

Projet de Fin de Module

Analyse de données

Analyse Factorielle Discriminante sur Données Mixtes

Réalisé par

MOUMNI Mohammed BELKHAIR Aymen

Encadré par

Pr. CHAMLAL Hasna, Faculté des Sciences Aïn Chock

Table de matière

Tabl	le de matière	0
Tabl	le de figure	3
Rem	nerciements	5
Intro	oduction	6
Chap	pitre I : Analyse de donnes	7
1.	Introduction	8
2.	Historique	8
3.	Définition	9
4.	Type de donnes en relation avec la méthode utiliser	11
Chap	pitre II : Analyse factorielle discriminante des données mixtes	13
1.	Introduction	14
2.	Analyse factorielle	14
3.	L'analyse factorielle discriminante (AFD)	15
4.	Théorie de la méthode (AFD sur données mixtes)	16
5.	Prétraitement des données	16
	a Etape 1 : Codage Disjonctif complet des variables qualitatives	16
	b Etape 2 : Standardisation différenciée des colonnes	17
6.	Deux idées importantes	18
7.	Phase d'affection d'une nouvelle observation	19
Chap	pitre III : Application d'AFDM	21
1.	Dataset	22
	a Description	22
	b Objective	22
	c Motivation	22
2.	Application afdm	23
	a ACP sur les variables quantitatives :	23
	1. Centrage et réduction des variables quantitatives	23

	2.	Centrage et réduction variables quantitatives	.23
b	AC	CM sur les variables qualitatives :	.24
	1.	Codage disjonctif complet des variables qualitatives	.24
	2.	Application d'une fonction de pondération sur les indicateurs.	.24
c	Ma	trice pré-traitée pour l'AFD:	.26
	1.	Combinaison des données quantitatives et qualitatives	.26
d	Do	nnées centrées pour l'ACP :	.27
	1. Com	Centrage des données quantitatives (df) pour l'Analyse posantes Principales (ACP)	
e M		alyse factorielle discriminante (AFD) en utilisant le packa	_
	2.	Chargement du package MASS	.28
	3.	L'AFD sur les données centrées.	.28
	4.	Affichage des résultats de l'AFD.	.28
	5.	Tracé des graphiques associés à l'AFD.	.29
f	An	alyse factorielle discriminante (AFD) en utilisant un scripte :	
	1.	Calcul de la matrice G:	.30
	2.	Extraction de la matrice G à partir du résultat de l'AFD :	.30
	3.	Calcul de la matrice de variances inter-classes B :	.31
	4.	Calcul de la matrice de variance totale V :	.35
	5.	Matrice M	.39
	6.	Calcul des valeurs propres :	.42
	7.	Calcul de la part d'inertie des valeurs propres :	.43
	8.	Calcul des vecteurs propres :	.43
	9.	Calcul des vecteurs principaux :	.44
	10.	Calcul des coordonnées des centres de gravité (composancipales):	
	11.	Calcul des coordonnées des individus :	.45

12.	Création	d'un	graphique	de	dispersion	des	individus	dans
l'esp	ace des va	riables	s discrimina	ntes	:	•••••	•••••	47
13.	Ajout de	points	supplément	taire	s			49
14.	Affectation	on d'ui	n nouveau ir	ndivi	idu :			49
Conclusion .								51

Table de figure

Figure 1:Relation de normalisation (Qualitatives)	17
Figure 2: Relation de normalisation (Qualitatives)	17
Figure 3:Relation Matrice de variance covariance	18
Figure 4 : Relation matrice de variance covariance inter	18
Figure 5 : Présentation du dataset	22
Figure 6: Fonction de centrage et reduction	23
Figure 7 : Normaliser les variables Quantitatives	23
Figure 8 : Dataset avant normalization	24
Figure 9 :Dataset après normalization	24
Figure 10: Normaliser des variables Qualitatives	24
Figure 11 :Figure 11:fonction de pondération sur les indicateurs	24
Figure 12 : variable qualitative avant normalization	25
Figure 13: variable qualitative apres normalization	25
Figure 14 :Combinaison des données	26
Figure 15 : Donner Combinaiser	26
Figure 16 : Matrice centree	27
Figure 17 : Donner a analyser	27
Figure 18 : Importer la bibiotheque MASS	
Figure 19 : Fonction LDA	28
Tableau 1: Resultas du fonction LDA	28
Figure 20 : Graphe du resultas LDA	29
Figure 21: Partie du matrice G	30
Figure 22 : Extraire G du LDA	30
Figure 23 : Matrice G	30
Figure 24: Calcule du matrice B	31
Figure 25: Valeur de delta	31
Figure 26 : Tous la matrices B	35
Figure 27 : Calcule du matrice V et M	35
Figure 28 : Tous la matrice V	38
Figure 29: Tous la matrice M	42
Figure 30 : 1er valeur propre	42
Figure 31: Pourcentage d'inertie	43
Figure 32: 1er vecteur propres	43

Figure 33: Vecteur principale	44
Figure 34: Corrdonnes de G	44
Tableau 2: resultas corrdonnes d'individus	45
Figure 35: Representation Graphique 1	47
Figure 36 :Representation Graphique 2	47
Figure 37: Representation Graphique 3	48
Figure 38: Representation Graphique 4	48
Figure 39 : donner supplementaire	49
Figure 40: affectation	49
Figure 41 : resultas de l'affectation	50

Remerciements

Tout d'abord, nous remercions Dieu, notre Créateur, le Miséricordieux, qui nous a donné l'opportunité d'étudier, la volonté, le courage et la patience afin d'accomplir et de mener a bien ce travail.

Nous remercions en particulier notre encadreur, MM. CHEMLAL Hasna pour avoir dirigé ce travail. Pour son aide, ses encouragements, sa grande disponibilité, ses précieux conseils et pour la patience qu'il nous a accordé pendant la réalisation de ce travail.

Introduction

L'analyse de données est une discipline essentielle dans le domaine de la science des données. Elle consiste à appliquer des méthodes statistiques et des techniques d'extraction de connaissances sur un ensemble de données afin d'en tirer des informations utiles et de prendre des décisions éclairées.

L'objectif principal de l'analyse de données est de découvrir des modèles, des tendances et des relations cachées au sein des données, ce qui peut permettre de formuler des hypothèses, de faire des prédictions et de prendre des mesures correctives. L'analyse de données peut être utilisée dans de nombreux domaines, tels que la recherche scientifique, la finance, le marketing, la santé, etc.

Le processus d'analyse de données comprend généralement plusieurs étapes. Tout d'abord, il faut collecter des données pertinentes et de qualité à partir de diverses sources telles que des bases de données, des fichiers CSV, des enquêtes ou des capteurs. Ensuite, il convient d'explorer les données en les visualisant et en analysant leur structure, leurs distributions, les valeurs aberrantes éventuelles et les relations entre les variables. Après cette étape, il est souvent nécessaire de prétraiter les données en les nettoyant, en les transformant ou en les normalisant, afin de les rendre adaptées à l'analyse. La modélisation et l'analyse des données consistent à appliquer des techniques statistiques ou des algorithmes d'apprentissage automatique pour découvrir des modèles et des relations significatifs. Une fois les analyses effectuées, il est crucial d'interpréter les résultats obtenus, de tirer des conclusions et de formuler des recommandations. Enfin, il faut communiquer les résultats de manière claire et concise, en utilisant des visualisations graphiques, des rapports ou des présentations pour partager les informations avec les parties prenantes concernées. L'analyse de données joue un rôle essentiel dans la prise de décision éclairée et peut permettre d'identifier des opportunités, de résoudre des problèmes et d'améliorer les performances dans divers domaines.

Chapitre I : Analyse de donnes

1. Introduction

Au sein de notre projet de fin d'application (PFA) pour le module Analyse des Données, notre groupe s'est vu attribuer le sujet "Analyse Factorielle Discriminante des Données Mixtes" de manière aléatoire. Ce chapitre nous offre l'opportunité d'explorer le vaste domaine de l'analyse des données, en mettant l'accent sur l'analyse factorielle des données. Nous plongerons ainsi dans les concepts fondamentaux de cette méthode et découvrirons comment elle permet de représenter et d'analyser efficacement des ensembles de données complexes.

Ce faisant, notre objectif est d'approfondir notre compréhension de l'Analyse Factorielle Discriminante des Données Mixtes, en reliant ses racines historiques à l'évolution actuelle de la Data Science. Nous espérons ainsi contribuer à l'avancement des connaissances dans ce domaine passionnant, et mettre en évidence l'importance de la Data Science dans la résolution de problèmes complexes et la prise de décisions éclairées basées sur les données.

2. Historique

L'histoire de l'analyse des données est riche et remonte à plusieurs siècles. Au 17e siècle, le mathématicien John Graunt a jeté les bases en utilisant des données démographiques pour étudier les taux de mortalité. Cependant, c'est au 19e siècle que l'analyse des données a réellement pris son envol avec les avancées majeures dans le domaine des statistiques et des études démographiques.

Des statisticiens éminents tels que Francis Galton, Karl Pearson et Ronald Fisher ont contribué au développement des statistiques en introduisant des concepts fondamentaux comme la corrélation, la régression et les tests d'hypothèses. Leurs travaux ont jeté les bases de l'analyse statistique moderne et ont ouvert la voie à des analyses plus sophistiquées. Au milieu du 20e siècle, les statisticiens Hotelling et Fisher ont apporté des avancées majeures avec le développement de méthodes multivariées. L'analyse factorielle et l'analyse discriminante sont deux exemples de ces méthodes qui permettent d'analyser des ensembles de données comportant plusieurs variables simultanément. Ces avancées ont permis une exploration plus approfondie des données et une compréhension plus fine des relations entre les variables.

L'avènement de l'informatique dans les années 1960 et 1970 a marqué un tournant décisif dans l'analyse des données. Les statisticiens ont commencé à utiliser des logiciels spécialisés et des méthodes informatiques pour traiter rapidement de grandes quantités de données. Cela a permis une analyse plus rigoureuse et plus efficace des données, ouvrant la voie à de nouvelles possibilités d'exploration et de découverte. Dans les années 1990, avec l'explosion des données numériques, le domaine de l'analyse des données s'est élargi pour inclure des techniques de data mining et d'apprentissage automatique. Ces approches permettent d'extraire des

connaissances et des modèles à partir de grandes bases de données, facilitant ainsi la prédiction, la classification et la découverte de tendances.

Au 21e siècle, l'analyse des données a pris une nouvelle dimension avec l'avènement du Big Data et de l'intelligence artificielle. Les progrès dans le domaine du machine learning, des réseaux neuronaux et de l'analyse prédictive ont permis des applications de pointe dans des domaines tels que la reconnaissance vocale, la vision par ordinateur et le traitement automatique du langage naturel. Aujourd'hui, l'analyse des données joue un rôle crucial dans de nombreux domaines, offrant des opportunités et des défis uniques. Elle continue d'évoluer rapidement avec l'émergence de nouvelles techniques et technologies, et joue un rôle essentiel dans la prise de décisions basées sur les données et la recherche de solutions aux problèmes complexes.

L'analyse des données a parcouru un long chemin pour devenir la science des données que nous connaissons aujourd'hui. Cette discipline a émergé de la convergence de domaines tels que les mathématiques, les statistiques, l'informatique et le domaine spécifique des données. En exploitant la valeur stratégique des données, la science des données utilise des techniques avancées d'analyse, de visualisation et de modélisation pour extraire des informations précieuses, améliorer la prise de décisions et stimuler l'innovation. Avec la croissance exponentielle des données, la science des données est devenue une discipline essentielle pour les entreprises et les institutions, offrant de nouvelles perspectives de carrière en tant que scientifiques des données et ingénieurs en données.

En résumé, l'analyse des données a évolué pour répondre aux défis de notre ère numérique, transformant les données en une ressource précieuse qui ouvre des opportunités infinies pour la découverte et l'amélioration de notre monde.

3. Définition

L'analyse des données est une discipline qui consiste à examiner, nettoyer, transformer et modéliser des ensembles de données afin d'extraire des informations utiles, d'en tirer des conclusions et de prendre des décisions éclairées. Elle fait appel à des techniques statistiques, mathématiques et informatiques pour explorer et interpréter les données, en mettant l'accent sur la découverte de modèles, de relations et de tendances significatives.

La portée de l'analyse des données est vaste et elle est utilisée dans de nombreux domaines. Dans le domaine des affaires, elle est employée pour optimiser les processus, améliorer la prise de décision stratégique, segmenter les clients, prédire les tendances du marché et détecter les fraudes. Dans les sciences sociales, elle est utilisée pour analyser les comportements, les opinions et les tendances sociales. Dans le domaine de la santé, elle contribue à la recherche clinique, à la détection de maladies, à la surveillance épidémiologique et à l'amélioration des soins aux

patients. Elle est également appliquée dans le domaine de l'ingénierie, de la finance, de la logistique, de la géologie, de l'environnement et dans de nombreux autres secteurs.

Il existe plusieurs types d'analyse des données :

L'analyse descriptive : Il est à la base de toute connaissance des données.Il s'agit de l'utilisation la plus simple et la plus courante des données en entreprise aujourd'hui. L'analyse descriptive répond à «ce qui s'est passé» en résumant les données passées, généralement sous la forme de graphique ou tableaux de bord.Après avoir posé la question principale de «ce qui s'est passé», l'étape suivante consiste à approfondir et à se demander pourquoi cela s'est produit.C'est là qu'intervient l'analyse diagnostique.

L'analyse diagnostique : prend les informations trouvées à partir des analyses descriptives et explore les causes de ces résultats. Les organisations utilisent ce type d'analyse car il crée plus de connexions entre les données et identifie les modèles de comportement. Cela signifie plus de valeur ajoutée et la possibilité de résoudre de nouveaux problèmes de manière plus optimisée du fait de l'interconnection des données. L'analyse prédictive : sert à identifier les probabilités et tendances futures. Elle est censée donner des informations sur ce qui susceptible de se produire dans l'avenir et utilise des modèles statistiques et des algorithmes d'apprentissage automatique pour prédire des événements futurs ou des valeurs manquantes.

L'analyse prédictive tente de répondre à la question «ce qui est susceptible de se passer». Ce type d'analyse utilise des données antérieures pour faire des prédictions sur les résultats futurs et ainsi étudier les potentiels variables. C'est un autre pas en avant par rapport aux analyses descriptives et diagnostiques. L'analyse prédictive utilise les analyses que nous avons résumées pour faire des prédictions logiques. Ce type d'analyse repose sur la modélisation statistique pour faire des prévisions. Il est également important de comprendre que la prévision n'est qu'une estimation variable ; l'exactitude des prévisions repose sur la qualité et des données mises à disposition.

L'analyse prescriptive est la frontière de l'analyse des données, combinant les connaissances de toutes les analyses précédentes pour déterminer le plan d'action à prendre pour un problème ou une décision en cours. L'intelligence artificielle (IA) est un parfait exemple d'analyse prescriptive. Les systèmes d'IA consomment une grande quantité de données pour apprendre en permanence et utiliser ces informations pour prendre des décisions éclairées

4. Type de donnes en relation avec la méthode utiliser

Les données se présentent généralement sous la forme d'un tableau rectangulaire, dont les lignes correspondent à des individus ou unités statistiques et les colonnes à des variables appelées caractères ou caractéristiques.

Les valeurs des variables peuvent être :

• Quantitatives:

ordinales (jugement humain, température) mesurables (poids d'un individu, revenu);

• Qualitatives:

ordinales (classe d'âge, le rang)

nominales (sexe, situation matrimoniale).

