

교육용프로그래밍언어기초(스크래치)

6주차-3교시

복제, 난수, 재귀 호출을 활용한 응용 프로그래밍

(1) 복제, 난수, 재귀 프로시저를 활용해서 프로그래밍 할 수 있다.

[5주차] 고양이 스프라이트가 사과 스프라이트를 던져서 위이대로 움직이는 박쥐스프라이트를 맞추는 게임

박쥐가 자신을 무한히 복제하여 자유롭게 날아다니고 그 박쥐들을 모두 잡으면 게임이 끝나는 프로그램

- 1 자유롭게 날아다니는 박쥐를 모두 잡는 게임
 - 1 프로그래밍의 실행 화면과 기능
 - ① 실행 버튼을 클릭하면 박쥐는 자신의 크기를 60%로 줄이고 위치(170,0)에 나타나 자유롭게 이동
 - ② 박쥐를 자유롭게 움직이게 하려면 x좌표를 150과 200사이의 난수로, y좌표를 - 140과 140사이의 난수로 생성해 그 위치로 이동하는 작업을 반복
 - ③ 실행 버튼을 클릭하면 박쥐는 자기 자신을 복제

1

- 1 자유롭게 날아다니는 박쥐를 모두 잡는 게임
 - 1 프로그래밍의 실행 화면과 기능
 - ④ 박쥐의 복제 역시 자유롭게 이동하면서 2초와 4초 사이에 자신을 반복해서 복제(복제가 복제를 생성하는 형태)
 - ⑤ 박쥐와 복제들은 사과에 맞으면 점수를 10만큼 올리고 소용돌이치면서 사라지고 사라진 박쥐와 복제는 다시 등장하지 않음
 - ⑥ 박쥐나 박쥐의 복제들이 모두 사과에 맞게 되면 게임 종료

- 1 자유롭게 날아다니는 박쥐를 모두 잡는 게임
 - 2 〈고양이 스크립트〉

- 1 자유롭게 날아다니는 박쥐를 모두 잡는 게임
 - 3 〈박쥐 스크립트〉

- 1 자유롭게 날아다니는 박쥐를 모두 잡는 게임
 - 3 〈박쥐 스크립트〉

```
점수 ▼ 을(를) 10 만큼 바꾸기
whirl ▼ 효과를 300 (으)로 정하기
 부터 4 사이의 난수
```

```
자유롭게 이동 ▼ 신호를 받았을 때 무한 반복하기 3 초등안 x: 450 부터 200 사이의 난수 y; 4140 부터 140 사이의 난수 (으)로 이동하기 # 1
```


- 1 자유롭게 날아다니는 박쥐를 모두 잡는 게임
 - 4 〈사과 스크립트〉

```
🦊 클릭했을 때
초기상태 설정하기
     스페이스 ▼ 키를 눌렸는가?
 박쥐 또는 벽에 닿을 때까지 날아가기
 초기상태 설정하기
 초기상태 설정하기 정의하기
       y: -50 (으)로 이동하기
크기를 50 %로 정하기
```

```
박쥐 또는 벽에 닿을 때까지 날아가기 정의하기

마우스 포인터 ▼ 쪽 보기

(박쥐 ▼ 에 닿았는가? 또는 (박 ▼ 에 닿았는가? 까지 반복하기

10 만큼 움직이기
```


- ② 유클리드의 최대공약수 구하기 알고리즘을 이용하여 두 양의 정수의 최대공약수를 계산하는 프로그램 작성하기
 - 1 프로그램의 실행 화면과 기능

- ① 실행 버튼을 클릭하면 고양이가 첫 번째 양의 정수를 요구
- ② 양의 정수를 입력하면 고양이가 두 번째 양의 정수를 요구 단, 두 번째 양의 정수는 첫 번째 입력한 수보다 같거나 작아야 함
- ③ 고양이가 입력한 두 양의 정수의 최대공약수를 말함

- ② 유클리드의 최대공약수 구하기 알고리즘을 이용하여 두 양의 정수의 최대공약수를 계산하는 프로그램 작성하기
 - 1 프로그램의 실행 화면과 기능
 - ④ 재귀 프로시저를 활용하고 유클리드의 최대공약수를 구하는 재귀 프로시저의 구조는 다음과 같음
 - 〈최대공약수 구하기(A,B)〉

만약 〈B==0〉이 만족되면

- 매개변수 A가 최대공약수가 됨
- 재귀호출을 더 이상 수행하지 않음

만약 (B==0)이 만족되지 않으면

- 만일 B가 (A-B)보다 크다면, 최대공약수 구하기 (B, A-B)를 호출함
- 만일 B가 (A-B)보다 크지 않다면, 최대공약수 구하기 (A-B, B)를 호출함

