# 4科學記號與常用對數



#### 1. 定義:

已知b為正實數,x為任意實數,當 $10^x = b$ 時,我們用符號  $\log_{10} b$ 來表示x,寫成  $\log_{10} b = x$ ,我們稱  $\log_{10} b$ 為以10為底數b的對數。其中b稱為真數,10稱為底數。

- (1) 以10為底數的對數稱為常用對數,通常10可以省略,以logb表示。
- (2)  $b = 10^x \Leftrightarrow \log_{10} b = x$
- (3)  $\log_{10}(10^x) = x$  °
- (4)  $10^{\log_{10} b} = b$  °
- (5) 常用對數增加1,表原本數據乘上10倍;常用對數減少1,表原本數據乘上 $\frac{1}{10}$ 倍。

| 原始值x      | $\frac{1}{100}$ | $\frac{1}{10}$ | 1 | 10 | 100 |
|-----------|-----------------|----------------|---|----|-----|
| 對數值 log x | -2              | -1             | 0 | 1  | 2   |

#### 2. 科學記號:

任意正實數a都可用以下形式來表示: $a=b\times10^n$ ,其中 $1\le b<10$ ,n是整數,稱為a的科學記號表示法,其中b稱為係數,n稱為指數。

#### 例如:

- (1)  $A = 5380000 = 5.38 \times 10^6$  表 A的整數部分為 7位數,且最高位數字為 5。
- (2)  $B = 0.00538 = 5.38 \times 10^{-3}$  表 B 在小數點後第 3 位開始不為 0 ,且此不為 0 的數字為 5 。

#### 3. 有效數字:

在科學測量中,一個測量值包含準確值與一位估計值,準確值取到最小刻度單位, 估計值為最小刻度的下一位,準確值加上一位估計值所得的數字就合稱為有效數 字。



## 觀念是非題 試判斷下列敘述對或錯。(每題2分,共10分)

- ( $\times$ ) **1.** 若 a 為正實數,則  $\log_{10} a$  亦是正實數。
  - 解 反例:若 $a = \frac{1}{10}$ ,則 $\log_{10} a = \log_{10} \frac{1}{10} = -1$ 。
- ( ) **2.** 已知  $\log a = 1.4$ ,  $\log b = 2.4$ ,  $\log c = 3.4$ ,  $\log d = 4.4$ ,則 a + d > b + c。
  - $a+d=10^{1.4}+10^{4.4}$ 的整數部分為5位數字(只要看 $10^{4.4}$ 就可以), $b+c=10^{2.4}+10^{3.4}$ 的整數部分為4位數字(只要看 $10^{3.4}$ 就可以),故a+d>b+c。
- ( $\times$ ) **3.** 已知 log a = 3.2, log b = 1.2,則  $a \neq b$ 的 2 倍。
  - $\log a = 3.2 \Rightarrow a = 10^{3.2} , \log b = 1.2 \Rightarrow b = 10^{1.2} , 故 a 是 b 的 100 倍。$
- ( $\times$ ) **4.** 將數字 5201314202099 取 6 位有效數字並以科學記號表示為 5.201314× $10^{12}$ 。
  - 解 6位有效數字為5.20131×10<sup>12</sup>。
- (  $\bigcirc$  ) **5.** 已知  $\log a = 4.7$ ,則 a 的整數部分為 5 位數。

#### 一、填充題(每題7分,共70分)

1. 計算下列各小題的數值。

(1) 
$$\log \frac{1}{100} = \frac{-2}{(2 \%)}$$

(2) 
$$\log 100\sqrt{10} = \frac{\frac{5}{2}}{2} \circ (2 \%)$$

(3) 
$$100^{\log \sqrt{7}} = 7$$
  $\circ (3 \%)$ 

- (1)  $\log \frac{1}{100} = \log 10^{-2} = -2$  °
  - (2)  $\log 100\sqrt{10} = \log \left(10^2 \times 10^{\frac{1}{2}}\right) = \log 10^{\frac{5}{2}} = \frac{5}{2}$

(3) 
$$100^{\log\sqrt{7}} = (10^2)^{\log\sqrt{7}} = (10^{\log\sqrt{7}})^2 = (\sqrt{7})^2 = 7$$

