Gruppi e algebre di Lie Corso di Laurea in Matematica A.A. 2024-2025 Docente: Andrea Loi

- 1. Sia $\pi: \mathbb{R}^2 \to S^1 \times S^1, (t,s) \mapsto (e^{2\pi it}, e^{2\pi is}), L = \{(t, \alpha t) \mid \alpha \in \mathbb{R} \setminus \mathbb{Q}\} \text{ e } f = \pi_{|L}: L \to S^1 \times S^1.$ Sia τ_f la topologia indotta da f su $H = \pi(L)$ e τ_s quella indotta dall'inclusione $H \subset S^1 \times S^1$. Dimostrare che $\tau_s \subset \tau_f$. (Suggerimento: si usi il fatto che f(L) è denso in $S^1 \times S^1$).
- 2. Sia $F: H \to G$ un omomorfismo algebrico tra gruppi di Lie. Dimostrare che se F è liscia in un punto $h_0 \in H$ allora F è liscia.
- 3. Sia $F: H \to G$ un omomorfismo iniettivo tra gruppi di Lie. Dimostrare che F è un'immersione (e quindi F(H) è un sottogruppo di Lie di G). (Suggerimento: si usi il fatto che un omomorfismo tra gruppi di Lie ha rango costante e il teorema del rango costante).
- 4. Sia $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Dimostrare che $e^X = \begin{pmatrix} \cosh 1 & \sinh 1 \\ \sinh 1 & \cosh 1 \end{pmatrix}$.
- 5. Trovare due matrici $A \in B$ tali che $e^{A+B} \neq e^A e^B$.
- 6. Dimostrare che (teorema della forma canonica ortogonale) data $A \in O(n)$ allora esiste $P \in O(n)$, p, q naturali tali che

$$P^{-1}AP = P^{t}AP = \begin{pmatrix} I_{p} & 0 & 0 & 0 & 0\\ 0 & -I_{q} & 0 & 0 & & \\ \hline 0 & 0 & P_{1} & & 0\\ 0 & 0 & & \ddots & & \\ 0 & 0 & 0 & & P_{n-p-q} \end{pmatrix}$$
 (1)

dove $P_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \cos \theta_j & \cos \theta_j \end{pmatrix}$, $\theta_j \in \mathbb{R}$, $\theta_j \neq s\pi$, $\forall s \in \mathbb{Z}$, $j = 1, \dots, \frac{n-p-q}{2}$, I_p (risp. I_q) è la matrice identità di ordine p (risp. q). (Suggerimento: la dimostrazione si ottiene attraverso i seguenti passi.

- a) esistono $p \ge 0$ autovalori di A uguali a 1, $q \ge 1$ autovalori di A uguali a -1, e $2h \ge 0$ autovalori complessi $e^{i\theta_1}, e^{-i\theta_1}, \dots, e^{i\theta_h}, e^{-i\theta_h}$ di A.
- b) esiste una base ortonormale di autovettori reali w_1, \ldots, w_p di V_1 e una base ortonormale di autovettori reali t_1, \ldots, t_q di V_{-1} tali che $< w_j, t_k >= 0, \forall j=1,\ldots, p$ e $\forall k=1,\ldots q$.
- c) sia m_ℓ la molteplicità algebrica di $e^{i\theta_\ell}$, $\ell=1,\ldots h$. Allora esiste una base ortonormale $u_1^\ell+iv_1^\ell,\ldots,u_{m_\ell}^\ell+iv_{m_\ell}^\ell$ di $V_{e^{i\theta_\ell}}$ e $u_1^\ell-iv_1^\ell,\ldots,u_{m_\ell}^\ell-iv_{m_\ell}^\ell$ base ortonormale di $V_{e^{-i\theta_\ell}}$ tali che $< u_{j_\ell}^\ell+iv_{j_\ell}^\ell,u_{k_\ell}^\ell-iv_{k_\ell}^\ell>=0,\,\forall j_\ell,k_\ell=1,\ldots,m_\ell.$
- d) sia $\ell=1,\ldots,h$ fissato, dedurre dal punto precedente che $\forall j_\ell.k_\ell=1,\ldots,m_\ell, \forall j=1,\ldots,p$ e $\forall k=1,\ldots q$

$$||u_{j_{\ell}}^{\ell}|| = ||u_{j_{\ell}}^{\ell}|| = 1, < u_{j_{\ell}}^{\ell}, u_{k_{\ell}}^{\ell} > = < v_{j_{\ell}}^{\ell}, v_{k_{\ell}}^{\ell} > = 0$$

$$< w_{j}, u_{j_{\ell}}^{\ell} > = < w_{j}, v_{j_{\ell}}^{\ell} > = < t_{k}, u_{j_{\ell}}^{\ell} > = < t_{k}, v_{j_{\ell}}^{\ell} > = 0.$$

