INTRODUCTION TO RELIABILITY ANALYSIS

Introduction

- *Goal is to analyze the reliability of complex systems
- *Approach:
 - Breakdown the complex system into small elements
 - Identify the interconnecting patterns and compose the overall reliability in terms of elemental reliabilities
 - Obtain elemental reliabilities by experimental means analyzing failure data

Why Analyze Reliability?

- *Reliability gives the probability of failure for a particular design
- *Obviously, cost is another factor in the design
- *Reliability analysis helps the engineer make quantitative decisions in trading-off risk versus cost

Combinatorial Reliability

- *We consider combinatorial reliability where given a decomposition of the system, the overall reliability is determined by analyzing the failure scenarios
- *For simplicity, we don't consider repairs in the reliability analysis i.e., we consider only up to the first failure
- Considering repairs makes the quantitative analysis lot harder

*Functional operation depends on the correct operation of **all** the modules

Figure B1 Series reliability configuration: (a) reliability block diagram (RBD); (b) reliability graph.

- *Probability a module n is successful is $P(x_n)$
- *Probability module *n* fails is $P(y_n)$, where y = x
- *Probability of system success P_s
- *System reliability $R = P_s$

$$R = P_s = P(x_1 x_2 x_3 \cdots x_n) \tag{B1}$$

Expansion of Eq. (B1) yields

$$P_s = P(x_1)P(x_2|x_1)P(x_3|x_1x_2)\cdots P(x_n|x_1x_2\cdots x_{n-1})$$
 (B2)

- $P(x_3|x_1x_2)$ is the conditional probability of module 3 working given modules 1 and 2 are working
- *Common mode factors such as power dissipation can impact the failure of modules in the same way therefore we use conditional probabilities.
- *If the failure or success are independent, we can simplify the above expression for reliability to

$$P_s = P(x_1)P(x_2)P(x_3)\cdots P(x_n)$$
(B3)

- *Reliability of a series configuration is smaller than the reliability of the weakest among the components
- *Alternative is to compute probability of failure

$$P_f = P(\overline{x}_1 + \overline{x}_2 + \overline{x}_3 + \dots + \overline{x}_n)$$
 (B4)

Expansion of Eq. (B4) yields

$$P_{f} = [P(\overline{x}_{1}) + P(\overline{x}_{2}) + P(\overline{x}_{3}) + \dots + P(\overline{x}_{n})]$$

$$- [P(\overline{x}_{1}\overline{x}_{2}) + P(\overline{x}_{1}\overline{x}_{3}) + \dots + P(\overline{x}_{i}\overline{x}_{j})]$$

$$= i \neq j$$

$$+ \dots + (-1)^{n-1}[P(\overline{x}_{1}\overline{x}_{2} \dots \overline{x}_{n})]$$
(B5)

Since

$$P_s = 1 - P_f \tag{B6}$$

the probability of system success becomes

$$P_{s} = 1 - P(\overline{x}_{1}) - P(\overline{x}_{2}) - P(\overline{x}_{3}) - \dots - P(\overline{x}_{n}) + P(\overline{x}_{1})P(\overline{x}_{2}|\overline{x}_{1})$$

$$+ P(\overline{x}_{1})P(\overline{x}_{3}|\overline{x}_{1}) + \dots + P(\overline{x}_{i})P(\overline{x}_{i}|\overline{x}_{j})$$

$$i \neq j$$

$$- \dots + (-1)^{n}P(\overline{x}_{1})P(\overline{x}_{2}|\overline{x}_{1}) \dots P(\overline{x}_{n}|\overline{x}_{1} \dots \overline{x}_{n-1})$$
(B7)

With independent failures

$$P_{s} = 1 - P(\overline{x}_{1}) - P(\overline{x}_{2}) - P(\overline{x}_{3}) - \dots - P(\overline{x}_{n})$$

$$+ P(\overline{x}_{1})P(\overline{x}_{2}) + P(\overline{x}_{1})P(\overline{x}_{3}) + \dots + P(\overline{x}_{i})P(\overline{x}_{j})$$

$$= - \dots + (-1)^{n}P(\overline{x}_{1})P(\overline{x}_{2}) \dots P(\overline{x}_{n})$$
(B8)

Parallel Configuration

*Unlike series systems, in parallel configurations the system remains operational if at least one module is operational

Figure B2 Parallel reliability configuration: (a) reliability block diagram; (b) reliability graph.

Parallel Configuration...

