SEQUENCE LISTING

AP20 Rec'd PCT/PTO 04 AUG 2006

```
Eggink, Laura
<110>
       Hoober, Ken
       Jacobs, Valerie
       Immunostimulatory Compositions and Uses Thereof
<120>
<130> 04-997-PCT
<150> US 60/542,198 
<151> 2004-02-05
<150> US 60/633,825
<151> 2004-12-07
<151>
       45
<160>
      PatentIn version 3.3
<170>
<210>
       12
<211>
<212> PRT
<213> Artificial sequence
<220>
        Synthetic peptide
<223>
<400>
       1
Ala Gln Ala Leu Gly Leu Ser Ala Ile Ser Pro Arg
 <210> 2
 <211>
        12
 <212>
        PRT
        Artificial sequence
 <213>
 <220>
 <223> synthetic peptide
 <400> 2
 Cys Thr Asp Glu Ala Leu Tyr Thr Arg Arg Gln Cys 1
 <210> 3
 <211> 12
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> Synthetic peptide
 <400> 3
 val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg
 <210>
 <211>
         12
  <212>
        PRT
  <213>
       Artificial sequence
  <220>
  <223> Synthetic peptide
                                         Page 1
```

```
<400> 4
Glu Gln Ala Thr Pro Arg Asn His His Ser Pro Pro
<210>
       12
<211>
<212>
      PRT
      Artificial sequence
<213>
<220>
       Synthetic peptide
<223>
<400>
       5
Val Gln Ala Thr Pro Arg Leu Gln His Thr Pro Arg
<210>
       6
<211>
       12
<212>
      PRT
<213>
      Artificial sequence
<220>
       Synthetic peptide
<223>
<400>
      6
Ala Gln Gly Pro Pro Ser Lys Gln His Ser Pro Pro
<210>
      7
       12
<211>
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400> 7
Leu Pro Thr Thr Ile Asn Ile Ser Asn Arg Gly Ser 1 5
<210> 8
<211> 11
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 8
Val Pro Phe Arg Gly Tyr Ser Pro Pro Gln Gly 1
<210>
       9
<211>
       12
<212> PRT
<213>
      Artificial sequence
<220>
```

```
<223> Synthetic peptide
<400> 9
Val Gln Ala Ile Gln Ser Asn Gln Leu Thr Pro Arg
<210> 10
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 10
Val Gln Ala Thr Thr Val Gln Ile Gln His Ala Pro
<210> 11
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 11
Cys Arg Ala Ser <u>I</u>le Asn Ile Thr Asn Arg Gly Ser
<210> 12
<211>
      12
<212>
      PRT
<213>
       Artificial sequence
<220>
<223> Synthetic peptide
<400> 12
Leu Pro Ser Thr Ile Asn Ile Thr Asn Arg Gly Ser
<210> 13
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 13
Gln Ser Thr Thr Ile Asn Ile Ile Arg Ser Gly Ser
<210> 14
<211>
      12
<212> PRT
<213> Artificial sequence
```

<220> <223> Synthetic peptide <400> 14 Glu Glu Ala Ile Ser Leu Ile Ser Ile Arg Arg <210> 15 <211> 12 <212> PRT <213> Artificial sequence <220> Synthetic peptide <223> <400> 15 Val Gln Ala Gly Gln Ser Asn Ala His Thr Ala Gly
1 10 <210> 16 <211> 12 <212> PRT <213> Artificial sequence <220> Synthetic peptide <223> <400> 16 Thr Thr Asp Glu Pro Phe Val Tyr Arg Arg Gln Pro <210> 17 12 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 17 Val Gln Ala Arg Gln Ser Asn Gln His Thr Pro Arg <210> 18 <211> 12 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 18 Val Gln Ala Asn Gln Cys Gln Ser Ala Tyr Ala Arg <210> 19 <211> 12 <212> PRT <213> Artificial sequence

```
<220>
       Synthetic peptide
<223>
<400>
      19
Val Arg Leu Leu Gln Tyr Ala His Arg Gly Arg Gly
<210> 20
<211>
       12
<212> PRT
<213> Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
       20
Val Gln Asn Tyr Gln Ser Asn Gln His Thr Pro Arg
<210> 21
<211> 11
<212> PRT
<213> Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
      21
Phe Val Ser Thr Thr Met Lys Leu Ser Asp Gly
<210>
<211>
       12
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 22
Phe Asn Ser Tyr Asp Thr Glu Ala Phe Gly Gly Ser
<210> 23
<211> 10
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400>
     23
Ala Glu Thr Val Glu Ser Cys Leu Ala Lys
1
<210> 24
<211>
       1801
<212>
       DNA
```

