

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta085

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul vectorului $\vec{v} = 3\vec{i} + 4\vec{j} + 12\vec{k}$.
- (4p) b) Să se calculeze distanța de la punctul D(2,0,3) la planul 2x + y + 5z 4 = 0.
- (4p) c) Să se determine coordonatele punctelor de intersecție dintre elipsa de ecuație $x^2 + \frac{y^2}{4} = 1$ și dreapta de ecuație y = 2x.
- (4p) d) Să se arate că $\sin 2 > \cos 2$.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(2,3), B(4,9) și C(8,27).
- (2p) f) Să se determine $a, b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $(\sin 15^{\circ} + i \cos 15^{\circ})^{3} = a + bi$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se arate că $\log_3 4 > 1$.
- (3p) b) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbb{Z}_5$ să verifice relația $\hat{x}^2 = \hat{1}$.
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^3 + 3x + 6$ are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(10).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $2^x + 8^x = 10$.
- (3p) e) Să se calculeze produsul rădăcinilor polinomului $f = X^3 X + 10$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 3^x x 2$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f'(x)dx$.
- (3p) c) Să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$.
- (3p) e) Să se calculeze $\lim_{x\to\infty} \frac{f'(x)}{f(x)}$.

SUBIECTUL III (20p)

1

Ministerul Educației și Cercetării – Serviciul Național de Evaluare și Examinare

Se consideră polinoamele $f = a + bX + cX^2 + dX^3$ și $g = X^4 - 1$, unde $a, b, c, d \in \mathbb{C}$, iar g

Se consideră polinoamele
$$f = a + bX + cX^2 + dX^3$$
 și $g = X^4 - 1$, unde $a, b, c, d \in \mathbb{C}$, iar g are rădăcinile $x_1, x_2, x_3, x_4 \in \mathbb{C}$ și matricele $A = \begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix}$ și $V = \begin{pmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{pmatrix}$.

(4p) a) Să se verifice că
$$g = (X^2 - 1)(X^2 + 1)$$

(4p) b) Să se arate că
$$\det(V) = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1)(x_3 - x_2)(x_4 - x_2)(x_4 - x_3)$$
.

(4p) c) Să se determine rangul matricei
$$V$$
.

(2p) d) Să se arate că
$$AV = \begin{pmatrix} f(x_1) & f(x_2) & f(x_3) & f(x_4) \\ x_1 f(x_1) & x_2 f(x_2) & x_3 f(x_3) & x_4 f(x_4) \\ x_1^2 f(x_1) & x_2^2 f(x_2) & x_3^2 f(x_3) & x_4^2 f(x_4) \\ x_1^3 f(x_1) & x_2^3 f(x_2) & x_3^3 f(x_3) & x_4^3 f(x_4) \end{pmatrix}.$$

(2p) e) Utilizând relația
$$\det(X \cdot Y) = \det(X) \cdot \det(Y), \forall X, Y \in \mathbf{M}_4(\mathbf{C})$$
, să se arate că $\det(A) = f(x_1)f(x_2)f(x_3)f(x_4)$.

(2p) f) Pentru
$$a = c = d = 0$$
 şi $b = 1$, să se calculeze A^2 şi A^4 .

(2p) g) Pentru
$$a = c = d = 0$$
 şi $b = 1$, să se arate că matricea A este inversabilă şi să se calculeze inversa sa.

SUBIECTUL IV (20p)

Se consideră $n \in \mathbb{N}^*$ și funcțiile $f:[0,\infty) \to \mathbb{R}$, $f(x) = e^{-x}x^n$, $g:[0,\infty) \to \mathbb{R}$, $g(x) = 1 - e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right)$ și $h: [0, \infty) \to \mathbb{R}$, $h(x) = \frac{1}{n!} \int_{0}^{x} f(t) dt$.

(4p) a) Să se calculeze
$$g(0)$$
 și $h(0)$.

(4p) b) Să se verifice că
$$g'(x) = h'(x)$$
, $\forall x \ge 0$.

(4p) c) Să se arate că
$$h(x) = g(x), \forall x \ge 0$$
.

(2p) d) Să se calculeze
$$\lim_{x \to \infty} f(x)$$
.

(2p) e) Să se arate că
$$0 \le g(x) \le \frac{e^{-x} x^{n+1}}{n!}, \ \forall x \in [0, n].$$

(2p) **f**) Să se arate că dacă
$$x \ge 0$$
, atunci $\lim_{n \to \infty} \frac{x^{n+1}}{n!} = 0$.

(2p) g) Să se demonstreze că
$$\lim_{n\to\infty} \left(1+\frac{x}{1!}+\frac{x^2}{2!}+...+\frac{x^n}{n!}\right) = e^x, \forall x \ge 0.$$