Precalculus Homework Inverse functions

- 1. Convert from degrees to radians.
 - (a) 15°.
- (h) 120° .

(n) 305° .

- $888662197.0 \approx \frac{\pi}{\zeta 1} : \mbox{discrete} \label{eq:bounds}$ (b) $30^{\circ}.$
- (i) 135°.

 $\frac{\epsilon}{mc}$ idensite (o) 360° .

- (c) 36° .

(0) 000

- $\label{eq:terminal} \text{tegries79.0} \approx \frac{9}{4} \; \text{hansue}$ (d) $45^{\circ}.$
- (j) 150° .

- (p) 4
- (p) 405°.

- $\kappa_{13853987.0} \approx \frac{\pi}{4}$:1904.03
- (k) 180°.

(q) 1200°.

- (e) 60° .
- 133791740.1 $pprox \frac{\pi}{\xi}$:19Werb
- ...

 $(r) -900^{\circ}.$

(s) -2014° .

(f) 75°.

(1) 225° .

Suswet: $\frac{5\pi}{6}$

NO - TOWER

answer: $\frac{9\pi}{4}$

answer: $\frac{20\pi}{3}$

answer: $\frac{61\pi}{36} \approx 5.323254$

(g) 90°.

(m) 270° .

- $189051.58 \approx \pi \frac{7001}{06} 39$
- $\frac{Z}{Z}$ JONSUR $\frac{Z}{Z}$ JONSUR 2. Convert from radians to degrees. The answer key has not been proofread, use with caution.
 - (a) 4π .

(d) $\frac{4}{3}\pi$.

(g) 5.

(h) -2014.

(b) $-\frac{7}{6}\pi$.

 $_{\circ}$ 07L :Jamsuz $(e) \ -rac{3}{8}\pi.$

answer: 240°

answer: $\left(\frac{100}{100}\right)^{\circ} \approx 286^{\circ}$

(C)

answer: -3625200

(c) $\frac{7}{12}\pi$.

(f) 2014π .

3. Find the indicated circle arc-length. The answer key has not been proofread, use with caution.

- answer: 362520°
- (a) Circle of radius 3, arc of measure 36°.

 $836488.1 \approx \frac{\pi E}{3}$: Tawking

(b) Circle of radius $\frac{1}{2}$, arc of measure 100° .

answer: $\frac{5\pi}{18} \approx 0.872665$

(c) Circle of radius 1, arc of measure 3 (radians).

answer: 3

(d) Circle of radius 3, arc of measure 300°.

896707.31 ≈ π3 :19v2ns

4. Find the 6 trigonometric functions of the indicated angle in the indicated right triangle.

(a)

answer;
$$\sin\theta = \frac{3}{13}\sqrt{13},\cos\theta = \frac{2}{13}\sqrt{13},\tan\theta = \frac{2}{3},\cot\theta = \frac{2}{3},\sec\theta = \frac{2}{3},\sec\theta = \frac{\sqrt{13}}{2}$$

 $\sqrt{5}$

(b)

arswell
$$\sin \theta = \frac{\sqrt{5}}{5}$$
, $\cos \theta = \frac{2\sqrt{5}}{5}$, $\tan \theta = \frac{1}{2}$, $\cot \theta = 2$, $\sec \theta = \frac{\sqrt{5}}{2}$, $\csc \theta = \sqrt{5}$

(c) θ

(d)

answer
$$\sin \theta = \frac{5}{\sqrt{29}} = \frac{5\sqrt{99}}{2}$$
, $\cos \theta = \frac{2}{\sqrt{29}}$, $\tan \theta = \frac{2}{5}$, $\cot \theta = \frac{5}{2}$, $\sec \theta = \frac{\sqrt{29}}{5}$, $\csc \theta = \frac{\sqrt{29}}{2}$

$$\text{answell sin } \theta = \frac{\sqrt{11}}{6}, \cos \theta = \frac{5}{6}, \tan \theta = \frac{\sqrt{11}}{5}, \cos \theta = \frac{5}{\sqrt{11}}, \sec \theta = \frac{6}{5}, \csc \theta = \frac{6}{5}, \csc \theta = \frac{11}{1}$$

- 5. Find the exact value of the trigonometric function (using radicals).
 - (a) $\cos 135^{\circ}$.

