Profil cognitif des aphantasiques : étude exploratoire des stratégies de compensation spatiales et abstraites

Simulation de données et analyses prévisionnelles dans le cadre de l'UE Data Science

Maël Delem Colin Fourment Thomas Junoy Guillaume Leal de Almeida

13/02/2023

Table des matières

1	Introduction						
	1.1	.1 Imagerie visuelle et aphantasie					
	1.2	Les corrélats de l'aphantasie	3				
		1.2.1 Corrélats cognitifs	4				
		1.2.2 Corrélats comportementaux et physiologiques	4				
		1.2.3 L'aphantasie est elle un trouble?	5				
		1.2.4 Expériences de vie et "styles cognitifs"	6				
	1.3	La disctinction entre imagerie visuelle-objet et visuospatiale	7				
		1.3.1 Voies ventrales et dorsales dans la perception et l'imagerie visuelle	8				
		1.3.2 L'imagerie objet et spatiale chez les aphantasiques	8				
		1.3.3 Des styles cognitifs équilibrés entre imagerie objet et spatiale	10				
		1.3.4 Un "trade-off" entre imagerie objet et spatiale chez les aphantasiques ?	11				
2	Exp	erience	12				
	2.1	Méthode	12				
		2.1.1 Participants	12				
		2.1.2 Équipement et procédure	13				
		2.1.3 Questionnaires	14				
		2.1.4 Tâches	15				
	2.2	Variables	16				
	2.3	Hypothèses	16				
		2.3.1 Imagerie visuelle-objet	16				
		2.3.2 Imagerie visuospatiale	16				
		2.3.3 Raisonnement	16				
		2.3.4 Compréhension en lecture	17				
		2.3.5 Fonctions exécutives	17				
	2.4	Simulation	17				
	2.5	Analyses	18				
		2.5.1 Transformation des données	18				
		2.5.2 Analyse Factorielle Multiple et <i>clustering</i>	19				
		2.5.3 Composition des clusters et profils cognitifs	20				
	2.6	Résultats	21				
		2.6.1 Statistiques descriptives	21				
		2.6.2 Analyse Factorielle Multiple	21				
		2.6.3 Analyse en <i>clusters</i>	23				
		2.6.4 Différences de moyenne des deux groupes	28				
3	Disc	ussion	29				
	3.1	Profils cognitifs	29				
R	éfére	ces	30				
A 1	nnex	S.	39				

1 Introduction

1.1 Imagerie visuelle et aphantasie

L'imagerie visuelle, parfois désignée poétiquement comme le fait de "voir dans les yeux de l'esprit", désigne l'expérience visuelle quasi-perceptive d'images mentales en l'absence du stimulus externe correspondant (Monzel et al., 2022; Pearson, 2019). L'imagerie visuelle est considérée par la plupart des gens comme un élément central de leur vie mentale quotidienne, dans la mémorisation et la récupération d'informations sur des lieux, des objets ou des personnes connus, dans le vagabondage mental et la rêverie, voire plus généralement dans la créativité (A. Zeman et al., 2015). Il a été démontré qu'elle joue un rôle prépondérant dans de nombreux processus cognitifs, tels que la mémoire autobiographique, la mémoire épisodique et la prospection d'évènements futurs (Greenberg & Knowlton, 2014), la mémoire de travail visuelle (Pearson, 2019).

Cependant, il a été démontré qu'il pouvait exister une grande variabilité interindividuelle dans l'imagerie visuelle, et que certaines personnes pouvaient même en être totalement dépourvues. L'une des toutes premières études sur l'imagerie visuelle, une enquête menée par Sir Francis Galton en 1880, a apporté les premiers témoignages de la grande variété de la capacité des gens à produire des images mentales. Son "enquête sur la table du petit-déjeuner" invitait les participants à visualiser leur table du matin et à évaluer "l'illumination, la définition et la coloration" des images mentales qu'ils en avaient. À son grand étonnement, il a découvert que certaines personnes interrogées, parmi lesquelles beaucoup de ses collègues, dans ses termes des "hommes de science", ont protesté que l'imagerie mentale leur était inconnue - tout comme les daltoniens ne pouvaient pas concevoir la nature de la couleur, ces personnes ne pouvaient pas concevoir la nature de l'imagerie mentale (Galton, 1880).

Il est intéressant de noter que, bien qu'il y ait eu une résurgence des recherches et des débats sur l'imagerie mentale à la fin du siècle qui a suivi (e.g. Kosslyn et al. (1995); Pylyshyn (2002); Reisberg et al. (2002)), cette condition d'"imagination aveugle" n'a pas suscité beaucoup d'attention. Une exception notable est Faw (2009), qui a soulevé le fait que les théories des chercheurs sur l'imagerie pourraient être fortement biaisées par leur propre expérience subjective de celle-ci. Il a indiqué que les "non-visualiseurs", ignorés par la recherche jusqu'à

présent, pourraient représenter 2 à 3 % des personnes, selon son enquête (N=2500). En 2010, Zeman et al. ont rapporté le cas d'un patient qui a perdu la capacité de produire des images mentales après avoir subi une intervention chirurgicale (A. Z. J. Zeman et al., 2010). L'article a attiré l'attention du public après un reportage dans le magazine Discovery (Zimmer, 2010) : bien qu'il s'agisse apparemment d'imagination aveugle "acquise", l'article a conduit de nombreuses personnes à se reconnaître dans cette condition et à contacter l'équipe pour témoigner de leur expérience, avec la différence importante qu'elles avaient toujours eu cette absence d'imagerie. En décrivant leurs cas, Zeman et al. (2015) ont créé le terme "aphantasie" pour décrire l'absence d'imagerie mentale.

L'aphantasie, en tant que terme et phénomène, a attiré l'attention des médias et a entraîné une augmentation importante du nombre de personnes signalant leur cas d'imagerie extrême (Monzel et al., 2022). Les études à grande échelle sur les extrêmes de l'imagerie visuelle suggèrent une prévalence de 2-4% d'aphantasie dans la population générale (C. J. Dance et al. (2022) : N=1004; A. J. Dawes et al. (2020) : N=715; Faw (2009) : N=2500; Palermo et al. (2022) : N=490; Takahashi et al. (2022): N=2885; A. Zeman et al. (2020)) avec de nombreuses variations (entre 0,5 et 11%) selon les seuils choisis pour caractériser l'affection. L'étude de l'aphantasie est récente, et bien qu'il n'existe pas actuellement de "profil " clairement défini des individus aphantasiques, la recherche a lentement assemblé plusieurs caractéristiques associées à cette condition.

1.2 Les corrélats de l'aphantasie

Depuis 2015, le nouveau champ scientifique de l'aphantasie a construit un corpus de divers corrélats cognitifs, comportementaux et physiologiques de l'aphantasie. Communément, l'aphantasie est évaluée dans des études à grande échelle en utilisant des auto-rapports qualitatifs et le questionnaire Vividness of Visual Imagery (Marks, 1973), même si le seuil VVIQ choisi pour caractériser les personnes ayant une faible imagerie varie selon les études (entre 16 ~ 30). En utilisant les questionnaires comme point de départ, plusieurs études expérimentales ont été en mesure de corréler une faible imagerie visuelle avec des caractéristiques distinctes.

1.2.1 Corrélats cognitifs

La plupart des études à grande échelle existantes sur l'aphantasie ont porté sur les capacités de mémoire des aphantasiques, et ont montré des corrélations entre leur faible imagerie et des déficiences en mémoire autobiographique et épisodique (A. J. Dawes et al., 2020; Milton et al., 2021; A. Zeman et al., 2020). Les aphantasiques, lorsqu'on leur demande d'évaluer leur mémoire autobiographique, l'évaluent le plus souvent plus bas que les témoins (A. Zeman et al., 2020, 2015). L'un de ces rapports subjectifs a fait émerger la possibilité d'une association de l'aphantasie avec les syndromes de mémoire autobiographique sévèrement déficiente (Watkins, 2018). En accord avec les auto-rapports et les données neuropsychologiques sur la mémoire épisodique, Dawes et al. (2022) ont démontré, à l'aide de l'Autobiographical Interview, une mesure comportementale de la spécificité et de la richesse des détails épisodiques (combinant donc des évaluations subjectives et objectives) que l'aphantasie était également associée à une réduction des détails épisodiques pour les évènements passés et futurs. Leurs résultats sont également en accord avec ceux de Milton et al. (2021) qui ont mis en évidence une réduction de l'"imagination" temporelle et atemporelle, à savoir la capacité à simuler des évènements fictifs. L'aphantasie a également été associée à la prosopagnosie - la difficulté à reconnaître les visages (A. J. Dawes et al., 2020; Milton et al., 2021; Palermo et al., 2022; A. Zeman et al., 2020), et à des rêves nocturnes et diurnes qualitativement appauvris (A. J. Dawes et al., 2020; A. Zeman et al., 2020).

1.2.2 Corrélats comportementaux et physiologiques

Comme nous l'avons mentionné, la plupart des études sur l'aphantasie se sont appuyées sur des évaluations subjectives, des questionnaires et des rapports personnels pour identifier et évaluer la condition et l'imagerie visuelle. Bien que les phénomènes subjectifs rapportés par les aphantasiques montrent une cohérence remarquable, les rapports à la première personne et l'introspection restent faillibles (Milton et al., 2021; A. Zeman et al., 2020). Les différences dans les jugements d'imagerie visuelle pourraient être liées à une mauvaise métacognition, résultant en une incapacité des aphantasiques à percevoir consciemment leur imagerie potentiellement effective. Pour surmonter cette limitation, de nouvelles méthodes de mesure de l'imagerie

visuelle et de son absence ont été développées afin de trianguler ces auto-rapports subjectifs avec des marqueurs comportementaux et physiologiques objectifs. Ainsi, il a été démontré que les personnes atteintes d'aphantasie ne présentent pas d'amorçage par l'imagerie visuelle par rapport aux témoins en utilisant le paradigme de rivalité binoculaire basé sur les sens (Keogh & Pearson, 2018, 2020); elles se souviennent de moins d'objets et de couleurs que les témoins à partir de scènes étudiées (Bainbridge et al., 2021); ils ont montré moins de sensibilité sensorielle dans une tâche d'éblouissement de motifs visuels, ce qui suggère que l'imagerie sensorielle et la sensibilité sensorielle sont liées (C. Dance, 2022; C. J. Dance et al., 2021) ; ils n'ont pas montré de réponse de conductivité cutanée à l'imagerie émotionnelle lors de la lecture de scénarios effrayants (Wicken et al., 2019); et enfin, ils n'ont pas montré de réponse pupillaire à des formes claires ou sombres imaginées (Lachlan et al., 2022). Ces deux derniers paradigmes en particulier ont établi les premiers indices physiologiques de la force de l'imagerie sensorielle et phénoménologique, et les premières validations physiologiques de l'aphantasie. L'investigation du phénomène de l'imagerie visuelle par ces méthodes objectives a permis de rassembler des preuves solides en faveur de la conception de l'aphantasie comme une véritable absence (ou une réduction sévère) de l'imagerie visuelle plutôt que comme un déficit métacognitif.

