Chapitre 10

Variables aléatoires discrètes

1. Variables aléatoires discrètes

1.1. Définitions

Définition Soit (Ω, \mathcal{T}, P) un espace probabilisé On appelle variable aléatoire sur Ω toute application $X:\Omega \to E$ où E est un ensemble quelconque telle que $\forall x \in X(\Omega): X^{-1}(\{x\}) \in \mathcal{T}$ La variable aléatoire est dite réelle si $E \subset \mathbb{R}$ et discrète si $X(\Omega)$ est fini ou dénombrable

- Remarque : en M.P.S.I. comme $\mathcal{T} = \mathcal{P}(\Omega)$, la condition $X^{-1}(\{x\}] \in \mathcal{T}$ est évidemment vérifiée donc n'avait pas lieu d'être. On verra en § 1.2 toute son utilité!
- Exemple 1 : on lance deux dés et on s'intéresse à la somme des nombres qui apparaissent sur les faces supérieures respectives de ces deux dés.
 - * L'espace probabilisé est par exemple $(\Omega = [1,6]^2, \mathcal{P}(\Omega), P)$ où P est la probabilité uniforme $: \forall (i,j) \in [1,6]^2 : P(\{(i,j)\}) = \frac{1}{36}$
 - * La variable aléatoire qui nous intéresse est $X: \begin{cases} [1,6]^2 \to [2,12] \\ (i,j) \to i+j \end{cases}$

<u>Propriété</u> Si X est une variable aléatoire discrète sur Ω , alors

$$\forall A \in \mathcal{P}(X(\Omega)): \ X^{-1}(A) \in \mathcal{T}$$

- Démonstration
- 1.

- Notations
 - ❖ L'événement $X^{-1}(A)$ est noté $\{X \in A\}$ ou $(X \in A)$ $P(\{X \in A\}) \text{ sera notée plus simplement } P(X \in A)$
 - * L'événement $X^{-1}(\{x\}]$ est noté $\{X=x\}$ ou (X=x) $P(\{X=x\}) \text{ sera notée plus simplement } \boxed{P(X=x)}$

et dans le cas de variables réelles :

- * L'événement $X^{-1}([a,+\infty[) \text{ est noté } \{X\geqslant a\} \text{ ou } (X\geqslant a) \text{ etc...}$
- Retenons:

$$[X \text{ v.a.d.}] \Leftrightarrow \begin{cases} X(\Omega) \text{ est une partie finie ou dénombrable de } E \\ \forall x \in X(\Omega), (X = x) \in \mathcal{T} \end{cases}$$

$$[X \text{ v.a.d.}] \Rightarrow [\forall A \in \mathcal{P}(X(\Omega)), (X \in A) \in \mathcal{T}]$$

1.2. Loi de probabilité d'une variable aléatoire

a) <u>Définition 1</u>

<u>Définition 1</u> Soit (Ω, \mathcal{T}, P) un espace probabilisé et X variable aléatoire sur Ω On appelle **loi de probabilité de la variable aléatoire** X l'application

$$P_{X}: \begin{cases} \mathcal{P}(X(\Omega)) \to [0,1] \\ A \to P(X \in A) \end{cases}$$

• Au sens de cette définition, définir la loi de probabilité de X consiste à définir donc, pour tout $A \in \mathcal{P}(X(\Omega))$, la valeur de $P(X \in A)$.

Propriété 1

 $P_{\boldsymbol{X}}$ est une probabilité sur l'espace probabilisable $(X(\Omega),\mathcal{P}(X(\Omega)))$

• Démonstration

Propriété 2

- La famille des singletons $(\{x\})_{x \in X(\Omega)}$ constitue un système complet d'événements de l'espace probabilisable $(X(\Omega), \mathcal{P}(X(\Omega)))$
- lacktriangle Il suffit donc pour définir P_X de la définir sur ce système.
- Si $X(\Omega) = \{x_n; n \in \mathbb{N}\}$, alors, en notant $p_n = P(X = x_n)$, la série $\sum p_n$ converge et a pour somme $\sum_{n=0}^{+\infty} p_n = \sum_{n=0}^{+\infty} P(X = x_n) = 1$
- Démonstration

2

Il en résulte la seconde définition, équivalente à la première

b) Définition 2

<u>Définition 1</u> Soit (Ω, \mathcal{T}, P) un espace probabilisé et X variable aléatoire sur Ω On appelle **loi de probabilité de la variable aléatoire** X l'application

$$P_{X}: \left\{ \begin{array}{c} X(\Omega) \to \ [0,1] \\ x \to P(X=x) \end{array} \right.$$

• Ainsi pratiquement :

$\overset{\Diamond}{\mathbb{D}}$ Comment définir la loi de probabilité de X

- * Déterminer l'ensemble $X(\Omega)$ (valeurs prises par la variable aléatoire X)
- * Déterminer la probabilité P(X=x) pour tout $x\in\Omega$
- * ... avec la condition $\sum_{x \in X(\Omega)} P(X = x) = 1$.

• Exemple 1 (suite) : somme de deux dés

on a déjà déterminé $X(\Omega) = [2,12]$

on calcule alors
$$\forall s \in [2,12]$$
 : $P(X=s) = \dots = \frac{6-|7-s|}{36}$

$$\Rightarrow$$
 par exemple, comme $\{6 \leqslant X \leqslant 9\} = \bigcup_{s=6}^{9} \{X = s\}$, on peut calculer

$$P(6 \leqslant X \leqslant 9) = \sum_{s=6}^{9} P(X = s) = \frac{5+6+5+4}{36} = \frac{5}{9}$$

c) Exercices traités

• Exercice 1

Soit X une variable aléatoire à valeurs dans \mathbb{N}^* telle que $\forall n \in \mathbb{N}^*$:

$$P(X = (n+1)) = \frac{4}{n}P(X = n)$$

 \Rightarrow Déterminer la loi de X. (\checkmark 5/2 : quelle loi reconnaît-on ?).

Indications

 $\ \, \mathbb O$ Déterminer P(X=n) pour tout $n\in \mathbb N^*$ en fonction de P(X=1)

② Conclure par le fait que
$$\sum_{n=1}^{+\infty} P(X=n) = 1$$

• Exercice 2

Un sportif tente de franchir des obstacles numérotés 1, 2, ..., n... etc... Il n'essaie de franchir l'ostacle n que s'il a réussi les précédents.

La probabilité qu'il franchisse l'obstacle n sachant qu'il a réussi les précédents est égale à $\frac{1}{n}$.

On note X la variable aléatoire égale au numéro du dernier obstacle tenté (si tous les obstacles sont franchis, on attribue à X la valeur 0).

 \Rightarrow Déterminer la loi de X.

