

AN TOÀN THÔNG TIN

Giảng viên: Th.s Nguyễn Thu Hiền

Email: nthien@uneti.edu.vn

Tổ Mạng Máy Tính và Công Nghệ Đa Phương Tiện

Khoa Công nghệ Thông tin

Ví dụ về chuẩn mã hóa dữ liệu DES

- Cho bản tin M = 0123456789ABCDEF
- Khóa K = 133457799BBCDFF1 (với M, K được định dạng dưới dạng hệ thập lục phân).
- Sử dụng thuật toán mã hóa dữ liệu DES, tìm bản

mã tương ứng?

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

Các bước thực hiện

- > Bước 1: Sinh khóa con từ khóa K
- => K1, K2, ..., K16
 - Viết khóa K dưới dạng nhị phân (64b)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1	5 16 17 18 19 20	21 22 23 24 25 2	26 27 28 29 30 31 32 33	34 35 36 37 38 39 40 4	41 42 43 44 45 46 47 48 49 50 51	52 53 54 55 56 57 58 59 60 61 62 63 64
0 0 0 1 0 0 1 1 0 0 1 1 0 0 1	0 0 0 1 0 1	0 1 1 1 0	1 1 1 1 0 0 1 1	0 0 1 1 0 1 1	1 0 1 1 1 1 0 0 1 1 0	1 1 1 1 1 1 1 1 1 0 0 0 1

- Tạo 16 khóa con, mỗi khóa 48b:
- Hoán vị 56b dựa vào PC-1 (cho trước)

																																																																	т.
ı	1	2 3	3 4	5	6	7	8	9 1	.0	11	12	13	3 1	4 :	15	16	1	7 1	18	19	20	21	1 2	22	23	24	1 2	5	26	27	28	3 2	9 3	30	31	. 3	2 3	33	34	35	3	6 3	37	38	39	40	41	42	43	3 4	4 4	5 4	6	47	48	49	50	51	1 5	52 5	53 5	54	55	56	Ι
ı	1	1 :	1	0	0	0	0	1	1	0	0	1	L	1	0	0	:	1	0	1	0	1	1	0	1	()	1	1	1	1	L	0	1	0) :	1	0	1	0)	1	0	1	1	0	C	1	1 :	L	0	0	1	1	1	1	C) (0	0	1	1	1	1	I
ı												(00																																				D0																Γ
н			•	•					_	,								٠.	,	-		'	,			'	'	٠,	-			,	,			,	-	,		'	'	٠,	-	,			,	'	,	-	'	-		-			-	-	'						П

- Mỗi cặp CnDn được hình thành từ các cặp trước nó Cn-1Dn-1 theo quy tắc CnDn | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Dịch trái | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- Kn: áp dụng bảng hoán vị PC-2 (mỗi cặp có 56 bit, nhưng PC-2 chỉ sử dụng 48 trong số này).

- Bước 2: Sử dụng phép hoán vị khởi đầu IP để
 - hoán vị các bit của M.
 - Viết M dưới dạng nhị phân (64b)
 - Kết quả nhận được chia thành 2 nửa là $R0 = m_{64}m_{63}...m_{33}$, $L0 = m_{32}...m_1$.

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

IP

1	2	3	4 5	6	7	8	9	10	11	12	2 1	3	14	15	1	6	17	18	19	9 7	20	21	22	2	3 2	4	25	26	27	7 2	8 2	29	30	31	3	2 3	3 3	34	35	36	37	38	39	9 4	0 4	1	42	43	44	45	46	5 4	7 4	8 4	9 5	0 5	1 5	52 !	3	54	55	56	57	58	59	60	6:	1 6	2 6	3 6	,4
0	0	0	0 0	0 0	0	1	0	0	1	. ()	0	0	1		1	0	1	. (0	0	0	1		0	1	0	1	1	1	0	0	1	1	1 :	1	1	0	0	0	1	0	()	1	1	0	1	0	1	. ()	1	1	1	1	0	0	1	1	0	1	1	1	1	. () :	1	1	1	1
ΙГ	П	\Box	Т	Т	Т	Т	П		Г		Т				Т	Т		<i></i>	П	Т	\neg		_	Т				_		Т	\top	П			Τ	Т		П	П				П	Т	Т								Т	Т			Т	П		\Box					Т			Т		Т	Т

н	
н	
н	11213141516171819110111121131141511611711811912012112212312412512612712812913013113213313413513613713813914014142143144151461471481491501511521531541551561.57158159160161162163164
н	
н	
н	
н	
п	RO

- Bước 3: Với i chạy từ i = 1 đến 16 thực hiện:
 Tính các Li và Ri theo công thức:
 - Li = Ri-1
 - Ri = Li-1 XOR f(Ri-1, Ki)
 - Trong đó f(Ri-1, Ki) = P(S(E(Ri-1) XOR Ki)).

