Алгебра та геометрія

- 1. Система двох лінійних рівнянь з трьома невідомими завжди
- а) ϵ не визначена або ж ϵ не сумісна

2. Система
$$\begin{cases} ax + by = c_1 \\ ax + by = c_2 \end{cases}$$

- а) може бути невизначеною
- 3. Система лінійних рівнянь з квадратною матрицею A має нескінченну кількість розв'язків. Тоді визначник матриці A повинен бути рівним...
- a) 0
- 4. Нехай Δ детермінант матриці лінійної системи. Тоді
- а) якщо $\Delta \neq 0$, то система сумісна
- 5. Якщо визначник матриці лінійної системи дорівнює нулю, то система:
- а) не має розв'язків, або ж має їх нескінченну кількість
- 6. Система лінійних рівнянь $\begin{cases} 2x 3y = 4, \\ 4x \lambda y = \lambda + 2, \end{cases}$ має безліч розв'язків, якщо значення параметра
- λ дорівнює
- a) 6
- 7. Якщо X_1 та X_2 розв'язки системи лінійних рівнянь AX = B , $B \neq 0$, то розв'язком цієї системи обов'язково буде

a)
$$\frac{1}{2}(X_1 + X_2)$$

- 8. Однорідна система лінійних рівнянь не може бути
- а) несумісною
- 9. Детермінант матриці завжди не зміниться, якщо
- а) транспонувати матрицю детермінанта
- 10. Якщо A, B неособливі квадратні матриці n -го порядку, k -число, то завжди

a)
$$\det(A^{-1}) = (\det(A))^{-1}$$

- 11. Якщо детермінант n-го порядку $(n \ge 3)$ дорівнює 0, то завжди
- а) його рядки (стовпці) лінійно залежні
- 12. До першого рядка детермінанта 5-го порядку додали суму чотирьох інших рядків, а останні не змінили. При цьому детермінант
- а) не зміниться
- 13. В детермінанті 5-го порядку рівно 21 елемент дорівнює 0. Цей детермінант дорівнює а) 0
- 14. Кількість перестановок на п'ятиелементній множині дорівнює
- a) 120

- 15. Стовпці a, b, c, d 4×4 матриці A змінили за правилом a, c, d, b. Детермінант матриці A: a) не змінився
- 16. Якщо A, B квадратні матриці n-го порядку, k число, то завжди
- a) $det(AB) = det A \cdot det B$
- 17. Якщо в матриці змінити один з її елементів, то ранг матриці може збільшитись на а) 1
- 18. Кожна з матриць A та B має ненульовий детермінант, тоді завжди ненульовий детермінант має матриця
- a) *AB*
- 19. Два стовпці квадратної матриці співпадають. Обернена для цієї матриці матриця а) не існує
- 20. Знайти добуток $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \end{pmatrix}$
- a) $\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}$
- 21. Знайти квадратну матрицю X другого порядку, для якої $X \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$
- a) $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$
- 22. Нехай $H-(n\times n)$ матриця, $n\geq 2$. Рівняння XH=H
- а) має принаймні один розв'язок
- 23. Нехай A , B квадратні матриці n -го порядку, причому B особлива матриця. Тоді завжди особливою ϵ матриця
- a) AB^T
- 24. Матричне рівняння $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} X = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$
- а) не має розв'язків
- 25. Нехай A , B квадратні неособливі матриці n -го порядку. Тоді завжди
- a) $(AB)^{-1} = B^{-1}A^{-1}$
- 26. Ранг матриці $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$ дорівнює
- a) 1

- 27. Кожна з матриць А та В має нульовий детермінант, тоді нульовий детермінант завжди має матриця
- a) AB
- 28. Два стовпці квадратичної матриці протилежні. Обернена для цієї матриці а) не існує
- 29. Знайти добуток (1, -1, 2) $\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$
- а) помножити не можна
- 30. Нехай A, B ϵ , відповідно, матриця-рядок і матриця-стовпець із 3 чисел. Тоді невизначеними ϵ добуток
- a) B^2
- 31. Нехай A, B квадратні матриці n-го порядку, причому, A особлива матриця. Тоді завжди особливою ϵ матриця
- a) $A^T B$
- 32. Ранг матриці $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$ дорівнює
- a) 1
- 33. При множенні 2×2 матриці A зліва на матрицю $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, тобто $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ A, в матриці A...
- а) другий рядок помножується на 2
- 34. Добуток двох матриць ϵ ненульова матриця. Тоді
- а) обов'язково обидві матриці ненульові
- 35. Деяке комплексне число має тригонометричну форму

a)
$$3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

- 36. Множення комплексних чисел на мниме число i реалізує наступне перетворення координатної площини
- а) поворот навколо початку координат на кут 90°
- 37. Комплексні числа z , які задовольняють умову $\begin{cases} |z| \leq 1, \\ 0 \leq \arg z \leq \frac{\pi}{4}, \end{cases}$ в координатній площині

визначають

- а) сектор круга
- 38. Рівняння $x^4 + 16 = 0$ над полем комплексних чисел
- а) має рівно чотири розв'язки

- 39. Нехай $z_1 = 1 i$, $z_2 = -1 + i$. Тоді
- a) $|z_1| = |z_2|$
- 42. Добуток комплексного числа z на спряжене \bar{z} ε
- а) невід'ємне дійсне число
- 43. З того, що комплексне число z співпадає з числом \bar{z} випливає
- а) z міститься на дійсній осі
- 44. Множині всіх комплексних чисел з аргументом $\frac{\pi}{4}$ на комплексній площині відповідає
- а) промінь без початкової точки
- 45. Множення комплексних чисел на число -i реалізує наступне перетворення координатної плошини
- а) поворот навколо початку координат на кут $\frac{\pi}{2}$ за стрілкою годинника
- 46. Нехай $z_1 = 2 + i$, $z_2 = 2 i$. Тоді
- a) $z_1 = \overline{z_2}$
- 47. Комплексні числа z, які задовольняють умові arg $z = \frac{\pi}{2}$ в координатній площині визначають
- а) промінь без початкової точки
- 48. Кількість розв'язків рівняння $x^4 + 1 = 0$ над полем комплексних чисел дорівнює а) 4
- 49. Добуток комплексного числа z на число $-\overline{z}$ $(z \neq 0)$ ε
- а) від'ємне дійсне число
- 50. Комплексні числа z, які задовольняють на умову $z=\overline{z}$ в координатній площині визначають
- а) пряму
- 51. Многочлен четвертого ступеня з дійсними коефіцієнтами не може мати
- а) три уявних і один дійсний корінь
- 52. Многочлен п'ятого ступеня не може мати
- а) три різних кратних коренів
- 53. Незвідний над полем дійсних чисел многочлен не може мати степінь
- a) 3
- 54. Незвідний над полем комплексних чисел многочлен обов'язково має степінь
- a) 1
- 55. Лінійний простір дійсних многочленів ступеня ≤ 3 над полем дійсних чисел ізоморфний
- а) арифметичному простору R^4

- 56. Система n векторів $(n \ge 2)$ є лінійно залежною тоді і лише тоді, коли
- а) один із векторів ϵ лінійною комбінацією інших
- 57. Нехай u та w підпростори лінійного чотиривимірного простору V . Системи f_1,f_2,f_3 та g_1,g_2 є базисами u та w відповідно. Система векторів f_1,f_2,f_3,g_1,g_2 а) лінійно залежна
- 58. Якщо ранг матриці однорідної системи лінійних рівнянь з 10-ма невідомими дорівнює 4, то вимірність простору її розв'язків дорівнює а) 6
- 59. Лінійний простір дійсних многочленів ступеня ≤ 2 над полем дійсних чисел має вимірність
- a) 3
- 60. Вимірність лінійного простору всіх верхньотрикутних 2×2 матриць над полем дійсних чисел дорівнює:
- a) 3
- 61. Лінійний простір над полем дійсних чисел утворюють множини многочленів:
- а) степінь яких більша або дорівнює n
- 62. Вимірність суми двох підпросторів лінійного простору дорівнює сумі вимірностей доданків, якщо
- а) перетин доданків дорівнює нульовому елементу
- 63. Система з трьох векторів лінійно залежна тоді й лише тоді, коли
- а) хоча б один із векторів є лінійною комбінацією інших
- 64. Система із n векторів лінійно незалежна тоді і тільки тоді, коли
- а) лінійна комбінація векторів, де не всі коефіцієнти нульові, не може дорівнювати 0
- 65. Вектори а₁,...,а_n утворюють базис лінійного простору, якщо
- а) вони лінійно незалежні і через них лінійно виражаються всі вектори простору
- 66. Вимірність лінійного простору дорівнює
- а) кількості векторів у максимальній лінійно незалежній підсистемі
- 67. У тривимірному дійсному лінійному просторі скалярний добуток задається
- а) однозначно
- 68. Нехай $\bar{x}=(x_1,x_2),\ \bar{y}=(y_1,y_2)$ довільні вектори арифметичного простору R^2 . Скалярний добуток (\bar{x},\bar{y}) в R^2 можна визначити формулою
- a) $x_1y_1 + x_2y_2$
- 69. У евклідовому просторі кожна ортонормована система векторів
- а) лінійно незалежна
- 70. Якщо вектори \overline{a} і \overline{b} мають довжину 4, то їх скалярний добуток не може дорівнювати а) 18

