Métodos Numéricos Ajuste de Curvas

Daniel Barragán 1

¹Escuela de Ingeniería de Sistemas y Computación Universidad del Valle

May 12, 2015

Agenda

- Ajuste de Curvas
 - Introducción
- Regresión
 - Regresión Lineal
 - Regresión Polinomial
 - Regresión Multivariable
- Interpolación
 - Interpolación
 - Interpolación de Newton
 - Interpolación de Lagrange

Ajuste de Curvas. Introducción.

- En esta sección se trata el problema de ajustar un modelo matemático (curva) a un conjunto de datos discretos
- Cuando el conjunto de datos presenta error, el modelo matemático (curva) representa la tendencia de los datos (Regresión)
- Cuando el conjunto de datos no presenta error, el modelo matemático (curva o curvas) contiene todo el conjunto de datos (Interpolación)

Ajuste de Curvas. Introducción.

Regresión

Ajuste de Curvas. Introducción.

Interpolación

Regresión Lineal Mínimos Cuadrados

Dado un conjunto de observaciones
 (x₁, y₁), (x₂, y₂), ..., (x_n, y_n), se busca obtener la línea recta que siga la tendencia de los puntos

Dado un conjunto de observaciones
 (x₁, y₁), (x₂, y₂), ..., (x_n, y_n), la expresión matemática para
 una línea recta que aproxima la tendencia de las
 observaciones es

$$y=a_0+a_1x+e$$

Donde:

a₀ es el intercepto

a₁ es la pendiente

e es el error entre las observaciones y el modelo

 Los parámetros a₀ y a₁ definen una recta. El objetivo es encontrar los parámetros a₀ y a₁ que minimicen el error respecto a las observaciones

$$e = y - a_0 - a_1 x$$

Donde:

y es el valor de la observación $a_0 + a_1 x$ es el valor aproximado por la ecuación lineal

Regresión Lineal Mínimos Cuadrados

- Tomando $e = y a_0 a_1 x$
- En la gráfica de la izquierda e = 2 + 0 + 0 2 = 0

Mínimos Cuadrados

- Tomando $e = |y a_0 a_1 x|$
- En la gráfica superior-izquierda e = 0 + 0 + 2 + 2 = 4
- En la gráfica inferior-izquierda e = 1 + 1 + 1 + 1 = 4

Mínimos Cuadrados

- Tomando $e = (y a_0 a_1 x)^2$
- En la gráfica $e = 1^2 + 1^2 + 1^2 + 1^2 = 4$
- ¿Que sucede en otros casos?

- La estrategia en el método de mínimos cuadrados es minimizar la sumatoria de los cuadrados del error.
- Los cuadrados del error son tambien conocidos como residuos (residuals)

$$min(S_r) = min(\sum_{i=1}^n e_i^2) = min(\sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2)$$

 Las fórmulas para encontrar a₀ y a₁ se obtienen de la siguiente manera

$$\frac{\partial S_r}{\partial a_0} = -2 \sum (y_i - a_0 - a_1 x_i)$$
$$\frac{\partial S_r}{\partial a_1} = -2 \sum [(y_i - a_0 - a_1 x_i) x_i]$$

Igualando a cero

$$0 = \sum y_i - \sum a_0 - \sum a_1 x_i$$

$$0 = \sum x_i y_i - \sum a_0 x_i - \sum a_1 x_i^2$$

Reordenando, se obtiene un sistema de ecuaciones lineal de dos incognitas a_0 y a_1

$$na_0 + (\sum x_i)a_1 = \sum y_i (\sum x_i)a_0 + (\sum x_i^2)a_1 = \sum x_i y_i$$

Solucionando el sistema de ecuaciones se tiene

$$a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$a_0 = \overline{y} - a_1 \overline{x}$$

 Problema Ajuste una línea a los valores de la tabla empleando la técnica de mínimos cuadrados. x es la variable independiente (m/s), y es la variable dependiente (N)

i	x_i	y_i	x_i^2	$x_i y_i$
1	10	25	100	250
2	20	70	400	1,400
3	30	380	900	11,400
4	40	550	1,600	22,000
5	50	610	2,500	30,500
6	60	1,220	3,600	73,200
7	70	830	4,900	58,100
8	_80	<u>1,450</u>	6,400	116,000
\sum	360	5,135	20,400	312,850

