CS 103: Mathematical Foundations of Computing Midterm Exam I

Quang Nguyen May 24, 2022

Due Sunday, October 17 at 2:30 pm Pacific

Please submit your answers to Problem Two (Translating Into Logic) separately from this PDF.

Symbols Reference

Here are some symbols that may be useful for this midterm.

- Floor: $\lfloor x \rfloor$
- Ceiling: $\lceil x \rceil$
- \bullet Less-than-or-equal-to and greater-than-or-equal-to: $x \leq y$ and $y \geq x$
- \bullet Natural numbers: $\mathbb N$
- Integers: \mathbb{Z}

LATEX typing tips:

- Set (curly braces need an escape character backslash): 1, 2, 3 (incorrect), {1, 2, 3} (correct)
- Exponents (use curly braces if exponent is more than 1 character): x^2 , 2^{3x}
- Subscripts (use curly braces if subscript is more than 1 character): x_0, x_{10}

Problem One: Quarter-Squares (8 Points)

Proof: We will prove that for all natural numbers n, if $\lceil \frac{n}{2} \rceil \lfloor \frac{n}{2} \rfloor$ is odd, then n is even. To do so, we will instead prove the contrapositive, that for all natural numbers n, if n is odd, then $\lceil \frac{n}{2} \rceil \lfloor \frac{n}{2} \rfloor$ is even. Pick an arbitrary odd natural number x. We want to show that $\lceil \frac{x}{2} \rceil \lfloor \frac{x}{2} \rfloor$ is even. Since x is odd, there must be a natural number k such that x = 2k + 1. We see that

$$\left\lceil \frac{x}{2} \right\rceil \left\lfloor \frac{x}{2} \right\rfloor = \left\lceil \frac{2k+1}{2} \right\rceil \left\lfloor \frac{2k+1}{2} \right\rfloor$$

$$= \left\lceil k+0.5 \right\rceil \left\lfloor k+0.5 \right\rfloor$$

$$= (k+1)k.$$

Notice that k and k+1 have opposite parity, so we know that (k+1)k is even. This means that $\left\lceil \frac{x}{2} \right\rceil \left\lfloor \frac{x}{2} \right\rfloor$ is even, as required. \blacksquare

Quang Nguyen Midterm Exam I May 24, 2022

Problem Three: Tower of Power (4 Points)

i.

n=2

ii.

n=3

iii.

n=5

iv.

n = 6

Problem Four: A Clever Little Equation (8 Points)

i.

Proof: Assume for the sake of contradiction that m, n, and p are all greater than zero. Consequently, we see that $m \ge 1, n \ge 1$, and $p \ge 1$. Notice that

$$(1 + \frac{1}{m+1})(1 + \frac{1}{n+1})(1 + \frac{1}{p+1}) \le (1 + \frac{1}{2})(1 + \frac{1}{2})(1 + \frac{1}{2})$$
$$\le \frac{27}{8} < 5.$$

However, we know that $(1 + \frac{1}{m+1})(1 + \frac{1}{n+1})(1 + \frac{1}{p+1}) = 5$, which is impossible. We have reached a contradiction, so our assumption must have been wrong. Therefore, at least one of m, n, and p is equal to zero.

ii.

Proof: Assume for the sake of contradiction that there is at most one of m, n, and p is equal to zero. We know, by the previous proof, that at least of m, n, and p is equal to zero. Assume, without loss of generality, that $m = 0, n \ge 1$, and $p \ge 1$. We see that

$$(1 + \frac{1}{m+1})(1 + \frac{1}{n+1})(1 + \frac{1}{p+1}) \le (1 + \frac{1}{1})(1 + \frac{1}{2})(1 + \frac{1}{2})$$

$$\le \frac{9}{2} < 5.$$

However, we know that $(1 + \frac{1}{m+1})(1 + \frac{1}{n+1})(1 + \frac{1}{p+1}) = 5$, which is impossible. We have reached a contradiction, so our assumption must have been wrong. Therefore, at least two of m, n, and p are equal to zero.

iii.

$$m = 0, n = 0, p = 3$$

 $m = 0, n = 3, p = 0$
 $m = 3, n = 0, p = 0$