71. Вектори \bar{a} і \bar{b} евклідового простору ортогональні тоді і тільки тоді, коли

a)
$$(\bar{a}, \bar{b}) = 0$$

72. Якщо в евклідовому просторі $(\bar{a}, \bar{b}) = 0$, то

a)
$$\bar{a}\perp\bar{b}$$

73. Якщо в евклідовому просторі існують вектори
$$\bar{a}, \bar{b}, \bar{c}$$
 такі, що $(\bar{a}, \bar{c}) = (\bar{b}, \bar{c})$, то

a)
$$\bar{c} \perp (\bar{a} - \bar{b})$$

74. Нехай
$$\bar{x} = (x_1, x_2, x_3)$$
- довільний вектор арифметичного простору R^3 . Формула

$$3x_1^2 + x_2^2 + x_3^2$$

а) визначає додатньо визначену квадратичну форму не визначає квадратичну форму

75. Ранг квадратичної форми $x_1^2 + 2x_1x_2 + x_2^2$ дорівнює

76. У двовимірному просторі додатньо визначеною є квадратична форма

a)
$$x_1^2 + 2x_1x_2 + 2x_2^2$$

77. Матриці А і В одного оператора в різних базисах завжди

а) подібні

матриця в базисі $e_1 = (1,0), e_2 = (0,1) \epsilon$

78. В двовимірному арифметичному просторі R^2 діє оператор симетрії відносно осі Ox. Його

a)
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

79. Завжди має власні вектори лінійний оператор у ненульовому просторі над полем

80. Нехай φ - лінійний оператор у двовимірному просторі. Вимірність ядра оператора φ не

a) 3

81. Нехай дано різні точки
$$M_1(x_1, y_1)$$
 і $M_2(x_2, y_2)$. Тоді рівняння $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$ задає:

а) пряму, що проходить через M_1 і M_2

82. Нехай дано різні точки
$$A_1\left(x_1,y_1\right),\ A_2\left(x_2,y_2\right),$$
 тоді рівняння
$$\begin{cases} x-x_1=\lambda(x_2-x_1)\\ y-y_1=\lambda(y_2-y_1) \end{cases}$$
, де

параметр $\lambda \in \mathbb{R}$, задає

а) пряму
$$A_1 A_2$$

Бази даних та інформаційні системи

- 1. Яка функція невластива інформаційним системам?
- а) збереження архіву документів у паперовому виді
- 2. Що є головними компонентами системи баз даних?
- а) дані, апаратне забезпечення, програмне забезпечення, користувачі
- 3. Що називається даними?
- а) опис послідовності різних взаємозалежних явищ реального світу
- 4. У системах баз даних...
- а) дані і їхня інтерпретація розділені
- 5. Однокористувальницька система це система, у якій...
- а) одночасно до бази даних може одержати доступ не більш одного користувача
- 6. Багатокористувальницька система це система, у якій...
- а) одночасно до бази даних можуть одержати доступ відразу кілька користувачів
- 7. Як називається найменша (тобто неподільна) одиниця пойменованих даних?
- а) поле
- 8. Що не відноситься до апаратного забезпечення системи баз даних?
- а) система управління базою даних
- 9. Чим займаються адміністратори бази даних?
- а) технічним обслуговуванням системи баз даних
- 10. Як називається нормалізація з декомпозицією на незалежні проекції?
- а) декомпозицією зі збереженням залежностей
- 11. Якої операції немає в реляційної алгебрі
- а) зведення в ступінь
- 12. Як називається програмне забезпечення у якого внутрішня структура залежить від структури збереження даних?
- а) залежне від даних
- 13. Що містить у собі архітектура ANSI/SPARC?
- а) три рівні представлення даних: внутрішній, концептуальний і зовнішній
- 14. Що таке зовнішній рівень в архітектурі ANSI/SPARC?
- а) індивідуальне представлення користувачів
- 15. Що таке концептуальний рівень в архітектурі ANSI/SPARC?
- а) представлення всієї інформації бази даних у більш абстрактній формі в порівнянні з фізичним способом збереження даних
- 16. Що таке внутрішній рівень в архітектурі ANSI/SPARC?
- а) представлення інформації в пам'яті (на фізичних пристроях збереження даних)

- 17. Що передбачає архітектура клієнт-сервер?
- а) передачу запита клієнтом, його обробку сервером і передачу клієнтові результату запиту
- 18. Яке висловлення вірне?
- а) реляційна база даних представлена у виді сукупності таблиць. Таблиці в реляційної системі ϵ логічними, а не фізичними структурами
- 19. Як представляється весь інформаційний зміст реляційної бази даних?
- а) явним завданням значень даних
- 20. Як називається загальна сукупність значень, з якої беруться значення для визначених атрибутів відношення?
- а) домен
- 21. Що називається кардинальним числом відношення R?
- а) кількість кортежів у відношенні
- 22. Що називається ступенем відношення R?
- а) кількість атрибутів у відношенні
- 23. Яка властивість відношення зазначена невірно?
- а) атрибути упорядковані ліворуч праворуч
- 24. Що називається похідним відношенням?
- а) відношення, визначене (за допомогою реляційного вираження) через інші іменовані відношення і, у кінцевому рахунку, через базові відношення
- 25. Що не відноситься до правил цілісності в базі даних?
- а) обмеження на доступ до інформації для користувачів
- 26. Потенційним ключем К для відношення R назвемо підмножину атрибутів R, що володіє властивостями унікальності (немає двох різних кортежів у відношенні R з однаковим значенням К) і ненадмірності (ніяке з підмножин К не має властивість унікальності).
- а) визначення вірне
- 27. Коли потенційний ключ називається простим?
- а) якщо складається з одного атрибута
- 28. Зовнішнім ключем FK у базовому відношенні R2 називається підмножина атрибутів R2, для якого виконуються дві властивості: існує базове відношення R1 (R1 і R2 не обов'язково різні) з потенційним ключем СК і кожне значення FK у поточному значенні R2 завжди збігається зі значенням СК деякого кортежу в поточному значенні R1.
- а) визначення вірне
- 29. Що визначає правило посилальної цілісності?
- а) вимогу, що база даних не повинна містити неузгоджених значень зовнішніх ключів з відповідними їм первинними
- 30. Два відношення сумісні по типу, якщо в них ідентичні заголовки, тобто виконані наступні дві вимоги: кожне з відносин мають однакову кількість атрибутів, а відповідні атрибути визначені на однакових доменах.
- а) визначення невірне

31. Що називається схемою бази даних?

а) отримане в результаті проектування множина відношень, кожне з яких містить визначений набір атрибутів

32. Яке визначення вірне?

а) процедура нормалізації включає розбивку даного відношення на інші відношення, причому декомпозиція повинна бути оборотною, тобто виконуватися без втрат інформації

33. Яке визначення вірне?

а) відношення знаходиться в першій нормальній формі тоді і тільки тоді, коли усі використовувані домени містять тільки скалярні значення

34. Яке визначення вірне?

а) відношення знаходиться в другій нормальній формі тоді і тільки тоді, коли воно знаходиться в першій нормальній формі і кожен неключовий атрибут неприводимо залежить від первинного ключа

Дискретна математика

- 1. Яке з наступних тверджень ϵ вірним для довільних множин A, B?
- a) $A = A \cap (A \cup B)$
- 2. Яке з наступних тверджень ϵ вірним для довільних множин A, B?
- a) $A \supseteq A \cap (A \cup B)$
- 3. Яке з наступних тверджень є законом дистрибутивності?
- a) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- 4. Яке з наступних тверджень є законом асоціативності?
- a) $(A \cup B) \cup C = A \cup (B \cup C)$
- 5. Яке з наступних тверджень є законом поглинання?
- a) $A = A \cap (A \cup B)$
- 6. Яке з наступних тверджень є правилом де Моргана?
- a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- 7. Нехай A, B довільні скінчені множини, при якій умові $|A \cup B| = |A| + |B|$?
- a) $A \cap B = \emptyset$
- 8. Яке з тверджень ϵ невірним для довільних множин A, B?
- a) $|A \cup B| = |A| + |B|$
- 9. $A \cap \overline{A}$ дорівнює
- a) Ø
- 10. A/\overline{A} дорівнює
- a) A
- 11. $A \oplus \overline{A}$ дорівнює
- a) U
- 12. \overline{A}/A дорівнює
- a) \overline{A}
- 13. Нехай $A = \{a \in N : a \ \kappa pamhi \ 2\}$, $B = \{b \in N : a \ \kappa pamhi \ 3\}$, яке з наступних чисел не належить до $A \cup B$?
- a) 5
- 14. Нехай $A = \{a \in N : a \ \kappa pamhi \ 2\}$, $B = \{b \in N : a \ \kappa pamhi \ 3\}$, яке з наступних чисел належить до $A \cap B$?
- a) 6
- 15. Нехай A, B, C довільні множини, $(x, y) \in A \times (B \oplus C)$, яке з наступних тверджень є невірним?
- a) $y \in B \cap C$

- 16. Нехай A, B, C довільні множини, яке з наступних тверджень є невірним?
- a) $A/(B/C) = A/(B \cup C)$
- 17. $X = \{1, 2, 3\}, p = \{(1, 1), (1, 2), (1, 3)\},$ відношення p буде
- а) транзитивним
- 18. $X = \{1, 2, 3\}, p = \{(1, 1), (2, 2), (3, 3), (3, 1)\},$ відношення p буде
- а) рефлексивним
- 19. $X = \{1, 2, 3\}, p = \{(1, 1), (1, 2), (2, 1)\},$ чи буде відношення p?
- а) симетричним
- 20. $X = \{1, 2, 3\}, p = \{(1, 2), (3, 2), (2, 2)\},$ чи буде відношення p?
- а) функціональним
- 21. $X = \{1, 2, 3\}$, $p = \{(3, 1), (1, 2), (1, 3)\}$, чи буде відношення p?
- а) антирефлексивним
- 22. $X = \{1, 2, 3\}$, $p = \{(1, 1), (1, 2), (2, 2)\}$, $\sigma = \{(2, 2), (2, 3)\}$, яка з вказаних пар не входить до $p \cdot \sigma$? а) (1, 1)
- 23. $X = \{1, 2, 3\}$, $p = \{(1, 1), (1, 2), (2, 2)\}$, $\sigma = \{(2, 2), (2, 3)\}$, яка з вказаних пар входить до $p \cdot \sigma$? а) (2,2)
- 24. $X = \{1, 2, 3\}$, яке з відношень є еквівалентністю на X?
- a) $p = \{(1, 1), (2, 2), (3, 3)\}$
- 25. $X = \{1, 2, 3\}$, яке з відношень є порядком на X?
- a) $p = \{(1, 1), (1, 2), (2, 2), (3, 3)\}$
- 26. $X = \{1, 2, 3\}$, яке з відношень є строгим порядком на X?
- a) $p = \{(1, 2), (2, 3), (1, 3)\}$
- 27. Нехай $p, \sigma \in \text{симетричні}$ на X і $p \neq \sigma$, яке з відношень не буде симетричним на X?
- а) кожне з вказаних відношень буде симетричним
- б) $p \cup \sigma$
- 28. Нехай $p, \sigma \in$ рефлексивні на X, яке з відношень не буде рефлексивним на X?
- a) p/σ
- 29. Нехай $p, \sigma \in \phi$ ункціональні на X, яке з відношень може не бути функціональним на X?
- a) $p \cup \sigma$
- 30. Нехай $p, \sigma \in$ антирефлексивні на X, яке з відношень не буде антирефлексивним на X?
- а) всі будуть
- 31. $X = \{1, 2, 3\}$, $p = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$, скільки буде різних класів еквівалентності? а) 2

- 32. Яке з вказаних відношень на R не буде антирефлексивним?
- a) "="
- 33. Яке з вказаних відношень на R не буде антисиметричним?
- a) "≠"
- 34. На вершину гори ведуть 5 доріг. Скількома способами турист може піднятися в гору і спуститися з гори, якщо підйом і спуск повинний проходити по різних дорогах
- a) 20
- 35. Скількома способами можна розкласти 12 різних подарунків по 4 різним пакетам
- a) 4^{12}
- $36.\ 3$ карток із числами $1\ 2\ 3\ ...10$ вибирають п'ять без повернення, скількома способами це можна зробити ?
- a) C_{10}^5
- 37. З карток із числами 1 2 3 ...10 вибирають п'ять без повернення, скількома способами це можна зробити так, щоб серед обраних була картка з числом 1?
- a) C_9^4
- 38. З карток із числами 1 2 3 ...10 вибирають п'ять без повернення, скількома способами це можна зробити так, щоб серед обраних були картка з числами 1 і 6?
- a) C_8^3
- 39. Скільки тризначних чисел можна скласти з цифр 1 2 3 4 5?
- a) 5^{3}
- 40. Скільки тризначних чисел можна скласти з цифр 1 2 3 4 5, якщо кожну з цих цифр можна використовувати не більш одного разу?
- a) A_5^3
- 41. Скількома способами можна розсадити 9 чоловік у трьох вагона метро?
- a) 3⁹
- 42. Скількома способами можна розсадити 9 чоловік у трьох вагонах метро, так, щоб у кожному вагоні було по 3 чоловіки?
- a) $C_9^3 \cdot C_6^3$
- 43. Скількома способами можна розділити на дві рівні частини колоду з 52 карт?
- a) C_{52}^{26}
- 44. Група з 6 хлопчиків і 6 дівчинок ділиться на дві рівні частини. Скільки існує способів поділу?
- a) C_{12}^6
- 45. Група з 6 хлопчиків і 6 дівчинок ділиться на дві рівні частини. Скільки існує способів поділу, якщо в кожній підгрупі буде порівно хлопчиків і дівчинок?
- a) $(C_6^3)^2$

46. Скількома способами з повної колоди карт (52 карти) можна витягти чотири карти так, щоб у	yci
вони були картинками, тобто валет, дама, король, туз?	

a)
$$C_{16}^4$$

- 47. Скільки існує шестицифрових телефонних номерів, у яких усі цифри різні (можливі номери, що починаються з 0)?
- a) A_{10}^{6}
- 48. Скільки існує шестицифрових телефонних номерів, у яких усі цифри однакові?
- a) 10
- 49. Скількома способами можна розсадити за круглим столом 5 чоловіків і 5 жінок так, щоб особи однієї статі не сиділи поруч?
- a) 2(5!5!)
- 50. Скількома способами з групи в 25 чоловік можна вибрати трьох для участі у зборах?
- a) C_{25}^{3}
- 51. Скількома способами з групи в 25 чоловік можна вибрати старосту, профорга, і спортивного організатора (суміщення різних доручень не допускається)?
- a) A_{25}^{3}
- 52. Скільки можна скласти різних чотирицифрових шифрів для банківського сейфа (можливий шифр 0000)?
- a) 10⁴
- 53. Скільки можна скласти різних чотирицифрових шифрів для банківського сейфа, якщо всі цифри шифру різні?
- a) A_{10}^4
- 54. Скільки можна скласти різних чотирицифрових шифрів для банківського сейфа, якщо всі цифри шифру однакові?
- a) 10
- 55. На залізничній станції ϵ 9 світлофорів. Скільки може бути подано різних сигналів, якщо кожний світлофор має три стани: червоний, жовтий і зелений?
- a) 3^{9}
- 56. Скільки різних парних тризначних чисел можна утворити із цифр 1,2,3,4,5,6?
- a) 108
- 57. Скільки різних тризначних чисел, що закінчуються на 3, можна утворити із цифр 1,2,3,4,5,6? а) 36
- 58. Дано n точок, жодні 3 із яких не лежать на одній прямій. Скільки прямих можна провести, використовуючи всі пари точок?
- a) C_n^2

- 59. Скількома способами із повної колоди карт (4·13 карти) можна витягнути 8 карт так, щоб серед них було чотири дами?
- a) C_{48}^4
- 60. Скількома способами із повної колоди карт (4·13 карти) можна витягнути 5 карт однієї масті
- a) $C_4^1 C_{13}^5$
- 61. Серед наведених формул знайти рівносильну до $p \Rightarrow q$:
- a) $\exists p \cup q$
- 62. Серед наведених формул знайти рівносильну до $p \Leftrightarrow q$:
- a) $\rceil p \Leftrightarrow \rceil q$
- 63. Серед наведених формул знайти рівносильну до $\rceil (p \cap q)$
- a) $\rceil p \cup \rceil q$
- 64. Серед наведених формул знайти рівносильну до $\rceil (p \cup q)$
- a) $\rceil p \cap \rceil q$
- 65. Серед наведених формул знайти рівносильну до $\overline{p \Rightarrow q}$:
- a) $p \cap q$
- 66. Серед наведених формул знайти рівносильну до $p \oplus q$
- a) $\rceil p \oplus \rceil q$
- 67. Серед наведених формул знайти рівносильну до $\rceil (p \oplus q)$
- a) $p \Leftrightarrow q$
- 68. Серед наведених формул знайти тотожну одиницю
- a) $(p \cup q) \Leftrightarrow (q \cup p)$
- 69. Серед наведених формул знайти тотожну одиницю
- a) $(p \cap q) \Leftrightarrow (q \cap p)$
- 70. Серед наведених формул знайти тотожній нуль
- a) $(p \cap q) \Leftrightarrow (\rceil p \cup \rceil q)$

Диференціальні рівняння

- 1. Визначити, яке з наведених рівнянь є звичайним диференціальним рівнянням третього порядку
- a) $x^2(y^2y''' y'^3) = 2y^2y' 3xyy'^2$
- 2. Яке з наведених рівнянь ϵ звичайним диференціальним рівнянням другого порядку
- a) $xy'' y^2 \ln x = 2y'$
- 3. Яке з наведених рівнянь ϵ звичайним диференціальним рівнянням першого порядку
- a) $(y + \sqrt{x})dx \sin ydy = 0$
- 4. Яке з наведених рівняння ε диференціальним рівнянням першого порядку з частинними похідними

a)
$$\frac{\partial z}{\partial x} + 2 \frac{\partial z}{\partial y} = x - y$$

- 5. Скільки розв'язків має диференціальне рівняння $y' + 2y = e^x$?
- а) Безліч розв'язків
- 6. Скільки розв'язків має довільне диференціальне рівняння другого порядку?
- а) Безліч розв'язків
- 7. Які з наведених умов разом з диференціальним рівнянням $(1+x^2)y'+2y=x^2\ln y$ утворюють задачу Коші?
- a) y(1) = 2
- 8. Які з наведених умов разом з диференціальним рівнянням $(1+x^2)y'' + 2y = x^2$ утворюють Задачу Коші?
- a) y(0) = 0, y'(0) = 1
- 9. Визначити тип диференціального рівняння $(x^2y y \ln x)dx (2xy + xarctgy)dy = 0$
- а) 3 відокремлюваними змінними
- 10. Яке з наведених рівнянь ϵ однорідним диференціальним рівнянням першого порядку?

