(1) Publication number: 0 475 784 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91308409.1

(61) Int. CI.⁵: **G01N 33/543**, G01N 33/53,

G01N 33/541

(22) Date of filing: 13.09.91

(30) Priority: 14.09.90 US 583556

(43) Date of publication of application: 18.03.92 Bulletin 92/12

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(71) Applicant : BIOSITE DIAGNOSTICS INC. 11030 Roselle Street, Suite D San Diego California 92121 (US)

(72) Inventor: Valkirs, Gunars Edwin 2893 Paseo del Sol Escondido, California, 92025 (US) Inventor: Buechler, Kenneth Francis 12523 Manifesto Place San Diego, California, 92130 (US)

(74) Representative: Goldin, Douglas Michael et al J.A. KEMP & CO. 14, South Square Gray's Inn London WC1R 5EU (GB)

- (A) Antibodies to complexes of ligand receptors and ligands and their utility in ligand-receptor assays.
- Methods and test devices for detecting the presence or amount of target ligand in noncompetitive sandwich ligand-receptor assay processes. Antibodies which bind to the complex of ligand receptor and target ligand but do not bind significantly to the ligand receptor and which bind the target ligand with substantially less affinity than the complex are taught and their uses described. These assays can be used to eliminate the "hook" effect in non-competitive sandwich assays. Furthermore, the anti-bodies are selected and assay methods described so that, as a result of the assay process, no detectable response is observed due to the binding of antibody and ligand receptor in the absence of target ligand.

10

15

25

30

35

40

45

Field Of The Invention

This invention is in the field of ligand-receptor assays for the detection of selected target ligands in a fluid sample. More particularly, this invention relates to the use of antibodies specific for ligand-receptor complexes in non-competitive ligand-receptor assays. The amount of complexes of ligand receptor and target ligand bound to such antibodies is related to the amount of the target ligand in the sample.

Background Of The Invention

As used herein, the term "ligand-receptor assay" refers to an assay for at least one target ligand which may be detected by the formation of a complex between the ligand and a receptor capable of specific interaction with that target ligand. The target ligand may be the analyte itself or a substance which, if detected, can be used to infer the presence of the analyte in a sample. In the context of the present invention, the term "ligand", includes haptens, hormones, peptides, proteins, deoxyribonucleic acid (DNA), ribonucleic acids (RNA), metabolites of the aforementioned materials and other substances of either natural or synthetic origin which may be of diagnostic interest and have a specific ligand receptor therefor. Ligand-receptor assays are generally useful for the in vitro determination of the presence and concentration of ligands in body fluids, food products, animal fluids, and environmental samples. For example, the determination of specific hormones, peptides, proteins, therapeutic drugs, and toxic drugs in human blood or urine has significantly improved the medical diagnosis of the human condition. There is a continuing need for improvements in such assays in order to increase their accuracy and reliability.

Ligand-receptor assays rely on the binding of target ligands by ligand receptors to determine the concentrations of target ligands in a sample. Ligand-receptor assays can be described as either competitive or non-competitive. Competitive assays generally involve a sample suspected of containing target ligand, a ligand analogue conjugate, and the competition of these species for a limited number of binding sites provided by the ligand receptor.

Non-competitive assays generally utilize ligand receptors in substantial excess over the concentration of target ligand to be determined in the assay. Sandwich assays, in which the target ligand is detected by binding to two ligand receptors, one ligand receptor labeled to permit detection and a second ligand receptor, frequently bound to a solid phase, to facilitat separation from unbound reag nts, such as unbound labeled first ligand rec ptor, are examples of non-competitive assays. Methods utilizing two monoclonal antibodies, selected to bind the antigenic substance (target ligand) at sites remote from each other

so as to not int riere with tho thers binding to the antigen, in sandwich assays are d scribed in U.S. Patent No. 4,376,110. Similar assays for the determination of haptens are described in International Application Number PCT/US84/01737. While such assays are designed so that the concentration of the receptors is each in excess over the concentration of the target ligand in the assay range, some target ligands can be present in samples at concentrations that are substantially higher than the concentrations of receptors employed in the assay. In simultaneous, sandwich assays where the labeled receptor and the unlabeled receptor are mixed together with the sample, a large excess of the target ligand can result in binding of separate target ligand molecules to the labeled receptor and to the unlabeled receptor so that the formation of the sandwich complex of labeled receptor/target ligand/unlabeled receptor is inhibited. The response in such assays can be misinterpreted so that the determination of the target ligand concentration can result in an incorrect concentration, a much lower concentration than is actually present in the sample. This is widely known as the "hook" effect in sandwich assays. Faced with such a possibility, users of such assays routinely assay dilutions of the sample to determine if the dilutions are quantitated linearly (i.e. the concentration of the target ligand determined for the dilution, when multiplied by the dilution factor, is the same as the target ligand concentration determined for the sample). Such additional testing would be unnecessary if the "hook" effect were not a potential problem. The hook effect can be minimized in sandwich assays by choosing sequential assay protocols where the unlabeled receptor is immobilized on a solid phase and the solid phase is washed to remove unbound target ligand after incubation with the sample and before addition of the labeled receptor. Such assay protocols are lengthy and require more steps and manipulation than simultaneous protocols.

