

방사시간

구분 전역방출학		출방식		국소방	출방식	
소화설	[日]	일반건축물	· 위험물제조소		일반건축물	위험물제조소
	할로겐 10초 이내 화합물 30초 이내		10초 이내			
분말		30초 이내		1 11		30초
CO2	표면	1분 이내	60 2	olul	30초 이내	이내
COZ	심부	7분 이내	60초 이내			
	참고					
청정소화약제			10s			
불활성가스				60s		
포헤드, 고정포방출구, 공기압축		압축포		10분		
보조포소화전				20분		

표면화재 : 가연성 액체, 가연성 가스

심부화재 : 종이, 목재, 석탄, 섬유류, 합성수지류

분말 소화설비 암기

1) 분말소화설비 약제량(전역방출방식) + 주성분

약제종별	약제량	개구부가산량
제1종 분말	$0.6~\mathrm{kg/}m^3$	4.5 kg/ m^2
제2 · 3종 분말	$0.36~\mathrm{kg}/m^3$	$2.7~\mathrm{kg}/m^2$
제4종 분말	$0.24~\mathrm{kg/}m^3$	$1.8 \text{ kg/}m^2$

약제종별	주성분
제1종 분말	탄산수소나트륨($NaHCO_3$)
제2종 분말	탄산수소칼륨(<i>KHCO</i> ₃)
제3종 분말	제 1 인산암모늄($\mathit{NH}_4\mathit{H}_2\mathit{PO}_4$)
제4종 분말	탄산수소칼륨 + 요소
71110 22	$(KHCO_3 + (NH_2)_2CO)$

2) 분말소화설비 기동용기 가스량

구분	가압 용 가스	축압 용 가스
질소가스	40 L/kg	10 L/kg
이산화탄소	20 g/kg + 배관의 청소용에 필요한 양	20 g/kg + 배관의 청소용에 필요한 양

3)저장용기의 내용적(충전비)

약제종별	내용적[L/kg]
제1종 분말	0.8
제2 · 3종 분말 (차고 · 주차장)	1
제4종 분말	1.25

분말 소화설비 공식-1

1) 소화약제량

공식	소화약제량[kg] (=최소 소요량, 분말저장량, 최소 양)
기본식	방호구역 체적 $\left[m^3\right]$ \times 약제량 $\left[kg/m^3\right]$ $+$ 개구부면적 $\left[m^2\right]$ \times 개구부 가산량 $\left[kg/m^2\right]$
조건1	자동폐쇄장치가 설치된 경우 개구부면적 X 개구부 가산량 무시
조건2	방호구역에 기둥, 보가 있는 경우 방호구역체적 - 보&기둥 체적

1-1) 가압용 가스의 최소필요량

공식	가압용 가스의 최소필요량 [L]
기본식	가압용가스 $[L]=$ 소화약제량 $[kg] imes$ 사용가스설치기준 $[L/kg]$ 최소필요량

2) 용기수

공식	약제 저장용기(병) 수 (절상)	
기본식	용기수 = $\frac{$ 소화약제량 $[kg]}{1병당저장량(충전량)[kg]}$	

3) 헤드수

공식	헤드수 (절상)
기본식	헤드수 $=\frac{$ 소화약제량 $[kg]}{$ 방출률 $[kg/s] \times$ 방사시간 $[s]$
헤드당 표준방사량	헤드수 $=1$ 병당저장량 $[kg] imes$ 병수 헤드 1 개의표준방사량 $[kg]$
방출구면적 포함식	헤드수 $=$ 1 병당저장량 $[kg] \times$ 병수 방출률 $[kg/mm^2 \cdot s] \times$ 방사시간 $[s] \times$ 방출구면적 $[mm^2]$

3-1) 헤드 1개의 방사량

공식	헤드 1개의 방사량[kg/min]
기본식	헤드 1 개당 $=$ 병수 $ imes 1$ 병당저장량 $[kg]$ 방사량 $=$ 해드수 $ imes$ 약제방출시간 $[min]$ $[kg/min]$
	방출률이 없을 때 이 식으로 헤드수 구할수 있음

4)충전비

공식	충전비 [L/kg]
기본식	$C = \frac{V \colon H용적[l]}{G \colon (1 B F F F F F F)[kg]}$

5) 전세방사헤드의 오리피스 면적

공식	전체방사헤드의 오리피스 면적[㎜]
기본식	전체헤드 오리피스면적 = 헤드개수 $ imes$ 헤드 1 개의오리피스면적 $[mm^2]$

분말 소화설비 공식-2

6) 약제의 유량속도(선택밸브 직후의 유량)

공식	약제의 유량속도 , 선택밸브 직후의 유량
기본식	유량속도 $= 1$ 병당저장량 $[kg] imes$ 병수 $[kg/s]$
이해	해당 방호구역의 유량

6-1) 개방밸브(용기밸브) 직후의 유량

공식	개방밸브(용기밸브) 직후의 유량
기본식	개방밸브직후의유량 $=\frac{1$ 병당저장량 $[kg]}{$ 방사시간 $[s]$
이해	1병이 개방된 이후 유량

1) CO2 약제량 (전역방출방식)

방호대상물	약제량	개구부가산량
❶전기설비 (전기실·케이블실)	$1.3 \mathrm{kg}/m^3$	
❷전기설비(55 <i>m</i> ³ 미만)	$1.6 \mathrm{kg}/m^3$	
❸서고, 박물관, 목재가공품창고전자제품 창고	$2.0 \mathrm{kg}/m^3$	$10 \mathrm{kg}/m^2$
◆ 석탄창고, 면화류창고고무류, 모피창고, 집진설비	$2.7 \mathrm{kg}/m^3$	

1-1) CO2 표면화재의 약제량 (전역방출방식)

방호구역 체적	약제량	개구부가산량	최소저장량
45 m³ 미만	$1 \mathrm{kg}/m^3$		45kg
45 ~ 150 m³ 미만	$0.9 \mathrm{kg}/m^3$	F1 - / 2	43Kg
150 ~ 1450 ㎡ 미만	$0.8 \mathrm{kg}/m^3$	$5 \text{kg/}m^2$	135kg
1450 m³ 이상	$0.75 \mathrm{kg}/m^3$		1125kg

*방호구역 체적 x 약제량 = 최소 저장량 이하면 최소 저장량 + (개구부면적 x 개구부가산량)

2) CO2 약제량 (국소방출방식) [kg]

특정소방대상물	고압식	저압식
● 연소면 한정 및	방호대상물 표면적 $[m^2]$	방호대상물 표면적 $[m^2]$
비산우려가 없는 경우 ● 윗면 개방용기	$ imes 13 kg/m^2 imes 1.4$	$ imes 13kg/m^2 imes 1.1$
*위험물저장창고(제4류)	[kg]	[kg]
	방호공간 체적 $[m^3]$	방호공간 체적 $[m^3]$
● 기타	$\times (8-6\frac{a}{A}) \times 1.4$	$\times (8-6\frac{a}{A}) \times 1.1$
	[kg]	[kg]

방호대상물 표면적 : 가로 X 세로

a : 방호대상물 주위에 설치된 벽면적의 합계 $[m^2]$

 A : 방호공간의 벽면적의 합계 $[m^2]$

CO2 소화설비 암기-1

	방호공간 체적	$3.2 \times 2.2 \times 2.1 = 14.784m^3$
계산	a	0 (벽이 없거나 벽에 대한 조건이 없으므로 0이다)
	A	$(3.2 \times 2.1) \times 2 + (2.2 \times 2.1) \times 2 = 22.68m^2$

한끝소 교재

해당문제 : 성안당 교재 기준 2012년 2회 12번 문제

	방호공간 체적	$2 \times 1 \times 2.1 = 4.2m^3$
계산	a	$(2 \times 1.5) \times 2 + (1 \times 1.5) \times 2 = 9m^2$
	A	$(2 \times 2.1) \times 2 + (1 \times 2.1) \times 2 = 12.6m^2$

해당문제 : 성안당 교재 기준 2010년 2회 2번 문제

3) CO2 충전비

기동용기	저장용기
7.70\x1 · 1 E olx1	1 저압식 : 1.1 ~1.4 이하
고·저압식 : 1.5 이상	② 고압식 : 1.5 ~1.9 이하

4) 내압시험압력 및 안정장치의 작동압력

구분	기준		
기동용기의 내압시험 압력	25Mpa o	25Mpa 이상	
지자 2 기이 내아 가침아려	고압식	25Mpa o	상
저장용기의 내압시험압력	저압식	3.5Mpa ⁰	기상
기동용기의 안전장치 작동압력	내압시험압력의 0.8배 ~ 내압시험압력 이하		
저장용기와 선택밸브 또는 개폐밸브의 안전장치 작동압력	내압시험의 압력의 0.8배		
게레베니 ㅠㄴ 서태베니	고압식	1차측	4Mpa
개폐밸브 또는 선택밸브	工具具	2차측	2Mpa
의 배관부속 시험압력	저압식	1·2차측 :	2Mpa

5) CO2 소화설비 21℃에서 분사헤드의 방사압력

고압식	저압식
2.1 M pa 이상	1.05Mpa 이상

6) 이산화탄소 소화설비의 배관

강관	고압식	압력배관용 탄소강관 스케줄 80이상
	저압식	압력배관용 탄소강관 스케줄 40이상
드리	고압식	16.5Mpa 이상
동관	저압식	3.75Mpa 이상

***아연도금** 등으로 **방식처리**된 것을 사용할 것

7) 심부화재 적용대상

- 전기실, 통신기기실, 변전실
- 4 서고, 박물관, 전자제품창고, 목재가공품창고
- ❸ 석탄창고, 면화류창고, 고무류, 모피창고, 집진설비

8) 표면화재 적용대상

● 발전기실● 가연성 가스② 축전지실● 가연성 액체

CO2 소화설비 암기-2

1) 소화약제량

공식	소화약제량[kg] (=최소 소요량, 최소 양)
기본식	방호구역 체적 $\left[m^3 ight]$ $ extbf{x}$ 약제량 $\left[ext{kg}/m^3 ight]$ $+$ 개구부면적 $\left[m^2 ight]$ $ extbf{x}$ 개구부 가산량 $\left[ext{kg}/m^2 ight]$
조건1	자동폐쇄장치가 설치된 경우 개구부면적 X 개구부 가산량 무시
조건2	보정계수가 나오면 약제량 뒤에 곱하라!
조건3	방출계수 = 약제량 (단위가 같다!!!)

