ĐỀ THI CUỐI KỲ MÔN GIẢI TÍCH 3 – Học kỳ 20192

Khóa: K64. Nhóm ngành 3. Mã HP: MI1133. Thời gian: 90 phút.

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi.

Câu 1. (1 điểm) Xét sự hội tụ, phân kỳ của chuỗi số $\sum_{n=0}^{\infty} \frac{e^{\frac{1}{n}} - 1}{\sqrt{n}}$.

Câu 2. (1 điểm) Tìm tập hội tụ của chuỗi hàm $\sum_{n=1}^{\infty} \frac{n+1}{n^2+5} (x-1)^n$.

Câu 3. (3 điểm) Giải các phương trình vi phân:

a)
$$xy' + y = x \sin x$$
, $y(\frac{\pi}{2}) = 0$.

b)
$$y'' - 6y' + 9y = 1 - e^{2x}$$

c)
$$xy'' = y' \ln \frac{y'}{x}$$
.

Câu 4. (1 diem) Khai triển hàm $y = \ln \frac{1-x}{1+x}$ thành chuỗi Maclaurin.

Câu 5. (1 diểm) Tính $\mathcal{L}\{t\sin(kt)\}(s)$.

Câu 6. (1 điểm) Dùng biến đổi Laplace giải phương trình vi phân:

$$x^{(3)} + x'' - 6x' = 0$$
, biết rằng $x(0) = 0$, $x'(0) = x''(0) = 2$.

ĐĂT MUA GIẢI ĐỀ THI, ĐỀ CƯƠNG TẠI PAGE AHUST - GIẢI TÍCH VÀ ĐẠI SỐ TUYẾN TÍNH (1)/AHUSTpage

Câu 7. (1 điểm) Giải phương trình vi phân: xy'' - (2x+1)y' + (x+1)y = 0.

Câu 8. (1 điểm) Tính tổng $\sum_{n=1}^{\infty} n^2 x^n$.

#GT3Ex044

HƯỚNG DẪN GIẢI

Câu 1. $u_n = \frac{e^n - 1}{\sqrt{n}} > 0$, $\forall n \ge 1 \implies$ chuỗi đã cho là chuỗi dương.

Ta có:
$$u_n \xrightarrow{n \to +\infty} \frac{1}{\sqrt{n}} = \frac{1}{n^{3/2}}$$
, mà $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ hội tụ (vì $\alpha = \frac{3}{2} > 1$)

$$\Rightarrow \sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}} - 1}{\sqrt{n}} \text{ hội tụ theo tiêu chuẩn so sánh.}$$

Câu 2. Đặt
$$u_n(x) = \frac{n+1}{n^2+5} (x-1)^{3n}, \forall n \ge 1, x \in \mathbb{R}.$$

- Với
$$x = -1$$
 thì ta có chuỗi $\sum_{n=1}^{\infty} \frac{n+1}{n^2+5} 0^n = 0 + 0 + 0 + ... = 0$, hội tụ.

– Với $x \neq -1$ ta xét:

$$D = \lim_{n \to +\infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to +\infty} \left| \frac{n+2}{(n+1)^2 + 5} (x-1)^{3(n+1)} \cdot \frac{n^2 + 5}{(n+1)(x-1)^{3n}} \right|$$

$$= \lim_{n \to +\infty} \frac{n}{n^2} \cdot \frac{n^2}{n} |x-1|^3 = |x-1|^3$$

+) Nếu D > 1 thì chuỗi hàm phân kỳ.

+) Nếu $D < 1 \Leftrightarrow |x-1|^3 < 1 \Leftrightarrow 0 < x < 2$, thì chuỗi hàm hội tụ tuyệt đối theo tiêu chuẩn D'Alambert.

+) Nếu
$$x = 0$$
, ta có chuỗi $\sum_{n=1}^{+\infty} \frac{n+1}{n^2+5} (-1)^n$ là chuỗi đan dấu vì $b_n = \frac{n+1}{n^2+5} > 0$, $\forall n \ge 1$.

