Реберно и вершинно непересекающиеся пути. Реберные и вершинные разделители. Теоремы Менгера

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 30.04.2024

Содержание лекции

- Реберно- и вершинно-непересекающиеся пути.
- Реберные и вершинные разделители.
- Реберная версия теоремы Менгера.
- ▶ Вершинная версия теоремы Менгера.

Непересекающиеся пути

Пусть G = (V, E) – связный граф, v, w – две несмежные вершины.

Определение: Пути из v в w называются **реберно-непересекающимися**, если у них нет общих рёбер.

Определение: Пути из v в w – вершинно-непересекающиеся, если никакие два из них не имеют общей вершины (кроме v и w).

Задачи: Может быть поставлена задача о поиске максимального количества реберно-непересекающихся путей или максимального количества вершинно-непересекающихся путей.

4 реберно-непересекающихся пути и 2 вершинно-непересекающихся пути.

Разделители

Определение: v,w-разделяющим множеством (v,w-disconnecting set) графа G будем называть множество \bar{E} ребер G(E), такое, что каждый путь от v до w включает в себя ребро из \bar{E} .

Определение: v,w-отделяющим множеством (v,w-separating set) графа G является множество S вершин, отличных от v и w, таких, что каждый путь из v и w проходит через вершину из S.

Определения (альтернативные): Множество S рёбер/вершин графа G разделяет/отделяет две вершины v и w, если v и w принадлежат разным компонентам связности графа $G\setminus S$.

Замечание: Разделяющее множество рёбер мы называли разрезом.

 $E_1 = \{ps,qs,ty,tz\}$, $E_2 = \{uw,xw,yw,zw\}$ – v,w-разделяющие множества $V_1 = \{s,t\}$, $V_2 = \{p,q,y,z\}$ – v,w-отделяющие множества.

4/11

Реберная теорема Менгера

чем m ребрами.

Задача: Хотим посчитать реберно-непересекающиеся пути от v в w. Если E представляет собой v,w-разделяющее множество с k ребрами, то число реберно-непересекающихся путей не может превышать k (иначе некоторое ребро из E будет включено более чем в один путь).

То есть, если E-v,w-разделяющее множество минимально возможного размера, то число реберно-непересекающихся путей равно k и в каждом таком пути имеется ровно одно ребро из E. Это, по сути, и есть реберная форма теоремы Менгера.

Теорема (Менгер; Ф.-Ф., 1955 | реберная): Максимальное количество реберно-непересекающихся путей, соединяющих две различные вершины v и w связного графа, равно минимальному числу ребер в v,w-разделяющем множестве.

Док-во: Максимальное число реберно-непересекающихся путей, соединяющих v и w, не превышает минимальное количество ребер в v,w-разделяющем множестве.

Равенство покажем индукцией по числу ребер в графе G. База очевидна. Предположение и переход: предположим, что |E(G)|=m и что теорема верна для всех графов (с любым числом вершин + связность!) с менее

 1° : Пусть $\exists \ v,w$ -разделяющее множество E минимального размера k, такое, что не все его ребра инцидентны v и не все инцидентны w (E_1 из примера).

Удалим из G ребра из E, останется два непересекающихся подграфа, V и W, содержащих вершины v и w соответственно.

Определим два подграфа G_1 и G_2 из G: сожмем V (каждое его ребро) до вершины v и получим G_1 ; сожмем W до w и получим G_2 :

Ребер в G_1 и G_2 меньше, чем в G; E является v,w-разделяющим множеством минимального размера и для G_1 , и для G_2 .

По гипотезе индукции в G_1 имеется k реберно-непересекающихся путей от v до w; аналогично для G_2 . Комбинируем пути в G_1 и G_2 и получаем k реберно-непересекающихся путей в G.

 2° : каждое v,w-разделяющее множество минимального размера k состоит только из ребер, которые все инцидентны v, либо все инцидентны w (множество E_2 из примера).

В этом случае можно считать, что каждое ребро графа G содержится в некотором v,w-разделяющем множестве размером k, так как в противном случае удаление соответствующего ребра не влияет на величину k и мы можем воспользоваться гипотезой индукции для получения k ребернонепересекающихся путей.

Если P — произвольный путь от v до w, то он должен состоять либо из единственного ребра, либо из двух ребер, и поэтому может содержать не более одного ребра из любого v,w-разделяющего множества размером k. Удаляя из G ребра, принадлежащие P, мы получим граф, содержащий по крайней мере k-1 реберно-непересекающихся путей (согласно гипотезе индукции). Вместе с P эти пути дают искомые k путей в G.

7/11

Реберная теорема Менгера (и не только)

Задача: Хотим найти число вершинно-непересекающихся путей из v в w.

Теорема (Менгер, 1927 | вершинная): Максимальное число вершиннонепересекающихся путей, соединяющих две различные несмежные вершины, v и w, графа, равно минимальному числу вершин в v,w-отделяющем множестве.

Док-во: Докажем по индукции. База: в графе три вершины v,u,w и два ребра (v,u),(u,w). Тогда максимальное количество вершиннонепересекающихся путей равно 1:(v,u,w), что равно минимальному числу вершин в v,w-отделяющем множестве: $\{u\}$.

Предположение и переход: Пусть справедливо для все графов, где не более n вершин и m ребер. Пусть V_1 — наименьшее множество вершин, разделяющее v и w, $|V_1|=k$. Необходимо разобрать три случая:

- 1. Пусть в V_1 есть вершины, несмежные с v и несмежные с w.
- 2. все вершины отделяющего множества V_1 смежны с v или w (пусть с v) и среди вершин V_1 есть вершина u, смежная одновременно и с v, и с w.
- 3. все вершины V_1 смежны с v или с w (пусть с v) и среди вершин V_1 нет вершин, смежных одновременно с v и w.

 1° : в этом случае поступаем аналогично реберной теореме Менгера:

- lacktriangle Обозначим G_1 и G_2 два графа, которые получатся, если из исходного графа выкинуть вершины из V_1 ; Заметим, что они нетривиальны в силу существования вершин, не смежных с v и не смежных с w.
- Аналогично образуем два новых графа G_v и G_w : в исходном графе стянем G_1 в вершину v с сохранением ребер до V_1 и стянем G_2 в вершину w с сохранением ребер до V_1 .

Тогда V_1 будет минимальным v,w-отделяющим множеством в G_v и G_w . При этом оба графа G_v и G_w содержат меньше вершин или ребер и для них справедливо предположение индукции. Теперь скомбинируем (состыкуем) участки k вершинно-непересекающихся путей в G_v и k вершинно-непересекающихся путей в G_w по вершинам из V_1 и получим k вершинно-непересекающихся путей в исходной графе G.

- 2° : Рассмотрим граф G' граф G без вершины u. Тогда $V_1\setminus\{u\}$ будет минимальным v,w-отделяющим множеством. По предположению индукции в графе G' есть k-1 вершинно-непересекающихся путей. Заметим, что путь (v,u,w) не пересекается с этим путями по вершинам. Тогда, добавив этот путь к k-1 вершинно-непересекающемуся пути из G', получим k вершинно-непересекающихся путей в исходной графе G.
- 3° : Рассмотрим кратчайший вершинно-непересекающийся путь (v,u_1,u_2,\ldots,w) . Заметим, что $u_2\notin V_1$ иначе вершинно-непересекающийся путь (v,u_2,\ldots,w) был бы короче. Рассмотрим новый граф G', образованный из G стягиванием u_2 в u_1 . Тогда V_1 будет v,w-отделяющим множеством в G'. По предположению индукции в G' есть k вершинно-непересекающихся путей. По построению G' пути, не пересекающиеся в G', не пересекаются и в G. Таким образом, в G есть K вершинно-непересекающихся путей.

10/11

Следствия

Определение: Граф называется реберно k-связным (или k-реберносвязным), если удаление любых k-1 ребер оставляет граф связным. Следствие: Граф G является k-реберно-связным тогда и только тогда, когда любые две различные вершины G соединяются по крайней мере k реберно-непересекающимися путями.

Определение: Граф G называется k-связным, если k – наибольшее из чисел, таких, что каждая пара несмежных вершин соединена не менее чем k вершинно-непересекающимися простыми путями.

Определение (альтернативное): Граф G называется вершинно k-связным (или k-связным), если удаление любых k-1 вершин оставляет граф связным.

Следствие: Граф G с как минимум k+1 вершиной является k-связным тогда и только тогда, когда любые две различные вершины G соединяются по крайней мере k вершинно-непересекающимися путями.