Instrukcja obsługi modułu pomiarowego SENSTOR4

4 – kanałowy moduł pomiarowy do tensometrycznych przetworników siły

I. Bezpieczeństwo:

- Przed instalacją modułu pomiarowego należy dokładnie zapoznać się z instrukcją obsługi
- Nieprzestrzeganie instrukcji może być przyczyną obrażeń i uszkodzeń urządzenia. Niniejszą instrukcję należy zachować do wglądu
- Aby uniknąć niepotrzebnych błędów i wypadków, należy upewnić się, że wszystkie osoby korzystające z urządzenia dokładnie zapoznały się z jego działaniem
- Ze względów bezpieczeństwa należy zachować środki ostrożności zgodne z wymienionymi w instrukcji użytkownika, gdyż producent nie ponosi odpowiedzialności za szkody spowodowane przez zaniedbanie

OSTRZEŻENIE

- Montażu powinna dokonać osoba posiadająca odpowiednie uprawnienia elektryczne
- Przed dokonaniem jakichkolwiek czynności związanych z modyfikacją przyłączeń przewodów podłączonych do urządzenia należy upewnić się, że napięcie zasilania jest WYŁĄCZONE!
- Przed pierwszym uruchomieniem modułu należy sprawdzić czy wszystkie przewody zostały prawidłowo podłączone
- Moduł pomiarowy należy chronić przed pyłem i wilgocią. Przedostanie się ich do wnętrza urządzenia może grozić jego uszkodzeniem lub/i porażeniem prądem elektrycznym

II. Zalecenia montażowe:

- 1. Obudowa modułu SENSTOR4 jest przystosowana do montażu na szynie DIN TH-35. W celu zamontowania na szynie należy moduł górną częścią obudowy zawiesić zaczepami na szynie TH-35 następnie docisnąć do listwy dolną część obudowy, aż do usłyszenia charakterystycznego dźwięku "klik" gdy dolny zaczep zaczepi obudowę na szynie
- 2. Urządzenie nie może być eksploatowane na wolnym powietrzu. Prowadzi to do znacznego skrócenia jego żywotności oraz grozi porażeniem prądem elektrycznym
- 3. W celu minimalizacji wpływu zakłóceń z otoczenia na moduł pomiarowy z zaleca się:
 - stosowanie w instalacji przewodów ekranowanych, których ekran należy podłączyć do uziemienia tylko z jednej strony, jak najbliżej urządzenia
 - należy unikać prowadzenia przewodów sygnałowych w pobliżu przewodów zasilających
 - stosować do zasilania modułu kabel o odpowiednim przekroju ze względu na spadki napięcia
 - stosować filtry przeciwzakłóceniowe do zasilania modułów instalowanych w obrębie jednego obiektu
 - zasilanie modułu z innego obwodu niż urządzenia generujące duże zakłócenia impulsowe takie jak: styczniki, przekaźniki, falowniki, silniki

III. Opis urządzenia:

Moduł pomiarowy SENSTOR4 jest 4-kanałowym przetwornikiem przeznaczonym do mostkowych tensometryczych czujników pomiarowych (4 – przewodowych). Dzięki cyfrowemu przetwarzaniu moduł pozwala na uzyskanie pomiarów z dużą rozdzielczością. Urządzenie pozwala na przetwarzanie uzyskanego sygnału z czujników tensometrycznych na napięcie i prąd (dokładniej omówione w dalszej części instrukcji).

Zastosowanie interfejsu RS-485 MODBUS RTU pozwala na odczyt/ustawienie wybranych parametrów urządzenia, jak i odczyt uzyskanych aktualnie pomiarów z czujników. Dzięki zastosowaniu złącza USB możliwa jest konfiguracja urządzenia z poziomu programu na PC. Moduł posiada wejścia uniwersalne pozwalające na tarowanie wybranego kanału pomiarowego, aktywację/dezaktywację funkcji HOLD (wstrzymanie pomiarów) lub wykonanie kalibracji wybranego kanału pomiarowego.

