K)$. Dizemos que este escalar \underline{a} é o determinante do operador T, e escrevemos $a = \det T$. Assim, $\det \overline{T}$ é o escalar tal que

$$f(Tv_1,...,Tv_n) = \det T \cdot f(v_1,...,v_n)$$

quaisquer que sejam $v_1, ..., v_n \in V$ e $f \in \mathcal{A}_n(V, K)$.

Proposição 5.7 Seja V um espaço vetorial de dimensão n sobre K.

- (1) Se $I: V \longrightarrow V$ é a identidade, então det I = 1.
- (2) Se $L, T \in \mathcal{L}(V)$, então $det(L \circ T) = det L \cdot det T$.
- (3) $T \in \mathcal{L}(V)$ é invertível $\Leftrightarrow det T \neq 0$.

Dem. Para todo $f \in \mathcal{A}_n(V, K)$ e $v_1, ..., v_n \in V$ arbitrários, temos:

- (1) $f(Iv_1,...,Iv_n) = \det I \cdot f(v_1,...,v_n)$, donde $\det I = 1$.
- (2) $det(L \circ T) \cdot f = (L \circ T)^* f = T^*(L^* f) = det \ T \cdot (L^* f) = det \ T \cdot det \ L \cdot f$, donde $det(L \circ T) = det \ L \cdot det \ T$.
- (3) Se T é invertível então det $T \cdot \det T^{-1} = \det I = 1$, donde det $T \neq 0$. Reciprocamente, seja det $T \neq 0$. Se $(v_1, ..., v_n)$ é base de V, tomemos $f \in \mathcal{A}_n(V, K)$ tal que $f(v_1, ..., v_n) \neq 0$. Então,

$$f(Tv_1, ..., Tv_n) = det \ T \cdot f(v_1, ..., v_n) \neq 0.$$

Pelo corolário da proposição 5.6, $(Tv_1, ..., Tv_n)$ é base de V e, portanto, T é invertível.

Definição 5.8 Seja $A = (a_{ij})$ uma matriz em K, quadrada de ordem n. Se $T_A : K^n \longrightarrow K^n$ é o operador linear associado a A, definimos o <u>determinante</u> de A, det A, como sendo det T_A .

Sejam $\mathcal{E} = (e_1, ..., e_n)$ a base canônica de K^n e D a única forma n-linear alternada tal que $D(e_1, ..., e_n) = 1$. Então:

$$det \ A = D(T_A(e_1), ..., T_A(e_n)) = D(A_1, ..., A_n),$$

onde $A_1, ..., A_n$ são os vetores-coluna de A.

Vimos, na proposição 5.6, que
$$D(A_1, ..., A_n) = D\left(\sum_{i=1}^n a_{i1}e_i, ..., \sum_{i=1}^n a_{in}e_i\right) =$$

 $= \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1)1} ... a_{\sigma(n)n}, \text{ que \'e a definição clássica de det } A.$

Definição 5.9 Sejam V um espaço vetorial sobre K e $\mathcal{E} = (e_1, ..., e_n)$ uma base de V. Dada uma sequência de n vetores, $(v_1, ..., v_n)$, chama-se <u>determinante</u> desses vetores em relação à base \mathcal{E} , o escalar $\det_{\mathcal{E}}(v_1, ..., v_n) = D(v_1, ..., v_n)$.

Se
$$v_j = \sum_{i=1}^n a_{ij}e_i$$
, $1 \le j \le n$, então a matriz $A = (a_{ij})$ é $n \times n$ e $det_{\mathcal{E}}(v_1, ..., v_n) = det A$.

Exemplo 5.2.1
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$
 pois a permutação $\{1, 2\} \longrightarrow (1, 2)$ é par e $\{1, 2\} \longrightarrow (2, 1)$ é impar.

Exemplo 5.2.2 Dentre as
$$3! = 6$$
 permutações de $\{1, 2, 3\}$ temos 3 que são

$$\{1,2,3\} \longrightarrow (1,2,3)$$
 $\{1,2,3\} \longrightarrow (1,3,2)$ pares, a saber: $\{1,2,3\} \longrightarrow (2,3,1)$ e 3 que são ímpares: $\{1,2,3\} \longrightarrow (3,2,1)$

pares, a saber:
$$\{1,2,3\} \longrightarrow (2,3,1)$$
 e 3 que são impares: $\{1,2,3\} \longrightarrow (3,2,1)$. $\{1,2,3\} \longrightarrow (3,1,2)$ $\{1,2,3\} \longrightarrow (2,1,3)$

$$Portanto: \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{11}a_{32}a_{23} - a_{11}a_{22}a_{23} - a_{11}a_{22}a_{23$$

 $-a_{31}a_{22}a_{13} - a_{21}a_{12}a_{33}$, e temos a seguinte regra prática (regra de Sarrus):

Repetimos as duas primeiras linhas do determinante; os produtos "paralelos" à diagonal principal são precedidos do sinal + e aqueles "paralelos" à diagonal secundária são precedidos do sinal —.

Obs. Para os determinantes de ordem superior a 3 não temos regras práticas de cálculo; eles serão calculados pelo processo da seção 5.3 a seguir.

Proposição 5.8 Seja A uma matriz de ordem n. Então: det $A = \det A^t$.

Dem. Se
$$A = (a_{ij})$$
 então $A^t = (a'_{ij})$ com $a'_{ij} = a_{ji}$. Temos:

$$\det A^t = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a'_{\sigma(1)1} ... a'_{\sigma(n)n} = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{1\sigma(1)} ... a_{n\sigma(n)}.$$

Mas, $a_{1\sigma(1)}...a_{n\sigma(n)} = a_{\sigma^{-1}(1)1}...a_{\sigma^{-1}(n)n}$ $e \ \varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$. Portanto,

$$\det A^t = \sum_{\sigma^{-1} \in \mathcal{S}_n} \varepsilon(\sigma^{-1}) a_{\sigma^{-1}(1)1} \dots a_{\sigma^{-1}(n)n} = \det A$$

pois se σ percorre S_n , σ^{-1} também percorre S_n .

Obs. 1 A proposição 5.8 mostra que det A é também o determinante dos vetores-linha de A.

Obs. 2 Como a aplicação $(v_1, ..., v_n) \mapsto det(v_1, ..., v_n)$ é n-linear alternada, temos um certo número de propriedades que, para comodidade do leitor, são listadas abaixo:

- $(1) \det(v_1, ..., v'_i + cv''_i, ..., v_n) = \det(v_1, ..., v'_i, ..., v_n) + c \cdot \det(v_1, ..., v''_i, ..., v_n), \ c \in K$
- (2) Toda permutação $\sigma \in \mathcal{S}_n$ sobre as colunas (ou linhas) da matriz $A \in M_n(K)$ transforma det A em $\varepsilon(\sigma)$ det A. Em particular, toda transposição sobre as colunas (ou linhas) de A transforma det A em -det A.
- (3) Se uma coluna (ou linha) de A é nula, então det A = 0.
- (4) Se duas colunas (ou duas linhas) de A são proporcionais, então det A = 0.

(5)
$$det(v_1, ..., v_{i-1}, \sum_{k=1}^{n} a_k v_k, v_{i+1}, ..., v_n) = a_i \cdot det(v_1, ..., v_i, ..., v_n).$$

- (6) $det(v_1, ..., v_n) = 0 \Leftrightarrow v_1, ..., v_n \ \tilde{sao} \ LD.$
- (7) $\det I_n = 1$.
- (8) $det(AB) = det A \cdot det B$.
- (9) $\det A^t = \det A$.
- (10) $A \in invertivel \Leftrightarrow det A \neq 0$.

5.3 Desenvolvimento em relação aos elementos de uma coluna (ou de uma linha)

Definição 5.10 Seja $A = (a_{ij})$ uma matriz $n \times n$. Seja A_{ij} a matriz obtida de A pela supressão da linha \underline{i} e da coluna \underline{j} . A_{ij} é uma matriz de ordem (n-1), e det A_{ij} chama-se o menor associado ao elemento a_{ij} . O escalar $C_{ij} = (-1)^{i+j} \cdot \det A_{ij}$ chama-se o cofator de a_{ij} .

Proposição 5.9 O determinante de uma matriz quadrada é igual à soma dos produtos dos elementos de uma coluna qualquer pelos seus respectivos cofatores.

Dem. Seja $A = (a_{ij}) - n \times n - e$ sejam $A_1, ..., A_n$ seus vetores-coluna. A

 $função X \longmapsto det(A_1,...,X,...,A_n)$ onde X substitui A_i , é uma forma linear $\beta_i: K^n \longrightarrow K$. Logo,

$$\det A = \beta_j(A_j) = \beta_j(a_{1j}e_1 + \dots + a_{nj}e_n) = \sum_{i=1}^n a_{ij}\beta_{ij},$$

onde $(e_1,...,e_n)$ é a base canônica de K^n e $\beta_{ij} = \beta_j(e_i)$. Os escalares β_{ij} não dependem de A_i , isto é, de $a_{1i},...,a_{ni}$.

$$Temos: \ \beta_{ij} = \beta_{j}(e_{i}) = \begin{vmatrix} a_{11} & \dots & 0 & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \dots & 1 & \dots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & 0 & \dots & a_{nn} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

$$e \ \beta_{ij} = det \ \tilde{A}.$$

$$Portanto: \ \beta_{ij} = (-1)^{i-1} \begin{vmatrix} a_{i1} & \dots & 1 & \dots & a_{in} \\ a_{11} & \dots & 0 & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & 0 & \dots & a_{nn} \end{vmatrix} = (-1)^{i-1} (-1)^{j-1} \begin{vmatrix} 1 & a_{i1} & \dots & a_{in} \\ 0 & a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n1} & \dots & a_{nn} \end{vmatrix} = (-1)^{i+j} det \ B. \ onde \ a \ matriz \ B = (b_{ii}) \ foi \ obtida \ de \ \tilde{A} \ trocando-se \ suces-$$

 $=(-1)^{i+j}det B$, onde a matriz $B=(b_{ij})$ foi obtida de A trocando-se sucessivamente a linha i com as (i-1) linhas que a precedem em A e, a seguir, a coluna j sucessivamente com as (j-1) colunas que a antecedem. Observemos que o menor det B_{11} , de $b_{11} = 1$ em B coincide com o menor det A_{ij} de a_{ij} em A. Além disso, sabemos que det $B = \sum_{\sigma \in S_n} \varepsilon(\sigma) b_{\sigma(1)1} ... b_{\sigma(n)n}$.

Se $\sigma(1) \neq 1$, o termo correspondente é nulo, pois, neste caso, $b_{\sigma(1)1} = 0$, e det B reduz-se à soma

$$\det B = \sum_{\substack{\sigma \in \mathcal{S}_n \\ \sigma(1) = 1}} \varepsilon(\sigma) b_{\sigma(2)2} \dots b_{\sigma(n)n}.$$

Se σ' é a permutação de $\{2,..,n\}$ tal que $\sigma'(i)=\sigma(i)$ para $2\leq i\leq i$ n, os conjuntos ordenados $\{1, \sigma(2), ..., \sigma(n)\}\ e\ \{\sigma'(2), ..., \sigma'(n)\}\ apresentam$ o mesmo número de inversões, donde $\varepsilon(\sigma) = \varepsilon(\sigma')$ e, então, det B = $\sum_{\sigma' \in \mathcal{S}_{n-1}} \varepsilon(\sigma') b_{\sigma'(2)2} \dots b_{\sigma'(n)n} = \det B_{11}.$

Logo,

$$\beta_{ij} = (-1)^{i+j} det \ B = (-1)^{i+j} det \ B_{11} = (-1)^{i+j} det \ A_{ij} = C_{ij}$$

e, portanto,

$$\det A = \sum_{i=1}^{n} a_{ij} C_{ij}.$$

Definição 5.11 Dizemos que uma matriz $A = (a_{ij}) - n \times n - \acute{e}$ <u>triangular</u> <u>superior</u> se $a_{ij} = 0$ sempre que i > j. Analogamente se define uma matriz <u>triangular</u> inferior.

Corolário 5.9.1 O determinante de uma matriz triangular é igual ao produto de seus elementos diagonais.

Dem. De fato,

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1(n-1)} & a_{1n} \\ 0 & a_{22} & \dots & a_{2(n-1)} & a_{2n} \\ 0 & 0 & \dots & & & \\ \vdots & \vdots & \ddots & & & \\ 0 & 0 & \dots & a_{(n-1)(n-1)} & a_{(n-1)n} \\ 0 & 0 & \dots & 0 & a_{nn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & \dots & a_{2(n-1)} & a_{2n} \\ 0 & \dots & a_{3(n-1)} & a_{3n} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{vmatrix}$$

e, por indução:

$$det A = a_{11}a_{22}...a_{nn}.$$

Exemplo 5.3.1
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31}, como$$
 antes.

Exemplo 5.3.2
$$D_{n} = \begin{vmatrix} 1+x & 1 & \dots & 1 & 1 \\ 1 & 1+x & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 1+x & 1 \\ 1 & 1 & \dots & 1 & 1+x \end{vmatrix} = \begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1+x & \dots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 1 & 1+x \end{vmatrix} + \begin{vmatrix} x & 1 & \dots & 1 \\ 0 & 1+x & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x \end{vmatrix} + xD_{n-1}.$$

Logo:

$$D_n = x^{n-1} + x D_{n-1}$$

$$\begin{array}{l} Donde: \\ xD_{n-1} = x^2D_{n-2} + x^{n-1} \\ x^2D_{n-2} = x^3D_{n-3} + x^{n-1} \\ \vdots \\ x^{n-2}D_2 = x^{n-1}D_1 + x^{n-1} \\ x^{n-1}D_1 = x^{n-1}(1+x) = x^{n-1} + x^n. \\ Somando\ estas\ n\ igualdades,\ obtemos: \end{array}$$

$$D_n = x^n + nx^{n-1}.$$

Seja $A = (a_{ij}) - n \times n$. Vimos que A é invertível se existe $B - n \times n$ – tal que $AB = BA = I_n$ (Notação: $B = A^{-1}$) e que basta ser $BA = I_n$ (ou $AB = I_n$) para que seja $B = A^{-1}$.

Proposição 5.10 Sejam $A = (a_{ij}) - n \times n - e C_{ij}$ o cofator de a_{ij} em A. Então:

$$\sum_{i=1}^{n} a_{ij} C_{ik} = \delta_{jk} \cdot \det A = \begin{cases} \det A & \text{se } j = k \\ 0 & \text{se } j \neq k \end{cases}.$$

Dem. Basta considerar o caso $j \neq k$, por exemplo, j < k. Seja $B = (B_1, ..., B_n)$ a matriz tal que $B_i = A_i$, $i \neq k$, e $B_k = A_j$, ou seja,

$$B = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1j} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$coluna j \qquad coluna k$$

 \acute{E} claro que det B=0. Desenvolvendo det B pelos elementos da coluna k, temos:

$$det \ B = a_{1j}C_{1k} + a_{2j}C_{2k} + \dots + a_{nj}C_{nk},$$

isto é, det
$$B = 0 = \sum_{i=1}^{n} a_{ij} C_{ik}, \ j \neq k.$$

Proposição 5.11 Seja $A = (a_{ij}) - n \times n - e$ $B = (C'_{ij})$ a transposta da matriz dos cofatores dos elementos de A, isto é, $C'_{ij} = C_{ji} = cofator$ de a_{ji} em A. Então:

$$BA = (det \ A) \cdot I_n.$$

Dem. Se $BA = (d_{ij})$, temos:

$$d_{kj} = \sum_{i=1}^{n} C'_{ki} \cdot a_{ij} = \sum_{i=1}^{n} a_{ij} C_{ik} = \delta_{jk} \cdot \det A.$$

Logo:

$$BA = det A \cdot I_n$$
.

Corolário 5.11.1 Se $A = (a_{ij}) - n \times n - \acute{e}$ invertível, então $A^{-1} = \frac{1}{\det A} \cdot B$, onde $B = (C'_{ij})$ e $C'_{ij} = C_{ji} = cofator de <math>a_{ji}$ em A.

A matriz B é a adjunta (clássica) de A, B = adj A. Então:

$$A^{-1} = \frac{adj \ A}{det \ A}.$$

Proposição 5.12 Seja $A - m \times n - de$ posto r. Existe submatriz $r \times r$ de A com determinante $\neq 0$, e toda submatriz $k \times k$ de A, com k > r, tem determinante igual a zero.

Dem. A tem posto r se, e só se, existem r, e não mais que r, linhas de A que são LI. Podemos supor que sejam as r primeiras (já que a troca de linhas

$$n\~{a}o$$
 altera o posto), $L_1,...,L_r$. Seja $B=\begin{bmatrix}L_1\\\vdots\\L_r\end{bmatrix}$ $-r imes n$ - cujo posto é r , donde existem r e $n\~{a}o$ mais que r columns de B que $s\~{a}o$ LL Sejam B . Reseas

existem r, e não mais que r, colunas de B que são LI. Sejam $B_{j_1},...,B_{j_r}$ essas colunas e $C = [B_{j_1},...,B_{j_r}] - r \times r$; C tem posto r, donde det $C \neq 0$ e é a "maior" submatriz quadrada de A com essa propriedade.

Exercício Seja $A = \begin{bmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{bmatrix}$. Estude o posto de A conforme os valores $de \ t \in \mathbb{R}$.

Exercícios

1. Sejam $a_1, ..., a_n$ números dados. Prove que

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_n \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^{n-1} & a_2^{n-1} & \dots & a_n^{n-1} \end{vmatrix} = \prod_{i>j} (a_i - a_j).$$

É o determinante de Vandermonde.

- 2. Seja $A = (a_{ij}) n \times n$, tal que $a_{ij} = 0$ se $i + j \le n$. Calcule $\det A$. Por exemplo, $\begin{vmatrix} 0 & 0 & a \\ 0 & b & c \\ d & e & f \end{vmatrix} = -abd.$
- 3. Prove: $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3.$
- 4. Calculando $\begin{vmatrix} x & -y \\ y & x \end{vmatrix} \cdot \begin{vmatrix} x' & y' \\ -y' & x' \end{vmatrix}$, prove que $(x^2 + y^2)(x'^2 + y'^2) = (xx' + yy')^2 + (xy' yx')^2.$
- 5. Se $a, b, c \in \mathbb{R}$, prove que

$$\begin{vmatrix} 1 & sen \ a & cos \ a \\ 1 & sen \ b & cos \ b \\ 1 & sen \ c & cos \ c \end{vmatrix} = sen(b-c) + sen(c-a) + sen(a-b).$$

6. Seja $A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$, onde B é $r \times r$, C é $r \times (n-r)$ e D é $(n-r) \times (n-r)$. Prove que $\det A = \det B \cdot \det D$.

5.4 Matrizes Elementares

Definição 5.12 Sejam A e B matrizes $m \times n$ sobre o corpo K. Dizemos que A é linha-equivalente a B se B pode ser obtida de A por intermédio de um número finito das seguintes operações, chamadas <u>operações elementares sobre</u> as linhas:

- $\overline{(a) T_{ij}}$ trocar de posição as linhas i e j $(i \neq j)$
- (b) $T_i(k)$ multiplicar a linha i por $k \in K, k \neq 0$
- (c) $T_{ij}(\lambda)$ somar à linha i a linha j multiplicada por $\lambda \in K$.

Definição 5.13 Uma matriz obtida da identidade por meio de <u>uma única</u> operação elementar, chama-se uma <u>matriz elementar</u>.

Exemplo 5.4.1 As matrizes
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $e \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$ são elementares.

Proposição 5.13 Sejam <u>e</u> uma operação elementar e $E = e(I_m)$ a matriz elementar $m \times m$ correspondente. Para toda matriz $A = (a_{ij}) - m \times n$, temse: $e(A) = E \cdot A$.

Dem. Seja
$$L_i = (a_{i1}...a_{in})$$
 a i-ésima linha de A. Então: $A = \begin{bmatrix} L_1 \\ \vdots \\ L_m \end{bmatrix}$. Se

$$B \in M_{n \times p}(K)$$
, é fácil ver que $AB = \begin{bmatrix} L_1B \\ \vdots \\ L_mB \end{bmatrix}$. Se $e_1 = (1, 0, ..., 0), ..., e_m = \begin{bmatrix} L_1B \\ \vdots \\ L_mB \end{bmatrix}$

$$(0,...,0,1)$$
 são $1 \times m$, é claro que $e_1 A = L_i$ e $I_m = \begin{bmatrix} e_1 \\ \vdots \\ e_m \end{bmatrix}$.

(1)
$$e = T_{ij}$$
. $Ent\tilde{a}o$: $E = e(I_m) = \begin{bmatrix} e_1 \\ \vdots \\ e_j \\ \vdots \\ e_i \\ \vdots \\ e_m \end{bmatrix}$, $e(A) = \begin{bmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_i \\ \vdots \\ L_m \end{bmatrix}$.

Logo:

$$EA = \begin{bmatrix} e_1 A \\ \vdots \\ e_j A \\ \vdots \\ e_i A \end{bmatrix} = \begin{bmatrix} L_1 \\ \vdots \\ L_j \\ \vdots \\ L_i \\ \vdots \\ E_m A \end{bmatrix} = e(A).$$

(2)
$$e = T_i(k)$$
. $Ent\tilde{a}o$: $E = e(I_m) = \begin{bmatrix} e_1 \\ \vdots \\ ke_i \\ \vdots \\ e_m \end{bmatrix}$, $e(A) = \begin{bmatrix} L_1 \\ \vdots \\ kL_i \\ \vdots \\ L_m \end{bmatrix}$.

Logo:

$$EA = \begin{bmatrix} e_1 A \\ \vdots \\ k e_i A \\ \vdots \\ e_m A \end{bmatrix} = \begin{bmatrix} L_1 \\ \vdots \\ k L_i \\ \vdots \\ L_m \end{bmatrix} = e(A).$$

(3)
$$e = T_{ij}(\lambda)$$
. Então: $E = e(I_m) = \begin{bmatrix} e_1 \\ \vdots \\ e_i + \lambda e_j \\ \vdots \\ e_j \\ \vdots \\ e_m \end{bmatrix}$, $e(A) = \begin{bmatrix} L_1 \\ \vdots \\ L_i + \lambda L_j \\ \vdots \\ L_j \\ \vdots \\ L_m \end{bmatrix}$.

Logo:

$$EA = \begin{bmatrix} e_1 A \\ \vdots \\ (e_i + \lambda e_j) A \\ \vdots \\ e_j A \\ \vdots \\ e_m A \end{bmatrix} = \begin{bmatrix} L_1 \\ \vdots \\ L_i + \lambda L_j \\ \vdots \\ L_j \\ \vdots \\ L_m \end{bmatrix} = e(A), \ e \ a \ proposição \ está \ demon-$$

strada em todos os casos.

Proposição 5.14 Duas matrizes A e B, $m \times n$ sobre K, são linha-equivalentes se, e só se, existem matrizes elementares $m \times m$, $E_1, ..., E_r$, tais que $E_r...E_1A = B$.

Dem. A é linha-equivalente a B se, e só se, existem operações elementares $e_1, ..., e_r$ tais que $e_r(...(e_2(e_1(A)))...) = B$. Pondo $E_i = e_i(I_m)$, vem: $E_r...E_1A = B$.

Obs. 1 As operações elementares são bijetoras. De fato, $T_{ij}^{-1} = T_{ij}$, $T_i(k)^{-1} = T_i\left(\frac{1}{k}\right)$ e $T_{ij}(\lambda)^{-1} = T_{ij}(-\lambda)$.

Obs. 2 A inversa de uma matriz elementar é também elementar e se $E = e(I_n)$ e $E' = e^{-1}(I_n)$, então $E \cdot E' = e(e^{-1}(I_n)) = I_n$, donde $E' = E^{-1}$.

Proposição 5.15 Seja $A \in M_n(\mathbb{K})$. As seguintes afirmações são equivalentes:

(a) A é invertível

- (b) A \acute{e} linha-equivalente a I_n
- (c) A é um produto de matrizes elementares

Dem.

 $(a) \Rightarrow (b)$: Como A é invertível temos det $A \neq 0$, donde existe algum $a_{i1} \neq 0$. Usando, se necessário, a operação T_{1i} , podemos supor $a_{11} \neq 0$. Neste caso, a operação $T_1\left(\frac{1}{a_{11}}\right)$ muda A na matriz B linha-equivalente a A:

$$B = \begin{bmatrix} 1 & b_{12} & \dots & b_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix},$$

onde $b_{1i} = \frac{a_{1i}}{a_{11}}$ (i = 2, 3, ..., n).

Aplicando a B, sucessivamente, as operações $T_{21}(-a_{21}), ..., T_{n1}(-a_{n1})$, chegamos à matriz C linha-equivalente a A:

$$C = \begin{bmatrix} 1 & c_{12} & \dots & c_{1n} \\ 0 & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & c_{n2} & \dots & c_{nn} \end{bmatrix}.$$

Como C = PA, onde P é um produto de matrizes elementares e, portanto, invertível, resulta que C é invertível. Logo, det $C = \begin{vmatrix} c_{22} & \dots & c_{2n} \\ c_{n2} & \dots & c_{nn} \end{vmatrix} \neq 0$ e podemos, como acima, supor $c_{22} \neq 0$. Usando, sucessivamente, as operações $T_2\left(\frac{1}{c_{22}}\right)$, $T_{12}(-c_{12})$, ..., $T_{n2}(-c_{n2})$, a matriz C transforma-se em D, linha-equivalente a A:

$$D = \begin{bmatrix} 1 & 0 & d_{13} & \dots & d_{1n} \\ 0 & 1 & d_{23} & \dots & d_{2n} \\ 0 & 0 & d_{33} & \dots & d_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & d_{n3} & \dots & d_{nn} \end{bmatrix}.$$

Prosseguindo desta maneira chegaremos, após um número finito de operações elementares, à matriz I_n .

 $(b)\Rightarrow (c)$: Se A é linha-equivalente a I_n então existem matrizes elementares $E_1,...,E_r$ tais que $E_r...E_1A=I_n$, donde $A=E_1^{-1}...E_r^{-1}$. Como a inversa de uma matriz elementar é também elementar, resulta que A é um produto de matrizes elementares.

