

CS 559 Machine Learning Linear Classification

Yue Ning Department of Computer Science Stevens Institute of Technology

Plan for today

Generative vs Discriminative Classification

Linear Discriminant Analysis

The Perceptron Algorithm

Naive Bayes Classifier

Model Selection

Review of last lecture

- ► Linear regression: L2 loss, L1 loss; Ridge regression (L2 regularization), Lasso regression;
- Gradient descent algorithms: BGD, SGD, mini-batch GD;
- Features: non-monotonicity, saturation, interactions between features;
- Maximum Likelihood estimator;
- Model selection: under-fitting, over-fitting, bias-variance;
- ► The curse of dimensionality

Classification

Classification task: finding a function f that classifies examples into given set of categories $\{C_1, C_2, ..., C_k\}$

$$\mathbf{x}$$
 \rightarrow function f $\rightarrow y \in \{C_1, C_2, ..., C_k\}$

A classification example:

$$\rightarrow \boxed{ function \ f} \qquad \rightarrow \qquad \text{``Cat'}$$

Decision Theory for Classification

Decision theory, when combined with probability theory, allows us to make optimal decisions in situations involving uncertainty.

- ► Training data: input values X and target values y
- ▶ Inference stage: use the training data to learn a model for $p(C_k|\mathbf{x})$
- Decision stage: use the given posterior probabilities to make optimal class assignments.

Generative Methods

- Solve the inference problem of estimating the class-conditional densities $p(\mathbf{x}|C_k)$ for each class C_k
- ▶ Infer the prior class probabilities $p(C_k)$
- ▶ Use Bayes' theorem to find the class posterior probabilities:

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

where

$$p(\mathbf{x}) = \sum_{k} p(\mathbf{x}|C_{k})p(C_{k})$$

 Use decision theory to determine class membership for each new input x

Discriminative Methods

- Solve directly the inference problem of estimating the class posterior probabilities $p(C_k|\mathbf{x})$
- ▶ Discriminative Functions: Find a function f(x) which maps each input directly onto a class label. Probabilities play no role here.
- Use decision theory to determine class membership for each new input x

Binary Classification

Task: Assign each data point to one of two classes.

Examples:

- Is there a face in this image?
- Will this neuron spike in response to this stimulus?
- Based on this brain-scan, does this patient have a given disease or not?
- Will this customer buy this product or not?
- Is this person likely to be a democrat/republican?

Binary Classification

Task: Assign each data point to one of two classes.

Examples:

- ▶ Is there a face in this image?
- ► Will this neuron spike in response to this stimulus?
- Based on this brain-scan, does this patient have a given disease or not?
- Will this customer buy this product or not?
- Is this person likely to be a democrat/republican?

Notation: we have data $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$, with $y_n = 1$ if x_n belongs to class 1 and $y_n = -1$ if x_n belongs to class -1.

Linear Discriminant Functions

Linear Discriminant Functions

Linear Discriminant Functions

Of course, linear algorithms can be used together with nonlinear feature spaces or nonlinear basis functions in order to solve nonlinear classification problems!

▶ Decision function: $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + \omega_{o}$

Linear discriminants separate the space by a hyperplane, and the parameters define its normal vector.

- ▶ Decision function: $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + \omega_o$
- Classification:

if
$$f(\mathbf{x}) > 0$$
 say \mathbf{x} belongs to class 1 if $f(\mathbf{x}) < 0$ say \mathbf{x} belongs to class -1

▶ The decision-surface has equation $f(\mathbf{x}) = 0$, and is a hyperplane of dimensionality D - 1.

Linear discriminants separate the space by a hyperplane, and the parameters define its normal vector.

- ▶ Decision function: $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + \omega_o$
- Classification:

if
$$f(\mathbf{x}) > 0$$
 say \mathbf{x} belongs to class 1
if $f(\mathbf{x}) < 0$ say \mathbf{x} belongs to class -1

- ▶ The decision-surface has equation $f(\mathbf{x}) = 0$, and is a hyperplane of dimensionality D 1.
- ▶ w is the normal vector to the hyperplane, and points into the positive class or negative class.

Linear discriminants separate the space by a hyperplane, and the parameters define its normal vector.

- ▶ Decision function: $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + \omega_o$
- Classification:

if
$$f(\mathbf{x}) > 0$$
 say \mathbf{x} belongs to class 1 if $f(\mathbf{x}) < 0$ say \mathbf{x} belongs to class -1

- ▶ The decision-surface has equation $f(\mathbf{x}) = 0$, and is a hyperplane of dimensionality D 1.
- ▶ w is the normal vector to the hyperplane, and points into the positive class or negative class.
- \triangleright ω_o determines the location of the decision-surface

Linear discriminants separate the space by a hyperplane, and the parameters define its normal vector.

- ▶ Decision function: $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + \omega_{o}$
- Classification:

if
$$f(\mathbf{x}) > 0$$
 say \mathbf{x} belongs to class 1 if $f(\mathbf{x}) < 0$ say \mathbf{x} belongs to class -1

- ▶ The decision-surface has equation $f(\mathbf{x}) = 0$, and is a hyperplane of dimensionality D-1.
- **w** is the normal vector to the hyperplane, and points into the positive class or negative class.
- \triangleright ω_o determines the location of the decision-surface
- $ightharpoonup |f(\mathbf{x})|$ is proproptional to the perpendicular distance to the decision-surface (with factor 1 if $||\mathbf{w}|| = 1$).

Linear Discriminant Functions-Geometrical Properties

Decision boundary:

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o = 0$$

Let $\mathbf{x}_1, \mathbf{x}_2$ be two points which lie on the decision boundary

$$f(\mathbf{x}_1) = \mathbf{w}^{\top} \mathbf{x}_1 + \omega_o = 0, f(\mathbf{x}_2) = \mathbf{w}^{\top} \mathbf{x}_2 + \omega_o = 0$$
$$\Rightarrow \mathbf{w}^{T} (\mathbf{x}_1 - \mathbf{x}_2) = 0$$

w represents the orthogonal direction to the decision boundary.

