1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 10247835

(43) Date of publication of application: 14.09.1998

(51)Int.CI.

H03H 9/145 H03H 9/25

(21)Application number: 09061731

(71)Applicant:

KOKUSAI ELECTRIC CO LTD

(22) Date of filing: 03.03.1997

(72)Inventor:

KANDA TADASHI

(54) LOVE WAVE-TYPE SURFACE ACOUSTIC WAVE DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce cost by providing a Love wave-type surface acoustic wave by using a comparatively inexpensive base metal with large specific gravity, such as Ta(tantalum), W(tungsten) and Pd(palladium), instead of noble metal such as gold.

SOLUTION: An interdigital electrode(IDT electrode) 21 of a first layer made of Al(aluminum) is formed on a rotary Y cut-X transmission LiNbO3 piezoelectric substrate 1. Then, an IDT electrode 22 of a second layer formed of Ta, W or Pd is formed on the electrode with a prescribed film thickness. The IDT electrode 21 of the first layer of Al is formed on -10° to +50° rotary Y cut LiTaO3 piezoelectric substrate 1, and the IDT electrode 22 of the second layer of Ta, W or PD is formed on the electrode with a prescribed thickness. The both IDT

electrodes are made into two layers. The layer below aluminum is a layer, where electric resistance is lowered and the upper layer formed of Ta, W or Pd is the layer formed making the Love-wave and it can control the film thickness more easily as compared to gold.

[Date of request for examination]

29.07.1999

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

MENU

SEARCH

INDEX

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開平10-247835

(43)公開日 平成10年(1998)9月14日

(51)Int. Cl. 6 H O 3 H ·識別記号

9/145 9/25 FΙ

H 0 3 H

9/145

С

9/25

С

審査請求 未請求 請求項の数2

F D

(全5頁)

(21)出願番号

特願平9-61731

(22)出願日

平成9年(1997)3月3日

(71)出願人 000001122

国際電気株式会社

東京都中野区東中野三丁目14番20号

(72)発明者 神田 正

東京都中野区東中野三丁目14番20号 国際

電気株式会社内

(74)代理人 弁理士 大塚 学

(54)【発明の名称】ラブ波型弾性表面波デバイス

(57)【要約】

【課題】ニオブ酸リチウムまたはタンタル酸リチウムの 圧電基板1上に形成されたIDT電極2によってラブ波 型表面波を励起するように構成されたSAWデバイスの 製造プロセスを容易にしてコストダウンを図り、IDT 電極2の電気抵抗の増大による特性劣化を低減する。

【解決手段】IDT電極2を2重層構造とし、下層21 を電気抵抗の低いアルミニウムで形成し、上層22を金 (Au) に代えて価格の安い卑金属のタンタル,タング ステン又はパラジウムで形成したことを特徴とする。

9

【特許請求の範囲】

【請求項1】 回転YカットーX伝搬LiNbO。圧電 基板の表面上にラブ波型弾性表面波を励振するようにす だれ状電極、またはすだれ状電極と反射器電極とが配設 されたラブ波型弾性表面波デバイスにおいて、

前記電極は上下に積層された2層構造を有し、該2層構 造の下層として前記基板上に接して形成された第1層は 所定の膜厚のアルミニウムで形成され、その上に積層さ れた第2層は所定の膜厚のタンタル,タングステンまた はパラジウムのいずれかで形成されたことを特徴とする 10 ラブ波型弾性表面波デバイス。

Y軸を法線としY-Z平面上でY軸から 【請求項2】 回転角が-10°乃至+50°の範囲の所定の角度で切 断された回転 YカットLiTa〇。 圧電基板の表面上に ラブ波型弾性表面波を励振するようにすだれ状電極、ま たはすだれ状電極と反射器電極とが配設されたラブ波型 弾性表面波デバイスにおいて、