Ta có:
$$b_n - b_{n+1} = \frac{n+1}{n^2 + 5} - \frac{n+2}{(n+1)^2 + 5} = \frac{n^2 + 3n - 4}{(n^2 + 5)(n^2 + 2n + 6)} \le 0, \ \forall n \ge 1$$

$$\Rightarrow \{b_n\}$$
 là dãy đơn điệu giảm khi $n \to +\infty$, mà $\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} \frac{n+1}{n^2+5} = 0$

$$\Rightarrow \sum_{n=1}^{+\infty} \frac{n+1}{n^2+5} (-1)^n \text{ hội tụ theo tiêu chuẩn Leibnitz.}$$

+) Nếu
$$x = 2$$
 thì ta có chuỗi $\sum_{n=1}^{+\infty} \frac{n+1}{n^2+5}$, là chuỗi dương

$$u_n = \frac{n+1}{n^2+5} \stackrel{n \to +\infty}{\sim} \frac{n}{n^2} = \frac{1}{n}, \text{ mà } \sum_{n=1}^{+\infty} \frac{1}{n} \text{ phân kỳ (vì } \alpha = 1) \Rightarrow \sum_{n=1}^{+\infty} \frac{n+1}{n^2+5} \text{ phân kỳ theo}$$

tiêu chuẩn so sánh.

Vậy miền hội tụ cần tìm là [0; 2).

Câu 3.

a)
$$xy' + y = x \sin x \Leftrightarrow y' + \frac{y}{x} = \sin x$$
.

ĐẶT MUA GIẢI ĐỀ THI, ĐỀ CƯƠNG TẠI PAGE AHUST - GIẢI TÍCH VÀ ĐAI SỐ TUYẾN TÍNH (1)/AHUSTpage

Đây là phương trình vi phân tuyến tính cấp 1, có $p(x) = \frac{1}{x}$ và $q(x) = \sin x$.

Nghiệm tổng quát:

$$y = e^{-\int p(x) dx} \left[C + \int q(x) e^{\int p(x) dx} dx \right] = e^{-\int \frac{1}{x} dx} \left(C + \int \sin x \cdot e^{\int \frac{1}{x} dx} dx \right)$$
$$= e^{-\ln|x|} \left(C + \int \sin x \cdot e^{\ln|x|} dx \right) = \frac{1}{|x|} \left(C + \int \sin x \cdot |x| dx \right) = \frac{1}{x} \left(C + \int x \sin x dx \right)$$

(vì C là hằng số âm/dương tuỳ ý)

$$= \frac{1}{x} \left[C - \int x d(\cos x) \right] = \frac{1}{x} \left[C - x \cos x + \int \cos x dx \right] = \frac{1}{x} \left(C - x \cos x + \sin x \right).$$

Vậy $y = \frac{1}{x} (C - x \cos x + \sin x)$ là nghiệm tổng quát của phương trình.

b)
$$v'' - 6v' + 9v = 1 - e^{2x}$$
.

+) Phương trình thuần nhất tương ứng: v'' - 6v' + 9v = 0.

Phương trình đặc trưng: $\lambda^2 - 6\lambda + 9 = 0 \Leftrightarrow \lambda = 3$ (nghiệm kép)

 \Rightarrow nghiệm tổng quát của phương trình thuần nhất: $\overline{y} = (C_1 + C_2 x)e^{3x}$.

+) Do $f(x) = 1 - e^{2x} = 1.e^{0x} - e^{2x}$, trong đó $\lambda = 0$ và $\lambda = 2$ **không** là nghiệm của phương trình đặc trưng, nên nghiệm riêng tìm dưới dạng:

$$y^* = A + Be^{2x} \implies y^* = 2Be^{2x} \implies y^* = 4Be^{2x}$$

Thay vào (1): $4Be^{2x} - 6 \cdot 2Be^{2x} + 9(A + Be^{2x}) = 1 - e^{2x} \Leftrightarrow 9A + Be^{2x} = 1 - e^{2x}$

$$\Leftrightarrow \begin{cases} 9A = 1 \\ B = -1 \end{cases} \Leftrightarrow \begin{cases} A = \frac{1}{9} \Rightarrow y^* = \frac{1}{9} - e^{2x}. \\ B = -1 \end{cases}$$

