

Kubernetes: The Final Frontier

Amanda Kay Moran

#ossummit

@AmandaK_Data

The Final Frontier....

This is an introduction to Kubernetes tutorial.

The continuing mission: to explore the strange new worlds of microservices, containerization, and their management. To seek out new skills and new adventures. To boldly go where no one has gone before!

Agenda

- What is Kubernetes?
- Why is it so Popular?
- Why Should I learn about Kubernete?
- Kubernetes Architecture
- What is a Pod? What is a Deployment?
- Install MiniKube
- Deploy Simple Application
- Deploy Web Application
- How to have High Availability and Scalability
- Where to Learn more!

Who is Amanda?

- Bay Area based Software Engineer/Solutions Architect
- Machine Learning, Analytics, Distributed Systems
- Variety of Companies, big and small!
- Apache Committer and PMC Member Apache Trafodion
- What Do I Love:
 - Dogs
 - Disneyland
 - Veggies
 - o Teaching, training, helping others
 - Running and Exercise

Hands On Lab: Prework

- Install a Hypervisor
- Personally, I use <u>Virtualbox</u>
- 2 minutes to give folks the ability to kick off their download
- We will also be using <u>Minikube</u> --if you already have virtualbox installed

What is Kubernetes?

- Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management of containerized applications.
- Donated to the CNCF foundation by Google and has been developed and used at Google for over 15 years
- First release was in June 2014 and is now 6 years old

What is Kubernetes?

Benefits of Kubernetes

- Run Applications Anywhere
- Easy cluster management
- Service Discovery and load balancing
- Storage management
- Automated rollouts and rollbacks
- Automatic bin packing -- placing containers by resources
- Self Healing
- Horizontal Scaling

Why is it so Popular?

Companies are moving away from monolithic applications

Photo Credit: <u>Microservices</u> <u>Orchestration with Kubernetes</u>

Why is it so Popular?

- Why use Microservices?
 - A microservice is a service that just does a single task and that is all
 - Rapid development
 - Ability to swap out components of an artitecture with ease
 - Easy to automate for CI/CD
 - Flexibility → easier to change course
- Microservices are easy to containerize
 - Container Services: Docker
- Kubernetes is the best place to manage containers

Why is it so Popular?

- Many ways to install and run
- Manually
- Cloud Offering (Platform as a Service)
 - EKS
 - GKE
 - AKS
- Within minutes you can have a managed Kubernetes cluster
- 3 month release cycle

- Kubernetes has a very active and supportive community
- Many different company contribute to the project
- Special Interest Groups -- that meet regularly
- Meetups and Conferences

Why Should I learn about Kubernetes?

- If you work in DevOps or Infrastructure
 - No Brainer!
- Very popular new technology
- But what about Developers and Data Scientist
 - The infrastructure will affect how build/use applications
 - Will affect how you build models
 - Storage
 - Hardcoding
 - Bringing in new package → not persistent
- An Introduction!

- Terminology
- Control Plane
 - o kube-api-server
 - kube-controller-manager
 - kube-scheduler
 - cloud-control-manager
 - Etcd (Key Value Database)
- Node
 - Kubelet
 - kube-proxy
 - Container Runtime

Photo Credit: Wikipedia: Kubernetes

Control Plane

- kube-api-server
- kube-controller-manager
- kube-scheduler
- o cloud-control-manager
- Etcd (Key Value Database)

Photo Credit: <u>Kubernetes</u> Documentation

- kube-api-server
 - Responsible for the Kubernetes API
 - How you will interact with the k8s cluster
 - Will use a command line tool kubectl to interact
 - Interacts with etcd, scheduler, controllers

- kube-controller-manager
 - Runs multiple controllers
 - Node controller
 - Replication Controller
 - Service Account and Token Controller

- kube-scheduler
 - Scheduler for the pods on the cluster
 - Resources needed
 - Affinity
 - Data locality
 - Uses different algorithms (configurable) to place
 - Supply and demand

- cloud-control-manager
 - Ability to use your Cloud providers API
 - Only have in the cloud (not on perm or Minikube)

etcd

- Key value consistent database
 - Consistent over Available → CAP Theorem
- Stores all activity on the cluster
- Combined with API Server to perform actions
- The API Server used watch API on etcd to monitor

- Node
 - Kubelet
 - kube-proxy
 - Container Runtime

Photo Credit: <u>Kubernetes</u> <u>Documentation</u>

Kubelet

- A process (agent) that runs on each kubernetes node
- Uses Pod Specifications to understand which pods and containers should run
- Monitors node it is responsible for
- Control plane and kubelet work closely together

Photo Credit: <u>Kubernetes</u>
<u>Documentation</u>

- kube-proxy
 - Network proxy that runs on each node
 - Uses network rules to allow for pods to talk to each other inside and outside the cluster

Photo Credit: <u>Kubernetes</u>
Documentation

- Container Runtime
 - Containers live within pods and package our application
 - Must be installed on each node
 - Doesn't have to just be Docker
 - Containerd
 - Crio

Workloads: What is a Pod?

Workloads: What is a Pod?

- Smallest unit within managed Kubernetes
 - Containers run outside Kubernetes not managed
- Pods configured by a yaml file
- Will pull a container image from a source
- Containers in a pod are always colocated
- Unique internal ip address per pod
- Containers talk to each other via localhost
- All containers use common volume storage
- Managed by the kube api or controller

```
apiVersion: \vee 1
 2 kind: Pod
  metadata:
     creationTimestamp: null
     labels:
       run: pod
     name: pod
   spec:
     containers:
     - image: amoran06/simple
10
11
       name: pod
12
       resources: {}
13
     dnsPolicy: ClusterFirst
     restartPolicy: Always
15 status: {}
```

Controllers: What is a Controller?

- A controller is a control loop that manages the environment
 - Never terminates and continues to monitor the situation
- kube-control-manager helps with managing each controller type
- It works on the current state and gets you to the desired state
 - I have two pods and I want 3
- Think of an Oven senor

Controllers: What is a Deployment?

Photo Credit: MatthewPalmer.net

- A deployment is setting a desired state for your pods
- Delete and Add Pods
- Add a ReplicaSet → How many I want
- Do I want a restart?
 - Batch job that just runs once
- Ability to easily update and upgrade

Lab Time

Go to: https://github.com/amandamoran/opensourceSummit.git

Continue Learning...

- Reading Kubernetes <u>Docs</u>
- Udacity course: <u>Introducing Scalable Microservices Kubernetes</u>
- Kubernetes in Action by Marko Luksa
- Linux Foundation Training: <u>Introduction to Kubernetes</u>

- Join a Meetup
- Make a Pull Request
- Keep attending Conferences
- Answer Questions
- Write docs
- Everyone is welcome!

References

一个

- Kubernetes <u>Docs</u>
- Kubernetes Wikipeida

