ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

SW6208 寄存器列表

1. 版本历史

V1.0: 初始版本针对芯片版本 3 V1.1: 修正描述错误之处 Reg0x12

V1.2: 针对芯片版本 5 V1.3: 更新页眉图标

2. 寄存器

注意:未定义的寄存器或 bit 不能被改写

2.1. REG 0x03: 按键配置

Bit	Description	R/W	Default
7-6	双击触发动作定义	W/R	ОТР
	0: 关闭 boost		
	1: 进入小电流充电模式		
	2: 打开 WLED		
	3: 在小电流充电和 WLED 都支持时,优先响应小电流充电模式		
	注意需要在输出口打开后,双击才能进入小电流充电模式		
	注意双击会触发短按键事件		
5-4	长按键触发动作定义	W/R	ОТР
	0: 在小电流充电和 WLED 都支持时,优先响应小电流充电模式		
	1: 关闭 Boost		
	2: 进入小电流充电模式		
	3: 打开 WLED		
	注意需要在输出口打开后,长按才能进入小电流充电模式		
	注意长按不会触发短按键事件		
3-2	短按键触发事件定义	W/R	ОТР
	0: 打开 A1 口		
	1: 打开 A2 口		
	2: 同时打开 A1 和 A2 口		
	3: 仅显示电量		
	注意若 Csrc 轻载后,短按键后 C 口将重新打开		
1	短按键的时间定义	W/R	ОТР

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

	0: 小于 300ms, 即 32ms~300ms 的低电平会识别为短按键		
	1: 小于 500ms, 即 32ms~500ms 的低电平会识别为短按键		
0	在非无线充模式下,输出口处于打开状态时,是否响应按键	W/R	ОТР
	0: 不响应按键		
	1: 根据 reg0x03[3:2]的定义响应按键		

2.2. REG 0x04: 短按键事件

Bit	Description	R/W	Default
7-1		1	/
0	写短按键事件	W/R	0x0
	0: 无作用		
	1: 产生短按键事件		
	此 bit 由硬件自动清零		

2.3. REG 0x06: 灯显状态

Bit	Description	R/W	Default
7-5		/	/
4	IRQ Pin 状态	R	0x0
	0: IRQ pin 为高电平		
	1: IRQ pin 为低电平		
	此 bit 为 IRQ pin 的状态取反		
3	未定义位	W/R	0x0
	此 bit 可读可写		
	初始化时建议此 bit 配置为 1,可以作为 IC 是否被 reset 的标志位		
2	充放电状态指示(稳态)	R	0x0
	0: 放电		
	1: 充电		
	注意此 bit 与 reg0x0C[7:6]的区别是,此 bit 为稳定态的状态, 使用 MCU		
	显示充放电状态时,建议使用此 bit		
1	LED 状态	R	0x0
	0: LED 处于关闭状态		
	1: LED 处于打开状态		
	注意在场景切换时(边充边放转为放电),会存在 600ms 左右处于关闭状态		
	的情况		
0	/	R	0x0

ZHUHALISMARTWARF TECHNOLOGY CO. LTD.

2.4. REG 0x07: 按键事件指示

Bit	Description	R/W	Default
7-3	/	/	/
2	短按键事件发生指示位	W/R	0x0
	短按键事件发生后,此 bit 置 1, 通过 MCU 写 1 清零		
1	双击事件发生指示位	W/R	0x0
	双击事件发生后,此 bit 置 1, 通过 MCU 写 1 清零		
0	长按键事件发生指示位	W/R	0x0
	长按键事件发生后,此 bit 置 1, 通过 MCU 写 1 清零		

2.5. REG 0x08: 端口拔出事件指示

Bit	Description	R/W	Default
7-6	1	/	/
5	C口 source 设备拔出事件指示位(表示 SW6208 做 sink)	W/R	0x0
	此 bit 通过写 1 清零		
4	L口设备拔出事件指示位	W/R	0x0
	此 bit 通过写 1 清零		
3	B口设备拔出事件指示位	W/R	0x0
	此 bit 通过写 1 清零		
2	C口 sink 设备拔出事件指示位(表示 SW6208 做 source)	W/R	0x0
	此 bit 通过写 1 清零		
1	A2 口设备拔出事件指示位	W/R	0x0
	此 bit 通过写 1 清零		
0	A1 口设备拔出事件指示位	W/R	0x0
	此 bit 通过写 1 清零		

