Ш

Index

Note: Page number followed by f indicate figure and t indicate tables.

A	AM radio maps, 74–75
Abstract floor plans, 171–172	Anchors
Access point number reduction, 262–263	antideflagration ATEX enclosure, 304
Acoustics	communication module, 303–304
active, 335	localization module, 304
positioning systems. (see Airborne acoustic	visualization module, 304
positioning systems (AAPS))	Angel of Arrival (AOA), 341, 353
signal detection and positioning	three-dimensional position, 365–368
observables, 340–342	Apache, 235
wave propagation in air	Apple Maps, 101
absorption, 337–338	Architectural floor plans, 171–172
impedance, 339	Atmospheric turbulence, 340
outdoor propagation, 339-340	Augmented reality systems, 171–172
propagation speed, 338–339	Auto-regressive model of order one (AR1), 315
Active Badge System, 353	
Active Bat System, 335–336	В
Affinity propagation clustering, 138–139	Basic Service Set IDentifier (BSSID), 157–158
application of, 146–147	Bluetooth-complaint technologies, 267
offline phase, 147	Bluetooth low energy (BLE), 156
RP clustering via, 145–147	communication, 302
two-step algorithm, 148	radio maps, 74
Airborne acoustic positioning systems (AAPS)	Wi-Fi probability-based positioning and
broadband, 336–337	beacon-based positioning
compensation algorithms	beacon RSSI weighted centroid, 132
Doppler shift, 347–349	probability-based results, 130–132
multipath propagation, 346–347	probability-based setup and algorithm,
multiple access interference, 345–346	129–130
positioning strategies, 342–343	probability density function, 127–129
hyperbolic lateration, 344–345	and WLAN, 268
spherical lateration, 343–344	
Alcalá2017 Tutorial dataset, 238	С
characteristic of, 236t	Calibration-free indoor positioning system
mean positioning error, 241, 242 t	CrowdInside, 107
Radio Map Inherent Difficulty (RMID) value,	EZ clients, 106
243, 243 <i>t</i>	iMoon, 108
AmbiLoc dataset, 238	Jigsaw, 107

Calibration-free indoor positioning system	D
(Continued)	Database-size reduction, in fingerprinting
MapGenie, 107	techniques, 262–263
SDM, 105	Dead-reckoning method, 311
TIX, 105	Deployment cycle, passive localization system,
UnLoc, 106	289–290
Walkie-Markie, 106–107	Device heterogeneity, 162–163
Calibration issues, in fingerprinting	Dijkstra's algorithm, 177–178, 179f
techniques	Django, 235
circle-based fingerprint clustering, 261–262	Doppler shift, 347–349
offline calibration, 261	Drift reduction methods
RSS offsets, effects of, 260–261	height error correction, 329
test rank based method, 261-262	heuristic drift elimination algorithms, 326
Cell-ID sytem, 353	landmark-based algorithms, 328–329
Cell Space, 194–196	multiinertial sensor fusion algorithms,
CIMLoc, 77	327–328
CityGML, 190–191	SLAM-based algorithms, 327
Clustering methods, 252, 253f	
Compression and clustering methods, 262	E
Compressive sensing approaches, 257–258	Electrical calibration process, 360-361
Core module, of IndoorGML, 194–196, 195f	Electrical system modeling, 357–358
Cricket system, 335–336	Emitters, 367–368
Crowdsourcing, 138	Envelope detection technique, 340 , $341f$
indoor research	EvAAL-ETRI indoor location competition, 227
calibration-free, 105–108	EvAAL indoor localization competition
equipped sensors implications, 110-111	accuracy performance, 213
floor plan layout dimension, 111	EvAAL framework
map-free $vs.$, $109t$	core criteria, 214
maximum likelihood estimator, 103	extended criteria, 214–215
privacy and security, 112	evaluation, 212–213
quality of, 110	long-term goal, 211
simultaneous localization and mapping,	setup criteria, 211–212
104–105	
type of architecture, 111	F
outdoor map systems, 98–103	Filtering, radio maps, 84–87
Apple Maps, 101	AP selection
Google Maps, 99	offline, 85–86
HERE (Nokia Here), 101	online, 86–87
MapQuest, 100	density and positioning performance, 84–85
Microsoft's Bing Maps, 101	samples, 87
OpenStreetMap (OSM), 99–100	Fingerprint calibrated weighted centroid
Waze, 100	(FCWC) algorithm
radio maps building and updating,	algorithm implementations, 124-125
76–79	SPCF and, 125

