Data Analysis

```
import pandas as pd
import matplotlib.pylab as plt
import seaborn as sns

df = pd.read_csv('dataset/final_data.csv')
df.head()
```

	symboling	normalized- losses	make	aspiration	num- of- doors	body-style	drive- wheels	engine- location	wheel- base	length	 compression- ratio	hor
C	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111
1	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111
2	1	122	alfa- romero	std	two	hatchback	rwd	front	94.5	0.822681	 9.0	154
3	2	164	audi	std	four	sedan	fwd	front	99.8	0.848630	 10.0	102
4	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630	 8.0	115

5 rows × 29 columns

```
make aspiration num-of-doors \
   symboling
              normalized-losses
0
                            122 alfa-romero
                                                     std
                                                                  two
           3
                            122
                                 alfa-romero
                                                     std
1
                                                                  two
2
           1
                            122 alfa-romero
                                                     std
                                                                  two
           2
3
                            164
                                         audi
                                                     std
                                                                 four
           2
4
                            164
                                         audi
                                                     std
                                                                 four
    body-style drive-wheels engine-location wheel-base
                                                            length
  convertible
                        rwd
                                       front
                                                    88.6 0.811148
   convertible
                                       front
1
                        rwd
                                                    88.6 0.811148
2
     hatchback
                        rwd
                                       front
                                                    94.5 0.822681
3
         sedan
                        fwd
                                       front
                                                    99.8 0.848630
4
                        4wd
                                       front
                                                    99.4 0.848630
         sedan
   compression-ratio horsepower
                                  peak-rpm city-mpg highway-mpg
                                                                    price \
0
                 9.0
                           111.0
                                     5000.0
                                                  21
                                                              27 13495.0
1
                 9.0
                           111.0
                                     5000.0
                                                  21
                                                              27 16500.0
2
                 9.0
                           154.0
                                     5000.0
                                                  19
                                                              26 16500.0
3
                10.0
                           102.0
                                     5500.0
                                                  24
                                                              30 13950.0
4
                 8.0
                           115.0
                                     5500.0
                                                              22 17450.0
                                                  18
```

Steps for working with missing data:

- 1. Identify missing data
- 2. Deal with missing data
- 3. Correct data format

```
import numpy as np

df.replace("?", np.nan, inplace = True)

df.sample(5)
```

	symboling	normalized- losses	make	aspiration	num- of- doors	body- style	drive- wheels	engine- location		length	 compression ratio
47	1	104	mazda	std	two	hatchback	fwd	front	93.1	0.764536	 9.0
165	2	134	toyota	std	two	hatchback	rwd	front	98.4	0.846708	 9.3
186	3	256	volkswagen	std	two	hatchback	fwd	front	94.5	0.796252	 8.5
4	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630	 8.0
11	0	188	bmw	std	two	sedan	rwd	front	101.2	0.849592	 9.0

5 rows × 29 columns

```
normalized-losses
                                          make aspiration num-of-doors
     symboling
47
             1
                               104
                                          mazda
                                                       std
                                                                     two
165
             2
                               134
                                         toyota
                                                       std
                                                                     two
186
             3
                               256 volkswagen
                                                       std
                                                                     two
             2
4
                               164
                                           audi
                                                       std
                                                                    four
11
             0
                               188
                                            bmw
                                                       std
                                                                     two
    body-style drive-wheels engine-location wheel-base
                                                             length
47
     hatchback
                         fwd
                                        front
                                                     93.1 0.764536
165 hatchback
                                        front
                                                     98.4
                         rwd
                                                           0.846708
                                                                      . . .
186 hatchback
                         fwd
                                        front
                                                     94.5 0.796252
                                                                      . . .
4
                         4wd
                                        front
                                                     99.4 0.848630
         sedan
                                        front
11
         sedan
                         rwd
                                                    101.2 0.849592
                                                                      . . .
     compression-ratio
                        horsepower
                                     peak-rpm city-mpg highway-mpg
                                                                        price \
47
                    9.0
                               68.0
                                        5000.0
                                                     30
                                                                  31
                                                                       5195.0
                    9.3
165
                              116.0
                                        4800.0
                                                     24
                                                                  30
                                                                       9989.0
                                                                  29
186
                    8.5
                               90.0
                                        5500.0
                                                     24
                                                                       9980.0
4
                    8.0
                              115.0
                                        5500.0
                                                     18
                                                                  22
                                                                      17450.0
11
                    9.0
                              121.0
                                        4250.0
                                                     21
                                                                  28
                                                                      20970.0
```