Linear Discriminant Functions-Geometrical Properties Cont.

$$\mathbf{w}^{*T} = \frac{\mathbf{w}^T}{||\mathbf{w}||}$$

- $\mathbf{w}^{*T}(\mathbf{x} \mathbf{x}_0)$ is the projection of $(\mathbf{x} - \mathbf{x}_0)$ onto the w* direction
- ► Thus.

$$\begin{split} &\frac{\mathbf{w}^T}{||\mathbf{w}||}(\mathbf{x} - \mathbf{x}_0) = \frac{1}{||\mathbf{w}||}(\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{x}_0) \\ &= \frac{1}{||\mathbf{w}||}(\mathbf{w}^T \mathbf{x} + \omega_0) = \frac{f(\mathbf{x})}{||\mathbf{w}||} \end{split}$$

when
$$\mathbf{x} = \mathbf{0}$$
, $\frac{f(\mathbf{x})}{||\mathbf{w}||} = \frac{\omega_0}{||\mathbf{w}||}$

Figure: Signed orthogonal distance of the origin from the decision

Linear Discriminant Functions: Multiple classes

<u>one-versus-the-rest</u>: K-1 classifiers each of which solves a two-class problem of separating points of C_k from points not in that class.

Linear Discriminant Functions: Multiple classes

one-versus-one: $\frac{K(K-1)}{2}$ binary discriminant functions, one for every possible pair of classes.

Linear Discriminant Functions: Multiple classes

► <u>Solution</u>: consider a single K-class discriminant comprising K linear functions of the form

$$f_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

- ▶ Assign a point **x** to class C_k if $f_k(\mathbf{x}) > f_j(\mathbf{x}) \forall j \neq k$
- ► The decision boundary between class C_k and class C_j is given by: $f_k(\mathbf{x}) = f_j(\mathbf{x}) \Rightarrow (\mathbf{w}_k \mathbf{w}_j)^T \mathbf{x} + (w_{k0} w_{j0}) = 0$

Multiple algorithms and methods

Mis-classification rate $C(\mathbf{w}) = \frac{1}{N} \sum_n \delta[f(\mathbf{x}_n) = y_n]$ (i.e. average number of errors) difficult to optimize over \mathbf{w} , and might have multiple solutions.

Multiple algorithms and methods

- Mis-classification rate $C(\mathbf{w}) = \frac{1}{N} \sum_n \delta[f(\mathbf{x}_n) = y_n]$ (i.e. average number of errors) difficult to optimize over \mathbf{w} , and might have multiple solutions.
- ▶ Many algorithms can be derived by replacing *C* by another cost-function which can be optimized.

Multiple algorithms and methods

- Mis-classification rate $C(\mathbf{w}) = \frac{1}{N} \sum_n \delta \left[f(\mathbf{x}_n) = y_n \right]$ (i.e. average number of errors) difficult to optimize over \mathbf{w} , and might have multiple solutions.
- Many algorithms can be derived by replacing C by another cost-function which can be optimized.
- ► Linear classification algorithms include Least-square classification, Fisher's linear Discriminant, Logistic regression, Support Vector Machines and Rosenblatts' perceptron.

• We have to fit the function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o$ to data.

- We have to fit the function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o$ to data.
- ▶ Simply do a linear regression from \mathbf{x} to y by minimizing the sum-of-squared errors $\sum_{n} (f(\mathbf{x}_n) y_n)^2$.

- We have to fit the function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o$ to data.
- ▶ Simply do a linear regression from \mathbf{x} to y by minimizing the sum-of-squared errors $\sum_{n} (f(\mathbf{x}_n) y_n)^2$.
- $\mathbf{w}_{reg} = \left(\sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}\right)^{-1} \sum_{n} \mathbf{x}_{n} y_{n}$

- We have to fit the function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o$ to data.
- ▶ Simply do a linear regression from \mathbf{x} to y by minimizing the sum-of-squared errors $\sum_{n} (f(\mathbf{x}_n) y_n)^2$.
- $\mathbf{w}_{reg} = \left(\sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}\right)^{-1} \sum_{n} \mathbf{x}_{n} y_{n}$
- Q: In what situations might this be a bad idea?

- We have to fit the function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o$ to data.
- ▶ Simply do a linear regression from \mathbf{x} to y by minimizing the sum-of-squared errors $\sum_{n} (f(\mathbf{x}_n) y_n)^2$.
- $\mathbf{w}_{reg} = \left(\sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}\right)^{-1} \sum_{n} \mathbf{x}_{n} y_{n}$
- Q: In what situations might this be a bad idea?

- We have to fit the function $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o$ to data.
- ▶ Simply do a linear regression from \mathbf{x} to y by minimizing the sum-of-squared errors $\sum_{n} (f(\mathbf{x}_n) y_n)^2$.
- $\mathbf{w}_{reg} = \left(\sum_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top}\right)^{-1} \sum_{n} \mathbf{x}_{n} y_{n}$
- Q: In what situations might this be a bad idea?

Bishop PRML Figure 4.4

Figure: Left: using a least-squares discriminant; Right: using logistic regression

Bishop PRML Figure 4.5

Classification via projection

A linear function: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o$ assuming in 2D, projects each point $\mathbf{x} = [x_1, x_2]^T$ to a line parallel to \mathbf{w} :

$$\begin{array}{c|c} \text{point in } \mathcal{R}^d & \text{projected point in } \mathcal{R} \\ \mathbf{x}_1 & z_1 = \mathbf{w}^T \mathbf{x}_1 \\ \mathbf{x}_2 & z_2 = \mathbf{w}^T \mathbf{x}_2 \\ \dots & \dots \\ \mathbf{x}_n & z_n = \mathbf{w}^T \mathbf{x}_n \\ \end{array}$$

▶ We can study how well the projected points $z_1, ..., z_n$ viewed as functions of **w** are separated across the classes.

Classification via projection

A linear function: $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + \omega_o$ assuming in 2D, projects each point $\mathbf{x} = [x_1, x_2]^T$ to a line parallel to \mathbf{w} :

▶ We can study how well the projected points $z_1, ..., z_n$ viewed as functions of **w** are separated across the classes.

Classification via projection

▶ By varying **w** we get different levels of separation between the projected points

Optimizing the projection

▶ We would like to find w that somehow maximizes the separation of the projected points across classes.

