

ANH NGO - BS20DSY035

LINEAR REGRESSION ANALYSIS

Fish Data

Linear regression analysis

Anh Ngo - BS20DSY035

Bachelor of Data Science 2020 S P Jain School of Global Management Prof. Suchismita Das May 02, 2021

Contents

1.	In	ıtrodu	ıction	3
	1.1	Rej	port Objectives	3
	1.2	Pro	oblem Statement	3
2.	0	vervi	ew	3
3.	D	ataset	t Exploration	4
	3.1	Dat	taset Dictionary	4
	3.2	Des	scriptive Analysis	4
4.	E	xplora	atory Data Analysis	5
4	4.1	Un	ivariate Analysis	5
	4.	1.1	Length	5
	4.	1.2	Height	5
	4.	1.3	Width	6
	4.	1.4	Weight	6
4	4.2	Biv	variate Analysis	7
	4.	2.1	Analyzing relationship between Length/Height/Width and Weight	7
	4.	2.2	Fit Simple Linear Regression	9
5.	M	[ultipl	le linear regression	12
:	5.1	Fit	multiple linear regression	12
	5.2	Eva	aluate the utility of the multiple linear regression model	13
	5.3	Co	nfidence Interval of the Error Variance σ2	13
	5.4	Res	sidual Analysis	14
6.	H	ypoth	nesis Testing	15
(6.1	The	e Model Utility F Test for Multiple Regression	15
(6.2	The	e Model Utility t Test	16
7.	C	onclu	sion	17
Δr	ner	ndix		18

1. Introduction

1.1 Report Objectives

The dataset contains 159 records of common fish species in Finland's market sales. It includes Weight, Length, Height, and Width. In this paper, I will focus on the summary of each statistics and then estimate the weight of fish using linear regression model.

1.2 Problem Statement

There are numerous factors that affect the growth of fish. Hence, without solid understanding about significant factors in the relationship with fish's weight, fishermen may fail to find out the biological changes in the fish. Indeed, there is no doubt that analyzing this dataset is of great importance in fishery assessments.

My observations will be put forward with the help of two software: Microsoft Excel 365 and JMP Pro 15 as statistical tools.

2. Overview

The dataset is built with the purpose of helping fishermen in assessing the variations from the expected weight for the known features of fish.

In this statistical report, various analysis methods from univariate to bivariate method would be used to summarize the data statistics and its distribution. Then, using three criteria as mentioned above to predict weight and evaluate what is the most crucial factor. To that end, numerous hypotheses would be tested to evaluating utility of the model.

The dataset is owned by Aung Pyae.

3. Dataset Exploration

3.1 Dataset Dictionary

Weight: Weight of the fish. It is measured in grams.

Length: Length of the fish from the nose to the end of the tail. It is measured in centimeters.

Height: The maximum height of the fish. It is measured in centimeters. **Width**: The maximum width of the fish. It is measured in centimeters.

3.2 Descriptive Analysis

Below those measures have been taken for all four variables independently:

	Length	Height	Width	Weight
Mean	31.227044	8.9709937	4.4174855	398.32642
Std Dev	11.610246	4.2862076	1.6858039	357.97832
Sum	4965.1	1426.388	702.3802	63333.9
Variance	134.79781	18.371576	2.8419347	128148.48
Skewness	0.3915408	0.3971864	0.0049722	1.1044504
Kurtosis	0.0754234	-0.614174	-0.534645	0.8838414
Minimum	8.8	1.7284	1.0476	0
Maximum	68	18.957	8.142	1650
Median	29.4	7.786	4.2485	273
Mode	23.5	2.2139	3.525	300
Range	59.2	17.2286	7.0944	1650
IQR	16.6	6.4414	2.2134	530
Count	159	159	159	159
Upper 95% Mean	33.045615	9.6423638	4.6815414	454.39835
Lower 95% Mean	29.408473	8.2996236	4.1534297	342.25449

4. Exploratory Data Analysis

4.1 Univariate Analysis

4.1.1 Length

- The average length is about 31 cm with a standard deviation of around 11.6 cm. IQR is 16.6 cm.
- There is one outlier whose value is 68 cm. Consider eliminating this value, the distribution of Length can be approximately normal.

