2024-2025学年 第1学期(秋)

数据挖掘

集成学习

2024年12月

"三个臭皮匠(凑裨将),顶过诸葛亮"

投票法则

集成学习思想

- 在机器学习中,直接建立一个高性能的分类器是很困难的。
- 但是,如果能找到一系列性能相对较弱的分类器,并把它们 集成起来的话,也许就能得到更好的分类器。

目录

01 集成学习简介

02 集成学习算法

03 集成学习应用

集成学习简介

定义

• 集成学习 (Ensemble learning) 方法通过组合多种学习算法 来获得比单独使用任何一种算法更好的预测性能。.

• 动机

• 提高单分类器的性能

集成学习简介

分类器组合

Polikar, 2008

Observation / measurement / feature 1

训练阶段

测试阶段

讨论: 如何组合多个分类器呢?

如何组合多个分类器?

- 平均
- 投票
 - 多数投票: Bagging
 - 带权重的多数投票: Adaboost
- 学习组合器
 - Stacking
 - RegionBoost

集成学习优势示例

假如每个分类器的错误率为40%

model 1	model 2	model 3	prob
C	C	C	.6*.6*.6=0.216
C	C	I	.6*.6*.4=0.144
C	I	C	.6*.4*.6=0.144
C	I	I	.6*.4*.4=0.096
I	C	C	.4*.6*.6=0.144
I	C	I	.4*.6*.4=0.096
I	I	C	.4*.4*.6=0.096
I	I	I	.4*.4*.4=0.064

0.096 + 0.096 + 0.096 + 0.064 = 35% error!

集成学习优势示例

$$p(error) = \mathop{\bigcirc}\limits_{i=(m+1)/2}^{m} \mathop{\Diamond}\limits_{\stackrel{\cdot}{\leftarrow}}^{\mathfrak{A}} m \mathop{\bigcirc}\limits_{\stackrel{\cdot}{\leftarrow}}^{\stackrel{\cdot}{\circ}} r^{i} (1-r)^{m-i}$$

$$r = 0.4$$

集成学习中单分类器的条件

- 通过集成学习提高分类器的整体泛化能力是有条件的:
 - 分类器之间应该具有差异性
 - 分类器的精度,每个个体分类器的分类精度必须大于0.5

$$p(error) = \mathop{\text{a}}\limits_{i=(m+1)/2}^{m} \mathop{\text{c}}\limits_{i}^{\mathfrak{A}} m \mathop{\text{c}}\limits_{i}^{0} i \mathop{\text{g}}\limits_{g}^{i} (1-r)^{m-i}$$

01 集成学习简介

02 集成学习算法

03 集成学习应用

集成学习算法

1 Bagging

2 Boosting

3 Stacking

Bagging-Bootstrap采样法

Bagging-Bootstrap采样法优点

原始数据中,仅仅约63%的样本被采样到

Training Data 1

Training Data

•

Training Data m

Bagging-Bootstrap采样法优点

原始数据中,仅仅约63%的样本被采样到

Training Data 1

$$P_{not_choose} = \left(1 - \frac{1}{n}\right)^{n} \to \frac{1}{e}$$

Training Data

•

Training Data m

Bagging-Bootstrap采样法优点

原始数据中,仅仅约63%的样本被采样到

Training Data 1

也就是说样本训练集中,约37%的

训练集将被忽略掉

Training Data

.

- 口减少过拟合
- 口降低方差
- 口 降低噪音数据的影响

Training Data m

Bagging: 随机森林

- 基本思想
 - 随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单
 - 元是决策树(如CART)。
 - 随机森林的名称中有两个关键词,一个是"随机",一个就是"森林"。"森林"很好理解,一棵叫做树,那么成百上干棵就可以叫做森林了,其实这也是随机森林的主要思想--集成思想的体现。"随机"的包括随机选取训练样本集和随机选取分裂属性集。

Bagging: 随机森林

- 基本思想
 - 行采样: 随机抽样训练集
 - 列采样:随机选择节点上的一部分特征,其中选择一个最优的特征 来做决策树的左右子树划分

Bagging: 随机森林

• 优点:

