ГЛОБАЛЬНАЯ НАВИГАЦИОННАЯ СПУТНИКОВАЯ СИСТЕМА

ГЛОНАСС

И Н Т Е Р Ф Е Й С Н Ы Й К О Н Т Р О Л Ь Н Ы Й Д О К У М Е Н Т

Навигационный радиосигнал открытого доступа с кодовым разделением в диапазоне L1

Редакция 1.0

МОСКВА 2016 г.

УТВЕРЖДАЮ

Командующий Космическими войсками

А.В. Головко

УТВЕРЖДАЮ

Генеральный директор Госкорпорации Роскосмос»

И.А. Комаров

ГЛОБАЛЬНАЯ НАВИГАЦИОННАЯ СПУТНИКОВАЯ СИСТЕМА ГЛОНАСС

ИНТЕРФЕЙСНЫЙ КОНТРОЛЬНЫЙ ДОКУМЕНТ

Навигационный радиосигнал открытого доступа с кодовым разделением в диапазоне L1

Релакция 1.0

СОГЛАСОВАНО

Начальник штаба — первый заместитель командующего Космическими войсками

И.В. Морозов

Заместитель командующего Космическими войсками по испытаниям

А.В. Ивашина

Начальник НИЦ (г. Королев) ЦНИИ Войск ВКО Минобороны России

Д.Б. Жиленко

СОГЛАСОВАНО

Заместитель руководителя Госкорпорации «Роскосмос»

М.Н. Хайлов

Генеральный конструктор системы ГЛОНАСС

 U^{-1}

Генеральный директор АО «Российские космические

системы»

А.Е. Тюлин

С.Н. Карутин

Генеральный директор АО «ИСС»

Н.А. Тестоедов

Генеральный директор AO «РИРВ»

Quecru

Б.В. Шебшаевич

От НИЦ (г. Королев) ЦНИИ Войск ВКО МО РФ

Старший научный сотрудник

В.И. Головатенко-Абрамов

От Госкорпорации «Роскосмос»

Директор Департамента навигационных космических систем (ГЛОНАСС)

А.М. Волков

От АО «Российские космические системы»

Директор проектов заместитель генерального конструктора

А.Н. Кузенков

Главный конструктор направления

В.В. Дворкин

От AO «ИСС»

Заместитель генерального конструктора

Ю.Г.Выгонский

От ФГУП ЦНИИмаш Заместитель начальника центра

С.А.Панов

Содержание

Π	ерече	ень рисунков	5
П	ерече	ень таблиц	6
O	бозна	ачения и сокращения	7
1	Оби	цие вопросы	9
2	Стр	уктура излучаемого сигнала L1OC	11
	2.1	Формирование сигнала L1OC	11
	2.2	Структуры генераторов ДК сигнала L1OC	14
	2.3	Структура сверточного кодера	20
	2.4	Структура оверлейного кода ОК1	20
3	Обп	цее описание структуры ЦИ радиосигнала L1OCd	21
4	Стр	уктура служебных полей ЦИ сигнала L1OCd	22
	4.1	Общая структура строки сигнала L1OCd	22
	4.2	Служебные поля строки сигнала L1OCd	24
	4.3	Аномальные строки сигнала L1OCd	26
	4.4	Циклический код (250,234)	29
	4.5	Циклический код (125,109) строки 1-го типа сигнала L1OCd	31
	4.6	Циклический код (375,351) строки 2-го типа сигнала L1OCd	31
5	Стр	уктура информационных полей ЦИ сигнала L1OCd	34
	5.1	Информационные поля строки и типы строк сигнала L1OCd	34
	5.2	Строки 10, 11 и 12-го типа сигнала L1OCd	35
	5.3	Строка 20-го типа сигнала L1OCd	44
	5.4	Строка 25-го типа сигнала L1OCd	48
	5.5	Строка 16-го типа сигнала L1OCd	51
	5.6	Строки 31-го и 32-го типа сигнала L1OCd	54
	5.7	Строка 50-го типа сигнала L1OCd	57
	5.8	Строка 60-го типа сигнала L1OCd	59
	5.9	Строка 0-го типа сигнала L1OCd	61
	5.10	Аномальные строки 1-го и 2-го типа сигнала L1OCd	62

Перечень рисунков

Рисунок 2.1 – Структура сигнала L1OC	11
Рисунок 2.2 – Схема формирования сигнала L1OC	12
Рисунок 2.3 — Временные соотношения, поясняющие принцип работы ПВУ формирователя сигнала L1OC	13
Рисунок 2.4 – Структура генератора ДК _{L10Cd}	14
Рисунок 2.5 — Структура генератора ДК $_{\text{L1OCp}}$	17
Рисунок 2.6 – Структура сверточного кодера	20
Рисунок 4.1 – Общая структура строки ЦИ сигнала L1OCd	22
Рисунок 4.2 – Структура аномальной строки 1-го типа ЦИ сигнала L1OCd	26
Рисунок 4.3 – Структура аномальной строки 2-го типа ЦИ сигнала L1OCd	28
Рисунок 4.4 – Схема циклического кодирования (250,234)	29
Рисунок 4.5 – Схема вычисления синдрома для кода (250,234)	30
Рисунок 4.6 – Схема циклического кодирования (375,351)	32
Рисунок 4.7 – Схема вычисления синдрома для кода (375,351)	32
Рисунок 5.1 – Структура строки 10-го типа ЦИ сигнала L1OCd	35
Рисунок 5.2 – Структура строки 11-го типа ЦИ сигнала L1OCd	36
Рисунок 5.3 – Структура строки 12-го типа ЦИ сигнала L1OCd	37
Рисунок 5.4 – Структура строки 20-го типа ЦИ сигнала L1OCd	44
Рисунок 5.5 – Структура строки 25-го типа ЦИ сигнала L1OCd	48
Рисунок 5.6 – Структура строки 16-го типа ЦИ сигнала L1OCd	51
Рисунок 5.7 – Структура строки 31-го типа ЦИ сигнала L1OCd	54
Рисунок 5.8 – Структура строки 32-го типа ЦИ сигнала L1OCd	55
Рисунок 5.9 – Структура строки 50-го типа ЦИ сигнала L1OCd	57
Рисунок 5.10 – Структура строки 60-го типа ЦИ сигнала L1OCd	59
Рисунок 5.11 – Структура строки 0-го типа ЦИ сигнала L1OCd	61

Перечень таблиц

Таблица 2.1 – Первые и последние 32 символа ДК _{L1OCd}	16
Таблица 2.2 – Первые и последние 32 символа ДК _{L1OCp}	19
Таблица 4.1 – Параметры служебных полей сигнала L1OCd	24
Таблица 4.2 – ЦК (250,234) в структуре 2-секундной строки сигнала L1OCd	29
Таблица 4.3 – ЦК (375,351) в структуре строки 2-го типа сигнала L1OCd	31
Таблица 5.1 – Типы строк и их содержание в ЦИ сигнала L1OCd	34
Таблица 5.2 – Параметры информационных полей строк 10, 11 и 12-го типа сигнала L1OCd	38
Таблица 5.3 – Эфемеридный и временной факторы точности	40
Таблица 5.4 – Параметры информационных полей строки 20-го типа сигнала L1OCd	45
Таблица 5.5 – Параметры информационных полей строки 25-го типа сигнала L1OCd	49
Таблица 5.6 – Параметры информационных полей строки 16-го типа сигнала L1OCd	52
Таблица 5.7 – Параметры информационных полей строк 31-го и 32-го типа сигнала L1C	DCd 56
Таблица 5.8 – Структура квитанции Коспас-Сарсат	58
Таблица 5.9 – Параметры информационных полей строки 60-го типа сигнала L1OCd	60
Таблица 5.10 – Параметры информационных полей строки 0-го типа сигнала L1OCd	62

Обозначения и сокращения

АРБ – аварийный буй

БСУ – бортовое синхронизирующее устройство

ГЛОНАСС – глобальная навигационная спутниковая система

ДК – дальномерный код

ИКД – интерфейсный контрольный документ

МВ – метка времени

МДВ – московское декретное время

МП – меандровая последовательность

НАП – навигационная аппаратура потребителя

НКА – навигационный космический аппарат

НС – начальное состояние (регистра сдвига)

ОГ – орбитальная группировка

ОК – оверлейный код

ОК1 – код 01 (оверлейный код)

