ACH2147 - Desenvolvimento de Sistemas de Informação Distribuídos

Aula 12 – Abordagens de Nomeação

Norton Trevisan Roman

2 de junho de 2022

Abordagens de Nomeação

- Nomes Estruturados
 - Espaço de Nomes
 - Resolução de Nomes
 - Implementação de Espaços de Nomes
- Nomeação Baseada em Atributos (Hierárquica)

Abordagens de Nomeação

- Nomes Estruturados
 - Espaço de Nomes
 - Resolução de Nomes
 - Implementação de Espaços de Nomes
- Nomeação Baseada em Atributos (Hierárquica)

- Nomes planos são bons para máquinas
 - Mas pouco convenientes para humanos

- Nomes planos são bons para máquinas
 - Mas pouco convenientes para humanos
- Uma alternativa é o uso de nomes estruturados
 - Compostos por nomes simples, fáceis às pessoas

- Nomes planos são bons para máquinas
 - Mas pouco convenientes para humanos
- Uma alternativa é o uso de nomes estruturados
 - Compostos por nomes simples, fáceis às pessoas
- Nomes são comumente organizados em espaços de nomes
 - No caso de nomes estruturados, podem ser representados por grafos dirigidos rotulados

Espaço de Nomes Data stored in n1 n0 home keys n2: "elke" n3: "max" n4: "steen" "/keys" n1 elke steen max Um nó de diretório é uma entidade que (n3 n2 n4 Data stored in n6 se refere a outros nós "/keys" .procmail mbox keys n6) "/home/steen/keys"

Abordagens de Nomeação

- Nomes Estruturados
 - Espaço de Nomes
 - Resolução de Nomes
 - Implementação de Espaços de Nomes
- Nomeação Baseada em Atributos (Hierárquica)

Resolução de Nomes

Resolução de Nomes

Resolução de Nomes Data stored in n1 n0 home keys n2: "elke" n3: "max" n4: "steen" "/keys" n1 elke steen max Considere o nome de caminho n3 n4 Data stored in n6 n0:[home,steen,mbox] ("/keys") keys .procmail mbox "/home/steen/keys"

Resolução de Nomes

Resolução de Nomes Data stored in n1 n0 home keys n2: "elke" n3: "max" n4: "steen" "/keys" n1 elke steen max Isso nos leva ao nó n1 n3 n4 Data stored in n6 ("/keys") keys .procmail mbox "/home/steen/keys"

Resolução de Nomes Data stored in n1 n0 home keys n2: "elke" n3: "max" n4: "steen" "/keys" n1 elke steen max Isso nos leva ao nó n1 n3 n4 Data stored in n6 A resolução continua ("/keys") keys .procmail ao buscarmos steen mbox na tabela de n1 "/home/steen/keys"

Resolução de Nomes Data stored in n1 n0 home keys n2: "elke" n3: "max" n4: "steen" "/keys" n1 A busca por mbox na elke steen max tabela de n4 nos leva ao nó que contém o n3 n4 endereço e atributos Data stored in n6 da entidade à qual ("/keys") keys o endereço se refere .procmail mbox "/home/steen/keys"

Resolução de Nomes: Mecanismo de closure

- Para resolver um nome, contudo, precisamos de um diretório inicial
 - Saber como e onde iniciar a resolução de um nome é conhecido como mecanismo de closure
 - Essencialmente, trata-se da escolha do nó inicial em um grafo de espaço de nomes

Resolução de Nomes: Mecanismo de closure

- Para resolver um nome, contudo, precisamos de um diretório inicial
 - Saber como e onde iniciar a resolução de um nome é conhecido como mecanismo de closure
 - Essencialmente, trata-se da escolha do nó inicial em um grafo de espaço de nomes
- Ex:
 - each.usp.br: inicia em um servidor DNS
 - 00551126480149: disca um número de telefone
 - 200.144.248.41: rota para um servidor da USP

Resolução de Nomes: Links para nomes

- Em grafos de nomes podemos implementar também aliases
 - Outro nome para a mesma entidade

Resolução de Nomes: Links para nomes

- Em grafos de nomes podemos implementar também aliases
 - Outro nome para a mesma entidade
- 2 modos de implementação:
 - Hard link: permitir que caminhos absolutos se refiram ao mesmo nó no grafo
 - Soft link (ou link simbólico):
 - Representar uma entidade por um nó folha
 - Em vez de armazenar o endereço ou estado da entidade nele, o nó armazena um caminho absoluto