- 两个随机性的引入,使得随机森林不容易陷入过拟合;
- 两个随机性的引入,使得随机森林具有很好的抗噪声能力;
- 对数据集的适应能力强: 既能处理离散型数据, 也能处理连续型数据, 数据集无需规范化且能够有效地运行在大数据集上;
- 能够处理具有高维特征的输入样本,而且不需要降维;
- 对于缺省值问题也能够获得很好得结果。

集成学习算法

1 Bagging

2 Boosting

3 Stacking

Boosting提出

Schematics of Boosting

Boosting提出

- 提升方法是一个迭代的过程
 - 通过改变样本分布,使得分类器聚焦在那些很难分的样本上,对那些容易错分的数据加强学习,增加错分数据的权重
 - 这样错分的数据再下一轮的迭代就有更大的作用(对错分数据进行惩罚)

初始化: 所有样本等权重

Learn a weak classifier

权重

样本

学习弱分类器

提升被错误分类样本权重

权重

样本

学习新的弱分类器

提升被错误分类样本权重,学习新的弱分类器

Final classifier is a combination of weak classifiers

Boosting Weight

- 数据的权重有两个作用
 - 使用这些权值作为抽样分布,进行对数据的抽样
 - 分类器可以使用权值学习有利于高权重样本的分类器。把一个 弱分类器提升为一个强分类器
- Boosting算法之一: AdaBoost算法

Boosting Weight

- 核心思想
- 样本的权重
 - 没有先验知识的情况下,初始的分布应为等概分布,也就是训练集如果有N个样本,每个样本的分布概率为1/N
 - 每次循环后提高错误样本的分布概率,分错样本在训练集中所占权重增大,使得下一次循环的弱学习器能够集中力量对这些错误样本进行判断。
- 弱学习器的权重
 - 准确率越高的弱学习机权重越高
- 循环控制: 损失函数达到最小
 - 在强学习器的组合中增加一个加权的弱学习器,使准确率提高,损失函数值减小。

Boosting分类过程

AdaBoost: train

for k = 1 to iterations:

- $classifier_k = learn a weak classifier based on weights$
- calculate weighted error for this classifier (加权分类误差)

$$e_k = \mathring{a}_{i=1}^n w_i * 1[label_i \ ^1 \ classifier_k(x_i)]$$

- calculate "score" for this classifier (分类器的系数)

$$\partial_k = \frac{1}{2} \log \zeta \frac{1 - e_i^0}{e_i^0} \div$$

$$w_{i} = \frac{1}{Z} w_{i} \exp(-\partial_{k} * label_{i} * classifier_{k}(x_{i}))$$

• 训练样本,初始时样本权重相同

序号	i	1	2	3	4	5	6	7	8	9	10
数据	X	0	1	2	3	4	5	6	7	8	9
类别标签	y	1	1	1	-1	-1	-1	1	1	1	-1
初始权值	wl i	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

- 1,2,3,7,8,9为同一类
- 4,5,6,10为同一类
- 根据x>v和x<v来分类

• 第一次迭代
$$G_1(x) = \begin{cases} 1, & x < 2.5 \\ -1, & x > 2.5 \end{cases}$$

序号	i	1	2	3	4	5	6	7	8	9	10
数据	X	0	1	2	3	4	5	6	7	8	9
类别标签	y	1	1	1	-1	-1	-1	1	1	1	-1
分类器结果	GI(x)	1	1	1	-1	-1	-1	-1	-1	-1	-1
分类结果		对	对	对	对	对	对	错	错	错	对

- $G_1(x)$ 的误差率最低: $e_1 = P(G_1(x_i) \neq y_i) = \sum_{G_1(x_i) \neq y_i} w_{1i} = 0.1 + 0.1 + 0.1 = 0.3$
- G₁(x)的权重为:

$$\alpha_1 = \frac{1}{2} l n \frac{1-\epsilon_1}{\epsilon_1} = \frac{1}{2} l n \frac{1-0.3}{0.3} \approx 0.42365$$

• 分类函数:

$$f_1(x) = \alpha_1 G_1(x) = 0.42365 G_1(x)$$

for k = 1 to *iterations*:

- classifier_k = learn a weak classifier based on weights
- calculate weighted error for this classifier(加权分类误差)

$$\varepsilon_k = \sum_{i=1}^n w_i * 1[label_i \neq classifier_k(x_i)]$$

- calculate "score" for this classifier(分类器的系数)

$$\alpha_k = \frac{1}{2} \log \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

$$w_i = \frac{1}{Z} w_i \exp(-\alpha_k * label_i * classifier_k(x_i))$$

• 第一次迭代

序号	i	1	2	3	4	5	6	7	8	9	10
数据	X	0	1	2	3	4	5	6	7	8	9
类别标签	y	1	1	1	-1	-1	-1	1	1	1	-1
初始权值	wl i	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

$$G_1(x) = \begin{cases} 1, & x < 2.5 \\ -1, & x > 2.5 \end{cases} \quad \alpha_1 = \frac{1}{2} \ln \frac{1 - \alpha_1}{\alpha_1} = \frac{1}{2} \ln \frac{1 - 0.3}{0.3} \approx 0.42365$$

$$Z_{1} = \sum_{i=1}^{n} w_{1i} exp(-y_{i}\alpha_{1}G_{1}(x_{i}))$$

$$= \sum_{i=1}^{3} 0.1 \times exp(-[1 \times 0.4263 \times 1])$$

$$+ \sum_{i=4}^{4-6,10} 0.1 \times exp(-[(-1) \times 0.4263 \times (-1)])$$

$$+ \sum_{i=7}^{9} 0.1 \times exp(-[1 \times 0.4263 \times (-1)])$$

$$\approx 0.3928 + 0.4582 + 0.0655$$

$$= 0.9165$$

for
$$k = 1$$
 to *iterations*:

- classifier_k = learn a weak classifier based on weights
- calculate weighted error for this classifier(m权分类误差)

$$\varepsilon_k = \sum_{i=1}^n w_i * 1[label_i \neq classifier_k(x_i)]$$

- calculate "score" for this classifier(分类器的系数)

$$\alpha_k = \frac{1}{2} \log \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

$$w_i = \frac{1}{Z} w_i \exp(-\alpha_k * label_i * classifier_k(x_i))$$

$$w_{2i} = \frac{w_{1i}}{Z_1} exp(-y_i \alpha_1 G_1(x_i))$$

$$= \begin{cases} \frac{0.1}{0.9165} exp(-[1 \times 0.4236 \times 1]), & i = 1, 2, 3 \\ \frac{0.1}{0.9165} exp(-[(-1) \times 0.4236 \times (-1)]), & i = 4, 5, 6, 10 \\ \frac{0.1}{0.9165} exp(-[1 \times 0.4236 \times (-1)]), & i = 7, 8, 9 \end{cases}$$

$$\approx \begin{cases} 0.07143 & i = 1, 2, 3 \\ 0.07143 & i = 4, 5, 6, 10 \\ 0.16666 & i = 7, 8, 9 \end{cases}$$

序号	i	1	2	3	4	5	6	7	8	9	10
数据	X	0	1	2	3	4	5	6	7	8	9
类别标签	y	1	1	1	-1	-1	-1	1	1	1	-1
初始权值1	wl iwli	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
更新权值2	w2 i w2i	0.0714	0.0714	0.0714	0.0714	0.0714	0.0714	0.1667	0.1667	0.1667	0.0714

• 第二次迭代
$$G_2(x) = \begin{cases} 1, & x < 8.5 \\ -1, & x > 8.5 \end{cases}$$

序号	i	1	2	3	4	5	6	7	8	9	10
数据	X	0	1	2	3	4	5	6	7	8	9
类别标签	\mathbf{y}	1	1	1	-1	-1	-1	1	1	1	-1
权值分布	w2 i	0.0714	0.0714	0.0714	0.0714	0.0714	0.0714	0.1667	0.1667	0.1667	0.0714
分类器结果	G2(x)	1	1	1	1	1	1	1	1	1	-1
分类结果		对	对	对	错	错	错	对	对	对	对

● G₂(x)的误差率最低:

$$e_2 = P(G_2(x_i) \neq y_i) = \sum_{G_2(x_i) \neq y_i} w_{2i} = 0.07143 + 0.07143 + 0.07143 = 0.21429$$

• G₂(x)的权重为:

$$a_2 = \frac{1}{2} ln \frac{1-e_2}{e_2} = \frac{1}{2} ln \frac{1-0.21429}{0.21429} \approx 0.64963$$

• 分类函数:

$$f_2(x) = \alpha_2 G_2(x) = 0.64963 G_2(x)$$

for k = 1 to *iterations*:

- $classifier_k$ = learn a weak classifier based on weights
- calculate weighted error for this classifier(加权分类误差)

$$\varepsilon_k = \sum_{i=1}^n w_i * 1[label_i \neq classifier_k(x_i)]$$

- calculate "score" for this classifier(分类器的系数)

$$\alpha_k = \frac{1}{2} \log \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

$$w_i = \frac{1}{Z} w_i \exp(-\alpha_k * label_i * classifier_k(x_i))$$

类别标签

初始权值1

权值2

更新权值

y

wl i

w2 i

 w_{3i}

0.1

0.0714

0.0455

0.1

0.0714

0.0455

0.1

0.0714

0.0455

0.1

0.0714

0.1667

$$\mathcal{G}_{2}(x) = \begin{cases} 1, & x < 8.5 \\ -1, & x > 8.5 \end{cases}$$

$$\mathcal{A}_{2} = \frac{1}{2} / n \frac{1 - a_{2}}{e^{2}} = \frac{1}{2} / n \frac{1 - 0.21429}{0.21429} \approx 0.64963$$

$$Z_{2} = \sum_{i=1}^{n} w_{2i} exp(-y_{i}\alpha_{2}G_{2}(x_{i}))$$

$$= \sum_{i=1}^{3} 0.07143 \times exp(-[1 \times 0.64963 \times 1])$$

$$+ \sum_{i=4}^{6} 0.07143 \times exp(-[(-1) \times 0.64963 \times 1])$$

$$+ \sum_{i=7}^{9} 0.16666 \times exp(-[1 \times 0.64963 \times 1])$$

$$+ \sum_{i=10}^{10} 0.07143 \times exp(-[(-1) \times 0.64963 \times 1])$$

$$+ \sum_{i=10}^{10} 0.07143 \times exp(-[(-1) \times 0.64963 \times 1])$$

$$= 0.111191 + 0.41033 + 0.26111 + 0.03730$$

$$= 0.82065$$

| Fig. | i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Wath | Substitute | Substiter | Substitute | Substitute | Substitute | Substitute | Substit

-1

0.1

0.0714

0.1667

-1

0.1

0.0714

0.1667

1

0.1

0.1667

0.1061

1

0.1

0.1667

0.1061

1

0.1

0.1667

0.1061

-1

0.1

0.0714

0.0455

• 第三次迭代
$$G_3(x) = \begin{cases} -1, & x < 5.5 \\ 1, & x > 5.5 \end{cases}$$

序号	i	1	2	3	4	5	6	7	8	9	10
数据	X	0	1	2	3	4	5	6	7	8	9
类别标签	у	1	1	1	-1	-1	-1	1	1	1	-1
权值分布	w3 i	0.0455	0.0455	0.0455	0.1667	0.1667	0.1667	0.1061	0.1061	0.1061	0.0455
分类器结果	G3(x)	-1	-1	-1	-1	-1	-1	1	1	1	1
分类结果		错	错	错	对	对	对	对	对	对	错

• G3(x)的误差率最低:

$$e_3 = P(G_3(x_i) \neq y_i) = \sum_{G_3(x_i) \neq y_i} w_{3i} = 0.04546 + 0.04546 + 0.04546 + 0.04546 = 0.18184$$

• G3(x)的权重为:

$$a_3 = \frac{1}{2} ln \frac{1-a_3}{a_3} = \frac{1}{2} ln \frac{1-0.18188}{0.18184} \approx 0.75197$$

• 分类函数:

$$f_3(x) = a_3 G_3(x) = 0.75197 G_3(x)$$

for k = 1 to *iterations*:

- $classifier_k$ = learn a weak classifier based on weights
- calculate weighted error for this classifier(加权分类误差)

$$\varepsilon_k = \sum_{i=1}^n w_i * 1[label_i \neq classifier_k(x_i)]$$

- calculate "score" for this classifier(分类器的系数)

$$\alpha_k = \frac{1}{2} \log \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

$$w_i = \frac{1}{Z} w_i \exp(-\alpha_k * label_i * classifier_k(x_i))$$

• 第三次迭代

序号	i	1	2	3	4	5	6	7	8	9	10
数据	X	0	1	2	3	4	5	6	7	8	9
类别标签	y	1	1	1	-1	-1	-1	1	1	1	-1
初始权值1	wl i	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
权值2	w2 i	0.0714	0.0714	0.0714	0.0714	0.0714	0.0714	0.1667	0.1667	0.1667	0.0714
权值3	w3 i	0.0455	0.0455	0.0455	0.1667	0.1667	0.1667	0.1061	0.1061	0.1061	0.0455
更新权值4	w4 i	0.125	0.125	0.125	0.1019	0.1019	0.1019	0.0648	0.0648	0.0648	0.125

