Занятие 20. Интервалы выпуклости, точки перегиба График дифференцируемой ф-ции f(x) нау. выпуклым вину выпуклым вверх на интервале (а,в), gyra kpubóg na szom npomexyzke ραςπολοχεμα иобой касательной, проведённой к графику fla B enotoù 704KE x ∈ (a, B)Достаточное условие выпуклости f(x) на (a, b) Тиусто f(x) дважды дифф. на (a, b)f"(x)>0 Υχε(a,β), το γράφωω f(x) κα (a,β) slen. μα βοινιγκιοπι βθερχ. BornyK10TM Brecg

Тютка $(x_0, f(x_0))$, в которой направление выпуклосту графика рункуши меняется на противоположное, на точкой перегиба графика рункуши; при этом т. Хо на точкой перегиба функуши.

Heodxogumoe yerobre τ reperusa f(x), mo $f''(x_0)=0$ unu f(x), mo $f''(x_0)=0$ unu f(x) pabha f(x) ucue f(x).

Зам. Обратно неверно.

Достаточные условия т. перегиба

Tycmo f(x) renpepoisha b U(xo) u glaxgoi gupq. b U(xo) Если в $\mathcal{U}(x_0)$ вторая прауводная f''(x) меняет знак при переходе через τ . хо, mo vo-T. reperceda qynkques.

Увайти интервалы выпуклости графика Ф-уши f(x), точки перегиба и упловые кызар-ты кассительных в точках перегиба: $y = \sqrt[3]{(x+1)^2} + \sqrt[3]{(x-1)^2}$

Percence.

1. D(y) = R 2. $y'(x) = \frac{2}{3}(x+1)^{-\frac{1}{3}} + \frac{2}{3}(x-1)^{-\frac{1}{3}} = \frac{2}{3}(\frac{1}{\sqrt[3]{x+1}} + \frac{1}{\sqrt[3]{x-1}})$ $1)y''(x) = \frac{2}{3} \left(-\frac{1}{3}(x+1)^{-\frac{1}{3}} - \frac{1}{3}(x-1)^{-\frac{1}{3}} \right) = -\frac{2}{9} \left(\frac{1}{3\sqrt{X+1}} + \frac{1}{3\sqrt{X-1}} + \frac{$ y(x): 3) y"=0

$$\frac{\sqrt[3]{X-1} + \sqrt[4]{X+1}}{\sqrt[3]{X+1} + \sqrt[4]{X-1}} = 0 \quad \text{Her pennenuly} \quad (\Rightarrow \text{Her mous. To yex } y'(x).)$$

4. Интервалот выпуклост:
$$y(x)$$
 выпукла вверх на $(-\infty, -1)$; $(-1, 1)$; $(1; +\infty)$

5. Torku neperuba - Her
$$\frac{\sqrt{y}}{\sqrt{y}}$$
 $\frac{\sqrt{y}}{\sqrt{y}}$ $\frac{\sqrt{$

$$\sqrt{5.446}$$
.
 $y = x \ln |x|$ 3 aganue TO *e.

Pemerne.

1.
$$\mathcal{D}(y)$$
: $x \neq 0$, $\tau \cdot e$. $x \in (-\infty; 0) \cup (0; +\infty)$

2.
$$y' = x' \ln |x| + x \cdot (\ln |x|)' = \ln |x| + x \cdot \frac{1}{x} = \ln |x| + 1$$

1) $y'' = \frac{1}{x}$

3)
$$y''=0$$
 her percences

3.
$$y'' \rightarrow x$$

$$\frac{\text{Tioghoono:}}{\text{lim } y = \text{lim } x \text{ln} |x| = \text{lim } \frac{\text{ln}|x|}{x} = (\infty) = \text{lim } \frac{\frac{1}{x}}{x^2} = -\text{lim } x = 0$$

$$0 \pm \D(x)$$

$$0 \pm \D(x)$$

$$0 \pm \D(x)$$

$$0 \pm \D(x)$$

$$\Rightarrow x = 0 - T$$
. $pcyptsba I poga (ychanumae).$

$$\frac{x \left(-\infty; 0\right) \left(0; +\infty\right)}{y'' - + \cdots}$$

D13I. N5.442, 5.445

Pennenne. $y = \frac{x(x^2-3)}{x^2-1} = \frac{x(x-\sqrt{3})(x+\sqrt{3})}{(x-1)(x+1)}$

1. D(y): x # ±1, T.e. x E(-0; -1) U(-1; 1) U(1; +0)

2. y(x) непрерывна на $\mathcal{D}(y)$; $x = \pm 1 - \tau$. разрыва \mathbb{I} рода

3. VÉTROCTO HEYÉTHOCTO NEPLLOGUEHOCTO! $y(-x) = \frac{(-x)^3/-3(-x)}{(-x)^2-1} = -\frac{x^3-3x}{x^2-1} = -y(x) \Rightarrow HETÉTHOLD, HENEPLLOGUET$

4. Torky nepecer c ocheller K-F;

1) c
$$0x: y=0 \Rightarrow x=0, x=\pm \sqrt{3}$$

2) $c \circ y$: $x=0 \Rightarrow y=0$.

