CSE 574 - Project 1 ANKIT SHARMA - 50134053 Oct 19, 2014

Linear Regression with Basis Functions

Division of Microsoft LETOR Dataset:

Training Set: 80% (1-50,000)

Validation Set: 10% (50,000-60,000)

Test Set: 10% (60,000-end)

Term Index:

N: Number of training samples

Nv: Number of elements in validation set

D: Dimension of each training sample

X: Input dataset (NxD)

T: Target Set (Nx1)

M: No. of basis functions

Φ: Basis matrix (NxM)

s: Isotropic spatial scale (sigma)

λ: Regularization constant (lambda)

W: Weight Matrix (Mx1)

E_D: Sum-of-square error

E_{RMS}: Root-mean-square error

Basis Functions Used:

Gaussian basis function:

$$\phi_j(x) = \exp(-(x-\mu_j)^2/2s^2)$$

Here, $x \in X$, is the input vector consisting 46 features. Therefore, D=46.

Selection of means ($\mu \in \mathbb{R}^{M \times D}$):

There are M-1 *means* each of which is a vector of D elements. *Means* are calculated by dividing the training set into M-1 groups and then calculating mean for each group.

Now the basis matrix $\Phi \in \mathbb{R}^{NxM}$, can be calculated as follows:

```
for i=1:N{  \phi_1(x_i) = 1 \\  \text{for } j = 2:M\{ \\  \phi_j \left( x_i \right) = exp \left( - \left( x_i - \mu_{j-1} \right)^2 / 2s^2 \right) \\  \}  }
```

Part 1: Maximum likelihood (ML) Closed-Form Solution

We have to select three parameters: Model Complexity (M $\,$ cfs), s and λ .

We first calculate optimal values of sigma(s), by taking a fixed lambda as λ =0.0001. Following are the steps involved in determining these values.

}

Validating s and M

Following the graph of E_{RMS} of validation set with respect to the values of M and s.

We can see that least possible values of E_{RMS} can be obtained when we select **s_cfs=0.9**

Now we calculate the Model Complexity (M_cfs) using the values of above graph when s=0.9. Following is the graph of E_{RMS} of both validation and training sets with respect to the values of M at s=0.9.

From the above graph it can be observed that Erms for Training and Validation substantially decreases as M increases. After M=90 the Erms for training keep decreasing but Erms for Validation does not decrease. Hence, we selected **M=90** for this model as M_cfs.

Validating L (lambda)

Now, we calculate the most optimal value for lambda (λ _cfs). We already know the optimal values of s and M. Therefore, we set these values and calculate Erms for validations set for different values of λ . Following the graph we obtained:

From the above graph it can be observed that Erms for Validation substantially decreases as λ decreases. After λ =0.00001 the Erms for Validation remains constant. Hence, we selected λ _cfs=0.00001 for this model.

Therefore, after validation, we obtain the following most optimal parameters for our system:

Final Outcomes of Closed-Form Solution

$$M_cfs = 90$$

$$S_cfs = 0.9$$

$$\lambda_{cfs} = 0.00001$$

Erms Train: 0.5431

Erms Validation: 0.5506

Erms Test: 0.5971

Part 2: Stochastic Gradient Descent

We have to select three parameters: Model Complexity (M gd), s and α .

We first calculate optimal values of sigma(s), by taking a fixed alpha as α =0.001.

Calculating Weights for Stochastic Gradient Descent:

```
Repeat{ for i=1:N\{ \\ for j:=1:M\{ \\ W_j:=W_j+ \ \alpha^*(T_i-W^{T*}\varphi(x_i))^*\varphi_j(x_i); \\ \} \\ \}
```

Procedure:

Following are the steps involved in determining the parameters with respect to ERMS values:

```
for s=0.1:0.1:1.0{
for M=2:100{
```

Step 1: Divide the training set into M-1 groups

Step 2: Compute M-1 means (µ) (as described above)

Step 3: Compute basis matrix Φ (as described above)

Step 4: Calculate the weights using Stochastic Gradient Descent (as described above)

Step 5: Run training and validation set to calculate sum-of-square error (E(W))

$$\mathsf{E}_{\mathsf{D}}(\mathsf{W}) = (1/2) * \textstyle \sum_{n=1}^{N} \{ \mathrm{Tn} - \mathsf{W}' \Phi(\mathsf{Xn}) \}^{\wedge} 2$$

Step 6: Calculate E_{RMS} value

$$E_{RMS}(W) = \sqrt{2E(W*)/Nv}$$

```
}
```

Validating s and M

Following the graph of E_{RMS} of validation set with respect to the values of M and s.

We can see that least possible values of E_{RMS} can be obtained when we select **s_gd=0.7**

Now we calculate the Model Complexity (M_gd) using the values of above graph when s=0.7. Following is the graph of E_{RMS} of both validation and training sets with respect to the values of M at s=0.7.

From the above graph it can be observed that Erms for Training decreases as M increases and Erms of Validation remains almost constant for some time. After M=60 the Erms for both Training and Validation increases substantially. Hence, we selected **M=60** for this model as M_gd.

Validating α (alpha)

Now, we calculate the most optimal value for alpha (α _gd). We already know the optimal values of s and M. Therefore, we set these values and calculate Erms for validations set for different values of α . Following the graph we obtained:

From the above graph it can be observed that Erms for Validation substantially decreases as α increases. After α =0.001 the Erms for Validation is the least. Hence, we selected α _gd =0.001 for this model.

Final Outcomes of Gradient Descent Solution

Therefore, after validation, we obtain the following most optimal parameters for our system:

$$M_gd = 70$$

$$s_gd = 0.7$$

$$\alpha_{gd} = 0.001$$

Erms Train: 0.5621

Erms Validation: 0.5638

Erms Test: 0.6153

Conclusion

The regression using the Closed-Formed Solution provides a slightly better prediction of the target values for the Testset than the Gradient Descent Solution.

For Closed-Formed Solution: Erms Test = 0.5971

For Gradient Descent Solution: Erms Test = 0.6153