

ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO

Programação Para Dispositivos Móveis I

SENSORES

2024/_25 CTeSP – Desenvolvimento para a Web e Dispositivos Móveis Ricardo Barbosa , rmb@estg.ipp.pt
Carlos Aldeias, cfpa@estg.ipp.pt

Adaptação do conteúdo dos slides de João Ramos <u>irmr@estq.ipp.pt</u> e Fábio Silva <u>fas@estq.ipp.pt</u>

Índice

Sensores;

Leitura Adicional.

 Os sensores são (tipicamente) componentes físicos que permitem percecionar fenómenos externos a partir do dispositivo Android.

 São utilizados em aplicações que necessitam de contextos externos para funcionar, ou para adicionar recursos avançados (ex: localização ou movimento ao seu aplicativo);

 O seu uso é feito diretamente a partir de serviços de sistema sobre os quais podemos registar *callbacks* para serem notificados de eventuais alterações dos valores registados.

A plataforma Android suporta várias categorias de sensores:

- Movimento: sensores que medem forças de aceleração, rotação e outros ao longo de três eixos (x,y,z). Nesta categoria incluem-se acelerómetros, sensores de gravidade, giroscópios, e sensores vetoriais de rotação.
- **Ambiente:** sensores que medem parâmetros ambientais, como temperatura, pressão do ar ambiente, iluminação e humidade. Esta categoria inclui barómetros, fotómetros e termómetros.
- **Posição:** sensores que medem a posição física de um dispositivo. Esta categoria inclui sensores de orientação e magnetómetros.

Podemos aceder aos sensores disponíveis no dispositivo e adquirir dados em brutos usando a plataforma de sensores do Android. Fornece várias classes e interfaces que ajudam na execução de tarefas relacionadas com sensores:

- Determinar os sensores disponíveis no dispositivo;
- Determinar os recursos de um sensor individual:
 - Taxa de atualização;
 - Fabricante;
 - Requisitos de energia;
 - Resolução.
- Adquirir dados em brutos do sensor e definir a taxa de atualização mínima;
- Registrar e cancelar o registro de *listeners*;

Sensor	Descrição	Usos comuns Deteção de movimento (agitação, inclinação, etc.)	
TYPE_ACCELEROMETER	Mede a força de aceleração em m/s2 que é aplicada a um dispositivo nos três eixos físicos (x, y, e z), incluindo a força da gravidade.		
TYPE_AMBIENT_TEMPERATURE	Mede a temperatura ambiente em graus Celsius (°C).	Monitorização da temperatura do ar	
TYPE_GRAVITY	Mede a força da gravidade em m/s2 que é aplicada a um dispositivo nos três eixos físicos (x, y, z).	Deteção de movimento (abanar, inclinar, etc.)	
TYPE_GYROSCOPE	Mede a taxa de rotação de um dispositivo em rad/s em torno de cada um dos três eixos físicos (x, y, e z).	Deteção de rotação (girar, rodar, etc.)	
TYPE_LIGHT	Mede o nível de luz ambiente (iluminação) em lx.	Controlar o brilho do ecrã	
TYPE_LINEAR_ACCELERATION	Mede a força de aceleração em m/s2 que é aplicada a um dispositivo nos três eixos físicos (x, y, e z), excluindo a força da gravidade.	Monitorização da aceleração ao longo de um único eixo	
TYPE_MAGNETIC_FIELD	Mede o campo geomagnético ambiente para os três eixos físicos (x, y, z) em μT.	Criação de uma bússola	

