第五章 放大电路的频率响应

自 测 题

一、选技	泽正确答案填入空	内。		
(1)测	则试放大电路输出。	电压幅值与相位	的变化,可以得到它的频率响	
应,条件是_	o			
	A.输入电压幅值	不变,改变频率		
	B.输入电压频率	不变,改变幅值		
	C.输入电压的幅	值与频率同时变	化	
(2) 放	文大电路在高频信 ⁵	号作用时放大倍	数数值下降的原因是,而	
低频信号作月	用时放大倍数数值	下降的原因是	o	
	A.耦合电容和旁路电容的存在			
	B. 半 导 体 管 极 间 电 容 和 分 布 电 容 的 存 在 。			
	C. 半导体管的非线性特性			
	D.放大电路的静态工作点不合适			
(3)≝	i信号频率等于放力	大电路的 $f_{ m L}$ 或 $f_{ m H}$	时,放大倍数的值约下降到中	
频时的。				
	A.0.5 倍	B.0.7 倍	C.0.9 倍	
即增益	下降。			
	A.3dB	B.4dB	C.5dB	
(4) 🕅	寸于 单 管 共 射 放 大 🕫	电路 , 当 f = f _I	_ 时 , $\dot{U}_{_{ m o}}$ 与 $\dot{U}_{_{ m i}}$ 相位关系是。	
	A. + 45°	B 90°	C 135°	
当 f =	当 f = $f_{ m H}$ 时 , $\dot{U}_{ m o}$ 与 $\dot{U}_{ m i}$ 的相位关系是。			
	A 45°	B 135°	C 225°	
解・ (1) A (2) B A	\ (3)R \	$(A) \subset C$	

二、电路如图 T5.2 所示。已知: $V_{\rm CC}$ = 12V;晶体管的 $C_{\rm \mu}$ = 4pF, $f_{\rm T}$ = 50MHz, $r_{\rm bb}$ = 100 , β_0 = 80。试求解:

- (1) 中频电压放大倍数 \dot{A}_{usm} ;
- (2) C_{π} ;
- (3) $f_{\rm H}$ 和 $f_{\rm L}$;
- (4)画出波特图。

图 T5.2

解:(1)静态及动态的分析估算:

$$\begin{split} I_{\mathrm{BQ}} &= \frac{V_{\mathrm{CC}} - U_{\mathrm{BEQ}}}{R_{\mathrm{b}}} \approx 22.6 \mu \ \mathrm{A} \\ I_{\mathrm{EQ}} &= (1 + \beta) I_{\mathrm{BQ}} \approx 1.8 \mathrm{mA} \\ U_{\mathrm{CEQ}} &= V_{\mathrm{CC}} - I_{\mathrm{CQ}} R_{\mathrm{c}} \approx 3 \mathrm{V} \\ r_{\mathrm{b'e}} &= (1 + \beta) \frac{26 \mathrm{mV}}{I_{\mathrm{EQ}}} \approx 1.17 \mathrm{k} \Omega \\ r_{\mathrm{be}} &= r_{\mathrm{bb'}} + r_{\mathrm{b'e}} \approx 1.27 \mathrm{k} \Omega \\ R_{\mathrm{i}} &= r_{\mathrm{be}} \quad R_{\mathrm{b}} \approx 1.27 \mathrm{k} \Omega \\ R_{\mathrm{i}} &= r_{\mathrm{be}} \quad R_{\mathrm{b}} \approx 1.27 \mathrm{k} \Omega \\ \\ \dot{R}_{\mathrm{m}} &= \frac{I_{\mathrm{EQ}}}{U_{\mathrm{T}}} \approx 69.2 \mathrm{mA/V} \\ \dot{A}_{\mathrm{usm}} &= \frac{R_{\mathrm{i}}}{R_{\mathrm{s}} + R_{\mathrm{i}}} \cdot \frac{r_{\mathrm{b'e}}}{r_{\mathrm{be}}} (-g_{\mathrm{m}} R_{\mathrm{c}}) \approx -178 \end{split}$$

$$f_{\rm T} \approx \frac{\beta_0}{2 r_{\rm b'e}(C + C_{\mu})}$$

$$C_{\pi} \approx \frac{\beta_0}{2 r_{\rm b'e}f_{\rm T}} - C_{\mu} \approx 214 \text{pF}$$

$$C_{\pi}' = C_{\pi} + (1 + g_{\rm m}R_{\rm c})C_{\mu} \approx 1602 \text{pF}$$

(3)求解上限、下限截止频率:

$$R = r_{b'e} \quad (r_{b'b} + R_s \quad R_b) \approx r_{b'e} \quad (r_{b'b} + R_s) \approx 567\Omega$$

$$f_{H} = \frac{1}{2 \quad RC'} \approx 175 \text{kHz}$$

$$f_{L} = \frac{1}{2 \quad (R_s + R_i)C} \approx 14 \text{Hz}$$

(4)在中频段的增益为

$$20 \lg |\dot{A}_{usm}| \approx 45 dB$$

频率特性曲线如解图 T5.2 所示。

解图 T5.2

三、 已知某放大电路的波特图如图 T5.3 所示,填空:

