Rank-76051 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_1 + X_1^2 X_2 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(8)$ is 1243914829

General information

Number of lines	5
Number of points	89
Number of singular points	0
Number of Eckardt points	1
Number of double points	2
Number of single points	38
Number of points off lines	48
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{5}
Type of lines on points	$3, 2^2, 1^{38}, 0^{48}$

Singular Points

The surface has 0 singular points:

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4680} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4680} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_{17}$$

$$\ell_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{25}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{722} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{722} = \mathbf{Pl}(0, 1, 1, 1, 1, 1)_{1330}$$

Rank of lines: (64, 4680, 4744, 4689, 722)

Rank of points on Klein quadric: (2, 17, 1, 25, 1330)

Eckardt Points

The surface has 1 Eckardt points: $0: P_3 = \mathbf{P}(0, 0, 0, 1) = \mathbf{P}(0, 0, 0, 1).$

Double Points

The surface has 2 Double points: The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_2$$

$$P_{138} = (0,0,1,1) = \ell_2 \cap \ell_4$$

Single Points

The surface has 38 single points: The single points on the surface are:

 $0: P_0 = (1,0,0,0)$ lies on line ℓ_0 1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1 2: $P_{12} = (1, 0, 1, 0)$ lies on line ℓ_0 $3: P_{13} = (2,0,1,0)$ lies on line ℓ_0 4: $P_{14} = (3,0,1,0)$ lies on line ℓ_0 5: $P_{15} = (4,0,1,0)$ lies on line ℓ_0 6: $P_{16} = (5, 0, 1, 0)$ lies on line ℓ_0 7: $P_{17} = (6,0,1,0)$ lies on line ℓ_0 8: $P_{18} = (7,0,1,0)$ lies on line ℓ_0 9: $P_{19} = (0, 1, 1, 0)$ lies on line ℓ_3 10: $P_{20} = (1, 1, 1, 0)$ lies on line ℓ_4 11: $P_{82} = (0, 1, 0, 1)$ lies on line ℓ_1 12: $P_{83} = (1, 1, 0, 1)$ lies on line ℓ_4 13: $P_{90} = (0, 2, 0, 1)$ lies on line ℓ_1 14: $P_{98} = (0, 3, 0, 1)$ lies on line ℓ_1 15: $P_{106} = (0, 4, 0, 1)$ lies on line ℓ_1 16: $P_{114} = (0, 5, 0, 1)$ lies on line ℓ_1 17: $P_{122} = (0, 6, 0, 1)$ lies on line ℓ_1 18: $P_{130} = (0, 7, 0, 1)$ lies on line ℓ_1 19: $P_{146} = (0, 1, 1, 1)$ lies on line ℓ_3

21: $P_{217} = (0, 2, 2, 1)$ lies on line ℓ_3 22: $P_{228} = (3, 3, 2, 1)$ lies on line ℓ_4 23: $P_{265} = (0,0,3,1)$ lies on line ℓ_2 24: $P_{283} = (2, 2, 3, 1)$ lies on line ℓ_4 25: $P_{289} = (0, 3, 3, 1)$ lies on line ℓ_3 26: $P_{329} = (0, 0, 4, 1)$ lies on line ℓ_2 27: $P_{361} = (0, 4, 4, 1)$ lies on line ℓ_3 28: $P_{374} = (5, 5, 4, 1)$ lies on line ℓ_4 29: $P_{393} = (0,0,5,1)$ lies on line ℓ_2 $30: P_{429} = (4, 4, 5, 1)$ lies on line ℓ_4 $31: P_{433} = (0, 5, 5, 1)$ lies on line ℓ_3 $32: P_{457} = (0,0,6,1)$ lies on line ℓ_2 33: $P_{505} = (0, 6, 6, 1)$ lies on line ℓ_3 $34: P_{520} = (7,7,6,1)$ lies on line ℓ_4 $35: P_{521} = (0,0,7,1)$ lies on line ℓ_2 $36: P_{575} = (6, 6, 7, 1)$ lies on line ℓ_4 $37: P_{577} = (0,7,7,1)$ lies on line ℓ_3

20: $P_{201} = (0,0,2,1)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 48 points not on any line: The points on the surface but not on lines are:

