Optimisation Linéaire

Formulations

Optimisation linéaire: forme générale

$$\min_{x \in \mathbb{R}^n} (\text{ou max}) \ f(x) \quad \text{ tel que } \quad x \in \mathcal{D},$$

οù

- \diamond f est linéaire: $f(x) = \sum_{i=1}^n c_i x_i = c^T x$, où $c \in \mathbb{R}^n$.
- $\diamond \mathcal{D}$ est un polyhèdre:

$$x \in \mathcal{D} \equiv \left\{ \begin{array}{ll} a_i^T x \geq b_i & \text{ pour } i \in \mathcal{I} \\ a_i^T x = b_i & \text{ pour } i \in \mathcal{E} \end{array} \right.,$$

où $a_i \in \mathbb{R}^n$ et $b_i \in \mathbb{R}$ pour tout $i \in \mathcal{I}, \mathcal{E}$.

Remarque. $a_i^T x \leq b_i \iff (-a_i)^T x \geq -(b_i)$.

Forme géométrique

Un programme linéaire sous forme géométrique est un problème de la forme

$$\label{eq:continuous_signal} \begin{split} \min_{x \in \mathbb{R}^n} & c^T x \\ \text{tel que} & Ax \geq b, \end{split}$$

où $A \in \mathbb{R}^{m \times n}$ et $b \in \mathbb{R}^m$.

On a

$$Ax \ge b \equiv a_i^T x \ge b_i \text{ pour } 1 \le i \le m,$$

où $a_i \in \mathbb{R}^n$ est le vecteur égal à la *i*ème ligne de la matrice A.

De la forme générale à la forme géométrique

Nous avons que

- $\diamond \max_{x} c^{T} x = -\min_{x} \left(-c^{T} x \right).$
- \diamond La contrainte $a^Tx=b$ est équivalente aux contraintes conjointes $a^Tx\geq b$ et $a^Tx\leq b$.

Conclusion. Tout programme linéaire peut s'écrire sous forme géométrique.

Forme standard

Un programme linéaire sous forme standard est un problème de la forme

$$\label{eq:continuous_signal} \begin{aligned} \min_{x \in \mathbb{R}^n} & c^T x \\ \text{tel que} & Ax = b, \\ & x \geq 0, \end{aligned}$$

où $A \in \mathbb{R}^{m \times n}$ et $b \in \mathbb{R}^m$.

Interprétation de la forme standard: Soit a^i la ième colonne de A. On cherche des quantités $x_i \geq 0$ pour lesquelles $\sum_i x_i a^i = b$ et telles que $c^T x$ est minimum. Le problème est celui de la synthèse du vecteur cible b par un choix de quantités positives x_i qui minimise le coût total $c^T x$.

De la forme géométrique à la forme standard

Forme géométrique:

$$\label{eq:continuous_signal} \begin{aligned} & \min_{x \in \mathbb{R}^n} & c^T x \\ & \text{tel que} & & Ax \geq b. \end{aligned}$$

Forme standard:

$$\label{eq:continuous_section} \begin{aligned} & \min_{x \in \mathbb{R}^n} & c^T x \\ & \text{tel que} & & Ax = b \text{ et } x \geq 0. \end{aligned}$$

- \diamond **Elimination des contraintes d'inégalité**. Pour chaque inégalité de type $\sum_j a_{ij} x_j \geq b_i$, nous introduisons une variable d'écart s_i . L'inégalité $\sum_j a_{ij} x_j \geq b_i$ est remplacée par les contraintes $\sum_j a_{ij} x_j s_i = b_i$ et $s_i \geq 0$.
- ⋄ **Elimination des variables libres**. Une variable libre x_i est remplacée par $x_i = x_i^+ x_i^-$, où x_i^+ et x_i^- sont de nouvelles variables pour lesquelles nous imposons $x_i^+ \ge 0$ et $x_i^- \ge 0$.

Exemple

Le programme linéaire

$$\begin{aligned} \min_{x \in \mathbb{R}^2} & 2x_1 + 4x_2 \\ \text{tel que } & x_1 + x_2 \geq 3, \\ & 3x_1 + 2x_2 = 14, \\ & x_1 \geq 0, \end{aligned}$$

est équivalent (au sens où les objectifs optimaux et les solutions optimales se déduisent l'une de l'autre) au programme linéaire sous forme standard

$$\begin{split} \min_{x \in \mathbb{R}^2} \quad 2x_1 + 4x_2^+ - 4x_2^- \\ \text{tel que } x_1 + x_2^+ - x_2^- - s_1 &= 3, \\ 3x_1 + 2x_2^+ - 2x_2^+ &= 14, \\ x_1, x_2^+, x_2^-, s_1 &\geq 0. \end{split}$$

Reformulation en programme linéaire

 \diamond Fonction linéaire par morceaux. Soit k fonctions linéaires $f_i(x) = c_i^T x + d_i$ pour $i = 1, 2, \dots, k$ et $x, c_i \in \mathbb{R}^n$, alors la fonction

$$f(x) = \max_{1,2,\dots,k} f_i(x)$$

est une fonction linéaire par morceau.

