MACHINE LEARNING (CS-5710) ASSIGNMENT - 4

Name: MADHURIGADABOINA Student ID: 700741049

1. Pandas

Importing all the required libraries to work with tabular data and also implement algorithms.

```
In [9]: #importing the required Libraries to work with Tabular data and also to implement algorithms

import warnings
import numpy as np
import pandas as pd
import pandas as sns
from sklearn import preprocessing
import matplotlib.pyplot as plt
from scipy.stats.stats import personn
from sklearn.madle_selection import train_test_split
from sklearn.madle_selection import train_test_split
from sklearn.metrics import accuracy_score, recall_score, precision_score, classification_report, confusion_matrix
warnings.filterwarnings("ignore")
```

Question: 1

- $\textbf{1. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{https://drive.google.com/drive/folders/1h8C3mLsso-R-sIOLsvoYwPLzy2fJ4IOF?usp=sharing}} \\ \textbf{1. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{https://drive.google.com/drive/folders/1h8C3mLsso-R-sIOLsvoYwPLzy2fJ4IOF?usp=sharing}} \\ \textbf{2. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{https://drive.google.com/drive/folders/1h8C3mLsso-R-sIOLsvoYwPLzy2fJ4IOF?usp=sharing}} \\ \textbf{3. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{https://drive.google.com/drive/folders/1h8C3mLsso-R-sIOLsvoYwPLzy2fJ4IOF?usp=sharing}} \\ \textbf{3. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{https://drive.google.com/drive/folders/1h8C3mLsso-R-sIOLsvoYwPLzy2fJ4IOF?usp=sharing}} \\ \textbf{3. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{https://drive.google.com/drive/folders/1h8C3mLsso-R-sIOLsvoYwPLzy2fJ4IOF?usp=sharing}} \\ \textbf{4. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{4. Read the provided CSV file 'data.csv'}} \\ \textbf{4. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{4. Read the provided CSV file 'data.csv'}} \\ \textbf{4. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{4. Read the provided CSV file 'data.csv'}} \\ \textbf{4. Read the provided CSV file 'data.csv'}} \\ \textbf{4. Read the provided CSV file 'data.csv'}. \\ \underline{\textbf{4. Read the provided CSV file 'data.csv'}} \\ \textbf{4. Read the provided CSV file 'data.csv'}} \\ \textbf{4. Read the provided CSV file 'data.csv'} \\ \textbf{4. Read the provided CSV file 'data.csv'} \\ \textbf{4. Read the provided CSV file 'data.csv'}} \\ \textbf{4. Read the provided CSV file 'data.csv'} \\ \textbf{4. Read the provided CSV file 'data.csv'} \\ \textbf{4. Read the provided CSV file 'data.csv'}} \\ \textbf{4. Read the provided CSV file 'data.csv'} \\ \textbf{4. Read the provided CSV file 'd$
- 2. Show the basic statistical description about the data.
- 3. Check if the data has null values. a. Replace the null values with the mean
- 4. Select at least two columns and aggregate the data using: min, max, count, mean.
- 5. Filter the dataframe to select the rows with calories values between 500 and 1000.
- 6. Filter the dataframe to select the rows with calories values > 500 and pulse < 100.
- 7. Create a new "df_modified" dataframe that contains all the columns from df except for "Maxpulse".
- 8. Delete the "Maxpulse" column from the main df dataframe
- 9. Convert the datatype of Calories column to int datatype.
- 10. Using pandas create a scatter plot for the two columns (Duration and Calories).

```
In [7]: #1. Read the provided CSV file 'data.csv'. https://drive.google.com/drive/folders/1h8C3mLsso-R-sIOLsvoYwPLzy2fJ4IOF?usp=sharing

df = pd.read_csv("data.csv")
    df.head()
```

using the Pandas library to read a CSV file named "data.csv" and store its contents in a DataFrame object called df.

The pd.read_csv() function is a method provided by the Pandas library that reads the CSV file and creates a DataFrame object from it.

The df.head() function is then called to display the first five rows of the DataFrame.

The df.describe() method is a built-in function in Pandas that generates descriptive statistics of the DataFrame df. It includes the count, mean, standard deviation, minimum, 25th percentile, 50th percentile (median), 75th percentile, and maximum values for each numeric column in the dataframe.

The df.isnull().any() code checks whether there are any missing values (also known as NaN or null values) in each column of the DataFrame df.

The first line of this code fills in any missing values in the DataFrame df with the mean value of each column using the fillna() method.

The second line of this code uses df.isnull().any() to check if there are any missing values remaining in the DataFrame after filling in the

missing values with the mean.

