

The total virtualization

Memory management

Course overview

Memory management

- ✓ The task statement
- ✓ Technologies
 - ✓ VMM-swapping
 - ✓ Ballooning
 - ✓ Same page merging
 - ✓ Backing store choice
 - ✓ Memory compression
- ✓ The big picture

Subtasks of memory management

Managing host memory pressure

host memory pressure levels
Green, yellow and red zone/levels
that makes swapping more
aggressive

allowed guest consumption

VMs should consume below limit,
otherwise they would be swapped

host OS memory pressure notifications

Subscribe for OOM-killer

continuous rebalancing

Looking for the harmony

Choosing VM to cut-off

max(current-guarantee)

Cut the VM that eats too much in comparison to original menu

share

Cut (WSS-guarantee)/(current-guarantee) proportionally to share

max(current-WSS)

WSS - what is WSS after all?

round-robin

Every VM would be cut, but let's do this in turn

idle tax

who doesn't work shall not eat ©

communism

Every time cut every VM

Memory management: the 1st approximation

Replacement algorithms

- LRU (least recently used)
- ...

Replacement algorithms

- LRU (least recently used)
- FIFO (first in first out)
- NFU (not frequently used)
- Aging
- NRU (not recently used A-/D- bits)
 - Second chance!
- WSClock
- Random (and random extrapolation)
- Frequency histogram
- Else?

Replacement with a second chance

Replacement with a second chance

Replacement with a second chance

What's wrong with replacement?

- Semantic gap
- A-locality principle
- Large fine for the mistake (page miss makes VM suffer!)
- Insider's info

Page miss (VMware/Vbox/Parallels arch)

Memory management: the 2nd approximation

Ballooning

Balloon is an insider

Balloon's page won't be referenced by guest OS

Balloon doesn't cause vmm swapping

Balloon pages have zero content (and shouldn't be stored)

Balloon is simple!

Ballooning

Balloon increases guest swapping, guest pressure

Balloon: No Silver Bullet

Decrease resource usage with zero vmm swapping

- Guest swapping up to guest crashes (BSODs, OOM, etc)
- Need to re-implement the balloon for every guest system (if you need some modifications)
- No guarantees on balloon size
- When to deflate?
- The user could see the balloon

Memory management: the 3rd approximation

Memory quota

Memory quota

Onethead;

limit maximum allocated memory

Memory management: the 4th approximation

How to reduce the overall memory usage

Transparent page sharing

Deduplication (aka same page merging, KSM; aka THP)

- Hash for each page (else o(n²) to compare)
- Search for equals (hash + cmp)
- Multiple virtual pages to point at one physical
- COW (copy on write)

Deduplication

- Great for tests
- Enabled by default
- When to turn on (it introduces the guaranteed overhead and it doesn't guarantee any memory gain)
- When to turn off
- How to store hashes
- When to invalidate

Memory management: the 5th approximation

Backing store model

Backing store model

Backing store

- Stores the content of swapped pages
- Supports suspend/resume/shapshot
- Supports migrate
- Allows access from both kernel space and user space

Memory management: the 6th approximation

Compression

Compression: performance gap

© http://www.fusionio.com

Compression

Jacob Ziv and Abraham Lempel; A Universal Algorithm for Sequential Data Compression, IEEE Transactions on Information Theory, 23(3), May 1977

Compression

LZRW = Lempel-Ziv Ross Williams

Williams, R.N., "An Extremely Fast Ziv-Lempel Data Compression Algorithm", Data Compression Conference 1991 (DCC'91)

LZRW1: N=3, literals are marked by bitmap

PD6 ~200MB/sec compress/uncompress

LZRW4: N=4, literals are encoded by single byte tags

~250MB/sec compress

PD7 ~450MB/sec uncompress

Memory virtualization: the 7th approximation

Zero Page Hack

Memory virtualization: the big picture

Balloon + deduplication

Technology interaction

Conclusions

Common resource management task includes quota management, compression, deduplication, replacement + backing store techniques.

Combining these solutions is the state of art

Questions?

