Read Module 6 material on Canvas

- 1. (a) If a sequence is arithmetic and starts with 3,5 what is the next term? Just give the answer, don't justify it.
 - (b) If a sequence is geometric and starts with 3, 5 what is the next term? Just give the answer, don't justify it.
- 2. Evaluate

$$\sum_{k=7}^{1000} \frac{3^{2k+4}}{2^{3k+5}}$$

algebraically. You must show all steps. Leave large powers (which is to mean expressions of the form a^b with $b\approx 1000$) un-evaluated in your final answer. Do not give a calculator approximation.

- 3. Suppose $\{a_n\}$ is arithmetic and $a_3 = 5$, $a_{11} = 87$.
 - What is the common difference?
 - Find the following sum:

$$\sum_{k=3}^{200} a_k$$

Show your work Leave your answer unevaluated format, don't give a calculator answer.

- 4. Suppose $\{a_n\}$ is geometric and $a_3 = 5$, $a_{11} = 87$. What is the ratio? Leave you answer in radical format.
- 5. Using the summation formula $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ and j = k+1 index shift to find the following sum:

$$\sum_{j=5}^{45} (j+1)(j-3)$$

Show you work. Leave your answer unevaluated.

- 6. Find a recursive definition for the following sequences defined by the closed formulas:
 - (a) $a_n = -3 5n$
 - (b) $a_n = (-5) \cdot 3^n$
 - (c) $a_n = n! \cdot 2^n$.