[CSED233-01] Data Structure 2-3 Tree, B-Tree

Jaesik Park

Balanced Search Trees

- Memory-based search trees
 - Balanced BST
 - AVL (Adelson-Velskii & Landis) trees
 - Red-black trees
 - Splay trees, ...
 - Balanced multi-way search tree
 - 2-3, 2-3-4 trees (B-trees)

- Disk-based search trees
 - Balanced multi-way search trees
 - B-trees (B+, B*)
 - Prefix B-trees

2-3 Tree: Shape Property

- A tree with the following shape properties.
 - Each internal node has 2 or 3 children
 - All leaves are at the same level (→ Perfectly height-balanced)
- Internal nodes
 - Store one or two key values
 - Placeholders to guide the search
- Leaf nodes
 - All *actual records* (*key, info*) pairs are stored at the leaves

2-3 Tree: Search Tree Property

- The 2-3 tree has a search tree property.
 - All keys in left subtree are smaller than first key
 - All keys in middle subtree are greater than or equal to first key, and smaller than second key
 - All keys in right subtree are greater than or equal to second key

2-3 Tree: Example

- Actual records are in the *leaves*
 - B⁺-tree of order 3

- The keys are in the leaves
 - linearly ordered from left to right

2-3 Tree: Alternative Structure

- Actual records are stored in both leaves and internal nodes
 - B-tree of order 3

2-3-4 Tree: Example

• B+-tree of order 4

- A leaf node in a B+-tree of order m
 - may store more or less than m (generally, between $\lceil m/2 \rceil$ and m) actual records

2-3 Tree: Height Bound

- 2-3 tree of *h* levels (of *h*-1 height) has
 - At least 2^{h-1} leaves (since each internal node has at least 2 children)
 - At most 3^{h-1} leaves (since each internal node has at most 3 children)

- Let n: the # of leaves in a 2-3 tree
 - $2^{h-1} \le n \le 3^{h-1}$
 - $(\log_3 n + 1) \le h \le (\log_2 n + 1)$

 $O(\log n)$

→ Path length (height) = ?

2-3 Tree: Search

- search(x, tree)
 - If x < k₁, search(x, left_subtree)
 - If $k_1 < x < k_2$, search(x, middle subtree)
 - If $x > k_2$, search(x, right_subtree)`
 - If $x = k_1$ or k_2
 - then the search key x is in the tree

Search by simply moving down the tree

 $O(\log n)$

• Time complexity = ?

2-3 Tree: Insert

- Find a node L
 - One of whose children would contain the key if it were in the tree
- If *L* is not full
 - Then the new key is added
- If L is already full
 - Split L into two nodes L and L'(dividing the keys evenly among the two nodes)
 - Promote a copy of the least-valued key in L'
- Promotion may cause the parent to split in turn
 - Perhaps eventually leading to splitting the root (causing the 2-3 tree to gain a new level)

- Insert a record with key value 18
 - Find the node L, one of whose children would contain 18 if it were in the tree
 - Since the parent Z is not full, the key 18 can be added with no further modification to the tree

- Insert a record with key value 18
 - Find the node L, one of whose children would contain 18 if it were in the tree
 - Since the parent L is not full, the key 18 can be added with no further modification to the tree
 - Update the key values in the parents

- Insert a record with key value 10
 - Find the node L, one of whose children would contain 10 if it were in the tree
 - Since the parent L is already full, it has to be split (into L & L)

- Insert a record with key value 10
 - Find the node L, one of whose children would contain 10 if it were in the tree
 - Since the parent L is already full, it has to be split (into L & L)
 - Next rearrange the keys evenly among the two nodes
 - Update the key values in the parents

- Insert a record with key value 10
 - Find the node L, one of whose children would contain 10 if it were in the tree
 - Since the parent L is already full, it has to be split (into L & L)
 - Next rearrange the keys evenly among the two nodes
 - Update the key values in the parents
 - Promote a copy of the least-valued key 10 in L'

