Eigenvalues of Schrödinger operators perturbed by dissipative barriers

Alexei Stepanenko

PhD supervisors: Jonathan Ben-Artzi and Marco Marletta

Cardiff University

February 2, 2021

Consider the Schrödinger operator

$$H_R:=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+q+i\gamma\chi_{[0,R]}\quad ext{on}\quad L^2(\mathbb{R}_+) \qquad (R>0),$$

endowed with a Dirichlet boundary condition at 0, where:

- 1. $q \in L^1(\mathbb{R}_+)$ (background potential)
- 2. $\gamma > 0$.
- ▶ Multiplication operator $i\gamma\chi_{[0,R]}$ is referred to as a dissipative barrier.

Consider the Schrödinger operator

$$H_R:=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+q+i\gamma\chi_{[0,R]}\quad ext{on}\quad L^2(\mathbb{R}_+) \qquad (R>0),$$

endowed with a Dirichlet boundary condition at 0, where:

- 1. $q \in L^1(\mathbb{R}_+)$ (background potential)
- 2. $\gamma > 0$.
- ▶ Multiplication operator $i\gamma\chi_{[0,R]}$ is referred to as a dissipative barrier.
- Dissipative barriers are useful in numerical analysis and arise in many settings.

Consider the Schrödinger operator

$$H_R:=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+q+i\gamma\chi_{[0,R]}\quad ext{on}\quad L^2(\mathbb{R}_+) \qquad (R>0),$$

endowed with a Dirichlet boundary condition at 0, where:

- 1. $q \in L^1(\mathbb{R}_+)$ (background potential)
- 2. $\gamma > 0$.
- ▶ Multiplication operator $i\gamma\chi_{[0,R]}$ is referred to as a dissipative barrier.
- Dissipative barriers are useful in numerical analysis and arise in many settings.

Question: How do the eigenvalues of H_R behave for large R?

[1] Spectral inclusion and pollution for a class of dissipative perturbations, S., Journal of Mathematical Physics **62**, 013501 (2021) arXiv:2006.10097

Consider the Schrödinger operator

$$H_R:=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+q+i\gamma\chi_{[0,R]}\quad ext{on}\quad L^2(\mathbb{R}_+) \qquad (R>0),$$

endowed with a Dirichlet boundary condition at 0, where:

- 1. $q \in L^1(\mathbb{R}_+)$ (background potential)
- 2. $\gamma > 0$.
- ▶ Multiplication operator $i\gamma\chi_{[0,R]}$ is referred to as a dissipative barrier.
- Dissipative barriers are useful in numerical analysis and arise in many settings.

Question: How do the eigenvalues of H_R behave for large R?

- [1] Spectral inclusion and pollution for a class of dissipative perturbations, S., Journal of Mathematical Physics **62**, 013501 (2021) arXiv:2006.10097
- [2] Bounds for Schrödinger operators on the half-line perturbed by dissipative barriers, S., Submitted. (2020) arXiv:2010.05663

We have (as $R \to \infty$)

$$H_R = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q + i\gamma\chi_{[0,R]} \xrightarrow{\mathrm{s}} -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q + i\gamma =: H_{\infty}.$$

We have (as $R \to \infty$)

$$H_R = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q + i\gamma\chi_{[0,R]} \xrightarrow{\mathrm{s}} -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q + i\gamma =: H_{\infty}.$$

Question: Is $\sigma(H_{\infty})$ approximated by $\sigma(H_R)$?

We have (as $R \to \infty$)

$$H_R = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q + i\gamma\chi_{[0,R]} \xrightarrow{\mathrm{s}} -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q + i\gamma =: H_{\infty}.$$

Question: Is $\sigma(H_{\infty})$ approximated by $\sigma(H_R)$?

Theorem 1 ([1])

(a) For any eigenvalue λ of H_{∞} , there exists eigenvalues λ_R of H_R and constants $C_0, \beta, R_0 > 0$ such that

$$|\lambda_R - \lambda| \leqslant C_0 e^{-\beta R}$$
 $(R \geqslant R_0).$

We have (as $R \to \infty$)

$$H_R = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q + i\gamma\chi_{[0,R]} \xrightarrow{\mathrm{s}} -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + q + i\gamma =: H_{\infty}.$$

Question: Is $\sigma(H_{\infty})$ approximated by $\sigma(H_R)$?

Theorem 1 ([1])

(a) For any eigenvalue λ of H_{∞} , there exists eigenvalues λ_R of H_R and constants $C_0, \beta, R_0 > 0$ such that

$$|\lambda_R - \lambda| \leqslant C_0 e^{-\beta R}$$
 $(R \geqslant R_0).$

(b) If $\exists \varepsilon > 0$: $\int e^{\varepsilon t} |q(t)| dt < \infty$, then for (almost¹) any $\mu \in \sigma_{\rm ess}(H_{\infty})$ there exists eigenvalues λ_R of H_R and constants C_0 , $R_0 > 0$ such that

$$|\lambda_R - \mu| \leqslant \frac{C_0}{R}$$
 $(R \geqslant R_0).$

¹Any $\mu \in \sigma_{ess}(\mathcal{H}_{\infty})$ which is not an embedded resonance or the band-end.

Theorem 1 ([1])

(a) For any eigenvalue λ of H_{∞} , there exists eigenvalues λ_R of H_R and constants $C_0, \beta, R_0 > 0$ such that

$$|\lambda_R - \lambda| \leqslant C_0 e^{-\beta R}$$
 $(R \geqslant R_0).$

(b) If $\exists \varepsilon > 0$: $\int e^{\varepsilon t} |q(t)| \, \mathrm{d}t < \infty$, then for (almost) any $\mu \in \sigma_{\mathrm{ess}}(H_{\infty})$ there exists eigenvalues λ_R of H_R and constants C_0 , $R_0 > 0$ such that

$$|\lambda_R - \mu| \leqslant \frac{C_0}{R}$$
 $(R \geqslant R_0).$

Re

8

10

12

Next steps:

 \triangleright Enclosures for the eigenvalues of H_R

Example

Next steps:

- \triangleright Enclosures for the eigenvalues of H_R .
- ▶ Estimates for the number of eigenvalues $N(H_R)$.

Enclosures

Theorem 2 ([2])

(a) \exists constant $X=X(q,\gamma)>0$ such that $\forall R>0$ the eigenvalues of H_R lie in

$$\Gamma := B_X(0) \cup ([0,\infty) + i[0,\gamma]).$$

Enclosures

Theorem 2 ([2])

- (a) \exists constant $X = X(q, \gamma) > 0$ such that $\forall R > 0$ the eigenvalues of H_R lie in $\Gamma := B_X(0) \cup ([0, \infty) + i[0, \gamma]).$
- (b) \exists constant $R_0 = R_0(q, \gamma) > 0$ such that any eigenvalue λ_R of H_R satisfies $\sqrt{|\lambda_R i\gamma|} \leqslant \frac{5\gamma R}{\log R} \qquad (R \geqslant R_0).$

Enclosures

Theorem 2 ([2])

(a) \exists constant $X=X(q,\gamma)>0$ such that $\forall R>0$ the eigenvalues of H_R lie in

$$\Gamma := B_X(0) \cup ([0,\infty) + i[0,\gamma]).$$

(b) \exists constant $R_0 = R_0(q, \gamma) > 0$ such that any eigenvalue λ_R of H_R satisfies

$$\sqrt{|\lambda_R - i\gamma|} \leqslant \frac{5\gamma R}{\log R}$$
 $(R \geqslant R_0).$

▶ To compare to (b), application of a *sharp* enclosure of Frank, Laptev and Seiringer (2011) gives $\sqrt{|\lambda_R|} = O(R)$.

Ideas in proof of Theorem 2.

1. Use large- $|\lambda|$ Levinson asymptotics: Solutions $\psi_{\pm}(\cdot,\lambda)$ to $-\psi'' + q\psi = \lambda\psi$ such that

$$\psi_{\pm}(x,\lambda) = e^{\pm i\sqrt{\lambda}x}(1+E_{\pm}(x,\lambda))$$

where

$$|E_{\pm}(x,\lambda)| = O\left(\frac{1}{\sqrt{|\lambda|}}\right)$$
 as $|\lambda| \to \infty$.

Ideas in proof of Theorem 2.

1. Use large- $|\lambda|$ Levinson asymptotics: Solutions $\psi_{\pm}(\cdot,\lambda)$ to $-\psi'' + g\psi = \lambda\psi$ such that

$$\psi_{\pm}(x,\lambda) = e^{\pm i\sqrt{\lambda}x}(1+E_{\pm}(x,\lambda))$$

where

$$|E_{\pm}(x,\lambda)| = O\left(rac{1}{\sqrt{|\lambda|}}
ight) \quad ext{as} \quad |\lambda| o \infty.$$

2. Construct analytic function f_R such that

$$\lambda$$
 eigenvalue of $H_R \iff f_R(\lambda) = 0$.

 f_R has form

$$f_{R}(\lambda) = \psi_{-}(0, \lambda - i\gamma) \left(\sqrt{\lambda} - \sqrt{\lambda - i\gamma} + \mathcal{E}_{1}(R, \lambda) \right) e^{i\sqrt{\lambda - i\gamma}R}$$
$$- \psi_{+}(0, \lambda - i\gamma) \left(\sqrt{\lambda} + \sqrt{\lambda - i\gamma} + \mathcal{E}_{2}(R, \lambda) \right) e^{-i\sqrt{\lambda - i\gamma}R}$$

where $|\mathcal{E}_1(R,\lambda)| + |\mathcal{E}_2(R,\lambda)| \leqslant C(q,\gamma)$.

Notation. $N(H_R)$ = Number of eigenvalues of H_R .

Notation. $N(H_R)$ = Number of eigenvalues of H_R .

Theorem 3 ([2])

(a) If q is compactly supported, then there exists constant $R_0=R_0(q,\gamma)>0$ such that

$$N(H_R) \leqslant \frac{11}{\log 2} \frac{\gamma R^2}{\log R}$$
 $(R \geqslant R_0)$.

Notation. $N(H_R)$ = Number of eigenvalues of H_R .

Theorem 3 ([2])

(a) If q is compactly supported, then there exists constant $R_0=R_0(q,\gamma)>0$ such that

$$N(H_R) \leqslant \frac{11}{\log 2} \frac{\gamma R^2}{\log R}$$
 $(R \geqslant R_0).$

(b) If $\exists a > 0$: $\int e^{4at} |q(t)| dt < \infty$, then

$$N(H_R) \leqslant C \frac{\sqrt{X} + a}{a^2} \frac{\gamma R^3}{(\log R)^2} \qquad (R \geqslant R_0)$$

where $X = X(q, \gamma) > 0$ appeared in Th. 2 (a) and C = 88788.

Notation. $N(H_R)$ = Number of eigenvalues of H_R .

Theorem 3 ([2])

(a) If q is compactly supported, then there exists constant $R_0=R_0(q,\gamma)>0$ such that

$$N(H_R) \leqslant \frac{11}{\log 2} \frac{\gamma R^2}{\log R}$$
 $(R \geqslant R_0).$

(b) If $\exists a > 0$: $\int e^{4at} |q(t)| dt < \infty$, then

$$N(H_R) \leqslant C \frac{\sqrt{X} + a}{a^2} \frac{\gamma R^3}{(\log R)^2}$$
 $(R \geqslant R_0)$

where $X = X(q, \gamma) > 0$ appeared in Th. 2 (a) and C = 88788.

▶ Comparing to application of results in the literature:

	Th. 3	Application of literature
Compactly supported	$N(H_R) = O\left(\frac{R^2}{\log R}\right)$	$N(H_R) = O(R^2)$ Korotyaev (2020)

Notation. $N(H_R)$ = Number of eigenvalues of H_R .

Theorem 3 ([2])

(a) If q is compactly supported, then there exists constant $R_0 = R_0(q, \gamma) > 0$ such that

$$N(H_R) \leqslant \frac{11}{\log 2} \frac{\gamma R^2}{\log R}$$
 $(R \geqslant R_0).$

(b) If $\exists a > 0$: $\int e^{4at} |q(t)| dt < \infty$, then

$$N(H_R) \leqslant C \frac{\sqrt{X} + a}{a^2} \frac{\gamma R^3}{(\log R)^2}$$
 $(R \geqslant R_0)$

where $X = X(q, \gamma) > 0$ appeared in Th. 2 (a) and C = 88788.

▶ Comparing to application of results in the literature:

	Th. 3	Application of literature
Compactly supported	$N(H_R) = O\left(\frac{R^2}{\log R}\right)$	$N(H_R) = O(R^2)$ Korotyaev (2020)
Naimark	$N(H_R) = O\left(\frac{R^3}{(\log R)^2}\right)$	$N(H_R) = O(R^4)$ Frank, Laptev, Safronov (2016)

	Th. 3	Application of literature
Compactly supported	$N(H_R) = O\left(\frac{R^2}{\log R}\right)$	$N(H_R) = O(R^2)$ Korotyaev (2020)
Naimark	$N(H_R) = O\left(\frac{R^3}{(\log R)^2}\right)$	$N(H_R) = O(R^4)$ Frank, Laptev, Safronov (2016)
	1	

 $Ideas\ in\ proof\ of\ Theorem\ 3.$

1. Construct analytic function g_R on \mathbb{C}_+ such that

$$g_R(z) = 0 \iff z^2 \text{ eigval of } H_R.$$

	Th. 3	Application of literature
Compactly supported	$N(H_R) = O\left(\frac{R^2}{\log R}\right)$	$N(H_R) = O(R^2)$ Korotyaev (2020)
Naimark	$N(H_R) = O\left(\frac{R^3}{(\log R)^2}\right)$	$N(H_R) = O(R^4)$ Frank, Laptev, Safronov (2016)

Ideas in proof of Theorem 3.

1. Construct analytic function g_R on \mathbb{C}_+ such that

$$g_R(z) = 0 \iff z^2 \text{ eigval of } H_R.$$

2. If q compactly supported, g_R admits analytic continuation to \mathbb{C} .

	Th. 3	Application of literature
Compactly supported	$N(H_R) = O\left(\frac{R^2}{\log R}\right)$	$N(H_R) = O(R^2)$ Korotyaev (2020)
Naimark	$N(H_R) = O\left(\frac{R^3}{(\log R)^2}\right)$	$N(H_R) = O(R^4)$ Frank, Laptev, Safronov (2016)

Ideas in proof of Theorem 3.

1. Construct analytic function g_R on \mathbb{C}_+ such that

$$g_R(z) = 0 \iff z^2 \text{ eigval of } H_R.$$

- 2. If q compactly supported, g_R admits analytic continuation to \mathbb{C} .
 - Apply Jensen's formula to bound $N(H_R)$ and prove Th. 3 (a).

3. $\exists a > 0 : \int e^{4at} |q(t)| dt < \infty$

 $\Rightarrow g_R$ admits analytic continuation to $\{\Im z > -2a\}$.

- 3. $\exists a > 0 : \int e^{4at} |q(t)| dt < \infty$ $\Rightarrow g_R$ admits analytic continuation to $\{\Im z > -2a\}$.
 - ► Enclosure Th. $2 \Rightarrow \Im \sqrt{\lambda_R} \leqslant \sqrt{X}$ for any eigval λ_R of H_R (recall that $X = X(q, \gamma) > 0$).