- (1) 电路的中频电压增益 $20\lg|\dot{A}_{um}|$ = _____ dB , \dot{A}_{um} = ______。
- (2) 电路的下限频率 f_L ______Hz, 上限频率 f_H _____ kHz.

图 T5.3

解:(1)60 10⁴

(2) 10 10

(3)

$$\frac{\pm 10^3}{(1+\frac{10}{\mathrm{i}f})(1+\mathrm{j}\frac{f}{10^4})(1+\mathrm{j}\frac{f}{10^5})} \underbrace{\pm 100\mathrm{j}f}_{(1+\mathrm{j}\frac{f}{10})(1+\mathrm{j}\frac{f}{10^4})(1+\mathrm{j}\frac{f}{10^5})}$$

说明:该放大电路的中频放大倍数可能为"+",也可能为"-"。

习 题

5.1 在图 P5.1 所示电路中,已知晶体管的 $r_{\rm bb}$ 、 $C_{\, \rm l}$ 、 $C_{\, \rm l}$ 、 $C_{\, \rm l}$ 、 $C_{\, \rm l}$ 、 $C_{\, \rm l}$

填空:除要求填写表达式的之外,其余各空填入 增大、 基本不变、减小。

图 P5.1

(1)在空载情况下,下限频率的表达式 f_L = _____。当 R_s 减小时, f_L 将 _____;当带上负载电阻后, f_L 将 ____。

(2)在空载情况下,若 b-e 间等效电容为 C_{π} , 则上限频率的表达式 $f_{\rm H}$ = _____; 当 $R_{\rm s}$ 为零时 $f_{\rm H}$ 将 _____; 当 $R_{\rm b}$ 减小时 $g_{\rm m}$ 将 _____, C_{π} 将 _____, $f_{\rm H}$ 将 _____.

#: (1)
$$\frac{1}{2\pi (R_s + R_b - r_{be}) C_1}$$
 ; .

(2)
$$\frac{1}{2\pi[r_{\rm b'e} \quad (r_{\rm bb'}+R_{\rm b} \quad R_{\rm s})]C_{\pi}}$$
 ; ; , , .

5.2 已知某电路的波特图如图 P5.2 所示,试写出 \dot{A}_{μ} 的表达式。

图 P5.2

解: 设电路为基本共射放大电路或基本共源放大电路。

5.3 已知某共射放大电路的波特图如图 P5.3 所示,试写出 \dot{A}_u 的表达式。

图 P5.3

解:观察波特图可知,中频电压增益为 $40 ext{dB}$,即中频放大倍数为 - 100;下限截止频率为 $1 ext{Hz}$ 和 $10 ext{Hz}$,上限截止频率为 $250 ext{kHz}$ 。故电路 \dot{A}_u 的表达式为

$$\dot{A}_{u} = \frac{-100}{(1 + \frac{1}{jf})(1 + \frac{10}{jf})(1 + j\frac{f}{2.5 \times 10^{5}})}$$

$$\dot{A}_{u} = \frac{+10 f^{2}}{(1 + jf)(1 + j\frac{f}{10})(1 + j\frac{f}{2.5 \times 10^{5}})}$$

- 5.4 已知某电路的幅频特性如图 P5.4 所示,试问:
- (1)该电路的耦合方式;
- (2)该电路由几级放大电路组成;
- (3)当 $f=10^4$ Hz 时,附加相移为 多少?当 $f=10^5$ 时,附加相移又约为多 少?