$\stackrel{\diamond}{\mathbb{D}}$ Indications

 ${\Bbb O}$ Déterminer la probabilité de l'événement $A_{\!\scriptscriptstyle k}$ « le sportif franchit l'obstacle $k\gg$ (k=1,2,3... puis extrapoler)

 ${\mathbb O}$ En déduire pour tout $n\in{\mathbb N}^*$ la valeur de P(X=n)

3 Calculer
$$P(X=0)$$
 en utilisant toujours $\sum_{n=0}^{+\infty} P(X=n) = 1$

1.3. Variables aléatoires de même loi

<u>Définition</u> Soit (Ω, \mathcal{T}, P) un espace probabilisé.

Soient X et Y deux variables aléatoires sur Ω .

On dit que X et Y ont même loi et on écrit $X \sim Y$ si $P_X = P_Y$

autrement dit si
$$\begin{cases} X(\Omega) = Y(\Omega) \\ \forall x \in X(\Omega) : P(X = x) = P(Y = x) \end{cases}$$

- \rightleftharpoons Ceci ne signifie pas que X et Y sont égales.
- <u>Contre-exemple</u> On lance une fois un dé non pipé à six faces.

L'espace probabilisé est $(\Omega = [1,6], \mathcal{P}(\Omega), P)$ (P probabilité uniforme).

Soit X la fonction indicatrice de l'événement « Le nombre est pair »

et Y celle de l'événement « Le nombre est impair ».

X et Y sont deux variables aléatoires sur Ω .

On a $X \neq Y$ puisque X(0) = 1 et Y(0) = 0. Pourtant X et Y ont même

loi car
$$P(X = 0) = P(X = 1) = \frac{1}{2} = P(Y = 0) = P(Y = 1)$$

• De manière évidente, la relation \sim est une relation d'équivalence sur l'ensemble des variables aléatoires définies sur Ω ; si on note \mathcal{L} la classe d'équivalence d'une loi X, on écrira aussi $X \hookrightarrow \mathcal{L}$ (« X suit la loi \mathcal{L} »). \mathcal{L} s'appelle une loi de probabilité.

1.4. <u>Image d'une variable aléatoire par une fonction</u>

<u>Proposition</u> Soit X une variable aléatoire sur discrète sur (Ω, \mathcal{T}, P) . Soit une application $u: X(\Omega) \to \mathbb{R}$

Alors $u \circ X$ est une variable aléatoire réelle discrète notée

abusivement u(X) et dont la loi de probabilité est définie par :

$$\forall y \in (u \circ X)(\Omega): P(u(X) = y) = \sum_{x \in u^{-1}(\{y\})} P(X = x)$$

- Démonstration **5**.
- En utilisant pour application composante $t_a: x \to x + a$, $h_\alpha: x \to \alpha x$ ou $h_\alpha: x \to x^2$, on définit les variables aléatoires notées X + a, $X \to a$ et $X \to a$.
- On verra que si X et Y sont deux variables aléatoires sur Ω , alors (X,Y) est une variable aléatoire sur Ω ; en utilisant alors pour application composante $s:(x,y)\to x+y$ ou $p:(x,y)\to x\times y$, on pourra parler des variables aléatoires X+Y, XY etc...

2. Lois de probabilité discrètes usuelles

2.1. Lois finies

a) Loi uniforme $\overline{\mathcal{U}(n)}$

<u>Définition</u> On dit qu'une variable aléatoire X à valeurs dans un ensemble fini non vide $E = \{x_1, x_2, ..., x_n\}$ suit la **loi uniforme** sur E et on note $X \hookrightarrow \mathcal{U}(E)$ si $\forall i \in [\![1, n \,[\![: P(X = x_i) = \frac{1}{n}]\!]$.

- Justification du caractère «loi de probabilité » : 6
- <u>Modèle usuel</u> : équibrobabilité
- <u>Exemple</u>: dé à six faces non pipé lancé une fois.
 le nombre affiché sur la face supérieur suit la loi uniforme *U*(6)
- Cette loi donne un sens à l'expression : choisir un objet « au hasard » parmi n : implicitement , la variable aléatoire suit la loi $\mathcal{U}(n)$.

b) Loi de Bernoulli $\overline{\mathcal{B}(p)}$

<u>Définition</u> On dit qu'une variable aléatoire X à valeurs dans $E = \{0,1\}$ suit la **loi de Bernoulli** de paramètre p (où $p \in [0,1]$) et on note $X \hookrightarrow \mathcal{B}(p)$ si p = P(X = 1).

4 On dit aussi que X est une variable de Bernoulli.

- Justification du caractère «loi de probabilité » : 7
- En fait toute variable aléatoire à valeurs dans $\{0,1\}$ suit une loi de Bernoulli : son paramètre p est alors égal à P(X=1).
- <u>Modèle usuel</u> : toute épreuve aléatoire à deux issues, l'une de probabilité p appelée succès, l'autre de probabilité q = 1 p appelée échec ; la variable aléatoire indicatrice du succès suit la loi $\mathcal{B}(p)$.
- On notera a posteriori que $\mathcal{B}(p) = \mathcal{B}(1, p)$.
- Exemples:
 - ❖ Toute fonction indicatrice 1_A d'un événement A.
 - Si X est une variable de Bernoulli, X^2 aussi puisque $X^2 = X$.
 - ❖ Si X et Y sont deux variables de Bernoulli, alors XY aussi.

 ⇒ question : quel paramètre pour XY si $X \hookrightarrow \mathcal{B}(p_1)$ et $Y \hookrightarrow \mathcal{B}(p_2)$?

 $XY \hookrightarrow \mathcal{B}(p_1p_2)$ si X et Y sont indépendantes...

c) Loi binomiale $\mathcal{B}(n,p)$

<u>Définition</u> On dit qu'une variable aléatoire X à valeurs dans E = [0, n] suit la **loi binomiale** de paramètres n et p (où $p \in [0,1]$)

et on note
$$X \hookrightarrow \mathcal{B}(n,p)$$
 si $\forall k \in [0,n]: P(X=k) = \binom{n}{k} p^k q^{n-k}$ où $q=1-p$

- Justification du caractère «loi de probabilité » : 8
- $\underline{\text{Modèle usuel}}$: schéma de Bernoulli (n épreuves répétées de Bernoulli mutuellement indépendantes).

La variable aléatoire X comptant le nombre de succès suit la loi $\mathcal{B}(n,p)$

- Exemples:
 - \diamond Une urne contient des boules rouges et noires avec une proportion p de boules rouges.

On effectue n tirages successifs et avec remise d'une boule dans l'urne.

- \Rightarrow La variable X comptant le nombre de boules rouges tirées suit la loi binomiale $\mathcal{B}(n,p)$
- ❖ Le nombre de filles dans une famille française de n enfants suit la loi binomiale $\mathcal{B}(n, 0.488)$ (compte-tenu de 105 garçons pour 100 filles)

d) Loi hypergéométrique $\mathcal{H}(N,n,p)$

<u>Définition</u> On dit qu'une variable aléatoire X à valeurs dans $E=[\![0,n]\!]$ suit la **loi hypergéométrique** de paramètres $N,\ n$ et p

où
$$n \in [0, N]$$
, $p \in [0, 1]$ et $pN \in \mathbb{N}$, et on note $X \hookrightarrow \mathcal{H}(N, n, p)$

si
$$\forall k \in [0, n]: P(X = k) = \frac{\binom{pN}{k} \binom{qN}{n-k}}{\binom{N}{n}}$$
 où $q = 1 - p$.

