Produces a set of nested clusters organized as a hierarchical tree

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - ◆ At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - ◆ At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - ◆ At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - ◆ At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Agglomerative Clustering: Initially

Start with clusters of individual points and a

proximity matrix

Agglomerative Clustering: Middle

After some merging steps, we have some clusters

Agglomerative Clustering: Middle

We want to merge the two closest clusters (C2 and C5) and

C2

C1

C3

C5

C4

update the proximity matrix.

Agglomerative Clustering: After Merging

The question is "How do we update the proximity matrix?"

	p1	p2	р3	p4	p5	<u> </u>
p1						
p2						
р3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	p 5	<u> </u>
p1						
p2						
р3						
p4						_
p5						_

- MIN
- MAX
- Group Average
- Distance Between Centroids

	р1	p2	р3	p4	p 5	<u>.</u>
р1						
p2						
p2 p3						
p4						
р5						_

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
рЗ						
<u>p4</u>						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	р3	p4	р5	<u> </u>
p1						
<u>p2</u>						
рЗ						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

Cluster Similarity: MIN ("Single Link")

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

Hierarchical Clustering, MIN: Strengths

Can handle non-elliptical shapes

Hierarchical Clustering, MIN: Limitations

Sensitive to noise and outliers

Cluster Similarity: MAX ("Complete Link")

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

Hierarchical Clustering, MAX: Strengths

Less susceptible to noise and outliers

Hierarchical Clustering, MAX: Limitations

Tends to break large clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| * |Cluster_{j}|}$$

 Compromise between Single and Complete Link

Hierarchical Clustering: Time and Space Requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N²,
 proximity matrix must be updated and searched

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters