Quick Review of U/V sub.

Identities needed:

$$U(t) = \frac{1}{2}(t + \frac{1}{2}), \quad V(t) = \frac{1}{2}(t - \frac{1}{2})$$

$$1 + v^{2}(t) = u^{2}(t) \quad \text{for} \quad x^{2} + \alpha^{2}$$

$$v^{2}(t) - 1 = v^{2}(t) \quad \text{for} \quad x^{2} - \alpha^{2}$$

This is an alternative to trig subs:

$$1 + \tan^2(\theta) = \sec^2\theta$$
 for $x^2 + \alpha^2$
 $\sec^2\theta - 1 = \tan^2\theta$ for $x^2 - \alpha^2$

More identities:

Idea: Use U/V substitution like you would w/ trig substitution.

- · Get integral of a bunch of t's
- · Solve integral
- · Use identities!

If
$$x = V(t)$$
 then
If $x = u(t)$ then

and:
$$t = U(t) + V(t)$$

 $t = \sqrt{x^2 + 1} + x$
 $t = x + \sqrt{x^2 - 1}$

$$u^{2}(t) = \sqrt{2(t)+1}$$
 $u(t) = \sqrt{2+1}$
 $v(t) = \sqrt{2-1}$
 $v^{2} = \sqrt{2-1}$

to solve for to in terms of x.

$$= \left\langle \frac{x = V(t)}{dx = \frac{1}{2}(1 + \frac{1}{2})dt} \right\rangle = \int \sqrt{1 + V^2(t)} \cdot \frac{1}{2}(1 + \frac{1}{2})dt$$

New topic:

Improper Integrals

Proper Integral 9

la fix) dx

Cfinite domain. f doesn't blow

op anywhere.

1e: No vertical asymtopes.

Improper Integrals

Typel: lafex)dx

· domain is infinitely

Type 2: 1/2 f(x) dx

· f has vertical asympopes in domain

Examples:

Infinite domain. Improper integral.

•
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

Infinite domain. Improper Integral

Also has vertical asymtope but not in our domain so we don't care.

Two vertical asymtopes. Improper Integral.

How to find ventical asymtopes?

Normally we have either:

(a)
$$f(x) = \frac{\text{Something}}{g(x)}$$
 where $g(x) = 0$.

where
$$g(x) = 0$$

le:
$$f(x) = \frac{1}{1-x^2}$$
 vert. Asy. @ $x = \pm 1$.

(b) f(x) has log(o) in it:

 $f(x) = \log(1-x^2)$, vert asy@x=±1.

How to calculate Improper Integrals?

Infinite Domain Case

- · First calculate fatoxids.
- · Then take limit as m>00.

$$\frac{Ex}{1+x^2}dx = \lim_{m\to\infty} \int_1^m \frac{1}{1+x^2}dx$$

Does not exist!

$$\frac{Ex}{1} = \lim_{x \to \infty} \frac{1}{x^2} dx$$

$$= \lim_{x \to \infty} \frac{1}{x^2} \frac{1}{x^2} dx$$

$$= \lim_{x \to \infty} \frac{1}{x^2} \frac{1}{x^2} dx$$

$$= \lim_{x \to \infty} \frac{1}{x^2} \frac{1}{x^2} dx$$

$$= 0 + 1 = 1$$

Doubly Infinite Integrals

$$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{\infty} f(x) dx + \int_{-\infty}^{\infty} f(x) dx$$

$$= \begin{cases} \lim_{n \to \infty} \int_{0}^{\infty} f(x) dx \\ + \lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) dx \end{cases}$$

- · First break integral into two perces. · Calculate each hunt seperately.
- . Add the Limits.

$$\frac{Ex}{\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx} = \int_{0}^{\infty} \frac{1}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{M \to \infty} \arctan(M) - \arctan(0) = \frac{\pi}{2}$$

$$= \lim_{M \to \infty} \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{M \to \infty} \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{M \to \infty} \arctan(0) - \arctan(-m) = \frac{\pi}{2}.$$

So:
$$\int_{1+x^2}^{\infty} \frac{1}{1+x^2} dx = \frac{\pi}{2} + \frac{\pi}{2} = \frac{\pi}{2}$$

split Integral:

$$\int_{-\infty}^{\infty} e^{-|x|} dx = \int_{0}^{\infty} e^{-x} dx + \int_{-\infty}^{\infty} e^{x} dx$$

$$\int_{0}^{\infty} e^{-x} dx = \lim_{M \to \infty} \int_{0}^{M} e^{-x} dx$$

$$= \lim_{M \to \infty} \{ -e^{-M} + e^{0} \} = 0 + 1 = 1.$$

$$\int_{-\infty}^{0} e^{x} dx = \lim_{M \to \infty} \int_{-\infty}^{0} e^{x} dx$$

$$= \lim_{M \to \infty} \frac{1}{2} e^{0} - e^{-M} \frac{3}{2} = 1 - 0 = 1.$$

So:
$$\int_{\infty}^{\infty} e^{-1xl} dx = \int_{\infty}^{\infty} e^{-x} dx + \int_{\infty}^{\infty} e^{x} dx = 1 + 1 = 2$$

Case 3 Vertical Asymptotes

suppose, say, I has vertical asym. @x=1.

$$\int_{0}^{1} f(x) dx = \lim_{M \to 0^{+}} \int_{0}^{1-M} f(x) dx$$

$$\frac{Ex}{\sqrt{1-x^2}}dx$$

This has vert asym.

$$Q \times = 1$$

we avoid asym. by subtracting a small number from 1: 1-M. Then take limit as M>0+.

Note: It's important that M>0+, because if M was negative then we would integrate into the Right Hand Side of asymtope!

Now our calculation:

$$\int_{0}^{1} \frac{1}{1-x^{2}} dx = \lim_{M \to 0^{+}} \int_{0}^{1-M} \frac{1}{1-x^{2}} dx$$

$$= \lim_{M \to 0^{+}} \arcsin(1-M) - \arcsin(0)$$

$$= \pi/2 - 0 = \pi/2$$

Ex
$$\int_{1}^{1} \frac{1}{\sqrt{1-x^2}} dx$$
 { vertical asym. at $x=0$ by adding M. To stay on RHS of asym. O oin I

Ex $\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$ = $\lim_{M\to 0^+} \sum_{x=0}^{1} \frac{1}{\sqrt{1-x^2}} dx$ { vertical asym. } at $x=t$ 1.

Two asymptotes! Split into two integrals to handle each seperately. $\int_{1}^{1} \frac{1}{\sqrt{1-x^2}} dx$ = $\int_{1}^{0} \frac{1}{\sqrt{1-x^2}} dx$ + $\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = \lim_{M \to 0^+} \int_0^{1-M} \frac{1}{\sqrt{1-x^2}} dx = \boxed{T/2}$$

So:
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx = \frac{\pi}{2} + \frac{\pi}{2} = \frac{\pi}{2}$$