Mathematics of Cryptography-I

Objective

- ☐ Euclidean algorithm
- ☐ Extended Euclidean algorithm(EEA)
- ☐ Modular arithmetic
- ☐ Matrix and Residue matrix

Set of Integers and Integer Division

In integer arithmetic, if we divide a by n, we can get q and r.

$$\mathbf{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$$

$$q$$

$$\mathbf{Z} = \mathbf{q} \times \mathbf{n} + \mathbf{r}$$

$$q$$

$$\mathbf{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$$

$$\mathbf{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$$

Answer the following Question

- When we use a computer or a calculator, r and q are negative when a is negative.
- How can we make *r* positive?

$$-255 = (-23 \times 11) + (-2)$$

• The solution is simple, we decrement the value of q by 1 and we add the value of n to r to make it positive.

$$-255 = (-23 \times 11) + (-2)$$
 \leftrightarrow $-255 = (-24 \times 11) + 9$

Divisbility

If <u>a</u> is not zero and we <u>let</u> r = 0 in the division relation, we get

$$a = q \times n$$

If the remainder is zero, $n \mid a$

If the remainder is not zero, n + a

Example: Divisibility

a. The integer 5 divides the integer 30 because $30 = 6 \times 5$. So, we can write $5 \mid 30$

b. The number 8 + 42 because $42 = 5 \times 8 + 2$ has a remainder of 2.

Greatest Common Divisor(GCD)

The greatest common divisor of two positive integers is the largest integer that can divide both integers.

Euclidean Algorithm

Fact 1: gcd(a, 0) = a

Fact 2: gcd(a, b) = gcd(b, r), where r is

the remainder of dividing a by b

Example: a=60, b=25Gcd(60,25)=gcd(25,10)=gcd(10,5)=gcd(5,0)=Fact 1=5

-

Finding GCD(a,b) by using Euclidean Algo.

a. Process

4

Relatively prime or Coprime

Note

When gcd(a, b) = 1, we say that a and b are relatively prime.

Examples:

gcd(13,5)=1 => 13 and 5 are relatively prime gcd(12,5)=1 => 12 and 5 are relatively prime gcd(10,2)=2 gcd(9,3)=3 gcd(9,5)=1 => 9 and 5 are relatively prime

Finding GCD by using Euclidean Algo. Example

Find the greatest common divisor of 25 and 60. Solution:

We have gcd(25, 60) = 5.

q	r_I	r_2	r
0	25	60	25
2	60	25	10
2	25	10	5
2	10	5	0
	5	0	

Find the greatest common divisor of 2740 and 1760.

Solution

We have gcd (2740, 1760) = 20.

q	r_I	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

Extended Euclidean Algorithm (EEA)

Problem: Given two integers a and b, find other two integers, s and t, such that

$$s \times a + t \times b = \gcd(a, b)$$

- This equation is also called Bezout's identity or Bezout's Lemma.
- s and t are called Bezout's coefficients for (a,b).
- The EEA can be used to calculate the gcd (a, b) and values of s and t.

