

Graph Structure of Neural Networks

报告人: 陈宇航

时间: 2020年9月3日

Outline

- Definitions
- Search space
- Experiments

Method

relational graph

4-node Relational Graph

Node feature:

$$x_{1,2,3} \in \mathbb{R}^{16}, x_4 \in \mathbb{R}^{17}$$

Message: $f_i(x_j) = W_{ij}x_j$
Aggregation: $AGG(\cdot) = \sigma \Sigma(\cdot)$
Rounds: $R = 4$

Translate

- 1 message function f()
- 2 aggregated function AGG()

3
$$\mathbf{x}_v^{(r+1)} = AGG^{(r)}(\{f_v^{(r)}(\mathbf{x}_u^{(r)}), \forall u \in N(v)\})$$
 (1)

4-layer 65-dim MLP

Definitions

Graph Structure of Neural Networks

	Fixed-width MLP	Variable-width MLP	ResNet-34	ResNet-34-sep	ResNet-50
Node feature \mathbf{x}_i	Scalar: 1 dimension of data	Vector: multiple dimensions of data	Tensor: multiple channels of data	Tensor: multiple channels of data	Tensor: multiple channels of data
Message function $f_i(\cdot)$	Scalar multiplication	(Non-square) matrix multiplication	3×3 Conv	3×3 depth-wise and 1×1 Conv	3×3 and 1×1 Conv
Aggregation function $AGG(\cdot)$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$
Number of rounds ${\cal R}$	1 round per layer	1 round per layer	34 rounds with residual connections	34 rounds with residual connections	50 rounds with residual connections

Table 1: Diverse neural architectures expressed in the language of relational graphs. These architectures are usually implemented as complete relational graphs, while we systematically explore more graph structures for these architectures.

Definitions

Graph Structure of Neural Networks

	Fixed-width MLP	Variable-width MLP	ResNet-34	ResNet-34-sep	ResNet-50
Node feature \mathbf{x}_i	Scalar: 1 dimension of data	Vector: multiple dimensions of data	Tensor: multiple channels of data	Tensor: multiple channels of data	Tensor: multiple channels of data
Message function $f_i(\cdot)$	Scalar multiplication	(Non-square) matrix multiplication	3×3 Conv	3×3 depth-wise and 1×1 Conv	3×3 and 1×1 Conv
Aggregation function $AGG(\cdot)$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$	$\sigma(\sum(\cdot))$
Number of rounds ${\cal R}$	1 round per layer	1 round per layer	34 rounds with residual connections	34 rounds with residual connections	50 rounds with residual connections

Table 1: Diverse neural architectures expressed in the language of relational graphs. These architectures are usually implemented as complete relational graphs, while we systematically explore more graph structures for these architectures

$$\mathbf{X}_{i}^{(r+1)} = \sigma\left(\sum_{j \in N(i)} \mathbf{W}_{ij}^{(r)} * \mathbf{X}_{j}^{(r)}\right)$$
 (5)

/ \

Outline

- Definitions
- Measures
- Experiments

Measures

Average path length:

average shortest path distance between any pair of nodes clustering coefficient :

measures the proportion of edges between the nodes within a given node's neighborhood, divided by the number of edges that could possibly exist between them, averaged over all the nodes

Measures

WS

- 1 the N nodes are regularly placed in a ring
- 2 each node is connected to its K/2 neighbors on both sides(K is an even number)
- 3 rewire the edge iteratively with a probability P

WS-flex

- 1 The N nodes are regularly placed in a ring
- 2 The number of edges is determined as $e = \lfloor n * k/2 \rfloor$
- 3 each node connect $\lfloor e/n \rfloor$ edges, picks e mode n nodes connect to one closest neighboring node
- 4 rewire the edge iteratively with a probability P

WS-flex relaxing the constraint that all the nodes have the same degree before random rewiring.

Measures

Figure 3: **Graphs generated by different graph generators.** The proposed graph generator WS-flex can cover a much larger region of graph design space. WS (Watts-Strogatz), BA (Barabási-Albert), ER (Erdős-Rényi).

Outline

- Definitions
- Measures
- Experiments

Consistency

e Correlation across neural architectures

Graph	Path (L)	Clustering (C)	CIFAR-10 Error (%)
Complete graph	1.00	1.00	33.34 ± 0.36
Cat cortex	1.81	0.55	33.01 ± 0.22
Macaque visual cortex	1.73	0.53	32.78 ± 0.21
Macaque whole cortex	2.38	0.46	32.77 ± 0.14
Consistent sweet spot across neural architectures	1.82-2.28	0.43-0.50	32.50 ± 0.33
Best 5-layer MLP	2.48	0.45	32.05 ± 0.14

Table 2: Top artificial neural networks can be similar to biological neural networks (Bassett & Bullmore, 2006).

Figure 6: Visualizations of graph structure of biological (**left**) and artificial (**right**) neural networks.

5-layer 512-dim MLP on CIFAR-10

$$\mathbf{x}_v^{(r+1)} = \mathrm{Agg}^{(r)}(\{f_v^{(r)}(\mathbf{x}_u^{(r)}), \forall u \in N(v)\})$$

The End!