前記電極は上下に積層された2層構造を有し、該2層構 造の下層として前記基板上に接して形成された第1層は 所定の膜厚のアルミニウムで形成され、その上に積層さ 20 れた第2層は所定の膜厚のタンタル、タングステンまた はパラジウムのいずれかで形成されたことを特徴とする ラブ波型弾性表面波デバイス。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、LiNbO。(ニ オブ酸リチウム)又はLiTa〇。(タンタル酸リチウ ム)の圧電単結晶基板を用い、ラブ波型表面波を利用し た弾性表面波 (Surface Acoustic Wave :以下SAWと 略記する) デバイスに関するものである。

[0002]

【従来の技術】最初にLiNb〇。基板を用いたSAW デバイスについて述べる。Yカット-X伝搬LiNbO 。 基板を用いたラブ波型SAWは、 電気機械結合係数 k 2 がレイリー波型のSAWに比べ格段に大きいため、広 帯域な特性が求められる共振子等に応用されている。

【0003】LiNbO。基板上に、質量が大きく表面 波速度が基板より遅い金(Au)の薄膜を付着させるこ とにより、伝搬減衰の大きい擬似弾性表面波を減衰のな いラブ波型のSAWに変えることができる。すなわち、 圧電基板上に存在する擬似弾性表面波を、質量が大きく 音速の遅い金 (Au) の薄膜を付着させることにより擬 似弾性表面波の音速を低下させ、該基板の遅い横波 (4 079m/s)より遅くすることで減衰のないラブ波型 SAWにすることができる。付着させる金の薄膜は圧電 基板上の全面に設ける必要はなく、SAWを励振するた めのすだれ状電極(IDT電極)のみでもラブ波型のS AWデバイスが形成される。

【0004】ラブ波型SAWデバイスの代表例として、 SAW共振子について以下説明する。図2(a)は、最 50

も単純な従来のラブ波型SAW共振子の例を示した平面 図であり、圧電基板1上にIDT電板2のみが設けられ た構成である。図2(b)は図2(a)のA-A,切断 部端面図であり、IDT電極2の構成を示している。図 2ではIDT電極の対数を3対としているが、これは3 対に限る必要はないことは言うまでもない。また、図2 は説明を簡単にするため、IDT電極2のみが基板上に 設けられたSAWデバイスの例をあげたが、IDT電極 2の両側に反射器を配設した構成としてもよい。

【0005】IDT電極2の材質としては、金(Au). が用いられることが一般的であるが、金は圧電基板1と の密着性が悪いため、図2 (b) に示したように、通常 Crなどの接着層23が下地として付けられ、その上に 金(Au) 24が付けられている。しかし、金は高価で あるため、原価的にSAWデバイスのコストがアップす るという問題がある。

【0006】そこで、金のような貴金属の代わりに、T a (タンタル), W (タングステン), Pd (パラジウ ム)のような比較的安価で比重の大きい卑金属を用いる ことでラブ波型の表面波が得られるように構成したもの

【0007】次に、LiTaO₃ 基板を用いたSAWデ バイスについて述べる。従来、LiTaO。基板を用い たラブ波型SAWデバイスには、本発明者らが先に提案 したものがある (特願平4-57231号参照)。

【0008】図3 (A) は、LiTaO。基板の回転角 θに対する表面波速度(位相速度)の特性図であり、同 図 (B) に示すように、横軸はY-Z平面内のY軸から の切断回転角θを示し、表面波はX軸方向に伝搬する。

【0009】図3に示すように、回転YカットLiTa O。圧電基板上には、破線で示したレイリー波と、実線 で示した擬似弾性表面波(リーキー波)が存在すること が知られている。

【0010】また、同図に遅い横波(3380m/s) を示しているが、擬似弾性表面波のように、表面波速度 がこの遅い横波よりも速い場合は、伝搬しながらエネル ギをバルク波に変換しながら伝搬するいわゆるリーキー 波であるため、36°回転Y板を除いては、実用的では ない。また、レイリー波のように、表面波速度がこの遅 40 い横波より遅い場合は、伝搬減衰のない表面波である。

