1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.7. This means (check all that apply):

Our estimate for $P(y=0|x;\theta)$ is 0.7.

Our estimate for $P(y=0|x;\theta)$ is 0.3.

Our estimate for $P(y=1|x;\theta)$ is 0.3.

Our estimate for $P(y=1|x;\theta)$ is 0.7.

1 2.

2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2).$

<i>x</i> ₁	<i>x</i> ₂	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2) \text{) could increase how well we can fit the training data.}$
- At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2) \text{) would increase } J(\theta) \text{ because we are now summing over more terms.}$
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

1 point 3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \big(h_\theta(x^{(i)}) - y^{(i)}\big) x_j^{(i)}.$ Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

 $\boxed{\hspace{-0.5cm}} \theta := \theta - \alpha \tfrac{1}{m} \sum_{i=1}^m \big(h_\theta \big(x^{(i)} \big) - y^{(i)} \big) x^{(i)}.$

 $\boxed{ \qquad } \quad \theta := \theta - \alpha \tfrac{1}{m} \textstyle \sum_{i=1}^m \left(\tfrac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) x^{(i)}.$

 $\qquad \qquad \theta_j := \theta_j - \alpha \tfrac{1}{m} \sum_{i=1}^m \left(\theta^T x - y^{(i)} \right) x_j^{(i)} \text{ (simultaneously update for all } j \text{)}.$

1 point 4. Which of the following statements are true? Check all that apply.

For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).

The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.

Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).

The cost function $J(\theta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.

1 point 5. Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = -6, \theta_1 = 1, \theta_2 = 0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

Figure:

I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Attila Földvárszky

Submit Quiz