

Sequence Listing

<110> Desnoyers,Luc

Eaton,Dan L.

Goddard,Audrey

Godowski,Paul J.

Gurney,Austin L.

Pan,James

Stewart,Timothy A.

Watanabe,Colin K.

Wood,William I.

Zhang,Zemin

<120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

<130> P3030R1C5

<150> 60/085579

<151> 1998-05-15

<150> 60/112514

<151> 1998-12-15

<150> 60/113300

<151> 1998-12-22

<150> 60/113430

<151> 1998-12-23

<150> 60/113605

<151> 1998-12-23

<150> 60/113621

<151> 1998-12-23

<150> 60/114140

<151> 1998-12-23

<150> 60/115552

<151> 1999-01-12

<150> 60/116843

<151> 1999-01-22

<151> 1999-04-05

<150> 60/129122
<151> 1999-04-13

<150> 60/130359
<151> 1999-04-21

<150> 60/131270
<151> 1999-04-27

<150> 60/131272
<151> 1999-04-27

<150> 60/131291
<151> 1999-04-27

<150> 60/132371
<151> 1999-05-04

<150> 60/132379
<151> 1999-05-04

<150> 60/132383
<151> 1999-05-04

<150> 60/135750
<151> 1999-05-25

<150> 60/138166
<151> 1999-06-08

<150> 60/144791
<151> 1999-07-20

<150> 60/146970
<151> 1999-08-03

<150> 60/162506
<151> 1999-10-29

<150> 09/311832
<151> 1999-05-14

<150> 09/380142
<151> 1999-08-25

<150> 09/644848
<151> 2000-08-22

<150> 09/747259
<151> 2000-12-20

<150> 09/816744
<151> 2001-03-22

<150> 09/854208
<151> 2001-05-10

<150> 09/854280
<151> 2001-05-10

<150> 09/874503
<151> 2001-06-05

<150> 09/869599
<151> 2001-06-29

<150> 09/908,827
<151> 2001-07-18

<150> PCT/US99/10733
<151> 1999-05-14

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US99/30720
<151> 1999-12-22

<150> PCT/US00/05601
<151> 2000-03-01

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/14042
<151> 2000-05-22

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/23522
<151> 2000-08-23

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/32678
<151> 2000-12-01

<150> PCT/US00/34956
<151> 2000-12-20

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735

<151> 2001-07-09

<160> 80

<210> 1
<211> 1712
<212> DNA
<213> Homo Sapien

<400> 1
ggcatctgcc cgaggagacc acgctcctgg agctctgctg tcttctcagg 50
gagactctga ggctctgttg agaatcatgc tttggaggca gctcatctat 100
tggcaactgc tggcttgc ttccctccct tttgcctgt gtcaagatga 150
atacatggag tctccacaaa ccggaggact acccccagac tgcatgtt 200
gttgtcatgg agactacagc ttccgaggct accaaggccc ccctggcca 250
ccggccctc ctggcattcc agaaaccat gaaacaatg gcaacaatgg 300
agccactggc catgaaggag ccaaagggtga gaaggcgac aaagggtgacc 350
tggggcctcg aggggagcgg gggcagcatg gccccaaagg agagaaggc 400
tacccgggaa ttccaccaga acttcagatt gcattcatgg ctctctggc 450
aacccacttc agcaatcaga acagtgggat tatcttcagc agtggtaata 500
ccaacattgg aaacttctt gatgtcatga ctggtagatt tggggccca 550
gtatcaggtg tgtatttctt caccttcagc atgatgaagc atgaggatgt 600
tgaggaagtg tatgtgtacc ttatgcacaa tggcaacaca gtcttcagca 650
tgtacagcta tgaaatgaag ggcaaatcag atacatccag caatcatgt 700
gtgctgaagc tagccaaagg ggatgaggtt tggctgcga tggcaatgg 750
cgctctccat ggggaccacc aacgcttctc caccttgca ggattcctgc 800
tcttgaaac taagtaataa tatgactaga atagctccac tttgggaaag 850
actttagtgc gagctgattt gttacgtct gaggaacatt aaagttgagg 900
gttttacatt gctgtattca aaaaattatt gtttgcattt ttgttcacgc 950
tacaggtaca ccaataatgt tggacaattc aggggctcag aagaatcaac 1000
cacaaaaatag tcttctcaga tgaccttgac taatatactc agcatctta 1050
tcactcttc cttggcacct aaaagataat tctcctctga cgcaggttgg 1100
aaatattttt ttcttatcaca gaagtcattt gcaaagaatt ttgactactc 1150
tgcttttaat ttaataccag tttcaggaa cccctgaagt tttaagttca 1200

ttattcttta taacatttga gagaatcgga tgttagtgata tgacagggct 1250
ggggcaagaa cagggcact agctgcctta ttagctaatt tagtgcctc 1300
cgtgttcagc ttagccttg acccttcct tttgatccac aaaatacatt 1350
aaaactctga attcacatac aatgctattt taaagtcaat agattttagc 1400
tataaagtgc ttgaccagta atgtgggtgt aattttgtgt atgtcccc 1450
acatcgcccc caacttcgga tgtgggtca ggaggttgag gttcactatt 1500
aacaaatgtc ataaatatct catagaggta cagtccaat agatattcaa 1550
atgttgcattt ttgaccagag ggattttata tctgaagaac atacactatt 1600
aataaatacc ttagagaaag attttgacct ggctttagat aaaactgtgg 1650
caagaaaaat gtaatgagca atatatggaa ataaacacac ctttgtaaa 1700
gataaaaaaa aa 1712

<210> 2
<211> 246
<212> PRT
<213> Homo Sapien

<400> 2
Met Leu Trp Arg Gln Leu Ile Tyr Trp Gln Leu Leu Ala Leu Phe
1 5 10 15
Phe Leu Pro Phe Cys Leu Cys Gln Asp Glu Tyr Met Glu Ser Pro
20 25 30
Gln Thr Gly Gly Leu Pro Pro Asp Cys Ser Lys Cys Cys His Gly
35 40 45
Asp Tyr Ser Phe Arg Gly Tyr Gln Gly Pro Pro Gly Pro Pro Gly
50 55 60
Pro Pro Gly Ile Pro Gly Asn His Gly Asn Asn Gly Asn Asn Gly
65 70 75
Ala Thr Gly His Glu Gly Ala Lys Gly Glu Lys Gly Asp Lys Gly
80 85 90
Asp Leu Gly Pro Arg Gly Glu Arg Gly Gln His Gly Pro Lys Gly
95 100 105
Glu Lys Gly Tyr Pro Gly Ile Pro Pro Glu Leu Gln Ile Ala Phe
110 115 120
Met Ala Ser Leu Ala Thr His Phe Ser Asn Gln Asn Ser Gly Ile
125 130 135
Ile Phe Ser Ser Val Glu Thr Asn Ile Gly Asn Phe Phe Asp Val
140 145 150

Met Thr Gly Arg Phe Gly Ala Pro Val Ser Gly Val Tyr Phe Phe
155 160 165

Thr Phe Ser Met Met Lys His Glu Asp Val Glu Glu Val Tyr Val
170 175 180

Tyr Leu Met His Asn Gly Asn Thr Val Phe Ser Met Tyr Ser Tyr
185 190 195

Glu Met Lys Gly Lys Ser Asp Thr Ser Ser Asn His Ala Val Leu
200 205 210

Lys Leu Ala Lys Gly Asp Glu Val Trp Leu Arg Met Gly Asn Gly
215 220 225

Ala Leu His Gly Asp His Gln Arg Phe Ser Thr Phe Ala Gly Phe
230 235 240

Leu Leu Phe Glu Thr Lys
245

<210> 3

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 3

tgtaaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 4

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 4

caggaaacag ctatgaccac ctgcacacacct gcaaattccat t 41

<210> 5

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 5

gcaacaatgg agccactggc catg 24

<210> 6

<211> 24

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 6
gcaaagggtgg agaagcgttg gtgg 24

<210> 7
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 7
cccaacttag caatcagaac agtgggattt tctttcagca gtgtttgaga 50
cc 52

<210> 8
<211> 1579
<212> DNA
<213> Homo Sapien

<400> 8
gagagaatag ctacagattt cccatcctca gttttgcaa ggcgacagct 50
gtgccagccg ggctctggca ggctcctggc agcatggcag tgaagcttgg 100
gaccctcctg ctggcccttg ccctggccct ggcccagcca gcctctgccc 150
gccggaagct gctgggtttt ctgctggatg gtttcgctc agactacatc 200
agtgtatgagg cgctggagtc attgcctggt ttcaaagaga ttgtgagcag 250
gggagtaaaa gtggattact tgactccaga cttccctagt ctctcgatc 300
ccaattatta taccctaattt actggccgccc attgtaaatg ccatcagatc 350
atcgggaact acatgtggaa ccccaccacc aacaagtccct ttgacattgg 400
cgtaacaaa gacagctaa tgcctctctg gtggatggta tcagaacctc 450
tgtgggtcac tctgaccaag gccaatggaa aggtctacat gtactactgg 500
ccaggctgtg aggtttagat tctgggtgtc agaccaccc actgcctaga 550
atataaaaaat gtcccaacgg atatcaattt tgccaatgca gtcagcgatc 600
ctcttgactc cttcaagagt ggccggcccg acctggcagc catataccat 650
gagcgcattt acgtggaaagg ccaccactac gggcctgcat ctccgcagag 700
gaaagatgcc ctcaaggctg tagacactgt cctgaagtac atgaccaagt 750
ggatccagga gcggggcctg caggaccgccc tgaacgtcat tattttctcg 800
gatcacggaa tgaccgacat tttctggatg gacaaagtga ttgagctgaa 850

taagtacatc agcctgaatg acctgcagca agtgaaggac cgccggcctg 900
tttgtagcct ttggccggcc cctggaaac actctgagat atataacaaa 950
ctgagcacag tggaacacat gactgtctac gagaaagaag ccatcccaag 1000
caggttctat tacaagaag gaaagttgt ctctccttg actttagtgg 1050
ctgatgaagg ctggttcata actgagaatc gagagatgct tccgaaaa 1100
atgaacagca ccggcaggcg ggaaggttgg cagcgtggat ggcacggcta 1150
cgacaacgag ctcattggaca tgcccccat cttcctggcc ttcggacctg 1200
atttcaaattc caacttcaga gctgctccta tcaggtcggt ggacgtctac 1250
aatgtcatgt gcaatgtggt gggcatcacc cgcgtccca acaacggatc 1300
ctggccagg gtatgtgca tgctgaaggg ccgcggccgc actgccccgc 1350
ctgtctggcc cagccactgt gccctggcac tgattttct cttcctgctt 1400
gcataactga tcatattgct tgtctcagaa aaaaacacca tcagcaaagt 1450
gggcctccaa agccagatga ttttcatttt atgtgtgaat aatagcttca 1500
ttaacacaat caagaccatg cacattgtaa atacattatt cttggataat 1550
tctatacata aaagttccta ctgtttaaa 1579

<210> 9
<211> 440
<212> PRT
<213> Homo Sapien

<400> 9
Met Ala Val Lys Leu Gly Thr Leu Leu Leu Ala Leu Ala Leu Gly
1 5 10 15
Leu Ala Gln Pro Ala Ser Ala Arg Arg Lys Leu Leu Val Phe Leu
20 25 30
Leu Asp Gly Phe Arg Ser Asp Tyr Ile Ser Asp Glu Ala Leu Glu
35 40 45
Ser Leu Pro Gly Phe Lys Glu Ile Val Ser Arg Gly Val Lys Val
50 55 60
Asp Tyr Leu Thr Pro Asp Phe Pro Ser Leu Ser Tyr Pro Asn Tyr
65 70 75
Tyr Thr Leu Met Thr Gly Arg His Cys Glu Val His Gln Met Ile
80 85 90
Gly Asn Tyr Met Trp Asp Pro Thr Thr Asn Lys Ser Phe Asp Ile
95 100 105
Gly Val Asn Lys Asp Ser Leu Met Pro Leu Trp Trp Asn Gly Ser

110	115	120
Glu Pro Leu Trp Val Thr Leu Thr Lys Ala	Lys Arg Lys Val Tyr	
125	130	135
Met Tyr Tyr Trp Pro Gly Cys Glu Val Glu	Ile Leu Gly Val Arg	
140	145	150
Pro Thr Tyr Cys Leu Glu Tyr Lys Asn Val	Pro Thr Asp Ile Asn	
155	160	165
Phe Ala Asn Ala Val Ser Asp Ala Leu Asp	Ser Phe Lys Ser Gly	
170	175	180
Arg Ala Asp Leu Ala Ala Ile Tyr His Glu	Arg Ile Asp Val Glu	
185	190	195
Gly His His Tyr Gly Pro Ala Ser Pro Gln	Arg Lys Asp Ala Leu	
200	205	210
Lys Ala Val Asp Thr Val Leu Lys Tyr Met	Thr Lys Trp Ile Gln	
215	220	225
Glu Arg Gly Leu Gln Asp Arg Leu Asn Val	Ile Ile Phe Ser Asp	
230	235	240
His Gly Met Thr Asp Ile Phe Trp Met Asp	Lys Val Ile Glu Leu	
245	250	255
Asn Lys Tyr Ile Ser Leu Asn Asp Leu Gln	Gln Val Lys Asp Arg	
260	265	270
Gly Pro Val Val Ser Leu Trp Pro Ala Pro	Gly Lys His Ser Glu	
275	280	285
Ile Tyr Asn Lys Leu Ser Thr Val Glu His	Met Thr Val Tyr Glu	
290	295	300
Lys Glu Ala Ile Pro Ser Arg Phe Tyr Tyr	Lys Lys Gly Lys Phe	
305	310	315
Val Ser Pro Leu Thr Leu Val Ala Asp Glu	Gly Trp Phe Ile Thr	
320	325	330
Glu Asn Arg Glu Met Leu Pro Phe Trp Met	Asn Ser Thr Gly Arg	
335	340	345
Arg Glu Gly Trp Gln Arg Gly Trp His Gly	Tyr Asp Asn Glu Leu	
350	355	360
Met Asp Met Arg Gly Ile Phe Leu Ala Phe	Gly Pro Asp Phe Lys	
365	370	375
Ser Asn Phe Arg Ala Ala Pro Ile Arg Ser	Val Asp Val Tyr Asn	
380	385	390
Val Met Cys Asn Val Val Gly Ile Thr Pro	Leu Pro Asn Asn Gly	
395	400	405

Ser Trp Ser Arg Val Met Cys Met Leu Lys Gly Arg Ala Gly Thr
410 415 420
Ala Pro Pro Val Trp Pro Ser His Cys Ala Leu Ala Leu Ile Leu
425 430 435
Leu Phe Leu Leu Ala
440

<210> 10
<211> 1047
<212> DNA
<213> Homo Sapien

<400> 10
gccaggtgtg caggccgctc caagcccagc ctgccccgct gcccaccca 50
tgacgctcct ccccgccctc ctgtttctga cctggctgca cacatgcctg 100
gcccaccatg acccctccct cagggggcac ccccacagtc acggtacccc 150
acactgctac tcggctgagg aactgcccct cggccaggcc ccccacaccc 200
tgctggctcg aggtgccaag tgggggcagg ctggctgt agccctggtg 250
tccagcctgg aggcaag ccacaggggg aggcacgaga ggccctcagc 300
tacgacccag tgcccggtgc tgccggcggga ggaggtgttgg gaggcagaca 350
ccaccagcg ctccatctca ccctggagat accgtgtgga cacggatgag 400
gaccgctatc cacagaagct ggccattcgcc gagtgctgt gcagaggctg 450
tatcgatgca cggacgggcc gcgagacagc tgcgctcaac tccgtgcggc 500
tgctccagag cctgctggtg ctgcggccgcc ggccctgctc cgcgcacggc 550
tcggggctcc ccacacctgg ggccattgccc ttccacaccc agttcatcca 600
cgccccgtc ggctgcaccc gctgctgccc ccgttcagtg tgaccggcga 650
ggccgtgggg ccccttagact ggacacgtgt gctccccaga gggcacccccc 700
tatttatgtg tatttattgt tatttatatacg cctcccaaa cactaccctt 750
gggtctggg cattccccgt gtctggagga cagccccca ctgttctcct 800
catctccagc ctcagtagtt gggggtagaa ggagctcagc acctttccca 850
gcccttaaag ctgcagaaaa ggtgtcacac ggctgcctgt accttggctc 900
cctgtcctgc tccggcctc ccttacccta tcactggcct caggccccgc 950
aggctgcctc ttcccaacct ccttggaaagt acccctgttt cttaaacaat 1000
tatTTAAGTG tacgtgtatt attaaactga tgaacacatc cccaaaa 1047

<210> 11

<211> 197
 <212> PRT
 <213> Homo Sapien

<400> 11
 Met Thr Leu Leu Pro Gly Leu Leu Phe Leu Thr Trp Leu His Thr
 1 5 10 15
 Cys Leu Ala His His Asp Pro Ser Leu Arg Gly His Pro His Ser
 20 25 30
 His Gly Thr Pro His Cys Tyr Ser Ala Glu Glu Leu Pro Leu Gly
 35 40 45
 Gln Ala Pro Pro His Leu Leu Ala Arg Gly Ala Lys Trp Gly Gln
 50 55 60
 Ala Leu Pro Val Ala Leu Val Ser Ser Leu Glu Ala Ala Ser His
 65 70 75
 Arg Gly Arg His Glu Arg Pro Ser Ala Thr Thr Gln Cys Pro Val
 80 85 90
 Leu Arg Pro Glu Glu Val Leu Glu Ala Asp Thr His Gln Arg Ser
 95 100 105
 Ile Ser Pro Trp Arg Tyr Arg Val Asp Thr Asp Glu Asp Arg Tyr
 110 115 120
 Pro Gln Lys Leu Ala Phe Ala Glu Cys Leu Cys Arg Gly Cys Ile
 125 130 135
 Asp Ala Arg Thr Gly Arg Glu Thr Ala Ala Leu Asn Ser Val Arg
 140 145 150
 Leu Leu Gln Ser Leu Leu Val Leu Arg Arg Arg Pro Cys Ser Arg
 155 160 165
 Asp Gly Ser Gly Leu Pro Thr Pro Gly Ala Phe Ala Phe His Thr
 170 175 180
 Glu Phe Ile His Val Pro Val Gly Cys Thr Cys Val Leu Pro Arg
 185 190 195
 Ser Val

<210> 12
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 12
 atccacagaa gctggccttc gccg 24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 13
gggacgtgga tgaactcggt gtgg 24

<210> 14
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 14
tatccacaga agctggcctt cgccgagtgc ctgtgcagag 40