The problem of "hook" effects in sandwich assays has been addressed in several ways. In U.S. Patent No. 4,743,542, a method is described where one of the receptors is labeled for detection and the other receptor is labeled with a hapten so that a receptor for the hapten can be used to bind the hapten-labeled receptor to a solid phase. The invention utilizes either unlabeled first receptor or non-haptenated second receptor to extend the assay range for the target ligand by minimizing the "hook" effect. The requirement for additional receptor is a principal disadvantage of this method because in some cases the concentration of target ligand can be so high that the quantity of additional receptor that is needed to prevent th "hook" effect is not practical. Similarly, the method of U.S. Patent No. 4,778,751 requires excess receptor coupled to a liquid matrix that can be immobilized on a solid phase. Again, the primary mechanism

10

15

20

25

30

35

used to overcom the "hook" ffect is the us of larg quantities of receptor needed to bind up all of the target ligand, an impractical solution for many target ligands.

In the present invention antibodies are selected that bind the complex of ligand receptor and target ligand (ligand analogue conjugate) and substantially do not bind the ligand receptor or the target ligand when they are not bound to one another. The use of antibodies to ligand receptor-ligand complexes in sandwich assays eliminates or greatly reduces the "hook" effect without the requirement for excessive amounts of such antibodies.

Antibodies that bind the complex of ligand and a specific antibody for the ligand have been described by Nemazee and Sato (Proc. Natl. Acad. Sci. USA, Vol. 79, pp. 3828-3832, 1982). They postulated that three types of antibody are produced in response to immunization with antibody-antigen complexes, antibodies that bind to either conformationally altered antibody or antigen and antibodies that bind to parts of both antibody and antigen. Nemazee and Sato also provide methods for producing antibodies of the first type, antibodies that bind conformationally altered antibody when it is bound to antigen. Johannsson, in UK Patent Application No. 8505487, describes antibodies produced by immunization of the complex of a fragment of specific antibody and its ligand. The resulting antibodies are said to bind the complex of a specific binding fragment and its binding partner with high affinity while binding the specific binding fragment or the binding partner with low affinity. This prior art does not describe methods for selecting and using such antibodies to overcome the "hook" effect in sandwich assays. In the present invention the use of antibodies to complexes of ligands and ligand receptors is described in embodiments that substantially eliminate the "hook" effect in sandwich ligand-receptor assays.

Summary Of the Invention

The present invention provides a means for the detection of the presence or amount of target ligand in non-competitive, sandwich ligand-receptor assay processes. Antibodies that bind to the complex of ligand receptor and target ligand but do not bind to the ligand receptor and bind the target ligand with substantially less affinity than the complex are utilized in non-competitive, sandwich assay processes. Assays utilizing such antibodies are less affected by the presence of high concentrations of target ligand that can cause a "hook" effect. The present invention selects antibodies that exhibit at I ast 10X greater affinity for the complex of target ligand and ligand receptor than for the target ligand. Furthermore, the antibodies are selected so that as a result of the assay process, no detectabl assay respons is observed due to the

binding of antibody and ligand r ceptor in the absence of target ligand. The present invention can be used to substantially eliminate the "hook" effect in non-competitive, sandwich assays.

Detailed Description Of The Invention

The present invention provides a means for the detection of the target ligands in fluids from non-competitive, sandwich ligand-receptor assay processes. The detection of the target ligand in such fluids is accomplished by using antibodies that bind to the complex of the target ligand and a ligand receptor specific for the target ligand. The present invention provides a means for the selection of antibodies that do not bind the ligand receptor and that bind the target ligand with substantially less affinity than the complex of ligand and ligand receptor. Assay processes utilizing such antibodies are described where the "hook" effect is substantially eliminated.

Antibodies for use in the present invention can be generated by immunization using complexes of ligand receptor and ligand as the immunogen. These complexes may be covalently attached to a carrier protein such as keyhole limpet hemocyanin in order to elicit an immune response if they are not immunogenic. For example, hybrid complexes of target oligonucleotides and oligonucleotide probes may be covalently attached to a carrier protein in order to generate antibodies that are specific for the hybrid complex of oligonucleotides.

