

Alexander Sifel (01427034), Ana Terović (01427034), Lukas Hofstetter (51820745)

Relation extraction dataset

- Available
 - FoodDisease
 - CrowdTruth Medical Relation Extraction
- Difficulty
 - CrowdTruth dataset has very bad quality
 - Almost all is_treat instances are wrongly labeled
 - Linear models unable to converge
- Approach
 - Use only FoodDisease
 - Replace entities with placeholders (term 1: influence, term2: condition)
 - Calculate Shortest Dependency Path (SDP) for comparison
 - In total 588 rows after preprocessing (132 is_cause, 313 is_treat)
 - Keep same 10% of samples for testing to make results comparable

Relation (multi-label) classification

- Baseline
 - BoW Naive Bayes classifier

BoW + NB	Precision	Recall	F1	Support
is_cause	1.00	0.07	0.13	14
is_treat	0.81	0.88	0.84	33
micro_avg	0.81	0.64	0.71	47
macro_avg	0.90	0.48	0.49	47

- Improvement ideas
 - BERT features + traditional model
 - Finetuned classifier with BERT encoder
- Choosing BERT
 - Training data should have similar domain as ours: Medicine, Biology
 - We use the emilyalsentzer/Bio_ClinicalBERT checkpoint
 - https://arxiv.org/abs/1904.03323

BERT Features + Linear SVC

Features from sentences

- Create padded/truncated token IDs from sentence with tokenizer and encode with BERT
- Get last hidden state of the CLS special token embedding (first embedding of output sequence)
- For SDP and full sentence

Train model

- Linear SVC
- C: [0.01, 0.1, 1]
- 10-fold cross validation

BERT Features + Linear SVC - results

- Full sentence input better than SDP (same as with BoW + NB)
- Balances precision/recall for is_cause (BoW + NB has no recall)
- Accuracy similar to BoW + NB
- Bit higher F1 but much less precision

BERT + SVM	Precision	Recall	F1
is_cause	0.57	0.86	0.69
is_treat	0.86	0.76	0.81
micro_avg	0.74	0.79	0.76
macro_avg	0.72	0.81	0.75

BERT + SVM (SDP)	Precision	Recall	F1
is_cause	0.47	0.50	0.48
is_treat	0.76	0.67	0.71
micro_avg	0.66	0.62	0.64
macro_avg	0.61	0.58	0.60

Finetuned BERT classifier

- Use full sentences (want to learn full context)
- BERT base CLS embedding into linear layer with 768 inputs and 2 outputs
- Unlock BERT layer gradients for finetuning
- Multi-label classification -> binary cross-entropy loss
- Early stopping with patience monitoring validation loss
- 10% of train set for cross validation

Finetuned BERT classifier - results

- Finetuning delivers best results by far
- Some (tricky) test examples predictions are still predicted wrongly
- Precision is slightly better than baseline, with much improved recall
- Very high F1 -> try to trade for extra precision by increasing classification threshold

Finetuned	Precision	Recall	F1
is_cause	0.85	0.79	0.81
is_treat	0.91	0.88	0.89
micro_avg	0.89	0.85	0.87
macro_avg	0.88	0.83	0.85

Finetwhed BERT Classifier - results

Finetuned BERT Classifier - results

is_cause false positives:

- 1. since <u>influence</u> has been related to the development of chronic <u>condition</u> prevalent in the western world, the use of sweeteners has gradually increased worldwide over the last few years.
 - -> mislabeled, predicted rightly
- 2. <u>condition</u> (brd) is a major cause of morbidity and mortality in <u>influence</u> cattle.
 - -> has all the parts, but the relation direction is not right

is_treat false positives:

- 1. however, the validity of <u>influence</u> as a treatment for <u>condition</u> (ra), an autoimmune disorder, has not been confirmed yet
 - -> confusion by counterfactual phrasing
- 2. abundant studies have highlighted the protective effects of docosahexaenoic acid (dha), in the form of glycerolipids (glycerophosphatides and triglycerides) and dha-ethyl esters (dha-ee) in <u>condition</u> (ad); however, <u>influence</u> (epa) has rarely been implicated
 - -> confusion by counterfactual phrasing
- 3. while <u>influence</u> have been shown to exhibit serious side effects, and bioactive compounds from plant-based functional foods have been demonstrated to be active in the treatment of <u>condition</u> with only minimal side effects.
 - -> relation is in there, but not really related to influence

Summary: Classification

- BERT features make an interesting replacement for BoW
- Finetuning gives generally the best performance
- High precision is important, do not want to pollute knowledge base with false positives -> baseline still very competitive

Precision	BoW + NB	BERT + SVM (SDP)	BERT + SVM	Finetuned
is_cause	1.00	0.47	0.57	0.85
is_treat	0.81	0.76	0.86	0.91
micro_avg	0.81	0.66	0.74	0.89
macro_avg	0.90	0.61	0.72	0.88

F1	BoW + NB	BERT + SVM (SDP)	BERT + SVM	Finetuned
is_cause	0.12	0.48	0.69	0.81
is_treat	0.84	0.71	0.81	0.89
micro_avg	0.71	0.64	0.76	0.87
macro_avg	0.49	0.60	0.75	0.85

BERT Features + Linear SVC

BERT (full)

BERT (SDP)

Baseline (full)

11

Main Findings & Conclusions

Transfer knowledge

Transfer learning from a BERT model works even with a small dataset

Garbage in - garbage out

If the dataset is bad enough your model might not converge at all

POTATO explainable model

- rule based system + ML
 - ML is used to learn and generate the rules
- human-in-the-loop learning, **HITL of rules**
- idea:
 - subgraphs as features
 - generate subgraphs onlt up to a certain edge number; min_edge, max_edge
 - suggest rules based on feature importance

Trainer 1

- min_edge = 0
 - -> we can have tokens as rules
- top 10 features:

	Feature	Precision	Recall	Fscore
0	[(u_114 / reduce)]	0.866667	0.185714	0.305882
1	[(u_227 / decrease)]	0.833333	0.035714	0.068493
2	[(u_76 / against)]	0.939394	0.110714	0.198083
3	[(u_108 / prevent)]	0.931034	0.096429	0.174757
4	[(u_57 / improve)]	0.950000	0.067857	0.126667
5	[(u_117 / component)]	0.950000	0.067857	0.126667
6	[(u_138 / compound)]	0.913043	0.075000	0.138614
7	[(u_486 / low)]	0.733333	0.078571	0.141935
8	[(u_421 / treat)]	0.904762	0.067857	0.126246
9	[(u_76 / against :2 (u_21 / condition))]	1.000000	0.064286	0.120805

reduce

- appears in 60 sentences
- example:

"fortification of influence is deemed a useful strategy to reduce condition in populations"

Model

- trainer gave 118 features
- ruleset: increment by 1 rules ordered by feature importance
- best results: 20 features

is_treat	POTATO min_edge = 0, 4lang
accuracy	0.77
precision	0.8571
recall	0.7272
F1	0.7869

Trainer 2

- min_edge = 1
 -> we don't want tokens
- top 10 features:

	Feature	Precision	Recall	Fscore
0	[(u_76 / against :2 (u_21 / condition))]	1.000000	0.064286	0.120805
1	[(u_4 / with :2 (u_8 / COORD) :1 (u_89 / ass	0.692308	0.032143	0.061433
2	[(u_12 / of :1 (u_681 / prevention))]	0.916667	0.039286	0.075342
3	[(u_12 / of :1 (u_210 / treatment))]	1.000000	0.057143	0.108108
4	[(u_12 / of :1 (u_8 / COORD))]	0.736842	0.050000	0.093645
5	[(u_12 / of :2 (u_21 / condition))]	0.580357	0.232143	0.331633
6	[(u_65 / for :2 (u_210 / treatment))]	1.000000	0.050000	0.095238
7	[(u_8 / COORD :0 (u_57 / improve))]	1.000000	0.039286	0.075601
8	[(u_12 / of :1 (u_117 / component))]	0.916667	0.039286	0.075342
9	[(u_8 / COORD :0 (u_21 / condition) :0 (u_15	0.769231	0.035714	0.068259

u_0 / against :2 (u_1 / condition)

