1 Induction

By Delta Direc funtion, we get

$$\delta_y^{\sigma}(x) \stackrel{\Delta}{=} \frac{1}{\sqrt{2\pi\sigma}} exp(-\frac{1}{2}\frac{x^2}{\sigma^2})$$

Here if $\sigma=s-t$, then $\delta_y^\sigma(x)=\tau(x,t,y,s)$ From the previous induction, we get

$$z = \frac{y - x}{\sigma}$$

$$\lim_{\sigma \to 0} \int_{R} f(z) \delta_{y}^{\sigma}(z) dz = f(y)$$

Then we induce the backward and forward equation.

Backward Equation:

$$\begin{cases} \frac{\partial \tau}{\partial t} + \frac{1}{2} \frac{\partial^2 \tau}{\partial x^2} = 0 & t < s \\ \lim_{t \to s} \tau(x, t, y, s) = \delta_y(x) & \text{the right terminal condition} \end{cases}$$

Forward Equation:

$$\begin{cases} \frac{\partial \tau}{\partial s} - \frac{1}{2} \frac{\partial^2 \tau}{\partial y^2} = 0 & t < s \\ \lim_{s \to t} \tau(x, t, y, s) = \delta_x(y) & \text{the right initial condition} \end{cases}$$

Now if we have the backward equation as:

$$\frac{\partial \tau}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 \tau}{\partial x^2} = 0$$

We should insert σ as one parameter inside τ original function.

$$\tau(x,t,y,s) \stackrel{\Delta}{=} \frac{1}{\sqrt{2\pi(s-t)}} \exp\left(-\frac{1}{2}\frac{(y-x)^2}{s-t}\right)$$

Here the final conclusion is

$$\tau(x, t, y, s) \triangleq \frac{1}{\sigma \sqrt{2\pi(s-t)}} \exp\left(-\frac{1}{2} \frac{(y-x)^2}{(s-t)\sigma^2}\right)$$

but I don't really get how can we induce it from the current backward equation and τ formula without σ parameter

After we get this the τ with σ parameter, we should deduce

$$\lim_{\sigma \to 0} -\sigma^2 log\tau = \lim_{\sigma \to 0} \left[-\sigma^2 \left(-\frac{1}{2} log(\sigma^2 2\pi (s-t)) - \frac{1}{2} \frac{(y-x)^2}{(s-t)\sigma^2} \right) \right]$$
$$= \lim_{\sigma \to 0} \left(\frac{\sigma^2}{2} log(\sigma^2 2\pi (s-t)) + \frac{1}{2} \frac{(y-x)^2}{s-t} \right)$$

Here we notice that when $\sigma \to 0$, $\sigma^2 2\pi(s-t)$ goes to 0, and $\log(\sigma^2 2\pi(s-t))$ goes to $-\infty$ while $\frac{\sigma^2}{2}$ goes to 0, since the speed to approach the limit of $\frac{\sigma^2}{2}$ is larger than $\log(\sigma^2 2\pi(s-t))$, so $\lim_{\sigma \to 0} (\frac{\sigma^2}{2} \log(\sigma^2 2\pi(s-t)))$ goes to 0, and the latter part $\frac{1}{2} \frac{(y-x)^2}{s-t}$ is constant.

 $\lim_{\sigma \to 0} -\sigma^2 log\tau = \frac{1}{2} \frac{(y-x)^2}{s-t}$