*Reliability of the parallel configuration is:

$$P_s = P(x_1 + x_2 + x_3 + \dots + x_n)$$
 (B9)

Expansion of Eq. (B9) yields

$$P_{s} = [P(x_{1}) + P(x_{2}) + P(x_{3}) + \dots + P(x_{n})]$$

$$- [P(x_{1}x_{2}) + P(x_{1}x_{3}) + \dots + P(x_{i}x_{j})]$$

$$i \neq j$$

$$+ \dots + (-1)^{n-1}P(x_{1}x_{2} \dots x_{n})$$
(B10)

*Simpler formula can be obtained by considering failure probabilities:

$$P_f = P(\overline{x}_1 \overline{x}_2 \overline{x}_3 \cdots \overline{x}_n) \tag{B11}$$

Parallel Configuration...

*If the failures are independent, above expression can be simplified as follows:

$$P_s = 1 - P(\overline{x}_1)P(\overline{x}_2)\cdots P(\overline{x}_n)$$
 (B14)

R-out-of-N Configuration

- *Many systems function if *r* systems out of *n* function
- *If the modules are identical, probability of *r* successes out of *n* modules is given by:

$$B(r; n, p) = {n \choose r} p^r (1-p)^{n-r}$$
 for $r = 0, 1, 2 \cdots n$ (B15)

Problem: 4 out of 5 Configuration

*Show that the reliability of the configuration below is given by $5p^4 - 4p^5$, where p is prob. of success.

Figure B3 Reliability graph for a 4-out-of-5 system.

Cut-Set and Tie-Set Methods

- *Tie set: A group of branches that form a connection between input and output in a reliability graph
- *Minimal tie set: tie set containing minimum number of elements
- *If T_1 , T_2 , T_3 are the tie sets, system reliability is given by $R = P(T_1 + T_2 + T_3)$
- *Cut set: set of branches that interrupt connection from input to output
- *If C_1 , C_2 , C_3 are the cut sets, system reliability is given by $R = 1 P(C_1 + C_2 + C_3)$

Cut-Set and Tie-Set Methods

*Minimal tie sets of the following reliability graph are given below:

Figure B4 Reliability graph for a six-element system.

*Minimal tie sets are:

$$T_1 = x_1 x_2$$
 $T_2 = x_3 x_4$ $T_3 = x_1 x_6 x_4$ $T_4 = x_3 x_5 x_2$

Failure Rate Models

- *System reliability analysis needs elemental reliability
- *To construct elemental failure models
 - Need test data or plan a test on parts that are same as those to be used
 - Failure rate should be computed or graphed
 - Failure rate model should be chosen based on it
 - Parameters of the model are estimated from the graph or computed using statistical techniques
 - Emphasis should be placed on simple models easy to work with models

- *Failure data generally obtained from two sources:
 - Failure data from a population placed on life test
 - Repair reports listing operating hours of replaced parts from field technicians
- *Use this data to compute
 - Failure density function
 - Hazard rate function
- *Assume N items placed in operation at time t = 0
- *As time progresses, items fail. Suppose n(t) survive at time t

- *Assume N items placed in operation at time t = 0
- *As time progresses, items fail. Suppose n(t) survive at time t
- *Density function is given by the ratio of the failures occurring in an interval to the size of the original population, divided by the length of the interval

$$f_d(t) = \frac{[n(t_i) - n(t_i + \Delta t_i)]/N}{\Delta t_i} \qquad \text{for } t_i < t \le t_i + \Delta t_i$$
 (B23)

*Hazard rate is defined as the ratio of failures to survivors at the beginning of the interval

$$z_d(t) = \frac{[n(t_i) - n(t_i + \Delta t_i)]/n(t_i)}{\Delta t_i} \qquad \text{for } t_i < t \le t_i + \Delta t_i$$
 (B24)

TABLE B1 Failure Data for 10 Hypothetical Electronic Components

Failure Number	Operating Time, h
1	8
2	20
3	34
4	46
5	63
6	86
7	111
8	141
9	186
10	266

