Курсова робота з дисципліни "Розроблення проблемно-орієнтований та сервісно-орієнтованих систем"

На тему: "API для електронного голосування з застосуванням технології Blockchain"

Виконав: Довгалюк Андрій Ігорович, студент 5 курсу, групи ІМ-41мп

Вступ

Мета проєкту: Розробити веб-додаток для автоматизації процесу голосування на основі технологій блокчейну, що забезпечує прозорість, безпеку та зручність використання.

Основна задача: Надання користувачам простого та інтуїтивно зрозумілого API інтерфейсу для проведення голосування та обробки результатів.

Технічний підхід: Використання FastAPI для бекенду, інтеграція з блокчейном через Web3, а також бази даних SQLite для збереження даних користувачів і голосів. Використовування часткове та повне принципів SOA, MVC та DDD.

Актуальність

Даний проєкт створений для вирішення проблем в надійності та автоматизованій системі голосування, що дозволяє:

- Гарантувати безпеку та достовірність голосів.
- Виключити можливість фальсифікації результатів.
- Забезпечити прозорість процесу голосування.
- Скоротити час, необхідний для організації та обробки голосів.

Автоматизована система голосування дозволяє:

- Зекономити час організаторів.
- Підвищити довіру серед учасників.
- Мінімізувати помилки, характерні для традиційних методів голосування.

Функціональні можливості

Голосування:

- Отримання даних виборця та кандидата (вибір).
- Моментальне збереження в базу даних.

Відстеження результатів:

- Моментальна реєстрація голосів у блокчейні.
- Отримання результатів у реальному часі.

Інтерфейс:

- Моментальний запис даних користувача в базу даних та в блокчейн мережу.
- Отримання даних в реальному часі через Web та API інтерфейси або через explorer блокчейн мережі.

Архітектура проєкту. МVС

Проєкт побудовано з використанням патерну MVC (Model-View-Controller):

Model:

- Представлена базою даних (SQLite) і репозиторієм (SQLAlchemyVoteRepository).
- Відповідає за управління даними.

Controller:

• Реалізований у вигляді FastAPI-ендпоінтів, які отримують запити від користувачів та викликають відповідні сервіси (наприклад, VotingService).

View:

• Відображення результатів через API-відповіді у форматі JSON та HTML шаблонів.

Архітектура проєкту. SOA

Модульність:

• Логіка блокчейну, бази даних та голосування розділена, що спрощує обслуговування і розширення.

Легкість масштабування:

• Сервіси можна розгортати незалежно, наприклад, блокчейн-сервіс окремо від API.

Гнучкість:

• Додавання нових функцій, наприклад, підтримки іншої блокчейн-мережі або бази даних, потребує мінімальних змін.

Архітектура проєкту. DDD

Доменна логіка в VotingService:

• Цей сервіс виконує основну бізнес-логіку голосування, таку як створення голосів, взаємодія з блокчейном, розподіл токенів.

Сутності домену:

- Vote: містить інформацію про голоси.
- Token: представляє токени, які розподіляються між учасниками.

Інфраструктурний шар:

• Репозиторій (SQLAlchemyVoteRepository) і блокчейн (Web3) належать до інфраструктури.

Приклади АРІ інтерфейсу

Збереження голосу користувача

Отримання результатів за допомогою API інтерфейсу та BSC Explorer

Приклади Web інтерфейсу

Голосувати

Збереження голосу користувача

Список голосів

Отримання результатів за допомогою Web інтерфейсу та BSC Explorer

Результати роботи

Реалізовано:

- 1. Збір даних про голосування та моніторинг змін.
- 2. Взаємодія з системою через API та Web інтерфейси.
- 3. Відстеження транзакцій та результатів голосів.

Переваги проєкту:

- Простота використання: зрозумілий API та Web інтерфейси та легка інтеграція.
- Автоматизація: усунення ручної обробки голосів.
- Гнучкість: можливість додавання нових функцій без значних змін у системі.

Висновки

Розроблений додаток демонструє, що використання патернів та взаємодія з блокчейном значно спрощують реалізацію складної логіки. Створений проєкт дозволяє автоматизувати процес голосування та відстеження транзакцій, надаючи зручний інструмент для роботи з даними.

Майбутні перспективи масштабування:

- 1. Додавання аналітичних інструментів: візуалізація даних за допомогою графіків, динаміки змін голосів тощо.
- 2. Оптимізація, масштабування: поліпшення роботи з великими обсягами даних та збільшення продуктивності системи.

Посилання

- 1. https://youtu.be/yVKaKkQ2PP4 відео
- 2. https://github.com/notcurrentuser/APIVoteBlockchain репозиторій з кодом