

Talstelsels

- Decimale stelsel
- Binaire stelsel
- Hexadecimale stelsel
- Octale stelsel

Negatieve binaire getallen

- Teken/grootte notatie
- Plus n-notatie
- Een- en tweecomplementnotatie
- Overflow

Niet-gehele binaire getallen

- 'Floating point'-getallen
- IEEE-notatie
- BCD-getallen

(PXL)IT Binaire kommagetallen

Algemene formule

$$G = \sum \text{SYMBOOL x } Grondtal^{Positie}$$

BINAIR

• GRONDTAL: 2

BIT nr	7	6	5	4	3	2	1	0
Gewicht	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
	128	64	32	16	8	4	2	1

(PXL)IT Binaire kommagetallen

Exponent achter de komma

(PXL)IT Binaire kommagetallen – bin → dec

1011 1101, 101

$$0,101 = 1*2^{-1} + 0*2^{-2} + 1*2^{-3}$$
$$= 1/2 + 0/4 + 1/8 = 4/8 + 1/8 = 5/8$$
$$= 0,625$$

(PXL)IT Binaire kommagetallen – dec → bin

13	/2 (re	est)		X2	0, 125
6	1 1		1	0	25
3	0			0	5
1	1			1	0
0	1	MSB	LSB V		

(PXL)IT Binaire kommagetallen – dec → bin

48,46484375₍₁₀₎ = ?

48	/2 (re	est)
24	0	
12	0	
6	0	
3	0	
1	1	
0	1	MSB

X	2	0, 46484375
	0	9296875
	1	859375
	1	71875
	1	4375
	0	875
	1	75
	1	5
1	, 1	0

 $48,46484375_{(10)} = 0011\ 0000$, $0111\ 0111$

LSB

(PXL)IT Binaire kommagetallen – dec → bin

3261	/16 (rest)
203	13 -> D
12	11 -> B
0	12 -> C

0, 169981275 X16 718750

MSB

PXL)IT Oefeningen

Naar binair:

Naar decimaal:

123,5

85,125

X2	0, 125
0	25
0	5
1	0

32,625

$$= 1 + 1/4 = 1,25$$

0001,001

$$1 + 1/8 = 1,125$$


```
1010, 10101
     = 10 + 1/2 + 1/8 + 1/32 =
     = 10 + (16+4+1)/32 =
     = 10 + 21/32
     = 10,65625
1, 1101 1011
     = 1 + 1/2 + 1/4 + 1/16 + 1/32 + 1/128 + 1/256=
     = 1 + (1+2+8+16+64+128) / 256
     = 1 + 219/256
     = 1,8554687
```


48,578125

$$0,578125 = 0,100101$$

x16	0, 578125
9	25
4	0

X	2	0, 578125	Controle:
1		15625	= 1/2 + 1/16 + 1/64
0)	3125	= (32+4+1)/64
0)	625	<i>= 37/64</i>
1		25	<i>= 0,578125</i>
0		5	
1		0	

5,12345	Optie1: via HEX:	X16	0, 12345			
5 = 0101		1	9725	Optie2: via BIN:	X2	0, 12345
0,12345= ?		F 9	6032 6512		0	2469
		A	4192		0	4938
5 = 0101		6	7072		0	9876
2 = 0101			ı		1	9752
$0,12345 = 0, 1F9A6 \dots$					1	9504
= 0, 0001 1111	1001 1010	0110)		1	9008
					1	8016
5 12245 - 0101 0001 1	111 1001 10	10 0	110		1	6032
5,12345 = 0101, 0001 1					1	2064
$= 5 + 129446/2^{20} = 5 +$	129446/104	l857	6		0	4128
= 5,1234493					0	8256
3,123 3 3					1	6512

(PXL)IT Oefeningen – naar decimaal


```
1001, 0101 1101 1001
  = 9 + 1/4+1/16+1/32+1/64+1/256+1/512+1/4096
  = 9 + (1+8+16+64+128+256+1024)/4096
  = 9 + (1497 / 4096)
  = 9,3654785
0, 111 1111 1111
  = 0 + 2047/2048
  = 0,9995
```

(PXL)IT Floating point - definitie

Probleem:

• "Er kan geen komma geplaatst worden in een bit."

Oplossing:

- Toch komma plaatsen en daarna wegwerken
- Wetenschappelijke notatie!

