FROM LAST TIME...

Analysis of Feedback Systems

- · Feedback controller structure
- Nominal sensitivity functions
- · Stability of nominal feedback system
- Root locus

$$T(s) = \frac{G(s)C(s)}{1 + G(s)C(s)}$$

$$S(s) = \frac{1}{1 + G(s)C(s)}$$

$$S_i(s) = \frac{G(s)}{1 + G(s)C(s)}$$

$$S_u(s) = \frac{C(s)}{1 + G(s)C(s)}$$

James A. Mynderse

MRE 5323 – More Stability

Controller

 $1 + KC_a(s)G(s) = 0$

$D_{I}(s)$ $D_{O}(s)$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$

1

MORE STABILITY

Topics

- · Nyquist test for stability
- Relative stability
- Robust stability

At the end of this section, students should be able to:

- Apply the Nyquist stability theorem.
- Quantify relative stability using gain and phase margins.
- · Apply the robust stability theorem.

James A. Mynderse

MRE 5323 - More Stability

,

MORE STABILITY

NYQUIST STABILITY

James A. Mynderse

MRE 5323 - More Stability

3

Recall the open-loop transfer function

$$L(s) = C(s)G(s) = \frac{N_L(s)}{D_L(s)}$$

The closed-loop characteristic equation is given by

$$F(s) = 1 + L(s) = 0$$

James A. Mynderse

STABILITY IN FREQUENCY DOMAIN

We want to know where the zeros of F(s) are.

- Use a MAPPING between the s-plane (where the roots are) and the F(s)-plane.
- Since we want stability, isolate the RHP with a geometrically simple directed contour $\Gamma_{\!\scriptscriptstyle S}.$

James A. Mynderse

MRE 5323 - More Stability

EFFECT OF ZEROS OF F(s)

1. Zero outside contour F(s) = s + a, a > 0

James A. Mynderse

EFFECT OF ZEROS OF F(s)

1. Zero inside contour F(s) = s - a,

James A. Mynderse

MRE 5323 - More Stability

PRINCIPLE OF THE ARGUMENT (CAUCHY)

Let F(s) be a single-valued function that has a finite number of poles in the s-plane. Choose a closed path Γ_s in the s-plane such that it avoids any poles or zeros of F(s). Then the corresponding contour Γ_F mapped in the F(s)-plane will encircle the origin N_{CW} times in a clockwise direction.

$$N_{CW} = N_Z - N_P$$

 $N_Z = \#$ of zeros of F(s) encircled by Γ_S $N_P = \#$ of poles of F(s) encircled by Γ_S

James A. Mynderse

APPLICATION TO STABILITY

Recall:

$$F(s) = 1 + L(s) = 0 = 1 + \frac{N_L(s)}{D_L(s)} = \frac{D_L(s) + N_L(s)}{D_L(s)}$$

zeros of F(s): roots of characteristic equation (closed-loop poles)

poles of F(s): open-loop poles

James A. Mynderse

MRE 5323 - More Stability

9

WE STILL NEED TO RELATE F(s) TO L(s)

$$F(s) = 1 + L(s)$$
 $L(s) = F(s) - 1$

James A. Mynderse

NYQUIST STABILITY CRITERION

$$N_{CW} = N_Z - N_P$$

$$\begin{split} N_{CW} &= \text{\# of CW encirclements of } -1 \text{ by } \Gamma_L \\ N_Z &= \text{\# of closed-loop poles encircled by } \Gamma_S \\ N_P &= \text{\# of open-loop poles encircled by } \Gamma_S \end{split}$$

A feedback system having N_P open-loop poles in the RHP is stable if and only if the Nyquist plot of L(s) encircles -1 N_P times in a counterclockwise direction.

James A. Mynderse

MRE 5323 - More Stability

11

STEPS IN SKETCHING A NYQUIST PLOT

- 1. Plot poles of L(s) in the s-plane.
- 2. Draw the Nyquist contour Γ_s , indenting to the right of any poles of L(s) on the imaginary axis.
- 3. Map contour Γ_s to L(s)-plane.
- 4. Apply encirclement condition.