<213> Homo sapiens

<400> 24						
tttaataata	attctgtgtt	gcttctgaga	ttaataattg	attaattcat	agtcaggaat	60
ctttgtaaaa	aggaaaccaa	ttacttttgg	ctaccacttt	tacatggtca	cctacaggag	120
agaggaggtg	ctgcaagact	ctctggtaga	aaaatgaaga	gggtcctggt	actactgctt	180
gctgtggcat	ttggacatgc	tttagagaga	ggccgggatt	atgaaaagaa	taaagtctgc	240
aaggaattct	cccatctggg	aaaggaggac	ttcacatctc	tgtcactagt	cctgtacagt	300
agaaaatttc	ccagtggcac	gtttgaacag	gtcagccaac	ttgtgaagga	agttgtctcc	360
ttgaccgaag	cctgctgtgc	ggaaggggct	gaccctgact	gctatgacac	caggacctca	420
gcactgtctg	ccaagtcctg	tgaaagtaat	tctccattcc	ccgttcaccc	aggcactgct	480
gagtgctgca	ccaaagaggg	cctggaacga	aagctctgca	tggctgctct	gaaacaccag	540
ccacaggaat	tccctaccta	cgtggaaccc	acaaatgatg	aaatctgtga	ggcgttcagg	600
aaagatccaa	aggaatatgc	taatcaattt	atgtgggaat	attccactaa	ttacggacaa	660
gctcctctgt	cacttttagt	cagttacacc	aagagttatc	tttctatggt	agggtcctgc	720
tgtacctctg	caagcccaac	tgtatgcttt	ttgaaagaga	gactccagct	taaacattta	780
tcacttctca	ccactctgtc	aaatagagtc	tgctcacaat	atgctgctta	tggggagaag	840
aaatcaaggc	tcagcaatct	cataaagtta	gcccaaaaag	tgcctactgc	tgatctggag	900
gatgttttgc	cactagctga	agatattact	aacatcctct	ccaaatgctg	tgagtctgcc	960
tctgaagatt	gcatggccaa	agagctgcct	gaacacacag	taaaactctg	tgacaattta	1020
tccacaaaga	attctaagtt	tgaagactgt	tgtcaagaaa	aaacagccat	ggacgttttt	1080
gtgtgcactt	acttcatgcc	agctgcccaa	ctcccgagc	ttccagatgt	agagttgccc	1140
acaaacaaag	atgtgtgtga	tccaggaaac	accaaagtca	tggataagta	tacatttgaa	1200
ctaagcagaa	ggactcatct	tccggaagta	ttcctcagta	aggtacttga	gccaacccta	1260
aaaagccttg	gtgaatgctg	tgatgttgaa	gactcaacta	cctgttttaa	tgctaagggc	1320
cctctactaa	agaaggaact	atcttctttc	attgacaagg	gacaagaact	atgtgcagat	1380
tattcagaaa	atacatttac	tgagtacaag	aaaaaactgg	cagagcgact	aaaagcaaaa	1440
ttgcctgatg	ccacacccac	ggaactggca	aagctggtta	acaagcactc	agactttgcc	1500
tccaactgct	gttccataaa	ctcacctcct	ctttactgtg	attcagagat	tgatgctgaa	1560
ttgaagaata	tcctgtagtc	ctgaagcatg	tttattaact	ttgaccagag	ttggagccac	1620
ccaggggaat	gatctctgat	gacctaacct	aagcaaaacc	actgagcttc	tgggaagaca	1680
actaggatac	tttctacttt	ttctagctac	aatatcttca	tacaatgaca	agtatgatga	1740
tttgctatca	aaataaattg	aaatataatg	caaaccataa	aaaaaaaaa	aaaaaaaaa	1800
a						1801

