CS 204

Discrete Mathematics

Homework 4 - Predicate Logic - Part II

Sample Solutions

1. Let the following predicates be given in the domain of triangles.

$$R(x) = "x is a right triangle."$$

$$B(x) = "x has an obtuse angle."$$

Consider the following statements.

$$S1 = \neg(\exists x) (R(x) \land B(x))$$

$$S2 = (\forall x) (R(x) \rightarrow \neg B(x))$$

- (a) Write a proof sequence to show that $S1 \Leftrightarrow S2$.
- (b) Write S1 in ordinary English.
- (c) Write S2 in ordinary English.

Solution)

(a)

$$S_1 = \neg(\exists x)(R(x) \land B(x))$$

 $\Leftrightarrow (\forall x)\neg(R(x) \land B(x)), \text{ exist. neg.}$
 $\Leftrightarrow (\forall x)(\neg R(x) \lor \neg B(x)), \text{ De Morgan}$
 $\Leftrightarrow (\forall x)(R(x) \to \neg B(x)), \text{ implication}$
 $= S_2$

- (b) There are no triangles that are both right and have obtuse angles.
- (c) All right triangles have no obtuse angles.

2.

(a) Give an example interpretation of a pair of predicates P(x) and Q(x) in some domain to show that the \exists quantifier does not distribute over the \land connective. That is, give an example to show that the statements

$$(\exists x)(P(x) \land Q(x)) \quad \text{and} \quad (\exists x)P(x) \land (\exists x)Q(x)$$
 are not logically equivalent.

(b) It is true, however, that \exists distributes over \lor . That is,

$$(\exists x)(P(x) \lor Q(x)) \Leftrightarrow (\exists x)P(x) \lor (\exists x)Q(x)$$

is an equivalence rule for predicate logic. Verify that your example from part (a) satisfies this equivalence.

Solution)

Let P(x) ="x is even number."

Q(x) ="x is odd number."

Domain: all natural numbers

(a) In ($\exists x$)($P(x) \land Q(x)$), there isn't such a number which is even and odd at the same time.

In $(\exists x)P(x) \land (\exists x)Q(x)$, there are even number, odd number respectively. Therefore, former one is false and latter one is true.

(b) In ($\exists x$)($P(x) \lor Q(x)$), there exist even or odd number : True In ($\exists x$) $P(x) \lor$ ($\exists x$)Q(x), either there exist even number or there exist odd number : True

3.

Any equation or inequality with variables in it is a predicate in the domain of real numbers. For each of the following statements, tell whether the statement is true or false.

- (a) $(\forall x)(x^2 > x)$
- (b) $(\exists x)(x^2 2 = 1)$
- (c) $(\exists x)(x^2 + 2 = 1)$
- (d) $(\forall x)(\exists y)(x^2 + y = 4)$
- (e) $(\exists y)(\forall x)(x^2 + y = 4)$

Solution)

- (a) false (for example, x = 0.5.)
- (b) true
- (c) false
- (d) true
- (e) false
- 4. The domain of the following predicates is all integers greater than 1.

P(x) = "x is prime"

Q(x,y) = "x divides y"

Consider the following statement.

For every x that is not prime, there is some prime y that divides it.

- (a) Write the statement in predicate logic.
- (b) Formally negate the statement
- (c) Write the English translation of your negated statement

Solution)

- (a) $\forall x [\neg P(x) \rightarrow \exists y (P(y) \land Q(y,x))]$
- (b) $\exists x \ [\neg P(x) \land \forall y (P(y) \rightarrow \neg Q(y,x)) \]$
- (c) There is a nonprime x such that no prime y divides it.

Since there are very few students who answered both questions 9 (b) and (d) correctly, answer for 9 (b) and 9 (d) are shown below.

Solution

```
(b)
    \forall x (H(x) \rightarrow A(x))
    \forall x \ [\exists y (H(y) \land IsTailOf(x,y)) \rightarrow \exists y (A(y) \land IsTailOf(x,y)) \ ]
    (d)
1. \forall x(H(x) \rightarrow A(x))
                                            - premise 1
2.
              \exists y (H(y) \land IsTailOf(w,y))
                                                                   - premise 2
3.
              H(a) \wedge IsTailOf(w,a)
                                                      - ∃-elim, 2
              H(a)
                                                        - ∧-elim, 3
4.
              H(a) \rightarrow A(a)
                                                        - ∀-elim 1
5.
               A(a)
                                                         \rightarrow-elim, 4, 3
6.
              IsTailOf(w,a))
7.
                                                    - ∧-elim, 3
              A(a) \wedge IsTailOf(w,a)
                                                      - ∧-intro, 6, 7
8.
              \exists y (A(y) \land IsTailOf(w,y))
9.
                                                        - ∃-intro, 8
        \exists y (H(y) \land IsTailOf(w,y)) \rightarrow \exists y (A(y) \land IsTailOf(w,y)) - \rightarrow-intro, 2-9
10.
        \forall x [\exists y (H(y) \land IsTailOf(x,y)) \rightarrow \exists y (A(y) \land IsTailOf(x,y))] - \forall-intro, 11
11.
```