Elektrischer Strom

Elektrisches Feld

 $Q = N * e_0 = [C] = [As]$

 $\vec{F} = \frac{1}{4\pi\epsilon} * \frac{Q_1 * Q_2}{r^2} * (\vec{r_0}) = [N]$

• Ungleiche Ladungen (Q) ziehen sich

• Kraft, die Probeladung q erfährt

Feldlinien von kleineren Ladung zur

 $\varphi(r) = \frac{Q}{4\pi\epsilon r} = \left(-\int_{-\pi}^{\pi} \frac{Q}{4\pi\epsilon r^2} dr\right)$

größeren Ladung (Positiv zu Nega-

tiv); gleich der wirkenden Kraftrich-

Elektrische Ladung

• $1C = (6,242 * 10^{18}) * e_0$

• $e_0 = 1,602 * 10^{-19}C$

Culombsches Gesetz

 \bullet $\epsilon_0 = 8,854 * 10^{-12} \frac{C^2}{Nm^2}$

Elektrisches Feldstärke

Elektrisches Potential

• $F \propto 1/r^2$

tung

an, gleich stoßen sich ab

Elektrische Spannung

$$U = \frac{W}{q} = [V] = \left[\frac{Nm}{C}\right]$$
$$U_{r_1 \to r_2} = \varphi(r_1) - \varphi(r_2)$$

• Arbeit um q von r_1 nach r_2 zu bewegen $W_{r_1 \to r_2} = \int_{r_1}^{r_2} \vec{F} dr$

Elektrischer Strom

$$I = Q/t = [A] = \left[\frac{C}{s}\right]$$

- Gleichmäßig gerichteter Fluss von Elektronen von Minus nach Plus ("physikalisch")
- $1A = \frac{1}{1.602} * 10^{19}$ Elektronen pro Se-
- $\Rightarrow Q = \int_0^t i(t)dt$

Elektrische Arbeit

$$W = I \ast t \ast U = [Ws] = [J]$$

- Ladungstransport über Zeit mit Spannung
- Am Widerstand freigesetzte Energie $W = \frac{U^2}{R} * t$

Elektrische Leistung $\vec{E} = \frac{\vec{F}}{q} = \left[\frac{V}{m}\right] = \left[\frac{N}{C}\right]$

$$P = \frac{W}{t} = U * I = [W] = [VA]$$

- Arbeit pro Zeit
- Am Widerstand $P = U^2/R$

Elektrisches Netz

Strom fließt per Definition ("technisch") von Plus (+) nach Minus (-)

GENERATOR G gibt Energie frei W <

• Potential ist Steigung des E-Feld VERBINDUNGSLEITUNGEN nach Kirchhoff:

Knoten K Verzweigung der Ver- Determinante bindungsleitung

$$\sum_{i \in K} I_i = 0A$$

- Stromrichtung einmalig willkürlich festlegen
- Eingehende Ströme addieren, ausgehende subtrahieren
- · Ladungen werden nicht angehäuft ⇒ Eingehender = ausgehender Strom auch bei Bauteilen

Masche M Geschlossener Pfad ohne Knotenwiederholung

$$\sum_{k \in M} U_k = 0V$$

- Pfad startet im Knoten
- Vorher Spannungsrichtung (= Stromrichtung) einzeichnen
- Spannungsrichtung in Maschenrichtung addieren, entgegen Maschenrichtung (Quellen) subtrahieren

Lösen Linearer Gleichungssysteme

Kirchhoff'sche Sätze schaffen Lineares Gleichungssystem der Form

$$Ax = b$$

- x ist der gesuchte Vektor der Ströme $I_k = x_k$
- A ist die Matrix der Koeffizienten (Widerstände)
- b sind vom Strom unabhängige Größen (Spannungen, 0A im Kno-

Matrixmul.
$$(m \times n)(n \times p) = (m \times p)$$

$$(AB)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

 $(Zeile \times Spalte)$

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} * a_{ij} * \det A_{ij}$$
$$= \sum_{j=1}^{n} (-1)^{i+j} * a_{ij} * \det A_{ij}$$

- Für Matrix $A \in \mathbb{R}^n$
- "Entwickeln" nach *i*-ter Zeile oder *j*ter Spalte
- $A_{ij} = \text{Matrix } A \text{ ohne } i\text{-te Zeile und}$ *j*-te Spalte
- Zeile/Spalte wählen mit viel $a_{ij} = 0$, damit $\det A_{ij}$ nicht berechnet werden muss

