Lec 12 GD/SGD non-convex func

1. For convex functions:

e.g. logistic regression. linear regression

the $Ein(\underline{W})$ is convex w.r.t the parameter W.

=) we will get a global minimum when \ \text{Ein(u)=0}

2. Non-convex functions:

له e.g.

4 those points are called saddle points:

 $\nabla f(\underline{x}) = \underline{0}$, but \underline{x} is neither a <u>local</u> min or local max

include local min & global min

4 example in 1-0 space:

$$f(x) = \chi^3$$

> very slow progress at saddle point

> Need to pre-set No. of iteration runs out

10 In n-D case:

@ 1-D saddle point in any direction

Docal min in some direction, and local max in some other direction

saddle shape

\sim		_	•	
(3)	both	(i)	and	(2

-> highly likely to have saddle points in high-dimensional space

w stopping conditions:

- · aim: to reduce the chance of stopping at a saddle point
- · is saddle point if so VEin(W)=0

 - ∇ E_{in} (w̄) is small
 - 3 No. of iteration is large

=> Solution: S6D with momentum

3. SGD with Momentum: (By Polyak, 1964)

kecall basic SGD:

SGD with momen

11 commonly 11=0.9

accumulation of prev momentums

45 USage:

1) Momentum helps SGD escape that regions

"heavy ball momentum"

De Momentum can lead to faster convergence. even for convex function SGD with momentum $f(\underline{x})$, $d \ge \lambda$. SGD without momentum GD strongly favors Moving along Vi direction the Vz direction > Not ideal Nesterov momentum (1983) b ν_k = - ε_k ∇en (ω_k + μν_{k-1}) + μν_{k-1} WK+1 = WK + VK 4 compare: original version is: Uk = - Ek Ven (Uk) + MUk-1 here is different is Can prove better convergence. For convex func, → Full GD: distance between \underline{W}_{k} and $\underline{\underline{W}}^{*}$ is $D(\frac{1}{k})$ \rightarrow with Nesterov momentum: $O(\frac{1}{k^2})$