Trabajo práctico N°3: Números reales – Intervalos

Números irracionales

Los números irracionales son expresiones decimales con infinitas cifras decimales no periódicas.

Un número irracional no se puede expresar como el cociente entre dos números enteros.

Algunos irracionales conocidos

 π = 3, 141592654...

 $\sqrt{2}$ = 1. 4114213562... $\sqrt[3]{5}$ = 1. 7079975947...

Se pueden generar números irracionales escribiendo las cifras decimales a partir de una regla de formación, para que no sean periódicas.

0, 123456789...

1, 112233445566...

- 0, 135791113...

Números reales

El conjunto de los números reales (R) está formado por todos los números racionales y irracionales.

El conjunto de los números reales es:

- **Denso:** entre dos números reales siempre existe otro número real
- Continuo: a cada punto de la recta numérica le corresponde un número real
- 1. Responder y explicar las respuestas
 - a. La raíz cuadrada de 11, ¿Es un número racional o irracional?
 - **b.** El número 1, 357911, ¿Es irracional?
 - c. Un número irracional, ¿Pertenece al conjunto de los números reales?
 - d. ¿Cuántos números reales existen entre 1 y 2? ¿Y entre 1, 3 y 1, 4?
- 2. Marquen con una X según corresponda

Número	3,4	∛27	√24	$\frac{\sqrt{2}}{2}$	-3.π	1,010101	1,010203	1,010203
Racional								
Irracional								

Intervalos reales

Un intervalo real es un segmento o semirrecta de la recta real y se presenta como un par ordenado de números encerrados entre paréntesis o corchetes.

- El número de la izquierda, es el extremo inferior, es decir el número más chico del intervalo, y el de la derecha, el extremo superior, es decir, es el número más grande del intervalo
- En todo intervalo, el número que va a la izquierda, siempre debe ser menor que él va a la derecha.

- En paréntesis, quiere decir que ese número no se incluye al extremo, y en corchete quiere decir que ese número si se incluye.

- b) $0 < x \le 5 \rightarrow (0; 5]$ (0; 5) (0;

En los ejemplos anteriores podemos observar que los extremos con intervalo abierto, tienen el punto en blanco (sin rellenar), mientras que los que tienen intervalo cerrado si están rellenos

- La **amplitud** de intervalo es la diferencia (resta) entre el extremo superior e inferior.
 - a) (-9; -1) Amplitud: -1 (-9) = -1 + 9 = 8
- b) $[0, 1; 0, 3] \longrightarrow Amplitud = 0, 3 0, 1 = 0, 2$

En los intervalos (a; $+\infty$) o ($-\infty$; b] no se puede calcular la amplitud

- 3. Escribir los intervalos reales y calcular su amplitud cuando sea posible
 - a) x < 7
- **b)** $-6 < x \le -1$ **c)** $-3 \le x < 4$
- **d)** x ≥ 5
- e) -2 < x < 2 f) $-8 \le x \le 0$
- **4.** Escribir la expresión algebraica y representar cada intervalo en la recta real.
 - **a)** $(-3; +\infty)$ **b)** (-7; -2] **c)** [0; 6]

- **d)** (-∞:5]
- 5. Escribir el intervalo y la expresión en cada caso

- 6. Colocar V (verdadero) o F (falso) según corresponda

- a) $1, \hat{9} \in (0; 2)$ b) $\sqrt{50} \in [7; 8]$ c) $\pi \in (-\infty; 3)$ d) $-\sqrt{31} \in (-5; -4)$
- e) $2 + \sqrt{3} \in (3; 4)$ f) $3 \sqrt{10} \in (-5; -4)$

Números irracionales en la recta real

Los números irracionales no pueden ubicarse exactamente en la recta numérica: salvo las raíces cuadradas, que se pueden representar con un segmento.

A partir de aplicar la relación pitagórica, la longitud de la diagonal de un cuadrado de lado 1 es $\sqrt{1^2 + 1^2} = \sqrt{2}$

a) $\sqrt{5} = \sqrt{2^2 + 1^2}$

Para representar \sqrt{a} en la recta numérica, se debe aplicar la relación pitagórica

$$C^2 = \underline{A^2} + \underline{B^2} \rightarrow C = \sqrt{A^2 + B^2}$$

b) $\sqrt{13} = \sqrt{3^2 + 2^2}$

- 7. Pensar y responder. Justificar
 - a) ¿Cuál es el valor de la diagonal de un cuadrado de lado 3?
 - **b)** ¿La diagonal de un cuadrado, ¿Puede medir $\sqrt{50}$?
 - c) ¿Puede la diagonal de un cuadrado ser un valor racional?
 - d) ¿Cuál es el valor de la diagonal de un rectángulo cuyos lados son 2 y 6?
 - e) ¿Qué rectángulo no cuadrado tiene por diagonal $\sqrt{50}$?
- 8. Representar las siguientes raíces en la recta real
 - a) $\sqrt{20}$
- **b)** $-\sqrt{26}$
- 9. Hallar valores de a y b que verifiquen las siguientes construcciones

10. Representar en la recta $\sqrt{3}$ y $\sqrt{19}$

PARA INTENTAR HACER EN CASA

11. Escribir los números enteros consecutivos entre los que se encuentra cada número irracional

- 12. Representar con distintos colores los siguientes intervalos en la recta.
 - (-4;3)
- $5 \le x \le 9$
- $(-\infty; -10]$
- x > 11
- 13. Representen los siguientes intervalos en la recta numérica
 - **a.** (-3;2)
- **b.** (-3;2]
- **c.** [-3;2]
- **d.** [-3;2)
- 14. Escriban el intervalo representado en cada recta

