Otras fuentes de Error de los aparatos digitales

Señales de Modo Normal o Serie: se entiende por tales a aquéllas que aparecen en serie con la señal de interés.

 U_1 : señal a medir

 $U_{N\!M}$: señal de modo serie o normal

 $U_{\it I}$ y $U_{\it NM}$ pueden ser de cualquier naturaleza. Se busca que el voltímetro sea sensible a $U_{\it I}$.

(Si ambas señales son de la misma naturaleza, y de similar o igual frecuencia, resultará imposible separar una de otra.)

Si U_I es una **señal de continua** y $U_{N\!M}$ de alterna, hay dos caminos para eliminar el efecto de $U_{N\!M}$:

- filtrar la entrada del voltímetro: apto, pero retarda la respuesta del sistema de medida;
- procesar la señal en el conversor del voltímetro, de tal manera que su efecto sobre el valor indicado sea despreciable (con técnicas de integración, como las de los CAD de Doble Rampa, es posible hacerlo).

Supongamos que aplicamos a un Conversor de Doble Rampa, con tiempo de integración de la incógnita T, una señal sinusoidal:

$$U_{NM} = U_{m\acute{a}x} \ sen \ 2\pi ft$$

Integrando durante un tiempo T:

$$\begin{split} \overline{U}_{NM} &= \frac{1}{T} \int\limits_{t_0}^{t_0+T} U_{m\acute{a}x} \ sen \ 2\pi\!ft \ dt \end{split} \begin{tabular}{l} $\cos t_0$ instante de comienzo de la integración, variable respecto de $U_{NM}(t)$ \\ &= -\frac{U_{m\acute{a}x}}{2\pi\!fT} \cos 2\pi\!f \left|_{t_0}^{t_0+T} \right. \\ &= -\frac{U_{m\acute{a}x}}{2\pi\!fT} \left[\cos 2\pi\!f \left(t_0+T\right)\!-\cos 2\pi\!ft_0\right] \end{split}$$

Operando se puede hallar:

$$\overline{U}_{NM} = -\frac{U_{m\acute{a}x}}{2\pi fT} \left[-2sen \left(\frac{2.2\pi ft_0 + 2\pi fT}{2} \right) * sen \frac{2\pi fT}{2} \right]$$

La anterior es máxima cuando el primer término seno es igual a 1, y en tal caso vale:

$$\overline{U}_{NM} = \frac{U_{m\acute{a}x}}{\pi f T} sen \pi f T$$

En continua resulta:

$$\lim_{f \to 0} \overline{U}_{NM} = \frac{U_{m\acute{a}x}}{\pi f T} \operatorname{sen} \pi f T = U_{m\acute{a}x}$$

Se define la **Relación de Rechazo de Modo Normal (NMRR, Normal Mode Rejection Ratio),** como la relación entre el valor medio de la señal para f = 0 y el valor a una frecuencia f:

$$NMRR = rac{U_{mcute{a}x}}{U_{mcute{a}x}} sen\pi fT = rac{\pi fT}{sen\pi fT}$$

(Suele usarse también la definición inversa de la anterior)

Lo habitual es expresar las anteriores en decibeles, dB, con lo que una relación difiere de la otra sólo en el signo:

$$NMRR [dB] = 20 log \left(\frac{\pi fT}{sen \pi fT} \right)$$

Se elige T de tal manera que los rechazos sean máximos a frecuencia de red ($50 \circ 60 Hz$). Serán múltiplos del período de la señal de red.

Curva típica de variación del error debido a las señales de modo normal en un conversor integrador.

NMRR [dB]

Habitualmente, el comportamiento de un instrumento frente a estas señales indeseadas, se determina a través de su

"Relación de Rechazo de Modo Serie o Normal"
(SMRR o NMRR)

"Relación, preferentemente expresada en decibeles, entre el valor máximo de la señal de modo normal y la fracción de la misma que es vista por el aparato".

$$NMRR[dB]$$
=20 log $\frac{valor\, m\'{a}ximo\,\,de\,\,la\,\,se\~{n}al\,\,de\,\,modo\,\,normal}{fracci\'{o}n\,\,''\,vista''\,\,por\,\,el\,\,aparato}$

Ejemplo, empleando un multímetro HP974A. Se pretende medir el valor de la componente continua de:

$$u(t) = (12 + 0.5 \text{ sen } 2\pi ft) V$$
; $f = 50 \text{ Hz}$

DC Voltage

Range	Resolution	Accuracy	Input Resistance
500 mV	10 μV		> 1000 MΩ
5 V	100 μV		11 M Ω (nominal)
50 V	1 mV	± (0.05% + 2)	
500 V	10 mV		10 M Ω (nominal)
1000 V	100 mV		

Normal Mode Rejection Ratio: (NMR) > 60 dB @ 50 or 60 Hz (Autodetección de la f fundamental)

$$NMRR[dB] = 20 \log \frac{valor\, m\'{a}ximo\,\,de\,\,la\,\,s\~{e}\~{n}al\,\,de\,\,modo\,\,normal}{fracci\'{o}n\,\,"\,vista"\,\,por\,\,el\,\,aparato} > 60\,dB$$

$$\Rightarrow \frac{valor\,m\'{a}ximo\,de\,la\,se\~{n}al\,de\,modo\,normal}{fracci\'{o}n\,"vista"\,por\,el\,aparato} > 10^{\frac{60}{20}} = 1000$$

$$\frac{0.5 \text{ V}}{\text{fracción "vista" por el aparato}} > 1000$$

⇒ fracción "vista" por el aparato < 0,5 mV

En tanto que el error límite de medición es:

$$E_{U} = \pm (0.05\%U_{m} + 2 dig) = \pm 0.008V >> 0.5 mV$$

$$\Rightarrow U_m = (12,000 \pm 0,008) V$$

Señales de modo común: se entiende por tales a aquéllas que son comunes a ambas entradas del instrumento.

Haciendo un análisis más detallado del circuito anterior, se

tiene:

Caso general: U_1 y U_2 constituyen la señal de modo diferencial, en tanto que U_3 y U_4 corresponden a la señal de modo común.

Valores reales típicos:

$$R_i: ...10M\Omega...$$

$$C_i$$
: ...50 pF...

$$Z_i$$
: Impedancia de entrada del instrumento

$$R_3: ...10^5 M\Omega...$$

$$C_3$$
: ...25 pF ...

 Z_3 : Impedancia de aislación entre "High" y Tierra

$$R_4:...10^3 M\Omega...$$

$$C_4$$
: ...2,5 nF ...

 Z_4 : Impedancia de aislación entre "Low" y Tierra

(Observar la dependencia de la frecuencia, y comparar los valores relativos entre las impedancias.)

Efecto de la señal de Modo Común en el circuito presentado:

Cortocircuitando las señales de modo diferencial, se pueden evaluar I_1 e I_2 debido a las tensiones de modo común U_3 y U_4 . Se ve que I_2 es mucho más grande que I_1 , y produce una caída de tensión <u>de modo diferencial</u> en R_2 .

