

ASR V: Recent Developments in ASR

Andrey Malinin

4th March 2022

Story so far

In this previous episode...

Recap - Data Processing and Alignment

- Process the Audio and Text into convenient representations
 - Transform audio into sequence of acoustic features or frames $X_{1:T}$
 - Transform text into a sequence of speech units $\omega_{1:L}$
- Need to dynamically align features $m{X}_{1:T}$ to speech units $m{\omega}_{1:L}
 ightarrow$ use:
 - State-Space models (HMMs and CTC)
 - Neural Attention Mechanisms

Connectionist Temporal Classification (CTC)

Connectionist Temporal Classification

- Discriminative State-Space model ightarrow doesn't model inter-state dependencies

$$P(\boldsymbol{z}_{1:T}|\boldsymbol{X}_{1:T}) = \prod_{t=1}^{T} P(z_t|\boldsymbol{X}_{1:T})$$

- Independently take arg-maxes ightarrow yields most probable state sequence

$$oldsymbol{\pi}_{1:T}^* = ext{ arg} \max_{oldsymbol{\pi}_{1:T}} \prod_{t=1}^T ext{P}(z_t = \pi_t | oldsymbol{X}_{1:T})$$

- GD can still fail to find the best solution \rightarrow
 - Grammatical constraints not enforced \rightarrow output 'sounds', but has many errors.
- Use language model to enforce grammatic constraints!

Prefix Beam Search Decoding

The CTC beam search algorithm with an output alphabet $\{\epsilon,a,b\}$ and a beam size of three.

RNN Transducer - Architecture

RNN Transducer Inference - Greedy Decoding

- Begin with empty prefix. Acoustic frame into t = 1, context index l = 0.
 - If ϵ is predicted \rightarrow increment acoustic frame index t.
 - If character is predicted → increment I, append character to prefix.

RNN Transducer Alignment Trellis

Language Modelling

A language model defines a prior distribution over word sequences:

$$\mathtt{P}(oldsymbol{w}) = \prod_{q=1}^{Q} \mathtt{P}(w_q | oldsymbol{w}_{1:q-1})$$

- LMs help us discriminate between different acoustically plausible hypotheses:
 - Ex: "Wreck a nice beach" vs. "Recognize speech"
- LMs can also be defined at the character level or over BPE tokens
 - Choose appropriate context level based on task, language and amount of data
- Two common classes of language models:
 - $\bullet \ \ \, \text{N-Gram LMs} \to \text{lightweight, cheap, limited flexibility}$
 - Neural LMs \rightarrow expensive, powerful, expressive

Language Modelling - Language Model Fusion

- Language models are very useful for speech recognition!
 - Beam-search decoding
 - N-best list re-scoring
- LM Fusion LMs can be combined with acoustic models on many levels
 - External LM
 - Integration of level of Neural Network architecture
- Choice of fusion level depends on architecture, language and data

Autoregressive Attention-based Models

Autoregressive Attention-based Models

Language Modelling - Neural Language Models (NLMs)

NLMs express distribution over words as function of previous word and context

Autoregressive Attention-based Enoder-Decoder Models

- Autoregressive attention-based ASR o ASR via conditional LM

$$P(\boldsymbol{w}_{1:Q}|\boldsymbol{X}_{1:T}) = \prod_{l=1}^{L} P(w_q|\boldsymbol{w}_{< q}, \boldsymbol{X}_{1:T})$$

- Attention-based ASR systems have three main components
 - Module for generating text the conditional NLM or Decoder
 - Module for processing and compressing audio the Encoder
 - Module for aligning text and audio Attention Mechanism
- Directly integrates LM and conditions on the acoustics
 - + Jointly trains all components of ASR system
 - + Mathematically simpler formulation (training, beam-search, alignment)
 - Needs MUCH more data.

Autoregressive Attention-based Models

Decoder

The decoder is an NLM which generates text conditioned on the audio and history

$$P(\boldsymbol{w}_{1:Q}|\boldsymbol{X}_{1:T};\boldsymbol{\theta}) = \prod_{l=1}^{L} P(w_q|\boldsymbol{w}_{< q}, \boldsymbol{X}_{1:T};\boldsymbol{\theta}) = \prod_{l=1}^{L} P(w_q|w_{q-1}, \boldsymbol{h}_{q-1}, \boldsymbol{c}_q; \boldsymbol{\theta}))$$

- Decoder is conditioned on previous word w_{q-1} , history $m{h}_{q-1}$ and audio-context $m{c}_q$
 - History vector $oldsymbol{h}_{q-1}$ encodes the previously generated context
 - Audio-context $m{c}_q$ is a representation of $m{X}_{1:T}$ appropriate for generating next word
 - Audio-context $oldsymbol{c}_q$ is provided by the attention mechanism and encoder
- Can generate a sentence either via sampling or beam-search

$$oldsymbol{w}_{1:Q}^* = rg\max_{oldsymbol{w}_{1:Q}} \mathtt{P}(oldsymbol{w}_{1:Q} | oldsymbol{X}_{1:T}; oldsymbol{ heta})$$

- Training and Evaluation are mismatched!
 - Training reference context. Evaluation generated context!

