

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
	Трограммное обеспечение ЭВМ и информационные технологии»

Отчёт

по лабораторной работе № 2

 Название:
 Программно-алгоритмическая реализация метода

 Рунге-Кутта 4го порядка точности при решении системы ОДУ

 в задаче Коши.

Дисциплина: Моделирование

Студент	ИУ7-65Б		Д.О. Склифасовский
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподователь			В.М. Градов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы: Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

Исходные данные

Задана система электротехнических уравнений, описывающих разрядный контур, включающий постоянное активное сопротивление R_k , нелинейное сопротивление $R_p(I)$, зависящее от тока I, индуктивность L_k и емкость C_k .

$$\begin{cases} \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k} \\ \frac{dU}{dt} = -\frac{I}{C_k} \end{cases}$$

Начальные условия: $t = 0, I = I_0, U = U_0$.

Здесь I,U - ток и напряжение на конденсаторе.

Сопротивление R_p рассчитать по формуле

$$R_p = \frac{l_p}{2\pi R^2 \int_0^1 \sigma(T(z)) z dz}$$

Для функции T(z) применить выражение $T(z) = T_0 + (T_w - T_0)z^m$.

Параметры T_0 , m находятся интерполяцией из табл.1 при известном токе I. Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из табл.2.

Таблица 1

I, A	To, K	m
0.5	6730	0.50
1	6790	0.55
5	7150	1.7
10	7270	3
50	8010	11
200	9185	32
400	10010	40
800	11140	41
1200	12010	39

Таблица 2.

T, K	σ, 1/Ом см
4000	0.031
5000	0.27
6000	2.05
7000	6.06
8000	12.0
9000	19.9
10000	29.6
11000	41.1
12000	54.1
13000	67.7
14000	81.5

Параметры разряного контура: R = 0.35 см,

$$L_e = 12 \text{ cm},$$

$$L_k = 187 * 10^{-6} \, \Gamma \text{H},$$

$$C_k = 268 * 10^{-6} \Phi,$$

$$R_k = 0.25 \text{ Om},$$

$$U_c = 1400 \text{ B},$$

$$I_0 = 0..3 \text{ A},$$

$$T_w = 2000 \text{ K}$$

Теоритические сведения

Метод Рунге-Кутты 4-го порядка точности.

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6},$$

$$z_{n+1} = z_n + \frac{q_1 + 2q_2 + 2q_3 + q_4}{6}$$

$$k_1 = h_n f(y_n, z_n), \quad q_1 = h_n \varphi(y_n)$$

$$k_2 = h_n f(y_n + \frac{k_1}{2}, z_n + \frac{q_1}{2}), \quad q_2 = h_n \varphi(y_n + \frac{k_1}{2})$$

$$k_3 = h_n f(y_n + \frac{k_2}{2}, z_n + \frac{q_2}{2}), \quad q_3 = h_n \varphi(y_n + \frac{k_2}{2})$$

$$k_4 = h_n f(y_n + k_3, z_n + q_3, \ q_4 = h_n \varphi(y_n + k_3)$$

Реализация

Листинг 1 – Интерполяция

```
double Interpolation(double Y, List < double > table Y, List < double >
     table)
2 {
      int iMax = 0,
      iMin = 0;
      for (int i = 0; i i++)
      {
          if (Y > tableY[i])
              iMax = i;
8
          else
9
          {
10
              iMax = i;
11
              break:
12
          }
13
      }
14
      if (iMax = 0)
15
          iMax = 1;
16
      iMin = iMax - 1;
17
      return table[iMin] + (table[iMax] - table[iMin]) / (tableY[
18
         iMax] - tableY[iMin]) * (Y - tableY[iMin]);
19 }
```

Листинг 2 – Интегрирование

```
double GetInt(double I, double arg)
{
    double tZero = Interpolation(I, arrI, arrTZero);
    TZeroForGraph = tZero;
    double m = Interpolation(I, arrI, arrM);
    double t = tZero + (tw - tZero) * (Math.Pow(arg, m));
    double sigma = Interpolation(t, arrT, arrSigma);
    return sigma * arg;
```

```
9 }
10
11 double CalculateIntegral (double 1)
12 {
      double a = 0,
13
           b = 1,
14
           n = 100,
15
           h = (b - a) / n,
16
           result = (GetInt(I, a) + GetInt(I, b)) / 2,
17
           curr = 0;
18
19
      for (int k = 0; k < n - 1; k++)
20
      {
           curr += h;
22
           result += GetInt(I, curr);
      }
24
      return result * h;
25
26 }
```

Листинг 3 – Нахождение сопротивления

```
double GetRp(double Le, double R, double I)

{
    double res = Le / (2 * Math.PI * Math.Pow(R, 2) *
        CalculateIntegral(I));
    return res;
}
```

