Implementation of Regression Model to confirm if there is a relationship between the two sets of columns, (1) "age" and "bmi" and (2) "age" and "charges" from the given data, using Python in jupyter notebook.

Student Name: Gargi Darade.

Subject/Class: CMPS 451 Artificial Intelligence.

#Step 1:- Import the required libraries #Numpy for statistical computations #Matplotlib to plot the graph #make_blobs from sklearn.datasets import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

#from sklearn.datasets import make_blobs from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler #!pip install tensorflow import tensorflow as tf

#load data from csv file data_path = 'insurance.csv'

create pandas dataframe
df = pd.read_csv(data_path)

remove spaces on the column
df.columns = df.columns.str.lstrip()
df.columns = df.columns.str.rstrip()

print out sample dataset
print("Total records:",len(df))
df.shape
df.head()

Total records: 1338

Out[86]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

```
# filter the columns by only the required_columns
required_cols = ['age', 'bmi', 'charges']
df = df[required_cols]
df.head()
# check number of nan values in dataframe
df.isna().sum()
```

age 0 bmi 0 charges 0 dtype: int64

#to check relation plot scatter plot plt.scatter('age', 'bmi', data=df); plt.title('Age vs BMI', fontsize=16) plt.xlabel('Age', fontsize=12) plt.ylabel('BMI', fontsize=12) plt.savefig("AgeVsBMI.png") plt.show()


```
from numpy.polynomial.polynomial import polyfit
# Fit with polyfit
# Sample data
x = df['age']
y = df['bmi']
b, m = polyfit(x,y, 1)
plt.plot(x, y, '.')
plt.plot(x, b + m * x, '-')
plt.savefig("AgeVsBMIFt.png")
plt.show()
```


The above plots proves no relation between Age and BMI (slope is zero)

```
plt.scatter('age', 'charges', data=df);
plt.title('Age vs Charges', fontsize=16)
```

```
plt.xlabel('Age', fontsize=12)
plt.ylabel('Charges', fontsize=12)
plt.savefig("AgeVsCharges.png")
plt.show()
```


from numpy.polynomial.polynomial import polyfit
Fit with polyfit
Sample data
x = df['age']
y = df['charges']

#sns.regplot(x=x, y=y) b, m = polyfit(x,y, 1)

plt.plot(x, y, '.')

plt.plot(x, b + m * x, '-')

plt.savefig("AgeVsChargesFt.png")

plt.show()

The above plots proves weak relation between Age and Charges.

calculate the Pearson's correlation between two variables

The positive correlation between the two variables is strong, if it surpasses the 0.5 threshold and approaches 1.0

```
from scipy.stats import pearsonr
corr, _ = pearsonr(df['age'], df['bmi'])
print('Pearsons correlation between Age and BMI: %.3f' % corr)
corr, _ = pearsonr(df['age'], df['charges'])
print('Pearsons correlation between Age and Charges: %.3f' % corr)

Pearsons correlation between Age and BMI: 0.109
Pearsons correlation between Age and Charges: 0.299
```

If you are unsure of the distribution and possible relationships between two variables, the Spearman correlation coefficient is a good tool to use.

```
from scipy.stats import spearmanr
corr, pvalue = spearmanr(df['age'], df['bmi'])
print('Spearman's correlation between Age and BMI: %.3f' % corr)
#print(f"P-value: {pvalue}")
corr, pvalue = spearmanr(df['age'], df['charges'])
print('Spearman's correlation between Age and Charges: %.3f' % corr)
#print(f"P-value: {pvalue}")

Spearman's correlation between Age and BMI: 0.108
Spearman's correlation between Age and Charges: 0.534
```

Better than pearsons but not that strong.

What if we use log transformation on Charges

```
x = df['age']
y = df['charges']
slope, intercept = np.polyfit(x, np.log(y), 1)
plt.figure()
plt.scatter(x, np.log(y))
plt.plot(x, (slope*x)+intercept)
plt.savefig("AgeVsLogChargesFt.png")
```

plt.show()


```
from scipy.stats import spearmanr
corr, pvalue = spearmanr(df['age'], df['charges'])
print('Spearman's correlation between Age and charges: %.3f' % corr)
#print(f"P-value: {pvalue}")
corr, pvalue = spearmanr(df['age'], np.log(df['charges']))
print('Spearman's correlation between Age and Log Charges: %.3f' % corr)
#print(f"P-value: {pvalue}")

Spearman's correlation between Age and charges: 0.534
Spearman's correlation between Age and Log Charges: 0.534
```

