

Análisis de señales Convolución de señales continuas

Escuela de Ciencias exactas e Ingeniería

Código: SA2020I_TTQ07

Profesor: Marco Teran **Deadline: G01** - 28 de abril de 2020 G02 - 29 de abril de 2020 Name:

1. Calcule la convolución

$$e^{-t}u(t) * e^{-2t}u(t)$$

2. Sea

$$x(t) = u(1-t)u(t+1),$$

calcule y dibuje los resultados obtenidos.

- (a) x(t) * x(t)
- (b) $x(t) * [\delta(t+2) + 2\delta(t-2)]$
- 3. Calcule y dibuje el resultado de la integral de convolución y(t) = x(t) * h(t) de los siguientes pares de señales:
 - (a) x(t) = u(-t), $h(t) = e^{-3t}u(t)$
- $h(t) = e^{t}u(t)$ (c) $x(t) = e^{j2t},$ $h(t) = 3\delta(t-1)$ (d) x(t) = u(-t), $h(t) = e^{-3t}u(t)$

- $n(t) = 2e^{-5|t|} \left(u\left(t+4\right) u\left(t-4\right) \right)$ $x(t) = \begin{cases} t, & \text{si } 0 < t \leqslant 2 \\ 0 & \text{otherwise} \end{cases}$ $h(t) = \begin{cases} t, & \text{si } 0 < t \leqslant 2 \\ 0 & \text{otherwise} \end{cases}$ $h(t) = \begin{cases} t, & \text{si } 0 < t \leqslant 2 \\ 0 & \text{otherwise} \end{cases}$ $h(t) = \begin{cases} t, & \text{si } 0 < t \leqslant 2 \\ 0 & \text{otherwise} \end{cases}$ $h(t) = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$ $t = \begin{cases} t, & \text{si } 0 < t \leqslant \pi \\ 0 & \text{otherwise} \end{cases}$
- 4. Determine la respuesta al impulso del sistema LTI

$$y(t) = \int_{t-1}^{t+1} x(\tau) \,\mathrm{d}\tau$$

5. Un sistema tiene la respuesta al impulso dada por

$$h(t) = \delta(t) - \delta(t - 1),$$

a partir de ésta determina la relación de entrada- salida del sistema.

6. Un sistema LTI y causal tiene la respuesta al impulso (1):

$$h(t) = e^{-t} + \sin t, t \geqslant 0 \tag{1}$$

- (a) Calcular la respuesta de salida para $t \ge 0$, cuando la entrada es el escalón u(t)
- (b) Calcular la respuesta de salida para $t \ge 0$, cuando la entrada es el pulso con función:

$$u(t+2) - u(t-2)$$

7. Encuentre la respuesta al impulso del sistema compuesto mostrado en la figura 1.

Fig. 1 – Diagrama de bloques

8. El sistema mostrado en la figura 2 esta formado por la conexión de dos sistemas en serie.

Fig. 2 – Diagrama de bloques en serie

Las respuestas al impulso están dadas:

$$h_1(t) = e^{-2t}u(t),$$

 $h_2(t) = 2e^{-t}u(t).$

- (a) Encuentre la respuesta al impulso $h_{total}(t)$ total del sistema.
- (b) Cual sería la salida si la entrada al sistema fuera: $x\left(t\right)=u\left(t\right)-u\left(t-6\right)$