• 最终分类器:

Gm(x) = sign(0.42365G1(x) + 0.64963 + G2(x) + 0.75197G3(x))

AdaBoost: train 回顾算法

for k = 1 to iterations:

- $classifier_k = learn a weak classifier based on weights$
- calculate weighted error for this classifier (加权分类误差)

$$e_k = \mathring{a}_{i=1}^n w_i * 1[label_i \ ^1 \ classifier_k(x_i)]$$

- Calculate "score" for this classifier (分类器的系数)

$$a_k = \frac{1}{2} \log \zeta \frac{1 - e_i \ddot{0}}{e_i e_i g} \div$$

$$w_{i} = \frac{1}{Z} w_{i} \exp(-\partial_{k} * label_{i} * classifier_{k}(x_{i}))$$

如何确定α

• 集成学习模型
$$f(x) = \sum_{m=1}^{M} \alpha_m G_m(x)$$

- 指数损失函数 $L(y, f(x)) = \exp[-yf(x)]$
- 公式推导

1、已知
$$f_m(x) = f_{m-1}(x) + lpha_m G_m(x)$$

2、公式代入

将
$$f_m(x) = f_{m-1}(x) + \alpha_m G_m(x)$$
 代入损失函数得:

$$L(y,f(x)) = \sum_{i=1}^{N} \exp[-y_i(f_{m-1}(x) + lpha_m G_m(x))]$$

如何确定 α

$$L(y,f(x)) = \sum_{i=1}^{N} [\exp[-y_i(f_{m-1}(x))][\exp(-y_ilpha_m G_m(x))]]$$

• 3、部分替换 $_{ ext{由于}\ y_i}$ 和 $_{f_{m-1}(x)}$ 已知,可以令 $\overline{w}_{mi}=\exp[-y_if_{m-1}(x_i)]$,于是

$$L(y,f(x)) = \sum_{i=1}^N \overline{w}_{mi} \exp(-y_i lpha_m G_m(x))$$

• 4、公式展开

$$egin{aligned} L(y,f(x)) &= \sum_{i=1}^N \overline{w}_{mi} \exp(-y_i lpha_m G_m(x)) \ &= \sum_{y_i = G_m(x_i)} \overline{w}_{mi} e^{-lpha} + \sum_{y_i
eq G_m(x_i)} \overline{w}_{mi} e^{-lpha} + \sum_{y_i
eq G_m(x_i)} \overline{w}_{mi} e^{-lpha} - \sum_{y_i
eq G_m(x_i)} \overline{w}_{mi} e^{-lpha} + \sum_{y_i
eq G_m(x_i)} \overline{w}_{mi} e^{-lpha} + \sum_{y_i
eq G_m(x_i)} \overline{w}_{mi} e^{-lpha} \ &= e^{-lpha} \sum_{i=1}^N \overline{w}_{mi} + (e^lpha - e^{-lpha}) \sum_{i=1}^N \overline{w}_{mi} I(y_i
eq G_m(x_i)) \end{aligned}$$

如何确定α

• 5、求导

$$e^{-lpha}\sum_{i=1}^N \overline{w}_{mi} + (e^lpha - e^{-lpha})\sum_{i=1}^N \overline{w}_{mi}I(y_i
eq G_m(x_i))$$

把上式对 α 求导,再令导函数为 0,得:

$$-e^{-lpha}\sum_{i=1}^N \overline{w}_{mi} + (e^lpha + e^{-lpha})\sum_{i=1}^N \overline{w}_{mi}I(y_i
eq G_m(x_i)) = 0$$

上式两边同时除以 $\sum_{i=1}^N \overline{w}_{mi}$, 得 :

$$-e^{-lpha} + (e^{lpha} + e^{-lpha}) rac{\sum_{i=1}^{N} \overline{w}_{mi} I(y_i
eq G_m(x_i))}{\sum_{i=1}^{N} \overline{w}_{mi}} = 0$$

