

Пусть Γ — окружность, описанная около треугольника ABC; A_1, B_1, C_1 — основания высот из соответствующих вершин; γ — окружность, описанная около треугольника AB_1C_1 ; M — середина BC. Пусть точка H' симметрична H относительно BC (очевидно, что $H' \in \Gamma$). Пусть также T — точка пересечения касательных к Γ , восстановленных в точках B и $C, K = MH \cap B_1C_1, L = TH' \cap BC$, а S — вторая точка пересечения Γ с γ (отличная от A). Наша цель доказать, что точки K, A_1, T — коллинеарны (лежат на одной прямой)

Как известно, S — центр поворотной гомотетии \mathcal{F} , переводящей B_1C_1 в CB. При этом $\mathcal{F}(\gamma) \to \Gamma$. Покажем, что $\mathcal{F}(H) \to H'$. Сразу отметим, что M — точка пересечения касательных к γ , восстановленных в точках B_1 и C_1 (доказывается простым счётом углов). Таким образом $\mathcal{F}(M) \to T$. Поскольку $\angle C_1B_1H = \angle BCH = \angle BCH'$, то с учётом вышесказанного получаем, что действительно $\mathcal{F}(H) \to H'$. А отсюда следует, что $\mathcal{F}(K) = L$.

Теперь воспользуемся тем, что $\mathcal{F}(H) \to H'$ и $\mathcal{F}(M) \to T$. А тогда, в силу свойств поворотной гомотетии, точка S также является поворотной гомоте-

тией \mathcal{P} , переводящей HH' в MT. Теперь заметим, что $MT \perp CB \perp HH'$ $\Rightarrow MT \parallel HH'$, а значит \mathcal{P} на самом деле гомотетия (с центром S). Откуда получаем, что M, H, K, S коллинеарны и T, H', L, S коллинеарны. Вернёмся к \mathcal{F} . Так как $\mathcal{F}(H) \rightarrow H'$ и $\mathcal{F}(K) \rightarrow L$, то $\frac{HK}{H'L} = \frac{SK}{SL}$, откуда $LK \parallel HH'$ по теореме Фалеса.

Теперь осталось записать несколько подобий треугольников, воспользовавшись найденными паралельностями.

- 1) $\triangle MHA_1 \sim \triangle MKL$ (гомотетичны с центром в M) $\frac{A_1H}{KL} = \frac{MA_1}{ML}$
- 2) $\triangle LA_1H' \sim \triangle LMT$ (гомотетичны с центром в L) $\frac{A_1H'}{MT} = \frac{LA_1}{ML}$

Отсюда получаем, что $\frac{MT}{KL}=\frac{MA_1}{LA_1}$ (так как $A_1H=A_1H'$). Теперь остаётся лишь заметить, что прямоугольные треугольники LA_1K и MA_1T подобны ввиду последнего соотношения, а это равносильно коллинеарности точек T,A_1,K .