BJT AC ANALYSIS

Oleh: Suwito

mas.suwito@gmail.com masaji@elect-eng.its.ac.id

Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember 2009

PENGUATAN PADA DOMAIN AC

IMPEDANSI INPUT

- ☐ Rangkaian penguat pada dasarnya merupakan jaringan dengan dua pasang terminal (two-port network).

 $Z_i = \frac{V_i}{I_i}$

- ☐ Pada frekuensi rendah hingga menengah (umumnya kurang dari 100 KHz), impendansi input suatu transistor bipolar adalah resistif murni.
- ☐ Nilai resistansinya berkisar antara beberapa Ohm hingga mega Ohm tergantung dari konfigurasi rangkaian transistor yang dipakai.
- ☐ Nilai Zi ini tidak bisa diukur dengan Ohmmeter.

MENGUKUR IMPEDANSI INPUT

$$I_i = \frac{V_s - V_i}{R_{\text{sense}}}$$

$$Z_i = \frac{V_i}{I_i}$$

$$V_i = \frac{Z_i V_s}{Z_i + R_{\text{source}}} = \frac{(1.2 \text{ k}\Omega)(10 \text{ mV})}{1.2 \text{ k}\Omega + 0.6 \text{ k}\Omega} = 6.67 \text{ mV}$$

RANGKAIAN ELEKTRONIKA

CONTOH

$$I_{i} = \frac{V_{s} - V_{i}}{R_{\text{sense}}} = \frac{2 \text{ mV} - 1.2 \text{ mV}}{1 \text{ k}\Omega} = \frac{0.8 \text{ mV}}{1 \text{ k}\Omega} = 0.8 \text{ } \mu\text{A}$$
$$Z_{i} = \frac{V_{i}}{I_{i}} = \frac{1.2 \text{ mV}}{0.8 \text{ } \mu\text{A}} = 1.5 \text{ k}\Omega$$

IMPEDANSI OUTPUT

- ☐ Impedansi output (Zo) ditentukan pada terminal output melihat belakang ke dalam sistem dengan sinyal input dibuat nol.
- ☐ Untuk memperoleh Zo, sumber sinyal diberikan pada terminal output dan sesuai dengan hukum Ohm, yaitu:

$$I_o = \frac{V - V_o}{R_{\text{sense}}}$$

$$Z_o = \frac{V_o}{I_o}$$

RANGKAIAN ELEKTRONIKA

CONTOH

$$I_o = \frac{V - V_o}{R_{\text{sense}}} = \frac{1 \text{ V} - 680 \text{ mV}}{20 \text{ k}\Omega} = \frac{320 \text{ mV}}{20 \text{ k}\Omega} = 16 \text{ } \mu\text{A}$$
$$Z_o = \frac{V_o}{I_o} = \frac{680 \text{ mV}}{16 \text{ } \mu\text{A}} = 42.5 \text{ k}\Omega$$

PENGUAT TEGANGAN

$$A_{v} = \frac{V_{o}}{V_{i}}$$

$$A_{v_{\rm NL}} = \frac{V_o}{V_i} \bigg|_{R_L = \infty \ \Omega \ ({\rm open \ circuit})}$$

$$\frac{V_i}{V_s} = \frac{Z_i}{Z_i + R_s}$$

$$A_{v_s} = \frac{V_o}{V_s} = \frac{V_i}{V_s} \cdot \frac{V_o}{V_i}$$

$$A_{v_s} = \frac{V_o}{V_s} = \frac{Z_i}{Z_i + R_s} A_{v_{\rm NL}}$$

CONTOH

(a)
$$A_{v_{NL}} = \frac{V_o}{V_i}$$
 and $V_i = \frac{V_o}{A_{v_{NL}}} = \frac{7.68 \text{ V}}{320} = 24 \text{ mV}$

(b)
$$I_i = \frac{V_s - V_i}{R_s} = \frac{40 \text{ mV} - 24 \text{ mV}}{1.2 \text{ k}\Omega} = 13.33 \mu \text{A}$$

(c)
$$Z_i = \frac{V_i}{I_i} = \frac{24 \text{ mV}}{13.33 \mu\text{A}} = 1.8 \text{ k}\Omega$$

(d)
$$A_{\nu_s} = \frac{Z_i}{Z_i + R_s} A_{\nu_{NL}}$$

= $\frac{1.8 \text{ k}\Omega}{1.8 \text{ k}\Omega + 1.2 \text{ k}\Omega}$ (320)
= **192**

PENGUATAN ARUS

$$A_i = \frac{I_o}{I_i}$$

$$I_i = \frac{V_i}{Z_i}$$

$$I_o = -\frac{V_o}{R_L}$$

$$A_i = \frac{I_o}{I_i} = -\frac{V_o/R_L}{V_i/Z_i} = -\frac{V_oZ_i}{V_iR_L}$$

$$A_i = -A_v \frac{Z_i}{R_L}$$

r_e TRANSISTOR MODEL

■ BJTs are basically current-controlled devices, therefore the re model uses a diode and a current source to duplicate the behavior of the transistor. One disadvantage to this model is its sensitivity to the DC level.

