Node Embeddings

Traditional ML methods

Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

Graph Representation Learning

Graph Representation Learning alleviates the need to do feature engineering every single time.

Graph Representation Learning

Goal: Efficient task-independent feature learning for machine learning with graphs!

Why embedding?

- Task: map nodes into an embedding space
 - Similarity of embeddings between nodes indicates their similarity in the network. For example:
 - Both nodes are close to each other (connected by an edge)
 - Encode network information
 - Potentially used for many downstream predictions

Example Node Embedding

2D embedding of nodes of the Zachary's Karate Club network:

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.

Predictions in Graphs

- Node Level Prediction
- Edge Level Prediction
- Graph Level Prediction

Traditional ML Pipeline

- Design features for nodes/links/graphs
- Obtain features for all training data

Traditional ML Pipeline

- Train an ML model:
 - Random forest
 - SVM
 - Neural network, etc.

Apply the model:

 Given a new node/link/graph, obtain its features and make a prediction

- Relies on Effective Feature Engineering
- Traditional ML relies on handdesigned features

Node Embeddings: Encoder and Decoder

Setup

- Assume we have a graph G:
 - V is the vertex set.
 - A is the adjacency matrix (assume binary).
 - For simplicity: no node features or extra information is used

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Embedding Nodes

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph

original network

embedding space

Embedding Nodes

Learning node embeddings

- Encoder maps from nodes to embeddings
- Define a node similarity function (i.e., a measure of similarity in the original network)
- Decoder DEC maps from embeddings to the similarity score
- 4. Optimize the parameters of the encoder so that: $\frac{DEC(\mathbf{z}_{v}^{T}\mathbf{z}_{u})}{DEC(\mathbf{z}_{v}^{T}\mathbf{z}_{u})}$

similarity
$$(u, v) \approx \mathbf{z}_v^{\mathrm{T}} \mathbf{z}_u$$

in the original network

Similarity of the embedding

Two Key Components

Encoder: maps each node to a low-dimensional vector
 d-dimensional

$$ENC(v) = \mathbf{z}_v \quad \text{embedding}$$

node in the input graph

Similarity of u and v in the original network

dot product between node embeddings

Shallow Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

$$ENC(v) = \mathbf{z}_v = \mathbf{Z} \cdot v$$

$$\mathbf{Z} \in \mathbb{R}^{d \times |\mathcal{V}|}$$

matrix, each column is a node embedding [what we learn / optimize]

$$v \in \mathbb{I}^{|\mathcal{V}|}$$

indicator vector, all zeroes except a one in column indicating node *v*

Shallow Encoding

Simplest encoding approach: encoder is just an embedding-lookup

Shallow Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

Each node is assigned a unique embedding vector

(i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

Framework Summary

- Encoder + Decoder Framework
 - Shallow encoder: embedding lookup
 - Parameters to optimize: \mathbf{Z} which contains node embeddings \mathbf{z}_u for all nodes $u \in V$
 - We will cover deep encoders (GNNs) in Lecture 6

- Decoder: based on node similarity.
- Objective: maximize $\mathbf{z}_v^T \mathbf{z}_u$ for node pairs (u, v) that are similar

How to define node similarity?

- Key choice of methods is how they define node similarity.
- Should two nodes have a similar embedding if they...
 - are linked?
 - share neighbors?
 - have similar "structural roles"?
- We will now learn node similarity definition that uses random walks, and how to optimize embeddings for such a similarity measure.

Generating Node Embeddings

- This is unsupervised/self-supervised way of learning node embeddings
 - We are **not** utilizing node labels
 - We are **not** utilizing node features
 - The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved
- These embeddings are task independent
 - They are not trained for a specific task but can be used for any task.

Random Walk Based Node Embedding: Notations

- Vector z_u:
 - The embedding of node u (what we aim to find).
- **Probability** $P(v | \mathbf{z}_u)$: Our model prediction based on \mathbf{z}_u
 - The (predicted) probability of visiting node v on random walks starting from node u.

Non-linear functions used to produce predicted probabilities

- Softmax function
 - Turns vector of K real values (model predictions) into K probabilities that sum to 1: $\sigma(z)_i = \frac{e^{z_i}}{\sum_{i=1}^K e^{z_i}}$.
- Sigmoid function:
 - S-shaped function that turns real values into the range of (0, 1). Written as $S(x) = \frac{1}{1+e^{-x}}$.