Autoregressive Attention-based Models

Attention-based Autoregressive Encoder-Decoder Models

SOTA Language Modelling

What's the best one can do with neural language models?

SOTA Language Modelling

- Language Modelling has exploded in recent years.
 - BERT, GPT2, GPT3, etc..
- Language models have been shown to be applicable to many tasks
 - Few-short learning
 - Solving NLU tasks (GLUE, Super GLUE)
 - Default 'pre-trained' model for NLP
- For ASR, they can be used in multiple ways, such as
 - N-Best list re-ranking
 - Pre-training architecture for semi-supervised learning
- Let's examine Masked Language Modelling

Masked Language Modelling - BERT

- BERT is a transformer-based Masked Language Model
 - Trained to predict masked words given seen context $\mathcal{L}(heta) = -\ln \mathtt{P}(w_{\mathsf{masked}}|m{w}_{\mathsf{seen}};m{ heta})$

Semi-Supervised and unsupervised pre-training (Wav2vec, VQ-Wav2Vec)

How can we use un-labelled data?

Challenges of Attention-based Encoder-Decoder Models

- Best way to improve ASR performance?
 - Use more training data!
- However, manually labelling speech is very expensive and slow \rightarrow
 - Requires a pool of trained, professional annotators.
 - Crowd-sourcing provides noisy, potentially incorrect annotations.
 - Considerations regarding privacy.
- Can we somehow train ASR systems on unlabelled speech?
 - Yes! Use semi-supervised learning!
- Semi-Supervised Learning:
 - Noisy-Student Training (NST) and Wav2Vec (+ variations)

Semi-Supervised Learning

• Semi-supervised training leverages supervised \mathcal{D}_s and unlabelled \mathcal{D}_u data:

$$\mathcal{D}_{\mathsf{s}} = \{ oldsymbol{x}_i, oldsymbol{w}_i \}_{i=1}^{\mathcal{N}}, \quad \mathcal{D}_{\mathsf{u}} = \{ oldsymbol{x}_j \}_{j=1}^{\mathcal{U}}$$

- Noisy-Student Training:
 - Uses a 'teacher' model trained on \mathcal{D}_s to generate 'pseudo-labels' $\hat{\boldsymbol{w}}_{1:U}$ for \mathcal{D}_u
 - Train a new 'student' model both on supervised and pseudo-labelled data, adding noise (spec-augment) to \mathcal{D}_u
 - Re-label \mathcal{D}_u using the new model
- Wav2Vec Unsupervised Pre-training and Supervised Fine-Tuning
 - Use contrastive learning to train an encoder on all audio from \mathcal{D}_u and \mathcal{D}_s
 - Finetune an ASR decoder on supervised data \mathcal{D}_s .

Noisy Student

Noisy Student

$$\mathcal{D}_{\mathrm{u}} = \{\mathbf{x}_j\}_{j=1}^U \longrightarrow \boxed{ \text{Teacher ASR 2} } \longrightarrow \mathcal{W}_{\mathrm{pseudo}} = \{\hat{\mathbf{w}}_j\}_{j=1}^U$$

$$\vdots$$

$$\vdots$$

$$\nabla$$

$$\mathcal{D}_{\mathrm{nst}} = \{\mathbf{x}_i, \mathbf{w}_i\}_{i=1}^N + \\ \{\mathbf{x}_j + \epsilon, \hat{\mathbf{w}}_j\}_{j=1}^U \longrightarrow \boxed{ \text{Student ASR 2} }$$

Method	Dev		Test		
	clean	other	clean	other	
Supervised					
Lüscher et al., (2019) [39]	5.0	19.5	5.8	18.6	
Kahn et al., (2019) [16]	7.78	28.15	8.06	30.44	
Hsu et al., (2019) [19]	14.00	37.02	14.85	39.95	
Ling et al., (2019) [31]			6.10	17.43	
Semi-supervised (w/ LibriSpeech 860h)					
Kahn et al., (2019) [16]	5.41	18.95	5.79	20.11	
Hsu et al., (2019) [19]	5.39	14.89	5.78	16.27	
Ling et al., (2019) [31]			4.74	12.20	
This Work					
Baseline (LAS + SpecAugment)	5.3	16.5	5.5	16.9	
+ NST before LM Fusion	4.3	9.7	4.5	9.5	
+ NST with LM Fusion	3.9	8.8	4.2	8.6	

- NST works for several reasons:
 - Generates additional supervised training data with plausible 'pseudo-labels'
 - Smooths inputs around pseudo-labeled data via noise
 - Integrates knowledge form external LMs into ASR system
- NST can be improved via the following:
 - Use a more powerful language model
 - Filter out data which was badly pseudo-labelled
 - Do more iterations of pseudo-labelling
 - Use an ensemble of models throughout the process
- NST is a general technique which can be applied to other domains, such as vision.

