

Deep Learning Summer School

Beam Search for Top-B Decoding in Bi-RNNs

Qing Sun

Dhruv Batra

Deep Learning Summer School, Montreal, CA

[Karpathy et al, CVPR2015]

[Karpathy et al, CVPR2015]

Visual Question Answering

[Antol et al, ICCV 2015]

[Karpathy et al, CVPR2015]

Visual Question Answering

[Antol et al, ICCV 2015]

Machine Translation

Visual Question Answering

[Karpathy, etal, CVPR 2015]

[Antol, etal, ICCV 2015]

Machine Translation

[Karpathy, etal, CVPR 2015]

Visual Question Answering

[Antol, etal, ICCV 2015]

Machine Translation

Visual Question Answering

[Karpathy, etal, CVPR 2015]

[Antol, etal, ICCV 2015]

Machine Translation

Visual Question Answering

[Karpathy, etal, CVPR 2015]

[Antol, etal, ICCV 2015]

Machine Translation

Visual Question Answering

[Karpathy, etal, CVPR 2015]

[Antol, etal, ICCV 2015]

Machine Translation

(a) Unidirectional RNNs

(a) Unidirectional RNNs

$$p(y_t|X_{[1:t-1]}) = \phi(W_y h_{t-1} + b_y)$$

(a) Unidirectional RNNs

$$h_t = \tanh(W_x x_t + W_h h_{t-1} + b_h)$$

 $p(y_t|X_{[1:T]\setminus t}) = \phi(W_y^f h_{t-1}^f + W_y^b h_{t+1}^b + b_y)$

8

 $p(y_t|X_{[1:T]\setminus t}) = \phi(W_y^f h_{t-1}^f + W_y^b h_{t+1}^b + b_y)$

 $p(y_t|X_{[1:T]\setminus t}) = \phi(W_y^f h_{t-1}^f + W_y^b h_{t+1}^b + b_y)$

Left-to-right Beam Search

Left-to-right Beam Search

(a) Unidirectional RNNs

(b) Bidirectional RNNs

$$p(y_t|X_{[1:T]\setminus t}) = \phi(W_y^f h_{t-1}^f + W_y^b h_{t+1}^b + b_y)$$

Left-to-right Beam Search

(a) Unidirectional RNNs

(b) Bidirectional RNNs

$$p(y_t|X_{[1:T]\setminus t}) = \phi(W_y^f h_{t-1}^f + W_y^b h_{t+1}^b + b_y)$$

Future variables

Fill-in-the-blank Image Captioning

Fill-in-the-blank Image Captioning

Visual Madlibs

Fill-in-the-blank Image Captioning

Visual Madlibs

Image Completion/Impainting

Fill-in-the-blank Image Captioning

Image Completion/Impainting

Visual Madlibs

Genome Sequencing

Fill-in-the-blank Image Captioning

Visual Madlibs

Image Completion/Impainting

Genome Sequencing

A girl and <u>a dog are balancing on</u> a wind board

A girl and

_a wind board

URNN-f: A girl and a dog are in the a wind board

URNN-b: A girl and sitting in the water with a wind board

BiRNN+BSCD: A girl and a dog are sitting on a wind board

A girl in <u>a room full of books wearing</u> a long red tie

A girl in _a long red tie

URNN-f: A girl in a dress shirt and tie standing a long red tie

URNN-b: A girl in a woman is wearing a long red tie

BiRNN+BSCD:A girl in <u>a white dress shirt is holding</u> a long red tie

Contributions:

Beam-based Top-B MAP Inference algorithm for Bi-RNNs

Α	girl	and						а	wind	board
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$$S^{f}(t)=S^{f}(t-1)+\log p(y_{t}|y_{[1:t-1]})$$

Α	girl	and						a	wind	board
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	70	0	0	0	0	0	0	0	0	0
0	0	0	O	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$$S^{f}(t)=S^{f}(t-1)+\log p(y_{t}|y_{[1:t-1]})$$

Α	girl	and						а	wind	board
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	70	70	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	-0	0	0	0	0	0	0

$$S^{f}(t)=S^{f}(t-1)+\log p(y_{t}|y_{[1:t-1]})$$

$$S^{f}(t)=S^{f}(t-1)+\log p(y_{t}|y_{[1:t-1]})$$

$$S^{f}(t)=S^{f}(t-1)+\log p(y_{t}|y_{[1:t-1]})$$

$$S^{f}(t)=S^{f}(t-1)+\log p(y_{t}|y_{[1:t-1]})$$

$$S^{f}(t)=S^{f}(t-1)+\log p(y_{t}|y_{[1:t-1]})$$

$$S^{f}(t)=S^{f}(t-1)+\log p(y_{t}|y_{[1:t-1]})$$

Α	girl	and						a	wind	board
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$$S^{b}(t) = S^{b}(t+1) + \log p(y_{t}|y_{[t+1:T]})$$

Α	girl	and						а	wind	board
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0,	9	0
0	0	0	0	0	0	0	0	0	0/	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	O

$$S^{b}(t) = S^{b}(t+1) + \log p(y_{t}|y_{[t+1:T]})$$

Α	girl	and						a	wind	board
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	OK	0,	0	0
0	0	0	0	0	0	0	0	0	0/	0
0	0	0	0	0	0	0	04	0	0	0
0	0	0	0	0	0	0	0	0	0	O

$$S^{b}(t)=S^{b}(t+1)+\log p(y_{t}|y_{[t+1:T]})$$

Α	girl	and					a	wind l	board
0	0	0	0	0	0	0	0 0	0	0
0	0	0	0	0	0	0	0,	0	0
0	0	0	0	0	0	0	0	- 0	0
0	0	0	0	0	0	0	000	0	0
0	0	0	0	0	0	0	0 0	0	O

$$S^{b}(t)=S^{b}(t+1)+\log p(y_{t}|y_{[t+1:T]})$$

Α	girl	and						а	wind	board
0	0	0	0	0	0	OK	0	0	0	0
0	0	0	0	0	0	<u></u>	Or	0	9	0
0	0	0	0	0	0/	0	0	0	0	0
0	0	0	0	0	O	0	OK	0	0	0
0	0	0	0	0	0	0	0	0	0	O

$$S^{b}(t)=S^{b}(t+1)+\log p(y_{t}|y_{[t+1:T]})$$

Α	girl	and						а	wind	board
0	0	0	0	0	0	OK	0	0	0	0
0	0	0	0	0_	0	<u></u>	Or	0	9	0
0	0	0	0	0'\	/0 /	0,	0	0	0/	0
0	0	0	0	0 /	O	0	OK	0	0	0
0	0	0	0	OF	0	0	0	0	0	O

$$S^{b}(t) = S^{b}(t+1) + \log p(y_{t}|y_{[t+1:T]})$$

$$S^{b}(t)=S^{b}(t+1)+\log p(y_{t}|y_{[t+1:T]})$$

$$S^{b}(t)=S^{b}(t+1)+\log p(y_{t}|y_{[t+1:T]})$$

Right-to-left BS in Uni-RNN-b

$$S^{b}(t)=S^{b}(t+1)+\log p(y_{t}|y_{[t+1:T]})$$

Initialize forward & backward beams using classical BS

$$S(\leftarrow, \circ, \rightarrow) = S^f(t-1) + \log p(y_t|y_{t'\neq t}) + S^b(t+1)$$

$$S^{f}(t) = S^{f}(t-1) + \log p(y_t|y_{t'\neq t})$$

Dataset: MSCOCO

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT
 - Val: 5000, test: 5000, train: rest
 - consistent with Neuraltalk2

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT
 - Val: 5000, test: 5000, train: rest
 - consistent with Neuraltalk2
- Remove words in the middle

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT
 - Val: 5000, test: 5000, train: rest
 - consistent with Neuraltalk2
- Remove words in the middle

r = 0.25: A girl and a dog are balancing on a wind board

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT
 - Val: 5000, test: 5000, train: rest
 - consistent with Neuraltalk2
- Remove words in the middle

r = 0.50: A girl and a dog are balancing on a wind board

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT
 - Val: 5000, test: 5000, train: rest
 - consistent with Neuraltalk2
- Remove words in the middle

r = 0.75: A girl and a dog are balancing on a wind board

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT
 - Val: 5000, test: 5000, train: rest
 - consistent with Neuraltalk2
- Remove words in the middle

r = 0.75: A girl and a dog are balancing on a wind board

Evaluation

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT
 - Val: 5000, test: 5000, train: rest
 - consistent with Neuraltalk2
- Remove words in the middle

r = 0.75: A girl and a dog are balancing on a wind board

- Evaluation
 - Full sentence BLEU, CIDEr, Meteor.

