Multi-objective Sparrow Search Optimization for Task Scheduling Problem in Fog-Cloud-Blockchain Systems

Thieu Nguyen, Thang Nguyen, Quoc-Hien Vu, Thi Thanh Binh Huynh, and Binh Minh Nguyen*

School of Information and Communication Technology,
Hanoi University of Science and Technology, Hanoi, Vietnam
nguyenthieu2102@gmail.com, thang.nguyen@v-chain.vn, hienvq.2000@gmail.com,
binhht@soict.hust.edu.vn, minhnb@soict.hust.edu.vn

1 Experimental Setup

In our experiments, we simulated the FCB system with 2 cloud nodes, 8 fog nodes, and 5 blockchain nodes. Due to the different resource capability, the fog, cloud and blockchain nodes have diverse configurations and parameters. The node characteristics (e.g., data generation, age of data, power consumption) is generated randomly in the value ranges. We refer these ranges from some websites such as 1 and 2 and some prior works [1-3].

We also consider two state types for the fog and cloud nodes include idle and running, which comply with the practical operation of a fog-cloud system. For the blockchain network, we also consider two state types including standby and running mode. Standby mode occurs when blockchain node is waiting for data transfer from the fog or cloud node (while still runs other tasks in the background such as hashing, verifying, and transferring transactions to other nodes). Running mode occurs when the blockchain node receives data, verify, transfer transactions, and storing data. The lifetime of data stored on fog nodes is denoted by parameter τ which is defined randomly in the [5, 20] range.

We generated ten datasets covering from 50 to 500 tasks in order to test the simulated FCB system. Our goal is to find the optimal scheduling plan, which optimizes power consumption, service latency, and monetary cost simultaneously. We compare our proposed optimizer MO-SSA against NSGA-II, NSGA-III, and the recent developed MO-ALO. With each algorithm, we set the maximum number of generations is 100 and the population size is 50. The maximum archive size is also 50. In the case of NSGA-II and NSGA-III, the crossover rate is 0.9, the mutation rate is 0.05. The MO-ALO does not need any other parameter. Finally, with MO-SSA, we set ST=0.8, RD=0.1.

References

- 1. Nguyen, B.M., Thi Thanh Binh, H., Do Son, B., et al.: Evolutionary algorithms to optimize task scheduling problem for the iot based bag-of-tasks application in cloud-fog computing environment. Applied Sciences 9(9), 1730 (2019)
- 2. Nguyen, T., Doan, K., Nguyen, G., Nguyen, B.M.: Modeling multi-constrained fog-cloud environment for task scheduling problem. In: 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). pp. 1–10. IEEE (2020)
- 3. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the context of internet of things. IEEE Transactions on Cloud Computing $\mathbf{6}(1)$, 46-59 (2015)

^{*} Corresponding author.

¹ http://cloudharmony.com/speedtest-for-aws:ec2

² https://www.datamation.com/cloud-computing/cloud-costs.html

Table 1: Environmental setup

	Parameter	Notation	Value range	Unit
Task	Data processed on fog nodes	$R_p^T \ R_s^T$	$[5*10^4, 5*10^5]$	1
	Data processed on cloud nodes	$Q_p^T \ Q_r^T$	$[5*10^4, 5*10^5]$	byte
Blockchain Node	Power consumption for data forwarding	α^{BC}	$[5*10^{-10}, 5*10^{-9}]$	W/byte
		α_{sm}^{BC}	[100, 250]	W
	Power consumption for storage	γ^{BC}	$[5*10^{-10}, 5*10^{-8}]$	W/byte
		γ_{sm}^{BC}	[50, 200]	W
	Cost for data forwarding	σ^{BC}	$[5*10^{-10}, 5*10^{-8}]$	\$/byte
		σ_{sm}^{BC}	[0.01, 0.1]	/s
	Cost for storage	ω^{BC}	$[10^{-16}, 10^{-14}]$	\$/byte
		ω_{sm}^{BC}	$[10^{-8}, 10*10^{-7}]$	/s
Fog	Power consumption for data forwarding	α^{FG}	$[5*10^{-8}, 5*10^{-6}]$	W/byte
		α_{idle}^{FG}	[25, 100]	W
	Power consumption for computation	β^{FG}	$[5*10^{-7}, 5*10^{-5}]$	W/byte
		β^{FG}_{idle}	[100, 500]	W
	Power consumption for storage	γ^{FG}	$[5*10^{-7}, 5*10^{-5}]$	W/byte
		γ^{FG}_{idle}	[10, 50]	W
	Delay of transmission	δ^{FG}_{df}	$[5*10^{-7}, 5*10^{-6}]$	
	Delay of processing	λ^{FG}	$[10^{-7}, 10^{-6}]$	s/byte
	Cost for data forwarding	σ^{FG}	$[5*10^{-9}, 5*10^{-8}]$	\$/byte
		σ^{FG}_{idle}	[0.001, 0.01]	\$/s
	Cost for computation	π^{FG}	$[5*10^{-16}, 5*10^{-15}]$	\$/byte
		π^{FG}_{idle}	$[5*10^{-7}, 5*10^{-6}]$	$\rm \$/s$
	Cost for storage	ω^{FG}	$[10^{-16}, 10^{-15}]$	\$/byte
		ω_{idle}^{FG}	$[10^{-8}, 10^{-7}]$	\$/s
Cloud	Power consumption for data forwarding	α^{CL}	$[5*10^{-7}, 5*10^{-5}]$	W/byte
		$lpha_{idle}^{CL}$	[50, 200]	W
	Power consumption for computation	β^{CL}	$[10^{-9}, 10^{-7}]$	W/byte
		eta_{idle}^{CL}	[100, 200]	W
	Power consumption for storage	γ^{CL}	$[5*10^{-9}, 5*10^{-7}]$	W/byte
		γ^{CL}_{idle}	[50, 100]	W
	Delay of transmission	δ_{fc}^{CL}	$[10^{-6}, 10^{-5}]$	**
	Delay of processing	λ^{CL}	$[10^{-9}, 10^{-8}]$	s/byte
	Cost for data forwarding	σ^{CL}	$[5*10^{-10}, 5*10^{-9}]$	\$/byte
		σ^{CL}_{idle}	[0.001, 0.01]	\$/s
	Cost for computation	π^{CL}	$[5*10^{-15}, 5*10^{-14}]$	\$/byte
		π^{CL}_{idle}	$[5*10^{-7}, 5*10^{-6}]$	\$/s
	Cost for storage	ω^{CL}	$5*10^{-16}, 5*10^{-16}$	\$/byte
		ω^{CL}_{idle}	$[10^{-8}, 10^{-7}]$	\$/s
		ω_{idle}	[10 ,10]	Ψ/δ