

CSCI 389 HW4

Jack Baretz

4.11

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hex: 0 1 2 3 4 5 6 7 8 9 A B C D E F

A. Derive K₁, the first round subkey

			PC-1				
57	49	41	33	2	5	17	9
1	58	50	42	3	4	26	18
10	2	59	51	4	3	35	27
19	11	3	60	5	2	44	36
63	55	47	39	3	1	23	15
7	62	54	46	3	8	30	22
14	6	61	53	4	5	37	29
21	13	5	28	2	0	12	4
14	17	11	24	1	5	-	
3	28	15	6	21	10		
23	19	12	4	26	8		
16	7	27	20	13	2		
41	52	31	37	47	55		

45

36

56

33

34

29

48

53

32

PC2

- 1. Apply PC1 permutation. Remove parity bits. Split left and right half (28 bits each)
- 2. Left and right half both shifted left 1 bit
- 3. Apply PC2 permutation to make 48 bit K1

After step 1:

30

44

40

49

46 42

51

39

50

After step 2: Left: 11100001100110010101000001 Right: 0101010110011001111000000001

After step 3 final K1:

B. Derive L0, R0

Table 3.2 Permutation Tables for DES

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

LO: 11001100000000001100110011111111 RO: 111100001010101011111000010101010

C. Expand R0

(c) Expansion Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

D. Calculate A = K1 XOR E[R0]

35

E. Groups of 6, apply S-box:

Groups of 6:

011100

010001

011100

OTITOU

110010

111000

010101

110011

110000

After applying 8 s boxes: 0000

1100,0010,0001,0110,1101,0101,0000

F. 00001100001000010110110101010000

G. Apply P

10010010000111000010000010011100

H. Calculate R1

XOR P(B) withL0

10010010000111000010000010011100

Xor

1100110000000001100110011111111

= R1 = 01011110000111001110110001100011

I. Write down ciphertext

01011110000111001110110001100011

Since this is final round, swap them so Final L = R1, Final R = L1. Then concatenate to make

10101010

And then apply IP^-1

01011101