- Dataset: MSCOCO
 - 123,000 images, 5 captions annotated by AMT
 - Val: 5000, test: 5000, train: rest
 - consistent with Neuraltalk2
- Remove words in the middle

r = 0.75: A girl and a dog are balancing on a wind board

- Evaluation
 - Full sentence BLEU, CIDEr, Meteor.
 - Bad completion "A girl and sitting"
 - -> low n-gram match with humans

A person standing posing for a photo holding a glass of wine

JRNN-f: A person standing in a room holding a cell glass of wine

URNN-b: A person standing a women is holding a glass of wine

BiRNN-BSCD: A person standing in a room while holding a glass of wine

A close up flowers and plants inside of a bowl

URNN-f: A close <u>up of a vase with of a bowl</u>

URNN-b A close vase that is sitting inside of a bowl

BiRNN-BSCD: A close up of flowers sitting inside of a bowl

A white <u>hand holding a chocolate</u> sprinkled donut

RNN-f:A white frosted doughnut with sprinkles sprinkled donut

URNN-b: Awhite close up of a sprinkled donut

BiRNN-BSCD: A white hand holding a pink sprinkled donut

A woman holding a pizza in her hand in the middle of a kitchen

URNN-f: A woman holding a plate of food in a kitchen middle of a kitchen

URNN-b: A woman holding a woman preparing food in the middle of the kitchen

BiRNN-BSCD: A woman holding <u>a plate of food sitting in the</u> middle of a kitchen

BiRNN-BSCD: A woman holding <u>a plate of food sitting in the</u> middle of a kitchen

	r = 0.25	r = 0.5	r = 0.75
URNN-f	6.628	3.915	2.034

Table 1. Comparison of different approaches on MSCOCO test dataset(metric: CIDEr; r: the fraction of removed words.)

	r = 0.25	r = 0.5	r = 0.75
URNN-f	6.628	3.915	2.034
URNN-b	6.639	3.965	2.532

Table 1. Comparison of different approaches on MSCOCO test dataset(metric: CIDEr; r: the fraction of removed words.)

	r = 0.25	r = 0.5	r = 0.75
URNN-f	6.628	3.915	2.034
URNN-b	6.639	3.965	2.532
URNN-fb-max	6.758	4.054	2.297

Table 1. Comparison of different approaches on MSCOCO test dataset(metric: CIDEr; r: the fraction of removed words.)

	r = 0.25	r = 0.5	r = 0.75
URNN-f	6.628	3.915	2.034
URNN-b	6.639	3.965	2.532
URNN-fb-max	6.758	4.054	2.297
URNN-fb-BiRNN	6.622	3.92	2.088

Table 1. Comparison of different approaches on MSCOCO test dataset(metric: CIDEr; r: the fraction of removed words.)

	r = 0.25	r = 0.5	r = 0.75
URNN-f	6.628	3.915	2.034
URNN-b	6.639	3.965	2.532
URNN-fb-max	6.758	4.054	2.297
URNN-fb-BiRNN	6.622	3.92	2.088
BiRNN-BSCD	7.262	4.413	2.534
	7.4%	8.8%	7%

Table 1. Comparison of different approaches on MSCOCO test dataset(metric: CIDEr; r: the fraction of removed words.)

Visual Madlib

- 360,001 focused descriptions for 10,738 images
- Two evaluation tasks:
 - Multiple-choice question-answering
 - Fill-in-the-blank image description
- 12 types of fill-in-the-blanks:

Type 7: object's affordance

People could <u>relax on</u> the couches

Type 12: pair's relationship

Person B is **<u>putting food in</u>** the bowl

Visual Madlib

	Type 7		Type 12	
	Bleu-1	Bleu-2	Bleu-1	Bleu-2
nCCA(box)	0.6	0.11	0.48	0.08
URNN-f	0.315	0.140	0.275	0.158
URNN-b	0.461	0.285	0.346	0.212
URNN-fb-max	0.449	0.275	0.345	0.211
BiRNN-BSCD	0.470	0.300	0.353	0.231

Table 2. Comparison of different approaches on Madlibs test dataset $_{48}$

Visual Madlib

	Type 7		Type 12	
	Bleu-1	Bleu-2	Bleu-1	Bleu-2
nCCA(box)	0.6	0.11	0.48	0.08
URNN-f	0.315	0.140	0.275	0.158
URNN-b	0.461	0.285	0.346	0.212
URNN-fb-max	0.449	0.275	0.345	0.211
BiRNN-BSCD	0.470	0.300	0.353	0.231

Table 2. Comparison of different approaches on Madlibs test dataset $_{48}$

Conclusion

- Beam-based Top-B MAP Inference algorithm for Bi-RNNs
- Any Partial-MAP estimation in sequence prediction problem

Thank You! Q&A

	r = 0.25	r = 0.5	r = 0.75
URNN-fb-max	6.971	4.203	2.665
BiRNN-BSMP	8.356	5.40	3.544

Table 2. Comparison of different approaches on MSCOCO test dataset(metric: CIDEr; r: the fraction of removed words.)