GUÍA 3: CORRIENTE ELECTRICA, RESISTENCIA Y CIRCUITOS

1. Se aplica la misma diferencia de potencial a un alambre de cobre y a un alambre de hierro de la misma longitud. ¿cuál debe ser la relación de sus radios para que por los dos alambres pase la misma corriente?

- 2. Un alambre de resistencia 6Ω se estira de manera que su nueva longitud es tres veces mayor que su longitud original. Hallar la resistencia del alambre más largo, suponiendo que la resistividad y la densidad del material no cambian durante el proceso de estirado.
- 3. Un alambre de cobre y un alambre de hierro de la misma longitud L y de diámetro d se unen y se aplica una diferencia de potencial V entre los extremos del alambre compuesto. Calcular:
 - a) La intensidad del campo eléctrico en cada alambre
 - b) La densidad de corriente en cada alambre
 - La diferencia de potencial entre los extremos de cada alambre.
 Supóngase que L= 10 m, d= 2 mm, V=100volts
- 4. La resistencia y la magnitud de la corriente dependen del camino que tome la corriente. Las figuras muestran distintas situaciones en las cuales la corriente toma diferentes caminos a través de una pieza de material. Cada pieza rectangular está hecha de un material cuya resistividad es $\rho=1,5.\,10^{-2}\Omega$. m y la longitud $L_0=5\,cm$. Cada pieza está conectada a una batería de 3 V. Hallar:

- a) La resistencia en cada caso
- b) La corriente en cada caso
- 5. En la figura,
 - a) ¿qué valor debe tener la resistencia R para que la corriente en el circuito sea 50 mA? Considere \mathcal{E}_1 = 2v, \mathcal{E}_2 =3v, r_1 = r_2 =3 Ω
 - b) ¿con qué rapidez se está produciendo calor en R por efecto joule?

- 6. Un alambre de resistencia 5Ω está conectado con una batería cuya fem es \mathcal{E} = 20 V y su resistencia interna es de 1Ω . En 2 minutos:
 - a) ¿qué cantidad de energía transforma de química en eléctrica?
 - b) ¿Qué cantidad de energía aparece en el alambre como calor por efecto Joule?
 - c) Explicar la diferencia entre a) y b)
- 7. Hallar la resistencia entre a- b, b-c y a-c para el circuito de la figura, si las 3 resistencias son iguales a 10 Ω

8. Hallar la resistencia equivalente entre A y B

9. La figura muestra un circuito que contiene una batería, dos resistores y un interruptor. ¿Cuál es la resistencia equivalente y la potencia en cada resistor cuando:

- a) El interruptor está abierto
- b) El interruptor está cerrado
- 10. En la figura, donde R₁=100 Ω , R₂=R₃=50 Ω , R₄= 75 Ω , \mathcal{E} = 6V, hallar:
 - a) la resistencia equivalente de la red mostrada.
 - b) La corriente y voltaje en cada resistor.

FISICA II-IS Prof. Daniel Chiaradía

- 11. Para el circuito de la figura hallar:
 - a) La resistencia equivalente
 - b) La corriente entregada por la fuente
 - c) La potencia disipada en la resistencia de 6Ω

12. Hallar la corriente en cada resistencia y la potencia entregada por cada fuente para los siguientes circuitos:

(b)

(c)

- 13. Tres resistores están conectados en serie a una batería. El valor de cada resistencia y su potencia máxima es $2\Omega/4$ W, $12\Omega/10$ W, $3\Omega/5$ W.
 - a) ¿Cuál es el máximo voltaje que puede tener la batería sin que alguno de los resistores se queme?
 - b) ¿Cuánta potencia entrega la batería al circuito del inciso a)
- 14. Un calentador utiliza 340 W de potencia cuando se conecta a una batería. Otro calentador utiliza 240 W de potencia cuando se conecta a la misma batería. Cuanto es la potencia total que utilizarán los calentadores cuando se conecten en serie a la misma batería?
- 15. Un capacitor sin carga y un resistor se conectan en serie a una batería, como se ve en la figura. Si E=12 V, C= 5μF y R=800ΚΩ, determinar una vez que se cierra el interruptor:
 - a) La constante de tiempo del circuito
 - b) La máxima carga sobre el capacitor
 - c) La carga sobre el capacitor después de 6 s
 - d) La diferencia de potencial a través del capacitor después de 6 s
 - e) La corriente en el resistor en ese tiempo
- 16. El capacitor de la figura inicialmente no tiene carga.
 - a) Cuando se cierra el interruptor en t=0, ¿cuál es la corriente en el circuito?
 - b) ¿cuál es la caída de potencial a través del capacitor después de transcurrida una constante de tiempo?
 - c) y una vez que el capacitor se cargó completamente ¿cuál es el voltaje en el capacitor? ¿Y la corriente en el circuito?

- 17. En la figura se cierra el interruptor. Después de un largo tiempo, en comparación con la constante de tiempo,
 - a) ¿cuál será la corriente en cada resistor?
 - b) ¿cuál es la diferencia de potencial en el capacitor?

FISICA II-IS Prof. Daniel Chiaradía

18. Un resistor $R=850\Omega$ está conectado a las placas de un capacitor cargado con $C=4,62\mu F$. Justo antes de hacer la conexión, la carga en el capacitor es de 8,1 mC.

- a) ¿cuál es la energía almacenada inicialmente en el capacitor?
- b) ¿cuál es la potencia eléctrica disipada en el resistor justo después de hacer la conexión?
- c) ¿cuánta energía eléctrica se disipa en el resistor en el instante en que la energía almacenada en el capacitor ha disminuido a la mitad de la calculada en a)?
- 19. Un capacitor de $1\mu F$ con una energía inicial almacenada de 0.5~J se descarga por un resistor de $1M\Omega$.
 - a) ¿cuál es la carga inicial en el capacitor?
 - b) ¿cuál es la corriente por el resistor cuando comienza la descarga?