

Genome Annotation

HTS Workshop Genomics & Transcriptomics KAUST 2019

Robert Lehmann Octavio Salazar

How to find genes on the assembly

MAAQLLSMSEIEGPEENENAFWVAATIPPP. . .

central dogma

eukaryotic genes -> splicing

- no splicing
- strong sequence motifs indicating gene locations

Bacterial gene structure

Bacterial gene annotation

Genome			Glimmer3 Predictions					versus Glimmer2.13		
Organism	GC%	# Genes	3' Matches		5' & 3' Matches		Extra	3' Match	5' & 3'	Extra
A.fulgidus	49	1165	1162	99.7%	841	72.2%	1308	-2	-67	-59
B.anthracis	35	3132	3119	99.6%	2717	86.7%	2345	+6	+726	-77
B.subtilis	44	1576	1559	98.9%	1379	87.5%	2886	+11	+413	-539
C.tepidum	57	1292	1284	99.4%	867	67.1%	778	+2	-33	-190
C.perfringens	29	1504	1501	99.8%	1360	90.4%	1177	-1	+244	-28
E.coli	51	3603	3525	97.8%	3014	83.7%	942	+16	+693	-632
G.sulfurreducens	61	2351	2320	98.7%	1883	80.1%	1107	+15	+541	-380
H.pylori	39	915	908	99.2%	785	85.8%	774	+1	+46	-94
P.fluorescens	63	4535	4484	98.9%	3412	75.2%	1896	+14	+731	-704
R.solanacearum	67	2512	2468	98.2%	1922	76.5%	1091	+72	+646	-326
S.epidermidis	32	1650	1646	99.8%	1496	90.7%	767	+3	+338	-66
T.pallidum	53	575	569	99.0%	397	69.0%	568	+3	+55	-296
U.parvum	26	327	325	99.4%	292	89.3%	297	0	+19	-17
Averages:				99.1%		81.1%		+11	+335	-262

 up to 92% precise gene prediction possible (>98% for gene ends)

Eukaryotic gene structure

splicing makes prediction more complex

Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques. SJ Goodswen, PJ Kennedy, JT Ellis, PLoS ONE 7(11): e50609.

HMMs for gene annotation

Hidden Markov Models (HMMs)

- statistical model
- each node is a state
- state can generate nucleotide sequence
- different stats generate sequences according to different probability distributions

20

translation initiation

motif

1111

non-coding

model

Augustus

http://augustus.gobics.de/

Gene annotation

initial content

model

\$\ge\$0

exon content

model

3 11111111

non-coding

model

stop

\$\le\$ 4

intial

codon pattern

start

- eukaryotic gene finder
- very good performance
- requires good gene models for training
- requires extensive training / multiple rounds

Augustus

http://augustus.gobics.de/

Gene finder training

- often iterative training necessary
- A) start with default parameters (from closest species with available parameter set)
- B) run gene finding
- C) select best annotations
- D) train parameters on best annotations -> back to B)

MAAQLLSMSEIEGPEENENAFWVAATIPPPK SLVEAFANYPDVVRVPRLLHFLRVAVKQQRR RQQKLHELRRKASGPSEGQTETEAGWEGQRR TAEEHGEGETEKVARHPDELETLIFQGCCLL LEASQRQRNAEALL...

Protein sequence

Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques. SJ Goodswen, PJ Kennedy, JT Ellis, PLoS ONE 7(11): e50609.

Questions?