2) 용기수

공식	약제 저장용기(병) 수 (절상)			
기본식	용기수 $=$ 소화약제량 $[kg]$ 용기의 약제용량 $[kg]$			

3) 헤드수

공식	헤드수 (절상)			
기본식	헤드수 $=$ $\frac{$ 소화약제량 $[kg]}{$ 방출률 $[kg/s] \times$ 방사시간 $[s]$			
헤드당 표준방사량	헤드수 $=1$ 병당저장량 $[kg] imes$ 병수 헤드 1 개의 표준방사량 $[kg]$			
방출구면적 포함식	헤드수 $=$ 1 병당저장량 $[kg] \times$ 병수 방출률 $[kg/mm^2 \cdot s] \times$ 방사시간 $[s] \times$ 방출구면적 $[mm^2]$			

3-1) 헤드 1개의 방사량

공식	헤드 1개의 방사량[kg/s]			
기본식	헤드 1 개당 $=$ $$ 병수 $\times 1$ 병당저장량 $[kg]$ $[kg/s]$ 행사량 $=$ $\frac{$ 해드수 \times 약제방출시간 $[s]$			
	방출률이 없을 때 이 식으로 헤드수 구할수 있음			
방출구면적	방출구면적 $[mm^2]=rac{$ 방출헤드 1 개의 유량 $[kg/s]$ 방출률 $[kg/mm^2\cdot s] imes$ 헤드수			
구하는식 	방출구면적 구할 때 헤드수 없으면 무시			

CO2 소화설비 공식

4) 충전비

공식	충전비 [L/kg]
기본식	$C = \frac{V : 내용적[l]}{G : (1병당저장량(충전량)[kg]}$

5) 약제의 유량속도,선택밸브 직후의 유량, 방호구역별 개방 직후의 유량

공식	약제의 유량속도 , 선택밸브 직후의 유량
07	방호구역별 개방 직후의 유량
기본식	유량속도 $=$ $\frac{1병당저장량[kg] \times 병수}{방사시간[s]}[kg/s]$
	방사되는 전체의 유량 ÷ 방사시간

5-1) 개방밸브(용기밸브) 직후의 유량

공식	개방밸브(용기밸브) 직후의 유량				
기본식	개방밸브직후의유량 $=$ $\frac{1병당저장량[kg]}{$ 방사시간[s]				

6) 전세방사헤드의 오리피스 면적

공식	전체방사헤드의 오리피스 면적[㎜]
기본식	전체헤드 오리피스면적 = 헤드개수 \times 헤드 1 개의오리피스면적 $[mm^2]$

7)이상기체 방정식

공식	이상기체 방정식				
	$PV = nRT = \frac{m}{M}RT$				
기본식	P : 기압 [atm] V : 체적(<mark>방출가스량</mark>) [㎡] m : 질량[kg] n: 몰수(m/M) kmol]	R : 0.082atm · m³/kmol · K T : 절대온도 (273+℃) M : 분자량(co2 = 44)			

8)002 농도

공식	CO2 농도 [%]			
기본식	CO_2 농도 = $\dfrac{$ 방출가스량}{ 방호구역체적 + 방출가스량} imes 100 CO_2 농도 = $\dfrac{21-O_2}{21} imes 100$			

8-1)C02 방출가스량

공식	CO2 방출가스량 [㎡]			
기본식	CO_2 방출가스량 $[m^3]=rac{21-O_2}{O_2} imes$ 방호구역체적 $[m^3]$ $O_2:O_2$ 의 농도 $[\%]$			

8-1)C02 약제저장량(방사량)

공식	약제저장량(방사량) [kg]			
기본식	약제저장량(방사량) $[kg] = rac{질량(소화약제량)[kg]}{순도}$			
조건	조건에 순도가 있을 경우 계산한 소화약제량에 순도를 나누어 준다			

할로겐 소화설비 암기

1)할론 1301 약제량

방호대상물	소화약제량		개구부가산량
0조네 0 된	설계농도5%	설계농도10%	/#ㅜㅜ/1건경
차고·주차장·전기실·전산실· 통신기기실	$0.32 \text{ kg/}m^3$	$0.64 \mathrm{kg}/m^3$	$2.4 \text{ kg/}m^2$
고무류·면화류	$0.52 \text{ kg/}m^3$		$3.9 \text{ kg/}m^2$

활성계면활성제

1) 발포배율식(팽창비)

공식	활성계면활성제 발포배율 (팽창비)
기비시	● 발포배율(팽창비) = 내용적(용량) 전체중량-빈시료용기의중량
/ 匚 ㄱ	●발포배율(팽창비) = 방출된포의체적[L] 방출전포수용액의체적[L]

2) 수용액의 양

공식	활성계면활성제 수용액의양[L]
기본식	수용액의양 $[L] = $ 방출된포체적 $[L]$ 발포배율 $($ 팽창비 $)$
방출된	방출된포체적[<i>L</i>]=수용액의양[<i>L</i>]×발포배율(팽창비)
포체적	[L]

3) 수원의 양

공식	활성계면활성제 수원의양[L]
	수원의양 $[L]$ =포수용액의체적 $[L]$ $ imes$ 물의비율
기본식	물의비율 예) 1-약제농도비율
	약제농도 1.5%형: 1.5÷100 = 0.015

4) 원액의 양

공식	활성계면활성제 원액의양[L]
기본식	원액의양 $[L]$ =포수용액의체적 $[L]$ $ imes$ 약제농도
	예) 약제농도 1.5%형 1.5÷100 = 0.015

할로겐 소화설비 공식

1) 소화약제량

공식	소화약제량[kg] (=최소 소요량, 분말저장량, 최소 양)
기본식	방호구역 체적 $\left[m^3 ight]$ $ ext{x}$ 약제량 $\left[ext{kg}/m^3 ight]$ $+$ 개구부면적 $\left[m^2 ight]$ $ ext{x}$ 개구부 가산량 $\left[ext{kg}/m^2 ight]$
조건	자동폐쇄장치가 설치된 경우 개구부면적 X 개구부 가산량 무시

2) 용기수

공식	약제 저장용기(병) 수 (절상)
기본식	용기수 $=$ $\frac{$ 소화약제량 $[kg]}{$ 용기의약제용량 $[kg]}$

3) 방출노즐당 설계방출량

공식	방출노즐당 설계방출량 [kg/s]
기본식	방출노즐당 $=$ $\frac{8기수 \times 1본당약제량[kg]}{헤드수 \times 약제방출시간[s]}$ $[kg/s]$

4) 노즐 방사압력

공식	노즐 방사압력 [Mpa]
기본식	약제 저장압력 - (초기압력강하 + 고저에 따른 압력손실 + A~B간 압력손실 + B~C간 압력손실)

5) 분구면적

공식	분구면적 [cm²]
기본식	$=rac{ heta heta [kg/s]}{ heta ^2 heta [kg/cm^2 \cdot s] imes 헤드수} [cm^2]$
	*헤드수 = 오리피스 구멍수

6) 용기집합실의 저장용기수

공식	용기집합실의 저장용기수
기본식	각 방호구역의 저장용기수 중 가장 많은 것 + 별도 독립방식

6-1) 적합여부

공식	적합여부
기본식	배관내용적 [<i>L</i>] 약제체적[<i>L</i>]
	1.5배 이상이면 별도 독립 방식

6-2) 배관내용적

공식	배관내용적[L]
	배관내용적 [L] =
기본식	각실에 대한 배관내용적[L]+ 할론집합관의 내용적[L]
	A실에 대한 할론집합관이라도 전실에 다 적용

6-3) 약체체적

공식	약제체적[L]
기본식	1병당 약제저장량[kg] X 병수 X 비체적[㎡/kg] $V_s = rac{1}{ ho} \left[m^3/kg ight]$
	$\it L$ 로 환산할것!

할로겐 화합물소화설비 (청정소화약제)

1) 청정소화설비 약제량

공식	청정소화약제 약제량(무게) [kg]
	$W = \frac{V}{S} \times \left(\frac{C}{100 - C}\right) \times L$
기본식	W : 소화약제의 무게 [Kg] V : 방호구역의 체적 [㎡] S : 소화약제별 선형상수(K1+K2t)[㎡/Kg] C : 체적에 따른 소화약제의 설계농도 t : 방호구역의 최소 예상온도 [℃] L : 길이 (길이가 있는 경우 곱할 것!)

	공식	선형상수 (S) [㎡/kg]
J	l본식	$S\!=K_1\!+\!K_2\! imes\!t\;[exttt{m}^{\!\scriptscriptstyle 3}/kg]$ $t:$ 방호구역의 최소 예상온도 $[exttt{C}]$

공식	설계농도 (C) [%]
기본식	C= 소화농도[%] × 안전계수 안전계수 : A· C급 : 1.2, B급 : 1.3

1-1) 1병당 저장량 [kg]

공식	1병당 저장량 [kg]
기본식	1 병당저장량 $[kg]=$ 내용적 $[L] imes$ 충전밀도 $[kg/ ext{m}^3]$
	단위 맞춰서 계산할것

1-2) 용기수

공식	약제 저장용기(병) 수 (절상)
기본식	용기수 $=\frac{$ 소화약제량 $[kg]}{1병당저장량[kg]}$

1-3) 약제량 방사시 유량

공식	약제량 방사시 유량[kg/s]
기본식	$Q = rac{8 기수 imes 1 병당저장량[kg] imes 0.95}{10s} \ [kg/s]$ 10초 이내에 95%이상 방출되야 함

2) 헤드수

공식	헤드수 (절상)
기본식	헤드수 $=\frac{$ 소화약제량 $[kg]}{$ 방출률 $[kg/s] \times$ 방사시간 $[s]$
헤드당 표준방사량	헤드수 $=1$ 병당저장량 $[kg] imes$ 병수 헤드 1 개의표준방사량 $[kg]$
방출구면적 포함식	헤드수 $=$ 1 병당저장량 $[kg] \times$ 병수 방출률 $[kg/mm^2 \cdot s] \times$ 방사시간 $[s] \times$ 방출구면적 $[mm^2]$

2-1) 헤드 1개의 방사량

공식	헤드 1개의 방사량[kg/s]
기본식	헤드수 = $\frac{1 \mbox{병당 저장량}[kg] \times \mbox{병수}}{\mbox{방출률}[kg/mm^2 \cdot s] \times \mbox{방사시간}[s] \times \mbox{방출구면적}[mm^2]}$
	헤드 1 개당 $=$ $\frac{ 병수 \times 1 병당 저장량[kg]}{ 해드수 \times 약제방출시간[s]}[kg/s]$
	방출률이 없을 때 이 식으로 헤드수 구할수 있음
방출구면적 구하는식	방출구면적 $[mm^2]=rac{$ 방출헤드 1 개의 유량 $[kg/s]$ 방출률 $[kg/mm^2\cdot s] imes$ 헤드수
	방출구면적 구할 때 헤드수 없으면 무시

할로겐 화합물소화설비 (불활성가스)

1) 불활성 가스 약제량

공식	불활성 가스 약제량(부피) [㎡]
기본식	$X=2.303 \frac{V_s}{S} imes \log_{10}\left(\frac{100}{(100-C)}\right) imes V$ X : 공간체적당 더해진 소화약제의 부피 [m] S : 소화약제별 선형상수(K1+K2t)[m/Kg] C : 체적에 따른 소화약제의 설계농도 [%] Vs : 20° C에서 소화약제의 비체적 [m/kg] (20° C 고정값) t : 방호구역의 최소 예상온도 [°C] V:방호구역체적(체적이 있는 경우 곱할 것!)