Se define la *Relación de Rechazo de Modo Común (CMRR, Common Mode Rejection Ratio),* como la relación entre la señal de modo común devenida en señal de modo diferencial en R_2 y el valor máximo de la señal de modo común.

CMRR [dB] =
$$20 log \frac{I_2 * R_2}{U_{CM}}$$
 U_{CM} : señal de modo común

Como se ve el *CMRR* es función de la frecuencia. Por ejemplo, para los valores típicos dados antes y considerando, como es habitual, R_2 =1 $k\Omega$:

$$CMRR_{continua} = 20 \log \frac{\frac{U_3}{R_2 + R_4} * R_2}{U_3} \approx 20 \log \frac{R_2}{R_4}$$
$$= 20 \log \frac{1 k\Omega}{10^3 M\Omega} = -120 dB$$

Para una frecuencia de 50~Hz, y considerando también los valores típicos antes presentados:

cos antes presentados:
$$CMRR_{50\,Hz} = 20 \ log \frac{\begin{vmatrix} U_4 \\ V_2 \\ R_2 + Z_4 \end{vmatrix} * R_2}{\begin{vmatrix} U_4 \\ V_4 \\ V_4 \end{vmatrix}}$$

$$\approx 20\log \frac{R_2}{\frac{1}{\omega C_4}} = 20\log \frac{1 \, k\Omega}{\frac{1}{2\pi f \, 3nF}}$$

$$\approx -60 dB$$

Estas señales pueden aparecer por distintas causas. Un ejemplo clásico es la medición de la tensión de desequilibrio en una configuración tipo puente:

Habitualmente, el comportamiento de un instrumento frente a estas señales indeseadas, se determina a través de su

"Relación de Rechazo de Modo Común" (CMRR): "Relación, preferentemente expresada en decibeles, entre el valor máximo de la señal de modo común aplicada a través de un circuito especificado y la fracción de la misma vista por el aparato".

$$CMRR[dB] = 20 log \frac{valor máximo de la señal de modo común}{fracción "vista" por el aparato}$$

Suele especificarse para "1 kΩ de desbalance en el borne low", aunque pueden aparecer otros casos.

Atención: En este caso "valor máximo" corresponde al "máximo valor que puede tomar la señal" (de continua o el eficaz de alterna)

Ejemplo, empleando un multímetro HP974A.

$$u(t) \cong (\sqrt{2} \ 220 \ sen \ 2\pi ft) V$$

De la hoja de datos del multímetro HP974A:

AC Voltage (RMS responding, calibrated to display rms)

			Accuracy				Input
Range	Resolution	20 Hz to 50 Hz	50 Hz to 10 kHz	10 kHz to 30 kHz	30 kHz to 50 kHZ	50 kHz to 100 kHz	Impedance (nominal)
500 mV	10 μV		± (0.7% +30)	± (2% + 50)	Not Sp	pecified	11 M Ω
5 V	100 μV	L (40/ L 20)					11 M Ω < 50 pF
50 V	1 mV	± (1% + 30)	± (0.5% + 30)	± (1% + 40)	± (2% + 70)	± (3% + 300)	
500 V	10 mV						10 M Ω < 50 pF
750 V	100 V	± (1% + 30)	20 Hz to 1 kHz		Not Specified		1 00 pi

Measurement range:

500 mV to 500 V ranges 20 Hz to 30 kHz

20 Hz to 30 kHz 30 kHz to 100 kHz 5% to 100% of range 10% to 100% of range

750 V range

75 V to 750 V

Response time: < 2 seconds for AC, 5 seconds for AC+DC on fixed range

Crest factor: <3

Common Mode Rejection Ratio (CMR) 1 k Ω imbalance: > 60 dB @ DC to 60 Hz

Para el alcance de 500 V el error será:

$$E_U = \pm (0.5\% U_m + 30 \, dig)$$

$$= \pm (\frac{0.5}{100} * 220.65 + 0.30) \, V = \pm 1.4 \, V$$

En cuanto al efecto de la señal de modo común (sin tener en cuenta que el caso en cuestión es más favorable, desbalance $< 1 \ k\Omega$), se tiene:

$$CMRR = 20 \log \frac{U_{CM \ m\'{a}x}}{U_{CM \ vista}} = 20 \log \frac{5 \ V}{U_{CM \ vista}} > 60 \ dB$$

$$\Rightarrow U_{CM \ vista} < 5 \ mV << 1.4 \ V$$

$$\Rightarrow U_m = (221 \pm 1) V$$

Relación de Rechazo de Modo Común Efectivo (ECMRR, Effective Common Mode Rejection Ratio): es la suma de CMRR y NMRR a una dada frecuencia y es válido únicamente para mediciones en continua.

$$ECMRR[dB]=20 log \frac{valor máximo de la señal de modo común}{fracción "vista" por el aparato}$$

Hewlett Packard, HP974A

DC Voltage

Range	Resolution	Accuracy	Input Resistance
500 mV	10 μV		> 1000 MΩ
5 V	100 μV		11 M Ω (nominal)
50 V	1 mV	± (0.05% + 2)	
500 V	10 mV		10 M Ω (nominal)
1000 V	100 mV		

Normal Mode Rejection Ratio: (NMR) > 60 dB @ 50 or 60 Hz Effective Common Mode Rejection Ratio (CMR) 1 k Ω imbalance: > 120 dB @ 50 or 60 Hz

Autorrango: el aparato selecciona automáticamente el rango en el que resulta más conveniente efectuar la medición (opcional).

Ventaja: siempre se lee en el alcance de mejor resolución.

Desventajas: * Mayor lentitud hasta lograr la lectura.

* Si se cambia de rango no se puede aplicar repetibilidad de corto término.

Interpretación de Especificaciones de Instrumentos Digitales

En las especificaciones técnicas del instrumento se halla la información necesaria para definir adecuada y cuantitativamente las prestaciones del mismo.

(No deben descuidarse detalles como notas, letra chica, etc.)

En general, se aplican a una dada población de instrumentos del mismo modelo, no a un aparato determinado.

(Habitualmente, los diferentes parámetros de comportamiento de los instrumentos de un mismo tipo, tienden a una distribución normal, por lo cual, la gran mayoría de los aparatos individuales tiene un desempeño mejor que los límites de sus especificaciones.)

Comparación de especificaciones de incertidumbre de instrumentos similares, en un cierto rango, para distintos fabricantes.

Fab.	Uncert. [%]	factor k
"X"	1,55	1 (64%)
"Y"	3,1	2 (95%)
"Z"	4	2,58 (99%)

Idénticas prestaciones, expresadas de diferentes formas.

Las especificaciones de exactitud de un instrumento suelen tener varios componentes básicos:

$$E_U = \pm (p\%*U_m + q\%*Alcance + ndígitos)$$

➤ También existen *modificadores* de estos componentes básicos de las especificaciones de exactitud:

(Los más importantes incluyen la estabilidad, el lapso durante el cual son válidas las especificaciones, variaciones con la temperatura ambiente, etc.)