4.1.2 Height

- Length of the right whisker is more than that of the left one, then the distribution is quite right skewed. However, there are no outliers.
- The average height is 8.97 cm, which is relatively higher than the median (7.79 cm). Its standard deviation is around 4.3 cm.

4.1.3 Width

- Width is normally distributed.
- The average width is 4.42 cm with a standard deviation of 1.7 cm. IQR is 2.2 cm.
- There are no outliers. The mean and median values are not much different.

4.1.4 Weight

- Most fish have their weight between 0 and 250 grams.
- The distribution is moderately skewed to the right. Indeed, the length of the right whisker is more than that of the left one. Hence, mean value is larger than median value.
- There are three outliers whose values are 1550g, 1600g and 1650g, respectively.

4.2 Bivariate Analysis

4.2.1 Analyzing relationship between Length/Height/Width and Weight Length and Weight

	Value	Lower 95%	Upper 95%	Signif. Prob
Correlation	0.923044	0.896145	0.943184	<.0001*
Covariance	3836.369			
Count	159			

Height and Weight

	Value	Lower 95%	Upper 95%	Signif. Prob
Correlation	0.724345	0.640962	0.790832	<.0001*
Covariance	1111.413			
Count	159			

	Value	Lower 95%	Upper 95%	Signif. Prob
Correlation	0.886507	0.847847	0.915791	<.0001*
Covariance	534.9901			
Count	159			

From the previous three scatterplots, we can say that Length, Height, and Width are strongly positively correlated to Weight (r > 0.7). This means fish that have high measurements in length, height and width tend to weigh heavier.

4.2.2 Fit Simple Linear Regression

If I assume that for any particular combination of predictor variable values, the distribution of errors is normal with mean 0 and constant variance σ^2 , then the simple linear regression model seems appropriate.

4.2.2.1 Length – Weight Linear Regression:

Fit a simple linear regression on x = Length (cm) and y = Weight (g):

Weight = -490.4006 + 28.460171*Length

Summary of Fit of Length - Weight Linear Regression

RSquare	0.852009
Root Mean Square Error	138.1505
Mean of Response	398.3264
Observations	159

The simple linear regression model is: $\hat{y} = -490.4006 + 28.460171x$

 $r^2 \approx 0.85$: Approximately 85% of observed variation in weight can be explained by the simple linear regression model relationship between weight and length.

The magnitude of a typical sample deviation from the least-square line is about 138.

4.2.2.2 Height – Weight Linear Regression:

Fit a simple linear regression on x = Height (cm) and y = Weight (g):

Weight = -144.386 + 60.496351*Height

Summary of Fit of Height – Weight Linear Regression

RSquare	0.524676
Root Mean Square Error	247.5884
Mean of Response	398.3264
Observations	159

The simple linear regression model: $\hat{y} = -144.386 + 60.496351x$ $r^2 \approx 0.52$: Approximately 52% of variation in observed y values that is explain

 $r^2 \approx 0.52$: Approximately 52% of variation in observed y values that is explained by the fitted model. And $s_e \approx 248$, which is very large.

Hence, the model does not fit the dataset well.

4.2.2.3 Width - Weight Linear Regression

Fit a simple linear regression on x = Height (cm) and y = Weight (g):

Weight = -433.2589 + 188.24855*Width

Summary of Fit of Width – Weight Linear Regression

RSquare	0.785894
Root Mean Square Error	166.169
Mean of Response	398.3264
Observations	159

The simple linear regression model: $\hat{y} = -433.2589 + 188.24855x$ $r^2 \approx 0.8$: Approximately 80% of the observed variation in y can be attributed to the linear relationship with Width.

The magnitude of a typical sample deviation from the least-square line is about 166.

5. Multiple linear regression

From Bivariate Analysis part, it seems that there is a linear relationship between the independent variables (Length, Height and Width) and the dependent variable (Weight).

Now, I will analyse the multiple linear regression to get better understanding about this relationship.