The missing values are converted to Python's default. We use Python's built-in functions to identify these missing values. Methods to detect missing data:

1. .isnull()

2. .notnull()

The output is a boolean value indicating whether the value that is passed into the argument is in fact missing data.

```
missing_data = df.isnull()
missing_data.head(5)
```

	symboling	normalized- losses	make	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length	 compression- ratio	horsepower
0	False	False	False	False	False	False	False	False	False	False	 False	False
1	False	False	False	False	False	False	False	False	False	False	 False	False
2	False	False	False	False	False	False	False	False	False	False	 False	False
3	False	False	False	False	False	False	False	False	False	False	 False	False
4	False	False	False	False	False	False	False	False	False	False	 False	False

5 rows × 29 columns

0 1 2 3 4	symboling False False False False	normalized	-losses False False False False False	make False False False False False	F F	tion alse alse alse alse	num-of	-doors b False False False False False	·	style False False False False False	\
0 1 2 3 4	drive-wheel Fals Fals Fals Fals	se se se	location False False False False False		-base False False False False False	length False False False False False	• • • • • • • • • • • • • • • • • • • •	compress		ratio False False False False	\
0 1 2 3 4	horsepower False False False False	peak-rpm False False False False False	city-mpg False False False False		way-mpg False False False False	Fals Fals Fals Fals	e e e	y-L/100km False False False False False	} } }		

"True" stands for missing value, while "False" stands for not missing value.

Missing values in each column

Using a for loop in Python, we can quickly figure out the number of missing values. In the body of the for loop the method ".value counts()" counts the number of "True" values.

```
for column in missing_data.columns.values.tolist():
    print(column)
    print(missing_data[column].value_counts())
    print("")
symboling
False
         201
Name: symboling, dtype: int64
normalized-losses
False
        201
Name: normalized-losses, dtype: int64
make
False
        201
Name: make, dtype: int64
aspiration
False
        201
Name: aspiration, dtype: int64
num-of-doors
False 201
Name: num-of-doors, dtype: int64
```

Each column has 205 rows of data and 7 columns containing missing data:

```
    "normalized-losses": 41 missing data
    "num-of-doors": 2 missing data
    "bore": 4 missing data
    "stroke": 4 missing data
    "horsepower": 2 missing data
    "peak-rpm": 2 missing data
```

7. "price": 4 missing data

Deal with missing data

- 1. drop data
 - a. drop the whole row
 - b. drop the whole column
- 2. replace data
 - a. replace it by mean
 - b. replace it by frequency
 - c. replace it based on other functions

Whole columns should be dropped only if most entries in the column are empty. We will apply each method to many different columns:

Replace by mean:

- "normalized-losses": 41 missing data, replace them with mean
- "stroke": 4 missing data, replace them with mean
- "bore": 4 missing data, replace them with mean
- "horsepower": 2 missing data, replace them with mean
- "peak-rpm": 2 missing data, replace them with mean

Replace by frequency:

- "num-of-doors": 2 missing data, replace them with "four".
 - Reason: 84% sedans is four doors. Since four doors is most frequent, it is most likely to occur

Drop the whole row:

• "price": 4 missing data, simply delete the whole row

```
avg_norm = df["normalized-losses"].astype("float").mean(axis=0)
print("Average of normalized-losses:", avg_norm)
```

Average of normalized-losses: 122.0

```
df["normalized-losses"].replace(np.nan,avg_norm,inplace=True)
avg_of_bore = df["bore"].astype("float").mean(axis=0)
print("Average of Bore Values:",avg_of_bore)
Average of Bore Values: 3.33069156704042
df["bore"].replace(np.nan,avg_of_bore,inplace=True)
avg_stroke = df["stroke"].astype("float").mean(axis=0)
print("Average of Stroke Values:",avg_of_bore)
Average of Stroke Values: 3.33069156704042
df["stroke"].replace(np.nan,avg_stroke,inplace = True)
avg_horsepower = df['horsepower'].astype("float").mean(axis=0)
print("Average horsepower:", avg_horsepower)
Average horsepower: 103.40553390682057
df['horsepower'].replace(np.nan, avg_horsepower, inplace=True)
avg_peak_rpm=df['peak-rpm'].astype('float').mean(axis=0)
print("Average peak rpm:", avg_peak_rpm)
```

