Package 'magical'

June 19, 2024

Title What the Package Does (One Line, Title Case)
Version 1.1.0
Description What the package does (one paragraph).
License `use_mit_license()`, `use_gpl3_license()` or friends to pick a license
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Depends dplyr, Matrix
Imports GenomicRanges, graphics, karyoploteR, regioneR
R topics documented:
Candidate_circuits_construction_without_TAD Candidate_circuits_construction_with_TAD Data_loading MAGICAL_circuits_output MAGICAL_estimation MAGICAL_initialization plot_circuits_with_gene plot_circuits_with_idx plot_circuits_with_peak Index
Candidate_circuits_construction_without_TAD Build candidate circuits

Description

This function constructs candidate circuits based on the input data WITHOUT TAD prior.

Usage

```
Candidate_circuits_construction_without_TAD(loaded_data, distance_control)
```

Arguments

```
loaded_data The output from Data_loading
distance_control

Bp threshold for paring peaks and genes
```

Value

A list named "Candidate_circuits" containing the following elements:

- TFs: candidate TFs
- TF_log2Count: log2 transformed TF expression
- Peaks: candidate peaks
- Peak_log2Count: log2 transformed peak accessibility
- Genes: candidate genes
- Gene_log2Count: log2 transformed gene expression
- TF_peak_binding: TF-peak binding matrix
- Peak_Gene_looping: peak-gene looping matrix

See Also

Candidate_circuits_construction_with_TAD() for the version WITH TAD.

```
Candidate_circuits_construction_with_TAD

Build candidate circuits
```

Description

This function constructs candidate circuits based on the input data WITH TAD prior.

Usage

```
{\tt Candidate\_circuits\_construction\_with\_TAD(loaded\_data,\ TAD\_file\_path)}
```

Arguments

```
loaded_data The output from Data_loading
TAD_file_path The path to the TAD prior file
```

Data_loading 3

Value

A list named "Candidate_circuits" containing the following elements:

- TFs: candidate TFs
- TF_log2Count: log2 transformed TF expression
- Peaks: candidate peaks
- Peak_log2Count: log2 transformed peak accessibility
- Genes: candidate genes
- Gene_log2Count: log2 transformed gene expression
- TF_peak_binding: TF-peak binding matrix
- Peak_Gene_looping: peak-gene looping matrix

See Also

Candidate_circuits_construction_without_TAD() for the version WITHOUT TAD.

Data_loading

Loading Data

Description

Load all input files.

Usage

```
Data_loading(
    Candidate_Gene_file_path,
    Candidate_Peak_file_path,
    scRNA_readcount_file_path,
    scRNA_Gene_file_path,
    scATAC_readcount_file_path,
    scATAC_readcount_file_path,
    scATAC_Peak_file_path,
    scATAC_cellmeta_file_path,
    Motif_mapping_file_path,
    Motif_name_file_path,
    Ref_seq_file_path
)
```

Arguments

Value

A list named "loaded_data" containing the following elements:

- Common_samples: a vector of common samples between scRNA and scATAC data
- Candidate_Genes: a data frame of candidate genes
- Candidate_Peaks: a data frame of candidate peaks
- scRNA_Genes: a data frame of scRNA genes
- scRNA_cells: a data frame of scRNA cells
- scRNA_read_count_matrix: a sparse matrix of scRNA read counts
- scATAC_Peaks: a data frame of scATAC peaks
- scATAC_cells: a data frame of scATAC cells
- scATAC_read_count_matrix: a sparse matrix of scATAC read counts
- Motifs: a data frame of TF motifs
- TF_peak_binding_matrix: a sparse matrix of TF binding on ATAC peaks
- · Refseq: a data frame of Refseq

```
MAGICAL_circuits_output
```

MAGICAL output

Description

MAGICAL output

Usage

```
MAGICAL_circuits_output(
   Output_file_path,
   Candidate_circuits,
   Circuits_linkage_posterior,
   prob_threshold_TF_peak_binding = 0.8,
   prob_threshold_peak_gene_looping = 0.95
)
```

Arguments

```
Output_file_path
The output file path

Candidate_circuits
The output from "Candidate_circuits" (with or without TAD)

Circuits_linkage_posterior
The output from MAGICAL_estimation

prob_threshold_TF_peak_binding
The threshold of TF-peak binding probability. Default is 0.8

prob_threshold_peak_gene_looping
The threshold of peak-gene looping probability. Default is 0.95
```

MAGICAL_estimation 5

Value

There is no return value for this function, but it will write a file with this format: Gene_symbol - Gene_chr - Gene_TSS - Peak_chr - Peak_start - Peak_end - Looping_prob - TFs(binding prob)

 ${\tt MAGICAL_estimation}$

MCMC sampling

Description

This function estimates the parameters.

Usage

```
MAGICAL_estimation(
  loaded_data,
  Candidate_circuits,
  Initial_model,
  iteration_num
)
```

Arguments

Value

A list named "Circuits_linkage_posterior" containing the following elements:

- TF_Peak_Binding_prob: The posterior probability of TF binding to peaks
- Peak_Gene_Looping_prob: The posterior probability of looping between peaks and genes
- Noise_parameters: The posterior noise parameters

MAGICAL_initialization

MCMC model initialization

Description

This function initializes the MCMC model for MAGICAL.

