Simulation and analysis of the production of the Higgs boson in pp collisions using PYTHIA and ROOT

Proyecto Física Computacional

Sebastián Fuenzalida Garrido

Universidad Técnica Federico Santa María

January 14, 2021

Outline

- Introduction and motivations
 - The standard model
 - The discovery of the Higgs boson
- Theoretical framework
 - ROOT
 - PYTHIA
 - A simple PYTHIA algorithm
- Results
 - A simple analysis of the Higgs
 - $\blacksquare H \rightarrow \gamma \gamma$
 - $\blacksquare H \rightarrow c\bar{c}$
- Conclusions and remarks
- Acknowledgments

Introduction and motivations

■ The standard model (SM) of particle physics describes many experimental results that probe the interactions between elementary particles.

- The standard model (SM) of particle physics describes many experimental results that probe the interactions between elementary particles.
- In the SM, the building blocks of matter are the fermions, which are comprised of quarks and leptons.

- The standard model (SM) of particle physics describes many experimental results that probe the interactions between elementary particles.
- In the SM, the building blocks of matter are the fermions, which are comprised of quarks and leptons.
- The interactions are mediated throught the exchange of force carriers: the photon, the W and Z bosons, and the gluons.

- The standard model (SM) of particle physics describes many experimental results that probe the interactions between elementary particles.
- In the SM, the building blocks of matter are the fermions, which are comprised of quarks and leptons.
- The interactions are mediated throught the exchange of force carriers: the photon, the W and Z bosons, and the gluons.
- All the elementary particles acquire mass through their interaction with the Higgs field.

Standard Model of Elementary Particles

■ The SM doesn't predict the value of the masses of the elementary particles, including the Higgs boson mass.

- The SM doesn't predict the value of the masses of the elementary particles, including the Higgs boson mass.
- The particles masses are considered parameters to be determined experimentally.

- The SM doesn't predict the value of the masses of the elementary particles, including the Higgs boson mass.
- The particles masses are considered parameters to be determined experimentally.
- The range of possible values for the Higgs boson are all bellow the 1 TeV.

- The SM doesn't predict the value of the masses of the elementary particles, including the Higgs boson mass.
- The particles masses are considered parameters to be determined experimentally.
- The range of possible values for the Higgs boson are all bellow the 1 TeV.
- The data taken from the LEP and SLC colliders, the Tevatron, and other experiments predicted the Higgs boson mass in the range 90 GeV − 152 GeV at the 95% confidence level (CL).

■ Furthermore, other searches at LEP excluded values lower than 114.4 GeV at 95% CL, and measurements at Tevatron excluded mass range 162 GeV − 166 GeV at 95% CL.

- Furthermore, other searches at LEP excluded values lower than 114.4 GeV at 95% CL, and measurements at Tevatron excluded mass range 162 GeV − 166 GeV at 95% CL.
- The discovery of the SM Higgs boson is one of the primary scientific goals of the LHC.

- Furthermore, other searches at LEP excluded values lower than 114.4 GeV at 95% CL, and measurements at Tevatron excluded mass range 162 GeV − 166 GeV at 95% CL.
- The discovery of the SM Higgs boson is one of the primary scientific goals of the LHC.
- The CMS experiment excluded at 95% CL masses from 127 to 600 GeV. The ATLAS experiment excluded also at 95% CL masses in the ranges 111.4 116.4, 119.4 122.1, and $129.2 541 \ GeV$.

- Furthermore, other searches at LEP excluded values lower than 114.4 GeV at 95% CL, and measurements at Tevatron excluded mass range 162 GeV − 166 GeV at 95% CL.
- The discovery of the SM Higgs boson is one of the primary scientific goals of the LHC.
- The CMS experiment excluded at 95% CL masses from 127 to 600 GeV. The ATLAS experiment excluded also at 95% CL masses in the ranges 111.4 116.4, 119.4 122.1, and $129.2 541 \ GeV$.
- In 2012, the ATLAS and CMS collaborations reported an excess of events between 2σ and 3σ near 125~GeV.

■ The final result was the observation by the ATLAS and CMS collaborations of a new heavy boson with a mass of approximately 125 GeV.

- The final result was the observation by the ATLAS and CMS collaborations of a new heavy boson with a mass of approximately 125 GeV.
- In particular, the CMS publication focused on the observation in five decay channels in the low-mass range from 110 to 145 GeV.

- The final result was the observation by the ATLAS and CMS collaborations of a new heavy boson with a mass of approximately 125 GeV.
- In particular, the CMS publication focused on the observation in five decay channels in the low-mass range from 110 to 145 GeV.
- This decay channels correspond to: $H \to \gamma \gamma$, $H \to ZZ \to 4l$, $H \to WW \to lvlv$, $H \to \tau \tau$, and $H \to bb$, where l stand for e^- and μ^- .

- The final result was the observation by the ATLAS and CMS collaborations of a new heavy boson with a mass of approximately 125 GeV.
- In particular, the CMS publication focused on the observation in five decay channels in the low-mass range from 110 to 145 GeV.
- This decay channels correspond to: $H \to \gamma \gamma$, $H \to ZZ \to 4l$, $H \to WW \to lvlv$, $H \to \tau \tau$, and $H \to bb$, where l stand for e^- and μ^- .
- The channels with the highest sensitivity for discovering the SM Higgs boson with a mass near 125 GeV are $H \to \gamma \gamma$ and $H \to ZZ \to 4l$.

Theoretical framework

■ ROOT is an object-oriented C++ framework aimed at solving the data analysis challenges of high-energy physics.

ROOT'

- ROOT is an object-oriented C++ framework aimed at solving the data analysis challenges of high-energy physics.
- ROOT was developed in the context of the NA49 experiment at CERN in the 90s, where this experiment has generated an impresive amount of data, around 10 Terabytes per run.

- ROOT is an object-oriented C++ framework aimed at solving the data analysis challenges of high-energy physics.
- ROOT was developed in the context of the NA49 experiment at CERN in the 90s, where this experiment has generated an impresive amount of data, around 10 Terabytes per run.
- The ROOT framework has a lot of libraries which contains several classes.

- ROOT is an object-oriented C++ framework aimed at solving the data analysis challenges of high-energy physics.
- ROOT was developed in the context of the NA49 experiment at CERN in the 90s, where this experiment has generated an impresive amount of data, around 10 Terabytes per run.
- The ROOT framework has a lot of libraries which contains several classes.
- Among the libraries we have libraries for histograms, graphs, fitting, mathematical functions, etc.

- ROOT is an object-oriented C++ framework aimed at solving the data analysis challenges of high-energy physics.
- ROOT was developed in the context of the NA49 experiment at CERN in the 90s, where this experiment has generated an impresive amount of data, around 10 Terabytes per run.
- The ROOT framework has a lot of libraries which contains several classes.
- Among the libraries we have libraries for histograms, graphs, fitting, mathematical functions, etc.
- An example of how the classes are organized is shown bellow fow the histogram library:

The class hierarchy of histogram classes

■ The PYTHIA program is a standard tool for the generation of high-energy collitions.

- The PYTHIA program is a standard tool for the generation of high-energy collitions.
- It focuses on centre-of-mass energies greater than about 10 GeV.

- The PYTHIA program is a standard tool for the generation of high-energy collitions.
- It focuses on centre-of-mass energies greater than about 10 GeV.
- It comprises a coherent set of physics models for the evolution from a few-body high-energy ('hard') scattering process to a complex multihadronic final state.

- The PYTHIA program is a standard tool for the generation of high-energy collitions.
- It focuses on centre-of-mass energies greater than about 10 GeV.
- It comprises a coherent set of physics models for the evolution from a few-body high-energy ('hard') scattering process to a complex multihadronic final state.
- The particles are produced in vacuum, but also can be added external detector effects to the simulation.

■ Specifically, PYTHIA is a general-purpuse event generator for high-energy particle collition, rewritten from scratch in C++.

- Specifically, PYTHIA is a general-purpuse event generator for high-energy particle collition, rewritten from scratch in C++.
- PYTHIA can be run standalone, but it can also interfaced with a set of other libraries.

- Specifically, PYTHIA is a general-purpuse event generator for high-energy particle collition, rewritten from scratch in C++.
- PYTHIA can be run standalone, but it can also interfaced with a set of other libraries.
- Among the libraries we have AlpGen, MadGraph, PowHeg, FastJet and ROOT.

