

Mélytanulás Házi Feladat Alvengers

Frecska Hajnalka (C1MTMR) Hugauf Dániel Bálint (F3G8I9) Wágner Bánk (ANKNFJ)

Feladat címe: Model Ensemble for Medical Image Segmentation

Feladat

In this project, you'll dive into the idea of using multiple models together, known as model ensembles, to make our deep learning solutions more accurate. They are a reliable approach to improve accuracy of a deep learning solution for the added cost of running multiple networks. Using ensembles is a trick that's widely used by the winners of AI competitions. Task of the students: explore approaches to model ensemble construction for semantic segmentation, select a dataset (preferentially cardiac MRI segmentation, but others also allowed), find an open-source segmentation solution as a baseline for the selected dataset and test it. Train multiple models and construct an ensemble from them. Analyse the improvements, benefits and added costs of using an ensemble.

A munka előzményei

1.1 Bevezető

Az MRI-képek alapján történő szív szegmentálás rendkívül fontos a szívbetegségek diagnosztizálásában és kezelésében. Azért választottuk ezt a témát, mert az adatfeldolgozás és gépi tanulás területén is izgalmas kihívásokat rejtegethet.

A szegmentáló modell létrehozásához a rendelkezésünkre bocsátott forrásokat tanulmányoztuk. Ezek az előkészületek és tanulmányok segítettek abban, hogy hatékonyabb módon tervezzük meg és fejlesszük ki ezt a modellegyüttest, amely a reményeink szerint alkalmas lehet egy szív MRI felvétel szegmentálására.

A dokumentum során bemutatjuk a modell felépítését, a felhasznált adatokat, valamint a tanítás és tesztelés folyamatát is.

1.2 Adathalmaz

1.2.1 Adathalmaz elérhetősége

Az adathalmaz [1] a Dijoni egyetem kórháza által, valós orvosi vizsgálatok folyamán készült felvételek. Ezek teljesen anonimizálva lettek a helyi etikai bizottság által állított elvárásoknak megfelelően. Az adatbázisban megtalálható jó minőségű kórképek alkalmasak a gépi tanulási modellek fejlesztéséhez, egyértelmű értékeléséhez. 150 különböző páciens leletei találhatóak meg az adatbázisban, melyek 5 egyenlő méretű csoportra bomlanak (4 kóros, 1 kontrol). Ezen kívül minden lelethez hozzá tartoznak a következő egyéb információk: testsúly, testmagasság, diasztolés (szív elernyedés) és szisztolés (szív összehúzódás) fázispontok. Minden csoport egyértelműen meg volt határozva különböző fiziológiai paraméterek szerint. Ilyenek például a bal vagy jobb diasztolés térfogat vagy ejekciós frakció, az LV helyi összehúzódása, az LV tömege és a szívizom maximális vastagsága.

1.2.2 Adatok típusa

Az adathalmazban minden pácienshez tartozik egy mappa. Ezekben találhatóak meg az .nii kiterjesztésű fájlok, ezek a NIfTI (Neuroimaging Informatics Technology Initiative) formátumához tartoznak, amely gyakran használt fájlformátum az orvosi képalkotás területén, különösen az MRI (Mágneses Rezonancia Képalkotás) és funkcionális MRI (fMRI) adatok tárolására. Ezek a fájlok háromdimenziós térfogat képeket (volumetrikus képeket) tárolnak, valamint hozzájuk kapcsolódó metaadatokat, például a voxel méreteket, képorientációt és egyéb fontos információkat, amelyek szükségesek a neuro képalkotási adatok megfelelő értelmezéséhez és elemzéséhez.