James A. Mynderse

MRE 5323 - More Stability

NYQUIST EXAMPLE

$$L(s) = \frac{2K}{(2s+1)(s+1)(\frac{s}{2}+1)}$$

James A. Mynderse

MRE 5323 - More Stability

NYQUIST PLOT

Curve 1:
$$s = j\omega$$
 $L(j\omega) = \frac{1}{2}$

$$L(j\omega) = \frac{2}{(1+j2\omega)(1+j\omega)\left(1+j\frac{\omega}{2}\right)}$$

$$|L(j\omega)| = \frac{2}{\sqrt{1 + (2\omega)^2}\sqrt{1 + \omega^2}\sqrt{1 + \left(\frac{\omega}{2}\right)^2}}$$

$$\angle L(j\omega) = -\tan^{-1}(2\omega) - \tan^{-1}\omega - \tan^{-1}\left(\frac{\omega}{2}\right)$$

ω	$ L(j\omega) $	$\angle L(j\omega)$
0		
1		
2		
$\omega \to \infty$		

Curve 3: $s = -j\omega$: Complex conjugate of Curve 1

James A. Mynderse

MRE 5323 - More Stability

NYQUIST PLOT

Curve 2: $s = Re^{j\phi}$

$$L(Re^{j\phi}) = \frac{2}{(1 + 2Re^{j\phi})(1 + Re^{j\phi})\left(1 + \frac{1}{2}Re^{j\phi}\right)}$$

Let $R \to \infty$

$$L(Re^{j\phi}) \approx \frac{2}{2Re^{j\phi}Re^{j\phi}\frac{1}{2}Re^{j\phi}}$$

$$L(Re^{j\phi}) \approx \frac{2}{R^2} e^{-3j\phi}$$

$$\lim_{R\to\infty}|L(s)|\to 0$$

James A. Mynderse

MRE 5323 - More Stability

15

NYQUIST STABILITY CRITERION

James A. Mynderse

MRE 5323 - More Stability

MORE STABILITY

RELATIVE STABILITY

James A. Mynderse

MRE 5323 - More Stability

SO FAR WE'VE ONLY DISCUSSED STABILITY AS A BINARY CONDITION

Poles in LHP Passed Routh-Hurwitz test Passed Nyquist test

Poles in RHP Failed Routh-Hurwitz test Failed Nyquist test

- For a given system, how far apart are these regions?
- Could we give it a little push from stability to instability?
- Relative stability measures how far from instability a system is currently
- Relative stability is measured in magnitude and phase

James A. Mynderse

MRE 5323 - More Stability

19

PROXIMITY TO ENCIRCLEMENT OF -1 IS A RELATIVE STABILITY.

- Gain Margin the factor by which the open-loop gain can be increased at a phase of −180° before the system goes unstable.
- Phase Margin the amount by which open-loop phase can be decreased at unity magnitude before system goes unstable

James A. Mynderse

MRE 5323 - More Stability

THE CLOSEST APPROACH OF THE NYQUIST PATH TO -1 GIVES US THE SENSITIVITY PEAK

$$M_{s} = \frac{1}{\eta} = \max |S_{o}(j\omega)|$$
$$= \max \left| \frac{1}{1 + G_{o}(j\omega)C(j\omega)} \right|$$

- ullet M_{s} is the nominal sensitivity peak
- Larger M_s means closer to instability

James A. Mynderse

MRE 5323 - More Stability

21

EXAMPLE:

$$L_o(s) = \frac{3}{(s+1)^3}$$

James A. Mynderse

MRE 5323 - More Stability

SUMMARY OF MARGINS

For stability, we want no encirclement of $\neg 1$ (for minimum-phase systems):

- GM > 1 or $GM_{dB} > 0$
- $PM > 0^{\circ}$

As measures of relative stability, more positive GM & PM imply farther away from instability:

- GM indicates allowable extra gain
- PM indicates allowable extra phase lag (time delay)

James A. Mynderse

MRE 5323 - More Stability

MORE STABILITY

ROBUST STABILITY

James A. Mynderse

MRE 5323 - More Stability

27

THAT'S ALL WELL AND GOOD, BUT WHAT HAPPENS WHEN ACTUAL SYSTEM ISN'T NOMINAL?

$$L_o(s) = \frac{3}{(s+1)^3}$$

$$L(s) = \frac{3}{(s+1)^3}e^{-0.5s}$$

James A. Mynderse

MRE 5323 - More Stability

COMPARE THE MODEL ERROR TO THE SENSITIVITY PEAK

If the difference between nominal and actual is less than the inverse of nominal sensitivity peak, the system is still stable!

$$|L(j\omega) - L_o(j\omega)| < |1 + L_o(j\omega)|$$

James A. Mynderse

MRE 5323 - More Stability

29

WE CAN DO SOME MANIPULATION TO MAKE THIS MORE USEFUL

$$|L(j\omega) - L_o(j\omega)| < |1 + L_o(j\omega)|$$

$$|C(j\omega)G(j\omega) - C(j\omega)G_o(j\omega)| < |1 + L_o(j\omega)|$$

$$|\mathcal{C}(j\omega)G_o(j\omega)|\cdot \left|\frac{G(j\omega)-G_o(j\omega)}{G_o(j\omega)}\right|<|1+L_o(j\omega)|$$

$$\frac{|L_o(j\omega)|}{|1+L_o(j\omega)|} \cdot \left| \frac{G(j\omega) - G_o(j\omega)}{G_o(j\omega)} \right| < 1$$

 $|T_o(j\omega)||G_{\Lambda}(j\omega)|<1$

James A. Mynderse

MRE 5323 - More Stability

)

ROBUST STABILITY THEOREM

Consider a plant with a nominal TF of $G_0(s)$ and a true TF of G(s).

- Assume that a controller C(s) has been designed to achieve nominal internal stability (i.e., no unstable pole/zero cancellation and $L_o(s) = G_o(s)C(s)$ is stable).
- Also assume that $L_o(s) = G_o(s)C(s)$ and L(s) = G(s)C(s) have the same number of unstable poles.

Then, a sufficient condition for stability of the actual feedback loop obtained by applying the controller to the true plant is that

$$|T_o(j\omega)||G_{\Delta}(j\omega)| = \left|\frac{L_o(j\omega)}{1 + L_o(j\omega)}\right||G_{\Delta}(j\omega)| < 1$$

where $G_{\Delta}(j\omega)$ is the frequency response of the multiplicative modeling error.

James A. Mynderse

MRE 5323 - More Stability

31

ROBUST STABILITY EXAMPLE

Problem Formulation

Nominal System	Actual System	MME
$L_o(s) = \frac{3}{(s+1)^3}$	$L(s) = \frac{3}{(s+1)^3} e^{-T_d s}$	$G_{\Delta}(s) = e^{-T_{d}s} - 1$

Find exact value of time delay that leads to instability.

$$\left|e^{-T_{d}j\omega}\right| = 1$$
 $\angle e^{-T_{d}j\omega} = -T_{d}\omega$ [rad]

James A. Mynderse

MRE 5323 - More Stability

ROBUST STABILITY EXAMPLE (CONT.)

Estimate the critical time delay using Robust Stability

$$T_o(s) = \frac{L_o(s)}{1 + L_o(s)} = \frac{\frac{3}{(s+1)^3}}{1 + \frac{3}{(s+1)^3}} = \frac{3}{(s+1)^3 + 3}$$

$$G_{\Delta}(s) = e^{-T_d s} - 1$$

James A. Mynderse

MRE 5323 - More Stability

ROBUST STABILITY EXAMPLE

Comment on any differences in the two values for time delay

James A. Mynderse MRE 5323 – More Stability

ACTUAL AND NOMINAL SENSITIVITY

Actual Achieved Sensitivity Functions

$$S(s) = S_o(s)S_{\Delta}(s)$$

$$T(s) = T_o(s)(1 + G_{\Delta}(s))S_{\Delta}(s)$$

$$S_i(s) = S_{io}(s)(1 + G_{\Delta}(s))S_{\Delta}(s)$$

$$S_u(s) = S_{uo}(s)S_{\Delta}(s)$$

where

$$S_{\Delta}(s) = \frac{1}{1 + T_o(s)G_{\Delta}(s)},$$
 Error Sensitivity $G_{\Delta}(s) = \frac{G(s) - G_o(s)}{G_o(s)},$ MME

James A. Mynderse

MRE 5323 - More Stability

37

HOW DID YOU DO THAT?

Sensitivity functions all have the same term in the denominator

$$\frac{1}{1+GC}$$

We can rewrite this term to include a comparison of the nominal plant model and true plant

But it would be more useful if we could connect this to the MME

$$G_{\Delta}(s) = \frac{G(s) - G_0(s)}{G_0(s)}$$

James A. Mynderse

MRE 5323 - More Stability

HOW DID YOU DO THAT?

$$\frac{1+G_oC}{1+GC} = \frac{1}{\left(\frac{1+GC}{1+G_oC}\right)}$$

$$=\frac{1}{1+T_oG_{\Delta}}$$

James A. Mynderse

MRE 5323 - More Stability

-

PERFORMANCE ROBUSTNESS

To ensure that achieved performance is close to nominal performance, we need

$$S_{\Delta}(j\omega)\approx 1$$

$$S_{\Delta}(s) = \frac{1}{1 + T_o(s)G_{\Delta}(s)}$$

James A. Mynderse

MRE 5323 - More Stability

COMING UP...

Pole Placement Controller Design

- Pole placement design
- Controller with integration
- PID via pole placement

PID Control via Pole Placement

- P, PD, PI, PID controllers
- Smith predictor

James A. Mynderse

MRE 5323 - More Stability