Assumption:
$$f(t + \frac{x}{a}) = 0$$

Forward travelling w

Forward travelling wave
$$\Delta p(t, x) = \rho_0 \cdot F\left(t - \frac{x}{a}\right) = 0$$

$$\Delta p(t, x) = \rho_0 \cdot F\left(t - \frac{x}{a}\right)$$

$$\Delta p(t_1, x)$$

$$\Delta p(t_2, x)$$

$$\rho_0 \cdot F(t_1 - \frac{x_1}{a}) = \rho_0 \cdot F(t_2 - \frac{x_2}{a})$$

$$\rho_0 \cdot F(t_1 - \frac{x_1}{a}) = \rho_0 \cdot F(t_2 - \frac{x_2}{a})$$

 $t_2 = \text{const.}$ X_1 X_2 p_0

$$x_2$$
 - x_1 = $a \cdot (t_2$ - t_1) = Δx_F
Backward travelling wave

 $t_1 - \frac{x_1}{2} = t_2 - \frac{x_2}{2}$

Backward travelling wave $\Delta x_{\rm f} = a \cdot (t_1 - t_2) = -\Delta x_{\rm F}$