Math 381 - Fall 2022

Jay Newby

University of Alberta

Week 7

Last Time

- Matrices
- 2 Transpose
- 3 Special matrices (diagonal, tridiagonal, triangular, symmetric positive definite, orthogonal)
- 4 Vector and matrix norms
- 6 Eigenvalues and eigenvectors
- 6 Diagonalizable matrices

Today

- Linear independence
- 2 Linear systems
- Singular matrices
- 4 Nullspace and range of a matrix

Linear independence

Linear independent set of vectors

A set of n vectors $v_j \in \mathbb{R}^n$, $j=1,\ldots,n$ is linearly independent if and only if

$$\sum_{j=1}^{n} \alpha_j v_j \neq 0,$$

for every set of constants α_j where at least one of the constants in nonzero.

Linear independence

Linear independent set of vectors (Version 2)

A set of n vectors $v_j \in \mathbb{R}^n$, j = 1, ..., n is linearly independent if and only if the matrix with columns given by the vectors v_j is non-singular.

Singular Matrix

A matrix $A \in \mathbb{R}^{n \times n}$ is singular if and only if there exists a vector $\rho \in \mathbb{R}^n$ with $\rho \neq 0$ such that $A\rho = 0$.

Existence and uniqueness of solutions to linear systems

Theorem

Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. The equation Ax = b has a unique solution if and only if A is nonsingular.

Theorem

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The equation Ax = b has a solution (not necessarily unique) if and only if $\eta^T b = 0$ for every $\eta \in \mathbb{R}^m$ such that $\eta^T A = 0$.

Corollary

If a solution to Ax = b exists, it is either the only solution or there are infinitely many solutions.

$$Ax = b$$
, $2^{T}A = 0$, $A^{T}z = 0$
 $2^{T}Ax = 2^{T}b$
 $\Rightarrow 0 = 2^{T}b$

Determinants

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & -4 \end{bmatrix}$$

Nullspace and range of a matrix

$$range(A) = R(A)$$

Range of a matrix

Let $A \in \mathbb{R}^{m \times n}$. The range of A is the space spanned by the column vectors of A. In other words, the vector $Ax \in \text{range}(A)$ for all $x \in \mathbb{R}^n$.

Nullspace of a matrix

The nullspace of a matrix $A \in \mathbb{R}^{m \times n}$ contains all null vectors. In other words, if $A\rho = 0$ then $\rho \in \text{null}(A)$.

$$Null(A) = N(A)$$

Singular value decomposition (SVD) $VV^T = I_h UU^T = I_h$

For every matrix $A \in \mathbb{C}^{m \times n}$ there exists unitary matrices $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ such that

Reduced SUD
$$A = U\Sigma V^*$$
 $A = U\Sigma V^T$

This is a construction of orthonormal bases for range(A), range(A^T), null(A), and null(A^T).