5.1 Fit multiple linear regression

A multiple linear regression model takes the form:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

where: \hat{y} = Weight, x_1 = Length, x_2 = Height, x_3 = Width

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t	Lower 95%	Upper 95%
Intercept	-521	29.33136	-17.76	<.0001*	-578.9408	-463.0592
Length	19.44453	1.812478	10.73	<.0001*	15.864185	23.024875
Height	3.8534309	3.848711	1.00	0.3183	-3.749262	11.456124
Width	62.832602	14.55995	4.32	<.0001*	34.071066	91.594138

From the above table, we have: $\hat{y} = -521 + 19.44453x_1 + 3.8534309x_2 + 62.832602x_3$ We can see that the three independent variables (Length, Height, and Width) are positively linked to Weight:

- When Height and Width are fixed, the mean increase in weight associated with a 1-cm increase in length is approximately 19g.
- When Length and Width are fixed, the mean increase in weight associated with a 1-cm increase in height is about 4g.
- When Length and Height are fixed, the mean increase in weight associated with a 1-cm increase in width is nearly 63g.
- → Width is the most crucial factor and hence, is particularly useful for predicting weight of fish with the same length and height.

From the table, we can also construct 95% Confidence Interval for β_i :

$$15.864185 \le \beta_1 \le 23.024875$$

$$-3.749262 \le \beta_2 \le 11.456124$$

$$34.071066 \leq \beta_3 \leq 91.594138$$

5.2 Evaluate the utility of the multiple linear regression model

Summary of Fit of Multiple Linear Regression

RSquare	0.877841
Root Mean Square Error	126.323
Mean of Response	398.3264
Observations	159

The coefficient of multiple determination is $R^2 \approx 87.8\%$, which means about 87.8% of variation in observed y values is explained by the fitted model. And the value of s_e is much lower (about 126) compared to the three simple linear regressions above.

To that end, the multiple linear regression is the most appropriate model and hence successful in relating y to the predictors.

5.3 Confidence Interval of the Error Variance σ^2

The residual sum of squares is estimated as

SSResid =
$$\sum_{i=1}^{159} (y_i - \hat{y}_i)^2 = 2473414$$

Because 4 parameters need to be estimated, an unbiased estimator of σ^2 is:

$$\widehat{\sigma}^2 = \frac{\text{SSResid}}{159 - 4} = 15958$$

Choosing significant value $\propto = 0.05$, we get $\chi^2_{155,0.025} = 191.3623$ and $\chi^2_{155,0.975} = 122.4228$ Now, I construct 95% Confidence Interval for σ^2 :

$$\begin{split} &\frac{(n-k)\widehat{\sigma}^2}{\chi_{n-k,\alpha/2}^2} \leq \sigma^2 \leq \frac{(n-k)\widehat{\sigma}^2}{\chi_{n-k,(1-\frac{\alpha}{2})}^2} \\ &\Leftrightarrow \frac{(159-4)\times 15958}{191.3623} \leq \sigma^2 \leq \frac{(159-4)\times 15958}{122.4228} \\ &\Leftrightarrow 12925.691 \leq \sigma^2 \leq 20204.488 \end{split}$$

5.4 Residual Analysis

Analyzing the residuals assists us in checking four basic assumptions of linear regression model.

As you can see from the "Residual plot" above, the points follow a curve pattern, suggesting a better fit for a nonlinear model.

However, the mean residual (the blue line) is around the value 0, hence, the assumption that $\mu_{\epsilon}=0$ is reasonable.

Looking at "Residual Normal Quantile Plot", most of the points fall outside the red border. Hence, the assumption that the distribution of residual at any particular x value is normal is not valid.

As a result, the four assumptions for linear regression model are not reasonable.

6. Hypothesis Testing

6.1 The Model Utility F Test for Multiple Regression

$$H_0 \colon \beta_1 = \beta_2 = \beta_3 = 0$$

 H_1 : $\beta_i \neq 0$, for atleast one i.

ANOVA Table:

Analysis of Variance

Source of Variation	DF	Sum of Squares	Mean Square	F Ratio
Regression	3	17774045	5924682	371.2787
Residual	155	2473414	15958	Prob > F
Total	158	20247459		<.0001*

Following the ANOVA table, we get F = 371.2787

Choosing significant value α = 0.05, $F_{3, 155, 0.05}$ = 2.6629

→
$$F = 371.2787 > F_{3,155,0.05} = 2.6629$$

Hence, we have strong evidence to reject H_0 , which means there is at least one independent variable that affects the response.

