## **REMARKS**

No new matter is added by the substitute abstract. The word "said" therein on line 10 has been changed to –the--. Acceptance and entry of the amendment is solicited.

The prior art made of record and not relied upon has been reviewed. None of this art whether viewed singly or in combination or as combined with either O'Kane or Barry suggests or intimates the inventions recited in claims 1-19.

Prompt issuance of a notice of allowance for remaining original claims 1-19 and specification of the base issue fee due are requested.

Respectfully submitted,

William Lawrence Muckelroy PC

William Lawrence Muckelroy, Esq.

Reg. No. 26,961 Attorney of Record

Dated: November 17, 2004

Phone: 609-882-2111/ Fax 609-883-3322

Enclosures: substitute abstract; petition (2 months); ck#2148 for \$215 fee

Cc: client

## **CERTIFICATE OF MAILING**

I hereby certify that on November 18, 2004 this Amendment A with accompanying documents [a] a substitute Abstract on separate page; (b) Petition for 2 month extension with fee, is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to:

Mail Stop - Fee Amendments Honorable Commissioner of Patents P. O. Box 1450 Alexandria, VA 22313-1450

Typed or printed name of person signing this certificate: Irene Christine

Signature: Nine Christme

## **Complete Listing of Claims:**

l(original). A flexible telescoping electromagnetic tool comprising:

an end cap formed of a magnetizable material; an end section formed of a nonmagnetizable material, said end cap being connected to said end section;

a tubular section formed of a non-magnetizable material, said tubular section

slidably receiving said end section; and

an electrically conducting insert disposed through said tubular section and through said

end section, said conducting insert electrically connected to an end plug power supply

and switch module at a distal end of said tubular section, said module attached to the

distal end of said non-magnetizable tubular section.

2 (original). An electromagnetic tool according to claim 1, wherein said end section is slidable through an opening in said tubular section, the electromagnetic tool further comprising a ring insert secured to an end of said end section, said ring insert being formed of a plastic material and having a width that is greater than a diameter of said opening, said ring insert being attached outside a proximal end of said end section inside said tubular section and wherein said electrically conducting insert comprises electrical connection with an inductor, said inductor having two contacts and being near said end cap.

3 (original). An electromagnetic tool according to claim 2, wherein said electrically conducting insert is disposed in said tubular section.

4 (original). An electromagnetic tool according to claim 3, wherein said conducting insert is disposed against a portion of an inside wall of said tubular section.

arrotta.amendment a.2200.magnet.11-17-04

5 (original). An electromagnetic tool according to claim 4, wherein said conducting insert is comprised of first and second electrically isolated conductors, the first conductor being connected to one contact of said inductor contacts and the second conductor being connected to another contact of said inductor.

6 (original). An electromagnetic tool according to claim 2, wherein said electrical contacts are galvanic contacts.

7 (original). An electromagnetic tool according to claim 2, wherein magnetization of said end cap is achieved with electrical inductance via said inductor.

8 (original). An electromagnetic tool according to claim 2, further comprising at least one subsequent tubular section formed of a non-conducting material, said at least one subsequent tubular section slidably receiving one of said tubular section and other subsequent tubular sections.

9 (original). An electromagnetic tool according to claim 2, further comprising a compact electromagnetic tool selectively securable to a magnetizable object.

10 (original). An electromagnetic tool according to claim 9, wherein said end section includes a first part having a reduced width substantially corresponding to a diameter of said

tubular section and a second part having a width greater than the diameter of said tubular section.

11 (original). An electromagnetic tool according to claim 8, further comprising an end tube at the distal end of said tubular section, said end tube has a width substantially corresponding to a diameter of said tubular section, the electromagnetic tool further comprising a power supply and switch module secured to said end tube, said module being electrically connected via said electrically conducting insert to said inductor, said module having two conducting contacts connected to said electrically conducting insert, said module having a width that is substantially equal to the diameter of said tubular section, wherein said end plug of said insert is in electrical contact with said stop cap.

12 (original). An electromagnetic tool according to claim 8, wherein said compact electromagnetic tool comprises a plastic coated helix coil.

13 (original). An electromagnetic tool according to claim 1, further comprising a compact electromagnetic tool having an electrical switch at the distal end of a subsequent tube section, said electrical switch being springingly supported at the distal end of said subsequent tube section.

14 (original). An electromagnetic tool according to claim 12, wherein said subsequent tube section includes a first section having a reduced width substantially corresponding to a diameter of said tubular section and a second section having a width greater than the diameter of said tubular section.

15 (original). An electromagnetic tool according to claim 12, wherein said subsequent tube section has a width substantially corresponding to a diameter of said tubular section, the electromagnetic tool further comprising a switch member secured to said module, a portion of said switch member being formed of a conducting material located inside said module and another portion of said switch member having a width that is less than the diameter of said subsequent tube section, wherein actuation of the switch connected to said module forms an electrical contact of said power supply with said inductor.

16 (original). An electromagnetic tool according to claim 14, wherein said non-conducting material is plastic.

17 (original). An electromagnetic tool according to claim 1, wherein said module is covered with a non-conducting material.

18 (original). An electromagnetic tool according to claim 1 wherein said end cap is a tip of a selected shape having non-contact portions, the tool further comprising a covering means for partially covering said tip, said covering means magnetically shielding non-contact portions of said tip.

arrotta.amendment a.2200.magnet.11-17-04

11

19 (original). A method of constructing a flexible telescoping electromagnetic tool including an end section with a tip formed of a conducting material, a tubular section formed of a non-conducting material, and a conducting insert disposed in the tubular section in electrical contact with the end section, the conducting insert having an inductor means at a distal end for magnetizing said tip, the method comprising:

- (a) inserting the end section into an opening in the tubular section;
- (b) securing an end cap having a width greater than the opening to an end of the end section, the end cap having a magnetizable portion surrounded by said inductor inside the end section;
- (c) inserting the conducting insert inside the non-conducting tubular section in electrical contact with the end cap and securing the inductor to the conducting insert with the end plug;
- (d) inserting the tubular section into a compact electromagnetic tool in a friction fit, the compact electromagnetic tool supporting the tubular section and the end section to an apparatus requiring the electromagnetic tool;
- (e) securing the tubular section to a subsequent tubular section;
- 20 (cancelled).