```
index.qmd ×
(□□) | Ø□ | □ Render on Save | 🎳 Q | ■ Render ۞ ▼
                                                                                    🛂 🗸 🔐 🕒 📑 Run 🗸 💁 Publish 🧸
Source Visual
                                                                                                          Outline
  1 - ---
  2 title: "Reproducible Report: Lincoln Weather Analysis"
    format: html
  4
  5
  6 * ## Lincoln, NE 2016 Temperature Distribution
  7
    ### Overview
    This Quarto document demonstrates how to integrate external data, R code, and advanced visualizations
 10
     into a single, seamless report. We are using the built-in lincoln_weather dataset from the ggridges
     package to explore the distribution of mean daily temperatures throughout the year 2016.
     Ridge Plot Visualization
 11
 12
 13 * ```{r}
                                                                                                         徐 ▼ ▶
    # Load necessary visualization and data libraries
    library(ggplot2)
 15
    library(ggridges)
    library(viridis)
 17
 18
 19
     # Load the data, which is included in the ggridges package
     lincoln_weather <- ggridges::lincoln_weather
 21
    # Generate the plot
 22
    ggplot(
 23
       lincoln_weather,
 24
       # Use after_stat(x) for the fill aesthetic, representing the temperature gradient
 25
       aes(x = `Mean Temperature [F]`, y = `Month`, fill = after_stat(x))
 26
 27 ) +
 28
       geom_density_ridges_gradient(scale = 3, rel_min_height = 0.01) +
       andle fill wimidia/name - UTame FFTU antian - UCU\ .
 20
                                                                                                           Quarto $
12:1
Console
                                                                                                             # -
```

```
index.gmd X
                                                         Render on Save Source Visual

    index.gmd > 	≡ Lincoln, NE 2016 Temperature Distribution > ≡ Overview

  1
       title: "Reproducible Report: Lincoln Weather Analysis"
  2
  3
       format: html
  4
  5
  6
       ## Lincoln, NE 2016 Temperature Distribution
  7
       ### Overview
  8
  9
       This Quarto document demonstrates how to integrate external data, R code, and
 10
       advanced visualizations into a single, seamless report. We are using the
       built-in lincoln_weather dataset from the ggridges package to explore the
       distribution of mean daily temperatures throughout the year 2016.
       Ridge Plot Visualization
 11
 12
       Run Cell
 13
       ```{r}
 # Load necessary visualization and data libraries
 14
 library(ggplot2)
 15
 16
 library(ggridges)
 17
 library(viridis)
 18
 # Load the data, which is included in the ggridges package
 19
 20
 lincoln_weather <- ggridges::lincoln_weather</pre>
 21
 22
 # Generate the plot
 23
 ggplot(
 24
 lincoln_weather,
 25
 # Use after_stat(x) for the fill aesthetic, representing the temperature
 gradient
 aes(x = `Mean Temperature [F]`, y = `Month`, fill = after_stat(x))
 26
 27
 28
 geom_density_ridges_gradient(scale = 3, rel_min_height = 0.01) +
 scale_fill_viridis(name = "Temp. [F]", option = "C") +
 29
 DEBUG CONSOLE + ∨ | − × □ □
 TERMINAL
 OUTPUT PORTS
CONSOLE
 PROBLEMS
```

















## quarto

```
index.qmd
 to - ↑ . I → Run - 5 Publish -
 Render
 Render on Save
Source Visual

 Outline

 2 title: "Reproducible Report: Lincoln Weather Analysis"
 3 format: html
 6 - ## Lincoln, NE 2016 Temperature Distribution
 8 - ### Overview
 10 This Quarto document demonstrates how to integrate external data, R code, and advanced visualizations
 into a single, seamless report. We are using the built-in lincoln_weather dataset from the ggridges
 package to explore the distribution of mean daily temperatures throughout the year 2016.
 11 Ridge Plot Visualization
 12
 13 * ```{r}
 14 # Load necessary visualization and data libraries
 15 library(ggplot2)
 16 library(ggridges)
 17 library(viridis)
 18
 19 # Load the data, which is included in the ggridges package
 20 lincoln_weather <- ggridges::lincoln_weather
 21
 22 # Generate the plot
 23 ggplot(
 lincoln_weather,
 # Use after_stat(x) for the fill aesthetic, representing the temperature gradient
 aes(x = `Mean Temperature [F]`, y = `Month`, fill = after_stat(x))
 27) +
 geom_density_ridges_gradient(scale = 3, rel_min_height = 0.01) +
 ---1- fill wimidia/name - "Tame FFI" ---ian - "C")
 Quarto $
```



```
index.qmd X
 ☐ Preview Render on Save
 Source Visual

 index.qma → □ Lincoln, NE 2016 Temperature Distribution → □ Overview

 title: "Reproducible Report: Lincoln Weather Analysis"
 format: html
 ## Lincoln, NE 2016 Temperature Distribution
 ### Overview
 This Quarto document demonstrates how to integrate external data, R code, and
 advanced visualizations into a single, seamless report. We are using the
 built-in lincoln_weather dataset from the ggridges package to explore the
 distribution of mean daily temperatures throughout the year 2016.
 Ridge Plot Visualization
 Run Cell
 1111
 # Load necessary visualization and data libraries
 library(ggplot2)
 library(ggridges)
 library(viridis)
 18
 # Load the data, which is included in the ggridges package
 lincoln_weather <- ggridges::lincoln_weather</pre>
 21
 # Generate the plot
 23
 ggplot(
 lincoln_weather,
 # Use after_stat(x) for the fill aesthetic, representing the temperature
 25
 aes(x = `Mean Temperature [F]`, y = `Month`, fill = after_stat(x))
 geom_density_ridges_gradient(scale = 3, rel_min_height = 0.01) +
 scale_fill_viridis(name = "Temp. [F]", option = "C") +
 29
 CONSOLE
```





