实验一、二--常用仪器使用及基本开关电路 实验报告

姓名: 彭靖田 学号: 3120000013 专业: 求是计算机 1201

课程名称:逻辑与计算机设计基础实验 同组学生姓名:李元丙

实验时间: 2013-09-12/26 实验地点: 紫金港东 4-509 指导老师: 蒋方炎

一、实验目的和要求

1.常用电子仪器的使用

- 1) 认识常用电子器件
- 2) 学会数字示波器、数字信号发生器(函数信号发生器)、直流稳压电源、万用表等 仪器的使用
- 3) 掌握用数字示波器来测量脉冲波形及幅度和频率的参数
- 4) 掌握用数字示波器测量脉冲时序的上升沿和下降沿、延时等参数
- 5) 掌握万用表测量电压、电阻及二极管的通断的判别

2.基本开关电路

- 1) 掌握逻辑开关电路的基本结构
- 2) 掌握二极管导通和截止的概念
- 3) 用二极管、三极管构成简单逻辑门电路
- 4) 掌握最简单的逻辑门电路构成

二、实验内容和原理

本小节详细说明实验内容和实验原理,必要时应有图片、表格等。如果内容比较多,可以分节描述,小节的格式如下:

2.1 常用电子仪器的使用

1. 用数字示波器来测量函数信号发生器发出来的频率(周期)和幅度。通过选择频率范围按键和频率调节旋钮,使函数信号发生器发出频率分别为 100Hz、10KHz 和 100KHz 的正弦波,用数字示波器测出上述信号的周期和频率,验证函数信号发生器发生信号正确率。

	函数发生器输出	示波器读数	灵敏度	实测]值
幅度		3.8 Div	2 V/Div		7.6 V
周期/频率	100 Hz	2 Div	5 ms/Div	10 ms	1000 Hz
幅度		7.2 Div	1 V/Div		7.2 V
周期/频率	10 kHz	2 Div	50 µs/Div	100 µs	10k Hz
幅度		7.1 Div	1 V/Div		7.1 V
周期/频率	100k Hz	2 Div	5 µs/Div	10 µs	100k Hz

2. 让信号发生器输出频率为 1KHz、1--3V 任意有效值的正弦波(用数字万用表交流档测量有效值),用示波器测量其幅值,并进行有效电压值的计算与比较。

函数发生器输出频率	示波器读	取值	折算有效值	万用表读取值
1KHz	4.6 div	2 V/div	3.25 V	3.08 V

3. 用示波器测量正弦波信号

直流稳压电源输出	示波器读数	灵敏度	示波器折算 值	万用表读数
+5V	2.5 Div	2 V/Div	5 V	4.95 V
+12V	2.4 Div	5 V/Div	12 V	11.57 V
-12V	2.4 Div	-5 V/Div	-12 V	-11.89 V

4. 测量二极管两端电压降 V = 0.62V

2.2 基本开关电路

1. 二极管构成与门电路

• 当 *A*,*B*,*C* 都接地时3个二极管正向导通,输出*F*为低电平; 只要 *A*,*B*,*C*中存在接地,输出*F* 为低电平

C	В	A	F
L	${f L}$	\mathbf{L}	L
L	L	Н	L
L	Н	L	L
L	Н	Н	L
Н	L	L	L
Н	L	Н	L
Н	Н	L	L
Н	Н	Н	Н

实验箱+5V 直流电源实验逻辑"与"门测量表

V _A /V	$V_{\rm\scriptscriptstyle B}/V$	V_F/V	F逻辑值
5. 08	5. 08	5. 08	1
5. 08	0.00	0. 55	0
0.00	5. 08	0. 55	0
0.00	0.00	0. 51	0

2. 二极管构成或门电路

• 当输入A,B,C 都接地时,输出F 为低电平;只要A,B,C 中有接高电平,输出F为高电平

C	В	A	F
L	\mathbf{L}	L	\mathbf{L}
L	${f L}$	Н	Н
L	Н	L	Н
L	Н	Н	Н
Н	L	L	Н
Н	\mathbf{L}	Н	Н
Н	Н	L	Н
Н	Н	Н	Н

高低电平通过开关产生不同组合测量表

V _A /V	V _B /V	V_F/V	F逻辑值
4. 21	4. 20	3. 68	1
3. 61	0.00	3. 06	1
0. 00	3. 61	3. 07	1
0.00	0. 00	0.00	0

3. 三极管组成非门电路

- 当A点接高电平时,三极管 T_1 处于饱和状态, $V_{CE} \approx 0.3 \mathrm{V}$,输出F为低电平饱和
- 当A点接低电平时 $I_B=0$, R_C 上几乎没有电压降,三极管 T_1 处于截止状态,输出F电压接近 V_{CC} 为高电平

