Tarea

Vectores

Curso Álgebra Lineal

Pregunta 1

Calcula las componentes, el módulo, la dirección y el sentido de los siguientes vectores (cada cuadradito representa una unidad de medida)

Pregunta 2

Calcula las componentes, el módulo, la dirección y el sentido de \vec{AB} donde

- A = (1,2), B = (2,5)
- A = (-8, 2), B = (-5, -6)
- A = (2, -2), B = (1, -5)

Pregunta 3

Dibuja con Geogebra y calcula las componentes del vector de

- Módulo 3, ángulo 30
- Módulo 5, ángulo 120
- Módulo 3, ángulo 180
- Módulo 1, ángulo 240

Pregunta 4

Expresa una relación vectorial entre los vectores de la siguientes figuras

Expresa relaciones vectoriales entre los vectores de las figuras

Pregunta 6

Comprueba de dos formas diferentes si los puntos $A=(1,2,3),\,B=(0,-1,2)$ y C=(-2,7,0) están o no alineados. Razona ambos métodos y los pasos de cada procedimiento

Obtén las coordenadas del punto que divide en dos partes iguales el segmento de extremos A = (2, 0, -4), B = (-4, 4, 2)

Pregunta 8

Obtén las coordenadas de los dos puntos que divide en tres partes iguales el segmento de extremos A = (2,0,-4), B = (-4,4,2)

Pregunta 9

Dados $\vec{u} = (1, 2, 3), \vec{v} = (-2, -1, 4), \vec{w} = (0, 2, 0), \vec{z} = (1, 0, -3),$ calculad analítica y gráficamente el valor de

- $\vec{u} + \vec{v} \vec{w} + \vec{z}$
- $(\vec{u} + \vec{v}) (\vec{w} + \vec{z})$
- $3\vec{u} 2\vec{v} + 4\vec{w} \vec{z}$

Pregunta 10

Estudia si u = (1, 2, 1) es combinación lineal de v = (1, 2, 2), w = (0, 0, 3), z = (-2, 4, 3)

Pregunta 11

Dado el conjunto de vectores $x = (1, 2, 1), y = (-1, 0, 3), z = (2, 1, -4), t \cdot u = (-3, -2, 4)$, estudiad si el vector u es combinación lineal de x, y, z. Estudiad también si z es combinación lineal de x, y

Pregunta 12

Dados los puntos P = (3,0,0), Q = (0,2,0), R = (0,0,-4), S = (3,-2,4)

- Calcula la norma de los vectores PQ, RS, OP, OR
- Calcula la distancia entre P y Q, R y S, O y P y O y R
- Calcula los vectores unitarios proporcionales a PQ, RS, OP, OR
- Encuentra, si es posible, una combinación lineal de OP y OR tal que su resultado sea el vector PQ
- Encuentra, si es posible, una combinación lineal de OP, OR, PS tal que su resultado sea el vector PQ

Pregunta 13

Encuentra los valores de a y b para que (a, b, -37, -3) sea combinación lineal de (1, 2, -5, 3) y (2, -1, 4, 7)

Pregunta 14

Escribe razonadamente dos vectores del espacio \mathbb{R}^3 que sean perpendiculares. Obtén también un tercer vector perpendicular a los otros 3

Dados los vectores u = (1, 2, -3), v = (-2, -1, 4), w = (0, 2, 0), z = (1, 0, -3), calculad

- $\langle u, v \rangle$
- $\langle u, -v \rangle$
- $\langle u+v,w+z\rangle$
- $\langle u-w,v-z\rangle$
- ||u||
- ||z||
- ||u+v-w+z||

Pregunta 16

Calcula la distancia entre los puntos A = (2, -3), B = (-2, 5)

Pregunta 17

Di cuáles de las siguientes parejas de vectores son ortogonales. Determina en cada caso el ángulo que forman los vectores

- (1,2),(-2,1)
- (1,-1,1),(-1,1,-1)
- $(a, -b, 1), (b, a, 0) \text{ con } a, b \in \mathbb{R}$

Pregunta 18

Sea u = (1, 2, -3)

- Encuentra un vector unitario de la misma dirección y sentido que u
- Encuentra un vector de la misma dirección y sentido que u y de módulo 3
- Encuentra un vector unitario perpendicular a u

Pregunta 19

Dados los vectores u=(2,0,0), v=(0,1,-3) y w=au+bv, ¿qué condición deben cumplir los escalares $a,b\in\mathbb{R}$ para que...

- ... w sea ortogonal al vector (1,1,1)?
- ... w sea unitario?
- ... w sea paralelo al vector (1, -2, 6)?
- Para a = 1, b = -1, calculad el vector de módulo 3, con sentido opuesto a w

Pregunta 20

Sean x,y dos vectores tales que ||x||=3 e ||y||=2. ¿Puede ocurrir que $\langle x,y\rangle=-7$? ¿Qué valores puede tomar el producto escalar $\langle x,y\rangle$? ¿Cuál es el máximo valor que puede tomar ||x-y||?¿Y el mínimo? ¿Cuánto vale ||x-y|| si los dos vectores son perpendiculares?

Demuestra que $||x+y|| \le ||x|| + ||y||$

Pregunta 22

Sean P = (5,7) y Q = (8,3) los vértices del cuadrado PQRS.

- Calcula el punto S sabiendo que se encuentra sobre el eje OX
- Calcula el punto R
- Calcula el centro y el área del cuadrado

Pregunta 23

Comprueba que la operación entre dos vectores de \mathbb{R}^3 definida por

$$\langle (a,b,c),(x,y,z)\rangle = ax + 2by + 3cz$$

cumple las condiciones de producto escalar. Calcula la norma del vector u = (-1, 0, 2) con esta definición y utilizando también la del producto escalar usual.

Pregunta 24

Calcula el ángulo que forman x e y sabiendo que ||x||=3, ||y||=5 y ||x+y||=7

Pregunta 25

Sean u = (1, 2, -3) y v = (0, -2, 1)

- Obtened un vector perpendicular a los dos anteriores
- Obtened un vector perpendicular y unitario a los dos
- Obtened un vector perpendicular a los dos y de norma 3

Dados los puntos A = (1, -1, 3), B = (1, 0, -2), C = (-2, 4, 0), calculad, si es posiblem un punto D tal que la figura formada uniendo los puntos consecutivamente forme un paralelogramo. Calculad el área.

Pregunta 27

Elige la opción correcta. Dados dos vectores $u,v\in\mathbb{R}^3$ tales que $u\wedge v=(-3,0,0)$

- u y v son perpendiculares
- u y v son paralelos
- Las condiciones del enunciado no pueden cumplirse nunca
- u y v son perpendiculares al eje OX

Pregunta 28

¿Cómo deben ser dos vectores con tal de que su producto escalar sea el máximo? ¿Cuál es en este caso el producto vectorial? Justificad vuestra respuesta.

Pregunta 29

Dados los puntos A = (1, 4, -3), B = (-1, 0, 2), C = (5, -4, 1), encuentra un cuarto punto D tal que los cuatro puntos estén el el mismo plano. Pista: utiliza el producto mixto.

Pregunta 30

Dados los puntos A = (1, 4, -3), B = (-1, 0, 2), C = (5, -4, 1), encuentra un cuarto punto D tal que los cuatro puntos NO estén el el mismo plano. Pista: utiliza el producto mixto.