0.1 Rotazioni, riflessioni del piano

Un'applicazione $L: \mathbb{R}^n \to \mathbb{R}^m$ si dice applicazione lineare (o operatore se m=n) se valgono le seguenti proprietà:

$$L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v}), \ \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$
$$L(\lambda \mathbf{v}) = \lambda L(\mathbf{v}), \ \forall \mathbf{v} \in \mathbb{R}^n, \forall \lambda \in \mathbb{R}.$$

Notiamo che se L è un'applicazione lineare, $L(\mathbf{0}) = \mathbf{0}$.

Il nostro interesse per le applicazioni lineare nasce dal fatto che ogni matrice $A \in M_{m,n}$ individua un'applicazione lineare

$$L_A: \mathbb{R}^n \to \mathbb{R}^m$$

nel seguente modo:

$$L_A(\mathbf{x}) = A\mathbf{x},$$

dove \mathbf{x} e il vettore colonna le cui entrate sono (x_1, \ldots, x_n) .

Il fatto che L_A sia un'applicazione lineare si verifica come segue:

$$L_A(\mathbf{x} + \mathbf{y}) = A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = L_A(\mathbf{x}) + L_A(\mathbf{y}),$$

 $L_A(\lambda \mathbf{x}) = \lambda L_A(\mathbf{x}).$

Siamo interessati alle applicazioni lineari della forma L_A dove A è una matrice $ortogonale 2 \times 2$.

Sia $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ una matrice ortogonale 2×2 . La condizione di ortogonalità $A^TA = I$ si traduce nelle seguenti equazioni per a, b, c, d:

$$a^2 + c^2 = b^2 + d^2 = 1$$
, $ab + cd = 0$.

Due numeri reali che verificano la prima uguaglianza possono essere rappresentati come il coseno e il seno di un opportuno angolo.

Si ha allora

$$a = \cos \alpha, c = \sin \alpha, b = \sin \beta, d = \cos \beta,$$

per qualche α e β , mentre l'identità ab+cd=0 si traduce nella

$$\sin \alpha \cos \beta + \cos \alpha \sin \beta = \sin(\alpha + \beta) = 0.$$

Quindi $\alpha + \beta = k\pi$ dove k è un intero.

Si distinguono due casi:

a) se k è pari $\cos \beta = \cos \alpha$ e $\sin \beta = -\sin \alpha$ e quindi

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix};$$

b) se k è dispari $\cos \beta = -\cos \alpha$ e $\sin \beta = \sin \alpha$ e quindi

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}.$$

In particolare, il determinante di A vale 1 se k e pari e -1 se k è dispari.

Vediamo ora quale è il significato geometrico dei due tipi di operatori ottenuti.

a) Consideriamo la matrice

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

e un vettore $\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Calcolando il prodotto scalare di \mathbf{v} con $A\mathbf{v}$ si ottiene:

$$\mathbf{v} \cdot A\mathbf{v} = \|\mathbf{v}\|^2 \cos \alpha.$$

Inoltre si verifica che $||A\mathbf{v}|| = ||v||$.

Se indichiamo con θ_v l'angolo tra \mathbf{v} e $A\mathbf{v}$ segue che.

$$\cos \theta_v = \frac{\mathbf{v} \cdot A\mathbf{v}}{\|\mathbf{v}\| \|A\mathbf{v}\|} = \cos \alpha.$$

Dunque l'angolo tra \mathbf{v} e $A\mathbf{v}$ non cambia a seconda del vettore v, ma è sempre α . Quindi, l'operatore associato ad A è la rotazione dei vettori di un angolo α (in senso antiorario, dato che $A\mathbf{e_1} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$)

b) Per quanto riguarda l'operatore associato alla matrice

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

si consideri la base \mathcal{B} di \mathbb{R}^2 formata dai due vettori ortonormali

$$\mathbf{v_1} = \begin{pmatrix} \cos \frac{\alpha}{2} \\ \sin \frac{\alpha}{2} \end{pmatrix}, \ \mathbf{v_2} = \begin{pmatrix} -\sin \frac{\alpha}{2} \\ \cos \frac{\alpha}{2} \end{pmatrix}.$$

Si ottiene allora $A\mathbf{v_1} = \mathbf{v_1} \in A\mathbf{v_2} = -\mathbf{v_2}$.

Dato un vettore $\mathbf{v} = x\mathbf{v_1} + y\mathbf{v_2} \in \mathbb{R}^2$, risulta

$$L_A(\mathbf{v}) = xL_A(\mathbf{v_1}) + yL_A(\mathbf{v_2}) = x\mathbf{v_1} - y\mathbf{v_2}.$$

Dunque, L_A lascia inalterata la componente lungo $\mathbf{v_1}$ di ogni vettore, ma cambia di segno quella lungo $\mathbf{v_2}$. In questo caso, l' operatore associato a A è la riflessione rispetto alla retta per l'origine di direzione $\mathbf{v_1}$, cioè la riflessione rispetto ad una retta che forma un angolo $\frac{\alpha}{2}$ con l'asse delle x.

Reassumendo abbiamo dimostrato la seguente:

Proposizione 1 Sia A una matrice ortogonale 2×2 . Se det A = +1, allora esiste un angolo α tale che

$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} (matrice \ di \ rotazione)$$

Se det A = -1, allora esiste un angolo α tale che

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} (matrice \ di \ riflessione)$$