Lab Session

Tao Wang, tw1921@nyu.edu
September 8

Outline

- VM setup (Demo)
- Preview on Lecture 2
 - OSI 5-layer model
 - Packet-switching and Circuit-switching network
- Q&A

VM setup

- Dependencies
 - Vagrant
 - a tool managing virtual machine environment
 - instructions of various platforms (e.g., MacOS, Linux, Windows)
 - Virtualbox
 - a general-purpose full virtualizer
 - Git
 - https://docs.google.com/document/d/1vMIONle4fkI4h50rWhFXLFtZCAfrwqn44Jz6HEIWew/edit?usp=sharing
- Base image
 - https://github.com/CSCI-UA0480-009/base-image
 - go to cloned folder and vagrant up

Troubleshooting

- no "--clipboard-mode" option
 - edit ~/.vagrant.d/boxes/peru-VAGRANTSLASH-ubuntu-18.04-desktopamd64/20200901.01/virtualbox/Vagrantfile
 - change "--clipboard-mode" to "--clipboard"
- other issue
 - Google it and post your solutions on piazza!

An example

OSI 5-layer model

- Application Layer
 - Exchange data (e.g., Zoom, Google, etc.)
- Transport Layer
 - Determines the rate you can send your packets (TCP, UDP, etc.)
- Network Layer
 - Determines which path your packets will go (IP, etc.)
- Data Link Layer
 - Prepares frames for packet transmission (e.g., error detection code)
- Physical Layer
 - Coverts frames to hardware medium form (e.g., optical, electronical signals)

Where are these layers

Performance Metrics (from network aspect)

- Throughput
 - e.g., transmission rate, etc.
- Latency
 - e.g., round-trip time (RTT), etc.
- Multiplexing(?)
 - e.g., how many users you can support, etc.
- Resiliency
 - e.g., what will you do if link (or node) fails, etc.
- etc.

Circuit-switching Network

- Widely used in early telephone network
- Main features
 - Setup connection before sending data
 - Exclusive possession

Circuit-switching Network

- Widely used in early telephone network
- Main features
 - Setup connection before sending data
 - Exclusive possession

- A to D connection
- A to B connection

Packet-switching Network

- Dominate today's internet
- Main features
 - data are divided into small chunks called packets
 - routing information encapsuled into packet headers
 - intermediate nodes store FIB (forwarding information base)

Packet-switching Network

- Dominate today's internet
- Main features
 - data are divided into small chunks called packets
 - routing information encapsuled into packet headers
 - intermediate nodes store FIB (forwarding information base)

Take-home questions (will covered in lecture)

- Why do we have these two types of networks?
 - about goals and non-goals of early internet design

- Which type of network is better?
 - performance?
 - etc.