Sensor	Descrição	Usos comuns	
TYPE_ORIENTATION	Mede os graus de rotação que um dispositivo faz em torno dos três eixos físicos (x, y, z). A partir do nível API 3 pode-se obter a matriz de inclinação e a matriz de rotação de um dispositivo usando o sensor de gravidade e o sensor de campo geomagnético em conjunto com o método getRotationMatrix().		
TYPE_PRESSURE	Mede a pressão do ar ambiente em hPa ou mbar.	Monitorização de alterações de pressão de ar.	
TYPE_PROXIMITY	Mede a proximidade de um objeto em cm em relação ao ecrã de visualização de um dispositivo. Este sensor é tipicamente utilizado para determinar se o dispositivo está a ser segurado junto ao ouvido de uma pessoa.	Posição do dispositivo durante uma chamada.	
TYPE_RELATIVE_HUMIDITY	Mede a humidade ambiente relativa em percentagem (%).	Monitorização do ponto de orvalho, humidade absoluta e relativa.	
TYPE_ROTATION_VECTOR	Mede a orientação de um dispositivo, fornecendo os três elementos do vetor de rotação do dispositivo.	Deteção de movimento e deteção de rotação.	
TYPE_TEMPERATURE	Mede a temperatura do dispositivo em graus Celsius (°C). A implementação deste sensor varia entre dispositivos e este sensor foi substituído pelo sensor TYPE_AMBIENT_TEMPERATURE no nível API 14	Monitorização das temperaturas.	

Sensor	Android 4.0(API Level 14)	Android 2.3 (API Level 9)	Android 2.2 (API Level 8)	Android 1.5 (API Level 3)
• TYPE_ACCELEROMETER	■ Yes	■ Yes	■ Yes	• Yes
■ TYPE_AMBIENT_TEMPERATURE	■ Yes	■ n/a	■ n/a	■ n/a
• <u>TYPE_GRAVITY</u>	Yes	Yes	■ n/a	■ n/a
 <u>TYPE_GYROSCOPE</u> 	Yes	Yes	■ n/a	■ n/a
• TYPE_LIGHT	Yes	Yes	Yes	Yes
• TYPE_LINEAR_ACCELERATION	Yes	Yes	■ n/a	■ n/a
■ TYPE_MAGNETIC_FIELD	Yes	Yes	■ Yes	Yes
 TYPE_ORIENTATION 	Yes	Yes	Yes	Yes
• TYPE_PRESSURE	Yes	Yes	■ n/a	■ n/a
■ <u>TYPE_PROXIMITY</u>	Yes	Yes	Yes	Yes
■ TYPE_RELATIVE_HUMIDITY	Yes	■ n/a	■ n/a	■ n/a
■ TYPE_ROTATION_VECTOR	Yes	Yes	■ n/a	■ n/a
■ <u>TYPE_TEMPERATURE</u>	Yes	Yes	Yes	Yes

Sensores em Android Sensores de Ambiente

Para utilizar os sensores devemos **registar** *listeners* para utilizar os dados fornecidos pela plataforma Android.

- Devemos garantir que os listeners são apenas utilizados durante as etapas relevantes do ciclo de vida dos componentes em Android (Activities, Fragments, ...);
- O uso criterioso da API SensorEventListener ajuda na conservação de energia dos equipamentos Android;

Sensores de Ambiente Exemplo obtenção de um sensor

```
private SensorManager sensorManager;
private Sensor sensor;
anoverride
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
    sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
    sensor = sensorManager.getDefaultSensor(Sensor.TYPE_AMBIENT_TEMPERATURE);
                                Instanciação do sensor do tipo
                                Ambient_Temperature
```


Exemplo obtenção da lista dos sensores disponíveis

```
private SensorManager sensorManager;
private List<Sensor> deviceSensors;
aOverride
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
    sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
    deviceSensors = sensorManager.getSensorList(Sensor.TYPE_ALL);
      Lista de todos os sensores
      disponíveis no dispositivo
```


Exemplo (Sensor de Luz Ambiente) [MainActivity.java]

```
public class MainActivity extends AppCompatActivity implements SensorEventListener {
    private SensorManager sensorManager;
    private Sensor luxSensor;
                                                                       Implementação do
    aOverride
                                                                       Listener de eventos
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity main);
        sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
        luxSensor = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
                                Obter sensor de Luz
                                Ambiente
```