Hojas de Características de Multímetros típicos

Specifications

Hewlett Packard, HP974A

Calibration period: six months minimum. Specifications apply at 23°C ± 5°C, < 80% RH Accuracy = ± (% of reading + number of digits)
Temperature Coefficient = Accuracy 0.1/° C (0° C to 18° C; 28° C to 55° C)

General

Do not expose product to moisture or rain. Do not use product in flammable atmosphere.

Operating Temperature: 0° to 40°C / 80% RH max (no condensation). Storage Temperature: -25°C to 60°C / 20% to 70°C RH (no condensation).

Display reading rate: Approximately 2 — 4 times/second Display rate for frequency measurements: Approximately 1 times/second Battery life: Approximately 120 hours on DCV

DC Voltage

Range	Resolution	Accuracy	Input Resistance
500 mV	10 μV		> 1000 MΩ
5 V	100 μV		11 MΩ (nominal)
50 V	1 mV	± (0.05% + 2)	
500 V	10 mV		10 MΩ (nominal)
1000 V	100 mV		

Normal Mode Rejection Ratio: (NMR) > 60 dB @ 50 or 60 Hz Effective Common Mode Rejection Ratio (CMR) 1 kΩ imbalance: > 120 dB @ 50 or 60 Hz

Hewlett Packard, HP974A

AC Voltage (RMS responding, calibrated to display rms)

				Accuracy	Input					
Range	Resolution	20 Hz to 50 Hz	50 Hz to 10 kHz	10 kHz to 30 kHz	30 kHz to 50 kH Z	50 kHz to 100 kHz	Impedance (nominal)			
500 m∨	10 μV		± (0.7% +30)	± (2% + 50)	Not Sp	pecified	11 M Ω			
5 V	100 μV	± (1% + 30)								< 50 pF
50 V	1 mV	± (1% + 30)	± (0.5% + 30)	± (1% + 40)	± (2% + 70)	± (3% + 300)				
500 V	10 m∨						10 M Ω < 50 pF			
750 V	100 V	± (1% + 30)	20 Hz to 1 kHz		Not Specified		- 300 pi			

AC + DC Voltage (rms responding, computed from acV, dcV)

		Accuracy				
Range	Resolution	DC, 20 Hz to 10 kHz	DC, 10 kHz to 30 kHz	DC, 30 kHz to 50 kHZ	DC, 50 kHz to 100 kHz	
5 V	1 mV					
50 V	10 m∨	± (1% + 30)	± (1.2% + 40)	± (2.5% + 70)	± (3.5% + 300)	
500 ∨	100 m∨					
750 ∨	1 V	± (1% + 30) DC, 20 Hz to 1 kHz	Not Specified			

Measurement range:

500 mV to 500 V ranges 20 Hz to 30 kHz 30 kHz

5% to 100% of range 10% to 100% of range

750 V range

75 V to 750 V

Response time: < 2 seconds for AC, 5 seconds for AC+DC on fixed range

Crest factor: <3

Common Mode Rejection Ratio (CMR) 1 k Ω imbalance: > 60 dB @ DC to 60 Hz

Hewlett Packard, HP974A

DC Current, AC Current (40 Hz to 1 kHz), 5% to 100% of range

Range	Resolution	DC Current Accuracy	AC Current Accuracy	Input Resistance	Maximum Input
500 μA	10 nA			< 1050 Ω	
50 mA	1 μΑ	± (0.3% + 2)	. /40/ . 20)	< 12 Ω	0.5 A (fused)
500 mA	10 μΑ		± (1% + 20)	< 2.5 Ω	
10 A	1 mA	± (0.7% + 2)		< 0.05 Ω	15 A (fused)

Diode

Measurement current: +1.0 mA nominal @ 0.6 V Open circuit voltage: < 5.5 Vpeak Input protection: 500 Vrms (sinewave)

Resolution: 100 µV Accuracy: ± (1% + 2)

Frequency (AC Coupled)

Frequency Range	Resolution	Accuracy	Input Voltage (rms)
10 Hz to 99.99 Hz	0.01 Hz		
90 Hz to 999.0 Hz	0.1 Hz		0.45 mV to 500 V
900 Hz to 9.999 Hz	1 Hz	± (0.05% + 1)	
9.00 kHz to 99.99 kHz	10 Hz		.7 V to 100 V
90 kHz to 200 kHz	100 Hz		1.5 V to 100 V

Hewlett Packard, HP974A

Resistance

Range	Resolution	Accuracy	Test Current	Max Open Circuit Voltage
500 Ω	10 mΩ	± (0.06% + 2) 1	~ 000 4	< 5.5 V
5.0 kΩ	100 mΩ		< 800 μΑ	< 5.5 V
50 kΩ	1Ω	± (0.06% + 2)	< 80 μΑ	
500 kΩ	10 Ω		< 15 μΑ	< 2.2 V
5.0 MΩ	100 Ω	± (0.5% + 1)	< 1.5 μA	\ \ Z.Z V
50 MΩ	1 kΩ	± (1.0% + 2)	< 150 nA	

After zero adjust of input leads. Zero adjust range up to 0.99 Ω. Response time: 500 Ω to 500 kΩ — < 2 seconds, 5 MΩ to 50 MΩ — < 10 seconds.</p>

Continuity

Measurement Current: 0.8 mA maximum Displayed resistance: 0 Ω to 499.99 Ω Alarm: Tone when input < 100 Ω ± 50 Ω

Open circuit voltage: < 5.5 Vpeak
Input protection: 500 Vrms (sinewave)
Resolution: 10 mΩ (<100 mSec response time)

Ejemplo

Una fuente de tensión continua (U) de 1V se encuentra flotante respecto de tierra y posee un "ripple" triangular de 300mVp-p y frecuencia fundamental de 100 Hz. Se desean realizar una serie de mediciones **con** el menor error posible. Se sabe que la tensión que existe entre la salida de la fuente y la tierra (U_{MC}) tiene una componente aproximadamente sinusoidal de 5 V de tensión eficaz y frecuencia fundamental de 50 Hz.

Elegir de entre los multímetros HP 974A y HP 972A, el que considere más adecuado *para medir la tensión de continua* de la salida (entre los bornes a y b). Justifique su elección detallando claramente, y calculando, *todos* los errores que afectan a la medida.

