

MOLEKÜLER GENETİK

Prof. Dr. Arif ALTINTAŞ altıntas@veterinary.ankara.edu.tr

Genetik (Kalıtım bilim)

 Biyolojinin bir dalı olup, canlı organizmalarda kalıtım ve çeşitlilik konularını işler.

 Canlının sahip olduğu bütün özelliklerinin kuşaktan kuşağa nasıl geçtiğini inceler.

GENETİK BİLGİNİN AKIŞI

- 1. REPLİKASYON (DNA SENTEZİ)
- 2. TRANSKRIPSIYON (RNA SENTEZI)
- 3. TRANSLASYON (PROTEIN SENTEZI)

Bilginin biyolojik olarak akışı (merkezi dogma)

Genetik bilgi Protein sentezine akar

DNA - RNA - PROTEÍN

8.1.2013

İkinci pozisyon

Temel hatırlatmalar

- DNA: Tüm canlı organizmalarda genetik materyal; ökaryotlarda çekirdekte kromozomlar üzerindedir DNA zincirleri oldukça uzundur; örneğin en uzun insan kromozomu 247 milyon baz çiftini içerecek uzunluktadır.
- Gen: DNA boyunca spesifik bir ürün olan kromozom üzerinde spesifik bir noktada birikmiş kalıtsal birim;
- Kromozom: genleri içeren ve diziye karışan linear DNA ve protein ortaklığı,
- Genotip: Bir organizmanın genetik yapısı
- Fenotip: Bir organizmanın genetik çatı ve çevre ile belirlenmiş görünen özellikleri
- Alel: Bir kromozom lokusundan elde edilebilen bir DNA nükleotid dizisinin alternatif versiyonlarından biri
- Polimorfizm: Popülasyonda iki ya da daha çok alternatif genotiplerin varlığını yansıtır, popülasyonda bireysel çeşitliliğin derecesi olarak dikkate alınır.

Bir organizma ne kadar kromozoma sahiptir?

- Çoğu ökaryotik olan her hücre spesifik sayıda kromozoma sahiptir,
- Somatik hücrelerde (sperm ve yumurta hariç) bu sayı diploiddir (2n),
 örn. insanlar diploid = 46.
- Her kromozom tipinin iki katı (1 anadan 1 babadan);
 haploid = 23.
- Kromozomların tümü çift olarak mevcuttur; her çiftin üyeleri homolog kromozomlar diye adlandırılır.
- Homolog kromozomlar genetik benzerlik gösterirken, bunlar kesin olarak birbirinin aynı değildir. Aynı genin farklı formları, yani <u>aleller</u> var olabilir.

İnsan kromozomlarının karyotipleri

DNA'nın yapısı

Bazlar, nükleozidler ve nükleotidlerin Yapısı

Purinler

Pirimidinler

Adenine (A)

Guanine (G)

Thymine (T)

Cytosine (C)

5-Methylcytosine (5mC)

Deoksiadenozin Nükleozid Purin baz = adenin Glikozidik bağ Şeker = Deoksiriboz Nükleotid

Deoksiadenozin-5'-fosfat

Adlandırma

Nükleozid Nükleotid

+ deoksiriboz + fosfat

Purinler

AdeninAdenozinAdenilik asitGuaninGuanozinGuanilik asitHipoksantinİnozinİnozinik asit

Pirimidinler

Timin Timidin Timidilik asit Sitozin Sitidin Sitidilik asit

Urasil +riboz Uridin Uridilik asit

- Polinükleotid zinciri
- 3', 5'-fosfodiester bağı

Bazların hidrojen bağı

A-T baz çifti

Herhangi bir türde DNA çift sarmalında

A içeriği = T içeriği ve

G içeriği = C içeriği

G-C baz çifti

DNA çift sarmalı

- Baz çiftinin özellikleri
- DNA sarmalının bütünlüğü
- B-DNA her döngüde 10 baz çifti içerir "süpersarmal" DNA

- Süpersarmal DNA pozitif süpersarmal normal olarak DNA replikasyonu sırasında gözlenir
- Negatif süpersarmal normal olarak nükleozomlarda gözlenir ve Z-DNA oluşumu ile sonuçlanır
- Z-DNA sola doğru oluşan sarmaldır zigzag oluşturmuş fosfatlarla ilgilidir (buradan hareketle Z ismini alır)
- Z-DNA pirimidinlere alternatif purinler olduğunda (sarmal üzerinde) görülür
- B-DNA'nın Z-DNA'ya geçişi 5-metilsitozin ile kolaylaştırılır, negatif süpersarmal RNA sentezini etkileyebilir

Nükleazlar fosfodiester bağları koparır (hidroliz)

Ekzonükleazlar terminal nükleotidleri koparırlar

Örn: kanıtlama ekzonükleazları

Endonükleazlar internal olarak koparırlar ve partiküler endonükleaza bağımlı 5' fosfat ya da 3' fosfat sonların herikisini de koparabilir.

