Упражнения: Повторения (цикли)

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането" @ СофтУни.

1. Числа от 1 до 100

Напишете програма, която отпечатва числата от 1 до 100, по едно на ред.

Примерен вход и изход:

вход	изход
(няма)	1 2 3 98 99 100

1. **Тествайте** решението си в **judge системата**: https://judge.softuni.bg/Contests/Practice/Index/154#0. Трябва да получите **100 точки** (напълно коректно решение).

2. Числа до 1000, завършващи на 7

Напишете програма, която отпечатва числата в диапазона [1...1000], които завършват на 7.

Примерен вход и изход:

вход	изход
(няма)	7 17 27
	 997

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#1.

3. Всички латински букви

Напишете програма, която отпечатва всички букви от латинската азбука: **a**, **b**, **c**, ..., **z**.

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#2.

4. Сумиране на числа

Да се напише програма, която чете **n**-на брой **цели числа**, въведени от потребителя, **и ги сумира**.

- Първият аргумент(ред) **n**, представлява броят на числата.
- Следващите **n-на брой** аргумента(реда) са цели числа.

Програмата трябва да прочете числата, да ги сумира и да отпечата сумата им.

Примерен вход и изход:

вход	изход
2	30
10 20	

вход	изход
3 -10 -20 -30	-60

вход	изход
4	43
45	
-20	
7	
11	

изход
999

вход	изход
0	0

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#3.

5. Най-голямо число

Напишете програма, която чете **\mathbf{n}-на брой цели числа** (\mathbf{n} > 0), въведени от потребителя, и намира **най- голямото** измежду тях. Първо се въвежда броят числа \mathbf{n} , а след това самите \mathbf{n} числа.

Примерен вход и изход:

вход	изход
2	100
100 99	

вход	изход
3 -10	20
-30	

вход	изход
4	99
45	
-20	
7	
99	

вход	изход
1	999
999	

вход	изход
2	-1
-1 -2	

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#4.

6. Най-малко число

Напишете програма, която чете **n-на брой цели числа** (**n** > 0), въведени от потребителя като аргументи, и намира **най-малкото** измежду тях. Първо се въвежда броят числа **n**, а след това самите **n** числа.

Примерен вход и изход:

вход	изход
2	99
100 99	

вход	изход
3 -10 20 -30	-30

вход	изход
4	-20
45 -20 7 99	

вход	изход
1	999
999	

вход	изход
2	-2
-1 -2	

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#5.

7. Лява и дясна сума

Да се напише програма, която чете **2*n-на брой** цели числа, подадени от потребителя като аргументи, и проверява дали **сумата на първите n числа** (лява сума) е равна на **сумата на вторите n числа** (дясна сума). При равенство печата "**Yes, sum** = "+ **сумата**; иначе печата "**No, diff** = " + **разликата**. Разликата се изчислява като положително число (по абсолютна стойност).

Примерен вход и изход:

вход	изход	коментар
2	Yes, sum = 100	10+90 = 60+40 =
10		100
90		
60		
40		

вход	изход	коментар
2	No, $diff = 1$	90+9 ≠
90		50+50
9		Difference =
50 50		99-100 = 1

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#6.

8. Четна / нечетна сума

Да се напише програма, която чете **n-на брой** цели числа, подадени от потребителя като аргументи, и проверява дали **сумата от числата на четни позиции** е равна на **сумата на числата на нечетни позиции**. При равенство да се отпечата "**Yes**", "**Sum** = " + **сумата**; иначе да се отпечата "**No**", "**Diff** = " + **разликата**. Разликата се изчислява по абсолютна стойност.

Примерен вход и изход:

вход	изход	комента р
4 10 50 60 20	Yes Sum = 70	10+60 = 50+20 = 70

вход	изход	коментар
4	No	3+1 ≠ 5-2
3	Diff = 1	Diff =
5		4-3 = 1
1		
-2		

вход	изход	коментар
3 5 8 1	No Diff = 2	$5+1 \neq 8$ Diff = $ 6-8 = 2$

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#7.

