Pharmaceutical Technology & Modern Pharmaceutics

CHAPTERWISE NOTES Emulsion

PHARMACEUTICAL TECHNOLOGY & MODERN PHARMACEUTICS

Emulsion

➤ EMULSIONS (LIQUID-LIQUID SYSTEM)

- * An **emulsion** is a **mixture of two immiscible liquids**, where one is dispersed in the other as tiny droplets.
- * Thermodynamically unstable \rightarrow tends to separate unless stabilized by an emulsifier.

➤ Phases of an Emulsion

EMULSION CONSISTS OF TWO PHASES

ĺ	♦ Phase Type	♦ Description
7	Disperse Phase	Internal / Discontinuous phase (droplets)
	Continuous Phase	External phase (surrounds the droplets)

Types of Emulsions

- 1. O/W (Oil-in-Water)
 - Oil droplets in \(\rightarrow \) water
 - ➤ Found in: *Lotions, vanishing Creams, Milk*
- 2. W/O (Water-in-Oil)
 - ♦ Water droplets in oil
 - ➤ Found in: *Butter, Cold Creams*
- 3. Multiple Emulsions

 $O/W/O \rightarrow Oil$ in Water, then in Oil

 $W/O/W \rightarrow$ Water in Oil, then in Water

➤ Uses: Controlled Drug Release, Cosmetics

Emulsifiers (Stabilizers)

- Role: \(\) Surface tension b/w two immiscible liquids
- Help form & stabilize the emulsion

Size & Appearance

Type	Droplet Size	Appearance
Emulsion	$0.1-10~\mu m$	White, milky
Microemulsion	10 – 100 nm	Transparent
Micelles	5 – 20 nm	Clear, not true emulsion

- **Note:** Micelles = *lipid-surfactant structures*, not droplets.
- ♦ **O**/**W** = Washable, non-greasy, absorbs quickly
 - \diamondsuit W/O = Greasy, occlusive, better for dry skin
 - ♦ **Microemulsions** = Thermodynamically **stable** but require surfactants

Theory of Emulsification:

Theory	Key Concept	Explanation / Mechanism	Result / Type of Emulsion
Viscosity Theory	Emulsion viscosity affects stability	Viscosity depends on phase-volume ratio and presence of emulgent	Higher viscosity retards coalescence and phase separation
Interfacial Tension Theory	Emulsions are thermodynamically unstable due to interfacial tension	Cohesive forces between oil droplets and adhesive forces between oil and water develop interfacial tension, which promotes coalescence	Surfactants reduce this interfacial tension ↓ ⇒ Easier to break large droplets into smaller ones ⇒ Prevents coalescence ⇒ Stabilizes the emulsion
Adsorption Theory / Electrical Repulsion O + + + + + O O II droplet Phase O + + + O	Surfactants stabilize emulsions by forming an electrical double layer around droplets.	Electric repulsion between similarly charged particles prevents coalescence	Stabilizes dispersed phase and prevents merging
Bancroft's Theory	Type of emulsion depends on solubility of surfactant	- Surfactant soluble in water → forms oil-in- water (o/w) emulsion - Surfactant soluble in oil → forms water-in-oil (w/o) emulsion	Determines emulsion type based on solubility behavior

Orientation/Wedge Theory (Hardy- Harkins)	Emulsion type depends on ionic size of metal ions in surfactants	- Monovalent ions (Na ⁺ , K ⁺) → favor o/w emulsion - Divalent/Trivalent ions (Ca ²⁺ , Mg ²⁺ , Al ³⁺) → favor w/o emulsion - Smaller ionic volume with higher valency → favors w/o	Predicts emulsion type by metal ion valency & volume
Complex Film Theory (Schulman & Cockbain)	Surfactant forms a rigid interfacial film at high concentration	Densely packed surfactant molecules at the interface create a stable , rigid film , preventing droplet coalescence	Greater interfacial film rigidity = better stability

Types of Emulsifying Agents

Туре	Examples	Properties / Mechanism	Additional Examples
Hydrophilic Colloids (Natural/Synthetic Polymers)	- Vegetable: Gum acacia, Tragacanth, Starch - Animal: Gelatin, Wool fat (Lanolin), Egg yolk - Synthetic: Methylcellulose, Hydroxyethyl cellulose	- Do not reduce surface tension - Form rigid, protective films around droplets → prevent coalescence. Form multimolecular films Also act as viscosity enhancers	Sodium alginateCarbopolCarboxymethylcellulose (CMC)
Synthetic Surface Active Agents (Surfactants)	- Anionic: Potassium stearate, Sodium lauryl sulfate (SLS) - Cationic: Cetrimide (Cetyltrimethylammonium bromide) - Ampholytic: N-dodecyl alanine - Non-ionic: Sorbitan monooleate (Span 80), Polyoxyethylene sorbitan monooleate (Tween 80)	- Reduce interfacial tension and form a monomolecular film Ionic surfactants impart charge → increase zeta potential, causing repulsion and stability	- Sodium dioctyl sulfosuccinate - Benzalkonium chloride - Lecithin (natural phospholipid)

