Ensemble Learning Python Project

27/03/2023

Chenxi HE ESSEC Business School and Centrale Supélec b00803893@essec.edu Shiyun WANG ESSEC Business School and Centrale Supélec b00802405@essec.edu Yunjing JIANG ESSEC Business School and Centrale Supélec b00794792@essec.edu Yunqiu ZHANG ESSEC Business School and Centrale Supélec b00794126@essec.edu

Table of Contents

Part 1

The Airbnb python project

- Motivations
- Dataset
- Data Preprocessing
- Models and tuning
- Conclude

Part 2

The Decision tree project

- Pseudo code
- GitHub
- Dataset
- Application
- Conclude

Part 1

New York City Airbnb house price prediction

Reference data source: https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data

Introduction and Motivations

- •Situation: The Airbnb price market is dynamic and subject to many factors: changes in supply and demand conditions, different locations, and the type of the rooms.
- •Motivation: In order to make the renters to get an accurate sense of fair pricing and the customers have more foreseeability to book the house ahead.
- •Objective: Using different Ensemble Learning models to build robust prediction models for the price of the Airbnb in New York.

Data preprocessing

- Change the last review format to DateTime
- Impute missing values

last_review - maximum value; reviews_per_month - 0; name, host_name - empty string

Extract another two features

'no_review': show if the house has no review;

'count_name': indicate the number of words in 'name'

Manage outliers

'minimum_nights' - the 99th percentile 'price' - the 1st and 99th percentiles

- Apply Log-transformation of the target variable
- One-hot encoding for categorical features and MinMax scaling for numerical features.

Exploration the dataset

Feature selection

For Numerical Features

- Create the Correlation Heatmap
- Choose factors that have the highest correlation with prices (since there are only 10 numerical features in total,so we choose all)

0.8

- 0.2

0.0

-0.2

Exploration the dataset

Feature selection

For Categorical Features

- Check the features one by one; remove all the columns just for naming items
- Remove columns which have distributions with too few unique values.
- Final we choose three as the categorical features: 'neighbourhood_group', 'neighbourhood', 'room_type'

Models and tuning strategy

Model	Mean R-squared score	
XG Boost	0.639	
Gradient Boosting	0.631	
Random Forest	<mark>0.642</mark>	
AdaBoost	0.531	
Bagging	0.629	

Hyperparameters tuning: GridSearchCV.

for random forest, param_grid= { 'n_estimators': [100, 500, 1000],

'max_features': [16, 32, 64] }

Performance evaluation: cross-validation with five folds and the mean R2 score and standard deviation of the scores

Conclusion

- Random forest outperform other ensemble models with R2 value of 0.642
- Feature importance:
 room type_entire home/apt is the most important one and followed by room type_private room and longitude.
- Further improvement: create new features from the existing ones

Part 2

Paris housing classification and regression

Reference data source: https://www.kaggle.com/datasets/mssmartypants/paris-housing-classification

Pseudo Code

Github

Github link: https://github.com/CarolQwQ/Ensemble Learning groupwork

Dataset

- Imaginary data about house prices in Paris,
- With 18 columns containing SquareMeters,
 NumberOfRooms, hasYard, etc
- All the features are numeric variables except the "category".

Data	columns (total 18	columns):	
#	Column	Non-Null Count	Dtype
	·		
0	squareMeters	10000 non-null	int64
1	numberOfRooms	10000 non-null	int64
2	hasYard	10000 non-null	int64
3	hasPool	10000 non-null	int64
4	floors	10000 non-null	int64
5	cityCode	10000 non-null	int64
6	cityPartRange	10000 non-null	int64
7	numPrevOwners	10000 non-null	int64
8	made	10000 non-null	int64
9	isNewBuilt	10000 non-null	int64
10	hasStormProtector	10000 non-null	int64
11	basement	10000 non-null	int64
12	attic	10000 non-null	int64
13	garage	10000 non-null	int64
14	hasStorageRoom	10000 non-null	int64
15	hasGuestRoom	10000 non-null	int64
16	price	10000 non-null	float64
17	category	10000 non-null	object

The correlation between the price and squareMeters is super high and almost 1, and the correlation of category with hasYard and isNewBuilt is obvious higher then with other features

The distribution of two predicted variables

Application

1. Split 30% of the dataset into testset and the remaining is the train set.

The density of the Y variable of both datasets.

2. Scaling on the training dataset, to ensure each input is on a similar scale

Decision Tree Classification

with the default configuration of the mode
 0.996 accuracy score and 0.003 mean square en

- "max_depth" ranging from 1 to 10 and
 "min_samples_split" ranging from 2 to 20
 Result remain the same
- feature_importance: the most important feature is "hasYard"

Decision Tree Regression

- with the_default configuration of the mode
 R2 score: 0.9999960258049935
- feature_importance: the only important feature is <u>"squareMeters"</u>

Conclusion

- Decision can be a powerful tool for predicting house prices and categories.
- It is crucial to **gather as much relevant data as possible** and **fine-tune the model** to achieve the best results. For example, the max_depth and min_samples_split in the decision tree classification model.
- Feature Importance score can be used as feature selection. explaining the model,
 and improving the model

