

# EMBEDDED SYSTEMS

# **PROJECT**

# TRAFFIC LIGHTS SIMULATOR using TIVA C

**GROUP - 16** 

CED17I004

CED17I023

CED17I031

CED17I034

CED17I035

# **TIVA C GPIOS:**

GPIOs are the basic interfaces of any microcontroller. Without GPIOs we won't have any other way to use a micro and it will be nothing more different than a chunk of well-fabricated silicon. Through them we can interface both transducers or sensors and actuators. We can also connect other devices like a display, external devices and so on.

Tiva C micros are low power ARM Cortex M4 MCUS and run typically at 3.3V and so you can guess the logic levels of GPIO pins. However, except a few GPIOs (PB0, PB1, PD4 and PD5) all GPIO pins are 5V tolerant. This 5V tolerant feature is a smart addition and most people will simply overlook it or won't fully realize its potential use.

#### **Basic Architecture**

In the block diagram shown below we can see the internal architecture of a Tiva C GPIO pin. The first thing that will strike our mind is the number of registers attached to a pin and thereby the several options a GPIO pin possesses.



# MikroC GPIO library functions used in the code are:

- GPIO Clk Enable enables a GPIO port's clock.
- GPIO Clk Disable disables a GPIO port's clock.
- GPIO Unlock unlocks GPIO pins.
- GPIO Lock locks GPIO pins
- GPIO Config sets up GPIO pin functionalities, direction and properties.
- GPIO\_Alternate\_Function\_Enable specifies alternate function pins and enables them.
- Firstly, we need to enable the clock for the GPIO that we are wanting to use.
- Library function GPIO\_Clk\_Enable() does that. This is followed by actual GPIO setup.
- If We need PF1, PF2 and PF3 to be outputs. This is done by GPIO\_Config() library function.
- This function has several argument parameters that define GPIO properties.
- The first argument states which GPIO port we are concerned with.
- The second masks the required pins.
- The third selects GPIO direction.
- Finally, the last parameters further select what features we want from these pins.

```
void setup_GPIOs()
{
    delay_ms(2000);
    delay_ms(2000);
```

- Here, we have set up all of the ports required for our circuit as outputs.
- The ports used are :
  - PA2, PA3
  - PB0, PB1, PB2, PB3, PB4, PB5, PB6, PB7
  - PC4, PC5, PC6, PC7
  - PE0, PE1, PE2, PE3, PE4, PE5

#### METHOD - A, CASE - A:

- Signals at road 1, 2, 3, 4 are all red.
- After a delay of 3 seconds, Yellow at road 1 is blinked to indicate that it is going to change signal next.
- Count is incremented, so that it can move to the next case.

# METHOD - A, CASE - B:

- Red signal of road 1 is turned off, and the green signal is turned on.
- After a delay of 3 seconds, Yellow signals at road 1 and 2 are blinked to indicate that they are going to change signal next.
- Count is incremented, so that it can move to the next case.

```
else if(count == 3)

{
    GPIO_PORTC_DATAG_bit = 0;
    GPIO_PORTE_DATAZ_bit = 1;
    GPIO_PORTC_DATAZ_bit = 1;
    GPIO_PORTC_DATAL_bit = 1;
    delay_ms(3000);

    GPIO_PORTC_DATAA_bit = 0;
    delay_ms(1000);

    GPIO_PORTC_DATAS_bit = 1;
    delay_ms(300);
    GPIO_PORTC_DATAS_bit = 0;
    count++;
```

# METHOD - A, CASE - C:

- Red signal of road 2 is turned off, and the green signal is turned on.
- Green signal of road 1 is turned off, and the red signal is turned on.
- After a delay of 3 seconds, Yellow signals at road 2 and 3 are blinked to indicate that they are going to change signal next.
- Count is incremented, so that it can move to the next case.

```
else if(count == 4)

{
    GPIO_PORTE_DATAS_bit = 1;
    GPIO_PORTE_DATAS_bit = 0;
    GPIO_PORTE_DATAS_bit = 1;
    GPIO_PORTE_DATAS_bit = 1;
    GPIO_PORTE_DATAS_bit = 1;
    delay_ms(3000);

    GPIO_PORTE_DATAS_bit = 0;
    delay_ms(10000);

    GPIO_PORTE_DATAS_bit = 1;
    delay_ms(1000);

    GPIO_PORTE_DATAS_bit = 0;
    delay_ms(300);
    GPIO_PORTE_DATAS_bit = 0;
```

