VHDL Basics

Δαδαλιάρης Αντώνιος dadaliaris@cs.uth.gr

Introduction

• VHDL is a language used to describe digital circuits.

 VHDL stands for: Very High Speed Integrated Circuit Hardware Description Language

 Designs described in VHDL can be compiled, simulated and translated to a format suitable for hardware implementation.

Terminology

- Simulation
- Synthesis
- Field Programmable Gate Arrays (FPGAs)
- Application Specific Integrated Circuits (ASICs)

- Simulation
 - Predict the behavior of a design
 - Functional Simulation
 - Approximate behavior
 - Timing Simulation
 - Exact behavior

- Synthesis
 - Generation of a netlist file that describes the structure of a digital design.
 - VHDL is used at a previous state of the overall design flow
 - Not all VDHL statements are synthesizable.

- Field Programmable Gate Arrays (FPGAs)
 - Programmable devices
 - Rapid prototyping for almost any digital design
 - Creation of designs whose purpose is the generation of an input bitstream file that configures other devices

- Application Specific Integrated Circuits (ASICs)
 - Custom designs that implement a specific application
 - Custom capability
 - Lower unit cost
 - Smaller size

ASIC Design Flow

- 1. Design Specification
- 2. HDL Coding
- 3. Simulation
- 4. Synthesis (Design for Testability, Timing Analysis, Power Analysis, Equivalency Checking)
- 5. Post-Synthesis Simulation
- 6. Place & Route (Timing Analysis, Power Analysis, Equivalence Checking)
- 7. Post-Place & Route Simulation
- 8. Chip-Finishing / Tapeout

ASIC Design Flow (cont.)

Design Goals

Hardware Description Languages (HDLs)

- Most used HDLs: VHDL & Verilog
 - Different Syntax
 - Similar Capabilities
 - Supported by every industrial design tool
- Advantages:
 - Portability
 - Reusability
 - Standard Language Structured Language
 - Technology Independent

VHDL References

- Books:
 - Douglas Perry, "VHDL", McGraw Hill
 - Peter J. Ashenden, "The Designer's Guide to VHDL", Morgan Kaufmann Publishers
 - Stephen Brown & Svonko Vranesic, "Fundamentals of Digital Logic with VHDL", McGraw Hill

VHDL: Libraries & Packages

- Libraries:
 - Packages
 - Components
 - Functions
 - Procedures
- Packages:
 - Mainly data types

VHDL: Libraries & Packages cont.

 Libraries and packages are the first declarations that we include in any VHDL code.

VHDL: Entities, Architectures & Configurations

 All VHDL designs provide an external interface and an internal implementation.

 Any VHDL design consists of an entity, one or more architectures and zero or one configuration.

VHDL: Entities

- The entity of a VHDL design is practically its external interface.
- Entity declarations specify the following:
 - Name of the entity
 - Port declarations (practically the inputs and output of the design)
- It must be noted that generic declarations can be used but are optional.

VHDL: Entities (cont.)

```
test.vl
        ENTITY entity name IS
        GENERIC(
        generic 1 name: generic 1 type;
        generic 2 name: generic 2 type;
        generic n name: generic n type
        PORT(
        port 1 name: port 1 dir port 1 type;
        port 2 name : port 2 dir port 2 type;
        port n name: port n dir port n type
12
        END entity name;
/Desktop/Avánτυξη Τηλεπικοινωνιακών Συστημάτων Σε Υλικό/test.vhd*
```

VHDL: Entities (cont.)

VHDL: Ports

- Port names:
 - Letters, digits and/or underscores
 - All port names must start with a letter
 - Case insensitive
- Port types:
 - o IN
 - OUT
 - INOUT
 - BUFFER