Cours d'Electronique de Puissance

A. ABOULOIFA

Plan:

Introduction générale

Chapitre 1: Les semiconducteurs de puissance

Chapitre 2: La conversion AC-DC (les redresseurs)

Chapitre 4: La conversion DC-DC (les hacheurs)

Introduction générale

1. L'électrotechnique

 L'électrotechnique est l'étude des applications techniques de l'électricité.

 Son domaine d'intervention est la production, le transport, la distribution, le traitement, la transformation, la gestion et l'utilisation de l'énergie électrique.

- l'Electrotechnique d'aujourd'hui est une science pluridisciplinaire au carrefour de :
 - l'Electrotechnique traditionnelle (machines tournantes, transformateurs),
 - l'Electronique de puissance (convertisseurs statiques),
 - l'Electronique du signal (composants, commandes),
 - l'Automatique et l'Informatique (commande d'ensemble)
 - la Mécanique (charges entraînées),
 - l'Electrochimie (piles et accumulateurs).
 - etc,...

2. L'électronique de puissance

2.1. Définition

L'Electronique de puissance (ENPU) est la branche de l'Electrotechnique qui a pour objet l'étude de la conversion statique d'énergie électrique (notamment les structures, les composants, les commandes et les interactions avec l'environnement, ...).

2.2. Gamme de puissance de l'ENPU

Indépendant de la puissance (du mW au MW)

Montre 10µW

Véhicule hybride 35kW

Lampes fluorescentes 15W

Locomotive 4,2MW

2.3. Composants en l'ENPU

Pertes aussi faibles que possible

- *⇒* augmentation du rendement
- ⇒ minimisation du poids et du coût des dispositifs de refroidissement

2.4. Dipôle actif, dipôle passif

Quadrants I et III si vxi > 0

Quadrant II et IV si $v \times i < 0$

2.5. Sources d'énegie:

Sources d'énergie électrique

Forme Alternative AC

Réseau de distribution électrique

Alternateurs

Éoliennes

. . .

Forme Continue DC

Pile à combustible (PAC)

Cellules photovoltaïques (PV),

..

2.6. Charge électrique:

Charge électrique nécessite:

Alimentation AC

Machines alternatives

Réseau électrique

Appareils domestiques: TV, Réfrigérateur,

...

Alimentation DC

Machine à courant continu (MCC)

Circuits intégrés

. . .

3. Les types de convertisseurs statiques

- On définit quatre classes de convertisseurs transformant directement l'énergie électrique:
 - Convertisseur AC-DC: (Redresseurs),
 - Convertisseur DC-DC, (*Hacheurs*)
 - Convertisseur DC-AC,(Onduleurs)
 - Convertisseur AC-AC.

(Gradateurs et cycloconvertisseurs)

Introduction générale

4. Domaines d'application des convertisseurs de puissance

traction ferroviaire

L'alimentation des lampes fluorescentes

générateurs d'ultrasons (domaine médical)

...Domaines d'application

Alimentations de secours: alimentations sans interruption ASI (UPS)

La compensation de l'énergie réactive et filtrage actif dans les réseau électriques

...Domaines d'application

systèmes de communication

Ordinateurs

Moniteurs, téléviseurs (LCD, Plasma)

Dans la conversion d'énergie des sources renouvelables:

application

Chapitre 1 Les interrupteurs à semiconducteurs

1. L'interrupteur parfait

- Un interrupteur possède deux états: ouvert ou fermé.
- <u>Etat ouvert</u>: un interrupteur parfait impose un courant qui le traverse nul (i=0), alors que la tension à ses bornes est imposée par le circuit extérieur (v>0 ou v<0).</p>

- <u>Etat fermé</u>: un interrupteur parfait impose une tension entre ses bornes nulle (v=0), alors que le courant qui le traverse est imposée par le circuit extérieur (i>0 ou i<0).</p>
- La caractéristique statique d'un interrupteur parfait est donc formée de quatre segments confondus avec les axes v et i.

2. Interrupteur à semi-conducteur

2.1. Caractéristique statique

- Un interrupteur à semi-conducteur est formé par un ou plusieurs composants semi-conducteurs.
- Sa résistance apparente v/i peut varier entre une valeur très élevée (état ouvert) et une valeur très faible (état passant).
- La résistance apparente v/i ne peut être que positive (v et i de même signe).

- L'imperfection de ce typed'interrupteur apparaît sous la forme:
 - D'une chute de tension à l'état fermé ou passant,
 - D'un courant de fuite à l'état ouvert ou bloqué.
- La caractéristique statique d'un interrupteur à semi-conducteur (bidirectionnel en courant et en tension) est représentée ci contre.

