

Katedra Elektrotechniki i Podstaw Informatyki

LABORATORIUM OBWODÓW I SYGNAŁÓW SPRAWOZDANIE

Ćw. nr	Temat		
5	5 Obwody nieliniowe prądu stałego		
Opracowali		Rok / gr. lab.	Data wyk. ćw
		1ET-DI /	26.01.2019r.

a) Analiza obwodu zawierającego rezystor nieliniowy opisany wielomianem.

Analiza komputerowa:

**** 01/26/19 18:51:50 ******* Evaluation PSpice (Nov 1999) *******

* C:\Users\Norbert\Desktop\5 ois\lab_6_1.sch

**** CIRCUIT DESCRIPTION

```
* Schematics Version 9.1 - Web Update 1
```

* Sat Jan 26 18:51:46 2019

```
** Analysis setup **
.OPTIONS NOPAGE
.OP
```

* From [PSPICE NETLIST] section of pspiceev.ini: .lib "nom.lib"

```
.INC "lab_6_1.net"
```

**** INCLUDING lab 6 1.net ****

* Schematics Netlist *

```
R_RD $N_0002 $N_0001 1u

V_VE $N_0003 0 20

R_R1 $N_0003 $N_0002 12

V_VDRN2 $N_0001 $N_0004 0

H_HRN2 $N_0004 0 POLY(1) VH_HRN2 4 0 6

VH_HRN2 $N_0002 $N_0004 DC 0V

**** RESUMING lab_6_1.cir ****

.INC "lab_6_1.als"
```

```
**** INCLUDING lab_6_1.als ****

* Schematics Aliases *
```

* Schematics Aliases *

.ALIASES

R_RD RD(1=\$N_0002 2=\$N_0001)

V_VE VE(+=\$N_0003 -=0)

 R_R1 $R1(1=$N_0003 2=$N_0002)$

H_HRN2 HRN2(3=\$N_0004 4=0)

VH_HRN2 HRN2(1=\$N_0002 2=\$N_0004)

.ENDALIASES

**** RESUMING lab_6_1.cir ****
.probe

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N_0001) 9.0217 (\$N_0002) 9.0217

(\$N_0003) 20.0000 (\$N_0004) 9.0217

VOLTAGE SOURCE CURRENTS NAME CURRENT

V_VE -9.149E-01 V_VDRN2 0.000E+00 VH HRN2 9.149E-01

TOTAL POWER DISSIPATION 1.83E+01 WATTS

**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C

**** CURRENT-CONTROLLED VOLTAGE SOURCES

NAME H_HRN2 V-SOURCE 9.026E+00 I-SOURCE 9.149E-01

JOB CONCLUDED

TOTAL JOB TIME .02

Obliczenia ręczne:

E=20 V Pn=12 D
UANZ (11/2) = 4+61/2
E-URA-URA3=0
-20-R11+4+61N2=0
-612-121+16=0
D=62-40c D=(-12)2-4.(-6).16=144+384=528
Vn = 4-V33
11= -6 No - 12-4-133 = 0.9 15A
12 = 12 +4-1/33 2,915 A
Up, = P, J= 12 0,915 = 10,978 V
URM2 (1)= 4.60,015 = 9,022 V

Wielkośc	Wynik komputerowy	Wynik ręczny
U_{R1}	10,978V	10,978V
$U_{ m RN1}$	9,021V	9,022V

b) Analiza obwodu zawierającego rezystory nieliniowe opisane charakterystykami prądowo-napięciowymi.

