Homework 10

- **1.1.** Prove $A = A_0 \cup A_1$ and $A_0 \cap A_1 = \phi$?
 - 1. We know that $\mathbb{Z}^n = 0, 1, 2 \dots n$ and $\mathbb{Z}_2^n = 0, 1, 0, 1 \dots l$ is the cyclic group of order 2, where l = 0, 1 if n = even, odd
 - **2.** We have $A \leq \mathbb{Z}_2^n$ and $g \in \mathbb{Z}_2^n$ and $A_0 = \{a \in A | a.g = 0\}, A_1 = \{a \in A, g \neq 0 | a.g = 1\}$, where A_0, A_1 are right cosets of A
 - **3.** If e is the identity, then $e \in A \Rightarrow g \in A.g \ \forall \ g \in \mathbb{Z}_2^n$ We can say that, all right cosets A.g are non empty For a given 'g' A_0 is the coset having all zeroes of subgroup A and For a given 'g' A_1 is the coset having all ones of subgroup A and $\Rightarrow A = A_0 \cup A_1$
 - **4.** Suppose cosets are not disjoint $A_0 \cap A_1 \neq \phi$ Let $g \in A_0 \cap A_1$ Then there is $h, k \in A$ and such that g = ph = qk where $p \in A_0$ and $q \in A_1$

Then there is $h, k \in A$ and such that g = ph = qk where $p \in A_0$ and $q \in A_1$ $\Rightarrow p = qkh^{-1} \in qA$ and $q = phk^{-1} \in pA$ Let $ph' \in pA$

1

 $ph' = qkh^{-1}h'$ $\Rightarrow ph'$ is of the form $qA \Rightarrow ph' \in qA$

Thus $pA \subset qA$ and by symmetry $qA \subset pA$

 $\Rightarrow pA = qA \Rightarrow A_0 = A_1$

By our assumption $A_0 \cap A_1 \neq \phi$ resulted in cosets being $A_0 = A_1$ \Rightarrow cosets A_0, A_1 are disjoint $\Rightarrow A_0 \cap A_1 = \phi$

- **1.2.** Prove that $a + A_0 = A_1$ and $a + A_1 = A_0 \Rightarrow |A_0| = |A_1|$ if $A_1 \neq \phi$
 - 1. We know that \mathbb{Z}_2^n consists of two cosets, A_0 , the even numbers and A_1 , the odd numbers
 - **2.** We can write, $A_0 = \{\ldots, -4, -2, 0, 2, 4, \ldots\} = 0 + 2\mathbb{Z}$ $A_1 = \{\ldots, -3, -1, 1, 3, 5, \ldots\} = 1 + 2\mathbb{Z}$
 - 3. Say $a = 1 \in A_1$, $a + A_0 = \{\dots, -3, -1, 1, 3, 5, \dots\}$ $a + A_1 = \{\dots, -4, -2, 0, 2, 4, \dots\}$ Above cosets remain same for any value $a \in A_1$

- **4.** From above points, we can say that, $a + A_0 = A_1$ and the number of elements in A_0, A_1 are equal. $a + A_1 = A_0$ and the number of elements in A_0, A_1 are equal. $\Rightarrow |A_0| = |A_1|$ where $|A_1| \neq \phi$
- **1.3.** Prove that $\sum_{a \in A} (-1)^{a \cdot g} = \begin{cases} |A| & \text{if } a \cdot g = 0 \text{ for all } a \in A, \\ 0 & \text{otherwise.} \end{cases}$
 - **1.** We know that, $A = A_0 \cup A_1 \Rightarrow |A| = |A_0| + |A_1|$ $\sum_{a \in A} (-1)$ is the summation of $(-1) = (-1 + -1 + \cdots + |A|)$
 - **2.** $\sum_{a \in A} (-1)^{a \cdot g} = \sum_{a \in A} 1$, if $a \cdot g = 0$ $\Rightarrow \sum_{a \in A} 1 = (1 + 1 + \dots + |A|) = |A|$
 - **3.** We know that subgroup A has equal number of odd and even numbers $|A_0|=|A_1|$ $\Rightarrow \sum_{a\in A} (-1)^{a\cdot g}=0$
- **3.** Prove that A is maximal if and only if A^{\perp} is minimal
 - 1. Let $P \in A^{\perp}$ and $a \in A$ $\Rightarrow P.a = 0$
 - **2.** Say we have another subgroup $A \leq B$ Let $Q \in B^{\perp}$ and $b \in B$ $\Rightarrow Q.b = 0$ $\Rightarrow Q.a = 0$ as $A \leq B \Rightarrow Q \in A^{\perp}$ $\Rightarrow B^{\perp} \leq A^{\perp}$
 - **3.** Using point 2, by symmetry, we can say If $B \leq A$, then $A^{\perp} \leq B^{\perp}$ \Rightarrow If A is maximal if and only if A^{\perp} is minimal