解 
$$a = \log 2 \Rightarrow 10^a = 2$$
,同理 $10^b = 3$ , $10^c = 7$ ,  
所以 $10^{2a+c-b} = \frac{10^{2a} \times 10^c}{10^b} = \frac{2^2 \times 7}{3} = \frac{28}{3}$ 。

**3.** 設
$$a \cdot b$$
 皆大於 $0 \cdot \log a = 10 \cdot \log b = 8 \cdot$ 則  $\log (a+b)$  最接近的整數為\_\_\_\_\_\_ 0

**4.** 如附表:求 
$$\log \frac{s-r}{q-p} = \underline{\qquad 0.4 \qquad}$$
。

| 原始值x      | 100 | p   | q   | r   | S   | 1000 |
|-----------|-----|-----|-----|-----|-----|------|
| 對數值 log x | 2   | 2.1 | 2.3 | 2.5 | 2.7 | 3    |

$$s = 10^{2.7} , r = 10^{2.5} , p = 10^{2.1} , q = 10^{2.3} ,$$

$$s - r = 10^{2.7} - 10^{2.5} = 10^{2.5} \left(10^{0.2} - 1\right) , q - p = 10^{2.3} - 10^{2.1} = 10^{2.1} \left(10^{0.2} - 1\right)$$

$$\Rightarrow \frac{s - r}{q - p} = \frac{10^{2.5} \left(10^{0.2} - 1\right)}{10^{2.1} \left(10^{0.2} - 1\right)} = 10^{0.4} , \text{ if } \log \frac{s - r}{q - p} = \log \left(10^{0.4}\right) = 0.4$$

5. 已知 SARS 病毒的直徑為85 奈米,其中1 奈米為10°公尺,而近期造成全球疫情嚴重的新型冠狀病毒,其病毒直徑為0.12 微米,其中1 微米為10°公尺,請問新型冠狀病毒的病毒直徑約為 SARS 病毒的 1.4 倍。(取二位有效數字)

解 SARS 病毒的直徑=85 奈米=85×10<sup>-9</sup>=8.5×10<sup>-8</sup>公尺,  
新型冠狀病毒的直徑=0.12 微米=0.12×10<sup>-6</sup>=1.2×10<sup>-7</sup>公尺,  
所以 新冠 = 
$$\frac{1.2 \times 10^{-7}}{8.5 \times 10^{-8}} = \frac{12 \times 10^{-8}}{8.5 \times 10^{-8}} \approx 1.4$$
。

- **6.** 酸鹼 pH 值表示一溶液中氫離子的濃度,其定義為 pH 值 =  $-\log M$  ,其中 M 為溶液中氫離子的濃度。若檸檬汁的 pH 值為 3 ,小蘇打水的 pH 值為 8 ,則檸檬汁氫離子濃度為小蘇打水氫離子濃度的  $10^5$  倍。

- **7.** 承上題,今小明有一瓶 pH = 3 的檸檬水 10ml,加入 pH = 7 的純水 990ml 稀釋,而稀釋後的檸檬水 1000ml,此時的 pH 值最接近的整數為\_\_\_\_\_\_\_5\_\_\_。
- 摩檬水的 pH = 3 ⇒  $M_1$  =  $10^{-3}$  ,純水 pH = 7 ⇒  $M_0$  =  $10^{-7}$  ,
  稀釋後的濃度  $M = \frac{10^{-3} \times 10 + 10^{-7} \times 990}{1000} = \frac{1 \times 10^{-2} + 0.0099 \times 10^{-2}}{1000} = \frac{1.0099 \times 10^{-2}}{1000}$ =  $1.0099 \times 10^{-5}$  ,最接近  $10^{-5}$  ,
  故最接近的整數 pH =  $-\log(10^{-5}) = 5$  。

- 8. 若  $\log A = -3.5$ ,則 A從小數點後第 m 位開始出現不為 0 的數字,試求  $m = ______$ 。
- 解  $\log A = -3.5 \Rightarrow A = 10^{-3.5} = 10^{-4+0.5} = 10^{0.5} \times 10^{-4}$ ,故 A在小數點後第4位開始不為0,m = 4。