• 6、部分替换

令
$$rac{\sum_{i=1}^N \overline{w}_{mi} I(y_i
eq G_m(x_i))}{\sum_{i=1}^N \overline{w}_{mi}} = e_m$$
,则有: $-e^{-lpha} + (e^lpha + e^{-lpha})e_m = 0$

如何确定α

• 7、求导计算
$$-e^{-\alpha} + (e^{\alpha} + e^{-\alpha})e_m = 0$$

for k = 1 to *iterations*:

- classifier_k = learn a weak classifier based on weights
- calculate weighted error for this classifier(加权分类误差)

$$\varepsilon_k = \sum_{i=1}^n w_i * 1[label_i \neq classifier_k(x_i)]$$

calculate "score" for this classifier(分类器的系数)

$$\alpha_k = \frac{1}{2} \log \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

change the example weights(权值的更新)

$$w_{i} = \frac{1}{Z} w_{i} \exp(-\alpha_{k} * label_{i} * classifier_{k}(x_{i}))$$

• 其中

$$(e^{lpha}+e^{-lpha})e_m=0$$
 $(e^{lpha}+e^{-lpha})e_m=e^{-lpha}$
 $(e^{2lpha}+1)e_m=1$
 $e^{2lpha}+1=rac{1}{e_m}$
 $e^{2lpha}=rac{1}{e_m}-1=rac{1-e_m}{e_m}$
 $2lpha=\lograc{1-e_m}{e_m}$
 $lpha=rac{1}{2}\lograc{1-e_m}{e_m}$

$$e_m = rac{\sum_{i=1}^N \overline{w}_{mi} I(y_i
eq G_m(x_i))}{\sum_{i=1}^N \overline{w}_{mi}} = \sum_{i=1}^N w_{mi} I(y_i
eq G_m(x_i))$$

Round 1

Round 2

Round 3

Final Hypothesis

AdaBoost小结

• 主要优点

- Adaboost作为分类器时,分类精度高
- 可以使用各种回归分类模型来构建弱学习器,非常灵活。
- 作为简单的二元分类器时、构造简单、结果可理解。
- 不容易发生过拟合
- 主要缺点
 - 对异常样本敏感,异常样本在迭代中可能会获得较高的权重,影响最终的 强学习器的预测准确性。

其他Boosting方法

• 不同的损失函数和极小化损失函数方法决定了boosting的最终效果

Name	Loss	Derivative	f^*	Algorithm
Squared error	$\frac{1}{2}(y_i - f(\mathbf{x}_i))^2$	$y_i - f(\mathbf{x}_i)$	$\mathbb{E}\left[y \mathbf{x}_i\right]$	L2Boosting
Absolute error	$ y_i - f(\mathbf{x}_i) $	$\operatorname{sgn}(y_i - f(\mathbf{x}_i))$	$median(y \mathbf{x}_i)$	Gradient boosting
Exponential loss	$\exp(-\tilde{y}_i f(\mathbf{x}_i))$	$-\tilde{y}_i \exp(-\tilde{y}_i f(\mathbf{x}_i))$	$\frac{1}{2}\log\frac{\pi_i}{1-\pi_i}$	AdaBoost
Logloss	$\log(1 + e^{-\tilde{y}_i f_i})$	$y_i - \pi_i$	$\frac{1}{2}\log\frac{\pi_i}{1-\pi_i}$	LogitBoost

算法对比

Items	Bagging	Boosting		
采样算法	均匀取样	根据错误率来取样		
各轮训练集选取	随机的	与前面各轮的学习结果有关		
预测函数权重	没有权重	有权重		
并行性	各个预测函数可以并行生成	只能顺序生成		
准确性	没有boosting高	在大多数数据集中, 高		
过拟合	不会	在有些数据集中,会		

Gradient Boost Decision Tree (GBDT)