1.2.3 L'aphantasie est elle un trouble?

L'aphantasie a été associée dans la littérature récente à une série de déficiences et de déficits, et est donc souvent logiquement désignée comme un handicap ou un trouble (e.g. Blomkvist (2022); Fox-Muraton (2021)); certaines revues vont jusqu'à caractériser la condition comme un ensemble de déficiences résultant d'un dysfonctionnement d'un système cognitif (Blomkvist, 2022). Bien que ce point de vue puisse être justifié d'une certaine manière si l'on considère que les déficiences de l'imagerie mentale peuvent survenir à la suite de lésions cérébrales, d'opérations chirurgicales ou de troubles psychiatriques - une condition appelée "aphantasie acquise" (Bartolomeo et al., 2020; Cavedon-Taylor, 2021; Farah et al., 1988; Spagna, 2022; Zago et al., 2011; A. Z. J. Zeman et al., 2010), on peut trouver à redire sur plusieurs observations dans l'aphantasie congénitale (c'est-à-dire à vie). Des preuves empiriques provenant de plusieurs études soulignent que les aphantasiques pourraient n'avoir aucune différence de

performance dans divers types de tâches présumées nécessiter une imagerie visuelle.

Tout d'abord, en contraste frappant avec les résultats suggestifs sur la mémoire épisodique, les aphantasiques ont des performances aussi précises que les témoins dans plusieurs paradigmes de mémoire de travail visuelle en laboratoire et en clinique (Keogh et al., 2021; Knight et al., 2022); ils ont également les mêmes performances dans les tâches de mémoire clinique évaluant le rappel antérograde (Milton et al., 2021) et la mémoire de reconnaissance pour le matériel verbal et visuel (Bainbridge et al., 2021; Milton et al., 2021); ils ne présentent pas de différences significatives dans les tâches de mémoire sémantique (A. J. Dawes et al., 2020; Milton et al., 2021); de même, ils ne présentent pas de déficience de la mémoire déclarative générale ou visuelle dans une batterie de tests neuropsychologiques (Pounder et al., 2022). Keogh et al. (2021) soulignent également dans leur étude le fait que les performances des aphantasiques dans les tâches d'imagerie visuelle peuvent s'appuyer sur des stratégies différentes, sur la base des différences notables entre leurs stratégies rapportées, et corroborées par une absence d'effet d'orientation dans leurs réponses, supposé se produire en raison du recrutement sensoriel.

Pris ensemble, ces résultats suggèrent que les aphantasiques ne présentent pas de problèmes de mémoire de travail, de reconnaissance ou de mémoire déclarative (générale ou visuelle) qui pourraient s'avérer affecter leur vie quotidienne. Ils reflètent également le fait que ces performances pourraient s'appuyer sur des stratégies alternatives non visuelles tout aussi adaptées pour résoudre des problèmes supposés auparavant nécessiter une imagerie visuelle. Ceci plaide pour considérer que les aphantasiques utilisent des approches alternatives qui pourraient ne pas être uniquement de la compensation, mais un tout autre " mode de fonctionnement humain du traitement de l'information " (A. Zeman et al., 2020) : si nous adhérons à ce point de vue, les spécificités des différences entre ces modes restent encore à déterminer.

1.2.4 Expériences de vie et "styles cognitifs"

En accord avec le fait que leur vie quotidienne ne semble pas être affectée par leur état, les aphantasiques sont le plus souvent inconscients de leur état, qui est de la même manière invisible pour les gens, puisqu'ils ne vivent apparemment pas différemment de n'importe qui

d'autre (Kendle, 2017; A. Zeman et al., 2015). Bien qu'il n'existe pas, à ce jour, d'étude systématique du profil démographique des aphantasiques, les résultats préliminaires d'une étude récente (A. Zeman et al., 2020) apportent un éclairage sur les préférences professionnelles potentielles des personnes dotées d'imageries extrêmes. En effet, les données des questionnaires de milliers de participants sur l'imagerie visuelle ont révélé que les extrêmes de ce spectre présentaient des associations comportementales et psychologiques distinctes, y compris des préférences professionnelles : alors que les personnes présentant une imagerie visuelle extrêmement élevée (appelées "hyperphantasiques") avaient tendance à travailler dans des professions traditionnellement considérées comme "créatives" (à savoir les arts, le design, le divertissement et la communication), les aphantasiques étaient plus susceptibles de travailler dans l'informatique, les mathématiques et les sciences (Crowder, 2018; A. Zeman et al., 2020). Ces résultats apportent un autre argument, d'un point de vue comportemental plus large, vers l'idée d'une tension entre deux "styles cognitifs" (Kozhevnikov et al., 2005), et une vision de l'aphantasie et de l'hyperphantasie comme des conditions équilibrées, avec des avantages et des inconvénients (A. Zeman et al., 2020).

Bien que les affirmations initiales de Galton selon lesquelles les "hommes de science" manquaient d'imagerie mentale aient été contestées depuis et qu'il ait été démontré qu'il s'agissait d'une extension excessive de son observation de quelques répondants particulièrement inhabituels parmi ses collègues scientifiques (Brewer & Schommer-Aikins, 2006), son récit reste intéressant d'un point de vue opposé : Si les aphantasiques sont effectivement très peu nombreux, comme l'ont montré des données plus récentes, ont-ils vraiment tendance à se tourner vers les domaines scientifiques ? Les premiers résultats concernant les aphantasiques semblent corroborer cette intuition. Pourtant, quelles bases cognitives pourraient sous-tendre ces différentes stratégies mentales des aphantasiques et ces apparentes affinités intellectuelles ? Quelle est la nature des différents "modes" supposés de traitement de l'information visuelle

1.3 La disctinction entre imagerie visuelle-objet et visuospatiale

Une hypothèse est que cette dualité reposerait sur la distinction fondamentale, dans l'imagerie visuelle, entre deux composantes, l'imagerie visuelle-objet (c'est-à-dire la représentation

mentale des caractéristiques visuelles d'un objet telles que la forme, la luminosité ou la couleur) et l'imagerie visuelle-spatiale (c'est-à-dire la représentation mentale des emplacements spatiaux et des relations entre les parties d'un objet).

1.3.1 Voies ventrales et dorsales dans la perception et l'imagerie visuelle

La distinction entre le traitement des objets et le traitement spatial a d'abord été introduite pour la perception visuelle (Mishkin & Ungerleider, 1982), puis proposée pour la mémoire de travail visuelle (Della Sala et al., 1999; Salway & Logie, 1995). Il a été démontré que le traitement visuel de plus haut niveau est divisé en deux voies distinctes sur le plan fonctionnel et anatomique : la voie ventrale, qui va du lobe occipital au lobe temporal inférieur et qui traite les propriétés des objets (couleurs, forme, luminosité), et la voie dorsale, qui va du lobe occipital au lobe pariétal postérieur et qui traite les propriétés spatiales. Sur la base de données comportementales, neuropsychologiques et de neuroimagerie (Blajenkova et al., 2006b; Boccia et al., 2015; Kozhevnikov et al., 2005, 2002; Morton & Morris, 1995; Palermo et al., 2022), une distinction objet-spatial similaire a été suggérée pour l'imagerie visuelle. Ce contexte théorique a conduit au développement et à la validation d'un questionnaire permettant d'évaluer ces deux aspects de l'imagerie visuelle, l'Object and Spatial Imagery Questionnaire (OSIQ : Blajenkova et al. (2006b)).

1.3.2 L'imagerie objet et spatiale chez les aphantasiques

Dans ce cadre, cette distinction entre imagerie objet et imagerie spatiale pourrait être centrale pour la compréhension de l'aphantasie : les cas étudiés jusqu'à présent sont-ils dépourvus d'imagerie visuelle objet, spatiale ou les deux ? Un résultat expérimental remarquablement cohérent dans toutes les études récentes sur l'aphantasie est l'imagerie spatiale préservée des aphantasiques, par opposition à leur imagerie d'objet altérée. En utilisant l'OSIQ, plusieurs études ont montré qu'il n'y avait pas de différence significative entre les aphantasiques et les témoins sur les items d'imagerie spatiale (Bainbridge et al., 2021; A. J. Dawes et al., 2020; Keogh & Pearson, 2018; Milton et al., 2021; A. Zeman et al., 2020). Les aphantasiques ont obtenu des résultats précis au test des mannequins et aux tâches de rotation mentale, impliquant la rotation mentale d'avatars ou d'objets (Crowder, 2018; Milton et al., 2021;

Pounder et al., 2022) - bien que Pounder et al. (2022) aient signalé des temps de réponse plus lents pour les aphantasiques à très faible imagerie. Zeman et al. (2020) rapportent que, lorsqu'on leur demande d'imaginer et de compter les fenêtres de leur maison, les personnes ayant une imagerie élevée ou moyenne s'appuient systématiquement sur l'imagerie visuelle, tandis que les aphantasiques utilisent diverses autres stratégies : visualisation ou mémoire spatiale, imagerie alternative (kinesthésique, auditive, etc.), traitement sémantique ou "connaissances" amodales. De même, Bainbridge et al. (2021) ont observé que, lorsqu'on leur demande de dessiner de mémoire une scène vue précédemment, les aphantasiques se souviennent de beaucoup moins d'objets et de façon moins détaillée que les témoins, mais avec des tailles, des emplacements et une organisation corrects, voire plus précis. Ensemble, ces résultats suggèrent que les "aphantasiques" actuellement les plus étudiés sont en fait des aphantasiques "objets", avec une imagerie visuospatiale intacte.