Resolução de Nomes: Montagem

 Podemos usar a resolução de nomes para mesclar diferentes espaços de nomes de modo transparente

Resolução de Nomes: Montagem

- Podemos usar a resolução de nomes para mesclar diferentes espaços de nomes de modo transparente
- Fazemos isso através da montagem
 - Permite que um nó diretório armazene o identificador de um nó diretório de Espaços de Nomes diferente
 - Esse espaço diferente é o espaço de nomes estrangeiro
 - O nó de diretório que armazena o identificador é um mount point
 - O nó no espaço de nomes estrangeiro, onde continuaremos a resolução, é um **mounting point**

Resolução de Nomes: Montagem

- Durante a resolução de um nome, busca-se pelo mounting point
 - E a resolução continua ao acessarmos sua tabela de diretório

Resolução de Nomes: Montagem

- Durante a resolução de um nome, busca-se pelo mounting point
 - E a resolução continua ao acessarmos sua tabela de diretório
- Precisamos então de um nó diretório que sirva de mount point
 - Armazenando a informação necessária para identificação e acesso do mounting point

Resolução de Nomes: Montagem em SDs

- Para montar um espaço estrangeiro em um sistema distribuído, precisamos ter
 - O nome do protocolo de acesso
 - O nome do servidor
 - O nome do mounting point no espaço de nomes estrangeiro

Resolução de Nomes: Montagem em SDs

- Para montar um espaço estrangeiro em um sistema distribuído, precisamos ter
 - O nome do protocolo de acesso
 - O nome do servidor
 - O nome do mounting point no espaço de nomes estrangeiro
- Uma possibilidade é representarmos esses nomes como uma URL
 - Ex: NFS

Resolução de Nomes: NFS

Resolução de Nomes: NFS

Suponha que queremos acessar "/remote/vu/mbox"

Resolução de Nomes: NFS

Suponha que queremos acessar "/remote/vu/mbox"

Sua resolução começa no diretório raiz do cliente

Resolução de Nomes: NFS

Suponha que queremos acessar "/remote/vu/mbox"

Sua resolução começa no diretório raiz do cliente

E continua até o nó "/remote/vu"

Resolução de Nomes: NFS

Suponha que queremos acessar "/remote/vu/mbox"

Sua resolução começa no diretório raiz do cliente

E continua até o nó "/remote/vu"

Nó diretório usado para armazenar a URL para o espaço remoto

Resolução de Nomes: NFS

A URL é retornada, fazendo com que o cliente contacte o servidor "flits.cs.vu.nl" usando o protocolo NFS

Resolução de Nomes: NFS

A URL é retornada, fazendo com que o cliente contacte o servidor "flits.cs.vu.nl" usando o protocolo NFS Em seguida, o diretório "/home/steen" é acessado (conforme consta da URL)

Resolução de Nomes: NFS

A URL é retornada, fazendo com que o cliente contacte o servidor "flits.cs.vu.nl" usando o protocolo NFS Em seguida, o diretório "/home/steen" é acessado (conforme consta da URL)

E a resolução continua a partir desse nó diretório, chegando a "mbox"

Resolução de Nomes: NFS

Montar um sistema de arquivos remoto permite comandos do tipo

cliente\$ ls -l
/remote/vu

que listará os arquivos no diretório "/home/steen" do servidor

Abordagens de Nomeação

- Nomes Estruturados
 - Espaço de Nomes
 - Resolução de Nomes
 - Implementação de Espaços de Nomes
- Nomeação Baseada em Atributos (Hierárquica)

Implementação de Espaços de Nomes

- Principal questão para Sistemas Distribuídos
 - Como distribuir o processo de resolução de nomes, bem como o gerenciamento do espaço de nomes, entre múltiplas máquinas, pela distribuição de nós do grafo de nomes?

Implementação de Espaços de Nomes

Distinguimos 3 níveis

Implementação de Espaços de Nomes

Distinguimos 3 níveis

Implementação de Espaços de Nomes

Distinguimos 3 níveis

Nível global:

consiste dos nós diretórios de alto nível (o nó raiz e seus filhos).

São gerenciados em conjunto por diferentes administradores.

Implementação de Espaços de Nomes

Distinguimos 3 níveis

Nível administrativo: nós de diretório de nível intermediário.

Implementação de Espaços de Nomes

Distinguimos 3 níveis

Nível administrativo: nós de diretório de nível intermediário.

Podem ser agrupados de modo que cada grupo seja responsabilidade de um administrador diferente.