- GBDT、Treelink、 GBRT (Gradient Boost Regression Tree)、
 Tree Net、MART (Multiple Additive Regression Tree)
 - 由多棵决策树构成,通常都是上百棵树,而且每棵树规模都较小 (即树的深度会比较浅)
 - 模型预测的时候,对于输入的一个样本实例,然后会遍历每一棵决策树,每棵树都会对预测值进行调整修正,最后得到预测的结果

$$F(X) = F_0 + \beta_1 T_1(X) + \beta_2 T_2(X) + \dots + \beta_M T_M(X)$$

Gradient Boost Decision Tree (GBDT)

$$F(X) = F_0 + \beta_1 T_1(X) + \beta_2 T_2(X) + \dots + \beta_M T_M(X)$$

- FO是设置的初值, Ti是一棵一棵的决策树
- 对于不同的问题和选择不同的损失函数,初值的设定是不同的
- 比如回归问题并且选择高斯损失函数,那么这个初值就是训练 样本的响应均值

例子

- 预测一家人对电子游戏的喜好程度
- 特征
 - 年龄: 年轻和年老相比,年轻更可能喜欢电子游戏
 - 性别: 男性和女性相比, 男性更喜欢电子游戏
 - 电脑使用频率: 经常用电脑更喜欢电子游戏

Input: age, gender, occupation, ... Does the person like computer games

例子

由两棵决策树构成

$$) = 2 + 0.9 = 2.9$$

例子

- 一套房子的价格
- 特征有三个
 - 房子的面积
 - 是否在内环
 - 是否学区房
- 由四棵决策树构成
 - Decision Stump
- 初值设为价格的均值150万
- 一个面积为120平的内环非学区房的价格 预测值为: 150+20-10+30-10= 180 万

GBDT学习过程

- Boosting迭代,即通过迭代多棵树来共同决策
- GBDT是把所有树的结论累加起来做最终结论的,所以可以 想到每棵树的结论并不是房价本身,而是房价的一个累加量
- 每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量

GBDT学习过程——例子引入

• 房子的价格

面积	是否内环	房价	
92	否	15	
90	是	19	
120	否	23	
130	是	27	

GBDT学习过程——例子引入

- 预测
 - 125平方米, 内环: 25 + 2=27

GBDT例子的几点问题

- GBDT有何优点?
 - 防止过拟合
 - 每一步的残差计算其实变相地增大了分错instance的权重, 而已经分对的instance则都趋向于0
- 其他类似算法
 - XGBoost

集成学习算法

1 Bagging

2 Boosting

3 Stacking

如何组合多个分类器?

- 平均
- 投票
 - 多数投票: Bagging
 - 带权重的多数投票: Adaboost
- 学习组合器
 - Stacking
 - RegionBoost

Stacking

Stacking

基分类器的结果再训练出一个元分类器

01 集成学习简介

02 集成学习算法

03 集成学习应用

集成学习应用

- 竞赛的冠军
 - Kaggle、KDDCUP、ImageNet、天池
- 视觉领域
 - 人脸检测、目标追踪、物体识别
- 金融领域:
 - 股票选择、金融反欺诈
- 生物领域
 - 基因组功能预测、癌症预测

数据科学竞赛

Kaggle数据建模与分析竞赛平台

https://www.kaggle.com/competitions

KDDCUP

https://kdd.org/kdd-cup

• 天池大数据竞赛

https://tianchi.aliyun.com/competition/gameList/activeList

• • • • • • •

竞赛模型集成融合

- 对提交文件进行集成
 - 只需要模型在测试集上的预测结果,而不需要重新训练 一个模型
 - 投票、平均、加权平均
- 堆叠/混合集成
 - 使用大量基分类器,然后使用元分类器来融合它们的预测,旨在降低泛化误差

ID	Type	SKU	Name	Published	Is featured	Visibility in catalog
17	variable	MH01	Chaz Kangeroo Hoodie	1	0	visible
11	variation	MH01-L-Black	Chaz Kangeroo Hoodie-L-Black	1	0	visible
12	variation	MH01-L-Gray	Chaz Kangeroo Hoodie-L-Gray	1	0	visible
13	variation	MH01-L-Orange	Chaz Kangeroo Hoodie-L-Orange	1	0	visible
8	variation	MH01-M-Black	Chaz Kangeroo Hoodie-M-Black	1	0	visible
9	variation	MH01-M-Gray	Chaz Kangeroo Hoodie-M-Gray	1	0	visible
10	variation	MH01-M-Orange	Chaz Kangeroo Hoodie-M-Orange	1	0	visible
5	variation	MH01-S-Black	Chaz Kangeroo Hoodie-S-Black	1	0	visible
6	variation	MH01-S-Gray	Chaz Kangeroo Hoodie-S-Gray	1	0	visible
7	variation	MH01-S-Orange	Chaz Kangeroo Hoodie-S-Orange	1	0	visible
14	variation	MH01-XL-Black	Chaz Kangeroo Hoodie-XL-Black	1	0	visible
15	variation	MH01-XL-Gray	Chaz Kangeroo Hoodie-XL-Gray	1	0	visible
16	variation	MH01-XL-Orange	Chaz Kangeroo Hoodie-XL-Orange	1	0	visible
2	variation	MH01-XS-Black	Chaz Kangeroo Hoodie-XS-Black	1	0	visible
3	variation	MH01-XS-Gray	Chaz Kangeroo Hoodie-XS-Gray	1	0	visible
4	variation	MH01-XS-Orange	Chaz Kangeroo Hoodie-XS-Orange	1	0	visible

