

SINGLE-CHANNEL 6N137 HCPL-2601 HCPL-2611

DUAL-CHANNEL HCPL-2630 HCPL-2631

DESCRIPTION

The 6N137, HCPL-2601/2611 single-channel and HCPL-2630/2631 dual-channel optocouplers consist of a 850 nm AlGaAS LED, optically coupled to a very high speed integrated photodetector logic gate with a strobable output. This output features an open collector, thereby permitting wired OR outputs. The coupled parameters are guaranteed over the temperature range of -40°C to +85°C. A maximum input signal of 5 mA will provide a minimum output sink current of 13 mA (fan out of 8).

An internal noise shield provides superior common mode rejection of typically 10 kV/ μ s. The HCPL- 2601 and HCPL- 2631 has a minimum CMR of 5 kV/ μ s. The HCPL-2611 has a minimum CMR of 10 kV/ μ s.

FEATURES

- Very high speed-10 MBit/s
- Superior CMR-10 kV/µs
- Double working voltage-480V
- Fan-out of 8 over -40°C to +85°C
- · Logic gate output
- Strobable output
- Wired OR-open collector
- U.L. recognized (File # E90700)

N/C 1 8 V_{CC} 7 V_E - 3 6 V_O N/C 4 5 GND

Single-channel circuit drawing

Dual-channel circuit drawing

APPLICATIONS

- · Ground loop elimination
- LSTTL to TTL, LSTTL or 5-volt CMOS
- · Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer-peripheral interface

TRUTH TABLE (Positive Logic)

		_
Input	Enable	Output
н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
Н	NC	L
L	NC	Н

A 0.1 μ F bypass capacitor must be connected between pins 8 and 5. (See note 1)

SINGLE-CHANNEL 6N137 HCPL-2601 HCPL-2611 DUAL-CHANNEL HCPL-2630 HCPL-2631

Parameter		Symbol	Value	Units	
Storage Temperature		T _{STG}	-55 to +125	°C	
Operating Temperature		T _{OPR}	-40 to +85	°C	
Lead Solder Temperature		T _{SOL}	260 for 10 sec	°C	
EMITTER DC/Average Forward Single channel		l _F	50	mA	
Input Current	Dual channel (Each channel)]	30		
Enable Input Voltage Single channel Not to exceed V _{CC} by more than 500 mV		V _E	5.5	V	
Reverse Input Voltage	Each channel	V _R	5.0	V	
Power Dissipation	Single channel	В	100	mW	
	Dual channel (Each channel)	P _I	45		
DETECTOR Supply Voltage		V _{CC} (1 minute max)	7.0	V	
Output Current	Single channel		50	m Λ	
	Dual channel (Each channel)	lo	50	mA	
Output Voltage	Each channel	Vo	7.0	V	
Collector Output	Single channel	В	85	m11/	
Power Dissipation	Dual channel (Each channel)	Po	60	mW	

RECOMMENDED OPERATING CONDITIONS					
Parameter	Symbol	Min	Max	Units	
Input Current, Low Level	I _{FL}	0	250	μΑ	
Input Current, High Level	I _{FH}	*6.3	15	mA	
Supply Voltage, Output	V _{CC}	4.5	5.5	V	
Enable Voltage, Low Level	V _{EL}	0	0.8	V	
Enable Voltage, High Level	V _{EH}	2.0	V _{CC}	V	
Low Level Supply Current	T _A	-40	+85	°C	
Fan Out (TTL load)	N		8		

^{* 6.3} mA is a guard banded value which allows for at least 20 % CTR degradation. Initial input current threshold value is 5.0 mA or less

SINGLE-CHANNEL 6N137 HCPL-2601

HCPL-2630 HCPL-2631

DUAL-CHANNEL

HCPL-2611

ELECTRICAL CHARACTERISTICS ($T_A = -40^{\circ}\text{C}$ to +85°C Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameter Test Conditions		Symbol	Min	Typ**	Max	Unit	
EMITTER		$(I_F = 10 \text{ mA})$.,			1.8	.,
Input Forward Voltage		T _A =25°C	V _F		1.4	1.75	V
Input Reverse Breakdown V	oltage/	$(I_R = 10 \mu A)$	B _{VR}	5.0			V
Input Capacitance		$(V_F = 0, f = 1 MHz)$	C _{IN}		60		pF
Input Diode Temperature Co	efficient	$(I_F = 10 \text{ mA})$	$\Delta V_F / \Delta T_A$		-1.4		mV/°C
DETECTOR					7	10	
High Level Supply Current	Single Channel	$(V_{CC} = 5.5 \text{ V}, I_F = 0 \text{ mA})$	Іссн			10	mA
	Dual Channel	$(V_E = 0.5 V)$			15	20	
Low Level Supply Current	Single Channel	$(V_{CC} = 5.5 \text{ V}, I_F = 10 \text{ mA})$			9	13	
_	Dual Channel	$(V_E = 0.5 V)$	ICCL		19	26	mA
Low Level Enable Current		$(V_{CC} = 5.5 \text{ V}, V_E = 0.5 \text{ V})$	I _{EL}		-0.8	-1.6	mA
High Level Enable Current		$(V_{CC} = 5.5 \text{ V}, V_{E} = 2.0 \text{ V})$	I _{EH}		-0.6	-1.6	mA
High Level Enable Voltage		$(V_{CC} = 5.5 \text{ V}, I_F = 10 \text{ mA})$	V _{EH}	2.0			V
Low Level Enable Voltage	(V _{CC} =	5.5 V, I _F = 10 mA) (Note 3)	V _{EL}			0.8	V