In the specific case of generating antibodies to the hybrid complex of the target oligonucleotide and oligonucleotide probe, the oligonucleotide probe could have a recognition molecule which allows for an additional affinity of the antibody for the hybrid complex. The recognition molecule, for example, can be incorporated near the hybridization site in the probe sequence or be attached to a base or the backbone, for example, on a linker arm, or can be a modification of a nucleotide. In any of these cases, the presence of the recognition molecule would not affect the hybridization of the probe to the target oligonucleotide or prevent the probe from performing its desired function. Methods for altering probes without affecting their desired function are known in the art and may be adopted to this invention.

In some cases it may be beneficial to covalently link the ligand receptor to the target ligand to stabilize the complex. Such a procedure is normally carried out by first forming the complex of ligand receptor and ligand and then forming the covalent attachment so that the juxtaposition of the ligand receptor and the ligand in the complex is not changed by the covalent attachent but rather is stabilized. Bifunctional crosslinking reagents that can be used to crosslink the ligand receptor and the ligand are known to those skill d in the art. Methods for the immunization of ani-

55

15

25

30

35

45

mals are known to thos skill d in the art. When polyclonal antibodies are us d in the present invention, a preferred method for the isolation of antibodies to the complex of ligand receptor and ligand is affinity chromatography. Methods for the immobilization of the affinity ligand on matrices for affinity chro- matography are known to those in the art. Immobilization of the complex of ligand receptor and ligand on an affinity matrix is a preferred method for separating antibodies useful in the present invention from a polyclonal antibody mixture. Because most affinity purification conditions require relatively stringent conditions for the elution of the bound antibodies from the affinity matrix, the stability of the complex of ligand receptor and ligand may be affected by those conditions. Covalent attachment of the ligand receptor to the ligand after the binding complex is formed may be necessary under these circumstances. A particularly preferred method for the affinity purification of antibodies useful in the present invention is the immobilization of the target ligand on the affinity matrix. Such an affinity matrix will bind both antibodies to the target ligand and antibodies to the complex of ligand receptor and target ligand. However, the antibodies specific for the complex of ligand receptor and target ligand will be bound with substantially lower affinity than the antibodies to the target ligand and can be eluted from the affinity matrix under mild conditions that will leave the antibodies to the target ligand bound to the affinity matrix. Polyclonal antibodies that are useful in the present invention must satisfy the selection criteria described below.

Particularly preferred for use in the present invention are monoclonal antibodies. Methods for the generation of monoclonal antibodies are known to those skilled in the art (see, for example, Zola, Heddy, Monoclonal Antibodies: A Manual of Technniques, CRC Press). Monoclonal antibodies with the properties required by the present invention can be selected by utilizing assays that select antibodies that do not blnd the ligand receptor but do blnd the complex of ligand receptor and ligand with substantially greater affinity than their affinity for the ligand.

The antibodies of the present invention include not only intact immunoglobulins but also fragments of immunoglobulins that are derived from intact immunoglobulins. It is also recognized that antibodies or fragments of antibodies can generated by genetic engineering methods from antibody gene sequences. Specific binding species that are produced by such methods that meet the selection criteria and are used according to the present invention are also considered to be antibodies in the context of the present invention.

Th antibodies used in the present invention are selected according to their affinity for the ligand receptor-ligand complex relative to their affinity for the ligand. In addition, antibodies to ligand receptor-li-

gand complexes used in the present invention that do not bind the ligand receptor are selected so that in the final assay format where either antibody or ligand receptor is labeled for detection, there is no detectable assay response due to the binding of antibody to ligand receptor. When target ligand, ligand receptor conjugate, and antibody are contacted such that the target ligand is present in substantial excess over the antibody and the antibody is in substantial excess over the ligand receptor conjugate, the binding reactions proceed according to the Law of Mass Action.

A + LRC:L = LRC:L:A and A + L = A:L
At equilibrium, these two binding reactions are characterized by equilibrium constants (affinity constants) given by

$$\label{eq:KL} \mathsf{K}_\mathsf{L} = \frac{[\mathsf{A} : \mathsf{L}]}{[\mathsf{A}][\mathsf{L}]} \qquad \text{and} \qquad \mathsf{K}_\mathsf{LRC:L} = \frac{[\mathsf{LRC} : \mathsf{L} : \mathsf{A}]}{[\mathsf{A}][\mathsf{LRC} : \mathsf{L}]}$$

where [A] is the concentration of free antibody, [L] is the concentration of free target ligand, [A:L] is the concentration of target ligand bound to antibody, [LRC:L] is the concentration of target ligand bound to ligand receptor conjugate, and [LRC:L:A] is the concentration of target ligand bound to ligand receptor conjugate and to antibody. At equilibrium, the concentration of free antibody must be the same in these expressions and by solving for [A] in one of the equations and substituting into the other equation the following relationship must be satisfied

