Mid-Term Exam Review

夜未央

2025年10月27日

1 行列式

例题 1.1 设矩阵 $A_{n \times n}$ 的元素 a_{ij} 满足

$$a_{ij} = \begin{cases} x, & |i-j| = 2\\ 0, & |i-j| \neq 2 \end{cases}$$

求 $\det A$.

解.

例题 1.2 设矩阵 $A_{n\times n}$ 的元素 a_{ij} 满足 $a_{ij} = (a_i + b_j)^{n-1}$, 求 det A.

解. 对 a_{ij} 变形可得

$$a_{ij} = (a_i + b_j)^{n-1} = \sum_{k=0}^{n-1} C_{n-1}^k a_i^k b_j^{n-1-k}$$

例题 1.3 设矩阵 $A_{n \times n}$ 的元素 a_{ij} 满足

$$a_{ij} = \begin{cases} 1 + \cos(\theta_i - \varphi_j), & i = j \\ \cos(\theta_i - \varphi_j), & i \neq j \end{cases}$$

求 $\det A$.

2 线性方程组的进一步理论

例题 2.1 设 \mathbb{R}^n 中的向量组 $\alpha_1, \dots, \alpha_s$ 线性无关, 向量组 $\alpha_1 - \lambda \alpha_2, \alpha_2 - \lambda \alpha_3, \dots, \alpha_s - \lambda \alpha_1$ 线性相关, 求 实数 λ .

例题 2.2 若向量组 $\alpha_1, \cdots, \alpha_s$ 线性无关, 并且

$$\boldsymbol{\beta}_i = \sum_{j=1}^n c_{ij} \boldsymbol{\alpha}_j, \quad i = 1, \cdots, t$$

证明: 向量组 $oldsymbol{eta}_1,\cdots,oldsymbol{eta}_t$ 线性无关当且仅当 c_{ij} 拼成的矩阵 $oldsymbol{C}$ 行满秩.

例题 2.3 已知线性方程组 Ax = b 有解,证明: A 的第 k 个列向量不能被其余列向量线性表出当且仅当该方程的任意解 x 的第 k 个分量相同.