Problem 2

```
In [1]: import pandas as pd, numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: df1 = pd.read_csv('CH01PR19.txt', sep = '\s+', header =None, names=['Y','X1'])
In [3]: df2 = pd.read_csv('CH08PR16.txt', sep = '\s+', header =None, names=['X2'])
In [4]: Y = df1['Y']
        X1 = df1['X1']
        X2 = df2['X2']
        df = pd.DataFrame({'Y':Y,'X1':X1,'X2':X2})
        df.head()
Out[4]:
             Y X1 X2
        0 3.897 21
                     0
        1 3.885 14
        2 3.778 28
                     0
        3 2.540 22 1
        4 3.028 21 0
In [5]: x1 = df1['X1']
        x2 = df2['X2']
        y = df1['Y']
```

a. Explain how each regression coefficient in model (8.33) is interpreted here

```
In [13]:
         import statsmodels.api as sm
         import statsmodels.formula.api as smf
         model = smf.ols('y ~ x1+x2', data=df)
          results = model.fit()
          results.summary()
```

Out[13]:

OLS Regression Results

Dep. Variable:			У	R-squared:			0.077
Model:			OLS	Adj. R-squared:			0.062
Meth	nod:	Least S	Squares	F-statistic:			4.914
D	ate:	Sat, 19 No	ov 2022	Prob (F-statistic):			0.00893
Time:		2	3:08:33	Log-Likelihood:			-112.19
No. Observations:			120	AIC:			230.4
Df Residuals:			117	BIC:			238.7
Df Mo	del:		2				
Covariance Type:		noi	nrobust				
	coef	std err	t	P> t	[0.025	0.97	5]
Intercept 2.	1984	0.339	6.488	0.000	1.527	2.8	70

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.1984	0.339	6.488	0.000	1.527	2.870
x 1	0.0379	0.013	2.949	0.004	0.012	0.063
x2	-0.0943	0.120	-0.786	0.433	-0.332	0.143

Omnibus:	26.256	Durbin-Watson:	1.820
Prob(Omnibus):	0.000	Jarque-Bera (JB):	45.317
Skew:	-0.977	Prob(JB):	1.44e-10
Kurtosis:	5.291	Cond. No.	151.

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 - b1 = 0.0379; for every unit increase or decrease in X1, mean Y is increase or decrease by 0.0379 units.
 - b2 = -0.0943; for every unit increase or decrease in X2, mean Y is increase or decrease by 0.0943 units.

b. Fit the regression model and state the estimated regression function.

```
In [14]: sns.lmplot(x='X1',y='Y',hue='X2',data=df)
         plt.show()
```


Coefficients

- b0 = 2.1984
- b1 = 0.0379
- b2 = -0.0943

Regression function: Y_hat = beta[0] + beta[1]X1 + beta[2]X2

 $Y_hat = 2.1984 + (0.0379)X1 + (-0.0943)X2$

c. Test whether the X2 variable can be dropped from the regression model; use $\alpha = .01$. State the alternatives, decision rule, and conclusion.

The alternatives:

- H0: $\beta 2 = 0$
- Ha: β2 ≠ 0

The decision rule:

- If $F* \leq F(1-\alpha; 1, n-p)$, conclude H0
- If $F* > F(1-\alpha; 1, n-p)$, conclude Ha

```
import statsmodels.api as sm
In [8]:
        import statsmodels.formula.api as smf
        model1 = smf.ols('y ~ x1', data=df)
        results1 = model1.fit()
        sse1 = np.sum((results1.fittedvalues - df.Y)**2)
        ssr1 = np.sum((results1.fittedvalues - df.Y.mean())**2)
```

```
In [9]: import statsmodels.api as sm
          import statsmodels.formula.api as smf
          model3 = smf.ols('y \sim x1+x2', data=df)
          results3 = model3.fit()
In [10]: sse12 = np.sum((results3.fittedvalues - df.Y)**2)
          ssr12 = np.sum((results3.fittedvalues - df.Y.mean())**2)
In [11]: ssrX2_X1 = ssr12 - ssr1
          print('SSR(X2|X1)=',ssrX2_X1)
          n = len(y)
          Fstar = (ssrX2_X1/1 / (sse12/(n-3)))
          print('F*=',Fstar)
          import scipy.stats as stats
          f = stats.f.ppf(q=1-0.01,dfn=1,dfd=n-3)
          print('F=',f)
         SSR(X2|X1)= 0.24071276344662396
         F*= 0.6179313729082031
         F= 6.856563808110685
```

For $\alpha = 0.01$, we have F(0.99; 1,n-3) = 6.856. Since F* = 0.6179 \leq 6.856, we conclude H0, that X2 can be dropped from the regression model that already contains X1.

d.Fit regression model (8.49) and state the estimated regression function. $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$ (8.49)

```
In [15]: import statsmodels.api as sm
          import statsmodels.formula.api as smf
          model1 = smf.ols('y \sim x1*x2', data=df)
          results1 = model1.fit()
          results1.summary()
```

Out[15]:

OLS Regression Results

Dep. Variable:			y R-squared:			0.11	9	
Model:			OLS	Adj	Adj. R-squared:			7
Method:		Least	Squares		F-statistic:			4
	Date:	Sat, 19 N	lov 2022	Prob (F-statistic):			0.0019	8
	Time:		23:09:15	Log-Likelihood:			-109.4	0
No. Obser	vations:		120		AIC:			8.
Df Re	siduals:	116			E	BIC:	237.	9
Df Model:			3					
Covariance Type:		no	onrobust					
	coef	std err	t	P> t	[0.025	0.9	75]	
Intercept	3.2263	0.549	5.872	0.000	2.138	4.3	315	
х1	-0.0028	0.021	-0.129	0.898	-0.045	0.0)40	
x2	-1.6496	0.672	-2.454	0.016	-2.981	-0.3	318	
x1:x2	0.0622	0.026	2.350	0.020	0.010	0.1	115	

Omnibus:	28.768	Durbin-Watson:	1.936
Prob(Omnibus):	0.000	Jarque-Bera (JB):	63.541
Skew:	-0.948	Prob(JB):	1.59e-14
Kurtosis:	6.019	Cond. No.	454.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Coefficients

- b0 = 3.2263
- b1 = -0.0028
- b2 = -1.6496
- b3 = 0.0622

Regression function: Y_hat = beta[0] + beta[1]X1 + beta[2]X2 + beta[3]X1X2

$$Y_hat = 3.2263 + (-0.0028)X1 + (-1.6496)X2 + (0.0622)X1X2$$

e. Test whether the interaction term can be dropped from the model; use α =.05. State thealternatives, decision rule, and conclusion. If the interaction term cannot be dropped from the model, describe the nature of the interaction effect.

The alternatives:

- $H0:\beta1=\beta2=\beta3=0$
- Ha:β1≠0,β2≠0,β3≠0

The decision rule:

- If $F* \leq F(1-\alpha, p-1, n-p)$, conclude H0
- If $F* > F(1-\alpha, p-1, n-p)$, conclude Ha

```
In [16]: p = 3
         n = len(y)
         F_star = (ssr12/(p-1)) / ((sse12)/(n-p))
         print('F*=',F_star)
         F = stats.f.ppf(q=1-0.05,dfn=p-1,dfd=n-p)
         print('F=',F)
```

F*= 4.9141276865928445 F= 3.073762904449709

Since F* = 4.914 > F=3.074, we conclude Ha that $\beta 1, \beta 2$, and $\beta 3$ is significantly different from zero. To put it another way, the interaction term shouldn't be dropped from the model.