Implementação de Espaços de Nomes

Distinguimos 3 níveis

Nível gerencial: nós diretórios de nível inferior dentro de uma única administração.

Implementação de Espaços de Nomes

Distinguimos 3 níveis

Nível gerencial: nós diretórios de nível inferior dentro de uma única administração.

O problema principal é mapear os nós de diretório aos servidores de nomes locais.

Implementação de Espaços de Nomes

Comparação entre os níveis

	Global	Administrativo	Gerencial
Escala geográfica	Mundial	Organização	Departamento
Nº de Nós	Poucos	Muitos	Qdes. enormes
Responsividade	Segundos	Milissegundos	Imediato
a buscas			
Propagação de	Tardio	Imediato	Imediato
atualizações			
Nº de Réplicas	Muitos	Nenhum ou poucos	Nenhum
Cache no lado	Sim	Sim	Às vezes
do cliente			

- Modelo
 - Cada cliente tem acesso a um name resolver local, responsável por garantir que o processo de resolução seja executado

- Modelo
 - Cada cliente tem acesso a um name resolver local, responsável por garantir que o processo de resolução seja executado
- Há 2 modos de implementar a resolução de nomes
 - Resolução de Nomes Iterativa
 - Resolução de Nomes Recursiva

- Resolução de Nomes Iterativa
 - Ex: ftp://ftp.cs.vu.nl/pub/globe/index.html

- Resolução de Nomes Iterativa
 - Ex: ftp://ftp.cs.vu.nl/pub/globe/index.html

- Resolução de Nomes Iterativa
 - Ex: ftp://ftp.cs.vu.nl/pub/globe/index.html

Implementação de EN: Resolução de Nomes

- Resolução de Nomes Iterativa
 - Ex: ftp://ftp.cs.vu.nl/pub/globe/index.html

1. [nl,vu,cs,ftp] Root O servidor irá 2. #[nl], [vu,cs,ftp] name server resolver até onde puder, e retornar o 3. [vu,cs,ftp] Name server resultado ao cliente nl node 4. #[vu], [cs,ftp] Client's name 5. [cs,ftp] resolver Name server vu node 6. #[cs], [ftp] 7. [ftp] Name server 8. #[ftp] cs node ftp [nl,vu,cs,ftp] Nodes are managed by the same server

- Resolução de Nomes Iterativa
 - Ex: ftp://ftp.cs.vu.nl/pub/globe/index.html

- Resolução de Nomes Recursiva
 - Ex: ftp://ftp.cs.vu.nl/pub/globe/index.html

Implementação de EN: Resolução de Nomes

- Resolução de Nomes Recursiva
 - Ex: ftp://ftp.cs.vu.nl/pub/globe/index.html

1. [nl,vu,cs,ftp] Root Em vez de retornar 8. #[nl.vu.cs.ftp] 2. [vu,cs,ftp] name server cada resultado intermediário ao Name server 7. #[vu,cs,ftp] name resolver nl node 3. [cs,ftp] Client's do cliente. o name servidor de nomes resolver Name server 6. #[cs,ftp] passa o resultado vu node 4. [ftp] ao próximo servidor de nomes Name server 5. #[ftp] que encontra cs node [nl,vu,cs,ftp] #[nl,vu,cs,ftp]

- Resolução de Nomes Recursiva
 - Ex: ftp://ftp.cs.vu.nl/pub/globe/index.html

Implementação de EN: Resolução de Nomes

Resolução de Nomes Iterativa × Recursiva

- Resolução de Nomes Iterativa × Recursiva
 - Resolução recursiva exige mais de cada servidor de nomes
 - Eles têm que tratar de toda a resolução, ainda que com a ajuda de outros
 - Exigência tão pesada que servidores na camada global suportam apenas resolução iterativa

Implementação de EN: Resolução de Nomes

- Resolução de Nomes Iterativa × Recursiva
 - Resolução recursiva permite a existência de cache em cada servidor, melhorando o desempenho
 - Na iterativa o cache está restrito ao cliente
 - Se um cliente fizer uma requisição, e outro fizer a mesma logo depois, todos os servidores terão de ser acessados como se fosse a primeira vez

name server

Name server

2. #[nl], [vu,cs,ftp]

3. [vu,cs,ftp]

- Resolução de Nomes Iterativa × Recursiva
 - Resolução recursiva é frequentemente mais barata com respeito à comunicação
 - Caso os servidores estejam próximos e o cliente longe os custos são ditados pela comunicação entre cliente e servidor

