WDWR 20204

Rozważamy następujące zagadnienie planowania produkcji:

- Realizacja umowy wymaga dostawy 1100 sztuk komponentu A oraz 1200 sztuk komponentu B po upływie okresu 3 miesięcy.
- Koszty produkcji komponentów (zł/szt.) określają składowe wektora losowego $\mathbf{R} = (R_1, \dots, R_6)^T$:

	Miesiąc 1	Miesiąc 2	Miesiąc 3
A	R_1	R_2	R_3
В	R_4	R_5	R_6

• Wektor losowy ${\bf R}$ opisuje 6-wymiarowy rozkład t-Studenta z 5 stopniami swobody, którego wartości składowych zostały zawężone do przedziału [20; 60]. Parametry μ oraz Σ niezawężonego rozkładu t-Studenta są następujące:

$$\boldsymbol{\mu} = \begin{pmatrix} 55 \\ 40 \\ 50 \\ 35 \\ 45 \\ 30 \end{pmatrix}, \qquad \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 1 & 0 & 2 & -1 & -1 \\ 1 & 16 & -6 & -6 & -2 & 12 \\ 0 & -6 & 4 & 2 & -2 & -5 \\ 2 & -6 & 2 & 25 & 0 & -17 \\ -1 & -2 & -2 & 0 & 9 & -5 \\ -1 & 12 & -5 & -17 & -5 & 36 \end{pmatrix}.$$

- Firma może składować do 150 sztuk komponentu A z miesiąca na miesiąc nie ponosząc żadnych kosztów. Po przekroczeniu tej liczby koszt składowania komponentów A kształtuje się na poziomie 15% miesięcznych kosztów wytwarzania. Analogicznie dla komponentu B.
- Firma w celu wytworzenia komponentów potrzebuje zasobów pozyskiwanych z zewnątrz. Szczegóły dostępnych dostaw i wymagań są następujące:

Zasób	Zapotrzebowanie na sztukę		Możliwe dostawy		
produkcyjny	A	В	Miesiąc 1	Miesiąc 2	Miesiąc 3
<u>Z1</u>	0,2	0,7	600	700	550
Z2	0,8	0,3	1400	900	1200

- 1. Zaproponować jednokryterialny model wyboru w warunkach ryzyka z wartością oczekiwaną jako miarą kosztu. Wyznaczyć rozwiązanie optymalne.
- 2. Jako rozszerzenie powyższego zaproponować dwukryterialny model kosztu i ryzyka z wartością oczekiwaną jako miarą kosztu i odchyleniem przeciętnym jako miarą ryzyka. Dla decyzji $\mathbf{x} \in Q$ odchylenie przeciętne jest definiowane jako $\delta(\mathbf{x}) = \sum_{t=1}^{T} |\mu(\mathbf{x}) r_t(\mathbf{x})| p_t$, gdzie $\mu(\mathbf{x})$ oznacza wartość oczekiwaną, $r_t(\mathbf{x})$ realizację dla scenariusza t, p_t prawdopodobieństwo scenariusza t.
 - a. Wyznaczyć obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko-koszt.
 - b. Wskazać rozwiązania efektywne minimalnego ryzyka i minimalnego kosztu. Jakie odpowiadają im wartości w przestrzeni ryzyko-koszt?
 - c. Wybrać trzy dowolne rozwiązania efektywne. Sprawdzić czy zachodzi pomiędzy nimi relacja dominacji stochastycznej pierwszego rzędu. Wyniki skomentować, odnieść do ogólnego przypadku.