	로지스틱 회귀
In [1]:	 선형 방정식을 사용한 분류 알고리즘 # 데이터 준비하기
Out [1] •	<pre>import pandas as pd fish=pd.read_csv("fish.csv") fish.head()</pre> Species Weight Length Diagonal Height Width
Out[1]:	Species Weight Length Diagonal Height Width 0 Bream 242.0 25.4 30.0 11.5200 4.0200 1 Bream 290.0 26.3 31.2 12.4800 4.3056 2 Bream 340.0 26.5 31.1 12.3778 4.6961
	3 Bream 363.0 29.0 33.5 12.7300 4.4555 4 Bream 430.0 29.0 34.0 12.4440 5.1340
In [2]: In [3]:	print(pd.unique(fish["Species"])) # 열의 고유한 값 추출 ['Bream' 'Roach' 'Whitefish' 'Parkki' 'Perch' 'Pike' 'Smelt'] fish_input=fish[["Weight", "Length", "Diagonal", "Height", "Width"]].to_numpy()
In [4]:	<pre>print(fish_input[:5]) [[242.</pre>
In [5]:	[363. 29. 33.5 12.73 4.4555] [430. 29. 34. 12.444 5.134]] fish_target=fish["Species"].to_numpy()
In [6]: In [7]:	<pre>from sklearn.model_selection import train_test_split train_input, test_input, train_target, test_target=train_test_split(fish_input, fish_target, random_state=42) from sklearn.preprocessing import StandardScaler argument and on larget.</pre>
	<pre>ss=StandardScaler() ss.fit(train_input) train_scaled=ss.transform(train_input) test_scaled=ss.transform(test_input)</pre>
	k-최근접 이웃 분류기의 확률 예측 • 다중 분류: 타깃 데이터에 2개 이상의 클래스가 포함된 문제 • n_neighbors의 (개수+1)만큼의 확률만 나온다는 단점이 있음. (ex) 3일 때 -> 0/3,1/3,2/3,3/3
In [8]:	<pre>from sklearn.neighbors import KNeighborsClassifier kn=KNeighborsClassifier(n_neighbors=3) kn.fit(train_scaled,train_target) print(kn.score(train_scaled,train_target))</pre>
In [9]:	print(kn.score(test_scaled,test_target)) 0.8907563025210085 0.85 print(kn.classes_) # 사이킷런 모델에서는 타깃값이 알파벳 순으로 매겨짐.
In [10]:	['Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish'] print(kn.predict(test_scaled[:5])) ['Perch' 'Smelt' 'Pike' 'Perch' 'Perch']
In [11]:	import numpy as np proba=kn.predict_proba(test_scaled[:5]) # predict_proba 함수로 확률을 출력할 수 있음 print(np.around(proba,decimals=4))
	[[0. 0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 1. 0.] [0. 0. 0. 1. 0. 0. 0.] [0. 0. 0.6667 0. 0.3333 0. 0.] [0. 0. 0.6667 0. 0.3333 0. 0.]
In [12]:	# 이 모델이 계산한 확률이 가장 가까운 이웃의 비율이 맞는지 직접 확인 distances,indexes=kn.kneighbors(test_scaled[3:4]) print(train_target[indexes]) # 성공임
	[['Roach' 'Perch' 'Perch']] 로지스틱 회귀
	• 이름은 회귀이지만 분류 모델임 • 선형 회귀와 동일하게 선형 방정식을 학습함 • (ex) $z=a imes(Weight)+b imes(Length)+c imes(Diagonal)+d imes(Height)+e imes(Width)+f$ • 시그모이드 함수(로지스틱 함수)
	 확률은 0~1이기 때문에 z가 아주 큰 음수일 때 0이 되고, 큰 양수일 때 1이 되도록 바꾸기 위함 φ = 1/(1+e^{-z}) 이진 분류 시 시그모이드 함수의 출력이 0.5보다 크면 양성, 0.5보다 작거나 같으면 음성 클래스로 판단함
In [13]:	<pre>import numpy as np import matplotlib.pyplot as plt z=np.arange(-5,5,0.1) phi=1/(1+np.exp(-z)) plt.plot(z,phi)</pre>
	<pre>plt.xlabel("z") plt.ylabel("phi") plt.show()</pre>