Abordagens de Nomeação

- Nomes Estruturados
 - Espaço de Nomes
 - Resolução de Nomes
 - Implementação de Espaços de Nomes
- Nomeação Baseada em Atributos (Hierárquica)

- Nomes planos e estruturados fornecem um modo de referenciar entidades único e independente de localização
 - Em muitos casos, é mais conveniente nomear e procurar entidades pelos seus atributos

- Nomes planos e estruturados fornecem um modo de referenciar entidades único e independente de localização
 - Em muitos casos, é mais conveniente nomear e procurar entidades pelos seus atributos
- Isso requer que o usuário forneça apenas uma descrição do que busca
 - Que descreva uma entidade em termos de pares (atributo, valor)
 - Conhecidos como nomeação baseada em atributos

- Ao especificar os valores de um atributo, o usuário restringe o conjunto de entidades de interesse
 - Cabe ao sistema de nomes retornar as entidades que casam com a descrição feita pelo usuário

- Ao especificar os valores de um atributo, o usuário restringe o conjunto de entidades de interesse
 - Cabe ao sistema de nomes retornar as entidades que casam com a descrição feita pelo usuário
- Sistemas de nomeação baseada em atributos são também chamados de serviços de diretório
 - Em contraste a sistemas que suportam nomeação estruturada, chamados sistemas de nomeação

- Ao especificar os valores de um atributo, o usuário restringe o conjunto de entidades de interesse
 - Cabe ao sistema de nomes retornar as entidades que casam com a descrição feita pelo usuário
- Sistemas de nomeação baseada em atributos são também chamados de serviços de diretório
 - Em contraste a sistemas que suportam nomeação estruturada, chamados sistemas de nomeação
 - Com serviços de diretório, entidades possuem um conjunto de atributos associados que podem ser usados para busca

Serviços de Diretório – Problema

- Operações de consulta pode ser muito caras
 - Necessitam que os valores dos atributos procurados correspondam aos valores reais das entidades
 - Em princípio, teríamos que inspecionar todas as entidades.

Serviços de Diretório – Problema

- Operações de consulta pode ser muito caras
 - Necessitam que os valores dos atributos procurados correspondam aos valores reais das entidades
 - Em princípio, teríamos que inspecionar todas as entidades.

Serviços de Diretório – Solução

Implementar serviços de diretórios básicos na forma de bases de dados, e combiná-los com os sistemas de nomes estruturados tradicionais

- Conceitualmente, um serviço de diretório LDAP consiste de uma quantidade de registros
 - Conhecidos como entradas de diretório

- Conceitualmente, um serviço de diretório LDAP consiste de uma quantidade de registros
 - Conhecidos como entradas de diretório
- Cada entrada de diretório consiste de uma coleção de pares (atributo, valor)
 - Em que cada atributo possui um tipo associado
 - Cada entrada possui um nome único, para facilitar buscas

Lightweight Directory Access Protocol - LDAP

Exemplo de uma entrada de diretório LDAP:

Attribute	Abbr.	Value
Country	С	NL
Locality	L	Amsterdam
Organization	0	VU University
OrganizationalUnit	OU	Computer Science
CommonName	CN	Main server
Mail_Servers	_	137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server	_	130.37.20.20
WWW ₋ Server	_	130.37.20.20

- Base de Informação de Diretório
 - Directory information base (DIB)
 - Coleção de todas as entradas de diretório em um serviço de diretório LDAP

- Base de Informação de Diretório
 - Directory information base (DIB)
 - Coleção de todas as entradas de diretório em um serviço de diretório LDAP
- Cada registro na DIB é nomeado de forma única, permitindo sua busca
 - Na forma de uma sequência de atributos de nomeação
 - Chamados Relative Distinguished Name (RDN)
 - Formam um nome único global

- Isso leva a uma hierarquia de entradas de diretório
 - Directory Information Tree (DIT)
 - Grafo de nomes de um serviço de diretório LDAP, no qual cada nó representa uma entrada no diretório

- Isso leva a uma hierarquia de entradas de diretório
 - Directory Information Tree (DIT)
 - Grafo de nomes de um serviço de diretório LDAP, no qual cada nó representa uma entrada no diretório

- Isso leva a uma hierarquia de entradas de diretório
 - Directory Information Tree (DIT)
 - Grafo de nomes de um serviço de diretório LDAP, no qual cada nó representa uma entrada no diretório

- Isso leva a uma hierarquia de entradas de diretório
 - Directory Information Tree (DIT)
 - Grafo de nomes de um serviço de diretório LDAP, no qual cada nó representa uma entrada no diretório

