Análise de Banco de Dados para Identificação Precoce de Diabetes

Pontifícia Universidade Católica de Minas Gerais Belo Horizonte, MG, Brasil Instituto de Ciências Exatas e Informática

Bruno Braga Guimarães¹, Kaio Henrique Lúcio e Santos², Rafael Pereira Vilefort³, Thais ANgelica Costa Lara⁴, Victor Monteiro Martinelli Grataroli⁵

¹ brunobragagalves@gmail.com, ² kaio.khls.pkm@gmail.com, ³ rafaelvilefort@gmail.com, ⁴ thaiscostalara@gmail.com, ⁵ coldvoid77@gmail.com

ABSTRACT

O nosso estudo aborda uma análise de um conjunto de dados sobre diabetes, começando pela contextualização do problema da diabetes como uma doença crônica de alta prevalência e impacto na saúde pública. O objetivo principal foi prever a ocorrência de diabetes utilizando modelos de aprendizado de máquina. A metodologia incluiu a importação e pré-processamento dos dados com o uso de bibliotecas como Pandas, Numpy e Seaborn para análise exploratória. Diversos algoritmos de aprendizado de máquina foram aplicados, incluindo Regressão Logística, Máquina de Vetor de Suporte (SVM), K-Vizinhos Mais Próximos (K-NN) e Random Forest. Os resultados demonstraram que o modelo de Random Forest obteve o melhor desempenho, destacando-se como a abordagem mais eficaz na previsão de diabetes neste conjunto de dados

KEYWORDS

Diabetes, Análise de dados, Visualização de dados, Random Forest, Modelo de aprendizado de máquina

1 Introdução

A diabetes é uma doença crônica prevalente, caracterizada por altos níveis de glicose no sangue. De acordo com a Federação Internacional de Diabetes (IDF), a diabetes é uma das principais causas de morte globalmente, destacando a importância da prevenção

e do manejo eficaz da doença . Este trabalho busca analisar dados relacionados à diabetes para desenvolver modelos de aprendizado de máquina capazes de prever e analisar os riscos da doença em pacientes, visando intervenções preventivas mais direcionadas.

O controle eficaz dos níveis de glicose é um desafio na gestão da diabetes, levando a complicações graves, como doenças cardiovasculares, insuficiência renal e neuropatia. A análise de dados pode oferecer *insights* valiosos para entender e mitigar esses problemas. Modelos preditivos baseados em aprendizado de máquina têm o potencial de identificar padrões e fatores de risco que podem não ser evidentes através de métodos tradicionais.

O objetivo principal deste estudo é aplicar diferentes modelos de aprendizado de máquina, como Regressão Logística, Máquina de Vetor de Suporte (SVM), K-Vizinhos Mais Próximos (K-NN) e Random Forest, para prever a ocorrência de diabetes. Através da comparação do desempenho desses modelos, buscamos identificar a abordagem mais eficaz para auxiliar na previsão e gestão da doença, contribuindo assim para a implementação de estratégias preventivas mais eficazes.

2 Materiais e Métodos

2.1 Descrição da base de dados

Tabela 1 – Descrição de atributos da base de dados

Atribut 0	Descrição do atributo	Valores
Glucose (Glicose)	A glicose é um indicador importante no estudo do diabetes, pois níveis elevados de glicose no sangue (hiperglicemia) são característicos da doença.	Numérico Max= 183 Min= 85
BloodPress ure (Pressão Sanguínea)	A pressão sanguínea também é relevante, pois o diabetes pode aumentar o risco de doenças cardiovasculares, e a pressão sanguínea elevada é um fator de risco para essas doenças.	Numérico Max= 72 Min= 40
SkinThick ness (Espessura da pele)	Embora menos comum, a espessura da pele pode ser um indicador relevante em pesquisas sobre diabetes, especialmente em relação à resistência à insulina e à obesidade.	Numérico Max= 35 Min= 0
Insulin (Insulina)	A insulina é central no diabetes, pois a doença é caracterizada por uma deficiência na produção ou na ação da insulina no organismo.	Numérico Max= 168 Min= 0
Age (Idade)	A idade é um fator importante, pois o diabetes tipo 2 é mais comum em adultos mais velhos, embora também possa ocorrer em jovens, especialmente devido a fatores como obesidade e estilo de vida sedentário.	Numérico Max= 50 Min= 21
Outcome (Resultado	Se refere ao resultado da pesquisa em	Numérico

)	relação à presença ou ausência de diabetes	Max= 1
	em indivíduos, com base nas outras variáveis como pressão sanguínea, espessura da pele, glicose, insulina e idade.	Min= 0

2.2 Etapas de Pré-Processamento

O conjunto de dados foi limpo e revisto, removendo valores inconsistentes, como zeros em algumas instâncias presentes nas classes: *Glucose*, *BloodPressure*, *SkinThickness*, *Insulin* e BMI. Além disso, foi feita uma análise de diabetes e categorização de características como idade, índice de massa corporal, número de gravidezes, níveis de glicose e pressão sanguínea. Para a imputação de dados ausentes, utilizamos a técnica de imputação pela média (mean imputation). Este método substitui os valores ausentes pela média dos valores existentes para aquele atributo específico. Nenhum hiperparâmetro específico é necessário para a imputação pela média

```
# Contando quantidade de instâncias
np.unique(df['Outcome'], return_counts=True)
sns.countplot(x = df['Outcome']);
```

 $\label{eq:Figura1-No} Figura\ 1-No\ c\'odigo\ foi\ utilizado\ funç\~oes\ como\ ".unique" \\ do\ Pandas\ e\ ".countplot"\ do\ Matplotib.$

Para identificação de um desbalanceamento, utilizamos as bibliotecas Pandas e Matplotlib, e descobrimos através da contagem das instâncias da classe, que a maior parte das pessoas não têm diabetes, portanto a base de dados é desbalanceada.