- Specifically, PYTHIA is a general-purpuse event generator for high-energy particle collition, rewritten from scratch in C++.
- PYTHIA can be run standalone, but it can also interfaced with a set of other libraries.
- Among the libraries we have AlpGen, MadGraph, PowHeg, FastJet and ROOT.
- For this project we are interested only in ROOT.

A simple PYTHIA algorithm

Let's make a simple ${\tt PYTHIA}$ algorithm. Indeed, go to the directory

```
> cd pythia8303/examples
```

In such directory, create the file mymainO1.cc. Once the file is created, modify the Makefile located in the same directory:

Now, in the file mymain01.cc add the following lines of code:

```
Pythia pythia;
pythia.readString("HiggsSM:all = on");
pythia.readString("Beams:eCM = 13000.");
pythia.readString("Next:numberShowEvent = 2");
pythia.init();
```

```
for (int iEvent = 0; iEvent < number_of_events; ++</pre>
      iEvent)
2 {
      pythia.next();
3
      Int_t ie = 0;
4
      for (Int_t i = 0; i < pythia.event.size(); ++i)</pre>
5
      {
6
           if (pythia.event[i].id() == 11)
7
           {
8
               ie = i;
9
               m_e_histogram -> Fill(pythia.event[ie].m()
      );
11
13 }
```

```
for (int iEvent = 0; iEvent < number_of_events; ++</pre>
      iEvent)
2 {
      pythia.next();
3
      Int_t imu = 0;
4
       for (Int_t i = 0; i < pythia.event.size(); ++i)</pre>
5
       {
6
            else if (pythia.event[i].id() == 13)
7
       {
8
           imu = i;
9
           m_mu_histogram -> Fill(pythia.event[imu].m());
10
11
12
13 }
```

Finally, to compile the algorithm write the following commands in the terminal shell

```
1 > make mymain01
2 ./mymain01 > myout01
```

This will generate the following output:

```
76 *----- PYTHIA Process Initialization
77
78
     We collide p+ with p+ at a CM energy of 1.300e+04 GeV
79
80
81
82
     Subprocess
                                                    Code
                                                             Estimated
83
                                                              max (mb)
84
85
86
   | f fbar -> H (SM)
                                                     901 |
                                                             9.030e-09
     q q \rightarrow H (SM)
                                                     902
                                                             2.524e-07
   | gamma gamma -> H (SM)
                                                     903
                                                             8.477e-12
90 | f fbar -> H0 Z0 (SM)
                                                     904 I
                                                             5.187e-09
   | f fbar -> H0 W+- (SM)
                                                             9.431e-09
                                                     905
   | f f' -> H0 f f'(Z0 Z0 fusion) (SM)
                                                     906 I
                                                             1.835e-08
   | f 1 f 2 -> H0 f 3 f 4 (W+ W- fusion) (SM)
                                                             4.832e-08
                                                     907 I
   l q q -> H t tbar (SM)
                                                             5.102e-08
                                                     908 I
95
   | q qbar -> H t tbar (SM)
                                                     909 I
                                                             2.603e-08
96
97 *----- End PYTHIA Process Initialization ------
```

```
127 ----- PYTHIA Info Listing -----
128
129 Beam A: id = 2212, pz = 6.500e+03, e = 6.500e+03, m = 9.383e-01.
130 Beam B: id = 2212. pz = -6.500e+03. e = 6.500e+03. m = 9.383e-01.
131
132 In 1: id = 21, x = 1.508e-03, pdf = 2.813e+01 at 02 = 1.562e+04.
133 In 2: id = 21. x = 6.131e-02. pdf = 1.561e+00 at same 02.
134
135 Subprocess g g -> H (SM) with code 902 is 2 -> 1.
136 It has sHat = 1.562e+04.
       alphaEM = 7.846e-03, alphaS = 1.238e-01 at Q2 = 1.562e+04.
137
138
139 Impact parameter b = 6.777e-01 gives enhancement factor = 1.643e+00.
140 Max pT scale for MPI = 1.300e+04, ISR = 1.300e+04, FSR = 1.300e+04.
141 Number of MPI = 5, ISR = 12, FSRproc = 54, FSRreson = 12.
142
143 ----- End PYTHIA Info Listing -----
```

