Group and Ring Theory Problems in Polish

Andrzej "Mathinity" Kukla

1.
$$X = \{1...n\}$$
 i $A_n := \{\sigma : X \to X \mid \sigma \ bijekcja \land sgn(\sigma) = 1\}$
Niech $B_n = \{(i_1i_2i_3) : i_j \in X \ dla \ j \in \{1, 2, 3\}\}$ $T: \langle B_n \rangle = A_n$

Dw.

Niech $A \in A_n$. Wtedy A to złożenie k cykli różnych długości, które zawierają w sobie w sumie r elementów X. Wtedy: $sgn(A) = (-1)^{n-(k+(n-r))} = (-1)^{r-k}$. Aby sgn(A) = 1, to r-k musi być liczbą parzystą.

1° r nieparzyste $\Rightarrow k$ nieparzyste.

Wtedy liczba cykli o parzystej liczbie el. musi być parzysta, a liczba cykli o nieparzystej liczbie el. musi być nieparzysta. Każdy z cykli da się rozłożyć na iloczyn transpozycji. Każdy cykl o parzystej liczbie el. rozłoży się na iloczyn nieparzystej liczby transpozycji, a każdy cykl o nieparzystej liczbie el. rozłoży się na iloczyn parzystej liczby transpozycji. Ostatecznie dostajemy iloczyn parzystej liczby transpozycji. Transpozycje możemy przekształcić w 3-cykle w następujący sposób:

Niech $a, b, c, d \in X$ są parami rozłączne. Wtedy:

$$(ab)(ac) = (acb) (1)$$

$$(ab)(cd) = (bcd)(adb) (2)$$

Cykle o nieparzystej liczbie el. rozkładają się iloczyn 3-cykli jedynie typu (1), natomiast cykle o parzystej liczbie el. rozkładają się na iloczyn 3-cykli typu (1) i (2). Liczba cykli o parzystej liczbie el. jest nieparzysta, więc rozłożą się one na iloczyn jedynie 3-cykli (2 takie cykle wyprodukują 1 3-cykl typu (2)).

Z tego wynika, że $A \in \langle B_n \rangle$

 $2^{\circ} r \text{ parzyste} \Rightarrow k \text{ parzyste}.$

Wtedy iloczyn składa się z parzystej liczby cykli o parzystej liczbie el. i parzystej liczbie cykli o nieparzystej liczbie el. Rozkładając te cykle na iloczyn transpozycji dostajemy ich parzystą ilość, więc możemy je złożyć w 3-cykle. Stąd $A \in \langle B_n \rangle$

2. Znaleźć wszystkie podgrupy grupy D_6

Niech

- s(i) to symetria względem symetralnej wychodzącej z punktu oznaczonego na rysunku, $i \in \{1, ..., 6\}$;

- o(x) to obrót o x-kąt, zgodny z ruchem wskazówek zegara, $x \in (0, 2\pi)$; Wtedy $D_6 = \{id, s(1), s(2), s(3), s(4), s(5), s(6), o(\frac{\pi}{3}), o(\frac{2\pi}{3}), o(\pi), o(\frac{4\pi}{3}), o(\frac{5\pi}{3})\}$ Kilka obserwacji:

$$\forall i \in \{1, ..., 6\} : s(i)^{-1} = s(i)$$
$$\forall x \in (0, 2\pi) : o\left(\frac{x\pi}{3}\right)^{-1} = o\left(\frac{(6-x)\pi}{3}\right)$$

Podgrupy oczywiste:

•
$$H_1 = \{id\}$$

•
$$H_2 = D_6$$

•
$$H_3 = \{id, s(1)\}$$

•
$$H_4 = \{id, s(2)\}$$

•
$$H_5 = \{id, s(3)\}$$

•
$$H_6 = \{id, s(4)\}$$

•
$$H_7 = \{id, s(5)\}$$

•
$$H_8 = \{id, s(6)\}$$

•
$$H_9 = \{id, o(\frac{\pi}{3}), o(\frac{5\pi}{3})\}$$

•
$$H_{10} = \{id, o(\frac{2\pi}{3}), o(\frac{4\pi}{3})\}$$

•
$$H_{11} = \{id, o(\pi)\}$$

Jeżeli stworzymy grupę $H=\{id,o(\frac{x\pi}{3}),o(\frac{y\pi}{3})\},$ gdzie $x,y\in(0,2\pi)$ i $x\neq y,$ to jesteśmy zmuszeni dodać do niej odwrotności $o(\frac{x\pi}{3})$ i $o(\frac{y\pi}{3})$, a jak się okazuje także wszystkie pozostałe obroty z D_6 .

