CS2105

An Awesome Introduction to Computer Networks

Lecture 5 discussion

rdt 3.0: Stop-and-wait Operation

Network protocol limits use of physical resources!

$$U_{\text{sender}} = \frac{L / R}{RTT + L/R} = \frac{0.008}{30 + 0.008} = 0.00027$$

Pipelining: Increased Utilization

GBN vs. SR

Go-back-N

- Sender can have up to N unACKed packets in pipeline
- Receiver only sends cumulative ACKs
 - Out-of-order packets discarded
- Sender sets timer for the oldest unACKed packet
 - when timer expires, retransmit *all* unACKed packets

Selective Repeat

- Sender can have up to N unACKed packets in pipeline
- Receiver sends *individual*ACK for each packet
 - Out-of-order packets buffered
- Sender maintains timer for *each* unACKed packet
 - when timer expires, retransmit only that unACKed packet

TCP Overview [RFC 793, 1122, ... 2581 ...]

Point-to-point:

One sender, one receiver.

Connection-oriented:

 handshaking (exchange of control messages) before sending app data.

Full duplex service:

bi-directional data flow in the same connection

Reliable, in-order byte steam:

use sequence numbers to label bytes

Connection-oriented De-mux

- A TCP connection (socket) is identified by 4-tuple:
 - (srcIPAddr, srcPort, destIPAddr, destPort)
 - Receiver uses all four values to direct a segment to the appropriate socket.

TCP Sequence Number

- "Byte number" of the <u>first</u> byte of data in a segment.
- Example: send a file of 500,000 bytes; MSS is 1,000 bytes.

Dividing file data into TCP segments

❖ Seq. # of 1st TCP segment: 0, 2nd TCP segment: 1,000, 3rd TCP segment: 2,000, 4th TCP segment: 3,000, etc.

Example: TCP Echo Server

- TCP (and also UDP) is a full duplex protocol
 - bi-directional data flow in the same TCP connection.
- Example:

TCP Echo Server

TCP ACK Number

source port #	dest port #	
sequence number		
ACK number		
A		
checksum		

Seq # of the next byte of data expected by receiver.

Sequence number of a segment	Amount of data carried	Corresponding ACK number
0	1,000	1,000
1,000	1,000	2,000
2,000	1,000	3,000
3,000	1,000	4,000

- TCP ACKs up to the first missing byte in the stream (cumulative ACK).
 - Note: TCP spec doesn't say how receiver should handle out-of-order segments - it's up to implementer.

TCP Timeout / Retransmission

Establishing Connection

source port #	dest port #	
sequence number		
ACK number		
A S		
checksum		

- Before exchanging app data, TCP sender and receiver "shake hands".
 - Agree on connection and exchange connection parameters.

Q1

1s complement is used as checksum in ______

- A. TCP but not UDP
- B. UDP but not TCP
- C. Both TCP and UDP

Q2

Which of the following does UDP implement or guarantee?

- A. Flow control
- B. Congestion control
- C. Minimum throughput
- D. Maximum end-to-end delay
- E. None of the above

Q3

A TCP sender transmits 5 segments with the sequence numbers 1000, 2000, 3000, 4000 and 5000. After a short while, the sender receives 4 acknowledgements with the ACK numbers 2000, 2000, 2000 and 5000.

What is the sequence number of the TCP segment that is lost?

- A. 2000
- B. 3000
- C. 4000
- D. 5000