Analytical Dynamics Project 2 Double Link Pendulum Dynamics Simulation

By Deepak Raina (2019MEZ8497) Sandeep Kumar (2019MEZ8423)

Outline

- Problem Statement
- Equation of Motion (EoM)
- Conversion to reduced order EoM
- Differential Equation Solver
- Simulation Results
- Analysis

Problem Statement

- To simulate dynamics of double link pendulum under the effect of gravity
 - Considering two point masses
 - Considering two rods
 - With or without torsional spring
 - Linearizing the equation of motion

Case I: With 2 point masses

Assumptions:

- 1. Massless rods
- 2. Planar motion

Inertia of masses

$$I_{1z} = m_1 l_1^2$$

$$I_{2z} = m_2 l_2^2$$

Position of masses

$$x_{1} = l_{1} \sin \theta_{1}$$

$$y_{1} = -l_{1} \cos \theta_{1}$$

$$x_{2} = x_{1} + l_{2} \sin(\theta_{1} + \theta_{2})$$

$$y_{2} = y_{1} - l_{2} \cos(\theta_{1} + \theta_{2})$$

Case II: With 2 rods

Assumptions:

1. COM lies at center of link

Inertia of masses

$$I_{1z} = m_1 l_1^2/3$$

 $I_{2z} = m_2 l_2^2/3$

Position of masses

$$x_1 = l_{c1} \sin \theta_1$$

$$y_1 = -l_{c1} \cos \theta_1$$

$$x_2 = l_1(\sin \theta_1) + l_{c2}/2(\sin \theta_2 + \theta_1)$$

$$y_2 = -l_1(\cos \theta_1) - l_{c2}/2(\cos \theta_2 + \theta_1)$$

Equation of Motion (EoM)

Lagrangian

$$L = T - V$$

$$= \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2 + \frac{1}{2} m_2 l_1^2 \dot{\theta}_1^2 + \frac{1}{2} m_2 l_2^2 (\dot{\theta}_1 + \dot{\theta}_2)^2 + m_2 l_1 l_2 \dot{\theta}_1 (\dot{\theta}_1 + \dot{\theta}_2)^2 + m_2 l_2 l_2 \dot{\theta}_1 + \dot{\theta}_2 d_2 \dot{\theta}_2 + \frac{1}{2} m_2 l_2^2 (\dot{\theta}_1 + \dot{\theta}_2)^2 + m_2 l_2 l_2 \dot{\theta}_2 + \frac{1}{2} m_2 l_2^2 (\dot{\theta}_1 + \dot{\theta}_2)^2 + m_2 l_2 l_2 \dot{\theta}_1 + \frac{1}{2} m_2 l_2^2 \dot{\theta}_1 + \frac{1}{2} m_2$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \tau$$

Equation of Motion (EoM)

$$M(q)\ddot{q} + C(q,\dot{q}) + G(q) = \tau$$

Where,
$$q = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}^T$$

$$M = \begin{bmatrix} m_1 l_1^2 + m_2 l_1^2 + m_2 l_2^2 + 2m_2 l_1 l_2 \cos \theta_2 + I_{1z} + I_{2z} & m_2 l_2^2 + m_2 l_1 l_2 \cos \theta_2 + I_{2z} \\ m_2 l_2^2 + m_2 l_1 l_2 \cos \theta_2 + I_{2z} & m_2 l_2^2 + I_{2z} \end{bmatrix}$$

$$C = \begin{bmatrix} -2m_2l_1l_2\dot{\theta}_1\dot{\theta}_2\sin\theta_2 - \dot{m}_2l_1l_2\dot{\theta}_2^2\sin\theta_2 \\ m_2l_1l_2\dot{\theta}_1^2\sin\theta_2 \end{bmatrix}$$

$$G = \begin{bmatrix} m_1 l_1 g \sin \theta_1 + m_2 l_1 g \sin \theta_1 + m_2 l_2 g \sin(\theta_1 + \theta_2) + k_{t1} \theta_1 \\ m_2 l_2 g \sin(\theta_1 + \theta_2) + k_{t2} \theta_2 \end{bmatrix}$$

$$\tau = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix}$$

Reduced order EoM

$$M(q)\ddot{q} + C(q,\dot{q}) + G(q) = \tau$$

$$\ddot{q} = M^{-1}[\tau - C(q, \dot{q}) - G(q)]$$

Defining the state vector as $[\mathbf{r} \ \dot{\mathbf{r}}]^T$ Then, reduced order equation of motion are

$$\begin{bmatrix} r \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \dot{q} \\ -M^{-1} [C(q, \dot{q}) - G(q)] \end{bmatrix} + \begin{bmatrix} 0 \\ M^{-1} \end{bmatrix} \tau$$

Where $\mathbf{q} = [\theta_1 \ \theta_2]^T$

Differential Equation Solver

ODE45:

- This function implements a Runge-Kutta method
- Syntax

$$[t,x] = ode45(@f_name, t_span, x_init, options)$$

MATLAB GUI

Simulation Results – for 2 point mass

- Simulation under gravity $(\tau_1 = \tau_2 = 0)$
 - without torsional springs

$$K_{t1} = 0$$
, $K_{t2} = 0$

Linearizing the equation of motion as

$$\sin(\theta) \approx \theta , \cos(\theta) \approx 1$$

Simulation Results

- Simulation under gravity
 - with torsional springs

$$K_{t1} = 5$$
, $K_{t2} = 5 (Nm/rad)$

Linearizing the equation of motion as

$$\sin(\theta) \approx \theta , \cos(\theta) \approx 1$$

Simulation Results – for 2 rods

- Simulation under gravity
 - without torsional springs

$$K_{t1} = 0$$
, $K_{t2} = 0$

Linearizing the equation of motion as

$$\sin(\theta) \approx \theta , \cos(\theta) \approx 1$$

Analysis of simulations

- For small angles, chaotic motion is absent, for large angle chaos motion is present.
- For non-linearized case, there is more random motion otherwise its smooth.
- Presence of torsional spring restrict the large value of angles, hence prevents chaotic motion.

Chaotic behavior

- Small changes in initial conditions can lead to large changes in the long-term behavior of the system
- Motion of the system is difficult to predict
- Double pendulum is a chaotic system

Prediction of Chaotic Behavior

Lyapunov exponent

- Used to characterize the chaos of dynamic system
- Mathematically, it is given by λ as:

$$e^{\lambda t} \approx |\varphi(t) - (\varphi + \delta\varphi)(t)|$$

- For n-dimensional phase-space, we have n λ 's
- If average value of λ is positive, then system will show chaos
- If average value of λ is negative, then system is non-chaotic

Reference: Levien, R. B., and S. M. Tan. "Double pendulum: An experiment in chaos." American Journal of Physics 61.11 (1993): 1038-1044.

Effect of initial condition

Initial Joint	Cases			
angles (relative)	1	2	3	
$ heta_1$	30, 31, 32	60, 61, 62	120, 121, 122	
θ_2	0, 0, 0	0, 0, 0	0, 0, 0	

Analysis of chaotic behavior

- Effect of initial condition:
 - Varying initial angle of first link

$$m_1 = 1, m_2 = 1, l_1 = 1, l_2 = 1, \theta_2 = \dot{\theta}_1 = \dot{\theta}_2 = 0, t = 100s$$

Initial θ_1 (in degrees)	$\lambda_{m{ heta}_1}$	$\lambda_{m{ heta}_2}$	$\lambda_{\dot{m{ heta}}_1}$	$\lambda_{\dot{m{ heta}}_2}$	Behavior
30	-3.8165	-3.1433	-2.7859	-2.009	Non-chaotic
45	-2.7030	-1.9831	-1.7236	-0.8644	Non-chaotic
55	-1.1814	-0.5964	-0.4184	0.1949	Chaotic
60	-1.7082	-0.8446	-0.5228	0.1923	Chaotic
90	-0.5015	2.54522	0.3260	0.6802	Chaotic
120	1.6308	2.1625	0.3544	0.7550	Chaotic

Analysis of chaotic behavior

- Effect of initial condition:
 - Varying mass of links

$$\theta_1 = 45 \,^{\circ}, \theta_1 = 0, \qquad \dot{\theta}_1 = \dot{\theta}_2 = 0, t = 100s$$

Parameter	$\lambda_{m{ heta}_1}$	$\lambda_{m{ heta}_2}$	$\lambda_{\dot{m{ heta}}_1}$	$\lambda_{\dot{m{ heta}}_2}$	Behavior
$m_1 = 1, m_2 = 1,$ $l_1 = 1, l_2 = 1$	-2.7030	-1.9831	-1.7236	-0.8644	Non-chaotic
$m_1 = 10, m_2 = 1,$ $l_1 = 1, l_2 = 1$	-3.6473	-2.4418	-2.8975	-1.7634	Non-chaotic
$m_1 = 15, m_2 = 1,$ $l_1 = 1, l_2 = 1$	-2.5056	1.2026	-1.7559	-0.0898	Chaotic
$m_1 = 1, m_2 = 15,$ $l_1 = 1, l_2 = 1$	-3.4115	-3.2332	-2.0998	-1.7351	Non-chaotic

Extra Results

- Forced Control
 - Applied Torque

$$\tau = k_p(\theta - \theta_d) + k_d(\dot{\theta} - \dot{\theta}_d)$$

Desired Trajectory: Cycloidal

$$\theta_d = \theta_i + \frac{\theta_f - \theta_i}{T_p} \left(t - \frac{T_p}{2\pi} \sin \frac{2\pi}{T_p} t \right)$$

$$\dot{\theta}_d = \frac{\theta_f - \theta_i}{T_p} (1 - \cos \frac{2\pi}{T_p} t)$$

Thank You

07-09-2019

Some more results