【0011】LiTaO3圧電基板上に、音速の遅い重 い物質を所定の膜厚で付着させて表面波速度を低下さ せ、遅い横波よりも遅くすることにより、擬似弾性表面 波(リーキー波)を伝搬減衰のないラブ波型表面波にす ることができる。

【0012】図4は、切断角 $\theta=0$ °の時で、音速の遅 い重い物質として金 (Au) を圧電基板上に一様に付着 した場合の膜厚と表面波速度との関係を計算した結果で ある。図4からわかるように、表面波速度は、Au膜厚 (Ha/λ)を0.04(λ:表面波の波長)以上にす

30

3

れば3380m/s以下となり、ラブ波型の表面波が得られることがわかる。

【0013】また、圧電基板上に一様な音速の遅い重い物質を付着させる代わりに、表面波を励振させるすだれ状電極(IDT:Interdigital Transducer)に金(Au),銀(Ag),白金(Pt)等の比重の重い貴金属を用い、所定の膜厚以上の厚さにすることで同様な効果が得られることが知られている。

【0014】さらに、図3からわかるように、回転Yカットの切断角度の範囲が -10° ~ $+50^\circ$ の範囲であ 10れば、 36° 回転Yカット-X伝搬 $LiTaO_s$ と同等、もしくはそれ以上の電気機械結合係数 k° が得られる。この電気機械結合係数 k° は図3のopen(基板表面が電気的に開放)とshort (基板表面が電気的に短絡)の音速の差に比例する。

【0015】 10個としては、金(Au)が用いられることが一般的であるが、金は圧電基板との密着性が悪いため、図2(b)に示したように、通常 Crなどの接着層23が下地として付けられ、その上に金(Au)24が付けられている。しかし、金は高価であるため、原価的20にSAW共振子のコストがアップするという問題がある。

【0016】そこで、金のような貴金属の代わりに、Ta(タンタル),W(タングステン),Pd(パラジウム)のような比較的安価で比重の大きい卑金属を用いることでラブ波型の表面波が得られるように構成されたものがある。

[0017]

【発明が解決しようとする課題】しかしながら、前述のLiNbO。の場合も、上記のLiTaO。の場合も、卑金属のみを用いてID電極を構成した場合、これらの電気抵抗(体積抵抗率: Ω m)が、dm)をdmのと、dmのでは、

【0018】本発明の目的は、従来技術の問題点の金によるコスト高、および電極がTa,WまたはPdのみの場合の電気抵抗の増大による特性劣化を低減させ、且つ、製造プロセスを容易にしたLiNbO。基板またはLiTaO。基板を用いたラブ波型弾性表面波デバイスを提供することにある。

[0019]

【課題を解決するための手段】本発明の請求項1記載の ラブ波型弾性表面波デバイスは、回転Yカット-X伝搬 LiNbO。圧電基板の表面上にラブ波型弾性表面波を 50 励振するようにすだれ状電極、またはすだれ状電極と反射器電極とが配設されたラブ波型弾性表面波デバイスにおいて、前記電極は上下に積層された2層構造を有し、

該2層構造の下層として前記基板上に接して形成された 第1層は所定の膜厚のアルミニウムで形成され、その上 に積層された第2層は所定の膜厚のタンタル,タングス テンまたはパラジウムのいずれかで形成されたことを特

徴としている。

【0020】また、本発明の請求項2記載のラブ波型弾性表面波デバイスは、Y軸を法線としY-Z平面上でY軸から回転角が-10°乃至+50°の範囲の所定の角度で切断された回転YカットLiTaO。圧電基板の表面上にラブ波型弾性表面波を励振するようにすだれ状電極、またはすだれ状電極と反射器電極とが配設されたラブ波型弾性表面波デバイスにおいて、前記電極は上下に積層された2層構造を有し、該2層構造の下層として前記基板上に接して形成された第1層は所定の膜厚のアルミニウムで形成され、その上に積層された第2層は所定の膜厚のタンタル、タングステンまたはパラジウムのいずれかで形成されたことを特徴としている。

[0021]

