HOMEWURK # 4 BLEA 667 Mar Sokohols

[QUESTION # 1] 11.9 R[θ) = $\frac{7}{5}$ $\frac{7}{10}$ $\frac{7}{10}$ $\frac{7}{10}$ $q^{L} = h_{\theta}(x) = g(z^{L}) = f_{K}(x_{i})$ 11,10: R(0) = - 2 2 yik log & (xi) ____ hun forward eyentre 11.3 let Zmi = o (90m + 9m xi) with zi = (21i = 22i ... ZMi) $\frac{\partial k_{i}}{\partial \beta_{KM}} = \left[-\frac{y_{iK}}{f_{K}(x_{i})} g_{K}(\beta_{K}^{T} z_{i}) \right] z_{M,i}$ ORi Fame = \begin{aligned}
\times \frac{\fir}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f with (1) and (2) $\beta_{km}^{(r+1)} = \beta_{km}^{(r)} - \delta_r \leq \frac{j R_{\lambda}}{o \beta_{km}}$ 9ml = 9mi - Fr & DRi Smi = o' (fom + 9m Txi) & BKM Ski

equation I

$$h_{\theta}(\vec{x}) = g(\vec{\theta}, \vec{x}) = \begin{cases} 0 & \text{else} \end{cases}$$

a)
$$\vec{x}^{(1)} = (0,0)$$

a' = $h_{\theta}(x) = y = g(\theta_{0} + x_{1}\theta_{1} + x_{2}\theta_{2}) = g(-20 + 0.1.5 + 0.1.5)$
b) $x^{2} = (1,0)$ = $g(-2) = 0$
 $y = g(-2 + 1(1.5) + 0(1.5)) = g(-0.5) = 0$
c) $x^{3} = (0,1)$
 $y = g(-2 + 0(1.5) + 1(1.5)) = g(-0.5) = 0$

$$y = g(-2 + 1.5 + 1.5) = g(1) = 1$$

forth town				
	×	12	У	_ }_
	0	0	0	
	O	١	0	{
	Ĺ	0	0	
		ł		/

QUESTION 3

$$\frac{\partial}{\partial z} \left[\begin{array}{ccc} \theta_{10} & \theta_{11} \\ \theta_{20} & \theta_{22} \end{array} \right]$$

$$\int (v) = \begin{cases} 1 & v \ge 0 \\ 0 & \text{clse} \end{cases}$$

$$\mathcal{L} = 1 = g(\theta_{10} + 0\theta_{11}) \rightarrow \theta_{10} + \beta_{10}$$

$$\frac{1}{2} = g \left(\theta_{20} + 0 \theta_{21} \right) \rightarrow 0$$

$$X_1$$
 X_2 Y_1 Y_2 Q Q Q Q Q Q Q Q Q

(QUESTION # 4 . Actuation Functions

- 1) Binas step funton
 - La consiture the simplist actuation Function
 - 4 not usural with multiple classes

$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x \le 0 \end{cases}$$

G graduat is zero causa 15504 in back prop

2) Tanh

(-1,1) - somtus varaded du to vanishy y redent publican

-> symmetre about the origin

Compol) of aut lyon will not always to of the same sign

3) ReLU

$$f(x) = max(0, x)$$

Co dus not achate all nummy at the sam fine

Ly for more compitational t effect sinc only a cutin amost of neary on actured of a time

c) judent i) zero -> issus in book pup

- f(k) = X sigmoid (k)
- Co differtable at all points
- Co not monotonic

$$\sigma(z); = \frac{e^{z}}{\sum_{k=1}^{K} e^{z_k}}$$

G god for multidas, problan,