TABLE B2 Computation of Data Failure Density and Data Hazard Rate

Time Interval, h	Failure Density per Hour, $f_d(t)(\times 10^{-2})$	Hazard Rate per Hour, $z_d(t)(\times 10^{-2})$
0–8	$\frac{1}{10\times8}=1.25$	$\frac{1}{10\times8}=1.25$
8–20	$\frac{1}{10\times 12}=0.84$	$\frac{1}{9\times12}=0.93$
20–34	$\frac{1}{10\times14}=0.72$	$\frac{1}{8\times14}=0.96$
34–46	$\frac{1}{10\times12}=0.84$	$\frac{1}{7\times12}=1.19$
46–63	$\frac{1}{10\times17}=0.59$	$\frac{1}{6\times17}=0.98$
63–86	$\frac{1}{10\times23}=0.44$	$\frac{1}{5\times23}=0.87$
86–111	$\frac{1}{10\times25}=0.40$	$\frac{1}{4\times25}=1.00$
111–141	$\frac{1}{10\times30}=0.33$	$\frac{1}{3\times30}=1.11$
141–186	$\frac{1}{10\times45}=0.22$	$\frac{1}{2\times45}=1.11$
186–266	$\frac{1}{10\times80}=0.13$	$\frac{1}{1\times80}=1.25$

*Since $f_d(t)$ is a density function, we can define a failure distribution function

$$F_d(t) = \int_0^t f_d(\xi) d\xi$$

And success distribution function

$$R_d(t) = 1 - F_d(t) = 1 - \int_0^t f_d(\xi) d\xi$$

Figure B5 Density and hazard functions for the data of Table B1. (a) Data failure density functions; (b) data hazard rate; (c) data failure distribution function; (d) data success function.

Failure Data Patterns

Figure B6 General form of failure curves. (a) Failure density; (b) hazard rate.

Reliability, Hazard Rate, and Failure Density

The random variable t is defined as the failure time of the item in question.⁶ Thus, the probability of failure as a function of time is given as

$$P(\mathbf{t} \le t) = F(t) \tag{B28}$$

which is simply the definition of the failure distribution function. We can define the reliability, which is a probability of success in terms of F(t), as

$$R(t) = P_s(t) = 1 - F(t) = P(t \ge t)$$
 (B29)

The failure density function is of course given by

$$\frac{dF(t)}{dt} = f(t) \tag{B30}$$

Reliability, Hazard Rate, and Failure Density

We now consider a population of N items with the same failure-time distribution. The items fail independently with probability of failure given by F(t) = 1 - R(t) and probability of success given by R(t). If the random variable N(t) represents the number of units surviving at time t, then N(t) has a binomial distribution with p = R(t). Therefore,

$$P[\mathbf{N}(t) = n] = B[n; \mathbf{N}, R(t)] = \frac{N!}{n!(N-n)!} [R(t)]^n [1 - R(t)]^{N-n}$$

$$n = 0, 1, \dots, N$$
(B31)

The number of units operating at any time t is a random variable and is not fixed; however, we can compute the expected value N(t). From Table A1 we see that the expected value of a random variable with a binomial distribution is given by NR(t) and leads to

$$n(t) \equiv E[N(t)] = NR(t) \tag{B32}$$

Solving for the reliability yields

$$R(t) = \frac{n(t)}{N} \tag{B33}$$

Reliability, Hazard Rate, and Failure Density

$$F(t) = 1 - \frac{n(t)}{N} = \frac{N - n(t)}{N}$$

$$f(t) = \frac{dF(t)}{dt} = -\frac{1}{N} \frac{dn(t)}{dt}$$

$$f(t) \equiv \lim_{\Delta t \to 0} \frac{n(t) - n(t + \Delta t)}{N\Delta t}$$

$$z(t) \equiv -\lim_{\Delta t \to 0} \frac{n(t) - n(t + \Delta t)}{n(t)\Delta t}$$
(B36)

The definition of z(t) in Eq. (B36) of course agrees with the definition of $z_d(t)$ in Eq. (B24). We can relate z(t) and f(t) using Eqs. (B35) and (B36):

$$z(t) = -\lim_{\Delta t \to 0} \frac{n(t) - n(t + \Delta t)}{\Delta t} \frac{1}{n(t)} = Nf(t) \frac{1}{n(t)}$$

$$z(t) = -\frac{1}{N} \frac{dn(t)}{dt} \frac{N}{n(t)} = -\frac{d}{dt} \ln n(t)$$

Solving the differential equation yields:

$$\ln n(t) = -\int_0^t z(\xi) d\xi + c$$

where ξ is a dummy variable and c is the constant of integration. Taking the antilog of both sides of the equation gives:

$$n(t) = e^{c} \exp \left[-\int_{0}^{t} z(\xi) d\xi \right]$$

Inserting initial conditions

$$n(0) = N = e^c$$

gives

$$n(t) = N \exp \left[-\int_0^t z(\xi) \ d\xi \right]$$

Substitution of Eq. (B33) completes the derivation

$$R(t) = \exp\left[-\int_0^t z(\xi) \ d\xi\right]$$
 (B39)