图 P5.4

- 60dB/十倍频,所以电路为三级放大电路;
 - (3) 当 $f = 10^4$ Hz 时 , $= -135^\circ$; 当 $f = 10^5$ Hz 时 , -270° 。
- 5.5 若某电路的幅频特性如图 P5.4 所示,试写出 \dot{A}_u 的表达式,并近似估算该电路的上限频率 $f_{\rm H}$ 。

 \mathbf{m} : \dot{A}_{μ} 的表达式和上限频率分别为

$$\dot{A}_{u} = \frac{\pm 10^{3}}{(1 + j\frac{f}{10^{4}})^{3}}$$
 $f_{H} \approx \frac{f_{H}^{'}}{1.1\sqrt{3}} \approx 5.2 \text{kHz}$

5.6 已知某电路电压放大倍数

$$\dot{A}_u = \frac{-10jf}{(1+j\frac{f}{10})(1+j\frac{f}{10^5})}$$

试求解:

(1)
$$\dot{A}_{um} = ? f_L = ? f_H = ?$$

(2)画出波特图。

解:(1)变换电压放大倍数的表达式,求出 \dot{A}_{um} 、 f_{L} 、 f_{H} 。

$$\dot{A}_{u} = \frac{-100 \cdot j \frac{f}{10}}{(1 + j \frac{f}{10})(1 + j \frac{f}{10^{5}})}$$

$$\dot{A}_{um} = -100$$

$$f_{L} = 10 \text{Hz}$$

$$f_{H} = 10^{5} \text{Hz}$$

(2)波特图如解图 P5.6 所示。

$$\dot{A}_{u} = \frac{200 \cdot jf}{\left(1 + j\frac{f}{5}\right)\left(1 + j\frac{f}{10^{4}}\right)\left(1 + j\frac{f}{2.5 \times 10^{5}}\right)}$$

(1)
$$\dot{A}_{u\,\mathrm{m}} = ? f_{\mathrm{L}} = ? f_{\mathrm{H}} = ?$$

(2)画出波特图。

解:(1)变换电压放大倍数的表达式,求出 \dot{A}_{um} 、 f_{L} 、 f_{Ho} 。

$$\dot{A}_{u} = \frac{10^{3} \cdot j\frac{f}{5}}{(1+j\frac{f}{5})(1+j\frac{f}{10^{4}})(1+j\frac{f}{2.5 \times 10^{5}})}$$

$$\dot{A}_{um} = 10^{3}$$

$$f_{L} = 5Hz$$

$$f_{H} \approx 10^{4}Hz$$

(2)波特图如解图 P5.7 所示。

解图 P5.7

5.8 电路如图 P5.8 所示。已知:晶体管的 β 、 $r_{\rm bb}$ 、 $C_{\rm l}$ 均相等,所有电容 的容量均相等,静态时所有电路中晶体管的发射极电流 I_{EQ} 均相等。定性分析 各电路,将结论填入空内。

- (1)低频特性最差即下限频率最高的电路是___
- (2)低频特性最好即下限频率最低的电路是
- (3)高频特性最差即上限频率最低的电路是___
- $\mathbf{M}:(1)(a)$ (2)(c) (3)(c)

5.9 在图 P5.8 (a) 所示电路中,若 β = 100, $r_{\rm be}$ = 1k , C_1 = C_2 = $C_{\rm e}$ $= 100 \mu F$, 则下限频率 f_L ?

解:由于所有电容容量相同,而 C_e 所在回路等效电阻最小,所以下限频 率决定于 C_e所在回路的时间常数。

$$R = R_{\rm e} \quad \frac{r_{\rm be} + R_{\rm s}}{1 + \beta} \approx \frac{r_{\rm be} + R_{\rm s}}{1 + \beta} \approx 20\Omega$$
$$f_{\rm L} \approx \frac{1}{2\pi RC_{\rm e}} \approx 80 \, \rm Hz$$

5.10 在图 P5.8(b) 所示电路中,若要求 C_1 与 C_2 所在回路的时间常数相等,且已知 r_{be} =1k ,则 C_1 : C_2 =?若 C_1 与 C_2 所在回路的时间常数均为 25ms,则 C_1 、 C_2 各为多少?下限频率 f_L ?

解:(1) 求解 $C_1:C_2$

因为
$$C_1(R_s + R_i) = C_2(R_c + R_L)$$

将电阻值代入上式,求出

$$C_1: C_2 = 5:1_0$$

(2) 求解 C_1 、 C_2 的容量和下限频率

$$C_1 = \frac{\tau}{R_s + R_i} \approx 12.5 \,\mu \,F$$

$$C_2 = \frac{\tau}{R_c + R_L} \approx 2.5 \,\mu \,F$$

$$f_{L1} = f_{L2} = \frac{1}{2 \tau} \approx 6.4 \,Hz$$

$$f_{L} \approx 1.1 \sqrt{2} f_{L1} \approx 10 \,Hz$$

 $eta_{
m LSM}$ 在图 P5.8(a)所示电路中,若 $C_{
m e}$ 突然开路,则中频电压放大倍数 $\dot{A}_{
m LSM}$ 、 $f_{
m H}$ 和 $f_{
m L}$ 各产生什么变化(是增大、减小、还是基本不变)?为什么?