1

e) per ogni $\ell=1,\ldots,h,$ siano $u_{j_\ell}^{(\ell)}:=\frac{u_{j_\ell}^\ell}{\|u_{j_\ell}^\ell\|}$ e $v_{j_\ell}^{(\ell)}:=\frac{v_{j_\ell}^\ell}{\|v_{j_\ell}^\ell\|}.$ Dedurre che

$$A(u_{j_{\ell}}^{(\ell)} + v_{j_{\ell}}^{(\ell)}) = e^{i\theta_{\ell}}(u_{j_{\ell}}^{(\ell)} + v_{j_{\ell}}^{(\ell)}).$$

e che $Au_{j_{\ell}}^{(\ell)} = \cos\theta_{\ell} \ u_{j_{\ell}}^{(\ell)} - \sin\theta_{\ell} \ v_{j_{\ell}}^{(\ell)} = \delta u_{j_{\ell}}^{(\ell)} = \sin\theta_{\ell} \ u_{j_{\ell}}^{(\ell)} + \cos\theta_{\ell} \ v_{j_{\ell}}^{(\ell)}, \ \forall j_{\ell} = 1, \dots, m_{\ell}.$

f) dedurre dai punti precedenti che i vettori

$$w_1, \dots, w_p, t_1, \dots, t_q, u_1^{(1)}, v_1^{(1)}, \dots, u_{m_1}^{(1)}, v_{m_1}^{(1)}, \dots, u_1^{(h)}, v_1^{(h)}, \dots, u_{m_k}^{(h)}, v_{m_k}^{(h)}$$

sono una base ortonormale di vettori di \mathbb{R}^n e che se $P \in O(n)$ è la matrice associata a questa base (cioè la matrice che ha come colonne tali vettori) si ottiene la (1).

- 7. Sia G un gruppi di Lie e sia G_0 la componente connessa di G che contiene e (elemento neutro di G). Se μ e i denotano la moltiplicazione e l'inversione in G, provare che
 - 1. $\mu(\lbrace x \rbrace \times G_0) \subset G_0, \forall x \in G_0;$
 - 2. $i(G_0) \subset G_0$;
 - 3. G_0 é un sottoinsieme aperto di G
 - 4, G_0 é un sottogruppo di Lie di G.
- 8. Sia G un gruppo di Lie e $\mu: G \times G \to G$ la moltiplicazione. Dimostrare che

$$\mu_{*(a,b)}(X_a, Y_b) = (R_b)_{*a}(X_a) + (L_a)_{*b}(Y_b), \ \forall (a,b) \in G \times G, \ \forall X_a \in T_aG, \ \forall Y_b \in T_bG,$$

dove L_a (risp. R_b) denota la traslazione a sinistra (risp. a destra) associata ad a (risp. b).

9. Sia G un gruppo di Lie con inversione $i:G\to G, a\mapsto i(a)=a^{-1}$. Dimostrare che

$$i_{*a}(Y_a) = -(R_{a^{-1}})_{*e}(L_{a^{-1}})_{*a}(Y_a), \ \forall a \in G, \ \forall Y_a \in T_aG.$$

- 10. Dimostrare che ogni gruppo di Lie é parallelizzabile.
- 11. Si dimostri che se $\lambda \in \mathbb{C}$ è un autovalore per una matrice $B \in M_n(\mathbb{C})$ allora e^{λ} è un autovalore per e^B . Si deduca che se $G = SL_2(\mathbb{R})$ il gruppo lineare speciale allora l'applicazione esponenziale $e : \text{Lie}(G) \to G, A \mapsto e^A$ non è suriettiva (Suggerimento per la seconda parte: si usi la prima parte per dimostrare che se $A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$ allora non esiste B tale che $e^B = A$).
- 12. Dimostrare che il gruppo $SU(2) = \{A \in GL_2(\mathbb{C}) \mid A^* = A^{-1} \land \det A = 1\}$ è diffeomorfo a S^3 e $\text{Lie}(SU(2)) = \{\begin{pmatrix} iv_1 & v_2 + iv_3 \\ -v_2 + iv_3 & -iv_1 \end{pmatrix} \mid v_1, v_2, v_3 \in \mathbb{R}^3\}$. (Suggerimento per la prima parte: mostrare che per ogni $A \in SU(2)$ esistono $a, b \in \mathbb{C}$ tali che $|a|^2 + |b|^2 = 1$ tali che $A = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$).

