Data Visualisation

CMP020L013A

Week 11: Statistical Methods in Data Visualisation

Mohammad Javaheri

(Dr Mohammad Ali Javaheri Javid)

Agenda

- ► the importance of statistical methods
- ▶ the use and types of descriptive statistics in visualisation
- ▶ the use and types of inferential statistics in visualisation

Statistical Methods

- ► Statistical methods enable us to analyse quantitative data, specifically
 - (1) to inspect data quality and characteristics and
 - (2) to discover relationships (e.g., causal) among experimental variables or to estimate population characteristics.
- Descriptive statistics
- 2. Inferential statistics

Descriptive vs. Inferential Statistics

- ► A descriptive statistic is a summary statistic that quantitatively describes or summarises features of collected data
- ► **Descriptive** statistics is the process of using and analysing those statistics.
- ▶Inferential statistics (or statistical inference or modeling) is the process of making propositions about a population using data drawn from it through sampling.
- ▶ Using descriptive statistics, we summarise a sample of data;
- ► Using *inferential statistics*, we make propositions about the population.

Descriptive vs. Inferential Statistics

- ► When do we use descriptive and inferential statistics?
- ► Applications of Descriptive statistic
 - ► To assess data quality and structure
 - ► To describe population characteristics
 - ► To assess dependence among variables
- ► Applications of Inferential statistics
 - ► To test hypotheses
 - ► To estimate parameters
 - ► To perform clustering or classification

► How to perform descriptive statistics?

1. Prepare data table

Group	Participants	Task Completion Time		
No prediction	Participant 1	245		
No prediction	Participant 2	236		
No prediction	Participant 3	321		
No prediction	Participant 4	212		
No prediction	Participant 5	267		
No prediction	Participant 6	334		
No prediction	Participant 7	287		
No prediction	Participant 8	259		
With prediction	Participant 9	246		
With prediction	Participant 10	213		
With prediction	Participant 11	265		
With prediction	Participant 12	189		
With prediction	Participant 13	201		
With prediction	Participant 14	197		
With prediction	Participant 15	289		
With prediction	Participant 16	224		

Source: Jonathan Lazar et al., Research Methods in Human-Computer Interaction, 2nd Edition, 2017

2. Inspect data distribution

- ► Types of analyses in descriptive statistics
 - **►** Univariate analysis
 - ► It involves describing the distribution of a single variable, including the type/form of distribution, central tendency, and dispersion.
 - **▶** Bivariate or multivariate
 - ▶ analysis involves describing the relationships between pairs of variables in terms of correlation, covariance, and slope.

- ► What do we look at in univariate analysis?
 - **▶** Distribution
 - what does our distribution look like? (For discrete, ordinal, or continuous data types)
 - **►** Central tendency
 - where is most of our data? (For continuous data types only)
 - **▶** Dispersion
 - ▶ how much does the deviate from the centre?

1. Univariate Analysis

▶ **Distribution** — discrete, ordinal, or continuous data types

- ▶ Distribution discrete, ordinal, or continuous data types
- ► For the **Discrete data Distribution**,
- ► the values of the Variable X can only be non-negative integers, because they are Counts.
- ► The Probabilities for Discrete data Distribution are shown as separate columns.
- ► There is nothing between the columns, because there are no values on the horizontal axis between the individual integers.

- ▶ Distribution discrete, ordinal, or continuous data types
- ► For Continuous Distributions,
- ► values of horizontal-axis Variable are real numbers, and there are an infinite number of them between any two integers.
- ► Continuous data are also called Measurement data; examples are length, weight, pressure, etc.
- ► The Probabilities for Continuous Distributions are infinitesimal points on smooth curves.

- ▶ Distribution discrete, ordinal, or continuous data types
- ► For the first six Distributions described in the table below, the data used to create the values on the horizontal axis come from a single Sample or Population or Process.
- ► The F and Chi-Square (χ 2) Distributions are hybrids. Their horizontal axis Variable is calculated from a ratio of two numbers, and the source data don't have to be one type or another.
- ▶ Being a ratio, the horizontal axis Variable (F or χ 2) is Continuous.
- ► The Probability curve is smooth and Continuous.

Distribution	data	Probability Curve	
Binomial, Hypergeometric, Poisson	Discrete	Discrete	
Exponential, Normal, t	Continuous	Continuous	
F, Chi-Square	Both	Continuous	

1. Univariate Analysis

- ▶ Distribution discrete, ordinal, or continuous data types
- ▶ Data from discrete or continuous variables can take different forms and follow different probability distributions.

