Краткий обзор статей по плазмо-химическому травлению

1 Inductively coupled plasma etching of III–V antimonides in BCl_3/Ar and Cl_2/Ar

(DOI: 10.1116/1.590678)

Общая информация: Исследование ICP травления GaSb и AlGaAsSb в плазмах BCl_3/Ar и Cl_2/Ar . Основной фокус — влияние параметров (мощность ICP, самонапряжение, давление, состав газа) на скорость травления, селективность и морфологию поверхности.

Конкретная информация:

- Образцы:
 - GaSb (нелегированный).
 - $Al_{0.9}Ga_{0.1}As_{0.07}Sb_{0.93}$ (нелегированный, выращенный методом MBE).
- Газовая смесь:
 - BCl₃/Ar: 25 sccm BCl₃ + 5 sccm Ar.
 - Cl_2/Ar : 25 sccm $\text{Cl}_2 + 5$ sccm Ar.
- Условия травления:
 - **Температура:** 10°C (охлаждение катода гелием).
 - **Давление:** 2 мТорр (базовое, варьировалось от 1 до 10 мТорр).
 - **Мощность ICP:** 250–1000 Вт (базовая 750 Вт).
 - **Самонапряжение RF:** 50–300 В (базовое 100 В).
 - Длительность: 2.5 минуты.
- Результаты:
 - BCl₃/Ar:
 - * Скорость травления GaSb: до 5100 Å/мин.
 - * Скорость травления AlGaAsSb: до 4200 Å/мин.
 - * Селективность GaSb/AlGaAsSb: ~1.34.
 - * Гладкие поверхности, анизотропные профили.
 - Cl_2/Ar :
 - * Скорость травления GaSb: до 4.6 μ м/мин.
 - * Химически доминирующий процесс.
 - Механизмы:
 - * BCl₃/Ar: доминирует физическое распыление.
 - * $\mathrm{Cl_2/Ar}$: доминирует химическая реакция.

2 BCl_3/Ar ICP Etching of GaSb and Related Materials for Quaternary Antimonide Laser Diodes

(DOI: 10.1149/1.1885305)

Общая информация: Исследование ICP травления GaSb, AlGaAsSb и InGaAsSb в плазме BCl₃/Ar для создания лазерных диодов. Основной фокус — влияние соотношения газов, ускоряющего напряжения и мощности ICP на скорость травления, селективность и морфологию поверхности.

Конкретная информация:

• Образцы:

- GaSb (нелегированный).
- AlGaAsSb (нелегированный).
- InGaAsSb (нелегированный).
- Газовая смесь: BCl₃/Ar.
 - Расход BCl₃: 0-80% (при общем потоке 20 sccm).
 - Аргон: дополнение до 20 sccm.

• Условия травления:

- Давление: 4 мТорр.
- **Мощность ICP:** 150–400 Вт.
- Самонапряжение (dc bias): -70 до -200 В.
- Охлаждение: водяное охлаждение катода.
- **Маска:** фоторезист AZ6809.

• Результаты:

- Скорость травления:

- * GaSb: до ~7100 Å/мин (при 400 Bт ICP).
- * AlGaAsSb: аналогично GaSb (селективность ~ 1.04).
- * InGaAsSb: значительно ниже (1600–7100 Å/мин).

– Морфология поверхности:

- * GaSb и AlGaAsSb: RMS шероховатость $\sim 1.5-2.0$ нм (сравнимо с необработанными образцами).
- * InGaAsSb: шероховатость \sim 8.6 нм (при 60% BCl₃).

– Механизмы:

- * Доминирует ионно-ассистированная десорбция продуктов травления.
- * Низкая скорость травления InGaAsSb связана с нелетучестью InCl₃.
- * При высоких концентрациях BCl₃ усиливается физическое распыление.

3 Inductively Coupled CH₄/H₂ Plasma Etching Process for Mesa Delineation of InAs/GaSb Type-II Superlattice Pixels (DOI: 10.1049/mnl.2018.5549)

Общая информация: Исследование ICP травления сверхрешёток InAs/GaSb типа II в плазме $\mathrm{CH_4/H_2}$ для создания меза-структур с малым шагом пикселей. Основной фокус — оптимизация процесса для получения гладких вертикальных профилей и снижения тёмнового тока.