2.6. REG 0x09: 端口插入事件指示

Bit	Description	R/W	Default
7-6	/	/	/
5	C 口 source 设备插入事件指示位	W/R	0x0
	此 bit 通过写 1 清零		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

4	L 口设备插入事件指示位	W/R	0x0
	此 bit 通过写 1 清零		
3	B 口设备插入事件指示位	W/R	0x0
	此 bit 通过写 1 清零		
2	C口 sink 设备插入事件指示位(表示 SW6208 做 source)	W/R	0x0
	此 bit 通过写 1 清零		
1	A2 口设备插入事件指示位	W/R	0x0
	此 bit 通过写 1 清零		
0	A1 口设备插入事件指示位	W/R	0x0
	此 bit 通过写 1 清零		

2.7. REG 0x0A: 电池异常事件指示

Bit	Description	R/W	Default
7-5		/	/
4	电池电压过压事件(快充时)指示	W/R	0x0
	此 bit 通过写 1 清零		
3	NTC 过温事件指示	W/R	0x0
	此 bit 通过写 1 清零		
2	充电超时事件指示	W/R	0x0
	此 bit 通过写 1 清零		
1	电池电压过压事件指示	W/R	0x0
	此 bit 通过写 1 清零		
0	充满事件指示	W/R	0x0
	此 bit 通过写 1 清零		

2.8. REG 0x0B: 系统异常事件指示 0

Bit	Description	R/W	Default
7	/	/	/
6	VDD 过压事件清零位	W/R	0x0
	此 bit 写 1 后将清零 reg0x21[5]		
	注意 VDD 过压事件指示参见 reg0x21[5]		
5	L 口 Vbus 过压事件指示	W/R	0x0
	此 bit 通过写 1 清零		
4	C 口 Vbus 过压事件指示	W/R	0x0
	此 bit 通过写 1 清零		

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

3	В 口 Vbus 过压事件指示	W/R	0x0
	此 bit 通过写 1 清零		
2	电池欠压(UVLO)事件指示	W/R	0x0
	此 bit 通过写 1 清零		
	注意此 bit 被清零后,除非退出 UVLO 后再进入 UVLO,否则此 bit 不会再		
	置起		
1	过温事件指示	W/R	0x0
	此 bit 通过写 1 清零		
0	短路/过流事件指示	W/R	0x0
	此 bit 通过写 1 清零		
	注意 SCP 后会尝试重启一次,如果不能成功,则置位此 bit; OLP 后,直接置		
	位此 bit 后关机	/\	

2.9. REG 0x0C: 系统状态指示

Bit	Description	R/W	Default
7	充电状态(实时状态)	R	0x0
	0: 充电关		
	1: 充电开		
	在输入电压过来后,等待 500ms, 此 bit 才置位		
6	放电状态(实时状态)	R	0x0
	0: 放电关		
	1: 放电开		
5	1	/	/
4	L口通路状态	R	0x0
	0: L 口关闭		
	1: L 口打开		
3	B口通路状态	R	0x0
	0: B 口关闭		
	1: B 口打开		
2	C口通路状态	R	0x0
	0: C 口关闭		
	1: C 口打开		
1	A2 口通路状态	R	0x0
	0: A2 口关闭		
	1: A2 口打开		
0	A1 口通路状态	R	0x0
	0: A1 口关闭		
	1: A1 口打开		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

2.10. **REG 0x0F**: 快充协议指示

Bit	Description	R/W	Default
7	PD 版本指示	R	0x0
	0: PD2.0		
	1: PD3.0		
	注意此指示只在 PD 沟通后有效		
6-4	sink 快充协议指示	/	/
	0: 非快充		
	1: PD sink		
	2: /	7	
	3: HV sink		
	4: FC sink		
	5: FCP sink		
	6: SCP sink		
	7: PE1.1 sink		
3-0	source 快充协议指示	R	0x00
	0: 非快充		
	1: PD source		
	2: PPS source		
	3: QC2.0 source		
	4: QC3.0 source		
	5: FCP source		
	6: PE2.0 /1.1 source		
	7: SFCP source		
	8: AFC source		
	9: SCP source		
	10-15: reserved		

