RW GNN Code: Functional Overview and Workflow

Yunxaing Wang

June 22, 2025

1 Overall Workflow and Structure

Algorithm 1 Quick start with RW_GNN

```
python rwgnn_dis_s6.py --dataset Cora \
--alpha 5.0 --c 0.01 \
--num-walks-per-node 10 \
--epochs 50 --walk-bluetype levy
```

- 1. **Argument Parsing**: Use **argparse** to read dataset name, learning rate, dropout, weight decay, random-walk hyperparameters (walks per node, random starts per graph), early stopping patience, etc.
- 2. **Environment Setup**: Fix NumPy and PyTorch seeds, select CPU/GPU device, create checkpoint directory.
- 3. Data Loading:
 - If --dataset Cora, instantiate LocalCoraDataset: read raw ind.cora.* files, merge and reorder features/labels, build edge_index, split into 140/500/1000 train/val/test masks with no overlap or empty sets.
 - Otherwise, use torch_geometric.datasets.TUDataset, and apply one-hot degree encoding for graphs without node attributes.
- 4. **Model Construction**: Instantiate RW_GNN, which encapsulates ExplicitRandomWalkEncoder, passing all hyperparameters; set up Adam optimizer and a ReduceLROnPlateau scheduler.
- 5. Training and Evaluation:
 - Cora: Single-graph training over epochs, record train/val/test loss and accuracy, save best model, trigger early stopping, and emit overfitting warnings when validation loss rises.
 - TUDataset: 10-fold cross-validation, 90% train / 10% validation per fold, save best model each fold, report average test accuracy across folds.
- 6. **Visualization**: Call plot_training_curves to generate and save a PNG of loss and accuracy curves side by side.

2 Key Classes and Functions

2.1 Class ExplicitRandomWalkEncoder

__init__(input_dim, hidden_dim, walk_length, num_walks_per_start, device, num_random_starts_per_graph Initialize the encoder: set up a two-layer feature encoder with ReLU and Dropout, a two-layer GRU with dropout, a distance cache, and all hyperparameters.

clear_cache() Clear the cached distance matrices when parameters like alpha or walk_type change.

- compute_graph_distances(edge_index, num_nodes, graph_nodes) Compute the shortest-path distance matrix and distance-based transition probabilities for a subgraph, with caching.
 - edge_index: edge list of the subgraph $[2 \times E]$.
 - graph_nodes: global node indices of the subgraph [N].
 - Returns (walk_probs, distance_matrix).
- _compute_simple_distance_matrix(adj, num_nodes, max_distance) Approximate distances via 1/2/3-hop adjacency powers.
- _compute_shortest_path_distances_scipy(adj, num_nodes, max_distance) Use SciPy Dijkstra for exact distances up to a cutoff; fallback to approximation on failure.
- _compute_shortest_path_distances_networkx(adj, num_nodes, max_distance) Use NetworkX all-pairs for small graphs, sampling-based approximation for large graphs.
- _compute_approximate_distances_networkx(G, num_nodes, max_distance) Approximate large-graph distances by sampling single-source shortest paths and filling gaps.
- _compute_walk_probabilities(distance_matrix, alpha) Build a normalized transition matrix from distances, mix with uniform jumps via damping factor c.
- sample_random_walks_for_graph_classification(edge_index, batch, num_nodes) For each graph in the batch, sample multiple random walks per start node, returning walk sequences and their graph IDs.
- forward(x, edge_index, batch) Execute sampling, feature encoding, GRU encoding; return {path_encodings, walk_batch for downstream aggregation.

2.2 Class RW_GNN

- __init__(input_dim, max_step, hidden_graphs, size_hidden_graphs, hidden_dim, penultimate_dim, normalise Initialize the GNN: wrap the random-walk encoder and build a two-layer downstream network with ReLU, BatchNorm, and Dropout.
- init_weights() Uniformly initialize hidden-graph parameters (reserved for future extensions).
- forward(data) Dispatch to node or graph classification based on data.batch.
- forward_node_classification(data) Node-level forward: compute per-node walk encodings, apply $fc1 \rightarrow bn \rightarrow dropout \rightarrow fc2 \rightarrow dropout2$, output log-softmax.
- _node_specific_walk_encoding(x, edge_index, num_nodes) For each node, sample multiple biased or simple walks, encode via GRU, and average to obtain a node embedding.
- _generate_biased_walk(start_node, walk_probs, walk_length) Generate one random walk using the provided transition probabilities.
- _generate_single_walk(start_node, adj_list, walk_length) Generate one pure random walk by uniform neighbor sampling.
- _simple_neighborhood_encoding(x, edge_index, num_nodes) Fallback one/two-hop feature aggregation when walk-based encoding fails.
- forward_graph_classification(data) Graph-level forward: pool path encodings by graph ID, apply downstream network, output log-softmax.

2.3 Auxiliary Functions

- plot_training_curves(train_losses, val_losses, train_accs, val_accs, save_path) Plot and save side-by-side training vs. validation loss and accuracy curves.
- train(model, loader, optimizer, device) Perform one epoch of training, return average loss and accuracy.
- test(model, loader, device) Perform one epoch of evaluation (no gradient), return average loss and accuracy.

2.4 Class LocalCoraDataset

raw_file_names / processed_file_names Specify raw and processed file lists (PyG interface).

download() No-op to disable auto-download.

process() 1. Read .x, .y, .allx, .ally, .graph, .test.index.

- 2. Merge and reorder features/labels, build an undirected edge_index.
- 3. Split into 140/500/1000 train/val/test masks, replenishing randomly if needed; enforce no overlap or empty sets.
- 4. Save the resulting Data object to disk.

_read_pickle_file / _read_test_index Load raw data from Pickle files or test index text.