Clasificación de género con redes neuronales convoluciones

Sebastian Ferreyra

Gabriela Colque

Sofia Poma

Maxwell Paredes

Piero Estrada

Definición del problema y objetivos

Estudios Anteriores

• La clasificación de género utilizando Redes Neuronales Convolucionales ha sido un tema de investigación importante en el campo de la visión computacional y el aprendizaje profundo. En los últimos años, se han realizado avances significativos en este campo, lo que ha permitido obtener resultados prometedores.

ESTUDIOS ANTERIORES

ESTUDIO	AÑO	ENFOQUE	RESULTADOS
"Deep Learning Face Attributes in the Wild"	2014	CNN en imágenes faciales	Resultados prometedores en la clasificación de género
"Deep Expectation of Real and Apparent Age from a Single Image"	2015	CNN en imágenes faciales sin puntos de referencia faciales	Resultados precisos utilizando solo una imagen facial
"Gender Classification from Facial Images Using CNNs"	2015	CNN en características extraídas de imágenes faciales	Mejora de precisión mediante técnicas de preprocesamiento
"Gender Classification of Human Faces Using CNNs"	2017	CNN en imágenes faciales con técnicas de mejora de imágenes	Modelo de clasificación de género preciso
"Gender Recognition from Face Images with Occlusions"	2018	CNN en imágenes faciales con occlusiones parciales	Uso de redes de atención para capturar características

Convolutional Neural Networks

Operacion de Convolucion

La convolución de dos funciones f(t) y g(t) se denota como (f*g)(t) y se define matemáticamente como:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) d\tau$$

donde $f(\tau)$ y $g(t-\tau)$ son las funciones a convolucionar, y τ es la variable de integración.

En una CNN

Tensor

color image is 3rd-order tensor

Funcion de Activacion RELU

Max Pooling

Max Pooling

Take the **highest** value from the area covered by the kernel

Average Pooling

Calculate the average value from the area covered by the kernel

Example: Kernel of size 2 x 2; stride=(2,2)

Backpropagation

- Adam
- Gradiente
- Conjunto de datos
- Batch
- Tasa de aprendizaje
- Número de épocas
- Clasificación de haarcascade
- Función de perdida
- Función softmax

Gracias!!