(b) $\sin 225^{\circ}$.

...........

answer:

(c) $\cos 495^{\circ}$.

answer:

(d) $\sin 560^{\circ}$.

suswer:

(e)
$$\sin\left(\frac{3\pi}{2}\right)$$
.

suswer:

(f)
$$\cos\left(\frac{11\pi}{6}\right)$$
.

:Jəmsue

(g)
$$\sin\left(\frac{2015\pi}{3}\right)$$
.

(h)
$$\cos\left(\frac{17\pi}{3}\right)$$
.

6. Find all solutions of the equation in the interval $[0, 2\pi)$. The answer key has not been proofread, use with caution.

(a)
$$\sin x = -\frac{\sqrt{2}}{2}$$
.

answer:
$$x=\frac{\pi 7}{\hbar}$$
 , $\frac{\pi 5}{\hbar}=x$:Towers

(b)
$$\cos x = \frac{\sqrt{3}}{2}$$
.

answer:
$$x = \frac{\pi}{6}$$
, $\frac{\pi}{6}$ = x : Then $\frac{\pi}{6}$

(c)
$$\sin(3x) = \frac{1}{2}$$
.

$$\frac{\pi 81}{6}$$
 , $\frac{\pi 81}{81}$, $\frac{\pi 71}{81}$, $\frac{\pi 81}{81}$, $\frac{\pi 6}{81}$, $\frac{\pi}{81}$ = x Hawsing

(d)
$$\cos(7x) = 0$$
.

$$\frac{\pi^{7}}{1}\frac{\pi^{6}}{1}\frac{\pi^{6}}{1}\frac{\pi^{6}}{1}\frac{\pi^{6}}{1}\frac{\pi^{6}}{1}\frac{\pi^{6}}{1}\frac{\pi^{6}}{1}\frac{\pi^{6}}{1}\frac{\pi^{7}}{1}\frac{\pi^{6}}{$$

(e)
$$\cos(3x + \frac{\pi}{2}) = 0$$
.

answer:
$$x=0$$
, $\frac{\pi E}{E}$

(f)
$$\sin(5x - \frac{\pi}{3}) = 0$$
.

$$\frac{\pi S}{1}$$
, $\frac{\pi S}{1}$, $\frac{\pi$

Solution. 6.a

$$\sin x = -\frac{\sqrt{2}}{2}$$

Since $\sin x$ is negative it must be either in Quadrant III or IV. Therefore the angle x is coterminal either with $225^{\circ} = \frac{5\pi}{4}$ (Quadrant III) or $315^{\circ} = \frac{7\pi}{4}$ (Quadrant IV).

Case 1. x is coterminal with $225^{\circ} = \frac{5\pi}{4}$. We can compute

$$x = \frac{5\pi}{4} + 2k\pi \qquad k \text{ is any integer}$$

$$x = \frac{5\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{5\pi + 8k\pi}{4}$$

$$x = \frac{\pi(5+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{5\pi}{4}$.

Case 2.

$$x = \frac{7\pi}{4} + 2k\pi$$

$$x = \frac{7\pi}{4} + \frac{8k\pi}{4}$$

$$x = \frac{7\pi + 8k\pi}{4}$$

$$x = \frac{\pi(7+8k)}{4}$$

We are looking for solutions in the interval $[0, 2\pi)$ and so we must discard those values of the integer k for which $\frac{\pi(7+8k)}{4}$ is negative or is greater than or equal to 2π . Therefore the only solution in this case is $x = \frac{7\pi}{4}$.

Solution. 6.f

$$\sin\left(5x - \frac{\pi}{3}\right) = 0$$

Since $\sin 0 = 0$ and $\sin 180^\circ = \sin \pi = 0$, the angle $5x - \frac{\pi}{3}$ must be coterminal with 0 or π .

