

Chapter 2: Random Numbers and Probability

○ Created @April 16, 2024 6:41 PM
 ○ Class Introdiction to Statistics in Python

Measuring Chance with Probability

Introduction

Probability

Complex Scenario: Selecting a Salesperson

Setting Random Seed

Sampling Without Replacement

Sampling With Replacement

Independent Events

Dependent events

Probability Distributions

Introduction

Dice Roll Scenario

Probability Distribution

Expected Value

Visualizing Probability Distributions

Calculating Probabilities

Biased Die Example

Discrete Probability Distributions

Discrete Uniform Distribution

Sampling from Probability Distributions

Law of Large Numbers

Continuous Probability Distributions

Introduction

Bus Arrival Example

Continuous Uniform Distribution

Calculating Probabilities

Python Implementation

Generating Random Values

Other Continuous Distributions

Conclusion

The Binomial Distribution

Binary Outcomes

Simulating Coin Flips in Python

Binomial Distribution

Parameters

Visualizing the Distribution

Calculating Probabilities

Expected Value

Independence Assumption

Conclusion

Measuring Chance with Probability

Introduction

- People talk about chance frequently in various scenarios
- How do we measure chance?

Probability

- Measure chances of an event using probability
- Calculate probability: (number of ways the event can happen) / (total number of possible outcomes)

$$P(event) = rac{Number\ of\ ways\ events\ can\ happen}{Total\ number\ of\ possible outcomes}$$

- Example: Flipping a coin
- Probability of getting heads = 1/2 = 50%
- Range of probability: 0% (impossible) to 100% (certain)

Complex Scenario: Selecting a Salesperson

- Scenario: Sending a salesperson to a meeting with a potential client
- Method: Put names on tickets, randomly pick one from a box
- Example: Brian's name is picked, probability = 1/4 = 25%
- Recreating in Python with sample() method; sample() randomly selects one row from the DataFrame

Setting Random Seed

- To ensure consistent results, set the random seed using np.random.seed()
- Seed is the starting point for the random number generator
- Same seed generates the same random value each time

Sampling Without Replacement

- Scenario: Another client meeting at the same time, need to pick another salesperson
- Cannot pick the same person twice (Brian is already picked)
- Sampling without replacement: Not replacing the name already picked
- Example: Claire is picked, probability = 1/3 ≈ 33%
- In Python: Pass 2 to sample() method which will give us 2 rows of DataFrame

Sampling With Replacement

- Scenario: Meetings happening on different days, same person can attend both
- Sampling with replacement: Returning the picked name back to the box
- Example: Claire is picked again, probability = 1/4 = 25%
- In Python: Set replace=True in sample() method to allow rows to be picked multiple times

Independent Events

- Two events are independent if the probability of the second event is not affected by the outcome of the first event
- Sampling with replacement: Each pick is independent
- Sampling without replacement: Each pick is dependent on the previous pick(s)

Dependent events

 Two events are dependent if the probability of the second event is affected by the outcome of the first event.

Probability Distributions

Introduction

· Taking a deeper dive into probability and probability distributions

Dice Roll Scenario

- Consider rolling a standard six-sided die
- There are six possible outcomes (1, 2, 3, 4, 5, 6)
- Each outcome has a $1/6 \approx 17\%$ probability of being rolled
- Example of a probability distribution

Probability Distribution

• Describes the probability of each possible outcome in a scenario

Expected Value

- The mean of a probability distribution
- Calculated by multiplying each value by its probability and summing
- For a fair die, the expected value is 3.5

Visualizing Probability Distributions

- Use a bar plot, where each bar represents an outcome
- Bar height represents the probability of that outcome

Calculating Probabilities

- Probabilities can be calculated by taking areas of the probability distribution
- Example: Probability of rolling ≤ 2 on a fair die is 1/3 (area of bars for 1 and 2)

Biased Die Example

- A die where 2 is replaced with another 3
- Probability of rolling 2 is now 0%, and probability of rolling 3 is 1/3
- Expected value changes (slightly higher than a fair die)
- Bars in the visualization are no longer even

Discrete Probability Distributions

- Represent situations with discrete (countable) outcomes
- Example: Counting dots on a die (can't roll 1.5 or 4.3)

Discrete Uniform Distribution

• Special case where all outcomes have the same probability (fair die)

Sampling from Probability Distributions

- · Can sample from probability distributions, similar to sampling names
- Example: Simulating 10 rolls of a fair die by sampling from a DataFrame

```
# Create a DataFrame representing a fair die
die = pd.Series([1/6, 1/6, 1/6, 1/6, 1/6, 1/6], index=[1, 2,
3, 4, 5, 6])
```

```
# Sample 10 rolls from the die
rolls = die.sample(10, replace=True)

# Visualize the rolls
plt.hist(rolls.index, bins=np.linspace(0.5, 6.5, 7), edgecolo
r='black')
plt.xticks(np.arange(1, 7))
plt.xlabel('Roll Value')
plt.ylabel('Count')
plt.show()
```

Law of Large Numbers

- As the sample size increases, the sample mean approaches the theoretical mean
- Demonstrated by simulating more rolls (100, 1000) and observing the distributions

```
# Simulate 100 rolls
rolls_100 = die.sample(100, replace=True)

# Simulate 1000 rolls
rolls_1000 = die.sample(1000, replace=True)
```

Continuous Probability Distributions

Introduction

- Discrete distributions model countable variables
- How can we model continuous variables?