► We can quantify the separation (overlap) in terms of means and variances of the resulting 1-dimensional class distributions

- One way to view a linear classification model is in terms of dimensionality reduction.
- ► <u>Two class case</u>: suppose we project **x** onto one dimension:

$$f = \mathbf{w}^T \mathbf{x}$$

► Set a threshold *t*:

if
$$f \le t$$
 assign C_1 to \mathbf{x} otherwise assign C_2 to \mathbf{x}

- Find an orientation along which the projected samples are well separated;
- ► This is exactly the goal of linear discriminant analysis (LDA);
- ▶ In other words: we are after the linear projection that best separates the data, i.e. best discriminates data of different classes.

- ▶ Two classes: $\{C_+, C_-\}$
- $ightharpoonup N_+$ samples of class C_+
- ► N_{_} samples of class C_{_}
- lacksquare Consider $oldsymbol{w} \in \mathbb{R}^d$ with $||oldsymbol{w}|| = 1$
- ▶ Then: $\mathbf{w}^T \mathbf{x}$ is the projection of \mathbf{x} along the direction of \mathbf{w} .
- ▶ We want the projections $\mathbf{w}^T \mathbf{x}$ where $\mathbf{x} \in C_+$ separated from the projections $\mathbf{w}^T \mathbf{x}$ where $\mathbf{x} \in C_-$

▶ A measure of the separation between the projected points is the difference of the sample means:

- ▶ A measure of the separation between the projected points is the difference of the sample means:
 - Sample mean of class C_+ :

$$\mathbf{m}_+ = \frac{1}{N_+} \sum_{\mathbf{x} \in C_+} \mathbf{x}$$

- ▶ A measure of the separation between the projected points is the difference of the sample means:
 - Sample mean of class C_+ :

$$\mathbf{m}_+ = \frac{1}{N_+} \sum_{\mathbf{x} \in C_+} \mathbf{x}$$

■ Sample mean for the projected points:

$$m_+ = \frac{1}{N_+} \sum_{\mathbf{x} \in C_+} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mathbf{m}_+$$

$$\Rightarrow |m_+ - m_-| = \mathbf{w}^T (\mathbf{m}_+ - \mathbf{m}_-)$$

- ▶ A measure of the separation between the projected points is the difference of the sample means:
 - Sample mean of class C_+ :

$$\mathbf{m}_+ = \frac{1}{N_+} \sum_{\mathbf{x} \in C_+} \mathbf{x}$$

■ Sample mean for the projected points:

$$m_+ = \frac{1}{N_+} \sum_{\mathbf{x} \in C_+} \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mathbf{m}_+$$

$$\Rightarrow |m_+ - m_-| = \mathbf{w}^T (\mathbf{m}_+ - \mathbf{m}_-)$$

▶ We wish to make the above difference as large as we can. In addition, ...

► To obtain good separation of the projected data, we really want the difference between the means to be large relative to some measure of the standard deviation of each class:

- ► To obtain good separation of the projected data, we really want the difference between the means to be large relative to some measure of the standard deviation of each class:
 - Scatter of the projected samples of class C_+ :

$$s_+^2 = \sum_{\mathbf{x} \in C_+} (\mathbf{w}^T \mathbf{x} - m_+)^2$$

- ► To obtain good separation of the projected data, we really want the difference between the means to be large relative to some measure of the standard deviation of each class:
 - Scatter of the projected samples of class C_+ :

$$s_+^2 = \sum_{\mathbf{x} \in C_+} (\mathbf{w}^T \mathbf{x} - m_+)^2$$

■ Total within-class scatter of the projected samples:

$$s_+^2 + s_-^2$$

- ► To obtain good separation of the projected data, we really want the difference between the means to be large relative to some measure of the standard deviation of each class:
 - Scatter of the projected samples of class C_+ :

$$s_+^2 = \sum_{\mathbf{x} \in C_+} (\mathbf{w}^T \mathbf{x} - m_+)^2$$

■ Total within-class scatter of the projected samples:

$$s_+^2 + s_-^2$$

Fisher linear discriminant analysis:

$$\arg \max_{\mathbf{w}} \frac{|m_{+} - m_{-}|^2}{s_{+}^2 + s_{-}^2}$$

$$J(\mathbf{w}) = \frac{|m_+ - m_-|^2}{s_+^2 + s_-^2}$$

- $J(\mathbf{w}) = \frac{|m_+ m_-|^2}{s_\perp^2 + s^2}$
- ▶ To obtain $J(\mathbf{w})$ as an explicit function of \mathbf{w} , we define the following matrices:

$$S_+ = \sum_{\mathbf{x} \in C_+} (\mathbf{x} - \mathbf{m}_+)(\mathbf{x} - \mathbf{m}_+)^T$$

Within-class scatter matrix:

$$S_w = S_+ + S_-$$

$$J(\mathbf{w}) = \frac{|m_+ - m_-|^2}{s_+^2 + s_-^2}$$

▶ To obtain $J(\mathbf{w})$ as an explicit function of \mathbf{w} , we define the following matrices:

$$S_+ = \sum_{\mathbf{x} \in C_+} (\mathbf{x} - \mathbf{m}_+) (\mathbf{x} - \mathbf{m}_+)^T$$

Within-class scatter matrix:

$$S_w = S_+ + S_-$$

► Then:

$$s_{+}^{2} = \sum_{\mathbf{x} \in C_{+}} (\mathbf{w}^{T} \mathbf{x} - m_{+})^{2} = \sum_{\mathbf{x} \in C_{+}} (\mathbf{w}^{T} \mathbf{x} - \mathbf{w}^{T} \mathbf{m}_{+})^{2}$$
$$= \sum_{\mathbf{x} \in C_{+}} \mathbf{w}^{T} (\mathbf{x} - \mathbf{m}_{+}) (\mathbf{x} - \mathbf{m}_{+})^{T} \mathbf{w} = \mathbf{w}^{T} S_{+} \mathbf{w}$$

▶ So,
$$s_+^2 = \mathbf{w}^T S_+ \mathbf{w}$$
 and $s_-^2 = \mathbf{w}^T S_- \mathbf{w}$

- ▶ So, $s_{+}^2 = \mathbf{w}^T S_{+} \mathbf{w}$ and $s_{-}^2 = \mathbf{w}^T S_{-} \mathbf{w}$
- ► Thus,

$$s_{+}^{2} + s_{-}^{2} = \mathbf{w}^{T} S_{+} \mathbf{w} + \mathbf{w}^{T} S_{-} \mathbf{w}$$
$$= \mathbf{w}^{T} (S_{+} + S_{-}) \mathbf{w}$$
$$= \mathbf{w}^{T} S_{w} \mathbf{w}$$

