Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине «Прикладные интеллектуальные системы и экспертные системы»

Предварительная обработка текстовых данных

Студент Посаднев В.В.

Группа М-ИАП-22-1

Руководитель Кургасов В.В.

Доцент

Задание кафедры

- 1) В среде Jupyter Notebook создать новый ноутбук (Notebook)
- 2) Импортировать необходимые для работы библиотеки и модули
- 3) Загрузить обучающую и экзаменационную выборку в соответствие с вариантом
 - 4) Вывести на экран по одному-два документа каждого класса
- 5) Применить стемминг, записав обработанные выборки (тестовую и обучающую) в новые переменные.
 - 6) Провести векторизацию выборки:
 - а. Векторизовать обучающую и тестовую выборки простым подсчетом слов (CountVectorizer) и значением max_features = 10000
 - b. Вывести и проанализировать первые 20 наиболее частотных слов всей выборки и каждого класса по-отдельности
 - с. Применить процедуру отсечения стоп-слов и повторить пункт b
 - d. Провести пункты а с для обучающей и тестовой выборки, для которой проведена процедура стемминга
 - e. Векторизовать выборки с помощью TfidfTransformer (с использованием TF и TF-IDF взвешиваний) и повторить пункты b-d
- 7) По результатам пункта 6 заполнить таблицы наиболее частотными терминами обучающей выборки и каждого класса по отдельности.
- 8) Используя конвейер (Pipeline) реализовать модель наивного байесовского классификатора и выявить на основе показателей качества (значения полноты, точности, f1-меры и аккуратности), какая предварительная обработка данных обеспечит наилучшие результаты классификации. Должны быть исследованы следующие характеристики:
 - а. Наличие отсутствие стемминга
 - b. Отсечение не отсечение стоп-слов

с. Количество информативных терминов (max_features)

d. Взвешивание: Count, TF, TF-IDF

9) По каждому пункту работы занести в отчет программный код и

результат вывода

10) По результатам классификации занести в отчет выводы о наиболее

подходящей предварительной обработке данных (наличие стемминга,

взвешивание терминов, стоп-слова, количество информативных терминов).

Вариант №11

Классы: misc.forsale, sci.med, talk.religion.misc

Ход работы

Загрузим обучающую и экзаменационную выборку в соответствии с вариантом №11, а именно misc.forsale, sci.med, talk.religion.misc. Код для загрузки данных представлен на рисунке 1.

```
categories = ['misc.forsale', 'sci.med', 'talk.religion.misc']
remove = ['headers', 'footers', 'quotes']

twenty_train_full = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove)
twenty_test_full = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove)
```

Рисунок 1 – Код для загрузки данных в соответствии с вариантом №11

После успешной загрузки данных посмотрим на записи путем вывода одного значения, который представлен на рисунке 2.

Рисунок 2 – Пример загруженных данных

Применим стемминг к исходным данным в соответствии с кодом и посмотрим на обработанные данные, которые представлены на рисунке 3.

```
porter_stemmer = PorterStemmer()
           stem = []
     nltk_tokens = word_tokenize(text)
              line = ''.join([' ' + porter_stemmer.stem(word) for word in nltk_tokens])
           stem.append(line)
     7 🖹
     8 a return stem
 In 8  1  stem_train = stemming(twenty_train_full.data)
     stem_test = stemming(twenty_test_full.data)
 In 9 1 stem_train[0]
Out 9 \,^{\vee}\, " not to mention the thread about sell someon 's wife . i am a guy , therefor not overli bum by it ,
          but a littl common sens would dictat that thi is offens to mani women , and not realli necessari .
          -- -- scott ferguson exxon research & engin co. project engin new jersey"
In 10 1 stem_test[0]
Jut 10 ' i have two brand new dayna etherprint adapt ( 10baset ) for sale . they convert ethertalk to
         localtalk . thi is use when want to hook up a localtalk network printer to a ethertalk ( 10baset )
         network . they sell for $ 350 each in mac warehous . will take $ 100 each . guarante . email respons
          to atg @ virginia.edu'
```

Рисунок 3 – Данные обработанные стеммингом

Проведем векторизацию выборки. Для этого векторизуем обучающую и тестовую выборку простым подсчетом слов с использованием класса CountVectorizer и значением max_features = 10000, код для выполнения данного способа представлен на рисунке 4. Выведем первые 20 наиболее частотных слов по всей выборки и отобразим на рисунке 5.

```
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer

vect_without_stop = CountVectorizer(max_features=10000)

train_data = vect_without_stop.fit_transform(twenty_train_full.data)

test_data = vect_without_stop.transform(twenty_test_full.data)

def sort_by_tf(input_str):
    return input_str[1]

def top_terms(vector, data, count):
    x = list(zip(vector.get_feature_names_out(), np.ravel(data.sum(axis=0))))
    x.sort(key=sort_by_tf, reverse=True)
    return x[:count]
```

Рисунок 4 — Код для векторизации обучающей и тестовой выборки простым подсчетом слов

```
top_terms_without_stop = [{term[0]: term[1]} for term in top_terms(vect_without_stop, train_data, 20)]
top_terms_without_stop
top_terms_without_stop_test = [{term[0]: term[1]} for term in top_terms(vect_without_stop, test_data, 20)]
top_terms_without_stop_test
 [{'the': 7706},
  {'of': 4314},
  {'to': 4227},
  {'and': 3922},
  {'in': 2670},
  {'is': 2596},
  {'that': 2302},
  {'for': 2017},
  {'it': 1819},
  {'you': 1541},
  {'have': 1230},
  {'with': 1157},
  {'are': 1149},
  {'this': 1149},
```

Рисунок 5 — Результат векторизации обучающей и тестовой выборки простым подсчетом слов

Применим процедуру отсечения стоп-слов и повторим вывод полученных результатов. Код для обработки данных путем отсечения стоп-

слов представлен на рисунке 6. Результат векторизации обучающей и тестовой выборки простым подсчетом слов с отсечением стоп-слов представлен на рисунке 7.

```
vect_stop = CountVectorizer(max_features=10000, stop_words='english')
train_data_stop = vect_stop.fit_transform(twenty_train_full.data)
test_data_stop = vect_stop.transform(twenty_test_full.data)
```