2.2. Caractéristique dynamique

- Le passage d'un état à l'autre de l'interrupteur peut être
 - obtenu de deux façons:
 - Action sur la commande de l'interrupteur: commutation commandée.
 - Évolution des grandeurs
 électrique dans le circuit,
 indépendamment de l'interrupteur
 et qui induisent le changement
 d'état (annulation de i ou de v):
 c'est la commutation spontanée.

A: Amorçage (fermeture)

B: Blocage (ouverture)

Ch1.
Interrupteurs à semi-conducteurs

3. Les différents types d'interrupteurs à semi-conducteurs

3.1. La diode

Caractéristique statique:

I : courant dans la diode

 I_s : courant de saturation (qqs pA)

 V_T : tension thermodynamique ($\approx 26 \text{mV}$ à 300K)

...La diode

Caractéristique statique idéalisée:

Interrupteur à deux segments (unidirectionnel en courant et en tension)

- ■Fermeture spontanée,
- Ouverture spontanée.

Diode Schottky:

Une diode Schottky est une diode qui a un seuil de tension directe très bas (0.2 à0.3V) et un temps de commutation très court (diode rapide). Ella a la capacité à laisser transiter de fortes intensités, mais ne permet pas de supporter des tensions inverses assez grandes.

Caractéristique électriques (Exemples):

Types	Référence	I _{FAV} (A)	V _{RRM} (V)	I _{FSM} (A)
Redresseurs	BYX38	6	1200	50
	BYX32	150	1600	1600
	BYW25	40	1000	550
Diodes rapides	BYV29	7.5	500	80
	BYV93	60	500	800
Diodes Schottky	BYV19	10	45	150
	BYV23	80	45	1500

I_{FAV} : courant direct moyen maximal (Forward AVerage)

V_{RRM}: Tension inverse répétitive maximale (Reverse Repetitif Maximum)

 I_{FSM} : Courant direct de claquage maximal (Forward Surge Maximum)

3.2. Le Thyristor

Définition:

Le thyristor, aussi appelé SCR (silicon controlled rectifier), est un interrupteur à semi-conducteur qui peut être commandé à l'allumage mais pas à l'extinction. C'est donc une diode particulière possédant un circuit de commande.

Constitution et symbole:

Décomposition d'un thyristor

Symbole d'un thyristor

... Le Thyristor

Caractéristique statique:

<u>Mise en conduction</u>:

1er cas (à éviter) : si V > V_{BO},
même sans commande sur la gâchette (I_G=0).

 2^{e} cas (à éviter) : si **dV/dt** est trop grande même si $V < V_{BO}$.

3e cas (commande classique):

- a) la tension V > tension de seuil (quelques V),
- b) injection d'un courant l_G **positif** sur la gâchette.

Le thyristor est passant et se comporte donc comme une diode $(V=V_0 \approx 1 \text{ V})$ pourvu que $I > I_I$.

Condition de maintien de conduction:

- Le courant (anode-cathode) / doit être supérieur au courant de maintien
 /_L (Latching current Current) quel que soit le courant de gâchette /_G.
- On n'est alors plus tenu de maintenir un courant de gâchette pour permettre la conduction du thyristor. Cette remarque est d'autant plus vraie lorsque le courant / est élevé.

Condition de blocage:

- Le blocage peut survenir :
 - a) Si la tension anode-cathode V est négative (V<0),
 - b) Ou si le courant / est inférieur au courant de maintien (I_H: Holding Current).

Remarque:

Une fois le **thyristor** est bloqué, et pour maintenir son blocage, un temps minimum T_Q (temps de blocage: Turn-off-time) doit s'écouler avant de polariser positivement l'anode.

Caractéristique statique idéalisée:

Interrupteur à trois segments: (bidirectionnel en tension, unidirectionnel en courant)

- Fermeture commandée,
- Ouverture spontanée.

Caractéristique électriques (Exemples):

Types	Référence	I _F ou I _T (A)	V _{RRM} =V _{DRM} (V)	I _{TSM} (A)	dv/dt (V/µs)	di/dt (A/µs)
Thyristors sensibles	TLS 106-2	2.5	200	35	10	100
	TYS 806-8	5	800	80	5	50
Thyristors rapides	TLF 4006	2	400	50	100	100
	2N 3658	22.5	400	200	200	400
Thyristors usage général	TYN 1012	7.6	1000	120	50	100
	BTW 67-1200	25	1200	500	50	100

 I_F (I_T): courant moyen à l'état passant,

V_{RRM}: Tension inverse répétitive maximale (Reverse Repetitif Maximum),

 V_{DRM} : Tension de pointe répétitive à l'état bloqué,

 I_{TSM} : Courant de surcharge de pointe accidentelle à l'état passant,

dv/dt : vitesse critique de croissance de la tension à l'état bloqué,

di/dt : vitesse critique de croissance du courant à l'état passant.

