Lecture 6 ALGEBRAIC STRUCTURES

ENSIA 2023/2024

OUTLINE

- Binary operations
- Groups
- Subgroups
- Group homomorphisms
- Rings
- Ideals
- Fields

BINARY OPERATIONS

Definition

A binary operation on a set G is a function $f: G \times G \to G$.

The image f(x,y) of $(x,y) \in G \times G$ will be denoted by

$$x * y, x \circ y, x \perp y, \dots$$
, etc.

Therefore, we can talk about operations $*, \circ, \bot, ...,$ etc.

Example

The addition + is a binary operation on \mathbb{N} .

The soustraction — is a binary operation on \mathbb{Z} , but not on \mathbb{N} .

ASSOCIATIVITY AND COMMUTATIVITY

Definition

A binary operation * on a set G is said to be **associative** if

$$\forall x, y, z \in G, (x * y) * z = x * (y * z).$$

It is said to be **commutative** if

$$\forall x, y \in G, x * y = y * x.$$

Example

The addition + on \mathbb{R} is associative and commutative.

The operation * defined on \mathbb{R} by $x*y=x^2+y^2$ is commutative, but not associative.

The operation * defined on \mathbb{R} by x*y=x is associative, but not commutative.

The operation * defined on \mathbb{R} by x*y=-x is neither associative, nor commutative.

IDENTITY ELEMENT

Definition

An **identity element** (or a **neutral element**) for a binary operation * on a set G is an element $e \in G$ verifying :

$$\forall x \in G, x * e = e * x = x.$$

Example

- For the operation + defined on \mathbb{N} , 0 is the identity element.
- For the operation \times defined on \mathbb{N} , 1 is the identity element.
- ▶ The three last operations defined in Example 2 do not have identity elements.

INVERSE ELEMENT

Definition

Let G be a set equipped with a binary operation * that admits an identity element e. We say that an element $x \in G$ is **invertible** if there exists an element $y \in G$ such that :

$$x * y = y * x = e$$
.

We say then that y is the **inverse** of x.

Remark

When the binary operation is denoted additively: + (resp. multiplicatively: \times), the identity element will be denoted by 0 (resp. 1), and the inverse of x will be denoted by -x (resp. x^{-1}).

However, for the sake of brevity, we also often use the notation x^{-1} in an arbitrary group.

INVERSE ELEMENTS EXAMPLES

Example

For the operation + defined on \mathbb{Z} , the inverse of x is -x.

If we consider the same operation on N, the inverse of $x \neq 0$ doesn't exist.

GROUPS

Definition

A group is a set *G* equipped with a binary operation * verifying :

- 1) The operation * is associative.
- 2) The operation * admits an identity element.
- 3) Every element of G is invertible.

Notation: A group G with a binary operation * is denoted by (G,*). When there is no ambiguity, it is denoted simply by G.

ABELIAN GROUP, EXAMPLES

Definition

A group (G,*) is commutative (or abelian) if the operation * is commutative.

Example

- 1) $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+)$ and $(\mathbb{C},+)$ are commutative groups.
- 2) $(\mathbb{N}, +)$ and (\mathbb{Z}, \times) are not groups.
- Let G be the set of bijective functions from \mathbb{R} to \mathbb{R} , and let \circ be the operation of composition of functions. Then (G, \circ) is a noncommutative group.

EXAMPLES FROM MODULAR ARITHMETIC

Example

Let $G = \mathbb{Z}/5\mathbb{Z} = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}}$ be the set of integers modulo 5. Set

$$\forall \ \bar{x}, \bar{y} \in G, \bar{x} \oplus \bar{y} = \overline{x+y}.$$

This operation is well defined, and (G, \oplus) is an abelian group.

Now, consider $G' = G \setminus \{\overline{0}\}\$, and set

$$\forall \ \bar{x}, \bar{y} \in G', \bar{x} \otimes \bar{y} = \overline{xy}.$$

Once again, this operation is well defined, and (G', \otimes) is an abelian group.

PROPERTIES

Theorem

Let (G,*) be a group. Then we have

- 1) The identity element is unique.
- 2) For all $a, b, x \in G$, we have the **cancellation laws**

$$a * x = b * x \Rightarrow a = b$$

and

$$x * a = x * b \Rightarrow a = b.$$

- 3) For all $x \in G$, the inverse of x is unique.
- 4) For all $x \in G$, the inverse of x^{-1} is x.
- 5) For all $x, y \in G$, $(x * y)^{-1} = y^{-1} * x^{-1}$.

SUBGROUPS

Definition

Let (G,*) be a group. A **subgroup** of G is a subset $H \subseteq G$ that satisfies the following:

- 1) $e \in H$.
- 2) $\forall x, y \in H, \ x * y \in H.$
- 3) $\forall x \in H, x^{-1} \in H$.

Remark

A subgroup is a group under the induced binary operation, with the same identity element.

SUBGROUPS

Theorem

Let (G,*) be a group, and let $H \subseteq G$. Then H is a subgroup of G if, and only if we have the following :

- 1) $e \in H$.
- $2) \quad \forall x, y \in H, \ x * y^{-1} \in H.$

Example

- 1) $(\mathbb{Z},+),(\mathbb{Q},+)$ and $(\mathbb{R},+)$ are subgroups of $(\mathbb{C},+)$.
- 2) (]0, $+\infty$ [, \times) is a subgroup of(\mathbb{R}^* , \times).

INTERSECTION OF SUBGROUPS

Theorem

Let G be a group, and let H and K be two subgroups of G. Then $H \cap K$ is a subgroup of G.

GROUP HOMOMORPHISMS

Definition

Let (G,*) and (G', \bot) be two groups. A function $f: G \to G'$ is said to be a **group** homomorphism if

For all
$$x, y \in G$$
, $f(x * y) = f(x) \perp f(y)$.

A homomorphism which is bijective is called an **isomorphism**. Two groups are **isomorphic** if there exists an isomorphism between them. A homomorphism from a group to itself is called an **endomorphism**. When the endomorphism is bijective, it is called an **automorphism**.

EXAMPLE OF HOMOMORPHISM

Example

The function $f: \mathbb{R} \to]0, +\infty[$ defined by $f(x) = e^x$ is an isomorphism from the group $(\mathbb{R}, +)$ to the group $(]0, +\infty[, \times).$

Indeed, we have

$$\forall x, y \in \mathbb{R}, f(x+y) = e^{x+y} = e^x \times e^y = f(x) \times f(y).$$

Then f is a group homomorphism. Furthermore, for all $y \in]0, +\infty[$, there exists a unique $x = lny \in \mathbb{R}$ such that y = f(x). This shows that f is bijective and completes the proof.

PROPERTIES OF HOMOMORPHISMS

Theorem

Let (G,*) and (G', \bot) be two groups with respective identity elements e and e', and let $f: G \to G'$ be a group homomorphism. Then we have :

- 1) f(e) = e'.
- 2) For all $x \in G$, $f(x^{-1}) = (f(x))^{-1}$.

IMAGE AND KERNEL OF HOMOMORPHISMS

Definition

```
Let f: G \to G' be a group homomorphism. We define the image of f by Im(f) = \{y \in G' \colon \exists x \in G \text{ such that } y = f(x)\}, and we define the kernel of f by Ker(f) = \{x \in G : f(x) = e'\}.
```

OTHER PROPERTIES OF HOMOMORPHISMS

Theorem

Let $f: G \to G'$ be a group homomorphism. Then we have :

- The image of f, Im(f), is a subgroup of G'.
- The kernel of f, Ker(f), is a subgroup of G.
- The homomorphism f is injective if, and only if, $Ker(f) = \{e\}$.

RINGS

Definition

Let R be a nonempty set endowed with two binary operations denoted by + (addition) and \cdot (multiplication) that satisfy the following:

- 1) (R, +) is a commutative group.
- 2) The multiplication is associative and admits an identity element.
- 3) The multiplication is distributive with respect to addition, that is $\forall a, b, c \in R, (a + b) \cdot c = a \cdot c + b \cdot c \text{ and } c \cdot (a + b) = c \cdot a + c \cdot b.$

Then $(R, +, \cdot)$ is called a **ring**.

A ring R is called a **commutative ring** when the multiplication is commutative.

RINGS EXAMPLES

Example

 $(\mathbb{Z},+,\cdot),\ (\mathbb{Q},+,\cdot),\ (\mathbb{R},+,\cdot)$ and $(\mathbb{C},+,\cdot)$ are commutative rings with usual operations of addition and multiplication.

Let
$$R = \{f : \mathbb{R} \to \mathbb{R}\}$$
, and define for all $f, g \in R$: $(f+g)(x) = f(x) + g(x), \forall x \in \mathbb{R},$ $(f,g)(x) = f(x)g(x), \forall x \in \mathbb{R}.$

Then $(R, +, \cdot)$ is a commutative ring.

NOTATION

Notation

For brevity, when there is no ambiguity, we denote

$$R := (R, +, \cdot)$$

$$ab := a \cdot b$$

$$a - b := a + (-b).$$

NOTATION

Notation

By associativity, the following notations make sense:

$$a^{n} \coloneqq \begin{cases} a \cdot a \cdots a \ (n \ times) & if \ n > 0 \\ 1 & if \ n = 0 \\ a^{-1} \cdot a^{-1} \cdots a^{-1} \ (-n \ times) & if \ n < 0 \end{cases}$$

$$na \coloneqq \begin{cases} a + a + \dots + a \ (n \ times) & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ (-a) + (-a) + \dots + (-a) \ (-n \ times) & \text{if } n < 0 \end{cases}$$

THE RING $\mathbb{Z}/n\mathbb{Z}$

Let n be a positive integer. Recall that the relation \mathcal{R} defined on \mathbb{Z} by $\forall x, y \in \mathbb{Z}$, $x\mathcal{R}y \Leftrightarrow \exists k \in \mathbb{Z}, x-y=nk$,

is an equivalence relation, and the quotient set is given by:

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}\}.$$

We define the two binary operations:

$$\forall \ \bar{x}, \bar{y} \in \mathbb{Z}/n\mathbb{Z}, \bar{x} \oplus \bar{y} = \overline{x+y} \text{ and } \bar{x} \otimes \bar{y} = \overline{xy}.$$

Theorem

 $(\mathbb{Z}/n\mathbb{Z}, \bigoplus, \otimes)$ is a commutative ring.

INTEGRAL DOMAINS

Definition

Let R be a ring and let $a \in R \setminus \{0\}$. If there exists $b \in R \setminus \{0\}$ such that ab = 0 or ba = 0, then a is said to be a **zero-divisor**.

Definition

An **integral domain** is a commutative ring without zero-divisor.

In other words, a commutative ring R is an integral domain if, and only if,

$$\forall a, b \in R, ab = 0 \Rightarrow a = 0 \text{ or } b = 0.$$

Example

 \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are integral domains.

The ring $\mathbb{Z}/6\mathbb{Z}$ is **not** an integral domain since we have

$$\overline{2} \otimes \overline{3} = \overline{6} = \overline{0}$$
.

ELEMENTARY PROPERTIES

Theorem

Let R be a ring, a,b and c three elements in R and $n \in \mathbb{Z}$. Then we have the following properties :

- 1) $a \cdot 0 = 0 \cdot a = 0$.
- 2) If card(R) > 1, then $0 \ne 1$.
- 3) (-a)b = a(-b) = -(ab).
- 4) (-1)a = -a and (-a)(-b) = ab.
- 5) a(b-c) = ab ac and (b-c)a = ba ca.
- (na)b = a(nb) = n(ab).

BINOMIAL FORMULA

Theorem

Let R be a ring. If a and b are elements in R which commute (ab = ba), then we have for all $n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{k}{n} a^k b^{n-k}.$$

UNITS OF A RING

Definition

Let R be a ring. An element $a \in R$ is said to be **invertible**, or a **unit**, if there exists $b \in R$ such that ab = ba = 1.

The set of units in R is denoted by U(R).

Theorem

The set of units U(R) forms a group under multiplication.

Example

$$U(\mathbb{Z})=\{1,-1\}.$$

$$U(\mathbb{Z}/8\mathbb{Z}) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}.$$

SUBRINGS

Definition

Let $(R, +, \cdot)$ a ring. A subset S of R is a **subring** of $(R, +, \cdot)$ if we have :

- 1) $1 \in S$.
- (S,+) is a subgroup of (R,+).
- 3) S is closed under multiplication: $\forall a, b \in S, ab \in S$.

SUBRINGS EXAMPLES

Example

- 1) \mathbb{Z} is the only subring of \mathbb{Z} .
- 2) \mathbb{Z} is a subring of \mathbb{Q} , which is a subring of \mathbb{R} , which is a subring of \mathbb{C} ...
- 3) $\mathbb{Z}[i] \coloneqq \{a+bi: a,b \in \mathbb{Z}, i^2=-1\}$ is a subring of \mathbb{C} . It's called the ring of Gaussian integers.

RING HOMOMORPHISMS

Definition

Let R and R' be two rings. A function $f: R \to R'$ is said to be a **ring** homomorphism if it satisfies the following:

- 1) f(1) = 1'.
- 2) $\forall x, y \in R, f(x + y) = f(x) + f(y).$
- 3) $\forall x, y \in R, f(xy) = f(x)f(y).$

Isomorphisms, endomorphisms and automorphisms are defined similarly to those of groups.

PROPERTIES OF RING HOMOMORPHISMS

Theorem

Let $f: R \to R'$ be a ring homomorphism. Then we have :

- 1) f(0) = 0'.
- 2) $f(na) = nf(a), \forall a \in R, \forall n \in \mathbb{Z}.$
- $f(a^n) = f(a)^n, \forall a \in R, \forall n \in \mathbb{N}.$
- 4) $f(a^n) = f(a)^n, \forall a \in U(R), \forall n \in \mathbb{Z}.$
- 5) f(A) is a subring of R', for all subring A of R.
- 6) $f^{-1}(B)$ is a subring of R, for all subring B of R'.

IDEALS

Definition

Let R be a *commutative* ring. A subset I of R is said to be an **ideal** of R if it satisfies the two following conditions:

- (I,+) is a subgroup of (R,+).
- 2) $\forall a \in R, \forall x \in I, ax \in I.$

Example

For all $n \in \mathbb{Z}$, $n\mathbb{Z}$ is an ideal of \mathbb{Z} .

QUOTIENT RING

Let R be a commutative ring, and let I be an ideal of R. The relation \mathcal{R} defined on R by

$$\forall x, y \in R, \qquad x \mathcal{R} y \iff x - y \in I,$$

is an equivalence relation. The quotient set will be denoted by R/I.

We define on A/I the two binary operations :

$$\forall \ \bar{x}, \bar{y} \in A/I, \ \bar{x} + \bar{y} = \overline{x + y} \ \text{and} \ \bar{x} \cdot \bar{y} = \overline{xy}.$$

Theorem

R/I is a commutative ring under the operations defined above. It is called the **quotient ring**.

FIELDS

Definition

A field is a commutative ring in which every nonzero element is invertible.

A subfield of a field is a subring which is itself a field.

Example

 \mathbb{Q} , \mathbb{R} and \mathbb{C} , endowed with usual operations, are fields.

 \mathbb{Z} is **not** a field.

THE FIELD $\mathbb{Z}/p\mathbb{Z}$, p PRIME

Theorem

The ring $\mathbb{Z}/p\mathbb{Z}$ is a field if, and only if, p is prime.

Theorem

Let $a, b \in \mathbb{Z}/p\mathbb{Z}$, where p is prime, and let $k \in \mathbb{N}$. Then we have

$$(a+b)^{p^k} = a^{p^k} + b^{p^k}.$$