(2×2) Matrix

$$\det A = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc$$

(3×3) Matrix (Regel von Sarrus)

Cramer'sche Regel

$$x_k = (I_k) = \frac{\det A_k}{\det A} \quad \det A_k \neq 0$$

 $A_k = (a_1 \mid \dots \mid a_{k-1} \mid b \mid a_{k+1} \mid a_m)$

- A_k ist Matrix A mit Vektor b statt kter Spalte
- Lösbar $\Leftrightarrow \det A \neq 0$

Elektromagnetisches Feld

Stromdurchflossene Leiter erzeugen Magnetfelder orthogonal zur Flussrichtung:

Rechte-Hand-Regel

- Daumen in (technische) Stromrichtung (Vektorprodukt)
- Gekrümmte Finger in Magnetfeldrichtung (Norden)
- · Zeigefinger in Magnetfeldrichtung ⇒ Mittelfinger in Kraftwirkung auf Leiter

Magnetische Feldstärke

$$\vec{H} = \frac{\vec{\Theta}}{s} = \frac{\vec{I}}{s} = \frac{\vec{I}}{2\pi r} = \left[\frac{A}{m}\right]$$

- Erzeugt durch stromdurchflossene Leiter \vec{I}
- s z.B Kreisradius = $2\pi * r$

1. MAXWELL'sche Gleichung: Durchflutungsgesetz

$$\oint \vec{H} ds = \iint_A \vec{j} dA$$

Geschlossene magnetische Feldlinien werden von Strom durchflutet

Magnetische Spannung

$$\vec{\Theta}_{s_1 \to s_2} = \int_{s_1}^{s_2} \vec{H} ds = \vec{I} = [A]$$

• Zwischen Umfang s_1 (z.B = $2\pi r_1$) und s_2

Magnetische Flussdichte

$$B = \mu_0 * \mu_r * \vec{H} = [T] = \left[\frac{Vs}{m^2}\right]$$

• $\mu_0 = 1,2566 * 10^{-6} \frac{Vs}{4m}$

Relative Permeabilität: Hysteresekur-

- Feromagnetische Stoffe μ_r $10^2 \dots 10^5$ oder nicht konstant
- Speichern magnetische Zustände

REMANENZPUNKT B_r Magnetische Flussdichte B_r , die nach (H = 0)einer Magnetisierung besteht

Koerzitivfeldstärke $-H_c$ Feldstärke um Material zu entmagnetisieren

$E = -\frac{d\varphi}{dr}$

um sich

Wechselschriftverfahren

- 1 Permanenter Richtungswechsel des Stroms (durch antiparalleles Magnetfeld zum vorherigen Takt)
- 0 keine Veränderung des Stroms

LESEN Bewegung des magnetisierten Mediums induziert Strom bei antiparalleln Magnetfeld zum vorherigen Takt (Veränderung), bleibt 0 bei keiner Veränderung

SCHREIBEN Positiver und negativer Strom magnetisiert Medium antipar-

Kraftwirkung des magnetischen Fel- LINEARER MITTELWERT

$$\vec{F} = \mu * l * \vec{I} \times \vec{H} = l * \vec{I} \times \vec{B}$$

- · Kinetische Kraft auf stromdurchflossene Leiter \vec{I} der Länge l
- $|F| = \mu * l * I * H = l * I * B$

Kreuzprodukt $\vec{a} \times \vec{b}$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Elektromagnetische Induktion

$$U_i = -\frac{d\iint \vec{B}d\vec{A}}{dt} = -\frac{d\Phi}{dt}$$

• Umgekehrt induziert Bewegung ei- FORMFAKTOR $k = \frac{I_{\text{eff.}}}{|\overline{I}|}$ nes Leiters im Magnetfeld eine Spannung

Magnetischer Fluss

$$\Phi = \iint \vec{B} d\vec{A} = [Wb] = [T * m^2]$$

- Homogenes Magnetfeld $\Phi = \vec{B} * \vec{A}$
- Leiter im Winkel zum geradlinigen
 Komplexe Amplitude mit Phasen-Magnetfeld $\Phi = B * A * \cos \varphi$

