Programação Inteira Modelagem matemática

Prof. Marcelo de Souza

55MQU – Métodos Quantitativos Universidade do Estado de Santa Catarina

Programação inteira

Modelagem matemática

Neste material, veremos exemplos de diversos problemas:

1. Problema da mochila

- **→** ver
- 2. Localização de instalações
- **→** ver
- 3. Problema de custo fixo

4. Cobertura de vértices

Ver Ver

5. Caminhos mínimos

V VCI

6. Diversidade máxima

→ ver

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Knapsack problem

Definição

Temos uma mochila com capacidade P, e n itens com valores $\nu_1, \nu_2, \ldots, \nu_n$ e pesos p_1, p_2, \ldots, p_n . Queremos selecionar um subconjunto dos itens a serem levados na mochila, de forma a maximizar o valor total dos itens selecionados, respeitando a capacidade da mochila.

Knapsack problem

Definição

Temos uma mochila com capacidade P, e n itens com valores $\nu_1, \nu_2, \ldots, \nu_n$ e pesos p_1, p_2, \ldots, p_n . Queremos selecionar um subconjunto dos itens a serem levados na mochila, de forma a maximizar o valor total dos itens selecionados, respeitando a capacidade da mochila.

Exemplo

Considere uma instância do problema da mochila com n = 4, P = 7 e os itens abaixo.

i	1	2	3	4
ν _i p _i	2 2		4 6	3 1

Knapsack problem

Definição

Temos uma mochila com capacidade P, e n itens com valores $\nu_1, \nu_2, \ldots, \nu_n$ e pesos p_1, p_2, \ldots, p_n . Queremos selecionar um subconjunto dos itens a serem levados na mochila, de forma a maximizar o valor total dos itens selecionados, respeitando a capacidade da mochila.

Exemplo

Considere uma instância do problema da mochila com n = 4, P = 7 e os itens abaixo.

	1	2	3	1
	1			4
ν_{i}	2 2	3	4	3
pi	2	4	6	1
x_i	0	0	1	1

Uma **solução** é selecionar os itens {3, 4}, com valor 7 e peso 7.

Knapsack problem

Definição

Temos uma mochila com capacidade P, e n itens com valores $\nu_1, \nu_2, \ldots, \nu_n$ e pesos p_1, p_2, \ldots, p_n . Queremos selecionar um subconjunto dos itens a serem levados na mochila, de forma a maximizar o valor total dos itens selecionados, respeitando a capacidade da mochila.

Exemplo

Considere uma instância do problema da mochila com n = 4, P = 7 e os itens abaixo.

i	1	2	3	4
ν _i p _i	2 2	3 4	4 6	3 1
x_i	1	1	0	1

Uma **solução** é selecionar os itens {3, 4}, com valor 7 e peso 7. Uma **solução melhor** é selecionar os itens {1,2,4}, com valor 8 e peso 7.

Knapsack problem

Definição

Temos uma mochila com capacidade P, e n itens com valores $\nu_1, \nu_2, \ldots, \nu_n$ e pesos p_1, p_2, \ldots, p_n . Queremos selecionar um subconjunto dos itens a serem levados na mochila, de forma a maximizar o valor total dos itens selecionados, respeitando a capacidade da mochila.

Formulação

Variáveis de decisão

$$x_{i} = \begin{cases} 1 & \text{, se o item i \'e selecionado,} \\ 0 & \text{, caso contr\'ario.} \end{cases}$$

$$\label{eq:maximiza} \begin{array}{ll} \text{maximiza} & \displaystyle \sum_{i=1}^n \nu_i x_i \\ \text{sujeito a} & \displaystyle \sum_{i=1}^n p_i x_i \leq P \\ & x_i \in \{0,1\}, i = \{1,2,\ldots,n\} \end{array}$$

Knapsack problem

E se guisermos adicionar restrições para:

- 1. Itens 1 e 3 não podem ser selecionados juntos?
- 2. Selecionar pelo menos um dos itens {2, 5, 6}?
- 3. Selecionar no máximo três dos itens {1, 2, 3, 4, 5}?
- 4. Selecionar entre 5 e 10 itens?