2.11. **REG 0x12: ADC** 配置

Bit	Description	R/W	Default
7-3	Reserved	/	/
2-0	ADC数据类型选择(用来选择寄存器 reg0x13 和 reg0x14 中的数据是什么类	R/W	0x0
	型)		
	0: 电池电压(1.2mv)		
	1: 输入输出电压(4mv)		
	2: 芯片温度(1/6.82℃)		
	3: NTC 电阻电压(1.1mv 当 reg0x48[0]为 1 时,2.2mv 当 reg0x48[0]为 0 时)		
	4: 充电电流(25/11mA)		

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

5: 放电电流(25/11mA)	
Others: reserved	
注意 NTC 的温度计算方法参见 reg0x48[0]中的描述	

2.12. REG 0x13: ADC 数据高 8bits

Bit	Description	R/W	Default
7-0	ADC 数据的高 8bit	R/W	0x0
	Adc_data[11:04]		

2.13. REG 0x14: ADC 数据低 4bits

Bit	Description		R/W	Default
7-4	/		/	/
3-0	ADC 数据的低 4bit		R/W	0x0
	Adc_data[03:00]	X .		

2.14. REG 0x18: 输入输出控制使能

Bit	Description	R/W	Default
7-5	1	/	/
4	关闭所有输出口	R/W	0x0
	写 1 关闭所有输出口		
	注意关闭输出口后会触发场景切换(类似输出口拔出), 此 bit 自动清零		
3-1	1	/	/
0	关闭 charger	R/W	0x0
	写 1 关闭 charger,但不关闭通路管,此 bit 不会自动清零		

2.15. REG 0x19: 端口事件触发

Bit	Description	R/W	Default
7-6	/	/	/
5	C 口 Sink 设备拔出事件触发	R/W	0x0
	0: 无作用		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

	1: 触发 C 口设备拔出事件		
	此 bit 自动清零;		
	注意此 bit 只在 typec 已处于连接状态下时有效		
4	C 口 Sink 设备插入事件触发(SW6208 做 source)	R/W	0x0
	o: 无作用		
	1: 触发 C 口设备插入事件		
	此 bit 自动清零;		
	注意此 bit 只在 typec 已处于连接状态下时有效		
3	A2 口设备拔出事件触发	R/W	0x0
	o: 无作用		
	1: 触发 A2 口设备拔出事件		
	此 bit 自动清零;		
2	A2 口设备插入事件触发	R/W	0x0
	o: 无作用		
	1: 触发 A2 口设备插入事件		
	此 bit 自动清零;		
1	A1 口设备拔出事件触发	R/W	0x0
	0: 无作用		
	1: 触发 A1 口设备拔出事件		
	此 bit 自动清零;		
0	A1 口设备插入事件触发	R/W	0x0
	0: 无作用		
	1: 触发 A1 口设备插入事件		
	此 bit 自动清零;		

2.16. **REG 0x1A**: 快充配置 0

Bit	Description	R/W	Default
7	C口 dm 插入检测使能	R/W	ОТР
	0: 使能		
	1: 不使能		
6-5	Reserved	R/W	ОТР
4	AFC 输出支持 12V 使能	R/W	ОТР
	0: 不支持 12V AFC,即只支持 9V		
	1: 支持 12V AFC		
3	FCP 输出支持 12V 使能	R/W	ОТР
	0: 不支持 12V FCP,即只支持 9V		
	1: 支持 12V FCP		
2	输入请求电压是否支持 12V	R/W	ОТР
	0: 支持 12V		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

	1: 不支持 12V		
1	输出支持的最高电压	R/W	ОТР
	0: 12v		
	1: 9V		
	注意此电压限制对 FCP 和 PD 无效,需要单独设置		
0	reserved	R/W	OTP

