

1 I CLAIM:

2 1. A method of heating a subterranean formation
3 comprising:

4 (a) forming a hole into said formation;

5 (b) inserting into said hole a heater comprising a
6 casing and plural fuel cells contained within
7 said casing;

8 (c) operating said fuel cells so as to produce heat
9 and electricity; and

10 (d) wherein the said formation, when heated,
11 generates a gaseous product, and wherein said
12 gaseous product is provided to and used by said
13 fuel cells as fuel.

14

15 2. The heating method of claim 1, wherein, at least
16 after an initial start-up period, said fuel cells are fueled
17 by about 10% or more of the gaseous product generated by the
18 formation.

19

20 3. The heating method of claim 1, wherein said casing
21 has an outside diameter, and said hole has an inside
22 diameter at least somewhat greater than said casing outside
23 diameter, thereby defining therebetween a substantially
24 annular gap, and said method further comprises the step of
25 filling said gap with a thermally conductive substance.

1 4. The heating method of claim 1, wherein said
2 formation is to be heated at a specified rate per heater
3 segment, and wherein said heater segment is adapted to
4 produce a thermal output substantially equal to that
5 specified for the formation.

6

7 5. The heating method of claim 4, wherein said heater
8 segment would have greater than desired combined thermal
9 output if said fuel cells were configured continuously
10 within said segment, and said adaptation is achieved by
11 interleaving spacers within said fuel cells.

12

13 6. The heating method of claim 4, wherein each of said
14 fuel cells has a thickness and an active component surface
15 area, and wherein said adaptation is achieved by reducing
16 said surface area in proportion to said thickness whereby
17 said fuel cells when arranged continuously produce a
18 combined thermal output substantially equal to that
19 specified.

20

21 7. The heating method of claim 1 further comprising
22 inserting additional electricity powered heaters into the
23 formation and using the electrical output of at least some
24 of said fuel cells to power said electrically powered
25 heaters.

1

2 8. The heating method of claim 1, wherein said fuel
3 cells generate a relatively warm exhaust gas, and wherein
4 said method further comprises collecting said exhaust gas
5 and using it to heat the formation.

6

7 9. A method of heating a subterranean formation
8 comprising:

9 (b) (a) forming a hole into said formation; inserting
10 into said hole a heater comprising a casing and
11 plural fuel cells contained within said casing;
12 (c) operating said fuel cells so as to produce heat
13 and electricity; and
14 (d) continuously supplying said fuel cells with an
15 oxidant and fuel via a continuous conduit to a
16 planetary surface.

17

18 10. A subterranean formation heater comprising:
19 a casing having a plurality of fuel cells;
20 wherein the fuel cells have a feedback connection to
21 the subterranean formation for receiving a fuel
22 from the subterranean formation; and
23 wherein at least a portion of a total fuel used to
24 power the fuel cells is supplied via the
25 feedback connection.

1

2 11. A subterranean formation heater comprising:
3 a casing having a plurality of fuel cells;
4 an oxidant conduit and a fuel conduit connected
5 directly to or near a planetary surface; and
6 wherein the fuel cells run in a continuous and/or
7 intermittent process mode as fed by a continuous
8 and/or intermittent supply of the oxidant and
9 the fuel passing through said conduits.

10

11 12. A conduction heater comprising:
12 a plurality of fuel cells;
13 a plurality of conduits, each conduit being in
14 gaseous communication with at least one of said
15 fuel cells;
16 a manifold comprising conduits but no fuel cells; and
17 wherein the manifold connects a planetary
18 surface to the plurality of fuel cells.

19

20 13. The heater of claim 12, wherein at least one of
21 said manifold conduits conducts relatively warmer gas away
22 from said fuel cells and at least one of said conduits
23 conducts relatively cooler gas towards said fuel cells, and
24 wherein said manifold is adapted to transfer heat from said
25 warmer gas to said cooler gas.

1

2 14. The heater of claim 12, wherein said manifold
3 comprises thermal insulation to inhibit transfer of heat
4 from said manifold to a surrounding environment.

