Aggregating Individual-level Information in Large Clusters*

Myungkou Shin[†]

September 20, 2024

Click here for the latest version.

Abstract

When given a possibly endogeneous cluster-level explanatory variable in a clustered dataset, we cannot model the cluster-level heterogeneity to be fully flexible due to multicollinearity. To model the cluster-level heterogeneity, I assume a finite-dimensional cluster-level latent factor that is one-to-one with the cluster-level distribution of individual-level characteristics, fully utilizing the available information at the individual level. Thanks to the low-dimensionality of the latent factor model, a variety of existing moment restriction models can be used to identify a parameter of interest in relation to the cluster-level distributions.

^{*}I am deeply grateful to Stéphane Bonhomme, Christian Hansen and Azeem Shaikh, who have provided me invaluable support and insight. I would also like to thank Max Tabord-Meehan, Alex Torgovitsky, Martin Weidner and the participants of the metrics advising group and the metrics student group at the University of Chicago for their constructive comments and input. I acknowledge the support from the European Research Council grant ERC-2018-CoG-819086-PANEDA. Any and all errors are my own.

[†]School of Social Sciences, University of Surrey. Email: m.shin@surrey.ac.uk

1 Introduction

A significant volume of datasets used in economics are clustered; units of observations have a hierarchical structure (see (Raudenbush and Bryk, 2002) for general discussion). For example, a dataset that collects demographic characteristics of a country's population, e.g., the Current Population Survey (CPS) of the United States, often documents each surveyee's geographical location up to some regional level. Throughout this paper, I use *individual* and *cluster* to refer to the lower level and the higher level of this hierarchical structure, respectively: e.g., in CPS, individuals refer to surveyees and clusters refer to states. In light of the hierarchical nature of the dataset, a researcher may want to consider a research design that utilizes the clustering structure. For example, when regressing individual-level outcomes on individual-level regressors with CPS data, researchers often include some state-level regressors such as state population, to control for the cluster-level heterogeneity.

This paper builds up on this motivation and provides a generalized econometric framework for clustered datasets, with an additional source of the cluster-level heterogeneity: the cluster-level aggregation of individual-level information. The idea of using a cluster-level aggregation of the individual-level information to model the cluster-level heterogeneity goes back a long way in the econometrics literature: e.g., Mundlak (1978); Chamberlain (1982) and more. This idea can be motivated from two different perspectives. Firstly, it gives us an alternative method in controlling for the cluster-level heterogeneity when given a cluster-level explanatory variable of interest; a fully flexible method such as cluster fixed-effects is infeasible since it subsumes the variation from the cluster-level variable of interest. Secondly, the aggregation of the individual-level characteristics can be an explanatory variable of interest

on its own when a researcher is interested in how the cluster-specific "context" or "equilibrium", which stems from the collection of the individual-level characteristics within the cluster, affects the individual-level outcome.

As an illustrative example, consider the following three regression equation models:

$$Y_{ij} = \alpha_j + \beta Z_j + X_{ij}^{\mathsf{T}} \theta + U_j, \tag{1}$$

$$Y_{ij} = \alpha + \beta Z_j + X_{ij}^{\mathsf{T}} \theta + U_j, \tag{2}$$

$$Y_{ij} = \alpha(\mathbf{F}_j) + \beta Z_j + X_{ij}^{\mathsf{T}} \theta + U_j. \tag{3}$$

 Y_{ij} is the individual-level outcome variable for individual i in cluster j, Z_j is the cluster-level explanatory variable for cluster j and X_{ij} is the individual-level control covariates for individual i in cluster j. \mathbf{F}_j denotes the distribution of X_{ij} for cluster j. The first regression equation (1) models the cluster-level heterogeneity in a fully flexible manner, with cluster fixed-effect α_j . However, the coefficient β is not identified in model (1) due to multicollinearity. In light of this problem, the researcher may want to use the second regression equation (2) assuming that there is no unobserved heterogeneity across clusters; however, when the cluster heterogeneity correlates with Z_j , β will be biased. Thus, I propose an alternative regression equation (3), where we do not assume cluster homogeneity, but put restrictions on the cluster heterogeneity by modeling it with the cluster-level distribution \mathbf{F}_j . This approach fully utilizes the rich information observed at the individual level. In addition, the model (3) distinguishes the effect of the aggregate-level regressors and that of the individual-level regressors: (α, β) v. θ . $\alpha(\mathbf{F}_j)$ tells us how the individual-level

¹This problem closely relates to the treatment endogeneity problem; when α_j is uncorrelated with Z_j , the second regression equation (2) also identifies β .

characteristics *collectively* affects the individual-level outcomes.

In this paper, the distribution function is used a choice of the aggregation method since I focus on the large clusters case. Suppose that the clusters are small. Then, we can use more flexible methods of aggregation to model the cluster-level heterogeneity and rewrite the clustered dataset as a cross-sectional dataset with clusters as observations; the simple unordered cluster-level aggregation $\{X_{ij}\}_i$ is low-dimensional. On the contrary, when the clusters are large, the unordered collection $\{X_{ij}\}_i$ becomes high-dimensional even when X_{ij} itself is low-dimensional. In this regard, for the large clusters case, we need aggregation methods with some dimension reduction property. The distribution function is a sensible choice since there often does not exist any ordering among individuals in a clustered dataset; individuals are exchangeable within each cluster. For example, in a census data, the identification number has little meaning on its own. Thus, there is no information loss from using a distribution function instead of an unordered collection, while there is gain of dimension reduction.

The formal econometric framework of this paper consists of two parts: a constructive latent factor model for the cluster-level distributions, which only concerns $\{X_{ij}\}_{i,j}$, and a moment restriction model for a parameter of interest, which use the entirety of the dataset. In the latent factor model, the cluster-level distribution function of the individual-level control covariates is modeled to be a function of a finite-dimensional cluster-level latent factor $\lambda_j \in \mathbb{R}^{\rho}$: the second layer of dimension reduction. By assuming a bijection between the latent factor and the distribution function, a large class of moment restriction models that take finite-dimensional vectors as inputs can be used to develop a model where a parameter of interest is identified in relation to the cluster-level distributions.

The estimation is done in a plug-in manner; the latent factors are estimated from the cluster-level distributions and the estimates are used in the moment restriction model to estimate the parameter of interest. The key assumption that makes the plug-in procedure valid is that the moment restriction model is invariant to a rotation on the latent factor while the latent factor model provides an estimator that estimates the latent factor up to some rotation. The rotation invariance is helpful since it allows us to use machine learning methods that have desirable properties such as dimension reduction but do not provide interpretable outputs; as long as the outputs are a rotation of an interpretable factor, we can motivate a latent factor model based on the machine learning method. Using this feature, two latent factor models for the cluster-level distributions are proposed in this paper. The first of the two models relates to the K-means clustering algorithm and the second relates to the functional principal component analysis (PCA). Under their respective latent factor models and given appropriate relative growth rate of the cluster size to the number of clusters, both estimators have fast enough estimation error so that the plug-in estimator using the estimates is consistent and asymptotically normal.

This paper contributes to several literatures in econometrics. Firstly, this paper contributes to the literature of multilevel/hierarchical/clustered models. Similar to this paper, Yang and Schmidt (2021) identifies the effect of a possibly endogeneous—meaning that it is correlated with the cluster-level heterogeneity—cluster-level variable in a linear regression setup; instead of modeling the cluster-level heterogeneity, they use instruments for the cluster-level explanatory variable. Arkhangelsky and Imbens (2023) also considers a multilevel setup and uses aggregation of individual-level information to control for the cluster-level heterogeneity; however, their goal differs from mine since

they focus on small clusters with individual-level explanatory variable while I focus on large clusters.²

Secondly, this paper contributes to the literature of correlated random coefficient models. The simple linear regression example (1) above can be thought of as a random coefficient model where the coefficient α_j is possibly correlated with Z_j and/or X_{ij} . When given a cluster-level variable Z_j , a fixed-effect type approach (e.g., Wooldridge (2005); Graham and Powell (2012); Arellano and Bonhomme (2012)) is not applicable. Thus, I impose distributional assumptions on the random effect that the random coefficients are uncorrelated with the explanatory variable after conditioning on the cluster-level distributions. The parameter of interest in my model, $\alpha(\mathbf{F}_j)$ in (3), can be thought of as a conditional expectation of the random effect given the cluster-level distribution. In this sense, this paper is closer to Altonji and Matzkin (2005) and Bester and Hansen (2009) which also impose some restrictions on the joint distribution of the latent heterogeneity and the observable information.

Lastly, this paper contributes to the literature of the factor model approach in causal inference/program evaluation. The factor model approach in the program evaluation literature assumes that the error term consists of a systemic part, modeled with a factor model, and an idiosyncratic error and that the treatment endogeneity happens only through the factors. By assuming a latent factor model for the cluster-level distributions³that are sufficiently

²Inherently, the problem they focus on only exists in small clusters setup; the withincluster comparison will identify the effect of the individual-level explanatory variable when the clusters are large. On the other hand, the two motivations I give in this paper applies to both small and large cluster setups. Another difference is that their solution works for both small and large clusters by imposing additional parametric structure on the model while the solution of this paper is only valid for the large clusters case. Thus, one can consider the approach in Arkhangelsky and Imbens (2023) as an alternative to the latent factor model of this paper when clusters are small, at the cost of imposing additional parametric structure on the model.

informative for the cluster-level heterogeneity, this paper also follows the same approach in solving the endogeneity problem of the cluster-level explanatory variable. On the contrary to the canonical synthetic control methods that aim to cancel out the latent factor (Abadie et al., 2010, 2015; Gunsilius, 2023) using pretreatment outcomes, this paper directly estimates the factors; in this sense, Xu (2017) is closer to this paper.

The rest of the paper is organized as follows. In Section 2, I formally discuss the two parts of the econometric framework of this paper: the latent factor model for the cluster-level distributions and the moment restriction model for the parameter of interest. In Section 3, I discuss two latent factor models, which motivate the use of the K-means clustering algorithm and the functional PCA in estimating the cluster-level latent factor. In Sections 4-5, simulation results and an empirical illustration of the econometric framework are provided. All of the proofs for the theoretical results are given in the Supplementary Appendix.

2 Distribution as a control variable

2.1 Model

An econometrician observes $\{\{Y_{ij}, X_{ij}\}_{i=1}^{N_j}, Z_j\}_{j=1}^J$ where $Y_{ij} \in \mathbb{R}$ is an individual-level outcome variable for individual i in cluster $j, X_{ij} \in \mathbb{R}^p$ is a

³In a factor model for interactive fixed-effects in panel data, the two dimensions of the factor model are unit and time. In this paper, the two dimensions of the factor model is clusters and individuals. The difference is that the individuals are not ordered in a clustered data as times are in a panel data. Thus, instead of directly modeling the variables X_{ij} with a factor model, I use the factor model to model the cluster-level distribution function of X_{ij} . Then, the factor loadings are connected to a relative position of an individual with $X_{ij} = x$ within a cluster, instead of being tied to a specific individual index i as it is to a time index t in a panel data

p-dimensional vector of individual-level control covariates for individual i in cluster j, and $Z_j \in \mathbb{R}^{p_{cl}}$ is a p_{cl} -dimensional vector of cluster-level control covariates for cluster j. There exist J clusters and each cluster contains N_j individuals: in total there are $N = \sum_{j=1}^J N_j$ individuals. Clusters are large; the asymptotic regime of this paper lets both J and $\min_j N_j$ go to infinity. In addition to the observable covariates X_{ij} and Z_j , there exists cluster-level latent factor $\lambda_j \in \mathcal{S}_{\lambda}$, which models the cluster-level heterogeneity. Individuals are assumed to be independent and identically distributed within clusters and clusters are assumed to be independent and identically distributed. Since cluster sizes are allowed to be uneven, the individual-level and cluster-level iid-ness is established through a conditional distribution function H: for $j = 1, \dots, J$,

$$(Z_j, N_j, \lambda_j) \sim iid$$

and for $i = 1, \dots, N_j$ with a given j,

$$(Y_{ij}, X_{ij}) \mid \{Z_k, N_k, \lambda_k\}_{k=1}^J \stackrel{iid}{\sim} H(Z_j, N_j, \lambda_j; \xi)$$
 (4)

independently of $\left\{\{Y_{ik},X_{ik}\}_{i=1}^{N_k}\right\}_{k\neq j}$. The conditional distribution function H depends the model parameter ξ . Note that $\left\{(Y_{ij},X_{ij})\right\}_{i=1}^{N_j}$ are iid, conditioning on $\left\{Z_k,N_k,\lambda_k\right\}_{k=1}^J$: individual-level iidness within a cluster. Also, the distribution of (Y_{ij},X_{ij}) only depends on (Z_j,N_j,λ_j) , independent of other clusters: cluster-level independence. Lastly, (Z_j,N_j,λ_j) are iid and the function H is not subscripted with j: cluster-level distributional identity.

In this model, the cluster-level latent factor λ_j models the cluster-level heterogeneity and I assume that there is an one-to-one relationship between

the latent factor λ_j and the cluster-level distribution of X_{ij} . Let \mathbf{F}_j denote the conditional distribution of X_{ij} given (Z_j, N_j, λ_j) : for $x \in \mathbb{R}^p$,

$$\mathbf{F}_{i}(x) = \Pr\left\{X_{ij} \le x | Z_{i}, N_{j}, \lambda_{j}\right\}.$$

 \mathbf{F}_j is a random function.

Assumption 1. $\mathcal{S}_{\lambda} \subset \mathbb{R}^{\rho}$. There exists an injective function $G : \mathcal{S}_{\lambda} \to [0,1]^{\mathbb{R}^{p}}$ such that

$$\mathbf{F}_{i} = G(\lambda_{i}) = G(\lambda_{i}; \xi).$$

The injectivity of G: there exist a weighting function $w : \mathbb{R}^p \to \mathbb{R}_+$ and an induced l_2 norm $\|\cdot\|_{w,2}$ such that

$$\|\mathbf{F}\|_{w,2} = \left(\int_{\mathbb{R}^p} \mathbf{F}(x)^2 w(x) dx\right)^{\frac{1}{2}}.$$

$$\lambda \neq \lambda' \Rightarrow \|G(\lambda) - G(\lambda')\|_{w,2} > 0 \text{ and } \|G(\lambda_j)\|_{w,2} \text{ is bounded.}$$

Assumption 1 combined with the clustered data model (4) assumes that the cluster-level distribution of individual-level control covariates \mathbf{F}_j sufficiently controls for the cluster-level heterogeneity; H is a function of $(N_j, Z_j, G^{-1}(\mathbf{F}_j))$.

The idea of using the cluster-level distribution \mathbf{F}_j as a control covariate for the cluster-level heterogeneity is naturally appealing in the following two contexts. Firstly, suppose that the econometrician is interested in identifying the effect of a cluster-level observable characteristic Z_j on individual-level outcome Y_{ij} while allowing for some cluster-level latent heterogeneity.⁴ The cluster-level heterogeneity cannot be modeled to be fully flexible with cluster

⁴Many research questions in economics fit this description. For example, economists study the effect of a raise in the minimum wage level, a state-level variable, on employment status, an individual-level variable (Allegretto et al., 2011, 2017; Neumark et al., 2014; Cengiz et al., 2019; Neumark and Shirley, 2022); the effect of a team-level performance pay

fixed-effects, due to the limitation that there is no within-cluster variation in Z_j . An alternative to using cluster fixed-effects is to aggregate X_{ij} for each cluster, assuming that aggregating individual-level information for each cluster sufficiently controls for cluster-level heterogeneity. This approach is easy-to-implement when the cluster sizes are relatively small. However, when the clusters are large, a simple collection of the individual-level information $\{X_{ij}\}_{i=1}^{N_j}$ will be high dimensional. Thus, to impose some dimension reduction on the naive collection of control covariates $\{X_{ij}\}_{i=1}^{N_j}$, the econometrician may want to use the fact that the order of individuals in a cluster often does not provide additional information in a clustered dataset.⁵ In these empirical contexts, the cluster-level distribution \mathbf{F}_j reduces the dimension of the simple collection $\{X_{ij}\}_{i=1}^{N_j}$, while preserving the relevant information regarding the cluster-level heterogeneity.⁶

Secondly, there are empirical contexts where the econometrician is directly interested in identifying the effect of the cluster-level distribution \mathbf{F}_{j} on Y_{ij} , i.e. the aggregate-level equilibrium/contextual effect. In these cases, the cluster-level distribution of individual-level control covariates is a 'regressor' of interest on its own: e.g., the effect of state-level wage income distribution on an individual's disemployment probability; the effect of a school's racial composition on student's academic performance, etc. For these research questions,

scheme on worker-level output (Hamilton et al., 2003; Bartel et al., 2017; Bandiera et al., 2007); the effect of a local media advertisement on individual consumer choice (Shapiro, 2018); the effect of a class/school-level teaching method on student-level outcomes (Algan et al., 2013; Choi et al., 2021), etc.

⁵In this sense, a panel data cannot be thought of as an example of a clustered dataset discussed in this paper. Also, in some cases, clustered datasets order individuals in a specific way as well; e.g., siblings being ordered in their birth order within a family, workers being ordered in terms of seniority within a firm, etc. In these cases, the order of the individual may contain information and therefore should not be ignored.

⁶See the first section of the Supplementary Appendix on how within-cluster exchangeability motivates the use of the cluster-level distribution as a control.

having a model G for the distribution function as in Assumption 1 can be particularly helpful if we want to discuss out-of-sample prediction for the outcome Y_{ij} given an unprecedented aggregate-level policy intervention for the cluster-level distribution; e.g., what happens when policymakers exogenously shifts the racial composition of a school? Cluster fixed-effects will successfully control for the cluster-level heterogeneity, but will not be able to give us a prediction for $\mathbf{E}[Y_{ij}|\mathbf{F}_j=\mathbf{F}]$ when \mathbf{F} is different from $\{\mathbf{F}_1,\cdots,\mathbf{F}_J\}$. Moreover, by explicitly modeling the "context" with \mathbf{F}_j , we can discuss how a counterfactual policy at the aggregate level differentially affects individuals, by looking at $\frac{\partial}{\partial x}\mathbf{E}[Y_{ij}|(X_{ij},\mathbf{F}_j)=(x,\mathbf{F})]$.

In addition to suggesting that the cluster-level distribution \mathbf{F}_j be used as a control covariate in controlling for the cluster-level heterogeneity, Assumption 1 also assumes that the latent factor λ_j is finite-dimensional: $\mathcal{S}_{\lambda} \subset \mathbb{R}^{\rho}$. Thus, under Assumption 1, an infinite-dimensional object \mathbf{F}_j is reduced to a finite-dimensional factor λ_j , through G. This adds an additional layer of dimension reduction, giving us practical benefits; by modeling \mathbf{F}_j to be a function of λ_j , the task of estimating an infinite-dimensional object \mathbf{F}_j becomes an easier task of estimating a finite-dimensional factor λ_j . Also, a variety of econometric frameworks that use finite-dimensional control covariates become readily applicable by substituting λ_j for \mathbf{F}_j ; e.g. when we want to construct a regression model where a binary outcome Y_{ij} depends on a distribution function \mathbf{F}_j , we can directly use the known results on the logistic model with finite-dimensional control covariates, by substituting λ_j for \mathbf{F}_j .

Given the clustered data model (4) and the (possibly infinite-dimensional) model parameter ξ , I assume that a finite-dimensional parameter of interest

 $\theta = \theta(\xi)$ is identified with a moment restriction model: at true value of θ ,

$$\mathbf{E}\left[m(W_j^*;\theta)\right] = 0. \tag{5}$$

Let l denote the dimension of m and k denote the dimension of θ : $l \geq k$. W_j^* is a function of cluster-level random objects $\left(\{Y_{ij}, X_{ij}\}_{i=1}^{N_j}, Z_j, N_j, \lambda_j\right)$. Note that λ_j is latent; the superscript * is used to denote that W_j^* is not directly observed. In addition, W_j^* is set to be a function of the latent factor λ_j , instead of the cluster-level distribution \mathbf{F}_j . In this sense, the moment restriction model (5) can be understood as an implication of a model written with the cluster-level distribution \mathbf{F}_j and Assumption 1; Assumption 1 will not be explicitly invoked for the rest of the paper.

Example 1 (clustered treatment) Consider a binary treatment assigned at the cluster level: $Z_j \in \{0, 1\}$,

$$Y_{ij} = Y_{ij}(1) \cdot Z_j + Y_{ij}(0) \cdot (1 - Z_j)$$

and assume unconfoundedness with the cluster-level latent factor λ_j :

$$(Y_{ij}(1), Y_{ij}(0), X_{ij}) \perp Z_j \mid (N_j, \lambda_j).$$
(6)

The average treatment effect (ATE) is identified with moment restrictions using the inverse probability weighting: with some known function π such

that $\mathbf{E}[Z_j|N_j,\lambda_j] = \pi(\lambda_j;\theta_\pi),$

$$\theta = \left(\mathbf{E} \left[\bar{Y}_{j}(1) - \bar{Y}_{j}(0) \right], \theta_{\pi}^{\mathsf{T}} \right)^{\mathsf{T}},$$

$$W_{j}^{*} = \left(\bar{Y}_{j}, Z_{j}, \lambda_{j} \right)^{\mathsf{T}},$$

$$m(W_{j}^{*}; \theta) = \begin{pmatrix} \left(\frac{Z_{j}}{\pi(\lambda_{j}; \theta_{\pi})} - \frac{1 - Z_{j}}{1 - \pi(\lambda_{j}; \theta_{\pi})} \right) \bar{Y}_{j} - \mathbf{E} \left[\bar{Y}_{j}(1) - \bar{Y}_{j}(0) \right] \\ \lambda_{j} \left(Z_{j} - \pi(\lambda_{j}; \theta_{\pi}) \right) \end{pmatrix}.$$

In this example, the binary treatment variable varies at the cluster level. The unconfoundedness assumption (6) assumes that the treatment is independent of the potential outcomes conditioning on the latent factor λ_j , i.e., the cluster-level distribution of X_{ij} ; the treatment is as good as random between two clusters with the same distribution of individual-level characteristics. Suppose for example that the econometrician is interested in the effect of a state-wide policy on individual-level outcomes in the United States. The unconfoundedness assumption (6) would be to assume that the adoption of the policy is independent of the potential outcomes of a given state, conditioning on the state-level distribution of individuals; we compare two states with the same distribution of individual characteristics to estimate the effect of the policy adoption.

Example 2 (linear regression) Consider a regression model where X_{ij} , Z_j and λ_j enter the model linearly:

$$Y_{ij} = X_{ij}^{\mathsf{T}} \theta_1 + Z_j^{\mathsf{T}} \theta_2 + \lambda_j^{\mathsf{T}} \theta_3 + U_{ij},$$

$$0 = \mathbf{E} \left[U_{ij} | X_{ij}, Z_j, N_j, \lambda_j \right].$$

$$(7)$$

Then, the slope coefficients are identified from $\mathbf{E}[U_{ij}|X_{ij},N_j,Z_j,\lambda_j]=0$:

$$\theta = (\theta_1^{\mathsf{T}}, \theta_2^{\mathsf{T}}, \theta_3^{\mathsf{T}})^{\mathsf{T}},$$

$$W_j^* = \left(\frac{1}{N_j} \sum_{i=1}^{N_j} \begin{pmatrix} X_{ij} \\ Z_j \\ \lambda_j \end{pmatrix} Y_{ij}, \frac{1}{N_j} \sum_{i=1}^{N_j} \begin{pmatrix} X_{ij} \\ Z_j \\ \lambda_j \end{pmatrix} \begin{pmatrix} X_{ij} \\ Z_j \\ \lambda_j \end{pmatrix}^{\mathsf{T}},$$

$$m(W_j^*; \theta) = \frac{1}{N_j} \sum_{i=1}^{N_j} \begin{pmatrix} X_{ij} \\ Z_j \\ \lambda_j \end{pmatrix} Y_{ij} - \frac{1}{N_j} \sum_{i=1}^{N_j} \begin{pmatrix} X_{ij} \\ Z_j \\ \lambda_j \end{pmatrix} \begin{pmatrix} X_{ij} \\ Z_j \\ \lambda_j \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}.$$

The linear regression model assumes that the individual-level characteristics X_{ij} , the cluster-level characteristics Z_j and the cluster-level distribution \mathbf{F}_j enter the regression linearly. Specifically, the model assumes that \mathbf{F}_j enters the model linearly in the sense that the function G^{-1} maps \mathbf{F}_j to a finite-dimensional factor in which the model is linear: $\theta_3^{\mathsf{T}}G^{-1}(\mathbf{F}_j) = \lambda_j^{\mathsf{T}}\theta_3$. Given the linear regression model, the comparative statistics in terms of the cluster-level distribution \mathbf{F}_j can be constructed with the inverse function G^{-1} :

$$\mathbf{E}\left[Y_{ij}|(X_{ij},Z_j,N_j,\mathbf{F}_j) = (x,z,n,\mathbf{F}')\right] - \mathbf{E}\left[Y_{ij}|(X_{ij},Z_j,N_j,\mathbf{F}_j) = (x,z,n,\mathbf{F})\right]$$
$$= \theta_3^{\mathsf{T}}\left(G^{-1}(\mathbf{F}') - G^{-1}(\mathbf{F})\right)$$

when $\mathbf{F}, \mathbf{F}' \in G(\mathcal{S}_{\lambda})$.

2.2 Plug-in estimation with the latent factor estimates

In the previous subsection, the moment function m in (5) was constructed with the true cluster-level factor λ_j , which is unobservable. In practice, even when G is known, λ_j is not directly observed since \mathbf{F}_j is not directly observed;

 λ_j has to be estimated. To have a broad applicability, I impose a relatively relaxed condition on the latent factor estimation; there exists a consistent estimator for some linear transformation of λ_j . Specific examples of the estimators for the latent factor λ_j and their corresponding distribution model G are discussed in the next section.

Consider an invertible $\rho \times \rho$ matrix A and the transformed latent factor $\tilde{\lambda} = A\lambda \in A\mathcal{S}_{\lambda}$. Then, by letting $G_A(\tilde{\lambda}) = G(A^{-1}\tilde{\lambda})$, Assumption 1 holds with G_A . Likewise, by modifying the construction of W_j so that it is a function of $\left(\{Y_{ij}, X_{ij}\}_{i=1}^{N_j}, Z_j, N_j, A^{-1}\tilde{\lambda}_j\right)$, the moment restriction model (5) holds as well. Thus, it is still valid that the moment restriction model (5) can be thought of as an implication of Assumption 1 and a true moment restriction model defined with \mathbf{F}_j .

To discuss the moment function m, both in the context of the true latent fcator and the rotated latent factor, construct a function W which takes cluster-level observable variables and the latent factor λ and computes the observation relevant for the moment restriction model (5). Then,

$$W_j^* = W\left(\{Y_{ij}, X_{ij}\}_{i=1}^{N_j}, Z_j, N_j, \lambda_j\right).$$

A slight abuse of notation is applied here since the dimension of the input changes with N_j . Also, let

$$W_j(\lambda) = W\left(\{Y_{ij}, X_{ij}\}_{i=1}^{N_j}, Z_j, N_j, \lambda\right).$$

 $W_j(\lambda)$ takes a latent factor λ and computes W using observable information from cluster j; $W_j^* = W_j(\lambda_j)$ is the infeasible true observation for cluster j, used in developing the moment restriction model in the previous subsection,

and $\widehat{W}_j = W_j(\widehat{\lambda}_j)$ is the feasible observation for cluster j, used in the estimation. Recall that l denotes the dimension of m and k denotes the dimension of θ .

Assumption 2.

- **a.** Θ , the parameter space for θ , is a compact subset of \mathbb{R}^k .

 The true value of θ , denoted with θ^0 , lies in the interior of Θ .
- **b.** $\mathbf{E}[m(W_i^*; \theta^0)] = 0$ and for any $\varepsilon > 0$,

$$\inf_{\|\theta-\theta^0\|_2 \geq \varepsilon} \left\| \mathbf{E} \left[m(W_j^*;\theta) \right] \right\|_2 > 0.$$

- $c. \sup_{\theta \in \Theta} \left\| \frac{1}{J} \sum_{j=1}^{J} m(W_j^*; \theta) \mathbf{E} \left[m(W_j^*; \theta) \right] \right\|_2 \xrightarrow{p} 0 \text{ as } J \to \infty.$
- **d.** There are (random) invertible $\rho \times \rho$ matrices A and \tilde{A} such that for each $\theta \in \Theta$, $W_j = W_j(A\lambda_j)$ satisfies

$$m(W_i^*; \theta) = m(W_i; \tilde{A}\theta)$$

almost surely.

e. For each $\theta \in \Theta$, the map $\lambda \mapsto m(W_j(\lambda); \theta)$ is almost surely continuously differentiable on S_{λ} . Also, there are some $\eta, M > 0$ such that

$$\mathbf{E} \left[\sup_{\|\lambda' - \lambda_j\|_2 \le \eta} \sup_{\theta \in \Theta} \left\| \frac{\partial}{\partial \lambda} m \Big(W_j(\lambda); \theta \Big) \Big|_{\lambda = \lambda'} \right\|_F^2 \right] \le M.$$

 $\begin{array}{l} \textit{\textbf{f.}} \ \ There \ is \ some \ \tilde{M} > 0 \ such \ that \Pr \left\{ \|A^{-1}\|_F \leq \tilde{M} \right\}, \Pr \left\{ \left\| \tilde{A} \right\|_F \leq \tilde{M} \right\} \rightarrow \\ 1 \ \ as \ J \rightarrow \infty. \end{array}$

Assumption 2.a-c are the standard sufficient conditions for consistency of an extremum estimator. Assumption 2.d assumes that the model is invariant to a rotation on the latent factor. Assumption 2.e assumes that the first derivative of the moment function with regard to the latent factor is bounded in expectation when evaluated within a small neighborhood around the true latent factor. Assumption 2.f assumes that the rotation does not change the scale of the latent factor and the parameter θ .

Assumption 2.d adds an extra restriction to the moment restriction model that the same moment function m can still be used with the rotated factor $W_j = W_j(A\lambda_j)$, as long as the parameter of interest θ is adjusted accordingly. This restriction is particularly helpful since it allows us to estimate the (rotated) parameter of interest while not knowing the rotation A; we cannot retrieve $W_j^* = W(\lambda_j)$ from $A\lambda_j$ when A is unknown. A sufficient condition for Assumption 2.d is to assume a single index restriction that the latent factor λ_j enters the moment function m as a single index of $\lambda_j^{\mathsf{T}}\theta_\lambda$ when $\theta = (\theta_\lambda^{\mathsf{T}}, \theta_{-\lambda}^{\mathsf{T}})^{\mathsf{T}}$.

The appeal of this assumption in an empirical researcher's perspective hinges on whether the rotated parameter of interest $\tilde{A}\theta$ still has an interpretable implication as the original parameter of interest θ . In Example 1, assuming the rotation invariance on the propensity score model does not affect the ATE parameter $\mathbf{E}\left[\bar{Y}_{j}(1) - \bar{Y}_{j}(0)\right]$; the ATE parameter does not lose its casual interpretation. In Example 2, it is straightforward to see that the linear regression model satisfies the rotation invariance and the rotated parameter of interest is $\tilde{A}\theta = (\theta_{1}^{\mathsf{T}}, \theta_{2}^{\mathsf{T}}, (A^{\mathsf{T}^{-1}}\theta_{3})^{\mathsf{T}})^{\mathsf{T}}$. The slope coefficients on X_{ij} and Z_{j} remain unchanged. Moreover, the comparative statistics in terms

of \mathbf{F}_{j} can still be constructed using $\tilde{A}\theta$: given $\theta_{3}^{\mathsf{T}}A^{-1}$ and G_{A}^{-1} ,

$$\mathbf{E}\left[Y_{ij}|(X_{ij},Z_j,N_j,\mathbf{F}_j) = (x,z,n,\mathbf{F}')\right] - \mathbf{E}\left[Y_{ij}|(X_{ij},Z_j,N_j,\mathbf{F}_j) = (x,z,n,\mathbf{F})\right]$$

$$= \theta_3^{\mathsf{T}}\left(G^{-1}\left(\mathbf{F}'\right) - G^{-1}\left(\mathbf{F}\right)\right) \quad \cdots \text{ what we want}$$

$$= \theta_3^{\mathsf{T}}A^{-1}\left(G_A^{-1}\left(\mathbf{F}'\right) - G_A^{-1}\left(\mathbf{F}\right)\right) \quad \cdots \text{ what we construct from data}$$

when $\mathbf{F}, \mathbf{F}' \in G(\mathcal{S}_{\lambda})$.

Theorem 1 establishes the consistency of the GMM estimator for the rotated parameter of interest: let

$$\hat{\theta} = \arg\min_{\theta \in \widehat{A}\Theta} \left\| \frac{1}{J} \sum_{j=1}^{J} m\left(\widehat{W}_{j}; \theta\right) \right\|_{2}.$$

Theorem 1. Suppose that Assumption 2 holds and there exists an consistent estimator $\{\hat{\lambda}_j\}_{j=1}^J$ for $\{\lambda_j\}_{j=1}^J$ such that

$$\left\| \begin{pmatrix} \hat{\lambda}_1 & \cdots & \hat{\lambda}_J \end{pmatrix} - A \begin{pmatrix} \lambda_1 & \cdots & \lambda_J \end{pmatrix} \right\|_{\mathcal{F}} = o_p(1).$$

Then,

$$\hat{\theta} \xrightarrow{p} \tilde{A}\theta^0$$

as $J \to \infty$.

Theorem 1 assumes that the researcher is given some \sqrt{J} -consistent estimator

$$\begin{split} G_A^{-1}(\mathbf{F}) &= G_A^{-1} \left(G \left(G^{-1}(\mathbf{F}) \right) \right) = G_A^{-1} \left(G \left(A^{-1} A G^{-1}(\mathbf{F}) \right) \right) \\ &= G_A^{-1} \left(G_A \left(A G^{-1}(\mathbf{F}) \right) \right) = A G^{-1}(\mathbf{F}). \qquad \left(\because G(A^{-1} \lambda) = G_A(\lambda) \right) \end{split}$$

⁷The second equality holds since

for the rotated latent factor $A\lambda_j$: $\sum_{j=1}^J \left\| \hat{\lambda}_j - A\lambda_j \right\|_2^2 = o_p(1)$.

In addition to Assumption 2, Assumption 3 assumes additional conditions on the differentiability of m with regard to θ . Theorem 2 establishes the asymptotic normality.

Assumption 3.

a. Let \tilde{m} denote a component of the moment function m. The map $\theta \mapsto \tilde{m}(W_j^*;\theta)$ is almost surely twice differentiable on Θ and there are some $\eta, M > 0$ such that

$$\mathbf{E}\left[\sup_{\|\theta'-\theta^0\|_2 \leq \eta} \left\| \frac{\partial^2}{\partial \theta \partial \theta^\intercal} \tilde{m}\left(W_j^*;\theta\right) \right|_{\theta=\theta'} \right\|_F \right] \leq M$$

b. $\mathbf{E}\left[\frac{\partial}{\partial \theta}m\left(W_{j}^{*};\theta\right)\Big|_{\theta=\theta^{0}}\right]$ has full rank. Moreover,

$$\sup_{\theta' \in \Theta} \left\| \frac{1}{J} \sum_{j=1}^{J} \frac{\partial}{\partial \theta} m(W_j^*; \theta) \Big|_{\theta = \theta'} - \mathbf{E} \left[\frac{\partial}{\partial \theta} m(W_j^*; \theta) \Big|_{\theta = \theta'} \right] \right\|_{F} \to 0$$

as $J \to \infty$.

Theorem 2. Suppose that $\hat{\theta}$ satisfies

$$\left\| \frac{1}{J} \sum_{j=1}^{J} m\left(\widehat{W}_{j}; \widehat{\theta}\right) \right\|_{2} = o_{p}\left(\frac{1}{\sqrt{J}}\right),$$

in addition to the conditions in Theorem 1. Then,

$$\sqrt{J}\left(\hat{\theta} - \tilde{A}\theta^0\right) \xrightarrow{d} \mathcal{N}\left(\mathbf{0}, \Sigma\right)$$

as $J \to \infty$, with some consistently estimable covariance matrix Σ .

3 Latent factor models for distribution

A notable feature of the hypertheorems in Section 2 is that the latent factor λ_j and the model parameter θ are both discussed in terms of some rotation A and a corresponding shift $\theta \mapsto \tilde{A}\theta$. Thanks to the rotation invariance, we can use machine learning algorithms that summarize patterns of high-dimensional inputs—such as distributions—to low-dimensional outputs, even though the outputs are often not readily interpretable in the context of an econometric model. In this section, I take the K-means clustering and the functional PCA as examples of such an algorithm and develop two different econometric models for the cluster-level distribution of individual-level characteristics G and construct estimators for the rotated latent factor $A\lambda_j$.

3.1 K-means clustering

The K-means clustering algorithm is an algorithm that solves a minimization problem called the K-means minimization problem. The K-means minimization problem takes J data points and a predetermined number of groups ρ and finds a grouping structure on the J data points such that the sum of the distance between data points and their closest group centeroid is minimized. In this paper, a data point is a cluster-level distribution of the individual-level control covariate \mathbf{F}_j . However, we do not directly observe \mathbf{F}_j . Thus, as an estimator for \mathbf{F}_j , I use the empirical distribution function $\hat{\mathbf{F}}_j$: for all $x \in \mathbb{R}^p$,

$$\hat{\mathbf{F}}_j(x) = \frac{1}{N_j} \sum_{i=1}^{N_j} \mathbf{1} \{ X_{ij} \le x \}.$$

Now that we have estimates for the cluster-level distributions, a feasible version of the K-means minimization problem can be defined for some $\rho \leq J$.

With the predetermined ρ , the minimization problem assigns each cluster to one of ρ groups so that clusters within a group are similar to each other in terms of the l_2 norm $\|\cdot\|_{w,2}$ on $\hat{\mathbf{F}}_j$:

$$\left(\hat{\lambda}_1, \cdots, \hat{\lambda}_J, \hat{G}(1), \cdots, \hat{G}(\rho)\right) = \arg\min_{\lambda, G} \sum_{j=1}^J \left\|\hat{\mathbf{F}}_j - G(\lambda_j)\right\|_{w, 2}^2.$$
 (8)

In the minimization problem, there are two arguments to minimize the objective over: λ_j and $G(\lambda)$. λ_j is the group to which cluster j is assigned to: $\lambda_j \in \{1, \dots, \rho\}$. $G(\lambda)$ is the distribution of X_{ij} for group λ . For each cluster j, $\hat{\lambda}_j$ will be the group which cluster j is closest to, measured in terms of $\|\hat{\mathbf{F}}_j - \hat{G}(\lambda)\|_{w,2}$. Note that the algorithm maps $\hat{\mathbf{F}}_j$ to $\hat{\lambda}_j$, a discrete variable with finite support: dimension reduction.

To solve (8), I use the (naive) K-means clustering algorithm. Find that at the optimum

$$\left(\hat{G}(\lambda)\right)(x) = \frac{1}{\sum_{j=1}^{J} \mathbf{1}\{\hat{\lambda}_j = \lambda\}} \sum_{j=1}^{J} \hat{\mathbf{F}}_j(x) \mathbf{1}\{\hat{\lambda}_j = \lambda\}.$$

The estimated \hat{G} for group λ will be the subsample mean of \hat{F}_j where the subsample is the set of clusters that are assigned to group λ under $(\hat{\lambda}_1, \dots, \hat{\lambda}_J)$. Motivated by this observation, the iterative K-means algorithm finds the (local) minimum as follows: given an initial grouping $(\lambda_1^{(0)}, \dots, \lambda_J^{(0)})$,

1. (update G) Given the grouping from the s-th iteration, update $G^{(s)}(\lambda)$ to be the subsample mean of $\hat{\mathbf{F}}_j$ where the subsample is the set of clusters that are assigned to group λ under $(\lambda_1^{(s)}, \dots, \lambda_J^{(s)})$:

$$\left(G^{(s)}(\lambda)\right)(x) = \frac{1}{\sum_{j=1}^{J} \mathbf{1}\{\lambda_j^{(s)} = \lambda\}} \sum_{j=1}^{J} \hat{\mathbf{F}}_j(x) \mathbf{1}\{\lambda_j^{(s)} = \lambda\}.$$

2. (update λ) Given the subsample means from the s-th iteration, update $\lambda_j^{(s)}$ for each cluster by letting $\lambda_j^{(s+1)}$ be the solution to the following minimization problem: for $j = 1, \dots, J$,

$$\min_{\lambda \in \{1, \dots, \rho\}} \left\| \hat{\mathbf{F}}_j - G^{(s)}(\lambda) \right\|_{w,2}.$$

3. Repeat 1-2 until $(\lambda_1^{(s)}, \dots, \lambda_J^{(s)})$ is not updated, or some stopping criterion is met.

For stopping criterion, popular choices are to stop the algorithm after a fixed number of iterations or to stop the algorithm when updates in $G^{(s)}(\lambda)$ are sufficiently small. While the iterative algorithm is extremely fast, giving us computational gain, there is no guarantee that the algorithm gives us the global minimum.⁸ Thus, I suggest using multiple initial groupings and comparing the results of the K-means algorithm across initial groupings.

Once the K-means minimization problem is solved, I use the estimated group $\hat{\lambda}_j$ as the estimated latent factor, by transforming it to a categorical variable: with e_1, \dots, e_{ρ} being the elementary vectors of \mathbb{R}^{ρ} ,

$$\hat{\lambda}_j \in \{e_1, \cdots, e_\rho\} =: \mathcal{S}_{\lambda}.$$

$$\|\mathbf{F}\|_{w,2} = \left(\sum_{\tilde{d}=1}^{d} \left(\mathbf{F}(x^{\tilde{d}})\right)^{2} w(x^{\tilde{d}})\right)^{\frac{1}{2}}.$$

Then, Inaba et al. (1994) shows that the global minimum can be computed in time $O(J^{d\rho+1})$. On the other hand, the iterative algorithm is computed in time $O(J\rho d)$; the computation time becomes proportional to J by using the iterative algorithm. A number of alternative algorithms with computation time linear in J have been proposed and some of them, e.g. Kumar et al. (2004), have certain theoretical guarantees. However, most of the alternative algorithms are complex to implement.

⁸For simplicity of the discussion, let the weighting function w in $\|\cdot\|_{w,2}$ be discrete and finite: with some $x^1, \dots, x^d \in \mathbb{R}^p$,

Note that the estimated latent factor $\hat{\lambda}_j$ is not unique. Given the grouping structure $\hat{\lambda}_j$ and the centeroids $\hat{G}(\lambda)$, we can find a relabeling on $\hat{\lambda}_j$ and $\hat{G}(\lambda)$ such that the minimum for (8) is still attained. Thus, we cannot take the face value of $\hat{\lambda}_j$ and interpret it to be an estimator for the true latent factor λ_j .

Now, it remains to develop an econometric model where the estimator for the latent factor using the K-means clustering algorithm is actually a consistent estimator for the true latent factor with sensible interpretation, at the rate discussed in Theorems 1-2. Assumption 4 discusses a set of conditions for that.

Assumption 4. (Finite Types of Clusters)

- **a.** (no measure zero type) $S_{\lambda} = \{e_1, \dots, e_{\rho}\}$ and $\mu(r) := \Pr\{\lambda_j = e_r\} > 0$ $\forall r = 1, \dots, \rho$.
- **b.** (sufficient separation) For every $r \neq r'$,

$$||G(e_r) - G(e_{r'})||_{w,2}^2 =: c(r, r') > 0.$$

c. (growing clusters) $N_{\min} = \max_n \{ \Pr \{ \min_j N_j \ge n \} = 1 \} \to \infty$ as $J \to \infty$.

Assumption 4.a ensures that we observe positive measure of clusters for each value of the latent factor as J goes to infinity. Under Assumption 4.b, clusters with different values of the latent factor will be distinct from each other in terms of their distributions of X_{ij} . Thus, the K-means algorithm that uses $\hat{\mathbf{F}}_j$ is able to tell apart clusters with different values of λ_j , when $\hat{\mathbf{F}}_j$ is a consistent estimator for \mathbf{F}_j . Assumption 4.c assumes that the size of clusters goes to infinity as the number of clusters goes to infinity. This assumption limits our

attention to cases where clusters are large. It should be noted that Assumption 4.c excludes cases where the size of cluster increases only for some clusters and is fixed for some other clusters; the estimation of $\hat{\mathbf{F}}_j$ jointly improves as J increases.

The key element of the econometric model described in Assumption 4 is that there are finite types of clusters, in terms of their distribution of individual-level control covariates X_{ij} . Thus, using Assumption 4 to model the cluster-level heterogeneity would make the most sense when we expect that the heterogeneity across clusters are discrete and finite.

Proposition 1 derives a rate on the estimation error of the latent factor.

Proposition 1. Suppose that 4 holds. Then, there is a rotation matrix A such that

$$\Pr\left\{\exists \ j \ s.t. \ \hat{\lambda}_j \neq A\lambda_j\right\} = o\left(\frac{J}{N_{\min}^{\nu}}\right) + o(1)$$

for any $\nu > 0$ as $J \to \infty$. Moreover, suppose that there is some $\nu^* > 0$ such that $N_{\min}^{\nu^*}/J \to \infty$ as $J \to \infty$. Then,

$$\left\| \begin{pmatrix} \hat{\lambda}_1 & \cdots & \hat{\lambda}_J \end{pmatrix} - A \begin{pmatrix} \lambda_1 & \cdots & \lambda_J \end{pmatrix} \right\|_F = \left(2 \sum_{j=1}^J \mathbf{1} \left\{ \hat{\lambda}_j \neq A \lambda_j \right\} \right)^{\frac{1}{2}} = o_p(1).$$

Proposition 1 shows that the misclassification probability of the K-means algorithm grouping clusters with different values of λ_j goes to zero when $J/N_{\min}^{\nu^*}$ goes to zero for some $\nu^* > 0$. When the misclassification probability converges to zero, the estimation error $\left(\sum_{j=1}^{J} \|\hat{\lambda}_j - A\lambda_j\|_2^2\right)^{\frac{1}{2}}$ is $o_p(a_n)$ for any sequence $\{a_n\}_{n=1}^{\infty}$ since for any $\varepsilon > 0$ the probability $\Pr\{a_n(\sum_{j=1}^{J} \|\hat{\lambda}_j - A\Lambda_j\|_2^2)^{\frac{1}{2}} > \varepsilon\}$ is bounded by the misclassification probability. The rate on the misclassifica-

tion probability is the same rate found in the literature: e.g., Bonhomme and Manresa (2015).

Under Assumption 4, we can apply the K-means clustering estimator for the latent factor to a variety of models with a grouping structure. For example, Example 1 in the previous section would be a clustered treatment model with latent group-specific propensity score. Example 2 in the previous section would be a group fixed-effect regression model.

Though the K-means clustering estimator has desirable qualities such as being concise and having a fast estimation rate, the finite support assumption can be too restrictive, depending on contexts. Thus, in the next subsection, I propose an alternative framework where the cluster-level heterogeneity λ_j is assumed to be continuous, using the functional PCA.

3.2 Functional principal component analysis

The functional PCA is an extension of the matrix PCA technique to a functional dataset. Given J functions, the functional PCA computes their product matrix and apply the eigenvalue decomposition to the product matrix to extract a finite number of eigenvectors that explain the most of the variation across J functions. In this paper, cluster-level density function of the individual-level control covariates X_{ij} is used as the functions to which the functional PCA is applied. Again, the density functions are not directly observed. Thus, we compute the product matrix using kernel estimation. Given some kernel K and positive definite bandwidth matrix H,

$$\hat{M}_{jk} = \begin{cases} \frac{\sum_{i=1}^{N_j} \sum_{i'=1}^{N_k}}{N_j N_k} \int_{\mathbb{R}^p} \frac{K\left(H^{-\frac{1}{2}}(x - X_{ij})\right)}{\det(H)^{\frac{1}{2}}} \cdot \frac{K\left(H^{-\frac{1}{2}}(x - X_{i'k})\right)}{\det(H)^{\frac{1}{2}}} w(x) dx, & \text{if } j \neq k \\ \frac{\sum_{i=1}^{N_j} \sum_{i' \neq i}}{N_j (N_j - 1)} \int_{\mathbb{R}^p} \frac{K\left(H^{-\frac{1}{2}}(x - X_{ij})\right)}{\det(H)^{\frac{1}{2}}} \cdot \frac{K\left(H^{-\frac{1}{2}}(x - X_{i'j})\right)}{\det(H)^{\frac{1}{2}}} w(x) dx, & \text{if } j = k, \end{cases}$$

 \hat{M} is an estimator for $J \times J$ matrix M such that

$$M_{jk} = \int_{\mathbb{R}^p} \mathbf{f}_j(x) \mathbf{f}_k(x) w(x) dx$$

where \mathbf{f}_j is the cluster-level density function of the individual-level control covariates X_{ij} for cluster j. Note that the density function is not directly estimated; only the J(J+1)/2 moments are estimated.

Given the estimate for the product matrix, I apply the eigenvalue decomposition to \hat{M} and compute the eigenvectors: $\hat{q}_1, \dots \hat{q}_J$. Each component of the r-th eigenvectors captures one dimension of heterogeneity across clusters and the value of the r-th eigenvalue denotes the magnitude of the corresponding dimension of heterogeneity. Thus, with some predetermined $\rho \leq J$, taking eigenvectors associated with the first ρ largest eigenvalues finds a collection of ρ -dimensional vectors that explain the variation across clusters the most. Estimate λ_j by taking the j-th components of the eigenvectors:

$$\hat{\lambda}_j = \sqrt{J} \left(\hat{q}_{1j}, \cdots, \hat{q}_{\rho j} \right)^{\mathsf{T}}$$

where $\hat{q}_r = (\hat{q}_{r1}, \cdots, \hat{q}_{rJ})^{\mathsf{T}}$ is the eigenvector associated with the r-th eigenvalue. The rescaling with \sqrt{J} is introduced so that the estimated latent factor $\hat{\lambda}_j$ does not converge to zero as J grows: $\hat{q}_r^{\mathsf{T}}\hat{q}_r = 1$ is imposed in the eigenvalue decomposition. Again, the estimated latent factor $\hat{\lambda}_j$ is not unique. In an eigenvalue decomposition, the eigenvectors are uniquely determined only up to a sign even when the eigenvalues are all distinct.

The following set of assumptions motivate a finite mixture model for the cluster-level density of individual-level characteristics and discuss conditions under which an estimation error rate for the functional PCA estimators is

derived.

Assumption 5. (Finite Types of Individuals) With some C > 0,

a. (finite mixture model for distribution)

$$S_{\lambda} = \left\{ \lambda = \left(\lambda_1, \cdots, \lambda_{\rho} \right)^{\mathsf{T}} \in \mathbb{R}^{\rho} : \lambda_r \ge 0 \ \forall r \ and \ \sum_{r=1}^{\rho} \lambda_r = 1 \right\}$$

and there exist thrice continuously differenciable distribution functions G_1, \dots, G_{ρ} such that for any $x \in \mathbb{R}^p$,

$$(G(\lambda))(x) = \sum_{r=1}^{\rho} \lambda_r G_r(x).$$

 g_1, \dots, g_{ρ} are the corresponding density functions. For a = 0, 1, 2 and $r = 1, \dots, \rho$,

$$\sup_{x \in \mathbb{R}^p} \left\| g_r^{(a)}(x) \right\|_F \le C.$$

b. (sufficient variation in $\{g_r\}_{r=1}^{\rho}$ and $\{\lambda_j\}_{j=1}^{J}$) Let (V_1, \dots, V_{ρ}) denote the vector of the ordered eigenvalues of M. There exists some \tilde{J} such that $\Pr\{V_1 > \dots > V_{\rho} > 0\} = 1$ when $J \geq \tilde{J}$. Also,

$$\frac{1}{J}(V_1, \cdots, V_\rho) \xrightarrow{p} (v_1^*, \cdots, v_\rho^*)$$

for some $\{v_r^*\}_{r=1}^{\rho}$ such that $v_1^* > \dots > v_{\rho}^* > 0$.

c. (growing clusters) $N_{\min} = \max_n \{ \Pr \{ \min_j N_j \ge n \} = 1 \} \to \infty \text{ as } J \to \infty.$

Assumption 5.a assumes that the cluster-level distribution function \mathbf{F}_j is a mixture of ρ underlying distributions G_1, \dots, G_{ρ} with the latent factor λ_j as

the mixture weights. In this sense, we can construct a following comparison between the two frameworks proposed in this paper: Assumption 4 for the K-means clustering algorithm assumes that there are finite types of *clusters*, while Assumption 5 for the functional PCA assumes that there are finite types of *individuals* across clusters.

In addition to motivating the finite mixture model for density, Assumption 5.a assumes that the underlying density functions g_1, \dots, g_{ρ} are smooth and bounded, up to their third derivatives. Under Assumption 5.a, the product matrix M can be rewritten as follows:

$$M_{jk} = \int_{\mathbb{R}^{p}} \mathbf{f}_{j}(x) \mathbf{f}_{k}(x) w(x) dx = \sum_{r,r'} \lambda_{jr} \lambda_{kr'} \int_{\mathbb{R}^{p}} g_{r}(x) g_{r'}(x) w(x) dx$$

$$M = \begin{pmatrix} \lambda_{1}^{\mathsf{T}} \\ \vdots \\ \lambda_{J}^{\mathsf{T}} \end{pmatrix} \underbrace{\begin{pmatrix} \int_{\mathbb{R}^{p}} g_{1}(x)^{2} w(x) dx & \cdots & \int_{\mathbb{R}^{p}} g_{\rho}(x) g_{1}(x) w(x) dx \\ \vdots & \ddots & \vdots \\ \int_{\mathbb{R}^{p}} g_{1}(x) g_{\rho}(x) w(x) dx & \cdots & \int_{\mathbb{R}^{p}} g_{\rho}(x)^{2} w(x) dx \end{pmatrix}}_{=:V} \begin{pmatrix} \lambda_{1}^{\mathsf{T}} \\ \vdots \\ \lambda_{J}^{\mathsf{T}} \end{pmatrix}^{\mathsf{T}}.$$

Assumption 5.b assumes that the underlying density functions g_1, \dots, g_ρ have sufficient variation, when measured with $\langle \cdot, \cdot \rangle_w$.

Proposition 2 derives a rate on the estimation error of the latent factor.

Proposition 2. Suppose that Assumption 5 holds and that the kernel K used in the estimation procedure satisfies

- i. K is bounded, nonnegative and symmetric around zero in the sense that $\int_{\mathbb{R}^{\rho}} t_r K(t) dt = 0 \text{ for any } r\text{-th component } t_r \text{ of } t.$
- ii. $\int_{\mathbb{R}^{\rho}} K(t)dt = 1$.
- iii. $\int_{\mathbb{R}^{\rho}} |t_r t_{r'}| K(t) dt \leq C$ for any two components t_r and $t_{r'}$ of t.

and the positive definite weighting matrix H satisfies

iv. $N_{\min} \cdot det(H)^{\frac{1}{2}}$ goes to infinity as $J \to \infty$.

$$v. \ \|H^{\frac{1}{2}}\|_{F} \propto N_{\min}^{-\nu} \ for \ some \ \nu \in [0.25, 1).$$

Then,

$$\left\| \begin{pmatrix} \hat{\lambda}_1 & \cdots & \hat{\lambda}_J \end{pmatrix} - A \begin{pmatrix} \lambda_1 & \cdots & \lambda_J \end{pmatrix} \right\|_F = O_p \left(\frac{\sqrt{J}}{\sqrt{N_{\min}}} \right)$$

with some $\rho \times \rho$ matrix A, which is invertible and bounded with probability going to one.

Proposition 2 bounds the estimation error rate with the square root of the relative growth rate. Recall that $N_{\min} \propto J$ is a sufficiently fast growth rate in the case of the K-means clustering for the hypertheorems. However, for the functional PCA, $N_{\min} \propto J$ is not fast enough for the hypertheorems; at the cost of requiring a faster growth rate on the cluster size, the finite types of individuals model allows for continuous cluster-level heterogeneity.

4 Simulation

To discuss finite-sample performance of the K-means estimator and the functional PCA estimator, I simulated 500 cluster-level random samples for three different data generating processes: for $j=1,\cdots,J$ and $i=1,\cdots,N$,

$$Y_{ij} = 2D_j + \mu(\lambda_j) + \varepsilon_{ij}$$

where $D_j \perp \{X_{ij}, \varepsilon_{ij}\}_{i=1}^N \mid \lambda_j$ and

$$D_{j} \mid \lambda_{j} \sim \operatorname{Bernoulli}(\pi(\lambda_{j}))$$

$$\begin{pmatrix} X_{ij} \\ \varepsilon_{ij} \end{pmatrix} \mid \lambda_{j} \stackrel{\text{iid}}{\sim} \mathcal{N} \left(\begin{pmatrix} \mu(\lambda_{j}) \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma(\lambda_{j})^{2} & 0 \\ 0 & N/4 \end{pmatrix} \right).$$

 D_j is a cluster-level binary treatment variable that is potentially correlated with $\mu(\lambda_j)$. The variance of ε_{ij} is set to be proportional to N so that the only gain from larger N is improvement in the latent factor estimation and the variance of \bar{Y}_j stays the same.

Firstly, for the K-means estimator, I considered a DGP where there are two types of clusters, satisfying Assumption 4. For the functional PCA estimator, I considered a DGP where there are two types of individuals across clusters, satisfying Assumption 5. For both models, the dimensionality of the latent factor is $\rho = 2$. Lastly, to discuss the finite-sample performance of the latent factor models under misspecification, I considered a DGP where the cluster-level distributions do not admit a linear relationship and therefore cannot be reduced to a low-dimensional latent factor model.

For each random sample, I firstly apply the corresponding latent factor estimation method (both for the misspecification exercise) to estimate the latent factor. Then, I estimate the propensity to be treated, using the estimated latent factor. For the K-means estimated factors, I simply take the sample mean: $\hat{\pi}(\lambda) = \frac{\sum_{j=1}^{J} D_{j} \mathbf{1}\{\hat{\lambda}_{j} = \lambda\}}{\sum_{j=1}^{J} \mathbf{1}\{\hat{\lambda}_{j} = \lambda\}}$. For the functional PCA estimated factors, I run OLS: $D_{j} = \hat{\lambda}_{j}^{\mathsf{T}}\pi$. Using the estimated propensity score, $\hat{\beta}$ is computed with the inverse probability weighting principle: $\hat{\beta} = \sum_{j=1}^{J} \left(\frac{D_{j}}{\hat{\pi}(\hat{\lambda}_{j})} - \frac{1-D_{j}}{1-\hat{\pi}(\hat{\lambda}_{j})}\right) \bar{Y}_{j}$. As a benchmark, I also computed a simple mean difference estimator.

Table 1 contains the simulation result for the first DGP. From the third

and the fourth columns, we can see that the classification improves and thus the bias decreases as N increases. Table 2 contains the simulation results for the second DGP and the third column shows that the average R^2 of regressing λ_j on $\hat{\lambda}_j$ improves as N increases. Though the functional PCA estimators explain on average 90% of variation in the true latent factors when $N \geq 50$, the estimator suffers from extreme variance when N is small. Lastly, Table 3 contains the simulation result for the third DGP. The functional PCA estimator seems to ourperform the K-means estimator when both J and N are larger thanks to its flexibility while it suffers from high variability when J and N are smaller.

5 Empirical Illustration

As an empirical illustration of an econometric framework where the cluster-level distribution is used as a control, I revisit the question of whether an increase in the state-level minimum wage leads to a decrease in teen employment rate in the United States, using the Current Population Survey (CPS) from 2000-2021. To control for the state-level heterogeneity with regard to their labor market equilibria, I use two time-varying state-level distributions: the distribution of the individual-level employment history variable $EmpHistory_{ijt}$ and the distribution of the individual-level wage income variable $WageInc_{ijt}$. $EmpHistory_{ijt}$ is a discrete variable that concatenates the last four months' employment status variables indicating whether the individual was employed, unemployed or not in the labor force. The K-means estimator is applied to the distribution of the $EmpHistory_{ijt}$. $WageInc_{ijt}$ is truncated at zero, since $EmpHistory_{ijt}$ already contains information on unemployment, and then logged. Due to data limitation, $WageInc_{ijt}$ is only recorded annually: March

Annual Social and Economic Supplement (ASEC). The functional PCA is applied to the truncated $\log WageInc_{ijt}$.

To estimate the disemployment effect of minimum wage, I use the regression specification widely used in the labor economics literature: see Allegretto et al. (2011); Neumark et al. (2014); Allegretto et al. (2017) for more.

$$Y_{ijt} = \alpha_j + \lambda_{jt}^{\mathsf{T}} \delta_t + \beta \log MinWage_{jt} + X_{ijt}^{\mathsf{T}} \theta_1 + \theta_2 EmpRate_{jt} + U_{ijt}. \tag{9}$$

 Y_{ijt} is the binary employment status variable for teenager i in state j at time t. X_{ijt} is the socioeconomic covariates of age, race, sex, marital status and education. $EmpRate_{jt}$ is the state-level employment rate. λ_{jt} is the state-level latent factor that can be estimated from the distribution of $EmpHistory_{ijt}$ and $\log WageInc_{ijt}$. Since $MinWage_{jt}$ is logged, β divided by the average teen employment rate is the minimum wage elasticity of teen employment.

Table 4 compares the estimate on β across different specifications; particularly, I compare a cross-section regression that only uses observations from January 2007, when the most number of states raised their minimum wage level, with a pooled regression that uses all of the 22 years. The right panel of Table 4 suggests that the two-way fixed-effect model sufficiently controls for the state-level labor market heterogeneity while the left panel shows that distributional control matters when there is no time dimension to be used.

Table 5 extends the regression specification (9) and explores aggregate-level and individual-level heterogeneity in the disemployment effect of minimum wage. The left panel shows how the minimum wage affects older teenagers and younger teenagers differently; the disemployment effect is mostly coming from younger teenagers. The right panel interacts Age_{ijt} with the discrete latent factor from the distribution of $EmpHistory_{ijt}$; it discusses how a shift

in the state-level labor market affects older teenagers and younger teenagers differently. Across the two age groups, the disemployment effect is stronger in Type 3 states, i.e. $\hat{\lambda}_{jt,EmpHistory} = 3$, where both the employment rate and the labor force participation rate is lower.

6 Conclusion

This paper motivates the use of the cluster-level distribution of individual-level control covariates as a control for the cluster-level heterogeneity in a clustered data. This framework is most relevant when the clusters are large, so that the estimation errors on the cluster-level distributions are small. By explicitly controlling for the distribution of individuals, two different dimensions of heterogeneity in data are modeled, being true to the hierarchical nature of the dataset: individual heterogeneity and aggregate heterogeneity.

To implement the idea of distributional control, the K-means algorithm are the functional PCA are used in this paper. The two approaches complement each other; one attains consistency under slower growth rate of cluster size while the other allows for continuous cluster-level heterogeneity. Based on empirical contexts, a yet another dimension reduction method on distributions may be more suitable, calling for follow-up research that discuss alternative functional analysis methods. Also, this paper mostly focuses on cross-section data. In Section 5, the cluster-level latent factor are assumed to be strictly exogenous. A natural direction for future research is to extend this and study a panel data model with clustering structure where the time-varying distribution of individuals for each cluster is modeled to be a dynamic process.

References

- **Abadie, Alberto, Alexis Diamond, and Jens Hainmueller**, "Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program," *Journal of the American statistical Association*, 2010, 105 (490), 493–505.
- Abadie, Alberto, Alexis Diamond, and Jens Hainmueller, "Comparative politics and the synthetic control method," *American Journal of Political Science*, 2015, 59 (2), 495–510.
- Algan, Yann, Pierre Cahuc, and Andrei Shleifer, "Teaching practices and social capital," American Economic Journal: Applied Economics, 2013, 5 (3), 189–210.
- Allegretto, Sylvia A, Arindrajit Dube, and Michael Reich, "Do minimum wages really reduce teen employment? Accounting for heterogeneity and selectivity in state panel data," *Industrial Relations: A Journal of Economy and Society*, 2011, 50 (2), 205–240.
- Allegretto, Sylvia, Arindrajit Dube, Michael Reich, and Ben Zipperer, "Credible research designs for minimum wage studies: A response to Neumark, Salas, and Wascher," *ILR Review*, 2017, 70 (3), 559–592.
- Altonji, Joseph G and Rosa L Matzkin, "Cross section and panel data estimators for nonseparable models with endogenous regressors," *Econometrica*, 2005, 73 (4), 1053–1102.
- Arellano, Manuel and Stéphane Bonhomme, "Identifying distributional characteristics in random coefficients panel data models," *The Review of Economic Studies*, 2012, 79 (3), 987–1020.

- Arkhangelsky, Dmitry and Guido W Imbens, "Fixed Effects and the Generalized Mundlak Estimator," Review of Economic Studies, 2023, p. rdad089.
- Bandiera, Oriana, Iwan Barankay, and Imran Rasul, "Incentives for managers and inequality among workers: Evidence from a firm-level experiment," *The Quarterly Journal of Economics*, 2007, 122 (2), 729–773.
- Bartel, Ann P, Brianna Cardiff-Hicks, and Kathryn Shaw, "Incentives for Lawyers: Moving Away from "Eat What You Kill"," *ILR Review*, 2017, 70 (2), 336–358.
- Bester, C Alan and Christian Hansen, "Identification of marginal effects in a nonparametric correlated random effects model," *Journal of Business & Economic Statistics*, 2009, 27 (2), 235–250.
- Bonhomme, Stéphane and Elena Manresa, "Grouped patterns of heterogeneity in panel data," *Econometrica*, 2015, 83 (3), 1147–1184.
- Cengiz, Doruk, Arindrajit Dube, Attila Lindner, and Ben Zipperer, "The effect of minimum wages on low-wage jobs," *The Quarterly Journal of Economics*, 2019, 134 (3), 1405–1454.
- **Chamberlain, Gary**, "Multivariate regression models for panel data," *Journal of econometrics*, 1982, 18 (1), 5–46.
- Choi, Syngjoo, Booyuel Kim, Minseon Park, and Yoonsoo Park, "Do Teaching Practices Matter for Cooperation?," *Journal of Behavioral and Experimental Economics*, 2021, 93, 101703.

- Graham, Bryan S and James L Powell, "Identification and estimation of average partial effects in "irregular" correlated random coefficient panel data models," *Econometrica*, 2012, 80 (5), 2105–2152.
- **Gunsilius, Florian F**, "Distributional synthetic controls," *Econometrica*, 2023, 91 (3), 1105–1117.
- Hamilton, Barton H, Jack A Nickerson, and Hideo Owan, "Team incentives and worker heterogeneity: An empirical analysis of the impact of teams on productivity and participation," *Journal of political Economy*, 2003, 111 (3), 465–497.
- Inaba, Mary, Naoki Katoh, and Hiroshi Imai, "Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering," in "Proceedings of the tenth annual symposium on Computational geometry" 1994, pp. 332–339.
- Kumar, Amit, Yogish Sabharwal, and Sandeep Sen, "A simple linear time $(1 + \varepsilon)$ -approximation algorithm for k-means clustering in any dimensions," in "45th Annual IEEE Symposium on Foundations of Computer Science" IEEE 2004, pp. 454–462.
- Mundlak, Yair, "On the pooling of time series and cross section data," Econometrica: journal of the Econometric Society, 1978, pp. 69–85.
- Neumark, David and Peter Shirley, "Myth or measurement: What does the new minimum wage research say about minimum wages and job loss in the United States?," *Industrial Relations: A Journal of Economy and Society*, 2022, 61 (4), 384–417.

- Neumark, David, JM Ian Salas, and William Wascher, "Revisiting the minimum wage—Employment debate: Throwing out the baby with the bathwater?," *Ilr Review*, 2014, 67 (3_suppl), 608–648.
- Raudenbush, Stephen W and Anthony S Bryk, Hierarchical linear models: Applications and data analysis methods, Vol. 1, sage, 2002.
- **Shapiro, Bradley T**, "Positive spillovers and free riding in advertising of prescription pharmaceuticals: The case of antidepressants," *Journal of political economy*, 2018, 126 (1), 381–437.
- Wooldridge, Jeffrey M, "Fixed-effects and related estimators for correlated random-coefficient and treatment-effect panel data models," *Review of Economics and Statistics*, 2005, 87 (2), 385–390.
- Xu, Yiqing, "Generalized synthetic control method: Causal inference with interactive fixed effects models," *Political Analysis*, 2017, 25 (1), 57–76.
- Yang, Yimin and Peter Schmidt, "An econometric approach to the estimation of multi-level models," *Journal of Econometrics*, 2021, 220 (2), 532–543.

Appendix

A Tables

Table 1—Finite Types of Clusters

		mean	diff.	K-means				
J	N	bias	MSE	Pr {perfect class.}	bias	MSE		
	10	0.206	0.112	0.126	0.056	0.057		
30	50	0.210	0.103	0.990	0.013	0.035		
	100	0.188	0.100	1.000	-0.003	0.039		
	10	0.204	0.082	0.032	0.048	0.030		
50	50	0.201	0.079	0.986	-0.003	0.023		
	100	0.213	0.083	1.000	0.013	0.021		

Notes: $\Pr \{\lambda_j = 1\} = \Pr \{\lambda_j = 2\} = \frac{1}{2}, \ \pi(\lambda) = 0.2 + 0.2 \cdot \lambda, \ \mu(\lambda) = -1.5 + \lambda \text{ and } \sigma(\lambda) = 1.$

Table 2—Finite Types of Individuals

		mear	mean diff.			fPCA			
J	N	bias	MSE	-	$\mathbf{E}[R^2]$	bias	MSE		
	10	0.121	0.099		0.559	0.024	0.094		
30	50	0.126	0.092		0.891	0.003	0.067		
	100	0.118	0.092		0.946	-0.011	0.056		
	10	0.145	0.065		0.583	-0.028	2.761		
50	50	0.137	0.062		0.891	0.011	0.029		
	100	0.138	0.068		0.937	-0.017	0.039		

Notes: $\lambda_j \sim \text{unif}[0,1]$, $\pi(\lambda) = 0.4 + 0.2 \cdot \lambda$, $\mu(\lambda) = -1 + 2 \cdot \lambda$ and $\sigma(\lambda) = 1$. $\mathbf{E}\left[R^2\right]$ denotes the average R^2 of regressing λ_j on $\hat{\lambda}_j$.

Table 3—Nonlinearity in Cluster-Level Distributions

		mear	mean diff.		K-means		functional PCA		
J	N	bias	MSE		bias	MSE		bias	MSE
	10	0.134	0.100		0.074	0.072		0.069	0.088
30	50	0.156	0.096		0.055	0.045		0.039	1.148
	100	0.114	0.096		0.016	0.056		-0.001	0.301
	10	0.113	0.057		0.064	0.038		0.043	0.041
50	50	0.135	0.063		0.048	0.031		0.029	0.039
	100	0.131	0.063		0.035	0.030		-0.008	0.031

Notes: $\lambda_j \sim \text{unif}[0,1], \ \pi(\lambda) = 0.4 + 0.2 \cdot \lambda, \ \mu(\lambda) = -1 + 2 \cdot \lambda \ \text{and} \ \sigma(\lambda) = 1 + \lambda.$

Table 4—Disemployment Effect Estimates Across Specifications

\hat{eta}	(1)	(2)	(3)	(4)	(5)	(6)
	-0.094	-0.057	-0.052	-0.033^*	-0.034**	-0.035**
	(0.057)	(0.062)	(0.079)	(0.016)	(0.016)	(0.016)
time FE	X	X	X	О	X	X
EmpHistory	X	O	O	X	O	O
$\log Wage Income$	X	X	O	X	X	O
T		1			264	

Notes: The discrete latent factors from $EmpHistory_{ijt}$ distribution are interacted with time-varying loadings while the continuous latent factors from $\log WageIncome_{ijt}$ are interacted with time-invariant loadings: $\lambda_{jt,EmpHistory}{}^{\mathsf{T}}\delta_t$ and $\lambda_{jt,WageIncome}{}^{\mathsf{T}}\delta$. The standard errors are clustered at the state level.

TABLE 5—INTERACTION BETWEEN AGE AND STATE LABOR MARKET

\hat{eta}	(1)	(2)	(3)	(4)
${}{\{Age \le 18\}}$	-0.042**	-0.042**		
	(0.016)	(0.016)		
$\times \{\lambda_{EmpHistory} = 1\}$			-0.038**	-0.038**
			(0.016)	(0.016)
$\times \{\lambda_{EmpHistory} = 2\}$			-0.041^{**}	-0.041^{**}
			(0.017)	(0.017)
$\times \{\lambda_{EmpHistory} = 3\}$			-0.052**	-0.052**
			(0.024)	(0.023)
$\{Age = 19\}$	-0.008	-0.008		
	(0.018)	(0.018)		
$\times \{\lambda_{EmpHistory} = 1\}$			-0.004	-0.004
			(0.019)	(0.020)
$\times \{\lambda_{EmpHistory} = 2\}$			-0.006	-0.006
			(0.017)	(0.017)
$\times \{\lambda_{EmpHistory} = 3\}$			-0.028	-0.029
			(0.026)	(0.026)
EmpHistory	О	О	О	О
$\log WageInc$	X	Ο	X	О

Notes: The discrete latent factors from $EmpHistory_{ijt}$ distribution are interacted with time-varying loadings while the continuous latent factors from $\log WageIncome_{ijt}$ are interacted with time-invariant loadings: $\lambda_{jt,EmpHistory}{}^{\mathsf{T}}\delta_t$ and $\lambda_{jt,WageIncome}{}^{\mathsf{T}}\delta$.

Across different months, the discrete latent factors from $EmpHistory_{ijt}$ are ordered in a way that $\lambda_{jt,EmpHistory}=1$ indicates states with higher employment and higher labor force participation while $\lambda_{jt,EmpHistory}=3$ indicates states with lower employment and lower labor force participation

The standard errors are clustered at the state level.