 \Rightarrow nghiệm tổng quát của phương trình đã cho là: $y = \overline{y} + y^* = (C_1 + C_2 x)e^{3x} + \frac{1}{\alpha} - e^{2x}$.

c)
$$xy'' = y' \ln \frac{y'}{x} \Leftrightarrow y'' = \frac{y'}{x} \ln \frac{y'}{x}$$
 (1)

#GT3Ex044

Điều kiện $x \neq 0$. Đặt $u = \frac{y'}{x} \Rightarrow y' = u x \Rightarrow y'' = u'x + u$. Phương trình (1) trở thành:

$$u'x + u = u \ln u \Leftrightarrow u'x = u(\ln u - 1)$$
 (2)

+) Xét $u = 0 \Rightarrow u' = 0$, thoả mãn (2) $\Rightarrow u = 0$ là nghiệm của (2).

$$\Rightarrow \frac{y'}{r} = 0 \Leftrightarrow y' = 0 \Leftrightarrow y = C$$
 là nghiệm của (1).

+) Xét $u = 1 \Rightarrow u' = 0$ là nghiệm của (2).

$$\Rightarrow \frac{y'}{x} = 1 \Leftrightarrow y' = x \Leftrightarrow y = \int x dx = \frac{x^2}{2} + C$$
 là nghiệm của (1).

+) Xét
$$\begin{cases} u \neq 0 \\ u \neq 1 \end{cases}$$
. Ta có: (2) $\Leftrightarrow \frac{u'}{u(\ln u - 1)} = \frac{1}{x} \Leftrightarrow \frac{du}{u(\ln u - 1)} = \frac{dx}{x}$

$$\Leftrightarrow \int \frac{\mathrm{d}u}{u(\ln u - 1)} = \int \frac{\mathrm{d}x}{x} \Leftrightarrow \ln\left|\ln u - 1\right| = \ln\left|x\right| + \ln\left|C\right| \quad \left(C \neq 0\right)$$

 $\Leftrightarrow |\ln u - 1| = |Cx| \Leftrightarrow \ln u - 1 = Cx \text{ (vì } C \text{ là hằng số âm/dương tuỳ ý)}$ $\Leftrightarrow u = c^{Cx+1} \qquad y' \qquad C^{x+1}$

$$\Leftrightarrow u = e^{Cx+1} \Leftrightarrow \frac{y'}{x} = e^{Cx+1} \Leftrightarrow y' = xe^{Cx+1}$$

$$\Leftrightarrow y = \int x e^{Cx+1} dx = \int x d\left(\frac{e^{Cx+1}}{C}\right) = \frac{x \cdot e^{Cx+1}}{C} - \int \frac{e^{Cx+1}}{C} dx = \frac{x \cdot e^{Cx+1}}{C} - \frac{e^{Cx+1}}{C^2} + D$$

Kết hợp 3 trường hợp, kết luận: $y = \frac{x \cdot e^{Cx+1}}{C} - \frac{e^{Cx+1}}{C^2} + D \ \left(C \neq 0, \ D \in \mathbb{R}\right)$ là nghiệm tổng

quát, cùng các nghiệm riêng y = C $(C \in \mathbb{R})$ và $y = \frac{x^2}{2} + C$ $(C \in \mathbb{R})$.

Câu 4. Điều kiện: -1 < x < 1

$$y = \ln \frac{1-x}{1+x} = \ln(1-x) - \ln(1+x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n} - \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} x^n}{n}, \ \forall |x| < 1$$
$$= \sum_{n=1}^{+\infty} \frac{-1 - (-1)^{n+1}}{n} x^n = \sum_{n=1}^{+\infty} \frac{(-1)^n - 1}{n} x^n, \ \forall |x| < 1.$$