- **9.** 形如 2" –1的質數稱作梅森質數,鮑爾斯在1914年發現  $2^{107}$  –1是一個質數,試求  $2^{107}$  –1 為\_\_\_\_\_\_ 位數。(  $\log 2 \approx 0.3010$  )
- 解  $2^{107}$  -1的位數與 $2^{107}$ 的位數相同,  $2^{107} = \left(10^{\log 2}\right)^{107} = 10^{107 \times \log 2} \approx 10^{107 \times 0.3010} = 10^{32.207} = 10^{0.207} \times 10^{32}$ ,故 $2^{107} 1$ 為33位數。

- **10.** 已知  $\log 3 \approx 0.4771$ , n 是正整數且  $3^n$  是 100 位數,則 n = 208 或 209 。 (有兩解)

### 二、素養混合題(共20分)

#### 第 11 至 12 題為題組

駟洧老師觀察現代人對於耳機的品質越來越要求,奉心公司近期推出幾款抗噪耳機,可以根據消費者較常使用耳機的空間需求,去選擇隔絕外在聲音程度所適用的耳機。奉心公司推出的耳機共有4款,以下為耳機的抗噪程度模型:



 $\Rightarrow N(E)$  為抗噪的程度分貝數, $N(E)=10^{a+bE}$ ,其中E 為耳機中抗噪的褶皺數,其中a、b 為常數。

(ACE) **11.** 下表為4款耳機的商品資訊,請選出正確的選項:(多選題,10分)

| N(E) (分貝) | 20 | 40 | M | P |
|-----------|----|----|---|---|
| E (褶皺數)   | 2  | 4  | 6 | 7 |

- (A)依上述所給資訊,可以求出a=1。
- (B)依上述所給資訊,可以求出b≈0.3010。
- (C)依上述所給資訊,可推論P為M的 $\sqrt{2}$ 倍。
- (D)依上述所給資訊,可推論P為M的1倍。
- (E)依上述所給資訊,可推論P約為113分貝(四捨五入至整數位)。
- **12.** 今天的數學課,全班同學一起討論完上列問題後,實習老師彥霆老師想測試同學們有沒有認真上課,延伸一道題目在黑板上「承上題, $N(E)=10^{a+bE}$ ,求當耳機中的褶皺數為8時,耳機的抗噪程度分貝數為多少?」請同學們作為回家功課,現在大家一起來完成作業。(不能用對數的運算性質)(非選擇題,10分)

$$\frac{2}{1} \Rightarrow \frac{10^{a+4b}}{10^{a+2b}} = \frac{40}{20} \Rightarrow 10^{2b} = 2 \Rightarrow 2b = \log 2 \Rightarrow b = \frac{1}{2} \log 2 \approx \frac{1}{2} \times 0.301$$

又 $10^{2b} = 2$ 代入①得 $10^{a+2b} = 10^a \times 10^{2b} = 20 \Rightarrow 10^a \times 2 = 20 \Rightarrow 10^a = 10$ ,所以a = 1。

所以 
$$N(E) = 10^{1+bE}$$
 ,  $M = 10^{1+6b} = 10^1 \times 10^{6b} = 10^1 \times \left(10^{2b}\right)^3 = 10 \times 2^3 = 80$  ,

$$P = 10^{1+7b} = 10^1 \times 10^{7b} = 10^1 \times \left(10^{2b}\right)^{\frac{7}{2}} = 10 \times 2^{\frac{7}{2}} = 80\sqrt{2} \approx 113$$
,故選(A)(C)(E)。

12. 因為
$$a=1$$
, $b=\frac{1}{2}\log 2$ ,故 $N(E)=10^{1+E\times\frac{1}{2}\log 2}$ ,

當耳機中的褶皺數為8時,即E=8時,

得
$$N(8) = 10^{1+8 \times \frac{1}{2} \log 2} = 10^1 \times 10^{8 \times \frac{1}{2} \log 2} = 10 \times 10^{4 \times \log 2} = 10 \times \left(10^{\log 2}\right)^4 = 10 \times 2^4 = 160$$
,

故耳機的抗噪程度為160分貝。