Конкретная информация:

• Образцы:

- Сверхрешётка InAs/GaSb типа II (р-і-п структура, выращенная методом MBE на GaSb подложке).
- Толщина активного слоя: $1.3~\mu$ м.
- Газовая смесь: CH₄/H₂ (15:40 sccm).
- Условия травления:
 - Давление: 30 мТорр.
 - **Мощность ICP:** 300 Вт.
 - **Мощность RF:** 200 Вт.
 - Маска: алюминий (Al).
 - Особенность: исключение этапа очистки О2 плазмой.

• Результаты:

- Скорость травления: до $0.11~\mu$ м/мин (глубина до $2.4~\mu$ м).
- **Морфология:** гладкие вертикальные стенки (шаг пикселей 10 μ м, ширина межпиксельного зазора 2 μ м).

• Электрические характеристики:

- Тёмновой ток: 0.11 A/cm^2 (0.2 B, 70 K).
- Доминирующий механизм: туннелирование через ловушки в структуре.

• Механизмы:

- -Исключение O_2 плазмы предотвращает окисление GaSb и шероховатость.
- Высокая скорость травления связана с термической активацией реакций на поверхности GaSb.

4 Gas mixture influence on the reactive ion etching of InSb in an inductively coupled methane-hydrogen plasma

(DOI: 10.1088/0268-1242/30/6/065014)

Общая информация: Исследование ICP травления InSb в плазме ${\rm CH_4/H_2/Ar}$ для создания меза-фотодиодов с гладкими вертикальными профилями. Основной фокус — влияние состава газовой смеси, давления и добавления ${\rm Ar}$ на скорость травления и морфологию поверхности.

Конкретная информация:

• Образцы:

- InSb (n-типа, p-типа и нелегированный), выращенный методом MBE.
- Структура: буферный слой (400 нм), активный слой (3 μ м), р-слой (500 нм).
- Газовая смесь: СН₄/H₂/Ar.
 - Соотношение CH_4/H_2 : 10–40% (общий поток 25 sccm).
 - Добавление Ar: 10–60 sccm.

• Условия травления:

- Давление: 10 мТорр.
- **Мощность ICP:** 500 Вт. (dc bias: -75 В.)
- **Температура катода:** 22°C (охлаждение гелием).
- **Маска:** SiO₂ или фоторезист.

• Результаты:

- **Скорость травления:** до 110 нм/мин (при 40 sccm Ar).
- Морфология:
 - * Шероховатость RMS: 7 нм (оптимальные условия).
 - * Стехиометрия поверхности: In/Sb 1 (при добавлении Ar).
- Электрические характеристики:
 - * Тёмновой ток: 8×10^{-5} A/см² (-50 мВ, 80 К).
 - * Доминирующий механизм: объёмные токи (туннелирование через ловушки).

• Механизмы:

- Добавление Ar улучшает удаление продуктов травления In (InCH₃) за счёт физического распыления.
- Высокие концентрации Ar (>40 sccm) увеличивают шероховатость.

5 Inductively Coupled Plasma Etching in ICl- and IBr-Based Chemistries. Part II: InP, InSb, InGaP, and InGaAs (DOI: 10.1016/S0169-4332(98)00594-7)

Общая информация: Исследование ICP травления материалов InP, InSb, InGaP и InGaAs в плазмах ICl/Ar и IBr/Ar. Основной фокус — влияние параметров плазмы (мощность ICP, RF, давление) на скорость травления и морфологию поверхности.

Конкретная информация:

• Образцы:

- InP (легированный Fe).
- InSb (нелегированный).
- InGaP и InGaAs (эпитаксиальные слои на подложках GaAs/InP).

• Газовая смесь:

- ICl/Ar: 0-100% ICl (общий поток 15 sccm).

– IBr/Ar: 0–100% IBr (общий поток 15 sccm).

• Условия травления:

- Давление: 5–20 мТорр.
- **Мощность ICP:** 250–750 Вт.
- **Мощность RF:** 50–350 Bт (dc bias: от −74 до −308 B)

• Результаты:

– Скорость травления:

- * IBr/Ar: до 3.6 μ м/мин (InSb), 3.1 μ м/мин (InP).
- * ICl/Ar: до $2.2 \, \mu$ м/мин (InP), $1.7 \, \mu$ м/мин (InSb).