Zatem $H_{11} = \{id, o(\frac{\pi}{3}), o(\frac{2\pi}{3}), o(\pi), o(\frac{4\pi}{3}), o(\frac{5\pi}{3})\}$. Jeżeli stworzymy grupę $H = \{id, s(i), s(j)\}$, gdzie $i, j \in \{1, ..., 6\}$ i $i \neq j$, to jesteśmy zmuszeni dodać do niej obrót, który jest złożeniem tych dwóch symetrii, a co za tym idzie musimy dodać złożenia symetrii i obrotów. Oto zestawienie wszystkich złożeń obrotów i symetrii:

(najpierw kolumna, potem wiersz)

0	$o(\frac{\pi}{3})$	$o(\frac{2\pi}{3})$	$o(\pi)$	$o(\frac{4\pi}{3})$	$o(\frac{5\pi}{3})$
s(1)	s(6)	s(5)	s(4)	s(3)	s(2)
s(2)	s(1)	s(6)	s(5)	s(4)	s(3)
s(3)	s(2)	s(1)	s(6)	s(5)	s(4)
s(4)	s(3)	s(2)	s(1)	s(6)	s(5)
s(5)	s(4)	s(3)	s(2)	s(1)	s(6)
s(6)	s(5)	s(4)	s(3)	s(2)	s(1)

(najpierw wiersz, potem kolumna)

0	$o(\frac{\pi}{3})$	$o(\frac{2\pi}{3})$	$o(\pi)$	$o(\frac{4\pi}{3})$	$o(\frac{5\pi}{3})$
s(1)	s(2)	s(3)	s(4)	s(5)	s(6)
s(2)	s(3)	s(4)	s(5)	s(6)	s(1)
s(3)	s(4)	s(5)	s(6)	s(1)	s(2)
s(4)	s(5)	s(6)	s(1)	s(2)	s(3)
s(5)	s(6)	s(1)	s(2)	s(3)	s(4)
s(6)	s(1)	s(2)	s(3)	s(4)	s(5)

Oto zestawienie wszystkich złożeń symetrii:

(najpierw kolumna, potem wiersz)

0	s(1)	s(2)	s(3)	s(4)	s(5)	s(6)
s(1)	id	$o(\frac{5\pi}{3})$	$o(\frac{4\pi}{3})$	$o(\pi)$	$o(\frac{2\pi}{3})$	$o(\frac{\pi}{3})$
s(2)	$o(\frac{\pi}{3})$	id	$o(\frac{5\pi}{3})$	$o(\frac{4\pi}{3})$	$o(\pi)$	$o(\frac{2\pi}{3})$
s(3)	$o(\frac{2\pi}{3})$	$o(\frac{\pi}{3})$	id	$o(\frac{5\pi}{3})$	$o(\frac{4\pi}{3})$	$o(\pi)$
s(4)	$o(\pi)$	$o(\frac{2\pi}{3})$	$o(\frac{\pi}{3})$	id	$o(\frac{5\pi}{3})$	$o(\frac{4\pi}{3})$
s(5)	$o(\frac{4\pi}{3})$	$o(\pi)$	$o(\frac{2\pi}{3})$	$o(\frac{\pi}{3})$	id	$o(\frac{5\pi}{3})$
s(6)	$o(\frac{5\pi}{3})$	$o(\frac{4\pi}{3})$	$o(\pi)$	$o(\frac{2\pi}{3})$	$o(\frac{\pi}{3})$	id

Można zauważyć, że dla różnych par symetrii utworzą się różne podgrupy. Mamy:

 $-s(1) \circ s(2), s(1) \circ s(6), s(2) \circ s(3), s(3) \circ s(4), s(4) \circ s(5) i s(5) \circ s(6)$

```
generują D_6
-s(1) \circ s(3), s(1) \circ s(5) i s(3) \circ s(5)
generują H_{12} = \{id, s(1), s(3), s(5), o(\frac{2\pi}{3}), o(\frac{4\pi}{3})\}
-s(2) \circ s(4), s(2) \circ s(6) i s(4) \circ s(6)
generują H_{13} = \{id, s(2), s(4), s(6), o(\frac{2\pi}{3}), o(\frac{4\pi}{3})\}
- s(1) \circ s(4)
generuje H_{14} = \{id, s(1), s(4), o(\pi)\}
- s(2) \circ s(5)
generuje H_{15} = \{id, s(2), s(5), o(\pi)\}
```