6. Kpur Toyku y(x): 1) $y' = \left(\frac{x^3 - 3x}{x^2 - 1}\right)^2 = \frac{(3x^2 - 3)(x^2 - 1) - (x^3 - 3x)2x}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 1)^2 - 2x^2(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 3)(x^2 - 1)}{(x^2 - 1)^2} = \frac{3(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 3)(x^2 - 1)}{(x^2 - 1)^2} = \frac{3(x^2 - 3)}{(x^2 - 1)^2} = \frac{3(x^2 - 3)}{($ $=\frac{3(x^{4}-2x^{2}+1)-2x^{4}+6x^{2}}{(x^{2}-1)^{2}}=\frac{x^{4}+3}{(x^{2}-1)^{2}}=\frac{x^{4}+3}{(x-1)^{2}(x+1)^{2}}$

=> HET KPUT. 704EK Q-YUU

$$\frac{y'}{y} + \frac{+}{1} + \frac{+}{2} \rightarrow x$$

8. Интервалот монотонности:
$$y(x) \nearrow Ha(-\infty; -1); (-1; 1); (1; +\infty)$$

9. Тотки экстремума и экстремумы — нет.

$$\mathcal{L}_{pur} = \frac{y(x)}{4 \times^{3} (x^{2}-1)^{2} - (x^{4}+3) \cdot 2 \cdot (x^{2}-1) \cdot 2x} = \frac{(x^{2}-1)(4x^{3}(x^{2}-1)^{2} - (x^{4}+3) \cdot 2 \cdot (x^{2}-1) \cdot 2x}{(x^{2}-1)^{4}} = \frac{(x^{2}-1)(4x^{3}(x^{2}-1) - 4x(x^{4}+3))}{(x^{2}-1)^{4}} = \frac{-4x(x^{2}+3)}{(x-1)^{3}(x+1)^{3}} = \frac{-4x(x^{2}+3)}{(x-1)^{3}} = \frac{-4x(x^{2}+3)}{(x-1)^{3}(x+1)^{3}} = \frac{-4x(x+1)}{(x-1)^{3}} = \frac{-4x(x+1)}{(x-1)^{3}$$

$$\frac{11 \cdot y'' + - + -}{y \cdot \sqrt{-1} \cap 0 \vee 1} \longrightarrow x$$

12. Unreplanos bornyknoczi:

$$y(x)$$
 выпукла внеу на $(-\infty; -1); (0; 1)$ вверх на $(-1; 0); (1; +\infty)$

14. Acueun70701:

1) Beptikanshore:
$$X = \pm 1$$
, T.R. $\lim_{x \to \pm 1} y(x) = \lim_{x \to \pm 1} \frac{x^3 - 3x}{x^2 - 1} = \infty$

2) Hauronneow: y=kx+b

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^3 - 3x}{x(x^2 - 1)} = 1$$

$$k = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} \frac{x^3 - 3x}{x(x^2 - 1)} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x^3 + x}{x^2 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^3 - 1} = \lim_{x \to \infty} \frac{x^3 - 3x - x}{x^$$

$$=\lim_{x\to\infty}\frac{-2x}{x^2-1}=0 \implies y=x \quad \text{Harrohhas accumnong}.$$

15. Kacar. B TOYKE REPERUSA:
$$y = y'(0)(x-0) + 0$$

 $y = 3x$

D13II N 5,472

Tho	gn	OHO;		
Х		(~∞j-1)	(-1; 11)	$(1;+\infty)$
y	. 1	+	+	+
y	,	7	7	7

	X	(-==;-1)	(4;0)	0	(0;1)	(1;+∞)
(<i>(</i> 1)	+	_	0	+	
	1	\vee	\bigcap	0	V	

12

$$y = \frac{1}{\sin x + \cos x} \qquad 3aganue \quad 70 \quad xe.$$
Permenue. $y = \frac{1}{\sinh x + \cos x} = \frac{1 \cdot \frac{12}{2}}{\sinh x \cdot \frac{12}{2} + \cos x \cdot \frac{12}{2}} = \frac{\frac{12}{2}}{\sinh (x + \frac{11}{4})} = \frac{1}{\sqrt{2} \sin (x + \frac{11}{4})}$
1. $\mathcal{D}(y)$: $\sin(x + \frac{11}{4}) \neq 0$, $x \neq \frac{1}{4} \neq \pi n$, $x \neq -\frac{11}{4} + \pi n$, $n \in \mathbb{Z}$

z) c Dy:
$$x=0 \Rightarrow y=1 \Rightarrow (0;1)$$

6. Kput. TOYKUY(x):
1)
$$y' = \frac{1}{\sqrt{2}} \frac{-1}{\sin^2(x+2)} \cdot \cos(x+2) = -\frac{1}{\sqrt{2}} \frac{\cos(x+2)}{\sin^2(x+2)}$$

