Problem:

The circuit given figure has the following parameters:

 $V_{CC} = 20V$, $V_{EE} = 10V$, $R_e = 10K$, R = 5K and $T_g = 700\mu$ sec. the transistor h-parameter values are

 $h_{ie} = 1.1K, h_{fe} = 50, \frac{1}{h_{oe}} = 40K$. a 20V sweep in 500µsec is desired.

- (a) find a reasonable value for R_b
- (b) calculate C
- (c) calculate return time
- (d) calculate sweep error
- (e) calculate the recovery time T_1 for C_1 to recharge completely.

(a) from equation(1), $R_b \le h_{FE}R = 250 \text{ K}$

hence, a reasonable value for R_b is 100 K

(b) since $T_s = 500 < T_g = 700 \mu \text{ sec}$, then equation (3) is valid,

and
$$C = \frac{T_s}{R} = \frac{500}{5000} = 0.1 \mu F$$

(c) from equation (4),

$$T_r = \frac{CV_S}{V_{CC} \left\lceil \frac{h_{FE}}{R_B} - \frac{1}{R} \right\rceil} = 333 \mu \text{sec}$$

(d) we know for bootstrap sweep circuit,

$$e_S = \frac{V_S}{AV_{CC}} \left(\frac{R}{R_i} + (1 - A) \right)$$

Here
$$A = 1 - \frac{h_{ie}}{R_i}$$
 $R_i = h_{ie} + A_I R_L$

And $A_I = \frac{1 + h_{FE}}{1 + h_{oe} R_L}$

Here $R_L = R_e$

By substituting all the values, $A_I = 40.8, R_i = 409K, A = 0.9973$

And
$$e_s = 0.0149$$

(e) from equation(5) ,
$$T_1 = \frac{V_{CC}}{V_{EE}} \frac{R_e}{R} T$$

$$T_1 = \frac{20}{10} \frac{10}{5} (700 + 333) = 4,130 \mu \text{ sec}$$

Current Time-Base Generators:

We have mentioned earlier that Current time base generator is one that provides an Out put current waveform a portion of which exhibits a linear variation of current with time.

A linearly varying current waveform can be generated by applying a constant a constant Voltage across an inductor.(if inductor is an ideal one)

We know voltage across an inductor is $V = L \frac{di(t)}{dt}$

So
$$i(t) = \frac{1}{L} \int V dt$$

If V is constant then $i(t) = \frac{V}{L}t = \alpha t$

Hence i(t) varies linearly with time.

But practically every inductor offers some resistance . so there is a need to apply **trapezoidal voltage** across it to produce current sweeps.

Consider R_L is the resistance offered by the inductor L.

Then voltage across practical inductor is

$$V = R_L i(t) + L \frac{di(t)}{dt}$$

If $i(t) = \alpha t$ then $V = R_L \alpha t + L \alpha$

K.Chiranjeevi, Asst. Prof, E

So V = A + Bt

Where $A = L\alpha$ and $B = \alpha R_L$

Hence trapezoidal voltage is essential to produce current sweeps across an practical inductor.