SWITCHING CHARACTERISTICS ($T_A = -40$ °C to +85°C, $V_{CC} = 5$ V, $I_F = 7.5$ mA Unless otherwise specified.)						
AC Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit
Propagation Delay Time	(Note 4) (T _A =25°C)	_	20	45	75	
to Output High Level	$(R_L = 350 \Omega, C_L = 15 pF)$ (Fig. 12)	T _{PLH}			100	ns
Propagation Delay Time	(Note 5) (T _A =25°C)	_	25	45	75	
to Output Low Level	$(R_L = 350 \Omega, C_L = 15 pF)$ (Fig. 12)	T _{PHL}			100	ns
Pulse Width Distortion	$(R_L = 350 \Omega, C_L = 15 pF)$ (Fig. 12)	T _{PHL} -T _{PLH}		3	35	ns
Output Rise Time (10-90%)	$(R_L = 350 \ \Omega, \ C_L = 15 \ pF)$ (Note 6) (Fig. 12)	t _r		50		ns
Output Fall Time (90-10%)	$(R_L = 350 \ \Omega, \ C_L = 15 \ pF)$ (Note 7) (Fig. 12)	t _f		12		ns
	le $(I_F = 7.5 \text{ mA}, V_{EH} = 3.5 \text{ V})$ = 350 Ω , $C_L = 15 \text{ pF}$) (Note 8) (Fig. 13)	tELH		20		ns
	le $(I_F = 7.5 \text{ mA}, V_{EH} = 3.5 \text{ V})$ = 350 Ω , $C_L = 15 \text{ pF}$) (Note 9) (Fig. 13)	t _{EHL}		20		ns
(at Output High Level) 6N137,	runity (T_A =25°C) $ V_{CM} $ = 50 V, (Peak) (I_F = 0 mA, V_{OH} (Min.) = 2.0 V) HCPL-2630 (R_L = 350 Ω) (Note 10) 601, HCPL-2631 (Fig. 14)	CM _H	5000	10,000 10,000		V/µs
HCPL-2			10,000	15,000		
Common Mode 6N137,	0 Ω) (I _F = 7.5 mA, V _{OL} (Max.) = 0.8 V) HCPL-2630 $ V_{CM} $ = 50 V (Peak)	ICM.		10,000		\//uo
Transient Immunity HCPL-2 (at Output Low Level)	601, HCPL-2631 (T _A =25°C) (Note 11) (Fig. 14)	CM _L	5000	10,000		V/µs
HCPL-2	611 $(T_A = 25^{\circ}C)$ $ V_{CM} = 400 \text{ V}$		10,000	15,000		

SINGLE-CHANNEL 6N137 HCPL-2601 HCPL-2611 DUAL-CHANNEL HCPL-2630 HCPL-2631

TRANSFER CHARACTERISTICS (T _A = -40°C to +85°C Unless otherwise specified.)						
DC Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit
High Level Output Current	$(V_{CC} = 5.5 \text{ V}, V_{O} = 5.5 \text{ V})$				100	
	$(I_F = 250 \mu A, V_E = 2.0 V)$ (Note 2)	ІОН			100	μΑ
Low Level Output Current	$(V_{CC} = 5.5 \text{ V}, I_F = 5 \text{ mA})$	V		.35	.06	\/
	$(V_E = 2.0 \text{ V}, I_{CL} = 13 \text{ mA}) \text{ (Note 2)}$	V _{OL}		.33	.00	V
Input Threshold Current	$(V_{CC} = 5.5 \text{ V}, V_{O} = 0.6 \text{ V},$	I _{FT}		3	5	mA
•	$V_E = 2.0 \text{ V}, I_{OL} = 13 \text{ mA})$					