- Justification du caractère «loi de probabilité » : 9
 - on utilise ici la formule de Vandermonde...
- Modèle usuel : n tirages <u>sans remise</u> d'une boule (ou un tirage simultané de n boules) dans une urne remplie de N boules rouges et noires avec une proportion de p boules rouges.

La variable X comptant le nombre de boules rouges tirées suit la loi hypergéométrique $\mathcal{H}(N,n,p)$.

• Exemple : le nombre de cartes de cœur obtenues dans une main de tarot suit la loi hypergéométrique $\mathcal{H}(78,18,\frac{7}{39})$.

2.2. Lois discrètes infinies

a) Loi géométrique $\mathcal{G}(p)$

<u>Définition</u>: On dit qu'une variable aléatoire X à valeurs dans \mathbb{N}^* suit la **loi géométrique** de paramètre p (où $p \in [0,1]$) et on note $X \hookrightarrow \mathcal{G}(p)$ si $\forall k \in \mathbb{N}^* : P(X=k) = pq^{k-1}$ où q = 1-p

- Notons que p = P(X = 1)
- Justification du caractère «loi de probabilité ».

 C'est bien la loi d'une variable aléatoire discrète.
- <u>Modèle usuel</u> : schéma infini de Bernoulli (épreuves répétées de Bernoulli mutuellement indépendantes) pour lequel la variable aléatoire X rend le numéro de l'épreuve où est enregistré le premier succès : 10.
- Difficulté : quid si on ne rencontre que des échecs ?

 on pose (X=0) cet événement et on montre que P(X=0)=0
- Exemple : sauts d'obstacles successifs avec à chaque fois la même probabilité de succès.
- Exemple traité 11

Achille, Bérénice et Clytemnestre lancent à tour de rôle un dé non pipé à six faces (en commençant par ordre alphabétique). Le premier qui a obtenu un 6 a gagné.

- ① Qui a le plus de chances de gagner?
- ② Déterminer exactement la probabilité qu'a chacun de gagner.

<u>Proposition</u> caractérisation comme loi sans mémoire

Soit X une variable aléatoire à valeurs dans \mathbb{N}^* . Il est équivalent d'écrire :

- $\bigstar X$ suit une loi géométrique
- ❖ $\forall (n,k) \in \mathbb{N}^2 : P(X = n + k \mid X > n) = P(X = k)$
- Démonstration 12
- $\bullet\,\,$ On a aussi l'équivalence avec :

4^{ième} enfant une fille?

- ♦ $\forall (n,k) \in \mathbb{N}^2 : P(X > n + k \mid X > n) = P(X > k)$
- Interprétation : même si on a subi déjà n échecs, la probabilité au k-ième essai suivant d'avoir son premier succès est la même qu'au démarrage. Exemple : j'ai déjà trois garçons, quelle est la probabilité d'avoir comme
 - notons X le numéro dans la lignée de la première fille :

$$X \hookrightarrow \mathcal{G}(0.488)$$
 donc $P_{X>3}(X=4) = P(X=1) = 0.488$

b) Loi de Poisson $\mathcal{P}(\lambda)$

<u>Définition</u> : On dit qu'une variable aléatoire X à valeurs dans $\mathbb N$ suit une loi de Poisson de paramètre λ (où $\lambda \in \mathbb R_+^*$)

et on note
$$X \to \mathcal{P}(\lambda)$$
 si $\forall k \in \mathbb{N} : P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$

- Justification du caractère variable aléatoire finie. 13
- Modèle usuel : pas de modèle théorique, loi issue des statistiques.
- Cette loi permet d'approximer la loi binomiale $\mathcal{B}(n,p)$ pour n grand...

Théorème approximation de la loi binomiale par une loi de Poisson

Si pour tout $n \in \mathbb{N}$, X_n est variable aléatoire qui suit une loi binomiale

$$\mathcal{B}(n,p_n) \text{ avec } p_n \mathop{\sim}_{n \to +\infty} \frac{\lambda}{n} \text{ (où } \lambda \in \mathbb{R}_+^*), \text{ alors}$$

$$\forall k \in \mathbb{N} : \lim_{n \to +\infty} (P(X_n = k)) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- Démonstration 14
- <u>Dans la pratique</u>: si n est grand (et plus encore p petit), on approche la loi binomiale $\mathcal{B}(n,p)$ par la loi de Poisson $\mathcal{P}(np)$.
- Ceci simplifie le calcul (compliqué pour n grand du fait des coefficients binomiaux) de P(X=k)
- On nomme souvent cette loi la loi des événements rares (car p est petit).
- Exercice 15

On veut organiser un jeu télévisé avec une centaine de participants. La sélection des participants se fait en deux temps : inscription ouverte puis tirage au hasard. Chacun peut s'inscrire. On sait que le nombre N de personnes qui s'inscriront suit une loi de Poisson.

Le second temps se fait au hasard de la manière suivante : on remplit une urne remplie de boules rouges et de boules blanches avec une proportion p de boules rouges. Chaque candidat inscrit tire alors au hasard une boule de l'urne et la remet dans l'urne : si la boule tirée est rouge, le candidat est sélectionné.

Soit X le nombre de personnes finalement sélectionnées

- \Rightarrow ① Déterminer la loi de X en remarquant que $(N=n)_{n\in\mathbb{N}}$ est un système complet d'événements.
 - ② Quelle proportion de boules rouges mettre dans l'urne pour espérer sélectionner une centaine de participants ?

3. Espérance

3.1.**Définitions**

a) Espérance, variable centrée

<u>Définitions</u> Soit X une v.a. discrète sur un espace probabilisé (Ω, \mathcal{T}, P) .

- Si X est à valeurs dans \mathbb{R}_+ , l'espérance E(X) est la somme, dans $[0,+\infty]$, de la famille $(x\times P(X=x))_{x\in X(\Omega)}$
- Si X est à valeurs dans \mathbb{R} , elle est dite d'espérance finie si la famille $(x \times P(X = x))_{x \in X(\Omega)}$ est sommable et alors $E(X) = \sum_{x \in X(\Omega)} (x \times P(X = x))$
- Une variable aléatoire X est dite centrée si E(X) = 0.
- Ainsi si $X(\Omega)$ est fini, la famille est sommable et donc l'espérance est bien définie (cf M.P.S.I.). Si $X(\Omega)$ est dénombrable indexé par \mathbb{N} , la sommabilité de la famille équivaut à la convergence absolue de la série :

série dont on écrit la somme soit absolument convergente.