Knapsack problem

E se quisermos adicionar restrições para:

- 1. Itens 1 e 3 não podem ser selecionados juntos?
- 2. Selecionar pelo menos um dos itens {2, 5, 6}?
 - $x_2 + x_5 + x_6 \ge 1$.
- 3. Selecionar no máximo três dos itens {1, 2, 3, 4, 5}?
- 4. Selecionar entre 5 e 10 itens?
 - ► $5 \le \sum_{i=1}^{n} x_i \le 10.$

Knapsack problem

E se quisermos adicionar restrições para:

- 1. Itens 1 e 3 não podem ser selecionados juntos?
 - $x_1 + x_3 \le 1$.
- 2. Selecionar pelo menos um dos itens {2, 5, 6}?
 - $x_2 + x_5 + x_6 \ge 1$.
- 3. Selecionar no máximo três dos itens {1, 2, 3, 4, 5}?
- 4. Selecionar entre 5 e 10 itens?
 - ► $5 \le \sum_{i=1}^{n} x_i \le 10$.

Seja $x, y \in \{0, 1\}$, temos:

Lógica booleana	Formulação
x v y	$x + y \ge 1$
x ^ y	x + y = 2
x ⊕ y	x + y = 1
$x \rightarrow y$	$x \le y$

Facility location

Definição

Queremos determinar o posicionamento (cidades) de até k instalações para atender a um conjunto de n clientes (cidades) com o menor custo possível. O custo de instalação na cidade $j \in [n]$ é dado por f_j , e o custo de atender a cidade $i \in [n]$ pela instalação da cidade $j \in [n]$ é dado por c_{ij} .

Facility location

Definição

Queremos determinar o posicionamento (cidades) de até k instalações para atender a um conjunto de n clientes (cidades) com o menor custo possível. O custo de instalação na cidade $j \in [n]$ é dado por f_j , e o custo de atender a cidade $i \in [n]$ pela instalação da cidade $j \in [n]$ é dado por c_{ij} .

Variáveis de decisão

$$y_j \ = \begin{cases} 1 & \text{, se a cidade } j \text{ recebe instalação,} \\ 0 & \text{, caso contrário.} \end{cases}$$

$$x_{ij} = \begin{cases} 1 & \text{, se a cidade i \'e atendida pela j,} \\ 0 & \text{, caso contr\'ario.} \end{cases}$$

Facility location

Definição

Queremos determinar o posicionamento (cidades) de até k instalações para atender a um conjunto de $\mathfrak n$ clientes (cidades) com o menor custo possível. O custo de instalação na cidade $\mathfrak j\in [\mathfrak n]$ é dado por $\mathfrak f_{\mathfrak j}$, e o custo de atender a cidade $\mathfrak i\in [\mathfrak n]$ pela instalação da cidade $\mathfrak j\in [\mathfrak n]$ é dado por $\mathfrak c_{\mathfrak i\mathfrak j}$.

Variáveis de decisão

$y_j = \begin{cases} 1 & \text{, se a cidade } j \text{ recebe instalação,} \\ 0 & \text{, caso contrário.} \end{cases}$

$$x_{ij} = \begin{cases} 1 & \text{, se a cidade i \'e atendida pela j,} \\ 0 & \text{, caso contr\'ario.} \end{cases}$$

Facility location

Definição

Queremos determinar o posicionamento (cidades) de até k instalações para atender a um conjunto de n clientes (cidades) com o menor custo possível. O custo de instalação na cidade $j \in [n]$ é dado por f_j , e o custo de atender a cidade $i \in [n]$ pela instalação da cidade $j \in [n]$ é dado por c_{ij} .

Variáveis de decisão

$$y_j = \begin{cases} 1 & \text{, se a cidade } j \text{ recebe instalação,} \\ 0 & \text{, caso contrário.} \end{cases}$$

$$x_{ij} = \begin{cases} 1 & \text{, se a cidade } i \text{ \'e atendida pela j,} \\ 0 & \text{, caso contr\'ario.} \end{cases}$$

$$\label{eq:minimiza} \begin{split} & \underset{j \in [\pi]}{\sum} f_j y_j + \sum_{i,j \in [\pi]} c_{ij} x_{ij} \\ & \text{sujeito a} & \sum_{j \in [\pi]} y_j \leq k \end{split}$$

Facility location

Definição

Queremos determinar o posicionamento (cidades) de até k instalações para atender a um conjunto de n clientes (cidades) com o menor custo possível. O custo de instalação na cidade $j \in [n]$ é dado por f_j , e o custo de atender a cidade $i \in [n]$ pela instalação da cidade $j \in [n]$ é dado por c_{ij} .