GETAL= toestandsteken x mantisse x grondtalpositie Waarbij 1 < mantisse < grondtal

Voorbeeld van decimale wetenschappelijke notatie:

$$+6452_{(10)} = +6,452 \cdot 10^{+3}$$

- 0,006452₍₁₀₎ = -6,452 \cdot 10 \cdot 3

(PXL)IT Floating point - definitie

Wetenschappelijke notatie!

GETAL= toestandsteken x mantisse x grondtal^{positie} Waarbij 1 < mantisse < grondtal

Voorbeeld (binair):

```
11001001,01
                           = + 1,100100101 \cdot 2^{+7}
                            = + 1,01000101 \cdot 2^{+3}
1010,00101
                           = + 1,01 \cdot 2^{-1}
0,101
                            = + 1,0101 \cdot 2^{-3}
0,0010101
```

(PXL)IT Floating point — Fictieve notatie

De fictieve notatie is een 'floating point'-getal van één byte

⇒ Als tussenstap voor een 32bit floating point!

Bit
$$6 - 5$$
:

• Het exponent in een **plus 2** – notatie

Bit
$$4 - 0$$
:

- De mantisse
- Verborgen één (hidden one)

(PXL)IT Floating point – Fictieve notatie

'Floating point' naar decimaal

- 1. Bit 7 \rightarrow positief of negatief
- 2. Absolute waarde binair bepalen.
- Omvormen naar de decimale waarde.

+ /- 1, mantisse x 2^{exponent}

(PXL)IT Floating point — Fictieve notatie

'Floating point' naar decimaal

Voorbeeld:

= -0.828125

```
1 \rightarrow negatief
Teken=
                  01 	 \rightarrow plus2notatie (dus 1 - 2) = -1
Exponent=
Fractie=
                  10101
-1,10101 \times 2^{-1}
=-0,110101
  = -(0 + 1/2 + 1/4 + 1/16 + 1/64)
  = -[(32 + 16 + 4 + 1)/64] = -53/64
```

Decimaal naar 'Floating point'

→ Binaire waarde:

Wetenschappelijke notatie:

$$0,110101 = -1,10101 \times 2^{-1} = -1,10101 \times 2^{-1}$$

Bit 7
$$\Rightarrow$$
 negatief getal \Rightarrow 1
Bit 6-5 \Rightarrow Exponent = -1 \Rightarrow 0 1 (-1 + 2 = 1)
Bit 4-0 \Rightarrow Fractie \Rightarrow 1 0 1 0 1

1

1

Oefeningen wetenschappelijke notatie

•
$$8,3.10^2 =$$

•
$$9,4.10^{-3} =$$

•
$$3,1023.10^2 =$$

•
$$1,1001.2^{-2}$$
 =

•
$$1,001.2^{-2}$$

Oefeningen wetenschappelijke notatie

•
$$0,00253$$
 = $2,53.10^{-3}$

•
$$46,32 = 4,632.10^1$$

•
$$0.067 = 6.7 \cdot 10^{-2}$$

•
$$8,3 \cdot 10^2 = 830$$

•
$$9,4 \cdot 10^{-3} = 0,0094$$

•
$$3,1023.10^2 = 310,23$$

•
$$1001,01 = 1,00101.2^3$$

•
$$0.0001 = 1.2^{-4}$$

•
$$10001,1 = 1,00011.2^4$$

•
$$0,0101 = 1,01 \cdot 2^{-2}$$

•
$$1000 = 1,000 \cdot 2^3$$

•
$$1,1001 \cdot 2^{-2} = 0,011001$$

•
$$1,1001 \cdot 2^{+3} = 1100,1$$

•
$$1.2^{+4}$$
 = 10000

•
$$1,001 \cdot 2^{-2} = 0,01001$$

•
$$1,01101 \cdot 2^1 = 10,1101$$

Oefeningen

- 0 10 01011 = ...
- 1 01 01101
- 0 11 10101
- 1 10 00010
- -3, 375 = ...
- +0*,* 421875 = ...
- +1, 75
- -3, 875

0 10 01011

```
Teken = 0 \rightarrow +
Exponent = 10 \rightarrow (2-2) = 0
Fractie = 01011
+ 1, 01011 . 2 ^{0}
= 1, 0 1 0 1 1
  = 1 + (1/4 + 1/16 + 1/32)
  = 1 + [(1+2+8)/32]
  = 1 + 11/32
  = 1,34375
```