공식	비체적 (Vs) [㎡/kg]
기본식	$Vs = K_1 + K_2 imes t \; [ext{m}^3/kg] \ t: 20 °C \; (고정값)$

1-1) 1병당 저장량

공식	1병당 저장량 [㎡]
기본식	1 병당저장량 $[m^3]=$ 내용적 $[L] imes rac{}{ar{x}}$ 중전압력 $[kpa]$ 표준대기압 $(101.325kpa)$
조건	조건에서 ㎡/병이 주어질 경우 그걸로 할것

1-2) 약제량 방사시 유량

공식	약제량 방사시 유량[kg/s]	
기본식	$Q = \frac{8기수 \times 1 병당저장량[kg] \times 0.95}{60s} [kg/s]$	

포 소화설비 암기

1) 포소화설비 약제량

소방대상물	포소화약제 종류	방사량
	수성막포	3.7 L/m² · 분
차고, 주차장 항공기 격납고	단백포	6.5 L/m² · 분
	활성계면활성제포	8.0 L/m² · 분
E * 31010	수성막포	
특수 가연물 저장·취급장소	단백포	6.5 L/m² · 분
Ло пнож	활성계면활성제포	

2) 팽창비(=발포배율)

팽창비	
① 팽창비 = 최종발생한포체적 원래포수용액체적	
②팽창비 = $$ 방출된포의체적 $[\ell]$ 방출전포수용액의체적 $[\ell]$	
③팽창비 = <u>내용적(용량)</u> 전체중량 — 빈사료용기의중량	

2-1) 고발포 저발포 팽창비율

구분	팽창비 범위	포방출구의 종류	비고
저발포	20 이하	포헤드	
고발포	80 ~ 1000 미만	고발포용 고정포방출구	

3) 고발포 저발포 포소화약제

저발포용 소화약제(3%, 6%형)	고발포용 소화약제(1%,1.5%, 2%)	
1 단백포 소화약제		
❷ 수성막포 소화약제		
❸ 내알코올 소화약제	합성계면활성제포 소화약제	
④ 불화단백포 소화약제		
6 합성계면활성제포 소화약제		

4) 고발포 방출구의 종류

탱크의 종류	포 방출구
고정 지붕구조 (원추형 루프탱크, 콘루프탱크)	I,Ⅱ,Ⅲ,Ⅳ형 방출구
부상덮개부착 고정지붕구조	Ⅱ형 방출구
부상지붕구조(플루팅 루프 탱크)	특형 방출구

포 소화설비 공식-1

1) 포소화설비 기본식 (농도에 따라 달라진다) 1-1) 펌프의 양정

공식	고정포 방출방식	
	$Q = A \times Q_1 \times T \times S[\ell]$	
기본식	Q : 포소화약제의 양 [L] A : 탱크의 액표면적 [m²]	
	Q1 : 단위포 소화수용액의 양 [L/m²·min] T: 방사시간 [min]	
	S : 포소화약제의 사용농도	
	(Q1이 방출률로 나올수도 있음)	
변형식	$Q = A \times Q_1 \times S[\ell/\min]$	
구분	구할 단위에 따라 식을 선택한다.	
	Q값의 용도는 S농도에 따라 달라진다. ★	
조건1	플루팅 탱크 일 경우 A는 $\dfrac{\pi}{4}(D_1^2\!-\!D_2^2)$	
	D1 : 플루팅 탱크의 지름	
	D2 : 플루팅 탱크의 지름 - (굽도리판 간격 X 2)	

공식	보조소화전
기본식	$Q\!=\!N\! imes S\! imes 400L/ ext{min} imes 20 ext{min} \left[\ell ight]$ Q : 포소화약제의 양 [L]
	N : 호스접결구 수 (최대 3개) *쌍구형은 소화전 1개당 2개 S : 포소화약제의 사용농도
변형식	$Q = N \times S \times 400 L/\min\left[\ell/\min\right]$
구분	구할 단위에 따라 식을 선택한다. Q값의 용도는 S농도에 따라 달라진다.

공식	HH.	관보정량
기본식	$Q = A \times L \times$	$S imes 1000 L/\mathrm{m}^{\scriptscriptstyle 3}[\ell]$
	Q : 포소화약제의 양 [L]	L : 배관길이[m]
	A : 탱크의 액표면적 [m²]	S : 포소화약제의 사용농도
주의!!	내경이 75mm 초과시	시 에만 이식을 적용한다!!
조건2		방에는 배관보정량 제외 양 구할 때 제외

공식	펌프의 양정
기본식	$H\!=h_1+h_2+h_3+h_4$ h1 : 방출구의 설계압력 환산수두 또는 노즐선단의 방사압력 환산수두[m]
	h2 : 배관의 마찰손실수두[m] h3 : 소방호스의 마찰손실수두 [m] h4 : 낙차 [m]
조건	소방호스 마찰손실수두 없으면 생략

1-2) (S) 농도 구분

공식	농도구분	
수용액의양 (약제+물량)	S= 1	가압송수장치(펌프)
수원의 양 (물량)	S = 1- 사용농도	수원(저수량)
원액의 양 (약제량)	사용농도	포저장탱크용량

2) 분당 토출량

공식	분당토출량[L/min]
기본식	$Q = rac{ au + 8$ 액의양 $[L]}{$ 방사시간 $[\min]$
조건	펌프, 라인, 프레져 프로포셔너방식, 압축공기포 믹싱챔퍼방식만 수용액의 양

3) 방유제와 탱크 측면의 이격거리

탱크지름		이격거리
	15m 미만	탱크높이의 $\dfrac{1}{3}$ 이상
	15m 이상	탱크높이의 $\frac{1}{2}$ 이상
조건	탱크높이 산정시 기초높이 포함 △ 모양 미포함	

4) 탱크용량

공식	탱크용량[㎡]
기본식	Q = 단면적 $ imes$ 탱크높이 $(기초높이제외)[m^3]$

포 소화설비 공식-2

5) 지정수량 배수

공식	지정수량 배수
기본식	지정수량배수 $=$ $\frac{탱크용량[m^3]}{$ 지정수량[L]
조건	경유 지정수량 1000L, 단위 맞춰서 계산

6) 방사시간

공식	방사시간[min]
기본식	$T = rac{\mathbb{E} \cdot \mathbb{E} \cdot \mathbb{E} \left[L/m^2 \cdot \min \right]}{\mathbb{E} \cdot \mathbb{E} \cdot \mathbb{E} \left[L/m^2 \cdot \min \right]}$ [min]
조건	휘발유는 인하점 21°C 미만 경유는 인하점 21~70°C 미만

6-1) 포 방사시간

포헤드 · 고정포방출구 압축공기포소화설비	물분무소화설비	
10분 이상	20분 이상	

7) 프레져 프로포셔너 방식 유량범위

공식	유량범위 (50 ~200%)
최소	= 가압송수장치유량[<i>L</i> /min] × 0.5
유량	- / 音号子のAffの[L/min] × 0.5
최대	= 가압송수장치유량[<i>L</i> /min] ×2
유량	- / 「自るするへずる[L/ min] × 2

8)포헤드 헤드 배치

8-1)헤드설치 개수

헤드 종류	설치개수
물분무 헤드	<u>1 m³</u> 기
포워터 스프링클러 헤드	<u>8㎡</u> 기
포헤드	9m³ 기
화재감지용 헤드	<u>20</u> m³ 7}

*정방향, 장방향등의 배치방식이 주어지지 않은 경우 이 기준으로 계산할 것!

포소화약제의 흔합장치

펌프 프로포셔너 방식

펌프의 토출관과 흡입과 사이의 배관 도중에 설치한 흡입기에 펌프에서 토출된 물의 일부를 보내고 <mark>농도조정밸브</mark>에서 조정된 포소화약제의 필요량을 포소화약제탱크에서 펌프 흡입측으로 보내어 이를 혼합하는 방식으로 pump proportioner type 과 suction proportioner type이 있다.

Foot valve

설명

프레져 프로포셔너방식

프레져 프로포셔너 방식

점 범포기의 중간에 설치된 <mark>벤투리관</mark>의 벤투리작용과 펌프가압수의 포소화약제 저장탱크에 대한 압력에 의하여 포소화약제를 흡입 · 혼합하는 방식으로 <mark>압송식</mark>과 <mark>압입식</mark>이 있다.

라인 프로포셔너 방식

설명 펌프와 발포기의 중간에 설치된 <mark>벤투리관</mark>의 벤투리작용에 의하여 포소화약제를 흡입·혼합하는 방식

Foot valve

■프레져사이드 프로포셔너방식 ■

프레져사이드 프로포셔너 방식

설명 펌프의 토출관에 압입기를 설치하여 포소화약제 압입용 펌프로 포소화약제를 압입시켜 혼합하는 방식

물분무 소화설비 암기

1) 물분무소화설비 수원

소방대상물	토출량	비고
● <mark>콘</mark>베이어밸브 절연유봉입변압기	10 L/min·m²	
② 특수가연물	10 L/min·m²	최소50㎡
3 케이블트레이 · 덕트	1 <mark>2</mark> L/min·m²	
④ 차고 · 주차장	2 <mark>0</mark> L/min·m²	최소50㎡

2) 물분무소화설비 이격거리

전압	거리
66 KV 이하	70cm 이상
67 KV 초과 77 KV 이하	80cm 이상
78 KV 초과 110 KV 이하	110cm 이상
111 KV 초과 154 KV 이하	150cm 이상
155 KV 초과 181 KV 이하	180cm 이상
181 KV 초과 220 KV 이하	210cm 이상
220 KV 초과 275 KV 이하	260cm 이상

3) 물분무소화설비 배수설비 설치기준

물분무 압력수조 방식

3) 배수설비

- 10cm 이상의 <mark>경계턱</mark>으로 배수구 설치 (차량이 주차하는 곳)
- ❷ 40m 이하마다 기름분리장치 설치
- ③ 차량이 주차하는 바닥은 $\frac{2}{100}$ 이상의 기울기 유지
- 배수설비는 가압송수장치의 최대송수능력의 수량을 유효하게 배수할수 있는 크기 및 기울기 일것

4) 물분무소화설비 압력수조 방식

	물분무	압력수조	방식
$P = P_1 + P_2 + P_3$	3		

P: 필요한 압력 [MPa]

P1 : 분무헤드의 설계압력 [MPa]P2 : 배관의 마찰손실수두압 [MPa]P3 : 낙차의 환산수두압 [MPa]

