

E-Waste Tracking and Management

L&T Technology Services

M Lalpradhap

A.Allan Gorfor Ananth

PSG Institute of Technology and Applied Research (PSG iTech) Salem, Highway, Avinashi Rd, Coimbatore, Neelambur, Tamil Nadu 641062

Challenge Statement

- ① Surge in Electronic Waste Rapid technological advancements have caused a significant rise in e-waste generation worldwide.
- 2 Environmental & Health Hazards Toxic substances in e-waste contaminate air, water, and soil, posing severe risks to human health and ecosystems.
- 3 Loss of Valuable Materials Precious metals like gold, silver, and rare earth elements are wasted due to inefficient recycling and recovery methods.
- 4 Lack of Tracking & Proper Disposal The absence of an effective system for tracking, collecting, and recycling e-waste leads to illegal dumping and environmental harm.
- **5** Urgent Need for a Smart Solution A real-time e-waste tracking and management system is crucial to ensuring sustainability, efficient recycling, and regulatory compliance.

Concept / Scope of solution

- Real-Time E-Waste Tracking Monitor e-waste movement from generation to disposal using tracking technology.
- 2 Smart Collection, Segregation & Recycling Establish an efficient system for collecting, categorizing, and recycling e-waste.
- 3 Data Privacy & Regulatory Compliance Ensure secure data handling and compliance with government regulations.
- 4 Integration with Recycling Vendors Connect with authorized recyclers to track material recovery and proper disposal.
- 5 Automated Alerts & Notifications Notify users and authorities about e-waste status, pickups, and recycling updates.
- 6 Report Generation & Analytics Generate insights on collection efficiency, recycling outcomes, and waste trends.

Feedback from Presentation Round and its Use

- ① Opportunity to Showcase Our Idea
 - The presentation round provided a platform to present our concept to the judges and gain valuable feedback.
 - Helped us refine our project workflow and understand the key areas of improvement.
- 2 Insights from the Jury
 - Thought-provoking questions from the jury encouraged us to explore new perspectives and innovative solutions.
 - Their feedback guided us in identifying gaps and integrating unique features into our project.
- Impact of the Mentorship Round
 - The mentorship session clarified our doubts and provided expert guidance to enhance project feasibility.
 - We gained new insights that helped us refine our approach, making the project more effective and scalable.

SWOT Analysis

STRENGTH

- 1. Environmental Impact
- Efficient Resource Management
- 3. Regulatory Compliance
- 4. Real-Time Monitoring
- 5. Improved Recycling Efficiency

OPPORTUNITIES

- 1. Growing Demand for Sustainability
- 2. Market for Recycled Materials
- 3. Global Expansion
- 4. Collaborations with Governments and NGOs
- 5. Technological Advancements

WEAKNESS

- 1. High Implementation Cost
- 2. Complexity in Integration
- 3. Data Privacy Concerns
- 4. Adoption Barriers

THREATS

- 1. Regulatory Challenges
- 2. Technological Obsolescence
- 3. Resistance to Change
- 4. Security Risks
- Financial Constraints

Implementation (1/2)

System Design and Development

• Develop an intuitive user interface with secure email verification, login, and registration features. Implement server-side logic, OTP authentication, and an admin panel for efficient system management.

2 Integration with Recycling Vendors

• Implement a secure vendor registration and authentication system to ensure authorized participation. Develop an e-waste collection mechanism for tracking and managing waste disposal. Provide a detailed dashboard for monitoring company data, vendor activities, and recycling progress.

3 Reporting and Data Management

 Generate detailed recycling process reports to track e-waste collection and processing. Provide administrators with automated reports for better decision-making and compliance monitoring.

Implementation (2/2)

4 Integration of Map and Route Visualization

Implement real-time map integration to help administrators and vendors track e-waste collection routes.
 Ensure optimized route planning for efficient waste pickup and disposal.

Scheduling and Alerts

 Automate pickup scheduling to ensure timely e-waste collection. Implement a notification system to keep users informed about scheduled pickups and status updates.

6 Recycling Details and Process Transparency

 Provide a recycling details page to inform users about the e-waste processing stages. Implement a notice page to display important updates and recycling guidelines.

Testing / Analysis (1/2)

Testing Phase:

Functional Testing

Verifies core functionalities like user registration, OTP verification, report generation, and tracking. Ensures
proper validation of inputs and smooth user interactions.

2 Integration Testing

• Checks seamless communication between the front-end, back-end, and database. Ensures API responses and data flow function correctly across modules.

