Importing the Libraries and reaading the dataset

```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.impute import KNNImputer
         import re
         from datetime import datetime
         from sklearn.preprocessing import StandardScaler
         from sklearn.cluster import KMeans
         import sys
         import warnings
         warnings.filterwarnings("ignore")
         import scipy.cluster.hierarchy as hc
         data = pd.read csv('scaler clustering.csv')
In [2]:
         data.head()
                                  company_hash
                                                                                    email_hash orgyear
                                                                                                                     job_position ctc_updated_year
Out[2]:
            Unnamed: 0
                                                                                                            ctc
         0
                     0
                                                6de0a4417d18ab14334c3f43397fc13b30c35149d70c05...
                                                                                                                                           2020.0
                                   atrgxnnt xzaxv
                                                                                                 2016.0 1100000
                                                                                                                           Other
                                                b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10...
                                                                                                                                           2019.0
                     1 qtrxvzwt xzegwgbb rxbxnta
                                                                                                 2018.0
                                                                                                         449999
                                                                                                                 FullStack Engineer
         2
                     2
                                                4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9...
                                  ojzwnvwnxw vx
                                                                                                 2015.0 2000000
                                                                                                                 Backend Engineer
                                                                                                                                           2020.0
```

Dropping the unwanted columns

3

3

4

```
In [3]: data.drop(columns = 'Unnamed: 0', axis= 1, inplace = True)
```

effdede7a2e7c2af664c8a31d9346385016128d66bbc58...

6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520...

2017.0

700000

2017.0 1400000 FullStack Engineer

Backend Engineer

2019.0

2019.0

Checking Basic Metrics of the Dataset

ngpgutaxv

qxen sqqhu

```
data.describe()
In [4]:
Out[4]:
                                     ctc ctc updated year
                    orgyear
         count 205757.000000 2.058430e+05
                                            205843.000000
         mean
                 2014.882750 2.271685e+06
                                              2019.628231
                   63.571115 1.180091e+07
           std
                                                 1.325104
                    0.000000 2.000000e+00
                                              2015.000000
          min
                 2013.000000 5.300000e+05
                                              2019.000000
          25%
                 2016.000000 9.500000e+05
          50%
                                              2020.000000
          75%
                 2018.000000 1.700000e+06
                                              2021.000000
                20165.000000 1.000150e+09
                                              2021.000000
          max
         data.info()
In [5]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 205843 entries, 0 to 205842
         Data columns (total 6 columns):
              Column
                                 Non-Null Count
                                                  Dtype
                                 205799 non-null object
              company hash
              email hash
                                 205843 non-null object
                                 205757 non-null float64
          2
              orgyear
              ctc
                                 205843 non-null int64
              job position
                                153279 non-null object
              ctc updated year 205843 non-null float64
         dtypes: float64(2), int64(1), object(3)
```

memory usage: 9.4+ MB

data.isnull().sum()

In [6]:

```
company hash
Out[6]:
        email hash
                                0
        orgyear
                                86
        ctc
                                0
        job position
                             52564
        ctc_updated_year
        dtype: int64
        data.size
In [7]:
        1235058
Out[7]:
        data.shape
In [8]:
        (205843, 6)
Out[8]:
```

