Deep Generative Models: Continuous Latent Variables

Philip Schulz and Wilker Aziz https:

//github.com/philschulz/VITutorial branch: yandex2019 module: modules/M3a

Deep Generative Models

Variational Autoencoders

Deep Generative Models

Variational Autoencoders

Generative Model with NN Likelihood

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Example: Language Model

A deterministic language model is **one** distribution over observations:

$$p(x|\theta) = \prod_{i=1}^{n} p(x_i|x_{< i}, \theta)$$

Every sentence gets mapped from the same conditioning context, namely, the beginning of sequence symbol.

Example: Language Model (cont.)

With latent variables we can model the data as a draw from a complex marginal, which mixes conditionals from different points in space

$$p(x|\theta) = \int p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta) dz$$

Example: Language Model (cont.)

With latent variables we can model the data as a draw from a complex marginal, which mixes conditionals from different points in space

$$p(x|\theta) = \int p(z) \prod_{i=1}^{n} p(x_i|z, x_{< i}, \theta) dz$$

Good training can lead to considerable amount of structure in the posterior

$$p(z|x,\theta) = \frac{p(z)p(x|z,\theta)}{p(x|\theta)}$$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

$$h_0 = anh\Big(W^{(ext{init})}z + b^{(ext{init})}\Big)$$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

$$egin{aligned} h_0 &= anh\Big(W^{(ext{init})}z + b^{(ext{init})}\Big) \ h_i &= ext{rnn}ig(h_{i-1}, E_{x_{i-1}}; heta_{ ext{rnn}}ig) \end{aligned}$$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

$$egin{aligned} h_0 &= anh\Big(W^{(ext{init})}z + b^{(ext{init})}\Big) \ h_i &= ext{rnn}(h_{i-1}, E_{x_{i-1}}; heta_{ ext{rnn}}) \ f(z, x_{< i}) &= ext{softmax}(W^{(ext{out})}h_i + b^{(ext{out})}) \end{aligned}$$

Generative model:

$$Z \sim \mathcal{N}(0, I)$$

 $X_i | z, x_{< i} \sim \mathsf{Cat}(f(z, x_{< i}; \theta))$

$$egin{aligned} h_0 &= anh\Big(W^{(ext{init})}z + b^{(ext{init})}\Big) \ h_i &= ext{rnn}(h_{i-1}, E_{x_{i-1}}; heta_{ ext{rnn}}) \ f(z, x_{< i}) &= ext{softmax}(W^{(ext{out})}h_i + b^{(ext{out})}) \ heta &= heta_{ ext{rnn}} \cup \{W^{(ext{init})}, b^{(ext{init})}, W^{(ext{out})}, b^{(ext{out})}\} \end{aligned}$$

Generative Model with NN Likelihood

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

$$p(x|\theta) = \int p(z)p(x|z,\theta)dz$$
 is intractable!

Deep Generative Models

Variational Autoencoders

$$\log p(x|\theta) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{ELBO}}$$

$$\log p(x|\theta) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{ ext{ELBO}} = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)$$

$$\log p(x|\theta) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)}$$

$$\begin{split} \log p(x|\theta) &\geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right) \\ \operatorname{arg\,max} \ \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right) \end{split}$$

$$\begin{split} \log p(x|\theta) &\geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H} \left(q(z|x,\lambda)\right)}_{\mathbf{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H} \left(q(z|x,\lambda)\right)}_{\mathbf{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z)\right) \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z)\right) \\ & \underset{\theta,\lambda}{\mathsf{arg max}} \ \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta)\right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z)\right) \end{split}$$

▶ assume KL $(q(z|x,\lambda) || p(z))$ analytical true for exponential families

$$\begin{split} \log p(x|\theta) &\geq \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta) \right] + \mathbb{H} \left(q(z|x,\lambda) \right) \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z) \right] + \mathbb{H} \left(q(z|x,\lambda) \right) \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \\ &\text{arg max } \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|Z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \end{split}$$

FI BO

- ▶ assume KL $(q(z|x, \lambda) || p(z))$ analytical true for exponential families
- ▶ approximate $\mathbb{E}_{q(z|x,\lambda)}[\log p(x|z,\theta)]$ by sampling feasible because $q(z|x,\lambda)$ is simple

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant}$$

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right]$$

$$\begin{split} &\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant} \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right] \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \theta} \log p(x|z_i,\theta) \\ &\text{where } z_i \sim q(z|x,\lambda) \end{split}$$

$$\begin{split} &\frac{\partial}{\partial \theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant} \\ &= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{\partial}{\partial \theta} \log p(x|z,\theta) \right] \\ &\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \theta} \log p(x|z_i,\theta) \\ &\overset{\mathsf{where}}{\approx} z_i \sim q(z|x,\lambda) \end{split}$$

Note: $q(z|x,\lambda)$ does not depend on θ .

$$rac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right]$$

$$\frac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right] \\ = \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

$$\frac{\partial}{\partial \lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right] \\ = \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{\partial}{\partial \lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

The first term again requires approximation by sampling

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} [\log p(x|z,\theta)]$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]
= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz
= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) dz$$

Not an expected gradient!