- 3. $\exists a > 0$: $\int e^{4at} |q(t)| dt < \infty$
 - \Rightarrow g_R admits analytic continuation to $\{\Im z > -2a\}$.
 - ► Enclosure Th. $2 \Rightarrow \Im \sqrt{\lambda_R} \leqslant \sqrt{X}$ for any eigval λ_R of H_R (recall that $X = X(q, \gamma) > 0$).
 - Prove bound for number of zeros of an arbitrary analytic function on $\{\Im z > -2a\}$ in the region

$$D_{r,X} := \left\{ z \in \mathbb{C}_+ : \Im z \leqslant \sqrt{X}, \, |z| \leqslant r \right\}.$$

- 3. $\exists a > 0 : \int e^{4at} |q(t)| dt < \infty$ $\Rightarrow g_R$ admits analytic continuation to $\{\Im z > -2a\}$.
 - \Rightarrow g_R admits analytic continuation to $\{3z > -2a\}$.
 - ► Enclosure Th. $2 \Rightarrow \Im\sqrt{\lambda_R} \leqslant \sqrt{X}$ for any eigval λ_R of H_R (recall that $X = X(q, \gamma) > 0$).
 - Prove bound for number of zeros of an arbitrary analytic function on $\{\Im z > -2a\}$ in the region

$$D_{r,X} := \Big\{ z \in \mathbb{C}_+ : \Im z \leqslant \sqrt{X}, \, |z| \leqslant r \Big\}.$$

▶ Apply this bound to g_R with $r = O(R/\log R)$.

Thanks for listening!

References

- [1] Spectral inclusion and pollution for a class of dissipative perturbations, S., Journal of Mathematical Physics 62, 013501 (2021) arXiv:2006.10097
- [2] Bounds for Schrödinger operators on the half-line perturbed by dissipative barriers, S., Submitted. (2020) arXiv:2010.05663
- [3] A Sharp Bound on Eigenvalues of Schrödinger Operators on the Half-line with Complex-valued Potentials, R Frank, A Laptev, R Seiringer, in Spectral Theory and Analysis, Operator Theory: Advances and Applications. Springer, Basel, pp. 39–44 (2011)
- [4] Trace formulas for Schrödinger operators with complex potentials on a half line, E Korotyaev, Lett Math Phys 110, 1–20 (2020)
- [5] On the number of eigenvalues of Schrödinger operators with complex potentials, R Frank, A Laptev, O Safronov, Journal of the London Mathematical Society **94**, 377–390 (2016)

Appendix

Proposition

Suppose that f is an analytic function defined on an open neighbourhood of the closed semi-disc $D_r:=\overline{B}_r(0)\cap\overline{\mathbb{C}}_+$ for some r>0. Let α and β be any numbers in the interval (0,1) satisfying

$$\beta \left(\frac{1-\alpha}{\alpha+\beta}\right)^2 > \frac{Y}{\eta} \tag{1}$$

and let $N(\alpha r)$ denote the number of zeros in the region

$$D_{\alpha r, \eta, Y} := \{ z \in \mathbb{C} : \eta \leqslant \Im z \leqslant Y, |z| \leqslant \alpha r \}$$
 (2)

where $Y, \eta > 0$ are given parameters satisfying $\eta < Y < r$. Then,

$$N(\alpha r) \leqslant \frac{2}{\log \Lambda(r)} \log \left(\frac{1}{\min\{\beta, 1 - \beta\}} \frac{\sup_{z \in \partial D_r} |f(z)|}{|f(i\beta r)|} \right)$$
(3)

where

$$\Lambda(r) := \frac{1 + \frac{4\beta\eta}{(\alpha + \beta)^2} \frac{1}{r}}{1 + \frac{4Y}{(1 - \alpha)^2} \frac{1}{r}}.$$
 (4)

Remark

One can always guarantee that condition (1) for α and β is satisfied by choosing, for instance,

$$\alpha = \beta = \frac{1}{4} \frac{\eta}{2Y + n}.\tag{5}$$