# Segunda Lei da Termodinâmica

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

Prof. Flaviano W. Fernandes

- Transformações cíclicas
- Máquinas térmicas
- **Entropia**
- Aplicações
- **Apêndice**

### Diagrama pressão versus volume em processos cíclicos

#### Corollary

Definimos como processo cíclico quando o gás retorna para o seu estado inicial.

A energia interna U(T) de um gás é uma função da temperatura. Se os estados i e f estão em equilíbrio térmico, podemos determinar U(T) sabendo a temperatura nesses estados, os valores não irão mudar independente do processo termodinâmico que esse gás poderá sofrer.

### Corollary

Durante uma transformação cíclica, a variação da energia interna do gás será zero ( $\Delta U = 0$ ).



Exemplo de processo cíclico.

Prof. Flaviano W. Fernandes

## Trabalho realizado pelo gás em processos cíclicos

Podemos definir o trabalho total realizado pelo gás num processo cíclico subtraindo os trabalhos individuais nos processos de i para f e o retorno (f para i).

$$\tau = \tau_{(i \to f)} - \tau_{(f \to i)}.$$

#### Corollary

000

Durante uma transformação cíclica, o trabalho realizado pelo gás, ao percorrer o ciclo, é fornecido pela área entre as curvas.



Representação de trabalho em um processo cíclico.

#### Trabalho e sentido do processo cíclico

#### Corollary

000

- O trabalho será positivo se o processo for no sentido horário.
- O trabalho será negativo se o processo for no sentido anti-horário.



Sentido horário



Sentido anti-horário

#### Máguina térmica

Toda máquina térmica opera num processo cíclico, onde ela recebe calor  $Q_1$  de uma fonte quente a temperatura  $T_1$  e parte desse calor  $(Q_2)$  ela devolve para uma fonte fria que está a temperatura  $T_2$ , onde  $T_2 < T_1$ .



Motor a combustão de 4 tempos

## Corollary

Parte do calor recebido pela fonte quente é convertido em trabalho e o restante é desperdiçado para a fonte fria.

### Aplicação da Primeira Lei da Termodinâmica em máquinas térmicas

O calor total absorvido pelo gás durante o processo será o calor  $Q_1$  recebido menos o calor  $Q_2$  desperdicado. Pela Primeira Lei da Termodinâmica temos

$$\Delta U = (Q_1 - Q_2) - \tau.$$

Mas  $\Delta U = 0$  num processo cíclico, portanto

$$\tau = Q_1 - Q_2.$$



Representação de calor entrando  $(Q_1)$  e saindo  $(Q_2)$  do sistema.

## Rendimento de uma máquina térmica

Definimos o rendimento R de uma máquina térmica pela quantidade de calor que ela consegue transformar em trabalho à partir do calor que recebe da fonte quente,

$$egin{aligned} R &= \overline{Q_1}\,, \ R &= rac{Q_1 - Q_2}{Q_1}\,, \ R &= 1 - rac{Q_2}{Q_1} \Rightarrow R < 1\,. \end{aligned}$$



Representação de calor entrando  $(Q_1)$  e saindo  $(Q_2)$ .

## **Corollary**

O rendimento de uma máquina térmica será sempre menor que 1.

## A máquina de Carnot

O rendimento de uma máguina depende do processo que ela realiza, então qual processo que teria o major rendimento possível? A princípio uma máquina terá um major rendimento se ela desperdicar o mínimo de calor possível. De acordo com Carnot essa máquina funcionaria em um processo como mostrado ao lado.



Etapas de uma máquina de Carnot.

## Rendimento de uma máquina de Carnot

Uma máquina de Carnot é uma máquina térmica que funciona em um processo cíclico formado por dois processos isotérmicos mais dois processos adiabáticos.

#### Corollary

Nenhuma máquina térmica que opere entre duas fontes às temperaturas  $T_1$  e  $T_2$ , pode ter rendimento maior que uma máquina de Carnot operando entre essas mesmas fontes.

#### Rendimento de uma máquina de Carnot

$$R=1-\frac{T_2}{T_1}$$



Representação gráfica de uma máquina de Carnot.

