

I. Estimarea statistică

- punctuală: presuspune aflarea unei valori posibile a estimatorului;
- \bot prin interval de încredere (IC): presupune calculul limitelor (L_i Lower Bound și L_s Upper Bound) în care se găsește un parametru cu o anumită probabilitate.

II. Estimarea mediei unei populații (μ)

- \blacksquare punctuală: \bar{x}
- **4** prin interval de încredere (IC):
- când se cunoaște varianța populației $(\sigma^2) \rightarrow Z$:

$$\left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

- când nu se cunoaște varianța populației $\rightarrow t$ Student:

$$\left[\overline{x} - t_{\alpha/2} \frac{s'}{\sqrt{n}}, \quad \overline{x} + t_{\alpha/2} \frac{s'}{\sqrt{n}} \right]$$

unde:

$$\Delta_{\widehat{\mu}} = t_{\alpha/2} * \frac{s'}{\sqrt{n}}$$
 este eroarea maximă admisibilă sau eroarea limită (Confidence Level);

- $\frac{s'}{\sqrt{n}}$ este **eroarea medie de selecție sau de reprezentativitate** (Standard Error of Mean);
- ♣ s'este abaterea standard corectată (modificată) (Standard Deviation);
- **#** *n* este **volumul eșantionului** (*Count*).

III. Estimarea proporției unei populații (π)

- \blacksquare punctuală: $p = \frac{m}{n}$
- prin interval de încredere (IC):

$$\blacktriangleright \left[p \pm t_{\frac{\alpha}{2}} * \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right]$$

1. Pentru un eșantion format din 25 de persoane, se cunosc următoarele rezultate privind veniturile anuale: $\bar{x} = 65$ mii lei, $s'^2 = 121$. Să se estimeze prin IC veniturile medii anuale la nivelul populației din care a fost extras eșantionul, considerând o probabilitate de garantare a rezultatelor de 95%.

APLICATII

Interpretare: Se poate garanta cu o probabilitate de 0,95 sau 95% că veniturile medii anuale la nivelul populației din care a fost extras eșantionul (μ) sunt acoperite de intervalul 60.46 mii lei și 69.55 mii lei. Riscul asumat ca media populației să nu fie cuprinsă în acest interval este de 0,05 sau 5%.

- 2. Pentru un eșantion format din 100 de persoane, se cunosc următoarele rezultate privind punctajele obținute la un test: $\bar{x} = 75$ puncte, s' = 10 puncte. Să se estimeze prin IC punctajele medii obținute de ansamblul populației din care a fost extras eșantionul, considerând:
- a) o probabilitate de 95%.
- b) o probabilitate de 99%.

O. *Interpretare*: Se poate garanta cu o probabilitate de 0,95 sau 95% că punctajul mediu obținut de ansamblul populației din care a fost extras eșantionul (μ) este acoperit de intervalul 73,04 ~ 73 puncte și 76,96 ~ 77 puncte. Riscul asumat ca media populației să *nu* fie cuprinsă în acest interval este de 0,05 sau 5%.

b. *Interpretare*: Se poate garanta cu o probabilitate de 0,99 sau 99% că punctajul mediu obținut de ansamblul populației din care a fost extras eșantionul (μ) este acoperit de intervalul 72,424 ~ 72 puncte și 77,576 ~ 78 puncte. Riscul asumat ca media populației să *nu* fie cuprinsă în acest interval este de 0,01 sau 1%.

3. În urma prelucrării datelor privind valoarea vânzărilor anuale (mil. lei) înregistrate pentru un eșantion de firme, s-au obținut următoarele rezultate:

Column1				
Mean	12.15			
Median	12			
Mode	10			
Standard Deviation	1.8994			
Sample Variance	3.6079			
Kurtosis	-1.31			
Skewness	0.4274			
Count	20			

Să se calculeze și să se interpreteze IC pentru media populației, considerând un risc de 5%.

4. În urma prelucrării datelor privind vârsta (ani) înregistrate pentru un eșantion de persoane, s-au obținut următoarele rezultate:

Column1					
Mean (x)	24.81				
Standard Error $\frac{\binom{s'}{\sqrt{n}}}{\sqrt{n}}$	0.6722				
Median					
Mode	25				
Standard Deviation (s')	2.6887				
Sample Variance (s'2)	7.2292				
Kurtosis	-0.4875				
Skewness	0.2277				
Range	9				
Sum	397				
Count <mark>(n)</mark>	16				
Confidence <u>Level(90.0%)</u> $(\Delta_{\widehat{\mu}})$	1.1784				

Se cere:

- a) să se precizeze valoarea erorii limită (erorii maxime admisibile).
- b) să se precizeze valoarea erorii medii de reprezentativitate.
- c) să se calculeze și să se interpreteze IC pentru media populației.

5. În urma prelucrării datelor privind nota obținută la un examen de către o serie de studenți, s-au obținut

următoarele rezultate:

Descriptives							
			Statistic	Std. Error			
nota_mate_IE	Mean		7.4672	.11475			
	95% Confidence Interval for Mean	Lower Bound	7.2400				
		Upper Bound	7.6944				
	Median		7.0000				
	Variance		1.606				
	Std. Deviation		1.26742				
	Minimum		4.00				
	Maximum		10.00				
	Range		6.00				
	Interquartile Range		1.00				
	Skewness		024				
	Kurtosis		304				

Statistics

nota_mate_IE

122		
0		
7.4672		
.11475		
7.0000		
8.00		
1.26742		
1.606		
024		
.219		
304		
.435		
4.00		
10.00		

5.

Se cere

- a) să se precizeze eroarea maxim admisibilă;
- b) să se interpreteze IC pentru media populației.