DC Voltage

Hewlett Packard, HP972A

Panga	Resolution	972A	973A	Input Posistance	
Range	Resolution	Accuracy		Input Resistance	
40 mV	10 μV	± (0.3% + 5)	± (0.3% + 5)	10 MO (nominal)	
400 mV	100 μV			10 M Ω (nominal)	
4 V	1 mV		± (0.1% + 1)	11 M Ω (nominal)	
40 V	10 mV	± (0.2% + 1)	± (0.1% + 1)		
400 V	100 mV			10 MΩ (nominal)	
1000 V	1 V		± (0.2% + 1)		

Normal Mode Rejection Ratio: > 60 dB @ 50 or 60 Hz

Effective Common Mode Rejection Ratio (1 k Ω imbalance): > 120 dB @ 50 or 60 Hz

DC Voltage

Hewlett Packard, HP974A

Range	Resolution	Accuracy	Input Resistance
500 mV	10 μV		> 1000 MΩ
5 V	100 μV		11 M Ω (nominal)
50 V	1 mV	± (0.05% + 2)	
500 V	10 mV		10 M Ω (nominal)
1000 V	100 mV		

Normal Mode Rejection Ratio: (NMR) > 60 dB @ 50 or 60 Hz Effective Common Mode Rejection Ratio (CMR) 1 k Ω imbalance: > 120 dB @ 50 or 60 Hz

Para el HP974A Alcance: 5 V (Indicación máxima: 4,9999 V)

$$\triangleright E_{U_m}$$

$$E_{U_m} = \pm (0.05 \% U_m + 2 \text{ dig.}) = \pm \left(\frac{0.05}{100}.1 + 0.0002\right)V = \pm 0.7 \text{ mV}$$

$$\Rightarrow 60 \ dB < 20 . \log \frac{U_{m\acute{a}x_{NM}}}{U_{vista_{NM}}} = 20 . \log \frac{0.15 \ V}{U_{vista_{NM}}}$$

$$\Rightarrow U_{vista_{NM}} < \frac{0.15 V}{1000} = 0.15 mV$$

(No es despreciable frente a E_{U_m})

ECMRR

$$U_{CM} = 5 V$$

$$120 dB < 20 . \log \frac{U_{CM}}{U_{vista_{CM}}} = 20 . \log \frac{5 V}{U_{vista_{NM}}}$$

$$\Rightarrow U_{vista_{CM}} < \frac{5 V}{10^6} = 5 \mu V$$
 (Para 1 k Ω de desbalance en el borne "Low")

$$\Rightarrow U_{vista_{CM}} < 25 \,\mu V$$
 (Para 5 k Ω de desbalance en el borne "Low")

(Despreciable frente a E_{U_m})

$$500 \, k\Omega \, (\pm 5 \, \%)$$

 U_m

V

$$e_{inserción} \cong -\frac{505 \, k\Omega}{10 \, M\Omega}$$
 . $100 = -5 \, \%$ U_{CM}

(No es despreciable frente a E_{U_m})

Entonces, si $R_S = 505 \, k\Omega \, (\pm 5\%)$

$$U = U_m \cdot \left(1 + \frac{R_S}{R_V}\right)$$

$$\Rightarrow E_U = \pm \left(\frac{\partial U}{\partial U_m} \cdot E_{U_m} + \frac{\partial U}{\partial R_S} \cdot E_{R_S} + \frac{\partial U}{\partial R_V} \cdot E_{R_V}\right)$$

$$\Rightarrow E_{U} = \pm \left[\left(1 + \frac{R_{S}}{R_{V}} \right) \cdot E_{U_{m}} + \frac{U_{m}}{R_{V}} \cdot E_{R_{S}} \right] V = \pm \left[1,05 \cdot E_{U_{m}} + \frac{1}{10^{7}} \cdot E_{R_{S}} \right] V$$

Considerando el caso más desfavorable para E_{U_m} , incluiremos también la $U_{vista_{NM}}$ ya que no es despreciable.

$$\Rightarrow E_U = \pm \left[1,05.(0,7+0,15).10^{-3} + \frac{1}{10^7}.\left(\frac{5}{100}.505.10^3\right)\right] V = \pm 3,4 \ mV$$

$$\Rightarrow U = (1,000 \pm 0,003) V$$

(Se sugiere repetir la resolución para el multímetro HP972A)

Ejemplo

Con un multímetro HP 972A *se pretende medir el valor de una tensión continua de 200 V*, que presenta superpuesta una alterna sinusoidal de 50 V de valor cresta y frecuencia 250 Hz. Justificando sus respuestas, indique.

- a) ¿Qué indicará el instrumento en su función voltímetro de continua? ¿qué en la función voltímetro de alterna?
- b) Repita el punto a) para el caso de que la señal superpuesta sea una rectangular, también de 50 V de valor máximo y frecuencia 250 Hz.

DC Voltage

Hewlett Packard, HP972A

Panga	Resolution	972A	973A	Innut Posistanos
Range	Resolution	Accı	iracy	Input Resistance
40 mV	10 μV	± (0.3% + 5)	± (0.3% + 5)	10 MO (nominal)
400 mV	100 μV			10 MΩ (nominal)
4 V	1 mV		± (0.1% + 1)	11 M Ω (nominal)
40 V	10 mV	± (0.2% + 1)	± (U.176 + 1)	
400 V	100 mV			10 M Ω (nominal)
1000 V	1 V		± (0.2% + 1)	

Normal Mode Rejection Ratio: > 60 dB @ 50 or 60 Hz

Effective Common Mode Rejection Ratio (1 k Ω imbalance): > 120 dB @ 50 or 60 Hz

AC Voltage HP 972A (Average responding, calibrated to display rms)

		Accu		ıracy		Innut Impedance	
Range	Resolution	40 Hz to 50 Hz	50 Hz to 1 kHz	1 kHz to 5 kHz	5 kHz to 20 kHZ	Input Impedance (nominal)	
40 mV	10 μV	± (1% + 10)		Not Sp	ecified	10 MΩ < 70 pF	
400 mV	0.1 mV	± (1% + 3)		Not Specified		10 10122 < 70 με	
4 V	1 mV	± (1%	+ 3)			11 M Ω < 50 pF	
40 V	10 mV	/40/ 2\	I (0 50/ I 2)	± (1.5% + 3)	± (3% + 6)		
400 V	100 mV	± (1% + 2)	± (0.5% + 2)			10 MΩ < 50 pF	
1000 V	1 V	± (1% + 2) (40 Hz to 500 Hz)		Not Sp	ecified		

Common Mode Rejection Ratio (1 k Ω imbalance): > 60 dB @ DC to 60 Hz Response time: 2 seconds maximum

a)
$$U = (200 + 50 sen 2\pi ft) V$$
; con $f = 250 Hz$

Voltímetro DC

$$U_m = 200,0 V$$
 (Alcance: 400 V)

$$E_{U_m} = \pm (0.2 \% U_m + 1 dig.) \Rightarrow E_{U_m} = \pm 0.5 V$$

$$\Rightarrow 20 \log \frac{50 V}{U_{vista}} > 60 dB$$

$$\Rightarrow U_{vista} < 0.05 V$$

(Despreciable frente a E_{U_m})

Voltímetro AC

(Indicación de Valor Eficaz basada en el Valor Medio, para onda sinusoidal, con desacople de continua)

$$U_m = \frac{50}{\sqrt{2}} V = 35,36 V$$
 (Alcance: 40 V)

$$E_{U_m} = \pm (0.5 \% U_m + 2 dig.) =$$

$$= \pm \left(\frac{0.5}{100} * 35.36 + 0.02\right) V = 0.20 V$$

Voltímetro DC

Ídem inciso a)