5) 물분무소화설비 바닥면적

소방대상물	바닥면적
① 콘베이어밸브	벨트부분의 바닥면적
	표면적을 합한 면적
❷ 절연유봉입변압기	앞면 + 뒷면 + (옆면x 2) + 윗면
	즉, 바닥면적을 제외한 면적의 합
❸ 특 수가연물	최대방수구역의 바닥면적 기준
④ 케이블트레이 · 덕트	투영된 바닥면적
6 차고 · 주차장	최대방수구역의 바닥면적 기준

물분무 소화설비 공식

1) 최소수원의 양[㎡]

공식	수원의 양[㎡] (=소화수의 저장량)
기본식	Q = 바닥면적 $[m^2] imes$ 토출량 $[L/{ m min} \cdot m^2] imes 20{ m min}$

2) 소화펌프의 최소토출량[L/min]

공식	토출량[L/min]
기본식	Q = 바닥면적 $[m^2] imes$ 토출량 $[L/{ m min} m{\cdot} m^2]$
조건	절입유 봉입변압기 A 는 바닥면적을 제외한 표면적을 합한 면적 앞면 + 뒷면 + (옆면x 2) + 윗면

2-1) 노즐 1개당 필요한 최소유량[L/min]

공식	노즐 1개당 필요한 최소유량[L/min]
기본식	Q = $\dfrac{$ 토출량 $[L/\min]}{$ 노즐수

스프링클러 · 옥내 · 옥외 주요사항

구분	드렌처 설비	스프링클러설비	소화용수설비	옥내소화전설비	옥외소화전설비	포소화설비 물분무소화설비 연결송수관설비
방수압	0.1 MPa 이상	0.1 ~ 1.2 MPa 이하	0.15MPa 이상	<mark>0.17</mark> ~0.7 MPa 이하	0.25 ~ 0.7 MPa 이하	0.35MPa 이상
방수량	80L/min이상	80L/min이상	800L/min이상 (가압송수장치 설치)	130L/min이상 (최대5개)	350L/min이상 (최대2개)	75L/min이상 (포워터 SP)
방수구경 (앵글밸브)				40mm	65mm	
노즐구경 (관창구경)				13mm	19mm	

1) 폐쇄형 헤드의 기준개수

	헤드기준 개수		
지하가 · 지하	지하가 · 지하역사 (지하철 대합실)		
11층 이상		30	
	공장,창고(특수가연물)		
10층 이하	슈퍼마켓, 도·소매시장, <mark>복합건축물</mark> ,	30	
10층 이하(부	20		
10층 이하(부	10		

2) 폐쇄형 스프링클러 헤드 수평거리

설치장소	설치기준
무대부 · 특수가연물	1.7m 이하
기타구조	2.1m 이하
내화구조	2.3m) ត
렉크식 창고 (10m 초과)	2.5m 이하
아파트	3.2m 이하

3) 스프링클러 헤드의 배치기준

설치장소의 최고 주위온도	표시온도	
39℃ 미만	79℃ 미만	
39~ 64°C 미만	79~121℃ 미만	
64~106°C 미만	121~162℃ 미만	
106℃ 이상	162℃ 이상	

3-1) 헤드의 작동온도 시험

공식	헤드의 작동시험범위	
기본식	= 헤드의표시온도 × (0.97 ~ 1.03)	

4) 시험밸브 설치 목적

시험밸브 설치 목적			
유수검지장치(유수경보장치) 기능점검	❷ 정적 방수압 및 방수량 확인		
◆ 수신반의 화재등 및 지구등 점등 확인	❸ 음향경보장치 작동 확인		
6 펌프의 자동기동 확인			

5) 배관의 구경

교차배관	40mm이상
수직배수배관	50mm이상

* 배관특집 참조

스프링클러 암기

6) 헤드의 배치

헤드 배치 1 정방향(정사각형)

 $S = 2R\cos 45^{\circ}, \quad L = S$

 S : 수평에드 간격
 R : 수평거리

 ② 장방향(직사각형)

$$S = \sqrt{4R^2 - L^2}, \quad S' = 2R$$
$$L = 2R\cos\theta$$

S : 수평헤드 간격

R : 수평거리

L : 배관 간격 S': 대각선 헤드 간격

3 지그재그형

 $S = 2R\cos 30^{\circ}$

S : 수평헤드 간격 R : 수평거리

6-1) 장방향 헤드 설치개념

 $P_1 = 0.1 Mpa$ $Q_1 = 80\ell/\min$

$$\begin{aligned} P_7 &= P_1 + \Delta P_2 + \Delta P_4 + \Delta P_6 \\ Q_7 &= K\sqrt{10 \times (P_1 + \Delta P_2 + \Delta P_4 + \Delta P_6)} \end{aligned}$$

12/29

$$\begin{split} P_5 &= P_1 + \Delta P_2 + \Delta P_4 \\ Q_5 &= K\sqrt{10\times (P_1 + \Delta P_2 + \Delta P_4)} \end{split}$$

 $P_3 = P_1 + \Delta P_2$ $Q_3 = K\sqrt{10 \times (P_1 + \Delta P_2)}$

스프링클러 암기

7) 조기반응형 헤드 반응시간지수 (RTI)값 (스프링클러 감도특성에 따른 분류)

구분	RTI값
조기반응 (fast response)	$50(m \cdot s)^{1/2}$ ্বট
특수반응 (special response)	$51 \sim 80 (m \cdot s)^{1/2}$
표준반응 (standard response)	$81 \sim 350 (m \cdot s)^{1/2}$ ্ ই

8) 방수계수 값

호칭구경	K
10A	57
15A(표준헤드)	80
20A	115

8) (2018년 1회) 보와 가장 가까운 스프링클러헤드 (신출)

스프링클러헤드의 반사판 중심과	스프링클러헤드의 반사판 높이와
보의 수평거리	보의 하단 높이의 수직거리
0.75m 미만	보의 하단보다 낮을 것
0.75m 이상 1m 미만	0.1m 미만일 것
1m 이상 1.5m 미만	0.15m 미만일 것
1.5m 이상	0.3m 미만일 것

스프링클러 공식

1) 스프링클러설비의 펌프의 토출량

공식	펌프의 토출량
기본식	$Q=80L/\mathrm{min} imes N~[\ell/\mathrm{min}]$ N: 폐쇄형 헤드의 기준개수 (설치개수가 기준개수보다 적으면 그 설치개수)
조건	80L/min은 표준방사량, 즉 말단헤드의 최소 방사량이다 ★ 조건에서 따로 방사량이 주어진다면 그값으로 대체

2) 수원의 저수량

공식	스프링클러 수원의 <mark>저수량</mark>
폐쇄형	$Q=$ 펌프토출량 $L/\min imes20\min\ (m^3$ 환산)
개방형	$ullet$ 30개 이하 $Q=1.6N\ [m^3]$ $ullet$ 30개 이상 $Q=K\sqrt{10P} imes N\ [\ell/m^3]$ K: 유출계수(15A: 80, 20A: 114) P: 방수압 [MPa]
옥상수조 저수량	$Q=$ 수원의저수량 $ imes rac{1}{3} \left[ext{m}^{\scriptscriptstyle 3} ight]$

2-1) 간이 스프링클러 수원의 저수량

공식	기타시설	숙박시설(600㎡이상) 근린생활시설(1000㎡이상) 복합건축물	
기본식	$Q=0.5N [m^3]$ N: 간이헤드개수(2개)	$Q=1N[m^3]$ N: 간이헤드개수(5개)	
조건	간이 SP의 표준방사량은 50L/min		

3) 헤드 방수량(유량)

공식	방수량 [L/min]
방수량	$Q = 0.653D^2\sqrt{10P}$
구하는	$Q = 0.6597 CD^2 \sqrt{10P}$
기본식1	Q:방수량 [L/min] D:내경[mm] C:노즐의 흐름계수 P:방수압력[Mpa]
기본식2	$Q\!=\!K\!\sqrt{10P}\left[L\!/\mathrm{min} ight]$ K: 방출계수 P: 방수압 [MPa]
성능시험 배관방수량	$1.5Q = 0.653D^2\sqrt{0.65 \times 10P}$
노즐의 구경	$D = \sqrt{\frac{Q}{0.653\sqrt{10P}}} [mm]$ 노즐의 구경은 방수량식으로 한다.

13/29

3-1) 헤드 방수압

공식	헤드 방수압 [Mpa]
기본식	방수압 = 낙차의 환산수두압 $[Mpa]$ - 배관의 마찰손실압력 $[Mpa]$
조건	중력가속도 적용시 $P=\gamma h=\rho gh$ 로 낙차의 환산수두압 구할것

4) 스프링클러 가압송수장치

공식	가압송수장치
펌프 방식	$H \ge h_1 + h_2 + 10$ H : 전양정 [m] h1 : 배관 및 관부속품의 마찰손실수두 [m] h2 : 실양정 (흡입양정 + 토출양정) [m] 10 : 헤드 선단의 최소 방수압력수두 [m] (*논란의 문제 실양정=낙차수두)
조건1	방수압이 주어진 경우 10을 그 값으로 대체 ★
양정	토출양정 : 펌프에서 교차배관 까지의 수직거리 자연낙차압력 : 펌프 중심에서 옥상수조 까지 거리
압력 수조 방식	P ≥ P ₁ + P ₂ + 0.1 P: 필요압력 [Mpa] P1: 배관 및 관부속품의 마찰손실수두압 [Mpa] P2: 낙차의 환산수두압 [Mpa] 0.1: 최상단 말단헤드의 방수압력[Mpa] *낙차:압력수조와 최상층 말단헤드의 수직높이 1m=10Kpa=0.01Mpa
고가 수조 방식	H ≥ h ₁ + 10 H : 필요 낙차 [m] h1 : 배관 및 관부속품의 마찰손실수두 [m] 10 : 헤드 선단의 최소 방수압력수두 [m]

5) 스프링클러의 반응시간지수에 대한 식

공식	반응시간지수	
	$RTI = \tau \sqrt{u}$	
기본식	RTI = 반응시간지수 $[m ullet s]^{0.5}$	
	au : 감열체의 시간상수[s]	
	u : 기류속도 [m/s]	
설명 기류의 온도, 속도 및 작동시간에 대하여 스프링클러하		
20	반응시간을 예상한 지수	

1

티의 종류

50A 50A 50A 50A

3방향 구경이 동일하다

이경티

구경의 크기가 다르다

먹출판사

2

일반적인 경우

티구간 물 흐름에 따른 구분

90도로 꺽이면 분류티

50A

50A

50A

일직선으로 나가면 직류티

분류티 직류티를 구분하는 이유:

티구간을 통과하는 유체 즉 물이 받는 마찰손실이 방향에 따라 다르기 때문에 마찰손실값을 구할때 직류티 분류티를 구분하는것!