두 양의 정수의 최대공약수는 '큰 수에서 작은 수를 뺀 계산 값과 작은 수의 최대공약수가 같다'라는 성질을 이용

재귀호출할 때마다 항상 B와 (A-B) 중 크거가 같은 것을 앞의 매개변수로, 작거나 같은 것을 뒤의 매개변수로 사용함

- ② 유클리드의 최대공약수 구하기 알고리즘을 이용하여 두 양의 정수의 최대공약수를 계산하는 프로그램 작성하기
 - 2 〈고양이 스크립트〉

```
최대공약수를 구할 두 양의 정수 중 큰 수를 입력하세요. 라고 묻고 기다리기

사용자가 입력한 큰 수 ▼ 을(를) 대답 로 정하기

최대공약수를 구할 두 양의 정수 중 작은 수를 입력하세요. 라고 묻고 기다리기

사용자가 입력한 작은 수 ▼ 을(를) 대답 로 정하기

재귀호출로 최대공약수 구하기 사용자가 입력한 큰 수 사용자가 입력한 작은 수

최대공약수= 와(과) 결과값 결합하기 을(를) 2 초 동안 말하기
```


2 프로그래밍실습

스크래치의 스프라이트 복제 기능에 대해서 잘못 설명한 것을 고르시오.

- 복제되는 스프라이트는 원형 스프라이트의 그래픽 효과까지 모두 복사한다.
- 복제된 스프라이트는 원형 스프라이트와 다른 자신만의 행동을 가질 수 있다.
- ③ 복제된 스프라이트와 원형 스프라이트가 이벤트에 동일하게 반응한다.
- ④ 원형 스프라이트 크기를 2배로 키운 후 복제해도 원래 크기의 스프라이트가 복제된다.

스크래치의 스프라이트 복제 기능에 대해서 잘못 설명한 것을 고르시오.

- 복제되는 스프라이트는 원형 스프라이트의 그래픽 효과까지 모두 복사한다.
- ② 복제된 스프라이트는 원형 스프라이트와 다른 자신만의 행동을 가질 수 있다.
- ③ 복제된 스프라이트와 원형 스프라이트가 이벤트에 동일하게 반응한다.
- ④ 원형 스프라이트 크기를 2배로 키운 후 복제해도 원래 크기의 스프라이트가 복제된다.

정답

4번

해설

원형 스프라이트 크기를 증가시켜서 복제하게 되면 증가시킨 크기의 스프라이트가 복제되게 됩니다.

다음은 복제 기능을 활용한 고양이의 스크립트이다. 이 프로그램에 대한 설명으로 옳지 않은 것을 고르시오.

```
무한 반복하기

마우스 포인터 ▼ 쪽보기

색깔 ▼ 효과를 5 만큼 바꾸기

나 자신 ▼ 복제하기
```

```
복제되었을 때
무한 반복하기
-10 만큼 움직이기
만약 벽 ♥ 에 닿았는가? (이)라면
이 복제본 삭제하기
```


다음은 복제 기능을 활용한 고양이의 스크립트이다. 이 프로그램에 대한 설명으로 옳지 않은 것을 고르시오.

- 고양이는 제자리에서 마우스 포인터 위치를 무한히 바라본다.
- ② 고양이는 자신의 색깔을 무한히 변경한다.
- ③ 모든 복제된 스프라이트는 실행 전 원형 스프라이트의 색깔만 갖는다.
- 4 복제된 스프라이트는 원형 스프라이트의 뒤로 벽에 닿을 때까지 이동하다 사라진다.

다음은 복제 기능을 활용한 고양이의 스크립트이다. 이 프로그램에 대한 설명으로 옳지 않은 것을 고르시오.

- 고양이는 제자리에서 마우스 포인터 위치를 무한히 바라본다.
- ② 고양이는 자신의 색깔을 무한히 변경한다.
- ③ 모든 복제된 스프라이트는 실행 전 원형 스프라이트의 색깔만 갖는다.
- 4 복제된 스프라이트는 원형 스프라이트의 뒤로 벽에 닿을 때까지 이동하다 사라진다.

정답

3번

해설

모든 복제된 스프라이트의 색깔은 계속 변경되게 됩니다.

컴퓨터가 생성하는 난수처럼 같은 조건에서는 항상 동일한 배열로 생성되는 난수를 무엇이라고 하는가?

