

AIRFRAME MATERIALS FOR HSR

Thomas T. Bales
Materials Division
NASA Langley Research Center

High-Speed Research Workshop
Williamsburg, Virginia
May 14-16, 1991

N94- 33514

527-24
12057

Airframe Materials for HSR

Element Description

REQUIREMENT:

Advanced airframe materials and structures for achieving critical weight, durability and performance requirements for HSCT.

TECHNOLOGY NEED:

- A. Structural weight \leq 4.5 pounds per sq. ft. of wetted area
- B. Materials with 60,000 hour life at elevated temperature
 - up to 400°F at M=2.5
- C. Accelerated aging test methodology to predict long term performance of advanced materials

Airframe Materials for HSR

The Challenge

HSR AIRFRAME MATERIALS TECHNOLOGY

Key Issue

No long-term, high-temperature materials data base for HSCT airframes (60,000-hr design life, 120,000-hr fatigue life)

Key technology needs

- Life prediction methodology
- Accelerated test procedures
- Long-term flight simulation durability
- Demonstrated 300°- 500°F polymer matrices, adhesives and sealants for ≥ 60,000-hr lifetimes
- Demonstrated 300°- 600°F lightweight metals and metal matrix composites for ≥ 60,000-hr lifetimes

SKIN TEMPERATURES FOR M 2.4 TRANSPORT

Painted surface

SKIN TEMPERATURES FOR M 2.0 TRANSPORT

Bare surface

FAILURE MODE WEIGHT DISTRIBUTION FOR HSCT (DOUGLAS)

Primary Structure Weight Breakdown

SPECIFIC TENSILE PROPERTIES AS A FUNCTION OF TEST TEMPERATURE

SPECIFIC TENSILE PROPERTIES AS A FUNCTION OF TEST TEMPERATURE

100 hours exposure at test temperature

Candidate Resins for HSCT

- Bismaleimides including toughened versions
- PMR-15 including modified versions
- Polyimides (thermoplastics, semi-crystalline TP)
- Poly(arylene ether)s
- Emerging systems (e.g. benzocyclobutenes)

Airframe Materials for HSR

Airframe Materials for HSR

Prime Candidate Airframe Materials

- High Temperature Composites
(3/4 Program)
- High Temperature Aluminum
(1/4) Program

Airframe Materials for HSR

B. Materials and Durability

Approach

Airframe Materials for HSR

B. Materials and Durability

Schedule

Airframe Materials for HSR

High Speed Research Program - Phase II Schedule

Area	93	94	95	96	97	98	Goals	\$M
Materials Development and Design/Test of Critical Wing/Fuselage Subcomponent							Design Concepts for Aeroelastically Tailored Light-Weight Wing Structure	30
	Wing Component Design	Concept selection					Demonstrate Long Term Material Durability at Elevated Temperature	75
			Candidate materials identified				Design Concepts for Light-Weight High Temperature Fuselage Structure	40
				Materials and Durability			Design/Test Verification of Large Scale Wing Box Structure	30
				Final materials selection	Durability Life Prediction Validation		Design/Test Verification of Large Scale Fuselage Panels	45
					Concept selection	Fab and test fuselage subcomponent		
						Component design		
Wing and Fuselage Component Design, Fab and Test	38	43	49	45	31	14	Total \$M	220

Airframe Materials for HSR

GOAL:

Verified materials and structural concepts that meet performance requirements for HSCT

DELIVERABLES:

- Aluminum alloy and resin matrix composite materials with long term durability at 400°F and ≥20% strength/stiffness improvement compared to titanium.
- Light weight ($\leq 4.5 \text{ lbs./ft}^2$) cost-effective structural concepts for wing and fuselage
- Accelerated aging test methodology for predicting long term durability of materials.

AIRFRAME MATERIALS FOR HSR

Status

- Resources from the ACT program rolled over to initiate HSR Materials Program
- Working groups in metallics, polymeric composites and durability established with representation from NASA, airframers, material producers, and universities
- Trade studies being conducted by Boeing and Douglas to define material requirements
- Screening of commercially available materials (metal and composites) initiated in-house
- Upgrade of test facilities for durability program and material characterization initiated

Chairman: Tom Bales Chairman: Paul Hergenrother Chairman: Steve Johnson

Steering Committee

- Provide guidance to NASA on overall airframe materials program including technical thrusts, implementation strategy, allocation of resources, coordination and advocacy

Working Groups

- Assist NASA in planning research thrusts in metals, composites and mechanics including identification of key technology needs, implementation strategy, teaming arrangements, coordination between government, airframes, and material suppliers, and testing and analyses activities

HSCT STRUCTURAL MATERIALS DEVELOPMENT/EVALUATION PROGRAM

NASA-LaRC/Industry Working Groups

HIGH SPEED CIVIL TRANSPORT

Composites

AIRFRAME MATERIALS FOR HSR

Procurement Strategy

- NASA Research Announcements (NRA) - February 1992
 - Material systems modification
 - Process development
 - Understanding of materials degradation
- Omnibus Task Contracts - May 1992
 - Material and design requirements
 - Fabrication technology
 - Structural Elements
 - Built-up components

AIRFRAME MATERIALS FOR HSR

Concluding Remarks

- Materials may prove to be an enabling technology for an economically viable HSCT
- Both resin matrix composites and metallics are considered viable candidates for HSCT
- Airframe materials programs needs to be accelerated to meet projected materials selection date