5

6 15. A conduction heater for heating a subterranean
7 formation, said conduction heater comprising:

8 a plurality of fuel cells;
9 a plurality of conduits, each conduit being in
10 gaseous communication with at least one of said
11 fuel cells;
12 a casing enclosing said fuel cells;
13 each of said fuel cells comprises an anode and a
14 cathode separated by an electrolyte;
15 at least some of said fuel cells are electrically
16 coupled in a series;
17 wherein each of said fuel cells comprises at least
18 one plate having plural holes formed therein, at
19 least one of said holes in gaseous communication
20 with said fuel cell;
21 wherein said conduits are formed by aligning
22 corresponding of said holes in each of said fuel
23 cells to form a continuous passageway;
24 wherein said plates are assembled into a stack
25 module; and

1 wherein the stack modules are interconnectable in a
2 linearly scalable manner, thereby providing a
3 desired length for the conduction heater.

4

5 16. A conductive heater comprising:
6 a fuel cell ceramic mounted in a plate;
7 a vertical assembly of plates forming a stack which
8 is mounted in a casing;
9 each casing having an end connector, thereby forming
10 a geothermic fuel cell module; and
11 wherein a plurality of geothermic fuel cell modules
12 are assembled end to end to form a conductive
13 heater of a desired length.

14

15 17. The conductive heater of claim 16, wherein each
16 plate has a plurality of holes, thereby forming a plurality
17 of conduits within the casing, at least one of the conduits
18 forming an exhaust conduit, wherein exhaust gases are
19 conveyed in a gaseous state to a planetary surface.

20

21 18. A conductive heater comprising:
22 a fuel cell ceramic mounted in a plate;
23 a vertical assembly of plates forming a stack which
24 is mounted in a casing;

1 wherein each plate has a plurality of holes, thereby
2 forming a plurality of conduits within the
3 casing;
4 at least one of the conduits forming an exhaust
5 conduit; and
6 wherein exhaust gases are conveyed in a gaseous state
7 to a planetary surface.

8

9 19. A conductive heater comprising:
10 a fuel cell ceramic mounted in plate;
11 a vertical assembly of plates forming a stack which
12 is mounted in a casing;
13 wherein a stack is assembled to form a conductive
14 heater of a desired length; and
15 wherein said stack has a plurality of conduits
16 connected to a planetary surface for feeding
17 fuel to the fuel cells.

18

19 20. The conductive heater of claim 19, wherein each
20 plate has a plurality of holes, thereby forming a plurality
21 of conduits within the casing, at least one of the conduits
22 forming an exhaust conduit, wherein exhaust gases are
23 conveyed in a gaseous state to a planetary surface.

24

25 21. A conductive heater comprising:

1 a plurality of conduits in a borehole;
2 said plurality of conduits communicating from a
3 planetary surface to a plurality of fuel cells
4 in the borehole;
5 wherein the conduits provide a passageway for at
6 least an oxidant and a fuel for the fuel cells;
7 and
8 wherein a quantity of the plurality of fuel cells is
9 selected to provide a desired heat output.

10
11 22. The conductive heater of claim 21 further
12 comprising a segment of the plurality of conduits which
13 forms a manifold not comprising a fuel cell.

14
15 23. The conductive heater of claim 22, wherein the
16 manifold further comprises a heat exchanger.

17
18 24. A method to start up a down hole conduction heater,
19 comprising the steps of:
20 forming a stack of fuel cells in a casing;
21 inserting the stack down a borehole;
22 feeding the stack with a plurality of conduits to
23 supply an oxidant and fuel to the stack; and

1 bringing a temperature of the stack up to an
2 operating temperature in the range of about 750°C
3 to about 1000°C.

4

5 25. The method of claim 24 further comprising the step
6 of circulating a preheated fluid through at least one
7 conduit for bringing the temperature of the stack up.

8

9 26. The method of claim 24 further comprising the step
10 of using a voltage applied to the stack for bringing the
11 temperature of the stack up.

12

13 27. A conductive heater for heating an underground
14 resource layer to facilitate mining the underground resource
15 layer, the conductive heater comprising:

16 a plurality of conduits connecting a planetary
17 surface to a plurality of fuel cell assemblies;

18 wherein each of said fuel cell assemblies has a
19 heat generating wafer;

20 said plurality of conduits further comprising a
21 fuel conduit, an oxidant conduit, and an exhaust conduit;

22 and wherein each of said fuel cell assemblies
23 further comprise a network of channels adjacent a cathode
24 side of the wafer, thereby feeding the oxidant to every part
25 of the cathode side of the wafer.