Solución

$$a_{1} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$a_{1} = \frac{8(312850) - 360(5135)}{8(20400) - (360)^{2}} = 19.47024$$

$$a_{0} = \overline{y} - a_{1}\overline{x}$$

$$\overline{y} = \frac{5135}{8} = 641.875, \ \overline{x} = \frac{360}{8} = 45$$

$$a_{0} = 641.875 - 19.47024(45) = -234.2857$$

$$F = -234.2857 + 19.47024v$$

• El error estandar de la estimación se calcula por medio de

$$s_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

Donde

$$S_r = \sum (y_i - a_0 - a_1 x_i)^2$$

 El error de regresión se calcula como la diferencia entre una aproximación por medio de la línea que resulta de la media de los puntos y la línea que resulta de la regresión

 El coeficiente de determinación r² y el coeficiente de correlación r se calculan de la siguiente manera

$$r^{2} = \frac{S_{t} - S_{r}}{S_{t}}$$
$$r = \sqrt{\frac{S_{t} - S_{r}}{S_{t}}}$$

Donde

$$S_t = \sum (y_i - \overline{y})^2$$

$$S_r = \sum (y_i - a_0 - a_1 x_i)^2$$

- El mejor resultado se obtiene con $r^2 = 1$. $r^2 = 1$ implica que $S_r = 0$. Este resultado indica que la recta se ajusta a los datos perfectamente.
- Un resultado de $r^2 = 0$ implica $S_r = S_t$. Este resultado indica que no hay mejora con la regresión.

 Problema Encuentre el error estandar de la estimación, el coeficiente de determinación y el coeficiente de correlación para los datos de la tabla

i	x_i	y_i	$a_0 + a_1 x_i$	$(y_i - \overline{y})^2$	$(y_i - a_0 - a_1 x_i)^2$
1	10	25	-39.58	380,535	4,171
2	20	70	155.12	327,041	7,245
3	30	380	349.82	68,579	911
4	40	550	544.52	8,441	30
5	50	610	739.23	1,016	16,699
6	60	1,220	933.93	334,229	81,837
7	70	830	1,128.63	35,391	89,180
8	80	1,450	1,323.33	653,066	16,044
\sum	360	5,135		1,808,297	216,118

Solución

$$s_{\frac{y}{x}} = \sqrt{\frac{216118}{8 - 2}}$$

$$r^2 = \frac{1808297 - 216118}{1808297} = 0.8805$$

$$r = 0.9383$$

Regresión Lineal Comentarios generales

Para emplear el método de mínimos cuadrados se debe tener en cuenta:

- Los valores de x se conocen sin error
- Los valores de y tienen la misma varianza
- Los valores de y tienen un comportamiento de distribución normal

Regresión Polinomial. Introducción.

 Un conjunto de datos que exhibe un patrón podría no ser bien representado por una línea recta

Regresión Polinomial. Introducción.

 Para estos casos una alternativa es usar transformaciones, la otra alternativa es ajustar los datos a un polinomio

Regresión Polinomial. Mínimos Cuadrados.

 La técnica de mínimos cuadrados se puede extender a polinomios de mayor orden (orden ≥ 2)

$$y = a_0 + a_1 x + a_2 x^2 + e$$

Regresión Polinomial. Mínimos Cuadrados.

• Encontrando las derivadas parciales del error

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

$$\frac{\partial S_r}{\partial a_0} = -2 \sum_i (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$\frac{\partial S_r}{\partial a_1} = -2 \sum_i x_i (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$\frac{\partial S_r}{\partial a_2} = -2 \sum_i x_i^2 (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

Regresión Polinomial. Mínimos Cuadrados.

 Igualando a cero y reordenando las ecuaciones se obtiene el siguiente sistema lineal de ecuaciones

$$(n)a_0 + (\sum x_i)a_1 + (\sum x_i^2)a_2 = \sum y_i$$

$$(\sum x_i)a_0 + (\sum x_i^2)a_1 + (\sum x_i^3)a_2 = \sum x_iy_i$$

$$(\sum x_i^2)a_0 + (\sum x_i^3)a_1 + (\sum x_i^4)a_2 = \sum x_i^2y_i$$

Regresión Polinomial. Mínimos Cuadrados.