$$\frac{K_{LRC:L}}{K_L} = \frac{[LRC:L:A][L]}{[LRC:L][A:L]}$$

Under conditions of excess ligand, the concentration of free target ligand, [L], is essentially the total concentration of target ligand in the assay mixture and the concentration of target ligand bound to antibody, [A:L] can be estimated by using the total concentration of antibody in the assay mixture. Methods for determining the concentration of antibody added to the assay mixture are well known to those skilled in the art. The ratio of [LRC:L:LA]/[LRC:L] is simply the ligand receptor conjugate bound to antibody divided by the ligand receptor conjugate not bound to antibody if the affinity of the ligand receptor for the ligand is such that substantially all of the ligand receptor conjugate is bound to the target ligand. The concentrations of the target ligand and the ligand receptor conjugate must be chosen so that this condition is satisfied. If the concentration of the target ligand is chosen so that it is more than 100X the dissociation constant for the binding of ligand receptor conjugate and ligand under the conditions of the assay, then greater than 99% of the ligand receptor conjugate will be bound to target ligand. To determine the ratio of [LRC:L:AV[LRC:L], the antibody and ligand receptor conjugat bound to it can be separated from the assay mixture by using antibodies specific for the antibody species being tested. For exampl, if mouse monoclonal antibodies are

15

20

25

35

40

being selected for us in the present inv ntion, an antibody raised in goats that is specific for mouse antibodies can be us d to selectively precipitate the mouse antibodies and moieti s that are bound to them from the assay mixture. Alternatively, the goat antibody specific for mouse antibodies can be attached to a solid phase such as latex particles, and centrifugation or filtration can be used to separate the antibodies from the assay mixture. If the ligand receptor is also a mouse antibody, then the antibody that is being tested can be labeled with a hapten and an antibody specific for that hapten can be used to remove only the antibody that is being tested from the assay mixture. Methods for labeling antibodies without affecting their binding are known to those skilled in the art (see, for example O'Shannessy and Quarles, Journal of Immunological Methods, 99, 153-161 (1987)). Under these conditions, the ratio of K_{LRC:L}/K_L can be determined. Antibodies where this ratio exceeds 10 are selected for use in the present invention. The determination of the relative affinity of the antibody for ligand receptor-ligand complex and for ligand is made under conditions that are similar to the conditions that are present when the "hook" effect is normally problematic. Thus, the selection criteria described here are effective in selecting antibodies to ligand receptorligand complexes that substantially eliminate the "hook" effect.

The antibody selected by the assay described above can be used in assay processes to bind the complex of target ligand and ligand receptor conjugate. Alternatively, the antibody can be coupled to a signal development element to form an antibody conjugate. The antibody conjugate can be used in assay processes to bind the complex of target ligand and ligand receptor.

The assay described above can also be used to select antibodies that do not bind to the ligand receptor by determining if ligand receptor conjugate binds to the antibody being tested in the absence of target ligand. The absence of binding between the antibody and the ligand receptor conjugate in the above assay is an indication that there is no binding between the two species. However, because the binding reactions are subject to the Law of Mass Action, the concentrations of the antibody and the ligand receptor in the final assay format are variables that substantially affect the binding of antibody to ligand receptor. Therefore, the final assay format, where either an antibody conjugate or a ligand receptor conjugate is employed must be used to determine that there is no detectable response due to the binding of antibody to ligand receptor. A detectable response is a response that is higher than the response noise due to nonspecific binding by a statistically significant margin.

Th antibody that is selected by the abov procedure is used in non-competitive, sandwich assays for the detection of target ligand in fluid sampl s. Th

antibody can be label d for detection by forming an antibody conjugate wher th antibody is coupl d to a signal development lement or to an element such as a protein that is coupled to a signal development element. Methods for the covalent coupling of antibodies to proteins or to signal development elements such as fluorescent, radioactive, or chemiluminescent labels are known to those skilled in the art. Preferred signal development elements are those which can produce a visual response that is used to detect the presence or amount of target ligand in the sample. Such signal development elements include sol particles that have strong absorbances in the visual spectrum such as colloidal gold, colloidal selenium, colored latex particles, and enzymes that produce colored products when contacted with appropriate substrates. When the antibody conjugate is bound to ligand receptor-ligand complexes, the amount of antibody conjugate-ligand receptor-ligand complex is related to the concentration of target ligand in the sample. A preferred embodiment is one where the ligand receptor is immobilized on a solid phase to facilitate removal of the unbound antibody conjugate from the assay mixture by washing. Alternatively, the ligand receptor and moieties bound to it, such as antibody conjugate bound to the complex of ligand receptor and ligand, can be separated from the assay mixture by utilizing an immobilized receptor for the ligand receptor. The ligand receptor can also be coupled to a hapten or another element for which there is a specific receptor, such as an anti-hapten antibody. The specific receptor can then be used to remove the ligand receptor and moieties bound to it from the assay mixture. These methods, depending upon assay design, can each be utilized successfully to develop assays where the amount of antibody conjugate-ligand receptor-ligand complex is detected and related to the concentration of target ligand in the sample. When antibodies are used that are selected according to the present invention in the assay formats described, the "hook" effect is substantially eliminated.