ĐẶT MUA GIẢI ĐỂ THI. ĐỂ CƯƠNG TẠI PAGE AHUST - GIẢI TÍCH VÀ ĐẠI SỐ TUYỂN TÍNH (7)/AHUSTpage

Vì $(-1)^n - 1 = 0$ với n chẵn, và $(-1)^n - 1 = -2$ với n lẻ, rút gọn lại ta có:

$$y = \sum_{n=0}^{+\infty} \frac{-2}{2n+1} x^{2n+1}, \ \forall |x| < 1.$$

Câu 5.
$$\mathcal{L}\left\{t\sin(kt)\right\}(s) = \frac{-d}{ds}\left(\mathcal{L}\left\{\sin(kt)\right\}(s)\right) = \frac{-d}{ds}\left(\frac{k}{s^2 + k^2}\right), \ s > 0$$

$$= -\frac{-2ks}{\left(s^2 + k^2\right)^2} = \frac{2ks}{\left(s^2 + k^2\right)^2}, \ s > 0.$$

Vậy
$$\mathcal{L}\left\{t\sin(kt)\right\}(s) = \frac{2ks}{\left(s^2 + k^2\right)^2}, \quad s > 0.$$

Câu 6.
$$x^{(3)} + x'' - 6x' = 0$$
, biết rằng $x(0) = 0$, $x'(0) = x''(0) = 2$.

Đặt $X(s) = \mathcal{L}\{x(t)\}(s)$.

$$\mathcal{L}\left\{x^{(3)}(t)\right\}(s) = s^3 X(s) - s^2 x(0) - s.x'(0) - x''(0) = s^3 X(s) - 2s - 2s$$

$$\mathcal{L}\left\{x''(t)\right\}(s) = s^2 X(s) - s.x(0) - x'(0) = s^2 X(s) - 2$$

$$\mathcal{L}\left\{x'(t)\right\}(s) = sX(s) - x(0) = sX(s)$$

Tác động biến đổi Laplace lên phương trình đã cho với điều kiện ban đầu, ta có:

$$s^{3}X(s)-2s-2+\left\lceil s^{2}X(s)-2\right\rceil -6sX(s)=0 \Leftrightarrow \left(s^{3}+s^{2}-6s\right)X(s)=2s+4$$

$$\Leftrightarrow X(s) = \frac{2s+4}{s^3+s^2-6s} = \frac{2s+4}{s(s+3)(s-2)} = \frac{4}{5(s-2)} - \frac{2}{3s} - \frac{2}{15(s+3)}$$

Tác động biến đổi Laplace ngược lên phương trình trên, ta

$$x(t) = \frac{4}{5} \mathcal{L}^{-1} \left\{ \frac{1}{s-2} \right\} (t) - \frac{2}{3} \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} (t) - \frac{2}{15} \mathcal{L}^{-1} \left\{ \frac{1}{s+3} \right\} (t)$$

$$\Leftrightarrow x(t) = \frac{4}{5}e^{2t} - \frac{2}{3} - \frac{2}{15}e^{-3t}$$
 là nghiệm cần tìm.

Câu 7.
$$xy'' - (2x+1)y' + (x+1)y = 0$$
.

Dễ thấy $y_1 = e^x$ là một nghiệm của phương trình.

Thật vậy, với $y_1 = e^x \Rightarrow (y_1)' = e^x \Rightarrow (y_1)'' = e^x$, thay vào phương trình thấy thoả mãn.

$$xy'' - (2x+1)y' + (x+1)y = 0 \Leftrightarrow y'' + \left(-2 - \frac{1}{x}\right)y' + \left(1 + \frac{1}{x}\right)y = 0.$$

Ta có $p(x) = -2 - \frac{1}{x}$. Áp dụng công thức Liouville:

ĐẶT MUA GIẢI ĐỂ THI, ĐỂ CƯƠNG TẠI PAGE AHUST - GIẢI TÍCH VÀ ĐẠI SỐ TUYẾN TÍNH (1)/AHUSTpage

$$y_2 = y_1 \int \frac{e^{-\int p(x)dx}}{y_1^2} dx = e^x \int \frac{e^{\int (2+\frac{1}{x})dx}}{e^{2x}} dx = e^x \int \frac{e^{2x+\ln|x|}}{e^{2x}} dx = e^x \int e^{\ln|x|} dx$$

$$= e^x \int |x| dx = e^x \operatorname{sign}(x) \cdot \int x dx = e^x \operatorname{sign}(x) \cdot \frac{x^2}{2}$$

$$(\operatorname{chú} \circ \operatorname{sign}(x)) \operatorname{là} \operatorname{hàm} \operatorname{dấu} \operatorname{của} x, \operatorname{đại} \operatorname{khái} \operatorname{ta} \operatorname{có} |x| = x.\operatorname{sign}(x))$$

