Simulation of a P2P Cryptocurrency Network

CS 765 - Introduction of Blockchains, Cryptocurrencies, and Smart Contracts

Spring 2024

Indian Institute of Technology Bombay

Authors:

Debdoot (23M0765)

Nilava Sarkar (22M0753)

Niraj Jaiswal (22M0779)

Lecturer:

Prof. Vinay Joseph Ribeiro

Dept. of CSE, IIT Bombay

February 17, 2024

1. Introduction

We've developed a discrete-event simulator tailored for a peer-to-peer cryptocurrency network. This type of simulator operates by managing an event queue alongside a global clock. It selects and processes the earliest event from this queue and may generate additional events based on the execution outcome. In our report, we detail various design decisions and conduct analyses on diverse simulations utilizing different system parameters outlined in the configuration file.

2. What are the theoretical reasons of choosing the exponential distribution?

The exponential distribution is chosen because it assumes transaction arrivals are random and independent, consistent with real-world behavior. It's mathematically simple and aligns with the Poisson process, making analysis easier. Empirical data also supports its use.

Let Δ be the small time interval and probability of mining a block in time Δ be $\beta\Delta$, where β depends on the hashing power. Let $I(I=n\Delta)$ be the time interval. The probability of mining a block is time interval I can be drawn from an exponential distribution with mean $\frac{1}{\beta}$ show in below equations.

$$P[I = n\Delta] = (1 - \beta\Delta)^{n-1}\beta\Delta$$

$$P[I > n\Delta] = (1 - \beta\Delta)^n$$
let $n\Delta = x$

$$P[I > x] = (1 - \frac{\beta\Delta}{n})^n$$

when $n \to \infty$ the geometric distribution behaves like exponential distribution.

$$P[I > x] = e^{-\beta x}$$

3. Why is the mean of d_{ij} inversely related to c_{ij} ? Give justification for this choice.

When the link speed of a node, denoted as c_{ij} , is high, the time needed to buffer packets in the queue decreases. Consequently, packets spend less time waiting in the queue, resulting in a reduction in the average queuing delay, d_{ij} .

4. Reason for choosing a particular mean T_k to get the random block generation time from exponential distribution?

A small T_k leads to a high frequency of block generation, increasing the likelihood of forks and decreasing the number of transactions per block. Conversely, a very large T_k reduces fork occurrences but may result in fewer blocks generated, leading to transaction backlog in the pending transaction pool. Therefore, finding a balanced T_k is crucial, considering its impact on forks and transaction volume per block.

5. Flowchart

Figure 1: Event Flow Diagram

6. Observation

Data for the two experiments performed is given below:

6.1~ z0 (Low CPU) - 80% and z1 (Low Speed) - 20%

Node Number	Hashing Power	Speed	#Block	Block		
			in	in	Mined	in
			Chain	Longest	-	Chain
				Chain		
0	Low	High	104	90	3	2
1	High	High	104	90	33	31
2	Low	Low	104	90	3	2
3	Low	High	104	90	5	4
4	Low	High	104	90	4	3
5	High	High	104	90	40	38
6	Low	High	104	90	2	2
7	Low	High	104	90	5	3
8	Low	Low	104	90	5	3
9	Low	High	104	90	3	2

Blockchain tree for the above experiment is attached below:

Figure 2: Blockchain Tree1

Obs1 - "With less high powered CPU Nodes and more high speed Nodes, blocks will be propagated more faster than it's generation. Hence less chance of fork."

6.2~ z0 (Low CPU) - 20% and z1 (Low Speed) - 80%

Node Number	Hashing Power	Speed	#Block	Block		
			in	in	Mined	in
			Chain	Longest	-	Chain
				Chain		
0	High	Low	98	63	12	10
1	High	Low	98	63	9	5
2	High	Low	98	63	18	13
3	High	Low	98	63	8	4
4	High	Low	98	63	11	3
5	High	Low	98	63	8	7
6	High	Low	98	63	14	12
7	High	High	98	63	16	8
8	Low	Low	98	63	1	1
9	Low	High	98	63	0	0

Blockchain tree for the above experiment is attached below:

Figure 3: Blockchain Tree2

Obs2 - "With more high powered CPU Nodes and less high speed Nodes, blocks will be propagated slower than it's generation. Hence more chance of fork."

7. Conclusion

The high powered nodes mined more blocks (Almost 10 times) than the low powered nodes. So, contribution of high powered nodes is more than the low powered nodes in the longest chain.