

Variabili aleatorie

Statistica e Elementi di Probabilità

Bilotti Alessandro matricola: 206409

Variabili Aleatorie

Discreta è una variabile che può assumere un insieme finito o numerabile di valori, ciascuno con una probabilità specifica.

Esempio: Lancio di un dado

Consideriamo una variabile aleatoria X che rappresenta il risultato del lancio di un dado a sei facce. I possibili valori di X sono:

$$X \in \{1, 2, 3, 4, 5, 6\}$$

Dato che il dado è equo, la probabilità di ciascun valore è:

$$P(X=x) = \frac{1}{6}$$

Con funzione di massa di probabilità (PMF) data da:

$$P(X=x) = \begin{cases} \frac{1}{6}, & x \in \{1, 2, 3, 4, 5, 6\} \\ 0, & altrimenti \end{cases}$$

Distribuzione di Probabilità del Lancio di un Dado

Variabili Aleatorie

Continue continua può assumere infiniti valori in un intervallo della retta reale. La sua distribuzione è descritta da una funzione di densità di probabilità (PDF) anziché da una funzione di massa di probabilità (PMF).

Esempio: Temperatura giornaliera

Consideriamo una variabile aleatoria X che rappresenta la temperatura giornaliera in una città.

- X può assumere qualsiasi valore reale in un intervallo (es. $X \in [15^{\circ} C, 35^{\circ} C]$);
- È impossibile assegnare una probabilità a un singolo valore, ma è possibile calcolare la probabilità che *X* sia in un certo intervallo;
- La distribuzione della temperatura può essere modellata con una **distribuzione normale** $X \sim \mathcal{N}(\mu, \sigma^2)$.

Funzione di ripartizione

La funzione di ripartizione o di distribuzione si definisce per variabili aleatorie discrete e continue. La usiamo quando vogliamo conoscere la **probabilità** che la variabile casuale assuma valori minori o uguali a x.

$$F_X(x) = p(X \le x)$$

Per variabili discrete:

$$F(x) = \sum_{k < x} P(X = k)$$

Per variabili continue:

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

Valore Atteso o Media

Il **valore atteso** (o **media**) di una variabile aleatoria rappresenta il valore medio che ci si aspetta di ottenere in un vasto numero di osservazioni dell'esperimento.

Se *X* variabile aleatoria discreta:

$$E[X] = \sum_{i} x_{i} P(X = x_{i})$$

Se X variabile aleatoria continua:

$$E[X] = \int_{-\infty}^{+\infty} xf(x) dx$$

Proprietà:

Linearità: Se a e b sono costanti e X, Y variabili aleatorie:

$$E[aX + bY] = aE[X] + bE[Y]$$

• Se Xè simmetrica rispetto a 0, allora E[X] = 0.

Legge dei Grandi Numeri

Ripetendo un esperimento casuale un numero elevato di volte, la media aritmetica dei risultati osservati tende al valore atteso della variabile aleatoria.

$$\overline{X}_n = \frac{1}{n} \sum_{i=0}^n X_i$$
 converge a $E[X]$ per $n \to \infty$

Varianza

La **varianza** di una variabile aleatoria misura la sua dispersione nei suoi valori attorno alla sua media E[X].

$$Var(X) = E[(X - E[X])^{2}]$$

Deviazione standard:

$$\sigma = \sqrt{Var(X)}$$

Distribuzione Binomiale (n=10, p=0.5)

V.A. Binomiali

 $\mathfrak{B}(n,p)$

Si usa in caso di un esperimento con prove ripetute con le caratteristiche:

- Due soli esiti possibili: successo o insuccesso;
- Probabilità di successo (o insuccesso) costante;
- Risultati delle prove indipendenti.

Esempio:

- Lancio di una moneta;
- Tiro libero nel basket.

La variabile che descrive ogni prova è detta binomiale o di Bernoulli:

$$X = \begin{cases} 1 & P(X=1) = p \\ 0 & P(X=0) = 1 - p \end{cases}$$

Dove $0 \le p \le 1$ è la probabilità del successo.

PMF:
$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$$

X conta il numero di successi in n prove indipendenti ognuna con probabilità p.

V.A. Binomiali

Valore Atteso o media:

$$E[X] = np$$

Varianza:

$$Var(X) = np(1-p)$$

Distribuzione Binomiale (n=10, p=0.5)

V.A. Geometriche

 $\mathcal{G}(p)$

Si usa in caso di un esperimento con prove ripetute con le caratteristiche:

- Due soli esiti possibili: successo o insuccesso;
- Probabilità di successo (o insuccesso) costante;
- Risultati delle prove indipendenti;
- La variabile è il numero di prove necessarie ad ottenere il primo successo.

Esempio:

Presa una catena di produzione, dopo quanti prodotti uno viene scartato perché difettoso?