⇒ nghiệm tổng quát của phương trình đã cho là:

$$y = C_1 y_1 + C_2 y_2 = C_1 e^x + C_2 e^x \operatorname{sign}(x) \cdot \frac{x^2}{2}$$
.

Đặt $C_2 \operatorname{sign}(x) \cdot \frac{1}{2} = C_3$, ta có nghiệm tổng quát là $y = C_1 e^x + C_3 e^x x^2$.

Chú ý: Hàm dấu của
$$x$$
 là $sign(x) = sgn(x) = \begin{cases} 1, & \text{nếu } x > 0 \\ 0, & \text{nếu } x = 0. \text{ Nói chung, nó cũng chỉ là} \\ -1, & \text{nếu } x < 0 \end{cases}$

hằng số mang dấu âm/dương/bằng 0 nên có thể đặt C_2 .sign(x). $\frac{1}{2} = C_3$.

Câu 8. Đặt $S(x) = \sum_{n=0}^{\infty} n^2 x^n$. Ta có: $a_n = n^2$, ta có bán kính hội tụ:

$$R = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to +\infty} \left| \frac{n^2}{(n+1)^2} \right| = \lim_{n \to +\infty} \frac{n^2}{n^2} = 1.$$

 \Rightarrow khoảng hội tụ (-1; 1). Chuỗi hàm S(x) không hội tụ tại các điểm $x = \pm 1$. Xét S(x) với $x \in (-1; 1)$.

$$S(x) = \sum_{n=1}^{\infty} n^2 x^n = x \sum_{n=1}^{\infty} n^2 x^{n-1} = xG(x), |x| < 1$$
 (1), trong đó:

$$G(x) = \sum_{n=1}^{\infty} n^2 x^{n-1}$$
, $|x| < 1$. Lấy tích phân hai vế này theo x , ta có:

ĐẶT MUA GIẢI ĐỀ THI, ĐỀ CƯƠNG TẠI PAGE AHUST - GIẢI TÍCH VÀ ĐẠI SỐ TUYẾN TÍNH (1)/AHUSTpage

$$\int G(x) dx = \sum_{n=1}^{\infty} \left(\int n^2 x^{n-1} dx \right) = C_1 + \sum_{n=1}^{\infty} n x^n = C_1 + x H(x), \quad |x| < 1$$
 (2).

Trong đó: $H(x) = \sum_{n=0}^{\infty} nx^{n-1}$, |x| < 1. Lấy tích phân hai vế này theo x, ta có:

#GT3Ex044

$$\int H(x) dx = \sum_{n=1}^{\infty} \left(\int nx^{n-1} dx \right) = C_2 + \sum_{n=1}^{\infty} x^n = C_2 + \frac{1}{1-x} - 1.$$

Lấy đạo hàm hai vế này theo x, ta có: $H(x) = \frac{1}{(x-1)^2}$, |x| < 1.

Thay H(x) vào (2) ta có: $\int G(x) dx = C_1 + \frac{x}{(x-1)^2}$, |x| < 1.

Đạo hàm hai vế này theo x, ta có: $G(x) = \frac{1 \cdot (x-1)^2 - x \cdot 2(x-1)}{(x-1)^4} = \frac{x+1}{(1-x)^3}, |x| < 1.$

Thay vào (1), ta có $S(x) = \frac{x(x+1)}{(1-x)^3}$, |x| < 1.

TAILIËULÖPHOCAHUST

ĐĂT MUA GIẢI ĐỀ THI, ĐỀ CƯƠNG TẠI PAGE AHUST - GIẢI TÍCH VÀ ĐẠI SỐ TUYẾN TÍNH (1)/AHUSTpage