- Морфология поверхности:

- * ICl/Ar: шероховатость RMS 7.4 нм (InGaP).
- * IBr/Ar: шероховатость RMS 27.8 нм (InGaP).
- * InP: шероховатость >20 нм (обе химии).

- Зависимость от параметров:

- * Скорость травления растёт с увеличением мощности ICP и RF.
- * Снижение скорости при повышении давления (>10 мТорр).

• Механизмы:

- Высокая скорость в IBr/Ar связана с летучестью продуктов травления (InBr₃ сублимирует).
- Ухудшение морфологии в IBr/Ar обусловлено агрессивным физическим распылением.

6 Inductively Coupled Plasma Etching of III–V Semiconductors in Cl₂-Based Chemistries

(DOI: 10.1016/S1369-8001(98)00002-X)

Общая информация: Исследование ICP травления III–V полупроводников (GaAs, AlGaAs, GaSb, GaP, InP, InGaAs, InAs, InGaAsP, InSb, InAlAs) в плазмах Cl_2/Ar , Cl_2/N_2 , Cl_2/H_2 . Основной фокус — влияние параметров плазмы на скорость травления и морфологию поверхности.

Конкретная информация:

• Образцы:

- Ga-материалы: GaAs, AlGaAs, GaSb, GaP.
- In-материалы: InP, InGaAs, InAs, InGaAsP, InSb, InAlAs.

• Газовая смесь:

 $- Cl_2/Ar, Cl_2/N_2, Cl_2/H_2$ (общий поток 15 sccm).

• Условия травления:

- Давление: 2–15 мТорр.
- Мощность ICP: 0–1500 Вт.

- **Мощность RF:** 50–400 Bt (dc bias: от –35 до –265 B).

• Результаты:

- Скорость травления:
 - * Ga-материалы: 2000–5000 Å/мин (750 Bt ICP, dc bias -150 B).
 - * In-материалы: до 6000 Å/мин (InSb).
- Морфология:
 - * Gа-материалы: гладкие поверхности (RMS 1 нм).
 - * Іп-материалы: узкое окно параметров для гладких поверхностей.
- Оптимальные условия: Cl₂/Ar при низком давлении (2 мТорр).

• Механизмы:

- Высокая плотность ионов в ICP обеспечивает удаление малолетучих продуктов ($InCl_3$).
- Cl₂/Ar демонстрирует лучшую селективность и универсальность для всех материалов.

7 Inductively Coupled Plasma Etching of III–V Semiconductors in BCl₃-Based Chemistries I: GaAs, GaN, GaP, GaSb and AlGaAs

(DOI: 10.1023/A:1007052629883)

Общая информация: Исследование ICP травления GaAs, GaN, GaP, GaSb и AlGaAs в плазмах BCl_3/N_2 , BCl_3/Ar , BCl_3/H_2 . Основной фокус — влияние добавок газа, давления и мощности на скорость травления и морфологию поверхности.

Конкретная информация:

- Образцы:
 - Ga-материалы: GaAs, GaN, GaP, GaSb, AlGaAs.
- **Газовая смесь:** BCl₃/N₂, BCl₃/Ar, BCl₃/H₂ (общий поток 15 sccm).
- Условия травления:
 - Давление: 2–15 мТорр.
 - Мощность ICP: до 1000 Вт.
 - **Самонапряжение** (dc bias): от –100 до –680 В.
 - **Маска:** фоторезист Shipley 4330.
- Результаты:
 - Скорость травления:
 - * Максимум при 33% N₂ или 87% H₂ в BCl₃.
 - * GaAs, GaP, GaSb, AlGaAs: до 1.2 μ м/мин.
 - * GaN: до 0.3 μ м/мин.
 - Морфология:
 - * Гладкие поверхности (RMS 0.2-0.8 нм).

- * Стехиометрия сохраняется.
- Давление: снижение скорости травления >5 мТорр.

• Механизмы:

- Добавление N₂ усиливает диссоциацию BCl₃, увеличивая концентрацию Cl.
- Низкое давление и умеренный dc bias улучшают удаление продуктов травления.