양방향으로 물이 흐르는 경우

티구간 물 흐름에 따른 구분

▶ 양방향으로 나가는 물의 유량으로 판단

예) A 유량 160, B 유량 80

A로 나가는 유량이 더 많으므로 직류티

예) A 유량 80, B 유량 160

B로 나가는 유량이 더 많으므로 분류티

예) A 유량 160, B 유량 160

A와 B로 나가는 유량이 같아도 분류티

먹출판사

4 관 부속품 문제 주의 사항

조건에 동일티를 사용하라고 한 경우 50A 50A 32A 50A 50A

동일티를 사용하라는 조건 때문에 관 부속품 리듀셔가 추가 되었다.

스프링클러 특별관리 문제-1

스프링클러 특별관리 문제-2

스프링클러 특별관리 문제-3

	직관	0.1 + 0.05 + 0.3 = 0.45 m	
등가길이		1 엘보 : 2개 x 0.9 = 1.8 m	2.79 m
	관 부속품	❷ 리듀셔(25x15A) : 1개 x 0.54 = 0.54 m	

말단헤드 유량 $Q=80 imes \sqrt{10 imes 0.1} = [80 \, L/\mathrm{min}]$

마찰 손실 $\Delta P_1 = \frac{6\times(80^2)\times10^4}{120^2\times28^5}\times[2.79m] = 0.004Mpa$ 압력

	직관	3.5 m	
등가길이	관 부속품	● 분류T(25A): 1개 x 1.5 = 1.5 m	5 m

 $Q=80 imes \sqrt{10 imes (0.1+\Delta P_2)}$ 헤드 유량 $80 imes \sqrt{10 imes (0.1+0.008)}=83.138 L/{
m min}$

마찰 $\triangle P_3 = \frac{6\times(80+83.138)^2\times10^4}{120^2\times28^5}\times[5m]$ 압력 =0.032Mpa

손실

직관 3.5 m - 한 부속품 ① 분류T(32A): 1개 x 1.8 = 1.8 m 6. 02 m ② 리듀셔(32x25A): 1개 x 0.72 = 0.72 m

의 $Q = 80 \times \sqrt{10 \times (0.1 + \Delta P_2 + \Delta P_3)} =$ 이 의 $80 \times \sqrt{10 \times (0.1 + 0.008 + 0.032)} = 94.657 L/\min$

 $Q = 80 L/\min$

마찰 소설 $\Delta P_4 = \frac{6 \times (80 + 83.138 + 94.657)^2 \times 10^4}{120^2 \times 36^5} \times [6.02m]$ 압력 = 0.028 Mpa

 $\Delta P_2 = \frac{6 \times (80^2) \times 10^4}{120^2 \times 28^5} \times [5m] = 0.008 Mpa$

옥내소화전 설비 암기

1) 배관 내의 유속

설비		유속
옥내소화전 설비		4m/s 이하
스프링클러	가지배관	6m/s 이하
설비	기타의 배관	10m/s 이하

2) 펌프의 성능

펌프 성능

- 체절운전시 정격토출압력의 140%를 초과하지 아니 할 것
- ② 정격토출량의 150%로 운전시 정격토출압력의 65% 이상이 되어야 한다.

3) 펌프 적합여부

필요한 양정 ≤ 정격토출양정 이면 적합

필요양정[m] 수직높이(m) + 말단방수구 요구압력m로 환산

수직높이(m) + 말단방수구 요구압력m로 환산 1m = 10kpa = 0.01Mpa

정격토출양정[m] 펌프의 정격토출압력을 m로 환산 1m = 10kpa = 0.01Mpa

펌프의 자동기동여부

수직높이 Mpa로 환산(자연압) 후 기동설정압력과 비교 기동설정압력 > 자연압 이어야 자동기동가능

1m = 10kpa = 0.01Mpa

4) 하나의 펌프에 두 개의 설비가 함께 연결된 경우

구분	적용
펌프의 전양정	두 설비의 전양정 중 <mark>큰 값</mark>
펌프의 유량(토출량)	두 설비의 유량(토출량)을 <mark>더한 값</mark>
수원의 저수량	두 설비의 저수량을 <mark>더한 값</mark>

*12년 1회차 10번 멀티설비 문제 수원은 (옥내+스프링클러+옥상수조) 의견 분분

5) 옥내소화전

● 강판 (철판) 두께 : 1.5mm 이상

② 합성수지제 두꼐 : 4mm 이상

❸ 문짝의 면적 : 0.5㎡ 이상

옥내소화전 설비 공식-1

1) 옥내소화전설비의 펌프의 토출량

공식	펌프의 토출량 (펌프의 최소유량, 방수량)
기본식	$Q=130L/{ m min} imes N$ $\left[\ell/{ m min} ight]$ N : 가장 많은 층의 옥내소화전 개수 <mark>(최대 5개)</mark>
조건	130L/min은 표준방사량, 즉 말단노즐의 최소 방사량이다 조건에서 따로 방사량이 주어진다면 그값으로 대체

2) 수원의 저수량

공식	옥내소화전 수원의 <mark>저수량</mark>	
기본식	$Q = 펌프토출량L/\min \times 20\min (m^3 환산)$	
옥상수조	$Q = 수원의 저수량 \times \frac{1}{3} \left[m^{i} \right]$	
저수량	3 []	

2-1) 옥내소화전설비의 방수량

공식	방수량 [L/min]	
방수량	$Q = 0.653D^2\sqrt{10P}$	
구하는	Q = 0.6597C	$CD^2\sqrt{10P}$
기본식1	Q:방수량 [L/min] C:노즐의 흐름계수	D:내경[mm] P:방수압력[Mpa]
기본식2	$Q\!=\!K\sqrt{10P}\left[L\!/\mathrm{min} ight]$ K: 방출계수 P: 방수압 [MPa]	
성능시험 배관방수량	$1.5Q = 0.653D^2\sqrt{0.65 \times 10P}$	
노즐의 구경	$D = \sqrt{\frac{Q}{0.653\sqrt{10P}}} \ [mm]$ 노즐의 구경은 방수량식으로 한다.	
토출측 배관	압력이 있을 경우 (유속이 없을 경우)	$D = \sqrt{\frac{Q}{0.653\sqrt{10P}}} \left[mm\right]$
도출국 매선	압력이 없을 경우 (유속이 있을 경우)	$D = \sqrt{\frac{4Q}{\pi V}} \ [m]$

2-2) 펌프의 전효율

공식	펌프의 전효율
기본식	전효율 $(n_T)=$ 기계효율 $(n_m) imes$ 수력효율 $(n_h) imes$ 체적효율 (n_v)
조건	효율과 전효율 동시에 있을 때 펌프 동력은 전효율로 계산한다.

3) 옥내소화전 전양정

공식	전양정 [m]
기본식	$H \geq h_1 + h_2 + h_3 + 17$ H : 전양정 [m] h1 : 소방호스의 마찰손실수두 [m] h2 : 배관 및 관부속품의 마찰손실수두 [m] h3 : 실양정 (흡입양정 + 토출양정) [m] 17 : 방수압 환산수두
조건	조건에 방수압 환산수두가 주어진 경우 17을 조건값으로 대체
압력 수조 방식	P ≥ P ₁ + P ₂ + P ₃ + 0.17 P: 필요압력 [Mpa] P1: 소방호스의 마찰손실수두압 [Mpa] P1: 배관 및 관부속품의 마찰손실수두압 [Mpa] P2: 낙차의 환산수두압 [Mpa] 0.17: 최상단 말단노즐의 방수압력[Mpa] *낙차: 압력수조와 최상층 말단헤드의 수직높이 1m=10Kpa=0.01Mpa
고가 수조 방식	H ≥ h ₁ + h ₂ + 17 H: 필요 낙차 [m] h1: 소방호스의 마찰손실수두 [m] h2: 배관 및 관부속품의 마찰손실수두 [m] 17: 노즐 선단의 최소 방수압력수두 [m]

4) 유량측정장치의 최대유량

공식	유량측정장치의 최대유량[L/min]
기본식	Q = 펌프의 정격토출량 $ imes 1.75 \left[L/\mathrm{min} ight]$

5) 정격토출량의 150% 운전시 최소양정

공식	정격토출량의 150% 운전시 최소양정 [m]
기본식	$H\!=$ 전양정 $ imes 0.65[m]$ (정격토출압력 = 전양정)

6) 체절압력

공식	체절압력 [Mpa]	
기본식	P= 정격토출압력[Mpa] × 1.4 [Mpa]	
정격토출압력	$P = \rho gH$ $H = 전양정$	
정식도물합의	g 값 $P=H$ $H=$ 전양정 없을때 $1m=10 Kpa=0.01 Mpa$	

옥내소화전 설비 공식-2

7) 옥내소화전 호스로 화재진압시 사람이 받는 반발력(<mark>잘나옴)</mark> 10)흡입NPSH 와 압입NPSH

공식	반발력 [N]
	$F = \rho Q(V_2 - V_1)[N]$
기본식	V_1 : 소방호스의 평균유속 $[m/s]$ V_2 : 노즐의 평균유속 $[m/s]$
	$Q:[m^3/s]$

8-1) 노즐을 수평으로 유지하기 위한 힘

공식	노즐을 수평으로 유지하기 위한 힘 [N]
	$F = \rho Q V_2 \left[N \right]$
기본식	V_2 : 노즐의 평균유속 $[m/s]$
	Q : $[m^3/s]$

8-2) 노즐의 반동력 (화재 진압시 사람이 받는 반력)

공식	노즐의 반동력 [N]	
기본식	$R = 1.57 PD^2 [N]$ $R : 반동력 [N], P : 방수압력 [Mpa]$ $D : 노즐구경 [mm]$	

9) 플랜지 볼트에 작용하는 힘

공식	플랜지 볼트에 작용하는 힘 [N]
기본식	$F=rac{\gamma_w Q^2 A_1}{2g}(rac{A_1-A_2}{A_1 A_2})^2[N]$ A_1 : 소방호스의 단면적 $[ext{m}^2]$ A_2 : 노즐의 단면적 $[ext{m}^2]$

공식	N	PSH_{av}
흡입 (흡상)	$NPSH_{av} = H_a - H_v - H_v$ NPSH : 유효흡입양정[m]Ha : 대기압수두 [m]Hs : 흡입수두 [m]	
	*수조가 펌프보다 낮을 때 $NPSH_{av} = H_a - H_v + H_v$	$H_{\rm s}-H_{L}$ [m]
압입	NPSH : 유효흡입양정[m] Ha : 대기압수두 [m]	Hv : 수증기압수두 [m] HL : 마찰손실수두 [m]
공동현상	필요흡입양정보다 유효흡입양기	덩이 작으면 공동현상 발생

11) 가압송수방식

공식	탱크의 바닥압력 [Mpa]	
기보시	공기압 + 낙차	
기본식 	1m = 10kpa = 0.01Mpa	

공식	건축높이[m]	
	탱크바닥압력 - [관로 및 부속품의 마찰손실수두] -	
기본식	[노즐방사압력(0.17Map)]	
	1m = 10kpa = 0.01Mpa	