Score function estimator?

Can we apply the log-derivative trick?

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]
= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) dz$$

Score function estimator?

Can we apply the log-derivative trick?

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ &= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) \mathrm{d}z \\ &= \int q(z|x,\lambda) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \log p(x|z,\theta) \mathrm{d}z \end{split}$$

Score function estimator?

Can we apply the log-derivative trick?

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} [\log p(x|z,\theta)]
= \int \frac{\partial}{\partial \lambda} q(z|x,\lambda) \log p(x|z,\theta) dz
= \int q(z|x,\lambda) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \log p(x|z,\theta) dz
= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right]$$

Yes, it's a general result!

What about variance?

The learning signal can only scale the gradient:

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \end{split}$$

What about variance?

The learning signal can only scale the gradient:

$$\begin{split} & \frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ & = \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \frac{\partial}{\partial \lambda} \log q(z|x,\lambda) \right] \end{split}$$

Can we do better?

Problem

We need to re-express the gradient, but the measure of integration depends on $\boldsymbol{\lambda}$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right]$$

Problem

We need to re-express the gradient, but the measure of integration depends on $\boldsymbol{\lambda}$

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{q(z|x,\lambda)} [\log p(x|z,\theta)]$$

What if we could re-express $q(z|x,\lambda)$ in terms of some other distribution that does not depend on λ ?

Reparametrisation trick

Find a transformation $h: z \mapsto \epsilon$ such that ϵ does not depend on λ .

- \blacktriangleright $h(z, \lambda)$ needs to be invertible
- \blacktriangleright $h(z,\lambda)$ needs to be differentiable

Reparametrisation trick

Find a transformation $h: z \mapsto \epsilon$ such that ϵ does not depend on λ .

- \blacktriangleright $h(z, \lambda)$ needs to be invertible
- \blacktriangleright $h(z,\lambda)$ needs to be differentiable
- $h(z,\lambda) = \epsilon$
- $h^{-1}(\epsilon,\lambda)=z$

Affine property

$$Az + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } z \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Affine property

$$Az + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } z \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Special case

$$Az + b \sim \mathcal{N}\left(b, AA^{T}\right) \text{ for } z \sim \mathcal{N}\left(0, \mathsf{I}\right)$$

Let an inference network compute

$$u = \mu(x; \lambda)$$
 $s = \sigma(x; \lambda)$

for a posterior $Z \sim \mathcal{N}(u, s^2)$, then we have:

Let an inference network compute

$$u = \mu(x; \lambda)$$
 $s = \sigma(x; \lambda)$

for a posterior $Z \sim \mathcal{N}(u, s^2)$, then we have:

$$h(z, \lambda; x) = \frac{z - \mu(x; \lambda)}{\sigma(x; \lambda)} = \epsilon \sim \mathcal{N}(0, 1)$$

Let an inference network compute

$$u = \mu(x; \lambda)$$
 $s = \sigma(x; \lambda)$

for a posterior $Z \sim \mathcal{N}(u, s^2)$, then we have:

$$h(z, \lambda; x) = \frac{z - \mu(x; \lambda)}{\sigma(x; \lambda)} = \epsilon \sim \mathcal{N}(0, 1)$$

and conversely, for $\epsilon \sim \mathcal{N}(0, I)$, we have:

$$h^{-1}(\epsilon, \lambda; x) = \mu(x; \lambda) + \sigma(x; \lambda) \odot \epsilon = z \sim \mathcal{N}(u, s^2)$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$
$$= \frac{\partial}{\partial \lambda} \int q(\epsilon) \log \left(p(x|h^{-1}(\epsilon,\lambda),\theta) \right) d\epsilon$$

$$= \frac{\partial}{\partial \lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{\partial}{\partial \lambda} \int q(\epsilon) \log \left(p(x|h^{-1}(\epsilon,\lambda),\theta) \right) d\epsilon$$

$$= \int q(\epsilon) \frac{\partial}{\partial \lambda} \left[\log p(x|h^{-1}(\epsilon,\lambda),\theta) \right] d\epsilon$$