Finely Divided Solid Particles (Solid Particle Emulsifiers)

- Bentonite (hydrated aluminum silicate)
- Veegum (magnesium aluminum silicate)
- Colloidal silica
- Aluminum hydroxide
- Adsorb at oilwater interface forming thick, impenetrable film
- Stabilize droplets mechanically
- May increase viscosity of aqueous phase
- Magnesium stearate
- Kaolin

It also explains different methods to determine the type of emulsion, summarized in Table:

Test	Observation
Dilution test	Emulsion dilutes only with its external phase. Useful for liquid emulsions only.
Dye test	Water-soluble dye will dissolve in the aqueous phase whereas oil-soluble dye will dissolve in the oil phase. For example: Amaranth (o/w Emulsion), Scarlet/Sudan (w/o Emulsion). Microscopic observation is helpful.
CoCl ₂ filter paper test Cobalt chloride paper (blue) turns pink with o/w emulsions. May fail if emulsion is unstable or breaks in the presence of electrolytes.	
Fluorescence test Under UV light, o/w emulsions show a dot pattern, while w/o emulsions fluores throughout. Not always applicable.	
Conductivity test	When current is passed through an emulsion connected to a voltage bulb, the bulb glows if it is an oil-in-water (o/w) emulsion, as water is a good conductor of electricity. Conversely, the bulb does not glow if it is a water-in-oil (w/o) emulsion, because oil is a non-conductor of electricity. i.e. o/w = current flow w/o = current do not flow o/w = current not flow (when purified water instead of potable water is taken)

Gibbs Free Energy in an Emulsion

- Gibbs free energy (G) determines the stability of emulsions and suspensions.
- Emulsions contain **two insoluble phases** where internal phase droplets can undergo:
 - Creaming (reversible separation)
 - Cracking (irreversible merging of droplets to reduce G)

Gibbs Free Energy Equation: $G = A\Delta\gamma$

Where:

- G = Gibbs free energy
- A = Total surface area of dispersed particles
- γ = Interfacial tension (repulsion between phases)

Key Principles

- Large $G \to Unstable system \to Causes droplets to merge and reduce surface area (A).$
- To create a **stable emulsion**, we need:
 - Large surface area (A) for uniform dosing.
 - Small interfacial tension (γ) to lower free energy (G).

Factors Affecting Stability

- High γ and High $G \rightarrow$ Leads to aggregation of droplets (instability).
- Reducing γ (using emulsifiers/surfactants) \rightarrow Lowers G, preventing droplet merging and ensuring stability.
- Stable emulsions and suspensions require large A with low G for uniform and consistent dosing.

FORMULATION COMPONENTS

I. Lipid Phase in Emulsions

- The **oil portion** of an emulsion, which can be natural or synthetic.
- Phase Ratio:
 - Depends on drug solubility and required dosage form consistency.
 - \circ Low internal phase \rightarrow More fluid emulsions.
 - High internal phase → Thicker emulsions, requiring more emulsifier.
- II. Emulsifying Agents: Three major classes:
 - 1. Surfactants (Surface Active Agents) → Primary emulsifiers
 - 2. **Hydrophilic Colloids** → Used as auxiliary emulsifiers
 - 3. Finely Divided Solids → Act as stabilizers

1. Surfactants (Surface Active Agents)

- Molecules with hydrophilic (water-loving) and hydrophobic (oil-loving) regions.
- Function:
 - Reduce interfacial tension, making emulsification easier.
 - Form **monomolecular layers** at the oil-water interface.
- Classification Based on Charge:

- 1. Anionic Surfactants (Negatively Charged)
 - Example: Sodium Lauryl Sulfate (SLS) (Used for o/w emulsions).
 - Alkali Metal Soaps:
 - \circ **Sodium oleate** (Na+ form) \rightarrow o/w emulsions.
 - \circ Calcium oleate (Ca²⁺ form) \rightarrow w/o emulsions (low water solubility).
 - Triethanolamine Stearate → Produces o/w emulsions (e.g., vanishing cream).
 - pH Sensitivity: Effectiveness varies with pH and electrolytes.
- 2. Cationic Surfactants (Positively Charged)
 - Examples: Quaternary Ammonium Compounds, Pyridinium Salts.
 - Uses:
 - Less common in emulsions due to high cost.
 - \circ Antimicrobial properties \rightarrow Used in preservatives and sterilizers.
- 3. Non-Ionic Surfactants (Neutral Charge)
 - Examples:
 - \circ Spans (Sorbitan Esters) \rightarrow w/o emulsions (Water-insoluble).
 - \circ Tweens (Polysorbates) \rightarrow o/w emulsions (Water-soluble).
 - Advantages:
 - Low toxicity → Suitable for oral and parenteral formulations.
 - Stable in varying pH and electrolytes.
 - HLB balancing: Often combined (Span + Tween) for optimal emulsion stability.
- 4. Ampholytic (Zwitterionic) Surfactants
 - Contain both positive and negative charges depending on pH.
 - Example: Lecithin (Used in parenteral emulsions).

Hydrophilic-Lipophilic Balance (HLB):

- Emulsifiers are selected based on their **hydrophilic** (water-attracting) and **lipophilic** (oil-attracting) nature.
- HLB values help classify surfactants based on their **affinity for oil or water**, making emulsifier selection easier.

HLB Calculation Methods

1. For polyhydric alcohol fatty acid esters: $HLB = 20\left[1 - \frac{S}{A}\right]$

Where.

- \circ **S** = Saponification number of the ester
- \circ **A** = Acid number of the fatty acid
- 2. For emulsifiers without saponification numbers (e.g., beeswax, lanolin derivatives):

$$HLB = \frac{E + P}{5}$$

Where,

- \circ **E** = Weight percent of oxyethylene chains
- P = Weight percent of polyhydric alcohol groups
- 3. For emulsifiers with polyoxyethylene chains: $HLB = \frac{E}{5}$

where, E is the weight percent of oxyethylene groups.

Application of Surfactants Based on HLB Value

HLB Value	Application
1–3	Antifoaming agents
3–6	w/o (water-in-oil) emulsifiers
7–9	Wetting agents
8–16	o/w (oil-in-water) emulsifiers
13–15	Detergents
15–18	Solubilizing agents

Phase Inversion Temperature (PIT)

- At **PIT**, the surfactant **shifts between oil and water phases** due to temperature changes, affecting stability and particle size.
- Key points about PIT:
 - Maximum particle size reduction occurs near PIT.
 - Surfactants that are water-soluble at room temperature may become oil-soluble near PIT.
 - During cooling, emulsifiers relocate to different phases, affecting emulsion stability.
 - If the temperature exceeds PIT during emulsification, a stable emulsion is formed.

2. Hydrophilic Colloids

- These are **water-sensitive polymers** that act as:
 - Primary emulsifiers
 - Emulsion stabilizers
 - Thickening agents

Types of Hydrophilic Colloids

- 1. Natural and Synthetic Clays
 - Smectite clays (e.g., Bentonite, Montmorillonite)
 - Swell in water and increase viscosity.
 - Require $pH \ge 6$ to thicken solutions.
 - Amphibole clays (e.g., Attapulgite)
 - Thicken by **particle interaction** rather than swelling.
 - Used in makeup formulations and suspensions.

2. Natural Gums and Synthetic Polymers

- Natural gums: Mostly polysaccharides (e.g., gum arabic, acacia, tragacanth).
- Synthetic hydrocolloids: Include cellulose derivatives (e.g., carboxymethyl cellulose, hydroxypropyl methylcellulose).
- Carboxyl vinyl polymers: Provide yield value (ability to resist flow), improving emulsion thickness and stability.

3. Finely Divided Solids:

- **Finely divided solid particles** can act as emulsifiers, particularly when used with **surfactants** or **macromolecules** that increase viscosity.
 - These solids help **stabilize emulsions** by forming a **physical barrier** around the dispersed droplets, preventing coalescence.

Types of Finely Divided Solids:

1. Polar Inorganic Solids

- These are solid particles with high water-wetting ability.
- They promote oil-in-water (o/w) emulsions, where water is the continuous phase.
- Examples:
 - Heavy metal hydroxides (e.g., aluminum hydroxide, magnesium hydroxide)
 - Certain non-swelling clays (e.g., kaolin, bentonite)
 - **Pigments** (e.g., titanium dioxide, zinc oxide)

2. Non-Polar Solids

- These are solid particles that are more oil-wettable.
- They promote water-in-oil (w/o) emulsions, where oil is the continuous phase.
- Examples:
 - Carbon (e.g., activated charcoal)
 - Glyceryl tristearate (a fat-based compound)

III. Antimicrobial Preservatives in Emulsions

 Emulsions contain water, lipids, carbohydrates, proteins, sterols, and phosphatides, which can support microbial growth. To prevent contamination, antimicrobial preservatives are added to emulsions.

Types of Antimicrobial Preservatives

Different types of preservatives are used in emulsions. The following table lists **common preservative groups and examples**:

Туре	Example	
Acids and acids derivatives	Benzoic acid and salts, Propionic acid and salts, Dehydroacetic acid	
Alcohols	Chlorobutanol, Phenoxy-2-ethanol	
Aldehydes	Formaldehyde, Glutaraldehyde	
Formaldehyde donors	Hexamethylenetetramine, Mono (and di-) methylol dimethyl hydantoin	
Phenolics	Phenol, Cresol, α-Chlorometaxylenol	
Quaternaries	Methyl p-hydroxybenzoate, Propyl p-hydroxybenzoate, Butyl p-hydroxybenzoate	
	Chlorhexidine salt, Benzalkonium chloride, Cetyl trimethyl ammonium bromide	
Mercurials	Phenylmercuric acetate, Sodium ethylmercurithiosalicylate	

IV. Antioxidants in Emulsions

Many organic compounds are prone to autoxidation when exposed to air, and emulsified lipids are
particularly vulnerable. Several drugs incorporated into emulsions are also susceptible to oxidation,
leading to decomposition.

Effects of Autoxidation

- Unsaturated oils (e.g., vegetable oils) undergo rancidity, resulting in unpleasant odour, taste, and appearance.
- Mineral oils and saturated hydrocarbons are **less prone** to oxidation.
- Autoxidation is a free-radical chain reaction, and it can be controlled by:
 - 1. Removing oxygen.
 - 2. Using free radical chain breakers.
 - 3. Using reducing agents.

Selection and Use of Antioxidants

- The choice of an antioxidant depends on safety, acceptability, and effectiveness.
- Common concentration range: 0.001 0.1% (w/v).
- Examples of widely used antioxidants in pharmaceuticals and cosmetics:
 - Butylated hydroxyanisole (**BHA**)
 - Butylated hydroxytoluene (BHT)
 - L-Tocopherol
 - o Alkyl gallates

Antioxidant	Remarks
Gallic acid	Bitter taste
Propyl gallate	Bitter taste
Ascorbic acid	Commonly used in pharmaceuticals
Ascorbyl palmitate	Suitable for lipophilic formulations
Sulfites	Reducing agents
L-Tocopherol	Well-suited for edible/oral formulations
Butylated hydroxytoluene (BHT)	Strong antioxidant, pronounced odour
Butylated hydroxyanisole (BHA)	Strong antioxidant, pronounced odour
4-Hydroxymethyl-2,6-di-tert-butylphenol	Effective antioxidant

EMULSION FORMATION

- Emulsions are usually made using the **dispersion method**, which involves breaking up the internal phase into small droplets and stabilizing them in the external phase.
- The process must be quick enough to prevent the internal phase from merging back (coalescence).
- While droplet breakup happens quickly through physical force, stabilization depends on time and temperature.

Methods of Emulsion Formation

♦ Small-Scale Production (Manual) − Pestle & Mortar

Method	Sequence of Mixing	Use	
Dry Gum / Continental	Oil + Gum → then Water	Common for fixed oils	
Wet Gum / English	Water + Gum → then Oil	Forms mucilage first	
Bottle / Forbes Method	Oil + Gum → shake, then add Water	Ideal for volatile / low-viscosity oils	

A Large-Scale Production (Mechanical)

Equipment Used	Function
Homogenizers	Reduces droplet size for stable emulsions
Electric Mixers	Uniform mixing of phases
Colloidal Mills	High shear dispersion of droplets
Ultrasonic Devices	Uses sound waves to break droplets

Proportions for Emulsion Preparation

Oil: Water: Gum Ratios (Continental / Dry Gum Method)

Type of Oil/Substance	Example(s)	Ratio (O:W:G)
Fixed Oils	Almond, Arachis, Castor, Cod Liver Oil	4:2:1
Mineral Oils	Liquid Paraffin	3:2:1
Volatile Oils	Turpentine, Cinnamon, Peppermint	2:2:1
Oleoresins	Male Fern Extract	1:2:1

Special Emulsion Type: Multiple Emulsions (w/o/w)

- Made in **two steps**:
- w/o emulsion is formed using a low HLB emulsifier.
- This w/o emulsion is mixed into water containing a high HLB emulsifier (HLB 12-14).

