- 2.3 La fonction  $f(x) = \sqrt{x}$  n'est définie que si l'argument de la racine carrée est positif, c'est-à-dire si  $x \ge 0$ . C'est pourquoi  $D_f = \mathbb{R}_+ = [0; +\infty[$ .
  - 1) Soit  $\varepsilon > 0$  un nombre positif quelconque (arbitrairement petit).

On doit prouver l'existence d'un nombre  $\delta > 0$  tel que pour tout  $x \in \mathbb{R}_+$  avec  $|x - 0| < \delta$  on ait  $|f(x) - f(0)| < \varepsilon$ .

On doit donc avoir  $|f(x)-f(0)| = |\sqrt{x}-\sqrt{0}| = |\sqrt{x}-0| = |\sqrt{x}| = \sqrt{x} < \varepsilon$ . Cette inégalité implique  $x < \varepsilon^2$ .

Par conséquent, en posant  $\delta = \varepsilon^2$ , on obtient que, pour tout  $x \in \mathbb{R}_+$  avec  $|x - 0| = |x| = x < \delta$ , on a bien  $|f(x) - f(0)| = \sqrt{x} < \varepsilon$ .

On a ainsi démontré la continuité de la fonction f en 0.

- 2) Soit a > 0.
  - (a) Pour tout  $x \in \mathbb{R}_+$ , on a :

$$\frac{x-a}{\sqrt{x}+\sqrt{a}} = \frac{(\sqrt{x})^2-(\sqrt{a})^2}{\sqrt{x}+\sqrt{a}} = \frac{(\sqrt{x}-\sqrt{a})\left(\sqrt{x}+\sqrt{a}\right)}{\sqrt{x}+\sqrt{a}} = \sqrt{x}-\sqrt{a}\,.$$

(b) Soit  $\varepsilon > 0$  un nombre positif quelconque (arbitrairement petit).

Il faut montrer qu'il existe un nombre  $\delta > 0$  tel que pour tout  $x \in \mathbb{R}_+$  avec  $|x - a| < \delta$  on ait  $|f(x) - f(a)| < \varepsilon$ .

On veut donc avoir  $|f(x) - f(a)| = |\sqrt{x} - \sqrt{a}| = \left| \frac{x - a}{\sqrt{x} + \sqrt{a}} \right| = \frac{|x - a|}{|\sqrt{x} + \sqrt{a}|} \le \frac{|x - a|}{|\sqrt{a}|} = |x - a| \frac{1}{\sqrt{a}} < \varepsilon.$ 

Cette inégalité est vérifiée si  $|x-a| < \varepsilon \sqrt{a}$ . C'est pour quoi, en choisissant  $\delta = \varepsilon \sqrt{a}$ , on obtient que, pour tout  $x \in \mathbb{R}_+$  avec  $|x-a| < \delta$ , on a bien  $|f(x) - f(a)| < \varepsilon$ .

On a de la sorte prouvé la continuité de la fonction f en a.