Segmentation of Characters on Car License Plates

Heitor Rapela Medeiros {hrm}
Diogo Rodrigues da Silva {drs3}

Roteiro

- Horizontal Projection
 - Máscara de Sobel
 - Método de Otzu
 - Cálculo do histograma de zeros horizontal
- Vertical Projection
 - Binarização através de threshold
 - Cálculo do histograma de zeros vertical
 - Crop da região detectada com zeros
- Support Vector Machine (SVM)
 - Aquisição da base para treino
 - Método para treino

Máscara de Sobel

- Máscara de Sobel
- Método de Otsu
- Abertura

$$G_x = \begin{bmatrix} -3 & 0 & +3 \\ -10 & 0 & +10 \\ -3 & 0 & +3 \end{bmatrix}$$

$$G_y = \begin{bmatrix} -3 & -10 & -3 \\ 0 & 0 & 0 \\ +3 & +10 & +3 \end{bmatrix}$$

Cálculo do histograma de zeros horizontal

Vertical Projection

Vertical Projection

Imagem de entrada

Regiões para serem detectadas

Threshold

$$g(x, y) = \begin{cases} 1, \text{ se } f(x, y) \ge k \\ 0, \text{ caso contrario} \end{cases}$$

Threshold (T = 40)

Saída Entrada

Histograma de zeros vertical

Crop da região com zeros

 Nesta etapa, se determina a quantidade de zeros que se deve agrupar por colunas, e então calcula-se a posição inicial e final de cada segmento a ser cortado

Crop da região com zeros

Entrada teórica (na verdade se entra com os valores de início e fim de cada corte)

Saída

Support Vector Machine (SVM)

 O algoritmo SVM tem como base encontrar o hiperplano que divide as classes de treino pela menor distância, tornando a margem entre elas maior possível. O hiperplano considerado ótimo, maximiza a margem de treino das classes de dados.

Support Vector Machine (SVM)

Support Vector Machine (SVM)

 Utilização dos coeficientes da DCT gerados a partir de cada conjunto de imagem de treinamento para treinar a SVM multiclasse.

```
C_SVC;
LINEAR;
degree = 3;
gamma = 3;
term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
```

Testes

Falhas possíveis na binarização devido a variação na luminosidade

Testes

- O artigo diz somente a proporção de cada letra e número para o modelo de placa utilizado (americano), por isso fica bem abstrato. Para o modelo brasileiro, colunas de menos de 10 pixels pretos foram desconsideradas, tornando uma aproximação razoável para o crop.
- Na parte de reconhecimento foram treinados dois svm's. Uma para letra e outra para números, para evitar o caso em que letras como O sejam confundidas com o número 0 por exemplo.

Resultados

Tabela de acertividade de recognição dos caracter

Carácter	taxa	Carácter	taxa	Carácter	taxa	Carácter	taxa
0	67.5%	A	60.2%	K	70.0%	U	33.3%
1	90.9%	В	46.0%	L.	66.6%	V	30.2%
2	45.0%	C	78.0%	M	34.5%	W	50.0%
3	50.2%	D	10.0%	N	52.3%	X	91.5%
4	60.5%	E	39.0%	0	30.2%	Y	92.0%
5	70.7%	F	53.0%	P	43.4%	Z	87.3%
6	45.0%	G	47.0%	Q	52.0%		
7	47.0%	Н	45.0%	R	45.3%		
8	87.0%	1	50.0%	S	70.1%		
9	68.0%	J	72.0%	T	40.2%	•	

Resultados

 Tabela de acurácia da segmentação, mostrando nossos resultados e o proposto pelo artigo estudado.

Referências	Acurácia de segmentação		
Proposto em [3]	98.82%		
Nossa proposta	90.9%		

Conclusão

- Método eficaz quando se consegue binarizar bem.
- A etapa de reconhecimento não obteve um resultado satisfatório devido ao tamanho da base de treinamento reduzida.

Referências

- He, Xiangjian, et al. "Segmentation of characters on car license plates."
 Multimedia Signal Processing, 2008 IEEE 10th Workshop on. IEEE, 2008.
- C++, OpenCV. SVM em OpenCV.Disponível em:
 http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html. Acesso em: 30 nov. 2016.