

Hierarchical Clustering

Why use Hierarchical Clustering?

- Easy to understand and visualize.
- Helps users decide how many clusters to choose.
- Not necessary to choose cluster amount before running the algorithm.

Why use Hierarchical Clustering?

- o Divides points into *potential* clusters:
 - Agglomerative Approach:
 - Each point begins as its own cluster, then clusters are joined.
 - Divisive Approach:
 - All points begin in the same cluster, then clusters are split.

- Hierarchical Clustering
 - Agglomerative:

- Hierarchical Clustering
 - Agglomerative:

- Hierarchical Clustering
 - Agglomerative:

- Hierarchical Clustering
 - Agglomerative:

Hierarchical Clustering Process

- Compare data points to find most similar data points to each other.
- Merge these to create a cluster.
- Compare clusters to find most similar clusters and merge again.
- Repeat until all points in a single cluster.

Hierarchical Clustering Process

- Similarity Metric
 - Measures distance between two points.
 - Many options:
 - Euclidean Distance
 - Manhattan
 - Cosine
 - and many more...

- Similarity Metric
 - Default choice is Euclidean

- Similarity Metric
 - Each dimension would be a feature
 - For **n** data points and **p** features:
 - Using MinMaxScaler we can scale all features to be between 0 and 1.
 - This allows for maximum distance between a feature to be 1.

- Dendrogram:
 - Plot displaying all potential clusters.
 - Very computationally expensive to compute and display for larger data sets.
 - Very useful for deciding on number of clusters.

- Linkage parameter
 - How do we measure distance from a point to an entire cluster?
 - How do we measure distance from a cluster to another cluster?

- Linkage
 - Criterion determining which distance to use between sets of observations.
 - Algorithm will merge pairs of clusters that minimizes the criterion.

- Linkage:
 - Ward: minimizes variance of clusters being merged.
 - Average: uses average distances between two sets.
 - Minimum or Maximum distances between all observations of the two sets.

Ward linkage

3. Subtract the sum of intracluster ESS from joint clusters ESS

