Dropout Training

(Hinton et al. 2012)

Aaron Courville IFT6135 - Representation Learning

Slide Credit: Some slides were taken from Ian Goodfellow

Dropout training

Introduced in Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012).
 Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580.

• Dropout recipe:

- Each time we present data example x, randomly delete each hidden node with 0.5 probability.
- This is like sampling from 2^{|h|} different architectures.
- At test time, use all nodes but divide the weights by 2.
- Effect I: Reduce overfitting by preventing "coadaptation"
- Effect 2: Ensemble model averaging via bagging

Dropout training

Introduced in Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012).
 Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580.

• Dropout recipe:

- Each time we present data example x, randomly delete each hidden node with 0.5 probability.
- This is like sampling from 2^{|h|} different architectures.
- At test time, use all nodes but divide the weights by 2.
- Effect I: Reduce overfitting by preventing "coadaptation"
- Effect 2: Ensemble model averaging via bagging

Dropout: TIMIT phone recognition

- Dropout helps.
- Dropout + pretraining helps more.

Method	Phone Error Rate%
Neural Net (6 layers) [12]	23.4
Dropout Neural Net (6 layers)	21.8
DBN-pretrained Neural Net (4 layers)	22.7
DBN-pretrained Neural Net (6 layers) [12]	22.4
DBN-pretrained Neural Net (8 layers) [12]	20.7
mcRBM-DBN-pretrained Neural Net (5 layers) [2]	20.5
DBN-pretrained Neural Net (4 layers) + dropout	19.7
DBN-pretrained Neural Net (8 layers) + dropout	19.7

Dropout: MNIST digit recognition

- Dropout is effective on MNIST.
- Particularly with input dropout.
- Comparison against other regularizers.

Method	MNIST Classification error %
L2	1.62
L1 (towards the end of training)	1.60
KL-sparsity	1.55
Max-norm	1.35
Dropout	1.25
Dropout + Max-norm	1.05

The unreasonable effectiveness of dropout

- A simple 2D example.
- Decision surfaces after training:

Claim: Dropout is approximate model averaging

- Hinton et al. (2012):
 - Dropout approximates geometric model averaging.

Arithmetic mean:
$$\frac{1}{N} \sum_{i=1}^{N} x_i$$
 Geometric mean: $\left(\prod_{i=1}^{N} x_i\right)^{\frac{1}{N}}$

Claim: Dropout is approximate model averaging

- In networks with a single hidden layer of N units and a "softmax" output layer:
- Using the mean network is exactly equivalent to taking the geometric mean of the probability distributions over labels predicted by all 2^N possible networks.
- For deep networks, it's an approximation.

Bagging predictors

- Bagging: A method of model averaging.
 - To reduce overfitting (decrease variance of the estimator).
- Methodology: Given a standard training set D of size n,
 - Bagging generates m new training sets, each of size n',
 by sampling from D uniformly and with replacement.
 - train m models using the above m datasets and combined by averaging the output (for regression) or voting (for classification).

Bagging predictors

Dropout training

Dropout as bagging

Is dropout performing bagging?

There are a few important differences:

- 1. The model averaging is only approximate for deep learning.
- 2. Bagging is typically done with an arithmetic mean. Dropout approximates the geometric mean.
- 3. In dropout, the members of the ensemble are **not independent**. There is significant **weight sharing**.

Dropout ≈ geometric mean?

- How accurate is the "weight scaling trick" approximation to the geometric mean?
 - How does the use of this approximation impact classification performance?
- How does the geometric mean compare to the arithmetic mean?
 - Conventionally, the arithmetic mean is used with ensemble methods?

Dropout ≈ geometric mean?

• Small networks experiments:

- Exhaustive computation of exponential quantities is possible.
- Two hidden layers (rectified linear), 10 hidden units each, 20 hidden units total
- $2^{20} = 1,048,576$ possible dropout masks (for simplicity, don't drop input)

Benchmark on 7 simplified binary classification tasks:

- 2 different binary classification subtasks from CoverType
- 4 different binary classification subtasks from MNIST
- 1 synthetic task in 2-dimensions ("Diamond")

Geometric Mean vs. Arithmetic Mean

 No systematic advantage to using the arithmetic mean over all possible subnetworks rather than the geometric mean.

 Each dot represents a different randomly sampled hyperparameter configuration. No statistically significant differences in test errors across hyperparameter configurations on any task (Wilcoxon signed-rank test).

Quality of the Geometric Mean Approximation

 With ReLUs, weight-scaled predictions perform as well or better than exhaustively computed geometric mean predictions on these tasks.

 Each dot represents a different randomly sampled hyperparameter configuration. No statistically significant differences in test errors across hyperparameter configurations on any task (Wilcoxon signed-rank test).

Dropout vs. Untied Weight Ensembles

- How does the implicit ensemble trained by dropout compare to an ensemble of networks trained with independent weights?
 - With the explicit ensemble drawn from the same distribution (i.e. masked copies of the original).
 - Experiment on MNIST: Average test error for varying sizes of untied-weight ensembles...
 - Key Observation: Bagging untied networks yields some benefit, but dropout performs better.
 - Dropout weight-sharing has an impact!

