COMP 448/548: Medical Image Analysis

Dense prediction networks

Çiğdem Gündüz Demir cgunduz@ku.edu.tr

1

Dense prediction networks

- They recover a larger-size segmentation map from the compressed image
 - Downsampling path captures semantic/contextual information
 - Upsampling path recovers spatial information
 - No fully connected layer is used on the top
 - Skip connections (concatenations) from downsampling to upsampling layers are often used to recover the fine-grained spatial information lost in the downsampling path

2

3

Learning deconvolution networks

Fully convolutional networks by Long et al., 2015.

Learnable upsampling: "deconvolution"

24.3 'tearnable upsampling: "deconvolution"

25.4 'tearnable upsampling: "deconvolution"

26.5 'tearnable upsampling: "deconvolution"

26.6 'tearnable upsampling: "deconvolution"

26.7 'tearnable upsampling: "deconvolution"

26.8 'tearnable upsampling: "deconvolution"

26.8 'tearnable upsampling: "deconvolution"

26.9 'tearnable upsa

Also learn a multi-layer deconvolution network, which is composed of successive deconvolution, unpooling, and rectified linear unit (ReLU) layers

Noh et al, 2015. Learning deconvolution network for semantic segmentation. ICCV 2015. https://arxiv.org/pdf/1505.04366.pdf Learning deconvolution networks

Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multilayer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and

- Convolution network corresponds to a feature extractor that transforms the input image to multidimensional feature representation
- Deconvolution network is a shape generator that produces object segmentation from the features extracted from the convolution network
- Final output is a map of class probabilities

Noh et al, 2015. Learning deconvolution network for semantic segmentation. ICCV 2015.

7

Learning deconvolution networks

Convolution Deconvolution
Figure 3. Illustration of deconvolution and unpooling operations.

Unpooling

- Records the locations of maximum activations selected during pooling in switch variables, which are employed to place each activation back to its original pooled location
- Its output is an enlarged, yet sparse activation map

Deconvolution

- Densifies sparse activations obtained by unpooling through convolution-like operations with multiple learned filters
- Convolutional layers connect multiple inputs to a single activation whereas deconvolutional layers associate a single input with multiple outputs

Noh et al, 2015. Learning deconvolution network for semantic segmentation. ICCV 2015. https://grejs.org/ndf/1505.04366.pdf

Q

Long skip connections (U-Net architecture)

- Long skip connections are defined between an encoder layer and the corresponding decoder layer
 - Deconvolution is applied on the concatenation of high-resolution features of an encoder layer and the output of the previous upsampling layer
 - Helps better recover the fine-grained spatial information lost in downsampling
 - U-shaped architecture with an equal number of downsampling and upsampling layers

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Ronneberger et al, 2015. U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015. https://arxiv.org/pdf/1505.04597.pdf

9

Challenges for medical image segmentation

1. Limited training data

2. Imbalanced classes

3. Separation of touching objects

10

Data augmentation

- Apply some transformations to existing images
 - Flipping, rotation, scaling, translation, adding Gaussian noise, ...
 - Interpolation techniques may be necessary to preserve original image sizes
 - Some methods may not be applicable to particular applications

Generate synthetic data using generative adversarial networks (GANs)

1

Loss functions for foreground/background classification

$$loss = \sum_{I \in D_{tr}} \sum_{p \in I} loss(y_p, \hat{y}_p)$$

 $loss(y_p, \hat{y}_p) = -y_p \cdot \log(\hat{y}_p) - (1 - y_p) \cdot \log(1 - \hat{y}_p)$

Binary cross entropy

 D_{tr} is the training set

 $I \in D_{tr}$ is an image in the training set

 $p \in I$ is a pixel in the image

 $y_p = \begin{cases} 1 & p \in \text{ foreground} \\ 0 & p \in \text{ background} \end{cases}$

 \hat{y}_p is the estimated probability for p being a foreground pixel

12

Weighted loss functions

$$loss = \sum_{I \in D_{tr}} \sum_{p \in I} c_p \cdot loss(y_p, \hat{y}_p)$$

Pixel weight $c_n = cw_n$ can be selected according to the frequency of pixels in the classes

- All pixels belonging to the same class have the same weight (contribution) in the loss function
- · These weights are typically selected inversely proportional to the pixel frequencies

To address the issue of separating touching objects, it is possible to give more importance to correctly classifying pixels close to object boundaries

$$c_p = cw_p + w_0 \cdot \exp\left(-\frac{[d_1(p) + d_1(p)]^2}{2\sigma^2}\right)$$

 $d_1(p)$ is the distance from pixel p to the border of the nearest foreground object

 $d_2(p)$ is the distance from pixel p to the border of the second nearest foreground object

 w_0 and σ are the parameters

Ronneberger et al. 2015. U-net: Convolutional networks for biomedical image segmentation, MICCAI 2015. https://arxiv.org/pdf/1505.04597.pdf

13

14

Focal loss for foreground/background classification

$$\underbrace{loss(y_p, \hat{y}_p) = -y_p \cdot log(\hat{y}_p) - (1 - y_p) \cdot log(1 - \hat{y}_p)}_{Binary\ cross\ entropy}$$

$$loss(y_p, \hat{y}_p) = -y_p \cdot (1 - \hat{y}_p)^{\gamma} \cdot \log(\hat{y}_p) - (1 - y_p) \cdot \hat{y}_p^{\gamma} \cdot \log(1 - \hat{y}_p)$$

