Zebrafish Detection Demonstration

Table of Contents

Maxwell Greene	1
Import Image	1
Show Background & Image	1
Subtract Background & Fill holes	
Show a histogram of subtracted image contents	
Remove Small Objects	
Mark Out Skeleton	

Maxwell Greene

```
%Parameters
backDif = 25; %Background difference
noiseSize = 5; %Size of particles to keep
medFiltRad = 15; %Radius to evaluate median filter
skelSize = 20; %Size to evaluate skeleton
```

Import Image

```
image = imread('Data/example2.jpg');
background = imread('Data/backGround.jpg');
```

imshowpair(background,image,'montage');

Show Background & Image

```
Warning: Image is too big to fit on screen; displaying at 33%
```


Subtract Background & Fill holes

```
image1 = background(:,:) - image(:,:) > backDif;
image2 = imfill(image1,'holes');
imshowpair(image,image2,'montage');
```

Warning: Image is too big to fit on screen; displaying at 33%

Show a histogram of subtracted image contents

imhist(image);

Remove Small Objects

```
image3 = bwareaopen(image2,noiseSize);
imshowpair(image2,image3,'montage');
image4 = medfilt2(image3,[medFiltRad,medFiltRad]);
imshowpair(image3,image4,'montage');
```


Mark Out Skeleton

```
[ske, r] = skeleton(image4);
imshow(r);
mainske = bwmorph(ske > skelSize, 'thin', inf);
imshow(mainske);
[d, ep, jp] = skeanalysis(mainske);
imshow(image); hold on;
skemark(mainske, ske, ep, jp, r);
```


Published with MATLAB® R2017b