STABILITY OF EMULSIONS

- The **stability** of an emulsion depends on its **physical properties** and how they change over time. An emulsion may become unstable due to temperature changes, time, or external forces.
- When an emulsion becomes unstable, the following problems can occur:

Type	Description	Reversibility	Phase Separation?
Creaming	Droplets rise (↑) or settle (↓) due to density difference; no merging	✓ Reversible	X No
Flocculation	Droplets form loose clusters without merging	✓ Reversible	X No
Coalescence	Droplets merge into larger ones → leads to breaking	X Irreversible	√ Yes

Flocculation

- Flocculation happens when small droplets of the dispersed phase come together to form clusters.
- It does not lead to droplet merging (coalescence) as long as the interfacial film remains intact.
- Causes of Flocculation:
 - 1. **Low emulsifier concentration** If there is not enough emulsifier, droplets come together easily.
 - 2. **Electrolytes (Salts)** Some salts reduce droplet repulsion, promoting flocculation.
 - 3. **High internal phase volume** More dispersed phase means droplets are packed closely, increasing flocculation.
- Flocculation affects viscosity:
 - More flocculation increases viscosity because droplets cannot move freely.
 - Stirring reduces flocculation, lowering viscosity (shear thinning).

Creaming

- Creaming happens when dispersed droplets rise or settle due to gravity.
- If droplets remain separate, shaking can redisperse them.

- The **Stokes equation** explains creaming, but real emulsions have variations due to different droplet sizes and interactions.
- Factors affecting creaming:
 - 1. **Droplet size** Larger droplets cream faster.
 - 2. **Density difference** If the densities of the two phases are similar, creaming is reduced.
 - 3. Viscosity Higher viscosity of the continuous phase slows down creaming, improving stability.

Coalescence (Breaking of the Emulsion)

- Coalescence occurs when emulsion droplets merge to form larger droplets.
- If this continues, the emulsion completely separates into two layers (breaks).
- How to prevent coalescence:
 - 1. **Use a strong interfacial barrier** Thick layers of emulsifier or solid particles prevent droplet merging.
 - 2. **Nonionic surfactants and polymers** These stabilize emulsions by forming strong protective films around droplets.
 - 3. Natural gums and proteins These can act as emulsifiers to prevent coalescence at low concentrations and even work as primary emulsifiers at higher levels.

INSTABILITY PROBLEMS OF EMULSIONS

Assessment of Emulsion Shelf-Life

- To evaluate physical, chemical, and functional stability of emulsions over time under various stress conditions.
- Used to **predict shelf-life** and ensure **product quality** during storage.

Factors Affecting Shelf-Life

Packaging & Container Interactions

- Leaching: Container extracts plasticizers or other components into emulsion
- Absorption: Drug/emulsifier loss by absorption into container wall
- Loss of volatiles: Water or oil may evaporate via closures → destabilization

Stress Testing Conditions

A. Aging & Temperature Cycling

- Standard test: Cycle between $4^{\circ}C \leftrightarrow 45^{\circ}C$
- Detects:
 - Creaming
 - Coalescence
 - o Viscosity shifts
- Freezing danger: Ice crystal formation + emulsifier insolubility → emulsion breakdown

B. Centrifugation

- Mimics long-term gravitational separation
- Standard: 3,750 rpm \times 5 hrs \approx 1 year of storage
- **>25,000 rpm**: Causes artificial separation

C. Agitation

- Mild shaking: simulates transport & handling
- Excessive agitation: may induce **coalescence** (e.g., butter from cream under heavy churning)

Chemical Stability Considerations

Compound	Stability Risk	
PEG-based emulsifiers	Oxidation → foul odor & degradation products	
Non-ionic esters	Hydrolysis in aqueous environment → ↓ emulsifying power	

Physical Stability Parameters

1. Phase Separation

- Distinguish:
 - Creaming = Reversible
 - Coalescence = Irreversible
- Evaluate by sampling **top**, **middle**, **bottom** layers

2. Viscosity Changes

- O/W Emulsions: ↑ Viscosity due to flocculation
- W/O Emulsions: ↓ Viscosity initially
- Non-linear changes suggest instability

3. Electrophoretic Properties

- Zeta Potential: Indicates surface charge stability
 (↓ zeta potential = ↑ flocculation risk)
- Conductivity Changes: Signal aggregation or phase leakage

4. Particle Size Monitoring

- \(\gamma\) in droplet size = early sign of **coalescence**
- Use **light scattering or microscopy** for routine checks.