APPy: Annotated Parallelism for Python on GPUs

Tong Zhou, Jun Shirako and Vivek Sarkar

Motivation

- Scientific Python programs can often benefit from using a GPU
- Two common approaches for GPU acceleration in Python
 - Library-based accelerations (e.g. CuPy), but many programs cannot be expressed using predefined operators alone
 - Creating custom CUDA/OpenCL/Numba CUDA kernels is challenging and time-consuming to get correctness and high performance
- Our solution (APPy)
 - Users write regular sequential Python code + annotate with simple pragmas
 - The compiler automatically generates GPU kernels from it

	CuPy	CUDA	APPy
Productivity	High	Low	High
Generality	Low	Very high	High

A quick example of APPy

An ordinary loop-based SpMV implementation in Python

```
def spmv(A_row, A_col, A_val, x):
2.
       N = A_{row.shape}[0]
3.
      y = empty([N - 1], dtype=A_val.dtype)
       for i in range(N - 1):
4.
5.
         y[i] = 0.0
         for j in range(A_row[i], A_row[1+i]):
6.
7.
           cols = A_col[j]
8.
           y[i] += A val[i] * x[cols]
9.
       return y
```


A quick example of APPy

An ordinary loop-based SpMV implementation in Python

```
def spmv(A row, A col, A val, x):
2.
       N = A row.shape[0]
       y = empty([N - 1], dtype=A val.dtype)
3.
       for i in range(N - 1):
4.
5.
         y[i] = 0.0
6.
         for j in range(A row[i], A row[1+i]):
7.
           cols = A col[i]
8.
           y[i] += A val[i] * x[cols]
       return y
9.
```

Ordinary SpMV parallelized with APPy

```
@appy.jit
    def spmv(A_row, A_col, A_val, x):
3.
       N = A \text{ row.shape}[0]
       y = empty([N - 1], dtype=A_val.dtype)
       #pragma parallel for
5.
       for i in range(N - 1):
6.
7.
         y[i] = 0.0
8.
         #pragma simd
9.
         for j in range(A_row[i], A_row[1+i]):
10.
           cols = A col[j]
11.
           y[i] += A val[j] * x[cols]
12.
       return y
```


Abstract machine model: a multi-vector processor

APPy compiler directives

- Annotations for loops
 - #pragma parallel for
 - #pragma sequential for
 - #pragma simd
- Annotations for statements
 - #pragma atomic
- Annotations for tensor expressions
 - #pragma {dim}=>{properties}

- Difference from OpenMP codegen
 - OpenMP directly exposes the parallelism hierarchy of the GPUs and requires more complicated pragmas to generate GPU code
 - OpenMP does not recognize and compile tensor expressions

Vector addition with APPy

Software

@appy.jit

def vector_add(a, b, c, N):

#pragma parallel for

for i in range(N):

c[i] = a[i] + b[i]5.

Hardware (abstract)

N workers launched

Utilize both layers of parallelism: parallel for + simd

- 1. @appy.jit
- 2. def vector add(a, b, c, N):
- 3. #pragma parallel for
- 4. for i in range(N):
- 5. c[i] = a[i] + b[i]

- 1. @appy.jit
- 2. def vector add(a, b, c, N):
- 3. #pragma parallel for **simd**
- 4. for i in range(N):
- 5. c[i] = a[i] + b[i]

$$i = 0$$

$$i = 2$$

i = 0

i = 1

i = 2

•••

N workers launched

$$\frac{N}{vector\ length}$$
 workers launched

Two ways to utilize vectorization

Annotate the loop with #pragma simd

```
@appy.jit
     def softmax loop oriented(a, b, M, N):
3.
       #pragma parallel for
       for i in range(M):
5.
         m = float('-inf')
6.
         #pragma simd
7.
         for j in range(N):
8.
           m = maximum(m, a[i,j])
9.
         s = 0.0
         #pragma simd
10.
11.
         for i in range(N):
12.
           s += exp(a[i,j] - m)
         #pragma simd
13.
         for j in range(N):
14.
15.
           b[i,j] = \exp(a[i,j] - m) / s
```

Write tensor expressions

```
    @appy.jit(auto_simd=True)
    def softmax_tensor_oriented(a, b, M, N):
    #pragma parallel for
    for i in range(M):
    m = max(a[i,:N])
    s = sum(exp(a[i,:N] - m))
    b[i,:N] = exp(a[i,:N] - m) / s
```

The compiler automatically converts these tensor expressions into strip-mined loops with operator fusion

Tensor expressions can be parallelized too

```
@appy.jit(auto_simd=True)
        def gemv(alpha, A, x):
           M, N = A.shape
          #pragma :M=>parallel :N=>reduction(sum:y)
          y[:M] = mv(alpha * A[:M, :N], x[:N])
                                            Compiler generated explicit loop
    @appy.jit
    def gemv transformed(alpha, A, x):
3.
      M, N = A.shape
      #pragma parallel for
      for _i0 in range(0, M, 1):
5.
        y[i0] = 0.0
6.
        for _i1 in range(0, N, appy.MVL):
8.
          _{v1} = appy.vidx(_i1, appy.MVL, N)
          y[i0] += sum(alpha * A[i0, v1] * x[v1])
```