10

r_e MODEL → Common Base Configuration

$$r_e = \frac{26 \text{ mV}}{I_E}$$

$$Z_i = r_e$$

$$Z_o \cong \infty \Omega$$

- Pada umumnya CB memiliki Impedansi input yang relatif Rendah dan Impedansi Output yang sangat tinggi.
- ☐ Nilai Impedansi input rata rata kurang dari 50 Ohm
- ☐ Nilai impedansi Output CB dalam kisaran Mega Ohm.

r_e MODEL → Common Base Configuration

PENGUATAN TEGANGAN

$$V_{o} = -I_{o}R_{L} = -(-I_{c})R_{L} = \alpha I_{e}R_{L}$$

$$V_{i} = I_{e}Z_{i} = I_{e}r_{e}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{\alpha I_{e}R_{L}}{I_{e}r_{e}}$$

$$A_{v} = \frac{\alpha R_{L}}{r_{e}} \cong \frac{R_{L}}{r_{e}}$$

PENGUATAN ARUS

$$A_i = \frac{I_o}{I_i} = \frac{-I_c}{I_e} = -\frac{\alpha I_e}{I_e}$$

$$A_i = -\alpha \cong -1$$

CB

CONTOH

$$I_E = 4 \text{ mA},$$

$$\alpha = 0.98$$
.

$$V_i = 2 \text{ mV}$$

- (a) Determine the input impedance.
- (b) Calculate the voltage gain if a load of 0.56 kΩ is connected to the output terminals.
- (c) Find the output impedance and current gain.

(a)
$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{4 \text{ mA}} = 6.5 \Omega$$

$$A_v = \frac{V_o}{V_i} = \frac{168.86 \text{ mV}}{2 \text{ mV}} = 84.43$$

(b)
$$I_i = I_e = \frac{V_i}{Z_i} = \frac{2 \text{ mV}}{6.5 \Omega} = 307.69 \ \mu\text{A}$$

$$A_v = \frac{\alpha R_L}{r_e} = \frac{(0.98)(0.56 \text{ k}\Omega)}{6.5 \Omega} = 84.43$$

$$\begin{split} V_o &= I_c \, R_L = \alpha I_e R_L = (0.98)(307.69 \ \mu\text{A})(0.56 \ \text{k}\Omega) \\ &= 168.86 \ \text{mV} \end{split}$$

(c)
$$Z_o \cong \infty \Omega$$

 $A_i = \frac{I_o}{I_i} = -\alpha = -0.98$

r_e MODEL → Common Emitter Configuration

$$I_c = \beta I_b$$

$$I_e = I_c + I_b = \beta I_b + I_b$$

$$I_e = (\beta + 1)I_b$$

$$I_e \cong \beta I_b$$

IMPEDANSI INPUT

$$Z_i = \frac{V_i}{I_i} = \frac{V_{be}}{I_b}$$

$$V_i = V_{be} = I_e r_e \cong \beta I_b r_e$$

$$Z_i = \frac{V_{be}}{I_b} \cong \frac{\beta I_b r_e}{I_b}$$

$$Z_i \cong \beta r_e$$

r_e MODEL → Common Emitter Configuration

IMPEDANSI OUTPUT

 $Z_o = r_o$

☐ Pada CE, nilai Zo pada umumnya berkisar antara 40 Kohm – 50 KOhm

r_e MODEL → Common Emitter Configuration

 $A_{v} = -\frac{R_{L}}{r_{e}}$ $CE, r_{o} = \infty \Omega$

PENGUATAN TEGANGAN

$$V_{o} = -I_{o}R_{L}$$

$$V_{o} = -I_{o}R_{L}$$

$$V_{o} = -I_{o}R_{L} = -I_{c}R_{L} = -\beta I_{b}R_{L}$$

$$V_{i} = I_{i}Z_{i} = I_{b}\beta r_{e}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{\beta I_{b}R_{L}}{I_{b}\beta r_{e}}$$

 \Box Tanda minus menunjukkan beda fase antara sinyal input dan output 180 $^{\circ}$

PENGUATAN ARUS

$$A_i = \frac{I_o}{I_i} = \frac{I_c}{I_b} = \frac{\beta I_b}{I_b}$$

$$A_i = \beta$$

$$CE, r_o = \infty \Omega$$

CONTOH

$$\beta = 120 \text{ and } I_E = 3.2 \text{ mA}$$

$$r_o = \infty \Omega$$

- (a) Z_i .
- (b) A_v if a load of 2 k Ω is applied.
- (c) A_i with the 2 k Ω load.

(a)
$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{3.2 \text{ mA}} = 8.125 \Omega$$

and $Z_i = \beta r_e = (120)(8.125 \Omega) = 975 \Omega$

(b) Eq. (7.21):
$$A_v = -\frac{R_L}{r_e} = -\frac{2 \text{ k}\Omega}{8.125 \Omega} = -246.15$$

(c)
$$A_i = \frac{I_o}{I_i} = \beta = 120$$

CE FIXED-BIAS CONFIGURATION

Common-emitter fixed-bias configuration.

