Learning relational meanings from situated caregiver-child interaction

A computational approach

Barend Beekhuizen¹, Afsaneh Fazly², Aida Nematzadeh² & Suzanne Stevenston²

¹Leiden University ²University of Toronto

ICLC, 25 June 2013

Introduction

Topic

Cognitive models of acquiring word-meaning mappings

Goals

- methodological issues: Discuss sources of semantic data for models and present a new one
- Providing a baseline: Explore the behavior of a basic word-learning model on this data
- extending the model: Show how we can add 'modules' to the model

- $\bullet \ \mathsf{Cross\text{-}situational} \ \mathsf{learning} \to \mathsf{computational} \ \mathsf{models} \\$
- Input: utterances and situations (source: synthetic or video)

- ullet Cross-situational learning o computational models
- Input: utterances and situations (source: synthetic or video)

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.

- ullet Cross-situational learning o computational models
- Input: utterances and situations (source: synthetic or video)

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.

- 32 dyads (child 16mo, \pm 5 min. each) playing game.
- 175 minutes of material, 7842 word tokens, 2492 utterances.
- Situational coding. For every interval of 3 seconds, code:
 - simple behavior (grab, move, position, letgo),
 - changes in spatial relations (in,on,out,off,match),
 - objects (block, bucket, mother, table)
 - properties (triangular, square, red, blue)

- ullet Cross-situational learning o computational models
- Input: utterances and situations (source: synthetic or video)

Provide situational descriptions (of properties, objects, relations, actions) for a dataset of videotaped caregiver-child interaction that can function as a source for acquiring (first) word meanings.

- 32 dyads (child 16mo, \pm 5 min. each) playing game.
- 175 minutes of material, 7842 word tokens, 2492 utterances.
- Situational coding. For every interval of 3 seconds, code:
 - simple behavior (grab, move, position, letgo),
 - changes in spatial relations (in,on,out,off,match),
 - objects (block, bucket, mother, table)
 - properties (triangular, square, red, blue)
- Structured: grab(mother, (red, square, block))
- High intra- & interannotator agreement (almost all $\kappa > 0.8$)

Example

time type	coding/transcription
0m0s situation	
language	een. nou jij een.
translation	"One. Now you try one."
0m3s situation	position(mother, toy, on(toy, floor)) grab(child, b-ye-
	tr) move(child, b-ye-tr, on(b-ye-tr, floor), near(b-ye-tr,
	ho-ro)), mismatch(b-ye-tr, ho-ro)
language	nee daar.
translation	"No, there."
Om6s situation	point(mother, ho-tr, child) position(child, b-ye-tr,
	near(b-ye-tr, ho-ro)) mismatch(b-ye-tr, ho-ro)
language	nee lieverd hier past ie niet.
translation	"No sweetie, it won't fit in here."

Acquiring lexical meaning

Goal #2

Setting a baseline: how well does a word-learning model like Fazly et al. 2010 (FAS10) perform on this data?

Acquiring lexical meaning

Goal #2

Setting a baseline: how well does a word-learning model like Fazly et al. 2010 (FAS10) perform on this data?

• FAS10: incremental model of aligning words in utterance $U = \{w_1, \dots, w_n\}$ with features in situation $S = \{f_1, \dots, f_n\}$

Acquiring lexical meaning

Goal #2

Setting a baseline: how well does a word-learning model like Fazly et al. 2010 (FAS10) perform on this data?

- FAS10: incremental model of aligning words in utterance $U = \{w_1, \dots, w_n\}$ with features in situation $S = \{f_1, \dots, f_n\}$
- Data preparation
 - Representations are structured, so flatten them: grab(mother,(red,square,block)) → {grab,mother,red,square,block}
 - Take the set of all flattened representations of the situations occurring in the interval in which the utterance was produced.
 - We used lemma representations for the words

Baseline experiment: evaluation

- No golden lexicon, so hand-built one for 'meaningful' words (n = 41):
 - Object labels: blok meaning block
 - Properties: rood meaning red
 - Spatial relations: op meaning on
 - Actions: passen meaning match, stoppen meaning {move,in}

Baseline experiment: evaluation

- No golden lexicon, so hand-built one for 'meaningful' words (n = 41):
 - Object labels: blok meaning block
 - Properties: rood meaning red
 - Spatial relations: op meaning on
 - Actions: passen meaning match, stoppen meaning {move,in}
- Two (partially complementary) measures:
 - Summed Conditional Probability (SCP): how much probability mass is assigned to the true meanings given a word?
 - Average Precision (AP): how are the true meanings ranked (on conditional probability) w.r.t. the other meanings.

