Diffusion Synthetic Acceleration for Massively-Parallel Transport Sweeps using a Discontinuous Finite element Method

Jean C. Ragusa, Michael W. Hackemack

Department of Nuclear Engineering Texas A&M University College Station, TX, USA 77843 iean.ragusa@tamu.edu

Project Components and Integration

Outline

- Motivation for this Work
- Diffusion Synthetic Acceleration on Polytopes using a DFEM technique
 - Brief review of DSA Theory
 - Symmetric Interior Penalty (SIP) Form for Diffusion
 - Modified Interior Penalty (MIP) form for DSA
 - 3D Fourier analysis results
 - MIP-DSA results with PDT
- 3 Acceleration of thermal upscattering iterations
 - Two-grid Acceleration of thermal upscattering
 - Two-grid Fourier analysis results
 - PDT results
- Summary

Motivation

Parallel Transport Sweeps

- Massively-parallel transport sweeps is a mature technology
- PDT's weak scaling demonstrated up to 1.5 million cores for logically-block grids (and ongoing work for parallel transport sweeps on unstructured grids)
- Enabling technologies:
 - Discrete ordinates angular discretization (decouples directions in the streaming+collision transport operator)
 - Discontinuous Finite Element Method (DFEM) for spatial discretization ("invert the transport operator in a given direction on a cell-by-cell basis")
 - Aggregation of spatial cells and angular directions (and energy groups) into work-unit "tasks" and task scheduling

Typical Drawbacks of Transport Sweeps

Slow iterative convergence in optically thick configurations, $(\sigma_{t,g} \cdot \text{diam}(\mathcal{D})) \gg 1$

- **1** within an energy group: $\sigma_s^{g \to g}/\sigma_{t,g} \approx 1$
- 2 thermal upscattering when solved using a Gauss-Seidel approach for material with little thermal absorption

Iterative Procedure

Source Iteration

$$\psi^{(\ell+1)} = \mathbf{L}^{-1} \left(\mathbf{M} \mathbf{\Sigma} \phi^{(\ell)} + \mathbf{Q} \right)$$

$$\phi^{(\ell+1)} = \mathbf{D} \psi^{(\ell+1)}$$

The operation L^{-1} is a transport sweep.

Operator Terms

f L - streaming + collision operator

M - moment-to-discrete operator

 Σ - scattering operator

 $\mathbf{L} = diag(L_1, \ldots, L_{n_0})$

D - discrete-to-moment operator

Q - source operator

GMRES equivalent form

Sweep-Preconditioning

$$(\mathbf{I} - \mathbf{DL}^{-1} \mathbf{M} \mathbf{\Sigma}) \mathbf{\Phi} = \mathbf{DL}^{-1} \mathbf{Q}$$

Synthetic Acceleration

Transport sweep and iteration error

$$\mathbf{L}\psi = \mathbf{M}\mathbf{\Sigma}\phi + \mathbf{Q}$$

$$\mathbf{L}\psi^{(\ell+1/2)} = \mathbf{M}\mathbf{\Sigma}\phi^{(\ell)} + \mathbf{Q} + \mathbf{M}\mathbf{\Sigma}(\phi^{(\ell+1/2)} - \phi^{(\ell+1/2)})$$

$$\delta\phi^{(\ell+1/2)} \equiv \psi - \psi^{(\ell+1/2)}$$

$$\delta\phi^{(\ell+1/2)} \equiv \mathbf{D}\delta\psi^{(\ell+1/2)}$$

$$\mathbf{L}\delta\psi^{(\ell+1/2)} - \mathbf{M}\mathbf{\Sigma}\delta\phi^{(\ell+1/2)} = \mathbf{M}\mathbf{\Sigma}(\phi^{(\ell+1/2)} - \phi^{(\ell)}) = \mathbf{R}^{(\ell+1/2)}$$

Error approximation and update

If we could exactly solve for the error, then the solution could be obtained immediately:

$$\phi^{(\ell+1)} = \phi^{(\ell+1/2)} + \delta\phi^{(\ell+1/2)}$$

However, this is just as difficult as the original transport problem. Instead, we estimate the error using low-order operators:

$$\mathbf{A}\delta\phi^{(\ell+1/2)} = \tilde{\mathbf{R}}^{(\ell+1/2)}$$

A is a low-order diffusion operator.

Diffusion Synthetic Acceleration

Desirable properties for the diffusion operator A

- Symmetric Positive-Definite (SPD) in order to use efficient solvers (e.g., CG)
- Availability of suitable preconditioners (e.g., PCG with Algebraic MultiGrid)
- Can handle concave and degenerate polygonal/polyhedral cells
- Discontinuous FEM (same DFEM space as transport to avoid the need for a discontinuous update when using CFEM for diffusion)

$$-\nabla \cdot D\nabla \Phi(\mathbf{r}) + \sigma \Phi(\mathbf{r}) = q(\mathbf{r}), \qquad \mathbf{r} \in \mathcal{D}$$