Removal of the effects of VCC, C1 and C2

IMPEDANSI INPUT

$$Z_i = R_B \| \beta r_e \quad \text{ohms}$$

$$Z_i \cong \beta r_e$$

$$R_B \ge 10 \beta r_e$$

CE → **IMPEDANSI OUTPUT**

IMPEDANSI OUTPUT

When Vi = 0, Ii = Ib = 0, resulting in an open-circuit equivalence for the current source.

$$Z_o = R_C || r_o$$
 ohms

$$Z_o \cong R_C$$
 $r_o \ge 10R_C$

$CE \rightarrow PENGUATAN TEGANGAN (A_V)$

The resistors ro and RC are in parallel.

$$V_o = -\beta I_b(R_C || r_o)$$

$$I_b = \frac{V_i}{\beta r_c}$$

$$V_o = -\beta \left(\frac{V_i}{\beta_{r_e}}\right) (R_C || r_o)$$

$$A_{v} = \frac{V_o}{V_i} = -\frac{(R_C || r_o)}{r_e}$$

If
$$r_o \ge 10R_C$$
,

$$A_v = -\frac{R_C}{r_e} \qquad |_{r_o \ge 10R_C}$$

$CE \rightarrow PENGUATAN ARUS (A_1)$

Applying the current-divider rule to the input and output circuits,

$$I_o = \frac{(r_o)(\beta I_b)}{r_o + R_C}$$
 and $\frac{I_o}{I_b} = \frac{r_o \beta}{r_o + R_C}$

$$I_b = \frac{(R_B)(I_i)}{R_B + \beta r_e}$$
 or $\frac{I_b}{I_i} = \frac{R_B}{R_B + \beta r_e}$

$$A_i = \frac{I_o}{I_i} = \left(\frac{I_o}{I_b}\right)\!\!\left(\frac{I_b}{I_i}\right) = \left(\frac{r_o\beta}{r_o + R_C}\right)\!\!\left(\frac{R_B}{R_B + \beta r_e}\right)$$

$$A_i = \frac{I_o}{I_i} = \frac{\beta R_B r_o}{(r_o + R_C)(R_B + \beta r_e)}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{(R_{C}||r_{o})}{r_{e}}$$

$$Z_i = R_B \| \beta r_e$$

$$A_i = -A_v \frac{Z_i}{R_C}$$

if $r_o \ge 10R_C$ and $R_B \ge 10\beta r_e$,

$$A_i = \frac{I_o}{I_i} \cong \frac{\beta R_B r_o}{(r_o)(R_B)}$$

$$A_i \cong \beta$$

$$r_o \ge 10R_C, R_B \ge 10\beta r_e$$

CE → **PHASE RELATIONSHIP**

$$A_v = \frac{V_o}{V_i} = -\frac{(R_C || r_o)}{r_e}$$

Tanda minus (-) pada penguatan tegangan berarti antara sinyal input dan output bergeser 180°

RANGKAIAN ELEKTRONIKA

CONTOH

- (a) Determine r_e .
- (b) Find Z_i (with $r_o = \infty \Omega$).

- (f) Repeat parts (c) through (e) including $r_o = 50 \text{ k}\Omega$

(a) DC analysis:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 \text{ V} - 0.7 \text{ V}}{470 \text{ k}\Omega} = 24.04 \text{ } \mu\text{A}$$

$$I_E = (\beta + 1)I_B = (101)(24.04 \text{ } \mu\text{A}) = 2.428 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{2.428 \text{ mA}} = \mathbf{10.71 \Omega}$$

RANGKAIAN ELEKTRONIKA

CONTOH

- (b) $\beta r_e = (100)(10.71 \ \Omega) = 1.071 \ k\Omega$ $Z_i = R_B \|\beta r_e = 470 \ k\Omega\|1.071 \ k\Omega = 1.069 \ k\Omega$
- (c) $Z_o = R_C = 3 \text{ k}\Omega$

(d)
$$A_v = -\frac{R_C}{r_e} = -\frac{3 \text{ k}\Omega}{10.71 \Omega} = -280.11$$

(e) Since $R_B \ge 10 \beta r_e (470 \text{ k}\Omega > 10.71 \text{ k}\Omega)$ $A_i \cong \beta = 100$

CONTOH

(f)
$$Z_o = r_o ||R_C = 50 \text{ k}\Omega||3 \text{ k}\Omega = 2.83 \text{ k}\Omega \text{ vs. } 3 \text{ k}\Omega$$

$$A_v = -\frac{r_o || R_C}{r_e} = \frac{2.83 \text{ k}\Omega}{10.71 \Omega} = -264.24 \text{ vs. } -280.11$$

$$A_i = \frac{\beta R_B r_o}{(r_o + R_C)(R_B + \beta r_e)} = \frac{(100)(470 \text{ k}\Omega)(50 \text{ k}\Omega)}{(50 \text{ k}\Omega + 3 \text{ k}\Omega)(470 \text{ k}\Omega + 1.071 \text{ k}\Omega)}$$
$$= 94.13 \text{ vs. } 100$$

As a check:

$$A_i = -A_v \frac{Z_i}{R_C} = \frac{-(-264.24)(1.069 \text{ k}\Omega)}{3 \text{ k}\Omega} = 94.16$$

IMPEDANSI INPUT

$$R' = R_1 \| R_2 = \frac{R_1 R_2}{R_1 + R_2}$$
 $Z_i = R' \| \beta r_e$

IMPEDANSI OUTPUT

 V_i set to 0 V resulting in $I_b = 0 \mu A$ and $\beta I_b = 0 \text{ mA}$.