Листинг 4 – Решение системы методом Рунге-Кутта

```
double g(double I, double Ck)
8 {
      return - | / Ck;
10 }
11
12 List < double > GetCoefs (double I, double U, double Le, double R,
     double Lk, double hn, double Rk, double Ck)
13 {
      double k1 = f(I, U, Le, R, Lk, Rk),
14
           q1 = g(I, Ck)
15
           k2 = f(I + hn * k1 / 2, U + hn * q1 / 2, Le, R, Lk, Rk),
16
           q2 = g(I + hn * k1 / 2, Ck),
17
           k3 = f(I + hn * k2 / 2, U + hn * q2 / 2, Le, R, Lk, Rk),
           q3 = g(1 + hn * k2 / 2, Ck),
19
           k4 = f(I + hn * k3, U + hn * q3, Le, R, Lk, Rk),
20
           q4 = g(1 + hn * k3, Ck);
21
      return new List \langle double \rangle() { k1, k2, k3, k4, q1, q2, q3, q4 };
22
23 }
24
  List < double > Get | And U (double | , double U, double Le, double R,
     double Lk, double hn, double Rk, double Ck)
26 {
      List < double > coefs = GetCoefs(I, U, Le, R, Lk, hn, Rk, Ck);
27
      List \langle double \rangle result = new List \langle double \rangle() {
28
           1 + hn * (coefs[0] + 2 * coefs[1] + 2 * coefs[2] + coefs
29
              [3]) / 6,
           U + hn * (coefs[4] + 2 * coefs[5] + 2 * coefs[6] + coefs
30
              [7]) / 6
      };
31
      return result;
32
33 }
```

Результаты работы программы

1. Графики зависимости от времени импульса t: $I(t), U(t), R_p(t),$ произведения $I(t)R_p(t), T_0(t)$ при заданных выше параметрах. Указать шаг сетки.

Шаг сетки - 1е-6

2. График зависимости I(t) при $R_k + R_p = 0$. Обратить внимание на то, что в этом случае колебания тока будут незатухающими.

3. График зависимости I(t) при $R_k + R_p = {\rm const} = 200$ Ом в интервале значений 0 - 20 мкс.

4. Результаты исследования влияния параметров контура C_k, L_k, R_k на длительность импульса $t_{\rm имп}$ апериодической формы. Длительность импульса определяется по кривой зависимости тока от времени на высоте $0.35I_{\rm max}, I_{\rm max}$ - значение тока в максимуме.

График при начальных значениях:

График при увеличении C_k в 2 раза:

При увеличении C_k , $t_{\text{имп}}$ увеличивается.

График при уменьшении C_k в 2 раза:

При уменьшении C_k , $t_{\text{имп}}$ уменьшается.

График при увеличении L_k в 2 раза:

При увеличении L_k , $t_{\scriptscriptstyle \mathsf{ИM\Pi}}$ увеличивается.

График при уменьшении L_k в 2 раза:

При уменьшении L_k , $t_{\scriptscriptstyle \mathsf{ИМП}}$ уменьшается.

График при увеличении R_k в 5 раза:

При увеличении R_k , $t_{\text{имп}}$ увеличивается.

График при уменьшении R_k в 5 раза:

При уменьшении R_k , $t_{\text{имп}}$ уменьшается.

Ответы на вопросы

1. Какие способы тестирования программы, кроме указанного в п.2, можете предложить ещё?

Можно убрать лампу, тогда при большом значении параметра R_k будет апериодическое затухание, а при небольшом - затухающие колебания.

2. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.

$$u_{n+1} = u_n + \int_{x_n}^{x_{n+1}} f(x, u(x)) dx$$

$$u_{n+1} = u_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, u_{n+1})] + O(h^2)$$

$$\begin{cases} \frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k} \\ \frac{dU}{dT} = \frac{-I}{C_k} \end{cases}$$

$$\begin{split} I_{n+1} &= I_n + \frac{h}{2} \left[\frac{U_n - (R_k + R_p(I_n))I_n}{L_k} + \frac{U_{n+1} - (R_k + R_p(I_{n+1}))I_{n+1}}{L_k} \right] \\ U_{n+1} &= U_n + \frac{h}{2} \left[-\frac{I_n}{C_k} - \frac{I_{n+1}}{C_k} \right] = U_n - \frac{h}{2} \left[\frac{I_n + I_{n+1}}{C_k} \right] \end{split}$$

Подставляя U_{n+1} в выражение для I_{n+1}

$$I_{n+1} = I_n + \frac{h}{2L_k} \big[2U_n - \big(R_k + R_p(I_n) + \frac{h}{2C_k}\big)I_n - \big(R_k + R_p(I_{n+1}) + \frac{h}{2C_k}\big)I_{n+1} \big]$$

Получим уравнение вида

$$x = f(x)$$

Его можно решить методом простых итераций или методом Ньютона, после этого определить U_{n+1} .

3. Из каких соображений проводится выбор численного метода того или иного порядка точности, учитывая, что чем выше порядок точности метода, тем он более сложен и требует, как правило, больших ресурсов вычислительной системы?

Оценка для частного случая вида правой части дифференциального уравнения $\phi(x,u) \equiv \phi(x)$

Если правая часть непрерывна и ограничена, и её четвёртые производные тоже, то использование метода Рунге-Кутта четвёртого порядка имеет смысл.

Иначе, предельный порядок схемы Рунге-Кутта не может быть достигнут, и стоит использовать более простые схемы.