Лабораторная работа №6. Вариант 50.

Модель эпидемии

Силкина Мария Александровна

Содержание

_	Выводы	1 2
4	Выполнение лабораторной работы 4.1 Код программы	8 8 9
3	Теоретическое введение	7
2	Задачи	6
1	Цель работы	5

Список таблиц

Список иллюстраций

4.1	Код программы для решения задачи	10
4.2	График изменения количества инфицированных и выздоравлива-	
	ющих для первого случая	10
4.3	Графики изменения всех трех групп для первого случая	10
4.4	График изменения численности трех групп для второго случая	11

1 Цель работы

Изучить простейшую модель эпидемии, которая отражает картину протекания болезни.

2 Задачи

- 1. Построить графики изменения числа особей в каждой группе.
- 2. Рассмотреть как эпидемия будет протекать в случаях :

$$I(0) \leq I^*$$

И

$$I(0) > I^*$$

.

3 Теоретическое введение

Модель эпидемии имеет следующий вид:

Для построения модели скорости изменения числа восприимчивых, но еще здоровых особей:

$$\frac{dS}{dt} = \begin{cases} -\alpha S, I(t) > I^* \\ 0, I(t) \le I^* \end{cases}$$

Для построения модели скорости изменения числа инфицированных особей:

$$\frac{dI}{dt} = \begin{cases} -\alpha S - \beta I, I(t) > I^* \\ -\beta I, I(t) \le I^* \end{cases}$$

Для построения модели скорости изменения выздоравливающих особей:

$$\frac{dR}{dt} = -\beta I$$

где α - коэффициент заболеваемости;

 β - коэффициент выздоровления;

I - количество инфицированных особей;

R - количество выздоравливающих особей;

S- количество восприимчивых особей.

4 Выполнение лабораторной работы

4.1 Код программы

```
Код програмы написан на языке Modelica.
  model lab06
  parameter Real a = 0.01; //Коэффициент заболеваемости
  parameter Real b = 0.02; //Коэффициент выздоровления
  parameter Real N = 4289; //Численность популяции
  parameter Real I 0 = 82; //Количество инфицированных в начале эпидемии
  parameter Real R 0 = 15; //Количество людей, обладающих в начале эпидемии
иммунитетом
  parameter Real S 0 = N - I + O - R + O; //Число восприимчивых к болезни, но пока
здоровых в момент начала эпидемии
  Real I(start = I 0);//Количество инфицированных людей
  Real R(start = R 0);//Количество обладающих иммунитетом к болезни
  Real S(start = S 0);//Количество воспримчивых к болезни людей
  equation
  //Для первого случая, когда I(0) \le I^*
  //der(S) = 0;
 //der(I) = -b * I;
  //der(R) = b * I;
  //Для второго случая, когда I(0) > I^*
  der(S) = -a * S;
```

4.2 Ход работы

Уравнения модели эпидемии для моего варианта имеют следующий вид:

Для случая, когда

$$I(0) \leq I^*$$

$$\frac{dS}{dt} = 0$$

$$\frac{dI}{dt} = -\beta I$$

$$\frac{dR}{dt} = -\beta I$$

Для случая, когда

$$I(0)>I^*$$

$$\frac{dS}{dt} = -\alpha S$$

$$\frac{dI}{dt} = -\alpha S - \beta I$$

$$\frac{dR}{dt} = -\beta I$$

Начальные условия: N = 4289, I(0) = 82, R(0) = 15, S(0) = 4192. $\alpha=0.01, \beta=0.02$ и они являются постоянными.

Мною был написан код программы, который выводит графики, нужные в задачах. (рис 1. @fig:001)

```
model lab06

parameter Real a = 0.01; //Коэффициент заболеваемости

parameter Real b = 0.02; //Коэффициент выпаровления

parameter Real N = 4289; //Численность популяции

parameter Real N = 2829; //Численность популяции

parameter Real R 0 = 82; //Количество пидицированных в начале эпидемон зманунитетом

parameter Real R 0 = N - I O = R. p.0; //Числе восприянитымих Колевни, мо пока здоровых в момент начала эпидемон

Real Idsart = I,0); //Количество инфицированных людей

Real Idsart = R(0); //Количество обладающих макунитетом к болевии

Real S(start = R(0); //Количество обладающих макунитетом к болевии

Real S(start = R(0); //Количество обладающих макунитетом к болевии

14 //Для первого случая, когда I(0) <= I*

15 //dec(S) = 0;

17 //dec(R) = b * I;

18 //dec(B) = b * I;

29 dec(G) = a * S;

dec(G) = a * S;

dec(G) = a * S;

dec(G) = b * I;

20 dec(G) = a * S;

dec(G) = b * I;
```

Рис. 4.1: Код программы для решения задачи

Ниже приведен графики изменения количества выздоравливающих и инфицированных особей за временной промежуто для первого случая. (рис 2. @fig:002)

Рис. 4.2: График изменения количества инфицированных и выздоравливающих для первого случая

Также представлен отдельно график изменения всех трех групп особей, включая восприимчивых, но еще здоровых особей. (рис 3. @fig:003)

Рис. 4.3: Графики изменения всех трех групп для первого случая

Для второго случая выведен следующий график изменения численности. (рис 4. @fig:004)

Рис. 4.4: График изменения численности трех групп для второго случая

5 Выводы

При выполнении данной лабораторной работы я изучила модель протекания эпидемии, выполнив задания, данные мне, а именно: построила графики изменения численности для двух случаев.