mbmath.sty – Ein mathematisches IAT_EX-Package

Manfred Brill

28. Januar 2013

1 Makros

Grundsätzlich wird für das Setzen mathematischer Ausdrücke AMS-IATEX eingesetzt. AMS-IATEX enthält eine Menge von zusätzlichen Symbolen und Umgebungen, beispielsweise die align Umgebung als Alternative zu eqnarray. Matrizen werden mit der Umgebung pmatrix gesetzt, Determinanten mit der Umgebung vmatrix.

Beispiele:

Darüberhinaus werden eine Reihe von Symbolen und Umgebungen definiert, die im Folgenden erläutert werden.

2 Intervall-Boxen für Grafiken

Für die Verwendung in Grafiken werden verschiedene LATEX-Boxen definiert, die mit \usebox{box-name} aufgerufen werden können. Die Längenangaben beziehen sich alle auf die Grundlänge 1 cm. Insgesamt sind definiert:

- ein abgeschlossenes Invervall: \usebox{closedint},
- ein abgeschlossenes Interval der halben Höhe: \usebox{smallclosedint},
- ein rechts offenes und links geschlossenes Intervall: \usebox{halfopenrint},
- ein rechts geschlossenes und links offenes Intervall: \usebox{halfopenlint},
- ein offenes Intervall: \usebox{openint}.

Die Abbildung 1 zeigt eine Abbildung aus [2] Die Positionierung des abgeschlossenen Intervalls erfolgt in der Grafik mit

\put(1.5,0){\usebox{\closedint}}

Abbildung 1: Die Intervalle [1, 5; 2, 5], [3.5; 4.5) und (5, 5; 6.5)

Tabelle 1: Die zusätzlichen mathematischen Symbole

Tabelle 1: Die zusätzlichen mathematischen Symbole		
Symbol	Erklärung	IATEX
N	Die natürlichen Zahlen	\$\N\$
$\mathbb Z$	Die ganzen Zahlen	\$\Z\$
\mathbb{Q}	Die rationalen Zahlen	\$\Q\$
\mathbb{R}	Die reellen Zahlen	\$\R\$
\mathbb{C}	Die komplexen Zahlen	\$\C\$
$\mathbb B$	Symbol für Boolsche Algebra	\$\B\$
\mathbb{A}	Symbol für σ -Algebren	\$\A\$
$\mathbb{P}(\)$	Potenzmenge einer Menge	<pre>\$\Potenz(\N)\$</pre>
	Absolutbetrag einer Zahl	$\alpha $
ggT	Größter gemeinsame Teiler	\$\ggT{a}{b}\$
kgV	Kleinstes gemeinsames	\$\kgV{a}{b}\$
	Vielfaches	
	Shefferstrich in der Logik	<pre>\$\sheffer a\$</pre>
ld	Logarithmus zur Basis 2	\$\ld(x)\$
arccot	Arcus Kotangens	<pre>\$\arccot{x}\$</pre>
arsinh	Area Sinus Hyperbolicus	<pre>\$\areasinh{x}\$</pre>
arcosh	Area Kosinus Hyperbolicus	<pre>\$\areacosh{x}\$</pre>
artanh	Area Tangens Hyperbolicus	<pre>\$\areatanh{x}\$</pre>
arcoth	Area Kotanges Hyperbolicus	<pre>\$\areacoth{x}\$</pre>
$f:X\! o Y$	Abbildung	\$\arrow{f}{\R^3}{\R^3}\$
dist(,)	Metrik	\$\dist{x}{y}\$
X	Vektor	\$\vtr{x}\$
0	Nullvektor	\$\nullv\$
$\begin{pmatrix} X \\ Y \end{pmatrix}$	Spaltenvektor im \mathbb{R}^2	\$\vtrs{1}{2}\$
$(x, y)^T$	Color la 100 m2	*\ . (a)(a)*
(\mathbf{X},\mathbf{y})	Spaltenvektor im \mathbb{R}^2 ,	\$\vtrz{1}{2}\$
()	transponiert geschrieben.	
$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$	Spaltenvektor im \mathbb{R}^3	\$\vtrst\${1}{2}{3}\$
$(x, y, z)^T$	Spaltenvektor im \mathbb{R}^3 ,	\$\vtrzt{1}{2}{3}\$
	transponiert geschrieben.	
	Norm eines Vektors	$norm{ \vtr{x}}$
$\langle \; , \; \rangle$	Skalarprodukt	$\frac{x}}{vtr{x}}{vtr{y}}$
Rang	Rang einer Matrix	α
Def	Defekt einer Matrix	<pre>\$\defekt{A}\$</pre>

3 Die Package-Datei

3.1 Die Kenndaten

Zunächst identifizieren wir das Paket und dessen aktuelle Version:

```
1 \NeedsTeXFormat{LaTeX2e}\relax
2 \ProvidesPackage{mbmath} [2002/06/04, (MB)]
3 \typeout{Enhanced math macros, V1.0, (c) Manfred Brill}
4 \ProcessOptions
```

