Understanding and Improving Layer Normalization

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guanxiang Zhao, Junyang Lin MOE Key Lab of Computational Linguistics, School of EECS, Peking University jingjingxu,xusun,zzy1210,zhaoguangxiang,linjunyang

What is layer normalization?

- Layer Normalization (LayerNorm) is a widely-used technique that scales the distributions of intermediate layers to have zero mean and unit standard deviation.
- It enables smoother gradients, faster training, and better generalization accuracy.

Figure 1:Illustration of LayerNorm.

How does LayerNorm work?

- The widely accepted explanation is that forward normalization brings distribution stability.
- However, recent studies show that the effects of batch normalization is closed related to optimization landscape, rather than the stability of input distribution.
- It is still unclear where the success of LayerNorm stems from.

How do we explore LayerNorm?

To investigate how LayerNorm works, we conduct a series of experiments on different models and tasks.

- Machine translation includes three widely-used datasets, WMT English-German, IWSLT 14
 German-English and IWSLT 15 English-Vietnamese.
- Language modeling includes a large dataset, Enwiki8.
- Text classification includes two sentence classification datasets: RT, and SST5.
- Image classification includes a widely-used dataset, MNIST.
- Dependency parsing uses English Penn TreeBank.

The bias and gain do not work in most cases.

- Dropping the bias and gain ("LayerNorm-simple") does not decrease the performance on six datasets. Surprisingly, it outperforms LayerNorm on four datasets and achieves SOTA on En-Vi translation.
- Experimental results show that current affine transformation mechanism has a potential risk of over-fitting and needs to be further improved.

	Machine Translation			Language Modeling		Classification		Parsing	
	$\overline{ \mathrm{En-De}(+) }$	De-En(+	$\overline{) \operatorname{En-Vi}(+)}$	Enwiki8(-)	RT(+)	$\overline{\text{SST5}(+)}$) MNIST(+	-) PTB(+)	
Model Layers	12	12	12	12	4	4	3	3	
w/o Norm	Diverge	34.0	28.4	1.04	76.85	38.55	99.14	88.31	
LayerNorm	28.3	35.5	31.2	1.07	77.21	39.23	99.13	89.12	
LayerNorm-simple	28.4	35.5	31.6	1.07	76.66	40.54	99.09	89.19	

Table 1:The bias and gain do not work in most cases.

The derivatives of the mean and variance are more important to LayerNorm than forward normalization.

- We design a new method, called DetachNorm. It treats the mean and variance as changeable constants, rather than variables.
- The derivatives of the mean and variance bring higher improvements than forward normalization does. The derivative of variance is more important than that of mean for deeper networks.
- The derivative of mean μ re-centers $\frac{\partial \ell}{\partial x}$ to zero. The derivative of variance σ reduces the variance of $\frac{\partial \ell}{\partial x}$, which can be seen a kind of re-scaling.
- The derivative of variance is more important than that of mean for deeper networks.

	Models	Machine Translation			Language Modeling		Classification		Parsing
	Models	En-De I	$\overline{\text{De-En}(+)}$	$\frac{1}{2}$ En-Vi(+)	Enwiki8(-)	RT(+)	$\overline{SST5(+)}$	MNIST(+)	$\overline{ \mathrm{PTB}(+) }$
=	Model Layers	12	12	12	12	4	4	3	3
_	w/o Norm	Diverge	34.0	28.4	1.04	76.85	38.55	99.14	88.31
_	DetachNorm	Diverge	33.9	27.7	1.12	76.40	40.04	99.10	89.79
	Improvement	_	-0.1	-0.7	-0.08	-0.45	1.49	-0.04	1.48
=	Models	Machine Translation			Language Modeling	odeling Classification			Parsing
	Models			\ T	T .1.0()			N ANTICITY (.)	$\overline{DTD(\bot)}$
		En-De I	De-En(+	$\operatorname{En-Vi}(+)$	Enwiki8(-)	RT(+)	SST5(+)	MNIST(+)	PIP(+)
-	Model Layers	En-De I 12	$\frac{\text{De-En}(+)}{12}$	$\frac{12}{12}$	Enwiki8(-) 12	$\frac{ RT(+) }{4}$	$\frac{SST5(+)}{4}$	$\frac{\text{MNIST}(+)}{3}$	$\frac{ PTB(+) }{3}$
-	Model Layers DetachNorm	1						()	
-		12 Diverge	12	12	12	4	4	3	3
-	DetachNorm	12 Diverge	12 33.9	12 27.7	12	76.40	4 40.04	3 99.10	3 89.79

Table 2:The derivatives of the mean and variance matter.

AdaNorm

To address the over-fitting problem, we propose a normalization method, Adaptive Normalization.

$$z = \phi(y) \odot y = \phi(N(x)) \odot N(x) \tag{1}$$

It achieves better results on seven out of eight datasets.

Table 3:Results of LayerNorm and AdaNorm.

Models	Machine Translation			Language Model Classif			ation	Parsing
WIOGOIS	$\overline{\text{En-De}(+)}$	$\overline{\text{De-En}(+)}$	En-Vi(+)	Enwiki8(-)	RT(+)	$\overline{\text{SST5}(+)}$	MNIST(+)	PTB(+
w/o Norm	Diverge	34.0	28.4	1.04	76.85	38.55	99.14	88.31
LayerNorm	28.3	35.5	31.2	1.07	77.21	39.23	99.13	89.12
LayerNorm-simple	28.4	35.5	31.6	1.07	76.66	40.54	99.09	89.19
AdaNorm	28.5	35.6	31.4	1.07	77.50	40.54	99.35	89.23

Better Convergence

• Compared to AdaNorm, LayerNorm has lower training loss but higher validation loss. Lower validation loss proves that AdaNorm has better convergence.

Couclusions

- In this paper, we investigate how layer normalization works.
- Based on a series of experiments and theoretical analysis, we summarize some interesting conclusions.
- We find that the derivatives of the mean and variance are important to the success of LayerNorm by re-centering and re-scaling backward gradients. Furthermore, the bias and gain increase the risk of over-fitting and do not work in most cases.
- To address this problem, we propose a normalization method AdaNorm. Experiments show that AdaNorm outperforms LayerNorm on seven datasets.
- In the future work, we would like to explore more alternatives to LayerNorm from the perspective of gradient normalization.