Question-1:

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Answer:

Optimal value of alpha for:

Ridge: 3.0

Lasso: 0.01

When we double the value of alpha for both Ridge & Lasso, the model will be more penalized.

	Ridge_alpha	Ridge_alpha_double	Lasso_alpha	Lasso_alpha_double
R2 Score Train	0.936906	0.931628	0.919407	0.905082
R2 Score Test	0.924754	0.924618	0.923860	0.913476
RMSE Train	0.092306	0.096089	0.104324	0.113216
RMSE Test	0.103044	0.110496	0.103654	0.103137

After doubling the alpha values in the Ridge and Lasso, the prediction accuracy remains the same for Ridge i.e., 0.93 for Train data & 0.92 for Test data, whereas for Lasso there is a slight reduction in Train data by a difference of 0.014 & in Test data by 0.01.

There is a small change in the co-efficient values as well. The new model is created and demonstrated in the Jupiter notebook. Below are the changes in the co-efficients & the important predictor variables in descending order after the changes.

For Ridge:

	Ridge_Coeff		Ridge Doubled Alpha Co-Efficient
OverallQual	0.275794	OverallQual	0.233427
TotalAreaSF	0.240176	TotalAreaSF	0.220051
OverallCond	0.230851	OverallCond	0.189286
GrLivArea	0.198578	GrLivArea	0.178974
1stFlrSF	0.179150	1stFlrSF	0.166509
BsmtFinSF1	0.135322	BsmtFinSF1	0.122843
TotalBsmtSF	0.120741	TotalBsmtSF	0.113155
Neighborhood_Crawfor	0.120463	Neighborhood_Crawfor	0.111835
MSZoning_FV	0.116619	LotArea	0.108515
LotArea	0.112661	CentralAir_Y	0.089842
MSZoning_RL	0.109183	FullBath	0.084805
MSZoning_RH	0.099670	2ndFlrSF	0.082179
Functional_Typ	0.094657	Functional_Typ	0.081594
2ndFlrSF	0.093082	GarageArea	0.079505
Neighborhood_StoneBr	0.091420	Neighborhood_StoneBr	0.079411
MSZoning_RM	0.089799	MSZoning_RL	0.077317
CentralAir_Y	0.087112	MSZoning_FV	0.076998
FullBath	0.086636	TotRmsAbvGrd	0.074395
Exterior1st_BrkFace	0.080350	Exterior1st_BrkFace	0.067073
GarageArea	0.078695	HalfBath	0.063237

For Lasso:

	Lasso_Coeff		Lasso Doubled Alpha Co-Efficient
TotalAreaSF	0.789795	TotalAreaSF	0.760670
OverallQual	0.442333	OverallQual	0.467099
OverallCond	0.270512	OverallCond	0.185629
LotArea	0.120258	GarageArea	0.138628
BsmtFinSF1	0.105805	LotArea	0.115091
GarageArea	0.104385	BsmtFinSF1	0.102525
Neighborhood_Crawfor	0.100787	CentralAir_Y	0.092878
CentralAir_Y	0.088062	Neighborhood_Crawfor	0.070669
SaleCondition_Partial	0.080142	SaleCondition_Partial	0.061688
MSZoning_FV	0.061119	MSZoning_RL	0.048050
Functional_Typ	0.056518	Functional_Typ	0.044637
MSZoning_RL	0.054348	Foundation_PConc	0.043577
Condition1_Norm	0.051063	PavedDrive_Y	0.042524
BsmtExposure_Gd	0.046622	Condition1_Norm	0.040154
SaleCondition_Normal	0.042682	BsmtExposure_Gd	0.035367
GarageCars	0.038316	MSZoning_FV	0.029000
Foundation_PConc	0.038088	BsmtFinType1_GLQ	0.028788
PavedDrive_Y	0.037920	SaleCondition_Normal	0.026300
WoodDeckSF	0.036442	GarageCond_TA	0.025353
TotalPorchSF	0.031098	Neighborhood_NridgHt	0.019875

Question 2:

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer:

	Optimum Alpha		
Ridge	3.000		
Lasso	0.001		

	Ridge	Lasso
R2 Score Train	0.936906	0.919407
R2 Score Test	0.924754	0.923860
RMSE Train	0.092306	0.104324
RMSE Test	0.103044	0.103654

We can see the RMSE values are almost the same for both the models.

Since Lasso helps in feature selection, Lasso has a better edge over Ridge and should be used as the final model.

Question 3:

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer:

Top 5 features before: 'TotalAreaSF', 'OverallQual', 'OverallCond', 'LotArea', 'BsmtFinSF1'

We dropped the top 5 most important predictor variables in the lasso model and created a model which gives us the below five most important predictor variables:

- 1. GrLivArea
- 2. TotalBsmtSF
- 3. MSZoning_FV
- 4. MSZoning_RL
- 5. MSZoning_RH

Question 4:

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer:

A model is said to be robust when its performance doesn't change significantly when the training data undergoes small changes. And said to be generic when it performs better on unseen data.

For the model to be robust & generalisable, we must make sure the model doesn't overfit. Because an overfitted model becomes highly specific to the data on which it is trained that it fails to generalize the unseen data points in a larger domain. If the accuracy of the model on training data is high it is likely to have overfitting in the model.

Simpler models failing predicting complex real world problems. Complex models have high variance. We have to make sure the model is not too simple & not too complex.

To prevent the model from becoming too complex we use regularisation techniques like Ridge & Lasso Regression.