<210> 15
<211> 660
<212> DNA
<213> Homo Sapien

<400> 15
cggccaggc gccgacagcc cgacctcacc aggagaacat gcagctcggc 50
actgggctcc tgctggccgc cgtcctgagc ctgcagctgg ctgcagccga 100
agccatatgg tgtcaccagt gcacgggctt cggagggtgc tcccatggat 150
ccagatgcct gagggactcc acccaactgtg tcaccactgc cacccgggtc 200
ctcagcaaca ccgaggattt gcctctggtc accaagatgt gccacatagg 250
ctgccccgat atccccagcc tgggcctggg cccctacgta tccatcgctt 300
gctgccagac cagcctctgc aaccatgact gacggctgcc ctcctccagg 350
ccccccggacg ctcagcccc acagccccca cagcctggcg ccagggctca 400
cgcccgcccc tccctcgaga ctggccagcc cacctctccc ggcctctgca 450
gccaccgtcc agcaccgctt gtccttaggga agtcctgcgt ggagtcttgc 500
ctcaatctgc tgccgtccaa gcctggggcc catcgtgcct gccgcccctt 550
caggtcccga cctccccaca ataaaatgtg attggatcgt gtggtacaaa 600
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 650
aaaaaaaaaaaa 660

<210> 16
<211> 97

<212> PRT

<213> Homo Sapien

<400> 16

Met Gln Leu Gly Thr Gly Leu Leu Leu Ala Ala Val Leu Ser Leu
1 5 10 15

Gln Leu Ala Ala Ala Glu Ala Ile Trp Cys His Gln Cys Thr Gly
20 25 30

Phe Gly Gly Cys Ser His Gly Ser Arg Cys Leu Arg Asp Ser Thr
35 40 45

His Cys Val Thr Thr Ala Thr Arg Val Leu Ser Asn Thr Glu Asp
50 55 60

Leu Pro Leu Val Thr Lys Met Cys His Ile Gly Cys Pro Asp Ile
65 70 75

Pro Ser Leu Gly Leu Gly Pro Tyr Val Ser Ile Ala Cys Cys Gln
80 85 90

Thr Ser Leu Cys Asn His Asp
95

<210> 17

<211> 2570

<212> DNA

<213> Homo Sapien

<400> 17

ccaggaccag ggcgcacccgg ctcagcctct cacttgtcag aggccgggga 50

agagaagcaa agcgcaacgg tgtggtccaa gccggggctt ctgcttcgcc 100

tcttaggacat acacgggacc ccctaacttc agtccccaa acgcgcaccc 150

tcgaagtctt gaactccagc cccgcacatc cacgcgcggc acaggcgcgg 200

caggcggcag gtcccgcccg aaggcgatgc gcgcaggggg tcgggcagct 250

gggctcgggc ggcgggagta gggcccccga gggaggcagg gaggctgcat 300

attcagagtc gcgggctgctg ccctggcag aggccgcct cgctccacgc 350

aacacctgct gctgccacccg cggcgatg agccgcgtgg tctcgctgct 400

gctggcgcc gcgctgctct gcggccacgg agcctctgc cgccgcgtgg 450

tcagcggcca aaaggtgtgt ttgtgtact tcaagcatcc ctgctacaaa 500

atggcctact tccatgaact gtccagccga gtgagtttc aggaggcacg 550

cctggcttgt gagagtgagg gaggagtccct cctcagcctt gagaatgaag 600

cagaacagaa gttaatagag agcatgttgc aaaacctgac aaaaccggg 650

acagggattt ctgatggta ttctggata gggcttgga ggaatggaga 700

tggcaaaaca tctgggcct gcccagatct ctaccagtgg tctgatggaa 750
gcaattccca gtaccgaaac tggcacacag atgaaccttc ctgcggaagt 800
gaaaagtgtg ttgtgatgta tcaccaacca actgccaatc ctggccttgg 850
gggtccctac cttaaccagt ggaatgatga caggtgtaac atgaagcaca 900
attatatttg caagtatgaa ccagagatta atccaacagc ccctgtagaa 950
aagccttatac ttacaaatca accaggagac acccatcaga atgtggttgt 1000
tactgaagca ggtataattc ccaatctaatttatgtt ataccaacaa 1050
tacccctgct cttactgata ctgggtgctt ttggAACCTG ttgtttccag 1100
atgctgcata aaagtaaagg aagaacaaaa actagtccaa accagtctac 1150
actgtggatt tcaaagagta ccagaaaaga aagtggcatg gaagtataat 1200
aactcattga cttggttcca gaattttgta attctggatc tgtataagga 1250
atggcatcag aacaatagct tggaaatggct tgaaatcaca aaggatctgc 1300
aagatgaact gtaagctccc ctttgaggca aatattaaag taatttttat 1350
atgtctatta tttcatttaa agaatatgct gtgctaataa tggagtgaga 1400
catgcttattt ttgctaaagg atgcacccaa acttcaaact tcaagcaa 1450
gaaatggaca atgcagataa agttgttatac aacacgtcg 1500
gttagaagca attcctttta tttcttcac ctttcataag ttgttatcta 1550
gtcaatgtaa tgtatattgt attgaaattt acagtgtgca aaagtatttt 1600
acctttgcat aagtgtttga taaaaatgaa ctgttctaat atttattttt 1650
atggcatctc attttcaat acatgctctt ttgattaaag aaacttatta 1700
ctgttgtcaa ctgaattcac acacacacaa atatagtacc atagaaaaag 1750
tttggtttct cgaaataatt catcttcag cttctctgct tttggtcaat 1800
gtctaggaaa tctcttcaga aataagaagc tatttcatta agtgtgat 1850
aaaccccttc aaacattttt ctttagaggca aggattgtct aatttcaatt 1900
gtgcaagaca tgtgccttat aattttttt agctaaaat taaacagatt 1950
ttgtaataat gtaactttgt taataggtgc ataaacacta atgcagtcaa 2000
tttgaacaaa agaagtgaca tacacaatataat aatcatatg tcttcacacg 2050
ttgcctatat aatgagaagc agctctctga gggttctgaa atcaatgtgg 2100
tccctctctt gcccactaaa caaagatggt tgttcggggt ttgggattga 2150

cactggaggc agatagttgc aaagtttagtc taaggttcc ctagctgtat 2200
ttagcctctg actatattag tatacaaaga ggtcatgtgg ttgagaccag 2250
gtgaatagtc actatcagtg tggagacaag cacagcacac agacattta 2300
ggaaggaaag gaactacgaa atcgtgtgaa aatgggttgg aacccatcag 2350
tgatcgata ttcattgatg agggtttgct tgagatagaa aatggtggct 2400
ccttctgtc ttatctccta gtttcttcaa tgcttacgcc ttgttcttct 2450
caagagaaag ttgttaactct ctggtcttca tatgtccctg tgctccttt 2500
aaccaaataa agagttcttg tttctggggg aaaaaaaaaa aaaaaaaaaa 2550
aaaaaaaaaa aaaaaaaaaa 2570

<210> 18
<211> 273
<212> PRT
<213> Homo Sapien

<400> 18
Met Ser Arg Val Val Ser Leu Leu Leu Gly Ala Ala Leu Leu Cys
1 5 10 15
Gly His Gly Ala Phe Cys Arg Arg Val Val Ser Gly Gln Lys Val
20 25 30
Cys Phe Ala Asp Phe Lys His Pro Cys Tyr Lys Met Ala Tyr Phe
35 40 45
His Glu Leu Ser Ser Arg Val Ser Phe Gln Glu Ala Arg Leu Ala
50 55 60
Cys Glu Ser Glu Gly Gly Val Leu Leu Ser Leu Glu Asn Glu Ala
65 70 75
Glu Gln Lys Leu Ile Glu Ser Met Leu Gln Asn Leu Thr Lys Pro
80 85 90
Gly Thr Gly Ile Ser Asp Gly Asp Phe Trp Ile Gly Leu Trp Arg
95 100 105
Asn Gly Asp Gly Gln Thr Ser Gly Ala Cys Pro Asp Leu Tyr Gln
110 115 120
Trp Ser Asp Gly Ser Asn Ser Gln Tyr Arg Asn Trp Tyr Thr Asp
125 130 135
Glu Pro Ser Cys Gly Ser Glu Lys Cys Val Val Met Tyr His Gln
140 145 150
Pro Thr Ala Asn Pro Gly Leu Gly Pro Tyr Leu Tyr Gln Trp
155 160 165
Asn Asp Asp Arg Cys Asn Met Lys His Asn Tyr Ile Cys Lys Tyr

	170	175	180
Glu Pro Glu Ile Asn Pro Thr Ala Pro Val Glu Lys Pro Tyr Leu			
185	190	195	
Thr Asn Gln Pro Gly Asp Thr His Gln Asn Val Val Val Thr Glu			
200	205	210	
Ala Gly Ile Ile Pro Asn Leu Ile Tyr Val Val Ile Pro Thr Ile			
215	220	225	
Pro Leu Leu Leu Leu Ile Leu Val Ala Phe Gly Thr Cys Cys Phe			
230	235	240	
Gln Met Leu His Lys Ser Lys Gly Arg Thr Lys Thr Ser Pro Asn			
245	250	255	
Gln Ser Thr Leu Trp Ile Ser Lys Ser Thr Arg Lys Glu Ser Gly			
260	265	270	

Met Glu Val

<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 19
caccaaccaa ctgccaatcc tggc 24

<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 20
accacattct gatgggtgtc tcctgg 26

<210> 21
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 21
gggtccctac ctttaccagt ggaatgatga caggtgtaac atgaagcac 49

<210> 22
<211> 3824

<212> DNA
<213> Homo Sapien

<400> 22
ggagaatgga gagagcagtg agagtggagt ccggggcct ggtcgaaaa 50
gtctgtctgc tcctggcatg ccctgccaca gccactggc ccgaagttgc 100
tcagcctgaa gtagacacca ccctgggtcg tgtgcaggc cggcagggtgg 150
gcgtgaaggg cacagaccgc ctgtgaatg tctttctggg cattccattt 200
gcccagccgc cactggccc tgaccggttc tcagccccac acccagcaca 250
gccctggag ggtgtgcggg atgccagcac tgcccccata atgtgcctac 300
aagacgtgga gagcatgaac agcagcagat ttgtcctcaa cgaaaacag 350
cagatcttct ccgttcaga ggactgcctg gtcctaaccg tctatagccc 400
agctgaggc cccgcagggt ccggtaggccc ggtcatggta tgggtccatg 450
gaggcgctc gataactggc gctgccacct cctacgatgg atcagctctg 500
gctgcctatg gggatgttgt cgtggttaca gtccagtacc gcctgggggt 550
ccttggcttc ttcagcactg gagatgagca tgcacccggc aaccagggt 600
tcctagatgt ggtagctgt ttgcgtggg tgcaagaaaa catgcfffff 650
ttcgggggtg acctaactg tgtcactgtc tttgggtggat ctgccgggtgg 700
gagcatcatc tctggcctgg tcctgtcccc agtggctgca gggctgttcc 750
acagagccat cacacagagt ggggtcatca ccacccagg gatcatcgac 800
tctcaccctt ggcccttagc tcagaaaaatc gcaaacacct tggcctgcag 850
ctccagctcc ccggctgaga tggtgcatgtg cttcagcag aaagaaggag 900
aagagctggt ctttagcaag aagctgaaaa atactatcta tcctctcacc 950
gtttagggca ctgtctcccc caaaagcccc aaggaactcc tgaaggagaa 1000
gcccttccac tctgtgcctt tcctcatggg tgtcaacaac catgagttca 1050
gctggctcat cccccggggc tggggctcc tggatataat ggagcagatg 1100
agccgggagg acatgctggc catctcaaca cccgtttga ccagtctgg 1150
tgtgccccct gagatgatgc ccaccgtcat agatgaatac ctaggaagca 1200
actcggacgc acaagccaaa tgccaggcgt tccaggaatt catgggtgac 1250
gtattcatca atgttccac cgtcagtttt tcaagatacc ttccgagattc 1300
tggaaaggccct gtcttttct atgagttcca gcatcgaccc agttcttttg 1350

cgaagatcaa acctgcctgg gtgaaggctg atcatgggc cgagggtgct 1400
tttgtgttcg gaggtccctt cctcatggac gagagctccc gcctggcctt 1450
tccagaggcc acagaggagg agaagcagct aagcctcacc atgatggccc 1500
agtggaccca ct当地ccgg acaggggacc ccaatagcaa ggctctgcct 1550
ccttggcccc aattcaacca ggcggaacaa tatctggaga tcaacccagt 1600
gccacgggcc ggacagaagt tcagggaggc ctggatgcag ttctggtcag 1650
agacgctccc cagcaagata caacagtggc accagaagca gaagaacagg 1700
aaggcccagg aggacctctg aggccaggcc tgaacccttct tggctgggc 1750
aaaccactct tcaagtggtg gcagagtccc agcacggcag cccgcctctc 1800
ccccctgctga gacttaatc tccaccagcc ct当地aaagtgt cggccgctct 1850
gtgactggag ttatgctctt ttgaaatgtc acaaggccgc ctcccacctc 1900
tggggcattg tacaagttct tccctctccc tgaagtgcct ttccctgcttt 1950
cttcgtggta ggttcttagca cattcctcta gcttcctgga ggactcactc 2000
cccaggaagc cttccctgcc ttctctggc tgtgcggccc cgagtctgcg 2050
tccattagag cacagtccac ccgaggctag caccgtgtct gtgtctgtct 2100
ccccctcaga ggagctctct caaaatgggg attagctaa ccccactctg 2150
tcacccacac caggatcggg tggacactgg agctaggggg tgtttgctga 2200
gtgagtgagt gaaacacaga atatggaaat ggcagctgct gaacttgaac 2250
ccagagcctt caggtgccaa agccatactc aggccccac cgacattgtc 2300
caccctggcc agaagggtgc atgccaatgg cagagacctg ggatggaga 2350
agtccctgggg cgccaggggg tccagcctag agcagacctt agccctgac 2400
taaggcctca gactagggcg ggaggggtct cctcctctct gctgccagt 2450
cctggccctt gcacaagaca acagaatcca tcagggccat gagtgtcacc 2500
cagacctgac cctcaccaat tccagccctt gaccctcagg acgctggatg 2550
ccagctccca gccccagtgc cgggtcctcc ctcccttcct ggcttgggga 2600
gaccagttc tggggagctt ccaagagcac ccaccaagac acagcaggac 2650
aggccagggg agggcatctg gaccaggca tccgtcggc tattgtcaca 2700
gagaaaagaa gagaccacc cactcggcgt gcaaaaggtg aaaagcacca 2750
agaggtttc agatgaaagt gagaggtgac agtgtgctgg cagccctcac 2800

agccctcgct tgctctccct gccgcctctg cctgggctcc cactttggca 2850
gcacttgagg agcccttcaa cccgcccgtg cactgttagga gccccttct 2900
gggctggcca aggccggagc cagctccctc agcttgcggg gaggtgcgga 2950
gggagagggg cgggcaggaa ccggggctgc gcgcagcgct tgcgggccag 3000
agttagttcc gggtgggcgt gggctcggcg gggccccact cagagcagct 3050
ggccggcccc aggcaagttaga ggccttagca cctgggccag cagctgctgt 3100
gctcgatttc tcgctggcc ttagctgcct ccccgccccg cagggctcg 3150
gacctgcagc cctccatgcc tgaccctccc cccacccccc gtgggctcct 3200
gtgcggccgg agcctccccca aggagcgcgg cccctgctc cacagcgcggc 3250
agtcccacatcg accacccaag ggctgaggag tgcgggtgca cagcgcggga 3300
ctggcaggca gctccacactg ctgccccagt gctggatcca ctgggtgaag 3350
ccagctgggc tcctgagtct ggtggggact tggagaacct ttatgtctag 3400
ctaagggatt gtaaatacac acatgggcac tctgttatcta gctcaagggt 3450
tgtaaacaca ccaatcagca ccctgtgtct agctcagtgt ttgtaatgc 3500
accaatccac actctgtatc tggctactct ggtggggact tggagaacct 3550
ttgtgtccac actctgtatc tagctaattct agtggggatg tggagaacct 3600
ttgtgtctag ctcagggatc gtaaacgcac caatcagcac cctgtaaaaa 3650
cagaccactt gactctctgt aaaatggacc aatcagcagg atgtgggtgg 3700
ggcgagacaa gagaataaaa gcaggctgcc tgagccagca gtgacaaccc 3750
ccctcggtc ccctcccacg ccgtggaagc tttgttctt cgctttgc 3800
aataaatctt gctactgcggc aaaa 3824

<210> 23
<211> 571
<212> PRT
<213> Homo Sapien

<400> 23
Met Glu Arg Ala Val Arg Val Glu Ser Gly Val Leu Val Gly Val
1 5 10 15
Val Cys Leu Leu Leu Ala Cys Pro Ala Thr Ala Thr Gly Pro Glu
20 25 30
Val Ala Gln Pro Glu Val Asp Thr Thr Leu Gly Arg Val Arg Gly
35 40 45
Arg Gln Val Gly Val Lys Gly Thr Asp Arg Leu Val Asn Val Phe

50	55	60												
Leu	Gly	Ile	Pro	Phe	Ala	Gln	Pro	Pro	Leu	Gly	Pro	Asp	Arg	Phe
65									70					75
Ser	Ala	Pro	His	Pro	Ala	Gln	Pro	Trp	Glu	Gly	Val	Arg	Asp	Ala
									85					90
Ser	Thr	Ala	Pro	Pro	Met	Cys	Leu	Gln	Asp	Val	Glu	Ser	Met	Asn
									95					105
Ser	Ser	Arg	Phe	Val	Leu	Asn	Gly	Lys	Gln	Gln	Ile	Phe	Ser	Val
									110			115		120
Ser	Glu	Asp	Cys	Leu	Val	Leu	Asn	Val	Tyr	Ser	Pro	Ala	Glu	Val
									125			130		135
Pro	Ala	Gly	Ser	Gly	Arg	Pro	Val	Met	Val	Trp	Val	His	Gly	Gly
									140			145		150
Ala	Leu	Ile	Thr	Gly	Ala	Ala	Thr	Ser	Tyr	Asp	Gly	Ser	Ala	Leu
									155			160		165
Ala	Ala	Tyr	Gly	Asp	Val	Val	Val	Val	Thr	Val	Gln	Tyr	Arg	Leu
									170			175		180
Gly	Val	Leu	Gly	Phe	Phe	Ser	Thr	Gly	Asp	Glu	His	Ala	Pro	Gly
									185			190		195
Asn	Gln	Gly	Phe	Leu	Asp	Val	Val	Ala	Ala	Leu	Arg	Trp	Val	Gln
									200			205		210
Glu	Asn	Ile	Ala	Pro	Phe	Gly	Gly	Asp	Leu	Asn	Cys	Val	Thr	Val
									215			220		225
Phe	Gly	Gly	Ser	Ala	Gly	Gly	Ser	Ile	Ile	Ser	Gly	Leu	Val	Leu
									230			235		240
Ser	Pro	Val	Ala	Ala	Gly	Leu	Phe	His	Arg	Ala	Ile	Thr	Gln	Ser
									245			250		255
Gly	Val	Ile	Thr	Thr	Pro	Gly	Ile	Ile	Asp	Ser	His	Pro	Trp	Pro
									260			265		270
Leu	Ala	Gln	Lys	Ile	Ala	Asn	Thr	Leu	Ala	Cys	Ser	Ser	Ser	Ser
									275			280		285
Pro	Ala	Glu	Met	Val	Gln	Cys	Leu	Gln	Gln	Lys	Glu	Gly	Glu	Glu
									290			295		300
Leu	Val	Leu	Ser	Lys	Lys	Leu	Lys	Asn	Thr	Ile	Tyr	Pro	Leu	Thr
									305			310		315
Val	Asp	Gly	Thr	Val	Phe	Pro	Lys	Ser	Pro	Lys	Glu	Leu	Leu	Lys
									320			325		330
Glu	Lys	Pro	Phe	His	Ser	Val	Pro	Phe	Leu	Met	Gly	Val	Asn	Asn
									335			340		345