ОМВ – оцифровка метки времени

ПВЗ – параметры вращения Земли

ПВУ – почиповый временной уплотнитель

ПСС – поисково-спасательная служба

ПДМД – параметры долговременной модели движения

СД – синхронный делитель

СК – сверточный код, сверточный кодер

СМВ – сигнал метки времени

ССС – средние солнечные сутки

ЦА – цифровой автомат (регистр сдвига)

ЦИ – цифровая информация

ЦК – циклический код (проверочные биты циклического кода)

ЧВИ – частотно-временная информация

БШВL1OCd – бортовая шкала времени, передаваемая сигналом L1OCd

БШВL1ОСр – бортовая шкала времени, передаваемая сигналом L1ОСр

БШВL2ОСр – бортовая шкала времени, передаваемая сигналом L2ОСр

ШВС – шкала времени системы

ЭИ – эфемеридная информация

 d – (data) символ в обозначении сигнала, означающий принадлежность к информационной компоненте

 $f_b = 1,023 \ M\Gamma$ ц – базовая частота

L1OC – сигнал открытого доступа с кодовым разделением в диапазоне L1

L1SC – сигнал санкционированного доступа с кодовым разделением в диапазоне L1

L2OCp – сигнал открытого доступа с кодовым разделением в диапазоне L2

p – (pilot) символ в обозначении сигнала, означающий принадлежность к пилотной компоненте

ТАІ – шкала международного атомного времени

UT1 – шкала Всемирного времени, задаваемая вращением Земли, с учетом движения ее полюсов

UTC(SU) — шкала универсального координированного времени государственного первичного эталона Российской Федерации

σ – среднеквадратическое значение погрешности

1 Общие вопросы

1.1 Настоящий интерфейсный контрольный документ (ИКД) определяет параметры интерфейса радиосигналов открытого доступа с кодовым разделением в диапазоне L1 между НКА «Глонасс-К2» и навигационной аппаратурой потребителя (НАП) системы ГЛОНАСС.

Информация, являющаяся общей для всех сигналов ГЛОНАСС с кодовым разделением, приведена в документе «ИКД ГЛОНАСС. Общее описание системы с кодовым разделением сигналов» (далее – общее ИКД), в котором существуют, в частности, следующие разделы:

- назначение, состав и концепция навигационных определений системы ГЛОНАСС;
- шкалы времени, используемые в системе ГЛОНАСС;
- геодезическая основа системы ГЛОНАСС;
- общие свойства сигналов ГЛОНАСС;
- контроль навигационного поля сигналов ГЛОНАСС;
- рекомендации и алгоритмы обработки информации передаваемой в сигналах ГЛОНАСС.
- 1.2 Разработчик бортовой радиоаппаратуры НКА системы ГЛОНАСС акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы»), определяемое как разработчик ИКД, несет ответственность за подготовку, согласование, изменение и сохранение ИКД.

Для вступления в силу настоящего документа необходимо его подписание следующими сторонами:

- генеральным конструктором системы ГЛОНАСС;
- акционерным обществом «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы») Роскосмоса головной организацией по системе ГЛОНАСС, разработчиком полезной нагрузки и служебных радио- и телеметрических систем НКА, комплекса наземных средств контроля и управления НКА, НАП для различных классов пользователей;
- акционерным обществом «Информационные спутниковые системы» (AO «ИСС») Госкорпорации «Роскосмос» разработчиком космического комплекса

системы ГЛОНАСС, включая ракетно-космический комплекс, наземный комплекс управления, НКА, бортовое программное обеспечение расчета и формирования информации в навигационном сообщении и управления НКА;

- научно-исследовательским центром (г. Королев) центрального НИИ Войск ВКО Минобороны России – головной научно-исследовательской организацией Минобороны России по системе ГЛОНАСС;
- акционерным обществом «Российский институт радионавигации и времени» (АО «РИРВ») Минпромторга России головной организацией по средствам частотно-временного обеспечения специального и двойного назначения, разработчиком комплекса средств формирования шкалы времени космического комплекса системы ГЛОНАСС и синхронизации средств системы ГЛОНАСС, а также разработчиком НАП для различных классов пользователей;
- федеральным государственным унитарным предприятием «Центральный научно-исследовательский институт машиностроения» (ФГУП ЦНИИмаш) головным институтом Госкорпорации «Роскосмос».

Утверждается ИКД полномочными представителями Космических войск и Госкорпорации «Роскосмос». ИКД вступает в силу после утверждения командующим Космическими войсками и генеральным директором Госкорпорации «Роскосмос».

В процессе совершенствования системы ГЛОНАСС могут изменяться ее отдельные параметры. Разработчик ИКД несет ответственность за согласование предложенных изменений со всеми ответственными сторонами и за подготовку в случае необходимости новой редакции документа, содержащей изменения.

Изменения и новые редакции ИКД вступают в силу после утверждения командующим Космическими войсками и генеральным директором Госкорпорации «Роскосмос».

Официальное распространение ИКД осуществляет АО «Российские космические системы».

2 Структура излучаемого сигнала L1OC

2.1 Формирование сигнала L1OC

2.1.1 Общая схема формирования сигнала L1OC

Сигнал L1OC излучается на несущей частоте (номинальное значение)

$$f_{L1} = 1565 \cdot f_b = 313 \cdot 5,115 \text{ M} \Gamma \text{U} = 1600,995 \text{ M} \Gamma \text{U}$$

и содержит информационную L1OCd и пилотную L1OCp компоненты равной мощности, которые уплотняются путем чередования чипов дальномерных кодов этих компонент.

Сигнал L1OC квадратурно уплотняется с сигналом L1SC и занимает квадратуру Q (фаза L1OC опережает фазу L1SC на 90°) в соответствии с рисунком 2.1.

Рисунок 2.1 – Структура сигнала L1OC

Схема формирования сигнала L1OC представлена на рисунке 2.2.

СД – синхронный делитель; ЦИ – цифровая информация; ОК – оверлейный код; ПВУ – почиповый временной уплотнитель; ДК – дальномерный код; П – последовательность

Рисунок 2.2 – Схема формирования сигнала L1OC

2.1.2 Формирование L1OCd

Модулирующая последовательность символов Π_{L1OCd} сигнала L1OCd формируется путем суммирования по модулю 2 символов дальномерного кода ДK_{L1OCd} , генерируемых с тактовой частотой $f_{T1}/2=0,5115$ МГц, символов оверлейного кода ОК1 (см. 2.4) и символов сверточного кода (СК) (см. 2.3) длительности 4 мс (250 симв/с) в соответствии с рисунком 2.2.

2.1.3 Формирование L1OCp

Модулирующая последовательность символов Π_{L1OCp} сигнала L1OCp формируется путем суммирования по модулю 2 символов дальномерного кода $\mathsf{ДK}_{L1OCp}$, генерируемых с тактовой частотой $f_{T1}/2=0,5115$ М Γ ц и меандровой последовательности (М Π) с тактовой

частотой $2 \cdot f_{T1} = 2,046$ МГц в соответствии с рисунком 2.2. МП представляет собой периодическую последовательность 0101, синхронизованную с символами ДК_{L1OCp} и передаваемую старшими разрядами вперед (первым по времени символом МП на длительности символа ДК_{L1OCp} является 0). МП предназначена для формирования спектра вида BOC(1,1) для компоненты L1OCp.

2.1.4 Уплотнение L1OCd и L1OCp

Модулирующая последовательность символов Π_{L1OC} сигнала L1OC формируется на выходе ПВУ. Временные соотношения, поясняющие способ уплотнения ПВУ, представлены на рисунке 2.3. Там же приведено положение секундной метки, которое соответствует границе символов ДК. Также секундная метка соответствует границе периодов ДК.

Рисунок 2.3 – Временные соотношения, поясняющие принцип работы ПВУ формирователя сигнала L1OC

Последовательность Π_{L1OC} манипулирует по фазе на 180° компоненту Q несущего колебания в диапазоне L1.

2.2 Структуры генераторов ДК сигнала L1ОС

2.2.1 Генератор ДК сигнала L1OCd

Структура генератора ДК_{L1OCd} изображена на рисунке 2.4.

Рисунок 2.4 – Структура генератора ДК_{L10Cd}

Нулевой системный номер навигационного космического аппарата (НКА) является резервным и может быть использован только после прекращения совместного использования сигналов ГЛОНАСС с частотным и кодовым разделением.

Дальномерные коды ДК $_{L1OCd}$ являются кодами Голда, имеют длину N = 1023, период T = 2 мс и образуются суммированием по модулю 2 двоичных символов (1 и 0), поступающих с тактовой частотой $f_{T1}/2 = 0,5115$ МГц от цифровых автоматов ЦА1 и ЦА2 в соответствии с рисунком 2.4.

