(1) (a)
$$S_{2}^{u} = 57$$

 $S_{1}^{u} = 55 \Rightarrow S_{1}^{u} = 53$
 $S_{2}^{ud} = 48$
 $S_{1}^{d} = 47$

Period |
$$50 = \tilde{P} \cdot (Hr)^{-1} \cdot 55 + (I-\tilde{P}) \cdot (Hr)^{-1} \cdot 47$$

 $50 = \tilde{P} \cdot 55 / 1.02 + (I-\tilde{P}) \cdot 47 / 1.02$
 $\tilde{P} = 0.5$

Period 7.
$$53 = \tilde{P} \cdot (1+r)^{-1} \cdot 57 + (1-\tilde{P}) \cdot (1+r)^{-1} \cdot 48$$

 $S_1^u \to S_2^{uu}$ $53 = \tilde{P} \cdot 57/1.02 + (1-\tilde{P}) \cdot 48/1.02$
 $\tilde{P} = 0.67$ $1-\tilde{P} = 0.33$

$$47 = \tilde{p} \cdot (Hr)^{-1} \cdot 48 + (I-\tilde{p}) \cdot (I+r)^{-1} \cdot 41$$

 $S_1^d \rightarrow S_2^{ud}$ $47 = \tilde{p} \cdot 48/1.02 + (I-\tilde{p}) \cdot 41/1.02$
 $\tilde{p} = 0.99$ $I-\tilde{p} = 0.01$

$$\begin{array}{c}
\text{E. C. In } \Pi_{x} = 0.611 \frac{1}{100} \text{ M}_{\text{ton}} \times 12 = 0.6$$

(3). Need to prove $(S_n - K)_+ \subseteq \tilde{E} [e^{-r_{fm-n}}(S_m - K)_+]$
By Jensen's inequality, if f is convex, $f(E[x]) \in E[f(x)]$
Let $f: \pi \rightarrow (x-k)_+$, f is convex.
Since $S = S + e^{-vt}$ is a martingale, $E[S_T e^{tr} \mathcal{F}_t] = S_t e^{-vt}$
$E[f(S_te^{-rt})] = E[f(E[S_te^{-r}])] \leq E[E[f(S_te^{-r})]) = E[f(S_te^{-r})]$
Poyoff at $t = (S_{t-K})_{+}$ $E = (S_{t-K})_{+}$ $E = (E^{-rt}S_{t-E})_{+}$
$E[(S_{t}e^{-rt}-K)_{+}] \leq E[(S_{T}e^{rT}-K)_{+}]$
E[(Ste-rt-Ke-rt)+] < E[(Ste-rt-Ke-rt)+]
(St-K)e-rn EE[Sm-K)+e-rm] QENEMET
$(St-K) \leq E \left[(Sm-K)_{+} e^{-r(m-n)} \right]$