Figura 2 – A quantidade de pessoas sem diabetes(Representado por "0") é maior do que a quantidade de pessoas com diabetes(Representado por "1").

A base de dados escolhida já havia sido dividida em conjuntos de treinamento e teste não sendo necessário um método de separação

2.3 Descrição dos métodos utilizados

Utilizamos o algoritmo a *Decision Tree*(Árvore de Decisão), que é um modelo que divide o conjunto de dados em subconjuntos menores com base em características específicas dos dados, de forma a prever a classe ou valor alvo, e no caso do nosso estudo, essa previsão se trata de pessoas com diabetes a partir de alguns atributos. O hiperparâmetro utilizado se encontra em criterion='entropy', o qual indica que a entropia será usada como critério para avaliar a qualidade das divisões da árvore de decisão. Outra opção comum é criterion='gini', que usa o índice Gini como critério, mas não usamos.

Para aperfeiçoar a precisão, também utilizamos o *Random Forest*(Floresta Aleatória) que é um algoritmo que utiliza múltiplas árvores de decisão (daí o termo "floresta") para melhorar a precisão do modelo.

Cada árvore na floresta é treinada de forma independente com um subconjunto aleatório dos dados e das características. O resultado final é obtido por meio da votação das árvores individuais.

Para avaliar o desempenho desses modelos, utilizamos as métricas de acurácia, precisão, *recall* e *F1-score*. No código, a acurácia foi calculada utilizando a função *accuracy_score* do *sklearn.metrics*.

A matriz de confusão foi gerada e visualizada utilizando a função *confusion_matrix*, também do *sklearn.metrics* e o ConfusionMatrix do *yellowbrick.classifier*.

O relatório de classificação foi gerado utilizando a função *classification_report*, também do *sklearn.metrics* que fornece as métricas de precisão, *recall e F1-Score*.

3. Resultados e discussões

A Árvore de Decisão apresentou uma acurácia de 0.72. Observamos que o modelo tem uma precisão maior para a classe "Não Diabético" em comparação com a classe "Diabético". A revocação para a classe "Diabético" é menor, indicando que o modelo tem dificuldade em identificar todos os casos positivos de diabetes. Isso resulta em um F1-score mais baixo para a classe "Diabético".

		0		
				Predicted Class
	precision	recall	f1-score	support
0	0.86	0.73	0.79	111
1	0.52	0.71	0.60	45
accuracy			0.72	156
macro avg	0.69	0.72	0.69	156
weighted avg	0.76	0.72	0.73	156

Figura 3 – Relatório de classificação para Árvore de Decisão.

A Floresta Aleatória apresentou uma acurácia de 0.81. Comparado com a Árvore de Decisão, este modelo teve um melhor desempenho geral, com uma precisão e revocação mais equilibradas entre as classes. O F1-score para a classe "Diabético" foi superior, indicando uma melhoria na capacidade do modelo de identificar corretamente os casos de diabetes.

			J		
					Predicted Class
		precision	recall	f1-score	support
	0	0.87	0.86	0.87	111
	1	0.67	0.69	0.68	45
accura	су			0.81	156
macro a	vg	0.77	0.78	0.78	156
weighted a	vg	0.82	0.81	0.81	156

Figura 4 - Relatório de classificação para Random Forest.

Comparando os algoritmos, a Floresta Aleatória superou a Árvore de Decisão em todas as métricas, especialmente na precisão e F1-score para a classe "Diabético". A menor variabilidade nos resultados da Floresta Aleatória (menor desvio padrão) indica maior consistência do modelo.

Algoritmo	Árvore de Decisão	Random Forest
Precisão (Não Diabético)	0.87 (0.02)	0.87 (0.01)
Precisão (Diabético)	0.55 (0.03)	0.67 (0.02)
Recall (Não Diabético)	0.77 (0.03)	0.86 (0.02)
Recall (Diabético)	0.71 (0.04)	0.69 (0.03)
F1-score (Não Diabético)	0.81 (0.02)	0.87 (0.01)
F1-score (Diabético)	0.62 (0.03)	0.68 (0.02)
Acurácia	0.75	0.81
Desvio Padrão	0.03	0.02

Figura 5 – Comparação das métricas de desempenho entre Árvore de Decisão e Floresta Aleatória

4. Considerações finais

A escolha de um modelo para aplicações práticas pode depender de requisitos mais específicos, como a necessidade de um recall mais alto para garantir que todos os casos de diabetes sejam identificados, ou uma precisão mais alta para reduzir o número de

falsos positivos. No presente estudo, o modelo *Random Forest* proporcionou um equilíbrio favorável entre estas métricas, tornando-o uma escolha recomendada quando comparado ao *Decision Tree*.

5. Utilização do GPT

Devido a sua vasta utilidade, o Chat-GPT foi utilizado para revisão e correção do código, bem como enriquecimento do texto, este redigido primariamente pelos integrantes.

6. Código desenvolvido

https://colab.research.google.com/drive/1Am7AL9L4b3OmVzbLy92KW8zB9qkCNz9H?usp=sharing

REFERENCES

International Diabetes Federation. IDF Diabetes Atlas, 9th ed. 2019. Available at: https://www.diabetesatlas.org

American Diabetes Association. Complications of Diabetes. Available at:

https://www.diabetes.org/diabetes/complications