147	no	id	name	status	m	others	daugh	ters	co.	lours	p_x	P_y	p_z	e	m
148	0		(system)	-11	0	0	e dadgii	0	0	0	0.000	0.000	0.000	13000.000	13000.
149	1	2212	(p+)	-12	0	0	3	0	0	0	0.000	0.000	6500.000	6500.000	θ.
150	2	2212	(p+)	-12	0	Θ	4	Θ	0	Θ	0.000	0.000	-6500.000	6500.000	θ.
151	3	21	(g)	-21	1	0	5	Θ	101	102	0.000	0.000	9.802	9.802	Θ.
152	4	21	(g)	-21	2	0	5	Θ	102	101	0.000	0.000	-398.531	398.531	Θ.
153	5	25	(h0)	-22	3	4	6	7	0	0	0.000	0.000	-388.730	408.333	124.
154	6	4	c	23	5	0	0	0	103	0	49.441	8.740	-315.857	319.826	1.
155	7	-4	cbar	23	5	0	0	Θ	0	103	-49.441	-8.740	-72.873	88.507	1.
156				Charge si	um:	0.000		Moi	mentum	sum:	0.000	0.000	-388.730	408.333	124

160		PYTHIA	Event Listing	(complete	event)										
162	по	id	name	status	mot	hers	daugh	ters	co	lours	p_x	P_y	p_z	e	п
163	0	98	(system)	-11	0	0	Θ_	0	Θ	Θ	0.000	0.000	0.000	13000.000	13000.00
164	1	2212	(p+)	-12	0	Θ	270	0	8	0	0.000	0.000	6500.000	6500.000	0.93
165	2	2212	(p+)	-12	0	8	271	0	8	0	0.000	0.000	-6500.000	6500.000	6.93
166	3	21	(g)	-21	6	0	5	0	181	102	0.000	0.000	9.802	9.802	0.00
167	4	21	(g)	-21	7	7	5	0	182	101	0.000	0.000	-398.531	398.531	0.00
168	5	25	(h0)	-22	3	4	8	8	Θ	0	0.000	0.000	-388.730	408.333	124.99
169	6	21	(g)	-41	10	10	9	3	101	104	0.000	0.000	38.246	38.246	0.00
178	7	21	(g)	-42	11	0	4	4	182	101	-0.000	-0.000	-398.531	398.531	0.00
171	8	25	(h0)	-44	5	5	12	12	8	0	44.676	28.554	-358.914	383.739	124.99
172	9	21	(g)	-43	6	0	13	13	182	104	-44.676	-28.554	-1.371	53.039	0.00
173	10	21	(g)	-42	15	15	6	6	101	104	0.000	-0.000	38.246	38.246	0.00
174	11	21	(g)	-41	16	0	14	7	102	105	-0.000	0.000	-446.740	446.740	0.00
175	12	25	(h0)	-44	8	8	17	17	θ	0	44.664	40.774	-390.060	414.040	124.99
176	13	21	(g)	-44	9	9	18	18	182	104	-44.677	-27.658	-6.023	52.889	0.00
177	14	21	(g)	-43	11	0	19	19	181	105	0.013	-13.116	-12.411	18.057	0.00
178	15	21	(g)	-42	21	0	10	10	101	104	-0.000	-0.000	38.246	38.246	0.00
179	16	21	(g)	-41	22	22	20	11	186	105	0.000	0.000	-722.639	722.639	0.00
188	17	25	(h0)	-44	12	12	23	23	Θ	0	37.479	31.810	-393.439	415.735	124.99
181	18	21	(g)	-44	13	13	24	24	182	104	-45.203	-28.315	-5.647	53.637	0.00
182	19	21	(g)	-44	14	14	25	25	181	105	-0.259	-13.455	-12.376	18.283	6.66
183	26	21	(g)	-43	16	0	26	26	186	102	7.983	9.960	-272.931	273.229	0.00
184	21	21	(g)	-41	34	34	27	15	107	104	-0.000	0.000	59.555	59.555	0.00
185	22	21	(g)	-42	35	0	16	16	186	105	-0.000	-0.000	-722.639	722.639	0.00
186	23	25	(h0)	-44	17	17	36	36	Θ	0	35.355	30.136	-386.750	409.095	124.99
187	24	21	(g)	-44	18	18	37	37	182	104	-49.775	-31.919	-12.300	60.396	0.00
188	25	21	(g)	-44	19	19	28	29	181	105	-0.822	-13.899	-13.412	19.333	0.00
189	26	21	(g)	-44	20	20	39	39	186	102	7.955	9.938	-270.832	271.131	0.00
190	27	21	(g)	-43	21	0	30	30	107	101	7.287	5.744	20.211	22.239	0.00
191	28	21	(g)	-51	25	0	38	38	108	105	-0.160	-16.166	-4.996	16.921	0.000

1893	*	PYTHIA Error and Warning Messages Statistics*
1894	1	
1895	times	message
1896	1	I I
1897	19	Error in Pythia::next: hadronLevel failed; try again
1898	15	Error in StringFragmentation::fragment: stuck in joining
1899	4	Error in StringFragmentation::fragmentToJunction: caught in junction flavour loop
1900	2	Warning in HadronWidths::pickMasses: angular momentum and running widths not used
1901	4	Warning in PhaseSpace2to2tauyz::trialKin: maximum for cross section violated
1902	1	Warning in Pythia::check: energy-momentum not quite conserved
1903	5	Warning in Pythia::check: not quite matched particle energy/momentum/mass
1904	2	Warning in SimpleSpaceShower::pT2nextQCD: small daughter PDF
1905	4	Warning in SimpleSpaceShower::pT2nextQCD: weight above unity
1906	7	Warning in SimpleTimeShower::findMEcorr: ME weight above PS one
1907	1	Warning in SimpleTimeShower::pTnext: negative dipole mass.
1908	71	Warning in StringFragmentation::fragmentToJunction: bad convergence junction rest frame
1909	1	
1910	*	End PYTHIA Error and Warning Messages Statistics

Results

A simple analysis of the Higgs

■ Before to show the main analysis of this project let's study in first place the kinematical variables associated with the Higgs boson.

A simple analysis of the Higgs

- Before to show the main analysis of this project let's study in first place the kinematical variables associated with the Higgs boson.
- Indeed, the histogram for the variables p_T , η , ϕ and E have the form

■ Furthermore, the histogram for the variables y, θ , E_T and m_T have the form

• On the other hand, the mass of the Higgs boson have the following distribution:

■ Finally, the production of the Higgs boson due to the processes $f\bar{f} \to H^0$, $gg \to H^0$, $\gamma\gamma \to H^0$, $f\bar{f} \to H^0Z^0$, $f\bar{f} \to H^0W^{\pm}$, $ff' \to H^0ff'$, $f_1f_2 \to H^0f_3f_4$, $gg \to H^0t\bar{t}$ and $q\bar{q} \to H^0t\bar{t}$ is shown in the stacked mass histogram

$H \to \gamma \gamma$

■ In the $H \to \gamma \gamma$ channel we made a search of the diphoton mass $m_{\gamma\gamma}$ in the range 110-150 GeV.

$H \rightarrow \gamma \gamma$

- In the $H \to \gamma \gamma$ channel we made a search of the diphoton mass $m_{\gamma\gamma}$ in the range 110-150 GeV.
- The diphoton mass receive contributions from a large irreducible background from quantum chromodynamics.

$H \to \gamma \gamma$

- In the $H \to \gamma \gamma$ channel we made a search of the diphoton mass $m_{\gamma\gamma}$ in the range 110-150 GeV.
- The diphoton mass receive contributions from a large irreducible background from quantum chromodynamics.
- The channel $H \to \gamma \gamma$ is one of the most promising channels in the search of the SM Higgs boson in low mass range.

■ Now, let's try to reconstruct the SM Higgs boson in the $H \to \gamma \gamma$ channel. Indeed, the distribution of the masses of the all possibles daughter (according to PYTHIA) of the SM Higgs boson is

■ From the above histogram, we see that the majority of the events corresponds to daughter that are massless. Indeed, by doing a histogram of the ID of the daughters that are massless we get

■ From above we see that we have daughters that correspond to photons and gluons. However, we are interested only on the photon daughters.

- From above we see that we have daughters that correspond to photons and gluons. However, we are interested only on the photon daughters.
- In this way, by using the formula

$$m_{\gamma\gamma} = \sqrt{2p_{T,1}p_{T,2}\left(\cosh\left(\eta_1 - \eta_2\right) - \cos\left(\phi_1 - \phi_2\right)\right)},$$
 (1)

we get the following histogram for the diphoton mass:

$H \rightarrow c\bar{c}$

■ When the Higgs boson was discovered, this particle was measured in the decay channel $\gamma\gamma$, ZZ, WW and $\tau\tau$.

