Package 'khroma'

January 10, 2025

```
Title Colour Schemes for Scientific Data Visualization
Version 1.15.0
Maintainer Nicolas Frerebeau < nicolas.frerebeau@u-bordeaux-montaigne.fr>
Description Color schemes ready for each type of data (qualitative,
     diverging or sequential), with colors that are distinct for all
     people, including color-blind readers. This package provides an
     implementation of Paul Tol (2018) and Fabio Crameri (2018)
     <doi:10.5194/gmd-11-2541-2018> color schemes for use with 'graphics'
     or 'ggplot2'. It provides tools to simulate color-blindness and to
     test how well the colors of any palette are identifiable. Several
     scientific thematic schemes (geologic timescale, land cover, FAO
     soils, etc.) are also implemented.
License GPL (>= 3)
URL https://packages.tesselle.org/khroma/,
     https://github.com/tesselle/khroma
BugReports https://github.com/tesselle/khroma/issues
Depends R (>= 3.5.0)
Imports graphics, grDevices, grid, stats, utils
Suggests ggplot2, ggraph, knitr, markdown, rsvg, scales, spacesXYZ,
     svglite, tinysnapshot, tinytest
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.3.2
Collate 'change.R' 'color.R' 'compare.R' 'info.R' 'khroma-defunct.R'
     'khroma-deprecated.R' 'khroma-internal.R' 'khroma-package.R'
     'palettes.R' 'plot.R' 'plot_map.R' 'plot_scheme.R'
     'plot scheme colorblind.R' 'plot tiles.R' 'print.R'
     'scale_colour_crameri.R' 'scale_colour_okabeito.R'
     'scale_colour_picker.R' 'scale_colour_science.R'
     'scale colour tol.R'
```

NeedsCompilation no

2 Contents

Author Nicol	as Frerebeau [aut, cre] (<https: 0000-0001-5759-4944="" orcid.org="">)</https:>
Brice Le	brun [ctb] (<https: 0000-0001-7503-8685="" orcid.org="">),</https:>
Vincent	Arel-Bundock [ctb] (https://orcid.org/0000-0003-2042-7063),
Ulrik Ste	ervbo [ctb] (<https: 0000-0002-2831-8868="" orcid.org="">),</https:>
Universi	té Bordeaux Montaigne [fnd],
CNRS [1	ind]

Repository CRAN

Date/Publication 2025-01-10 16:10:05 UTC

Contents

change
colour
compare
info 8
palette_color_continuous
palette_color_discrete
palette_color_picker
palette_shape
palette_size
plot.color_scheme
plot_map
plot_scheme
plot_scheme_colourblind
plot_tiles
scale_colour_land
scale_colour_soil
scale_colour_stratigraphy
scale_crameri_acton
scale_crameri_bam
scale_crameri_bamako
scale_crameri_bamO
scale_crameri_batlow
scale_crameri_batlowK
scale_crameri_batlowW
scale_crameri_berlin
scale_crameri_bilbao
scale_crameri_broc
scale_crameri_brocO
scale_crameri_buda
scale_crameri_bukavu
scale_crameri_cork
scale_crameri_corkO
scale_crameri_davos
scale_crameri_devon
scale_crameri_fes
scale_crameri_grayC

change 3

chang	ge Simulate Color-Blindness	
Index		173
	scale_tol_YlOrBr	170
	scale_tol_vibrant	
	scale_tol_sunset	
	scale_tol_smoothrainbow	
	scale_tol_PRGn	
	scale_tol_pale	
	scale_tol_nightfall	
	scale_tol_muted	
	scale_tol_mediumcontrast	
	scale_tol_light	
	scale_tol_iridescent	146
	scale_tol_incandescent	144
	scale_tol_highcontrast	
	scale_tol_discreterainbow	
	scale_tol_dark	
	scale_tol_BuRd	
	scale_tol_bright	
	scale picker	
	scale_okabeito_discrete	
	scale_crameri_vikO	
	scale crameri vik	
	scale crameri vanimo	
	scale_crameri_turku	
	scale_crameri_tokyo	
	scale_crameri_tofino	
	scale_crameri_roma	
	scale_crameri_oslo	
	scale_crameri_oleron	
	scale_crameri_nuuk	98
	scale_crameri_lisbon	95
	scale_crameri_lapaz	91
	scale_crameri_lajolla	
	scale_crameri_imola	85

Description

Simulate Color-Blindness

Usage

change(x, mode)

4 change

Arguments

x A palette function that when called with a single integer argument (the number

of levels) returns a vector of colors (see color()).

mode A character string giving the colorblind vision to be used. It must be one

of "deuteranopia", "protanopia", "tritanopia" or "achromatopsia". Any

unambiguous substring can be given.

Value

A palette function that returns a vector of anomalized colors. All the attributes of the initial palette function are inherited, with a supplementary attribute "mode" giving the corresponding color-blind vision.

Author(s)

N. Frerebeau

References

Brettel, H., Viénot, F. and Mollon, J. D. (1997). Computerized Simulation of Color Appearance for Dichromats. *Journal of the Optical Society of America A*, 14(10), p. 2647-2655. doi:10.1364/JOSAA.14.002647.

Tol, P. (2018). *Colour Schemes*. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf

Viénot, F., Brettel, H. and Mollon, J. D. (1999). Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats. *Color Research & Application*, 24(4), p. 243-52. doi:10.1002/(SICI)15206378(199908)24:4<243::AIDCOL5>3.0.CO;23.

See Also

Other diagnostic tools: compare(), plot.color_scheme(), plot_map(), plot_scheme(), plot_scheme_colourblind(), plot_tiles()

```
# Trichromat
pal <- colour("bright")
plot_scheme(pal(7))

# Deuteranopia
deu <- change(pal, mode = "deuteranopia")
plot_scheme(deu(7))

# Protanopia
pro <- change(pal, mode = "protanopia")
plot_scheme(pro(7))

# Tritanopia
tri <- change(pal, mode = "tritanopia")</pre>
```

colour 5

```
plot_scheme(tri(7))

# Achromatopsia
ach <- change(pal, mode = "achromatopsia")
plot_scheme(ach(7))

## Plot simulated color blindness
plot_scheme_colorblind(pal(7))</pre>
```

colour

Color Schemes

Description

Provides qualitative, diverging and sequential color schemes.

Usage

```
colour(
  palette,
  reverse = FALSE,
  names = FALSE,
  lang = "en",
  force = FALSE,
  ...
)

color(palette, reverse = FALSE, names = FALSE, lang = "en", force = FALSE, ...)
```

Arguments

palette	A character string giving the name of the scheme to be used (see info()).
reverse	A logical scalar: should the resulting vector of colors should be reversed?
names	A logical scalar: should the names of the colors should be kept in the resulting vector?
lang	A character string specifying the language for the color names. It must be one of "en" (English, the default) or "fr" (French).
force	A logical scalar. If TRUE, forces the color scheme to be interpolated. It should not be used routinely with qualitative color schemes, as they are designed to be used as is to remain color-blind safe.
	Further arguments passed to colorRampPalette.

6 colour

Value

A function function with the following attributes, that when called with a single argument (an integer specifying the number of colors) returns a (named) vector of colors.

palette A character string giving the name of the color scheme.

type A character string giving the corresponding data type. One of "qualitative", "diverging" or "sequential".

interpolate A logical scalar: can the color palette be interpolated?

missing A character string giving the the hexadecimal representation of the color that should be used for NA values.

max An integer giving the maximum number of color values. Only relevant for non-interpolated color schemes.

For color schemes that can be interpolated (diverging and sequential data), the color range can be limited with an additional argument. range allows to remove a fraction of the color domain (before being interpolated; see examples).

Author(s)

N. Frerebeau

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

Jones, A., Montanarella, L. & Jones, R. (Ed.) (2005). *Soil atlas of Europe*. Luxembourg: European Commission, Office for Official Publications of the European Communities. 128 pp. ISBN: 92-894-8120-X.

Okabe, M. & Ito, K. (2008). Color Universal Design (CUD): How to Make Figures and Presentations That Are Friendly to Colorblind People. URL: https://jfly.uni-koeln.de/color/.

Tol, P. (2021). *Colour Schemes*. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf

Commission for the Geological Map of the World

See Also

Other color schemes: info()

```
## Okabe and Ito colour scheme
colour("okabe ito")(8)
plot_scheme(colour("okabe ito")(8))
## Paul Tol's colour schemes
```

compare 7

```
### Qualitative data
plot_scheme(colour("bright")(7))
plot_scheme(colour("high contrast")(3))
plot_scheme(colour("vibrant")(7))
plot_scheme(colour("muted")(9))
plot_scheme(colour("medium contrast")(6))
plot_scheme(colour("pale")(6))
plot_scheme(colour("dark")(6))
plot_scheme(colour("light")(9))
### Diverging data
plot_scheme(colour("sunset")(11))
plot_scheme(colour("BuRd")(9))
plot_scheme(colour("PRGn")(9))
### Sequential data
plot_scheme(colour("YlOrBr")(9))
plot_scheme(colour("iridescent")(23))
plot_scheme(colour("discrete rainbow")(14))
plot_scheme(colour("discrete rainbow")(23))
plot_scheme(colour("smooth rainbow")(34))
## Scientific colour schemes
### Geologic timescale
plot_scheme(colour("stratigraphy")(175))
### AVHRR global land cover classification
plot_scheme(colour("land")(14))
### FAO soil reference groups
plot_scheme(colour("soil")(24))
## Adjust colour levels
PRGn <- colour("PRGn")</pre>
plot_scheme(PRGn(9, range = c(0.5, 1)))
```

compare

Color Difference

Description

Computes CIELAB distance metric.

Usage

```
compare(x, metric = 2000, diag = FALSE, upper = FALSE)
```

Arguments

X	A character vector of colors.
metric	An integer value giving the year the metric was recommended by the CIE. It must be one of "1976", "1994", or "2000" (default; see spacesXYZ::DeltaE()).
diag	A logical scalar: should the diagonal of the distance matrix be printed?

8 info

upper

A logical scalar: should the upper triangle of the distance matrix should be printed?

Value

A distance matrix.

Author(s)

N. Frerebeau

See Also

```
Other diagnostic tools: change(), plot.color_scheme(), plot_map(), plot_scheme(), plot_scheme_colourblind(), plot_tiles()
```

Examples

```
# Trichromat
pal <- colour("bright")
compare(pal(5))

# Deuteranopia
deu <- change(pal, mode = "deuteranopia")
compare(deu(5))

# Protanopia
pro <- change(pal, mode = "protanopia")
compare(pro(5))

# Tritanopia
tri <- change(pal, mode = "tritanopia")
compare(tri(5))

# Achromatopsia
ach <- change(pal, mode = "achromatopsia")
compare(ach(5))</pre>
```

info

Available Schemes

Description

Returns information about the available schemes.

Usage

info()

Value

```
A data.frame with the following columns:

palette Names of palette.

type Types of schemes: sequential, diverging or qualitative.

max Maximum number of colors that are contained in each palette. Only relevant for qualitative schemes.

missing The hexadecimal color value for mapping missing values.

Author(s)

N. Frerebeau

See Also

Other color schemes: colour()

Examples

## Get a table of available palettes
info()
```

```
palette_color_continuous
```

Color Mapping (continuous)

Description

Maps continuous values to an interpolated colors gradient.

Usage

```
palette_color_continuous(
  colors = NULL,
  domain = NULL,
  midpoint = NULL,
  missing = "#DDDDDD"
)

palette_colour_continuous(
  colors = NULL,
  domain = NULL,
  midpoint = NULL,
  missing = "#DDDDDD"
)
```

Arguments

colors A vector of colors or a function that when called with a single argument (an

integer specifying the number of colors) returns a vector of colors. If NULL (the

default), uses YlOrRd.

domain A numeric range specifying the possible values that can be mapped.

Midpoint A length-one numeric vector specifying the mid-point of input range.

missing The color to return for NA values.

Value

A palette function that when called with a single argument (a numeric vector of continuous values) returns a character vector of colors.

See Also

```
grDevices::colorRamp()
Other palettes: palette_color_discrete(), palette_color_picker(), palette_shape(), palette_size
```

```
## Visualize a simple DEM model
## Distribution of elevation values
elevation <- hist(volcano)</pre>
## Where are breaks?
elevation$breaks
## Build palette functions
BuRd <- color("BuRd")</pre>
ramp_BuRd <- palette_color_continuous(colors = BuRd(10))</pre>
image(volcano, col = ramp_BuRd(elevation$breaks))
legend("topright", legend = elevation$breaks, fill = ramp_BuRd(elevation$breaks))
## Scatter plot
## Build color palette functions
YlOrBr <- color("YlOrBr")
pal_color <- palette_color_continuous(colors = YlOrBr)</pre>
## Build symbol palette functions
pal_size <- palette_size_sequential(range = c(1, 3))</pre>
## Plot
plot(
  x = iris$Petal.Length,
  y = iris$Sepal.Length,
  pch = 16,
  col = pal_color(iris$Petal.Length),
  cex = pal_size(iris$Petal.Length),
```

palette_color_discrete 11

```
xlab = "Petal length",
ylab = "Sepal length",
panel.first = grid(),
las = 1
)
```

```
palette_color_discrete
```

Color Mapping (discrete)

Description

Maps categorical values to colors.

Usage

```
palette_color_discrete(
  colors = NULL,
  domain = NULL,
  ordered = FALSE,
  missing = "#DDDDDD"
)

palette_colour_discrete(
  colors = NULL,
  domain = NULL,
  ordered = FALSE,
  missing = "#DDDDDDD"
)
```

Arguments

colors	A vector of colors or a function that when called with a single argument (an
	integer specifying the number of colors) returns a vector of colors. If NULL (the
	default), uses discrete rainbow.
domain	A vector of categorical data specifying the possible values that can be mapped.
ordered	A logical scalar: should the levels be treated as already in the correct order?
missing	The color to return for NA values.

Value

A palette function that when called with a single argument (a vector of categorical values) returns a character vector of colors.

See Also

```
Other palettes: palette_color_continuous(), palette_color_picker(), palette_shape(), palette_size
```

12 palette_color_picker

Examples

```
## Scatter plot
## Build color palette functions
bright <- c(versicolor = "#4477AA", virginica = "#EE6677", setosa = "#228833")
pal_color <- palette_color_discrete(colors = bright)</pre>
## Build symbol palette functions
symbols <- c(versicolor = 15, virginica = 16, setosa = 17)</pre>
pal_shapes <- palette_shape(symbols)</pre>
## Plot
plot(
  x = iris$Petal.Length,
 y = iris$Sepal.Length,
  pch = pal_shapes(iris$Species),
  col = pal_color(iris$Species),
  xlab = "Petal length",
  ylab = "Sepal length",
  panel.first = grid(),
  las = 1
)
legend("topleft", legend = names(bright), col = bright, pch = symbols)
```

palette_color_picker Color Mapping

Description

Maps values to colors.

Usage

```
palette_color_picker(
    scheme,
    domain = NULL,
    midpoint = NULL,
    ordered = FALSE,
    missing = NULL,
    ...
)

palette_colour_picker(
    scheme,
    domain = NULL,
    midpoint = NULL,
    ordered = FALSE,
    missing = NULL,
    ...
)
```

palette_color_picker 13

Arguments

scheme	A character string giving the name of the scheme to be used (see color()).
domain	A numeric range or a vector of categorical data specifying the possible values that can be mapped.
midpoint	A length-one numeric vector specifying the mid-point of input range.
ordered	A logical scalar: should the levels be treated as already in the correct order?
missing	The color to return for NA values.
	Further parameters to be passed to color().

Details

A wrapper around palette_color_continuous() and palette_color_discrete().

Value

A palette function that when called with a single argument returns a character vector of colors.