Wechselstrom

Die Rotation eines Leiters in einem Magnetfeld induziert eine Wechselspannung und einen Wechselstrom:

$$u(t) = \hat{u} * \sin(\omega t)$$
$$i(t) = \hat{i} * \sin(\omega t)$$

- Frequenz f = 1/T (Anzahl der Perioden pro Zeiteinheit)
- Drehgeschwindigkeit $\omega = \frac{\varphi}{f} = 2\pi f$ (Anzahl der Perioden auf 2π Weg)

Kenngrößen

(Durchschnitt)

$$\overline{Y} = \frac{\int y(x)dx}{\int dx} \quad \overline{I} = \frac{1}{T} \int_{-T}^{T} i(t)dt$$

• Gemäß Normung = 0A

GLEICHRICHTWERT (Durchschnitt des Betrag)

$$|\overline{I}| = \frac{1}{T} \int_{-T}^{T} |i(t)| dt$$

EFFEKTIVWERT (Leistung Gleichstrom)

$$I_{ ext{eff.}} = \sqrt{rac{1}{T} \int^T i^2(t) dt}$$

• Sinusförmig: $I_{\text{eff.}} = \frac{\hat{i}}{\sqrt{2}}$, $U_{\text{eff.}} = \frac{\hat{u}}{\sqrt{2}}$

- Sinusförmig: $k = \frac{\pi}{\sqrt{s}} \approx 1,1107$
- Rechteck: k = 1

Komplexe Wechselstromrechnung

$$\hat{u} = \hat{u} * (\cos \hat{\varphi} + i \sin \hat{\varphi}) = \hat{u} * e^{i\hat{\varphi}}$$

sprung $\hat{\varphi}$

Komplexe Zahlen

$$\underline{c} = x + jy = re^{j\varphi}$$

- $r = \sqrt{x^2 + y^2}$
- $\varphi = \arctan \frac{y}{\pi}$
- $x = r \cos \varphi$, $y = r \sin \varphi$

ADDITION

$$\underline{U}_1 + \underline{U}_2 = \Re(\underline{U}_1) + \Re(\underline{U}_2) + j(\Im(\underline{U}_1) + \Im(\underline{U}_2))$$

MULTIPLIKATION

$$\underline{U}_1 * \underline{U}_2 = r_1 r_2 e^{j(\varphi_1 + \varphi_2)}$$

Impedanz

$$\underline{Z} = \underline{U}/\underline{I} = R + jX = [\Omega]$$

SCHEINWIDERSTAND |Z|

WIRKWIDERSTAND R (Wirkleistung gleich Gesamtleistung bei Ohmschen Widerständen)

BLINDWIDERSTAND X (Blindleistung bei Induktiven und Kapazitiven Bauteilen zum Aufbau des Feldes)

Häufige Fehler

- Vektor und Skalare Formeln mischen
- $mm^3 = (10^{-3}m)^3 = 10^{-9}m^3$
- $1/k\Omega = m\Omega$

Elektrische Bauteile

Elektrischer Leiter

Elektrische Flussdichte

$$D = \frac{Q}{A} = \left[\frac{C}{m^2}\right]$$

- Frei bewegliche Ladungsträger ver- Schaltung teilen sich gleichmäßig auf der Ober-
- $\Rightarrow Q = A * \iint_{\Lambda} Dd$
- $\vec{D}=\epsilon_0*\epsilon_r*\vec{E}$ (r raumfüllendes Ma-PARALLEL $R_G=1/\sum \frac{1}{R_L}$

Elektrische Stromdichte

$$J = \frac{I}{A}$$

- Ouerschnitt A senkrecht zum Stromfluss \vec{I}
- \propto Erwärmung des Leiters
- Aber: Dünne Leitungen kühlen besser (Verhältnis Querschnitt zu Umfang) ⇒ Dicke Leitungen haben geringeres zulässiges J

Metallischer Leiter

$$R = \rho \frac{l}{A}$$

- Linearer Widerstand, abhängig vom Material ρ
- $\rho = [\Omega \frac{mm^2}{m}] \propto$ Länge, kleinere Oberfläche