# METHOD - A, CASE - D:

- Red signal of road 3 is turned off, and the green signal is turned on.
- Green signal of road 2 is turned off, and the red signal is turned on.
- After a delay of 3 seconds, Yellow signals at road 3 and 4 are blinked to indicate that they are going to change signal next.
- Count is incremented, so that it can move to the next case.

```
else if(count == 5)

{
    GPIO_PORTB_DATAB_bit = 1;
    GPIO_PORTB_DATAB_bit = 1;
    GPIO_PORTB_DATAB_bit = 0;
    GPIO_PORTC_DATAB_bit = 1;
    delay_ms(3000);

GPIO_PORTB_DATAB_bit = 0;

delay_ms(1000);

GPIO_PORTB_DATAB_bit = 1;

delay_ms(300);

GPIO_PORTA_DATAB_bit = 0;

delay_ms(300);

GPIO_PORTA_DATAB_bit = 0;

delay_ms(300);

GPIO_PORTA_DATAB_bit = 1;

delay_ms(300);

GPIO_PORTA_DATAB_bit = 0;

mode++;

mode++;
```

# METHOD - A, CASE - E:

- Red signal of road 4 is turned off, and the green signal is turned on.
- Green signal of road 3 is turned off, and the red signal is turned on.
- After a delay of 3 seconds, Yellow signal at road 4 is blinked to indicate that it is going to change signal next.
- Mode is incremented, so that it can move to the next Method.

#### METHOD - B, CASE - A:

- Signals at road 1, 2, 3, 4 are all red and all pedestrian signals are green.
- Red signals at all roads are blinked to indicate they are going to change next.
- Count is incremented, so that it can move to the next case.
- Blue LEDs are used to indicate that they must not go straight ahead or turn left. They may turn right.
- Green LEDs are used to indicate that they must not turn right or turn left. They may go straight
- Count is incremented, so that it can move to the next case.

```
GPIO_PORTA_DATA2_bit = 1;
GPIO_PORTE_DATA1_bit = 1;
GPIO PORTC DATA6 bit = 1;
GPIO_PORTE_DATA0_bit = 1;
GPIO_PORTE_DATA3_bit = 1;
GPIO_PORTB_DATA1_bit = 1;
GPIO PORTE DATA2 bit = 1:
GPIO_PORTA_DATA3_bit = 1;
GPIO_PORTE_DATA2_bit = 0;
GPIO_PORTA_DATA3_bit = 0;
GPIO_PORTE_DATA2_bit = 1;
GPIO_PORTA_DATA3_bit = 1;
delay ms(300);
GPIO_PORTE_DATA2_bit = 0;
GPIO_PORTA_DATA3_bit = 0;
delay ms(300);
GPIO_PORTE_DATA2_bit = 1;
GPIO_PORTA_DATA3_bit = 1;
delay_ms(300);
GPIO_PORTE_DATA2_bit = 0;
GPIO_PORTA_DATA3_bit = 0;
GPIO_PORTE_DATA1_bit = 0;
GPIO_PORTB_DATA1_bit = 0;
GPIO PORTE DATA4 bit = 1;
GPIO_PORTE_DATA2_bit = 1;
GPIO_PORTC_DATA5_bit = 1;
```

```
GPIO_PORTE_DATA2_bit = 1;
GPIO_PORTC_DATA5_bit = 1;
delay_ms(300);
GPIO_PORTC_DATA5_bit = 0;
GPIO_PORTC_DATA5_bit = 0;
delay_ms(300);
GPIO_PORTC_DATA5_bit = 1;
GPIO_PORTC_DATA5_bit = 1;
delay_ms(300);
GPIO_PORTC_DATA5_bit = 0;
GPIO_PORTC_DATA5_bit = 0;
GPIO_PORTC_DATA5_bit = 0;
delay_ms(300);
GPIO_PORTC_DATA5_bit = 1;
delay_ms(300);
GPIO_PORTC_DATA5_bit = 1;
delay_ms(300);
GPIO_PORTC_DATA5_bit = 0;
delay_ms(300);
GPIO_PORTC_DATA5_bit = 0;
delay_ms(300);
GPIO_PORTC_DATA5_bit = 0;
delay_ms(300);
GPIO_PORTC_DATA6_bit = 0;
count++;
}
```