• On a aussi comme autre expression de E(X), si Ω est dénombrable :

Théorème Soit X une variable aléatoire discrète.

- $[X \text{ est d'espérance finie}] \Leftrightarrow \underbrace{[(X(\omega) \cdot P(\{\omega\})_{\omega \in X(\Omega)} \text{ est sommable}]}_{}$
- Dans ce cas : $E(X) = \sum_{\omega \in \Omega} X(\omega).P(\{\omega\})$
- démonstration admise utilisant une sommation par paquets.
- Exemples
- 17
- * L'espérance d'une variable constante a est égale à a : E(a) = a
- * Si $X \rightarrow \mathcal{U}(\{x_1, x_2, ..., x_n\})$, alors $E(X) = \frac{x_1 + x_2 + ... + x_n}{n}$ En particulier, si $X \rightarrow \mathcal{U}(n)$, alors $E(X) = \frac{n+1}{2}$
- b) Exercices traités
 - Exercice 1

18

Une urne contient N boules dont b blanches.

On tire simultanément n boules de l'urne $(1 \leq n \leq N)$ et on considère la variable aléatoire X égale au nombre de boules blanches obtenues.

 \Rightarrow Quelle est l'espérance de X?

Soit X une variable aléatoire à valeurs dans \mathbb{N}^* telle que

$$\forall n \in \mathbb{N}^* : P(X=n) = \frac{1}{n(n+1)}$$

- ⇒ ① Vérifier qu'on définit bien ainsi la loi de probabilité d'une variable aléatoire discrète.
 - $\ \ \, \bigcirc \ \ \, X \ \,$ admet-elle une espérance ? Si oui, quelle est sa valeur ?

3.2. Formule de transfert

a) Le théorème

<u>Proposition</u> Soit X une variable aléatoire discrète.

19

Soit
$$f: X(\Omega) \to \mathbb{R}$$
. Alors,

- lacktriangle la variable aléatoire f(X) est d'espérance finie si et seulement si la famille $(f(x)\cdot P(X=x))_{x\in X(\Omega)}$ est sommable
- Démonstration pour Ω dénombrable non exigible

20

b) Exemples d'application

• Exemple 1

21

Soit X une variable aléatoire définie telle que $X \, \hookrightarrow \, \mathcal{U}(n)$ i.e :

$$X(\Omega) = [1, n]$$
 et $\forall k \in [1, n]$: $P(X = k) = \frac{1}{n}$

- \Rightarrow Déterminer l'espérance des variables aléatoires $X^2\,,~X^3$ et e^X
- Exemple 2

22

Soit X une variable aléatoire de loi $\mathcal{P}(\lambda)$:

- \Rightarrow Déterminer l'espérance de la variable aléatoire e^X Y suit-elle une loi de Poisson ?
- Exemple 3

23

On lance indéfiniment un dé non pipé à six faces et on note X la variable aléatoire rendant le numéro du lancer donnant le premier '6'.

Si X est pair, on gagne X euros, sinon, on perd X euros.

Soit Y la variable aléatoire représentant le gain (positif ou négatif) ainsi obtenu.

 \Rightarrow Ya-t-elle une espérance finie ? Si oui, quelle est-elle ?

3.3. Propriétés

a) Linéarité

<u>Proposition</u> Soient X et Y deux variables aléatoires discrètes réelles admettant une espérance finie. Alors :

- + X + Y admet une espérance finie et E(X + Y) = E(X) + E(Y)
- $\forall \alpha \in \mathbb{R} : \alpha X \text{ admet une espérance finie et } E(\alpha X) = \alpha E(X)$
- Démonstration

24

- Conséquence : structure d'espace vectoriel des variables aléatoires discrètes admettant une espérance finie.
- Ainsi E(aX + b) = a E(X) + b. Notamment:

<u>Propriété</u> Si X est une variable aléatoire discrète admettant une espérance finie, alors la variable aléatoire X - E(X) est centrée.

- ♣ On l'appelle la variable aléatoire centrée associée à X.
- Démonstration

25

b) Positivité (améliorée)

<u>Proposition</u> : Soit X une variable aléatoire discrète et <u>positive</u> admettant une espérance finie. Alors

- \bullet $E(X) \geqslant 0$
- $lacktriangleq [E(X)=0] \Leftrightarrow [P(X=0)=1] \quad (X \text{ est dite presque sûrement nulle })$
- Démonstration

26

c) <u>Croissance</u>

Proposition: Soient X et Y deux variables aléatoires discrètes.

On suppose que Y admet une espérance finie et que $\mid X \mid \leqslant Y$. Alors

- \bot X et |X| ont une espérance finie
- Démonstration

27

<u>Corollaire</u>: Soient X et Y deux variables aléatoires discrètes <u>positives</u>. Si $X \leq Y$, alors $E(X) \leq E(Y)$.

• Démonstration

Espérance des lois usuelles 3.4.

Loi suivie par X	Notation	$X(\Omega)$	Espérance de X
uniforme	$\mathcal{U}(n)$	$[\![1,n[\!]$	$E(X) = \frac{n+1}{2}$
uniforme	$\mathcal{U}(\{x_1, x_2,, x_n\})$	$\{x_1,,x_n\}$	$E(X) = \frac{x_1 + x_2 + \dots + x_n}{n}$
de Bernoulli	$\mathcal{B}(p)$	{0,1}	E(X) = p
binomiale	$\mathcal{B}(n,p)$	$[\![0,n[\!]$	E(X) = np
géométrique	$\mathcal{G}(p)$	\mathbb{N}^*	$E(X) = \frac{1}{p}$
de Poisson	$\mathcal{P}(\lambda)$	N	$E(X) = \lambda$

- Démonstration (deux pour Bernoulli)
- Ces résultats sont à connaître pour pouvoir éventuellement immédiatement les utiliser dans les exercices

29

30 Exercice

Montrer que l'espérance d'une variable aléatoire suivant une loi hypergéométrique est E(X) = np(cf. § 3.1.b Exercice 1)

<u>Inégalit</u>é de Markov 3.5.

<u>Proposition</u> Si X est une variable aléatoire discrète positive admettant une espérance finie, alors : $\forall a \in \mathbb{R}_+^*$ $P(X \geqslant a) \leqslant \frac{E(X)}{a}$ • Démonstration

31.

- On passe souvent à l'événement contraire : $P(X < a) \ge 1 \frac{E(X)}{a}$
- Exemple : loi de Posson $P(X \geqslant 2\lambda) \leqslant \frac{1}{2}$ donc $P(0 \leqslant X < 2\lambda) \geqslant \frac{1}{2}$

4. Variance, écart-type

4.1. Moments

a) Définition

<u>Définition</u> Le moment d'ordre $r \ (r \in \mathbb{N}^*)$ d'une variable aléatoire X est, lorsqu'il est défini, le nombre $E(X^r)$.

