Chapter 3 :: Sequential Logic Design (3)

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Chapter 3 :: Topics

- Introduction
- Latches and Flip-Flops
- Synchronous Logic Design

Finite State Machines

- Shifter
- Timing of Sequential Logic
- Parallelism

3.4 1 Finite State Machine Example

- Traffic light controller
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)
 - Lights: L_A , L_B

FSM Black Box

- Inputs: CLK, Reset, T_A , T_B
- Outputs: L_A , L_B

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles

FSM State Transition Table

Current			Next
State	Inp	outs	State
S	T_A	T_B	Snext
S0	0	X	S 1
S0	1	X	S 0
S 1	X	X	S2
S2	X	0	S 3
S2	X	1	S2
S 3	X	X	S 0

FSM Encoded State Transition Table

Current State	Inputs		Next State
State	T_{A}	T_B	Snext
S 0	0	X	S 1
S 0	1	X	S0
S 1	X	X	S2
S2	X	0	S 3
S2	X	1	S2
S 3	X	X	S0

1	State	Encoding (2진 부호화)
	S0	00
	S 1	01
	S2	10
	S 3	11

Current State		Inputs		Next State	
S_1	S_0	T_A	T_B	$S_{1 \text{next}}$	$S_{0 m next}$
0	0	0	X	0	1
0	0	1	X	0	0
7 0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S_{1\text{next}} = S_1 \oplus S_0$$

$$S_{0\text{next}} = S_1'S_0'T_A' + S_1S_0'T_B'$$

FSM Output Table

C	Current State				puts	
State	S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
S0	0	0	0	0	1	0
S1	0	1	0	1	1	0
S2	1	0	1	0	0	0
S 3	1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

$$L_{A1} = S_1$$

 $L_{A0} = S_1'S_0$
 $L_{B1} = S_1'$
 $L_{B0} = S_1S_0$

FSM Schematic: State Register

FSM Schematic: Next State Logic

$$S_{1\text{next}} = S_1 \oplus S_0$$

 $S_{0\text{next}} = S_1'S_0'T_A' + S_1S_0'T_B'$

FSM Schematic: Output Logic

inputs

next state logic

state register

output logic outputs

$$L_{A1} = S_1$$

 $L_{A0} = S_1'S_0$
 $L_{B1} = S_1'$
 $L_{B0} = S_1S_0$

FSM Timing Diagram

3.4.2 FSM State Encoding(상태부호화)

- Binary encoding
 - i.e., for four states, 00, 01, 10, 11
- One-hot encoding
 - One state bit per state(각각의 상태를 위해 하나의 비트가 사용됨)
 - Only one state bit is HIGH at once(오직 하나의 비트만 참)
 - I.e., for four states, 0001, 0010, 0100, 1000
 - Requires more flip-flops(더 많은 수의 FF를 요구)
 - Often next state and output logic is simpler(다음 상태와 출력 논리는 더 간단)

예제 3.6 (p135)

N진 카운터는 하나의 출력을 가지고 입력은 가지지 않는 다. 출력 Y는 매 클록마다 하나의 클록 사이클 동안 HIGH 값이다. 이진 상태부호화와 one-hot 상태 부호화를 사용하여 회로를 설계하라.

표 3.7 3진 카운터의 출력표		
현재 상태	출력	
S0	1	
S1	0	
S2	0	

예제 3.6

#38 divide-by-3 카운터를 위한 이진 부호화와 one-hot 부호	부호화
--	-----

	One	One-Hot Encoding			ncoding
State	S_2	S_1	S_0	S_1	S_0
S0	0	0	1	0	0
S1	0	1	0	0	1
S2	1	0	0	1	0

# 3.9	이진 부	호화를 가진	상태 변이표	
현재 선	상태	다음 상태		
S ₁	S_0	S'1	S'0	
0	0	0	1	
0	1	1	0	
1	0	0	0	

- $S_2 = S_1$
- $S'_1 = S_0$
- $S'_0 = S_2$
- $Y'_1 = S_0$

3.4.3 Moore vs. Mealy FSM (last four 1101)

• Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last four digits it has crawled over are 1101. Design Moore and Mealy FSMs of the snail's brain.

