

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP WOJEWÓDZKI

4 lutego 2021 r. godz. 9.00

Uczennico/Uczniu:

- 1. Arkusz składa się z 10 zadań, na rozwiązanie których masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. W rozwiązaniach zadań otwartych przedstawiaj swój tok rozumowania za napisanie samej odpowiedzi nie otrzymasz maksymalnej liczby punktów.
- 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	20	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

Zadanie 1. (0-1 pkt)

...../1

Iloczyn trzech różnych liczb naturalnych jest równy 176, a ich suma wynosi 21.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe albo F, jeśli jest fałszywe.

Największą z tych liczb jest 11.	P	F
Jedna z tych liczb jest różnicą największej i najmniejszej liczby.	P	F

Zadanie 2. (0-1 pkt)

...../1

Długość boku sześciokata foremnego na rysunku wynosi 8.

Jakie współrzędne ma punkt symetryczny do punktu W względem osi symetrii tego sześciokąta równoległej do osi y? Wybierz poprawną odpowiedź spośród podanych.

A. $(12, 4\sqrt{3})$

B. $(14, 2\sqrt{3})$

C. $(8\sqrt{3}, 3\sqrt{3})$

D. $(14, 4\sqrt{3})$

Zadanie 3. (0-1 pkt)

...../1

Na talerzu jest 8 pączków, w tym 5 z nadzieniem czekoladowym. Kamil wybrał jeden pączek, a po chwili jeszcze jeden. Czy prawdopodobieństwo zdarzenia, że Kamil wybrał oba pączki z nadzieniem czekoladowym jest większe od 0,5?

Wybierz odpowiedź T (tak) albo N (nie) i uzasadnienie A lub B lub C.

T		A.	$p = \frac{5}{8} \cdot \frac{4}{7} = \frac{20}{56} < 0.5$
lub N	ponieważ	B.	$p = \frac{5}{8} > 0.5$
		C.	$p = \frac{5}{8} \cdot \frac{3}{8} = \frac{15}{64} < 0.5$

Zadanie 4. (0-1 pkt)

...../1

Gosia wykonała "pawie oczko" z kolorowych kółek, sklejając je według szablonu przedstawionego na rysunku. Promień kolejnego kółka jest dwukrotnie mniejszy od poprzedniego.

Uzupełnij poniższe zdania. Wybierz odpowiedź spośród oznaczonych literami **A** i **B** oraz odpowiedź spośród oznaczonych literami **C** i **D**.

Obwód kółka "5" jest AB razy mniejszy niż obwód kółka "3".

A. 4

B. 6

Pole kółka "1" jest C D razy większe od pola kółka "4".

C. 64

D. 16

Zadanie 5. (0-2 pkt)

...../2

Uzasadnij, że dokładnie 8 liczb pierwszych spełnia nierówność $(x-1)^2 + (x-\sqrt{7})(\sqrt{7}+x) \ge (2x+10)(x-5)$.

Zadanie 6. (0-2 pkt)

...../2

Uzasadnij, że jeśli wartość wyrażenia $a^{-1} + (\sqrt{a})^{-1} - (\frac{a}{2})^{-1}$ jest liczbą ujemną, to a < 1 i a > 0.

Zadanie 7. (0-2 pkt)

...../2

Pan Stanisław dba o swoją kondycję fizyczną, więc codziennie pieszo pokonuje drogę z domu do pracy i z powrotem. Na wykresie przedstawiono zależność między prędkością a czasem podczas przemieszczania się pana Stanisława w jedną stronę. Oblicz długość drogi z domu do pracy oraz czas w minutach na pokonanie tej drogi rowerem z prędkością 4 razy większą.

Zadanie 8. (0-3 pkt)

Dany jest sześcian *ABCDEFGH* o krawędzi 5. Przyjmij za jednostkę długość boku kratki i narysuj siatkę ostrosłupa *ABCDE* . Oblicz pole powierzchni bocznej ostrosłupa i przedstaw je w postaci iloczynu.

Zadanie 9. (0-3 pkt)

...../3

Julka zapisuje liczby sześciocyfrowe, które można utworzyć przy użyciu wszystkich spośród cyfr 3, 4 i 5 tak, aby każde dwie sąsiednie cyfry w ich zapisach były liczbami różniącymi się o jeden. Oblicz, ile najwięcej różnych liczb spełniających te warunki może zapisać Julka.

Zadanie 10. (0-4 pkt)

...../4

Z równoległoboku wycięto romb tak, jak na rysunku. Narysuj prostą przechodzącą przez środki symetrii równoległoboku i rombu, a następnie uzasadnij, że ta prosta dzieli otrzymaną figurę na dwie figury o równych polach.

Brudnopis

(zapisy w brudnopisie nie podlegają ocenie)