安徽大学《离散数学》 2022-2023 学年第一学期期末试卷

一、单项选择题: (每小题 1分, 本大题共 10分)	
1. 命题公式 $P \to (Q \lor P)$ 是 () 。	
A、 矛盾式; B、可满足式; C、重言式; D、等价式。	
2. 下列各式中哪个不成立 ()。	
$A : \forall x (P(x) \lor Q(x)) \Leftrightarrow \forall x P(x) \lor \forall x Q(x) ;$	
B. $\exists x (P(x) \lor Q(x)) \Leftrightarrow \exists x P(x) \lor \exists x Q(x)$;	
C. $\forall x (P(x) \land Q(x)) \Leftrightarrow \forall x P(x) \land \forall x Q(x);$	
D, $\forall x (P(x) \land Q) \Leftrightarrow \forall x P(x) \land Q$.	
3. 谓词公式 $\forall x(P(x) \lor \exists y R(y)) \to Q(x)$ 中的 x 是 () 。	
A、自由变元; B、约束变元;	
C、既是自由变元又是约束变元; D、既不是自由变元又不是约束变元。	
 在 0 Φ 之间应填入 () 符号。 	
$A_{,} = ; B_{,} \subset ; C_{,} \in ; D_{,} \notin .$	
5. 设< A ,	
A、 B 的极大元 $b \in B$ 且唯一; B、 B 的极大元 $b \in A$ 且不唯一;	
$C \setminus B$ 的上界 $b \in B$ 且不唯一; $D \setminus B$ 的上确界 $b \in A$ 且唯一。	
6. 在自然数集 N 上, 下列 () 运算是可结合的。	
(对任意 $a,b \in N$)	
A, $a * b = a - b$; B, $a * b = \max(a, b)$;	
C, $a * b = a + 5b$; D, $a * b = a - b $.	
7. Q 为有理数集 N,Q 上定义运算*为 $a*b=a+b-ab$,则 <q,*>的幺元为(</q,*>) .
A, a; B, b; C, 1; D, 0.	
8. 给定下列序列, () 可以构成无向简单图的结点次数序列。	

A, $(1, 1, 2, 2, 3)$; B, $(1, 1, 2, 2, 2)$;	
C, $(0, 1, 3, 3, 3)$; D , $(1, 3, 4, 4, 5)$.	
9. 设 G 是简单有向图, 可达矩阵 P(G)刻划下列 () 关系。	
A、点与边; B、边与点; C、点与点; D、边与边。	
10. 一颗树有两个2度结点,1个3度结点和3个4度结点,则1度结点数为() .
A, 5; B, 7; C, 9; D, 8.	
二、填空: (每空1分,本大题共15分)	
1. 在自然数集中,偶数集为 N_1 、奇数集为 N_2 ,则 $\overline{N_1} \cap N_2$ =	· ;
$\overline{N_1 \cup N_2} = $	
2.	
r(R) = ; s(R) = ; t(R) = ;	•
3. 设 R 为集合 A 上的等价关系,对 $\forall a \in A$,集合 $[a]_R$ =	,
称为元素 a 形成的 R 等价类, $[a]_R \neq \Phi$,因为	•
4. 任意两个不同小项的合取为	•
5. 设 $Q(x)$: x 为偶数, $P(x)$: x 为素数,则下列命题: (1) 存在唯一偶素数;	(2) 至多有一
个偶素数;分别形式化: (1)	;
(2)	•
6. 设 T 为根树, 若, 则称 T 为 m 元树;	
若则称 T 为完全 m 叉树。	
7. 含 5 个结点, 4 条边的无向连通图 (不同构) 有 个,	
它们是。	
三、判断改正题: (每小题 2 分, 本大题共 20 分)	
1. 命题公式 $(A \land (A \rightarrow B)) \rightarrow B$ 是一个矛盾式。 ()
2. 任何循环群必定是阿贝尔群, 反之亦真。 ()
3. 根树中最长路径的端点都是叶子。 ()

4.	若集合 A 上的关系 R 是对称的,则 R 也是对称的。	()	
5.	数集合上的不等关系 (≠) 可确定 A 的一个划分。	()	
6.	设集合 A、B、C 为任意集合,若 A×B = A×C,则 B = C。	()	
7.	函数的复合运算"。"满足结合律。	()	
8.	若 G 是欧拉图,则其边数 e 合结点数 v 的奇偶性不能相反。	()	
9.	图 G 为 (n, m) 图, G 的生成树 T_G 必有 n 个结点。	()	
10.	使命题公式 $P \rightarrow (Q \lor R)$ 的真值为 F 的真值指派的 P、Q、R 值分别	是T、F、	F.	
		()

四、简答题 (每小题 5 分, 本大题共 25 分)

1. 设 < H, \circ > 和 < K, \circ > 都是群 < G, \circ > 的子群, 问 < H \cap K, \circ > 和 < H \cup K, \circ > 是否是 < G, \circ > 的子并说明理由。

2. 设 $A = \{2, 3, 4, 9\}$, $B = \{2, 4, 7, 10, 12\}$, 从 A 到 B 的关系 $R = \{\langle a, b \rangle | a \in A, b \in B, 且 a 整除 b\}$, 试给出 R 的关系图和关系矩阵, 并说明此关系是否为函数? 为什么?

- 3. 设<S,*>是半群, O_L 是左零元,对任 $x \in S$, $x * O_L$ 是否是左零元?为什么?
- 4. 某次会议有 20 人参加,其中每人至少有 10 个朋友,这 20 人拟围一桌入席,用图论知识说明是否可能每人邻做的都是朋友? (理由)
- 5. 通过主合取范式,求出使公式 $\neg(\neg P \rightarrow Q) \lor R$ 的值为F的真值指派。

五、证明题: (共30分)

1. 设 R 为集合 A 上的二元关系,如果 R 是反自反的和可传递的,则 R 一定是反对称的。

- 2. 试证明若<G, *>是群, $H \subseteq G$,且任意的 $a \in H$,对每一个 $x \in G$,有a * x = x * a,则 <H, *>是<G, *>的子群。
- 3. 设 G 是每个面至少由 k $(k \ge 3)$ 条边围成的连通平面图,试证明 $e \le \frac{k(v-2)}{k-2}$,其中 v 为结点数, e 为边数。
- 4. 符号化下列各命题,并说明结论是否有效 (用推理规则)。任何人如果他喜欢美术,他就不喜欢体育。每个人或喜欢体育,或喜欢音乐,有的人不喜欢音乐,因而有的人不喜欢美术。