1

2 28. The apparatus of claim 27, wherein the network of
3 channels further comprise ridges defining the network of
4 channels, and wherein the ridges support the wafer and
5 provide electrical contact from the cathode side of the
6 wafer to the fuel cell assembly.

7

8 29. The apparatus of claim 28, further comprising a
9 network of channels and ridges adjacent an anode side of the
10 wafer, said network of channels adjacent the anode side of
11 the wafer conducting fuel from the fuel conduit to the anode
12 side of the wafer.

13

14 30. The apparatus of claim 29, wherein the ridges
15 adjacent the anode side of the wafer provide electrical
16 contact from the anode side of the wafer to the fuel cell
17 assembly.

18

19 31. The apparatus of claim 30, wherein the fuel cell
20 assemblies each further comprise a pair of interconnect
21 plates and gaskets all having aligned holes forming the
22 plurality of conduits.

23

1 32. The apparatus of claim 31, wherein said
2 interconnect plates and gaskets have interconnect bolts
3 therethrough to form a stack of fuel cell assemblies.

4

5 33. The apparatus of claim 32, wherein each stack has a
6 male connector end and a female connector end, and
7 wherein a plurality of stacks connected end to end form
8 a stick of fuel cell assemblies.

9

10 34. The apparatus of claim 33, wherein each stick
11 further comprises an exterior casing, thereby protecting the
12 fuel cell assemblies.

13

14 35. The apparatus of claim 34 further comprising a
15 preheater means functioning to bring the stick to an
16 operating temperature.

17

18 36. The apparatus of claim 35, wherein the stick has
19 length selected to provide a chosen amount of heat to the
20 underground resource layer.

21

22 37. The apparatus of claim 36 further comprising spacer
23 plates having aligned holes with the interconnect plates,
24 said spacer plates selectively reducing a heat output of the
25 stick.

1

2 38. The apparatus of claim 36, wherein a plurality of
3 sticks connected end to end form a string of fuel cell
4 assemblies having a length selected to heat all or part of
5 the underground resource layer.

6

7 39. The apparatus of claim 34 further comprising a
8 manifold connecting the string to the planetary surface,
9 said manifold having the plurality of conduits in close
10 proximity with each other to transfer heat from the exhaust
11 conduit to the oxidant conduit.

12

13 40. The apparatus of claim 38 further comprising an
14 insulated current return cable attached to a bottom of the
15 string, thereby forming a useful electric potential between
16 a top of the string and the cable.

17

18 41. A fuel cell assembly comprising: an interconnect
19 plate having a peripheral edge;

20 said interconnect plate having a heat conductive
21 structure;

22 a plurality of fuel cells mounted adjacent to the
23 peripheral edge, thereby transmitting heat to the peripheral
24 edge; and

1 a plurality of channels to the fuel cell to provide
2 fuel and an oxidant and to transport exhaust gases.

3

4 42. The apparatus of claim 41, wherein the interconnect
5 plated further comprises a plurality of holes which form a
6 plurality of conduits when a plurality of interconnect
7 plates are stacked.

8

9 43. A subterranean conductive heater comprising:
10 a plurality of conduits arranged wherein at least two
11 conduits are spaced apart and parallel to one another;
12 a plurality of fuel cell assemblies supported
13 between the at least two conduits which are spaced apart;
14 and wherein the conduits communicate from a
15 planetary surface to the plurality of fuel cells a fuel and
16 an oxidant.

17

18 44. A subterranean conductive heater comprising:
19 a plurality of parallel conduits, at least two
20 members of the conduits adjacent one another to exchange
21 heat therebetween; and
22 a plurality of fuel cell assemblies supported outbound
23 of the plurality of parallel conduits so as to receive a
24 fuel and an oxidant from the conduits and to transmit heat
25 to the conduits and to transmit heat outbound.

1

2 45. The apparatus of claim 44, wherein the plurality of
3 fuel cell assemblies each further comprise a ring shape.

4