Сдвиговый регистр в ЦА1 имеет 10 триггеров, обратные связи от триггеров с номерами 7 и 10. Сдвиговый регистр в ЦА2 имеет 10 триггеров, обратные связи от триггеров с номерами 3, 7, 9 и 10. Сдвиг во всех регистрах осуществляется от триггера с меньшим номером к триггеру с большим номером.

С периодичностью 1 раз в 2 мс происходит установка следующих кодов начального состояния (HC) в регистры ЦА:

- в ЦА1 код НС1 = 0011001000;
- в ЦА2 код HC2 = j = 00000000000, 0000000001...0000111111, где j системный номер НКА в ОГ.

Коды HC1 и HC2 (двоичные числа) записываются в ЦА1 и ЦА2 таким образом, чтобы младший разряд числа поступал в последний триггер регистра.

Короткие импульсы с периодичностью 2 мс, определяющие моменты записи кодов НС в ЦА, формируются в СД, показанном на рисунке 2.2, на основе сигнала 10,23 МГц и импульсов «1 с».

В таблице 2.1 приведены первые и последние 32 символа дальномерных кодов $ДК_{L1OCd}$, представленные для компактности в 16-ричной системе счисления. Например, 13228DB8 означает 00010011001000101000110110111000. При этом в записи последовательностей подразумевается, что крайний левый символ формируется первым по времени.

Таблица 2.1 – Первые и последние 32 символа ДК $_{L1OCd}$

j	HC2	ДК _{L1OCd}		j	HC2	ДК _{L1OCd}	
	(рис. 2.4)	Первые 32	Последние		(рис. 2.4)	Первые 32	Последние
		символа	32 символа			символа	32 символа
0	0000000000	13228DB8	D51F792C	32	0000100000	1728D5B3	C89D8272
1	000000000	9306460E	0E8093A7	33	0000100000	970C1E05	130268F9
2	000000001	531423D5	634F66E2	34	0000100001	571E7BDE	7ECD9DBC
3	0000000010	D330E863	B8D08C69	35	0000100010	D73AB068	A5527737
4	000000011	3339DA8E	8E3776CB	36	000010011	37338285	93B58D95
5	0000000101	B31D1138	55A89C40	37	0000100101	B7174933	482A671E
6	0000000110	730F74E3	38676905	38	0000100110	77052CE8	25E5925B
7	0000000111	F32BBF55	E3F8838E	39	0000100111	F721E75E	FE7A78D0
8	0000001000	030BED95	A3149454	40	0000101000	0701B59E	BE966F0A
9	0000001001	832F2623	788B7EDF	41	0000101001	87257E28	65098581
10	0000001010	433D43F8	15448B9A	42	0000101010	47371BF3	08C670C4
11	0000001011	C319884E	CEDB6111	43	0000101011	C713D045	D3599A4F
12	0000001100	2310BAA3	F83C9BB3	44	0000101100	271AE2A8	E5BE60ED
13	0000001101	A3347115	23A37138	45	0000101101	A73E291E	3E218A66
14	0000001110	632614CE	4E6C847D	46	0000101110	672C4CC5	53EE7F23
15	0000001111	E302DF78	95F36EF6	47	0000101111	E7088773	887195A8
16	0000010000	1B363DAE	EE1A8F90	48	0000110000	1F3C65A5	F39874CE
17	0000010001	9B12F618	3585651B	49	0000110001	9F18AE13	28079E45
18	0000010010	5B0093C3	584A905E	50	0000110010	5F0ACBC8	45C86B00
19	0000010011	DB245875	83D57AD5	51	0000110011	DF2E007E	9E57818B
20	0000010100	3B2D6A98	B5328077	52	0000110100	3F273293	A8B07B29
21	0000010101	BB09A12E	6EAD6AFC	53	0000110101	BF03F925	732F91A2
22	0000010110	7B1BC4F5	03629FB9	54	0000110110	7F119CFE	1EE064E7
23	0000010111	FB3F0F43	D8FD7532	55	0000110111	FF355748	C57F8E6C
24	0000011000	0B1F5D83	981162E8	56	0000111000	0F150588	859399B6
25	0000011001	8B3B9635	438E8863	57	0000111001	8F31CE3E	5E0C733D
26	0000011010	4B29F3EE	2E417D26	58	0000111010	4F23ABE5	33C38678
27	0000011011	CB0D3858	F5DE97AD	59	0000111011	CF076053	E85C6CF3
28	0000011100	2B040AB5	C3396D0F	60	0000111100	2F0E52BE	DEBB9651
29	0000011101	AB20C103	18A68784	61	0000111101	AF2A9908	05247CDA
30	0000011110	6B32A4D8	756972C1	62	0000111110	6F38FCD3	68EB899F
31	0000011111	EB166F6E	AEF6984A	63	0000111111	EF1C3765	B3746314

2.2.2 Генератор ДК сигнала L1OCp

Структура генератора ДК_{L1ОСр} изображена на рисунке 2.5.

Рисунок 2.5 – Структура генератора ДК_{L1ОСр}

Нулевой системный номер НКА является резервным и может быть использован только после прекращения совместного использования сигналов ГЛОНАСС с частотным и кодовым разделением.

Дальномерные коды ДК $_{\text{L1OCp}}$ являются усеченными последовательностями Касами, имеют длину N=4092, период T=8 мс и образуются суммированием по модулю 2 двоичных символов (1 и 0), поступающих с тактовой частотой $f_{\text{T1}}/2=0,5115$ М Γ ц от ЦА1 и ЦА2 в соответствии с рисунком 2.5.

Сдвиговый регистр в ЦА1 имеет 12 триггеров, обратные связи от триггеров с номерами 6, 8, 11 и 12. Сдвиговый регистр в ЦА2 имеет 6 триггеров, обратные связи от триггеров с номерами 1 и 6. Сдвиг в регистрах осуществляется от триггера с меньшим номером к триггеру с большим номером.

С периодичностью 1 раз в 8 мс происходит установка следующих кодов НС в регистры ЦА:

- в ЦА1 код НС1 = 000011000101;
- в ЦА2 код НС2 = j = 000000, 000001...111111, где j системный номер НКА в ОГ.

Коды HC1 и HC2 (двоичные числа) записываются в ЦА1 и ЦА2 таким образом, чтобы младший разряд числа поступал в последний триггер регистра.

Короткие импульсы с периодичностью 8 мс, определяющие моменты записи кодов НС в ЦА, формируются в СД, показанном на рисунке 2.2, на основе сигнала 10,23 МГц и импульсов «1 с».

В таблице 2.2 приведены первые и последние 32 символа Д K_{L10Cp} , представленные для компактности в 16-ричной системе счисления. Например, A301543B означает 10100011000000010101010000111011. При этом в записи последовательностей подразумевается, что крайний левый символ формируется первым по времени.

