In [1]:

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt # Data Visualization
import seaborn as sns # Data Visualization
```

In [2]:

```
import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
df = pd.read_csv('collegePlace.csv')
```

In [4]:

```
df.head()
```

Out[4]:

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
0	22	Male	Electronics And Communication	1	8	1	1	1
1	21	Female	Computer Science	0	7	1	1	1
2	22	Female	Information Technology	1	6	0	0	1
3	21	Male	Information Technology	0	8	0	1	1
4	22	Male	Mechanical	0	8	1	0	1
4								•

In [5]:

df.tail()

Out[5]:

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
2961	23	Male	Information Technology	0	7	0	0	0
2962	23	Male	Mechanical	1	7	1	0	0
2963	22	Male	Information Technology	1	7	0	0	0
2964	22	Male	Computer Science	1	7	0	0	0
2965	23	Male	Civil	0	8	0	0	1

```
In [6]:
df.shape
Out[6]:
(2966, 8)
In [7]:
df.columns
Out[7]:
Index(['Age', 'Gender', 'Stream', 'Internships', 'CGPA', 'Hostel',
        'HistoryOfBacklogs', 'PlacedOrNot'],
      dtype='object')
In [8]:
df.duplicated().sum()
Out[8]:
1829
In [9]:
df.isnull().sum()
```

Out[9]:

0 Age Gender 0 Stream 0 Internships 0 **CGPA** 0 Hostel 0 HistoryOfBacklogs 0 PlacedOrNot 0 dtype: int64

In [10]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2966 entries, 0 to 2965
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Age	2966 non-null	int64
1	Gender	2966 non-null	object
2	Stream	2966 non-null	object
3	Internships	2966 non-null	int64
4	CGPA	2966 non-null	int64
5	Hostel	2966 non-null	int64
6	HistoryOfBacklogs	2966 non-null	int64
7	PlacedOrNot	2966 non-null	int64

dtypes: int64(6), object(2)
memory usage: 185.5+ KB

In [11]:

```
df.describe()
```

Out[11]:

	Age	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
count	2966.000000	2966.000000	2966.000000	2966.000000	2966.000000	2966.000000
mean	21.485840	0.703641	7.073837	0.269049	0.192178	0.552596
std	1.324933	0.740197	0.967748 0.44354		0.394079	0.497310
min	min 19.000000 0.000000		5.000000 0.000000		0.000000	0.000000
25%	21.000000	0.000000	6.000000	0.000000	0.000000	0.000000
50%	21.000000	1.000000	7.000000	0.000000	0.000000	1.000000
75%	22.000000	1.000000	8.000000	1.000000	0.000000	1.000000
max	30.000000	3.000000	9.000000	1.000000	1.000000	1.000000
4						•

In [12]:

df.nunique()

Out[12]:

Age	11
Gender	2
Stream	6
Internships	4
CGPA	5
Hostel	2
HistoryOfBacklogs	2
PlacedOrNot	2
dtype: int64	

```
In [13]:
```

```
df['Age'].unique()
```

Out[13]:

array([22, 21, 23, 24, 28, 30, 25, 26, 20, 19, 29], dtype=int64)

In [14]:

```
df['Age'].value_counts()
```

Out[14]:

```
1084
21
22
        941
20
        375
23
        195
19
        156
24
        131
26
         50
25
         29
28
          3
30
          1
29
          1
```

Name: Age, dtype: int64

In [15]:

```
plt.figure(figsize=(15,6))
sns.countplot('Age', data = df, palette = 'hls')
plt.show()
```


In [16]:

```
plt.figure(figsize=(15,6))
sns.histplot(df['Age'], kde = True, bins = 10, palette = 'hls')
plt.show()
```


In [17]:

```
plt.figure(figsize=(15,6))
sns.distplot(df['Age'], kde = True, bins = 10)
plt.show()
```


In [18]:

```
df['Gender'].unique()
```

Out[18]:

array(['Male', 'Female'], dtype=object)

In [19]:

```
df['Gender'].value_counts()
```

Out[19]:

Male 2475 Female 491

Name: Gender, dtype: int64

In [20]:

```
plt.figure(figsize=(15,6))
sns.countplot('Gender', data = df, palette = 'hls')
plt.show()
```


In [21]:

```
label_data = df['Gender'].value_counts()
explode = (0.0, 0.1)
plt.figure(figsize=(20, 10))
patches, texts, pcts = plt.pie(label_data,
                                labels = label_data.index,
                                colors = ['blue', 'red'],
                                pctdistance = 0.65,
                                shadow = True,
                                startangle = 0,
                                explode = explode,
                                autopct = '%1.1f%%',
                                textprops={ 'fontsize': 10,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='black')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('Gender', size=20, **hfont)
centre_circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

Gender

In [22]:

```
df.Stream.unique()
```

Out[22]:

In [23]:

```
df.Stream.value_counts()
```

Out[23]:

Computer Science	776
Information Technology	691
Electronics And Communication	424
Mechanical	424
Electrical	334
Civil	317
Name: Stream, dtype: int64	

In [24]:

```
plt.figure(figsize=(15,6))
sns.countplot('Stream', data = df, palette = 'hls')
plt.show()
```


In [25]:

```
label_data = df['Stream'].value_counts()
explode = (0.0, 0.1, 0.1, 0.1, 0.1, 0.1)
plt.figure(figsize=(20, 10))
patches, texts, pcts = plt.pie(label_data,
                                labels = label_data.index,
                                colors = ['blue', 'red', 'green', 'orange', 'yellow', 'vi
                                pctdistance = 0.65,
                                shadow = True,
                                startangle = 0,
                                explode = explode,
                                autopct = '%1.1f%%',
                                textprops={ 'fontsize': 10,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='black')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('Stream', size=20, **hfont)
centre_circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

Stream

In [26]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df.Stream, y = df.PlacedOrNot)
plt.show()
```


In [27]:

```
plt.figure(figsize = (12,7))
sns.barplot(x = df.Age, y = df.PlacedOrNot, hue = df.Gender)
plt.show()
```


In [28]:

```
df['Internships'].unique()
```

Out[28]:

array([1, 0, 2, 3], dtype=int64)

In [29]:

```
df['Internships'].value_counts()
```

Out[29]:

0 13311 1234

2 350

51

3

Name: Internships, dtype: int64

In [30]:

```
plt.figure(figsize=(15,6))
sns.countplot('Internships', data = df, palette = 'hls')
plt.show()
```


In [31]:

```
label_data = df['Internships'].value_counts()
explode = (0.0, 0.1, 0.1, 0.1)
plt.figure(figsize=(20, 10))
patches, texts, pcts = plt.pie(label_data,
                               labels = label_data.index,
                               colors = ['blue', 'red', 'green', 'orange'],
                               pctdistance = 0.65,
                               shadow = True,
                               startangle = 0,
                               explode = explode,
                               autopct = '%1.1f%%',
                               textprops={ 'fontsize': 10,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='black')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('Internships', size=20, **hfont)
centre_circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

Internships


```
In [32]:
```

df['CGPA'].unique()

Out[32]:

array([8, 7, 6, 9, 5], dtype=int64)

In [33]:

df['CGPA'].value_counts()

Out[33]:

7 956

8 915

6 834

9 1655 96

Name: CGPA, dtype: int64

In [34]:

```
plt.figure(figsize=(15,6))
sns.countplot('CGPA', data = df, palette = 'hls')
plt.show()
```


In [35]:

```
label_data = df['CGPA'].value_counts()
explode = (0.0, 0.1, 0.1, 0.1, 0.1)
plt.figure(figsize=(20, 10))
patches, texts, pcts = plt.pie(label_data,
                               labels = label_data.index,
                               colors = ['blue', 'red', 'green', 'orange', 'violet'],
                               pctdistance = 0.65,
                               shadow = True,
                               startangle = 0,
                               explode = explode,
                               autopct = '%1.1f%%',
                               textprops={ 'fontsize': 10,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='black')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('CGPA', size=20, **hfont)
centre_circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

CGPA

In [36]:

df['Hostel'].unique()

Out[36]:

array([1, 0], dtype=int64)

In [37]:

df['Hostel'].value_counts()

Out[37]:

0 21681 798

Name: Hostel, dtype: int64

In [38]:

```
plt.figure(figsize=(15,6))
sns.countplot('Hostel', data = df, palette = 'hls')
plt.show()
```


In [39]:

```
label_data = df['Hostel'].value_counts()
explode = (0.0, 0.1)
plt.figure(figsize=(20, 10))
patches, texts, pcts = plt.pie(label_data,
                                labels = label_data.index,
                                colors = ['blue', 'red'],
                                pctdistance = 0.65,
                                shadow = True,
                                startangle = 0,
                                explode = explode,
                                autopct = '%1.1f%%',
                                textprops={ 'fontsize': 10,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='black')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('Hostel', size=20, **hfont)
centre_circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

Hostel


```
In [40]:
```

df['HistoryOfBacklogs'].unique()

Out[40]:

array([1, 0], dtype=int64)

In [41]:

df['HistoryOfBacklogs'].value_counts()

Out[41]:

0 23961 570

Name: HistoryOfBacklogs, dtype: int64

In [42]:

```
plt.figure(figsize=(15,6))
sns.countplot('HistoryOfBacklogs', data = df, palette = 'hls')
plt.show()
```


In [43]:

```
label_data = df['HistoryOfBacklogs'].value_counts()
explode = (0.0, 0.1)
plt.figure(figsize=(20, 10))
patches, texts, pcts = plt.pie(label_data,
                                labels = label_data.index,
                                colors = ['blue', 'red'],
                                pctdistance = 0.65,
                                shadow = True,
                                startangle = 0,
                                explode = explode,
                                autopct = '%1.1f%%',
                                textprops={ 'fontsize': 10,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='black')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('HistoryOfBacklogs', size=20, **hfont)
centre_circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

HistoryOfBacklogs


```
In [44]:
```

df['PlacedOrNot'].unique()

Out[44]:

array([1, 0], dtype=int64)

In [45]:

df['PlacedOrNot'].value_counts()

Out[45]:

1 1639
 0 1327

Name: PlacedOrNot, dtype: int64

In [46]:

```
plt.figure(figsize=(15,6))
sns.countplot('PlacedOrNot', data = df, palette = 'hls')
plt.show()
```


In [47]:

```
label_data = df['PlacedOrNot'].value_counts()
explode = (0.0, 0.1)
plt.figure(figsize=(20, 10))
patches, texts, pcts = plt.pie(label_data,
                                labels = label_data.index,
                                colors = ['blue', 'red'],
                                pctdistance = 0.65,
                                shadow = True,
                                startangle = 0,
                                explode = explode,
                                autopct = '%1.1f%%',
                                textprops={ 'fontsize': 10,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='black')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('PLaced or Not', size=20, **hfont)
centre_circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

PLaced or Not

In [48]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df.Internships, y = df.PlacedOrNot)
plt.show()
```


In [49]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df.CGPA, y = df.PlacedOrNot)
plt.show()
```


In [50]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df.Hostel, y = df.PlacedOrNot)
plt.show()
```


In [51]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df.Gender, y = df.PlacedOrNot)
plt.show()
```


In [52]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df.HistoryOfBacklogs, y = df.PlacedOrNot)
plt.show()
```


In [53]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
```

In [54]:

```
df.Gender = le.fit_transform(df.Gender)
df.Stream = le.fit_transform(df.Stream)
```

```
In [55]:
```

```
df.head()
```

Out[55]:

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
0	22	1	3	1	8	1	1	1
1	21	0	1	0	7	1	1	1
2	22	0	4	1	6	0	0	1
3	21	1	4	0	8	0	1	1
4	22	1	5	0	8	1	0	1

In [56]:

```
x = df.drop(['PlacedOrNot'], axis = 1)
```

In [57]:

```
y = df.PlacedOrNot
```

In [58]:

```
from sklearn import preprocessing
scaler = preprocessing.MinMaxScaler()
x = scaler.fit_transform(x)
```

In [59]:

```
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
```

In [60]:

```
from sklearn.model_selection import cross_val_score
```

In [61]:

```
cross_val_score(SVC(),x, y, cv = 3)
```

Out[61]:

```
array([0.80384226, 0.82305359, 0.90384615])
```

```
In [62]:
cross_val_score(DecisionTreeClassifier(), x, y, cv = 3)
Out[62]:
array([0.84428716, 0.84529828, 0.91497976])
In [63]:
cross_val_score(LogisticRegression(), x, y, cv = 3)
Out[63]:
array([0.71587462, 0.74418605, 0.83097166])
In [64]:
cross_val_score(RandomForestClassifier(n_estimators=50), x, y, cv = 3)
Out[64]:
array([0.84732053, 0.85237614, 0.8917004])
In [65]:
cross_val_score(KNeighborsClassifier(),x, y ,cv = 3)
Out[65]:
array([0.80788675, 0.80687563, 0.88461538])
In [66]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
In [67]:
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
Out[67]:
 ▼ DecisionTreeClassifier
DecisionTreeClassifier()
In [68]:
y_pred = model.predict(X_test)
```

In [69]:

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```

In [70]:

```
sns.heatmap(cm, annot = True)
plt.show()
```


In [71]:

```
print("Training Accuracy :", model.score(X_train, y_train))
print("Testing Accuracy :", model.score(X_test, y_test))
```

Training Accuracy: 0.924114671163575 Testing Accuracy: 0.87878787878788