Joseph D. Daws Jr.

CONTACT INFORMATION	University of T 1403 Circle Dri	ment of Mathematics sity of Tennessee ircle Drive lle, Tennessee, 37996-1320		Department: (865) 974-2461 jdaws@tennessee.edu Cell: (615) 971-9683 Website: joedaws.github.io	
RESEARCH INTERESTS	Numerical Analysis, Approximation Theory, Optimization, Image Processing and Machine Learning.				
EDUCATION	University of Tennessee at Knoxville M.S. in Mathematics, Fall 2016 B.A. in Mathematics, Spring 2013				
Work Experience	Spring 2017 - F Spring 2014 - F Fall 2009 - Sum	'all 2016	frequent collabora Graduate Teachin	h Assistant, Department of Mathematics with tions at Oak Ridge National Lab g Associate, Department of Mathematics or at The Thornton Center for Student Ath-	
Papers Written	J. Daws, C. Webster. A Polynomial-Based Approach for Architectural Design and Learning with Deep Neural Networks. <i>Preprint.</i> arXiv:1905.10457.				
	J. Daws, A. Petrosyan, H. Tran and C. Webster. A Weighted ℓ_1 -Minimization Approach For Sparse Wavelet Reconstruction of Signals and Images on Closed Trees. <i>In Preparation</i> .				
Conference Talks	A Deep Neural Network Architecture Inspired by Polynomial Approximation, Approximation Theory 16. Minisymposium on Reduced and Parametric Methods for Function Approximations. (May 2019)				
	A Weighted L1-Minimization Approach For Sparse Wavelet Reconstruction of Signals and Images, SIAM CSE 2019. Minisymposium on Nonlinear Reduced Order Modeling of Realistic Engineering Fluid Flows. (February 2019)				
	Compressed sensing for image reconstruction using hierarchical wavelets, IMI: 9^{th} Miniconference in Computational Mathematics. (February 2018)				
TEACHING EXPERIENCE	Spring 2014 2014 - 2015 Spring 2015 2015 - 2016	Lecturer, N Grader, Or	Leader, Basic Calc Mathematical Reasordinary Differential Statistical Reasoning	ning Equations	
Honors and Awards	Winter 2018 Summer 2016 Since 2013	in Comput Advanced Ridge Nati	ational Mathematic Short-Term Resear	rch Opportunity (ASTRO) at Oak	

Graduate Coursework	 □ Real Analysis □ Complex Analysis □ Optimization □ Linear Algebra □ Partial Differential Equations 	 □ Scientific Computing □ Parallel Programming □ Probability/Limit Theorems □ Fourier Analysis □ Combinatorics
RELEVANT SKILLS	Coding: Software:	C, C++, Matlab, Python, OpenMP, MPI, BLAS IATEX, Microsoft Office Suite, Adobe Illustrator