His	Glu	Phe	Ser	Trp	Leu	Ile	Pro	Arg	Gly	Trp	Gly	Leu	Leu	Asp	
				350					355					360	
Thr	Met	Glu	Gln	Met	Ser	Arg	Glu	Asp	Met	Leu	Ala	Ile	Ser	Thr	
	365						370							375	
Pro	Val	Leu	Thr	Ser	Leu	Asp	Val	Pro	Pro	Glu	Met	Met	Pro	Thr	
	380							385						390	
Val	Ile	Asp	Glu	Tyr	Leu	Gly	Ser	Asn	Ser	Asp	Ala	Gln	Ala	Lys	
		395						400						405	
Cys	Gln	Ala	Phe	Gln	Glu	Phe	Met	Gly	Asp	Val	Phe	Ile	Asn	Val	
			410					415						420	
Pro	Thr	Val	Ser	Phe	Ser	Arg	Tyr	Leu	Arg	Asp	Ser	Gly	Ser	Pro	
		425						430						435	
Val	Phe	Phe	Tyr	Glu	Phe	Gln	His	Arg	Pro	Ser	Ser	Phe	Ala	Lys	
			440					445						450	
Ile	Lys	Pro	Ala	Trp	Val	Lys	Ala	Asp	His	Gly	Ala	Glu	Gly	Ala	
			455					460						465	
Phe	Val	Phe	Gly	Gly	Pro	Phe	Leu	Met	Asp	Glu	Ser	Ser	Arg	Leu	
			470					475						480	
Ala	Phe	Pro	Glu	Ala	Thr	Glu	Glu	Lys	Gln	Leu	Ser	Leu	Thr		
			485					490						495	
Met	Met	Ala	Gln	Trp	Thr	His	Phe	Ala	Arg	Thr	Gly	Asp	Pro	Asn	
			500					505						510	
Ser	Lys	Ala	Leu	Pro	Pro	Trp	Pro	Gln	Phe	Asn	Gln	Ala	Glu	Gln	
			515					520						525	
Tyr	Leu	Glu	Ile	Asn	Pro	Val	Pro	Arg	Ala	Gly	Gln	Lys	Phe	Arg	
			530					535						540	
Glu	Ala	Trp	Met	Gln	Phe	Trp	Ser	Glu	Thr	Leu	Pro	Ser	Lys	Ile	
			545					550						555	
Gln	Gln	Trp	His	Gln	Lys	Gln	Lys	Asn	Arg	Lys	Ala	Gln	Glu	Asp	
			560					565						570	
Leu															

<210> 24
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 24
gcaaagctct gcctcattgg cc 22

<210> 25
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
gggtggactg tgctctaattt gacgc 25

<210> 26
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
cgtggcactg ggttgatc 18

<210> 27
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 27
gatgcagttc tggtcagaga cgctccccag caagatacaa cagtgc 45

<210> 28
<211> 1342
<212> DNA
<213> Homo Sapien

<400> 28
catggaggct cttgcagctt acccgctaaa atgttccggg cccagagcaa 50
aggtaattgc agttttgctg tctatagttc tatgcacagt aacgctattt 100
cttctacaac taaaattcct caaacctaaa atcaacagct tttatgcctt 150
tgaagtgaag gatgcaaaag gaagaactgt ttctctggaa aagtataaag 200
gcaaagttc actagttgta aacgtggcca gtgactgccaa actcacagac 250
agaaaattact tagggctgaa ggaactgcac aaagagtttgc gaccatccc 300
cttcagcgtg ttggctttc cctgcaatca gtttggagaa tcggagcccc 350
gccccaaagcaa ggaagttagaa tcttttgcaa gaaaaaaacta cggagtaact 400
ttccccatct tccacaagat taagattcta ggatctgaag gagaacctgc 450
atttagattt ctgttgatt ctcaaagaa ggaaccaagg tggaaattttt 500

ggaagtatct tgtcaaccct gagggtcaag ttgtgaagtt ctggaggcca 550
gaggagccca ttgaagtcat caggcctgac atagcagctc tggtagaca 600
agtgatcata aaaaagaaag aggatctatg agaatgccat tgcgttctca 650
atagaacaga gaaatgtctc catgagggtt tggtctcatt ttaaacattt 700
ttttttgga gacagtgtct cactctgtca cccaggctgg agtgcagtag 750
tgcgttctca gctcattgca acctctgcct ttttaaacat gctattaaat 800
gtggcaatga aggattttt ttaatgtta tcttgctatt aagtggtaat 850
gaatgttccc aggatgagga tggttacccaa agcaaaaatc aagagtagcc 900
aaagaatcaa catgaaatat attaactact tcctctgacc atactaaaga 950
attcagaata cacagtgacc aatgtgcctc aatatcttat tggtcaactt 1000
gacattttctt aggactgtac ttgatgaaaa tgccaacaca ctagaccact 1050
ctttggattc aagagcactg tgtatgactg aaattctgg aataactgta 1100
aatggttatg ttaatggaat aaaacacaaa tggtgaaaaa tgtaaaatat 1150
atatacatag attcaaatcc ttatatatgt atgctgttt tgtgtacagg 1200
attttgtttt ttcttttaa gtacaggttc ctatgtttt actataactg 1250
tcactatgta tgtaactgac atatataat agtcatttt aatgaccgt 1300
attataacat ttgaaaaagt ctcatcaaa aaaaaaaaaa aa 1342

<210> 29
<211> 209
<212> PRT
<213> Homo Sapien

<400> 29
Met Glu Pro Leu Ala Ala Tyr Pro Leu Lys Cys Ser Gly Pro Arg
1 5 10 15
Ala Lys Val Phe Ala Val Leu Leu Ser Ile Val Leu Cys Thr Val
20 25 30
Thr Leu Phe Leu Leu Gln Leu Lys Phe Leu Lys Pro Lys Ile Asn
35 40 45
Ser Phe Tyr Ala Phe Glu Val Lys Asp Ala Lys Gly Arg Thr Val
50 55 60
Ser Leu Glu Lys Tyr Lys Gly Lys Val Ser Leu Val Val Asn Val
65 70 75
Ala Ser Asp Cys Gln Leu Thr Asp Arg Asn Tyr Leu Gly Leu Lys
80 85 90

Glu Leu His Lys Glu Phe Gly Pro Ser His Phe Ser Val Leu Ala
95 100 105
Phe Pro Cys Asn Gln Phe Gly Glu Ser Glu Pro Arg Pro Ser Lys
110 115 120
Glu Val Glu Ser Phe Ala Arg Lys Asn Tyr Gly Val Thr Phe Pro
125 130 135
Ile Phe His Lys Ile Lys Ile Leu Gly Ser Glu Gly Glu Pro Ala
140 145 150
Phe Arg Phe Leu Val Asp Ser Ser Lys Lys Glu Pro Arg Trp Asn
155 160 165
Phe Trp Lys Tyr Leu Val Asn Pro Glu Gly Gln Val Val Lys Phe
170 175 180
Trp Arg Pro Glu Glu Pro Ile Glu Val Ile Arg Pro Asp Ile Ala
185 190 195
Ala Leu Val Arg Gln Val Ile Ile Lys Lys Lys Glu Asp Leu
200 205

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 30
atccctccaac atggaggcctc ttgc 24

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 31
gtatcttgtc aaccctgagg 20

<210> 32
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 32
taaccagagc tgctatgtca ggcc 24

<210> 33

<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 33
aggcaaagtt tcactatgtt taaacgtggc cagtgactgc caactcacag 50

<210> 34
<211> 3721
<212> DNA
<213> Homo Sapien

<400> 34
tgtcgctgg ccctcgccat gcagaccccg cgagcgtccc ctccccgccc 50
ggccctcctg cttctgctgc tgctactggg gggcgccac ggccttttc 100
ctgaggagcc gccgcccgtt agcgtggccc ccagggacta cctgaaccac 150
tatcccgtgt ttgtggcag cgggcccggc cgcctgaccc ccgcagaagg 200
tgctgacgac ctcaacatcc agcgagtcc tgcgggtcaac aggacgctgt 250
tcattggga cagggacaac ctctaccgac tagagcttga gccccccacg 300
tccacggagc tgcggtagcca gaggaagctg acctggagat ctaacccacg 350
cgacataaac gtgtgtcgga tgaaggcaaa acaggaggc gagtgtcgaa 400
acttcgtaaa ggtgctgctc cttcgacgc agtccacgct ctttgtgtgc 450
ggttccaacg cttcaaccc ggtgtgcgcc aactacagca tagacaccct 500
gcagcccgac ggagacaaca tcagcggtat ggcccgctgc ccgtacgacc 550
ccaagcacgc caatgttgcc ctcttctctg acgggatgct cttcacagct 600
actgttaccg acttccttagc cattgatgct gtcatctacc gcagcctcgg 650
ggacaggccc accctgcgca ccgtgaaaca tgactccaag tggttcaaag 700
agccttactt tgtccatgct gtggagtggtt gcagccatgt ctacttcttc 750
ttccgggaga ttgcgtatggc gtttaactac ctggagaagg tggtgggtgc 800
ccgcgtggcc cgagtgtgca agaacgacgt gggaggctcc ccccgctgc 850
tggagaagca gtggacgtcc ttccatgaaagg cgccgttcaa ctgctctgt 900
cccgagact cccatttcta cttcaacgtg ctgcaggctg tcacgggcgt 950
ggtcagcctc gggggccggc ccgtggctct ggccgtttt tccacgcccc 1000
gcaacagcat ccctggctcg gctgtctgctg cctttgaccc gacacagggtg 1050

gcagctgtgt ttgaaggccg cttccgagag cagaagtccc ccgagtccat 1100
ctggacgccc gtgccggagg atcaggtgcc tcgaccggc cccgggtgct 1150
gcgcagcccc cgggatgcag tacaatgcct ccagcgcctt gccggatgac 1200
atcctcaact ttgtcaagac ccaccctctg atggacgagg cgggccctc 1250
gctggccat gcgcctgga tcctgcggac cctgatgagg caccagctga 1300
ctcgagtggc tgtggacgtg ggagccggcc cctggggcaa ccagaccgtt 1350
gtcttcctgg gttctgaggc gggacggtc ctcaagttcc tcgtccggcc 1400
caatgccagc acctcagggc cgtctggct cagtgtcttc ctggaggagt 1450
ttgagaccta ccggccggac aggtgtggac ggccggcgg tggcagaca 1500
gggcagccgc tgctgagctt ggagctggac gcagttcgg gggccctgct 1550
ggctgccttc ccccgctgcg tggccgagt gcctgtggct cgctgccagc 1600
agtactcggg gtgttatgaag aactgtatcg gcagtcagga cccctactgc 1650
gggtgggccc ccgacggctc ctgcatttc ctcagccgg gcaccagagc 1700
cgccttgag caggacgtgt ccggggccag cacctcaggc ttagggact 1750
gcacaggact cctgcgggcc agcctctccg aggaccgcgc gggctggtg 1800
tcggtaacc tgctggtaac gtcgtcggtg gcggcattcg tggtggagc 1850
cgtggtgtcc ggcttcagcg tggctggtt cgtggccctc cgtgagccgc 1900
gggagctggc ccggcgcaag gacaaggagg ccatcctggc gcacggggcg 1950
ggcgaggccg tgctgagcgt cagccgcctg ggcgagcgca gggcgcaggg 2000
tcccgggggc cggggcggag gcggtggcgg tggcggcggg gttccccgg 2050
aggccctgct ggcccccctg atgcagaacg gctggccaa ggccacgctg 2100
ctgcagggcg ggccccacga cctggactcg gggctgctgc ccaccccg 2150
gcagacgccc ctgcccaga agcgcctgcc cactccgcac ccgcacccccc 2200
acgcccctgg ccccgccgc tggaccacg gccacccct gctccggcc 2250
tccgcttcat cctccctct gctgctggcg cccgcccggg ccccccagca 2300
gccccccgcg cctggggagc cgaccccgaa cggccgcctc tatgctgccc 2350
ggcccgcccg cgccctccac ggcgacttcc cgctcacccccc ccacgcccagc 2400
ccggaccggcc ggccgggtggt gtcccgccccc acggccccc tggacccagc 2450
ctcagccgcc gatggccctcc cgcggccctg gagcccgcccc ccgacggcga 2500

gcctgaggag gccactggc ccccacgccc ctccggccgc caccctgcgc 2550
cgcacccaca cggtcaacag cggtcgaggcc cggcctgggg accgccaccc 2600
cggtgtccac gcccggccgg gcacagactt ggcccacctc ctcccctatg 2650
ggggggcgga caggactgctg ccccccgtgc cctaggccgg gggcccccc 2700
atgccttggc agtgcagcc acggaaacca ggagcgagag acggtgccag 2750
aacgcggggg cccggggcaa ctccgagtgg gtgctcaagt ccccccgcg 2800
accacccgc ggagtggggg gccccctccg ccacaaggaa gcacaaccag 2850
ctcgccctcc ccctaccggg ggccgcagga cgctgagacg gtttgggggt 2900
gggtggcgga gaggacttg ctatggatt gaggttgacc ttatgcgcgt 2950
aggtttgggt tttttttgc agtttgggt tctttgcgg ttttctaacc 3000
aattgcacaa ctccgttctc ggggtggcgga caggcagggg aggcttggac 3050
gcgggtgggg aatggggggc cacagctgca gacctaagcc ctccccacc 3100
cctggaaagg tccctccccca acccaggccc ctggcgtgtg tgggtgtgcg 3150
tgctgtgcg tgccgtgttc gtgtgcaagg ggccggggag gtgggcgtgt 3200
gtgtgcgtgc cagcgaaggc tgctgtggc gtgtgtgtca agtgggcac 3250
gcgtgcaggg tgtgtgtcca cgagcgacga tcgtggtggc cccagcggcc 3300
tggcggttgg ctgagccgac gctggggctt ccagaaggcc cgggggtctc 3350
cgaggtgccg gtaggagtt tgaacccccc ccactctgca gagggaaagcg 3400
gggacaatgc cggggtttca ggcaggagac acgaggaggg cctgcccgg 3450
agtacatcg gcagcagctg tctaaaggc ttgggggcct gggggcgcc 3500
gaaggtgggt gggccccc taaaatacg gccccagggt ggtgagagag 3550
tcccatgcca cccgtccccct tggacccctcc cccctatgac ctccagctga 3600
ccatgcgtgc cacgtggctg gctgggtcct ctggcccttt tggagttgc 3650
ctcccccagc cccctccccca tcaataaaac tctgtttaca accaaaaaaaa 3700
aaaaaaaaaaaa aaaaaaaaaa a 3721

<210> 35
<211> 888
<212> PRT
<213> Homo Sapien

<400> 35
Met Gln Thr Pro Arg Ala Ser Pro Pro Arg Pro Ala Leu Leu Leu
1 5 10 15

Leu	Leu	Leu	Leu	Leu	Gly	Gly	Ala	His	Gly	Leu	Phe	Pro	Glu	Glu
					20				25				30	
Pro	Pro	Pro	Leu	Ser	Val	Ala	Pro	Arg	Asp	Tyr	Leu	Asn	His	Tyr
					35				40				45	
Pro	Val	Phe	Val	Gly	Ser	Gly	Pro	Gly	Arg	Leu	Thr	Pro	Ala	Glu
					50				55				60	
Gly	Ala	Asp	Asp	Leu	Asn	Ile	Gln	Arg	Val	Leu	Arg	Val	Asn	Arg
					65				70				75	
Thr	Leu	Phe	Ile	Gly	Asp	Arg	Asp	Asn	Leu	Tyr	Arg	Val	Glu	Leu
					80				85				90	
Glu	Pro	Pro	Thr	Ser	Thr	Glu	Leu	Arg	Tyr	Gln	Arg	Lys	Leu	Thr
					95				100				105	
Trp	Arg	Ser	Asn	Pro	Ser	Asp	Ile	Asn	Val	Cys	Arg	Met	Lys	Gly
					110				115				120	
Lys	Gln	Glu	Gly	Glu	Cys	Arg	Asn	Phe	Val	Lys	Val	Leu	Leu	
					125				130				135	
Arg	Asp	Glu	Ser	Thr	Leu	Phe	Val	Cys	Gly	Ser	Asn	Ala	Phe	Asn
					140				145				150	
Pro	Val	Cys	Ala	Asn	Tyr	Ser	Ile	Asp	Thr	Leu	Gln	Pro	Val	Gly
					155				160				165	
Asp	Asn	Ile	Ser	Gly	Met	Ala	Arg	Cys	Pro	Tyr	Asp	Pro	Lys	His
					170				175				180	
Ala	Asn	Val	Ala	Leu	Phe	Ser	Asp	Gly	Met	Leu	Phe	Thr	Ala	Thr
					185				190				195	
Val	Thr	Asp	Phe	Leu	Ala	Ile	Asp	Ala	Val	Ile	Tyr	Arg	Ser	Leu
					200				205				210	
Gly	Asp	Arg	Pro	Thr	Leu	Arg	Thr	Val	Lys	His	Asp	Ser	Lys	Trp
					215				220				225	
Phe	Lys	Glu	Pro	Tyr	Phe	Val	His	Ala	Val	Glu	Trp	Gly	Ser	His
					230				235				240	
Val	Tyr	Phe	Phe	Phe	Arg	Glu	Ile	Ala	Met	Glu	Phe	Asn	Tyr	Leu
					245				250				255	
Glu	Lys	Val	Val	Val	Ser	Arg	Val	Ala	Arg	Val	Cys	Lys	Asn	Asp
					260				265				270	
Val	Gly	Gly	Ser	Pro	Arg	Val	Leu	Glu	Lys	Gln	Trp	Thr	Ser	Phe
					275				280				285	
Leu	Lys	Ala	Arg	Leu	Asn	Cys	Ser	Val	Pro	Gly	Asp	Ser	His	Phe
					290				295				300	
Tyr	Phe	Asn	Val	Leu	Gln	Ala	Val	Thr	Gly	Val	Val	Ser	Leu	Gly