Average peak rpm: 5117.665367742568

```
df['peak-rpm'].replace(np.nan, avg_peakrpm, inplace=True)
NameError: name 'avg_peakrpm' is not defined
```

To see which values are present in a particular column, use the ".value_counts()" method:

```
df['num-of-doors'].value_counts()
```

four 115 two 86

Name: num-of-doors, dtype: int64

We can see that four doors are the most common type.

```
df['num-of-doors'].value_counts().idxmax()
```

'four'

```
#replace the missing 'num-of-doors' values by the most frequent
df['num-of-doors'].replace(np.nan,"four",inplace=True)
```

Finally, let's drop all rows that do not have price data:

```
# simply drop whole row with NaN in "price" column
df.dropna(subset=["price"],axis=0,inplace=True)

# reset index, because we droped two rows
df.reset_index(drop=True,inplace=True)
```

df.head()

	symboling	normalized- losses	make	aspiration	num- of- doors	body-style	drive- wheels	engine- location	wheel- base	length	 compression- ratio	hor
0	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111
1	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111
2	1	122	alfa- romero	std	two	hatchback	rwd	front	94.5	0.822681	 9.0	154
3	2	164	audi	std	four	sedan	fwd	front	99.8	0.848630	 10.0	102
4	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630	 8.0	115

5 rows × 29 columns

	symboling	normali	zed-los	ses	make	aspiration	num-of-do	ors \	
0	3			122	alfa-romero	std		two	
1	3			122	alfa-romero	std		two	
2	1			122	alfa-romero	std		two	
3	2			164	audi	std	1	our	
4	2			164	audi	std	1	our	
	body-style	drive-	wheels	enqi	ne-location	wheel-base	length	ı '	\
0	convertible		rwd	_	front	88.6	0.811148		
1	convertible		rwd		front	88.6	0.811148	3	
2	hatchback		rwd		front	94.5	0.822681	L	
3	sedan		fwd		front	99.8	0.848630		
4	sedan		4wd		front	99.4	0.848630	·	
	compression	-ratio	horsep	ower	peak-rpm c	ity-mpg high	nway-mpg	price	\
0		9.0	1	11.0	5000.0	21	27	13495.0	
1		9.0	1	11.0	5000.0	21	27	16500.0	
2		9.0	1	54.0	5000.0	19	26	16500.0	
3		10.0	1	.02.0	5500.0	24	30	13950.0	
4		8.0	1	15.0	5500.0	18	22	17450.0	

Now, the dataset with no missing values is obtained.

Convert data types to proper format

```
df[["bore", "stroke"]] = df[["bore", "stroke"]].astype("float")
df[["normalized-losses"]] = df[["normalized-losses"]].astype("int")
df[["price"]] = df[["price"]].astype("float")
df[["peak-rpm"]] = df[["peak-rpm"]].astype("float")
```

Columns after the conversion

df.dtypes

```
symboling
                       int64
normalized-losses
                       int64
make
                      object
aspiration
                      object
num-of-doors
                      object
body-style
                      object
drive-wheels
                      object
engine-location
                      object
wheel-base
                     float64
                     float64
length
                     float64
width
                     float64
height
                       int64
curb-weight
engine-type
                      object
num-of-cylinders
                      object
engine-size
                       int64
fuel-system
                      object
bore
                     float64
stroke
                     float64
                     float64
compression-ratio
```

Finally the cleaned dataset is obtained with no missing values and all data in its proper format.

Data Standardization

df.head()

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body-style	drive- wheels	engine- location		 fuel- system	bore	stroke
0	3	122	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 mpfi	3.47	2.68
1	3	122	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 mpfi	3.47	2.68
2	1	122	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	 mpfi	2.68	3.47
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8	 mpfi	3.19	3.40
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4	 mpfi	3.19	3.40