Random Walks

Random Walk Embeddings

 $\mathbf{z}_{n}^{\mathrm{T}}\mathbf{z}_{n} \approx$

probability that *u* and *v* co-occur on a random walk over the graph

Why Random Walks?

- 1. Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information Idea: if random walk starting from node u visits v with high probability, u and v are similar (high-order multi-hop information)
- Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks

Unsupervised Feature Learning

- Intuition: Find embedding of nodes in d-dimensional space that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together in the network
- Given a node u, how do we define nearby nodes?
 - N_R(u) ... neighbourhood of u obtained by some random walk strategy R

Feature Learning as Optimization

- Given G = (V, E),
- Our goal is to learn a mapping $f: u \to \mathbb{R}^d$: $f(u) = \mathbf{z}_u$
- Log-likelihood objective:

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u})$$

- $N_R(u)$ is the neighborhood of node u by strategy R
- Given node u, we want to learn feature representations that are predictive of the nodes in its random walk neighborhood $N_{\rm R}(u)$

- 1. Run short fixed-length random walks starting from each node u in the graph using some random walk strategy R
- 2. For each node u collect $N_R(u)$, the multiset* of nodes visited on random walks starting from u
- 3. Optimize embeddings according to: Given node u, predict its neighbors $N_{\rm R}(u)$

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u}) \implies \text{Maximum likelihood objective}$$

 $^{{}^*}N_R(u)$ can have repeat elements since nodes can be visited multiple times on random walks

Equivalently,

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

- Intuition: Optimize embeddings z_u to maximize the likelihood of random walk co-occurrences
- Parameterize $P(v|\mathbf{z}_u)$ using softmax:

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\mathrm{T}}\mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}}\mathbf{z}_n)}$$

Why softmax?

We want node v to be most similar to node u (out of all nodes n). Intuition: $\sum_i \exp(x_i) \approx \max_i \exp(x_i)$

Putting it all together:

Optimizing random walk embeddings = Finding embeddings z_n that minimize \mathcal{L}

But doing this naively is too expensive!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(\frac{\exp(\mathbf{z}_u^T \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^T \mathbf{z}_n)})$$

Nested sum over nodes gives $O(|V|^2)$ complexity!

Negative Sampling

Solution: Negative sampling

$$\log(\frac{\exp(\mathbf{z}_u^{\mathrm{T}}\mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}}\mathbf{z}_n)})$$

Why is the approximation valid?

Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax.

New formulation corresponds to using a logistic regression (sigmoid func.) to distinguish the target node v from nodes n_i sampled from background distribution P_v .

More at https://arxiv.org/pdf/1402.3722.pdf

$$\approx \log \left(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})\right) - \sum_{i=1}^{k} \log \left(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n_{i}})\right), n_{i} \sim P_{V}$$
sigmoid function
(makes each term a "probability" over nodes between 0 and 1)

Instead of normalizing w.r.t. all nodes, just normalize against k random "negative samples" n_i

Negative Sampling

$$\log\left(\frac{\exp\left(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v}\right)}{\sum_{n \in V} \exp\left(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n}\right)}\right) \qquad \text{over nodes}$$

$$\approx \log\left(\sigma\left(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v}\right)\right) - \sum_{i=1}^{k} \log\left(\sigma\left(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n_{i}}\right)\right), n_{i} \sim P_{V}$$

- Sample k negative nodes each with prob. proportional to its degree
- Two considerations for k (# negative samples):
 - 1. Higher k gives more robust estimates
 - 2. Higher k corresponds to higher bias on negative events In practice k= 5-20

Stochastic Gradient Decent

• After we obtained the objective function, how do we optimize (minimize) it?

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log(P(v|\mathbf{z}_u))$$

- Gradient Descent: a simple way to minimize £:
 - Initialize z_i at some randomized value for all i.
 - Iterate until convergence.
 - For all i, compute the derivative $\frac{\partial \mathcal{L}}{\partial z_i}$. η : learning rate
 - For all i, make a step towards the direction of derivative: $z_i \leftarrow z_i \eta \frac{\partial \mathcal{L}}{\partial z_i}$.

Stochastic Gradient Decent

- Stochastic Gradient Descent: Instead of evaluating gradients over all examples, evaluate it for each individual training example.
 - Initialize z_i at some randomized value for all i.
 - Iterate until convergence: $\mathcal{L}^{(u)} = \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$
 - Sample a node i, for all j calculate the derivative $\frac{\partial \mathcal{L}^{(i)}}{\partial z_i}$.
 - For all j, update: $z_j \leftarrow z_j \eta \frac{\partial \mathcal{L}^{(i)}}{\partial z_j}$.