In the context of the present invention, the term "immobilized" encompasses all physical mechanisms for immobilizing antibodies or receptors such that during the performance of the assay process, substantially all of the antibody or receptor remains in a pre-determined locus. Such mechanisms include covalent binding, non-covalent binding, chemical coupling, physical entrapment of particulates operatively associated with antibodies or receptors, and bν hydrophobic/hydrophobic adsorption hydrophilic/hydrophilic interactions. The immobilization of th antibody or receptor onto the solid support of the solid phas of the present invention may be accomplished in a number of ways. The antibody or receptor may b immobilized by the technique of entrapping antibody-coated or receptor-coated par-

55

15

20

25

30

35

40

ticulates by a porous matrix solid support. M thods for introducing such particulates to a porous matrix are discussed in U.S. Patent Nos. 4,446,232, 4,740,468 and European Patent Application 86302521.9, incorporated by reference herein. A particularly preferred method of immobilization of the antibody or receptor onto the solid support wherein the solid support is a porous matrix comprises in part, immobilization of the antibody or receptor on the solid support by covalent or non-covalent chemical binding. Techniques for binding antibodies or receptors to a solid support are well known in the art. A variety of solid supports, including a porous matrix, a non-porous matrix, beads, membranes or filters, may be used in the present invention. Such solid supports can be incorporated into a variety of test devices including dipsticks and devices such as those described in U.S. Patent Nos. 4,200,690, 4,246,339, 4,366,241, 4,632,901, and 4,727,019. A particularly preferred, solid phase is a membrane suspended in a device such that when the assay fluid is contacted with the membrane, the fluid is of sufficient volume to completely fill the void volume of the exposed membrane such that the total surface area of the membrane and all antibody or receptor zones are contacted by the fluid. Such a device would also incorporate, if necessary, a means for removal of unbound conjugates from the membrane and a means for contacting the conjugates bound to immobilized antibodies or receptors on the membrane with materials needed to develop the signals associated with the signal development elements.

Clearly, the use of the method of the present invention with such devices would provide one with the ability to assay for multiple target ligands in a single sample using a single test device. In the multiple, simultaneous ligand-receptor assay formats a solid support comprising for each target ligand to be determined, at least one discrete reaction zone on which is localized either receptor specific for target ligand or antibody specific for the complex of ligand receptor and ligand or both.

The antibody conjugate can be used in a variety of assay processes for the determination of the target ligand concentration in fluid samples. The sample can be contacted with the antibody conjugate first and then contacted with the ligand receptor to form the assay mixture. Alternatively, the sample can be contacted with the ligand receptor before contact with the antibody conjugate. The antibody conjugate can also be mixed with the ligand receptor prior to contact of the mixture with the sample. After these three elements of the assay mixture have been contacted with one another for sufficient times of that the amount of the antibody conjugate-ligand receptor-ligand compl x that is formed is related to the concentration of the target ligand in the sample, the unbound antibody conjugate is separated from the bound fraction. Precipitation or immobilization of the ligand receptor on a solid phas facilitat s this separation. Normally, a wash step is requir d to remove the unbound antibody conjugate from the bound fraction. The sill ction and use of antibodies also having an affinity for the complex of ligand receptor and target ligand that is 1000x greater than the affinity of the antibody for the target ligand is the best mode for practicing this invention. In a particularly preferred embodiment, enzyme channeling methods such as those described in U.S. Patent No. 4,233,402 are utilized in conjunction with a solid phase as described in U.S. Patent No. 4,391,904 so that no washing step is necessary. In assay processes requiring the removal of the unbound antibody conjugate, the presence of the antibody conjugate-ligand receptor-ligand complex is detected by adding any additional reagents, if necessary, to generate a signal from the signal development element. For example, if the signal development element is an enzyme, a suitable substrate is added and the formation of the product can be monitored with a spectrophotometer. The use of signal development elements that are visible, such as colloidal gold, eliminates the need for additional reagents to develop the response.