Ce phénomène pourrait être lié au fait que les individus aphantasiques ont été principalement identifiés à l'aide du VVIQ (Marks, 1973), qui est corrélé positivement avec l'échelle objet de l'OSIQ, mais pas avec l'échelle spatiale, ni avec les tâches d'imagerie spatiale (Blajenkova et al., 2006a, 2006b; Blazhenkova & Kozhevnikov, 2010; Blazhenkova & Pechenkova, 2019). Le VVIQ permettrait donc de détecter sélectivement les déficiences de l'imagerie visuelle des objets, mais pas de l'espace. À ce titre, Blazhenkova et Pechenkova (2019) ont émis l'hypothèse qu'il pourrait exister deux types d'imagerie extrême (potentiellement congénitale) : l'aphantasie des objets d'une part, et l'aphantasie spatiale d'autre part (et inversement, deux types d'hyperphantasie). Dans une étude récente examinant pour la première fois cette hypothèse de manière systématique, Palermo et al. (2022) ont rassemblé des preuves très prometteuses de l'existence d'aphantasies et d'hyperphantasies objectales et spatiales, en utilisant l'OSIQ et des questionnaires évaluant plusieurs compétences. Elles ont également montré que les deux sous-types d'aphantasie étaient associés à des modèles différents de difficultés cognitives : les aphantasiques "objet", comme nous l'avons vu précédemment, ont montré des difficultés à imaginer des objets et à reconnaître des visages, tandis que les aphantasiques "spatiaux" avaient des problèmes avec les tâches d'imagerie mentale visuospatiale et le sens de la direction - un modèle opposé de performances a été observé pour les deux types d'hyperphantasie.

1.3.3 Des styles cognitifs équilibrés entre imagerie objet et spatiale

Ces résultats sur l'imagerie d'objet et spatiale introduisent une deuxième dimension (spatiale) significative dans l'imagerie visuelle et la recherche sur l'aphantasie, qui semble afficher des modèles opposés à la composante (objet) qui a été distinguée dans les études précédentes : avoir ces deux axes permet d'envisager une possibilité pour le profil "équilibré "hypothétique de l'aphantasie, qui pourrait être basé sur un équilibre entre les méthodes de représentation mentale visuelle-objet et visuelle-spatiale.

Des résultats intéressants dans la littérature sur l'imagerie spatiale semblent faire écho aux premiers résultats de Zeman et al. (2020) sur les préférences professionnelles des aphantasiques (objet). Les hautes performances dans les tests de visualisation spatiale sont corrélées aux performances professionnelles et académiques dans divers domaines STEM, notamment la physique, la chimie organique, la géologie, les mathématiques, ainsi que la chirurgie, l'architecture et le raisonnement mécanique (Coleman & Gotch, 1998; Hegarty & Waller, 2005; Keehner et al., 2004; Kozhevnikov et al., 2007; Orion et al., 1997; Wai et al., 2009). D'autres études ont mis en évidence que la réussite dans les STEM reposait sur des capacités fondamentales d'imagerie spatiale telles que l'imagination de structures schématiques ou l'exécution de transformations spatiales mentales (Kozhevnikov et al., 2007; Wai et al., 2009). Ces considérations jettent également un nouvel éclairage sur les observations et les intuitions de Galton (1880) concernant les scientifiques. Blajenkova et al. (Blajenkova et al., 2006a) ont proposé une explication avec le clivage objet-spatial : les scientifiques ne seraient pas complètement déficients en imagerie visuelle générale, comme le suggérait Galton, mais seraient seulement sélectivement déficients en imagerie visuelle objet.

En outre, les recherches sur les différences individuelles en matière d'imagerie ont démontré que les scientifiques et les ingénieurs ont tendance à être des imageurs spatiaux tandis que les artistes visuels ont tendance à être des imageurs objet (Blajenkova et al., 2006a; Blazhenkova & Kozhevnikov, 2010, 2009; Kozhevnikov et al., 2010; Kozhevnikov et al., 2005). Ces études ont non seulement montré, par le biais de rapports subjectifs, que les artistes et les scientifiques différaient en termes d'imagerie, mais elles ont également mis en évidence des différences de performance : les artistes ont obtenu de meilleurs résultats dans les tâches nécessitant la

visualisation d'objets (par exemple, la création de représentations d'images et de couleurs, l'identification d'objets dégradés); tandis que les visualiseurs spatiaux et les scientifiques ont obtenu de meilleurs résultats dans les tâches nécessitant une visualisation spatiale (par exemple, la rotation mentale, le pliage de papier, la recherche d'un emplacement). Enfin, Kozhevnikov et al. (Kozhevnikov et al., 2013) ont constaté que les évaluations de l'imagerie de visualisation d'objets par rapport à celle de visualisation spatiale étaient respectivement et sélectivement associées aux évaluations de créativité artistique par rapport à celle de créativité scientifique.

1.3.4 Un "trade-off" entre imagerie objet et spatiale chez les aphantasiques?

Une question ouverte reste celle du lien potentiel entre l'imagerie visuelle objet et spatiale, et plus particulièrement ici dans les cas d'aphantasie. Les voies ventrales et dorsales régissant ces deux aspects étant connues pour être fonctionnellement et anatomiquement différentes (Mishkin & Ungerleider, 1982), il a longtemps été considéré que les deux processus visuels objet et spatial étaient des composantes mutuellement indépendantes de la représentation et de l'imagerie (Farah et al., 1988; Mishkin & Ungerleider, 1982). Néanmoins, Kozhevnikov et al. (Kozhevnikov et al., 2010) ont montré, sur cinq groupes d'âge différents et quatre groupes de spécialisation différents, que les artistes visuels avaient des capacités de visualisation d'objets supérieures à la moyenne mais des capacités de visualisation spatiale inférieures à la moyenne, tandis que les scientifiques présentaient le schéma inverse. Aucun des groupes professionnels (artistes, scientifiques, architectes ou spécialistes des sciences humaines) ne présentait à la fois des capacités de visualisation d'objets et des capacités de visualisation spatiale supérieures à la moyenne : il a donc été proposé qu'il pouvait y avoir un compromis entre les capacités de visualisation d'objets et les capacités de visualisation spatiale. Comme l'étude a montré que les scores d'imagerie globale (spatiale + objet) étaient relativement homogènes chez tous les participants, ce compromis impliquerait l'existence d'un "goulot d'étranglement" dans la quantité totale des capacités d'imagerie, qui nécessiterait leur affectation en fonction de l'activité de chacun. Par conséquent, on peut supposer qu'un tel compromis pourrait exister, dans le cas de l'aphantasie, entre les ressources objet et spatiales : les aphantasiques objet, les cas d'aphantasie les plus étudiés, pourraient potentiellement compenser cette imagerie

objet réduite par une imagerie spatiale plus vive - une possibilité qui, jusqu'à présent, n'a pas été étudiée en profondeur en raison de l'accent mis sur la composante objet singulière de l'aphantasie.

La dualité de l'imagerie visuelle entre l'objet et l'espace, l'existence proposée de formes spécifiques d'images extrêmes qui leur sont associées, et la distinction apparente des profils cognitifs entre les visualiseurs "objet" et les visualiseurs "espaces" spatiaux", soutiennent l'hypothèse que les aphantasies soient des conditions équilibrées. Elles pourraient avoir leurs propres avantages et inconvénients qui pourraient être répartis sur plusieurs dimensions : parmi lesquelles le traitement visuel-objet ou visuospatial, mais peut-être aussi le traitement verbal, en accord avec les modèles précédemment développés de styles cognitifs Objet-Spatial-Verbal (Blazhenkova & Kozhevnikov, 2009), et comme l'ont supposé Zeman et al. (A. Zeman et al., 2020).

2 Expérience

2.1 Méthode

2.1.1 Participants

Nous recruterons des participants à partir de mi-février/début mars, lorsque l'expérience sera codée et prête à être diffusée en ligne. Pour estimer un ordre de grandeur du nombre de participants nécessaire pour obtenir des résultats intéressants, nous pouvons nous baser sur les calculs de puissance de A. J. Dawes et al. (2020), qui ont mené une étude assez proche de la nôtre impliquant douze questionnaires et ayant pour objectif de mieux cerner le profil des aphantasiques. Ceux-ci ont estimé que pour une taille d'effet modérée des comparaisons, une puissance de 80% et avec un α très conservateur de 0.0002 (voir la section *Analyses*), au moins 170 participants seraient nécessaires par groupe expérimental.

Les participants devront avoir entre 18 et 50 ans et être locuteurs natifs français¹, avoir

 $^{^1}$ Il est à noter que dans l'étude de Dawes et al. (2020), 31 pays de résidence ont été répertoriés, avec 83% (N=220) déclarant que l'anglais était leur première langue, et 88% (N=235), s'identifiant comme blancs/caucasiens. Les résultats sont néanmoins cohérents avec le reste de la littérature sur l'aphantasie, avec aucun effet du langage. Cette étude interroge sur le potentiel intérêt de tenter de diffuser la présente étude à l'international.

une vision normale ou corrigée et ne pas présenter de trouble de la lecture. Les participants aphantasiques seront recrutés en ligne sur des espaces spécifiques à leur condition (forums, groupes sur les réseaux sociaux, etc.). Nous nous intéressons à l'étude de l'aphantasie congénitale, les participants ne devront donc pas présenter d'antécédents de maladies neurologiques ou psychiatriques.

Le critère répandu dans les études sur l'aphantasie pour identifier la condition est celui de l'auto-évaluation par le questionnaire VVIQ (Vividness of Visual Imagery Questionnaire, Marks (1973)), avec un score inférieur à 32 (voir la section *Questionnaires*). Nous disposerons aussi de la composante objet de l'OSIQ (Object and Spatial Imagery Questionnaire, Blajenkova et al. (2006b)), fortement corrélée au VVIQ, fournissant donc des items supplémentaires le seuil inférieur de ce questionnaire est évalué à 36, sur la base de deux écart-types à la moyenne de l'échantillon de Blajenkova et al. (2006b). L'OSIQ, dans sa composante spatiale, sera par ailleurs utilisé pour l'auto-évaluation des capacités d'imagerie visuospatiales des participants, justifiant son utilisation en parallèle du VVIQ.

