Esercizio nº 1 - Dato il circuito in figura determinare:		17	7
	R1 =	220,000 Ω	\mathbf{C}
	R2 =	110,000 Ω	2
	L =	1,000 H	4
	E =	165,000 V	/
	T =	11,000 s	S

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio nº 2 - Dato il circuito in figura determinare:				16
		Ei =	110,000	٧
		ZA =	11+5,5i	Ω
		ZB =	16,5+22i	Ω
		EN =	110,00	V
		T =	1,00	S
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3			Α

Esercizio nº 1 - Dato il circuito in figura determinare:		17	
	R1 =	200,000 Ω	1
	R2 =	100,000 Ω	
	L =	1,000 H	
	E =	150,000 V	
	T =	10,000 s	

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio nº 2 - Dato il circuito in figura determinare:				16
		Ei =	100,000	V
		ZA =	10+5i	Ω
		ZB =	15+20i	Ω
		EN =	100,00	V
		T =	1,00	s
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3		_	Α

Esercizio nº 1 - Dato il circuito in figura determinare:			17
	R1 =	180,000	Ω
	R2 =	90,000	Ω
	L =	1,000	Н
	E =	135,000	V
	Ţ =	9,000	S

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio n° 2 - Dato il circuito in figura determinare:				16
		Ei =	90,000	V
		ZA =	9+4,5i	Ω
		ZB =	13,5+18i	Ω
		EN =	90,00	V
		T =	1,00	S
		i = 1,2,3	Seq diretta	
	5 "			
4. Hustons officers delle 14 mark «T	Punti			٨
 il valore efficace della I1 per t < T la potenza reattiva erogata dal generatore trifase per t < T 	3 3			A
				var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W V
4. il modulo della tensione concatenta sulla stella ZB per t < T5. il valore efficace della corrente nella fase 2 per t > T	3 3			v A
5. Il valore enicace della corrente fiella fase 2 per t > 1	J			А

Esercizio n° 1 - Dato il circuito in figura determinare:			17
	R1 =	160,000	Ω
	R2 =	80,000	Ω
	L =	1,000	Н
	E =	120,000	V
	T =	8,000	S

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio n° 2 - Dato il circuito in figura determinare:				16
		Ei =	80,000	V
		ZA =	8+4i	Ω
		ZB =	12+16i	Ω
		EN =	80,00	V
		T =	1,00	s
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3			Α

Esercizio n° 1 - Dato il circuito in figura determinare:		•	17
	R1 =	140,000	Ω
	R2 =	70,000	Ω
	L =	1,000	Η
	E =	105,000	٧
	T =	7,000	S

	Punti	
1. La costante di tempo di iR2	3	s
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio nº 2 - Dato il circuito in figura determinare:				16
		Ei =	70,000	V
		ZA =	7+3,5i	Ω
		ZB =	10,5+14i	Ω
		EN =	70,00	V
		T =	1,00	s
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3			Α

Esercizio n° 1 - Dato il circuito in figura determinare:		17	7
	R1 =	120,000 Ω	2
	R2 =	60,000 Ω	2
	L =	1,000 H	
	E =	90,000 V	
	T =	6,000 s	

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	A
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	A
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio n° 2 - Dato il circuito in figura determinare:				16
		Ei =	60,000	V
		ZA =	6+3i	Ω
		ZB =	9+12i	Ω
		EN =	60,00	V
		T =	1,00	S
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3		_	Α

Esercizio nº 1 - Dato il circuito in figura determinare:		1	7
	R1 =	100,000 🕜	\mathbf{C}
	R2 =	50,000 C	\mathbf{C}
	L =	1,000 H	Н
	E =	75,000 V	V
	T =	5,000 s	s

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio nº 2 - Dato il circuito in figura determinare:				16
		Ei =	50,000	V
		ZA =	5+2,5i	Ω
		ZB =	7,5+10i	Ω
		EN =	50,00	V
		T =	1,00	S
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3			Α