- appears in 18 sentences
- example:

"influence is a promising functional food against condition, owing to a variety of bioactive compounds"

Model

- trainer gave 50 features
- ruleset: increment by 1 rule ordered by feature importance
- best results: 28 features

is_treat	POTATO
	min_edge = 1, 4lang
accuracy	0.5932
precision	0.6154
recall	0.7272
F1	0.6667

Trainer 1

- min_edge = 0
 - -> we can have tokens as rules
- top 10 features:

0 [(u_740 / increase)] 0.666667 0.169492 0.270 1 [(u_19 / patient)] 0.428571 0.076271 0.129 2 [(u_66 / symptom)] 0.500000 0.050847 0.092 3 [(u_363 / protein)] 0.437500 0.059322 0.104 4 [(u_161 / important)] 0.400000 0.050847 0.090	ore
2 [(u_66 / symptom)] 0.500000 0.050847 0.092 3 [(u_363 / protein)] 0.437500 0.059322 0.104	270
3 [(u_363 / protein)] 0.437500 0.059322 0.104	496
K	308
4 [(u 161 / important)] 0.400000 0.050947 0.000	478
4 [(u_101/1111portailt)] 0.400000 0.030047 0.030	226
5 [(u_110 / high)] 0.407407 0.186441 0.255	814
6 [(u_8 / COORD :0 (u_106 / product))] 0.461538 0.050847 0.091	603
7 [(u_460 / among)] 0.600000 0.076271 0.135	338
8 [(u_167 / population)] 0.500000 0.050847 0.092	308
9 [(u_168 / child)] 0.538462 0.059322 0.106	870

increase

- appears in 30 sentences
- example:

"recently, the prevalence of food condition during childhood is increasing, with influence being common allergens"

Model

- trainer gave 80 features
- ruleset: increment by 1 rule ordered by feature importance
- best results: 8 features

is_cause	POTATO
	min_edge = 0, 4lang
accuracy	0.5932
precision	0.6154
recall	0.7272
F1	0.6667

Trainer 2

- min_edge = 1
 -> we don't want tokens
- top 10 features:

	Feature	Precision	Recall	Fscore
0	[(u_8 / COORD :0 (u_106 / product))]	0.461538	0.050847	0.091603
1	[(u_65 / for :2 (u_21 / condition))]	0.333333	0.059322	0.100719
2	[(u_8 / COORD :1 (u_17 / influence))]	0.352941	0.050847	0.088889
3	[(u_8 / COORD :0 (u_5 / disease) :0 (u_21 /	0.304348	0.059322	0.099291
4	[(u_277 / factor :0 (u_153 / risk))]	0.636364	0.059322	0.108527
5	[(u_12 / of :1 (u_179 / development))]	0.333333	0.042373	0.075188
6	[(u_4 / with :1 (u_89 / associate))]	0.303571	0.144068	0.195402
7	[(u_12 / of :1 (u_330 / intake))]	0.450000	0.076271	0.130435
8	[(u_18 / in :1 (u_21 / condition))]	0.222222	0.033898	0.058824
9	[(u_8 / COORD :0 (u_5 / disease))]	0.285714	0.084746	0.130719

u_0 / for :2 (u_1 / condition)

- appears in 21 sentences
- example:

"despite recent interest in the use of influence (kds) for condition, evidence of beneficial effects is lacking"

Model

- trainer gave 50 features
- ruleset: increment by 1 rule ordered by feature importance
- best results: 9 features

is_cause	POTATO		
	min_edge = 1, 4lang		
accuracy	0.5593		
precision	0.2272		
recall	0.3571		
F1	0.2778		

Main Findings & Conclusions

White-box model

Interpretable and explainable results

Time

Managing rules and interpreting results is quite time consuming

rule based system + ML

rules w/ tokens

rules w/out tokens

Baseline (full)

