Theorem. The dot product has the following properties.

- (1) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (2) $\mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|^2 \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$. Moreover $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- (3) $(c\mathbf{x}) \cdot \mathbf{y} = c(\mathbf{x} \cdot \mathbf{y}) = \mathbf{x} \cdot (c\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.
- (4) $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z} \text{ for all } \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n.$
- (5) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.
- (6) We define the angle θ between the vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ to be the real number $\theta = \cos^{-1}(\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|})$.
- (7) Let $\mathbf{a} \in \mathbb{R}^n$ be a nonzero vector. The *hyperplane* in \mathbb{R}^n with normal vector \mathbf{a} through the point \mathbf{x}_0 is the set

$$H(\mathbf{x}_0, \mathbf{a}) = {\mathbf{x} \in \mathbb{R}^n : \mathbf{a} \cdot \mathbf{x} = \mathbf{a} \cdot \mathbf{x}_0}.$$

Theorem. If $A \in \mathcal{M}_{m \times p}$ and $B \in \mathcal{M}_{p \times n}$, then $\operatorname{ent}_{ij}(AB) = \mathbf{r}_i(A) \cdot \mathbf{c}_j(B)$.

Theorem. If $A \in \mathcal{M}_{m \times p}$ and $B \in \mathcal{M}_{p \times n}$, then $\mathbf{c}_j(AB) = A\mathbf{c}_j(B)$. In particular, we have that $\mathbf{c}_j(AB) = b_{1j}\mathbf{c}_1(A) + b_{2j}\mathbf{c}_2(A) + ... + b_{pj}\mathbf{c}_p(A)$ so that $\mathbf{c}_j(AB) \in \operatorname{Span}(\mathbf{c}_1(A), \mathbf{c}_2(A), ..., \mathbf{c}_p(A))$.

Theorem. If $A \in \mathcal{M}_{m \times p}$ and $B \in \mathcal{M}_{p \times n}$, then $\mathbf{r}_i(AB) = \mathbf{r}_i(A)B$. In particular, we have that $\mathbf{r}_i(AB) = a_{i1}\mathbf{r}_1(B) + a_{i2}\mathbf{r}_2(B) + \dots + a_{ip}\mathbf{r}_p(B)$. so that $\mathbf{r}_i(AB) \in \operatorname{Span}(\mathbf{r}_1(B), \mathbf{r}_2(B), \dots, \mathbf{r}_p(B))$.

Theorem. Matrix multiplication is is an associative operation in the sense that $A \in \mathcal{M}_{m \times p}$, $B \in \mathcal{M}_{p \times q}$, $C \in \mathcal{M}_{q \times n}$ implies (AB)C = A(BC).

Theorem. Let $A, A' \in \mathcal{M}_{m \times p}, B, B' \in \mathcal{M}_{p \times n}$. Then

- $(1) I_m A = A = AI_n$
- (2) (A + A')B = AB + A'B
- (3) A(B+B') = AB + AB'
- (4) (cA)B = cAB = A(cB) for all $c \in \mathbb{R}$.

Theorem. Let $A, B \in \mathcal{M}_n$ be invertible matrices. Then, (1) A^{-1} is invertible and $(A^{-1})^{-1} = A$, (2) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem. Elementary matrices are invertible and their inverses are elementary.

Theorem Let $A \in \mathcal{M}_{m \times n}$ and let $A\mathbf{x} = \mathbf{b}$ be a linear system. Assume that this system is in rref.

- (1) If $rank(A) < rank[A \mid \mathbf{b}]$, then $A\mathbf{x} = \mathbf{b}$ has no solution.
- (2) If $rank(A) = rank[A \mid \mathbf{b}] = n$, then $A\mathbf{x} = \mathbf{b}$ has exactly one solution.
- (3) If $\operatorname{rank}(A) = \operatorname{rank}[A \mid \mathbf{b}] < n$, then $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions. In particular, if $A\mathbf{x} = \mathbf{0}$ has more unknowns than equations, then it has infinitely many solutions

Theorem. The following statements are equivalent for a *square* matrix $A \in \mathcal{M}_n$. (1) A is nonsingular. (2) $rref(A) = I_n$ (3) $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$. (4) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. (5) A is invertible. (6) A is a product of elementary matrices.

Theorem. Let $A, A' \in \mathcal{M}_{m \times p}, B \in \mathcal{M}_{p \times n}, \text{ and } c \in \mathbb{R}$. Then (1) $(A^{\mathrm{T}})^{\mathrm{T}} = A$ (2) $cA^{\mathrm{T}} = (cA)^{\mathrm{T}}$ (3) $(A + A')^{\mathrm{T}} = A^{\mathrm{T}} + A'^{\mathrm{T}}$ (4) $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$.

Theorem. Let $A \in \mathcal{M}_{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. Then $A\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot A^T \mathbf{y}$.