解: $\left|\dot{A}_{u\mathrm{sm}}\right|$ 将减小,因为在同样幅值的 \dot{U}_i 作用下, $\left|\dot{I}_\mathrm{b}\right|$ 将减小, $\left|\dot{I}_\mathrm{c}\right|$ 随之减小, $\left|\dot{U}_\mathrm{o}\right|$ 必然减小。

fr 减小,因为少了一个影响低频特性的电容。

 $f_{\rm H}$ 增大。因为 $C^{'}$ 会因电压放大倍数数值的减小而大大减小,所以虽然 $C^{'}$ 所在回落的等效电阻有所增大,但时间常数仍会减小很多,故 $f_{\rm H}$ 增大。

5.12 在图 P5.8 (a) 所示电路中,若 $C_1 > C_e$, $C_2 > C_e$, $\beta = 100$, $r_{be} = 1$ k ,欲使 $f_L = 60$ Hz,则 C_e 应选多少微法?

解:下限频率决定于 $C_{\rm e}$ 所在回路的时间常数 , $f_{\rm L} \approx \frac{1}{2\pi\,RC_{\rm e}}$ 。 R 为 $C_{\rm e}$ 所在回路的等效电阻。

R 和 C_e 的值分别为:

$$R = R_{\rm e} - \frac{r_{\rm be} + R_{\rm s} - R_{\rm b}}{1 + \beta} \approx \frac{r_{\rm be} + R_{\rm s}}{1 + \beta} \approx 20\Omega$$

$$C_{\rm e} \approx \frac{1}{2\pi R f_{\rm r}} \approx 133 \ \mu \ {\rm F}$$

5.13 在图 P5.8 (d) 所示电路中,已知晶体管的 $r_{\rm bb}$ = 100 , $r_{\rm be}$ = 1k ,静态电流 $I_{\rm EQ}$ = 2mA, C_π = 800pF; $R_{\rm s}$ = 2k , $R_{\rm b}$ = 500 k , $R_{\rm C}$ = 3.3 k ,C=10 μ F。

试分别求出电路的 f_{H} 、 f_{L} , 并画出波特图。

解:(1) 求解 f_L

$$f_{\rm L} = \frac{1}{2 (R_{\rm s} + R_{\rm i})} \approx \frac{1}{2 (R_{\rm s} + r_{\rm be})} \approx 5.3 \text{Hz}$$

(2)求解f_H和中频电压放大倍数

$$\begin{split} r_{\text{b'e}} &= r_{\text{be}} - r_{\text{b'b}} = 0.9 \text{k}\Omega \\ f_{\text{H}} &= \frac{1}{2\pi \left[r_{\text{b'e}} - (r_{\text{b'b}} + R_{\text{b}} - R_{\text{s}}) \right] C_{\pi}^{'}} \approx \frac{1}{2\pi \left[r_{\text{b'e}} - (r_{\text{b'b}} + R_{\text{s}}) \right] C_{\pi}^{'}} \approx 316 \text{kHz} \\ g_{\text{m}} &\approx \frac{I_{\text{EQ}}}{U_{\text{T}}} \approx 77 \text{mA/V} \\ \dot{A}_{u\text{sm}} &= \frac{R_{\text{i}}}{R_{\text{s}} + R_{\text{i}}} \cdot \frac{r_{\text{b'e}}}{r_{\text{be}}} \cdot (-g_{\text{m}} R_{\text{L}}^{'}) \approx \frac{r_{\text{b'e}}}{R_{\text{s}} + r_{\text{be}}} \cdot (-g_{\text{m}} R_{\text{L}}^{'}) \approx -76 \\ 20 \, \text{lg} \left| \dot{A}_{u\text{sm}} \right| \approx 37.6 \, \text{dB} \end{split}$$

其波特图参考解图 P5.6。

5.14 电路如图 P5.14 所示,已知 $C_{\rm gs}$ = $C_{\rm gd}$ = 5pF, $g_{\rm m}$ = 5mS, C_1 = C_2 = $C_{\rm S}$ = 10 μ F。