Örn: restriksiyon endonükleazları

Nükleotid çiftlerinde (baz-çifti) Genom boyutları

DNA Replikasyonu, Mutasyonu ve Tamiri

- a). DNA replikasyon
 - 1) semi-konservatif replikasyon
 - 2) DNA replikasyonunun başlaması
 - 3) DNA sentezinin devamlılığı
- b). Mutasyon
 - 1) Mutasyon Tipleri ve hızları
 - 2) DNA replikasyonunda spontan mutasyonlar
 - 3) Mutagenlerin neden olduğu lezyonlar
- c). DNA Tamiri
 - 1) Tamiri gereken lezyonların tipleri
 - 2) Tamir Mekanizmaları

DNA polimeraz ile kanıt okuma Yanlış eşleşmenin tamiri Kesip çıkararak tamir

3) DNA replikasyonunda yada tamirinde defektler

DNA replikasyonu semi-konservatifdir

Ana DNA sarmalı

Ana sarmalın herbiri bir yavru sarmal için tamamlayıcı vazifesi görür

Yavru DNA sarmalı

Mutasyon

- DNA ikileşmesi süreci sırasında ikinci iplikçiğin polimerizasyonunda rastlantısal hatalar gerçekleşebilir.
- Mutasyon adı verilen bu hatalar, özellikle bir genin protein kodlama dizisinde oluşmaları durumunda organizmanın fenotipi üzerinde güçlü bir etkide bulunabilir.
- Mutasyonlar DNA dizisinde büyük yapısal değişiklikler yaratır; kromozomda geniş bölgelerde <u>duplikasyonlar</u> (ikilenmeler), <u>inversiyonlar</u> (evirmeler), <u>delesyonlar</u> (çıkarmalar) veya farklı kromozomlar arasında parçaların kazara aktarılması (<u>translokasyon</u>) sözkonusu olabilir.

Mutasyon

Mutasyon Tipleri ve hızları

Tip	Mekanizma	Sıklık
Genom mutasyonu	kromozom hatalı ayrılması (örnek, aneuploidi)	Her hücre bölünmesinde 10 ⁻²
Kromozom mutasyonu	kromozom yenidendüzenlenmesi (örnek, translokasyon)	Her hücre bölünmesinde 6X10 ⁻⁴
Gen mutasyonu	baz çifti mutasyonu (nokta mutasyonu, ya da küçük deletion ya da insertion)	Her hücre bölünmesinde baz çifti başına 10 ⁻¹⁰ yada jenerasyonda lokus başına 10 ⁻⁵ - 10 ⁻⁶

Mutasyon ve Tamiri

- DNA'daki değişim oranını arttıran süreçler genelde mutajenik'tir.
- Mutajenik <u>kimyasallar</u> genellikle <u>baz eşleşmesine</u>
 müdahale ederek, DNA ikileşmesinde hatalara yol açar.
- Morötesi ışınım ise, DNA yapısına zarar vermek suretiyle mutasyonlara neden olur.
- <u>DNA polimeraz</u> enziminin, mutasyonları düzeltme yeteneği sayesinde bu hataların oranı son derece düşüktür.
 - Hata oranı, her 10-100 milyon bazda 1 olarak gözlemlenmiştir.