• Determinar los coeficientes de un polinomio de orden m corresponde a solucionar un sistema de m+1 ecuaciones

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m + e$$

Cuantificación del error.

 El error estándar al ajustar una curva por medio de un polinomio de orden m a partir de un conjunto de n observaciones es

$$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

 El coeficiente de determinación se calcula de la siguiente manera

$$r^2 = \frac{S_t - S_r}{S_t}$$

Cuantificación del error.

 Problema: Ajustar un polinomio de segundo orden a los datos de las dos primeras columnas de la tabla y encontrar el error estándar y el coeficiente de correlación

x_i	y_i	$(y_i - \overline{y})^2$	$(y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$
0	2.1	544.44	0.14332
1	7.7	314.47	1.00286
2	13.6	140.03	1.08160
3	27.2	3.12	0.80487
4	40.9	239.22	0.61959
5	61.1	1272.11	0.09434
\sum	152.6	2513.39	3.74657

Cuantificación del error.

Solución:

$$m = 2$$
 $\sum x_i = 15$ $\sum x_i^4 = 979$
 $n = 6$ $\sum y_i = 152.6$ $\sum x_i y_i = 585.6$
 $\overline{x} = 2.5$ $\sum x_i^2 = 55$ $\sum x_i^2 y_i = 2488.8$
 $\overline{y} = 25.433$ $\sum x_i^3 = 225$

Cuantificación del error.

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{bmatrix}$$
$$a = \begin{bmatrix} 2.4786, 2.3593, 1.8607 \end{bmatrix}'$$
$$y = 2.4786 + 2.3593x + 1.8607x^2$$
$$s_{\frac{y}{x}} = \sqrt{\frac{3.74657}{6 - (2+1)}} = 1.1175$$
$$r^2 = \frac{2513.39 - 3.74657}{2513.39} = 0.99851$$
$$r = 0.99925$$

Regresión Multivariable.

- La técnica de regresión puede aplicarse al caso donde y es una función lineal de dos o más variables
- Para el caso de dos dimensiones la regresión esta determinada por un plano
- Por ejemplo y puede ser una función lineal de x₁ y x₂

$$y = a_0 + a_1 x_1 + a_2 x_2 + e$$

Regresión Multivariable. Mínimos Cuadrados.

Encontrando las derivadas parciales del error

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i})^2$$

$$\frac{\partial S_r}{\partial a_0} = -2 \sum_i (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i})$$

$$\frac{\partial S_r}{\partial a_1} = -2 \sum_i x_{1,i} (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i})$$

$$\frac{\partial S_r}{\partial a_2} = -2 \sum_i x_{2,i} (y_i - a_0 - a_1 x_{1,i} - a_2 x_{2,i})$$

Regresión Multivariable. Mínimos Cuadrados.

 Igualando a cero y reordenando las ecuaciones se obtiene el siguiente sistema lineal de ecuaciones

$$\begin{bmatrix} n & \sum x_{1,i} & \sum x_{2,i} \\ \sum x_{1,i} & \sum x_{1,i}^2 & \sum x_{1,i}x_{2,i} \\ \sum x_{2,i} & \sum x_{1,i}x_{2,i} & \sum x_{2,i}^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_{1,i}y_i \\ \sum x_{2,i}y_i \end{bmatrix}$$

Regresión Multivariable. Mínimos Cuadrados.

• **Problema** Emplear la técnica de regresión lineal múltiple para ajustar los datos de la tabla a una curva.

У	x_1	x_2	x_{1}^{2}	x_{2}^{2}	x_1x_2	x_1y	x_2y
5	0	0	0	0	0	0	0
10	2	1	4	1	2	20	10
9	2.5	2	6.25	4	5	22.5	18
0	1	3	1	9	3	0	0
3	4	6	16	36	24	12	18
27	7	2	49	4	14	189	54
54	16.5	14	76.25	54	48	243.5	100

Regresión Multivariable. Mínimos Cuadrados.

Solución

$$\begin{bmatrix} 6 & 16.5 & 14 \\ 16.5 & 76.25 & 48 \\ 14 & 48 & 54 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 54 \\ 243.5 \\ 100 \end{bmatrix}$$

Regresión Multivariable. Mínimos Cuadrados.