Process of Extended Euclidean Algorithm

Extended Euclidean Algorithm(EEA)

```
r_1 \leftarrow a; \qquad r_2 \leftarrow b;
  s_1 \leftarrow 1; \qquad s_2 \leftarrow 0;
                                                   (Initialization)
  t_1 \leftarrow 0; \qquad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
     r \leftarrow r_1 - q \times r_2;
                                                          (Updating r's)
     r_1 \leftarrow r_2; \ r_2 \leftarrow r;
     s \leftarrow s_1 - q \times s_2;
                                                          (Updating s's)
     s_1 \leftarrow s_2; s_2 \leftarrow s;
     t \leftarrow t_1 - q \times t_2;
                                                          (Updating t's)
     t_1 \leftarrow t_2; \ t_2 \leftarrow t;
   \gcd(a, b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```

b. Algorithm

Solving Problem by using **EEA**

Example

Given a = 161 and b = 28, find gcd (a, b) and the values of s and t of Bezout's identity $(s \times a + t \times b) = gcd(a,b)$.

Solution

We get gcd (161, 28) = 7, s = -1 and t = 6.

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	-5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	-5 6	-23
	7 0		-1 4		6 −23	

Solving Problem by using **EEA**

Example

Given a = 17 and b = 0, find gcd (a, b) and the values of s and t of Bezout's identity $(s \times a + t \times b) = gcd(a,b)$.

Solution

We get gcd (17, 0) = 17, s = 1, and t = 0.

q	r_{I}	r_2	r	s_1	s_2	S	t_1	t_2	t
	17	0		1	0		0	1	

MODULAR ARITHMETIC

- If a is an integer and n is a positive integer, we define r as the remainder (residue) such as $r = a \mod n$.
- So, we can write $a = q \times n + r$.
- The integer n is called the modulus.

Examples: Modulo operation

Find the result of the following operations:

a. 27 mod 5

b. 36 mod 12

c. -18 mod 14

d. -7 mod 10

Solution:

a. Dividing 27 by 5 results in r = 2

b. Dividing 36 by 12 results in r = 0.

- c. Dividing -18 by 14 results in r = -4. After adding the modulus r = 10
- d. Dividing -7 by 10 results in r = -7. After adding the modulus to -7, r = 3.

Congruence

- This can be written with the help of a congruence operator (\equiv) i.e. $a \equiv b \pmod{n}$
- Two integers a and b are said to be congruent modulo n, if $(a \mod n)=(b \mod n)$

Examples:

$$2 \equiv 12 \pmod{10}$$
 $13 \equiv 23 \pmod{10}$
 $3 \equiv 8 \pmod{5}$ $8 \equiv 13 \pmod{5}$

Can we say
$$12 \equiv 23 \mod 8$$
?
 $14 \equiv 36 \mod 7$?

Properties of Congruence

- 1. $a \equiv b \pmod{n}$ if $n \mid (a-b)$
- 2. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$
- 3. $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ imply

Examples:

$$2 \equiv 12 \pmod{10}$$
 $13 \equiv 23 \pmod{10}$

 $a \equiv c \pmod{n}$

$$3 \equiv 8 \pmod{5}$$

$$8 \equiv 13 \pmod{5}$$

Example (Property 3):

• $2 \equiv 12 \mod 10$ and $12 \equiv 22 \mod 10$, then $2 \equiv 22 \mod 10$

Concept of congruence relationship

The set Z_n

- The (mod n) operator maps all integers into the set of integers {0, 1, 2, ..., (n-1)}
- This is also called the set of least residues modulo n, or \mathbb{Z}_n
- What are the elements of set Z_2 , Z_5 , Z_{10} ? $Z_2 = \{0,1\}$ $Z_5 = \{0,1,2,3,4\}$ $Z_{10} = \{0,1,2,3,4,5,6,7,8,9\}$

Example: Modulo operator

Can you give an example of modulo operator, used in our daily life?

- We use a clock to measure time.
- Our clock system uses modulo 12 arithmetic.
- However, instead of a 0 we use the number 12.

Operations on set Z_n

- The three binary operations $(+, -, \times)$ defined on set Z can also be applied to set \mathbb{Z}_n .
