Outline

- 1) Conver Loss
- 2) Rao Blackwell Theorem
- 3) UMVU Estimators
- 4) Examples

Unbiased Estimation

Recall strategies to choose an estimator

- 1) Summarize risk by a scalar (aug or sup)
- 2) Restrict to a smaller class of estimators

Today: Unbiased estimation estimand

Require $\mathbb{E}_{\theta} \delta(x) = g(\theta)$, $\forall \theta \in \Theta$

If we have complete sufficient stat T(x),

· there is at most one unbiased 5"(T(X))

(If $E_{\theta} \delta_{i}(\tau) = E_{\theta} \delta_{i}(\tau) = g(\theta)$ $\forall \theta$ then $\delta_{i} = \delta_{i}$)

. if it exists, it uniformly minimizes risk for any convex loss function

Convex Loss Functions

Recall f(x) is convex if, for all x_1, x_2 , all $y \in [0,1]$ $f(yx_1 + (1-y)x_2) \leq y f(x_1) + (1-y)f(x_2)$ $\frac{5+ciefly \ convex}{} \text{ if } <$

Thm (Jensen) If f convex then $f(EX) \leq Ef(x)$ for any r.v. X f strictly convex then f(EX) = f(EX) = f(EX) where f(EX) = f(EX) f(EX

Convex Loss L(O,d) means convex in d

 $Ex. L(0,d) = (g(0)-d)^{2}$ $MSE(0;\delta) = Eo[(g(0)-\delta(x))^{2}]$ $= Bias^{2}(\delta) + Var_{0}(\delta)$ $= Var_{0}(T) \text{ if } \delta \text{ unbiased}$

Convex losses penalize us for making the estimator too noisy

Rao-Blackwell Theorem

Recipe to improve any $\delta(x)$ that violates the suff. principle.

Theorem (Rao-Blackwell)

Assume T(X) sufficient, S(X) estimator

Let $\overline{J}(T(x)) = \mathbb{E}\left[J(x) \mid T(x)\right]$

If L(0,1) convex then R(0; 8) ER(0; 5)

If strictly convex then R(0; 5) < R(0; 5)

unless $J(x) \stackrel{\text{a.s.}}{=} J(\tau(x))$ for all O

Proof $R(0; \overline{s}) = \mathbb{E}_0[L(0, \mathbb{E}[5|T])]$

と Eo E[L(O; 5)1+]

 $= R(\theta; \delta)$

< if strictly, unless J= J

5(T) called the Rao-Blackwellization of 5(x)

UMVU Estimators

Not all estimands have unbiased estimators:

Def We say
$$g(0)$$
 is U -estimable if $\exists \delta(x)$ with $\exists \delta = g(0) \forall 0$

Def
$$\delta(x)$$
 is uniform minimum variance unbiased $(uMvu)$ if for any unbiased δ , $Var_o(\delta(x)) \in Var_o(\delta(x)) \forall \theta \in G$

Theorem For model P= {Po: 0= @}, assume:

- i) T(x) complete suff ii) g(0) U-estimable
- Then there exists a unique estimator of the form $\delta'(T(x))$, which
 - 1) is UMVU and minimizes
 - all unbiased estimators

Proof "All Rao-Blackwellizations lead to 5t" Existence Take any J_0 unbiased for g(0)Let $J^*(T) = F_0[S_0 \mid T]$ $\mathbb{E}_{\theta} \mathcal{J}^* = \mathbb{E}_{\theta} \left[\mathbb{E} \left[\mathcal{J}_{o} \mid \mathsf{T} \right] \right] = \mathbb{E}_{\theta} \mathcal{J}_{o} = g(\theta)$ Uniqueness If J(T) unbiased then $= \int_{-\infty}^{\infty} \int_{-\infty}^$ Optimality wrt any convex loss Suppose 5 (X) unbiased, / uniqueness let $\delta(T) = \mathbb{E}[X \mid T] \stackrel{\text{def}}{=} \delta^*(T)$ Rao-Blackwell: $R(\theta; s^*) = R(\theta; \bar{s}) \leq R(\theta; \bar{s})$ Hence, MSE(0; 5*) < MSE(0; 5) Var(5*) Var(5)50, 5* UMVU