Analiza komputerowa:

**** 01/26/19 19:51:41 ******** Evaluation PSpice (Nov 1999) *********

* C:\Users\Norbert\Desktop\5 ois\lab_6_2.sch

**** CIRCUIT DESCRIPTION

```
* Sat Jan 26 19:45:24 2019
** Analysis setup **
.OPTIONS NOPAGE
OP.
.DC LIN V_VE 0 20 1
.PROBE
* From [PSPICE NETLIST] section of pspiceev.ini:
.lib "nom.lib"
.INC "lab 6 2.net"
**** INCLUDING lab 6 2.net ****
* Schematics Netlist *
G GIN1  $N 0001 0 TABLE { V($N_0001, 0) }
+ ( (0,0) (5,2) (10,3) (20,4) )
G_GIN2 $N_0001 0 TABLE { V($N_0001, 0) }
+((0,0)(5,0.5)(10,2)(20,3))
V VE $N 0001 0 2
**** RESUMING lab 6 2.cir ****
.INC "lab 6 2.als"
**** INCLUDING lab 6 2.als ****
* Schematics Aliases *
.ALIASES
G GIN1
             GIN1(OUT+=$N_0001 OUT-=0 IN+=$N_0001 IN-=0)
```

* Schematics Version 9.1 - Web Update 1

G_GIN2 GIN2(OUT+=\$N_0001 OUT-=0 IN+=\$N_0001 IN-=0) V_VE VE(+=\$N_0001 -=0) .ENDALIASES

**** RESUMING lab_6_2.cir ****
.probe

.END

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N 0001) 2.0000

VOLTAGE SOURCE CURRENTS
NAME CURRENT

V VE -1.000E+00

TOTAL POWER DISSIPATION 2.00E+00 WATTS

**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C

**** VOLTAGE-CONTROLLED CURRENT SOURCES

NAME G_GIN1 G_GIN2 I-SOURCE 8.000E-01 2.000E-01

JOB CONCLUDED

TOTAL JOB TIME 0.00

Obliczenia ręczne:

Wartość	Obliczenia komputerowe	Obliczenia ręczne
E[V]	12	12
I1	3,2	3,2
I2	2,2	2,2

c)Analiza równoległego obwodu zawierającego rezystor nieliniowy opisany charakterystyką prądowo-napieciową.

Obliczenia komputerowe:

**** 01/26/19 20:39:54 ******** Evaluation PSpice (Nov 1999) ********

* C:\Users\Norbert\Desktop\5 ois\Schematic2.sch

**** CIRCUIT DESCRIPTION

```
* Schematics Version 9.1 - Web Update 1
* Sat Jan 26 20:23:41 2019
** Analysis setup **
.OP
.DC LIN V VE 0 30 1
.PROBE
* From [PSPICE NETLIST] section of pspiceev.ini:
.lib "nom.lib"
.INC "Schematic2.net"
**** INCLUDING Schematic2.net ****
* Schematics Netlist *
R R1 0 $N_0001 4
V VE $N 0001 0 14
G GIN2
            0 $N 0001 TABLE { V($N_0001, 0) }
+\overline{(}(0,0)(10,1)(20,\overline{1})(30,4))
**** RESUMING Schematic2.cir ****
.INC "Schematic2.als"
**** INCLUDING Schematic2.als ****
* Schematics Aliases *
.ALIASES
R R1 R1(1=0 2=$N 0001)
```

V VE VE(+=\$N 0001 -= 0)

G_GIN2 GIN2(OUT+=0 OUT-=\$N_0001 IN+=\$N_0001 IN-=0)
.ENDALIASES

**** RESUMING Schematic2.cir ****
.probe

.END

**** 01/26/19 20:39:54 ******** Evaluation PSpice (Nov 1999) ********

* C:\Users\Norbert\Desktop\5 ois\Schematic2.sch

**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(\$N_0001) 14.0000

VOLTAGE SOURCE CURRENTS
NAME CURRENT

V VE -2.500E+00

TOTAL POWER DISSIPATION 3.50E+01 WATTS

**** 01/26/19 20:39:54 ******* Evaluation PSpice (Nov 1999) ********

* C:\Users\Norbert\Desktop\5 ois\Schematic2.sch

**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C

**** VOLTAGE-CONTROLLED CURRENT SOURCES

NAME G_GIN2 I-SOURCE 1.000E+00

JOB CONCLUDED

TOTAL JOB TIME 0.00

Obliczenia ręczne:

Wielkośc	Wynik komputerowy	Wynik ręczny
I[A]	4,5	4,5
I1[A]	3,5	3,5
I2[A]	1	1

d)Analiza szeregowo-równoległego obwodu zawierającego rezystor nieliniowy opisany charakterystyką prądowo-napięciową.