- The operations are done as usual just like set Z, but, if the result exceeds the numbers defined in Z_n then it is converted to a number in Z_n using the mod operator.
- This is called modular arithmetic

Z_n: Examples

Perform the following operations (the inputs come from Z_n):

- 1. Add 7 to 14 in \mathbb{Z}_{15} .
- 2. Subtract 11 from 7 in \mathbb{Z}_{13} .
- 3. Multiply 11 by 7 in \mathbb{Z}_{20} .

$$(14+7) \mod 15 \rightarrow (21) \mod 15 = 6$$

 $(7-11) \mod 13 \rightarrow (-4) \mod 13 = 9$
 $(7 \times 11) \mod 20 \rightarrow (77) \mod 20 = 17$

Z_n:Properties

First Property: $(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n$

Second Property: $(a - b) \mod n = [(a \mod n) - (b \mod n)] \mod n$

Third Property: $(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

Examples: Operations in Z_n

- $(1,723,345 + 2,124,945) \mod 11$ = $(8 + 9) \mod 11 = 6$
- $(1,723,345 2,124,945) \mod 11$ = $(8 - 9) \mod 11 = 10$
- $(1,723,345 \times 2,124,945) \mod 11$ = $(8 \times 9) \mod 11 = 6$

4

More Examples: Operations in Z_n

Compute the followings:

$$10^{12} \mod 3 = 1$$
 $10^{50} \mod 7 = 3^{50} \mod 7 = 2$
 $5^4 \mod 7 = 2$

 $10^n \mod x = (10 \mod x)^n$ Applying the third property *n* times.

$$3^{2 \times 25} = (3^2)^{25} = 9^{25} \mod 7 = (9 \mod 7)^{25} = 2^{25} \mod 7$$

 $2^{25} \pmod{7} = 2 \times 2^{24} \mod 7 = 2 \times (2^{3 \times 8}) \mod 7$
 $= 2 \times (2^{3} \mod 7)^{8} = 2 \times 1^{8} \mod 7 = 2 \times 1 = 2$

Square and Multiply Technique

Inverse of a number in \mathbb{Z}_n

- In modular arithmetic, we often need to find the inverse of a number relative to an operation.
- It can be an **additive inverse** (relative to an addition operation(+)) or
- a multiplicative inverse (relative to a multiplication operation (×)).

Additive Inverse

In Z_n , two numbers a and b are additive inverses of each other if

$$a + b \equiv 0 \pmod{n}$$

Note

- In modular arithmetic, each integer has an additive inverse.
- The sum of an integer and its additive inverse is congruent to 0 modulo n.

Examples

1. Find the additive inverse of 4 in \mathbb{Z}_7

Answer: 3

2. Find all additive inverse pairs in \mathbb{Z}_{10} .

Answer:

There are **six pairs** of additive inverses: (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5).

Multiplicative Inverse

In Z_n , two numbers a and b are the multiplicative inverse of each other if

$$a \times b \equiv 1 \pmod{n}$$

Note

- In modular arithmetic, an integer may or may not have a multiplicative inverse.
- When it has, the product of the integer and its multiplicative inverse is congruent to 1 modulo n.

ExamplesExample 1

Find the multiplicative inverse of 7 and 8 in \mathbb{Z}_{10} .

Multiplicative inverse of 7 is 3, but 8 has no multiplicative inverse.

Note: gcd can help us to quickly find out whether a given number has multiplicative inverse or not.

gcd(10,7)=1=> 7 has multiplicative inverse in modulo 10 $gcd(10, 8) = 2 \neq 1 => 8$ has no multiplicative inverse in modulo 10

Example 2

Find all multiplicative inverses in \mathbf{Z}_{10} .

There are only three pairs: (1, 1), (3, 7) and (9, 9). The numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative inverse.

Continued Example 3

Find all multiplicative inverse pairs in \mathbb{Z}_{11} .

We have seven pairs:

(1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (9, 9), and (10, 10).

How to find out Multiplicative Inverse of BIG Number?

Note

- The Extended Euclidean algorithm(EEA) finds the multiplicative inverses of b in Z_n when n and b are given and gcd (n, b) = 1.
- The multiplicative inverse of b is the value of t after being mapped to Z_n.

Using Extended Euclidean algorithm to find Multiplicative inverse