$$Z_o = R_C || r_o$$

$$Z_o \cong R_C$$
 $r_o \ge 10R_C$

PENGUATAN TEGANGAN

$$V_o = -(\beta I_b)(R_C || r_o)$$

$$I_b = \frac{V_i}{\beta r_e}$$

$$V_o = -\beta \left(\frac{V_i}{\beta r_e}\right) (R_C || r_o)$$

$$A_v = \frac{V_o}{V_i} = \frac{-R_C ||r_o||}{r_e}$$

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{R_{C}}{r_{e}}$$

$$r_{o} \ge 10R_{C}$$

PENGUATAN ARUS

$$R' = R_1 || R_2 = R_B,$$

$$I_o = \frac{(r_o)(\beta I_b)}{r_o + R_C}$$
 and $\frac{I_o}{I_b} = \frac{r_o \beta}{r_o + R_C}$

$$I_b = \frac{(R_B)(I_i)}{R_B + \beta r_e}$$
 or $\frac{I_b}{I_i} = \frac{R_B}{R_B + \beta r_e}$

$$A_i = \frac{I_o}{I_i} = \left(\frac{I_o}{I_b}\right) \left(\frac{I_b}{I_i}\right) = \left(\frac{r_o \beta}{r_o + R_C}\right) \left(\frac{R_B}{R_B + \beta r_e}\right)$$

$$A_i = \frac{I_o}{I_i} = \frac{\beta R' r_o}{(r_o + R_C)(R' + \beta r_e)}$$

For $r_o \ge 10R_C$,

$$A_i = \frac{I_o}{I_i} \cong \frac{\beta R' r_o}{r_o(R' + \beta r_e)}$$

$$A_i = \frac{I_o}{I_i} \cong \frac{\beta R'}{R' + \beta r_e}$$

PENGUATAN ARUS

if
$$R' \ge 10\beta r_e$$
,
For $r_o \ge 10R_C$,

$$A_i = \frac{I_o}{I_i} = \frac{\beta R' r_o}{(r_o + R_C)(R' + \beta r_e)}$$

$$A_i = \frac{I_o}{I_i} \cong \frac{\beta R'}{R' + \beta r_e}$$

$$r_o \ge 10R_C$$

$$A_i = \frac{I_o}{I_i} = \frac{\beta R'}{R'}$$

$$A_i = \frac{I_o}{I_i} \cong \beta$$

 $r_0 \ge 10R_C$, $R' \ge 10\beta_{r_e}$

$$A_i = -A_v \frac{Z_i}{R_C}$$

RANGKAIAN ELEKTRONIKA

CONTOH

- (a) r_o .

 $I_E = \frac{V_E}{R_E} = \frac{2.11 \text{ V}}{1.5 \text{ k}\Omega} = 1.41 \text{ mA}$

 $r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.41 \text{ mA}} = 18.44 \Omega$

- (f) The parameters of parts (b) through (e) if $r_o = 1/h_{oe} = 50 \text{ k}\Omega$

(a) DC: Testing $\beta R_E > 10R_2$

$$(90)(1.5 \text{ k}\Omega) > 10(8.2 \text{ k}\Omega)$$

135 k Ω > 82 k Ω (satisfied)

Using the approximate approach,

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{(8.2 \text{ k}\Omega)(22 \text{ V})}{56 \text{ k}\Omega + 8.2 \text{ k}\Omega} = 2.81 \text{ V}$$

$$V_E = V_B - V_{BE} = 2.81 \text{ V} - 0.7 \text{ V} = 2.11 \text{ V}$$

CONTOH

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.41 \text{ mA}} = 18.44 \Omega$$

(b)
$$R' = R_1 || R_2 = (56 \text{ k}\Omega) || (8.2 \text{ k}\Omega) = 7.15 \text{ k}\Omega$$

 $Z_i = R' || \beta r_e = 7.15 \text{ k}\Omega || (90)(18.44 \Omega) = 7.15 \text{ k}\Omega || 1.66 \text{ k}\Omega$
 $= 1.35 \text{ k}\Omega$

(c)
$$Z_o = R_C = 6.8 \text{ k}\Omega$$

(d)
$$A_v = -\frac{R_C}{r_e} = -\frac{6.8 \text{ k}\Omega}{18.44 \Omega} = -368.76$$

CONTOH

(e) The condition $R' \ge 10 \beta r_e$ (7.15 k $\Omega \ge 10 (1.66 \text{ k}\Omega) = 16.6 \text{ k}\Omega$ is not satisfied. Therefore,

$$A_i \cong \frac{\beta R'}{R' + \beta r_e} = \frac{(90)(7.15 \text{ k}\Omega)}{7.15 \text{ k}\Omega + 1.66 \text{ k}\Omega} = 73.04$$