9. Сумиране на гласните букви

Да се напише програма, която чете **текст** (стринг), въведен от потребителя, и изчислява и отпечатва **сумата от стойностите на гласните букви** според таблицата по-долу:

буква	a	е	i	0	u
стойност	1	2	3	4	5

Примерен вход и изход:

вход	изход	коментар
hello	6	e + o = 2 + 4 = 6
hi	3	i = 3
bambo o	9	a + o + o = 1 + 4 + 4 = 9
beer	4	e + e = 2 + 2 = 4

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#8.

10. *Елемент, равен на сумата на останалите

Да се напише програма, която чете **n-на брой** цели числа, въведени от потребителя, и проверява дали сред тях съществува число, което е равно на сумата на всички останали. Ако има такъв елемент, печата "**Yes**", "**Sum** = " + неговата стойност; иначе печата "**No**", "**Diff** = " + разликата между най-големия елемент и сумата на останалите (по абсолютна стойност).

Примерен вход и изход:

вход	изход	коментари
7 3 4 1 1 2 12 1	Yes Sum = 12	3 + 4 + 1 + 2 + 1 + 1 = 12
4 6 1 2 3	Yes Sum = 6	1 + 2 + 3 = 12
3 1 1 10	No Diff = 8	10 - (1 + 1) = 8
3 5 5 1	No Diff = 1	5 - (5 + 1) = 1
3 1 1 1	No Diff = 1	

Тествайте решението си в **judge системата**: https://judge.softuni.bg/Contests/Practice/Index/154#9.

11. *Четни / нечетни позиции

Напишете програма, която чете **n-на брой числа**, въведени от потребителя, и пресмята **сумата**, **минимума** и **максимума** на числата на **четни** и **нечетни** позиции (броим от 1). Когато няма минимален / максимален елемент, отпечатайте "**No**".

Изходът да се форматира в следния вид:

"OddSum=" + {сума на числата на нечетни позиции},

"OddMin=" + { минимална стойност на числата на нечетни позиции } / {"No"},

"**OddMax=**" + { максимална стойност на числата на нечетни позиции } / {"No"},

"EvenSum=" + { сума на числата на четни позиции },

"**EvenMin=**" + { минимална стойност на числата на четни позиции } / {"No"},

"EvenMax=" + { максимална стойност на числата на четни позиции } / {"No"}

Примерен вход и изход:

вход	изход
6 2 3 5 4 2 1	OddSum=9, OddMin=2, OddMax=5, EvenSum= 8, EvenMin=1, EvenMax=4

вход	изход
2 1.5 -2.5	OddSum=1.5, OddMin=1.5, OddMax=1.5, EvenSum=- 2.5, EvenMin=- 2.5, EvenMax=- 2.5

вх	од	изход
1 1		OddSum=1, OddMin=1, OddMax=1, EvenSum=0
		EvenMin=N o, EvenMax=N o

вход	изход
0	OddSum=0, OddMin=No
	, OddMax=N o,
	EvenSum= 0,
	EvenMin=N
	o, EvenMax=
	No

вход	изход
5 3 -2 8 11 -3	OddSum=8, OddMin=-3, OddMax=8, EvenSum= 9, EvenMin=- 2, EvenMax=1

вход	изход
4 1.5 1.75 1.5 1.75	OddSum=3, OddMin=1.5, OddMax=1.5, EvenSum=3.5, EvenMin=1.7 5, EvenMax=1.7

вход	изход
1 - 5	OddSum=- 5, OddMin=-5, OddMax=-5, EvenSum=0
	, EvenMin=N o, EvenMax=N o

вход	изход
3 -1 -2 -3	OddSum=-4, OddMin=-3, OddMax=-1, EvenSum=-2, EvenMin=-2, EvenMax=-2

Тествайте решението си в **judge системата**: https://judge.softuni.bg/Contests/Practice/Index/154#10.

12. Еднакви двойки

Дадени са 2***n-на брой** числа. Първото и второто формират **двойка**, третото и четвъртото също и т.н. Всяка двойка има **стойност** – сумата от съставящите я числа. Напишете програма, която проверява **дали всички двойки имат еднаква стойност** или печата **максималната разлика** между две последователни двойки. Ако всички двойки имат еднаква стойност, отпечатайте "**Yes, value={Value}**" (**стойността**). В противен случай отпечатайте "**No, maxdiff={Difference}**" (**максималната разлика**).