#### METHOD - B, CASE - B:

- Green and Blue signals at road 1 and 4 respectively are turned on.
- After a delay of 3 seconds, Yellow signals at road 1 and 4 are blinked to indicate that they are going to change signal next.
- Green and Blue signals at road 1 are turned on, Blue signal at road 4 is turned off.
- After a delay of 3 seconds, Yellow signals at road 1 and 4 are blinked to indicate that they are going to change signal next.
- Count is incremented, so that it can move to the next case.

```
GPIO_PORTE_DATA3_bit = 0;
GPIO_PORTB_DATA3_bit = 1;
GPIO PORTA DATA2 bit = 1:
GPIO_PORTE_DATA1_bit = 1;
GPIO_PORTC_DATA4_bit = 1;
GPIO PORTC DATA6 bit = 1;
delay_ms(3000);
GPIO PORTE DATA2 bit = 1:
GPIO_PORTC_DATA5_bit = 1;
delay_ms(300);
GPIO_PORTE_DATA2_bit = 0;
GPIO PORTC DATA5 bit = 0;
delay_ms(300);
GPIO_PORTE_DATA2_bit = 1;
GPIO_PORTC_DATA5_bit = 1;
delay_ms(300);
GPIO_PORTE_DATA2_bit = 0;
delay_ms(300);
GPIO PORTE DATA2 bit = 1;
GPIO_PORTC_DATA5_bit = 1;
GPIO_PORTE_DATA2_bit = 0;
GPIO PORTC DATA5 bit = 0;
delay_ms(300);
GPIO_PORTE_DATA4_bit = 0;
GPIO_PORTC_DATA6_bit = 0;
GPIO_PORTC_DATA5_bit = 1;
delay_ms(300);
GPIO_PORTB_DATA4_bit = 0;
```

```
GPIO_PORTE_DATAS_bit = 1;

GPIO_PORTE_DATAS_bit = 1;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 0;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 0;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 1;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 0;

GPIO_PORTE_DATAS_bit = 0;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 1;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 1;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 0;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 0;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 0;

delay_ms(300);

GPIO_PORTE_DATAS_bit = 0;

delay_ms(300);
```

#### METHOD - B, CASE - C:

- Green and Blue signals at road 2 and 1 respectively are turned on.
- After a delay of 3 seconds, Yellow signals at road 1 and 2 are blinked to indicate that they are going to change signal next.
- Green and Blue signals at road 2 are turned on, Blue signal at road 1 is turned off.
- After a delay of 3 seconds, Yellow signals at road 2 and 3 are blinked to indicate that they are going to change signal next.