(f)
$$Z_i = 1.35 \text{ k}\Omega$$

 $Z_o = R_C || r_o = 6.8 \text{ k}\Omega || 50 \text{ k}\Omega = 5.98 \text{ k}\Omega \text{ vs. } 6.8 \text{ k}\Omega$
 $A_v = -\frac{R_C || r_o}{r_e} = -\frac{5.98 \text{ k}\Omega}{18.44 \Omega} = -324.3 \text{ vs. } -368.76$
 $A_i = \frac{\beta R' r_o}{(r_o + R_C)(R' + \beta r_e)} = \frac{(90)(7.15 \text{ k}\Omega)(50 \text{ k}\Omega)}{(50 \text{ k}\Omega + 6.8 \text{ k}\Omega)(7.15 \text{ k}\Omega + 1.66 \text{ k}\Omega)}$
 $= 64.3 \text{ vs. } 73.04$

32

CC ATAU EMITTER-FOLLOWER CONFIGURATION

IMPEDANSI INPUT

$$Z_i = R_B \| Z_b$$

$$Z_b = \beta r_e + (\beta + 1)R_E$$

$$Z_b \cong \beta(r_e + R_E)$$

$$Z_b \cong \beta R_E$$

CE EMITTER-FOLLOWER CONFIGURATION

IMPEDANSI OUTPUT

$$I_b = \frac{V_i}{Z_b}$$

$$I_b = \frac{V_i}{Z_b} \qquad I_e = (\beta + 1)I_b = (\beta + 1)\frac{V_i}{Z_b}$$

$$I_e = \frac{(\beta + 1)V_i}{\beta r_e + (\beta + 1)R_E}$$

$$I_e = \frac{V_i}{[\beta r_e/(\beta + 1)] + R_E}$$

$$(\beta + 1) \cong \beta$$

$$\frac{\beta r_e}{\beta+1}\cong\frac{\beta r_e}{\beta}=r_e$$

$$I_e \cong \frac{V_i}{r_e + R_E}$$

To determine Z_o , V_i is set to zero

$$Z_o = R_E || r_e$$

Since R_E is typically much greater than r_e ,

$$Z_o \cong r_e$$

CE EMITTER-FOLLOWER CONFIGURATION

PENGUATAN TEGANGAN (A_V)

$$V_o = \frac{R_E V_i}{R_E + r_e}$$

$$A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + r_e}$$

Since R_E is usually much greater than r_e , $R_E + r_e \cong R_E$

$$A_v = \frac{V_o}{V_i} \cong 1$$

CE EMITTER-FOLLOWER CONFIGURATION

$$I_b = \frac{R_B I_i}{R_B + Z_b}$$

$$\frac{I_b}{I_i} = \frac{R_B}{R_B + Z_b}$$

$$I_o = -I_e = -(\beta + 1)I_b$$

$$\frac{I_o}{I_b} = -(\beta + 1)$$

$$A_i = \frac{I_b}{I_i} = \frac{I_b}{I_b} \frac{I_b}{I_i}$$
$$= -(\beta + 1) \frac{R_B}{R_B + Z_b}$$

$$(\beta + 1) \cong \beta$$
,

$$A_i \cong -\frac{\beta R_B}{R_B + Z_b}$$

$$A_i = -A_v \, \frac{Z_i}{R_E}$$

CE EMITTER-FOLLOWER CONFIGURATION

EFEK dari r₀

$$Z_b = \beta r_e + \frac{(\beta + 1)R_E}{1 + \frac{R_E}{r_o}}$$

If the condition $r_o \ge 10R_E$ is satisfied,

$$Z_b = \beta r_e + (\beta + 1)R_E$$

$$Z_b \cong \beta(r_e + R_E)$$

$$r_o \ge 10R_E$$

$$Z_o = r_o ||R_E|| \frac{\beta r_e}{(\beta + 1)}$$

$$\beta + 1 \cong \beta$$
,

$$Z_o = r_o ||R_E|| r_e$$

since $r_o \gg r_e$,

$$Z_o \cong R_E || r_e$$
 Any r_e

$$A_{v} = \frac{(\beta + 1)R_{E}/Z_{b}}{1 + \frac{R_{E}}{r_{o}}}$$

$$A_{v} \cong \frac{R_{E}}{r_{e} + R_{E}}$$

$$r_{o}$$

(a)
$$r_e$$
.

- (b) Z_i .
- (c) Z_o.
- (d) A_v.
- (e) A_i.
- $\beta = 100, r_o = \infty \Omega$ (f) Repeat parts (b) through (e) with $r_o = 25 \text{ k}\Omega$

(a)
$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

$$= \frac{12 \text{ V} - 0.7 \text{ V}}{220 \text{ k}\Omega + (101)3.3 \text{ k}\Omega} = 20.42 \text{ }\mu\text{A}$$

$$I_E = (\beta + 1)I_B$$

$$= (101)(20.42 \text{ }\mu\text{A}) = 2.062 \text{ mA}$$

$$= \beta r_e + (\beta + 1)R_E$$

$$= (100)(12.61 \Omega) + (101)(3.3 \text{ k}\Omega)$$

$$= 1.261 \text{ k}\Omega + 333.3 \text{ k}\Omega$$

(b)
$$Z_b = \beta r_e + (\beta + 1)R_E$$

= $(100)(12.61 \Omega) + (101)(3.3 kg)$
= $1.261 k\Omega + 333.3 k\Omega$
= $334.56 k\Omega \cong \beta R_E$
 $Z_i = R_B || Z_b = 220 k\Omega || 334.56 k\Omega$
= $132.72 k\Omega$

