8. $n \rightarrow \infty$ $\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(x+2)n}{n+1} \right| < 1$ when x=-3 we have zig diverge when x =- 1 we have \(\frac{1}{2}\) conditional converge .. raching | . convergence in $-32 \times 4 = -1$ aboute converge : -31x2-1 conditional converge: x=1

$$\left|\frac{n+1}{n}\right| = \left|\frac{n \cdot 3^2 (x-2)}{intl}\right|$$

when
$$x = \frac{17}{9}$$
 => $\geq \frac{1}{3n}$ diverge $x = \frac{17}{9}$ => $\geq 1 + \frac{17}{3n}$ converge conditional

coverge = $x \in [\frac{17}{9}, \frac{19}{9}]$ $y = \frac{1}{9}$

abun converge: $x \in \left(\frac{17}{9}, \frac{17}{9}\right)$ conditional $cvg: x = \frac{19}{9}$

28.
$$n \rightarrow \infty$$

$$\left| \frac{u_{net}}{u_n} \right| = \left| \frac{2(n+1)(x-1)}{(n)} \right| < 1$$

$$\frac{1}{2} (x < \frac{3}{2})$$

when x== => => => diverge

 $X = \frac{3}{2}$ = $\frac{1}{2}$ \quad \text{Conditioned} \quad \text{conditioned} \quad \text{converge}

 $\chi = \frac{1}{2}$ $\chi = \frac{1}{2}$

abu converge: $X \in L^{\frac{1}{2}}, \frac{5}{2}$: $Cvg: x = L^{\frac{1}{2}}, \frac{5}{2}$

29. Since
$$\int_{-\infty}^{\infty} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \left[-\frac{1}{\ln n} \right]_{2}^{3} = \frac{1}{\ln n}$$

i. $\frac{1}{2} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} \int_{2}^{3} = \frac{1}{\ln n}$

i. $\frac{1}{2} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} \frac{1}{\ln n} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} \frac{1}{\ln n} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} \frac{1}{\ln n} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} \frac{1}{\ln n} \frac{1}{\ln n} \frac{1}{\ln n} dn = \int_{-\infty}^{\infty} \frac{1}{\ln n} \frac{1}{\ln n}$

conditional converge: x= Z CVg: XG [2,4) $\left|\frac{u_{n+1}}{u_n}\right| = \frac{n+1}{3n+1} \times \left|\frac{2}{3}\right|$ 1x/<} -1.r=3 Elmx) = 1- [/nx) rl 1- /nx </ in Xele,es 48. | Man $z = \frac{\sqrt{2}}{\sqrt{2}}$ Sum is $\frac{\sqrt{2}}{1-\frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{2-\sqrt{2}}$ $Caf(x) = \frac{1}{5} \left(1 + \frac{1}{5} \times + \left(\frac{3}{5} \right)^{2} + \left(\frac{3}{5} \right)^{3} + - - - - \right)$ $|\frac{1}{3}x|2|$ $|x|^2 = 3$ b. gron = = = 2 / 1 + = + (\frac{x}{\sigma}) + (\frac{x}{\sigma}) + ---) 1×1<2

13/2/2xxx

4/

5 $\left|\frac{x-3}{2}\right| = 1$ $\int_{-\infty}^{\infty} \frac{1}{1+\sqrt{2}} \int_{-\infty}^{\infty} \frac{1}{1+\sqrt{2}} = \frac{1}{1+\sqrt{2}} =$ commerge when / EXCL diverge when x=1 $S = \frac{-2}{(x-1)^2}$ 5f. Sfundr = x - (x-3)2+ 12 (x-3)2+ ...+ (-{1})n (1-3)111 = $\int \frac{dx}{x-1} dx = 2 \ln |x-1| + C$ when $|x-1| = \frac{-2}{2 \ln |x-1|} = \frac{-2}{2 \ln |x-1|} = \frac{2}{2 \ln |x-1$ wt -i c vg: X t 61.57 when x = } 3=2h1+2 ×=5 = \frac{\ Injerations/ Seex dx = X + 5 + - 124 X + - 6/ x + - 50 x + - 727 X 4 - + C C_{1} , $\chi = 0$ C = 0 $\ln |\sec x| = \frac{\chi^{2}}{\lambda} + \frac{\chi^{4}}{(2)} \dots$ converge when - TXX () b. seextanx = (sex) = $x + \frac{5}{3!}x^3 + \frac{6!}{150}x^5 + \frac{277}{1008}x^7$...

Lonverge when $x \in L^{-\frac{7}{2}}$, $x \in L^{-\frac{7}{2}}$... 4. 13=X-=X2+ =XS p_{1} $(-x)^{\pm}$ $p_{2} = 1 - \frac{1}{2}x - \frac{1}{2}x^{2}$ 14. fix>= 2tx f'Lx>= 1-X+1+x = 3 f(k) (0) = 3(-1)/k-1/e/ 1-x=21-12/2/2 + 2

24.
$$f(x) = 3$$
 $f(x) = 6x^{2} + 2x + 3$
 $f'(x) = 12x + 2$
 $f''(x) = 12x + 2$
 $f''(x) = 12$
 $f''(x) = -1$
 $f''(x)$

 $\begin{array}{lll}
\text{Ho.} & \text{ELX} = \text{flx} - \text{glx} \\
\text{Ehlx} = \text{flx} - \text{gl} \\
\text{Ehlx} = \text{flx} \\
\text{Ehlx} = \text$

1.
$$\forall k \in Da$$
 $\exists k \in Ca$ \exists

F (C2) (X-9) 4/. a.-:f'(a)=0 :.f(x)=fcx>+ $f''(\alpha) = f''(\epsilon_{\nu}) \leq 0$ 1. fix> = -Ax2 + 13x+ C (A>0) when x->a i a bocal meximum In the same vigy first Ax2+13x+c (A>0) x->9 when f 20 is a local minimum f (CX) = /CLK-(1 CKK) 47.a. f (x)= kc/+4/k-1 Pz)+ kx + 12ck-cx 2 D. R2Lps = 13.2.1 x3/ < 500 => 0 < X2 1063 $\Rightarrow \quad O < X < 0.244$ 5/ If fun = Eanx" files (6) = /2! a/2> a/2 = file)(0) ". It is itself as the Sterteinest

a. : firs is even : any odd-order = D

in funtains only even princes

L' firs is odd in any even-order = D

in funtains othly odd powers