6.2 The Model Utility t Test

Now, I conduct the model utility t test to evaluate whether there is a useful linear relationship between each individual independent variable and the response.

$$H_0$$
: $\beta_i = 0$, for $i = 1,2,3$

 H_1 : $\beta_i \neq 0$

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t	Lower 95%	Upper 95%
Intercept	-521	29.33136	-17.76	<.0001*	-578.9408	-463.0592
Length	19.44453	1.812478	10.73	<.0001*	15.864185	23.024875
Height	3.8534309	3.848711	1.00	0.3183	-3.749262	11.456124
Width	62.832602	14.55995	4.32	<.0001*	34.071066	91.594138

The estimated standard deviation of the statistic $b(s_b)$ is shown in the column 'Std Error' above.

We also use statistic $t = \frac{b-\beta}{s_b}$ to check their effect on model. Following the Parameter Estimates table, we get the test statistic for x_1 is $t_1 = 10.73$. Similarly, $t_2 = 1.00$, $t_3 = 4.32$

Choosing significant value $\propto = 0.05$, $t_{157,0.025} = 1.9752$

We have:

 $|t_1| > t_{157,\,0.025}$ and $|t_3| > t_{157,\,0.025}$. Hence, we have strong evidence to reject H_0 , which means Length and Width both affect Weight.

On the other hand, $|t_2| < t_{157,\,0.025}$. Hence, it fails to reject H_0 or say: there is no useful linear relationship between Height and Weight.

7. Conclusion

In short, from descriptive and graphical analysis, we can conclude that the three mentioned factors are strongly positively correlated to the weight of fish. However, there are several factors which I have not considered in this paper also play a crucial role in relation to weight such as species of fish, environmental conditions, etc.

Even though the multiple linear regression in my report can be used to predict the weight of fish at the given three measurements, the idea should not be generalized because the dataset that I take is collected in one certain place: Finland.

Also, as I stated above, four assumptions of linear regression model are not satisfied, hence, it is better to fit a nonlinear model to this dataset in order to predict the target precisely.

This paper gives only part of a greater work, by focusing on the statistical area, that has to be done in order to predict the variations in the fish's weight.

Appendix

CIIGIZ				ī			
Weight	Length	_	Width	Weight	Length	Height	Width
242	30	11.52	4.02	85	20.8	5.1376	3.0368
290	31.2	12.48	4.3056	85	21	5.082	2.772
340	31.1	12.3778	4.6961	110	22.5	5.6925	3.555
363	33.5	12.73	4.4555	115	22.5	5.9175	3.3075
430	34	12.444	5.134	125	22.5	5.6925	3.6675
450	34.7	13.6024	4.9274	130	22.8	6.384	3.534
500	34.5	14.1795	5.2785	120	23.5	6.11	3.4075
390	35	12.67	4.69	120	23.5	5.64	3.525
450	35.1	14.0049	4.8438	130	23.5	6.11	3.525
500	36.2	14.2266	4.9594	135	23.5	5.875	3.525
475	36.2	14.2628	5.1042	110	23.5	5.5225	3.995
500	36.2	14.3714	4.8146	130	24	5.856	3.624
500	36.4	13.7592	4.368	150	24	6.792	3.624
340	37.3	13.9129	5.0728	145	24.2	5.9532	3.63
600	37.2	14.9544	5.1708	150	24.5	5.2185	3.626
600	37.2	15.438	5.58	170	25	6.275	3.725
700	38.3	14.8604	5.2854	225	25.5	7.293	3.723
700	38.5	14.938	5.1975	145	25.5	6.375	3.825
610	38.6	15.633	5.1338	188	26.2	6.7334	4.1658
650	38.7	14.4738	5.7276	180	26.5	6.4395	3.6835
575	39.5	15.1285	5.5695	197	27	6.561	4.239
685	39.2	15.9936	5.3704	218	28	7.168	4.144
620	39.7	15.5227	5.2801	300	28.7	8.323	5.1373
680	40.6	15.4686	6.1306	260	28.9	7.1672	4.335
700	40.5	16.2405	5.589	265	28.9	7.0516	4.335
725	40.9	16.36	6.0532	250	28.9	7.2828	4.5662
720	40.6	16.3618	6.09	250	29.4	7.8204	4.2042
714	41.5	16.517	5.8515	300	30.1	7.5852	4.6354
850	41.6	16.8896	6.1984	320	31.6	7.6156	4.7716
1000	42.6	18.957	6.603	514	34	10.03	6.018
920	44.1	18.0369	6.3063	556	36.5	10.2565	6.3875
955	44	18.084	6.292	840	37.3	11.4884	7.7957
925	45.3	18.7542	6.7497	685	39	10.881	6.864
975	45.9	18.6354	6.7473	700	38.3	10.6091	6.7408
950	46.5	17.6235	6.3705	700	39.4	10.835	6.2646
40	16.2	4.1472	2.268	690	39.3	10.5717	6.3666
69	20.3	5.2983	2.8217	900	41.4	11.1366	7.4934
78	21.2	5.5756	2.9044	650	41.4	11.1366	6.003
87	22.2	5.6166	3.1746	820	41.3	12.4313	7.3514
120	22.2	6.216	3.5742	850	42.3	11.9286	7.1064
0	22.8	6.4752	3.3516	900	42.5	11.73	7.225
110	23.1	6.1677	3.3957	1015	42.4	12.3808	7.4624
120	23.7	6.1146	3.2943	820	42.5	11.135	6.63