5 rows × 27 columns

	symboling	normalized-los	ses	m	ıake	fuel-type	aspirat	tion \		
0	3		122	alfa-rom	iero	gas		std		
1	3		122	alfa-rom	iero	gas		std		
2	1		122	alfa-rom	iero	gas		std		
3	2		164	a	udi	gas		std		
4	2		164	а	udi	gas		std		
	num-of-doors	body-style	drive	-wheels	enai	ine-locatio	n whee	el-base	\	
0	two		u. 110	rwd	0.19.	fror		88.6	`	
1	two			rwd		fror		88.6		
2	two			rwd		fror		94.5		
3	four			fwd		fror		99.8		
4	four	sedan		4wd		fror	nt	99.4		
		fuel-system	ı bor	e strok	e c	compressior	n-ratio	horsep	ower	\
0		mpfi	3.4	7 2.6	8		9.0		111	
1	• • •	mpfi	3.4	7 2.6	8		9.0		111	
2	• • •	mpfi	2.6	8 3.4	7		9.0		154	
3	• • •	mpfi	3.1	9 3.4	0		10.0		102	
4	• • •	mpfi	3.1	9 3.4	0		8.0		115	

```
df["city-L/100km"] = 235 / df["city-mpg"]
df.head()
```

	symboling	normalized- losses	make	aspiration	num- of- doors	body-style	drive- wheels	engine- location		length	 compression- ratio	hor
0	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111
1	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111
2	1	122	alfa- romero	std	two	hatchback	rwd	front	94.5	0.822681	 9.0	154
3	2	164	audi	std	four	sedan	fwd	front	99.8	0.848630	 10.0	102
4	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630	 8.0	115

5 rows × 29 columns

```
symboling
              normalized-losses
                                        make aspiration num-of-doors
0
           3
                            122 alfa-romero
                                                    std
                                                                 two
1
           3
                            122 alfa-romero
                                                    std
                                                                 two
2
           1
                            122 alfa-romero
                                                    std
                                                                 two
3
           2
                            164
                                        audi
                                                    std
                                                                four
           2
4
                            164
                                        audi
                                                    std
                                                                four
    body-style drive-wheels engine-location wheel-base
                                                           length
  convertible
                                      front
                                                   88.6 0.811148
0
                        rwd
  convertible
                        rwd
                                      front
                                                   88.6 0.811148
2
                                      front
                                                   94.5 0.822681
   hatchback
                        rwd
3
         sedan
                        fwd
                                      front
                                                   99.8 0.848630
4
         sedan
                        4wd
                                      front
                                                   99.4 0.848630
   compression-ratio horsepower
                                  peak-rpm city-mpg highway-mpg
                                                                   price \
                 9.0
                                                 21
                                                             27 13495.0
0
                           111.0
                                    5000.0
                 9.0
1
                           111.0
                                    5000.0
                                                 21
                                                             27 16500.0
2
                 9.0
                           154.0
                                    5000.0
                                                 19
                                                             26 16500.0
3
                10.0
                           102.0
                                    5500.0
                                                 24
                                                             30 13950.0
                                                             22 17450.0
4
                 8.0
                           115.0
                                    5500.0
                                                 18
```

```
df["highway-mpg"] = 235/df["highway-mpg"]
df.rename(columns={'"highway-mpg"':'highway-L/100km'}, inplace=True)
```

Data Normalization

Why normalization?

Normalization is the process of transforming values of several variables into a similar range. Typical normalizations include scaling the variable so the variable average is 0, scaling the variable so the variable so the variable values range from 0 to 1

```
# replace (original value) by (original value)/(maximum value)
df["length"] = df["length"]/df["length"].max()
df["width"] = df["width"]/df["width"].max()
df['height'] = df['height']/df['height'].max()
df[["length","width","height"]].head()
```

	length	width	height
0	0.811148	0.890278	0.816054
1	0.811148	0.890278	0.816054
2	0.822681	0.909722	0.876254
3	0.848630	0.919444	0.908027
4	0.848630	0.922222	0.908027

```
length width height
0 0.811148 0.890278 0.816054
1 0.811148 0.890278 0.816054
2 0.822681 0.909722 0.876254
3 0.848630 0.919444 0.908027
4 0.848630 0.922222 0.908027
```

Here we can see, we've normalized "length", "width" and "height" in the range of [0,1].