3.2 Der Initialisierungsteil

Wir laden die folgenden Pakete:

```
5 \RequirePackage{amsmath}
6 \RequirePackage{amsfonts}
7 \RequirePackage{amssymb}
8 \RequirePackage{amscd}
9 \RequirePackage{epic}
10 \RequirePackage{eepic}
```

4 Mathematiksymbole und Umgebungen mit AMS-ETEX

AMS-LATEX bietet bereits eine Menge von speziellen Makros und Umgebungen für das Setzen von mathematischen Inhalten. [1] ist eine gute Einführung zu diesem Thema. Insbesondere wird empfohlen, die align Umgebung zu nutzen, die der in LATEX enthaltenen eqnarray Umgebung deutlich überlegen ist.

4.1 Zahlenmengen

Es werden Symbole für natürliche, ganze, rationale, reelle und komplexe Zahlen eingeführt.

\Potenz Für die Potenzmenge wird das Makro \Potenz eingeführt.

```
18 \newcommand{\Potenz}{\ensuremath\mathbb{P}}
```

Jetzt folgt eine Menge von Funktionen, das Skalarprodukt und der Absolutbetrag.

```
\abs Absolutbetrag:
            19 \newcommand{\abs}[1] {\ensuremath\lvert#1\rvert}
    \norm Norm:
           20 \newcommand{\norm} [1] {\ensuremath \lVert#1 \rVert}
    \dist Metrik:
           21 \newcommand{\dist}[2] {\ensuremath dist\left(#1, #2\right)}
           Es gibt das Makro \gcd für den größten gemeinsamen Teiler. Da auch das
           kleinste gemeinsame Vielfache als Makro eingeführt wird wird eine deut-
           sche Version definiert:
           22 \DeclareMathOperator{\ggT}{ggT}
     \kgV Das kleinste gemeinsame Vielfache zweier Zahlen:
           23 \DeclareMathOperator{\kgV}{kgV}
 \sheffer Der Sheffer-Strich in der Logik:
           24 \newcommand{\sheffer}{\ensuremath\:|\:}
      \ld Der Logarithmus zur Basis 2:
           25 \DeclareMathOperator{\ld}{ld}
  \arccot Der Arcus-Kotangens:
           26 \DeclareMathOperator{\arccot}{arccot}
\areasinh Der Area Sinus Hyperbolicus:
           27 \DeclareMathOperator{\areasinh}{arsinh}
\areacosh Der Area Sinus Hyperbolicus:
           28 \DeclareMathOperator{\areacosh}{arcosh}
\areatanh Der Area Sinus Hyperbolicus:
           29 \DeclareMathOperator{\areatanh}{artanh}
\areacoth Der Area Sinus Hyperbolicus:
           30 \DeclareMathOperator{\areacoth}{arcoth}
   \inner
           Das Skalarprodukt wird mit spitzen Klammern geschrieben:
           31 \newcommand{\inner}[2]{\ensuremath \left< #1, #2 \right>}
```

```
\rang Der Rang einer Matrix:
            32 \newcommand{\rang}{\ensuremath \operatorname{Rang}}
  \defekt
           Der Defekt einer Matrix:
            33 \newcommand{\defekt}{\ensuremath \operatorname{Def}}
   \arrow Eine Abkürzung für f: M \rightarrow N:
            34\newcommand{\arrow}[3]{\ensuremath #1:\: #2 \rightarrow #3}
   \nullv Abkürzung für den Nullvektor:
            35 \newcommand{\nullv}{\ensuremath \mathbf{0}}
     \vtr Vektoren werden als fettgesetzte Kleinbuchstaben geschrieben, um sie von
            Skalaren zu unterscheiden:
            36 \newcommand{\vtr}[1] {\ensuremath \mathbf{#1}}
    \vert_{\mathrm{vtrs}} Abkürzung für Spaltenvektoren im \mathbb{R}^2:
            37 \newcommand{\vtrs}[2]%
            38 {\ensuremath \begin{pmatrix} #1 \\ #2 \end{pmatrix}}
   \vtrst Abkürzung für Spaltenvektoren im \mathbb{R}^3:
            39 \newcommand{\vtrst}[3]%
            40 {\ensuremath \begin{pmatrix} #1 \\ #2 \\ #3\end{pmatrix}}
    \forall vtrz Abkürzung für Spaltenvektoren im \mathbb{R}^2, geschrieben als transponierte Zei-
            lenvektoren:
            41\newcommand{\vtrz}[2]{\ensuremath \left( #1, #2 \right)^T}
   \vtrzt Abkürzung für Spaltenvektoren im \mathbb{R}^3, geschrieben als transponierte Zei-
            lenvektoren:
            42\newcommand{\vtrzt}[3]{\ensuremath \left(#1, #2, #3 \right)^T}
            4.2 Intervallboxen für Graphiken
               Für die Verwendung in Grafiken werden mit Hilfe von \newsavebox
            verschiedene LATEX-Boxen definiert.
            Ein geschlossenes Intervall erhält man durch
closedint
            43\setlength{\unitlength}{1cm}
            44 \newsavebox{\closedint}
            45 \savebox{\closedint}{
            46 \begin{picture}(0,0)
            47 \linethickness{1mm}
```

```
48 \put(0.0, 0) {\line(1,0) {1}}

49 \thicklines

50 \put(0.0, -0.3) {\line(0,1) {0.6}}

51 \put(1.0, -0.3) {\line(0,1) {0.6}}

52 \put(0, -0.3) {\line(1,0) {0.1}}

53 \put(0, 0.3) {\line(1,0) {0.1}}

54 \put(1, -0.3) {\line(-1,0) {0.1}}

55 \put(1, 0.3) {\line(-1,0) {0.1}}

56 \end{picture}
```