Alternatively, the ligand receptor can be labeled for detection by formation of a ligand receptor conjugate where the ligand receptor is coupled directly or indirectly to a signal development element. When the antibody is bound to ligand receptor conjugate-ligand complexes, the amount of antibody-ligand receptor conjugate-ligand complex is related to the concentration of target ligand in the sample. The selection and use of antibodies having an affinity for the complex of ligand receptor conjugate and target ligand that is 1000x greater than the affinity of the antibody for the target ligand is the best mode for practicing this invention. A preferred embodiment is one where the antibody is bound to a solid phase to facilitate removal of the unbound ligand receptor conjugate from the assay mixture by washing. Alternatively, the antibody and moieties bound to it, such as the complex of ligand receptor conjugate and ligand, can be separated from the assay mixture by utilizing an immobilized receptor for the antibody. The antibody can also be coupled to a hapten or another element for which there is a specific receptor, such as an anti-hapten antibody. The specific receptor can then be used to remove the antibody and moieties bound to it from the assay mixture. These methods, depending upon assay design, can each be utilized successfully to develop assays where the amount of antibody conjugate-ligand receptor conjugate-ligand complex is detected and related to the concentration of targ t ligand in the sample. When antibodies are used that are sel cted according to the tachings of the present invention in th assay formats describ d, the "hook" effect is substantially eliminated.

10

15

20

25

35

40

45

Th antibody and the ligand receptor conjugat can be used in a vari ty of assay processes for th determination of the target ligand concentration in fluid samples. The sample can be contacted with the ligand receptor conjugate first and then contacted with the antibody to form the assay mixture. Alternatively, the sample can be contacted with the antibody before contact with the ligand receptor conjugate. The antibody can also be mixed with the ligand receptor conjugate prior to contact of the mixture with the sample. After these three elements of the assay mixture have been contacted with one another for sufficient time so that the amount of the antibody-ligand receptor conjugate-ligand complex that is formed is related to the concentration of the target ligand in the sample, the unbound ligand receptor conjugate is separated from the bound fraction. Precipitation or immobilization of the antibody on a solid phase facilitates this separation. Normally, a wash step is required to remove the unbound ligand receptor conjugate from the bound fraction. In a particularly preferred embodiment, enzyme channeling methods such as those described in U.S. Patent No. 4,233,402 are utilized in conjunction with a solid phase as described in U.S. Patent No. 4,391,904 so that no washing step is necessary. In assay processes requiring the removal of the unbound ligand receptor conjugate, the presence of the antibody-ligand receptor conjugate-ligand complex is detected by adding any additional reagents, if necessary, to generate a signal from the signal development element. For example, if the signal development element is an enzyme, a suitable substrate is added and the formation of the product can be monitored with a spectrophotometer. The use of signal development elements that are visible, such as colloidal gold, eliminates the need for additional reagents to develop the response.

The present invention is particularly useful in noncompetitive ligand-receptor assays where the ligand concentration can exceed the concentration of the ligand receptors and cause a "hook" effect. Target ligands that commonly pose "hook" problems for the designers of immunometric sandwich assays include HCG (human chorionic gonadotropin), Hepatitis B Surface Antigen, and albumin in urine. However, in sandwich assays for all target ligands where the sample and the labeled and unlabeled ligand receptors are incubated simultaneously, the assay can be improved by the use of the present invention. Even before the concentration of the target ligand exceeds the concentration of the ligand receptors used in the assay, separate target ligands can bind to both the ligand receptor and the labeled ligand receptor to inhibit the formation of the ligand receptor-target ligand-labeled ligand r ceptor complex that is necessary to det ct the amount of targ t ligand in th sample. The r spons of a sandwich assay is typically not a linear function of the target ligand concentration

except ov r the lower range of targ t ligand concentration due to this inhibiting ff ct. Because the antibody has a very low affinity for the targ t ligand, th inhibiting eff ct of the target ligand is liminated. Thus, use of the present invention will result in a linear assay response over a substantially larger range of target ligand concentration than previous assays. Only two standards are needed to calibrate the linear assay response so that calibration is simplified.

Assays for specific DNA or RNA sequences rely upon hybridization of a oligonucleotide probe with the target ligand. Antibodies that bind the complex of oligonucleotide probe and target ligand but do not bind the oligonucleotide probe in amounts that are detectable above the assay response noise as a result of the assay process can be used to detect the presence or amount of such target ligands. The use of Polymerase Chain Reaction methods has extended the sensitivity of oligonucleotide probe assays by amplifying the number of copies of the target sequence. Such amplification in an unknown sample can lead to a large concentration of target sequences in excess over the concentration of oligonucleotide probe. The use of antibodies to bind the complex of the probe and the target sequence according to the present invention simplifies the design of such assays by increasing the range of probe concentration that can be used and by providing a rapid and efficient capture mechanism for the detection of probe-target sequence hybrids.

Claims

- Method for determining the presence or amount of at least one target ligand, said target ligand capable of binding a ligand receptor conjugate, in a fluid sample suspected of containing said target ligand, comprising the steps of:
 - a. contacting said fluid sample with said ligand receptor conjugate and an antibody, capable of binding the complex of said target ligand and said ligand receptor conjugate, the binding affinity of said antibody for said complex being at least a factor of 10 greater than the affinity of said antibody for said target ligand, wherein no detectable assay response results from the binding of antibody and ligand receptor conjugate in the absence of target ligand and the amount of ligand receptor conjugate bound to antibody is related to the amount of target ligand in the fluid sample;
 - b. detecting said ligand receptor conjugate bound to said antibody;
 - c. relating the detectable signal to the presence or amount of said target ligand in said fluid sample.

15

20

25

30

40

45

50

- Method for d termining the presence or amount of at I ast one targ t ligand, said target ligand capabl of binding a ligand receptor conjugat, in a fluid sample suspected of containing said target ligand, comprising the steps of:
 - a. contacting said fluid sample with said ligand receptor conjugate and an antibody, capable of binding the complex of said target ligand and said ligand receptor conjugate, the binding affinity of said antibody for said complex being at least a factor of 10 greater than the affinity of said antibody for said target ligand, wherein no detectable assay response results from the binding of antibody and ligand receptor conjugate in the absence of target ligand and the amount of ligand receptor conjugate bound to antibody is related to the amount of target ligand in the fluid sample;
 - b. contacting the fluid from step (a) with a means for removing said antibody and moieties bound to it from said fluid:
 - c. detecting said ligand receptor conjugate bound to said antibody;
 - d. relating the detectable signal to the presence or amount of said target ligand in said fluid sample.
- 3. Method for determining the presence or amount of at least one target ligand, said target ligand capable of binding a ligand receptor, in a fluid sample suspected of containing said target ligand, comprising the steps of:
 - a. contacting said fluid sample with said ligand receptor and an antibody conjugate, said antibody conjugate capable of binding the complex of said target ligand and said ligand receptor, the binding affinity of said antibody conjugate for said complex being at least a factor of 10 greater than the affinity of said antibody conjugate for said target ligand, wherein no detectable assay response results from the binding of antibody conjugate and ligand receptor in the absence of target ligand and the amount of antibody conjugate bound to ligand receptor is related to the amount of target ligand in the fluid sample;
 - b. detecting said antibody conjugate bound to said ligand receptor;
 - c. relating the detectable signal to the presence or amount of target ligand in said fluid sample.
- 4. Method for determining the presence or amount of at least one target ligand, said target ligand capable of binding a ligand rec ptor, in a fluid sample suspected of containing said target ligand, comprising the st ps of:
 - a. contacting said fluid sample with said ligand

receptor and an antibody conjugate, said antibody conjugat capabl of binding the complex of said target ligand and said ligand r ceptor, the binding affinity of said antibody conjugate for said complex being at least a factor of 10 greater than the affinity of said antibody conjugate for said target ligand, wherein no detectable assay response results from the binding of antibody conjugate and ligand receptor in the absence of target ligand and the amount of antibody conjugate bound to ligand receptor is related to the amount of target ligand in the fluid sample;

- b. contacting the fluid from step (a) with a means for removing ligand receptor and moieties bound to it from said fluid;
- c. detecting said antibody conjugate bound to said ligand receptor;
- d. relating the detectable signal to the presence or amount of said target ligand in said fluid sample.
- Method of claim 1 or 2 or 3 or 4 wherein said target ligand is DNA or RNA and said ligand receptor is a portion of DNA or RNA capable of hybridizing to said target ligand.
- Method of claim 1 or 2 or 3 or 4 wherein the antibody is a monoclonal antibody or antibody fragment
- Method of claim 5 wherein the antibody is a monoclonal antibody or antibody fragment.
- 35 8. The method of claim 1 or 2 or 3 or 4 wherein said antibody is a polyclonal antibody, antisera or antibody fragment.
 - The polyclonal antibody, antisera or antibody fragment of claim 11, wherein said antibody, antisera or antibody fragment is selected by employing affinity chromatography.
 - 10. The method of claim 1 or 2 or 3 or 4 wherein said target ligand is selected from the group consisting of haptens, hormones, peptides, proteins, DNA and RNA.
 - 11. Test device for determining the presence or amount of at least one target ligand, said target ligand capable of binding a ligand receptor conjugate, in a fluid sample suspected of containing said target ligand, said device comprising:
 - a. means for contacting said fluid sample with said ligand receptor conjugate and an antibody, capable of binding the complex of said target ligand and said ligand receptor conjugate, the binding affinity of said antibody for

15

20

25

30

35

40

45

50

said compl x being at least a factor of 10 greater than the affinity of said antibody for said target ligand, wh rein no detectable assay response results from the binding of antibody and ligand receptor conjugate in the absence of target ligand and the amount of ligand receptor conjugate bound to antibody is related to the amount of target ligand in the fluid sample;

b. means for detecting said ligand receptor conjugate bound to said antibody;

 c. means for relating the detectable signal to the presence or amount of said target ligand in said fluid sample.

