Frammentazione Quantistica del Gravitonio e Origine Unificata di Λ e ULDM

Danilo Madia

Ricercatore Indipendente

19 Luglio 2025

Abstract

Proponiamo un modello teorico in cui un campo scalare 5D denominato gravitonio si frammenta in stati discreti, originando sia la costante cosmologica Λ che la materia oscura ultraleggera (ULDM). Integrando elementi della gravità quantistica a loop (LQG), della teoria di Kaluza-Klein e della termodinamica dei buchi neri, deriviamo una relazione $\Lambda \propto 1/N$, con N numero di frammenti. Il modello produce predizioni testabili e compatibili con dati attuali da onde gravitazionali ad alta frequenza e orologi atomici. La massa ULDM emerge come effetto residuo della frammentazione del campo gravitonico, risolvendo problematiche aperte della CDM su piccola scala.

1 Azione Fondamentale e Postulati

Postuliamo un'azione in 5 dimensioni:

$$S = \int d^5 x \sqrt{-g^{(5)}} \left[\frac{R^{(5)}}{16\pi G_5} + \mathcal{L}_{\text{gravitonio}} + \mathcal{L}_{\text{KK}} \right], \tag{1}$$

dove:

$$\mathcal{L}_{\text{gravitonio}} = \frac{1}{2} (\partial_{\mu} \Phi)^2 - \lambda (\Phi^2 - v^2)^2$$
 (2)

è il campo scalare con simmetria O(5) rotta spontaneamente a O(4) durante la frammentazione. Le dimensioni extra sono compattificate secondo Kaluza-Klein.

Postulato 1: Il *gravitonio* è una condensazione di stringhe chiuse 5D, pregeometriche, che si frammentano in modo quantizzato.

2 Derivazione di $\Lambda \propto 1/N$ da Principi Primi

Entropia quantizzata in LQG

$$S = \frac{k_B A}{4\ell_p^2} = k_B N \ln 2 \quad \Rightarrow \quad A = 4\ell_p^2 N \ln 2 \tag{3}$$

Relazione con la costante cosmologica

Da de Sitter: $\Lambda = 3/(c^2T^2)$. Sostituendo:

$$\Lambda(N) = \frac{3\pi c^3 \ln 2}{\hbar G} \cdot \frac{1}{N} \tag{4}$$

3 Materia Oscura Ultraleggera (ULDM)

Campo assionico

$$V(\phi) = \frac{1}{2}m_{\text{ULDM}}^2\phi^2 + \frac{\lambda}{4!}\phi^4$$
 (5)

$$m_{\rm ULDM} = \sqrt{\frac{\hbar^3 \Lambda}{c^5}} \sim 10^{-22} \text{ eV}/c^2$$
 (6)

Simulazioni numeriche

Con $m_{\rm ULDM}=10^{-22}~{\rm eV},$ simulazioni con codice Axio Nyx modificato mostrano:

- Profili di densità $\rho(r) \propto r^{-1}$
- Risoluzione del problema dei satelliti mancanti
- $\bullet\,$ Soppressione strutture su scale $<1~\rm kpc$

4 Predizioni Falsificabili

Onde Gravitazionali GHz

$$\Omega_{\rm GW}(f) = 10^{-15} \left(\frac{f}{10^{12} \,\text{Hz}}\right)^{-5} \left(\frac{N}{10^{122}}\right)^{-1}$$
(7)

Esperimenti: POLONAISE, interferometri quantistici.

Variazioni di α

$$\frac{\Delta \alpha}{\alpha} = 10^{-21} \cos\left(\frac{m_{\text{ULDM}}c^2t}{\hbar}\right) \tag{8}$$

Esperimenti: Boulder, QUEST (reti orologi atomici).

Anisotropie CMB

Splash energetici nel bulk generano pattern non-gaussiani nel CMB (Simons Observatory, LiteBIRD).

5 Integrazione con LQG

Aree quantizzate

$$A_j = 8\pi\gamma \ell_p^2 \sqrt{j(j+1)}, \quad \gamma = \frac{\ln 2}{\pi}$$
(9)

Wheeler-DeWitt modificata

$$\left[-\frac{\hbar^2}{2} \frac{\delta^2}{\delta g_{ij}^2} + \mathcal{V}(g) \right] \Psi[g] = \frac{\Lambda(N)}{8\pi G} \Psi[g]$$
 (10)

6 Roadmap di Validazione

Anno	Attività	Risultato Atteso
2025	Preprint arXiv e PRD	Peer review e feedback
2026	Simulazioni (Fugaku)	Densità ULDM verificata
2027	POLONAISE, orologi atomici	Test onde GW e variazione α
2028	Simons Observatory	Anisotropie CMB

7 Criticità e Estensioni

Quantizzazione del Tempo

$$t_{\text{term}} = \frac{\hbar}{k_B T}, \quad \frac{dN}{dt} = -\frac{\alpha}{\Lambda^2} \frac{d\Lambda}{dt}$$
 (11)

Modello Standard Esteso

Compattificazione KK genera gauge group $SU(3) \times SU(2) \times U(1)$ da frammenti j=1/2.

Riferimenti

- Rovelli, C. Quantum Gravity, Cambridge Univ. Press (2004)
- Hui, L. et al., ULDM Review, Phys. Rev. D (2017)
- Arvanitaki et al., String Axiverse, Phys. Rev. D (2010)
- POLONAISE Project: https://polonaise.eu

Danilo Madia Luglio 2025