fishing

```
library(tidywerse)
library(tidymodels)
library(gdata)
library(skimr)

theme_set(theme_light())
set.seed(123)
```

First, let's load the data

```
fishing <- readr::read_csv(paste0("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master fishing <- fishing %>% filter(year > 1925) # Some data before 1955 have weird behavior
```

Exploratory data analysis

Total production throughout the years

Considering all species together and lakes separate

It is not feasible to analyze the behaviour of each species on each lake.

```
fishing %>%
  group_by(year, lake, species) %>%
  summarise(year_production = sum(values, na.rm = T)) %>%
  nrow()
```

'summarise()' has grouped output by 'year', 'lake'. You can override using the '.groups' argument.

[1] 8682

Species that had at least one grand total of >10k

Modeling

Let's try to predict the U.S. total production based on the production of Ohio only. The next two plots represent the data used on the model.

```
us_total_production <- fishing %>%
  filter(region == "U.S. Total") %>%
  group_by(year) %>%
  summarise(us_total_production = sum(values, na.rm = T))
us_total_production %>%
```

```
ggplot(aes(year, us_total_production)) +
geom_line(size = 1) +
scale_y_continuous(labels = label_number_si()) +
labs(x = NULL,
    y = "Total Production (in pounds)",
    title = "U.S. total production throughout the years",
    subtitle = "Considering all species and all lakes together")
```

U.S. total production throughout the years

Considering all species and all lakes together


```
region_production <- fishing %>%
  group_by(year, region) %>%
  summarise(region_production = sum(values, na.rm = T)) %>%
  ungroup() %>%
  group_by(region) %>%
  mutate(region_max_production = max(region_production),
        region_min_production = min(region_production)) %>%
  # This prevents to keep data from regions that did not start fishing activities
  # by the year of 1925.
  filter(region_max_production > 10000, region_min_production > 0) %%
  select(-region_min_production, -region_max_production) %>%
  pivot_wider(names_from = region, values_from = region_production)
# These are the regions that present at least one production of >10k,
#as shown on a previous plot.
region production %>%
 ggplot(aes(year, `Ohio (OH)`)) +
  geom_line(size = 1) +
```

Total production of the region of Ohio Considering all species together

We can also see how other regions total production are distributed.

Total production throughout the years

For regions that had, at least, one production of >10k

By now, let's try to predict the total U.S. production by using Ohio production as a predictor. At first, let's split the data on training and testing sets.

```
data <- initial_split(region_production)

train_production <- training(data)
test_production <- testing(data)</pre>
```

It is possible to fit the model and make the predictions right away.

```
lm_model <- linear_reg() %>% set_engine("lm")

lm_workflow <-
    workflow() %>%
    add_model(lm_model) %>%
    add_formula(`U.S. Total` ~ `Ohio (OH)`)

model_fit <-
    fit(lm_workflow, data = train_production)

prediction <- predict(model_fit, new_data = test_production)</pre>
```

We can apply some metrics to judge model effectiveness.

```
#Let's bind the real values and the predictions make on the test set.
prediction <- bind_cols(test_production, prediction) %>%
  ungroup() %>%
  select(-year)
pred_metrics <- metric_set(rmse, mae)</pre>
prediction %>%
  ungroup() %>%
  pred_metrics(truth = `U.S. Total`, estimate = .pred)
## # A tibble: 2 x 3
##
     .metric .estimator .estimate
     <chr> <chr>
## 1 rmse
             standard
                           15482.
## 2 mae
             standard
                           13764.
prediction %>%
  ggplot(aes(`U.S. Total`, .pred)) +
  geom_abline() +
  geom_point() +
 coord_obs_pred()
```


This model produced a mean absolute error of 13k. Let's try adding more regions to the prediction and fit the model once again.

```
lm_workflow <- lm_workflow %>%
  update_formula(`U.S. Total` ~ `Ohio (OH)` + `Minnesota (MN)` + `Wisconsin (WI)` +
        `Michigan (MI)` + `MI State Total`)
model_fit <- fit(lm_workflow, data = train_production)</pre>
prediction <- predict(model_fit, new_data = test_production)</pre>
#Let's bind the real values and the predictions make on the test set.
prediction <- bind_cols(test_production, prediction)</pre>
prediction %>%
  ungroup() %>%
  pred_metrics(truth = `U.S. Total`, estimate = .pred)
## # A tibble: 2 x 3
     .metric .estimator .estimate
##
##
     <chr> <chr>
                           <dbl>
## 1 rmse standard
                         11365.
           standard 10134.
## 2 mae
prediction %>%
  ggplot(aes(.pred, `U.S. Total`)) +
  geom_abline() +
  geom_point() +
  coord_obs_pred()
```


Some regions fit the requirement of having least one production of >10k, but present data starting only at 1953. Let's try using them on our model to see if they have a good impact.

```
region_production <- fishing %>%
  filter(year >= 1953) %>%
  group_by(year, region) %>%
  summarise(region_production = sum(values, na.rm = T)) %>%
  ungroup() %>%
  group_by(region) %>%
  group_by(region) %>%
  mutate(region_max_production = max(region_production)) %>%
  filter(region_max_production > 10000) %>%
  select(-region_max_production) %>%
  pivot_wider(names_from = region, values_from = region_production)
```

First, we can make a plot to have a general ideia of their behavior.

```
subtitle = "For regions that had, at least, one production of >10k",
color = NULL)
```

Total production throughout the years

Since the data were reduced, let's do the initial split once again.

A tibble: 2 x 3

```
##
     .metric .estimator .estimate
##
     <chr>
             <chr>
                            <dbl>
                            2626.
## 1 rmse
             standard
## 2 mae
             standard
                            2085.
prediction %>%
 ggplot(aes(.pred, `U.S. Total`)) +
  geom_abline() +
  geom_point() +
  coord_obs_pred()
```


That's it! A mean squared error of 2k. A much better result than the ones obtained by previous models.