

STM32(and STM8) solution for (LoRa + Sigfox)

Summary 2

- 1. What is IoT?
- 2. Communication Technologies Overview
- 3. LPWAN
- 4. A word about SigfoxTM and LoRaTM / LoRa Alliance
- 5. LoRa™ Technology Modulation and LoRaWAN™ Network Protocol
- 6. STM32(STM8) solution for LoRa[™] and Sigfox
- 7. Competition overview

What is IoT?

While M2M network connects machines in closed systems, IoT enhances the exiting networks through an intelligent cloud.

IoT uses cases 4

Consumer

IoT - Driving the next Semiconductor Growth 5

There is expected to be 45 billion connected devices by 2020

Communication Technologies overview

Communication Technologies - Overview

The existing technologies

LPWAN ISM Bands UNB - LoRaTM

What does the connectivity represent today?

Connectivity today is like a commodity energy...

Oil **Electricity** Gas

Companies, banks, institutions, cities, homes, families cannot do

without it...

GSM

Bluetooth®

The aim of LPWAN

- Despite all those existing communication technologies some needs are still not answered:
 - The ratio range vs. \$\$ is still too high
 - The ratio cost/range vs. the device battery life time too low
 - Wastes on infrastructure (services, maintenance, management ...)

Low-Power Wide Area Network is a key element to make the things Smart!

World wide frequencies regulation -12

2.4GHz is the only www standard

- GSM cell phone Frequencies are split in 2 regions only.
- North America and South west are based on **850/1900** MHz
- The rest of the world is using 900/1800MHz frequencies range

ISM World wide regulation 14

Output power vs Duty Cycle

Countries	Frequency Band Review	Max Output Power	
EU	868MHz	14dBm	
USA	915MHz	20dBm	
Korea		4.4.4.0	
Japan		14dBm	
Malaysia	862MHz to 875MHz	20dBm	
Philippines	868MHz		
Vietnam	862MHz to 875MHz 315/433/ TBC		
India	865MHz - 867MHz		
Singapore	922MHz		
Thailand	922MHz/868MHz TBC		
Indonesia	922MHz		
ANZ	915MHz to 928MHz		
Taiwan	920MHz to 925MHz		

China 470MHz to 510MHz	17dbm
------------------------	-------

A word about LoRaTM and SigfoxTM

Sub-GHz and IoT 16

The 2 solutions to address the IoT over LPWAN

- Sub-GHz is a fragmented segment with many dedicated protocols and solutions to address different needs
- An initiative of standardization is on going with LTE, LoRa®, Sigfox ...
- A standardization will be an enabler for industrial applications (meters), Smart Cities ...

What is LoRa™?

- 1. A Sub-GHz wireless technology enabling low data rate communication over long distances
- 2. Targeting M2M and Internet of Things, IoT applications
- 3. LoRa™ technology is a solution providing a WAN capability, using a MAC protocol named LoRaWAN

Long range

- · Greater than cellular
- Deep indoor coverage
- Star topology

True location

- · Indoor and outdoor
- Accurate

Max lifetime

- Low power optimized
- 10- to 20-year lifetime
- >10x vs cellular M2M

Bidirectional

- Bidirectional
- Scalable capacity
- Broadcast

Multi-usage

- High capacity
- Multi-tenant
- Public network

Global mobility

- True mobility
- Seamless
- Roaming

Low cost

- Minimal infrastructure
- Low-cost end-node
- Open software

Security

- Unique ID
- Application
- Network

LoRaTM Network Protocol 18

Solutions providers

Powered by STM32

ST and the Alliance 19

The Internet of Things era is now

The LoRa™ Alliance is an open, nonprofit association of members. Its mission is to ensure that LoRaWAN™ is THE open global standard for SECURE, CARRIER GRADE IoT LPWA connectivity. Visit https://www.lora-alliance.org/

The LoRaTM Network Deployment

27 Announced national deployments > 150 regional or city deployments

LoRa-Alliance.org

LoRaTM Technology Modulation and LoRaWANTM Network Protocol

LoRaTM Technology Modulation 22

- LoRaTM technology is based on the Spread Spectrum Technology
- LoRaTM have been developed by Cycleo then acquired by Semtech
- It is a Chirped Frequency Modulation
- LoRaTM Spread Spectrum technology means:

