

Curso de Redes Informáticas de Internet

Quetzally Meza

@zallyhg

¿Te imaginas un mundo sin redes computacionales?

Los humanos tenemos la necesidad de comunicarnos

Señales de humo / fuego o luz

Servicio postal o correo

Telégrafo

Código Morse

A	• -	J	s	2 ·
В	- • • •	K	T -	3
C		L ·-··	U ··-	4
D		M	V ···-	5
E	•	N	W	6
F	••-•	0	X	7
G	•	P ··	Y	8
Н	• • • •	Q	Z··	9
	• •	R ·-·	1	0

La gran invención del teléfono

Teléfono inalámbrico

Radio y televisión

ARPANET

¿Qué son las redes computacionales?

"Computadoras autónomas interconectadas mediante una sola tecnología"

Andrew S. Tanembaum, Wetherall. Redes de computadoras, 5ta edición 2012.

¿Cómo se ven las redes?

Las redes computacionales pueden verse de muchas formas, hay varios tipos de computadoras y tecnologías de comunicación.

Medios de transmisión

Nos podemos comunicar mediante satélites de comunicación, cables de cobre, cables de fibra óptica, cables coaxiales, microondas, infrarrojo, y bluetooth (ondas de radio).

Así funcionan los rangos de frecuencia

¿Por qué son importantes las redes computacionales?

Uso militar, sistemas gubernamentales, instituciones diversas

Centros de datos y trabajo desde casa

Escuelas y oficinas

Redes sociales

Clasificación de las redes computacionales

Clasificación por transmisión

UNICAST

BROADCAST

MULTICAST

Uno a uno

Uno hacia todos

Uno a varios

Enlaces de difusión (Broadcast)

- Todas las máquinas en la red comparten el canal de comunicación.
- Los paquetes que envía una máquina la reciben todas las demás.
- Se usa un campo verificador para saber a quién pertenece o si enviar a todos los destinos.

BROADCAST Uno hacia todos

 Algunos sistemas permiten enviar sólo a un subconjunto (MULTICAST).

Enlaces punto a punto (Unicast)

- Conecta pares individuales de máquinas.
- Puede visitar máquinas intermedias entre su origen y destino.

Clasificación por escala (PAN, LAN, WAN, MAN)

PAN

Redes de uso personal

LAN

Redes de área local (como tu casa)

MAN

Redes de área metropolitana

Ciudades

WAN

Red de área amplia

Protocolos de red

Protocolos de red

- La mayoría de redes utilizan una pila de capas para organizarse, cada una se construye a partir de la que tiene debajo.
- Cada capa proporciona servicios a la capa superior y oculta detalles de cómo implementa sus propios servicios a la capa inferior.

Protocolo de red

- Son las reglas que permiten la comunicación y transmisión de información.
- Existen dos modelos de comunicación principales divididos en capas y cada capa cuenta con ciertos protocolos.

Jerarquía de los protocolos

Jerarquía de protocolos

La jerarquía de los protocolos y su organización en capas reduce la complejidad del diseño de una red y permite la correcta transmisión de datos.

Modelo TCP/IP

Modelo Suite de productos TCP/IP (principales) **SMTP** SSH FTP DHCP Capa de Aplicación SNMP DNS RIP HTTP DCCP TCP μΤΡ Capa de Transporte **ICMP** FCP UDP **ICMP** IP Capa de Internet **IPSEC IGMP** L2TP ARP Capa de Interfaz de Red NDP **ETHERNET**

Recapitulación de cada capa

Identificando las redes

Clases de redes

Modelo OSI

Open System Interconection

Lo utilizamos para explicar y entender una comunicación entre un host y su destino en una red LAN, MAN o WAN.

Además ayuda a categorizar los protocolos.

Capa Física

Capa Física

Medios de comunicación, señal y transmisión binaria

RS-232, RJ45, V.34, 100BASE-TX, SDH, DSL, 802.11

Capa de enlace de datos

Capa de enlace de datos

Ethernet, 802.11, MAC/LLC, VALN, ATM, HDP, Fibre Channel, Frame Relay, HDLC, PPP, Q.921, Token Ring

Capa de red

Capa de red

IP, ARP, IPsec, ICMP, IGMP, OSPF

Capa de transporte

Capa de transporte

Capa de sesión

Capa de Sesión

Comunicación entre hosts

Session establishment in TCP, SIP, RTP, RPC-Named pipes

Capa de presentación

Capa de Presentación

Capa de aplicación

Capa de Aplicación

Procesamiento de red a aplicación

DNS, WWW/HTTP, P2P, EMAIL/POP, SMTP, Telnet, FTP

WireShark

https://wiki.wireshark.org/SampleCaptures#TCP

Unidad de datos

Nivel o capa

Dato	Nivel de aplicación Servicios de red a aplicaciones
Dato	Nivel de presentación Representación de los datos
Dato	Nivel de sesión Comunicación entre dispositivos de la red
Segmento	Nivel de transporte Conexión de extremo a extremo y control de flujo de datos

Paquete	Nivel de red Determinación de la ruta y direccionamiento lógico (IP)	
Trama	Nivel de enlace de datos Direccionamiento físico (MAC y LLC)	
Bit	Nivel físico Señal y transmisión binaria	

Comparación entre ambos modelos

Comparación entre TCP/IP y OSI

Modelo TCP/IP

Aplicación	Protocolos
Transporte	
Internet	Redes
Acceso a red	

Modelo OSI

Aplicación	Capas de aplicación
Presentación	
Sesión	
Transporte	Capas de flujo de datos
Red	
Enlace de datos	
Física	

Conoce los dispositivos de redes y cómo funcionan

Dispositivos de redes

Hub y Switch

Modem

Dispositivos de redes

Firewall

Balanceadores de tráfico

Creando arquitecturas de redes

Ejemplo de una red empresarial

Siguientes pasos