3 Database Testing

 Validates proper data storage, retrieval, and security in MongoDB. Ensures queries execute efficiently and maintain data integrity.

Testing / Analysis (2/2)

4 Error Handling & Debugging

Tests system responses to incorrect inputs or failures, ensuring meaningful error messages are displayed.
 Debugging logs help identify and resolve issues quickly.

5 Feedback Collection & Refinement

 Gathers user feedback to improve functionality and user experience. Iterative changes are made based on real-world testing and suggestions.

6 System Integration Testing

• Ensures that all system components, including APIs and third-party services, work together smoothly. Simulates real-world scenarios to validate end-to-end functionality.

POC Demo

https://www.youtube.com/watch?v=NWCgK74y0Zc

High Level plan for converting POC to MVP

- Enhancing Core Functionality Improve user registration, OTP verification, and e-waste submission for a seamless experience.
- Performing Basic Security Measures Strengthen authentication, data protection, and system security to prevent unauthorized access.
- 3 SMS Verification Using Phone Number Implement mobile number verification to enhance user trust and security.
- Accurate Tracking & Map Integration Integrate real-time GPS tracking and optimized route mapping for efficient waste collection.
- [5] Implementation of Alert System Introduce automated alerts and notifications to keep users and authorities informed.
- 6 Weight Checking System Develop a weight-based tracking mechanism to ensure accurate e-waste measurement.
- 7 Credit System Implement a reward-based credit system to encourage responsible e-waste disposal and recycling.

Cost Example (Assuming Total Cost of 25,00,000)

POC:

- **Development**: 2,50,000 5,00,000
- Integration & Hardware: 1,25,000 2,50,000
- **Maintenance**: 50,000 1,25,000
- Other expense:1,00,000-2,50,000

MVP:

- **Development**: 12,50,000 17,50,000
- Integration & Hardware: 5,00,000 10,00,000
- **Maintenance**: 1,25,000 2,50,000
- Other expense:3,00,000-7,00,000

Cost for POC vs MVP

POC Cost Breakdown

Development:

- Focuses on testing specific concepts or features with minimal resources.
- Estimated Cost: 10-20% of the total estimated cost for the MVP.

Integration & Hardware:

- Limited to integrating core concepts using mock data or simple models.
- Estimated Cost: 5-10% of the total estimated cost.

Maintenance:

- Typically low, as POCs are not meant for long-term use or ongoing maintenance.
- Estimated Cost: 2-5% of the total estimated cost.

Total Estimated POC Cost: 17-35%

MVP Cost Breakdown

Development:

- Focuses on building a fully functional product with real-world usability, polished features, and robust architecture.
- Estimated Cost: 50-70% of the total cost.

Integration & Hardware:

- Includes necessary integrations, external services, and hardware that are needed for a fully operational system.
- Estimated Cost: 20-40% of the total cost.

Maintenance:

- A higher cost due to the need for ongoing updates, bug fixes, and ensuring system stability after launch.
- Estimated Cost: 5-10% of the total cost.

Total Estimated MVP Cost: 100% of the overall project cost.

Result / Conclusion

- The E-Waste Tracking and Management System has successfully enhanced the efficiency of e-waste disposal and recycling, ensuring a more sustainable and environmentally friendly approach.
 By seamlessly connecting individual users, bulk users, vendors, and recycling centers, the system facilitates proper waste collection and minimizes environmental hazards.
- With features such as OTP verification, e-waste submission, pickup tracking, and notifications, users can conveniently manage their e-waste while ensuring compliance with regulations. The integration of real-time tracking adds transparency to the process, and the planned credit system further incentivizes responsible recycling practices.
- This project plays a crucial role in reducing e-waste pollution while promoting a structured and
 efficient recycling ecosystem. Moving forward, the system will continue to evolve with user
 feedback, technological advancements, and regulatory updates, ensuring continuous
 improvement and wider adoption.

References

1. ResearchGate. (2013). Management and Recycling of Electronic Waste:

https://www.researchgate.net/publication/257541214 Management and Recycling of Electronic Waste

2.WHO. (n.d.). Electronic waste:

https://www.who.int/news-room/fact-sheets/detail/electronic-waste-(e-waste

3. Map Integration Mappls Developer Documentation:

https://developer.mappls.com/mapping/web/

4. Springer. (n.d.). Electronic Waste Management in India

https://link.springer.com/chapter/10.1007/11935148 6

PID 2633

L&T Technology Services