 $(c) \Rightarrow (a)$: Se $A = E_1...E_r$, cada E_j sendo elementar, então A é invertível, pois cada E_j é invertível.

Proposição 5.16 A mesma sequência finita de operações elementares que muda a matriz invertível $A \in M_n(K)$ na identidade I_n , muda I_n em A^{-1} .

Dem. Sejam $e_1, ..., e_r$ operações elementares que mudam A em I_n e $E_1, ..., E_r$ as matrizes elementares correspondentes. Então: $E_r...E_2E_1A = I_n$, donde $A^{-1} = E_r...E_1I_n$.

Exemplo 5.4.2 Calculemos a inversa de

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 4 & 2 \\ 2 & 6 & 0 \end{bmatrix}.$$

Escrevamos I_3 ao lado de A e efetuemos as operações elementares indicadas, que transformam A em I_3 :

$$\begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 4 & 2 & 0 & 1 & 0 \\ 2 & 6 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{T_{31}(-2)} \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 4 & 2 & 0 & 1 & 0 \\ 0 & 6 & 2 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{T_2(\frac{1}{4})}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 1/2 & 0 & 1/4 & 0 \\ 0 & 6 & 2 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{T_{32}(-6)} \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 1/2 & 0 & 1/4 & 0 \\ 0 & 0 & -1 & -2 & -3/2 & 1 \end{bmatrix} \xrightarrow{T_3(-1)}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 1/2 & 0 & 1/4 & 0 \\ 0 & 0 & 1 & 2 & 3/2 & -1 \end{bmatrix} \xrightarrow{T_{13}(1)} \begin{bmatrix} 1 & 0 & 0 & 3 & 3/2 & -1 \\ 0 & 1 & 1/2 & 0 & 1/4 & 0 \\ 0 & 0 & 1 & 2 & 3/2 & -1 \end{bmatrix} \xrightarrow{T_{23}(\frac{1}{2})}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & 0 & 3 & 3/2 & -1 \\ 0 & 1 & 0 & -1 & -1/2 & 1/2 \\ 0 & 0 & 1 & 2 & 3/2 & -1 \end{bmatrix}$$

Portanto:

$$A^{-1} = \begin{bmatrix} 3 & 3/2 & -1 \\ -1 & -1/2 & 1/2 \\ 2 & 3/2 & -1 \end{bmatrix}$$

Da mesma maneira que operamos sobre as linhas de $A-m\times n$ – podemos operar sobre as colunas. Obtemos assim as operações elementares sobre as

colunas:

 $\overline{(a) \ T'_{ij}}$ – trocar de posição as colunas $i \ e \ j, \ i \neq j$. $(b) \ T'_i(k)$ – multiplicar a coluna $i \ por \ k \neq 0$.

(c) $T'_{ij}(\lambda)$ – somar à coluna i a coluna j multiplicada por $\lambda \in K$.

Se e' é uma operação elementar sobre as colunas, então $E' = e'(I_n)$ é uma matriz (coluna-) elementar de ordem n. Valem propriedades análogas as obtidas anteriormente, a saber:

Proposição 5.13' Se $A \in M_{m \times n}(K)$, então e'(A) = AE'.

Definição $A, B \in M_{m \times n}(K)$ são coluna-equivalentes se B pode ser obtida de A por meio de um número finito de operações elementares sobre as colunas.

Proposição 5.14' $A, B \in M_{m \times n}(K)$ são coluna-equivalentes se, e só se, existem matrizes elementares $E'_1, ..., E'_r$ tais que $AE'_1...E'_r = B$.

Obs. As operações elementares (sobre as colunas) são bijetoras:

$$(T'_{ij})^{-1} = T'_{ij}; \ T'_i(k)^{-1} = T'_i\left(\frac{1}{k}\right)$$

 $e T'_{ij}(\lambda)^{-1} = T'_{ij}(-\lambda).$

As inversas das matrizes elementares são também elementares:

se
$$E' = e'(I_n)$$
 então $(E')^{-1} = (e')^{-1}(I_n)$.

Proposição 5.15' Seja $A \in M_n(K)$. São equivalentes:

- (a) A é invertível.
- (b) A é coluna-equivalente a I_n .
- (c) A é um produto de matrizes (coluna-)elementares.

Definição Se $A, B \in M_{m \times n}(K)$, escrevemos $A \sim B$ quando for possível transformar A em B por meio de uma sequência finita de operações elementares (sobre as linhas e/ou colunas). È claro que ~ é uma relação de equivalência.

Proposição 5.17 Sejam $A, B \in M_{m \times n}(K)$. $A \sim B$ se, e só se, A e B são equivalentes, isto é, se, e só se, existem matrizes invertíveis $P \in M_m(K)$ e $Q \in M_n(K)$ tais que B = PAQ.

Dem. Se $A \sim B$ existem matrizes elementares $E_1, ..., E_r, E'_1, ..., E'_s$ tais que $B = E_r...E_1 \cdot A \cdot E'_1...E'_s$, ou seja, B = PAQ com $P \in Q$ invertíveis.

Reciprocamente, se B = PAQ com P e Q invertíveis, $P \in M_m(K)$ e $Q \in M_n(K)$, então existem matrizes elementares tais que $P = E_r...E_1$ e $Q = E'_1...E'_s$, o que mostra que $A \sim B$.

Corolário 5.17.1 (a) $A, B \in M_{m \times n}(K)$ são <u>linha-equivalentes</u> se, e só se, existe $P \in M_m(K)$ invertível tal que B = PA.

(b) $A, B \in M_{m \times n}(K)$ são <u>coluna-equivalentes</u> se, e só se, existe $Q \in M_n(K)$ invertível tal que B = AQ.

Obs. É claro que se A e B são linha-equivalentes (ou coluna-equivalentes, ou equivalentes), então pelo corolário 3.8.1 da proposição 3.8, posto(A) = posto(B), de modo que podemos usar as operações elementares para estudar a dependência ou independência linear de vetores.

Exemplo 5.4.3 Sejam os vetores de \mathbb{R}^4 : $v_1 = (-1, 0, 1, 2), v_2 = (3, 4, -2, 5)$ e $v_3 = (1, 4, 0, 9)$. Seja

$$A = \begin{bmatrix} -1 & 3 & 1\\ 0 & 4 & 4\\ 1 & -2 & 0\\ 2 & 5 & 9 \end{bmatrix}$$

a matriz cujas colunas são esses vetores. O posto de A é a dimensão do espaço gerado por v_1, v_2, v_3 . Operando sobre as linhas de A, temos:

donde posto(A) = posto(B) = 2, de modo que v_1, v_2, v_3 são LD e geram um espaço de dimensão 2; (v_1, v_2) é uma base para este subespaço de \mathbb{R}^4 .

Exemplo 5.4.4 Vamos estudar a independência linear das formas lineares sobre \mathbb{R}^4 , onde $ab \neq 0$:

$$f_1(x_1, x_2, x_3, x_4) = x_1 - ax_3;$$
 $f_2 = x_2 - \frac{1}{a}x_4;$ $f_3 = x_1 - bx_4;$ $f_4 = x_2 - \frac{1}{b}x_4.$

As formas f_j são elementos de $(\mathbb{R}^4)^*$; em relação à base de $(\mathbb{R}^4)^*$, dual da base canônica de \mathbb{R}^4 , temos:

$$f_1 = (1, 0, -a, 0);$$
 $f_2 = (0, 1, 0, \frac{-1}{a});$
 $f_3 = (1, 0, 0, -b);$ $f_4 = (0, 1, 0, \frac{-1}{b}).$

e a matriz cujas linhas são estes vetores é

$$A = \begin{bmatrix} 1 & 0 & -a & 0 \\ 0 & 1 & 0 & -1/a \\ 1 & 0 & 0 & -b \\ 0 & 1 & 0 & -1/b \end{bmatrix} \xrightarrow{T_{31}(-1)} \begin{bmatrix} 1 & 0 & -a & 0 \\ 0 & 1 & 0 & -1/a \\ 0 & 0 & a & -b \\ 0 & 1 & 0 & -1/b \end{bmatrix} \xrightarrow{T_{42}(-1)} \xrightarrow{T_{42}(-1)}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & -a & 0 \\ 0 & 1 & 0 & -1/a \\ 0 & 0 & a & -b \\ 0 & 0 & 0 & \frac{b-a}{ab} \end{bmatrix} \xrightarrow{T_{13}(1)} \begin{bmatrix} 1 & 0 & 0 & -b \\ 0 & 1 & 0 & -1/a \\ 0 & 0 & a & -b \\ 0 & 0 & 0 & \frac{b-a}{ab} \end{bmatrix} = B.$$

Vemos que se $a \neq b \neq 0$ as quatro formas são LI. Se $a = b \neq 0$ elas geram um subespaço de $(\mathbb{R}^4)^*$ de dimensão 3, do qual (f_1, f_2, f_3) é uma base.

5.5 Equações Lineares

Sejam V e W espaços vetoriais sobre K e $T:V\longrightarrow W$ linear. Se $b\in W$, a equação T(x)=b chama-se uma equação linear. A equação T(x)=0 é a equação homogênea associada. Resolver a equação T(x)=b é achar todos os $x\in V$ tais que T(x)=b, ou seja, é determinar o conjunto-solução $T^{-1}(b)$. A equação é impossível se $T^{-1}(b)=\varnothing$. O conjunto-solução de T(x)=0 é o núcleo $\mathcal{N}(T)$, que é um subespaço de V; portanto, T(x)=0 sempre tem a solução x=0, dita trivial.

Proposição 5.18 Se $x_p \in V$ é uma solução de T(x) = b, o conjunto-solução é $x_p + \mathcal{N}(T)$.

Dem. Se $T(x) = T(x_p) = b$, então $T(x - x_p) = 0$, donde $x - x_p \in \mathcal{N}(T)$, ou seja, $x \in x_p + \mathcal{N}(T)$. Reciprocamente, se $x \in x_p + \mathcal{N}(T)$, então $x - x_p \in \mathcal{N}(T)$, donde $T(x - x_p) = 0$ e $T(x) = T(x_p) = b$.

Corolário 5.18.1 São equivalentes:

- (a) a equação linear T(x) = b tem, no máximo, uma solução;
- (b) a equação homogênea T(x) = 0 tem apenas a solução trivial x = 0;
- (c) $T: V \longrightarrow W$ é injetora.

Um caso simples é aquele em que T é um isomorfismo; neste caso, $T(x) = b \Leftrightarrow x = T^{-1}(b)$.

Proposição 5.19 Sejam V e W espaços vetoriais de mesma dimensão n sobre K, $T:V \longrightarrow W$ linear, \mathcal{E} e \mathcal{F} bases de V e W, respectivamente, $[T]_{\mathcal{F}}^{\mathcal{E}} = A \in M_n(K)$. São equivalentes:

- (a) T é um isomorfismo;
- (b) posto(T) = posto(A) = n;
- (c) os vetores-coluna e os vetores-linha de A são LI
- (d) A é invertível;
- (e) $det A \neq 0$;
- (f) para todo $b \in W$ a equação T(x) = b tem solução única;
- (g) a equação T(x) = 0 só tem a solução x = 0.

Dem. Imediata.

Proposição 5.20 Sejam V, W espaços vetoriais sobre K, dim V = n, dim W = m e $T: V \longrightarrow W$ linear. Se m < n a equação homogênea T(x) = 0 tem solução não-trivial.

Dem. Seja $\{v_1, ..., v_n\}$ uma base de V. Se m < n então $T(v_1), ..., T(v_n)$ são LD, donde existem escalares $x_1, x_2, ..., x_n$, não todos nulos, tais que $x_1T(v_1) + ... + x_nT(v_n) = 0$, donde $T(x_1v_1 + ... + x_nv_n) = 0$, isto é, $x = x_1v_1 + ... + x_nv_n$ é solução $\neq 0$ de T(x) = 0.

Obs. 1 A equação T(x) = 0 tem $\mathcal{N}(T)$ como espaço-solução. Portanto, a dimensão do espaço-solução de T(x) = 0 é dim $\mathcal{N}(T) = n - posto(T)$.

Obs. 2 Sejam
$$T: K^n \longrightarrow K^n$$
 linear, $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n$, $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in K^m$ $e \ A = (a_{ij}) \ a \ matriz \ m \times n \ associada \ a \ T. \ A \ equação \ T(x) = b \ escreve-se$

 $tamb\'em A \cdot x = b \ ou \ x_1A_1 + ... + x_nA_n = b$, onde os A_j são os vetores-coluna de A, ou ainda

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

 \vdots
 $a_{m1}x_1 + \dots + a_{mn}x_n = b_n$

sistema de \underline{m} equações lineares a \underline{n} incógnitas. $A=(a_{ij})$ é a \underline{matriz} dos coeficientes. A expressão $x_1A_1+\ldots+x_nA_n=b$ nos diz que Ax=b tem solução x se, e só se, o vetor b pertence ao espaço-coluna de A, ou ainda, se, e só se, o posto de A é igual ao posto da matriz (A|b) que é a \underline{matriz} completa do sistema (Teorema de Rouché-Capelli).

Definição 5.14 O sistema linear Ax = b é um sistema de Cramer se $A \in M_n(K)$ é invertível.

Proposição 5.21 (Regra de Cramer) O sistema de Cramer $A \cdot x = b$, onde $\begin{bmatrix} x_1 \end{bmatrix}$

$$A \in GL(n,K)$$
, tem solução única $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, onde $x_i = \frac{\det B_i}{\det A}$ $(i = 1,...,n)$,

onde B_i é a matriz obtida de A substituindo-se o vetor-coluna A_i pelo vetor b do segundo membro.

Dem. A equação $x_1A_1 + ... + x_nA_n = b$ nos permite escrever $det(A_1, ..., b, ..., A_n) = x_i det(A_1, ..., A_i, ..., A_n) = x_i \cdot det A$, donde $x_i \cdot det A = det B_i$ e $x_i = \frac{det B_i}{det A} = \frac{\begin{vmatrix} a_{11} & ... & b_1 & ... & a_{1n} \\ a_{n1} & ... & b_n & ... & a_{nn} \end{vmatrix}}{\begin{vmatrix} a_{11} & ... & a_{1i} & ... & a_{1n} \\ a_{n1} & ... & a_{ni} & ... & a_{nn} \end{vmatrix}}$ (i = 1, ..., n).

Exemplo 5.5.1

$$2x_1 + 3x_2 = 8$$
$$7x_1 - 9x_2 = -11$$

Como det $A = \begin{vmatrix} 2 & 3 \\ 7 & -9 \end{vmatrix} = -39 \neq 0$, o sistema é de Cramer e:

$$x_1 = \frac{\begin{vmatrix} 8 & 3 \\ -11 & -9 \end{vmatrix}}{-39} = 1; \quad x_2 = \frac{\begin{vmatrix} 2 & 8 \\ 7 & -11 \end{vmatrix}}{-39} = 2.$$

Proposição 5.22 Sejam as equações lineares Ax = a e Bx = b, onde $A, B \in M_{m \times n}(K)$ e $a, b \in K^m$. Se C = (A|a) e D = (B|b) são linha-equivalentes, então as duas equações lineares têm as mesmas soluções.

Dem. Pondo
$$y = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ -1 \end{pmatrix}$$
, a equação $Ax = a$ se escreve $Cy = 0$. Se \underline{C} e \underline{D}

são linha-equivalentes, existe $P \in M_m(K)$, invertível, tal que $P \cdot C = D$. Se Dy = 0 vem P(Cy) = 0, donde Cy = 0. Reciprocamente, se Cy = 0 então P(Cy) = 0, isto é, Dy = 0. Logo as equações Cy = 0 e Dy = 0 têm as mesmas soluções, ou seja, Ax = a e Bx = b têm as mesmas soluções.

Exemplo 5.5.2 Seja o sistema

$$2x_1 + x_2 + x_3 = 1$$

$$x_1 + 3x_2 - 2x_3 = 0$$

$$4x_1 - 3x_2 + x_3 = 2$$

A matriz completa do sistema é

$$C = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & -2 & 0 \\ 4 & -3 & 1 & 2 \end{bmatrix} \xrightarrow{T_{12}} \xrightarrow{T_{21}(-2)} \xrightarrow{T_{31}(-4)} \xrightarrow{T_{2}(-1/5)} \xrightarrow{T_{32}(15)} B,$$

onde
$$B = \begin{bmatrix} 1 & 3 & -2 & 0 \\ 0 & 1 & -1 & -1/5 \\ 0 & 0 & -6 & -1 \end{bmatrix}$$
 e obtemos:

$$x_3 = \frac{1}{6}$$

$$x_2 - x_3 = -\frac{1}{5}$$

$$x_1 + 3x_2 - 2x_3 = 0$$

$$e \ a \ solução \ (única) \ \'e \ x = \begin{bmatrix} 13/30 \\ -1/30 \\ 1/6 \end{bmatrix}.$$

pleta é

$$\begin{bmatrix} 1 & 0 & -1 & -3 & 1 & -2 \\ 2 & 1 & 3 & -2 & -1 & 11 \\ 0 & 1 & 0 & -1 & -3 & 0 \\ 0 & 4 & -5 & -9 & -12 & -15 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -2 & 1 & 1 \\ 0 & 1 & 0 & -1 & -3 & 0 \\ 0 & 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

e obtemos o sistema

$$x_1$$
 $-2x_4$ $+x_5$ = 1
 x_2 $-x_4$ $-3x_5$ = 0
 x_3 $+x_4$ = 3

ou:

$$x_1 = 2x_4 - x_5 + 1$$

$$x_2 = x_4 + 3x_5$$

$$x_3 = -x_4 + 3$$

Trata-se de um sistema indeterminado; existem infinitas soluções

$$x = \begin{bmatrix} 2x_4 - x_5 + 1 \\ x_4 + 3x_5 \\ -x_4 + 3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 3 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$

$$onde \ x_p = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \\ 0 \end{bmatrix} \ \'e \ a \ soluç\~ao \ particular \ e \ \left\{ \begin{bmatrix} 2 \\ 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \ \'e \ base \ do \ espaço-$$

solução da equação homogênea associada.

Exemplo 5.5.4

$$x_1 + x_2 - x_3 = 1$$
$$2x_1 - x_2 + x_3 = 2$$
$$4x_1 + x_2 - x_3 = 0$$

$$A \ \textit{matriz completa \'e} \ \begin{bmatrix} 1 & 1 & -1 & 1 \\ 2 & -1 & 1 & 2 \\ 4 & 1 & -1 & 0 \end{bmatrix} \ \longrightarrow \ \dots \ \longrightarrow \ \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix}, \ e \ o$$

sistema é <u>impossível</u> já que a última equação $0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = -4$ é impossível.

Obs. (decomposição LU) Seja $A - n \times n$ uma matriz que pode ser reduzida à forma triangular apenas pelo uso da operação $T_{ij}(\lambda)$; por exemplo, seja

$$A = A^{(1)} = \begin{bmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{bmatrix} \xrightarrow{T_{21}(-1/2)} A^{(2)} \xrightarrow{T_{31}(-2)} A^{(3)} = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & -9 & 5 \end{bmatrix} \longrightarrow$$

$$\xrightarrow{T_{32}(3)} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix} = U.$$

Sejam: $l_{21} = \frac{1}{2}$; $l_{31} = 2$ opostos dos multiplicadores usados na primeira linha

$$e \ l_{32} = -3 \ o \ oposto \ do \ usado \ na \ segunda \ linha. \ Se \ L = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 2 & -3 & 1 \end{bmatrix} \ \acute{e}$$

a matriz triangular inferior cujos elementos l_{ij} , para i < j, são os números acima e $l_{ii} = 1$, então é fácil verificar que A = LU. Os detalhes da decomposição LU podem ser encontrados na referência [6].

Exercícios

1. Resolva:

$$x + y + z = 1
(a) 2x + y + 3z = 1
-x + 2y - 4z = 3$$

$$x - 2y + z + t = 1
(b) -2x + y + 2z + 2t = 0
6y + z = -2$$

- 2. Sejam $a \neq b \neq c \neq d$ números reais distintos. Prove que existe um único polinômio $p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$ tal que p(a) = a'; p(b) = b'; p(c) = c'; p(d) = d', onde a', b', c', d' são reais dados.
- 3. Ache a decomposição LU da matriz $A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 4 \\ 3 & 4 & 6 \end{bmatrix}$.

Capítulo 6

Autovalores e Autovetores

6.1 Definições

Definição 6.1 Sejam V um espaço vetorial sobre o corpo K e $T: V \longrightarrow V$ linear. Dizemos que $v \in V$ é um autovetor de T se existe $a \in K$ tal que

$$T(v) = av$$
.

Se $v \neq 0$, o escalar <u>a</u> é univocamente determinado pois $a_1v = a_2v$ implica $(a_1 - a_2)v = 0$ e, como $v \neq 0$, vem $a_1 = a_2$.

Definição 6.2 Sejam V um espaço vetorial sobre K e T : $V \longrightarrow V$ linear. Dizemos que $a \in K$ é um <u>autovalor</u> de T se existe $v \in V$, $v \neq 0$, tal que T(v) = av.

Obs. Ao invés de autovetor e autovalor, usam-se também os termos <u>vetor</u> próprio ou vetor característico e valor próprio ou valor característico.

Exemplo 6.1.1 Se $v \in V$ é um autovetor do operador linear $T: V \longrightarrow V$ e $c \in K$, então \underline{cv} também é um autovetor de T pois T(cv) = cT(v) = cav = a(cv), supondo $\overline{T}(v) = av$.

Exemplo 6.1.2 Seja $V = C^{\infty}(\mathbb{R}, \mathbb{R})$ o espaço vetorial real das funções $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^{∞} , isto é, indefinidamente deriváveis, e seja $D: V \longrightarrow V$ o operador de derivação. Se $f \in V$, $f(t) = e^{at}$, $a \in \mathbb{R}$, então $Df(t) = a \cdot e^{at}$, ou seja, Df = af, e f é um autovetor de D, com autovalor a.

Exemplo 6.1.3 Se a=0 é um autovalor de $T:V\longrightarrow V$ linear, existe $v\neq 0$ tal que T(v)=0, donde $\mathcal{N}(T)\neq \{0\}$ e T não é injetora.

Proposição 6.1 Sejam V um espaço vetorial sobre K, $T: V \longrightarrow V$ linear, $a \in K$ e $V(a) = \{v \in V; T(v) = av\}$. Então V(a) é um subespaço de V tal que $T(V(a)) \subset V(a)$, isto é, V(a) é T-invariante.

Dem. É claro que $0 \in V(a)$; se $v_1, v_2 \in V(a)$, então $T(v_1) = av_1$, $T(v_2) = av_2$, donde $T(v_1 + v_2) = T(v_1) + T(v_2) = av_1 + av_2 = a(v_1 + v_2)$. Se $c \in K$, então $T(cv_1) = cT(v_1) = cav_1 = a(cv_1)$. Logo, V(a) é subespaço de V. Se $v \in V(a)$ então T(v) = av e T(Tv) = T(av) = aT(v), donde $T(V(a)) \subset V(a)$. V(a) é o <u>autoespaço</u> de T <u>associado</u> ao autovalor <u>a</u>. $V(a) = \{0\}$ significa que a não é autovalor de T.

Proposição 6.2 Sejam V um espaço vetorial de dimensão finita sobre K e $T:V\longrightarrow V$ linear. São equivalentes:

- (a) $a \in K$ é autovalor de T;
- (b) T aI não é invertível;
- (c) det(T aI) = 0.

Dem. Já vimos anteriormente que (b) e (c) são equivalentes. Basta, então, provar que (a) e (b) são equivalentes.

- $(a) \Rightarrow (b)$: Se <u>a</u> é autovalor de T, existe $v \neq 0$ tal que T(v) = av, isto é, (T aI)v = 0, donde T aI não é invertível.
- $(b) \Rightarrow (a)$: Se T-aI não é invertível, existe $v \neq 0$ tal que (T-aI)v = 0, donde T(v) = av, ou seja, \underline{a} é autovalor de T.

Proposição 6.3 Sejam V um espaço vetorial sobre $K e T : V \longrightarrow V$ linear. Se $a \neq b$ são autovalores de T, então $V(a) \cap V(b) = \{0\}$.

Dem. $T(v) = av = bv \ implies \ (a - b)v = 0, \ donde \ v = 0 \ (pois \ a \neq b).$

Proposição 6.4 Sejam V um espaço vetorial sobre K e $T: V \longrightarrow V$ linear. Sejam $v_1,...,v_m$ autovetores $\underbrace{n\~{ao}\ nulos}_{...}$ de T com autovalores $a_1,...,a_m$, respectivamente. Se $a_1 \neq a_2 \neq ... \neq a_m$, ent $\~{ao}\ v_1,...,v_m$ s $\~{ao}$ linearmente independentes.

Dem. (indução) Para m=1, um vetor $v_1 \neq 0$ é LI. Suponhamos m>1 e admitamos o teorema verdadeiro para (m-1) autovetores. Se tivermos uma relação linear

$$b_1 v_1 + b_2 v_2 + \dots + b_m v_m = 0, (6.1)$$

então $b_1T(v_1) + ... + b_mT(v_m) = 0$, donde:

$$a_1b_1v_1 + a_2b_2v_2 + \dots + a_mb_mv_m = 0. (6.2)$$

Sem perda de generalidade podemos supor $a_1 \neq 0$. Multiplicando (6.1) por a_1 e subtraindo o resultado de (6.2), obtemos: $(a_2 - a_1)b_2v_2 + ... + (a_m - a_1)b_mv_m = 0$.

Como $a_2 - a_1 \neq 0, ..., a_m - a_1 \neq 0$, concluimos, por indução, que $b_2 = ... = b_m = 0$, e (6.1) nos dá $b_1v_1 = 0$, donde $b_1 = 0$, ou seja, $v_1, ..., v_m$ são LI.

Corolário 6.4.1 Se dim V = n, todo operador linear $T : V \longrightarrow V$ tem, no máximo, n autovalores distintos.