Minden pácienshez 5 NIfTI fájl is tartozik. Egy 4 dimenziós kép, amely 3 dimenziós képek szekvenciája, tehát az időbeli változások megfigyelésére alkalmas. Ezen kívül két, 3 dimenziós kép, amely az MRI során meghatározott időkben készült pillanatképek. Illetve az ezekhez tartozó címkék (grund truth), amelyeket a tanítás során felhasználhatunk. A szegmentáláshoz 4 osztályt különít el: bal kamra endokardiuma, bal kamra epikardiuma, jobb kamra endokardiuma, minden más (háttér)

1.3 Elméleti összefoglaló a modellekről

1.3.1 U-net

Az U-Net [2] egy konvolúciós neurális hálózat (CNN) architektúra, amelyet általában képszegmentálási feladatokhoz használnak. Az "U-Net" név az U alakú architektúrájából ered. Két fő részből áll: egy **kódolóból** és egy **dekódolóból**. A kódoló felelős a bemeneti kép kontextuális információinak rögzítéséért, míg a dekódoló a lokalizációért.

Kódoló

A kódolót konvolúciós és pooling rétegek sorozata, amelyek fokozatosan csökkentik a bemeneti kép térbeli felbontását, miközben növelik a jellemzők mélységét. A bemeneti információt absztraktabb reprezentációba tömöríti.

Dekódoló

A jellemzőtérképet az eredeti bemeneti felbontásig felskálázza. Felcserélt konvolúciókat (dekonvolúciót) használ az információ fokozatos visszanyeréséhez.

Skip Connection

A modell fontos része a skip connection. A kódolás során egyre alacsonyabb szinteken egyre több csatornával, de egyre kisebb felbontású képeket kapunk, ami miatt a pontos térbeli pozíciókról információt veszítünk. A skip connection arra való, hogy a dekóder ág konvolúciós blokkjai ne csak az alacsonyabb szintekről érkező, kevésbé részletes térbeli információt tartalmazó adatot kapja meg inputként, hanem a kódoló megfelelő szintjén lévő konvolúciós blokk kimenetét is. Az architektúra egy végső konvolúciós réteggel zárul, amely a szegmentációs maszkot állítja elő. Ez a réteg a szegmentálási feladatban szereplő osztályok számával megegyező számú kimeneti csatornával rendelkezik.

1.3.2 LinkNet

Az U-Net-hez hasonlóan a LinkNet-et [3] szemantikus szegmentálásra használják, ahol a cél a bemeneti kép minden egyes pixeléhez címkét rendelni.

Kódoló-dekódoló architektúra

A LinkNet az U-Net-hez hasonlóan kódoló-dekódoló struktúrát követ. A kódoló felelős a bemeneti kép jellemzőinek kinyeréséért, a dekódoló pedig a szegmentáló maszk létrehozásáért.

Skip Connection

Ezek a kapcsolatok a megfelelő rétegeket kötik össze a kódoló és a dekódoló között, hasonlóan az UNet ugrásos kapcsolataihoz.

Residual blokkok a kódolóban

A LinkNet Residual blokkokat használ a kódolóban, amelyeket a ResNet architektúrája ihletett. Ezek a blokkok segítenek megoldani az eltűnő gradiens problémát, lehetővé téve a hálózat hatékonyabb képzését, különösen mély architektúrák esetén.

Spatial Attention modul

A LinkNet tartalmaz egy Spatial Attention modult, amely segít a hálózatnak a bemeneti kép relevánsabb részeire összpontosítani a szegmentálás során. Ez a figyelem mechanizmus segíti a képen található hosszú távú függőségek megragadásában.

Batch normalizálás

A batch normalizáció a hálózat egészében az aktivációk normalizálására és a képzés felgyorsítására szolgál.

1.3.3 Feature Pyramid Network (FPN)

A Feature Pyramid Network (FPN) [4] egy másik népszerű konvolúciós neurális hálózat (CNN) architektúra.

Több skálájú feature piramis

Az FPN a több léptékű objektumfelismerés kihívását egy feature-piramis létrehozásával oldja meg. A piramis különböző térbeli felbontású jellemzőtérképekből áll, lehetővé téve a hálózat számára, hogy különböző léptékű információkat rögzítsen. Ez hasznos a különböző méretű objektumok felismeréséhez a képen.