```
r_1 \leftarrow n; \qquad r_2 \leftarrow b;
 t_1 \leftarrow 0; \quad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
     r \leftarrow r_1 - q \times r_2;
     r_1 \leftarrow r_2; r_2 \leftarrow r;
     t \leftarrow t_1 - q \times t_2;
    t_1 \leftarrow t_2; \qquad t_2 \leftarrow t;
   if (r_1 = 1) then b^{-1} \leftarrow t_1
```

b. Algorithm

Continued Example

Find the multiplicative inverse of 11 in \mathbb{Z}_{26} .

q	r_{I}	r_2	r	t_1 t_2	t
2	26	11	4	0 1	-2
2	11	4	3	1 -2	5
1	4	3	1	-2 5	- 7
3	3	1	0	5 -7	26
	1	0		-7 26	

The gcd (26, 11) is 1; the inverse of 11 is -7(=19).

Continued Example

Find the inverse of 12 in \mathbb{Z}_{26} .

q	r_I	r_2	r	t_1	t_2	t
2	26	12	2	0	1	-2
6	12	2	0	1	-2	13
	2	0		-2	13	

The gcd (26, 12) is 2; the inverse does not exist.

$\mathbf{Z}_{\mathbf{n}}$ and $\mathbf{Z}_{\mathbf{n}}^*$

$$\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\mathbf{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

$$\mathbf{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Note

- We need to use Zn when additive inverses are needed
- We need to use Zn* when multiplicative inverses are needed.

Two More Sets

- Cryptography often uses two more sets:
 - $\mathbf{Z}_{\mathbf{p}}$ and $\mathbf{Z}_{\mathbf{p}}^*$.
- The modulus in these two sets is a prime number.

$$Z_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

 $Z_{13} * = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

What are the uses of Additive and Multiplicative inverses in Cryptography?

- When a sender uses a key for encryption, he may choose an integer from the set Zn or Zn* depending on the algorithms used.
- If he chooses from Zn, the receiver has to find the additive inverse of that integer for getting the key for decryption.
- Similar logic applies for multiplicative inverse in Zn*.

MATRICES

- Matrices are widely used in Cryptography.
- A matrix is a linear array of $l \times m$ elements.

m columns

Examples of Matrices

	matrix	Square matrix		· ·		
	[12] Column	10	8	31		Ι
Row matrix	4	12	21	18	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \end{bmatrix}$
2 1 5 11	2	23	14	56	0 0	1 0

Operations and Relations Example

Addition and Subtraction

$$\begin{bmatrix} 12 & 4 & 4 \\ 11 & 12 & 30 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 1 \\ 3 & 2 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 2 & 3 \\ 8 & 10 & 20 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{A} + \mathbf{B}$$

$$\begin{bmatrix} -2 & 0 & -2 \\ -5 & -8 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 1 \\ 3 & 2 & 10 \end{bmatrix} - \begin{bmatrix} 7 & 2 & 3 \\ 8 & 10 & 20 \end{bmatrix}$$

$$\mathbf{D} = \mathbf{A} - \mathbf{B}$$

Multiplication of a row matrix by a column matrix

$$\begin{bmatrix} 53 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 7 \\ 8 \\ 2 \end{bmatrix}$$

In which:
$$53 = 5 \times 7 + 2 \times 8 + 1 \times 2$$

Continued Example

Multiplication of a 2 × 3 matrix by a 3 × 4 matrix

$$\begin{bmatrix} 52 & 18 & 14 & 9 \\ 41 & 21 & 22 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 1 \\ 3 & 2 & 4 \end{bmatrix} \times \begin{bmatrix} 7 & 3 & 2 & 1 \\ 8 & 0 & 0 & 2 \\ 1 & 3 & 4 & 0 \end{bmatrix}$$

Example

Scalar multiplication

$$\begin{bmatrix} 15 & 6 & 3 \\ 9 & 6 & 12 \end{bmatrix} = 3 \times \begin{bmatrix} 5 & 2 & 1 \\ 3 & 2 & 4 \end{bmatrix}$$

Inverse of a Square matrix

The inverse of a matrix A, denoted as A⁻¹ should hold the following relation:

$$A A^{-1} = I$$

where I is the identity matrix

Note

Multiplicative inverses are only defined for square matrices.

Inverse(Continued)

For
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,

the inverse can be found by using the formula:

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Residue Matrix and Inverse

- Cryptography uses <u>residue matrices</u>.
- Matrices where all elements are in \mathbb{Z}_n .
- A residue matrix has a multiplicative inverse if gcd(det(A), n) = 1.

Example

Find the inverse of a matrix
$$\begin{pmatrix} 7 & 3 \\ 1 & 2 \end{pmatrix}$$
 mod 26

The inverse of the given matrix
$$\begin{pmatrix} 12 & 21 \\ 7 & 3 \end{pmatrix} \mod 26$$