8 Study of Mesa Etching for Infrared Detector Based on InAs/GaSb Superlattice

(DOI: 10.4028/www.scientific.net/AMR.760-762.137)

Общая информация: Исследование ICP травления меза-структур для инфракрасных детекторов на основе сверхрешёток InAs/GaSb. Основной фокус — влияние параметров травления (время, % Cl₂, мощность RF) на скорость травления и морфологию поверхности.

Конкретная информация:

• Образцы:

- InAs/GaSb сверхрешётки (320 периодов, толщина 1.8 μ м), выращенные методом МВЕ на подложках GaSb.
- Образцы GaSb и InAs (объёмные материалы).
- Газовая смесь: Cl_2/Ar (5/15 sccm).

• Условия травления:

- Давление: 0.9–1 Па.
- **Мощность ICP:** 400 Вт.
- **Мощность RF:** 100 Вт (варьируется: 50–150 Вт).
- **Маска:** SiO₂ (200 нм).

• Результаты:

– Скорость травления:

- * GaSb: 1.3 μ м/мин (стабильная), InAs: 0.5 μ м/мин (ниже из-за нелетучести InCl_x).
- * Сверхрешётки: до 1.98 μ м/мин (максимум при 80% Cl₂).

- Морфология:

- * Оптимальные условия: 20-40% Cl₂ (шероховатость RMS 10 нм).
- * При >60% Cl_2 шероховатость до 50 нм (накопление продуктов травления).

– Омические контакты:

- * GaSb: ICP травление удаляет оксидный слой, улучшая контакт с Ti/Au.
- * InAs: омический контакт формируется без дополнительной обработки.

• Сравнение с мокрым травлением:

 Сухое травление обеспечивает меньшую шероховатость (10 нм против >80 нм для тартатного раствора).

• Механизмы:

- Высокая мощность RF усиливает физическое распыление, удаляя InCl_x.
- Избыток Cl₂ приводит к накоплению продуктов и дефектам поверхности.

9 Inductively Coupled Plasma Etching of III–V Antimonides in BCl₃/SiCl₄ Etch Chemistry

(DOI: 10.1016/j.tsf.2008.05.029)

Общая информация: Исследование ICP травления GaSb, AlGaAsSb и InGaAsSb в газовой смеси $BCl_3/SiCl_4$. Основной фокус — влияние параметров травления (мощность смещения, мощность ICP, состав газа, давление) на скорость травления, селективность и морфологию поверхности. Применение для создания гетеропереходных фототранзисторов и глубокого травления GaSb (до 90 мкм).

Конкретная информация:

• Образцы:

- GaSb (Те-легированные подложки).
- Эпитаксиальные слои: $Al_{0.25}Ga_{0.75}As_{0.02}Sb_{0.98}$ и $In_{0.18}Ga_{0.82}As_{0.17}Sb_{0.83}$, выращенные методом MBE на подложках GaSb.
- Газовая смесь: BCl₃/SiCl₄ (вариация состава: 2–5 sccm BCl₃, 5–2 sccm SiCl₄).
- Условия травления:
 - Давление: 0.3–1.5 Па.
 - **Мощность ICP:** 50–300 Вт.
 - **Мощность RF:** 50–250 Вт.
 - Маски:
 - * Для мелкого травления (<10 мкм): AZ-4330 фоторезист (3 мкм).
 - * Для глубокого травления (90 мкм): АZ-4903 фоторезист (17 мкм).
 - **Предварительная обработка:** Ar-плазма (2 мин, 250 Вт RF, 1.0 Па) для удаления оксидов.

• Результаты:

- Скорость травления:
 - * GaSb: до 4 мкм/мин (максимум при 300 Bт ICP, 100 Bт RF, 1.5 Па).
 - * AlGaAsSb: скорость близка к GaSb (селективность 1).
 - * InGaAsSb: скорость 40% от GaSb (низкая летучесть $InCl_x$).

– Морфология:

- * Гладкие поверхности (SEM-анализ) для всех материалов.
- * Вертикальные стенки без подтравливания даже при высоком давлении.
- * Шероховатость стенок обусловлена маской (AZ-4330/AZ-4903).