305	310	315
Gly Arg Pro Val Val Leu Ala Val Phe Ser Thr Pro Ser Asn Ser		
320	325	330
Ile Pro Gly Ser Ala Val Cys Ala Phe Asp Leu Thr Gln Val Ala		
335	340	345
Ala Val Phe Glu Gly Arg Phe Arg Glu Gln Lys Ser Pro Glu Ser		
350	355	360
Ile Trp Thr Pro Val Pro Glu Asp Gln Val Pro Arg Pro Arg Pro		
365	370	375
Gly Cys Cys Ala Ala Pro Gly Met Gln Tyr Asn Ala Ser Ser Ala		
380	385	390
Leu Pro Asp Asp Ile Leu Asn Phe Val Lys Thr His Pro Leu Met		
395	400	405
Asp Glu Ala Val Pro Ser Leu Gly His Ala Pro Trp Ile Leu Arg		
410	415	420
Thr Leu Met Arg His Gln Leu Thr Arg Val Ala Val Asp Val Gly		
425	430	435
Ala Gly Pro Trp Gly Asn Gln Thr Val Val Phe Leu Gly Ser Glu		
440	445	450
Ala Gly Thr Val Leu Lys Phe Leu Val Arg Pro Asn Ala Ser Thr		
455	460	465
Ser Gly Thr Ser Gly Leu Ser Val Phe Leu Glu Glu Phe Glu Thr		
470	475	480
Tyr Arg Pro Asp Arg Cys Gly Arg Pro Gly Gly Gly Glu Thr Gly		
485	490	495
Gln Arg Leu Leu Ser Leu Glu Leu Asp Ala Ala Ser Gly Gly Leu		
500	505	510
Leu Ala Ala Phe Pro Arg Cys Val Val Arg Val Pro Val Ala Arg		
515	520	525
Cys Gln Gln Tyr Ser Gly Cys Met Lys Asn Cys Ile Gly Ser Gln		
530	535	540
Asp Pro Tyr Cys Gly Trp Ala Pro Asp Gly Ser Cys Ile Phe Leu		
545	550	555
Ser Pro Gly Thr Arg Ala Ala Phe Glu Gln Asp Val Ser Gly Ala		
560	565	570
Ser Thr Ser Gly Leu Gly Asp Cys Thr Gly Leu Leu Arg Ala Ser		
575	580	585
Leu Ser Glu Asp Arg Ala Gly Leu Val Ser Val Asn Leu Leu Val		
590	595	600

Thr Ser Ser Val Ala Ala Phe Val Val Gly Ala Val Val Ser Gly
 605 610 615
 Phe Ser Val Gly Trp Phe Val Gly Leu Arg Glu Arg Arg Glu Leu
 620 625 630
 Ala Arg Arg Lys Asp Lys Glu Ala Ile Leu Ala His Gly Ala Gly
 635 640 645
 Glu Ala Val Leu Ser Val Ser Arg Leu Gly Glu Arg Arg Ala Gln
 650 655 660
 Gly Pro Gly Gly Arg Gly Gly Gly Gly Gly Ala Gly Val
 665 670 675
 Pro Pro Glu Ala Leu Leu Ala Pro Leu Met Gln Asn Gly Trp Ala
 680 685 690
 Lys Ala Thr Leu Leu Gln Gly Gly Pro His Asp Leu Asp Ser Gly
 695 700 705
 Leu Leu Pro Thr Pro Glu Gln Thr Pro Leu Pro Gln Lys Arg Leu
 710 715 720
 Pro Thr Pro His Pro His Pro His Ala Leu Gly Pro Arg Ala Trp
 725 730 735
 Asp His Gly His Pro Leu Leu Pro Ala Ser Ala Ser Ser Ser Leu
 740 745 750
 Leu Leu Leu Ala Pro Ala Arg Ala Pro Glu Gln Pro Pro Ala Pro
 755 760 765
 Gly Glu Pro Thr Pro Asp Gly Arg Leu Tyr Ala Ala Arg Pro Gly
 770 775 780
 Arg Ala Ser His Gly Asp Phe Pro Leu Thr Pro His Ala Ser Pro
 785 790 795
 Asp Arg Arg Arg Val Val Ser Ala Pro Thr Gly Pro Leu Asp Pro
 800 805 810
 Ala Ser Ala Ala Asp Gly Leu Pro Arg Pro Trp Ser Pro Pro Pro
 815 820 825
 Thr Gly Ser Leu Arg Arg Pro Leu Gly Pro His Ala Pro Pro Ala
 830 835 840
 Ala Thr Leu Arg Arg Thr His Thr Phe Asn Ser Gly Glu Ala Arg
 845 850 855
 Pro Gly Asp Arg His Arg Gly Cys His Ala Arg Pro Gly Thr Asp
 860 865 870
 Leu Ala His Leu Leu Pro Tyr Gly Gly Ala Asp Arg Thr Ala Pro
 875 880 885
 Pro Val Pro

<210> 36
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 36
gaggacctac cggccggaca g 21

<210> 37
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 37
atacaccccg agtactgctg gcag 24

<210> 38
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 38
agacagggca gcggctgctg agcttgagc tggacgcagc tt 42

<210> 39
<211> 2014
<212> DNA
<213> Homo Sapien

<400> 39
agcaactcaa gttcatcatt gtcctgagag agaggagcag cgcggttctc 50
ggccgggaca gcagaacgcc aggggaccct cacctggcg cgccggggca 100
cggcgttga ttgtcctggg gtgcggaga cccgcgcgcc tgccctgcac 150
gccgggcggc aaccttgca gtcgcgttgg ctgctgcgtat cggccggcgg 200
gtccctgcgg aaggctcggc tgcttctgtc cacctcttac acttcttcat 250
ttatcggtgg atcatttcga gagtccgtct tgtaaatgtt tggcactttg 300
ctactttatt gcttcttct ggcgacagt ccagcactcg ccgagaccgg 350
cggagaaaagg cagctgagcc cggagaagag cggaaatatgg ggacccgggc 400
taaaaagcaga cgtcgtcctt cccgccccgtt atttctatat tcaggcagtg 450

gatacatca ggaataaatt cacatcttct ccaggcgaaa aggtcttcca 500
ggtaaaagtc tcagcaccag aggagcaatt cactagagtt ggagtccagg 550
tttagacccg aaaagatggg tccttcata tagatacag aatgtatgca 600
agctacaaaa atctgaaggt ggaattaaa ttccaagggc aacatgtggc 650
caaatccccca tatatttaa aaggccggt ttaccatgag aactgtgact 700
gtcctctgca agatagtgc gcctggctac gggagatgaa ctgccctgaa 750
accattgctc agattcagag agatctggca cattccctg ctgtggatcc 800
agaaaagatt gcagtagaaa tccaaaaag atttggacag aggagagcc 850
tatgtcacta cacctaaag gataacaagg tttatatcaa gactcatgg 900
gaacatgtag gttttagaat ttcatggat gccatactac tttcttgac 950
tagaaaggta aagatgccag atgtggagct ctttgttaat ttgggagact 1000
ggccttgga aaaaaagaaa tccaattcaa acatccatcc gatctttcc 1050
tgggtggct ccacagattc caaggatatc gtatgccta cgtacgattt 1100
gactgattct gttctggaaa ccatggccg gtaagtctg gatatgtatgt 1150
ccgtgcaagc taacacgggt cctccctggg aaagaaaaaa ttccactgcc 1200
gtctggagag ggcgagacag ccgcaaagag agactcgagc tggttaaact 1250
cagtagaaaa caccagaac tcatacgc tgcttcacc aacttttct 1300
tcttaaaca cgatgaaaac ctgtatggc ccattgtgaa acatattca 1350
tttttgatt tcttcaagca taagtatcaa ataaatatcg atggcactgt 1400
agcagcttat cgccctccat atttgctagt tggtgacagt gttgtgctga 1450
agcaggattc catctactat gaacatttt acaatgagct gcagccctgg 1500
aaacactaca ttccagttaa gagcaacctg agcgatctgc tagaaaaact 1550
taaatggcg aaagatcactg atgaagaggc caaaaagata gcaaaagcag 1600
gacaagaatt tgcaagaaat aatctcatgg gcgtatgacat attctgttat 1650
tatttcaaac tttccagga atatgcaat ttacaagtga gtgagccccca 1700
aatccgagag ggcattggaaa gggtagaacc acagactgag gacgacctct 1750
tccctgtac ttgccatagg aaaaagacca aagatgaaact ctgatatgca 1800
aaataacttc tattagaata atggtgctct gaagactctt cttactaaa 1850
aagaagaatt ttttaagta ttaattccat ggacaatata aaatctgtgt 1900

gattgttgc agtatgaaga cacatttcta cttatcagt attctcatga 1950
ctgtacttta aagtacattt tttagaatttt ataataaaac cacctttatt 2000
ttaaaggaaa aaaa 2014

<210> 40
<211> 502
<212> PRT
<213> Homo Sapien

<400> 40
Met Phe Gly Thr Leu Leu Leu Tyr Cys Phe Phe Leu Ala Thr Val
1 5 10 15
Pro Ala Leu Ala Glu Thr Gly Gly Glu Arg Gln Leu Ser Pro Glu
20 25 30
Lys Ser Glu Ile Trp Gly Pro Gly Leu Lys Ala Asp Val Val Leu
35 40 45
Pro Ala Arg Tyr Phe Tyr Ile Gln Ala Val Asp Thr Ser Gly Asn
50 55 60
Lys Phe Thr Ser Ser Pro Gly Glu Lys Val Phe Gln Val Lys Val
65 70 75
Ser Ala Pro Glu Glu Gln Phe Thr Arg Val Gly Val Gln Val Leu
80 85 90
Asp Arg Lys Asp Gly Ser Phe Ile Val Arg Tyr Arg Met Tyr Ala
95 100 105
Ser Tyr Lys Asn Leu Lys Val Glu Ile Lys Phe Gln Gly Gln His
110 115 120
Val Ala Lys Ser Pro Tyr Ile Leu Lys Gly Pro Val Tyr His Glu
125 130 135
Asn Cys Asp Cys Pro Leu Gln Asp Ser Ala Ala Trp Leu Arg Glu
140 145 150
Met Asn Cys Pro Glu Thr Ile Ala Gln Ile Gln Arg Asp Leu Ala
155 160 165
His Phe Pro Ala Val Asp Pro Glu Lys Ile Ala Val Glu Ile Pro
170 175 180
Lys Arg Phe Gly Gln Arg Gln Ser Leu Cys His Tyr Thr Leu Lys
185 190 195
Asp Asn Lys Val Tyr Ile Lys Thr His Gly Glu His Val Gly Phe
200 205 210
Arg Ile Phe Met Asp Ala Ile Leu Leu Ser Leu Thr Arg Lys Val
215 220 225
Lys Met Pro Asp Val Glu Leu Phe Val Asn Leu Gly Asp Trp Pro

230	235	240
Leu Glu Lys Lys	Ser Asn Ser Asn	Ile His Pro Ile Phe Ser
245	250	255
Trp Cys Gly Ser	Thr Asp Ser Lys Asp	Ile Val Met Pro Thr Tyr
260	265	270
Asp Leu Thr Asp	Ser Val Leu Glu Thr	Met Gly Arg Val Ser Leu
275	280	285
Asp Met Met Ser Val Gln Ala Asn Thr	Gly Pro Pro Trp Glu Ser	
290	295	300
Lys Asn Ser Thr Ala Val Trp Arg Gly Arg Asp Ser Arg Lys Glu		
305	310	315
Arg Leu Glu Leu Val Lys Leu Ser Arg	Lys His Pro Glu Leu Ile	
320	325	330
Asp Ala Ala Phe Thr Asn Phe Phe Phe	Lys His Asp Glu Asn	
335	340	345
Leu Tyr Gly Pro Ile Val Lys His Ile Ser Phe Phe Asp Phe Phe		
350	355	360
Lys His Lys Tyr Gln Ile Asn Ile Asp	Gly Thr Val Ala Ala Tyr	
365	370	375
Arg Leu Pro Tyr Leu Leu Val Gly Asp	Ser Val Val Leu Lys Gln	
380	385	390
Asp Ser Ile Tyr Tyr Glu His Phe Tyr Asn Glu Leu Gln Pro Trp		
395	400	405
Lys His Tyr Ile Pro Val Lys Ser Asn Leu Ser Asp Leu Leu Glu		
410	415	420
Lys Leu Lys Trp Ala Lys Asp His Asp	Glu Glu Ala Lys Lys Ile	
425	430	435
Ala Lys Ala Gly Gln Glu Phe Ala Arg Asn Asn Leu Met Gly Asp		
440	445	450
Asp Ile Phe Cys Tyr Tyr Phe Lys Leu Phe	Gln Glu Tyr Ala Asn	
455	460	465
Leu Gln Val Ser Glu Pro Gln Ile Arg	Glu Gly Met Lys Arg Val	
470	475	480
Glu Pro Gln Thr Glu Asp Asp Leu Phe	Pro Cys Thr Cys His Arg	
485	490	495
Lys Lys Thr Lys Asp Glu Leu		
500		

<210> 41
<211> 26

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 41
gaaggtggaa attaaattcc aaggc 26

<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 42
cgataagctg ctacagtgcc atcg 24

<210> 43
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 43
gtgactgtcc tctgcaagat agtgcagcct ggctacggga 40

<210> 44
<211> 2395
<212> DNA
<213> Homo Sapien

<400> 44
cctggagccg gaagcgcggc tgcagcaggc cgaggctcca ggtgggtcg 50
gttccgcatc cagcctagcg tgtccacgat gcggctggc tccggactt 100
tcgctacctg ttgcgttagcg atcgaggtgc tagggatcgc ggtttcctt 150
cggggattct tccccgtcc cgttcggtcc tctgccagag cggAACACGG 200
agcggagccc ccagcgcccg aaccctcggc tggagccagt tctaactgga 250
ccacgctgcc accacctctc ttcaagttaaatgtt tctgatagat 300
gccttgagag atgattttgt gttgggtca aagggtgtga aattttatgcc 350
ctacacaact taccttgtgg aaaaaggagc atctcacagt tttgtggctg 400
aagcaaAGCC acctacagtt actatgcctc gaatcaaggc attgtatgacg 450
gggagccttc ctggcttgcg acgtcatc aggaacctca attctcctgc 500
actgctggaa gacagtgtga taagacaAGC aaaAGCAGCT ggaaaaAGAA 550

tagtctttta tggagatgaa acctgggtta aattattccc aaagcatttt 600
gtggaatatg atggaacaac ctcattttc gtgtcagatt acacagaggt 650
ggataataat gtcacgaggc atttgataa agtattaaaa agaggagatt 700
gggacatatt aatcctccac tacctgggc tggaccacat tggccacatt 750
tcagggccca acagccccct gattggcag aagctgagcg agatggacag 800
cgtgctgatg aagatccaca cctcaactgca gtcgaaggag agagagacgc 850
ctttacccaa tttgctggtt ctttgtggtg accatggcat gtctgaaaca 900
ggaagtgcacg gggcctcctc caccgaggag gtgaatacac ctctgatTTT 950
aatcagttct gcgtttgaaa ggaaacccgg tgatatccga catccaaagc 1000
acgtccaata gacggatgtg gctgcacac tggcgatagc acttggctta 1050
ccgattccaa aagacagtgt agggagcctc ctattccag ttgtggaagg 1100
aagaccaatg agagagcagt ttagattttt acattgaat acagtgcagc 1150
ttagtaaact gttgcaagag aatgtgccgt catatgaaaa agatcctggg 1200
ttttagcagt ttaaaatgtc agaaagattt catggaaact ggatcagact 1250
gtacttggag gaaaagcatt cagaagtctt attcaacctg ggctccaagg 1300
ttctcaggca gtacctggat gctctgaaga cgctgagctt gtccctgagt 1350
gcacaagtgg cccagttctc accctgctcc tgctcagcgt cccacaggca 1400
ctgcacagaa aggctgagct ggaagtccca ctgtcatctc ctgggtttc 1450
tctgctctt tatttggta tcctggttct ttccggccgtt cacgtcattt 1500
tgtgcacctc agctgaaagt tcgtgctact tctgtggctt ctcgtggctg 1550
gcggcaggct gcctttcggtt taccagactc tggtaaca cctgggtgt 1600
gccaagtgcgt ggcagtgcctc tggacagggg gcctcaggga aggacgtgga 1650
gcagccttat cccaggcctc tgggtgtccc gacacaggtt ttcacatctg 1700
tgctgtcagg tcagatgcct cagttcttgg aaagcttaggt tcctgcact 1750
gttaccaagg tgattgtaaa gagctggcgg tcacagagga acaagcccc 1800
cagctgaggg ggtgtgtgaa tcggacagcc tccacagcaga ggtgtggag 1850
ctgcagctga gggaaagaaga gacaatcgcc ctggacactc aggagggtca 1900
aaaggagact tggtcgcacc actcatcctg ccaccccccag aatgcaccc 1950
gcctcatcag gtccagattt ctttccaagg cggacgtttt ctgttggaaat 2000

tcttagtcct tggcctcgga cacttcatt cgtagtgg 2050
 tgaggcagtg aagaagaggc ggatggtcac actcagatcc acagagccca 2100
 gatatcaaggg acccactgca gtggcagcag gactgttggg cccccacccc 2150
 aaccctgcac agccctcatc ccctcttggc ttgagccgtc agaggccctg 2200
 tgctgagtgt ctgaccgaga cactcacagc tttgtcatca gggcacaggc 2250
 ttcctcgag ccaggatgat ctgtgccacg cttgcacctc gggcccatot 2300
 gggctcatgc tctcttcct gctattgaat tagtacctag ctgcacacag 2350
 tatgttagtta ccaaaaagaat aaacggcaat aattgagaaa aaaaa 2395