- ► So, $s_+^2 = \mathbf{w}^T S_+ \mathbf{w}$ and $s_-^2 = \mathbf{w}^T S_- \mathbf{w}$
- Thus,

$$s_{+}^{2} + s_{-}^{2} = \mathbf{w}^{T} S_{+} \mathbf{w} + \mathbf{w}^{T} S_{-} \mathbf{w}$$
$$= \mathbf{w}^{T} (S_{+} + S_{-}) \mathbf{w}$$
$$= \mathbf{w}^{T} S_{w} \mathbf{w}$$

Similarly:

$$(m_{+} - m_{-})^{2} = (\mathbf{w}^{T} \mathbf{m}_{+} - \mathbf{w}^{T} \mathbf{m}_{-})^{2}$$

= $\mathbf{w}^{T} (\mathbf{m}_{+} - \mathbf{m}_{-}) (\mathbf{m}_{+} - \mathbf{m}_{-})^{T} \mathbf{w}$
= $\mathbf{w}^{T} S_{B} \mathbf{w}$

where $S_B = (\mathbf{m}_+ - \mathbf{m}_-)(\mathbf{m}_+ - \mathbf{m}_-)^T$ (Between-class scatter matrix)

▶ We have obtained:

$$J(\mathbf{w}) = \frac{|m_{+} - m_{-}|^{2}}{s_{+}^{2} + s_{-}^{2}} = \frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{W} \mathbf{w}}$$

We have obtained:

$$J(\mathbf{w}) = \frac{|m_{+} - m_{-}|^{2}}{s_{+}^{2} + s_{-}^{2}} = \frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{W} \mathbf{w}}$$

▶ $J(\mathbf{w})$ is maximized when $(\mathbf{w}^T S_B \mathbf{w}) S_W \mathbf{w} = (\mathbf{w}^T S_W \mathbf{w}) S_B \mathbf{w}$

We have obtained:

$$J(\mathbf{w}) = \frac{|m_{+} - m_{-}|^{2}}{s_{+}^{2} + s_{-}^{2}} = \frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{W} \mathbf{w}}$$

- ▶ $J(\mathbf{w})$ is maximized when $(\mathbf{w}^T S_B \mathbf{w}) S_W \mathbf{w} = (\mathbf{w}^T S_W \mathbf{w}) S_B \mathbf{w}$
- ► We observe that:

$$S_B \mathbf{w} = (\mathbf{m}_+ - \mathbf{m}_-)(\mathbf{m}_+ - \mathbf{m}_-)^T \mathbf{w}$$

where $(\mathbf{m}_+ - \mathbf{m}_-)^T \mathbf{w}$ is a scalar, always in the direction of $(\mathbf{m}_+ - \mathbf{m}_-)$

We have obtained:

$$J(\mathbf{w}) = \frac{|m_{+} - m_{-}|^{2}}{s_{+}^{2} + s_{-}^{2}} = \frac{\mathbf{w}^{T} S_{B} \mathbf{w}}{\mathbf{w}^{T} S_{W} \mathbf{w}}$$

- ▶ $J(\mathbf{w})$ is maximized when $(\mathbf{w}^T S_B \mathbf{w}) S_W \mathbf{w} = (\mathbf{w}^T S_W \mathbf{w}) S_B \mathbf{w}$
- ► We observe that:

$$S_B \mathbf{w} = (\mathbf{m}_+ - \mathbf{m}_-)(\mathbf{m}_+ - \mathbf{m}_-)^T \mathbf{w}$$

where $(\mathbf{m}_+ - \mathbf{m}_-)^T \mathbf{w}$ is a scalar, always in the direction of $(\mathbf{m}_+ - \mathbf{m}_-)$

► Solution:

$$\mathbf{w} = \mathcal{S}_W^{-1}(\mathbf{m}_+ - \mathbf{m}_-)$$

- $\mathbf{m}_{+} = \frac{1}{N_{+}} \sum_{n \in C_{+}} \mathbf{x}_{n}$ $\mathbf{m}_{-} = \frac{1}{N_{-}} \sum_{n \in C_{-}} \mathbf{x}_{n}$
- Maximize projection-distance of class means $\mathbf{w}_{\textit{simple}} \propto \mathbf{m}_+ \mathbf{m}_-$

- $\mathbf{m}_{+} = \frac{1}{N_{+}} \sum_{n \in C_{+}} \mathbf{x}_{n}$ $\mathbf{m}_{-} = \frac{1}{N_{-}} \sum_{n \in C_{-}} \mathbf{x}_{n}$
- ▶ Maximize projection-distance of class means $\mathbf{w}_{simple} \propto \mathbf{m}_{+} \mathbf{m}_{-}$
- Maximizing distance between means ignores that the projected variances might also be big.

- $\mathbf{m}_{+} = \frac{1}{N_{+}} \sum_{n \in C_{+}} \mathbf{x}_{n}$ $\mathbf{m}_{-} = \frac{1}{N_{-}} \sum_{n \in C_{-}} \mathbf{x}_{n}$
- ► Maximize projection-distance of class means $\mathbf{w}_{simple} \propto \mathbf{m}_{+} - \mathbf{m}_{-}$
- Maximizing distance between means ignores that the projected variances might also be big.
- ► Fix: Maximize the ratio of between-class variance to within-class variance ('signal to noise'). Fisher criterion

$$J_{\mathbf{w}} = \frac{(m_{+} - m_{-})^{2}}{s_{+}^{2} + s_{-}^{2}} \tag{1}$$

Bishop PRML Figure 4.6

$$\mathbf{m}_{+} = \frac{1}{N_{+}} \sum_{n \in C_{+}} \mathbf{x}_{n}$$

$$\mathbf{m}_{-} = \frac{1}{N_{-}} \sum_{n \in C_{-}} \mathbf{x}_{n}$$

- ► Maximize projection-distance of class means $\mathbf{w}_{simple} \propto \mathbf{m}_{+} - \mathbf{m}_{-}$
- Maximizing distance between means ignores that the projected variances might also be big.
- ► Fix: Maximize the ratio of between-class variance to within-class variance ('signal to noise'). Fisher criterion

$$J_{\mathbf{w}} = \frac{(m_{+} - m_{-})^{2}}{s_{+}^{2} + s_{-}^{2}} \tag{1}$$

$$\mathbf{w}_{Ida} = S_W^{-1}(\mathbf{m}_+ - \mathbf{m}_-)$$

- ► Gives the linear function with the maximum ratio of between-class scatter to within-class scatter.
- ► The problem, e.g. classification, has been reduced from a d-dimensional problem to a more manageable one-dimensional problem.
- Optimal for multivariate normal class conditional densities.