1. Właściwości urządzenia:

- Zasilanie napięciem stałym DC w zakresie od min 10V do max. 30V.
- 4 kanały pomiarowe pozwalające na pomiar z mostkowych tensometrycznych czujników siły
- Odczyt z każdego kanału osobno i suma wybranych kanałów
- Konwersję pomiaru na napięcie i/lub prąd w wybranym zakresie
- Możliwość ustawienia ilość dokonywanych pomiarów na sekundę (od 2.5 do 100 pomiarów/s)
- 2 optoizolowane wejścia uniwersalne (tara/hold/kalibracja)
- Interfejs RS-485 MODBUS RTU pozwalający na komunikację z modułem pomiarowym
- Złącze USB pozwalające na konfigurację urządzenia
- Wyświetlanie pomiarów na wyświetlaczu LED w wybranej jednostce (g,,kg,N,lb)

2. Opis złącz modułu SENSTOR4:

3. Zasilanie modułu pomiarowego:

W celu podłączenia zasilania do modułu SENSTOR4 należy zaopatrzyć się w zasilacz stabilizowany o napięciu wyjściowym od 10V do maksymalnie 30V (Zaleca się użycie zasilacza 24V DC) i wydajności prądowej min. 150 mA.

Należy podłączyć biegun dodatni (+) zasilacza do zacisku VCC, a ujemny (-) do GND na złączu śrubowym modułu. Moduł SENSTOR4 posiada zabezpieczenie przed podaniem zbyt wysokiego napięcia zasilającego i przekroczeniem prądu (bezpiecznik). Prawidłowe zasilanie modułu sygnalizuje zielona dioda LED – POWER. Czerwona dioda sygnalizuje włączenie funkcji HOLD, czyli wstrzymanie pomiarów.

4. Podłączenie czujników tensometrycznych:

Moduł SENSTOR4 pozwala na podłączenie 4 (czterech) czujników tensometrycznych. Czujniki należy podłączyć zgodnie z poniższym schematem:

UWAGA!

W celu eliminacji zakłóceń należy ekran czujnika(jeśli przewód czujnika jest ekranowany) podłączyć do zacisku "E-" (masy - GND).

5. Wyjścia analogowe (napięciowe i prądowe):

Moduł SENSTOR4 pozwala na przetworzenie uzyskanych z czujników siły pomiarów na napięcie i/lub prąd. Użytkownik posiada możliwość włączenia/wyłączenia wybranego wyjścia analogowego oraz ustawienie jego zakresu.

6. Wejścia uniwersalne:

Moduł pomiarowy SENSTOR4 posiada 2 optoizolowane wejścia pozwalające na tarowanie wybranego wejścia, wstrzymanie pomiarów (funkcja HOLD) lub kalibrację wybranego kanału.

a) Wspólna masa (GND):

Do wejścia COM podłączamy masę (GND). Dane wejście staje się aktywne po podaniu napięcia stałego DC 5...24V na zacisk IN1 lub IN2.

b) Wspólny plus (VCC):

Do wejścia COM podłączamy plus (VCC - napięcie stałe DC 5...24V). Dane wejście staje się aktywne po podaniu masy (GND) na zacisk IN1 lub IN2.

7. Konfiguracja RS-485 MODBUS:

Na płytce PCB umieszczono zworkę (JUMPER) pozwalającą na włączenie rezystora terminującego 120Ω . Domyślnie zworka <u>nie jest</u> założona.

8. Konfiguracja modułu przez USB:

Złącze USB B (tzw. drukarkowe) pozwala na komunikację między modułem SENSTOR4 a komputerem PC. Do prawidłowej współpracy modułu z komputerem należy zainstalować sterowniki firmy FTDI. Sterowniki dostępne są pod adresem www:

http://www.ftdichip.com/Drivers/D2XX.htm

Dla systemu operacyjnego Windows 7,8 lub 10 należy pobrać sterowniki zaznaczone na poniższym obrazku:

Natomiast dla starszych wersji Windows np. Windows XP należy pobrać starszą wersję sterowników:

Po instalacji sterowników można podłączyć moduł SENSTOR do komputera PC.

