

Artificial Intelligence II

Part 2: Lecture 7
Yalda Mohsenzadeh

Convolutional Neural Networks

Today

- How to use networks for images
- Why "C"-NNs
- Standard building blocks of CNNs
- Some important networks & their tricks
- Some debugging tools

Image classification

image **x** label y

Sky	Sky	Sky	Sky	Sky	Sky	Sky	Bird
Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Bird	Bird	Bird	Sky	Bird	Sky	Sky	Sky
Sky	Sky	Sky	Bird	Sky	Sky	Sky	Sky

Problem:

What happens to objects that are bigger?

What if an object crosses multiple cells?

"Cell"-based approach is limited.
What can we do instead?

This problem is called **semantic segmentation**

An equivariant mapping:

 $f(\mathtt{translate}(x)) = \mathtt{translate}(f(x))$

Translation invariance: process each patch in the same way.

W computes a weighted sum of all pixels in the patch

W is a convolutional kernel applied to the full image!

Convolution

Fully-connected network

Fully-connected (fc) layer

Locally connected network

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Convolutional neural network

Conv layer

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Weight sharing

Conv layer

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Toeplitz matrix

$$\begin{pmatrix} a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end{pmatrix}$$

e.g., pixel image

- Constrained linear layer
- Fewer parameters —> easier to learn, less overfitting

Conv layers can be applied to arbitrarily-sized inputs

Five views on convolutional layers

1. Equivariant with translation (stationarity) f(translate(x)) = translate(f(x))

2. Patch processing (Markov assumption)

3. Image filter

4. Parameter sharing

5. A way to process variable-sized tensors

What if we have color?

(aka multiple input channels?)

Multiple channels

Conv layer

$$\mathbb{R}^{N \times C} \to \mathbb{R}^{N \times 1}$$

Multiple channels

Conv layer

$$\mathbb{R}^{N \times C^{(0)}} \to \mathbb{R}^{N \times C^{(1)}}$$

Multiple channels

Conv layer

Multiple channels: Example

How many parameters does each filter have?

- (a) 9 (b) 27 (c) 96 (d) 864

Multiple channels: Example

How many filters are in the bank?

(a) 3 (b) 27 (c) 96 (d) can't say

Filter sizes

When mapping from

$$\mathbf{x}^{(l)} \in \mathbb{R}^{H \times W \times C^{(l)}} \to \mathbf{x}^{(l+1)} \in \mathbb{R}^{H \times W \times C^{(l+1)}}$$

using an filter of spatial extent $M \times N$

Number of parameters per filter: $M \times N \times C^{(l)}$

Number of filters: $C^{(l+1)}$

$$\mathbb{R}^{H \times W \times C^{(l)}} \to \mathbb{R}^{H \times W \times C^{(l+1)}}$$

[Figure from Andrea Vedaldi]

Image classification

image x label y

Image classification

image **x** label y

Multiscale representations are great!

Gaussian Pyr

Laplacian Pyr

How can we use multi-scale modeling in Convnets?

Pooling

Pooling

Max pooling

$$z_k = \max_{j \in \mathcal{N}(j)} g(y_j)$$

Mean pooling

$$z_k = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}(j)} g(y_j)$$

Pooling across spatial locations achieves stability w.r.t. small translations:

Pooling across spatial locations achieves stability w.r.t. small translations:

Pooling across spatial locations achieves stability w.r.t. small translations:

CNNs are stable w.r.t. diffeomorphisms

["Unreasonable effectiveness of Deep Features as a Perceptual Metric", Zhang et al. 2018]

Pooling across feature channels (filter outputs) can achieve other kinds of invariances:

[Derived from slide by Andrea Vedaldi]

Computation in a neural net

$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

Downsampling

Downsampling

$$\mathbb{R}^{H^{(l)} \times W^{(l)} \times C^{(l)}} \to \mathbb{R}^{H^{(l+1)} \times W^{(l+1)} \times C^{(l+1)}}$$

Strided operations

Conv layer

Strided operations combine a given operation (convolution or pooling) and downsampling into a single operation.

Computation in a neural net

$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

Receptive fields

Receptive fields

Local vs. global processing

Across all images, which is higher:

- (1) correlation between points with distance ΔA
- (2) correlation between points with distance ΔB
- (3) can't say

Local vs. global processing

Across all images, which is higher:

- (1) correlation between points with distance ΔA
- (2) correlation between points with distance ΔB
- (3) can't say

Local vs. global processing

[Simoncelli: Statistical Modelling of Photographic Images, 2005]

CNNs — Why?

Statistical dependences between pixels decay as a power law of distance between the pixels.

It is therefore often sufficient to model local dependences only. -> Convolution

More generally, we should allocate parameters that model dependencies in proportion to the strength of those dependences. —> Multiscale, hierarchical representations

[For more discussion, see "Why does Deep and Cheap Learning Work So Well?", Lin et al. 2017]

Some networks

... and what makes them work

ImageNet Classification Error (Top 5)

[Krizhevsky et al: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]

Alexnet — [Krizhevsky et al. NIPS 2012]

[227x227x3] INPUT

What filters are learned?

What filters are learned?

11x11 convolution kernel (3 color channels)

96 Units in conv1

[Hubel and Wiesel 59]

[Slide from Andrea Vedaldi]

ImageNet Classification Error (Top 5)

ImageNet Classification Error (Top 5) 30,0 25,0 26,0 20,0 16,4 15,0 11,7 10,0 7,3 5,0 0,0 2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG)

2014: VGG 16 conv. layers

Error: 7.3%

[Simonyan & Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015]

VGG-Net [Simonyan & Zisserman, 2015]

2014: VGG 16 conv. layers

Error: 7.3%

Main developments

Small convolutional kernels: only 3x3

Increased depth (5 -> 16/19 layers)

Chaining convolutions

Dilated convolutions

[https://arxiv.org/pdf/1511.07122.pdf]

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_2 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

ImageNet Classification Error (Top 5)

[He et al: Deep Residual Learning for Image Recognition, CVPR 2016]

2016: ResNet ResNet [He et al, 2016] >100 conv. layers **Main developments** Increased depth possible through residual blocks \mathbf{X} weight layer $\mathcal{F}(\mathbf{x})$ relu X weight layer identity $\mathcal{F}(\mathbf{x}) + \mathbf{x}$ relu **Error: 3.6%**

Residual Blocks

Residual Blocks

Why do they work?

- Gradients can propagate faster (via the identity mapping)
- Within each block, only small residuals have to be learned

If output has same size as input:

If output has a different size:

Projects into the right dimensionality: dim(F(x)) = dim(Wx)

Some debugging advice

Other good things to know

- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance

Good training: hidden units are sparse across samples and across features.

[Derived from slide by Marc'Aurelio Ranzato]

Other good things to know

- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

[Derived from slide by Marc'Aurelio Ranzato]

Other good things to know

- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance
- Visualize filters

Good training: learned filters exhibit structure and are uncorrelated.

[Derived from slide by Marc'Aurelio Ranzato]