- Глубокое травление GaSb:

- * Глубина до 90 мкм (17 мкм маски AZ-4903).
- * Селективность маска/GaSb: 1:10.
- * Незначительный положительный угол стенок при длительном травлении.

• Сравнение с другими методами:

- $\mathrm{BCl_3/SiCl_4}$ vs. $\mathrm{Cl_2/Ar}$: выше скорость, гладкие поверхности, вертикальные стенки
- Отсутствие полимерных загрязнений (в отличие от CH₄/H₂-содержащих смесей).

• Механизмы:

- Высокая мощность ICP увеличивает плотность Cl-радикалов, ускоряя химическое травление.
- SiCl₄ повышает концентрацию Cl, BCl₃ подавляет подтравливание.
- Низкая летучесть $InCl_x$ ограничивает скорость травления InGaAsSb.

• Применения:

- Изготовление зеркал и решёток для лазерных диодов среднего ИК-диапазона.
- Окна в подложках GaSb для фотодетекторов с задней засветкой.

10 Room Temperature Inductively Coupled Plasma Etching of InAs/InSb in $BCl_3/Cl_2/Ar$

(DOI: 10.1016/j.mee.2012.07.018)

Общая информация: Исследование ICP травления InAs и InSb при комнатной температуре в газовой смеси $BCl_3/Cl_2/Ar$. Основной фокус — оптимизация параметров (состав газа, мощность ICP/RF, давление) для достижения анизотропного травления с гладкой поверхностью и минимизацией микромаскирования.

Конкретная информация:

• Образцы:

- InAs и InSb (100) (без легирования, метод Чохральского).
- \bullet Газовая смесь: $BCl_3/Cl_2/Ar$ (общий расход $BCl_3/Cl_2 10$ sccm, Ar 5 sccm).

• Условия травления:

- Давление: 2–12 мТорр (оптимум: 4 мТорр).
- **Мощность ICP:** 500–2000 Вт (оптимум: 1000 Вт).
- **Мощность RF:** 100–300 Вт (оптимум: 100 Вт).
- **Маска:** AZ 5214 фоторезист (1.6 мкм).
- **Температура:** 20 °C (без нагрева).

• Результаты:

– Скорость травления:

- * InAs: 820 Å/мин (рецепт-А), максимум 1760 $\check{\rm A}$ /мин (1500 Вт ICР).
- * InSb: 2800 Å/мин (рецепт-А), максимум 3040 Å/мин (1500 Вт ICP).

- Морфология:

- * Шероховатость поверхности (RMS):
 - · InAs: 0.25 нм (рецепт-A) vs. 1.95 нм (Cl_2/Ar).
 - · InSb: 0.57 нм (рецепт-A) vs. 12.4 нм (Cl_2/Ar).
- * Вертикальные стенки (угол 10°).
- * Микромаскирование устранено при рецепте-А.

– Оптимальный рецепт-А:

- * Coctab: 7.5 sccm BCl₃, 2.5 sccm Cl₂, 5 sccm Ar.
- * Параметры: 4 мТорр, 1000 Вт ICP, 100 Вт RF.

• Зависимости:

- Состав газа: Минимум шероховатости при 25% Cl_2 .
- Мощность ІСР: Рост скорости до 1500 Вт, затем микромаскирование.
- **Давление:** Увеличение давления \rightarrow снижение скорости и рост шероховатости.
- Мощность RF: Рост скорости, но увеличение шероховатости InSb до 34 нм.

• Механизмы:

- BCl $_3$ усиливает физическое распыление, Cl $_2$ химическое травление.
- Баланс $\mathrm{BCl_3/Cl_2}$ устраняет микромаскирование $\mathrm{InCl_x}$.

• Применения:

– Изготовление НЕМТ, магнитных датчиков Холла, ИК-фотодетекторов.

Некоторые пояснения

1. Самонапряжение (dc self-bias)

Определение: Постоянное напряжение, возникающее на поверхности подложки в плазме при подаче радиочастотного (RF) сигнала на электрод. Управляет энергией ионов, участвующих в процессе травления.

Механизм возникновения:

- Электроны (легкие и подвижные) быстрее достигают электрода, чем положительные ионы.
- На поверхности подложки формируется отрицательный заряд.
- Для компенсации заряда возникает постоянное напряжение (**self-bias**), ускоряющее ионы к поверхности.

