Lasningsfordig - Hinitest: Derivering

a)
$$f(x) = x^3 + 2x^2 - 3x$$

 $f'(x) = 3x^2 + 4x - 3$

b)
$$g(x) = ln(x-2)$$

 $g(x) = f(u(x))$ howor
 $f(u) = ln(u)$ or $u(x) = (x-2)$
 $f'(u) = \overline{u}$, sinder $(ln x)' = \overline{x}$ or $u(x) = 1$.

$$g'(x) = f'(u) \cdot u'(x) = \frac{1}{u} \cdot 1 = \frac{1}{x-2}$$

Forventet:
$$g(x) = ln(x-2)$$

 $g'(x) = \frac{1}{x-2} \cdot (x-2)$
 $= \frac{1}{x-2}$

c)
$$h(x) = (2x^2 - 1)^3$$

 $h'(x) = 3(2x^2 - 1)^2 \cdot (2x^2 - 1)^3$
 $= 3 \cdot (2x^2 - 1)^3 \cdot 4x$
 $= 12 \times (2x^2 - 1)^3$

*Hester 2017
a)
$$\int (x)^2 + 2x + 1$$

 $\int (x)^2 + 6x - 2$

b)
$$g(x) = x^2 \cdot e^x$$

 $g(x) = u(x) \cdot v(x)$ hvor $u(x) = x^2$ og $v(x) = e^x$
 $g'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$ $u'(x) = 2x$ $v'(x) = e^x$
procluttregulen

$$g'(x) = 2x \cdot e^x + x^2 \cdot e^x$$
 — han selles som endelig svor $g'(x) = xe^x (2 + x)$

c)
$$h(x) = \ln(x^3 - 1)$$

 $h'(x) = \frac{1}{x^3 - 1} \cdot (x^3 - 1)$ Kjerneregelen
 $h'(x) = \frac{3x^2}{x^3 - 1}$

· Hasten 2013

a)
$$f(x) = 2 \cdot e^{3x}$$

 $f'(x) = 2 \cdot 3 e^{3x}$
 $f'(x) = 6 \cdot e^{3x}$
 $f'(x) = 6 \cdot e^{3x}$

b)
$$g(x) = 2x \cdot ln(3x)$$

 $g'(x) = 2 \cdot ln(3x) + 2x \cdot \frac{3}{3x}$
 $(2x)$ $(ln 3x)$

$$g(x) = 2 \ln(3x) + 2$$
 - lean selles som endelig svan
 $g'(x) = 2 \left(\ln(3x) + 1\right)$

c)
$$h(x) = \frac{2x-1}{x+1}$$

 $h(x) = \frac{u(x)}{v(x)}$ | wor $u(x) = 2x-1$, $u'(x) = 2$ og $v(x) = x+1$
 $v'(x) = 1$

$$h'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{(v(x))^2}$$
- Kvotientregelen

$$h'(x) = \frac{Z(x+1) - 1 \cdot (Zx-1)}{(x+1)^2}$$

$$h'(x) = \frac{4}{(x+1)^2}$$

a)
$$f(x) = 2x^2 - 5x - 6$$

 $f'(x) = 4x - 5$

b)
$$g(x) = x \ln x$$

 $g'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x}$ Proclubtregulen
 $g'(x) = \ln x + 1$

c)
$$h(x) = \frac{e^{2x}}{x-3}$$

$$h'(x) = \frac{2e^{2x}(x-3) - e^{2x}}{(x-3)^2}$$

$$2xe^{2x} - 6e^{2x} - e^{2x}$$

$$(x-3)^2$$

$$h'(x) = \frac{e^{2x}(2x-7)}{(x-3)^2}$$