generuje $H_{16} = \{id, s(3), s(6), o(\pi)\}.$

 $- s(3) \circ s(6)$

3. Znaleźć wszystkie izomorfizmy $\mathbb{Z}/12 \to \mathbb{Z}/12$

Niech $f(x): \mathbb{Z}/12 \to \mathbb{Z}/12$ będzie izomorfizmem. Wtedy: $\forall a, b \in \mathbb{Z}/12$: f(a+b) = f(a) + f(b). 1) Niech b = a. Wtedy $f(2a) = 2f(a) \Rightarrow f(0) = 0 \land f(6) = 6$.

2) Niech b = -a w sensie mod 12.

Wtedy $f(0) = f(a) + f(-a) \Rightarrow -f(-a) = f(a)$.

3) Niech a=1.

Wtedy: f(2) = f(1) - f(11).

Podstawiając za f(1) kolejne elementy zbioru $\mathbb{Z}/12$ uzyskujemy sprzeczność dla

$$f(1) \in \{0, 2, 3, 4, 6, 8, 9, 10\}$$

Gdy podstawimy $f_1(1) = 1$ uzyskujemy identyczność.

Gdy podstawimy $f_2(1) = 5$ uzyskujemy następujący izomorfizm:

Gdy podstawimy $f_3(1) = 7$ uzyskujemy następujący izomorfizm:

Gdy podstawimy $f_4(1) = 11$ uzyskujemy następujący izomorfizm: f(x) = -x

Zbiór powyższych izomorfizmów Izom z działaniem $\circ: Izom \times Izom \to Izom$ tworzą monoid, ponieważ \circ jest działaniem łącznym oraz el. neutralny: $id = f_1(x)$ należy do Izom, ale nie jest to grupa, ponieważ nie istnieje element odwrotny np. do $f_2(x)$.

4. Pokazać, że w S_4 jedyną podgrupą rzędu 12 jest A_4 .

Hp.
$$\exists H < S_4 : |H| = 12 \land H \neq A_4$$

Z tw. Lagrange'a wiemy, że $|S_4|=|H|$ $|S_4:H|\Rightarrow |S_4:H|=2$. Stąd wiemy, że podgrupa H jest normalna oraz grupa S_4/H jest abelowa. W szczególności $S_4'< H$.

Z tego samego powodu co powyżej wiemy, że $S_4' < A_4$. Pokażę teraz, że $S_4' > A_4$. Istotnie weźmy dowolny 3-cykl $(ijk) \in S_4$. Mamy:

$$(ijk) = (ikj)^2 = ((ik)(ij))^2 = (ik)(ij)(ik)(ij) =$$

= $(ik)(ij)(ik)^{-1}(ij)^{-1} = [(ik), (ij)] \in S'_4$

Jako że podgrupa A_4 jest generowana przez 3-cykle, to $S'_4 > A_4$.

Z powyższego rozumowania wynika, że $S_4' = A_4$, więc w szczególności $A_4 < H$, ale $|A_4| = |H|$, więc $A_4 = H$ - sprzeczność.

5. Ile jest różnych grup abelowych rzędu 864?

Niech G grupa abelowa, $|G| = 864 = 2^5 \cdot 3^3$. Grupę G można przedstawić jako sumę prostą grup cyklicznych. Sprawdźmy wszystkie możliwości sum prostych (przedstawicielami grup będą ich rzędy):

Suma prosta dwóch grup cyklicznych:

$$\#\{2^5 \oplus 3^3\} = 1$$

Suma prosta trzech grup cyklicznych:

$$\#\{2 \oplus 2^4 \oplus 3^3, \quad 2^2 \oplus 2^3 \oplus 3^3, \quad 2^5 \oplus 3 \oplus 3^2\} = 3$$

Suma prosta czterech grup cyklicznych:

Suma prosta **pięciu** grup cyklicznych:

Suma prosta **sześciu** grup cyklicznych:

Suma prosta **siedmiu** grup cyklicznych:

$$\#\{2\oplus2\oplus2\oplus2\oplus2\oplus3\oplus3^2, 2\oplus2\oplus2\oplus2\oplus3\oplus3\oplus3\}=2$$

Suma prosta **ośmiu** grup cyklicznych:

$$\#\{2\oplus 2\oplus 2\oplus 2\oplus 2\oplus 3\oplus 3\oplus 3\}=1$$

Ostatecznie, grup abelowych rzędu 864 jest 1+3+5+5+4+2+1=21.

