1. Describe the end behavior of the polynomial below.

$$f(x) = 4(x+3)^4(x-3)^9(x+2)^4(x-2)^6$$

C.

В.

D.

- E. None of the above.
- 2. Describe the zero behavior of the zero x=-8 of the polynomial below.

$$f(x) = -3(x+9)^{6}(x-9)^{5}(x+8)^{14}(x-8)^{9}$$

В.

E. None of the above.

3. Which of the following equations *could* be of the graph presented below?

A.
$$17(x+2)^{10}(x-2)^7(x+4)^5$$

B.
$$-9(x+2)^{10}(x-2)^9(x+4)^{11}$$

C.
$$-18(x+2)^{10}(x-2)^{11}(x+4)^{10}$$

D.
$$8(x+2)^7(x-2)^4(x+4)^5$$

E.
$$20(x+2)^4(x-2)^4(x+4)^9$$

4. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in

Progress Quiz 3 Version B

the form $x^3 + bx^2 + cx + d$.

$$3+2i$$
 and 4

A.
$$b \in [1, 8], c \in [-7.52, -6.31], \text{ and } d \in [11, 13]$$

B.
$$b \in [5, 14], c \in [36.76, 37.91], \text{ and } d \in [49, 57]$$

C.
$$b \in [-15, -7], c \in [36.76, 37.91], \text{ and } d \in [-52, -48]$$

D.
$$b \in [1, 8], c \in [-6.57, -5.83], \text{ and } d \in [6, 9]$$

- E. None of the above.
- 5. Which of the following equations *could* be of the graph presented below?

A.
$$4(x-2)^4(x+3)^6(x-1)^5$$

B.
$$16(x-2)^5(x+3)^5(x-1)^5$$

C.
$$-9(x-2)^{10}(x+3)^9(x-1)^7$$

D.
$$4(x-2)^6(x+3)^7(x-1)^{11}$$

E.
$$-10(x-2)^{11}(x+3)^5(x-1)^7$$

6. Describe the end behavior of the polynomial below.

$$f(x) = -9(x+8)^4(x-8)^5(x-6)^4(x+6)^5$$

3012-8528 Summer C 2021

С.

A.

В.

E. None of the above.

7. Describe the zero behavior of the zero x=-5 of the polynomial below.

$$f(x) = -9(x-5)^4(x+5)^7(x-9)^4(x+9)^8$$

D.

В.

E. None of the above.

8. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$1, \frac{-3}{4}, \text{ and } \frac{6}{5}$$

A. $a \in [20, 21], b \in [-35, -25], c \in [-9, 1], \text{ and } d \in [15, 24]$

B. $a \in [20, 21], b \in [-22, -14], c \in [-21, -16], \text{ and } d \in [15, 24]$

C. $a \in [20, 21], b \in [27, 36], c \in [-9, 1], \text{ and } d \in [-26, -17]$

D. $a \in [20, 21], b \in [-35, -25], c \in [-9, 1], \text{ and } d \in [-26, -17]$

E. $a \in [20, 21], b \in [10, 12], c \in [-33, -25], \text{ and } d \in [-26, -17]$

9. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $x^3 + bx^2 + cx + d$.

$$3+4i$$
 and 4

A. $b \in [-5, 7], c \in [-7.9, -4.2], \text{ and } d \in [11, 13]$

B. $b \in [-5, 7], c \in [-8.4, -7.9], \text{ and } d \in [13, 18]$

C. $b \in [7, 19], c \in [48.6, 51.5], \text{ and } d \in [98, 101]$

- D. $b \in [-10, -4], c \in [48.6, 51.5], \text{ and } d \in [-102, -94]$
- E. None of the above.
- 10. Construct the lowest-degree polynomial given the zeros below. Then, choose the intervals that contain the coefficients of the polynomial in the form $ax^3 + bx^2 + cx + d$.

$$\frac{3}{4}, \frac{5}{2}$$
, and -4

- A. $a \in [5, 9], b \in [16, 29], c \in [-71, -68], \text{ and } d \in [-63, -58]$
- B. $a \in [5, 9], b \in [-13, -5], c \in [-95, -76], \text{ and } d \in [-63, -58]$
- C. $a \in [5, 9], b \in [2, 9], c \in [-95, -76], \text{ and } d \in [55, 66]$
- D. $a \in [5, 9], b \in [2, 9], c \in [-95, -76], \text{ and } d \in [-63, -58]$
- E. $a \in [5, 9], b \in [57, 64], c \in [115, 125], \text{ and } d \in [55, 66]$

3012-8528 Summer C 2021