$$\mathbb{E}_{q(\epsilon)} \left[\frac{\partial}{\partial \lambda} \log p(x | \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \right]$$

$$\mathbb{E}_{q(\epsilon)} \left[\frac{\partial}{\partial \lambda} \log p(x | \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \right]$$

$$\stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \lambda} \log p(x | \overbrace{h^{-1}(\epsilon_{i}, \lambda)}^{=z}, \theta)$$
where $\epsilon_{i} \sim q(\epsilon)$

$$\mathbb{E}_{q(\epsilon)} \left[\frac{\partial}{\partial \lambda} \log p(x|\widehat{h^{-1}(\epsilon,\lambda)}, \theta) \right]$$

$$\stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial \lambda} \log p(x|\widehat{h^{-1}(\epsilon_i,\lambda)}, \theta)$$
where $\epsilon_i \sim q(\epsilon)$

$$\stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{\partial}{\partial z} \log p(x|\widehat{h^{-1}(\epsilon_i,\lambda)}, \theta) \times \frac{\partial}{\partial \lambda} h^{-1}(\epsilon_i,\lambda)$$
chain rule

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

We get two gradient paths!

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

We get two gradient paths!

• one is deterministic $\frac{\partial h^{-1}(\epsilon,\lambda)}{\partial u(x,\lambda)} = \frac{\partial}{\partial u(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = 1$

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

We get two gradient paths!

- one is deterministic $\frac{\partial h^{-1}(\epsilon,\lambda)}{\partial \mu(x,\lambda)} = \frac{\partial}{\partial \mu(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = 1$
- the other is stochastic $\frac{\partial h^{-1}(\epsilon,\lambda)}{\partial \sigma(x,\lambda)} = \frac{\partial}{\partial \sigma(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = \epsilon$

Gaussian KL

ELBO

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

variational viatocheodelis

Gaussian KL

EI BO

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

Analytical computation of $- KL(q(z|x, \lambda) || p(z))$:

$$\frac{1}{2}\sum_{i=1}^{N}\left(1+\log\left(\sigma_{i}^{2}\right)-\mu_{i}^{2}-\sigma_{i}^{2}\right)$$

generation model

generation model

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- ▶ Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

Generative story

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- ▶ Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

Generative story

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- ▶ Draw *N* words $X_i|z \sim \text{Cat}(f(z;\theta))$

$$h = \operatorname{relu}(W_1 z + b_1)$$

Generative story

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- ► Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$h = \text{relu}(W_1z + b_1)$$

 $f(z, \theta) = \frac{\text{softmax}(W_2h + b_2)}{\text{softmax}(W_2h + b_2)}$

Generative story

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- ► Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$h = \operatorname{\mathsf{relu}}(W_1 z + b_1)$$
 $f(z, \theta) = \operatorname{\mathsf{softmax}}(W_2 h + b_2)$
 $\theta = \{W_1, b_1, W_2, b_2\}$

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- ▶ Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

Likelihood

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$

$$p(x|z,\theta) = \prod_{i=1}^{N} p(x_i|z,\theta)$$

Likelihood

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- ► Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$p(x|z,\theta) = \prod_{i=1}^{N} p(x_i|z,\theta) = \prod_{i=1}^{N} Cat(x_i|\underbrace{f(z;\theta)}_{=\psi})$$

Likelihood

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$
- ▶ Draw N words $X_i|z \sim \mathsf{Cat}(f(z;\theta))$

$$p(x|z,\theta) = \prod_{i=1}^{N} p(x_i|z,\theta) = \prod_{i=1}^{N} Cat(x_i|\underbrace{f(z;\theta)}_{=\psi})$$
$$= \prod_{i=1}^{N} \psi_{x_i}$$

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$

Marginal

Generative story

- ▶ Draw a document embedding $Z \sim \mathcal{N}(0, I)$

$$p(x|\theta) = \int p(z) \prod_{i=1}^{N} p(x_i|z,\theta) dz$$

Marginal

Generative story

- Praw a document embedding $Z \sim \mathcal{N}(0, I)$

$$p(x|\theta) = \int p(z) \prod_{i=1}^{N} p(x_i|z,\theta) dz$$
$$= \int \mathcal{N}(z|0,I) \prod_{i=1}^{N} Cat(x_i|f(z;\theta)) dz$$

