

Macierze Blokowe

Filip Zieliński

2025

Spis Treści

- 1. Wstęp
- 2. Podstawowe Operacje
- 3. Mnożenie
- 4. Eliminacja Gaussa
- 5. Odwrotności
- 6. Wyznacznik
- 7. Ogólne Twierdzenie Laplace'a

Macierze Blokowe

Wstęp

W poniższych rozważaniach skupimy się na macierzach blokowych 2×2 . Wiele wyników da się jednak uogólnić.

Definicja

Rozważmy macierze

 $A \in \mathcal{M}_{n_1 \times m_1}, B \in \mathcal{M}_{n_1 \times m_2}, C \in \mathcal{M}_{n_2 \times m_1}, D \in \mathcal{M}_{n_2 \times m_2}$ nad ustalonym ciałem K. Wtedy, **Macierzą Blokową** (klatkową) $X \in \mathcal{M}_{n_1 + n_2 \times m_1 + m_2}$ złożoną z A, B, C, D definiujemy jako $X = (x_{ij})$, gdzie

$$x_{ij} = \begin{cases} a_{ij} & i \leqslant n_1, \quad j \leqslant m_1 \\ b_{(i)(j-m_1)} & i \leqslant n_1, \quad m_1 < j \leqslant m_1 + m_2 \\ c_{(i-n_1)(j)} & n_1 < i \leqslant n_1 + n_2, \quad j \leqslant m_1 \\ d_{(i-n_1)(j-m_1)} & n_1 < i \leqslant n_1 + n_2 \quad m_1 < j \leqslant m_1 + m_2 \end{cases}$$

Macierze Blokowe

Takie macierze zapisujemy jako

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Zauważmy, że macierze można dzielić na bloki na wiele sposobów,

$$X = \begin{bmatrix} 1 & 2 & 3 & | & 4 \\ \hline 5 & 6 & 7 & | & 8 \\ 9 & 10 & 11 & | & 12 \\ 13 & 14 & 15 & | & 16 \end{bmatrix} = \begin{bmatrix} 1 & 2 & | & 3 & | & 4 \\ \hline 5 & 6 & | & 7 & | & 8 \\ \hline 9 & 10 & | & 11 & | & 12 \\ 13 & 14 & | & 15 & | & 16 \end{bmatrix}$$

ale zawsze zachodzi colA = colC, colB = colD, rowA = rowB, rowC = rowD

Szczególne Macierze Blokowe

Konwencja

Blok, będący macierzą dowolnych wymiarów wypełnioną samymi zerami oznaczamy jako **0**.

Definicja

Diagonalną (Przekątniową) macierzą blokową nazywamy macierz blokową *D*, jeśli da się ją zapisać jako

$$D = \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix}$$

Szczególne Macierze Blokowe

Definicja

Trójkątno-górną macierzą blokową nazywamy macierz blokową *U*, jeśli da się ją zapisać jako

$$U = \begin{bmatrix} U_{11} & U_{12} \\ \mathbf{0} & U_{22} \end{bmatrix}$$

Definicja

Trójkątno-dolną macierzą blokową nazywamy macierz blokową *L*, jeśli da się ją zapisać jako

$$L = \begin{bmatrix} L_{11} & \mathbf{0} \\ L_{21} & L_{22} \end{bmatrix}$$

Szczególne Macierze Blokowe

Konwencja

W notacji macierzy blokowej $\mathcal I$ może oznaczać macierz jednostkową dowolnego wymiaru.

Uwaga

Macierz jednostkową można zapisać w postaci blokowej jako

$$\mathcal{I} = egin{bmatrix} \mathcal{I} & \mathbf{0} \\ \mathbf{0} & \mathcal{I} \end{bmatrix}$$

Obserwacja

Niech X, Y będą macierzami tych samych wymiarów. Jeżeli X, Y podzielimy na bloki odpowiednio *tych samych wymiarów*, to macierze blokowe można dodawać

$$X = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix}, Y = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix}, \quad X + Y = \begin{bmatrix} A_1 + A_2 & B_1 + B_2 \\ C_1 + C_2 & D_1 + D_2 \end{bmatrix}$$

Równie naturalnie, zdefiniowane jest odejmowanie macierzy blokowych jak i mnożenie macierzy przez skalar z ciała.

Transpozycja Macierzy Blokowych

Twierdzenie

Niech $X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ będzie macierzą blokową. Transpozycja macierzy A jest macierzą blokową, zadaną jako

$$A^T = \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix}$$

Mnożenie Macierzy Blokowych

Twierdzenie

Niech, $X\in\mathcal{M}_{n_1+n_2\times m_1+m_2}, Y\in\mathcal{M}_{m_1+m_2\times p_1+p_2}$ będą macierzami nad tym samym ciałem K podzielonymi na bloki w następujący sposób

$$X = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix}, \quad Y = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix},$$

gdzie $colA_1 = colC_1 = rowA_2 = rowB_2$ oraz $colB_1 = colD_1 = rowC_2 = rowD_2$. Wtedv

$$M = XY = \begin{bmatrix} A_1A_2 + B_1C_2 & A_1B_2 + B_1D_2 \\ C_1A_2 + D_1C_2 & C_1B_2 + D_1D_2 \end{bmatrix}$$

Operacje Elementarne - Mnożenie Eliminacja Gaussa

Niech
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 będzie macierzą blokową o wymiarach: $A - n \times m$, $B - n \times k$, $C - p \times m$, $D - p \times k$ oraz niech E będzie dowolną macierzą o wymiarach $n \times n$.

Obserwacja

Operacje
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \xrightarrow{R_1 = E \cdot R_1} \begin{bmatrix} EA & EB \\ C & D \end{bmatrix}$$
 da się wykonać i da się przedstawić jako złożenie operacji elementarnych na wierszach.

Operacje Elementarne - Odejmowanick Eliminacja Gaussa

Niech
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 będzie macierzą blokową o wymiarach: $A - n \times m$, $B - n \times k$, $C - p \times m$, $D - p \times k$ oraz niech F będzie dowolną macierzą o wymiarach $n \times p$

Obserwacja

Operacje
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \xrightarrow{R_1 = R_1 - F \cdot R_2} \begin{bmatrix} A - FC & B - FD \\ C & D \end{bmatrix}$$
 da się wykonać

i da się przedstawić jako złożenie operacji elementarnych na wierszach.

Macierze blokowo-diagonalne

Twierdzenie

Niech
$$D = \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix}$$
 będzie kwadratową macierzą

blokowo-diagonalną, gdzie D_1, D_2 są blokami kwadratowymi. Macierz D jest nieosobliwa wtedy i tylko wtedy gdy macierze D_1 oraz D_2 są nieosobliwe oraz D^{-1} zadane jest wzorem

$$D^{-1} = \begin{bmatrix} D_1^{-1} & \mathbf{0} \\ \mathbf{0} & D_2^{-1} \end{bmatrix}$$

Macierze blokowo-diagonalne

Twierdzenie

Niech
$$D = \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix}$$
 będzie kwadratową macierzą

blokowo-diagonalną, gdzie D_1, D_2 są blokami kwadratowymi. Macierz D jest nieosobliwa wtedy i tylko wtedy gdy macierze D_1 oraz D_2 są nieosobliwe oraz D^{-1} zadane jest wzorem

$$D^{-1} = \begin{bmatrix} D_1^{-1} & \mathbf{0} \\ \mathbf{0} & D_2^{-1} \end{bmatrix}$$

Dowód.

Wzór najprościej sprawdzić z definicji macierzy odwrotnej. Wkw na istnienie wynika z analizy liczby liniowo niezależnych wierszy lub macierzy.

Twierdzenie

Niech
$$U = \begin{bmatrix} U_{11} & U_{12} \\ \mathbf{0} & U_{22} \end{bmatrix}$$
 będzie kwadratową macierzą blokową

trójkątną górną, gdzie U_{11} , U_{22} są blokami kwadratowymi. Macierz U jest nieosobliwa wtedy i tylko wtedy gdy macierze U_{11} oraz U_{22} są nieosobliwe oraz U^{-1} zadane jest wzorem

$$U^{-1} = \begin{bmatrix} U_{11}^{-1} & -U_{11}^{-1}U_{12}U_{22}^{-1} \\ \mathbf{0} & U_{22}^{-1} \end{bmatrix}$$

Twierdzenie

Niech
$$U = egin{bmatrix} U_{11} & U_{12} \\ \mathbf{0} & U_{22} \end{bmatrix}$$
 będzie kwadratową macierzą blokową

trójkątną górną, gdzie U_{11} , U_{22} są blokami kwadratowymi. Macierz U jest nieosobliwa wtedy i tylko wtedy gdy macierze U_{11} oraz U_{22} są nieosobliwe oraz U^{-1} zadane jest wzorem

$$U^{-1} = \begin{bmatrix} U_{11}^{-1} & -U_{11}^{-1}U_{12}U_{22}^{-1} \\ \mathbf{0} & U_{22}^{-1} \end{bmatrix}$$

Dowód.

Wzór można wyprowadzić z metody Gaussa, natomiast wkw wynika z analizy liczby liniowo niezależnych kolumn i wierszy.

Twierdzenie

Niech
$$L = \begin{bmatrix} L_{11} & \mathbf{0} \\ L_{21} & L_{22} \end{bmatrix}$$
 będzie kwadratową macierzą blokową

trójkątną dolną, gdzie L_{11}, L_{22} są blokami kwadratowymi. Macierz L jest nieosobliwa wtedy i tylko wtedy gdy macierze L_{11} oraz L_{22} są nieosobliwe oraz L^{-1} zadane jest wzorem

$$L^{-1} = \begin{bmatrix} L_{11}^{-1} & \mathbf{0} \\ -L_{22}^{-1}L_{21}L_{11}^{-1} & L_{22}^{-1} \end{bmatrix}$$

Twierdzenie

Niech
$$L=\begin{bmatrix}L_{11} & \mathbf{0}\\ L_{21} & L_{22}\end{bmatrix}$$
 będzie kwadratową macierzą blokową trójkątną dolną, gdzie L_{11},L_{22} są blokami kwadratowymi. Macierz

trójkątną dolną, gdzie L_{11} , L_{22} są blokami kwadratowymi. Macierz L jest nieosobliwa wtedy i tylko wtedy gdy macierze L_{11} oraz L_{22} są nieosobliwe oraz L^{-1} zadane jest wzorem

$$L^{-1} = \begin{bmatrix} L_{11}^{-1} & \mathbf{0} \\ -L_{22}^{-1}L_{21}L_{11}^{-1} & L_{22}^{-1} \end{bmatrix}$$

Dowód.

Wzór można wyprowadzić z metody Gaussa, natomiast wkw wynika z analizy liczby liniowo niezależnych kolumn i wierszy.

Niech
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 będzie kwadratową macierzą blokową, gdzie A, D są kwadratowymi blokami.

Definicja

Jeżeli D jest nieosobliwe, **Dopełnienie Schura** macierzy M względem D defniujemy jako $M/D = A - BD^{-1}C$

Definicja

Jeżeli A jest nieosobliwe, **Dopełnienie Schura** macierzy M względem A defniujemy jako $M/A = D - CA^{-1}B$

Odwrotności

Niech
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 będzie kwadratową macierzą blokową, gdzie A, D są kwadratowymi blokami.

Twierdzenie

Niech A będzie nieosobliwe. Wtedy M^{-1} istnieje wtedy i tylko wtedy gdy M/A jest odwracalne oraz zachodzi wzór

$$M^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(M/A)^{-1}CA^{-1} & -A^{-1}B(M/A)^{-1} \\ -(M/A)^{-1}CA^{-1} & (M/A)^{-1} \end{bmatrix}$$

Dowód.

Wzór najprościej wyprowadzić z metody Gaussa.

Odwrotności

Niech $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ będzie kwadratową macierzą blokową, gdzie A, D są kwadratowymi blokami.

Twierdzenie

Niech D będzie nieosobliwe. Wtedy M^{-1} istnieje wtedy i tylko wtedy gdy M/D jest odwracalne oraz zachodzi wzór

$$M^{-1} = \begin{bmatrix} (M/D)^{-1} & -(M/D)^{-1}BD^{-1} \\ -D^{-1}C(M/D)^{-1} & D^{-1} + D^{-1}C(M/D)^{-1}BD^{-1} \end{bmatrix}$$

Dowód.

Wzór najprościej wyprowadzić z metody Gaussa.

Odwrotności

Konwencja

Oznaczmy przez $\mathcal J$ macierz kwadratową dowolnego rozmiaru, która ma 1 na odwrotnej przekątnej, a pozostałe elementy są równe 0. Zauważmy, że można zapisać taką macierz w postaci blokowej jako

$$\mathcal{J} = \begin{bmatrix} \mathbf{0} & \mathcal{J} \\ \mathcal{J} & \mathbf{0} \end{bmatrix}$$

Obserwacja

Niech
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 będzie kwadratową macierzą blokową, której bloki B, C są blokami kwadratowymi. Zauważmy, że macierz $M\mathcal{J} = \begin{bmatrix} B\mathcal{J} & A\mathcal{J} \\ D\mathcal{J} & C\mathcal{J} \end{bmatrix}$ jest macierzą kwadratową o blokach

kwadratowych na głównej przekątnej, zatem można policzyć jej odwrotność przy pomocy wspomnianych wcześniej twierdzeń.

Obserwacja

Macierz odwrotną do macierzy blokowej *M* posiadającej bloki kwadratowe na przekątnej odwrotnej, możemy wyliczyć z zależności

$$M^{-1} = \mathcal{J}\mathcal{J}^{-1}M^{-1} = \mathcal{J}(M\mathcal{J})^{-1}$$

Wyznacznik Macierzy Blokowej

Twierdzenie

Niech \mathbb{K} będzie ciałem i niech R będzie podpierścieniem przemiennym pierścienia $\mathcal{M}_{n\times n}(\mathbb{K})$ macierzy kwadratowych wymiaru n o współczynnikach z ciała \mathbb{K} . Rozważmy macierz $M\in\mathcal{M}_{p\times p}(R)$. Zachodzi

$$\det_{\mathbb{K}} M = \det_{\mathbb{K}} (\det_{R} M)$$

Wyznacznik Macierzy Blokowej

Twierdzenie

Niech \mathbb{K} będzie ciałem i niech R będzie podpierścieniem przemiennym pierścienia $\mathcal{M}_{n\times n}(\mathbb{K})$ macierzy kwadratowych wymiaru n o współczynnikach z ciała \mathbb{K} . Rozważmy macierz $M\in\mathcal{M}_{p\times p}(R)$. Zachodzi

$$\det_{\mathbb{K}} M = \det_{\mathbb{K}} (\det_{B} M)$$

Twierdzenie to ma charakter ogólny - jest eleganackie algebraiczne i praktycznie bezużyteczne, bo posiada pewne ewidentne ograniczenia.

Macierze blokowo-diagonalne 2 × 2

Twierdzenie

Niech będzie dana macierz blokowo-diagonalna $M = \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix}$.

Zachodzi

$$\det M = \det D_1 \cdot \det D_2.$$

Dodatkowo, jeśli oba bloki mają ten sam wymiar zachodzi

$$\det M = \det D_1 \cdot \det D_2 = \det(D_1 D_2).$$

Macierze blokowo-diagonalne 2 × 2

Twierdzenie

Niech będzie dana macierz blokowo-diagonalna $M = \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix}$.

$$\det M = \det D_1 \cdot \det D_2.$$

Dodatkowo, jeśli oba bloki mają ten sam wymiar zachodzi

$$\det M = \det D_1 \cdot \det D_2 = \det(D_1 D_2).$$

Dowód.

Zachodzi

Należy skorzystać z indukcji względem wymiaru macierzy D_1 oraz rozwinięcia Laplace'a.

Twierdzenie

Niech będzie dana kwadratowa macierz blokowo-górnotrójkątna

$$M = \begin{bmatrix} U_{11} & U_{12} \\ \mathbf{0} & U_{22} \end{bmatrix}$$
 gdzie bloki U_{11} oraz U_{22} są kwadratowe. Wtedy zachodzi

$$\det M = \det U_{11} \cdot \det U_{22}.$$

Dodatkowo, jeśli ich wymiary są takie same, zachodzi

$$\det M = \det U_{11} \cdot \det U_{22} = \det (U_{11}U_{22}).$$

Twierdzenie

Niech będzie dana kwadratowa macierz blokowo-górnotrójkątna

$$M = \begin{bmatrix} U_{11} & U_{12} \\ \mathbf{0} & U_{22} \end{bmatrix}$$
 gdzie bloki U_{11} oraz U_{22} są kwadratowe. Wtedy zachodzi

$$\det M = \det U_{11} \cdot \det U_{22}.$$

Dodatkowo, jeśli ich wymiary są takie same, zachodzi

$$\det M = \det U_{11} \cdot \det U_{22} = \det (U_{11}U_{22}).$$

Dowód.

Należy skorzystać z indukcji względem wymiaru macierzy U_{11} oraz rozwinięcia Laplace'a.

Macierze z blokiem zerowym

Twierdzenie

Niech będzie dana kwadratowa macierz blokowa $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ o wszystkich blokach tego samego rozmiaru. Jeżeli choć jeden blok jest blokiem zerowym, zachodzi

$$\det M = \det(AD - BC)$$

Macierze z blokiem zerowym

Twierdzenie

Niech będzie dana kwadratowa macierz blokowa $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ o wszystkich blokach tego samego rozmiaru. Jeżeli choć jeden blok jest blokiem zerowym, zachodzi

$$\det M = \det(AD - BC)$$

Dowód.

W przypadku, gdy $C={\bf 0}$ bądź $B={\bf 0}$ wystarczy skorzystać z poprzednich twierdzeń. Natomiast, w przypadku gdy $A={\bf 0}$ lub $B={\bf 0}$, zauważmy, że

$$\begin{bmatrix} \mathcal{I} & -\mathcal{I} \\ \mathbf{0} & \mathcal{I} \end{bmatrix} \cdot \begin{bmatrix} \mathcal{I} & \mathbf{0} \\ \mathcal{I} & \mathcal{I} \end{bmatrix} \cdot \begin{bmatrix} \mathcal{I} & -\mathcal{I} \\ \mathbf{0} & \mathcal{I} \end{bmatrix} \cdot \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} -C & -D \\ A & B \end{bmatrix}$$

Macierze blokowe 2 × 2 Wyznacznik

Twierdzenie

Niech będzie dana kwadratowa macierz blokowa $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ o wszystkich blokach tego samego rozmiaru. Jeżeli D jest odwracalna, zachodzi

$$\det M = \det(AD - BD^{-1}CD)$$

Macierze blokowe 2 × 2 Wyznacznik

Twierdzenie

Niech będzie dana kwadratowa macierz blokowa $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ o wszystkich blokach tego samego rozmiaru. Jeżeli D jest odwracalna, zachodzi

$$\det M = \det(AD - BD^{-1}CD)$$

Dowód.

Zauważmy, że

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} \mathcal{I} & \mathbf{0} \\ -D^{-1}C & \mathcal{I} \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & B \\ \mathbf{0} & D \end{bmatrix}$$

Macierze blokowe 2 × 2 Wyznacznik

Wniosek

Jeżeli dodatkowo CD = DC to zachodzi $\det M = \det(AD - BC)$

Dopełnienie minora macierzy Ogólne Twierdzenie Laplace a

Niech będzie dana macierz kwadratowa
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Niech M będzie minorem wymiaru $p \leqslant n$. Niech

$$j_1 < j_2 \ldots < j_p$$

będą wskaźnikami wierszy, a

$$k_1 < k_2 \ldots < k_p$$

będą wskaźnikami kolumn, z których powstał minor M. Niech q=n-p oraz M_1 będzie minorem wymiaru q powstałym przez wykreślenie wierszy i kolumn należących do minora M.

Dopełnienie minora macierzy Ogólne Twierdzenie Laplace a

Definicja

Dopełnieniem algebraicznym minora *M* względem macierzy *A* nazywamy liczbę

$$M^* = (-1)^{\sum j + \sum k} \cdot M_1.$$

gdzie
$$\Sigma j = j_1 + \cdots + j_p$$
 i $\Sigma k = k_1 + \cdots + k_p$.

Wieloliniowość wyznacznika Ogólne Twierdzenie Laplace'a

Fakt

Niech A będzie macierzą zdefiniowaną jak na poprzednich slajdach. Niech $A_i = \begin{vmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{vmatrix}$ oznacza i-ty wiersz macierzy i niech zachodzi

$$A_i = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} + \alpha \cdot \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}.$$

Zachodzi wtedy

$$\det \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \det \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ v_1 & \cdots & v_n \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} + \alpha \cdot \det \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Twierdzenie Laplace'a Ogólne Twierdzenie Laplace'a

Zdefinujmy macierz A jak na poprzednich slajdach. Rozbijmy macierz A na dwie macierze prostokątne A' oraz A'', z których pierwsza składa się z p pierwszych kolumn, a druga z q ostatnich kolumn.

Lemat

Jeśli w macierzy A' ilość wierszy zawierająca same zera jest większa od q to $\det A = 0$.

Twierdzenie

Ogólne Twierdzenie Laplace'a

Niech M przebiega wszystkie minory jakie można utworzyć z dowolnie wybranych i ustalonych kolumn (wierszy) macierzy A, natomiast M^* niech będzie algebraicznym dopełnieniem minora M. Suma wszystkich iloczynów MM^* jest równa $\det A$.

Ogólne Twierdzenie Laplace'a

- 1. Inverses and Determinants of $n \times n$ matrices, Müge Saadetoğlu, Şakir Mehmet Dinsev, 2023, *Mathematics*
- 2. Block Matrix Formulas, John A. Gubner, 2024
- Elementy Algebry Wyższej, A. Mostowski, M. Stark, Wydawnictwo Naukowe PWN