- Par le théorème de transfert : $E(X^r) = \sum_{x \in X(\Omega)} (x^r \cdot P(X = x))$
- On s'intéresse ici aux moments d'ordre 2.

b) Propriétés des moments d'ordre 2

<u>Propriété 1</u> Si une variable aléatoire admet un moment d'ordre 2, elle est d'espérance finie.

• Démonstration

32

Propriété 2 Inégalité de Cauchy-Schwarz

Si deux variables aléatoires X et Y admettent chacune un moment d'ordre 2, la variable aléatoire XY est d'espérance finie et $E(XY)^2 \leqslant E(X^2)E(Y^2)$.

• Démonstration

33

• Exercice: $(X \mid Y) = E(XY)$ définit-il un produit scalaire?

4.2. Variance, écart-type

a) Définition

 $\underline{\text{D\'efinition}}$ Soit X une variable aléatoire admettant un moment d'ordre 2.

- lacktriangleq On appelle variance de X le nombre $V(X) = E((X E(X))^2)$
- lacktriangleq On appelle **écart-type** de X le nombre $\sigma(X) = \sqrt{V(X)}$.
- lacktriangle Une variable aléatoire est dite réduite si $\sigma(X) = 1$
- Ces deux nombres sont bien définis 34
- On a : $[X \text{ admet un moment d'ordre 2}] \Leftrightarrow [X \text{ admet une variance finie}]$
- Interprétation : ① mesure de la dispersion (cf Propriété 2 ci-dessous)
 - ② pourquoi le carré et non une valeur absolue?
 - 3 pourquoi l'écart-type?

b) Propriétés de la variance

$\underline{\text{Propriét\'e 1}} \quad \textbf{formule de Koenig-Huygens}$

Soit X une variable aléatoire admettant une variance.

Alors $V(X) = E(X^2) - E(X)^2$

• Démonstration

35

Propriété 2 Soit X une variable aléatoire admettant un moment d'ordre 2.

Alors : $[\sigma(X) = 0] \Leftrightarrow [X \text{ est presque surement constante}].$

• Démonstration

36

<u>Propriété 3</u> Soit X une variable aléatoire admettant un moment d'ordre 2. Alors si $(a,b) \in \mathbb{R}$, aX + b admet une variance et $V(aX + Y) = a^2 V(X)$

• Démonstration

Propriété 4 Soit X une variable aléatoire admettant une variance non nulle.

La variable $X^* = \frac{X-m}{\sigma}$ où m = E(X) et $\sigma = \sigma(X)$ est une variable

aléatoire centrée et réduite.

♣ On l'appelle la

variable aléatoire centrée réduite associée à X

Démonstration

38

c) Exemple

Un joueur prélève simultanément n boules dans une urne contenant N boules numérotées de 1 à N. On suppose $n \leq N$. On considère la variable aléatoire X égale au plus grand numéro des n boules prélevées.

loi, espérance et variance de X.

4.3. Variance des lois usuelles

Loi de X	Notation	$X(\Omega)$	Définition de la loi	Espérance	Variance
uniforme	$\mathcal{U}(n)$	[1,n[$P(X=k) = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
de Bernoulli	$\mathcal{B}(p)$	{0,1}	P(X=1)=p	p	pq
binomiale	$\mathcal{B}(n,p)$	[] 0, n []	$P(X = k) = \binom{n}{k} p^k q^{n-k}$	np	npq
géométrique	$\mathcal{G}(p)$	\mathbb{N}^*	$P(X=n) = pq^{n-1}$	$\frac{1}{p}$	$rac{q}{p^2}$
de Poisson	$\mathcal{P}(\lambda)$	N	$P(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$	λ	λ

Démonstrations

🚍 Ces résultats sont à connaître par coeur.

40

4.4. Inégalité de Bienaymé-Tchebychev

a) La propriété commentée

Théorème Soit X une variable aléatoire admettant une variance.

 $\forall \varepsilon > 0 : \left| P(|X - E(X)| \geqslant \varepsilon) \leqslant \frac{V(X)}{\varepsilon^2} \right|$

39

- Démonstration (substitution de $(X E(X))^2$ à X dans Markov
- En passant à l'événement contraire : $P(|X E(X)| < \varepsilon) \ge 1 \frac{V(X)}{\varepsilon^2}$

b) Exercice d'application (Gozard 591) 41.

Intérêt, faiblesse.

Soit n un entier naturel tel que $n \ge 5$.

Une variable aléatoire X à valeurs dans \mathbb{N}^* suit la loi géométrique $\mathcal{G}\left(\frac{1}{4}\right)$.

 \Rightarrow Majorer $P(X \ge n)$ ① par l'inégalité de Markov, ② par l'inégalité de Bienaymé-Tchebychev, \Im en appliquant l'inégalité de Markov à $(5/4)^X$...

5. Couple et famille de variables aléatoires

5.1. Couple de variables aléatoires

a) <u>Définition</u>

<u>Définition</u> Si X et Y sont deux variables aléatoires discrètes sur un même univers Ω , (X,Y) est appelé couple de variables aléatoires discrètes.

- C'est la variable aléatoire (X,Y): $\begin{cases} \Omega \to X(\Omega) \times Y(\Omega) \\ \omega \to (X(\omega),Y(\omega)) \end{cases}$
- C'est bien une variable aléatoire discrète 42
- On a seulement l'inclusion : $(X,Y)(\Omega) \subset X(\Omega) \times Y(\Omega)$.
 - $\begin{array}{c} \bullet \text{ } \underline{\text{Contre exemple}}: \text{lancer de deux dés} \ ; \ X = \text{Min}, \ Y = \text{Max} \\ (X,Y)(\Omega) = \{(i,j) \in [\![1,6]\!]^2 / i \leqslant j \} & X(\Omega) \times Y(\Omega) = [\![1,6]\!]^2 \end{array}$
- On définit de même un n-uplet de variables aléatoires (on parle de vecteur aléatoire $(X_1,X_2,...,X_n)$). On pourra sans difficulté étendre toutes les définitions ci-dessous à un n-uplet.

b) Lois conjointes

 $\underline{\text{D\'efinition}}$ Soient X et Y deux variables aléatoires discrètes.

La loi du couple (X,Y) est appelée loi conjointe des variables aléatoires discrètes X et Y.

Propriété Soient X et Y deux variables aléatoires discrètes.

On suppose que $\, X(\Omega) = \{x_i \ ; \ i \in I\} \ \ {
m et} \ \ Y(\Omega) = \{y_j \ ; \ j \in J\} \, .$

La loi conjointe de X et Y est entièrement déterminée par la famille $(p_{i,j})_{i,j} \in [0,1]^{I \times J} \quad \text{où} \ \ p_{i,j} = P(\{X = x_i\} \cap \{Y = y_j\})\,.$

- Démonstration
- 44
- On aura deux choix, le second étant le plus simple :
 - \spadesuit déterminer $(X,Y)(\Omega)$ et ne définir $\,p_{i,j}\,$ que pour $(x_i,y_j)\in (X,Y)(\Omega)$
- Exemples
 - * <u>Exemple 1</u> **45**

Lancer de deux dés, X = Min, Y = Max.