Wav2Vec and it's variations

- Wav2Vec is an unsupervised data encoder
 - Wav2Vec operates directly on audio, not MelSpec
 - Wav2Vec doesn't need supervised training data
 - Trained via contrastric learning at fearture level
- ASR systems are trained on top of Wav2Vec using supervised data.
 - Can use any discriminative system, such as CTC, RNN-T or Seq2seq

- Features are encoded using causal 1-D convolutions into representations z_{1:τ}.
 - Several layers of convolutions are used to reduce time-resolution
- A context representation c_{1:K} is computed.
- Model is trained to discriminate between representations K steps in the future and randomly chosen distractors

$$egin{aligned} \mathcal{L}_k &= -\sum_{i=1}^{\mathcal{T}-k} \Big(\ln \sigma(oldsymbol{z}_{k+i}^{ extsf{T}} oldsymbol{h}_k(oldsymbol{c}_i) + \lambda \mathbb{E}_{oldsymbol{ ilde{z}} \sim \mathbf{p}_n} ig[\ln \sigma(-oldsymbol{ ilde{z}}^{ extsf{T}} oldsymbol{h}_k(oldsymbol{c}_i) ig] \Big) \ oldsymbol{h}_k(oldsymbol{c}_i) &= oldsymbol{W}_k oldsymbol{c}_i + oldsymbol{b}_k \ \mathcal{L} &= \sum_{k=1}^K \mathcal{L}_k \end{aligned}$$

			nov93dev		nov92	
			LER	WER	LER	WER
Deep Speech 2 (12K h labeled speech; Amodei et al., 2016)		-	4.42	-	3.1	
Trainable frontend (Zeghidour et al., 2018a)		-	6.8	-	3.5	
Lattice-free MMI (Hadian et al., 2018)		-	5.66^{\dagger}	-	2.8^{\dagger}	
Supervised transfer-learning (Ghahremani et al., 2017)		-	4.99^{\dagger}	-	2.53^{\dagger}	
4-GRAM LM (Heafield et al., 2013)						
Baseline	_	_	3.32	8.57	2.19	5.64
wav2vec	Librispeech	80 h	3.71	9.11	2.17	5.55
wav2vec	Librispeech	960 h	2.85	7.40	1.76	4.57
wav2vec	Libri + WSJ	1,041 h	2.91	7.59	1.67	4.61
wav2vec large	Librispeech	960 h	2.73	6.96	1.57	4.32
WORD CONVLM (Zeghidour et al., 2018b)						
Baseline	_	_	2.57	6.27	1.51	3.60
wav2vec	Librispeech	960 h	2.22	5.39	1.25	2.87
wav2vec large	Librispeech	960 h	2.13	5.16	1.02	2.53
CHAR CONVLM (Li	khomanenko et al., 2019)					
Baseline	_	_	2.77	6.67	1.53	3.46
wav2vec	Librispeech	960 h	2.14	5.31	1.15	2.78
wav2vec large	Librispeech	960 h	2.11	5.10	0.99	2.43

VQ-Wav2Vec

VQ-Wav2Vec

- Unlike Wav2Vec, VQ-Wav2Vec uses quantized representations
 - Helps to more efficiently compress relevant information
 - Allows learning audio tokens
 - Use Gumbel estimators to differentiate through discrete choice.
- Quantized audio representation are used to train a BERT-like model
 - Representations learn long-span context
- ASR system is trained on top of acoustic BERT embeddings

VQ-Wav2Vec

	nov9 LER	93dev WER	no LER	v92 WER
Deep Speech 2 (12K h labeled speech; Amodei et al., 2016)	_	4.42	_	3.1
Trainable frontend (Zeghidour et al., 2018)	-	6.8	-	3.5
Lattice-free MMI (Hadian et al., 2018)	-	5.66^{\dagger}	-	2.8^{\dagger}
Supervised transfer-learning (Ghahremani et al., 2017)	-	4.99^{\dagger}	-	2.53^{\dagger}
No LM				
Baseline (log-mel)	6.28	19.46	4.14	13.93
wav2vec (Schneider et al., 2019)	5.07	16.24	3.26	11.20
vq-wav2vec Gumbel	7.04	20.44	4.51	14.67
+ BERT base	4.13	13.40	2.62	9.39
4-GRAM LM (Heafield et al., 2013)				
Baseline (log-mel)	3.32	8.57	2.19	5.64
wav2vec (Schneider et al., 2019)	2.73	6.96	1.57	4.32
vq-wav2vec Gumbel	3.93	9.55	2.40	6.10
+ BERT base	2.41	6.28	1.26	3.62
CHAR CONVLM (Likhomanenko et al., 2019)				
Baseline (log-mel)	2.77	6.67	1.53	3.46
wav2vec (Schneider et al., 2019)	2.11	5.10	0.99	2.43
vq-wav2vec Gumbel + BERT base	1.79	4.46	0.93	2.34

Wav2Vec 2.0

Goodbye!

