Loan Approval Prediction

Project IV: Model Deployment

Overview

Goal:

Created a model to predict which of the applicants will have their loan approved.

Process:

- Generate Hypothesis
- Data Exploration and Cleaning
- Feature Engineering
- Build Pipelines
- Serialization of models
- Flask app
- AWS Deployment

Exploring Factors Affecting Loan Approval

Credit History

• Majority of the applicants who have a loan approved, have a credit history.

Self-Employment

• Less people who are self-employed have a loan

Total Income

Applicants with high total income equates to more loan count

Married

More married people have a loan

Education Level

Applicant's education does not seem to affect their loan status.

Pipeline Development

Preprocessing:

- Create total income function transform
- Log 'Loan Amount' and 'Total Income' function transform
- Numeric (mean) and Categorical features (mode) column transform
- PCA (n=3) and Select K Best (k=6) feature selection and union

Model:

Random Forest

	Credit_History	Loan_Amount_Term	LogLoanAmount	Log_Total_Income	Gender_Male	Married_Yes	Dependents_1	Dependents_2	Dependents_3+	Education_Not Graduate	Self_Employed_Yes	Property_Area_Semiurban	Property_Area_Urban	Loan_Status_Y
0	1.0	0.279851	0.250640	0.008468	1	0	0	0	0	0	0	0	1	1
1	1.0	0.279851	-0.020226	0.082903	1	1	1	0	0	0	0	0	0	0
2	1.0	0.279851	-1.355202	-1.217363	1	1	0	0	0	0	1	0	1	1
3	1.0	0.279851	-0.150299	-0.301273	1	1	0	0	0	1	0	0	1	1
4	1.0	0.279851	0.174727	0.055266	1	0	0	0	0	0	0	0	1	1

Models

Models used in pipeline:

- Logistic Regression
- Random Forest
- KNN
- SVM

Summary:

- Models converge in accuracy and precision even if hyper-parameters are varied
- Selected Random Forest as model to deploy

Logistic Regression Logistic Regression Logistic Regression	Accur Recal Preci	0.813 0.813 0.853		
Logistic Regression	F1 Sc	0.784		
Random Forest	Accuracy	0.813		
Random Forest	Recall	0.813		
Random Forest	Precision	0.853		
Random Forest	F1 Score	0.784		
K-Nearest Neighbors	Accur	0.748		
K-Nearest Neighbors	Recal	0.748		
K-Nearest Neighbors	Preci	0.734		
K-Nearest Neighbors	F1 Sc	ore	0.734	
Support Vector Machines		0.813		
Support Vector Machines		Recal	l	0.813
Support Vector Machines		Precis	sion	0.853
Support Vector Machines		F1 Sc	ore	0.784

Confusion Matrix for RF Model

Deployment to AWS

Challenges & Improvements

- Difficult and time-consuming to deploy to AWS
- Try different hyperparameters
- Try using different models to see their performance metrics

Thank you!