Bottom-up és Top-down architektúra

Az FPN kombinálja az alulról felfelé irányuló (a hagyományos konvolúciós hálózathoz

hasonló) és a felülről lefelé irányuló útvonalat. Az alulról felfelé irányuló útvonal magában foglalja a tipikus konvolúciós rétegeket, amelyek magas szintű jellemzőket vonnak ki a bemeneti képből. A felülről lefelé irányuló útvonal a nagy felbontású jellemzőknek a piramis alacsonyabb szintjeiről a magasabb szintekre történő felfelé mintavételezését és összevonását foglalja magába.

Piramis-pooling

Ennek során a különböző piramisszintekről származó jellemzők összevonása és egymáshoz kapcsolása történik, ami a kép átfogóbb ábrázolását biztosítja.

Az elvégzett munka ismertetése

2.1 Modellezés

2.1.1 Pipeline

A modellezési pipelineban több elképzelésünk is volt a megoldásra a félév folyamán. Az első elképzelésünkkor 5 konténert futtattunk volna. Az első konténerben történt volna az adatok letöltése és a preprocesszálás. Ezt megvárva a következő 3 konténerben futottak volna a szegmentálási modelljeink. Ezek docker volume-on és network-ön keresztül kommunikáltak volna. A előfeldolgozás lefutása után mindhárom konténer az inputjára megkapta volna az előfeldolgozott képeket. Ez után a szegmentlás elvégzése után az utolsó, ötödik konténer megkapta volna a modelleknek a kimeneteit és ezeket felhasználva elvégezte volna az ensamblet. Vizuálisan így nézett volna ki ez a struktúra:

Ennél a pipeline futtatásnál több gondba is ütköztünk. Mivel a modelleket mind python 3.9 alatt teszteltük így az alap image-t is annak választottuk. Ez viszont egy 9GB körüli image ami az összes futtatásakor már túl sok helyet foglalt a gépeinken és nem voltunk képesek ezeket megépíteni.

Ilyenkor próbáltuk a szükséges image-t kisebbre cserélni, de a szűkített méretű imagekben különböző felhasznált könyvtárak nem futottak.

Ezek után próbáltuk az egész hálózatot bele szűkíteni egy darab konténerbe is. Viszont az adathalmaz nagysága (kb. 8GB) és a szükséges könyvtárak és file-okkal együtt már szintén túl kevésnek bizonyult a számítógépeink erőforrása.

Ezt a hálózatot viszont csatoltuk a leadott anyagok között, a **docker-compose.yaml** fájlban kell a service-k alatt a final-t kikommentezni és a train_test-ről pedig leszedni a kommentet és kiadni a **docker-compose up** parancsot. A beadásban benne lévő hálózatot a colab-ból kiszedett könyvtárakkal hoztuk létre.

A másik (final) service pedig az általunk egy adott képre szóló predikciót visszaadó pipelinet tartalmazza. Ez 1 konténerben elérhetővé teszi az összes modellt, amit egy gradio-s felületen lehet használni. A **docker-compose up** parancs kiadása után, hogy ha felépült az image a **localhost:7860** címen érhető el a IU.

2.1.2 Előfeldolgozás

A gépi tanulási feladatokban, mint például a szegmentálás, az adatokat szükséges előfeldolgozni olyan formátumba, amely kompatibilis a használt könyvtárakkal vagy keretrendszerekkel, lehetővé téve a hatékony adatkezelést, és az előfeldolgozást. A NumPy tömbök numerikus számításokra vannak optimalizálva, ami gyorsabb adatfeldolgozást tesz lehetővé, mint a voxel-információk közvetlen elérése az NIfTI-fájlokból. Ezért az előfeldolgozás elsődleges célja a NumPy tömbökké való konvertálás.

