EA772 Circuitos Lógicos Prof. José Mario De Martino – Prova 02 – 1°. Semestre 2009

1.

	Entrada		
EA	x = 0	x = 1	
A	F, 0	C, 0	
В	H, 1	G, 1	
С	H, 0	D, 1	
D	B, 0	H, 0	
Е	B, 0	C, 0	
F	C, 1	G, 1	
G	H, 1	B, 1	
Н	C, 0	A, 1	
	PI	E, z	

1- Equivalentes

(A, D, E)P1 =

A

(C, H)
(/ /

\boldsymbol{C}
C

	В	C	
	EA	$\mathbf{x} = 0$	x = 1
	A	В	С
A	D	В	C
	E	В	C
	В	С	В
В	F	С	В
	G	C	В
C	C	С	A
C	Н	С	A
		I	PE

2-Equivalentes

$$P = P1 = P2 =$$

(A, D, E)A

(B, F, G)В

(C, H) C

Tabela de estados mínima

	Entrada		
EA	x = 0	x = 1	
A	B, 0	C, 0	
В	C, 1	B, 1	
С	C, 0	A, 1	
	PE	, Z	

2.

a)

EA			PE
Q	S	R	D
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	X
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	X

D

	5 K	5 K	5 K	5 K	
Q´	0	0	X	1	$D_{ps} = R'(Q + S)$
Q	1	J	_X	1	$D_{ps} - K (Q + S)$

Mesmo custo. Escolho arbitrariamente D_{sp} .

Figura 1: Diagrama esquemático do circuito do exercício 2.a.

EA			PE
Q	J	K	D
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

D

	J´K´	J´K	J K	J K′	
Q´	0	0	1	1	$D_{ps} = (Q + J) (Q' + K')$
Q	1	0	0	1	$D_{ps} = (Q + J) (Q + K)$

Mesmo custo. Escolho arbitrariamente D_{sp} .

Figura 2: Diagrama esquemático do circuito do exercício 2.b.

3.

Figura 3: Diagrama de estados do reconhecedor do padrões do exercício 3.

Minimização dos estados

_EA	x=0	x=1	_
S0	S0, 0	S1, 0	-
S 1	S2, 0	S1, 0	
S 2	S4, 0	S3, 0	P1 = (S0, S1, S2) (S3) (S4)
S 3	S2, 1	S1, 0	
S4	S0, 0	S1, 1	
	Pl	E, z	-

Não há estados equivalentes, portanto, o sistema já tem um número mínimo de estados.

 $5 \text{ estados} \Rightarrow 3 \text{ flip-flops}$

Codificação binária dos estados

	Código			
Estado	y ₂	y_1	\mathbf{y}_0	
S 0	0	0	0	
S 1	0	0	1	
S 2	0	1	0	
S 3	0	1	1	
S 4	1	0	0	

Flip-flop JK

Q(t)	\rightarrow	Q(t+1)	J	K
0	\rightarrow	0		X
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	X	0

		PE			EA								
X	Q_2	\mathbf{Q}_1	Q_0	\mathbf{Y}_2	\mathbf{Y}_1	\mathbf{Y}_0	Z	J_2	\mathbf{K}_2	J_1	\mathbf{K}_1	J_0	K_0
 0	0	0	0	0	0	0	0	0	X	0	X	0	X
0	0	0	1	0	1	0	0	0	X	1	X	\mathbf{X}	1
0	0	1	0	1	0	0	0	1	X	X	1	0	X
0	0	1	1	0	1	0	1	0	X	X	0	\mathbf{X}	1
0	1	0	0	0	0	0	0	X	1	0	X	0	X
0	1	0	1	X	X	X	X	X	X	\mathbf{X}	X	\mathbf{X}	X
0	1	1	0	X	X	X	X	X	X	\mathbf{X}	X	\mathbf{X}	X
0	1	1	1	X	X	X	X	X	X	X	X	X	X
1	0	0	0	0	0	1	0	0	X	0	X	1	X
1	0	0	1	0	0	1	0	0	X	0	X	X	0
1	0	1	0	0	1	1	0	0	X	X	0	1	X
1	0	1	1	0	0	1	0	0	X	X	1	X	0
1	1	0	0	0	0	1	1	X	1	0	X	1	X
1	1	0	1	X	X	X	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X	X	X

Z

	$\mathbf{Q'}_1 \mathbf{Q'}_0$	$Q'_1 Q_0$	$Q_1 Q_0$	$Q_1 Q_0$
$x'Q'_2$	0	0	\bigcap	0
$x'Q_2$	0	X	X	X
$x Q_2$	Y	X	X	\searrow
x Q'2	0	0	0	0

$$z_{sp} = x Q_2 + x' Q_1 Q_0$$

$$z_{ps} = (x' + Q_2) (x + Q_0) (x + Q_1)$$

Escolho z_{sp} por ter menor custo.