- Insert a record with key value 10
 - Promote a copy of the least-valued key 10 in L'
 - Grandparent is already full
 - So the *promoted key 10* cannot be inserted
 - Split-and-promote process again
 - Split \(\alpha \) into \(\alpha \) \(\alpha \) \(\alpha \)

- Insert a record with key value 10
 - Split-and-promote process again
 - Since \(\Lambda \) is the root, a new root has to be created as well

- Insert a record with key value 10
 - Split-and-promote process again
 - Next rearrange the keys evenly among the two nodes
 - Update the key values in the parents

- Insert a record with key value 10
 - Split-and-promote process again
 - Promote a copy of the least-valued key 10 in L'

- Insert a record with key value 10
 - Split-and-promote process again
 - The insertion is complete

2-3 Tree: Delete

- Locate node N, one of whose children is key K to be deleted
- Three cases to consider:
 - If Whas 3 children
 - Just remove K
 - If Whas 2 children (Underflow)
 - Look at Ns adjacent siblings to determine if they have a spare key that can be used to fill the gap
 - If not (i.e., neither sibling can lend a key to the underflow node M)
 - Mmust give its key to a sibling and be removed from the tree

2-3 Tree: Delete (Case-1: Three Children)

- Delete a record with key value 9
 - Find the *node N*, one of whose children is key 9 to be deleted
 - Remove the record

2-3 Tree: Delete (Case-1: Three Children)

- Delete a record with key value 9
 - Update the key value of the parent node N

2-3 Tree: Delete (Case-1: Three Children)

- Delete a record with key value 9
 - Update the key value of the parent node N
 - The deletion is complete

- Delete a record with key value 5
 - Find the *node N*, one of whose children is key 5 to be deleted
 - Remove the record whose key is 5

- Delete a record with key value 5
 - Deleting a record causes the parent node N to underflow
 - Look for Ns adjacent sibling that can lend a spare key to it

- Delete a record with key value 5
 - Transfer the spare record to the underflow node N

- Delete a record with key value 5
 - Transfer the spare record to the underflow node N
 - Update the key value of the parent node
 - The deletion is complete

- Delete a record with key value 7
 - Find the *node N*, one of whose children is *key 7* to be deleted
 - Remove the record whose key is 7

- Delete a record with key value 7
 - Deleting a record causes the parent node N to underflow
 - No adjacent siblings that have a spare record
 - Transfer the record (key 9) to a sibling

- Delete a record with key value 7
 - Remove the parent node Wrecursively

- Delete a record with key value 7
 - Remove the parent node M recursively
 - Node-merge deletion process

- Delete a record with key value 7
 - Remove the parent node M recursively
 - Node-merge deletion process

B-tree (of order m)

• *m*-way search tree satisfying:

Shape Property

- Root has at least 2 children
- All internal nodes except root have at least $\lceil m/2 \rceil$ children
- All leaf nodes are at the same level

B-tree: Example

- B-tree of order 4
 - 2-3-4 tree
 - Search tree property + Shape property
- Height Bound = $O(\log n)$

B-tree

- Analysis
 - Insert, Delete, Search: O(log n)
 - where the log base is the average branching factor of the tree

- Implementation of B-tree node
 - Normally equivalent to a disk block
 - Typically allows 100 or more children
 - B-tree and its variants are extremely shallow

B+-tree (of order 4)

- Actual records are stored only at the leaf nodes
 - A leaf node may store more or less than m (generally, between $\lceil m/2 \rceil \ \& \ m$) actual records

B*-tree

- B+-tree variants
 - Each node is at least 2/3 full

Comparison of B-trees with Sorted Arrays

- Disadvantages
 - More space overhead
 - More complex implementation

- Advantages
 - Updates are much easier
 - Search time is generally faster

References

- Further reading list and references
 - https://en.wikipedia.org/wiki/B-tree
 - https://en.wikipedia.org/wiki/2%E2%80%933_tree

- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee