TITLE1 TITLE2 TITLE3

Tong Dong Qiu

CE-MS-2017

Abstract

DALIGNER or Daligner

TITLE

THESIS

submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

 $\begin{array}{c} {\rm AUTHOR} \\ {\rm born~in~PLACE,~COUNTRY} \end{array}$

Computer Engineering Department of Electrical Engineering Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology

TITLE

by AUTHOR

Abstract

Laboratory: Computer EngineeringCodenumber: CE-MS-2017-number

Committee Members :

Advisor: , CE, TU Delft

 Dedicated to my family and friends

Contents

Li	ist of Figures	vii
Li	ist of Tables	ix
Li	ist of Acronyms	xi
A	cknowledgements	xiii
1	Introduction	1
2	Background	3
3	Concept 3.1 Pacbio reads	5
4	Specification	7
5	Experiments	9
6	Conclusion	11
Bi	ibliography	13
Li	ist of Definitions	15
٨		17

List of Figures

List of Tables

List of Acronyms

 ${\bf GPU}$ Graphics Processing Unit

Acknowledgements

AUTHOR Delft, The Netherlands September 14, 2017

Introduction

Background

Concept

MAIN IS TRUE

3.1 Pacbio reads

Daligner finds alignments between long, noisy reads. Pacific Biosciences has commercially launched its first sequencer in 2011. It is able to output reads with an average of 1000 bases, which is significantly longer than NGS! (NGS!) reads [1]. In 2014, a new polymerase-chemistry combination was released, called P6-C4. This version can output average read lengths of 10000-15000 bases, and its longest reads can exceed 40000 bases [?]. While the drawback is that these reads have an error rate of 12-15%, this can be compensated by the distribution of these errors [?]. First, the set of reads is a nearly Poisson sampling of the sampled genome. This implies that there exists a coverage c for every target coverage k, such that every region of the genome is covered k times [?]. Secondly, the work of Churchill and Waterman [?] implies that the accuracy of the consensus sequence of k sequences is $O(\epsilon^k)$, which goes to 0 as k increases. This means that if the reads are long enough to handle repetitive regions, in principle a near perfect de novo assembly of the genome is possible, given enough coverage.

Important points for de novo DNA sequencing are: what level of coverage is needed for high quality assembly? And how to build an assembler that is able to deal with high error rates and long reads? Most previous assemblers work with NGS! reads, which are much shorter and have much lower error rates. Some algorithms used in these assemblers, such as DBG! (DBG!) [?] would grow too large for high error rates and long reads. Since Daligner was build, new methods of using DBG! with long reads have been developed, but they rely on a short read based DBG! to correct errors in long reads.

Specification

Experiments

Conclusion

Bibliography

[1] K. Davies, "Get smrt: Pacific biosciences unveils software suite with commercial launch," April 2011. [Online]. Available: http://www.bio-itworld.com/news/04/29/2011/Pacific-Biosciences-software-commercial-launch.html

14 BIBLIOGRAPHY

List of definitions

.. ...

A