# Глава 3. Непрерывность функции одной переменной.

#### §1. Непрерывность функции в точке

Существует несколько определений непрерывности функции одной переменной в точке, каждое из которых используется в определенном случае. Определение 1. Функция y = f(x) называется непрерывной в точке  $x_0$  если :

- 1) определена в точке  $x_0$  и в точках некоторой ее окрестности;
- 2) имеет в этой точке конечные односторонние пределы, равные значению функции в точке  $x_0$ , т.е. если

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = f(x_0).$$

**Определение 2**. Функция y = f(x) называется непрерывной в точке  $x_0$  если:

- 1) определена в точке  $x_0$  и в точках некоторой ее окрестности;
- 2)  $\lim_{x \to x_0} f(x) = f(x_0)$ .

Определение 3. Функция y = f(x) называется непрерывной в точке  $x_0$ , если она определена в этой точке и в некоторой ее окрестности и для любого  $\varepsilon > 0$  можно указать такое  $\delta > 0$ , что из выполнения неравенства  $|x - x_0| < \delta$  следует выполнимость неравенства  $|f(x) - f(x_0)| < \varepsilon$ , т.е. для любых x из  $\delta$  - окрестности точки  $x_0$ ,  $x_0 - \delta < x < x_0 + \delta$ , значения функции находятся в  $\varepsilon$  - окрестности точки  $f(x_0)$ ,  $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$ .

Определение 4. Функция y = f(x) называется непрерывной в точке  $x_0$ , если она определена в этой точке и в некоторой ее окрестности и бесконечно малому приращению  $\Delta x$  аргумента в этой точке соответствует бесконечно малое приращение  $\Delta y$  функции, т.е.

$$\lim_{\Delta x \to 0} \Delta y = 0$$

Приведенные определения эквивалентны. Использование разных из них позволяет упрощать решения различных задач.

Из определения 2, в частности, следует, что

$$\lim_{x \to x_0} f(x) = f(\lim_{x \to x_0} x),$$

т.е. если функция непрерывна, то **предел функции равен функции предела**. **Определение 5.** Если функция y = f(x) определена в точке  $x_0$  и в некоторой окрестности  $(x_0 - \delta, x_0)$  слева от нее и

$$\lim_{x \to x_0 - 0} f(x) = f(x_0),$$

то функция y = f(x) называется непрерывной в точке  $x_0$  слева.

**Определение 6.** Если функция y = f(x) определена в точке  $x_0$  и в некоторой окрестности  $(x_0, x_0 + \delta)$  справа от нее и

$$\lim_{x \to x_0 + 0} f(x) = f(x_0),$$

то функция y = f(x) называется непрерывной в точке  $x_0$  справа.

**Определение 7.** Если функция y = f(x) определена и непрерывна в точке  $x_0$  и слева и справа, то она называется *непрерывной в этой точке*.

#### §2. Свойства функций, непрерывных в точке

Свойства функций, непрерывных в точке  $x_0$ , можно сформулировать в виде ряда теорем.

<u>Теорема 1</u>. Если функции  $f_1(x)$  и  $f_2(x)$  непрерывны в точке  $x_0$ , то непрерывны в этой точке также их алгебраическая сумма  $f_1(x) \pm f_2(x)$ , произведение  $f_1(x) \cdot f_2(x)$  и при условии  $f_2(x_0) \neq 0$  частное  $\frac{f_1(x)}{f_2(x)}$ .

Эта теорема вытекает из аналогичной теоремы о пределах.

<u>Примечание.</u> Для алгебраической суммы и произведения теорема 1 распространяется на любое конечное число функций.

Теорема 2. Если функция  $u = \varphi(x)$  непрерывна в точке  $x_0$ , а функция y = f(u) непрерывна в точке  $u_0 = \varphi(x_0)$ , то сложная функция  $y = f(\varphi(x))$  непрерывна в точке  $x_0$ .

Доказательство. Согласно непрерывности функции  $u=\varphi(x)$  имеем  $\lim_{x\to x_0} \varphi(x) = \varphi(x_0) = u_0$ , т.е. при  $x\to x_0$  также и  $u\to u_0$ .

Поэтому, в силу непрерывности функции f(u)  $\lim_{x\to x_0} f(\varphi(x)) = \lim_{u\to u_0} f(u) = f(u_0) = f(\varphi(x_0))$ , что и доказывает теорему 2.

Таким образом, сложная функция  $y = f(\varphi(x))$ , образованная из двух непрерывных функций f(u) и  $\varphi(x)$ , является непрерывной функцией, т.е. суперпозиция двух непрерывных функций есть непрерывная функция.

Имеет место и следующая теорема.

<u>Теорема 3.</u> Если f(x) — непрерывная функция, имеющая однозначную обратную функцию, то обратная функция тоже непрерывна.

Вместо доказательства ограничимся следующим наглядным соображением: если график функции y = f(x)— непрерывная кривая, то график обратной к ней функции тоже непрерывная кривая.

<u>Теорема 4.</u> Все основные элементарные функции непрерывны там, где они определены.

