MAIN EXAM 2020 - Extended Answer Questions

- 1. (a) Let $z = 1 + i\sqrt{3}$ and $w = -\sqrt{3} i$.
 - (i) Calculate the modulus and principal argument of z and w.
 - (ii) Write down the polar exponential form of z and w.
 - (iii) Calculate the polar exponential form of $\frac{z}{w}$.
 - (iv) Determine the principal argument of $\frac{z}{w}$.
 - (b) (i) Calculate $\cos^3(2\theta)$ by using the binomial theorem and the complex form of $\cos \theta$.
 - (ii) Find $\int \cos^3(2\theta) d\theta$.
- 2. (a) (i) Calculate the following limits or show that they do not exist.
 - $\lim_{x \to -2^+} \frac{x+2}{|x+2|}$
 - (B) $\lim_{x \to 0} x^3 \sin(\frac{3\pi}{x})$
 - (C) $\lim_{x \to +\infty} (1+x)^{\frac{2}{x}}$
 - (ii) Find the 5th order Taylor polynomial $P_5(x)$ for the function $\cos(x)$ about x = 0.
 - (iii) Use the Taylor polynomial that you have found in part (ii) to approximate the integral $\int_0^1 \cos(x^3) dx$. (You do not need to calculate the error in this approximation.)
- 3. (a) Given the function $f(x) = \frac{x^2 + x 1}{x^3}$
 - (i) Find the natural domain and vertical asymptotes, if any. Justify your answers.
 - (ii) Find horizontal asymptotes, if any. Justify your answers.
 - (iii) Calculate the first derivative f'(x).
 - (iv) Find the critical points and intervals of increase/decrease of f.
 - (v) Calculate the second derivative f''(x).
 - (vi) Find the points of inflection and intervals of concavity of f.
 - (vii) Find the global maximum and global minimum of f(x) on the interval [3, 6].