STA 2503 / MMF 1928 Project - 1 American Options

Suppose that an asset price process $S = (S_{t_k})_{k \in \{0,1,\dots,N\}}$ (with $t_k = k \Delta t$ and $\Delta t = \frac{T}{N}$, for a fixed N) are given by the stochastic dynamics

$$S_{t_k} = S_{t_{k-1}} e^{r \Delta t + \sigma \sqrt{\Delta t} \epsilon_k}$$

where ϵ_k are iid rv with $\epsilon_k \in \{+1, -1\}$ and

$$\mathbb{P}(\epsilon_k = \pm 1) = \frac{1}{2} \left(1 \pm \frac{(\mu - r) - \frac{1}{2}\sigma^2}{\sigma} \sqrt{\Delta t} \right).$$

Here, $r \ge 0$ and $\sigma > 0$ are constants.

Moreover, let $B = (B_{t_k})_{k \in \{0,1,\dots,N\}}$ denote the bank account with $B_t = e^{rt}$.

1. Let $X^{(N)}$ denote the random variable $X^{(N)} := \log(S_T/S_0)$. Prove that

$$X^{(N)} \xrightarrow[N \to \infty]{d} (\mu - \frac{1}{2}\sigma^2) T + \sigma \sqrt{T} Z,$$
 and $Z \stackrel{\mathbb{P}}{\sim} \mathcal{N}(0, 1)$

- 2. Derive the probabilities $\mathbb{Q}(\epsilon_k = \pm 1)$ and $\mathbb{Q}^S(\epsilon_k = \pm 1)$, as well as the \mathbb{Q} and \mathbb{Q}^S distribution of S_T in the limit as $N \to \infty$.
 - [Recall that \mathbb{Q} refers to the martingale measure induced by using the bank account B as a numeraire, and \mathbb{Q}^S refers to the martingale measure induced by using the asset S as a numeraire.]
- 3. In this part, you will evaluate an American option. Assume that $T=1, S_0=10, \mu=5\%, \sigma=20\%,$ and the risk-free rate r=2%. Use N=5000.
 - (a) Implement a binomial tree to value the American put option with strike K = 10.
 - i. Plot the exercise boundary as a function of t.
 - ii. Show how the various plots vary as volatility and risk-free rate change.
 - (b) Assume you have purchased the American option with the base set of parameters.
 - i. Simulate 10,000 sample paths of the asset and obtain a <u>kernel density estimate</u> of (i) profit and loss you will receive, and (ii) the distribution of the time at which you exercise the option. Explore how the various model parameters effect these distributions.
 - ii. Suppose that the realized volatility is $\sigma = 10\%, 15\%, 20\%, 25\%, 30\%$, but you were able to purchase the option with a volatility of $\sigma = 20\%$ and you use the $\sigma = 20\%$ exercise boundary in your trading strategy. Explore how the distributions of profit and loss and exercise time vary in this case.