15

a)
$$(x - y\cos\frac{y}{x})dx + x\cos\frac{y}{x}dy = 0$$

- 11. Визначити тип диференціального рівняння $y' 2x = x^2 2y$
- а) Лінійне
- 12. Яке з наведених рівнянь ε лінійним диференціальним рівнянням?
- a) $yctgx = y' \sin^2 x$
- 13. Яке з наведених рівнянь є рівнянням в повних диференціалах?
- a) $(\sin x + y)dy (x^2 y\cos x)dx = 0$

14. Яке з наведених рівнянь є рівнянням в повних диференціалах?

a)
$$(\frac{y}{x} + tgx)dx + (\ln x + \sqrt{y})dy = 0$$

- 15. Визначити тип диференціального рівняння $x \sin x + 2y = 2xy'$:
- а) лінійне
- 16. Яка функція є розв'язком диференціального рівняння y' + y = 2x + 1?
- a) y = 2x 1
- 17. Яка функція є розв'язком диференціального рівняння $xy' 2y = 2x^4$?
- a) $y = x^4$
- 18. Яка функція є розв'язком диференціального рівняння $x^2y'' = y'^2$?
- a) $y = \frac{x^2}{2}$
- 19. Яка функція е розв'язком диференціального рівняння y'' = 2yy'?
- a) y = tgx
- 20. Яка інтегральна крива рівняння $y' + 2y = e^x y^2$ проходить крізь точку (3,0)?
- a) $v \equiv 0$
- 21. Визначити порядок диференціального рівняння $y^4(y'^2-2yy'')=4x^3y^3y'+1$:
- а) Другий
- 22. Яке з наведених рівнянь ϵ лінійним неоднорідним рівнянням першого порядку?
- a) $y' \sin x + 3y = e^x$
- 23. Яке з наведених рівнянь є диференціальним рівнянням сімейства кіл $x^2 + y^2 = R^2$:
- a) yy' + x = 0
- 24. Для рівняння $y''' + x^2 y' x^3 y = e^x$ які з умов е умовами Коші?
- a) y(1) = 0, y'(1) = 1, y''(1) = 2
- 25. Для рівняння $y'' xy' + \frac{y}{x} = \sin x$ які з умов е крайовими умовами?
- a) y(1) = 0, y'(2) = 1
- 26. Яке з наведених диференціальних рівнянь е лінійними?
- a) $x^2y'' xy' + y = \frac{e^x}{x}$
- 27. Яке з наведених диференціальних рівнянь е лінійними?
- a) $2y''' + 3y' \cos x + x^2 y'' = \ln x$

- 28. Диференціальне рівняння $y'' y = 2\sin x$ має частинний розв'язок...
- B) $y = -\sin x$
- 29. Якою заміною рівняння Ейлера для функції y(x) може бути зведено до лінійного рівняння зі сталими коефіцієнтами:
- a) $x = e^t$
- 30. Для лінійного однорідного диференціального рівняння n-го порядку n розв'язків лінійно незалежні тоді і тільки тоді, коли...
- a) $W(x) \neq 0$ при $\forall x$
- 31. Яке з наведених рівнянь є рівнянням Ейлера?
- a) $x^2y'' + xy' + xy = e^x$
- 32. Функції $y_1 = e^x$, $y_2 = e^{-x}$, $y_3 = 1$ є ф.с.р. диференціального рівняння...
- a) y''' y' = 0
- 33. Функції $y_1 = \cos x, y_2 = \sin x, y_3 = 1$ є ф.с.р. диференціального рівняння...
- a) y''' + y' = 0
- 34. Загальний розв'язок диференціального рівняння y'' 4y' = 0 має вигляд...
- a) $y = C_1 + C_2 e^{4x}$

Математичний аналіз

- 1. Скільки раціональних чисел існує між числами 1 і 2?
- а) нескінченно багато
- 2. Скільки ірраціональних чисел існує між числами 2,5 і 3,5?
- а) нескінченно багато
- 3. У множини E = (-1,4) максимальний елемент дорівнює:
- а) не існує
- 4. У множині E = (10;15,9] максимальний елемент дорівнює:
- a) 15.9
- 5. У множині E = [6,10) мінімальний елемент дорівнює:
- a) 6
- 6. Послідовність X_n збігається, а послідовність Y_n розбігається. Тоді їх сума $X_n + Y_n$ є послідовність, яка:
- а) розбігається
- 7. Дві послідовності збігаються. Тоді їх сума є послідовність, яка:
- а) збігається
- 8. Дві послідовності збігаються. Тоді їх різниця ϵ послідовність, яка:
- а) збігається
- 9. Функція строго зростає на інтервалі. Тоді на цьому інтервалі функція:
- а) має обернену, яка строго зростає
- 10. Функція неперервна на відрізку. Тоді на цьому відрізку функція:
- а) обмежена
- 11. Функція монотонна на відрізку. Тоді на цьому відрізку функція:
- а) інтегрована за Риманом
- 12. Зв'язок між визначеним та невизначеним інтегралами встановлює формула:
- а) Ньютона-Лейбниця
- 13. Формула Гріна встановлює зв'язок між:
- а) подвійним та криволінійним інтегралами
- 14. $\lim_{x \to x_0 + 0} f(x) = a$, $\lim_{x \to x_0 0} f(x) = f(x_0)$, $f(x_0) \neq a$ Яке твердження невірне?
- а) f(x)- неперервна в точці x_0
- 15. $\lim_{x \to x_0} f(x) = 0$. Яке з тверджень вірне?
- а) f(x)- обмежена у точці x_0

- 16. (x_0, y_0) точка локального максимуму для f(x, y). Яке з тверджень вірне?
- а) f(x, y) означена у точці (x_0, y_0)
- 17. Ряд $\sum_{n=1}^{\infty} a_n$ збігається, ряд $\sum_{n=1}^{\infty} b_n$ розбігається. Що вірно? $(a_n \neq 0, b_n \neq 0)$:
- а) $\sum_{n=1}^{\infty} (a_n + b_n)$ розбігається
- 18. Функція f(x) в околі точки $x = x_0$ монотонно зростає. Яке з тверджень вірне?
- a) $\exists M > 0 \ \exists \delta(M) > 0 : \forall x \ |x x_0| < \delta, \ |f(x)| < M$
- 19. Тейлорове розвинення функції $f(x) = -\frac{x^2}{2} \frac{x^4}{12} \frac{x^6}{45} + o(x^6), x \to 0$. Що невірно?
- a) f'(0) = 1
- 20. Пряма y = 2x 2 ϵ асимптотою графіка функції при $x \to +\infty$.
- $a) y = \frac{2x^2}{x+1}$
- 21. Чому дорівнює множина значень функції $y = \arcsin \sqrt{\frac{1-x^2}{2}}$?
- a) $[0, \frac{\pi}{4}]$
- 22. При яких x графік функції $y = 1 e^{\frac{1}{x}-1}$ перетинає вісь абсцис?
- a) x = 1
- 23. Чому дорівнює область визначення функції $y = \sqrt{5 \sqrt{x}}$?
- a) $0 \le x \le 25$
- 24. Визначити кількість точок x_0 , в яких границя $\lim_{x \to x_0} \frac{x^2 + 3x 4}{x^2 1}$ не існує:
- a) 1
- 25. Нехай $f(x) = x^4 e^x$. Чому дорівнює $f^{IV}(0)$?
- a) 4!
- 26. Знайти найбільше значення функції $f(x) = x^2 + 2x 5$ на відрізку [-2,2]
- a) 3
- 27. Значення $\int_0^1 \frac{x dx}{1 + x^4}$ дорівнює:
- a) $\frac{\pi}{8}$

- 28. Який з наступних рядів збіжній:
- a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
- 29. Який з наступних рядів розбіжний:
- a) $\sum_{n=1}^{\infty} \frac{n^2 + 3}{4n^3 + 5n}$
- 30. Який з наступних рядів розбіжний:
- a) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(3n+1)(2\sqrt{n}-1)}$
- 31. Нехай $s(t) = \frac{1}{1-t}$ функція руху, 0 < t < 1 час. Чому дорівнює швидкість при $t = \frac{3}{4}$?
- a) 16
- 32. Значення $\int_{0}^{1} \frac{x dx}{1 + x^{2}}$ дорівнює:
- a) $\frac{1}{2} \ln 2$
- 33. Чому дорівнює область визначення функції $y = \log_3 \log_{\frac{1}{2}} x$?
- a) 0 < x < 1
- 34. Чому дорівнює область визначення функції $y = \sqrt{2^x 3^x}$?
- a) $x \le 0$
- 35. Яка з функцій не ϵ парною?
- a) $\arcsin x + \cos x$
- 36. Який з невласних інтегралів розбіжний?
- a) $\int_{-1}^{1} \frac{dx}{(2x+1)^2}$
- 37. Чому дорівнює $\log_{\frac{1}{x^2}} x^{\frac{3}{5}}$?
- a) $-\frac{3}{10}$
- 38. Чому дорівнює $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{x+2}$?
- a) e