Esercizio nº 1 - Dato il circuito in figura determinare:			17
	R1 =	80,000	Ω
	R2 =	40,000	Ω
	L =	1,000	Н
	E =	60,000	V
	T =	4,000	S

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio n° 2 - Dato il circuito in figura determinare:				16
		Ei =	40,000	V
		ZA =	4+2i	Ω
		ZB =	6+8i	Ω
		EN =	40,00	V
		T =	1,00	s
			0 " "	
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3		_	V
5. il valore efficace della corrente nella fase 2 per t > T	3			Α

Esercizio nº 1 - Dato il circuito in figura determinare:		17	
	R1 =	60,000 Ω	1
	R2 =	30,000 Ω	
	L =	1,000 H	
	E =	45,000 V	
	T =	3,000 s	

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio n° 2 - Dato il circuito in figura determinare:				16
		Ei =	30,000	V
		ZA =	3+1,5i	Ω
		ZB =	4,5+6i	Ω
		EN =	30,00	V
		T =	1,00	S
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3			Α

Esercizio nº 1 - Dato il circuito in figura determinare:		17	
	R1 =	40,000 Ω	
	R2 =	20,000 Ω	
	L =	1,000 H	
	E =	30,000 V	
	T =	2 ,000 s	

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	A
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	A
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio nº 2 - Dato il circuito in figura determinare:				16
		Ei =	20,000	V
		ZA =	2+i	Ω
		ZB =	3+4i	Ω
		EN =	20,00	V
		T =	1,00	S
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3			Α

Esercizio nº 1 - Dato il circuito in figura determinare:		17	
	R1 =	20,000 Ω	1
	R2 =	10,000 Ω	
	L =	1,000 H	
	E =	15,000 V	
	T =	1,000 s	

	Punti	
1. La costante di tempo di iR2	3	S
2. Il valore ad infinito di iR2	3	Α
3. Il valore in 0+ di iR2	4	Α
4. Il valore in 0+ di iR1 (dx)	2	Α
5. L'energia dissipata da R2 superiore tra 0 e T	5	J

Esercizio nº 2 - Dato il circuito in figura determinare:				16
		Ei =	10,000	V
		ZA =	1+0,5i	Ω
		ZB =	1,5 + 2i	Ω
		EN =	10,00	V
		T =	1,00	S
		i = 1,2,3	Seq diretta	
	Punti			
1. il valore efficace della I1 per t < T	3			Α
3. la potenza reattiva erogata dal generatore trifase per t < T	3			var
2. la potenza attiva erogata dal generatore trifase per t < T	4			W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3			V
5. il valore efficace della corrente nella fase 2 per t > T	3			Α

3. la potenza reattiva erogata dal generatore trifase per t < T	3	var
2. la potenza attiva erogata dal generatore trifase per t < T	4	W
4. il modulo della tensione concatenta sulla stella ZB per t < T	3	V
5. il valore efficace della corrente nella fase 2 per t > T	3	Α
	_	

Esercizio nº 1 - Dato il circuito in figura determinare:

R1 =	20,000	Ω
R2 =	10,000	Ω
L =	1,000	Η
E =	15,000	V
T =	1,000	S

s
A
Α
Α
J

Punti

3

4 2

5

Esercizio n° 2 - Dato il circuito in figura determinare:

Ei =	10,000	٧
ZA =	1+0,5i	Ω
ZB =	1,5+2i	Ω
EN =	10,00	V
T =	1,00	S

Seq diretta

16

	Punti
1. il valore efficace della I1 per t < T	3
3. la potenza reattiva erogata dal generatore trifase per t < T	3
2. la potenza attiva erogata dal generatore trifase per t < T	4
4. il modulo della tensione concatenta sulla stella ZB per t < T	3
5. il valore efficace della corrente nella fase 2 per t > T	3

A
var
W
V
Α

i = 1,2,3