National University of Computer & Emerging Sciences

AVL Trees

Georgy Adelson-Velsky and Landis' tree

Balanced and unbalanced BST

Perfect Balance

- Want a (almost) complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1

AVL Trees

Not an AVL Tree

AVL Trees

- The height of the left subtree minus the height of the right subtree of a node is called the *balance* of the node. For an AVL tree, the balances of the nodes are always -1, 0 or 1.
 - > The height of an empty tree is defined to be -1.

Node Height and Balance Factor

height of node = hbalance factor = h_{left} - h_{right} empty height = -1

AVL Trees

➤ Given an AVL tree, if insertions or deletions are performed, the AVL tree *may not* remain height balanced.

Node Heights after Insert 7

AVL Trees

To maintain the height balanced property of the AVL tree after insertion or deletion, it is necessary to perform a *transformation* on the tree so that

- 1) the in-order traversal of the transformed tree is the same as for the original tree (i.e., the new tree remains a binary search tree).
- 2) the tree after transformation is height balanced.

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - Follow the path up to the root, find the first node (i.e., deepest) whose new balance violates the AVL condition. Call this node a
 - If a's new balance factor (the difference h_{left}-h_{right}) is 2 or -2, adjust tree by *rotation* around the node

Single Rotation in an AVL Tree

Right Rotation (RR) in an AVL Tree

- b becomes the new root.
- a takes ownership of b's right child, as its left child, or in this case, null.
- b takes ownership of a, as it's right child.

Left Rotation (LL) in an AVL Tree

- b becomes the new root.
- a takes ownership of b's left child as its right child, or in this case, null.
- b takes ownership of a as its left child.

Single Rotation may be Insufficient

- c becomes the new root.
- a takes ownership of c's left child as its right child, in this case, b.
- c takes ownership of a as its left child.

- a becomes the new root.
- o c takes ownership of a's right child as its left child, b.
- o a takes ownership of c as its right child.

Left-Right Rotation (LR) or "Double left"

- perform a right rotation on the right subtree.
- o b becomes the new root.
- a takes ownership of b's left child as its right child, in this case null.
- b takes ownership of a as its left child.

Right-Left Rotation (RL) or "Double right"

- o perform a left rotation on the left subtree. o b becomes the new root.
 - c takes ownership of b's right child as its left child, in this case null.
 - b takes ownership of c as its right child.

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - Follow the path up to the root, find the first node (i.e., deepest) whose new balance violates the AVL condition. Call this node a
 - If a new balance factor (the difference h_{left}-h_{right}) is 2 or –2, adjust tree by *rotation* around the node

How and when to rotate?

Let the node that needs rebalancing be *a*. In general, violation may occur for following 4 cases:

Outside Cases (require single rotation):

- 1. Insertion into left subtree of left child of a (RR).
- 2. Insertion into right subtree of right child of a (LL).

Inside Cases (require double rotation):

- 3. Insertion into right subtree of left child of a (RL).
- 4. Insertion into left subtree of right child of a (LR).

How and when to rotate?

```
IF tree is right heavy
 IF tree's right subtree is left heavy
   Perform Double Left rotation
ELSE {
   Perform Single Left rotation
```

```
ELSE IF tree is left heavy
 IF tree's left subtree is right heavy
   Perform Double Right rotation
ELSE {
   Perform Single Right rotation
```


AVL Trees

- > Example: 3 2 1 4 5 6 7
- construct binary search tree without height balanced restriction
- \rightarrow depth of tree = 4

AVL Trees: Single Rotation

Construct AVL tree (height balanced)

AVL Trees: Single Rotation

AVL Trees: Single Rotation

Insert 7

AVL Trees

So far so good, what about inserting the following numbers

16, 15, 14, 13, 12, 11, 10, 8

Example:

Insert 14

Insert 13 (This is single rotation: LL Case)

Insert 12

Insert 11 and 10 (single rotation), then 8

Inserting 9

