Week 4 - HMI Research Group 26 Jun 2017 - 30 Jun 2017

Long Phi Nguyen (뉀피롱), 한국전자통신연구원 June 30, 2017

Summary

A fully modular speech program was completed for NAO and can classify/predict user inputs, adding one gesture for NAO to perform as he speaks the text. Data was gathered from NAO's body sensors and converted to feature vectors.

Points

- Looked at the NAO API and learned how to use ALBehaviorManager to track NAO's behaviors during runtime and ALMotion to gather sensor data.
- Parsed NAO's motion (see previous point) data to tabulated data involving stiffness, command, and sensor attributes. Converted this data to 5406 feature vectors classified under the 9 groups established in earlier work.
- Trained a multilayer perceptron with an average of 80%+ accuracy on training data during cross-validation (only 5000 samples).

• Set up Webots and Choregraphe together. Installed 636 behaviors for the simulated NAO—data analysis still supported.

Plans

- Find some way to go backwards from the model to generate new movements/gestures that stay true to their classifications as NAO speaks.
- Learn how to use ALMotion's other functions to manually control NAO's physical movement.
- Collect hundreds of thousands of new motion feature vectors from the simulated NAO for more accurate training.
- Find any other ways to gather data regarding NAO's sensors and spatial information.

Addendum

All past progress (functions, scripts, etc.) and data made on this project can be found at https://github.com/longnguyen1997/nao_animations.