1 01 01101

```
Teken = 1 \rightarrow -
Exponent = 0.1 \rightarrow (1-2) = -1
Fractie = 01101
- 1, 01101 · 2 · 1
= -0, 101101
  = - [0 + (1/2 + 1/8 + 1/16 + 1/64)]
  = - (1+4+8+32)/64
  = - 45/64
  = - 0,703125
```

0 11 10101

```
Teken = 0 \rightarrow +
Exponent = 11 \rightarrow (3-2) = +1
Fractie = 10101
+ 1, 10101 · 2 <sup>+1</sup>
= +11, 0101
  = +3 + (1/4+1/16)
  = +3 + ((4+1)/16)
  = +3 + 5/16
  = +3, 3125
```

1 10 00010

```
Teken = 1 \rightarrow -
Exponent = 10 \rightarrow (2-2) = 0
Fractie = 00010
-1,00010.2^{0}
= - 1, 0001
  = - (1 + 1/16)
  = -1,0625
```


DEC = -3,375

$$= -11,011$$
 $= -(3 + 0,25 + 0,125)$

- 1, 1011 . 2 ¹

Teken =
$$\rightarrow$$
 1
Exponent = 1 \rightarrow $(1 + 2 = 3) = 11$
Fractie = 10110

 \rightarrow 1 11 10110

DEC = 0,421875

$$= 0,011011$$

$$= 1/4 + 1/8 + 1/32 + 1/64$$

$$= (1+2+8+16)/64 = 0,421875$$

$$= +1, 1011.2^{-2}$$

Teken =
$$+ \rightarrow 0$$

Exponent = $-2 \rightarrow (-2 + 2 = 0) \rightarrow 00$
Fractie = 10110

X2	0, 421875
0	84375
1	6875
1	375
0	75
1	5
1	0

X2 ₁0, 75

5

0

1

$$DEC = + 1, 75$$

$$= +1, 11.2^{0}$$

Teken =
$$+$$
 \rightarrow 0

Exponent =
$$0 \rightarrow (0 + 2 = 2) \rightarrow 10$$

Fractie = 11000

DEC = -3,875

$$= -1, 1111.2^{1}$$

Teken =
$$- \rightarrow 1$$

Exponent = $1 \rightarrow (1 + 2 = 3) \rightarrow 11$
Mantisse = 1111

PXL)IT Floating point — IEEE 754 standaard (CS) Computer Systems

- Vier veelgebruikte getaltypes:
 - Enkelvoudige precisie(32 bits): float
 - Dubbele precisie (64 bits): double
 - Dubbele uitgebreide precisie (80 bits)
 - Viervoudige precisie (128 bits)
- De exponent wordt opgeslagen in een plus n-notatie.

IEEE 754 (32 bits): single precision

Drijvend kommagetal met enkelvoudige precisie, meestal float genoemd

Tekenbit:0=positief, 1=negatief

Exponent van 8 bits in plus-127 notatie

Mantisse van 23 bits, met precisie van

24 bits

IEEE 754 (64 bits): double precision

Drijvend kommagetal met dubbele precisie, meestal double genoemd

Tekenbit:0=positief, 1=negatief

Exponent van 11 bits in plus-1023 notatie

Mantisse van 52 bits, met precisie van 53 bits

IEEE 754 (80 bits): extended precision

Drijvend kommagetal met dubbele uitgebreide precisie

Tekenbit:0=positief, 1=negatief

Exponent van 15 bits in plus-16383 notatie

Mantisse van 64 bits, met precisie van 65 bits

IEEE 754 (128 bits): quadruple precision

Drijvend kommagetal met viervoudige precisie, binary128 genoemd

Tekenbit:0=positief, 1=negatief

Exponent van 15 bits in plus-16383 notatie

Mantisse van 112 bits, met precisie van 113 bits

(PXL)IT Floating point — IEEE 754 standaard (CS) Computer Systems

Voorstelling van oneindig

- Tekenbit bepaalt + ∞ of ∞
- De exponent met allemaal 1'en
- Fractie = 0000...000

PXL)IT Floating point — IEEE 754 standaard (CS) Computer Systems

NaN = Not a Number

- De exponent met allemaal 1'en.
- Tekenbit geen betekenis.
- Fractie =/ 0

Opmerking:

Het verschil tussen NaN en oneindig zit enkel in de fractie.