▶ The analysis can be extended to multiple classes.

- ▶ The analysis can be extended to multiple classes.
- $\blacktriangleright S_W = \sum_{k=1}^K \sum_{\mathbf{x}_i \in C_k} (\mathbf{x}_i \mathbf{m}_k) (\mathbf{x}_i \mathbf{m}_k)^T$

- ▶ The analysis can be extended to multiple classes.
- $S_W = \sum_{k=1}^K \sum_{\mathbf{x}_i \in C_k} (\mathbf{x}_i \mathbf{m}_k) (\mathbf{x}_i \mathbf{m}_k)^T$
- ► $S_B = \sum_{k=1}^K m_k (\mathbf{m}_k \mathbf{m}) (\mathbf{m}_k \mathbf{m})^T$ where \mathbf{m} is the global mean; m_k is the number of examples in class k

- The analysis can be extended to multiple classes.
- $S_W = \sum_{k=1}^K \sum_{\mathbf{x}_i \in C_k} (\mathbf{x}_i \mathbf{m}_k) (\mathbf{x}_i \mathbf{m}_k)^T$
- ► $S_B = \sum_{k=1}^K m_k (\mathbf{m}_k \mathbf{m}) (\mathbf{m}_k \mathbf{m})^T$ where \mathbf{m} is the global mean; m_k is the number of examples in class k
- ▶ Solve: $S_B \mathbf{v} = \lambda S_W \mathbf{v}$ the generalized eigenvalue problem

- ▶ The analysis can be extended to multiple classes.
- $\triangleright S_W = \sum_{k=1}^K \sum_{\mathbf{x}_i \in C_k} (\mathbf{x}_i \mathbf{m}_k) (\mathbf{x}_i \mathbf{m}_k)^T$
- ► $S_B = \sum_{k=1}^K m_k (\mathbf{m}_k \mathbf{m}) (\mathbf{m}_k \mathbf{m})^T$ where \mathbf{m} is the global mean; m_k is the number of examples in class k
- Solve: $S_B \mathbf{v} = \lambda S_W \mathbf{v}$ the generalized eigenvalue problem
- ▶ At most K-1 distinct solution eigenvalues

- The analysis can be extended to multiple classes.
- $\triangleright S_W = \sum_{k=1}^K \sum_{\mathbf{x}_i \in C_k} (\mathbf{x}_i \mathbf{m}_k) (\mathbf{x}_i \mathbf{m}_k)^T$
- ► $S_B = \sum_{k=1}^K m_k (\mathbf{m}_k \mathbf{m}) (\mathbf{m}_k \mathbf{m})^T$ where \mathbf{m} is the global mean; m_k is the number of examples in class k
- ▶ Solve: $S_B \mathbf{v} = \lambda S_W \mathbf{v}$ the generalized eigenvalue problem
- ▶ At most K-1 distinct solution eigenvalues
- ► The optimal projection matrix V to a subspace of dimension k is given by the eigenvectors corresponding to the largest k eigenvalues

- ► LDA is a linear technique for dimensionality reduction: it projects the data along directions that can be expressed as linear combination of the input features.
- ► The "appropriate" transformation depends on the data and on the task we want to perform on the data. Note that LDA uses class labels.
- ▶ Non-linear extensions of LDA exist (e.g., generalized LDA).

The Perceptron Algorithm (Frank Rosenblatt, 1957)

- First learning algorithm for neural networks.
- Originally introduced for character classification, where each character is represented as an image;
- ► Total input to output node:

$$\sum_{j} w_{j} x_{j}$$

Output unit performs the function (activation function):

$$H(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Perceptron: Learning Algorithm

- ▶ Goal: compute a mapping from inputs to the outputs.
- Example: two class character recognition problem.
 - Training set: set of images representing either the character 'a' or the character 'b' (supervised learning);
 - Learning task: learn the weights so that when a new unlabelled image comes in, the network can predict its label.
 - Setting: *d* input units (intensity level of a pixel), 1 output unit.

The algorithm proceeds as follows:

- Initial random setting of weights;
- ▶ The input is a random sequence $\{x_k\}$
- For each element of class C₁, if output = 1 (correct), do nothing; otherwise, update weights;
- For each element of class C₂, if output = 0 (correct), do nothing; otherwise, update weights;

- ► More formally: $\mathbf{x} = (x_1, x_2, ..., x_d)^T, \mathbf{w} = (w_1, w_2, ..., w_d)^T$
- \blacktriangleright θ : Threshold of the output unit
- ▶ Unit output: $\mathbf{w}^T \mathbf{x} = w_1 x_1 + w_2 x_2 + ... + x_d x_d$
- ▶ Output class 1 if $\mathbf{w}^T \mathbf{x} \theta \ge 0$
- To eliminate the explicit dependence on θ: Output class 1 if: w^Tx ≥ 0

▶ We want to learn values of the weights so that the perceptron correctly discriminate elements of C_1 from elements of C_2

- ▶ We want to learn values of the weights so that the perceptron correctly discriminate elements of C_1 from elements of C_2
- ► Given **x** in input, if **x** is classified correctly, weights are unchanged, otherwise:

$$\mathbf{w} = \begin{cases} \mathbf{w} + \mathbf{x} & \text{if an element of class } C_1 \text{ was classified as in } C_2 \\ \mathbf{w} - \mathbf{x} & \text{if an element of class } C_2 \text{ was classified as in } C_1 \end{cases}$$

▶ 1st case: $\mathbf{x} \in C_1$ and was classified in C_2 . The correct answer is 1, which corresponds to: $\mathbf{w}^T \mathbf{x} \ge 0$, we have $\mathbf{w}^T \mathbf{x} < 0$. We want to get closer to the correct answer: $\mathbf{w}^T \mathbf{x} < \mathbf{w}'^T \mathbf{x}$.

$$\mathbf{w}^T \mathbf{x} < \mathbf{w}^{\prime T} \mathbf{x}$$
, iff $\mathbf{w}^T \mathbf{x} < (\mathbf{w} + \mathbf{x})^T \mathbf{x}$
 $(\mathbf{w} + \mathbf{x})^T \mathbf{x} = \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{x} = \mathbf{w}^T \mathbf{x} + ||\mathbf{x}||^2$

because $||\mathbf{x}||^2 > 0$, the condition is verified.

