Задание. Дан ориентированный граф G=(V,E), где $V=\{1,\,2,\,3,\,4,\,5~\}$ и $E=\{(1,\,5),\,(2,\,1),\,(5,\,2),\,(5,\,5)~\}.$

Сколько всего ребер в метаграфе орграфа G?

(1) 6 или более; (2) 5; (3) 4; (4) 3; (5) 2; (6) 1; (7) 0;

Ответ: (7).

Подробное обоснование. Исходный орграф G:

Обращение G_r орграфа G:

Обойдем G_r в глубину и получим список его вершин в порядке убывания их роst-значений: $\{4,\,3,\,1,\,2,\,5\,\}$.

Идя по списку, из каждой (ранее не посещенной) вершины обойдем орграф в глубину. Вершины, посещаемые при каждом новом обходе, будут давать отдельную ССК.

(Здесь и далее ССК – сильно связная компонента).

- *visit*(4) дает ССК: ⟨4⟩
- *visit*(3) дает ССК: ⟨3⟩
- visit(1) дает ССК: $\langle 1, 5, 2 \rangle$

Сформируем из каждой ССК метавершину и будем соединять направленным ребром пару метавершин X и Y, если в метавершине X есть вершина, из которой идет ребро в вершину, лежащую в метавершине Y. Таким образом получим метаграф G_r орграфа G:

В этом метаграфе ровно 0 рёбер.