9. Program SENSTOR-PC:

Program SENSTOR-PC pozwala na konfigurację wszystkich potrzebnych parametrów moduł i odczyt pomiarów z czujników tensometrycznych. W dalszej części instrukcji dokładnie omówiono poszczególne funkcje programu.

10. Główne okno programu SENSTOR-PC:

W głównej karcie "Monitor" znajdują się następujące informacje/funkcje:

- 1. "Rozłączony/Podłączony" dioda informująca o podłączeniu modułu do komputera PC
- Wybór podłączonego modułu (pozwala na wybór modułu w przypadku gdy do komputera podłączona więcej niż jeden moduł SENSTOR)
- 3. "HOLD OFF/HOLD ON" przycisk pozwalający na wstrzymanie pomiarów
- 4. Wartości minimum/maksimum dla każdego wejścia i sumy
- 5. Wyniki pomiarów z poszczególnych wejść pomiarowych modułu SENSTOR
- 6. Suma z wybranych kanałów pomiarowych i jej wartości min/max
- 7. Przyciski TARA pozwalające na tarowanie poszczególnych wejść modułu
- 8. Przyciski RESET resetujące zmierzone wartości minimum/maksimum
- 9. Wartości napięcia/prądu na wyjściach analogowych (jeśli są aktywne)

W zależność od wersji modułu pomiarowego (SENSTOR1 – wersja 1 wejściowa, SENSTOR2 – 2 wejściowa, SENSTOR4 – 4 wejściowa) aktywne są tylko opcje dostępne w danym module.

11. Konfiguracja wejść modułu pomiarowego SENSTOR:

Karta "Ustawienia-wejścia" pozwala na konfigurację wejść modułu pomiarowego SENSTOR:

- 1. "Aktywne czujniki" przyciski ON/OFF pozwalają na włączenie lub wyłączenie danego kanału pomiarowego
- 2. Możliwość zmiany jednostki prezentowanych w programie pomiarów (gramy, kilogramy, tony, niutony lub funty)
- 3. Pozwala ustawienie żądanej ilości pomiarów na sekundę w zakresie (2.5 do 100 pomiarów/s)
- 4. Opcja uśredniania pomiarów pozwala na filtrację wahań pomiarów w celu uzyskania lepszej stabilności wyników
- 5. Włączenie/wyłączenie widoku wartości minimum i maksimum w karcie "Monitor"
- 6. Włączenie/wyłączenie możliwości tarowania każdego z wejść osobno
- 7. Ustawienie parametrów czujników tensometrycznych: czułość [mV/V] oraz Zakres pomiarowy [kg]. W celu zapisania wartości do modułu pomiarowego należy kliknąć przycisk "Zastosuj" (osobno dla czułości i zakresu pomiarowego)
- 8. Określenie funkcji wejść INPUT1 i INPUT2 oraz wybór wagi kalibracyjnej i wejścia które ma być kalibrowane. Przycisk "Kalibruj" aktywuje kalibrację według wybranych wyżej parametrów.
- 9. Możliwość ustawienia współczynników proporcjonalności poszczególnych składników sumy oraz możliwość aktywacji/dezaktywacji danego składnika sumy

a) Wprowadzenie parametrów czujników siły podłączonych do wejść modułu SENSTOR:

W celu poprawnego działania pomiarów należy wprowadzić następujące parametry czujnika siły: Czułość [mV/V] – wartość tego parametr standardowo zawiera się w zakresie 1 od 2 mV/V i jest podawana na obudowie i/lub w dokumentacji danego czujnika tensometrycznego Zakres pomiarowy [kg] – parametr ten zwykle również znajduje się na obudowie czujnika lub/i instrukcji. Zwykle podawany jest w kilogramach lub niutonach. W programie SENSTOR-PC należy podać tą wartość w kilogramach [kg].

b) Aktywne czujniki:

Użytkownik posiada możliwość włączenia lub wyłączenie wybranego kanału pomiarowego poprzez kliknięcie klawisza "ON" lub "OFF" (w zależność w jakim aktualnie stanie znajduje się danych kanał pomiarowy).

c) Jednostka:

Pole Jednostka umożliwia wybór jednostki wyników prezentowanych w karcie "Monitor". Możliwe opcje wyboru: gramy, kilogramy, tony, niuton lub funty. Ustawienie to dotyczy tylko jednostki wyników, które są pokazywane w programie SENSTOR-PC. W module SENSTOR wyniki przechowywane są zawsze w gramach!

d) Wybór ilości pomiarów i uśredniania wyniku:

Moduł SENSTOR1 pozwala na wybór kilku prędkości pomiaru z czujników tensometrycznych. Użytkownik ma możliwość ustawienia tego parametru w zakresie od 2.5 do 100 pomiarów/s. W poniższej tabeli przedstawiono możliwe ustawienia:

llość	2.5	5	10	20	40	80	100
pomiarów/s	2.5	3	10	20	40	80	100

Funkcja "Uśrednianie pomiarów" pozwala na filtrację wahań wartości zmierzonej. Czym większa wartość (zakres od 0 do 10) tym stabilniejsze pomiary, jednak odbywa się to kosztem odpowiedzi na zmianę sygnału z czujnika.

e) Suma:

Zakładka "Suma" pozwala na ustawienie wagi (współczynnika proporcjonalności) osobno dla każdego kanału pomiarowego wchodzącego w skład sumy. Zakładka "Składniki sumy" umożliwia poprzez zaznaczenie/odznaczenie wybór składników wchodzących w skład sumy.

f) Pokazuj minimum i maksimum:

Pole wyboru "Pokazuj wartości minimum i maksimum dla każdego czujnika" pozwala na włączenie lub wyłączenie prezentowania w karcie "Monitor" zmierzonych wartości minimum i maksimum dla każdego czujnika. Jeśli ta funkcja jest wyłączona wartości minimum/maksimum dostępne są tylko dla wartości sumarycznej.

g) Pozwalaj na Tarowanie:

Pole wyboru "Pozwalaj na Tarowanie każdego czujnika osobno" pozwala na włączenie/wyłącznie możliwości tarowanie każdego czujnika osobno w zakładce "Monitor". Jeśli ta funkcja jest wyłączona w programie SENSTOR-PC istnieje możliwość tarowanie tylko wszystkich kanałów jednocześnie.

h) Funkcje wejść:

Użytkownik ma możliwość ustawienie jaką funkcję mają spełniać wejścia INPUT1 i INPUT2. W poniższej tabeli przedstawiono możliwe ustawienia:

Funkcja wejścia INPUTx		
Brak		
Tarowanie – Czujnik 1		
Tarowanie – Czujnik 2		
Tarowanie – Czujnik 3		
Tarowanie – Czujnik 4		
Tarowanie Wszystkich		
HOLD – Wstrzymanie pomiarów		
Kalibracja – Czujnik 1		
Kalibracja – Czujnik 2		
Kalibracja – Czujnik 3		
Kalibracja – Czujnik 4		
Kalibracja – Wszystkie		

i) Kalibracja:

W celu przeprowadzenia kalibracji czujnika podłączonego do danego kanału pomiarowego należy wpisać w pole "Waga wzorcowa" wartość odważnika wzorcowego umieszczonego na czujniku tensometrycznym. Wartość odważnika wzorcowego należy podać w gramach! W polu wyboru "Kalibruj" należy wybrać do którego wejścia pomiarowego został podłączony czujnik, który chcemy wykalibrować. Następnie należy przeprowadzić kalibrację klikając przycisk "Kalibracja".