Inference model

 $ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$

Inference model

$$ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$$

Inference model

$$ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$$

$$s = \sum_{i=1}^{N} E_{x_i}$$

Inference model

$$ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$$

$$s = \sum_{i=1}^{N} E_{x_i}$$

 $h = \text{relu}(M_1 s + c_1)$

Inference model

$$ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$$

$$s=\sum_{i=1}^N E_{x_i}$$
 $\mu(x;\lambda)=M_2h+c_2$ $h= ext{relu}(M_1s+c_1)$

Inference model

$$ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$$

$$s = \sum_{i=1}^{N} E_{x_i}$$
 $\mu(x; \lambda) = M_2 h + c_2$ $\sigma(x; \lambda) = \text{softplus}(M_3 h + c_3)$

$$h = \mathsf{relu}(M_1 s + c_1)$$

Inference model

$$ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda),\sigma(x;\lambda)^2)$$

$$s = \sum_{i=1}^{N} E_{x_i}$$
 $\mu(x; \lambda) = M_2 h + c_2$ $\sigma(x; \lambda) = \text{softplus}(M_3 h + c_3)$ $h = \text{relu}(M_1 s + c_1)$ $\lambda = \{E, M_1^3, c_1^3\}$

Generative Model

- ▶ Prior: $Z \sim \mathcal{N}(0, I)$
- ▶ Likelihood: $X_i|z \sim \text{Cat}(f(z;\theta))$

Inference Model

 $ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$

Generative Model

- ▶ Prior: $Z \sim \mathcal{N}(0, I)$
- ▶ Likelihood: $X_i|z \sim \text{Cat}(f(z;\theta))$

Inference Model

 $ightharpoonup Z|x \sim \mathcal{N}(\mu(x;\lambda), \sigma(x;\lambda)^2)$

ELBO

$$egin{aligned} \log p(x| heta) &\geq \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)} \left[\sum_{i=1}^N \log \psi_{x_i}
ight] \ &- \mathsf{KL} \left(\mathcal{N}(z|u,s^2) \mid\mid \mathcal{N}(z|0,I)
ight) \end{aligned}$$

where
$$u = \mu(x; \lambda)$$
, $s = \sigma(x; \lambda)$, and $\psi = f(z = u + \epsilon \odot s, \theta)$

Aside

If your likelihood model is able to express dependencies between the output variables (e.g. an RNN), the model may simply ignore the latent code. In that case one often scales the KL term. The scale factor is increased gradually.

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \beta \operatorname{\mathsf{KL}}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

where $\beta \rightarrow 1$.

Aside

Another strategy is to promote the posterior to deviate a bit from the prior by not penalising for the first few nats of information:

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \max(R,\mathsf{KL}\left(q(z|x,\lambda)\mid\mid p(z)\right))$$

where $R \ge 0$ is known as "free bits"

Aside

But note that if we scale down the KL term permanently, or allow too many free bits, then the conditional $p(x|z,\theta)$ will over-specialise to samples from the approximate posterior $q(z|x,\lambda)$. This can lead to bad generalisation and/or poor samples when generating from the prior.

Variational Autoencoder

Advantages

- Backprop training
- Easy to implement
- Posterior inference possible
- One objective for both NNs
- Amortised inference

Variational Autoencoder

Advantages

- Backprop training
- Easy to implement
- Posterior inference possible
- One objective for both NNs
- Amortised inference

Drawbacks

- Discrete latent variables are not possible
- Optimisation may be difficult with several latent variables

Summary

- Wake-Sleep: train inference and generation networks with separate objectives
- ► VAE: train both networks with same objective
- Reparametrisation
 - Transform parameter-free variable ϵ into latent value z
 - Update parameters with stochastic gradient estimates

Implementation

Try one of our notebooks, e.g.

- ➤ Original VAE: MNIST

 https://github.com/philschulz/
 VITutorial/blob/master/code/vae_
 notebook_pytorch.ipynb
- ► SentenceVAE
 https://github.com/probabll/dgm4nlp/
 tree/master/notebooks/sentencevae

Literature I

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for unsupervised neural networks. *Science*, 268:1158–1161, 1995. URL http://www.gatsby.ucl.ac.uk/~dayan/papers/hdfn95.pdf.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013. URL http://arxiv.org/abs/1312.6114.

Literature II

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic differentiation variational inference. *Journal of Machine Learning Research*, 18(14):1–45, 2017. URL

http://jmlr.org/papers/v18/16-107.html.

Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *ICML*, pages 1278–1286, 2014. URL

Literature III

```
http://jmlr.org/proceedings/papers/v32/rezende14.pdf.
```

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for non-conjugate inference. In Tony Jebara and Eric P. Xing, editors, *ICML*, pages 1971–1979, 2014. URL http://jmlr.org/proceedings/papers/v32/titsias14.pdf.