# Statistical Machine Translation LING-462/COSC-482 Week 4:

Phrase-based statistical machine translation

Achim Ruopp achim.ruopp@Georgetown.edu

### Agenda

- Language in ten minutes: Janet Liu: German
- Planning further "Language in ten minutes" presentations
- Step-by-step walk trough IBM Model 1 word alignment
- Break -
- Phrase-based statistical machine translation
- MT internships?

#### IBM Model 1

- Generative model: break up translation process into smaller steps
  - IBM Model 1 only uses lexical translation
- Translation probability
  - for a foreign sentence  $\mathbf{f} = (f_1, ..., f_{l_f})$  of length  $l_f$
  - to an English sentence  $\mathbf{e}=(e_1,...,e_{l_e})$  of length  $l_e$
  - with an alignment of each English word  $e_j$  to a foreign word  $f_i$  according to the alignment function  $a:j\to i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

- parameter  $\epsilon$  is a normalization constant

### EM Expectation step ground work

 Deriving the formula to calculate the alignment probability based on word translation probabilities

$$p(a|e,f) = \frac{p(a,e,f)}{p(e,f)} = \frac{p(a,e,f)p(f)}{p(e,f)p(f)}$$
$$= \frac{p(e,a|f)}{p(e|f)} = \dots = \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)}$$

#### IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair **e**, **f** that word e is a translation of word f:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

• With the same simplication as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

#### IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

$$t(e|f; \mathbf{e}, \mathbf{f}) = \frac{\sum_{(\mathbf{e}, \mathbf{f})} c(e|f; \mathbf{e}, \mathbf{f})}{\sum_{e} \sum_{(\mathbf{e}, \mathbf{f})} c(e|f; \mathbf{e}, \mathbf{f}))}$$

# Walk-trough with Excel sheet

# Noisy channel model

$$argmax_f p(f|e) = argmax_f p(e|f)p(f)$$

# Language Model p(f)

Given the target language corpus

```
<s> la maison </s>
```

<s> une maison </s>

# Unigrams maximum likelihood probabilities

| W       | p(w)  |
|---------|-------|
| <s></s> | 0.25  |
| la      | 0.167 |
| maison  | 0.167 |
| lune    | 0.084 |
| une     | 0.084 |
|         | 0.25  |

# Bigram counts

| w1/w2   | <b>&lt;</b> \$> | la | maison | lune | une |   | Total |
|---------|-----------------|----|--------|------|-----|---|-------|
| <s></s> |                 | 2  |        |      | 1   |   | 3     |
| la      |                 |    | 1      | 1    |     |   | 2     |
| maison  |                 |    |        |      |     | 2 | 2     |
| lune    |                 |    |        |      |     | 1 | 1     |
| une     |                 |    | 1      |      |     |   | 1     |
|         |                 |    |        |      |     |   | 0     |

# Bigram maximum likelihood probabilities

| p(w2 w1) | <s></s> | la    | maison | lune  | une   |       | Total |
|----------|---------|-------|--------|-------|-------|-------|-------|
| <s></s>  |         | 0.667 |        |       | 0.333 |       | 1.000 |
| la       |         |       | 0.500  | 0.500 |       |       | 1.000 |
| maison   |         |       |        |       |       | 1.000 | 1.000 |
| lune     |         |       |        |       |       | 1.000 | 1.000 |
| une      |         |       | 1.000  |       |       |       | 1.000 |
|          |         |       |        |       |       |       | 0.000 |

# Bigram maximum likelihood probabilities

- What happens if translation model suggests "une lune" to translate "a moon"?
- Bigram model estimates probability zero!
- Language model smoothing/ interpolation/backoff needed

# Bigram add-one counts

| w1/w2   | <b>&lt;</b> \$> | la | maison | lune | une |   | Total |
|---------|-----------------|----|--------|------|-----|---|-------|
| <s></s> | 1               | 3  | 1      | 1    | 2   | 1 | 9     |
| la      | 1               | 1  | 2      | 2    | 1   | 1 | 8     |
| maison  | 1               | 1  | 1      | 1    | 1   | 3 | 8     |
| lune    | 1               | 1  | 1      | 1    | 1   | 2 | 7     |
| une     | 1               | 1  | 2      | 1    | 1   | 1 | 7     |
|         | 1               | 1  | 1      | 1    | 1   | 1 | 6     |

# Bigram add-one probabilities

| p(w2 w1 | <s></s> | la    | maison | lune  | une   |              | Total |
|---------|---------|-------|--------|-------|-------|--------------|-------|
| /       |         | ıa    | maison | Idiic | arre  | <b>1</b> /3/ | Iotai |
| <s></s> | 0.111   | 0.333 | 0.111  | 0.111 | 0.222 | 0.111        | 1.000 |
| la      | 0.125   | 0.125 | 0.250  | 0.250 | 0.125 | 0.125        | 1.000 |
| maison  | 0.125   | 0.125 | 0.125  | 0.125 | 0.125 | 0.375        | 1.000 |
| lune    | 0.143   | 0.143 | 0.143  | 0.143 | 0.143 | 0.286        | 1.000 |
| une     | 0.143   | 0.143 | 0.286  | 0.143 | 0.143 | 0.143        | 1.000 |
|         | 0.167   | 0.167 | 0.167  | 0.167 | 0.167 | 0.167        | 1.000 |

#### **Symmetrizing Word Alignments**



- Intersection of GIZA++ bidirectional alignments
- Grow additional alignment points [Och and Ney, CompLing2003]

#### **Growing heuristic**

```
grow-diag-final(e2f,f2e)
 1: neighboring = \{(-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)\}
 2: alignment A = intersect(e2f,f2e); grow-diag(); final(e2f); final(f2e);
grow-diag()
 1: while new points added do
          for all English word e \in [1...e_n], foreign word f \in [1...f_n], (e, f) \in A do
 2:
              for all neighboring alignment points (e_{\text{new}}, f_{\text{new}}) do
 3:
 4:
                   if (e_{\text{new}} \text{ unaligned OR } f_{\text{new}} \text{ unaligned}) \text{ AND } (e_{\text{new}}, f_{\text{new}}) \in \text{union(e2f,f2e)} then
                       add (e_{\text{new}}, f_{\text{new}}) to A
 5:
                   end if
 6:
 7:
              end for
 8:
         end for
 9: end while
final()
 1: for all English word e_{\text{new}} \in [1...e_n], foreign word f_{\text{new}} \in [1...f_n] do
          if (e_{\text{new}} \text{ unaligned OR } f_{\text{new}} \text{ unaligned}) \text{ AND } (e_{\text{new}}, f_{\text{new}}) \in \text{union(e2f,f2e)} then
 3:
              add (e_{\text{new}}, f_{\text{new}}) to A
          end if
 4:
 5: end for
```

# PHRASE-BASED STATISTICAL MACHINE TRANSLATION

#### **Motivation**

- Word-Based Models translate words as atomic units
- Phrase-Based Models translate *phrases* as atomic units
- Advantages:
  - many-to-many translation can handle non-compositional phrases
  - use of local context in translation
  - the more data, the longer phrases can be learned
- "Standard Model", used by Google Translate and others

#### Phrase-Based Model



- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

#### **Phrase Translation Table**

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for natuerlich

| Translation   | Probability $\phi(\bar{e} \bar{f})$ |
|---------------|-------------------------------------|
| of course     | 0.5                                 |
| naturally     | 0.3                                 |
| of course,    | 0.15                                |
| , of course , | 0.05                                |

#### Real Example

• Phrase translations for den Vorschlag learned from the Europarl corpus:

| English         | $\phi(ar{e} ar{f})$ | English         | $\phi(ar{e} ar{f})$ |
|-----------------|---------------------|-----------------|---------------------|
| the proposal    | 0.6227              | the suggestions | 0.0114              |
| 's proposal     | 0.1068              | the proposed    | 0.0114              |
| a proposal      | 0.0341              | the motion      | 0.0091              |
| the idea        | 0.0250              | the idea of     | 0.0091              |
| this proposal   | 0.0227              | the proposal,   | 0.0068              |
| proposal        | 0.0205              | its proposal    | 0.0068              |
| of the proposal | 0.0159              | it              | 0.0068              |
| the proposals   | 0.0159              |                 |                     |

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- noise (it)

#### **Linguistic Phrases?**

- Model is not limited to linguistic phrases
   (noun phrases, verb phrases, prepositional phrases, ...)
- Example non-linguistic phrase pair

spass am 
$$\rightarrow$$
 fun with the

- Prior noun often helps with translation of preposition
- Experiments show that limitation to linguistic phrases hurts quality

#### **Probabilistic Model**

Bayes rule

$$\mathbf{e}_{\mathsf{best}} = \mathsf{argmax}_{\mathbf{e}} \; p(\mathbf{e}|\mathbf{f})$$

$$= \mathsf{argmax}_{\mathbf{e}} \; p(\mathbf{f}|\mathbf{e}) \; p_{\mathrm{LM}}(\mathbf{e})$$

- translation model  $p(\mathbf{e}|\mathbf{f})$
- language model  $p_{\rm LM}(\mathbf{e})$
- Decomposition of the translation model

$$p(\bar{f}_1^I | \bar{e}_1^I) = \prod_{i=1}^I \phi(\bar{f}_i | \bar{e}_i) \ d(start_i - end_{i-1} - 1)$$

- phrase translation probability  $\phi$
- reordering probability d

#### **Distance-Based Reordering**



| phrase | translates | movement           | distance |
|--------|------------|--------------------|----------|
| 1      | 1–3        | start at beginning | 0        |
| 2      | 6          | skip over 4–5      | +2       |
| 3      | 4–5        | move back over 4–6 | -3       |
| 4      | 7          | skip over 6        | +1       |

Scoring function:  $d(x) = \alpha^{|x|}$  — exponential with distance

#### Learning a Phrase Translation Table

• Task: learn the model from a parallel corpus

- Three stages:
  - word alignment: using IBM models or other method
  - extraction of phrase pairs
  - scoring phrase pairs

#### **Word Alignment**



#### **Extracting Phrase Pairs**



extract phrase pair consistent with word alignment:

assumes that / geht davon aus, dass

#### Consistent



All words of the phrase pair have to align to each other.

#### Consistent



Phrase pair  $(\bar{e}, \bar{f})$  consistent with an alignment A, if all words  $f_1, ..., f_n$  in  $\bar{f}$  that have alignment points in A have these with words  $e_1, ..., e_n$  in  $\bar{e}$  and vice versa:

 $(\bar{e},\bar{f})$  consistent with  $A \Leftrightarrow$ 

$$\forall e_i \in \bar{e} : (e_i, f_j) \in A \to f_j \in \bar{f}$$
AND  $\forall f_j \in \bar{f} : (e_i, f_j) \in A \to e_i \in \bar{e}$ 
AND  $\exists e_i \in \bar{e}, f_j \in \bar{f} : (e_i, f_j) \in A$ 

#### **Phrase Pair Extraction**



#### Smallest phrase pairs:

```
michael — michael
assumes — geht davon aus / geht davon aus ,
that — dass / , dass
he — er
will stay — bleibt
in the — im
house — haus
```

unaligned words (here: German comma) lead to multiple translations

#### **Larger Phrase Pairs**



```
michael assumes — michael geht davon aus / michael geht davon aus , assumes that — geht davon aus , dass er that he — dass er / , dass er ; in the house — im haus michael assumes that — michael geht davon aus , dass michael assumes that he — michael geht davon aus , dass er michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt assumes that he will stay in the house — geht davon aus , dass er im haus bleibt that he will stay in the house — geht davon aus , dass er im haus bleibt , he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt
```

#### **Scoring Phrase Translations**

- Phrase pair extraction: collect all phrase pairs from the data
- Phrase pair scoring: assign probabilities to phrase translations
- Score by relative frequency:

$$\phi(\bar{f}|\bar{e}) = \frac{\mathsf{count}(\bar{e}, \bar{f})}{\sum_{\bar{f}_i} \mathsf{count}(\bar{e}, \bar{f}_i)}$$

#### Size of the Phrase Table

- Phrase translation table typically bigger than corpus
  - ... even with limits on phrase lengths (e.g., max 7 words)
- $\rightarrow$  Too big to store in memory?
  - Solution for training
    - extract to disk, sort, construct for one source phrase at a time
  - Solutions for decoding
    - on-disk data structures with index for quick look-ups
    - suffix arrays to create phrase pairs on demand