This code uses the agg() method to perform aggregate calculations on the Maxpulse and Calories columns of the DataFrame df.

This code uses the loc[] method of the DataFrame df to select rows where the value in the Calories column is greater than 500 and less than 1000.

This code uses the loc[] method of the DataFrame df to select rows where the value in the Calories column is greater than 500 and the value in the Pulse column is less than 100.

This code creates a new DataFrame df_modified that includes only the Duration, Pulse, and Calories columns of the original DataFrame df.

The head() method is then called on the df_modified DataFrame to display the first five rows of the new DataFrame.

	del d	f['Max	cpulse	']		
[17]:	df.he	ad()				
[17]:	Du	ration	Pulse	Calories		
	0	60	110	409.1		
	1	60	117	479.0		
	2	60	103	340.0		
	3	45	109	282.4		
	4	45	117	406.0		
[18]:	df.dt	ypes				
[18]:	Durat Pulse Calor dtype	ies	in floa	t64 t64 t64		
[19]:		alorie			Calories column to int datatype. es'].astype(np.int64)	
[19]:	Durat Pulse Calor	ion	int6	4		

After running this code, the Maxpulse column will no longer be present in the DataFrame df. If the column was present in the original DataFrame df, then it has now been removed permanently. The resulting DataFrame will have one less column than the original DataFrame.

The astype() method is a Pandas method that is used to cast a column of a DataFrame to a specified data type. In this case, the Calories column is being cast to the 64-bit integer data type using the np.int64 NumPy data type.

The dtypes attribute of the DataFrame is then used to display the data types of each column in the DataFrame. After running this code, the Calories column will have a data type of int64.

1750 1500 1250 1250 500 500 250 -

150

Duration

a scatter plot of the Duration and Calories columns in the DataFrame df will be displayed, where each data point is represented by a blue marker. The x-axis will correspond to the Duration column values and the y-axis to the Calories column values.

200

250

Question: 2

Titanic Dataset

- 1. Find the correlation between 'survived' (target column) and 'sex' column for the Titanic use case in class. a. Do you think we should keep this feature?
- 2. Do at least two visualizations to describe or show correlations.
- 3. Implement Naïve Bayes method using scikit-learn library and report the accuracy

100

In [28]: #Loading the data file into te program
df=pd.read_csv("train.csv")

df.head()

1	0	3	2 10 2 10 3	W.	2.31776.01						
		~	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1 Cu	umings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	4	4 1	3 1 3 4 1 1	3 1 3 Heikkinen, Miss. Laina 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel)	3 1 3 Heikkinen, Miss. Laina female 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female	3 1 3 Heikkinen, Miss. Laina female 26.0 4 1 1 Futrelle, Mrs. Jacques Heath (Lity May Peel) female 35.0	3 1 3 Heikkinen, Miss. Laina female 26.0 0 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1	3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0	3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2.3101282 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803	3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2 3101282 7.9250 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000	3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123

```
In [29]: #converted categorical data to numerical values for correlation calculation
label_encoder = preprocessing.LabelEncoder()
df['Sex'] = label_encoder.fit_transform(df.Sex.values)

#Calculation of correlation for 'Survived' and 'Sex' in data
correlation_Value= df['Survived'].corr(df['Sex'])
print(correlation_Value)
-0.5433513806577547
```

Ans: Yes, we should keep the 'Survived' and 'Sex' features helps classify the data accurately

```
In [30]: #print correlation matrix
  matrix = df.corr()
  print(matrix)
```

```
PassengerId Survived
                                     Pclass
                                                                   SibSp \
                                                  Sex
PassengerId
               1.000000 -0.005007 -0.035144 0.042939 0.036847 -0.057527
Survived
              -0.005007 1.000000 -0.338481 -0.543351 -0.077221 -0.035322
Pclass
              -0.035144 -0.338481 1.000000 0.131900 -0.369226 0.083081
Sex
               0.042939 -0.543351 0.131900 1.000000 0.093254 -0.114631
Age
               0.036847 -0.077221 -0.369226 0.093254 1.000000 -0.308247
SibSp
              -0.057527 -0.035322  0.083081 -0.114631 -0.308247  1.000000
Parch
              -0.001652 0.081629 0.018443 -0.245489 -0.189119 0.414838
               0.012658 0.257307 -0.549500 -0.182333 0.096067 0.159651
Fare
               Parch
                          Fare
PassengerId -0.001652 0.012658
Survived
            0.081629 0.257307
Pclass
            0.018443 -0.549500
Sex
            -0.245489 -0.182333
            -0.189119 0.096067
Age
SibSp
            0.414838 0.159651
Parch
            1.000000 0.216225
Fare
            0.216225 1.000000
```

In [31]: # One way of visualizing correlation matrix in form of spread chart
 df.corr().style.background gradient(cmap="Reds")

Out[31]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.042939	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.543351	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	0.131900	-0.369226	0.083081	0.018443	-0.549500
Sex	0.042939	-0.543351	0.131900	1.000000	0.093254	-0.114631	-0.245489	-0.182333
Age	0.036847	-0.077221	-0.369226	0.093254	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.114631	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.245489	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	-0.182333	0.096067	0.159651	0.216225	1.000000

In [32]: #Second form of visuaizing correlation matrix using heatmap() from seaborn
sns.heatmap(matrix, annot=True, vmax=1, vmin=-1, center=0, cmap='vlag')
plt.show()


```
In [33]: #Loaded data files test and train and merged files
               train_raw = pd.read_csv('train.csv')
              test_raw = pd.read_csv('test.csv')
train_raw['train'] = 1
               test_raw['train'] = 0
              df = train_raw.append(test_raw, sort=False)
features = ['Age', 'Embarked', 'Fare', 'Parch', 'Pclass', 'Sex', 'SibSp']
target = 'Survived'
              target = Survived
df = df[features + [target] + ['train']]
df['Sex'] = df['Sex'].replace(["female", "male"], [0, 1])
df['Embarked'] = df['Embarked'].replace(['S', 'C', 'Q'], [1, 2, 3])
train = df.query('train == 1')
test = df.query('train == 0')
In [34]: # Drop missing values from the train set.
               train.dropna(axis=0, inplace=True)
              labels = train[target].values
train.drop(['train', target, 'Pclass'], axis=1, inplace=True)
test.drop(['train', target, 'Pclass'], axis=1, inplace=True)
In [35]: #Test and train split
           X_train, X_val, Y_train, Y_val = train_test_split(train, labels, test_size=0.2, random_state=1)
In [36]: classifier = GaussianNB()
           classifier.fit(X train, Y train)
Out[36]: GaussianNB(priors=None, var_smoothing=1e-09)
In [37]: y_pred = classifier.predict(X_val)
           # Summary of the predictions made by the classifier
           print(classification_report(Y_val, y_pred))
           print(confusion_matrix(Y_val, y_pred))
           # Accuracy score
           from sklearn.metrics import accuracy score
           print('accuracy is',accuracy_score(Y_val, y_pred))
                           precision recall f1-score support
                                 0.79
                                                        0.80
                     0.0
                                            0.80
                     1.0
                                0.70
                                            0.69
                                                        0.70
                                                                     58
                                                        0.76
                                                                    143
                accuracy
              macro avg
                                0.75
                                            0.74
                                                        0.75
                                                                    143
           weighted avg
                                0.75
                                            0.76
                                                        0.75
                                                                    143
           [[68 17]
            [18 40]]
           accuracy is 0.7552447552447552
```

Question 3

(Glass Dataset)

- 1. Implement Naïve Bayes method using scikit-learn library.
 - a. Use the glass dataset available in Link also provided in your assignment.
 - b. Use train_test_split to create training and testing part.
- 2. Evaluate the model on testing part using score and classification_report(y_true, y_pred)
- 1. Implement linear SVM method using scikit library
 - a. Use the glass dataset available in Link also provided in your assignment.
 - b. Use train_test_split to create training and testing part.
- 2. Evaluate the model on testing part using score and

In [38]: glass=pd.read_csv("glass.csv")
glass.head()

Out[38]:

RI Na Mg AI Si K Ca Ba Fe Type

0 1.52101 13.64 4.49 1.10 71.78 0.06 8.75 0.0 0.0 1

1 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0.0 0.0 1

2 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0.0 0.0 1

3 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0.0 0.0 1

4 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0.0 0.0 1

ut[39]:		RI	Na	Mg	AI	Si	K	Ca	Ва	Fe	Туре
	RI	1.000000	-0.191885	-0.122274	-0.407326	-0.542052	-0.289833	0.810403	-0.000386	0.143010	-0.164237
	Na	-0.191885	1.000000	-0.273732	0.156794	-0.069809	-0.266087	-0.275442	0.326603	-0.241346	0.502898
	Mg	-0.122274	-0.273732	1.000000	-0.481799	-0.165927	0.005396	-0.443750	-0.492262	0.083060	-0.744993
	AI	-0.407326	0.156794	-0.481799	1.000000	-0.005524	0.325958	-0.259592	0.479404	-0.074402	0.598829
	Si	-0.542052	-0.069809	-0.165927	-0.005524	1.000000	-0.193331	-0.208732	-0.102151	-0.094201	0.151565
	K	-0.289833	-0.266087	0.005396	0.325958	-0.193331	1.000000	-0.317836	-0.042618	-0.007719	-0.010054
	Ca	0.810403	-0.275442	-0.443750	-0.259592	-0.208732	-0.317836	1.000000	-0.112841	0.124968	0.000952
	Ва	-0.000386	0.326603	-0.492262	0.479404	-0.102151	-0.042618	-0.112841	1.000000	-0.058692	0.575161
	Fe	0.143010	-0.241346	0.083060	-0.074402	-0.094201	-0.007719	0.124968	-0.058692	1.000000	-0.188278
	Туре	-0.164237	0.502898	-0.744993	0.598829	0.151565	-0.010054	0.000952	0.575161	-0.188278	1.000000

```
In [40]: sns.heatmap(matrix, annot=True, vmax=1, vmin=-1, center=0, cmap='vlag')
            plt.show()
                                                                            -1.00
              Passengerid -
                               -0.005-0.035-0.043-0.037-0.058-0.00170.013
                                                                            - 0.75
                                    -0.34 -0.54 -0.077-0.035 0.082 0.26
                Survived -- 0.005
                                                                            - 0.50
                                           0.13 -0.37 0.083 0.018 -0.55
                   Pclass -- 0.035 -0.34
                                                                            - 0.25
                     Sex - 0.043 -0.54
                                     0.13
                                                0.093 -0.11 -0.25 -0.18
                                                                            - 0.00
                    Age - 0.037 -0.077 -0.37 0.093
                                                      -0.31 -0.19 0.096
                                                                            --0.25
                   SibSp --0.058-0.035 0.083 -0.11 -0.31
                                                            0.41 0.16
                                                                            -0.50
                   Parch -0.00170.082 0.018 -0.25 -0.19 0.41
                                                                            -0.75
                    Fare - 0.013 0.26 40.5
                                           -0.18 0.096 0.16
                                                           0.22
                                                                            -1 00
                                                                   Fare
In [41]: features = ['Rl', 'Na', 'Mg', 'Al', 'Si', 'K', 'Ca', 'Ba', 'Fe']
target = 'Type'
         X_train, X_val, Y_train, Y_val = train_test_split(glass[::-1], glass['Type'],test_size=0.2, random_state=1)
         classifier = GaussianNB()
         classifier.fit(X_train, Y_train)
         y_pred = classifier.predict(X_val)
         # Summary of the predictions made by the classifier
print(classification_report(Y_val, y_pred))
         print(confusion_matrix(Y_val, y_pred))
         # Accuracy score
         print('accuracy is',accuracy_score(Y_val, y_pred))
                     precision
                                         recall f1-score
                                                                     support
                                                           0.92
0.92
                 1 2
                             0.90
                                            0.95
                                                                             19
                                                                             12
                             0.92
                                            0.92
                 3
                             1.00
                                            0.50
                                                           0.67
                                                                              6
                 5
                             0.00
                                            0.00
                                                           0.00
                                                                              1
                             0.75
                                            0.75
                                                           0.75
                                                                              4
                                                           0.84
                                                                             43
      accuracy
                                                           0.71
0.85
                                                                             43
43
     macro avg
                             0.76
                                            0.69
weighted avg
                             0.89
                                            0.84
 [[18
                           0]
     1 11
1 0
              0
                  0
                       0
                           01
                       0
                           0]
                           1]
     0
         0
              0
                  0
                       0
              0
                  0
     0
         0
                       1
             0 1 0 3]]
is [0.8372093023255814]
 accuracy
```

```
0.89
                                                                  0.94
                   2 3 5
                                0.46
0.00
0.00
                                                1.00
0.00
0.00
                                                                  0.63
                                                                                      12
                                                                 0.00
                                0.00
                                                 0.00
                                                                  0.00
                                                                                       1
                                0.00
                                                 0.00
                                                                  0.00
       accuracy
                                0.24
                                                 0.32
      macro avg
                                                                  0.26
                                                                                      43
 weighted avg
                                0.57
                                                 0.67
                                                                  0.59
                                                                                      43
[[17 2 0 0 0 0]

[ 0 12 0 0 0 0]

[ 0 6 0 0 0 0]

[ 0 1 0 0 0 0]

[ 0 1 0 0 0 0]

[ 0 4 0 0 0]

accuracy is [0.6744186046511628]
```

Justification:

We got better accuracy for Naïve Bayes method which is 0.8372093023255814. Naive Bayes analysis works well with probabilistic concepts where as Linear SVM works better with linear regression logics. But to perform more accurately SVM requires large amounts of data to train and test the data. So, due to the amount of data Naïve Bayes algorith gives better accuracy compared to Linear SVM.