(c)
$$Z_o = R_E || r_e = 3.3 \text{ k}\Omega || 12.61 \Omega$$

= 12.56 $\Omega \cong r_e$

(d)
$$A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + r_e} = \frac{3.3 \text{ k}\Omega}{3.3 \text{ k}\Omega + 12.61 \Omega}$$

= **0.996** \cong 1

(e)
$$A_i \approx -\frac{\beta R_B}{R_B + Z_b} = -\frac{(100)(220 \text{ k}\Omega)}{220 \text{ k}\Omega + 334.56 \text{ k}\Omega} = -39.67$$

versus

$$A_i = -A_v \frac{Z_i}{R_E} = -(0.996) \left(\frac{132.72 \text{ k}\Omega}{3.3 \text{ k}\Omega} \right) = -40.06$$

(f) Checking the condition $r_o \ge 10R_E$, we have

$$25 \text{ k}\Omega \ge 10(3.3 \text{ k}\Omega) = 33 \text{ k}\Omega$$

which is *not* satisfied. Therefore,

$$\begin{split} Z_b &= \beta r_e + \frac{(\beta+1)R_E}{1+\frac{R_E}{r_o}} = (100)(12.61~\Omega) + \frac{(100+1)3.3~\mathrm{k}\Omega}{1+\frac{3.3~\mathrm{k}\Omega}{25~\mathrm{k}\Omega}} \\ &= 1.261~\mathrm{k}\Omega + 294.43~\mathrm{k}\Omega \\ &= 295.7~\mathrm{k}\Omega \\ \mathrm{with} \quad Z_i &= R_B \|Z_b = 220~\mathrm{k}\Omega\|295.7~\mathrm{k}\Omega \end{split}$$

= 126.15 k Ω vs. 132.72 k Ω obtained earlier

$$Z_o = R_E || r_e = 12.56 \Omega$$
 as obtained earlier

$$A_{v} = \frac{(\beta + 1)R_{E}/Z_{b}}{\left[1 + \frac{R_{E}}{r_{o}}\right]} = \frac{(100 + 1)(3.3 \text{ k}\Omega)/295.7 \text{ k}\Omega}{\left[1 + \frac{3.3 \text{ k}\Omega}{25 \text{ k}\Omega}\right]}$$
$$= 0.996 \approx 1$$

 \square Pada jaringan dua pasang terminal (two-port network) terdapat empat variabel, yakni: arus input (Ii), tegangan input (Vi), arus output (Io) dan tegangan output (Vo).

$$V_i = h_{11} I_i + h_{12} V_o$$

$$I_o = h_{21}I_i + h_{22}V_o$$

$$\mathbf{h}_{II} = \text{hi} = \text{input resistance}$$

 $\mathbf{h}_{12} = \text{hr} = \text{reverse transfer voltage ratio (Vi/Vo)}$

 $\mathbf{h}_{2I} = \mathbf{h}\mathbf{f} = \mathbf{forward} \ \mathbf{transfer} \ \mathbf{current} \ \mathbf{ratio} \ (\mathbf{Io/Ii})$

 $\mathbf{h}_{22} = \text{ho} = \text{output conductance}$

$HTM \rightarrow h_{11}$

- \square Apabila terminal output dibuat hubung singkat (atau vo = 0), maka diperoleh h_{11} .
- Perbandingan ini menunjukkan bahwa h_{11} adalah parameter impendansi dengan satuan Ohm. Karena merupakan perbandingan tegangan input dan arus input dengan terminal output dihubung singkat, maka h_{11} disebut dengan impedansi input hubung singkat.

$$h_{11} = \frac{V_i}{I_i} \bigg|_{V_o = 0}$$

ohms

$HTM \rightarrow h_{12}$

- \square Apabila terminal input dibuka (atau Ii = 0), maka diperoleh h_{12} .
- \square Parameter h_{12} disebut dengan penguatan tegangan balik rangkaian terbuka. Karena merupakan perbandingan dua level tegangan, maka h_{12} tidak mempunyai satuan.

$$h_{12} = \frac{V_i}{V_o} \bigg|_{I_i = 0}$$

unitless

HTM \rightarrow h_{21}

- □ Parameter h_{21} diperoleh dengan cara menghubung singkatkan terminal output (atau vo= 0).
- □ Parameter h21 yang merupakan perbandingan arus output dan arus input dengan terminal output hubung singkat disebut dengan penguatan arus maju hubung singkat. Karena merupakan perbandingan dua level arus, maka h21 tidak mempunyai satuan.

$$h_{21} = \frac{I_o}{I_i} \bigg|_{V_o = 0}$$

unitless

$HTM \rightarrow h_{22}$

- ☐ Parameter h22 yang diperoleh dengan membuka terminal input (atau Ii= 0),
- ☐ Paramater h22 disebut konduktansi output rangkaian terbuka dengan satuan siemen atau mho.

$$h_{22} = \frac{I_o}{V_o} \bigg|_{I_i = 0}$$

siemens

$$v_i = h_i i_i + h_r v_o$$

$$i_0 = h_f i_i + h_o v_o$$

 $h_{11} \Rightarrow h_{i} \Rightarrow$ Resistansi input dari transistor

 h_{12} \Rightarrow h_{r} \Rightarrow Penguatan tegangan balik dari transistor

 $h_{21} \Rightarrow h_{\mathrm{f}} \Rightarrow$ Penguatan arus maju dari transistor

 $h_{22} \Rightarrow h_0 \Rightarrow$ Konduktansi output dari transistor

47

Effect of removing h_{re} and h_{oe} from the hybird equivalent circuit.