See Also

```
Other palettes: palette_color_continuous(), palette_color_discrete(), palette_shape(), palette_size
```

```
## Visualize a simple DEM model
## Distribution of elevation values
elevation <- hist(volcano)

## Where are breaks?
elevation$breaks

## Build palette functions
ramp_BuRd <- palette_color_picker("BuRd")

(col <- ramp_BuRd(elevation$breaks))
image(volcano, col = col)
legend("topright", legend = elevation$breaks, fill = col)

## Rescale to midpoint
ramp_BuRd <- palette_color_picker("BuRd", midpoint = 160)

(col <- ramp_BuRd(elevation$breaks))
image(volcano, col = col)
legend("topright", legend = elevation$breaks, fill = col)</pre>
```

14 palette_shape

palette_shape

Symbol Mapping

Description

Symbol Mapping

Usage

```
palette_shape(symbols = NULL, domain = NULL, ordered = FALSE, ...)
palette_line(types = NULL, domain = NULL, ordered = FALSE, ...)
```

Arguments

symbols, types A vector of symbols or line types.

domain A vector of categorical data specifying the possible values that can be mapped.

ordered A logical scalar: should the levels be treated as already in the correct order?

... Currently not used.

Value

A palette function that when called with a single argument (a character vector of categorical values) returns a vector of symbols.

See Also

Other palettes: palette_color_continuous(), palette_color_discrete(), palette_color_picker(), palette_size

```
## Scatter plot
## Build color palette functions
bright <- c(versicolor = "#4477AA", virginica = "#EE6677", setosa = "#228833")
pal_color <- palette_color_discrete(colors = bright)

## Build symbol palette functions
symbols <- c(versicolor = 15, virginica = 16, setosa = 17)
pal_shapes <- palette_shape(symbols)

## Plot
plot(
    x = iris$Petal.Length,
    y = iris$Sepal.Length,
    pch = pal_shapes(iris$Species),
    col = pal_color(iris$Species),
    xlab = "Petal length",</pre>
```

palette_size 15

```
ylab = "Sepal length",
panel.first = grid(),
las = 1
)
legend("topleft", legend = names(bright), col = bright, pch = symbols)
```

palette_size

Symbol Size Mapping

Description

Symbol Size Mapping

Usage

```
palette_size_sequential(range = c(1, 6), ...)
palette_size_diverging(range = c(1, 6), midpoint = 0, ...)
```

Arguments

range A length-two numeric vector giving range of possible sizes (greater than 0).
... Currently not used.

midpoint A length-one numeric vector specifying the data mid-point.

Value

A palette function that when called with a single argument (a numeric vector of continuous values) returns a numeric vector giving the amount by which plotting text and symbols should be magnified relative to the default.

See Also

```
Other palettes: palette_color_continuous(), palette_color_discrete(), palette_color_picker(), palette_shape()
```

```
## Visualize a simple DEM model
## Distribution of elevation values
elevation <- hist(volcano)

## Where are breaks?
elevation$breaks

## Build palette functions
BuRd <- color("BuRd")
ramp_BuRd <- palette_color_continuous(colors = BuRd(10))</pre>
```

plot.color_scheme

```
## Plot image
image(volcano, col = ramp_BuRd(elevation$breaks))
legend("topright", legend = elevation$breaks, fill = ramp_BuRd(elevation$breaks))
## Scatter plot
## Build color palette functions
YlOrBr <- color("YlOrBr")
pal_color <- palette_color_continuous(colors = Y10rBr)</pre>
## Build symbol palette functions
pal_size <- palette_size_sequential(range = c(1, 3))</pre>
## Plot
plot(
  x = iris$Petal.Length,
  y = iris$Sepal.Length,
  pch = 16,
  col = pal_color(iris$Petal.Length),
  cex = pal_size(iris$Petal.Length),
  xlab = "Petal length",
  ylab = "Sepal length",
  panel.first = grid(),
  las = 1
)
```

plot.color_scheme

Plot Color Scheme

Description

Quickly displays a color scheme returned by color().

Usage

```
## S3 method for class 'color_scheme'
plot(x, ...)
```

Arguments

x A character vector of colors.

... Currently not used.

Value

plot() is called for its side-effects: it results in a graphic being displayed (invisibly returns x).

Author(s)

N. Frerebeau

plot_map 17

See Also

```
Other diagnostic tools: change(), compare(), plot_map(), plot_scheme(), plot_scheme_colourblind(), plot_tiles()
```

Examples

```
plot(colour("bright")(7))
plot(colour("smooth rainbow")(256))
## Plot colour schemes
plot_scheme(colour("bright")(7))
plot_scheme(colour("sunset")(11))
plot_scheme(colour("YlOrBr")(9))
plot_scheme(colour("discrete rainbow")(14))
## Plot diagnostic maps
plot_map(colour("bright")(7))
plot_map(colour("sunset")(11))
plot_map(colour("YlOrBr")(9))
plot_map(colour("discrete rainbow")(14))
## Plot diagnostic images
plot_tiles(colour("discrete rainbow")(14), n = 256)
plot_tiles(colour("discrete rainbow")(23), n = 256)
plot_tiles(colour("smooth rainbow")(256), n = 256)
```

plot_map

Diagnostic Map

Description

Produces a diagnostic map for a given color scheme.

Usage

```
plot_map(x)
```

Arguments

Y

A character vector of colors.

Value

```
plot_map() is called for its side-effects: it results in a graphic being displayed (invisibly returns x).
```

Author(s)

N. Frerebeau, V. Arel-Bundock

plot_scheme

See Also

```
Other diagnostic tools: change(), compare(), plot.color_scheme(), plot_scheme(), plot_scheme_colourblind(), plot_tiles()
```

Examples

```
plot(colour("bright")(7))
plot(colour("smooth rainbow")(256))
## Plot colour schemes
plot_scheme(colour("bright")(7))
plot_scheme(colour("sunset")(11))
plot_scheme(colour("YlOrBr")(9))
plot_scheme(colour("discrete rainbow")(14))
## Plot diagnostic maps
plot_map(colour("bright")(7))
plot_map(colour("sunset")(11))
plot_map(colour("YlOrBr")(9))
plot_map(colour("discrete rainbow")(14))
## Plot diagnostic images
plot_tiles(colour("discrete rainbow")(14), n = 256)
plot_tiles(colour("discrete rainbow")(23), n = 256)
plot_tiles(colour("smooth rainbow")(256), n = 256)
```

plot_scheme

Plot Color Scheme

Description

Shows colors in a plot.

Usage

```
plot_scheme(x, colours = FALSE, names = FALSE, size = 1)
```

Arguments

x	A character vector of colors.
colours	A logical scalar: should the hexadecimal representation of the colors be displayed?
names	A logical scalar: should the name of the colors be displayed?
size	A numeric value giving the amount by which plotting text should be magnified relative to the default. Works the same as cex parameter of graphics::par().

Value

plot_scheme() is called for its side-effects: it results in a graphic being displayed (invisibly returns x).

Author(s)

N. Frerebeau

See Also

```
Other diagnostic tools: change(), compare(), plot.color_scheme(), plot_map(), plot_scheme_colourblind(), plot_tiles()
```

Examples

```
plot(colour("bright")(7))
plot(colour("smooth rainbow")(256))
## Plot colour schemes
plot_scheme(colour("bright")(7))
plot_scheme(colour("sunset")(11))
plot_scheme(colour("YlOrBr")(9))
plot_scheme(colour("discrete rainbow")(14))
## Plot diagnostic maps
plot_map(colour("bright")(7))
plot_map(colour("sunset")(11))
plot_map(colour("YlOrBr")(9))
plot_map(colour("discrete rainbow")(14))
## Plot diagnostic images
plot_tiles(colour("discrete rainbow")(14), n = 256)
plot_tiles(colour("discrete rainbow")(23), n = 256)
plot_tiles(colour("smooth rainbow")(256), n = 256)
```

plot_scheme_colourblind

Plot Simulated Color Blindness

Description

Shows colors in a plot with different types of simulated color blindness.

Usage

```
plot_scheme_colourblind(x)
plot_scheme_colorblind(x)
```

20 plot_tiles

Arguments

Х

A character vector of colors.

Value

plot_scheme_colourblind() is called for its side-effects: it results in a graphic being displayed (invisibly returns x).

Author(s)

N. Frerebeau, V. Arel-Bundock

See Also

```
Other diagnostic tools: change(), compare(), plot.color_scheme(), plot_map(), plot_scheme(), plot_tiles()
```

Examples

```
# Trichromat
pal <- colour("bright")</pre>
plot_scheme(pal(7))
# Deuteranopia
deu <- change(pal, mode = "deuteranopia")</pre>
plot_scheme(deu(7))
# Protanopia
pro <- change(pal, mode = "protanopia")</pre>
plot_scheme(pro(7))
# Tritanopia
tri <- change(pal, mode = "tritanopia")</pre>
plot_scheme(tri(7))
# Achromatopsia
ach <- change(pal, mode = "achromatopsia")</pre>
plot_scheme(ach(7))
## Plot simulated color blindness
plot_scheme_colorblind(pal(7))
```

plot_tiles

Diagnostic Map

Description

Produces a diagnostic map for a given color scheme.

plot_tiles 21

Usage

```
plot_tiles(x, n = 512)
```

Arguments

- x A character vector of colors.
- n An integer specifying the size of the grid (defaults to 512).

Value

```
plot_tiles() is called for its side-effects: it results in a graphic being displayed (invisibly returns x).
```

Author(s)

N. Frerebeau

See Also

```
Other diagnostic tools: change(), compare(), plot.color_scheme(), plot_map(), plot_scheme(), plo
```

```
plot(colour("bright")(7))
plot(colour("smooth rainbow")(256))
## Plot colour schemes
plot_scheme(colour("bright")(7))
plot_scheme(colour("sunset")(11))
plot_scheme(colour("YlOrBr")(9))
plot_scheme(colour("discrete rainbow")(14))
## Plot diagnostic maps
plot_map(colour("bright")(7))
plot_map(colour("sunset")(11))
plot_map(colour("YlOrBr")(9))
plot_map(colour("discrete rainbow")(14))
## Plot diagnostic images
plot_tiles(colour("discrete rainbow")(14), n = 256)
plot_tiles(colour("discrete rainbow")(23), n = 256)
plot_tiles(colour("smooth rainbow")(256), n = 256)
```

22 scale_colour_land

scale_colour_land	AVHRR Global Land Cover Classification Color Scheme for ggplot2
	and ggraph

Description

Provides the AVHRR Global Land Cover classification as modified by Paul Tol (colorblind safe).

Usage

```
scale_colour_land(..., lang = "en", aesthetics = "colour")
scale_color_land(..., lang = "en", aesthetics = "colour")
scale_fill_land(..., lang = "en", aesthetics = "fill")
scale_edge_colour_land(..., lang = "en")
scale_edge_color_land(..., lang = "en")
scale_edge_fill_land(..., lang = "en")
```

Arguments

	Arguments passed on to ggplot2::discrete_scale().
lang	A character string specifying the language for the color names (see details). It must be one of "en" (english, the default), "fr" (french) or NULL. If not NULL, the values will be matched based on the color names.
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Details

Values will be matched based on the land classification names.

Value

A discrete scale.

Author(s)

N. Frerebeau

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

scale_colour_soil 23

See Also

```
Other themed color schemes: scale_colour_soil(), scale_colour_stratigraphy()
```

Other qualitative color schemes: scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant

Examples

scale_colour_soil

FAO Soil Reference Groups Color Scheme for ggplot2 and ggraph

Description

Provides the FAO Soil Reference Groups color scheme.

Usage

```
scale_colour_soil(..., lang = "en", aesthetics = "colour")
scale_color_soil(..., lang = "en", aesthetics = "colour")
scale_fill_soil(..., lang = "en", aesthetics = "fill")
scale_edge_colour_soil(..., lang = "en")
scale_edge_color_soil(..., lang = "en")
scale_edge_fill_soil(..., lang = "en")
```

24 scale_colour_soil

Arguments

Arguments passed on to ggplot2::discrete_scale().

A character string specifying the language for the color names (see details).

It must be one of "en" (english, the default), "fr" (french) or NULL. If not NULL, the values will be matched based on the color names.

A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Details

Values will be matched based on the soil names.

Value

A discrete scale.

Author(s)

N. Frerebeau

References

Jones, A., Montanarella, L. & Jones, R. (Ed.) (2005). *Soil atlas of Europe*. Luxembourg: European Commission, Office for Official Publications of the European Communities. 128 pp. ISBN: 92-894-8120-X.

See Also

```
Other themed color schemes: scale_colour_land(), scale_colour_stratigraphy()

Other qualitative color schemes: scale_colour_land(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant
```

```
scale_fill_soil(name = "Soil")
```

```
scale_colour_stratigraphy
```

Geologic Timescale Color Scheme for ggplot2 and ggraph

Description

Provides the geologic timescale color scheme.

Usage

```
scale_colour_stratigraphy(..., lang = "en", aesthetics = "colour")
scale_color_stratigraphy(..., lang = "en", aesthetics = "colour")
scale_fill_stratigraphy(..., lang = "en", aesthetics = "fill")
scale_edge_colour_stratigraphy(..., lang = "en")
scale_edge_color_stratigraphy(..., lang = "en")
scale_edge_fill_stratigraphy(..., lang = "en")
```

Arguments

... Arguments passed on to ggplot2::discrete_scale().

lang A character string specifying the language for the color names (see details).

It must be one of "en" (english, the default), "fr" (french) or NULL. If not NULL,

the values will be matched based on the color names.

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Details

Values will be matched based on the geological unit names.

Value

A discrete scale.

Author(s)

N. Frerebeau

References

Commission for the Geological Map of the World.

26 scale_crameri_acton

See Also

```
Other themed color schemes: scale_colour_land(), scale_colour_soil()
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant
```

Examples

```
library(ggplot2)
strati <- data.frame(
 "Jurassic", "Cenozoic", "Paleogene", "Neogene", "Quaternary"),
 type = c("Eon", "Era", "Period", "Period", "Period", "Period", "Period",
          "Era", "Period", "Period", "Era", "Period", "Period",
          "Period"),
 start = c(541, 541, 541, 485, 444, 419, 359,
           252, 252, 201, 145, 66, 66, 23, 2.6),
 end = c(0, 252, 485, 444, 419, 359, 252,
         66, 201, 145, 66, 2.6, 23, 2.6, 0)
)
## Keep chronological order in the legend
strati$name <- factor(strati$name, levels = rev(unique(strati$name)),</pre>
                    ordered = TRUE)
## Workaround: use `limits = force` to remove unused values
ggplot2::ggplot(strati) +
 ggplot2::geom\_rect(ggplot2::aes(xmin = rep(0, 15), xmax = rep(1, 15),
                               ymin = start, ymax = end, fill = name)) +
 ggplot2::scale_y_reverse() +
 ggplot2::facet_grid(. ~ type) +
 scale_fill_stratigraphy(name = "Stratigraphy", limits = force)
```

scale_crameri_acton Fabio Crameri's acton Sequential Color Scheme

Description

Fabio Crameri's acton Sequential Color Scheme

Usage

```
scale_colour_acton(
    ...,
    reverse = FALSE,
    range = c(0, 1),
```

scale_crameri_acton 27

```
discrete = FALSE,
 aesthetics = "colour"
)
scale_color_acton(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
)
scale_fill_acton(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_acton(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_acton(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_acton(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

```
... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?
```

28 scale_crameri_acton

range A length-two numeric vector specifying the fraction of the scheme's color do-

main to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

scale_crameri_bam 29

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other sequential color schemes: scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_bam

Fabio Crameri's bam Diverging Color Scheme

Description

Fabio Crameri's bam Diverging Color Scheme

30 scale_crameri_bam

Usage

```
scale_colour_bam(
  . . . ,
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "colour"
scale_color_bam(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_bam(
  . . . ,
  reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_bam(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_bam(
  ...,
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_bam(
  . . . ,
```

scale_crameri_bam 31

```
reverse = FALSE,
range = c(0, 1),
midpoint = 0,
discrete = FALSE,
aesthetics = "edge_fill"
)
```

Arguments

• • •	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one $numeric$ vector giving the midpoint (in data value) of the diverging scale. Defaults to 0.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Max
256
256
256
256
256
256
256
256
256
256
256
256
256
256

^{*:} cyclic color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

```
Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geosci. Model Dev., 11, 2541-2562. doi:10.5194/gmd1125412018
```

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other diverging color schemes: scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bamo, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_bamako Fabio Crameri's bamako Sequential Color Scheme

Description

Fabio Crameri's bamako Sequential Color Scheme

Usage

```
scale_colour_bamako(
  . . . ,
  reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_bamako(
  . . . ,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_bamako(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_bamako(
  . . . ,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_bamako(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_bamako(
  . . . ,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_oleron, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik
```

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

36 scale_crameri_bamO

scale_crameri_bam0

Fabio Crameri's bamO Cyclic Color Scheme

Description

Fabio Crameri's bamO Cyclic Color Scheme

Usage

```
scale_colour_bam0(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_bamO(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_bamO(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color do-

main to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

scale_crameri_bamO 37

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256
broc0*	256
cork0*	256
vikO*	256
roma0*	256
bam0*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other cyclic color schemes: scale_crameri_broc0, scale_crameri_cork0, scale_crameri_roma0, scale_crameri_vik0

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon,

^{*:} cyclic color schemes.