2) $\mathcal{D}(y') = \mathcal{D}(y)$

3)
$$y' = 0$$
 $\cos(x + \frac{\pi}{4}) = 0$, $x + \frac{\pi}{4} = \frac{3}{2} + \pi n$, $x = \frac{\pi}{4} + \pi n$, $u \in \mathbb{Z}$

$$\frac{7}{y} \frac{y'}{4} - \frac{1}{4} \frac{37}{4} \frac$$

$$y = (os(x+2))$$

$$y = cosx$$

$$y = -cos(x+2)$$

8. Интерваны моногонносм:

$$y(x) = \sqrt{\frac{2}{4} + 2\pi n}; \frac{3\pi}{4} + 2\pi n); (\frac{3\pi}{4} + 2\pi n); \frac{5\pi}{4} + 2\pi n)$$

 $y(x) = (-\frac{\pi}{4} + 2\pi n); \frac{\pi}{4} + 2\pi n); (\frac{5\pi}{4} + 2\pi n); \frac{7\pi}{4} + 2\pi n$

9. Точки экстремуща / экстремущот

$$y_{min} = \frac{1}{4} + 2\pi n$$

$$y_{min} \left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}\sin^{2} \pi} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$y_{max} \left(\frac{5\pi}{4}\right) = \frac{1}{\sqrt{2}\sin^{2} \pi} = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

$$y_{max} \left(\frac{5\pi}{4}\right) = \frac{1}{\sqrt{2}\sin^{2} \pi} = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

 $Sin(x+\frac{7}{4}) \cdot Sin(x+\frac{7}{4}) \cdot Sin($

$$= \frac{1}{\sqrt{2}} \frac{Sun^{2}(x+\frac{7}{4}) + 2 \cos^{2}(x+\frac{7}{4})}{Sun^{2}(x+\frac{7}{4})} = \frac{1}{\sqrt{2}} \frac{1 + \cos^{2}(x+\frac{7}{4})}{Sin^{3}(x+\frac{7}{4})}$$

2)
$$\mathcal{D}(y'') = \mathcal{D}(y') = \mathcal{D}(y)$$
 3) $y'' = 0$ Her pein.

Her KPUT. TOYEK
Y'(x).

12. Интервалы выпуклосы: y(x) выпукла внеу на $(-\frac{7}{4}, +2\pi n; \frac{37}{4}, +2\pi n)$ $n \in \mathbb{Z}$ y(x) выпукла вверх на $(\frac{37}{4}, +2\pi n; \frac{77}{4}, +2\pi n)$

13. T. neperusa Her

14. Aceseu 120-701:

вергиканьные: $x = -\frac{9}{4} + \pi n$, $n \in \mathbb{Z}$

15. График:

16. $E(y) = (-\infty; -\frac{\sqrt{2}}{2}] U[\frac{\sqrt{2}}{2}; +\infty)$

Подробно:

X	(-4) 4	<u> </u>	(\(\frac{\mathfrak{I}}{4}\);\(\frac{3\mathfrak{I}}{4}\)	$\left(\frac{3\pi}{4};\frac{5\pi}{4}\right)$	5JI 4	(571 : 777)
y1		0	+	+	Ô	_
y		12/2	7	7	-12 2	7
		277	\	(371 ;	7 <u>1</u> 7 \	

X	$\left(-\frac{71}{4};\frac{37}{4}\right)$	$\left(\begin{array}{ccc} \frac{3\pi}{4} & \frac{7\pi}{4} \end{array}\right)$
y"	+	
y		

D13 III N 5,497.

$$y = \frac{x^2}{\ln |x|}$$

Pemenne

1.
$$\mathcal{D}(g)$$
: $\int_{|x|\neq 0}^{|x|\neq 0} \{x \neq \pm 1 \} \times \in (-\infty; -1) \cup (-1; 0) \cup (0; 1) \cup (1; +\infty)$