 \diamond **Peut-on minimiser** f(x) **sur un polyèdre** via l'optimisation linéaire?

$$\min_{x} f(x) \quad \text{tel que} \quad Ax \ge b.$$

OUI! Le problème est équivalent au problème

$$\begin{aligned} \min_{x \in \mathbb{R}^n, t \in \mathbb{R}} t \\ \text{tel que } Ax \geq b, \\ t \geq c_i^T x + d_i \text{ pour } i = 1, 2, \dots, k. \end{aligned}$$

Reformulation en programme linéaire

♦ Valeur Absolue. La valeur absolue d'une fonction affine

$$f(x) = |c^T x - b| = \max\left(c^T x - b, b - c^T x\right)$$

est une fonction linéaire par morceau.

 \diamond On peut donc minimiser f(x) sur un polyèdre via l'optimisation linéaire:

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{tel que} \quad Ax \ge b,$$

est équivalent à

$$\begin{aligned} \min_{x \in \mathbb{R}^n, t \in \mathbb{R}} t \\ \text{tel que } Ax \geq b, \\ t \geq c^T x - b \quad \text{ et } \quad t \geq b - c^T x. \end{aligned}$$

Exemple de reformulation

Puisque $|x| = \max(x, -x)$, le problème d'optimisation

$$\min_{x_1, x_2} 2|x_1| + x_2 \quad \text{tel que} \quad x_1 + x_2 \ge 4,$$

est équivalent au problème

$$\min_{x_1, x_2} \quad \max(2x_1, -2x_1) + x_2 \quad \text{ tel que } \quad x_1 + x_2 \ge 4,$$

et donc le problème est encore équivalent à

$$\begin{aligned} \min_{t,x_1,x_2} t + x_2 \\ \text{tel que } x_1 + x_2 &\geq 4, \\ 2x_1 &\leq t, \\ -2x_1 &\leq t. \end{aligned}$$

Application 1: centre de Chebychev d'un polyèdre

Nous cherchons le centre et le rayon de la plus grande sphère que l'on peut inscrire à l'intérieur d'un polyèdre donné. Le centre de la sphère est le centre de Chebychev du polyèdre.

Soit un ensemble de m hyperplans d'équation $a_i^Tx=b_i$ et soit le polyèdre $\mathcal{P}=\{x\in\mathbb{R}^n\mid a_i^Tx\geq b_i\}$. La distance entre l'hyperplan $a^Tx=b$ et le point x_0 est donnée par $\frac{|a^Tx_0-b|}{||a||}$.

Nous cherchons un point c_i situé à l'intérieur du polyèdre \mathcal{P} et pour lequel la plus petite distance $\min_i \frac{|a_i^T c - b_i|}{||a_i||}$ est la plus grande possible.

Application 1: centre de Chebychev d'un polyèdre

Sans perte de généralite, on suppose $||a_i||=1\ \forall i$ (en utilisant $\frac{a_i^T}{||a_i||}x\geq \frac{b_i}{||a_i||}$) et on formule le problème comme suit

$$\max_{c \in \mathcal{P}} \quad \min_{i=1,2,\dots,m} |a_i^T c - b_i|.$$

Comme $c \in \mathcal{P}$, $a_i^T c - b_i \ge 0$ et le problème est équivalent au programme linéaire

$$\begin{aligned} \max_{c \in \mathbb{R}^n, t \in \mathbb{R}} \quad t \\ \text{tel que} \quad t \leq a_i^T c - b_i \text{ pour tout } i, \\ a_i^T c \geq b_i \text{ pour tout } i, \end{aligned}$$

où t représente la distance minimale entre le centre de Chebychev c et les hyperplans définissant $\mathcal{P}.$

On peut simplifier le problème comme suit:

$$\label{eq:linear_condition} \begin{split} \max_{c \in \mathbb{R}^2, t \in \mathbb{R}} \quad t \\ \text{tel que} \quad a_i^T c \geq b_i + t \text{ pour tout } i. \end{split}$$

En effet,

- \diamond Si la solution optimale $t^* < 0$, cela signifie que $\mathcal{P} = \emptyset$.
- \diamond Si la solution optimale $t^* \geq 0$, on a $a_i^T c \geq b_i + t \geq b_i$, ce qui implique $c \in \mathcal{P}$.

Application 2: régression linéaire

Nous avons un ensemble de n points dans le plan

$$p_i = (x_i, y_i) \in \mathbb{R}^2$$
 $i = 1, 2, \dots, n,$

et désirons les approcher par une droite

$$d = \{(x, y) \in \mathbb{R}^2 \mid y = ax + b\} \subset \mathbb{R}^2.$$

Application 2: régression linéaire

Dans le cas exact, nous aurions

$$y_i = ax_i + b$$
 pour tout i .

Sous forme matricielle, cela revient à résoudre un système linéaire (à deux variables: a et b)

$$\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}.$$

Application 2: régression linéaire

Dans le cas non exact (plus général), on peut par exemple vouloir minimiser la somme des erreurs:

$$\min_{a,b} \quad \sum_{i=1}^{n} |y_i - (ax_i + b)|$$

qui est équivalent à

$$\begin{aligned} \min_{a,b\in\mathbb{R},t\in\mathbb{R}^n} & & \sum_{i=1}^n t_i \\ \text{tel que} & & t_i \geq ax_i + b - y_i, \ 1 \leq i \leq n, \\ & & & t_i \geq -ax_i - b + y_i, \ 1 \leq i \leq n. \end{aligned}$$

Question. Pouvez-vous généraliser à la régression polynomiale?