Checking Unique values for required columns

```
In [9]: s = ['company_hash', 'email_hash', 'job_position']

for i in s:
    print(f"Top 5 values for {i}:")
    print(data[i].value_counts().head(5))
    print("-----")
```

```
Top 5 values for company hash:
         company hash
         nvnv wgzohrnvzwj otacxwto
                                     8337
         xzegojo
                                     5381
         vbvkgz
                                     3481
         zgn vuurxwvmrt vwwghzn
                                     3411
         wgszxkvzn
                                     3240
         Name: count, dtype: int64
         -----
         Top 5 values for email hash:
         email hash
         bbace3cc586400bbc65765bc6a16b77d8913836cfc98b77c05488f02f5714a4b
                                                                           10
         6842660273f70e9aa239026ba33bfe82275d6ab0d20124021b952b5bc3d07e6c
                                                                            9
                                                                            9
         298528ce3160cc761e4dc37a07337ee2e0589df251d73645aae209b010210eee
         3e5e49daa5527a6d5a33599b238bf9bf31e85b9efa9a94f1c88c5e15a6f31378
                                                                            9
         b4d5afa09bec8689017d8b29701b80d664ca37b83cb883376b2e95191320da66
                                                                            8
         Name: count, dtype: int64
         -----
         Top 5 values for job position:
         job position
         Backend Engineer
                                  43554
         FullStack Engineer
                                  24717
         Other
                                  18071
         Frontend Engineer
                                  10417
         Engineering Leadership
                                   6870
         Name: count, dtype: int64
         counts = data.groupby(['company hash', 'job position']).size().reset index(name='count')
In [10]:
         counts = counts.sort values(by='count', ascending=False)
         print(counts)
```

```
company hash
                                                 job position count
                nvnv wgzohrnvzwj otącxwto
                                             Backend Engineer
         21331
                                                                1355
                                             Backend Engineer
         41496
                                   vbvkgz
                                                                1159
         21358
                nvnv wgzohrnvzwj otącxwto
                                                        0ther
                                                                1058
         11983
                                   gqvwrt
                                             Backend Engineer
                                                                 903
         21345
                nvnv wgzohrnvzwj otącxwto
                                           FullStack Engineer
                                                                 871
         . . .
                                                                  . . .
          22382
                 nyt nxbto ge xzaxv sqghu
                                                        0ther
                                                                   1
                       nyt nxbto xzntqztn FullStack Engineer
         22383
                                                                   1
         22384
                          nyt nxmtq sqghu FullStack Engineer
                                                                   1
         22385
                           nyt obvqn whmt
                                                 Data Analyst
                                                                   1
         58985
                                   zzzbzb
                                                        0ther
                                                                   1
         [58986 rows x 3 columns]
In [11]:
         data['email_hash'].nunique()
         153443
Out[11]:
In [12]: filtered data = data[data['email hash'] == 'bbace3cc586400bbc65765bc6a16b77d8913836cfc98b77c05488f02f5714a4b']
          print(filtered data)
```

```
company hash \
24109
        oxej ntwyzgrgsxto rxbxnta
45984
        oxej ntwyzgrgsxto rxbxnta
72315
        oxej ntwyzgrgsxto rxbxnta
102915 oxej ntwyzgrgsxto rxbxnta
117764
        oxej ntwyzgrgsxto rxbxnta
121483
        oxej ntwyzgrgsxto rxbxnta
124476
        oxej ntwyzgrgsxto rxbxnta
144479
        oxej ntwyzgrgsxto rxbxnta
152801
        oxej ntwyzgrgsxto rxbxnta
159835
        oxej ntwyzgrgsxto rxbxnta
                                                email hash
                                                            orgyear
                                                                        ctc \
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
24109
                                                             2018.0
                                                                     720000
45984
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
                                                             2018.0
                                                                     720000
72315
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
                                                             2018.0
                                                                     720000
102915
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
                                                             2018.0
                                                                     720000
117764
                                                             2018.0
                                                                     720000
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
121483
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
                                                             2018.0
                                                                     660000
124476
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
                                                             2018.0
                                                                     660000
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
                                                             2018.0
                                                                     660000
144479
152801
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
                                                             2018.0
                                                                     660000
159835
        bbace3cc586400bbc65765bc6a16b77d8913836cfc98b7...
                                                             2018.0
                                                                     660000
              job position ctc updated year
24109
                       NaN
                                      2020.0
45984
          Support Engineer
                                      2020.0
72315
                     0ther
                                      2020.0
102915
        FullStack Engineer
                                      2020.0
              Data Analyst
117764
                                      2020.0
121483
                     0ther
                                      2019.0
124476
          Support Engineer
                                       2019.0
        FullStack Engineer
144479
                                       2019.0
152801
           Devops Engineer
                                       2019.0
159835
                       NaN
                                       2019.0
```

