MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2014 SOLUTION KEY

Team Round – continued

D) If R lies on y = x, then $4^{2P-Q} = 2^{4P-2Q} = \log_2(P+2Q)$. Taking \log_2 of both sides, $4P-2Q = \log_2\left(\log_2\left(P+2Q\right)\right)$. Each expression represents the same positive integer. P+2Q must be a power of 2 to insure that $\log_2\left(P+2Q\right)$ is an integer. $\log_2\left(P+2Q\right)$ must be a power of 2 to insure that $\log_2\left(\log_2\left(P+2Q\right)\right)$ is an integer. Thus, P+2Q could be: $2^4=16$, $2^8=256$, $2^{16}=65536$, ...

Thus,
$$P + 2Q$$
 could be: $2 = 16$, $2 = 236$, $2 = 63536$, ...
$$\begin{cases} P + 2Q = 16 & 256 & 65536 \\ 4P - 2Q = 2 & 3 & 4 \end{cases}$$
 ... Adding, $5P = 16$, $25Q$, $65540 \Rightarrow (P, Q) = (13108, 26214) $\Rightarrow 39322$.$

 \mathbf{V}

1 m 3

- E) Note that the Pythagorean Theorem is true for semi-circles (as well as squares), i.e. the area of the semi-circle on \overline{AB} equals the sum of the areas of the semi-circles on \overline{AC} and on \overline{BC} .
 - $\frac{1}{2}\pi \left(\frac{5}{2}\right)^2 = \frac{1}{2}\pi \left(\frac{3}{2}\right)^2 + \frac{1}{2}\pi \left(\frac{4}{2}\right)^2 \Leftrightarrow \frac{\pi}{8} \left(5^2 = 3^2 + 4^2\right)$ Thus, $\left(I + \mathcal{W}\right) + \left(II + \mathcal{W}\right) = V = \mathcal{W} + \mathcal{W} + \Delta$ $\Rightarrow I + II = \Delta \text{ and the required ratio is } \mathbf{1} : \mathbf{1}.$
- F) As the number of sides of a regular polygon increases, the measure of the interior angles increases with a maximum measure less than 180°. The rate of increase is decelerating. $(3,4,5,6,\ldots$ sides \Rightarrow 60°, 90°, 108°, 120°, ..., differences of 30, 18, 12,)
 - 120°, ..., differences of 30, 18, 12,)

 Can we avoid an algebraic blizzard, solving $\begin{cases} \frac{180(m-2)}{m} = x^{\circ} \\ \frac{180(n-2)}{n} = (x+2)^{\circ} \end{cases}$ for ordered pairs (m,n)? Yes!

For a regular polygon with k sides and interior angles of j° , we have $\frac{180(k-2)}{k} = j$ or $j = 180 - \frac{360}{k}$.

k must be a factor of 360. Examining the factors of 360 in <u>decreasing</u> order produces the largest possible values of j. $360 = 2^3 \cdot 3^2 \cdot 5^1 \Rightarrow (3+1)(2+1)(1+1) = 24 \Rightarrow 12 \text{ pairs}$ of factors.

Think of pairing the largest factor with the smallest factor, the next largest with the next smallest, etc., namely, (360,1), (180,2), ..., (20,18) \Rightarrow

- (k, j) = (360,179), (180,178), (120,177), (90,176), (72,175), (60,174), (45,172),
- (40,171),(36,170),(30,168),(24,165),(20,162),(18,160),(15,156),(12,150),...

Search for *j*-values which differ by 2 and save the corresponding k-values. By inspection, the possible ordered pairs (m,n) are

(120,360),(90,180),(72,120),(60,90),(45,60),(36,45),(30,36),(18,20) which produces differences of **240, 90, 48, 30, 15, 9, 6** and **2**.