				1				
150	24.7	5.8045	3.7544		1100	44.6	12.8002	6.8684
145	24.3	6.6339	3.5478		1000	45.2	11.9328	7.2772
160	25.3	7.0334	3.8203		1100	45.5	12.5125	7.4165
140	25	6.55	3.325		1000	46	12.604	8.142
160	25	6.4	3.8		1000	46.6	12.4888	7.5958
169	27.2	7.5344	3.8352		200	34.8	5.568	3.3756
161	26.7	6.9153	3.6312		300	37.8	5.7078	4.158
200	26.8	7.3968	4.1272		300	38.8	5.9364	4.3844
180	27.9	7.0866	3.906		300	39.8	6.2884	4.0198
290	29.2	8.8768	4.4968		430	40.5	7.29	4.5765
272	30.6	8.568	4.7736		345	41	6.396	3.977
390	35	9.485	5.355		456	45.5	7.28	4.3225
270	28.7	8.3804	4.2476		510	45.5	6.825	4.459
270	29.3	8.1454	4.2485		540	45.8	7.786	5.1296
306	30.8	8.778	4.6816		500	48	6.96	4.896
540	34	10.744	6.562		567	48.7	7.792	4.87
800	39.6	11.7612	6.5736		770	51.2	7.68	5.376
1000	43.5	12.354	6.525		950	55.1	8.9262	6.1712
55	16.5	6.8475	2.3265		1250	59.7	10.6863	6.9849
60	17.4	6.5772	2.3142		1600	64	9.6	6.144
90	19.8	7.4052	2.673		1550	64	9.6	6.144
120	21.3	8.3922	2.9181		1650	68	10.812	7.48
150	22.4	8.8928	3.2928		6.7	10.8	1.7388	1.0476
140	23.2	8.5376	3.2944		7.5	11.6	1.972	1.16
170	23.2	9.396	3.4104		7	11.6	1.7284	1.1484
145	24.1	9.7364	3.1571		9.7	12	2.196	1.38
200	25.8	10.3458	3.6636		9.8	12.4	2.0832	1.2772
273	28	11.088	4.144		8.7	12.6	1.9782	1.2852
300	29	11.368	4.234		10	13.1	2.2139	1.2838
5.9	8.8	2.112	1.408		9.9	13.1	2.2139	1.1659
32	14.7	3.528	1.9992		9.8	13.2	2.2044	1.1484
40	16	3.824	2.432		12.2	13.4	2.0904	1.3936
51.5	17.2	4.5924	2.6316		13.4	13.5	2.43	1.269
70	18.5	4.588	2.9415		12.2	13.8	2.277	1.2558
100	19.2	5.2224	3.3216		19.7	15.2	2.8728	2.0672
78	19.4	5.1992	3.1234		19.9	16.2	2.9322	1.8792
80	20.2	5.6358	3.0502					