옥외소화전 설비 암기

1) 옥외소화전 함

● 설치 거리 : 5m 이내

설치개수

옥외소화전 개수	옥외소화전 함 개수
10개 이하	5m 이내마다 1개 이상
11~30개 이하	11개 이상 소화전 함 분산배치
31개 이상	소화전 3개마다 1개 이상

소화용수설비 암기

1) 소화수조 또는 저수조의 저수량 기준면적

구분	기준면적
지상 1층 및 2층 바닥면적 합계 15000㎡ 이상	7500m²
기타	12500m²

2) 채수구의 수(중요)

소화수조	20~40㎡	40~100㎡	100㎡
용량	미만	미만	이상
채수구 수	1개	2개	

2-1) 가압송수장치의 분당 양수량(송수량)

소화수조	20~40㎡	40~100㎡	10 0㎡
용량	미만	미만	이상
분당 양수량	1100 [L/min]	2200 [L/min]	3300[L/min]
(송수량)	이상	이상	이상

2-2) 소화수조 · 저수조 흡수관 투입구

소요수량	80㎡ 미만	80㎡ 이상
흡수관	1개 이상	2개 이상
투입구의 수	1/11 21.9	4/11 4/18

옥외소화전 공식

1) 옥외소화전설비의 펌프의 토출량

공식	펌프의 토출량 (펌프의 최소유량, 방수량)
기본식	$Q=350L/ ext{min} imes N$ $\left[\ell/ ext{min} ight]$ N : 가장 많은 층의 옥내소화전 개수(최대 2개)
조건	350L/min은 표준방사량, 즉 말단노즐의 최소 방사량이다 조건에서 따로 방사량이 주어진다면 그값으로 대체

2) 수원의 저수량

공식	옥외소화전 수원의 저수량
기본식	$Q=$ 펌프토출량 $L/\min imes 20\min\ (m^3$ 환산)
옥상수조	$Q = $ 수원의 저수량 $ \times \frac{1}{3} [m^3]$
저수량	$Q = \mp \forall \exists \exists$

2-1) 옥외소화전설비의 방수량

공식	방수량 [L/min]	
방수량	$Q = 0.653D^2\sqrt{10P}$	
구하는	$Q = 0.6597 CD^2 \sqrt{10P}$	
기본식1	Q:방수량 [L/min]D:내경[mm]C:노즐의 흐름계수P:방수압력[Mpa]	
기본식2	$Q\!=\!K\!\sqrt{10P}\left[L\!/\mathrm{min} ight]$ K: 방출계수 P: 방수압 [MPa]	
성능시험 배관방수량	$1.5Q = 0.653D^2\sqrt{0.65 \times 10P}$	
노즐의 구경	$D = \sqrt{\frac{Q}{0.653\sqrt{10P}}} \ [mm]$ 노즐의 구경은 방수량식으로 한다.	

3) 옥외소화전 전양정

공식	전양정 [m]
	$H \ge h_1 + h_2 + h_3 + 25$
기본식	H : 전양정 [m]
	h1 : 소방호스의 마찰손실수두 [m]
	h2 : 배관 및 관부속품의 마찰손실수두 [m]
	h3 : 실양정 (흡입양정 + 토출양정) [m]

4) 토출압력

공식	토출압(펌프토출압,=소요양정) [Mpa]	
기본식	토출압력= 마찰손실압력 + 방사압력	

소화용수설비 공식

1) 수원의 저수량

징	소화용수설비 의 저수량		
기본식	$Q[m^3] = \frac{\text{연면적}}{\text{기준면적}}(절상) \times 20m^3$		

2) 일반급수펌프의 흡수구와 소화펌프 흡수구의 수직거리

공식	흡수구간 수직거리
기본식	$H = \frac{Q}{A}[m]$
	Q : 수원의 저수량 [m³]
	A : 저수조의 단면적 [m²]

연결송수관 설비

1) 연결 송수관 설비의 펌프 토출량

일반적인 경우	계단식 아파트
방수구 3개 이하	방수구 3개 이하
Q = 2400L/min 이상	Q = 1200L/min 이상
방수구 4개 이상	방수구 4개 이상
Q = 2400 + N * 800	Q = 1200 + N * 400

여기서, Q : 펌프토출량 [L/min]

N : 가장많은 층의 방수구 개수 (최대 5개)

제연 설비 암기

1)제연설비의 풍속

조건	풍속
예상제연구역의 <mark>공기유입</mark> 풍속	5 m/s 이하
배출기의 <mark>흡입측</mark> 풍속	15 m/s 이하
배출기의 배출측 풍속	
유입풍도 안의 풍속 20 m/s 이하	

2)방연풍속의 기준

	방연풍속	
계단실 및 그 부속실을 동시제연 계단실만 단독 제연		0.5 m/s 이상
부속실만 단독 승강장만 단독	부속실 또는 승강장이 면하는 옥내가 복도로써 그 구조가 방화구조 (내화시간 30분 이상포함)일 것	0.5 m/s 이상
	부속실 또는 승강장이 면하는 옥내가 거실인 경우	0.7 m/s 이상

3) (벽으로 구획된 경우)제연설비 배출량 최저치

바닥면적	지름	배출량 (최저치)
400m² 미만	_	5000㎡/h 이상
400m² ol 41	40 m 이내	40000㎡/h 이상
400㎡ 이상	40 m 초과	45000㎡/h 이상

3) (제연경계로 구획된 경우)제연설비 배출량 최저치

바닥면적	지름	수직거리	배출량 (최저치)
	40 m 이내	2m 이하	40000㎡/h 이상
		2m 초과 2.5m 이하	45000㎡/h 이상
		2.5m 초과 3m 이하	50000㎡/h 이상
400m²		3m 초과	60000㎡/h 이상
이상	40 m 초과	2m 이하	45000㎡/h 이상
		2m 초과 2.5m 이하	50000㎡/h 이상
		2.5m 초과 3m 이하	55000㎡/h 이상
		3m 초과	65000㎡/h 이상

주의! 수직거리= 천장높이-0.6m(고정값)

4) 송풍기종류

원심식	축류식
1 다익형	① 측류형
2 익형	② 프로펠러형
3 터보형	
4 반경류형	
6 리미트 로드형	
6 덕트형	

제연 설비-1

1) 소요전압 PT

공식	소요전압 (=전압, 풍압) PT [mmAq]	
기본식	PT = Duct저항 + 배출구저항 + 배기그릴저항 + 관부속품저항	

2) 배연기(배출기) 동력

공식	배연기 (배출기) 동력 [Kw]	
기본식	$P = \frac{P_T \times Q}{102 \times 60 \times n} K$	
	P_T : 전압(풍압) $[mmAq]$ K : 여유율 Q : 배출량(풍량) $[rak{min}]$ n : 효율	
조건1	CHM= m³/h	

3) 제연설비의 배출량

	공식	배출량 (최소 소요 배출량) [㎡/min]
$\left. \right\rangle$	기본식	Q=바닥면적 [m²]×1m³/m² • min
	경유	= 바닥면적 [m²]×1m³/m² • min ×1.5
	거실	- 미국 현국 [m] < 1m/ m • IIIII < 1.5
	조건	최소 소요 배출량 구할땐 m^3/h 환산

3-1) 제연구역에 따른 배출량 산정

공식	공동제연구역	
벽으로 구획된 경우		각 배출량의 합
제연경계로 구획된 경우		각 배출량 중 최대배출량

공식	독립제연구역
	각 배출량

4) 누설틈새면적

공식	누설틈새면적[㎡]	
직렬	$A = \frac{1}{\sqrt{\frac{1}{A_1^2} + \frac{1}{A_2^2}} + \cdot \cdot \cdot}$	
평 명0	$A = A_1 + A_2 + \cdot \cdot \cdot$	

5) 누설량

공식	누설량[㎡/s]
	$Q = 0.827A\sqrt{P}$
기본식	A : 누설틈새면적[m²] P : 차압[pa]

6)배출구에 따른 배출방식일 때 개폐기의 개구면적

공식	개폐기의 개구면적	
배출구에	$A_0 = \frac{Qn}{2.5}[m^2]$	
따른		
배출방식		
	Qn = 수직풍도가 담당하는 1개층의 제연구역의 출입문	
Qn	(옥내와 면하는 출입문) <mark>1개의 면적</mark> 과 방연풍속 의 <mark>곱한값</mark>	

7) 흡입측,배출측 풍도(덕트)의 단면적

공식	풍도(덕트)의 단면적 [㎡]	
기본식	단면적 $[m^2]$ = 가로(폭) $[m]$ $ imes$ 세로(높이) $[m]$	

7-1) 급기구단면적

공식	급기구단면적 [㎡]	
기본식	단면적 $[cm^2] = \frac{\text{배출량}[m^3/\text{min}]}{\text{급기구수}} \times 조건 [cm^2 \cdot \text{min}/m^3]$	
한변의	$L[cm] = \sqrt{A} \ [cm^2]$	
길이	정사각형일 경우	

7-2) 배기구단면적

공식	배기구단면적 [㎡]	
기본식	단면적 $[cm^2] = \frac{\text{배출량}[m^3/\text{min}]}{\text{배기구수}} \times$ 조건 $[cm^2 \cdot \text{min}/m^3]$	
한변의	$L[cm] = \sqrt{A} \ [cm^2]$	
길이	정사각형일 경우	

8) 연기의 유출속도

공식	연기의 유출속도 [m/s]	
	$Vs = \sqrt{2g\Delta H(\frac{\rho_a}{\rho_s} - 1)} \ [m/$	[s]
기본식	$g:$ 중력가속도 $(9.8m/s^2)$	ΔH : 높이차
	$ ho_s$: 화재실의 밀도	$ ho_a$: 외부의 밀도

8-1) 외부풍속

공식	외부풍속 [m/s]	
 기본식	$V_o = \sqrt{\frac{\rho_s}{\rho_a}} \times V_s [m/s]$	
	$ ho_s$: 화재실의 밀도 V_s : 연기의속도 $[m/s]$	$ ho_a$: 외부의 밀도

8-2) 화재실밀도 및 외부밀도

공식	화재실의 밀도, 외부의 밀도	
화재실밀	$!$ 도 $\rho_s = rac{PM}{RT}$, 외부밀도 $\rho_a = rac{PM}{RT}$	
	[atm] $T:$ 절대온도 $[K]$ $M:$ 분자량 $[kg/kmol]상수(0.082atm\cdot m^3/Kmol\cdot K)$	

9) 문 개방에 필요한 전체 힘

	문 개방에 필요한 전체 힘[N]	
공식	(제연설비 작동상태에서 거실에서 부속실로 통하는	
	출입문 개방에 필요한 힘)	
	$F = F_{dc} + F_p , F_p = rac{K_d WA \triangle P}{2(W-d)}$	
기본식	F_{dc} : 자동폐쇄장치나경첩등을 극복할수 있는 힘 (제연설비 작동전 거실에서 부속실로 통하는 출입문 개방에 필요한 힘) F_P : 차압에 의해 문에 미치는 힘	
	K_d : 상수(SI 단위:1) W : 문의폭 $[m]$	
	$A: 문의 면적 [m^2] \Delta P: 차압 [pa] d: 문손잡이에서 문의 가장자리 까지의 거리 [m]$	
적합여부	차압이 40pa 이상이면 적합	

제연 설비-2

10) 연기 발생량

공식	연기발생량 [㎡/min]	
기본식	$Q = \frac{A(H-y)[m^3]}{t[\min]}[m^3/\min]$	
	A : 화재실의 면적[㎡]	H : 화재실의 높이[m]
	y : 청결층의 높이 [m]	t : 청결층 경과시간[s]

10-1) 청결층 경과시간

공식	청결층 경과시간 [s]
	$t = \frac{20A}{P \times \sqrt{g}} \times \left(\frac{1}{\sqrt{y}} - \frac{1}{\sqrt{H}}\right)[s]$
기본식	A : 화재실의 면적[m²] P: 화재경계의 길이[m]
	y : 청결층의 높이 [m] g: 중력가속도(조건)[m/s]
	H : 화재실의 높이[m]
조건	연기 발생량에 대입시 min 으로 환산

11) 연기생성률

공식	연기생성률 [kg/s]
기본식	$M=0.188\times P\times y^{\frac{3}{2}}[kg/s]$
	P: 화재경계의 길이(둘레)[m] y : 청결층의 높이 [m]

성안당 제연설비문제 바로잡기

구분		풍량(m ³ /h) 덬트 단면적(mm ²)		<u>덕트크기</u> [가로(mm) x 세로(mm)]	
	1개소	40000 m^3/h	740741 mm²	1852 × 400	
급기구	2개소	20000 m^3/h	370370 mm²	926 × 400	
	3개소	13333 m^3/h	246914 mm²	617 × 400	
	1개소	40000 m^3/h	555556 mm^2	1389 × 400	
배기구	2개소	20000 m^3/h	277778 mm²	695 × 400	
	4개소	10000 m^3/h	138889 mm^2	347 × 400	

성안당 교재 기준 2014년 4회차 5번문제, 2011년 4회차 17번 문제 중 표를 이식으로 적용할 것!

연소방지설비

1)연소방지설비 설치기준

연소방지설비 설치기준

- ❶ 연소방지설비에 있어서의 수평주행배관의 구경은 100mm이상
- ❷ 방수헤드간 수평거리

스프링클러헤드	연소방지설비 전용헤드
1.5m 이하	2m 이하

❸ 살수구역은 환기구 등을 기준으로 **지하구의 길이방향**으로 **350m 이내** 마다 **1개 이상 설치**하되, 하나의 살수구역의 <mark>길이는 3m 이상</mark>

1-1) 기울기

기울기	설명
$\frac{1}{100}$ 이상	연결살수 설비의 수평주행배관
$\frac{2}{100}$ 이상	물분무소화설비의 배수설비
$rac{1}{250}$ 이상	습식 · 부압식 설비 외 설비의 가지배관
<u>1</u> 이상	습식 · 부압식 설비 외 설비의 수평 주행배관
$\frac{1}{1000}$ 이상	연소방지 설비

1) 스프링클러 설비헤드 수별 급수관의 구경

급수관 구경 [mm]	25mm	32mm	40mm	50mm	65mm	80mm	90mm	100mm
폐쇄형 헤드수	2개	3개	5개	10개	30개	60개	80개	100개
개방형 헤드수	1개	2개	5개	8개	15개	27개	40개	55개

배관 특집

2) 옥내소화전 설비

배관 구경[mm]	40	50	65	80	100
유수량 [L/min]	130	260	390	520	650
옥내 소화전 수	1	2	3	4	5

3) 연결살수설비

배관 구경[mm]	32	40	50	65	80
살수헤드수	1개	2개	3개	4~5개	6~107∦

4) 펌프토출측 배관

|--|

5)배관의 구경

구분	구경
① 교차배관 ❷청소구	40mm 이상
① 주배관 중 <mark>수직배관</mark> 인 경우 <mark>②펌프토출측 주 배관</mark>	50mm 이상
●연결송수관인 방수구가 연결된 경우❷(연결송수관설비의 배관과 겸용할 경우)	100mm 이상

공식	압력배관용 탄소강관 두께[mm]
기본식	$t = \frac{PD}{2SE} + A [mm]$ P: 최대허용압력 [Mpa] D: 배관 바깥지름 [mm] SE: 최대허용응력 [Mpa] (배관 인장강도의 1/4값과 항복점의 2/3값 중 작은 값 x 배관이음효율 x 1.2)
	*배관 이음효율 · 이음매 없는 배관 : 1.0 · 전기저항 용접배관 : 0.85 · 가열맞대기 용접배관 : 0.6 A : 나사이음, 절단홈이음 등의 허용값 [mm]
	A : 나사이음, 절단홈이음 등의 허용값 [mm] (나사이음 = 나사의 높이, 절단홈이음 = 홈의 깊이, 용접이음 : 0)

공식	관 두께[mm]
기본식	$t=rac{PD}{2\sigma_w}\left[mm ight]$ P : 최고 허용압력[Mpa] D : 배관의 지름 (내경) [mm] σ_w : 재료의 허용응력[mpa]

공식	관 두께[mm]
기본식	$t=(rac{P}{s} imesrac{D}{1.75})+2.54\ [mm]$ P : 최고 허용압력[Mpa] D : 외경 [mm] s : 재료의 허용응력[N/ mm^2]

공식	배관 스케줄수 [무차원]
기본식	스케줄수 $= \frac{$ 내부작업응력 $[kg_f/cm^2]}{$ 재료의허용응력 $[kg_f/cm^2]$ $} imes 1000$

공식	재료의 허용응력 $[kg_{\it f}/cm^2]$
기본식	재료의 허용응력 $[kg_{\it f}/cm^2]=rac{$ 인장강도 $[kg_{\it f}/cm^2]}$ 안전율
조건	단위 조심할 것!

공식	하겐 - 윌리암의 식
	$\Delta P = 6.053 \times 10^{4} \times \frac{Q^{1.85}}{C^{1.85} \times D^{4.87}} \times L$
기본식	$\Delta P \propto Q^{1.85}$ ΔP : 마찰손실압력 $[Mpa]$ C : 조도 D : 관내경 $[mm]$ Q : 관유량 $[L/\min]$ L : 관의길이 $[m]$
변형식	$\Delta P \propto Q^{1.85}$ $\Delta P = P_1 - P_2 \times Q^{1.85}$
	A지점과 B지점 압력차문제 (유량 2배)

공식	연소 상한계와 하한계[vol%]
상한계	가스조성농도합계 $[\%]$ $\frac{V_1}{U_1} + \frac{V_2}{U_2} + \frac{V_3}{U_3} + \frac{V_4}{U_4} + \frac{V_5}{U_5}$
	V : 조성농도 [%] U : 연소상한계 [vol%]
하한계	$rac{V_1}{V_1} + rac{V_2}{L_2} + rac{V_3}{L_3} + rac{V_4}{L_4} + rac{V_5}{L_5}$
	V : 조성농도 $\left[\% ight]$ L : 연소하한계 $\left[vol\% ight]$

각종 공식-1

공식	오리피스 통과 유량 [㎡/s]
	$Q = Cv \frac{A_2}{\sqrt{1 - m^2}} \times \sqrt{\frac{2g(\gamma_s - \gamma_w)}{\gamma_w}} R$
기본식	Cv : 속도계수 $(C_v = C\sqrt{1-m^2})$ R : 마노미터 읽음 $(수은주높이)[m]$ A_2 : 출구면적 $[m^2]$
	m^2 : 개구비 *무조건 속도계수로 넣어야 한다, 유량계수면 변환!

공식	개구비
기본식	$m = \frac{A_2}{A_1} = (\frac{D_2}{D_1})^2$

공식	오리피스 유속 [m/s]
기본식	$V = C\sqrt{2g\Delta H(\frac{\gamma_s}{\gamma_w} - 1)}$
	C : 유량계수 ΔH : 높이차 $[m]$
조건	Cv 속도계수 C 유량계수 둘다 넣어도 된다

공식	자유 낙하 이론
기본식	$y=rac{1}{2}gt^2[m]$ y : 지면에서의 높이 [m] $_{ extsf{g}}: 중력가속도 [extsf{m}/ extsf{S}^2]$ t : 지면까지의 낙하시간 [s]

공식	지면에 도달하는 거리
기본식	$x = Vcos heta t \left[m ight]$ $ imes$: 지면에 도달하는 거리 $[m]$ $V:$ 유속 $[m/s]$ $ heta$: 낙하각도
	t : 지면까지의 낙하시간 [s]

공식	압력상승[Kpa]
기본식	$\Delta P = rac{9.81a\ V}{g}[Kpa]$ a : 압력파의 속도(음속)[m/s] V : 유속[m/s] g : 중력가속도(9.8%)
핵심단어	밸브를 1.3초 사이에 잠그면 압력상승은?