$0: P_{31} = (4, 2, 1, 0)$	$25: P_{344} = (7, 1, 4, 1)$
$1: P_{32} = (5, 2, 1, 0)$	$26: P_{349} = (4, 2, 4, 1)$
$2: P_{49} = (6, 4, 1, 0)$	$27: P_{351} = (6, 2, 4, 1)$
$3: P_{50} = (7, 4, 1, 0)$	$28: P_{358} = (5, 3, 4, 1)$
$4: P_{69} = (2, 7, 1, 0)$	$29: P_{368} = (7, 4, 4, 1)$
$5: P_{70} = (3, 7, 1, 0)$	$30: P_{375} = (6, 5, 4, 1)$
$6: P_{96} = (6, 2, 0, 1)$	$31: P_{379} = (2, 6, 4, 1)$
$7: P_{102} = (4, 3, 0, 1)$	$32: P_{381} = (4, 6, 4, 1)$
$8: P_{109} = (3, 4, 0, 1)$	$33: P_{427} = (2, 4, 5, 1)$
$9: P_{121} = (7, 5, 0, 1)$	$34: P_{435} = (2, 5, 5, 1)$
$10: P_{124} = (2, 6, 0, 1)$	$35: P_{453} = (4,7,5,1)$
$11: P_{135} = (5, 7, 0, 1)$	$36: P_{480} = (7, 2, 6, 1)$
$12: P_{213} = (4, 1, 2, 1)$	$37: P_{509} = (4, 6, 6, 1)$
$13: P_{216} = (7, 1, 2, 1)$	$38: P_{517} = (4,7,6,1)$
$14: P_{221} = (4, 2, 2, 1)$	$39: P_{531} = (2, 1, 7, 1)$
$15: P_{230} = (5, 3, 2, 1)$	$40: P_{533} = (4, 1, 7, 1)$
$16: P_{243} = (2, 5, 2, 1)$	$41: P_{549} = (4, 3, 7, 1)$
$17: P_{248} = (7, 5, 2, 1)$	$42: P_{552} = (7, 3, 7, 1)$
$18: P_{252} = (3, 6, 2, 1)$	$43: P_{556} = (3, 4, 7, 1)$
$19: P_{259} = (2,7,2,1)$	$44: P_{560} = (7, 4, 7, 1)$
$20: P_{262} = (5, 7, 2, 1)$	$45: P_{567} = (6, 5, 7, 1)$
$21: P_{288} = (7, 2, 3, 1)$	$46: P_{572} = (3, 6, 7, 1)$
$22: P_{296} = (7, 3, 3, 1)$	$47: P_{579} = (2, 7, 7, 1)$
$23: P_{299} = (2, 4, 3, 1)$	2
$24: P_{339} = (2, 1, 4, 1)$ $24: P_{339} = (2, 1, 4, 1)$	
21 · 1 339 = (2 , 1, 1, 1)	

Line Intersection Graph

0	00100
1	00110
2	11011
3	01100
4	00100

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_2
in point	P_2

Line 1 intersects

Line	ℓ_2	ℓ_3
in point	P_3	P_3

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_2	P_3	P_3	P_{138}

Line 3 intersects

Line	ℓ_1	ℓ_2
in point	P_3	P_3

Line 4 intersects

Line	ℓ_2
in point	P_{138}

The surface has 89 points: The points on the surface are:

