An Inventory of Food Web Models

Definitely Opinionated and Likely Incomplete

Andrew Beckerman University of Sheffield

A Brief, Incomplete History

Dynamics

- Few Species
- Top-Down/Bottom-Up
- Trophic Cascades
- Stability / Coexistence
- Transients
- Complexity Stability

Structure

- Complexity/Connectance/Diversity -Stability
- Diversity-Productivity
- Food Chain Length
- Generalism/Specialism
- Nestedness/Modularity

History -> Now

- Dynamics
 - Few Species
 - Top-Down/Bottom-Up
 - Trophic Cascades
 - Stability / Coexistence
 - Transients
 - Complexity Stability
- Structure
 - Complexity/Connectance/Diversity -Stability
 - Diversity-Productivity
 - Food Chain Length
 - Generalism/Specialism
 - Nestedness/Modularity

Data

Number of Species

Traits

Foraging Biology

Allometry

Predator-Prey Mass Ratios

Temperature Scaling

Predation Risk/Behaviour

Energy Flux

New Methods and Ideas, But Not New Questions?

Why Model Food Webs

- describe and explore dynamics and stability and IS
- predict dynamics and stability under natural and anthropogenic environmental variation
- describe complexity and structure ->
 - Theory about complexity:diversity:stability
 - Theory about complexity:diversity:productivity
- predict effects of climate change on food web complexity, structure, dynamics
 - Feedbacks

Why Model Food Webs

- describe and explore dynamics and stability and IS
- predict dynamics and stability under natural and anthropogenic environmental variation
- describe complexity and structure ->
 - Theory about complexity:diversity:stability
 - Theory about complexity:diversity:productivity
- predict effects of climate change on food web complexity, structure, dynamics
 - Feedbacks
 - Multiple Stressors
- predict complexity and structure -> origins of complexity
 - TRAITS: Size, Foraging, Movement/Space, Costs

DYNAMIC

TOPOLOGICAL

DYNAMIC

TOPOLOGICAL (Static)

ODE (L-V Macarthur-Rosenzweig) SIZE
SPECTRA
(PDE)
(Blanchard /
Anderson)

SPECIES
(Cascade/
Niche;
Cohen/
Williams,
Martinez)

GROUPS (Allesina)

Size Spectra

DYNAMIC

TOPOLOGICAL

ODE

ODE +
Allometry +
Temperature

SPECTRA PDE

SPECIES
(Cascade/
Niche/ADBM/
Portalier)

GROUPS

SIZE

DYNAMIC

ODE + Allometry+ Temperature

R-M BEFW mizer

Metric				
Pop Dynamics	X	X	X	X
Community Structure (Body Size Ratios, TIB etc)			X	X
biodiversity	X	X	X	X
2° Extinction	X		X	X
harvesting	X	X		X
productivity	X	X	X	X
stability	X	X	X	

TOPOLOGICAL SPECIES **GROUPS** SIZE niche portalier allesina cascade spectra X X X X X X X X % % X X X X X X X

Metric

Pop Dynamics

trophic structure

food-web metrics

Body size (spectra)

biodiversity

2° Extinction

stability

Why Model Food Webs

- describe dynamics and stability and IS
- predict dynamics and stability under natural and anthropogenic environmental variation
- describe complexity and structure ->
 - Theory about complexity:diversity:stability
 - Theory about complexity:diversity:productivity
- predict complexity and structure -> origins of complexity / diversity
- predict effects of climate change on food web complexity, structure, dynamics
 - -Feedbacks
 - -Multiple Stressors
 - Traits

LV :: R-M :: BEFW

Niche, Groups, ADBM, Portalier

ADBM, Portalier

LV-M:: R-M:: BEFW+ADBM

2° Extinction Dynamics

Dynamics Meets Topology

What Does Topology Offer?

Toolbox for generating variation in structure
Toolbox for generating variation in diversity
Toolbox for generating variation body size distribution
Toolbox for monitoring structure

What Does Mechanistic Topology Offer?

Toolbox for generating variation in structure
Toolbox for generating variation in diversity
Toolbox for generating variation body size distribution
Toolbox for monitoring of structure
Re-wiring RULES

2° Extinction Grid

Food Web

	Topological	Dynamic
None	Niche (Dunne et al)	
Phenomenon	Niche (Staniczenko et al)	LV Gilljam et al
Mechanism	ADBM (Thierry et al)	BEFW+ADBM Delmas et al (in prep)

Re-wiring RULES
Foraging Decision

Re-wiring CRITERIA

Abundance

Energy/Metabolism

What's missing/What's Developing

- Behavioural Ecology of Risks/ Costs
 - Predation/mating/habitat
 - 2-D/3-D
- Inverse PPMR
 - Parasites (Beckerman et al)
 - Herbivore-Plant Interactions

- Mulitple (>2) Stressors
 - Specifically Spatial/Habitat Loss
 - Beckerman et al
- Multiple Interaction Types
 - Kondoh
 - Allesina
- Evolution (Eco-Evo)
 - Louille et al
- Deeper Scales: 'Omics/Networks within Food Web Networks

 predict the future of ecological communities, function and services under the climate crisis

- Stability at multiple scales
- Feedbacks
- Evolution

