Air-sea interactions : air-sea gas exchanges

ATM2106

PERMANENT GASES			VARIABLE GASES			
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)*
Nitrogen	N ₂	78.08	Water vapor	H ₂ O	0 to 4	
Oxygen	O ₂	20.95	Carbon dioxide	CO ₂	0.038	385*
Argon	Ar	0.93 80 km	Methane	CH ₄	0.00017	1.7
Neon	Ne	0.0018	Nitrous oxide	N ₂ O	0.00003	0.3
Helium	He	0.0005	Ozone	O ₃	0.000004	0.04†
Hydrogen	H ₂	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.15
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002
		n means that out of every milliones between 11 km and 50 km a	on air molecules, 385 are CO ₂ molecules.			

N: removed by biological processes on land and in the ocean.

: added to the atmosphere through the decaying of plant and animal matter.

O: removed through the organic matter decays and the combination with other substances.

: added during photosynthesis.

Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)*
Nitrogen	N ₂	78.08	Water vapor	H ₂ O	0 to 4	
Oxygen	O ₂	20.95	Carbon dioxide	CO ₂	0.038	385*
Argon	Ar	0.93	Methane CH ₄		0.00017	1.7
Neon	Ne	0.0018	Nitrous oxide N ₂ O		0.00003	0.3
Helium	Не	0.0005	Ozone	O ₃	0.000004	0.04†
Hydrogen	H ₂	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.15
Kenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002

[†]Stratospheric values at altitudes between 11 km and 50 km are about 5 to 12 ppm.

- Higher percentage of H₂O close to the surface in warm, steamy tropical locations.
- The H₂O percentage approaches to zero in the polar regions.
- Water vapor is associated with latent heat, an important source of energy.
- Water vapor is a potent greenhouse gas.

PERMANENT GASES			VARIABL			
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)'
Nitrogen	N ₂	78.08	Water vapor	H ₂ O	0 to 4	
Oxygen	O ₂	20.95	Carbon dioxide CO ₂		0.038	385*
Argon	Ar	0.93	Methane CH ₄		0.00017	1.7
Neon	Ne	0.0018	Nitrous oxide N ₂ O		0.00003	0.3
Helium	Не	0.0005	Ozone O ₃		0.000004	0.04†
Hydrogen	H ₂	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.15
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002

Carbon dioxide occupies only 0.038% of the atmosphere.

- · Its source is the decay of vegetation, volcanic eruptions and burning fossil fuels.
- The removal of CO₂ is done through photosynthesis by plants on land and in the ocean.
- It is also directly dissolved by the surface water.

PERMANENT GASES			VARIABLE GASES				
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)		Symbol	Percent (by Volume)	Parts per Million (ppm)*
Nitrogen	N_2	78.08	Water vapor		H ₂ O	0 to 4	
Oxygen	O ₂	20.95	Carbon dioxid	le	CO ₂	0.038	385*
Argon	Ar	0.93	Methane		CH ₄	0.00017	1.7
Neon	Ne	0.0018	Nitrous oxide		N ₂ O	0.00003	0.3
Helium	Не	0.0005	Ozone		O ₃	0.000004	0.04†
Nitrous oxide (N _a O)	soot, etc.)		0.000001	0.01-0.15

 Greenhouse gases strongly absorb a portion of the earth's outgoing radiant energy.

0.00000002

0.0002

Image from https://climate.nasa.gov/causes/

Absorption of radiation by gases

- Keeling curve
 - In 1953, Charles Keeling came up with the way to precisely measure CO₂ in the air.
 - Started to measure CO₂ and find diurnal cycle of CO₂.
 - In March 1958, he set up his instrument at Mauna Loa, Hawaii where there was no vegetation.
 - video

CHARLES DAVID KEELING Climate Science Pioneer 1928-2005

Measuring CO₂

- Keeling curve
 - Seasonal cycle of CO₂ concentration
 - Long-term trend
 - Video #1
 - Video #2

From http://scrippsco2.ucsd.edu/ graphics_gallery/ mauna_loa_and_south_pole/ mauna_loa_and_south_pole

Mauna Loa Observatory, Hawaii and South Pole, Antarctica Monthly Average Carbon Dioxide Concentration

Measuring CO₂

 Since 1996, the satellite started to measure CO₂ from the space.

> The OCO-2 satellite circles Earth every 99 minutes, and collects carbon dioxide measurements over a narrow ground track each orbit.

From https://svs.gsfc.nasa.gov/12072

Modeling of CO₂

a NASA supercomputer model called GEOS-5

Using observations from NASA's Orbiting Carbon Observatory (OCO-2) satellite, scientists developed a model of the behavior of carbon in the atmosphere from September 1, 2014 to August 31, 2015.

The Current CO₂ level (2018)

June 01: 411.68 ppm

May 31: 411.61 ppm

May 30: 411.47 ppm

May 29: 411.80 ppm

May 28: 411.54 ppm

Last Updated: June 2, 2018

The Current CO₂ level (2019)

June 03: 414.34 ppm

June 02: 414.28 ppm

June 01: 413.96 ppm

May 31: 414.36 ppm

May 30: 414.40 ppm

Last Updated: June 4, 2019

The global carbon cycle

Unit: Gigaton

The Global Carbon Cycle

© Sinauer Associates, Inc.

Air-sea CO₂ exchange

f(wind speed,...)
$$\uparrow$$
 \uparrow $f(T, S, carbon, ...)$

$$CO_2 \ flux = K_w \ (pCO_{2,ocean} - pCO_{2,atmosphere})$$

Air-sea CO₂ exchange

<u>Video</u>

Solubility pump

Biological pump

Air-sea CO₂ exchange

CO₂ in the ocean

Oxygen

- O₂ is a major component of the atmosphere, comprising roughly 21% by volume.
- Oxygen levels are decreasing globally due to fossil fuel burning, although the changes are too small to have an impact on human health.
- On average, we lose 19 O₂ molecules out of every 1 million O₂ molecules each year.

Oxygen cycle in the water

O₂ in the ocean

Oxygen at 200 m

Dead zone

HOW THE DEAD ZONE FORMS

During the spring, sun-heated freshwater runoff from the Mississippi River creates a barrier layer in the Gulf, cutting off the saltier water below from contact with oxygen in the air.

Source: Staff research

Nitrogen and phosphorus from fertilizer and sewage in the freshwater layer ignite huge algae blooms. When the algae die, they sink into the saltier water below and decompose, using up oxygen in the deeper water.

Starved of oxygen and cut off from resupply, the deeper water becomes a dead zone. Fish avoid the area or die in massive numbers. Tiny organisms that form the vital base of the Gulf food chain also die. Winter brings respite, but spring runoffs start the cycle anew.

Declining oxygen level in the water

The global map indicating coastal sites with hypoxic condition