38 scale_crameri_batlow

```
scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0,
scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo,
scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_batlow Fabio Crameri's batlow Sequential Color Scheme

Description

Fabio Crameri's batlow Sequential Color Scheme

```
scale_colour_batlow(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
)
scale_color_batlow(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_batlow(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
```

scale_crameri_batlow 39

```
scale_edge_colour_batlow(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_batlow(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_batlow(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

• • •	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256

scale_crameri_batlow

```
devon
          256
          256
lajolla
bamako
          256
          256
davos
bilbao
          256
nuuk
          256
oslo
          256
          256
grayC
hawaii
          256
lapaz
          256
tokyo
          256
          256
buda
          256
acton
          256
turku
imola
          256
oleron*
          256
bukavu*
          256
fes*
          256
```

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda,

^{*:} multisequential color schemes.

```
scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_batlowK Fabio Crameri's batlowK Sequential Color Scheme

Description

Fabio Crameri's batlowK Sequential Color Scheme

```
scale_colour_batlowK(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)

scale_color_batlowK(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)
```

```
scale_fill_batlowK(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_batlowK(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_batlowK(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_batlowK(
  . . . ,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

Arguments passed to ggplot2::continuous_scale().

Reverse A logical scalar. Should the resulting vector of colors be reversed?

A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

A logical scalar: should the color scheme be used as a discrete scale?

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

^{*:} multisequential color schemes.

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_batlow, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_btoc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_batlowW Fabio Crameri's batlowW Sequential Color Scheme

Description

Fabio Crameri's batlowW Sequential Color Scheme

```
scale_colour_batlowW(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
```

```
aesthetics = "colour"
)
scale_color_batlowW(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_batlowW(
  . . . ,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_batlowW(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_batlowW(
 reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_batlowW(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

```
... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color do-
```

main to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Max
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

scale_crameri_berlin 47

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_berlin Fabio Crameri's berlin Diverging Color Scheme

Description

Fabio Crameri's berlin Diverging Color Scheme

48 scale_crameri_berlin

```
scale_colour_berlin(
  . . . ,
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "colour"
scale_color_berlin(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_berlin(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_berlin(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_berlin(
  ...,
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_berlin(
  . . . ,
```

scale_crameri_berlin 49

```
reverse = FALSE,
range = c(0, 1),
midpoint = 0,
discrete = FALSE,
aesthetics = "edge_fill"
)
```

Arguments

• • •	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one $numeric$ vector giving the midpoint (in data value) of the diverging scale. Defaults to \emptyset .
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Max
256
256
256
256
256
256
256
256
256
256
256
256
256
256

^{*:} cyclic color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

```
Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geosci. Model Dev., 11, 2541-2562. doi:10.5194/gmd1125412018
```

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_bilbao Fabio Crameri's bilbao Sequential Color Scheme

Description

Fabio Crameri's bilbao Sequential Color Scheme

scale_crameri_bilbao

51

```
scale_colour_bilbao(
  . . . ,
  reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_bilbao(
  . . . ,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_bilbao(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_bilbao(
  ...,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_bilbao(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_bilbao(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

scale_crameri_bilbao 53

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

54 scale_crameri_broc

scale_crameri_broc

Fabio Crameri's broc Diverging Color Scheme

Description

Fabio Crameri's broc Diverging Color Scheme

```
scale_colour_broc(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_broc(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_broc(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_broc(
  reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_broc(
  . . . ,
```

scale_crameri_broc 55

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one $numeric$ vector giving the midpoint (in data value) of the diverging scale. Defaults to 0.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256

56 scale_crameri_broc

```
brocO* 256
corkO* 256
vikO* 256
romaO* 256
bamO* 256
```

*: cyclic color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

Nature Communications, 11, 5444. doi:10.1038/s41467020191607

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication.

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_brocO 57

scale_crameri_broc0

Fabio Crameri's brocO Cyclic Color Scheme

Description

Fabio Crameri's brocO Cyclic Color Scheme

Usage

```
scale_colour_broc0(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_broc0(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_broc0(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256
broc0*	256
cork0*	256
vikO*	256
roma0*	256
bam0*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other cyclic color schemes: scale_crameri_bam0, scale_crameri_cork0, scale_crameri_roma0, scale_crameri_vik0

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon,

^{*:} cyclic color schemes.

scale_crameri_buda 59

```
scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0,
scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo,
scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_buda

Fabio Crameri's buda Sequential Color Scheme

Description

Fabio Crameri's buda Sequential Color Scheme

```
scale_colour_buda(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
)
scale_color_buda(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_buda(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
```

scale_crameri_buda

```
scale_edge_colour_buda(
  ...,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_buda(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_buda(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256

scale_crameri_buda 61

```
devon
          256
          256
lajolla
bamako
          256
          256
davos
bilbao
          256
nuuk
          256
oslo
          256
          256
grayC
hawaii
          256
lapaz
          256
tokyo
          256
          256
buda
          256
acton
          256
turku
imola
          256
oleron*
          256
bukavu*
          256
fes*
          256
```

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO,

^{*:} multisequential color schemes.

```
scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_bukavu Fabio Crameri's bukavu Multi-Sequential Color Scheme

Description

Fabio Crameri's bukavu Multi-Sequential Color Scheme

```
scale_colour_bukavu(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    aesthetics = "colour"
)

scale_color_bukavu(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    aesthetics = "colour"
)
```

scale_crameri_bukavu 63

```
scale_fill_bukavu(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    aesthetics = "fill"
)
```

Arguments

Arguments passed to ggplot2::continuous_scale().

A logical scalar. Should the resulting vector of colors be reversed?

A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

Midpoint A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to 0.

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256

```
bukavu* 256 fes* 256
```

*: multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

```
Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geosci. Model Dev., 11, 2541-2562. doi:10.5194/gmd1125412018
```

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other multi sequential color schemes: scale_crameri_fes, scale_crameri_oleron
```

```
Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(volcano)

volcan <- data.frame(
    x = rep(1:ncol(volcano), each = nrow(volcano)),
    y = rep(1:nrow(volcano), times = ncol(volcano)),
    z = as.numeric(volcano)
)

ggplot2::ggplot(volcan, ggplot2::aes(x, y, fill = z)) +
    ggplot2::geom_raster() +
    scale_fill_oleron(midpoint = 125)</pre>
```

scale_crameri_cork 65

scale_crameri_cork

Fabio Crameri's cork Diverging Color Scheme

Description

Fabio Crameri's cork Diverging Color Scheme

```
scale_colour_cork(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_cork(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_cork(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_cork(
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_cork(
  . . . ,
```

66 scale_crameri_cork

```
reverse = FALSE,
range = c(0, 1),
midpoint = 0,
discrete = FALSE,
aesthetics = "edge_colour"
)

scale_edge_fill_cork(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    discrete = FALSE,
    aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one $numeric$ vector giving the midpoint (in data value) of the diverging scale. Defaults to \emptyset .
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256

scale_crameri_cork 67

```
brocO* 256
corkO* 256
vikO* 256
romaO* 256
bamO* 256
```

*: cyclic color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_corkO

scale_crameri_cork0

Fabio Crameri's corkO Cyclic Color Scheme

Description

Fabio Crameri's corkO Cyclic Color Scheme

Usage

```
scale_colour_corkO(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_cork0(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_cork0(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

scale_crameri_corkO 69

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256
broc0*	256
cork0*	256
vikO*	256
roma0*	256
bamO*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other cyclic color schemes: scale_crameri_bam0, scale_crameri_broc0, scale_crameri_roma0, scale_crameri_vik0

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon,

^{*:} cyclic color schemes.

70 scale_crameri_davos

```
scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0,
scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo,
scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_davos

Fabio Crameri's davos Sequential Color Scheme

Description

Fabio Crameri's davos Sequential Color Scheme

```
scale_colour_davos(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
)
scale_color_davos(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_davos(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
```

scale_crameri_davos 71

```
scale_edge_colour_davos(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_davos(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_davos(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

• • •	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256

72 scale_crameri_davos

```
devon
          256
          256
lajolla
bamako
          256
          256
davos
bilbao
          256
nuuk
          256
oslo
          256
          256
grayC
hawaii
          256
lapaz
          256
tokyo
          256
          256
buda
          256
acton
          256
turku
imola
          256
oleron*
          256
bukavu*
          256
fes*
          256
```

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO,

^{*:} multisequential color schemes.

scale_crameri_devon 73

```
scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(faithfuld, package = "ggplot2")

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_devon

Fabio Crameri's devon Sequential Color Scheme

Description

Fabio Crameri's devon Sequential Color Scheme

```
scale_colour_devon(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)

scale_color_devon(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)
```

74 scale_crameri_devon

```
scale_fill_devon(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_devon(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_devon(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_devon(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

Arguments passed to ggplot2::continuous_scale().

Reverse A logical scalar. Should the resulting vector of colors be reversed?

A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

A logical scalar: should the color scheme be used as a discrete scale?

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

scale_crameri_devon 75

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

^{*:} multisequential color schemes.

76 scale_crameri_fes

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(faithfuld, package = "ggplot2")

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_fes

Fabio Crameri's fes Multi-Sequential Color Scheme

Description

Fabio Crameri's fes Multi-Sequential Color Scheme

```
scale_colour_fes(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
```

scale_crameri_fes 77

```
aesthetics = "colour"
)
scale_color_fes(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
  aesthetics = "colour"
)
scale_fill_fes(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
  aesthetics = "fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one $numeric$ vector giving the midpoint (in data value) of the diverging scale. Defaults to 0.
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256

78 scale_crameri_fes

nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other multi sequential color schemes: scale_crameri_bukavu, scale_crameri_oleron

```
Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

^{*:} multisequential color schemes.

scale_crameri_grayC 79

Examples

```
data(volcano)

volcan <- data.frame(
    x = rep(1:ncol(volcano), each = nrow(volcano)),
    y = rep(1:nrow(volcano), times = ncol(volcano)),
    z = as.numeric(volcano)
)

ggplot2::ggplot(volcan, ggplot2::aes(x, y, fill = z)) +
    ggplot2::geom_raster() +
    scale_fill_oleron(midpoint = 125)</pre>
```

scale_crameri_grayC Fabio Crameri's grayC Sequential Color Scheme

Description

Fabio Crameri's grayC Sequential Color Scheme

```
scale_colour_grayC(
  reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_grayC(
 reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_grayC(
  ...,
  reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_grayC(
```

```
...,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_grayC(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_grayC(
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256

scale_crameri_grayC 81

```
bamako
          256
davos
          256
bilbao
          256
nuuk
          256
oslo
          256
          256
grayC
hawaii
          256
          256
lapaz
          256
tokvo
buda
          256
acton
          256
          256
turku
imola
          256
oleron*
          256
bukavu*
          256
fes*
          256
```

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_davos, scale_crameri_fes, scale_crameri_hawaii,

^{*:} multisequential color schemes.

scale_crameri_hawaii

```
scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

82

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_hawaii Fabio Crameri's hawaii Sequential Color Scheme

Description

Fabio Crameri's hawaii Sequential Color Scheme

```
scale_colour_hawaii(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)

scale_color_hawaii(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)

scale_fill_hawaii(
    ...,
```

scale_crameri_hawaii 83

```
reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
scale_edge_colour_hawaii(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
scale_edge_color_hawaii(
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_hawaii(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

Arguments passed to ggplot2::continuous_scale().

Reverse A logical scalar. Should the resulting vector of colors be reversed?

A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

scale_crameri_hawaii

T	
Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow
```

scale_crameri_imola 85

```
Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(faithfuld, package = "ggplot2")

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_imola Fabio Crameri's imola Sequential Color Scheme

Description

Fabio Crameri's imola Sequential Color Scheme

```
scale_colour_imola(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)

scale_color_imola(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
```

86 scale_crameri_imola

```
aesthetics = "colour"
)
scale_fill_imola(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_imola(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_imola(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_imola(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color do-

main to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

scale_crameri_imola 87

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

^{*:} multisequential color schemes.

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamo, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broco, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_davos, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_lajolla Fabio Crameri's lajolla Sequential Color Scheme

Description

Fabio Crameri's lajolla Sequential Color Scheme

```
scale_colour_lajolla(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
```

scale_crameri_lajolla

89

```
aesthetics = "colour"
)
scale_color_lajolla(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_lajolla(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_lajolla(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_lajolla(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_lajolla(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

```
... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color do-
```

main to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_davos, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_lapaz Fabio Crameri's lapaz Sequential Color Scheme

Description

Fabio Crameri's lapaz Sequential Color Scheme

```
scale_colour_lapaz(
  . . . ,
  reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_lapaz(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
)
scale_fill_lapaz(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_lapaz(
  ...,
  reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_lapaz(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_lapaz(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with

thetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oleron, scale_crameri_tokyo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_lisbon 95

scale_crameri_lisbon Fabio Crameri's lisbon Diverging Color Scheme

Description

Fabio Crameri's lisbon Diverging Color Scheme

```
scale_colour_lisbon(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_lisbon(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_lisbon(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_lisbon(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_lisbon(
  ...,
```

96 scale_crameri_lisbon

```
reverse = FALSE,
range = c(0, 1),
midpoint = 0,
discrete = FALSE,
aesthetics = "edge_colour"
)

scale_edge_fill_lisbon(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    discrete = FALSE,
    aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to 0.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256

scale_crameri_lisbon 97

```
brocO* 256
corkO* 256
vikO* 256
romaO* 256
bamO* 256
```

*: cyclic color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

98 scale_crameri_nuuk

scale_crameri_nuuk

Fabio Crameri's nuuk Sequential Color Scheme

Description

Fabio Crameri's nuuk Sequential Color Scheme

```
scale_colour_nuuk(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
)
scale_color_nuuk(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_nuuk(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_nuuk(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_nuuk(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
```

scale_crameri_nuuk 99

```
scale_edge_fill_nuuk(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "edge_fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256

100 scale_crameri_nuuk

```
oleron* 256
bukavu* 256
fes* 256
```

*: multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
```

scale_crameri_oleron 101

```
ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_oleron Fabio Crameri's oleron Multi-Sequential Color Scheme

Description

Fabio Crameri's oleron Multi-Sequential Color Scheme

Usage

```
scale_colour_oleron(
 reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 aesthetics = "colour"
)
scale_color_oleron(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 aesthetics = "colour"
)
scale_fill_oleron(
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
  aesthetics = "fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

102 scale_crameri_oleron

midpoint A length-one numeric vector giving the midpoint (in data value) of the diverging

scale. Defaults to 0.

