CS 228 Minor Autumn 2020 Assignment 1

- 1. Consider the 3 statements given.
 - (a) X : Y is the murderer
 - (b) Y: Z is the murderer
 - (c) Z : Neither X nor Y is the murderer

One of X, Y, or Z has committed the murder, and only one of the above statements is true. Using propositional logic satisfiability, find out the murderer.

- 2. Draw the parse tree for the formula $\varphi = (r \to \neg s) \lor \neg (p \to (\neg q \lor (r \land (p \to (s \lor r)))))$.
- 3. Write the formula φ given above in CNF. Call it ψ . Is ψ a Horn formula?
- 4. Using resolution, check for satisfiability of φ in question 2.
- 5. Consider the formula $\varphi = (p \to (q \to p))$. Show that
 - (a) $p, \neg q \vdash \varphi$
 - (b) $\neg p, \neg q \vdash \varphi$
 - (c) $\neg p, q \vdash \varphi$
 - (d) $p, q \vdash \varphi$

As seen in the proof of completeness, combine all 4 proofs to obtain a proof $\vdash \varphi$.

6. Which of the two formulae implies the other?

$$\varphi_1 = (p \leftrightarrow (q \leftrightarrow r))$$

$$\varphi_2 = ((p \land (q \land r)) \lor ((\neg p) \land ((\neg q) \land (\neg r))))$$

Is it the case that $\varphi_1 \models \varphi_2$, or $\varphi_2 \models \varphi_1$, both, or neither? Recall that \models stands for semantic entailment (hence you argue using assignments).

7. Consider a formula $\varphi = C_1 \wedge C_2 \wedge \dots C_n$ where each clause C_i is of the form $(\tau \to \alpha)$ or $(\alpha_1 \wedge \dots \alpha_n \to \beta)$ or $(\gamma \to \bot)$ where $\alpha, \alpha_i, \beta, \gamma$ are literals. A logician wishes to apply HornSAT to this formula φ by renaming negative literals (if any) with fresh positive literals. Thus, if any $\alpha, \alpha_i, \beta, \gamma$ was of the form $\neg p$, the logician will replace that $\neg p$ with a fresh variable p'. The logician claims that he can check satisfiability of φ correctly by applying HornSAT on the new formula (call it φ') in the following way: φ is satisfiable iff HornSAT concludes that φ' is satisfiable, and φ is unsatisfiable iff HornSAT concludes that φ' is unsatisfiable.

- (a) Illustrate the logician's approach on an example (that is, take a φ , and the show how the corresponding φ' will look like).
- (b) Do you agree with the logician? If you do, clearly explain why. Your argument must work for all φ and the respective φ' . If you disagree with the logician, explain why, using your φ and φ' from part (a).