Роль в процессе:

- Контроль энергии ионов:
 - Высокое напряжение \rightarrow большая энергия ионов \rightarrow усиление физического распыления (например, удаление $InCl_3$).
 - Низкое напряжение \rightarrow деликатное травление (например, для GaAs).
- Управление селективностью: Позволяет регулировать соотношение химического/физического вклада в травление.

Регулирование параметров:

- Мощность RF-генератора:
 - Увеличение мощности † самонапряжение.
- Давление в камере:
 - Низкое давление ↑ самонапряжение (меньше столкновений ионов с газом).

Обозначение в статьях:

- ullet Часто указывается как dc bias или V_b .
- Ключевой параметр для воспроизводимости процессов ІСР-травления.

2. Индуктивно-связанная плазма (ІСР) для травления

Что такое ІСР?

- ICP (Inductively Coupled Plasma) метод генерации высокоплотной плазмы с помощью индукционной катушки, питаемой радиочастотным (RF) сигналом (обычно 13.56 МГц).
- Основное применение: Травление и осаждение тонких плёнок в микроэлектронике, оптоэлектронике и MEMS-технологиях.

Принцип работы

• Генерация плазмы:

- Переменное магнитное поле от катушки индуцирует ток в газе (например, Ar, $\mathrm{Cl}_2,\,\mathrm{BCl}_3),$ ионизируя его.
- Образуется плазма с высокой плотностью электронов и ионов $(10^{11}-10^{12}~{\rm cm}^{-3})$.

• Управление процессом:

- **ICP мощность**: контролирует плотность плазмы (количество активных радикалов).
- **RF мощность**: задаёт энергию ионов, бомбардирующих подложку (управление анизотропией).

Преимущества ІСР

- Глубокое анизотропное травление: Возможность создания структур глубиной >90 мкм с вертикальными стенками.
- Минимальные повреждения: Низкая энергия ионов при высокой плотности плазмы уменьшает дефекты.
- **Гибкость:** Поддержка различных газовых смесей ($BCl_3/SiCl_4$, Cl_2/Ar) для химического, физического или гибридного травления.

Четыре основных типа плазменного травления

Sputtering (Физическое травление)

• Принцип: Удаление материала происходит исключительно за счёт физической бомбардировки высокоэнергетическими ионами (например, Ar⁺). Химические реакции отсутствуют.

• Особенности:

- Низкая селективность (зависит от атомной массы материала).
- Высокая анизотропия (вертикальные стенки).
- Пример: Удаление оксидов Al_2O_3 с помощью Ar^+ .

Pure Chemical Etching (Чисто химическое травление)

• **Принцип:** Материал растворяется за счёт химических реакций с нейтральными радикалами (Cl, F) в плазме. Ионы не участвуют в процессе.

• Особенности:

- Высокая селективность (зависит от реакционной способности материала).
- Изотропные профили (равномерное травление во всех направлениях).
- Пример: Травление Si в CF₄/O₂ для создания полостей.

Ion Energy-Driven Etching (RIE-подобное)

• **Принцип:** Комбинация физического и химического механизмов. **Ионы** (например, Ar) активируют поверхность, облегчая реакцию с радикалами.

• Особенности:

- Умеренная селективность.
- Анизотропные профили (угол контролируется энергией ионов).
- Пример: Травление SiO₂ в CHF₃/Ar для создания вертикальных структур.

Ion Inhibitor Etching (Травление с ингибиторами)

• **Принцип:** Добавление **газов-ингибиторов** (например, C₄F₈), которые образуют защитный полимерный слой на боковых стенках, предотвращая боковое травление.

• Особенности:

- Высокая анизотропия (глубокие структуры с вертикальными стенками).
- Ступенчатый процесс (циклы травления/покрытия).
- Пример: Bosch-процесс для MEMS-устройств.

Ключевые различия

Тип	Механизм	Селективность	Анизотропия
Sputtering	Физический	Низкая	Высокая
Pure Chemical	Химический	Высокая	Низкая
Ion Energy-Driven	Физико-химический	Средняя	Средняя/Высокая
Ion Inhibitor	Ингибиторный	Средняя	Очень высокая