General Boundary Conditions:

$$\begin{split} \Phi(\textbf{r}) &= \Phi_0(\textbf{r}), \qquad \textbf{r} \in \partial \mathcal{D}^d \\ - \mathcal{D} \partial_n \Phi(\textbf{r}) &= J_0(\textbf{r}), \qquad \textbf{r} \in \partial \mathcal{D}^n \\ \frac{1}{4} \Phi(\textbf{r}) + \frac{1}{2} \mathcal{D} \partial_n \Phi(\textbf{r}) &= J^{inc}(\textbf{r}), \qquad \textbf{r} \in \partial \mathcal{D}^r \end{split}$$

December 3 2015

Symmetric Interior Penalty (SIP) Form for Diffusion

Weak form: $a(\Phi,b)=\ell(b)$

Bilinear Form

$$\begin{split} a(\Phi,b) &= \left\langle D \nabla \Phi, \nabla b \right\rangle_{\mathcal{D}} + \left\langle \sigma \Phi, b \right\rangle_{\mathcal{D}} \\ &+ \left\{ \kappa_e^{\textit{SIP}} \llbracket \Phi \rrbracket, \llbracket b \rrbracket \right\}_{E_h^i} - \left\{ \llbracket \Phi \rrbracket, \{ \{ D \partial_n b \} \} \right\}_{E_h^i} - \left\{ \{ \{ D \partial_n \Phi \} \}, \llbracket b \rrbracket \right\}_{E_h^i} \\ &+ \left\{ \kappa_e^{\textit{SIP}} \Phi, b \right\}_{\partial \mathcal{D}^d} - \left\{ \Phi, D \partial_n b \right\}_{\partial \mathcal{D}^d} - \left\{ D \partial_n \Phi, b \right\}_{\partial \mathcal{D}^d} + \frac{1}{2} \left\{ \Phi, b \right\}_{\partial \mathcal{D}^r} \end{split}$$

Linear Form

$$\ell(b) = \left\langle q, b \right\rangle_{\mathcal{D}} - \left\{ J_0, b \right\}_{\partial \mathcal{D}^n} + 2 \left\{ J_{inc}, b \right\}_{\partial \mathcal{D}^r} + \left\{ \kappa_e^{\mathsf{SIP}} \Phi_0, b \right\}_{\partial \mathcal{D}^d} - \left\{ \Phi_0, D \partial_n b \right\}_{\partial \mathcal{D}^d}$$

SIP Penalty Coefficient

$$\kappa_e^{SIP} \equiv egin{cases} rac{C_B}{2} \left(rac{D^+}{h^+} + rac{D^-}{h^-}
ight) &, e \in E_h^i \ C_B rac{D^-}{h^-} &, e \in \partial \mathcal{D} \end{cases}$$
 $\mathcal{C}_B = cp(p+1)$

c - user defined constant ($c \geq 1$) p - polynomial order of the finite element basis (1,2,3,...) $D^{(+/-)}$ - diffusion coefficient defined on the positive/negative side of a face $h^{(+/-)}$ - orthogonal projection defined on the positive/negative side of a face

$$\llbracket u \rrbracket := u^+ - u^- \qquad \{\{u\}\} := \frac{u^+ + u'}{2}$$

$$u^{\pm} = \lim_{s \to 0^{\pm}} u(\mathbf{r} + s\mathbf{n})$$

Modified Interior Penalty (MIP) Form

Recall the DSA equation:

$$\mathbf{A}\delta\phi^{(\ell+1/2)}= ilde{\mathsf{R}}^{(\ell+1/2)}$$

DSA Form

Motivation for this Work

$$\begin{split} \left\langle D\nabla\delta\Phi,\nabla b\right\rangle_{\mathcal{D}} + \left\langle \sigma\delta\Phi,b\right\rangle_{\mathcal{D}} \\ + \left\{\kappa_{e}^{\textit{MIP}}\llbracket\delta\Phi\rrbracket,\llbracket b\rrbracket\right\}_{E_{h}^{i}} - \left\{\llbracket\delta\Phi\rrbracket,\{\{D\partial_{n}b\}\}\right\}_{E_{h}^{i}} - \left\{\{\{D\partial_{n}\delta\Phi\}\},\llbracket b\rrbracket\right\}_{E_{h}^{i}} \\ + \frac{1}{2}\!\left\{\delta\Phi,b\right\}_{\partial\mathcal{D}^{\textit{vac}}} = \left\langle R,b\right\rangle_{\mathcal{D}} - \left\{\delta\textit{\textit{J}}_{\textit{inc}},b\right\}_{\partial\mathcal{D}^{\textit{ref}}} \end{split}$$

MIP Penalty Term

$$\kappa_e^{\it MIP} = \max\left(rac{1}{4}, \kappa_e^{\it SIP}
ight)$$

3D DFEM DSA Analysis

Fourier analysis - 3D PWL basis functions

Problem Description

- Modified Zerr problem used optimal sweep aggregation parameters
 - homogeneous cube about 500 mfp and c=0.9999
 - S₈ level-symmetric quadrature (80 directions total)
- pointwise convergence tolerance of 1e-8
- SI precondition with MIP DSA using HYPRE PCG and AMG (~22 SI @ high core counts, and ~ 10 CG iters/DSA)

