Variables of Interest

Load Libraries

Get Data

Loading Milwaukee County Tract Level Data from the 2010 Census

Plotting Data

Save Dataset

Creative 1: Relationships + Distributions

Meghan Casey

September 14, 2020

Variables of Interest

Milwaukee, WI will be the city I analyze for this assignment.

Unit of Analysis: Census Tract

Population: TBD

- 1. Total Population of the tract (continuous): tot_pop
- 2. Percent of households owned (continuous): per_own
- 3. Majority race of the tract (categorical): maj_race
- 4. Median age of tract (continuous): med_age
- 5. Majority household type of the tract (categorical): maj_hh
- 6. Average Household size of the tract (continuous): avg_hh

Load Libraries

library(ggplot2)
library(tidycensus)
library(tidyverse)

library(ggthemes)

Get Data

area_vars_2010 <- load_variables(2010, "sf1")</pre>

Loading Milwaukee County Tract Level Data from the 2010 Census

```
vars <- c(tot_pop = "P001001",</pre>
          white = "P008003",
          black = "P008004",
          native = "P008005",
          asian = "P008006",
          pac_isl = "P008007",
          other = "P008008",
          multi = "P008010",
          med_age = "P013001",
          avg_hh = "H012001",
          tot_ten = "H004001",
          own_mort = "H004002",
          own_free = "H004003",
          rent = "H004004",
          tot_hh = "P018001",
          family_hh = "P018002",
          nonfam_hh = "P018007")
mke_tracts <- get_decennial(geography = "tract", variables = vars,</pre>
                            state = "WI", county = "Milwaukee",
                            output = "wide") %>%
  mutate(per_own = (own_mort + own_free) / tot_ten) %>%
  mutate(maj_race = case_when(
   white/tot_pop > 0.5 ~ "white",
   black/tot_pop > 0.5 ~ "black",
   native/tot_pop > 0.5 ~ "native",
   asian/tot_pop > 0.5 ~ "asian",
   pac_isl/tot_pop > 0.5 ~ "pac_isl",
   other/tot_pop > 0.5 ~ "other",
   multi/tot_pop > 0.5 ~ "multi",
    (white + black + native + asian +
       asian + pac_isl + other + multi) / tot_pop < 0.5 ~ "other",</pre>
   TRUE ~ "None")) %>%
  mutate(maj_hh = case_when(
    family_hh / tot_hh > 0.5 ~ "family",
   nonfam_hh / tot_hh > 0.5 ~ "nonfamily")) %>%
  filter(avg_hh > 1.00) %>%
  select(GEOID, tot_pop, maj_race, maj_hh, med_age, per_own, avg_hh)
```

Plotting Data

Plot #1

Average Household Size and Percent of Houses Owned by Majority Household Type

In general, majority family household tracts consist of more owned homes, with more people living within those homes.

Plot #2

Average Household Size and Median Age by Majority Race

```
ggplot(mke_tracts,
      aes(x = avg_hh,
          y = med_age,
          color = maj_race)) +
 geom_point() +
 stat_smooth(method = "lm") +
 scale_x_continuous(name = "Average Household Size within Tract",
                     breaks = seq(0, 4.5, by = 0.5)) +
 scale_y_continuous(name = "Median Age within Tract",
                     breaks = seq(18, 58, by = 10)) +
 scale_color_manual(values = c("turquoise4", "seagreen3", "salmon3"),
                     name = element_blank(),
                     labels = c("Black",
                                 "No Majority",
                                 "White")) +
 scale_fill_discrete(name = element_blank(),
                     labels = c("Black",
                                 "No Majority",
                                 "White")) +
 theme_gray()
```

```
## `geom_smooth()` using formula 'y ~ x'
```


The grouping of several tracts with larger households size and younger age could relate to rental populations among students or young professionals.

Plot #3

Percent of Houses Owned and Tract Population

```
## \geq \infty_s = 100 wsing method = 'loess' and formula 'y \sim x'
```


The clustering of tract data points in the middle section might indicate that there is not a strong relationship between the percent of houses owned within a tract and that tract's population.

Plot #4

Median Age and Tract Population

Median Age of Tract

Again, not seeing a strong correlation between median age of tract and the tract population.

Plot #5

Majority Race and Tract Population

The distribution seems more or less even, with a few outliers in the White section.

Plot#6

Majority Race and Tract Population

```
ggplot(mke_tracts,
       aes(x = maj_race,
           y = tot_pop,
           color = maj_race)) +
  geom_point(position = "jitter",
             size = 1.0,
             alpha = 1.0) +
  scale_x_discrete(name = "Majority Race",
                       labels = c("White",
                                  "Black",
                                  "No Majority")) +
  scale_y_continuous(name = "Tract population",
                     trans = "log",
                     breaks = c(1000, 3000, 5000, 7000, 9000),
                     labels = c("1,000", "3,000", "5,000", "7,000", "9,000")) +
  scale_color_manual(values = c("turquoise4", "seagreen3", "salmon3")) +
  theme_foundation() +
  theme(legend.position = "none")
```


the previous one, but also shows the range of majority percentages within each racial category.

Plot #7

Majority Household Type and Number of Tracts by Majority Race

This is an effective way to show the racial majorities in each household type.

Plot #8

Percent of Houses Owned and Tract Population

Percent of Houses Owned within Tract

This plot doesn't do a great job of indicating a relationship between tract population and percent of houses owned, there is a lot of variety.

Plot#9

Majority Race and Median Age by Majority Household Type

There is a lot more variation in no majority tracts - could be interesting to see what other variables this is true for.

Plot #10

Average Household Size and Median Age by Majority Race

```
ggplot(mke_tracts,
       aes(x = avg_hh,
           y = med_age,
           color = maj_race)) +
  geom_quantile(linetype = 2, size = 1.0) +
  scale_x_continuous(name = "Average Household Size in Tract",
                     breaks = seq(0, 4.5, by = 0.5)) +
  scale_y_continuous(name = "Median Age of Tract",
                     breaks = seq(8, 68, by = 10),
                     labels = c("8", "18", "28", "38", "48", "58", "68")) +
 scale_color_manual(values = c("turquoise4", "seagreen3", "salmon3"),
                     name = element_blank(),
                     labels = c("Black",
                                 "No Majority",
                                 "White")) +
  theme_stata()
```

```
## Smoothing formula not specified. Using: y \sim x ## Smoothing formula not specified. Using: y \sim x
```

```
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
```

```
## Smoothing formula not specified. Using: y \sim x
```


Like an earlier plot, the trend towards larger households for younger median ages could be indicative of student populations, curious that the white category does not follow this trend.

Plot #11

Median Age and Tract Population by Majority Race

```
ggplot(mke_tracts,
       aes(x = med_age,
           y = tot_pop,
           label = maj_race,
           color = maj_race)) +
  geom_text(size = 3) +
  scale_x_continuous(name = "Median Age of Tract",
                     breaks = seq(8, 68, by = 10),
                     labels = c("8", "18", "28", "38", "48", "58", "68")) +
  scale_y_continuous(name = "Tract population",
                     breaks = c(1000, 3000, 5000, 7000, 9000),
                     labels = c("1,000", "3,000", "5,000", "7,000", "9,000")) +
  scale_color_manual(values = c("turquoise4", "seagreen3", "salmon3"),
                     name = element_blank(),
                     labels = c("Black",
                                 "No Majority",
                                 "White")) +
  theme_grey()
```


An interesting take on a scatterplot!

Plot #12

Majority Race

Very clear way to see racial majorities across tracts.

Save Dataset

write_csv(mke_tracts, "mke_tracts.csv")