Case 1. $5x - \frac{\pi}{3}$ is coterminal with 0. We compute

$$5x - \frac{\pi}{3} = 0 + 2k\pi$$

$$5x = \frac{\pi}{3} + 2k\pi$$

$$x = \frac{\frac{\pi}{3} + 2k\pi}{5}$$

$$x = \frac{\frac{\pi}{3} + \frac{6k\pi}{3}}{5}$$

$$x = \frac{\frac{\pi + 6k\pi}{35}}{5}$$

$$x = \frac{\pi + 6k\pi}{\frac{15}{5}}$$

$$x = \frac{\pi + 6k\pi}{15}$$

$$x = \frac{\pi (1 + 6k)}{15}$$

$$x = \frac{\pi (1 + 6k)}{15}$$

$$x = \frac{\pi [1 + 6(0)]}{15}, \frac{\pi [1 + 6(1)]}{15}, \frac{\pi [1 + 6(2)]}{15}, \frac{\pi [1 + 6(3)]}{15}, \frac{\pi [1 + 6(4)]}{15}, \checkmark$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{\pi}{15}, \frac{7\pi}{15}, \frac{13\pi}{15}, \frac{19\pi}{15}, \frac{25\pi}{15}.$$

Case 2.

$$5x - \frac{\pi}{3} = \pi + 2k\pi$$

$$5x = \pi + \frac{\pi}{3} + 2k\pi$$

$$5x = \frac{4\pi}{3} + 2k\pi$$

$$x = \frac{\frac{4\pi}{3} + 2k\pi}{\frac{5}{3}}$$

$$x = \frac{\frac{4\pi}{3} + 6k\pi}{\frac{3}{5}}$$

$$x = \frac{\frac{4\pi + 6k\pi}{3}}{\frac{5}{5}}$$

$$x = \frac{4\pi + 6k\pi}{15}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi(2 + 3k)}{15}$$

$$x = \frac{2\pi[2 + 3(0)]}{15}, \frac{2\pi[2 + 3(1)]}{15}, \frac{2\pi[2 + 3(2)]}{15}, \frac{2\pi[2 + 3(3)]}{15}, \frac{2\pi[2 + 3(4)]}{15}, \checkmark$$
Discard other values of k as they yield angles outside of $[0, 2\pi)$

$$x = \frac{4\pi}{15}, \frac{10\pi}{15}, \frac{16\pi}{15}, \frac{22\pi}{15}, \frac{28\pi}{15}.$$

Our final answer (combined from the two cases) is $x = \frac{\pi}{15}, \frac{4\pi}{15}, \frac{7\pi}{15}, \frac{2\pi}{3}, \frac{13\pi}{15}, \frac{16\pi}{15}, \frac{19\pi}{15}, \frac{22\pi}{15}, \frac{5\pi}{3}$ or $\frac{28\pi}{15}$.

- 7. Use the known values of $\sin 30^\circ, \cos 30^\circ, \sin 45^\circ, \cos 45^\circ, \sin 60^\circ, \cos 60^\circ, \ldots$, the angle sum formulas and the cofunction identities to find an exact value (using radicals) for the trigonometric function.
 - (a) The six trigonometric functions of $105^{\circ} = 45^{\circ} + 60^{\circ}$:
- $\sin\left(\frac{\pi}{12}\right)$.

• $\sin(105^\circ)$.

- $\cos{(105^\circ)}$. Should your answer be a positive or a negative number?
- $\cos\left(\frac{\pi}{12}\right)$. Should $\sin\left(\frac{\pi}{12}\right)$ be larger or smaller than $\cos\left(\frac{\pi}{12}\right)$?

(b) The six trigonometric functions of $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$:

• $\tan (105^{\circ})$.

• $\tan\left(\frac{\pi}{12}\right)$.

• $\cot (105^{\circ})$.

SINGE: $\frac{4}{\sqrt{2}-\sqrt{6}}$

• $\sec{(105^{\circ})}$.

• $\cot\left(\frac{\pi}{12}\right)$.

• $\csc{(105^{\circ})}$.

answet: $\sqrt{6} - \sqrt{2}$

• $\csc\left(\frac{\pi}{12}\right)$.

- 8. Simplify to a trigonometric function of the angle θ . The answer key has not been proofread, use with caution.
 - (a) $\sin\left(\frac{\pi}{2} \theta\right)$.

(b) $\cos\left(\frac{13\pi}{2} - \theta\right)$.

(c) $\tan (\pi - \theta)$

(d) $\cot\left(\frac{3\pi}{2} - \theta\right)$

answer: tan b

(e) $\csc\left(\frac{3\pi}{2} + \theta\right)$

SUSWET: Sec B

- 9. Using the power-reducing formulas, rewrite the expression in terms of first powers of the cosines and sines of multiples of the angle θ .
 - (a) $\sin^4 \theta$.
 - (b) $\cos^4 \theta$.