<210> 45

<211> 310

<212> PRT

<213> Homo Sapien

<400> 45

Met	Arg	Leu	Gly	Ser	Gly	Thr	Phe	Ala	Thr	Cys	Cys	Val	Ala	Ile
1									10					15

Glu	Val	Leu	Gly	Ile	Ala	Val	Phe	Leu	Arg	Gly	Phe	Phe	Pro	Ala
									25					30

Pro	Val	Arg	Ser	Ser	Ala	Arg	Ala	Glu	His	Gly	Ala	Glu	Pro	Pro
									35					45

Ala	Pro	Glu	Pro	Ser	Ala	Gly	Ala	Ser	Ser	Asn	Trp	Thr	Thr	Leu
									50					60

Pro	Pro	Pro	Leu	Phe	Ser	Lys	Val	Val	Ile	Val	Leu	Ile	Asp	Ala
									65					75

Leu	Arg	Asp	Asp	Phe	Val	Phe	Gly	Ser	Lys	Gly	Val	Lys	Phe	Met
									80					90

Pro	Tyr	Thr	Thr	Tyr	Leu	Val	Glu	Lys	Gly	Ala	Ser	His	Ser	Phe
									95					105

Val	Ala	Glu	Ala	Lys	Pro	Pro	Thr	Val	Thr	Met	Pro	Arg	Ile	Lys
									110					120

Ala	Leu	Met	Thr	Gly	Ser	Leu	Pro	Gly	Phe	Val	Asp	Val	Ile	Arg
									125					135

Asn	Leu	Asn	Ser	Pro	Ala	Leu	Leu	Glu	Asp	Ser	Val	Ile	Arg	Gln
									140					150

Ala	Lys	Ala	Ala	Gly	Lys	Arg	Ile	Val	Phe	Tyr	Gly	Asp	Glu	Thr
									155					165

Trp	Val	Lys	Leu	Phe	Pro	Lys	His	Phe	Val	Glu	Tyr	Asp	Gly	Thr
									170					180

Thr Ser Phe Phe Val Ser Asp Tyr Thr Glu Val Asp Asn Asn Val
185 190 195

Thr Arg His Leu Asp Lys Val Leu Lys Arg Gly Asp Trp Asp Ile
200 205 210

Leu Ile Leu His Tyr Leu Gly Leu Asp His Ile Gly His Ile Ser
215 220 225

Gly Pro Asn Ser Pro Leu Ile Gly Gln Lys Leu Ser Glu Met Asp
230 235 240

Ser Val Leu Met Lys Ile His Thr Ser Leu Gln Ser Lys Glu Arg
245 250 255

Glu Thr Pro Leu Pro Asn Leu Leu Val Leu Cys Gly Asp His Gly
260 265 270

Met Ser Glu Thr Gly Ser His Gly Ala Ser Ser Thr Glu Glu Val
275 280 285

Asn Thr Pro Leu Ile Leu Ile Ser Ser Ala Phe Glu Arg Lys Pro
290 295 300

Gly Asp Ile Arg His Pro Lys His Val Gln
305 310

<210> 46

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 46

cgggactttc gctacctgtt gc 22

<210> 47

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 47

catcatattc cacaaaatgc tttggg 26

<210> 48

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 48

ccttcgggga ttcttcccg g cttccgttcg ttcctctg 38

<210> 49
<211> 918
<212> DNA
<213> Homo Sapien

<400> 49
agccaggcag cacatcacag cgggaggagc tgtcccaggt gcccccagtc 50
agcaatggca atgggggtcc ccagagtcat tctgctctgc ctctttgggg 100
ctgcgcctcg cctgacacagg tcccaagccc tgcagtgcta cagcttttag 150
cacacctact ttggccctt tgacctcagg gccatgaagc tgcccagcat 200
ctcctgtcct catgagtgct ttgaggctat cctgtctcg gacaccgggt 250
atcgcgccgc ggtgaccctg gtgcggaagg gctgctggac cgggcctcct 300
gcgggccaga cgcaatcgaa cccggacgacg ctgcccacag actactcggt 350
ggtgcgccggc tgcacaactg acaaattgaa cggccacccat atgactcatg 400
acggccctccc caacctgagc caagcaccccg acccgccgac gctcagcgac 450
gccgagtgtc acgcctgtat cgggtccac caggatgact gcgcgtatcg 500
caggtccccga cgagtccagt gtcaccagga ccagaccgac tgcttccagg 550
gcagttggcag aatgacagtt ggcaatttct cagtcctgt gtacatcaga 600
acctgccacc ggccctcctg caccacccgag ggcaccacca gcccctggac 650
agccatcgac ctccagggtc cctgctgtga ggggtaccc tgcacacagg 700
aatccatgac ccagcccttc accagtgttt cagccaccac ccctccccga 750
gcactacagg tcctggccct gctcctccca gtcctcctgc tggggggct 800
ctcagcatag accgccccctc caggatgctg gggacaggc tcacacaccc 850
cattcttgct gcttcagccc ctatcacata gctcactgga aaatgatgtt 900
aaagtaagaa ttgcaaaa 918

<210> 50
<211> 251
<212> PRT
<213> Homo Sapien

<400> 50
Met Ala Met Gly Val Pro Arg Val Ile Leu Leu Cys Leu Phe Gly
1 5 10 15
Ala Ala Leu Cys Leu Thr Gly Ser Gln Ala Leu Gln Cys Tyr Ser
20 25 30

Phe	Glu	His	Thr	Tyr	Phe	Gly	Pro	Phe	Asp	Leu	Arg	Ala	Met	Lys
35					40								45	
Leu	Pro	Ser	Ile	Ser	Cys	Pro	His	Glu	Cys	Phe	Glu	Ala	Ile	Leu
50					55								60	
Ser	Leu	Asp	Thr	Gly	Tyr	Arg	Ala	Pro	Val	Thr	Leu	Val	Arg	Lys
65					70								75	
Gly	Cys	Trp	Thr	Gly	Pro	Pro	Ala	Gly	Gln	Thr	Gln	Ser	Asn	Pro
80					85								90	
Asp	Ala	Leu	Pro	Pro	Asp	Tyr	Ser	Val	Val	Arg	Gly	Cys	Thr	Thr
95					100								105	
Asp	Lys	Cys	Asn	Ala	His	Leu	Met	Thr	His	Asp	Ala	Leu	Pro	Asn
110					115								120	
Leu	Ser	Gln	Ala	Pro	Asp	Pro	Pro	Thr	Leu	Ser	Gly	Ala	Glu	Cys
125					130								135	
Tyr	Ala	Cys	Ile	Gly	Val	His	Gln	Asp	Asp	Cys	Ala	Ile	Gly	Arg
140					145								150	
Ser	Arg	Arg	Val	Gln	Cys	His	Gln	Asp	Gln	Thr	Ala	Cys	Phe	Gln
155					160								165	
Gly	Ser	Gly	Arg	Met	Thr	Val	Gly	Asn	Phe	Ser	Val	Pro	Val	Tyr
170					175								180	
Ile	Arg	Thr	Cys	His	Arg	Pro	Ser	Cys	Thr	Thr	Glu	Gly	Thr	Thr
185					190								195	
Ser	Pro	Trp	Thr	Ala	Ile	Asp	Leu	Gln	Gly	Ser	Cys	Cys	Glu	Gly
200					205								210	
Tyr	Leu	Cys	Asn	Arg	Lys	Ser	Met	Thr	Gln	Pro	Phe	Thr	Ser	Ala
215					220								225	
Ser	Ala	Thr	Thr	Pro	Pro	Arg	Ala	Leu	Gln	Val	Leu	Ala	Leu	Leu
230					235								240	
Leu	Pro	Val	Leu	Leu	Leu	Val	Gly	Leu	Ser	Ala				
245					250									
<210> 51														
<211> 3288														
<212> DNA														
<213> Homo Sapien														
<400> 51														
cccacgcgtc cgggacagat gaacttaaaa gagaagcttt agctgccaaa 50														
gattggaaaa gggaaaggac aaaaaagacc cctgggctac acggcgtagg 100														
tgcagggttt cctactgctg ttctttatg ctggagctg tggctgtaac 150														
caactaggaa ataacgtatg cagcagctat ggctgtcaga gagttgtgct 200														

tcccaagaca aaggcaagtc ctgtttctt ttcttttg gggagtgtcc 250
ttggcagggtt ctgggtttgg acgttattcg gtgactgagg aaacagagaaa 300
aggatccttt gtggtaatc tggcaaagga tctggacta gcagaggggg 350
agctggctgc aagggaaacc agggtggtt ccgatgataa caaacaatac 400
ctgctcctgg attcacatac cggaatttg ctcacaaatg agaaaactgga 450
ccgagagaag ctgtgtggcc ctaaagagcc ctgtatgctg tatttccaaa 500
tttaatgga tgatccctt cagattacc gggctgagct gagagtcaagg 550
gatataaatg atcacgcgcc agtatttcag gacaaagaaaa cagtcttaaa 600
aatatcagaa aatacagctg aagggacagc atttagacta gaaagagcac 650
aggatccaga tggaggactt aacggtatcc aaaactacac gatcagcccc 700
aactctttt tccatattaa cattagtggc ggtgatgaag gcatgatata 750
tccagagcta gtgttggaca aagcactgga tcgggaggag cagggagagc 800
tcagcttaac cctcacagcg ctggatggtg ggtctccatc caggtctggg 850
acctctactg tacgcacatcg tgtcttggac gtcaatgaca atgccccaca 900
gtttgcccgag gctctgtatg agacccaggc tccagaaaac agcccccattg 950
ggttccttat tgttaaggta tggcagaag atgttagactc tggagtcaac 1000
gcggaaagtat cctattcatt ttttgcattt tcagaaaata ttcgaacgac 1050
ctttcaaatc aatcctttt ctggggaaat ctttctcaga gaattgcttg 1100
attatgagtt agtaaattct tacaaaataa atatacaggc aatggacggt 1150
ggagggccttt ctgcaagatg tagggtttta gtggaaagtat tggacaccaa 1200
tgacaatccc cctgaactga tcgtatcatc atttccaac tctgttgctg 1250
agaattctcc tgagacgccc ctggctgtt ttaagattaa tgacagagac 1300
tctggagaaa atggaaagat ggtttgctac attcaagaga atctgccatt 1350
cctactaaaa cttctgtgg agaattttta catcctaatt acagaaggcg 1400
cgctggacag agagatcaga gccgagtaca acatcactat caccgtcact 1450
gacttgggga cacccaggct gaaaaccgag cacaacataa cggccttgtt 1500
ctccgacgtc aatgacaacg ccccccgcctt cacccaaacc tcctacaccc 1550
tgttcgtccg cgagaacaac agccccgccc tgcacatcg cagcgtcagc 1600
gccacagaca gagactcggtt caccaacgccc caggtcacct actcgctgct 1650

gcccccccaa gacccgcacc tgcccctcgc ctccctggtc tccatcaacg 1700
cggacaacgg ccacaccttc gccctcaggt cgctggacta cgaggccctg 1750
caggcttgc agttccgcgt ggggccaca gaccgcggct ccccccgcgt 1800
gagcagagag gcgcgtgggc gcgtgctggc gctggacgcc aacgacaact 1850
cgcccttcgt gctgtacccg ctgcagaacg gctccgcgcc ctgcaccgag 1900
ctggtgcccc gggcggccga gccgggctac ctggtgacca aggtgggtggc 1950
ggtggacggc gactcgggcc agaacgcctg gctgtcgta cagctgctca 2000
aggccacgga gcccggctg ttccgggtgt gggcgcacaa tggggaggtg 2050
cgcacccgcca ggctgctgag cgagcgcgac gcagccaagc acaggctcgt 2100
ggtgcttgtc aaggacaatg gcgagcctcc tcgctcgcc accgcccacgc 2150
tgcacttgct cctggtgac ggcttctccc agccctaccc gcctctcccg 2200
gaggcggccc cggcccaggc ccaggccgag gccgacttgc tcaccgtcta 2250
cctggtggtg gcgttggcct cggtgtcttc gctttcctc ctctcggtgc 2300
tcctgttcgt ggcggtgccg ctgtgcagga ggagcagggc ggccctcggtg 2350
ggtcgctgct cgggtccccga gggccctttt ccagggcatc tggtggacgt 2400
gaggggcgct gagaccctgt cccagagcta ccagtatgag gtgtgtctga 2450
cgggaggccc cgggaccagt gagttcaagt tcttgaacc agttatttcg 2500
gatattcagg cacagggccc tgggaggaag ggtgaagaaa attccaccc 2550
ccgaaatagc tttggattta atattcagta aagtctgttt ttagttcat 2600
atactttgg tgtgttacat agccatgttt ctattagttt acttttaat 2650
ctcaaattta agttattatg caacttcaag cattatttc aagtagtata 2700
ccctgtggc tttacaatgt ttcatcattt ttttgcatta ataacaactg 2750
ggtttaattt aatgagtatt ttttctaaa tgatagtgtt aaggtttaa 2800
ttctttccaa ctgcccagg aattaattac tattatatct cattacagaa 2850
atctgagggtt ttgattcatt tcagagcttgc catctcatga ttctaatcac 2900
ttctgtctat agtgtacttgc ctctattaa gaaggcatat ctacattcc 2950
aaactcatttc taacattcta tatattcgtt tttgaaaacc atgtcattta 3000
tttctacatc atgtatttaa aaagaaaatat ttctctacta ctatgctcat 3050
gacaaaatga aacaaagcat attgtgagca atactgaaca tcaataataac 3100

ccttagtttataacttattatTTTtatcTTtaagcatgctactTTTactt 3150
ggccaaatattttcTTtatgtt aactTTTgct gatgtataaa acagactatg 3200
ccttataattt gaaataaaat tataatctgc ctgaaaatga ataaaaataa 3250
aacatTTTga aatgtgaaaa aaaaaaaaaa aaaaaaaaa 3288

<210> 52
<211> 800
<212> PRT
<213> Homo Sapien

<400> 52
Met Ala Val Arg Glu Leu Cys Phe Pro Arg Gln Arg Gln Val Leu
1 5 10 15
Phe Leu Phe Leu Phe Trp Gly Val Ser Leu Ala Gly Ser Gly Phe
20 25 30
Gly Arg Tyr Ser Val Thr Glu Glu Thr Glu Lys Gly Ser Phe Val
35 40 45
Val Asn Leu Ala Lys Asp Leu Gly Leu Ala Glu Gly Glu Leu Ala
50 55 60
Ala Arg Gly Thr Arg Val Val Ser Asp Asp Asn Lys Gln Tyr Leu
65 70 75
Leu Leu Asp Ser His Thr Gly Asn Leu Leu Thr Asn Glu Lys Leu
80 85 90
Asp Arg Glu Lys Leu Cys Gly Pro Lys Glu Pro Cys Met Leu Tyr
95 100 105
Phe Gln Ile Leu Met Asp Asp Pro Phe Gln Ile Tyr Arg Ala Glu
110 115 120
Leu Arg Val Arg Asp Ile Asn Asp His Ala Pro Val Phe Gln Asp
125 130 135
Lys Glu Thr Val Leu Lys Ile Ser Glu Asn Thr Ala Glu Gly Thr
140 145 150
Ala Phe Arg Leu Glu Arg Ala Gln Asp Pro Asp Gly Gly Leu Asn
155 160 165
Gly Ile Gln Asn Tyr Thr Ile Ser Pro Asn Ser Phe Phe His Ile
170 175 180
Asn Ile Ser Gly Gly Asp Glu Gly Met Ile Tyr Pro Glu Leu Val
185 190 195
Leu Asp Lys Ala Leu Asp Arg Glu Glu Gln Gly Glu Leu Ser Leu
200 205 210
Thr Leu Thr Ala Leu Asp Gly Gly Ser Pro Ser Arg Ser Gly Thr
215 220 225

Ser Thr Val Arg Ile Val Val Leu Asp Val Asn Asp Asn Ala Pro
 230 235 240
 Gln Phe Ala Gln Ala Leu Tyr Glu Thr Gln Ala Pro Glu Asn Ser
 245 250 255
 Pro Ile Gly Phe Leu Ile Val Lys Val Trp Ala Glu Asp Val Asp
 260 265 270
 Ser Gly Val Asn Ala Glu Val Ser Tyr Ser Phe Phe Asp Ala Ser
 275 280 285
 Glu Asn Ile Arg Thr Thr Phe Gln Ile Asn Pro Phe Ser Gly Glu
 290 295 300
 Ile Phe Leu Arg Glu Leu Leu Asp Tyr Glu Leu Val Asn Ser Tyr
 305 310 315
 Lys Ile Asn Ile Gln Ala Met Asp Gly Gly Leu Ser Ala Arg
 320 325 330
 Cys Arg Val Leu Val Glu Val Leu Asp Thr Asn Asp Asn Pro Pro
 335 340 345
 Glu Leu Ile Val Ser Ser Phe Ser Asn Ser Val Ala Glu Asn Ser
 350 355 360
 Pro Glu Thr Pro Leu Ala Val Phe Lys Ile Asn Asp Arg Asp Ser
 365 370 375
 Gly Glu Asn Gly Lys Met Val Cys Tyr Ile Gln Glu Asn Leu Pro
 380 385 390
 Phe Leu Leu Lys Pro Ser Val Glu Asn Phe Tyr Ile Leu Ile Thr
 395 400 405
 Glu Gly Ala Leu Asp Arg Glu Ile Arg Ala Glu Tyr Asn Ile Thr
 410 415 420
 Ile Thr Val Thr Asp Leu Gly Thr Pro Arg Leu Lys Thr Glu His
 425 430 435
 Asn Ile Thr Val Leu Val Ser Asp Val Asn Asp Asn Ala Pro Ala
 440 445 450
 Phe Thr Gln Thr Ser Tyr Thr Leu Phe Val Arg Glu Asn Asn Ser
 455 460 465
 Pro Ala Leu His Ile Gly Ser Val Ser Ala Thr Asp Arg Asp Ser
 470 475 480
 Gly Thr Asn Ala Gln Val Thr Tyr Ser Leu Leu Pro Pro Gln Asp
 485 490 495
 Pro His Leu Pro Leu Ala Ser Leu Val Ser Ile Asn Ala Asp Asn
 500 505 510
 Gly His Leu Phe Ala Leu Arg Ser Leu Asp Tyr Glu Ala Leu Gln

515	520	525
Ala Phe Glu Phe Arg Val Gly Ala Thr Asp Arg Gly Ser Pro Ala		
530	535	540
Leu Ser Arg Glu Ala Leu Val Arg Val Leu Val Leu Asp Ala Asn		
545	550	555
Asp Asn Ser Pro Phe Val Leu Tyr Pro Leu Gln Asn Gly Ser Ala		
560	565	570
Pro Cys Thr Glu Leu Val Pro Arg Ala Ala Glu Pro Gly Tyr Leu		
575	580	585
Val Thr Lys Val Val Ala Val Asp Gly Asp Ser Gly Gln Asn Ala		
590	595	600
Trp Leu Ser Tyr Gln Leu Leu Lys Ala Thr Glu Pro Gly Leu Phe		
605	610	615
Gly Val Trp Ala His Asn Gly Glu Val Arg Thr Ala Arg Leu Leu		
620	625	630
Ser Glu Arg Asp Ala Ala Lys His Arg Leu Val Val Leu Val Lys		
635	640	645
Asp Asn Gly Glu Pro Pro Arg Ser Ala Thr Ala Thr Leu His Leu		
650	655	660
Leu Leu Val Asp Gly Phe Ser Gln Pro Tyr Leu Pro Leu Pro Glu		
665	670	675
Ala Ala Pro Ala Gln Ala Gln Ala Glu Ala Asp Leu Leu Thr Val		
680	685	690
Tyr Leu Val Val Ala Leu Ala Ser Val Ser Ser Leu Phe Leu Leu		
695	700	705
Ser Val Leu Leu Phe Val Ala Val Arg Leu Cys Arg Arg Ser Arg		
710	715	720
Ala Ala Ser Val Gly Arg Cys Ser Val Pro Glu Gly Pro Phe Pro		
725	730	735
Gly His Leu Val Asp Val Arg Gly Ala Glu Thr Leu Ser Gln Ser		
740	745	750
Tyr Gln Tyr Glu Val Cys Leu Thr Gly Gly Pro Gly Thr Ser Glu		
755	760	765
Phe Lys Phe Leu Lys Pro Val Ile Ser Asp Ile Gln Ala Gln Gly		
770	775	780
Pro Gly Arg Lys Gly Glu Glu Asn Ser Thr Phe Arg Asn Ser Phe		
785	790	795
Gly Phe Asn Ile Gln		
800		