Preprocessing the Data

```
In [13]: def preprocess_string(string):
    new_string= re.sub('[^A-Za-z ]+', '', string).lower().strip()
    return new_string
```

```
mystring='\tAirtel\\\\&&**() X Labs'
preprocess_string(mystring)

data['job_position']=data.job_position.apply(lambda x: preprocess_string(str(x)))
data['company_hash']=data.company_hash.apply(lambda x: preprocess_string(str(x)))
```

Dropping the Null columns from Company hash and Job position

```
data=data[ ~((data['company_hash']=='') | (data['job_position']==''))]
In [14]:
         data.isna().sum()
In [15]:
          company hash
Out[15]:
         email hash
                               0
          orgyear
                              86
                               0
          ctc
          job position
                               0
         ctc updated year
          dtype: int64
         knn imputer = KNNImputer(n neighbors=3)
In [16]:
          # Select only numerical columns for KNN imputation
          numerical cols = ['orgyear']
          data[numerical cols] = knn imputer.fit transform(data[numerical cols])
          # Convert orgyear back to int
          data['orgyear'] = data['orgyear'].astype(int)
         data.isna().sum()
In [17]:
         company_hash
                              0
Out[17]:
          email hash
         orgyear
          ctc
          job position
         ctc updated year
         dtype: int64
```

Univaraiate Analysis

```
In [18]: data
```

Out[18]:	company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year
0	atrgxnnt xzaxv	6de0a4417d18ab14334c3f43397fc13b30c35149d70c05	2016	1100000	other	2020.0
1	qtrxvzwt xzegwgbb rxbxnta	b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10	2018	449999	fullstack engineer	2019.0
2	ojzwnvwnxw vx	4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9	2015	2000000	backend engineer	2020.0
3	ngpgutaxv	effdede7a2e7c2af664c8a31d9346385016128d66bbc58	2017	700000	backend engineer	2019.0
4	qxen sqghu	6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520	2017	1400000	fullstack engineer	2019.0
205838	vuurt xzw	70027b728c8ee901fe979533ed94ffda97be08fc23f33b	2008	220000	nan	2019.0
205839	husqvawgb	7f7292ffad724ebbe9ca860f515245368d714c84705b42	2017	500000	nan	2020.0
205840	vwwgrxnt	cb25cc7304e9a24facda7f5567c7922ffc48e3d5d6018c	2021	700000	nan	2021.0
205841	zgn vuurxwvmrt	fb46a1a2752f5f652ce634f6178d0578ef6995ee59f6c8	2019	5100000	nan	2019.0
205842	bgqsvz onvzrtj	0bcfc1d05f2e8dc4147743a1313aa70a119b41b30d4a1f	2014	1240000	nan	2016.0

205745 rows × 6 columns

```
In [19]: sns.boxplot(data = data,y = 'ctc')
   plt.show()
```


In [20]:	data[d	data['ctc']>1000000000]					
Out[20]:		company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year
	72824	whmxw rgsxwo ugxcvnt rxbxnta	29a71dd13adf6d2d497571a565bb3096cf66cb46cd1ece	2015	1000150000	nan	2020.0