smallclosedint

Ein geschlossenes Intervall mit der halben Größe im Vergleich zu closedint erhält man durch \usebox{smallclosedint}.

```
58 \newsavebox{\smallclosedint}
59 \savebox{\smallclosedint}{%
60 \setlength{\unitlength}{0.5cm}
61 \begin{picture}(0,0)
62 \linethickness{0.5mm}
63 \put(0.0, 0) {\line(1,0){1}}
64 \thicklines
65 \put(0.0, -0.3) {\line(0,1){0.6}}
66 \put(1.0, -0.3) {\line(0,1){0.6}}
67 \put(0, -0.3) {\line(1,0){0.1}}
68 \put(0, 0.3) {\line(1,0){0.1}}
69 \put(1, -0.3) {\line(-1,0){0.1}}
70 \put(1, 0.3) {\line(-1,0){0.1}}
71 \end{picture}
72}
```

halfopenrint

Ein links geschlossenes und rechts offenes Intervall erhält man durch \usebox{halfopenrint}.

```
73 \setlength{\unitlength}{1cm}
74 \newsavebox{\halfopenrint}
75 \savebox{\halfopenrint}{%
76 \begin{picture}(0,0)
77 \linethickness{1mm}
78 \put(0.0, 0) {\line(1,0) {1}}
79 \thicklines
80 \put(0.0, -0.3) {\line(0,1) {0.6}}
81 \put(1.0, -0.3) {\line(0,1) {0.6}}
82 \put(0, -0.3) {\line(1,0) {0.1}}
83 \put(0, 0.3) {\line(1,0) {0.1}}
84 \put(1, -0.3) {\line(1,0) {0.1}}
85 \put(1, 0.3) {\line(1,0) {0.1}}
```

```
86 \end{picture}
                  87 }
                  Ein rechts geschlossenes und links offenes Intervall erhält man durch
halfopenlint
                  \usebox{halfopenlint}.
                  88 \newsavebox{\halfopenlint}
                  89 \savebox{\halfopenlint}{%
                  90 \begin{picture}(0,0)
                  91 \linethickness{1mm}
                  92 \setminus (0.0, 0) \{ \cdot (1, 0) \{ 1 \} \}
                  93 \thicklines
                  94 \neq (0.0, -0.3) \{ \leq (0,1) \{ 0.6 \} \}
                  95 \setminus (1.0, -0.3) \{ \setminus (0,1) \{ 0.6 \} \}
                  96 \setminus (0, -0.3) \{ \cdot (-1, 0) \{ 0.1 \} \}
                  97 \setminus (0, 0.3) \{ \cdot (-1, 0) \{ 0.1 \} \}
                  98 \text{ } \text{put}(1, -0.3) \{ \text{line}(-1, 0) \{ 0.1 \} \}
                  99\put(1, 0.3){\line(-1,0)\{0.1\}}
                  100 \end{picture}
                  101 }
      openint Ein offenes Intervall erhält man durch \usebox{openint}.
                  102 \newsavebox{\openint}
                 103 \savebox{\openint}{%
                 104 \begin{picture}(0,0)
                 105 \linethickness { 1mm }
                 106 \put(0.0, 0) {\line(1,0) {1}}
                 107 \thicklines
                 108\put(0.0, -0.3){\line(0,1){0.6}}
                 109 \setminus (1.0, -0.3) \{ \setminus (0,1) \{ 0.6 \} \}
                 110 \setminus put(0, -0.3) \{ \setminus line(-1, 0) \{ 0.1 \} \}
                 111 \setminus put(0, 0.3) \{ \setminus line(-1, 0) \{ 0.1 \} \}
                 112 \cdot put(1, -0.3) \cdot \{1ine(1,0) \cdot \{0.1\} \}
                 113\put(1, 0.3){\line(1,0){0.1}}
                 114 \end{picture}
```

Literatur

115 }

- [1] M. Goossens, F. Mittelbach, und A. Samarin: *Der &TeX Begleiter*, 2000, Addison-Wesley.
- [2] M. Brill: Mathematik für Informatiker, 2001, Hanser.