Center for Exascale Radiation Transpor

Two-Grid Acceleration - Ideal for graphite and heavy-water configurations

Multigroup system of equations

Gauss-Seidel iterations over thermal groups:

$$\mathbf{L_{gg}} \psi_{g}^{(k+1/2)} = \mathbf{M} \sum_{g'=0}^{g} \mathbf{\Sigma}_{gg'} \phi_{g'}^{(k+1/2)} + \mathbf{M} \sum_{g'=g+1}^{G} \mathbf{\Sigma}_{gg'} \phi_{g'}^{(k)} + \mathbf{Q}_{g}$$

1G Error Diffusion System

$$\nabla \cdot \left\langle D \right\rangle \nabla \epsilon + \left\langle \sigma \right\rangle \epsilon = \left\langle R \right\rangle$$

Error and residual

$$\mathbf{L}_{\mathbf{gg}} \delta \Psi_{\mathbf{g}}^{(k+1/2)} = \mathbf{M} \sum_{\mathbf{g}'=0}^{\mathbf{g}} \mathbf{\Sigma}_{\mathbf{gg}'} \delta \Phi_{\mathbf{g}'}^{(k+1/2)} + \mathbf{R}_{\mathbf{g}}^{(k+1/2)}$$

$$\mathbf{R}_{g}^{(k+1/2)} = \mathbf{M} \sum_{g'=g+1}^{G} \mathbf{\Sigma}_{gg'} \left(\boldsymbol{\Phi}_{g'}^{(k+1/2)} - \boldsymbol{\Phi}_{g'}^{(k)} \right)$$

$$\langle D \rangle = \sum_{g=0}^{G} D_{g} \xi_{g}$$

$$\langle \sigma \rangle = \sum_{g=0}^{G} \left(\sigma_{t,g} \xi_{g} - \sum_{g'=0}^{G} \sigma_{s,0}^{gg'} \xi_{g} \right)$$

Solution update

$$\delta \Phi_{\mathbf{g}}^{(k+1/2)} = \epsilon^{(k+1/2)} \, \boldsymbol{\xi}_{\mathbf{g}}, \qquad \sum_{g=0}^{G} \boldsymbol{\xi}_{\mathbf{g}} = 1$$

$$(\boldsymbol{\Sigma}_{\mathbf{t}} - tril(\boldsymbol{\Sigma}_{\mathbf{s}})^{-1}) \, triu(\boldsymbol{\Sigma}_{\mathbf{s}}) \boldsymbol{\xi} = \rho \boldsymbol{\xi}$$

 $\langle R \rangle = \sum_{k=0}^{G} R_{g}^{(k+1/2)}$

Two-Grid Acceleration - Fourier analysis results (P_0 and P_1 scattering)

Two-grid acceleration implementation in PDT

- Successfully implemented and debugged
 - Includes non-orthogonal mesh configurations
 - Includes multi-material configurations
- Have tested the two-grid methodology on a homogeneous graphite block as well as a block with an air duct
- Iteration counts for a very large configuration (very optically thick) are similar to simple infinite medium calculations

Example: S₈ level-symmetric quadratures, 64,000 spatial DOFs, 99 energy groups (IM1 XS-data), run locally on 8 procs.

Materials	Unaccelerated Iterations	Accelerated Iterations
Graphite Only	2027	21
Graphite + Air Duct	2138	23

Materials	Unaccelerated Solve Time	Accelerated Solve Time
Graphite Only	51.67 hours	31.23 minutes
Graphite + Air Duct	54.5 hours	35.56 minutes

Work Summary and Status

DFEM Diffusion as an accelerator

- Successfully developed and implemented an Modified Interior Penalty DFEM method as a diffusion synthetic accelerator for both
 - within group iterations and
 - 2 thermal upscattering iterations
- MIP-DSA leads to symmetric positive definite matrices (PCG with AMG through HYPRE)
- Excellent initial scaling results with PDT up to 132,000 cores.

Next steps

- Push into PDT's trunk repository
- Further scaling tests
- Apply to IM-1 experiments

Questions?

2D Exactly-Linear Transport Solutions - mean value coordinates

$$\mu \frac{\partial \psi}{\partial x} + \eta \frac{\partial \psi}{\partial y} + \sigma_t \psi = Q(x, y, \mu, \eta)$$

$$\psi(x, y, \mu, \eta) = ax + by + c\mu + d\eta + e, \qquad \phi(x, y) = 2\pi (ax + by + e)$$

$\ensuremath{\mathsf{SIP}}$ exactly linear solutions on 3D polyhedral meshes using the PWL basis functions

SIP convergence study - gaussian solution on 3D cube using the PWL basis functions

$$\Phi(x, y, z) = xyz(L_x - x)(L_y - y)(L_z - z) \exp(-(\mathbf{r} - \mathbf{r}_0) \cdot (\mathbf{r} - \mathbf{r}_0))$$

$$L_x = L_x = L_x = 1.0, \qquad \mathbf{r}_0 = (3/4, 3/4, 3/4)$$