Chaque type d'analyse de données utilise des méthodes spécifiques qui lui sont propres. Ainsi, si l'on décide d'utiliser d'autres méthodes qui ne sont pas adaptées à un type particulier d'analyse, cela peut entraîner des résultats moins satisfaisants, de ces methodes en trouves :

- ➤ ACP : Analyse En Composantes Principales, dont l'ensemble I est décrit à l'aide de <u>variables quantitatives</u>, continues, homogènes ou non a priori corrélées entre elles deux à deux. On cherche à répondre à des questions du type suivant : quelles sont les variables qui sont liées positivement entre elles ? Quelles sont celles qui s'opposent ? A propos des individus on cherchera à évaluer leur ressemblance et leur dissemblance, à mettre en relief des groupes homogènes d'individus. En résumé l'analyse en composantes principales (ACP) consiste à transformer les p variables quantitatives, initiales en p nouvelles variables non corrélées, appelées composantes principales (ou facteurs).
- ➤ AFC : Analyse Factorielle des Correspondances est une méthode factorielle de Statistique Descriptive Multidimensionnelle (MDS). Elle est utlisée lorsque l'on souhaite étudier la liaison entre deux variables qualitatives (nominales).
- ➤ ACM: L'Analyse des Correspondances Multiples est une extension de l'analyse factorielle des correspondances (AFC) pour résumer et visualiser un tableau de données contenant plus de <u>deux variables catégorielles</u>. On peut aussi la considérer comme une généralisation de l'analyse en composantes principales (ACP) lorsque les variables à analyser sont catégorielles plutôt que quantitatives.
- ➤ AFDM: L'Analyse factorielle discriminante <u>des données mixtes</u> est une méthode ancienne (RONALD FISHER,1936) qui dans sa version classique a peu évolue au cours des vingt dernières années. Cette méthode est une technique d'analyse des données qui est descriptive et explicative qui vise à

d'écrire, expliquer et prédire l'appartenance d'un individu statistique a un groupe prédéfini (classe, modalité de la variable a prédire)

Chapitre II : Analyse factorielle discriminante des données mixtes

1. Introduction

Les méthodes de discrimination sont des méthodes qui visent à séparer au mieux les classes à priori définies par une variable qualitative notée Q, et ce à partir de p variables X1, X2 ,...., Xp dites variables explicatives. Ce sont des méthodes prévisionnelles faisant partie de l'apprentissage statistique aussi appelées méthodes d'apprentissage supervisé (machine learning).

Les méthodes d'apprentissage statistique passent par deux phases :

Phase d'apprentissage: Sur un échantillon d'apprentissage on observe X1, X2 ,...., Xp et aussi Q.

Ce qui conduit à la construction d'une règle prévisionnelle (affectation).

Phase prévisionnelle: Des individus sur lesquels on observe les Xj mais pas Q; il s'agit d'appliquer la règle d'affectation pour prédire leur classe (leur modalité relativement à Q).

L'analyse factorielle discriminante (AFD) est une technique statistique avancée qui vise à explorer et à comprendre les relations complexes entre un ensemble de variables indépendantes et une variable dépendante qualitative. En d'autres termes, elle nous permet de déterminer les facteurs qui contribuent le plus à la distinction entre différentes classes ou catégories dans un jeu de données.

L'AFD est particulièrement utile dans de nombreux domaines de recherche et d'application, tels que la biologie, la psychologie, l'économie et la reconnaissance de formes. Elle offre un moyen efficace de résoudre des problèmes de classification et de prédiction en identifiant les variables qui fournissent le plus d'informations pour différencier les groupes.

Dans ce chapitre, nous explorerons en détail les principes fondamentaux de l'AFD, sa méthodologie et sa mise en œuvre pratique. Nous aborderons les différentes étapes de l'analyse, de la préparation des données à l'interprétation des résultats. De plus, nous discuterons des avantages et des limites de l'AFD, ainsi que des considérations importantes à prendre en compte lors de son application.

2. Analyse factorielle

L'analyse factorielle est un terme qui désigne aujourd'hui plusieurs méthodes d'analyses de grands tableaux rectangulaires de données, visant à déterminer et à hiérarchiser des facteurs corrélés aux données placées en colonnes.

Au sens anglo-saxon du terme, l'analyse factorielle (factor analysis) désigne une méthode de la famille de la statistique multivariée, utilisée pour décrire un ensemble de variables observées, au moyen de variables latentes (non observées). Pour réduire le nombre de variables, la méthode calcule ces variables latentes comme combinaisons linéaires des variables observées. Créée au début du xxe siècle par Charles Spearman, cette méthode est utilisée en psychologie et particulièrement en

psychométrie. Dans la méthodologie Q, Stephenson, un élève de Spearman, distingue l'analyse factorielle R, orientée sur les différences interindividuelles, et l'analyse factorielle Q, orientée sur les différences intraindividuelles. En France, la terminologie « analyse factorielle » représente une autre famille de méthodes plus récentes et d'applications bien plus larges touchant la plupart des disciplines qui manipulent des grands tableaux de données.

3. L'analyse factorielle discriminante (AFD)

L'analyse factorielle discriminante (AFD) ou simplement analyse discriminante est une technique statistique qui vise à décrire, expliquer et prédire l'appartenance à des groupes prédéfinis (classes, modalités de la variable à prédire...) d'un ensemble d'observations (individus, exemples...) à partir d'une série de variables prédictives (descripteurs, variables exogènes...).

On distingue généralement deux grandes approches selon les objectifs :

L'analyse discriminante peut être une technique descriptive. On parle dans ce cas d'analyse factorielle discriminante (ou analyse discriminante descriptive). L'objectif est de proposer un nouveau système de représentation, des variables latentes formées à partir de combinaisons linéaires des variables prédictives, qui permettent de discerner le plus possible les groupes d'individus. En ce sens, elle se rapproche de l'analyse factorielle car elle permet de proposer une représentation graphique dans un espace réduit, plus particulièrement de l'analyse en composantes principales calculée sur les centres de gravité conditionnels des nuages de points avec une métrique particulière. On parle également d'analyse canonique discriminante, notamment dans les logiciels anglo-saxons.

L'analyse discriminante peut être prédictive. Il s'agit dans ce cas de construire une fonction de classement (règle d'affectation, ...) qui permet de prédire le groupe d'appartenance d'un individu à partir des valeurs prises par les variables prédictives. En ce sens, cette technique se rapproche des techniques supervisées en apprentissage automatique telles que les arbres de décision, les réseaux de neurones, ... Elle repose sur un cadre probabiliste. Le plus connu est certainement l'hypothèse de distribution multi normale (loi normale). Additionnée à l'hypothèse d'homoscédasticité, les nuages de points conditionnels ont la même forme, nous aboutissons à l'analyse discriminante linéaire. Elle est très séduisante dans la pratique car la fonction de classement s'exprime comme une combinaison linéaire des variables prédictives, facile à analyser et à interpréter. Cette technique est, avec la régression logistique, très utilisée dans le scoring, lorsque nous voulons par exemple caractériser l'appétence – la propension à acheter – d'un client face à un nouveau produit.

La distinction entre ces deux approches n'est pas aussi tranchée. Il est par exemple possible de dériver des règles géométriques d'affectation à partir de l'analyse factorielle discriminante.

4. Théorie de la méthode (AFD sur données mixtes)

L'introduction simultanée de variables quantitatives et qualitatives (données dites mixtes) en tant qu'éléments actifs d'une même analyse factorielle est une problématique fréquente. L'intérêt de conserver telles quelles les variables quantitatives (i.e. sans les coder en qualitatives) vaut essentiellement dans deux cas .

Lorsque le nombre de variables qualitatives est très petit comparé à celui des variables quantitatives

Lorsque le nombre d'individus est faible.

Adoptant le point de vue de l'ACM, Escofier (1979a) a proposé d'introduire des variables quantitatives (moyennant un codage approprié) dans une ACM : elle décrit plusieurs propriétés de cette méthodologie ainsi qu'une application.

Il est possible, moyennant une métrique judicieusement choisie, de réaliser un ACP sur un tableau juxtaposant des variables quantitatives réduites et des variables qualitatives codées sous forme disjonctive complète. Cette possibilité est esquissée dans Saporta (1990) sous le nom d'extension de l'ACP et de l'ACM.

5. Prétraitement des données

Cette analyse globale, où plusieurs ensembles de variables sont considérés simultanément, nécessite d'équilibrer les influences de chaque ensemble de variables. Par conséquent, dans l'AFDM, les variables sont pondérées lors de l'analyse. Les variables d'un même groupe sont normalisées en utilisant la même valeur de pondération, qui peut varier d'un groupe à l'autre. Techniquement, AFDM attribue à chaque variable du groupe j, un poids égal à l'inverse de la première valeur propre de l'analyse (ACP ou ACM selon le type de variable) du groupe j.

a Etape 1 : Codage Disjonctif complet des variables qualitatives

Le **codage disjonctif complet** permet de transformer des variables qualitatives en des variables de type quantitatif sous forme de variables binaires (0/1).

Le principe du **CDC** est de créer une nouvelle variable binaire pour chaque niveau de la variable catégorielle, où la présence du niveau est représentée par la valeur 1

et son absence est représentée par la valeur 0. Ainsi, chaque niveau de la variable catégorielle devient une variable binaire distincte.

Par exemple, supposons que nous ayons une variable catégorielle "Couleur" avec trois niveaux : "Rouge", "Vert" et "Bleu". Le CDC créerait trois nouvelles variables binaires : "Couleur.Rouge", "Couleur.Vert" et "Couleur.Bleu". Si une observation a la valeur "Rouge" pour la variable "Couleur", la variable "Couleur.Rouge" sera égale à 1 et les autres variables seront égales à 0.

b Etape 2 : Standardisation différenciée des colonnes

La standardisation différenciée des colonnes consiste à centrer et réduire chaque variable quantitative de manière indépendante. Cela signifie que chaque variable est centrée sur sa moyenne et réduite par son écart-type. En effectuant cette standardisation, toutes les variables quantitatives auront une moyenne de zéro et un écart-type de un, ce qui permet de les mettre sur une même échelle.

Cette étape est généralement appliquée aux variables quantitatives, tandis que les variables qualitatives sont généralement traitées différemment dans l'AFDM, en utilisant des méthodes spécifiques adaptées aux données qualitatives, telles que l'analyse des correspondances multiples.

ACPN sur les variables quantitatives :

$$\boldsymbol{z}_{ik} = \frac{x_{ik} - \mu_k}{\sigma_k} ; k = 1, \dots, C$$

Figure 1:Relation de normalisation (Qualitatives)

ACM sur les variables qualitatives :

$$z_{ik} = \frac{x_{ik}}{\sqrt{p_k}} ; k = C+1, \dots, P$$

Figure 2: Relation de normalisation (Qualitatives)

Après le codage disjonctif complet, et la standardisation différenciée des colonnes en utilisant ACPN sur les variables quantitatives, Cela signifie que chaque variable est centrée sur sa moyenne et réduite par son écart-type, et l'ACM sur les variables qualitatives, en divisant chaque valeur sur la racine de sa proportion, on peut center la nouvelle matrice puis appliquer un ACP sur la matrice des centres de gravitées sur ces données transformées.

On obtient les résultats de l'AFDM

6. Deux idées importantes

L'objectif de l'analyse discriminante est de produire un nouvel espace de représentation qui permet de distinguer le mieux les K groupes.

La démarche consiste à produire une suite de variables discriminantes \mathbf{Z}_h , non corrélées deux à deux, telles que des individus du même groupes projetés sur ces axes soient le plus proche possible les uns des autres, et que des individus de groupes différents soient le plus éloigné possible.

La dispersion à l'intérieur d'un groupe est décrite par la matrice de variance covariance \mathbf{W}_k . Nous pouvons en déduire (à un facteur près) la matrice de dispersion intra-groupe

$$W = \frac{1}{n} \sum_{k} n_k \times W_k$$

Figure 3:Relation Matrice de variance covariance

L'éloignement entre les groupes, entre les centres de gravité des groupes, est traduit par la matrice de variance covariance inter-groupes (à un facteur près)

$$B = \frac{1}{n} \sum_{k} n_{k} (^{t} (\mu_{k} - \mu)) (\mu_{k} - \mu)$$

Figure 4 : Relation matrice de variance covariance inter

Où µ est le centre de gravité du nuage de points global.

La dispersion totale du nuage est obtenue par la matrice de variance covariance totale V. En vertu du théorème d'Huyghens (qui est la généralisation multidimensionnelle de la formule de décomposition de la variance) :

$$V = B + W$$

Le premier axe factoriel sera donc défini par le vecteur directeur μ_1 tel que l'on maximise la quantité $\frac{\mu_1' \mathbf{B} \mu_1}{\mu_1' \mathbf{V} \mu_1}$.

La variance inter-classes sur ce premier axe factoriel \mathbf{Z}_1 sera maximum.

La solution de ce problème d'optimisation linéaire passe par la résolution de l'équation $V^{-1}Bu = \lambda u$.

La réponse nous est directement fournie par le calcul des valeurs propres et vecteurs propres de la matrice $V^{-1}B$.

Le premier axe factoriel Z_1 est donc obtenu à l'aide du vecteur propre u_1 correspondant à la plus grande valeur propre λ_1 . Le second axe factoriel est défini par le vecteur propre suivant, etc.

L'ensemble des axes factoriels est déterminé par les valeurs propres non nulles de la matrice $V^{-1}B$. Dans le cas usuel où n>J>K, nous obtenons K-1 axes factoriels. Enfin, la variance inter-classes calculée sur l'axe factoriel Z_h , que l'on appelle également pouvoir discriminant de l'axe, est égale à la valeur propre λ_h associée.

7. Phase d'affection d'une nouvelle observation

Ayant trouvé la meilleure représentation de la séparation en **k** groupes des **n** individus, on peut alors chercher à affecter une observation à l'un des groupes. La règle naturelle consiste à calculer les distances de l'observation à classer à chacun des **k** centres de gravité et à affecter selon la distance la plus faible. La phase d'affection est une étape cruciale où l'on attribue une nouvelle observation à une classe ou un groupe spécifique. La procédure d'affection dans l'AFD repose sur les informations extraites lors de la phase d'apprentissage du modèle.

Une observation i de profil(Y1(i),...., Yp(i)),Q(i) la variable a expliqué étant inconnue:

Prétraitement de l'observation : il est essentiel de prétraiter la nouvelle observation de manière cohérente avec les données utilisées pour construire le modèle d'AFD. Cela peut inclure des étapes telles que la normalisation des variables, la transformation des données, etc.

Centrage de l'observation: Après qu'on assure que la nouvelle observation est prétraitée de la même manière que les données utilisées dans la phase d'apprentissage, ou l'observation centrer devient X(i)=(X1(i),....,Xp(i))

Projeter sur un plan principal(r,s) : On calcule les coordonnées des centres de gravités sur les axes discriminants en utilisant la formule :

$$C^r = trans(u_r) V^{-1} X(i)$$

 $C^{s} = trans(u_s) V^{-1} X(i)$

Puis on place ces projections sur le plan discriminant.

Comparaison des distances : Sur le plan principal (r,s) , on compare la distance i et les différents centres de gravité.

Affectation : En déduite la distance des individus aux centres et leur classement. Puis on affecte l'observation à la classe dont le centre de gravité est le plus proche.

Chapitre III : Application d'AFDM

1. Dataset

a Description

On dispose de données ou n = 304 personnes sont repartis en trois deux selon leur état de santé (groupe 1 : on des problème au cœur ; groupe 2 : on pas des problèmes au cœur). La variable qualitative a expliqué Y est la variable qui possède deux modalités (groupe 1 = 1; groupe 2 = 0). Sur ces 304 personnes, on a mesuré les p = 14 variables suivantes :

- $--X_1$ = age (Période de la vie),
- $X_2 = sex$ (Caractère physique permanent de l'individu humain),
- $--X_3 = cp$ (Douleur thoracique),
- X_4 = trestbps (La pression artérielle),
- $X_5 = \text{chol}$ (Le taux de cholestérol LDL),
- $X_6 = \text{fbs}$ (Mesure de sucre « glucose »),
- X_7 = restecg (Activité électrique du cœur),
- $X_8 = \text{exang}$ (Angine d'effort),
- X_9 = thalach (Fréquence cardiaque maximale atteinte),
- X_{10} = oldpeak (Un signe electrocardiographique de tests d'effort),
- X_{11} = slope (Direction et pente du segment st),
- $X_{12} = ca$ (maladie coronarienne),
- X_{13} = thal (La thalassémie),
- Y = target (Maladie cardiovasculaire).

b Objective

On veut pouvoir d'ecrire Y ou encore expliquer l'appartenance à un groupe, en fonction de ces 13 variables explicatives X_1, \ldots, X_{13}

```
> heart <- read.csv("heart_prediction.csv",sep = ",")</pre>
 head(heart)
  ï..age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
                                              150
                                                             2.3
          1 3
                     145 233
          1 2
                     130 250
                                        1
                                              187
                                                             3.5
3
          0 1
                     130 204
                                        0
                                              172
                                                       0
                                                             1.4
                                                                     2 0
          1 1
                                                                     2 0
                                                                             2
      56
                     120 236
                                0
                                        1
                                              178
                                                       0
                                                             0.8
                                                                                    1
5
                                                                     2 0
              0
                     120
                          354
                                        1
                                               163
                                                       1
                                                             0.6
                                                                             2
                                                                                    1
6
      57
           1 0
                     140
                          192
                                               148
                                                             0.4
```

Figure 5 : Présentation du dataset

c Motivation

Cette analyse des données nous offre une occasion passionnante d'explorer et de comprendre les aspects médicaux liés aux maladies cardiovasculaires. En examinant ces données, nous pouvons identifier les facteurs de risque potentiels associés à ces conditions, tels que l'âge, le sexe, la pression artérielle, le taux de cholestérol et d'autres variables pertinentes. En construisant des modèles statistiques ou

d'apprentissage automatique, nous pouvons développer des outils de prédiction pour estimer le risque de maladies cardiovasculaires ou de complications chez les patients. De plus, l'analyse nous permettra d'évaluer l'efficacité des traitements existants et de découvrir de nouveaux marqueurs diagnostiques potentiels, contribuant ainsi à améliorer la prévention, les interventions médicales et les stratégies de prise en charge.