Примерен вход и изход:

вход	изход	коментари	вход	изход	коментари
3	Yes, value=3	стойности = {3, 3, 3}	2	No, maxdiff=1	стойности = {3, 4}
1		еднакви стойности	1		разлики = {1}
2			2		макс. разлика = 1
0			2		
3			2		
4					
-1					
4	No, maxdiff=4	стойности = {2, 4, 4,	1	Yes, value=10	стойности = {10}
1		0}	5		една стойност
1		разлики = {2, 0, 4}	5		еднакви стойности
3		макс. разлика = 4			
1					
2					
2					
0					
0					
2	Yes, value=-1	стойности = {-1, - 1 }	2	No, maxdiff=2	стойности = {1, - 1 }
-1	•	еднакви стойности	-1		разлики = {2}
0			2		макс. разлика = 2
0			0		
-1			-1		

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/154#11.

Изпитни задачи от минали издания на курса

13. Хистограма

Четвърта задача от междинния изпит на 6 март 2016. Тествайте решението си тук.

Дадени са **п** цели числа в интервала [1...1000]. От тях някакъв процент **p1** са под 200, друг процент **p2** са от 200 до 399, друг процент **p3** са от 400 до 599, друг процент **p4** са от 600 до 799 и останалите **p5** процента са от 800 нагоре. Да се напише програма, която изчислява и отпечатва процентите **p1**, **p2**, **p3**, **p4** и **p5**.

Пример: имаме n = **20** числа: 53, 7, 56, 180, 450, 920, 12, 7, 150, 250, 680, 2, 600, 200, 800, 799, 199, 46, 128, 65. Получаваме следното разпределение и визуализация:

Диапазон	Числа в диапазона	Брой числа	Процент
< 200	53, 7, 56, 180, 12, 7, 150, 2, 199, 46, 128, 65	12	p1 = 12 / 20 * 100 = 60.00 %
200 399	250, 200	2	p2 = 2 / 20 * 100 = 10.00 %
400 599	450	1	p3 = 1 / 20 * 100 = 5.00 %
600 799	680, 600, 799	3	p4 = 3 / 20 * 100 = 15.00 %
≥ 800	920, 800	2	p5 = 2 / 20 * 100 = 10.00 %

Вход

На първия ред(аргумент) от входа стои цялото число **n** (1 ≤ **n** ≤ 1000) – брой числа. На следващите **n** реда(аргумента) стои по едно цяло число в интервала [1...1000] – числата, върху които да бъде изчислена хистограмата.

Изход

Да се отпечата на конзолата **хистограмата** – **5 реда**, всеки от които съдържа число между 0% и 100%, с точност две цифри след десетичната точка, например 25.00%, 66.67%, 57.14%.

Примерен вход и изход:

Вход	Изход	Вход	Изход	Вход	Изход	Вход	Изход	Вход	Изход
3 1 2 999	66.67% 0.00% 0.00% 0.00% 33.33%	4 53 7 56 999	75.00% 0.00% 0.00% 0.00% 25.00%	7 800 801 250 199 399 599 799	14.29% 28.57% 14.29% 14.29% 28.57%	9 367 99 200 799 999 333 555 111	33.33% 33.33% 11.11% 11.11%	53 7 56 180 450 920 12 7 150 250 680 2	57.14% 14.29% 7.14% 14.29% 7.14%

					600	
					200	

14. Деление без остатък

Четвърта задача от изпита на 26 март 2016. Тествайте решението си тук.

Дадени са **n-на брой цели числ**а в интервала [1...1000]. От тях някакъв **процент р1 се делят без остатък на** 2, друг **процент р2** се **делят без остатък на** 3, друг **процент р3** се **делят без остатък на** 4. Да се напише програма, която изчислява и отпечатва процентите **p1**, **p2** и **p3**.

