අ.පො.ස.(උ.පෙළ) විභාගය - 2016

ඇගයීම් චාර්තාව

පර්යේෂණ හා සංවර්ධන ශාබාව ජාතික ඇගයීම් හා පරිකෂණ සේවාව, ශූී ලංකා විභාග දෙපාර්තමේන්තුව.

2.1.3 I පතුය සඳහා අපේක්ෂිත පිළිතුරු හා ලකුණු දීමේ පටිපාටිය

පුශ්න අංකය	පිළිතුර	පුශ්න අංකය	පිළිතුර
01.		26.	.4
02.		27.	
03.		28.	
04.		29.	
05.		30.	
06.	4	31.	
07.		32.	
08.		33.	
09.	.5	34.	
10.		35.	
11.	2 00	36.	
12.	.1	37.	.2
13.	Ma4ths	38.	
14.		39.	2
15.		40.	
16.		41.	
17.		42.	
18.		43.	
19.		44.	
20.		45.	
21.		46.	
22.		47.	
23.	5	48.	.5
24.		49.	
25.		50.	

වගුව 05 නිවැරදි එක් පිළිතුරකට ලකුණු 02 බැගින් මුළු ලකුණු 100කි.

2.2.2 II පුශ්න පතුය සඳහා අපේක්ෂිත පිළිතුරු, ලකුණු දීමේ පටිපාටිය, පිළිතුරු සැපයීම පිළිබඳ නිරීකෂණ, නිගමන හා යෝජනා :

II පතුය සඳහා පිළිතුරු සැපයීම පිළිබඳ නිරීකුණ පුස්තාර $2,\ 3,4.1,4.2$ හා 4.3 ඇසුරෙන් ඉදිරිපත් කර ඇත. පුශ්නයට අදාළ පුස්තාර කොටස ඒ ඒ පුශ්නයේ නිරීක්ෂණ හා නිගමන සමඟ දක්වා ඇත.

A කොටස - වයුහගත රචනා

- 01. (A) (i) මහා අණු යනු මොනවා ද?
 - ullet අණුක භාරය 10^4 10^{10} දරණ (විශාල) අණු
 - තැනුම් ඒකක/ ඒකක අණු විශාල සංඛ්යාවකින් තැනී ඇත/ බහු අවයවක වේ. (ලකුණු 2×21/2යි)
 - (ii) ජීවීන් තුළ දක්නට ලැබෙන මහා අණු තුන නම් කරන්න.
 - පොලිසැකරයිඩ
 - පෝටීන

• නියුක්ලික් අම්ල (ලකුණු 3 × 2 1/2යි)

(iii) පහත සඳහන් ඒවායේ ඇති ඩයිසැකරයිඩ සීනි වර්ගය නම් කර, ඒ එක් එකෙහි මොනොසැකරයිඩ සංඝටක ඒකකය දක්වන්න.

ඩයිසැකරයිඩ සීනි වර්ගය මොනොසැකරයිඩ ඒකකය
(a) උක් ශාකය සුකෝස් ග්ලුකෝස් සහ ෆ්රක්ටෝස්
(b) පුරෝහණය වන බීජ මෝල්ටෝස් ග්ලුකෝස්

(c) කිරි ලැක්ටෝස් ග්ලුකෝස් සහ ගැලැක්ටෝස්

(ලකුණු (03 + 03) × 2 1/2යි)

(iv) NAD හා ATP වල දක්නට ලැබෙන මොනොසැකරයිඩ ඒකකය කුමක් ද?

● රයිබෝස් (ලකුණු 1 × 2 1/2යි)

- (v) ලිපිඩ, ජීවීන්ගේ එක් පුධාන කාබනික සංයෝගයක් වේ. අනෙකුත් පුධාන ජෛවීය අණුවලින් ලිපිඩ වෙන් කර හඳුනා ගැනීමට දායක වන, ඒවායේ ඇති වැදගත් ලක්ෂණ දෙකක් සඳහන් කරන්න.
 - ජලයේ අදුාවාෳයි/ කාබනික දුාවකවල දිය වේ.
 - H:O, (අනුපාතය) 2:1 වඩා වැඩි ය./ ඔක්සිජන් පුමාණය අඩුවෙන් පවතී. (ලකුණු $2 \times 21/28$)
- (vi) ජීවීන්ගේ දක්නට ලැබෙන පුධාන ලිපිඩ වර්ග පහක් නම් කරන්න.
 - මේද හා තෙල්

• ඉටි

• ෆොස්ෆොලිපිඩ

- ස්ටෙරොයිඩ
- ටර්පීන (ලකුණු 5 × 2 1/2යි)
- (B) (i) විකෘති යනු මොනවා ද?
 - ජීවියෙකුගේ පුවේණික දුවාවල/DNA වල/ ගෙනෝමයේ සිදුවන වෙනස්කම් ය.

(ලකුණු 1 × 2 1/2යි)

- (ii) පරිණාමයේ දී විකෘතිවල වැදගත්කම සඳහන් කරන්න.
 - (වාසිදායක) විකෘති නව පුභේදන ඇති කිරීමෙන් වඩාත් සුදුසු/ ගැළපෙන ජීවීන් ඇති වීමට මඟ පාදයි. (ලකුණු 1 × 2 1/2යි)

(iii) මිනිසුන්ට ඇති වන ඇතැම් පුවේණික ආබාධ විකෘති ලෙස පුවේණිගත වේ. එවැනි පුවේණික ආබාධ තුනක් ඒවායේ විකෘති වර්ගය ද සඳහන් කරමින් දක්වන්න.

පුවේණික අබාධය	විකෘති වර්ගය
• වර්ණ අන්ධතාවය	• ජාන විකෘති
• හිමොෆිලීයාව	• ජාන විකෘති
• ඇලිබව	• ජාන විකෘති
• ඩවුන්ස් සහලක්ණෙය/ සින්ඩෝමය	• වර්ණදේහ විකෘති
• ක්ලයින්ෆෙල්ටර් සහලක්ෂණය/ සින්ඩුෝමය	• වර්ණදේහ විකෘති
• ට'ර්නර් සහලඎණය/ සින්ඩුෝමය	• වර්ණදේහ විකෘති
• තැලිසීමියා	• ජාන විකෘති
• හත්ටිත්ටත්ගේ රෝගය	• ජාන විකෘති
• දැකැති සෛල රක්තහීනතාව	• ජාන විකෘති
• සිස්ටික් ෆයිබෝසිස්	• ජාන විකෘති

(ලකුණු (03 + 03) × 2 1/2යි)

- (C) (i) ජෛව ඔක්සිජන් ඉල්ලුම (BOD) යනු කුමක් ද?
 - කාබනික දුවාঃ/ කාබනික අපදුවා බිද හෙලීම සඳහා ස්වායු කුෂුදු ජීවින්ට අවශා වන දුාවා ඔක්සිජන් පුමාණය. (ලකුණු 1 × 2 1/2යි)
 - (ii) අධික ජෛව ඔක්සිජන් ඉල්ලුමක් (BOD) සහිත අපදුවා විශාල පුමාණයක් ජලජ පද්ධතියකට මුදා හැරිවිට කුමක් සිදු වේ ද?
 - ullet අපදවා වියෝජනය සඳහා කුුදු ජිවීන් <mark>ජල</mark>යේ ඇති විශාල Ω_{γ} පුමාණයක් පරිභෝජනය කරයි
 - ජලයේ දුාවාෳ ඔක්සිජන් අන්තර්ගතය අඩු වී ජලජ ජීවින් කෙරෙහි බලපෑම් ඇති කරයි

(ලකුණු 2 × 2 1/2යි)

- (iii) කාබනික දුවා ඔක්සිකරණය මගින් ජෛව ඔක්සිජන් ඉල්ලුම (BOD) අඩු කිරීම සඳහා අපජලය පිරියම් කිරීමේ වර්තමාන ජල පිරියත්වල භාවිත කරනු ලබන කුම දෙකක් සඳහන් කරන්න.
 - කාන්දු පෙරහන් කුමය
 - සකිුය බොර කුමය

(ලකුණු 2 × 2 1/2යි)

- (iv) සන අපදුවා බැහැර කිරීම ශී ලංකාවේ බරපතල පාරිසරික ගැටලු ඇති කිරීමට හේතු වී ඇත. භූමිය මත සන අපදුවා විවෘතව බැහැර කිරීම නිසා ඇති වන අහිතකර පුතිඵල මොනවා ද?
 - මදුරුවන් බෝවන ස්ථාන වර්ධනය වීම
 - අපදුවාවල නිර්වායු වියෝජනය නිසා දුගධ හමන වායු නිපද වේ
 - අනතුරුදායක/ පිපිරෙන සුළු මීතේන් නිපද වීම
 - කෘමීන්/ කෘන්තකයන් වහාප්ත වේ/ බෝ වේ. / ගහනය වැඩි වීම
 - භූගත ජලය දූෂණය විය හැකි ය

(ලකුණු 5 × 2 1/2යි)

- (v) සන අපදුවා බැහැර කිරීමෙන් ඇතිවන ගැටලු අවම කර ගැනීම සඳහා භාවිත කළ හැකි කුම මොනවා ද?
 - වෙන්කිරීම හා පුතිචකී්කරණය
 - කාබනික දුවා වියෝජනය/ කොම්පෝස්ට් සෑදීම
 - සනීපාරඎක භූ පිරවීම

(ලකුණු 3 × 2 1/2යි)

(එකතුව 40 × 2 1/2 = 100යි)

- 02. (A) (i) සමස්ථිතිය යනු කුමක් ද?
 - (දේහයේ) අභාන්තර පරිසරය නියතව පවත්වා ගැනීම

(ලකුණු 1 × 2 1/2යි)

- (ii) මිනිසාගේ සමස්ථිති<mark>ක ලෙස යාමනය</mark> වන සාධක තුනක් සඳහන් කරන්න.
 - දේහ උෂ්ණත්වය
 - රුධිර ග්ලුකෝස්
 - රුධිර ඔක්සිජන්
 - රුධිර CO, / කාබන්ඩයොක්සයිඩ්
 - රුධිර ජල පුමාණය/ රුධිර ආසුැතික පීඩනය
 - රැබ්ර pH / H⁺
 - \bullet රුධිර $Na^+/K^+/Ca^{+2}/Cl^-/HCO_3^-$
 - රුධිර පීඩනය

(ලකුණු 3 × 2 1/2යි)

- (iii) මිනිසාගේ සමස්ථිතියේ වාසි දෙකක් සඳහන් කරන්න.
 - පටක තරලයේ පුශස්ථ තත්ව පවත්වා ගැනීම/ පුශස්ථ පරිවෘත්තීය වේගය පවත්වා ගැනීම/ එන්සයිම කිුියාකාරීත්වය සඳහා පුශස්ථ තත්ව පවත්වා ගැනීම
 - ස්ථාවර තත්වයක් පවත්වා ගැනීම
 - පුද්ගලයා කුියාකාරී වීම
 - පුද්ගලයා නිරෝගී වීම

(ලකුණු 2 × 2 1/2යි)

- (iv) මිනිසාගේ සමස්ථිතියේ එක් අවාසියක් සඳහන් කරන්න.
 - ශක්තිය වැය වේ / ATP වැය වේ

(ලකුණු 1 × 2 1/2යි)

- (v) මානව අක්මාව සමස්ථිතියේ දී කාර්යභාරයන් රැසක් ඉටු කරයි. එවැනි කාර්යභාරයන් හතරක් සඳහන් කරන්න.
 - රුධිර ග්ලූකෝස් මට්ටම යාමනය
 - ලිපිඩ අන්තර්ගතය යාමනය
 - අතාාවශා නොවන ඇමැයිනො අම්ල සංස්ලේෂණය/ නිෂ්පාදනය
 - විෂහරණය
 - උෂ්ණත්ව යාමනය
 - ලිංගික හෝර්මෝන බිද වැටීම/ ඉවත් කිරීම
 - හිමොග්ලෝබින් බිද වැටීම/ ඉවත් කිරීම
 - රුධිරය සංචිත කිරීම
 - ullet විටමින් A/D/E/K/ මේද දුාවා විටමින් සංචිත කිරීම
 - රුධිර පුෝටීන සංස්ලේශණය/ නිෂ්පාදනය
 - කොලෙස්ටරෝල් සංස්ලේශණය/ නිෂ්පාදනය
 - යූරියා නිෂ්පාදනය/ සංස්ලේෂණය

(ඕනෑම 4 × 2 1/2යි)

- (vi) මිනිසා තුළ කිුයාත්මක වන ධන පුතිපෝෂී යන්තුණ සඳහා නිදසුන් දෙකක් දෙන්න.
 - පුසුතිය/ මයෝමේටියමේ සංකෝචන ඔක්සිටොසින් මගින් උත්තේජනය කරන අතර, මයෝමේටියමේ සංකෝචන නිසා තවදුරටත් ඔක්සිටොසින් නිදහස් වේ.
 - කිරි විසර්ජනය/ නිදහස් කිරීම/ කිරි උරාබීමේ දී ඔක්සිටොසින් නිදහස් වීමෙන් කිරි විසර්ජනය/ නිදහස් කිරීම සිදු වේ. (ලකුණු 2 × 2 1/28)
- (B) (i) කුමීරණය යනු කුමක් <mark>ද?</mark>
 - පියයුරු/ ස්තන ගුන්ථීවල කිරි නිපදවීම<mark>/ සං</mark>ස්ලේශණය හා නිදහස් කිරීම. (ලකුණු 1 × 2 1/2යි)
 - (ii) මානව කිරිවල වඩාත් ම බහුල සංඝටකය කුමක් ද?
 - ජලය (ලකුණු 1×21/28)
 - (iii) පියයුරු මත කුියා කරන කලලබන්ධ හෝර්මෝන දෙකක් නම් කරන්න.
 - ඊස්ටුජන්
 - පොජෙස්ටරෝන්
 - මානව කලලබන්ධ ලැක්ටොජන්/ hPL

(ලකුණු 2 × 2 1/2යි)

- (iv) කොලස්ටුම්වල සංඝටක දෙකක් නම් කරන්න.
 - ජලය
 - ඉමියුතොග්ලොබියුලින්/ ග්ලොබියුලින්/ පුතිදේහ
 - මේද
 - පෝටීන
 - ස්තන ගුන්ථීවල සෛල

(ලකුණු 2 × 2 1/2යි)

- (v) ක්ෂීරණයේ දී ඔක්සිටොසින්වල කාර්යභාරය කුමක් ද?
 - කිරි විසර්ජනය/ නිදහස් කිරීම උත්තේජනය කිරීම.

(ලකුණු 1 × 2 1/2යි)

- (vi) ස්තීුන්ගේ කිරි නිපදවීම නිශේධනය කරන හෝර්මෝන දෙකක් නම් කරන්න.
 - පෝලැක්ටින් නිශේධනය කිරීමේ සාධකය/ හෝර්මෝනය/ PIH/PIF
 - පොජෙස්ටරෝන් (ලකුණු 2×21/2යි)

(vii)මව්කිරි දීමේ වාසි තුනක් සඳහන් කරන්න.

- මව්කිරි ජීවානුහරිතය/ ආසාදනවලට ලක්වීමේ හැකියාව අඩු වේ.
- මව්කිරි නිවැරදි පුමාණයට උණුසුම්ය.
- පුශස්ථ වර්ධනය හා විකසනය තහවුරු කරයි/ නිවැරදි සංඝටක නිවැරදි අනුපාතයෙන් තිබීම.
- පුතිදේහ සපයයි/ අකිුය පුතිශක්තිය.
- යකඩ අවශෝෂණය පහසු කරයි.
- (කථනයට දායක වන) මුහුණේ පේශී වර්ධනය කරයි.
- අසාත්මික තත්වවලට ලක් වීමට ඇති හැකියාව අඩු වේ.
- මව සහ ළදරුවා/ දරුවා අතර, සමීප සම්බන්ධතාවයක් ඇති කරයි. (®නෑම 3 × 2 1/2යි)
- (C) (i) මානව ස්නායු පද්ධතියේ පුධාන කෘතා තුන සඳහන් කරන්න.
 - සමායෝජනය
 - සමෝධානය
 - සමස්ථිතිය **(ලකුණු 3 × 2 1/2යි)**
 - (ii) ද්විත්ව උදරීය ස්නායු රජ්ජු දරන සතුන් සහිත වංශ දෙකක් නම් කරන්න.
 - ඇතෙලීඩා
 - ආතොපෝඩා (ලකුණු 2 × 2 1/2යි)
 - (iii) අරීය ස්නායු දරන සතුන් සහිත වංශයක් නම් කරන්න.
 - එකයිනොඩර්මේට<mark>ා වෙරි</mark> (ලකුණු 1 × 2 1/2යි)

as . Com

- (iv) අන්තරාසර්ග යාමනය<mark>ට වඩා</mark> ස්නායුක යාමනයේ ඇති වාසි දෙකක් සඳහන් කරන්න.
 - ඉක්මන් පුතිචාර
 - ස්ථානීය පුතිචාර
 - නිශ්චිත පථයකි
 - රුධිර පද්ධතියක් අවශා නොවේ.

(ඕනෑම 2 × 2 1/2යි)

- (v) පුතිගුාහකයක් යනු කුමක් ද?
 - උත්තේජයන් පුතිගුහණය කරන විශේෂිත අවයවයක් හෝ වෘහුයක්
- (ලකුණු 1 × 2 1/2යි)

- (vi) පුතිගාහකවල ලක්ෂණ තුනක් සඳහන් කරන්න.
 - විශේෂිත උත්තේජයක් පුතිගුහනය සදහා නිර්මානය වී ඇත.
 - ශක්ති පරිණාමනය කරන වාූහයක් ලෙස කිුයාකරයි.
 - විශේෂිත සෛල වලින් යුක්ත වේ.
 - ස්නායු පද්ධතිය සමග සම්බන්ධිතය.
 - අනුවර්තනය පෙන්වයි.
 - අවම දේහලීය අගයකට පුතිචාර දක්වයි.

(ලකුණු 2 × 2 1/2යි)

(vii)ස්පර්ශයට සංවේදී පුතිගුාහක තුනක් නම් කරන්න

- මයිස්නර් දේහානු
- ම'ර්කල් මඬල
- නිදහස් ස්නායු අන්ත

(ඕනෑම 3 × 2 1/2යි)

(එකතුව 40 × 2 1/2 = 100යි)

3 ප ශ	3 පුශ්නය						
03.	(A) (i)	A,B,C,D සහ E ලෙස ලකුණු කළ අපෘෂ්ඨවංශීන් පස් දෙනෙකුගේ බාහිර ලක්ෂණ කිහිපයක් පහත දැක් වේ.					
		A - පැතලි, ද්විපාර්ශ්වික සමමිතික, අක්ෂි ලප දරන දේහය					
		B - සිලින්ඩරාකාර, අරීය සමමිතික, ගුාහිකාවලින් වට වූ මුඛයක් සහිත දේහය C - සිලින්ඩරාකාර, ද්විපාර්ශ්චික සමමිතික, දැඩි කෙඳි බහුල, මෙවුලක් රහිත දේහය					
		D - සිලින්ඩරාකාර, ද්විපාර්ශ්චික සමමිතික, මෙවුලක් සහිත දේහය					
		E - කුඩ හැඩැති, අරීය සමමිතිත, දර	ාරය වටා ගුාහිකා රැසක් සහිත දේහය				
		නිවැරදි අංක සහ $\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D},\mathbf{E}$ යන අකුරු භාවිත කර පහත දී ඇති දෙබෙදුම් සුවිය සම්පූර්ණ කරන්න.					
		(1) ද්විපාර්ශ්චික සමමිතික දේහය	2				
		අරීය සමමිතික දේහය					
		,					
		(2) පැතලි දේහය	A				
		සිලින්ඩරාකාර දේහය	4				
		(3) ගුාහිකා දේහයේ <mark>දාරය ව</mark> ටා පිහිටයි	Е				
		ගුාහිකා මුඛය වටා <mark>පිහි</mark> ටයි	В				
		(4) මෙවුල ඇත.	D COM				
		මෙවුල නැත.	С				
			(ලකුණු 8 × 2 1/2යි	()			
	(ii)) $\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}$ සහ \mathbf{E} ලෙස ලකුණු කර ඇති එක් එක් සත්ත්වයාගේ වර්ගය සඳහන් කරන්න.					
		ullet A - ටර්බලේරියා					
		• B - ඇත්තොසෝවා/ හයිඩොසෝවා					
		ullet C - පොලිකීටා					
		ullet D - ඔලිගොකීටා					
		ullet E - ස්කයිෆොසෝවා	(ලකුණු 5 × 2 1/2යි	3)			
	(B) (i)	ආවෘතබීජක ශාකයක සංසේචනය නො	වූ පරිණන ඩිම්බයක සිරස් කඩක දැකිය හැකි කොටස් නඡ්	9			
		කරන්න.					
		කලාසය●	කළල කෝෂය				
			ධැවීය නාෳෂ්ටි/ ද්විතියික නාෳෂ්ටිය				
		-	ඩිම්බ සෛලය/ අණ්ඩ සෛලය				
			ආධාරක මෙසල				
			ලපය/ ඩිම්බ වෘන්තය				
			(ලකුණු 10 × 2 1/2යි)			

- (ii) ආවෘතබීජක ශාක ඩිම්බකෝෂයක පුධාන වුහුහවල සිදු වන පශ්චාත් සංසේචන වෙනස්කම් ලැයිස්තු ගත කරන්න.
 - යුක්තානුවෙන් කළලය විකසනය වීම
 - භූැණපෝෂී නාෂ්ටිය, භුැණපෝෂය බවට විකසනය විම
 - ඩිම්බාවරණ, බීජාවරණය බවට පත්වීම
 - ඩිම්බය, බීජය බවට පත්වීම
 - ඩිම්බකෝෂය, එලයක් බවට පත්වීම

(ලකුණු 5 × 2 1/2යි)

(C) ආවෘතබීජක ශාකවල සනාල පටක දෙකෙහි ඇති සමහර සංඝටක ඒකක පහත දැක්වෙන P හා Q රූප සටහන්වල දක්වා ඇත.

- (i) රූප සටහටනේ දක්වා ඇති සනාල පටක දෙක හඳුනාගන්න.
 - P = ⊚ෙශලම
 - Q = ෆ්ලෝයම

(ලකුණු 2 × 2 1/2යි)

- (ii) ඊතලවලින් දක්වා ඇති සංඝටක ඒකක නම් කරන්න.
 - A = සජිදු තලය
 - \bullet \mathbf{B} = කු (සිදුරු)
 - ullet C = වාහිනි ඒකක/ මූලාංග/ වාහිනි
 - D = වාහකාභ
 - E = (ශෛලම) තන්තු

- F = පෙනේර තලය
- G = සහචර ජෛල
- H = පෙනේර නළ ඒකක/ මූලාංග
- I = පෙනේර පුදේශ
- $oldsymbol{f J}$ = (ෆ්ලෝයම) තන්තු/ තන්තුව

(ලකුණු 10 × 2 1/2යි)

(එකතුව 40 × 2 1/2 = 100යි)

- 04. (A) (i) පරිසර පද්ධතියක් යනු කුමක් ද?
 - කිුයාකාරී/ ගතික ඒකකයකි.
 - පුජාවක සියලු ම ජීවීන් හා අජෛව පරිසරයත්, එකිනෙකා අතර ඇති අන්තර්කුියාත් ඇතුළත් ය.

(ලකුණු 2 × 2 1/2යි)

- (ii) පරිසර පද්ධතියක ඇති පුධාන ජෛව සංඝටක මොනවා ද?
 - පුාථමික නිෂ්පාදකයන්
 - පරිභෝජකයන්
 - නික්ෂේප භක්ෂකයන්/ වියෝජකයන්

(ලකුණු 3 × 2 1/2යි)

- (iii) පරිසර පද්ධතියක ඇති ජෛව සංඝටක එකිනෙක සමග සම්බන්ධ වන්නේ කෙසේ ද?
 - පෝෂණ සබදතා මගින්
 - ශක්ති සංකුමණය මගින්/ ශක්තිය ගලා යාම මගින්

(ලකුණු 2 × 2 1/2යි)

- (iv) පරිසර නිකේතනය අර්ථ දක්වන්න.
 - පරිසර පද්ධතියක/ පරිසරයේ ජීවියෙකු සතු කාර්යභාරය

(ලකුණු 1 × 2 1/2යි)

- (v) (a) පරිසර පද්ධතියක දළ පුාථමික නිෂ්පාදනතාව යන්නෙන් අදහස් කෙරෙනුයේ කුමක් ද?
 - පුාථමික නිෂ්<mark>පාදකයන් විසින්</mark> ඒකක කාලයක දී ඒකක ක්ෂේතුඵලයක දී රසායනික ශක්තිය ලෙසට පරි<mark>වර්තනය</mark> කරනු ලබන මුළු ආලෝක ශක්ති පුමාණය

(ලකුණු 1 × 2 1/2යි)

- (b) පහත දැක්වෙන එක් එක් පරිසර පද්ධතියේ පුධාන පුාථමික නිෂ්පාදකයා සඳහන් කරන්න. සාගරය ශාක ප්ලවාංග
 - විල්ල

201

• පතන

තෘණ

(ලකුණු 3 × 2 1/2යි)

- (B) (i) බියෝමයක් යනු කුමක් දැයි පැහැදිලි කරන්න.
 - පුළුල්ව පැතිරී ඇති,
 - ලෝකයේ ඇති පුධාන පරිසර පද්ධතියකි.
 - පුමුඛ වෘක්ෂලතාඎය මත වර්ග කරන ලද,
 - පාදේශීය දේශගුණික තත්ව සහ
 - අදාළ පරිසරයට අනුවර්තන දරන්නා වූ ජීවීන්ගෙන් ලාඤණික වූ

(ලකුණු 5 × 2 1/2යි)

- (ii) නිවර්තන කලාපයේ ඇති පුධාන භෞමික බියෝම තුන මොනවා ද?
 - නිවර්තන වනාන්තර
 - කාන්තාර

• සවානා (ලකුණු 3 × 2 1/2යි)

- (iii) විශාල ම භෞමික බියෝමය කුමක් ද?
 - ටයිගා/ කේතුධර වනාන්තර

(ලකුණු 1 × 2 1/2යි)

- (iv) මූලස්ථාන විශේෂයක් යනු කුමක් ද?
 - පරිසර පද්ධතියක කුියාකාරීත්වය සහ
 - ස්ථාවර බව කෙරෙහි වැදගත් කාර්යභාරයක් ඉටු කරන විශේෂයකි.
 - එය ඉවත් කළහොත් පද්ධතිය බිඳ වැටීමට හැකි ය.

(ලකුණු 3 × 2 1/2යි)

- (v) ධජයධාරී විශේෂ සංකල්පය පැහැදිලි කරන්න.
 - විශේෂ කිහිපයකට ලැබෙන පුසිද්ධිය නිසා සමස්ත පරිසර පද්ධතිය (හා එයට අයත් ජිවීන්) සංරක්ෂණයට හැකියාව ලැබීම (ලකුණු 1 × 2 1/2යි)
- (C) (i) මිහිතලය උණුසුම් වීම යනු කුමක් ද?
 - වායු ගෝලයේ සාමානෳ උෂ්ණත්වය ඉහළ යාම

(ලකුණු 1 × 2 1/2යි)

- (ii) (a) මිහිතලය උණුසුම් වීමට දායක වන වායුගෝලීය වායු පහක් නම් කරන්න.
 - CO, / කාබන්ඩයොක්සයිඩ්
 - නයිටුජන්වල ඔක්සයිඩ/ N₂O/ NO₂/ NO/ NO₂
 - මීතේන් / CH₄
 - ජලවාෂ්ප,
 - ullet ඕසෝන්/ O_3

(ලකුණු 5 × 2 1/2යි)

- (b) ඉහත (a)හි සදහන් කළ ව<mark>ායු මිහි</mark>තලය උණුසුම් වීමට දායක වන්නේ කෙසේ දැයි පැහැදිලි කරන්න.
 - පෘථිවි පෘෂ්ඨය මත පතිත වන සූර්ය විකිරණවලින් කොටසක් නැවත ආපසු (අවකාශයට) පරාවර්තනය වීම වළක්වයි. (ලකුණු 1 × 2 1/2යි)
- (iii) ආකුමණික විශේෂයක් යනු කුමක් ඇයි පැහැදිලි කරන්න.
 - මුල් ස්ථානයෙන් බැහැරව පැතිරිය හැකි දේශීය නොවන විශේෂයකි.
 - නව ස්ථානවල ස්ථාවර වීම නිසා
 - එම පුදේශයේ දේශීය ජෛව විවිධත්වයට හානි කර, බලපෑම් ඇති කරයි (ලකුණු 3×21/2යි)
- (iv) ජෛවවිවිධත්ව හායනයට කෘෂිකර්මාන්තය දායක වන්නේ කෙසේ දැයි පැහැදිලි කරන්න.
 - විශේෂ/ පුභේද කිහිපයක් භාවිතා කිරීම (ශාක හා සත්ව)
 - සාම්පුදායික/ පාරම්පරික විශේෂ/ පුභේද/ දෙමුහුම් වර්ග අවතැන් වීම
 - පුවේණික හායනය/ පුවේණික විවිධත්වය නැතිවීම/ පුවේණික සම්පත් නැති වීම
 - වාසස්ථාන නැති වීම
 - පරිසර පද්ධති විවිධත්වය නැති වීම

(ලකුණු 5 × 2 1/2යි)

(එකතුව 40 × 2 1/2 = 100යි)

B කොටස - රචනා පුශ්න

5 පුශ්නය

5. *(a)* පුෝටීනවල මූලික රසායනික ස්වභාවය සහ සාමානා වාූහය විස්තර කරන්න.

රසායනික ස්වභාවය

- 1. පුෝටීන සංකීර්ණ කාබනික සංයෝගයන් ය.
- $2. \ \ C, \, H, \, O, \, N$ හා S මූල දුවා අඩංගුය.
- 3. අධික අණුක ස්කන්ධයක් දරන අණු ය/ මහා අණු ය.
- 4. ඇමැයිනෝ අම්ලවල බහුඅවයවක වේ.
- 5. ඇමැයිනෝ අම්ල පෙප්ටයිඩ බන්ධන මගින් බැදී,
- 6. පොලි පෙප්ටයිඩ දාමය සෑදේ.
- 7. පුෝටීන සෑදීමට ඇමැයිනෝ අම්ල 20ක් පමණ සහභාගී වේ.
- 8. සමහර පුෝටීන, ලෝහ අයන/ Cu/ Fe/ Zn සමග සංකීර්ණ සාදයි.
- 9. විවිධ පෝටීතවල ඇමැයිතෝ අම්ල අනුපිළිවෙළ විවිධ ය./ එක් එක් පෝටීනයට විශිෂ්ට ඇමැයිතෝ අම්ල අනුපිළිවෙලක් ඇත.
- 10. පුෝටීනයක ඇමයිනෝ අම්ල අනුපිළිවෙල පුවේණිකව පාලනය කරනු ලබන්නේ DNA මගිනි (එය නිෂ්පාදනය වන සෛල තුල) /පුෝටීනයක ඇමැයිනෝ අම්ල අනුපිලිවෙළ DNA දාමයේ භෂ්ම අනුපිළිවෙළ මගින් නිර්ණය වේ. (m-RNA අනුව සංස්ලේශණය වනු ලබන)
- 11. පුෝටීනයක ඇමැයිනෝ අම්ල අනුපිළි<mark>වෙ</mark>ළ එහි (ජීව විදහාත්මක) කුියාකාරීත්වය නිර්ණය කරයි.

සාමානා වාූහය

අදියර 04කින් විස්තර කරනු ලැබේ/ සංවිධාන මට්ටම් 04කි.

- 12. පුාථමික වාූනය,
- 13. (පොලිපෙප්ටයිඩ දාමයක) පෙප්ටයිඩ බන්ධන/ මගින් බැදුනු රේඛීය ඇමැයිනෝ අම්ල අනුපිළිවෙල ය.
- 14. ද්විතියික වාූහය,
- 15. සර්පිලාකාර/ හේලික්සාකාර (lpha හෙලික්ස) වූහය වන අතර,
- 16. එය හයිඩුජයන් බන්ධන මගින් සෑදී ඇත.
- 17. ඇමැයිනෝ අම්ලයේ යාබද CO හා NH කාණ්ඩ අතර පවති.
- 18. උදාහරණ : කෙරටින්.
- 19. රැලි තල වනුහය/ eta රැලි තල වනුහය,
- 20. උදාරණ : සිල්ක් පුෝටීන්.
- 21. තෘතියික වාූහය,
- 22. පොලිපෙප්ටයිඩ දාමයේ නැමීම් නිසා,

- 23. ගෝලීය හැඩයක්/ වනුහයක් සාදයි.
- 24. විවිධ වර්ගයේ බන්ධන/ අයනික/ හයිඩුජන්/ ඩයිසල්ෆයිඩ් බන්ධන මගින් ස්ථායි කරනු ලැබේ.
- 25. චතුර්ථ වනුහය,
- 26. ගෝලීය වාූහයකි.
- 27. පොලිපෙප්ටයිඩ දාම කිහිපයක් එකතු වීමෙන් සැදී ඇත්තේ
- 28. හයිඩුජන් හා අයනික බන්ධන අන්තර් කිුයා කිරීමෙනි.
- 29. උදාහරණ : හිමොග්ලොබින්

(b) පුෝටීන් සංශ්ලේෂණයේ දී DNA සහ RNAවල සුවිශේෂ කාර්යභාරයන් සැකෙවින් සාකච්ඡා කරන්න.

- 30. පෝටීන සංස්ලේෂණ සඳහා පුවේණික තොරතුරු DNAහි පවතින්නේ
- 31. ඛේතමය තොරතුරු (නියුක්ලියෝටයිඩ) භෂ්ම අනුපිළිවෙලක් ලෙසය.
- 32. DNA අණුවේ ද්විත්ව හේලික්සය විවෘත වී/ DNA දාම වෙන් වී
- 33. අච්චුවක් ලෙස හැසිරෙමින්
- 34. m RNA සංස්ලේෂණය සිදු වේ.
- 35. එහි පුෝටීන් සංස්ලේෂණය <mark>සඳහා</mark> තොරතුරු (ඛේතය/ තිුත්ව) දරයි.
- 36. මෙය පුතිලේඛන<mark>ය යි./ පි</mark>ටපත් කිරීමයි.
- 37. RNA පොලිමරේස් එන්සයිමය මගින් එය උත්පේුරණය කරයි.
- 38. m RNA සෛල ප්ලාස්මයට පැමිණ රයිබසෝම සමග සම්බන්ධ වේ/ පොලිරයිබසෝම තනයි.
- 39. වෙනත් RNA ආකාර/ t RNA, r RNA නාෂ්ටිය තුළ සංස්ලේෂණය වී
- 40. සෛල ප්ලාස්මයට පැමිණේ.
- 41. r RNA මගින් m RNA කියවනු ලැබේ/ ඇමැයිනෝ අම්ල එක්රැස් වී පුෝටීන/ පොලිපෙප්ටයිඩ සෑදීමට උදව් වේ.
- 42. t RNA මගින් ඇමැයිනෝ අම්ල රයිබසෝම/ රයිබසෝමයේ කුඩා ඒකකය වෙත ගෙන එයි
- 43. සෑම t RNA අණුවක්ම විශිෂ්ට ඇමැයිනෝ අම්ලයක් ගෙන එයි
- 44. රයිබසෝම m RNA දිගේ ගමන් කරන විට
- 45. m RNA භෂ්ම තිුත්ව ඛේත වලින් දෙන පණිවුඩය පරිවර්තනය කරන්නේ
- 46. t RNA මගින් ගෙන එන විශිෂ්ට ඇමැයිනෝ අම්ල අනුපිළිවෙලටය.
- 47. t RNA හි පුතිකෝඩෝන මගින් හදුනා ගැනීමෙනි
- 48. මෙතියොනින් සඳහා තිුත්ව ඛේතය (AUG) m RNA හි ඇත.
- 49. එය ආරම්භක කෝඩෝනය ලෙස කිුයා කරයි.
- 50. වෙනත් කෝඩෝන කිහිපයක් (UAA, UAG, UGA) අවසාන/ නැවතුම් කෝඩෝන ලෙස හැසිරෙමින් පෝටීන් සංශ්ලේෂණය අවසන් කරයි.

 $(50 \times 3 = 150)$

6.~~(a) මිනිස් වෘක්කයේ පිහිටීම විස්තර කරන්න.

- 1. උදර කුහරය තුළ
- 2. අපර බිත්තියට ආසන්න
- 3. මහා පුාචීරයට පහලින්
- 4. පුතිඋදරච්ඡදීය (කුහරය තුළ)
- 5. කශේරුව දෙපස
- 6. උරස් හා කටී කශේරුකා අතර
- 7. වම් වෘක්කය දකුණු වෘක්කයට වඩා මදක් ඉහලින් පිහිටා ඇත.

(b) දර්ශීය මිනිස් වෘක්කාණුවක අණ්වීක්ෂීය වනුහය සැකෙවින් විස්තර කරන්න.

- 8. එක් කෙලවරක්/ අන්තයක් විවෘත සහ අනෙක් කෙලවර/ අන්තයක් සංවෘත නාලිකාවකි.
- 9. ඒක ස්ථරීය වේ.
- 10. බෝමන් පුාවරය,
- 11. අවිදුර සංවලිත නාලිකාව,
- 12. හෙන්ලේ පුඩුවේ අවරෝහන බාහුව,
- 13. හෙන්ලේ පුඩුවේ <mark>ආරෝහ</mark>න <mark>බාහු</mark>ව සහ
- 14. විදුර සංවලිත නාලි<mark>කාව ය</mark>න කොටස්වලින් සමන්විත වේ.
- 15. බෝමන් පුාවරය කෝප්පාකාර ය.
- 16. එහි ඇතුළු බිත්තිය සමන්විත වන්නේ, 🥏
- 17. විශේෂිත සෛල/පොඩොසෙටවලිනි.
- 18. පිටත බිත්තිය
- 19. ශල්කමය අපිච්ඡද මෙසලවලින් තැනී ඇත.
- 20. පුාවරයේ කුහරයක්/ අවකාශයක් ඇත.
- 21. (අකුමවත්ව) දඟර ගැසුනු අවිදුර සංවලිත නාලිකාව,
- 22. ඝනකාර අපිච්ඡද සෛලවලින් තැනී ඇත.
- 23. ඒවායේ කුෂුදු අංගුලිකා/ නෙරුම්/ බුරුසු දාර (රාශියක්)
- 24. කුහරයට යොමු වී/මුහුණලා ඇත.
- 25. හෙන්ලේ පුඩුවේ අවරෝහන බාහුව සහ ආරෝහන බාහුව සෘජු ය/ හෙන්ලේ පුඩුව U හැඩැතිය.

com

- 26. හෙන්ලේ පුඩුවේ අවරෝහන බාහුව ශල්කමය අපිච්ඡද සෛලවලින් තැනි ඇත.
- 27. ආරෝහන බාහුව ඝනාකාර අපිච්ඡද සෛලවලින් තැනී ඇත.
- 28. (අකුමවත්ව) දඟර ගැසුනු විදුර සංවලිත නාලිකාව,
- 29. ඝනාකාර අපිච්ඡද ෙසලවලින් තැනී ඇත
- 30. ඒවායේ සුෂුදු අංගුලිතා/ නෙරුම්/ බූරුසු දාර (ස්වල්පයක්)
- 31. කුහරයට යොමු වී ඇත.

(c) මිනිස් වෘක්කය රුධිර ආසුැති පීඩනය යාමනය කරන්නේ කෙසේ දැයි සැකෙවින් පැහැදිලි කරන්න

- 32. ආසැති පීඩනය වැඩි වීම,
- 33. ආසුැති පුතිගුාහක මගින් සංවේදනය කරනුයේ,
- 34. හයිපොතැලමස මගිනි.
- 35. එමගින් අපර පිටියුට්ය උත්තේජනය වී
- 36. ADH නිදහස් කරයි
- 37. ADH විදුර සංවලිත නාලිකාව මත සහ
- 38. සංගුහක පුනාලය මත කිුියාකර
- 39. ඒවා ජලයට පාරගමා කරයි.
- 40. එහි පුතිඵල ලෙස ජලය පුතිශෝෂණය වී,
- 41. උපරිඅභිසාරක/සාන්දු මුතුා නිපද වේ.
- 42. ආසුැති පීඩනය සාමානෳ අගයට පත් කරයි.
- 43. යාත්තුණය/සෘණ පුතිපෝෂී යාත්තුණය නතර වේ.
- 44. ආසුැති පීඩනය අඩු වූ විට,
- 45. ආසැති පුතිගුාහක උත්තේජනය නොවේ.
- 46. ADH නිදහස් නො<mark>වේ/ අඩු වේ.</mark>
- 47. එවිට විදුරසංවලිත <mark>තාලි</mark>කාවේ දී සහ
- 48. සංගාහක පුතාලයේ දී
- 49. ජලය පුතිශෝෂණය නොවේ.
- 50. එම නිසා උපාභිසාරක/ තනුක මුතුා නිපදවේ.
- 51. ආසැති පීඩනය සාමානෳ අගයට පත් කරයි.

(ඕනෑම $50 \times 3 = 150$)

$7. \ (a)$ පසෙහි ක්ෂුදුජිවීන්ගේ ස්වභාවය සහ ව $oldsymbol{n}$ ාප්තිය සැකෙවින් විස්තර කරන්න.

- 1. බැක්ටීරීයා,
- 2. දිලීර,
- 3. ඇල්ගී,
- 4. වෛරස/ පොටසොවා,
- 5. ඔවුන් විවිධ ගණ/ විශේෂවලට අයත් වේ.
- 6. පස මගින් හිතකර රසායනික පරිසරයක් සහ
- 7. හිතකර භෞතික පරිසරයක් (ඤුදු ජීවීන්ගේ වර්ධනයට) සපයනු ලැබේ.
- 8. ඤදු ජීවීන් සංඛාහව පාංශු පරිසරය මත රඳා පවති.
- 9. සරු පසෙහි පුමුඛ ඤුදු ජීවීන් බැක්ටීරීයාවන් ය.
- 10. ඤදු ජීවීන් ඛනිජ/ ඛනිජ පෝෂක,
- 11. (වියෝජනය වන) කාබනික දුවා,
- 12. ${
 m CO_3}$ / කාබන්ඩයොක්සයිඩ්/ ${
 m O_3}$ ඔක්සිජන්/ ${
 m N_3}$ / නයිටුජන් වැනි වායූන්,
- 13. පසේ ඇති ජලය ආදිය ඔවුන්ගේ වර්ධනය සඳහා භාවිතා කරයි.
- 14. පස මතුපිට ස්ථරව<mark>ල වැඩි කුෂුදු ජීවී</mark>න් සංඛ්‍යාවක් හමු වේ./ ගැඹුරු ස්ථරවල අඩු කුෂුදු ජීවීන් සංඛ්‍යාවක් හමු වේ.

48 . Com

15. ඔක්සිජන් බහුලතාවය මෙයට හේතු වේ./ ඔක්සිජන් අඩු වීම මෙයට හේතු වේ.

(ඕනෑම 13 × 4 = 52)

(උපරිම = 150)

ස්වභාවික කාබන් චකුයේ දී, කාබන් මූල දුවා, ජලජ හා භෞමික පරිසරවල හා ජීවීන් තුළින් විවිධාකාර ස්වරූපයෙන් චකීකරණය වේ.

- 1. (ජලජ සහ භෞමික) පරිසරයේ දී CO_γ / කාබන්ඩයොක්සයිඩ් තිර කරන්නේ,
- 2. රසායනික ස්වයංපෝෂී බැක්ටීරියා/ පුභාසංස්ලේෂක බැක්ටීරියා,
- 3. සයනොබැක්ටීරියා සහ
- 4. ඇල්ගීවල,
- 5. පුභාසංස්ලේශණය මගිනි.
- 6. මැරුණු ශාක, සත්ව දේහ, ආදිය වියෝජනය කරන්නේ විෂම පෝෂී බැක්ටීරියා සහ
- 7. දිලීර මගිනි.
- 8. එහි දී CO_{γ} / කාබන්ඩයොක්සයිඩ් (පරිසරයට) නිදහස් කරන්නේ
- 9. ඤුදු ජීවීන්ගේ ශ්වසනය මගිනි.

ස්වභාවික නයිටුජන් චකුයේ දී නයිටුජන් මූල දුවා විවිධාකාර ස්වරූපයෙන් වායු ගෝලය ජලජ හා භෞමික ජීවීන් තුලින් චකිුකරණය වේ.

- 10. පාංශු කුෂුදු ජීවීන්
- 11. Azotobacter සහ
- 12. Rhizobium වැනි
- 13. (වායුමය) නයිටුජන් තිර කරන්නේ
- 14. නයිටුජනීය සංයෝග/පුෝටීන/ $\mathrm{NH}_{4}^{^{+}}$ වලට ය.
- 15 මියගිය ජීවීන්ගේ කාබනික දුවාවල පුෝටීන වියෝජනය කරන්නේ
- 16. විෂම පෝෂී ඤුදු ජිවීන්/ බැක්ටිරියා සහ දිලීර මගිනි.
- 17. එහි දී ඇමයිනෝ අම්ල නිපද වේ. (පුෝටියොලයිසිස්)
- 18. ඒවා ${
 m NH}_4^+$ බවට පත් වේ. (ඇමොනිකරණය)
- 19. ඇමොනියම් අයන/ $\mathrm{NH}_{4}^{^{+}}$ නයිටුයිට බවට පත්කරනු ලබන්නේ
- 20. Nitrosomonas
- 21. නයිටුයිට, නයිටේට් බවට පත්කරන්නේ
- 22. Nitrobacter මගිනි.
- 23. නයිටේට් සමහරක් වායුමය නයිටුජන් බවට පරිවර්තනය කරන්නේ
- 24. නයිටුිතාරි බැක්ටීරියා/ Pseudononas sp. මගිනි. / Thiobacillus sp.

(ඕනෑම 20 × 4 = 80)

(c) ශාක වර්ධනයට අදාළ <mark>ව පාංශු</mark> ක්<mark>ෂුදුජ</mark>්වීන්ගේ අන්තර්කිුයාවල වැදගත්කම සඳහන් කරන්න.

- 1. පාංශු සමාහාර සැදීමට කුෂුදු ජීවීන් සහභාගී වේ.
- 2. සහජීවී නයිටුජන් ති්රකිරීම.
- 3. ශාක මුල් සහ දිලීර අතර දිලීරක මූල් සංගම් මගින් ෆොස්පේට අවශෝෂණය දියුණු කරයි.
- 4. ශාක මුල් මතුපිට වාසය කරන බැක්ටීරියා ශාක වර්ධක දුවා නිපදවයි.
- 5. වාාාධිජනක බැක්ටීරියාවල වර්ධනය නිශේධනය කරන්නා වූ රසායනික දුවාෳ නිපදවයි.
- 6. ශාක රෝග ඇති කිරීමට හේතු වේ.

(ඕනෑම 05 × 4 = 20)

 $(38 \times 4 = 152)$

(උපරිම = 150)

අපේ සහ සා සහ පාති මෙම පුශ්නය තෝරා ගෙන ඇති නමුත් පුශ්නයේ අසා ඇති දේ ගැන නිවැරදි අවබෝධයක් නොතිබීම නිසා පහසුතා දර්ශකය අඩු වී ඇත.

- (a) කොටසෙහි පහසුතාව 31%කි. සුෂුදු ජිවීන්ගේ ස්වභාවය යන්න කවරේදැ යි අපේසු කයින් හරිහැටි අවබෝධ කොටගෙන නොතිබුණු නිසා කරුණු මඟහැරී ඇත. බොහෝ අපේසු කයින් ලියා තිබුණේ කරුණු 1-4 දක්වා ඇති සූෂුදු ජිවීන් නම් කිරීම පමණි. නමුත් සුෂුදු ජිවීන්ගේ ස්වභාවය විස්තර කිරීමේ දී,
 - \star ඔවුන් ජීවත් වන පරිසරයේ රසායනික හා භෞතික ස්වභාවය
 - \star ඔවුන්ගේ බහුලතාවය සඳහා බලපාන සාධක උදාහරණ :- ඛණිජ පෝෂක, කාබනික දුවා, $\mathrm{CO_2},\ \mathrm{N_2},\ \mathrm{O_2},\ \mathrm{period}$ පසේ ගැඹුර ආදිය පිළිබඳ ව පුකාශ කිරීමට අපේක්ෂකයින් අපොහොසත් වී ඇත.
- (b) මෙහි පහසුතාව 45%කි. සුෂුදු ජිවීන්ගේ විදාහත්මක නම් ලිවීමේ දී සිදු වී ඇති වැරදි නිසා පහසුතා දර්ශකය අඩු වී ඇත. බොහෝ අපේසෂකයින් ගැලීම් සටහන් භාවිතයෙන් පමණක් නයිටුජන් හා කාබන් වකු ඇඳ තිබුණි. එය රචනාමය පුශ්නයකට අපේස්ෂිත පිළිතුරු ලියන කුමය නොවන බව අපේස්ෂකයන් දැනුවත් විය යුතු යි.
- (c) මෙහි පහසුතාව 43%කි. පුශ්<mark>නයෙන් අසා ඇති</mark> අන්තර් කියාවල වැදගත්කම පිළිබඳ ව අපේඎකයින් ලියා ඇතත්, ශාක හා ඎදු ජීවීන් අත<mark>ර අන්ත</mark>ර් කිුයා පිළිබඳ ව සඳහන් කොට නැත.
 - උදාහරණ :- '' N_2 තිර කිරීම'' ලියා ඇතත්, එය '' $\underline{\underline{u}}\underline{u}\underline{d}\underline{b}\underline{d}$ N_2 තිර කිරීම'' ලෙස ලියා නොමැති බැවින්, පහසුතා දර්ශකය අඩු වී ඇත.

$8. \ (a)$ ශාක වර්ධක දුවාවල සාමානා ලක්ෂණ මොනවා ද?

- 1. කාබනික සංයෝග/කාබනික රසායනික සංයෝග,
- 2. අඩු සාදුනවලින් කියාකරයි.
- 3. ශාකවල කායික විදාහත්මක කිුයාවලි උත්තේජනය කරයි/මත බලපායි.

(b) පුධාන ශාක වර්ධක දුවා වර්ග හා ශාකවල ඒවා නිපදවෙන ස්ථාන සඳහන් කරන්න.

4. ඔක්සින

- 5. ශාක කඳ අගුස්ථ/කඳ අගුස්ථ විභාජක
- 6. ලපටි පතු

7. ගිබරලින්

- 8. මුල්
- 9. ලපටි පතු
- 10. පුරෝහනය වන බීජ

11. සයිටොකයින්

- 12. මූල අගුය
- 13. බොහෝ පටකවල විභාජනය වන සෛල

14. එතිලින්

- 15. බොහෝ පටකවල මෘදුස්ථර ජෛල
- 16. ඵල
- 17. ඇබ්සිසින් අම්ලය
- 18. මූලාගු කොපුව
- 19. අපරිතත බීජ

(c) ස්වභාවික ශාක වර්ධක දුවා ශාකවල වර්ධනය සහ විකසනය යාමනය කරන්නේ කෙසේ දැයි පැහැදිලි කරන්න.

