MA-207 Differential Equations II S1 - Lecture 7

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 12th October 2017 S1 - Lecture 7

M.K. Keshari

S1 - Lecture 7

Recall: Consider u'' + q(x)u = 0, q(x) continuous in a neighbourhood of [a, b]. Let u(x) and $\widetilde{u}(x)$ be linearly independent solutions.

- \bullet u(x) and $\widetilde{u}(x)$ have no common zero in [a,b].
- Between any two successive zeros of u(x), there is exactly one zero of $\widetilde{u}(x)$.
- $q(x) < 0 \implies u(x)$ has atmost one zero in [a,b].
- q(x) > 0 for all $x > x_0$ and $\int_{x_0}^{\infty} q(x) dx = \infty$, $\implies u(x)$ has infinitely many zeros in (x_0, ∞) .
- u(x) can have at most finite number of zeros in any finite interval [a,b].

Corollary

 $Z^{(p)} = set \ of \ zeros \ of \ Bessel \ function \ J_p(x) \ on \ (0, \infty).$

Since $Z^{(p)}$ is an infinite set, it is not a bounded set.

Write $Z^{(p)}=\{\lambda_{1,p},\lambda_{2,p},\ldots\}$, where $\lambda_{n,p}<\lambda_{n+1,p}$.

Question. What is the limit of $\lambda_{n+1,p} - \lambda_{n,p}$ as $n \to \infty$?

Answer. this limit is π .

For proof, we will need the Sturm comparison theorem.

M.K. Keshari

S1 - Lecture 7

Theorem (Sturm Comparison theorem)

Let y(x) be a non-trivial solutions of

$$y'' + q(x)y = 0$$

and z(x) be a non-trivial solutions of

$$z'' + r(x)z = 0$$

where q(x) > r(x) > 0 are continuous in a neighbourhood of [a, b].

Then y(x) vanishes <u>atleast once</u> between any two consecutive zeros of z(x) in [a,b].

• Compare y'' + 4y = 0 and z'' + z = 0. Zeros of z(x) are π apart and that of y(x) are $\pi/2$ apart.

M.K. Keshari S1

S1 - Lecture 7

Proof of Sturm Comparison theorem.

Let $x_1 < x_2$ be consecutive zeros of z(x) in [a, b].

Assume y(x) has no zero in (x_1, x_2) .

We may assume z(x) > 0 and y(x) > 0 on (x_1, x_2) . Hence $z'(x_1) > 0$ and $z'(x_2) < 0$. The Wronskian

$$W(x) = W(y, z) = y(x)z'(x) - y'(x)z(x)$$

$$W'(x) = yz'' - y''z = y(-rz) - (-qy)z = (q-r)yz > 0$$

on (x_1, x_2) . Integrate from x_1 to x_2 , we get

$$W(x_2) - W(x_1) > 0 \implies W(x_2) > W(x_1)$$

But $W(x_1) = y(x_1)z'(x_1) > 0$ and $W(x_2) = y(x_2)z'(x_2) < 0$, a contradiction.

M.K. Keshari S

S1 - Lecture 7

Theorem. Substituting $u(x) = \sqrt{x}y(x)$ in Bessel equation, we get $(p \ge 0)$

$$u'' + q(x)u = 0,$$
 $q(x) = 1 + \frac{1 - 4p^2}{4x^2}$

- $p < 1/2 \implies q(x) > 1$
- $p = 1/2 \implies q(x) = 1$ (Well known, hence, uninteresting)
- $p > 1/2 \implies q(x) < 1$

Use z'' + z = 0 and Sturm comparison theorem.

Let $y_p(x)$ be a non-trivial solution of Bessel equation. Then we get ...

Theorem

- p < 1/2 \Longrightarrow Between any two roots of $\sin(x x_0)$, there is a root of $y_p(x)$.
- $p = 1/2 \implies$ difference of any two consecutive roots of $y_p(x)$ is π
- p > 1/2 \implies Between any two roots of $y_p(x)$, there is a root of $\sin(x x_0)$.

