Machine Learning Programming Problem #1

Name: 胡展維

Student ID: 102061247

—.User Manual

Requirement

• Matlab (better r2015a)

How to run

• Simply run function "HW1 main.m"

Parameter setup

• Simply set in function "HW1_main.m", as below:

二.Introduction of my function

- HW1 main.h: the main function that set up the parameters and show the result.
- <u>get_bivariate_normal_distribution.m:</u> function used to generate the bivariate normal distribution.
- <u>check if larger 3epsolon.m:</u> function used to find the random concept of the sample size m.
- <u>find_hs.m:</u> function used to find out approximated hs(tightest rectangle of).
- <u>estimate_error.m:</u> function used to find the error of target concept and our hs.

三.My result

- (a) First, I choose correlation coefficient $\underline{xxy} = 0.5$, consistent with the problem(a).
- (b) For $P(C) \ge 2 * \epsilon$, we must let the empirical probability $\hat{p} = \frac{1}{N} * \sum_{i=1}^{N} c(y_i) \ge 3 * \epsilon$. The proof in the PDF is as below:

- It is usually difficult, if not impossible, to compute P(c) for given P and c. We resort to an estimation of P(c) as follows. Let $\tilde{S} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N)$ be a sample of size N drawn i.i.d. according to P. Then $c(\mathbf{y}_i)$ is 1 if $\mathbf{y}_i \in c$ and 0 if $\mathbf{y}_i \notin c$. Let $\hat{p} = \frac{1}{N} \sum_{i=1}^{N} c(\mathbf{y}_i)$. It can be seen that \hat{p} is an unbiased estimator of P(c), i.e., $E[\hat{p}] = P(c)$. The variance σ^2 of the estimator \hat{p} is P(c)(1-P(c))/N which will be very small for large N. Since 0 < P(c) < 1, it is clear that $\sigma^2 < 1/(4N)$. By the central limit theorem, the distribution of $(\hat{p} - P(c))/\sigma$ is well approximated by the standard normal distribution for large enough N. Since $P((\hat{p}-P(c))/\sigma \leq 3.719) \simeq 0.9999$, with probability well approximated by 0.9999, we have $(\hat{p} - P(c))/\sigma \leq 3.719$, i.e., $P(c) \geq \hat{p} - 3.719\sigma$. Since $\sigma \leq 1/(2\sqrt{N})$, with probability at least $0.9999, P(c) \ge \hat{p} - 1.8595/\sqrt{N}$. Let N_{ϵ} be an integer such that $1.8595/\sqrt{N_{\epsilon}} \leq \epsilon$. Then given a sample \tilde{S} of size $N_{\epsilon} = \lceil (1.8595/\epsilon)^2 \rceil$ drawn i.i.d. according to P, with a probability at least 0.9999, we have $P(c) \ge \hat{p} - \epsilon$. Thus with a confidence at least 0.9999, the probability P(c) of a selected "unknown" concept c will be no less than 2ϵ if the empirical probability $\hat{p} = \frac{1}{N_{\epsilon}} \sum_{i=1}^{N_{\epsilon}} c(\mathbf{y}_i)$ is no less than

If the message shows that "The selected empirical probability of concept c has P_hat >= 3*epsolon!!!", that means we find the probability of the concept $P(C) \ge 2\epsilon$.

(c) For $\delta = 0.01$, $\epsilon = 0.1$:

Sample size = 240 points, I get the following result:

Where the red rectangle is the target concept, and the blue rectangle is our estimated hs. With the empirical error is:

The selected empirical probability of concept c has P(c) >= 3*epsolon !!!

The Empirical error is:
0.0118

For $\delta = 0.01$, $\epsilon = 0.01$:

Sample size = 2397 points, I get the following result:

Where the red rectangle is the target concept, and the blue rectangle is our estimated hs. With the empirical error is:

```
The selected empirical probability of concept c has P(c) >= 3*epsolon !!!
The Empirical error is:
0.0022
```

(d)

Generalization guarantee: Given a labeled sample S of size $m = \lceil \frac{4}{\epsilon} \ln \frac{4}{\delta} \rceil$, with probability at least $1 - \delta$, the generalization error $R(h_S)$ of the output h_S is upper bounded by ϵ . Your program should be able to verify this guarantee of your PAC-learning algorithm \mathbb{A} by running algorithm \mathbb{A} for $\lceil 10/\delta \rceil$ times and showing that at most 10 out of $\lceil 10/\delta \rceil$, h_S have $R(h_S) > \epsilon$.

For $\delta = 0.01$, $\epsilon = 0.1$:

The verification of the generalization error is as below:

The selected empirical probability of concept c has P(c) >= 3*epsolon !!! Iteration:

1000

The Empirical error is: 0.0181

The number of R(hs) larger that epislon is:

The result shows that no R(hs) is larger than ϵ . So we verify generalization guarantee.

For $\delta = 0.01$, $\epsilon = 0.01$:

The verification of the generalization error is as below:

The selected empirical probability of concept c has P(c) >= 3*epsolon !!! Iteration:

1000

The Empirical error is: 9.7907e-04

The number of R(hs) larger that epislon is: \emptyset

The result also shows that no R(hs) is larger than ϵ . So we verify generalization guarantee.