Toutes les réponses doivent être portées sur un seul cahier.

N.B:

Le barême est approximatif.

Il sera tenu compte de la présentation de la copie.

L'usage de la calculatrice et du mobile est interdit.

Toute réponse doit être justifiée.

Exercice 1: (7 pts)

Soient $a, b \in \mathbb{R}$ et $f_{a,b}$ un endomorphisme du \mathbb{R} -e.v. \mathbb{R}^3 dont la matrice associée relativement à la base canonique de $B = (e_1, e_2, e_3)$ de \mathbb{R}^3 est :

$$A_{a,b} = \left(\begin{array}{ccc} -3 & 1 & a \\ -4 & 2 & 2 \\ -2 & 1 & b \end{array}\right).$$

- 1- Déterminer suivant les paramètres a et b une base de ker $f_{a,b}$ et le rang de $f_{a,b}$ (dans tout l'exercie il n'est pas demandé de déterminer l'expession de $f_{a,b}$).
 - **2-** Pour quelles valeurs de a et b la matrice $A_{a,b}$ est-elle inversible.
 - **3-** On pose a=2 et b=1 et notons $f_{2,1}$ par f et $A_{2,1}$ par A.

i/- Soit la famille de vecteurs $B' = (v_1 = (1, 1, 1), v_2 = (2, 2, 1), v_3 = (1, 2, 1))$ de \mathbb{R}^3 . Calculer $\det_B (v_1, v_2, v_3)$.

ii/- En déduire que B' est une base de \mathbb{R}^3 .

iii/ Exprimer $f(v_1)$, $f(v_2)$ et $f(v_3)$ dans la base B'.

 \mathbf{iv} / En déduire la matrice $A' = M_{B'}\left(f\right)$.

 \mathbf{v} / Déterminer la matrice P de passage de B vers B'.

vi/ Calculer P^{-1} .

vii Donner une relation entre A et A'

viii/ Calculer A^{2016} .

Exercice 2: (3 pts) (Les questions suivantes sont indépendantes)

1- Soit λ un nombre réel et soit u l'endomorphisme définie par :

$$u: \mathbb{R}_3[X] \to \mathbb{R}_3[X], \quad u(a+bX+cX^2+dX^3) = -a+(2a+b)X+(a+2b+\lambda c)X^2+(a+b+\lambda^2 d)X^3$$

Calculer $\det u$.

2- Donner dans S_5 deux permutations (différentes de l'identité et qui ne sont pas des transpositions) dont l'une est de signature positive et l'autre négative. Justifier.

3- Montrer, pour $A, B \in M_n(\mathbb{R})$ (où $n \in \mathbb{N}^*$), que : det $(A \cdot B) = \det A \cdot \det B$ (se ramener aux endomorphismes par l'association canonique).

Bon courage