Results

- SCP not very peaky
- AP (ranking): good for properties, rather bad for other classes.
- No model dependence.

Results

- SCP not very peaky
- AP (ranking): good for properties, rather bad for other classes.
- No model dependence.
- Relational meanings hard to glean from situation alone. Why?
 - True meaning absent from S
 - Poil features structurally present in
 - **3** True meaning also present in many other *S*s
- In general: situations look a lot like each other, unlike 'synthesized' semantics (cf. Matusevych et al. 2013)

Exploring known biases/mechanisms

added bias/mechanism	prop.	object	spatial	actions
INTENTION				
increasing temporal scope	=	\uparrow	↑	\uparrow
attention to own behavior	=	\downarrow	\downarrow	\uparrow
attention to mother's behavior	\uparrow	\downarrow	\downarrow	=
ATTENTION				
only take novel features	\downarrow	\downarrow	\downarrow	\uparrow
more weight to novel features	\downarrow	\downarrow	\uparrow	\uparrow
more weight to rarer features	\uparrow	\uparrow	\uparrow	\uparrow
more weight to expected features	\uparrow	$\uparrow\downarrow$	$\uparrow\downarrow$	=
LINGUISTIC STRUCTURE				
using parts of speech	=	\downarrow	=	=
Mintz' frequent frames	\downarrow	\downarrow	=	<u> </u>

- Data issues for word learning models
 - problems with synthesizing methods and typical video-based approaches
 - creation of a situational corpus

- Data issues for word learning models
 - problems with synthesizing methods and typical video-based approaches
 - creation of a situational corpus
- Setting a baseline using FAS10
 - properties > object labels > spatial & behavioral meaning
 - other methods underestimate noise & uncertainty in actual data

- Data issues for word learning models
 - problems with synthesizing methods and typical video-based approaches
 - creation of a situational corpus
- Setting a baseline using FAS10
 - properties > object labels > spatial & behavioral meaning
 - other methods underestimate noise & uncertainty in actual data
- Exploring other mechanisms
 - method to evaluate their contribution
 - what works:
 - attention to rare events,
 - increasing temporal scope,
 - adding words from previous utterances
 - other mechanisms are mixed: e.g. good for verbs, bad for rest

FAS10

• Calculating alignment on the basis of conditional probabilities:

$$a(w|f, U^{(t)}, S^{(t)}) = \frac{p^{(t-1)}(f|w)}{\sum\limits_{w' \in U^{(t)}} p^{(t-1)}(f|w')}$$
(1)

FAS10

Calculating alignment on the basis of conditional probabilities:

$$a(w|f, U^{(t)}, S^{(t)}) = \frac{p^{(t-1)}(f|w)}{\sum\limits_{w' \in U^{(t)}} p^{(t-1)}(f|w')}$$
(1)

Updating the association score (initialized at 0):

$$assoc^{(t)}(w,f) = assoc^{(t-1)}(w,f) + a(w|f, U^{(t)}, S^{(t)})$$
 (2)

FAS10

Calculating alignment on the basis of conditional probabilities:

$$a(w|f, U^{(t)}, S^{(t)}) = \frac{p^{(t-1)}(f|w)}{\sum\limits_{w' \in U^{(t)}} p^{(t-1)}(f|w')}$$
(1)

Updating the association score (initialized at 0):

$$assoc^{(t)}(w,f) = assoc^{(t-1)}(w,f) + a(w|f, U^{(t)}, S^{(t)})$$
 (2)

Recalculating the conditional probabilities:

$$p^{(t)}(f|w) = \frac{\mathsf{assoc}^{(t)}(w,f) + \lambda}{\sum\limits_{f' \in F} \mathsf{assoc}^{(t)}(w,f') + \beta \times \lambda} \tag{3}$$