2. Φ=2 μεπρ. μα
$$\mathcal{D}(y)$$
; $X = \pm 1 - T$. payporba II μοσα $(\lim_{x \to \pm 1} y(x) = \infty)$

$$X = 0 - T$$
. μαγρούβα I μοσα $(y \in y \in x)$ μεπεμιρούριος $(x \to \pm 1)$

$$(x \to 1)$$

$$(x \to 1$$

3. LETHOR, T.K.
$$y(-x) = \frac{(-x)^2}{h_1|x|} = \frac{x^2}{h_1|x|} = y(x)$$
; Henepuogureckon

4. T.
$$\int c \circ column \times F$$
:
1) $c \circ Ox$: $y = 0 \Rightarrow x = 0 \notin D(y)$; 2) $c \circ Oy$: $x = 0 \notin D(y)$

5. Прошежутки знакопосренства Ф-уши
$$y + - - + \to x$$

6. Figure 4. TO 4 KU
$$y(x)$$
:

1) $y' = \frac{2 \times \ln |x| - x^2 \cdot \frac{1}{x}}{(\ln |x|)^2} = \frac{2 \times \ln |x| - x}{(\ln |x|)^2} = \frac{x(\ln x^2 - \ln e)}{(\ln |x|)^2} = \frac{x(\ln x^2 - \ln e)}{(\ln |x|)^2}$

2)
$$\mathcal{D}(y') = \mathcal{D}(y)$$

3) $y' = 0$ $\begin{bmatrix} x = 0 \notin \mathcal{D}(y) \\ x^2 = e \end{bmatrix}$ $\begin{bmatrix} x = \pm \sqrt{e} \end{bmatrix}$

7.
$$y' - \frac{1}{\sqrt{1 - \sqrt{e}}} + \frac{1}{\sqrt{1 - \sqrt{e}}} + \frac{1}{\sqrt{1 - \sqrt{e}}} \times \frac{1}{\sqrt{e}} \times \frac{1}{\sqrt{1 - \sqrt{e}}} \times \frac{1}{\sqrt{1 - \sqrt{e}}} \times \frac{1}{\sqrt{1 - \sqrt{e}}} \times \frac{1}{\sqrt{e}} \times \frac{1}{\sqrt{e}}} \times \frac{1}{\sqrt{e}} \times \frac{1}{$$

- 8. Unreplant monorenocre: $y(x) \nearrow Ha(-\sqrt{e};-1); (-1;0); (\sqrt{e};+\infty)$ $y(x) \gg Ha(-\infty;-\sqrt{e}); (0;1); (1;\sqrt{e})$

$$\mathcal{K}pur. \, \mathcal{T}ouxu \, y'(x):$$

$$10. \, 1) \, y'' = \frac{\left[x(\ln x^2-1)\right]' \ln^2|x| - x(\ln x^2-1) \left(\ln^2|x|\right)'}{2} =$$

$$= \frac{\left[(\ln x^{2}-1) + x(\frac{2x}{x^{2}}) \right] \ln |x| - x(\ln x^{2}-1) 2 \ln |x| \cdot \frac{1}{x}}{\ln |x|} = \frac{\left[\ln x^{2}+1 \right] \ln |x| - 2 (\ln x^{2}-1)}{\ln^{3}|x|} = \frac{\left[\ln x^{2}+1 \right] \ln |x| - 2 (\ln x^{2}-1)}{\ln^{3}|x|} = \frac{2 \ln^{2}|x| + \ln|x| - 4 \ln|x| + 2}{\ln^{3}|x|} = \frac{2 \ln^{2}|x| - 3 \ln|x| + 2}{\ln^{3}|x|}$$

2)
$$\mathcal{D}(y'') = \mathcal{D}(y')$$

3)
$$y'' = 0$$
 $\int 2 \ln^2 |x| - 3 \ln |x| + 2 = 0$ (1)
 $\int \ln^3 |x| \neq 0$
Her pewerung

804/x/

12. Unverbanos bornyerocre;
$$y(x)$$
 bornyera bruz $Ha(-\infty; -1); (1; +\infty)$ bornyera bbepx $Ha(-1; 0); (0; 1)$

1) Beprikaishere:
$$x = \pm 1$$
, $\tau \cdot \kappa$. $\lim_{x \to \pm 1} y(x) = \infty$

2) Hakrohme:
$$y = kx + b$$

$$k = \lim_{x \to \infty} \frac{y(x)}{x} = \lim_{x \to \infty} \frac{x^2}{x \ln |x|} = \lim_{x \to \infty} \frac{x}{\ln |x|} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{1}{\frac{1}{x}} = \infty$$

=> HET HOMEN. ACCUMITOT.

15.
$$\sqrt{5}$$
 $\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$ $\sqrt{5}$ $\sqrt{7}$ $\sqrt{5}$ $\sqrt{5$