Source: by **Daniel Wolcott**

1. Univariate Analysis

Central tendency: the tendency for values of a variable to gather around the middle of the distribution

- Data from discrete or continuous variables can take different forms and follow different probability distributions.
- Mean is the arithmetic average of all the values in the distribution.

$$\sum rac{x}{n}$$
 , where x is the value the variable can take, and n is the set size

- Median is the middle value when all the values are ordered.
- Mode is the value that occurs most frequently in the data.

- Dispersion: captures the spread and shape of the data distribution
- ► Range is the difference between the smallest and the largest values.
- Quartiles break the distribution into four equally sized parts.
- ► Variance is the squared deviation of the variable from its mean.
- Standard deviation measures the amount of variation or dispersion in values.

1. Univariate Analysis

 Dispersion: captures the spread and shape of the data distribution

► **Kurtosis** measures how much the values gather in the peak or the tail of the distribution: *leptokurtic, mesokurtic, platykurtic.*

► **Skewness** measures of asymmetry in the distribution: positive, *negative*.

2. Bivariate/Multivariate Analysis

► Correlation can be used for descriptive or inferential statistics.

- 2. Bivariate/Multivariate Analysis
- ▶ What is calculated in Correlation is called a correlation coefficient

For a population

$$ho_{X,Y} = rac{cov(X,Y)}{\sigma_X \sigma_Y}$$

For a sample

$$r_{x,y} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

Figure Source

2. Bivariate/Multivariate Analysis

- ► How can a correlation coefficient be interpreted?
- ► Correlation coefficient is a measure of relation between two variables that ranges between -1 and 1.
- Simple linear correlation: Pearson's r calculates the extent to which the variables are proportional or linearly related to each other.
- If you square the Pearson r, you get a direct measure of the amount of variance that is shared between the two measures involved
- ► Example:
 - ▶ Pearson r = .50 means that 25% of the variance between measure X and measure Y is shared.
 - \triangleright Pearson r = .70 means that 49% of the variance is shared.

2. Bivariate/Multivariate Analysis

- ► The proportion can be summarized by a simple line (regression or least squares line)
- ▶ Determined such that the sum of the squared distances of all the data points from the line is the lowest possible.

$$Y=eta_0+\sum_{i=1}eta_1X_i+\epsilon_i$$

x-Axis

Inferential Statistics

► Inferential statistics involves families of statistical tests that aim to establish statistically significant differences between distributions

► A statistical test?

▶ It is a mechanism for assessing whether data provides support for particular hypotheses.

► test a **hypothesis**?

- ► Hypotheses are provisional statements about relationships among concepts.
- ► In hypothesis testing, we seek to determine which statement data is consistent with.

Inferential Statistics

► How do we determine what test to use?

	Nominal	Categorical (2+)	Ordinal	Quantitative Discrete	Quantitative Non-Normal	Quantitative Normal
Nominal	Chi-squared, Fisher's	Chi-squared	Chi-squared Trend, Mann- Whitney	Mann-Whitney	Mann-Whitney, log-rank	Student's t
Categorical (2+)	Chi-squared	Chi-squared	Kruskal-Wallis‡	Kruskal-Wallis‡	Kruskal-Wallis‡	ANOVAĦ
Ordinal	Chi-squared Trend, Mann- Whitney	**	Spearman rank	Spearman rank	Spearman rank	Spearman rank, Ťinear regression
Quantitative Discrete	Logistic regression	**	**	Spearman rank	Spearman rank	Spearman rank, linear regression
Quantitative Non-Normal	Logistic regression	**	**	**	Plot data- Pearson, Spearman rank	Plot data- Pearson, Spearman rank & linear regression
Quantitative Normal	Logistic regression	**	**	**	Linear * regression	Pearson, linear regression

Further Reading

- ▶ Bilge Mutlu, Human-Computer Interaction: https://wisc-hci-curriculum.github.io/cs770-s20/
- ► Descriptive statistics: https://en.wikipedia.org/wiki/Descriptive statistics
- ► Statistical inference: https://en.wikipedia.org/wiki/Statistical inference
- ► https://www.statisticsfromatoz.com/blog/statistics-tip-of-the-week-different-distributions-can-have-discrete-or-continuous-probability-graphs-for-discrete-or-continuous-data
- ► Visualisation mode median mean: https://commons.wikimedia.org/w/index.php?curid=38969094
- ► Boxplot vs PDF: https://commons.wikimedia.org/w/index.php?curid=14524285

