Category Realizable Groupoids

by Sven Nilsen, 2020

In this paper I show that normal paths form a category realizable groupoid.

In the paper "Imaginary Inverse"^[1], I showed that introducing an imaginary inverse makes it possible to encode a useful subset of normal paths^[2] in any calculus with a composition operator^[3].

It is known that groupoids^[4] can be viewed as a category^[5] augmented with an inverse unary operator. Hence, when the inverse operator is imaginary, any category can be lifted into a groupoid. However, the underlying structure of the category is well preserved, as the realizable part of the groupoid.

Formally, a category `C` is defined as:

- A class `ob(C)` of objects
- A class `hom(C)` of morphisms between objects.
- For every three objects `a`, `b` and `c`,
 a binary operation `hom_C(a, b) × hom_C(b, c) → hom_C(a, c)` written `g · f`

Such that the following axioms hold:

- A morphism is written `f : a → b` for a source object `a` and a target object `b`
- If `f: a \rightarrow b`, `g: b \rightarrow c` and `h: c \rightarrow d` then `h \cdot (g \cdot f) <=> (h \cdot g) \cdot f` (Associativity)
- For every object `x` there exists a morphism `id_x : x → x` such that `id_x · f <=> f` and `g · id_x <=> g` (Identity)

A groupoid adds the following axiom:

• For each pair of objects `x` and `y`, a function `inv: $hom_C(x, y) \rightarrow hom_C(y, x)$ ` such that `\forall f \in hom_C(x, y) \{ f \cdot inv(f) <=> id_y \ \Lambda \ inv(f) \cdot f <=> id_x \}`

Usually, a groupoid is thought of as a small category in which every morphism is bijective^[6]. However, when introducing an imaginary inverse, this is no longer true. The same axiom holds, yet $\forall x, y \in ob(C)$, $f: x \to y \{ \exists ! x \{ inv(f)(y) = x \} \}$ might be false.

The imaginary inverse `inv` might be thought of as a contravariant functor^[7] with a dual^[8] image^[9]:

```
inv_C : C \rightarrow C^{op} inv_G : G \rightarrow G where G = C \mid C^{op} inv_C => inv_G
```

Such that the augmented category of `C` with `inv_C` forms a category realizable groupoid `G` where:

- ` \forall x \in ob(C) { inv_C(x) = x }`, hence `ob(G) <=> ob(C)` and `inv_C => id_x` for objects
- $\forall x, y, z \in ob(C), f: x \rightarrow y, g: y \rightarrow z \{ inv_C(g \cdot_C f) \le inv_C(f) \cdot_G inv_C(g) \}$ (Contravariance)
- $inv_G \cdot_G inv_G \le id_G (Involution)$

The reason `inv` is an operation on categories, is because every category can be lifted into a category realizable groupoid. In practice, it is common to not define `inv` for objects, but for morphisms only.

From this definition of a category realizable groupoid, it is non-trivial that standard techniques for groupoids as small categories can be used, due to not every morphism being bijective.

Therefore, I will prove the necessary to treat category realizable groupoids with standard techniques.

All objects in the groupoid `G` are being covered by objects in `C` (the first Realizable axiom). Therefore, augmentation of the category `C` consists only of new morphisms:

$$f: x \rightarrow y = inv(f): y \rightarrow x$$

Due to involution, these new morphisms do not generate any newer morphisms:

Therefore, G is covered by ob(C), hom(C) and $hom(C^{op})$.

This can be used to reduce the notation without introducing ambiguity.

For simplicity, I will write `inv` instead of `inv_G`, `hom` instead of `hom_G` and `·` instead of ` \cdot_G `.

From the groupoid axiom and realizable axioms, one can derive for any object `x`:

$$inv(id_x) \le id_x$$
 Abstract identity inverse

Proof:

- $\ \ \, : inv(f) \cdot inv(inv(f)) \quad \ \ \, : inv(g \cdot f) <=> inv(f) \cdot inv(g) \\ \ \ \, (Realizable \ contravariance)$
- $\therefore \quad \text{inv}(f) \cdot f \qquad \qquad \because \quad \text{`inv}(\text{inv}(f)) <=> f` (Realizable involution)$
- : id_x : inv(f) · f <=> id_x (Groupoid)
- $\forall \ f \in hom(x, y) \ \{ \ f \cdot inv(f) <=> id_y \quad \land \quad inv(f) \cdot f <=> id_x \ \}$

For any $f: x \to y$, one can prove directly using Category identity:

$$inv(f \cdot id_x) = inv(f)$$

 $inv(id_y \cdot f) = inv(f)$

Another proof, using Realizable contravariance, Abstract identity inverse and Category identity:

$$inv(f \cdot id_x) = inv(id_x) \cdot inv(f) = id_x \cdot inv(f) = inv(f)$$

 $inv(id_y \cdot f) = inv(f) \cdot inv(id_y) = inv(f) \cdot id_y = inv(f)$

References:

[1]	"Imaginary Inverse" Sven Nilsen, 2020 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/imaginary-inverse.pdf
[2]	"Normal Paths" Sven Nilsen, 2019 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/normal-paths.pdf
[3]	"Composition operator" Wikipedia https://en.wikipedia.org/wiki/Composition operator
[4]	"Groupoid" Wikipedia https://en.wikipedia.org/wiki/Groupoid
[5]	"Category (mathematics)" Wikipedia https://en.wikipedia.org/wiki/Category (mathematics)
[6]	"Bijection" Wikipedia https://en.wikipedia.org/wiki/Bijection
[7]	"Functors – Covariance and contravariance" Wikipedia https://en.wikipedia.org/wiki/Functor#Covariance and contravariance
[8]	"Category (mathematics) – Dual category" Wikipedia https://en.wikipedia.org/wiki/Category (mathematics)#Dual category
[9]	"Image (mathematics)" Wikipedia

https://en.wikipedia.org/wiki/Image (mathematics)