Exercícios: revisão A1

Disciplina: Modelagem Estatística Instrutor: Luiz Max Carvalho Monitor: Ezequiel Braga

Abril/2025

Questões

- 1. (Weighted regression) Em muitas situações faz sentido ponderar alguns pontos de dados mais do que outros ao ajustar um modelo de regressão, o que é feito usando mínimos quadrados ponderados. Para isso, considere que estamos interessados em minimizar $\sum_{i=1}^n w_i (y_i \boldsymbol{X}_i \boldsymbol{\beta})^2$, para $\boldsymbol{X} \in \mathbb{R}^{n \times (p+1)}$, com a primeira coluna de 1's; $\boldsymbol{Y} \in \mathbb{R}^n$; $\boldsymbol{\beta} \in \mathbb{R}^{p+1}$; e $w_i > 0$, $i = 1, \ldots, n$.
 - (a) Escreva o problema de minimização na forma matricial, usando \boldsymbol{X} , $\boldsymbol{Y} \in \boldsymbol{W} = \operatorname{diag}(\boldsymbol{w})$, com $\boldsymbol{w} = (w_1, w_2, \dots, w_n)^T$.
 - (b) Determine o estimador de mínimos quadrados para β , $\hat{\beta}_{wls}$.
 - (c) O modelo acima pode ser usado quando a premissa de homocedasticidade é violada, isto é, os erros não possuem a mesma variância. Assim, suponha que $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, com $\boldsymbol{\epsilon} \sim \text{MVN}(0, \boldsymbol{V})$ e $\boldsymbol{V} \in \mathbb{R}^{n \times n}$ tal que $\boldsymbol{V}_{ij} = \begin{cases} \sigma_i^2, & \text{se } i = j; \\ 0, & \text{c.c.} \end{cases}$.
 - i. Calcule a log-verossimilhanca do modelo.
 - ii. Determine o estimador de máxima verossimilhança de $\boldsymbol{\beta}$ e deduza a matriz de pesos $\boldsymbol{W}.$
- 2. O modelo linear (de regressão) é um dos cavalos de batalha da Estatística, sendo aplicado em problemas de Finanças, Medicina e Engenharia. Vamos agora estudar como utilizar as propriedades deste modelo para desenhar experimentos com garantias matemáticas de desempenho e obter estimadores de quantidades de interesse.
 - a) Uma prática comum em regressão é a de **centrar** a variável independente (covariável), isto é subtrair a média; isto facilita a interpretação do intercepto e também simplifica alguns cálculos importantes. Mostre que no caso com a covariável centrada, $\hat{\beta_0}$ e $\hat{\beta_1}$ são independentes;
 - b) Mais uma vez considerando o caso centrado, mostre como obter o número de observações n que faz com que a variância do estimador de máxima verossimilhança do intercepto seja menor que v > 0;

- c) Mostre como obter um estimador não-viesado da quantidade $\theta = a\beta_0 + b\beta_1 + c$, com $a, b, c \neq 0$, e encontre o seu erro quadrático médio.
- d) Quando $x_{\text{pred}} = \bar{x}$, mostre como obter o número de observações n necessário para que o intervalo de predição de $100(1 \alpha_0)\%$ para a variável-resposta (Y) tenha largura menor ou igual a l > 0 com probabilidade pelo menos γ .

Dicas:(i) A expressão dependerá $tamb\'{e}m$ da variância dos resíduos, σ^2 e (ii) Você não precisa calcular n, apenas mostrar o procedimento para obtê-lo.

3. (Regressão polinomial) Para i = 1, 2, ..., n, considere o modelo

$$Y_i = aX_i + bX_i^2 + cX_i^3 + d + \varepsilon_i, \tag{1}$$

onde ε_i são variáveis aleatórias com média 0 e variância constante e X_i são constantes observadas.

- a) O modelo em questão é linear?
- b) Como você estimaria os parâmetros desse modelo? Escreva a função de perda.
- c) É possível obter um estimador não-viesado de $\theta = (a, b, c, d)$?
- d) Qual a interpretação de d? E a de b?
- e) (Desafio) Mostre que o estimador de mínimos quadrados está bem definido se e somente se todos os X_i são distintos.
- 4. **(Família exponencial)** Considere as distribuições de probabilidade abaixo. Usando as propriedades da família exponencial, para cada uma, mostre:
 - i) A estatística suficiente e sua esperança
 - ii) O estimador de máxima verossimilhança.
 - (a) Pareto. Para y > 1 e $\theta > 0$ a densidade vale

$$f(y;\theta) = \theta y^{-\theta - 1}.$$

(b) Binomial negativa. Para $y \in \mathbb{N} \cup \{0\}$ e $\theta, \phi > 0$ a função de massa vale

$$f(y;\theta) = {y + \phi - 1 \choose y} \left(\frac{\theta}{\theta + \phi}\right)^y \left(\frac{\phi}{\theta + \phi}\right)^{\phi},$$

com ϕ fixo e conhecido.