Transform and Conquer

Searching Problem

- Given a (multi)set S of values and a search key K, find an occurrence of K in S, if any
- Searching must be considered in the context of:
 - file size (internal vs. external)
 - dynamics of data (static vs. dynamic)
- Dictionary operations (dynamic data):
 - find (search)
 - insert
 - delete

Taxonomy of Searching Algorithms

- List searching (array, vector, linked list)
 - sequential search
 - binary search
 - interpolation search
- Tree searching
 - binary search tree
 - binary balanced trees:
 - AVL trees, red-black trees
 - multi-way balanced trees:
 - ▶ 2-3 trees, 2-3-4 trees, B trees
- Hashing
 - open hashing (separate chaining)
 - closed hashing (open addressing)

Binary Search Tree

Arrange keys in a binary tree with the binary search tree property:

Searching

Start from root:

- 1. $\emptyset \rightarrow \text{not found}$
- $2. = \text{key} \rightarrow \text{found}, \text{ return}$
- $3. < key \rightarrow continue search in left sub-tree$
- 4. > key → continue search in right sub-tree

Searching

Start from root:

- 1. $\emptyset \rightarrow \text{not found}$
- $= \text{key} \rightarrow \text{found}, \text{ return}$
- $3. < key \rightarrow continue search in left sub-tree$
- 4. > key → continue search in right sub-tree

Search for 4

Searching

Start from root:

- 1. $\emptyset \rightarrow \text{not found}$
- $2 = \text{key} \rightarrow \text{found}$, return
- $3. < key \rightarrow continue search in left sub-tree$
- 4 > key → continue search in right sub-tree

Search for 4

Searching

Start from root:

- 1. $\emptyset \rightarrow \text{not found}$
- $2. = \text{key} \rightarrow \text{found}, \text{ return}$
- $3. < key \rightarrow continue search in left sub-tree$
- 4. > key → continue search in right sub-tree

Search for 11

Searching:

Start from root:

- 1. $\emptyset \rightarrow \text{not found}$
- $2. = \text{key} \rightarrow \text{found}, \text{ return}$
- $3. < key \rightarrow continue search in left sub-tree$
- 4. > key → continue search in right sub-tree

Searching:

Start from root:

- 1. $\emptyset \rightarrow \text{not found}$
- $= \text{key} \rightarrow \text{found}, \text{ return}$
- $3. < key \rightarrow continue search in left sub-tree$
- 4. > key → continue search in right sub-tree

- worst case efficiency: $\theta(n)$
- average case efficiency: $\theta(\log n)$

Insertion:

- 1. search for the key
- 2. insert at leaf where search terminated

Insertion:

- 1. search for the key
- 2. insert at leaf where search terminated

Insert 9

Insertion:

- 1. search for the key
- 2. insert at leaf where search terminated

Insert 5

Insertion:

- 1. search for the key
- 2. insert at leaf where search terminated

Insertion:

- 1. search for the key
- 2. insert at leaf where search terminated

- worst case efficiency: $\theta(n)$
- average case efficiency: $\theta(\log n)$

Deletion:

- deleting key at a leaf
- deleting key at node with single child
- deleting key at node with two children

Deletion: deleting key at a leaf

- 1. Search for the key
- 2. Remove it

Deletion: deleting key at a leaf

- 1. Search for the key
- 2. Remove it

Remove 7

Deletion: deleting key at a leaf

- 1. Search for the key
- 2. Remove it

Deletion: deleting key at a leaf

- 1. Search for the key
- 2. Remove it

- worst case efficiency: $\theta(n)$
- average case efficiency: $\theta(\log n)$

Deletion: deleting key at node with single child

- 1. Search for the key
- 2. Replace node with it's child

Deletion: deleting key at node with single child

- 1. Search for the key
- 2. Replace node with it's child

Remove 10

Deletion: deleting key at node with single child

- 1. Search for the key
- 2. Replace node with it's child

Deletion: deleting key at node with single child

- 1. Search for the key
- 2. Replace node with it's child

- worst case efficiency: $\theta(n)$
- average case efficiency: $\theta(\log n)$

Deletion: deleting key at node with two children

- 1. Search for the Key
- 2. Traverse tree in-order
- 3. Find successor of the node
- 4. Replace key with its successor
- 5. Delete the successor

Deletion: deleting key at node with two children

- 1. Search for the Key
- 2. Traverse tree in-order
- 3. Find successor of the node
- 4. Replace key with its successor
- 5. Delete the successor

Remove 3

Deletion: deleting key at node with two children

- 1. Search for the Key
- 2. Traverse tree in-order
- 3. Find successor of the node
- 4. Replace key with its successor
- 5. Delete the successor

Remove 8

Deletion: deleting key at node with two children

- 1. Search for the Key
- 2. Traverse tree in-order
- 3. Find successor of the node
- 4. Replace key with its successor
- 5. Delete the successor

Deletion: deleting key at node with two children

- 1. Search for the Key
- 2. Traverse tree in-order
- 3. Find successor of the node
- 4. Replace key with its successor
- 5. Delete the successor

- worst case efficiency: $\theta(n)$
- average case efficiency: $\theta(\log n)$

- Searching straightforward
- Insertion search for key, insert at leaf where search terminated
- Deletion 3 cases:
 - deleting key at a leaf
 - deleting key at node with single child
 - deleting key at node with two children
- Efficiency:
 - ▶ depends on the tree's height: $\lfloor \log_2 n \rfloor \le h \le n-1$,
 - with height average (random files) be about $3\log_2 n$
- Thus all three operations have
 - worst case efficiency: $\theta(n)$
 - average case efficiency: $\theta(\log n)$
- ▶ Bonus: in-order traversal produces sorted list

Bonus:

in-order traversal produces sorted list

▶ With different order of inserts, you get different BSTs