3.3. Le GTO:

Définition:

- GTO :Gate Turn-Off Thyristor,
- C'est un thyristor à extinction par la gâchette.

Constitution et Symbole:

Fonctionnement:

Le fonctionnement d'un GTO est similaire à celui d'un Thyristor.

Le GTO peut, par ailleurs, être bloqué en polarisant négativement la gâchette afin d'extraire un courant i_G de l'ordre du courant de l'anode i (quelques centaines à quelques milliers d'ampères selon le calibre du GTO.)

Il faut donc prévoir une électronique de commande très puissante.

Caractéristique statique idéalisée:

Interrupteur à trois segments: (bidirectionnel en tension, unidirectionnel en courant)

- Fermeture commandée,
- Ouverture spontanée ou commandée.

Caractéristique électriques (Exemples):

Référence	V _{DRM} (V)	V _{RRM} (V)	I _{T(AV)} (A)	I _{TCM} (A)	di _T /dt (A/µs)	dv/dt (V/μs)
GDM21230	1200	-	60	ı	300	1000
FG4000GX- 90DA	4500	17	1200	4000	500	1000
5SGT 30J6004	6000	17	1030	-	400	-
DG858DW45	4500	16	1100	3000	300	750
DGT409BCA	6500	6500	-	1500	300	1000

I_{TCM}: Repetitive peak controllable on-state current

3.4. Le Diac:

Structure et symbole:

Le DIAC est un dispositif bidirectionnel comprenant 3 couches PNP

et deux électrodes de sortie.

 V_{BO} : Tension de retournement (Break Over Voltage)

Fonctionnement:

 Le DIAC se comporte comme un interrupteur dont l'état (bloqué ou saturé) dépend de la tension appliquée à ses bornes:

$$ig|Vig| < V_{BO}$$
 état bloqué $ig|Vig| > V_{BO}$ état saturé

- Le fonctionnement du Diac est similaire à celui de deux diodes
 Zeners montées tête bêche.
- Quand la tension aux bornes du Diac atteint la valeur de retournement, le Diac devient conducteur ou amorcé. La tension à ses bornes est alors de 1 à 2V.

Exemple Diac : DB3

TAITRON

Bidirectional DIAC Trigger Diode

components incorporated

Maximum Ratings and Electrical Characteristics (*T* _A=25°C unless noted otherwise)

Symbol	Description	Value			Unit	Conditions	
	Description		Тур.	Max.	Onit	Conditions	
V B0	Breakover Voltage*	28	32	36	V	Iво ,C=22nF**	
+V B0 - -V B0	Breakover Voltage Symmetry	-3	-	3	V	Iво ,C=22nF**	
±∆V	Dynamic Breakover Voltage**	5	-	-	V	Vво and Vғ at 10mA	
Vo	Output Voltage*		-	-	V	See Fig.6 (R=20Ω)	
Іво	Breakover Current*		-	100	μΑ	C=22nF**	
Tr	Rise Time*		-	2	μs	See Fig.5	
lв	Leakage Current*		-	10	μΑ	Vв=0.5Vво Max.	
I P	Peak Current*		-	-	Α	See Fig.6 (Gate)	
Pd	Power Dissipation on Printed Circuit		-	150	mW	Ta=50°C	
ITRM	Repetitive Peak on-state Current		-	2	Α	tp=20µs, f=100Hz	
Rthja	Typical Thermal Resistance		-	400	°C / W		
Rthյ∟			-	150	°C / W		

3.5. Le transistor bipolaire

Définition:

- Appelé en anglais BJT: Bipolar Junction Transistor.
- Un transistor bipolaire est constitué par la concaténation de 2 jonctions PN.
- II existe 2 types: NPN et PNP.

Constitution et symbole:

Relations électriques:

Loi des nœuds:

 $I_E = I_C + I_B$

Loi des mailles:

 $V_{CE} = V_{CB} + V_{BE}$

Effet transistor:

- $I_C = \beta I_B$
- Jonction base-émetteur:
- $V_{BE} \approx 0.7V$

- β est appelé coefficient d'amplification en courant (également noté h_{21F} ou h_{FF}). Il est généralement très grand ($\beta >>1$).
- Pour les montages « Darlington » on a:

Montages Darlington:

 combinaison de deux transistors bipolaires de même type (tous deux NPN ou tous deux PNP)

Intérêts:

Gain en courant plus élevé:

$$\beta = \beta_1 \beta_2$$

 réduit fortement le courant base et simplifie les circuits de commande,

Fonctionnement en commutation:

- Le transistor bipolaire de puissance est utilisé en commutation:
 - Etat bloqué: V_{CE} élevée, I_C très faible (≈0), V_{BE} ≤0;
 - Etat saturé (ou quasi-saturation): I_C élevé, V_{CE} faible (=V_{CEsat}),
 I_B>0,
- La caractéristique statique est donc celle d'un interrupteur à 2

segments:

3.6. Le transistor MOSFET:

Définition:

- MOSFET (Metal Oxide Semiconductor Field Effect Transistor): est transistor à effet de champ (à grille) métal-oxyde.
- Existe deux catégories, les MOSFET à canal induit (enhancement mode), les MOSFET à déplétion (depletion mode) selon leur mode d'opération.