13. Dimostrare che l'applicazione

$$F: \mathbb{R}^3 \to \operatorname{Lie}(SU(2)), v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \mapsto M_v := \begin{pmatrix} iv_1 & v_2 + iv_3 \\ -v_2 + iv_3 & -iv_1 \end{pmatrix}$$
 (2)

è un isomorfismo tra spazi vettoriali su \mathbb{R} . Verificare inoltre che

$$[M_u, M_v] = 2M_{u \times v}, \forall u, v \in \mathbb{R}^3$$
(3)

 \mathbf{e}

$$tr(M_u M_v) = -2u \cdot v, \forall u, v \in \mathbb{R}^3, \tag{4}$$

dove $u \times v$ (risp. $u \cdot v$) denota il prodotto vettoriale (risp. scalare) in \mathbb{R}^3 .

Dedurre che (Lie(SU(2)), $-\frac{1}{2}$ tr(·,·)) è uno spazio euclideo isometrico a (\mathbb{R}^3 ,·) e che l'algebra di Lie (\mathbb{R}^3 , 2×) è isomorfa all'algebra Lie(SU(2)).

14. Dimostrare che dati $A \in SU(2)$ e $v \in \mathbb{R}^3$ esiste $w \in \mathbb{R}^3$ tale che $AM_vA^{-1} = M_w$, dove M_v è definita nell'Esercizio 13. Dedurre che per ogni $A \in SU(2)$ esiste una matrice $F(A) \in GL_3(\mathbb{R})$ tale che w = F(A)v e quindi

$$AM_v A^{-1} = M_{F(A)v}. (5)$$

Dimostrare che in effetti $F(A) \in O(3)$. (Suggerimento per l'ultima parte: usare la (4) nell'Esercizio 13 per verificare che $F(A) \cdot u = F(A) \cdot v$, $\forall u, v \in \mathbb{R}^3$).

15. Sia $A = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in SU(2)$ con $a, b \in \mathbb{C}$ e $|a|^2 + |b|^2 = 1$ (cfr. Esercizio 12). Dimostrare che la matrice F(A) definita nell'Esercizio 14 si scrive come:

$$F(A) = \begin{pmatrix} |a|^2 - |b|^2 & 2Im(a\bar{b}) & 2Re(a\bar{b}) \\ -2Re(iab) & Re(a^2 + b^2) & Re[i(a^2 - b^2)] \\ -2Im(iab) & Im(a^2 + b^2) & Im[i(a^2 - b^2)] \end{pmatrix}.$$
 (6)

16. Si consideri l'applicazione

$$F: SU(2) \to O(3), A \mapsto F(A), \tag{7}$$

dove $F(A) \in O(3)$ è definita nell'Esercizio 14. Si dimostri che F è un omomorfismo algebrico e che $\operatorname{Ker}(F) = \{\pm I\}$. Si dimostri inoltre che F è continua e si deduca che $F(SU(2)) \subseteq SO(3)$. (Suggerimento per il calcolo del $\operatorname{Ker} F$: si usi il fatto che se $A \in SU(2) \in \operatorname{Ker} F$ se e solo se A commuta con ogni elemento di $\operatorname{Lie}(SU(2))$ e, in particolare, commuta con le matrici $E_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$).

17. Sia $F: SU(2) \to SO(3)$ l'applicazione (7). Si dimostri che $F_{*I}(M_u)(v) = 2M_{u \times v}$, per ogni $u, v \in \mathbb{R}^3$ e che quindi $F_{*I}(M_u) = 2\begin{pmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{pmatrix}$). Si deduca che $F_{*I}: \text{Lie}(SU(2)) \to \text{Lie}(SO(3))$ è un isomorfismo di algebre di Lie e che F è un diffeomorfismo locale.

- 18. Dedurre dagli Esercizi 16 e 17 che l'applicazione $F:SU(2)\to SO(3)$ è un omomorfismo suriettivo di gruppi di Lie e che quindi $\frac{SU(2)}{\pm I}$ è un gruppo di Lie isomorfo a SO(3).
- 19. Dimostrare che SO(3) è diffeomorfo a $\mathbb{R}P^3$. (Suggerimento: si usi l'Esercizio 12 e l'Esercizio 18).