- 39. Чому дорівнює похідна n го порядку функції $y = \sin x$?
- a) $\sin\left(x + \frac{\pi}{2}n\right)$
- 40. Добуток яких двох ірраціональних чисел ϵ число раціональне?
- a) $\sqrt{2}$ i $\sqrt{32}$
- 41. Яка з формул не є вірною в загальному випадку?
- a) $\cos(\alpha + \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
- 42. Яке твердження ϵ вірним?
- а) якщо послідовність обмежена і монотонна, то вона має границю
- 43. Яка з плоских множин є замкненою?
- a) $x \le y \le x^2 + 1$
- 44. Яка з плоских множин є відкритою?
- a) y < x < 2y
- 45. Яка з плоских множин ϵ і не відкритою і не замкненою?
- a) $x \le y < x^2 + 1$
- 46. Який з інтегралів дорівнює нулеві?
- a) $\int_{0}^{2\pi} \sin x dx$
- 47. $\lim_{n \to \infty} x_n = 3$. Яке твердження правильне?
- a) $\exists k \ \forall n > k : \ x_n < 4$
- 48. Нехай $\{x_n\}$ збіжна послідовність, $\{y_n\}$ розбіжна послідовність. Яке твердження правильне?
- a) $\{x_n \pm y_n\}$ розбіжна
- 49. Нехай $\lim_{x\to x_0} f(x) = a$ ($a \in R$, $a \ge 0$), $\lim_{x\to x_0} g(x) = +\infty$. Яке твердження правильне?
- a) $\lim_{x \to x_0} [f(x) + g(x)] = +\infty$
- 50. Нехай послідовність $\{x_n\}$ необмежена. Яке твердження правильне?
- а) послідовність $\{x_n\}$ розбіжна
- 51. Нехай $\lim_{x\to x_0+0} f(x) = \lim_{x\to x_0-0} f(x)$. Яке твердження правильне?
- а) f(x) має границю в x_0
- 52. Нехай $f(x) \in R[a,b]$ (інтегрована на [a,b]). Яке твердження правильне?
- а) f(x) обмежена на [a,b]

- 53. Нехай $\{\alpha_n\}$ нескінченно мала послідовність $(\alpha_n \neq 0), \{\beta_n\}$ збіжна послідовність. Яке твердження правильне?
- а) $\{\beta_n + \alpha_n\}$ збігається
- 54. Дано степеневий ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$. Його областю збіжності може бути
- a) $(-\infty,+\infty)$
- 55. Область визначення функції $y = \frac{1}{x + |x|}$ є:
- a) x > 0
- 56. Множиною значень функції $y = x^2 + 2x 3$ є:
- a) $\left[-4;+\infty\right)$
- 57. Нехай $f(x) = x^2$, $g(x) = \sqrt{x}$. Тоді $g \circ f$ дорівнює:
- a) |x|
- 58. $\lim_{n\to\infty} \frac{5n^6+6}{(n^4+1)(n^2-2)}$ дорівнює:
- a) 5
- 59. $\lim_{n\to\infty} \left(1+\frac{5}{n}\right)^n$ дорівнює:
- a) e^5
- 60. $\lim_{x\to 0} \frac{\sin 5x}{x}$ дорівнює:
- a) 5
- 61. Довільна монотонна послідовність:
- а) має скінчену або нескінченну границю
- 62. Похідна функції $y = \cos(x^2)$ дорівнює:
- a) $-2x\sin(x^2)$
- 63. Функція $y = \ln |x|$ має похідну тільки в таких точках:
- a) $\forall x \neq 0$
- 64. Похідна функції $y = \ln(x^2)$ дорівнює:
- a) $\frac{2}{x}$
- 65. Дотична до графіка функції $y = \sqrt{1 x^2}$ в точці (0,1) має вигляд:
- a) y = 1

- 66. Функція $y = \frac{\sin x}{x(x-1)}$ має такі вертикальні асимптоти:
- a) x = 1
- 67. Точками перетину функції $y = \cos x$ з віссю $OX \in \mathbb{C}$
- a) $x = \pi k + \frac{\pi}{2}, k \in \mathbb{Z}$
- 68. Розкладання $\frac{2x+3}{(x-1)^2(x+2)}$ на найпростіші дробі має вигляд:
- a) $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+2}$
- 69. $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ збігається, якщо:
- a) $\alpha > 1$
- 70. Нехай $0 \le a_n \le \frac{1}{n^2}$. Тоді:
- a) $\sum_{n=1}^{\infty} a_n$ збігається
- 71. Нехай $\sum_{n=1}^{\infty} a_n$ збігається. Тоді:
- a) $\lim_{n\to\infty} a_n = 0$
- 72. Нехай $f(x,y) = \sin(xy^2)$. Тоді $\frac{\partial f}{\partial x}$ дорівнює:
- a) $y^2 \cos(xy^2)$
- 73. Нехай $f(x,y) = x^2 + y^2$. Тоді (0,0) є точкою:
- а) мінімуму
- 74. $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ збігається, якщо:
- a) $\alpha > 1$
- 75. Нехай f інтегрована на $[0,A] \forall A > 0$ та $0 \le f(x) \le \frac{1}{1+x^2}$. Тоді:
- a) $\int_{0}^{+\infty} f(x)dx$ збігається
- 76. Нехай Γ гамма-функція. Тоді $\Gamma(n)$, де $n \in N$ дорівнює:
- a) (n-1)!

- 77. Формула $\iint\limits_{D} \left(\frac{\partial f_2}{\partial x} \frac{\partial f_1}{\partial y} \right) dx dy = \int\limits_{\partial D} f_1 dx + f_2 dy$ має таку назву:
- а) формула Гріна
- 78. Чому дорівнює $\lim_{x\to\infty} x \sin x$?
- а) не існує
- 79. Чому дорівнює $\lim_{x\to +\infty} \frac{\sqrt{x^2+1}}{x-1}$?
- a) 1
- 80. Чому дорівнює $\lim_{x\to 0} \frac{tg \, 3x}{\sin 5x}$?
- a) $\frac{3}{5}$
- 81. Чому дорівнює $\lim_{x \to \frac{\pi}{2}} xtgx$?
- a) ∞
- 82. Чому дорівнює $\lim_{x\to \frac{\pi}{2}} (1+\cos x)^{tgx}$?
- a) *e*
- 83. Ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ збігається за ознакою:
- а) Лейбниця
- 84. Ряд $\sum_{p=1}^{\infty} \frac{1}{n^p}$ збігається при:
- a) p > 1
- 85. Ряд $\sum_{n=2}^{\infty} \frac{1}{n^2 \ln^p n}$ збігається при:
- a) $\operatorname{Bcix} p$
- 86. Необхідна умова збіжності ряду:
- a) $\lim_{n\to\infty} |a_n| = 0$
- 87. Ряд $\sum_{n=1}^{\infty} (2x-1)^n$ збігається при:
- a) $x \in (0;1)^n$
- 88. Ряд $\sum_{n=1}^{\infty} \frac{x^n}{n}$ збігається при:
- a) $x \in [-1;1)$

- 89. Інтеграл $\int_{1}^{\infty} x^{-p} dx$ збігається при:
- a) p > 1
- 90. Інтеграл $\int_{2}^{\infty} \frac{x}{\ln^{p} x} dx$ збігається при:
- а) завжди розбігається
- 91. Функція f неперервна, а приріст аргументу $\Delta x \to 0$. Яка з властивостей приросту Δf справедлива завжди?
- a) $\Delta f \rightarrow 0$
- 92. Функція $f \in \text{многочлен}$. Тоді вона:
- а) розкладається по степеням $(x-x_0)$, де x_0 довільне число
- 93. Послідовність доданків $a_n \to 0$ Тоді:
- a) $\sum_{n=1}^{\infty} a_n$ може розбігатися
- 94. У функцій $f,g:[a,b] \to R^1$ рівні похідні. Тоді:
- а) f і g відрізняються на константу
- 95. Маємо два означених інтеграла $\int_{0}^{1} \frac{\sin(x)}{x} dx$ та $\int_{0}^{\frac{\pi}{2}} \frac{\sin(x)}{x} dx$. Тоді:
- а) більшим ϵ другий з інтегралів
- 96. Яку з формул прийнято звати наближеною (при α малому)?

a)
$$\sin\left(\frac{\pi}{6} + \alpha\right) = \frac{1}{2} + \frac{\sqrt{3}\alpha}{2}$$

- 97. Нехай f'(0) = 0 і f''(0) > 0. Тоді:
- а) 0 точка мінімуму функції
- 98. Яке з вказаних чисел є раціональним:
- a) $\sqrt{1,44}$
- 99. Знайти область визначення $y = \frac{\cos x}{1-\sin x}$:
- a) $x \neq \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$
- 100. Яка з перерахованих властивостей функції $y = 2\sin(x)$ є вірною:
- а) непарна

- 101. Яка з перерахованих властивостей функції $y = 3 + \lg x$ є вірною:
- a) y(1) = 3
- 102. Чому дорівнює границя $\lim_{n\to\infty} \frac{\sqrt{2n^2+1}-\sqrt{n^2+1}}{n+1}$:
- a) $\sqrt{2} 1$
- 103. Чому дорівнює границя $\lim_{x\to\infty} \frac{\sqrt{4x^2+3}}{4x+3}$:
- a) $\frac{1}{2}$
- 104. Знайти значення похідної в точці $f(x) = \sin(x) + \cos(x)$, $x_0 = 0$:
- a) 1
- 105. Знайти похідну функції $f(x) = \sqrt{x^2 3}$:
- a) $\frac{x}{\sqrt{x^2 3}}$
- 106. Знайти похідну функції $y = 4e^x + 5x$:
- a) $4e^{x} + 5$
- 107. Знайти похідну функції $y = \cos(2 3x)$:
- a) $3\sin(2-3x)$
- 108. Знайти кутовий коефіцієнт дотичної до графіка функції $y = \sin^2 x$ в точці $x_0 = \frac{\pi}{2}$:
- a) 0
- 109. Знайти тангенс кута нахилу дотичної до графіка функції $y=x^3-x\,$ в точці $x_0=0\,$:
- a) -1
- 110. Знайти рівняння дотичної до графіка функції $y = \frac{1}{3}x^3 2x^2$ в точці $x_0 = 3$:
- a) y = -3x
- 111. Точка рухається за законом $S = 2 + 20t 5t^2$. Знайти миттєву швидкість в момент t = 1c. (S вимірюється в метрах).
- a) $10^{M/c}$
- 112. Відомо що похідна функції y = f(x) на проміжку [2;5] дорівнює (-2x) Тоді f(x) на цьому проміжку:
- а) спадає