Corolário 6.4.2 Se $a_1, ..., a_m$ são autovalores de $T: V \longrightarrow V$ linear e $a_1 \neq a_2 \neq ... \neq a_m$, então o subespaço $V(a_1) + ... + V(a_m)$ é soma direta de $V(a_1), ..., V(a_m)$.

Dem. Seja $v_i \in V(a_i)$, i=1,...m. Se $v_1+v_2+...+v_m=0$, vamos mostrar que $v_1=...=v_m=0$. Se p< m destes vetores fossem diferentes de 0, por exemplo, $v_{i1},...,v_{ip}$, e os (m-p) restantes fossem iguais a 0, teríamos $v_{i1}+...+v_{ip}=0$, isto é, $v_{i1},...,v_{ip}$ seriam LD em contradição com a proposição 6.4. Resulta que $V(a_1)+...+V(a_m)=V(a_1)\oplus...\oplus V(a_m)$.

Exemplo 6.1.4 Seja $V = C^{\infty}(\mathbb{R}, \mathbb{R})$. Se $a_1 \neq ... \neq a_m$ são reais distintos, então $e^{a_1t}, ..., e^{a_mt}$ são autovetores do operador de derivação $D: V \longrightarrow V$ com autovalores distintos e, portanto, as funções $e^{a_1t}, ..., e^{a_mt}$ são LI. Como m é arbitrário, resulta que $V = C^{\infty}(\mathbb{R}, \mathbb{R})$ não tem dimensão finita.

Definição 6.3 Seja $A \in M_n(K)$. Os autovetores e autovalores de A são os autovetores e autovalores da aplicação linear associada $T_A : K^n \longrightarrow K^n$, $T_A(x) = A \cdot x$. Assim, $x \in K^n$ é autovetor de A se existe $a \in K$ tal que $A \cdot x = ax$.

Proposição 6.5 Seja $A \in M_n(K)$. São equivalentes:

- (a) $a \in K$ é autovalor de A;
- (b) $A aI_n$ não é invertível;
- (c) $det(A aI_n) = 0$.

Obs. Se $B = P^{-1}AP$, onde $A \in M_n(K)$ e $P \in M_n(K)$ é invertível, então A e B têm os mesmos autovalores pois se Ax = ax, $x \neq 0$ e $y = P^{-1}x$, então:

$$By = P^{-1}APy = P^{-1}Ax = P^{-1}(ax) = ay.$$

Como $y \neq 0$, resulta que <u>a</u> é autovalor de B. A recíproca é análoga. É bom notar, entretanto, que os autovetores de A e B, associados ao autovalor <u>a</u>, são x e $y = P^{-1}x$, respectivamente.

Definição 6.4 Sejam V um espaço vetorial de dimensão \underline{n} sobre K e T: $V \longrightarrow V$ linear. O polinômio característico de T é $P_T(t) = det(T - tI)$. Se $A \in M_n(K)$, o polinômio característico $P_A(t)$ é o polinômio da aplicação linear associada $T_A: K^n \longrightarrow K^n$, isto é, $P_A(t) = det(T_A - tI) = det(A - t \cdot I_n)$. Se $A = (a_{ij})$, então:

$$P_A(t) = det(A - tI_n) = \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{in} \\ a_{21} & a_{22} - t & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix} =$$

$$= (-1)^n t^n + (-1)^{n-1} (a_{11} + \dots + a_{nn}) t^{n-1} + \dots + det A$$

(o termo independente é $P_A(0) = \det A$).

Proposição 6.6 Matrizes semelhantes têm o mesmo polinômio característico.

Dem. De fato se $B = P^{-1}AP$ então as matrizes A e B representam o mesmo operador linear $T: K^n \longrightarrow K^n$ e, portanto, têm o mesmo polinômio característico $P_T(t) = det(T - tI)$.

Uma demonstração direta é a seguinte:

$$det(B - tI_n) = det(P^{-1}AP - tI_n) = det(P^{-1}(A - tI_n)P) = det(A - tI_n)$$
pois det $P^{-1} \cdot det P = 1$.

Obs. Se $P_T(t) = P_A(t) = c_n t^n + c_{n-1} t^{n-1} + ... + c_1 t + c_0$, então $c_n = (-1)^n$ e $c_0 = \det T = \det A$. Os coeficientes c_j , j = 0, 1, ..., n, só dependem do operador T.

Definição 6.5 $(-1)^{n-1}c_{n-1}$ é o <u>traço</u> de T, e escrevemos $tr\ T=(-1)^{n-1}c_{n-1}$. O traço de $A\in M_n(K)$ é o traço de $T_A:K^n\longrightarrow K^n$, $T_A(x)=A\cdot x:tr\ A=a_{11}+a_{22}+...+a_{nn}$.

Se A e B são semelhantes, temos tr A = tr B pois $P_A(t) = P_B(t)$.

Proposição 6.7 Sejam V um espaço vetorial de dimensão n sobre K e T: $V \longrightarrow V$ linear. $a \in K$ é um autovalor de T se, e só se, \underline{a} é uma raiz do polinômio característico de T.

Dem. $a \in K$ é autovalor de $T \Leftrightarrow det(T - aI) = 0 \Leftrightarrow a$ é raiz de $P_T(t)$.

Exemplo 6.1.5 Se $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, então $P_A(t) = \begin{vmatrix} 1-t & 1 \\ 2 & 2-t \end{vmatrix} = t^2 - 3t$, e os autovalores de A são a = 0 e a = 3.

autovalores de A são a=0 e a=3.

Procuremos autovetores $x=\begin{pmatrix} x_1\\x_2 \end{pmatrix}$ associados a estes autovalores. Para a=0, temos:

$$x_1 + x_2 = 0$$

$$2x_1 + 2x_2 = 0.$$

Logo, $x = x_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ é autovetor associado a a = 0, para todo $x_1 \in K$.

Para a = 3, temos:

$$-2x_1 + x_2 = 0$$

$$2x_1 - x_2 = 0.$$

Logo, $y = \begin{pmatrix} x_1 \\ 2x_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ é autovetor associado a a = 3, para todo $x_1 \in K$.

Os autoespaços correspondentes são as retas pela origem de K^2 geradas por $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ e $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, respectivamente.

Exemplo 6.1.6 Se $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ então $P_A(t) = t^2 + 1$. Se $A \in M_2(\mathbb{R})$ vemos que A não tem autovalores. Se $A \in M_2(\mathbb{C})$ então \underline{i} e $\underline{-i}$ são autovalores de A. Obs. Se $T: V \longrightarrow V$ é linear e dim $_K V = n$, temos que $P_T(t)$ tem grau \underline{n} , de modo que T tem, no máximo, \underline{n} autovalores. Quando $K = \mathbb{C}$, $P_T(t)$ tem pelo menos uma raiz, de modo que, neste caso, T sempre tem um autovetor não nulo.

Proposição 6.8 Sejam V um espaço-vetorial de dimensão n sobre K e L, T: $V \longrightarrow V$ lineares. $L \circ T$ e $T \circ L$ têm os mesmos autovalores.

Dem. Se a=0 é autovalor de $L\circ T$, existe $u\neq 0$ tal que L(Tu)=0, donde $L\circ T$ não é invertível; logo, $det(L\circ T)=det\ L\cdot det\ T=0$, donde

 $det(T \circ L) = 0$ e $T \circ L$ não é invertível, donde existe $v \neq 0$ tal que T(Lv) = 0, isto é, a = 0 é autovalor de $T \circ L$.

Se $a \neq 0$ é autovalor de $L \circ T$, existe $u \neq 0$ tal que L(Tu) = au. Seja v = T(u); então: T(Lv) = T(au) = av. Se fosse v = T(u) = 0 então teríamos LTu = 0, donde au = 0, donde u = 0, contradição. Portanto, TLv = av com $v \neq 0$, donde a é autovalor de $T \circ L$. Analogamente se prova que todo autovalor de $T \circ L$ é também autovalor de $L \circ T$.

Proposição 6.9 Sejam V um espaço vetorial de dimensão \underline{n} sobre K e T: $V \longrightarrow V$ linear. Se o polinômio característico $P_T(t)$ admite em K uma raiz a de multiplicidade m, então $1 \leq \dim V(a) \leq m$.

Dem. Seja $\mathcal{E} = (u_1, ..., u_r, v_1, ..., v_s)$ base de V tal que $(u_1, ..., u_r)$ seja base de V(a). Temos:

$$\begin{split} T(u_1) &= au_1 \\ T(u_2) &= & au_2 \\ \vdots \\ T(u_r) &= & au_r \\ T(v_1) &= a_{11}u_1 & + \ldots + & a_{r1}u_r + b_{11}v_1 + \ldots + b_{s1}v_s \\ T(v_s) &= a_{1s}u_1 & + \ldots + & a_{rs}u_r + b_{1s}v_1 + \ldots + b_{ss}v_s \end{split}$$

Logo:

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} aI_r & A \\ 0 & B \end{bmatrix}$$

onde $A = (a_{ij}) \ \acute{e} \ r \times s \ e \ B = (b_{ij}) \ \acute{e} \ s \times s.$

Então:

$$P_T(t) = \begin{vmatrix} a - t & 0 & \dots & 0 & a_{11} & \dots & a_{1s} \\ 0 & a - t & \dots & 0 & a_{21} & \dots & a_{2s} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a - t & a_{r1} & \dots & a_{rs} \\ 0 & 0 & \dots & 0 & b_{11} - t & \dots & b_{1s} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & b_{s1} & \dots & b_{ss} - t \end{vmatrix} = (a - t)^T det(B - tI_s).$$

Como a é raiz de multiplicidade m, temos $r \leq m$, donde $1 \leq dim \ V(a) \leq m$.

6.2 Diagonalização

Definição 6.6 Sejam V um espaço vetorial de dimensão \underline{n} sobre K e T: $V \longrightarrow V$ linear. Dizemos que T é <u>diagonalizável</u> se existe base de V formada por autovetores de T, ou seja, se, e só se, T tem \underline{n} autovetores linearmente independentes. Em relação a essa base, a matriz de T é da forma

$$\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}, \ \lambda_j \in K, \ ou \ seja, \ todos \ os \ elementos \ fora \ da \ diagonal$$

principal são iguais a zero. Uma tal matriz é dita <u>diagonal</u>; os elementos da diagonal principal são os autovalores de T.

Definição 6.7 Seja $A = (a_{ij}) - n \times n$. \underline{A} é <u>diagonalizável</u> se existe matriz invertível $P - n \times n$ – tal que $P^{-1}AP = \overline{D}$, onde D é diagonal, isto é, se \underline{A} é semelhante a uma matriz diagonal.

Proposição 6.10 Sejam V um espaço vetorial de dimensão finita sobre K e $T:V\longrightarrow V$ linear. T é diagonalizável se, e só se, existe base $\mathcal E$ de V tal que $[T]_{\mathcal E}^{\mathcal E}=D$ seja diagonal.

Dem. Se T é diagonalizável existe base $\mathcal{E} = (v_1, ..., v_n)$ de V formada por autovetores de T: $T(v_i) = \lambda_i v_i$ $(1 \le i \le n)$. Logo:

$$[T]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}.$$

Reciprocamente, seja $\mathcal{E} = (v_1, ..., v_n)$ base de V tal que $[T]_{\mathcal{E}}^{\mathcal{E}} = D = \begin{bmatrix} \lambda_1 & 0 & ... & 0 \\ 0 & \lambda_2 & ... & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & ... & \lambda_n \end{bmatrix}$. Então: $T(v_i) = \lambda_i v_i$, $1 \leq i \leq n$, e \mathcal{E} é formada por

autovetores de T; portanto, T é diagonalizável.

Obs. Seja \mathcal{F} base de V e seja $A = [T]_{\mathcal{F}}^{\mathcal{F}}$. T é diagonalizável se, e só se, existe base \mathcal{E} de V tal que $[T]_{\mathcal{E}}^{\mathcal{E}} = D$ seja diagonal. Mas,

$$D = \left[T\right]_{\mathcal{E}}^{\mathcal{E}} = \left[Id\right]_{\mathcal{E}}^{\mathcal{F}} \cdot \left[T\right]_{\mathcal{F}}^{\mathcal{F}} \cdot \left[Id\right]_{\mathcal{F}}^{\mathcal{E}} = P^{-1}AP,$$

ou seja, T é diagonalizável se, e só se, $A = [T]_{\mathcal{F}}^{\mathcal{F}}$ é diagonalizável; $P = [Id]_{\mathcal{F}}^{\mathcal{E}}$ é a matriz de passagem da base \mathcal{E} para a base \mathcal{F} e as colunas de P são os autovetores de A.

Proposição 6.11 Sejam V um espaço vetorial de dimensão \underline{n} sobre K e $T:V\longrightarrow V$ linear. T é diagonalizável se, e só se:

- (a) o polinômio característico P_T de T tem suas n raízes em K;
- (b) para cada raiz λ_i de P_T , de ordem de multiplicidade m_i , tem-se dim $V(\lambda_i) = m_i$.

Dem. Se T é diagonalizável e \mathcal{E} é base de V na qual $[T]_{\mathcal{E}}^{\mathcal{E}}$ é diagonal, então \mathcal{E} é formada de autovetores de T. Podemos supor que os elementos de \mathcal{E} estão ordenados de maneira a termos primeiro os autovetores associados a λ_1 , depois aqueles associados a λ_2 , e assim por diante, de modo que

$$[T]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} \lambda_1 & \dots & 0 & 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_1 & 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ 0 & \dots & 0 & \lambda_2 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & \lambda_2 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & \dots & \lambda_k & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & \dots & 0 & \dots & \lambda_k \end{bmatrix} \in M_n(K).$$

Então:

$$V = V(\lambda_1) \oplus V(\lambda_2) \oplus ... \oplus V(\lambda_k),$$

donde dim $V = \dim V(\lambda_1) + ... + \dim V(\lambda_k) = n$. Como dim $V(\lambda_i) \leq m_i$ e $m_1 + ... + m_k = n$, resulta dim $V(\lambda_i) = m_i$ $(1 \leq i \leq k)$.

Reciprocamente, as \underline{n} raízes de P_T estando em K, suponhamos que dim $V(\lambda_i) = m_i$, $1 \le i \le k$. A relação $m_1 + ... + m_k = n$ nos dá

$$dim \ [V(\lambda_1) \oplus ... \oplus V(\lambda_k)] = n : V = V(\lambda_1) \oplus ... \oplus V(\lambda_k).$$

A reunião das bases dos $V(\lambda_i)$ $(1 \le i \le n)$ é uma base de V formada por autovetores de T, donde T é diagonalizável.

Exemplo 6.2.1 Seja $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$. Os autovalores de A são as raízes de $\begin{vmatrix} 1-t & 2 \\ 3 & 2-t \end{vmatrix} = 0$, isto é, de $t^2 - 3t - 4 = 0$, ou seja, $t_1 = -1$ e $t_2 = 4$. Para t = -1 a equação $(A - I_2) \cdot x = 0$, onde $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, nos dá $x_1 + x_2 = 0$, donde $x = x_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $x_1 \in \mathbb{R}$.

Para t=4 obtemos $3x_1+2x_2=0$, donde $x=3x_2\begin{pmatrix}2\\3\end{pmatrix}$, $x_2\in Real$. O vetor $\begin{pmatrix}1\\-1\end{pmatrix}$ gera V(-1), quanto que $\begin{pmatrix}2\\3\end{pmatrix}$ gera V(4). A matriz de passagem da base canônica de $V=\mathbb{R}^2$ para a base $\left\{\begin{pmatrix}1\\-1\end{pmatrix},\begin{pmatrix}2\\3\end{pmatrix}\right\}$ é $P=\begin{bmatrix}1&2\\-1&3\end{bmatrix}$, cuja inversa é $P^{-1}=\frac{1}{5}\begin{bmatrix}3&-2\\1&1\end{bmatrix}$ e $B=P^{-1}AP=\begin{bmatrix}-1&0\\0&4\end{bmatrix}$, matriz diagonal.

Exemplo 6.2.2 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in M_2(\mathbb{C})$ não é diagonalizável. De fato, $P_A(t) = (1-t)^2$ tem a raiz dupla t=1 e $(A-I_2)\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$ nos dá $x_2=0$, donde $x=x_1\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Assim, dim V(1)=1<2, e A não é diagonalizável.

Exemplo 6.2.3 $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$ é diagonalizável em $M_3(\mathbb{C})$ mas não o é em $M_3(\mathbb{R})$. De fato, os autovalores de A são $a_1 = 0$, $a_2 = -\frac{3}{2} + i\frac{\sqrt{3}}{2}$, $a_3 = -\frac{3}{2} - i\frac{\sqrt{3}}{2}$.

Exemplo 6.2.4 $A = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \in M_3(\mathbb{R})$ é diagonalizável. De fato,

temos:

$$P_A(t) = -(t-1)(t+2)^2.$$

$$\begin{split} &\check{E}\ f\'{a}cil\ comprovar\ que \ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \acute{e}\ base\ de\ V(1)\ e\ que \ \left\{ \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\} \acute{e}\ base \\ &de\ V(-2),\ ou\ seja,\ dim\ V(1) = 1\ e\ dim\ V(-2) = 2.\ Resulta\ que\ A \in M_3(\mathbb{R}) \\ \acute{e}\ diagonaliz\'{a}vel.\ Se\ P = \begin{bmatrix} 1&1&1\\1&-1&0\\1&0&-1 \end{bmatrix},\ ent\~{a}o\ P^{-1}AP = \begin{bmatrix} 1&0&0\\0&-2&0\\0&0&-2 \end{bmatrix}. \end{split}$$

Proposição 6.12 Sejam V um espaço vetorial de dimensão $n \ge 1$ sobre K e $T: V \longrightarrow V$ linear tal que $P_T(t)$ tenha todas suas raízes em K. Existe uma base de V na qual a matriz de T é triangular (superior).

Dem. (indução)

Para dim V = 1 nada há a provar. Suponhamos o teorema verdadeiro para dim V = n-1. Seja $a_1 \in K$ um dos autovalores de T e $v_1 \neq 0$ um autovetor associado a a_1 , isto é, $Tv_1 = a_1v_1$. Sejam $V_1 = Kv_1$ o subespaço gerado por v_1 , W um suplementar qualquer de V_1 e $\mathcal{F} = (w_2, ..., w_n)$ uma base de W. Como $v_1 \neq W$, $\mathcal{E}' = (v_1, w_2, ..., w_n)$ é base de V e

$$[T]_{\mathcal{E}'}^{\mathcal{E}'} = \begin{bmatrix} a_1 & b_{12} & \dots & b_{1n} \\ 0 & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{n2} & \dots & b_{nn} \end{bmatrix}.$$

Como, em geral, T(W) não está contido em W, consideremos as projeções $p_1: V \longrightarrow V_1$ e $p_2: V \longrightarrow W$. Então, $Im(p_2T) \subset W$ e podemos considerar a aplicação linear $p_2 \cdot T: W \longrightarrow W$. Como $p_2(V_1) = 0$ e $p_2(w_j) = w_j$, j = 2, ..., n, temos:

$$p_2T(w_j) = p_2(b_{1j}v_1 + b_{2j}w_2 + \dots + b_{nj}w_n) = b_{2j}w_2 + \dots + b_{nj}w_n,$$

donde:

$$[p_2T]_{\mathcal{F}}^{\mathcal{F}} = \begin{bmatrix} b_{22} & \dots & b_{2n} \\ \vdots & \ddots & \vdots \\ b_{n2} & \dots & b_{nn} \end{bmatrix}.$$

Resulta: $P_T(t) = (a_1 - t) \det(p_2 T - tI)$, e podemos concluir que os autovalores de $p_2 T : W \longrightarrow W$ estão em K, já que eles são também autovalores de T. Pela hipótese de indução, existe base $G = (u_2, ..., u_n)$ de W tal que $\begin{bmatrix} p_2 T \end{bmatrix}_G^G =$

$$\begin{bmatrix} c_{22} & c_{23} & \dots & c_{2n} \\ 0 & c_{33} & \dots & c_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & c_{nn} \end{bmatrix} \text{ \'e matriz triangular. Se } \mathcal{E} = (v_1, u_2, \dots, u_n) \text{ \'e a base de }$$

 \bar{V} obtida acrescentando-se $v_1 \neq W$ a G, temos:

$$[T]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} a_1 & c_{12} & \dots & c_{1n} \\ 0 & c_{22} & \dots & c_{2n} \\ 0 & 0 & \dots & c_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & c_{nn} \end{bmatrix}, matriz triangular.$$

Corolário 6.12.1 Seja $A \in M_n(\mathbb{C})$. Existe $P \in M_n(\mathbb{C})$, invertível, tal que $B = P^{-1}AP$ seja triangular.

Obs. Se $\mathcal{E} = (v_1, v_2, ..., v_n)$ é base de V na qual $[T]_{\mathcal{E}}^{\mathcal{E}}$ é triangular superior, sejam:

 $V_1 = Kv_1 = espaço gerado por v_1$

 $V_2 = espaço gerado por v_1, v_2$

:

 $V_n = V = espaço gerado por v_1, v_2, ..., v_n.$

(1) $V_i \subset V_{i+1}$; (2) $\dim V_i = i$; (3) $T(V_i) \subset V_i$ $(1 \le i \le n)$.

Reciprocamente, se $V_1, ..., V_n = V$ são subespaços de V satisfazendo (1), (2) e (3) acima, então existe base \mathcal{E} de V na qual $[T]_{\mathcal{E}}^{\mathcal{E}}$ é triangular superior. De fato, basta tomar (v_1) base de V_1 , (v_1, v_2) base de V_2 , (v_1, v_2, v_3) base de V_3 e assim por diante até chegar a uma base $(v_1, v_2, ..., v_n)$ de $V_n = V$.

Exercícios

1. Ache os autovalores e autovetores e $A=\begin{bmatrix}2&0&4\\3&-4&12\\1&-2&5\end{bmatrix}\in M_3(\mathbb{R}).$

2. Verifique se
$$A = \begin{bmatrix} -4 & 0 & -2 \\ 0 & 1 & 0 \\ 5 & 1 & 3 \end{bmatrix}$$
 é diagonalizável.

6.3 Polinômios de Operadores e Matrizes

Sejam K[t] o conjunto dos polinômios a uma variável com coeficientes no corpo K, V um espaço vetorial sobre K, $T:V\longrightarrow V$ linear e $p(t)=a_0+a_1t+\ldots+a_mt^m$ um elemento de K[t].

Definição 6.8
$$p(T) = a_0I + a_iT + ... + a_mT^m : V \longrightarrow V$$
.
Se $A \in M_n(K)$, definimos: $p(A) = a_0I_n + a_1A + ... + a_mA^m \in M_n(K)$.

Exemplo 6.3.1 Sejam
$$A = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} e p(t) = t^3 - 2t + 3$$
. Então:

$$p(A) = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}^3 - 2 \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}.$$

Obs. Se \mathcal{E} é base de V, $A = [T]_{\mathcal{E}}^{\mathcal{E}}$ e $\phi : \mathcal{L}(V) \longrightarrow M_n(K)$ é o isomorfismo de álgebras tal que $\phi(T) = [T]_{\mathcal{E}}^{\mathcal{E}} = A$, então

$$\phi(p(T)) = \phi(a_0I + \dots + a_mT^m) = a_0\phi(I) + \dots + a_m\phi(T^m) =$$

$$= a_0I_n + a_1A + \dots + a_mA^m = p(A),$$

ou seja, $[p(T)]_{\mathcal{E}}^{\mathcal{E}} = p(A)$.

Proposição 6.13 Sejam $p, q \in K[t]$, $c \in K$, V um espaço vetorial sobre K e $T: V \longrightarrow V$ linear. Então:

- (a) (p+q)(T) = p(T) + q(T)
- (b) $(pq)(T) = p(T) \cdot q(T) = q(T) \cdot p(T)$
- $(c) (cp)(T) = c \cdot p(T).$

Dem. Suponhamos $p(t) = a_0 + a_1t + ... + a_nt^n$ $e \ q(t) = b_0 + b_1t + ... + b_mt^m$, $m \le n$, $e \ seja \ b_i = 0$ seilon i > m. Então:

(a)
$$(p+q)(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$$
, donde

$$(p+q)(T) = (a_0 + b_0)I + (a_1 + b_1)T + \dots + (a_n + b_n)T^n =$$

$$= (a_0I + a_1T + \dots + a_nT^n) + (b_0I + b_1T + \dots + b_nT^n) =$$

$$= p(T) + q(T)$$

(b)
$$(pq)(t) = c_0 + c_1 t + \dots + c_{n+m} t^{n+m} = \sum_{k=0}^{m+n} c_k t^k$$
, onde

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0 = \sum_{i=0}^k a_i b_{k-i}.$$

Então:
$$(pq)(T) = \sum_{k=0}^{m+n} c_k T^k \ e \ p(T) \cdot q(T) = \left(\sum_{i=0}^{n} a_i T^i\right) \left(\sum_{j=0}^{m} b_j T^j\right) = \left(\sum_{j=0}^{m} a_j T^j\right) \left(\sum_{j=0}^{m} b_j T^j\right) = \left(\sum_{j=0}^{m} a_j T^j\right) \left(\sum_{j=0}^{m} a_j T^j\right) = \left(\sum_{j=0}^{m} a_j T^j\right) \left(\sum_{j=0}^{m} a_j T^j\right) = \left(\sum_{j=0}^{m} a_j T^j\right) \left(\sum_{j=0}$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j T^{i+j} = \sum_{k=0}^{m+n} c_k T^k = (pq)(T) = (qp)(T) = q(T) \cdot p(T).$$

 $(c) (cp)(T) = ca_0I + ca_1T + ... + ca_nT^n = c \cdot p(T).$

Obs. É claro que a proposição 6.13 continua válida se trocarmos o operador linear $T: V \longrightarrow V$ por uma matriz quadrada A.

Exemplo 6.3.2 Sejam $A, P \in M_n(K)$, P invertível e m um inteiro positivo. Temos: $(P^{-1}AP)^2 = P^{-1}AP \cdot P^{-1}AP = P^{-1}A^2P$ e, por indução, vê-se facilmente que $(P^{-1}AP)^m = P^{-1}A^mP$.