• El caso anterior se puede extender a *m* dimensiones

$$y = a_0 + a_1 x_1 + a_2 x_2 + ... + a_m x_m + e$$

 La siguiente tabla muestra la densidad y viscosidad del aire en función de la temperatura

<i>T</i> , °C	ho, kg/m ³	μ , N \cdot s/m 2	v , $\mathbf{m^2/s}$
-40	1.52	1.51 × 10 ⁻⁵	0.99×10^{-5}
0	1.29	1.71×10^{-5}	1.33×10^{-5}
20	1.20	1.80×10^{-5}	1.50×10^{-5}
50	1.09	1.95×10^{-5}	1.79×10^{-5}
100	0.946	2.17×10^{-5}	2.30×10^{-5}
150	0.835	2.38×10^{-5}	2.85×10^{-5}
200	0.746	2.57×10^{-5}	3.45×10^{-5}
250	0.675	2.75×10^{-5}	4.08×10^{-5}
300	0.616	2.93×10^{-5}	4.75×10^{-5}
400	0.525	3.25×10^{-5}	6.20×10^{-5}
500	0.457	3.55×10^{-5}	7.77×10^{-5}

- Al necesitar un dato que no esta en la tabla se debe interpolar, es decir, encontrar el valor deseado con base en los valores adyacentes
- La forma más fácil de interpolar sería conectar los valores adyacentes por medio de una línea
- Cuando los datos presentan algún grado de curvatura lo más conveniente es encontrar un polinomio con base en los datos

 La fórmula general para un polinomio de orden m es la siguiente

$$f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$$

- Para un conjunto de n puntos, existe únicamente un polinomio de orden m=(n-1) que pasa a través de los puntos
- Ejemplo: una línea (orden 1) está determinada por dos puntos, una parábola (orden 2) está determinada por tres puntos

• **Problema:** Determine los coeficientes de la parábola $f(x) = p_0x^2 + p_1x + p_2$, que pasa a través de los siguientes valores

$$x_1 = 300, f(x_1) = 0.616$$

 $x_2 = 400, f(x_2) = 0.525$
 $x_3 = 500, f(x_3) = 0.457$

Nota: Para solucionar el problema construya un sistema de ecuaciones, resuelvalo y encuentre el número de condición de la matriz de coeficientes

Solución:

$$0.616 = p_0(300)^2 + p_1(300) + p_2$$

$$0.525 = p_0(400)^2 + p_1(400) + p_2$$

$$0.457 = p_0(500)^2 + p_1(500) + p_2$$

$$\begin{bmatrix} 90000 & 300 & 1 \\ 160000 & 400 & 1 \\ 250000 & 500 & 1 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 0.616 \\ 0.525 \\ 0.457 \end{bmatrix}$$

$$p = \begin{bmatrix} 0.00000115, -0.001715, 1.027 \end{bmatrix}'$$

$$f(x) = 0.00000115x^2 - 0.001715x + 1.027$$

Interpolación.

 Las matrices que siguen la forma de Vandermonde son altamente mal condicionadas

$$\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} \sum f(x_1) \\ \sum f(x_2) \\ \sum f(x_3) \end{bmatrix}$$

 A causa de esto se emplean otras formas para encontrar los coeficientes que no presenten esta condición

Problema: Obtenga el número de condición para la matriz
 A, comente sobre la estabilidad de la matriz

$$A = \left[\begin{array}{cccc} 90000 & 300 & 1 \\ 160000 & 400 & 1 \\ 250000 & 500 & 1 \end{array} \right]$$

Interpolación de Newton. Introducción.

- Existen otras formas de expresar un polinomio de interpolación distintas a la forma general
- El polinomio de interpolación de Newton es una de aquellas formas
- A continuación se presenta la derivación lineal, cuadrática y finalmente la forma general para polinomios de interpolación de Newton

 La forma más simple de interpolación es conectar dos puntos con una línea recta

Por ley de triángulos:

$$\frac{f_1(x) - f(x_1)}{x - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Reordenando:

$$f_1(x) = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1)$$

• **Problema:** Estimar el logaritmo natural de 2 empleando interpolación lineal. Realice los cálculos entre ln(1) = 0 y ln(6) = 1.791759. Repita el procedimiento desde ln(1) hasta ln(4) = 1.386294. Note que el valor verdadero de ln(2) = 0.6931472

Solución:

Desde 1 hasta 6

$$f_1(2) = 0 + \frac{1.791759 - 0}{6 - 1}(2 - 1) = 0.3583519$$

$$\varepsilon_t = \frac{0.6931472 - 0.3583519}{0.6931472}(100) = 48,3\%$$

Desde 1 hasta 4

$$f_1(2) = 0 + \frac{1.386294 - 0}{4 - 1}(2 - 1) = 0.4620981$$

$$\varepsilon_t = \frac{0.6931472 - 0.4620981}{0.6931472}(100) = 33,3\%$$

Interpolación de Newton. Cuadrática.