validation against competing algorithms,	AmbiLoc dataset, 238
125–127	dashboard section, 229, 233
validation data, 124	datasets section, 228, 230f
FM radio maps, 74–75	comma-separated values file format, 230
-	dataset info, 229–230
G	test set, 230
Geometric calibration system, 361–365, 362 <i>f</i>	training set, 230
Global navigation satellite system (GNSS)	validation set, 230
access, 155	deterministic-based approach, 239, 240f
Global navigation satellite system integration,	homepage, 228, 229f
with WLAN	implementation details, 235
categories, 270–271	magPIE dataset, 238–239
fusing GNSS pseudoranges with WLAN	methods, 229, 231–233
ranges, 271	objectives, 231
fusing GNSS pseudoranges with WLAN RSS	performance, 244
Bayesian filter, $272f$	probabilistic-based approach, 239–241, 240f
cumulative distribution function, 275	ranking, 229, 231
estimation stage/online phase, 273-274	Wi-Fi-based datasets, 235–238
extended Kalman filter, 274–275	Indoor maps, 187–188
Gaussian process regression, 272	IndoorTube Map, 172
mean absolute error, 275–276, 275 <i>t</i>	requirements for
performance, 274–276	cell-based context awareness, 189-190
training stage/offline phase, 272–273	indoor accessibility graph, 189
Global positioning system (GPS), 97	indoor space, 188–189
Google Indoor, 169	indoor structure and connectivity,
Google Maps, 99	188–189
GraphSLAM, 77	integrating multiple data sets, 190-191
	"You are here" map, 170
Н	Indoor navigation, radio fingerprinting-based
Height error correction, 329	assumptions, 157–158
Height/floor estimation, in indoor	challenges, 158–164
fingerprinting, 266	motivation, 155–157
HERE (Nokia Here), 101	Indoor positioning and indoor navigation
Heuristic drift elimination algorithms, 326	(IPIN) conference, 209–211
Hyperbolic lateration, 344–345	Indoor positioning system (IPS)
algorithm, 336–337	angle of arrival, 353
	applications, 46–47
I	calibration and experimental setup
Image acquisition, 362–363	smartphone-based patient monitoring,
Image-based approaches, 254–257	47–49
Image compression process, 255–257, 256 <i>f</i>	smartwatch-based patient monitoring,
Image sensor (IS), 354	49–50
Indoor cell-awareness, 190	challenges of fingerprinting
IndoorLoc platform	Anyplace (Airplace), 12
actions, 226	classification, 3–4

Indoor positioning system (IPS) (Continued)	online phase, low-complexity strategy,
indoor maps, 14–15	145–149
localization mechanisms, 4–6	at university campus, 53–57
location, 3	Indoor radio propagation, RSSI-based
magnetic field fingerprint, 10–11	positioning algorithms
modular localization system, 13	free space model, 116
motivation, 1–2	indoor propagation, 117
navigation, 3	RSSI measurement, 118
position, 3	IndoorTube Map, 172
privacy and security issues, 15	Inertial measurement units (IMU), 276
Samsung solution, 11	Inertial sensors, 311
Wi-Fi fingerprinting, 6–10	and magnetometers, 312-313
developments in, 65	Infrared emittingdiode (IRED), 354, 360, 363f
in environment, 365–367, 366 <i>f</i>	mobile agents, 365–367, 366f
experiences and lessons learned	Interacting multiple model (IMM) algorithm,
smartphone-based patient monitoring,	278
50–51	Interoperability of positioning systems, 249
smartwatch-based patient monitoring,	Intersymbol interference (ISI), 345–346
51–52	Inverse distance weighting (IDW)
first stage, 58	interpolation, 80
light-emitting diode, 354, 368f	ipft R package, 235
measurement quantities, 46	IPIN indoor localization competition
MWMF model, 139–140	error statistics, 218
optical sensor system	EvAAL framework, application of,
description of, 355-360	217–218
electrical system modeling, 357-358	fusion strategies, 221–222
optical system modeling, 358–360	Kalman filter, 221–222
position sensitive device sensor, 356-357	objective, 223
problem/challenge with, 209	particle filter, 222
requirements, 287	point error, 216
sensor system calibration	real-time systems
electrical calibration, 360–361	map matching algorithm, 221
geometric calibration, 361–365	pedestrian dead reckoning, 220–221
at very large scenarios	raw-data modules, 220–221
calibration and experimental setup, 52–58	selection of, 219–220, 219 <i>t</i>
experiences and lessons learned, 58–64	user orientation, 221
virtual fingerprinting via, 139	Wi-Fi scanning, 221
Wi-Fi fingerprinting, 52	smartphone-based systems, 220
heterogeneous mobile applications, 46	tracks and competitors, 215t
for indoor positioning, 52	IPIN2016 Tutorial dataset, 237
mapping large environments, 64	characteristic of, 236t
measurements, 46	mean positioning error, 241, 242 <i>t</i>
nonobtrusive, 47	Radio Map Inherent Difficulty (RMID) value
offline phase, low-complexity strategy,	243, 243 <i>t</i>
139–143	ranking webpage of, 231, 232f