We can say more than the above. Suppose p < 1/2 and a < b < c are consecutive roots of u(x). Then b - a < c - b. That is, the difference between the successive roots keeps increasing.

To see a proof of this,

M.K. Keshari

S1 - Lecture 7

Consider the function f:=u(x-b+a) defined on the interval (b,∞) .

It is a trivial check that f satisfies the ODE

$$f'' + r(x)f = 0,$$
 $r(x) := q(x - b + a)$

Since p < 1/2, the function q is strictly decreasing. Thus on (b, ∞) , we have r(x) > q(x) > 0.

Applying Sturm's comparison theorem, there is $b < x_0 < c$ such that $f(x_0) = u(x_0 - b + a) = 0$.

Clearly,

•
$$b < x_0 \implies a < x_0 - b + a$$

$$\bullet \ a < b \implies x_0 - b + a < x_0$$

•
$$\implies a < x_0 - b + a < x_0 < c$$

However, a < b < c are successive roots of u(x). This forces that

$$x_0 - b + a = b$$
 that is $x_0 = 2b - a$
As $2b - a = x_0 < c \implies b - a < c - b$.

• Claim. The difference between any two successive roots of u is strictly less than π .

If not, then let $\overline{a < b}$ be successive roots such that $b-a \geq \pi$

Since u has infinitely many roots, and their difference is strictly increasing, assume $b-a>\pi$.

But $\sin(x - x_0)$ for some x_0 , has two roots in (a, b) and u has no root in (a, b), this contradicts Sturm's comparison theorem. Hence the claim is proved.

M.K. Keshari

S1 - Lecture 7

Thus, we have proved that if $\{x_n\}$ are the roots of u(x) in increasing order, then the difference $x_{n+1} - x_n$ is strictly increasing and $x_{n+1} - x_n < \pi$.

• Claim. These differences converge to π .

If not, then $(x_{n+1}-x_n) \to \gamma < \pi$.

Choose $1<\delta$, sufficiently close to 1 such that $\gamma<\frac{\pi}{\delta}<\pi$.

The function q(x) is decreasing to 1. Therefore, there is a $x_0 \in \mathbb{R}$, sufficiently large, such that $q(x_0) < \delta^2 \implies q(x) < \delta^2$ for $x > x_0$.

Apply Sturm's comparison on the interval (x_0, ∞) to ODEs u'' + q(x)u = 0 and $z'' + \delta^2 z = 0$.

Thus, between any two roots of u(x), there is a root of z(x). If a and b are two consecutive roots of u, then $b-a<\gamma<\frac{\pi}{\delta}<\pi$.

We can find \widetilde{x} such that $\sin(x-\widetilde{x})$ has no root in (a,b).

Assume $Z^{(p)} = \{\lambda_{1,p}, \lambda_{2,p}, \ldots\}$ be roots of Bessel function u(x) with $\lambda_{n,p} < \lambda_{n+1,p}$.

Theorem

If
$$p < 1/2$$
, then $\lambda_{n+1,p} - \lambda_{n,p} < \lambda_{n+2,p} - \lambda_{n+1,p} < \pi$ and $\lambda_{n+1,p} - \lambda_{n,p} \to \pi$ as $n \to \infty$.

Similarly, if
$$p>1/2$$
, then $\lambda_{n+1,p}-\lambda_{n,p}>\lambda_{n+2,p}-\lambda_{n+1,p}>\pi$ and $\lambda_{n+1,p}-\lambda_{n,p}\to\pi$ as $n\to\infty$.

M.K. Keshari S1 - Lecture 7

The first few zeroes of Bessel functions are tabulated below.

	$J_0(x)$	$J_1(x)$	$J_2(x)$	$J_3(x)$	$J_4(x)$	$J_5(x)$
1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

Question. Why are we concerned with zeros of Bessel function $J_p(x)$?

It is often required (in mathematical physics) to expand a given function in terms of Bessel functions.