Se
$$p(t) = a_0 + a_1 t + \dots + a_m t^m$$
, então $p(P^{-1}AP) = \sum_{k=0}^m a_k (P^{-1}AP)^k = \sum_{k=0}^m a_k P^{-1}A^k P = P^{-1} \cdot \sum_{k=0}^m a_k A^k P = P^{-1} \cdot p(A) \cdot P$.

Proposição 6.14 (Cayley-Hamilton) Sejam V um espaço vetorial de dimensão $n \geq 1$ sobre K e T : $V \longrightarrow V$ linear. T é um zero de seu polinômio característico, isto é, $P_T(T) = 0$.

Dem. Para facilitar vamos provar o teorema no caso em que $K = \mathbb{C}$.

Vimos, na proposição 6.11, que existem subespaços $V_1, ..., V_n$ de V tais que $V_i \subset V_{i+1}$, dim $V_j = j$ e $T(V_i) \subset V_i$ $(1 \le i \le n)$ e base $\mathcal{E} = (v_1, v_2, ..., v_n)$ de V tal que $V_i = espaço$ gerado por $v_1, ..., v_i$ $(1 \le i \le n)$. Em relação à base \mathcal{E} a matriz de T é triangular superior:

$$[T]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}.$$

Então: $Tv_i = a_{ii}v_i + um \ vetor \ de \ V_{i-1}$.

Como $(T - a_{ii}I)v_i = Tv_i - a_{ii}v_i$ resulta que $(T - a_{ii}I)v_i \in V_{i-1}$. Além disso, o polinômio característico de T é dado por $P_T(t) = (-1)^n(t - a_{11})...(t - a_{nn})$ de modo que $P_T(T) = (-1)^n(T - a_{11}I)...(T - a_{nn}I)$.

Vamos provar, por indução, que $(T - a_{11}I)...(T - a_{ii}I)v = 0$ para todo $v \in V_i$ $(1 \le i \le n)$.

Para i=1, temos $(T-a_{11}I)v_1=Tv_1-a_{11}v_1=0$. Admitamos o teorema verdadeiro para i-1. Todo elemento de V_i é da forma $u+cv_i$ com $u \in V_{i-1}$ e $c \in \mathbb{C}$. Como $TV_{i-1} \subset V_{i-1}$ resulta que $(T-a_{ii}I)u$ está em V_{i-1} . Por indução,

$$(T - a_{11}I)...(T - a_{i-1,i-1}I)(T - a_{ii}I)u = 0.$$

Por outro lado, $(T - a_{11}I)cv_i$ pertence a V_{i-1} e, por indução,

$$(T - a_{11}I)...(T - a_{ii}I)cv_i = 0.$$

 $Logo, para v \in V_i, temos$

$$(T - a_{11}I)...(T - a_{ii}I)v = 0$$

e i = n prova o teorema.

Obs. É claro que a proposição 6.14 continua válida se substituirmos $T: V \longrightarrow V$ por uma matriz $A \in M_n(K)$.

Exemplo 6.3.3 Seja
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -3 \\ 0 & 3 & 6 \end{bmatrix}$$
. Temos: $P_A(t) = (1-t)(t-3)^2$.

Para
$$t = 1$$
, $(A - I_3)x = 0$ nos dá $x = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $x_1 \in \mathbb{R}$.

Para
$$t = 3$$
, $(A - 3I_3)x = 0$ nos dá $x = x_3\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$, $x_3 \in \mathbb{R}$.

Como dim
$$V(3)=1<2$$
, A não é diagonalizável. Os vetores $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ e

$$\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
 geram $V(1)$ e $V(3)$, respectivamente. Para obter uma base de \mathbb{R}^3

devemos tomar um terceiro vetor que seja independente desses dois. Por

exemplo,
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
. Obtemos a base $\mathcal{F} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\} de \mathbb{R}^3$. Se

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \ ent \tilde{a}o \ P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \ e \ B = P^{-1}AP = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 3 \\ 0 & 0 & 3 \end{bmatrix}, \ many$$

triz triangular na qual os elementos da diagonal principal são os autovalores de A. Como $P_A(t) = P_B(t) = (1-t)(3-t)^2$, temos $P_A(A) = P_B(B) = 0$, ou seja, $(I_3 - A)(3I_3 - A)^2 = 0$, que se pode verificar diretamente pelo cálculo.

6.4 Exercícios do Capítulo 6

- 1. Seja $A = \begin{bmatrix} 1 & a & 1 \\ 0 & 1 & b \\ 0 & 0 & c \end{bmatrix}$, onde a, b e c são reais. Ache os autovalores e autovetores de A e determine os casos em que A é diagonalizável.
- 2. Se possível, diagonalize $A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$.
- 3. Prove que não existem matrizes A, $B n \times n$ tais que

$$[A, B] = AB - BA = I_n.$$

- 4. Sejam V um espaço vetorial de dimensão finita sobre K, $T:V\longrightarrow V$ linear.
 - (a) Prove que T e T^t têm o mesmo polinômio característico.
 - (b) Sejam $V(\lambda)$ o auto-espaço associado ao autovalor λ de T e $V'(\lambda)$ o auto-espaço associado ao autovalor λ de T^t . Prove que $V(\lambda)$ e $V'(\lambda)$ têm a mesma dimensão.
- 5. Sejam $A \in M_n(\mathbb{C})$ a matriz "circulante" $A = \begin{bmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{bmatrix}$ e

 $P = (p_{jk}) - n \times n - \text{tal que } p_{jk} = e^{\frac{2\pi i}{n}jk}$. (a) Calcule $P\overline{P}$ e ache P^{-1} .

(b) Se $w = e^{\frac{2\pi i}{n}}$, mostre que o vetor $x = \begin{bmatrix} 1 \\ w \\ \vdots \\ w^{n-1} \end{bmatrix}$ é um autovetor de A.

Qual é o autovalor correspondente?

(c) Prove que $P^{-1}AP$ é uma matriz diagonal.

Capítulo 7

Produto Interno

Neste capítulo o corpo K será ou $\mathbb R$ ou $\mathbb C$ e usaremos a notação $\mathbb K$.

7.1 Definições e Exemplos

Definição 7.1 Seja V um espaço vetorial sobre \mathbb{K} . Um <u>produto interno</u> em V é uma função que a cada par $(u,v) \in V \times V$ associa um escalar, anotado $\langle u,v \rangle$, de modo que:

- (a) $\langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle$
- (b) $\langle au, v \rangle = \underline{a}\langle u, v \rangle$
- (c) $\langle u, v \rangle = \overline{\langle v, u \rangle}$, onde a barra indica conjugação complexa,
- (d) $\langle v, v \rangle$ é um real positivo para todo $v \in \mathbb{K}$, $v \neq 0$ quaisquer que sejam $u, v, u_1, u_2 \in V$ e $a \in \mathbb{K}$.

Exemplo 7.1.1 Seja $V = \mathbb{K}^n$. Se $u = (x_1, ..., x_n)$ e $v = (y_1, ..., y_n)$, definimos $\langle u, v \rangle = x_1 \overline{y}_1 + ... + x_n \overline{y}_n$ e obtemos um produto interno em \mathbb{K}^n .

Exemplo 7.1.2 Seja $V = C^0([0,1], \mathbb{K})$ o espaço vetorial das funções contínuas $f: [0,1] \longrightarrow \mathbb{K}$. Se $f,g \in V$, definimos um produto interno em V por $\langle f,g \rangle = \int_0^1 f(t)\overline{g(t)}dt$.

Exemplo 7.1.3 Seja $V = C^1([0,1],\mathbb{R})$ o espaço vetorial das funções contínuas $f:[0,1] \longrightarrow \mathbb{R}$ que têm derivada primeira contínua. Se $f,g \in V$, definimos um produto interno em V por $\langle f,g \rangle = \int_0^1 \left[f(t)g(t) + f'(t)g'(t) \right] dt$.

Exemplo 7.1.4 Sejam V_1 e V_2 espaços vetoriais sobre o mesmo corpo (\mathbb{R} ou \mathbb{C}) e \langle , \rangle_2 um produto interno em V_2 . Se $T: V_1 \longrightarrow V_2$ é linear injetora,

definimos um produto interno em V_1 por $\langle u, v \rangle_1 = \langle T(u), T(v) \rangle_2$. Por exemplo, seja $T: V_1 = C^0([0,1], \mathbb{R}) \longrightarrow V_2 = C^0([0,1], \mathbb{R}), \ \langle, \rangle_2$ como no exemplo 7.1.2 acima, tal que $T(f)(t) = e^{-\frac{t^2}{2}}f(t)$. É claro que T é linear injetora. Portanto, $\langle f, g \rangle_1 = \int_0^1 e^{-t^2}f(t)g(t)dt$ é um produto interno em V_1 .

Definição 7.2 Seja V um espaço vetorial sobre \mathbb{K} munido de produto interno \langle , \rangle . Se $v \in V$ definimos sua <u>norma</u> por $||v|| = \sqrt{\langle v, v \rangle}$. A <u>distância</u> entre $u, v \in V$ é definida por d(u, v) = ||u - v||.

Proposição 7.1 (Pitágoras) Seja V um espaço vetorial com produto interno \langle , \rangle . Se $u, v \in V$, então $||u+v||^2 = ||u||^2 + ||v||^2$ se, e só se, $Re\langle u, v \rangle = 0$, onde $Re\ z$ indica a parte real do número complexo z.

Dem. $||u+v||^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = ||u||^2 + ||v||^2 + \langle u, v \rangle + \overline{\langle u, v \rangle} = ||u||^2 + ||v||^2 + \langle u, v \rangle.$ Portanto, $||u+v||^2 = ||u||^2 + ||v||^2$ se, e só se, $Re\langle u, v \rangle = 0$.

Corolário 7.1.1 Se $\langle u, v \rangle = 0$ então $||u + v|| \ge ||u||$ com igualdade $\Leftrightarrow v = 0$.

Corolário 7.1.2 (lei do paralelogramo) Se $u, v \in V$, então:

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

Proposição 7.2 Seja V um espaço vetorial com produto interno \langle,\rangle . Então:

- (a) $||av|| = |a| \cdot ||v||$
- (b) ||v|| > 0 se $v \neq 0$
- $(c) |\langle u, v \rangle| \le ||u|| \cdot ||v||$ (designal dade de Cauchy-Schwarz)
- (d) $||u+v|| \le ||u|| + ||v||$ (designal dade triangular), quaisquer que sejam $u, v \in V$ e $a \in \mathbb{K}$.

Dem. (a)
$$||av|| = \sqrt{\langle av, av \rangle} = \sqrt{a\overline{a}\langle v, v \rangle} = \sqrt{|a|^2 \cdot \langle v, v \rangle} = |a| \cdot ||v||$$
.

- (b) Se $v \neq 0$ temos $\langle v, v \rangle > 0$, donde ||v|| > 0.
- (c) A desigualdade é verdadeira para v=0. Suponhamos $v\neq 0$ e determinemos $c\in \mathbb{K}$ de modo que cv seja a projeção ortogonal de \underline{u} ao longo de v, isto é, tal que $\langle u-cv,v\rangle=0$, donde $c=\frac{\langle u,v\rangle}{\langle v,v\rangle}$. Pelo corolário 7.1.1 da

 $\begin{aligned} & proposi\tilde{\varsigma ao} \ \ 7.1 \ temos \ \|u\| \geq \|cv\| = \frac{|\langle u,v\rangle|}{\|v\|^2} \cdot \|v\|, \ donde, \ |\langle u,v\rangle| \leq \|u\| \cdot \|v\|, \\ & com \ igual dade \Leftrightarrow u = cv. \end{aligned}$

(d)
$$||u+v||^2 = ||u||^2 + ||v||^2 + 2Re\langle u, v \rangle \le ||u||^2 + ||v||^2 + 2|\langle u, v \rangle| \le$$

 $\le ||u||^2 + ||v||^2 + 2||u|| \cdot ||v|| = (||u|| + ||v||)^2$, donde a tese.

Exemplo 7.1.5 Aplicando a desigualdade de Cauchy-Schwarz aos exemplos 7.1.1 e 7.1.2 anteriores, obtemos:

$$(7.1.1) \left| \sum_{i=1}^{n} x_{i} \overline{y}_{i} \right| \leq \left(\sum_{i=1}^{n} |x_{i}|^{2} \right)^{1/2} \cdot \left(\sum_{i=1}^{n} |y_{i}|^{2} \right)^{1/2}$$

$$(7.1.2) \left| \int_{0}^{1} f(t) \overline{g(t)} dt \right| \leq \left(\int_{0}^{1} |f(t)|^{2} dt \right)^{1/2} \cdot \left(\int_{0}^{1} |g(t)|^{2} dt \right)^{1/2}.$$

Definição 7.3 Seja V um espaço vetorial com produto interno \langle , \rangle . $u,v \in V$ são <u>ortogonais</u> ou perpendiculares se $\langle u,v \rangle = 0$, o que indicamos por $u \perp v$. Se $S \subset V$, definimos $S^{\perp} = \{v \in V; \langle u,v \rangle = 0 \ \forall u \in S\}$. É imediato que S^{\perp} é um subespaço de V, chamado <u>espaço ortogonal</u> de S. Se U é o subespaço de V gerado por S, então $S^{\perp} = U^{\perp}$ pois se v é perpendicular a todos os elementos de S, é perpendicular também às combinações lineares de elementos de S, ou seja, aos elementos de V. Escrevemos $V \perp S$ para indicar que V é perpendicular a todos os elementos de V; neste caso, dizemos que V é perpendicular a V.

Exemplo 7.1.6 Sejam $V = C^0([0, 2\pi], \mathbb{R}), \ g_1(t) = \cos kt, \ g_2(t) = \sin kt,$ onde $k \notin um$ inteiro positivo, $\langle f, g \rangle = \int_0^{2\pi} f(t)g(t)dt$. Temos:

$$||g_1||^2 = \int_0^{2\pi} \cos^2 kt \cdot dt = \pi$$

$$||g_2||^2 = \int_0^{2\pi} sen^2 kt \cdot dt = \pi$$

102

Os coeficientes de Fourier de $f \in V$ são os números

$$a_k = \frac{\langle f, g_1 \rangle}{\|g_1\|^2} = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos kt \cdot dt,$$

$$b_k = \frac{\langle f, g_2 \rangle}{\|g_2\|^2} = \frac{1}{\pi} \int_0^{2\pi} f(t) \operatorname{sen} kt \cdot dt$$

$$e^{\frac{a_0}{2}} = \frac{\langle f, 1 \rangle}{\|1\|^2} = \frac{1}{2\pi} \int_0^{2\pi} f(t)dt.$$

Devido a esse exemplo, é usual (no caso geral) chamar $c = \frac{\langle u, v \rangle}{\|v\|^2}$ de coeficiente de Fourier de u em relação a v; o vetor cv é a projeção ortogonal de u sobre v.

Definição 7.4 Seja V um espaço vetorial com produto interno \langle, \rangle . Dizemos que $S \subset V$ é um conjunto <u>ortogonal</u> se dois vetores quaisquer de S são ortogonais. $S \subset V$ é um conjunto <u>ortonormal</u> se S é ortogonal e ||v|| = 1 para todo $v \in S$.

Exemplo 7.1.7 A base canônica de \mathbb{K}^n é um conjunto ortonormal relativamente ao produto interno usual de \mathbb{K}^n .

Proposição 7.3 Seja V um espaço vetorial com produto interno \langle, \rangle . Se $X \subset V$ é um conjunto ortogonal de vetores não nulos, então X é linearmente independente.

Dem. Suponhamos $a_1x_1 + ... + a_nx_n = 0$, $n \in \mathbb{N}$, $a_i \in \mathbb{K}$, $x_i \in X$. Então: $\langle x_i, \sum_{k=1}^n a_k x_k \rangle = 0$, donde $\langle x_i, a_i x_i \rangle = 0$, isto é, $\overline{a_i} ||x_i||^2 = 0$ e, portanto, $a_i = 0$ (i = 1, ..., n), o que mostra ser X linearmente independente.

Proposição 7.4 Seja $\{v_1, ..., v_n, ...\}$ um conjunto ortogonal de vetores nãonulos num espaço vetorial com produto interno \langle, \rangle . Sejam $v \in V$ e $c_i = \frac{\langle v, v_i \rangle}{\|v_i\|^2}$ (i = 1, 2, ...).

(a) Se $a_1, ..., a_n \in \mathbb{K}$, então $\left\| v - \sum_{i=1}^n c_i v_i \right\| \le \left\| v - \sum_{i=1}^n a_i v_i \right\|$, com igualdade se, e só se, $a_i = c_i$ (i = 1, ..., n)

(b)
$$\sum_{i=1}^{\infty} |c_i|^2 \cdot ||v_i||^2 \le ||v||^2 \text{ (designal dade de Bessel)}$$

 $\begin{aligned} & \mathbf{Dem.} \ \langle v - \sum_{i=1}^n c_i v_i, v_j \rangle = \langle v, v_j \rangle - \sum_{i=1}^n c_i \langle v_i, v_j \rangle = c_j \|v_j\|^2 - c_j \|v_j\|^2 = 0 \ (j = 1, ..., n), \ ou \ seja, \ o \ vetor \ v - \sum_{i=1}^n c_i v_i \ \'e \ perpendicular \ ao \ subespaço \ S \ gerado \ por \ v_1, ..., v_n; \ em \ particular \ ao \ vetor \ \sum_{i=1}^n (c_i - a_i) v_i. \ Do \ corolário \ 7.1.1 \ do \ teorema \ de \ Pitágoras, \ resulta \ que \ \left\|v - \sum_{i=1}^n c_i v_i \right\| \le \left\|v - \sum_{i=1}^n a_i v_i \right\|, \ com \ igualdade \ se, \ e \ s\'o \ se, \ \sum_{i=1}^n (c_i - a_i) v_i = 0, \ o \ que \ equivale \ a \ a_i = c_i \ (i = 1, ..., n). \end{aligned}$

Ainda pelo corolário 7.1.1 do teorema de Pitágoras, temos $||v||^2 \ge \left\|\sum_{i=1}^n c_i v_i\right\|^2 =$

$$\sum_{i,j=1}^{n} \langle c_i v_i, c_j v_j \rangle = \sum_{i=1}^{n} |c_i|^2 ||v_i||^2, \ v\'alida \ para \ todo \ n \in \mathbb{N}. \ Portanto,$$

$$\sum_{i=1}^{\infty} |c_i|^2 \cdot ||v_i||^2 \le ||v||^2.$$

Exemplo 7.1.8 Dada a função contínua $f:[0,2\pi] \longrightarrow \mathbb{R}$, vamos achar, dentre os polinômios trigonométricos de grau \underline{m} , $P(t) = \frac{a_0}{2} + a_1 cos t + b_1 sen t + ... + a_m cos mt + b_m sen mt$, $a_i \in \mathbb{R}$, $b_i \in \mathbb{R}$, o que minimiza a integral

$$\int_0^{2\pi} \left[f(t) - P(t) \right]^2 dt.$$

Seja $V=C^0\big([0,2\pi],\mathbb{R}\big)$ com o produto interno $\langle f,g\rangle=\int_0^{2\pi}f(t)g(t)dt.$ As funções $1,\cos t,\ sen\ t,...,\ cos\ nt,\ sen\ nt,...$ pertencem a Ve formam um conjunto ortogonal de vetores não-nulos, pois

$$\int_0^{2\pi} \cos kt \cdot dt = \int_0^{2\pi} \sin kt \cdot dt = \int_0^{2\pi} \cos kt \cdot \cos kt \cdot dt = \int_0^{2\pi} \cos kt \cdot \sin kt \cdot dt = \int_0^{2\pi} \cos kt \cdot \sin kt \cdot dt = \int_0^{2\pi} \sin kt \cdot \sin kt \cdot dt = 0$$

se $k \neq h$, $k \neq l$, respectivamente, e

$$\int_0^{2\pi} 1^2 dt = 2\pi, \ \int_0^{2\pi} \cos^2 kt \cdot dt = \int_0^{2\pi} \sin^2 kt \cdot dt = \pi \quad (k = 1, 2, \ldots)$$

Pela proposição 7.4, $||f-P||^2 = \int_0^{2\pi} \left[f(t) - P(t) \right]^2 dt$ é mínimo quando os coeficientes de P(t) são os coeficientes de Fourier de f em relação às funções 1, $cos\ t$, $sen\ t$, Então:

$$\frac{a_0}{2} = \frac{1}{2\pi} \int_0^{2\pi} f(t)dt, \qquad donde \quad a_0 = \frac{1}{\pi} \int_0^{2\pi} f(t)dt$$

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(t)\cos kt \cdot dt \qquad e \qquad b_k = \frac{1}{\pi} \int_0^{2\pi} f(t)\sin kt \cdot dt$$

$$E \text{ a designal dade (abstrata) de Bessel, nos dá:}$$

$$\frac{a_0^2}{4} \cdot 2\pi + a_1^2 \cdot \pi + b_1^2 \cdot \pi + \dots + a_n^2 \cdot \pi + b_n^2 \cdot \pi + \dots \le \int_0^{2\pi} |f(t)|^2 dt,$$

ou seja,
$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \le \frac{1}{\pi} \int_0^{2\pi} |f(t)|^2 dt$$
, que é a desigualdade clássica de Bessel.

Exercício Sejam $a_1, ..., a_n$ reais não nulos. Prove:

$$(a_1^2 + \dots + a_n^2) \left(\frac{1}{a_1^2} + \dots + \frac{1}{a_n^2} \right) \ge n^2.$$

7.2 Bases Ortonormais

Definição 7.5 Seja V um espaço vetorial com produto interno \langle , \rangle . Uma $\underline{base}(v_1,...,v_n)$ de V é <u>ortogonal</u> se o conjunto $\{v_1,...,v_n\}$ é ortogonal, isto é, $\overline{\langle v_i,v_j\rangle}=0$ se $i\neq j$. Se, além disso, $\|v_j\|=1$ (j=1,...,n) então $(v_1,...,v_n)$ é uma base ortonormal.

Proposição 7.5 Todo espaço vetorial com produto interno, de dimensão finita $n \ge 1$, tem uma base ortonormal.

Dem. Seja $(u_1, ..., u_n)$ base de V. A partir desta base vamos obter uma base ortogonal, pelo chamado processo de ortogonalização de Gram-Schmidt.

Seja $v_1 = u_1 \ (\neq 0)$; para achar v_2 ponhamos $v_2 = u_2 - a_1 v_1$, onde $a_1 \in \mathbb{K}$ é escolhido de modo que $\langle v_2, v_1 \rangle = 0$, isto é, $\langle u_2 - a_1 v_1, v_1 \rangle = 0$, donde $a_1 = \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2}$.

Como u_1 e u_2 são LI, é claro que $v_2 \neq 0$; além disso, o <u>espaço gerado</u> por v_1 e v_2 é <u>o mesmo gerado por u_1 e u_2 . A seguir, para achar v_3 , ponhamos $v_3 = u_3 - b_2v_2 - b_1v_1$, onde b_1 e b_2 são escolhidos de modo que $\langle v_3, v_1 \rangle = \langle v_3, v_2 \rangle = 0$, donde $b_1 = \frac{\langle u_3, v_1 \rangle}{\|v_1\|^2}$ e $b_2 = \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2}$.</u>

Como u_3 não está no espaço gerado por v_1 e v_2 , temos $v_3 \neq 0$; além disso, o espaço gerado por v_1, v_2, v_3 é o mesmo gerado por u_1, u_2, u_3 . Por indução, suponhamos construídos $v_1, ..., v_{k-1}$ que formam um conjunto ortogonal de vetores não-nulos e são tais que o espaço por eles gerado é o mesmo gerado por $u_1, ..., u_{k-1}$. Para achar v_k , ponhamos $v_k = u_k - c_{k-1}v_{k-1} - ... - c_1v_1$, onde $c_1, ..., c_{k-1}$ são escolhidos de modo que $\langle v_k, v_1 \rangle = ... = \langle v_k, v_{k-1} \rangle = 0$, donde $c_1 = \frac{\langle u_k, v_1 \rangle}{\|v_1\|^2}, ..., c_{k-1} = \frac{\langle u_k, v_{k-1} \rangle}{\|v_{k-1}\|^2}$. Como u_k não pertence ao espaço gerado por $v_1, ..., v_k$ é o mesmo gerado por $u_1, ..., u_k$. Obteremos assim, por esse processo, uma sequência $(v_1, ..., v_n)$ de vetores não-nulos, dois a dois ortogonais, donde LI, ou seja, uma base ortogonal de v. Para obter uma base ortonormal basta substituir cada v_i por $\frac{v_i}{\|v_i\|}$.

Exemplo 7.2.1 Vamos achar uma base ortogonal para o subespaço W de $V = C^0([0,1],\mathbb{R})$, com $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$, gerado pelas funções $1,t,t^2$.

$$Seja \ f_{1}(t) = 1 \ e \ tomemos \ f_{2}(t) = t - af_{1}(t) = t - a \ onde \ a = \frac{\langle t, f_{1} \rangle}{\|f_{1}\|^{2}} = \int_{0}^{1} t \cdot dt = \frac{1}{2}. \ Logo: \ f_{2}(t) = t - \frac{1}{2}.$$

$$Ponhamos \ f_{3}(t) = t^{2} - bf_{2}(t) - cf_{1}(t), \ onde \ b, c \in \mathbb{R} \ s\~{a}o \ dados \ por:$$

$$b = \frac{\langle t^{2}, f_{2} \rangle}{\|f_{2}\|^{2}} \ e \ c = \frac{\langle t^{2}, f_{1} \rangle}{\|f_{1}\|^{2}}.$$

Temos:

$$||f_1||^2 = 1;$$
 $||f_2||^2 = \int_0^1 \left(t - \frac{1}{2}\right)^2 dt = \frac{1}{12};$ $\langle t^2, f_1 \rangle = \int_0^1 t^2 dt = \frac{1}{3};$ $\langle t^2, f_2 \rangle = \int_0^1 t^2 \left(t - \frac{1}{2}\right) dt = \frac{1}{12}.$

Logo:

$$f_3(t) = t^2 - f_2(t) - \frac{1}{3}f_1(t) = t^2 - t + \frac{1}{6}.$$

Portanto, $\left(1, t - \frac{1}{2}, t^2 - t + \frac{1}{6}\right)$ é uma base ortogonal de W.