SINSWET:
$$\frac{1}{8}\cos\left(4\theta\right)-\frac{1}{2}\cos\left(2\theta\right)+\frac{8}{3}$$

Suzange: $\frac{8}{7}\cos(7\theta) + \frac{7}{7}\cos(7\theta) + \frac{8}{2}$

(c)
$$\sin^6 \theta$$
.

where
$$\sin_Q\theta = -\frac{35}{2}\cos(\theta\theta) + \frac{16}{2}\cos(\theta\theta) - \frac{35}{12}\cos(5\theta) + \frac{10}{2}$$

(d)
$$\cos^6 \theta$$
.

Burshel
$$\cos_{\varrho} \theta = \frac{35}{1} \cos \left(\varrho_{\theta}\right) + \frac{1\varrho}{3} \cos \left(\epsilon_{\theta}\right) + \frac{35}{12} \cos \left(5_{\theta}\right) + \frac{1\varrho}{2}$$

10. Use the sum-to-product formulas to find all solutions of the trigonometric equation in the interval $[0, 2\pi)$.

Please note that typing a query such as "solve($\sin(x)+\sin(3x)=0$)" at www.wolframalpha.com will provide you with a correct answer and a function plot.

(a) $\sin(x) + \sin(3x) = 0$.

answer:
$$x=0$$
 , π , $\frac{\pi}{2}$, $0=x$: Then the same $\frac{3\pi}{2}$

(b)
$$\cos(x) + \cos(-3x) = 0$$
.

$$\frac{\pi T}{L}$$
 , $\frac{\pi E}{L}$, $\frac{\pi G}{L}$, π , $\frac{\pi E}{L}$, $\frac{\pi}{L}$, $\frac{\pi}{L}$, $\frac{\pi}{L}$ = x :19wrib

$$(c) \sin(x) - \sin(3x) = 0.$$

answer
$$x=0$$
 , $\frac{\pi\,\xi}{4}$, π , $\frac{\pi\,\xi}{4}$, $\frac{\pi}{4}$, $0=x$. Then x

(d)
$$\cos(2x) - \cos(3x) = 0$$
.

answer:
$$x=0$$
 , $\frac{\Delta}{5}$ π , $\frac{\Delta\pi}{5}$, $\frac{\Delta\pi}{5}$, $\frac{\Delta\pi}{5}$, $\frac{\Delta\pi}{5}$

- 11. Find the inverse function. You are asked to do the algebra only; you are not asked to determine the domain or range of the function or its inverse.
 - (a) $f(x) = 3x^2 + 4x 7$, where $x \ge -\frac{2}{3}$.

answer:
$$f = \frac{1}{5} - \frac{1}{5} = \frac{1}{5} - \frac{1}{5} = \frac{1}{5} - \frac{1}{5} = \frac{1}{5}$$

(b)
$$f(x) = 2x^2 + 3x - 5$$
, where $x \ge -\frac{3}{4}$.

answer
$$\frac{8}{8}-\leq x$$
 , $\frac{x8+65\sqrt{}}{4}+\frac{\xi}{4}-=(x)^{1-\xi}$. The same $\frac{8}{8}$

(c)
$$f(x) = \frac{2x+5}{x-4}$$
, where $x \neq 4$.

answer:
$$f = (x)^{\frac{1}{2} + x^{\frac{1}{2}}} = (x)^{\frac{1}{2} - \frac{1}{2}}$$

(d)
$$f(x) = \frac{3x+5}{2x-4}$$
, where $x \neq 2$.

$$\dfrac{\varepsilon}{\mathtt{c}} \neq x$$
 , $\dfrac{\mathtt{c} + x \mathtt{f}}{\mathtt{c} - x \mathtt{c}} = (x)^{\mathsf{I} - \mathsf{l}}$ Then the subsection $\dfrac{\varepsilon}{\mathtt{c}}$

(e)
$$f(x) = \frac{5x+6}{4x+5}$$
, where $x \neq -\frac{5}{4}$.

answer:
$$\frac{1}{4} \neq x$$
 , $\frac{3+x3-}{5-x4} = (x)^{1-1}$. Towsing

(f)
$$f(x) = \frac{2x-3}{-3x+4}$$
, where $x \neq \frac{4}{3}$..