IPS. (see Indoor positioning system (IPS))	simultaneous localization and mapping,
Iterative method, 365	104–105
	type of architecture, 111
K	outdoor, 98–103
Kaggle, 227	Apple Maps, 101
Kalman filter, shoe-mounted positioning	Google Maps, 99
systems, 318–319	HERE (Nokia Here), 101
	MapQuest, 100
L	Microsoft's Bing Maps, 101
Landmark-based algorithms, 328–329	OpenStreetMap (OSM), 99–100
Levenberg-Marquardt algorithm, 365	Waze, 100
Light-emitting diode (LED), 354	schematic, 170
Linear Frequency Modulation (LFM), 342	challenges, 172
Location-based applications (LBA), 69	for mobile GIS applications, 171
Location-based services (LBS)	for transport network, 171
applications, 97	web map systems, 102t
awareness and demand, 155	Matching pursuit (MP) algorithm, 346–347
for indoor environments, 169	Measurement gaps, in fingerprinting
Log-distance path-loss (LDPL) model, 83	techniques, 263–266
Loose coupling algorithms, 327–328	MEMS-based inertial sensors, 312
Low-complexity strategy offline and online	MEMS-based magnetometers, 313
strategies	Microsoft indoor localization competition,
experimental setting and performance	213–214
indicators, 142–143, 148–149	Microsoft's Bing Maps, 101
offline phase, 141, 147	Multiinertial sensor fusion algorithms,
online phase, 141–142, 147–148	327–328
RP clustering via affinity propagation,	Multilateration. (see Hyperbolic lateration)
145–147	Multimodal positioning, 278
RSS prediction via MWMF model, 139–140	Multiple access interference (MAI), 345–346
	Multiple Basic Service Set Identifiers selection,
M	263
Magnetic field	Multiple position sensitive device system, 355
fingerprint, 10–11	Multislope PL models, 253
navigation, 277	Multiwall multifloor (MWMF) indoor
MagPIE dataset, 238–239	propagation model
MapQuest, 100	empirical nature, 143
Map systems	reliability, 142–143
indoor	RSS prediction via, 139–140
calibration-free, 105–108	virtual fingerprints, 143
equipped sensors implications, 110–111	
floor plan layout dimension, 111	N
map-free $vs.$, $109t$	Navigation module, of IndoorGML, 196, 196f,
maximum likelihood estimator, 103	197f
privacy and security, 112	Nonshoe-mounted positioning systems
quality of, 110	step detection

Navigation module, of IndoorGML	description of, 355–360
(Continued)	electrical system modeling, 357–358
on horizontal surfaces, 321–322	modeling of, 355–360
on stairs, 322–323	optical system modeling, 358–360
step&heading algorithm, 320–321, 321f	position sensitive device sensor, 356–357
step length estimation, 324–325	Order vectors, 292
vertical displacement estimation, 325–326	Orientation estimation, 313
-	Kalman filter, 314
0	prediction stage, 314–315
Offline phase, low-complexity strategy, 141	update stage
experimental setting and performance	absolute compass, 317
indicators, 142–143	absolute gravity, 316
online phase, 141–142	absolute magnetic field, 316–317
RSS prediction via MWMF model, 139–140	differential gravity, 316
OGC IndoorGML, 187–188	differential magnetic field, 317
cell geometry, 191	pseudo-measurement, 316
cell semantics, 192–193	zero angular rate, 317
cellular space model, 191	
data models of, 188	P
i-locate portal and JOSM, $203f$	Parallel Interference Cancelation algorithm,
implementation issues	345–346
cell determination and decomposition,	Passive localization system
198–199	data representation, 292
hierarchical structure, 200, 201f	deployment cycle, 289–290
path geometry, 199	features, 288–289
space closure, 199–200	802.11 fingerprints, 291
thick vs. thin door model, 199	lecture room building
vertical connection, 201 , $202f$	accuracy considerations, 295-297
wall texture, 201	floor plan, 293, 293 <i>f</i>
modular structure, $194f$	occupancy services, 297–298
core module, 194–196, 195 <i>f</i>	passive sensing characterization, 294–295
navigation module, 196, 196 <i>f</i> , 197 <i>f</i>	spatial sampling coverage, of monitors,
multilayered space model, 193	295, 296 <i>f</i>
topology between cells, 192	temporal occupancy analysis, $298f$
use cases, 202–205	time window, 294
user navigation and asset management, 202	training approach, 290-292
Online phase, low-complexity strategy,	user interface of the training application,
147–148	291, 291 <i>f</i>
experimental setting and performance	Path-loss (PL) approaches, 252–253
indicators, 148–149	Pedestrian dead reckoning (PDR), 77, 157
offline phase, 147	Piloting method, 311
RP clustering via affinity propagation,	Pinhole model, 358, 358 <i>f</i>
145–147	Point-to-point telemetry, 353
OpenStreetMap (OSM), 99–100	Position sensitive device (PSD) sensor, $356f$
Optical sensor system	amplifier circuit, $357f$