En l'absence de données réelles de participants, nous avons donc préparé nos analyses prévisionnelles sur des données simulées sur R (R Core Team, 2022). Les paramètres de cette simulation (les résultats potentiels de chaque groupe) ont été basés sur la littérature et sur nos hypothèses : nous définirons donc le protocole dans un premier temps, puis reviendrons sur cette simulation dans la section 2.4 dédiée.

2.1.2 Équipement et procédure

Le protocole sera composé de plusieurs questionnaires et tâches qui seront administrées en ligne via un serveur JATOS (Lange et al., 2015). Les questionnaires seront codés sur SurveyJS², une bibliothèque JavaScript Open Source dédiée à la création de questionnaires, et les tâches seront codées sur OpenSesame (Mathôt et al., 2012), une interface graphique de construction d'expériences comportementales. Avant les premiers questionnaires seront recueillies des données démographiques (âge, genre, métier et/ou études). Tous les participants devront donner leur consentement éclairé avant de commencer l'étude. La participation sera volontaire et sans compensation.

²https://surveyjs.io/

2.1.3 Questionnaires

* Vividness of Visual Imagery Questionnaire (VVIQ)

Dawes 2022 The Vividness of Visual Imagery Questionnaire (VVIQ; Marks, 1995) is a 16-item scale which asks participants to imagine a person as well as several scenes and rate the vividness of these mental images using a 5-point scale ranging from 1 ("No image at all, you only "know" that you are thinking of the object") to 5 ("Perfectly clear and vivid as normal vision"). A single mean score on the VVIQ was computed for each participant. Une faible capacité d'imagerie visuelle est généralement définie par un score total de 32 ou moins au questionnaire sur la vivacité de l'imagerie visuelle (VVIQ: voir Questionnaires sur l'imagerie dans les documents), une échelle d'auto-évaluation de Likert en cinq points qui varie de 16 à 80 (Marks, 1995; Zeman et al., 2015). Un score total de 32 équivaut à une note de 2 ("vague et faible") pour chaque item du questionnaire; où 1 = "Pas d'image du tout, vous savez seulement que vous pensez à l'objet").

Sema Questionnaire de Vivacité de l'Imagerie Visuelle (Marks, 1973), qui comporte 16 items et dans lequel le participant doit coter sur une échelle de Likert de 5 points l'énoncé qui lui correspond le mieux. Les scores vont de 16 à 80. Il constitue le questionnaire subjectif de référence dans l'aphantasie.

* Object and Spatial Imagery Questionnaire (OSIQ).

OSIQ The Object and Spatial Imagery Questionnaire (OSIQ; Blajenkova, Kozhevnikov, & Motes, 2006) is a 30-item scale which requires participants to indicate how well each of several statements on object imagery ability (e.g. "When I imagine the face of a friend, I have a perfectly clear and bright image") and spatial imagery ability (e.g. "I am a good Tetris player") applies to them on a 5-point scale ranging from 1 ("Totally disagree") to 5 ("Totally agree"). There are 15 items each comprising the Object and Spatial imagery domains of the OSIQ, averaged to form a mean score on each domain.

* Metacognition Awareness Inventory (MAI).

Le second questionnaire était le MAI, Inventaire de Conscience Métacognitive (Schraw & Dennison, 1994) évalue les deux composantes de la métacognition : les connaissances

métacognitives et la régulation métacognitive.

2.1.4 Tâches

* Matrices de Raven.

Sema version courte des matrices de Raven (Bilker et al., 2012) capacités de raisonnement visuel et d'induction et de déduction de règles (

* Tâche de Wason.

Tâche de Wason, 1968 courte tâche de raisonnement

* Sous-test des Similitudes de la WAIS-IV.

les capacités d'abstraction et de conceptualisation verbale Subtest Similitudes de la WAIS-IV

* Empan de chiffres envers.

Empan de chiffre envers la mémoire de travail verbale,

* Wisconsin Card-Sorting Test.

les fonctions exécutives WCST

* Compréhension en lecture.

et les capacités de compréhension en lecture Textes. Cette dernière épreuve constituait une tache écologique dans laquelle les images mentales pouvaient être sollicitées. Tâche de lecture Concernant la tâche de lecture, les participants étaient soumis à un texte qu'ils devaient lire. Le temps de lecture est libre mais chronométré. A la fin de la lecture, le texte est caché. Les participants devaient ensuite répondre à des questions sur le texte qui étaient d'ordres explicite ou implicite.

- * Blocs de Corsi.
- * Test de Rotation Mentale (MRT).

* Spatial Reasoning Inventory (SRI).

2.2 Variables

Nos participants seront initialement divisés en deux groupes, et potentiellement subdivisés par la suite. Le *Groupe* sera donc notre seule variable indépendante. Nos variables dépendantes seront donc toutes nos mesures : i.e. les *Scores* au VVIQ, à l'OSIQ, au MAI, aux Matrices, aux Similitudes, aux textes de compréhension, au WCST, au MRT, au SRI, la précision au Wason, l'empan mnésique de chiffres, et le nombre de blocs rappelés au Corsi (qui correspond à un empan mnésique spatial) - soit treize scores.

2.3 Hypothèses

2.3.1 Imagerie visuelle-objet

Dawes 2022 Object Imagery We expected aphantasic individuals to report reduced visual imagery ability compared to controls, in line with previous findings (Keogh & Pearson, 2018; Zeman et al., 2015). There is some suggestion that auditory imagery may also be reduced in individuals who report visual imagery absence, however this evidence comes from case studies with limited sample sizes (Greenberg & Knowlton, 2014). We therefore had no strong hypotheses regarding group differences in other multi-sensory imagery domains.

2.3.2 Imagerie visuospatiale

Spatial Imagery Lastly, we expected aphantasic self-reports of spatial imagery and spatial navigation abilities to align with data from previous studies suggesting that despite visual imagery absence, spatial abilities (as measured by questionnaires and performance on mental rotation and visuo-spatial tasks) appear to be largely preserved in aphantasia (Keogh & Pearson, 2018; Zeman et al., 2010).

2.3.3 Raisonnement

D'après les données présentées par l'étude de Zeman et al. (2020) (taux important d'aphantasiques dans les métiers scientifiques), on peut faire l'hypothèse que le groupe de participants aphantasiques présentera des capacités de raisonnement (mesurées par le test des Similitudes et les Matrices) plus développés que le groupe de participants non aphantasiques.

2.3.4 Compréhension en lecture

Dans la mesure où les aphantasiques ont un défaut d'imagerie visuelle, si le texte de compréhension en lecture sollicite des images visuelles, on peut s'attendre à des performances différentes à ce texte entre les aphantasiques et les non aphantasiques.

2.3.5 Fonctions exécutives

Conformément à l'hypothèse que les aphantasiques auraient recours à des stratégies pour compenser leur déficit en imagerie visuelle, des performances élevées en compréhension de texte pourraient être corrélées à des scores élevés aux épreuves mesurant le fonctionnement exécutif et les capacités d'abstraction.

2.4 Simulation

En suivant les recommandations des analyses de puissance, nous avons décidé de simuler N = 200 participants pour chaque groupe, aphantasiques et non-aphantasiques. Pour simuler ceux-ci, nous avons créé une **matrice des moyennes** et des écarts types arbitraires aux douze tâches et questionnaires pour chaque groupe, sur la base de la littérature et de nos hypothèses (avec donc une part inévitable de wishful thinking et de prophétie auto-réalisatrice). Ainsi nous avons fixé des moyennes aux tâches d'imagerie objet faibles chez les aphantasiques et hautes chez les contrôles, des scores aux tâches d'imagerie spatiale et de raisonnement légèrement plus élevés chez les aphantasiques, et des scores aux tâches de fonctions exécutives variables.

Nous avons ensuite établi un **modèle de mesures**, une matrice définissant par des coefficients les liens entre nos douze variables et ce qu'elles "évaluent vraiment", les capacités cognitives sous-jacentes. Nous avons choisi d'en désigner cinq : l'imagerie objet, l'imagerie spatiale, le raisonnement abstrait, la mémoire de travail et la flexibilité mentale (ces deux dernières pouvant être regroupées ou non sous la catégorie de fonctions exécutives). Nous aurons donc

des corrélations entre nos variables évaluées, qu'il faudra éclaircir pour comprendre les aspects fondamentaux qu'elles révèlent.

Enfin, nous avons fixé une **matrice de covariance** entre ces cinq capacités cognitives, qui sont loin d'être indépendantes : la littérature pointe par exemple vers des liens entre imagerie spatiale et raisonnement (Kozhevnikov et al., 2010; Kozhevnikov et al., 2007), ou encore les différentes imageries et la mémoire de travail (A. J. Dawes et al., 2020; Knight et al., 2022; Salway & Logie, 1995). Nous avons donc pondéré ces liens avec des coefficients arbitraires sur cette base et celle de nos prédictions.

Notre fonction de simulation a donc eu pour tâche, à l'aide de ces trois matrices (moyennes, mesures, covariance), de créer des moyennes aléatoires -bien que liées par les corrélations sous-jacentes- pour chaque tâche et chaque participant, avec une distribution normale et l'ajout d'erreurs aléatoires normales. Les moyennes ont ensuite été standardisées en z-scores pour les analyses (et pour les rassembler si nécessaire). La fonction de simulation a été codée sur R (R Core Team, 2022) (voir Annexes pour la liste complète des packages cités dans le document, leurs références ainsi que les liens vers le code détaillé ici).

2.5 Analyses

2.5.1 Transformation des données

Les analyses prévisionnelles ont de même été réalisées sur R.

Dans la littérature, les mesures réelles de tâches comparables aux nôtres ont des distributions non-normales (A. Dawes, 2022; A. J. Dawes et al., 2020; Palermo et al., 2022). Après vérification des distributions par des tests de Shapiro-Wilk, nous pourrons dans ce cas réaliser des **tests non-paramétriques** tels que des tests de Kruskal-Wallis ou Mann-Whitney-U. Alternativement, nous pourrions réaliser des **transformations des données** pour les rapprocher de la normalité, de type Box-Cox par exemple. L'étude de Dawes et al. (2020) utilise une autre transformation centrée sur la médiane permettant de comparer les différences entre groupes pour chaque tâche selon la même échelle :

$$y = \frac{x - \left(S.min + \frac{S.max - S.min}{2}\right)}{S.max - S.min}$$

Où y est le score transformé, x le score brut, S.min le score minimum et S.max le maximum. Dans les présentes analyses nous avons choisi la deuxième solution, en standardisant les scores en z-scores via la fonction scale() sur R, puis en les ramenant sur une échelle de 0 à 1, avec une médiane à 0.5, via la fonction rescale() du package datawizard sur R - de sorte à pouvoir construire des profils plus aisément. Nous n'avons pas eu besoin ici d'utiliser une transformation normale, car les données ont déjà été simulées comme tel.