Dropping the Outlier from the CTC column

```
In [21]: data = data[data['ctc'] <= 1000000000]

In [22]: plt.figure(figsize=(15, 8))
    sns.countplot(data = data, x = 'orgyear')
    plt.xticks(rotation = 75)
    plt.show()</pre>
```



```
In [23]: sns.countplot(data = data, x = 'ctc_updated_year')
    plt.xticks(rotation = 75)
    plt.show()
```



```
In [24]: data1 = data['job_position'].value_counts(ascending = False).head(5).reset_index()
In [25]: sns.barplot(data = data1, x = 'job_position', y = 'count')
    plt.xticks(rotation = 45)
    plt.show()
```



```
In [26]: df = data['orgyear']
    fig, axs = plt.subplots(2,1,figsize=(15,4))
    sns.countplot(ax = axs[0], x=df)
    axs[0].tick_params(labelrotation=90)
    sns.boxplot(ax = axs[1], x=df)
    fig.suptitle('Orgyear distribution with outliers', fontsize=15)
    plt.tight_layout()
    plt.show()
    lower_bound = data['orgyear'].quantile(0.001)
    upper_bound = data['orgyear'].quantile(0.999)
    df = df[(df >= lower_bound) & (df <= upper_bound)]</pre>
```

```
fig, axs = plt.subplots(2,1,figsize=(15,4))
sns.countplot(ax = axs[0], x=df)
axs[0].tick params(labelrotation=90)
sns.boxplot(ax = axs[1], x=df)
fig.suptitle('Orgyear distribution without outliers', fontsize=15)
plt.tight layout()
plt.show()
                                                           Orgyear distribution with outliers
count
0000000000
                                                                                                           orgyear
                          2500
                                                                                             12500
                                                                                                              15000
                                                                                                                               17500
          Ó
                                           5000
                                                            7500
                                                                            10000
                                                                                                                                               20000
                                                                            orgyear
                                                         Orgyear distribution without outliers
count
0000020000
                                     1998
                                          1999
                                              2000
                                                   2001
                                                       2002
                                                            2003
                                                                 2004
                                                                     2005
                                                                          2006
                                                                            00
orgyear
                                                                                   2008
                                                                                            2010
                                                                                                                  2015
                                                                                                                       2016
                                                                                                                            2017
                                                                                                                                2018
                                                                                                                                         2020
                                                                                                                                              2021
                                                                                                                                                  2022
                                                                                                                                                       2023
                        1995
                            1996
                                 1997
     1990
                          1995
                                                2000
                                                                     2005
                                                                                          2010
                                                                                                               2015
                                                                                                                                    2020
```

orgyear

Bivariate Analysis

```
In [27]: corr = data.corr(numeric_only=True)
sns.heatmap(data = corr, annot = True)
```

Out[27]: <Axes: >

Feature Engineering

```
In [28]: current_year = datetime.now().year
    data['YOE'] = current_year - data['orgyear']

In [29]: data.shape
Out[29]: (205744, 7)
```

- Dropped the null values from Company hash and job position column
- Majority of the people had joined from 2015 to 2019
- Backend Engineer and Full stack engineers are more in company as compaed to other roles
- Most of the people increment was done in 2019

Renaming compnay's name to other which are having count less than 5

```
In [32]: company_counts = data['company_hash'].value_counts()
    mask = data['company_hash'].map(company_counts) > 5
    data.iloc[~mask.values, data.columns.get_loc('company_hash')] = 'Others'

In [33]: grouped_CTC = data.groupby(['YOE','job_position','company_hash'])['ctc'].describe()
    data_merge=data.merge(grouped_CTC, on=['YOE','job_position','company_hash'], how='left')
    data_merge.head()
```

```
2020.0
                                                                                                                               9
              atroxnnt xzaxv
                            6de0a4417d18ab14334c3f43397fc13b30c35149d70c05...
                                                                                2016 1100000
                                                                                                     other
                                                                                                                                     1.0 1.100000e+06
                   atrxvzwt
                                                                                                   fullstack
          1
                  xzegwgbb b0aaf1ac138b53cb6e039ba2c3d6604a250d02d5145c10...
                                                                                       449999
                                                                                                                      2019.0
                                                                                                                               7
                                                                                                                                     7.0 7.742856e+05 2.509
                                                                                2018
                                                                                                  engineer
                    rxbxnta
                                                                                                   backend
          2
                     Others 4860c670bcd48fb96c02a4b0ae3608ae6fdd98176112e9...
                                                                                2015 2000000
                                                                                                                      2020.0
                                                                                                                              10
                                                                                                                                   923.0 1.444876e+06 4.870
                                                                                                  engineer
                                                                                                   backend
          3
                            effdede7a2e7c2af664c8a31d9346385016128d66bbc58...
                                                                                      700000
                                                                                                                      2019.0
                                                                                                                                     7.0 1.158571e+06 4.04
                  ngpgutaxv
                                                                                2017
                                                                                                  engineer
                                                                                                   fullstack
          4
                             6ff54e709262f55cb999a1c1db8436cb2055d8f79ab520...
                                                                                2017 1400000
                                                                                                                      2019.0
                                                                                                                               8
                                                                                                                                     1.0 1.400000e+06
                 axen saahu
                                                                                                  engineer
          def segment(a,b 50,b 75):
In [34]:
               if a<b 50:
                   return 3
               elif a>=b 50 and a<=b 75:</pre>
                   return 2
               elif a>=b 75:
                   return 1
          data_merge['designation'] =data_merge.apply(lambda x: segment(x['ctc'],x['50%'],x['75%']),axis=1)
          df = data merge[(data merge['ctc'] > data merge['75%']) & (data merge['designation']) == 1]
In [35]:
```

email hash orgyear

ctc job position ctc updated year YOE count

mean

Question

Out[33]:

company hash

1. Top 10 employees (earning more than most of the employees in the company)

```
In [36]: top_10_data = df.nlargest(10, 'ctc')
top_10_data
```

t[36]:		company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year	YOE	count	m
	117546	obvqnuqxdwgb	5b4bed51797140db4ed52018a979db1e34cee49e27b488	2018	25555555	nan	2016.0	7	2.0	1.289778e-
	3299	Others	06d231f167701592a69cdd7d5c825a0f5b30f0347a4078	2021	250000000	nan	2020.0	4	209.0	7.852931e
	106	Others	996aef9bba62bd99d6cb8e8c112c0ec8096b203ae50b97	2017	200000000	support engineer	2020.0	8	93.0	5.882441e
	301	Others	2b649949f0a00c444db6ae38d66a972e37cc3a90ba65a0	2017	200000000	qa engineer	2020.0	8	197.0	2.217289e-
	361	Others	e1dfef2de8d773780471295f756a0c2957cbe368e33216	2014	200000000	engineering leadership	2019.0	11	122.0	3.800082e·
	487	Others	eda5097c113cc6e8ff663ca9764c78e35d3eec75bdcea9	2014	200000000	qa engineer	2020.0	11	279.0	1.502885e-
	602	xzegojo	4368cc6185184b811c3a4b9cef05dd1e45a682a6e94056	2017	200000000	nan	2020.0	8	216.0	1.478828e
	691	Others	dfdb45fb9631b9064a94be87a27a621068530ac1f3807c	2017	200000000	other	2020.0	8	643.0	6.290416e
	720	Others	261f76b9954ebe5e6dc102b0cd5847354cf27112f8a422	2015	200000000	frontend engineer	2020.0	10	358.0	2.303805e·
	734	vwwtznhqt	0f7322f8f4423e695df58edb4f002dac637d8de021373a	2013	200000000	other	2020.0	12	23.0	9.793043e
										•

• Top 10 employees of data science in each company earning more than their peers

```
In [37]: filtered_employees = data_merge[(data_merge['job_position'] == 'data scientist') & (data_merge['designation'] == 1)]
top_10_data_science_per_company = filtered_employees.groupby('company_hash', group_keys=False).apply(lambda x: x.nlargest(10, 'ct
top_10_data_science_per_company
```