Proposição 7.6 Sejam V um espaço vetorial com produto interno \langle , \rangle e W \subset V um subespaço de dimensão finita. Então:

$$V=W\oplus W^\perp$$

Dem. Seja $(v_1,...,v_r)$ uma base ortonormal de W. Se $v \in V$, seja

$$u = v - \sum_{i=1}^{r} \langle v, v_i \rangle v_i.$$

Temos:

$$\langle u, v_j \rangle = \langle v - \sum_{i=1}^r \langle v, v_i \rangle v_i, v_j \rangle = \langle v, v_j \rangle - \sum_{i=1}^r \langle v, v_i \rangle \delta_{ij} =$$

$$= \langle v, v_j \rangle - \langle v, v_j \rangle = 0 \quad (j = 1, ..., r)$$

ou seja, $u \in W^{\perp}$. Como $\sum_{i=1}^{r} \langle v, v_i \rangle v_i \in W$, temos $V = W + W^{\perp}$. Se $v \in W \cap W^{\perp}$ então $\langle v, v \rangle = 0$, donde v = 0, isto é, $W \cap W^{\perp} = \{0\}$. Logo: $V = W \oplus W^{\perp}$.

Corolário 7.6.1 Nas condições da proposição 7.6, se V tem dimensão finita, então: $\dim V = \dim W + \dim W^{\perp}$.

Obs. Sejam V um espaço vetorial com produto interno \langle , \rangle e $(e_1, ..., e_n)$ uma base <u>ortonormal</u> de V. Se $u, v \in V$, $u = a_1e_1 + ... + a_ne_n$, $v = b_1e_1 + ... + b_ne_n$, então $\langle u, v \rangle = \sum_{i,j=1}^n \langle a_ie_i, b_je_j \rangle = \sum_{i,j=1}^n a_i\overline{b_j}\delta_{ij} = \sum_{i=1}^n a_i\overline{b_i}$, igual ao produto interno usual dos vetores $a = (a_1, ..., a_n)$ e $b = (b_1, ..., b_n)$ de \mathbb{K}^n . Se a base $(e_1, ..., e_n)$ não é ortonormal e se $\langle e_i, e_j \rangle = g_{ij} \in \mathbb{K}$, então $\langle u, v \rangle = \sum_{i,j=1}^n g_{ij}a_i\overline{b_j}$.

Se V é um espaço vetorial sobre \mathbb{K} , de dimensão n, uma maneira de se definir um produto interno em V é a seguinte: tome uma base arbitrária $(e_1,...,e_n)$ de V e defina o produto interno, de $u=a_1e_1+...+a_ne_n$ por $v=b_1e_1+...+b_ne_n$, por meio de $\langle u,v\rangle=\sum_{i=1}^n a_i\overline{b_i}$. Em relação a este produto interno, a base $(e_1,...,e_n)$ é ortonormal.

Exercícios

- 1. Seja $\mathcal{E} = (u_1, u_2, u_3)$ a base de \mathbb{R}^3 formada pelos vetores $u_1 = (1, 1, 1)$, $u_2 = (1, -1, 1)$ e $u_3 = (1, -1, -1)$, e seja $\mathcal{F} = (v_1, v_2, v_3)$ a base ortogonal obtida de \mathcal{E} pelo processo de Gram-Schmidt. Ache a matriz P de passagem de \mathcal{E} para \mathcal{F} . Observe que P é triangular superior.
- 2. Dado o vetor unitário $u=(\alpha_1,...,\alpha_n)\in\mathbb{R}^n$ forme a matriz $A=(\alpha_i\alpha_j)-n\times n$. Seja $H:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ o operador cuja matriz na base canônica é I_n-2A . Prove que para todo $v\in\mathbb{R}^n$ tem-se $H(v)=v-2\langle v,u\rangle u$ e que $\|Hv\|=\|v\|$. (H é a <u>reflexão</u> no hiperplano de \mathbb{R}^n cuja normal é u).
- 3. Em $M_{\mathbb{R}}(n)$ considere $\langle A, B \rangle = \sum_{i,j} a_{ij} b_{ij}$, onde $A = (a_{ij})$ e $B = (b_{ij})$. Mostre que \langle , \rangle é um produto interno. Mostre que o subespaço \mathcal{A} das matrizes antissimétricas é o complemento ortogonal do subespaço \mathcal{S} das matrizes simétricas em $M_{\mathbb{R}}(n)$.

7.3 Relações entre V e V^*

Seja V um espaço vetorial com produto interno \langle, \rangle . Se $v \in V$, a aplicação $u \in V \xrightarrow{T_v} \langle u, v \rangle \in \mathbb{K}$ é uma forma linear, isto é, um elemento do dual $V^* = \mathcal{L}(V, \mathbb{K})$.

Proposição 7.7 Seja V um espaço vetorial de <u>dimensão finita</u> sobre \mathbb{K} , munido de um produto interno \langle , \rangle . A aplicação $v \in V \xrightarrow{T} T_v \in V^*$, $T_v(u) = \langle u, v \rangle$, é bijetora.

Dem. $T_{v_1+v_2}(u) = \langle u, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle = T_{v_1}(u) + T_{v_2}(u)$.

 $T_{av}(u)=\langle u,av\rangle=\overline{a}\langle u,v\rangle=\overline{a}T_v(u),$ de modo que T não é linear se $\mathbb{K}=\mathbb{C}.$ Dizemos que ela é semi-linear.

 $T: V \longrightarrow V^* \notin \underline{injetora} : \overline{T_{v_1} = T_{v_2}} \text{ se, } e \text{ só se, } \langle u, v_1 \rangle = \langle u, v_2 \rangle \text{ para todo } u \in V \Leftrightarrow \langle u, v_1 - v_2 \rangle = 0 \text{ para todo } u \in V \Leftrightarrow v_1 = v_2.$

 $T: V \longrightarrow V^* \notin \underline{sobrejetora}: dado \ w \in V^*, \ seja\ (v_1, ..., v_n) \ uma\ base$ ortonormal de V e seja $v = a_1v_1 + ... + a_nv_n \ com\ a_i = \overline{w(v_i)}.$ Então, $T_v(v_i) = \langle v_i, v \rangle = \overline{a_i} = w(v_i), \ 1 \le i \le n, \ e, \ portanto, \ T_v = w.$

Obs. No caso $\mathbb{K} = \mathbb{R}$ a aplicação T é linear bijetora, isto é, um isomorfismo entre $V \in V^*$.

No caso $\mathbb{K} = \mathbb{C}$ a aplicação T é semi-linear bijetora; ela é um <u>anti-isomorfismo</u> entre V e V^* .

Se $W \subset V$ é um subespaço, vimos que W^{\perp} é subespaço de V e W^0 é subespaço de V^* , onde

 $W^{\perp} = \{ v \in V; \ \langle u, v \rangle = 0 \ \forall u \in W \} \ e$

 $W^0 = \{ \alpha \in V^*; \ \alpha(u) = 0 \ \forall u \in W \}.$

Se $v \in W^{\perp}$ então $T_v \in W^0$ pois $T_v(u) = \langle u, v \rangle = 0$ para todo $u \in W$. Assim, $T: V \longrightarrow V^*$ leva W^{\perp} em W^0 .

Um argumento análogo ao usado na proposição 7.7 mostra que $T:W^{\perp} \longrightarrow W^0$ é um isomorfismo no caso $\mathbb{K} = \mathbb{R}$ e um anti-isomorfismo no caso $\mathbb{K} = \mathbb{C}$. Observemos também que se dim V = n e dim W = r então dim $W^{\perp} = n - r$, como já vimos anteriormente.

A proposição 7.7 nos diz que, dado um funcional linear $w \in V^*$, existe um e um único vetor $v \in V$ tal que $w = T_v$, isto é, $w(u) = \langle u, v \rangle$ para todo $u \in V$, ou seja, $v \in V$ representa a forma linear $w \in V^*$.

Exemplo 7.3.1 Sejam $U \subset \mathbb{R}^n$ aberto $e \ f : U \longrightarrow \mathbb{R}$ uma aplicação diferenciável. A diferencial de f em $p \in U$ é o funcional linear $df(p) \in (\mathbb{R}^n)^*$ tal que, para todo $v \in \mathbb{R}^n$, $df(p) \cdot (v) = \frac{\partial f}{\partial v}(p) = derivada de \underline{f}$ no ponto \underline{p} na direção de \underline{v} .

Considerando em \mathbb{R}^n o produto interno usual, o vetor que representa df(p) é o <u>gradiente</u> de \underline{f} em \underline{p} , $\nabla f(p) = \operatorname{grad} f(p)$. Assim, $\nabla f(p)$ é o vetor de \mathbb{R}^n tal que $df(p) \cdot v = \langle \nabla f(p), v \rangle = \frac{\partial f}{\partial v}(p)$. Se $(e_1, ..., e_n)$ é a base canônica de \mathbb{R}^n e $\nabla f(p) = a_1 e_1 + ... + a_n e_n$, então $a_i = \langle \nabla f(p), e_i \rangle = \frac{\partial f}{\partial x_i}(p)$, $(1 \leq i \leq n)$,

ou seja,
$$\nabla f(p) = \left(\frac{\partial f}{\partial x_1}(p), ..., \frac{\partial f}{\partial x_n}(p)\right).$$

Exemplo 7.3.2 Sejam V um espaço vetorial de <u>dimensão finita</u> sobre \mathbb{K} , com produto interno \langle , \rangle , $T_v(u) = \langle u, v \rangle$, que sabemos ser semi-linear bijetora. Vamos definir um produto interno em V^* por meio de $\langle T_v, T_u \rangle = \langle u, v \rangle$. De fato, temos:

- (a) $\langle T_{v_1} + T_{v_2}, T_u \rangle = \langle T_{v_1 + v_2}, T_u \rangle = \langle u, v_1 + v_2 \rangle = \langle u, v_1 \rangle + \langle u, v_2 \rangle = \langle T_{v_1}, T_u \rangle + \langle T_{v_2}, T_u \rangle$.
- (b) $\langle aT_v, T_u \rangle = \langle T_{\overline{a}v}, T_u \rangle = \langle u, \overline{a}v \rangle = a \langle u, v \rangle = a \langle T_v, T_u \rangle.$
- (c) $\langle T_v, T_u \rangle = \langle u, v \rangle = \overline{\langle v, u \rangle} = \overline{\langle T_u, T_v \rangle}.$
- (d) $\langle T_v, T_v \rangle = \langle v, v \rangle = ||v||^2 > 0 \text{ se } v \neq 0.$

A partir de (V^*, \langle , \rangle) , usando o método acima, podemos introduzir um produto interno em V^{**} . Seja $L: V^* \longrightarrow V^{**}$ definido por $L_{\alpha}(\beta) = \langle \beta, \alpha \rangle$, $\alpha, \beta \in V^*$. Definimos $\langle L_{\alpha}, L_{\beta} \rangle = \langle \beta, \alpha \rangle$. Vamos mostrar que $L \circ T: V \longrightarrow V^{**}$ coincide com o isomorfismo canônico $J: V \longrightarrow V^{**}$, $J_v(\alpha) = \alpha(v)$, $v \in V$, $\alpha \in V^*$, isto é, vamos mostrar que $L_{T_v} = J_v$.

Temos: $L_{T_v}(T_u) = \langle T_u, T_v \rangle = \langle v, u \rangle = T_u(v) = J_v(T_u)$, donde resulta $L_{T_v} = J_v$, ou seja, $L \circ T = J$.

7.4 Adjunta

Sejam V e W espaços vetoriais de dimensão finita, ambos com produto interno, e $T:V\longrightarrow W$ linear.

Proposição 7.8 Existe uma única aplicação linear $T^*: W \longrightarrow V$ tal que $\langle Tv, w \rangle = \langle v, T^*w \rangle$ para todo $v \in V$ e todo $w \in W$.

Dem. Seja $w \in W$ fixo mas arbitrário e seja $\beta : V \longrightarrow \mathbb{K}$ o funcional linear definido por $\beta(v) = \langle Tv, w \rangle$. Pela proposição 7.7 existe um único $u = T^*w \in V$ tal que $\beta(v) = \langle v, T^*w \rangle$, ou seja, $\langle Tv, w \rangle = \langle v, T^*w \rangle$. Vamos mostrar que $T^* : W \longrightarrow V$ assim definida é linear. Se $v \in V$, $w_1, w_2 \in W$ temos:

 $\langle v, T^*(w_1 + w_2) \rangle = \langle Tv, w_1 + w_2 \rangle = \langle Tv, w_1 \rangle + \langle Tv, w_2 \rangle = \langle v, T^*w_1 \rangle + \langle v, T^*w_2 \rangle = \langle v, T^*w_1 + T^*w_2 \rangle$ o que mostra ser $T^*(w_1 + w_2)$ igual a $T^*w_1 + T^*w_2$.

Se $a \in \mathbb{K}$, temos: $\langle v, T^*(aw) \rangle = \langle Tv, aw \rangle = \overline{a} \langle Tv, w \rangle = \overline{a} \langle v, T^*w \rangle = \langle v, aT^*w \rangle$ para todo $w \in W$, donde $T^*(aw) = aT^*(w)$.

Definição 7.6 A aplicação linear $T^*: W \longrightarrow V$ tal que $\langle Tv, w \rangle = \langle v, T^*w \rangle$ quaisquer que sejam $v \in V$, $w \in W$, chama-se a adjunta de T. Se V = W e

 $T=T^*$ o operador linear $T:V\longrightarrow V$ chama-se <u>auto-adjunto</u> (se $\mathbb{K}=\mathbb{R}$ diz-se também que T é simétrico; se $\mathbb{K}=\mathbb{C}$ diz-se também que T é hermitiano).

Proposição 7.9 Seja V um espaço vetorial de dimensão <u>finita</u> sobre \mathbb{K} , com produto interno \langle, \rangle . Se $a \in \mathbb{K}$ e $L, T : V \longrightarrow V$ são lineares, então:

- (a) $(L+T)^* = T^* + L^*$;
- (b) $(aT)^* = \overline{a} \cdot T^*$;
- (c) $(L \circ T)^* = T^* \circ L^*$;
- $(d) (T^*)^* = T.$

Dem.

(a) $\langle (L+T)(u), v \rangle = \langle Lu+Tu, v \rangle = \langle Lu, v \rangle + \langle Tu, v \rangle = \langle u, L^*v \rangle + \langle u, T^*v \rangle = \langle u, L^*v + T^*v \rangle = \langle u, (L^* + T^*)(v) \rangle$ quaisquer que sejam $u, v \in V$. Portanto: $(L+T)^* = L^* + T^*$.

(b) $\langle (aT)(u), v \rangle = \langle aT(u), v \rangle = a\langle u, T^*v \rangle = \langle u, \overline{a}T^*(v) \rangle = \langle u, (\overline{a}T^*)(v) \rangle$, donde $(aT)^* = \overline{a}T^*$.

(c) $\langle (L \circ T)(u), v \rangle = \langle L(Tu), v \rangle = \langle Tu, L^*v \rangle = \langle u, T^*L^*v \rangle = \langle u, T^* \circ L^*(v) \rangle$, donde $(L \circ T)^* = T^* \circ L^*$.

(d) $\langle T^*u, v \rangle = \overline{\langle v, T^*u \rangle} = \overline{\langle Tv, u \rangle} = \langle u, Tv \rangle$, donde $(T^*)^* = T$.

Obs. Se $L = L^*$ e $T = T^*$ são operadores auto-adjuntos em V, então $(L \circ T)^* = T^* \circ L^* = T \circ L$ e $L \circ T$ é auto-adjunto se, e só se, $T \circ L = L \circ T$.

Exemplo 7.4.1 Sejam V e W espaços vetoriais de dimensão finita munidos de produto interno, $\mathcal{E} = (v_1, ..., v_n)$ e $\mathcal{F} = (w_1, ..., w_m)$ bases ortonormais de V e W, respectivamente. Se $T: V \longrightarrow W$ é linear e $[T]_{\mathcal{F}}^{\mathcal{E}} = A = (a_{ij}) - m \times n$, vamos mostrar que $[T^*]_{\mathcal{E}}^{\mathcal{F}} = A^* = \overline{A}^t$, $A^* = (b_{ij}) - n \times m$. Temos:

$$\langle v_i, T^* w_j \rangle = \langle T v_i, w_j \rangle$$

Mas:

$$\langle v_i, T^* w_j \rangle = \langle v_i, \sum_{k=1}^n b_{kj} v_k \rangle = \overline{b_{ij}}$$

$$\langle Tv_i, w_j \rangle = \sum_{k=1}^m \langle a_{ki} w_k, w_j \rangle = a_{ji}.$$

Portanto, $\overline{b_{ij}} = a_{ji}$, donde $A^* = \overline{A}^t$.

Definição 7.7 Seja $A = (a_{ij}) - m \times n$. A <u>adjunta</u> de A é a matriz $A^* = \overline{A}^t = (b_{ij}) - n \times m$, onde $b_{ij} = \overline{a_{ji}}$. Se A é quadrada e $A = A^*$ dizemos que A é auto-adjunta (simétrica se $\mathbb{K} = \mathbb{R}$, hermitiana se $\mathbb{K} = \mathbb{C}$).

Exemplo 7.4.2 Os autovalores de um operador auto-adjunto $T = T^*$: $V \longrightarrow V$ são reais.

De fato, se $v \neq 0$ e $Tv = \lambda v = T^*v$, temos: $\langle Tv, v \rangle = \langle v, T^*v \rangle$, donde, $\langle \lambda v, v \rangle = \langle v, \lambda v \rangle$ e daí vem: $\lambda \langle v, v \rangle = \overline{\lambda} \langle v, v \rangle$, donde $\lambda = \overline{\lambda}$.

Exemplo 7.4.3 Os autovetores, associados a autovalores distintos, de um operador auto-adjunto $T = T^* : V \longrightarrow V$, são ortogonais.

De fato, se $Tv_1 = \lambda_1 v_1$, $Tv_2 = \lambda_2 v_2$, $\lambda_1 \neq \lambda_2$, então $(\lambda_1 - \lambda_2)\langle v_1, v_2 \rangle = \langle \lambda_1 v_1, v_2 \rangle - \langle v_1, \lambda_2 v_2 \rangle = \langle Tv_1, v_2 \rangle - \langle v_1, Tv_2 \rangle = 0$, donde $\langle v_1, v_2 \rangle = 0$.

Obs. A proposição 7.8 mostra que se dim V é finita, todo $T \in \mathcal{L}(V)$ tem um adjunto $T^* \in \mathcal{L}(V)$. Se V não tem dimensão finita, dado $T \in \mathcal{L}(V)$ pode ou não existir $T^* \in \mathcal{L}(V)$ tal que $\langle Tv, u \rangle = \langle v, T^*u \rangle$ para $u, v \in V$ quaisquer.

Exemplo 7.4.4 Seja V o espaço vetorial real das funções $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^{∞} que se anulam fora de [0,1], com o produto interno $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$. Seja $D: V \longrightarrow V$ o operador de derivação. Temos:

$$\langle Df, g \rangle = \int_0^1 f'(t)g(t)dt = f(t)g(t)\Big|_0^1 - \int_0^1 f(t)g'(t)dt = -\langle f, Dg \rangle = \langle f, D^*g \rangle,$$

donde $D^* = -D$. Neste exemplo V tem dimensão infinita.

Proposição 7.10 Seja V um espaço vetorial complexo, de dimensão finita, munido de um produto interno \langle , \rangle . Se $T: \overline{V} \longrightarrow V$ é linear e tal que $\langle Tv, v \rangle = 0$ para todo $v \in V$, então T = 0.

Dem. Se $u, v \in V$, temos a identidade

$$\langle T(u+v), u+v \rangle - \langle Tu, u \rangle - \langle Tv, v \rangle = \langle Tu, v \rangle + \langle Tv, u \rangle.$$

Mas se $\langle Tw, w \rangle = 0$ para todo $w \in V$, então essa identidade nos dá:

$$\langle Tu, v \rangle + \langle Tv, u \rangle = 0 \quad \Box$$

Substituindo-se \underline{u} por \underline{iu} ($i^2 = -1$), obtemos:

 $\langle Tv, iu \rangle + \langle T(iu), v \rangle = 0$, donde

 $-i\langle Tv,u\rangle+i\langle Tu,v\rangle=0,\ ou\ ainda$

 $-\langle Tv, u \rangle + \langle Tu, v \rangle = 0 \quad \Diamond$

Somando \square com \lozenge , vem: $2\langle Tu, v \rangle = 0$, donde $\langle Tu, v \rangle = 0$ para todo $u \in V$ e para todo $v \in V$, donde T = 0.

Proposição 7.11 Sejam V um espaço vetorial real, de dimensão finita, munido de um produto interno \langle , \rangle e $T:V\longrightarrow V$ linear simétrico. Se $\langle Tv,v\rangle=0$ para todo $v\in V$, então T=0.

Dem. A identidade $\langle T(u+v), u+v \rangle - \langle Tu, u \rangle - \langle Tv, v \rangle = \langle Tu, v \rangle + \langle Tv, u \rangle$ nos dá

$$\langle Tu, v \rangle + \langle Tv, u \rangle = 0.$$

Mas, $\langle Tv, u \rangle = \langle v, Tu \rangle = \langle Tu, v \rangle$. Portanto, $2\langle Tu, v \rangle = 0$, donde T = 0.

Proposição 7.12 Sejam V, W espaços vetoriais de dimensão finita sobre \mathbb{K} , munidos de produto interno, e $T:V\longrightarrow W$ linear. Então:

(a)
$$\mathcal{N}(T^*) = (Im \ T)^{\perp}$$
; (b) $Im \ T^* = \mathcal{N}(T)^{\perp}$
(c) $\mathcal{N}(T) = (Im \ T^*)^{\perp}$; (d) $Im \ T = \mathcal{N}(T^*)^{\perp}$

Dem. É suficiente provar (a), as outras igualdades sendo consequências imediatas. Temos:

 $v \in \mathcal{N}(T^*) \Leftrightarrow T^*v = 0 \Leftrightarrow \langle u, T^*v \rangle = 0 \ para \ todo \ u \in V \Leftrightarrow \langle Tu, v \rangle = 0 \ para \ todo \ u \in V \Leftrightarrow v \in (Im \ T)^{\perp}.$

Corolário 7.12.1 O posto de T^* é igual ao posto de T. Dem. $dim\ Im\ T^* = dim\ V - dim\ \mathcal{N}(T) = dim\ Im\ T$

7.5 Exercícios do Capítulo 7

- 1. Seja V um espaço vetorial sobre \mathbb{K} munido de um produto interno, e seja $(v_1, ..., v_n)$ uma base de V. Dados $a_1, a_2, ..., a_n \in \mathbb{K}$ arbitrários, prove que existe um, e um único, vetor $w \in V$ tal que $\langle w, v_j \rangle = a_j, \ 1 \leq j \leq n$.
- 2. Se T é invertível e TST^* é auto-adjunto, prove que S é auto-adjunto.

- 3. Seja $T:V\longrightarrow V$ um operador diagonalizável. Prove que é possível definir um produto interno em V em relação ao qual $T=T^*$.
- 4. Seja V um espaço vetorial de dimensão finita sobre \mathbb{K} e seja $T:V\longrightarrow V$ um operador diagonalizável. Se $W\subset V$ é um subespaço tal que $T(W)\subset W$, prove que $T\big|_W:W\longrightarrow W$ é diagonalizável em W.
- 5. Sejam $S,T:V\longrightarrow V$ operadores auto-adjuntos. Prove que existe base ortonormal de V formada por autovetores comuns a S e T se, e só se, $S\circ T=T\circ S.$
- 6. Seja $M_n(\mathbb{C})$ o espaço vetorial complexo das matrizes $n \times n$. Prove que $\langle A, B \rangle = tr(AB^*)$ é um produto interno em $M_n(\mathbb{C})$ e ache o complemento ortogonal do subespaço das matrizes diagonais (Obs. $B^* = \overline{B}^t$).
- 7. Seja W um subespaço de dimensão finita de um espaço vetorial V munido de produto interno. Se $E:V\longrightarrow W$ é a projeção ortogonal de V sobre W, prove que $\langle E(u),v\rangle=\langle u,E(v)\rangle$ para $u,v\in V$ quaisquer.
- 8. Sejam $V = W_1 \oplus W_2$, \langle , \rangle_1 e \langle , \rangle_2 produtos internos em W_1 e W_2 respectivamente. Mostre que existe um único produto interno \langle , \rangle em V tal que $W_2 = W_1^{\perp}$ e $\langle u, v \rangle = \langle u, v \rangle_k$ quando $u, v \in W_k$, k = 1, 2.
- 9. Seja V um espaço vetorial <u>complexo</u> com produto interno. Prove que $T:V\longrightarrow V$ linear é auto-adjunto se, e só se, $\langle Tv,v\rangle$ é <u>real</u> para todo $v\in V$.

Capítulo 8

Operadores Unitários e Normais

8.1 Definições

Definição 8.1 Sejam V, W espaços vetoriais sobre \mathbb{K} , munidos de produto interno. Dizemos que $T: V \longrightarrow W$ é uma <u>isometria</u> se T é linear bijetora e $\langle Tu, Tv \rangle = \langle u, v \rangle$ quaisquer que sejam $u, v \in V$.

Assim, uma isometria é um isomorfismo que preserva o produto interno.

Proposição 8.1 Seja V um espaço vetorial com produto interno. Então:

$$4\langle u, v \rangle = ||u + v||^2 - ||u - v||^2 \text{ se } \mathbb{K} = \mathbb{R}.$$

 $4\langle u,v\rangle = \|u+v\|^2 - \|u-v\|^2 + i\|u+iv\|^2 - i\langle u-iv\rangle^2 \text{ se } \mathbb{K} = \mathbb{C}, \text{ quaisquer que sejam } u,v\in V.$

Dem. Exercício.