En fin de compte, cette analyse de données peut avoir un impact significatif sur les soins de santé, en aidant à prendre des décisions éclairées, à identifier les patients à risque et à promouvoir la santé cardiovasculaire pour améliorer la qualité de vie des individus.

- 2. Application afdm
- a ACP sur les variables quantitatives :
 - 1. Centrage et réduction des variables quantitatives.

#fonction pour centrage et réduction

```
CR <- function(x) {
    n <- length(x)
    m <- mean(x)
    v <- (n-1)/n*var(x)
    return((x-m)/sqrt(v))
}</pre>
```

Figure 6 : Fonction de centrage et reduction

2. Centrage et réduction variables quantitatives.

```
#appliquer la fonction sur les variables continues

Vquanti <- data.frame(heart$age,heart$trestbps,heart$chol,heart$thalach,heart$oldpeak)
heart.cont <- data.frame(lapply(Vquanti,CR))
print(heart.cont)</pre>
```

Figure 7 : Normaliser les variables Quantitatives

➤ Resultas Avant

```
man / gecoperon( maniping )
 print(head(Vquanti))
  heart.ï..age heart.trestbps heart.chol heart.thalach heart.oldpeak
            63
                           145
                                      233
                                                     150
2
            37
                           130
                                      250
                                                     187
                                                                    3.5
3
            41
                           130
                                      204
                                                     172
                                                                    1.4
4
            56
                           120
                                      236
                                                     178
                                                                    0.8
5
            57
                           120
                                      354
                                                     163
                                                                    0.6
            57
6
                           140
                                      192
                                                     148
                                                                    0.4
```

Figure 8: Dataset avant normalization

Apres

```
> print(head(heart.cont))
 heart.ï..age heart.trestbps heart.chol heart.thalach heart.oldpeak
               0.76395577 -0.25633371
    0.9521966
                                         0.01544279
                                                       1.0873381
   -1.9153129 -0.09273778 0.07219949
                                         1.63347147
                                                       2.1225727
   -1.4741576 -0.09273778 -0.81677269
                                       0.97751389
                                                      0.3109121
    0.1801748 -0.66386682 -0.19835726
                                        1.23989692
                                                     -0.2067053
5
    0.2904636 -0.66386682 2.08204965
                                         0.58393935
                                                      -0.3792444
    0.2904636
              0.47839125 -1.04867848
                                        -0.07201822
                                                      -0.5517835
>
```

Figure 9 : Dataset après normalization

- b ACM sur les variables qualitatives :
 - 1. Codage disjonctif complet des variables qualitatives.

```
#codage disjonctif complet
```

Vquali <- data.frame(heart\$sex,heart\$cp,heart\$fbs,heart\$restecg,heart\$exang,
heart\$slope,heart\$ca,heart\$thal)</pre>

```
library(ade4)
```

heart.disc <- acm.disjonctif(Vquali)</pre>

Figure 10: Normaliser des variables Qualitatives

2. Application d'une fonction de pondération sur les indicateurs.

```
#fonction pour pondération des indicatrices
PF <- function (x){
   m <- mean(x)
   return(x/sqrt(m))
}
#appliquer la pondération sur les indicatrices
heart.disc.pond <- data.frame(lapply(heart.disc,PF))</pre>
```

Figure 11: Figure 11: fonction de pondération sur les indicateurs

• Resultas

Avant

	heart.sex.0	heart.sex.1	heart.cp.0	heart.cp.1	L heart.cp.2	heart.cp.3 h	neart.fbs.0
1	0	1	0	0	0	1	0
2	0	1	0	0	1	0	1
3	1	0	0	1	0	0	1
4	0	1	0	1	0	0	1
5	1	0	1	0	0	0	1
6	0	1	1	0	0	0	1
	heart.fbs.	1 heart.rest	ecg.O hear	t.restecg.1	L heart.reste	cg.2 heart.e	exang.0
1	1	1	_	0	0		1
2	0	C)	1	0		1
3	0]	_	0	0		1
4	0	C)	1	0		1
5	0	()	1	0		0
6	0	C)	1	0		1
	heart.exang	.1 heart.slo	pe.O heart	.slope.1 he	eart.slope.2	heart.ca.0 h	neart.ca.1
1	0	1	_	0	0	1	0
2	0		_	0	0	1	0
3	0	<u> </u>)	0	1	1	0
4	0)	0	1	1	0
5	1	<u> </u>)	0	1	1	0
6	0	<u> </u>)	1	0	1	0
<u></u>	heart.ca.2 hear	t.ca.3 heart	ca.4 hear	t.thal.O he	eart.thal.1 h	eart.thal.2	heart.thal.3
1	0	0	0	0	1	0	0
2	0	0	0	0	0	1	0
3	0	0	0	0	0	1	0
4	0	0	0	0	0	1	0
5	0	0	0	0	0	1	0
;							

Figure 12 : variable qualitative avant normalization

après

heart.sex.0 h	eart.sex.1 hea	art.cp.0	heart.cp.	1 heart.cp.2	heart.cp.3	heart.fbs.0	
0.000000	1.209863 (0.00000	0.00000	0.000000	3.629589	0.000000	
0.000000	1.209863 (0.00000	0.00000	0 1.866215	0.000000	1.083706	
1.776584	0.000000 (0.00000			0.000000		
0.000000							
1.776584						1.083706	
0.000000						1.083706	
				heart.restec	g.2 heart.ex	kang.0	
2.594867	1.435697	7	0.000000				
0.000000			1.411886			218726	
			0.000000				
0.000000			1.411886				
						neart.ca.1	
						0	
0.000000	3.798496					0	
						0	
						0	
1.749459	0.000000					0	
						0	
heart.ca.2 he	art.ca.3 heart	ca.4 he	eart.thal.				ι1.3
0	0	0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~	0
0	0	0					0
0		0					0
0	·····	0				~~~~~	0
0	0	0					0
0	0	0		0 4.1028	45 0.000	0000	0
	0.000000 0.000000 1.776584 0.000000 1.776584 0.000000 heart.fbs.1 h 2.594867 0.000000 0.000000 0.000000 0.000000 0.000000	0.000000 1.209863 0 0.000000 1.209863 0 1.776584 0.000000 0 0.000000 1.209863 0 1.776584 0.000000 0 0.000000 1.209863 0 heart.fbs.1 heart.restecg.0 2.594867 1.435697 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 heart.exang.1 heart.slope.0 0.000000 3.798496 0.000000 3.798496 0.000000 0.000000 0.000000 0.000000 1.749459 0.000000 0.000000 0.0000000 heart.ca.2 heart.ca.3 heart	0.000000 1.209863 0.000000 0.000000 1.209863 0.000000 1.776584 0.000000 0.000000 1.776584 0.000000 1.455638 0.000000 1.209863 0.455638 0.000000 1.209863 1.455638 heart.fbs.1 heart.restecg.0 heart	0.000000 1.209863 0.000000 0.00000 0.000000 1.209863 0.000000 0.00000 1.776584 0.000000 0.000000 2.46170 0.000000 1.209863 0.000000 2.46170 1.776584 0.00000 1.455638 0.00000 0.000000 1.209863 1.455638 0.00000 heart.fbs.1 heart.restecg.0 heart.restecg.1 2.594867 1.435697 0.000000 0.000000 0.000000 1.411886 0.000000 1.411886 0.000000 0.000000 1.411886 0.000000 1.411886 0.000000 0.000000 1.411886 0.000000 1.411886 0.000000 0.000000 1.411886 0.000000 0.000000 0.000000 0.000000 3.798496 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.471151 heart.ca.2 heart.ca.3 heart.ca.4 heart.thal. 0 0 0 0 0 0 <	0.000000 1.209863 0.000000 0.000000 0.000000 0.000000 1.209863 0.000000 0.000000 1.866215 1.776584 0.000000 0.000000 2.461707 0.000000 0.000000 1.209863 0.000000 2.461707 0.000000 1.776584 0.000000 1.455638 0.000000 0.000000 0.000000 1.209863 1.455638 0.000000 0.000000 heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restec 2.594867 1.435697 0.000000 0.000000 0.000000 0.000000 1.411886 0.000000 0.000000 0.000000 1.411886 0.000000 0.000000 0.000000 1.411886 0.000000 0.000000 3.798496 0.000000 0.000000 0.000000 0.000000 1.460754 0.000000 0.000000 0.000000 1.471151 0.000000 heart.ca.2 heart.ca.3 heart.ca.4 heart.thal 0	0.000000 1.209863 0.000000 0.000000 3.629589 0.000000 1.209863 0.000000 0.000000 1.866215 0.000000 1.776584 0.000000 0.000000 2.461707 0.000000 0.000000 0.000000 1.209863 0.000000 2.461707 0.000000 0.000000 1.776584 0.000000 1.455638 0.000000 0.000000 0.000000 0.000000 1.209863 1.455638 0.000000 0.000000 0.000000 heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.ee 2.594867 1.435697 0.00000 0 1.7 0.000000 0.000000 1.411886 0 1.7 0.000000 0.000000 1.411886 0 1.7 0.000000 0.000000 1.411886 0 1.7 0.000000 0.000000 1.411886 0 1.7 0.000000 0.000000 1.411886 0 1.2 0.000	0.000000 1.209863 0.000000 0.000000 1.866215 0.000000 1.083706 1.776584 0.000000 0.000000 2.461707 0.000000 0.000000 1.083706 0.000000 1.209863 0.000000 2.461707 0.000000 0.000000 1.083706 1.776584 0.000000 1.455638 0.000000 0.000000 1.083706 0.000000 1.209863 1.455638 0.000000 0.000000 1.083706 heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0 2.594867 1.435697 0.000000 0.1.218726 0.000000 0.000000 1.411886 0 1.218726 0.000000 0.000000 1.411886 0 1.218726 0.000000 0.000000 1.411886 0 1.218726 0.000000 0.000000 1.411886 0 1.218726 heart.exang.1 heart.slope.0 heart.slope.1 heart.slope.2 heart.ca.0 heart.ca.1 0.000000 1.315838 0 0.000000 3.798496 0.000000 0.000000 <

Figure 13: variable qualitative apres normalization

On remarque que le nombre des variables a grandis on comparaison l'état d'avant et d'après et ça expliquer par le traitement qu'on a fait

c Matrice pré-traitée pour l'AFD:

1. Combinaison des données quantitatives et qualitatives.

```
heart_sans_target <- cbind(heart.cont,heart.disc.pond)
heart.pour.afd <- cbind(heart.cont,heart.disc.pond,heart$target)
df <- data.frame(round(heart.pour.afd,3))</pre>
```

Figure 14 : Combinaison des données

Resultas

> print(head(round(heart.pour.afd,3)))

Ţ	heart.ïage	heart.trest	bps heart.	chol hear	t.thalach	n heart.oldpea	k heart.sex.	0	
1	0.952	0.764	-0.256		0.015	1.087	0.000	***************************************	***************************************
2	-1.915	-0.093	0.072	•••••	1.633	2.123	0.000	***************************************	***************************************
3	-1.474	-0.093	-0.817	***************************************	0.978	0.311	1.777	***************************************	***************************************
4	0.180	-0.664	-0.198		1.240	-0.207	0.000		
5	0.290	-0.664	2.082		0.584	-0.379	1.777		
6	0.290	0.478	-1.049		-0.072	-0.552	0.000		
	heart.sex.1	heart.cp.0 ł	neart.cp.1	heart.cp	.2 heart.d	cp.3 heart.fbs	.0 heart.fbs	5.1	
1	1.21	0.000	0.000	0.000	3.63	0.000	2.595		
2	1.21	0.000	0.000	1.866	0.00	1.084	0.000		
3	0.00	0.000	2.462	0.000	0.00	1.084	0.000		
4	1.21	0.000	2.462	0.000	0.00	1.084	0.000		
5	0.00	1.456	0.000	0.000	0.00	1.084	0.000		
6	1.21	1.456	0.000	0.000	0.00	1.084	0.000		
	heart.resteco	1.0 heart.res	stecg.1 hea	rt.reste	cg.2 heart	t.exang.0 hear	t.exang.1		
1	1.436	0.	. 000		0	1.219	0.000		
2	0.000	1.	.412		0	1.219	0.000		
3	1.436	0.	. 000		0	1.219	0.000		
4	0.000	1.	.412		0	1.219	0.000		
5	0.000	1.	.412		0	0.000	1.749		
6	0.000	1.	.412		0	1.219	0.000		
	heart.slope.0) heart.slope	e.1 heart.s	lope.2 h	eart.ca.0	heart.ca.1 he	art.ca.2 hea	art.ca.3	
1	3.798	0.000	0.	000	1.316	0	0	0	
2	3.798	0.000	0.	000	1.316	0	0	0	
3	0.000	0.000	1.	461	1.316	0	0	0	
4	0.000	0.000	1.	461	1.316	0	0	0	
5	0.000	0.000	1.	461	1.316	0	0	0	
6	0.000	1.471	0.	000	1.316	0	0	0	
	heart.ca.4	heart.thal.() heart.tha	1.1 hear	t.thal.2 h	heart.thal.3 h	eart\$target		
1	0	0	4.103	0.	000	0	1		
2	0	0	0.000	1.	351	0	1		
3	0	0	0.000	1.	351	0	1		
4	0	0	0.000	1.	351	0	1		
5	0	0	0.000	1.	351	0	1		
6	0	0	4.103	0.	000	0	1		

Figure 15 : Donner Combinaiser

On remarque donc qu'on a 30 variables qui va nous aider a explique le variable Y nome target

d Données centrées pour l'ACP:

1. Centrage des données quantitatives (df) pour l'Analyse en Composantes Principales (ACP)

les données centrées pour enveoyé a l'ACP

Figure 16: Matrice centree

Résultats

> print(head(dfx))

	heart.ïage heart.	trestbps heart.ch	ol heart.thalach	n heart.oldpea	k heart.sex.0
1	0.9520198 0.7	640396 -0.256	0.0149934	1.0870726	-0.5630099
2	-1.9149802 -0.0	929604 0.072	1.6329934	2.1230726	-0.5630099
3	-1.4739802 -0.0	929604 -0.817	0.9779934	0.3110726	1.2139901
4	0.1800198 -0.6	639604 -0.198	1.2399934	-0.2069274	-0.5630099
5	0.2900198 -0.6	639604 2.082	0.5839934	-0.3789274	1.2139901
6	0.2900198 0.4	780396 -1.049	-0.0720066	-0.5519274	-0.5630099
	heart.sex.1 heart.c	p.O heart.cp.1 hea	art.cp.2 heart.c	p.3 heart.fbs	.0 heart.fbs.1
1	0.3833663 -0.687155	1 -0.4062706 -0.5	357822 3.354455	4 -0.9230099	2.209604
2	0.3833663 -0.687155	1 -0.4062706 1.3	302178 -0.275544	6 0.1609901	-0.385396
3	-0.8266337 -0.687155	1 2.0557294 -0.5	357822 -0.275544	6 0.1609901	-0.385396
4	0.3833663 -0.687155	1 2.0557294 -0.5	357822 -0.275544	6 0.1609901	-0.385396
5	-0.8266337 0.768844	9 -0.4062706 -0.5	357822 -0.275544	6 0.1609901	-0.385396
6	0.3833663 0.768844	9 -0.4062706 -0.5	357822 -0.275544	6 0.1609901	-0.385396
	heart.restecg.0 h	eart.restecg.1 hea	art.restecg.2 he	art.exang.0 h	eart.exang.1
1	0.7393267	-0.70833 -0	0.1148911 0.	3982871 -0	.5714554
2	-0.6966733	0.70367 -0	0.1148911 0.	3982871 -0	.5714554
3	0.7393267	-0.70833 -0	0.1148911 0.	3982871 -0	. 5714554
4	-0.6966733	0.70367 -(0.1148911 0.	3982871 -0	. 5714554
5	-0.6966733	0.70367 -(0.1148911 -0.	8207129 1	.1775446
6	-0.6966733	0.70367 -0	0.1148911 0.	3982871 -0	.5714554
	heart.slope.0 hear	t.slope.1 heart.s	lope.2 heart.ca.	0 heart.ca.1	heart.ca.2 heart.ca.3
1	3.5347723 -0	.67967 -0.68469	931 0.555934 -	0.4631518 -0	.354165 -0.2568977
2	3.5347723 -0	.67967 -0.68469	931 0.555934 -	0.4631518 -0	.354165 -0.2568977
3		0.7763			.354165 -0.2568977
4		0.77630	069 0.555934 -	0.4631518 -0	.354165 -0.2568977
5	-0.2632277 -0	0.7763	0.555934 -	0.4631518 -0	.354165 -0.2568977
6	-0.2632277 0	0.79133 -0.68469	931 0.555934 -	0.4631518 -0	.354165 -0.2568977
	heart.ca.4 heart.tha	1.0 heart.thal.1	neart.thal.2 hea	rt.thal.3	
1	-0.1284653 -0.081247	52 3.8592574	-0.7401518 -	0.621297	
2	-0.1284653 -0.081247	52 -0.2437426	0.6108482 -	0.621297	
3	-0.1284653 -0.081247	52 -0.2437426	0.6108482 -	0.621297	
4	-0.1284653 -0.081247	52 -0.2437426	0.6108482 -	0.621297	
5	-0.1284653 -0.081247	52 -0.2437426	0.6108482 -	0.621297	
6	-0.1284653 -0.081247	52 3.8592574	-0.7401518 -	0.621297	
4					

Figure 17 : Donner a analyser

- e Analyse factorielle discriminante (AFD) en utilisant le package MASS :
 - 2. Chargement du package MASS.

Chargement du package library(MASS)

Figure 18: Importer la bibiotheque MASS

3. L'AFD sur les données centrées.

Effectuer l'analyse factorielle discriminante
res.afd3=lda(df\$heart.target~.,dfx)

Figure 19: Fonction LDA

4. Affichage des résultats de l'AFD.

Tableau 1: Resultas du fonction LDA

heart.sex.1

-0.275087645

```
> print(res.afd3)
call:
1da(df\heart.target \sim ., data = dfx)
Prior probabilities of groups:
0.4554455 0.5445545
Group means:
  heart.ï..age heart.trestbps heart.chol heart.thalach heart.oldpeak heart.sex.0
0 0.2464908 0.1584961 0.09322464 -0.4611805 0.4709857 -0.2539664
1 -0.2061560 -0.1325604 -0.07796970 0.3857146 -0.3939153 0.2124083
  heart.sex.1 heart.cp.0 heart.cp.1 heart.cp.2 heart.cp.3 heart.fbs.0 heart.fbs.1
GO 0.1729316 0.4101202 -0.2457054 -0.2923909 -0.09141412 -0.011821495 0.02829961 G1 -0.1446337 -0.3430097 0.2054991 0.2445451 0.07645545 0.009887069 -0.02366877
  heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0 heart.exang.1
                         -0.1353445
         0.1253847
                                             0.07430456
G0
                                                                -0.2730462
                                                                                   0.3917619
G1
          -0.1048672
                              0.1131972
                                               -0.06214563
                                                                  0.2283659
                                                                                   -0.3276554
  heart.slope.0 heart.slope.1 heart.slope.2 heart.ca.0 heart.ca.1 heart.ca.2
heart.ca.3
        0.06703315
                            0.2903373
                                              -0.3141496 -0.3309356
                                                                            0.225225 0.2802118
0.2225516
G1 -0.05606409
                          -0.2428275
                                             0.1861341
   heart.ca.4 heart.thal.0 heart.thal.1 heart.thal.2 heart.thal.3
GO -0.07205230 0.007948127 0.11304003 -0.3877170 0.4163914
G1 0.06026193 -0.006647525 -0.09454257 0.3242724 -0.3482546
Coefficients of linear discriminants:
                              LD1
                  0.099809862
heart.ï..age
heart.trestbps
heart.chol
               -0.166250351
-0.066969553
heart.thalach
                 0.173609942
                 -0.195584184
heart.oldpeak
                  0.187313478
heart.sex.0
```

heart.cp.0 heart.cp.1 heart.cp.2 heart.cp.3 heart.fbs.0 -0.402844057 0.040038390 0.175396663 0.135416111 0.135416111 -0.062411977 0.026071130 -0.058113604 0.075916626 -0.050178209 0.155637883 -0.108474888 heart.fbs.1 heart.restecg.0 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0 heart.exang.1 -0.002958402 -0.187993273 heart.slope.0 heart.slope.1 0.196695076 0.553262200 -0.170833159 -0.234405908 -0.121492584 heart.slope.2 heart.ca.0 heart.ca.1 heart.ca.2 heart.ca.3 heart.ca.4 0.116626086 heart.thal.0 -0.061232360 0.042138762 0.307029698 -0.270495059 heart.thal.1 heart.thal.2 heart.thal.3

5. Tracé des graphiques associés à l'AFD.

Figure 20 : Graphe du resultas LDA

• Commentaire

On remarque de ces deux graphes que le groupe 0 se positionne vers la gauche dans le 1^{er} graphe car on a des fortes valeurs sur l'axe x à partir de -3 vers -0.6, et le groupe 2 se positionne à droite à partir de -0.6 vers 3 du le 2^{eme} graphe

f Analyse factorielle discriminante (AFD) en utilisant un scripte :

1. Calcul de la matrice G:

```
# calcule de la matrice G
 124
 125
 126
      G11=mean(heart.pour.afd$heart.ï..age[heart.pour.afd$`heart$target`=="0"])
 127
       G21=mean(heart.pour.afd$heart.ï..age[heart.pour.afd$`heart$target`=="1"])
      print(c(G11,G21))
 128
 129
 130
      # Comparaison $
 129:1
Console ~/ △
> print(c(G11,G21))
[1] 0.2465080 -0.2061703
```

Figure 21: Partie du matrice G

On a remarque que ces 2 premier valeur du variable age sont identique a celle du package MASS (voire le tableaux du résultats de la fonction LDA), d'ou on a décidé d'extraire la matrice G de résultats du package

2. Extraction de la matrice G à partir du résultat de l'AFD :

```
group_means <- res.afd2$means
G <- group_means
# Print the group means matrix
print(G)</pre>
```

Figure 22 : Extraire G du LDA

Résultats

:						
	heart.ïage	heart.trestbps	heart.chol	heart.thalach	n heart.oldpeak	heart.sex.0
G0	0.2464908	0.1584961	0.09322464	-0.4611805	0.4709857	-0.2539664
G1	-0.2061560	-0.1325604	-0.07796970	0.3857146	-0.3939153	0.2124083
	heart.sex.1 h	neart.cp.0 heart	.cp.1 heart.d	p.2 heart.cp.	3 heart.fbs.0	heart.fbs.1
G0	0.1729316 ().4101202 -0.24	57054 -0.292	3909 -0.091414	12 -0.011821495	0.02829961
G1	-0.1446337 -0	0.3430097 0.20	54991 0.244	5451 0.0764554	5 0.009887069	9 -0.02366877
	heart.resteco	q.O heart.rested	g.1 heart.res	stecg.2 heart.e	xang.O heart.ex	xang.1
G0	0.1253847	-0.1353445	0.07430	0456 -0.2730	0.39176	519
G1	-0.104867	⁷ 2 0.113197	2 -0.062	L4563 0.228	3659 -0.3276	5554
	heart.slope.() heart.slope.1 h	eart.slope.2	heart.ca.0 hea	rt.ca.1 heart.c	ca.2 heart.ca.3
G0	0.06703315	0.2903373	-0.3141496	-0.3309356 0.	225225 0.28023	118 0.2225516
G1	-0.05606409	-0.2428275	0.2627433	0.2767825 -0.	188370 -0.23435	590 -0.1861341
	heart.ca.4 he	eart.thal.O heart	.thal.1 hear	t.thal.2 heart.	thal.3	
G0	-0.07205230	0.007948127 0.1	1304003 -0	.3877170 0.4	163914	
G1	0.06026193 -0	0.006647525 -0.0	9454257 0	.3242724 -0.3	482546	

Figure 23: Matrice G

3. Calcul de la matrice de variances inter-classes B:

```
n1 <- sum(heart.pour.afd$`heart$target`==1)
n2 <- sum(heart.pour.afd$`heart$target`==0)
n<- n1+n2

# delta

delta <- matrix(c(n1/n, 0, 0, n2/n), nrow = 2, ncol = 2)
B = (t(G)%*%delta%*%G)</pre>
```

Figure 24: Calcule du matrice B

Résultats

Figure 25: Valeur de delta

On remarque que le résultats obtenu de (delta) et identique au résultats obtenu par notre package MASS

> print(B)

	heart.ïage	heart.trestbps	heart.chol	heart.thalach	heart.oldpeak
heart.ïage	0.052442451	0.033721034	0.0198341202	-0.098119016	0.100205120
heart.trestbps	0.033721034	0.021682971	0.0127535429	-0.063091535	0.064432921
heart.chol	0.019834120	0.012753543	0.0075014100	-0.037109333	0.037898313
heart.thalach	-0.098119016	-0.063091535	-0.0371093328	0.183579165	-0.187482233
heart.oldpeak	0.100205120	0.064432921	0.0378983125	-0.187482233	0.191468284
heart.sex.0	-0.054032932	-0.034743730	-0.0204356520	0.101094783	-0.103244154
heart.sex.1	0.036792261	0.023657802	0.0139151035	-0.068837753	0.070301309
heart.cp.0	0.087255628	0.056106264	0.0330007194	-0.163253933	0.166724867
heart.cp.1	-0.052275351	-0.033613587	-0.0197709217	0.097806374	-0.099885831
heart.cp.2	-0.062207973	-0.040000365	-0.0235275124	0.116390157	-0.118864723
heart.cp.3	-0.019448921	-0.012505856	-0.0073557249	0.036388631	-0.037162288
heart.fbs.0	-0.002515096	-0.001617233	-0.0009512280	0.004705707	-0.004805754
heart.fbs.1	0.006020918	0.003871512	0.0022771555	-0.011265045	0.011504551
heart.restecg.0	0.026676374	0.017153182	0.0100892006	-0.049911084	0.050972241
heart.restecg.1	-0.028795388	-0.018515730	-0.0108906272	0.053875726	-0.055021175
heart.restecg.2	0.015808757	0.010165193	0.0059789880	-0.029577940	0.030206795
heart.exang.0	-0.058092274	-0.037353929	-0.0219709250	0.108689749	-0.111000597
heart.exang.1	0.083349785	0.053594768	0.0315235011	-0.155946162	0.159261726
heart.slope.0	0.014261718	0.009170431	0.0053938865	-0.026683454	0.027250770
heart.slope.1	0.061771058	0.039719424	0.0233622679	-0.115572696	0.118029882
heart.slope.2	-0.066837275	-0.042977054	-0.0252783484	0.125051510	-0.127710224
heart.ca.0	-0.070408597	-0.045273450	-0.0266290485	0.131733398	-0.134534175
heart.ca.1	0.047918016	0.030811776	0.0181229456	-0.089653868	0.091559994
heart.ca.2	0.059616798	0.038334213	0.0225475111	-0.111542110	0.113913601
heart.ca.3	0.047349231	0.030446042	0.0179078270	-0.088589680	0.090473181
heart.ca.4	-0.015329575	-0.009857074	-0.0057977577	0.028681398	-0.029291191
heart.thal.0	0.001691013	0.001087339	0.0006395537	-0.003163860	0.003231127
heart.thal.1	0.024049969	0.015464377	0.0090958749	-0.044997120	0.045953802
heart.thal.2	-0.082489205	-0.053041406	-0.0311980232	0.154336029	-0.157617360
heart.thal.3	0.088589849	0.056964183	0.0335053318	-0.165750241	0.169274249

	heart.sex.0	heart.sex.1	heart.cp.0	heart.cp.1	heart.cp.2
heart.ïage	-0.054032932	0.036792261	0.087255628	-0.052275351	-0.062207973
heart.trestbps	-0.034743730	0.023657802	0.056106264	-0.033613587	-0.040000365
heart.chol	-0.020435652	0.013915104	0.033000719	-0.019770922	-0.023527512
heart.thalach	0.101094783	-0.068837753	-0.163253933	0.097806374	0.116390157
heart.oldpeak	-0.103244154	0.070301309	0.166724867	-0.099885831	
heart.sex.0	0.055671650	-0.037908102	-0.089901928	0.053860764	0.064094625
heart.sex.1	-0.037908102	0.025812495	0.061216282	-0.036675028	-0.043643498
heart.cp.0	-0.089901928	0.061216282	0.145179038	-0.086977600	-0.103503853
heart.cp.1	0.053860764	-0.036675028	-0.086977600	0.052108783	0.062009756
heart.cp.2	0.064094625	-0.043643498	-0.103503853	0.062009756	0.073791972
heart.cp.3	0.020038771	-0.013644858	-0.032359812	0.019386950	0.023070584
heart.fbs.0	0.002591375	-0.001764526	-0.004184708	0.002507082	0.002983443
heart.fbs.1	-0.006203521	0.004224120	0.010017819	-0.006001733	-0.007142098
heart.restecg.0	-0.027485418	0.018715451	0.044385106	-0.026591373	-0.031643890
heart.restecg.1	0.029668698	-0.020202096	-0.047910797	0.028703635	0.034157494
heart.restecg.2	-0.016288207	0.011091013	0.026303176	-0.015758385	-0.018752570
heart.exang.0	0.059854105	-0.040756031	-0.096656006	0.057907172	0.068909873
heart.exang.1	-0.085877628	0.058476044	0.138680357	-0.083084203	-0.098870688
heart.slope.0	-0.014694249	0.010005651	0.023729157	-0.014216275	-0.016917450
heart.slope.1	-0.063644459	0.043336970	0.102776898	-0.061574233	-0.073273698
heart.slope.2	0.068864325	-0.046891296	-0.111206251	0.066624308	0.079283316
heart.ca.0	0.072543958	-0.049396842	-0.117148344	0.070184250	0.083519668
heart.ca.1	-0.049371280	0.033618035	0.079727710	-0.047765332	-0.056841024
heart.ca.2	-0.061424864	0.041825597	0.099192564	-0.059426838	-0.070718285
heart.ca.3	-0.048785245	0.033218990	0.078781346	-0.047198360	-0.056166324
heart.ca.4	0.015794492	-0.010754831	-0.025505895	0.015280729	0.018184157
heart.thal.0	-0.001742299	0.001186371	0.002813569	-0.001685625	-0.002005904
heart.thal.1	-0.024779359	0.016872833	0.040015199	-0.023973337	-0.028528411
heart.thal.2	0.084990948	-0.057872283	-0.137248493	0.082226365	0.097849855
heart.thal.3	-0.091276614	0.062152337	0.147398963	-0.088307571	-0.105086525

	heart.cp.3	heart.fbs.0	heart.fbs.1	heart.restecg.0	heart.restecg.1
heart.ïage	-0.0194489212	-0.0025150965	0.0060209182	0.026676374	-0.0287953877
heart.trestbps	-0.0125058560	-0.0016172328	0.0038715122	0.017153182	-0.0185157300
heart.chol	-0.0073557249	-0.0009512280	0.0022771555	0.010089201	-0.0108906272
heart.thalach	0.0363886315	0.0047057067	-0.0112650450	-0.049911084	0.0538757261
heart.oldpeak	-0.0371622885	-0.0048057545	0.0115045506	0.050972241	-0.0550211753
heart.sex.0	0.0200387707	0.0025913746	-0.0062035214	-0.027485418	0.0296686981
heart.sex.1	-0.0136448579	-0.0017645263	0.0042241198	0.018715451	-0.0202020961
heart.cp.0	-0.0323598116	-0.0041847076	0.0100178193	0.044385106	-0.0479107972
heart.cp.1	0.0193869501	0.0025070825	-0.0060017334	-0.026591373	0.0287036355
heart.cp.2	0.0230705840	0.0029834428	-0.0071420979	-0.031643890	0.0341574940
heart.cp.3	0.0072128692	0.0009327541	-0.0022329308	-0.009893258	0.0106791201
heart.fbs.0	0.0009327541	0.0001206219	-0.0002887582	-0.001279377	0.0013810029
heart.fbs.1	-0.0022329308	-0.0002887582	0.0006912617	0.003062715	-0.0033059987
heart.restecg.0	-0.0098932579	-0.0012793768	0.0030627147	0.013569711	-0.0146476092
heart.restecg.1	0.0106791201	0.0013810029	-0.0033059987	-0.014647609	0.0158111290
heart.restecg.2	-0.0058628699	-0.0007581749	0.0018150035	0.008041583	-0.0086803587
heart.exang.0	0.0215442271	0.0027860573	-0.0066695745	-0.029550320	0.0318976238
heart.exang.1	-0.0309112824	-0.0039973866	0.0095693895	0.042398286	-0.0457661559
heart.slope.0	-0.0052891317	-0.0006839802	0.0016373880	0.007254637	-0.0078309021
heart.slope.1	-0.0229085487	-0.0029624887	0.0070919356	0.031421640	-0.0339175903
heart.slope.2	0.0247874170	0.0032054603	-0.0076735881	-0.033998719	0.0366993765
heart.ca.0	0.0261118851	0.0033767379	-0.0080836115	-0.035815375	0.0386603373
heart.ca.1	-0.0177709794	-0.0022981083	0.0055014678	0.024374889	-0.0263110861
heart.ca.2	-0.0221096153	-0.0028591722	0.0068446051	0.030325814	-0.0327347177
heart.ca.3	-0.0175600386	-0.0022708299	0.0054361656	0.024085560	-0.0259987747
heart.ca.4	0.0056851593	0.0007351937	-0.0017599886	-0.007797833	0.0084172467
heart.thal.0	-0.0006271329	-0.0000810996	0.0001941453	0.000860183	-0.0009285109
heart.thal.1	-0.0089192237	-0.0011534166	0.0027611771	0.012233714	-0.0132054884
heart.thal.2	0.0305921256	0.0039561139	-0.0094705862	-0.041960527	0.0452936237
heart.thal.3	-0.0328546239	-0.0042486957	0.0101710013	0.045063796	-0.0486433990

······	L	L	L	L	L	
	heart.restecg.2					
heart.ïage	0.0158087569	-0.058092274	0.083349785	0.0142617180	0.061771058	
heart.trestbps	0.0101651930	-0.037353929	0.053594768	0.0091704311	0.039719424	
heart.chol	0.0059789880	-0.021970925	0.031523501	0.0053938865	0.023362268	
heart.thalach	-0.0295779402	0.108689749	-0.155946162	-0.0266834542	-0.115572696	
heart.oldpeak	0.0302067954	-0.111000597	0.159261726	0.0272507699	0.118029882	
heart.sex.0	-0.0162882070	0.059854105	-0.085877628	-0.0146942492	-0.063644459	
heart.sex.1	0.0110910132	-0.040756031	0.058476044	0.0100056509	0.043336970	
heart.cp.0	0.0263031758	-0.096656006	0.138680357	0.0237291570	0.102776898	
heart.cp.1	-0.0157583846	0.057907172	-0.083084203	-0.0142162751	-0.061574233	
heart.cp.2	-0.0187525698	0.068909873	-0.098870688	-0.0169174505	-0.073273698	
heart.cp.3	-0.0058628699	0.021544227	-0.030911282	-0.0052891317	-0.022908549	
heart.fbs.0	-0.0007581749	0.002786057	-0.003997387	-0.0006839802	-0.002962489	
heart.fbs.1	0.0018150035	-0.006669574	0.009569389	0.0016373880	0.007091936	
heart.restecg.0	0.0080415828	-0.029550320	0.042398286	0.0072546365	0.031421640	
heart.restecg.1	-0.0086803587	0.031897624	-0.045766156	-0.0078309021	-0.033917590	
heart.restecg.2	0.0047655438	-0.017511894	0.025125761	0.0042991895	0.018620862	
heart.exang.0	-0.0175118941	0.064350775	-0.092329373	-0.0157981868	-0.068425888	
heart.exang.1	0.0251257611	-0.092329373	0.132472578	0.0226669637	0.098176274	
heart.slope.0	0.0042991895	-0.015798187	0.022666964	0.0038784724	0.016798631	
heart.slope.1	0.0186208620	-0.068425888	0.098176274	0.0167986315	0.072759063	
heart.slope.2	-0.0201480712	0.074037907	-0.106228302	-0.0181763886	-0.078726473	
heart.ca.0	-0.0212246447	0.077993981	-0.111904408	-0.0191476090	-0.082933071	***************************************
heart.ca.1	0.0144448676	-0.053080405	0.076158842	0.0130312984	0.056441804	
heart.ca.2	0.0179714612	-0.066039541	0.094752386	0.0162127809	0.070221598	***************************************
heart.ca.3	0.0142734077	-0.052450343	0.075254839	0.0128766174	0.055771842	
heart.ca.4	-0.0046210944	0.016981088	-0.024364169	-0.0041688759	-0.018056441	***************************************
heart.thal.0	0.0005097554	-0.001873193	0.002687624	0.0004598709	0.001991816	
heart.thal.1	0.0072498540	-0.026640963	0.038223990	0.0065403860	0.028328043	
heart.thal.2	-0.0248663394	0.091376079	-0.131104809	-0.0224329289	-0.097162611	
heart.thal.3	0.0267053764	-0.098133969	0.140800912	0.0240919984	0.104348455	
						

	heart.slope.		0 heart.ca	.1 heart.ca	.2 heart.ca.3
heart.ïage	-0.066837275	-0.070408597	0.047918016	0.059616798	0.047349231
heart.trestbps	-0.042977054	-0.045273450	0.030811776	0.038334213	0.030446042
heart.chol	-0.025278348	-0.026629048	0.018122946	0.022547511	0.017907827
heart.thalach	0.125051510	0.131733398	-0.089653868	-0.111542110	-0.088589680
heart.oldpeak	-0.127710224	-0.134534175	0.091559994	0.113913601	0.090473181
heart.sex.0	0.068864325	0.072543958	-0.049371280	-0.061424864	-0.048785245
heart.sex.1	-0.046891296	-0.049396842	0.033618035	0.041825597	0.033218990
heart.cp.0	-0.111206251	-0.117148344	0.079727710	0.099192564	0.078781346
heart.cp.1	0.066624308	0.070184250	-0.047765332	-0.059426838	-0.047198360
heart.cp.2	0.079283316	0.083519668	-0.056841024	-0.070718285	-0.056166324
heart.cp.3	0.024787417	0.026111885	-0.017770979	-0.022109615	-0.017560039
heart.fbs.0	0.003205460	0.003376738	-0.002298108	-0.002859172	-0.002270830
heart.fbs.1	-0.007673588	-0.008083612	0.005501468	0.006844605	0.005436166
heart.restecg.0	-0.033998719	-0.035815375	0.024374889	0.030325814	0.024085560
heart.restecg.1	0.036699377	0.038660337	-0.026311086	-0.032734718	-0.025998775
heart.restecg.2	-0.020148071	-0.021224645	0.014444868	0.017971461	0.014273408
heart.exang.0	0.074037907	0.077993981	-0.053080405	-0.066039541	-0.052450343
heart.exang.1	-0.106228302	-0.111904408	0.076158842	0.094752386	0.075254839
heart.slope.0	-0.018176389	-0.019147609	0.013031298	0.016212781	0.012876617
heart.slope.1	-0.078726473	-0.082933071	0.056441804	0.070221598	0.055771842
heart.slope.2	0.085183306	0.089734912	-0.061070937	-0.075980895	-0.060346027
heart.ca.0	0.089734912	0.094529725	-0.064334145	-0.080040788	-0.063570501
heart.ca.1	-0.061070937	-0.064334145	0.043783923	0.054473401	0.043264210
heart.ca.2	-0.075980895	-0.080040788	0.054473401	0.067772627	0.053826804
heart.ca.3	-0.060346027	-0.063570501	0.043264210	0.053826804	0.042750665
heart.ca.4	0.019537359	0.020581300	-0.014007026	-0.017426725	-0.013840764
heart.thal.0	-0.002155176	-0.002270334	0.001545122	0.001922351	0.001526782
heart.thal.1	-0.030651397	-0.032289196	0.021975075	0.027340106	0.021714232
heart.thal.2	0.105131503	0.110749003	-0.075372507	-0.093774074	-0.074477839
heart.thal.3	-0.112906701	-0.118939654	0.080946823	0.100709313	0.079985988

·					····
	heart.ca.4	heart.thal.0		heart.thal.2	
heart.ïage	-0.0153295746	1.691013e-03	0.0240499688	-0.082489205	0.088589849
heart.trestbps	-0.0098570739	1.087339e-03	0.0154643769	-0.053041406	0.056964183
heart.chol	-0.0057977577	6.395537e-04	0.0090958749	-0.031198023	0.033505332
heart.thalach	0.0286813975	-3.163860e-03	-0.0449971205	0.154336029	-0.165750241
heart.oldpeak	-0.0292911913	3.231127e-03	0.0459538021	-0.157617360	0.169274249
heart.sex.0	0.0157944920	-1.742299e-03	-0.0247793595	0.084990948	-0.091276614
heart.sex.1	-0.0107548313	1.186371e-03	0.0168728334	-0.057872283	0.062152337
heart.cp.0	-0.0255058951	2.813569e-03	0.0400151993	-0.137248493	0.147398963
heart.cp.1	0.0152807292	-1.685625e-03	-0.0239733371	0.082226365	-0.088307571
heart.cp.2	0.0181841570	-2.005904e-03	-0.0285284113	0.097849855	-0.105086525
heart.cp.3	0.0056851593	-6.271329e-04	-0.0089192237	0.030592126	-0.032854624
heart.fbs.0	0.0007351937	-8.109960e-05	-0.0011534166	0.003956114	-0.004248696
heart.fbs.1	-0.0017599886	1.941453e-04	0.0027611771	-0.009470586	0.010171001
heart.restecg.0	-0.0077978328	8.601830e-04	0.0122337142	-0.041960527	0.045063796
heart.restecg.1	0.0084172467	-9.285109e-04	-0.0132054884	0.045293624	-0.048643399
heart.restecg.2	-0.0046210944	5.097554e-04	0.0072498540	-0.024866339	0.026705376
heart.exang.0	0.0169810877	-1.873193e-03	-0.0266409629	0.091376079	-0.098133969
heart.exang.1	-0.0243641693	2.687624e-03	0.0382239903	-0.131104809	0.140800912
heart.slope.0	-0.0041688759	4.598709e-04	0.0065403860	-0.022432929	0.024091998
heart.slope.1	-0.0180564414	1.991816e-03	0.0283280433	-0.097162611	0.104348455
heart.slope.2	0.0195373591	-2.155176e-03	-0.0306513970	0.105131503	-0.112906701
heart.ca.0	0.0205813004	-2.270334e-03	-0.0322891956	0.110749003	-0.118939654
heart.ca.1	-0.0140070264	1.545122e-03	0.0219750748	-0.075372507	0.080946823
heart.ca.2	-0.0174267248	1.922351e-03	0.0273401055	-0.093774074	0.100709313
heart.ca.3	-0.0138407637	1.526782e-03	0.0217142317	-0.074477839	0.079985988
heart.ca.4	0.0044810236	-4.943041e-04	-0.0070301022	0.024112611	-0.025895905
heart.thal.0	-0.0004943041	5.452694e-05	0.0007754943	-0.002659875	0.002856591
heart.thal.1	-0.0070301022	7.754943e-04	0.0110292519	-0.037829330	0.040627070
heart.thal.2	0.0241126110	-2.659875e-03	-0.0378293304	0.129751161	-0.139347153
heart.thal.3	-0.0258959046	2.856591e-03	0.0406270698	-0.139347153	0.149652834

Figure 26 : Tous la matrices B

4. Calcul de la matrice de variance totale V :

```
#la matrice de variance total V:
TX <- t(XX)
V1=(1/n)*TX%*%XX

V1
# inverse de la matrice V

VI = ginv(V1)
M = VI%*%B</pre>
```

Figure 27 : Calcule du matrice V et M

Explication : on a calculer la matrice de variance totale, puis calculer son inverse , et vers la fin calculer ma matrice a diagonaliser (M) pour extraire les valeur propres

> print(V1)					
	heart.ïage	heart.trestbps	heart.chol	heart.thalach	heart.oldpeak
heart.ïage	0.99994796	0.27937261	0.213710571	-0.398492337	0.210032276
heart.trestbps	0.27937261	1.00010357	0.123204683	-0.046729726	0.193216271
heart.chol	0.21371057	0.12320468	0.999983914	-0.009948333	0.053941597
heart.thalach	-0.39849234	-0.04672973	-0.009948333	0.999990535	-0.344227600
heart.oldpeak	0.21003228	0.19321627	0.053941597	-0.344227600	1.000070424
heart.sex.0	0.08138954	0.04693392	0.163607158	0.036421851	-0.079431488
heart.sex.1	-0.05542000	-0.03195838	-0.111403861	-0.024800473	0.054086719
heart.cp.0	0.10046319	0.01559152	0.051373254	-0.273713315	0.203707292
heart.cp.1	-0.13469504	-0.07482708	-0.011668092	0.226940091	-0.253613380
heart.cp.2	-0.05014969	-0.03808706	-0.032011446	0.139706285	-0.111822564
heart.cp.3	0.04568595	0.14554636	-0.048603663	0.076024518	0.083593868
heart.fbs.0	-0.04676187	-0.06844148	-0.005151683	0.003306726	-0.002208310
heart.fbs.1	0.11194377	0.16384284	0.012332673	-0.007916009	0.005286497
heart.restecg.0	0.10148165	0.09563296	0.119571881	-0.053074988	0.071879019
heart.restecg.1	-0.11342596	-0.10348133	-0.123151564	0.071667140	-0.097781996
heart.restecg.2	0.08407383	0.05822561	0.034381158	-0.120061946	0.167059985
heart.exang.0	-0.05532957	-0.03865365	-0.038320050	0.216578296	-0.164799097
heart.exang.1	0.07938590	0.05545958	0.054980941	-0.310742772	0.236450878
heart.slope.0	0.02944911	0.11804926	-0.043745941	-0.054590153	0.380282894
heart.slope.1	0.12993237	0.01850423	0.037546911	-0.307749338	0.228107752
heart.slope.2	-0.14037745	-0.06378917	-0.020463644	0.326656758	-0.372842811
heart.ca.0	-0.22806121	-0.03576249	-0.052401122	0.177546402	-0.133156154
heart.ca.1	0.15890587	-0.05272396	0.016644964	-0.173250338	-0.010283969
heart.ca.2	0.21181633	0.08267428	0.056023314	-0.053210971	0.204229807
heart.ca.3	0.15677690	0.07742629	0.095257663	-0.169618395	0.182942653
heart.ca.4	-0.12137152	0.01888949	-0.095012970	0.060377865	-0.104150375
heart.thal.0	-0.01673538	-0.01681502	-0.056954515	-0.050252130	-0.037814824
heart.thal.1	0.06182065	0.07408031	-0.090739944	-0.154913556	0.101509397
heart.thal.2	-0.09135396	-0.09462986	-0.003094370	0.198235415	-0.228011111
heart.thal.3	0.08674431	0.08584856	0.046714102	-0.168773863	0.236690246

	heart.sex.0	heart.sex.1	heart.cp.0	heart.cp.1	heart.cp.2
heart.ïage	0.081389538	-0.055420001	0.100463191	-0.13469504	-0.050149687
heart.trestbps	0.046933924	-0.031958384	0.015591518	-0.07482708	-0.038087058
heart.chol	0.163607158	-0.111403861	0.051373254	-0.01166809	-0.032011446
heart.thalach	0.036421851	-0.024800473	-0.273713315	0.22694009	0.139706285
heart.oldpeak	-0.079431488	0.054086719	0.203707292	-0.25361338	-0.111822564
heart.sex.0	0.683488445	-0.465402937	-0.053854777	0.03116506	0.081372002
heart.sex.1	-0.465402937	0.316903519	0.036670951	-0.02122100	-0.055408060
heart.cp.0	-0.053854777	0.036670951	0.528315695	-0.27917094	-0.368165465
heart.cp.1	0.031165060	-0.021221003	-0.279170940	0.83518246	-0.217672562
heart.cp.2	0.081372002	-0.055408060	-0.368165465	-0.21767256	0.712707002
heart.cp.3	-0.069979065	0.047650348	-0.189341850	-0.11194566	-0.147631862
heart.fbs.0	0.014351178	-0.009772046	0.016864536	0.02136581	-0.027231661
heart.fbs.1	-0.034355449	0.023393412	-0.040372207	-0.05114786	0.065190185
heart.restecg.0	-0.021679597	0.014762134	0.059507262	-0.06134413	-0.054899655
heart.restecg.1	0.006969106	-0.004745424	-0.066059127	0.06789187	0.055273550
heart.restecg.2	0.088436278	-0.060218287	0.046513070	-0.04667687	-0.007959905
heart.exang.0	0.066960435	-0.045594894	-0.194925919	0.12219285	0.130816947
heart.exang.1	-0.096073668	0.065418761	0.279676319	-0.17532018	-0.187693881
heart.slope.0	-0.036829418	0.025077994	0.019876734	-0.04522106	-0.024084406
heart.slope.1	0.005552000	-0.003780484	0.126720988	-0.13270016	-0.065207075
heart.slope.2	0.008653142	-0.005892122	-0.133505632	0.14919352	0.074028488
heart.ca.0	0.066022666	-0.044956345	-0.111239548	0.08685009	0.054725269
heart.ca.1	-0.070831186	0.048230577	0.034479283	-0.04782285	0.017771908
heart.ca.2	0.015905959	-0.010830732	0.150166951	-0.07504835	-0.154972571
heart.ca.3	-0.053334504	0.036316685	0.085301564	-0.07274588	-0.017798432
heart.ca.4	-0.072327262	0.049249289	-0.050866511	0.01106464	0.075000359
heart.thal.0	0.026445265	-0.018007187	0.003318546	-0.03300848	0.032272965
heart.thal.1	-0.113166674	0.077057780	0.069103835	-0.03234831	-0.080056967
heart.thal.2	0.209219322	-0.142462228	-0.171018538	0.12741792	0.119281076
heart.thal.3	-0.208252171	0.141803673	0.176144885	-0.13475063	-0.114884272

***************************************	heart.restecg.2 he	art.exang.0 he	art.exang.1 he	art.slope.0 he	art.slope.1	•••••
heart.ïage	0.084073830	-0.055329567	0.079385900	0.02944911	0.129932373	
heart.trestbps	0.058225610	-0.038653648	0.055459582	0.11804926	0.018504231	
heart.chol	0.034381158	-0.038320050	0.054980941	-0.04374594	0.037546911	***************************************
heart.thalach	-0.120061946	0.216578296	-0.310742772	-0.05459015	-0.307749338	
heart.oldpeak	0.167059985	-0.164799097	0.236450878	0.38028289	0.228107752	
heart.sex.0	0.088436278	0.066960435	-0.096073668	-0.03682942	0.005552000	
heart.sex.1	-0.060218287	-0.045594894	0.065418761	0.02507799	-0.003780484	
heart.cp.0	0.046513070	-0.194925919	0.279676319	0.01987673	0.126720988	
heart.cp.1	-0.046676875	0.122192850	-0.175320176	-0.04522106	-0.132700162	
heart.cp.2	-0.007959905	0.130816947	-0.187693881	-0.02408441	-0.065207075	
heart.cp.3	-0.031657614	0.051330404	-0.073647971	0.06397141	0.006572226	
heart.fbs.0	0.018496328	0.005656402	-0.008115707	-0.03914833	0.009430974	
heart.fbs.1	-0.044278571	-0.013540926	0.019428285	0.09371763	-0.022576915	
heart.restecg.	0 -0.080041550	-0.034491450	0.049487733	0.03261343	0.056323971	
heart.restecg.	1 -0.081380809	0.037852055	-0.054309470	-0.04486066	-0.063278267	
heart.restecg.	2 0.986697186	-0.024266477	0.034817119	0.07884657	0.048665571	
heart.exang.0	-0.024266477	0.326879373	-0.469000840	-0.03267747	-0.108047144	
heart.exang.1	0.034817119	-0.469000840	0.672914248	0.04688506	0.155024164	
heart.slope.0	0.078846569	-0.032677469	0.046885065	0.93045006	-0.178907978	
heart.slope.1	0.048665571	-0.108047144	0.155024164	-0.17890798	0.537843257	
heart.slope.2	-0.078665132	0.119882872	-0.172005860	-0.18023020	-0.465365316	
heart.ca.0	-0.011726475	0.069770791	-0.100105918	0.04736362	-0.075760097	
heart.ca.1	0.008800449	-0.076108930	0.109199769	-0.06778976	0.052061486	
heart.ca.2	-0.040690404	-0.052081728	0.074725958	-0.02243033	0.047192873	
heart.ca.3	0.082273774	-0.007286356	0.010454337	0.02994715	0.071027082	
heart.ca.4	-0.014759524	0.019846243	-0.028475044	-0.03381564	-0.011725028	
heart.thal.0	-0.009334617	-0.017160523	0.024621620	-0.02138660	0.004536052	
heart.thal.1	0.089845685	-0.034974780	0.050181206	0.09012925	0.093284895	
heart.thal.2	-0.007427917	0.126301393	-0.181215043	-0.05935394	-0.135765310	
heart.thal.3	-0.025166552	-0.134462515	0.192924479	0.03813997	0.124517557	

:						
	heart.slope.2	heart.ca.0	heart.ca.1	heart.ca.2	heart.ca.3	
heart.ïage	-0.140377452	-0.22806121	0.158905871	0.21181633	0.156776902	
heart.trestbps	-0.063789171	-0.03576249	-0.052723961	0.08267428	0.077426293	
heart.chol	-0.020463644	-0.05240112	0.016644964	0.05602331	0.095257663	
heart.thalach	0.326656758	0.17754640	-0.173250338	-0.05321097	-0.169618395	
heart.oldpeak	-0.372842811	-0.13315615	-0.010283969	0.20422981	0.182942653	
heart.sex.0	0.008653142	0.06602267	-0.070831186	0.01590596	-0.053334504	
heart.sex.1	-0.005892122	-0.04495635	0.048230577	-0.01083073	0.036316685	
heart.cp.0	-0.133505632	-0.11123955	0.034479283	0.15016695	0.085301564	
heart.cp.1	0.149193515	0.08685009	-0.047822853	-0.07504835	-0.072745880	
heart.cp.2	0.074028488	0.05472527	0.017771908	-0.15497257	-0.017798432	
heart.cp.3	-0.031135823	0.04282300	-0.050023218	0.03774008	-0.070786759	
heart.fbs.0	0.005692567	0.02820178	0.005047332	-0.04401317	-0.028261289	
heart.fbs.1	-0.013627502	-0.06751257	-0.012082865	0.10536363	0.067655024	
heart.restecg.0	-0.068486684	-0.04927756	0.035457746	0.03432060	0.060814551	
heart.restecg.1	0.080104920	0.05035652	-0.036292948	-0.02714527	-0.073146488	
heart.restecg.2	-0.078665132	-0.01172647	0.008800449	-0.04069040	0.082273774	
heart.exang.0	0.119882872	0.06977079	-0.076108930	-0.05208173	-0.007286356	
heart.exang.1	-0.172005860	-0.10010592	0.109199769	0.07472596	0.010454337	
heart.slope.0	-0.180230197	0.04736362	-0.067789764	-0.02243033	0.029947149	
heart.slope.1	-0.465365316	-0.07576010	0.052061486	0.04719287	0.071027082	
heart.slope.2	0.531531975	0.05702542	-0.025630462	-0.03824364	-0.082064187	
heart.ca.0	0.057025420	0.42254653	-0.352025951	-0.26918879	-0.195259201	
heart.ca.1	-0.025630462	-0.35202595	0.785435165	-0.16403217	-0.118982631	
heart.ca.2	-0.038243639	-0.26918879	-0.164032170	0.87472915	-0.090984175	
heart.ca.3	-0.082064187	-0.19525920	-0.118982631	-0.09098417	0.933849386	
heart.ca.4	0.024653390	-0.09764214	-0.059498958	-0.04549793	-0.033002451	
heart.thal.0	0.003721700	0.04516826	-0.037629939	-0.02877503	-0.020872301	
heart.thal.1	-0.127321307	-0.04269812	0.004052455	0.06663691	0.042788218	
heart.thal.2	0.157674410	0.10635466	-0.063636119	-0.08585490	-0.086022658	
heart.thal.3	-0.138342612	-0.11582529	0.079118394	0.07988018	0.088399258	

	heart.ca.4	heart.thal.0	heart.thal.1	heart.thal.2	heart.thal.3	
heart.ïage	-0.121371516	-0.0167353812	0.061820652	-0.091353964	0.086744306	
heart.trestbps	0.018889494	-0.0168150199	0.074080313	-0.094629862	0.085848560	
heart.chol	-0.095012970	-0.0569545149	-0.090739944	-0.003094370	0.046714102	
heart.thalach	0.060377865	-0.0502521303	-0.154913556	0.198235415	-0.168773863	
heart.oldpeak	-0.104150375	-0.0378148236	0.101509397	-0.228011111	0.236690246	
heart.sex.0	-0.072327262	0.0264452649	-0.113166674	0.209219322	-0.208252171	
heart.sex.1	0.049249289	-0.0180071866	0.077057780	-0.142462228	0.141803673	
heart.cp.0	-0.050866511	0.0033185458	0.069103835	-0.171018538	0.176144885	
heart.cp.1	0.011064640	-0.0330084828	-0.032348313	0.127417919	-0.134750635	
heart.cp.2	0.075000359	0.0322729648	-0.080056967	0.119281076	-0.114884272	
heart.cp.3	-0.035397927	-0.0223873130	0.031147566	0.006463416	-0.016985904	
heart.fbs.0	-0.007169638	-0.0309561114	-0.034153456	0.022491503	-0.009346848	
heart.fbs.1	0.017163479	0.0741061891	0.081760349	-0.053842667	0.022375526	
heart.restecg.0	-0.052603125	0.0017327442	0.024643474	-0.016228775	0.009437490	
heart.restecg.1	0.054118592	-0.0001893094	-0.038808430	0.017162669	-0.005196666	
heart.restecg.2	-0.014759524	-0.0093346166	0.089845685	-0.007427917	-0.025166552	
heart.exang.0	0.019846243	-0.0171605230	-0.034974780	0.126301393	-0.134462515	
heart.exang.1	-0.028475044	0.0246216199	0.050181206	-0.181215043	0.192924479	
heart.slope.0	-0.033815641	-0.0213866009	0.090129247	-0.059353942	0.038139972	
heart.slope.1	-0.011725028	0.0045360520	0.093284895	-0.135765310	0.124517557	
heart.slope.2	0.024653390	0.0037216997	-0.127321307	0.157674410	-0.138342612	
heart.ca.0	-0.097642143	0.0451682609	-0.042698122	0.106354657	-0.115825287	
heart.ca.1	-0.059498958	-0.0376299386	0.004052455	-0.063636119	0.079118394	
heart.ca.2	-0.045497932	-0.0287750309	0.066636914	-0.085854903	0.079880175	
heart.ca.3	-0.033002451	-0.0208723014	0.042788218	-0.086022658	0.088399258	
heart.ca.4	0.983599378	-0.0104374914	-0.031312474	0.009050150	0.002865159	
heart.thal.0	-0.010437491	0.9934746219	-0.019803481	-0.060135503	-0.050478846	
heart.thal.1	-0.031312474	-0.0198034808	0.940665340	-0.180406509	-0.151436537	
heart.thal.2	0.009050150	-0.0601355029	-0.180406509	0.452120393	-0.459854124	
heart.thal.3	0.002865159	-0.0504788458	-0.151436537	-0.459854124	0.613656922	

Figure 28 : Tous la matrice V

5. Matrice M

> print(M)					
heart.ïage	heart.trestbps	heart.chol	heart.thalach	heart.oldpeak	heart.sex.0
[1,] -0.0114913986	-0.0073890873	-0.0043461314	0.021500229	-0.021957345	0.0118399112
[2,] 0.0191408847	0.0123077854	0.0072392232	-0.035812300	0.036573703	-0.0197213920
[3,] 0.0077103987	0.0049578655	0.0029161294	-0.014426037	0.014732748	-0.0079442407
[4,] -0.0199882157	-0.0128526279	-0.0075596900	0.037397643	-0.038192753	0.0205944210
[5,] 0.0225181738	0.0144794169	0.0085165388	-0.042131156	0.043026904	-0.0232011080
[6,] -0.0294685957	-0.0189486096	-0.0111452394	0.055135288	-0.056307517	0.0303623232
[7,] 0.0200658417	0.0129025423	0.0075890488	-0.037542880	0.038341078	-0.0206744013
[8,] 0.0361685400	0.0232567425	0.0136792075	-0.067670780	0.069109525	-0.0372654643
[9,] -0.0106490391	-0.0068474415	-0.0040275448	0.019924188	-0.020347795	0.0109720046
[10,] -0.0281621815	-0.0181085718	-0.0106511439	0.052691007	-0.053811268	0.0290162879
[11,] -0.0196869276	-0.0126588966	-0.0074457407	0.036833938	-0.037617062	0.0202839954
[12,] 0.0021351575	0.0013729282	0.0008075323	-0.003994847	0.004079781	-0.0021999128
[13,] -0.0051113779	-0.0032866685	-0.0019331607	0.009563309	-0.009766634	0.0052663965
[14,] 0.0072947347	0.0046905893	0.0027589223	-0.013648336	0.013938513	-0.0075159704
[15,] -0.0081262886	-0.0052252870	-0.0030734220	0.015204161	-0.015527415	0.0083727437
[16,] 0.0058768142	0.0037788519	0.0022226543	-0.010995429	0.011229202	-0.0060550470
[17,] -0.0117171476	-0.0075342462	-0.0044315113	0.021922602	-0.022388698	0.0120725068
[18,] 0.0168115596	0.0108100054	0.0063582553	-0.031454168	0.032122914	-0.0173214228
[19,] 0.0005240743	0.0003369852	0.0001982088	-0.000980535	0.001001382	-0.0005399685
[20,] 0.0221179014	0.0142220377	0.0083651528	-0.041382252	0.042262078	-0.0227886961
[21,] -0.0221691407	-0.0142549851	-0.0083845319	0.041478120	-0.042359984	0.0228414894
[22,] -0.0425197895	-0.0273406612	-0.0160812968	0.079553870	-0.081245261	0.0438093353
[23,] 0.0325779285	0.0209479425	0.0123212119	-0.060952801	0.062248716	-0.0335659562
[24,] 0.0368573145	0.0236996317	0.0139397071	-0.068959467	0.070425611	-0.0379751281
[25,] 0.0211490009	0.0135990247	0.0079987075	-0.039569454	0.040410739	-0.0217904106
[26,] -0.0098473553	-0.0063319505	-0.0037243421	0.018424250	-0.018815967	0.0101460072
[27,] 0.0076525368	0.0049206597	0.0028942456	-0.014317778	0.014622188	-0.0078846239
[28,] -0.0030435246	-0.0019570176	-0.0011510834	0.005694388	-0.005815456	0.0031358291
[29,] -0.0298582047	-0.0191991322	-0.0112925924	0.055864240	-0.057051967	0.0307637483
[30,] 0.0357534207	0.0229898166	0.0135222064	-0.066894098	0.068316331	-0.0368377552

heart.sex.1 heart.cp.0 heart.cp.1 heart.cp.2 heart.cp.3 heart.fbs.0	

[1,] -0.0080620667 -0.0191198004 0.0114547829 0.0136312586 0.0042617250 5.511179e-04	
[2,] 0.0134287475 0.0318472894 -0.0190798951 -0.0227051867 -0.0070986301 -9.179810e-04	

[3,] 0.0054094155 0.0128288375 -0.0076858307 -0.0091461834 -0.0028594952 -3.697843e-04	
[4,] -0.0140232129 -0.0332571090 0.0199245262 0.0237103026 0.0074128731 9.586183e-04	•••••
[5,] 0.0157981658 0.0374665439 -0.0224464229 -0.0267113745 -0.0083511389 -1.079953e-03	
	•••••
[6,] -0.0206744013 -0.0490309047 0.0293746983 0.0349560627 0.0109287874 1.413289e-03	
[7,] 0.0140776733 0.0333862660 -0.0200019049 -0.0238023837 -0.0074416617 -9.623411e-04	
[8,] 0.0253749081 0.0601785119 -0.0360532942 -0.0429036309 -0.0134135433 -1.734613e-03	
[9,] -0.0074710892 -0.0177182526 0.0106151075 0.0126320400 0.0039493258 5.107191e-04	

[10,] -0.0197578550 -0.0468572460 0.0280724468 0.0334063759 0.0104442878 1.350635e-03	
[11,] -0.0138118370 -0.0327558151 0.0196241981 0.0233529105 0.0073011367 9.441687e-04	

[12,] 0.0014979710 0.0035525515 -0.0021283541 -0.0025327539 -0.0007918491 -1.024004e-04	
[13,] -0.0035860100 -0.0085044937 0.0050950913 0.0060631884 0.0018956167 2.451374e-04	

[14,] 0.0051177964 0.0121372409 -0.0072714911 -0.0086531170 -0.0027053412 -3.498494e-04	
[15,] -0.0057011930 -0.0135208099 0.0081003953 0.0096395178 0.0030137330 3.897301e-04	
	
[16,] 0.0041230202 0.0097780539 -0.0058580886 -0.0069711597 -0.0021794881 -2.818471e-04	
[17,] -0.0082204464 -0.0194954097 0.0116798126 0.0138990453 0.0043454468 5.619447e-04	
[18,] 0.0117945535 0.0279716748 -0.0167579920 -0.0199421084 -0.0062347715 -8.062685e-04	
[19,] 0.0003676769 0.0008719737 -0.0005224045 -0.0006216644 -0.0001943594 -2.513417e-05	
	•••••
[20,] 0.0155173451 0.0368005564 -0.0220474260 -0.0262365658 -0.0082026930 -1.060756e-03	
721,] -0.0155532933 -0.0368858101 0.0220985020 0.0262973466 0.0082216957 1.063214e-03	
· · · · · · · · · · · · · · · · · · ·	
[22,] -0.0298307798 -0.0707459483 0.0423843064 0.0504375724 0.0157689815 2.039214e-03	
[23,] 0.0228558284 0.0542043239 -0.0324741237 -0.0386443970 -0.0120819213 -1.562410e-03	
	•••••
[24,] 0.0258581345 0.0613245197 -0.0367398741 -0.0437206650 -0.0136689837 -1.767646e-03	
[25,] 0.0148375897 0.0351884650 -0.0210816127 -0.0250872423 -0.0078433644 -1.014289e-03	
[26,] -0.0069086487 -0.0163843823 0.0098159781 0.0116810714 0.0036520116 4.722710e-04	
[27,] 0.0053688210 0.0127325647 -0.0076281531 -0.0090775468 -0.0028380364 -3.670093e-04	

[28,] -0.0021352578 -0.0050639253 0.0030338269 0.0036102717 0.0011287282 1.459649e-04	
[29,] -0.0209477408 -0.0496791501 0.0297630659 0.0354182224 0.0110732787 1.431975e-03	

[30,] 0.0250836713 0.0594878217 -0.0356394977 -0.0424112106 -0.0132595913 -1.714704e-03	
heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0	
heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0 [1,] -1.319328e-03 -0.0058454332 0.0063097600 -0.0034640777 0.0127294104	
heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0 [1,] -1.319328e-03 -0.0058454332 0.0063097600 -0.0034640777 0.0127294104	
heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0 [1,] -1.319328e-03 -0.0058454332 0.0063097600 -0.0034640777 0.0127294104 [2,] 2.197565e-03 0.0097365662 -0.0105099817 0.0057700124 -0.0212030046	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03 -0.0058454332	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03 -0.0058454332	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exang.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0 [1,] -1.319328e-03	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0	
heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0	
heart.fbs.1 heart.restecg.0 heart.restecg.1 heart.restecg.2 heart.exang.0	
heart.fbs.1 heart.restecq.0 heart.restecq.1 heart.restecq.2 heart.exanq.0	

```
heart.exang.1 heart.slope.0 heart.slope.1 heart.slope.2
                                                                    heart.ca.0
                                                                                   heart.ca.1
 [1,]
      -0.0182639367
                    -0.0031250844 -0.0135355201
                                                   0.0146456498
                                                                  0.0154282120
                                                                                -0.0104999863
 [2,]
       0.0304217023
                      0.0052053612
                                    0.0225457178 -0.0243948281
                                                                 -0.0256983190
                                                                                 0.0174895185
 [3,]
       0.0122545775
                      0.0020968420
                                    0.0090819456 -0.0098268108 -0.0103518875
                                                                                0.0070451896
 [4,]
      -0.0317684139
                     -0.0054357928
                                   -0.0235437744
                                                   0.0254747413
                                                                  0.0268359353
                                                                                -0.0182637466
       0.0357894209
                                    0.0265237684
                      0.0061238146
                                                  -0.0286991426
                                                                 -0.0302326262
                                                                                0.0205754344
 [5,]
 [6,]
      -0.0468361238
                     -0.0080139809
                                    -0.0347105504
                                                   0.0375573720
                                                                  0.0395641781
                                                                                -0.0269262135
 [7,]
       0.0318917894
                      0.0054569032
                                    0.0236352087
                                                  -0.0255736748
                                                                 -0.0269401550
                                                                                 0.0183346755
 [8,]
       0.0574847282
                      0.0098360299
                                    0.0426022991
                                                  -0.0460963707
                                                                 -0.0485594418
                                                                                0.0330481249
                                                                                -0.0097303008
[9,]
      -0.0169251266
                     -0.0028960049
                                   -0.0125433194
                                                   0.0135720727
                                                                  0.0142972703
[10,]
      -0.0447597650
                     -0.0076587017
                                    -0.0331717476
                                                   0.0358923628
                                                                  0.0378102023
                                                                                -0.0257325093
                                                                                -0.0179884519
[11,]
      -0.0312895595
                     -0.0053538575
                                   -0.0231888923
                                                   0.0250907533
                                                                  0.0264314295
Γ12. 1
       0.0033935279
                     0.0005806558
                                    0.0025149652
                                                  -0.0027212326
                                                                 -0.0028666365
                                                                                0.0019509483
[13,]
      -0.0081238052
                     -0.0013900386
                                   -0.0060206039
                                                   0.0065143899
                                                                  0.0068624739
                                                                                -0.0046703974
[14,]
                                                                                0.0066653867
       0.0115939389
                      0.0019838022
                                    0.0085923422
                                                  -0.0092970520
                                                                 -0.0097938221
[15,]
      -0.0129155750
                     -0.0022099432
                                    -0.0095718151
                                                   0.0103568574
                                                                  0.0109102562
                                                                                -0.0074251988
[16,]
       0.0093403568
                      0.0015981989
                                    0.0069221981
                                                  -0.0074899293
                                                                 -0.0078901393
                                                                                0.0053697962
[17,]
      -0.0186227325
                     -0.0031864768
                                    -0.0138014259
                                                   0.0149333641
                                                                  0.0157312998
                                                                                -0.0107062590
                                                  -0.0214261311
[18,]
       0.0267195727
                      0.0045719015
                                    0.0198020459
                                                                 -0.0225709954
                                                                                 0.0153611542
                                                                 -0.0007036158
Γ19. 1
       0.0008329413
                      0.0001425220
                                    0.0006172981
                                                  -0.0006679265
                                                                                 0.0004788602
[20,]
       0.0351532452
                      0.0060149605
                                    0.0260522944
                                                  -0.0281890003
                                                                 -0.0296952254
                                                                                 0.0202096952
[21,]
      -0.0352346827
                     -0.0060288951
                                    -0.0261126483
                                                   0.0282543041
                                                                  0.0297640186
                                                                                -0.0202565138
[22,]
      -0.0675791322
                     -0.0115632515
                                   -0.0500833264
                                                   0.0541909621
                                                                  0.0570865522
                                                                                -0.0388514249
[23,]
       0.0517779641
                      0.0088595636
                                    0.0383729798
                                                  -0.0415201793
                                                                 -0.0437387305
                                                                                0.0297672908
[24,]
       0.0585794370
                      0.0100233421
                                    0.0434135948
                                                  -0.0469742056 -0.0494841821
                                                                                 0.0336774759
                                                                                 0.0193243859
[25,]
                      0.0057514682
                                                  -0.0269541481
                                                                 -0.0283943913
       0.0336133161
                                    0.0249110432
                     -0.0026779870
                                   -0.0115990299
                                                   0.0125503363
[26,]
      -0.0156509647
                                                                  0.0132209394
                                                                                -0.0089977817
[27,]
                      0.0020811064
                                    0.0090137910
                                                  -0.0097530664
                                                                 -0.0102742028
       0.0121626142
                                                                                 0.0069923196
[28,] -0.0048372477
                     -0.0008276861
                                   -0.0035849152
                                                   0.0038789357
                                                                  0.0040861992
                                                                                -0.0027809467
[29,] -0.0474553516
                    -0.0081199350 -0.0351694641
                                                   0.0380539240
                                                                  0.0400872624
                                                                               -0.0272822093
      0.0568249555
                                    0.0421133374 -0.0455673062
[30,]
                     0.0097231383
                                                                 -0.0480021078
                                                                                0.0326688198
                                                   heart.thal.0
                                                                  heart.thal.1
                                                                                 heart.thal.2
         heart.ca.2
                        heart.ca.3
                                       heart.ca.4
 [1,]
      -0.0130634702
                     -0.0103753520
                                     0.0033590774 -3.705416e-04
                                                                 -0.0052699249
                                                                                 0.0180753629
       0.0217594381
                      0.0172819187
                                    -0.0055951165
                                                   6.172002e-04
                                                                  0.0087779589
                                                                                -0.0301076004
 [2,]
 [3,]
       0.0087652136
                      0.0069615635
                                    -0.0022538446
                                                   2.486228e-04
                                                                  0.0035359684
                                                                                -0.0121280499
 [4,] -0.0227226875
                     -0.0180469567
                                     0.0058428018
                                                  -6.445225e-04
                                                                 -0.0091665427
                                                                                 0.0314404073
       0.0255987545
                      0.0203312049
                                    -0.0065823397
                                                   7.261014e-04
                                                                  0.0103267748
                                                                                -0.0354198978
 [5,]
                                     0.0086140336
                                                  -9.502186e-04
      -0.0335000233
                     -0.0266066006
                                                                 -0.0135142198
                                                                                 0.0463525442
 [7,]
       0.0228109331
                      0.0181170437
                                    -0.0058654928
                                                   6.470256e-04
                                                                  0.0092021418
                                                                                -0.0315625090
       0.0411165481
                      0.0326558451
                                    -0.0105725099
                                                   1.166259e-03
                                                                  0.0165867965
 [8,]
                                                                                -0.0568912027
 [9.] -0.0121058723
                     -0.0096148026
                                     0.0031128453
                                                  -3.433796e-04
                                                                  -0.0048836211
                                                                                 0.0167503759
                                                                                 0.0442976237
[10,] -0.0320148862
                     -0.0254270655
                                     0.0082321527
                                                  -9.080931e-04
                                                                 -0.0129151017
      -0.0223801820
                     -0.0177749298
                                     0.0057547315 -6.348075e-04
                                                                 -0.0090283728
                                                                                 0.0309664971
                      0.0019277906
                                                   6.884842e-05
[12,]
       0.0024272560
                                    -0.0006241328
                                                                  0.0009791776
                                                                                -0.0033584899
                                                  -1.648170e-04
[13,]
      -0.0058106359
                     -0.0046149600
                                     0.0014941188
                                                                 -0.0023440644
                                                                                 0.0080399275
       0.0082926851
                      0.0065862688
                                    -0.0021323409
                                                   2.352196e-04
                                                                  0.0033453460
                                                                                -0.0114742324
[14,]
[15,] -0.0092379990
                     -0.0073370620
                                                                 -0.0037266944
                                                                                 0.0127822226
                                     0.0023754143
                                                   -2.620332e-04
[16,]
       0.0066807871
                      0.0053060570
                                    -0.0017178652
                                                   1.894986e-04
                                                                  0.0026950914
                                                                                -0.0092439183
                                     0.0034250666
                                                  -3.778209e-04
                     -0.0105791762
                                                                  -0.0053734528
[17,] -0.0133201026
                                                                                 0.0184304541
[18,]
       0.0191114515
                      0.0151788180 -0.0049142260
                                                   5.420909e-04
                                                                  0.0077097366 -0.0264436951
[19,]
       0.0005957699
                      0.0004731762
                                    -0.0001531934
                                                   1.689884e-05
                                                                  0.0002403391
                                                                                -0.0008243413
[20,]
       0.0251437232
                      0.0199698070 -0.0064653351
                                                   7.131945e-04
                                                                  0.0101432109
                                                                                -0.0347902905
[21,] -0.0252019722
                     -0.0200160699
                                     0.0064803130
                                                   -7.148467e-04
                                                                  -0.0101667091
                                                                                 0.0348708872
                     -0.0383902602
                                                   -1.371056e-03
[22,]
      -0.0483366752
                                     0.0124290584
                                                                  -0.0194994627
                                                                                 0.0668813827
[23,]
       0.0370347259
                      0.0294139544
                                    -0.0095229299
                                                   1.050479e-03
                                                                  0.0149401516
                                                                                -0.0512433604
[24,]
       0.0418995499
                      0.0332777257
                                    -0.0107738472
                                                   1.188469e-03
                                                                  0.0169026667
                                                                                -0.0579746086
       0.0240422730
                      0.0190950062
                                                   6.819522e-04
[25,]
                                    -0.0061821136
                                                                  0.0096988757
                                                                                -0.0332662611
[26,] -0.0111945148
                     -0.0088909784
                                     0.0028785033
                                                   -3.175292e-04
                                                                  0.0045159710
                                                                                 0.0154893696
Γ27.1
       0.0086994359
                      0.0069093211
                                    -0.0022369308
                                                   2.467570e-04
                                                                  0.0035094331
                                                                                -0.0120370361
                                                  -9.813884e-05
      -0.0034598916
                     -0.0027479370
                                     0.0008896598
                                                                  -0.0013957523
                                                                                 0.0047873035
[29,] -0.0339429324
                     -0.0269583707
                                     0.0087279212
                                                  -9.627816e-04
                                                                 -0.0136928934
                                                                                 0.0469653786
[30,]
       0.0406446388
                      0.0322810423 -0.0104511655
                                                   1.152874e-03
                                                                  0.0163964239
                                                                                -0.0562382420
```

JAS
heart.thal.3
[1,] -0.019412160
[2,] 0.032334265
[3,] 0.013025003
[4,] -0.033765642
[5,] 0.038039443
[6,] -0.049780634
[7,] 0.033896774
[8,] 0.061098699
[9,] -0.017989182
[10,] -0.047573738
[11,] -0.033256683
[12,] 0.003606873
[13,] -0.008634535
[14,] 0.012322831
[15,] -0.013727556
[16,] 0.009927570
[17,] -0.019793513
[18,] 0.028399388
[19,] 0.000885307
[20,] 0.037363272
[21,] -0.037449829
[22,] -0.071827721
[23,] 0.055033160
[24,] 0.062262230
[25,] 0.035726530
[26,] -0.016634915
[27,] 0.012927258
[28,] -0.005141358
[29,] -0.050438792
[30,] 0.060397447