试求 f_{H} 、 f_{L} 各约为多少,并写出 \dot{A}_{us} 的表达式。

图 P5.14

 $m{k}:f_{\mathrm{H}},\ f_{\mathrm{L}},\ \dot{A}_{\mathrm{us}}$ 的表达式分析如下:

$$\dot{A}_{usm} = \frac{R_{i}}{R_{s} + R_{i}} (-g_{m}R_{L}^{'}) \approx -g_{m}R_{L}^{'} \approx -12.4$$

$$f_{L} \approx \frac{1}{2\pi} \frac{1}{R_{s}C_{s}} \approx 16 \text{Hz}$$

$$C'_{gs} = C_{gs} + (1 + g_{m}R_{L}^{'})C_{gd} \approx 72 \text{pF}$$

$$f_{H} = \frac{1}{2\pi (R_{s} - R_{g})C'_{gs}} \approx \frac{1}{2\pi} \frac{1}{R_{s}C'_{gs}} \approx 1.1 \text{MHz}$$

$$\dot{A}_{us} \approx \frac{-12.4 \cdot (j\frac{f}{16})}{(1 + j\frac{f}{16})(1 + j\frac{f}{1.1 \times 10^{6}})}$$

5.15 在图 5.4.7 (a) 所示电路中,已知 $R_{\rm g}$ = 2M , $R_{\rm d}$ = $R_{\rm L}$ = $10\,\rm k$,C = $10\,\rm \mu$ F;场效应管的 $C_{\rm gs}$ = $C_{\rm gd}$ = $4\rm pF$, $g_{\rm m}$ = $4\rm mS$ 。试画出电路的波特图,并标出有关数据。

解:

$$\begin{split} \dot{A}_{um} &= -g_{m}R_{L}^{'} = -20, \ 20 \lg \left| \dot{A}_{um} \right| \approx 26 \text{dB} \\ C_{gs}^{'} &= C_{gs} + (1 + g_{m}R_{L}^{'})C_{gd} = 88 \text{pF} \\ f_{L} &\approx \frac{1}{2 (R_{d} + R_{L})C} \approx 0.796 \text{Hz} \\ f_{H} &= \frac{1}{2 R_{g}C_{gs}^{'}} \approx 904 \text{Hz} \end{split}$$

其波特图参考解图 P5.6。

5.16 已知一个两级放大电路各级电压放大倍数分别为

$$\dot{A}_{u1} = \frac{\dot{U}_{o1}}{\dot{U}_{i}} = \frac{-25 \,\mathrm{j} \,f}{\left(1 + \mathrm{j} \frac{f}{4}\right) \left(1 + \mathrm{j} \frac{f}{10^{5}}\right)}$$

$$\dot{A}_{u2} = \frac{\dot{U}_{o}}{\dot{U}_{i2}} = \frac{-2 \,\mathrm{j} \,f}{\left(1 + \mathrm{j} \frac{f}{50}\right) \left(1 + \mathrm{j} \frac{f}{10^{5}}\right)}$$

- (1)写出该放大电路的表达式;
- (2) 求出该电路的 f_L 和 f_H 各约为多少;
- (3)画出该电路的波特图。

解:(1) 电压放大电路的表达式

$$\dot{A}_{u} = \dot{A}_{u1}\dot{A}_{u2} = \frac{-50f^{2}}{(1+j\frac{f}{4})(1+j\frac{f}{50})(1+j\frac{f}{10^{5}})^{2}}$$

(2) f_L和 f_H分别为:

$$f_{\rm L} \approx 50 {\rm Hz}$$

$$\frac{1}{f_{\rm H}} \approx \frac{1}{1.1\sqrt{2}10^5} , f_{\rm H} \approx 64.3 {\rm kHz}$$

(3)根据电压放大倍数的表达式可知,中频电压放大倍数为 10⁴,增益为 80dB。波特图如解图 P5.16 所示。

- 5.17 电路如图 P5.17 所示。试定性分析下列问题,并简述理由。
- (1)哪一个电容决定电路的下限频率;
- (2)若 T_1 和 T_2 静态时发射极电流相等,且 r_{bb} 和 C_π 相等,则哪一级的上限频率低。

图 P5.17

- 解:(1)决定电路下限频率的是 C_e ,因为它所在回路的等效电阻最小。
- (2)因为 R_2 R_3 R_4 > R_1 R_s , C_2 所在回路的时间常数大于 C_1 所在回路的时间常数,所以第二级的上限频率低。

5.18 若两级放大电路各级的波特图均如图 P5.2 所示,试画出整个电路的波特图。

解: $20 \lg |\dot{A}_{um}| = 60 dB$ 。 在折线化幅频特性中,频率小于 10 Hz 时斜率为 +40 dB/+ 倍频,频率大于 $10^5 Hz$ 时斜率为 -40 dB/+ 倍频。 在折线化相频特性中,f=10 Hz 时相移为 $+90^\circ$, $f=10^5 Hz$ 时相移为 -90° 。 波特图如解图 P5.18 所示。

解图 P5.18