Proposição 8.2 Sejam V, W espaços vetoriais de mesma dimensão <u>finita</u> sobre \mathbb{K} , munidos de produto interno, e $T:V\longrightarrow W$ linear. São equivalentes:

- $(a)\langle Tu, Tv\rangle = \langle u, v\rangle; \quad (b)\|Tv\| = \|v\|;$
- (c) T é isometria; (d) T leva base ortonormal de V em base ortonormal de W;
- (e) T leva alguma base ortonormal de V em base ortonormal de W.

Dem. $(a) \Rightarrow (b)$: Óbvio.

 $(b)\Rightarrow (c)$: se $v\neq 0$ então $T(v)\neq 0$, donde T é injetora e, como dim $V=\dim W$, T é bijetora. Pela proposição 8.1, e pela hipótese, temos (no caso $\mathbb{K}=\mathbb{C}$):

$$4\langle Tu, Tv \rangle = \|T(u+v)\|^2 - \|T(u-v)\|^2 + i\|T(u+iv)\|^2 - i\|T(u-iv)\|^2 =$$

= $\|u+v\|^2 - \|u-v\|^2 + i\|u+iv\|^2 - i\|u-iv\|^2 = 4\langle u,v \rangle$, donde $\langle Tu, Tv \rangle = \langle u,v \rangle$. Portanto, $T \in isometria$.

 $(c) \Rightarrow (d)$: seja $(v_1,...,v_n)$ base ortonormal de V. Como T é isomorfismo, $(Tv_1,...,Tv_n)$ é base de W. Do fato de ser $\langle Tv_i,Tv_j\rangle=\langle v_i,v_j\rangle=\delta_{ij}$, resulta que essa base de W é ortonormal.

 $(d) \Rightarrow (e)$: Óbvio.

 $(e) \Rightarrow (a)$: seja $(v_1, ..., v_n)$ base ortonormal de V tal que $(Tv_1, ..., Tv_n)$ seja base ortonormal de W. Então:

$$\langle Tv_i, Tv_j \rangle = \langle v_i, v_j \rangle = \delta_{ij}.$$

$$Se \ u = a_1v_1 + \ldots + a_nv_n \ e \ v = b_1v_1 + \ldots + b_nv_n, \ ent\~ao:$$

$$\langle u,v \rangle = \sum_{i=1}^n a_i\overline{b_i} \ e \ \langle Tu,Tv \rangle = \langle \sum_{i=1}^n a_iT(v_i), \sum_{j=1}^n b_jT(v_j) \rangle = \sum_{i,j=1}^n a_i\overline{b_j} \langle Tv_i,Tv_j \rangle =$$

$$= \sum_{i,j=1}^n a_i\overline{b_j} \delta_{ij} = \sum_{i=1}^n a_i\overline{b_i}.$$

$$Portanto,$$

$$\langle Tu, Tv \rangle = \langle u, v \rangle$$

Corolário 8.2.1 Sejam V, W espaços vetoriais de dimensão finita sobre \mathbb{K} , munidos de produto interno. V e W são <u>isométricos</u> (isto é, existe isometria $T:V\longrightarrow W$) se, e só se, dim $V=\dim\overline{W}$.

Dem. Sejam $(v_1,...,v_n)$ e $(w_1,...,w_n)$ bases ortonormais de V e W, respectivamente. Definamos $T:V\longrightarrow W$ linear por $T(v_i)=w_i,\ 1\leq i\leq n$. Então T é isometria. A recíproca é imediata.

Definição 8.2 Sejam V um espaço vetorial com produto interno \langle,\rangle e T: $V \longrightarrow V$ linear. Dizemos que T é um operador <u>unitário</u> se T é uma isometria.

No caso de V ter dimensão finita, a proposição 8.2 mostra que T é unitário se, e só se, preserva o produto interno. No caso em que $\mathbb{K} = \mathbb{R}$ um operador unitário é usualmente chamado de <u>ortogonal</u>.

Exemplo 8.1.1 Seja $V_1 = C^0([0,1], \mathbb{R})$ o espaço vetorial real das funções contínuas $f:[0,1] \longrightarrow \mathbb{R}$ com o produto interno $\langle f,g\rangle_1 = \int_0^1 f(t)g(t)e^{-t^2}dt$, e seja $V_2 = C^0([0,1], \mathbb{R})$ com o produto interno $\langle f,g\rangle_2 = \int_0^1 f(t)g(t)dt$. A aplicação $T:V_1 \longrightarrow V_2$ definida por $(Tf)(t) = e^{-\frac{t^2}{2}}f(t)$, $t \in [0,1]$, é linear bijetora e preserva o produto interno pois $\langle Tf, Tg\rangle_2 = \int_0^1 e^{-t^2}f(t)g(t)dt = \langle f,g\rangle_1$. Portanto, $T:V_1 \longrightarrow V_2$ é uma isometria.

Proposição 8.3 Sejam V um espaço vetorial com produto interno, de dimensão finita e $T: V \longrightarrow V$ linear. $T \in \underline{unitário}$ se, e só se, $T^* \circ T = I (= T \circ T^*)$.

Dem. T é unitário se, e só se, $\langle Tu, Tv \rangle = \langle u, v \rangle$ para todo $u, v \in V$, o que equivale a $\langle T^*Tu, v \rangle = \langle u, v \rangle$ e, portanto, equivale a $T^* \cdot T = I$.

Definição 8.3 Dizemos que $A \in M_n(\mathbb{K})$ é <u>unitária</u> se $A^*A = I_n$. Lembremos que $A^* = \overline{A^t}$. Se $\mathbb{K} = \mathbb{R}$ temos $A^* = A^t$ e é usual dizer que A é <u>ortogonal</u> se $A^tA = I_n$.

Corolário 8.3.1 Sejam V um espaço vetorial de dimensão finita, munido de um produto interno e $T:V\longrightarrow V$ linear. T é unitário se, e só se, a matriz de T em alguma (ou toda) base ortonormal de V é uma matriz unitária. Dem. Imediata.

Exemplo 8.1.2 Consideramos o \mathbb{R}^n com o produto interno usual. Um movimento rígido é uma aplicação $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ tal que ||Tu - Tv|| = ||u - v|| para todo $u, v \in \mathbb{R}^n$. Por exemplo, $T_{v_0}(v) = v + v_0$, onde $v_0 \in \mathbb{R}^n$ é fixo, ou seja, uma translação, é um movimento rígido.

(a) Vamos mostrar que se $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é um movimento rígido tal que T(0) = 0, então T é linear e ortogonal. Observemos que, neste caso, ||Tu|| = ||T(u) - T(0)|| = ||u - 0|| = ||u||. Além disso,

$$||Tu - Tv||^2 = \langle Tu - Tv, Tu - Tv \rangle = ||Tu||^2 + ||Tv||^2 - 2\langle Tu, Tv \rangle.$$

Por outro lado, $||Tu - Tv||^2 = ||u - v||^2 = ||u||^2 + ||v||^2 - 2\langle u, v \rangle$. Resulta: $\langle Tu, Tv \rangle = \langle u, v \rangle$, ou seja, se T é movimento rígido e T(0) = 0, então T preserva o produto interno.

Temos:

$$\begin{split} &\|T(u+v)-T(u)-T(v)\|^2 = \|T(u+v)\|^2 + \|Tu\|^2 + \|Tv\|^2 - 2\langle T(u+v), T(u)\rangle - \\ &-2\langle T(u+v), T(v)\rangle + 2\langle Tu, Tv\rangle = \|u+v\|^2 + \|u\|^2 + \|v\|^2 - 2\langle u+v, u\rangle - \\ &-2\langle u+v, v\rangle + 2\langle u, v\rangle = 2\|u\|^2 + 2\|v\|^2 + 2\langle u, v\rangle - 2\|u\|^2 - 2\|v\|^2 - 4\langle u, v\rangle + \\ &+2\langle u, v\rangle = 0. \ Logo: \ T(u+v) = T(u) + T(v). \\ &Analogamente, \end{split}$$

$$\|T(av) - aT(v)\|^2 = \|T(av)\|^2 + a^2\|Tv\|^2 - 2a\langle T(av), T(v)\rangle = \|av\|^2 + a^2\|v\|^2 - a^2\|T(av) - aT(v)\|^2 + a^2\|T(u) - aT$$

 $-2a\langle av, v\rangle = 0.$

Logo: $T(av) = aT(v), \quad a \in \mathbb{R}.$

Portanto, T é uma aplicação linear ortogonal.

(b) Sejam $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ movimento rígido, $T(0) = v_0$ e $T_{-v_0}(v) = v - v_0$. A composta de movimentos rígidos é um movimento rígido, como é fácil de se verificar, de modo que $L = T_{-v_0} \circ T$ é um movimento rígido e $L(0) = T_{-v_0}(T(0)) = T_{-v_0}(v_0) = 0$. Pela parte (a) vem que $L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é um operador ortogonal. Como $(T_{-v_0})^{-1} = T_{v_0}$ e $L = T_{-v_0} \circ T$, vem $L = T_{-v_0}^{-1} \circ T$, donde $T = T_{v_0} \circ L$, ou seja, todo movimento rígido é a composta de uma translação com um operador ortogonal:

$$T(v) = L(v) + v_0$$
, para todo $v \in \mathbb{R}^n$.

Definição 8.4 Sejam V um espaço vetorial de dimensão finita sobre \mathbb{K} , munido de um produto interno e $T:V\longrightarrow V$ linear. Dizemos que T é normal se T comuta com seu adjunto, isto é, se $T\circ T^*=T^*\circ T$. É claro que todo operador auto-adjunto é normal, bem como todo operador unitário; é claro também que se $T:V\longrightarrow V$ é normal e $a\in \mathbb{K}$, então aT é normal. Em geral, a soma e o produto (composta) de operadores normais não são normais, mas vale o seguinte resultado.

Proposição 8.4 Sejam V um espaço vetorial de dimensão finita sobre \mathbb{K} , munido de um produto interno e $T_1, T_2 : V \longrightarrow V$ operadores normais. Se $T_1 \circ T_2^* = T_2^* \circ T_1$ (ou $T_2 \circ T_1^* = T_1^* \circ T_2$), então $T_1 + T_2$ e $T_1 \circ T_2$ são operadores normais.

Dem. É claro que $T_1 \circ T_2^* = T_2^* \circ T_1$ se, e só se, $T_2 \circ T_1^* = T_1^* \circ T_2$. *Temos*:

$$(T_1+T_2)(T_1+T_2)^* = (T_1+T_2)(T_1^*+T_2^*) = T_1 \circ T_1^* + T_1 \circ T_2^* + T_2 \circ T_1^* + T_2 \circ T_2^*.$$

E:

$$(T_1 + T_2)^* \cdot (T_1 + T_2) = (T_1^* + T_2^*)(T_1 + T_2) = T_1^* \circ T_1 + T_1^* \circ T_2 + T_2^* \circ T_1 + T_2^* \circ T_2.$$

Como $T_1 \circ T_1^* = T_1^* \circ T_1$, $T_2 \circ T_2^* = T_2^* \circ T_2$, $T_1 \circ T_2^* = T_2^* \circ T_1$ $e \ T_2 \circ T_1^* = T_1^* \circ T_2$, $vem \ que \ T_1 + T_2 \ \'e \ normal.$

Temos também:

$$T_1T_2(T_1T_2)^* = T_1T_2T_2^*T_1^* = T_1T_2^*T_2T_1^* = T_2^*T_1T_1^*T_2 = T_2^*T_1^*T_1T_2 = (T_1T_2)^*T_1T_2,$$

$$donde\ T_1T_2\ \acute{e}\ normal.$$

Proposição 8.5 Sejam V um espaço vetorial <u>complexo</u> de dimensão <u>finita</u>, munido de um produto interno, e $T: V \longrightarrow V$ linear. $T \in \underline{normal}$ se, e só se, $||T^*v|| = ||Tv||$ para todo $v \in V$.

Dem. $||T^*v|| = ||Tv||$ se, e só se, $\langle T^*v, T^*v \rangle = \langle Tv, Tv \rangle$ se, e só se, $\langle TT^*v, v \rangle = \langle T^*Tv, v \rangle$ para todo $v \in V$ se, e só se, $TT^* = T^*T$ pela proposição 7.10.

Definição 8.5 Dizemos que $A \in M_n(\mathbb{K})$ é <u>normal</u> se $AA^* = A^*A$. **Obs.** É imediato verificar que $T: V \longrightarrow V$ é normal se, e só se, a matriz de T numa base ortonormal de V é uma matriz normal.

Exemplo 8.1.3 $A = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$ é normal pois

$$A^* = \overline{A}^t = \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$$

e

$$AA^* = A^*A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

 $\begin{array}{l} \textbf{Exemplo 8.1.4} \ T: V \longrightarrow V \ \'e \ normal \Leftrightarrow T - \lambda I \ \'e \ normal, \ \lambda \in \mathbb{K}. \\ Temos: \ (T - \lambda I)(T - \lambda I)^* = (T - \lambda I)(T^* - \overline{\lambda} I) = TT^* - \lambda T^* - \overline{\lambda} T + |\lambda|^2 I. \\ (T - \lambda I)^* \cdot (T - \lambda I) = (T^* - \overline{\lambda} I)(T - \lambda I) = T^*T - \overline{\lambda} T - \lambda T^* + |\lambda|^2 I. \\ Logo, \ T - \lambda I \ \'e \ normal \Leftrightarrow TT^* = T^*T \Leftrightarrow T \ \'e \ normal. \\ \end{array}$

Exemplo 8.1.5 Se V é um espaço vetorial <u>complexo</u>, $T:V \longrightarrow V$ é <u>normal</u> e $Tv = \lambda v, v \neq 0$, então $T^*v = \overline{\lambda}v$. De fato, se T é normal, então $\|(T - \lambda I)v\| = \|(T^* - \overline{\lambda}I)(v)\| = 0$, donde $T^*v = \overline{\lambda}v$. Se T é <u>unitário</u> então $\langle Tv, Tv \rangle = \langle \lambda v, \lambda v \rangle = |\lambda|^2 \langle v, v \rangle = \langle v, v \rangle$, donde $|\lambda| = 1$.

Proposição 8.6 (Teorema Espectral para Operadores Normais)

Sejam V um espaço vetorial de dimensão finita $n \geq 1$ sobre o corpo \mathbb{K} , munido de um produto interno, e $T: V \longrightarrow V$ um operador <u>normal</u>. Se o polinômio característico de T tem todas suas raízes em \mathbb{K} (por exemplo, se $\mathbb{K} = \mathbb{C}$), então existe base ortonormal \mathcal{F} de V formada por autovetores de T, isto é, a matriz $[T]_{\mathcal{F}}^{\mathcal{F}}$ é diagonal.

Dem. Já vimos que existe base \mathcal{E} de V na qual a matriz de T é triangular superior. Usando o processo de Gram-Schmidt obtemos, a partir de \mathcal{E} , uma base ortonormal $\mathcal{F} = (v_1, ..., v_n)$ de V na qual $[T]_{\mathcal{F}}^{\mathcal{F}} = B = (b_{ij})$ é triangular superior e temos $[T^*]_{\mathcal{F}}^{\mathcal{F}} = B^* = \overline{B^t}$. Como $T \circ T^* = T^* \circ T$ obtemos $BB^* = B^*B$. Comparando os elementos diagonais de BB^* e B^*B , vemos que:

$$|b_{11}|^{2} + |b_{12}|^{2} + \dots + |b_{1n}|^{2} = |b_{11}|^{2} |b_{22}|^{2} + \dots + |b_{2n}|^{2} = |b_{12}|^{2} + |b_{22}|^{2} \vdots |b_{nn}|^{2} = |b_{1n}|^{2} + |b_{2n}|^{2} + \dots + |b_{nn}|^{2}$$

donde resulta que $b_{ij} = 0$ para $i \neq j$, ou seja, B é diagonal e $\mathcal{F} = (v_1, ..., v_n)$ é base ortonormal de V formada por autovetores de T.

Corolário 8.6.1 $Se \mathbb{K} = \mathbb{C} \ e \ T \ \acute{e} \ \underline{unit\acute{a}rio}, \ ent\~{a}o \ T \ \acute{e} \ diagonaliz\acute{a}vel.$

Corolário 8.6.2 S e T é auto-adjunto, então T é diagonalizável.

Obs. A recíproca da proposição 8.6 também é verdadeira, isto é, se existe base ortonormal \mathcal{F} de V formada por autovetores de T, então T é

existe base ortonormal
$$\mathcal{F}$$
 de V formada por autovetores de T , então T é normal. De fato, se $[T]_{\mathcal{F}}^{\mathcal{F}} = B = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{bmatrix}$ então $B^* = \begin{bmatrix} \overline{\lambda_1} & 0 \\ & \ddots & \\ 0 & \overline{\lambda_n} \end{bmatrix}$ e $BB^* = B^*B = \begin{bmatrix} |\lambda_1|^2 & 0 \\ & \ddots & \\ 0 & |\lambda_n|^2 \end{bmatrix}$ e B é normal, donde T é normal.

8.2 Operadores Positivos

Definição 8.6 Sejam V um espaço vetorial com produto interno e $T: V \longrightarrow V$ linear. Dizemos que T é <u>positivo</u>, e escrevemos T>0, se $T=T^*$ e $\langle Tv,v\rangle>0$ para todo $v\neq 0$. Se $T=T^*$ e $\langle Tv,v\rangle\geq 0$ para todo $v\in V$, dizemos que T é <u>não-negativo</u>, e escrevemos $T\geq 0$.

Proposição 8.7 Um operador auto-adjunto $T: V \longrightarrow V$ é positivo (resp. não-negativo) se, e só se, seus autovalores são todos positivos (resp. não-negativos).

Dem. Se T > 0 e $Tv = \lambda v$ com $v \neq 0$, então $\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle Tv, v \rangle > 0$, donde $\lambda > 0$. Reciprocamente, se os autovalores de T são todos positivos, seja $(v_1, ..., v_n)$ base ortonormal de V tal que $Tv_i = \lambda_i v_i$, $1 \leq i \leq n$. Se

 $v \in V$ então $v = \sum_{i=1}^{n} a_i v_i$ e $\langle Tv, v \rangle = \sum_{i,j=1}^{n} \langle a_i \lambda_i v_i, a_j v_j \rangle = \sum_{i=1}^{n} \lambda_i |a_i|^2 > 0$, donde T > 0. O caso $T \ge 0$ é análogo.

Corolário 8.7.1 Seja $T \ge 0$. Se $v \in V$ é tal que $\langle Tv, v \rangle = 0$, então Tv = 0. **Dem.** Sejam $\lambda_1, ..., \lambda_r$ os autovalores não-nulos de T e $v = \sum_{i=1}^r a_i v_i$ como acima. Então, $\langle Tv, v \rangle = 0$ nos dá $\sum_{i=1}^r \lambda_i |a_i|^2 = 0$ donde $a_1 = ... = a_r = 0$, o que implica Tv = 0.

Corolário 8.7.2 $T: V \longrightarrow V$ é positivo se, e só se, T é invertível e $T \ge 0$. Dem. Se T > 0 então $T \ge 0$ e $Tv \ne 0$ para todo $v \ne 0$, donde T é invertível. Reciprocamente, se $T \ge 0$ é invertível então $Tv \ne 0$ para todo $v \ne 0$ e $\langle Tv, v \rangle$ é positivo pelo corolário 8.7.1, donde T > 0.

Obs. Seja $T: V \longrightarrow V$, $dim\ V = n$, um operador normal. Se $\mathcal{E} = (u_1, ..., u_n)$ é base ortonormal de V e $A = [T]_{\mathcal{E}}^{\mathcal{E}}$ então $AA^* = A^*A$. Seja $\mathcal{F} = (v_1, ..., v_n)$ base ortonormal de V formada por autovetores de T. Então:

$$[T]_{\mathcal{F}}^{\mathcal{F}} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} = D.$$

Temos:

$$[T]_{\mathcal{F}}^{\mathcal{F}} = [I]_{\mathcal{F}}^{\mathcal{E}} \cdot [T]_{\mathcal{E}}^{\mathcal{E}} \cdot [I]_{\mathcal{E}}^{\mathcal{F}},$$

donde $P^{-1}AP = D$, onde $P = [I]_{\mathcal{E}}^{\mathcal{F}}$ é a matriz de passagem da base <u>ortonormal</u> \mathcal{E} para a base <u>ortonormal</u> \mathcal{F} , ou seja, P é <u>unitária</u>. Resulta que toda matriz <u>normal</u> pode ser <u>unitariamente diagonalizada</u>. Se A é matriz <u>simétrica</u> então P é ortogonal.

Exemplo 8.2.1 Seja
$$A = \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}$$
. Então: $det(A - \lambda I) = \begin{bmatrix} 1 - \lambda & -2 & -2 \\ -2 & 1 - \lambda & -2 \\ -2 & -2 & 1 - \lambda \end{bmatrix} = (3 - \lambda)^2(-3 - \lambda)$.

(a) $\lambda = -3$:
$$4x_1 - 2x_2 - 2x_3 = 0$$

$$-2x_1 - 4x_2 - 2x_3 = 0$$

$$-2x_1 - 2x_2 - 4x_3 = 0$$

donde
$$\widetilde{X_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 é autovetor, donde $X_1 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$ é autovetor unitário.

(b)
$$\lambda = 3$$
: $-2x_1 - 2x_2 - 2x_3 = 0$, donde $x_1 = -x_2 - x_3$ e $\widetilde{X}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$

$$e \widetilde{X_3} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 são autovetores. Como $\widetilde{X_2}$ e $\widetilde{X_3}$ não são ortogonais, usamos

Gram-Schmidt para ortogonalizá-los. Obtemos:
$$X_2 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}$$
 e $X_3 =$

$$\begin{pmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{pmatrix}.$$

Os vetores X_1, X_2, X_3 formam uma base ortonormal de \mathbb{R}^3 de modo que $H = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix} \text{ \'e matriz ortogonal } (H^{-1} = H^t) \text{ tal que}$ $H^{-1}AH = D = \begin{bmatrix} -3 & 0 \\ 3 & 0 & 3 \end{bmatrix}.$

$$H^{-1}AH = D = \begin{bmatrix} -3 & 0\\ & 3\\ 0 & 3 \end{bmatrix}.$$

Definição 8.7 Seja $A = (a_{ij}) \in M_n(\mathbb{K})$. Dizemos que A é positiva (resp. $n\tilde{a}o$ -negativa) se o operador $T_A: \mathbb{K}^n \longrightarrow \mathbb{K}^n$ $T_A(x) = Ax$, ϵ positivo (resp. $n\~{a}o$ -negativo). Assim, A > 0 se, e só se, $A = \overline{A}^t$ (A é hermitiana) e

$$\langle T_A(x), x \rangle = \langle Ax, x \rangle = \sum_{i,j=1}^n a_{ij} x_i \overline{x_j} > 0 \text{ para todo } x = (x_1, ..., x_n) \neq 0.$$

Da proposição 8.7 resulta que uma matriz hermitiana é positiva se, e só se, seus autovalores são todos positivos.

Definição 8.8 Uma matriz $B = (b_{ij}) - n \times n$ - chama-se raiz quadrada de $A = (a_{ij}) - n \times n - se A = B^2$.

Proposição 8.8 Toda matriz positiva (resp. não-negativa) $A = (a_{ij}) - n \times n$ - tem raiz quadrada positiva (resp. não negativa).

Dem. Sejam $\lambda_1, ..., \lambda_n$ os autovalores de A, todos positivos. Pelo teorema es-

pectral existe matriz unitária
$$P - n \times n - tal$$
 que $P^{-1}AP = D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{bmatrix}$.

$$Seja \ B = \begin{bmatrix} \sqrt{\lambda_1} & & 0 \\ & \ddots & \\ 0 & & \sqrt{\lambda_n} \end{bmatrix}; \ ent\tilde{ao} \ B^2 = D.$$

Seja $C = PBP^{-1}$, donde $C^2 = PB^2P^{-1} = PDP^{-1} = A$, ou seja, a matriz C é raiz quadrada de A > 0, e C > 0 pois é auto-adjunta e seus autovalores são positivos.

Obs. Os autovalores de um operador <u>normal</u>, associados a autovalores <u>distintos</u>, são ortogonais. De fato, sejam: $\overline{Tv} = \alpha v$, $Tu = \beta u$, $\alpha \neq \beta$, $u, v \in \overline{V}$.

Temos: $\langle Tv, u \rangle - \langle v, T^*u \rangle = 0$, donde $\langle \alpha v, u \rangle - \langle v, \overline{\beta}u \rangle = 0$, donde $(\alpha - \beta)\langle v, u \rangle = 0$, donde $\langle v, u \rangle = 0$ pois $\alpha \neq \beta$.

8.3 Matrizes Simétricas Positivas. Decomposição de Cholesky

Definição 8.9 Seja $A = (a_{ij}) - n \times n - e \ s \le n \ um \ natural.$ A <u>submatriz</u> <u>principal de ordem s</u> de A é a submatriz A_s obtida de A pela supressão das <u>últimas (n-s) linhas e colunas</u>.

Exemplo 8.3.1
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
. $Ent\tilde{a}o: A_1 = [a_{11}]; \quad A_2 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ $e A_3 = A$.

Proposição 8.9 Seja A uma matriz <u>simétrica</u> de ordem n. São equivalentes:

(a)
$$\underline{\underline{A}}$$
 \(\ell \) positiva $(A > 0)$, isto \(\ell, \lambda Ax, x \rangle = x^t Ax > 0\) para todo $x \neq 0$,
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n.$$

- (b) As submatrizes principais $A_1, ..., A_n$ de A são todas positivas.
- (c) \underline{A} pode ser reduzida à forma triangular superior usando-se apenas operações do tipo $T_{ij}(\lambda)$ e com pivôs positivos.
- (d) $\underline{\underline{A}}$ tem uma fatoração (de Cholesky) $A = LL^t$ onde L é triangular inferior com elementos diagonais positivos.

Dem.

 $(a) \Rightarrow (b)$: Seja $1 \leq s \leq n$; vamos provar que $A_s > 0$. Seja $X_s = (x_1, ..., x_s)^t \neq 0$ em \mathbb{R}^s e $X = (x_1, ..., x_s, 0, ..., 0)^t \in \mathbb{R}^n$.

