反射光与折射光的偏振特性

理论指出: 当 $i=i_0$ 时,反射光为线偏振光!

反射光与折射光的偏振特性

理论指出: 当 i = i 时,反射光为线偏振光!

一、反射光与折射光的偏振特性

理论指出: 当 i = i 时, 反射光为线偏振光!

理论可证:

$$tgi_0 = \frac{n_2}{n_1}$$

(布儒斯特定律)

· 布 儒斯特角/起偏振角!

折射定律:

$$n_1 \cdot \sin i_0 = n_2 \cdot \sin \gamma$$
 \longrightarrow $\frac{n_2}{n} =$

$$tgi_0 = \frac{n_2}{n_1} = \frac{sini_0}{sin\gamma}$$

$$tgi_0 = \frac{n_2}{n_1}$$

(布儒斯特定律)

· 布 儒斯特角/起偏振角!

折射定律:

$$n_1 \cdot \sin i_0 = n_2 \cdot \sin \gamma$$
 \longrightarrow $\frac{n_2}{n_1} = \frac{\sin i_0}{\sin \gamma}$

$$tgi_0 = \frac{n_2}{n_1} = \frac{sini_0}{sin\gamma}$$

$$cosi_0 = sin\gamma$$

$$i_0 + \gamma = 90^\circ$$

即: 反射光线上折射光线!

例 某种透明物质的临界角为45°,求其布儒斯特角。

 $m_2 > n_1$,则: $n_2 \cdot \sin i_c = n_1 \cdot \sin 90^\circ$

$$\frac{n_2}{n_1} = \frac{\sin 90^{\circ}}{\sin i_c} = \sqrt{2}$$

若光从 $n_2 \rightarrow n_1$,则:

例 某种透明物质的临界角为45°, 求其布儒斯特角。

 $m_2 > n_1$, 则: $n_2 \cdot \sin i_c = n_1 \cdot \sin 90^\circ$

$$\frac{n_2}{n_1} = \frac{\sin 90^{\circ}}{\sin i_c} = \sqrt{2}$$

若光从 $n_2 \rightarrow n_1$,则:

$$tgi_0 = \frac{n_1}{n_2} = \frac{\sqrt{2}}{2}$$
 $i_0 \approx 35.3^\circ$

若光从
$$n_1 \rightarrow n_2$$
,则: $tgi_0 = \frac{n_2}{n_1} = \sqrt{2}$ $i'_0 \approx 54.7^\circ$

课堂练习说明下列情况下反射光与折射光的偏振特性。

$$tgi_0 = \frac{n_1}{n_2} = \frac{\sqrt{2}}{2}$$
 $i_0 \approx 35.3^\circ$

若光从
$$n_1 \rightarrow n_2$$
,则: $tgi_0 = \frac{n_2}{n_1} = \sqrt{2}$ $i'_0 \approx 54.7^\circ$

课堂练习说明下列情况下反射光与折射光的偏振特性。

二、反射面用作检偏器

三、玻璃片堆

布儒斯特定律:

$$tgi_0 = \frac{n_2}{n_1}$$

i₀: 布儒斯特角/起偏振角!