Frühjahr 11 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Gegeben sei die Funktion

$$g: D \to \mathbb{C}, z \mapsto \frac{z}{\sin(z^2 - 4z)}$$

mit maximaler Definitionsmenge $D \subset \mathbb{C}$.

- a) Bestimmen Sie alle isolierten Singularitäten der Funktion g sowie jeweils deren Typ (hebbar?, Polstelle wievielter Ordnung? wesentlich?).
- b) Bestimmen Sie mithilfe von (a) den Konvergenzradius der Potenzreihe für g um den Punkt 0. (Diese Formulierung gibt auch einen kleinen Hinweis für (a).)

Lösungsvorschlag:

a) Wir bestimmen die Nullstellen des Nenners von g. Es gilt

$$\sin(z^2 - 4z) = 0 \iff z^2 - 4z - k\pi = 0 \text{ für ein } k \in \mathbb{Z} \iff z = 2 \pm \sqrt{4 + k\pi},$$

wobei $\sin(z) = 0 \iff z = k\pi, k \in \mathbb{Z}$ benutzt wurde, was auch für $z \in \mathbb{C}$ gilt. Dabei ist für k < -1 der Ausdruck $\sqrt{4 + k\pi}$ als $\sqrt{-4 - k\pi}i$ zu interpretieren. Jeder dieser Punkte ist eine einfache Nullstelle des Nenners, weil die Ableitung des Nenners $\cos(z^2 - 4z) \cdot (2z - 4)$ für keine Nullstelle von $\sin(z^2 - 4z)$ verschwindet. Der erste Faktor ist ± 1 , da $\cos^2(z^2 - 4z) = \sin^2(z^2 - 4z) + \cos^2(z^2 - 4z) = 1$ für die entsprechenden Wert gilt. Der zweite Faktor verschwindet genau für z = 2, was keine Nullstelle des Nenners ist, weil $\sin(2^2 - 4 \cdot 2) = -\sin(4) \neq 0$ ist, da $4 \notin \pi\mathbb{Z}$. Der Zähler verschwindet genau für z = 0, was auch eine Nullstelle des Nenners ist. Da diese für Zähler und Nenner von erster Ordnung ist, handelt es sich um eine hebbare Singularität. Damit ist 0 eine hebbare Singularität von g und alle anderen Singularitäten sind Pole erster Ordnung. Die Menge der Pole ist $\{2 + \sqrt{4 + k\pi} : k \in \mathbb{Z}\} \cup \{2 - \sqrt{4 + k\pi} : k \in \mathbb{Z}\setminus\{0\}\}$.

b) Der Konvergenzradius der Potenzreihe für g um 0 ist, weil 0 hebbar ist, der Betrag desjenigen Pols, der am nähesten bei 0 liegt. Für $k \in \mathbb{N}$ gilt

$$2 - \sqrt{4 + k\pi} < 2 - \sqrt{4 + \pi} < 0 < 2 - \sqrt{4 - \pi}$$

und für $k \in \mathbb{N}_0 \cup \{-1\}$ gilt

$$0 < 2 < 2 + \sqrt{4 - \pi} < 2 + \sqrt{4 + k\pi}$$
.

Von allen reellen Polen kommt also entweder $2+\sqrt{4-\pi}$ oder $2-\sqrt{4+\pi}$ oder $2-\sqrt{4-\pi}$ der 0 am nähesten.

Wegen $|2+\sqrt{4-\pi}|>2$, $2-\sqrt{4-\pi}>1$ und $-1<2-\sqrt{4+\pi}<0$ ist die letztgenannte Stelle, derjenige reelle Pol, der am nähesten bei 0 liegt. Für die irreellen Pole gilt $|2+\sqrt{-4-k\pi}i|\geq 2$ (mit $k\in\mathbb{Z}_{\leq -2}$). Also beträgt der gesuchte Konvergenzradius

$$\min_{z\in\mathbb{C}\backslash(D\cup\{0\})}|z|=\left|2-\sqrt{4+\pi}\right|=\sqrt{4+\pi}-2.$$

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$