Approximate hybrid equivalent model.

mas.suwito@gmail.com

Common-Emitter re vs. h-Parameter Model

Konfigurasi Common Emitter

Konfigurasi Common Base

$$h_{ie} = \beta r_e$$

$$h_{fe} = \beta_{ac}$$

$$h_{ib} = r_e$$

$$h_{fb} = -\alpha \cong -1$$

Given $I_E = 2.5$ mA, $h_{fe} = 140$, $h_{oe} = 20$ μ S (μ mho), and $h_{ob} = 0.5$ μ S, determine:

- (a) The common-emitter hybrid equivalent circuit.
- (b) The common-base r_e model.

(a)
$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{2.5 \text{ mA}} = 10.4 \Omega$$

 $h_{ie} = \beta r_e = (140)(10.4 \Omega) = 1.456 \text{ k}\Omega$
 $r_o = \frac{1}{h_{oe}} = \frac{1}{20 \mu \text{S}} = 50 \text{ k}\Omega$

51

Given $I_E = 2.5$ mA, $h_{fe} = 140$, $h_{oe} = 20$ μ S (μ mho), and $h_{ob} = 0.5$ μ S, determine:

- (a) The common-emitter hybrid equivalent circuit.
- (b) The common-base r_e model.

(b)
$$r_e = 10.4 \Omega$$

 $\alpha \cong 1$, $r_o = \frac{1}{h_{ob}} = \frac{1}{0.5 \mu \text{S}} = 2 \text{ M}\Omega$

PARAMETER H

$$h_{\rm ie} \simeq \frac{\Delta v_{\rm be}}{\Delta i_{\rm b}} \bigg|_{v_{\rm CE} = 0}$$
 (Ohm)

$$h_{\rm re} \cong \frac{\Delta v_{\rm be}}{v_{\rm ce}} \mid i_{\rm B} = 0$$
 (tanpa satuan)

PARAMETER H

$$h_{\mathrm{fe}} \cong \frac{\Delta i_{\mathrm{c}}}{\Delta i_{\mathrm{b}}} \mid v_{\mathrm{CE}} = 0$$
 (tanpa satuan)

$$h_{\text{oe}} \cong \frac{\Delta i_{\text{c}}}{\Delta v_{\text{ce}}} \bigg|_{i_{\text{B}}=0}$$
 (Siemen)

PAREMETER H

Parameter	CE	CC	СВ
h_i	1 ΚΩ	1 ΚΩ	20 Ω
$h_{\mathbf{r}}$	2.5×10^{-4}	≅ 1	3.0×10^{-4}
$h_{\mathbf{f}}$	50	- 50	- 0.98
h_{0}	$25~\mu\text{A/V}$	$25~\mu A/V$	$0.5~\mu A/V$
$1/h_{o}$	$40~\mathrm{K}\Omega$	$40~\mathrm{K}\Omega$	$2~\mathrm{M}\Omega$

Parameter hr untuk CE dan CB bernilai sangat kecil, sehingga dalam berbagai analisa praktis parameter hr ini sering diabaikan, yakni dianggap nol.

Parameter ho untuk semua konfigurasi transistor berharga sangat kecil, sehingga dalam berbagai analisa praktis parameter ho ini sering diabaikan atau dianggap nol.

PARAMETER H

Konversi dari CE ke CC

$$h_{ic} = h_{ie}$$

$$h_{\rm rc} = 1$$

$$h_{fc} = -(1 + h_{fe})$$

$$h_{\rm OC} = h_{\rm Oe}$$

Konversi dari CE ke CB

$$h_{\text{ib}} = \frac{h_{\text{ie}}}{1 + h_{\text{fe}}}$$

$$h_{\text{rb}} = \frac{h_{\text{ie}} h_{\text{oe}}}{1 + h_{\text{fe}}} - h_{\text{re}}$$

$$h_{\text{ib}} = -\frac{h_{\text{fe}}}{1 + h_{\text{fe}}}$$

$$h_{\text{Ob}} = \frac{h_{\text{Oe}}}{1 + h_{\text{fe}}}$$

Fixed-Bias Configuration → **CE**

$$Z_i = R_B || h_{ie}$$

$$Z_o = R_C ||1/h_{oe}||$$

$$V_o = -I_o R' = -I_C R'$$

$$= -h_{fe} I_b R'$$

$$I_b = \frac{V_i}{h_{ie}}$$

$$V_o = -h_{fe} \frac{V_i}{h_{ie}} R'$$

 $R' = 1/h_{oe} ||R_C,$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{h_{\textit{fe}}(R_{\textit{C}} || 1/h_{\textit{oe}})}{h_{\textit{ie}}}$$