* C1, C2, and C3 are considered level 1 classifiers.

Kaggle竞赛案例

- 欧图 (Otto) 集团产品分类挑战赛的第一名解决方案 (三级堆叠)
 - 第一级:采用33个基模型预测作为第二级的元特征,另有8个工程特征
 - 第二级:采用XGBoost, NN 及 Adaboost等3个元模型
 - 第三级:由二级预测的加权平均值组成。

Stacking股票选择

基模型的对比和选取

各机器学习模型相对中证500的超额收益(训练数据72个月)

Stacking股票选择

Stacking集成学习训练过程

华泰证券研究所

Stacking股票选择

Stacking集成学习测试过程

华泰证券研究所

AdaBoost人脸检测

- 特征提取: 利用Harr-like小波特征得到海量的特征数据集
- AdaBoost迭代训练过程
 - 获取当前最优弱分类器: 计算出分类错误率最小的Harr特征
 - 根据分类结果更新权重
- 使用AdaBoost级联分类器去检测任意一张图片,识别人脸

Harr-like小波特征

最优弱分类器

- 弱分类器:二叉树(Stump)
 - 对于每个Harr特征,计算所有训练样本的特征值并排序
 - 寻找合适的阈值,使该特征对所有样本的分类误差最小。
 - 1. 全部人脸样本的权重和t1
 - 2. 全部非人脸样本的权重和t0
 - 3. 在当前元素之前的人脸样本的权重和s1
 - 4. 在当前元素之前的非人脸样本的权重和s0
 - 5. 当前元素的分类误差: r=min{[s1+(t0-s0)],[s0+(t1-s1)]}
- 最优弱分类器: 分类误差最小的二叉树

AdaBoost级联分类器

级联结构: 将多个强分类器连接在一起进行操作。

Otto Group是德国本土最大的在线零售商之一,拥有多种多样的产品线。为了提高运营效率和客户体验,准确地对产品进行分类变得至关重要。本作业将基于Otto Group提供的一组匿名化的产品数据集,要求同学们运用集成学习的方法来构建一个产品分类模型。

该数据集包含超过 200,000 种产品的 93 个特征。目标是构建一个能够区分主要产品类别的预测模型。

作业目标

- 1. 理解并应用集成学习技术。
- 2. 对数据进行必要的清洗,包括处理缺失值、异常值等。
- 3. 对分类特征进行编码,如使用独热编码(One-Hot Encoding)。
- 4. 分析特征重要性以理解哪些因素对于产品分类最为关键。
- 5. 通过调整参数优化所选模型的性能。
- 6. 提交最终模型的预测结果。

数据集介绍及下载: https://www.kaggle.com/competitions/otto-group-product-classification-challenge/data

具体要求:

- · 数据集使用Kaggle网站提供的训练数据集(train.csv,不要修改文件 名),文件路径设置为当前代码文件路径(如"./train.csv")。
- 将下载的训练数据集分为训练集和测试集,比例自定,至少保持20%的数据用于测试。
- 计算模型的准确率 (需不低于90%) 等评价指标。

上交形式

- 提交完整的代码文件(使用Jupyter Notebook格式)。
- 文件命名为 "**学号-姓名-准确率.ipynb**" (如602024710021-**张三**-
- 97.8.ipynb) .
- 不需要提交数据集,只提交Jupyter文件。

注意事项

- 确保代码具有良好的可读性, 适当添加注释说明。
- 遵守学术诚信原则,严禁抄袭他人作品。