Benchmark of neural network models with reduced number of parameters for image classification

Rares Folea

Faculty of Automatic Control and Computers
University Politehnica of Bucharest

The research objective:

Can we use traditional deep neural architectures and achieve good performance with a reduced number of trainable parameters?

What we mean by reduced number of parameters?

We want to investigate neural networks with at most 1M parameters

What methods are used for reducing the number of parameters?

Architectural changes Pruning techniques

What datasets are being used?

CIFAR-10 CIFAR-100

Adiacent objective:

Validate or invalidate The Lottery Ticket Hypothesis

"A randomly-initialised, dense neural network contains a subnetwork that is initialised such that — when trained in isolation — it can match the test accuracy of the original network after training for at most the same number of iterations."

(winning tickets: less than 10-20% of the initial size)

Our proposal:

Adapt SotA deep neural architectures (ResNet, VGG, ViT) to perform the task of image recognition with less than 1M parameters

Use **pruning** techniques on the SotA deep neural architectures to perform the task of image recognition

Constraints:

- Models with: < 1M parameters, compared with the full-size architecture (tens or hundreds of millions).
 - SotA: ViT-H/14, 632M parameters, 99.5% accuracy.
- Evaluate on CIFAR-10 and CIFAR-100, same training/testing split for all the models.
- Train against various optimizers (SGDM, ADAM, AdaBound).

Architectural changes

ResNet18_S
VGG16_S
ViT(H/4)_S

(and optimizer influence)

Results: CIFAR-10

ResNet_S has <10% of the total no. of params of ResNet18

Architecture	Optimizer	Test accuracy
	SGDM	89.4
ResNet18	ADAM	89.97
	AdaBound	94.13
	SGDM	86.85
ResNet18_S	ADAM	89.27
	AdaBound	91.72

Results: Resnet18_S, CIFAR-10

Results: CIFAR-100

ResNet_S has <10% of the total no. of params of ResNet18

Architecture	Optimizer	Test accuracy
ResNet18	SGDM	1
	ADAM	39.04
	AdaBound	58
ResNet18_S	SGDM	1
	ADAM	43.31
	AdaBound	54.05

Results: Resnet18_S, CIFAR-100

Results: CIFAR-10

ViT_S has ~5% of the total no. of params of ViT H/4 <0.1% of SotA ViT H/14

Architecture	Optimizer	Test accuracy
ViT	SGDM	10
	ADAM	51.49
	AdaBound	48.38
ViT_S	SGDM	10
	ADAM	50.99
	AdaBound	49.44

Results: ViT(H/4)_S CIFAR-10

Results: CIFAR-100

ViT_S has ~5% of the total no. of params of ViT H/4 <0.1% of SotA ViT H/14

Architecture	Optimizer	Test accuracy
ViT	SGDM	1
	ADAM	22.97
	AdaBound	25.05
ViT_S	SGDM	3.86
	ADAM	23.56
	AdaBound	21.56

Results: ViT(H/4)_S CIFAR-100

ResNet18 spotlight: Pruning

Thank you!

Follow the research development:

https://github.com/raresraf/benchmark-dnn-small/

Follow the experimental results:

https://wandb.ai/raresraf/dnn

https://wandb.ai/raresraf/dnn-cifar100