▶ 1st case: $\mathbf{x} \in C_1$ and was classified in C_2 . The correct answer is 1, which corresponds to: $\mathbf{w}^T \mathbf{x} \ge 0$, we have $\mathbf{w}^T \mathbf{x} < 0$. We want to get closer to the correct answer: $\mathbf{w}^T \mathbf{x} < \mathbf{w}'^T \mathbf{x}$.

$$\mathbf{w}^T \mathbf{x} < \mathbf{w}'^T \mathbf{x}$$
, iff $\mathbf{w}^T \mathbf{x} < (\mathbf{w} + \mathbf{x})^T \mathbf{x}$
 $(\mathbf{w} + \mathbf{x})^T \mathbf{x} = \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{x} = \mathbf{w}^T \mathbf{x} + ||\mathbf{x}||^2$

because $||\mathbf{x}||^2 > 0$, the condition is verified.

▶ 2^{st} case: $\mathbf{x} \in C_2$ and was classified in C_1 . The correct answer is 0, which corresponds to: $\mathbf{w}^T \mathbf{x} < 0$, we have $\mathbf{w}^T \mathbf{x} \ge 0$. We want to get closer to the correct answer: $\mathbf{w}^T \mathbf{x} > \mathbf{w}'^T \mathbf{x}$.

$$\mathbf{w}^T \mathbf{x} > \mathbf{w}'^T \mathbf{x}$$
, iff $\mathbf{w}^T \mathbf{x} < (\mathbf{w} - \mathbf{x})^T \mathbf{x}$
 $(\mathbf{w} - \mathbf{x})^T \mathbf{x} = \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{x} = \mathbf{w}^T \mathbf{x} - ||\mathbf{x}||^2$

because $||\mathbf{x}||^2 > 0$, the condition is verified.

In summary:

▶ A random sequence $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ is generated such that $x_i \in C_1 \cup C_2$

In summary:

- ▶ A random sequence $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ is generated such that $x_i \in C_1 \cup C_2$
- ▶ If \mathbf{x}_k is correctly classified, then $\mathbf{w}_{k+1} = \mathbf{w}_k$ otherwise:

$$\mathbf{w}_{k+1} = \begin{cases} \mathbf{w}_k + \mathbf{x}_k & \text{if } \mathbf{x}_k \in C_1 \\ \mathbf{w}_k - \mathbf{x}_k & \text{if } \mathbf{x}_k \in C_2 \end{cases}$$

In summary:

- ▶ A random sequence $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ is generated such that $x_i \in C_1 \cup C_2$
- ▶ If \mathbf{x}_k is correctly classified, then $\mathbf{w}_{k+1} = \mathbf{w}_k$ otherwise:

$$\mathbf{w}_{k+1} = \begin{cases} \mathbf{w}_k + \mathbf{x}_k & \text{if } \mathbf{x}_k \in C_1 \\ \mathbf{w}_k - \mathbf{x}_k & \text{if } \mathbf{x}_k \in C_2 \end{cases}$$

Convergence theorem: regardless of the initial choice of weights, if the two classes are linearly separable, there exists w such that:

$$\begin{cases} \mathbf{w}^T \mathbf{x} \ge 0 & \text{if } \mathbf{x}_k \in C_1 \\ \mathbf{w}^T \mathbf{x} < 0 & \text{if } \mathbf{x}_k \in C_2 \end{cases}$$

then the learning rule will find such solution after a finite number of steps.

Representational Power of Perceptrons

- Marvin Minsky and Seymour Papert, "Perceptrons" 1969:
 The perceptron can solve only problems with linearly separable classes
- Examples of linearly separable Boolean functions:

Representational Power of Perceptrons

► Examples of linearly separable Boolean functions:

Figure: Left: AND; Right: OR

Representational Power of Perceptrons

Examples of a non linearly separable Boolean function:

▶ The EX-OR function cannot be computed by a perceptron.

Naive Bayes: not (necessarily) a Bayesian method

- ▶ A and B are independent iff p(A, B) = p(A)p(B)
- A and B are conditionally independent given C iff p(A, B|C) = p(A|C)p(B|C)

Naive Bayes: Assumption

- ► Assume dimensions of **x** are conditionally independent given y.
- Example, bag of words: p("Stevens", "Institute", "Technology" |y) = p("Stevens" |y)p("Institute" |y)p("Technology" |y)
- Optimizaing:

$$f(x) = \arg \max_{y} p(y|x)$$

$$= \arg \max_{y} p(x|y)p(y)/p(x)$$

$$= \arg \max_{y} p(x|y)p(y)$$

$$= \arg \max_{y} p(y) \prod_{i} p(x_{i}|y)$$

Naive Bayes: Solution

- ▶ $p(y) : \leftarrow \frac{\# \text{ examples where } Y = y}{(\# \text{ examples})}$ ▶ $p(X_j = x_j | y) \leftarrow \frac{\# \text{ ex where } Y = y \text{ and } X_j = x_j}{(\# \text{ ex where } Y = y)}$
- Learning by counting!

Gaussian naive Bayes: Continuous data

- ▶ p(y) : $\leftarrow \frac{\# \text{ examples where } Y=y}{(\# \text{ examples})}$
- \blacktriangleright μ_k and σ_k are determined from the training data set.
- Learning by counting!