2.5.2 Analyse Factorielle Multiple et clustering

Comme nous l'avons mentionné dans la section *Simulation*, nos variables initiales (les scores) ont pour certaines des corrélations très significatives entre elles du fait de la proximité des capacités cognitives qu'elles évaluent. Nous pourrons alors réduire le nombre de variables en isolant des dimensions essentielles qu'elles représentent par une **analyse en composantes principales** (ACP). Celle-ci nous permettra alors de combiner les scores de différentes tâches pour les ramener à des scores liés à des capacités cognitives (e.g. un score en imagerie visuelle au lieu de deux scores au VVIQ et à l'OSIQ-objet). Cette analyse a ici été conduite sur R via la fonction fviz_pca_var() du package factoextra.

De même, nos groupes initiaux ont été définis de manière arbitraire (une limite de score définie par convention, VVIQ < 32) et pourraient représenter une division imprécise des participants. Pour corriger ce biais potentiel nous réaliserons une analyse de partition non-supervisée (dite en clusters") par l'algorithme des k-means, pour ainsi étudier la répartition en groupes qu'il propose en prenant en compte toutes nos variables redéfinies par l'ACP. L'algorithme fonctionne sur la base d'une matrice de dissimilarité selon des distances euclidiennes : i.e. il évalue "géométriquement" selon les axes de nos variables la "distance" entre chaque observation (ici les participants). La distance euclidienne en deux dimensions se calcule simplement par le théorème de Pythagore. Pour un nombre plus grand de dimensions, la formule généralisée est la suivante :

$$D_{i,j}^2 = \sum_{v=1}^n (x_{vi} - x_{vj})^2$$

"D" étant la distance entre i et j dans n dimensions, égale à la somme des carrés des distances

dans chaque dimension. Cette distance, ou "dissimilarité", une fois calculée pour toutes les observations (participants) permet d'obtenir une matrice de des distances entre chacune d'elles. Par suite, l'algorithme des k-means utilise cette matrice pour diviser les observations en k sous-groupes : il rassemble les observations les plus proches entre elles de sorte à minimiser la superposition entre les clusters, i.e. les observations pouvant se trouver dans plusieurs groupes définis. La détermination de k - i.e. le nombre de sous-groupes (ou clusters) idéal pour une partition intéressante - est une étape importante, et peut se réaliser via de nombreux indices. Nous avons ici utilisé la fonction $fviz_nbclust()$ du package factoextra sur R. L'analyse en clusters elle-même a été conduite avec la fonction kmeans() du package stats et visualisée avec $fviz_cluster()$ de factoextra.

2.5.3 Composition des clusters et profils cognitifs

Pour finir, l'algorithme des k-means permettra donc de créer des groupes qui auront des profils particuliers sur chaque composante cognitive représentée par nos variables. La composition de ces groupes (en pourcentage d'aphantasiques/non-aphantasiques définis initialement) ainsi que leurs capacités cognitives seront analysées : la variable du groupe étant notre seule variable indépendante, nous réaliserons alors des **ANOVAs univariées** en fonction du groupe ainsi que des **t-tests post-hoc**. Nous pourrions par ailleurs ajuster des **modèles mixtes linéaires** sur nos données pour comparer la qualité d'un modèle à deux groupes ou à k groupes, ainsi que l'importance des facteurs aléatoires tels que les différences entre participants.

Pour nos comparaisons, nous devrons choisir une correction pour compenser les tests multiples, la plus utilisée étant la **correction de Bonferroni**. Dawes et al. (2020) en ont utilisée une très conservatrice pour ajuster l' α en fonction de leur nombre d'items dans les questionnaires, donnant $\alpha = 0.05/206 = 0.0002$. Palermo et al. (2022) ont utilisé une correction de $\alpha = 0.05/11 = 0.005$ pour les ANOVAs, et de $\alpha = 0.05/6 = 0.008$ pour les comparaisons post-hoc. Celle que nous utiliserons et le critère pour la choisir restent à définir.

2.6 Résultats

2.6.1 Statistiques descriptives

Les statistiques descriptives de notre échantillon sont en Table 1.

Variable	Mean	SD	Min	Max
OSIQ-Objet	43.334579	13.915321	6.6797222	74.14821
OSIQ-Spatial	53.225229	11.679451	22.4601354	89.82966
VVIQ	46.540534	19.248711	3.1098662	91.93256
Raven	22.084263	5.608584	5.1473571	38.84947
Simili	40.034665	5.902302	26.1402045	55.22498
Wason	34.220836	4.077426	20.4101106	46.55095
Empan verbal	7.093107	1.922361	1.6701677	13.07330
WCST	32.761413	4.336859	17.0523285	45.92937
Compréhension en lecture	49.050168	9.264109	21.1663717	74.29158
Corsi	6.439801	2.439217	-0.5900959	15.12490
MRT	17.467141	4.831951	-0.6821389	37.11976
SRI	37.463108	7.429337	14.6270358	69.13171

Table 1: Statistiques descriptives de l'ensemble des variables mesurées : Moyenne (Mean), Écart-type (SD), Minimum (Min) et Maximum (Max).

2.6.2 Analyse Factorielle Multiple

Comme nous l'avons vu, il existe de nombreux liens (ici par construction, à des fins d'observation). La Figure 1 en donne une représentation graphique explicite.

Parmi les covariances significatives, le VVIQ et l'OSIQ-objet sont extrêmement proches, le MRT, le SRI, l'OSIQ-spatial et les blocs de Corsi (toutes des tâches impliquant de l'imagerie spatiale) forment un réseau très corrélé, l'empan de chiffres est proche des blocs de Corsi (tâches mnésiques) (Voir la Figure 7 en Annexes pour tous les coefficients de corrélation et leur significativité).

Figure 1: Représentation des corrélations entre les variables mesurées. Les liens bleus dénotent une corrélation positive, et les rouges une corrélation négative. Cette figure illustre les choix de pondération réalisés à l'étape de simulation : on peut notamment voir des corrélations très prononcées entre le VVIQ et l'OSIQ-objet (r = 0.77, p < .001) qui évaluent tous deux l'imagerie objet, le Digit Span et les blocs de Corsi (r = 0.68, p < .001) qui évaluent entre autres la mémoire de travail, ou encore entre l'OSIQ-spatial et le SRI, qui sont respectivement l'auto-évaluation et la tâche les plus spécifiques de l'imagerie spatiale.

Gaussian Graphical Models (GGMs) Such partial correlations can also be represented as Gaussian Graphical Models (GGM), an increasingly popular tool in psychology. A GGM traditionally include a set of variables depicted as circles ("nodes"), and a set of lines that visualize relationships between them, which thickness represents the strength of association (see Bhushan et al., 2019).

Is the data suitable for Factor Analysis? Nous avons évalué que les données étaient adaptées à une analyse factorielle multiple avec plusieurs indices : - KMO: The Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy suggests that data seems appropriate for factor analysis (KMO = 0.82). - Sphericity: Bartlett's test of sphericity suggests that there is sufficient significant correlation in the data for factor analysis (Chisq(66) = 3194.04, p <

.001).

The choice of 3 dimensions is supported by 5 (35.71%) methods out of 14 (CNG, Optimal coordinates, Parallel analysis, Kaiser criterion, Scree (SE))³. Nous avons donc conduit l'analyse avec la fonction factor_analysis du package parameters sur R. La Table 2 présente les capacités explicatives de chaque composante sur la variance de totale de l'échantillon. The 3 latent factors (cluster rotation) accounted for 62.55% of the total variance of the original data (MR1 = 26.91%, MR2 = 21.53%, MR3 = 14.11%). La distribution des poids de chaque variable selon les facteurs est présentée en Figure 2.

Parameter	MR1	MR2	MR3
Eigenvalues	4.545	2.000	0.961
Variance	0.269	0.215	0.141
Variance_Cumulative	0.269	0.484	0.626
Variance_Proportion	0.430	0.344	0.226

Table 2: Analyses des performances en termes de variance expliquée des facteurs détérminés selon une rotation adaptée à une analyse de clusters.

A partir de cette distribution et de l'analyse en graphes de nos facteurs, nous avons catégorisé les trois composantes : la première, la plus corrélée au SRI, au MRT, à l'OSIQ-Spatial et aux blocs de Corsi (toutes des tâches ayant une composante spatiale) sera appelée Imagerie Spatiale. La seconde, corrélée au VVIQ, à l'OSIQ-Objet et au Wason, sera l'Imagerie Objet. La dernière, corrélée aux Matrices de Raven, aux Similitudes, à la compréhension en lecture et au WCST, sera le Raisonnement.

2.6.3 Analyse en *clusters*

The dataset is suitable for clustering (Hopkins' H = 0.23).(Lawson & Jurs, 1990) This checks whether the data is appropriate for clustering using the Hopkins' H statistic of given data. If

 $^{^3}$ Nous avons par ailleurs mené une analyse à quatre facteurs, dans la mesure où ce nombre était le deuxième le plus supporté par les indices de détermination : la quatrième dimension identifiée par cette analyse rassemble quasi-exclusivement les scores au Corsi et à l'Empan Verbal, soit les deux tâches de mémoire de travail. Voir la Figure 6 en Annexes. The 4 latent factors (cluster rotation) accounted for 67.82% of the total variance of the original data (MR1 = 25.86%, MR2 = 21.57%, MR3 = 12.91%, MR4 = 7.48%).

Figure 2: Rotated loadings from factor analysis.

the value of Hopkins statistic is close to 0 (below 0.5), then we can reject the null hypothesis and conclude that the dataset is significantly clusterable. A value for H lower than 0.25 indicates a clustering tendency at the 90% confidence level. The visual assessment of cluster tendency (VAT) approach (Bezdek and Hathaway, 2002) consists in investigating the heatmap of the ordered dissimilarity matrix. Following this, one can potentially detect the clustering tendency by counting the number of square shaped blocks along the diagonal.