Exemplo (Sensor de Luz Ambiente) [MainActivity.java]

```
Registar o Listener respeitando o ciclo
                                           de vida da Activity
ล0verride
protected void onResume() {
     super.onResume();
     sensorManager.registerListener(this, luxSensor, SensorManager.SENSOR_DELAY_NORMAL);
a0verride
protected void onPause() {
     super.onPause();
     sensorManager.unregisterListener(this);
Remover o registo do listener
```


Exemplo (Sensor de Luz Ambiente) [MainActivity.java]

```
Invocado cada vez que o valor registado pelo
                             sensor sofre alteração
and override
public void onSensorChanged(SensorEvent event) {
    Log.d("DEVICE_SENSOR", String.valueOf(event.values[0]));
                                                         Obtenção do valor atual do
aOverride
public void onAccuracyChanged(Sensor sensor, int accuracy) {
    //TODO: Implementar comportamento caso ocorra alguma alteração
             no valor de accuracy do sensor
```


Sensores em Android Movimento

O sensor de movimento significativo aciona um evento cada vez que um movimento significativo é detetado e, em seguida, ele é desativado.

Uma moção significativa é uma moção que pode levar a uma alteração na localização do utilizador:

- Caminhar;
- Correr;
- Andar de bicicleta;
- Andar de carro;
- Etc.

Sensores de Movimento

Significant Motion Sensor [MainActivity.java]

```
private SensorManager sensorManager;
private Sensor sensor;
private TriggerEventListener triggerEventListener;
െ0verride
protected void onCreate(Bundle savedInstanceState) {
                 super.onCreate(savedInstanceState);
                 setContentView(R.layout.activity main);
                 sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
                 sensor = sensorManager.getDefaultSensor(Sensor.TYPE_SIGNIFICANT_MOTION);
                 triggerEventListener = new TriggerEventListener() {
                                 െ അവുന്നു പ്രധാന പ്രധാനം പ്രവാനം പ്
                                 public void onTrigger(TriggerEvent event) {
                                                   //TODO: Implementar comportamento caso ocorra um evento de SIGNIFICANT_MOTION
                }:
                 sensorManager.requestTriggerSensor(triggerEventListener, sensor);
```


Sensores de Movimento

Step Counter Sensor[MainActivity.java]

```
ACTIVITY_RECOGNITION para que a aplicação use este
                                                      sensor em dispositivos com Android 10 (API 29) ou
private SensorManager sensorManager;
                                                      superior.
private Sensor sensor;
anoverride
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
    sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
    sensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);
                   Este sensor tem um valor maior de latência (10
                   segundos), mas uma accuracy superior ao
                   TYPE_STEP_DETECTOR
```


Nota: deve ser declarada a permissão

Sensores em Android

Existem ainda em alguns dispositivos Android sensores especiais que requerem bibliotecas fornecidas diretamente a partir do fabricantes dos dispositivos.

- Exemplos de sensores não disponíveis na API Android:
 - Project Soli Pixel 4 e Pixel XL;
- Sensores como o sensor de impressões digitais, requerem também permissões e usos especiais:
 - Sensibilidade dos dados previne o acesso aos dados em bruto:
 - Necessidade de proteger privacidade dos utilizadores.

Podemos no entanto usar os sensores biométricos em casos de uso previstos pelo Android como por exemplo autenticação pessoal

https://developer.android.com/training/sign-in/biometric-auth

Leitura Recomendada

Sensores:

https://developer.android.com/guide/topics/sensors/sensors_overview

ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO

Programação Para Dispositivos Móveis I

SENSORES

2024/_25 CTeSP – Desenvolvimento para a Web e Dispositivos Móveis Ricardo Barbosa , rmb@estg.ipp.pt
Carlos Aldeias, cfpa@estg.ipp.pt

Adaptação do conteúdo dos slides de João Ramos <u>irmr@estq.ipp.pt</u> e Fábio Silva <u>fas@estq.ipp.pt</u>

