Last Time

- Definition of stochastic process
- Sample paths
- Finite-dimensional distributions
- Versions and modifications

Today's lecture: Section 3.2

Linear Algebra Notation

• The dot product of two column vectors $x = (x_1, \dots, x_n)'$ and $y = (y_1, \dots, y_n)'$ is

$$(x,y) = x_1 y_1 + \dots + x_n y_n$$

A symmetric n × n matrix A is nonnegative definite if

$$(x,Ax)=x'Ax=\sum_{j=1}^n\sum_{k=1}^nx_jA_{jk}x_k\geq 0 \text{ for all vectors }x\in I\!\!R^n$$

• A symmetric $n \times n$ matrix A is positive definite if

(x,Ax)>0 for all non-zero column vectors $x\in \mathbb{R}^n$

Random Vectors

- Given a measurable space (Ω, \mathcal{F}) an \mathcal{F} -measurable map $X: \Omega \mapsto \mathbb{R}^n$ is a random vector
- $X = (X_1, ..., X_n)$ is a random vector if and only if X_i is a random variable for all i = 1, ..., n
- Any random vector has a distribution/law on $(\mathbb{R}^n, \mathcal{B}^n)$
- A random vector X has a probability density function f_X if

$$\mathbb{P}(a_i \le X_i \le b_i) = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f_X(x_1, \dots, x_n) dx_n \cdots dx_1,$$

for all
$$a_i < b_i \in I\!\!R, i = 1, ..., n$$

Characteristic Function and its Properties

• The characteristic function of a random vector $X = (X_1, \dots, X_n)$ is a function $\Phi_X : \mathbb{R}^n \to \mathbb{C}$ defined by

$$\Phi_X(\theta) = \mathbb{E}(e^{i(\theta,X)})
= \mathbb{E}(\cos((\theta,X))) + i\mathbb{E}(\sin((\theta,X))), \tag{1}$$

where
$$i = \sqrt{-1}$$
 and $\theta = (\theta_1, \dots, \theta_n) \in I\!\!R^n$

- $|\Phi_X(\theta)| \leq 1$ for all $\theta \in \mathbb{R}^n$
- $\Phi_X(\theta)$ is continuous as a function of θ

Characteristic Function and its Properties (cont.)

• The RV's X_1, \ldots, X_n are independent if and only if

$$\Phi_X(\theta) = \prod_{k=1}^n \Phi_{X_k}(\theta_k),$$

for all $\theta = (\theta_1, \dots, \theta_n)$

- Two random vectors have the same law if and only if they have the same characteristic function
- X_n converges to X in distribution as $n \to \infty$ if and only if $\Phi_{X_n}(\theta) \to \Phi_X(\theta)$ for all $\theta \in I\!\!R^n$.

Gaussian Random Vector

 A random vector X has a Gaussian (or Multivariate Normal) Distribution if its characteristic function has the form

$$\Phi_X(\theta) = e^{i(\theta,\mu) - \frac{1}{2}(\theta,\Sigma\theta)}, \quad \theta \in \mathbb{R}^n,$$

for some nonnegative definite $n \times n$ matrix Σ and some vector $\mu \in I\!\!R^n$

A RV X is Gaussian (or Normal) if its characteristic function is

$$\Phi_X(\theta) = e^{i\theta\mu - \frac{1}{2}\theta^2\sigma^2}, \quad \theta \in \mathbb{R},$$

for some $\mu \in I\!\!R$ and $\sigma^2 \geq 0$

Mean and Covariance of Gaussian Random Vector

If X has a Gaussian Distribution with characteristic function

$$\Phi_X(\theta) = e^{i(\theta,\mu) - \frac{1}{2}(\theta,\Sigma\theta)}, \quad \theta \in \mathbb{R}^n,$$

• Then μ is the mean vector of X, i.e.

$$I\!\!E(X_k) = \mu_k, \quad k = 1, \dots, n$$

• And Σ is the covariance matrix of X, i.e.

$$Cov(X_j, X_k) \doteq IE[(X_j - \mu_j)(X_k - \mu_k)] = \Sigma_{jk}, \ j, k = 1, ..., n$$

 Thus, a Gaussian random vector is completely characterized by its mean vector and covariance matrix

Non-degenerate Gaussian Random Vector

- A random vector X has a **non-degenerate Gaussian** Distribution if Σ is positive definite
- A random vector X with non-degenerate Gaussian distribution has density

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2}} e^{-\frac{1}{2}(x-\mu, \Sigma^{-1}(x-\mu))}, \quad x \in \mathbb{R}^n$$

• A Gaussian RV with $\sigma > 0$ has density

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}$$

Convergence of Gaussian Random Vectors

- Let $X^{(m)}, m=1,2,\ldots$ be a sequence of Gaussian random vectors with mean $\mu^{(m)}$ and covariance matrix $\Sigma^{(m)}$. Let X be another random vector.
- If $X^{(m)} \to X$ in L^2 as $m \to \infty$
- Then X is a Gaussian random vector with mean μ and covariance matrix Σ given by

$$\mu = \lim_{m \to \infty} \mu^{(m)}$$

$$\Sigma = \lim_{m \to \infty} \Sigma^{(m)}$$

Alternate Definitions of Gaussian Random Vector

- A random vector $X = (X_1, \ldots, X_n)$ is Gaussian if and only if for all real numbers a_1, \ldots, a_n , the random variable $a_1X_1 + \cdots + a_nX_n$ has a Gaussian distribution
- A random vector $X=(X_1,\ldots,X_n)$ is Gaussian if and only if for all real numbers $b_{11},b_{12},\ldots,b_{mn}$, the m-dimensional random vector

$$(b_{11}X_1 + \cdots + b_{1n}X_n, \ldots, b_{m1}X_1 + \cdots + b_{mn}X_n)$$

is Gaussian

- Example: if (X, Y) is a Gaussian random vector then
 - X is a Gaussian random variable
 - $\circ X + Y$ is a Gaussian random variable
 - \circ (X+Y,X-Y) is a Gaussian random vector

Gaussian Random Vectors and Independence

- If $X=(X_1,\ldots,X_n)$ is a Gaussian random vector with uncorrelated coordinates (that is, $I\!\!E[X_iX_j]=I\!\!E[X_i]I\!\!E[X_j]$ for all $i\neq j$)
- Then X has independent coordinates, that is, X_1, \ldots, X_n are independent random variables
- ullet Essential that X is a Gaussian random vector for above relationship to hold
- In particular, if X and Y are uncorrelated Gaussian random variables, then X and Y need not be independent (see Exercise 3.2.12)
- If X and Y are Gaussian random variables then (X,Y) is not necessarily a Gaussian random vector

Gaussian Stochastic Process

- A stochastic process $\{X_t: t \in \mathcal{I}\}$ is a Gaussian SP if its FDD's are Gaussian
- That is, for all integers $n < \infty$ and times $t_1, \ldots, t_n \in \mathcal{I}$, the random vector $(X_{t_1}, \ldots, X_{t_n})$ has a Gaussian distribution
- All distributional properties of a Gaussian process are determined by its mean and autocovariance functions:

$$\mu(t) = \mathbb{E}(X_t)$$

$$\rho(t,s) = \mathbb{E}[(X_t - \mu(t))(X_s - \mu(s))]$$