Binning

Binning is a process of transforming continuous numerical variables into discrete categorical 'bins', for grouped analysis.

```
df["horsepower"] = df["horsepower"].astype(int,copy=True)
```

Plot the histogram of horspower in order to see what the distribution of horsepower looks like.

```
%matplotlib inline
import matplotlib.pyplot as plt
plt.hist(df["horsepower"], color='green', edgecolor='black', bins=10)

plt.xlabel("horsepower")
plt.ylabel("count")
plt.title("HORSEPOWER ")
```

Text(0.5, 1.0, 'HORSEPOWER ')

■ Download

<Figure size 640x480 with 1 Axes>

We set group names:

```
group_names = ['Low', 'Medium', 'High']
```

We apply the function "cut" the determine what each value of "df['horsepower']" belongs to.

```
df['horsepower-binned'] = pd.cut(df['horsepower'], bins, labels=group_names ,include_lowes
df[['horsepower','horsepower-binned']].head(10)
```

	horsepower	horsepower-binned
0	111	Low
1	111	Low
2	154	Medium
3	102	Low
4	115	Low
5	110	Low
6	110	Low
7	110	Low
8	140	Medium
9	101	Low

horsepower horsepower-binned 0 111 Low 1 111 Low 2 154 Medium 3 102 Low 4 115 Low

5	110	Low
6	110	Low
7	110	Low
8	140	Medium
9	101	Low

Lets see the number of vehicles in each bin.

```
df["horsepower-binned"].value_counts()
```

Low 153
Medium 43
High 5
Name: horsepower-binned, dtype: int64

Lets plot the distribution of each bin.

```
%matplotlib inline
import matplotlib as plt
from matplotlib import pyplot
pyplot.barh(group_names, df["horsepower-binned"].value_counts() , color='red', edgecolor='
plt.pyplot.xlabel("horsepower")
plt.pyplot.ylabel("count")
```

```
Text(0, 0.5, 'count')
```

■ Download

<Figure size 640x480 with 1 Axes>

df.corr()

	symboling	normalized- losses	wheel- base	length	width	height	curb- weight	engine- size	bore	stroke
symboling	1.000000	0.466264	-0.535987	-0.365404	-0.242423	-0.550160	-0.233118	-0.110581	-0.140019	-0.007992
normalized- losses	0.466264	1.000000	-0.056661	0.019424	0.086802	-0.373737	0.099404	0.112360	-0.029862	0.055127
wheel-base	-0.535987	-0.056661	1.000000	0.876024	0.814507	0.590742	0.782097	0.572027	0.493244	0.157964
length	-0.365404	0.019424	0.876024	1.000000	0.857170	0.492063	0.880665	0.685025	0.608971	0.123913
width	-0.242423	0.086802	0.814507	0.857170	1.000000	0.306002	0.866201	0.729436	0.544885	0.188814
height	-0.550160	-0.373737	0.590742	0.492063	0.306002	1.000000	0.307581	0.074694	0.180449	-0.060822
curb-weight	-0.233118	0.099404	0.782097	0.880665	0.866201	0.307581	1.000000	0.849072	0.644060	0.167412
engine-size	-0.110581	0.112360	0.572027	0.685025	0.729436	0.074694	0.849072	1.000000	0.572609	0.205806
bore	-0.140019	-0.029862	0.493244	0.608971	0.544885	0.180449	0.644060	0.572609	1.000000	-0.055390
stroke	-0.007992	0.055127	0.157964	0.123913	0.188814	-0.060822	0.167412	0.205806	-0.055390	1.000000
compression- ratio	-0.182196	-0.114713	0.250313	0.159733	0.189867	0.259737	0.156433	0.028889	0.001263	0.187854
horsepower	0.075819	0.217299	0.371147	0.579821	0.615077	-0.087027	0.757976	0.822676	0.566936	0.098282
peak-rpm	0.279740	0.239543	-0.360305	-0.285970	-0.245800	-0.309974	-0.279361	-0.256733	-0.267392	-0.063388
city-mpg	-0.035527	-0.225016	-0.470606	-0.665192	-0.633531	-0.049800	-0.749543	-0.650546	-0.582027	-0.034079
highway- mpg	0.036233	-0.181877	-0.543304	-0.698142	-0.680635	-0.104812	-0.794889	-0.679571	-0.591309	-0.034741
price	-0.082391	0.133999	0.584642	0.690628	0.751265	0.135486	0.834415	0.872335	0.543155	0.082267
city-L/100km	0.066171	0.238567	0.476153	0.657373	0.673363	0.003811	0.785353	0.745059	0.554610	0.036285
diesel	-0.196735	-0.101546	0.307237	0.211187	0.244356	0.281578	0.221046	0.070779	0.054458	0.241033
gas	0.196735	0.101546	-0.307237	-0.211187	-0.244356	-0.281578	-0.221046	-0.070779	-0.054458	-0.241033