6. Skonstruować przykład nieabelowej grupy G rzędu 21 jako produkt półprosty $\mathbb{Z}/7 \rtimes \mathbb{Z}/3$

Wiemy, że $\mathbb{Z}/7 = N \triangleleft G$ oraz $\mathbb{Z}/3 = Q < G.$ Niech $\Theta: Q \ni q \rightarrow \Theta_q \in Aut(N).$ Wtedy $N \rtimes_{\Theta} Q = G.$ Biorąc $\Theta_q=id$ dostaniemy grupę cykliczną rzędu 21, więc abelową. Tego nie chcemy. Weźmy:

$$\Theta: Q \ni q \to 2q \in \mathbb{Z}/6 \simeq Aut(N),$$

ponieważ jest to nietrywialny homomorfizm $\mathbb{Z}/3 \to \mathbb{Z}/6.$ Jeśli $\varphi_0 = id$ jest automorfizmem zadanym przez $1 \to 1$, $\varphi_1(1) = 3$, to niech $\varphi_j = \varphi_1^j$. Wtedy $\varphi_2(1) = 2$, $\varphi_3(1) = 6$, $\varphi_4(1) = 4$, $\varphi_5(1) = 5$. Widać, że φ_1 generuje Aut(N) oraz $\varphi_j(1)=3^j mod 7$, dla j=0,...,5.

Mamy zatem grupę $G = N \rtimes_{\Theta} = \mathbb{Z}/7 \rtimes \mathbb{Z}/3$ z działaniem:

$$(a,x)(b,y) = (a + \Theta_x(b), x + y) = (a + \varphi_{2x}(b), x + y) = (a + 3^{2x}b, x + y) \mod 7 \text{ i mod } 3.$$

7. Sprawdzić, dla jakich $d \in \mathbb{Z}$ (niebędących kwadratem) zbiór

$$\mathbb{Z}_m = \left\{ a + b \frac{1 + \sqrt{d}}{2} : a, b \in \mathbb{Z} \right\}$$

z działaniami indukowanymi z R, jest pierścieniem.

Po pierwsze zauważmy, że dla każdego $d \in \mathbb{Z}$ (niebędącego kwadratem) ($\mathbb{Z}_m, +$) jest grupą abelową. Niech $m=\frac{1+\sqrt{d}}{2}$. Oczywiście $m\in\mathbb{Z}_m$. Pomnóżmy ze sobą dwa dowolne elementy \mathbb{Z}_m $(a,b,x,y\in\mathbb{Z})$:

$$(a+bm)(x+ym) = ax + (ay+bx)m + bym^2$$

Sprawdźmy, kiedy $m^2 \in \mathbb{Z}_m$.

$$m^2 = \left(\frac{1+\sqrt{d}}{2}\right)^2 = \frac{1+2\sqrt{d}+d}{4}$$

1°
$$d \equiv 0 \mod 4 \Rightarrow m^2 = \frac{d}{4} + \frac{1+2\sqrt{d}}{4} \Rightarrow m^2 \notin \mathbb{Z}_m$$

$$\begin{array}{ll} 1^{\circ} & d \equiv 0 \mod 4 \Rightarrow m^2 = \frac{d}{4} + \frac{1+2\sqrt{d}}{4} \Rightarrow m^2 \notin \mathbb{Z}_m \\ 2^{\circ} & d \equiv 1 \mod 4 \Rightarrow m^2 = \frac{d-1}{4} + \frac{2+2\sqrt{d}}{4} = \frac{d-1}{4} + \frac{1+\sqrt{d}}{2} \Rightarrow m^2 \in \mathbb{Z}_m \\ 3^{\circ} & d \equiv 2 \mod 4 \Rightarrow m^2 = \frac{d-2}{4} + \frac{3+2\sqrt{d}}{4} \Rightarrow m^2 \notin \mathbb{Z}_m \\ 4^{\circ} & d \equiv 3 \mod 4 \Rightarrow m^2 = \frac{d-3}{4} + \frac{4+2\sqrt{d}}{4} \Rightarrow m^2 \notin \mathbb{Z}_m \end{array}$$

3°
$$d \equiv 2 \mod 4 \Rightarrow m^2 = \frac{d-2}{4} + \frac{3+2\sqrt{d}}{4} \Rightarrow m^2 \notin \mathbb{Z}_m$$

$$4^{\circ}$$
 $d \equiv 3 \mod 4 \Rightarrow m^2 = \frac{d-3}{4} + \frac{4+2\sqrt{d}}{4} \Rightarrow m^2 \notin \mathbb{Z}_m$