 $K1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010$

L1 = R0= 1111 0000 1010 1010 1111 0000 1010 1010

$$R1 = L0 \oplus f(R0,K1)$$

Để tính hàm f, Rn-1 từ 32bit => 48bit
 sử dụng bảng lựa chọn E.

R0 = 1111 0000 1010 1010 1111 0000 1010 1010

E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101

JI	U				
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

> Tính f:

- XOR đầu ra E(Rn-1) với khóa Kn: f1 = K1⊕ E(R0)
- K1= = 000110 110000 001011 101111 111111 000111 000001 110010
- E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101
- => K1 \oplus E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111 \approx B1B2B3B4B5B6B7B8
- Sử dụng mỗi nhóm 6bit như các địa chỉ trong "S boxes", để chuyển 8 nhóm 6b => 8 nhóm 4b. (8 "S boxes")
- > Tính S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
- Với Si(Bi) tương ứng là đầu ra của hộp thứ i "S box"

Các hộp "S boxes"

_	64	0		_	_		-		7	_	_	10		12	12		15
	S1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
Ī	S2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
	1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
	2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	S3	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
	1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
ĺ	S4	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
	1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
┪	3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

							-	-		11	/					
S5	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
2	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
3	11	8	12	7	0	14	2	13	6	15	0	9	10	4	5	3
S6	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
S7	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
S8	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8

Tính S1, S2,..., S8 dựa vào các bảng "S boxes"

- Xác định Si(B): đầu vào B (6b)
- bit đầu, bit cuối của B: đặt là x.
- 4 bit giữa của B: đặt là y.

S1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

- Tra bảng S1 với hàng x, cột y: được 1 số (trong khoảng 0 - 15) => biểu diễn nó bởi một khối 4 bit.
- => Khối đó là đầu ra S1(B) của S1 cho đầu vào B.
- - đầu vào B1 = 011000, bit đầu tiên là "0" và bit cuối
 cùng "0" 00= 0 => x=0 =>hàng 0.
 - bốn bit giữa là "1100", 1101 = 12=> y=12.
 - Tới (x,y)=(0,12) = 5 => 0101 => S1(B1) = 0101.

Tính S1, S2,..., S8 dựa vào các bảng "S boxes"

- > Xác định S2, ..., S8 (SV làm BT)
- $=> K1 \oplus E(R0) = 011000 010001 011110 111010 100001$
- $100110\ 010100\ 100111 \approx B1B2B3B4B5B6B7B8$
- =>S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
- = 0101 1100 1000 0010 1011 0101 1001 0111
- Hoán vị P các đầu ra S-box => giá trị cuối cùng của f:

f(R0,K1) = P(S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8))

=> dựa vào bảng P, tính f(R0,K1)

1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
S1(B1) (0	1	0	1	1	1	0	0	1	0	0	0	0	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	1	1	1
f(R0,K1)	0	0	1	0	0	0	1	1	0	1	0	0	1	0	1	0	1	0	1	0	1	0	0	1	1	0	1	1	1	0	1	1

0)0:(=:)00								
16	7	20	21					
29	12	28	17					
1	15	23	26					
5	18	31	10					
2	8	24	14					
32	27	3	9					
19	13	30	6					
22	11	4	25					

Vậy bước 3:

L1 = R0 => 1111 0000 1010 1010 1111 0000 1010 1010

 $R1 = L0 \oplus f(R0,K1)$

- = 1100 1100 0000 0000 1100 1100 1111 1111 0010 0011 0100 1010 1010 1001 1011 1011
- **= 1110 1111 0100 1010 0110 0101 0100 0100**
- ➤ Vòng lặp tiếp theo, i = 2 -> 16:
- => L2 = R1, R2 = L1 ⊕ f(R1, K2)...

- Bước 4: Vòng cuối ta có các khối L16 R16:
 - Đổi vị trí khối L16, R16 => R16 L16 = b1b2...b64.
- Bước 5: Sử dụng phép hoán vị kết thúc FP(Final Permutation nghịch đảo với hoán vị khởi đầu IP) ta thu được bản mã cần tìm: C = IP-1(b1b2...b64)

IP-1 = 1000 0101 1110 1000 0001 0011 0101 0100 0000 1111 0000 1010 1011 0100 0000 0101

=> chuyển về hệ 16: M = 0123456789ABCDEF C = 85E813540F0AB405

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

IP-1