Operációs rendszerek BSc

13.gyak. 2021. 05. 05.

Készítette: Kovács Krisztián Programtervező informatikus WIQPM2 1. "Adott egy igény szerinti lapozást használó rendszerben a következő laphivatkozás és 3/4 fizikai memóriakeret a processzek számára.

Laphivatkozások sorrendje: 7 6 5 4 6 7 3 2 6 7 6 5 1 2 5 6 7 6 5 2

Memóriakeret (igényelt lapok): 3/4 memóriakeret.

Mennyi laphiba keletkezik (három és négy memóriakeret esetén) az alábbi algoritmusok esetén: FIFO, LRU és SC? Hasonlítsa össze és magyarázza az eredményeket.

FIFO																											
		7	6	5	4	1	6	7	3	2	2	6	7	6	5	1	. 2	2	5	6	7	6	5	2			
11		7	7	7	7	7			3	3	3	3	3		5	5	5 5			5	7		7				
12			6	6	6	5			6	2		2	2		2	1	1			1	1		5				
13				5	5	5			5	.5	5	6	6		6	6	5 2			2	2		2				
14					4	1			4	4	ı	4	7		7	7	7	,		6	6		6				
	7	6	5	4	3	3	2	6	7		,	1	2	6	7		5								Laphibák:	4+10=	14
		_				+					-	_							4								
FIFO						L													4								
		7	6	5	4	1	6	7	3	- 2	2	6	7	6	5	1	. 2	! !	5	6	7	6	5	2			
11		7	7	7	4	1		4	4	2	2	2	2		5	5	5			6	6		6	2			
12			6	6	6	5		7	7	7	7	6	6		6	1	1			1	7		7	7			
13				5	5	5		5	3	3	3	3	7		7	7	2			2	2		5	5	Laphibák:	3+10=	13

Úgy működik, hogy laphiba esetén a legrégebbi lapot cseráéljül le a sorból. Pirossal jelölt a laphiba.

A legrégebben hivatkozott lapot cseréljük le (lokalitás elv alapja). Laphibák pirossal vannak jelölve.

Lényegében FIFO algoritmust kell követni, de van egy úgynevezett second chance, egy bit, amut 1-re állítunk ha használjuk a lapot/bekerül. Ha ő a legrégebbi, de egyes a bit, akkor a sor végére kerül, de a bit 0-ra vált.