Рисунок 6 – Код для векторизации обучающей и тестовой выборки простым подсчетом слов с отсечением стоп-слов

```
top_terms_stop = [{term[0]: term[1]} for term in top_terms(vect_stop, train_data_stop, 20)]
top_terms_stop
top_terms_stop_test = [{term[0]: term[1]} for term in top_terms(vect_stop, test_data_stop, 20)]
top_terms_stop_test
 [{'00': 560},
  {'10': 351},
  {'god': 328},
  {'like': 314},
  {'new': 306},
  {'know': 301},
  {'don': 292},
  {'people': 288},
  {'just': 249},
  {'good': 242},
  {'20': 239},
  {'time': 228},
  {'edu': 220},
  {'50': 214},
```

Рисунок 7 — Результат векторизации обучающей и тестовой выборки простым подсчетом слов с отсечением стоп-слов

Также проведем аналогичный анализ для данных после стемминга. Результат векторизации обучающей и тестовой выборки после стемминга простым подсчетом слов без отсечения стоп-слов представлен на рисунке 8. Результат векторизации обучающей и тестовой выборки после стемминга простым подсчетом слов с отсечением стоп-слов представлен на рисунке 9.

```
vect_stem_without_stop = CountVectorizer(max_features=10000)
train_data_without_stop_stem = vect_stem_without_stop.fit_transform(stem_train)
test_data_without_stop_stem = vect_stem_without_stop.transform(stem_test)
top_terms_stem = [{term[0]: term[1]} for term in top_terms(vect_stem_without_stop,
train_data_without_stop_stem, 20)]
top_terms_stem
top_terms_stem_test = [{term[0]: term[1]} for term in top_terms(vect_stem_without_stop,
test_data_without_stop_stem, 20)]
top_terms_stem_test
 [{'the': 7706},
  {'of': 4314},
  {'to': 4227},
  {'and': 3923},
  {'in': 2671},
  {'is': 2633},
  {'that': 2306},
  {'for': 2017},
  {'it': 1916},
  {'you': 1540},
  {'have': 1317},
  {'thi': 1199},
  {'are': 1167},
  {'with': 1157},
```

Рисунок 8 — Результат векторизации обучающей и тестовой выборки после стемминга простым подсчетом слов без отсечения стоп-слов

```
vect_stem = CountVectorizer(max_features=10000, stop_words='english')
train_data_stop_stem = vect_stem.fit_transform(stem_train)
test_data_stop_stem = vect_stem.transform(stem_test)
top_terms_stop_stem = [{term[0]: term[1]} for term in top_terms(vect_stem, train_data_stop_stem, 20)]
top_terms_stop_stem
top_terms_stop_stem_test = [{term[0]: term[1]} for term in top_terms(vect_stem, test_data_stop_stem, 20)]
top_terms_stop_stem_test
 [{'thi': 1199},
  {'wa': 689},
  {'00': 560},
  {'use': 521},
  {'ha': 498},
  {'god': 378},
  {'10': 351},
  {'ani': 347},
  {'like': 342},
  {'know': 330},
  {'hi': 325},
  {'new': 320},
  {'peopl': 289},
  {'doe': 276},
```

Рисунок 9 — Результат векторизации обучающей и тестовой выборки после стемминга простым подсчетом слов с отсечением стоп-слов

Воспользуемся векторизацией выборки с помощью TfidfTransformer (с использованием TF и TF-IDF взвешиваний). Векторизация выборки с использованием TfidfTransformer для набора данных без использования стопслов представлен на рисунке 10, с использованием стоп-слов представлен на рисунке 11.

```
tf = TfidfTransformer(use_idf=False)
tfidf = TfidfTransformer(use_idf=True)
train_data_tf = tf.fit_transform(train_data)
test_data_tf = tf.transform(test_data)
train_data_tfidf = tfidf.fit_transform(train_data)
test_data_tfidf = tfidf.transform(test_data)
top_terms_tf = [{term[0]: term[1]} for term in top_terms(vect_without_stop, train_data_tf, 20)]
top_terms_tf
top_terms_tf_test = [{term[0]: term[1]} for term in top_terms(vect_without_stop, test_data_tf, 20)]
top_terms_tf_test
top_terms_tfidf = [{term[0]: term[1]} for term in top_terms(vect_without_stop, train_data_tfidf, 20)]
top_terms_tfidf
top_terms_tfidf_test = [{term[0]: term[1]} for term in top_terms(vect_without_stop, test_data_tfidf, 20)]
top_terms_tfidf_test
 [{'the': 103.92578878716677},
  {'to': 67.46243226585233},
  {'of': 62.14728629487148},
  {'and': 55.67573051098585},
  {'is': 47.115771882782795},
  {'that': 46.15570171423424},
  {'for': 45.38556743347154},
  {'you': 43.75246255205398},
  {'in': 43.31207482495192},
  {'it': 41.98574454787257},
  {'have': 32.082368823761044},
  {'or': 26.963146304013232},
  {'not': 26.798398081584132},
```

Рисунок 10 — Результат векторизации набора данных без использования стопслов

```
tf = TfidfTransformer(use_idf=False)
tfidf = TfidfTransformer(use idf=True)
train_data_stop_tf = tf.fit_transform(train_data_stop)
test_data_stop_tf = tf.transform(test_data_stop)
train_data_stop_tfidf = tfidf.fit_transform(train_data_stop)
test_data_stop_tfidf = tfidf.transform(test_data_stop)
top_terms_stop_tf = [{term[0]: term[1]} for term in top_terms(vect_stop, train_data_stop_tf, 20)]
top_terms_stop_tf
top_terms_stop_tf_test = [{term[0]: term[1]} for term in top_terms(vect_stop, test_data_stop_tf, 20)]
top_terms_stop_tf_test
top\_terms\_stop\_tfidf = [\{term[0]: term[1]\} for term in top\_terms(vect\_stop, train\_data\_stop\_tfidf, 20)]
top_terms_stop_tfidf
top_terms_stop_tfidf_test = [{term[0]: term[1]} for term in top_terms(vect_stop, test_data_stop_tfidf, 20)]
top_terms_stop_tfidf_test
 [{'know': 16.24730869218536},
  {'like': 15.489751099616834},
  {'just': 14.386831590993486},
  {'don': 14.029111887245111},
  {'sale': 13.80560024422138},
  {'00': 13.797739615372626},
  {'god': 13.258610971213697},
  {'good': 12.953128824156405},
  {'new': 12.114588533328869},
  {'think': 11.774347917159494},
  {'mail': 11.7469651636439},
  {'people': 11.217160674133005},
  {'time': 10.76555628971949},
```