equivalent circuit, 356f	reference points, 71–72
indoor positioning system	standards
AoA, three-dimensional position	automatic discovery protocols, 89-90
determination, 365–368	floor maps, 90–91
optical sensor system, 355–360	formats and protocols, 90
sensor system calibration, 360–365	fundamental building blocks, indoor
Kalman filter, 355	positioning and tracking system, 88–89
on mobile agents, 367–368	need for, 89
2D pincushion sensor, 356 <i>f</i>	remote positioning engines, 91–92
uniform illumination, $361f$	standardization initiatives, 92
Power/Received Signal Strength (RSS), 340	Wi-Fi density, 79–83
Probability-based positioning, Wi-Fi and BLE	construction using interpolation, 80–83
beacon RSSI weighted centroid, 132	construction using propagation models,
probability-based results, 130–132	83
probability-based setup and algorithm,	Random walk, 313
129–130	Received signal strength (RSS), 137
probability density function, 127-129	prediction, 138
PSD sensor. (see Position sensitive device	Received signal strength-based fingerprinting
(PSD) sensor)	techniques, 250
Public repository. (see IndoorLoc Platform)	challenges and solutions, 258–266, 259t
•	calibration issues, 260–262
R	database-size reduction, 262-263
Radial basis function (RBF) interpolation,	height/floor estimation, 266
81–82	measurement gaps, 263-266
Radio fingerprinting-based indoor localization	distance metrics, 252t
assumptions, 157–158	with full training databases, 250-251
challenges, 158–164	with reduced training databases
motivation, 155–157	clustering methods, 252, 253 f
Radio-Frequency IDentification (RFID), 156	image-based approaches, 254-257
and WLAN, 268–269	path-loss approaches, 252-253
Radio maps	Received signal strength-based seamless
building and updating, 75-79	positioning
crowdsourcing, 76–79	fingerprinting techniques, 250
construction, 46	challenges and solutions, 258–266
definition, 71–72	distance metrics, 252t
for different radio technologies, 71–75	with full training databases, 250–251
Bluetooth low energy radio maps, 74	with reduced training databases,
deterministic radio maps, 73–74	251–258
FM and AM radio maps, 74–75	one-stage approaches, 250
estimation method, 71–72	Received signal strength indicator (RSSI)
filtering, 84–87	fingerprinting, 225
AP selection, 85–87	indoor radio propagation
density and positioning performance,	free space model, 116
84–85	indoor propagation, 117
samples, 87	RSSI measurement, 118