State Transition Diagrams (last four 1101)

Mealy FSM: arcs indicate input/output

Mealy FSM

•무어머신

: 출력이 시스템 상태에만 의존

: 출력을 원 안에

• 밀리머신

: 출력이 현재상태 및 입력에 의존

: 출력을 화살표에

Moore FSM State Transition Table (last four 1101)

Current State		Inputs	Ne	xt St	ate	
S_2	S_1	S_0	A	Sn_2	Sn_1	Sn_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	1	0
0	1	1	0	0	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	0	1	0	1	0

State	Encoding
S0	000
S 1	001
S2	010
S 3	011
S4	100

Moore FSM State Transition Table (last four 1101)

Current State		Inputs	Ne	Next State		
S_2	S_1	S_0	A	Sn_2	Sn_1	Sn_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	1	0
0	1	1	0	0	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	0	1	0	1	0

S_0A S_2S_1	00	01	11	10
00				
01			1	
11	X	X	X	X
10			X	X

- $Sn_2 = S_1S_0A$
- $\bullet \quad Sn_1 = \overline{S_1}S_0A + S_1\overline{S_0} + S_2A$
- $Sn_0 = \overline{S}_2 \overline{S}_1 \overline{S}_0 A + S_1 \overline{S}_0 \overline{A}$

Moore FSM Output Table (last four 1101)

Cu	Output		
S_2	S_1	S_0	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1

$$Y = S_2$$

State	Encoding
S0	000
S1	001
S2	010
S3	011
S4	100

Moore FSM Schematic (last four 1101)

Mealy FSM State Transition and Output Table (last four 1101)

Curren	t State	Input	Next	State	Output
S_1	S_0	A	Sn_1	Sn_0	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

State	Encoding	
S0	00	
S1	01	
S2	10	
S 3	11	

Mealy FSM State Transition and Output Table (last four 1101)

Curren	t State	Input	Next	State	Output
S_1	S_0	A	Sn_1	Sn_0	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

A S_1S_0	0	1
00		
01		1
11		
10	1	1

•
$$Sn_1 = S_1 \overline{S}_0 + \overline{S}_1 S_0 A$$

•
$$Sn_0 = \overline{S}_1 \overline{S}_0 A + S_1 \overline{S}_0 \overline{A} + S_1 S_0 A$$

•
$$Y = S_1 S_0 A$$

Mealy FSM Schematic (last four 1101)

Moore and Mealy Timing Diagram (last four 1101)

3.4.3 Moore vs. Mealy FSM (last two 01)

• Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last two digits it has crawled over are 01. Design Moore and Mealy FSMs of the snail's brain.

State Transition Diagrams (last two 01)

Moore FSM

Mealy FSM: arcs indicate input/output

Mealy FSM

Moore FSM State Transition Table (last two 01)

Current State		Inputs	Next State	
S_1	S_0	A	S' ₁	S'_0
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0

$$S_1' = S_0 A$$
$$S_0' = \overline{A}$$

State	Encoding
S 0	00
S 1	01
S2	10

Moore FSM

Moore FSM Output Table (last two 01)

Curren	Output	
S_1	S_0	Y
0	0	0
0	1	0
1	0	1

$$Y = S_1$$

Moore FSM

Moore FSM Schematic (last two 01)

Mealy FSM State Transition and Output Table (last two 01)

Current State	Input	Next State	Output
	input		Output
S_0	A	S'_0	Y
0	0	1	0
0	1	0	0
1	0	1	0
1	1	0	1

State	Encoding
S 0	00
S 1	01

Mealy FSM

Mealy FSM Schematic (last two 01)

•
$$S'_0 = \overline{A}$$

•
$$Y = S_0 A$$

Moore and Mealy Timing Diagram (last two 01)

3.4.4 Factoring State Machines(상태머신 인수분해)

Break complex FSMs into smaller interacting FSM
 (복잡한 FSM을 여러 개의 간단한 FSM으로 분류)

Example

: Modify the traffic light controller to have a Parade Mode.

- The FSM receives two more inputs: P, R
- When P = 1, it enters Parade Mode and the Bravado Blvd. light stays green.
- When R = 1, it leaves Parade Mode

Parade FSM

Unfactored FSM

Factored FSM

Unfactored FSM State Transition Diagram

Factored FSM State Transition Diagram

3.4.5 회로로부터 FSM 도출

• 실습시간에 분석

Q & A

