Name: ROTHA Dapravith

ID: e20190915

Group: I5-GIC(B)

Assignment Discussion Lesson09 LZW

Ouestion

- 1) Explain LZW compression algorithm?
- 2) By using LZW compression algorithm, find encoder and decoder from 2 different examples? You can choose your own string.

Answer

1). Explain LZW compression algorithm:

LZW compression algorithm is a lossless compression algorithm that replaces recurring patterns with shorter codes to save space. There are two types of algorithm include:

- Encoding algorithm of LZW:
 - 1). Find all different symbols.
- 2). Initialize the dictionary to contain all strings of length one (build base dictionary).
- 3). Find the longest string W in the dictionary that matches the current input.
- 4). Emit the dictionary index for W to output and remove W from the input.
- 5). Add W followed by the next symbol in the input to the dictionary.
- 6). Go to Step2 until the last symbol or End Of File(EOF).
- Decoding algorithm of LZW:
- 1). Read a value from the encoded input.

- 2). Output the corresponding string from the initialized dictionary.
- 3). Obtain the next value from the input.
- 4). Add to the dictionary the concatenation of the current string.
- 5). Proceed to the next input value.
- 6). Repeat the process until there is no more input or End Of File (EOF).
- 2). By using LZW compression algorithm, find encoder and decoder from 2 different examples.
- Example 1: Find encoder and decoder of input string "abbccffeegh"

Given if we have: Input string: "abdcaedbdcecabb"

• Encoder: First, we find all different characters.

There are "a,b,c,e,f,g,h"

Then build a base dictionary table:

Entity	Codeword
a	1
ь	2
С	3
e	4
f	5
g	6
h	7

- Encoder:

S	С	Item	Codeword	Output
a	ь	ab	8	1
b	ь	bb	9	2
b	С	bc	10	2
С	С	cc	11	3
С	f	cf	12	3
f	f	ff	13	5

f	e	fe	14	5
e	e	ee	15	4
e	g	eg	16	4
g	h	gh	17	6
h	EOF	-	-	7

Thus, encoder is {1, 2, 2, 3, 3, 5, 5, 4, 4, 6, 7}

- Decoder:

S	k	Item	Codeword	Output
null	1	a	-	a
a	2	ab	8	ь
b	2	bb	9	ь
b	3	bc	10	С
С	3	СС	11	С
С	5	cf	12	f
f	5	ff	13	f
f	4	fe	14	e
e	4	ee	15	e
e	6	eg	16	g
g	EOF	gh	17	h

Thus, decoder is "abbceffeegh"

- Example 2: Find encoder and decoder of input string "deabbccddeehillo"

Given if we have: Input string: "abdcaedbdcecabb"

• Encoder: First, we find all different characters.

There are "a,b,c,d,e,h,i,l,o"

Then build a base dictionary table:

Entity	Codeword	
a	1	

b	2
С	3
d	4
e	5
h	6
i	7
1	8
0	9

- Encoder:

S	С	Item	Codeword	Output
d	е	de	10	4
e	a	ea	11	5
a	b	ab	12	1
Ъ	b	bb	13	2
Ъ	С	bc	14	2
С	С	СС	15	3
С	d	cd	16	3
d	d	dd	17	4
de	е	dee	18	10
e	h	eh	19	5
h	i	hi	20	6
i	1	il	21	7
1	1	11	22	8
1	0	lo	23	8
-	0	0	1	9

Thus, Encoder is {4,5,1,2,2,3,3,4,10,5,6,7,8,8,9}

- Decoder:

S	k	Item	Codeword	Output
null	4	d	-	d
d	5	de	10	e
e	1	ea	11	a
a	2	ab	12	ь

ь	2	bb	13	ь
ь	3	bc	14	c
С	3	cc	15	С
С	4	cd	16	d
d	10	dd	17	de
de	5	dee	18	e
e	6	eh	19	h
h	7	hi	20	i
i	8	il	21	1
1	8	11	22	1
1	9	lo	23	0

Thus, Decoder is "deabbccddeehillo"