12. Test device for determining the presence or amount of at least one target ligand, said target ligand capable of binding a ligand receptor conjugate, in a fluid sample suspected of containing said target ligand, said device comprising:

a. means for contacting said fluid sample with said ligand receptor conjugate and an antibody, capable of binding the complex of said target ligand and said ligand receptor conjugate, the binding affinity of said antibody for said complex being at least a factor of 10 greater than the affinity of said antibody for said target ligand, wherein no detectable assay response results from the binding of antibody and ligand receptor conjugate in the absence of target ligand and the amount of ligand receptor conjugate bound to antibody is related to the amount of target ligand in the fluid sample;

b. means for contacting the fluid from step (a) with a means for removing said antibody and moieties bound to it from said fluid;

c. means for detecting said ligand receptor conjugate bound to said antibody;

 d. means for relating the detectable signal to the presence or amount of said target ligand in said fluid sample.

13. Test device for determining the presence or amount of at least one target ligand, said target ligand capable of binding a ligand receptor, in a fluid sample suspected of containing said target ligand, said device comprising:

a. means for contacting said fluid sample with said ligand receptor and an antibody conjugate, said antibody conjugate capable of binding the complex of said target ligand and said ligand receptor, the binding affinity of said antibody conjugate for said complex being at least a factor of 10 greater than the affinity of said antibody conjugate for said target ligand, wh rein no detectable assay respons r sults from the binding of antibody conjugat and

ligand receptor in the absence of target ligand and the amount of antibody conjugate bound to ligand receptor is r lated to the amount of target ligand in th fluid sampl;

b. means for detecting said antibody conjugate bound to said ligand receptor;

c. means for relating the detectable signal to the presence or amount of target ligand in said fluid sample.

14. Test device for determining the presence or amount of at least one target ligand, said target ligand capable of binding a ligand receptor, in a fluid sample suspected of containing said target ligand, said device comprising:

a. means for contacting said fluid sample with said ligand receptor and an antibody conjugate, said antibody conjugate capable of binding the complex of said target ligand and said ligand receptor, the binding affinity of said antibody conjugate for said complex being at least a factor of 10 greater than the affinity of said antibody conjugate for said target ligand, wherein no detectable assay response results from the binding of antibody conjugate and ligand receptor in the absence of target ligand and the amount of antibody conjugate bound to ligand receptor is related to the amount of target ligand in the fluid sample;

b. means for contacting the fluid from step (a) with a means for removing ligand receptor and moieties bound to it from said fluid:

c. means for detecting said antibody conjugate bound to said ligand receptor;

d. means for relating the detectable signal to the presence or amount of said target ligand in said fluid sample.

EPO FORM 1503 03.82 (PO401)

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 8409

DOCUMENTS CONSIDERED TO BE RELEVANT					
Category	Citation of document with ind of relevant pass	ication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)	
ם, x	GB-A-2 171 999 (IQ(BIO) * page 1, line 1 - page :	LTD. (UK)) 2, line 74; claims *	1-4,6-14	G01N33/543 G01N33/53	
x	GB-A-2 161 165 (CAMBRIDGE LTD.) * page 1, line:1 - page 1		1,3,8,9, 10-13	G01N33/541	
×	WO-A-8 504 422 (CAMBRIDGE LTD.) * page 1 - page 21; class		1-4,6-14		
ĸ	WO-A-8 600 140 (CAMBRIDGE LTD.)	E PATENT DEVELOPMENTS	1-4,6-14		
	* page 1 - page 21; clair	ns *			
x	EP-A-0 188 093 (IMMUNOMEI	DICS, INC.)	3,4, 6-10,13,		
	* page 1 - page 7 *				
Р, Х	EP-A-0 419 367 (BIO MERII * page 1, line 1 - page 4		1-14	TECHNICAL FIELDS SEARCHED (Int. Cl.5)	
`	WO-A-8 501 941 (NEW ENGLA HOSPITALS, INC.) * page 4, line 29 - page		1	G01N	
		-			
	The present search report has been	drawn un far all claime	-		
	Place of search	Date of completion of the search			
THE HAGUE		O5 DECEMBER 1991	HITC	Exeminer HITCHEN C.E.	
X : parti Y : parti docu A : techr O : non-	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with anothe ment of the same category tological background written disclosure mediate document	E : earlier patent d after the filing D : document cited L : document cited	in the application for other reasons	hed on, or	