CONVERGENCE AND DIVERGENCE /23

Exercise – II – A

Test of the following series:

1.
$$\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}}$$

$$2. \sum_{n=1}^{\infty} \cos \frac{1}{n}$$

$$3. \sum_{n=1}^{\infty} \frac{n}{n+1}$$

$$\underbrace{\mathbf{4.}}_{n=1}^{\infty} 3^{n+1}$$

$$5. \sum_{n=1}^{\infty} \frac{2^n}{\sqrt{4^n+1}}$$

6.
$$\frac{1}{1+2^{-1}} + \frac{2}{1+2^{-2}} + \frac{3}{1+2^{-3}} + \dots$$

7.
$$1^3 + 2^3 + ... + n^3 + ...$$

7.
$$1^3 + 2^3 + ... + n^3 + ...$$
 8. $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{2.4} + + \frac{1}{n(n+1)} + ...$

$$9. \quad \frac{2}{3} + \frac{8}{5} + \frac{24}{9} + \dots$$

10 Test the convergence of series
$$\sum_{n=0}^{\infty} (-1)^n$$

	Answers – II A			
1. 5. 9.	divergence divergence divergence	2. divergence6. divergence10 finitely oscillatory	3. divergence 7. divergence	4. divergence 8. convergence

Exercise - IV

1. Test of the following series:

(i)
$$\Sigma \left(\frac{n^3 + a}{2^n + a} \right)$$

(i)
$$\Sigma \left(\frac{n^3 + a}{2^n + a} \right)$$
 (ii) $\frac{1}{x - 1} + \frac{x}{x^2 - 1} + \frac{x^2}{x^3 - 1} + \dots + (x > 1)$

(iii)
$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots + \frac{x^n}{n^2 + 1} + \dots$$
 (iv) $1 + \frac{x^2}{2} + \frac{x^3}{4} + \frac{x^6}{6} + \dots$

(iv)
$$1 + \frac{x^2}{2} + \frac{x^3}{4} + \frac{x^6}{6} + \dots$$

(v)
$$\frac{1}{1+2} + \frac{1}{1+2^2} + \frac{1}{1+2^3} + \dots$$
 (vi) $\Sigma \left(\frac{n+1}{n^2} x^n \right)$

(vi)
$$\Sigma\left(\frac{n+1}{n^2}x^n\right)$$

(vii)
$$\Sigma \left(\frac{n^3 + a}{2^n + a} \right)$$

(viii)
$$\Sigma(3n-1)2^n$$

(ix)
$$1+3x^2+5x^3+7x^4+...$$

Show that the series:

$$1 + \frac{2^p}{2!} + \frac{3^p}{3!} + \frac{4^p}{4!} + \dots$$
 is convergence for all values of p.

Test for convergence or divergence the series whose n^{th} term is

$$(\sqrt{n^2+1}-n)x^{2n}$$

Answers - IV

1. (i) Convergence

(ii) Divergence

(iii) divergence when $x^2 = 1$

(iv) Divergence when $x^2 = 1$

(v) Convergence

(vi) Divergence when x = 1

(vii) Convergence

(viii) Convergence

(ix) Divergence

3. Divergence when $x^2 = 1$

COMPARISON TEST CONVERGENCE OF BIONOMIAL AND LOG......./49

Exercise-III

Test convergence or divergence of the following series

(i)
$$\frac{\sqrt{3}}{1.2} + \frac{\sqrt{5}}{3.4} + \frac{\sqrt{7}}{5.6}$$
...

(i)
$$\frac{\sqrt{3}}{1.2} + \frac{\sqrt{5}}{3.4} + \frac{\sqrt{7}}{5.6}$$
... (ii) $1 + \frac{1+2}{1+2^2} + \frac{1+3}{1+3^2} + \dots$

(iii)
$$\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \dots$$

(iii)
$$\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \dots$$
 (iv) $\frac{1}{2} + \frac{\sqrt{2}}{5} + \frac{\sqrt{3}}{10} + \dots + \frac{\sqrt{n}}{n^2 + 1} + \dots$

(v)
$$\frac{1}{1+\sqrt{2}} + \frac{2}{1+2\sqrt{3}} + \frac{3}{1+3\sqrt{4}} + \dots$$
 (vi) $\log_e 2 + \log_e \frac{3}{2} + \log_e \frac{4}{3} + \log_e \frac{5}{4} + \dots$

(vii)
$$\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n+1} + \frac{1}{n-2} + \frac{1}{n+2} + \dots$$

(viii)
$$\frac{1}{(x-k)^2} + \frac{1}{(x-2k)^2} + \frac{1}{(x-3k)^2} + \dots$$

2. Test of the following series whose general terms are given by

(i)
$$\sqrt{n^2 + 1} - n$$

(ii)
$$\frac{\sqrt{n+1}-\sqrt{n}}{n^p}$$
 (iii) $\Sigma \frac{1}{n}\sin\left(\frac{1}{n}\right)$

(iii)
$$\Sigma \frac{1}{n} \sin\left(\frac{1}{n}\right)$$

(iv)
$$\Sigma \tan^{-1} \left(\frac{1}{n}\right)$$

(iv)
$$\Sigma \tan^{-1} \left(\frac{1}{n} \right)$$
 (v) $\left[\sqrt{n^2 + 1} - n \right] x^{2n}$ (vi) $u_n = \frac{1}{(n^2 + n)}$

(vi)
$$u_n = \frac{1}{(n^2+n)}$$

(vii)
$$\sum_{n=1}^{\infty} \left[\frac{1}{n} (\sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}) \right]$$

3. Test convergence of
$$\sum_{n=0}^{\infty} u_n$$
 where $u_n = \frac{\sqrt{n}}{n^2 + 1}$

Answers - III

- (iii) Convergence if p > 2, divergnce p < 2(ii) Divergence (i) Convergence
 - (iv) Convergence (v) Divergence (vi) Divergence (vii) divergence
 - (viii) Convergence
- (ii) Convergence if p>1, divergnce $p\leq 1$
- (iii) Convergence

(i) Divergence

- (iv) Convergence
- (v) Convergence if $x^2 > 1$, divergnce $x^2 \le 1$

(vi) Divergence

(vii) Divergence