Пример: имаме n = **10** числа: 680, 2, 600, 200, 800, 799, 199, 46, 128, 65. Получаваме следното разпределение и визуализация:

Деление без остатък на:	Числа в диапазона	Брой числа	Процент
2	680, 2, 600, 200, 800, 46, 128	7	p1 = 7.0 / 10 * 100 = 70.00 %
3	600	1	p2 = 1/10 * 100 = 10.00 %
4	680, 600, 200, 800, 128	5	p3 = 5 / 10 * 100 = 50.00 %

Вход

На първия ред(аргумент) от входа стои цялото число \mathbf{n} (1 ≤ \mathbf{n} ≤ 1000) – брой числа. На следващите \mathbf{n} реда стои \mathbf{n} по едно цяло число в интервала [1...1000] – числата които да бъдат проверени на колко се делят.

Изход

Да се отпечатат на конзолата **3 реда**, всеки от които съдържа процент между 0% и 100%, с точност две цифри след десетичната точка, например 25.00%, 66.67%, 57.14%.

- На първият ред процентът на числата които се делят на 2
- На вторият ред процентът на числата които се делят на 3
- На третият ред процентът на числата които се делят на 4

Примерен вход и изход:

Вход	Изход	Вход	Изход
10	70.00%	3	33.33%
680	10.00%	3	0.00%
2	30.00%	6	0.0076
600		9	
200			
800			
799			
199			
46			
128			
65			

13. Умната Лили

Четвърта задача от изпита на 24 април 2016. Тествайте решението си тук

Лили вече е на **N** години. За всеки свой рожден ден тя получава подарък. За нечетните рождени дни (1, 3, 5...n) получава играчки, а за всеки четен (2, 4, 6...n) получава пари. За втория рожден ден получава 10.00 лв, като сумата се увеличава с 10.00 лв, за всеки следващ четен рожден ден (2 -> 10, 4 -> 20, 6 -> 30...и т.н.). През годините Лили тайно е спестявала парите. Братът на Лили, в годините, които тя получава пари, взима по 1.00 лев от тях. Лили продала играчките получени през годините, всяка за Р лева и добавила сумата към спестените пари. С парите искала да си купи пералня за X лева. Напишете програма, която да пресмята, колко пари е събрала и дали ѝ стигат да си купи пералня.

Вход

Програмата прочита 3 числа(аргумента), въведени от потребителя, на отделни редове:

- Възрастта на Лили цяло число в интервала [1...77]
- Цената на пералнята число в интервала [1.00...10 000.00]
- Единична цена на играчка цяло число в интервала [0...40]

Изход

Да се отпечата на конзолата един ред:

- Ако парите на Лили са достатъчни:
 - о "Yes! {N}" където N е остатъка пари след покупката
- Ако парите не са достатъчни:
 - о "No! {M}" където M е сумата, която не достига
- Числата **N** и **M** трябва да за форматирани до вторият знак след десетичната запетая.

Примерен вход и изход:

вход	изход	Коментари
10 170.00	Yes! 5.00	Първи рожден ден получава играчка; 2ри -> 10лв; 3ти -> играчка;
6		4ти -> 10 + 10 = 20лв ; 5ти -> играчка; 6ти -> 20 + 10 = 30лв ; 7ми -> играчка; 8ми -> 30 + 10 = 40лв ; 9ти -> играчка; 10ти -> 40 + 10 = 50лв .
		Спестила е -> 10 + 20 + 30 + 40 + 50 = <mark>150лв</mark> . Продала е 5 играчки по 6 лв = <mark>30лв</mark> .
		Брат ѝ взел 5 пъти по 1 лев = 5лв. Остават -> 150 + 30 - 5 = 175 лв.
		175 >= 170 (цената на пералнята) успяла е да я купи и са и останали 175-170 = 5 лв.
21 1570.98 3	No! 997.98	Спестила е 550лв . Продала е 11 играчки по 3 лв = <mark>33лв</mark> . Брат ѝ взимал 10 години по 1 лев = 10лв . Останали 550 + 33 – 10 = 573лв
		573 < 1570.98 - не е успяла да купи пералня. Не ѝ достигат 1570.98-573 = 997.98лв