Out[37]:		company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year	YOE	count	me
	2687	Others	72ed7ced98573f71c8f95bc8b75aac4f0677e8872c6bec	2019	199800000	data scientist	2020.0	6	140.0	2.398252e+
	1736	Others	ee8dd42d6ea8365909147d861c7978d19f727a8075ba96	2020	102500000	data scientist	2020.0	5	51.0	5.094412e+
	10311	Others	2e1d492bc09bfe0d4cc9757a9c63a296c1527af1c8ecc8	2021	100000000	data scientist	2020.0	4	25.0	5.234720e+
	13507	Others	e7722fb701c61e5cad82c39ee8bf3debe160d429b72c64	2015	100000000	data scientist	2020.0	10	205.0	1.780620e+
	32197	Others	5dd32aca5f483b8fa4d539778bb3f0a24073a93a80dd5a	2010	100000000	data scientist	2020.0	15	56.0	3.597321e+
	•••			•••						
	172958	ZVZ	f2be350614a51edd33a53f201374ae734457509d3f151b	2016	1600000	data scientist	2019.0	9	4.0	1.142500e+
	52678	zxtrotz	751b1fb94f9054ecc14b44ebf91c3cbd92a47ea0194492	2013	3000000	data scientist	2019.0	12	2.0	2.045000e+
	99020	zxtrotz	515862ad8c8c33263846231044741bfc177af2cddcf00f	2018	1000000	data scientist	2021.0	7	2.0	6.650000e+
	28673	zxtrotz	2182cd4f16b2a915d6c53f901f9911bb6b3b22caaaa0ae	2017	750000	data scientist	2019.0	8	2.0	7.000000e+
	111745	zxtrotz	163e546c8418ddc4b300471c1472044f582cd3be008da1	2015	700000	data scientist	2019.0	10	3.0	6.666667e+
!	548 rows	× 16 columns								

• Bottom 10 employees of data science in each company earning less than their peers - Class 3

In [38]: filtered_employees = data_merge[(data_merge['job_position'] == 'data scientist') & (data_merge['designation'] == 3)]
bottom_10_data_science_per_company = filtered_employees.groupby('company_hash', group_keys=False).apply(lambda x: x.nsmallest(10, bottom_10_data_science_per_company

Out[38]:		company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year	YOE	count	mear
	168157	Others	05801a432a038c254972e356598ca6aa139a18c31d6611	2021	4000	data scientist	2020.0	4	25.0	5.234720e+06
	193975	Others	585f7e9865dcdcaad7edf10909d796ba2c5210cde3530b	2017	4000	data scientist	2018.0	8	266.0	9.182131e+05
	136846	Others	e374eea75640881206a21894f69190138c2c0535277dc1	2017	7000	data scientist	2019.0	8	266.0	9.182131e+0!
	24091	Others	ab2dc9db23c3104f0b6b3dbd4cdd5bfb9e5829b8b7943d	2017	7200	data scientist	2019.0	8	266.0	9.182131e+05
	183038	Others	287dd26e9357888e0ba2c7482764131f7bbcb1748a4f56	2019	7250	data scientist	2020.0	6	140.0	2.398252e+06
	•••							•••		
	202816	ZVZ	4d81b7fea5707674ecd08571144b503e625ea1311be381	2016	600000	data scientist	2021.0	9	4.0	1.142500e+06
	187363	ZVZ	af7af44e1788f7134691bc3782a8256fb07ef9ac3a51e1	2019	620000	data scientist	2020.0	6	9.0	1.385556e+06
	9340	zxtrotz	8db7199e084be127053249086830cf3cda7f595e883a22	2018	330000	data scientist	2020.0	7	2.0	6.650000e+0!
	98324	zxtrotz	d5d7fa93cf62d046654e21716c7bdd613e5f559b47bc21	2017	650000	data scientist	2019.0	8	2.0	7.000000e+05
	56100	zxtrotz	2b7979bb62110fbb5e97f3f7f25d79f102536d3b84d538	2013	1090000	data scientist	2019.0	12	2.0	2.045000e+06
	590 rows	× 16 columns								

1. Bottom 10 employees (earning less than most of the employees in the company)- Tier 3

```
In [39]: data_merge[(data_merge['ctc'] > data_merge['75%']) & (data_merge['designation']) == 3]
bottom_10_data = data_merge.nsmallest(10, 'ctc')
bottom_10_data
```

