EGR226 – OS & Networking Lecture 2 – Overview of the OS

Benjamin Sanders, MS California Baptist University

Today's Objectives

- What is an Operating System?
- A little bit of history
- Requirements and Components of an OS
 - Processes
 - Memory Management
 - SMP
- Windows
- UNIX
- Linux
- Android

An Operating System is a program that controls the execution of application programs

It also serves as an interface between applications and hardware

Main objectives of an OS:

- Convenience
- Efficiency
- Ability to evolve

Computer Hardware and Software Infrastructure

Figure 2.1 Computer Hardware and Software Infrastructure

Key Interfaces of the OS include the Instruction Set Architecture (ISA), Application Binary Interface (ABI) and one or more Application

Programming Interfaces (API)

@ 2001 The Computer Language Co. Inc.

Figure 2.2 The Operating System as Resource Manager

ENIAC, from the late 1940's

Monitor Point of View

Figure 2.3 Memory Layout for a Resident Monitor

Uniprogramming

Multiprogramming – two jobs

Multiprogramming – three (and more) jobs

Multiprogramming Example

	JOB1	JOB2	JOB3
Type of job	Heavy compute	Heavy I/O	Heavy I/O
Duration	5 min	15 min	10 min
Memory required	50 M	100 M	75 M
Need disk?	No	No	Yes
Need terminal?	No	Yes	No
Need printer?	No	No	Yes

Table 2.1 Sample Program Execution Attributes

Effects on Resource Utilization

	Uniprogramming	Multiprogramming
Processor use	20%	40%
Memory use	33%	67%
Disk use	33%	67%
Printer use	33%	67%
Elapsed time	30 min	15 min
Throughput	6 jobs/hr	12 jobs/hr
Mean response time	18 min	10 min

Table 2.2 Effects of Multiprogramming on Resource Utilization

Batch systems were inefficient when different jobs had different resource usage profiles

Figure 2.6 Utilization Histograms

IBM mainframe of the 1970's

Time-Sharing Systems

	Batch Multiprogramming	Time Sharing
Principal objective	Maximize processor use	Minimize response time
Source of directives to operating system	Job control language commands provided with the job	Commands entered at the terminal

DEC PDP-6 and IBM System 370 (1970's)

THAT'S HISTORY - LET'S DISCUSS TODAY'S OPERATING SYSTEMS

Process Management

Figure 2.8 Typical Process Implementation

Memory Management

 The OS has five principal storage management responsibilities:

Information Protection and Security

Scheduling and Resource Management

A FEW NOTES ON SPECIFIC OPERATING SYSTEMS

Lsass = local security authentication server

POSIX = portable operating system interface

GDI = graphics device interface

DLL = dynamic link libraries

Colored area indicates Executive

Figure 2.14 Windows Architecture

Figure 2.15 General UNIX Architecture

Figure 2.19 Linux Kernel Components EGR226 Spring 2015 - 2 - Overview of OS

Figure 2.21 Android System Architecture

Today's Objectives

- What is an Operating System?
- A little bit of history
- Requirements and Components of an OS
 - Processes
 - Memory Management
 - SMP
- Windows
- UNIX
- Linux
- Android

