Занятие №2

1 Вычислить:

- 1) $\sin 270^{\circ}$; $\sin 180^{\circ}$; $\cos 360^{\circ}$; $\sin (-90^{\circ})$; $\tan 270^{\circ}$; $\cot (-90^{\circ})$; $\sin 720^{\circ}$
- 2) $\sin 120^{\circ}$; $\cos 150^{\circ}$; $\sin 220^{\circ}$; $\sin (-135^{\circ})$; $\cos 225^{\circ}$; $tg(-120^{\circ})$; $\sin (-690^{\circ})$; $\cos 405^{\circ}$; $ctg(-1020^{\circ})$

2 Вычислить:

- 1) $\sin \frac{\pi}{3}$; $\cos \frac{\pi}{4}$; $\cot \frac{\pi}{2}$; $\cot \frac{\pi}{6}$
- 2) $\sin \frac{7\pi}{6}$; $\sin \left(-\frac{5\pi}{4}\right)$; $\cos \frac{13\pi}{4}$; $\sin \frac{29\pi}{3}$; $\sin \left(-\frac{11\pi}{4}\right)$; $\cos \frac{55\pi}{6}$; $\tan \frac{20\pi}{3}$; $\tan \left(-\frac{5\pi}{4}\right)$

3 Вычислить:

- 1) $2\sin 30^{\circ} \sqrt{3}\sin 60^{\circ} \cdot 45$
- 2) $4\cos 45^{\circ} \cdot \cot 60^{\circ} \cdot \cot 60^{\circ} 3\sin 45^{\circ}$
- 3) $(0.75 \cdot \text{tg}^2 30^\circ \sin^2 60^\circ + \text{tg}^2 45^\circ + \cos 60^\circ)^{-1}$
- 4) $\sqrt{(\operatorname{tg} 60^{\circ} 2)^2} \sqrt{(\operatorname{ctg} 30^{\circ} 2)^2}$

4 Вычислить:

- 1) $\operatorname{ctg} \frac{\pi}{6} \cdot \operatorname{cos} \frac{\pi}{3} \cdot \operatorname{sin} \frac{\pi}{4}$
- 2) $\left(\sin\frac{\pi}{3}\cdot\cos\left(-\frac{\pi}{4}\right)\cdot\operatorname{tg}\left(-\frac{\pi}{6}\right)\right)^{-1}$
- 3) $\frac{\left(\cos\left(-\frac{3\pi}{2}\right) \sin\frac{3\pi}{2}\right)^2}{2\sin\frac{\pi}{6} \cdot \tan\frac{\pi}{4} + \cos(-\pi) \sin\frac{\pi}{4}}$

3) $(1 + \operatorname{ctg}^2 \alpha)(1 - \sin^2 \alpha) = \operatorname{ctg}^2 \alpha$

5 Доказать тождество:

- 1) $\cos^2 x + \sin^2 x \cdot \sin^2 y + \sin^2 x \cdot \cos^2 y = 1$
- 2) $\frac{\sin^2 x}{\sin x \cos x} \frac{\sin x + \cos x}{\tan^2 x 1} = \sin x + \cos x$
- **6** Вычислить значение:
- 1) tg α , если $\cos \alpha = -0.6$ и $90^{\circ} < \alpha < 180^{\circ}$
- 2) $\sin x$, $\cos x$, если $\operatorname{ctg} x = -\frac{8}{15}$ и $x \in (90^\circ; 180^\circ)$