- Una forma de mejorar los resultados de la interpolación, es introducir un grado de curvatura a la línea que atraviesa el conjunto de puntos
- Con tres puntos se puede interpolar por medio de un polinomio de segundo orden (forma cuádratica o parábola)
- La forma de un polinomio de interpolación de Newton de segundo orden es la siguiente

$$f_2(x) = b_0 + b_1(x - x_1) + b_2(x - x_1)(x - x_2)$$

Interpolación de Newton. Cuadrática.

Para determinar el valor del coeficiente b_0 , se hace $x = x_1$

$$b_0=f(x_1)$$

Para determinar el valor del coeficiente b_1 , se hace $x = x_2$

$$b_1 = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Para determinar el valor del coeficiente b_2 , se hace $x = x_3$

$$b_2 = \frac{\frac{f(x_3) - f(x_2)}{x_3 - x_2} - \frac{f(x_2) - f(x_1)}{x_2 - x_1}}{x_3 - x_1}$$

Interpolación de Newton. Cuadrática.

 Problema: Estimar el logaritmo natural de 2 empleando interpolación cuadrática (polinomio de segundo orden) a partir de los siguientes puntos

$$x_1 = 1, f(x_1) = 0$$

 $x_2 = 4, f(x_2) = 1.386294$
 $x_3 = 6, f(x_3) = 1.791759$

Solución:

$$b_0 = 0$$

$$b_1 = \frac{1.386294 - 0}{4 - 1} = 0.4620981$$

$$b_2 = \frac{\frac{1.791759 - 1.386294}{6 - 4} - 0.4620981}{6 - 1} = -0.0518731$$

$$f_2(x) = 0 + 0.4620981(x - 1) - 0.0518731(x - 1)(x - 4)$$

$$f_2(2) = 0.5658444$$

$$\varepsilon_t = \frac{0.6931472 - 0.5658444}{0.6931472}(100) = 18.4\%$$

 El análisis para el caso lineal y el caso cuadrático, permiten generalizar para un polinomio de Newton de orden m

$$f_m(x) = b_0 + b_1(x - x_1) + ... + b_m(x - x_1)(x - x_2)...(x - x_m)$$

• Los coeficientes se encuentran de la siguiente manera

$$b_0 = f(x_1)$$

$$b_1 = f[x_2, x_1]$$

$$b_2 = f[x_3, x_2, x_1]$$

$$b_m = f[x_{m+1}, x_m, ..., x_2, x_1]$$

 Las funciones con corchetes corresponden al cálculo de diferencias finitas

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}$$

$$f[x_{m+1}, x_m, ..., x_2, x_1] = \frac{f[x_{m+1}, x_m, ..., x_2] - f[x_m, x_{m-1}, ..., x_1]}{x_{m+1} - x_1}$$

 Gráficamente el cálculo de las diferencias finitas muestra un comportamiento recursivo.

 La forma general del polinomio de interpolación de Newton, teniendo en cuenta lo expresado anteriormente es la siguiente

$$f_m(x) = f(x_1) + f[x_2, x_1](x - x_1) + f[x_3, x_2, x_1](x - x_1)(x - x_2) + f[x_{m+1}, x_m, ..., x_2, x_1](x - x_1)(x - x_2)...(x - x_m)$$

 Problema: Estimar el logaritmo natural de 2 empleando un polinomio de interpolación de Newton de orden tres a partir de los siguientes puntos

$$x_1 = 1, f(x_1) = 0$$

 $x_2 = 4, f(x_2) = 1.386294$
 $x_3 = 6, f(x_3) = 1.791759$
 $x_4 = 5, f(x_4) = 1.609438$

Nota: Encuentre la solución construyendo la tabla de las diferencias

Solución:

Primeras Diferencias

$$f[x_2, x_1] = \frac{1.386294 - 0}{4 - 1} = 0.4620981$$

$$f[x_3, x_2] = \frac{1.791759 - 1.386294}{6 - 4} = 0.2027326$$

$$f[x_4, x_3] = \frac{1,609438 - 1.791759}{5 - 6} = 0.1823216$$

Segundas Diferencias

$$f[x_3, x_2, x_1] = \frac{0.2027326 - 0.4620981}{6 - 1} = -0.05187311$$

$$f[x_4, x_3, x_2] = \frac{0.1823216 - 0.2027326}{5 - 4} = -0.02041100$$

Terceras Diferencias

$$f[x_4, x_3, x_2, x_1] = \frac{-0.02041100 - (-0.05187311)}{5 - 1} = 0.007865529$$

x_i	$f(x_i)$	First	Second	Third
1 4 6 5	0 1.386294 1.791759 1.609438	0.4620981 0.2027326 0.1823216	-0.05187311 -0.02041100	0.007865529

$$f_3(x) = b_1 + b_2(x - x_1) + b_3(x - x_1)(x - x_2) + b_4(x - x_1)(x - x_2)(x - x_3)$$

$$f_3(x) = 0 + 0.4620981(x - 1) - 0.05187311(x - 1)(x - 4) + 0.007865529(x - 1)(x - 4)(x - 6)$$

Un polinomio de interpolación lineal se puede expresar de la forma

$$f(x) = L_1 f(x_1) + L_2 f(x_2)$$

 L_1 y L_2 son coeficientes de ponderación

$$L_1 = \frac{x - x_2}{x_1 - x_2}$$

$$L_2 = \frac{x - x_1}{x_2 - x_1}$$

 A partir de las ecuaciones anteriores se obtiene el polinomio de interpolación de Lagrange de primer orden

$$f_1(x) = \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2)$$

- A partir de tres puntos se puede encontrar un polinomio de interpolación de Lagrange de segundo orden (parábola)
- Para este caso la suma de tres parábolas resulta en la parábola única que une los tres puntos.

$$f_2(x) = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} f(x_1) + \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} f(x_2) + \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)} f(x_3)$$

 La forma general del polinomio de interpolación de Lagrange, es la siguiente

$$f_m(x) = \sum_{i=1}^{m+1} L_i(x) f(x_i)$$

• Los coeficientes se encuentran de la siguiente manera

$$L_i(x) = \prod_{j=1, j \neq i}^{m+1} \frac{x - x_j}{x_i - x_j}$$

 Problema: Use un polinomio de interpolación de Lagrange de primer y segundo orden para evaluar un valor de densidad cuando x = 15 grados centígrados

$$x_1 = 0, f(x_1) = 3.85$$

 $x_2 = 20, f(x_2) = 0.800$
 $x_3 = 40, f(x_3) = 0.212$

Solución:

Polinomio de Lagrange de primer orden

$$f_1(x) = \frac{15 - 20}{0 - 20} 3.85 + \frac{15 - 0}{20 - 0} 0.800 = 1.5625$$

Polinomio de Lagrange de segundo orden

$$f_2(x) = \frac{(15-20)(15-40)}{(0-20)(0-40)}3.85 + \frac{(15-0)(15-40)}{(20-0)(20-40)}0.800 + \frac{(15-0)(15-20)}{(40-0)(40-20)}0.212 = 1.3316875$$

Problemas I

• Problema: Realizar una función en scilab que permita aplicar el método de regresión lineal por mínimos cuadrados. La función debe recibir los valores de x, y y debe retornar en un vector el valor de la pendiente y el intercepto [a₁, a₀] y en otra variable el valor del coeficiente de determinación r²

Problemas I

 Problema: Realizar una función en scilab que permita aplicar el método de interpolación de Newton. La función debe recibir los valores de x, y y un valor en el cual el polinomio de interpolación es evaluado. Se debe retornar el valor interpolado

Problemas I

 Problema: Realizar una función en scilab que permita aplicar el método de interpolación de Lagrange. La función debe recibir los valores de x, y y un valor en el cual el polinomio de interpolación es evaluado. Se debe retornar el valor interpolado Appendix

Bibliografía I

S. Chapra.

Applied Numerical Methods with MATLAB For Engineers and Scientists, Sixth Edition.

Mac Graw Hill, 2010.