

Régime transitoire linéaire

Rappel:

Diviseur de tension

$$\begin{split} u_{_{2}} &= R_{_{2}}i \\ u &= (R_{_{1}} + R_{_{2}})i \\ \text{donc} \quad u_{_{2}} &= \frac{R_{_{2}}}{R_{_{1}} + R_{_{2}}}u \end{split}$$

Diviseur de courant

1. Définition

Le régime transitoire (temporaire) est défini lorsqu'il existe un intervalle de temps où les courants et tensions évoluent pour atteindre leur valeur finale.

2. Etude du circuit RL

A la fermeture de l'interrupteur K, l'application de la loi des mailles permet d'établir l'équation suivante :

$$L\frac{di}{dt} + Ri = \mathsf{E}$$

C'est une équation différentielle de 1 er ordre admettant comme solution générale :

$$i(t) = Ae^{-\frac{R}{L}t} + \frac{E}{R}$$

Tel que A est une constante à déterminer par les conditions initiales .

MA

Si
$$i = 0$$
 à $t = 0$, $A = -\frac{E}{R}$ et par suite $i(t) = \frac{E}{R}(1 - e^{-\frac{R}{L}t})$

La constante de temps τ du circuit est définie par : $\tau = \frac{\mathit{L}}{\mathit{R}}$

Le comportement du courant lors de l'établissement du régime est comme suit :

Si on ouvre l'interrupteur K à nouveau, le courant suit l'évolution suivante :

3. Etude du circuit RC

Il en résulte d'après la loi des mailles :

$$U_C + Ri = E$$

$$\Leftrightarrow \frac{q}{C} + R \frac{dq}{dt} = E$$

C'est une équation différentielle de 1er ordre dont la solution est :

$$q(t) = Ae^{-\frac{t}{RC}} + CE$$

Tel que la constante A est déterminée par la condition initiale .

MA

Si
$$q(t) = 0$$
 à $t = 0$, A = $-CE$ et par suite $q(t) = CE(1 - e^{-\frac{t}{RC}})$

L'évolution en fonction du temps de la tension aux bornes du condensateur est donnée par :

Cependant le courant est de la forme :

L'énergie stockée par le condensateur est :

$$U_e = \frac{1}{2} \frac{q^2}{C} = \frac{1}{2} C E^2$$

4. Etude du circuit RLC

On suppose que le condensateur est initialement chargé et i (à t=0) = 0 . Fermons l'interrupteur K, les charges vont s'écouler à travers la résistance R et la self L créant un courant i.

L'application de la loi des mailles permet d'établir l'équation différentielle du second ordre suivante :

MA

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = 0$$

On calcule le discriminant $\Delta = b^2 - 4ac \Rightarrow \Delta = R^2 - 4\frac{L}{c}$ Suivant la valeur de Δ , nous pouvons distinguer trois cas :

1er cas : $\Delta > 0$

La solution de cette équation se présente sous la forme :

$$q(t) = Ae^{-r_1t} + Be^{-r_2t}$$

Tel que

$$r_1 = -\frac{R}{2L} + \sqrt{\frac{R^2}{4L^4} - \frac{1}{LC}}$$

$$r_2 = -\frac{R}{2L} - \sqrt{\frac{R^2}{4L^4} - \frac{1}{LC}}$$

Avec A et B sont des constantes à déterminer à partir des conditions initiales .

2ème cas : $\Delta < 0$

L'équation caractéristique a deux racines complexes conjuguées :

$$r_1 = -\frac{R}{2L} + j\sqrt{-\frac{R^2}{4L^4} + \frac{1}{LC}} = -\alpha + j\omega$$

$$r_2 = -\frac{R}{2L} - j\sqrt{-\frac{R^2}{4L^4} + \frac{1}{LC}} = -\alpha - j\omega$$

La solution de cette équation se présente alors sous la forme

$$q(t) = Ke^{-\alpha t}cos(\omega t + \varphi)$$

Tel que $q_0 = K \cos(\varphi)$ et $\alpha = -\omega \tan(\varphi)$

M

3ème cas : $\Delta = 0$

La solution de cette équation se présente sous la forme :

$$q(t) = (A + B.t)e^{-\alpha t}$$