Voltímetro AC

(Indicación de Valor Eficaz basada en el Valor Medio, para onda sinusoidal, con desacople de continua)

Rectifica
$$\Rightarrow U_{medio} = 50 V$$
 $\Rightarrow U_{medio} = 1,11.50 V = 55,5 V$

Pero, para una onda cuadrada:

$$U_{eficaz} = U_{m\acute{a}x} = 50 V$$

$$\Rightarrow e_{FFO}[\%] = \frac{55,5-50}{50}.100 = +11\%$$

Fluke 10 - Average Responding DMM

10 Users Manual

Maximum Voltage Between any Terminal and Earth Ground	600 V rms
Display	3 3/4-digits, 4000 counts, updates 4/sec
Operating Temperature	−10 °C to 50 °C
Storage Temperature	-30 °C to 60 °C indefinitely (to -40 °C for 100 hrs)
Temperature Coefficient	0.1 x (specified accuracy) / °C (<18 °C or >28 °C)
Relative Humidity	0 % to 90 % (–10 °C to 35 °C); 0 % to 70 % (35 °C to 50 °C)
Battery Type	9V, NEDA 1604 or IEC 6F22
Battery Life	Alkaline, 650 hrs continuous; Carbon-zinc, 450 hrs continuous
Shock, Vibration	1 meter shock. Vibration per MIL-T-28800D for a Class 3 Instrument
Size (H x W x L)	1.35 x 2.75 x 5.55 inches; (3.46 x 7.05 x 14.23 cm)
Weight	10 oz (286 g)
Safety	Complies with Protection Class II requirement of UL1244, ANSI/ISA-S82, CSA C22.2 No 231, and VDE 0411, and IEC 1010 overvoltage CAT III. CAT III instruments are designed to protect against transients in fixed-equipment installations at the distribution level.
EMI Regulations	Complies with FCC Part 15, Class B, and VDE 0871B.

(AC conversions are ac-coupled, average responding, and calibrated to the rms value of a sine wave input)

Function	Range	Resolution	Accuracy (50 to 400 Hz)
V~	4000 mV * 4.000 V 40.00 V 400.0 V 600 V	1 mV 0.001 V 0.01 V 0.1 V 1 V	+/- (2.9 % + 3) +/- (2.9 % + 3) +/- (2.9 % + 3) +/- (2.9 % + 3) +/- (2.9 % + 3)
V····	4000 mV * 4.000 V 40.00 V 400.0 V 600 V	1 mV 0.001 V 0.01 V 0.1 V 1 V	+/- (1.5 % + 2) +/- (1.5 % + 2) +/- (1.5 % + 1) +/- (1.5 % + 1) +/- (1.5 % + 1)
Ω	$\begin{array}{c} 400.0~\Omega \\ 4.000~k\Omega \\ 40.00~k\Omega \\ 400.0~k\Omega \\ 4.000~M\Omega \\ 4.000~M\Omega \end{array}$	$\begin{array}{c} 0.1\Omega \\ 0.001\; k\Omega \\ 0.01\; k\Omega \\ 0.1\; k\Omega \\ 0.001\; M\Omega \\ 0.001\; M\Omega \end{array}$	+/- (1.5 % + 2) +/- (1.5 % + 1) +/- (1.5 % + 1) +/- (1.5 % + 1) +/- (1.5 % + 1) +/- (1.9 % + 3)
ıı)) -▶1	2.000 V	0.001 V	+/- (1.5 % + 2) **

^{*} The 4000 mV range can only be entered in manual range mode. Use the 4000 mV range with accessories.

^{**} The beeper is guaranteed to come on at $<25\Omega$ and turn off at $>250\Omega$. The meter detects opens or shorts of 250 μs or longer.

Fluke 287/289 - TRMS 4½ DMM

Características de la entrada

Función	Protección contra sobrecarga ^[1]	Impedancia de entrada	Relación de rechazo de modo común (desequilibrio de 1 kΩ)		Rechazo del modo normal						
Ÿ	1000 V	10 MΩ <100 pF	>120 dB a CC,	50 Hz o 60 Hz			>60 dE	3 a 50 Hz	ó 60 Hz		
r∰V	1000 V [2]	10 MΩ <100 pF	>120 dB a CC,	50 Hz o 60 Hz			>60 df	3 a 50 Hz	ó 60 Hz		
ĩ	1000 V	10 MΩ <100 pF (acoplado para CA)	>60 dB, CC a 60 Hz								
LoZ V	1000 V	3,2 kΩ < 100 pF (acoplado para CA)	Sin especificar		Sin especificar						
Función	Protección	Circuito abierto Prueba de	and the state of t								
Función	contra sobrecarga ^[1]	tensión	Α 500 kΩ	≥5 MΩ ó 50 nS	500 Ω	5 kΩ	50 kΩ	500 kΩ	5 ΜΩ	50 MΩ	500 MΩ
Ω	1000 V ^[2]	5 V CC	550 mV	<5 V	1 mA	100 µA	10 μA	1 μΑ	0,3 μΑ	0,3 μΑ	0,3 μΑ
50 Ω	1000 V ^[2]	20 V disminuyendo a 2,5 V	500 m∨		10 mA						
→ +	1000 V [2]	5 V CC	3,1 V	CC				1 mA			

^[1] La entrada está limitada al producto de una onda senoidal de V rms por la frecuencia de 2 x 10⁷ V-Hz.

^[2] Para circuitos con cortocircuito <0,5 A. 660 V para circuitos de alta energía.

Agilent 34405A

				ACCURACY ± (% of reading + %	6 of range)
FUNCTION	RANGE ^[2]	TEST CURRENT OR BURDEN VOLTAGE	INPUT IMPEDANCE ^[3]	1 Year 23 °C ± 5 °C	Temperature Cefficient 0°C - 18°C 28°C - 55°C
VOLTAGE	100.000 mV	-	10.0 MΩ±2%	0.025+0.008	0.0015+0.0005
	1.00000 V	-	10.0 MΩ±2%	0.025+0.006	0.0010+0.0005
	10.0000 V	-	10.1 MΩ±2%	0.025+0.005	0.0020 + 0.0005
	100.000 V	-	10.1 MΩ ±2%	0.025+0.005	0.0020+0.0005
	1000.00 V	-	10.0 MΩ±2%	0.025+0.005	0.0015+0.0005
RESISTANCE	100.000 Ω	1.0 mA	-	0.05+0.008 ^[3]	0.0060+0.0008
	$1.00000~k\Omega$	0.83 mA	-	$0.05 + 0.005^{[3]}$	0.0060 + 0.0005
	10.0000 kΩ	100 μΑ	-	$0.05 + 0.006^{[3]}$	0.0060+0.0005
	100.000 kΩ	10.0 μΑ	-	0.05+0.007	0.0060 + 0.0005
	1.00000 M Ω	900 nA	-	0.06+0.007	0.0060+0.0005
	10.0000 M Ω	205 nA	-	0.25+0.005	0.0250+0.0005
	100.000 M Ω	205 nA 10MΩ	-	2.00+0.005	0.3000+0.0005
CURRENT	10.0000 mA	< 0.2 V	-	0.05+0.015	0.0055+0.0005
	100.000 mA	< 0.2 V	-	0.05+0.005	0.0055+0.0005
	1.00000 A	< 0.5 V	-	0.20+0.007	0.0100+0.0005
	10.0000 A	< 0.6 V	-	0.25+0.007	0.0150+0.0005
CONTINUITY	1000 Ω	0.83 mA	-	0.05+0.005	0.0050+0.0005
DIODE TEST ^[4]	1.0000 V	0.83 mA	-	0.05+0.005	0.0050+0.0005