Variáveis de decisão

$$y_j \ = \begin{cases} 1 & \text{, se a cidade } j \text{ recebe instalação,} \\ 0 & \text{, caso contrário.} \end{cases}$$

$$x_{ij} = \begin{cases} 1 & \text{, se a cidade i \'e atendida pela j,} \\ 0 & \text{, caso contr\'ario.} \end{cases}$$

Modelo matemático

$$\label{eq:minimiza} \begin{split} & \min \text{minimiza} & & \sum_{j \in [n]} f_j y_j + \sum_{i,j \in [n]} c_{ij} x_{ij} \\ & \text{sujeito a} & & \sum_{j \in [n]} y_j \leq k \\ & & & \sum_{j \in [n]} x_{ij} = 1, & & & i \in [n] \end{split}$$

Facility location

Definição

Queremos determinar o posicionamento (cidades) de até k instalações para atender a um conjunto de n clientes (cidades) com o menor custo possível. O custo de instalação na cidade $j \in [n]$ é dado por f_j , e o custo de atender a cidade $i \in [n]$ pela instalação da cidade $j \in [n]$ é dado por c_{ij} .

Variáveis de decisão

$$y_{j} \ = \begin{cases} 1 & \text{, se a cidade j recebe instalação,} \\ 0 & \text{, caso contrário.} \end{cases}$$

$$x_{ij} = \begin{cases} 1 & \text{, se a cidade } i \text{ \'e atendida pela j,} \\ 0 & \text{, caso contr\'ario.} \end{cases}$$

Modelo matemático

$$\label{eq:minimiza} \begin{split} & \underset{j \in [n]}{\sum} f_j y_j + \sum_{i,j \in [n]} c_{ij} x_{ij} \\ & \text{sujeito a} & \sum_{j \in [n]} y_j \leq k \\ & \sum_{j \in [n]} x_{ij} = 1, & i \in [n] \\ & x_{ij} \leq y_j, & i,j \in [n] \end{split}$$

Facility location

Definição

Queremos determinar o posicionamento (cidades) de até k instalações para atender a um conjunto de $\mathfrak n$ clientes (cidades) com o menor custo possível. O custo de instalação na cidade $\mathfrak j\in [\mathfrak n]$ é dado por $\mathfrak f_{\mathfrak j}$, e o custo de atender a cidade $\mathfrak i\in [\mathfrak n]$ pela instalação da cidade $\mathfrak j\in [\mathfrak n]$ é dado por $\mathfrak c_{\mathfrak i\mathfrak j}$.

Variáveis de decisão

$$y_j = \begin{cases} 1 & \text{, se a cidade } j \text{ recebe instalação,} \\ 0 & \text{, caso contrário.} \end{cases}$$

$$x_{ij} = \begin{cases} 1 & \text{, se a cidade i \'e atendida pela j,} \\ 0 & \text{, caso contr\'ario.} \end{cases}$$

Modelo matemático

$$\label{eq:minimiza} \begin{split} & \underset{j \in [n]}{\text{minimiza}} & & \underset{j \in [n]}{\sum} \, f_j y_j + \underset{i,j \in [n]}{\sum} \, c_{ij} x_{ij} \\ & \text{sujeito a} & & \underset{j \in [n]}{\sum} \, y_j \leq k \\ & & & \underset{j \in [n]}{\sum} \, x_{ij} = 1, & & i \in [n] \\ & & & x_{ij} \leq y_j, & & i,j \in [n] \\ & & & & y_j, x_{ij} \in \{0,1\}, & & i,j \in [n] \end{split}$$

Produção têxtil

Definição

Uma empresa fabrica camisetas, meias e calças, e dispõe de 150 h de trabalho e 160 m² de tecido por semana. Os dados referentes à produção são fornecidos abaixo. A empresa quer planejar sua produção semanal de modo a maximizar o lucro.

