# VAVUNIYA CAMPUS OF THE UNIVERSITY OF JAFFNA

## First Examination in Information and Communication

Technology - 2015

Second Semester - January / February 2017

## ICT 1223 Basic Electronics and Digital Logic Design

### Answer Five Questions only

### Time: Three hours

- Explain the difference between conductors, insulators and Q1. (a) ( Marks 20 ) semiconductors on the basis of energy band?
  - Name three acceptor and three donor materials for doping of a (b) ( Marks 20) semiconductor.
  - Explain the formation of depletion region and barrier potential of a p-n (c) junction. Hence illustrate Charge density, Electric field strength and ( Marks 40 ) Potential variation across the junction.
  - Calculate the conductivity at 300K for Silicon with  $10^{24}~\mathrm{m}^{-3}$ (d) phosphorus atoms. Mobility of electrons in silicon at 300K is 0.135 m<sup>2</sup> ( Marks 20 ) V⁻¹s⁻¹.
- Explain the forward and reverse bias characteristic of a p-n junction Q2. (a) ( Marks 20 ) Diode.
  - Figure shows a series circuit containing resistors of  $3k\Omega$ ,  $5 k\Omega$  and (b) silicon diodes  $D_1, D_2$ . The knee voltage of the silicon diodes is 0.7 V.



### Calculate

- (i) the current through the circuit.
- (ii) the voltage between X and Z
- (iii) the voltage between Y and Z

If D<sub>2</sub> is connected in the opposite direction find the followings:

- (i) the voltage between X and Z
- (ii) the voltage between Y and Z

( Marks 50 )

- (b) Draw a full wave bridge rectifier circuit and explain the action of each electronic components briefly. (Marks 30)
- Q3. (a) Zener diode is one of the special diode used in the electronic circuits. Explain how they are usually doped and the size of the depletion region. (Marks 20)
  - (b) Sketch and explain the I V characteristic of a Zener diode. Hence state the use of Zener diode in power supply unit,

( Marks 30 )

(c) Figure shows a regulated voltage supply circuit. It produces a stabilized output of 6 V from a nominal 15 V supply. The current passing through load is 100mA. The minimum diode current needed to function is 10mA,



- (i) What voltage rating should be chosen for the diode?
- (ii) Calculate the Value of the resistor R.
- (iii) If the Load is removed from the circuit, calculate the power dissipated by the Zener diode.

( Marks 50 )

- Q4. (a) Illustrate and explain the three regions and its partial importance in the output characteristics curve of a common emitter configuration.

  ( Marks 25 )
  - (b) Explain how Transistor can be used as a switch with the help of a circuit diagram. Hence write the advantages of using transistor as switch.
     ( Marks 25 )
  - (d) Compute the collector current, base current, emitter voltage and collector voltage for the following circuit. (  $V_{BE}$ =0.7 V and dc current gain  $\beta$  = 200)

(Marks 50)



- Q5. (a) List the advantages of using integrated circuits (ICs) compared to discrete circuits. (Marks 15)
  - (b) Show that the "closed loop gain" A and "open loop gain"  $A_0$  of an operational amplifier can be related as  $A = \frac{A_o}{1 + \beta} A_o$  where  $\beta$  is the feedback factor. (Marks 20)
  - (c) Write the fundamental properties of operational amplifier. ( Marks 15 )
  - (d) Show that the output  $V_0$  of the following Differential Amplifier (refer the figure on the next page) is given by

$$V_0 = V_2 \frac{\left(R_f + R_1\right) R_3}{\left(R_3 + R_2\right) R_1} - V_1 \frac{R_3}{R_1}$$
 (Marks 50)



Q6. (a) A logic gate has the following truth table

| Ã | В | Q  |
|---|---|----|
| 0 | 0 | 1  |
| 0 | 1 | 0  |
| 1 | 0 | 0_ |
| 1 | 1 | 0  |

- (i) Name the type of the logic gate.
- (ii) Draw and label the symbol for this logic gate. (Marks 30)
- (b) A chemical process gives out a warning signal (W = 1) when the process operates incorrectly. A logic circuit is used to monitor the process and to determine whether W = 1.

| Input | Binary Values | Description of plant status       |
|-------|---------------|-----------------------------------|
| C     | 1             | Chemical rate= 20 litres/ second  |
|       | 0             | Chemical rate < 20 litres/ second |
| Т     | 1             | Temperature = 91°C                |
|       | 0             | Temperature > 91°C                |
| x     | l             | Concentration > 5M                |
|       | 0             | Concentration = 5M                |

A warning signal (W = 1) will be generated if: either (a) Chemical rate < 20 litres/second or (b) Temperature >  $91^{\circ}$ C and Concentration > 5M or (c) Chemical rate = 20 litres/second and Temperature >  $91^{\circ}$ C. Construct a truth table to show all the possible situations when the warning signal could be received. Draw a logic circuit. (Marks 70)

\*\*\* END \*\*\*