Constitution:

Symboles:

...MOSFET

Caractéristique statique:

- Amorçage et blocage par V_{GS},
- A cause de la diode de structure, la caractéristique statique est donc celle d'un interrupteur à 3 segments.

Caractéristique électriques:

Référence	V _{(BR)DSS} (V)	I _{Dmax} (A)	P _{TOT} (W)	$R_{DS(ON)}(\Omega)$
TSD4M250	200	110	500	0.021
TSD4M350	400	50	500	0.075
IRF451	450	13	150	0.4
STK2N50	500	2	50	6
STP5N80	800	5	125	2
TSD5MG40	1000	17	500	0.7
APT1201R2BLL	1200	12	400	1.2

3.7. Le transistor IGBT:

Définition:

- Le transistor bipolaire à grille isolée (IGBT, de l'anglais Insulated Gate Bipolar Transistor) est un interrupteur électronique, qui combine les avantages des bipolaires et MOS:
 - grande simplicité de commande du transistor à effet de champ par rapport au transistor bipolaire,
 - faibles pertes par conduction du transistor bipolaire.

Pinout T

Performances des IGBT:

 Le tableau suivant montre les performances typiques de quelques produits du marché des transistors.

	MOSFET 600V	IGBT 600V	IGBT 1700V	IGBT 3300V	IGBT 6500V	GTO 6000V
V _{CEsat} à 125 °C	2,2 V	1,8 V	2,5 V	3,5 V	5,3 V	3 V
fréquence typique	15-100 kHz	6-40 kHz	3-10 kHz	1-5 kHz	0,8-2 kHz	0,3-1 kHz

- Il dégage la tendance générale :
 - le V_{CEsat} augmente et la fréquence d'utilisation diminue quand la tenue en tension augmente ;
 - les MOSFET et les GTO deviennent concurrentiels aux extrémités de la gamme.

Caractéristique statique:

- Amorçage et blocage par V_{GE},
- La caractéristique statique est celle d'un interrupteur à 2 segments.

Caractéristique électriques:

Référence	Туре	V _{CES} (V)	I _C (A)	V _{CEsat} (V)	P _M (W)
1MBC10D-060	single	600	10	3	75
20MT120UF	single	1200	40	5.32	240
APT50GF120B2R	single	1200	80	2.9	390
APTGF30X60E2	3~	600	30	2	138
APTGF50H60T3	Full-Bridge	600	50	2	250
APTGF660U60D4	single	600	660	2	2770
APTGF90DH60T	Asymetrical-Bridge	600	90	2	312
BSM 100 GD 120 DN2	3~	1200	150	2.5	680

4. Comparaison entre les différents interrupteurs de puissance:

- Dans les applications industrielles, les interrupteurs de puissance électrique varie de quelques centaines de mW jusqu'à quelques centaines de MW.
- Le courant à commuter varie de quelques ampères à quelques kilo- Ampères.
- La tension au blocage varie de quelques volts à quelques kilovolts.
- La fréquence de commutation varie de quelques centaines de hertz à quelques mégahertz.

Ch1.
Interrupteurs à semi-conducteurs

Tableau comparatif entre les différents interrupteurs de puissance

Interrupteur	Date d'apparition	Tension nominale	Courant nominal	Fréquence nominale	Puissance nominale	Tension directe
Thyristor (SCR)	1957	6kV	3.5kA	500Hz	100's MW	1.5-2.5V
Triac	1958	1kV	100A	500Hz	100's MW	1.5-2V
GTO	1962	4.5kV	3kA	2kHz	10's MW	3-4V
BJT (Darlington)	1960s	1.2kV	800A	10kHz	1 MW	1.5-3V
MOSFET	1976	500V	50A	1MHz	100 kW	3-4V
IGBT	1983	1.2kV	400A	20kHz	100's kW	3-4V

Diagramme I=f(V) en fonction de type d'application

Ch1.
Interrupteurs à semi-conducteurs

Diagramme du courant en fonction de la tension par type d'interrupteur (V=f(I))

Ch1.
Interrupteurs à semi-conducteurs

Diagramme de Puissance en fonction de la Fréquence par type d'interrupteur (P=f(F))