 J_2

	$Q'_1 Q'_0$	$Q'_1 Q_0$	$Q_1 Q_0$	$Q_1 Q_0$
$x'Q'_2$	0	0	0	1
$x'Q_2$	X	X	X	X
$x\;Q_2$	X	X	X	X
x Q'2	0	0	0	0

$$J_{2sp} = x' Q_1 Q'_0$$

$$J_{2ps} = x' Q_1 Q'_0$$

 \mathbf{K}_2

 $K_{2sp}=1$

	Q' ₁ Q' ₀	$Q'_1 Q_0$	$Q_1 Q_0$	$Q_1 Q_0$
$x'Q'_2$	X	X	X	X
$x'Q_2$	1	X	X	X
$x\;Q_2$	1	X	X	X
x Q´2	X	X	X	X

 $K_{2ps} = 1$

Expressões iguais.

 \mathbf{J}_1

	Q'1 Q'0	$\mathbf{Q'}_1 \mathbf{Q}_0$	$Q_1 \; Q_0$	$Q_1 Q_0$
$x'Q'_2$	0	1	X	X
$x'Q_2$	0	X		X
$x\;Q_2$	0	X	X	X
x Q'2	0	0	X	X

 $J_{1sp} = x' Q_0$

 $J_{1ps} = x' Q_0$

 K_1

$$K_{1ps} = (x' + Q_0) (x + Q'_0)$$

Mesmo custo. Escolho arbitrariamente Escolho $K_{1\mathrm{sp}}$.

 \mathbf{J}_0

	$Q'_1 Q'_0$	$Q_1 Q_0$	$Q_1 \; Q_0$	$Q_1Q'_0$
$x'Q'_2$	0	X	X	0
$x'Q_2$	0	X	X	X
$x\;Q_2$		X	X	$\sqrt{\chi}$
x Q'2	1	X	X	1

$$J_{0sp} = x$$

	$Q'_1 Q'_0$	$Q'_1 Q_0$	$Q_1 Q_0$	$Q_1 Q_0$
$x'Q'_2$	0	X	X	
$x'Q_2$		X	X	X
$x\;Q_2$	1	X	X	X
x Q'2	1	X	X	1

$$J_{0ps} = 2$$

 \mathbf{K}_0

	$\mathbf{Q'_1} \mathbf{Q'_0}$	$Q'_1 Q_0$	$Q_1 Q_0$	$Q_1 Q_0$	
$x'Q'_2$	X	1	1	_*_	
$x'Q_2$	X	X	X	X	V = v'
$x\;Q_2$	X	X	X	X	$K_{0sp} = x'$
x Q'2	X	0	0	X	
'					•

	$\mathbf{Q'}_1 \mathbf{Q'}_0$	$Q_1 Q_0$	$Q_1 Q_0$	$Q_1 Q'_0$	
$x'Q'_2$	X	0	0	X	
$x'Q_2$	X	X	X	X	V v'
$x\;Q_2$	X	X	X	X	$K_{0ps} = x'$
x Q'2	X	_1_	1	X	

Figura 4: Diagrama esquemático do circuito do exercício 3.

4.

Figura 5: Identificação das portas e caminhos utilizados na solução do exercício 4.