- [1] Specifications are for 30 minutes warm-up, 5 1/2 digit resolution and calibration temperature 18 °C 28 °C.
- [2] 20% over range on all ranges except 1000 Vdc.
- [3] Specifications are 2-wire ohms using Math Null. If without Math Null, add 0.2 Ω additional error.
- [4] Specifications are for the voltage measured at the input terminals only.

			ACCURACY ± (9	% of reading + % of range)
FUNCTION	RANGE ^[5]	FREQUENCY	1 Year 23 °C ± 5 °C	Temperature Cefficient 0 °C - 18 °C 28 °C - 55 °C
TRUE-RMS AC	100.000 mV	20 Hz - 45 Hz	1.0+0.1	0.02+0.02
VOLTAGE ^[6]		45 Hz - 10 kHz	0.2+0.1	0.02+0.02
		10 kHz - 30 kHz	1.5+0.3	0.05+0.02
		30 kHz - 100 kHz ^[7]	5.0+0.3	0.10+0.02
	1.00000 V to 750.00 V	20 Hz - 45 Hz	1.0+0.1 ^[14]	0.02+0.02
		45 Hz - 10 kHz	0.2+0.1	0.02+0.02
		10 kHz - 30 kHz	1.0+0.1	0.05+0.02
		30 kHz - 100 kHz ^[7]	3.0+0.2 ^[15]	0.10+0.02
TRUE-RMS	10.0000 mA to 10.0000 A	20 Hz - 45 Hz	1.5+0.1	0.02+0.02
AC CURRENT[8]		45 Hz - 1 kHz	0.5+0.1	0.02+0.02
		1 kHz - 10 kHz ^[9]	2.0+0.2	0.02+0.02
FREQUENCY ^[10]	100.000 mV to 750.00 V	< 2 Hz	0.18+0.003	0.005
		< 20 Hz	0.04+0.003	0.005
		20 Hz - 100 kHz ^[11]	0.02+0.003	0.005
		100 kHz ~ 300 kHz ^[12]	0.02+0.003	0.005
	10.0000 mA to 10.0000 A	< 2 Hz	0.18+0.003	0.005
		< 20 Hz	0.04+0.003	0.005
		20 Hz ~ 10 kHz ^[11]	0.02+0.003	0.005

- [5] 20% over range on all range except 750 Vac
- [6] Specifications are for sinewave inputs >5% of range. Maximum crest factor: 3 at full scale.
- [7] Additional error to be added as frequency >30 kHz and signal input <10% of range. 30 kHz \sim 100 kHz: 0.003% of full scale per kHz.
- [8] For 12 A terminal, 10 A dc or ac rms continuous, >10 A dc or ac rms for 30 seconds ON and 30 seconds OFF.
- [9] For 1 A and 10 A ranges, the frequency is verified for less than 5 kHz.
- [10] Specifications are for half-hour warm-up, using 0.1 second aperture. The frequency can be measured up 1 MHz as 0.5 V signal to 100 mV/1 V ranges.

Agilent 34405A

OPERATING CHARACTERISTICS

Function	Digits	Reading Speed ^[1]	Function Change (sec) ^[2]	Range Change (sec) ^[3]	Auto Range (sec) ^[4]	Reading Speed Over USB/(sec) ^[5]
DCV	5.5	15 /s	0.3	0.3	< 1.2	8
	4.5	70 /s	0.2	0.2	< 1.1	19
DCI	5.5	15 /s	0.4	0.4	<1.0	8
	4.5	70 /s	0.3	0.3	< 0.5	19
ACV	5.5	2.5 /s	1.3	1.7	< 5.7	2
	4.5	2.5 /s	1.2	1.5	< 5.1	2
ACI	5.5	2.5 /s	1.8	2.2	< 4.7	2
	4.5	2.5 /s	1.5	1.9	< 4.0	2
FREQ ^[6]	5.5	9 /s	2.8	2.8	< 5.8	1
	4.5	9 /s	2.5	2.5	< 5.0	1

- [1] Reading rate of the A/D converter.
- [2] Time to change from 2-wire resistance to this specified function and to take at least one reading using SCPI "FUNC" and "READ?" commands.
- [3] Time to change from one range to the next higher range and to take at least one reading using SCPI "FUNC" and "READ?" commands.
- [4] Time to automatically change one range and to take at least one reading using SCPI "CONF AUTO" and "READ?" commands.
- [5] Number of measurements per second that can be read through USB using SCPI "READ?" command.
- [6] Reading rate depends on signal frequency >10 Hz.

50,000 count dual display with true-RMS reading capability

Math functions and SHIFT key for versatility and convenience in one single instrument

Broad range of measurement functions, including temperature and capacitance

Built-in battery charging for optimum capacity

Blue LED backlight for better illumination of display

Data logging capability

20 MHz frequency counter

Programmable square wave generator for stimulation of electronic digital circuits