PXL)IT Floating point — IEEE 754 standaard (CS) Computer Systems

Getal nul

- Niet mogelijk door hidden one
- = getal 0 !

Gedenormaliseerde getallen

- Als: De exponent = 0 en fractie =/0
- Dan: 'Hidden 1' valt weg!

- 1. Binaire waarde met kommanotatie
- 2. Normalisatie (wetenschappelijke notatie)
- 3. Floating point:
 - 1. Tekenbit (1 = -, 0 = +)
 - 2. Exponent (plus 127 notatie)
 - 3. Mantisse

Decimaal naar float, voorbeeld: 128,03125

- Binaire waarde met kommanotatie:
 - = 1000 0000,0000 1
 - \rightarrow 128 + 1/32 = 128,03125
- Normalisatie (wetenschappelijke notatie):
 - = 1,0000 0000 0001 x 27
- Float →
- Tekenbit = 0
- Exponent = $(127 + 7 = 134) \Rightarrow 1000 \ 0110$
- 3. Mantisse = 00000000001
 - 0 10000110 000000000010000000000

Binary32 naar decimaal

- 1. Normalisatie van Floating point =
 - Tekenbit (1 = -, 0 = +)
 - Exponent (plus 127 notatie)
 - Mantisse

2. Binair naar decimaal

Voorbeeld: Binary32 naar decimaal

0 10000110 000000000010000000000

- Bit 31: 0 ⇒ Het is een positief getal
- Exponent \Rightarrow in plus127-notatie = 10000110 \Rightarrow 134 -127 = + 7
- Mantisse \Rightarrow 00000000001
- = + 1,0000 0000 0001 x 2^7
- = 1000 0000,0000 1
- = 128 + 1/32
- = 128,03125

- 5.875
- 0.8364868
- -320.4125
- 10.105713
- 0 10000011 11000110000000000000000
- 0 10000010 0100011000010000000000
- 0 01111100 1100010011000000000000
- 0 1111111 00101010011001000011010

5.875 =
$$*2$$
 875
= 0101, 111
= 1,01 111 * 2² 1 0
Teken = + \rightarrow 0
Exponent = 2 \rightarrow (127 + 2 = 129)
 \rightarrow 1000 0001
Fractie = 01111

Exponent = -1 \rightarrow (127 + (-1) = 126)

0 0111 1110 101011000100100000000000

 \rightarrow 0111 1110

-320.4125


```
-320.4125
    = - 1 0100 0000, 01100110011001 ....
    = - 1,0100 0000 01110110011001 .... * 2<sup>8</sup>
    Teken = - \rightarrow 1
    Exponent = 8 \rightarrow (127 + 8 = 135)
```

→ 1000 0111

Fractie = **01000000 01110110011001**

40 405743					0 1: : 5111		
10.105713	=				Optie via BIN:	*2	ı
						0	t
			Optie via	HEX:		0	
				*16	105713	0	
				1	6914	1	
				11 1	062528 000448	1	
				_	000446	0	
						1	
						1	
						0	
						0	
10 105712		A 1	D	4		Ŋ	
10.105713			В	1	(16)	1	
:	= 10	10, 000 1	l 1011	0001	(2)		

10.105713 =

```
= 1010,0001 1011 0001 ( \rightarrow = 10,1057128)
```

= 1, 010 0001 1011 0001 . 2 ³

Teken =
$$+$$
 $\rightarrow 0$
Exponent = 3 $\rightarrow (127 + 3 = 130)$
 $\rightarrow 1000\ 0010$
Mantisse = $0100\ 0011\ 0110\ 0010$

0 1000 0010 010000110110001 0000 0000

0 10000011 110001100000000000000000

0 10000010 01000110000100000000000

```
Teken = 0 \rightarrow +
Exponent = 1000\ 0010 = 130
                           \rightarrow 130-127 = 3
= + 1,010001100001 * 2^3
= + 1010, 001100001
  = 10 + 1/8 + 1/16 + 1/256 + 1/512
  = 10 + (1+2+32+64)/512
  = + 10 + 97/512
```


0 01111100 11000100110000000000000