【発明の実施の形態】以下、図面を用いて詳細に説明する。図1は本発明の実施例を示す平面図(a)とそのA-A'切断部端面図(b)である。図のIDTの対数は3対であるが、IDTの対数に関わらず、反射器があってもその電極に対しても共通であることは言うまでもない。

【0022】請求項1記載の本発明の実施例では、回転 ソカット-X伝搬LiNbO。圧電基板1上に、A1の 第1層IDT電極21が形成され、その上に、Ta,W もしくはPdの第2層のIDT電極22が所定の膜厚で 形成されている。

【0023】また、請求項2に記載の本発明の実施例では、 -10° 乃至 $+50^\circ$ 回転Yカット $LiTaO_3$ 圧電基板 1上に、A1の第1層 ID T電極 21 が形成され、その上にTa, WもしくはPdの第2層のID T電極 22 が所定の膜厚で形成されている。

【0024】上記請求項1及び2の発明は、いずれもIDT電極2を2層とし、アルミニウムの下層は電気抵抗を下げる機能を果たし、Ta,WまたはPdで形成された上の層は、ラブ波化するための層であり、後述するように金に比較して膜厚コントロールが容易であるという特徴を有している。

【0025】第1層21のA1の密度は2.96g/cm³であり、Au, Ta, W, Pdの密度は、それぞれ、19.3、16.6、19.1、12.16である。圧電基板1上に存在する伝搬減衰のある擬似弾性表面波を、伝搬減衰のないラブ波型の表面波にするには、所定の質量が必要となる。A1の密度はAuのそれに比較して約1/6であるので、A1層21だけでラブ波化

__

5

しようとするとAuの6倍の膜厚が必要となり、プロセス的に無理があるため、実質的にラブ波化に寄与するのはTa,W又はPdの第2層22である。従って、A1層21はあまりラブ波化には寄与しないため比較的厚く付着させることが可能である。

【0026】また、A1の電気抵抗(体積抵抗率 Ω ・m)は 2.75×10^{-8} であり、 $\pm 0.2.4 \times 10^{-8}$ とあまり変わらず、 $\Delta 0.8 \times 10^{-8}$ とあまり変わらず、 $\Delta 0.8 \times 10^{-8}$ とのるため、 $\Delta 0.8 \times 10^{-8}$ であるため、 $\Delta 0.8 \times 10^{-8}$ できる。

【0027】さらに、前述の如く、Ta,W,Pdの密度は、Auの密度に比較して、いずれも小さいため、ラブ波化においてAuと同等の効果を得るためには、ライン幅が同じ場合、密度に逆比例した膜厚を設定しなければならないが、デバイス特性の膜厚依存の観点からは、Auに比べて依存性は小さくなるため、従来のAuほどのような厳しい膜厚コントロールは要求されない。さらに、ラブ波化においては電極の全質量が関係するため、ライン幅の視点からは、密度が小さくなった分だけAuに比ペコントロール精度がゆるくなる。また、Auにくらべ、Ta,W,Pdの価格は格段に安いので、SAW共振子としてのコストを下げることができる。

【図1】

[0028]

【発明の効果】以上詳細に述べたように、本発明を実施することにより、IDT電極として、従来のAu電極を用いた場合に比べて材料費が格段に安くなり、Ta,WまたはPdのみのときの電気抵抗増大によるデバイスの特性劣化も抑えられ、且つ、製造プロセスが容易になるため、実用上の効果は極めて大きい。

6

【図面の簡単な説明】

【図1】本発明の実施例を示す平面図とそのAA'切断部端面面である。

【図2】従来のSAWデバイスの平面図とそのAA'切断部端面図である。

【図3】回転YカットLiTaO。基板における回転角と表面波速度の関係図である。

【図4】回転Y板LiTaO。基板における表面波速度の膜厚依存性を示す説明図である。

【符号の説明】

1 圧電基板

2 IDT電極

20 21 IDT電極の第1層

22 IDT電極の第2層

23 接着層 (Cr)

24 IDT電極 (Au)

[図2]

【図3】

[図4]