CAT III 1000 V overvoltage protection

U1251A/U1252A DC SPECIFICATIONS

FUNCTION	RANGE	RESOLUTION	TEST CURRENT/	ACCURACY ± (% of reading + No. of Least Significant Digit)		
			BURDEN VOLTAGE	U1251A	U1252A	
	50.000 mV	0.001 mV	-	0.05 + 50[2]	0.05 + 50 ^[2]	
	500.00 mV	0.01 mV	-			
	1000.0 mV	0.1 mV	-		0.025 + 5	
VOLTAGE ⁽¹⁾	5.0000 V	0.0001 V	-	0.02 . 5	0.025 + 5	
, and the second	50.000 V	0.001 V	-	0.03 + 5		
	500.00 V	0.01 V	-		0.03 + 5	
,	1000.0 V	0.1 V	-		0.03 + 5	
	500.00 Ω ^[3]	0.01 Ω	1.04 mA	0.08 +10	0.05 + 10	
, and the second	5.0000 kΩ ^[2]	0.0001 kΩ	416 µA		0.05 + 5	
	50.000 kΩ	0.001 kΩ	41.2 μΑ	0.08 + 5		
DEGLOTANCE	500.00 kΩ	0.01 kΩ	4.12 μΑ	Ī		
RESISTANCE	5.0000 MΩ	0.0001 MΩ	375 nA	0.2 + 5	0.15 +5	
,	50.000 MΩ ^[4]	0.001 MΩ	187 nA	1 + 10	1 + 5	
· ·	500.00 MΩ ^[4]	0.01 MΩ	187 nA	N/A	$3+10 < 200 \text{ M}\Omega$ / $8+10 > 200 \text{ M}\Omega$	
	500.00 nS ^[5]	0.01 nS	187 nA	1 + 20	1 + 10	
	500.00 µА	0.01 μΑ	0.06 V (100 Ω)	0.1 . 5(6)	0.05 . 581	
, and the second	5000.0 μA	0.1 μΑ	0.6 V (100 Ω)	0.1 + 5 ^[6]	0.05 + 5 ^[6]	
OUDDENT	50.000 mA	0.001 mA	0.09 V (1 Ω)	0.0 . 5121	0.15 . 521	
CURRENT	440.00 mA	0.01 mA	0.9 V (1 Ω)	0.2 + 5 ^[6]	0.15 + 5 ^[6]	
	5.0000 A	0.0001 A	0.2 V (0.01 Ω)	0.0 + 10	0.3 + 10	
<u> </u>	10.000 A ^[7]	0.001 A	0.4 V (0.01 Ω)	0.3 + 10	0.3 + 5	
DIODE TEST		0.1 mV	1.04 mA	0.05 + 5		

U1251A AC SPECIFICATIONS

			ACCURACY ± (% of reading + No. of Least Significant Digit)						
FUNCTION	RANGE	RESOLUTION	FREQUENCY						
			30 Hz ~ 45 Hz	45 Hz ~ 1 kHz	1 kHz ~ 10 kHz	10 kHz ~ 30 kHz			
	50.000 mV	0.001 mV	1.0+60	0.6+40	1.0+40	1.6+60			
500.	500.00 mV	0.01 mV		0.6+25	1.0740				
	1000.0 mV	0.1 mV			10.05	1.6+40			
TRUE RMS AC VOLTAGE	5.0000 V	0.0001 V							
VOLINGE	50.000 V	0.001 V			1.0+25				
	500.00 V	0.01 V				1.6+40[1]			
	1000.0 V	0.1 V		0.6+40	1.0+40	N/A			

			ACCURACY ± (% of reading + No. of Least Significant Digit)				
FUNCTION	FUNCTION RANGE		FREQUENCY				
			30 Hz ~ 45 Hz	45 Hz ~ 2 kHz	2 kHz ~ 20 kHz		
	500.00 μA ^[2]	0.01 μΑ	1.5+50		3.0+80		
	5000.0 μA	0.1 μΑ		0.8+20			
AC CUIDBENIT	50.000 mA	0.001 mA	1.5+40		3.0+60		
AC CURRENT	440.00 mA	0.01 mA					
	5.0000 A	0.0001 A	2.0+40(4)		3+60,		
	10.000 A ^[3]	0.001 A	2.0+40(4)		<3 A/5 kHz		

Ejemplo

Es necesario *medir el valor eficaz de las componentes de alterna* de la onda de la figura, con un error límite inferior al 5%. Para ello se propone emplear un multímetro Fluke 10.

Seleccione el alcance que considere más adecuado, determine cuánto indicaría el instrumento, y todos los errores que aparecen al efectuar la medición propuesta.

Fluke 10 - Average Responding DMM

10 Users Manual

Maximum Voltage Between any Terminal and Earth Ground	600 V ms
Display	3 3/4-digits, 4000 counts, updates 4/sec
Operating Temperature	−10 °C to 50 °C
Storage Temperature	-30 °C to 60 °C indefinitely (to -40 °C for 100 hrs)
Temperature Coefficient	0.1 x (specified accuracy) / °C (<18 °C or >28 °C)
Relative Humidity	0 % to 90 % (–10 °C to 35 °C); 0 % to 70 % (35 °C to 50 °C)
Battery Type	9V, NEDA 1604 or IEC 6F22
Battery Life	Alkaline, 650 hrs continuous; Carbon-zinc, 450 hrs continuous
Shock, Vibration	1 meter shock. Vibration per MIL-T-28800D for a Class 3 Instrument
Size (H x W x L)	1.35 x 2.75 x 5.55 inches; (3.46 x 7.05 x 14.23 cm)
Weight	10 oz (286 g)
Safety	Complies with Protection Class II requirement of UL1244, ANSI/ISA-S82, CSA C22.2 No 231, and VDE 0411, and IEC 1010 overvoltage CAT III. CAT III instruments are designed to protect against transients in fixed-equipment installations at the distribution level.
EMI Regulations	Complies with FCC Part 15, Class B, and VDE 0871B.

(AC conversions are ac-coupled, average responding, and calibrated to the rms value of a sine wave input)

Function	Range	Resolution	Accuracy (50 to 400 Hz)			
V~	4000 mV * 4.000 V 40.00 V 400.0 V 600 V	1 mV 0.001 V 0.01 V 0.1 V 1 V	+/- (2.9 % + 3) +/- (2.9 % + 3) +/- (2.9 % + 3) +/- (2.9 % + 3) +/- (2.9 % + 3)			
V····	4000 mV * 4.000 V 40.00 V 400.0 V 600 V	1 mV 0.001 V 0.01 V 0.1 V 1 V	+/- (1.5 % + 2) +/- (1.5 % + 2) +/- (1.5 % + 1) +/- (1.5 % + 1) +/- (1.5 % + 1)			
Ω	$\begin{array}{c} 400.0~\Omega \\ 4.000~k\Omega \\ 40.00~k\Omega \\ 400.0~k\Omega \\ 4.000~M\Omega \\ 4.000~M\Omega \end{array}$	$\begin{array}{c} 0.1\Omega \\ 0.001\; k\Omega \\ 0.01\; k\Omega \\ 0.1\; k\Omega \\ 0.001\; M\Omega \\ 0.001\; M\Omega \end{array}$	+/- (1.5 % + 2) +/- (1.5 % + 1) +/- (1.5 % + 1) +/- (1.5 % + 1) +/- (1.5 % + 1) +/- (1.9 % + 3)			
ıı)) -▶1	2.000 V	0.001 V	+/- (1.5 % + 2) **			

^{*} The 4000 mV range can only be entered in manual range mode. Use the 4000 mV range with accessories.

^{**} The beeper is guaranteed to come on at $<25\Omega$ and turn off at $>250\Omega$. The meter detects opens or shorts of 250 μs or longer.

En su función de medición de tensión AC, el instrumento (Fluke 10) indica valor eficaz de AC basado en el valor medio, para onda sinusoidal, y tiene desacople de continua:

⇒ Desacopla la continua, luego rectifica la onda resultante y, posteriormente, calcula el valor medio y multiplica por 1,11.