Out[39]:		company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year	YOE	count	mean	
	135315	xzntqcxtfmxn	3505b02549ebe2c95840ac6f0a35561a3b4cbe4b79cdb1	2014	2	backend engineer	2019.0	11	2.0	1.000001e+06	1
	118146	xzntqcxtfmxn	f2b58aeed3c074652de2cfd3c0717a5d21d6fbcf342a78	2013	6	nan	2018.0	12	2.0	1.000000e+01	5
	114082	xzntqcxtfmxn	23ad96d6b6f1ecf554a52f6e9b61677c7d73d8a409a143	2013	14	nan	2018.0	12	2.0	1.000000e+01	5
	184750	Others	b8a0bb340583936b5a7923947e9aec21add5ebc50cd60b	2016	15	nan	2018.0	9	1141.0	2.197371e+06	1
	183608	Others	75357254a31f133e2d3870057922feddeba82b88056a07	2019	16	nan	2018.0	6	1528.0	1.760520e+06	1
	54788	Others	8786759b95d673466e94f62f1b15e4f8c6bd7de6164074	2020	24	other	2020.0	5	223.0	4.259803e+06	1
	91495	Others	512f761579fb116e215cabc9821c7f81153f0763e16018	2016	25	android engineer	2018.0	9	300.0	8.127241e+05	1
	116859	Others	f7e5e788676100d7c4146740ada9e2f8974defc01f571d	2022	200	nan	2021.0	3	62.0	4.271326e+06	1
	166228	Others	c411a6917058b50f44d7c62751be9b232155b23211de4c	2013	300	database administrator	2019.0	12	11.0	9.041845e+06	2
	81981	Others	edcfb902656b736e1f35863298706d9d34ee795b7ed85a	2018	500	cofounder	2019.0	7	32.0	7.632969e+05	6
4										1	•

1. Top 10 employees in each company - X department - having 5/6/7 years of experience earning more than their peers - Tier X

```
In [40]: df = data_merge[(data_merge['YOE'] > 5)]
top_10_data = df.nlargest(10, 'ctc')
top_10_data
```

Out[40]:		company_hash	email_hash	orgyear	ctc	job_position	ctc_updated_year	YOE	count	m
	117546	obvqnuqxdwgb	5b4bed51797140db4ed52018a979db1e34cee49e27b488	2018	25555555	nan	2016.0	7	2.0	1.289778e-
	106	Others	996aef9bba62bd99d6cb8e8c112c0ec8096b203ae50b97	2017	200000000	support engineer	2020.0	8	93.0	5.882441e
	301	Others	2b649949f0a00c444db6ae38d66a972e37cc3a90ba65a0	2017	200000000	qa engineer	2020.0	8	197.0	2.217289e·
	361	Others	e1dfef2de8d773780471295f756a0c2957cbe368e33216	2014	200000000	engineering leadership	2019.0	11	122.0	3.800082e-
	487	Others	eda5097c113cc6e8ff663ca9764c78e35d3eec75bdcea9	2014	200000000	qa engineer	2020.0	11	279.0	1.502885e-
	602	xzegojo	4368cc6185184b811c3a4b9cef05dd1e45a682a6e94056	2017	200000000	nan	2020.0	8	216.0	1.478828e-
	691	Others	dfdb45fb9631b9064a94be87a27a621068530ac1f3807c	2017	200000000	other	2020.0	8	643.0	6.290416e-
	720	Others	261f76b9954ebe5e6dc102b0cd5847354cf27112f8a422	2015	200000000	frontend engineer	2020.0	10	358.0	2.303805e
	734	vwwtznhqt	0f7322f8f4423e695df58edb4f002dac637d8de021373a	2013	200000000	other	2020.0	12	23.0	9.793043e-
	836	mqxonrtwgzt v bvyxzaqv sqghu wgbuvzj	cda8d723438e81185d2ee8c348870a4612eea974cdb2db	2017	200000000	data scientist	2020.0	8	1.0	2.000000e-
4										