Magnetische Feldstärke

$$\vec{H} = \frac{\vec{I}}{2\pi r} = \left[\frac{A}{m}\right]$$

Ohmsch: Lineare Widerstände

$$U = R * I$$

- Kurz "URI"
- Strom \(\times \) Spannung, kleinerer Wider- **Komplexwertig** stand

$$R = [\Omega] = \left[\frac{V}{A}\right]$$

Leitwert
$$G = 1/R = [S] = \left[\frac{A}{V}\right]$$

Reihe $R_G = \sum R_k$

•
$$I_k = I \Rightarrow U_k = I * R_k$$

Parallel
$$R_G = 1/\sum \frac{1}{R_k}$$

•
$$U_k = U \Rightarrow I_k = U/R_k$$

Kennlinie Graph $I(U_A)$

- Je flacher desto stärker der Wider-
- Für lineare Bauteile: Nullstelle $I(U_A) = 0A$ und Schnittpunkt mit der *I*-Achse bestimmen $I(0V) = I_0$
- Für nicht-lineare Graphen R(U, I) =U/I gilt das Ohmsche Gesetz nicht!

Arbeitspunkt Schnittpunkt der Kennlinien $I_1(U_A) = I_2(U_A)$

- Bestimmung der dynamischen Austarierung nicht-linearer Bauteile
- Kennlinie in Abhängigkeit der Spannung am Bauteil, nicht der Quellspannung!

Energierverbrauch

$$W_R = t * RI^2$$

Wechselstrom

$$i(t) = \frac{\hat{u}}{R} * \sin \omega t$$

MAXIMALSTROM $\hat{i} = \frac{\hat{u}}{R}$

Widerstand $R = \frac{\hat{u}}{\hat{z}}$

$$\underline{\mathbf{u}}(t) = R * \underline{i}(t)$$

$$U_{\text{eff}} = R * I_{\text{eff}}$$

Impedanz

$$Z = R + 0i$$

Kapazitiv: Kondensator

$$Q = C*U$$

("Kuh gleich Kuh")

$$E = \frac{U}{d} = \frac{D}{\epsilon}$$

Kapazität

$$C = \frac{\epsilon * A}{d} = [F] = \left\lceil \frac{C}{V} \right\rceil$$

- Kondensator speichert elektrische Ladung
- \propto Große Oberfläche, große Permittivität, kleiner Abstand
- Durchschlagfestigkeit $E_d = U_d/d$

Energie im Elektrischen Feld

$$W = \frac{1}{2}C * U^2$$

Influenz: Faraday'scher Käfig Das Innere eines metallischen Hohlraums ist feldfrei.

Schaltung

Reihe $C_G = 1/\sum \frac{1}{C_k}$

Parallel $C_G = \sum C_k$

Ladevorgänge

EINSCHALTEN

- $U_C = U * (1 e^{-\frac{t}{R*C}})$
- $I_C = \frac{U}{R} * e^{-\frac{t}{R*C}}$

AUSSCHALTEN

- $U_C = U * e^{-\frac{t}{R*C}}$
- $I_C = \frac{U}{R} * e^{-\frac{t}{R*C}}$

Wechselstrom

$$i(t) = C\hat{u} * \omega \cos(\omega t)$$

 $\text{Maximalstrom } \hat{i} = C\hat{u}*\omega$

Phasensprung von $\pi/2$

Widerstand $R_C = \frac{1}{\omega * C}$

Komplexwertig

$$\begin{split} &\underline{i}(t) = C\underline{u}(t) * j\omega \\ &\underline{u}(t) = \underline{i}(t)/(C * j\omega) \\ &\underline{I}_{\mathrm{eff.}} = C\underline{U}_{\mathrm{eff.}} * j\omega \end{split}$$

Impedanz

$$\underline{Z} = 0 - j \frac{1}{\omega C}$$

Induktiv: Spule

Die durch die Spannungsveränderung (z.B Anlegung) induzierte Spannung wirkt der Spannung entgegen (Lenzsche Regel):

$$U = L * \frac{dI}{dt}$$

Ein magnetischer Fluss induziert in der Spule eine Spannung:

$$\Phi = L * I$$

Selbstinduktivität

$$L = [H] = \left\lceil \frac{Vs}{A} \right\rceil$$

- ullet 1H wenn bei einer gleichförmigen Stromveränderung von 1A in 1s eine Selbstinduktion von 1V erzeugt wird
- $\propto N^2$ Quadrat der Windungszahl

