Kurs wxMaxima, Teil 06:

Komplexe Zahlen:

Verwendete Kursinhalte:

• Numerik: Komplexe Zahlen

• 2D-Graphik: Parameterdarstellung

Grundlegende Bemerkungen: Es ist jede Inputzeile zu dokumentieren:

• Kommentar 1: Mathematische Vorgangsweise (was soll passieren)

• Kommentar 2: Vorgangsweise in wxMaxima (Syntax, Bemerkungen,...) Zusätzlich sind die Ergebnisse der Aufgaben zu interpretieren!

1 Berechnen Sie die Lösungen der folgenden Aufgaben und geben Sie die Lösungen in Zahlenpaarschreibweise, Polarform und Exponentialform an. Zeigen Sie die Äquivalenz der Ergebnisse in den verschiedenen Darstellungsarten:

a)
$$\frac{3}{i^3} \cdot j^5$$

d)
$$\frac{(5+5j)^2}{(1-2i)^3}$$
 Ergebnis ohne imaginäre Einheit!

b)
$$(4+5i)+(7+3i)$$

e)
$$(10-2j) \cdot (3+17j)$$

c)
$$(10-9j)-(17-15j)$$

$$\mathbf{f)} \qquad (24-10\,\mathbf{j})^{1/10}$$

2 Ermittle den komplexen (Ersatz)Widerstand und den Leitwert der Parallel- und Serienschaltung der angegebenen Widerstände. Berechne weiters den Betrag des Ersatzwiderstandes und seinen Phasenwinkel. (Alle Angaben in Ω):

a)
$$Z_1 = (390 + 1200 j), Z_2 = (270 - 120 j)$$

b)
$$Z_1 = (20 + 40j), Z_2 = (20 - 80j), Z_3 = (40 + 60j)$$

3 Finde den komplexen Gesamtwiderstand Z der folgenden Kombinationen aus Widerstand/ständen, Spule/n und Kondensator/en. Gib die Gesamtimpedanz in der Form Z = a + jb an. Setze <u>danach</u> die folgenden Werte ein: $R_1 = 5.6 \text{ k}\Omega$, $C_1 = 2.2 \,\mu\text{F}$, $C_2 = 470 \,\text{nF}$, $L_1 = 330 \,\text{mH}$ und $\omega = 1 \,\text{kHz}$ und gib die Gesamtimpedanz in Polarschreibweise an.

- 4 In einem Serienschwingkreis werden Ohm`scher Widerstand, Kapazität und Induktivität in Serie geschaltet.
 - a) Berechne den Gesamtwiderstand Z und die Resonanzfrequenz.
 - b) Gib die Resultate für die Impedanz, deren Betrag und den Phasenwinkel als Tabelle für die Resonanzfrequenz und (9/10) sowie (11/10) der Resonanzfrequenz.
 - c) Stelle die Impedanz in der Gauß'schen Zahlenebene dar; Wähle dabei als Frequenzbereich die Frequenzen zwischen (9/10) und (11/10) der Resonanzfrequenz (Achtung: Parameterdarstellung!).

Wähle für c) und d) konkret: $R_1 = 100 \Omega$, $C_1 = 1 \mu F$ und $L_1 = 10 \text{ mH}$.

- 5 In einem Parallelschwingkreis werden Ohm`scher Widerstand, Kapazität und Induktivität parallel zueinander geschaltet.
 - a) Berechne den Gesamtwiderstand Z und die Resonanzfrequenz.
 - b) Gib die Resultate für die Impedanz, deren Betrag und den Phasenwinkel als Tabelle für die Resonanzfrequenz und (9/10) sowie (11/10) der Resonanzfrequenz.
 - c) Stelle die Impedanz in der Gauß'schen Zahlenebene dar; Wähle dabei als Frequenzbereich die Frequenzen zwischen (9/10) und (11/10) der Resonanzfrequenz. (Achtung: Parameterdarstellung!).

Wähle für c) und d) konkret: $R_1 = 100 \Omega$, $C_1 = 1 \mu F$ und $L_1 = 10 \text{ mH}$.