Таблица 2.2 – Первые и последние 32 символа ДК $_{L1OCp}$

j	HC2	ДКі	L1OCp	j HC		ДК _{L1ОСр}	
	(рис. 2.5)	Первые 32	Последние		(рис. 2.5)	Первые 32	Последние
		символа	32 символа			символа	32 символа
0	000000	A301543B	DA55EDB8	32	100000	A4EB99E1	7EB71F34
1	000001	20F432D6	082494FE	33	100001	271EFF0C	ACC66672
2	000010	E2FBE74D	B36D511B	34	100010	E5112A97	178FA397
3	000011	610E81A0	611C285D	35	100011	66E44C7A	C5FEDAD1
4	000100	83FC0D80	6EC9B3E9	36	100100	8416C05A	CA2B4165
5	000101	00096B6D	BCB8CAAF	37	100101	07E3A6B7	185A3823
6	000110	C206BEF6	07F10F4A	38	100110	C5EC732C	A313FDC6
7	000111	41F3D81B	D580760C	39	100111	461915C1	71628480
8	001000	B37FF8E6	001BC290	40	101000	B495353C	A4F9301C
9	001001	308A9E0B	D26ABBD6	41	101001	376053D1	7688495A
10	001010	F2854B90	69237E33	42	101010	F56F864A	CDC18CBF
11	001011	71702D7D	BB520775	43	101011	769AE0A7	1FB0F5F9
12	001100	9382A15D	B4879CC1	44	101100	94686C87	10656E4D
13	001101	1077C7B0	66F6E587	45	101101	179D0A6A	C214170B
14	001110	D278122B	DDBF2062	46	101110	D592DFF1	795DD2EE
15	001111	518D74C6	0FCE5924	47	101111	5667B91C	AB2CABA8
16	010000	AB3E0255	3772FA2C	48	110000	ACD4CF8F	939008A0
17	010001	28CB64B8	E503836A	49	110001	2F21A962	41E171E6
18	010010	EAC4B123	5E4A468F	50	110010	ED2E7CF9	FAA8B403
19	010011	6931D7CE	8C3B3FC9	51	110011	6EDB1A14	28D9CD45
20	010100	8BC35BEE	83EEA47D	52	110100	8C299634	270C56F1
21	010101	08363D03	519FDD3B	53	110101	0FDCF0D9	F57D2FB7
22	010110	CA39E898	EAD618DE	54	110110	CDD32542	4E34EA52
23	010111	49CC8E75	38A76198	55	110111	4E2643AF	9C459314
24	011000	BB40AE88	ED3CD504	56	111000	BCAA6352	49DE2788
25	011001	38B5C865	3F4DAC42	57	111001	3F5F05BF	9BAF5ECE
26	011010	FABA1DFE	840469A7	58	111010	FD50D024	20E69B2B
27	011011	794F7B13	567510E1	59	111011	7EA5B6C9	F297E26D
28	011100	9BBDF733	59A08B55	60	111100	9C573AE9	FD4279D9
29	011101	184891DE	8BD1F213	61	111101	1FA25C04	2F33009F
30	011110	DA474445	309837F6	62	111110	DDAD899F	947AC57A
31	011111	59B222A8	E2E94EB0	63	111111	5E58EF72	460BBC3C

2.3 Структура сверточного кодера

Структура сверточного кодера (СК) изображена на рисунке 2.6.

Рисунок 2.6 – Структура сверточного кодера

СК осуществляет сверточное кодирование (133,171), с кодовым ограничением 7 и кодовой скоростью 1/2. На СК подаются символы ЦИ с тактовой частотой $f_{T3} = 125 \ \Gamma$ ц. Переключатель СК, изображенный на рисунке 2.6, должен находиться в нижнем положении в первой половине каждого информационного символа ЦИ.

2.4 Структура оверлейного кода ОК1

OK1 представляет собой периодический 2-символьный код 01, синхронизованный с символами СК ($T_{CK} = 4$ мс) и передаваемый старшими разрядами вперед (первым по времени символом ОК1 на длительности символа СК является «0»).

3 Общее описание структуры ЦИ радиосигнала L1OCd

Далее применяются следующие понятия, используемые для описания структур ЦИ в навигационных сообщениях:

бит – двоичный символ ЦИ;

строка – последовательность бит двоичных символов ЦИ определенной длины;

поле строки — совокупность бит строки, содержащая значение определенного параметра либо заполненная нулями;

служебные поля строки – поля строки, содержащие служебную информацию, смысловое содержание которой одинаково для всех строк данного сигнала;

информационные поля строки – поля строки, содержащие информацию, смысловое содержание которой различно в разных строках данного сигнала;

резервные поля строки – поля, смысловое содержание и значение которых не описано в настоящем ИКД. НАП должна игнорировать содержимое резервных полей.

Навигационное сообщение сигнала L1OCd передается в виде непрерывной последовательности строк, которая не имеет заранее определенной постоянной структуры.

Передача навигационного сообщения сигнала L1OCd осуществляется со скоростью 125 бит/с. Навигационное сообщение составляется из 2-секундных строк по 250 бит, а также из 1-секундных и 3-секундных аномальных строк, соответственно по 125 и 375 бит.

4 Структура служебных полей ЦИ сигнала L10Cd

4.1 Общая структура строки сигнала L1OCd

4.1.1 Порядок передачи бит в строке

Общая структура строки ЦИ сигнала L1OCd приведена на рисунке 4.1. Строка содержит 250 бит и имеет длительность 2 с. Строка подразделяется на поля – отдельные биты или группы бит, в которые записываются конкретные передаваемые параметры.

Рисунок 4.1 – Общая структура строки ЦИ сигнала L1OCd

На рисунке 4.1 приведена нумерация битов строки, обозначение полей и число бит в каждом поле. В соответствии с приведенной нумерацией битов, передача строки начинается с бита 1 (первый бит поля сигнала метки времени (СМВ)) и заканчивается битом 250 (последний бит поля циклического кода (ЦК)).

4.1.2 Типы полей

В каждой строке содержится два типа полей: служебные и информационные, которые определяются в соответствии с разделом 3.

На рисунке 4.1 приведены служебные поля, места для размещения информационных полей обозначены штриховкой.

На рисунках со структурой строки определенного типа (например, рисунок 5.1) поля, обозначенные штриховкой, являются резервными. НАП в любых приложениях должна игнорировать содержимое резервных полей.

4.1.3 Правило записи чисел в поля

В словах, числовые значения которых могут принимать положительные и отрицательные значения, старший разряд является знаковым, символ «0» соответствует знаку «плюс», а символ «1» — знаку «минус». Старший разряд числа записывается в тот бит поля, который передается первым по времени. Например, если j = 1 = 000001 (номер НКА, см. 4.2.2.3), то в 24-й бит строки (см. рисунок 4.1) записывается «1», а в биты с номерами от 19 до 23 записывается «0».

4.2 Служебные поля строки сигнала L1OCd

4.2.1 Перечень служебных полей сигнала L1OCd

Каждая строка сигнала L1OCd содержит поля, набор и расположение которых постоянно, т.е. повторяется в каждой строке. Перечень и параметры служебных полей приведены в таблице 4.1 (см. также рисунок 4.1).

Цена младшего Поле Число Диапазон значений Единица разрядов измерения разряда CMB 010111110001 Безразмерная 12 1 Тип 6 1 0 - 63Безразмерная 0 - 631 6 Безразмерная 1 1 0, 1 Безразмерная Γ^{j} 1 1 0, 1 1 ^j Безразмерная 4 П1 см. 4.2.2.6 1 см. 4.2.2.7 П2 2 КР 1 00, 01, 10, 11 Безразмерная 1 Α 1 0, 1 Безразмерная **OMB** 16 1 0 - 431992 c ЦК 16 1 см. 4.2.2.11 Безразмерная

Таблица 4.1 – Параметры служебных полей сигнала L1OCd

4.2.2 Смысловое содержание служебных полей сигнала L1OCd

4.2.2.1 Поле СМВ. В данное поле записана константа: СМВ = 010111110001. Первые шесть бит этой последовательности при прохождении через СК (133, 171), описанный в 2.3, обеспечивают такое его начальное состояние, которое в сочетании с действием последних шести бит, образует на выходе СК (133, 171) постоянную 12-битную синхронизирующую последовательность 000111011010.

Поле СМВ предназначено для передачи метки времени (МВ). Под МВ понимается момент переднего фронта 1-го бита СМВ. МВ совпадает с моментом начала строки.

- 4.2.2.2 Поле Тип тип текущей строки. Определяет состав информации (набор и расположение информационных полей строки), передаваемой в строке, содержащей данное поле. Например, если текущая строка имеет 1-й тип, то Тип = 000001.
- 4.2.2.3 Поле j системный номер НКА, передающего данное навигационное сообщение. Смысловое содержание поля j постоянно для строк любого типа, за

исключением строк, содержащих альманах. В строках, содержащих альманах, поле ј имеет смысл номера НКА, к которому относится альманах. Чтобы подчеркнуть отличие в смысловом содержании, в строках, содержащих альманах, используется обозначение поля $j_{\scriptscriptstyle A}$ вместо j.

Нулевой системный номер НКА является резервным и может быть использован только после прекращения совместного использования сигналов ГЛОНАСС с частотным и кодовым разделением.