113. Відомо що похідна функції y = f(x) на проміжку [0;5] дорівнює (3x + 2). Тоді f(x) на цьому проміжку:

а) зроста ϵ

114.Знайти критичні точки $y = \frac{2}{x} + \frac{x}{2}$:

a) -2;2

115. Знайти екстремуми функції $y = 3 + 4x - x^2$:

- a) $y_{\text{max}} = y(2) = 7$
- 6) $y_{min} = y(-1) = 6$

116. Знайти точки екстремуму функції $y = x^3 - 6x^2$:

a) $x_{\text{max}} = 0; x_{\text{min}} = 4$

117. Обчислити інтеграл $\int_{\frac{1}{2}}^{1} (\frac{1}{x^2} - 2) dx$:

a) 0

118.Обчислити інтеграл $\int_{0}^{1} \sqrt[3]{x} dx$:

a) $\frac{3}{4}$

119. A ⊂ B означає, що:

a) $\forall x \in A \Rightarrow x \in B$

Програмування

- 1. Як основні символи мови С++ не можуть бути використані
- а) геометричні фігури
- 2. Що з перерахованого нижче може бути ідентифікатором в C/C++/Java?
- а) одна латинська буква
- 3. Ідентифікатор є сукупність
- а) від 1 до 32 латинських букв, арабських цифр і знаку підкреслення, що не починається з цифри
- 4. Яка з перерахованих послідовностей не може бути ідентифікатором
- a) 1
- 5. З приведених нижче змінних базових типів найбільшу довжину має змінна типу
- a) double
- 6. З приведених нижче змінних базових типів найбільшу довжину має змінна типу
- a) long double
- 7. З приведених нижче змінних базових типів найменшу довжину має змінна типу
- a) char
- 8. З приведених нижче змінних базових типів найменшу довжину має змінна типу
- a) short
- 9. Яка з констант 'м', 'а', 'к', 'п', більше?
- a) 'π'
- 10. Виберіть константу найменшу по довжині:
- a) 134.5f
- 11. Яка з констант не ϵ константою з плаваючою точкою?
- a) 1
- 12. Константа з плаваючою точкою, займає 10 байт, якщо вона...
- а) задана з суфіксом L
- 13. Ціла константа задається...
- а) послідовністю цифр без наявності інших знаків
- 14. Виберіть константу максимальної довжини.
- a) 1.1
- 15. Локальна перемінна описується...
- а) у блоці
- 16. Локальна величина не може мати клас пам'яті...
- a) extern

- 17. Перемінна цілого типу може займати максимальну пам'ять, рівну...
- а) 8 байтам
- 18. Максимальна довжина перемінної з точкою, що плаває, дорівнює...
- а) 10 байт
- 19. У блоці дані описи. Який опис містить помилку?
- a) int x*,y
- 20. Нехай m локальна змінна. Яке з приведених нижче описів зовнішніх змінних містить помилку?
- a) int t=m+1
- 21.Нехай дані описи зовнішніх величин: int n=3; int $x=\sin(2m)+4$; const int p=32; int r=3.94, де m- локальна змінна. Який з описів невірний?
- a) int $x=\sin(2m)+4$
- 22. Якій з описуваних об'єктів double x[2], y[3][2], z, *p; можна привласнити значення 1 без перетворення типу?
- a) z
- 23. Опис якого масиву містить помилку? int a[4]={1}, b[]={1,7,0}, c[4]={1,2,3}, d[3]={1,2,3,4} a) d
- 24. Коли масив не може ініціалізуватися за замовчуванням?
- а) коли він автоматичний
- 25. Чому дорівнює значення виразу x=3, ⁺⁺x+1?
- a) 5
- 26. Чому дорівнює значення виразу $x=2, x^{++}+1$?
- a) 3
- 27. Чому дорівнює значення у, якщо y=2, $y=^{++}y+3$?
- a) 6
- 28. Результатом логічної операції && ϵ ...
- а) значення «істина» чи «хибність»
- 29. Результат логічної операції && ϵ істина, якщо...
- а) обидва операнда істині
- 30. Результат логічної операції | хибність, якщо...
- а) обидва операнда хибні
- 31. Потрібно скласти умову що p=2 і q=2. Яке з виражень вірно?
- a) p = 2 && q = 2
- 32. Як інтервал c < x < d записати на C + + ?
- a) c<d&&c<x

- 33. Нехай точка М (x,y) належить до першої чверті. Як записати цю умову?
- a) x > 0 && y > 0
- 34. Чому дорівнює значення у, якщо int a; double y; y=a=2.99; y^{++} ?
- a) 3.0
- 35. Чому дорівнює значення у, якщо int x = 4, y = 10; $y = ((x > 3 & & ^{++}x < 7)? y + y: y 2)?$
- a) 20
- 36. Записати умову того, що, якщо x та y > 0, то z приймає значення x, інакше 1...
- a) z=(x>0 && y>0)? x:1
- 37. Нехай int х. Який з виразів приймає значення 3?
- a) 2,3
- 38. Чому дорівнює значення x, якщо int x = (2,3) * (7,8)?
- a) 24
- 39. Якого типу повинне бути значення індексного виразу?
- а) цілого
- 40. Якщо п-ціле, то цілу частину відносини 100:п можна записати так...
- a) 100/n
- 41. Записати на C++ вираз $a^{3/4}$:
- a) pow (a, 3./4)
- 42. Записати на C++ вираз $\sqrt[5]{a^6}$:
- a) pow (a, 6.0/5)
- 43. Чому дорівнює значення виразу (x ціле) x=3,4, int (2*x+1.7)?
- a) 7
- 44. Чому дорівнює значення виразу (x ціле) x=3.9, z=x*x, x=x+x?
- a) 6
- 45. Нехай маємо int x, y; double z=2.5. Чому дорівнює значення виразу (x=z*z, y=x+int(z))?
- a) 8
- 46. Яка з бінарних операцій, що приводяться нижче, найпріоритетніша?
- a) *
- 47. Яка з бінарних операцій, що приводяться нижче, найпріоритетніша?
- a) %
- 48. Яка з бінарних операцій, що приводяться нижче, найпріоритетніша?
- a) &&
- 49. Яка з бінарних операцій, що приводяться нижче, найпріоритетніша?
- a) +

```
50. Яка з унарних операцій, що приводяться нижче, найпріоритетніша?
a) -
51. Записати вираз, що привласнює з значення 1, якщо х, у належать внутрішності кола радіусу 1 з
центром у точці (1;0) і 0 в протилежному випадку.
a) if ((x-1)*(x-1)+y*y<1) z=1; else z=0
52. Чому дорівнює у, якщо int x=2, y=++x+3; if (y+2<=5) y=7.8?
a) 6
53. Чому дорівнює а, якщо a = 10; if (a>1 & 20)a=2; else a=7?
54. Чому дорівнює значення у після виконання фрагмента
a=10; y=5;
switch (a+a-3)
{case 23: y=y+1; break;
case 13: case 15: case 17: y=y-1; break;
default: y=1;
}
a) 4
55. Чому дорівнює значення у, якщо y=0.01; if(y) y=2; else if (x>1) y=3?
a) 2
56. Чому дорівнює значення у, якщо int y=0; if(y) y=2; else if (++y>0) y=7?
a) 7
57. Чому дорівнює значення у, якщо int y=0; if(++y>2) y=2; else if (++y>3) y=3; else y=4?
a) 4
58. Чому дорівнює значення у, якщо int y; y=0; if(++y<4) if (++y==2) y=y; else y=7;
a) 2
59. Який з приведених нижче операторів правильно формує символ Кронекера \delta_{\iota}^{4}?
a) if (k==4) dk=1: else dk=0
60. При якому х значення у дорівнює 4, якщо switch(x-1)
{ case 7: m=1, y=m+3; break;
case 4: case 6: y=x+x*x
default: y=12;
}
a) 8
61. Для оператора for (e1;e2;e3) цикл нескінчений, якщо відсутні...
a) e2
62. Нехай x=1, y=0.5. Яким з операторів заданий нескінченний цикл?
a) while (1) x=y
63. Нехай маємо for (e1; e2; e3)s. Перемінним циклу можна привласнити початкові значення в...
a) e1
```