12. Karta Wyjścia/MODBUS:

Karta "Wyjścia/MODBUS" pozwala na konfigurację:

- 1. Analogowego wyjścia napięciowego i prądowego
- 2. Wyświetlacza LED jeśli dany moduł go posiada
- 3. Protokołu komunikacyjnego RS-485 MODBUS

a) Konfiguracja wyjść analogowych:

- Moduł SENSTOR wyposażony jest w dwa wyjścia analogowe: napięciowe i prądowe.
 Użytkownik posiada możliwość włączenia/wyłączenia wybranego wyjścia analogowego.
 Domyślnie przy pierwszym uruchomieniu modułu SENSTOR oba wyjścia analogowe są wyłączone.
- 2. Po aktywacji co najmniej jednego z wyjść analogowych (napięciowego lub prądowego) aktywna staje się opcja wyboru zakresu dla danego wyjścia analogowego. W poniższej tabeli przedstawiono możliwe warianty ustawień zakresu dla wyjścia napięciowego i prądowego:

Wyjście	Możliwe warianty ustawień zakresu
	0 ÷ 5 [V]
	0 ÷ 10 [V]
Napięciowe U	± 5 [V]
	± 10 [V]
	0 ÷ 5.5 [V]
	0 ÷ 11 [V]

	± 5.5 [V]
	± 11 [V]
	0 ÷ 20 [mA]
Prądowe I	4 ÷ 20 [mA]
	0 ÷ 24 [mA]

3. Po wybraniu zakresu danego wyjścia analogowego należy wybrać sygnał sterujący wyjściami analogowymi (sygnał ten jest wspólny dla wyjścia napięciowego i prądowego). W polach minimum i maksimum należy podać wagi przy, których wyjście analogowe ma przyjąć wartość minimalną i maksymalną wybranego zakresu.

Przykład: Sterowanie z wejścia 1 w zakresie 100 – 1000 gram wyjściem analogowym napięciowym w zakresie od 0 do 10 [V].

- 1) W Polu "Aktywne wyjścia analogowe" aktywujemy wyjście napięciowe (aktywacja sygnalizowana jest napisem "ON" na zielonym tle)
- 2) Wybieramy zakres wyjścia analogowego na "0 ÷ 10 [V]"
- 3) W polu "Sterowanie z" wybieramy "Czujnik 1"
- 4) W Polu "Minimum" wpisujemy wartość 100 gram natomiast w polu "Maksimum" wartość 1000 gram. Ustawienia zapisujemy przyciskiem "Zastosuj"

b) Konfiguracja wyświetlacza LED:

Jeśli moduł pomiarowy SENSTOR posiada wyświetlacz LED 7-segmentowy użytkownik ma możliwość ustawienia włączenia lub wyłączenia go polem "Aktywuj wyświetlacz LED w module wagowym". Pole "Jednostka" pozwala na wybór jednostki wartości wyświetlanej na wyświetlaczu LED (aktualnie ustawiona jednostka sygnalizowana jest świeceniem odpowiedniej diody LED po wyświetlaczem). Pole "Wartość z" pozwala na wybór z którego czujnika ma być prezentowana na wyświetlaczu. Wyświetlacz pozwala na ustawienie czy regulacja jasności ma odbywać się automatycznie czy manualnie. W przypadku wyboru sterowania manualnego należy ustawić jasność a następnie zatwierdzić wybór klawiszem "Ustaw".

c) Konfiguracja RS-485 MODBUS RTU:

Dostępne opcje pozwalają na ustawienie odpowiedniej prędkości transmisji w zakresie 1200-115200 oraz adresu slave w zakresie 1-247.

Domyślne parametry transmisji:

Adres slave: 1

Prędkość transmisji: 9600 bps

Bity: 8 bitów, 1 bit stopu, parzystość: brak

Konwersja liczb Float:

Liczba Float znajduje się w dwóch rejestrach i jest zapisana w formacie Float ABCD (Big Endian). W celu odczytania wartości Float należy przeprowadzić następującą konwersję:

Liczba_Float_32_bit = (Rejestr_N)<<16 + (Rejestr_N+1)

Przykład:

Chcemy odczytać wartość czułości czujnika 1. Odczytujemy wartości rejestrów MODBUS z pod adresu 12 i 13. Następnie przeprowadzamy konwersję na liczbę Float:

Konwersja liczb INT64:

Niektóre wartości w rejestrach MODBUS (np. Pomiary z czujników) zapisane są w postaci liczby INT64. W odczytania tych wartości należy przeprowadzić następującą konwersję: Liczba_INT64 = (Rejestr_N)<<48 + (Rejestr_N+1)<<32 + (Rejestr_N+2)<<16 + (Rejestr_N+3)

Przykład:

Chcemy odczytać wartość pomiaru z czujnika 2. Odczytujemy wartości rejestrów MODBUS z pod adresu 4, 5, 6 i 7. Następnie przeprowadzamy konwersję na liczbę INT64:

W przypadku liczb INT32 (Zakresy pomiarowe) konwersja wygląda następująco:

Przykład:

Chcemy odczytać wartość zakresu pomiarowego czujnika 1. Odczytujemy wartości rejestrów MODBUS z pod adresu 16 i 17. Następnie przeprowadzamy konwersję na liczbę INT64:

Dostępne funkcje MODBUS:

Funkcja MODBUS	Opis	
0x03	Odczyt N rejestrów	
0x05	Zapis pojedynczego BITu	
0x10	Zapis N rejestrów	

W poniższej tabeli oznaczenie "(x10)" oznacza, że dana wartość jest przemnożona przez 10. W celu otrzymania rzeczywistej wartość, należy odczytaną z rejestrów MODBUS wartość podzielić przez 10.

Mapa rejestrów SENSTOR4:

Adres	Nazwa - opis	Typ zmiennej	Funkcja MODBUS		
	Rejestry - Read Holding Registers (4x)				
0 ÷ 3	Pomiar z czujnika 1 (x10)	INT64	0x03		
4 ÷ 7	Pomiar z czujnika 2 (x10)	INT64	0x03		
8 ÷ 11	Pomiar z czujnika 3 (x10)	INT64	0x03		
12 ÷ 15	Pomiar z czujnika 4 (x10)	INT64	0x03		
16 ÷ 19	Suma (x10)	INT64	0x03		
20 ÷ 21	Czułość - Czujnik 1	Float ABCD	0x03/0x10		
22 ÷ 23	Czułość - Czujnik 2	Float ABCD	0x03/0x10		
24 ÷ 25	Czułość - Czujnik 3	Float ABCD	0x03/0x10		
26 ÷ 27	Czułość - Czujnik 4	Float ABCD	0x03/0x10		
28 ÷ 29	Zakres - Czujnik 1	UINT32	0x03/0x10		
30 ÷ 31	Zakres - Czujnik 2	UINT32	0x03/0x10		
32 ÷ 33	Zakres - Czujnik 3	UINT32	0x03/0x10		
34 ÷ 35	Zakres - Czujnik 4	UINT32	0x03/0x10		
36 ÷ 37	Współ. sumy – Czujnik 1	Float ABCD	0x03/0x10		
38 ÷ 39	Współ. sumy – Czujnik 2	Float ABCD	0x03/0x10		
40 ÷ 41	Współ. sumy – Czujnik 3	Float ABCD	0x03/0x10		
42 ÷ 43	Współ. sumy – Czujnik 4	Float ABCD	0x03/0x10		
44 ÷ 47	Min. waga sterująca wyj. analogowym	UINT64	0x03/0x10		
48 ÷ 51	Max. waga sterująca wyj. analogowym	UINT64	0x03/0x10		
52 ÷ 53	Wyjście napięciowe [V]	Float ABCD	0x03		
54 ÷ 55	Wyjście prądowe [mA]	Float ABCD	0x03		
56	Wartość sterująca wyj. analogowym	UINT16	0x03/0x10		
57	Zakres wyjścia analogowego napięciowego U	UINT16	0x03/0x10		
58	Zakres wyjścia analogowego prądowego I	UINT16	0x03/0x10		
59	Ilość pomiarów na sekundę	UINT16	0x03/0x10		
60	Ilość uśrednień	UINT16	0x03/0x10		
61	Funkcja wejścia INPUT 1	UINT16	0x03/0x10		
62	Funkcja wejścia INPUT 2	UINT16	0x03/0x10		
63	Jednostka na wyświetlaczu LED	UINT16	0x03/0x10		
64	Wartość wyświetlana na wyświetlaczu LED	UINT16	0x03/0x10		
65	Wartość jasności wyś. LED w trybie MAN	UINT16	0x03/0x10		
66 ÷ 69	Waga kalibrująca (x10)	UINT64	0x03/0x10		
70	Który czujnik ma być kalibrowany	UINT16	0x03/0x10		
	, , ,		•		
	Rejestry Coil (0x) – Wartości 1 bit	owe			
1000	Tarowanie – Czujnik 1	BIT	0x05		
1001	Tarowanie – Czujnik 2	BIT	0x05		
1002	Tarowanie – Czujnik 3	BIT	0x05		
1003	Tarowanie – Czujnik 4	BIT	0x05		
1004	Tarowanie – Wszystkie	BIT	0x05		
1005	Aktywny – Czujnik 1	BIT	0x05		
1006	Aktywny – Czujnik 2	BIT	0x05		
1007	Aktywny – Czujnik 3	BIT	0x05		
1008	Aktywny – Czujnik 4	BIT	0x05		
1009	Aktywny składnik sumy – Czujnik 1	BIT	0x05		
1010	Aktywny składnik sumy – Czujnik 2	BIT	0x05		
1011	Aktywny składnik sumy – Czujnik 3	BIT	0x05		
1012	Aktywny składnik sumy – Czujnik 4	BIT	0x05		