#### Weighted Model

- Described standard model consists of three sub-models
  - phrase translation model  $\phi(\bar{f}|\bar{e})$
  - reordering model d
  - language model  $p_{LM}(e)$

$$e_{\mathsf{best}} = \mathsf{argmax}_e \prod_{i=1}^I \phi(\bar{f}_i | \bar{e}_i) \ d(start_i - end_{i-1} - 1) \ \prod_{i=1}^{|\mathbf{e}|} p_{LM}(e_i | e_1 ... e_{i-1})$$

- Some sub-models may be more important than others
- Add weights  $\lambda_{\phi}$ ,  $\lambda_{d}$ ,  $\lambda_{LM}$

$$e_{\mathsf{best}} = \mathsf{argmax}_e \prod_{i=1}^{I} \phi(\bar{f}_i | \bar{e}_i)^{\lambda_\phi} \ d(start_i - end_{i-1} - 1)^{\lambda_d} \ \prod_{i=1}^{|\mathbf{e}|} p_{LM}(e_i | e_1 ... e_{i-1})^{\lambda_{LM}}$$

#### Log-Linear Model

• Such a weighted model is a log-linear model:

$$p(x) = \exp \sum_{i=1}^{n} \lambda_i h_i(x)$$

- Our feature functions
  - number of feature function n=3
  - random variable x = (e, f, start, end)
  - feature function  $h_1 = \log \phi$
  - feature function  $h_2 = \log d$
  - feature function  $h_3 = \log p_{LM}$

#### Weighted Model as Log-Linear Model

$$p(e, a|f) = \exp(\lambda_{\phi} \sum_{i=1}^{I} \log \phi(\bar{f}_i|\bar{e}_i) + \lambda_d \sum_{i=1}^{I} \log d(a_i - b_{i-1} - 1) + \lambda_{LM} \sum_{i=1}^{|\mathbf{e}|} \log p_{LM}(e_i|e_1...e_{i-1}))$$

#### **More Feature Functions**

- Bidirectional alignment probabilities:  $\phi(\bar{e}|\bar{f})$  and  $\phi(\bar{f}|\bar{e})$
- Rare phrase pairs have unreliable phrase translation probability estimates
  - → lexical weighting with word translation probabilities



$$\operatorname{lex}(\bar{e}|\bar{f},a) = \prod_{i=1}^{\operatorname{length}(\bar{e})} \frac{1}{|\{j|(i,j)\in a\}|} \sum_{\forall (i,j)\in a} w(e_i|f_j)$$

#### **More Feature Functions**

- Language model has a bias towards short translations
  - $\rightarrow$  word count:  $wc(e) = \log |e|^{\omega}$
- We may prefer finer or coarser segmentation
  - $\rightarrow$  phrase count  $pc(e) = \log |I|^{\rho}$
- Multiple language models
- Multiple translation models
- Other knowledge sources

#### **Lexicalized Reordering**



- Distance-based reordering model is weak
  - → learn reordering preference for each phrase pair
- Three orientations types: (m) monotone, (s) swap, (d) discontinuous

orientation 
$$\in \{m, s, d\}$$
  
 $p_o(\text{orientation}|\bar{f}, \bar{e})$ 

#### **Learning Lexicalized Reordering**



- Collect orientation information during phrase pair extraction
  - if word alignment point to the top left exists → monotone
  - if a word alignment point to the top right exists → swap
  - if neither a word alignment point to top left nor to the top right exists
    - $\rightarrow$  neither monotone nor swap  $\rightarrow$  **discontinuous**

#### **Learning Lexicalized Reordering**

Estimation by relative frequency

$$p_o(\text{orientation}) = \frac{\sum_{\bar{f}} \sum_{\bar{e}} count(\text{orientation}, \bar{e}, \bar{f})}{\sum_{o} \sum_{\bar{f}} \sum_{\bar{e}} count(o, \bar{e}, \bar{f})}$$

ullet Smoothing with unlexicalized orientation model  $p(\mbox{orientation})$  to avoid zero probabilities for unseen orientations

$$p_o(\text{orientation}|\bar{f},\bar{e}) = \frac{\sigma \ p(\text{orientation}) + count(\text{orientation},\bar{e},f)}{\sigma + \sum_o count(o,\bar{e},\bar{f})}$$

### Summary

- What we have now: statistical models
  - Word-based translation models
  - Phrase-based translation models
  - N-gram language models
  - Noisy channel model
  - Log-linear model
- Next: decoding
  - How do we find the most-likely or top-n most likely translations?