<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 53
ctggggagtg tccttggcag gttc 24

<210> 54
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 54
cagcatacag ggctcttag ggcacac 27

<210> 55
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 55
cggtgactga ggaaacagag aaaggatcct ttgtggcaa tctggc 46

<210> 56
<211> 2242
<212> DNA
<213> Homo Sapien

<220>
<221> unsure
<222> 2181
<223> unknown base

<400> 56
gaatgaatac ctccgaagcc gcttggttct ccagatgtga atagctccac 50
tataccagcc tcgtcttcct tccggggac aacgtgggtc agggcacaga 100
gagatattta atgtcacccct cttggggctt tcatggact ccctctgcc 150
cattttttgg aggttggaa agttgctaga ggcttcagaa ctccagccta 200
atggatccca aactcgggag aatggctgctg tccctgctgg ctgtgctgct 250
gctgctgctg gagcgcggca tgttctcctc accctccccg ccccccggcgc 300
tgttagagaa agtcttccag tacattgacc tccatcagga tgaatttgtg 350

cagacgctga aggagtgggt ggccatcgag agcgactctg tccagcctgt 400
gcctcgcttc agacaagagc tcttcagaat gatggccgtg gctgcggaca 450
cgctgcagcg cctgggggcc cgtgtggcct cggtggacat gggtcctcag 500
cagctgcccgg atggtcagag tcttccaata cctcccgta tcctggccga 550
actggggagc gatcccacga aaggcacgt gtgcttctac ggccacttgg 600
acgtgcagcc tgctgaccgg ggcatgggt ggctcacgga cccctatgtg 650
ctgacggagg tagacggaa actttatgga cgaggagcga ccgacaacaa 700
aggccctgtc ttggcttggta tcaatgctgt gagcgcccttc agagccctgg 750
agcaagatct tcctgtgaat atcaaattca tcattgaggg gatggaagag 800
gctggctctg ttgccctggta ggaacttgtg gaaaaagaaa aggaccgatt 850
cttctctgggt gtggactaca ttgttaatttc agataacctg tggatcagcc 900
aaaggaagcc agcaatcaact tatggaaccc ggggaacag ctacttcatg 950
gtggaggtga aatgcagaga ccaggatttt cactcagga ccttggtgg 1000
catccttcataatgg ctgatctgggt tgctcttc ggttagcctgg 1050
tagactcgtc tggcatatc ctggccctg gaatctatga tgaagtggtt 1100
cctcttacag aagagggaaat aaatacatac aaagccatcc atctagaccc 1150
agaagaatac cgaaatagca gccgggttga gaaattctg ttcgatacta 1200
aggaggagat tctaattgcac ctctggaggt acccatcttct ttctattcat 1250
gggatcgagg gcgcgttga tgagcctggta actaaaacag tcatacctgg 1300
ccgagttata ggaaaatttt caatccgtct agtccctcac atgaatgtgt 1350
ctgcgggttga aaaacaggtg acacgacatc ttgaagatgt gttctccaaa 1400
agaaatagtt ccaacaagat ggttgttcc atgactctag gactacaccc 1450
gtggatttgc aatattgtatc acacccagta tctcgcagca aaaagagcga 1500
tcagaacagt gtttggaca gaaccagata tgatccggta tggatccacc 1550
attccaaatttgc cccaaatgtt ccaggagatc gtccacaaga gctgtgggtct 1600
aattcccgctg ggagctgttgc atgatggaga acattcgcag aatgagaaaa 1650
tcaacaggtg gaactacata gagggAACCA aattatttgc tgccttttc 1700
tttagagatgg cccagctcca ttaatcacaa gaaccttcta gtctgatctg 1750
atccactgac agattcacct cccccacatc cctagacagg gatggaatgt 1800

aaatatccag agaatttggg tctagtatac tacattttcc cttccattta 1850
aaatgtcttg ggatatctgg atcagtaata aaatatttca aaggcacaga 1900
tgtggaaat ggttaaggt cccccactgc acaccccttca caagtcata 1950
ctgcttcag caacttgatt tccccaagtc ctgtcaata gcccccaggat 2000
tggattcctt ccaacctttt agcatatctc caacccgtca atttgattgg 2050
cataatcact ccggtttgct ttcttaggtcc tcaagtgcgc gtgacacata 2100
atcattccat ccaatgatcg ccttgctt accactctt ccttttatct 2150
tattaataaaa aatgttggtc tccaccactg nctccaaaa aaaaaaaaaa 2200
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 2242

<210> 57
<211> 507
<212> PRT
<213> Homo Sapien

<400> 57
Met Asp Pro Lys Leu Gly Arg Met Ala Ala Ser Leu Leu Ala Val
1 5 10 15
Leu Leu Leu Leu Glu Arg Gly Met Phe Ser Ser Pro Ser Pro
20 25 30
Pro Pro Ala Leu Leu Glu Lys Val Phe Gln Tyr Ile Asp Leu His
35 40 45
Gln Asp Glu Phe Val Gln Thr Leu Lys Glu Trp Val Ala Ile Glu
50 55 60
Ser Asp Ser Val Gln Pro Val Pro Arg Phe Arg Gln Glu Leu Phe
65 70 75
Arg Met Met Ala Val Ala Ala Asp Thr Leu Gln Arg Leu Gly Ala
80 85 90
Arg Val Ala Ser Val Asp Met Gly Pro Gln Gln Leu Pro Asp Gly
95 100 105
Gln Ser Leu Pro Ile Pro Pro Val Ile Leu Ala Glu Leu Gly Ser
110 115 120
Asp Pro Thr Lys Gly Thr Val Cys Phe Tyr Gly His Leu Asp Val
125 130 135
Gln Pro Ala Asp Arg Gly Asp Gly Trp Leu Thr Asp Pro Tyr Val
140 145 150
Leu Thr Glu Val Asp Gly Lys Leu Tyr Gly Arg Gly Ala Thr Asp
155 160 165
Asn Lys Gly Pro Val Leu Ala Trp Ile Asn Ala Val Ser Ala Phe

170	175	180
Arg Ala Leu Glu Gln Asp Leu Pro Val Asn Ile Lys Phe Ile Ile		
185	190	195
Glu Gly Met Glu Glu Ala Gly Ser Val Ala Leu Glu Glu Leu Val		
200	205	210
Glu Lys Glu Lys Asp Arg Phe Phe Ser Gly Val Asp Tyr Ile Val		
215	220	225
Ile Ser Asp Asn Leu Trp Ile Ser Gln Arg Lys Pro Ala Ile Thr		
230	235	240
Tyr Gly Thr Arg Gly Asn Ser Tyr Phe Met Val Glu Val Lys Cys		
245	250	255
Arg Asp Gln Asp Phe His Ser Gly Thr Phe Gly Gly Ile Leu His		
260	265	270
Glu Pro Met Ala Asp Leu Val Ala Leu Leu Gly Ser Leu Val Asp		
275	280	285
Ser Ser Gly His Ile Leu Val Pro Gly Ile Tyr Asp Glu Val Val		
290	295	300
Pro Leu Thr Glu Glu Glu Ile Asn Thr Tyr Lys Ala Ile His Leu		
305	310	315
Asp Leu Glu Glu Tyr Arg Asn Ser Ser Arg Val Glu Lys Phe Leu		
320	325	330
Phe Asp Thr Lys Glu Glu Ile Leu Met His Leu Trp Arg Tyr Pro		
335	340	345
Ser Leu Ser Ile His Gly Ile Glu Gly Ala Phe Asp Glu Pro Gly		
350	355	360
Thr Lys Thr Val Ile Pro Gly Arg Val Ile Gly Lys Phe Ser Ile		
365	370	375
Arg Leu Val Pro His Met Asn Val Ser Ala Val Glu Lys Gln Val		
380	385	390
Thr Arg His Leu Glu Asp Val Phe Ser Lys Arg Asn Ser Ser Asn		
395	400	405
Lys Met Val Val Ser Met Thr Leu Gly Leu His Pro Trp Ile Ala		
410	415	420
Asn Ile Asp Asp Thr Gln Tyr Leu Ala Ala Lys Arg Ala Ile Arg		
425	430	435
Thr Val Phe Gly Thr Glu Pro Asp Met Ile Arg Asp Gly Ser Thr		
440	445	450
Ile Pro Ile Ala Lys Met Phe Gln Glu Ile Val His Lys Ser Val		
455	460	465

Val Leu Ile Pro Leu Gly Ala Val Asp Asp Gly Glu His Ser Gln
470 475 480

Asn Glu Lys Ile Asn Arg Trp Asn Tyr Ile Glu Gly Thr Lys Leu
485 490 495

Phe Ala Ala Phe Phe Leu Glu Met Ala Gln Leu His
500 505

<210> 58
<211> 1470
<212> DNA
<213> Homo Sapien

<400> 58
ctcggctgga tttaagggttgc cgcttagccg cctggaaatt taagggaccc 50
acactacatt cccgaagttg aaggcaagcg gtgattgttt gtagacggcg 100
ctttgtcatg ggacctgtgc gggtggaaat attgctttc cttttttgg 150
ccgtgcacga ggcttggct gggatgttga aggaggagga cgatgacaca 200
gaacgottgc ccagcaaatg cgaagtgtgt aagctgctga gcacagagct 250
acaggcggaa ctgagtcgca ccggtcgatc tcgagaggtg ctggagctgg 300
ggcaggtgct ggatacaggc aagaggaaga gacacgtgcc ttacagcggtt 350
tcagagacaa ggcttggaaaga ggccttagag aatttatgtg agcggatcct 400
ggactatagt gttcacgctg agcgcaaggg ctcaactgaga tatgccaagg 450
gtcagagtca gaccatggca acactgaaag gccttagtgca gaaggggggtg 500
aaggtggatc tggggatccc tctggagctt tgggatgagc ccagcgtgga 550
ggtcacatac ctcaagaagc agtgtgagac catgttggag gagtttgaag 600
acattgtggg agactggta ttccaccatc aggagcagcc cctacaaaat 650
tttctctgtg aaggtcatgt gctcccagct gctgaaactg catgtctaca 700
ggaaacttgg actggaaagg agatcacaga tggggaaagag aaaacagaag 750
gggaggaaga gcaggaggag gaggaggaag aggaggaaga ggaaggggga 800
gacaagatga ccaagacagg aagccacccc aaacttgacc gagaagatct 850
ttgacccttg cctttgagcc cccaggaggg gaagggatca tggagagccc 900
tctaaagccct gcaactctccc tgctccacag ctttcagggt gtgtttatga 950
gtgactccac ccaagcttgc agctgttctc tcccatctaa cctcaggcaa 1000
gatcctggtg aaacagcatg acatggcttc tggggtggag ggtgggggtg 1050
gagggtccctgc tcctagaqat qaactctatc cagcccccta attggcaggt 1100

gtatgtgctg acagtactga aagcttcct ctttaactga tcccaccc 1150
accaaaaagt cagcagtggc actggagctg tgggcttgg ggaagtcact 1200
tagctccta aggtctgtt ttagaccctt ccaaggaaga ggccagaacg 1250
gacattctct gcgatctata tacattgcct gtatccagga ggctacacac 1300
cagcaaaccg tgaaggagaa tggacactg ggtcatggcc tggagttgct 1350
gataatttag gtggataga tacttggtct acttaagctc aatgtaaccc 1400
agagcccacc atatagttt ataggtgctc aactttctat atcgctatta 1450
aacttttttc ttttttcta 1470

<210> 59
<211> 248
<212> PRT
<213> Homo Sapien

<400> 59
Met Gly Pro Val Arg Leu Gly Ile Leu Leu Phe Leu Phe Leu Ala
1 5 10 15
Val His Glu Ala Trp Ala Gly Met Leu Lys Glu Glu Asp Asp Asp
20 25 30
Thr Glu Arg Leu Pro Ser Lys Cys Glu Val Cys Lys Leu Leu Ser
35 40 45
Thr Glu Leu Gln Ala Glu Leu Ser Arg Thr Gly Arg Ser Arg Glu
50 55 60
Val Leu Glu Leu Gly Gln Val Leu Asp Thr Gly Lys Arg Lys Arg
65 70 75
His Val Pro Tyr Ser Val Ser Glu Thr Arg Leu Glu Glu Ala Leu
80 85 90
Glu Asn Leu Cys Glu Arg Ile Leu Asp Tyr Ser Val His Ala Glu
95 100 105
Arg Lys Gly Ser Leu Arg Tyr Ala Lys Gly Gln Ser Gln Thr Met
110 115 120
Ala Thr Leu Lys Gly Leu Val Gln Lys Gly Val Lys Val Asp Leu
125 130 135
Gly Ile Pro Leu Glu Leu Trp Asp Glu Pro Ser Val Glu Val Thr
140 145 150
Tyr Leu Lys Lys Gln Cys Glu Thr Met Leu Glu Glu Phe Glu Asp
155 160 165
Ile Val Gly Asp Trp Tyr Phe His His Gln Glu Gln Pro Leu Gln
170 175 180

Asn Phe Leu Cys Glu Gly His Val Leu Pro Ala Ala Glu Thr Ala
185 190 195
Cys Leu Gln Glu Thr Trp Thr Gly Lys Glu Ile Thr Asp Gly Glu
200 205 210
Glu Lys Thr Glu Gly Glu Glu Gln Glu Glu Glu Glu Glu Glu
215 220 225
Glu Glu Glu Gly Asp Lys Met Thr Lys Thr Gly Ser His
230 235 240
Pro Lys Leu Asp Arg Glu Asp Leu
245

<210> 60
<211> 890
<212> DNA
<213> Homo Sapien

<400> 60
aagtacttgt gtccgggtgg tggactggat tagctgcgga gccctggaag 50
ctgcctgtcc ttctccctgt gcttaaccag aggtgcccat gggttggaca 100
atgaggctgg tcacagcagc actgttactg ggtctcatga tgggtggcac 150
tggagacgag gatgagaaca gcccggtgtgc ccatgaggcc ctcttgacg 200
aggacaccct ctttgcag ggcattgaag ttttctaccc agagttgggg 250
aacattggct gcaagggttgt tcctgattgt aacaactaca gacagaagat 300
cacccctgg atggagccga tagtcaagtt cccggggcc gtggacggcg 350
caacctatat cctggtgatg gtggatccag atgcccctag cagagcagaa 400
cccagacaga gattctggag acattggctg gtaacagata tcaagggcgc 450
cgacctgaag aaagggaaga ttcaaggcca ggagttatca gcctaccagg 500
ctccctcccc accggcacac agtggcttcc atcgctacca gtttttgtc 550
tatcttcagg aaggaaaagt catctctctc cttcccaagg aaaacaaaac 600
tcgaggctct tggaaaatgg acagatttct gaaccgcttc cacctggcg 650
aacacctgaagc aagcaccag ttcatgaccc agaactacca ggactcacca 700
accctccagg ctcccagagg aagggccagc gagcccaagc aaaaaaccag 750
gcagagatag ctgcctgcta gatagccggc tttgccatcc gggcatgtgg 800
ccacactgct caccaccgac gatgtggta tggaaccccc tctggataca 850
gaaccccttc tttccaaat taaaaaaaaa aatcatcaaa 890

<210> 61

<211> 223
<212> PRT
<213> Homo Sapien

<400> 61
 Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu Leu Leu Gly
 1 5 10 15
 Leu Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys
 20 25 30
 Ala His Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly
 35 40 45
 Leu Glu Val Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val
 50 55 60
 Val Pro Asp Cys Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met
 65 70 75
 Glu Pro Ile Val Lys Phe Pro Gly Ala Val Asp Gly Ala Thr Tyr
 80 85 90
 Ile Leu Val Met Val Asp Pro Asp Ala Pro Ser Arg Ala Glu Pro
 95 100 105
 Arg Gln Arg Phe Trp Arg His Trp Leu Val Thr Asp Ile Lys Gly
 110 115 120
 Ala Asp Leu Lys Lys Gly Lys Ile Gln Gly Gln Glu Leu Ser Ala
 125 130 135
 Tyr Gln Ala Pro Ser Pro Pro Ala His Ser Gly Phe His Arg Tyr
 140 145 150
 Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys Val Ile Ser Leu Leu
 155 160 165
 Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys Met Asp Arg Phe
 170 175 180
 Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser Thr Gln Phe
 185 190 195
 Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala Pro Arg
 200 205 210
 Gly Arg Ala Ser Glu Pro Lys His Lys Thr Arg Gln Arg
 215 220

<210> 62
<211> 1321
<212> DNA
<213> Homo Sapien

<400> 62
gtcgaccac gcgtccgaaq ctgcttggaaqc cacgattcaq tcccccttggac 50

tgtagataaa gacccttct tgccaggtgc tgagacaacc acactatgag 100
aggcactcca ggagacgctg atggtgagg aagggccgtc tatcaatcaa 150
tcactgttgc tgttatcaca tgcaagtatc cagaggctct tgagcaaggc 200
agaggggatc ccatttattt gggaatccag aatccagaaa tgtgtttgta 250
ttgtgagaag gttggagaac agcccacatt gcagctaaaa gagcagaaga 300
tcatggatct gtatggccaa cccgagcccc tgaaaccctt cctttctac 350
cgtgccaaga ctggtaggac ctccaccctt gagtctgtgg cttcccgga 400
ctggttcatt gcctcctcca agagagacca gcccatcatt ctgacttcag 450
aacttggaa gtcatacaac actgccttg aattaaatat aaatgactga 500
actcagccta gaggtggcag ctggcttt gtcttaagt ttctggttcc 550
caatgtgtt tcgtctacat tttcttagtg tcatttcac gctggtgctg 600
agacaggagc aaggctgctg ttatcatctc attttataat gaagaagaag 650
caattacttc atagcaactg aagaacagga tgtggcctca gaagcaggag 700
agctgggtgg tataaggctg tcctctcaag ctggtgctgt gttaggccaca 750
aggcatctgc atgagtgact ttaagactca aagaccaaac actgagctt 800
cttctagggg tgggtatgaa gatgcttcag agctcatgctg cgttacccac 850
gatggcatga ctagcacaga gctgatctct gtttctgtt tgctttattc 900
cctcttggga tggatcatc cagtcttat atgttgc当地 tatacctcat 950
tgtgtgtaat agaaccttct tagcattaag accttgtaaa caaaaataat 1000
tcttgggtg ggtatgaaga tgcttcagag ctcatgc当地 ttacccacga 1050
tggcatgact agcacagagc tgatctctgt ttctgtttt ctttattccc 1100
tcttggatg atatcatcca gtcttataat gttgccaata tacctcattg 1150
tgtgttaat aaccttctta gcattaagac cttgtaaaca aaaataattc 1200
ttgtgttaag taaaatcatt tttgtcctaa ttgttaatgtg taatcttaaa 1250
gttaaataaa ctttgtgtat ttatataata ataaagctaa aactgatata 1300
aaataaagaa agagtaaact g 1321