La probabilità di avere un successo al *k*-esimo tentativo è data da:

$$P(X=k) = p(1-p)^{k-1}$$

Valore Atteso o media:

$$E[X] = \frac{1}{p}$$

$$Var(X) = \frac{1 - p}{p^2}$$

Distribuzione Geometrica (p=0.03)

Numero di prodotti non difettosi (k)

V.A. di Poisson

 $\mathcal{P}(\lambda)$

Si usa per ottenere la probabilità connessa al numero di eventi che si verificano in un determinato lasso di tempo, come

- Numero di incidenti in una giornata;
- Numero di chiamate ricevute da un centralino in 5 minuti.

Gli eventi si possono associare ad una variabile di Poisson se:

- Sono indipendenti tra di loro;
- La probabilità del verificarsi di un evento in un intervallo di tempo infinitesimo è proporzionale ad un parametro che caratterizza la prova;
- La probabilità che si verifichino più eventi nell'intervallo di riferimento è approssimabile a zero.

$$P(X=k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$$

Valore Atteso o media:

$$E[X] = \lambda$$

$$Var(X) = \lambda$$

Distribuzione di Poisson (λ=5)

V.A. Esponenziali

Le **variabili esponenziali** sono utilizzate per modellare il tempo tra eventi in un **processo di Poisson**, ovvero il tempo di attesa fino al verificarsi di un evento raro. Sono, per esempio, utilizzate in:

- Teoria delle code;
- Affidabilità dei sistemi.

$$f(x) = \lambda e^{-\lambda x}$$

- $x \in (0, +\infty]$;
- λ numero di eventi per lasso di tempo.

Valore Atteso o media:

$$E[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

Distribuzione Esponenziale(λ=0.5)

Indipendenza e Correlazione

Due variabili X, Y si dicono **indipendenti** se, la conoscenza di una non fornisce informazioni rispetto all'altra.

Ovvero:

$$P(X=x, Y=y) = P(X=x) P(Y=y)$$

La **correlazione**, invece, misura la **dipendenza lineare**, tra due variabili, tramite il Coefficiente di Pearson:

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- Cov(X, Y) = E[(X E[X]) (Y E[Y])]
- σ_X, σ_Y deviazione standard di X, Y

$$\rho(X,Y) \in \left[-1,1\right]$$

$$Cov = 0 \Rightarrow \rho(X, Y) = 0$$

$$\rho(X,Y) = 0 \times Cov = 0$$

UNIMORE 29/01/2025

UNIMORE 29/01/2025

Variabili Aleatorie

V.A. Ipergeometriche

 $\mathcal{H}(n,k,r)$

Viene utilizzata per stimare la probabilità di ottenere un certo numero di successi in un campione di dimensione fissa, estratto **senza reinserimento** da una popolazione finita.

$$P(X=k) = \frac{\binom{H}{k} \binom{N-H}{n-k}}{\binom{N}{n}}$$

- H: numero di elementi di interesse;
- k: numero di successi in n prove;
- N: numero totale di elementi;
- *n*: numero di prove.

Valore Atteso o media:

$$E[X] = n\frac{H}{N}$$

$$Var(X) = np(1-p) \frac{N-n}{N-1}$$

Distribuzione Ipergeometrica (N=100, K=25, n=10)

UNIMORE 29/01/2025 Variabili Aleatorie 20

V.A. Binomiali Negative o di Pascal

 $N\mathfrak{B}(p,n)$

Descrive il numero di fallimenti k ottenuti prima di un certo numero di successi r in una serie di prove indipendenti. Ciascuna con probabilità p di successo. Generalizza la distribuzione geometrica, dove r=1.

$$P(X=k) = \begin{pmatrix} k+r-1 \\ k \end{pmatrix} p^r (1-p)^k$$

Valore Atteso o media:

$$E[X] = \frac{r(1-p)}{p}$$

$$Var(X) = \frac{r(1-p)}{p^2}$$

V.A. Normali

$$\mathcal{N}(\mu, \sigma^2)$$

Le variabili normali sono una delle distribuzioni più utili in statistica e probabilità, viene usata per:

- Modellare fenomeni reali;
- Statistica inferenziale;
- Approssimazione di altre distribuzioni;
- Standardizzazione e confronto.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Proprietà:

- Forma a campana;
- Media, mediana, moda coincidono;
- Regola empirica:
 - $\circ \mu \pm \sigma$ copre circa il **68.26**% dei dati;
 - $\mu \pm 2\sigma$ copre circa il **95.45**% dei dati;
 - \circ $\mu \pm 3\sigma$ copre circa il **99.73**% dei dati.

Alcune Distribuzioni Normali

UNIMORE 29/01/2025 Variabili Aleatorie 24

Normalizzazione di variabili

La normalizzazione è un processo che trasforma una variabile per renderla adatta all'analisi statistica o machine learning. Serve a:

- Rende variabili comparabili;
- Migliorare le prestazioni di algoritmi;
- Ridurre l'asimmetria per renderla simile ad una normale.

Z-score:

$$z = \frac{x - \mu}{\sigma}$$

Trasformazione logaritmica:

$$z = \log(X)$$

