▼ DATA VISUALIZATION

▼ STEP 1: Import libraries

```
import seaborn as sns
import matplotlib.pyplot as plt
```

▼ STEP 2:Load dataset

flights=sns.load_dataset("flights")
flights.head()

	year	month	passengers	1
0	1949	Jan	112	
1	1949	Feb	118	
2	1949	Mar	132	
3	1949	Apr	129	
4	1949	May	121	

▼ Draw a graph

```
sns.lineplot(x="month", y="passengers",data=flights)
plt.xlim(1)
plt.ylim(4)
plt.title("FLIGHTS")
```

Text(0.5, 1.0, 'FLIGHTS')

▼ BAR PLOT

```
sns.barplot(x="month", y="passengers",data=flights)
```

<Axes: xlabel='month', ylabel='passengers'>

▼ BOX PLOT

month

sns.boxplot(x="month", y="passengers",data=flights)

<Axes: xlabel='month', ylabel='passengers'>

▼ SCATTER PLOT

 $\verb|sns.scatterplot(x="year", y="passengers", data=flights)|\\$

▼ PLOTS FROM SEABORN LIBRARY

```
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_theme(style="whitegrid")

rs = np.random.RandomState(365)
values = rs.randn(365, 4).cumsum(axis=0)
dates = pd.date_range("1 1 2016", periods=365, freq="D")
data = pd.DataFrame(values, dates, columns=["A", "B", "C", "D"])
data = data.rolling(7).mean()
sns.lineplot(data=data, palette="tab10", linewidth=2.5)
```


Colab paid products - Cancel contracts here

√ 3s completed at 20:12