Mersenne Number $2^n - 1$

Mersenne Numbers

A Mersenne number, M_n , is a natural number of the form $2^n - 1$.

$$M_1 = 1$$
, $M_2 = 2^2 - 1 = 3$, $M_3 = 2^3 - 1 = 7$, $M_4 = 2^4 - 1 = 15$.

A Mersenne Prime is a Mersenne number that is a prime number. M_2 is a Mersenne Prime.

For
$$n \le 128$$
, if $n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127 then M_n is prime.$

The Mersenne number $2^{11} - 1$ is not prime even though 11 is prime.

$$2^{11} - 1 = 2047 = 23 * 89$$

The Mersenne number $2^{67} - 1$ is not prime even though 67 is prime.

The Mersenne number $2^{74,207,281} - 1$ is prime, the largest found so far. It has around 22 million digits.

$$x^{n} - 1$$

Consider $x^n - 1$.

Since
$$1^n - 1 = 0$$
 i.e. 1 is a root of $x^n - 1$ i.e. 1 is a solution of $x^n - 1 = 0$ then $(x - 1)$ is a factor of $x^n - 1$. i.e. $x^n - 1 = (x - 1) * f(x)$, some $f(x)$. e.g. $3^3 - 1 = 26 = 2 * 13 = (3 - 1) * 13$

$x^n - 1$ Cont'd

Determine $\frac{x^n-1}{x-1}$ as a series:

Check:

If
$$\frac{x^n-1}{x-1} = x^{n-1} + x^{n-2} + \dots + x + 1 \dots$$
 then $x^n - 1 = (x - 1) * (x^{n-1} + x^{n-2} + \dots + x + 1)$

$x^n - 1$ Cont'd

$$(x-1) * (x^{n-1} + x^{n-2} + \dots + x + 1)$$

$$= x * (x^{n-1} + x^{n-2} + \dots + x + 1) - 1 * (x^{n-1} + x^{n-2} + \dots + x + 1)$$

$$= x^{n} + x^{n-1} + x^{n-2} + \dots + x$$

$$- x^{n-1} - x^{n-2} + \dots + x$$

$$= x^{n} - 1$$

Example

$$3^3 - 1$$

= $(3 - 1) * (3^2 + 3 + 1)$
= $2 * 13$
= 26

For
$$a \in \mathbb{N}$$
, $a > 1$, if $a^n - 1$ is prime then n is prime and $n = 2$

Theorem

For $a \in \mathbb{N}, a >: 1$, if $a^n - 1$ is prime then n is prime and n = 2

This has the form:
$$P \rightarrow Q \land R$$

From Logic: $A \rightarrow B = \neg B \rightarrow \neg A$
 $P \rightarrow Q \land R$
 $= \neg (Q \land R) \rightarrow \neg P$
 $= \neg Q \lor \neg R \rightarrow \neg P$
 $= (\neg Q \rightarrow \neg P) \land (\neg R \rightarrow \neg P)$

To prove: if $a^n - 1$ is prime then n is prime and n = 2, prove

- If n is not prime then $a^n 1$ is not prime
- If $n \neq 2$ then $a^n 1$ is not prime.

Cont'd

• If n is not prime then $a^n - 1$ is not prime

Proof:

Assume n is not prime then n=p*q where p>1 and q>1 . $a^n-1=a^{p*q}-1=(a^p)^q-1$

Since
$$x^n - 1 = (x - 1) * (x^{n-1} + x^{n-2} + \dots + x + 1)$$

 $(a^p)^q - 1 = (a^p - 1) * ((a^p)^{q-1} + (a^p)^{q-2} + \dots + a^p + 1)$
 $\therefore a^n - 1 = (a^p)^q - 1$ has factors > 1 such as
 $(a^p - 1)$ and $((a^p)^{q-1} + (a^p)^{q-2} + \dots + a^p + 1)$
 $\therefore a^n - 1$ is not prime

Cont'd

• If $n \neq 2$ then $a^n - 1$ is not prime.

In this case the contrapositive is used i.e. Show, if a^n-1 is prime then a=2 **Proof**: $(a^n-1)=(a-1)*(a^{n-1}+a^{n-2}+\cdots+a+1)$ If a^n-1 is prime then (a-1)=1 otherwise a^n-1 has a factor >1. If (a-1)=1 then a=2.

Mersennne numbers when n is not prime

From above, if n is not prime then $a^n - 1$ is not prime. In particular,

if *n* is not prime then $2^n - 1$ is not prime.

Example

```
2^6 - 1 = 63 which is not prime since 6 is not prime. 2^6 - 1 = 2^{2*3} - 1 = (2^2)^3 - 1 (2^2)^3 - 1 = (2^2 - 1) * ((2^2)^2 + 2^2 + 1) = 3 * (4^2 + 4 + 1) = 3 * 21 = 63
```