Widzimy, że jedyne $d \in \mathbb{Z}$ niebędące kwadratem, dla którego $m^2 \in \mathbb{Z}_m$ to

$$d \equiv 1 \mod 4$$

Dla takiego d: $m^2 = m + \frac{d-1}{4}$, dlatego też:

$$m^3 = m^2 m = \left(m + \frac{d-1}{4}\right) m = m^2 + \frac{d-1}{4} m = \frac{d-1}{4} + \left(\frac{d-1}{4} + 1\right) m \in \mathbb{Z}_m$$

Sprawdźmy, czy spełnione są pozostałe warunki:

· Czy dla dow. el. a + bm, x + ym, $p + qm \in \mathbb{Z}_m$ mnożenie jest łączne?

$$((a+bm)(x+ym))(p+qm) = (ax + (ay + bx)m + bym^{2})(p+qm) =$$

$$= axp + (ayp + bxp + axq)m + (byp + ayq + bxq)m^{2} + byqm^{3} =$$

$$= (a+bm)(xp + (xq + yp)m + yqm^{2}) = (a+bm)((x+ym)(p+qm)) \checkmark$$

 \cdot Czy dla dow. el. $a+bm,\,x+ym,\,p+qm\in\mathbb{Z}_m$ zachodzi rozdzielność mnożenia względem dodawania?

$$(a + bm + x + ym)(p + qm) = ap + xp + (bp + yp + aq + xq)m + (bq + yq)m^{2}$$
$$((a + bm)(p + qm)) + ((x + ym)(p + qm)) = ap + (aq + bp)m + bqm^{2} + xp + (xq + yp)m + yqm^{2} \checkmark$$

· Czy istnieje element neutralny mnożenia?

$$1 = 1 + 0m \checkmark$$

(8a) Znaleźć stopień rozszerzenia $\mathbb{Q}(\sqrt[3]{2})$ nad \mathbb{Q}

Na początek zauważmy, że $\sqrt[3]{2}$ jest algebraiczny nad \mathbb{Q} , bo x^3-2 zeruje się dla $\sqrt[3]{2}$, więc $[\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}] \le 3$. Jako że $\sqrt[3]{2} \notin \mathbb{Q}$ (istotnie, w równaniu $2a^3 = b^3$ liczba dwójek w rozkładzie na liczby pierwsze w $2a^3$ zawsze przystaje do 1 mod 3, a w b^3 zawsze przystaje do 0 mod 3), to $[\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}] \ge 2$.

Załóżmy, że bazą $\mathbb{Q}(\sqrt[3]{2})$ nad \mathbb{Q} jest 1, $\sqrt[3]{2}$. Sprawdźmy, czy $\sqrt[3]{4} \in \mathbb{Q}(\sqrt[3]{2})$. Jeżeli tak, to

$$\sqrt[3]{4} = a + b\sqrt[3]{2}$$

po podniesieniu do sześcianu otrzymujemy

$$4 = a^3 + 2b^3 + 3\sqrt[3]{2}a^2b + 3\sqrt[3]{4}ab^2$$

ale bazą jest 1, $\sqrt[3]{2}$, więc 3ab = 0, co daje sprzeczność. Wiemy jednak, że

$$\sqrt[3]{2}^2 = \sqrt[3]{4} \Rightarrow \sqrt[3]{4} \in \mathbb{Q}(\sqrt[3]{2}),$$

więc 1, $\sqrt[3]{2}$ nie może być bazą $\mathbb{Q}(\sqrt[3]{2})$ nad \mathbb{Q} . Stąd widać, że $[\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}] = 3$.

(8b) Znaleźć
$$a, b, c \in \mathbb{Q}$$
 dla których $(1 + \sqrt[3]{2} + \sqrt[3]{4})^{-1} = a + b\sqrt[3]{2} + c\sqrt[3]{4}$
 $(1 + \sqrt[3]{2} + \sqrt[3]{4})(a + b\sqrt[3]{2} + c\sqrt[3]{4}) = 1$

$$(a+2b+2c) + \sqrt[3]{2}(a+b+2c) + \sqrt[3]{4}(a+b+c) = 1$$

Otrzymujemy układ równań:

$$\begin{cases} a+2b+2c=1\\ a+b+2c=0\\ a+b+c=0 \end{cases}$$

z którego widać, że a = -1, b = 1, c = 0.