Produto	Aluguel máquina (p/ semana)	Tempo trabalho (h/unidade)	Tecido (m²/unidade)	Preço venda (\$/unidade)	Custo (\$/unidade)
Camiseta	200	3	4	12	6
Meia	150	2	3	8	4
Calça	100	6	4	15	8

Produção têxtil

Variáveis de decisão

Modelo matemático

 x_1 : quantidade de **camisetas** a produzir.

 x_2 : quantidade de **meias** a produzir.

 x_3 : quantidade de **calças** a produzir.

$$x_1, x_2, x_3 \in \mathbb{Z}_+$$

Produção têxtil

Variáveis de decisão

 x_1 : quantidade de **camisetas** a produzir.

 x_2 : quantidade de **meias** a produzir.

 x_3 : quantidade de **calças** a produzir.

$$x_1,x_2,x_3\in\mathbb{Z}_+$$

maximiza
$$6x_1 + 4x_2 + 7x_3$$

Produção têxtil

Variáveis de decisão

 $x_1, x_2, x_3 \in \mathbb{Z}_+$

 x_1 : quantidade de **camisetas** a produzir. x_2 : quantidade de **meias** a produzir. x_3 : quantidade de **calças** a produzir.

Produção têxtil

Variáveis de decisão

 x_1 : quantidade de **camisetas** a produzir.

 x_2 : quantidade de **meias** a produzir.

 x_3 : quantidade de **calças** a produzir.

$$x_1, x_2, x_3 \in \mathbb{Z}_+$$

Modelo matemático

Como incluir o custo de aluquel das máquinas necessárias para produção?

- Se há produção de um item, então o custo (fixo) de aluguel deve ser considerado.
- Ou seja, temos um condicional!

Produção têxtil

Restrições do tipo big-M

 $x \le My$

Produção têxtil

Restrições do tipo big-M

$$x \le My$$

Essa restrição resulta em:

- Se y = 0, então x deverá ser 0.
- ▶ Se y = 1, então x é limitado por M.
 - Para M suficientemente grande, x é ilimitado!

Produção têxtil

Restrições do tipo big-M

$$x \le My$$

Essa restrição resulta em:

- Se y = 0, então x deverá ser 0.
- Se y = 1, então x é limitado por M.
 - Para M suficientemente grande, x é ilimitado!

Observações:

- \triangleright Devemos calcular o maior valor que x pode assumir, para definir o valor de M.
- Quanto menor o valor de M (sem introduzir novas restrições), melhor!

Produção têxtil

Variáveis de decisão

 x_1 : quantidade de **camisetas** a produzir. x_2 : quantidade de **meias** a produzir.

 x_3 : quantidade de **calças** a produzir.

 $x_1, x_2, x_3 \in \mathbb{Z}_+$

Produção têxtil

Variáveis de decisão

 x_1 : quantidade de **camisetas** a produzir.

 x_2 : quantidade de **meias** a produzir.

 x_3 : quantidade de **calças** a produzir.

$$x_1, x_2, x_3 \in \mathbb{Z}_+$$

y₁: produção de **camiseta** ou não.

y₂: produção de **meia** ou não.

y₃: produção de **calça** ou não.

$$y_1, y_2, y_3 \in \{0,1\}$$

 x_1 : quantidade de **camisetas** a produzir.

 x_2 : quantidade de **meias** a produzir.

 x_3 : quantidade de **calças** a produzir.

$$x_1, x_2, x_3 \in \mathbb{Z}_+$$

y₁: produção de **camiseta** ou não.

y₂: produção de **meia** ou não.

y₃: produção de **calça** ou não.

$$y_1, y_2, y_3 \in \{0,1\}$$

Modelo matemático

maximiza
$$6x_1 + 4x_2 + 7x_3$$

 $-200y_1 - 150y_2 - 100y_3$
sujeito a $3x_1 + 2x_2 + 6x_3 \le 150$

 $4x_1 + 3x_2 + 4x_3 \le 160$

Variáveis de decisão

 x_1 : quantidade de **camisetas** a produzir.

 x_2 : quantidade de **meias** a produzir.

