Administrador de Banco de Dados - Turma 2023B

1.3 Fundamentos de BD

Independência de Dados

Explica-se através da arquitetura de três esquemas.

• Conceito: capacidade de mudar um esquema em um nível de sistema de banco de dados sem que ocorram alterações do esquema do nível mais alto.

Dois tipos de independência de dados:

- Independência lógica de dados: capacidade de alterar o esquema conceitual sem mudar o esquema externo ou os programas.
- Independência física de dados: capacidade de alterar o esquema interno sem ter de mudar o esquema conceitual (nem o esquema externo, por consequência).

Modelos de Dados

Fornecem a abstração: omissão de detalhes do armazenamento de dados.

Os conjuntos de conceitos usados para descrever a estrutura de um banco de dados são: tipos de dados, relacionamentos, restrições, etc.

Categorias de Modelos de Dados

Classificam os modelos de dados de acordo com os tipos de conceitos que utilizam para descrever a estrutura BD

- Conceituais: Fornecem conceitos próximos à percepção dos usuários.
- Lógicos: Fornecem conceitos que descrevem como os dados são armazenados.
- Físicos: Fornecem conceitos de acordo com as regras de implementação.

Modelos Lógicos

Estruturados em registros de formatos fixos, de diversos tipos.

Cada tipo tem sua colocação de atributos.

Há linguagens para expressar consultas e atualizações.

Aqui nesta tabela há duas contas com o mesmo saldo, conta e saldo é o mesmo, com pessoas diferentes em cidades diferentes. Tem-se então uma redundância.

Nome	Rua	Cidade	Conta	Saldo
José	Figueiras	Campinas	900	55
João	Laranjeiras	Campinas	556	1.000
João	Laranjeiras	Campinas	647	5.366
Antônio	lpê	São Paulo	647	5.366
Antônio	lpê	São Paulo	801	10.533

Descrição da tabela:

Nome: José; Rua: Figueiras; Cidade: Campinas; Conta: 900; Saldo: 55.

Nome: João; Rua: Laranjeiras; Cidade: Campinas; Conta: 556; Saldo: 1.000.

Nome: João; Rua: Laranjeiras; Cidade: Campinas; Conta: 647; Saldo: 5.366.

Nome: Antônio; Rua: Ipê; Cidade: São Paulo; Conta: 647; Saldo: 5.366.

Nome: Antônio; Rua: Ipê; Cidade: São Paulo; Conta: 801; Saldo: 10.533.

Hierárquico

Descrição: Esquema em que tem-se um retângulo em branco no topo central, deste retângulo, saem três linhas. Da esquerda pra direita, a primeira linha, se conecta a um retângulo dividido em três partes, sendo que cada uma delas tem algo escrito dentro, da esquerda pra direita tem-se [José], [Figueiras] e [Campinas]. Este retângulo se conecta por uma linha a um retângulo dividido em duas partes, na primeira está escrito [900] e na segunda [55]. A segunda linha que sai do retângulo central, se conecta a um retângulo dividido em três partes, a primeira, tem escrito [João], a segunda, [Laranjeiras] e a terceira [Campinas], sendo que deste retângulo, saem duas linhas que se conectam a retângulos divididos em duas partes, sendo que no primeiro tem-se escrito nelas [556] e [56], já no segundo, [647 e 5.366]. Por fim, a terceira linha que sai do retângulo central,

se conecta a um retângulo dividido em três partes, na primeira está escrito [Antônio], na segunda [Ipê] e na terceira [São Paulo], sendo que deste retângulo, saem duas linhas que se conectam a retângulos divididos em duas partes, sendo que no primeiro tem-se escrito nelas [647] e [5.366], já no segundo, [801] e [10.533].

Neste exemplo mais uma vez ocorre uma redundância, pois dois correntistas dividem a mesma conta, e novamente é necessário demonstrar repetidamente duas vezes a mesma conta, para indicar que ela está ligada ao cliente João e também ao cliente Antônio, ao mesmo tempo, esta é uma outra forma de representação que acarreta demonstração redundante.