Рисунок 11 – Результат векторизации набора данных с использованием стопслов

Проведем аналогичную векторизацию для набора данных после стемминга. Результат векторизации набора данных после стемминга без использования стоп-слов представлен на рисунке 12, с использованием стопслов представлен на рисунке 13.

```
tf = TfidfTransformer(use_idf=False)
tfidf = TfidfTransformer(use_idf=True)
train_data_stem_tf = tf.fit_transform(train_data_without_stop_stem)
test_data_stem_tf = tf.transform(test_data_without_stop_stem)
train_data_stem_tfidf = tfidf.fit_transform(train_data_without_stop_stem)
test_data_stem_tfidf = tfidf.transform(test_data_without_stop_stem)
top_terms_stem_tf = [{term[0]: term[1]} for term in top_terms(vect_stem_without_stop, train_data_stem_tf, 20)]
top_terms_stem_tf_test = [{term[0]: term[1]} for term in top_terms(vect_stem_without_stop, test_data_stem_tf, 20)]
top_terms_stem_tf_test
top_terms_stem_tfidf = [{term[0]: term[1]} for term in top_terms(vect_stem_without_stop, train_data_stem_tfidf, 20)]
top_terms_stem_tfidf
top_terms_stem_tfidf_test = [{term[0]: term[1]} for term in top_terms(vect_stem_without_stop, test_data_stem_tfidf, 20)]
top_terms_stem_tfidf_test
 [{'the': 102.4167020332997},
  {'to': 66.80087036635662},
  {'of': 61.0606141251206}.
  {'and': 54.86535021843155},
  {'is': 47.55257992890465},
  {'that': 45.61780513240577},
  {'for': 44.97402862941401},
  {'vou': 43.505968937738125}.
  {'it': 43.107902079866456},
  {'in': 42.66363758672977},
  {'have': 33.69279408264143},
  {'not': 26.86917716237715},
  {'or': 26.76815482715484},
```

Рисунок 12 — Результат векторизации набора данных после стемминга без использования стоп-слов

```
tf = TfidfTransformer(use_idf=False)
tfidf = TfidfTransformer(use_idf=True)
train_data_stem_stop_tf = tf.fit_transform(train_data_stop_stem)
test_data_stem_stop_tf = tf.transform(test_data_stop_stem)
train_data_stem_stop_tfidf = tfidf.fit_transform(train_data_stop_stem)
test_data_stem_stop_tfidf = tfidf.transform(test_data_stop_stem)
top_terms_stem_stop_tf = [{term[0]: term[1]} for term in top_terms(vect_stem, train_data_stop_tf, 20)]
top_terms_stem_stop_tf
top_terms_stem_stop_tf_test = [{term[0]: term[1]} for term in top_terms(vect_stem, test_data_stop_tf, 20)]
top_terms_stem_stop_tf_test
top_terms_stem_stop_tfidf = [{term[0]: term[1]} for term in top_terms(vect_stem, train_data_stop_tf, 20)]
top_terms_stem_stop_tfidf
top_terms_stem_stop_tfidf_test = [{term[0]: term[1]} for term in top_terms(vect_stem, test_data_stop_tf, 20)]
top_terms_stem_stop_tfidf_test
 [{'massag': 29.948081204577424},
  {'ll': 29.773079799267403},
  {'earn': 26.879153230636003},
  {'leadership': 26.70362435365944},
  {'sound': 23.870063892545577},
  {'pale': 22.13119244763357},
  {'grind': 21.984139363868216},
  {'tronic': 20.103879527019693},
  {'port': 20.08814309983904},
  {'typefont': 18.825287345123005},
  {'dylan': 17.934617752788245},
  {'endur': 17.86368099065268},
  {'gregori': 17.39807864633475},
```

Рисунок 13 — Результат векторизации набора данных после стемминга с использованием стоп-слов

Составим сводную таблицу для отображения результатов векторизации и сохраним её в файл Excel. Составленная таблица для обучающего набора данных без применения стемминга представлена на рисунке 14. Для тестового набора данных без применения стемминга представлена на рисунке 15. Для обучающего набора данных с применением стемминга представлен на рисунке 16. Для тестового набора данных с применением стемминга представлен на рисунке 17.

