Search for Flavor Changing Neutral Currents in Top Quark Decays

B-Tagging Working Point and $e \rightarrow \gamma$ Fakes

Jason Barkeloo

September 12, 2019

Overview

Brief Background
The Top Quark
FCNC at the LHC
Object Preselection Cuts

B-tagging Working Point

Neural Network

Neural Network Studies

New Ntuple Production

Outlook and Conclusions

Top Quark Decays in the SM

- ► $t \rightarrow bW \approx 99.83\%$
- ightharpoonup t
 ightarrow sW pprox 0.16%
- ► $t \rightarrow dW \approx 0.01\%$

- $t \to q_{u,c} X \approx 10^{-17} 10^{-12}$
- Limits on $t \rightarrow \gamma q$ processes: [JHEP 04 (2016) 035]
 - ► $t \to \gamma u < 1.3 \times 10^{-4}$
 - ► $t \to \gamma c < 1.7 \times 10^{-3}$

FCNC: What are we looking for? $t\bar{t} o W(o l u) b + q \gamma$

- ► Final state topology
 - One Neutrino, from W
 - ► One Lepton, from W
 - ► One B-jet, SM Top
 - One Photon, FCNC Top
 - ► One Jet, FCNC Top

Barkeloo

Object Preselection

- We preselect events with objects that look like similar to our expected topology
- ► Require:
 - **Exactly one lepton (e or** μ) \geq 25 GeV
 - ► Exactly one good photon ≥ 15GeV
 - ► Missing Transverse Energy ≥ 30GeV
 - ▶ ≥ 1 Jets
- ► Further exploration of the BJets will be discussed

B-tagging

- ► B Hadrons travel a measureable distance before decay
- Tracks originate from outside of interaction point (Seconday Vertex)
- Backtracking tracks in displaced vertex gives an impact parameter
- Decay chain MVA attempts to reconstruct decay of the jet
- Outputs of these algorithms used in a BDT to determine if a Jet is from a b-quark

Mv2c10

MV2c10 is used to tag b-jets. The c10 implies a 10% c-jet fraction in the background training sample. Can use various fixed-cut working points for b-jet identification.

Using a different working point can change which jets are identified as originating from b-quarks in the Analysis.

JHEP 08 (2018) 89

Neural Network Results

- ► MCee integral small range: 424,051.
- ► DATAee integral small range: 468.832
- ► MCeg integral small range: 110822
- ► DATAeg integral small range: 118198

Significance Plots, Muon Channel

Branching ratio with Significance = 2: 2.5e-5

New Ntuple Production

- New tools have been recently developed in the Top Group (Ref:VGammaORTool, Duplicate Event Removal,etc.)
- ► Replacing Custom Event Saver with that of tt+gamma group, more support and faster integration of new tools
- Custom post-grid local processing code developing
- Will transition with the currently running ntuples to local mini-ntuple creation
- ► Beginning to work with TRExFitter to push toward the statistical part of the analysis

Outlook

- ► As always, still lots to be done
- ► Fake Rates $e \to \gamma$ and $j \to \gamma$ are being investigated, $e \to \gamma$ shown here, $j \to \gamma$ to be investigated soon.
- ► Happy with the state of the neural network studies, any further reduction would require significant time for insignificant gain, factor 2 improvement thanks to feedback I got during this meeting
- ► Questions?

Backup

FCNC Diagrams

NN Input Variable Correlations

Neural Network Model Inputs

Separation = $\sum_{i}^{bins} \frac{n_{si} - n_{bi}}{n_{si} + n_{bi}}$

mu+jets channel

Variable	Separation
photon0iso	41.18
mqgam	28.27
photon0pt	24.07
mtSM	11.60
mlgam	7.56
deltaRjgam	5.64
deltaRbl	4.42
MWT	3.34
ST	3.30
nuchi2	3.12
jet0pt	2.81
njets	2.07
smchi2	1.89
wchi2	1.87
jet0e	1.52
deltaRlgam	1.17
leptone	0.87
deltaRjb	0.86
met	0.68
bjet0pt	0.52
leptoniso	0.27

e+iets channel

e+jets	channe
Variable	Separation
photon0pt	23.14
mqgam	22.73
photon0iso	18.70
mtSM	11.02
mlgam	9.53
deltaRbl	5.00
deltaRjgam	4.60
ST	3.83
MWT	3.16
jet0pt	2.47
njets	1.70
nuchi2	1.59
deltaRlgam	1.40
wchi2	1.33
smchi2	1.09
deltaRjb	0.88
leptone	0.85
leptoniso	0.56
bjet0pt	0.50
met	0.47

Input Variables

```
['photon0iso', 'photon0pt', 'mqgam', 'mlgam', 'mtSM', 'deltaRjgam', 'deltaRbl', 'MWT', 'ST', 'njets', 'wchi2', 'jet0pt', 'deltaRlgam', 'leptone', 'met', 'bjet0pt']
```

Integrated Luminosity

A Couple BSM Diagrams

 R-parity-violating supersymmetric models
 [arXiv:hep-ph/9705341]

 Top-color-assisted technicolor models
 [arXiv:hep-ph/0303122]

Jets/AntiKT

$$d_{ij} = min(rac{1}{
ho_{ti}^2}, rac{1}{
ho_{tj}^2})rac{\Delta_{ij}^2}{R^2}$$
 $d_{iB} = rac{1}{
ho_{ti}^2}$ $\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$

- ▶ Find minimum of entire set of $\{d_{ii}, d_{iB}\}$
- ▶ If d_{ij} is the minimum particles i,j are combined into one particle and removed from the list of particles
- ► If *d_{iB}* is the minimum i is labelled as a final jet and removed from the list of particles
- ▶ Repeat until all particles are part of a jet with distance between jet axes Δ_{ij} is greater than R

$$\mathcal{L}_{tq\gamma}^{eff} = -e\bar{c}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{t}}(\lambda_{ct}^{L}P_{L} + \lambda_{ct}^{R}P_{R})tA_{\mu} + H.c.$$