

Deal with radius- $\left[\frac{1}{2}r,r\right]$ balls centered in some height r strip

Deal with radius- $\left[\frac{1}{2}r,r\right]$ balls centered in some height r strip

Deal with radius- $\left[\frac{1}{2}r, r\right]$ balls centered in some height r strip

Deal with radius- $\left[\frac{1}{2}r, r\right]$ balls centered in some height r strip

3r layers have treewidth O(r)

$$\sum n' \le 3n$$
, so $\sum O(n'/\sqrt{n}) = O(\sqrt{n})$

$$\sum n' \leq 3n$$
, so $\sum O(n'/\sqrt{n}) = O(\sqrt{n})$

Repeat for $r = 1, 2, 4, 8, ..., 2^{\lceil \log n \rceil}$

$$\sum n' \le 3n$$
, so $\sum O(n'/\sqrt{n}) = O(\sqrt{n})$

Repeat for $r = 1, 2, 4, 8, ..., 2^{\lceil \log n \rceil}$