Received signal strength indicator (RSSI)	geometric calibration, 361–365
(Continued)	Shiny, 235
positioning algorithms	Shoe-mounted inertial positioning systems,
access points, 115–116	318–320
smartphone-based localization, 115-116	Signal of opportunity (SoO), 267–268
vector similarity measures, 121–123	Simulated annealing optimization technique,
readings	171
fingerprint point similarity, 158	Simultaneous localization and mapping
logarithmic distance relation, 159	(SLAM)
measurements, 157–158	ActionSLAM, 104–105
reference point, 157–158	algorithms, 163–164, 327
Reference points (RPs), 137	FootSLAM, 104–105
Refinery, tasks in, 301	indoor map systems' research, 104-105
Refinery worker safety, remote monitoring	traditional, 104–105
system for. (see Remote monitoring	Smartphone-based patient monitoring, 50–51
system, for refinery worker safety)	Smartwatch-based patient monitoring, 51–52
Remote monitoring system, for refinery	Sound-based positioning systems, 277
worker safety	Spherical lateration, 343–344
control center, 304–305	Stance phase detection, 319
alert manager, 305	State and Transition, 194–196
database, 305	Strapdown algorithm, 318, 318f
graphical user interface, 305	
processing module, 305	Т
remote configuration manager, 305	Tampere dataset, 237–238
customized antiexplosive wristband	characteristic of, $236t$
aim/goal, 303	mean positioning error, 241, 242 t
functionalities, 302–303	Radio Map Inherent Difficulty (RMID) value,
data anonymity, 305–306	243, 243 <i>t</i>
logistics, 309	Ternary vectors, 292
person related issues	Tight coupling algorithms, 328
ergonomics, 308	Time difference of arrival (TDOA), 341, 353
simplicity, 308	Time-of-arrival (TOA), 341
technical and procedure robustness, 308	Triangular Interpolation and eXtrapolation
transparency and privacy, 307–308	(TIX)'s localization purpose, 105
wearable devices, 302–303	Trilateration. (see Spherical lateration)
wireless communication infrastructure, 303–304	Two-phase localization methods, 258
RF-based indoor localization algorithms, 228	U
R Markdown technology, 235	UCI Machine Learning Repository, 227
Root mean square (RMS), 360–361	UFPR CampusMap (UCM) project
	classes diagram, $175f$
S	database construction
Seamless positioning platforms, 249	cartographic, 176–177
Sensor system calibration	database conceptual model, 174
electrical calibration, 360–361	database implementation, 174–176

nongeometric and geometric features,	measurements, 46
174 <i>t</i>	nonobtrusive, 47
indoor routing, 177–179	offline phase, low-complexity strategy
PgRouting function, 179	experimental setting and performance
PostGIS function, 177–178	indicators, 142–143
results	offline phase, 141
indoor cartographic representation,	online phase, 141–142
181–182	RSS prediction via MWMF model, 139-140
indoor routes, 183 , $183f$	online phase, low-complexity strategy
server-client architecture, 179–180	experimental setting and performance
study area, 172–173	indicators, 148–149
Thormap, 180–181	offline phase, 147
<i>UJIIndoorLoc</i> dataset, 237	online phase, 147–148
characteristic of, 236t	RP clustering via affinity propagation,
mean positioning error, 241, 242t	145–147
Radio Map Inherent Difficulty (RMID) value,	radio map, 120–121
243, 243 <i>t</i>	sources, 156
ranking webpage of, 231, 232f	at university campus, 53–57
Ultrasonic positioning system, 277	Wi-Fi probability-based positioning and BLE
UltraWideBand (UWB), 4	Beacon RSSI weighted centroid, 132
communication, 302	probability-based results, 130–132
radio, 156	probability-based setup and algorithm,
universAAL framework, 210	129–130
	probability density function, 127–129
V	Wi-Fi radio maps density construction
Visible light-based indoor positioning system,	using interpolation, 80–83
354	inverse distance weighting (IDW), 80
Visible light communication (VLC), 354	IWD, 83
Visible light positioning (VLP), 277	kriging interpolation, 82
Vision navigation, 277	radial basis function (RBF), 81–82
Volunteer-based data collection, 47	RBF, 83
smartphone-based patient monitoring,	using propagation models, 83
50–51	Wi-Fi RSSI-based positioning
smartwatch-based patient monitoring,	centroid method, 118–119
51–52	problem, 115
	weighted centroid method, 119-120
W	Wi-Fi tracking, fingerprinting techniques
Waze, 100	potentials and limitations of, 25-26
Weighted k -nearest neighbors (W k NN)	privacy-preserving
schemes, 138–139	deterministic approach, 29–30
Wi-Fi fingerprinting indoor positioning	deterministic location estimation, 33-37
systems	implementation and setup, 32–33
heterogeneous mobile applications, 46	probabilistic approach, 30–31
for indoor positioning, 52	probabilistic location estimation, 37–39
mapping large environments, 64	user movement, 39–40

Wi-Fi tracking, fingerprinting techniques	multimodal positioning, 278
(Continued)	and RFID, 268–269
researches on, 22-23	signal of opportunity (SoO), 267-268
security mechanisms against	sound-based positioning systems, 277
MAC address randomization, 27-28	visible light positioning, 277
protocol extensions, 27	vision navigation solutions, 277
technical background, 23-24	
WLAN networks, integration of, 266–267	Υ
and BLE, 268	"You are here" (YAH) map, 170
cloud architectures, 278–279	
GNSS positioning, 270–276	Z
inertial measurement units, 276	Zero velocity update (ZUPT) technique,
magnetic field navigation, 277	220–221