

PyTorch Tutorial

06. Logistic Regression

Revision - Linear Regression

Affine Model

$$\hat{y} = x * \omega + b$$

Loss Function

$$loss = (\hat{y} - y)^2 = (x \cdot \omega - y)^2$$

Revision - Linear Regression

x (hours)	y (points)
1	2
2	4
3	6
4	?

Affine Model

$$\hat{y} = x * \omega + b$$

Loss Function

$$loss = (\hat{y} - y)^2 = (x \cdot \omega - y)^2$$

Classification – The MNIST Dataset

The database of handwritten digits

- Training set: 60,000 examples,
- Test set: 10,000 examples.
- Classes: 10

```
import torchvision
train_set = torchvision.datasets.MNIST(root='../dataset/mnist', train=True, download=True)
test_set = torchvision.datasets.MNIST(root='../dataset/mnist', train=False, download=True)
```

Classification – The CIFAR-10 dataset

- Training set: 50,000 examples,

- Test set: 10,000 examples.

- Classes: 10

import torchvision
train_set = torchvision.datasets.CIFAR10(...)
test set = torchvision.datasets.CIFAR10(...)

Regression vs Classification

x (hours)	y (points)
1	2
2	4
3	6
4	?

x (hours)	y (pass/fail)
1	0 (fail)
2	0 (fail)
3	1 (pass)
4	?

In classification, the output of model is the probability of input belongs to the exact class.

How to map: $\mathbb{R} \rightarrow [0, 1]$

Logistic Function

$$\frac{\sigma(x)}{1+e^{-x}}$$

https://en.wikipedia.org/wiki/Logistic_function

Sigmoid functions

Logistic Regression Model

Affine Model

$$\hat{y} = x * \omega + b$$

Logistic Regression Model

$$\hat{y} = \sigma(x * \omega + b)$$

Loss function for Binary Classification

Loss Function for Linear Regression

$$loss = (\hat{y} - y)^2 = (x \cdot \omega - y)^2$$

Loss Function for Binary Classification

$$loss = -(y \log \hat{y} + (1 - y) \log(1 - \hat{y}))$$

Mini-Batch Loss function for Binary Classification

Loss Function for Binary Classification

$$loss = -(y \log \hat{y} + (1 - y) \log(1 - \hat{y}))$$

Mini-Batch Loss Function for Binary Classification

$$loss = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$

у	ŷ	BCE Loss
1	0.2	1.6094
1	0.8	0.2231
0	0.3	0.3567
0	0.7	1.2040
Mini-Ba	tch Loss	0.8483


```
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = self.linear(x)
        return y_pred
```



```
import torch.nn.functional as F

class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

def forward(self, x):
    y_pred = F.sigmoid(self.linear(x))
    return y_pred
```

Mini-Batch Loss Function for Binary Classification

$$loss = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$

criterion = torch.nn. BCELoss(size_average=False)

```
x_{data} = torch. Tensor([[1.0], [2.0], [3.0]])
y_data = torch. Tensor([[0], [0], [1]])
class LogisticRegressionModel(torch.nn.Module):
    def init (self):
        super(LogisticRegressionModel, self). init ()
        self. linear = torch. nn. Linear (1, 1)
    def forward(self, x):
        y pred = F. sigmoid(self. linear(x))
        return y pred
model = LogisticRegressionModel()
criterion = torch.nn.BCELoss(size average=False)
optimizer = torch. optim. SGD (model. parameters (), 1r=0.01)
for epoch in range (1000):
   y_pred = model(x data)
    loss = criterion(y pred, y data)
    print(epoch, loss.item())
    optimizer.zero grad()
    loss. backward()
    optimizer.step()
```

Prepare dataset
we shall talk about this later

```
x_{data} = torch. Tensor([[1.0], [2.0], [3.0]])
y_{data} = torch. Tensor([[0], [0], [1]])
class LogisticRegressionModel(torch.nn.Module):
    def init (self):
        super(LogisticRegressionModel, self).__init__()
        self. linear = torch. nn. Linear (1, 1)
    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y pred
model = LogisticRegressionModel()
criterion = torch.nn.BCELoss(size average=False)
optimizer = torch. optim. SGD (model. parameters (), 1r=0.01)
for epoch in range (1000):
   y_pred = model(x data)
    loss = criterion(y pred, y data)
    print(epoch, loss.item())
   optimizer.zero grad()
    loss. backward()
    optimizer.step()
```

Design model using Class inherit from nn.Module

```
x_{data} = torch. Tensor([[1.0], [2.0], [3.0]])
y_{data} = torch. Tensor([[0], [0], [1]])
class LogisticRegressionModel(torch.nn.Module):
    def init (self):
        super(LogisticRegressionModel, self). init ()
        self. linear = torch. nn. Linear (1, 1)
    def forward(self, x):
        y pred = F. sigmoid(self. linear(x))
        return y pred
model = LogisticRegressionModel()
criterion = torch. nn. BCELoss(size average=False)
optimizer = torch.optim.SGD(model.parameters(), 1r=0.01)
for epoch in range (1000):
   y_pred = model(x data)
    loss = criterion(y pred, y data)
    print(epoch, loss.item())
    optimizer.zero grad()
    loss. backward()
    optimizer.step()
```

Construct loss and optimizer using PyTorch API

```
x_{data} = torch. Tensor([[1.0], [2.0], [3.0]])
y_{data} = torch. Tensor([[0], [0], [1]])
class LogisticRegressionModel(torch.nn.Module):
    def init (self):
        super(LogisticRegressionModel, self). init ()
        self. linear = torch. nn. Linear (1, 1)
    def forward(self, x):
        y pred = F. sigmoid(self. linear(x))
        return y pred
model = LogisticRegressionModel()
criterion = torch.nn.BCELoss(size average=False)
optimizer = torch. optim. SGD (model. parameters (), 1r=0.01)
for epoch in range (1000):
   y_pred = model(x data)
    loss = criterion(y pred, y data)
    print(epoch, loss.item())
   optimizer.zero grad()
    loss. backward()
    optimizer.step()
```


Training cycle forward, backward, update

```
x_{data} = torch. Tensor([[1.0], [2.0], [3.0]])
y_data = torch. Tensor([[0], [0], [1]])
class LogisticRegressionModel(torch.nn.Module):
    def init (self):
        super(LogisticRegressionModel, self).__init__()
        self. linear = torch. nn. Linear (1, 1)
    def forward(self, x):
        y_pred = F. sigmoid(self.linear(x))
        return y pred
model = LogisticRegressionModel()
criterion = torch.nn.BCELoss(size average=False)
optimizer = torch. optim. SGD (model. parameters (), 1r=0.01)
for epoch in range (1000):
   y_pred = model(x data)
    loss = criterion(y pred, y data)
    print(epoch, loss.item())
    optimizer.zero grad()
    loss. backward()
    optimizer. step()
```


Result of Logistic Regression

```
import numpy as np
import matplotlib.pyplot as plt
x = np. 1inspace(0, 10, 200)
x_t = torch. Tensor(x). view((200, 1))
y_t = model(x_t)
y = y_t. data. numpy()
plt.plot(x, y)
plt.plot([0, 10], [0.5, 0.5], c='r')
plt. xlabel ('Hours')
plt.ylabel('Probability of Pass')
plt.grid()
plt. show()
```


PyTorch Tutorial

06. Logistic Regression