XgBoost Hyperparameters v1 In [35]: # Generic Libraries import warnings warnings.filterwarnings('ignore') import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import RobustScaler import numpy as np In []: from sklearn.model_selection import cross_val_score from xgboost import XGBClassifier import xgboost as xgb # Metric Libraries from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score, fbeta_score, confusion_matrix In []: # Load dataset. df = pd.read_csv('creditcard.csv') df = df.drop("Time", axis = 1) y= df["Class"] X = df.drop("Class", axis = 1) y.shape, X.shape In []: # Separation of the dataset X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 42, stratify=y) X_train.shape, X_test.shape, y_train.shape, y_test.shape In []: # Check dataset composition print(" Fraudulent Count for Full data : ", np.sum(y)) print(" Fraudulent Count for Train data : ",np.sum(y_train)) print(" Fraudulent Count for Test data : ",np.sum(y_test)) In []: # Save the testing set for evaluation X_test_saved = X_test.copy() y_test_saved = y_test.copy() print("Saved X_test & y_test") In []: # As PCA is already performed on the dataset from V1 to V28 features, we are scaling only Amount field scaler = RobustScaler() # Scaling the train data X_train[["Amount"]] = scaler.fit_transform(X_train[["Amount"]]) # Transforming the test data X_test[["Amount"]] = scaler.transform(X_test[["Amount"]]) 1.- Data Transformation **Original Dataset** Smote In [8]: # Import of specific libraries from collections import Counter from imblearn.over_sampling import SMOTE # Initial situation print('Original dataset shape %s' % Counter(y_train)) # Calculate OverSampling model smote = SMOTE(random_state=42) X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train) print('Resampled dataset shape %s' % Counter(y_train_smote)) Original dataset shape Counter({0: 227451, 1: 394}) Resampled dataset shape Counter({0: 227451, 1: 227451}) Adasyn In [9]: # Import of specific libraries from imblearn.over_sampling import ADASYN # Initial situation print('Original dataset shape %s' % Counter(y_train)) # Calculate OverSampling model adasyn = ADASYN(random_state=42) X_train_adasyn, y_train_adasyn = adasyn.fit_resample(X_train, y_train) print('Resampled dataset shape %s' % Counter(y_train_adasyn)) Original dataset shape Counter({0: 227451, 1: 394}) Resampled dataset shape Counter({1: 227458, 0: 227451}) In [10]: # LOAD OF MODELS. # perfom cross validation on the X_train & y_train from sklearn.model_selection import StratifiedKFold # Initialize StratifiedKFold cross-validator # perform cross validation skf = StratifiedKFold(n_splits=3, random_state=None, shuffle=False) # Shuffle is False because we need a constant best model when we use GridSearchCV **Power Transformation** Original In [11]: # - Apply : preprocessing.PowerTransformer(copy=False) to fit & transform the train & test data from sklearn import metrics from sklearn import preprocessing from sklearn.preprocessing import PowerTransformer pt= preprocessing.PowerTransformer(method='yeo-johnson', copy=True) # creates an instance of the PowerTransformer class. pt.fit(X_train) X_train_pt = pt.transform(X_train) X_test_pt = pt.transform(X_test) y_train_pt = y_train y_test_pt = y_test Smote In [12]: # Import of specific libraries from collections import Counter from imblearn.over_sampling import SMOTE # Initial situation print('Original dataset shape %s' % Counter(y_train_pt)) # Calculate OverSampling model smote = SMOTE(random_state=42) X_train_smote_pt, y_train_smote_pt = smote.fit_resample(X_train_pt, y_train_pt) print('Resampled dataset shape %s' % Counter(y_train_smote_pt)) Original dataset shape Counter({0: 227451, 1: 394}) Resampled dataset shape Counter({0: 227451, 1: 227451}) Adasyn In [13]: # Import of specific libraries from imblearn.over_sampling import ADASYN # Initial situation print('Original dataset shape %s' % Counter(y_train)) # Calculate OverSampling model adasyn = ADASYN(random_state=42) X_train_adasyn_pt, y_train_adasyn_pt = adasyn.fit_resample(X_train_pt, y_train_pt) print('Resampled dataset shape %s' % Counter(y_train_adasyn_pt)) Original dataset shape Counter({0: 227451, 1: 394}) Resampled dataset shape Counter({1: 227459, 0: 227451}) In [14]: # Original distribution OR_origin = ['OR origin', X_train, y_train, X_test, y_test] OR_smote = ['OR smote', X_train_smote, y_train_smote, X_test, y_test] OR_adasyn = ['OR adasyn', X_train_adasyn, y_train_adasyn, X_test, y_test] # Power Transformation PT_origin = ['PT origin', X_train_pt, y_train_pt, X_test_pt, y_test_pt] PT_smote = ['PT smote', X_train_smote_pt, y_train_smote_pt, X_test_pt, y_test_pt] PT_adasyn = ['PT adasyn', X_train_adasyn_pt, y_train_adasyn_pt, X_test_pt, y_test_pt] Preparacion carga de modelos: librerias y funciones In [15]: # LOAD OF MODELS. # perfom cross validation on the X_train & y_train from sklearn.model_selection import StratifiedKFold # Initialize StratifiedKFold cross-validator # perform cross validation skf = StratifiedKFold(n_splits=3, random_state=None, shuffle=False) # Shuffle is False because we need a constant best model when we use GridSearchCV In [16]: from sklearn.model_selection import cross_val_score from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_predict In [17]: **def** evaluate_xgboost(data_list, params_to_show=None, threshold=0.5, **xgb_params): This function trains an XGBoost model and evaluates it with a custom classification threshold. - data_list: List containing [name, X_train, y_train, X_val, y_val]. - params_to_show: Dictionary with parameters to display (optional). - threshold: The classification threshold (default = 0.3). - **xgb_params: Additional XGBoost parameters to be passed dynamically. - A DataFrame with evaluation metrics (Accuracy, Precision, Recall, F1, F2, ROC-AUC, Confusion Matrix). # Diccionario de abreviaturas param_abbreviations = { 'n_estimators': 'n_est', 'learning_rate': 'lr', 'max_depth': 'md', 'threshold': 'th' # Unpack the data list name = data_list[0] X_train, y_train, X_val, y_val = data_list[1:] # Define the XGBoost model, passing **xgb_params dynamically xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42, **xgb_params # Pass dynamic parameters here # Train the model xgb_model.fit(X_train, y_train) # Predict probabilities y_prob = xgb_model.predict_proba(X_val)[:, 1] # Probabilities for the positive class (fraud) # Adjust predictions based on the threshold y_pred = (y_prob > threshold).astype(int) # Calculate metrics cm = confusion_matrix(y_val, y_pred) roc_auc = roc_auc_score(y_val, y_prob) # Use probabilities to calculate ROC-AUC accuracy = accuracy_score(y_val, y_pred) precision = precision_score(y_val, y_pred) recall = recall_score(y_val, y_pred) f1 = f1_score(y_val, y_pred) f2 = fbeta_score(y_val, y_pred, beta=2) # Create a string with the parameters to show # If params_to_show is not provided, show all XGBoost parameters used if params_to_show is None: params_to_show = {'threshold': threshold} params_to_show.update(xgb_params) # Add dynamic XGBoost params to show # Create abrevs params_with_abbreviations = { param_abbreviations.get(key, key): value for key, value in params_to_show.items() # Build the parameter string dynamically #params_str = " ".join([f"{key}={value}" for key, value in params_with_abbreviations.items()]) params_str =[f"{key}={value}" for key, value in params_with_abbreviations.items()] # Store the results in a DataFrame results_df = pd.DataFrame({ 'Model': ['xgboost'], 'Description': [data_list[0]], 'Parameter': [params_str], # Show abbreviated parameters here 'ROC-AUC': [roc_auc], 'Accuracy': [accuracy], 'Precision': [precision], 'Recall': [recall], 'F1 Score': [f1], 'F2 Score': [f2], 'Confusion Matrix': [cm] # Adjust cells pd.set_option('display.max_colwidth', None) results_df.style.set_properties(**{'white-space': 'pre-wrap'}) return results_df In [18]: # Parámeters for XGBoost valores_learning_rate = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] # Values to test valores_n_estimators = [100, 200, 300, 400] # Other parámeters to test # Test different depths $valores_max_depth = [3, 5, 7]$ total_results = [] # Iterate over parameters to do combined testing for learning_rate in valores_learning_rate: for n_estimators in valores_n_estimators: for max_depth in valores_max_depth: # Execute the function with different combinations of hyperparameters results = evaluate_xgboost(OR_smote, n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth total results.append(results) # Combine all results into a single DataFrame for visualization total_results_df = pd.concat(total_results, ignore_index=True) In [19]: total_results_df **Model Description** Parameter ROC-AUC Accuracy Precision Recall F1 Score F2 Score **Confusion Matrix** 0 xgboost OR smote [th=0.5, n_est=100, lr=0.1, md=3] 0.979254 0.987887 0.114583 0.897959 0.203233 0.379310 [[56184, 680], [10, 88]] OR smote [th=0.5, n_est=100, lr=0.1, md=5] 0.975342 0.994488 0.223077 0.887755 0.356557 0.556266 [[56561, 303], [11, 87]] 1 xgboost 2 xgboost OR smote [th=0.5, n_est=100, lr=0.1, md=7] 0.974616 0.997858 0.439394 0.887755 0.587838 0.737288 [[56753, 111], [11, 87]] 3 xgboost OR smote [th=0.5, n_est=200, lr=0.1, md=3] 0.981061 0.992732 0.180162 0.908163 0.300676 0.502257 OR smote [th=0.5, n_est=200, lr=0.1, md=5] 0.976641 0.998122 0.474860 0.867347 0.613718 0.744308 [[56770, 94], [13, 85]] 4 xgboost OR smote [th=0.5, n est=300, lr=0.8, md=5] 0.977811 0.999403 0.813725 0.846939 0.830000 0.840081 [[56845, 19], [15, 83]] **91** xgboost OR smote [th=0.5, n_est=300, lr=0.8, md=7] 0.980583 0.999315 0.780952 0.836735 0.807882 0.824950 **92** xgboost **93** xgboost OR smote [th=0.5, n_est=400, lr=0.8, md=3] 0.981377 0.999368 0.798077 0.846939 0.821782 0.836694 OR smote [th=0.5, n_est=400, lr=0.8, md=5] 0.977513 0.999403 0.813725 0.846939 0.830000 0.840081 **94** xgboost **95** xgboost OR smote [th=0.5, n_est=400, lr=0.8, md=7] 0.980350 0.999315 0.780952 0.836735 0.807882 0.824950 [[56841, 23], [16, 82]] 96 rows × 10 columns In [20]: total_results_df_sorted = total_results_df.sort_values(by='F2 Score', ascending=False) In [21]: total_results_df_sorted Recall F1 Score F2 Score **Confusion Matrix Model Description** Parameter ROC-AUC Accuracy Precision OR smote [th=0.5, n_est=200, lr=0.3, md=7] 0.982876 0.999473 0.826923 0.877551 0.851485 0.866935 29 xgboost [[56846, 18], [12, 86]] OR smote [th=0.5, n_est=300, lr=0.1, md=7] 0.978151 0.999438 0.811321 0.877551 0.843137 0.863454 [[56844, 20], [12, 86]] 8 xgboost OR smote [th=0.5, n_est=300, lr=0.3, md=7] 0.982525 0.999473 0.833333 0.867347 0.850000 0.860324 **32** xgboost [[56847, 17], [13, 85]] OR smote [th=0.5, n_est=400, lr=0.3, md=7] 0.982234 0.999473 0.833333 0.867347 0.850000 0.860324 OR smote [th=0.5, n_est=100, lr=0.3, md=7] 0.984193 0.999368 0.781818 0.877551 0.826923 0.856574 [[56840, 24], [12, 86]] **26** xgboost OR smote [th=0.5, n_est=100, lr=0.3, md=3] 0.980315 0.994768 0.234043 0.897959 0.371308 0.572917 [[56576, 288], [10, 88]] 24 xgboost OR smote [th=0.5, n_est=100, lr=0.1, md=5] 0.975342 0.994488 0.223077 0.887755 0.356557 0.556266 [[56561, 303], [11, 87]] 1 xgboost OR smote [th=0.5, n_est=200, lr=0.1, md=3] 0.981061 0.992732 0.180162 0.908163 0.300676 0.502257 3 xgboost OR smote [th=0.5, n_est=100, lr=0.2, md=3] 0.979167 0.992223 0.167630 0.887755 0.282010 0.477497 [[56432, 432], [11, 87]] **12** xgboost OR smote [th=0.5, n est=100, lr=0.1, md=3] 0.979254 0.987887 0.114583 0.897959 0.203233 0.379310 [[56184, 680], [10, 88]] 0 xgboost 96 rows × 10 columns In [22]: total_results_df_sorted_filtered = total_results_df_sorted[total_results_df_sorted['F2 Score'] >=.85].reset_index(drop=True) In [23]: total_results_df_sorted_filtered Recall F1 Score F2 Score **Model Description** Parameter ROC-AUC Accuracy Precision **Confusion Matrix 0** xgboost OR smote [th=0.5, n_est=200, lr=0.3, md=7] 0.982876 