$$R_B \gg h_{ie}$$
 and $1/h_{oe} \geq 10R_C$,

$$I_b \cong I_i$$

$$I_o = I_c = h_{fe}I_b = h_{fe}I_i$$

$$A_i = \frac{I_o}{I_i} \cong h_{fe}$$

- (a) $Z_i = R_B || h_{ie} = 330 \text{ k}\Omega || 1.175 \text{ k}\Omega$ $\cong h_{ie} = 1.171 \text{ k}\Omega$
- (b) $r_o = \frac{1}{h_{oe}} = \frac{1}{20 \ \mu \text{A/V}} = 50 \ \text{k}\Omega$ $Z_o = \frac{1}{h_{oe}} ||R_C = 50 \ \text{k}\Omega|| 2.7 \ \text{k}\Omega = 2.56 \ \text{k}\Omega \cong R_C$
- (c) $Av = -\frac{h_{fe}(R_C || 1/h_{oe})}{h_{ie}} = -\frac{(120)(2.7 \text{ k}\Omega || 50 \text{ k}\Omega)}{1.171 \text{ k}\Omega} = -262.34$
- (d) $A_i \cong h_{fe} = 120$

Voltage-Divider Configuration → **CE**

$$R_B = R'$$

$$Z_i = R' \big\| h_{ie}$$

$$Z_o \cong R_C$$

$$A_{v} = -\frac{h_{\rm fe}(R_{\rm C} || 1/h_{\rm oe})}{h_{i\rm e}}$$

$$A_i = -\frac{h_{fe}R'}{R' + h_{ie}}$$

60

HTM → **PENGUAT** CE

Harga tipikal parameter hre dan hoe sangat kecil, sehingga dalam berbagai analisa kedua parameter-h tersebut sering diabaikan atau dianggap nol.

mas.suwito@gmail.com

HTM → **PENGUAT** CE

$$Rin = \frac{v_{in}}{i_{in}}$$

$$Rin = \frac{i_{in} (R1 || R2 || h_{ie})}{i_{in}}$$

$$Rin = (RB || h_{ie})$$

$$Av = \frac{v_{\text{out}}}{v_{\text{in}}}$$

$$Av = \frac{-i_{C} (RC||RL)}{i_{b} h_{ie}}$$

$$Av = \frac{-h_{\text{fe } ib} (RC | RL)}{ib h_{\text{ie}}}$$

$$Av = - \frac{h_{\text{fe}} (RC | RL)}{h_{\text{ie}}}$$

HTM → PENGUAT CE

$$Ai = \frac{iL}{iin}$$

$$Ai = \frac{-i_{C} RC/(RC + RL)}{i_{in}}$$

$$Ai = \frac{-i_{C} RC}{i_{in} (RC + RL)}$$

$$Ai = \frac{- (h_{\text{fe}} i_{\text{b}})}{i_{\text{in}}} \quad \frac{\text{RC}}{(\text{RC + RL})}$$

$$i_{b} = i_{in} RB/(RB + h_{ie})$$

$$i_{\text{in}} = i_{\text{b}} (RB + h_{\text{ie}}) / RB$$

$$Ai = \frac{- (h_{fe} i_{b})}{i_{b} (RB + h_{ie}) / RB} = \frac{RC}{(RC + RL)}$$

$$Ai = - \frac{h_{\text{fe}} \text{ RB}}{(\text{RB} + h_{\text{ie}})} \frac{\text{RC}}{(\text{RC} + \text{RL})}$$

CURRENT MIRROR

$$I_{\text{control}} = I_{C_1} + I_B = I_{C_1} + 2I_{B_1}$$

$$I_{C_1} = \beta_1 I_{B_1}$$

$$I_{\text{control}} = \beta_1 I_{B_1} + 2I_{B_1} = (\beta_1 + 2)I_{B_1}$$

$$I_{\text{control}} \cong \beta_1 I_{B_1}$$

$$I_{B_1} = \frac{I_{\text{control}}}{\beta_1}$$

$$I_{\text{control}} = \frac{V_{CC} - V_{BE}}{R}$$

Contoh

EXAMPLE 4.27 Calculate the mirrored current *I* in the circuit of Fig. 4.76.

Solution: Eq. (4.75):

$$I = I_{\text{control}} = \frac{V_{CC} - V_{BE}}{R} = \frac{12 \text{ V} - 0.7 \text{ V}}{1.1 \text{ k}\Omega} = 10.27 \text{ mA}$$

CONTOH

EXAMPLE 4.28 Calculate the current I through each of the transistor Q_2 and Q_3 in the circuit of Fig. 4.77.

Solution: Since

$$V_{BE_1} = V_{BE_2} = V_{BE_3}$$
 then $I_{B_1} = I_{B_2} = I_{B_3}$

Substituting

$$I_{B_1} = rac{I_{
m control}}{eta}$$
 and $I_{B_2} = rac{I}{eta}$ with $I_{B_3} = rac{I}{eta}$

we have

$$\frac{I_{\text{control}}}{\beta} = \frac{I}{\beta} = \frac{I}{\beta}$$

so I must equal I_{control}

$$I_{\text{control}} = \frac{V_{CC} - V_{BE}}{R} = \frac{6 \text{ V} - 0.7 \text{ V}}{1.3 \text{ k}\Omega} = 4.08 \text{ mA}$$

66