Focal loss for binary classification

- When a foreground pixel p is
 - Misclassified and \hat{y}_n is small, the modulating factor $(1-\hat{y}_n)^{\gamma}$ is close to 1 and the loss is almost unaffected
 - Correctly classified and $\hat{y}_n \to 1$, the factor goes to 0 and the loss of this well-classified pixel is downweighed
- When a background pixel p is
 - Misclassified and \hat{y}_p is large, the modulating factor \hat{y}_p^{γ} is close to 1 and the loss is almost unaffected
 - Correctly classified and $\hat{y}_n \to 0$, the factor goes to 0 and the loss of this well-classified pixel is downweighed

Lin et al, 2018. Focal loss for dense object detection. https://arxiv.org/pdf/1708.02002.pdf

7

16

Dice loss for foreground/background classification

- Having a smaller number of foreground pixels causes problem
 - Network training is typically biased towards classifying pixels as background (negative)
 - This leads to high precision TP / (TP + FP) but low recall TP / (TP + FN) values
 - This is undesirable especially in medical applications where FNs are much less tolerable than FPs

This definition gives equal importance to false positive and false negative pixels

Sudre et al, 2017. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations

15

Tversky loss for foreground/background classification

- Having a smaller number of foreground pixels causes problem
 - Network training is typically biased towards classifying pixels as background (negative)
 - This leads to high precision TP / (TP + FP) but low recall TP / (TP + FN) values
 - This is undesirable especially in medical applications where FNs are much less tolerable than FPs

Allows giving different levels of importance to false positive and false negative pixels

Salehi et al, 2017. Tversky loss function for image segmentation using 3D fully convolutional deep networks.

Larger values of the focusing

learning hard-to-learn pixels

parameter v reduces the weights of

easy-to-learn pixels more, resulting in relatively more focusing on

17

18

Multi-task networks

 Dense prediction networks that learn related but different tasks from shared feature representations

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9164886

- They consist of a shared encoder path and multiple decoder paths, one defined for each task
- Joint loss is defined usually as a linear combination of losses defined on all tasks
- All tasks are concurrently learned in parallel by training the network to minimize this joint loss
- This approach helps better avoid local optimal solutions as it is less likely to finetune the weights of the shared encoder for all tasks at the same time

Contour-aware networks

Figure 3: The overview of the proposed deep contour-aware network.

Chen et al., 2017. DCAN: Deep contour-aware networks for accurate gland segmentation. Medical Image Analysis. https://www.sciencedirect.com/science/article/pii/S1361841516302043

1

- A cascaded network design:
 - Quantifies the shape of an object with a function defined on its contour
 - Expands this function in a Fourier series and use the harmonic amplitudes of its Fourier coefficients as the Fourier descriptors of the object
 - Defines a regression task of learning these descriptors

Cansiz et al., 2023. FourierNet: Shape-preserving network for Henle's fiber layer segmentation in optical coherence tomography images. IEEE Journal of Biomedical and Health Informatics. https://ieeexplore.ieee.org/document/9973287

21

22

Shape-preserving cascaded network

The distance-to-center function $\xi(l_x)$ outputs the distance from the object centroid z_c to the point z_x for which the arc length is l_x . This function is expanded in a Fourier series as

$$\begin{split} \xi(l_x) &= a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{2\pi n l_x}{L} \right) + b_n \sin \left(\frac{2\pi n l_x}{L} \right) \right] \\ a_n &= \frac{2}{L} \int_0^L \xi(l_x) \cos \left(\frac{2\pi n l_x}{L} \right) dl_x \\ b_n &= \frac{2}{L} \int_0^L \xi(l_x) \sin \left(\frac{2\pi n l_x}{L} \right) dl_x \end{split}$$

For the curve γ_o , which is an interpolation of T discrete pixels, it can be divided into T intervals of $[l_{t-1}, l_t)$.

$$\begin{split} a_n &= \frac{2}{L} \sum_{t=1}^T \int_{l_{t-1}}^{l_t} \xi(l_x) \cos\left(\frac{2\pi n l_x}{L}\right) dl_x = \frac{1}{\pi n} \sum_{t=1}^T \Delta \xi_t \sin\left(\frac{2\pi n l_t}{L}\right) \\ b_n &= \frac{2}{L} \sum_{t=1}^T \int_{l_{t-1}}^{l_t} \xi(l_x) \sin\left(\frac{2\pi n l_x}{L}\right) dl_x = -\frac{1}{\pi n} \sum_{t=1}^T \Delta \xi_t \cos\left(\frac{2\pi n l_t}{L}\right) \end{split}$$

 $z_0 = z_0$ z_0 z_0 z

Fourier descriptors of an object is defined as the first N harmonic amplitudes (in the polar coordinate) of its Fourier coefficients

Cansiz et al., 2023. FourierNet: Shape-preserving network for Henle's fiber layer segmentation in optical coherence tomography images. IEEE Journal of Biomedical and Health Informatics. https://ieeexplore.ieee.org/document/9973287

23

24

26

Dice loss for 3D segmentation In order to deal with a strong imbalance between the number of foreground and background voxels, it defines an objective function based on the Dice coefficient Milletari et al., 2016. V-net: Fully convolutional neural Fig. 2. Schematic representation of our network architecture. Our custom implementation of Caffe [5] processes 3D data by performing volumetric convolutions. networks for volumetric medical image segmentation.

Voxelwise residual network for 3D segmentation Conv., 64, 1x3x3 BN, ReLU Conv., 64, 3x3x3 VoxRes module Fig. 2. (a) The architecture of proposed YouResNet for volumetric image segmentation, consisting of batch normalization layers (IDN), rectified linear units (ReLU), and convolutional rs N (ConvN) with number of channels, filter size and downsampling stride; (b) The illustration of VoxRes module. Chen et al., 2018. VoxResNet: Deep voxelwise residual networks for brain segmentation from3D MR images. NeuroImage. https://www.sciencedirect.com/science/article/pii/S1053811917303348

Thank you!

Next time:

Generative adversarial networks