Inteligencia Artificial

Fausto David Hernández Jasso

Agosto 2023

Contents	
1 Sample Chapter 1.1 Some Definitions	
A Bonus Material	3

Conventions

 \mathbb{F} denotes either \mathbb{R} or \mathbb{C} .

 \mathbb{N} denotes the set $\{1, 2, 3, ...\}$ of natural numbers (excluding 0).

1 Sample Chapter

Let's dive right in!

1.1 Some Definitions

Definición 1.1. The **derivative** of a function $f: I \to \mathbb{R}$ at $a \in I$ is given by:

$$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

You know those awesome commutative diagrams?

$$\begin{array}{ccc}
A & \xrightarrow{p} & B \\
\downarrow^{q} & & \downarrow^{t} \\
C & \xrightarrow{g} & D
\end{array}$$

The derivative has *nothing* to do with them!

Proposición 1.2. If f is differentiable at a, then f is continuous at a.

Proof. Exercise (but only because this is a template).

The converse of Proposition 1.2 is not true in general.

Ejemplos.

1.
$$f(x) = |x|$$

2.
$$f(x) = \begin{cases} \sin(x) & x \ge 0\\ 0 & x < 0 \end{cases}$$

Teorema 1.3. The following statements are true:

- 1. First statement
- 2. Second statement

Proof.

- 1. Trivial.
- 2. Trivial.

Corolario 1.4. We are both very lucky to have each other as a collaborator.

Proof. We simply note that:

$$\frac{1}{1}+\frac{1}{1}\gg\frac{1}{1}$$

Recordatorio. This corollary is also obvious from empirical evidence.

Lema 1.5. $(a+b)^2 = a^2 + 2ab + b^2$

Proof. Expand the left side.

Recordatorios.

- 1. It's also kind of obvious.
- 2. No extra points for guessing what $(a b)^2$ is.

Ejemplo. $(2+4)^2 = 2^2 + 2 \cdot 2 \cdot 4 + 4^2 = 36$

Teorema 1.6 (Pythagoras' Theorem). If c is the hypotenuse of a right triangle and a and b are the other two sides, then $a^2 + b^2 = c^2$.

Proof. Draw a picture and convince yourself.

Pythagoras' theorem helps motivate the study of metric spaces, which you can learn about in [1].

A lot of nice integrals can be computed using the residue theorem, see [2, Section 5.2].

A Bonus Material

The talign and talign* environments work like the align and align* environments, except they render equations in inline size. For example, \begin{align*}...\end{align*} yields:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

While <text> yields:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

As usual, the purpose of * is to prevent numbering of the equation.

Some commands, like \sumn, can be used with or without a starting value (the default starting value is 1). For example, $\sum_{n=0}^{\infty} \frac{1}{n^2}$, while $\sum_{n=0}^{\infty} \frac{1}{n^2}$. This can be used in inline mode as well as display mode.

References

- [1] Senan Sekhon. "Metric and Topological Spaces". Unpublished. 2019.
- [2] Joseph L. Taylor. Complex Variables. AMS, 2011. ISBN: 978-0-8218-6901-7.