Tekintettel arra, hogy az adathalmaz összesen 150 páciens adatait tartalmazza, amelyből 150-et használunk fel tanításra, szükségesnek véltük az adatok augmentálását.

Ez segít bővíteni az adathalmaz méretét oly módon, hogy az eredetileg rendelkezésre álló adatokból újakat generálunk. A nagyobb adathalmazzal javíthatjuk a modellünk teljesítményét, mivel sokkal több és változatosabb adattal találkozik a tanítás során.

Adatelőkészítés lépései: Adatok beolvasása → Adatok átkonvertálása numpy formátumba → Átméretezés elvégzése → Normalizálás

A képek mérete ezután (256,256,10) méretet vett fel. Mivel egy pácienshez egy nifti kép több szeletet jelent (10-13 darab), így az augmentációhoz nifti képként továbbítottunk, hogy ne keveredjenek össze az egyes páciensek képszeletei. Az augmentációs lépéseket belül numpy tömbként dolgoztunk velük. Az **augmentálás** során véletlenszerűen választottunk ki 25 pácienst, amelyek képein különböző átalakításokat végeztünk el.

- Forgatás 90°-al a z tengely körül
- Forgatás 270°-al a z tengely körül
- Tükrözés az y tengelyre
- Tükrözés az x tengelyre
- Random zaj hozzáadása

Ugyanezeket megtettük a címkék esetén is, illetve a teszt adathalmazon is.

A végső training és test adathalmazt numpy tömbbé alakjuk át, majd elmentjünk .npz fájlokba. A tanítás során ezen adathalmazzal dolgozunk tovább.

2.1.3 Tanítás bemutatása

Az említett modellek mindegyikére elvégeztük a tanítást az előfeldolgozott adatokkal. A használt veszteségfüggvények a Dice Loss és Focal Loss

Dice Loss

A Dice Loss egy olyan veszteségfüggvény, amely segít az alakzatok pontosságának és az átfedés mértékének értékelésében, különösen a bináris vagy többszörös osztályozási problémák esetén.

Dice Loss = 1 - (2 * intersection) / (estimated + ground truth)

- Intersection: A modell által becsült és a valóságos értékek közötti átfedés aránya.
- Estimated: becsült érték
- Grund Thruth: valós érték

Minél alacsonyabb a Dice Loss, annál jobb a modell teljesítménye az alakzatok megfelelő lefedésében.

dice_loss = sm.losses.DiceLoss(class_weights=np.array([0.25, 0.25, 0.25, 0.25]))

Focal Loss

A Focal Loss egy másik veszteségfüggvény, amely a gyengén osztályozott vagy túlterhelt adathalmazok esetén használatos, azzal a céllal, hogy kezelje a "háttérzajt", vagyis az osztályok közötti jelentős egyensúlyhiányt, tehát az osztályok egyike sokkal gyakoribb, mint a többi. A nehezebben osztályozható példákra fókuszál, csökkentve a könnyen osztályozható példák

súlyosságát. Tehát amíg a dice lossnál egyenlő súlyokkal szerepelnek az osztályok, addig focal loss-nál a class imbalance-t próbálja kiegyenlíteni.

A tanítás kiértékeléséhez az IoU (Intersection over Union) és F1 értéket használtuk.

A következő ábrák a veszteség és a metrikák alakulását mutatják.

1. Kép: Loss, IoU és F1 Score alakulása az FPN esetén

Model	size	batch size	I_rate	epochs	time	loU	F1
UNet	290 MB	8	0.0001	30	15 min	0.8295	0.9459
LinkNet	250 MB	8	0.0001	30	15 min	0.817	0.9405
FPN	280 MB	8	0.0001	20	20 min	0.8225	0.9396

1 Táblázat: Az egyes modellek esetén használt paraméterek és a kiértékelés eredménye

2.1.4 Ensemble modell és kiértékelése

Az egyes modellek használata mellett lehetőség van egy modellegyüttes futtatására is. Ehhez a modellek predikciói különböző súllyal kerülnek be a végső predikcióba. Az optimálishoz legközelebb eső súlyokat a 3 modellre (az iou alapján) random gridsearch-el keressük meg.