\

	symboling	normalized-losses	wheel-base	length
symboling	1.000000	0.466264	-0.535987	-0.365404
normalized-losses	0.466264	1.000000	-0.056661	0.019424
wheel-base	-0.535987	-0.056661	1.000000	0.876024
length	-0.365404	0.019424	0.876024	1.000000
width	-0.242423	0.086802	0.814507	0.857170
height	-0.550160	-0.373737	0.590742	0.492063
curb-weight	-0.233118	0.099404	0.782097	0.880665
engine-size	-0.110581	0.112360	0.572027	0.685025
bore	-0.140019	-0.029862	0.493244	0.608971
stroke	-0.007992	0.055127	0.157964	0.123913
compression-ratio	-0.182196	-0.114713	0.250313	0.159733
horsepower	0.075819	0.217299	0.371147	0.579821
peak-rpm	0.279740	0.239543	-0.360305	-0.285970
city-mpg	-0.035527	-0.225016	-0.470606	-0.665192
highway-mpg	0.036233	-0.181877	-0.543304	-0.698142
price	-0.082391	0.133999	0.584642	0.690628
city-L/100km	0.066171	0.238567	0.476153	0.657373
diesel	-0.196735	-0.101546	0.307237	0.211187
gas	0.196735	0.101546	-0.307237	-0.211187

/tmp/ipykernel_6935/1134722465.py:1: FutureWarning: The default value of numeric_only in df.corr()

df[['bore','stroke','compression-ratio','horsepower']].corr()

	bore	stroke	compression-ratio	horsepower
bore	1.000000	-0.055390	0.001263	0.566936
stroke	-0.055390	1.000000	0.187854	0.098282
compression-ratio	0.001263	0.187854	1.000000	-0.214514
horsepower	0.566936	0.098282	-0.214514	1.000000

	bore	stroke	compression-ratio	horsepower
bore	1.000000	-0.055390	0.001263	0.566936
stroke	-0.055390	1.000000	0.187854	0.098282
compression-ratio	0.001263	0.187854	1.000000	-0.214514
horsepower	0.566936	0.098282	-0.214514	1.000000

Positive linear relationship

Scatterplot of "engine-size" and "price"

```
sns.regplot(x="engine-size", y="price", data=df ,color='green')
plt.ylim(0,)
```

(0.0, 53417.19589840475)

♣ Download

<Figure size 640x480 with 1 Axes>

df[["engine-size", "price"]].corr()

	engine-size	price
engine-size	1.000000	0.872335
price	0.872335	1.000000

engine-size price engine-size 1.000000 0.872335 price 0.872335 1.000000

Thus, Highway mpg is a potential predictor variable of price

```
sns.regplot(x="highway-mpg", y="price", data=df, color='grey');
```


<Figure size 640x480 with 1 Axes>

df[['highway-mpg', 'price']].corr()

	highway-mpg	price
highway-mpg	1.000000	-0.704692
price	-0.704692	1.000000

highway-mpg price highway-mpg 1.000000 -0.704692 price -0.704692 1.000000

Weak Linear Relationship

Let's see if "Peak-rpm" as a predictor variable of "price".

```
sns.regplot(x="peak-rpm", y="price", data=df ,color='blue');
```


<Figure size 640x480 with 1 Axes>

Categorical variables

Relationship between "body-style" and "price"

```
sns.boxplot(x="body-style", y="price", data=df);
```

▲ Download

<Figure size 640x480 with 1 Axes>

```
sns.boxplot(x="engine-location", y="price", data=df);
```

■ Download

<Figure size 640x480 with 1 Axes>

df.describe(include=['object'])

	make	aspiration	num-of- doors	body- style	drive- wheels	engine- location	engine- type	num-of- cylinders	fuel- system	horsepower- binned
count	201	201	201	201	201	201	201	201	201	200
unique	22	2	2	5	3	2	6	7	8	3
top	toyota	std	four	sedan	fwd	front	ohc	four	mpfi	Low
freq	32	165	115	94	118	198	145	157	92	115

	make	aspiration	num-of-doors	body-style	drive-wheels	\
count	201	201	201	201	201	
unique	22	2	2	5	3	
top	toyota	std	four	sedan	fwd	
freq	32	165	115	94	118	
	engine-	Location en	gine-type num [.]	-of-cylinder	s fuel-system	\
count		201	201	20	01 201	
unique		2	6		7 8	
top		front	ohc	fou	ır mpfi	
freq		198	145	15	57 92	

horsepower-binned count 200 unique 3

top	Low
freq	115

P-value:

What is this P-value? The P-value is the probability value that the correlation between these two variables is statistically significant. Normally, we choose a significance level of 0.05, which means that we are 95% confident that the correlation between the variables is significant.