Baz çifti mutasyon Tipleri

Normal diziliş

CATTCACCTGTACCA **GTAAGTGGACATGGT**

transition (T-A \Rightarrow C-G)

transversion (T-A \Rightarrow G-C)

CATCCACCTGTACCA

CATGCACCTGTACCA

GTAGGTGGACATGGT

GTACGTGGACATGGT

Baz çifti substitüsyonları

transition: pirimidin ⇒ pirimidin

transversion: pirimidin ⇒ purin

deletion

insertion

CATCACCTGTACCA

CATGTCACCTGTACCA

GTAGTGGACATGGT

GTACAGTGGACATGGT

deletion ve insertionlar bir ya da daha çok baz çiftini kapsayabilir

Spontan mutasyonlar tautomer'lerce oluşturulabilir DNA bazlarının tautomerik formları

DNA bazlarının tautomerik formları

Guanin
$$H \longrightarrow H_3 C \longrightarrow H$$

Sitozin tautomer ile oluşmuş Mutasyon

Guanin

Adenin

•Sitozin bir transition mutasyon sonucunda adenin ile fena eşleşir

Mutasyon Replikasyon ile sürdürülebilir

$$C \equiv G \rightarrow C \equiv G$$
 ve $C \equiv G$

· C-G nin replikasyonu yavru sarmala her bir C-G ile verilebilir

$$C \equiv G \rightarrow C \equiv A \text{ ve } C \equiv G$$

replikasyon sırasında tautomer oluşumu fena eşleşme ile sonlanabilir ve bir yavru sarmalın birinde insertion

$$\underline{C} = \underline{A} \rightarrow \underline{T} = \underline{A}$$

 Replikasyonun bir sonraki aşamasında C-G nin T-A ya transition mutasyonu ile sonuçlanabilir ya da yeniden eşleşmesi ile sonlanır

Kimyasal mutagenler

Nitröz asit ile Deaminasyon

Hidroksilamin ile Derivasyon

Dimetil-sülfat ile alkilasyon depurinasyona neden olur

Guanine

$$CH_3$$
 CH_3
 CH_3
 H_2
 H_2
 H_3
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 H_4
 $H_$

Quarterner bir azot oluşumu deoksiribozid bağı destabilize eder ve baz deoksiribozdan ayrılır

Oksijen radikallerinin saldırısı

UV ışık ile timin dimer oluşumu

Kesip-çıkararak tamir (baz ya da nükleotid)

deaminasyon

ATGCUGCATTGA

TACGGCGTAACT

urasil DNA glikozilaz

ATGC GCATTGA

TACGGCGTAACT

tamirci nükleazlar

AT GCATTGA

TACGGCGTAACT

DNA polimeraz β

ATGCCGCATTGA

TACGGCGTAACT

V DNA ligaz

ATGCCGCATTGA

TACGGCGTAACT

Baz ayırarak tamir

timin dimer

ATGCUGCATTGATAG

TACGGCGTAACTATC

nükleaz

AT (~30 nucleotides) AG

TACGGCGTAACTATC

DNA polimeraz β

ATGCCGCATTGATAG

TACGGCGTAACTATC

DNA ligaz

ATGCCGCATTGATAG

TACGGCGTAACTATC

Nükleotid ayırarak tamir

Sitozinin Deaminasyonu yeniden eşleşebilir

5-metilsitozinin Deaminasyonu yeniden eşleşmez

Genetik hastalıkların bir nedeni olarak tesbit edilen tek başına baz değişikliklerinin % 30dan fazlası 5'-mCG-3' bölgelerinde görülebilir

DNA replikasyon ya da tamirinde Defektler

- Xeroderma pigmentosum
- Ataxia telangiectasia
- Fanconi anemia
- Bloom syndrome
- Cockayne syndrome

Çeşitli memeli türlerinden fibroblast hücrelerinde DNA tamir etkinliği ile organizmanın yaşam süresi arasındaki ilişki

DNA replikasyonunda ya da DNA tamirinde defektler

Söz konusu defektlerin tümü kromozom ve gen (baz çifti) mutasyonlarının yüksek frekansı ile birliktedir; çoğu da kansere bilhassa lösemiye yatkınlıkla birliktedir

- Xeroderma pigmentosum
 - <u>nükleotid ayırma şeklinde tamiri</u> kapsayan mutasyonlarla oluşur
 - güneş ışığının etkinliğinde 2000 kat artışla birliktedir deri kanseri ve melanoma gibi kanser tipleriyle birlikte
- Ataxia telangiectasia
 - •DNA yıkımı tesbit edilen genlerle oluşur
 - X-ışınlarıyla risk artar
 - beyin kanserlerinde artışla birliktedir
- Fanconi anemia
 - X-ışınlarıyla risk artar
 - güneş ışığına duyarlılık
- Bloom syndrome
 - DNA helikaz gende mutasyonlarla oluşur
 - X-ışınlarıyla risk artar
 - güneş ışığına duyarlılık
- Cockayne syndrome
 - transkripsiyon-bağlı DNA tamiri nde bir defekt ile oluşur
 - •güneş ışığına duyarlılık
- Werner's syndrome
 - DNA helikaz gende mutasyonlarla oluşur
 - erken yaşlanma

Hayvan Bilimleri Çalışma Alanları

- Üreme Fizyolojisi
- Genetik
- Et ve Gıda Güvenliği
- Beslenme

 Türler: sığır, domuz, keçi, koyun, at, kanatlı, balık..

