Problem Set 1

SUBMISSION INSTRUCTIONS

Submit before the end of the day, that is, by 11:59 pm, on August 21, 2022.

EXERCISES

1. Determine Lipschitz constant L given by

$$L = \max_{(t,y)\in D} \left| \frac{\partial f(t,y)}{\partial y} \right|$$

for the following functions:

- (a) f(t,y) = 2y/t, $D = \{(t,y) : t \ge 1, y \in \mathbb{R}\}$
- (b) $f(t,y) = \tan^{-1} y, D = \mathbb{R}^2$
- (c) $f(t,y) = (t^3 2)^{27}/(17t^2 + 4), D = \mathbb{R}^2$
- (d) $f(t,y) = t y^2$, $D = \{(t,y) : t \in \mathbb{R}, |y| \le 10\}$
- 2. Write each of the following ODEs with given initial conditions as an equivalent first order system of ODEs:
 - (a) y'' = t + y + y', y(0) = 1, y'(0) = 1
 - (b) y''' = ty + y'', y(0) = 1, y'(0) = 0, y''(0) = 1
 - (c) y''' = y'' 2y' + y t + 1, y(0) = 1, y'(0) = 1, y''(0) = 1
 - (d) $y'' = y'(1 y^2) y$, y(0) = 1, y'(0) = 0
 - (e) y''' = -yy'', y(0) = 1, y'(0) = 0.25, y''(0) = 0.5
 - (f) $y_1'' = \alpha y_1/(y_1^2 + y_2^2)^{3/2}$, $y_2'' = \alpha y_2/(y_1^2 + y_2^2)^{3/2}$, $y_1(0) = 0.4$, $y_1'(0) = 0$, $y_2(0) = 0$, $y_2'(0) = 2$
- 3. Let u(t) be the solution, if it exists, to the initial value problem

$$y' = f(t, y), \quad y(t_0) = y_0.$$
 (1)

By integrating, show that u satisfies

$$u(t) = y_0 + \int_{t_0}^t f(s, u(s)) ds.$$

Conversely, show that if this equation has a continuous solution on the $t_0 \leq t \leq T$, then the initial value problem (1) has the same solution.

- 4. Show that Euler's method fails to approximate the solution $y(t) = (2t/3)^{3/2}, t \ge 0$, of the problem $y' = y^{1/3}, y(0) = 0$. Explain why.
- 5. Let $A, B, \eta_0, \ldots, \eta_N$ be non-negative numbers satisfying

$$\eta_{n+1} \le A\eta_n + B, \quad n = 0, \dots, N - 1.$$

Then, show that

$$\eta_n \le A^n \eta_0 + \left(\sum_{i=0}^{n-1} A^i\right) B, \quad n = 1, \dots, N.$$

6. Let $A_n > 1$ and $B_n \ge 0$ for $n = 0, 1, \dots, N - 1$ and let $\eta_0, \dots, \eta_N \ge 0$. Suppose that

$$\eta_{n+1} \le A_n \eta_n + B_n, \quad n = 0, \dots, N - 1.$$

Then, show that

$$\eta_n \le \left(\prod_{i=0}^{n-1} A_i\right) \eta_0 + \left(\prod_{i=0}^{n-1} A_i - 1\right) \sup_{0 \le i \le n-1} \frac{B_i}{A_i - 1}, \quad n = 1, \dots, N.$$

7. Consider the initial value problem

$$y' = f(t, y), \quad (t, y) \in [t_0, t^*] \times [a, b]$$

 $y(t_0) = y_0,$

with a continuous function f that is Lipschitz continuous in y with Lipschitz constant L. Show that, for every $\epsilon > 0$, there exists \tilde{h} such that for any choice of steps $\{h_n = t_{n+1} - t_n\}_{n=0}^{N-1}$ with $t_N = t^*$ satisfying $\max_{0 \le n \le N-1} h_n \le \tilde{h}$, we have that error $e_n = y_n - y(t_n)$ at $t = t_n$ in the Euler's method $y_{n+1} = y_n + h_n f(t_n, y_n), n \ge 1$, satisfies $||e_n|| \le \epsilon$ for all $n = 0, \ldots, N$.

Moreover, if the solution $y \in C^2[t_0, t^*]$, $\max_{0 \le n \le N} ||e_n|| \le C\tilde{h}$ where

$$C = ||y''||_{\infty} \frac{e^{L|t^* - t_0|} - 1}{2L}.$$

8. Repeat the previous problem for backward Euler's method.