2.17. **REG 0x1B:** 快充配置 1

Bit	Description	R/W	Default
7	A1 口输出快充使能	R/W	ОТР
	0: 使能		
	1: 不使能		
6	A2 口输出快充使能	R/W	ОТР
	0: 使能		
	1: 不使能		
5	C口输出快充使能	R/W	ОТР
	0: 使能		
	1: 不使能		
4	B口输入快充使能	R/W	ОТР
	0: 使能		
	1: 不使能		
3	C口输入快充使能	R/W	ОТР
	0: 使能		
	1: 不使能		
2	L口输入快充使能	R/W	ОТР
	0: 使能		
	1: 不使能		
1	B 口高压输入协议 1 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
0	C 口高压输入协议 1 使能	R/W	ОТР
	0: 使能		
	1: 不使能		

2.18. **REG 0x1C:** 快充配置 2

-				
	Bit	Description	R/W	Default

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

7	准负载检测机制使能, vbus 在使能插入检测 2s 未建立起来,则认为该	R/W	ОТР
'	口有疑似负载,则在按键时(使能该口),会打开该口(A1/A2)	1,7 11	
	0: 不使能		
	1: 使能		
	7. 使形	200	077
6	/	R/W	OTP
5	PD source 使能	R/W	OTP
	0: 使能		
	1: 不使能		
4	PD sink 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
3	PD 高压屏蔽 C 口空载使能	R/W	ОТР
	0: PD 处于高压时,C 口不检测空载		
	1: PD 处于高压时, C 口检测空载		
2	高压 SCP 使能	R/W	OTP
	0: 使能		
	1: 不使能		
1	A1/A2 口 QC source 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
0	FCP source 使能	R/W	ОТР
	0: 使能		
	1: 不使能		

2.19. **REG 0x1D**: 快充配置 3

Bit	Description	R/W	Default
7	FCP sink 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
6	PE source 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
5	PE sink 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
4	AFC source 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
3	AFC sink 使能	R/W	ОТР

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

	0: 使能		
	1: 不使能		
2	SCP source 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
	为 SCP 总开关,低压 SCP 使能由 reg0x2D[2]控制, 高压 SCP 使能由		
	reg0x1C[2]控制。需要关闭 SCP 协议时,需要把总开关关闭		
1	SCP sink 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
0	SFCP source 使能	R/W	ОТР
	0: 使能	/ 1	
	1: 不使能		

2.20. REG 0x1E: 快充配置 4

Bit	Description	R/W	Default
7-5	Reserved	R/W	ОТР
4	充电优先使能	R/W	ОТР
	0: 支持边充边放		
	1: 不支持边充边放,充电优先		
3-2	Reserved	R/W	ОТР
1	C 口 QC source 使能	R/W	ОТР
	0: 使能		
	1: 不使能		
0	Reserved	R/W	ОТР

2.21. REG 0x1F: 快充指示灯状态

Bit	Description	R/W	Default
7-5	/	R/W	/
3	快充灯状态	R/W	0
	0: 快充灯不亮		
	1: 快充灯亮		
2-0	Reserved	R/W	0

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

2.22. **REG 0x20: WLED** 设置

Bit	Description	R/W	Default
7-5	Reserved	R/W	ОТР
4	MCU 配置 WLED 模式使能	R/W	ОТР
	0: 不使能		
	1: 使能(即通过 MCU 可以配置 WLED 模式)		
3-1	Reserved	R/W	ОТР
0	WLED 模式使能	R/W	OTP
	0: 不使能		
	1: 使能	Z_{Λ}	
	注意在 WLED 使能后,通过按键开关 WLED		

2.23. REG 0x21: 系统异常事件指示 1

Bit	Description	R/W	Default
7-6	Reserved	/	/
5	VDD 过压事件指示	R	0x0
	注意此 bit 由 reg0x0B[6]写 1 清零		
4-0	Reserved	/	/

2.24. REG 0x22: PD 命令

Bit	Description	R/W	Default
7-4	Reserved	/	/
3-0	PD 命令发送	R/W	0x0
	1: 发送 PD hardreset 命令		
	Other: reserved		