- 4.2.2.4 Поле Γ^{j} оперативный признак годности («0») или негодности («1») навигационного радиосигнала НКА с номером ј (передающего данное навигационное сообщение).
- 4.2.2.5~ Поле 1^{j} признак достоверности («0») или недостоверности («1») ЦИ в данной строке НКА с номером j.
 - 4.2.2.6 Поле П1 признак вызова НКУ. Потребителем не используется.
 - 4.2.2.7 Поле П2 признак режима ориентации КА:
- $\Pi 2 = 0$ на длительности текущей строки по БШВL1OCd, КА находится в режиме ориентации на Солнце;
- $\Pi 2 = 1$ на длительности текущей строки по БШВL1OCd, КА находится в режиме упреждающего разворота, либо на этой длительности происходит смена режимов (ориентации на Солнце и упреждающего разворота).
- 4.2.2.8 Поле KP признак ожидаемой коррекции UTC(SU) на плюс или минус 1 с в конце текущего квартала по гринвичскому времени (в 3 ч по московскому декретному времени (МДВ)). Коррекции UTC(SU) приводят к соответствующим коррекциям БШВL1OCd:
 - KP = 00 коррекции не будет;
 - KP = 01 длительность суток по БШВL1ОС увеличивается на 1 с;
 - KP = 10 решение о коррекции не принято;
 - KP = 11 длительность суток по БШВL1ОСd уменьшается на 1 с.
- 4.2.2.9 Поле A признак выполнения или невыполнения коррекции БШВL1ОСd на плюс или минус 1 с в конце следующей строки:
 - A = 0 коррекции не будет;
 - A = 1 коррекция будет.

Сочетание признаков A = 1, KP = 11 в текущей строке означает, что следующей будет передаваться аномальная укороченная на 1 с строка 1-го типа, длительностью 1 с.

Если же в текущей строке указано сочетание признаков A = 1, KP = 01, то следующей будет передаваться аномальная удлиненная на 1 с строка 2-го типа, длительностью 3 с (см. также приложение Д в общем ИКД).

- 4.2.2.10~ Поле OMB оцифровка метки времени. Момент по БШВL1OCd, соответствующий началу текущей строки, выраженный в 2-секундных интервалах внутри текущих суток (по БШВL1OCd). На первом 2-секундном интервале внутри суток, OMB = 0.
- 4.2.2.11 Поле ЦК проверочные биты циклического кода. Поле ЦК заполняется по схеме циклического кодирования, приведенной в 4.4.

4.3 Аномальные строки сигнала L10Cd

- 4.3.1 Аномальными называются строки L1OCd, имеющие длительность, отличную от 2 с. Аномальными являются строки 1-го и 2-го типа.
- 4.3.2 Структура строки 1-го типа сигнала L1OCd приведена на рисунке 4.2. Этот тип строк используется при секундных коррекциях БШВL1OCd, при которых длительность суток уменьшается на 1 с. Строка имеет нестандартную длительность 1 с и содержит 125 бит.

Рисунок 4.2 – Структура аномальной строки 1-го типа ЦИ сигнала L1OCd

В строке передаются служебные поля (см. 4.2), с единственным отличием, что поле ЦК формируется с помощью схемы циклического кодирования, описанной в 4.5 (см. также приложение Д в общем ИКД).

4.3.3 Структура строки 2-го типа сигнала L1OCd приведена на рисунке 4.3. Этот тип строк используется при секундных коррекциях БШВL1OCd, при которых длительность суток увеличивается на 1 с. Строка имеет нестандартную длительность 3 с и содержит 375 бит.

В строке передаются служебные поля (см. 4.2), с единственным отличием, что поле ЦК содержит 24, а не 16 бит, и формируется с помощью схемы циклического кодирования, описанной в 4.6 (см. также приложение Д в общем ИКД).

Рисунок 4.3 – Структура аномальной строки 2-го типа ЦИ сигнала L1OCd

4.4 Циклический код (250,234)

Циклический код (250,234) используется в сигнале L1OCd для заполнения поля ЦК в 2-секундных строках навигационного сообщения.

Место циклического кода в структуре строки приведено в таблице 4.2. Строка содержит 250 бит. На проверочные биты ЦК отведено 16 бит, на СМВ – 12 бит, на ЦИ – 222 бита. Передача строки начинается с поля СМВ.

Таблица 4.2 – ЦК (250,234) в структуре 2-секундной строки сигнала L1OCd

CMB	ЦИ	ЦК
12	222	16
	Проверочные биты	

Генераторный (порождающий) полином ЦК (250,234) имеет вид:

$$g(X) = 1 + X + X^5 + X^6 + X^8 + X^9 + X^{10} + X^{11} + X^{13} + X^{14} + X^{16}$$
.

Поле ЦК заполняется с помощью схемы циклического кодирования, приведенной на рисунке 4.4. На вход кодера подается 234-битный информационный блок (начиная с 1-го бита СМВ и заканчивая последним 222-м битом ЦИ). На выходе кодера формируется 250-битный кодовый блок, путем добавления 16 проверочных бит.

Рисунок 4.4 – Схема циклического кодирования (250,234)

Процедура кодирования с помощью устройства, изображенного на рисунке 4.4, состоит из следующих шагов:

1 В исходном состоянии 16-разрядный регистр сдвига заполнен нулями.

- 2 При первых 234 сдвигах оба ключа находятся в положении «1». Информационный блок без изменений передается на выход кодера. Обратная связь регистра замкнута и происходит обновление его содержимого.
- 3 После передачи последнего 234-го информационного бита, оба ключа переключаются в положение «2». Обратная связь регистра размыкается и при последующих 16 сдвигах происходит очищение (заполнение нулями) регистра сдвига, проверочные биты передаются на выход кодера.

Обнаружение ошибок в строке осуществляется путем анализа синдрома, который последовательно вычисляется для каждой строки ЦИ по схеме, представленной на рисунке 4.5.

Рисунок 4.5 – Схема вычисления синдрома для кода (250,234)

Процедура обнаружения ошибок в принятом блоке (строке, начиная с 1-го бита СМВ и заканчивая последним 16-м битом ЦК) с помощью устройства, изображенного на рисунке 4.5, состоит из следующих шагов:

- 1 В исходном состоянии 16-разрядный регистр сдвига заполнен некоторым образом (нулями и единицами).
- 2 На первых 16 сдвигах, ключи находятся в положении «2», принятый блок (первые 16 бит) подается в регистр.
- 3 После передачи 16-го бита принятого блока, ключи переводятся в положение «1», принятый блок (оставшиеся 234 бита) продолжает подаваться в регистр. Содержимое регистра в момент, когда в триггер 1 занесен последний 250-й бит принятого блока, называется синдромом.
- 4 После передачи 250-го бита принятого блока в регистр, на следующих 16-и сдвигах ключи переводятся положение «2», для того, чтобы синдром можно было извлечь из регистра (и одновременно загрузить в регистр первые 16 бит следующей строки). Если все 16 разрядов синдрома нулевые, то принимается

решение об отсутствии ошибок. В противном случае принимается решение об ошибках в принятом блоке (строке).

4.5 Циклический код (125,109) строки 1-го типа сигнала L1OCd

Циклический код (125,109) используется в сигнале L1OCd для заполнения поля ЦК в строках 1-го типа. Формируется аналогично коду (250,234), с помощью схемы на рисунке 4.4, с тем отличием, что на вход подается не 234 информационных бита, а 109.

Обнаружение ошибок производится по схеме, представленной на рисунке 4.5, с тем отличием, что на вход подается не 250 принятых бит, а 125.

4.6 Циклический код (375,351) строки 2-го типа сигнала L1OCd

Циклический код (375,351) используется в сигнале L1OCd для заполнения поля ЦК в строках 2-го типа. Место ЦК в структуре строки 2-го типа приведено в таблице 4.3. Строка содержит 375 бит. На проверочные биты ЦК отведено 24 бита, на СМВ – 12 бит, на ЦИ – 339 бит. Передача строки начинается с поля СМВ.

Таблица 4.3 – ЦК (375,351) в структуре строки 2-го типа сигнала L1OCd

CMB	ЦИ	ЦК		
12	339	24		
Информационные биты ЦК Проверочные б				

Генераторный (порождающий) полином ЦК (375,351) имеет вид:

$$g(X) = 1 + X + X^3 + X^4 + X^5 + X^6 + X^7 + X^{10} + X^{11} + X^{14} + X^{17} + X^{18} + X^{23} + X^{24}$$
.

Поле ЦК заполняется с помощью схемы циклического кодирования, приведенной на рисунке 4.6. На вход кодера подается 351-битный информационный блок (начиная с 1-го бита СМВ и заканчивая последним 339-м битом ЦИ). На выходе кодера формируется 375-битный кодовый блок, путем добавления 24 проверочных бит.

Рисунок 4.6 – Схема циклического кодирования (375,351)

Процедура кодирования с помощью устройства, изображенного на рисунке 4.6, состоит из следующих шагов:

- 1 В исходном состоянии 24-разрядный регистр сдвига заполнен нулями.
- 2 При первых 351 сдвигах оба ключа находятся в положении «1». Информационный блок без изменений передается на выход кодера. Обратная связь регистра замкнута и происходит обновление его содержимого.
- 3 После передачи последнего 351-го информационного бита, оба ключа переключаются в положение «2». Обратная связь регистра размыкается и при последующих 24 сдвигах происходит очищение (заполнение нулями) регистра сдвига, проверочные биты передаются на выход кодера.