<210> 63
<211> 134
<212> PRT
<213> Homo Sapien

<400> 63

Met Arg Gly Thr Pro Gly Asp Ala Asp Gly Gly Gly Arg Ala Val
1 5 10 15

Tyr Gln Ser Ile Thr Val Ala Val Ile Thr Cys Lys Tyr Pro Glu
20 25 30

Ala Leu Glu Gln Gly Arg Gly Asp Pro Ile Tyr Leu Gly Ile Gln
35 40 45

Asn Pro Glu Met Cys Leu Tyr Cys Glu Lys Val Gly Glu Gln Pro
50 55 60

Thr Leu Gln Leu Lys Glu Gln Lys Ile Met Asp Leu Tyr Gly Gln
65 70 75

Pro Glu Pro Val Lys Pro Phe Leu Phe Tyr Arg Ala Lys Thr Gly
80 85 90

Arg Thr Ser Thr Leu Glu Ser Val Ala Phe Pro Asp Trp Phe Ile
95 100 105

Ala Ser Ser Lys Arg Asp Gln Pro Ile Ile Leu Thr Ser Glu Leu
110 115 120

Gly Lys Ser Tyr Asn Thr Ala Phe Glu Leu Asn Ile Asn Asp
125 130

<210> 64

<211> 999

<212> DNA

<213> Homo Sapien

<400> 64

gcgaggctgc accagcgcct ggccacatga ggacgcctgg gcctctgccc 50

gtgctgctgc tgctcctggc gggagcccc cccgcgcggc ccactcccc 100

gacctgctac tcccgcatgc gggccctgag ccaggagatc acccgcgact 150

tcaacctcct gcaggtctcg gagccctcgg agccatgtgt gagataacctg 200

cccaggctgt acctggacat acacaattac tgtgtgctgg acaagctgcg 250

ggactttgtg gcctcgcccc cgtgttgaa agtggcccaag gttagattcct 300

tgaaggacaa agcacggaag ctgtacacca tcatgaactc gttctgcagg 350

agagatttgg tattcctgtt ggatgactgc aatgccttgg aatacccaat 400

cccagtgtact acggtcctgc cagatgtca gcgctaaggg aactgagacc 450

agagaaaagaa cccaagagaa ctaaagttat gtcagctacc cagacttaat 500

gggcagagc catgaccctc acaggtcttgc tgtagttgt atctgaaact 550

gttatgtatc tctctacccctt ctggaaaaca gggctggat tcctacccag 600

gaacctcctt tgagcataga gtttagcaacc atgcttotca ttcccttgac 650

tcatgtcttg ccaggatgg tagatacaca gcatgttcat ttggtcacta 700
aaaagaagaa aaggactaac aagcttcaact tttatgaaca actatggta 750
gaacatgcac aatagtatgt ttttattact ggtaatgg agtaatggta 800
cttttattct ttcttgatag aaacctgctt acatctaacc aagcttctat 850
tatgccttt tctaacadag actttcttca ctgtcttca tttaaaaaga 900
aattaatgct cttaagatat atatttacg tagtgctgac aggaccact 950
ctttcattga aaggtgatga aaatcaaata aagaatctct tcacatgga 999

<210> 65

<211> 136

<212> PRT

<213> Homo Sapien

<400> 65

Met Arg Thr Pro Gly Pro Leu Pro Val Leu Leu Leu Leu Ala
1 5 10 15

Gly Ala Pro Ala Ala Arg Pro Thr Pro Pro Thr Cys Tyr Ser Arg
20 25 30

Met Arg Ala Leu Ser Gln Glu Ile Thr Arg Asp Phe Asn Leu Leu
35 40 45

Gln Val Ser Glu Pro Ser Glu Pro Cys Val Arg Tyr Leu Pro Arg
50 55 60

Leu Tyr Leu Asp Ile His Asn Tyr Cys Val Leu Asp Lys Leu Arg
65 70 75

Asp Phe Val Ala Ser Pro Pro Cys Trp Lys Val Ala Gln Val Asp
80 85 90

Ser Leu Lys Asp Lys Ala Arg Lys Leu Tyr Thr Ile Met Asn Ser
95 100 105

Phe Cys Arg Arg Asp Leu Val Phe Leu Leu Asp Asp Cys Asn Ala
110 115 120

Leu Glu Tyr Pro Ile Pro Val Thr Thr Val Leu Pro Asp Arg Gln
125 130 135

Arg

<210> 66

<211> 1893

<212> DNA

<213> Homo Sapien

<400> 66

gtctccgcgt cacaggaact tcagcaccca cagggcgac agcgctcccc 50

tctacctgga gacttgactc ccgcgcgccc caaccctgct tatcccttga 100
ccgtcgagtg tcagagatcc tgcagccgcc cagtccggc ccctctcccg 150
ccccacaccc accctcctgg cttttcctgt ttttactcct cctttcatt 200
cataaacaaaa gctacagctc caggagccca gcgcgggct gtgacccaag 250
ccgagcgtgg aagaatgggg ttccctggga ccggcacttg gattctggtg 300
ttagtgtcc cgattcaagc tttccccaaa cctggaggaa gccaaagacaa 350
atctctacat aatagagaat taagtgcaga aagaccttg aatgaacaga 400
ttgctgaagc agaagaagac aagattaaaa aaacatatcc tccagaaaac 450
aagccaggc agagcaacta ttctttgtt gataacttga acctgctaaa 500
ggcaataaca gaaaaggaaa aaattgagaa agaaagacaa tctataagaa 550
gctccccact tgataataag ttgaatgtgg aagatgttga ttcaaccaag 600
aatcgaaaac tgatcgatga ttatgactt actaagagtg gattggatca 650
taaatttcaa gatgatccag atggcttca tcaacttagac gggactcctt 700
taaccgctga agacattgtc cataaaatcg ctgccaggat ttatgaagaa 750
aatgacagag ccgtgttga caagattgtt tctaaactac ttaatctcg 800
ccttattcaca gaaagccaag cacatacact ggaagatgaa gtagcagagg 850
ttttacaaaa attaatctca aaggaagcca acaattatga ggaggatccc 900
aataagccca caagctggac tgagaatcag gctggaaaaa taccagagaa 950
agtgactcca atggcagcaa ttcaagatgg tcttgctaag ggagaaaacg 1000
atgaaacagt atctaacaca ttaaccttga caaatggctt ggaaaggaga 1050
actaaaaacct acagtgaaga caactttgag gaactccaat atttcccaa 1100
tttctatgcg ctactgaaaa gtattgattc agaaaaagaa gcaaaagaga 1150
aagaaacact gattactatc atgaaaacac tgattgactt tgtgaagatg 1200
atggtaaat atggaacaat atctccagaa gaaggtgtt cctaccttga 1250
aaacttggat gaaatgattg ctttcagac caaaaacaag ctagaaaaaaa 1300
atgctactga caatataagc aagctttcc cagcaccatc agagaagagt 1350
catgaagaaa cagacagtac caaggaagaa gcagctaaga tggaaaagga 1400
atatggaagc ttgaaggatt ccacaaaaga tgataactcc aacccaggag 1450
gaaagacaga tgaacccaaa ggaaaaacag aagccttattt ggaagccatc 1500

agaaaaaaaata ttgaatggtt gaagaaacat gacaaaaagg gaaataaaga 1550
agattatgac ctttcaaaga tgagagactt catcaataaa caagctgatg 1600
cttatgtgga gaaaggcatc cttgacaagg aagaagccga ggccatcaag 1650
cgcatttata gcagcctgta aaaatggcaa aagatccagg agtcttcaa 1700
ctgtttcaga aaacataata tagcttaaaa cacttcta at tctgtgatta 1750
aaatttttg acccaagggt tattagaaag tgctgaattt acagtagtta 1800
accttttaca agtggtaaaa acatagctt cttccgtaa aaactatctg 1850
aaagtaaaagt tgtatgtaag ctgaaaaaaaaaaaaaaa aaa 1893

<210> 67

<211> 468

<212> PRT

<213> Homo Sapien

<400> 67

Met	Gly	Phe	Leu	Gly	Thr	Gly	Thr	Trp	Ile	Leu	Val	Leu	Val	Leu
1									10					15
Pro	Ile	Gln	Ala	Phe	Pro	Lys	Pro	Gly	Gly	Ser	Gln	Asp	Lys	Ser
				20					25					30
Leu	His	Asn	Arg	Glu	Leu	Ser	Ala	Glu	Arg	Pro	Leu	Asn	Glu	Gln
					35				40					45
Ile	Ala	Glu	Ala	Glu	Glu	Asp	Lys	Ile	Lys	Lys	Thr	Tyr	Pro	Pro
					50				55					60
Glu	Asn	Lys	Pro	Gly	Gln	Ser	Asn	Tyr	Ser	Phe	Val	Asp	Asn	Leu
					65				70					75
Asn	Leu	Leu	Lys	Ala	Ile	Thr	Glu	Lys	Glu	Lys	Ile	Glu	Lys	Glu
					80				85					90
Arg	Gln	Ser	Ile	Arg	Ser	Ser	Pro	Leu	Asp	Asn	Lys	Leu	Asn	Val
					95				100					105
Glu	Asp	Val	Asp	Ser	Thr	Lys	Asn	Arg	Lys	Leu	Ile	Asp	Asp	Tyr
					110				115					120
Asp	Ser	Thr	Lys	Ser	Gly	Leu	Asp	His	Lys	Phe	Gln	Asp	Asp	Pro
						125			130					135
Asp	Gly	Leu	His	Gln	Leu	Asp	Gly	Thr	Pro	Leu	Thr	Ala	Glu	Asp
						140				145				150
Ile	Val	His	Lys	Ile	Ala	Ala	Arg	Ile	Tyr	Glu	Glu	Asn	Asp	Arg
						155				160				165
Ala	Val	Phe	Asp	Lys	Ile	Val	Ser	Lys	Leu	Leu	Asn	Leu	Gly	Leu
						170				175				180

Ile	Thr	Glu	Ser	Gln	Ala	His	Thr	Leu	Glu	Asp	Glu	Val	Ala	Glu
185								190						195
Val	Leu	Gln	Lys	Leu	Ile	Ser	Lys	Glu	Ala	Asn	Asn	Tyr	Glu	Glu
200								205						210
Asp	Pro	Asn	Lys	Pro	Thr	Ser	Trp	Thr	Glu	Asn	Gln	Ala	Gly	Lys
215								220						225
Ile	Pro	Glu	Lys	Val	Thr	Pro	Met	Ala	Ala	Ile	Gln	Asp	Gly	Leu
230								235						240
Ala	Lys	Gly	Glu	Asn	Asp	Glu	Thr	Val	Ser	Asn	Thr	Leu	Thr	Leu
245								250						255
Thr	Asn	Gly	Leu	Glu	Arg	Arg	Thr	Lys	Thr	Tyr	Ser	Glu	Asp	Asn
260								265						270
Phe	Glu	Glu	Leu	Gln	Tyr	Phe	Pro	Asn	Phe	Tyr	Ala	Leu	Leu	Lys
275								280						285
Ser	Ile	Asp	Ser	Glu	Lys	Glu	Ala	Lys	Glu	Lys	Glu	Thr	Leu	Ile
290								295						300
Thr	Ile	Met	Lys	Thr	Leu	Ile	Asp	Phe	Val	Lys	Met	Met	Val	Lys
305								310						315
Tyr	Gly	Thr	Ile	Ser	Pro	Glu	Glu	Gly	Val	Ser	Tyr	Leu	Glu	Asn
320								325						330
Leu	Asp	Glu	Met	Ile	Ala	Leu	Gln	Thr	Lys	Asn	Lys	Leu	Glu	Lys
335								340						345
Asn	Ala	Thr	Asp	Asn	Ile	Ser	Lys	Leu	Phe	Pro	Ala	Pro	Ser	Glu
350								355						360
Lys	Ser	His	Glu	Glu	Thr	Asp	Ser	Thr	Lys	Glu	Glu	Ala	Ala	Lys
365								370						375
Met	Glu	Lys	Glu	Tyr	Gly	Ser	Leu	Lys	Asp	Ser	Thr	Lys	Asp	Asp
380								385						390
Asn	Ser	Asn	Pro	Gly	Gly	Lys	Thr	Asp	Glu	Pro	Lys	Gly	Lys	Thr
395								400						405
Glu	Ala	Tyr	Leu	Glu	Ala	Ile	Arg	Lys	Asn	Ile	Glu	Trp	Leu	Lys
410								415						420
Lys	His	Asp	Lys	Lys	Gly	Asn	Lys	Glu	Asp	Tyr	Asp	Leu	Ser	Lys
425								430						435
Met	Arg	Asp	Phe	Ile	Asn	Lys	Gln	Ala	Asp	Ala	Tyr	Val	Glu	Lys
440								445						450
Gly	Ile	Leu	Asp	Lys	Glu	Glu	Ala	Glu	Ala	Ile	Lys	Arg	Ile	Tyr
455								460						465
Ser	Ser	Leu												

<210> 68
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 68
cgtcacagga acttcagcac cc 22

<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 69
gtcttggctt cctccaggtt tgg 23

<210> 70
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 70
ggacagcgct cccctctacc tggagacttg actccgc 38

<210> 71
<211> 2379
<212> DNA
<213> Homo Sapien

<400> 71
tttgcgtccgg cggcgctcggtt ggagggagcc agcagccatgg ggcctaggcc 50
cgggcccacca tggcgctgcc tccaggccca gccgcctcc ggcacacact 100
gctgctcctg ccagcccttc tgagctcagg ttggggggag ttggagccac 150
aaatagatgg tcagacctgg gctgagcggtt cacttcggga gaatgaacgc 200
cacgccttca cctgcccgggtt ggcagggggg cctggcaccc ccagattggc 250
ctggtatctg gatggacagc tgcaaggaggc cagcacctca agactgctga 300
gcgtggagg ggaggcccttc tctggaggca ccagcacctt cactgtcact 350
gcccatcggg cccagcatga gctcaactgc tctctgcagg acccccagaag 400
tggccgatca gccaacgcct ctgtcatcct taatgtcaa ttcaagccag 450

agattgccca agtoggcgcc aagtaccagg aagctcaggg cccaggcctc 500
ctggttgtcc tgtttgcctt ggtgcgtgcc aacccgccgg ccaatgtcac 550
ctggatcgac caggatgggc cagtgactgt caacacctct gacttcctgg 600
tgctggatgc gcagaactac ccctggctca ccaaccacac ggtgcagctg 650
cagctccgca gcctggcaca caacctctcg gtggtggcca ccaatgacgt 700
gggtgtcacc agtgcgtcgc ttccagcccc aggcccctcc cgccacccat 750
ctctgatatc aagtgactcc aacaacctaa aactcaacaa cgtgcgcctg 800
ccacgggaga acatgtccct cccgtccaac cttcagctca atgacctcac 850
tccagattcc agagcagtga aaccagcaga ccggcagatg gctcagaaca 900
acagccggcc agagcttctg gacccggagc ccggcggcct cctcaccaggc 950
caaggtttca tccgcctccc agtgcgtggc tatatctatc gagtgccag 1000
cgtgagcagt gatgagatct ggctctgagc cgagggcgag acaggagtat 1050
tctcttgcc tctggacacc ctcccattcc tccaaggcat cctctaccta 1100
gctaggtcac caacgtgaag aagttatgcc actgccactt ttgcttgccc 1150
tcctggctgg ggtgcctcc atgtcatgca cgtgatgcat ttcaactggc 1200
tgtaacccgc aggggcacag gtatcttgg caaggctacc agttggacgt 1250
aagccctca tgctgactca gggtgggccc tgcatgtatc gactgggccc 1300
ttccagaggg agctcttgg ccaggggtgt tcagatgtca tccagcatcc 1350
aagtgtggca tggcctgctg tataccccac cccagtactc cacagcacct 1400
tgtacagtag gcatgggggc gtgcctgtgt gggggacagg gagggccctg 1450
catggatttt ctccttcct atgctatgta gccttgttcc ctcaggtaaa 1500
atttaggacc ctgctagctg tgcagaaccc aattgcctt tgcacagaaa 1550
ccaacccctg acccagcggt accggccaag cacaaacgtc cttttgctg 1600
cacacgtctc tgcccttcac ttcttcttctt ctgtccac ctcctcttgg 1650
gaattctagg ttacacgttg gaccttctct actacttcac tggcactag 1700
actttctat tggcctgtgc catgccccag tattagcaca agtagggag 1750
gaagaggcag gcatgagtc tagtagcacc caggacggct tggactatg 1800
catcattttc ctacggcggtt agcactttaa gcacatcccc taggggaggg 1850
ggtagtgag gggcccgag cccttttgtt ggcttccca cgtttggcc 1900

tctggattc actgtgagtg tcctgagctc tcggggttga tggttttct 1950
 ctcagcatgt ctcctccacc acgggacccc agccctgacc aaccatggt 2000
 tgcctcatca gcaggaaggt gcccttcctg gaggatggtc gccacaggca 2050
 cataattcaa cagtgtggaa gctttagggg aacatggaga aagaaggaga 2100
 ccacataccc caaagtgacc taagaacact ttaaaaagca acatgtaaat 2150
 gattggaaat taatatagtc cagaatatat tttcccttg ttgagatctt 2200
 ctttttaat gttttcatg ttactgccta gggcggtgct gagcacacag 2250
 caagtttaat aaacttgact gaattcattt aaaaaaaaaa aaaaaaaaaa 2300
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2350
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2379