Ordinary least squares (OLS) regression is an optimization strategy used in linear regression models

that finds a straight line that fits as close as possible to the data points, in order to help estimate the relationship between a dependent variable and one or more independent variables

```
import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
x = df['age']
y = df['charges']
results = sm.OLS(y,sm.add_constant(x)).fit()
print(results.params)
print(results.summary())
```

mn=np.min(x)
mx=np.max(x)

x1=np.linspace(mn,mx,500) y1=results.params[1]*x1+results.params[0] plt.plot(x,y,'ob') plt.plot(x1,y1,'-r') plt.savefig("OLSRegAgeVsChargesFt.png") plt.show()

const 3165.885006 age 257.722619

dtype: float64

dtype. 110at04		OLS Re	-				
======================================	======			R-squ		=======	0
.089 Model:		OLS	_	R-squared:		0	
.089			_	_		1	
Method: 31.2	Least Squa	res	F-sta	itistic:		1	
Date: e-29	on, 07 Apr 2	025	Prob	(F-statistic):	4.89	
Time: 415.	14:20	14:20:24		Log-Likelihood:			
No. Observations	1:	338	AIC:			2.883	
e+04 Df Residuals: e+04	1	336	BIC:			2.884	
Df Model: Covariance Type:		nonrob	1 ust				
====	======	========	=====	-====		=======	======
975]	coef	std err		t	P> t	[0.025	0.
const 3165	.8850	937.149	3	3.378	0.001	1327.440	5004
	.7226	22.502	11	.453	0.000	213.579	301
====	======	-=======	=====		========	=======	
Omnibus:		399.	600	Durbi	.n-Watson:		2
Prob(Omnibus):	0.	000	Jarqu	ue-Bera (JB):		864	
Skew:		1.	733	Prob((JB):		2.15e
-188 Kurtosis: 124.		4.	869	Cond.	No.		

Ordinary least squares (OLS) regression using log transformation on Charges

```
import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
x = df['age']
y = np.log(df['charges'])
results = sm.OLS(y,sm.add_constant(x)).fit()
print(results.params)
print(results.summary())
```

```
mn=np.min(x)
mx=np.max(x)
x1=np.linspace(mn,mx,500)
y1=results.params[1]*x1+results.params[0]
plt.plot(x,y,'ob')
plt.plot(x1,y1,'-r')
plt.savefig("OLSRegAgeVsLogChargesFt.png")
plt.show()
```

const 7.744247 age 0.034545 dtype: float64

OLS Regression Results

```
Dep. Variable: charges R-squared: 0.279

Model: OLS Adj. R-squared: 0.278

Method: Least Squares F-statistic: 5
```

Date: e-97	Mon	, 07 Apr	2025	Prob	(F-statistic):		7.48
E-97 Time: 67.3		16:0	04:14	Log-Likelihood:		-15	
No. Observation 139.		1338	AIC:			3	
Df Residuals: 149.			1336	BIC:			3
Df Model:			1				
Covariance Type	nonro	bust					
====							
975]	coef	std err		t	P> t	[0.025	0.
const .868	7.7442	0.063	122	.272	0.000	7.620	7
age .038	0.0345	0.002	22	.715	0.000	0.032	0
====	=======	=======	=====	=====	=========	=======	
Omnibus: .029		179	9.280	Durbi	in-Watson:		2
<pre>Prob(Omnibus): .341</pre>		(0.000	Jarqı	ue-Bera (JB):		256
Skew: e-56		1	L.067	Prob	(JB):		2.17
Kurtosis: 124.		3.206		Cond. No.			
=======================================	=======	=======	======	=====		=======	=====

R-squared is 0.089 when charges are used as is, becomes R-squared 0.279 when log transformation is used on charges

```
import matplotlib.pyplot as plt
from scipy import stats
x = df['age']
y = np.log(df['charges'])
slope, intercept, r, p, std_err = stats.linregress(x, y)
def modelYval(x):
return slope * x + intercept
mymodel = list(map(modelYval, x))
print("slope:",slope)
print("intercept:",intercept)
print("r:",r)
print("p:",p)
print("std_err:",std_err)
plt.scatter(x, y)
plt.plot(x, mymodel)
plt.savefig("LinRegAgeVsLogChargesFt.png")
plt.show()
slope: 0.03454513080663117
intercept: 7.744246908060742
```


import matplotlib.pyplot as plt from scipy import stats

r: 0.5278340489394343 p: 7.477385218968553e-97

std err: 0.0015207983609832536

```
x = df['age']
y = df['charges']
slope, intercept, r, p, std_err = stats.linregress(x, y)
```

```
def modelYval(x):
return slope * x + intercept
mymodel = list(map(modelYval, x))
print("slope:",slope)
print("intercept:",intercept)
print("r:",r)
print("p:",p)
print("std_err:",std_err)
plt.scatter(x, y)
plt.plot(x, mymodel)
plt.savefig("LinRegAgeVsLogChargesFt.png")
plt.show()
slope: 257.7226186668956
intercept: 3165.885006063023
r: 0.29900819333064776
p: 4.886693331718281e-29
std err: 22.5023892867703
```


Conclusion: from above regression analysis we can conclude that there is no relation between Age and BMI, but there is some weak relation between Age and charges.