Linear Algebra Chapter 1

Minh Bui

July 7, 2017

- Section 1.2 1. Label the following statements as being true or false.
 - Every vector space contains a zero vector.
 True by the property of vector space.
 - ii. A vector space may have more than 1 zero vector. False by the uniqueness of the additive identity.
 - iii. In any vector space ax = bx implies that a = b. False. ax - bx = 0. So x(a - b) = 0. x could be a zero vector while $a \neq b$.
 - iv. In any vector space ax = ay implies x = y. False. What if a = 0?
 - v. An element of F^n may be regarded as an element of $M_{n\times 1}(F)$. True. Since n-tuple can be written as a column vector.
 - vi. An $m \times n$ matrix has m columns and n rows. False. An $m \times n$ matrix has m rows and n columns.
 - vii. In the vector space P(F) only polynomials of the same degree may be added.

False.

viii. If f and g are polynomials of degree n, then f+g is a polynomial of degree n.

False. Consider x + (-x) = 0

ix. If f is a polynomial of degree n and c is a nonzero scalar, then cf is a polynomial of degree n.

True.

x. A nonzero element of F may be considered to be an element of P(F) having degree zero.

True

xi. Two functions in $\mathcal{F}(S,F)$ are equal if and only if they have the same values at each element of S.

True

2. Write the zero vector of $M_{3\times 4}(F)$.

Solution.

3. If

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

what are M_{13}, M_{21} , and M_{22} ?

Solution. $M_{13} = 3$. $M_{21} = 4$. $M_{22} = 5$.

4. Perform the indicated operations.

(a)
$$\begin{pmatrix} 2 & 5 & -3 \\ 1 & 0 & 7 \end{pmatrix} + \begin{pmatrix} 4 & -2 & 5 \\ -5 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 3 & 2 \\ -4 & 3 & 9 \end{pmatrix}$$

(b)
$$\begin{pmatrix} -6 & 4 \\ 3 & -2 \\ 1 & 8 \end{pmatrix} + \begin{pmatrix} 7 & -5 \\ 0 & -3 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 3 & -5 \\ 3 & 8 \end{pmatrix}$$

(c)
$$4\begin{pmatrix} 2 & 5 & -3 \\ 1 & 0 & 7 \end{pmatrix} = \begin{pmatrix} 8 & 10 & -12 \\ 4 & 0 & 28 \end{pmatrix}$$

(d)
$$-5\begin{pmatrix} -6 & 4\\ 3 & -2\\ 1 & 8 \end{pmatrix} = \begin{pmatrix} 30 & -20\\ -15 & 10\\ -5 & -40 \end{pmatrix}$$

- (e) $(2x^4 7x^3 + 4x + 3) + (8x^3 + 2x^2 6x + 7) = 2x^4 + x^3 + 2x^2 2x + 10.$
- (f) $(-3x^3 + 7x^2 + 8x 6) + (2x^3 8x + 10) = -x^3 + 7x^2 + 4$
- (g) $5(2x^7 6x^4 + 8x^2 3x) = 10x^7 30x^4 + 40x^2 15x$
- (h) $3(x^5 2x^3 + 4x + 2) = 3x^5 6x^3 + 12x + 6$.
- 7. Let $S = \{0, 1\}$ and F = R. In $\mathcal{F}(S, R)$ show that f = g and f + g = h, where f(x) = 2x + 1, $g(x) = 1 + 4x 2x^2$, and $h(x) = 5^x + 1$.

Solution. To show f = g, we need to show: if $s \in S$, then f(s) = g(s).

- For s = 0, f(0) = 1 and g(0) = 1. So f(s) = g(s) for s = 0.
- For s = 1, f(1) = 3 and g(1) = 1 + 4 2 = 3. So f(s) = g(s) for s = 1.

So f = q.

To show f+g=h, we need to show: if $s \in S$, then (f+g)(s)=h(s).

- For s = 0, (f + g)(s) = f(s) + g(s) = f(0) + g(0) = 2. $h(s) = h(0) = 5^0 + 1 = 2$.
- For s = 1, (f + g)(s) = f(s) + g(s) = f(1) + g(1) = 6. $h(s) = h(1) = 5^1 + 1 = 6$.

So f + g = h.

8. In any vector space \mathcal{V} , show that (a+b)(x+y)=ax+ay+bx+by for any $x,y\in\mathcal{V}$ and any $a,b\in F$.

Solution. Let $x, y \in \mathcal{V}$. Let $a, b \in F$. Consider

$$ax + ay = a(x + y)$$
 and $bx + by = b(x + y)$ by VS7
 $ax + ay + bx + by = a(x + y) + b(x + y)$
 $ax + ay + bx + by = (a + b)(x + y)$ by VS8

9. Prove that

Corollary 0.0.1. The vector $0 \in \mathcal{V}$ s.t x + 0 = x for all $x \in \mathcal{V}$ is unique.

Proof. Let \mathcal{V} be a vector space in F. Assume $x \in \mathcal{V}$. Assume by way of contradiction, there is a $\mathcal{O} \in \mathcal{V}$ s.t $x + \mathcal{O} = x$ and $\mathcal{O} \neq 0$. Since \mathcal{V} is a vector space, $\exists 0 \in \mathcal{V}$ s.t x + 0 = x.

Since \mathcal{O} is an additive identity in \mathcal{V} , $(x+0)+\mathcal{O}=x+0$. So $x+(0+\mathcal{O})=x+0$ by associativity. By the Cancellation Law for vector addition, $0+\mathcal{O}=0$.

Since 0 is an additive identity in V, $(x + \mathcal{O}) + 0 = x + \mathcal{O}$. So $x + (0 + \mathcal{O}) = x + \mathcal{O}$ by associativity. By the Cancellation Law for vector addition, $0 + \mathcal{O} = \mathcal{O}$.

So $0 + \mathcal{O} = 0 = \mathcal{O}$ which contradicts our assumption of $\mathcal{O} \neq 0$. So $0 = \mathcal{O}$. Therefore the vector $0 \in \mathcal{V}$ is unique.

Corollary 0.0.2. For all $x \in \mathcal{V}$, there is a vector $y \in \mathcal{V}$ so that x + y = 0. Prove that this vector y is unique.

Proof. Pretty much the same approach as the previous corollary.

10. Let \mathcal{V} denote the set of all differentiable real-valued functions defined on the real line. Prove that \mathcal{V} is a vector space under the operation of addition and scalar multiplication defined by

$$(f+g)(s) = f(s) + g(s)$$
 and $(cf)(s) = c[f(s)]$

Proof. Let f,g be differentiable real-valued functions in \mathcal{V} . Since (f+g)(s)=f(s)+g(s) is differentiable on real numbers, addition is closed in \mathcal{V} . Since (cf)(s)=c[f(s)] for some $c\in\mathbb{R}$ is differentiable on real numbers, scalar multiplication is closed in \mathcal{V} . And the function f=0 would be the zero vector in the vector space \mathcal{V} . Thus, \mathcal{V} is a vector space.

11. Let $\mathcal{V} = \{0\}$ consist of a single vector 0 and define 0 + 0 = 0 and c0 = 0 for each scalar $c \in \mathbb{F}$. Prove that \mathcal{V} is a vector space over \mathbb{F} . Here \mathcal{V} is called the zero vector space.

Proof. Since 0 is the only element of \mathcal{V} , all conditions and properties for vector space \mathcal{V} can be easily checked.