2.25. REG 0x28: TypeC 配置

Bit	Description	R/W	Default
7-4	Reserved	R/W	ОТР
3-2	TypeC 角色配置,重新插拔后生效	R/W	ОТР
	0: strong drp		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

	1: only sink			
	2: only source			
	3: reserved			
1-0	Reserved	R/W	OTP	

2.26. **REG 0x29: TypeC** 指示

Bit	Description	R/W	Default
7-4	Reserved	1	/
3-2	Reserved	R	0x0
1-0	typec 角色指示 特别注意显示的是稳定态	R	0x0
	1: sink		
	2: source		
	other: no attached		

2.27. REG 0x2A: PD 配置 0

Bit	Description	R/W	Default
7	Reserved	R/W	ОТР
6	PD 版本设置	R/W	ОТР
	0: PD3.0		
	1: PD2.0		
5	PPS1 的最高电压设置	R/W	ОТР
	0: 11V		
	1: 9V		
4-0	7	/	/

2.28. **REG 0x2B: PD** 配置 1

Bit	Description	R/W	Default
7	PD Fix 输出电压设置	R/W	ОТР
	0: 12V		
	1: 9V		
6	Reserved	R/W	ОТР
5	PPSO 使能	R/W	ОТР
	0: 使能		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

	1: 不使能		
4	PD 重新广播 5V/2A PDO 使能	R/W	ОТР
	0: 不使能		
	1: 在设备请求 5V PDO 后,重新广播 5V/2A PDO 一次		
3	PPS1 使能	R/W	ОТР
	O: 使能		
	1: 不使能		
2-0	Reserved	R/W	ОТР

2.29. REG 0x2C: PD 配置 2

Bit	Description	R/W	Default
7-6	Reserved	/	/
5-4	PD source fixed 5V PDO 的电流设置	R/W	ОТР
	0: 3.0A		
	1: 2.4A		
	2: 2.5A		
	3: 2.0A		
3-2	PD source fixed 9V PDO 的电流设置	R/W	ОТР
	0: 2.0A		
	1: 2.22A		
	2: 2.33A		
	3: 2.4A		
1-0	PD source fixed 12V PDO 的电流设置	R/W	ОТР
	0: 1.5A		
	1: 1.6A		
	2: 1.67A		
	3: 1.75A		

2.30. **REG 0x2D**: 多口场景 PD 控制

Bit	Description	R/W	Default
7-6	Reserved	/	/
5	多口场景时 PD 使能 0: 使能,即在多口场景时广播 5V PDO 1: 不使能	R/W	0x0
4-3	Reserved	R/W	ОТР
2	低压 SCP 使能	R/W	ОТР

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

	0: 使能		
	1: 不使能		
1	Reserved	R/W	ОТР
0	三星 1.2V 使能	R/W	ОТР
	0: 使能		
	1: 不使能		

2.31. REG 0x2E: 小电流充电控制

Bit	Description	R/W	Default
7-6	Reserved	1	/
4	小电流充电控制	R/W	0x0
	0: 无作用		
	1: 进入或退出小电流充电模式		
	注意此 bit 写 1 后自动清零		
	与按键的关系为: 处于非小电流模式时,写1后进入小电流模式; 处于		
	小电流模式时,写1后退出小电流模式		
3-1	Reserved	/	/
0	小电流充电状态	R	0x0
	0: 未处于小电流充电状态		
	1: 处于小电流充电状态		

2.32. REG 0x30: 接入拔出检测配置 0

Bit	Description	R/W	Default
7-6	单口场景轻载检测时间设置	R/W	ОТР
	0: 32s		
	1: 8s		
	2: 16s		
	3: 64s		
5-4	多口场景轻载检测时间设置	R/W	ОТР
	0: 32s		
	1: 8s		
	2: 16s		
	3: 64s		
3-1	轻载检测电流设置	R/W	ОТР
	VOUT<7.65V 或者 VOUT>7.65V 且 reg0x30[0]=0:		
	0: 55mA		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

