4. Guangli

Program Name: Guangli.java Input File: guangli.dat

The English language has many ways to refer to family members. Your cousins share a grandparent, but your second cousin once removed could refer to people a generation before or after you. What a confusing, imprecise language. Guangli does not like figuring out how his family members relate to him in English. Luckily, this isn't a problem since Guangli isn't a person. He's a node in an *infinite binary tree*!

The language of the binary trees is even less precise. Each node has a numeric label, a left child, and a right child. An *infinite binary tree* has an infinite number of nodes. Consider the following infinite binary tree: the root has label 1. Each node with label \mathbf{x} has a left child with label $\mathbf{2x}$ and right child with label $\mathbf{2x} + \mathbf{1}$. Here is a picture of the first few levels of this tree.

For example, the distance between 2 and 9 is 2, as there are two edges between them. $(2 \rightarrow 4 \rightarrow 9)$. Given a pair of nodes in this tree, what is the distance between those nodes?

Input: The first line of input is T (T \leq 50), the number of test cases. Each test case contains two space-separated integers A and B, the labels of the two nodes. $1 \leq$ A, B \leq 10^18.

Output: For each test case, output a single integer: the distance between the two nodes, formatted as in the samples.

Sample input:

Sample output:

Case #1: 2 Case #2: 7 Case #3: 3 Case #4: 59