DELHI TECHNICAL CAMPUS

B.TECH SEM - I (Assignment No. 3)

APPLIED MATHEMATICS-I Paper Code: BS-111

1. The matrix
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
 satisfies the matrix equation

 A^{3} - $6A^{2}$ + 11A - I = 0, where I is an identity matrix of order 3. Find A^{-1}

2. Examine the following vectors for linear dependence and find the relation between them,

if possible:
$$X_1 = (1, 1, -1, 1), X_2 = (1, -1, -2, -1), X_3 = (3, 1, 0, 1).$$

3. Reduce the matrix A to its normal form where A=

0	4	2	1
0	1	2	2
3	-2	6	1

4. Find for what value of A, B the system of linear equation:

$$x + y + z = 6$$

$$x + 2y + 5z = 10$$

$$2x + 3y + BZ = A$$

has (i) A unique solution (ii) No solution (iii) Infinite solution.

5. Find the Eigenvalues and Eigenvectors of the following matrix A:

1	0	-1
2	2	2
1	1	2

10. For the matrix
$$A = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$
, determine a matrix P such that $P^{-1}AP$ is a diagonal matrix.