Finding the UMVUE

2 methods for finding UMVUE: 1) Find any unbiased estimator based on T 2) Find any unbiased estimator at all, then R-B'; ze it.

$$E \times X_{1}, \dots, X_{n} \stackrel{\text{iid}}{\sim} Pois(\Theta), \quad g(\Theta) = \Theta^{2}$$

$$P_{\Theta}^{(1)}(x) = \frac{\Theta^{2} - \Theta}{x!} \quad \Theta > 0 \quad , \quad x = 0,1,\dots$$

Complete suff. stat T(X) = EX; ~ Pois (n0) $\rho_{\theta}^{\mathsf{T}}(t) = \frac{(n\theta)^{\mathsf{T}} e^{-n\theta}}{t!}$

JCT) unbiased

$$\Leftrightarrow \sum_{t=0}^{\infty} \mathcal{J}(t) \rho_{0}^{\mathsf{T}}(t) = 0^{2}, \forall 0$$

Match terms in power series:

$$J(0) = J(1) = 0, \quad J(t) = \frac{n^{t-2}}{(t-2)!} \cdot \frac{t!}{nt} \quad t \ge 2$$

$$J(0) = J(1) = 0, \quad J(t) = \frac{T(\tau-1)}{n^2} \quad (2(\frac{T}{n})^2) \quad \text{for lerge } t$$

Alternatively, we could RBise
$$J_0(x) = X_1 X_2$$
 $E_0 \times_1 X_2 = (E_0 X_1)(E_0 \times_2) = \Theta^2$

What is $J_0 \times_1 = E[X_1 X_2 \mid T]$?

 $J_0 \times_1 = I_0 \times_2 = I_0 \times_3 = I_0 \times$

$$Ex \quad X_{1},...,X_{n} \quad \text{id} \quad U[0,0] \quad \Theta > 0$$

$$T = X_{(n)} \quad \text{complete suff.}$$

$$P_{0}^{T} = \frac{n}{\theta^{n}} t^{n-1} \quad 1\{t \leq 0\}$$

$$E_{0}^{T} = \int_{0}^{\theta} t^{n-1} dt = \frac{n}{n+1}\theta$$

$$\Rightarrow \frac{n+1}{n} \quad T \quad \text{is} \quad \text{umvu}$$

Alternate 2X, is unbiased X, $IT \sim \begin{cases} T & wp & \frac{1}{n} \\ u[o,T] & wp & \frac{n-1}{n} \end{cases}$

 $\Rightarrow \mathbb{E}[2X,|T] = 2T \cdot \frac{1}{n} + T \cdot \frac{n-1}{n}$ $= \frac{n+1}{n} T$

Actually, $\frac{n+1}{n}$ T is inadmissible too! Keener shows $\frac{n+2}{n+1}$ T has best MSE for any estimator c.T.

Raises question: why do we require O bias?

Doubts about unbiasedness

The UMVUE might be very inefficient, or inadmissible, or just dumb, in cases where another approach makes much more sense

Ex. $X \sim Bin(1000, \theta)$ Estimate $g(\theta) = P_{\theta}(X \ge 500)$ UMVUE is $1\{X \ge 500\}$ (why?) $\Rightarrow X = 500$? Conclude $g(\theta) = 100\%$ X = 499? Conclude $g(\theta) = 0\%$ This is not epistemically reasonable!! Could do much better with e.g. MLE or qBayes estimator.

In fact, our theorem should make us suspicious of UMVUE's: every idiotic function of T is a UMVUE (of its own expectation)

Gaussian Sequence Model

Xi id N(Mi, 1) i=1,-,d indep. or X ~ N_d(n, I_d) nERd, estructe pe=||n||²

X is complete sufficient

 $\mathbb{E}_{n}\|\mathbf{x}\|^{2} = \mathbb{E}_{o}\left[\|\mathbf{n} + \mathbf{x}\|^{2}\right]$ = ||m||2 + Eo||X||2 + 2Eo[m X]

= ||m||2 + d

 $\Rightarrow \delta(x) = \|x\|^2 - d$

If $\mu = 0$, $\delta(x) < 0$ about half the time!

(||x||2-d) + = max (0, ||x||2-d)

strictly dominates UMVU