Saulės elektrinių pagaminamos elektros kiekio prognozavimas

Matas Amšiejus, Antanas Užpelkis

Darbo vadovė Doc. Dr. Jurgita Markevičiūtė Vilniaus Universitetas Matematikos ir informatikos fakultetas

Motyvacija

- Žemės paviršiaus temperatūra pakilo 0,08 % per pastarąjį šimtmetį, o to sparta per pastaruosius 40 metų – 0,18 %;
- Elektros gamyba sudaro 25 % šiltnamio efektą sukeliančių dujų;
- Tvarus energijos gaminimo būdas;
- Energijos tiekimas nebepriklausys nuo geopolitinės situacijos;
- Norint maksimizuoti pagaminamos elektros kiekį, reikia įvertinti kas tam turi įtakos.

Tikslas ir uždaviniai

Tikslas:

Ištirti ir prognozuoti saulės elektrinių pagaminamos elektros kiekį, priklausomai nuo meteorologinių (bei kitų) duomenų, naudojant regresijos metodus.

Uždaviniai:

- Pradinis duomenų apdorojimas ir analizė;
- Regresijos modelių sudarymas;
- Modelių įvertinimas.

Duomenys

Duomenys yra surinkti nuo 2019-09-07 iki 2021-03-21.

Saulės kolektorių duomenys:

- saulės spinduliuotė (normuoti);
- ► IR (normuoti);
- pagaminamos elektros kiekis (normuoti).

Duomenys apie dieną:

- data;
- vidutinė temperatūra (°C);
- krituliai (mm);
- vidutinis vėjo greitis (km/h);
- vidutinis slėgis (hPa);
- dienos ilgumas (h).

Pradinė duomenų analizė

pav.: pagaminamos elektros kiekio priklausomybė.

Modeliavimas

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + e_i,$$

kur Y_i - pagaminamos energijos kiekis, o X_i - parenkami pagal modelį pretendentą:

- ▶ M1 modelis, su temperatūra, krituliais, spinduliuote ir mėnesiais. Šiame modelyje atmetėme \sqrt{IR} ir dienos ilgį, kadangi šios kovariantės buvo labiausiai multikolinearios;
- M2 modelis su temperatūra, krituliais ir dienos ilgiu (kovariantės, kurių reikšmes galima lengvai sužinoti pagal orų prognozes arba kalendorių);
- ▶ M3 modelis su spinduliuote ir \sqrt{IR} (kovariantės, kurių reikšmės gaunamos iš kolektoriaus);
- ▶ M4 modelis su temperatūra, krituliais ir spinduliuote (mažiausiai multikolinearus modelis).

Modelių koeficientai

lentelė: Skaitinių kovariančių standartizuoti koeficientai

Modelis	Temp.	Krituliai	D. ilgis	Spind.	\sqrt{IR}
M1	0,0501	-0,0110	*	0,8594	*
M2	0,0984	-0,1050	0,8840	*	*
M3	*	*	*	0,9549	0,0370
M4	0,0377	-0,0086	*	0,9585	*

- Modeliuose, kuriuose yra įtraukta spinduliuotė, ji visada yra reikšmingiausia. Ten, kur jos nėra, reikšmingiausias tampa dienos ilgumas;
- Mažiausiai reikšmingos kovariantės buvo krituliai ir \sqrt{IR} ;
- Temperatūra, dienos ilgis, spinduliuotė ir \sqrt{IR} visada turėjo teigiamą poveikį pagaminamam elektros energijos kiekiui, o krituliai neigiamą.

Modelių vertinimas

lentelė: Modelių tikslumo rezultatai

Modelis	MAE	RMSE	NMAE	NRMSE	R^2
M1	0,0095	0,0118	0,0299	0,037	0,9855
M2	0,0225	0,0288	0,0707	0,0905	0,8955
M3	0,0149	0,0174	0,0468	0,0547	0,9692
M4	0,0147	0,0173	0,0463	0,0544	0,9694

Išvados

- Slėgis ir vėjo greitis visuose modeliuose buvo nereikšmingi;
- Geriausius rezultatus parodė modelis su temperatūra, krituliais, spinduliuote ir mėnesiais (M1) $R^2 = 0.9855$;
- Prasčiausias modelis buvo sudarytas iš temperatūros, kritulių ir dienos ilgio (M2) $R^2 = 0,8955$

Ačiū už dėmesį!