Algorithms and Data Structures 2

Exam Notes

Week 1: Divide-and-Conquer

Mads Richardt

1 General Methodology and Theory

Divide-and-Conquer Strategy

- 1. Divide problem into smaller subproblems (often of equal size).
- 2. Conquer each subproblem recursively.
- 3. Combine subproblem solutions into a full solution.

Recurrence Relations

General form for divide-and-conquer running times:

$$T(n) = q \cdot T\left(\frac{n}{b}\right) + f(n),$$

where

- q: number of subproblems,
- b: factor by which input size is reduced,
- f(n): cost to divide and combine.

Solving Recurrences

Recursion Tree Method.

- 1. Expand recurrence level by level.
- 2. Compute cost per level.
- 3. Sum over all levels until base case.

Substitution Method.

- 1. Guess solution form $T(n) \leq k \cdot g(n)$.
- 2. Prove by induction:
 - Base case holds.
 - Inductive step: Plug hypothesis into recurrence.

Useful Mathematical Tools

• Geometric series: for $x \neq 1$,

$$\sum_{i=0}^{m} x^{i} = \frac{x^{m+1} - 1}{x - 1}.$$

For |x| < 1,

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}.$$

• Logarithm rules:

$$\log_a b = \frac{\ln b}{\ln a}$$
, $\log(ab) = \log a + \log b$, $\log \frac{a}{b} = \log a - \log b$.

2 Notes from Slides and Textbook

Mergesort Recurrence

$$T(n) \le \begin{cases} 2T(n/2) + cn & n > 2, \\ c & n \le 2. \end{cases}$$

Recursion tree analysis: Each level costs cn. There are $\log_2 n$ levels. Total:

$$T(n) = O(n \log n).$$

Substitution: Guess $T(n) \le kn \log n$. Show inductively:

$$T(n) \le 2k \frac{n}{2} \log(n/2) + cn = kn \log n - kn + cn \le kn \log n.$$

Counting Inversions

• Inversion: pair (i, j) with i < j and $a_i > a_j$.

• Divide-and-conquer algorithm: Sort-and-Count using merge.

• Running time: $O(n \log n)$.

3 Solutions to Problem Set

Exercise 1: Recurrences I

(a)
$$T(n) \le 2T(n/4) + cn$$
.

$$T(n) = 2T\left(\frac{n}{4}\right) + cn.$$

Recursion tree: At level i, 2^i subproblems of size $n/4^i$. Cost per subproblem $\approx c \cdot n/4^i$. Total per level:

$$2^i \cdot \frac{cn}{4^i} = \frac{cn}{2^i}.$$

Summing over $\log_4 n$ levels:

$$T(n) \le cn \sum_{i=0}^{\log_4 n} \frac{1}{2^i} \le 2cn = O(n).$$

2

(b) $T(n) \leq 2T(n/4) + c\sqrt{n}$. Level i has 2^i subproblems of size $n/4^i$. Cost per subproblem: $c\sqrt{n/4^i} = \frac{c}{2^i}\sqrt{n}$. Total per level:

$$2^i \cdot \frac{c}{2^i} \sqrt{n} = c\sqrt{n}.$$

Depth $\log_4 n$. Total:

$$T(n) = O(\sqrt{n}\log n).$$

Exercise 2: Significant Inversions (KT 4.2)

Use modification of Sort-and-Count:

Algorithm CountSignificantInversions(A):

if length(A) = 1: return (0, A)

split A into L and R

(iL, L) := CountSignificantInversions(L)

(iR, R) := CountSignificantInversions(R)

(iM, M) := MergeAndCountSignificant(L, R)

return (iL + iR + iM, M)

During merge, when comparing $a_i \in L$ with $a_j \in R$, if $a_i > 2a_j$, then all later elements in L (since sorted) also form significant inversions with a_j . Count efficiently in O(n) per merge. Total complexity: $O(n \log n)$.

Exercise 3: Divide-and-Conquer on Trees (KT 4.6)

Problem: Find a local minimum in a complete binary tree with $n = 2^d - 1$ nodes using $O(\log n)$ probes.

Algorithm:

- 1. Probe the root.
- 2. Compare root with its children.
- 3. Recursively continue into the smaller child.

Because tree height is $\log n$, this uses $O(\log n)$ probes. Correctness: At each step, moving into the smaller neighbor guarantees a local minimum exists along that path.

Exercise 4: Divide-and-Conquer on Grid Graphs (KT 4.7)

Problem: Find a local minimum in an $n \times n$ grid with O(n) probes.

Algorithm:

- 1. Check middle column for minimum entry x.
- 2. Compare x with its horizontal neighbors.
- 3. If x is smaller than both, x is a local minimum.
- 4. Otherwise recurse into the half-grid containing the smaller neighbor.

Each step reduces size by factor 2, cost O(n) per level, $\log n$ levels. Total: O(n) probes.

Exercise 5: CSES Programming

Missing Number. Sort or use XOR sum trick. XOR all numbers $1, \ldots, n$. XOR with input list. Result is missing number. Complexity: O(n).

Distinct Numbers. Insert all into a set. Output set size. Complexity: $O(n \log n)$.

Exercise 6: Recurrences II

(a) $T(n) \le T(3n/4) + cn$. Tree method: Level i: subproblem size $(3/4)^i n$. Cost per level $\approx c \cdot (3/4)^i n$. Sum over $\log_{4/3} n$ levels:

$$T(n) \le cn \sum_{i=0}^{\log_{4/3} n} \left(\frac{3}{4}\right)^i \le 4cn = O(n).$$

(b) $T(n) \leq T(n/2) + T(n/3) + T(n/6) + cn$. All subproblem sizes add up to n, so each level cost $\approx cn$. Depth $O(\log n)$. Therefore $T(n) = O(n \log n)$.

4 Summary

- Divide-and-conquer recurrence template: T(n) = qT(n/b) + f(n).
- Geometric sums: essential for solving recurrences.
- Mergesort: $O(n \log n)$.
- Counting inversions: Sort-and-Count in $O(n \log n)$.
- Significant inversions: modify merge, still $O(n \log n)$.
- Local minimum in binary tree: $O(\log n)$ probes.
- Local minimum in grid: O(n) probes.
- Recurrence results:

$$\begin{split} T(n) &= 2T(n/4) + cn \quad \Rightarrow O(n), \\ T(n) &= 2T(n/4) + c\sqrt{n} \quad \Rightarrow O(\sqrt{n}\log n), \\ T(n) &= T(3n/4) + cn \quad \Rightarrow O(n), \\ T(n) &= T(n/2) + T(n/3) + T(n/6) + cn \quad \Rightarrow O(n\log n). \end{split}$$