CS-E4600 Algorithmic Methods of Data Mining Programming Project

Adam Ilyas 725819 adam_ilyas@mymail.sutd.edu.sg

December 24, 2018

1 Introduction

The tasks you have to complete for the programming project are the following:

- 1. Design and implement your own graph-partitioning method;
- 2. submit your solution, which should include the source code you developed and a report

We will use graphs from the Stanford Network Analysis Project (SNAP) http://snap.stanford.edu/data/index.html in particular, you can consider the following 5 collaboration networks:

ca-AstroPh, ca-CondMat, ca-GrQc, ca-HepPh, ca-HepTh

File formate first line:

graphID numOfVertices numOfEdges k

Subsequent values:

vertex1ID vertex2ID

2 Graph-partitioning task:

Given an undirected graph G = (V, E) and an integer k > 1 we want to partition the set of vertices V into k communities V_1, \ldots, V_k so that $\bigcap_{i=1}^k V_i = V$ We want our communities V_1, \ldots, V_k to be as much separate from each other as possible. We also want the communities to have roughly equal size. Thus,

we will evaluate the goodness of a partition V_1, \ldots, V_k by **minimizing** the objective function:

$$\phi(V_1, \dots, V_k) = \frac{E(V_1, \dots, V_k)}{\min_{1 \le i \le k} |V_i|}$$

where $E(V_1, \ldots, V_k)$ is the set of edges of G that is cut by the k communities:

$$E(V_1, \dots, V_k) = \{(u, v) \in E \mid u \in V_i \text{ and } v \in V_j \text{ where } i \neq j\}$$

You should implement a program that reads a problem instance in the format specified above and produces a partition V_1, \ldots, V_k for which the objective function $\phi(V_1, \ldots, V_k)$ is as small as possible

2.1 Algorithm 1: Unnormalized spectral clustering

Input: graph adjacency matrix A, number k

- 1. form diagonal matrix D
- 2. form unormalized Laplacian L = D A
- 3. compute the first k eigenvectors u_1, \ldots, u_k of L (unnormalized Laplacian)
- 4. form matrix $U \in \mathbb{R}^{n \times k}$ with columns u_1, \dots, u_k
- 5. consider the i-th row of U as point $y_i \in \mathbb{R}^k$, $i = 1, \ldots, n$
- 6. cluster (kmeans) the points $\{y_i\}_{i=1,\dots,n}$ into clusters C_1,\dots,C_k

output clusters $A_1, \ldots A_k$

2.2 Algorithm 2: Normalized spectral clustering (generalized eigenproblem)

Input: graph adjacency matrix A, number k

- 1. form diagonal matrix D
- 2. form unormalized Laplacian L = DA
- 3. compute the first k eigenvectors u_1, \ldots, u_k of the generalized eigenproblem $L\mathbf{u} = \lambda D\mathbf{u}$ (eigenvectors of L_{rw})

- 4. form matrix $U \in \mathbb{R}^{n \times k}$ with columns u_1, \dots, u_k
- 5. consider the i-th row of U as point $y_i \in \mathbb{R}^k$, $i = 1, \dots, n$
- 6. cluster (kmeans) the points $\{y_i\}_{i=1,\ldots,n}$ into clusters C_1,\ldots,C_k

output clusters $A_1, \ldots A_k$

This algorithm is similar to Algorithm 1. The difference is in - step 3 where we find the eigenvectors u_1, \ldots, u_k of the generalized eigenproblem instead of the unnormalized laplacian

$$L_{rw} := I - D^{-1}A$$

2.3 Algorithm 3: Normalized spectral clustering (generalized eigenproblem, normalized U)

This algorithm is the same as Algorithm 2 but we $normalize\ U$ so that rows have norm 1

Input: graph adjacency matrix A, number k

- 1. form diagonal matrix D
- 2. form unormalized Laplacian L = DA
- 3. compute the first k eigenvectors u_1, \ldots, u_k of the generalized eigenproblem $L\mathbf{u} = \lambda D\mathbf{u}$ (eigenvectors of L_{rw})
- 4. form matrix $U \in \mathbb{R}^{n \times k}$ with columns u_1, \dots, u_k
- 5. $normalize\ U$ so that rows have norm 1
- 6. consider the i-th row of U as point $y_i \in \mathbb{R}^k$, $i = 1, \ldots, n$
- 7. cluster (kmeans) the points $\{y_i\}_{i=1,\dots,n}$ into clusters C_1,\dots,C_k

output clusters $A_1, \ldots A_k$

2.4 Algorithm 4: Normalized spectral clustering (normalize U)

Input: graph adjacency matrix A, number k

1. form diagonal matrix D

- 2. form normalized Laplacian $L' = I D^{-1/2}AD^{-1/2}$
- 3. compute the first k eigenvectors u_1, \ldots, u_k of L'
- 4. form matrix $U \in \mathbb{R}^{n \times k}$ with columns u_1, \dots, u_k
- 5. normalize U so that rows have norm 1
- 6. consider the i-th row of U as point $y_i \in \mathbb{R}^k$, $i = 1, \ldots, n$
- 7. cluster (kmeans) the points $\{y_i\}_{i=1,\dots,n}$ into clusters C_1,\dots,C_k

Output: clusters $A_1, \ldots A_k$

This algorithm is similar to Algorithm 1. The difference is in

- step 2 we have normalized laplacian instead of the unnormalized laplacian

$$L' := I - D^{-1/2}AD^{-1/2}$$

- step 5 we normalize U

3 Performance

We will use the following graphs to access the performance of the algorithms. ${\tt ca-HepTh}\ {\tt ca-GrQc}$

For both graphs, algorithm 3 has the lowest partition cost hence has the most balanced parition. We will use Algorithm 3: normalized spectral clustering (generalized eigenproblem, normalized U) to cluster our graph and produce the results.