<210> 72

<211> 322

<212> PRT

<213> Homo Sapien

<400> 72

Met	Ala	Leu	Pro	Pro	Gly	Pro	Ala	Ala	Leu	Arg	His	Thr	Leu	Leu
1														15
Leu	Leu	Pro	Ala	Leu	Leu	Ser	Ser	Gly	Trp	Gly	Glu	Leu	Glu	Pro
									20		25			30
Gln	Ile	Asp	Gly	Gln	Thr	Trp	Ala	Glu	Arg	Ala	Leu	Arg	Glu	Asn
									35		40			45
Glu	Arg	His	Ala	Phe	Thr	Cys	Arg	Val	Ala	Gly	Gly	Pro	Gly	Thr
									50		55			60
Pro	Arg	Leu	Ala	Trp	Tyr	Leu	Asp	Gly	Gln	Leu	Gln	Glu	Ala	Ser
									65		70			75
Thr	Ser	Arg	Leu	Leu	Ser	Val	Gly	Gly	Glu	Ala	Phe	Ser	Gly	Gly
									80		85			90
Thr	Ser	Thr	Phe	Thr	Val	Thr	Ala	His	Arg	Ala	Gln	His	Glu	Leu
									95		100			105
Asn	Cys	Ser	Leu	Gln	Asp	Pro	Arg	Ser	Gly	Arg	Ser	Ala	Asn	Ala
									110		115			120
Ser	Val	Ile	Leu	Asn	Val	Gln	Phe	Lys	Pro	Glu	Ile	Ala	Gln	Val
									125		130			135
Gly	Ala	Lys	Tyr	Gln	Glu	Ala	Gln	Gly	Pro	Gly	Leu	Leu	Val	Val
									140		145			150
Leu	Phe	Ala	Leu	Val	Arg	Ala	Asn	Pro	Pro	Ala	Asn	Val	Thr	Trp
									155		160			165

Ile	Asp	Gln	Asp	Gly	Pro	Val	Thr	Val	Asn	Thr	Ser	Asp	Phe	Leu
					170				175				180	
Val	Leu	Asp	Ala	Gln	Asn	Tyr	Pro	Trp	Leu	Thr	Asn	His	Thr	Val
					185				190				195	
Gln	Leu	Gln	Leu	Arg	Ser	Leu	Ala	His	Asn	Leu	Ser	Val	Val	Ala
				200				205				210		
Thr	Asn	Asp	Val	Gly	Val	Thr	Ser	Ala	Ser	Leu	Pro	Ala	Pro	Gly
				215				220				225		
Pro	Ser	Arg	His	Pro	Ser	Leu	Ile	Ser	Ser	Asp	Ser	Asn	Asn	Leu
				230				235				240		
Lys	Leu	Asn	Asn	Val	Arg	Leu	Pro	Arg	Glu	Asn	Met	Ser	Leu	Pro
				245				250				255		
Ser	Asn	Leu	Gln	Leu	Asn	Asp	Leu	Thr	Pro	Asp	Ser	Arg	Ala	Val
				260				265				270		
Lys	Pro	Ala	Asp	Arg	Gln	Met	Ala	Gln	Asn	Asn	Ser	Arg	Pro	Glu
				275				280				285		
Leu	Leu	Asp	Pro	Glu	Pro	Gly	Gly	Leu	Leu	Thr	Ser	Gln	Gly	Phe
				290				295				300		
Ile	Arg	Leu	Pro	Val	Leu	Gly	Tyr	Ile	Tyr	Arg	Val	Ser	Ser	Val
				305				310				315		
Ser	Ser	Asp	Glu	Ile	Trp	Leu								
				320										
<210> 73														
<211> 843														
<212> DNA														
<213> Homo Sapien														
<400> 73														
cggggacgga agcggccctt gggccccagg ggctggagcc gggccggggc 50														
gatgtggagc gcggggcccg cgccggctgc ctggccggtg ctgttggggc 100														
tgctgctggc gctgttagtg ccgggcggtg gtgccgcca gaccggtgcg 150														
gagctcgtga cctgcgggtc ggtgctgaag ctgctaata cgacaccacgg 200														
cgtgcggctg cactcgacg acatcaaata cggatccggc agcggccagc 250														
aatcggtgac cggcgttagag gcgtcgacg acgccaatag ctactggcg 300														
atccgcggcg gctcggaggg cgggtgccc cgccggtccc cggtgcgtg 350														
cgggcaggcg gtgagggtca cgcatgtgct tacggcaag aacctgcaca 400														
cgcaccactt cccgtcgccg ctgtccaaca accaggaggt gagtgccttt 450														
gggaaagacg gcgagggcga cgacctggac ctatggacag tgcgtgctc 500														

tggacagcac tgggagcgtg aggctgctgt gcgcttccag catgtggca 550
cctctgtgtt cctgtcagtc acgggtgagc agtatggaag ccccatccgt 600
gggcagcatg aggtccacgg catgccactg gccaacacgc acaatacgtg 650
gaaggccatg gaaggcatct tcatcaagcc tagtgtggag ccctctgcag 700
gtcacgatga actctgagtg tgtggatgga tgggtggatg gagggtggca 750
ggtggggcgt ctgcagggcc actcttggca gagactttgg gttttaggg 800
gtcctcaagt gcctttgtga ttaagaatg ttggtctatg aaa 843

<210> 74

<211> 221

<212> PRT

<213> Homo Sapien

<400> 74

Met	Trp	Ser	Ala	Gly	Arg	Gly	Ala	Ala	Trp	Pro	Val	Leu	Leu	
1														15
Gly	Leu	Leu	Leu	Ala	Leu	Leu	Val	Pro	Gly	Gly	Gly	Ala	Ala	Lys
	20								25					30
Thr	Gly	Ala	Glu	Leu	Val	Thr	Cys	Gly	Ser	Val	Leu	Lys	Leu	
														45
Asn	Thr	His	His	Arg	Val	Arg	Leu	His	Ser	His	Asp	Ile	Lys	Tyr
														60
Gly	Ser	Gly	Ser	Gly	Gln	Gln	Ser	Val	Thr	Gly	Val	Glu	Ala	Ser
														75
Asp	Asp	Ala	Asn	Ser	Tyr	Trp	Arg	Ile	Arg	Gly	Gly	Ser	Glu	Gly
														90
Gly	Cys	Pro	Arg	Gly	Ser	Pro	Val	Arg	Cys	Gly	Gln	Ala	Val	Arg
														105
Leu	Thr	His	Val	Leu	Thr	Gly	Lys	Asn	Leu	His	Thr	His	His	Phe
														120
110									115					
Pro	Ser	Pro	Leu	Ser	Asn	Asn	Gln	Glu	Val	Ser	Ala	Phe	Gly	Glu
														135
125										130				
Asp	Gly	Glu	Gly	Asp	Asp	Leu	Asp	Leu	Trp	Thr	Val	Arg	Cys	Ser
														150
140									145					
Gly	Gln	His	Trp	Glu	Arg	Glu	Ala	Ala	Val	Arg	Phe	Gln	His	Val
														165
155									160					
Gly	Thr	Ser	Val	Phe	Leu	Ser	Val	Thr	Gly	Glu	Gln	Tyr	Gly	Ser
														180
170									175					
Pro	Ile	Arg	Gly	Gln	His	Glu	Val	His	Gly	Met	Pro	Ser	Ala	Asn
														195
185									190					

Thr His Asn Thr Trp Lys Ala Met Glu Gly Ile Phe Ile Lys Pro
200 205 210

Ser Val Glu Pro Ser Ala Gly His Asp Glu Leu
215 220

<210> 75

<211> 1049

<212> DNA

<213> Homo Sapien

<400> 75

gttgctatgt tgcccaggct ggtcttgaag tgccttgacc tcctaaagtg 50

ttggAACAC agacgtgagc cactccaccc agcctaaaac ttcatcttct 100

ttggatgaga tgaacacttt taacaagaga acaggactct atataaatcg 150

ctgtggctc accacctcta aggaggagca ctgactgaag acagaaaaat 200

tgatgaactg aagaagacat ggtccattat gccttacaaa cttacacagt 250

gctttggaa ttccaaagta ctcagtggag agaggtgttt caggagccgt 300

agagccagat cgtcatcatg tctgcattgt ggctgctgct gggcctcctt 350

gccctgatgg acttgtctga aagcagcaac tggggatgct atggaaacat 400

ccaaAGCCTG gacACCCCTG gagcatcttG tgggatttGGA agacgtcacG 450

gcctgaacta ctgtggagtt cgtgcTTctG aaaggctggc tGaaatagac 500

atGCCatACC tcctgaaATA tcaACCCATG atGAAACCA ttggccAAA 550

gtactgcATG gatCCTGCCG tgatcgctGG tgtcttGtCC aggaAGtCtC 600

ccggTgacAA aattctggTC aacatgggCG ataggACTAG catggTgcAG 650

gaccctggct ctcaagctcc cacatcctgg attagtgagt ctcaggTTc 700

ccagacaact gaagttctGA ctactagaat caaAGAAATC cagaggAGGT 750

ttccaacctG gaccCCTGac cagTACCTGA gaggtggact ctgtgcCTac 800

agtgggggtG ctggctatgt ccgaAGCAGC caggacctGA gctgtgactt 850

ctgcaatGat gtccttgcac gagccaAGTA cctcaAGAGA catggcttct 900

aacatctcAG atGAAACCCA agaccatGat cacatATGca gcctcaaAtG 950

ttacacAGat aaaACTAGCC aaggGCACt GtaactggGA atctgAGtTT 1000

gacctaAAAG tcattAAAT aacatGAATC ccattAAAAA aaaaaaaaa 1049

<210> 76

<211> 194

<212> PRT

<213> Homo Sapien

<400> 76

Met	Ser	Ala	Leu	Trp	Leu	Leu	Gly	Leu	Leu	Ala	Leu	Met	Asp	
1			5				10					15		
Leu	Ser	Glu	Ser	Ser	Asn	Trp	Gly	Cys	Tyr	Gly	Asn	Ile	Gln	Ser
		20					25					30		
Leu	Asp	Thr	Pro	Gly	Ala	Ser	Cys	Gly	Ile	Gly	Arg	Arg	His	Gly
			35				40					45		
Leu	Asn	Tyr	Cys	Gly	Val	Arg	Ala	Ser	Glu	Arg	Leu	Ala	Glu	Ile
			50				55					60		
Asp	Met	Pro	Tyr	Leu	Leu	Lys	Tyr	Gln	Pro	Met	Met	Gln	Thr	Ile
			65				70					75		
Gly	Gln	Lys	Tyr	Cys	Met	Asp	Pro	Ala	Val	Ile	Ala	Gly	Val	Leu
			80				85					90		
Ser	Arg	Lys	Ser	Pro	Gly	Asp	Lys	Ile	Leu	Val	Asn	Met	Gly	Asp
			95				100					105		
Arg	Thr	Ser	Met	Val	Gln	Asp	Pro	Gly	Ser	Gln	Ala	Pro	Thr	Ser
			110				115					120		
Trp	Ile	Ser	Glu	Ser	Gln	Val	Ser	Gln	Thr	Thr	Glu	Val	Leu	Thr
			125				130					135		
Thr	Arg	Ile	Lys	Glu	Ile	Gln	Arg	Arg	Phe	Pro	Thr	Trp	Thr	Pro
			140				145					150		
Asp	Gln	Tyr	Leu	Arg	Gly	Gly	Leu	Cys	Ala	Tyr	Ser	Gly	Gly	Ala
			155				160					165		
Gly	Tyr	Val	Arg	Ser	Ser	Gln	Asp	Leu	Ser	Cys	Asp	Phe	Cys	Asn
			170				175					180		
Asp	Val	Leu	Ala	Arg	Ala	Lys	Tyr	Leu	Lys	Arg	His	Gly	Phe	
			185				190							

<210> 77

<211> 899

<212> DNA

<213> Homo Sapien

<400> 77

ttgaaaatct actctatcag ctgctgtggc tgccaccatt ctcaggaccc 50
tcgcocatgaa agcccttatg ctgctcaccc tgtctgttct gctctgctgg 100
gtctcagctg acattcgctg tcactcctgc tacaagggcc ctgtgctgg 150
ctgtgtggac cgccagtcct gccgcctgga gccaggacag caatgcctga 200
caacacatgc ataccttggt aagatgtggg ttttctccaa tctgcgtgt 250
ggcacaccag aagagccctg tcaggaggcc ttcaacccaaa ccaaccgcaa 300

gctgggtctg acatataaca ccacacctgctg caacaaggac aactgcaaca 350
gcgcaggacc ccggcccaact ccagccctgg gccttgcctt ccttacactcc 400
ttggctggcc ttggcctctg gctgctgcac tgagactcat tccattggct 450
gcccttcctc ccacacctgcct tggcctgagc ctctctccct gtgtctctgt 500
atcccctggc tttacagaat cgctctccc tagctccat ttcttaatt 550
aaacactgtt ccgagtggtc tcctcatcca tccttcccac ctcacaccct 600
tcactctcct ttttctgggt cccttcccac ttccctccag gacctccatt 650
ggctcctaga agggctcccc actttgcttc ctatactctg ctgtccctta 700
cttgaggagg gattgggatc tggcctgaa atggggcttc tgtgttgtcc 750
ccagtgaagg ctcccacaag gacctgatga cctcaactgta cagagctgac 800
tccccaaacc caggctccca tatgtacccc atccccata ctcacactt 850
tccatttga gtaataaaatg tctgagtctg gaaaaaaaaaaa aaaaaaaaaa 899

<210> 78

<211> 125

<212> PRT

<213> Homo Sapien

<400> 78

Met Lys Ala Leu Met Leu Leu Thr Leu Ser Val Leu Leu Cys Trp
1 5 10 15

Val Ser Ala Asp Ile Arg Cys His Ser Cys Tyr Lys Val Pro Val
20 25 30

Leu Gly Cys Val Asp Arg Gln Ser Cys Arg Leu Glu Pro Gly Gln
35 40 45

Gln Cys Leu Thr Thr His Ala Tyr Leu Gly Lys Met Trp Val Phe
50 55 60

Ser Asn Leu Arg Cys Gly Thr Pro Glu Glu Pro Cys Gln Glu Ala
65 70 75

Phe Asn Gln Thr Asn Arg Lys Leu Gly Leu Thr Tyr Asn Thr Thr
80 85 90

Cys Cys Asn Lys Asp Asn Cys Asn Ser Ala Gly Pro Arg Pro Thr
95 100 105

Pro Ala Leu Gly Leu Val Phe Leu Thr Ser Leu Ala Gly Leu Gly
110 115 120

Leu Trp Leu Leu His
125

<210> 79

<211> 1977
<212> DNA
<213> Homo Sapien

ttcttattt tgaggctaaa agttgatgtg tgacaaaata cttatgtgtt 1400
gtatgtcagt gtaacatgca gatgtatatt gcagtttg aaagtgtca 1450
ttactgtgga atgctaaaa tacattaatt tctaaaacct gtgatgccct 1500
aagaagcatt aagaatgaag gtgttgtact aatagaaact aagtacagaa 1550
aatttcagtt ttaggtggtt gtagctgatg agttattacc tcatalogac 1600
tataatattc tatttggtat tatattattt gatgttgct gttcttcaa 1650
catttaaatc aagctttgga ctaattatgc taatttgtga gttctgatca 1700
cttttggct ctgaagctt gaatcattca gtggggaga tggccttctg 1750
gtaactgaat attaccttct gtaggaaaag gtggaaaata agcatctaga 1800
aggttggtgt gaatgactct gtgctggcaa aaatgcttga aacctctata 1850
tttcttcgt tcataagagg taaaggtcaa attttcaac aaaagtcttt 1900
taataacaaa agcatgcagt tctctgtgaa atctcaaata ttgttgaat 1950
agtctgttcc aatctaaaaa agaatca 1977

<210> 80

<211> 339

<212> PRT

<213> Homo Sapien

<400> 80

Met	Ala	Ala	Ala	Cys	Gly	Pro	Gly	Ala	Ala	Gly	Tyr	Cys	Leu	Leu
1				5				10				15		

Leu	Gly	Leu	His	Leu	Phe	Leu	Leu	Thr	Ala	Gly	Pro	Ala	Leu	Gly
				20				25				30		

Trp	Asn	Asp	Pro	Asp	Arg	Met	Leu	Leu	Arg	Asp	Val	Lys	Ala	Leu
				35				40				45		

Thr	Leu	His	Tyr	Asp	Arg	Tyr	Thr	Thr	Ser	Arg	Arg	Leu	Asp	Pro
				50				55				60		

Ile	Pro	Gln	Leu	Lys	Cys	Val	Gly	Gly	Thr	Ala	Gly	Cys	Asp	Ser
				65				70				75		

Tyr	Thr	Pro	Lys	Val	Ile	Gln	Cys	Gln	Asn	Lys	Gly	Trp	Asp	Gly
				80				85				90		

Tyr	Asp	Val	Gln	Trp	Glu	Cys	Lys	Thr	Asp	Leu	Asp	Ile	Ala	Tyr
				95				100				105		

Lys	Phe	Gly	Lys	Thr	Val	Val	Ser	Cys	Glu	Gly	Tyr	Glu	Ser	Ser
				110				115				120		

Glu	Asp	Gln	Tyr	Val	Leu	Arg	Gly	Ser	Cys	Gly	Leu	Glu	Tyr	Asn
				125				130				135		

Leu Asp Tyr Thr Glu Leu Gly Leu Gln Lys Leu Lys Glu Ser Gly
140 145 150

Lys Gln His Gly Phe Ala Ser Phe Ser Asp Tyr Tyr Tyr Lys Trp
155 160 165

Ser Ser Ala Asp Ser Cys Asn Met Ser Gly Leu Ile Thr Ile Val
170 175 180

Val Leu Leu Gly Ile Ala Phe Val Val Tyr Lys Leu Phe Leu Ser
185 190 195

Asp Gly Gln Tyr Ser Pro Pro Pro Tyr Ser Glu Tyr Pro Pro Phe
200 205 210

Ser His Arg Tyr Gln Arg Phe Thr Asn Ser Ala Gly Pro Pro Pro
215 220 225

Pro Gly Phe Lys Ser Glu Phe Thr Gly Pro Gln Asn Thr Gly His
230 235 240

Gly Ala Thr Ser Gly Phe Gly Ser Ala Phe Thr Gly Gln Gln Gly
245 250 255

Tyr Glu Asn Ser Gly Pro Gly Phe Trp Thr Gly Leu Gly Thr Gly
260 265 270

Gly Ile Leu Gly Tyr Leu Phe Gly Ser Asn Arg Ala Ala Thr Pro
275 280 285

Phe Ser Asp Ser Trp Tyr Tyr Pro Ser Tyr Pro Pro Ser Tyr Pro
290 295 300

Gly Thr Trp Asn Arg Ala Tyr Ser Pro Leu His Gly Gly Ser Gly
305 310 315

Ser Tyr Ser Val Cys Ser Asn Ser Asp Thr Lys Thr Arg Thr Ala
320 325 330

Ser Gly Tyr Gly Gly Thr Arg Arg Arg
335