Moleküler Teknolojik Araştırmalar

- Gen ekspresyon Çalışmaları
- Genetik Mühendisliği
- Gen Haritalama ve Yardımcı belirteç seçimi
- Biyolojik Geçitler
- İmmunoloji
- Toksikoloji

Genel Moleküler Teknikler

DNA

 Bilgi tarama, klonlama, dizi analizi, PCR, southern'ler

RNA

RT-PCR, DDRT-PCR, Northern'ler, RPA,
 IHC

Protein

 ELISA, RIA, Western'ler, ICC, HPLC, FACS

Genetik Çalışmalar

Genetiği Değiştirilmiş Organizmalar

(GDO, GMO)

"Hayvanlar, Bitkiler ve Ürünler"

GDO nedir?

- GDO; Genetiği Değiştirilmiş bir Organizmayı ifade eder
- Bir organizmada bir aktivite genetik olarak değiştirilebilir ya da GDO'larda ıslah edilebilir, depolanabilir, taşınabilir, kaldırılabilir veya bir başka yolda kullanıma sunulabilir
- GDO'lar genetik dizileri değiştirilebilen, doğal olmayan bir sebepten doğmuş organizmalardır.

GDO'lar

Potansiyel Yararları

- Verim artışı (kaliteli ve çok ürün)
- Dünyada açlığın azalışı
- Ağızdan alınan aşı üretimi
- Böceklerin kontrolü
- Mikotoksinsiz ürünler
- Çiftlikte herbisid, pestisid ve ilaç kullanımında düşüş
- Hastalıklara dirençli ürün

Yararları

Çok Gıda

İyi gıda

İyi Çevre

Tarımsal yararlar

 Çürümeye dirençli portakalllar

 Hastalık dirençli Patatesler

Hastalık dirençli muzlar

GDO'lar

Potansiyel Riskler

- Allergenlerin Transferi
- Antibiyotik dirençliliği
- Çapraz Fertilizasyon
- Biyoçeşitlilik Kaybı
- Toksisite riski
- Bilinmeyen sağlık riskleri
- Fizyolojik etkiler

GDO'lar

Gereklilikler

- Biyogüvenlik düzenlemeleri
- Güvenlik karşıtı güçlerle mücadele

Genel olarak GD-Besinler nelerdir?

 Dünyada toplam 48 adet Gida maddesi marketlerde tüketime sunulmuştur

Ürünler

Mısır

Kanola

Patates

Domates

Soya

Pamuk tohumu yağı Şekerkamışı

Derive Ürünler

Mısır Şurubu

Soya sosu

GDO ile beslenen

Hayvansal

....Ve dahası

Türkiye'de Durum

- Biyogüvenlik Kurulu'na bu güne kadar 5 bitkiye ait başvuru yapılmış; mısır, kolza, şeker pancarı, patates ve soya...
- Bunların bir kısmı yem amaçlı bir kısmı gıda amaçlı.
- Henüz gıda ile ilgili herhangi bir karar yok, sadece yem ile ilgili olarak karar var.
- Daha önce sadece 3 soya çeşidine izin verilmişti. Daha sonra, 3 kolza, 1 şeker pancarı, 1 patates ve 22 mısır çeşidinin yem amaçlı olarak kullanılmasına resmen izin verilmiştir.
- Biyogüvenlik Kurulu web sayfası ziyaret edilerek hangi ürünlere izin verildiği hangilerine izin verilmediği görülebilir.

(http://www.tbbdm.gov.tr/Home/Content/Links.aspx)

Dengenin Sağlanması

GD besinler iyi mi kötü mü?

1. Bireysel olaylara bağlıdır

2. Bunların faturası başta tüketiciler olmak üzere Hükumetlere ve Bilim insanlarına çıkar.

Sabrınız için.....