<210> 25 <211> 474 <212> PRT

<213> Homo sapiens

<400> 25

Met Lys Arg Val Leu Val Leu Leu Leu Ala Val Ala Phe Gly His Ala 1 10 15

Leu Glu Arg Gly Arg Asp Tyr Glu Lys Asn Lys Val Cys Lys Glu Phe 20 25 30

Ser His Leu Gly Lys Glu Asp Phe Thr Ser Leu Ser Leu Val Leu Tyr 35 40 45

Ser Arg Lys Phe Pro Ser Gly Thr Phe Glu Gln Val Ser Gln Leu Val 50 60

Lys Glu Val Val Ser Leu Thr Glu Ala Cys Cys Ala Glu Gly Ala Asp
65 70 75 80

Pro Asp Cys Tyr Asp Thr Arg Thr Ser Ala Leu Ser Ala Lys Ser Cys 85 90 95

Glu Ser Asn Ser Pro Phe Pro Val His Pro Gly Thr Ala Glu Cys Cys 100 105 110

Thr Lys Glu Gly Leu Glu Arg Lys Leu Cys Met Ala Ala Leu Lys His 115 120 125

Gln Pro Gln Glu Phe Pro Thr Tyr Val Glu Pro Thr Asn Asp Glu Ile 130 135 140

Cys Glu Ala Phe Arg Lys Asp Pro Lys Glu Tyr Ala Asn Gln Phe Met 145 150 155 160

Trp Glu Tyr Ser Thr Asn Tyr Gly Gln Ala Pro Leu Ser Leu Leu Val 165 170 175

Ser Tyr Thr Lys Ser Tyr Leu Ser Met Val Gly Ser Cys Cys Thr Ser 180

Ala Ser Pro Thr Val Cys Phe Leu Lys Glu Arg Leu Gln Leu Lys His 195 200 205

Leu Ser Leu Leu Thr Thr Leu Ser Asn Arg Val Cys Ser Gln Tyr Ala 210 215 220

Ala Tyr Gly Glu Lys Lys Ser Arg Leu Ser Asn Leu Ile Lys Leu Ala 225 230 240

Gln Lys Val Pro Thr Ala Asp Leu Glu Asp Val Leu Pro Leu Ala Glu 245 250 255

Asp Ile Thr Asn Ile Leu Ser Lys Cys Cys Glu Ser Ala Ser Glu Asp Page 7

260 265 270

Cys Met Ala Lys Glu Leu Pro Glu His Thr Val Lys Leu Cys Asp Asn 275 280 285

Leu Ser Thr Lys Asn Ser Lys Phe Glu Asp Cys Cys Gln Glu Lys Thr 290 295 300

Ala Met Asp Val Phe Val Cys Thr Tyr Phe Met Pro Ala Ala Gln Leu 305 310 320

Pro Glu Leu Pro Asp Val Glu Leu Pro Thr Asn Lys Asp Val Cys Asp 325 330 335

Pro Gly Asn Thr Lys Val Met Asp Lys Tyr Thr Phe Glu Leu Ser Arg 340 345 350

Arg Thr His Leu Pro Glu Val Phe Leu Ser Lys Val Leu Glu Pro Thr 355 360 365

Leu Lys Ser Leu Gly Glu Cys Cys Asp Val Glu Asp Ser Thr Thr Cys 370 380

Phe Asn Ala Lys Gly Pro Leu Leu Lys Lys Glu Leu Ser Ser Phe Ile 385 390 395 400

Asp Lys Gly Gln Glu Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr 405 410 415

Glu Tyr Lys Lys Leu Ala Glu Arg Leu Lys Ala Lys Leu Pro Asp 420 425 430

Ala Thr Pro Thr Glu Leu Ala Lys Leu Val Asn Lys His Ser Asp Phe 435 440 445

Ala Ser Asn Cys Cys Ser Ile Asn Ser Pro Pro Leu Tyr Cys Asp Ser 450 460

Glu Ile Asp Ala Glu Leu Lys Asn Ile Leu 465

<210> 26

<211> 207

<212> DNA

<213> Homo sapiens

<220>·

<221> CDS

<222> (1)..(207)

<400> 26

cta tgt gca gat tat tca gaa aat aca ttt act gag tac aag aaa aaa Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr Glu Tyr Lys Lys 1 5 10 15 Page 8