Obliczenia komputerowe:

**** 01/26/19 21:11:43 ******* Evaluation PSpice (Nov 1999) ********

* C:\Users\Norbert\Desktop\5 ois\lab_6_4.sch

R RDN2

V VE

0 \$N 0004 10

\$N 0001 0 20

*********************** ****** * Schematics Version 9.1 - Web Update 1 * Sat Jan 26 21:02:16 2019 ** Analysis setup ** .OPTIONS NOBIAS .OPTIONS NOPAGE OP. .DC LIN V VE 0 100 1 .PROBE * From [PSPICE NETLIST] section of pspiceev.ini: .lib "nom.lib" .INC "lab 6 4.net" **** INCLUDING lab 6 4.net **** * Schematics Netlist * E ERN2 \$N 0002 0 \$N 0001 0 1 G GRN2 \$N 0003 \$N 0004 TABLE { V(\$N 0001, 0) } + ((0,0) (4,1) (13,4) (30,5)) \$N 0005 0 \$N 0001 0 1 E ER3 \$N 0001 \$N 0006 10 V VDR1 V VDRN2 \$N 0002 \$N 0003 0

```
R R1 0 $N 0006 12
R R3
        0 $N 0007 2
V VDR3
           $N 0005 $N 0007 0
**** RESUMING lab 6 4.cir ****
.INC "lab 6 4.als"
**** INCLUDING lab 6 4.als ****
* Schematics Aliases *
.ALIASES
E ERN2
           ERN2(3=$N 0002 4=0 1=$N 0001 2=0)
G GRN2
           GRN2(OUT+=$N 0003 OUT-=$N 0004 IN+=$N 0001
IN=0)
E ER3
          ER3(3=$N 0005 4=0 1=$N 0001 2=0)
V VDR1
           VDR1(+=\$N\ 0001 -=\$N\ 0006)
V VDRN2
             VDRN2(+=$N 0002 -=$N 0003)
           RDN2(1=0 2=$N 0004)
R RDN2
V_VE
          VE(+=$N 0001 -=0)
RR1
         R1(1=0 2=$N 0006)
R R3
         R3(1=0 2=$N 0007)
V_VDR3
           VDR3(+=$N 0005 -=$N 0007)
.ENDALIASES
**** RESUMING lab 6 4.cir ****
.probe
.END
```

OPERATING POINT INFORMATION

27.000 DEG C

TEMPERATURE =

**** VOLTAGE-CONTROLLED CURRENT SOURCES

NAME G_GRN2 I-SOURCE 4.412E+00

**** VOLTAGE-CONTROLLED VOLTAGE SOURCES

NAME E_ERN2 E_ER3 V-SOURCE 2.000E+01 2.000E+01 I-SOURCE -4.412E+00 -1.000E+01

JOB CONCLUDED

TOTAL JOB TIME 0.00

Obliczenia ręczne:

Wartość	Wyniki komputerowe	Wyniki ręczne
UR1[V]	16,797	16,8
UR3[V]	3,203	3,2
I1[A]	2,402	2,4
IN2[A]	0,801	0,8
[I3[A]	1,602	1,6

Wnioski

W tym ćwiczeniu badaliśmy obwody nieliniowe prądu stałego. W większości wyniki pomiarów zgadzały się z wynikami liczonymi ręcznie. Wszystkie nieścisłości są spowodowane przybliżeniami które zastosowaliśmy w obliczeniach ręcznych. Obliczenia komputerowe pozwalają na dużo szybsze obliczenie danych wielkości niż obliczanie ręczne.