THÉORIE DES GRAPHES - GUIDE DE RÉVISION

№ 1. GRAPHES DE BASE

A. Graphe Orienté (\rightarrow)

Ø Définition:

• $G = (\chi, U)$ où U = ensemble des arcs (flèches)

Éléments clés:

Сору

```
- Arc (x,y): Flèche de x vers y
- Origine: Point de départ de l'arc
- Extrémité: Point d'arrivée de l'arc
```

Exemple pratique:

mermaid

```
graph LR
A-->B
A-->C
B-->D
```

С

```
G = (χ, U) avec:

χ = {A, B, C, D}

U = {(A,B), (A,C), (B,D)}
```

B. Graphe Non Orienté (—)

Ø Définition:

• G = (V,E) où E = ensemble des arêtes

P Termes importants:

```
    Arête [x,y]: Liaison non orientée
    Sommets adjacents: Directement reliés
    Arêtes incidentes: Partageant un sommet
```

Exemple pratique:

```
G = (V,E) avec:
V = {A, B, C}
E = {[A,B], [B,C]}
```

Ջ 2. TYPES SPÉCIAUX DE GRAPHES

A. Graphe Simple

© Caractéristiques:

```
√ Pas de boucles
√ Pas d'arêtes parallèles
```

B. Graphe Complet

@ Propriétés:

```
- Non orienté: Toutes les paires connectées
- Nombre d'arêtes: n(n-1)/2 pour n sommets
```

Formule à retenir:

```
Pour n sommets:
Nombre d'arêtes = n(n-1)/2
```

C. Graphe Biparti

***** Structure:

```
- Deux ensembles de sommets: X et Y
- Arêtes uniquement entre X et Y
```

Exemple:

```
X = {A, B}
Y = {1, 2}
E = {[A,1], [A,2], [B,1]}
```

ॐ 3. MESURES ET CALCULS

A. Degrés dans un Graphe Orienté

Formules:

```
d+(x) = nombre d'arcs sortants

d-(x) = nombre d'arcs entrants

d(x) = d+(x) + d-(x)
```

■ Propriétés:

```
\sum_{x} d+(x) = \sum_{x} d-(x) = |E|
\sum_{x} d(x) = 2|E|
```

B. Degrés dans un Graphe Non Orienté

Points clés:

```
    d(x) = nombre d'arêtes connectées à x
    Boucle compte double
    Somme des degrés = 2 × nombre d'arêtes
```

ॐ 4. CONCEPTS AVANCÉS

A. Sous-structures

Q Types:

- 1. Sous-graphe:
 - Sous-ensemble de sommets
 - Leurs arêtes correspondantes
- 2. Graphe partiel:
 - Tous les sommets
 - Sous-ensemble d'arêtes
- 3. Sous-graphe partiel:
 - Sous-ensemble de sommets
 - Sous-ensemble d'arêtes

B. Planaire vs Non-Planaire

Ø Définition:

Planaire: Peut être dessiné sans croisement d'arêtes

ॐ 5. LEMMES IMPORTANTS

A. Lemme des Poignées de Main

Enoncé:

Dans tout graphe non orienté: Le nombre de sommets de degré impair est PAIR

Application pratique:

Utile pour:

- Vérifier la validité d'une structure
- Prouver l'impossibilité de certaines configurations

© POINTS À RETENIR

1. Vérifications rapides:

- Somme des degrés = 2 × nombre d'arêtes
 Graphe complet: n(n-1)/2 arêtes
- Degrés impairs: nombre pair de sommets

2. Distinctions importantes:

- Arc ≠ Arête
- Graphe orienté ≠ Graphe non orienté
- Sous-graphe ≠ Graphe partiel

3. Propriétés fondamentales:

- Connexité
- Planarité
- Bipartition

© Conseil de révision: Commencez par maîtriser les concepts de base (types de graphes, degrés) avant de passer aux notions plus avancées.