Lefèvre 2022 La création de ces profils dans notre échantillon repose sur les trois compétences du langage écrit : fluence et compréhension en lecture et orthographe. Nous avons calculé une matrice de dissimilarité puis le nombre de clusters a été calculé grâce à l'ensemble des indices présents dans le package R NbClus (Charrad et al., 2014). La majorité des indices propose un nombre optimal de quatre clusters pour notre échantillon. Une implémentation multiple (n=1000) de l'algorithme des k-means a été conduite avec 4 clusters sur l'ensemble de l'échantillon.

The choice of 2 clusters is supported by 14 (48.28%) methods out of 29 (Elbow, Silhouette, Ch, CCC, Cindex, DB, Duda, Pseudot2, Beale, Ratkowsky, Mcclain, SDindex, Mixture (EVE), Mixture (VVE)).

(Avec les anciennes variables: The 2 clusters accounted for 25.77% of the total variance of the original data. The 4 clusters accounted for 41.79% of the total variance of the original data. r2 0.25 et 0.42) (The 4 clusters accounted for 60.70% of the total variance of the original data. The 2 clusters accounted for 37.26% of the total variance of the original data.)

Les observations étaient ensuite attribuées au cluster le plus probable en termes d'assignation. Le résultat des k-means est représenté dans la Figure 3, et les profils cognitifs associés sur les trois capacités en Figure 4.

Figure 3: Représentation des clusters reconnus par la méthode des 'k-means', selon les deux composantes principales de l'AFM.

Les profils ont ensuite été étudiés sur leur composition en fonction du diagnostic initial et sur les compétences cognitives du profil et celles sous-tendant ces performances grâce à des

comparaisons de groupes.

Figure 4: Diagramme représentatant les profils cognitifs associés à chaque cluster, selon trois dimensions principales : l'imagerie visuelle-objet, l'imagerie visuo-spatiale et le raisonnement.

Figure 5: Représentation des moyennes de chaque cluster pour les trois capacités cognitives.

La Table 3 présente la répartition dans les nouveaux clusters des participants initialement identifiés comme aphantasiques ou non par le VVIQ. Les clusters 3 et 4 sont représentatifs de l'importance du critère de l'imagerie visuelle-objet : ils sont composés respectivement de 100% de contrôles et de 100% d'aphantasiques. Les clusters 1 et 2 sont néanmoins plus équilibrés, et reflèteraient potentiellement la nécessité de raffiner la définition de l'imagerie visuelle, ou de considérer celle-ci comme un continuum avec des corrélations spécifiques.

	Imagerie	Imagerie			Non-
Cluster	Spatiale	Objet	Raisonnement	Aphantasiques	Aphantasiques
1	-0.2435470	-0.7742495	-0.1801197	42	73
2	0.4247462	0.7090962	0.6260035	29	49
3	1.1891565	-0.9185303	0.8451114	0	81
4	-0.8051109	0.8581758	-0.7664169	126	0

	Imagerie	Imagerie		Non-
Cluster	Spatiale	Objet	Raisonnement Aphantasiques	Aphantasiques

Table 3: Moyennes évaluée à chaque compétence et répartion des effectifs par cluster.

2.6.4 Différences de moyenne des deux groupes

Nous avons ajusté des modèles linéaires sur nos données pour prédire les nouveaux scores de Raisonnement, d'Imagerie Objet et d'Imagerie Spatiale en fonction des clusters. Ces modèles ont permis d'expliquer une part de variance importante et statistiquement significative des scores en Raisonnement $(r^2 = 0.49, F(3, 396) = 128.86, p < .001, adj. r^2$ ajusté = 0.49), en Imagerie Objet $(r^2 = 0.69, F(3, 396) = 290.12, p < .001, r^2$ ajusté = 0.68) et en Imagerie Spatiale $(r^2 = 0.56, F(3, 396) = 168.39, p < .001, r^2$ ajusté = 0.56).

Les comparaisons ont été ajustées sur un intercept centré par rapport aux données standardisées, pour pouvoir contraster chaque cluster par rapport à la moyenne globale. Nous observons pour tous les clusters des effets statistiquement significatifs sur les trois composantes (les p values seront précisées plus bas). Ainsi nous observons, par cluster : - Le cluster 1 a un effet négatif sur le Raisonnement (beta = -0.18, 95% CI [-0.30, -0.06], t(396) = -2.95, p = 0.003; Std. beta = -0.20, 95% CI [-0.33, -0.07]), sur l'Imagerie Objet (beta = -0.77, 95% CI [-0.88, -0.67], t(396) = -14.93, p < .001; Std. beta = -0.78, 95% CI [-0.88, -0.68]) et sur l'Imagerie Spatiale (beta = -0.24, 95% CI [-0.36, -0.12], t(396) = -3.98, p < .001; Std. beta = -0.25, 95% CI [-0.37, -0.13]). - Le cluster 2 a un effet positif sur le Raisonnement (beta = 0.63, 95% CI [0.48, 0.77], t(396) = 8.43, p < .001; Std. beta = 0.68, 95% CI [0.52, p < .001](0.84]), positif sur l'Imagerie Objet (beta = 0.71, 95% CI [0.59, 0.83], t(396) = 11.26, p < .001; Std. beta = 0.72, 95% CI [0.59, 0.84]) et sur l'Imagerie Spatiale (beta = 0.42, 95% CI [0.28, 0.57], t(396) = 5.72, p < .001; Std. beta = 0.43, 95% CI [0.28, 0.58]) - Le cluster 3 a un effet positif sur le Raisonnement (beta = 0.85, 95% CI [0.70, 0.99], t(396) = 11.60, p < .001; Std. beta = 0.92, 95\% CI [0.76, 1.08]), négatif sur l'Imagerie Objet (beta = -0.92, 95% CI [-1.04, -0.80], t(396) = -14.86, p < .001; Std. beta = -0.93, 95% CI [-1.05, -0.80]), et positif sur l'Imagerie Spatiale (beta = 1.19, 95% CI [1.05, 1.33], t(396) = 16.33, p < .001; Std. beta = 1.21, 95% CI [1.06, 1.35]) - Le cluster 4 a un effet négatif sur le Raisonnement (beta

= -0.77, 95% CI [-0.88, -0.65], t(396) = -13.12, p < .001; Std. beta = -0.83, 95% CI [-0.96, -0.71]), positif sur l'Imagerie Objet (beta = 0.86, 95% CI [0.76, 0.96], t(396) = 17.32, p < .001; Std. beta = 0.87, 95% CI [0.77, 0.96]) et négatif sur l'Imagerie Spatiale (beta = -0.81, 95% CI [-0.92, -0.69], t(396) = -13.79, p < .001; Std. beta = -0.82, 95% CI [-0.93, -0.70]).

3 Discussion

3.1 Profils cognitifs

Références

- Allaire, J. (2022). Quarto: R Interface to Quarto Markdown Publishing System [Manual]. https://github.com/quarto-dev/quarto-r
- Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., & Iannone, R. (2023). *Rmarkdown: Dynamic Documents for R* [Manual]. https://CRAN.R-project.org/package=rmarkdown
- Anderson, D., Heiss, A., & Sumners, J. (2022). Equationatic: Transform Models into LaTeX Equations [Manual]. https://CRAN.R-project.org/package=equatiomatic
- Bainbridge, W. A., Pounder, Z., Eardley, A. F., & Baker, C. I. (2021). Quantifying Aphantasia through Drawing: Those without Visual Imagery Show Deficits in Object but Not Spatial Memory. *Cortex*, 135, 159-172. https://doi.org/10.1016/j.cortex.2020.11.014
- Bartolomeo, P., Hajhajate, D., Liu, J., & Spagna, A. (2020). Assessing the Causal Role of Early Visual Areas in Visual Mental Imagery. *Nature Reviews Neuroscience*, 21(9, 9), 517-517. https://doi.org/10.1038/s41583-020-0348-5
- Bates, D., Maechler, M., Bolker, B., & Walker, S. (2022). Lme4: Linear Mixed-Effects Models

 Using Eigen and S4 [Manual]. https://github.com/lme4/lme4/
- Bates, D., Maechler, M., & Jagan, M. (2022). *Matrix: Sparse and Dense Matrix Classes and Methods* [Manual]. https://CRAN.R-project.org/package=Matrix
- Ben-Shachar, M. S., Makowski, D., Lüdecke, D., Patil, I., Wiernik, B. M., & Th'eriault, R. (2023). Effectsize: Indices of Effect Size [Manual]. https://easystats.github.io/effectsize/
- Bion, R. (2023). Ggradar: Create Radar Charts Using Ggplot2 [Manual].
- Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006a). Object and Spatial Imagery: Distinctions between Members of Different Professions. *Cognitive Processing*, 7(1), 20-21. https://doi.org/10.1007/s10339-006-0047-9
- Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006b). Object-Spatial Imagery: A New Self-Report Imagery Questionnaire. *Applied Cognitive Psychology*, 20(2), 239-263. https://doi.org/10.1002/acp.1182
- Blazhenkova, O., & Kozhevnikov, M. (2010). Visual-Object Ability: A New Dimension of Non-Verbal Intelligence. *Cognition*, 117(3), 276-301. https://doi.org/10.1016/j.cognition.

2010.08.021

- Blazhenkova, O., & Kozhevnikov, M. (2009). The New Object-Spatial-Verbal Cognitive Style Model: Theory and Measurement. *Applied Cognitive Psychology*, 23(5), 638-663. https://doi.org/10.1002/acp.1473
- Blazhenkova, O., & Pechenkova, E. (2019). The Two Eyes of the Blind Mind: Object vs. Spatial Aphantasia? Russian Journal of Cognitive Science, 6(4, 4), 51-65. http://dx.doi.org/10.47010/19.4.5
- Blomkvist, A. (2022). Aphantasia: In Search of a Theory. Mind & Language, n/a(n/a). https://doi.org/10.1111/mila.12432
- Boccia, M., Piccardi, L., Palermo, L., Nemmi, F., Sulpizio, V., Galati, G., & Guariglia, C. (2015). A Penny for Your Thoughts! Patterns of fMRI Activity Reveal the Content and the Spatial Topography of Visual Mental Images. *Human Brain Mapping*, 36(3), 945-958. https://doi.org/10.1002/hbm.22678
- Brewer, W. F., & Schommer-Aikins, M. (2006). Scientists Are Not Deficient in Mental Imagery: Galton Revised. *Review of General Psychology*, 10(2), 130-146. https://doi.org/10.1037/1089-2680.10.2.130
- Cavedon-Taylor, D. (2021). Predictive Processing and Perception: What Does Imagining Have to Do with It? 15.
- Coleman, S. L., & Gotch, A. J. (1998). Spatial Perception Skills of Chemistry Students.

