PARALLEL AND DISTRIBUTED COMPUTING

LAB 2

```
S Shyam Sundaram
19BCE1560
18<sup>th</sup> August, 2021
Dr SK Ayesha
L43+L44
```

AIM

Compare the time taken when matrix addition is serialized and parallelized using Amdahl's Law to calculate the speedup.

CODE

```
#include <stdio.h>
#include "omp.h"
#include<time.h>
#define ROWS 2500
#define COLS 250
int main()
  int a[ROWS][COLS],b[ROWS][COLS],c[ROWS][COLS];
  for(int i=0;i<ROWS;++i)
  for(int j=0;j<COLS;++j)</pre>
     a[i][j]=i*10+j;
     b[i][j]=j*10+i;
  }
  float start=omp get wtime();
  #pragma omp parallel for shared(a,b,c) //reduction(+: c)
  for(int i=0;i<ROWS;++i)
  for(int j=0;j<COLS;++j)
  {
     c[i][j]=a[i][j]+b[i][j];
  float end=omp_get_wtime();
  float exec=end-start;
  printf("Time taken %f\n",exec);
  return 0;
}
```

EXECUTION

Bash commands:

export OMP_NUM_THREADS=2
gcc -fopenmp prog.c
./a.out

Note: For Sequential, OMP_NUM_THREADS=1

RESULTS

We see that serial execution takes a lot longer than most of the parallelized implementations. The average execution time reduces as the number of threads increase from 2 to 6. But, from thread count 8, we see a general increase in the time taken to execute matrix addition. The observations are recorded in the table below.

```
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ export OMP_NUM_THREADS=1
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ gcc -fopenmp matadd.c
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ ./a.out
Time taken 0.009766
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ ./a.out
Time taken 0.007812
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ ./a.out
Time taken 0.007812
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ ./a.out
Time taken 0.007812
```

```
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ export OMP_NUM_THREADS=1
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ gcc -fopenmp matadd.c
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ ./a.out
Time taken 0.009766
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ ./a.out
Time taken 0.007812
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ ./a.out
Time taken 0.007812
shyam@shyam-Inspiron-14-5408:~/Academics/Labs/PDC/Lab2$ ./a.out
Time taken 0.007812
```

TABLE

Thread Count	Execution Time 1	Execution Time 2	Execution Time 3	Execution Time 4	Average Execution Time
1	0.009766	0.007812	0.011719	0.001953	0.007812
2	0.003906	0.003906	0.003906	0.004883	0.004150
4	0.001953	0.003906	0.001953	0.003906	0.002930
6	0.001953	0.001953	0.003906	0.001953	0.002443
8	0.001953	0.001953	0.001953	0.015625	0.005371
16	0.003906	0.003906	0.003906	0.003906	0.003906
32	0.003906	0.005859	0.005859	0.005859	0.005371
64	0.005859	0.019531	0.007812	0.007812	0.010226

Thread Count	PF	Speed Up	
2	0.937532	1.88241	
4	0.833248	2.66621	
6	0.824731	3.19771	
8	0.357106	1.45448	
16	0.533333	1.99999	
32	0.322548	1.45447	
64	-0.313917	0.76394	

We see that the optimal number of threads is 6, so p=6.

T_p=0.002443 and T₁=0.007812. Thus, PF =
$$(1 - \frac{Tp}{T1})/(1 - \frac{1}{p})$$
 = 0.824731

From Amdahl's law, speedup = $1/(s + \frac{p}{n})$, where p = PF, s=1-p and n=optimal num of threads which here is 6. Which gives us a speedup = 3.197706.

GRAPH

CONCLUSION

We have thus calculated the speed up to be nearly 3.2 when parallelizing the problem of matrix addition for large matrices.