Tutorial 2 Solutions

Wednesday, 12 February 2025

1.

$$A = \{x \in \{0,1\}^* \mid x = 0^+1\}$$

2. The epsilon-closure of a state is the set of states reachable from it using only epsilon transitions.

Epsilon-closure(p) = $\{p,q,r\}$, Epsilon-closure(q) = $\{q,r\}$, Epsilon-closure(r) = $\{r\}$

Transition Table for the NFA Without Epsilon Transitions We replace the epsilon transitions with direct transitions based on the epsilon-closure. The updated transitions are:

State	0	1
p	$\{p,q,r\}$	$\{q,r\}$
q	Ø	$\{q,r\}$
r	Ø	Ø

The equivalent NFA without epsilon transitions is constructed as follows: (This doesn't accept the empty string)

An equivalent NFA that also accepts the empty string:

3. (a) $S = \{s \mid \#s \text{ is divisible by either 3 or 5}\}$

(b) Language $a^*b^*a^+$.

(c) The language comprising all strings that contain an even number of a's or contain exactly two b's.

4. L : Shuffle of languages A and B.

5.

 $A = \{x \in \{0,1\}^* \mid \text{the second symbol from the right is } 0\}.$

	0	1
Ø	Ø	Ø
$\rightarrow \{p\}$	$\{p,q\}$	{ <i>p</i> }
$\{q\}$	<i>{r}</i>	$\{r\}$
$\{r\}F$	\emptyset	Ø
$\{p,q\}$	$\{p,q,r\}$	$\{p,r\}$
$\{p,r\}F$	$\{p,q\}$	{ <i>p</i> }
$\{q,r\}F$	{r}	$\{r\}$
$\{p,q,r\}F$	$\{p,q,r\}$	$\{p,r\}$

Starting from state $\{p\}$, we observe that the states $\{q,r\}$, $\{q\}$, $\{r\}$, and \emptyset can never be reached. Therefore, these states can be ignored, and the transition table simplifies as follows:

	0	1
$\rightarrow \{p\}$	$\{p,q\}$	{ <i>p</i> }
$\{p,q\}$	$\{p,q,r\}$	$\{p,r\}$
f(p,r)F	$\{p,q\}$	{ <i>p</i> }
f(p,q,r)F	$\{p,q,r\}$	$\{p,r\}$

