Feuille d'exercices Ensembles et applications

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Ensembles

Exercice 1. Echauffements I (\star)

Soit E un ensemble. Que dire de deux sous-ensembles A et B de E tels que $A \cup B = A \cap B$?

Exercice 2. Echauffements II (\star)

Soit E un ensemble et soient A, B et C trois parties de E telles que $A \cup B = A \cup C$ et $A \cap B = A \cap C$. Montrer que B = C.

Exercice 3. Des parties (\star)

Soient E et F deux ensembles. Quelles relations d'inclusion y a-t-il entre :

- 1. $\mathcal{P}(E \cup F)$ et $\mathcal{P}(E) \cup \mathcal{P}(F)$?
- 2. $\mathcal{P}(E \cap F)$ et $\mathcal{P}(E) \cap \mathcal{P}(F)$?

Exercice 4. Différence symétrique (***)

Soient A et B deux parties d'un ensemble E. On appelle différence symétrique de A et B, et on note $A\Delta B$ l'ensemble défini par :

$$A\Delta B = (A \cup B) \setminus (A \cap B).$$

- 1. Faire un dessin, puis calculer $A\Delta B$ pour $A = \{0, 1, 2, 3\}$ et $B = \{2, 3, 4\}$.
- 2. Montrer que $A\Delta B = (A \setminus A \cap B) \cup (B \setminus A \cap B)$.
- 3. Supposons que $A\Delta B = A \cap B$. Montrer que $A = B = \emptyset$.
- 4. Soit $C \in \mathcal{P}(E)$. Montrer que $A\Delta B = A\Delta C$ si, et seulement si B = C.
- 5. Résoudre l'équation d'inconnue $X \in \mathcal{P}(E)$, $A\Delta X = \emptyset$.

2 Applications

Exercice 5. Gammes sur l'injectivité et la surjectivité (*)

Soient X, Y et Z trois ensembles. Soient $f: X \to Y$ et $g: Y \to Z$ deux applications. Montrer que :

^{1.} vadim.lebovici@ens.fr

1. Injectivité

- (a) Si f et g sont injectives, alors $g \circ f$ l'est aussi.
- (b) La relation de subpotence est transitive, i.e. si $X \leq Y$ et $Y \leq Z$ alors $X \leq Z$.
- (c) Si $g \circ f$ est injective, alors f est injective.
- (d) Donner un exemple où $g \circ f$ est injective et où g ne l'est pas.

2. Surjectivité

- (a) Si f et g sont surjectives, alors $g \circ f$ l'est aussi.
- (b) La relation de surpotence est transitive.
- (c) Si $g \circ f$ est surjective, alors g est surjective.
- (d) Donner un exemple où $g \circ f$ est surjective et où f ne l'est pas.
- 3. Si $g \circ f$ est surjective et g est injective, alors f est surjective.
- 4. Si $g \circ f$ est injective et f est surjective, alors g est injective.
- 5. La relation d'équipotence est transitive.

Exercice 6. Une propriété en entraı̂ne une autre $(\star\star)$

Soit E un ensemble et soit $f: \mathcal{P}(E) \to \mathbb{R}$. On suppose que pour toutes parties A et B disjointes 2 de E, on a $f(A \cup B) = f(A) + f(B)$.

- 1. Montrer que $f(\emptyset) = 0$.
- 2. Montrer que pour toutes parties A et B de E telles que $A \subseteq B$, on a $f(B \setminus A) = f(B) f(A)$.
- 3. Montrer que pour toutes parties A et B de E, on a $f(A \cup B) = f(A) + f(B) f(A \cap B)$.

Exercice 7. Fonctions caractéristiques $(\star\star\star)$

Soit A une partie d'un ensemble E. On lui associe l'application suivante :

$$E \rightarrow \{0,1\}$$

$$\mathbf{1}_A: \quad \underset{x \mapsto}{} \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{sinon.} \end{cases}$$

- 1. (\star) Montrer que pour toutes parties A et B de E, on a : 4
 - (a) $\mathbf{1}_{B \setminus A} = \mathbf{1}_B \mathbf{1}_A$, si $A \subseteq B$.
 - (b) ${\bf 1}_{A\cap B}={\bf 1}_A\cdot{\bf 1}_B$.
 - (c) $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B$, si A et B sont disjointes.
 - (d) $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B \mathbf{1}_{A \cap B}$.
- 2. i.e. telle que $A \cap B = \emptyset$
- 3. Indice : essayer d'écrire $A \cup B$ comme l'union disjointe de trois parties de E.
- 4. La somme de deux fonctions est définie ainsi : pour $x \in E$, $(\mathbf{1}_A + \mathbf{1}_B)(x) = \mathbf{1}_A(x) + \mathbf{1}_B(x)$, et les autres opérations de manière similaire.
- 5. On peut vérifier tous les cas possibles, ou bien noter que $A \cup B = E \setminus ((E \setminus A) \cap (E \setminus B))$ et utiliser les questions précédentes.

2. $(\star\star\star)$ Montrer que pour toutes parties A et B de E, on a On note $\mathcal{F}(E,\{0,1\})$ l'ensemble des applications de E dans $\{0,1\}$. Montrer que l'application :

$$f: \begin{array}{ccc} \mathcal{P}(E) & \rightarrow & \mathcal{F}(E, \{0, 1\}) \\ A & \mapsto & \mathbf{1}_A \end{array}$$

est une bijection. ⁶

3. $(\star\star)$ Application. Résoudre la question 4 de l'exercice 4 en ne faisant que des calculs de fonctions caractéristiques.

Exercice 8. Une caractérisation de la bijectivité (**)

Soit E un ensemble et $f: E \to E$ une application. Montrer que f est bijective si, et seulement si pour toute partie A de E, on a $f(E \setminus A) = E \setminus f(A)$.

Exercice 9. Un classique (?)

Soit E un ensemble. Montrer qu'il n'existe pas de surjection de E sur $\mathcal{P}(E)$.

^{6.} L'injectivité implique en particulier que, pour toutes parties A et B de E, on a A=B si, et seulement si $\mathbf{1}_A=\mathbf{1}_B$.