ctg gca gag cga ct Leu Ala Glu Arg Le 20	a aaa gca aa u Lys Ala Ly	a ttg cct gat s Leu Pro Asp 25	gcc aca ccc a Ala Thr Pro T 30	cg gaa 96 hr Glu			
ctg gca aag ctg gt Leu Ala Lys Leu Va 35	t aac aag ca 1 Asn Lys Hi 40	s Ser Asp Phe	gcc tcc aac t Ala Ser Asn C 45	gc tgt 144 Cys Cys			
tcc ata aac tca co Ser Ile Asn Ser Pr 50	ct cct ctt ta ro Pro Leu Ty 55	c tgt gat tca r Cys Asp Ser	gag att gat g Glu Ile Asp A 60	ict gaa 192 la Glu			
ttg aag aat atc ct Leu Lys Asn Ile Le 65				207			
<210> 27 <211> 69 <212> PRT <213> Homo sapier	ns						
<400> 27							
Leu Cys Ala Asp Ty 1 5	yr Ser Glu As	sn Thr Phe Thr 10	Glu Tyr Lys I	_ys Lys 15			
Leu Ala Glu Arg L 20	eu Lys Ala Ly	ys Leu Pro Asp 25	Ala Thr Pro 30	Thr Glu			
Leu Ala Lys Leu V 35	al Asn Lys H ⁻ 40	is Ser Asp Phe)	Ala Ser Asn (Cys Cys			
Ser Ile Asn Ser P 50	ro Pro Leu Ty 55	yr Cys Asp Ser	Glu Ile Asp / 60	Ala Glu			
Leu Lys Asn Ile L 65	eu						
<210> 28 <211> 249 <212> DNA <213> Artificial	sequence						
<220> <223> Synthetic oligonucleotide							
<220> <221> CDS <222> (1)(249)							
<400> 28 cta tgt gca gat t Leu Cys Ala Asp T	at tca gaa a yr Ser Glu A	at aca ttt act sn Thr Phe Thi 10	gag tac aag Glu Tyr Lys	aaa aaa 48 Lys Lys 15			
ctg gca gag cga c Leu Ala Glu Arg L 20	ta aaa gca a .eu Lys Ala L	aa ttg cct gat ys Leu Pro Asp 25	gcc aca ccc Ala Thr Pro 30	caa gct 96 Gln Ala			
aca caa tca aat d Thr Gln Ser Asn C	aa cat aca c In His Thr P	ca cgt ggt gg ro Arg Gly Gly Page	y Gly Ser Glu	ctg gca 144 Leu Ala			

35	40	45					
aag ctg gtt aac aag cac Lys Leu Val Asn Lys His 50	tca gac ttt gcc tcc Ser Asp Phe Ala Ser 55	cc aac tgc tgt tcc ata 192 er Asn Cys Cys Ser Ile 60					
aac tca cct cct ctt tac Asn Ser Pro Pro Leu Tyr 65	tgt gat tca gag att Cys Asp Ser Glu Ile 75	le Asp Ala Glu Leu Lys					
aat atc ctg Asn Ile Leu		249					
<210> 29 <211> 83 <212> PRT <213> Artificial sequence							
<220> <223> Synthetic Constr	ıct						
<400> 29							
Leu Cys Ala Asp Tyr Ser 1 5	Glu Asn Thr Phe Thi	or Glu Tyr Lys Lys 15					
Leu Ala Glu Arg Leu Lys 20	Ala Lys Leu Pro Ası 25	sp Ala Thr Pro Gln Ala 30					
Thr Gln Ser Asn Gln His	Thr Pro Arg Gly Gly 40	ly Gly Ser Glu Leu Ala 45					
Lys Leu Val Asn Lys His 50	Ser Asp Phe Ala Se 55	er Asn Cys Cys Ser Ile 60					
Asn Ser Pro Pro Leu Tyr 65 70	Cys Asp Ser Glu Il	le Asp Ala Glu Leu Lys 5 80					
Asn Ile Leu							
<210> 30 <211> 1031 <212> DNA <213> Artificial sequence							
<220> <223> Synthetic oligonucleotide							
<220> <221> CDS <222> (214)(486)							
<400> 30 aaagatttta aaaataaact t	ttttaatct tttatttat	tt ttttctttt tatggcaatg 60					
cgtactccag aagaacttag taatcttatt aaagatttaa ttgaacaata cactccagaa 120							
		tg acggtattgc tcgtatttat 180					