IoU értékek, ha a modellek egyenlő súllyal szerepelnek:

- IOU unet_pre-trained = 0.8197997212409973
- IOU linknet pre-trained = 0.8025847673416138
- IOU fpn pre-trained = 0.809705376625061
- IOU az egyenlő arányban súlyozott ensemble esetén = **0.8218475**

Random GridSearch

- Max IOU az optimális súlyokkal: 0.824257 ('wt1': 0.97, 'wt2': 0.28, 'wt3': 0.64)
- Best single model's IOU: **0.8197997**
- Ensemble teljesítménye 0.544% jobb, mint a legjobb modellnek egyedül (IOU értékben számolva: 0.00445 javulás)

4 Kép: A tesztelés során kapott ensemble modell eredménye vizuálisan szemléltetve 2 képen

2.1.5 User Interface Gradioval

A docker-compose up parancs kiadása után, hogy ha felépült az image a localhost:7860 címen érhető el a IU. Az oldalon meg fog jelenni egy felület, ahova a szegmentálásra kiválasztott képet kell feltölteni. Az alatta lévő részen a fülök közül választhatunk, hogy melyik modell alapján kapott predikciót szeretnénk megtekinteni. Majd a gomb megnyomásával visszakapjuk a prediktált képet, amit aztán akár le is tölthetünk. Az oldal legalján pedig a feladatunk leírása található, angol nyelven.

A szegmentálás során 4 osztályt különböztetünk meg:

- bal kamra endokardiuma
- bal kamra epikardiuma
- jobb kamra endokardiuma
- minden más (háttér)

Model Ensable project for the Deep Learning course at BME by the team Alvengers

5 Kép: UI kinézete predikció során

2.2 Összefoglalás

A félév során a feladat célja szív MRI képek pontos és hatékony szegmentálása volt, ami az orvosi képfeldolgozásban egy fontos terület. A konkrét kihívás az volt, hogy olyan meglévő módszereket alkalmazzunk együttesen, amelyek képesek az eltérő szívstruktúrák, elkülönítésére a képeken. A munka során különböző mély tanuló architektúrákat használtunk, többek között a U-Net, LinkNet és az FPN-t. Nagy hangsúlyt fektettünk az adatok előfeldolgozására is, a modell teljesítményének a javításához pedig augmentációt használtunk. Az eredmények azt mutatják, hogy a modell jól teljesített a szegmentálási feladatban, ugyanakkor további finomhangolásra és az adatbázis méretének a növelésére is szükség van, hogy a jövőben további teljesítményjavulást érjünk el.

Irodalom, és csatlakozó dokumentumok jegyzéke

A tanulmányozott irodalom jegyzéke:

- [1] bernard. "ACDC Challenge." *Www.creatis.insa-Lyon.fr*, www.creatis.insa-lyon.fr/Challenge/acdc/index.html. Accessed 10 Dec. 2023.
- [2] Ronneberger, Olaf, et al. "U-Net: Convolutional Networks for Biomedical Image Segmentation." *ArXiv.org*, 18 May 2015, arxiv.org/abs/1505.04597.
- [3] Chaurasia, Abhishek, and Eugenio Culurciello. *LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation*.
- [4] Lin, Tsung-Yi, et al. "Feature Pyramid Networks for Object Detection." *ArXiv:1612.03144* [Cs], 19 Apr. 2017, arxiv.org/abs/1612.03144.

Megjegyzés:

A dokumentum írása során az elméleti bevezetőt, valamint a kódok kommentelését LLM (ChatGPT) segítségével végeztük, majd ellenőrzés után a hibákat kijavítva, némileg átfogalmazva tettük bele a végső kódba/dokumentációba.