Una vez desacoplada la componente continua, la señal resultante sería:

Y al ser luego rectificada, la señal resultante sería (aproximadamente):

Para la cual:
$$U_{medio} = \frac{\frac{10.3}{2} + 10.1}{20} V = 1,25 V$$

Y la indicación del instrumento sería entonces:

$$U_{ef_{medido}} = 1,11.1,25 V = 1,388 V$$

El error de medición correspondiente a la exactitud el instrumento, para el alcance de 4 V, sería:

$$E_{U_{ef_{medido}}} = \pm (2.9 \% . U_{ef_{medido}} + 3 dig.)$$

$$= \pm \left(\frac{2.9}{100} * 1.388 + 0.003\right) V = 0.043 V$$

$$\Rightarrow e_{U_{ef_{medido}}} = \pm \frac{0,043\,V}{1,388\,V}$$
 . $100 = \pm 3,1\,\%$

Pero el valor eficaz verdadero de la señar es:

$$U_{ef_{verdadero}} = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} u^{2} \cdot dt} = \sqrt{\frac{1}{T/2} \cdot 2 \int_{0}^{T/4} \left(\frac{4 \cdot U_{m\acute{a}x}}{T}\right)^{2} t^{2} \cdot dt} + \frac{1}{T/2} \cdot \int_{T/2}^{T} 1 \ V \cdot dt} = \sqrt{\frac{1}{T/2} \cdot \frac{1}{T/2} \cdot \frac{1}{T/2} \cdot \frac{1}{T/2} \cdot \frac{1}{T/2}} \cdot \frac{1}{T/2} \cdot \frac{1$$

$$= \sqrt{\frac{1}{T/2} \cdot 2 \cdot \left(\frac{4 \cdot 3 V}{T}\right)^2 \cdot \frac{t^3}{3}} \Big|_0^{T/4} + 1 V^2 = \sqrt{\frac{1}{T/2} \cdot \frac{(3 V)^2 \cdot T}{6} + 1 V^2} = 2 V$$

Por lo cual:

$$e_{FFO}[\%] = \frac{U_{ef_{medido}} - U_{ef_{verdadero}}}{U_{ef_{verdadero}}}.100 = \frac{1,388 - 2}{2}.100 = -31\%$$

Seguridad en Mediciones Eléctricas

Sobretensiones transitorias.

Sólo la tensión nominal (o el alcance) del instrumento no es suficiente.

Normas de Seguridad.

IEC 61010-1

"Safety requirements for electrical equipment for measurement, control, and laboratory use. Part 1: General requirements"

(Requisitos de seguridad de equipos eléctricos de medida, control y uso en laboratorio. Parte 1: Requisitos generales.)

Categorías de sobretensión (IEC 61010-1)

Categoría de medición	Descripción breve	Ejemplos
CAT IV	Tres fases en la conexión del servicio de energía eléctrica, cualquier conductor externo	 Se refiere a "origen de la instalación"; es decir, en dónde se efectúa la conexión de baja tensión a la alimentación del servicio de energía eléctrica. Medidores de consumo de electricidad, equipos de protección contra sobrecorrientes. Exterior y entrada del servicio, acometida del servicio desde el poste al edificio, recorrido entre el medidor y el panel. Línea en altura a edificio separado, línea subterránea a bomba de pozo.
CAT III	Distribución trifásica, incluyendo iluminación comercial monofásica	 Equipos en instalaciones fijas, tales como equipos de conmutación y distribución y motores polifásicos. Bus y alimentador en plantas industriales. Alimentadores y circuitos de derivación corta, dispositivos de paneles de distribución. Sistemas de iluminación en edificios grandes. Salidas para aparatos con conexiones cortas a la entrada del servicio.
CAT II	Cargas conectadas a tomacorrientes monofásicos	 Artefactos, herramientas portátiles y otras cargas domiciliarias y similares. Tomacorrientes y circuitos de derivación larga. Salidas a más de 10 metros (30 pies) de fuente CAT III. Salidas a más de 20 metros (60 pies) de fuente CAT IV.
CAT I	Electrónica	 Equipos electrónicos protegidos. Equipos conectados a circuitos (fuente) en los cuales se toman mediciones para limitar las sobretensiones transitorias a un nivel adecuadamente bajo. Cualquier fuente de voltaje alto y baja energía derivada de un transformador de gran resistencia de bobinado, tal como la sección de voltaje alto de una fotocopiadora.

Categorías de sobretensión (IEC 61010-1). Ubicación.

Categorías de Sobretensión (IEC 61010-1).

Transitorios: el peligro oculto.

Transitorios: el peligro oculto. Fusibles.

Norma IEC 61010-1:2017

Table F.1 – Test voltages for ROUTINE TESTS of MAINS CIRCUITS

Nominal line-to- neutral voltage of MAINS supply	OVERVOLTAGE CATEGORY II			OVERVOLTAGE CATEGORY III		OVERVOLTAGE CATEGORY IV			
a.c. r.m.s. or d.c.	a.c.	d.c.	1,2/50 µs	a.c.	d.c.	1,2/50 µs	a.c.	d.c.	1,2/50 µs
u.c.			Impulse			Impulse			Impulse
V	V r.m.s.	V	V peak	V r.m.s.	٧	V peak	V r.m.s.	٧	V peak
≤150	840	1 200	1 200	1 400	2 000	2 000	2 200	3 100	3 100
>150 ≤ 300	1 400	2 000	2 000	2 200	3 100	3 100	3 300	4 700	4 700
>300 ≤ 600	2 200	3 100	3 100	3 300	4 700	4 700	4 300	6 000	6 000
>600 ≤ 1 000	3 300	4 700	4 700	4 300	6 000	6 000	5 300	7 500	7 500

La Categoría I no es relevante para esta Norma; se utiliza para equipos destinados a ser conectados donde se han tomado medidas para reducir sustancial y confiablemente las Sobretensiones Transitorias, a un nivel que no implican riesgo alguno.

Selección de una función indebida.

Métodos de protección de los instrumentos.

- Medición de Tensiones.
- Medición de Corrientes.
- Medición de Resistencia.

Algunas consideraciones en favor de la seguridad.

- Siempre que sea posible, trabajar en circuitos desenergizados (bloqueo, etiquetado).
- Evaluar/acondicionar el ambiente antes de efectuar la medición (orden, limpieza, luz, ventilación).
- Verificar la Categoría de los instrumentos a emplear y sus accesorios.
- Utilizar EPP y/o herramientas aisladas, según corresponda.
- No trabajar solo, especialmente en zonas o instalaciones riesgosas.

Efectos de la corriente eléctrica sobre el cuerpo humano.

- ➤ ≈ 10 mA ⇒ parálisis muscular de los brazos (no se podría soltar el instrumento.
- ➤ ≈ 30 mA ⇒ parálisis respiratoria.
- > ≈ 75 a 250 mA durante más de 5 s ⇒ fibrilación ventricular.

(Tensiones asociadas)

Las 5 Reglas de Oro

Las 5 Reglas de Oro

