STAT110 PS2

Nicholas DeSanctis

September 2022

Lecture 9

Definitions —

Directed Graph

- Defined as G = (V, E)
- For each $(u, v) \in E$, $u, v \in V$, u "points to" v

Undirected Graph

- Defined as G = (V, E)
- For each $(u, v) \in E$, $u, v \in V$, u and v "point to each outer"

Digraph

• Simple, unweighted, directed graph

Keywords —

Planar: a graph can be drawn in 2D with no edge crossings.

Walk: a sequence of verticies from s to t

Shortest Walk: the "distance" of s to t (aka, the minimum of the possible lengths)

Theorems and Lemmas —

Shortest Walk Lemma: If w is a shortest walk from s to t, then all of the vertices that occur on w are distinct. That is, every shortest walk is a path.

• Suppose we have a shorest walk with repeated vertices. We know there exists a shorter one by simply getting rid of all vertices between the first instance of the repeated vertex and the second for all vertices.

Algorithms —

$Shortest\ Walk$

- Inputs: digraph G=(V,E), verticies $s,t\in V$
- Outputs: shortest walk iff it exists
- Possible solving algorithms:
 - 1. Exhaustive Search: $(n-1)! \cdot O(n)$
 - $-\,$ Get all walks of length n-1
 - By Shortest Walk Lemma, our shortest walk must be here
 - Find shortest walk starting from s and ending at t
 - 2. BFS: