Schedule

- 1. Class information, syllabus, course goals, & evaluation.
- 2. Tree drawing what do we already know about phylogenies?
- 3. Basic phylogenetic terms & concepts.
- 4. Introduction to R for phylogenetics.

Ziheng Yang Molecular Evolution A STATISTICAL APPROACH OXFORD

1) Why do we care about phylogenetic trees?

2) How do we infer phylogenetic trees from data? (In theory & practice.*)

3) What do we do with our tree once it has been inferred? (In theory & practice.)

Parts of a tree branch, edge internal edge shark tip, leaf, gold fish terminal root node node coelacanth iguana robin P. Imperialis ·human lemur bat ·whale terminal edge pig node COW

Types of "groupings" on a phylogeny

A *monophyletic group* is a phylogenetic group that includes an ancestor & all of its descendants.

Types of "groupings" on a phylogeny

A *paraphyletic group* is a phylogenetic group that includes an ancestor & some, but not all, of its descendants.

Types of "groupings" on a phylogeny

A *polyphyletic group* is a phylogenetic group that does not include the common ancestor.

Ingroup vs. outgroup "ingroup" – group of phylogenetic interest "outgroup" - taxon related to the group of interested, but that branched off earlier in evolutionary history

Bifurcating trees & polytomies

- 1. Often, there is evidence in support of alternative hypotheses for the evolutionary relationships among taxa.
- 2. One way to represent this uncertainty is by drawing a *polytomy*, that is, an internal node with more than two descendants.

Branch lengths

The **lengths** of plotted edges can be used to convey information about the amount of time that has elapsed since the root of the tree; or the amount of evolutionary change along each edge.

Topology vs. topology & branch lengths

The **topology** of the tree refers to the relationships of taxa only.

Drawing trees

- There are many different ways to draw trees.
- One of the most common representations is a right- or upwardly oriented square graph in which branch lengths reflect elapsed time or amount of change.
- This is called a rectangular or square rooted phylogram.
- Topology (relationships) and branch lengths can also be represented on a slanted (sometime "triangular") phylogram/cladogram.
- Finally, for some purposes the root or orientation of the tree is omitted.
- In this case, the relationships among species remains intact, but monophyly cannot be directly inferred.

rooted cladogram (slanted cladogram)

Slanted cladogram

Rooting

A **rooted** phylogeny is a phylogenetic tree in which the <u>ordering</u> of the nodes in any path from the deepest node in the tree implies a temporal sequence of ancestor-descendant relationships along that path.

Rooted vs. unrooted trees

 Given an unrooted phylogeny, the root can be placed on any branch or node.

 Each different placement of the root creates a different rooted phylogeny.

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(phytools)
Loading required package: ape
Loading required package: maps
> data(wasp.trees)
> data(wasp.data)
> ## create co-phylogenetic object
> wasp.cophylo<-cophylo(wasp.trees[[1]].wasp.trees[[2]],
+ assoc=wasp.data)
Rotating nodes to optimize matching...
Done.
> ## plot co-phylogenies
> plot(wasp.cophylo,link.type="curved".link.lwd=4,
+ link.lty="solid",link.col=make.transparent("red",
+ 0.25))

Phylogenetic tree rooting Type 'demo()' for some demos, 'helpA)' for or

RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help

Phylogenetic tree rooting

RStudio

Rooted vs. unrooted trees

- Different placements of the root make different implicit statements about the monophyly of different clades in our tree. Why?
- Most methods for phylogeny inference give the same score to any tree with the same unrooted topology.
- This means that monophyly must be tested after first rooting the tree.

File Edit Code View Plots Session Build Debug Profile Tools Help

Rooting & monophyly

Node rotation

The **rotation** of nodes in the tree is *arbitrary*. That means that we can always swap the position of two subtrees descended from a common ancestor without changing the tree.

Node rotation shark gold fish -coelacanth -iguana robin -human -lemur ⁻bat −pig _{-- P. xanthocephalus}---whale areenwood -cow

Node rotation gold fish -coelacanth -iguana robin P. astrabocheilus human P athysanus Temur -bat ¬pig
P. nigriventris -whale COW-----P. greenwood shark

Node rotation -coelacanth -iguana robin -whale COW -human ⁻lemur −bat _{re P. xanthocephalus} gold fish Pageenwood shark

Node rotation ⁻coelacanth -whale human P athysanus ⁻lemur -bat -iguana robin P. xanthocephalus gold fish Pageenwood shark

All of these graphs show the

same tree!!

R is a collaborative project with many contributors.

ris a corraborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

```
> library(phytools)
Loading required package: ape
Loading required package: maps
> data(wasp.trees)
> data(wasp.data)
> ## create co-phylogenetic object
> wasp.cophylo<-cophylo(wasp.trees[[1]].wasp.trees[[2]],
+ assoc=wasp.data)
Rotating nodes to optimize matching...
Done.
> ## plot co-phylogenies
> plot(wasp.cophylo.link.type="curved".link.lwd=4,
+ link.lty="solid".link.col=make.transparent("red".
```


RStudio

RStudio

The "Newick string"

- The tree can be represented compactly (and completely) in a line of text called a Newick string.
- (The source of the Newick <u>standard</u>.)
- For instance, the Newick string for the phylogenetic hypothesis that of species A, B, and C, A & B are more closely related to each other than either is to see is as follows: ((A,B),C);

(((Human, Chimp), Gorilla), Monkey);

The "Newick string"

- The tree can be represented compactly (and completely) in a line of text called a Newick string.
- For instance, the Newick string for the phylogenetic hypothesis that of species A, B, and C, A & B are more closely related to each other than either is to see is as follows: ((A,B),C);
- We can also label internal nodes with the names of higher taxa.

The "Newick string"

(((((((cow, pig)artiodactyls, whale)cetartiodactyls, (bat, (lemur, human)primates))mammals,
 (robin, iguana)reptiles)tetrapods, coelacanth)sarcopterygians, gold_fish)osteichthians,
 shark)vertebrates;

- R is simultaneously:
 - a statistical software.
 - a scientific computing environment.
 - a programming language.
- R is distributed free and open source.
- R requires that you enter commands into a command-line interface.
- The two main components of an R session are objects & functions.
- Objects are variables, data, and results that we have input, uploaded, or created in memory.
- Functions are special types of objects that take one or more arguments, and then do something (e.g., create a new object, make a visualization, or write a file).