ඔක්සීන

- 20. සෛල දික්වීම
- 21. අගුස්ථ පුමුඛතාව පවත්වාගෙන යාම
- 22. ආවර්ති චලන යාමනය කිරීම
- 23. කැම්බියම කුියාකාරීත්වය පුේරණය කිරීම
- 24. පතු පතනය නිශේධනය
- 25. මුල් වර්ධනය පුේරණය
- 26. ඵල වර්ධනය පේුරණය

සයිටොකයිනින්

- 27. සෛල විභාජනය පුේරණය/ උත්තේජනය කිරීම (ඔක්සීන සමග අන්තර්කිුයා කරමින්)
- 28. පුරෝහ වර්ධනය වැඩි කිරීම
- 29. අගුස්ථ පුමුඛතාව නිශේධනය
- 30. පතු වයස් ගත වීම පමා කිරීම

ගිබරලින්

- 31. කද දික්වීම
- 32. බීජ පුරෝහනයේ දී එන්සයිම සකුිය කිරීම

ඇබසිසික් අම්ලය

- 33. බීජ පුරෝහනය නිශේධනය/ බීජ සුප්තතාවය
- 34. පූටීකා වැසීමට දායක වේ
- 35. අංකුර ව ධනය නිශේධනය
- 36. (සෞමා කලාපික රටවල) ශාකවල කැම්බියම් කිුිිියාකාරිත්වය නිශේධනය

එතිලීන්

- 37. කද දික්වීමට උපකාරී වීම/ දායක වේ
- 38. පලතුරු ඉදීම පුේරණය
- 39. (සමහර ශාකවල) පුෂ්ප හට ගැනීම පේරණය කිරීම
- 40. පතු/ මල්/ ඵල ඡේදනය පාලනය කිරීම

(ඕනෑම 38 × 4 = 152)

(උපරිම = 150)

9. (a) ශීු ලංකාවේ පුධාන වනාන්තර පරිසර පද්ධති හතර මොනවා ද?

- 1. නිවර්තන වැසි වනාන්තර
- 2. වියළි මිශු සදාහරිත වනාන්තර
- 3. කඳුකර වනාන්තර
- 4. කටු පඳුරු/ ලඳු කැලෑ

(b) මෙම එක් එක් පරිසර පද්ධතියේ පුධාන ලක්ෂණ, ඒවායේ වාාප්තිය, වර්ෂාපතනය සහ වෘක්ෂලතාදියේ ලක්ෂණවලට අදාළ ව විස්තර කරන්න.

නිවර්තන වැසි වනාන්තර

- 5. නිරිත දිග පුදේශයේ,
- 6. මධාම උන්නතාංශයට පහළින් ඇත.
- 7. වර්ෂාපතනය වසරකට මිලි මීටර 2500 5000ක් හෝ ඊට වැඩිය.
- 8. අවුරුද්ද පුරා වර්ෂාව ඇති වේ.
- 9. මැයි සිට අගෝස්තු දක්වා සහ නොවැම්බර් සිට දෙසැම්බර් දක්වා ඉතා ඉහළ වර්ෂාපතනයක් ඇත.
- 10. ස්ථරිභවනය
- 11. තෙරු ශාක/ ගස්
- 12. වියන
- 13. උප වියන
- 14. පඳුරු සහ
- 15. ඖෂධීය ශාක
- 16. සදාහරිත ශාක
- 17. අපිශාක ඇත.
- 18. කාෂ්ඨාරෝහක/ ලයනා
- 19. ඒක දේශික ශාක බහුලය.

වියළි මිශු සදාහරිත වනාන්තර

- 20. වියළි කලාපයේ පිහිටා ඇත.
- 21. වර්ෂාපතනය වසරකට මිලි මීටර 1250 1900
- 22. වියළි කාලය මැයි සිට අගෝස්තු දක්වා
- 23. ස්ථරිභවනය නොපෙන්වයි.
- 24. වෘකුෂ/ගස්
- 25. පඳුරු
- 26. බිම්ස්ථරය/ තෘණ
- 27. ආරෝහක (බහුලව) ඇත.

කඳුකර වනාන්තර

- 28. මධාම කඳුකරයේ/ ඉහළ උන්නතාංශයේ පිහිටා ඇත.
- 29. වාර්ෂික වර්ෂාපතනය $2500 4000 \; \mathrm{mm} \; / \; 4000 \; \mathrm{mm}$ කට වඩා වැඩි ය.
- 30. මිටි ශාක/කුරු ශාක
- 31. ඇඹරුනු කඳන් සහිත ය.
- 32. ගැට සහිත කඳන් ය.
- 33. ඒවා ලයිකන/ පාසි වලින් වැසී පවතී.

කටු කලෑ

- 34. ශූෂ්ක කලාපයේ,
- 35. වයඹ සහ
- 36. ගිනිකොන පුදේශයේ වහාප්තව ඇත.
- 37. වාර්ෂික වර්ෂාපතනය 1250 mmට අඩුය.
- 38. මැයි සිට සැප්තැම්බර් දක්වා නියං කාලයක් ඇත.
- 39. කටු පදුරු
- 40. ශූෂ්ක රූපී ලක්ෂණ සහිත වූ/ මාංසල පතු සහිත වූ ශාක ඇත.

Maths com

- 41. ශාක සමහරක් ද ඇ<mark>ති අ</mark>තර,
- 42. ඒවා මිටිය/කුරුය

(ඕනෑම 38 × 4 = 152)

(උපරිම = 150)

10. පහත සඳහන් ඒවා ගැන කෙටි සටහන් ලියන්න.

(a) මිනිස් අග්නාහාංශය

- 1. උදර කුහරය තුල,
- 2. ගුහනි නැම්මේ පිහිටා ඇත.
- 3. හිස, දේහය සහ (පටු) වලිගයකින් සමන්විත වේ.
- 4. බහිරාසර්ග මෙන්ම අන්තරාසර්ග ගුන්ථියකි.
- 5. බහිරාසර්ග කොටස අනුඛණ්ඩිකා වලින් සමන්විත වන අතර,
- 6. එක් එක් අනුඛණ්ඩිකා කුඩා ගර්තිකා රැසකින් සෑදී ඇත.
- 7. ඒවා ඇසිනි (බදරිකා) සෛල/ සුාවි සෛල වලින් සමන්විත වේ.
- 8. එමගින් අග්නහාශයික යුෂ සුාවය කරයි.
- 9. එම යුෂයේ ජලය,
- 10. ඛනිජ ලවණ සහ
- 11. එන්සයිම ඇත.
- 12. එන්සයිම වන්නේ ඇමයිලේස්,
- 13. ලයිපේස්,
- 14. ටුප්සිනොජන්/ ටුප්සින්,
- 15. කයිමොටුප්සිනොජන්/ කයිමොටුප්සින්,
- 16. නියුක්ලියේස් සහ
- 17. කබොක්සිපෙප්ටිඩේස්/ පෙප්ටිඩේස් ය.
- 18. අනුඛණ්ඩිකා වලින් එකතුවන කුඩා නාල
- 19. එක්වී අග්නාහශයික පුනාලය සාදයි.
- 20. අන්තරාසර්ගි කොටස ලැන්ගර්හැන් දීපිකා වන අතර,
- 21. lpha සහ eta සෛල වලින් සෑදී ඇත.
- 22. lpha සෙල ග්ලුකොගන් සුාවය කරයි.
- 23. β සෛල ඉන්සියුලින් සුාවය කරයි.

(b) ජෛවවිවිධත්ව උණුසුම් කලාප

- 24. ආවේණික විශේෂ/ ඒක දේශික විශේෂවල අධික සාන්දුණයක් සහිත සහ
- 25. ඒවාට අධික තර්ජනයක් සහිත පුදේශයන් ය.
- 26. ලෝකයේ ජෛව විවිධත්ව උණුසුම් කලාප 25ක් ඇත.
- 27. උදාහරණ : ඉන්දියාවේ බටහිර කදුකර පුදේශ සහ
- 28. ශීු ලංකාවේ (කැඩිගිය) නිරිතදිග තෙත් වනාන්තර.

(c) පූටිකා වැසීමේ හා විවෘත වීමේ යන්තුණ

- 29. පිෂ්ඨ සීනි පරිවර්තනය/ කල්පිතය
- 30. පුභාසංස්ලේෂණය සිදුවන විට,
- 31. පාලක සෛලවල CO, සාන්දුණය අඩුවේ.
- 32. එවිට පාලක සෛලවල pH වැඩි වේ.
- 33. (එන්සයිම මගින්) පිෂ්ටය සීනි බවට ජල විච්ඡේදනය වී,
- 34. දාවා විභවය වැඩි වී,
- 35. පාලක සෛලවල ජල විභවය අඩු වේ.
- 36. ජලය පාලක සෛල තුලට ඇතුලු වන්නේ,
- 37. යාබද අපිචර්මීය සෛල වලින්,
- 38. ආසැතිය මගිනි.
- 39. (පාලක සෛලවල) ශූනතාව වැඩි වීම නිසා පුටිකාව විවෘත වේ.
- 40. රාතිකාලයේ දී පුතිවිරුද්ධ කිුයාවන් සිදු වී පූටිකා වැසේ.
- 41. K^+ ලබා ගැනීම/ K^+ හුවමාරුව/ K^+ සාන්ධය (කල්පිතය)
- 42. ආලෝකය ඇති විට,
- 43. පාලක සෛල තුලට K^+ සකීයව ලබාගනී.
- 44. එවිට දුාවා විභව <mark>වැඩි වී,</mark>
- 45. පාලක සෛලවල <mark>ජල වි</mark>භවය අඩු වේ.
- 46. (යාබද අපිචර්මීය සෛලවල සිට) ජලය පාලක සෛල තුලට ඇතුලු වන්නේ,
- 47. ආසුැතිය මගිනි.
- 48. එවිට ශූනතාව වැඩි වීම හේතුවෙන් පූටිකා විවෘත වේ.
- 49. රාතිකාලයේ දී පාලක සෛල වලින් K^+ , පිටකිරීම නිසා පූටිකා වැසේ.
- 50. ජල හිඟ තත්වයක් යටතේ පූටිකා වැසි යාම සිදුවන්නේ,
- 51. ඇබ්සිසික් අම්ලයේ බලපෑම මගිනි.

(ඕනෑම $50 \times 3 = 150$)

III කොටස

- 3. පිළිතුරු සැපයීමේ දී සැලකිලිමත් විය යුතු කරුණු හා යෝජනා :
 - 3.1 පිළිතුරු සැපයීමේ දී සැලකිලිමත් විය යුතු කරුණු :

පොදු උපදෙස්

- පුශ්න පතුයේ ඇති මූලික උපදෙස් කියවා හොඳින් තේරුම් ගත යුතු ය. එනම් එක් එක් කොටසින් කොපමණ පුශ්න සංඛාහවකට පිළිතුරු සැපයිය යුතු ද, කුමන පුශ්න අනිවාර්ය ද, කොපමණ කාලයක් ලැබේ ද යන කරුණු පිළිබඳ ව සැලකිලිමත් විය යුතු අතර පුශ්න හොඳින් කියවා නිරවුල් අවබෝධයක් ඇති කරගෙන පුශ්න තෝරා ගත යුතුය.
- අයදුම්කරුගේ විභාග අංකය සැම පිටුවකම අදාළ ස්ථානයේ ලිවිය යුතුය.
- පුශ්න අංක හා අනු අංක නිවැරදිව ලිවිය යුතුය.
- පුශ්නය අසා ඇති ආකාරය අනුව තර්කානුකූලව හා විශ්ලේෂණාත්මකව කරුණු ඉදිරිපත් කළ යුතුය.
- නිශ්චිත කෙටි පිළිතුරු ලිවීමට අවශා අවස්ථාවල දී දීර්ඝ විස්තර ඇතුළත් නොකිරීම මෙන්ම විස්තරාත්මක පිළිතුරු සැපයිය යුතු අවස්ථාවල දී කෙටි පිළිතුරු සැපයීම ද නොකළ යුතුය.
- පැහැදිලි අත් අකුරුවලින් පිළිතුරු ලිවිය යුතුය.
- I පතුයේ පුශ්නවලට පිළිතුරු සැපයීමේ දී වඩාත් නිවැරදි එක් පිළිතුරක් තෝරා ගත යුතු ය. තව ද පැහැදිලිව එක් කතිර ලකුණක් පමණක් උත්තර පතුයේ යෙදිය යුතුය.
- II පතුයේ A කොටස වාූහගත පුශ්න පතුයට පිළිතුරු සැපයීමේ දී, දී ඇති කාලය නිසි පරිදි කළමනාකරණය කර ගනිමින් පුශ්න හතරටම පිළිතුරු ලිවීමට වග බලා ගත යුතුය. පුධාන පුශ්නය යටතේ ඇති අනුකොටස් සියල්ල හොඳින් කියවා බලා එක් එක් අනුකොටසට අදාළ ඉලක්ක ගත පිළිතුර පමණක් ලිවිය යුතුය.
- II පතුයේ B කොටස රචනා පතුයට පිළිතුරු ලිවීම සඳහා වෙන් කරගත යුතු කාලය නිවැරදිව කළමනාකරණය කර ගනිමින් නියමිත පුශ්න සංඛ්‍යාවට පිළිතුරු සැපයීමට වගබලා ගත යුතුය.
- II පතුයේ B කොටසේ පුශ්නවලට පිළිතුරු සැපයීමේ දී සෑම පුධාන පුශ්නයක්ම අලුත් පිටුවකින් ආරම්භ කළ යුතුය.
- පිළිතුරු සැපයීමේ දී නිල් හා කළු වර්ණ හැර වෙනත් වර්ණවල පෑන් භාවිතා නොකළ යුතුය.

විශේෂ උපදෙස්

- * පුශ්න කියවා අවබෝධ කර ගත යුතුය.
- * අවබෝධ වූ පසු ලිවිය යුතු දේ ගොනු කර ගැනීම සඳහ යම් කාලයක් ගත කළ යුතු ය.
- * පුශ්නයට අදාළව අවශා දේ විස්තරාත්මකව සියලු කරුණු අඩංගු වන පරිදි ඉදිරිපත් කළ යුතු අතර අනවශා දේ නොලිවිය යුතුය. අනවශා දේ ලිවීම නිසා රචනා පුශ්න 4ට ලිවීමට අවශා කාලය පුමාණවත් නොවීම ගැටළුවකි. සිසුන් බොහෝ විට රචනා පුශ්න 3කට පමණක් පිළිතුරු සපයා ඇත්තේ එනිසාය.
- * කාල කළමණාකරණය වැදගත් වේ. සාමානෲයෙන් රචනා පුශ්නයකට මිනිත්තු 30ක් ද, වෘුහගත රචනා පුශ්නයකට මිනිත්තු 15ක් ද, ගත කළ යුතුය.
- * වනුහයක් විස්තර කිරීමේදී නම් කළ, නිවැරදි හැඩය සහිත, නිවැරදි අනුපාතයෙන් යුත් රූප සටහන් ඉදිරිපත් කිරීමේ කුසලතාව වැඩි දියුණු කර ගත යුතුය.
- * ජීව විදහා විෂයයේ භාවිත වන පාරිභාෂික යෙදුම් අදාළ ස්ථානවල යොදමින් පිළිතුරු සැපයිය යුතුය.
- ★ ගණනය කිරීම් ඇතිවිට එ<mark>ක් එක්</mark> පි<mark>යවර</mark> පැහැදිලිව ලියා අවසන් පිළිතුර ලබා ගත යුතු ය.
- ⋆ අවශා ස්ථානවල දී නිවැ<mark>රදි සම්</mark>මත ඒකක භාවිත කළ යුතුය.
- * විදහත්මක නම් ලිවීමේ දී අක්ෂර විනහාසය (spelling) සහ අන්තර් ජාතික නාමකරණ නීති නිවැරදිව පිළිපැදිය යුතුය. අතින් ලිවීමේදී ද්විපද නාමකරණ නීති (යටින් ඉරි ඇඳීම වැනි) තරයේ පිළිපැදිය යුතුය.
- 🖈 රසායනික සමීකරණ ලිවිය යුතු අවස්ථාවල දී සෑම විටම ඒවා තුලිත කර දැක්විය යුතුය.
- \star පුස්තාර ඇඳීමේ දී X හා Y අක්ෂ නිවැරදිව නම් කිරීම ද අවශා අවස්ථාවල දී ඒකක සඳහන් කිරීම ද පුස්ථාරයේ නිවැරදි හැඩය විදහා දැක්වීම ද කළ යුතුය.
- ★ ජීව විදහා විෂයයේ රචතා පුශ්තවලට පිළිතුරු ලිවීමේ දී වගු, ගැලීම් සටහන් හා සමීකරණ වැනි සංක්‍යිප්ත කුම මගින් පිළිතුරු සැපයීම නොකල යුතුය.
- ★ තවද රචනා පුශ්නවලට පිළිතුරු ලියන විට කරුණු වෙන් වෙන් වශයෙන් අංක හෝ තරු සලකුණු යොදා, පිළිතුර ඉදිරිපත් කිරීම ද නොකළ යුතුය. අවශා පරිදි ඡේද වෙන්කරමින් රචනා විලාශයෙන් පිළිතුරු ලිවිය යුතු ය.
- ★ කෙටි සංකේත භාවිතා කරමින් පිළිතුරු ඉදිරිපත් නොකල යුතුවේ.
 - උදා : ඉලෙක්ටෝන වෙනුවට "e" ද, රළු අන්තඃප්ලාස්මීය ජාලිකා වෙනුවට RER ද, වැඩි බව වෙනුවට (∱) ද, අඩු බව (∳) ආදී ලෙස