LoRaWANTM Devices Classes 26

3 classes to cover all the use cases

Class name	Intended usage	
A (« all »)	Battery powered sensors (or actuators with no latency constraint) Most energy efficient communication class. Must be supported by all devices	Mainly uplink with two potential downlink slots after each uplink
B (« beacon »)	Battery powered actuators Energy efficient communication class for latency controlled downlink. Based on slotted communication synchronized with a network beacon.	Programmed downlink slots to allow control within certain latency limits
C (« continuous »)	Mains powered actuators Devices which can afford to listen continuously. No latency for downlink communication.	Lowest latency command and control for less power critical devices.

LoRaWANTM Devices Classes 27

Class A – Bidirectional Communication

Uplink Received by multiple gateways

For every uplink, there are two possible downlink slots. Downlink is possible only at these times.

Time

NETWORK

Network Server selects:

- Gateway for downlink
- Which downlink slot to use

End Devices transmit at any time (ALOHA)

Programmed wait 1

Rx slot

Programmed wait 2

Rx slot 2

END DEVICES

LoRaWANTM Devices Classes 28

Class B – Bidirectional Communication

END DEVICES

Pre-programmed RX slots synchronized by gateway beacons

LoRaWANTM - Security

A native AES 128-bit security network protocol

- Device Address (DevAddr) is a 32-bit identifier
 - Unique within the network
 - Available in each data frame and shared between end-device, N.S and A.S.
- Network Session Key (NwkSKey) is a 128-bit AES encryption key
 - Unique per end-device and shared between end-device and N.S
 - It allow message integrity communication between end-device and N.S.
- Application Session Key (AppSKey) is a 128-bit AES encryption key
 - Unique per end-device and shared between end-device and A.S
 - It is used to encrypt / decrypt A.S server messages to the end-device
- To increase end-device authentication and security a secure can be added in the Device

LoRaTM Network Protocol 33

Real Network Topology Deployed

STM32(and STM8) Solutions for LoRaTM and SigfoxTM

ST and Semtech LoRaTM Agreement 36

Semtech Corporation and STMicroelectronics announce agreement on Semtech's Lora® long-range wireless RF technology

 Intends to boost STM32 MCUs with LoRa® technology to target internet of things deployments by mobile network operators and large-scale private networks

LoRa® powered by STM32TM

www.st.com/stm32-lrwan

Available

USI® Module AT command

Murata® Module All-in-one Open

Cost optimized solution

Flexible design architecture
More than **1000** P/N of **STM8/STM32**

All-in-one LPWAN (LoRa, Sigfox and more ...)

Open Murata® LoRa® module

Powered by STM32L0

USI® LoRaTM module - AT command set Powered by STM32L0

Let's Get Started 40

With a wide and existing ecosystem

(Click on the icon or link)

HW tools

Expansion board

ST and USI® P/N: I-NUCLEO-LRWAN1

Nucleo pack ST and Semtech P/N: P-NUCLEO-LRWAN1

Discovery board ST and Murata®

P/N: B-L072Z-LRWAN1

Dev tools

STM32CubeMX

ST-Link Utility

Partners IDE

System Workbench for STM32

LoRaWAN™ stack

New Hardware tool 41

B-L072Z-LRWAN1: STM32 and LoRa® Discovery kit

Flexible board power supply: through USB or external source

Integrated ST-Link/V2-1: mass storage device flash programming

2 push buttons, 2 color Leds, Jumper settings

Arduino™ extension connectors: easy access to add-ons

Murata module

SMA Antenna connector

New Hardware tool 42

I-NUCEO-LRWAN1: USI® STM32™ Nucleo expansion board for LoRa®

LoRa® technology powered by STM32

The widest ecosystem-ever now available!

Best-in-class in ultra-low-power and Long Range

Widest HW and SW ecosystem

Easy to use

LoRa® Gateway STM32F7 based

I-NUCLEO-LRWAN1 LoRa® + Mems Shield

Releasing Your Creativity

with the new STM32

