Assignment 4

Automata & Theory of Computation

Student ID: 103365550 Name: 755

1. Partition the following dfa's state set into indistinguishable state sets, and reduce the following dfa to the minimal dfa.

WE 0
$$\{6, 1, 2, 3, 4, 7, 8\}$$
, $\{5, 6\}$

W=1 $\{6, 1, 2, 7, 8\}$, $\{3, 4\}$, $\{5, 6\}$

W-2 $\{6, 1, 2, 7, 8\}$, $\{3, 4\}$, $\{5, 6\}$

W-2 $\{6, 1, 2, 7, 8\}$, $\{1, 2\}$, $\{33, 34\}$, $\{5\}$, $\{6\}$

W-3 $\{7, 8\}$, $\{6\}$, $\{1, 2\}$, $\{33, 34\}$, $\{5\}$, $\{4\}$, $\{5\}$, $\{6\}$, $\{6\}$, $\{6\}$, $\{6\}$, $\{6\}$, $\{7, 6\}$,