 x_3 : quantidade de **calças** a produzir.

$$x_1, x_2, x_3 \in \mathbb{Z}_+$$

y₁: produção de **camiseta** ou não.

y₂: produção de **meia** ou não.

y₃: produção de **calça** ou não.

$$y_1, y_2, y_3 \in \{0,1\}$$

maximiza
$$6x_1 + 4x_2 + 7x_3$$

 $-200y_1 - 150y_2 - 100y_3$
sujeito a $3x_1 + 2x_2 + 6x_3 \le 150$
 $4x_1 + 3x_2 + 4x_3 \le 160$
 $x_1 \le My_1$
 $x_2 \le My_2$
 $x_3 \le My_3$

Variáveis de decisão

 x_1 : quantidade de **camisetas** a produzir.

 x_2 : quantidade de **meias** a produzir.

 x_3 : quantidade de **calças** a produzir.

$$x_1, x_2, x_3 \in \mathbb{Z}_+$$

u₁: producão de **camiseta** ou não.

y₂: produção de **meia** ou não.

y₃: produção de **calça** ou não.

$$y_1, y_2, y_3 \in \{0,1\}$$

Modelo matemático

maximiza
$$6x_1 + 4x_2 + 7x_3$$

 $-200y_1 - 150y_2 - 100y_3$
sujeito a $3x_1 + 2x_2 + 6x_3 \le 150$
 $4x_1 + 3x_2 + 4x_3 \le 160$
 $x_1 \le My_1$
 $x_2 \le My_2$

 $x_3 \leq My_3$

 $x_1, x_2, x_3 \in \mathbb{Z}_+$ $y_1, y_2, y_3 \in \{0,1\}$

Produção têxtil

Note que:

- O modelo usa a notação M.
- ► A implementação usa algum valor.
 - ightharpoonup e.g. M = 50.
- M pode ser diferente para cada x_i.

maximiza
$$6x_1 + 4x_2 + 7x_3$$

 $-200y_1 - 150y_2 - 100y_3$
sujeito a $3x_1 + 2x_2 + 6x_3 \le 150$
 $4x_1 + 3x_2 + 4x_3 \le 160$
 $x_1 \le My_1$
 $x_2 \le My_2$
 $x_3 \le My_3$
 $x_1, x_2, x_3 \in \mathbb{Z}_+$
 $y_1, y_2, y_3 \in \{0,1\}$

Produção têxtil

Note que:

- O modelo usa a notação M.
- A implementação usa algum valor.
 - e.g. M = 50.
- M pode ser diferente para cada x_i.

Podemos **calcular** M para x_1 :

- Para a restrição 1, $3x_1 \le 150 \equiv x_1 \le 50$
- Para a restrição 2, $4x_1 \le 160 \equiv x_1 \le 40$
- ▶ Logo, M = 50 para x_1 .

maximiza
$$6x_1 + 4x_2 + 7x_3$$

 $-200y_1 - 150y_2 - 100y_3$
sujeito a $3x_1 + 2x_2 + 6x_3 \le 150$
 $4x_1 + 3x_2 + 4x_3 \le 160$
 $x_1 \le My_1$
 $x_2 \le My_2$
 $x_3 \le My_3$
 $x_1, x_2, x_3 \in \mathbb{Z}_+$
 $y_1, y_2, y_3 \in \{0,1\}$

Produção têxtil

Dados

Para $i = \{1, 2, ..., n\},\$

- n: número de produtos,
- A_i: aluguel da máquina para produto i,
- ▶ t_i: tempo para unidade do produto i,
- m_i: tecido para unidade do produto i,
- p_i: preço de venda do produto i,
- c_i: custo de produção do produto i,
- H: tempo de trabalho semanal disponível,
- T: estoque semanal de tecido.

Variáveis de decisão

 $\kappa_i\colon$ quantidade do produto i a produzir.

 $y_{\mathfrak{i}}\colon$ produção ou não do produto $\mathfrak{i}.$

Modelo matemático genérico

Produção têxtil

Dados

Para $i = \{1, 2, ..., n\},\$

- n: número de produtos,
- ► A_i: aluguel da máquina para produto i,
- ightharpoonup t_i: tempo para unidade do produto i,
- m_i: tecido para unidade do produto i,
- p_i: preço de venda do produto i,
- c_i: custo de produção do produto i,
- H: tempo de trabalho semanal disponível,
- T: estoque semanal de tecido.