Page 10

ggtttagaaa aagcaatgtc aggtgaatta ctt atg tta tgt gct gat tat tca Met Leu Cys Ala Asp Tyr Ser 1	234
gaa aat aca ttt aca gaa tat aaa aaa aaa tta gct gaa cgt tta aaa Glu Asn Thr Phe Thr Glu Tyr Lys Lys Lys Leu Ala Glu Arg Leu Lys 10 15 20	282
gct aaa tta cca gat gct aca cca caa gct aca caa tca aat caa cat Ala Lys Leu Pro Asp Ala Thr Pro Gln Ala Thr Gln Ser Asn Gln His 25 30 35	330
aca cca cgt ggt ggt tca gaa tta gct aaa tta gtt aat aaa cat Thr Pro Arg Gly Gly Ser Glu Leu Ala Lys Leu Val Asn Lys His 40 45 50 55	378
tca gat ttt gct tca aat tgt tgt tca att aat tca cca cca tta tat Ser Asp Phe Ala Ser Asn Cys Cys Ser Ile Asn Ser Pro Pro Leu Tyr 60 65 70	426
tgt gat tca gaa att gat gct gaa tta aaa aat att tta cat cat cat Cys Asp Ser Glu Ile Asp Ala Glu Leu Lys Asn Ile Leu His His His 75 80 85	474
cat cat taa ttccaagcat tatctaaaat actctgcagg catgcaagct His His His 90	526
agcttgtact caagctcgta acgaaggtcg tgaccttgct cgtgaaggtg gcgacgtaat	586
tcgttcagct tgtaaatggt ctccagaact tgctgctgca tgtgaagttt ggaaagaaat	646
taaattcgaa tttgatacta ttgacaaact ttaattttta tttttcatga tgtttatgtg	706
aatagcataa acatcgtttt tatttttatg gtgtttaggt taaataccta aacatcattt	766
tacattttta aaattaagtt ctaaagttat cttttgttta aatttgcctg tctttataaa	826
ttacgatgtg ccagaaaaat aaaatcttag ctttttatta tagaatttat ctttatgtat	886
tatattttat aagttataat aaaagaaata gtaacatact aaagcggatg tagcgcgttt	946
atcttaacgg aagtctagag gcatcgaatt cctgcagccc ggggggatcca ctagttctag	1006
agcggccgcc accgcggtgg agctc	1031
<210> 31 <211> 90 <212> PRT	

Artificial sequence

<220>

<223> Synthetic Construct

<400> 31

Met Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr Glu Tyr Lys Lys 10 15

Lys Leu Ala Glu Arg Leu Lys Ala Lys Leu Pro Asp Ala Thr Pro Gln 20 25 30

Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser Glu Leu 35 40 45

Ala Lys Leu Val Asn Lys His Ser Asp Phe Ala Ser Asn Cys Cys Ser 50 60

Ile Asn Ser Pro Pro Leu Tyr Cys Asp Ser Glu Ile Asp Ala Glu Leu6570

Lys Asn Ile Leu His His His His His 90

- <210> 32
- <211> 18
- <212> PRT
- <213> Artificial sequence
- <220>
- <223> Synthetic peptide
- <400> 32
- Val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser 1 10 15

Lys Trp

- <210> 33
- <400> 33
- 000
- <210> 34
- <211> 4
- <213> Artificial sequence
- <220>

<212>

- <223> Synthetic peptide
- <400> 34
- Gly Gly Ser

PRT

- <210> 35
- <400> 35
- 000
- <210> 36
- <211> 11
- <212> PRT
- <213> Artificial sequence
- <220>
- <223> Synthetic peptide
- <400> 36
- Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg
 1 10

<210> 37

```
15
<211>
<212>
       PRT
<213>
       Artificial sequence
<220>
       Synthetic peptide
<223>
<400>
      37
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Ser
<210>
       38
<211>
       16
<212>
      PRT
<213>
       Artificial sequence
<220>
       Synthetic peptide
<223>
<400>
       38
Val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser
<210>
       39
<211>
      12
<212>
      PRT
<213>
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
      39
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Lys
<210>
       40
<211>
       13
<212> PRT
<213>
       Artificial sequence
<220>
<223>
      Synthetic peptide
<400>
      40
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Lys Trp
<210>
       41
<211>
      16
<212> PRT
<213>
      Artificial sequence
<220>
<223>
      Synthetic peptide
<400>
       41
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser Lys
```

```
<210>
       42
<211>
      17
<212>
       P:
          ficial sequence
<213>
      A:
<220>
       Synthetic peptide
<223>
<400>
      42
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Ser Lys
Trp
<210> 43
<211>
       13
<212>
       PRT
       Artificial sequence
<213>
<220>
      Synthetic peptide
<223>
<400> 43
val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Lys
<210>
       44
<211>
       14
<212>
       PRT
       Artificial sequence
<220>
      Synthetic peptide
<223>
<400> 44
val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Lys Trp
                                    10
<210>
       45
       17
<211>
<212>
       PRT
<213>
       Artificial sequence
<220>
       Synthetic peptide
<223>
<400>
      45
val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Ser
                                    10
Lys
```