Computabilidad y Complejidad Práctica 2

- 1) Construir MT:
- a) Construir una máquina de Turing que haga un corrimiento a derecha de la cadena binaria en la cinta, marcando con un símbolo especial '#' la celda que corresponde al primer símbolo desplazado. $\Gamma = \{B, \#, 0, 1\}.$
- b) Y otra que haga un corrimiento a izquierda.
- 2) Construir MT:
- a) Construir una máquina de Turing M tal que $L(M) = \{0^n1^n / n \ge 1\}$ y mostrar la traza de computación de M para las entradas $w_1 = 0011$ y $w_2 = 011$.
- b) Construir una máquina de Turing que busque en la cinta el patrón "abab" y se detenga si y sólo si encuentra ese patrón. $\Gamma = \{a, b, c, B\}$
- 3) Construir máquinas de Turing para computar las siguientes funciones:
- a) Suma unaria. $\Sigma = \{+, 1\}$.
- b) Resta unaria $a b \operatorname{con} a > b \Sigma = \{-, 1\}.$
- c) Calcular el complemento a 2 de un número binario de 8 bits $\Sigma = \{0, 1\}$
- 4) Sea $\Sigma = \{a\}$ y w = a. Decir cuáles son las palabras que se obtienen como resultado de aplicar las siguientes operaciones: www, www, w^3 , w^5 , w^0 ; Cuáles son sus longitudes? Definir Σ^* .
- 5) Idem al ejercicio anterior, pero con $\Sigma = \{a, b\}$ y w = aba.
- 6) Sea $\Sigma = \{a, b, c\}$, escriba las 13 cadenas más cortas de Σ^* .
- 7) Dar tres ejemplos de lenguajes basados en el alfabeto {0,1}
- 8) ¿Cuántas cadenas de longitud 3 hay en $\{0,1,2\}^*$, y cuántas de longitud n?
- 9) Explicar la diferencia -si la hay- entre los lenguajes L₁ y L₂.

a)
$$L_1 = \emptyset$$

$$L_2 = \{\lambda\}$$

b)
$$L_1 = \Sigma^* \cup \{\lambda\}$$

$$L_2 = \varnothing \cup \Sigma^*$$

c)
$$L_1 = \Sigma^* - \emptyset$$

$$L_2 = \Sigma^*$$

c)
$$L_1 = \Sigma^* - \emptyset$$

d) $L_1 = \Sigma^* - \{\lambda\}$

$$L_2 = \Sigma^*$$

- 10) Mostrar que Σ^* es infinito contable.
- 11) Indicar cuál es el lenguaje que se obtiene al intersectar los siguientes lenguajes:

a)
$$L_1 = \{a^n c^m d^n / n \ge 0, m \ge 0\}$$
 con $L_2 = \{c^n / n \ge 0\}$

b)
$$L_1 = \{a^n c^m d^n / n > 0, m \ge 0\}$$
 con $L_2 = \{c^n / n \ge 0\}$

c)
$$L_1 = \{a^n c^m d^n / n \ge 0, m > 10\}$$
 con $L_2 = \{c^n / n > 5\}$

d)
$$L_1 = \{1^n 2^m / n, m \ge 0, n \text{ par}, m \text{ impar}\}\ \text{con } L_2 = \{2^n / n \ge 0\}$$

e)
$$L_1 = \{1^n 2^m / n, m \ge 0, n \text{ par}, m \text{ impar}\}\ \text{con } L_2 = \{1^n / n \ge 0\}$$

- 12) Encontrar si es posible un lenguaje L_1 que cumpla:
 - a) $L_1 \cap \{1^k 2^m 3^n / m = k + n + 1 \text{ y } n, k \ge 0\} = \{1^n 2^{n+1} / n \ge 0\}$
 - b) $L_1 \cap \{1^n 2^m / n \neq m \ y \ n, \ m \geq 0\} = \{1^n 2^n / n > 0\}$
- 13) Conteste las siguientes preguntas sobre Máquinas de Turing
 - a) ¿Puede el alfabeto de la cinta (Γ) ser el mismo que el alfabeto de entrada (Σ)?
 - b) ¿Puede una máquina de Turing tener un único estado?
 - c) ¿Cuántos lenguajes existen definidos sobre el alfabeto $\Sigma = \{0,1\}$? ¿y sobre $\Sigma = \{1\}$?
 - d) ¿Cuáles de los siguientes conjuntos son lenguajes definidos sobre Σ ?

$$\emptyset$$
, Σ , Σ^* , $\{\lambda\}$, $\{\lambda\} \cup \Sigma$, $\{\emptyset\}$

e) Sea la siguiente máquina de Turing:

$$M = < Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R >$$

Con Q =
$$\{q_0, q_1, q_2, q_3\}$$
, $\Sigma = \{a, b, c\}$, $\Gamma = \{a, b, c, B\}$ y $\delta(q, s) = (q', s', m)$ tq $q \in Q$ $q' \in Q \cup \{q_R\}$ $s, s' \in \Gamma$ $m \in \{D, I\}$

¿Reconoce el lenguaje $\{\lambda\}$? Si no es así indique cuál es el lenguaje que reconoce

- 14) Sea $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$, en cada caso asumir que los $\delta($) no especificados son los que hacen detener la MT en q_R , determinar L(M)
 - a) $Q = \{q_0, q_1\}; \Sigma = \{0,1\}; \Gamma = \{0, 1, B\}$

$$\delta(q_0, 0) = (q_0, 0, I)$$

$$\delta(q_0, B) = (q_0, B, D)$$

$$\delta(q_0, 1) = (q_1, 1, D)$$

b) $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$

$$\delta(q_0, 0) = (q_1, B, D)$$

$$\delta(q_1, B) = (q_A, B, D)$$

$$\delta(q_1, 0) = (q_A, 0, D)$$

$$\delta(q_1, 1) = (q_A, 1, D)$$

c) $Q = \{q_0, q_1\}; \Sigma = \{0,1\}; \Gamma = \{0, 1, B\}$

$$\delta(q_0, 0) = (q_0, 0, I)$$

$$\delta(q_0, B) = (q_0, B, D)$$

$$\delta(q_0, 1) = (q_1, 1, D)$$

$$\delta(q_1, 0) = (q_0, B, I)$$

$$\delta(q_1, B) = (q_0, B, D)$$

d) $Q = \{q_0\}; \Sigma = \{0,1\}; \Gamma = \{0,1,B\}$

$$\delta(q_0, 1) = (q_0, B, I)$$

$$\delta(q_0, 0) = (q_A, B, I)$$

$$\delta(q_0, B) = (q_0, B, D)$$

e) $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$

$$\delta(q_0, 0) = (q_1, B, D)$$

$$\delta(q_1, 0) = (q_1, 1, D)$$

$$\delta(q_1, 1) = (q_1, 0, D)$$

$$\delta(q_1, B) = (q_A, 1, D)$$