

Online Shopping Products purchase prediction

Raed Altuwaijri

Problem statement

We are an online shopping store our goal is to increase sales and reduce logistics time and costs by recommending a products to the customer base on there prior orders

Methodology

Data Description

Data sets

Exploratory Data Analysis

Features

In_cart: is product in cart? (the target)

Order_id: unique identifier for each order

Product_id: unique identifier for each product

Add_to_cart_order: the sequence in which they have been

added to the cart in that order.

Reordered: customer reorders count for this product

User_id: unique identifier for each user

Order_number: user order number

Order_dow: order day of week

Order_hour_of_day: order hour of day

Days_since_prior_order: days between this order and the prior.

Feature Engineering

User_product_order_freq Product_reorder_rate User_total_products User_avg_days_since_prior_order User_avg_cartsize User_product_total_orders Product_avg_add_to_cart_order User_product_avg_add_to_cart_order Product_total_orders Product_total_reorders User_total_orders Aisle_reorder_rate Aisle_total_reorders Aisle_total_orders

Feature Importance

Class Imbalance Methods

Class Imbalance - Adjusting Threshold

XGB Metric Scores vs Probability Threshold

Best Threshold : 0.22 Best Train F1 Score : 0.465

Classification Models

Model Benchmarking

Scores Based on Competition Leaderboards

Rank	F1 Score
1ST	0.40914
2ND	0.40820
3RD	0.40810
4TH	0.40744

F1 Scores (Testing)

Model	Adjust threshold	SMOTE	Random Over Sample	Random Under Sample
LR	0.327740	0.317308	0.318361	0.294702
DT	0.223622	0.223012	0.221520	0.219156
RF	0.239094	0.345359	0.256328	0.350634
KNN	0.085911	0.217676	0.214491	0.218282
XGB	0.370872	0.334560	0.337023	0.329331

Best F1 Scores (Testing)

Model	Adjust threshold	SMOTE	Random Over Sample	Random Under Sample
LR	0.327740	0.317308	0.318361	0.294702
DT	0.223622	0.223012	0.221520	0.219156
RF	0.239094	0.345359	0.256328	0.350634
KNN	0.085911	0.217676	0.214491	0.218282
XGB	0.370872	0.334560	0.337023	0.329331

Future Work

Use Multiprocessing to Handle Big Data

Cross Validation Based on Time

Hyperparameter tuning