Usage

```
MAGICAL_initialization(loaded_data, Candidate_circuits)
```

Arguments

Details

For MCMC method, the initial values of parameters are not deterministic for the results. Use pseudo bulk data to initialize the model as only at this dimension all data are matched.

Value

A list of initial values for the MCMC model

Description

This function plots all circuits containing one certain gene.

Usage

```
plot_circuits_with_gene(
  data,
  gene,
  gene_track = T,
  TxDb,
  peak_track = T,
  peaks
)
```

Arguments

data The data frame written by MAGICAL_circuits_output().

gene The gene symbol.

gene_track Whether to plot gene tracks around the region or not. Default is TRUE.

TxDb The TxDb object corresponding to the reference genome. Required if gene_track

is TRUE.

peak_track Whether to plot peak tracks around the region or not. Default is TRUE.

peaks The data frame containing the peaks. It should contain 3 columns: the chromo-

some, start, and end of the peaks. Required if peak_track is TRUE.

Value

A karyoploteR plot.

plot_circuits_with_idx 7

See Also

```
plot_circuits_with_idx() and plot_circuits_with_peak()
```

Examples

```
# data = read.table("MAGICAL_selected_regulatory_circuits.txt", header = T, sep = "\t")
#
# library("TxDb.Hsapiens.UCSC.hg38.knownGene")
#
# peaks = read.table('Demo input files/scATAC peaks.txt', header = F, sep = "\t")
#
# plot_circuits_with_gene(data, gene = "ACOT11", gene_track = T, TxDb.Hsapiens.UCSC.hg38.knownGene, peak_track
```

Description

This function plots one circuit by its index.

Usage

```
plot_circuits_with_idx(data, idx, gene_track = T, TxDb, peak_track = T, peaks)
```

Arguments

The data frame written by MAGICAL_circuits_output().

idx The index of the circuit to be plotted.

gene_track Whether to plot gene tracks around the region or not. Default is TRUE.

TxDb The TxDb object corresponding to the reference genome. Required if gene_track is TRUE.

peak_track Whether to plot peak tracks around the region or not. Default is TRUE.

peaks The data frame containing the peaks. It should contain 3 columns: the chromo-

some, start, and end of the peaks. Required if peak_track is TRUE.

Value

A karyoploteR plot.

See Also

```
plot_circuits_with_gene() and plot_circuits_with_peak()
```

Examples

```
# data = read.table("MAGICAL_selected_regulatory_circuits.txt", header = T, sep = "\t")
#
# library("TxDb.Hsapiens.UCSC.hg38.knownGene")
#
# peaks = read.table('Demo input files/scATAC peaks.txt', header = F, sep = "\t")
#
# plot_circuits_with_idx(data, 1, gene_track = T, TxDb.Hsapiens.UCSC.hg38.knownGene, peak_track = T, peaks)
```

```
plot_circuits_with_peak

Plot circuit(s)
```

Description

This function plots all circuits containing one certain peak.

Usage

```
plot_circuits_with_peak(
  data,
  peak_chr,
  peak_start,
  peak_end,
  gene_track = T,
  TxDb,
  peak_track = T,
  peaks
)
```

Arguments

data The data frame written by MAGICAL_circuits_output(). peak_chr (Character) the chromosome of the peak. The start position of the peak. peak_start peak_end The end position of the peak. Whether to plot gene tracks around the region or not. Default is TRUE. gene_track TxDb The TxDb object corresponding to the reference genome. Required if gene_track is TRUE. peak_track Whether to plot peak tracks around the region or not. Default is TRUE. The data frame containing the peaks. It should contain 3 columns: the chromopeaks some, start, and end of the peaks. Required if peak_track is TRUE.

Value

A karyoploteR plot.

```
plot_circuits_with_peak
```

9

See Also

```
plot_circuits_with_idx() and plot_circuits_with_gene()
```

Examples

```
# data = read.table("MAGICAL_selected_regulatory_circuits.txt", header = T, sep = "\t")
#
# library("TxDb.Hsapiens.UCSC.hg38.knownGene")
#
# peaks = read.table('Demo input files/scATAC peaks.txt', header = F, sep = "\t")
#
# plot_circuits_with_peak(data, peak_chr = "chr4", peak_start = 184817550, peak_end = 184818412, gene_track = T
```

Index

```
Candidate_circuits_construction_with_TAD,
Candidate_circuits_construction_with_TAD(),
{\tt Candidate\_circuits\_construction\_without\_TAD},
{\tt Candidate\_circuits\_construction\_without\_TAD()},
         3
Data_loading, 3
{\tt MAGICAL\_circuits\_output, 4}
MAGICAL_circuits_output(), 6-8
MAGICAL_estimation, 5
{\tt MAGICAL\_initialization}, {\tt 5}
\verb|plot_circuits_with_gene|, 6
plot_circuits_with_gene(), 7, 9
plot_circuits_with_idx, 7
plot_circuits_with_idx(), 7, 9
plot_circuits_with_peak, 8
plot\_circuits\_with\_peak(), 7
```