

Задание 1.1. Рекомендательные системы. Сделай сам.

Тушканова Ольга Николаевна

Санкт-Петербург 2019

Входные данные

data.csv

- o 40 users
- o 30 movies
- {-1, 1, 2, 3, 4, 5}; -1 нет оценки

	Movie 1	Movie 2	Movie 3	Movie	Movie 30
User 1	5	-1	4		2
User 2	1	2	-1		4
User 3	2	5	-1	•••	1
User		•••		•••	•••
User 40	-1	3	2		4

Входные данные

context_day.csv

{Mon, Tue, Wed, Thu, Fri, Sat, Sun}

	Movie 1	Movie 2	Movie 3	Movie	Movie 30
User 1	Sun	-1	Fri		Wed
User 2	Sat	Fri	-1		Tue
User 3	Thu	Tue	-1		Thu
User				•••	
User 40	-1	Fri	Mon		Sun

Входные данные

context_place.csv

- o {h,c,v}
- "h" дома, "с" в кинотеатре, "v" в гостях

	Movie 1	Movie 2	Movie 3	Movie	Movie 30
User 1	h	-1	V		С
User 2	h	h	-1		h
User 3	С	С	-1		h
User			•••		
User 40	-1	h	V		С

Задание

1. Для заданного пользователя рассчитать оценки для всех фильмов, которые он не оценил.

2. Порекомендовать заданному пользователю 1 фильм, который он посмотрел бы в выходной дома, если такой фильм есть в данных.

- \circ Для расчета оценок использовать подход user-based коллаборативной фильтрации, метод kNN, **k** = **4**.
- \circ Для расчета оценки \hat{r}_{ui} пользователя и и для фильма і использовать формулу

$$\hat{r}_{ui} = \bar{r}_u + \frac{\sum_{v=1}^{k} sim_{vu} \cdot (r_{vi} - \bar{r}_v)}{\sum_{v=1}^{k} |sim_{vu}|}$$

где \hat{r}_{ui} - рассчитываемая оценка, \bar{r}_u - средняя оценка у пользователя и, \bar{r}_v - средняя оценка у пользователя v, r_{vi} - оценка пользователя v для фильма i, sim_{vv} - значение метрики сходства для пользователей и и v

- При расчете сходства использовать только те фильмы, для которых у обоих пользователей есть оценка.
- В качестве метрики сходства использовать метрику косинуса:

$$sim_{u,v} = \frac{\sum_{i=1}^{m} u_i v_i}{\sqrt{\sum_{l=1}^{m} u_i^2} \sqrt{\sum_{l=1}^{m} v_i^2}}$$

где u_i - оценка пользователя и для фильма і,

 v_i - оценка пользователя v для фильма i,

m - количество фильмов, для которых у обоих пользователей есть оценка

 При выработке контекстных рекомендаций (з. 2) использовать свой подход.

 При всех подсчетах используйте округление до Зго знака после запятой

Выходные данные

Выход в виде json-файла.

Формат json

```
"user": 3,
"1": {
     "movie 1": 2.6,
     "movie 2": 3.3,
     "movie 3": 1.5
"2":
     "movie 7": 4.4
```

Спасибо за внимание!