공식	굴뚝효과에 따른 압력차[pa]
기본식	$\Delta P = k (rac{1}{T_o} - rac{1}{T_i}) h \left[Pa ight]$ k : 계수(3460) To : 외기 절대온도(273+ $^\circ$)[k] Ti : 실내 절대온도(273+ $^\circ$)[k] h : 중성대 위의 거리[m] (중성대는 건물 중간)
핵심단어	중성대

07		e z	
	PM	P	
	$ \rho = \frac{1}{RT}, $	$ \rho = \frac{1}{RT} $	
	101	101	
ρ: 밀도	$[ka/m^3]$	P : 압력[pa]	

ρ : 밀노[kg/m²] P : 압력[pa]
R : 기체상수[J/Kmol·K] T : 절대온도[K]
M : 분자량 [kg/kmol]

공식 기체상수 $R:0.082 \left[atm \cdot \text{m}^{_3}/kmol \cdot K
ight]$ $R:0.287 \left[KJ/kg \cdot K
ight]$

공식	압력수조	내의 공기압 Po [Mpa]
$P_o = \frac{V}{V}$	$\frac{7}{7a}(P+P_a)-P_a[$	Mpa]
Po : 압력수조 내의 공기압력 [Mpa]		
V : 압력수2	조의 체적 $[m^3]$	Va : 압력수조 내의 공기체적 $[m^3]$

Pa : 대기압[Mpa]

P : 필요한 압력[Mpa]

공식	이동거리 [m]
기본식	$s=V_1t+rac{1}{2}at^2\left[m ight]$ V1 : 하강속도 [m/s] t : 배수시간 [min] a : 가속도 $[m/{ m min}^2]$

공식	가속도 [$m/{ m min}^2$]
기본식	$a = \frac{V_o - V_1}{t} [m/\min]$
	V0 : 처음속도 [m/min] V1 : 하강속도 [m/min] t : 배수시간 [min]

기본식 $\frac{V_1^2}{2g} + \frac{P_1}{\gamma} + Z_1 = \frac{V_2^2}{2g} + \frac{P_2}{\gamma} + Z_2 = \frac{V_2^2}{2g} + \frac{V_2^2}{\gamma} + \frac{V_2^2}{2g} + \frac{V_2^2}{\gamma} + \frac$	$Z_2 + \Delta H$

공식	유량 = 유량
기본식	$Q = A_1 V_1 = A_2 V_2$ $Q = 탱크감소유량 = 배수되는 유량$ $= (가로 \times 세로) V_1 = \frac{\pi D^2}{4} \times \sqrt{2gH}$

공식	비교회전도
	$Ns = N \frac{\sqrt{Q}}{\left(\frac{H}{n}\right)^{\frac{3}{4}}}$
기본식	Ns : 비교회전도 [m³/min · m/rpm] N: 회전수 [rpm] Q : 유량 [m³/min] H: 양정 [m] n : 단수

각종 공식-2

공식	돌연축소관 손실수두
기본식	$h = K \frac{V^2}{2g}$

공식	돌연확대관 손실수두
기본식	$h = K \frac{(V_1 - V_2)^2}{2g}$
조건	K 값이 없으면 1로 본다

공식	펌프의 전양정
기본식	압력계 지시값 + 진공계 지시값 + 높이

공식	회전차의 가압송수능력
기본식	가압송수능력 $= \frac{P_2 - P_1}{\varepsilon}[Mpa]$ P2 : 토출측 압력[Mpa]
	P1 : 흡입측 압력[Mpa] <i>&</i> : 단수

공식	압축비
기본식	$K = arepsilon \sqrt{rac{P_2}{P_1}} [$ 무차원 $]$ P2 : 토출측 압력[Mpa] P1 : 흡입측 압력[Mpa] $arepsilon$: 단수

공식	화재 하중	
기본식	$q = \frac{\sum Q}{4500A} \left[kg/m^2 \right]$	
	q : 화재하중 $[kg/m^2]$ A : 바닥면적 $[m^2]$	
	ΣQ : 가연물의 전체 발열량 [kcal]	
정의	화재실의 단위면적당 가연물의 양	

	수격작용
개요	 ● 배관 속의 물흐름을 급히 차단하였을 때 동압이 정압으로 전환되면서 일어나는 쇼크현상 ● 배관 내를 흐르는 유체의 유속을 급하게 변화시키므로 압력 이 상승 또는 하강하여 관로의 벽면을 치는 현상
발생원인	● 펌프가 갑자기 정지 할 때 ● 급히 밸브를 개폐할 때 ● 정상운전시 유체의 압력변동이 생길 때
방지대책	 ● 관로의 관경을 크게한다. ● 관로 내의 유속을 낮게한다. (관로에서 일부 고압수를 방출) ● 조압수조를 설치하여 적정압력을 유지한다. ● 플라이 휠을 설치한다. ● 펌프 송출구 가까이에 밸브를 설치 ● 펌프 송출구에 수격을 방지하는 체크밸브를 달아 역류를 막는다 ● 에어챔버를 설치한다. ● 회전체의 관성 모멘트를 크게한다.

공동현상(케비테이션)			
개요	펌프의 흡입측 배관 내의 물의 정압이 기존의 증기압보다 낮 아져서 기포가 발생되어 물이 흡입되지 않는 현상		
발생현상	1 소음과 진동 발생② 관 부식③ 임펠러의 손상④ 펌프의 성능저하		
발생원인	 ● 펌프의 흡입수두가 클 때 ● 펌프의 마찰손실이 클 때 ● 펌프의 임펠러속도가 클 때 ● 펌프의 설치위치가 수원보다 높을 때 ● 관 내의 수온이 높을 때 ● 관 내의 물의 정압이 그때의 증기압보다 낮을 때 ● 흡입관의 구경이 작을 때 ● 흡입거리가 길 때 ● 유량이 증가하여 펌프물이 과속으로 흐를 때 		
● 유량이 증가하여 펌프물이 과속으로 흐를 때 ● 펌프의 흡입수두를 작게 한다. (펌프의 흡입양정을 작게한다) ● 펌프의 마찰손실을 작게 한다. ● 펌프의 임펠러속도(회전수)를 작게 한다 ● 펌프의 설치위치를 수원보다 낮게한다(펌프의 흡입측을 가압한다) ● 관 내의 물의 정압을 그때의 증기압보다 높게 한다. ● 흡입관의 구경을 크게한다. ● 펌프를 2개 이상 설치한다. 기억법: 연쇄 (흡)(입)(마)(설) 푸는 케이테이션씨			

맥동현상(서징)			
개요	유량이 단속적으로 변하여 펌프 입출구에 설치된 진공계, 압력 계가 흔들리고 진동과 소음이 일어나며 펌프의 토출유량이 변 하는 현상		
발생원인	 ● 배관 중에 수조가 있을 때 ● 배관 중에 기체상태의 부분이 있을 때 ● 유량조절밸브가 배관 중 수조의 위치 후방에 있을 때 ● 펌프의 특성곡선이 산모양이고 운전점이 그 정상부일 때 		
방지대책	● 풍량 또는 토출량을 줄임 ● 운전점을 고려하여 적합한 펌프를 선정 ● 배관 중에 불필요한 수조를 제거 ● 유량조절밸브를 배관 중 수조의 전방에 설치 ● 배관 내의 기체(공기)를 제거 기억법: 풍월량 동생 (풍)(운)(배)씨가 (유)(배)가다.		

상사법칙

상사법칙		
Q 유량	$Q_2 = Q_1(\frac{N_2}{N_1}) (\frac{D_2}{D_1})^3 또는 Q_2 = Q_1(\frac{N_2}{N_1})$	
H 양정	$H_2 = H_1(\frac{N_2}{N_1})^2 (\frac{D_2}{D_1})^2 \mbox{$\stackrel{.}{}$} H_2 = H_1(\frac{N_2}{N_1})^2$	
P 동력	$P_2 = P_1 (\frac{N_2}{N_1})^3 (\frac{D_2}{D_1})^5 \Xi \dot{\Xi} P_2 = P_1 (\frac{N_2}{N_1})^3$	
조건	지름이 조건에 제시되면 앞의 식으로 할것! (지름값 생략 하지말 것)	

도시기호

/	명 칭	도시기호	비고
일반배관		\$ 51	972
옥내·외 소화전배관		— н —	'hydrant(소화전)'의 약자
스프링	B클러배관	SP	'sprinkler(스프링클러)'의 약지
밀	본무배관	ws	'water spray(물분무)'의 약지
至4	·화배관	— р ——	'foam(포)'의 약자
В	H수관	—— D ———	'drain(배수)'의 약자
	입상	1	928
전선관	입하	N P	941
*	통과	Z	70.EE
H	플랜지		
F	구니온) Je
오리피스			24
곡관		T	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
90	° 엘보		
45	° 엘보	×_+	Şi - i
Eļ			
크로스		-11	Si e s
맹플랜지		<u> </u>	0 7 2

캡	** <u>**</u>	-
플러그		
나사이음	25 29	574
루프이음		S = 3
슬리브이음		577
플렉시불튜브		<i>5</i> 24
플렉시블조인트		(E)
체크밸브	7	
가스체크밸브	─	-
동체크밸브	→	(20)
게이트밸브(상시개방)	$-\bowtie$	(=)
게이트밸브(상시폐쇄)		(-
선택밸브		(2)
조작밸브(일반)	-\$-) =)
조작밸브(전자석)	-D	
조작밸브(가스식)	- -	; -
추식 안전밸브		572
스프링식 안전밸브		
솔레노이드밸브	s	
모터밸브(전동밸브)	₩	\$25
볼밸브	-D	9 5 1
릴리프밸브(일반)	*-	

릴리프밸브 (이산화탄소용)	⋄	(=)
배수 <mark>밸</mark> 브	*	(7 6)
자동배수밸브	ţ	
여과망	-	(-)
자동밸브	- 	
감압밸브		
공기조절밸브		i s
Foot밸브	卤	(=)
앵골밸브	-	=
경보밸브(습식)	<u> </u>	E
경보밸브(건식)		<u> </u>
경보델류지밸브	₫D	(=)
프리액션밸브	@——	1 = 2
압력계	<u>Z</u>	
연성계(진공계)	₽	(
유량계	Ø.	(#)
Y형 스트레이너		
U형 스트레이너		i=1
옥내소화전함		(* 2
옥내소화전 방수용 기구병설		227

중계기		
옥외소화전	甲	27/2
포말소화전	F	:=
프레져프로모셔너	<u>Ф</u>	(2)
라인프로포셔너		2 21
프레져사이드프로포셔너		(-
기타		
원심리듀셔	-D-	\$
편심리듀셔	\neg	===
수신기	\mathbb{R}	
제어반		:=/.
풍량조절댐퍼	——————————————————————————————————————	(-
방화댐퍼	——————————————————————————————————————	
방연댐퍼	————SD	·=
배연구	—	:
배연덕트	SR	
피난교		2

밸 브 류

릴리프 밸브	설 명
	물올림장치의 <mark>순환배관</mark> 에 설치하는 안전밸브

스트레이너	설 명
	배관 내의 <mark>이물질 제거</mark> (여과)기능

앵글밸브	설 명
	관 내 유체의 <mark>흐름방향</mark> 을 변경 시킬 때 사용되는 밸브

개폐표시형 맬브 (OS& Y맬브)	설 명
INSO IS P	밸브의 <mark>개폐상태</mark> 여부를 용이하게 <mark>육안 판별</mark> 하기 위한 밸브

우량조절밸브 & 개폐밸브	설 명
(3) 유량조절밸브	유량 조절 밸브 설치하여야 하는 밸브
(1) 개폐밸브 (2) 유량계	개폐 성능시험배관의 유량계 <mark>선단</mark> 에 밸브 설치하여야 하는 밸브

플랜지이음	설 명
	배관 연결부분에 <mark>가스킷(gasket)</mark> 을 삽입 하고 볼트로 체결하는 관이음방법

체크밸브	설 명
3,775-5622	유량이 <mark>흐름 반대</mark> 로 흐를 수 있는 것을 <mark>방지</mark> 하기 위해서 설치하는 밸브

후드밸브	설 명
	원심펌프의 흡입관 아래에 설치하여 펌프가 기동 할 때 <mark>흡입관</mark> 을 만수 상태 로 만들어 주기 위한 밸브

연성계	설 명
10 Grands and 15 S	대기압이상의 압력과 대기압이하의 압력을 측정 할수 있는 압력계