purifAI [DRAFT]

Machine Learning for SPE Method Prediction

Created by Jen Amis, Luke Perrin, Teresa Tran, Yingying Cheung

Sections

- 1. Introduction & Context/Problem (2 mins) –Luke
- 2. Data, Data Source, Database (3 mins) –Luke
- 3. ML Models & Strategies (2 mins) –Jen/Yingying
- 4. ML Model Results (Visualizations) (3 mins) –Jen/Yingying/Teresa?
- 5. Conclusion (Dashboard and application function) (< 2 mins) –Teresa?

The team at an automated chemistry platform that works to automate the process of making small chemical compounds to be used in research and development for medicinal purposes is seeking a **machine learning model** that can be used to **select the best SPE method** to test for purification of each chemical compound in a large library of compounds.

Without a ML model that can effectively predict the optimal SPE method to use, the team must make a best guess of which method to test based on a subset of properties of each compound's structure. This process can be **time consuming** and **expensive**, especially if the wrong SPE method ends up being selected and the purification testing must be repeated using the other method.

Development of a ML model has the potential to **save time & cost effective** in the automated chemistry platform's process.

Goals

- 1 Identify features and target for ML model
- 2 Identify a ML model with best prediction performance for SPE and LCMS method
- 3 Test the confidence level
- 4 Create an interactive User Interface for public

This project utilizes datasets provided by the data team at the automated chemistry platform. The first dataset lists compounds tested by the platform over the past two years and includes compound properties such as molecular weight, topological polar surface area (TPSA), quantitative estimate of drug-likeness (QED), among many others that may be relevant to predicting the appropriate SPE method to use for compound purification. The second dataset includes the status of testing for each compound and the SPE method used for each compound that has completed the purification stage. Each compound is identified by a unique structure ID, and proprietary information about the actual structure of the compound has been excluded from the datasets.

Database

A relational database (RDS) was created in Amazon Web Services (AWS), and connected to pgAdmin14. This Postgres database is hosted on the cloud, which can be accessed by anyone with credentials using pgAdmin14. Data was cleaned by Pandas, and stored in AWS S3 bucket. We call the data from RDS by using SQLAlchemy.

About the Data

Context & Problem

- The development of a completely automated chemistry platform is of high importance for the drug discovery process
 - By automating chemical synthesis and purification, many varieties of novel drug candidates (or chemical structures) can be tested for pharmacological activity
- Chemistry as a scientific field/practice is inherently unpredictable and (seemingly) inconsistent, and thus very difficult to predict and automate

Chemistry Purification Workflow Overview

Data Sources

1. Purification Outcomes

- a. Successfully purified (binary/boolean) via either SPE method:
 - i. MCX
 - ii. HLB
- b. Successfully analyzed (binary/boolean) via either LCMS method:
 - i. Xbridge
 - ii. Gemini

2. Chemical Structure Data

- a. Data/metrics calculated from chemical structures (purified on the automated platform)
- b. These describe chemical properties of each molecule

							•
sample_id	structure_id	preferred_lcms_method	spe_method	method	spe_successful	crashed_out	sample_status
00YLL22-042-014	00YLL22-042-014	Xbridge HpH	MCX	MCX/Xbridge HpH	true		Complete
00YLL22-042-015	00YLL22-042-015	Gemini LpH	HLB	HLB/Gemini LpH			Failed
00YLL22-042-016	00YLL22-042-016	Gemini LpH	MCX	MCX/Gemini LpH	true	NULL	Complete
00YLL22-042-017	00YLL22-042-017	Gemini LpH	MCX	MCX/Gemini LpH	true		Complete
00YLL22-042-018	00YLL22-042-018	Gemini LpH	MCX	MCX/Gemini LpH	true		Complete

Example **successfully purified** molecule (structure_id = 00YLL-042-016)

LCMS Method = Gemini

Purification Successful = true

SPE Method = MCX

Chemical Structure Data

CC1CCN (CC1N (C) C2=NC=NC3=C2C=CN3) C (=0) CC#N

SMILES representation (text string representation of a 3D molecular structure)

Molecular depiction

Generation of Chemical Structure Data

structure_id	^	MolWt	exactMolWt	qed	TPSA	HeavyAtomMolWt	MolLogP	MolMR	FractionCSP3
00YLL22-042-011		475.336	474.0973939	0.589825726	94.54	455.176	2.9629	119.2907	0.333333333
00YLL22-042-012		446.338	445.1072303	0.667154151	74.23	425.17	3.6913	115.3657	0.380952381
00YLL22-042-013		462.337	461.1021449	0.607254623	83.46	441.169	2.9293	116.9727	0.380952381
00YLL22-042-014		446.338	445.1072303	0.667154151	74.23	425.17	3.6913	115.3657	0.380952381
00YLL22-042-015		435.311	434.0912459	0.666314391	72.38	415.151	3.4859	110.1327	0.4
00YLL22-042-016		450.326	449.1021449	0.625596379	92.25	429.158	2.8315	114.4374	0.35
00/11/22 07/2 017		/E0 70/	//0 1001//0	0 //071510/	07 //	(00.450	0 5050	447 7700	0.75

-042-017 450.326 449.1021449 0.648315106 83. -042-018 464.334 463.0272657 0.642066735 91 -042-019 446.338 445.1072303 0.669017878 74.

 Every molecule has a set of calculated attributes/features called molecular descriptors that describe the chemical properties of a structure

 This was accomplished using the open-source python library <u>RdKit</u>

Example molecule (structure_id = 00YLL-042-016)

Pipeline

- 1. Data is pulled from company database:
 - a. RdKit used to calculate chemical descriptors from SMILES
 - b. Pandas used to clean the purification outcomes dataset
- Cleaned data is stored in AWS S3 buckets
- 3. Cleaned data is sourced from buckets and written to AWS RDS (postgres) using Pyspark (see partial schema to the right)

Storage

Data is stored in AWS RDS instance

Retrieval

- Data is retrieved from AWS RDS using SQLAlchemy
 - o 'outcomes' and 'structures' are merged into one table, joining on 'structure_id'
- Data is further processed for ML modeling using Pandas

MACHINE LEARNING

DATA EXPLORATION

ML MODEL

SMOTE Oversampling

XGBoost

Cluster Centroids Undersampling

Random Oversampling

Balanced Random Forest

Random Undersampling

Easy Ensemble AdaBoost

SMOTEENN over and undersampling

	Name	Base model Balanced Accuracy	Grid model Balanced Accuracy	Improvement
4	Logistic Regression with SMOTEENN Combination	0.842432	0.878198	4.25%
1	Logistic Regression with SMOTE Oversampling	0.862703	0.875946	1.54%
5	XGBoost	0.854234	0.863243	1.05%
6	Easy Ensemble AdaBoost	0.864685	0.860180	-0.52%
2	Logistic Regression with Random Undersampling	0.829189	0.850180	2.53%
3	Logistic Regression with Cluster Centroids Und	0.867207	0.847928	-2.22%
0	Logistic Regression with Random Oversampling	0.843694	0.824685	-2.25%

DATA ANALYSIS

Confidence Level

DASHBOARD

SMILE

Questions?

