

Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Exame da 1ª chamada

8 de Janeiro de 2007	Duração: 3 horas
Nome:	
Nº mecanográfico: Curso:	
Caso pretenda desistir assine a seguinte declaração. Declaro que desisto.	

	Questão		1a	1b	1c	2	3a	3b	3c	4a	4b	tota	al
	Cotação		15	10	10	10	15	10	10	10	10	100)
	Classifica	ção											
Que	Questão 5a		5b	5c	5d	5e	6a	6b	6c	7a	7b	7c	total
Cot	tação	10	10	10	8	10	10	10	8	8	8	8	100

 $\mathbf{IMPORTANTE:} \ \ \textit{Justifique resumidamente todas as suas afirmações e indique os c\'alculos que efectuou.}$

1. Dados a matriz A real de tipo 3×3 e o vector $B \in \mathbb{R}^3$, seja AX = B um sistema que, por eliminação de Gauss, conduziu à seguinte matriz ampliada:

$$\left[\begin{array}{ccc|ccc} 1 & 0 & \alpha & | & 2 \\ 0 & \alpha & 1 & | & \beta \\ 0 & 0 & \beta & | & \alpha(1-\beta) \end{array}\right].$$

- (a) Discuta para que valores dos parâmetros α e β o sistema é
 - i. possível e determinado;
 - ii. possível e indeterminado;
 - iii. impossível.

- (b) Para $\alpha = 1$ e $\beta = 1$, indique justificando e sem recorrer a cálculos os seguintes conjuntos:
 - i. o espaço nulo de A, $\mathcal{N}(A)$.
 - ii. o espaço das colunas de A, $\mathcal{C}(A)$.

(c) Considere $\alpha = 0$ e $\beta = 0$. Resolva o sistema AX = B e indique o seu conjunto de soluções.

2. Calcule a inversa da seguinte matriz $\left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right].$

- 3. Seja Auma matriz quadrada $n\times n$ tal que $A^2=A.$
 - (a) Verifique que det(A) = 0 ou det(A) = 1.

(b) <u>Justificando</u>, comente a seguinte afirmação: A é invertível.

(c) Suponha que car(A) = n. Justifique que, neste caso, $A = I_n$.

- 4. Considere o subconjunto $S = \{(a, b, c) \in \mathbb{R}^3 : a = c\}.$
 - (a) Mostre que S é um subespaço vectorial de \mathbb{R}^3 .

(b) Determine uma base de S e indique a dimensão de S.

5. Considere a base $\mathcal{B} = \{\omega_1, \omega_2, \omega_3\}$ de \mathbb{R}^3 em que

$$\omega_1 = (1, 0, 0), \quad \omega_2 = (1, 1, 0), \quad \omega_3 = (1, 1, 1),$$

e a transformação linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

definida por
$$T(\omega_1) = \omega_2$$
, $T(\omega_2) = \omega_1 + \omega_3$, $T(\omega_3) = \omega_1$.

(a) Construa a matriz A desta transformação linear relativamente à base $\mathcal B$ do espaço de partida e à base canónica do espaço de chegada.

(b)	Represente $X=(-2,1,1)$ como combinação linear dos vectores da base $\mathcal B$ e, usando a matriz A , calcule $T(X)$.
(c)	Determine o subespaço $\ker(T)$ e diga qual a sua dimensão.
(d)	Diga, justificando, se a transformação linear é injectiva. E sobrejectiva?

(e) Usando matrizes de mudança de base, construa a matriz de T relativamente à base canónica do espaço de partida e à base $\{\omega_1, \omega_2, \omega_3\}$ do espaço de chegada.

6. Considere a matriz

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right]$$

e a aplicação linear $L: \mathbb{R}^3 \to \mathbb{R}^3, \ X \mapsto AX.$

(a) Mostre que a matriz A é diagonalizável.

(b) Verifique que dois vectores próprios de A associados a valores próprios distintos são ortogonais.

(c)	Encon diagor	tre u nal.	ıma l	base	ortog	onal	de l	\mathbb{R}^3 te	al que	e a r	natriz	z de	L re	lativa	ment	e a e	esta	base	seja

- 7. Para cada uma das afirmações seguintes diga se é verdadeira ou falsa, apresentando, em cada caso, uma justificação breve.
 - (a) Se o espaço das linhas de uma matriz 2×3 é gerado por (2,1,0), então a nulidade dessa matriz é dois.

(b) Em \mathbb{R}^3 , x+y+z=0 é uma equação do plano ortogonal à recta que passa nos pontos (1,0,1) e (2,1,2).

(c) Se uma matriz A do tipo 2×2 tem valor próprio -1, e a ele estão associados os vectores próprios (1,2) e (2,-1), então $A^{123}=A$.