Problem Reduction Search-(AO* Search) Lecture-21

Hema Kashyap

AND/OR Search

- The Depth first search and Breadth first search given earlier for OR trees or graphs can be easily adopted by AND-OR graph. The main difference lies in the way termination conditions are determined, since all goals following an AND nodes must be realized; where as a single goal node following an OR node will do. So for this purpose we are using AO* algorithm.
- Like A* algorithm here we will use two arrays and one heuristic function.

OPEN: It contains the nodes that has been traversed but yet not been marked solvable or unsolvable.

CLOSE: It contains the nodes that have already been processed.

 $\mathbf{h}(\mathbf{n})$: The distance from current node to goal node.

The AND/OR Graph Search Problem

- Problem Definition:
 - Given: [G, s, T] where
 - G: implicitly specified AND/OR graph
 - S: start node of the AND/OR graph
 - T: set of terminal nodes
 - H(n): heuristic function estimating the cost of solving the sub- problem at n
 - To find:
 - A minimum cost solution tree

Algorithm

Step 1: Place the starting node into OPEN.

Step 2: Compute the most promising solution tree say T0.

Step 3: Select a node n that is both on OPEN and a member of TO. Remove it from OPEN and place it

Step 4: If n is the terminal goal node then leveled n as solved and leveled all the ancestors of n as solved. If the starting node is marked as solved then success and exit.

Step 5: If n is not a solvable node, then mark n as unsolvable. If starting node is marked as unsolvable, then return failure and exit.

Step 6: Expand n. Find all its successors and find their h (n) value, push them into OPEN.

Step 7: Return to Step 2.

Step 8: Exit. in CLOSE

Example

Another Example

Current State = S

$$f(A) = 3 + 5 = 8$$

 $f(B) = 2 + 4 = 6$
Current State = B
 $f(S) = 2 + 8 = 10$
 $f(A) = 4 + 5 = 9$
 $f(C) = 1 + 5 = 6$
 $f(E) = 4 + 2 = 6$
Current State = C
 $f(H) = 2 + 4 = 6$

f(B) = 1 + 6 = 7

Another Example

Current State = H
$$f(C) = 2 + 7 = 9$$

$$f(B) = 1 + 6 = 7$$

$$f(H) = \infty$$

Current State = B

$$f(S) = 2 + 8 = 10$$

$$f(A) = 4 + 5 = 9$$

$$f(E) = 4 + 2 = 6$$

$$f(C) = \infty$$

Current State = E

$$f(B) = 4 + 9 = 13$$

$$f(D) = 3 + 2 = 5$$

$$f(F) = 1 + 1 = 2$$

Another Example

Current State = F

$$f(E) = 1 + 5 = 6$$

$$f(D) = 3 + 2 = 5$$

 $f(B) = 4 + 9 = 13$
 $f(F) = \infty$

Current State = D

$$f(G) = 2 + 0 = 2$$

 $f(E) = 3 + 13 = 16$

Visited Nodes = S, B, C, H, C, B, E, F, E, D, G

Path = S, B, E, D, G

Advantages

- It is an optimal algorithm.
- If traverse according to the ordering of nodes.
- It can be used for both OR and AND graph.

Disadvantages

- Sometimes for unsolvable nodes, it can't find the optimal path.
- Its complexity is than other algorithms.