Обнаружение ошибок в строке осуществляется путем анализа синдрома, который последовательно вычисляется для каждой строки ЦИ по схеме, изображенной на рисунке 4.7.

Рисунок 4.7 – Схема вычисления синдрома для кода (375,351)

Процедура обнаружения ошибок в принятом блоке (строке, начиная с 1-го бита СМВ и заканчивая последним 24-м битом ЦК) с помощью устройства, изображенного на рисунке 4.7, состоит из следующих шагов:

- 1 В исходном состоянии 24-разрядный регистр сдвига заполнен некоторым образом (нулями и единицами).
- 2 На первых 24 сдвигах, ключи находятся в положении «2», принятый блок (первые 24 бит) подается в регистр.
- 3 После передачи 24-го бита принятого блока, ключи переводятся в положение «1», принятый блок (оставшиеся 351 бит) продолжает подаваться в регистр. Содержимое регистра в момент, когда в триггер 1 занесен последний 375-й бит принятого блока, называется синдромом.
- 4 После передачи 375-го бита принятого блока в регистр, на следующих 24-х сдвигах ключи переводятся положение «2», для того чтобы синдром можно было извлечь из регистра (и одновременно загрузить в регистр первые 24 бита следующей строки). Если все 24 разряда синдрома нулевые, то принимается решение об отсутствии ошибок. В противном случае принимается решение об ошибках в принятом блоке (строке).

5 Структура информационных полей ЦИ сигнала L10Cd

5.1 Информационные поля строки и типы строк сигнала L10Cd

Содержание информационных полей определяются типом строки, указанным в служебном поле Тип (см. 4.2.2.2).

Информационные поля в строке занимают биты с номерами:

- от 51 до 234 во всех строках, кроме строк 1-го и 2-го типа (см. рисунок 4.1);
- от 51 до 109 в строках 1-го типа (см. рисунок 4.2);
- от 51 до 351 в строках 2-го типа (см. рисунок 4.3).

В таблице 5.1 приведены типы строк, используемые в сигнале L1OCd. В дальнейшем, при необходимости модернизации навигационного сообщения, будут вводиться новые типы строк, содержащие обновленные, либо совершенно новые типы данных.

Таблица 5.1 – Типы строк и их содержание в ЦИ сигнала L1OCd

Тип строки	Содержание					
10, 11, 12 Оперативная информация						
20 Альманах						
25	Параметры вращения Земли, параметры модели ионосферы, параметры					
	модели расхождения шкал времени UTC(SU) и TAI					
16	Параметры ориентации НКА в режиме упреждающего разворота					
31, 32	Параметры долговременной модели движения (ПДМД)					
50	Квитанции системы Коспас-Сарсат					
60 Текстовые сообщения						
0 Для решения технологических задач. Потребителем игнорируются						
1	Аномальная строка, используемая в момент секундной коррекции, если					
	длительность суток уменьшается на 1 с					
2	Аномальная строка, используемая в момент секундной коррекции, если					
длительность суток увеличивается на 1 с						
	Примечание – Строки 10, 11 и 12-го типа образуют пакет, т.е. строка 11-го типа всегда					
следует за ст	следует за строкой 10-го типа, а строка 12-го типа – за строкой 11-го типа.					

5.2 Строки 10, 11 и 12-го типа сигнала L1OCd

5.2.1 Состав и структуры строк 10, 11 и 12-го типа

Структуры строк 10, 11 и 12-го типа приведены на рисунках 5.1–5.3. Строка 11-го типа всегда следует за строкой 10-го типа, а строка 12-го типа всегда следует за строкой 11-го типа. Эти строки предназначены для передачи оперативной информации.

Рисунок 5.1 – Структура строки 10-го типа ЦИ сигнала L1OCd

Рисунок 5.2 – Структура строки 11-го типа ЦИ сигнала L1OCd

Рисунок 5.3 – Структура строки 12-го типа ЦИ сигнала L1OCd

Параметры полей строк 10, 11 и 12-го типа приведены в таблице 5.2. В этой таблице поля, относящиеся к различным строкам, разделены горизонтальными двойными линиями.

Таблица 5.2 – Параметры информационных полей строк 10, 11 и 12-го типа сигнала L1OCd

Поле	Число	Цена	Диапазон	Единица
	разрядов	младшего	значений	измерения
		разряда		-
N_4	5	1	1 – 31	Четырехлетний
·				интервал
N_{T}	11	1	1 – 1461	Сутки
\mathbf{M}^{j}	3	1	см. 5.2.2.4	Безразмерная
РΠ	6	1	0 - 63	Безразмерная
t _b	10	90	0 - 86310	С
$E_{\vartheta}^{j},E_{T}^{j}$	8	1	1 – 255	6 часов
$P_{\ni}^{\mathrm{j}},P_{\mathrm{T}}^{\mathrm{j}}$	2	1	см. 5.2.2.8	Безразмерная
$\Phi_{\mathfrak{I}}^{\mathfrak{j}},\Phi_{\mathtt{T}}^{\mathfrak{j}}$	5	1	см. 5.2.2.9	Безразмерная
$\tau^{j}(t_{b})$	32	2^{-38}	$\pm 7.8 \cdot 10^{-3}$	С
$\gamma^{j}(t_{b})$	19	2^{-48}	$\pm 0.9 \cdot 10^{-9}$	Безразмерная
$\beta^{j}(t_{b})$	15	2^{-57}	$\pm 1,1 \cdot 10^{-13}$	c^{-1}
$\tau_c(t_b)$	40	2^{-31}	± 256	С
$\dot{\tau}_{c}(t_{b})$	13	2^{-49}	$\pm0,7\cdot10^{-11}$	Безразмерная
$x^{j}(t_{b}), y^{j}(t_{b}), z^{j}(t_{b})$	40	2^{-20}	$\pm 5,2\cdot 10^5$	КМ
$\dot{x}^{j}(t_{b})$	35	2^{-30}	±16	км/с
$\Delta x_{\phi\mu}^{j},\ \Delta y_{\phi\mu}^{j}$	13	2^{-10}	±4	M
Резерв	3	_	_	_
$\Delta z_{\phi \mu}^{j}$	13	2^{-10}	±4	M
$\dot{y}^{j}(t_{b}), \dot{z}^{j}(t_{b})$	35	2^{-30}	±16	км/с
$\ddot{\mathbf{x}}^{j}(\mathbf{t}_{b}), \ddot{\mathbf{y}}^{j}(\mathbf{t}_{b}), \ddot{\mathbf{z}}^{j}(\mathbf{t}_{b})$	15	2^{-39}	$\pm 2,9 \cdot 10^{-8}$	км/ c ²
$\Delta au_{ m L2}^{ m j}$	18	2^{-38}	$\pm 4.8 \cdot 10^{-7}$	С
$\tau_{GPS}(t_b)$	30	2^{-38}	$\pm2\cdot10^{-3}$	c
Резерв	8	-	_	

Примечание — Для поля $\tau_c(t_b)$ диапазон ± 256 выбран на случай возможной отмены в будущем коррекций ШВС ГЛОНАСС на плюс или минус 1 с.

5.2.2 Смысловое содержание полей строк 10, 11 и 12-го типа

- 5.2.2.1 Поля СМВ, Тип, j, Γ^j , 1^j , $\Pi 1$, $\Pi 2$, KP, A, OMB, ЦК служебные поля. Описаны в 4.2.
- 5.2.2.2 Поле N_4 номер четырехлетнего интервала по шкале МДВ, на котором располагаются сутки шкалы МДВ, содержащие момент t_b (далее эфемеридное N_4). На

границах четырехлетий значение эфемеридного N_4 может отличаться от номера $N_4^{\text{тек}}$ текущего четырехлетия по МДВ (см. приложение Е в общем ИКД). Первый год первого текущего четырехлетия соответствует 1996 году, т.е. на интервале времени с 1996 по 1999 год (по МДВ), $N_4^{\text{тек}} = 1$.

5.2.2.3~ Поле N_{T} — номер суток по шкале МДВ внутри эфемеридного четырехлетия N_{4} , на которых располагается момент t_{b} (далее — эфемеридное N_{T}). На границах суток значение эфемеридного N_{T} может отличаться от номера $N_{T}^{\text{тек}}$ текущих суток по МДВ (см. приложение Ж в общем ИКД). Суткам по МДВ 1 января каждого високосного года соответствует $N_{T}^{\text{тек}}$ = 1. Суткам 1 января 2100 года, который согласно григорианскому календарю не является високосным, также соответствует $N_{T}^{\text{тек}}$ = 1.

