Les Réseaux de Pétri

Mourad Daoudi

USTHB

Jeudi 25 Juin

Sommaire

- Introduction
- Notations et règles de franchissement
 - Places, Transitions et Arcs
 - Marquages
 - Franchissement
 - Réseaux particuliers
- Propriétés des réseaux de Petri
 - Graphe de Marquage Accessible (GMA)
 - Le vecteur d'occurrence et l'équation de changement d'état
 - Quelques propriétés qualitatives
 - Bornitude
 - Pseudo-vivacité
 - Quasi-vivacité
 - Vivacté
 - Réseau sans blocage
 - Etat d'accueil
 - Conservation
 - Types de réseaux de Petri
 - Réseaux de Petri généralisés
 - Réseaux de Petri à capacités
 - Graphe de marquage
 - Arborescence de couverture
 - Algorithme de contstruction d'un graphe de marquage

Définition génerale

Rappel d'histoire

Les réseaux de Petri ont été inventés par le mathématicien allemand Carl Alain Petri dans les années 1960.

Places, Transitions et Arcs Marquages Franchissement Réseaux particuliers

Définitions

Un réseau de pétri c'est quoi ?

un graphe

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Places, Transitions et Arcs Marquages Franchissement Réseaux particuliers

Définitions

Un réseau de pétri c'est quoi ?

- un graphe
- formé de deux types de nœuds appelés places et transitions, reliés par des arcs orientés

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Un réseau de pétri c'est quoi ?

- un graphe
- formé de deux types de nœuds appelés places et transitions, reliés par des arcs orientés
- biparti, c.-à-d. qu'un arc relie alternativement une place à une transition et une transition à une place

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Un réseau de pétri c'est quoi ?

- un graphe
- formé de deux types de nœuds appelés places et transitions, reliés par des arcs orientés
- biparti, c.-à-d. qu'un arc relie alternativement une place à une transition et une transition à une place

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Un réseau de pétri c'est quoi ?

- un graphe
- formé de deux types de nœuds appelés places et transitions, reliés par des arcs orientés
- biparti, c.-à-d. qu'un arc relie alternativement une place à une transition et une transition à une place

- Une place (pi) modélise les ressources utilisées dans le système.
- Une transition (ti) modélise les actions sur les ressources.

Exemples

Exemples

la place p1 est en entrée de la transition t1 et p2 est en sortie de t1

- -Une transition sans place en entrée est une transition source.
- -Une transition sans place en sortie est une transition puits.

Marquage

Le Marquage

Chaque place (pi) d'un RdP peut contenir un ou plusieurs marqueurs (jetons). La configuration complète du réseau, avec toutes les marques positionnées, forme le marquage et définit l'état du réseau (et donc l'état du système modélisé).

- P1 ,P2,P3 sont des places .
- T1 est une transition qui permet de passer de P1 vers Deux places P2 et P3.

Franchissement

Franchissement

C'est le formalisme qui permet de passer d'un marquage à un autre, ce qui rend compte de l'évolution du système modélisé. Une transition est franchissable si chacune des places en entrée compte au moins un jeton ; dans ce cas :

le franchissement est une opération indivisible (atomique)

Franchissement

Franchissement

C'est le formalisme qui permet de passer d'un marquage à un autre, ce qui rend compte de l'évolution du système modélisé. Une transition est franchissable si chacune des places en entrée compte au moins un jeton ; dans ce cas :

- le franchissement est une opération indivisible (atomique)
- un jeton est consommé dans chaque place en entrée

Franchissement

Franchissement

C'est le formalisme qui permet de passer d'un marquage à un autre, ce qui rend compte de l'évolution du système modélisé. Une transition est franchissable si chacune des places en entrée compte au moins un jeton ; dans ce cas :

- le franchissement est une opération indivisible (atomique)
- un jeton est consommé dans chaque place en entrée
- un jeton est produit dans chaque place en sortie

Exemples de franchissement

Voici des exemples de franchissement avec deux réseaux différents.

Graphe d'état

Il existe des réseaux particuliers on va dans la suite de ce cours citer quelques uns .

Graphe d'état

un graphe d'état a une particularité qui est relative à ses transitions tel que, chaque transition ne dispose que d'une place en entrée et une place en sortie.

Réseau sans conflit

Réseau sans conflit

Un réseau sans conflit est un réseau où chaque place n'a qu'une transition en sortie.

Réseau simple

Réseau simple

Les réseaux dits simples sont des réseaux avec conflit(s) où chaque transition n'intervient au plus que dans une situation de conflit.

Les Graphes purs

Graphe pur

Les Graphes purs sont ceux dont aucune place n'est à la fois en entrée ou en sortie de la même transition.

blue hydrangea

Définition un réseau de Petri est défini par le tuple (P, T, $Pr\acute{e}$, Post, M_0)

- \bullet **P**: ensemble de places p_i
- T : ensemble de transitions
- Pré : Pré(p, t) est une valeur (0) associée à l'arc allant de la place p à la transition t
- Post : Post(p, t) est une valeur (0) associée à l'arc allant de la transition t à la place p
- M_0 : vecteur décrivant le marquage initial, $M_0 = (M_0 (p_1), ..., M_0 (p_n))$. nombre de jetons dans la place p_1