Intelligent Hinting and Affect Detection in SAGE

Chengwei Bian and Mengqiao Zhang COMS E6901, Section 14 October 1st, 2017

1 Introduction

• Primary motivation:

Improve effectiveness of hinting

Major focuses:

- 1. On-demand hinting
- 2. Enrich hinting types
- Detect frustration

2 Related Work

- 2.1 "Advances in Intelligent Tutoring Systems: Problem-solving Modes and Model of Hints"
- 2.2 "Developing a Generalizable Detector of When Students Game the System"
- 2.3 "Early Prediction of Student Frustration"
- 2.4 "Coarse-Grained Detection of Student Frustration in an Introductory Programming Course"

2.1 "Advances in IntelligentTutoring Systems:Problem-solving Modes andModel of Hints"

- adaptive support for learners
- hinting model
- three general hint categories
- greater adaptive abilities
- learning efficacy

2.2 "Developing a Generalizable Detector of When Students Game the System"

- Exploiting properties of the system
- Predicting when students are gaming the system
- Gaming phenomenon is fairly robust

2.3 "Early Prediction of Student Frustration"

- Developed frustration detector in Crystal Island
 - 1. Data about features
 - 2. Self-reported affective states
 - 3. ML techniques to build model
 - 4. Accuracy and precision over 88%

2.4 "Coarse-Grained Detection of Student Frustration in an Introductory Programming Course"

- Detect student frustration when learning programming on BlueJ
 - Collect compilation and error data
 - Recorded student affective states by human observation
 - Built a linear regression model to predict frustration
 - Able to predict average frustration in each lab session, but unable to detect frustration within each lab

3.1 On-demand Hinting

3.2 Hinting Types

3.3 Frustration Detection

3 Proposal

3.1 On-demand Hinting

- Only supports unprompted hinting
- Add the on-demand hinting function
 - 1. Add an on-demand hinting button
 - 2. Build punishment mechanism

3.2 Hinting Types

- Modify and expand current method
- Hints are divided into three categories:
 - 1. General text hints
 - 2. Category-level hint
 - 3. Specific hint
- More pleasant and gameful learning experience

3.3 Frustration Detection

Approaches to detect affective states:

- face-based emotion recognition
- physical or physiological sensors
- mining the system's log file

3.3 Frustration Detection

Data-mining approach

Collect features:

- Mean and standard deviation of the number of times the student has moved blocks
- Mean and standard deviation of the number of times the student has modified parameters of blocks
- Mean and standard deviation of time elapsed since the last action
- 4. Number of actions taken in the last *x* seconds
- Number of times a block is removed from the scripts area

3.3 Frustration Detection

Data-mining approach

- Collect features
- Obtain affective states by self reporting
- Develop model using ML techniques
- Adjust hinting frequency

4 Timeline

Milestone	Estimated Date
Environment setup	Sprint 0
Add on-demand hinting function, and come up with basic model for detecting frustration	Sprint 1
Implement different hinting types, and enable prompting periodically affective states input from student	Sprint 2
Midterm report	Sprint 3
Try to get real world data from a group of students to develop and evaluate frustration detection model	Sprint 4
Final report	12.8 - 12.21

5 References

Anohina, A. (2007). Advances in intelligent tutoring systems: problem-solving modes and model of hints. *International Journal of Computers Communications & Control*, 2(1), 48-55.

d Baker, R. S., Corbett, A. T., Roll, I., & Koedinger, K. R. (2008). Developing a generalizable detector of when students game the system. *User Modeling and User-Adapted Interaction*, *18*(3), 287-314.

Rodrigo, M. M. T., & Baker, R. S. (2009, August). Coarse-grained detection of student frustration in an introductory programming course. In *Proceedings of the fifth international workshop on Computing education research workshop* (pp. 75-80). ACM.

Mcquiggan, S. W., Lee, S., & Lester, J. C. (2007, September). Early prediction of student frustration. In *International Conference on Affective Computing and Intelligent Interaction* (pp. 698-709). Springer, Berlin, Heidelberg.

Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development. Psychology Press.

Rajendran, R., Iyer, S., Murthy, S., Wilson, C., & Sheard, J. (2013). A theory-driven approach to predict frustration in an ITS. *IEEE Transactions on Learning Technologies*, (1), 1-1.