- 1 의사난수
- 2 불완전 난수
- ③ 미완성 난수
- 4 유사난수

컴퓨터가 생성하는 난수처럼 같은 조건에서는 항상 동일한 배열로 생성되는 난수를 무엇이라고 하는가?

- 1 의사난수
- 2 불완전 난수
- ③ 미완성 난수
- 4 유사난수

정답

1번

해설

의사난수는 동일한 조건 아래 매번 동일한 배열로 생성되는 난수를 말합니다.

다음은 난수를 생성하는 스크래치 자료/변수 블록들의 활용 모습이다. 이에 대한 설명으로 옳지 않은 것은 무엇인가?

- 1
 부터
 10
 사이의 난수
- (b) 1.0 부터 10 사이의 난수
- (C) 1.0 부터 10.0 사이의 난수

다음은 난수를 생성하는 스크래치 자료/변수 블록들의 활용 모습이다. 이에 대한 설명으로 옳지 않은 것은 무엇인가?

- ②는 1과 10사이의 정수를 난수로 생성한다.
- ② ⓑ는 1.0과 10 사이의 정수를 난수로 생성한다.
- ③ ⓑ는 1.0과 10사이의 실수를 난수로 생성한다.
- 4 ©는 1.0과 10.0 사이의 실수를 난수로 생성한다.

다음은 난수를 생성하는 스크래치 자료/변수 블록들의 활용 모습이다. 이에 대한 설명으로 옳지 않은 것은 무엇인가?

- ⓐ는 1과 10사이의 정수를 난수로 생성한다.
- ② ⓑ는 1.0과 10 사이의 정수를 난수로 생성한다.
- ③ ⓑ는 1.0과 10사이의 실수를 난수로 생성한다.
- ④ ©는 1.0과 10.0 사이의 실수를 난수로 생성한다.

정답

2번

해설

1.0부터 10사이의 난수는 1.0과 10사이의 실수를 난수로 생성합니다. 한쪽이라도 실수로 범위를 나타내면 실수로 난수를 생성합니다.

다음 중 재귀호출에 관한 설명으로 잘못된 것을 고르시오.

- 재귀호출이란 프로시저가 자기 자신을 호출하는 개념이다.
- ② 재귀호출을 수행하는 프로시저를 재귀 프로시저라고 한다.
- ③ 일반적으로 재귀호출은 매개변수를 활용한 재귀호출 종료 조건을 갖고 있다.
- 4 스크래치의 프로시저는 반환값 기능이 없기 때문에 재귀호출을 사용할 수 없다.

다음 중 재귀호출에 관한 설명으로 잘못된 것을 고르시오.

- 재귀호출이란 프로시저가 자기 자신을 호출하는 개념이다.
- ② 재귀호출을 수행하는 프로시저를 재귀 프로시저라고 한다.
- ③ 일반적으로 재귀호출은 매개변수를 활용한 재귀호출 종료 조건을 갖고 있다.
- 4 스크래치의 프로시저는 반환값 기능이 없기 때문에 재귀호출을 사용할 수 없다.

정답

4번

해설

스크래치는 프로시저가 반환값 기능을 갖고 있지 않지만 재귀호출을 사용할 수 있습니다. 스크래치는 전역변수를 두어 프로시저를 호출할 때마다 전역변수의 값을 변경하고 재귀호출이 발생하지 않을 때 전역변수가 최종적인 결과값을 갖게 됩니다.

학습정리

복제

- 자신과 동일한 개체를 생성하는 것
- 복제할 당시에 원형 스프라이트에 적용된 그래픽 효과도 그대로 반영하여 복제됨

- 정해진 범위 안에서 무작위로 추출된 수
- [코드] 탭-[연산] 메뉴에서 일정 범위 안에 있는 정수 또는 실수를 무작위로 생성하는 자료/변수 블록을 사용해 난수 블록을 생성

학습정리

응 의사 난수

■ 동일한 조건 아래 매번 동일한 배열로 생성되는 난수

() 재귀호출

- 프로시저가 자기 자신을 호출하는 것
- 재귀 프로시저는 재귀호출을 수행하는 프로시저
- 재귀호출시 무한 호출이 발생하여 프로시저가 종료되지 않을 수 있기 때문에 재귀 프로시저는 반드시 자신을 호출하는 행동을 종료하는 조건이 존재해야 하고 언젠가 그 조건이 만족되어 재귀호출을 중단해야 함

교육용프로그래밍언어기초(스크래치)

Next 인공지능 소개하기