M.K. Keshari

S1 - Lecture 7

Simplest and most useful expansions are of the form

$$f(x) = a_1 J_p(\lambda_{1,p} x) + a_2 J_p(\lambda_{2,p} x) + \dots$$

where f(x) is defined on [0,1] and $\lambda_{n,p}$'s are zeros of Bessel function $J_p(x)$, $p \geq 0$.

Qn. How to compute the coefficients a_n ?

Remark: For a scalar $a \neq 0$, the scaled Bessel functions $J_p(ax)$ are solutions of

$$x^2y'' + xy' + (a^2x^2 - p^2)y = 0$$

known as scaled Bessel equation.

Define an inner product on square-integrable functions on $\left[0,1\right]$ by

$$\langle f, g \rangle := \int_0^1 x f(x) g(x) dx$$

This is similar to the previous inner product except that f(x)g(x) is now multiplied by x and the interval of integration is from 0 to 1.

The multiplying factor x is called a weight function.

M.K. Keshari

S1 - Lecture 7

Fix $p \geq 0$. Let $Z^{(p)} = \{\lambda_{1,p}, \lambda_{2,p}, \ldots\}$ denote the set of zeros of $J_p(x)$ on $(0, \infty)$.

Theorem

The set of scaled Bessel functions

$$\{J_p(\lambda_{1,p}x),J_p(\lambda_{2,p}x),\ldots\}$$

form an orthogonal family w.r.t. above inner product, i.e.

$$\langle J_p(\lambda_{k,p}x), J_p(\lambda_{l,p}x) \rangle = \int_0^1 x J_p(\lambda_{k,p}x) J_p(\lambda_{l,p}x) dx$$
$$= \begin{cases} \frac{1}{2} [J_{p+1}(\lambda_{k,p})]^2 & \lambda_{k,p} = \lambda_{l,p} \\ 0 & \lambda_{k,p} \neq \lambda_{l,p} \end{cases}$$

M.K. Keshari

S1 - Lecture 7

<u>Theorem</u>

Fix $p \ge 0$. Any $f(x) \in L^2([0,1])$ wrt above inner product, i.e. $\langle f, f \rangle = \int_0^1 x f^2(x) \, dx < \infty$ can be expanded in a series of scaled Bessel functions $J_p(\lambda_{n,p}x)$ as

$$\sum_{n\geq 1} c_n J_p(\lambda_{n,p} x)$$

$$c_n = \frac{2}{[J_{p+1}(\lambda_{n,p})]^2} \int_0^1 x f(x) J_p(\lambda_{n,p} x) dx$$

This is Fourier-Bessel series of f(x) for parameter p.

M.K. Keshari

S1 - Lecture 7

Example. Let us compute the Fourier-Bessel series for p=0 of f(x)=1 in the interval $0 \le x \le 1$. Use $\int x^p J_{p-1}(x) \, dx = x^p J_p(x) + c$ for p=1.

$$\int_0^1 x J_0(\lambda_{n,0}x) dx = \frac{1}{\lambda_{n,0}} x J_1(\lambda_{n,0}x) \Big|_0^1 = \frac{J_1(\lambda_{n,0})}{\lambda_{n,0}}$$

$$c_n = \frac{2}{[J_1(\lambda_{n,0})]^2} \int_0^1 x f(x) J_0(\lambda_{n,0} x) dx = \frac{2}{\lambda_{n,0} J_1(\lambda_{n,0})}$$

Thus, the Fourier-Bessel series of f(x) is

$$\sum_{n\geq 1} \frac{2}{\lambda_{n,0} J_1(\lambda_{n,0})} J_0(\lambda_{n,0} x)$$

By next theorem, this converges to 1 for 0 < x < 1.

