目录

一、生	注活中的电力电子设备: 手机电源适配器	1
1.1	电源适配器定义	1
1.2	设备简介	1
1.3	设备电路及功能分析	1
1.4	电路分析	2
1.5	器件型号及其参数	3
二、电	上力 MOSFET 仿真特性及比较	4
2.1	输出特性	4
2.2	漏一源极导通电阻	5
2.3	转移特性	6
2.4	反向二极管的正向特性	7

一、 生活中的电力电子设备: 手机电源适配器

1.1 电源适配器定义

电源适配器(Power adapter)是小型便携式电子设备及电子电器的供电电源变换设备,也包括我们平时所说的"充电插头",一般由外壳、变压器、电感、电容、控制 IC、PCB 板等元器件组成。它的工作原理是将交流输入转换为直流输出,将家用交流电转换为较小电压的直流电用于手机充电,拥有过压、流保护、短路保护等,确保使用者的安全

1.2 设备简介

本次选择的电力电子设备为飞天鹰 PS05L 便携适配器,能效等级为六级。

图 1: 产品参数

1.3 设备电路及功能分析

经查阅资料和小组讨论,电源适配器中电压变换过程可以简要表示为图 2。

图 2: 电源变换过程

在广泛查阅资料后,我们可以得到适配器内部电路图为图 3。

图 3: 电路图

以主电路、控制电路、驱动电路等为分类标准,确定此电源适配器电路总体可分为三个部分。具体划分如图 4。

图 4: 电路划分图

1.4 电路分析

经小组拆解及研讨,以功能作为分类标准,电路可以分为整流滤波电路,震荡电路,保护电路 以及稳压电路。具体划分见图 4。

1)整流滤波电路

D1、C1 半波整流, 二极管 D1 将输入的 220V 交流电压转化为峰值电压为 311V 的脉动直流电压, 再由电容器 C1, 将脉动直流电压滤波达到 300V 左右的直流电压。

R2、C2、D2 吸收尖峰, R2、C2 组成高频滤波器, 吸收频率较低的尖峰, 将电源转为高频交流 电再由 D2 整流。D6、C5, 将振荡变压所得的交流高频电压转换为直流电压输出。

2) 振荡电路

 R_1 、Q1、L1、L2、C4、R5 形成正反馈,如果没有 L2、C4、R5 反馈支路的存在,三极管 Q1 就只能通过偏置电阻 R_1 提供合适的偏压,形成了一般的放大电路。

3)保护电路

D3,采用 1N4148 防止电压过大导致电流过大烧损适配器。

4) 稳压电路

D4, 控制 L2 两端电压, 确保被高频变压器转换后为所需电压值。

1.5 器件型号及其参数

符号	说明	单位
$\overline{}V_F$	最大正向电压	\overline{V}
$T_{ m max}$	最高工作温度	$^{\circ}\mathrm{C}$
$T_{ m min}$	最低工作温度	$^{\circ}\mathrm{C}$
I_{OM}	最大输出电流	A
V_P	最大重复峰值反向电压	V
I_F	最大重复峰值正向电流	A
I_C	最大集电极电流	A
h_{FE}	最小直流电流增益	/
V_{CBO}	集电极发射极最大电压	V
V_{CEO}	集电极发射极击穿电压	V

表 1: 符号说明

型号	V_F	$T_{\rm max}$	T_{\min}	I_{OM}	V_P	I_F
1N4007 (D1)	1.1	150	-55	1	1000	30
$FR_107 (D2)$	1.3	175	/	1	1000	30
1N4148 (D3,D4)	1.0	125	-65	0.15	1000	30
1N5819 (D5)	0.9	150	-55	1	40	25

表 2: 整流二极管型号及参数

型号	I_C	h_{FE}	$T_{ m max}$	T_{\min}	V_{CBO}	V_{CEO}
ST13003 (Q1) C945(Q2)		5 130	150 150	-40 -55		400 50

表 3: 双极晶体管信号及参数

二、 电力 MOSFET 仿真特性及比较

本组对应器件编号为: MOSFET-Infineon-BSC440N10NS3-DS-v02 04-en

2.1 输出特性

1) 仿真结果

对应的 LTspice 仿真测试电路及结果如下,设置 V_{DS} 从 0V 至 3V,取 0.001 分度; V_{GS} 取 4.5V 至 10V,取 0.5 分度,以 R_1 模拟导线等电阻:

图 5: 输出特性仿真电路图

2)结果分析

由于 V_{GS} 范围设置为 4.5-10,大于 $V_T(2\text{-}4V)$,因此不存在截止区。当 V_{DS} 不足够大时(未达到饱和区),在可变电阻区,栅源电压 V_{GS} 用来改变沟道宽窄, V_{DS} 电压使沟道产生梯度,随着 V_{DS} 增大,梯度越来越大,最终形成点夹断, I_D 达到饱和,这时 I_D 由 V_{GS} 唯一控制。因此,当 V_{GS} 固定时,随着 V_{DS} 的增加, I_D 先升高,然后变平。当 V_{DS} 固定时,随着 V_{GS} 的增加, V_{DS} 的过程, $V_{$

比较仿真图像与手册给出特性,输入特性图像变化趋势几乎相同,具体数据不同,经小组讨论分析,认为有以下两点原因:

1. 仿真结温与实际结温有差别。在仿真模拟中, MOSFET 温度被定为恒定的 25 度, 而在实际操作中, 场效应管温度不可能保持温度一致, 进而导致曲线的不一致。

图 6: 输出特性结果及对比

2. 电路中电阻 R_1 的取值也会影响结果。

2.2 漏-源极导通电阻

1) 仿真结果

应用仿真模拟,其电路搭接与 2.1.1 中输出特性一致,设置 V_{DS} 从 0V 至 150V,0.001 分度; V_{GS} 从 5V 至 10V;温度设置为 25 度和 150 度:

图 7: 导通电阻仿真电路图

图 8: 输出特性结果及对比

2) 仿真结果分析

随着 V_{DS} 的增加,其近似为漏—源极导通电阻两端电压,由 图 6a 输出特性曲线可知, I_D 先增大后平稳。由 $R_{DS} = V_{DS}/I_D - R_1$ 可知,当 V_{DS} 增大时,分子还在增大,总体上升。特别是当 V_{DS} 增加到足够大,使 I_D 趋于饱和,由于自变量为 I_D ,故漏—源极导通电阻直线上升。

2.3 转移特性

1) 仿真结果

仿真转移特性的相应电路图与前文电路相同,其仿真结果如图 9 和图 10 所示。

图 9: 转移特性仿真图像

图 10: 输出特性结果及对比

2) 仿真结果分析

图中,当 V_{GS} 大于导通电压 VT 时 (图中为 3V 左右),MOSFET 接通,产生漏极电流 I_D 。由上述输出特性已知, V_{GS} 越大,导电性越强,电流越大。同时,在 150°C 时,电流更大。但通态电阻的温度系数为正(随温度升高,阻值会变大),所以当 V_{GS} 逐渐增大时,在 25°C 时 I_D 会增大的更快。

观察两幅图形,均有线路交叠。当 V_{GS} 大于导通电压 VT 时 (图中为 3V 左右),MOSFET 接通,产生漏极电流 I_D , V_{GS} 越大,导电性越强,电流越大。首先,在 150° C 时,电流更大。但通态电阻的温度系数为正,所以当 V_{GS} 逐渐增大时,在 25° C 时 I_D 会增大。

2.4 反向二极管的正向特性

1) 仿真结果

如图 11 所示,为测试 MOSFET 的二极管反向导通特性,只连接漏级和源级,令栅极悬空,电路可等效为漏级和源级之间加了一个反向二极管,此时加反向电压 V_{SD} ,即可反映反向二极管的正向导通特性。

2) 仿真结果分析

如图 12 所示,在图 12a 中,随着温度从 25 度上升到 150 度,特性曲线左移。且电路中加反向电压,由于体二极管的存在,反向电压只要大于这个体二极管的死区电压是可以导通的。此图像与

图 11: 反向二极管的正向特性仿真图像

图 12: 输出特性结果及对比

一般二极管一致。

2.5 开关波形

1) 仿真结果

如下图所示搭建电力 MOSFET 测试仿真电路,其中由于电源内阻 R_s 、漏极电流检测 R_f 较小,在电路中仅取 1Ω ,在 V_{GS} 加入脉冲信号,我们可以得到相应的开关波形。

图 13: 开关波形仿真电路图

图 14: 开关波形仿真电路图

2) 仿真结果分析

如图 14 所示,与预期曲线基本一致,形成了上升阶段的"密勒平台",同时仿真中由于所加电阻及元件寄生电容等原因,曲线存在波动。

由于电力 MOSFET 存在输入电容 C_{in} ,其有充电过程,使门电压 U_{GS} 呈指数级上升。当 U_{GS} 上升到导通电压 U_T 时,漏极电流 I_D 开始出现,之后随着 U_{GS} 的上升, I_D 上升到一个稳定值时,栅电压上升到 U_{GSP} ,漏极电压 U_{DS} 开始下降。在漏极电压降时,栅极电压 U_{GS} 将维持 U_{GSP} 的值,形成平台。它不会继续上升到它的稳态值,直到结束电压下降,最终形成了"密勒平台"。