- ⇒ Solution 1 : la loi conjointe est donnée par : $\forall (i,j) \in [1,6]^2$ si $i > j, \ p_{i,j} = 0 \ ; \ p_{i,i} = \frac{1}{36} \ ; \text{si} \ i < j, \ p_{i,j} = \frac{2}{36} = \frac{1}{18}$
- ⇒ Solution 2 : la loi conjointe est donnée par un tableau.

Exemple 2

46

On lance indéfiniment une pièce de monnaie avec $P('Pile') = \frac{2}{3}$.

Soit X la variable aléatoire égale au rang d'apparition du premier 'Pile' et Y celle égale au rang d'apparition du deuxième 'Pile'.

$$\Rightarrow$$
 Loi conjointe de X et $\,Y\,$ définie par $\,p_{i,j} = \begin{cases} \left(\frac{4}{9}\right)\!\!\left(\frac{1}{3}\right)^{\!j\!-\!2} \text{si }i < j \\ 0 & \text{sinon} \end{cases}$

 \Rightarrow Vérifier qu'on a bien $\sum_{(i,j)\in\mathbb{N}^{*2}}p_{i,j}=1$.

c) Lois marginales

Définition Soit (X,Y) un couple de variables aléatoires discrètes.

Les lois de X et de Y sont appelées lois marginales du couple (X,Y)

• Elles sont données par les formules respectives où

$$X(\Omega) = \{x_i \ ; \ i \in I\} \ \text{ et } \ Y(\Omega) = \{y_j \ ; \ j \in J\} \ (x_i \text{ et } y_j \text{ tous distincts})$$

$$\forall i \in I: p_i = P(X = x_i) = \sum_{j \in J} p_{i,j} = \sum_{j \in J} P(\{X = x_i\} \cap \{Y = y_j\})$$

$$\forall j \in J: q_j = P(Y = y_j) = \sum_{i \in I}^{j \in J} p_{i,j} = \sum_{i \in I}^{j \in J} P(\{X = x_i\} \cap \{Y = y_j\})$$
monstration
$$\boxed{\textbf{47}}.$$

Démonstration

La loi de (X,Y) détermine les lois marginales comme le démontrent les deux formules ci-dessous et l'ex.1 ♣, mais la réciproque est fausse (ex.2 ♣) sauf si les variables aléatoires sont indépendantes (§ 5.3.a)

* Exemple 1

$$\Rightarrow$$
 Solution 1 : on obtient $\forall i \in [1,6]$: $p_i = \frac{13-2i}{36}$ et $q_j = \frac{2j-1}{36}$

 \Rightarrow Solution 2 : sommation des lignes et colonnes du tableau...

On remarque ainsi que X et Y ne sont pas indépendantes.

Exemple 2

49

Une urne contient trois boules numérotées de 1 à 3. On en tire successivement deux sans remise.

On note X (resp. Y) le premier (resp. second) numéro tiré.

- ⇒ Lois conjointes et marginales (Tableaux)
- ⇒ Conclure

Variante: Deux urnes contiennent chacune trois boules numérotées de 1 à 3. On tire une boule dans chaque urne.

* Exemple 3

50

Soit $a \in \mathbb{R}$. On pose pour tout $(i,j) \in \mathbb{N}^2$: $p_{i,j} = \frac{a}{i! 2^j}$.

- \Rightarrow ① Déterminer a pour que $(p_{i,j})_{i,j} \in [0,1]^{I \times J}$ définisse la loi de probabilité d'un couple (X,Y) de variables aléatoires.
 - ② Déterminer les lois marginales de ce couple (X,Y) et reconnaître des lois usuelles X et de Y.

d) Lois conditionnelles

<u>Définition</u> Soit (X,Y) un couple de variables aléatoires discrètes.

Soit $x_i \in X(\Omega)$ tel que $P(\{X = x_i\}) \neq 0$:

la loi conditionnelle de Y sachant $(X=x_i)$ est la loi de la variable aléatoire Y dans l'espace probabilisé $(\Omega, \mathcal{T}, P_{X=x})$; elle est définie par :

$$\forall y_j \in Y(\Omega) \, : \, P_{X=x_i}(Y=y_j) = \frac{P(\{X=x_i\} \cap \{Y=y_j\})}{P(\{X=x_i\})} = \frac{p_{i,j}}{p_i}.$$

♣ Plus généralement si $X(\Omega) \subset \mathbb{R}$ et $x \in \mathbb{R}$, la loi conditionnelle de Y sachant (X > x) est la loi définie, si $P(\{X > x\}) \neq 0$, par :

$$\forall y \in Y(\Omega) \ : \ P_{X>x}(Y=y) = \frac{P(\{X>x\} \cap \{Y=y\})}{P(\{X>x\})} \, .$$

- On a le lien entre lois conditionnelles, loi conjointe et lois marginales, en supposant $P(X=x) \neq 0$ et $P(Y=y) \neq 0$:
 - $P(\{X = x\} \cap \{Y = y\}) = P(\{X = x\} \times P_{X=x}(\{Y = y\}))$ $P(X = x) = \sum_{y \in Y(\Omega)} P(Y = y) \times P_{Y=y}(X = x)$
- Démonstration
- **51**
- * Exemple : relecture théorique de l'exemple § 2.2.b

52

Soient X et Y deux variables aléatoires discrètes. On suppose que Y suit la loi de Poisson $\mathcal{P}(\lambda)$ (où $\lambda \in \mathbb{R}_+^*$) et que pour tout $n \in \mathbb{N}$, la loi conditionnelle de X sachant l'événement (Y = n) est la loi binomiale $\mathcal{B}(n,p)$ (où $p \in]0,1[$).

 \Rightarrow Loi conjointe du couple (X,Y), loi marginale de X.

5.2. Indépendance des variables aléatoires

a) Couple de variable aléatoire indépendantes

<u>Définition</u> Deux variables aléatoires X et Y sont dites indépendantes si pour tout couple $(A,B) \in \mathcal{P}(X(\Omega)) \times \mathcal{P}(Y(\Omega))$, les événements $(X \in A)$ et $(Y \in B)$ sont indépendants, autrement dit :

$$P(\{X \in A\} \cap \{Y \in B\}) = P(\{X \in A\}) \times P(\{Y \in B\})$$

<u>Caractérisation</u> X et Y sont indépendantes si et seulement si $\forall (x,y) \in X(\Omega) \times Y(\Omega)$, $P(\{X=x\} \cap \{Y=y\}) = P(\{X=x\}) \times P(\{Y=y\})$.

- autrement dit : les événements $\{X=x\}$ et $\{Y=y\}$ sont indépendants
- Démonstration
- 53
- Conséquence : connaissance de la loi conjointe par les lois marginales

<u>Théorème</u> Soient $f: X(\Omega) \to E$ et $g: Y(\Omega) \to F$.

Si X et Y sont indépendantes, alors f(X) et g(Y) sont indépendantes.

- Démonstration
- **54**
- La généralisation de cette propriété s'appellera le lemme des coalitions

b) <u>Indépendance</u> d'une famille de variables aléatoires

Définitions

Soit $(X_i)_{1 \le i \le n}$ une famille finie ou dénombrable de variables aléatoires .

- lacksquare Les variables aléatoires X_i sont dites indépendantes deux à deux si $\forall (i,j) \in [\![\ 1,n \]\!]^2 / \ i \neq j \ : \ X_i \ \text{et} \ X_j \ \text{sont indépendantes}$
- lacktriangle Les variables aléatoires X_i sont dites mutuellement indépendantes si on a l'une des deux propriétés :
 - \Rightarrow pour toute famille $(A_i)_{1\leqslant i\leqslant n}\in\prod_{i=1}^n\mathcal{P}(X_i(\Omega))$, les événements $(X_i\in A_i)$

sont mutuellement indépendants i.e. $P\left(\bigcap_{i=1}^{n}(X \in A_{i})\right) = \prod_{i=1}^{n}P(X \in A_{i})$

 \Rightarrow pour toute famille $(x_i)_{1\leqslant i\leqslant n}\in\prod_{i=1}^nX_i(\Omega)$, les événements $(X_i=x_i)$

sont mutuellement indépendants i.e. $\boxed{P\biggl(\bigcap_{i=1}^n (X=x_i)\biggr) = \prod_{i=1}^n P(X=x_i)}$

- On démontre comme en § 5.2a que les deux définitions sont équivalentes.
- \bullet Sans autre précision, « indépendantes » signifie « mutuellement indépendantes ».
 - Attention : comme pour les événements, l'indépendance mutuelle entraîne l'indépendance deux à deux mais la réciproque est fausse.
 - On a aussi la généralisation suivante du théorème vu en § 5.2a :

Théorème (lemme des coalitions)

Soit un vecteur aléatoire $(X_1, X_2, ..., X_n)$ et $m \in [1, n-1]$.

Soit
$$f:\prod_{k=1}^m X_k(\Omega) \to E$$
 et $g:\prod_{k=m+1}^n X_k(\Omega) \to F$.

Si les variables aléatoires X_i sont mutuellement indépendantes, alors $f(X_1,...,X_m)$ et $g(X_{m+1},...,X_n)$ sont indépendantes.

• Démonstration admise ; utilisation ci-dessous

54

c) Indépendance et espérance

Théorème

lacksquare Si X et Y sont deux variables aléatoires indépendantes d'espérances finies, alors XY est d'espérance finie égale à $E(XY) = E(X) \times E(Y)$

On a notamment :
$$E(XY) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xy P((X=x) \cap (Y=y))$$

- $X_1, X_2, ..., X_n$ sont mutuellement indépendantes d'espérance finie, alors $\prod_{k=1}^n X_k$ est d'espérance finie et $E\left(\prod_{k=1}^n X_k\right) = \prod_{k=1}^n E(X_k)$.
- Démonstration

55

d) Epreuves répétées indépendantes

- Répeter n fois de manière indépendante une épreuve définissant une variable aléatoire X permet de définir la variable aléatoire $\sum_{i=1}^n X_i$ où X_i représente le résultat de la i-ième épreuve et suit la loi de X.
- Exemples **56 57 58**
 - * <u>Préalable</u>: établir la loi de probabilité de la variable aléatoire X+Y en supposant que X et Y prennent leurs valeurs dans $\mathbb N$
 - * Exemple 1 $\sum_{i=1}^{n} X_{i}$ où $\forall i \in [1, n[, X_{i}], X_{i}]$ suit la loi binomiale $\mathcal{B}(n_{i}, p)$ \Rightarrow on obtient $\boxed{\mathcal{B}\left(\sum n_{i}, p\right)}$
 - \Rightarrow ainsi, on retrouve le schéma de Bernoulli :

si
$$\forall k \in [1, n], X_k \hookrightarrow \mathcal{B}(p), \text{ alors } X_1 + X_2 + ... + X_n \hookrightarrow \mathcal{B}(n, p)$$

- * Exemple 2 $\sum_{i=1}^{n} X_{i}$ où $\forall i \in [1, n], X_{i}$ suit une loi de Poisson $\mathcal{P}(\lambda_{i})$
 - \Rightarrow on obtient $\boxed{\mathcal{P}\!\left(\sum \lambda_{\scriptscriptstyle i}\right)}$
- * Exemple 3 X+Y où X et Y suivent suit la loi géométrique $\mathcal{G}(p)$ \Rightarrow on obtient $P(X+Y=k)=(k-1)p^2q^{k-2}$

5.3. Covariance

a) <u>Définitions</u>

<u>Définition</u> Soient X et Y deux variables aléatoires discrètes admettant des moments d'ordre 2. On appelle covariance de X et Y le nombre :

$$cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

• Ce nombre est bien défini ; il est aussi égal à :

$$cov(X,Y) = E(XY) - E(X)E(Y)$$
59

- On obtient ainsi la « polarisation » de la formule de Koenig-Huygens.
- * Exemple 60

On dispose de n ($n \ge 2$) urnes numérotées de 1 à n. Dans l'urne k, il y a k boules numérotées de 1 à k. On choisit une urne au hasard et dans celle-ci, on pioche une boule au hasard.

Soit X la variable aléatoire égale au numéro de l'urne.

Soit Y la variable aléatoire égale au numéro de la boule tirée.

 \Rightarrow calculer la covariance de X et Y.

b) Propriété immédiate

- V(X) = cov(X, X)
- \bot si X et Y sont indépendantes, cov(X,Y) = 0
- Attention! la réciproque est fausse
- * <u>Exemple</u> **61**.

Soit X une variable aléatoire suivant la loi uniforme sur $\{-1,0,1\}$. Alors X et |X| ne sont pas indépendantes mais cov(X,|X|) = 0

c) <u>Propriétés</u>

<u>Proposition</u> Sur l'espace des variables aléatoires possédant des moments d'ordre 2, la covariance est une forme bilinéaire, symétrique et positive.

- Démonstration 62. ↓
- Attention ! ce n'est pas un produit scalaire. On a seulement : $[cov(X,X)=0] \Leftrightarrow [V(X)=0] \Rightarrow [X \text{ est presque sûrement constante}]$

Corollaire $|\operatorname{cov}(X,Y)| \leqslant \sigma(X)\sigma(Y)$

- Démonstration 63. ↓
- Si X et Y sont de variances non nulles, le nombre $\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sigma(X)\sigma(Y)}$

s'appelle coefficient de corrélation linéaire de X et $\,Y\,.$

* Par le corollaire : $\rho(X,Y) \in [-1,1]$: s'il est nul, les variables sont dites non corrélées, s'il est égal à ± 1 , elles sont fortement corrélées.

d) Variance d'une somme finie de variables aléatoires

<u>Théorème</u> Soient $X, Y, X_1, X_2, ..., X_n$ des variables aléatoires discrètes possédant des moments d'ordre 2.

↓
$$V(X + Y) = V(X) + V(Y) + 2 \operatorname{cov}(X, Y)$$

- Démonstration **64**
- La formule (1) du théorème permet d'écrire des égalités de polarisation, par exemple : $cov(X,Y) = \frac{1}{2}(V(X+Y)-V(X)-V(Y))$ (*)

* Exemple d'utilisation

Une urne contient N boules blanches, rouges ou noires en proportions respectives p_1, p_2 et p_3 . On extrait de l'urne n fois avec remise une boule et on note X (resp. Y) le nombre de boules blanches (resp. rouges) extraites.

 \Rightarrow calculer la covariance de X et Y (utiliser \otimes).

e) Bilans

<u>Théorème 1</u> Soient X et Y sont deux variables aléatoires d'espérances finies.

$$+ E(X + Y) = E(X) + E(Y)$$

Si de plus X et Y admettent un moment d'ordre 2 et sont indépendantes, alors :

$$+$$
 $E(XY) = E(X)E(Y)$

$$+ \operatorname{cov}(X, Y) = 0$$

$$V(X+Y) = V(X) + V(Y)$$

• Démonstration 65. généralisation : 4

<u>Théorème 2</u> Soient $X_1, X_2, ..., X_n$ variables aléatoires d'espérances finies.

Si de plus elles sont deux à deux indépendantes , alors :

Si de plus elles sont mutuellement indépendantes, alors :

• Exemple d'application : si $X \rightarrow \mathcal{B}(n,p), V(X) = npq$

Loi faible des grands nombres 5.4.

Théorème

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires deux à deux indépendantes, de même loi, d'espérance m et admettant une variance $V = \sigma^2$.

Soit
$$S_n = \sum_{k=1}^n X_k$$
. Alors, $\forall \varepsilon > 0$: $\boxed{P\left(\left|\frac{S_n}{n} - m\right| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0}$

- Démonstration **66**.
- Arr L'étudiant doit savoir retrouver l'inégalité : $\left| P\left(\left| \frac{S_n}{n} m \right| > \varepsilon \right) \leqslant \frac{\sigma^2}{n\varepsilon^2} \right|$

6. Fonctions génératrices

6.1. Définition

Propriété préliminaire Soit X une variable aléatoire à valeurs dans \mathbb{N} .

Soit la série entière
$$\sum P(X=n) t^n$$
.

- Son rayon de convergence vérifie $R \geqslant 1$.
- Elle converge normalement sur [-1,1].
- Sa somme G_X est continue sur [-1,1] et si R > 1 sur]-R,R[. $\forall t \in]-R,R[\cup [-1,1],\ t^X$ est d'espérance finie et $\boxed{G_X(t)=E(t^X)}$
- 67 (on utilise ici le théorème de tranfert) • Démonstration

Définition Soit X une variable aléatoire à valeurs dans \mathbb{N} .

La fonction génératrice de X est définie : $G_X(t) = \sum_{n=0}^{+\infty} P(X=n) \ t^n = E(t^X)$

 - De par l'unicité du D.S.E. de ${\cal G}_{\! X}\,,$ connaître la fonction ${\cal G}_{\! X}\,,$ c'est donc connaître la loi de probabilité de X (et réciproquement). On a notamment :

si
$$G_X(t)=\sum_{n=0}^{+\infty}a_nt^n$$
 , alors $\,\,\,\forall n\in\mathbb{N},\,a_n=P(X=n)=rac{G_X^{\,\,(n)}(0)}{n\,!}$

• En particulier, si $G_X = G_Y$ alors $X \sim Y$

6.2.Exemples: fonctions génératrices des lois usuelles

Loi de X	Notation	Notation Fonction génératrice		Espérance	Variance
de Bernoulli	$\mathcal{B}(p)$	$G_X(t) = q + pt$	$+\infty$	p	pq
Binomiale	$\mathcal{B}(n,p)$	$G_{X}(t) = (q + pt)^{n}$	$+\infty$	np	npq
Géométrique	$\mathcal{G}(p)$	$G_{\scriptscriptstyle X}(t) = rac{pt}{1-qt}$	$\frac{1}{q}$	$\frac{1}{p}$	$rac{q}{p^2}$
de Poisson	$\mathcal{P}(\lambda)$	$G_{\scriptscriptstyle X}(t)=e^{\lambda(t-1)}$	$+\infty$	λ	λ

Démonstrations **68**

6.3. Utilisation de la fonction génératrice pour calculer les moments

a) Calcul de l'espérance

<u>Théorème</u> Soit X une variable aléatoire à valeurs dans $\mathbb N$. Alors :

- lacksquare X admet une espérance finie si et seulement si G_X est dérivable en 1.
- lacktriangleq Dans ce cas : $E(X) = G_X^{\prime}(1)$
- Démonstration **69**

b) Calcul de la variance

<u>Théorème</u> Soit X une variable aléatoire à valeurs dans $\mathbb N$. Alors :

- lacksquare X admet un moment d'ordre 2 si et seulement si G_X est deux fois dérivable en 1.
- **↓** Dans ce cas : $V(X) = G_X^{"}(1) + G_X^{'}(1) G_X^{'}(1)^2$
- Démonstration 70.
- \square L'étudiant doit savoir retrouver l'inégalité donnant V(X).
- Exercice 71: vérifier la formule de E et celle de V sur les lois usuelles.

6.4. Fonction génératrice d'une somme de variables indépendantes

Théorème

Soient X et Y deux variables aléatoires indépendantes à valeurs dans $\mathbb N$.

Soient $R_1,\;R_2$ et R les rayons de convergence de $G_{\scriptscriptstyle X}\,,\;G_{\scriptscriptstyle Y}$ et $G_{\scriptscriptstyle X+Y}\,$:

- $\qquad \qquad \mathbf{\$} \quad \mathrm{Sur} \] R_0, R_0[\ : \boxed{G_{X+Y} = G_X \times G_Y}$
- Démonstration
- 72

73

Exercice 74 : retrouver immédiatement les résultats suivants

- * Schéma de Bernoulli : si $\forall k \in [1, n], X_k \hookrightarrow \mathcal{B}(p)$, alors $\Rightarrow X_1 + X_2 + \ldots + X_n \hookrightarrow \mathcal{B}(n, p)$
- * Somme de k variables aléatoires indépendantes de loi $\mathcal{B}(n_i, p)$

$$\Rightarrow$$
 on obtient $\boxed{\mathcal{B}\!\left(\sum_{i=1}^{k}n_{i},p\right)}$

- * Somme de n variables aléatoires indépendantes de lois $\mathcal{P}(\lambda_i)$
 - \Rightarrow on obtient $\boxed{\mathcal{P}\!\left(\sum_{i=1}^n \lambda_i\right)}$

