PRELAB 4 QUIZ

The following questions have been adapted from Stanton, Zhu and Atwood, "Experiments in General Chemistry Featuring Measurenet", 2nd ed.

1. Complete the table below by calculating the initial SCN⁻ and final Fe(SCN)²⁺ concentrations for each of the five standard solutions. In addition to the volume of KSCN indicated in the table below, each solution contains 5.00 mL of Fe(NO₃)₃ and sufficient 0.050 M HNO₃ to produce a total volume of 25.00 mL of solution.

Fe³⁺(aq) + SCN⁻(aq)
$$\rightleftharpoons$$
 Fe(SCN)²⁺(aq)
Molarity of KSCN = 0.00165 M Molarity of Fe(NO₃)₃ = 0.165 M

Solution	Volume SCN ⁻	Initial [SCN ⁻] (M)	[Fe(SCN) ²⁺] _{final} (M)	Absorbance
1	5.00 mL	3.3×10-4	3.3x10-4	1.590
2	4.00 mL	2.64 K10-4	2.64 KO-4	1.320
3	3.00 mL	1.98×10-4	1.98810-4	0.990
4	2.00 mL	1.32×10-4	1.32×10-4	0.690
5	1.00 mL	6.6 x10-2	6.6×10-5	0.335

2. Plot the absorbance versus the $Fe(SCN)^{2+}$ concentration data in Question 1 to prepare a standard curve, then perform a linear regression analysis to determine the equation for the line. Write this equation below in standard y = mx + b format:

Standard Curve: 1-4757, 6x + 6.043

3. An equilibrium solution is prepared by mixing 2.75 mL of 0.00165 M SCN-, 5.00 mL of 0.00165 M Fe³⁺ and 2.75 mL of HNO₃, where this solution's absorbance is determined to be 0.915. Using the standard curve prepared in Question 2, you then determine that the equilibrium concentration of Fe(SCN)2+ in this solution is 1.83 × 10⁻⁴ M. Prepare an ICE table for this equilibrium mixture, being sure to include the initial concentrations, changes in concentrations and the equilibrium concentrations of Fe³⁺, SCN⁻ and Fe(SCN)²⁺: V10+= (2(2.75)+5) mL

MIFE = 0.00165 M . 0.005 = 7.86×10 M

MISCN- - 0.00165 M - 0.00275K - 4.32 × 10-4M

	[Fe3+]	[SCN]	[Fe/S(N)27
٠,	7.86x107	4.32K10-4M	0
_	-x -1.83×40-4	-1.83710-4	× 1.83×10-4
e	6.03×10-4	2.49410-4	1.83×10-4
NO.			

4. Determine K for the equilibrium mixture in Question 3.