Gaussian naive Bayes: example (from Wikipedia)

Training data set:

Sex	Sex height		foot size	
male	6	180	12	
male	5.92	1990	11	
male	5.58	170	12	
male	5.92	165	10	
female	5	100	6	
female	5.5	150	8	
female	5.42	140	7	
female	5.75	150	9	

Mean and variance

Sex	mean-height	var-height	mean-weight	var-weight	mean-footsize	var-footsize
male	5.855	$3.5 * 10^{-2}$	176.25	$1.2292 * 10^{2}$		$9.1667 * 10^{-1}$
female	5.4175	$9.7225 * 10^{-2}$	132.5	5.5833 * 10 ²	7.5	1.6667

Gaussian naive Bayes: example (from Wikipedia)

Training mean and variance

Sex	mean-height	var-height	mean-weight	var-weight	mean-footsize	var-footsize
male	5.855	$3.5 * 10^{-2}$	176.25	1.2292 * 10 ²		$9.1667 * 10^{-1}$
female	5.4175	$9.7225 * 10^{-2}$	132.5	$5.5833 * 10^{2}$	7.5	1.6667

Testing:

$$p(m|x) \approx p(m)p(\text{height}|m)p(\text{weight}|m)p(\text{footsize}|m) = 6.1984 * 10^{-9}$$

 $p(f|x) \approx p(f)p(\text{height}|f)p(\text{weight}|f)p(\text{footsize}|f) = 5.3778 * 10^{-4}$

Given a set of models $\mathcal{M} = \{M_1, M_2, ..., M_R\}$, choose the model that is expected to do the best on the test data. \mathcal{M} may consist of:

Same learning model with different complexities or hyperparameters.

- Same learning model with different complexities or hyperparameters.
 - Nonlinear regression: polynomials with different degrees

- Same learning model with different complexities or hyperparameters.
 - Nonlinear regression: polynomials with different degrees
 - K-Nearest Neighbors: Different choices of K

- Same learning model with different complexities or hyperparameters.
 - Nonlinear regression: polynomials with different degrees
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves

- Same learning model with different complexities or hyperparameters.
 - Nonlinear regression: polynomials with different degrees
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - SVM: Different choices of the misclassification penalty

- Same learning model with different complexities or hyperparameters.
 - Nonlinear regression: polynomials with different degrees
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - SVM: Different choices of the misclassification penalty
 - Regularized models: Different choices of the regularization parameter

- Same learning model with different complexities or hyperparameters.
 - Nonlinear regression: polynomials with different degrees
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - SVM: Different choices of the misclassification penalty
 - Regularized models: Different choices of the regularization parameter
 - Kernel based methods: Different choices of kernels

- Same learning model with different complexities or hyperparameters.
 - Nonlinear regression: polynomials with different degrees
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - SVM: Different choices of the misclassification penalty
 - Regularized models: Different choices of the regularization parameter
 - Kernel based methods: Different choices of kernels ...and almost any learning problem

Given a set of models $\mathcal{M} = \{M_1, M_2, ..., M_R\}$, choose the model that is expected to do the best on the test data. \mathcal{M} may consist of:

- Same learning model with different complexities or hyperparameters.
 - Nonlinear regression: polynomials with different degrees
 - K-Nearest Neighbors: Different choices of K
 - Decision Trees: Different choices of the number of levels/leaves
 - SVM: Different choices of the misclassification penalty
 - Regularized models: Different choices of the regularization parameter
 - Kernel based methods: Different choices of kernels ...and almost any learning problem
- Different learning models (e.g. SVM, kNN, DT, etc)

Note: usually considered in supervised learning but unsupervised learning faces this issue too.

▶ Set aside a fraction (10-20%) of the training data.

- ▶ Set aside a fraction (10-20%) of the training data.
- ► This part becomes our held-out data (validation/development)

- ▶ Set aside a fraction (10-20%) of the training data.
- ► This part becomes our held-out data (validation/development)
- ▶ Remember: Held-out data is NOT the test data

- ▶ Set aside a fraction (10-20%) of the training data.
- ▶ This part becomes our held-out data (validation/development)
- ▶ Remember: Held-out data is NOT the test data
- Train each model using the remaining training data

- ▶ Set aside a fraction (10-20%) of the training data.
- ► This part becomes our held-out data (validation/development)
- ▶ Remember: Held-out data is NOT the test data
- Train each model using the remaining training data
- Evaluate error on the held-out data

- ▶ Set aside a fraction (10-20%) of the training data.
- ► This part becomes our held-out data (validation/development)
- ▶ Remember: Held-out data is NOT the test data
- Train each model using the remaining training data
- Evaluate error on the held-out data
- Choose the model with the smallest held-out error

- ▶ Set aside a fraction (10-20%) of the training data.
- ▶ This part becomes our held-out data (validation/development)
- ▶ Remember: Held-out data is NOT the test data
- Train each model using the remaining training data
- Evaluate error on the held-out data
- Choose the model with the smallest held-out error
- ► Problems:

- ▶ Set aside a fraction (10-20%) of the training data.
- ► This part becomes our held-out data (validation/development)
- ▶ Remember: Held-out data is NOT the test data
- Train each model using the remaining training data
- Evaluate error on the held-out data
- Choose the model with the smallest held-out error
- ► Problems:
 - wastes training data

- ▶ Set aside a fraction (10-20%) of the training data.
- ► This part becomes our held-out data (validation/development)
- ▶ Remember: Held-out data is NOT the test data
- Train each model using the remaining training data
- Evaluate error on the held-out data
- Choose the model with the smallest held-out error
- Problems:
 - wastes training data
 - if there was an unfortunate split (can be alleviated by repeated random subsampling)

K-fold Cross-Validation on N training examples

► Create K equal sized partitions of the training data

- Create K equal sized partitions of the training data
- ▶ Each partition has N/K examples

- Create K equal sized partitions of the training data
- ▶ Each partition has N/K examples
- ▶ Train using K-1 partitions, validate on the remaining partition

- Create K equal sized partitions of the training data
- ▶ Each partition has N/K examples
- ▶ Train using K-1 partitions, validate on the remaining partition
- Repeat the same K times, each with a different validation partition

- Create K equal sized partitions of the training data
- ▶ Each partition has N/K examples
- ▶ Train using K-1 partitions, validate on the remaining partition
- Repeat the same K times, each with a different validation partition
- Choose the model with the smallest average validation error

- Create K equal sized partitions of the training data
- Each partition has N/K examples
- ▶ Train using K-1 partitions, validate on the remaining partition
- Repeat the same K times, each with a different validation partition
- Choose the model with the smallest average validation error
- Usually K is chosen as 10

Special case of K-fold Cross-Validation when K = N

► Each partition is now an example

- ► Each partition is now an example
- ightharpoonup Train using N-1 examples, validate on the remaining example