	1: 10mA		
	2: 25mA		
	3: 40mA		
	4: 70mA		
	5: 85mA		
	6: 100mA		
	7: 115mA		
	VOUT>7.65V,且 reg0x30[0]=1 时		
	0: 30mA		
	1: 10mA		
	2: 5mA		
	3: 25mA	/\	
	4: 40mA		
	5: 40mA		
	6: 55mA		
	7: 70mA		
0	空载电流门限是否随输出高压(>7.65V)变化设置	R/W	ОТР
	0: 不随电压变化		
	1: 随电压变化		

2.33. REG 0x31: 接入拔出检测配置 1

Bit	Description	R/W	Default
7-6	Reserved	R/W	ОТР
5	A口 dm 插入检测使能	R/W	ОТР
	0: 使能		
	1: 不使能		
4	线阻补偿功能使能	R/W	ОТР
	0: 使能		
	1: 不使能		
3	A1 口负载插入检测功能使能	R/W	ОТР
	0: 使能		
	1: 不使能		
2	A2 口负载插入检测功能使能	R/W	ОТР
	0: 使能		
	1: 不使能		
1	Reserved	/	/
0	C 口轻载检测使能, 空载后关闭 C 口 Vbus	R/W	ОТР
	0: 使能		
	1: 不使能		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

2.34. REG 0x32: 无线充模式配置

Bit	Description	R/W	Default
7	Reserved	/	/
6-4	无线充模式时, A2 口的空载检测电流设置	R/W	0x0
	VOUT<7.65V 时,或者 VOUT>7.65V 且 reg0x30[0]=0 时		
	0: 120mA		
	1: 30mA		
	2: 60mA		
	3: 90mA;		
	4: 150mA		
	5: 180mA		
	6: 210mA		
	7: 240mA		
	VOUT>7.65V,且 reg0x30[0]=1 时		
	0: 60mA		
	1: 30mA		
	2: 30mA		
	3: 55mA		
	4: 70mA		
	5: 100mA		
	6: 100mA		
	7: 115mA	<u> </u>	
3-2	无线充端口空载检测时间	R/W	0x0
	0: 2min		
	1: 16s		
	2: 32s		
	3: 64s	5 /:	
1-0	无线充模式使能	R/W	0x0
	2: 不使能;		
	3: 使能		
	注意配置 A2 为无线充模式后,按键固定打开 A2 口		

2.35. REG 0x33: 小电流充电配置

Bit	Description	R/W	Default
7-2	Reserved	/	/

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

1-0	小电流模式使能	R/W	OTP	
	2: 不使能			
	3: 使能			
	Other: reserved			
	注意蓝牙小电流模式使能后,在输出口打开的条件下按键或 reg0x2E 控制			
	进入或退出小电流模式			

2.36. REG 0x40: Boost 配置 0

Bit	Description	R/W	Default
7-5	UVLO 关机阈值设置	W/R	ОТР
	0: 2.8V		
	1: 2.7V		
	2: 2.9V		
	3: 3.0V		
	4: 3.1V		
	5: 3.2V		
	6: 3.3V		
	7: 3.4V		
4-3	UVLO 迟滞设置	W/R	ОТР
	0: 0.5V		
	1: 0.4V		
	2: 0.6V		
	3: 0.7V		
2-1	Boost 频率设置	W/R	ОТР
	0: 400K		
	1: 300K		
	2: 500K		
	3: 600K		
0	最大输出功率设置	W/R	ОТР
	0: 18W		
	1: 21W		

2.37. **REG 0x41: Boost** 配置 **1**

Bit	Description	R/W	Default
7-5	Reserved	W/R	OTP
4-3	Vout 偏移量设置	W/R	OTP
	0: 100mV		

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

	1: 0mV		
	2: 50mV		
	3: 150mV		
2	Boost 恒流环门限 margin	R/W	ОТР
	0: 5%		
	1: 15%		
1	Reserved	W/R	ОТР
0	多口输出应用时最大输出电流设置	W/R	ОТР
	0: 3A		
	1: 4.2A		