 Journal of Chemical Education, 75(2), 206. https://doi.org/10.1021/ed075p206
- Crowder, A. (2018). Differences in Spatial Visualization Ability and Vividness of Spatial Imagery Between People With and Without Aphantasia.
- Csardi, G., & Nepusz, T. (2006). The Igraph Software Package for Complex Network Research.

 InterJournal, Complex Systems, 1695. https://igraph.org
- Dance, C. (2022, janvier 26). Less Sensory Overwhelm In Aphantasia: A Potential Advantage? https://aphantasia.com/sensory-overwhelm/
- Dance, C. J., Ipser, A., & Simner, J. (2022). The Prevalence of Aphantasia (Imagery Weakness) in the General Population. *Consciousness and Cognition*, 97, 103243. https://doi.org/10.1016/j.concog.2021.103243
- Dance, C. J., Ward, J., & Simner, J. (2021). What Is the Link Between Mental Imagery

- and Sensory Sensitivity? Insights from Aphantasia. Perception, 50(9), 757-782. https://doi.org/10.1177/03010066211042186
- Dawes, A. (2022). Inner Visions of the Mind's Eye: The Role of Visual Imagery in Remembering the Past and Imagining the Future [UNSW Sydney]. https://doi.org/10.26190/UNSWORKS/24158
- Dawes, A. J., Keogh, R., Andrillon, T., & Pearson, J. (2020). A Cognitive Profile of Multi-Sensory Imagery, Memory and Dreaming in Aphantasia. *Scientific Reports*, 10(1, 1), 10022. https://doi.org/10.1038/s41598-020-65705-7
- Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999). Pattern Span: A Tool for Unwelding Visuo–Spatial Memory. *Neuropsychologia*, 37(10), 1189-1199. https://doi.org/10.1016/S0028-3932(98)00159-6
- Dervieux, C. (2022). Pandoc: Manage and Run Universal Converter Pandoc from R [Manual]. https://CRAN.R-project.org/package=pandoc
- Farah, M. J., Levine, D. N., & Calvanio, R. (1988). A Case Study of Mental Imagery Deficit.

 Brain and Cognition, 8(2), 147-164. https://doi.org/10.1016/0278-2626(88)90046-2
- Faw, B. (2009). Conflicting Intuitions May Be Based On Differing Abilities. 25.
- Fox-Muraton, M. (2021). A World without Imagination? Consequences of Aphantasia for an Existential Account of Self. *History of European Ideas*, 47(3), 414-428. https://doi.org/10.1080/01916599.2020.1799553
- Galton, F. (1880). I.—STATISTICS OF MENTAL IMAGERY. *Mind*, os-V(19), 301-318. https://doi.org/10.1093/mind/os-V.19.301
- Greenberg, D. L., & Knowlton, B. J. (2014). The Role of Visual Imagery in Autobiographical Memory. *Memory & Cognition*, 42(6), 922-934. https://doi.org/10.3758/s13421-014-0402-5
- Hegarty, M., & Waller, D. A. (2005). Individual Differences in Spatial Abilities. In *The Cambridge Handbook of Visuospatial Thinking* (p. 121-169). Cambridge University Press. https://doi.org/10.1017/CBO9780511610448.005
- Henry, L., & Wickham, H. (2022). Purrr: Functional Programming Tools [Manual]. https://CRAN.R-project.org/package=purrr
- Kassambara, A. (2022a). *Ggpubr: Ggplot2 Based Publication Ready Plots* [Manual]. https://rpkgs.datanovia.com/ggpubr/

- Kassambara, A. (2022b). Rstatix: Pipe-friendly Framework for Basic Statistical Tests [Manual]. https://rpkgs.datanovia.com/rstatix/
- Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and Visualize the Results of Multivariate Data Analyses [Manual]. http://www.sthda.com/english/rpkgs/factoextra
- Keehner, M. M., Tendick, F., Meng, M. V., Anwar, H. P., Hegarty, M., Stoller, M. L., & Duh, Q.-Y. (2004). Spatial Ability, Experience, and Skill in Laparoscopic Surgery. *The American Journal of Surgery*, 188(1), 71-75. https://doi.org/10.1016/j.amjsurg.2003.12.059
- Kendle, A. (2017). Aphantasia: Experiences, Perceptions, and Insights. Dark River.
- Keogh, R., & Pearson, J. (2018). The Blind Mind: No Sensory Visual Imagery in Aphantasia. Cortex, 105, 53-60. https://doi.org/10.1016/j.cortex.2017.10.012
- Keogh, R., & Pearson, J. (2020). Attention Driven Phantom Vision: Measuring the Sensory Strength of Attentional Templates and Their Relation to Visual Mental Imagery and Aphantasia. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 376(1817), 20190688. https://doi.org/10.1098/rstb.2019.0688
- Keogh, R., Wicken, M., & Pearson, J. (2021). Visual Working Memory in Aphantasia: Retained Accuracy and Capacity with a Different Strategy. *Cortex*, 143, 237-253. https://doi.org/10.1016/j.cortex.2021.07.012
- Knight, K. F., Milton, F. N., Milton, F. N., Zeman, A., & Zeman, A. (2022). Memory without Imagery: No Evidence of Visual Working Memory Impairment in People with Aphantasia.
 8.
- Kosslyn, S. M., Behrmann, M., & Jeannerod, M. (1995). The Cognitive Neuroscience of Mental Imagery. *Neuropsychologia*, 33(11), 1335-1344. https://doi.org/10.1016/0028-3932(95)00067-D
- Kothe, E., Callegher, C. Z., Gambarota, F., Linkersdörfer, J., & Ling, M. (2021). Trackdown:

 Collaborative Writing and Editing of R Markdown (or Sweave) Documents in Google Drive.

 Zenodo. https://doi.org/10.5281/zenodo.5167320
- Kozhevnikov, M., Blazhenkova, O., & Becker, M. (2010). Trade-off in Object versus Spatial Visualization Abilities: Restriction in the Development of Visual-Processing Resources. Psychonomic Bulletin & Review, 17(1), 29-35. https://doi.org/10.3758/PBR.17.1.29
- Kozhevnikov, M., Hegarty, M., & Mayer, R. E. (2002). Revising the Visualizer-Verbalizer

- Dimension: Evidence for Two Types of Visualizers. Cognition and Instruction, 20(1), 47-77. https://www.jstor.org/stable/3233862
- Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus Object Visualizers: A New Characterization of Visual Cognitive Style. *Memory & Cognition*, 33(4), 710-726. https://doi.org/10.3758/BF03195337
- Kozhevnikov, M., Kozhevnikov, M., Yu, C. J., & Blazhenkova, O. (2013). Creativity, Visualization Abilities, and Visual Cognitive Style. *British Journal of Educational Psychology*, 83(2), 196-209. https://doi.org/10.1111/bjep.12013
- Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial Visualization in Physics Problem Solving. *Cognitive Science*, 31(4), 549-579. https://doi.org/10.1080/1532690070 1399897
- Kuhn, M., Jackson, S., & Cimentada, J. (2022). Corrr: Correlations in R [Manual]. https://CRAN.R-project.org/package=corrr
- Kuznetsova, A., Bruun Brockhoff, P., & Haubo Bojesen Christensen, R. (2020). *lmerTest:*Tests in Linear Mixed Effects Models [Manual]. https://github.com/runehaubo/lmerTestR
- Lachlan, K., Keogh, R., Andrillion, T., & Pearson, J. (2022, mars 31). The Pupillary Light Response as a Physiological Index of Aphantasia, Sensory and Phenomenological Imagery Strength / eLife. https://elifesciences.org/articles/72484
- Lange, K., Kühn, S., & Filevich, E. (2015). Just Another Tool for Online Studies" (JATOS): An Easy Solution for Setup and Management of Web Servers Supporting Online Studies. *PLOS ONE*, 10(6), e0130834. https://doi.org/10.1371/journal.pone.0130834
- Lawrence, M. A. (2016). Ez: Easy Analysis and Visualization of Factorial Experiments [Manual]. http://github.com/mike-lawrence/ez
- Lawson, R. G., & Jurs, P. C. (1990). New Index for Clustering Tendency and Its Application to Chemical Problems. *Journal of chemical information and computer sciences*, 30(1), 36-41.
- Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., & Wiernik, B. M. (2022). Easystats:

 Framework for Easy Statistical Modeling, Visualization, and Reporting [Manual]. https://easystats.github.io/easystats/
- Lüdecke, D., Makowski, D., Patil, I., Waggoner, P., Ben-Shachar, M. S., Wiernik, B. M., &

- Arel-Bundock, V. (2023). Insight: Easy Access to Model Information for Various Model Objects [Manual]. https://easystats.github.io/insight/
- Maechler, M., Rousseeuw, P., Struyf, A., & Hubert, M. (2022). Cluster: "Finding Groups in Data": Cluster Analysis Extended Rousseeuw et Al. [Manual]. https://svn.r-project.org/R-packages/trunk/cluster/
- Makowski, D., Lüdecke, D., Ben-Shachar, M. S., & Patil, I. (2023). *Modelbased: Estimation of Model-Based Predictions, Contrasts and Means* [Manual]. https://easystats.github.io/modelbased/
- Makowski, D., Wiernik, B. M., Patil, I., Lüdecke, D., & Ben-Shachar, M. S. (2022). Correlation:

 Methods for Correlation Analysis [Manual]. https://easystats.github.io/correlation/
- Marks, D. F. (1973). Vividness of Visual Imagery Questionnaire. Journal of Mental Imagery.
 Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An Open-Source, Graphical Experiment Builder for the Social Sciences. Behavior Research Methods, 44(2), 314-324. https://doi.org/10.3758/s13428-011-0168-7
- Milton, F., Fulford, J., Dance, C., Gaddum, J., Heuerman-Williamson, B., Jones, K., Knight, K. F., MacKisack, M., Winlove, C., & Zeman, A. (2021). Behavioral and Neural Signatures of Visual Imagery Vividness Extremes: Aphantasia versus Hyperphantasia. Cerebral Cortex Communications, 2(2), tgab035. https://doi.org/10.1093/texcom/tgab035
- Mishkin, M., & Ungerleider, L. G. (1982). Contribution of Striate Inputs to the Visuospatial Functions of Parieto-Preoccipital Cortex in Monkeys. *Behavioural Brain Research*, 6(1), 57-77. https://doi.org/10.1016/0166-4328(82)90081-X
- Monzel, M., Mitchell, D., Macpherson, F., Pearson, J., & Zeman, A. (2022). Aphantasia, Dysikonesia, Anauralia: Call for a Single Term for the Lack of Mental Imagery—Commentary on Dance et al. (2021) and Hinwar and Lambert (2021). Cortex, 150, 149-152. https://doi.org/10.1016/j.cortex.2022.02.002
- Morton, N., & Morris, R. G. (1995). Image Transformation Dissociated from Visuospatial Working Memory. *Cognitive Neuropsychology*, 12(7), 767-791. https://doi.org/10.1080/02643299508251401
- Orion, N., Ben-Chaim, D., & Kali, Y. (1997). Relationship Between Earth-Science Education and Spatial Visualization. *Journal of Geoscience Education*, 45(2), 129-132. https://doi.

org/10.5408/1089-9995-45.2.129

- Palermo, L., Boccia, M., Piccardi, L., & Nori, R. (2022). Congenital Lack and Extraordinary Ability in Object and Spatial Imagery: An Investigation on Sub-Types of Aphantasia and Hyperphantasia. *Consciousness and Cognition*, 103, 103360. https://doi.org/10.1016/j.concog.2022.103360
- Patil, I., Makowski, D., Ben-Shachar, M. S., Wiernik, B. M., Bacher, E., & Lüdecke, D. (2022). datawizard: An R Package for Easy Data Preparation and Statistical Transformations. *Journal of Open Source Software*, 7(78), 4684. https://doi.org/10.21105/joss.04684
- Pearson, J. (2019). The Human Imagination: The Cognitive Neuroscience of Visual Mental Imagery. Nature Reviews Neuroscience, 20(10, 10), 624-634. https://doi.org/10.1038/s41583-019-0202-9
- Pedersen, T. L. (2022). Ggraph: An Implementation of Grammar of Graphics for Graphs and Networks [Manual]. https://CRAN.R-project.org/package=ggraph
- Posit team. (2022). RStudio: Integrated Development Environment for R [Manual]. Posit Software, PBC. http://www.posit.co/
- Pounder, Z., Jacob, J., Evans, S., Loveday, C., Eardley, A. F., & Silvanto, J. (2022). Only Minimal Differences between Individuals with Congenital Aphantasia and Those with Typical Imagery on Neuropsychological Tasks That Involve Imagery. *Cortex*, 148, 180-192. https://doi.org/10.1016/j.cortex.2021.12.010
- Pylyshyn, Z. W. (2002). Mental Imagery: In Search of a Theory. Behavioral and Brain Sciences, 25(2), 157-182. https://doi.org/10.1017/S0140525X02000043
- Quintans, D. (2021). Librarian: Install, Update, Load Packages from CRAN, GitHub, and Bioconductor in One Step [Manual]. https://github.com/DesiQuintans/librarian
- R Core Team. (2022). R: A Language and Environment for Statistical Computing [Manual].
 R Foundation for Statistical Computing. https://www.R-project.org/
- Reisberg, D., Pearson, D. G., & Kosslyn, S. M. (2002). Intuitions and Introspections about Imagery: The Role of Imagery Experience in Shaping an Investigator's Theoretical Views.

 Applied Cognitive Psychology, 17(2), 147-160. https://doi.org/10.1002/acp.858
- Ripley, B. (2022). MASS: Support Functions and Datasets for Venables and Ripley's MASS [Manual]. http://www.stats.ox.ac.uk/pub/MASS4/

- Salway, A. F. S., & Logie, R. H. (1995). Visuospatial Working Memory, Movement Control and Executive Demands. *British Journal of Psychology*, 86(2), 253-269. https://doi.org/10.1111/j.2044-8295.1995.tb02560.x
- Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Crowley, J. (2021). GGally: Extension to Ggplot2 [Manual]. https://CRAN.R-project.org/package=GGally
- Spagna, A. (2022). Chapter 8 Visual Mental Imagery: Inside the Mind's Eyes. In G. Miceli, P. Bartolomeo, & V. Navarro (Éds.), *Handbook of Clinical Neurology* (Vol. 187, p. 145-160). Elsevier. https://doi.org/10.1016/B978-0-12-823493-8.00010-9
- Takahashi, J., Saito, G., Omura, K., Yasunaga, D., Sugimura, S., Sakamoto, S., Horikawa, T., & Gyoba, J. (2022). Diversity of Aphantasia Revealed by Multiple Assessments of the Capability for Multi-Sensory Imagery. PsyArXiv. https://doi.org/10.31234/osf.io/pucsm
- Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial Ability for STEM Domains: Aligning over 50 Years of Cumulative Psychological Knowledge Solidifies Its Importance. *Journal* of Educational Psychology, 101, 817-835. https://doi.org/10.1037/a0016127
- Watkins, N. W. (2018). (A)Phantasia and Severely Deficient Autobiographical Memory: Scientific and Personal Perspectives. *Cortex*, 105, 41-52. https://doi.org/10.1016/j.cortex.2017.10.010
- Wickham, H. (2022a). Forcats: Tools for Working with Categorical Variables (Factors) [Manual]. https://CRAN.R-project.org/package=forcats
- Wickham, H. (2022b). *Tidyverse: Easily Install and Load the Tidyverse* [Manual]. https://CRAN.R-project.org/package=tidyverse
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019). Welcome to the tidyverse. *Journal of Open Source Software*, 4(43), 1686. https://doi.org/10.21105/joss.01686
- Wickham, H., François, R., Henry, L., & Müller, K. (2022). *Dplyr: A Grammar of Data Manipulation* [Manual]. https://CRAN.R-project.org/package=dplyr
- Wickham, H., & Girlich, M. (2022). Tidyr: Tidy Messy Data [Manual]. https://CRAN.R-

project.org/package=tidyr

- Xie, Y. (2014). Knitr: A Comprehensive Tool for Reproducible Research in R. In V. Stodden, F. Leisch, & R. D. Peng (Éds.), *Implementing Reproducible Computational Research*. Chapman and Hall/CRC.
- Xie, Y. (2015). Dynamic Documents with R and Knitr. Chapman and Hall/CRC.
- Xie, Y. (2023). Knitr: A General-Purpose Package for Dynamic Report Generation in R [Manual]. https://yihui.org/knitr/
- Zago, S., Allegri, N., Cristoffanini, M., Ferrucci, R., Porta, M., & Priori, A. (2011). Is the Charcot and Bernard Case (1883) of Loss of Visual Imagery Really Based on Neurological Impairment? *Cognitive Neuropsychiatry*, 16(6), 481-504. https://doi.org/10.1080/135468 05.2011.556024
- Zeman, A. Z. J., Della Sala, S., Torrens, L. A., Gountouna, V.-E., McGonigle, D. J., & Logie, R. H. (2010). Loss of Imagery Phenomenology with Intact Visuo-Spatial Task Performance: A Case of « Blind Imagination ». *Neuropsychologia*, 48(1), 145-155. https://doi.org/10.1016/j.neuropsychologia.2009.08.024
- Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without Imagery Congenital Aphantasia. Cortex, 73, 378-380. https://doi.org/10.1016/j.cortex.2015.05.019
- Zeman, A., Milton, F., Della Sala, S., Dewar, M., Frayling, T., Gaddum, J., Hattersley, A., Heuerman-Williamson, B., Jones, K., MacKisack, M., & Winlove, C. (2020). Phantasia—The Psychological Significance of Lifelong Visual Imagery Vividness Extremes. Cortex, 130, 426-440. https://doi.org/10.1016/j.cortex.2020.04.003
- Zimmer, C. (2010, mars 23). The Brain: Look Deep Into the Mind's Eye. Discover Magazine. https://www.discovermagazine.com/mind/the-brain-look-deep-into-the-minds-eye

Annexes

Ce manuscrit a été rédigé avec R Markdown⁴ (Allaire et al., 2023), Pandoc⁵ (Dervieux, 2022), Quarto⁶ (Allaire, 2022) et en L⁴T_EX, médiés par le package *knitr* (Xie, 2014, 2015, 2023), dans l'Environnement de Développement Intégré (IDE) RStudio⁷ (Posit team, 2022). Il a été partagé entre collaborateurs à l'aide du package *trackdown* (Kothe et al., 2021) et de *GitHub*⁸. Le code complet de ce manuscrit, de la simulation, des figures, tables et analyses est accessible dans *le dossier de ce projet sur GitHub*⁹.

La préparation du code, la simulation, les figures, tables et analyses ont nécessité les packages cluster (Maechler et al., 2022), correlation (Makowski et al., 2022), corrr (Kuhn et al., 2022), datawizard (Patil et al., 2022), dplyr (Wickham et al., 2022), easystats (Lüdecke et al., 2022), effectsize (Ben-Shachar et al., 2023), equatiomatic (Anderson et al., 2022), ez (Lawrence, 2016), factoextra (Kassambara & Mundt, 2020), forcats (Wickham, 2022a), GGally (Schloerke et al., 2021), ggpubr (Kassambara, 2022a), ggradar (Bion, 2023), ggraph (Pedersen, 2022), igraph (Csardi & Nepusz, 2006), insight (Lüdecke et al., 2023), librarian (Quintans, 2021), lme4 (Bates, Maechler, Bolker, et al., 2022), lmerTest (Kuznetsova et al., 2020), MASS (Ripley, 2022), Matrix (Bates, Maechler, & Jagan, 2022), modelbased (Makowski et al., 2023), purrr (Henry & Wickham, 2022), rstatix (Kassambara, 2022b), tidyr (Wickham & Girlich, 2022), et tidyverse (Wickham et al., 2019; Wickham, 2022b).

⁴https://rmarkdown.rstudio.com

⁵https://pandoc.org/

⁶https://quarto.org/

⁷https://posit.co/

⁸https://github.com/

⁹https://github.com/m-delem/aphantasia project.git

Figure 6: Rotated loadings from factor analysis.

Figure 7: Matrice de corrélation entre les toutes les variables mesurées.