Доказательство. Постоянная функция y=C непрерывна при любом значении  $x=x_0$ , так как  $\Delta y=C-C=0$ , и, следовательно,  $\lim_{\Delta\to 0}\Delta y=0$ . Так как функция y=x непрерывна при любом x, то согласно теореме 1 степенная функция  $y=x^n$ , где n— натуральное число, также непрерывна при любом x. Непрерывность тригонометрических функций  $\sin x$  и  $\cos x$  имеет место всюду; tgx и ctgx непрерывны всюду, где они определены как отношения двух непрерывных функций  $\sin x$  и  $\cos x$ .

Можно доказать непрерывность  $y = x^{\alpha}$  (  $\alpha$  —действительное) и других основных элементарных функций там, где они определены.

Из теорем 1, 2 и 4 вытекает.

<u>Следствие</u>. Всякая элементарная функция непрерывна во всех точках, принадлежащих ее области определения.

<u>Теорема 5.</u> Функция f(x), непрерывная в точке  $x_0$  и не равная нулю в этой точке, сохраняет знак  $f(x_0)$  в некоторой окрестности точки  $x_0$ .

### §3. Точки разрыва функций и их классификация

Определение 1. Точка  $x_0$  называется *точкой разрыва функции* f(x), если в ней не выполняются условия непрерывности.

**Определение 2.** Точка  $x_0$  разрыва функции y = f(x) называется *точкой разрыва первого рода*, если односторонние пределы функции в этой точке существуют и конечны.

**Определение 3.** Разность  $f(x_0 + 0) - f(x_0 - 0) = \Delta_{x_0} f$  называется *скачком* функции f(x) в точке  $x_0$ .



Определение 4. Если

$$\lim_{x \to x_0 \to 0} f(x) = \lim_{x \to x_0 + 0} f(x) \neq f(x_0), \text{ TO ects},$$

- 1. предел слева существует и конечен,
- 2. предел справа существует и конечен.
- 3. они равны между собой,

но не равны значению функции в точке, то такая точка называется точкой устранимого разрыва.

Разрыв можно устранить либо доопределив функцию, либо переопределив ее в точке  $x_0$ .



<u>Определение</u> 5. Точка  $x_0$  разрыва функции называется *точкой разрыва второго рода*, если хотя бы один из односторонних пределов в этой точке не существует или бесконечен.

Точки разрыва могут принадлежать, могут и не принадлежать области определения функции.

**Определение** 6. Функция, непрерывная в каждой точке интервала (a,b), называется непрерывной на этом интервале.

## §4. Свойства функций, непрерывных на сегменте

<u>Определение1</u>.. Функция f(x) называется непрерывной на сегменте [a, b], если она непрерывна на интервале (a, b) и, кроме того, в точке a непрерывна справа, а в точке b – слева.

Свойства функций, непрерывных на сегменте, сформулируем в виде ряда теорем без доказательств.

Первая теорема называется теоремой Вейерштрасса о достижении функцией своего наибольшего и наименьшего значений. Карл Вейерштрасс (1815-1897) – немецкий математик.

Теорема 1. Функция f(x), непрерывная на сегменте [a, b], достигает в этом сегменте своего наибольшего и наименьшего значений, т.е. существуют такие точки  $x_1$  и  $x_2$  отрезка [a, b], что для всех х из [a, b] выполняются неравенства  $f(x_1) \ge f(x)$  и  $f(x_2) \ge f(x)$ .

<u>Следствие.</u> Если функция f(x) непрерывна на сегменте [a, b], то она

ограничена на нем, т.е. существует такое положительное число M, что  $|f(x)| \le M$  при  $a \le x \le b$  .

Доказательство. Обозначим через m и  $\widetilde{m}$  соответственно наибольшее и наименьшее значения функции f(x) на сегменте [a, b]. Тогда для любого x, принадлежащего сегменту [a, b], имеют место неравенства  $\widetilde{m} \leq f(x) \leq m$ . Пусть M- наибольшее из чисел  $|\widetilde{m}|$ , |m|. Тогда  $|f(x)| \leq M$  при  $a \leq x \leq b$ .

Вторая теорема называется о корнях функции.

Теорема 2. Если функция f(x) непрерывна на сегменте [a, b] и на концах его принимает значения разных знаков, то между точками а и b найдется точка c, такая, что f(c) = 0.

Эта теорема имеет простой геометрический смысл: если непрерывная кривая переходит с одной стороны оси Ox на другую, то она пересекает ось Ox.



Теорема 3 называется теоремой Коши о промежуточных значениях. Огюстен Коши (1789-1857) –французский математик.

Теорема 3. Пусть функция f(x) непрерывна на сегменте [a, b] и f(a) = A, f(b) = B. Тогда для любого числа C, заключенного между A и B, найдется внутри этого сегмента такая точка c, что f(c) = C.

Эта теорема геометрически очевидна. Рассмотрим график функции y = f(x). Пусть f(a) = A, f(b) = B. Тогда прямая y = C, где C любое число, заключенное между A и B, пересечет его по крайней мере в одной точке.

Таким образом, непрерывная функция, переходя от одного значения к другому, обязательно проходит через все промежуточные значения.