Então: $X_s^t A_s X_s = X^t A X > 0$, ou seja, $A_s > 0$ (donde det $A_s > 0$ já que det A_s é o produto dos autovalores de A_s , todos positivos).

 $(b) \Rightarrow (c)$: Para simplificar, vamos tomar uma matriz 4×4 :

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}.$$

Por hipótese, $A_1 > 0$, $A_2 > 0$, $A_3 > 0$, $A_4 = A > 0$. Em particular, det $A_1 = a_{11} > 0$ e podemos usá-lo como pivô, de modo que

$$A \longrightarrow A^{(1)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & \times & \times \\ 0 & \times & \times & \times \\ 0 & \times & \times & \times \end{bmatrix},$$

onde $det \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} = det \ A_2 > 0, \ donde \ a_{22}^{(1)} = \frac{det \ A_2}{a_{11}} > 0, \ e \ podemos \ usar a_{22}^{(1)} \ como \ pivô, \ obtendo$

$$A \longrightarrow A^{(1)} \longrightarrow A^{(2)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & \times & \times \\ 0 & 0 & a_{33} & \times \\ 0 & 0 & \times & \times \end{bmatrix}.$$

Como det $A_3 = a_{11} \cdot a_{22}^{(1)} \cdot a_{33}^{(2)} > 0$, resulta $a_{33}^{(2)} > 0$ e podemos usá-lo como pivô, obtendo

$$A \longrightarrow A^{(1)} \longrightarrow A^{(2)} \longrightarrow A^{(3)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & \times & \times \\ 0 & 0 & a_{33} & \times \\ 0 & 0 & 0 & a_{44} \end{bmatrix} = U,$$

com det $A_4 = \det A_3 \cdot a_{44}^{(3)} > 0$, donde $a_{44}^{(3)} > 0$ e U triangular superior com elementos diagonais positivos.

 $(c) \Rightarrow (d)$: Se A pode ser reduzida à forma triangular superior $U = (u_{ij}), u_{kk} > 0$, usando-se apenas operações elementares do tipo $T_{ij}(\lambda)$, então

A = LU, onde L é triangular inferior com diagonal formada apenas por números 1:

$$L = \begin{bmatrix} 1 & & & & 0 \\ \vdots & \ddots & & & \\ e_{21} & & 1 & & \\ \dots & \dots & \dots & \ddots & \dots \\ e_{n1} & & e_{n2} & \dots & 1 \end{bmatrix} = (e_{ij}),$$

onde $e_{kk} = 1$ e, para i > j, $e_{ij} = oposto$ do multiplicador λ usado em $T_{ij}(\lambda)$ (veja a observação no fim do capítulo 5). Então:

$$A = LU = \begin{bmatrix} 1 & & & 0 \\ & \ddots & & \\ e_{21} & & 1 & \\ \vdots & & \vdots & \ddots & \\ e_{n1} & & e_{n2} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & & & 0 \\ & \ddots & & \\ & & u_{22} & \\ 0 & & & \ddots & \\ u_{nn} \end{bmatrix} \begin{bmatrix} 1 & & \frac{u_{12}}{u_{11}} & \dots & \frac{u_{1n}}{u_{11}} \\ & \ddots & & \\ & & & 1 & \dots & \frac{u_{2n}}{u_{22}} \\ & & & \ddots & \\ 0 & & & & 1 \end{bmatrix} =$$

$$= LDU_1$$

Essa decomposição é <u>única</u> pois se fosse $A = L_1D_1U_1 = L_2D_2U_2$ com L_1, L_2 triangulares inferiores, D_1 , D_2 diagonais, U_1, U_2 triangulares superiores, L_1 , L_2, U_1, U_2 com diagonais formadas apenas por números 1, viria $D_2^{-1}L_2^{-1}L_1D_1 = U_2U_1^{-1}$ onde o primeiro membro é triangular inferior e o segundo membro é triangular superior, ambos com diagonal formada apenas por números 1, donde $U_2U_1^{-1} = I_n$, o que implica $U_1 = U_2$ e $D_2^{-1}L_2^{-1}L_1D_1 = I_n$, ou seja, $L_2^{-1}L_1 = D_2D_1^{-1}$, a diagonal do primeiro membro tendo todos os elementos iguais a 1, donde $D_2D_1^{-1} = I_n$, que implica $D_1 = D_2$ e $L_1 = L_2$.

Logo, $A = LDU_1$, donde $A^t = U_1^tDL^t = A = LDU_1$, donde $U_1 = L^t$ e $A = LDL^t = LD^{1/2}D^{1/2}L^t = L_1L_1^t$, que é a decomposição de Cholesky.

 $(d) \Rightarrow (a)$: Temos $A = LL^t = A^t$. Seja $x \neq 0$, donde $y = L^t x \neq 0$ e $x^t A x = x^t L L^t x = y^t y = ||y||^2 > 0$, ou seja, A > 0.

8.4 Teorema dos Valores Singulares

Lema 8.4.1 Seja $T: V \longrightarrow W$ uma aplicação linear entre espaços vetoriais de dimensão finita sobre \mathbb{K} , munidos de produto interno. Então $\mathcal{N}(T^*T) = \mathcal{N}(T)$.

Dem. É claro que $\mathcal{N}(T^*T) \subset \mathcal{N}(T)$. Seja $v \in \mathcal{N}(T^*T)$, isto é, $T^*Tv = 0$, donde $Tv \in \mathcal{N}(T^*) = (Im\ T)^{\perp}$, donde $Tv \in Im\ T \cap (Im\ T)^{\perp}$, donde Tv = 0, ou seja, $v \in \mathcal{N}(T)$, resultando a tese.

Proposição 8.10 Sejam V, W espaços vetoriais de dimensão finita sobre \mathbb{K} , munidos de produto interno, e $T:V\longrightarrow W$ linear. Os operadores $T^*T:V\longrightarrow V$ e $T^*T:W\longrightarrow W$ são não-negativos e têm o mesmo posto de T; eles são positivos se, e só se, T é invertível.

Dem. Como $(T^*T)^* = T^*T$, resulta que T^*T é auto-adjunto; analogamente para TT^* . Se $v \in V$, tem-se $\langle T^*Tv, v \rangle = ||Tv||^2 \ge 0$, donde $T^*T \ge 0$; analogamente para TT^* ; além disso, $\langle T^*Tv, v \rangle > 0$ se $v \neq 0$ se, e só se, ||Tv|| > 0, isto é, se, e só se, T é invertível. Pelo Lema anterior, $\mathcal{N}(T^*T) = \mathcal{N}(T)$, donde resulta posto $(T^*T) = \dim V - \dim \mathcal{N}(T^*T) =$ $= dim \ V - dim \ \mathcal{N}(T) = posto(T) = posto(T^*) = posto(TT^*).$

Corolário 8.10.1 $T:V\longrightarrow W$ linear é injetora se, e só se, T^*T é invertível; T é sobrejetora se, e só se, TT^* é invertível.

Dem. $T \notin injetora \Leftrightarrow posto(T) = dim \ V \Leftrightarrow posto(T^*T) = dim \ V \Leftrightarrow$ T^*T é invertível. Analogamente para TT^* .

Obs. Seja $A = (a_{ij}) - m \times n$. Se posto(A) = n então A^*A é invertível, donde positiva, e $AA^* \ge 0$. Se posto(A) = m então $AA^* > 0$ e $A^*A \ge 0$.

Exemplo 8.4.1
$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \end{pmatrix}$$
 tem posto igual a 2. Então,
$$AA^* = \begin{pmatrix} 5 & 5 \\ 5 & 11 \end{pmatrix} \text{ \'e positiva e } A^*A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 3 \\ -1 & 3 & 13 \end{bmatrix} \text{ \'e não-negativa.}$$

Proposição 8.11 (Teorema dos Valores Singulares)

Sejam U e V espaços vetoriais de dimensão finita sobre K, munidos de produto interno, e $T:U\longrightarrow V$ linear de posto iqual a r. Existem bases ortonormais $\mathcal{E} = (u_1, ..., u_n)$ de $U, \mathcal{F} = (v_1, ..., v_m)$ de V tais que

$$Tu_i = \sigma_i v_i$$
 , $1 \le i \le r$; $T^* v_i = \sigma_i u_i$, $1 \le i \le r$
 $Tu_j = 0$, $r + 1 \le j \le n$; $T^* v_k = 0$, $r + 1 \le k \le m$

onde os números $\sigma_1, ..., \sigma_r$ são positivos: são os valores singulares de T.

Dem. $T^*T: U \longrightarrow U$ é não-negativa e tem posto r. Pelo teorema espectral

existe base ortonormal
$$\mathcal{E} = (u_1, ..., u_n)$$
 de V tal que $[T^*T]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} \lambda_1 & & & & 0 \\ & \ddots & & & \\ & & \lambda_r & & \\ & & & 0 & \\ & & & \ddots & \\ 0 & & & & 0 \end{bmatrix}$,

onde $\lambda_1 = \sigma_1^2, ..., \lambda_r = \sigma_r^2$ são positivos. Então,

 $(1 \leq i, j \leq r)$ $\langle Tu_i, Tu_j \rangle = \langle T^*Tu_i, u_j \rangle = \sigma_i^2 \cdot \delta_{ij}$, e os vetores Tu_i, Tu_j são 2 a 2 ortogonais e não-nulos, já que $||Tu_i|| = \sigma_i$ $(1 \leq i \leq r)$. Além disso, $Tu_k = 0, r+1 \leq k \leq n$, pois $\mathcal{N}(T) = \mathcal{N}(T^*T)$.

Para
$$1 \le i \le r$$
, seja $v_i = \frac{1}{\sigma_i} Tu_i$, donde $||v_i|| = 1$ e
$$Tu_i = \sigma_i v_i \quad , 1 \le i \le r$$

$$Tu_j = 0 \quad , r+1 \le j \le n$$

Os vetores $v_1, ..., v_r$ formam uma base ortonormal de Im T, que estendemos a uma base ortonormal $\mathcal{F} = (v_1, ..., v_m)$ de V tomando $(v_{r+1}, ..., v_m)$ base ortonormal de $\mathcal{N}(T^*) = (\operatorname{Im} T)^{\perp}$. Portanto, $T^*v_k = 0$, $r+1 \leq k \leq m$ e $T^*v_i = \frac{1}{\sigma_i}T^*Tu_i = \sigma_i u_i$, $1 \leq i \leq r$. \mathcal{F} é base ortonormal de autovetores de TT^* já que $TT^*v_i = T(\sigma_i u_i) = \sigma_i^2 v_i = \lambda_i v_i$.

Obs. A aplicação linear $T^+: V \longrightarrow U$ definida por

$$T^+(v_i) = \frac{1}{\sigma_i}u_i, \ 1 \le i \le r \ ; \ T^+(v_k) = 0 \ , \ r+1 \le k \le m,$$

é tal que

$$TT^{+}(v_{i}) = T\left(\frac{1}{\sigma_{i}}u_{i}\right) = v_{i}, \quad 1 \leq i \leq r$$

$$TT^{+}(v_{k}) = 0, \qquad r+1 \leq k \leq m$$

$$T^{+}T(u_{i}) = T^{+}(\sigma_{i}v_{i}) = u_{i}, \quad 1 \leq i \leq r$$

$$T^{+}T(u_{j}) = 0, \qquad r+1 \leq j \leq n$$

Definição 8.10 $T^+:V\longrightarrow U$ é a <u>pseudo-inversa</u> de $T:U\longrightarrow V$.

Obs. Nas condições do Teorema dos Valores Singulares, seja $A = [T]_{\mathcal{F}_1}^{\mathcal{E}_1}$ – $m \times n$ – onde \mathcal{E}_1 e \mathcal{F}_1 são bases ortonormais de U e V, respectivamente. Temos

$$\sum = \begin{bmatrix} T \end{bmatrix}_{\mathcal{F}}^{\mathcal{E}} = \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & 0 & & 0 \end{bmatrix} = [I]_{\mathcal{F}}^{\mathcal{E}_1}[T]_{\mathcal{E}_1}^{\mathcal{E}_1}[I]_{\mathcal{E}_1}^{\mathcal{E}} = QAP ,$$

ou seja, existem matrizes <u>unitárias</u> Q = matriz de passagem de \mathcal{F} para \mathcal{F}_1 , P = matriz de passagem de \mathcal{E}_1 para \mathcal{E} , tais que

$$QAP = \sum = \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & 0 & & \end{bmatrix} ,$$

onde $\sigma_1, ..., \sigma_r$ são os valores singulares da matriz A de posto r.

Obs. Sejam V um espaço vetorial de dimensão finita sobre (\mathbb{K}) munido de produto interno, e $T: V \longrightarrow V$ linear <u>invertível</u>. Pelor Teorema dos Valores Singulares existem bases ortonormais $\overline{\mathcal{E}} = (u_1, ..., u_n)$ e $\mathcal{F} = (v_1, ..., v_n)$ tais que $T^*Tu_i = \sigma_1^2 u_i$ e $Tu_i = \sigma_i v_i$, $1 \le i \le n$.

que $T^*Tu_i = \sigma_1^2 u_i$ e $Tu_i = \sigma_i v_i$, $1 \le i \le n$. Seja H tal que $H^2 = T^*T$. Então H > 0. Defina $U = TH^{-1} : U^* = H^{-1}T^* : U^*U = H^{-1}T^*TH^{-1} = H^{-1}H^2H^{-1} = I$, isto é, U é unitária e T = UH, ou seja, toda aplicação linear invertível é o produto de uma aplicação unitária por uma aplicação positiva.

8.5 Exercícios do Capítulo 8

- 1. Sejam V um espaço vetorial de dimensão finita, munido de um produto interno , e $T:V\longrightarrow V$ linear. Se $a,b\in\mathbb{K}$ são tais que |a|=|b|, prove que $aT+bT^*$ é normal.
- 2. Seja \mathbb{R}^2 com o produto interno usual. Se $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ é um operador unitário (ortogonal) mostre que a matriz de T na base canônica é $\begin{bmatrix}\cos\theta & -sen\ \theta\\sen\ \theta & \cos\theta\end{bmatrix}\text{ ou }\begin{bmatrix}\cos\theta & sen\ \theta\\sen\ \theta & -\cos\theta\end{bmatrix}\text{ para algum real }\theta,\ 0\leq\theta\leq2\pi.$

- 3. Seja $V=\mathbb{C}^2$ com o produto interno usual. Seja $T:V\longrightarrow V$ o operador linear cuja matriz na base canônica é $A=\begin{bmatrix}1&i\\i&1\end{bmatrix}$. Mostre que T é normal e ache uma base ortonormal de V formada por autovetores de T.
- 4. Ache a decomposição de Cholesky LL^t da matriz $A=\begin{bmatrix} 4 & 2 \\ 2 & 10 \end{bmatrix}$.
- 5. Seja A $n \times n$ (simétrica e) positiva, $A = QDQ^t$ onde Q é ortogonal e D é diagonal. Ache matriz invertível B tal que $A = B^tB$.
- 6. Seja A $n \times n$ (simétrica e) negativa (A < 0).
 - (a) Qual o sinal de det A?
 - (b) Mostre que as submatrizes principais de A são negativas.
 - (c) Mostre que os determinantes das submatrizes principais de A alternam em sinal.

Capítulo 9

Formas Bilineares e Quadráticas

9.1 Generalidades

Definição 9.1 Seja K um corpo de característica $\neq 2$; por exemplo $K = \mathbb{R}$ ou $K = \mathbb{C}$. Sejam U, V, W espaços vetoriais sobre K. Uma aplicação T: $U \times V \longrightarrow W$ é <u>bilinear</u> se T é linear em cada variável separadamente, isto é, se

$$T(u_1 + u_2, v) = T(u_1, v) + T(u_2, v);$$
 $T(\lambda u, v) = \lambda T(u, v)$
 $T(u, v_1 + v_2) = T(u, v_1) + T(u, v_2);$ $T(u, \lambda v) = \lambda T(u, v)$

quaisquer que sejam $u, u_1, u_2 \in U, v, v_1, v_2 \in V$ e $\lambda \in K$.

Com as leis usuais de adição e produto por escalar, o conjunto das aplicações bilineares $T: U \times V \longrightarrow W$ é um espaço vetorial sobre K, anotado $\mathcal{L}(U,V;W)$. Quando U=V e W=K, representamos $\mathcal{L}(V,V;K)$ por $\mathcal{L}_2(V;K)$ e dizemos que $f \in \mathcal{L}_2(V;K)$ é uma forma bilinear.

Exemplo 9.1.1 $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n \longmapsto \langle x,y \rangle = \sum_{i=1}^n x_i y_i \text{ \'e uma forma bilinear } em \mathbb{R}^n.$

Exemplo 9.1.2 Se $f, g \in V^*$ definitions seu <u>produto tensorial</u> $f \otimes g$ e seu produto exterior $f \wedge g$ por:

$$(f \otimes g)(u,v) = f(u) \cdot g(v) \quad ; \quad (f \wedge g)(u,v) = f(u)g(v) - f(v)g(u).$$

É fácil ver que $f \otimes g$ e $f \wedge g$ são formas bilineares em V.

Exemplo 9.1.3 Se $V = C^0([a,b],\mathbb{R}) = \{f : [a,b] \longrightarrow \mathbb{R}, \ continua \} \ e$ $f,g \in V, \ ent\~ao \ (f,g) \longmapsto \int_a^b f(t)g(t)dt \ \'e \ uma \ forma \ bilinear \ em \ V.$

Exemplo 9.1.4

$$\phi: \mathcal{L}(U, V) \times \mathcal{L}(V, W) \longrightarrow \mathcal{L}(U, W)$$
$$(S, T) \longrightarrow \phi(S, T) = T \circ S$$

é uma aplicação bilinear.

Proposição 9.1 Seja

onde U, V, W são espaços vetoriais sobre K.

 $Ent\~ao$, ϕ é um isomorfismo canônico.

Dem. Seja

$$\psi: \mathcal{L}(U; \mathcal{L}(V, W)) \longrightarrow \begin{array}{ccc} \mathcal{L}(U, V; W) \\ S \longmapsto & \psi S: U \times V \longrightarrow & W \\ (u, v) \longmapsto & \psi S(u, v) = S(u)(v) \end{array}$$

É fácil verificar que ϕ e ψ estão bem definidas, são lineares, $\phi \circ \psi = id$, $\psi \circ \phi = id$, ou seja, ϕ e ψ são isomorfismos e $\psi = \phi^{-1}$.

Corolário 9.1.1

 $\mathcal{A}_2(V;K)$ e f=q+h.

$$\phi: \mathcal{L}_2(V; K) \longrightarrow \mathcal{L}(V, V^*)
f \longrightarrow \phi f: V \longrightarrow V^*
u \longmapsto \phi f(u): V \longrightarrow K
v \longmapsto f(u, v)$$

é um isomorfismo canônico que nos permite identificar $\mathcal{L}_2(V;K)$ com $\mathcal{L}(V,V^*)$.

Definição 9.2 $f \in \mathcal{L}_2(V;K)$ é <u>simétrica</u> se f(u,v) = f(v,u) quaisquer que sejam $u,v \in V$.

 $f \in \mathcal{L}_2(V; K)$ é <u>antissimétrica</u> se f(u, v) = -f(v, u) quaisquer que sejam $u, v \in V$; neste caso, f(v, v) = -f(v, v) donde f(v, v) = 0 para todo $v \in V$, isto é, f é alternada.

Obs. \overline{O} conjunto das formas bilineares simétricas (resp. antissimétricas) em V é um subespaço vetorial $\mathcal{S}_2(V;K)$ (resp. $\mathcal{A}_2(V;K)$) de $\mathcal{L}_2(V;K)$ e temos $\mathcal{L}_2(V;K) = \mathcal{S}_2(V;K) \oplus \mathcal{A}_2(V;K)$. De fato, $\mathcal{S}_2(V;K)$ e $\mathcal{A}_2(V;K)$ têm interseção igual a $\{0\}$ e se $f \in \mathcal{L}_2(V;K)$ então $g(u,v) = \frac{1}{2}[f(u,v) + f(v,u)]$ e $h(u,v) = \frac{1}{2}[f(u,v) - f(v,u)]$ são tais que $g \in \mathcal{S}_2(V;K)$, $h \in \mathcal{S}_2(V;K)$

Matriz de uma forma bilinear 9.2

Sejam:

- $\mathcal{E} = (u_1, ..., u_m)$ base ordenada de U
- $\mathcal{F} = (v_1, ..., v_n)$ base ordenada de V
- $f: U \times V \longrightarrow K$ forma bilinear

Se
$$u \in U, v \in V, u = \sum_{i=1}^{m} x_i u_i, v = \sum_{j=1}^{n} y_j v_j$$
, então $f(u, v) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j f(u_i, v_j)$.

Pondo
$$a_{ij} = f(u_i, v_j)$$
 vem $f(u, v) = \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i y_j$. A matriz $A = (a_{ij})$ –

$$m \times n$$
 – é chamada de matriz de f em relação às bases \mathcal{E} e \mathcal{F} .
Se $X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = [u]_{\mathcal{E}}$ e $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = [v]_{\mathcal{F}}$, então

$$f(u,v) = (x_1, ..., x_m) \begin{bmatrix} a_{11} & ... & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & ... & a_{mn} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = X^t A Y.$$

Fixadas as bases \mathcal{E} e \mathcal{F} , a aplicação $f \in \mathcal{L}(U,V;K) \longmapsto A \in M_{m \times n}(K)$ é um isomorfismo, como se verifica facilmente, de modo que dim $\mathcal{L}(U,V;K) =$ $dim\ U \cdot dim\ V = mn$, em particular, $dim\ \mathcal{L}_2(V;K) = n^2$.

Obs. Se $(v_1, ..., v_n)$ é base ordenada de V e $A = (a_{ij})$ com $a_{ij} = f(v_i, v_j)$, vemos que $f \in \mathcal{L}_2(V; K)$ é simétrica se, e só se, $a_{ij} = a_{ji}$ para todo par (i, j).

Mudanças de Bases 9.3

Sejam: $\mathcal{E} = (u_1, ..., u_m); \quad \mathcal{E}' = (u'_1, ..., u'_m)$ bases ordenadas de U, $\mathcal{F} =$ $(v_1,...,v_n), \mathcal{F}'=(v_1',...,v_n')$ bases ordenadas de V. Então:

$$u_i' = \sum_{r=1}^m p_{ri} u_r$$

$$v_j' = \sum_{s=1}^n q_{sj} v_s$$

onde P e Q são as matrizes de passagem de \mathcal{E} para \mathcal{E}' e de \mathcal{F} para \mathcal{F}' , respectivamente.

Temos:

$$f(u_i', v_j') = a_{ij}' = \sum_{r=1}^m \sum_{s=1}^n p_{ri} q_{sj} a_{rs} = \sum_{s=1}^n \left(\sum_{r=1}^m p_{ir}^t \cdot a_{rj} \right) q_{sj},$$

donde $A' = P^t \cdot A \cdot Q$, que é a relação entre a matriz A' de $f \in \mathcal{L}(U, V; K)$ nas bases \mathcal{E}' e \mathcal{F}' e a matriz A de f nas bases \mathcal{E} e \mathcal{F} . No caso em que U = V, $\mathcal{E} = \mathcal{F}, \ \mathcal{E}' = \mathcal{F}' \text{ e } v'_j = \sum_{i=1}^n p_{ij} v_i, \text{ temos } P = Q \text{ e } A' = P^t \cdot A \cdot P.$

9.4 Formas Quadráticas

Definição 9.3 Seja $f \in \mathcal{L}_2(V;K)$. A função $q:V \longrightarrow K$ definida por q(v) = f(v,v) chama-se uma forma quadrática em V. O conjunto Q(V) das formas quadrátivas em V é um espaço vetorial com as leis usuais de adição e produto por escalar. A aplicação $f \in \mathcal{L}_2(V;K) \longmapsto q \in Q(V)$ é linear sobrejetora, mas não é injetora. Se $g(u,v) = \frac{1}{2}[f(u,v) + f(v,u)]$, então g é simétrica e g(v,v) = f(v,v) = q(v) de modo que podemos sempre supor que a forma bilinear que define q é simétrica e a aplicação $g \in \overline{\mathcal{L}_2(V;K)} \longmapsto q \in Q(V)$ é bijetora. Para obter g a partir de q, observemos que

$$q(u + v) = g(u + v, u + v) = g(u, u) + g(v, v) + 2g(u, v),$$

donde $g(u, v) = \frac{1}{2}[q(u+v) - q(u) - q(v)]; \underline{g} \notin a \underline{forma \ polar} \ de \underline{q}. \ Se \ A = (a_{ij}) - n \times n - \acute{e} \ a \ matriz \ de \underline{g} \ na \ base \ \mathcal{E} \ de \ V \ e \ se \ X = [v]_{\mathcal{E}}, \ ent \ \widetilde{ao} \ q(v) = X^t \cdot A \cdot X,$ e dizemos também que $A \notin matriz \ de \ \underline{q} \ na \ base \ \mathcal{E}.$

Exemplo 9.4.1 $q: \mathbb{R}^n \longrightarrow \mathbb{R}$, $q(x) = q(x_1, ..., x_n) = \sum_{i=1}^n (x_i)^2$ é uma forma quadrática em \mathbb{R}^n .

Exemplo 9.4.2 $q: C^0([0,1],\mathbb{R}) \longrightarrow \mathbb{R}, \ q(f) = \int_0^1 [f(t)]^2 dt \ \acute{e} \ uma \ forma \ quadrática \ em \ C^0([0,1],\mathbb{R}).$

9.5 Formas Bilineares Simétricas Reais

Proposição 9.2 Seja V um espaço vetorial <u>real</u> de dimensão finita, munido de um produto interno. Para cada forma bilinear $f: V \times V \longrightarrow \mathbb{R}$ existe

uma e uma única aplicação <u>linear</u> $F: V \longrightarrow V$ tal que $f(u,v) = \langle u, F(v) \rangle$ para $u,v \in V$ quaisquer.

