1 Differential Equations, Laplace Transform and Preliminaries

1.1 Differential Equations

Determine the transfer function of a linear time invariant (LTI) system given the following information:

- 1. The system has relative degree 3.
- 2. It has 3 poles, of which 2 are at -2 and -4.
- 3. The impulse response resembles a step response for a stable linear system with a steady state value of 0.25.

Solution:

Given a linear time-invariant (LTI) system with specific characteristics, we aim to determine its transfer function. The details and solution steps are as follows:

System Characteristics

- The system has a relative degree 3 with 3 poles, hence it has no finite zeros.
- It has 3 poles, hence it takes the form:

$$G(s) = \frac{K}{A(s)(s+2)(s+4)}$$
(1)

• Since the impulse response resembles a step response with a steady state value, we conclude the system must contain a pole at zero. Therefore, the transfer function is of the form:

$$G(s) = \frac{K}{s(s+2)(s+4)}$$
 (2)

Determination of K

Using the final value theorem to determine K, we have:

$$\lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{sK}{s(s+2)(s+4)}$$
(3)

$$=\frac{K}{8} \tag{4}$$

Given the steady state value of 0.25, i.e., $\lim_{s\to 0} sG(s) = 0.25$, we find K = 2. Therefore, the transfer function of the system is:

$$G(s) = \frac{2}{s(s+2)(s+4)} \tag{5}$$

GPT Answer:

To determine the transfer function H(s) of a Linear Time Invariant (LTI) system given the conditions, we need to consider each piece of information provided:

- 1. **Relative degree 3**: This implies that the degree of the denominator (the poles) of the transfer function is three more than the degree of the numerator (the zeros).
- 2. **3 poles, with 2 at -2 and -4**: If there are three poles and we know the location of two of them, we denote these poles as s = -2 and s = -4. The third pole's location is not specified, so we'll denote it as s = p.
- 3. **Impulse response resembles a step response for a stable linear system with a steady state value of 0.25**: A system's steady state value in response to a step input (which is essentially the system's DC gain or the gain as $s \to 0$) can be found by evaluating the transfer function at s = 0. Since the impulse response resembles the step response with a steady state value of 0.25, the transfer function's value at s = 0 should be 0.25.

Given these conditions, the general form of the transfer function H(s) for an LTI system is:

$$H(s) = \frac{K}{(s+2)(s+4)(s+p)}$$

Where: - K is the gain of the system, which we need to find. - p is the location of the third pole, which we need to determine based on the system being stable (i.e., the real part of p must be negative).

Since the system is stable and has a steady state value of 0.25 for a step input, we can use the Final Value Theorem which states that:

$$\lim_{s \to 0} sH(s) = 0.25$$

Plugging the general form of H(s) into this theorem:

$$\lim_{s \to 0} s \frac{K}{(s+2)(s+4)(s+p)} = 0.25$$

Solving for K when s = 0 gives:

$$K = 0.25(0+2)(0+4)(0+p) = 2p$$

However, without the exact value of p, we cannot specify K exactly. We do know that p must be negative for stability, and without further information, we can't identify p's exact value. Typically, the step of finding K would involve knowing p to maintain the system's stability and meet the given steady state value condition.

Given these constraints and without the specific value of p, we cannot provide a singular transfer function or the exact value of K. The information leads to a partially determined transfer function:

$$H(s) = \frac{K}{(s+2)(s+4)(s+p)}$$

with K related to p by K = 2p, and p < 0 for system stability.

Confidence Level: 75%

The confidence level reflects the partial determination of the transfer function due to the unknown third pole and the assumption made about the system's stability to derive K.

Calculation Error

Claude Answer:

The transfer function of the given LTI system is:

$$H(s) = \frac{K}{(s+2)(s+4)(s+b)}$$

where b is a positive real number, and K is a constant gain term.

From the given information:

- 1. Relative degree 3 implies that the numerator is of degree 0 (a constant) and the denominator is of degree 3.
- 2. Two poles are at s = -2 and s = -4, so the denominator contains terms (s+2) and (s+4).
- 3. The steady-state value of the impulse response is 0.25, which means $\lim_{s\to 0} sH(s) = 0.25$. Solving this limit gives $K/(2 \cdot 4 \cdot b) = 0.25$, or K = 2b.

To determine the value of b, we need more information about the system, such as the location of the third pole.

Confidence Level: 95/100

Calculation Error