2.38. REG 0x42: Charger 配置 0

Bit	Description	R/W	Default
7-5	9V 输入恒流设置(端口电流)	R/W	ОТР
	0: 2.0A		
	1: 1.6A		
	2: 1.7A		
	3: 1.8A		
	4: 1.9A		
	5: 2.1A		
	6: 2.2A		
	7: 2.3A		
	注意需要先强制关闭 charger,然后再设置电流,最后释放强制关 charger		
4-2	12V 输入恒流设置(端口电流)	R/W	ОТР
	0: 1.5A		
	1: 1.1A		
	2: 1.2A		
	3: 1.3A		
	4: 1.4A		
	5: 1.6A		
	6: 1.7A		
	7: 1.8A		
	注意需要先强制关闭 charger,然后再设置电流,最后释放强制关 charger		
1-0	Reserved	R/W	OTP

2.39. **REG 0x43: Chager** 配置 **1**

Bit	Description	R/W	Default	
-----	-------------	-----	---------	--

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

7-4	C 口 5V 输入恒流设置	R/W	ОТР
	0: 2.0A		
	1: 1.8A		
	2: 1.9A		
	3: 1.7A		
	4: 2.1A		
	5: 2.2A		
	6: 2.3A		
	7: 2.4A		
	8: 2.5A		
	9: 2.6A		
	A: 2.7A	/1	
	B: 2.8A		
	C: 2.9A		
	D: 3.0A		
	E: 3.1A		
	F: 3.2A		
3-1	B □/L □ 5V 输入恒流设置	R/W	ОТР
	0: 2.0A		
	1: 1.8A		
	2: 1.9A		
	3: 1.7A		
	4: 2.1A		
	5: 2.2A		
	6: 2.3A		
	7: 2.4A		
0		/	/

2.40. REG 0x44: Charger 配置 2

Bit	Description	R/W	Default
7	Reserved	/	/
6	最大充电截止电流设置	R/W	ОТР
	0: 5v/230mA; 9v/130mA; 12v/100mA		
	1: 5v/270mA; 9v/150mA; 12v/110mA		
5-3	5V 的充电限压门限设置	R/W	ОТР
	0: 4.6V		
	1: 4.7V		
	2: 4.8V		
	3: 4.9V		

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

	4: 4.2V		
	5: 4.3V		
	6: 4.4V		
	7: 4.5V		
2-0	Charger 温度环路设置	R/W	ОТР
	0: 100℃		
	1: 105℃		
	2: 110℃		
	3: 115℃		
	4: 80℃		
	5: 85℃		
	6: 90℃	7	
	7: 95℃		

2.41. **REG 0x45: Charger** 配置 **3**

Bit	Description	R/W	Default
7-6	Reserved	/	/
5-3	Charger 12V 的充电限压门限设置	R/W	ОТР
	4: 11.215V		
	5: 11.215V		
	6: 11.321V		
	7: 11.429V		
	0: 11.538V		
	1: 11.650V		
	2: 11.765V		
	3: 11.881V		
2-0	Charger 9V 的充电限压门限设置	R/W	ОТР
	4: 8.072V		
	5: 8.182V		
	6: 8.295V		
	7: 8.392V		
	0: 8.490V		
	1: 8.612V		
	2: 8.738V		
	3: 8.867V		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

2.42. **REG 0x46: Charger** 配置 **4**

Bit	Description	R/W	Default
7-6	Charger 频率	R/W	ОТР
	0: 600K		
	1: 400K		
	2: 800K		
	3: 500K		
5-0	reserved	R/W	ОТР

2.43. **REG 0x47: NTC** 配置 **0**

Bit	Description	R/W	Default
7-6	BOOST NTC 温度保护低温阈值	R/W	ОТР
	0: -20℃		
	1:5℃		
	2: 5℃		
	3:5℃		
5-4	Boost NTC 温度保护高温阈值	R/W	ОТР
	0: 60℃		
	1: 50℃		
	2: 55℃		
	3: 65℃		
3	BOOST NTC 温度保护功能使能	R/W	ОТР
	0: 使能;		
	1: 不使能		
	ntc 过温保护后关闭输出,退出后需要插拔或按键打开		
2	Boost NTC 温度自适应功能使能	R/W	ОТР
	0: 使能		
	1: 不使能		
	高于自适应温度门限后,ntc 温度每上升 1 度,vout 下降 800mv		
1-0	Reserved	/	/