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

scale_crameri_oslo 103

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other multi sequential color schemes: scale_crameri_bukavu, scale_crameri_fes
```

```
Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_roma, scale_crameri_romaO, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

Examples

```
data(volcano)

volcan <- data.frame(
    x = rep(1:ncol(volcano), each = nrow(volcano)),
    y = rep(1:nrow(volcano), times = ncol(volcano)),
    z = as.numeric(volcano)
)

ggplot2::ggplot(volcan, ggplot2::aes(x, y, fill = z)) +
    ggplot2::geom_raster() +
    scale_fill_oleron(midpoint = 125)</pre>
```

scale_crameri_oslo

Fabio Crameri's oslo Sequential Color Scheme

Description

Fabio Crameri's oslo Sequential Color Scheme

```
scale_colour_oslo(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
```

104 scale_crameri_oslo

```
aesthetics = "colour"
)
scale_color_oslo(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_oslo(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_oslo(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_oslo(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_oslo(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color do-

scale_crameri_oslo 105

main to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

106 scale_crameri_roma

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo,

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_roma, scale_crameri_romaO,
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_roma

Fabio Crameri's roma Diverging Color Scheme

Description

Fabio Crameri's roma Diverging Color Scheme

scale_crameri_vik, scale_crameri_vik0

scale_crameri_roma 107

```
scale_colour_roma(
  . . . ,
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "colour"
scale_color_roma(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_roma(
  reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_roma(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_roma(
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_roma(
  . . . ,
```

108 scale_crameri_roma

```
reverse = FALSE,
range = c(0, 1),
midpoint = 0,
discrete = FALSE,
aesthetics = "edge_fill"
)
```

Arguments

Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

midpoint A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to 0.

discrete A logical scalar: should the color scheme be used as a discrete scale?

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256
broc0*	256
cork0*	256
vikO*	256
roma0*	256
bam0*	256

^{*:} cyclic color schemes.

scale_crameri_romaO 109

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

```
Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geosci. Model Dev., 11, 2541-2562. doi:10.5194/gmd1125412018
```

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_romaO Fabio Crameri

Fabio Crameri's romaO Cyclic Color Scheme

Description

Fabio Crameri's romaO Cyclic Color Scheme

110 scale_crameri_romaO

Usage

```
scale_colour_romaO(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_roma0(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
scale_fill_roma0(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
```

Arguments

• • •	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256

scale_crameri_romaO 111

```
256
vik
lisbon
        256
tofino
        256
berlin
        256
roma
         256
        256
bam
        256
vanimo
broc0*
        256
cork0*
        256
vik0*
        256
roma0*
        256
bam0*
        256
```

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other cyclic color schemes: scale_crameri_bam0, scale_crameri_broc0, scale_crameri_cork0, scale_crameri_vik0

```
Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bamO, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_brocO, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_corkO, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vikO
```

^{*:} cyclic color schemes.

scale_crameri_tofino

Examples

```
data(economics, package = "ggplot2")

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_tofino Fabio Crameri's tofino Diverging Color Scheme

Description

Fabio Crameri's tofino Diverging Color Scheme

```
scale_colour_tofino(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "colour"
)
scale_color_tofino(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "colour"
)
scale_fill_tofino(
  ...,
  reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "fill"
```

scale_crameri_tofino 113

```
scale_edge_colour_tofino(
  reverse = FALSE,
  range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_tofino(
  reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_tofino(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

• • •	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to \emptyset .
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

114 scale_crameri_tofino

Palette	Max.
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256
broc0*	256
cork0*	256
vikO*	256
roma0*	256
bamO*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset
```

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0

^{*:} cyclic color schemes.

scale_crameri_tokyo 115

Examples

```
data(economics, package = "ggplot2")

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_tokyo

Fabio Crameri's tokyo Sequential Color Scheme

Description

Fabio Crameri's tokyo Sequential Color Scheme

```
scale_colour_tokyo(
  reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
scale_color_tokyo(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_tokyo(
  . . . ,
  reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_tokyo(
  reverse = FALSE,
```

116 scale_crameri_tokyo

```
range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_tokyo(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_tokyo(
  reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

• • •	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256

scale_crameri_tokyo 117

```
bilbao
          256
nuuk
          256
oslo
          256
grayC
          256
hawaii
          256
lapaz
          256
          256
tokyo
          256
buda
          256
acton
turku
          256
imola
          256
oleron*
          256
bukavu*
          256
fes*
          256
```

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0,

^{*:} multisequential color schemes.

118 scale_crameri_turku

```
scale_crameri_tofino, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik,
scale_crameri_vik0
```

Examples

```
data(faithfuld, package = "ggplot2")

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_turku

Fabio Crameri's turku Sequential Color Scheme

Description

Fabio Crameri's turku Sequential Color Scheme

```
scale_colour_turku(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)

scale_color_turku(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)

scale_fill_turku(
    ...,
    reverse = FALSE,
    range = c(0, 1),
```

scale_crameri_turku 119

```
discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_turku(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_turku(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_turku(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color do-

main to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

120 scale_crameri_turku

Palette	Max
batlow	256
batlowW	256
batlowK	256
devon	256
lajolla	256
bamako	256
davos	256
bilbao	256
nuuk	256
oslo	256
grayC	256
hawaii	256
lapaz	256
tokyo	256
buda	256
acton	256
turku	256
imola	256
oleron*	256
bukavu*	256
fes*	256

^{*:} multisequential color schemes.

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

scale_crameri_vanimo 121

```
Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_vanimo, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_batlow()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_bamako()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_hawaii(reverse = TRUE)
```

scale_crameri_vanimo Fabio Crameri's vanimo Diverging Color Scheme

Description

Fabio Crameri's vanimo Diverging Color Scheme

```
scale_colour_vanimo(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    discrete = FALSE,
    aesthetics = "colour"
)

scale_color_vanimo(
    ...,
    reverse = FALSE,
    range = c(0, 1),
```

122 scale_crameri_vanimo

```
midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_vanimo(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_vanimo(
  reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_vanimo(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_vanimo(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

scale_crameri_vanimo 123

midpoint	A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to 0.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256
broc0*	256
cork0*	256
vikO*	256
roma0*	256
bam0*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

^{*:} cyclic color schemes.

124 scale_crameri_vik

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vik, scale_crameri_vik0
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_vik

Fabio Crameri's vik Diverging Color Scheme

Description

Fabio Crameri's vik Diverging Color Scheme

```
scale_colour_vik(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    discrete = FALSE,
    aesthetics = "colour"
)
scale_color_vik(
    ...,
    reverse = FALSE,
```

scale_crameri_vik 125

```
range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "colour"
)
scale_fill_vik(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_vik(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_vik(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_vik(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

126 scale_crameri_vik

midpoint	A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to 0.
discrete	A logical scalar: should the color scheme be used as a discrete scale?
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256
broc0*	256
cork0*	256
vikO*	256
roma0*	256
bamO*	256

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. *Geosci. Model Dev.*, 11, 2541-2562. doi:10.5194/gmd1125412018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

^{*:} cyclic color schemes.

scale_crameri_vikO 127

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik0
```

Examples

```
data(economics, package = "ggplot2")

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_crameri_vik0

Fabio Crameri's vikO Cyclic Color Scheme

Description

Fabio Crameri's vikO Cyclic Color Scheme

```
scale_colour_vikO(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)
scale_color_vikO(
    ...,
    reverse = FALSE,
    range = c(0, 1),
```

128 scale_crameri_vikO

```
discrete = FALSE,
  aesthetics = "colour"
)

scale_fill_vikO(
    ...,
  reverse = FALSE,
  range = c(0, 1),
  discrete = FALSE,
  aesthetics = "fill"
)
```

Arguments

Arguments passed to ggplot2::continuous_scale().

A logical scalar. Should the resulting vector of colors be reversed?

A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale?

A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max
broc	256
cork	256
vik	256
lisbon	256
tofino	256
berlin	256
roma	256
bam	256
vanimo	256
broc0*	256
cork0*	256
vikO*	256
roma0*	256
bam0*	256

^{*:} cyclic color schemes.

scale_okabeito_discrete 129

Author(s)

N. Frerebeau

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

References

```
Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geosci. Model Dev., 11, 2541-2562. doi:10.5194/gmd1125412018
```

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. *Nature Communications*, 11, 5444. doi:10.1038/s41467020191607

See Also

```
Other cyclic color schemes: scale_crameri_bam0, scale_crameri_broc0, scale_crameri_cork0, scale_crameri_roma0

Other Fabio Crameri's color schemes: scale_crameri_acton, scale_crameri_bam, scale_crameri_bam0, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_berlin, scale_crameri_bilbao, scale_crameri_broc, scale_crameri_broc0, scale_crameri_buda, scale_crameri_bukavu, scale_crameri_cork, scale_crameri_cork0, scale_crameri_davos, scale_crameri_devon, scale_crameri_fes, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_lisbon, scale_crameri_nuuk, scale_crameri_oleron, scale_crameri_oslo, scale_crameri_roma, scale_crameri_roma0, scale_crameri_tofino, scale_crameri_tokyo, scale_crameri_turku, scale_crameri_vanimo, scale_crameri_vik
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_broc(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_colour_berlin(midpoint = 9000)
```

scale_okabeito_discrete

Okabe and Ito's Discrete Color Scheme for ggplot2 and ggraph

Description

Provides the qualitative color scale from Okabe and Ito 2008.

scale_okabeito_discrete

Usage

```
scale_colour_okabeito(
 reverse = FALSE,
 black_position = c("first", "last"),
 aesthetics = "colour"
)
scale_color_okabeito(
 reverse = FALSE,
 black_position = c("first", "last"),
 aesthetics = "colour"
)
scale_fill_okabeito(
 reverse = FALSE,
 black_position = c("first", "last"),
 aesthetics = "fill"
scale_edge_colour_okabeito(
 reverse = FALSE,
 black_position = c("first", "last"),
 aesthetics = "edge_colour"
)
scale_edge_color_okabeito(
 reverse = FALSE,
 black_position = c("first", "last"),
 aesthetics = "edge_colour"
)
scale_edge_fill_okabeito(
 reverse = FALSE,
 black_position = c("first", "last"),
 aesthetics = "edge_fill"
)
```

Arguments

```
... Arguments passed to ggplot2::discrete_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?
```

scale_okabeito_discrete

```
black_position A character string giving the position of the black color. It must be one of "first" or "last". Any unambiguous substring can be given.

aesthetics A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.
```

131

Details

This qualitative color scheme is used as given (no interpolation): colors are picked up to the maximum number of supported values (8).

Value

A discrete scale.

Author(s)

N. Frerebeau

References

Okabe, M. & Ito, K. (2008). *Color Universal Design (CUD): How to Make Figures and Presentations That Are Friendly to Colorblind People*. URL: https://jfly.uni-koeln.de/color/.

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant
```

Examples

```
library(ggplot2)
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_okabeito()

ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_okabeito(black_position = "last")
```

132 scale_picker

scale_picker

Color Scale Builder

Description

Builds a color scale for ggplot2 or ggraph.

Usage

```
scale_colour_picker(..., palette = "YlOrBr")
scale_color_picker(..., palette = "YlOrBr")
scale_fill_picker(..., palette = "YlOrBr")
scale_edge_colour_picker(..., palette = "YlOrBr")
scale_edge_color_picker(..., palette = "YlOrBr")
scale_edge_fill_picker(..., palette = "YlOrBr")
```

Arguments

... Extra parameters to be passed to the color scale function.

palette A character string giving the name of the color scheme to be used (see info()).

Value

A discrete or continuous scale.

Author(s)

N. Frerebeau

Examples

```
library(ggplot2)
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_picker(palette = "okabeito")
```

scale_tol_bright 133

Color Scheme

scale_tol_bright

Description

Paul Tol's bright Discrete Color Scheme

Usage

```
scale_colour_bright(..., reverse = FALSE, aesthetics = "colour")
scale_color_bright(..., reverse = FALSE, aesthetics = "colour")
scale_fill_bright(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_bright(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_color_bright(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_fill_bright(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

• • •	Arguments passed to ggplot2::discrete_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
aesthetics	A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A discrete scale.

Qualitative Color Schemes

The qualitative color schemes are used as given (no interpolation): colors are picked up to the maximum number of supported values.

Palette	Max.
bright	7
highcontrast	3
vibrant	7
muted	9
mediumcontrast	6
pale	6
dark	6
light	9

scale_tol_bright

According to Paul Tol's technical note, the bright, highcontrast, vibrant and muted color schemes are color-blind safe. The mediumcontrast color scheme is designed for situations needing color pairs.

The light color scheme is reasonably distinct for both normal or colorblind vision and is intended to fill labeled cells.

The pale and dark schemes are not very distinct in either normal or colorblind vision and should be used as a text background or to highlight a cell in a table.

Refer to the original document for details about the recommended uses (see references)

Author(s)

N. Frerebeau

References

```
Tol, P. (2021). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_dark,
```

scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant

Examples

```
data(mpg, package = "ggplot2")
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()

data(diamonds, package = "ggplot2")
ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

scale_tol_BuRd

scale_tol_BuRd

Paul Tol's BuRd Diverging Color Scheme

Description

Paul Tol's BuRd Diverging Color Scheme

```
scale_colour_BuRd(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_BuRd(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_BuRd(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_BuRd(
  ...,
  reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_BuRd(
  . . . ,
```

scale_tol_BuRd

```
reverse = FALSE,
range = c(0, 1),
midpoint = 0,
discrete = FALSE,
aesthetics = "edge_colour"
)

scale_edge_fill_BuRd(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    discrete = FALSE,
    aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to \emptyset .
discrete	A logical scalar: should the color scheme be used as a discrete scale? If TRUE, it is a departure from Paul Tol's recommendations and likely a very poor use of color.
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.	NA value
sunset	11	#FFFFFF
nightfall	17	#FFFFFF
BuRd	9	#FFEE99
PRGn	9	#FFEE99

Author(s)

N. Frerebeau

scale_tol_dark 137

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_PRGn, scale_tol_nightfall, scale_tol_sunset

Other Paul Tol's color schemes: scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(economics, package = "ggplot2")

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_sunset(reverse = TRUE, midpoint = 12000)

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_BuRd(midpoint = 9000)

ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_PRGn(midpoint = 9000, range = c(0.25, 1))
```

scale_tol_dark

Paul Tol's dark Discrete Color Scheme

Description

Paul Tol's dark Discrete Color Scheme

```
scale_colour_dark(..., reverse = FALSE, aesthetics = "colour")
scale_color_dark(..., reverse = FALSE, aesthetics = "colour")
scale_fill_dark(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_dark(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_color_dark(..., reverse = FALSE, aesthetics = "edge_colour")
```

138 scale_tol_dark

```
scale_edge_fill_dark(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

... Arguments passed to ggplot2::discrete_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A discrete scale.

Qualitative Color Schemes

The qualitative color schemes are used as given (no interpolation): colors are picked up to the maximum number of supported values.

Palette	Max.
bright	7
highcontrast	3
vibrant	7
muted	9
mediumcontrast	6
pale	6
dark	6
light	9

According to Paul Tol's technical note, the bright, highcontrast, vibrant and muted color schemes are color-blind safe. The mediumcontrast color scheme is designed for situations needing color pairs.

The light color scheme is reasonably distinct for both normal or colorblind vision and is intended to fill labeled cells.

The pale and dark schemes are not very distinct in either normal or colorblind vision and should be used as a text background or to highlight a cell in a table.

Refer to the original document for details about the recommended uses (see references)

Author(s)

N. Frerebeau

References

```
Tol, P. (2021). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale,
```

Examples

```
data(mpg, package = "ggplot2")
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()

ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()

data(diamonds, package = "ggplot2")

ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant

scale_tol_discreterainbow

Paul Tol's discrete rainbow Sequential Color Scheme

Description

Paul Tol's discrete rainbow Sequential Color Scheme

```
scale_colour_discreterainbow(..., reverse = FALSE, aesthetics = "colour")
scale_color_discreterainbow(..., reverse = FALSE, aesthetics = "colour")
scale_fill_discreterainbow(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_discreterainbow(
...,
reverse = FALSE,
aesthetics = "edge_colour"
```

```
scale_edge_color_discreterainbow(
    ...,
    reverse = FALSE,
    aesthetics = "edge_colour"
)
scale_edge_fill_discreterainbow(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

... Arguments passed to ggplot2::discrete_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A discrete scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.	NA value
YlOrBr	9	#88888
iridescent	23	#999999
discreterainbow	23	#777777
smoothrainbow	34	#666666

Rainbow Color Scheme

As a general rule, ordered data should not be represented using a rainbow scheme. There are three main arguments against such use (Tol 2018):

- The spectral order of visible light carries no inherent magnitude message.
- Some bands of almost constant hue with sharp transitions between them, can be perceived as jumps in the data.
- Color-blind people have difficulty distinguishing some colors of the rainbow.

If such use cannot be avoided, Paul Tol's technical note provides two color schemes that are reasonably clear in color-blind vision. To remain color-blind safe, these two schemes must comply with the following conditions:

discreterainbow This scheme must not be interpolated.

smoothrainbow This scheme does not have to be used over the full range.

scale_tol_highcontrast 141

Author(s)

N. Frerebeau

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(mpg, package = "ggplot2")
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()
data(diamonds, package = "ggplot2")
ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

```
scale_tol_highcontrast
```

Paul Tol's high contrast Discrete Color Scheme

Description

Paul Tol's high contrast Discrete Color Scheme

Usage

```
scale_colour_highcontrast(..., reverse = FALSE, aesthetics = "colour")
scale_color_highcontrast(..., reverse = FALSE, aesthetics = "colour")
scale_fill_highcontrast(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_highcontrast(
...,
    reverse = FALSE,
    aesthetics = "edge_colour"
)
scale_edge_color_highcontrast(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_fill_highcontrast(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

... Arguments passed to ggplot2::discrete_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A discrete scale.

Qualitative Color Schemes

The qualitative color schemes are used as given (no interpolation): colors are picked up to the maximum number of supported values.

Palette	Max.
bright	7
highcontrast	3
vibrant	7
muted	9
mediumcontrast	6
pale	6
dark	6
light	9

According to Paul Tol's technical note, the bright, highcontrast, vibrant and muted color schemes are color-blind safe. The mediumcontrast color scheme is designed for situations needing color pairs.

scale_tol_highcontrast 143

The light color scheme is reasonably distinct for both normal or colorblind vision and is intended to fill labeled cells.

The pale and dark schemes are not very distinct in either normal or colorblind vision and should be used as a text background or to highlight a cell in a table.

Refer to the original document for details about the recommended uses (see references)

Author(s)

N. Frerebeau

References

```
Tol, P. (2021). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant

Other Paul Tol's color schemes: scale_tol_RURD scale_tol_PRCn_scale_tol_VlorPr_scale_tol_bright
```

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant

Examples

```
data(mpg, package = "ggplot2")
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()

data(diamonds, package = "ggplot2")
ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

144 scale_tol_incandescent

scale_tol_incandescent

Paul Tol's incandescent Sequential Color Scheme

Description

Paul Tol's incandescent Sequential Color Scheme

```
scale_colour_incandescent(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_incandescent(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
)
scale_fill_incandescent(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_incandescent(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_incandescent(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
```

scale_tol_incandescent 145

```
aesthetics = "edge_colour"
)

scale_edge_fill_incandescent(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale? If TRUE, it is a departure from Paul Tol's recommendations and likely a very poor use of color.
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.	NA value
YlOrBr	9	#88888
iridescent	23	#999999
discreterainbow	23	#777777
smoothrainbow	34	#666666

Author(s)

N. Frerebeau

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

scale_tol_iridescent

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_iridescent, scale_tol_smoothrainbow

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_YlOrBr()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_iridescent(reverse = TRUE)

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_smoothrainbow(range = c(0.25, 1))
```

Description

Paul Tol's iridescent Sequential Color Scheme

Usage

```
scale_colour_iridescent(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)
scale_color_iridescent(
    ...,
```

scale_tol_iridescent 147

```
reverse = FALSE,
  range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
scale_fill_iridescent(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
scale_edge_colour_iridescent(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_iridescent(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_iridescent(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale? If TRUE, it is a departure from Paul Tol's recommendations and likely a very poor use of color.

148 scale_tol_iridescent

aesthetics

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.	NA value
YlOrBr	9	#88888
iridescent	23	#999999
discreterainbow	23	#777777
smoothrainbow	34	#666666

Author(s)

N. Frerebeau

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_smoothrainbow

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale,
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_YlOrBr()
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
```

scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant

scale_tol_light 149

```
ggplot2::geom_raster() +
    scale_fill_iridescent(reverse = TRUE)

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_smoothrainbow(range = c(0.25, 1))
```

scale_tol_light

Paul Tol's light Discrete Color Scheme

Description

Paul Tol's light Discrete Color Scheme

Usage

```
scale_colour_light(..., reverse = FALSE, aesthetics = "colour")
scale_color_light(..., reverse = FALSE, aesthetics = "colour")
scale_fill_light(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_light(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_color_light(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_fill_light(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

... Arguments passed to ggplot2::discrete_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A discrete scale.

Qualitative Color Schemes

The qualitative color schemes are used as given (no interpolation): colors are picked up to the maximum number of supported values.

Palette	Max
bright	7
highcontrast	3

scale_tol_light

vibrant	7
muted	9
mediumcontrast	6
pale	6
dark	6
light	9

According to Paul Tol's technical note, the bright, highcontrast, vibrant and muted color schemes are color-blind safe. The mediumcontrast color scheme is designed for situations needing color pairs.

The light color scheme is reasonably distinct for both normal or colorblind vision and is intended to fill labeled cells.

The pale and dark schemes are not very distinct in either normal or colorblind vision and should be used as a text background or to highlight a cell in a table.

Refer to the original document for details about the recommended uses (see references)

Author(s)

N. Frerebeau

References

```
Tol, P. (2021). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_vibrant

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(mpg, package = "ggplot2")
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()
```

```
data(diamonds, package = "ggplot2")
ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

scale_tol_mediumcontrast

Paul Tol's medium contrast Discrete Color Scheme

Description

Paul Tol's medium contrast Discrete Color Scheme

Usage

```
scale_colour_mediumcontrast(..., reverse = FALSE, aesthetics = "colour")
scale_color_mediumcontrast(..., reverse = FALSE, aesthetics = "colour")
scale_fill_mediumcontrast(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_mediumcontrast(
...,
    reverse = FALSE,
    aesthetics = "edge_colour"
)
scale_edge_color_mediumcontrast(
...,
    reverse = FALSE,
    aesthetics = "edge_colour"
)
scale_edge_fill_mediumcontrast(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

... Arguments passed to ggplot2::discrete_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A discrete scale.

Qualitative Color Schemes

The qualitative color schemes are used as given (no interpolation): colors are picked up to the maximum number of supported values.

Palette	Max.
bright	7
highcontrast	3
vibrant	7
muted	9
mediumcontrast	6
pale	6
dark	6
light	9

According to Paul Tol's technical note, the bright, highcontrast, vibrant and muted color schemes are color-blind safe. The mediumcontrast color scheme is designed for situations needing color pairs.

The light color scheme is reasonably distinct for both normal or colorblind vision and is intended to fill labeled cells.

The pale and dark schemes are not very distinct in either normal or colorblind vision and should be used as a text background or to highlight a cell in a table.

Refer to the original document for details about the recommended uses (see references)

Author(s)

N. Frerebeau

References

```
Tol, P. (2021). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_muted, scale_tol_pale, scale_tol_vibrant

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(mpg, package = "ggplot2")
```

scale_tol_muted 153

```
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()

ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()

data(diamonds, package = "ggplot2")

ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

scale_tol_muted

Paul Tol's muted Discrete Color Scheme

Description

Paul Tol's muted Discrete Color Scheme

Usage

```
scale_colour_muted(..., reverse = FALSE, aesthetics = "colour")
scale_color_muted(..., reverse = FALSE, aesthetics = "colour")
scale_fill_muted(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_muted(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_color_muted(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_fill_muted(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

... Arguments passed to ggplot2::discrete_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A discrete scale.

154 scale_tol_muted

Qualitative Color Schemes

The qualitative color schemes are used as given (no interpolation): colors are picked up to the maximum number of supported values.

Palette	Max.
bright	7
highcontrast	3
vibrant	7
muted	9
mediumcontrast	6
pale	6
dark	6
light	9

According to Paul Tol's technical note, the bright, highcontrast, vibrant and muted color schemes are color-blind safe. The mediumcontrast color scheme is designed for situations needing color pairs.

The light color scheme is reasonably distinct for both normal or colorblind vision and is intended to fill labeled cells.

The pale and dark schemes are not very distinct in either normal or colorblind vision and should be used as a text background or to highlight a cell in a table.

Refer to the original document for details about the recommended uses (see references)

Author(s)

N. Frerebeau

References

```
Tol, P. (2021). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_pale, scale_tol_vibrant
```

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant

scale_tol_nightfall 155

Examples

```
data(mpg, package = "ggplot2")

ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()

ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()

data(diamonds, package = "ggplot2")

ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

scale_tol_nightfall Paul Tol's nightfall Diverging Color Scheme

Description

Paul Tol's nightfall Diverging Color Scheme

Usage

```
scale_colour_nightfall(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "colour"
)
scale_color_nightfall(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_nightfall(
 reverse = FALSE,
 range = c(0, 1),
```

scale_tol_nightfall

```
midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_nightfall(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_nightfall(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_nightfall(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to \emptyset .
discrete	A logical scalar: should the color scheme be used as a discrete scale? If TRUE, it is a departure from Paul Tol's recommendations and likely a very poor use of color.
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

scale_tol_nightfall 157

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.	NA value
sunset	11	#FFFFFF
nightfall	17	#FFFFFF
BuRd	9	#FFEE99
PRGn	9	#FFEE99

Author(s)

N. Frerebeau

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_sunset

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_sunset(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_BuRd(midpoint = 9000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_PRGn(midpoint = 9000, range = c(0.25, 1))
```

scale_tol_pale

_	_	_
scale to	ol n	ചില

Paul Tol's pale Discrete Color Scheme

Description

Paul Tol's pale Discrete Color Scheme

Usage

```
scale_colour_pale(..., reverse = FALSE, aesthetics = "colour")
scale_color_pale(..., reverse = FALSE, aesthetics = "colour")
scale_fill_pale(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_pale(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_color_pale(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_fill_pale(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

	Arguments p	bassed to	ggplot	t2::d	iscrete	e_scal	Le()).
--	-------------	-----------	--------	-------	---------	--------	------	----

reverse A logical scalar. Should the resulting vector of colors be reversed?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A discrete scale.

Qualitative Color Schemes

The qualitative color schemes are used as given (no interpolation): colors are picked up to the maximum number of supported values.

Palette	Max.
bright	7
highcontrast	3
vibrant	7
muted	9
mediumcontrast	6
pale	6
dark	6
light	9

scale_tol_pale 159

According to Paul Tol's technical note, the bright, highcontrast, vibrant and muted color schemes are color-blind safe. The mediumcontrast color scheme is designed for situations needing color pairs.

The light color scheme is reasonably distinct for both normal or colorblind vision and is intended to fill labeled cells.

The pale and dark schemes are not very distinct in either normal or colorblind vision and should be used as a text background or to highlight a cell in a table.

Refer to the original document for details about the recommended uses (see references)

Author(s)

N. Frerebeau

References

```
Tol, P. (2021). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_vibrant

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(mpg, package = "ggplot2")
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()
ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()

data(diamonds, package = "ggplot2")
ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

scale_tol_PRGn

scale_tol_PRGn

Paul Tol's PRGn Diverging Color Scheme

Description

Paul Tol's PRGn Diverging Color Scheme

Usage

```
scale_colour_PRGn(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_PRGn(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_PRGn(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "fill"
)
scale_edge_colour_PRGn(
  reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_PRGn(
  . . . ,
```

scale_tol_PRGn 161

Arguments

	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one numeric vector giving the midpoint (in data value) of the diverging scale. Defaults to \emptyset .
discrete	A logical scalar: should the color scheme be used as a discrete scale? If TRUE, it is a departure from Paul Tol's recommendations and likely a very poor use of color.
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.	NA value
sunset	11	#FFFFFF
nightfall	17	#FFFFFF
BuRd	9	#FFEE99
PRGn	9	#FFEE99

Author(s)

N. Frerebeau

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_nightfall, scale_tol_sunset

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_sunset(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_BuRd(midpoint = 9000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_PRGn(midpoint = 9000, range = c(0.25, 1))
```

scale_tol_smoothrainbow

Paul Tol's smooth rainbow Sequential Color Scheme

Description

Paul Tol's smooth rainbow Sequential Color Scheme

Usage

```
scale_colour_smoothrainbow(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    discrete = FALSE,
    aesthetics = "colour"
)
```

```
scale_color_smoothrainbow(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "colour"
)
scale_fill_smoothrainbow(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_smoothrainbow(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_color_smoothrainbow(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_fill_smoothrainbow(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

range A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

discrete A logical scalar: should the color scheme be used as a discrete scale? If TRUE,

it is a departure from Paul Tol's recommendations and likely a very poor use of

aesthetics

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.	NA value
YlOrBr	9	#88888
iridescent	23	#999999
discreterainbow	23	#777777
smoothrainbow	34	#666666

Rainbow Color Scheme

As a general rule, ordered data should not be represented using a rainbow scheme. There are three main arguments against such use (Tol 2018):

- The spectral order of visible light carries no inherent magnitude message.
- Some bands of almost constant hue with sharp transitions between them, can be perceived as jumps in the data.
- Color-blind people have difficulty distinguishing some colors of the rainbow.

If such use cannot be avoided, Paul Tol's technical note provides two color schemes that are reasonably clear in color-blind vision. To remain color-blind safe, these two schemes must comply with the following conditions:

discreterainbow This scheme must not be interpolated.

smoothrainbow This scheme does not have to be used over the full range.

Author(s)

N. Frerebeau

References

Tol, P. (2018). *Colour Schemes*. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf

scale_tol_sunset 165

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_YlOrBr, scale_tol_incandescent, scale_tol_iridescent

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_YlOrBr()

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_iridescent(reverse = TRUE)

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_smoothrainbow(range = c(0.25, 1))
```

scale_tol_sunset

Paul Tol's sunset Diverging Color Scheme

Description

Paul Tol's sunset Diverging Color Scheme

Usage

```
scale_colour_sunset(
    ...,
    reverse = FALSE,
    range = c(0, 1),
    midpoint = 0,
    discrete = FALSE,
    aesthetics = "colour"
)
scale_color_sunset(
```

scale_tol_sunset

```
...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "colour"
)
scale_fill_sunset(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "fill"
)
scale_edge_colour_sunset(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
  aesthetics = "edge_colour"
)
scale_edge_color_sunset(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_sunset(
 reverse = FALSE,
 range = c(0, 1),
 midpoint = 0,
 discrete = FALSE,
 aesthetics = "edge_fill"
)
```

Arguments

```
... Arguments passed to ggplot2::continuous_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?
```

range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
midpoint	A length-one $numeric$ vector giving the midpoint (in data value) of the diverging scale. Defaults to \emptyset .
discrete	A logical scalar: should the color scheme be used as a discrete scale? If TRUE, it is a departure from Paul Tol's recommendations and likely a very poor use of color.
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

167

Value

scale tol sunset

A continuous scale.

Diverging Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

Palette	Max.	NA value
sunset	11	#FFFFFF
nightfall	17	#FFFFFF
BuRd	9	#FFEE99
PRGn	9	#FFEE99

Author(s)

N. Frerebeau

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other diverging color schemes: scale_crameri_bam, scale_crameri_berlin, scale_crameri_broc, scale_crameri_cork, scale_crameri_lisbon, scale_crameri_roma, scale_crameri_tofino, scale_crameri_vanimo, scale_crameri_vik, scale_tol_BuRd, scale_tol_PRGn, scale_tol_nightfall
```

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_vibrant

scale_tol_vibrant

Examples

```
data(economics, package = "ggplot2")
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_sunset(reverse = TRUE, midpoint = 12000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_BuRd(midpoint = 9000)
ggplot2::ggplot(economics, ggplot2::aes(psavert, pce, colour = unemploy)) +
    ggplot2::geom_point() +
    scale_color_PRGn(midpoint = 9000, range = c(0.25, 1))
```

scale_tol_vibrant

Paul Tol's vibrant Discrete Color Scheme

Description

Paul Tol's vibrant Discrete Color Scheme

Usage

```
scale_colour_vibrant(..., reverse = FALSE, aesthetics = "colour")
scale_color_vibrant(..., reverse = FALSE, aesthetics = "colour")
scale_fill_vibrant(..., reverse = FALSE, aesthetics = "fill")
scale_edge_colour_vibrant(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_color_vibrant(..., reverse = FALSE, aesthetics = "edge_colour")
scale_edge_fill_vibrant(..., reverse = FALSE, aesthetics = "edge_fill")
```

Arguments

... Arguments passed to ggplot2::discrete_scale().

reverse A logical scalar. Should the resulting vector of colors be reversed?

aesthetics A character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with.

Value

A discrete scale.

scale_tol_vibrant 169

Qualitative Color Schemes

The qualitative color schemes are used as given (no interpolation): colors are picked up to the maximum number of supported values.

Palette	Max.
bright	7
highcontrast	3
vibrant	7
muted	9
mediumcontrast	6
pale	6
dark	6
light	9

According to Paul Tol's technical note, the bright, highcontrast, vibrant and muted color schemes are color-blind safe. The mediumcontrast color scheme is designed for situations needing color pairs.

The light color scheme is reasonably distinct for both normal or colorblind vision and is intended to fill labeled cells.

The pale and dark schemes are not very distinct in either normal or colorblind vision and should be used as a text background or to highlight a cell in a table.

Refer to the original document for details about the recommended uses (see references)

Author(s)

N. Frerebeau

References

```
Tol, P. (2021). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.2. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other qualitative color schemes: scale_colour_land(), scale_colour_soil(), scale_colour_stratigraphy(), scale_okabeito_discrete, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_pale
```

```
Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_YlOrBr, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset
```

170 scale_tol_YlOrBr

Examples

```
data(mpg, package = "ggplot2")

ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_bright()

ggplot2::ggplot(mpg, ggplot2::aes(displ, hwy, colour = class)) +
    ggplot2::geom_point() +
    scale_colour_vibrant()

data(diamonds, package = "ggplot2")

ggplot2::ggplot(diamonds, ggplot2::aes(clarity, fill = cut)) +
    ggplot2::geom_bar() +
    scale_fill_muted()
```

scale_tol_Y10rBr

Paul Tol's YlOrBr Sequential Color Scheme

Description

Paul Tol's YlOrBr Sequential Color Scheme

Usage

```
scale_colour_YlOrBr(
  . . . ,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_color_YlOrBr(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "colour"
)
scale_fill_YlOrBr(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "fill"
```

scale_tol_YIOrBr 171

```
scale_edge_colour_YlOrBr(
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
scale_edge_color_YlOrBr(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
 aesthetics = "edge_colour"
)
scale_edge_fill_YlOrBr(
  ...,
 reverse = FALSE,
 range = c(0, 1),
 discrete = FALSE,
  aesthetics = "edge_fill"
)
```

Arguments

• • •	Arguments passed to ggplot2::continuous_scale().
reverse	A logical scalar. Should the resulting vector of colors be reversed?
range	A length-two numeric vector specifying the fraction of the scheme's color domain to keep.
discrete	A logical scalar: should the color scheme be used as a discrete scale? If TRUE, it is a departure from Paul Tol's recommendations and likely a very poor use of color.
aesthetics	A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

172 scale_tol_YlOrBr

Palette	Max.	NA value
YlOrBr	9	#888888
iridescent	23	#999999
discreterainbow	23	#777777
smoothrainbow	34	#666666

Author(s)

N. Frerebeau

References

```
Tol, P. (2018). Colour Schemes. SRON. Technical Note No. SRON/EPS/TN/09-002, issue 3.1. URL: https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other sequential color schemes: scale_crameri_acton, scale_crameri_bamako, scale_crameri_batlow, scale_crameri_batlowK, scale_crameri_batlowW, scale_crameri_bilbao, scale_crameri_buda, scale_crameri_davos, scale_crameri_devon, scale_crameri_grayC, scale_crameri_hawaii, scale_crameri_imola, scale_crameri_lajolla, scale_crameri_lapaz, scale_crameri_nuuk, scale_crameri_oslo, scale_crameri_tokyo, scale_crameri_turku, scale_tol_incandescent, scale_tol_iridescent, scale_tol_smoothrainbow

Other Paul Tol's color schemes: scale_tol_BuRd, scale_tol_PRGn, scale_tol_bright, scale_tol_dark, scale_tol_discreterainbow, scale_tol_highcontrast, scale_tol_incandescent, scale_tol_iridescent, scale_tol_light, scale_tol_mediumcontrast, scale_tol_muted, scale_tol_nightfall, scale_tol_pale, scale_tol_smoothrainbow, scale_tol_sunset, scale_tol_vibrant
```

Examples

```
data(faithfuld, package = "ggplot2")
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_YlOrBr()
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_iridescent(reverse = TRUE)
ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
    ggplot2::geom_raster() +
    scale_fill_smoothrainbow(range = c(0.25, 1))
```

Index

* Fabio Crameri's color schemes	scale_tol_bright, 133
scale_crameri_acton, 26	scale_tol_BuRd, 135
scale_crameri_bam, 29	scale_tol_dark, 137
scale_crameri_bamako,32	scale_tol_discreterainbow, 139
scale_crameri_bam0,36	scale_tol_highcontrast, 141
scale_crameri_batlow, 38	scale_tol_incandescent, 144
<pre>scale_crameri_batlowK, 41</pre>	scale_tol_iridescent, 146
scale_crameri_batlowW,44	scale_tol_light, 149
scale_crameri_berlin,47	<pre>scale_tol_mediumcontrast, 151</pre>
scale_crameri_bilbao,50	scale_tol_muted, 153
scale_crameri_broc, 54	scale_tol_nightfall, 155
scale_crameri_broc0,57	scale_tol_pale, 158
scale_crameri_buda,59	scale_tol_PRGn, 160
scale_crameri_bukavu,62	<pre>scale_tol_smoothrainbow, 162</pre>
scale_crameri_cork,65	scale_tol_sunset, 165
scale_crameri_corkO,68	scale_tol_vibrant, 168
scale_crameri_davos,70	scale_tol_YlOrBr, 170
scale_crameri_devon,73	* color schemes
scale_crameri_fes,76	colour, 5
<pre>scale_crameri_grayC, 79</pre>	info,8
scale_crameri_hawaii,82	* color-blind safe color schemes
scale_crameri_imola,85	scale_okabeito_discrete, 129
scale_crameri_lajolla,88	* color
scale_crameri_lapaz,91	colour, 5
scale_crameri_lisbon,95	* cyclic color schemes
scale_crameri_nuuk,98	scale_crameri_bamO,36
scale_crameri_oleron, 101	scale_crameri_broc0,57
scale_crameri_oslo, 103	scale_crameri_corkO,68
scale_crameri_roma, 106	scale_crameri_romaO, 109
scale_crameri_romaO, 109	scale_crameri_vikO, 127
scale_crameri_tofino, 112	* diagnostic tools
scale_crameri_tokyo, 115	change, 3
scale_crameri_turku, 118	compare, 7
scale_crameri_vanimo, 121	<pre>plot.color_scheme, 16</pre>
scale_crameri_vik, 124	plot_map, 17
scale_crameri_vikO, 127	plot_scheme, 18
* Okabe and Ito's color scheme	<pre>plot_scheme_colourblind, 19</pre>
scale_okabeito_discrete, 129	plot_tiles, 20
* Paul Tol's color schemes	* diverging color schemes

scale_crameri_bam, 29	
Scare_cramer r_bam, 29	<pre>scale_crameri_devon, 73</pre>
scale_crameri_berlin,47	<pre>scale_crameri_grayC, 79</pre>
scale_crameri_broc, 54	scale_crameri_hawaii,82
scale_crameri_cork,65	scale_crameri_imola,85
scale_crameri_lisbon, 95	scale_crameri_lajolla,88
scale_crameri_roma, 106	scale_crameri_lapaz,91
scale_crameri_tofino, 112	scale_crameri_nuuk,98
scale_crameri_vanimo, 121	scale_crameri_oslo, 103
scale_crameri_vik, 124	<pre>scale_crameri_tokyo, 115</pre>
scale_tol_BuRd, 135	scale_crameri_turku, 118
scale_tol_nightfall, 155	scale_tol_incandescent, 144
scale_tol_PRGn, 160	scale_tol_iridescent, 146
scale_tol_sunset, 165	<pre>scale_tol_smoothrainbow, 162</pre>
* ggplot2 scales	scale_tol_YlOrBr, 170
scale_picker, 132	* themed color schemes
* multi sequential color schemes	scale_colour_land, 22
scale_crameri_bukavu, 62	scale_colour_soi1, 23
scale_crameri_fes, 76	scale_colour_stratigraphy, 25
scale_crameri_oleron, 101	3 4 3
* palettes	change, 3, 8, 17–21
palette_color_continuous, 9	character, 4–7, 10, 11, 13, 14, 16–18, 20–22,
palette_color_discrete, 11	24, 25, 28, 31, 34, 36, 39, 42, 46, 49,
·	52, 55, 57, 60, 63, 66, 68, 71, 74, 77,
palette_color_picker, 12	80, 83, 86, 90, 93, 96, 99, 102, 105,
palette_shape, 14	108, 110, 113, 116, 119, 123, 126,
palette_size, 15	128, 131–133, 136, 138, 140, 142,
* qualitative color schemes	145, 148, 149, 151, 153, 156, 158,
scale_colour_land, 22	161, 164, 167, 168, 171
scale_colour_soil, 23	color (colour), 5
scale_colour_stratigraphy, 25	color(), 4, 13, 16
scale_okabeito_discrete, 129	colorRampPalette, 5
scale_tol_bright, 133	colour, 5, 9
scale_tol_dark, 137	compare, 4, 7, 17-21
scale_tol_discreterainbow, 139	continuous, 28, 31, 34, 36, 39, 42, 46, 49, 52,
scale_tol_highcontrast, 141	55, 57, 60, 63, 66, 68, 71, 74, 77, 80,
scale_tol_light, 149	83, 86, 90, 93, 96, 99, 102, 105, 108,
<pre>scale_tol_mediumcontrast, 151</pre>	110, 113, 116, 119, 123, 126, 128,
scale_tol_muted, 153	132, 136, 145, 148, 157, 161, 164,
scale_tol_pale, 158	167, 171
scale_tol_vibrant, 168	107,171
* sequential color schemes	data.frame,9
scale_crameri_acton, 26	discrete, 22, 24, 25, 131–133, 138, 140, 142,
scale_crameri_bamako,32	149, 151, 153, 158, 168
scale_crameri_batlow, 38	distance matrix, 8
scale_crameri_batlowK,41	
scale_crameri_batlowW,44	function, 4, 6, 10, 11, 13-15
scale_crameri_bilbao,50	
scale_crameri_buda, 59	<pre>ggplot2::continuous_scale(), 27, 31, 34,</pre>
scale_crameri_davos, 70	36, 39, 42, 45, 49, 52, 55, 57, 60, 63,

66, 68, 71, 74, 77, 80, 83, 86, 89, 93,	plot_scheme_colorblind
96, 99, 101, 104, 108, 110, 113, 116,	<pre>(plot_scheme_colourblind), 19</pre>
119, 122, 125, 128, 136, 145, 147,	plot_scheme_colourblind, 4, 8, 17-19, 19,
156, 161, 163, 166, 171	21
ggplot2::discrete_scale(), 22, 24, 25,	plot_tiles, 4, 8, 17-20, 20
130, 133, 138, 140, 142, 149, 151,	
<i>153, 158, 168</i>	scale_color_acton
graphics::par(), 18	(scale_crameri_acton), 26
<pre>grDevices::colorRamp(), 10</pre>	<pre>scale_color_bam(scale_crameri_bam), 29</pre>
	scale_color_bamako
info, 6, 8	(scale_crameri_bamako), 32
info(), 5, 132	<pre>scale_color_bamO(scale_crameri_bamO),</pre>
integer, 6, 7, 21	36
	scale_color_batlow
logical, 5-8, 11, 13, 14, 18, 27, 28, 31, 34,	(scale_crameri_batlow), 38
36, 39, 42, 45, 46, 49, 52, 55, 57, 60,	scale_color_batlowK
63, 66, 68, 71, 74, 77, 80, 83, 86, 89,	(scale_crameri_batlowK), 41
90, 93, 96, 99, 101, 104, 105, 108,	scale_color_batlowW
110, 113, 116, 119, 122, 123, 125,	(scale_crameri_batlowW), 44
126, 128, 130, 133, 136, 138, 140,	scale_color_berlin
142, 145, 147, 149, 151, 153, 156,	(scale_crameri_berlin),47
158, 161, 163, 166–168, 171	scale_color_bilbao
	(scale_crameri_bilbao), 50
numeric, 10, 13, 15, 18, 28, 31, 34, 36, 39, 42,	<pre>scale_color_bright (scale_tol_bright),</pre>
45, 49, 52, 55, 57, 60, 63, 66, 68, 71,	133
74, 77, 80, 83, 86, 89, 93, 96, 99,	<pre>scale_color_broc(scale_crameri_broc),</pre>
101, 102, 104, 108, 110, 113, 116,	54
119, 122, 123, 125, 126, 128, 136,	scale_color_broc0
145, 147, 156, 161, 163, 167, 171	(scale_crameri_broc0), 57
	scale_color_buda(scale_crameri_buda),
palette_color_continuous, 9, 11, 13-15	59
palette_color_discrete, 10, 11, 13-15	scale_color_bukavu
palette_color_picker, 10, 11, 12, 14, 15	(scale_crameri_bukavu), 62
palette_colour_continuous	scale_color_BuRd (scale_tol_BuRd), 135
<pre>(palette_color_continuous), 9</pre>	scale_color_cork(scale_crameri_cork),
palette_colour_discrete	65
(palette_color_discrete), 11	scale_color_cork0
palette_colour_picker	(scale_crameri_corkO), 68
(palette_color_picker), 12	scale_color_dark (scale_tol_dark), 137
palette_line (palette_shape), 14	scale_color_davos
palette_shape, 10, 11, 13, 14, 15	(scale_crameri_davos), 70
palette_size, 10, 11, 13, 14, 15	scale_color_devon
palette_size_diverging (palette_size),	(scale_crameri_devon), 73
15	scale_color_discreterainbow
<pre>palette_size_sequential (palette_size),</pre>	(scale_tol_discreterainbow),
15	139
plot.color_scheme, 4, 8, 16, 18-21	scale_color_fes(scale_crameri_fes), 70
plot_map, 4, 8, 17, 17, 19–21	scale_color_grayC
plot_scheme, 4, 8, 17, 18, 18, 20, 21	(scale_crameri_grayC), 79
p=00_001101110, 1, 0, 17, 10, 10, 20, 21	(Scarc_crainerr_6raye), //

scale_color_nawa11	(scale_crameri_tokyo), 115
(scale_crameri_hawaii),82	scale_color_turku
scale_color_highcontrast	(scale_crameri_turku), 118
(scale_tol_highcontrast), 141	scale_color_vanimo
scale_color_imola	(scale_crameri_vanimo), 121
(scale_crameri_imola), 85	scale_color_vibrant
scale_color_incandescent	(scale_tol_vibrant), 168
(scale_tol_incandescent), 144	<pre>scale_color_vik (scale_crameri_vik), 124</pre>
scale_color_iridescent	<pre>scale_color_vik0 (scale_crameri_vik0),</pre>
(scale_tol_iridescent), 146	127
scale_color_lajolla	<pre>scale_color_YlOrBr (scale_tol_YlOrBr),</pre>
(scale_crameri_lajolla), 88	170
scale_color_land(scale_colour_land), 22	scale_colour_acton
scale_color_lapaz	(scale_crameri_acton), 26
(scale_crameri_lapaz), 91	scale_colour_bam (scale_crameri_bam), 29
scale_color_light (scale_tol_light), 149	scale_colour_bamako
scale_color_lisbon	(scale_crameri_bamako), 32
(scale_crameri_lisbon), 95	scale_colour_bamO (scale_crameri_bamO),
scale_color_mediumcontrast	36
(scale_tol_mediumcontrast), 151	scale_colour_batlow
scale_color_muted (scale_tol_muted), 153	(scale_crameri_batlow), 38
scale_color_nightfall	scale_colour_batlowK
(scale_tol_nightfall), 155	(scale_crameri_batlowK), 41
scale_color_nuuk (scale_crameri_nuuk),	scale_colour_batlowW
98	(scale_crameri_batlowW), 44
scale_color_okabeito	scale_colour_berlin
(scale_okabeito_discrete), 129	(scale_crameri_berlin), 47
scale_color_oleron	scale_colour_bilbao
(scale_crameri_oleron), 101	(scale_crameri_bilbao), 50
scale_color_oslo (scale_crameri_oslo),	scale_colour_bright (scale_tol_bright),
103	133
scale_color_pale (scale_tol_pale), 158	scale_colour_broc(scale_crameri_broc),
scale_color_picker (scale_picker), 132	54
scale_color_PRGn (scale_tol_PRGn), 160	scale_colour_broc0
scale_color_roma (scale_crameri_roma),	(scale_crameri_broc0), 57
106	scale_colour_buda (scale_crameri_buda),
	59
scale_color_roma0	scale_colour_bukavu
(scale_crameri_roma0), 109	
scale_color_smoothrainbow	(scale_crameri_bukavu), 62
(scale_tol_smoothrainbow), 162	scale_colour_BuRd (scale_tol_BuRd), 135
scale_color_soil (scale_colour_soil), 23	<pre>scale_colour_cork(scale_crameri_cork),</pre>
scale_color_stratigraphy	65
(scale_colour_stratigraphy), 25	scale_colour_cork0
<pre>scale_color_sunset (scale_tol_sunset),</pre>	(scale_crameri_cork0), 68
165	scale_colour_dark(scale_tol_dark), 137
scale_color_tofino	scale_colour_davos
(scale_crameri_tofino), 112	(scale_crameri_davos), 70
scale_color_tokyo	scale_colour_devon

(scale_crameri_devon), /3	(scale_crameri_romaU), 109
scale_colour_discreterainbow	scale_colour_smoothrainbow
<pre>(scale_tol_discreterainbow),</pre>	(scale_tol_smoothrainbow), 162
139	scale_colour_soil, 23, 23, 26, 131, 134,
<pre>scale_colour_fes (scale_crameri_fes), 76</pre>	139, 141, 143, 150, 152, 154, 159,
scale_colour_grayC	169
<pre>(scale_crameri_grayC), 79</pre>	scale_colour_stratigraphy, 23, 24, 25,
scale_colour_hawaii	131, 134, 139, 141, 143, 150, 152,
(scale_crameri_hawaii),82	154, 159, 169
scale_colour_highcontrast	<pre>scale_colour_sunset (scale_tol_sunset),</pre>
<pre>(scale_tol_highcontrast), 141</pre>	165
scale_colour_imola	scale_colour_tofino
(scale_crameri_imola), 85	(scale_crameri_tofino), 112
scale_colour_incandescent	scale_colour_tokyo
(scale_tol_incandescent), 144	(scale_crameri_tokyo), 115
scale_colour_iridescent	scale_colour_turku
(scale_tol_iridescent), 146	(scale_crameri_turku), 118
scale_colour_lajolla	scale_colour_vanimo
(scale_crameri_lajolla), 88	(scale_crameri_vanimo), 121
scale_colour_land, 22, 24, 26, 131, 134,	scale_colour_vibrant
139, 141, 143, 150, 152, 154, 159,	(scale_tol_vibrant), 168
169	scale_colour_vik (scale_crameri_vik),
scale_colour_lapaz	124
(scale_crameri_lapaz),91	scale_colour_vikO(scale_crameri_vikO),
<pre>scale_colour_light (scale_tol_light),</pre>	127
149	scale_colour_YlOrBr(scale_tol_YlOrBr),
scale_colour_lisbon	170
(scale_crameri_lisbon), 95	scale_crameri_acton, 26, 32, 35, 37, 40, 44,
scale_colour_mediumcontrast	47, 50, 53, 56, 58, 61, 64, 67, 69, 72
(scale_tol_mediumcontrast), 151	76, 78, 81, 84, 85, 88, 91, 94, 97,
<pre>scale_colour_muted (scale_tol_muted),</pre>	100, 103, 106, 109, 111, 114, 117,
153	120, 121, 124, 127, 129, 146, 148,
scale_colour_nightfall	165, 172
(scale_tol_nightfall), 155	scale_crameri_bam, 29, 29, 35, 37, 40, 44,
<pre>scale_colour_nuuk (scale_crameri_nuuk),</pre>	47, 50, 53, 56, 58, 61, 64, 67, 69, 72
98	76, 78, 81, 85, 88, 91, 94, 97, 100,
scale_colour_okabeito	103, 106, 109, 111, 114, 117, 121,
(scale_okabeito_discrete), 129	124, 127, 129, 137, 157, 162, 167
scale_colour_oleron	scale_crameri_bamako, 29, 32, 32, 37, 40,
(scale_crameri_oleron), 101	44, 47, 50, 53, 56, 58, 61, 64, 67, 69
<pre>scale_colour_oslo(scale_crameri_oslo),</pre>	72, 76, 78, 81, 84, 85, 88, 91, 94, 97
103	100, 103, 106, 109, 111, 114, 117,
<pre>scale_colour_pale (scale_tol_pale), 158</pre>	120, 121, 124, 127, 129, 146, 148,
<pre>scale_colour_picker(scale_picker), 132</pre>	165, 172
scale_colour_PRGn (scale_tol_PRGn), 160	scale_crameri_bam0, 29, 32, 35, 36, 40, 44,
<pre>scale_colour_roma (scale_crameri_roma),</pre>	47, 50, 53, 56, 58, 61, 64, 67, 69, 72
106	76, 78, 81, 85, 88, 91, 94, 97, 100,
scale_colour_romaO	103, 106, 109, 111, 114, 117, 121,

124, 127, 129 scale_crameri_batlow, 29, 32, 35, 37, 38, 44, 47, 50, 53, 56, 58, 61, 64, 67, 69, 72, 76, 78, 81, 84, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148, 165, 172 scale_crameri_batlowK, 29, 32, 35, 37, 40, 41, 47, 50, 53, 56, 58, 61, 64, 67, 69, 72, 76, 78, 81, 84, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148, 165, 172 scale_crameri_batlowW, 29, 32, 35, 37, 40, 44, 44, 50, 53, 56, 58, 61, 64, 67, 69, 72, 76, 78, 81, 84, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148, 165, 172 scale_crameri_berlin, 29, 32, 35, 37, 40, 44, 47, 47, 53, 56, 58, 61, 64, 67, 69, 72, 76, 78, 81, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 121, 124, 127, 129, 137, 157, 162, scale_crameri_bilbao, 29, 32, 35, 37, 40, 44, 47, 50, 50, 56, 58, 61, 64, 67, 69, 72, 76, 78, 81, 84, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148, 165, 172 scale_crameri_broc, 29, 32, 35, 37, 40, 44, 47, 50, 53, 54, 58, 61, 64, 67, 69, 72, 76, 78, 81, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 121, 124, 127, 129, 137, 157, 162, 167 scale_crameri_broc0, 29, 32, 35, 37, 40, 44, 47, 50, 53, 56, 57, 61, 64, 67, 69, 72, 76, 78, 81, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 121, 124, 127, 129 scale_crameri_buda, 29, 32, 35, 37, 40, 44, 47, 50, 53, 56, 58, 59, 64, 67, 69, 72, 73, 76, 78, 81, 84, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148,

165, 172

scale_crameri_bukavu, 29, 32, 35, 37, 41,

44, 47, 50, 53, 56, 58, 62, 62, 67, 69, 73, 76, 78, 81, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 121, 124, 127, 129 scale_crameri_cork, 29, 32, 35, 37, 41, 44, 47, 50, 53, 56, 58, 62, 64, 65, 69, 73, 76, 78, 81, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 121, 124, 127, 129, 137, 157, 162, 167 scale_crameri_cork0, 29, 32, 35, 37, 41, 44, 47, 50, 53, 56, 58, 62, 64, 67, 68, 73, 76, 78, 81, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 121, 124, 127, 129 scale_crameri_davos, 29, 32, 35, 37, 40, 41, 44, 47, 50, 53, 56, 58, 61, 62, 64, 67, 69, 70, 76, 78, 81, 84, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148, 165, 172 scale_crameri_devon, 29, 32, 35, 37, 40, 41, 44, 47, 50, 53, 56, 58, 61, 62, 64, 67, 69, 72, 73, 73, 78, 81, 84, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148, 165, 172 scale_crameri_fes, 29, 32, 35, 37, 41, 44, 47, 50, 53, 56, 58, 62, 64, 67, 69, 73, 76, 76, 81, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 121, 124, 127, 129 scale_crameri_grayC, 29, 32, 35, 37, 40, 41, 44, 47, 50, 53, 56, 58, 61, 62, 64, 67, 69, 72, 73, 76, 78, 79, 84, 85, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148, 165, 172 scale_crameri_hawaii, 29, 32, 35, 37, 40, 41, 44, 47, 50, 53, 56, 58, 61, 62, 64, 67, 69, 72, 73, 76, 78, 81, 82, 88, 91, 94, 97, 100, 103, 106, 109, 111, 114, 117, 120, 121, 124, 127, 129, 146, 148, 165, 172 scale_crameri_imola, 29, 32, 35, 37, 40, 41, 44, 47, 50, 53, 56, 58, 61, 62, 64, 67, 69, 72, 73, 76, 78, 81, 82, 84, 85, 85,

91, 94, 97, 100, 103, 106, 109, 111,

114, 117, 120, 121, 124, 127, 129,

```
146, 148, 165, 172
                                                                 73, 76, 78, 82, 85, 88, 91, 94, 97,
                                                                 100, 103, 106, 109, 111, 112, 118,
scale_crameri_lajolla, 29, 32, 35, 37, 40,
                                                                 121, 124, 127, 129, 137, 157, 162,
         41, 44, 47, 50, 53, 56, 58, 61, 62, 64,
                                                                 167
         67, 69, 72, 73, 76, 78, 81, 82, 84, 85,
         88, 88, 94, 97, 100, 103, 106, 109,
                                                       scale_crameri_tokyo, 29, 32, 35, 38, 40, 41,
                                                                 44, 47, 50, 53, 56, 59, 61, 62, 64, 67,
         111, 114, 117, 120, 121, 124, 127,
         129, 146, 148, 165, 172
                                                                 70, 72, 73, 76, 78, 81, 82, 84, 85, 88,
scale_crameri_lapaz, 29, 32, 35, 37, 40, 41,
                                                                 91, 94, 97, 100, 103, 106, 109, 111,
                                                                 114, 115, 120, 121, 124, 127, 129,
         44, 47, 50, 53, 56, 58, 61, 62, 64, 67,
                                                                 146, 148, 165, 172
         69, 72, 73, 76, 78, 81, 82, 84, 85, 88,
                                                       scale_crameri_turku, 29, 32, 35, 38, 40, 41,
         91, 91, 97, 100, 103, 106, 109, 111,
                                                                 44, 47, 50, 53, 56, 59, 61, 62, 64, 67,
          114, 117, 120, 121, 124, 127, 129,
         146, 148, 165, 172
                                                                 70, 72, 73, 76, 78, 81, 82, 84, 85, 88,
                                                                 91, 94, 97, 100, 103, 106, 109, 111,
scale_crameri_lisbon, 29, 32, 35, 37, 41,
                                                                 114, 117, 118, 118, 124, 127, 129,
         44, 47, 50, 53, 56, 58, 62, 64, 67, 69,
                                                                 146, 148, 165, 172
         73, 76, 78, 82, 85, 88, 91, 94, 95,
                                                       scale_crameri_vanimo, 29, 32, 35, 38, 41,
          100, 103, 106, 109, 111, 114, 117,
                                                                 44, 47, 50, 53, 56, 59, 62, 64, 67, 70,
          121, 124, 127, 129, 137, 157, 162,
                                                                 73, 76, 78, 82, 85, 88, 91, 94, 97,
         167
                                                                 100, 103, 106, 109, 111, 114, 118,
scale_crameri_nuuk, 29, 32, 35, 38, 40, 41,
                                                                 121, 121, 127, 129, 137, 157, 162,
         44, 47, 50, 53, 56, 59, 61, 62, 64, 67,
                                                                 167
         70, 72, 73, 76, 78, 81, 82, 84, 85, 88,
                                                       scale_crameri_vik, 29, 32, 35, 38, 41, 44,
         91, 94, 97, 98, 103, 106, 109, 111,
                                                                 47, 50, 53, 56, 59, 62, 64, 67, 70, 73,
          114, 117, 120, 121, 124, 127, 129,
                                                                 76, 78, 82, 85, 88, 91, 94, 97, 100,
         146, 148, 165, 172
                                                                 103, 106, 109, 111, 114, 118, 121,
scale_crameri_oleron, 29, 32, 35, 38, 41,
                                                                 124, 124, 129, 137, 157, 162, 167
         44, 47, 50, 53, 56, 59, 62, 64, 67, 70,
                                                       scale_crameri_vik0, 29, 32, 35, 37, 38, 41,
         73, 76, 78, 82, 85, 88, 91, 94, 97,
                                                                 44, 47, 50, 53, 56, 58, 59, 62, 64, 67,
         100, 101, 106, 109, 111, 114, 117,
                                                                 69, 70, 73, 76, 78, 82, 85, 88, 91, 94,
         121, 124, 127, 129
                                                                 97, 100, 103, 106, 109, 111, 114,
scale_crameri_oslo, 29, 32, 35, 38, 40, 41,
                                                                 118, 121, 124, 127, 127
         44, 47, 50, 53, 56, 59, 61, 62, 64, 67,
                                                       scale_edge_color_acton
          70, 72, 73, 76, 78, 81, 82, 84, 85, 88,
                                                                (scale_crameri_acton), 26
         91, 94, 97, 100, 103, 103, 109, 111,
                                                       scale_edge_color_bam
         114, 117, 120, 121, 124, 127, 129,
                                                                (scale_crameri_bam), 29
         146, 148, 165, 172
                                                       scale_edge_color_bamako
scale_crameri_roma, 29, 32, 35, 38, 41, 44,
         47, 50, 53, 56, 59, 62, 64, 67, 70, 73,
                                                                 (scale_crameri_bamako), 32
                                                       scale_edge_color_batlow
          76, 78, 82, 85, 88, 91, 94, 97, 100,
          103, 106, 106, 111, 114, 117, 121,
                                                                (scale_crameri_batlow), 38
         124, 127, 129, 137, 157, 162, 167
                                                       scale_edge_color_batlowK
                                                                (scale_crameri_batlowK), 41
scale_crameri_roma0, 29, 32, 35, 37, 38, 41,
         44, 47, 50, 53, 56, 58, 59, 62, 64, 67,
                                                       scale_edge_color_batlowW
         69, 70, 73, 76, 78, 82, 85, 88, 91, 94,
                                                                 (scale_crameri_batlowW), 44
          97, 100, 103, 106, 109, 109, 114,
                                                       scale_edge_color_berlin
         117, 121, 124, 127, 129
                                                                (scale_crameri_berlin), 47
scale_crameri_tofino, 29, 32, 35, 38, 41,
                                                       scale_edge_color_bilbao
         44, 47, 50, 53, 56, 59, 62, 64, 67, 70,
                                                                (scale_crameri_bilbao), 50
```

scale_edge_color_bright	(scale_crameri_nuuk), 98
(scale_tol_bright), 133	scale_edge_color_okabeito
scale_edge_color_broc	(scale_okabeito_discrete), 129
(scale_crameri_broc), 54	scale_edge_color_oslo
scale_edge_color_buda	(scale_crameri_oslo), 103
(scale_crameri_buda), 59	<pre>scale_edge_color_pale (scale_tol_pale)</pre>
<pre>scale_edge_color_BuRd (scale_tol_BuRd),</pre>	158
135	<pre>scale_edge_color_picker(scale_picker);</pre>
scale_edge_color_cork	132
(scale_crameri_cork), 65	<pre>scale_edge_color_PRGn (scale_tol_PRGn);</pre>
<pre>scale_edge_color_dark (scale_tol_dark),</pre>	160
137	scale_edge_color_roma
scale_edge_color_davos	(scale_crameri_roma), 106
(scale_crameri_davos), 70	<pre>scale_edge_color_smoothrainbow</pre>
scale_edge_color_devon	(scale_tol_smoothrainbow), 162
(scale_crameri_devon), 73	scale_edge_color_soil
scale_edge_color_discreterainbow	(scale_colour_soil), 23
(scale_tol_discreterainbow),	scale_edge_color_stratigraphy
139	(scale_colour_stratigraphy), 25
scale_edge_color_grayC	scale_edge_color_sunset
(scale_crameri_grayC), 79	(scale_tol_sunset), 165
scale_edge_color_hawaii	scale_edge_color_tofino
(scale_crameri_hawaii), 82	(scale_crameri_tofino), 112
scale_edge_color_highcontrast	scale_edge_color_tokyo
(scale_tol_highcontrast), 141	(scale_crameri_tokyo), 115
scale_edge_color_imola	scale_edge_color_turku
(scale_crameri_imola), 85	(scale_crameri_turku), 118
scale_edge_color_incandescent	scale_edge_color_vanimo
(scale_tol_incandescent), 144	(scale_crameri_vanimo), 121
scale_edge_color_iridescent	scale_edge_color_vibrant
(scale_tol_iridescent), 146	(scale_tol_vibrant), 168
scale_edge_color_lajolla	scale_edge_color_vik
(scale_crameri_lajolla), 88	(scale_crameri_vik), 124
scale_edge_color_land	scale_edge_color_Y10rBr
(scale_colour_land), 22	(scale_tol_Yl0rBr), 170
scale_edge_color_lapaz	scale_edge_colour_acton
(scale_crameri_lapaz), 91	(scale_crameri_acton), 26
scale_edge_color_light	scale_edge_colour_bam
(scale_tol_light), 149	(scale_crameri_bam), 29
scale_edge_color_lisbon	scale_edge_colour_bamako
(scale_crameri_lisbon), 95	(scale_crameri_bamako), 32
scale_edge_color_mediumcontrast	scale_edge_colour_batlow
(scale_tol_mediumcontrast), 151	(scale_crameri_batlow), 38
scale_edge_color_muted	scale_edge_colour_batlowK
(scale_tol_muted), 153	(scale_crameri_batlowK), 41
scale_edge_color_nightfall	scale_edge_colour_batlowW
(scale_tol_nightfall), 155	(scale_crameri_batlowW), 44
scale_edge_color_nuuk	scale_edge_colour_berlin

(scale_crameri_berlin), 4/	scale_edge_colour_nightfall
scale_edge_colour_bilbao	(scale_tol_nightfall), 155
(scale_crameri_bilbao), 50	scale_edge_colour_nuuk
scale_edge_colour_bright	(scale_crameri_nuuk), 98
(scale_tol_bright), 133	scale_edge_colour_okabeito
scale_edge_colour_broc	(scale_okabeito_discrete), 129
(scale_crameri_broc), 54	scale_edge_colour_oslo
scale_edge_colour_buda	(scale_crameri_oslo), 103
(scale_crameri_buda), 59	scale_edge_colour_pale
scale_edge_colour_BuRd	(scale_tol_pale), 158
(scale_tol_BuRd), 135	scale_edge_colour_picker
scale_edge_colour_cork	(scale_picker), 132
(scale_crameri_cork), 65	scale_edge_colour_PRGn
scale_edge_colour_dark	(scale_tol_PRGn), 160
(scale_tol_dark), 137	scale_edge_colour_roma
scale_edge_colour_davos	(scale_crameri_roma), 106
(scale_crameri_davos), 70	scale_edge_colour_smoothrainbow
scale_edge_colour_devon	(scale_tol_smoothrainbow), 162
(scale_crameri_devon), 73	scale_edge_colour_soil
scale_edge_colour_discreterainbow	(scale_colour_soil), 23
(scale_tol_discreterainbow),	scale_edge_colour_stratigraphy
139	(scale_colour_stratigraphy), 25
scale_edge_colour_grayC	scale_edge_colour_sunset
(scale_crameri_grayC), 79	(scale_tol_sunset), 165
scale_edge_colour_hawaii	scale_edge_colour_tofino
(scale_crameri_hawaii), 82	(scale_crameri_tofino), 112
scale_edge_colour_highcontrast	scale_edge_colour_tokyo
(scale_tol_highcontrast), 141	(scale_crameri_tokyo), 115
scale_edge_colour_imola	scale_edge_colour_turku
(scale_crameri_imola), 85	(scale_crameri_turku), 118
scale_edge_colour_incandescent	scale_edge_colour_vanimo
(scale_tol_incandescent), 144	(scale_crameri_vanimo), 121
scale_edge_colour_iridescent	scale_edge_colour_vibrant
(scale_tol_iridescent), 146	(scale_tol_vibrant), 168
scale_edge_colour_lajolla	scale_edge_colour_vik
(scale_crameri_lajolla), 88	(scale_crameri_vik), 124
scale_edge_colour_land	scale_edge_colour_Y10rBr
(scale_colour_land), 22	(scale_tol_Yl0rBr), 170
scale_edge_colour_lapaz	scale_edge_fill_acton
(scale_crameri_lapaz), 91	(scale_crameri_acton), 26
scale_edge_colour_light	scale_edge_fill_bam
(scale_tol_light), 149	(scale_crameri_bam), 29
scale_edge_colour_lisbon	scale_edge_fill_bamako
(scale_crameri_lisbon), 95	(scale_crameri_bamako), 32
scale_edge_colour_mediumcontrast	scale_edge_fill_batlow
(scale_tol_mediumcontrast), 151	(scale_crameri_batlow), 38
scale_edge_colour_muted	scale_edge_fill_batlowK
(scale_tol_muted), 153	(scale_crameri_batlowK), 41
, – – //	. – – – //

<pre>scale_edge_fill_batlowW</pre>	(scale_tol_mediumcontrast), 151
(scale_crameri_batlowW), 44	scale_edge_fill_muted
scale_edge_fill_berlin	(scale_tol_muted), 153
(scale_crameri_berlin), 47	scale_edge_fill_nightfall
scale_edge_fill_bilbao	(scale_tol_nightfall), 155
(scale_crameri_bilbao), 50	scale_edge_fill_nuuk
scale_edge_fill_bright	(scale_crameri_nuuk), 98
(scale_tol_bright), 133	scale_edge_fill_okabeito
scale_edge_fill_broc	(scale_okabeito_discrete), 129
(scale_crameri_broc), 54	scale_edge_fill_oslo
scale_edge_fill_buda	(scale_crameri_oslo), 103
(scale_crameri_buda), 59	scale_edge_fill_pale (scale_tol_pale),
	158
<pre>scale_edge_fill_BuRd (scale_tol_BuRd),</pre>	
	scale_edge_fill_picker(scale_picker),
scale_edge_fill_cork	132
(scale_crameri_cork), 65	<pre>scale_edge_fill_PRGn (scale_tol_PRGn),</pre>
scale_edge_fill_dark(scale_tol_dark),	160
137	scale_edge_fill_roma
scale_edge_fill_davos	(scale_crameri_roma), 106
(scale_crameri_davos), 70	scale_edge_fill_smoothrainbow
scale_edge_fill_devon	(scale_tol_smoothrainbow), 162
(scale_crameri_devon), 73	scale_edge_fill_soil
<pre>scale_edge_fill_discreterainbow</pre>	(scale_colour_soil), 23
<pre>(scale_tol_discreterainbow),</pre>	scale_edge_fill_stratigraphy
139	<pre>(scale_colour_stratigraphy), 25</pre>
<pre>scale_edge_fill_grayC</pre>	scale_edge_fill_sunset
(scale_crameri_grayC), 79	(scale_tol_sunset), 165
scale_edge_fill_hawaii	scale_edge_fill_tofino
(scale_crameri_hawaii), 82	(scale_crameri_tofino), 112
scale_edge_fill_highcontrast	scale_edge_fill_tokyo
(scale_tol_highcontrast), 141	(scale_crameri_tokyo), 115
scale_edge_fill_imola	scale_edge_fill_turku
(scale_crameri_imola), 85	(scale_crameri_turku), 118
scale_edge_fill_incandescent	scale_edge_fill_vanimo
(scale_tol_incandescent), 144	
	(scale_crameri_vanimo), 121
scale_edge_fill_iridescent	scale_edge_fill_vibrant
(scale_tol_iridescent), 146	(scale_tol_vibrant), 168
scale_edge_fill_lajolla	scale_edge_fill_vik
(scale_crameri_lajolla), 88	(scale_crameri_vik), 124
scale_edge_fill_land	scale_edge_fill_YlOrBr
(scale_colour_land), 22	(scale_tol_YlOrBr), 170
scale_edge_fill_lapaz	<pre>scale_fill_acton(scale_crameri_acton),</pre>
(scale_crameri_lapaz),91	26
scale_edge_fill_light	<pre>scale_fill_bam(scale_crameri_bam), 29</pre>
(scale_tol_light), 149	scale_fill_bamako
scale_edge_fill_lisbon	(scale_crameri_bamako), 32
(scale_crameri_lisbon), 95	<pre>scale_fill_bamO(scale_crameri_bamO), 36</pre>
scale edge fill mediumcontrast	scale fill batlow

(scale_crameri_batlow), 38	scale_fill_lisbon
scale_fill_batlowK	<pre>(scale_crameri_lisbon), 95</pre>
(scale_crameri_batlowK),41	scale_fill_mediumcontrast
scale_fill_batlowW	(scale_tol_mediumcontrast), 151
(scale_crameri_batlowW),44	<pre>scale_fill_muted(scale_tol_muted), 153</pre>
scale_fill_berlin	scale_fill_nightfall
<pre>(scale_crameri_berlin), 47</pre>	(scale_tol_nightfall), 155
scale_fill_bilbao	<pre>scale_fill_nuuk(scale_crameri_nuuk), 98</pre>
(scale_crameri_bilbao), 50	scale_fill_okabeito
scale_fill_bright(scale_tol_bright),	(scale_okabeito_discrete), 129
133	scale_fill_oleron
scale_fill_broc(scale_crameri_broc), 54	(scale_crameri_oleron), 101
<pre>scale_fill_broc0 (scale_crameri_broc0),</pre>	<pre>scale_fill_oslo(scale_crameri_oslo),</pre>
57	103
scale_fill_buda(scale_crameri_buda),59	<pre>scale_fill_pale (scale_tol_pale), 158</pre>
scale_fill_bukavu	<pre>scale_fill_picker(scale_picker), 132</pre>
(scale_crameri_bukavu), 62	<pre>scale_fill_PRGn (scale_tol_PRGn), 160</pre>
scale_fill_BuRd(scale_tol_BuRd), 135	<pre>scale_fill_roma(scale_crameri_roma),</pre>
scale_fill_cork(scale_crameri_cork),65	106
scale_fill_corkO(scale_crameri_corkO),	<pre>scale_fill_roma0(scale_crameri_roma0),</pre>
68	109
scale_fill_dark(scale_tol_dark), 137	scale_fill_smoothrainbow
<pre>scale_fill_davos(scale_crameri_davos),</pre>	<pre>(scale_tol_smoothrainbow), 162</pre>
70	<pre>scale_fill_soil(scale_colour_soil), 23</pre>
<pre>scale_fill_devon(scale_crameri_devon),</pre>	scale_fill_stratigraphy
73	(scale_colour_stratigraphy), 25
scale_fill_discreterainbow	<pre>scale_fill_sunset (scale_tol_sunset),</pre>
<pre>(scale_tol_discreterainbow),</pre>	165
139	scale_fill_tofino
scale_fill_fes(scale_crameri_fes),76	(scale_crameri_tofino), 112
<pre>scale_fill_grayC(scale_crameri_grayC),</pre>	<pre>scale_fill_tokyo(scale_crameri_tokyo),</pre>
79	115
scale_fill_hawaii	<pre>scale_fill_turku(scale_crameri_turku),</pre>
(scale_crameri_hawaii),82	118
scale_fill_highcontrast	scale_fill_vanimo
(scale_tol_highcontrast), 141	(scale_crameri_vanimo), 121
scale_fill_imola(scale_crameri_imola),	<pre>scale_fill_vibrant (scale_tol_vibrant),</pre>
85	168
scale_fill_incandescent	scale_fill_vik(scale_crameri_vik), 124
(scale_tol_incandescent), 144	<pre>scale_fill_vik0(scale_crameri_vik0),</pre>
scale_fill_iridescent	127
(scale_tol_iridescent), 146	scale_fill_YlOrBr (scale_tol_YlOrBr),
scale_fill_lajolla	170
(scale_crameri_lajolla), 88	scale_okabeito_discrete, 23, 24, 26, 129,
scale_fill_land(scale_colour_land), 22	134, 139, 141, 143, 150, 152, 154,
scale_fill_lapaz(scale_crameri_lapaz),	159, 169
91	scale_picker, 132
scale_fill_light (scale_tol_light), 149	scale_tol_bright, 23, 24, 26, 131, 133, 137,

```
139, 141, 143, 146, 148, 150, 152,
         154, 157, 159, 162, 165, 167, 169,
                                                      scale_tol_PRGn, 32, 50, 56, 67, 97, 109, 114,
                                                                124, 127, 134, 137, 139, 141, 143,
                                                                146, 148, 150, 152, 154, 157, 159,
scale_tol_BuRd, 32, 50, 56, 67, 97, 109, 114,
         124, 127, 134, 135, 139, 141, 143,
                                                                160, 165, 167, 169, 172
                                                       scale_tol_smoothrainbow, 29, 35, 40, 44,
         146, 148, 150, 152, 154, 157, 159,
                                                                47, 53, 61, 72, 76, 81, 84, 88, 91, 94,
         162, 165, 167, 169, 172
                                                                100, 106, 117, 120, 134, 137, 139,
scale_tol_dark, 23, 24, 26, 131, 134, 137,
                                                                141, 143, 146, 148, 150, 152, 154,
         137, 141, 143, 146, 148, 150, 152,
                                                                157, 159, 162, 162, 167, 169, 172
         154, 157, 159, 162, 165, 167, 169,
                                                      scale_tol_sunset, 32, 50, 56, 67, 97, 109,
         172
                                                                114, 124, 127, 134, 137, 139, 141,
scale_tol_discreterainbow, 23, 24, 26,
                                                                143, 146, 148, 150, 152, 154, 157,
         131, 134, 137, 139, 139, 143, 146,
                                                                159, 162, 165, 165, 169, 172
         148, 150, 152, 154, 157, 159, 162,
                                                       scale_tol_vibrant, 23, 24, 26, 131, 134,
         165, 167, 169, 172
                                                                137, 139, 141, 143, 146, 148, 150,
scale_tol_highcontrast, 23, 24, 26, 131,
                                                                152, 154, 157, 159, 162, 165, 167,
         134, 137, 139, 141, 141, 146, 148,
                                                                168, 172
         150, 152, 154, 157, 159, 162, 165,
                                                       scale_tol_YlOrBr, 29, 35, 40, 44, 47, 53, 61,
         167, 169, 172
                                                                72, 76, 81, 84, 88, 91, 94, 100, 106,
scale_tol_incandescent, 29, 35, 40, 44, 47,
                                                                117, 120, 134, 137, 139, 141, 143,
         53, 61, 72, 76, 81, 84, 88, 91, 94,
                                                                146, 148, 150, 152, 154, 157, 159,
         100, 106, 117, 120, 134, 137, 139,
                                                                162, 165, 167, 169, 170
         141, 143, 144, 148, 150, 152, 154,
                                                       spacesXYZ::DeltaE(), 7
         157, 159, 162, 165, 167, 169, 172
scale_tol_iridescent, 29, 35, 40, 44, 47,
         53, 61, 72, 76, 81, 84, 88, 91, 94,
         100, 106, 117, 120, 134, 137, 139,
         141, 143, 146, 146, 150, 152, 154,
         157, 159, 162, 165, 167, 169, 172
scale_tol_light, 23, 24, 26, 131, 134, 137,
         139, 141, 143, 146, 148, 149, 152,
         154, 157, 159, 162, 165, 167, 169,
         172
scale_tol_mediumcontrast, 23, 24, 26, 131,
         134, 137, 139, 141, 143, 146, 148,
         150, 151, 154, 157, 159, 162, 165,
         167, 169, 172
scale_tol_muted, 23, 24, 26, 131, 134, 137,
         139, 141, 143, 146, 148, 150, 152,
         153, 157, 159, 162, 165, 167, 169,
         172
scale_tol_nightfall, 32, 50, 56, 67, 97,
         109, 114, 124, 127, 134, 137, 139,
         141, 143, 146, 148, 150, 152, 154,
         155, 159, 162, 165, 167, 169, 172
scale_tol_pale, 23, 24, 26, 131, 134, 137,
         139, 141, 143, 146, 148, 150, 152,
         154, 157, 158, 162, 165, 167, 169,
```