ISOLATION CHARACTERISTICS (T _A = -40°C to +85°C Unless otherwise specified.)						
Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit
Input-Output	(Relative humidity = 45%)					
Insulation Leakage Current	$(T_A = 25^{\circ}C, t = 5 s)$				4.0*	^
	$(V_{I-O} = 3000 \text{ VDC})$	I _{I-O}			1.0*	μA
	(Note 12)					
Withstand Insulation Test Voltage	(RH < 50%, T _A = 25°C)	V	2500			\ /
	(Note 12) (t = 1 min.)	V _{ISO}	2500			V_{RMS}
Resistance (Input to Output)	(V _{I-O} = 500 V) (Note 12)	R _{I-O}		10 ¹²		Ω
Capacitance (Input to Output)	(f = 1 MHz) (Note 12)	C _{I-O}		0.6		pF

^{**} All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

NOTES

- The V_{CC} supply to each optoisolator must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package V_{CC} and GND pins of each device.
- Each channel.
- 3. Enable Input No pull up resistor required as the device has an internal pull up resistor.
- t_{PLH} Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 5. t_{PHL} Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- t_r Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- 7. t_f Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- 8. t_{ELH} Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input voltage pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 9. t_{EHL} Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input voltage pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- CM_H The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., V_{OUT} > 2.0 V). Measured in volts per microsecond (V/μs).
- 11. CM_L The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the low output state (i.e., V_{OUT} < 0.8 V). Measured in volts per microsecond (V/μs).
- 12. Device considered a two-terminal device: Pins 1,2,3 and 4 shorted together, and Pins 5,6,7 and 8 shorted together.

SINGLE-CHANNEL 6N137 **HCPL-2601 HCPL-2611**

DUAL-CHANNEL HCPL-2630 HCPL-2631

Fig.1 Low Level Output Voltage vs. Ambient Temperature

Fig.3 Switching Time vs. Forward Current

Fig. 4 Low Level Output Current vs. Ambient Temperature $I_{\rm F} = 15 \, \text{mA}$ $I_F = 10 \text{ mA}$

Fig. 5 Input Threshold Current

Fig. 6 Output Voltage vs. Input Forward Current

SINGLE-CHANNEL 6N137 HCPL-2601 HCPL-2611

DUAL-CHANNEL HCPL-2630 HCPL-2631

Fig. 7 Pulse Width Distortion vs. Temperature

Fig. 8 Rise and Fall Time vs. Temperature

Fig. 9 Enable Propagation Delay vs. Temperature

Fig. 10 Switching Time vs. Temperature

Fig. 11 High Level Output Current vs. Temperature

SINGLE-CHANNEL
6N137
HCPL-2630
HCPL-2631
HCPL-2611

Fig. 12 Test Circuit and Waveforms for t_{PLH} , t_{PHL} , t_{r} and t_{f} .

Fig. 13 Test Circuit t_{EHL} and t_{ELH}.

SINGLE-CHANNEL
6N137
HCPL-2630
HCPL-2631
HCPL-2611

Fig. 14 Test Circuit Common Mode Transient Immunity

SINGLE-CHANNEL DUAL-CHANNEL 6N137 HCPL-2630

6N137 HCPL-2601

HCPL-2631

HCPL-2611

NOTE

All dimensions are in inches (millimeters)

SINGLE-CHANNEL

6N137

HCPL-2601

HCPL-2611

DUAL-CHANNEL

HCPL-2630 HCPL-2631

ORDERING INFORMATION

Option	Order Entry Identifier	Description
R2	.R2	Opto Plus Reliability Conditioning
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and reel
W	.W	0.4" Lead Spacing

Corporate Headquarters

QT Optoelectronics 610 North Mary Avenue Sunnyvale, CA 94086 (408) 720-1440 Phone (408) 720-0848 Fax

European Sales

QT Optoelectronics "Le Levant" 2, rue du Nouveau Bercy F-94277-CHARENTON-LE PONT Cedex **FRANCE** 33 [0] 1.45.18.78.78 Phone 33 [0] 1.43.75.77.57 Fax

North American Sales

QT Optoelectronics 16775 Addison Rd., Suite 200 Addison, TX 75001 (972) 447-1300 Phone (972) 447-0784 Fax

Asia/Pacific Sales

QT Optoelectronics B613, 6th Floor East Wing, Wisma Tractors Jalan SS16/1, Subang Jaya 47500 Petaling Jaya Selangor Darul Eshan, Malaysia 603/735-2417 Phone 603/736-3382 Fax

European Sales

Quality Technologies Deutschland GmbH Max-Huber-Strasse 8 D-85737 Ismaning, Germany 49 [0] 89/96.30.51 Phone 49 [0] 89/96.54.74 Fax

European Sales

Quality Technologies (U.K) Ltd. 10, Prebendal Court, Oxford Road Aylesbury, Buckinghamshire HP19-3EY United Kingdom 44 [0] 1296/30.44.99 Phone 44 [0] 1296/39.24.32 Fax

www.qtopto.com

Call QT Optoelectronics for more information or the phone number of your nearest distributor.