Prof. Flaviano W. Fernandes

### Como funciona um refrigerador?

O objetivo de um refrigerador é remover calor de uma fonte fria e transferí-la para uma fonte mais quente. Nesse processo inevitavelmente ele realiza trabalho. Portanto, um refrigerador seria uma máguina térmica funcionando no sentido contrário. O rendimento é medido pela capacidade de transferir calor  $Q_2$  em relacão ao trabalho  $\tau$  que ele realiza,

$$egin{aligned} R &= rac{Q_2}{ au}, \ R &= rac{Q_2}{Q_1 - Q_2}. \end{aligned}$$



Representação de calor Q2 saindo de uma fonte fria e calor Q1 transferida para a fonte quente.

#### O que é entropia?

#### **Entropia**

A entropia, definida pela letra S, está associada com o grau de desordem de um sistema. No SI a unidade de medida da entropia é Joule por Kelvin (J/K).

Por exemplo, se o processo ocorre sem variar a sua temperatura (isotérmico) a variação da entropia  $\Delta S$  associado ao sistema será

$$\Delta S = \frac{Q}{T}$$

onde Q é a quantidade de calor que o sistema irá receber ou ceder e T a sua temperatura.



Exemplo de entropia usando tijolos.

#### Variação da entropia do universo

#### Segunda lei da termodinâmica

Na natureza, a entropia total, que é a soma da entropia do sistema com a vizinhanca, sempre aumenta.

Definindo  $\Delta S_u$  como a variação da entropia do universo,  $\Delta S_s$  a variação de entropia do sistema e  $\Delta S_{\nu}$  a variação da entropia da vizinhança, onde

$$\Delta S_u = \Delta S_s + \Delta S_v$$

podemos dizer que para qualquer fenômeno que ocorre na natureza  $\Delta S_{ij}$  será sempre maior ou no mínimo igual a zero ( $\Delta S_u > 0$ ).

## Entropia e máquinas térmicas

No ciclo de Carnot temos que a variação da entropia  $\Delta S$  nos processos adiabáticos é zero, pois Q=0. Sabendo que nos processos isotérmicos temos  $\Delta S = \frac{Q}{7}$  e que  $\Delta S_{\text{Total}} > 0$ . Se  $\Delta S_{\text{sistema}} = 0$  temos

$$\Delta S_{\text{sistema}} = \Delta S_1 + \Delta S_2 = 0,$$

$$rac{Q_1}{T_1} - rac{Q_2}{T_2} = 0 \ rac{Q_1}{T_1} = rac{Q_2}{T_2}$$

Sabemos que  $T_1 \neq 0$  e  $T_2 \neq 0$ , portanto a única maneira de termos  $Q_2 = 0$  é se  $Q_1 = 0$  (uma máquina que não existe!).

## Corollary

A segunda lei da termodinâmica impede que todo calor Q<sub>1</sub> recebido pela máquina térmica seja inteiramente convertido na forma de trabalho.

## Alfabeto grego

| Alfa    | Α | $\alpha$                   |
|---------|---|----------------------------|
| Beta    | В | $\beta$                    |
| Gama    | Γ | $\gamma$                   |
| Delta   | Δ | $\delta$                   |
| Epsílon | Ε | $\epsilon$ , $\varepsilon$ |
| Zeta    | Z | $\zeta$                    |
| Eta     | Η | $\eta$                     |
| Teta    | Θ | heta                       |
| lota    | 1 | $\iota$                    |
| Capa    | Κ | $\kappa$                   |
| Lambda  | Λ | $\lambda$                  |
| Mi      | Μ | $\mu$                      |

| Ni      | Ν | $\nu$           |
|---------|---|-----------------|
| Csi     | Ξ | ξ               |
| ômicron | 0 | 0               |
| Pi      | П | $\pi$           |
| Rô      | Ρ | $\rho$          |
| Sigma   | Σ | $\sigma$        |
| Tau     | Τ | au              |
| ĺpsilon | Υ | v               |
| Fi      | Φ | $\phi, \varphi$ |
| Qui     | X | $\chi$          |
| Psi     | Ψ | $\psi$          |
| Ômega   | Ω | $\omega$        |



A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.2, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereco https://flavianowilliams.github.io/education

<sup>&</sup>lt;sup>1</sup>Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.