Dem. Seja $v \in V$ arbitrário. A função $u \in V \longmapsto f(u,v)$ é uma forma linear em V, isto é, um elemento de V^* . Portanto, existe um e um único $\zeta = F(v) \in V$ tal que $f(u,v) = \langle u,\zeta \rangle = \langle u,F(v) \rangle$, e obtemos $F:V \longrightarrow V$. Se $u,v_1,v_2 \in V$ e $\lambda \in \mathbb{R}$, temos:

$$\langle u, F(v_1 + \lambda v_2) \rangle = f(u, v_1 + \lambda v_2) = f(u, v_1) + \lambda f(u, v_2) =$$

= $\langle u, F(v_1) \rangle + \lambda \langle u, F(v_2) \rangle = \langle u, F(v_1) + \lambda F(v_2) \rangle,$

resultando $F(v_1 + \lambda v_2) = F(v_1) + \lambda F(v_2)$, donde F é linear.

Proposição 9.3 Seja $q: V \longrightarrow \mathbb{R}$ uma forma quadrática definida num espaço vetorial real V de dimensão \underline{n} munido de um produto interno. Existe base ortonormal $\mathcal{F} = (u_1, ..., u_n)$ de V relativa à qual $q(v) = \lambda_1 x_1^2 + ... + \lambda_n x_n^2$, onde $v = x_1 u_1 + ... + x_n u_n$, $e \lambda_1, ..., \lambda_n$ são os autovalores de q.

Dem. Seja $f: V \times V \longrightarrow \mathbb{R}$ bilinear simétrica tal que q(v) = f(v, v) para $v \in V$ qualquer, e seja $F: V \longrightarrow V$ linear tal que $f(u, v) = \langle u, F(v) \rangle$ para $u, v \in V$ quaisquer. Se $\mathcal{E} = (v_1, ..., v_n)$ é base ortonormal de V então $f(v_i, v_j) = \langle v_i, F(v_j) \rangle$ mostra que a matriz de f na base \mathcal{E} coincide com a matriz de f na mesma base. Resulta que $\phi: f \in \mathcal{L}_2(V; \mathbb{R}) \longmapsto F \in \mathcal{L}(V)$ é um isomorfismo e que f é simétrica se, e só se, f é auto-adjunta. Neste caso, existe base ortonormal de f formada por autovetores de f (ou de f, ou de f), isto é, existe base ortonormal f f (f) f) tal que $f(u_i, u_j) = f(u_i, u_j)$

$$\langle u_i, F(u_j) \rangle = \lambda_j \delta_{ij}$$
. Se $v = \sum_{i=1}^n x_i u_i$ então

$$q(v) = f(v, v) = \sum_{i,j=1}^{n} f(u_i, u_j) x_i x_j = \sum_{i,j=1}^{n} \lambda_j \delta_{ij} x_i x_j = \sum_{i=1}^{n} \lambda_i (x_i)^2 = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2,$$

combinação de quadrados.

Corolário 9.3.1 Nas condições da proposição 9.3, existe base ortonormal $\mathcal{G} = (w_1, ..., w_n)$ de V relativa à qual se tem

$$q(v) = \sum_{i=1}^{s} (x_i)^2 - \sum_{j=s+1}^{s+t} (x_j)^2$$

para todo
$$v = \sum_{i=1}^{n} x_i w_i \in V.$$

Dem. Reordenamos a base $\mathcal{F} = (u_1, ..., u_n)$ da proposição 9.3 de modo que

$$f(u_i, u_i) = q(u_i) = \lambda_i > 0$$
 $para \ 1 \le i \le s$
 $f(u_j, u_j) = q(u_j) = \lambda_j < 0$ $para \ s + 1 \le j \le s + t$
 $f(u_k, u_k) = q(u_k) = 0$ $para \ s + t + 1 \le k \le n$.

Pondo:

$$w_{i} = \frac{u_{i}}{\sqrt{\lambda_{i}}} \qquad para \ 1 \leq i \leq s$$

$$w_{j} = \frac{u_{j}}{\sqrt{-\lambda_{j}}} \qquad para \ s + 1 \leq j \leq s + t$$

$$w_{k} = u_{k} \qquad para \ s + t + 1 \leq k \leq n,$$

obtemos

$$f(w_i, w_i) = 1$$
 $para \ 1 \le i \le s$
 $f(w_j, w_j) = -1$ $para \ s + 1 \le j \le s + t$
 $f(w_k, w_k) = 0$ $para \ s + t + 1 \le k \le n$.

Portanto, se
$$v = \sum_{i=1}^{n} x_i w_i$$
, temos $q(v) = \sum_{i=1}^{s} (x_i)^2 - \sum_{j=s+1}^{s+t} (x_j)^2$.

Corolário 9.3.2 Se $\mathcal{E} = (v_1, ..., v_n)$ e $\mathcal{E}' = (v'_1, ..., v'_n)$ são bases ortonormais de V nas quais $q(v) = \sum_{i=1}^{s} (x_i)^2 - \sum_{j=s+1}^{s+t} (x_j)^2 = \sum_{i=1}^{s'} (x_i)^2 - \sum_{j=s'+1}^{s'+t'} (x_j)^2$ para $v = \sum x_i v_i = \sum x_j v'_j$ qualquer, então s = s' e t = t'.

Dem. Sejam:

$$U = subespaço de \ V \ gerado \ por \ v_1, ..., v_s$$

 $W' = subespaço \ de \ V \ gerado \ por \ v'_{s'+1}, ..., v'_n.$

Então: $dim U = s \ e \ dim \ W' = n - s'$.

Se $v \in U$, $v \neq 0$, temos q(v) > 0. Se $v \in W'$, então $q(v) \leq 0$. Resulta que $U \cap W' = \{0\}$ e, portanto,

$$dim\ U + dim\ W' = dim(U + W') \le dim\ V = n,$$

donde: $s + n - s' \le n$, ou seja, $s \le s'$.

Por simetria, obtemos: $s' \leq s$. Logo, s = s'.

 $Como\ s+t=s'+t'=r=posto\ de\ F\ (=posto\ de\ f=posto\ de\ q),\ resulta\ t=t'.$

Obs. O par (s,t) é univocamente determinado por q; t é a maior dimensão de um subespaço de V restrita ao qual q é <u>negativa</u>: \underline{t} é a dimensão do

subespaço de V gerado por $v_{s+1}, ..., v_{s+t}$. Por definição, \underline{t} é o <u>índice</u> da forma quadrática \underline{q} . Quando $q(v) \geq 0$ para $v \in V$ qualquer, $\underline{dizemos}$ que o \underline{indice} de q é zero.

Exemplo: $q: \mathbb{R}^4 \longrightarrow \mathbb{R}$, $q(x, y, z, t) = -x^2 + y^2 + z^2 + t^2$ tem posto r = 4 e índice t = 1.

Vamos apresentar, por meio de exemplos, o método de Lagrange para a diagonalização de uma forma quadrática.

Exemplo 9.5.1 $q(x, y, z) = x^2 + z^2 - 4xy + 4xz$.

Como existe o termo quadrado "puro" x² vamos completar o quadrado:

$$q(x, y, z) = x^2 - 4x(y - z) + z^2 = [x - 2(y - z)]^2 - 4(y - z)^2 + z^2 = (x - 2y + 2z)^2 - 4y^2 - 3z^2 + 8yz$$

e a existência de y^2 nos permite completar o quadrado:

$$q(x, y, z) = (x - 2y + 2z)^{2} - 4(y - z)^{2} + z^{2}$$

Pondo:

$$u = x - 2y + 2z$$
$$v = y - z,$$

obtemos

$$q(u, v, z) = u^2 - 4v^2 + z^2,$$

forma de posto r = 3 e índice t = 1.

Exemplo 9.5.2 q(x, y, z) = 4xy - 2xz + yx

Como não existe nenhum quadrado puro, fazemos

$$x = u + v$$
$$y = u - v,$$

 $donde \ xy = u^2 - v^2 \ e$

$$q(u, v, z) = 4u^2 - 4v^2 - 2z(u + v) + z(u - v) = 4u^2 - 4v^2 - uz - 3vz =$$

$$= 4\left(u^2 - \frac{z}{4}u\right) - 4\left(v^2 + \frac{3z}{4}v\right) = 4\left[\left(u - \frac{z}{8}\right)^2 - \frac{z^2}{164}\right] - 4\left(v + \frac{3z}{8}\right)^2 + \frac{9z^2}{16} = 4\left(u - \frac{z}{8}\right)^2 - 4\left(v + \frac{3z}{4}v\right)^2 + \frac{z^2}{2}.$$

Fazendo: $\alpha = u - \frac{z}{8}$; $\beta = v + \frac{3z}{8}$, vem:

$$q(\alpha, \beta, z) = 4\alpha^2 - 4\beta^2 + \frac{z^2}{2},$$

forma de posto r = 3 e índice t = 1.

Capítulo 10

Miscelânea

10.1 Orientação

Seja V um espaço vetorial <u>real</u>, de dimensão finita $n \ge 1$, e seja B o conjunto das bases ordenadas de V.

Definição 10.1 Duas bases ordenadas $\mathcal{E} = (u_1, ..., u_n)$ e $\mathcal{F} = (v_1, ..., v_n)$ de V são <u>equivalentes</u>, anotado $\mathcal{E} \sim \mathcal{F}$, se o determinante da matriz de passagem de \mathcal{E} para \mathcal{F} é <u>positivo</u>.

Se $v_j = \sum_{i=1}^n p_{ij}u_i$, então a matriz de passagem de \mathcal{E} para \mathcal{F} é a matriz invertível $P = (p_{ij})$ e $\mathcal{E} \sim \mathcal{F}$ se, e só se, det P > 0. Observemos que $P = [I]_{\mathcal{E}}^{\mathcal{F}}$, onde $I : V \longrightarrow V$ é a identidade.

Proposição 10.1 A relação $\mathcal{E} \sim \mathcal{F}$ é uma relação de equivalência sobre B.

Dem. (a) $\mathcal{E} \sim \mathcal{E}$, pois det $[I]_{\mathcal{E}}^{\mathcal{E}} = \det I_n = 1 > 0$.

(b) $\mathcal{E} \sim \mathcal{F} \Rightarrow \mathcal{F} \sim \mathcal{E}$: com efeito, se $P = [I]_{\mathcal{E}}^{\mathcal{F}}$, então $P^{-1} = [I]_{\mathcal{F}}^{\mathcal{E}}$. Portanto, det $P > 0 \Leftrightarrow \det P^{-1} > 0$.

(c) $\mathcal{E} \sim \mathcal{F}$, $\mathcal{F} \sim \mathcal{G} \Rightarrow \mathcal{E} \sim \mathcal{G}$: sejam $P = [I]_{\mathcal{E}}^{\mathcal{F}}$, $Q = [I]_{\mathcal{F}}^{\mathcal{G}}$. A matriz de passagem de \mathcal{E} para $\mathcal{G} \in R = [I] = PQ$. Logo, det $R = \det P \cdot \det Q > 0$.

Proposição 10.2 A relação $\mathcal{E} \sim \mathcal{F}$ determina duas classes de equivalência no conjunto B de todas as bases ordenadas de V.

Dem. Fixemos uma base $\mathcal{E} = (u_1, ..., u_n)$ em V e seja $\overline{\mathcal{E}} = (-u_1, u_2, ..., u_n)$. A matriz de passagem de \mathcal{E} para $\overline{\mathcal{E}}$ tem determinante igual a

$$\begin{vmatrix} -1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{vmatrix} = -1,$$

ou seja, \mathcal{E} e $\overline{\mathcal{E}}$ estão em classes distintas, B_1 e B_2 . Se \mathcal{F} é base ordenada arbitrária de V, temos

$$R = [I]_{\mathcal{E}}^{\mathcal{F}} = [I]_{\mathcal{E}}^{\overline{\mathcal{E}}} \cdot [I]_{\overline{\mathcal{E}}}^{\mathcal{F}} = PQ,$$

onde P, Q e R são as matrizes de passagem de \mathcal{E} para $\overline{\mathcal{E}}$, de $\overline{\mathcal{E}}$ para \mathcal{F} e de \mathcal{E} para \mathcal{F} , respectivamente. Então:

det $R = \det P \cdot \det Q = -\det Q$, donde resulta que ou $\mathcal{F} \in B_1$ ou $\mathcal{F} \in B_2$, ou seja, só existem duas classes de equivalência.

Definição 10.2 Qualquer uma das classes B_1 ou B_2 diz-se uma <u>orientação</u> de V. V possui, portanto, duas orientações.

Definição 10.3 Um espaço vetorial <u>orientado</u> \acute{e} um espaço vetorial associado a uma de suas orientações. Mais <u>precisamente</u>, \acute{e} um par (V, O) onde O \acute{e} uma orientação do espaço vetorial real V.

Definição 10.4 Se (V, O) é um espaço vetorial orientado, as bases que pertencem à orientação O chamam-se positivas. As outras são chamadas negativas.

Exemplo 10.1.1 O espaço \mathbb{R}^n possui uma orientação canônica, que é aquela determinada pela base canônica $(e_1, ..., e_n)$.

Obs. O conceito de orientação depende essencialmente da relação de ordem dos números reais, não podendo ser estendido a espaços vetoriais sobre um corpo qualquer.

10.2 Volume de Paralelepípedo

Sejam V um espaço vetorial real de dimensão $\underline{\mathbf{n}}$, munido de um produto interno, e $v_1,...,v_n\in V$.

Definição 10.5 O paralelepípedo de arestas $v_1, ..., v_n$ é o conjunto

$$P(v_1, ..., v_n) = \{x = t_1 v_1 + ... + t_n v_n; \ 0 \le t_i \le 1\}.$$

Seja $\mathcal{E} = (e_1, ..., e_n)$ uma base ortonormal de V. Se $v_j = \sum_{i=1}^n a_{ij}e_i$, $A = (a_{ij}) - n \times n$ – define-se o volume de $P(v_1, ..., v_n)$ por $v(P(v_1, ..., v_n)) = |\det A|$. Se $\mathcal{E}' = (e'_1, ..., e'_n)$ é outra base ortonormal de V e $e'_i = \sum_{k=1}^n p_{ki}e_k$, $P = (p_{ij}) - n \times n$ – matriz ortogonal, de transição da base \mathcal{E} para a base $\overline{\mathcal{E}}$, então $|\det P| = 1 \ e \ v_j = \sum_{i=1}^n a'_{ij} e'_i = \sum_{i=1}^n a'_{ij} \sum_{k=1}^n p_{ki} e_k = \sum_{k=1}^n \sum_{i=1}^n p_{ki} a'_{ij} e_k = \sum_{k=1}^n a_{kj} e_k,$ $donde \ A = PA' \ e \ |\det A| = |\det A'|, \ o \ que \ mostra \ que \ v \left(P(v_1, ..., v_n)\right) \ n\tilde{a}o$ $depende \ da \ base \ ortonormal \ usada \ na \ sua \ definição.$

Proposição 10.3 Seja $T: V \longrightarrow V$ linear. Então:

$$v(P(Tv_1,...,Tv_n)) = |det T| \cdot v(P(v_1,...,v_n)).$$

Dem. Com as notações usadas acima, temos: $v_j = \sum_{i=1}^n a_{ij}e_i$, donde

$$Tv_j = \sum_{i=1}^n a_{ij} T(e_i) = \sum_{i,k=1}^n a_{ij} b_{ki} e_k = \sum_{k=1}^n \left(\sum_{i=1}^n b_{ki} a_{ij}\right) e_k,$$

onde $B = [T]_{\mathcal{E}}^{\mathcal{E}}$; portanto,

$$v(P(Tv_1, ..., Tv_n) = |det BA| = |det T||det A| = |det T|v(P(v_1, ..., v_n)).$$

10.3 Matriz de Gram

Sejam $v_1, ..., v_k \in V$, onde V é um espaço vetorial real de dimensão $\underline{\mathbf{n}}$, munido de um produto interno.

Se $g_{ij} = \langle v_i, v_j \rangle$, a matriz de Gram de $v_1, ..., v_k$ é $G = (g_{ij}) - k \times k$. Seja W um subespaço de dimensão $\underline{\mathbf{k}}$ contendo $v_1, ..., v_k$ (se $v_1, ..., v_k$ são LI, W é único). Seja $\mathcal{E} = (e_1, ..., e_n)$ base ortonormal de V tal que $(e_1, ..., e_k)$ seja base

ortonormal de W. Então:
$$v_j = \sum_{i=1}^k a_{ij} e_i$$
, $v(P(v_1, ..., v_k)) = |det A| e v_1, ..., v_k$
são LI $\Leftrightarrow det A \neq 0 \Leftrightarrow v(P(v_1, ..., v_k)) > 0$.

Proposição 10.4 $v(P(v_1,...,v_k)) = \sqrt{\det G}$.

Dem. Com as notações acima, temos:

$$g_{ij} = \langle v_i, v_j \rangle = \langle \sum_{r=1}^k a_{ri} e_r, \sum_{r=1}^k a_{sj} e_s \rangle = \sum_{r=1}^k a_{ir}^t a_{rj},$$

donde $G = A^t A$ e det $G = (det \ A)^2$, resultando $v(P(v_1, ..., v_k)) = |det \ A| = \sqrt{det \ G}$. Além disso, det $G \ge 0$, e det $G = 0 \Leftrightarrow det \ A = 0 \Leftrightarrow v_1, ..., v_k$ são LD.

Obs. Se $v_1, ..., v_k$ são 2 a 2 ortogonais, então

$$\det G = \begin{bmatrix} |v_1|^2 & 0 \\ & \ddots & \\ 0 & |v_k|^2 \end{bmatrix} = |v_1|^2 ... |v_k|^2 = (\det A)^2,$$

donde $|\det A| = v(P(v_1,...,v_k)) = |v_1|...|v_k|$. Se $\{v_1,...,v_k\}$ é conjunto ortonormal, então $P(v_1,...,v_k)$ é o cubo unitário I_k e $v(I_k) = 1$.

10.4 Produto Vetorial

Sejam V um espaço vetorial real, de dimensão (n+1), munido de um produto interno \langle , \rangle , orientado, e $v_1, ..., v_n \in V$. A função

$$f: V \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x) = \det_{\mathcal{E}}(v_1, ..., v_n, x),$$

onde $\mathcal{E} = (e_1, ..., e_{n+1})$ é base positiva de V, <u>ortonormal</u>, é linear, donde existe um e um único $u \in V$, $u = v_1 \times ... \times v_n$, tal que $f(x) = \langle u, x \rangle$ para todo $x \in V$. Este vetor $u = v_1 \times ... \times v_n$ chama-se o produto vetorial de $v_1, ..., v_n$.

Obs. (a) $u = v_1 \times ... \times v_n$ é forma n-linear dos vetores $v_1, ..., v_n$.

(b) Seja $A = [v_1, ..., v_n]$ a matriz $(n+1) \times n$ cujas colunas são os vetores v_j escritos na base \mathcal{E} . Seja $A_{(i)} - n \times n$ – a submatriz obtida de A pela omissão da linha i. Temos:

$$\langle u, e_j \rangle = \det [v_1, ..., v_n, e_j] = (-1)^{n+1+j} \det A_{(j)}.$$

Então:

$$u = \sum_{i=1}^{n+1} (-1)^{n+1+i} \det A_{(i)} \cdot e_i,$$

donde $|u|^2 = \sum_{i=1}^{n+1} (\det A_{(i)})^2 \ge 0$ e $|u| = 0 \Leftrightarrow \det A_{(i)} = 0$ para todo <u>i</u>,

 $1 \le i \le n+1 \Leftrightarrow posto \ A < n \Leftrightarrow v_1, ..., v_n \ \text{são LD}.$

(c) $u \perp v_j$ $(1 \le j \le n)$ pois $\langle u, v_j \rangle = det(v_1, ..., v_n, v_j) = 0$.

(d) $|u|^2 = det_{\mathcal{E}}[v_1, ..., v_n, u] = v(P(u, v_1, ..., v_n)) = |u|v(P(v_1, ..., v_n)),$ donde $|u| = v(P(v_1, ..., v_n)).$

(e) $v_1, ..., v_n$ são LI $\Leftrightarrow v(P(v_1, ..., v_n)) = |u| > 0$. Neste caso, $det(u, v_1, ..., v_n) = |u|^2 > 0$ e $(v_1, ..., v_n, v_1 \times ... \times v_n)$ tem a mesma orientação que $(e_1, ..., e_{n+1})$.

É fácil ver que o produto vetorial $u = v_1 \times ... \times v_n$ é o único vetor de V satisfazendo (c), (d) e (e).

141

Pode-se representar $u=v_1\times \ldots \times v_n$ pelo determinante simbólico

$$\begin{vmatrix} v_{11} & \dots & v_{1n} & e_1 \\ v_{21} & \dots & v_{2n} & e_2 \\ \vdots & \ddots & \vdots & \vdots \\ v_{n+1,n} & \dots & v_{n+1,n} & e_{n+1} \end{vmatrix} = \sum_{i=1}^{n+1} (-1)^{n+1+i} \det A_{(i)} e_i = u.$$

Exercícios de Revisão

- 1. Sejam $p_1, ..., p_n \in P_n(K)$, isto é, polinômios de grau menor que <u>n</u>. Se, para $j=1,...,n,\ p_j(2)=0$, prove que $\{p_1,...,p_n\}$ é um conjunto linearmente dependente.
- 2. Prove que não existe $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^2$ linear cujo núcleo seja $\{(x_1, ..., x_5) \in \mathbb{R}^5 | x_1 = x_2 \ e \ x_3 = x_4 = x_5\}.$
- 3. Seja $T:V\longrightarrow W$ linear, V de dimensão finita. Prove que existe subespaço $U\subset V$ tal que $\mathcal{N}(T)\cap U=\{0\}$ e $Im\ T=T(U)$.
- 4. Seja $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, $T(x_1, ..., x_n) = (x_1 + ... + x_n, ..., x_1 + ... + x_n)$. Ache os autovalores e autovetores de T.
- 5. Sejam $V = U \oplus W$, $P : V \longrightarrow W$, P(u+w) = w, onde $u \in U$ e $w \in W$. Mostre que $\underline{0}$ e $\underline{1}$ são os únicos autovalores de P e ache os autovetores correspondentes.
- 6. Dê exemplo de um operador linear invertível $T: V \longrightarrow V$, $\dim V = n$, cuja matriz em alguma base só tem zeros na diagonal principal.
- 7. Se $a_1, ..., a_n, b_1, ..., b_n \in \mathbb{R}$, prove que

$$\left(\sum_{j=1}^n a_j b_j\right)^2 \le \left(\sum_{j=1}^n j \cdot a_j^2\right) \left(\sum_{j=1}^n \frac{b_j^2}{j}\right).$$

- 8. Seja $T: \mathbb{C}^n \longrightarrow \mathbb{C}^n$, $T(z_1, ..., z_n) = (0, z_1, ..., z_{n-1})$. Ache T^* .
- 9. Prove que todo operador auto-adjunto $T:V\longrightarrow V$ tem uma raiz cúbica, $dim\ V=n.$
- 10. Sejam $T:V\longrightarrow V$ linear, $dim\ V=n$. Prove que V tem base formada por autovetores de T se, e só se, existe produto interno em V que torna T auto-adjunto.

- 143
- 11. Se $T: V \longrightarrow V$ é normal, prove que $Im T = Im T^*$.
- 12. Se $\mathbb{K} = \mathbb{C}$ prove que todo operador normal $T: V \longrightarrow V$, $\dim V = n$ tem uma raiz quadrada.
- 13. Sejam $\mathbb{K} = \mathbb{C}$ e $T: V \longrightarrow V$ operador normal, $dim\ V = n$. Prove que $T = T^* \Leftrightarrow$ todos os autovalores de T são reais.
- 14. Sejam $T:V\longrightarrow V$ linear, $\dim V=n,\,T=T^*$. Prove que os valores singulares de T são os módulos de seus autovalores.
- 15. Prove que todo polinômio mônico é o polinômio característico de algum operador linear. Para isso, considere a matriz

$$A = \begin{bmatrix} 0 & 0 & \dots & 0 & 0 & -a_0 \\ 1 & 0 & \dots & 0 & 0 & -a_1 \\ 0 & 1 & \dots & 0 & 0 & -a_2 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 & -a_{n-2} \\ 0 & 0 & \dots & 0 & 1 & -a_{n-1} \end{bmatrix}.$$

- 16. Sejam $T: V \longrightarrow V$, $\dim V = n$, T > 0 e tr T = 0. Prove que T = 0.
- 17. Sejam $(e_1, ..., e_n)$ base ortonormal de V e $T: V \longrightarrow V$ linear. Prove: $tr(T^*T) = |Te_1|^2 + ... + |Te_n|^2$.
- 18. Sejam $\mathbb{K} = \mathbb{C}$, $T: V \longrightarrow V$ linear, $\mathcal{E} = (e_1, ..., e_n)$ base ortonormal de V, e $\lambda_1, ..., \lambda_n$ os autovalores de T. Se $A = [T]_{\mathcal{E}}^{\mathcal{E}} = (a_{ij}) n \times n$ prove que

$$|\lambda_1|^2 + \dots + |\lambda_n|^2 \le \sum_{i,i=1}^n |a_{ij}|^2.$$

Referências Bibliográficas

- [1] Axler, S. Linear Algebra Done Right Springer, New York, 1996.
- [2] Gelfand, I. Lectures on Linear Algebra Interscience, New York, 1961.
- [3] Hoffman, K.; Kunze, R. Linear Algebra Prentice-Hall, New Jersey, 1971.
- [4] Júdice, E.D. Introdução à Álgebra Linear Belo Horizonte, 1960.
- [5] Lang, S. Linear Algebra Springer, New York, 2004.
- [6] Leon, S. Álgebra Linear LTC, Rio de Janeiro, 1999.
- [7] Lima, E.L. Álgebra Linear IMPA, Rio de Janeiro, 1996.
- [8] Queysanne, M. Algèbre Armand Colin, Paris, 1964.
- [9] Simmons, G. Introduction to Topology and Modern Analysis McGraw-Hill, New York, 1963.