Алгоритм пересчета значений $N_4^{\text{тек}}$ $N_T^{\text{тек}}$ в дату григорианского календаря и среднее звездное время по Гринвичу GMST описан в приложении Л в общем ИКД.

5.2.2.4 Поле M^j – модификация НКА с номером ј (передающего данное навигационное сообщение):

 $M^{j} = 000 - «Глонасс-М» с БИНС-L3, излучает сигнал L3 с кодовым разделением;$

 $M^{j} = 001$ – «Глонасс-К1», излучает сигнал L3 с кодовым разделением;

 ${\bf M}^{\rm j} = 011$ — «Глонасс-К1», излучает сигналы L2 и L3 с кодовым разделением;

 $M^{\rm j}=010$ – «Глонасс-К2», излучает сигналы L1, L2, L3 с кодовым разделением.

В процессе последующих модернизаций системы ГЛОНАСС возможно появление в ОГ НКА с новыми модификациями от 100 до 111. При появлении таких НКА в ОГ ранее выпущенная НАП не должна терять своей работоспособности.

5.2.2.5 Поле РП — размер псевдокадра. Определяется как число строк, которые будут переданы начиная с текущей строки 10-го типа до следующей строки 10-го типа. Например, значение РП = 5 означает, что после текущей строки 10-го типа будет передано четыре строки, которые имеют тип отличный от 10-го, и затем будет передана строка 10-го типа.

Значение $P\Pi = 0$ означает, что информация о размере псевдокадра не передается.

5.2.2.6 Поле t_b — момент по МДВ, к которому относится оперативная ЦИ (эфемеридная информация (ЭИ) и частотно-временная информация (ЧВИ)), выраженный в 90-секундных интервалах внутри текущих суток (N_T) по МДВ. Момент t_b по МДВ, для

краткости, будет называться моментом t_b (указание шкалы опускается, но всегда подразумевается, что это шкала МДВ).

Любая смена оперативной ЦИ сопровождается обязательным изменением поля t_b . В случае смены ЦИ с частотой 1 раз в 30 мин, первый и последний моменты t_b отстоят от границ суток на 15 мин. При необходимости, смена ЦИ может осуществляться до одного раза в 90 с. В этом случае, t_b будет принимать значения, кратные 90 с.

 $5.2.2.7~{
m Поля}~E_{
m 3}^{
m j},~E_{
m T}^{
m j}$ — соответственно, возраст ЭИ и ЧВИ НКА с номером ј (передающего данное навигационное сообщение), выраженный в количестве 6-часовых интервалов, прошедших до момента $t_{
m b}$ от момента поступления ЭИ и ЧВИ на борт НКА в режиме ретрансляции, либо исходных данных в режиме размножения.

5.2.2.8 Поле P_{2}^{j} , P_{T}^{j} – режим формирования, соответственно, ЭИ и ЧВИ:

 $P_{2T}^{j} = 01 -$ ретрансляция;

 $P_{\rm 3.T}^{\rm j} = 10 - {\rm paзмножениe};$

 ${\bf P}_{\rm 3.T}^{\rm j} = 11$ – использование межспутниковых измерений.

Данная информация используется контрольно-измерительными средствами системы ГЛОНАСС.

5.2.2.9 Поля Φ_{\Im}^{j} , Φ_{T}^{j} — соответственно, факторы точности, обусловленные погрешностями ЭИ и ЧВИ. Эти поля содержат эквивалентные погрешности (σ) измерений в НАП псевдодальности до НКА с номером j (который передает данные поля) на момент t_{b} . В таблице 5.3 приведены значения полей Φ_{\Im}^{j} , Φ_{T}^{j} (в 10-чной системе счисления) и соответствующие им погрешности σ .

Таблица 5.3 – Эфемеридный и временной факторы точности

$\Phi_{\vartheta}^{j},\Phi_{T}^{j}$	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4
σ, м	0,01	0,02	0,03	0,04	0,06	0,08	0,1	0,15	0,2	0,3	0,4	0,6
$\Phi_{\ni}^{j},\Phi_{T}^{j}$	-3	-2	-1	0	1	2	3	4	5	6	7	8
σ, м	0,7	0,8	0,9	1	2	2,5	4	5	7	10	12	14
$\Phi_{\vartheta}^{j},\Phi_{\mathtt{T}}^{j}$	9	10	11	12	13	14	15					
σ, м	16	32	64	128	256	512	Не определен					

Рекомендации по использованию факторов точности Φ_{\Im}^{j} , Φ_{T}^{j} приведены в приложении P в общем ИКД.

5.2.2.10 Поле $\tau^j(t_b)$ — поправка к БШВL1ОС НКА с номером ј (передающего данное навигационное сообщение) для перехода к ШВС ГЛОНАСС на момент t_b . Значение поля $\tau^j(t_b)$ связано со шкалами БШВL1ОС ($T_{\text{ШВLIOCd}}$) и ШВС ГЛОНАСС ($T_{\Gamma \Pi}$) на момент t_b следующим образом:

$$T_{\text{EJI}}(t_{\text{b}}) = T_{\text{HJBLJOCd}}(t_{\text{b}}) + \tau^{j}(t_{\text{b}}).$$

5.2.2.11 Поле $\gamma^{j}(t_{b})$ — относительное отклонение от номинала f_{H} несущей частоты $f^{j}(t_{b})$ НКА с номером j (передающего данное навигационное сообщение) в момент t_{b} :

$$\gamma^{j}(t_{b}) = \frac{f^{j}(t_{b}) - f_{H}}{f_{H}}.$$

5.2.2.12 Поле $\beta^j(t_b)$ – половинная скорость относительного отклонения ($\gamma^j(t_b)$) от номинала f_H несущей частоты $f^j(t_b)$ на НКА с номером j (передающего данное навигационное сообщение) в момент времени t_b . Значение, записанное в поле $\beta^j(t_b)$, определяется по формуле

$$\beta^{j}(t_{b}) = \frac{1}{2} \cdot \frac{d\gamma^{j}(t)}{dt} \bigg|_{MOMEHT t_{b}}.$$

Переход со шкалы времени принимаемого сигнала на ШВС ГЛОНАСС описан в приложении Г в общем ИКД.

5.2.2.13 Поле $\tau_c(t_b)$ — поправка на момент времени t_b для перехода от ШВС ГЛОНАСС к МДВ. Поле $\tau_c(t_b)$ связано со шкалами ШВС ГЛОНАСС ($T_{\Gamma Л}$) и МДВ ($T_{MДВ}$) в момент t_b , следующим соотношением:

$$T_{\text{MДB}}(t_b) = T_{\text{ГЛ}}(t_b) + \tau_c(t_b).$$

5.2.2.14 Поле $\dot{\tau}_c(t_b)$ – скорость изменения поправки $\tau_c(t_b)$, в момент t_b . Значение, записанное в поле $\dot{\tau}_c(t_b)$, определяется по формуле

$$\dot{\tau}_{c}(t_{b}) = \frac{d\tau_{c}(t)}{dt} \bigg|_{\text{moment } t_{b}}$$

Переход со шкалы времени ГЛОНАСС на шкалу МДВ описан в приложении Γ в общем ИКД.