Variáveis de decisão

 x_i : quantidade do produto i a produzir.

y_i: produção ou não do produto i.

Modelo matemático genérico

maximiza

$$\sum_{i \in [n]} x_i (p_i - c_i) - A_i y_i$$

sujeito a

$$\sum_{i \in [n]} x_i t_i \le H$$

$$\sum_{\mathfrak{i}\in[n]}x_{\mathfrak{i}}\mathfrak{m}_{\mathfrak{i}}\leq\mathsf{T}$$

$$x_i \leq My_i$$

$$x_i \in \mathbb{Z}_+$$

$$y_i \in \{0,1\}$$

Vertex cover

Definição

Dado um grafo G = (V, E), uma cobertura de (ou por) vértices é um conjunto $C \subseteq V$, tal que $u \in C$ ou $v \in C$, para toda aresta $\{u,v\} \in E$. Ou seja, o conjunto é considerado uma cobertura se toda a aresta possui ao menos uma de suas extremidades pertencentes ao conjunto. Na cobertura mínima, queremos a cobertura de menor tamanho, i.e. tal que |C| seja o menor possível.

Vertex cover

Definição

Dado um grafo G = (V, E), uma cobertura de (ou por) vértices é um conjunto $C \subseteq V$, tal que $u \in C$ ou $v \in C$, para toda aresta $\{u,v\} \in E$. Ou seja, o conjunto é considerado uma cobertura se toda a aresta possui ao menos uma de suas extremidades pertencentes ao conjunto. Na cobertura mínima, queremos a cobertura de menor tamanho, i.e. tal que |C| seja o menor possível.

Exemplo de aplicação

Instalar câmeras pelo bairro, de modo que cada rua seja monitorada por pelo menos uma delas.

Vertex cover

Definição

Dado um grafo G = (V, E), uma cobertura de (ou por) vértices é um conjunto $C \subseteq V$, tal que $u \in C$ ou $v \in C$, para toda aresta $\{u,v\} \in E$. Ou seja, o conjunto é considerado uma cobertura se toda a aresta possui ao menos uma de suas extremidades pertencentes ao conjunto. Na cobertura mínima, queremos a cobertura de menor tamanho, i.e. tal que |C| seja o menor possível.

Exemplo de aplicação

Instalar câmeras pelo bairro, de modo que cada rua seja monitorada por pelo menos uma delas.

Vertex cover

Definição

Dado um grafo G = (V, E), uma cobertura de (ou por) vértices é um conjunto $C \subseteq V$, tal que $u \in C$ ou $v \in C$, para toda aresta $\{u, v\} \in E$. Ou seja, o conjunto é considerado uma cobertura se toda a aresta possui ao menos uma de suas extremidades pertencentes ao conjunto. Na cobertura mínima, queremos a cobertura de menor tamanho, i.e. tal que |C| seja o menor possível.

Exemplo de aplicação

Instalar câmeras pelo bairro, de modo que cada rua seja monitorada por pelo menos uma delas.

Vertex cover

Definição

Dado um grafo G = (V, E), uma cobertura de (ou por) vértices é um conjunto $C \subseteq V$, tal que $u \in C$ ou $v \in C$, para toda aresta $\{u,v\} \in E$. Ou seja, o conjunto é considerado uma cobertura se toda a aresta possui ao menos uma de suas extremidades pertencentes ao conjunto. Na cobertura mínima, queremos a cobertura de menor tamanho, i.e. tal que |C| seja o menor possível.

Formulação

Variáveis de decisão

$$x_{\nu} = \begin{cases} 1 & \text{, se } \nu \in C \text{ (está na cobertura),} \\ 0 & \text{, caso contrário.} \end{cases}$$

Modelo matemático

$$\begin{array}{ll} \text{minimiza} & \displaystyle \sum_{\nu \in V} x_{\nu} \\ \text{sujeito a} & \displaystyle x_{u} + x_{\nu} \geq 1 & , \, \forall \{u, \nu\} \in E \\ & \displaystyle x_{\nu} \in \{0, 1\} & , \, \forall \nu \in V \end{array}$$

Shortest path

Definição

Dado um grafo dirigido e ponderado G=(V,A) com pesos c_{ij} para $(i,j)\in A$, vértices $s,t\in V$ de origem e destino, respectivamente, queremos encontrar um caminho de $s \rightarrow t$ de menor custo.

