Chapter 1

Stochastic Mean Field Particle Systems

1.1 Basics of probability

Definition 1.1.1 (Brownian Motion). Real valued stochastic process $W(\cdot)$ is called a Brownian motion (Wiener process) if

- 1. W(0) = 0a.s.
- 2. $W(t) W(s) \sim \mathcal{N}(0, t s)$, for all $t, s \geq 0$
- 3. $\forall 0 < t_1 < t_2 < \ldots < t_n$, $W(t_1), W(t_2) W(t_1), \ldots, W(t_n) W(t_{n-1})$ are independent
- 4. W(t) is continuous a.s (sample paths)

Remark (Properties). 1. $\mathbb{E}[W(t)] = 0$, $\mathbb{E}[W(t)^2] = t$, for all t > 0

- 2. $\mathbb{E}[W(t)W(s)] = t \wedge s$ a.s
- 3. $W(t) \in \mathcal{C}^{\gamma}[0,T]$, $\forall 0 < \gamma < \frac{1}{2}$.
- 4. W(t) is nowhere differentiable a.s additionally Brownian motions are martingales and satisfy the markov property

Definition 1.1.2 (Ito Integral).

- 1.2 Bad K
- 1.3 Convergence

Chapter 2

Excercise Sheets

2.1 Sheet 1 (11.09.2023)

2.1.1 Excercise 1

Question 1. Consider the second order system:

$$\begin{split} dX_t^i &= V_t^i \\ dV_t^i &= \frac{1}{N} \sum_{i=1}^N F(t, X_t^i, V_t^i, X_t^j, V_t^j) dt. \end{split}$$

on [0,T] for some smooth interaction force $F:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}^d\times\mathbb{R}^d\mapsto\mathbb{R}^d$ following the lecture we assume the empirical measure :

$$\mu_t^N(dx,dv) = \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^i,V_t^i)}.$$

converges in some sense to the measure μ_t with density ρ_t for each t. Derive an equation for $\rho, t \geq 0$ similar to the lecture.

Solution. Let $\varphi \in \mathcal{C}_0^{\infty}(\mathbb{R}^?)$ and calculate :

$$\frac{d}{dt}\langle \mu_N, \varphi \rangle = \frac{d}{dt} \int_{\mathbb{R}^{2d}} \varphi(x, v) d\mu_N(t) (dx, dv) = \frac{d}{dt} \int \frac{1}{N} \sum_{i=1}^N \varphi(x, v) d\delta_{(x_i^t, v_i^t)}$$

$$\stackrel{*}{=} \frac{1}{N} \sum_{i=1}^N \frac{d}{dt} \varphi(x_i(t), v_i(t))$$

$$\stackrel{\text{Chain}}{=} \frac{1}{N} \sum_{i=1}^N \partial_x \varphi \cdot \dot{x_i} + \partial_v \cdot \dot{v_i}$$

$$= \frac{1}{N} \sum_{i=1}^N \partial_x \varphi \cdot v_i(t) + \partial_v \varphi \cdot \sum_{j=1}^N F(t, x_i(t), v_i(t), x_j(t), v_j(t))$$

Chapter 3

Appendix

Theorem 3.0.1 (Divergence Theorem). Let $\Omega \subset \mathbb{R}^n$ be bounded and open with $\partial \Omega$ being a (n-1)- dimensional sub-manifold of \mathbb{R}^n . Let $F:\overline{\Omega} \to \mathbb{R}^n$ be continuous and differentiable on Ω such that ∇F continuously to $\partial \Omega$. Then we have :

$$\int_{\Omega} \nabla \cdot F d\mu = \int_{\partial \Omega} F \cdot N d\sigma.$$

where N is the outward pointing normal. (last component is positive)