By convention, when the

- p-value is < 0.001: we say there is strong evidence that the correlation is significant.
- the p-value is < 0.05: there is moderate evidence that the correlation is significant.
- the p-value is < 0.1: there is weak evidence that the correlation is significant.
- the p-value is > 0.1: there is no evidence that the correlation is significant.

from scipy import stats

Wheel-base vs Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'wheel-base' and 'price'.

```
pearson_coef, p_value = stats.pearsonr(df['wheel-base'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_
```

The Pearson Correlation Coefficient is 0.584641822265508 with a P-value of P = 8.076488

Conclusion:

Since the p-value is < 0.001, the correlation between wheel-base and price is statistically significant, although the linear relationship isn't extremely strong (~ 0.585)

Horse-Power vs Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'Horse-Power' and 'price'.

```
pearson_coef, p_value = stats.pearsonr(df['horsepower'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_
```

The Pearson Correlation Coefficient is 0.8095745670036562 with a P-value of P = 6.36905

Conclusion:

Since the p-value is < 0.001, the correlation between horsepower and price is statistically significant, and the linear relationship is quite strong (~ 0.809 , close to 1)

Length vs Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'length' and 'price'.

```
pearson_coef, p_value = stats.pearsonr(df['length'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p
```

The Pearson Correlation Coefficient is 0.690628380448364 with a P-value of P = 8.01647

Conclusion:

Since the p-value is < 0.001, the correlation between length and price is statistically significant, and the linear relationship is moderately strong (~ 0.691).

Width vs Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'width' and 'price':

```
pearson_coef, p_value = stats.pearsonr(df['width'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_
```

The Pearson Correlation Coefficient is 0.7512653440522674 with a P-value of P = 9.20033

Conclusion:

Since the p-value is < 0.001, the correlation between width and price is statistically significant, and the linear relationship is quite strong (~ 0.751).

Curb-weight vs Price

```
pearson_coef, p_value = stats.pearsonr(df['curb-weight'], df['price'])
print( "The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ",
```

The Pearson Correlation Coefficient is 0.8344145257702846 with a P-value of P = 2.1895

Conclusion:

Since the p-value is < 0.001, the correlation between curb-weight and price is statistically significant, and the linear relationship is quite strong (~ 0.834).

Engine-size vs Price

Let's calculate the Pearson Correlation Coefficient and P-value of 'engine-size' and 'price':

```
pearson_coef, p_value = stats.pearsonr(df['engine-size'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_
```

The Pearson Correlation Coefficient is 0.8723351674455185 with a P-value of P = 9.26549

Conclusion:

Since the p-value is < 0.001, the correlation between engine-size and price is statistically significant, and the linear relationship is very strong (~ 0.872).

Bore vs Price

```
pearson_coef, p_value = stats.pearsonr(df['bore'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ",
```

The Pearson Correlation Coefficient is 0.5431553832626602 with a P-value of P = 8.049

Conclusion:

Since the p-value is < 0.001, the correlation between bore and price is statistically significant, but the linear relationship is only moderate (~ 0.521).

City-mpg vs Price

```
pearson_coef, p_value = stats.pearsonr(df['city-mpg'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p
```

The Pearson Correlation Coefficient is -0.6865710067844677 with a P-value of P = 2.321

Conclusion:

Since the p-value is < 0.001, the correlation between city-mpg and price is statistically significant, and the coefficient of ~ -0.687 shows that the relationship is negative and moderately strong.

Conclusion: Important Variables

We now have a better idea of what our data looks like and which variables are important to take into account when predicting the car price. We have narrowed it down to the following variables:

Continuous numerical variables:

- Length
- Width
- Curb-weight
- Engine-size
- Horsepower
- City-mpg
- Highway-mpg
- Wheel-base

• Bore

Categorical variables:

• Drive-wheels

As we now move into building machine learning models to automate our analysis, feeding the model with variables that meaningfully affect our target variable will improve our model's prediction performance.