Os dados estão estruturados em hierarquias de árvores e sua estrutura utiliza as organizações de endereçamento físico dos discos

Os nós das hierarquias contém ocorrências de registros, onde cada registro é uma coleção de atributos, é um modelo orientado a registros, ou seja, operam um registro de cada vez.

Um registro pode estar associado a vários registros, porém ele deve ser replicado.

Em Rede

Descrição: Esquema em que tem-se dois esquemas. No do topo, da esquerda pra direita, se tem um retângulo dividido em três partes, sendo que em cada uma há algo escrito, na primeira [José], na segunda [Figueiras] e na terceira [Campinas]. Deste retângulo, sai uma linha pra direita que o conecta a um retângulo dividido em duas partes, na primeira, tem-se escrito [900] e na segunda, [55]. No esquema de baixo, no topo superior esquerdo, tem-se um retângulo dividido em três partes, na primeira tem-se escrito [João], na segunda [Laranjeiras] e na terceira [Campinas]. Este retângulo se conecta a dois retângulos, por uma linha cada. Os dois estão divididos em duas partes, sendo que no de cima tem-se escrito [556] na primeira e [1.000] na segunda, já no de baixo, tem-se [647] na primeira e [5.366] na segunda. No topo inferior esquerdo, tem-se um retângulo dividido em três partes, escrito na primeira [Antônio], na segunda [Ipê] e na terceira [São Paulo]. Este retângulo se conecta ao retângulo [647 | 5.366] e a um retângulo dividido em duas partes, na primeira escrito [801] e na segunda [10.533].

É uma extensão do modelo hierárquico, porém elimina o conceito de hierarquia, visto que os registros estão organizados e em grafos.

Permite que um mesmo registro esteja envolvido em várias associações. Também opera um registro de cada vez, por ser orientado a registros.

Modelo Relacional

Tabela Cliente (dados)

Cód-cliente	Nome	Rua	Cidade
015	José	Figueiras	Campinas
021	João	Laranjeiras	Campinas
037	Antônio	Ipê	São Paulo

Descrição da tabela:

Cód-cliente: 015; Nome: José; Rua: Figueiras; Cidade: Campinas.

Cód-cliente: 021; Nome: João; Rua: Laranjeiras; Cidade: Campinas.

Cód-cliente: 037; Nome: Antônio; Rua: Ipê; Cidade: São Paulo.

Tabela

Conta

(dados)

Nro-conta	Saldo
900	55
556	1.000
647	5.366
801	10.533

Descrição da tabela:

Nro-conta: 900; Saldo: 55.

Nro-conta: 556; Saldo: 1.000.

Nro-conta: 647; Saldo: 5.366.

Nro-conta: 801; Saldo: 10.533.

Tabela Cliente-

Conta

(relacionamento)

Cód-cliente Nro-conta

Cód-cliente	Nro-conta
015	900
021	556
021	647
037	647
037	801

Descrição da tabela:

Cód-cliente: 015; Nro-conta: 900.

Cód-cliente: 021; Nro-conta: 566.

Cód-cliente: 021; Nro-conta: 647.

Cód-cliente: 037; Nro-conta: 647.

Cód-cliente: 037; Nro-conta: 801.

O modelo relacional é composto por um conjunto de tabelas ou relações, onde cada tabela é um conjunto não-ordenado de linhas (tuplas), que por sua vez, são uma série de campos (atributos)

Simplicidade dos conceitos básicos e poder dos operandos de manipulação.

Cada campo possui um nome e o conjunto de campos que possuem um mesmo nome formam uma coluna na tabela.

Abaixo, segue a aula que fala sobre o que vimos até agora.

► Transcrição do vídeo

Referências:

DATE, C. J. Introdução aos sistemas de Banco de Dados. 8. Ed. Rio de Janeiro: Campus, 2004.

ELMASRI, R. e NAVATHE, S. Sistemas de Banco de Dados. São Paulo: Pearson/Addison Wesley, 2011.

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. Sistema de banco de dados. São Paulo: Elsevier, 2012.

Última atualização: quinta, 6 jul 2023, 15:29

		_					
4 ′	12	Fur	าฝลเ	men	tos.	de	RD

Seguir para...

1.4 Sistemas Gerenciadores de Banco de Dados ▶