M.K. Keshari S1 - Lecture

Convergence in norm $p \ge 0$

Fourier-Bessel series of $f(x) \in L^2([0,1])$, namely

$$\sum_{n\geq 1} c_n J_p(\lambda_{n,p} x), c_n = \frac{2}{J_{p+1}(\lambda_{n,p})^2} \int_0^1 x f(x) J_p(\lambda_{n,p} x) dx$$

converges to f(x) in norm, i.e.

$$||f(x) - \sum_{n=1}^{m} c_n J_p(\lambda_{n,p} x)||$$
 converges to 0 as $m \to \infty$

In particular For pointwise convergence, we have

M.K. Keshari

S1 - Lecture 7

Bessel expansion theorem $p \ge 0$

Assume f and f' have at most a finite number of jump discontinuities in [0,1], then the Bessel series

$$\sum_{n\geq 1} c_n J_p(\lambda_{n,p} x), c_n = \frac{2}{J_{p+1}(\lambda_{n,p})^2} \int_0^1 x f(x) J_p(\lambda_{n,p} x) dx$$

of f(x) converges for 0 < x < 1 to

$$\frac{f(x_-) + f(x_+)}{2}$$

At x = 1, the series always converges to 0 for all f as $J_p(\lambda_{n,p}) = 0$.

If p > 0, at x = 0, it converges to 0.

If p = 0, at x = 0, it converges to $f(0_+)$.

Orthogonality of scaled Bessel functions $p \ge 0$

If a,b are positive scalars, then $u(x)=\overline{J_p(ax)}$ and $v(x)=J_p(bx)$ satisfies

$$u'' + \frac{1}{x}u' + \left(a^2 - \frac{p^2}{x^2}\right)u = 0$$

$$v'' + \frac{1}{x}v' + \left(b^2 - \frac{p^2}{x^2}\right)v = 0$$

Multiply by v and u resp. and subtract, we get

$$(vu'' - uv'') + \frac{1}{x}(vu' - uv') + (a^2 - b^2)uv = 0$$

$$(u'v - v'u)' + \frac{1}{x}(u'v - v'u) = (b^2 - a^2)uv$$
$$(x(u'v - v'u))' = (b^2 - a^2)xuv$$

M.K. Keshari

S1 - Lecture 7

$$(b^2 - a^2) \int_0^1 xuv \, dx = \left[x(u'v - v'u) \right]_0^1 = (u'v - v'u) \Big|_0^1$$

$$(b^2 - a^2) \int_0^1 x J_p(ax) J_p(bx) dx = J_p'(a) J_p(b) - J_p'(b) J_p(a)$$

So if $a = \lambda_{k,p}$ and $b = \lambda_{l,p}$ are <u>distinct</u>, then

$$\int_0^1 x J_p(\lambda_{k,p} x) J_p(\lambda_{l,p} x) dx = 0$$

To compute the norm of $J_p(\lambda_{k,p}x)$, consider

$$2x^{2}u'\left[u'' + \frac{1}{x}u' + (a^{2} - \frac{p^{2}}{x^{2}})u\right] = 0$$

$$\implies [x^{2}u'^{2} + (a^{2}x^{2} - p^{2})u^{2}]' = 2a^{2}xu^{2}$$

Integrate on [0,1].

$$2a^{2} \int_{0}^{1} xu^{2} dx = \left[x^{2}u'^{2} + (a^{2}x^{2} - p^{2})u^{2}\right]_{0}^{1}$$

For p = 0, RHS is 0 at x = 0.

For p > 0, $u(0) = J_p(0) = 0$.

Hence, when x = 0, RHS is zero.

Further, $u'(1) = aJ'_p(a)$, we get

$$\int_0^1 x J_p(ax)^2 dx = \frac{1}{2} J_p'(a)^2 + \frac{1}{2} \left(1 - \frac{p^2}{a^2} \right) J_p(a)^2$$

Put $a = \lambda_{k,p}$

$$\int_0^1 x J_p(\lambda_{k,p} x)^2 dx = \frac{1}{2} J_p'(\lambda_{k,p})^2 = \frac{1}{2} J_{p+1}(\lambda_{k,p})^2$$

for last equality, use $x = \lambda_{k,p}$ in

$$J_p'(x) - \frac{p}{x}J_p(x) = J_{p+1}(x)$$

M.K. Keshari

S1 - Lecture 7