Bus Arrival Example

- City bus arrives every 12 minutes
- Waiting time can range from 0 minutes (just arrived) to 12 minutes (just missed)
- An infinite number of possible waiting times (1 min, 1.5 min, 1.53 min, etc.)

Continuous Uniform Distribution

- Represented by a flat continuous line
- Equal probability of waiting any time from 0 to 12 minutes

Calculating Probabilities

- Calculate probability by taking the area under the curve
- Example: Probability of waiting between 4 and 7 minutes
- Width = 7 4 = 3
- Height = 1/12
- Area = Width × Height = 3/12 = 0.25 (25%)

Python Implementation

```
from scipy.stats import uniform

# Probability of waiting <= 7 minutes in total 12 minutes
uniform.cdf(7, 0, 12)  # Output: 0.5833333333333334

# Probability of waiting > 7 minutes
1 - uniform.cdf(7, 0, 12)  # Output: 0.416666666666667

# Probability of waiting between 4 and 7 minutes
uniform.cdf(7, 0, 12) - uniform.cdf(4, 0, 12)  # Output: 0.25

# Probability of waiting between 0 and 12 minutes
12 * (1/12)  # Output: 1.0 (100%)
```

Generating Random Values

uniform.rvs(0, 5, size=10) # Generate 10 random values between

Other Continuous Distributions

- Continuous distributions can take various shapes
- Some values may have higher probabilities than others
- Area under the curve must always equal 1
- Examples: Normal distribution, Exponential distribution

Conclusion

Concept	Description
Continuous Uniform Distribution	Flat line, equal probability across the range
Calculating Probabilities	Area under the curve
scipy.stats.uniform	Python implementation of the uniform distribution
cdf	Cumulative Distribution Function
rvs	Generate random values
Other Distributions	Normal, Exponential, etc.

The Binomial Distribution

Binary Outcomes

- Example: Flipping a coin (heads or tails)
- Binary outcome: Two possible values (0/1, success/failure, win/loss)

Simulating Coin Flips in Python

```
from scipy.stats import binom
binom.rvs(# of coins, probability of heads/success, size=# of
trials)
# returns an array of results
# Flip 1 coin, 50% probability of heads, 1 time
binom.rvs(1, 0.5, size=1)
# Flip 1 coin, 50% probability of heads, 8 times
binom.rvs(1, 0.5, size=8)
# gives us an array of 8 ones(success) and zeros(failure)
# Flip 8 coins, 50% probability of heads, 1 time
binom.rvs(8, 0.5, size=1)
# gives us one number, which is the total number of heads/suc
cesses
# Flip 3 coins, 50% probability of heads, 10 times
binom.rvs(3, 0.5, size=10)
# returns 10 numbers each representing the total number of he
ad from # each set of flips
# Simulating with a biased coin (25% probability of heads)
binom.rvs(1, 0.25, size=8)
```

Binomial Distribution

- Describes the probability of the number of successes in a sequence of independent trials
- Can tell the probability of getting a certain number of heads in a sequence of coin flips
- Discrete distribution (countable outcome)

Parameters

- n: Total number of trials
- p: Probability of success
- n and p are the third and second arguments of binom.rvs

Visualizing the Distribution

- Example: 10 coin flips
- Highest probability of getting 5 heads
- Smaller probability of getting 0 or 10 heads

Calculating Probabilities

```
binom.pmf(num_heads, num_trials, prob_of_heads)
# calculates the probability of getting num_heads in num_trials
# Probability of getting exactly 7 heads out of 10 coins
binom.pmf(7, 10, 0.5)

binom.cdf(num_heads, num_trials, prob_of_heads)
# calculates the probability of getting less than or equal to
# num_heads in num_trials

# Probability of getting 7 or fewer heads out of 10 coins
binom.cdf(7, 10, 0.5)

# Probability of getting more than 7 heads out of 10 coins
1 - binom.cdf(7, 10, 0.5)
```

Expected Value

- Expected number of successes
- Calculated as n * p

• Example: For 10 coin flips with p=0.5, expected value = 10 * 0.5 = 5

Independence Assumption

- Binomial distribution assumes trials are independent
- Outcomes should not affect the probabilities of subsequent trials
- Example: Sampling without replacement violates the independence assumption

Conclusion

Function	Purpose
binom.rvs	Generate random variates (simulate trials)
binom.pmf	Probability Mass Function (probability of exact number of successes)
binom.cdf	Cumulative Distribution Function (probability of successes <= value)
n * p	Expected value (expected number of successes)