Implementation

All transformation passes are Python AST based

A code generation example

```
    @appy.jit(auto_simd=True)
    def gemv(alpha, A, x):
    M, N = A.shape
    #pragma :M=>parallel :N=>reduction(sum:y)
    y[:M] = mv(alpha * A[:M, :N], x[:N])
```

High-level transform

```
@appy.jit
    def gemv(alpha, A, x):
3.
      M, N = A.shape
      #pragma parallel for
4.
       for i0 in range(0, M, 1):
5.
6.
         tmp = 0.0
         for _i1 in range(0, N, appy.MVL):
           _v1 = appy.vidx(_i1, appy.MVL, N)
8.
9.
           tmp += sum(alpha * A[ i0, v1] * x[ v1])
10.
         y[i0] = tmp
 TΖ
```

```
@triton.jit
                        def _kernel(M, N, A, A_stride0, A_stride1, x, \
                              x stride0, y, y stride0, MVL: tl.constexpr):
                  3.
                          iD = tl.program id(0) * 1
                  4.
                  5.
                          tmp = 0.0
                          for i1 in range(0, N, MVL):
                  6.
                            tmp += tl.sum(
                              alpha * tl.load(
                                   A + i0*A stride0 + \
                  9.
                                     i1 + tl.arange(0, MVL),
                  10.
                  11.
                                   mask= i1 + tl.arange(0, MVL) < N
                  12.
                  13.
                              tl.load(
                  14.
                                 x + i1 + tl.arange(0, MVL),
                                 mask= i1 + tl.arange(0, MVL) < N
Gen device<sup>15</sup>code
                  17.
                          tl.store(y + i0, tmp)
                  18.
```

```
def gemv(alpha, A, x):

M, N = A.shape

MVL = 128; grid = (M,)

_kernel[grid](M, N, A, A.stride(0), A.stride(1), \

Cod, R.stride(0), y, y.stride(0), MVL)
```

Performance evaluation

- CPU: Ryzen 7 5800X
 - 8 cores
 - Cache sizes
 - L1: 32K, L2: 512K, L3: 32M
- GPU: RTX 3090
 - 10496 cuda cores, 82 SMs
 - Cache sizes
 - L1: 128K, L2: 6M
- Benchmarking methodology
 - Each benchmark is run 10 times and report median
 - Each benchmark run is ~ 1 second
- Comparisons
 - NumPy (CPU library), CuPy (GPU library)
 - Numba (SOTA CPU compiler), JAX (SOTA JIT compiler with GPU backend), DaCe-GPU (SOTA GPU compiler)

- 20 kernels
 - azimint_naive
 - cholesky
 - covariance
 - fdtd_2d
 - floyd_warshall
 - gemm
 - gemver
 - gesummv
 - go_fast
 - gramschmidt
 - heat_3d
 - jacobi_1d
 - jacobi_2d
 - softmax
 - spmv
 - symm
 - syr2k
 - syrk
 - trisoly
 - trmm

Performance results

- NumPy
 - Rightmost column shows absolute runtime
- Other frameworks: speedups/slowdown relative to NumPy
 - Acknowledgment: visualization script from npbench (ETH)
 - Up arrow indicates speedup (from light green to dark green)
 - Down arrow indicates slowdown (from orange to red)
- Summary of APPy's performance (geometric means)
 - 30x speedup over NumPy
 - 8.3x speedup over Numba
 - 30x speedup over CuPy
 - 18.8x speedup over JAX (with JIT)
 - 3.1x speedup over DaCe-GPU