0.999473 0.826923 0.877551 0.851485 0.866935 [[56846, 18], [12, 86]] **1** xgboost OR smote [th=0.5, n_est=300, lr=0.1, md=7] 0.978151 0.999438 0.811321 0.877551 0.843137 0.863454 [[56844, 20], [12, 86]] **2** xgboost OR smote [th=0.5, n_est=300, lr=0.3, md=7] 0.982525 0.999473 0.833333 0.867347 0.850000 0.860324 [[56847, 17], [13, 85]] OR smote [th=0.5, n_est=400, lr=0.3, md=7] 0.982234 0.999473 0.833333 0.867347 0.850000 0.860324 [[56847, 17], [13, 85]] 3 xgboost OR smote [th=0.5, n_est=100, lr=0.3, md=7] 0.984193 0.999368 0.781818 0.877551 0.826923 0.856574 [[56840, 24], [12, 86]] 4 xgboost 5 xgboost OR smote [th=0.5, n_est=300, lr=0.2, md=7] 0.980716 0.999421 0.809524 0.867347 0.837438 0.855131 [[56844, 20], [13, 85]] OR smote [th=0.5, n_est=300, lr=0.2, md=5] 0.980318 0.999350 0.774775 0.877551 0.822967 0.854871 [[56839, 25], [12, 86]] 6 xgboost **7** xgboost OR smote [th=0.5, n_est=400, lr=0.2, md=7] 0.980555 0.999403 0.801887 0.867347 0.833333 0.853414 [[56843, 21], [13, 85]] OR smote [th=0.5, n_est=200, lr=0.2, md=7] 0.981136 0.999386 0.794393 0.867347 0.829268 0.851703 [[56842, 22], [13, 85]] 8 xgboost **9** xgboost OR smote [th=0.5, n_est=400, lr=0.6, md=7] 0.982320 0.999438 0.823529 0.857143 0.840000 0.850202 [[56846, 18], [14, 84]] In [24]: xgboost_hyperparameters= total_results_df_sorted_filtered In [25]: **def** evaluate_xgboost_simplified(data_list, threshold=0.5, **xgb_params): This function trains an XGBoost model and evaluates it with a custom classification threshold. Parameters: - data_list: List containing [name, X_train, y_train, X_val, y_val]. - threshold: The classification threshold (default = 0.5). - **xgb_params: Additional XGBoost parameters to be passed dynamically. - A DataFrame with evaluation metrics (Accuracy, Precision, Recall, F1, F2, ROC-AUC, Confusion Matrix). - The trained XGBoost model (to use for visualizations). # Unpack the data list name = data_list[0] X_train, y_train, X_val, y_val = data_list[1:] # Define the XGBoost model, passing **xgb_params dynamically xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42, **xgb_params # Pass dynamic parameters here # Train the model xgb_model.fit(X_train, y_train) # Predict probabilities y_prob = xgb_model.predict_proba(X_val)[:, 1] # Probabilities for the positive class # Adjust predictions based on the threshold y_pred = (y_prob > threshold).astype(int) # Calculate metrics cm = confusion_matrix(y_val, y_pred) roc_auc = roc_auc_score(y_val, y_prob) accuracy = accuracy_score(y_val, y_pred) precision = precision_score(y_val, y_pred) recall = recall_score(y_val, y_pred) f1 = f1_score(y_val, y_pred) f2 = fbeta_score(y_val, y_pred, beta=2) # Store the results in a DataFrame results_df = pd.DataFrame({ 'Model': ['XGBoost'], 'Description': [name], 'ROC-AUC': [roc_auc], 'Accuracy': [accuracy], 'Precision': [precision], 'Recall': [recall], 'F1 Score': [f1], 'F2 Score': [f2], 'Confusion Matrix': [cm] }) return results_df, xgb_model In [26]: # Final Solution xgboost_final, xgb_model = evaluate_xgboost_simplified(OR_smote, n_estimators=200, learning_rate=0.3, max_depth=7 In [27]: xgboost_final Model Description ROC-AUC Accuracy Precision Recall F1 Score F2 Score **Confusion Matrix** Out[27]: **0** XGBoost OR smote 0.982876 0.999473 0.826923 0.877551 0.851485 0.866935 [[56846, 18], [12, 86]] In [28]: **import** matplotlib.pyplot **as** plt from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score, precision_score, recall_score, fl_score, fbeta_score from xgboost import XGBClassifier, plot_importance, plot_tree import pandas as pd import numpy as np def evaluate_and_visualize_xgboost(data_list, threshold=0.5, **xgb_params): # Dict of abrevs param_abbreviations = { 'n_estimators': 'n_est', 'learning_rate': 'lr', 'max_depth': 'md', 'threshold': 'th' # Unpack data name, X_train, y_train, X_val, y_val = data_list # Define XgBoost model xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42, **xgb_params # Train model xgb_model.fit(X_train, y_train) # Predict probabilities y_prob = xgb_model.predict_proba(X_val)[:, 1] # Adjuct predictions over thresold y_pred = (y_prob > threshold).astype(int) # Calculate metrics cm = confusion_matrix(y_val, y_pred) roc_auc = roc_auc_score(y_val, y_prob) accuracy = accuracy_score(y_val, y_pred) precision = precision_score(y_val, y_pred) recall = recall_score(y_val, y_pred) f1 = f1_score(y_val, y_pred) f2 = fbeta_score(y_val, y_pred, beta=2) # Save resulta in dataframe results_df = pd.DataFrame({ 'Model': ['xgboost'], 'Description': [name], 'ROC-AUC': [roc_auc], 'Accuracy': [accuracy], 'Precision': [precision], 'Recall': [recall], 'F1 Score': [f1], 'F2 Score': [f2], 'Confusion Matrix': [cm] # Function plot matrix confusion def plot_confusion_matrix(cm): plt.figure(figsize=(5, 5)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.colorbar() tick_marks = np.arange(2) plt.xticks(tick_marks, ['0', '1']) plt.yticks(tick_marks, ['0', '1']) # Label in every cell thresh = cm.max() / 2. for i, j in np.ndindex(cm.shape): plt.text(j, i, format(cm[i, j], 'd'), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout() plt.show() # Funtion to graph ROC-AUC def plot_roc_curve(y_val, y_prob): from sklearn.metrics import roc_curve fpr, tpr, _ = roc_curve(y_val, y_prob) plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, color='darkorange', lw=2) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.show() # Function to graph characteristics weight def plot_feature_importance(model): plt.figure(figsize=(10, 8)) plot_importance(model, max_num_features=10, importance_type='weight') plt.title('Feature Importance') plt.show() # Function to graph decision tree def plot_xgboost_tree(model, num_tree=0): plt.figure(figsize=(20, 10)) plot_tree(model, num_trees=num_tree) plt.show() # Call visualization functions plot_roc_curve(y_val, y_prob) plot_confusion_matrix(cm) plot_feature_importance(xgb_model) plot_xgboost_tree(xgb_model, num_tree=0) return results_df In [31]: # Execuate function with single parameter config final_model = evaluate_and_visualize_xgboost(OR_smote, n_estimators=200, learning_rate=0.3, max_depth=7 # Show results final_model **ROC Curve** 1.0 0.8 True Positive Rate 7.0 9.0 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate Confusion Matrix - 50000 40000 18 56846 0 -True label 30000 - 20000 86 12 1 10000 Predicted label <Figure size 1000x800 with 0 Axes> Feature Importance V4 V14 Amount 310.0 V1 V26 V13 266.0 V11 259.0 V12 247.0 V24 243.0 V7 243.0 50 100 150 200 250 300 350 F score <Figure size 2000x1000 with 0 Axes> Out[31]: Model Description ROC-AUC Accuracy Precision Recall F1 Score F2 Score **0** xgboost OR smote 0.982876 0.999473 0.826923 0.877551 0.851485 0.866935 [[56846, 18], [12, 86]] In [33]: import matplotlib.pyplot as plt from xgboost import plot_tree def save_xgboost_tree(model, num_tree=0, filename='xgboost_tree_high_resolution.png', figsize=(30, 20), dpi=300): Function to save Xgboost's tree with high resolution Args: model: XgBoost trained model num_tree: Number of tree to visualizate filename: Name of file where image is saved. figsize: Figure size (wide, high) dpi: Resolution of image. plt.figure(figsize=figsize) plot_tree(model, num_trees=num_tree, fontsize=10) # Save graph in PNG format with desired resolution plt.savefig(filename, dpi=dpi, bbox_inches='tight') plt.close() # Cerrar la figura para liberar memoria # Call function to save the tree save_xgboost_tree(xgb_model, num_tree=0, filename='xgboost_tree_high_resolution.png') <Figure size 3000x2000 with 0 Axes> In [34]: **import** xgboost **as** xgb xgb_model = xgb.XGBClassifier(n_estimators=400, learning_rate=0.2, max_depth=5) xgb_model.fit(X_train, y_train) # Call function to save the tree save_xgboost_tree(xgb_model, num_tree=0, filename='xgboost_tree_high_resolution.png') <Figure size 3000x2000 with 0 Axes> In [30]: xgboost_hyperparameters.to_csv(r'C:\TFM\06_hyperparameter\xgboost.csv', index=False)