1. Top 10 companies (based on their CTC)

```
In [41]: company_ctc_totals = data_merge.groupby('company_hash')['ctc'].sum()
   top_10_companies = company_ctc_totals.sort_values(ascending=False).head(11)
   top_10_companies
```

```
company hash
Out[41]:
         Others
                                       128739371403
         nvnv wgzohrnvzwj otącxwto
                                        13765174109
         vbvkgz
                                       11798242055
         zgn vuurxwvmrt vwwghzn
                                         8121636481
         xzegojo
                                         7579607874
         bxwqgogen
                                         7006849399
         vwwtznhqt
                                         6897730775
         fxuqg rxbxnta
                                         6062971147
         zgn vuurxwvmrt
                                         5941526113
         wgszxkvzn
                                         5635685321
         gqvwrt
                                         4164552184
         Name: ctc, dtype: int64
```

1. Top 2 positions in every company (based on their CTC)

```
In [42]: position_ctc_totals = data_merge.groupby(['company_hash', 'job_position'])['ctc'].sum().reset_index()
    top_2_positions_per_company = position_ctc_totals.groupby('company_hash', group_keys=False).apply(lambda x: x.nlargest(2, 'ctc'))
    top_2_positions_per_company
```

Out[42]: -		company_hash	job_position	ctc
	149	Others	other	28152567494
	145	Others	nan	21211074933
	294	a ntwyzgrgsxto	nan	7375000
	295	a ntwyzgrgsxto	other	7150000
	300	aaqxctz avnv owxtzwto vzvrjnxwo ucn rna	other	3600000
	•••			
	23855	zxyxrtzn ntwyzgrgsxto	other	1660000
	23858	zxzlvwvqn	backend engineer	29560000
	23863	zxzlvwvqn	nan	20820000
	23868	zxztrtvuo	backend engineer	26830000
	23876	zxztrtvuo	nan	20415000

6307 rows × 3 columns

```
In [43]: data_merge.drop(columns = ['email_hash','count','mean','std','min','25%','50%','75%','max'], inplace = True)
```

Using Target Encoding on Job Position and Company hash column

```
In [44]: job_position_target_mean = data_merge.groupby('job_position')['ctc'].mean()
    data_merge['job_position'] = data_merge['job_position'].map(job_position_target_mean)

company_hash_target_mean = data_merge.groupby('company_hash')['ctc'].mean()
    data_merge['company_hash'] = data_merge['company_hash'].map(company_hash_target_mean)
```

Standardizing the Data

```
In [45]: df = data_merge.copy()
```

```
In [46]: scaler = StandardScaler()
   data_merge = scaler.fit_transform(data_merge)
```

K- Menas

```
In [47]: Sum_of_squared_distances = []
    K = range(1,10)
    for num_clusters in K :
        kmeans = KMeans(n_clusters=num_clusters)
        kmeans.fit(data_merge)
        Sum_of_squared_distances.append(kmeans.inertia_)
    plt.plot(K,Sum_of_squared_distances,'bx-')
    plt.xlabel('Values of K')
    plt.ylabel('Sum of squared distances/Inertia')
    plt.title('Elbow Method For Optimal k')
    plt.show()
```


Hirarical Clustring

```
In [48]: sample = df.sample(500)
Z = hc.linkage(sample, method='ward')

fig, ax = plt.subplots(figsize=(20, 12))
hc.dendrogram(Z, labels=sample.index, ax=ax, color_threshold=2)
plt.xticks(rotation=90)
ax.set_ylabel('distance')
plt.show()
```


- Business Implications:
 - Growth and Talent Retention:
 - -- The hiring surge from 2015 to 2019 aligns with the dominance of technical roles. This highlights the company's reliance on skilled engineers, especially Backend and Full-Stack Engineers.

- -- Targeted retention strategies for these key roles are essential, given their importance to the company's success.
- Performance-Driven Culture:
 - -- The increments in 2019 could emphasize the company's focus on rewarding performance. Maintaining consistent reviews and adjusting salaries as per market standards can help sustain employee satisfaction.
- Future Planning:
 - -- The hiring peak in 2015–2019 may lead to a plateau or declining trend in new hires as the company stabilizes its workforce.