Count is incremented, so that it can move to the next case.

```
else if(count == 4)
   GPIO_PORTB_DATA2_bit = 1;
  GPIO PORTC DATA4 bit = 0;
  GPIO PORTB DATA3 bit = 1;
   GPIO_PORTB_DATA5_bit = 1;
  GPIO_PORTE_DATA1_bit = 1;
   GPIO_PORTC_DATA6_bit = 1;
   GPIO_PORTB_DATA4_bit = 1;
  GPIO_PORTC_DATA5_bit = 1;
delay_ms(300);
   GPIO_PORTB_DATA4_bit = 0;
   GPIO_PORTC_DATA5_bit = 0;
  delay_ms(300);
GPIO_PORTB_DATA4_bit = 1;
   GPIO_PORTC_DATA5_bit = 1;
  delay_ms(300);
GPIO_PORTB_DATA4_bit = 0;
   GPIO_PORTC_DATA5_bit = 0;
   delay_ms(300);
  GPIO_PORTB_DATA4_bit = 1;
GPIO_PORTC_DATA5_bit = 1;
  GPIO_PORTC_DATA5_bit = 0;
   delay ms(300);
   GPIO_PORTC_DATA7_bit = 0;
  GPIO PORTB DATA3 bit = 0;
   GPIO_PORTB_DATA6_bit = 1;
  GPIO_PORTA_DATA3_bit = 1;
  GPIO_PORTB_DATA4_bit = 0;
  GPIO_PORTA_DATA3_bit = 0;
  GPIO_PORTA_DATA3_bit = 1;
  GPIO_PORTB_DATA4_bit = 0;
GPIO_PORTA_DATA3_bit = 0;
  delay ms(300);
  GPIO_PORTB_DATA4_bit = 1;
GPIO_PORTA_DATA3_bit = 1;
  GPIO_PORTB_DATA4_bit = 0;
```

#### METHOD - B, CASE - D:

GPIO\_PORTA\_DATA3\_bit = 0;

- Green and Blue signals at road 3 and 2 respectively are turned on.
- After a delay of 3 seconds, Yellow signals at road 3 and 2 are blinked to indicate that they are going to change signal next.
- Green and Blue signals at road 3 are turned on, Blue signal at road 2 is turned off.
- After a delay of 3 seconds, Yellow signals at road 3 and 4 are blinked to indicate that they are going to change signal next.

Count is incremented, so that it can move to the next case.

```
GPIO PORTE DATA5 bit = 1:
GPIO_PORTB_DATA5_bit = 0;
GPIO_PORTA_DATA2_bit = 1;
GPIO_PORTB_DATA3_bit = 1;
GPIO_PORTB_DATA0_bit = 1;
GPIO_PORTE_DATA1_bit = 1;
GPIO_PORTC_DATA6_bit = 1;
delay_ms(3000);
GPIO_PORTB_DATA4_bit = 1;
delay ms(300);
GPIO_PORTB_DATA4_bit = 0;
GPIO_PORTA_DATA3_bit = 0;
delay_ms(300);
GPIO_PORTB_DATA4_bit = 1;
GPIO_PORTA_DATA3_bit = 1;
delay_ms(300);
GPIO_PORTA_DATA3_bit = 0;
GPIO_PORTA_DATA3_bit = 0;
delay_ms(300);
GPIO_PORTA_DATA4_bit = 1;
GPIO_PORTA_DATA3_bit = 1;
delay ms(300);
GPIO_PORTB_DATA4_bit = 0;
GPIO_PORTA_DATA3_bit = 0;
delay_ms(300);
GPIO_PORTA_DATA2_bit = 0;
GPIO_PORTB_DATA1_bit = 1;
```

```
GPIO_PORTE_DATAD_bit = 1;
GPIO_PORTE_DATAD_bit = 1;
delay_ss(360);
GPIO_PORTE_DATAD_bit = 0;
GPIO_PORTE_DATAD_bit = 1;
delay_ss(360);
GPIO_PORTE_DATAD_bit = 1;
delay_ss(360);
GPIO_PORTE_DATAD_bit = 0;
GPIO_PORTE_DATAD_bit = 0;
GPIO_PORTE_DATAD_bit = 0;
GPIO_PORTE_DATAD_bit = 1;
delay_ss(360);
GPIO_PORTE_DATAD_bit = 1;
delay_ss(360);
GPIO_PORTE_DATAD_bit = 0;
GPIO_PORTE_DATAD_bit
```

### METHOD - B, CASE - E:

- Green and Blue signals at road 4 and 3 respectively are turned on.
- After a delay of 3 seconds, Yellow signals at road 4 and 3 are blinked to indicate that they are going to change signal next.

- Green and Blue signals at road 4 are turned on, Blue signal at road 3 is turned off.
- After a delay of 3 seconds, Yellow signals at road 4 and 1 are blinked to indicate that they are going to change signal next.
- Count is set to 1.