Ridge regression and mixed models

16 Oct 2023

```
## it's nice to include packages at the top
## (and NOT automatically install them)
## try not to carry over packages you don't use
library(ggplot2); theme_set(theme_bw())
## diagnostics
library(performance)
library(DHARMa)
## downstream model evaluation
library(broom)
library(dotwhisker)
library(emmeans)
library(effects)
library(marginaleffects)
library(parameters)
## library(ggeffects)
```

Ridge in a nutshell

- **penalized** models: instead of minimizing SSQ = $\sum ((\mathbf{y} \mathbf{X}\beta)_i)^2$, minimize SSQ + $\lambda ||\beta||_2$ (ridge)
- or + $||\beta||_1$ (lasso)
- optimize bias-variance tradeoff
- equivalent to imposing iid Gaussian priors on each element of β
- lasso (and elastic net, which is a convex combination of L2 and L1 penalties) are popular because they **induce sparsity**
 - *likelihood surfaces* are non-convex with cusps at zero

- optimization with non-convex surfaces is a nuisance because it makes the basic optimization problem nonlinear; we need to use a different algorithm (coordinate descent/soft thresholding); can't use *only* linear algebra
- can generalize from penalized LM to penalized GLM

Andrew Gelman on variable selection

Variable selection (that is, setting some coefficients to be exactly zero) can be useful for various reasons, including: *It's a simple form of regularization. *It can reduce costs in future data collection. Variable selection can be fine as a means to an end. Problems can arise if it's taken too seriously, for example as an attempt to discover a purported parsimonious true model.

Choosing penalty strength

- typically by *cross-validation*
- leave-one-out (LOOCV) vs k-fold

Practical points

- Predictors must be standardized
- Intercept should usually be unpenalized

Ridge vs lasso

- In practice people just try both (or elastic net)
- Conjecture: whether ridge or lasso is a better *predictive* model in a particular case depends on the *effect size spectrum*

Ridge by data augmentation

set

$$\mathbf{B} = \left(\begin{array}{c} \mathbf{X} \\ \sqrt{\lambda} \mathbf{I} \end{array}\right)$$

- and $\mathbf{y}^* = (\mathbf{y} \ \mathbf{0})$
- so that $\mathbf{B}^{\mathsf{T}}\mathbf{B} = \mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda I$ and the residual sum of squares is unchanged

From ridge to mixed models

• what if we say

$$\begin{aligned} \mathbf{y} &\sim \text{Normal}(\mathbf{X}\boldsymbol{\beta}, \sigma^2) \\ \boldsymbol{\beta} &\sim \text{MVN}(\mathbf{0}, \sigma_g^2 \mathbf{I}) \end{aligned}$$

?

i.e. treat this as an <code>empirical Bayesian</code> problem (we estimate the β values, but do not put a prior on σ^2 or a hyperprior on σ^2_g (= $1/\lambda$)

References