Fixed effect model

Consider two (fixed) experimental factors A and B randomized in a balanced CRD. The model is:

$$Y_{ijl} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijl}$$

The α_i , β_j and $(\alpha\beta)_{ij}$ represent fixed effects for A, B, and the A × B interaction. The only random part of the model is the error term: $\varepsilon_{ijl} \sim \mathcal{N}(0, \sigma_e^2)$. We also assume: $\sum_i \alpha_i = 0$, $\sum_j \beta_j = 0$, $\sum_i (\alpha\beta)_{ij} = 0$, and $\sum_j (\alpha\beta)_{ij} = 0$. For this model, the ANOVA table looks like:

Source	$\mathrm{d}\mathrm{f}$	SS	$\mathbb{E}(MS)$
A	a-1	SSA	$\sigma_{\varepsilon}^2 + bn \; \frac{\sum \alpha_i^2}{a-1}$
В	b-1		$\sigma_{\varepsilon}^2 + an \; \frac{\sum \beta_j^2}{b-1}$
AB	(a-1)(b-1)	SSAB	$\sigma_{\varepsilon}^2 + n \; \frac{\sum (\alpha \beta)_{ij}^2}{(a-1)(b-1)}$
Error	ab(n-1)	SSErr	$\sigma_{arepsilon}^2$
Total	abn-1		

Thus, we test each of the main effects and the interaction by using the MS for Error.

Random effect model

The two-factor random effects model looks like: $Y_{ijl} = \mu + A_i + B_j + (AB)_{ij} + \varepsilon_{ijl}$ where all terms other than μ are random: $A_i \sim \mathcal{N}(0, \sigma_A^2)$, $B_j \sim \mathcal{N}(0, \sigma_B^2)$, $(AB)_{ij} \sim \mathcal{N}(0, \sigma_{AB}^2)$ and $\varepsilon_{ijl} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$, all independent. For this model, we have

$$\mathbb{E}(\text{MSA}) = \sigma_{\varepsilon}^{2} + n\sigma_{AB}^{2} + bn\sigma_{A}^{2}$$

$$\mathbb{E}(\text{MSB}) = \sigma_{\varepsilon}^{2} + n\sigma_{AB}^{2} + an\sigma_{B}^{2}$$

$$\mathbb{E}(\text{MSAB}) = \sigma_{\varepsilon}^{2} + n\sigma_{AB}^{2}$$

$$\mathbb{E}(\text{MSErr}) = \sigma_{\varepsilon}^{2}$$

It may be surprising to see that the expected mean squares for A and for B include terms involving σ_{AB}^2 .

Mixed effect model

If A is a fixed effect, and B is a random effect then the model is: $Y_{ijl} = \mu + \alpha_i + B_j + (AB)_{ij} + \varepsilon_{ijl}$ where $\sum \alpha_i = 0$, $B_j \sim \mathcal{N}(0, \sigma_B^2)$, $(AB)_{ij} \sim \mathcal{N}(0, \sigma_{AB}^2)$ and $\varepsilon_{ijl} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$, all independent. With this model we have:

$$\mathbb{E}(\text{MSA}) = \sigma_{\varepsilon}^{2} + n\sigma_{AB}^{2} + bn \frac{\sum \alpha_{i}^{2}}{a - 1}$$

$$\mathbb{E}(\text{MSB}) = \sigma_{\varepsilon}^{2} + n\sigma_{AB}^{2} + an\sigma_{B}^{2}$$

$$\mathbb{E}(\text{MSAB}) = \sigma_{\varepsilon}^{2} + n\sigma_{AB}^{2}$$

$$\mathbb{E}(\text{MSErr}) = \sigma_{\varepsilon}^{2}$$