- 64. В операторі for (e1; e2; e3)s; можна опускати точку з комою...
- а) ніде
- 65. Як ініціалізуються перемінні циклу, якщо в for (e1;e2;e3) s; відсутнє e1?
- а) перед for
- 66. Як здійснювати вихід з for (e1;e2;e3) s; , якщо відсутнє e2?
- а) за допомогою ѕ
- 67. Замовлення пам'яті для масиву з 10 елементів цілого типу у вільному полі пам'яті здійснюється так:
- a) int * x=new int [10]
- 68. Оператором x=new int; замовлено пам'ять під...
- а) змінну
- 69. Якщо зовнішній масив х має n^2 елементів типу int, то пам'ять для нього у вільному полі можна виділити оператором х=new int [n*n], що розташовується...
- а) у будь-якій функції
- 70. Якщо локальний масив потрібно розташувати у вільному полі пам'яті, то це можна зробити...
- а) усередині функції
- 71. Масив, розташований у вільному полі пам'яті, може бути...
- а) будь-яким
- 72. Стандартний потік введення має ім'я...
- a) cin
- 73. Стандартний потік виводу має ім'я...
- a) cout
- 74. Яке з імен може служити ім'ям потоку введення?
- a) lena
- 75. Ім'я потоку виводу можна призначити...
- а) за допомогою конструктора ofstream
- 76. Командою процесу define можна давати ім'я...
- а) будь-яким текстам
- 77. Суму всіх натуральних чисел до п обчислює програма...
- a) for $(k=1, s=0; k \le n; s=s+k++)$
- 78. Чому дорівнює максимальне значення s після виконання оператора for (k=0, s=0; k<100; s=s+1, k++)?
- a) 100
- 79. Елементами масиву int x[100], крім x_{20} і x_{30} є число 1. Скільки разів виконається цикл, якщо for (k=0, s=0; x[k]==1; s++, k++)?
- а) 20 разів

- 80. Командою підключення файлів ϵ ...
- a) include
- 81. Нехай маємо:

define N 5

define M N+3

int x = 2 * N + M - 5

Тоді значення х дорівнює...

a) 13

82. Нехай

#define N 5

define M N*N

double x[M][N]

Скільки елементів має масив х?

- a) 125
- 83. Для відкриття файлу використовується функція...
- a) open
- 84. Функція може мати...
- а) будь-яке кінцеве число формальних параметрів
- 85. Інформація в функцію може передаватися...
- а) як через формальні параметри, так і через зовнішні величини
- 86. Перед ім'ям нетипізованих функцій ставиться ключове слово...
- a) void
- 87. Якщо прототипів функцій немає, то функція таіп у файлі може приводитися тільки...
- а) останньою
- 88. Якщо на початку файлу приведені прототипи всіх його функцій, то функція таіп може приводитися...
- а) у будь-якому місці
- 89. Дані можуть передаватися у функцію через...
- а) і через формальні параметри, і через зовнішні імена
- 90. Параметри за замовчуванням приводяться...
- а) після усіх формальних параметрів
- 91. Люба функція без прототипу видна...
- а) у файлі після свого опису
- 92. Що може бути фактичним параметром, якщо формальним ϵ перемінна?
- а) будь-який неадресний вираз
- 93. Що з перерахованого нижче не може бути формальним параметром функції?
- а) елемент масиву

- 94. Що з перерахованого нижче не може бути формальним параметром функції?
- а) вираз
- 95. Якщо формальними параметрами ϵ базова перемінна, то фактичний параметр може бути...
- а) вираз
- 96. Якщо фактичним параметром ϵ ім'я масиву, то формальним може бути...
- а) ім'я покажчика або масиву
- 97. Якщо формальним параметром ϵ посилання, то фактичним параметром може бути...
- а) ім'я змінної
- 98. Формальні і фактичні параметри по типу...
- а) повинні бути сумісні
- 99. Якщо функція типізована, то вихід з неї здійснюється...
- a) оператором return e
- 100. Що з перерахованого нижче не може бути формальним параметром?
- а) строкова константа
- 101. Типізовані функції можуть мати оператори...
- a) return e1
- 102. У двох різних функцій не можуть співпадати...
- а) і імена і типи формальних параметрів
- 103. Скільки параметрів за замовчуванням може мати функція?
- а) будь-якої кількості
- 104. Два різних класи не можуть мати...
- а) однакові імена
- 105. Усі конструктори класу...
- а) мати різне число формальних параметрів
- 106. Об'єкти можуть бути...
- а) класового типу
- 107. Поза класом до членів з відкритої секції є доступ...
- а) за допомогою об'єктів
- 108. Поза класом даним із закритої секції класу ϵ доступ...
- а) у дружніх функціях
- 109. Відкриті секції класу мають мітки...
- a) public
- 110. Закриті секції класу мають мітки...
- a) private

- 111. Члени з закритої секції класу доступні...
- а) дружнім функціям даного класу
- 112. Дружні функції класу визначаються...
- а) усередині дружнього класу
- 113. Початкові значення даним-членам класу привласнюються...
- а) конструктором
- 114. Звільнення пам'яті в класах здійснюється...
- а) деструктором
- 115. Підключення програм стандартних функцій з заголовних файлів виконує...
- а) компановщик
- 116. Після перезавантаження знака операції...
- а) пригодні і старе, і нове призначення

Чисельні метоли

- 1. Якого ступеня можна побудувати інтерполяційний многочлен Лагранжа по всіх заданих значеннях функції $f(x_i)$ (i = 1,2,3,4), $x_i \in [a,b]$?
- а) третьої
- 2. Коли задача лінійної інтерполяції функції f(x), $x \in [a,b]$, розв'язувана за допомогою узагальненого многочлена $\varphi = \sum_{k=0}^n a_k \varphi_k(x)$ при заданих (n+1) значеннях f(x), може бути розв'язана єдиним способом?
- а) функції $\varphi_0(x),..., \varphi_n(x)$ утворять систему Чебишева на відрізку [a,b]
- 3. Чому дорівнює порядок похідної від функції f(x), $x \in [a,b]$, що входить у залишковий член інтерполяційного многочлена Лагранжа третього ступеня? а) чотирьом
- 4. Якому класу функцій, визначених на відрізку [a, b], повинна належати функція f(x), щоб її можна було б інтерполювати за допомогою інтерполяційного многочлена Лагранжа 4-го ступеня? а) $f(x) \in C^m[a,b], m \ge 5$
- 5. Як можна оцінити залишковий член R(x) інтерполяційного многочлена Лагранжа n -го ступеня, що інтерполює функцію f(x) на відрізку [a, b]?

a)
$$|R| \le \frac{\left|f^{(n+1)}\right| |\omega|}{(n+1)!}$$

- 6. Який із наступних інтерполяційних многочленів, побудованих за значеннями функції f(x) в п'ятьох вузлах $x_0 < x_1 < x_2 < x_3 < x_4$ доцільно використовувати при обчисленні f(x) в точці $x = x^*$, $x_0 < x^* < x_1$?
- а) Ньютона для інтерполяції вперед
- 7. Який із наступних інтерполяційних многочленів, побудованих за значеннями функції в п'ятьох вузлах $x_0 < x_1 < x_2 < x_3 < x_4$ доцільно використовувати при обчисленні f(x) в точці $x = x^*$, коли $x_3 < x^* < x_4$?
- а) Ньютона для інтерполяції назад
- 8. Який із побудованих за значеннями функції f(x) у вузлах $x_i = x_0 + ih$, i = -2, -1, 0, 1, 2 наступних інтерполяційних многочленів доцільно використовувати при обчисленні f(x) в точці $x = x^*$, $x_0 < x^* < x_1$?
- а) Гауса
- 9. До якого із наступних груп методів розв'язування систем лінійних алгебраїчних рівнянь відноситься метод Зейделя?
- а) до ітераційних

- 10. У якому випадку методом виключення можна одержати точне розв'язування системи лінійних алгебраїчних рівнянь Ax = b, $A = \left\{a_{ij}\right\}_{i,j=1}^n$, $b = \left\{b_i\right\}_{i=1}^n$?
- а) всі елементи a_{ii} і b_{i} задані точно, а обчислення проводяться без округлень
- 11. Яка умова необхідна і достатня для збіжності методу простої ітерації при розв'язуванні системи лінійних алгебраїчних рівнянь $X = \alpha X + \beta$, $\alpha = \{\alpha_{ij}\}_{i,j=1}^n$, $\beta_i = \{\beta_i\}_{i=1}^n$, $X_0 = \{x_{i0}\}_{i=1}^n$ будь-яке початкове наближення?
- а) власні значення λ_i^{α} матриці α задовольняють умові: $\left|\lambda_i^{\alpha}\right| < 1$ $(i = \overline{1,n})$
- 12. Яка умова є достатньою умовою збіжності методу простої ітерації при розв'язуванні системи лінійних алгебраїчних рівнянь $X = \alpha X + \beta$, $\alpha = \{\alpha_{ij}\}_{i=1}^{n}$, $\beta = \{\beta_{i}\}_{i=1}^{n}$?
- а) норма матриці α менше одиниці
- 13. Як можна охарактеризувати збіжність послідовності наближень $X_k = \{x_{ik}\}_{i=1}^n$ до розв'язування системи лінійних алгебраїчних рівнянь $X = \alpha X + \beta$, $\alpha = \{\alpha_{ij}\}_{i,j=1}^n$, $\beta = \{\beta_i\}_{i=1}^n$ у методі простої ітерації у випадку $\|\alpha\| < 1$?
- а) послідовність X_k збігається зі швидкістю геометричної прогресії
- 14. Коли похибка $r_k = X^* X_k$ наближеного розв'язку X_k системи лінійних алгебраїчних рівнянь $X = \alpha X + \beta$, $\alpha = \{\alpha_{ij}\}_{i,j=1}^n$, $\beta = \{\beta_i\}_{i=1}^n$ ($X^* \text{точний розв'язок системи}$), знайденого методом простої ітерації при $\|\alpha\| < 1$ задовольняє нерівності $\|r_k\| < \varepsilon$?

a)
$$\frac{\|\alpha\|}{1-\|\alpha\|}\|x_k-x_{k-1}\|<\varepsilon$$

15. При яких значеннях постійної q , що входить в умову $\sum_{\substack{j=1\\(j\neq i)}}^n \left|a_{ij}\right| \leq q\left|a_{ii}\right| \ (i=1,2,...,n),$ метод

Зейделя збігається до розв'язку системи лінійних алгебраїчних рівнянь не повільніше методу простої ітерації?