1013	Aktywne wyjście analogowe napięciowe U	BIT	0x05
1014	Aktywne wyście analogowe prądowe I	BIT	0x05
1015	Aktywny wyświetlacz LED	BIT	0x05
1016	Aktywna automatyczna reg. jasności LED	BIT	0x05
1017	Funkcja HOLD – wstrzymanie pomiarów	BIT	0x05
1018	Kalibracja według param. z rejestrów 66 ÷ 70	BIT	0x05

56 - Wartość sterująca wyjściem analogowym		
Wpisana wartość	Wartość sterująca	
0	Brak	
1	Czujnik 1	
2	Czujnik 2	
3	Czujnik 3	
4	Czujnik 4	
5	Suma	

57 - Zakres wyjścia analogowego napięciowego U		
Wpisana wartość	Wybrany zakres	
0	Brak	
1	0 ÷ 5 [V]	
2	0 ÷ 10 [V]	
3	± 5 [V]	
4	± 10 [V]	
5	0 ÷ 5.5 [V]	
6	0 ÷ 11 [V]	
7	± 5.5 [V]	
8	± 11 [V]	

58 - Zakres wyjścia analogowego prądowego I		
Wpisana wartość Wybrany zakres		
0	Brak	
1	0 ÷ 20 [mA]	
2	4 ÷ 20 [mA]	
3	0 ÷ 24 [mA]	

59 – Ilość pomiarów na sekundę		
Wpisana wartość	Wybrana ilość pomiarów	
0	2.5 pomiaru na sekundę	
1	5 pomiarów na sekundę	
2	10 pomiarów na sekundę	
3	20 pomiarów na sekundę	
4	40 pomiarów na sekundę	
5	80 pomiarów na sekundę	
6	100 pomiarów na sekundę	

60 – Ilość uśrednień		
Wpisana wartość Wybrany poziom uśredniania		
0 ÷ 10	0 ÷ 10	

61 - Funkcja wejścia INPUT 1	
Wpisana wartość	Funkcja
0	Brak
1	Tarowanie – Czujnik 1
2	Tarowanie – Czujnik 2
3	Tarowanie – Czujnik 3
4	Tarowanie – Czujnik 4
5	Tarowanie Wszystkich
6	HOLD – Wstrzymanie pomiarów
7	Kalibracja – Czujnik 1
8	Kalibracja – Czujnik 2
9	Kalibracja – Czujnik 3
10	Kalibracja – Czujnik 4
11	Kalibracja – Wszystkie

