CSCI-2400 Models of Computation

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

output memory

Program memory

compute $x^2 * x$

Costas Busch - RPI

compute x * x

CPU

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

CPU

input memory

$$x = 2$$

Program memory

$$f(x) = 8$$

output memory

compute $x^2 * x$

compute X * X

Costas Busch - RPI

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

· Finite Automata: no temporary memory

· Pushdown Automata: stack

Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Costas Busch - RPI

1(

Pushdown Automaton

Example: Compilers for Programming Languages

(medium computing power)

Costas Busch - RPI 11

Turing Machine

Examples: Any Algorithm

(highest computing power)

Costas Busch - RPI 12

Power of Automata

Costas Busch - RPI

13