

Software-Based Design and Evaluation of Multiple Antenna Systems

Maryam Dehghani Estarki, Rodney G School of Engineering Science Simon Fraser University

October 2013
WIRELESS WORLD
RESEARCH FORUM

Outline

- Introduction
- Motivation
- Background
- Problem Definition
- Scenario Model
- **Diversity Analysis**
- Results
- Summary

Driver: Demand for Spectrum

Larger traffic

Greater number of users

- Smaller cells
- MIMO: offers the most potential
- Challenging research for MIMO:
 - designing for large scale
 - developing the antennas and their deployment
 - developing the communications technologies

Research Needed Now!

- Antenna Evaluation
- Compactness
- Spatial efficiency
- Radiation efficiency
- Embedded patterns
- Communications limits

Compact 12-port MIMO antenna Designed, simulated, software performance-evaluated,

software performance-evaluated, built and physically measured at the Sierra Wireless lab at SFU

Motivation for More Compact, Big-MIMO

- Design of MIMO antennas at higher frequencies
- Propagation environment is critical
- Physical antenna configuration 60 GHz high efficiency
- MIMO antenna efficiency
 - Cost of the network
 - Efficiency of the network
- Channel knowledge
- Adaptation of weights
- Communications design

CMOS-compatible, on-chip antenna

Contributions

Direction forward for

- **Evaluation**
- **Planning**

Large scale MIMO

Computer simulation

MIMO antenna parameters

Geographical/in-building data bases

Problem Definition

Digital Communications

Goal: high throughput

Single Antenna:

 Fluctuations tens to hundreds of dB

Single Modulation?

Cannot provide spectral efficiency

Problem Definition

Metrics for digital communications

Information-theoretic capacity

Practicable capacities?

Error rates

Problem Definition

The Analogue Path to Digital Communications

Getting closer to the **Shannon Bound:**

adaptive modulation and coding

Channel Evaluation Techniques

Physical Measurement

- Statistical Modeling
- Physical Modeling

Channel Modeling: Ray-Tracing

- Providing a quasi-realistic channel
- Different ray-tracers, different calculations and criteria

4	А	В	С	D	E	G	Н
1	Delay (mus)	Azimuth-of-De	Elevation-of-De	Azimuth-of-A	Elevation-of-A	Amplitude (dB)	Phase (deg)
2	0.945	-20	-14.6	-114.5	14.6	-118.2	115.6
3	0.881	18.1	-3	134.8	49	-130.7	-91.7
4	0.957	-20	-14.4	-139.7	14.4	-121.3	133.7
5	0.987	-20	-14	-91.8	14	-127.8	4.2
6	1.157	38.9	-11.9	154.6	11.9	-128.2	55.8
7	1.057	-17.1	-13	-129.2	13	-138.3	91.1
8	1.176	38.9	-11.7	126.1	11.7	-132	-15.1
9	0.898	19	-3	177.6	43.8	-135.1	85.8
10	1 616	19.6	-2.5	152 <i>/</i> I	2.5	-132 9	83 9

Sample of ray-traced file, i.e., a file of incident signals at the receiver point

Example: Scenario

Receiver trajectory and transmitter location using Google maps

Summed Field Strength

- The SNR is much higher for the line-of-sight part of the trajectory
- Frequency=1 GHz

Diversity Analysis

- Metric for diversity performance: diversity gain
- Two dipoles or monopoles mounted on the ground plane
- Spacing of antennas = l_{mn}

Diversity Gain:

statistical improvement of SNR, from applying diversity

Diversity Analysis

- Selection combining (SC)
- Equal gain combining (EGC)
- Maximum ratio combining (MRC)

Diversity Gain: Results

- Benchmark spacing
- $l_{\rm mn}$ = 1 λ
- Optimum benchmark **MRC**

Diversity Gain: Results

- Different spacings (l_{mn}) .
- Even two branches provide tens of dB improvement for diversity gain

Diversity Gain: Results

- Variation of diversity gain for different probabilities
- Vary high diversity gain is achieved by only two antennas

Summary: Simple Example of Channel

signal type	10% DG	5% DG	1% DG
raw fading	6.36dB	8.78dB	15.78dB
fast fading	6.61dB	8.26dB	13.40dB

Summary

- There is no standard for MIMO (or any multiport) antenna evaluation.
- There are very few proposed methods to evaluate the performance of multiport antennas.
- Several metrics are widely used to describe digital communications performance, all indirect (not accurate for a practical situation).
- Physical modeling can be applied to evaluate the antennas performance
- No standard exists for ray-tracing codes.
- Lots to do! The directions forward and the required research is laid out in the written paper.