answer:
$$f = \frac{\Delta}{1} + \frac{$$

Solution. 11.d This is a concise solution written in form suitable for test taking.

$$y = \frac{3x+5}{2x-4}$$

$$y(2x-4) = 3x+5$$

$$2xy-4y = 3x+5$$

$$2xy-3x = 4y+5$$

$$x(2y-3) = 4y+5$$

$$x = \frac{4y+5}{2y-3}$$
Therefore $f^{-1}(y) = \frac{5+4y}{2y-3}$

$$f^{-1}(x) = \frac{5+4x}{2x-3}$$

Solution. 11.e. Set f(x) = y. Then

$$y = \frac{5x+6}{4x+5}$$

$$y(4x+5) = 5x+6$$

$$x(4y-5) = -5y+6$$

$$x = \frac{-5y+6}{4y-5}.$$

Therefore the function $x=g(y)=\frac{-5y+6}{4y-5}$ is the inverse of f(x). We write $g=f^{-1}$. The function $g=f^{-1}$ is defined for $y\neq\frac{5}{4}$. For our final answer we relabel the argument of g to x:

$$g(x) = f^{-1}(x) = \frac{-5x + 6}{4x - 5}$$

Let us check our work. In order for f and g to be inverses, we need that g(f(x)) be equal to x.

$$g(f(x)) = \frac{-5f(x) + 6}{4f(x) - 5} = \frac{-5\frac{(5x + 6)}{4x + 5} + 6}{4\frac{(5x + 6)}{4x + 5} - 5} = \frac{-5(5x + 6) + 6(4x + 5)}{4(5x + 6) - 5(4x + 5)} = \frac{-x}{-1} = x \quad ,$$

as expected.

12. Find the inverse function and its domain.

 $(d) f(x) = e^{x^3}.$

Solution. 12.a

$$y = \ln(x+3)$$

$$e^y = e^{\ln(x+3)}$$

$$e^y = x+3$$

$$e^y - 3 = x$$
 Therefore
$$f^{-1}(y) = e^y - 3.$$

The domain of e^y is all real numbers, so the domain of f^{-1} is all real numbers.

Solution. 12.b

$$4\ln(x-3) - 4 = y$$

$$4\ln(x-3) = y+4$$

$$\ln(x-3) = \frac{y+4}{4} \qquad | \text{ exponentiate }$$

$$e^{\ln(x-3)} = e^{\frac{y+4}{4}}$$

$$x-3 = e^{\frac{y+4}{4}}$$

$$f^{-1}(y) = x = e^{\frac{y+4}{4}} + 3$$

$$f^{-1}(x) = e^{\frac{x+4}{4}} + 3 \qquad | \text{ relabel.}$$

The domain of f^{-1} is all real numbers (no restrictions on the domain).

Solution. 12.e

$$\begin{array}{rcl} y & = & (\ln x)^2 & & | \text{ take } \sqrt{\text{ on both sides}}, y \geq 0 \\ \sqrt{y} & = & \ln x & | \text{ exponentiate} \\ e^{\sqrt{y}} & = & e^{\ln x} = x \\ f^{-1}(y) & = & e^{\sqrt{y}} \\ f^{-1}(x) & = & e^{\sqrt{x}} \end{array}$$

Solution. 12.f

$$y = \frac{e^x}{1 + 2e^x}$$

$$y(1 + 2e^x) = e^x$$

$$y = e^x(1 - 2y)$$

$$\frac{y}{1 - 2y} = e^x$$

$$\ln \frac{y}{1 - 2y} = \ln e^x$$

$$\ln \frac{y}{1 - 2y} = x$$
 Therefore
$$f^{-1}(y) = \ln \frac{y}{1 - 2y}.$$

The natural logarithm function is only defined for positive input values. Therefore the domain is the set of all y for which

$$\frac{y}{1-2y} > 0.$$

This inequality holds if the numerator and denominator are both positive or both negative. This happens if either

- (a) y > 0 and $y < \frac{1}{2}$, or
- (b) y < 0 and $y > \frac{1}{2}$.

The latter option is impossible, so the domain is $\{y \in \mathbb{R} \mid 0 < y < \frac{1}{2}\}$.