A	В	С	D	E	F	G
1	Count		TF		TF-IDF	
2	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами
3						
4 0	{'the': 11301}	{'00': 640}	{'the': 410.6466942091253}	{'don': 42.19836218494229}	{'the': 158.7095535302558}	{'don': 21.80243478947723}
5 1	{'of': 6613}	{'people': 517}	{'to': 251.7142371449254}	{'like': 41.94033888116838}	{'to': 100.59334482026873}	{'like': 21.376965831609965}
6 2	{'to': 6208}	{'new': 504}	{'of': 224.7563651678267}	{'new': 38.49189557572986}	{'of': 96.82672169042559}	{'know': 20.766576231972007}
7 3	{'and': 5710}	{'edu': 502}	{'and': 213.50667797912118}	{'know': 38.43222500691624}	{'and': 86.39016862609914}	{'new': 20.66361310613387}
8 4	{'in': 3962}	{'don': 467}	{'is': 171.8087951834235}	{'just': 36.441798363953794}	{'is': 78.0737463854439}	{'edu': 20.304021113881046}
9 5	{'is': 3857}	{'like': 461}	{'in': 154.16287320333123}	{'people': 36.20820897355665}	{'it': 71.51597224999692}	{'people': 19.788592619256864}
10 6	{'that': 3485}	{'good': 420}	{'for': 150.42899781013273}	{'edu': 34.694153609728126}	{'that': 69.39495091529038}	{'just': 19.258803504577592}
11 7	{'it': 2943}	{'just': 417}	{'it': 144.3601581889401}	{'sale': 33.10807332706017}	{'in': 67.86182033825528}	{'sale': 18.979968418043185}
12 8	{'for': 2894}	{'know': 394}	{'that': 129.90078758447194}	{'good': 32.20601101295828}	{'for': 62.588326880465274}	{'00': 18.701502112747598}
13 9	{'you': 2402}	{'10': 358}	{'you': 107.74646955575315}	{'think': 28.946781478743482}	{'you': 60.005846885521684}	{'good': 18.189793531301607}
14 10	{'this': 1766}	{'use': 356}	{'with': 76.73952240379423}	{'does': 26.955539997275125}	{'this': 41.37365799621488}	{'think': 16.800161577150433}
15 11	{'are': 1753}	{'god': 338}	{'have': 74.76904182863568}	{'time': 26.0987325817474}	{'are': 40.00414095201544}	{'offer': 16.522127130213185}
16 12	{'with': 1736}	{'time': 336}	{'this': 73.98236585775292}	{'offer': 25.200411794386508}	{'have': 39.4882262676624}	{'does': 16.12614063719485}
17 13	{'not': 1711}	{'think': 328}	{'are': 72.37175564019299}	{'used': 25.15020882674478}	{'with': 38.8104458820901}	{'god': 15.548477911354187}
18 14	{'have': 1632}	{'does': 313}	{'or': 70.35049990487211}	{'00': 22.847118231150784}	{'not': 38.444939640920175}	{'used': 14.77771917391587}
19 15	{'be': 1555}	{'20': 285}	{'not': 65.67375220517485}	{'make': 22.24617480778731}	{'be': 37.677253780707396}	{'time': 14.743163825137326}
20 16	{'or': 1504}	{'used': 275}	{'be': 63.48328583893221}	{'use': 21.080078313079557}	{'or': 37.30203300467406}	{'shipping': 14.37929479105371}
21 17	{'as': 1433}	{'50': 261}	{'if': 57.567519020817166}	{'god': 21.00989280692224}	{'as': 32.73502619945886}	{'email': 13.466442391427682}
22 18	{'on': 1314}	{'com': 259}	{'on': 54.056582370621975}	{'interested': 20.947258397082738}	{'if': 32.43874285684031}	{'make': 13.3106674232951}
23 19	{'but': 1143}	{'jesus': 258}	{'as': 50.53911703806337}	{'shipping': 20.37436327922064}	{'on': 31.670689631446457}	{'condition': 13.255658572127189}

Рисунок 14 — Таблица результата векторизации для обучающего набора данных без применения стемминга

⊿ A	В	С	D	E	F	G
1	Count		TF		TF-IDF	
2	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами
3						
4 0	{'the': 7706}	{'00': 560}	{'the': 264.43850063653423}	{'like': 29.948081204577424}	{'the': 103.92578878716677}	{'know': 16.24730869218536}
5 1	{'of': 4314}	{'10': 351}	{'to': 165.4520748999254}	{'know': 29.773079799267403}	{'to': 67.46243226585233}	{'like': 15.489751099616834}
6 2	{'to': 4227}	{'god': 328}	{'of': 142.71459444454686}	{'don': 26.879153230636003}	{'of': 62.14728629487148}	{'just': 14.386831590993486}
7 3	{'and': 3922}	{'like': 314}	{'and': 135.3763341296705}	{'just': 26.70362435365944}	{'and': 55.67573051098585}	{'don': 14.029111887245111}
8 4	{'in': 2670}	{'new': 306}	{'for': 106.7211060032294}	{'sale': 23.870063892545577}	{'is': 47.115771882782795}	{'sale': 13.80560024422138}
9 5	{'is': 2596}	{'know': 301}	{'is': 102.38992170757815}	{'new': 22.13119244763357}	{'that': 46.15570171423424}	{'00': 13.797739615372626}
10 6	{'that': 2302}	{'don': 292}	{'in': 96.31664067346627}	{'good': 21.984139363868216}	{'for': 45.38556743347154}	{'god': 13.258610971213697}
11 7	{'for': 2017}	{'people': 288}	{'that': 85.72866577881462}	{'think': 20.103879527019693}	{'you': 43.75246255205398}	{'good': 12.953128824156405}
12 8	{'it': 1819}	{'just': 249}	{'it': 84.31251661554674}	{'people': 20.08814309983904}	{'in': 43.31207482495192}	{'new': 12.114588533328869}
13 9	{'you': 1541}	{'good': 242}	{'you': 76.62890164443824}	{'time': 18.825287345123005}	{'it': 41.98574454787257}	{'think': 11.774347917159494}
14 10	{'have': 1230}	{'20': 239}	{'have': 59.782972354009544}	{'does': 17.934617752788245}	{'have': 32.082368823761044}	{'mail': 11.7469651636439}
15 11	{'with': 1157}	{'time': 228}	{'with': 50.54776335071849}	{'edu': 17.86368099065268}	{'or': 26.963146304013232}	{'people': 11.217160674133005}
16 12	{'are': 1149}	{'edu': 220}	{'or': 49.51766448693027}	{'god': 17.39807864633475}	{'not': 26.798398081584132}	{'time': 10.76555628971949}
17 1 3	{'this': 1149}	{'50': 214}	{'this': 46.257322990834744}	{'used': 17.273875588234212}	{'this': 26.54414001492925}	{'does': 10.752805532883665}
18 14	{'not': 1084}	{'12': 212}	{'are': 45.58212548464762}	{'mail': 17.20653379928399}	{'are': 26.139018385325716}	{'thanks': 10.731058363911187}
19 15	{'or': 1009}	{'does': 205}	{'not': 44.61417757310946}	{'00': 16.990129981097365}	{'with': 26.089883896229}	{'ve': 10.416912964357634}
20 16	{'be': 1002}	{'92': 204}	{'if': 40.58806741479666}	{'make': 16.729737142292908}	{'be': 24.02821218376009}	{'used': 10.294090022947794}
21 17	{'as': 932}	{'use': 204}	{'on': 39.910061357543114}	{'offer': 15.708337776995725}	{'if': 23.8169899007375}	{'offer': 10.221700719462152}
22 18	{'on': 926}	{'25': 202}	{'be': 39.15623548893515}	{'ve': 15.610096759328895}	{'on': 23.72047883885346}	{'edu': 10.177793191710643}
23 19	{'if': 790}	{'medical': 201}	{'as': 32.12860833436083}	{'thanks': 15.274593080166266}	{'as': 21.37691832162967}	{'make': 10.132834220143167}

Рисунок 15 — Таблица результата векторизации для тестового набора данных без применения стемминга

_ A	В	С	D	E	F	G
1	Count		TF		TF-IDF	
2	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами
3						
4 0	{'the': 11298}	{'thi': 1770}	{'the': 401.75578691089754}	{'earn': 42.19836218494229}	{'the': 157.79831839320482}	{'earn': 42.19836218494229}
5 1	{'of': 6613}	{'wa': 1069}	{'to': 246.39046279013354}	{'massag': 41.94033888116838}	{'to': 100.54188184209593}	{'massag': 41.94033888116838}
6 2	{'to': 6208}	{'use': 808}	{'of': 219.99708531926314}	{'pale': 38.49189557572986}	{'of': 96.36850919046363}	{'pale': 38.49189557572986}
7 3	{'and': 5712}	{'ha': 732}	{'and': 208.88810525625937}	{'II': 38.43222500691624}	{'and': 86.04795469898639}	{'II': 38.43222500691624}
8 4	{'in': 3964}	{'00': 640}	{'is': 171.1104805078897}	{'leadership': 36.441798363953794}	{'is': 79.0033745727237}	{'leadership': 36.441798363953794}
9 5	{'is': 3922}	{'ani': 538}	{'in': 150.9005456172757}	{'port': 36.20820897355665}	{'it': 73.31936518758786}	{'port': 36.20820897355665}
10 6	{'that': 3488}	{'new': 529}	{'it': 147.38739013572695}	{'endur': 34.694153609728126}	{'that': 69.29949321110132}	{'endur': 34.694153609728126}
11 7	{'it': 3111}	{'like': 518}	{'for': 146.88012385811385}	{'sound': 33.10807332706017}	{'in': 67.48075467301989}	{'sound': 33.10807332706017}
12 8	{'for': 2894}	{'peopl': 518}	{'that': 127.31873045176705}	{'grind': 32.20601101295828}	{'for': 62.181913294819346}	{'grind': 32.20601101295828}
13 9	{'you': 2401}	{'edu': 502}	{'you': 105.54217923935947}	{'tronic': 28.946781478743482}	{'you': 59.995166222979435}	{'tronic': 28.946781478743482}
14 10	{'are': 1786}	{'hi': 498}	{'have': 79.37206678905693}	{'dylan': 26.955539997275125}	{'have': 41.708464124313906}	{'dylan': 26.955539997275125}
15 11	{'not': 1780}	{'doe': 440}	{'with': 75.16031613421946}	{'typefont': 26.0987325817474}	{'thi': 41.41806858705026}	{'typefont': 26.0987325817474}
16 12	{'have': 1774}	{'know': 438}	{'thi': 72.6923434645989}	{'perciev': 25.200411794386508}	{'are': 40.730013978082994}	{'perciev': 25.200411794386508}
17 13	{'thi': 1770}	{'good': 430}	{'are': 72.46612914192293}	{'weather': 25.15020882674478}	{'be': 40.60952442256573}	{'weather': 25.15020882674478}
18 14	{'be': 1764}	{'onli': 420}	{'be': 69.19071366723983}	{'00': 22.847118231150784}	{'not': 39.275869509026585}	{'00': 22.847118231150784}
19 15	{'with': 1737}	{'just': 417}	{'or': 68.83200312335784}	{'miner': 22.24617480778731}	{'with': 38.75291671354243}	{'miner': 22.24617480778731}
20 16	{'or': 1504}	{'time': 414}	{'not': 66.22164742443427}	{'wear': 21.080078313079557}	{'or': 37.1367365602891}	{'wear': 21.080078313079557}
21 17	{'as': 1431}	{'say': 400}	{'if': 56.34259136328616}	{'gregori': 21.00989280692224}	{'do': 35.13133751221469}	{'gregori': 21.00989280692224}
22 18	{'do': 1386}	{'think': 393}	{'do': 55.09326254250311}	{'join': 20.947258397082738}	{'as': 32.523517894221236}	{'join': 20.947258397082738}
23 19	{'on': 1320}	{'make': 381}	{'on': 53.14025829598756}	{'stx': 20.37436327922064}	{'if': 32.50089178966867}	{'stx': 20.37436327922064}

Рисунок 16 — Таблица результата векторизации для обучающего набора данных с применением стемминга

A	В	С	D	E	F	G
1	Count		TF		TF-IDF	
2	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами	Без стоп-слов	С стоп-словами
3						
4 0	{'the': 7706}	{'thi': 1199}	{'the': 257.92253141743}	{'massag': 29.948081204577424}	{'the': 102.4167020332997}	{'massag': 29.948081204577424}
5 1	{'of': 4314}	{'wa': 689}	{'to': 161.58217852697967}	{'II': 29.773079799267403}	{'to': 66.80087036635662}	{'II': 29.773079799267403}
6 2	{'to': 4227}	{'00': 560}	{'of': 138.969377940274}	{'earn': 26.879153230636003}	{'of': 61.0606141251206}	{'earn': 26.879153230636003}
7 3	{'and': 3923}	{'use': 521}	{'and': 131.9264434926551}	{'leadership': 26.70362435365944}	{'and': 54.86535021843155}	{'leadership': 26.70362435365944}
8 4	{'in': 2671}	{'ha': 498}	{'for': 104.14329159064731}	{'sound': 23.870063892545577}	{'is': 47.55257992890465}	{'sound': 23.870063892545577}
9 5	{'is': 2633}	{'god': 378}	{'is': 102.16292180234682}	{'pale': 22.13119244763357}	{'that': 45.61780513240577}	{'pale': 22.13119244763357}
10 6	{'that': 2306}	{'10': 351}	{'in': 93.95093720037718}	{'grind': 21.984139363868216}	{'for': 44.97402862941401}	{'grind': 21.984139363868216}
11 7	{'for': 2017}	{'ani': 347}	{'it': 86.50120545821625}	{'tronic': 20.103879527019693}	{'you': 43.505968937738125}	{'tronic': 20.103879527019693}
12 8	{'it': 1916}	{'like': 342}	{'that': 83.82705059369427}	{'port': 20.08814309983904}	{'it': 43.107902079866456}	{'port': 20.08814309983904}
13 9	{'you': 1540}	{'know': 330}	{'you': 74.86410865202238}	{'typefont': 18.825287345123005}	{'in': 42.66363758672977}	{'typefont': 18.825287345123005}
14 10	('have': 1317)	{'hi': 325}	{'have': 63.54925811141936}	{'dylan': 17.934617752788245}	{'have': 33.69279408264143}	{'dylan': 17.934617752788245}
15 1 1	{'thi': 1199}	{'new': 320}	{'with': 49.181030980627284}	{'endur': 17.86368099065268}	{'not': 26.86917716237715}	{'endur': 17.86368099065268}
16 12	{'are': 1167}	{'peopl': 289}	{'or': 48.393434221928636}	{'gregori': 17.39807864633475}	{'or': 26.76815482715484}	{'gregori': 17.39807864633475}
17 13	{'with': 1157}	{'doe': 276}	{'thi': 45.45057235122236}	{'weather': 17.273875588234212}	{'thi': 26.448880489356604}	{'weather': 17.273875588234212}
18 14	{'be': 1143}	{'time': 271}	{'are': 45.28657427458017}	{'mildli': 17.20653379928399}	{'are': 26.070506658760067}	{'mildli': 17.20653379928399}
19 19	{'not': 1116}	{'make': 265}	{'not': 44.53968532734706}	{'00': 16.990129981097365}	{'with': 25.715909070863507}	{'00': 16.990129981097365}
20 16	('or': 1009)	{'say': 263}	{'be': 42.71042458581328}	{'miner': 16.729737142292908}	{'be': 25.66065041027378}	{'miner': 16.729737142292908}
21 17	('on': 933)	{'just': 249}	{'if': 39.69464615053347}	{'perciev': 15.708337776995725}	{'do': 23.831879096909034}	{'perciev': 15.708337776995725}
22 18	{'as': 931}	{'good': 244}	{'on': 39.214057720326736}	{'whatsoev': 15.610096759328895}	{'if': 23.719008715916885}	{'whatsoev': 15.610096759328895}
23 19	{'do': 800}	{'onli': 241}	{'do': 36.976857767659254}	{'trash': 15.274593080166266}	{'on': 23.57406476332026}	{'trash': 15.274593080166266}

Рисунок 17 — Таблица результата векторизации для тестового набора данных с применением стемминга

Используя конвейер (Pipeline) реализуем модель наивного байесовского классификатора и выявим на основе показателей качества (значение полноты, точности, f1-меры и аккуратности), какая предварительная обработка данных обеспечит наилучшие результаты классификации. Полученный результат оптимальных параметров поиска представлен на рисунке 18.

```
from sklearn.metrics import classification_report
from sklearn.naive_bayes import MultinomialNB
stop_words = [None, 'english']
max_features_values = [100, 500, 1000, 2000, 3000, 4000, 5000]
use_tf = [True, False]
use_idf = [True, False]
from sklearn.pipeline import Pipeline
parameters = {
     'vect__max_features': max_features_values,
     'vect__stop_words': stop_words,
     'tfidf__use_idf': use_idf
}
text_clf = Pipeline([('vect', CountVectorizer()),
                         ('tfidf', TfidfTransformer()),
                         ('clf', MultinomialNB())])
from sklearn.model_selection import GridSearchCV
gscv = GridSearchCV(text_clf, param_grid=parameters)
gscv.fit(twenty_train_full.data, twenty_train_full.target)
print(classification_report(gscv.predict(twenty_test_full.data), twenty_test_full.target))
           precision recall f1-score support

    0.94
    0.92
    0.93

    0.91
    0.82
    0.86

    0.72
    0.90
    0.80

                                      396
         1
                                       200
         2
                              0.87
                                      1037
   accuracy
            0.85 0.88 0.86 1037
   macro avg
 weighted avg 0.88 0.87 0.87
                                      1037
gscv.best_params_
 {'tfidf__use_idf': True,
  'vect__max_features': 2000,
 'vect__stop_words': 'english'}
```

Рисунок 18 — Результат классификации после нахождения оптимальных параметров через конвейер

Заключение

В ходе выполнения данной лабораторной работы мною были получены навыки предварительной обработки текстовых данных. На практике применены способы подсчета слов без применения стемминга и вместе с ним. Также были применен метод векторизации TfidfTransformer с различным способом взвешивания. С помощью конвейера и сетки решений были найдены оптимальные наборы параметров для классификации метрика которых основывается на показателях качества.

