Projeto da ULA

Arquitetura de Computadores I Bacharelado em Sistemas de Informação

Professor Rodrigo Kishi

rodrigo.kishi@ufms.br

Campus de Três Lagoas - CPTL
Universidade Federal de Mato Grosso do Sul

Conteúdo

- Unidade lógica de 1 bit (AND e OR);
- Somador de 1 bit;
- ULA de 1 bit (AND, OR e Soma);
- ULA de 32 bits (AND, OR e Soma);
- ULA de 1 bit (AND, OR e Soma e Subtração);
- ULA de 1 bit (AND, OR e Soma, Subtração e slt);
- ULA de 1 bit (AND, OR e Soma, Subtração, slt e igualdade);
- ULA de 32 bits (AND, OR, Soma, Subtração, slt e igualdade).

Unidade lógica de 1 bit (AND e OR)

- Entradas:
 - ♠ a e b: dois dados de 1 bit a serem operados;
 - ♦ Operation: sinal de controle (1 bit);
- Saída:
 - ♦ Result: dado de 1 bit resultante da operação.
- Multiplexador de 2 entradas de 1 bit (seleciona resultado);
 - Se $Operation = 0 \rightarrow Result = a \text{ AND } b$
 - Se $Operation = 1 \rightarrow Result = a \ OR \ b$

Somador de 1 bit

- Entradas:
 - ♠ a e b: dois dados de 1 bit a serem somados;
 - ♦ CarryIn: sinal de vai um "anterior";
- Saídas:
 - ♦ Sum: dado de 1 bit resultante da soma;
 - ♦ CarryOut: sinal de vai um.

Somador de 1 bit

■ Tabela verdade do somador de 1 bit:

a	b	CarryIn	CarryOut	Soma
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Somador de 1 bit

- Soma de produtos:
 - $\bullet \quad CarryOut = (b.CarryIn) + (a.CarryIn) + (a.b) + (a.b.CarryIn)$
 - $Soma = (a.\overline{b}.\overline{CarryIn}) + (\overline{a}.b.\overline{CarryIn}) + (\overline{a}.\overline{b}.CarryIn) + (a.b.CarryIn)$
- Circuito da saída CarryOut do somador de 1 bit:

ULA de 1 bit (AND, OR e soma)

Entradas:

- ♠ a e b: dois dados de 1 bit a serem operados;
- ♦ CarryIn: sinal de vai um "anterior";
- ♦ Operation: sinais de controle (2 bits);

Saídas:

- Result: dado de 1 bit resultante da operação;
 - ▶ Se $Operation = 00 \rightarrow Result = a$ AND b;
 - ▶ Se $Operation = 01 \rightarrow Result = a \ OR \ b;$
 - ▶ Se $Operation = 10 \rightarrow Result = a + b$.
- ♦ CarryOut: sinal de vai um.

ULA de 1 bit (AND, OR e soma)

ULA de 32 bits (AND, OR e soma)

■ Somador com carry em cascata (*Ripple carry adder*):

ULA de 1 bit (AND, OR, soma e subtração)

- Subtração: a b = a + (-b) = a + NOT(b) + 1
- Entradas:
 - ♦ a e b: dois dados de 1 bit a serem operados;
 - ♦ CarryIn: sinal de vai um "anterior";
 - ♦ BInvert: sinal de controle para inversão (NOT) da entrada;
 - ▶ Se BInvert = 1, o dado é negado antes de ser operado.
 - ♦ Operation: sinais de controle (2 bits);

Saídas:

- ♦ Result: dado de 1 bit resultante da operação;
 - ▶ Se $Operation = 00 \rightarrow Result = a$ AND b;
 - ▶ Se $Operation = 01 \rightarrow Result = a \ OR \ b$;
 - ightharpoonup Se Operation=10
 ightharpoonup Result=a+b oua-b.
- ♦ CarryOut: sinal de vai um.

ULA de 1 bit (AND, OR, soma e subtração)

ULA de 1 bit (AND, OR, soma e subtração)

- Multiplexador de 2 entradas de 1 bit: seleciona segundo dado de entrada;
 - Se $BInvert = 0 \rightarrow \text{segundo dado de entrada} = b$;
 - Se $BInvert = 1 \rightarrow \text{segundo dado de entrada} = NOT(b);$
- Para subtração:
 - BInvert = 1 e CarryIn da ULA correspondente ao bit menos significativo = 1.

- slt rd, rs, rt
 - Se rs < rt então rd = 1, senão rd = 0;
 - ◆ Saída de 32 bits terá todos os bits em 0, exceto pelo bit menos significativo, que é setado de acordo com a comparação.
- Idéia: $a < b \rightarrow a b < 0$
- Entradas:
 - ♦ a e b: dois dados de 1 bit a serem operados;
 - ◆ CarryIn: sinal de vai um "anterior";
 - BInvert: sinal de controle para inversão (NOT) da entrada b;
 - ♦ Less: sinal resultado da operação slt;
 - ♦ Operation: sinais de controle (2 bits).

Saídas:

- ♦ Result: dado de 1 bit resultante da operação;
 - ▶ Se $Operation = 00 \rightarrow Result = a$ AND b;
 - ▶ Se $Operation = 01 \rightarrow Result = a \ OR \ b$;
 - ▶ Se $Operation = 10 \rightarrow Result = a + b$ oua b.
 - ▶ Se $Operation = 11 \rightarrow Result = resultado da operação slt.$
- ♦ CarryOut: sinal de vai um.
- Apenas para ULA do bit mais significativo:
 - Set: dado de 1 bit resultante do somador (é o bit de sinal);
 - Overflow: sinal de 1 bit que indica se ocorreu overflow.

31 bits menos significativos:

Binvert CarryIn

Result

CarryOut

bit mais significativo:

■ Para slt:

- ◆ Entrada Less é 0 para todas as ULAs, exceto para a ULA do bit menos significativo;
- ♦ Entrada *Less* da ULA do bit menos significativo é o resultado do somador da ULA do bit mais significativo (bit de sinal).

ULA de 1 bit (AND, ... e igualdade)

- Utilizada nas instruções beq e bne;
- Idéia: se $a = b \rightarrow a b = 0$;
 - ♦ Faz o OR do resultado da subtração das 32 ULAs e inverte: Zero = NOT(Result31 OR ... OR Result1 OR Result0)
- Entradas:
 - ♠ a e b: dois dados de 1 bit a serem operados;
 - ♦ *BNegate*: combinação de *BInvert* e *CarryIn*;
 - ♦ Less: sinal resultado da operação slt;
 - ♦ Operation: sinais de controle (2 bits).
- Sinal de saída Zero: se a = b então Zero = 1.

ULA de 32 bits (AND, ... e igualdade)

ULA de 32 bits (AND, ... e igualdade)

Representação da ULA de 32 bits

Entrada de controle (junção de *BNegate* e *Operation*).

Linhas de controle	Função
000	and
001	or
010	+
110	_
111	slt

Detecção de overflow

- Overflow: ocorre quando o resultado da operação aritmética não pode ser representado com o número de bits da palavra;
- Quando ocorre overflow, o processador causa uma exceção:
 - Execução do programa é suspensa;
 - Execução é desviada para um endereço pré-definido, onde uma rotina de tratamento é chamada;
- Overflow ocorre quando (a e b são dados de 32 bits);

Operação	а	b	Resultado
a+b	≥ 0	≥ 0	< 0
a+b	< 0	< 0	≥ 0
a-b	≥ 0	< 0	< 0
a-b	< 0	≥ 0	≥ 0