- a) q < 1
- 16. Який із наступних методів розв'язування проблеми власних значень матриць заснований на теоремі Гамільтона-Келі?
- а) Крилова
- 17. Який із наступних методів розв'язування проблеми власних значень матриць заснований на перетворенні подібних матриць?
- а) Данилевського
- 18. Який із наступних методів розв'язування проблеми власних значень матриць призначений для розв'язування часткової проблеми власних значень матриць?
- а) ітераційний степеневий

- 19. Які з наступних методів розв'язування проблеми власних значень матриць вимагають попереднього визначення коефіцієнтів характеристичного рівняння?
- а) Крилова і Данилевського
- 20. Яке число може бути старшим коефіцієнтом мінімального многочлена матриці A ?
- а) одиниця
- 21. Чому дорівнює максимально можливе число лінійно незалежних векторів у послідовності векторів $\overline{b_0}$, $A\overline{b_0}$,..., $A^m\overline{b_0}$,... $(\overline{b_0}$ деякий відмінний від нульового вектор), побудованій при розв'язуванні проблеми власних значень матриці A порядку n методом Крилова? a) n
- 22. Чим замінюють підінтегральну функцію при побудові формул чисельного інтегрування?
- а) інтерполяційним многочленом
- 23. Яка з квадратурних формул лівих, середніх і правих прямокутників більш точна?
- а) середніх прямокутників
- 24. Чим ϵ вузли у квадратурних формулах Ньютона-Котеса?
- а) точками розбивки відрізка інтегрування на рівні частини;
- 25. Яка з приведених квадратурних формул ϵ формулою трапеції?

a)
$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

- 26. Чим геометрично замінюється підінтегральна функція на відрізку інтегрування в квадратурній формулі Сімпсона?
- а) куском параболи
- 27. Як змінюється кількість вузлів на відрізку інтегрування при побудові узагальнених квадратурних формул прямокутників, трапецій, Сімпсона?
- а) збільшується
- 28. Як зв'язані між собою точне значення інтеграла $\int_{1}^{2} x^{3} dx$ і наближене, обчислене по формулі

Сімпсона?

- а) рівні між собою
- 29. Для многочленів якого ступеня квадратурна формула Чебишева ε точною?
- a) n
- 30. Що можна сказати про коефіцієнти квадратурної формули Чебишева?
- а) рівні між собою
- 31. Як визначаються вузли квадратурної формули Гауса?
- а) є коренями многочлена Лежандра

32. Яку заміну змінних потрібно зробити при обчисленні інтеграла по формулі Чебишева і Гауса на довільному відрізку [a,b]?

$$x = \frac{a+b}{2} + \frac{b-a}{2}t$$

- 33. Яка з квадратурних формул, що побудована по 6 вузлах, більш точна?
- а) Гауса
- 34. Для многочленів якого ступеня квадратурна формула Гауса є точною?
- a) 2 * n 1
- 35. Яка умова існування єдиного кореня рівняння f(x) = 0 на відрізку [a,b]?
- а) f(a) f(b) < 0, f'(x) знакопостійна
- 36. З якої умови визначається нерухомий кінець відрізка в методі хорд для розв'язування рівняння f(x) = 0?
- a) $f(x_0) f''(x_0) > 0$
- 37. Коли припиняються обчислення у методі хорд?
- a) $\left| x_{n+1} x_n \right| < \varepsilon$
- 38. Які умови придатності методу Ньютона (дотичних) для наближеного рішення рівняння f(x) = 0?
- а) f(a) f(b) < 0; f'(x), f''(x) знакопостійні
- 39. Як вибирається нульове наближення у методі дотичних для рівняння f(x) = 0?
- a) $f(x_0) f''(x_0) > 0$
- 40. Яка з формул відноситься до методу дотичних?
- a) $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- 41. Як перетвориться вихідне рівняння f(x) = 0 для методу ітерацій?
- a) $x = \varphi(x)$
- 42. Які умови збіжності методу ітерації для рівняння $x = \varphi(x)$?
- a) $\varphi(x) \in [a,b], |\varphi'(x)| < 1, x \in [a,b]$
- 43. Чи буде сходитись метод ітерації (для рівняння) на відрізку [a,b], якщо початкове наближення вибрати наступним способом?
- а) x_0 довільна точка $\in [a,b]$
- 44. Яким образом метод ітерації сходиться до кореня рівняння на відрізку [a,b], якщо $|\varphi'(x)| < 1$, $\varphi'(x) > 0$ і $\varphi(x) \in [a,b]$?
- а) по «східці»

- 45. Чому дорівнює довжина відрізків, що утворюються у методі половинного ділення?
- a) $(b-a)/2^n$
- 46. Як ставиться задача Коші для звичайного диференціального рівняння 1-го порядку?

a)
$$\begin{cases} y'(x) = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

- 47. Яка формула відноситься до методу Ейлера для вирішення задачі Коші?
- a) $y_{n+1} = y_n + h f(x_n, y_n)$
- 48. Чому дорівнює похибка в методі Ейлера?
- a) $O(h^2)$
- 49. Яка з формул для наближеного розв'язання задачі Коші більш точна?
- а) Адамса;
- 50. З яких умов визначаються невідомі коефіцієнти загальних формул Рунге-Кутта? Тут $\varphi(h)$ похибка методу, а h його крок.
- a) $\varphi(0) = 0$, $\varphi^{(n)}(0) = 0$, n = 1, 2, ...
- 51. Скільки формул Рунге-Кутта можна побудувати для наближеного розв'язання задачі Коші?
- а) незліченні множини
- 52. Яка з формул Рунге-Кутта має похибку $O(h^5)$?
- a) $y_{n+1} = y_n + (k_1 + 2k_2 + 2k_3 + k_4)/6$
- 53. До яких методів відносяться формули Рунге-Кутта для розв'язання задачі Коші?
- а) однокроковим
- 54. До яких методів відносяться методи Ейлера, Рунге-Кутта для розв'язання задачі Коші?
- а) наближеним чисельним
- 55. На чому засноване правило Рунге для оцінки похибки обчислень при розв'язанні задачі Коші для звичайного диференціального рівняння 1-го порядку?
- а) подвійний обрахунок
- 56. У чому полягає сутність чисельних методів розв'язання задачі Коші?
- а) обчислення значень функції, що шукають, у точках заданого відрізка
- 57. Метод половинного ділення використовується для...
- а) рішення рівняння
- 58. Яка умова накладається на функцію f(x) на кінцях відрізків $[a_n, b_n]$, що виходять в методі половинного ділення?
- a) $f(a_n) \cdot f(b_n) < 0$
- 59. Яке з приведених рівнянь є трансцендентним?
- a) $x + tg x + 2 \ln x 81,7 = 0$

- 60. Як визначається корінь k -ої кратності $x = \xi$ для рівняння f(x) = 0?
- a) $f(\xi) = f'(\xi) = \dots = f^{(k-1)}(\xi) = 0$
- 62. Що таке відділення коренів для рівняння f(x) = 0?
- а) знаходження відрізків, де ϵ один корінь рівняння
- 63. Що таке уточнення коренів для рівняння f(x) = 0?
- а) обчислення кореня с наперед заданою точністю
- 64. Що вибирається за чергове приближення до кореня рівняння f(x) = 0 в методі хорд?
- а) точка перетинання прямої, що з'єднує кінці дуги y = f(x) з віссю Ox
- 65. Що вибирається за чергове приближення до кореня рівняння f(x) = 0 в методі дотичних?
- а) точка перетинання дотичної до кривої y = f(x) з віссю Ox
- 66. У чому полягає графічний засіб відділення коренів?
- а) приблизне відділення відрізків, де є корені рівняння f(x) = 0
- 67. Як веде себе функція f(x), якщо на відрізку [a,b] є єдиний дійсний корінь рівняння?
- а) f'(x) знакопостійна на [a,b]
- 68. Який вигляд має рівняння хорди, що проходить через точки (a, f(a)) і (b, f(b))?

a)
$$\frac{x-a}{b-a} = \frac{y-f(a)}{f(b)-f(a)}$$

- 69. Яке з приведених рівнянь ϵ алгебраїчним?
- a) $x^7 + 9.1x^5 + 8.3x^4 + 2x 3 = 0$
- 70. Який вигляд має рівняння дотичної, що проведена через точку $(x_0, f(x_0))$?
- a) $y f(x_0) = f'(x_0)(x x_0)$
- 71. До яких методів відноситься формула Ейлера для вирішення задачі Коші?
- а) однокрокових
- 72. До яких методів відносяться формули Адамса для вирішення задачі Коші?
- а) багатокрокових
- 73. Виведення формули для похибки інтерполяції за допомогою інтерполяційного многочлена Лагранжа заснований на застосуванні теореми
- а) Ролля
- 74. Наближення функції у точці $x = x^*$ називають екстраполяцією, якщо $x = x^*$ розташована а) поза таблицею вузлів
- 75. Наближення функції на сітці вузлів $x_i = x_0 + ih$; $i = \overline{0,n}$ називають власне інтерполяцією, якщо точка $x = x^*$ розташована
- а) поза таблицею вузлів всередині таблиці вузлів