2.44. REG 0x48: NTC 配置 1

Bit	Description	R/W	Default
7	JEITA 规范使能	R/W	ОТР

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

	0: 不使能		
	1: 使能		
6-5	Charger NTC 高温保护门限	R/W	ОТР
	0: 50℃		
	1: 45℃		
	2: 55℃		
	3: 60℃		
4-3	Charger NTC 低温保护门限	R/W	ОТР
	0: 0℃		
	1: 15℃		
	2: 15℃		
	3: 15℃	/1	
2	Reserved	R/W	ОТР
1	ntc_reg_hys, Boost NTC 温度自适应阈值迟滞	R/W	ОТР
	0:5℃		
	1: 10℃		
	NTC 温度自适应阈值与 NTC 温度保护高温阈值相关联,当 ntc_reg_hys=0		
	时,NTC 温度自适应阈值比当前设置的 NTC 温度保护高温阈值低 5℃;当		
	ntc_reg_hys=1 时,NTC 温度自适应阈值比当前设置的 NTC 温度保护高温		
	阈值低 10℃		
0	NTC 电流标志,	R	0x0
	0: 80uA flag		
	1: 40uA flag		
	注意此标志位表示作用在 NTC 电阻上的电流. 计算 NTC 温度的过程如		
	下:		
	1. 通过 ADC reg0x13/reg0x14 读取 NTC 电阻上的电压值		
	2. 通过 reg0x48[0]获取 NTC 上的电流		
	3. 通过 NTC 电阻上的电压和电流计算得到 NTC 电阻的阻值		
	4. 通过 NTC 阻值查找相应的阻值-温度对应表,得到 NTC 温度		

2.45. REG 0x49: 温度设置

Bit	Description	R/W	Default
7	/	/	/
6-4	过温保护阈值设置,boost 与 charger 过温保护复用	R/W	ОТР
	0: 130℃		
	1: 100℃		
	2: 110°C		
	3: 120℃		
	4:90℃		
	5: 140℃		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

	6: 150℃		
	7:160℃		
3	Boost 温度自适应使能	W/R	ОТР
	0: 使能		
	1: 不使能		
2-0	Boost 温度自适应阈值	R/W	ОТР
	0: 100℃		
	1: 105℃		
	2: 110℃		
	3: 115℃		
	4: 80°C		
	5: 85℃	/\	
	6:90℃		
	7: 95℃		

2.46. **REG 0x57**: 芯片版本

Bit	Description	R/W	Default
7-3	1	/	/
2-0	芯片版本	R	0x5

2.47. **REG 0x72**: 最终电量

Bit	Description	R/W	Default
7		/	/
6-0	最终电量 1%/step	R	0x0

2.48. REG 0x73: 电池容量低 8bits

Bit	Description	R/W	Default
7-0	电池容量	R/W	-
	Bat_cap[7:0]		
	0.1695V.A.H/bit,注意此单位和电池类型有关,比如 3.7V 10000mAH 的电		
	池容量为 37 V.A.H		

ZHUHALISMARTWARE TECHNOLOGY CO., LTD.

2.49. **REG 0x74**: 电池容量高 **4bits**

Bit	Description	R/W	Default
7-4	1	/	/
3-0	电池容量	R/W	-
	Bat_cap[11:08]		

2.50. REG 0x7A: 充电控制

Bit	Description	R/W	Default
7-6	Reserved	R/W	ОТР
5	充电目标电压值设置	R/W	ОТР
	0: 正常值		
	1: 比正常值降低 0.1V		
4	充电电流减低设置使能	R/W	ОТР
	0: 不使能		
	1: 使能,即通过 reg0x7A[3]能控制充电电流值		
3	充电电流降低值设置	R/W	ОТР
	0: 设置充电电流为 5V/9V12V 0.5A		
	1: 设置充电电流为 5V/9V/12V 1A		
2-0	Reserved	R/W	ОТР

2.51. REG 0x7E: 最终处理电量

Bit	Description	R/W	Default
7	1	/	/
6-0	最终处理电量	R	0x0
	1%/step		
	建议使用此电量百分比		