Random Walk Summary

- Run short fixed-length random walks starting from each node on the graph
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u
- Optimize embeddings using Stochastic Gradient Descent:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

We can efficiently approximate this using negative sampling!

Random Walk Strategies

- So far we have described how to optimize embeddings given a random walk strategy R
- What strategies should we use to run these random walks?
 - Simplest idea: Just run fixed-length, unbiased random walks starting from each node (i.e., DeepWalk from Perozzi et al., 2013)
 - The issue is that such notion of similarity is too constrained
- How can we generalize this?

Overview of node2vec

- Goal: Embed nodes with similar network neighborhoods close in the feature space.
- We frame this goal as a maximum likelihood optimization problem, independent to the downstream prediction task.
- Key observation: Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich node embeddings
- Develop biased 2^{nd} order random walk R to generate network neighborhood $N_R(u)$ of node u

Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

Node2vec: Biased Random walks

Idea: use flexible, biased random walks that can trade off between **local** and **global** views of the network (Grover and Leskovec, 2016).

Node2vec: Biased Random Waks

Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

Walk of length 3 ($N_R(u)$ of size 3):

 $N_{BFS}(u) = \{s_1, s_2, s_3\}$ Local microscopic view

 $N_{DFS}(u) = \{ s_4, s_5, s_6 \}$ Global macroscopic view

BFS vs. DFS

BFS:

Micro-view of neighbourhood

DFS:

Macro-view of neighbourhood

Interpolating BFS and DFS

Biased fixed-length random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - Return parameter p:
 - Return back to the previous node
 - In-out parameter q:
 - Moving outwards (DFS) vs. inwards (BFS)
 - Intuitively, q is the "ratio" of BFS vs. DFS

Biased Random Walks

Biased 2nd-order random walks explore network neighborhoods:

- Rnd. walk just traversed edge (s_1, w) and is now at w
- Insight: Neighbors of w can only be:

Idea: Remember where the walk came from

Biased Random Walks

Walker came over edge (s₁, w) and is at w. Where to go next?

1/p, 1/q, 1 are unnormalized probabilities

- p, q model transition probabilities
 - p ... return parameter
 - q ... "walk away" parameter

Biased Random Walks

Walker came over edge (s₁, w) and is at w.
Where to go next?

- BFS-like walk: Low value of p
- DFS-like walk: Low value of q

Unnormalized transition prob. segmented based on distance from s_1

 $N_R(u)$ are the nodes visited by the biased walk

Node2Vec Algorithm

- 1) Compute random walk probabilities
- ullet 2) Simulate r random walks of length l starting from each node u
- 3) Optimize the node2vec objective using Stochastic Gradient Descent
- Linear-time complexity
- All 3 steps are individually parallelizable

Other Random Walk Based approaches

Different kinds of biased random walks:

- Based on node attributes (Dong et al., 2017).
- Based on learned weights (<u>Abu-El-Haija et al., 2017</u>)

Alternative optimization schemes:

 Directly optimize based on 1-hop and 2-hop random walk probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:

 Run random walks on modified versions of the original network (e.g., <u>Ribeiro et al. 2017's struct2vec</u>, <u>Chen et al.</u> <u>2016's HARP</u>).

Embedding entire graphs

Goal: Want to embed a subgraph or an entire graph G. Graph embedding: Z_G.

Tasks:

- Classifying toxic vs. non-toxic molecules
- Identifying anomalous graphs

Approach 1

Simple idea 1:

- Run a standard graph embedding technique on the (sub)graph G
- Then just sum (or average) the node embeddings in the (sub)graph G

$$\mathbf{z}_{\mathbf{G}} = \sum_{v \in G} z_v$$

 Used by <u>Duvenaud et al.</u>, 2016 to classify molecules based on their graph structure

Approach 2

Idea 2: Introduce a "virtual node" to represent the (sub)graph and run a standard graph embedding technique

 Proposed by <u>Li et al.</u>, 2016 as a general technique for subgraph embedding

Approach 3- Anonymous Walk Embeddings

States in **anonymous walks** correspond to the index of the **first time** we visited the node in a

random walk

Graph

Anonymous Walk Embeddings

- Agnostic to the identity of the nodes visited (hence anonymous)
- Example RW1:

- Step 2: node B node 2 (different from node 1)
- Step 3: node C node 3 (different from node 1, 2)
- Step 4: node B node 2 (same as the node in step 2)
- Step 5: node C node 3 (same as the node in step 3)
- Note: RW2 gives the same anonymous walk