$0: P_0 = (1,0,0,0)$	$30: P_{124} = (2, 6, 0, 1)$	$60: P_{368} = (7, 4, 4, 1)$
$1: P_1 = (0, 1, 0, 0)$	$31: P_{130} = (0,7,0,1)$	$61: P_{374} = (5, 5, 4, 1)$
$2: P_2 = (0, 0, 1, 0)$	$32: P_{135} = (5, 7, 0, 1)$	$62: P_{375} = (6, 5, 4, 1)$
$3: P_3 = (0,0,0,1)$	$33: P_{138} = (0,0,1,1)$	$63: P_{379} = (2, 6, 4, 1)$
$4: P_{12} = (1,0,1,0)$	$34: P_{146} = (0, 1, 1, 1)$	$64: P_{381} = (4, 6, 4, 1)$
$5: P_{13} = (2, 0, 1, 0)$	$35: P_{201} = (0,0,2,1)$	$65: P_{393} = (0,0,5,1)$
$6: P_{14} = (3, 0, 1, 0)$	$36: P_{213} = (4, 1, 2, 1)$	$66: P_{427} = (2, 4, 5, 1)$
$7: P_{15} = (4, 0, 1, 0)$	$37: P_{216} = (7, 1, 2, 1)$	$67: P_{429} = (4, 4, 5, 1)$
$8: P_{16} = (5, 0, 1, 0)$	$38: P_{217} = (0, 2, 2, 1)$	$68: P_{433} = (0, 5, 5, 1)$
$9: P_{17} = (6, 0, 1, 0)$	$39: P_{221} = (4, 2, 2, 1)$	$69: P_{435} = (2, 5, 5, 1)$
$10: P_{18} = (7, 0, 1, 0)$	$40: P_{228} = (3, 3, 2, 1)$	$70: P_{453} = (4, 7, 5, 1)$
$11: P_{19} = (0, 1, 1, 0)$	$41: P_{230} = (5, 3, 2, 1)$	$71: P_{457} = (0,0,6,1)$
$12: P_{20} = (1, 1, 1, 0)$	$42: P_{243} = (2, 5, 2, 1)$	$72: P_{480} = (7, 2, 6, 1)$
$13: P_{31} = (4, 2, 1, 0)$	$43: P_{248} = (7, 5, 2, 1)$	$73: P_{505} = (0, 6, 6, 1)$
$14: P_{32} = (5, 2, 1, 0)$	$44: P_{252} = (3, 6, 2, 1)$	$74: P_{509} = (4, 6, 6, 1)$
$15: P_{49} = (6, 4, 1, 0)$	$45: P_{259} = (2,7,2,1)$	$75: P_{517} = (4,7,6,1)$
$16: P_{50} = (7, 4, 1, 0)$	$46: P_{262} = (5, 7, 2, 1)$	$76: P_{520} = (7, 7, 6, 1)$
$17: P_{69} = (2, 7, 1, 0)$	$47: P_{265} = (0, 0, 3, 1)$	$77: P_{521} = (0, 0, 7, 1)$
$18: P_{70} = (3, 7, 1, 0)$	$48: P_{283} = (2, 2, 3, 1)$	$78: P_{531} = (2, 1, 7, 1)$
$19: P_{82} = (0, 1, 0, 1)$	$49: P_{288} = (7, 2, 3, 1)$	$79: P_{533} = (4, 1, 7, 1)$
$20: P_{83} = (1, 1, 0, 1)$	$50: P_{289} = (0, 3, 3, 1)$	$80: P_{549} = (4, 3, 7, 1)$
$21: P_{90} = (0, 2, 0, 1)$	$51: P_{296} = (7, 3, 3, 1)$	$81: P_{552} = (7, 3, 7, 1)$
$22: P_{96} = (6, 2, 0, 1)$	$52: P_{299} = (2, 4, 3, 1)$	$82: P_{556} = (3, 4, 7, 1)$
$23: P_{98} = (0, 3, 0, 1)$	$53: P_{329} = (0, 0, 4, 1)$	$83: P_{560} = (7, 4, 7, 1)$
$24: P_{102} = (4, 3, 0, 1)$	$54: P_{339} = (2, 1, 4, 1)$	$84: P_{567} = (6, 5, 7, 1)$
$25: P_{106} = (0, 4, 0, 1)$	$55: P_{344} = (7, 1, 4, 1)$	$85: P_{572} = (3, 6, 7, 1)$
$26: P_{109} = (3, 4, 0, 1)$	$56: P_{349} = (4, 2, 4, 1)$	$86: P_{575} = (6, 6, 7, 1)$
$27: P_{114} = (0, 5, 0, 1)$	$57: P_{351} = (6, 2, 4, 1)$	$87: P_{577} = (0, 7, 7, 1)$
$28: P_{121} = (7, 5, 0, 1)$	$58: P_{358} = (5, 3, 4, 1)$	$88: P_{579} = (2, 7, 7, 1)$
$ \begin{array}{l} 29: P_{121} = (1, 6, 6, 1) \\ 29: P_{122} = (0, 6, 0, 1) \end{array} $	$59: P_{361} = (0, 4, 4, 1)$	CC . 1 5/9 (2,1,1,1)
=0.1122 = (0,0,0,1)	00.1001 = (0, 1, 1, 1)	