$H \to c\bar{c}$

- When the Higgs boson was discovered, this particle was measured in the decay channel $\gamma\gamma$, ZZ, WW and $\tau\tau$.
- However, one of the highest priorities of the LHC is the measurement of the coupling of the *H* boson with other SM particles.

$H \to c\bar{c}$

- When the Higgs boson was discovered, this particle was measured in the decay channel $\gamma\gamma$, ZZ, WW and $\tau\tau$.
- However, one of the highest priorities of the LHC is the measurement of the coupling of the *H* boson with other SM particles.
- Recently, ATLAS and CMS reported the coupling of the H boson with the quarks t and b.

$H \to c\bar{c}$

- When the Higgs boson was discovered, this particle was measured in the decay channel $\gamma\gamma$, ZZ, WW and $\tau\tau$.
- lacktriangle However, one of the highest priorities of the LHC is the measurement of the coupling of the H boson with other SM particles.
- Recently, ATLAS and CMS reported the coupling of the H boson with the quarks t and b.
- Thus, the next objetive is the measurement of the coupling of H with second generation quarks (c and s).

■ Now, let's analyse the decay $H \to c\bar{c}$ by using the PYTHIA simulator. Indeed, again we have that the mass of the possible daughters are distributed according to the following histogram:

■ From the previous histogram we have that there is a very low production of daughters between the mass range 1-1.5 GeV, where the charm quark is located.

- From the previous histogram we have that there is a very low production of daughters between the mass range 1-1.5 GeV, where the charm quark is located.
- This is expected, because the branching fraction for the decay $H \to c\bar{c}$ is $0.0288^{+0.0016}_{-0.0006}$. This says that the coupling of the Higgs to the quarks $c\bar{c}$ is very weak.

- From the previous histogram we have that there is a very low production of daughters between the mass range 1-1.5 GeV, where the charm quark is located.
- This is expected, because the branching fraction for the decay $H \to c\bar{c}$ is $0.0288^{+0.0016}_{-0.0006}$. This says that the coupling of the Higgs to the quarks $c\bar{c}$ is very weak.
- Indeed, the coupling of the Higgs with the third generation quarks $b\bar{b}$ is much strong.

■ In this way, by making a histogram with the ID of the produced charm quarks we get

id daughters two

■ Finally, by using the center-of-mass formula for a 2-body decay process

$$M = \sqrt{m_1^2 + m_2^2 + 2(E_1 E_2 - \vec{p_1} \cdot \vec{p_2})},$$
 (2)

we get the following histogram

Conclusions and remarks

■ In this project we have tackled the problem of analyse the decay channels $H \to \gamma \gamma$ and $H \to c\bar{c}$.

- In this project we have tackled the problem of analyse the decay channels $H \to \gamma \gamma$ and $H \to c\bar{c}$.
- In particular, we have reconstructed the SM Higgs mass in these two decays channel, obtaining a resonance around the mass $m \sim 125$ GeV.

- In this project we have tackled the problem of analyse the decay channels $H \to \gamma \gamma$ and $H \to c\bar{c}$.
- In particular, we have reconstructed the SM Higgs mass in these two decays channel, obtaining a resonance around the mass $m \sim 125$ GeV.
- From the previous results we can conclude that the coupling with the second generation quarks is much weaker than the coupling with the photons.

- In this project we have tackled the problem of analyse the decay channels $H \to \gamma \gamma$ and $H \to c\bar{c}$.
- In particular, we have reconstructed the SM Higgs mass in these two decays channel, obtaining a resonance around the mass $m \sim 125$ GeV.
- From the previous results we can conclude that the coupling with the second generation quarks is much weaker than the coupling with the photons.
- The simulations were made with 1000 pp collisions. However, we can go further with more collisions by using computational clusters (e.g. LXPLUS).

Acknowledgments

I Would like to thanks to the professors Edson Carquin and Juan Manuel Flores for the very enlightening lectures on Computational Physics imparted during this semester. This work is supported by Beca Interna del programa de doctorado de la Universidad Ténica Federico Santa María. The references for this work can be finded in the project document.