Number of Walks

Number of anonymous walks grows exponentially:

• There are 5 anon. walks w_i of length 3: w_1 =111, w_2 =112, w_3 = 121, w_4 = 122, w_5 = 123

Use of Anonymous Walks

- Simulate anonymous walks w_i of l steps and record their counts
- Represent the graph as a probability distribution over these walks

For example:

- Set l = 3
- Then we can represent the graph as a 5-dim vector
 - Since there are 5 anonymous walks w_i of length 3: 111, 112, 121, 122, 123
- $\mathbf{Z}_{\mathbf{G}}[i]$ = probability of anonymous walk w_i in G

Sampling Anonymous Walks

- Sampling anonymous walks: Generate independently a set of m random walks
- Represent the graph as a probability distribution over these walks
- How many random walks m do we need?
 - We want the distribution to have error of more than ε with prob. less than δ :

$$m = \left[\frac{2}{\varepsilon^2} (\log(2^{\eta} - 2) - \log(\delta)) \right]$$

For example:

There are $\eta=877$ anonymous walks of length l=7. If we set $\varepsilon=0.1$ and $\delta=0.01$ then we need to generate m=122,500 random walks

where: η is the total number of anon. walks of length l.

Learning Walk Embeddings

Rather than simply represent each walk by the fraction of times it occurs, we learn embedding z_i of anonymous walk w_i

 Learn a graph embedding Z_G together with all the anonymous walk embeddings Z_i

 $Z = \{z_i : i = 1 ... \eta\}$, where η is the number of sampled anonymous walks.

How to embed walks?

Idea: Embed walks s.t. the next walk can be predicted

Learn Walk Embeddings

- A vector parameter Z_G for input graph
 - The embedding of entire graph to be learned
- Starting from node 1: Sample anonymous random walks, e.g.

- Learn to predict walks that co-occur in Δ -size **window** (e.g. predict w_2 given w_1 , w_3 if $\Delta = 1$)
- Objective: $_{T-\Delta}$ $\max \sum_{t=\Delta} \log P(w_t|w_{t-\Delta},...,w_{t+\Delta},\mathbf{z_G})$ • Sum the objective over all nodes in the graph

Learn Walk Embeddings

- Run T different random walks from u each of length l: $N_R(u) = \{w_1^u, w_2^u \dots w_T^u\}$
- Learn to predict walks that co-occur in Δ-size window
- Estimate embedding z_i of anonymous walk w_i Let η be number of all possible walk embeddings

Objective:
$$\max_{Z,d} \frac{1}{T} \sum_{t=\Delta}^{T-\Delta} \log P(w_t | \{w_{t-\Delta}, \dots, w_{t+\Delta}, \mathbf{z_G}\})$$

- $y(w_t) = b + U \cdot \left(cat(\frac{1}{2\Delta} \sum_{i=-\Delta}^{\Delta} z_i, \mathbf{z_G}) \right)$
 - $cat(\frac{1}{2\Delta}\sum_{i=-\Delta}^{\Delta}z_i, \mathbf{z_G})$ means an average of anonymous walk embeddings in window, concatenated with the graph embedding $\mathbf{z_G}$
 - $b \in \mathbb{R}$, $U \in \mathbb{R}^D$ are learnable parameters. This represents a linear layer.

Learn Walk Embeddings

- We obtain the graph embedding Z_G (learnable parameter) after optimization
- Use Z_G to make predictions (e.g. graph classification)
 - Option1: Inner product Kernel $\mathbf{z}_{G_1}^T \mathbf{z}_{G_2}$ (Lecture 2)
 - Option2: Use a neural network that takes Z_G as input to classify

Overall Architecture

How to use the embeddings

- How to use embeddings z_i of nodes:
 - Clustering/community detection: Cluster points Z_i
 - Node classification: Predict label of node i based on z_i
 - Link prediction: Predict edge (i, j) based on (z_i, z_j)
 - Where we can: concatenate, avg, product, or take a difference between the embeddings:
 - Concatenate: $f(z_i, z_j) = g([z_i, z_j])$
 - Hadamard: $f(z_i, z_j) = g(z_i * z_j)$ (per coordinate product)
 - Sum/Avg: $f(z_i, z_j) = g(z_i + z_j)$
 - Distance: $f(z_i, z_j) = g(||z_i z_j||_2)$
 - Graph classification: graph embedding z_G via aggregating node embeddings or anonymous random walks. Predict label based on graph embedding z_G