Magnetische Feldstärke

$$H = \frac{\Theta}{l} = \frac{I * N}{\sqrt{l^2 + D^2}}$$

 \bullet Feldstärke im Zentrum eines Zylinder des Durchmessers D

Angenommen $l \gg D$ "schlank"

$$H = \frac{I * N}{l}$$

Energie im Magnetfeld

$$W = \frac{1}{2}L * I^2$$

Ladevorgänge

Einschalten $I_L = \frac{U}{R} * (1 - e^{-t*\frac{R}{L}})$

AUSSCHALTEN $I_L = \frac{U}{R} * e^{-t*\frac{R}{L}}$

Wechselstrom

$$i(t) = \frac{\hat{u}}{\omega * L} * \sin(\omega t - \frac{\pi}{2})$$

Maximalstrom $\hat{i} = \frac{\hat{u}}{\omega * L}$

Phasensprung von $-\pi/2$

Widerstand $R_L = \omega * L$

Komplexwertig

$$\underline{u}(t) = L * \underline{i}(t) * j\omega$$

$$\underline{U}_{\text{eff.}} = L * \underline{I}_{\text{eff.}} * j\omega$$

Impedanz

$$Z = 0 + j\omega L$$

Quellen

Spannungsquelle

Feste Spannung U_Q

• Ideal: $\lim_{R_L \to 0} I \ge \infty$

Klemmspannung Tatsächliche Spannung mit geringem Innenwiderstand R_{iQ} in Reihe

$$U = U_Q - I * R_{iQ} \Rightarrow I = \frac{U_Q}{R_{iQ} + R_L}$$

Leerlauf Nicht geschlossen, I=0

KURZSCHLUSS Ohne Last geschlossen; da R_{iQ} gering \Rightarrow gefährlich hohe Leistung $P=U_Q^2/R_{iQ}$

Stromquelle

Fester Strom $\forall R_L : I_L = \text{konst.}$

Reale Stromquelle Hoher Innenwiderstand R_{iQ}

- $I_L = I_Q I_{iR}$
- Ideal: $\lim_{R_{iQ}} \to \infty I_L = I_Q$

LEERLAUF Nicht geschlossen, $U = R_{iQ} * I_Q$

KURZSCHLUSS Ohne Last geschlossen; $I_L = I_Q$, U = 0

Messgeräte

Spannung: Voltmeter

- Schaltung in Parallel, ohne Amperemeter messen!
- Hoher Innenwiderstand R_{iV} \Rightarrow Strom teilt sich auf, Spannung geringer gemessen
- $R_{iV} \gg R_L \Rightarrow U_L \approx R_L * I$

Strom: Amperemeter

- Schaltung in Reihe, ohne Voltmeter messen!
- Geringer Innenwiderstand $R_{iA} \Rightarrow$ Strom geringer gemessen
- $R_{iA} \ll R_L \Rightarrow I_L \approx U/R_L$

Widerstand: Fehlerschaltungen

Zum Messen des Widerstands R wird I_R und U_R benötigt:

Kleiner Widerstand: Stromfehlerschaltung

- Erst Amperemeter in Reihe, dann Widerstand und parallel das Voltmeter
- $I \approx I_R$

Großer Widerstand: Spannungsfehlerschaltung

- Erst Voltmeter, dazu parallel der Widerstand und dazwischen in Reihe des Amperemeter
- $U \approx U_R$

Spezielle Kombinationen

Spannungsteiler

Die Arbeitsspannung verhält sich zur Quellspannung wie der zweiter Widerstand zum Gesamtwiderstand:

$$\frac{U_A}{U_0} = \frac{R_2}{R_1 + R_2}$$

• Setzt Restenergie in Wärme frei

Potentiometer $R_1 = R - R_2$

$$\Rightarrow U_A = U_0 * \frac{R_2}{R}$$

Potentiometer unter Last R_L $R_1 = R - (R_2 \parallel R_L)$

$$\Rightarrow U_A = U_0 * \frac{R_2}{R} * \frac{R_L}{R_L + R_2}$$

Transformator

$$\frac{U_1}{U_2} = \frac{N_1}{N_2}$$

- Wechselspannung der Primärspule induziert Wechselspannung in Sekundärspule
- Ideal: Verlustfreier Spannungsteiler, da Energie im Magnetfeld durch Abbau wiedererlangt wird

Schwingkreis

$$\omega = \sqrt{\frac{1}{L*C}} = \frac{2\pi}{T}$$

- $u_C(t) + u_L(t) = 0V$
- (Gedämpft durch Widerstand)

Häufige Fehler

 Parallelschaltung von Kondensatoren verhält sich wie Reihenschaltung von Widerständen