$$T_{min} = max[t_a, t_b, t_c]$$

Cálculo ta

$$\begin{aligned} ta &= max[\ t_{in} + t_{pLH}(O1) + t_{pLH}(A1) + t_{pLH}(N1) + t_{su}(FF), \\ t_{in} + t_{pHL}(O1) + t_{pHL}(A1) + t_{pHL}(N1) + t_{su}(FF)\] \end{aligned}$$

$$t_{pLH}(O1) = 0.12 + 0.037$$
. $1 = 0.157$ ns $t_{pHL}(O1) = 0.20 + 0.019$. $1 = 0.219$ ns

$$t_{pLH}(A1) = 0.15 + 0.037$$
. $1 = 0.187$ ns $t_{pHL}(A1) = 0.16 + 0.017$. $1 = 0.177$ ns

$$t_{pLH}(N1) = 0.02 + 0.038$$
. $2 = 0.096$ ns $t_{pHL}(N1) = 0.05 + 0.017$. $2 = 0.084$ ns

$$t_{in} + t_{pLH}(O1) + t_{pLH}(A1) + t_{pLH}(N1) + t_{su}(FF) = 2.0 + 0.157 + 0.187 + 0.096 + 0.3 = 2.74 \text{ ns}$$

 $t_{in} + t_{pHL}(O1) + t_{pHL}(A1) + t_{pHL}(N1) + t_{su}(FF) = 2.0 + 0.219 + 0.177 + 0.084 + 0.3 = 2.78 \text{ ns}$

$$t_a = 2,78 \text{ ns}$$

Cálculo de t_b

$$\begin{split} t_b = max[~t_{su}(FF) + t_{pLH}(O1) + t_{pLH}(A1) + t_{pLH}(N2) + tp_{HL}(FF), \\ t_{su}(FF) + t_{pHL}(O1) + t_{pHL}(A1) + t_{pHL}(N2) + tp_{LH}(FF)~] \end{split}$$

$$t_{pLH}(O1) = 0.12 + 0.037$$
. $1 = 0.157$ ns $t_{pHL}(O1) = 0.20 + 0.019$. $1 = 0.219$ ns

$$t_{pLH}(A1) = 0.15 + 0.037$$
 . $1 = 0.187$ ns $t_{pHL}(A1) = 0.16 + 0.017$. $1 = 0.177$ ns

$$t_{pLH}(N2) = 0.02 + 0.038$$
 . $2 = 0.096$ ns $t_{pHL}(N2) = 0.05 + 0.017$. $2 = 0.084$ ns

$$tp_{LH}(FF) = 0.49 + 0.038 \cdot 2 = 0.566 \text{ ns}$$

 $tp_{HL}(FF) = 0.54 + 0.019 \cdot 2 = 0.578 \text{ ns}$

$$t_{su}(FF) + t_{pLH}(O1) + t_{pLH}(A1) + t_{pLH}(N2) + t_{pLH}(FF) = 0.3 + 0.157 + 0.187 + 0.096 + 0.578 = 1.318$$

$$t_{su}(FF) + t_{pHL}(O1) + t_{pHL}(A1) + t_{pHL}(N2) + tp_{LH}(FF) = 0.3 + 0.219 + 0.177 + 0.084 + 0.566 = 1.346$$
 ns

$$t_b = 1,346 \text{ ns}$$

Cálculo de t_c

$$\begin{split} t_c = max[& t_{pLH}(O2) + t_{pLH}(N2) + tp_{HL}(FF) + t_{out}, \\ & t_{pHL}(O2) + t_{pHL}(N2) + tp_{LH}(FF) + t_{out} \] \end{split}$$

$$t_{pLH}(O2) = 0.12 + 0.037 \cdot 10 = 0.49 \text{ ns}$$

$$t_{pHL}(O2) = 0.20 + 0.019 . 10 = 0.39 \text{ ns}$$

$$t_{pLH}(N2) = 0.02 + 0.038$$
 . $2 = 0.096$ ns

$$t_{pHL}(N2) = 0.05 + 0.017 \cdot 2 = 0.084 \text{ ns}$$

$$tp_{LH}(FF) = 0.49 + 0.038 \cdot 2 = 0.566 \text{ ns}$$

 $tp_{HL}(FF) = 0.54 + 0.019 \cdot 2 = 0.578 \text{ ns}$

$$t_{pLH}(O2) + t_{pLH}(N2) + tp_{HL}(FF) + t_{out} = 0.49 + 0.096 + 0.578 + 1.0 = 2.164 \text{ ns} \\ t_{pHL}(O2) + t_{pHL}(N2) + tp_{LH}(FF) + t_{out} = 0.39 + 0.084 + 0.566 + 1.0 = 2.04 \text{ ns} \\$$

$$t_c = 2,164 \text{ ns}$$

$$T_{min} = 2,78 \text{ ns}$$

$$f_{max} = (T_{min})^{-1} \cong 360 \text{ MHz}$$