- FoodDisease
 - 4 features: food_entity, disease_entity, sentence, disease_doid
 - 2 categories: is_cause, is_treat
 - 609 instances is_cause 141T-464F, is_treat 322T-286F
- CrowdTruth Medical Relation Extraction
 - 17 features:
 SID, relation, sentence_relation_score, crowd,
 baseline, expert, test_partition,
 term1, b1, e1, term2, b2, e2, sentence,
 term1 UMLS, term2_UMLS, UMLS_seed_relation
 - 2 categories: is cause, is treat
 - 3985 instances each class

- FoodDisease
 - 4 features:

```
food_entity, disease_entity, sentence, disease_doid
```

- 2 categories: is_cause, is_treat
- 609 instances is_cause 141T-464F, is_treat 322T-286F
- CrowdTruth Medical Relation Extraction
 - 17 features:
 SID, relation, sentence_relation_score, crowd, baseline, expert, test_partition,
 term1, b1, e1, term2, b2, e2, sentence,
 term1_UMLS, term2_UMLS, UMLS_seed_relation
 - 2 categories: is_cause, is_treat
 - 3985 instances each class

- FoodDisease
 - 5 features: food_entity, disease_entity, sentence, is_cause, is_treat
 - 609 instances

- CrowdTruth Medical Relation Extraction
 - 5 features: term1, term2, sentence, is_cause, is_treat
 - 7670 instances

• CrowdTruth Medical Relation Extraction

"The disorder can present with a migratory ture of ARTHRITIS with many other features like HEART PROBLEMS, skin rash, gait abnormality and skin nodules."

• CrowdTruth Medical Relation Extraction

"the disorder can present with a migratory ture of arthritis with many other features like heart problems, skin rash, gait abnormality and skin nodules."

lowercase

• CrowdTruth Medical Relation Extraction

```
"the disorder can present with a migratory ture of TERMONE with many other features like TERMTWOS, skin rash, gait abnormality and skin nodules."
```

entity replacement

• CrowdTruth Medical Relation Extraction

```
['the', 'disorder', 'can', 'present', 'with', 'a', 'migratory', 'ture', 'of',
'TERMTWO', 'with', 'many', 'other', 'features', 'like', 'TERMONE', 'skin',
'rash', 'gait', 'abnormality', 'and', 'skin', 'nodules']
```

tokenization
nltk.RegexpTokanizer(r'\w+')

• CrowdTruth Medical Relation Extraction

```
[ 'disorder', 'present', 'migratory', 'ture',
'TERMTWO', 'many', 'features', 'like', 'TERMONE', 'skin',
'rash', 'gait', 'abnormality', 'skin', 'nodules']

stopword removal

nltk.corpus.stopwords.words('english')
```

• CrowdTruth Medical Relation Extraction

```
[ 'disord' , 'present', 'migratori', 'ture',
'termtwo', 'mani', 'featur' , 'like', 'termon' , 'skin',
'rash', 'gait', 'abnorm' , 'skin', 'nodul' ]
                                                                                               stemming
                                                                         nltk.PorterStemmer().stem()
[ 'disorder', 'present', 'migratory', 'ture',
'termtwo', 'many', 'feature', 'like', 'termone', 'skin',
'rash', 'gait', 'abnormality', 'skin', 'nodule']
                                                                                           lemmatization
                                                    nltk.stem.WordNetLemmatizer().lemmatize()
```

• CrowdTruth Medical Relation Extraction

- FoodDisease
 - 9 features:
 food_entity, disease_entity, sentence,
 tokens, tokens_stem, tokens_lemma,
 sdp, sdp_tokens_lemma, sdp_joined
 - 2 classes: is_cause, is_treat
 - 588 instances
- CrowdTruth Medical Relation Extraction
 - 7 features:
 term1, term2, sentence,
 tokens, tokens_stem, tokens_lemma,
 sdp_tokens_lemma
 - 2 classes: is_cause, is_treat
 - 7670 instances