Приложение А

Исходный код

```
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Загрузим обучающую и экзаменационную выборку
## Вариант №11: [misc.forsale, sci.med, talk.religion.misc]
# In[2]:
import warnings
import nltk
from sklearn.datasets import fetch 20newsgroups
warnings.simplefilter(action='ignore', category=FutureWarning)
# In[3]:
categories = ['misc.forsale', 'sci.med', 'talk.religion.misc']
remove = ['headers', 'footers', 'quotes']
twenty train full = fetch 20newsgroups(subset='train', categories=categories,
shuffle=True, random state=42, remove=remove)
twenty_test_full = fetch_20newsgroups(subset='test', categories=categories,
shuffle=True, random state=42, remove=remove)
# In[4]:
twenty train full.data[0]
# In[5]:
twenty test full.data[0]
# # Применение стемминга
# In[6]:
import nltk
from nltk import word_tokenize
from nltk.stem import *
nltk.download('punkt')
# In[7]:
def stemming(data):
```

```
porter stemmer = PorterStemmer()
    stem = []
    for text in data:
        nltk_tokens = word_tokenize(text)
        line = ''.join([' ' + porter stemmer.stem(word) for word in
nltk tokens])
        stem.append(line)
    return stem
# In[8]:
stem train = stemming(twenty train full.data)
stem test = stemming(twenty test full.data)
# In[9]:
stem train[0]
# In[10]:
stem test[0]
# # Векторизация выборки
# ## Векторизация обучающей и тестовой выборки простым подсчетом слов
(CountVectorizer) и значением max features = 10.000
# In[11]:
import numpy as np
from sklearn.feature extraction.text import CountVectorizer
# In[12]:
vect without stop = CountVectorizer(max features=10000)
# In[13]:
train_data = vect_without_stop.fit_transform(twenty_train_full.data)
test data = vect without stop.transform(twenty test full.data)
# In[14]:
def sort_by_tf(input_str):
    return input str[1]
def top_terms(vector, data, count):
    x = list(zip(vector.get_feature_names_out(), np.ravel(data.sum(axis=0))))
    x.sort(key=sort by tf, reverse=True)
```

```
return x[:count]
# In[15]:
top terms without stop = [{term[0]: term[1]} for term in
top terms(vect without stop, train data, 20)]
top terms without stop
top terms without stop test = [{term[0]: term[1]} for term in
top terms(vect without stop, test data, 20)]
top terms without stop test
# ## Отсечение стоп-слов
# In[16]:
vect stop = CountVectorizer(max features=10000, stop words='english')
# In[17]:
train data stop = vect stop.fit transform(twenty train full.data)
test data stop = vect stop.transform(twenty test full.data)
# In[18]:
top terms stop = [{term[0]: term[1]} for term in top terms(vect stop,
train data stop, 20)]
top terms stop
top terms stop test = [{term[0]: term[1]} for term in top terms(vect stop,
test data stop, 20)]
top terms stop test
# # Для данных после стемминга
# ## Без стоп-слов
# In[19]:
vect_stem_without_stop = CountVectorizer(max_features=10000)
# In[20]:
train data without stop stem =
vect_stem_without_stop.fit_transform(stem_train)
test data without stop stem = vect stem without stop.transform(stem test)
# In[21]:
```

```
top terms stem = [{term[0]: term[1]} for term in
top_terms(vect_stem_without_stop, train_data_without_stop_stem, 20)]
top terms stem
top terms stem test = [{term[0]: term[1]} for term in
top terms (vect stem without stop, test data without stop stem, 20)]
top terms stem test
# # С использованием стоп-слов
# In[22]:
vect stem = CountVectorizer(max features=10000, stop words='english')
# In[23]:
train data stop stem = vect stem.fit transform(stem train)
test data stop stem = vect stem.transform(stem test)
# In[24]:
top terms stop stem = [{term[0]: term[1]} for term in top terms(vect stem,
train data stop stem, 20)]
top terms stop stem
top terms stop stem test = [{term[0]: term[1]} for term in
top terms (vect stem, test data stop stem, 20)]
top_terms_stop_stem_test
# # Векторизация выборки с помощью TfidfTransformer (TF и TF-IDF)
# ## Без использования стоп-слов
# In[25]:
from sklearn.feature extraction.text import TfidfTransformer
# In[26]:
tf = TfidfTransformer(use idf=False)
tfidf = TfidfTransformer(use idf=True)
# In[27]:
train data tf = tf.fit transform(train data)
test data tf = tf.transform(test data)
train data tfidf = tfidf.fit transform(train data)
test data tfidf = tfidf.transform(test data)
```

```
# In[28]:
top terms tf = [{term[0]: term[1]} for term in top terms(vect without stop,
train_data_tf, 20)]
top terms tf
top terms tf test = [\{term[0]: term[1]\}\] for term in
top terms (vect without stop, test data tf, 20)]
top terms tf test
top terms tfidf = [{term[0]: term[1]} for term in
top terms (vect without stop, train data tfidf, 20)]
top terms tfidf
top terms tfidf test = [{term[0]: term[1]} for term in
top terms (vect without stop, test data tfidf, 20)]
top terms tfidf test
# ## С использованием стоп-слов
# In[29]:
tf = TfidfTransformer(use idf=False)
tfidf = TfidfTransformer(use idf=True)
# In[30]:
train data stop tf = tf.fit transform(train data stop)
test_data_stop_tf = tf.transform(test_data stop)
train data stop tfidf = tfidf.fit transform(train data stop)
test data stop tfidf = tfidf.transform(test data stop)
# In[31]:
top terms stop tf = [{term[0]: term[1]} for term in top terms(vect stop,
train data stop tf, 20)]
top terms stop tf
top_terms_stop_tf_test = [{term[0]: term[1]} for term in top_terms(vect_stop,
test_data_stop_tf, 20)]
top_terms_stop_tf_test
top terms stop tfidf = [{term[0]: term[1]} for term in top terms(vect stop,
train data stop tfidf, 20)]
top terms stop tfidf
top terms stop tfidf test = [{term[0]: term[1]} for term in
top_terms(vect_stop, test_data_stop_tfidf, 20)]
top terms stop tfidf test
# ## Со стеммингом без стоп-слов
# In[32]:
```

```
tf = TfidfTransformer(use idf=False)
tfidf = TfidfTransformer(use idf=True)
# In[33]:
train data stem tf = tf.fit transform(train data without stop stem)
test data stem tf = tf.transform(test data without stop stem)
train data stem tfidf = tfidf.fit transform(train data without stop stem)
test data stem tfidf = tfidf.transform(test data without stop stem)
# In[34]:
top terms stem tf = [{term[0]: term[1]} for term in
top terms (vect stem without stop, train data stem tf, 20)]
top terms stem tf
top terms stem tf test = [{term[0]: term[1]} for term in
top terms (vect stem without stop, test data stem tf, 20)]