A	F
L	Н
Н	L

+5V 直流电源实现"非"门测量表

V _A /V	VF/V	F 逻辑值
2. 92	0. 00	0
0. 00	5. 02	1

- 4. 二极管和三极管组成与非门电路
 - 当输入A,B,C 均接高电平时, F_1 为高电平,三极管 T_1 进入 饱和导通状态。输入A,B,C 和输出F 的电平关系如右表

C	В	A	F
L	L	L	Н
L	L	Н	Н
L	Н	L	Н
L	Н	Н	Н
Н	L	L	Н
Н	L	Н	Н
Н	Н	L	Н
Н	Н	Н	L

+5V 直流电源实现"与非"门测量表

V _A /V	V _B /V	V_F/V	F 逻辑值
5. 02	5. 02	0.00	0
5. 02	0.00	4. 46	1
0. 00	5. 02	4. 55	1
0. 00	0.00	4. 86	1

5. 三极管极性测量

- 将万用表红表笔插入VΩmA插孔,黑表笔插入COM插孔,先判断被测三极管是PNP还是NPN型,定下基极b
- 将功能量程置于hFE位置,把三极管插入面板上三极管测试插座,基极b要插对,集电极c和发射极e随便插
- 从显示屏上读取hFE近似值,若该值较大, 说明三级管c,e极与插座上的c,e极对应;若 该值很小,说明这时的三极管c,e极插反, 应把c,e极对调后再读取hFE值

测量结果:

NPN 型	
hFE 204	
反向 011	

三、主要仪器设备

数字示波器 RIGOL- DS162
函数发生器 YB1638
3. 数字万用表
1台

4. 示波器
5. 三用表
6. 低频信号发生器
7. 逻辑电路实验箱
1台

四、操作方法与实验步骤

按照实验课程 PPT 上的使用说明和步骤来进行实验,以下举例说明:

- 1. 测量 YB1638 函数发生器输出电压操作步骤:
 - 1) 将信号发生器输出接入万用表,红接正,负接负,万用表在 AC 档,并选用适当量程,通过调节幅度旋钮,使万用表显示 3V 有效值
 - 2) 将信号发生器输出接入到示波器中,读取峰峰值,有效值 = $V_{P-P}/2\sqrt{2}$
- 2. 万用表测量实验箱直流电源操作步骤:
 - 1) 将红表笔插入 $V\Omega$ mA 插孔,黑表笔插入 COM 插孔。
 - 2) 将功能开关量程置于直流量程,将测试笔连接到待测电路上,红表笔所接端的 极性将同时显示在显示器上
 - 3) 用示波器和万用表来测量实验台上的三组直流稳压电源的输出,并记录测量结果
- 3. 示波器测量正弦波信号
 - 1) 将信号发生器的频率通过频率波段开关、和微调旋钮调到你所需要的频率,并 在数码管上显示可知道。
 - 2) 信号发生器的输出信号线与示波器的信号连在一起,地线与地线连在一起
- 4. 对于用实验箱来实现基本开关电路——逻辑"门"的实验,基本使用同样的操作步骤:
 - 1) 关闭电源,断开开关
 - 2) 按照电路图连接电路
 - 3) 检查连接无误后,接通电源,打开开关
 - 4) 测量电压值,计算逻辑值
 - 5) 检验是否满足各个逻辑"门"的关系式

五、实验结果与分析

- 1. 实验一
 - 1) 经过实验一,掌握了常用的电子仪器的使用,如:万用表、YB1638函数信号发生器、示波器、直流稳压电源
 - 2) 学会了用示波器测量脉冲波形幅度及频率的参数

3) 学会了用万用表测量电压、电阻及二极管通断的判断

2. 实验二

通过在逻辑电路实验箱上搭建各种逻辑门,得出了逻辑上满足的关系,结果如下:

逻辑门	满足关系式
与	F=AB
或	F=A+B
非	$F = \overline{A}$
与非	$F = \overline{AB}$

实验结果说明逻辑门没有搭错,电路连接正确,通过 A,B,F 三点测量到的电压值,基本符合逻辑关系式。

六、讨论、心得

中学没有接触过电路实验,因此前两次实验做得不是很顺畅,都是同组另一名同学先做,我学习后自己再重新做一遍,虽然很麻烦,费时间。但是却学到了东西,掌握到了常用电子仪器的使用方法和逻辑电路实验箱的使用,能够自己连接线路,模拟逻辑门,心里很有成就感。