- ► Each partition is now an example
- ▶ Train using N-1 examples, validate on the remaining example
- ► Repeat the same N times, each with a different validation example

- ► Each partition is now an example
- ▶ Train using N-1 examples, validate on the remaining example
- ► Repeat the same N times, each with a different validation example
- Choose the model with the smallest average validation error

- ► Each partition is now an example
- ▶ Train using N-1 examples, validate on the remaining example
- ► Repeat the same N times, each with a different validation example
- Choose the model with the smallest average validation error
- ► can be expensive for large N. Typically used when N is small

▶ Randomly subsample a fixed fraction $\alpha N(0 < \alpha < 1)$ of examples; call it the validation set

- ▶ Randomly subsample a fixed fraction $\alpha N(0 < \alpha < 1)$ of examples; call it the validation set
- Training using the rest of the examples, measure error on the validation set

- ▶ Randomly subsample a fixed fraction $\alpha N(0 < \alpha < 1)$ of examples; call it the validation set
- Training using the rest of the examples, measure error on the validation set
- Repeat K times, each with a different randomly chosen validation set

- ▶ Randomly subsample a fixed fraction $\alpha N(0 < \alpha < 1)$ of examples; call it the validation set
- Training using the rest of the examples, measure error on the validation set
- Repeat K times, each with a different randomly chosen validation set
- Choose the model with the smallest average validation error

- ▶ Randomly subsample a fixed fraction $\alpha N(0 < \alpha < 1)$ of examples; call it the validation set
- Training using the rest of the examples, measure error on the validation set
- Repeat K times, each with a different randomly chosen validation set
- Choose the model with the smallest average validation error
- ▶ Usually α is chose as 0.1, K as 10

► Given a set of N examples

- ► Given a set of N examples
- ► Idea: Sample N elements from this set with replacement (already sampled elements can e picked again)

- Given a set of N examples
- ► Idea: Sample N elements from this set with replacement (already sampled elements can e picked again)
- Use this new set as the training data

- Given a set of N examples
- ► Idea: Sample N elements from this set with replacement (already sampled elements can e picked again)
- Use this new set as the training data
- ▶ The set of examples not selected as the validation data

- Given a set of N examples
- ► Idea: Sample N elements from this set with replacement (already sampled elements can e picked again)
- Use this new set as the training data
- ▶ The set of examples not selected as the validation data
- For large N, training data consists of about only 63% unique examples

- Given a set of N examples
- ► Idea: Sample N elements from this set with replacement (already sampled elements can e picked again)
- Use this new set as the training data
- ▶ The set of examples not selected as the validation data
- For large N, training data consists of about only 63% unique examples
- Expected model error:

$$e = 0.632 \times e_{\mathsf{test}} + 0.368 e_{\mathsf{training}}$$

- Given a set of N examples
- ► Idea: Sample N elements from this set with replacement (already sampled elements can e picked again)
- Use this new set as the training data
- ▶ The set of examples not selected as the validation data
- For large N, training data consists of about only 63% unique examples
- Expected model error:

$$e = 0.632 \times e_{\mathsf{test}} + 0.368 e_{\mathsf{training}}$$

▶ This can break down if we overfit and $e_{\text{training}} = 0$

Bradley Efron & Robert Tibshirani. Improvements on Cross-Validation: The 632+ Bootstrap Method

Information Criteria based methods

Akaike Information Criteria (AIC)

$$AIC = 2k - 2\log(\mathcal{L})$$

Bayesian Information Criteria (BIC)

$$\mathsf{BIC} = k \log(N) - 2 \log(\mathcal{L})$$

- ▶ k: # of model parameters
- ▶ n: # of data examples
- L: maximum value of the model likelihood
- Applicable for probabilistic models
- AIC/BIC penalize model complexity

Selecting a useful subset from all the features. Why?

► Some algorithms scale (computationally) poorly with increased dimension

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms

- Some algorithms scale (computationally) poorly with increased dimension
- ▶ Irrelevant features can confuse some algorithms
- ► Redundant features adversely affect regularization

- Some algorithms scale (computationally) poorly with increased dimension
- ▶ Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size
- Note: Feature Selection is different from Feature Extraction

- Some algorithms scale (computationally) poorly with increased dimension
- ▶ Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size
- ▶ Note: Feature Selection is different from Feature Extraction
 - The latter transforms original features to get a small set of new features

- Some algorithms scale (computationally) poorly with increased dimension
- ▶ Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size
- ▶ Note: Feature Selection is different from Feature Extraction
 - The latter transforms original features to get a small set of new features
 - More on feature extraction when we cover Dimensionality Reduction

Feature Selection Methods

- ▶ Methods agnostic to the learning algorithm
 - Preprocessing based methods
 - E.g., remove a binary feature if its ON in very few or most examples
 - Filter Feature Selection methods
 - Use some ranking criteria to rank features
 - Select the top ranking features
- Wrapper Methods (keep the learning algorithm in the loop)
 - Requires repeated runs of the learning algorithm with different set of features
 - Can be computationally expensive

Filter Feature Selection

▶ Uses heuristics but is much faster than wrapper methods

Correlation Criteria: Rank features in order of their correlation with the labels

$$R(X_d, \mathbf{y}) = \frac{cov(X_d, \mathbf{y})}{\sqrt{var(X_d)var(\mathbf{y})}}$$

► Mutual Information Criteria:

$$MI(X_d, \mathbf{y}) = \sum_{X_d \in \{0,1\}} \sum_{y \in \{-1,+1\}} P(X_d, \mathbf{y}) \log \frac{P(X_d, \mathbf{y})}{P(X_d)P(y)}$$

- high mutual information means high relevance of that feature
- Note: these probabilities can be easily estimated form the data

Wrapper Methods

- Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features

Wrapper Methods

- ► Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
- Backward Search
 - Start with all features
 - Greedily remove the least relevant feature
 - Stop when selected the desired number of features

Wrapper Methods

- Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
- Backward Search
 - Start with all features
 - Greedily remove the least relevant feature
 - Stop when selected the desired number of features
- ► Inclusion/Removal criteria uses cross-validation

Acknowledgements

Slides adapted from Dr. Bert Huang's *Machine Learning* at Virginia Tech, Dr. Tommi S. Jaakkola's *Introduction to Machine Learning* at MIT, and Dr. Piyush Rai's *Machine Learning* at Utah.