top terms stem tf test
top terms stem tfidf = [{term[0]: term[1]} for term in
top terms (vect stem without stop, train data stem tfidf, 20)]
top terms stem tfidf
top terms stem tfidf test = [{term[0]: term[1]} for term in
top terms(vect stem without stop, test data stem tfidf, 20)]
top terms stem tfidf test
# ## Со стеммингом с использованием стоп-слов
# In[35]:
tf = TfidfTransformer(use idf=False)
tfidf = TfidfTransformer(use idf=True)
# In[36]:
train_data_stem_stop_tf = tf.fit_transform(train_data_stop_stem)
test_data_stem_stop_tf = tf.transform(test_data_stop_stem)
train data stem stop tfidf = tfidf.fit transform(train data stop stem)
test data stem stop tfidf = tfidf.transform(test data stop stem)
# In[37]:
top terms stem stop tf = [{term[0]: term[1]} for term in top terms(vect stem,
train data stop tf, 20)]
top terms stem stop tf
top terms stem stop tf test = [{term[0]: term[1]} for term in
top terms (vect stem, test data stop tf, 20)]
```

```
top terms stem stop tf test
top_terms_stem_stop_tfidf = [{term[0]: term[1]} for term in
top_terms(vect_stem, train_data_stop_tf, 20)]
top terms stem stop tfidf
top_terms_stem_stop_tfidf_test = [{term[0]: term[1]} for term in
top terms(vect stem, test data stop tf, 20)]
top terms stem stop tfidf test
# # Составление таблицы
# In[38]:
import pandas as pd
# In[39]:
columns = pd.MultiIndex.from product([['Count', 'TF', 'TF-IDF'], ['Bes cron-
слов', 'С стоп-словами']])
# ## Без стемминга
# In[40]:
df1 = pd.DataFrame(columns=columns)
df1['Count', 'Без стоп-слов'] = top terms without stop
df1['TF', 'Без стоп-слов'] = top terms tf
df1['TF-IDF', 'Без стоп-слов'] = top terms tfidf
df1['Count', 'C стоп-словами'] = top_terms_stop
df1['TF', 'C стоп-словами'] = top terms stop tf
df1['TF-IDF', 'C стоп-словами'] = top terms stop tfidf
df1
# In[41]:
df2 = pd.DataFrame(columns=columns)
df2['Count', 'Без стоп-слов'] = top_terms_without_stop_test
df2['TF', 'Без стоп-слов'] = top_terms_tf_test
df2['TF-IDF', 'Без стоп-слов'] = top terms tfidf test
df2['Count', 'C стоп-словами'] = top_terms_stop_test
df2['TF', 'C стоп-словами'] = top_terms_stop_tf_test
df2['TF-IDF', 'C стоп-словами'] = top_terms_stop_tfidf_test
df2
# ## Со стеммингом
# In[42]:
```

```
df3 = pd.DataFrame(columns=columns)
df3['Count', 'Без стоп-слов'] = top terms stem
df3['TF', 'Без стоп-слов'] = top_terms_stem_tf
df3['TF-IDF', 'Без стоп-слов'] = top terms stem tfidf
df3['Count', 'C стоп-словами'] = top terms stop stem
df3['TF', 'C стоп-словами'] = top_terms_stem_stop_tf
df3['TF-IDF', 'C стоп-словами'] = top terms stem stop tfidf
df3
# In[43]:
df4 = pd.DataFrame(columns=columns)
df4['Count', 'Без стоп-слов'] = top terms stem test
df4['TF', 'Без стоп-слов'] = top terms stem tf test
df4['TF-IDF', 'Без стоп-слов'] = top terms stem tfidf test
df4['Count', 'C стоп-словами'] = top terms stop stem test
df4['TF', 'C стоп-словами'] = top terms stem stop tf test
df4['TF-IDF', 'C стоп-словами'] = top terms stem stop tfidf test
df4
# ## Запись в файл
# In[44]:
import openpyxl
# In[45]:
writer = pd.ExcelWriter('result.xlsx', engine='openpyxl')
df1.to excel(writer, sheet name='Train, wo stem')
df2.to excel(writer, sheet name='Test, wo stem')
df3.to excel(writer, sheet name='Train, with stem')
df4.to excel(writer, sheet name='Test, with stem')
writer.save()
# # Конвейер
# In[46]:
from sklearn.metrics import classification report
from sklearn.naive bayes import MultinomialNB
# In[47]:
```

```
stop words = [None, 'english']
max_features_values = [100, 500, 1000, 2000, 3000, 4000, 5000]
use_tf = [True, False]
use idf = [True, False]
# In[48]:
def prepare(data, max feature, stop word, use tf, use idf):
    tf = None
    cv = CountVectorizer(max features=max feature, stop words=stop word)
    cv.fit(data)
    if use tf:
        tf = TfidfTransformer(use idf=use idf)
        tf.fit(cv.transform(data))
    return cv, tf
# In[49]:
result = []
for max features value in max features values:
    for stop word in stop words:
        for ut in use tf:
            for ui in use idf:
                options = {}
                cv, tf = prepare(twenty train full.data, max features value,
stop word, ut, ui)
                if tf:
                    clf = MultinomialNB()
clf.fit(tf.transform(cv.transform(twenty train full.data)),
twenty train full.target)
                    prep test =
tf.transform(cv.transform(twenty test full.data))
                else:
                    clf = MultinomialNB()
                    clf.fit(cv.transform(twenty train full.data),
twenty train full.target)
                    prep test = cv.transform(twenty test full.data)
                options['features'] = max features value
                options['stop words'] = stop word
                options['use tf'] = ut
                options['use idf'] = ui
                result_data = classification report(clf.predict(prep test),
twenty_test_full.target, output dict=True)
                result_df = pd.DataFrame(result data)
                result.append({
                    'df': result df,
                    'options': options
                })
# In[50]:
writer = pd.ExcelWriter('result compare.xlsx', engine='openpyxl')
```

```
df = pd.DataFrame(columns=['Номер страницы', 'features', 'stop words',
'use tf', 'use idf'])
for it, item in enumerate (result):
    for key, value in item['options'].items():
        df.at[it, key] = value
    df.at[it, 'Номер страницы'] = it
df.to excel(writer, sheet name='Оглавление')
for it, item in enumerate(result):
    df new = pd.DataFrame(item['df'])
    df new.to excel(writer, sheet name=f'Страница {it}')
writer.save()
# In[51]:
from sklearn.pipeline import Pipeline
parameters = {
    'vect max features': max features values,
    'vect stop words': stop words,
    'tfidf use idf': use idf
text clf = Pipeline([('vect', CountVectorizer()),
                     ('tfidf', TfidfTransformer()),
                     ('clf', MultinomialNB())])
# In[52]:
from sklearn.model selection import GridSearchCV
gscv = GridSearchCV(text clf, param grid=parameters)
gscv.fit(twenty train full.data, twenty train full.target)
# In[53]:
print(classification report(gscv.predict(twenty test full.data),
twenty test full.target))
# In[54]:
gscv.best params
```