62 - Funkcja wejścia INPUT 2	
Wpisana wartość	Funkcja
0	Brak
1	Tarowanie – Czujnik 1
2	Tarowanie – Czujnik 2
3	Tarowanie – Czujnik 3
4	Tarowanie – Czujnik 4
5	Tarowanie Wszystkich
6	HOLD – Wstrzymanie pomiarów
7	Kalibracja – Czujnik 1
8	Kalibracja – Czujnik 2
9	Kalibracja – Czujnik 3
10	Kalibracja – Czujnik 4
11	Kalibracja – Wszystkie

63 - Jednostka na wyświetlaczu LED	
Wpisana wartość	Funkcja
1	Gramy
2	Kilogramy
3	Niutony
4	Funty

64 - Wartość wyświetlana na wyświetlaczu LED	
Wpisana wartość	Wyświetlany pomiar
1	Czujnik 1
2	Czujnik 2
3	Czujnik 3
4	Czujnik 4
5	Suma

65 – Wartość jasności wyświetlacza LED w trybie MAN	
Wpisana wartość	Wybrana jasność
20 ÷ 250	min ÷ max

69 - Który czujnik ma być kalibrowany	
Wpisana wartość	Kalibrowany czujnik
1	Czujnik 1
2	Czujnik 2
3	Czujnik 3
4	Czujnik 4
5	Wszystkie

IV. Dane techniczne:

Parametry mechaniczne	
Wymiary modułu:	Szerokość x Wysokość x Głębokość 106 x 58 x 91
Stopień ochrony IP	IP20
Masa	Ok. 200 gram
Mocowanie	Na szynę DIN TH-35
Zakres temperatur pracy	Od 5 do 50 °C

Parametry elektryczne	
Zasilanie	10 30V DC, 150mA, typ. 24V DC
Wejścia czujników	tensometrycznych
Zasilanie czujników tensometrycznych:	5V
Częstotliwość pomiarów:	Od 2,5 do 100 pomiarów/s
Napięcie różnicowe maksymalne:	±19.5mV
Rozdzielczość:	±0.001% FS (Full Scale)
Błąd temperaturowy:	0,00035%/°C
Wejścia cyfrowe INPUT1 i INPUT2	Optoizolowane wejścia aktywne stanem wysokim typ. 24V DC (524VDC)
Wyjścia a	nalogowe
Wyjście napięciowe U	Tryb: 0÷5 [V] Umin = 0 V, Umax = 5 V Rozdzielczość: ±0,076mV Tryb: 0÷10 [V] Umin = 0 V, Umax = 10 V Rozdzielczość: ±0,15mV Tryb: -5÷+5 [V] Umin = -5 V, Umax = 5 V Rozdzielczość: ±0,15mV Tryb: -10÷+10 [V] Umin = -10 V, Umax = 10 V Rozdzielczość: ±0,3mV Tryb: 0÷5,5 [V] Umin = 0 V, Umax = 5,5 V Rozdzielczość: ±0,084mV Tryb: 0÷11 [V] Umin = 0 V, Umax = 11 V Rozdzielczość: ±0,17mV Tryb: -5,5÷+5,5 [V]

	U _{min} = -5 V, U _{max} = 5 V Rozdzielczość: ±0,17mV Tryb: -11÷+11 [V] U _{min} = -11 V, U _{max} = 11 V Rozdzielczość: ±0,33mV
Wyjście prądowe I	Tryb: 0÷20 [mA] I _{min} = 0 mA, I _{max} = 20 mA Rozdzielczość: ±0,3mA Tryb: 4÷20 [mA] I _{min} = 4 mA, I _{max} = 20 mA Rozdzielczość: ±0,24mA Tryb: 0÷24 [mA] I _{min} = 0 mA, I _{max} = 24 mA Rozdzielczość: ±0,36mA
Interfejs komunikacyjny	USB B(złącze tzw. drukarkowe) RS485 MODBUS RTU