Figure 29: Tous la matrice M

6. Calcul des valeurs propres :

```
# les valeurss propores :
val_p = Re(eigen(M)$values) #Re pour eliminer la partie imaginaire

vp1=Re(eigen(M)$values[1])
# vp2=Re(eigen(M)$values[2]) puisque la 2eme valeur propre contient une valeur
# |hégligable on travaille seulement avec la 1er valeur propre
```

```
TUO
      # les valeurss propores :
 169
 170
      val_p = Re(eigen(M)$values) #Re pour eliminer la partie imaginaire
 171
      vp1=Re(eigen(M)$values[1])
      # vp2=Re(eigen(M)$values[2]) puisque la 2eme valeur propre contient une valeur
 172
      # négligable on travaille seulement avec la 1er valeur propre
 173
 174
 175
169:26
      # Comparaison $
Console ~/ △
> val_p = Re(eigen(M)$values) #Re pour eliminer la partie imaginaire
> vp1=Re(eigen(M)$values[1])
> vp1
[1] 0.6004421
```

Figure 30 : 1er valeur propre

```
7. Calcul de la part d'inertie des valeurs propres :
         # Part d'inertie des valeurs propres
  177
  178
         Sum_val = sum(val_p)
  179
         part_inertie = (vp1)/Sum_val
  180
                                                 #100
  181
  100
         # Comparaison $
 184:1
 Console ~/ 🔎
> part_filerite = (vp1)/sum_var
                                          # TUU
> part_inertie
\lceil 1 \rceil 1
                         Figure 31: Pourcentage d'inertie
```

8. Calcul des vecteurs propres :

```
# les vecteurs propores :
         186
         187
         188 Vect_p =Re(eigen(M)$vectors)
         189
         190 vec_p_1 =Re(eigen(M)$vectors[,1])
         191
                                   #vec_p_2 =Re(eigen(M)$vectors[,2])
        192
                                    vec_p_1
        193
        194 <
    195:1 # Comparaison $
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            R
  Console ~/ ⋈
> vec_p_1
     \begin{smallmatrix} 1 \end{smallmatrix} ] \quad 0.09735430 \quad -0.16216020 \quad -0.06532194 \quad 0.16933872 \quad -0.19077234 \quad 0.24965582 \quad -0.16999636 
    [8] -0.30641726 0.09021789 0.23858797 0.16678623 -0.01808890 0.04330323 -0.06180047
 \begin{bmatrix} 15 \end{bmatrix} \quad 0.06884533 \quad -0.04978795 \quad 0.09926683 \quad -0.14242632 \quad -0.00443992 \quad -0.18738127 \quad 0.18781536 
[22] \quad 0.36022459 \quad -0.27599786 \quad -0.31225251 \quad -0.17917281 \quad 0.08342608 \quad -0.06483174 \quad 0.02578452 \quad -0.06483174 \quad -0.06483174
[29] 0.25295656 -0.30290040
```

Figure 32: 1er vecteur propres

9. Calcul des vecteurs principaux :

```
201
       vectprin1 = (1/norme_vect_propre_1)*vec_p_1
  202
       #vectprin2 = (1/norme_vect_propre_2)*vec_p_2
  203
  204
       vectprin1
  205
       #les coordonées des centres de gravités (Composantes Principales):
  206
 207
 205:1
       # Comparaison $
Console ~/ 🖈
> vectprin1
  \begin{bmatrix} 1 \end{bmatrix} \quad 0.109098679 \quad -0.181722462 \quad -0.073202083 \quad 0.189766974 \quad -0.213786251 \quad 0.279773158 
 \lceil 7 \rceil -0.190503951 -0.343382045 0.101101367 0.267370137 0.186906562 -0.020271063
[13] \quad 0.048527129 \quad -0.069255793 \quad 0.077150518 \quad -0.055794137 \quad 0.111241927 \quad -0.159607983
\lceil 19 \rceil -0.004975532 -0.209986088 0.210472551 0.403680444 -0.309292985 -0.349921231
> |
```

Figure 33 : Vecteur principale

10.Calcul des coordonnées des centres de gravité (composantes principales):

```
#les coordonées des centres de gravités (Composantes Principales):
  205
  206
  207
      C11=G%*%VI%*%vectprin1 # ON travaille seulement avec C11 puisque
  208
       #C22=G%*%VI%*%vectprin2
  209
  210
      C11
  211
  212
  213
  214
 213:1
       # Comparaison $
Console ~/ △
> C11
        [,1]
0 - 0.6217272
  0.5199900
1
>
```

Figure 34: Corrdonnes de G

11. Calcul des coordonnées des individus :

CI1=XX%*%VI%*%vectprin1 #CI2=XX%*%VI%*%vectprin2

print(CI1)

Resultas

Tableau 2: resultas corrdonnes d'individus

	is corruonnes a inaiviaus			
[.1]	63	127	191	254 -
	1.49364816	0.17793627	0.23592045	0.52446432
[,1] 1 2.04842001	64 -	128	192 - 0.95631587	255
2 -	0.27932345 65	0.32617373 129	193 -	0.85187385 256 -
0.40577327	1.28472126	0.68491427	1.67237072	2.51496618
3	66 -	130	194 -	257 -
0.76399114	0.11436902	1.55639637	1.70125014	1.42818387
4	67	131 -	195	258 -
1.06392645	1.21907937	0.48751315	0.93244704	0.60565676
5	68	132	196 -	259
1.52574477	0.17013154	0.13291401	0.52875943	0.89334430
6	69	133 -	197 -	260
0.28795448	0.23157717	0.03085285	0.10877462	0.69334167
7	70	134	198 -	261 -
0.61013040	1.47135748	0.19961038	1.33606304	1.20014917
8 -	71	135	199 -	262 -
0.07799967	0.16084444	0.40493045	1.30182540	0.98402965
9	72	136	200	263 -
0.14090186	0.13689335	0.47101936	0.10709034	1.89763756
10	73 -	137	201 -	264 -
1.01699895	0.77534516	2.37760417	1.32640502	0.04131966
11	74	138	202 -	265 -
0.18806517	0.25131587	1.49111717	0.82120945	1.06343681
12	75	139	203	266
1.03830668	0.39015265	1.44485387	0.24579898	0.30529878
13	76	140 -	204	267 -
0.35298679	0.75385422	1.14541597	0.76509808	0.79567359
14	77	141	205 -	268 -
2.34799920	0.84979603	1.48581541	0.53367433	0.31961465
15	78	142 -	206 -	269 -
2.16926342	1.15199170	0.71131098	1.15166643	1.34385119
16	79	143	207 -	270
1.05931890	0.94541023	0.35486709	0.81506131	
17	80	144	208 -	0.15550884 271 -
1.73213162	1.19958972	0.25448790	1.56763638	0.22549024
18	81	145	209 -	272 -
1.77015688	0.40986928	1.30312859	1.11526869	0.52143401
19 -	82 -	146	210 -	273
0.61634883	0.00648906	1.00750593	0.83191617	0.55390509
20	83	147 -	211 -	274 -
0.98899069	0.80640122	0.94961010	1.18530310	0.62299260
21 -	84	148	212 -	275 -
0.41092975	0.26356358	1.99712482	0.54918053	1.42305617
22	85	149	213 -	276 -
0.75898204	0.01740434	0.45941397	1.15758928	1.71543662
23 -	86	150	214	277 -
0.68011824	1.34798967	0.19650310	0.52097179	1.91094358
24	87	151	215 -	278
1.09961373	0.32380958	1.33505613	0.71880601	0.62793097 279 -
25	88	152	216	0.31860626
0.72334920	0.85638105	1.91186092	0.30748941	
26 -	89	153	217 -	280 -
0.26822078	1.50496005	0.28469930	0.30934182	0.50767557
27	90	154 -	218	281 -
1.38415151	1.10914135	0.28177142	0.03818783	0.11611573
28	91 -	155 -	219 -	282 -
1.19983157	0.94184437	0.22824342	1.16103730	1.38141738
29	92	156	220 -	283
0.67293483	0.58411454	0.53826090	1.52894595	0.48063559
30	93	157	221 -	284 -
0.57586187	1.36562260	0.40800687	0.89418167	1.26534833
31 -	94	158 -	222	285 -
0.40609559	0.45939449	0.29121870	0.32525598	0.46892699
32	95	159	223	286 -
0.95008139	0.48959036	0.88744675	0.20361153	2.70071254
0.0000100	0.10555050	0.007 1.075	0.20301133	2170071234

33	96	160	224 -	287 -
0.07560090	0.04937817	0.51574643	2.03064342	0.21117557 288 -
34 -	97	161	225 -	288 -
1.28496119	0.38455997	0.09959870	0.88535278	1.10003332
35	98 -	162	226	289 -
0.40902536	0.71938098	1.26307063	0.72060833	0.81814233
36	99 -	163	227 -	290 -
0.71259334	1.07125018	0.17934832	0.95894091	1.42940989
37	100 -	164	228 -	291 -
1.60540486	0.20636716	0.61869109	0.91771840	1.34621989
38	101 -	165	229 -	292 -
0.48974584	1.53651742	0.61869109	0.18147234	1.02055041
39	102	166 -	230	293 -
1.68303645	0.17460093	1.08297991	1.19389592	0.35045031
40	103 -	167 -	231	294
1.44337909	0.20656404	0.74775474	0.82200682	0.45655979
41 -	104 - 0.22011543	168 -	232 -	295
0.22562581	0.22011543	1.01990996	2.16413858	0.60715887
42 -	105	169 -	233 -	296 -
0.36090171	0.68410175	1.38603044	2.19080104	0.40312553
43	106	170	234 -	297
0.48816541	2.08759060	0.23990808	0.54655192	1.29157627
44	107 -	171	235 -	298 -
0.11974867	0.18297867	0.34575546	0.65290007	1.52337424
45 -	108 -	172 -	236	299
0.36822665	0.05842964	0.23567458	0.17860784	0.31698337
46	109	173	237 -	300
0.56134130	1.35045848	0.60290255	1.65788613	0.32176375
47	110	174 -	238 -	301 -
0.07883608	0.96055265	0.49212433	2.27686819	1.04469977
48	111	175 -	239	302 -
0.22562677	0.69840592	1.35197602	0.65263161	1.19228632
49 -	112 -	176 -	240 -	303 -
0.40701238	0.45473154	0.30820874	0.74585073	0.63947620
50	113	177 -	241 -	***************************************
0.62376243	1.48337727	0.27881930	0.33450982	
51	114 -	178	242 -	
1.32901764	0.26430634	1.05301276	0.01554605	
52	115	179 -	243 -	
0.40688941	0.59692658	0.25313636	1.03698307	
53 -	116	180 -	244 -	
0.63444569	0.69351187	1.05238149	1.91507811	
54	117 -	181 -	245 -	
0.93281819	0.20353332	1.71649476	0.35635411	
55	118	182 -	246 -	
1.90329366	1.07845698	1.00795526	0.89969134	
56 -	119	183	247 -	
0.84003778	1.30957574	1.10439003	1.45206870	
0.04003//8	1.3093/3/4			
57		184 -	248 -	
0.06659510	0.04428866	0.44229829	0.28118691	
58 -	121 -	185 -	249 -	
0.04283762	0.93671156	0.94442981	2.31349720	
59	122	186 -	250 -	
0.41498021	0.31646687	1.56222681	0.40606172	
60 -	123	187 -	251 -	
0.48433249	1.44397825	0.50136212	1.45109943	
61	124	188 -	252	
1.72012196	1.86545534	1.31766720	0.14828176	
62	125	189 -	253 -	
0.65209114	1.36654021	1.81068266	0.36143357	
0.03203114	126	190 -	0.30143337	
	0.46919917	0.30469391		
	0.40919917	0.30409391		

12. Création d'un graphique de dispersion des individus dans l'espace des variables discriminantes :

Figure 35 : Representation Graphique 1

Figure 36 : Representation Graphique 2

Figure 37: Representation Graphique 3

Figure 38 : Representation Graphique 4

On a essayé de représenter les résultats le plus mieux possible est cette dernière représentation c'est la meilleurs qui présente 2 points avec deux couleurs diffèrent c'est les 3 centre de gravite on rouge et en vert puis en à ajouter les autres individus

13. Ajout de points supplémentaires.

```
348
 349
     s \leftarrow c(45,0,2,120,300,1,1,140,1,3,1,0,2)
     350
 351
 352
     names(s) <- header</pre>
 353
     dss <- data.frame(t(s))</pre>
 354
 355
 356 (
348:1 # (Untitled) $
Console ~/ ♠
> dss
 age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
               120 300
                                    140
```

Figure 39: donner supplementaire

14. Affectation d'un nouveau individu :

```
DSS_quanti <- data.frame(dss$age,dss$trestbps,dss$chol,dss$thalach,dss$oldpeak)
DSS_quali <- data.frame(dss\$sex,dss\$cp,dss\$fbs,dss\$restecg,dss\$exang,</pre>
                                                                                                dss$slope,dss$ca,dss$thal)
dss1 <- cbind(DSS_quanti,DSS_quali)</pre>
dss1_center <-c(45-mean(x$heart.ï..age),120-mean(x$heart.trestbps),</pre>
                                                                 300-mean(x$heart.chol),140-mean(x$heart.thalach),
                                                                 3-mean(x$heart.oldpeak),
                                                               1-mean(x$heart.sex.0) ,0 ,
                                                                                                                                                                                       #sex
                                                               0,0-mean(x$heart.cp.1),1-mean(x$heart.cp.2),0,
                                                                                                                                                                                                                                                                    #ср
                                                               0,1-mean(x$heart.fbs.1),
                                                               0,1-mean(x$heart.restecg.1),0,
                                                                                                                                                                                                                   #restecg
                                                               0,1-mean(x$heart.exang.1),
                                                                                                                                                                                                               #exang
                                                               0,1-mean(x$heart.slope.1),0,
                                                                                                                                                                                                                #slope
                                                                1-\text{mean}(x) = (x) + (x) = (x) = (x) + (x) = (
axe11=dss1_center%*%VI%*%vectprin1
```

Figure 40: affectation

Résultats

```
| > C11
| [,1]
| 0 -0.6217272
| 1 0.5199900
| > coordIND
| [1] -38.89839
| > C11-c(axe11)
| [,1]
| 0 38.27666
| 1 39.41838
| > |
```

Figure 41 : resultas de l'affectation

On remarque que l'individus étudier il'est prêt du 1^{er} groupes d'où il est n'est pas malade

Conclusion

En conclusion, cette expérience d'analyse de données a été enrichissante et a permis de faire de nombreuses découvertes significatives. À travers les différentes étapes du processus d'analyse, nous avons pu collecter des données pertinentes, explorer leur structure, les prétraiter et les analyser à l'aide de techniques appropriées. Les résultats obtenus ont révélé des modèles et des relations intéressants entre les variables étudiées.

Cette expérience a démontré l'importance de la collecte de données de qualité et de l'exploration approfondie pour obtenir des résultats fiables. Les méthodes utilisées, telles que la modélisation statistique et l'analyse des données, ont permis de mettre en évidence des tendances et des insights précieux. Grâce à ces découvertes, nous avons pu tirer des conclusions éclairées et formuler des recommandations pertinentes.

L'analyse de données s'est avérée être un outil puissant pour prendre des décisions éclairées. Elle permet de mieux comprendre les relations complexes entre les variables, d'identifier des facteurs clés et de déceler des opportunités d'amélioration. Cette expérience a donc confirmé l'importance de l'analyse de données dans divers domaines, tels que la gestion, la recherche, le marketing ou la prise de décision stratégique.

En somme, cette expérience d'analyse de données a été une expérience enrichissante, nous permettant de découvrir de nouvelles perspectives et de mieux comprendre les données étudiées. Elle a souligné l'importance de l'analyse rigoureuse des données pour obtenir des insights précieux. Cette expérience constitue une base solide pour des prises de décisions futures basées sur des données fiables et éclairées.