Homework-6

Question 1

An SVM is trained with the following data:

i	1	2	3	4
x_i	(0,0)	(0,1)	(1,0)	(1,1)
y_i	-1	1	1	1

Let $\alpha_1, \ldots, \alpha_4$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .) Using a linear kernel, what (dual) optimization problem needs to be solved in terms of the α_i in order to determine their values?

Question 2

An SVM is trained with the following data:

Let $\alpha_1, \ldots, \alpha_4$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .)

\mathbf{A}

Show that with linear kernel the (dual) optimization problem that needs to be solved in terms of the α_i is:

Maximize:
$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - \frac{1}{2} \left((\alpha_2 + \alpha_4)^2 + (\alpha_3 + \alpha_4)^2 \right)$$

subject to: $\alpha_1 \ge 0, \ \alpha_2 \ge 0, \ \alpha_3 \ge 0, \ \alpha_4 \ge 0, \ \alpha_1 = \alpha_2 + \alpha_3 + \alpha_4$

В

The solution to the above optimization problem is: $\alpha_1 = 4$, $\alpha_2 = 2$, $\alpha_3 = 2$, $\alpha_4 = 0$.

a. What are the indexes of the support vectors? Circle them below.

Answer: 1 2 3 4

- **b.** What computation needs to be carried out to determine the classification of the point $x_5 = (-1,0)$ by this SVM.
- **c.** What computation needs to be carried out to determine the classification of the point $x_5 = (-1,1)$ by this SVM.
- **d.** What computation needs to be carried out to determine the classification of the point $x_5 = (1, 1)$ by this SVM.

Question 3

An SVM is trained with the following data:

i	1	2	3	4
x_i	(0,0)	(0,1)	(1,0)	(1,1)
y_i	-1	1	1	-1

Let $\alpha_1, \ldots, \alpha_4$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .) Using a linear kernel, what (dual) optimization problem needs to be solved in terms of the α_i in order to determine their values?

Question 4

An SVM is trained with the following data:

i	1	2	3	4
x_i	(0,0)	(0,1)	(1,0)	(1,1)
y_i	-1	1	1	-1

Let $\alpha_1, \ldots, \alpha_4$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .)

\mathbf{A}

Show that with linear kernel the (dual) optimization problem that needs to be solved in terms of the α_i is:

Maximize:
$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - \frac{1}{2} ((\alpha_2 - \alpha_4)^2 + (\alpha_3 - \alpha_4)^2)$$

subject to: $\alpha_1 \ge 0, \ \alpha_2 \ge 0, \ \alpha_3 \ge 0, \ \alpha_4 \ge 0, \ \alpha_1 = \alpha_2 + \alpha_3 - \alpha_4$

\mathbf{B}

Observe that $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = k$ satisfies the constraints for any $k \geq 0$, and that the function to be maximized in terms of k is 4k. Based on these observations, what is the solution to the above (dual) optimization problem?

Question 5

An SVM is trained with the following data:

i	1	2	3	4	5
$\overline{x_i}$	(0,0)	(1,0)	(2,0)	(3,0)	(0,1)
y_i	-1	1	1	1	-1

Let $\alpha_1, \ldots, \alpha_5$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .)

\mathbf{A}

Using the linear kernel, what (dual) optimization problem needs to be solved in terms of the α_i in order to determine their values?

Answer

\mathbf{B}

The solution to the optimization problem is:

$$\alpha_1 = 2$$
, $\alpha_2 = 2$, $\alpha_3 = 0$, $\alpha_4 = 0$, $\alpha_5 = 0$.

a. Show the computation that needs to be carried out to determine the classification of the point $x = (1, 1)$ by this SVM.
b. Show the computation that needs to be carried out to determine the classification of the point $x = (0, -2)$ by this SVM.
\mathbf{C}
To obtain solution with soft margins using the l_1 norm (this is the one described in class), the term $C\sigma_i\zeta_i$ is added to the primal function. Using the value of $C=10$, repeat parts a,b of B.
a. Show the computation that needs to be carried out to determine the classification of the point $x = (1, 1)$ by this soft margins SVM.
b. Show the computation that needs to be carried out to determine the classification of the point $x = (0, -2)$ by this soft margins SVM.