	Total	- ↑30.0	↑9.8	1.6	↑1.1	↑3.6	-
	azimnaiv	- ↑4.5 ⁽¹⁾	↑7.4	↑17.3 ⁽²⁾	12.6	↑4.2 ⁽¹⁰⁾	0.11 s -
cholesky		- ↓1.4	↓14.7	↓20.4 ⁽¹⁾	↓50.6	† 17.7	0.45 s -
	covarian	- †1.6 ⁽⁸⁾	↑1.2	↓1.1 ⁽¹⁴⁾	↓2.1	↓1.1	49.24 ms -
Benchmarks © o	fdtd_2d	↑39.5 ⁽¹⁾	↑38.5	↑27.2 ⁽²⁾	↑14.5	↑5.2 ⁽¹⁾	2.43 s -
	floydwar	↑56.5	↑18.3	†24.9 ⁽²⁾	†16.8 ⁽¹⁾	†12.9 ⁽³⁾	1.60 s -
	gemm	- †2.0	†2.0	†1.9	†2.0 ⁽¹⁵⁾	↓1.1 ⁽¹⁾	90.60 ms -
	gemver	- ↑97.0	†56.1 ⁽¹⁾	↑11.7	↑38.0		0.85 s -
	gesummv	- ↑100.0	↑41.2	↑6.8	↑42.8	↓1.1	0.31 s -
	ramschm	- ↑9.4	↑5.7	↓8.2(2)	↓24.6 ⁽⁷⁾		0.44 s -
	hdiff	- ↑98.7	↑113.0	†34.2 ⁽⁴⁾	↑35.4	1.2(2)	0.36 s -
	heat3d	↑362.0	↑352.0	↑332.0 ⁽⁶⁾	↑40.4	†28.9 ⁽¹⁾	5.47 s -
	jacobi2d	- ↑210.0	↑176.0	↑160.0	↑28.4	↑3.0	3.14 s -
	npgofast	- ↑38.3	†2.8		1.0	1.2(2)	0.15 s -
	softmax	- ↑214.0	↑43.6	↑14.5	↑61.2 ⁽³⁾	↓1.0	0.70 s -
	spmv	- ↑207.0 ⁽⁸⁾	↓30.5	↓160.0	↓51.0 ⁽²⁾	†32.4 ⁽¹⁾	0.32 s -
	symm	- ↑37.5	↑19.9	↓11.7	↓33.5 ⁽²⁾	† 15.7	3.76 s -
	syr2k	- †127.0 ⁽¹⁵⁾	↑30.5	↓6.9⑴	↓14.1 ⁽⁹⁾	†6.0 ⁽¹⁾	6.18 s -
	syrk	- ↑100.0 ⁽¹⁾	↑25.6	↓17.7 ⁽¹⁾	↓18.2(3)	↑3.7 ⁽²⁾	2.36 s -
	trisolv	- ↓3.1	↓5.1	↓3.8	↓17.3		57.29 ms -
	trmm	↑78.2 ⁽¹⁾	↑63.3	↓28.3	↓46.9 ⁽⁶⁾	†14.3 ⁽¹⁾	1.59 s -
work de		арру	dace_gpu	jax	cupy	numba	numpy

This

Total 130.0 19.8 11.1 13.6 14.5⁽¹⁾ 14.2⁽¹⁰⁾ azimnaiv 17.4 ↑17.3⁽²⁾ 0.11 s cholesky ↓14.7 $\downarrow 20.4^{(1)}$ ↓50.6 ↑17.7 0.45 s $\downarrow 1.1^{(14)}$ covarian 11.2 ↓2.1 ↓1.1 49.24 ms ↑39.5⁽¹⁾ 127.2⁽²⁾ ↑5.2⁽¹⁾ fdtd_2d 138.5 114.5 2.43 s 124.9⁽²⁾ ↑16.8⁽¹⁾ ↑12.9⁽³⁾ floydwar 156.5 ↑18.3 1.60 s J1.1(1) 90.60 ms gemm ↑56.1⁽¹⁾ ↑11.7 ↑97.0 138.0 0.85 s gemver 1100.0 **†41.2** 16.8 142.8 ↓1.1 0.31 sgesummy ↓8.2⁽²⁾ gramschm ↑9.4 ↑5.7 J 24.6⁽⁷⁾ 0.44 sBenchmarks hdiff 1.2⁽²⁾ ↑98.7 ↑113.0 ↑34.2⁽⁴⁾ ↑35.4 0.36 s ↑362.0 ↑352.0 1332.0⁽⁶⁾ 140.4 128.9⁽¹⁾ 5.47 s heat3d jacobi2d ↑210.0 ↑176.0 ↑160.0 128.4 3.14 s cupy јах numpy арру dace_gpu numba 15

APPy is faster than DaCe due to more parallelism achieved

Total 130.0 19.8 11.1 13.6 14.5⁽¹⁾ 14.2⁽¹⁰⁾ azimnaiv 17.4 ↑17.3⁽²⁾ 0.11 s cholesky ↓14.7 $\downarrow 20.4^{(1)}$ ↓50.6 ↑17.7 0.45 s $\downarrow 1.1^{(14)}$ covarian 11.2 ↓2.1 ↓1.1 49.24 ms ↑39.5⁽¹⁾ 127.2⁽²⁾ ↑5.2⁽¹⁾ fdtd_2d 138.5 114.5 2.43 s 124.9⁽²⁾ ↑16.8⁽¹⁾ ↑12.9⁽³⁾ floydwar 156.5 ↑18.3 1.60 s J1.1(1) 90.60 ms gemm ↑56.1⁽¹⁾ ↑11.7 ↑97.0 138.0 0.85 sgemver ↑41.2 1100.0 16.8 142.8 ↓1.1 0.31 sgesummy ↓8.2⁽²⁾ gramschm 19.4 ↑5.7 J 24.6⁽⁷⁾ 0.44 sBenchmarks hdiff 1.2⁽²⁾ ↑98.7 ↑113.0 ↑34.2⁽⁴⁾ ↑35.4 0.36 s ↑362.0 ↑352.0 1332.0⁽⁶⁾ 140.4 128.9⁽¹⁾ 5.47 s heat3d jacobi2d ↑210.0 ↑176.0 ↑160.0 128.4 3.14 s јах cupy numpy арру dace_gpu numba 16

APPy is faster than DaCe due to more operator fusion and better locality

GitHub page

