Orthogoval Notes

Intersection Enumeration

Let $\mathbf{D}_i = (V, B_i)$, $j = 1, 2, ..., \alpha$, be Desarguesian affine planes of order 2^n on the same point set where the blocks of \mathbf{D}_i are ovals in \mathbf{D}_j for $i \neq j$; and let $\mathbf{D} = \mathbf{D}_1 \cup \mathbf{D}_2 \cup \cdots \cup \mathbf{D}_{\alpha}$. Then \mathbf{D} is a resolvable 2-design with parameters

$$v = 2^n$$
, $b = \alpha 2^n (2^n + 1)$, $r = \alpha (2^n + 1)$, $k = 2^n$, $\lambda = \alpha$.

Label the parallel classes of **D** as $\mathscr{C}_1, \mathscr{C}_2, \dots, \mathscr{C}_r$. Fix a block B. Then

$$|B \cap B'| = \begin{cases} 0 & \text{if } B, B' \in \mathcal{C}_i; \text{ and} \\ 0, 1, \text{ or } 2 & B \in \mathcal{C}_i, B' \in \mathcal{C}_j, i \neq j. \end{cases}$$

Let n_0 , n_1 , n_2 be the number of blocks distinct from B which intersect it in 0, 1, or 2 points. The usual variance counting yields the nonsingular triangular system

$$n_0 + n_1 + n_2 = \alpha 2^n (2^n + 1) - 1,$$

$$n_1 + 2n_2 = 2^n \left(\alpha (2^n + 1) - 1\right),$$

$$2n_2 = 2^n (2^n - 1)(\alpha - 1).$$

The unique solution is given by

$$n_0 = 2^{n-1} \left((2^n - 1)(\alpha - 1) + 2 \right) - 1,$$

$$n_1 = 2^{n+1} (2^{n-1} + \alpha - 1),$$

$$n_2 = 2^{n-1} (2^n - 1)(\alpha - 1).$$

The number of blocks not in the \mathcal{C}_i containing B that are disjoint to B is then

$$n_0 - 2^n + 1 = n_2$$
.

The number of blocks that intersect B in a single point outside of the D_j containing B is

$$n_1 - 2^{2n} = 2^{n+1}(\alpha - 1).$$