Shortest path

Definição

Dado um grafo dirigido e ponderado G = (V, A) com pesos c_{ij} para $(i,j) \in A$, vértices $s,t \in V$ de origem e destino, respectivamente, queremos encontrar um caminho de $s \rightsquigarrow t$ de menor custo.

Fluxo em redes

Definimos uma solução como o fluxo em cada arco do grafo. Seja f_{ij} o fluxo do arco $(i,j) \in A$,

- ightharpoonup se $f_{ij} = 1$, então há fluxo no arco e ele faz parte do caminho mínimo;
- > se f_{ii} = 0, então o arco não faz parte do caminho mínimo.

Shortest path

Definição

Dado um grafo dirigido e ponderado G = (V, A) com pesos c_{ij} para $(i,j) \in A$, vértices $s,t \in V$ de origem e destino, respectivamente, queremos encontrar um caminho de $s \rightsquigarrow t$ de menor custo.

Fluxo em redes

Definimos uma solução como o fluxo em cada arco do grafo. Seja f_{ij} o fluxo do arco $(i,j) \in A$,

- ▶ se f_{ii} = 1, então há fluxo no arco e ele faz parte do caminho mínimo;
- ightharpoonup se $f_{ij} = 0$, então o arco não faz parte do caminho mínimo.

Um pouco (mais) de notação:

- \triangleright N⁺(i): sucessores de i \in V.
 - e.g., $N^+(e) = \{b, g, h\}.$
- \triangleright N⁻(i): antecessores de i \in V.
 - \triangleright e.g., $N^{-}(e) = \{d, f\}.$

Shortest path

Definição

Dado um grafo dirigido e ponderado G=(V,A) com pesos c_{ij} para $(i,j)\in A$, vértices $s,t\in V$ de origem e destino, respectivamente, queremos encontrar um caminho de $s\rightsquigarrow t$ de menor custo.

Modelo matemático

$$\label{eq:minimiza} \begin{array}{ll} & \displaystyle \sum_{(i,j)\in A} c_{ij} f_{ij} \\ \\ \text{sujeito a} & \displaystyle \sum_{j\in N^+(i)} f_{ij} - \sum_{j\in N^-(i)} f_{ji} = \left\{ \begin{array}{ll} 1 \text{ , se } i = s, \\ 0 \text{ , se } i \neq s,t, \\ -1 \text{ , se } i = t. \end{array} \right. & , \, \forall i \in V \\ \\ f_{ij} \in \{0,1\} & , \, \forall (i,j) \in A \end{array}$$

Diversidade máxima

Maximum diversity

Definição

Dado um conjunto de n elementos, onde d_{ij} é a diferença (ou distância) entre cada par de elementos $i,j\in [n]$, queremos selecionar exatamente m< n elementos, de forma a maximizar a diferença (i.e. a diversidade) entre os elementos selecionados.

Diversidade máxima

Maximum diversity

Definição

Dado um conjunto de n elementos, onde d_{ij} é a diferença (ou distância) entre cada par de elementos $i,j \in [n]$, queremos selecionar exatamente m < n elementos, de forma a maximizar a diferença (i.e. a diversidade) entre os elementos selecionados.

Exemplos de aplicações

Formação de equipe e escolha de produtos de catálogo com características variadas.

Diversidade máxima

Maximum diversity

Definição

Dado um conjunto de n elementos, onde d_{ij} é a diferença (ou distância) entre cada par de elementos $i,j \in [n]$, queremos selecionar exatamente m < n elementos, de forma a maximizar a diferença (i.e. a diversidade) entre os elementos selecionados.

Formulação

Variáveis de decisão

$x_i = \begin{cases} 1 & \text{, se o elemento i \'e selecioando,} \\ 0 & \text{, caso contr\'ario.} \end{cases}$