	0.8 -
	0.6 -
	· 등 0.4 -
	0.2 -
	0.0
In [14]:	# 불리언 인덱싱 charr_arr=np.array(["A", "B", "C", "D", "E"]) print(charr_arr[[True, False, True, False, False]]) ['A' 'C']
In [15]:	<pre>bream_smelt_indexes = (train_target=="Bream") (train_target=="Smelt") train_bream_smelt=train_scaled[bream_smelt_indexes] target_bream_smelt=train_target[bream_smelt_indexes]</pre>
<pre>In [16]: Out[16]:</pre>	<pre>from sklearn.linear_model import LogisticRegression lr=LogisticRegression() lr.fit(train_bream_smelt, target_bream_smelt)</pre> <pre>v LogisticRegression</pre>
	LogisticRegression() print(lr.predict(train_bream_smelt[:5]))
In [18]:	['Bream' 'Smelt' 'Bream' 'Bream' 'Bream'] # 첫번째 열이 음성 클래스(0), 두 번째 열이 양성 클래스(1)에 대한 확률임 print(lr.predict_proba(train_bream_smelt[:5]))
	[[0.99759855 0.00240145] [0.02735183 0.97264817] [0.99486072 0.00513928] [0.98584202 0.01415798] [0.99767269 0.00232731]]
In [19]: In [20]:	<pre>print(lr.classes_) ['Bream' 'Smelt'] print(lr.coef_,lr.intercept_)</pre>
In [21]:	[[-0.4037798 -0.57620209 -0.66280298 -1.01290277 -0.73168947]] [-2.16155132] decisions=lr.decision_function(train_bream_smelt[:5]) # decision_function() 메서드로 양성 클래스의 z 값을 출력함 print(decisions)
In [22]:	[-6.02927744 3.57123907 -5.26568906 -4.24321775 -6.0607117] # z값을 통과시켜 확률을 얻을 수 있음 # predict_proba()와의 두 번째 열의 값과 동일함 from scipy.special import expit
	print(expit(decisions)) [0.00240145 0.97264817 0.00513928 0.01415798 0.00232731] 로지스틱 회귀로 다중 분류 수행하기
	 로지스틱 회귀 클래스는 기본적으로 반복적인 알고리즘을 사용함 max_iter 매개변수에서 반복 횟수를 지정하며 기본값은 100임 릿지 회귀와 같이 계수의 제곱을 규제함
	• 그러나 alpha 매개변수가 아니라 C 매개변수를 사용함. alpha와 다르게 C가 작을수록 규제가 큼. C의 기본값은 1임 • 이중 분류와 달리 시그모이드 함수가 아니라, 소프트맥스 함수를 사용하여 z값을 확률로 변환함 • 소프트맥스 함수 • $esum = e^(z1) + e^(z2) + \dots$
In [23]:	$ s1 = e^(z1)/esum, s2 = e^(z2)/esum $ $ lr=LogisticRegression(C=20, max_iter=1000) \\ lr.fit(train_scaled, train_target) $
	<pre>print(lr.score(train_scaled, train_target)) print(lr.score(test_scaled, test_target)) 0.9327731092436975 0.925</pre>
In [24]: In [25]:	<pre>print(lr.predict(test_scaled[:5])) ['Perch' 'Smelt' 'Pike' 'Roach' 'Perch'] proba=lr.predict_proba(test_scaled[:5]) print(np.round(proba, decimals=3))</pre>
	[[0. 0.014 0.841 0. 0.136 0.007 0.003] [0. 0.003 0.044 0. 0.007 0.946 0.] [0. 0. 0.034 0.935 0.015 0.016 0.] [0.011 0.034 0.306 0.007 0.567 0. 0.076]
In [26]:	[0. 0. 0.904 0.002 0.089 0.002 0.001]] print(lr.classes_) ['Bream' 'Parkki' 'Perch' 'Pike' 'Roach' 'Smelt' 'Whitefish']
In [27]: In [28]:	print(lr.coefshape,lr.interceptshape) # 다중 분류는 클래스마다 z값을 하나씩 계산함 (7, 5) (7,) decision=lr.decision_function(test_scaled[:5]) print(np.round(decision.decimals=2))
	print(np.round(decision, decimals=2)) [[-6.5
In [29]:	[-0.08
	[[0.
	후률적 경사 하강법
	 확률적: 무작위하게 혹은 랜덤하게. 훈련 세트를 한번에 전부 사용하지 않고 랜덤하게 골라서 사용함 경사 하강법: 강사를 따라 내려가는 방법. 가장 가파른 경사를 따라 원하는 지점에 도달하는 것이 목표 가장 가파른 길을 찾아 내려오지만 조금씩 내려오는 것이 중요함 훈련 세트에서 랜덤하게 하나의 샘플을 선택하여 가파른 경사를 조금 내려감. 이 과정을 전체 샘플을 모두 사용할 때까지 반복
	 경사를 다 내려오지 못했다면 다시 처음부터 시작함 에포크: 확률적 경사 하강법에서 훈련 세트를 한 번 모두 사용하는 과정 미니배치 경사 하강법: 1개씩 말고 무작위로 몇개의 샘플을 선택해서 경사를 따라 내려가는 방식
	 배치 경사 하강법: 한 번 경사를 따라 이동하기 위해 전체 샘플을 사용하는 방식. 가장 안정적일 수 있지만 매우 비효율적일 수 있음 점진적인 학습 훈련 데이터가 한 번에 준비되는 것이 아니라 조금씩 전달됨
	• 확률적 경사 하강법이 대표적인 점진적 학습 알고리즘임 손실 함수
	 어떤 문제에서 머신러닝 알고리즘이 얼마나 엉터리인지 측정하는 기준 작을수록 좋지만, 어떤 값이 최솟값인지 모르기 때문에 만족할만한 수준이면 산을 다 내려왔다고 인정함 경사 하강법을 사용할 때 아주 조금씩 내려와야하기 때문에 손실 함수의 값이 연속적이어야 함 -> 정확도를 사용하기 어려움. 확률을 사용함
	로지스틱 손실 함수(이진 크로스엔트로피 손실 함수) • 타깃이 1일 경우, 예측에 1을 곱한 값에 음수를 취함 • 타깃이 0일 경우, (1-예측)에 1을 곱한 값에 음수를 취함
In [30]:	 위의 예측 확률에 로그함수를 적용하면 더 좋음. 양수를 얻기 위함임 크로스엔트로피 손실 함수: 다중 분류에서 사용하는 손실 함수 import pandas as pd fish=pd.read csv("fish.csv")
	<pre>fish=pd.read_csv("fish.csv") fish_input=fish[["Weight", "Length", "Diagonal", "Height", "Width"]].to_numpy() fish_target=fish["Species"].to_numpy() from sklearn.model_selection import train_test_split</pre>
In [32]:	<pre>train_input, test_input, train_target, test_target=train_test_split(fish_input, fish_target, random_state=42) from sklearn.preprocessing import StandardScaler ss=StandardScaler() ss.fit(train_input)</pre>
In [33]:	train_scaled=ss.transform(train_input) test_scaled=ss.transform(test_input) from sklearn.linear_model import SGDClassifier sc=SGDClassifier(loss="log", max_iter=10, random_state=42) # loss="log" 는 로지스틱 손실 함수를 지정하는 것, max_iter은 에포크 횟수
	<pre>sc.fit(train_scaled, train_target) print(sc.score(train_scaled, train_target)) print(sc.score(test_scaled, test_target)) 0.773109243697479</pre>
	0.775 C:\Users\82106\anaconda3\lib\site-packages\sklearn\linear_model_stochastic_gradient.py:163: FutureWarning: The loss 'log' was deprecated in v1.1 and will be removed in version 1.3. Use `loss='log_loss'` which is equivalent. warnings.warn(C:\Users\82106\anaconda3\lib\site-packages\sklearn\linear_model_stochastic_gradient.py:702: ConvergenceWarning: Maximum number of iteration reached before conv
In [34]:	nvergence. Consider increasing max_iter to improve the fit. warnings.warn(# 점진적 학습 sc.partial_fit(train_scaled,train_target)
	<pre>print(sc.score(train_scaled,train_target)) print(sc.score(test_scaled,test_target)) 0.8151260504201681 0.85</pre>
	에 포크와 과대/과소 적합 • 일반적으로 에포크 횟수가 적으면 과소적합될 수 있음 • 일반적으로 에포크 횟수가 많으면 과대적합될 수 있음
In [35]:	• 조기 종료: 과대적합이 시작하기 전에 훈련을 멈추는 것 import numpy as np sc=SGDClassifier(loss="log", random_state=42)
	train_score=[] test_score=[] classes=np.unique(train_target) for _ in range(0,300): sc.partial_fit(train_scaled,train_target,classes=classes) # partial_fit 메서드만 사용하기 위해 classes 매개변수를 사용함
	<pre>train_score.append(sc.score(train_scaled,train_target)) test_score.append(sc.score(test_scaled,test_target)) import matplotlib.pyplot as plt</pre>
	<pre>plt.plot(train_score) plt.plot(test_score) plt.xlabel("epoch") plt.ylabel("accuracy") plt.show()</pre>
	C:\Users\82106\anaconda3\lib\site-packages\sklearn\linear_model_stochastic_gradient.py:163: FutureWarning: The loss 'log' was deprecated in v1.1 and will be removed in version 1.3. Use `loss='log_loss'` which is equivalent. warnings.warn(
	0.9 -
	0.8 -
	0.7 -
	0.6 -
	0 50 100 150 200 250 300 epoch
In [36]:	#일반적으로 에포크 동안 성능이 향상되지 않으면 자동으로 멈춤. 그래서 tol=None으로 안 멈추게 함 sc=SGDClassifier(loss="log", max_iter=100, tol=None, random_state=42) sc.fit(train_scaled, train_target) print(sc.score(train_scaled, train_target))
	<pre>print(sc.score(test_scaled,test_target)) 0.957983193277311 0.925 C:\Users\82106\anaconda3\lib\site-packages\sklearn\linear_model_stochastic_gradient.py:163: FutureWarning: The loss 'log' was deprecated in v1.1 and will be</pre>
	removed in version 1.3. Use `loss='log_loss'` which is equivalent. warnings.warn(• loss 매개변수의 기본 값은 hinge(힌지 손실, 서포트 벡터 머신)임