- 5.2.2.15 Поля $x^{j}(t_{b})$, $y^{j}(t_{b})$, $z^{j}(t_{b})$ координаты центра масс НКА с номером ј (передающего данное навигационное сообщение) на момент t_{b} в прямоугольной геоцентрической гринвичской системе координат, принятой для использования в системе ГЛОНАСС. Поля $x^{j}(t_{b})$, $y^{j}(t_{b})$, $z^{j}(t_{b})$ содержат точные эфемериды (координаты), т.е. рассчитанные по точной модели движения.
- 5.2.2.16~ Поля $\dot{x}^{j}(t_{b})$, $\dot{y}^{j}(t_{b})$, $\dot{z}^{j}(t_{b})$ составляющие вектора скорости центра масс НКА с номером \dot{y} (передающего данное навигационное сообщение), на момент t_{b} в прямоугольной геоцентрической гринвичской системе координат, принятой для использования в ГЛОНАСС. Поля $\dot{x}^{j}(t_{b})$, $\dot{y}^{j}(t_{b})$, $\dot{z}^{j}(t_{b})$ содержат согласованные эфемериды (скорости), т.е. рассчитанные на основе точных эфемерид таким образом, чтобы методические ошибки прогнозирования эфемерид по упрощенной модели движения, используемой в НАП, в среднем на интервале прогнозирования были минимальны.
- $5.2.2.17~\Pi$ оля $\ddot{x}^{j}(t_{b})$, $\ddot{y}^{j}(t_{b})$, $\ddot{z}^{j}(t_{b})$ составляющие вектора возмущающих ускорений центра масс НКА с номером \dot{y} (передающего данное навигационное сообщение) на момент t_{b} в прямоугольной геоцентрической гринвичской системе координат, принятой для использования в системе ГЛОНАСС. Поля $\ddot{x}^{j}(t_{b})$, $\ddot{y}^{j}(t_{b})$, $\ddot{z}^{j}(t_{b})$ содержат согласованные эфемериды (ускорения), т.е. рассчитанные на основе точных эфемерид таким образом, чтобы методические ошибки прогнозирования эфемерид по упрощенной модели движения, используемой в НАП, в среднем на интервале прогнозирования были минимальны.

Алгоритмы расчета координат и составляющих вектора скорости центра масс НКА по данным эфемерид описаны в приложении К в общем ИКД.

 $5.2.2.18~\Pi$ оля $\Delta x_{\phi\mu}^{j}$, $\Delta y_{\phi\mu}^{j}$, $\Delta z_{\phi\mu}^{j}$ – координаты фазового центра антенны, излучающей сигнал L1OC, в системе координат, оси которой параллельны осям бортовой системы, а начало смещено в центр масс НКА. Описание бортовой системы координат приведено в приложении Т в общем ИКД. Там же представлен алгоритм пересчета координат центра масс НКА в координаты (в системе Π 3-90) фазового центра антенны, излучающей навигационные сигналы, которые должны использоваться при навигационных определениях.

5.2.2.19 Поле Δau_{L2}^{j} — смещение БШВL2ОСр ($T_{\text{БШВL2ОСр}}$) относительно БШВL1ОСd ($T_{\text{БШВLIOCd}}$):

$$\Delta \tau_{\rm L2}^{\rm j} = T_{\rm BIIIBL2OCp} - T_{\rm BIIIBL1OCd} \, . \label{eq:delta_tau}$$

Параметр Δau_{L2}^j необходим для перехода от БШВL2ОСр на БШВL1ОСd и затем на ШВС ГЛОНАСС.

5.2.2.20 Поле $\tau_{GPS}(t_b)$ — дробная часть секунды в смещении шкал времени системы (ШВС) GPS (T_{GPS}) относительно ШВС ГЛОНАСС ($T_{\Gamma \Pi}$) на момент t_b :

$$\tau_{GPS}(t_b) = T_{GPS} - T_{\Gamma II} + 10800 - \Delta T$$
,

где ΔT — целая часть смещения, выраженная в целых секундах, и определяемая потребителями из принимаемых навигационных сообщений системы GPS.

Переход от ШВС ГЛОНАСС на шкалу времени GPS описан в приложении В в общем ИКД.

5.3 Строка 20-го типа сигнала L1OCd

5.3.1 Состав и структура строки 20-го типа

На рисунке 5.4 приведена структура строки 20-го типа. Этот тип строк предназначен для передачи данных альманаха для одного НКА, который имеет номер j_A и излучает один или более сигналов с кодовым разделением.

Рисунок 5.4 – Структура строки 20-го типа ЦИ сигнала L1OCd

Параметры полей строки 20-го типа приведены в таблице 5.4.

Поле	Число	Цена младшего	Диапазон значений	Единица
	разрядов	разряда		измерения
j_{A}	6	1	0 - 63	Безразмерная
ТО	2	1	см. 5.3.2.3	Безразмерная
N_s	6	1	0 - 63	Безразмерная
E _A	6	1	0 – 63	Сутки
N _A	11	1	1 – 1461	Сутки
PC_A	5	1	см. 5.3.2.7	Безразмерная
M_{A}	3	1	см. 5.3.2.8	Безразмерная
$ au_{ m A}$	14	2^{-20}	$\pm 7.8 \cdot 10^{-3}$	С
λ_{A}	21	2^{-20}	±1	Полуцикл
$t_{\lambda_{\mathrm{A}}}$	21	2^{-5}	0 - 44100	С
Δi_{A}	15	2^{-20}	± 0,0156	Полуцикл
$\epsilon_{_{ m A}}$	15	2^{-20}	0 - 0.03	Безразмерная
ω_{A}	16	2^{-15}	±1	Полуцикл
$\Delta T_{\!\scriptscriptstyle A}$	19	2^{-9}	±512	c
$\Delta \dot{T}_{\!\scriptscriptstyle A}$	7	2^{-14}	$\pm 3.9 \cdot 10^{-3}$	с/виток
Резерв	23	_	_	_

Таблица 5.4 – Параметры информационных полей строки 20-го типа сигнала L1OCd

5.3.2 Смысловое содержание полей строки 20-го типа

- 5.3.2.1 Поля СМВ, Тип, $\Gamma^{\rm j}$, $1^{\rm j}$, $\Pi 1$, $\Pi 2$, KP, A, OMB, ЦК служебные поля. Описаны в 4.2.
- $5.3.2.2\;$ Поле j_{A} системный номер НКА, альманах которого передается в текущей строке.
- 5.3.2.3~ Поле ТО тип орбиты. Состав и содержание информационных полей строки 20-го типа определяется значением поля ТО. Значение ТО = 00 означает, что орбита круговая с высотой 19100 км (орбита эксплуатируемых в настоящее время КА в системе ГЛОНАСС). В данном документе описаны информационные поля строки 20-го типа только для значения ТО = 00.
- 5.3.2.4 Поле N_s число НКА в ОГ, излучающих один или более сигналов с кодовым разделением, для которых передается альманах.
- 5.3.2.5 Поле E_A возраст альманаха НКА от момента закладки параметров альманаха (ЭИ, ЧВИ) на борт НКА до номера суток N_A (см. 5.3.2.6).

 $5.3.2.6~\mathrm{Поле}~\mathrm{N_A}$ — календарный номер суток по МДВ внутри четырехлетнего интервала, к которому относится альманах. Суткам 1 января високосного года соответствует $\mathrm{N_A}=1.$ Суткам 1 января 2100 года, который согласно григорианскому календарю не является високосным, также соответствует $\mathrm{N_A}=1.$ Значение $\mathrm{N_A}$ может отличаться от номера текущих суток в четырехлетии.

5.3.2.7 Поле PC_A – регистр состояния навигационных радиосигналов L1, L2, L3. Содержит 5 разрядов. Первый (старший) разряд содержит состояние сигнала L1, второй – L2, третий – L3. Значение разряда «1» означает излучение соответствующего сигнала; «0» – отсутствие сигнала. Пригодность или непригодность данного навигационного сигнала и его ЦИ определяются признаками Γ^j и 1^j (см. 4.2.2.4 и 4.2.2.5). Четвертый и пятый разряды поля PC_A являются резервными.

5.3.2.8 Поле $M_{_{\rm A}}$ – модификация НКА с номером $j_{_{\rm A}}$:

 ${\rm M_A} = 000$ – «Глонасс-М» с БИНС L3, излучает сигнал L3 с кодовым разделением;

 ${\bf M}_{\rm A} = 001$ — «Глонасс-К1», излучает сигнал L3 с кодовым разделением;

 ${\bf M}_{\rm A} = 011$ – «Глонасс-К1», излучает сигналы L2 и L3 с кодовым разделением;

 $M_A = 010$ – «Глонасс-К2», излучает сигналы L1, L2, L3 с кодовым разделением.

В процессе последующих модернизаций системы ГЛОНАСС возможно появление в ОГ НКА с новыми модификациями от 100 до 111. При появлении таких НКА в ОГ ранее выпущенная НАП не должна терять своей работоспособности.

5.3.2.9 Поле τ_A — грубое значение поправки для перехода от БШВL1ОСd HKA с номером j_A к ШВС ГЛОНАСС на момент начала суток (N_A +1) по МДВ:

$$\tau_{_{A}} = T_{_{\Gamma JI,N_{_{A}}+1}} - T_{_{BIIIBL1OCd,N_{_{A}}+1}} - \left\langle \frac{T_{_{\Gamma JI,N_{_{A}}+1}} - T_{_{BIIIBL1OCd,N_{_{A}}+1}}}{86400} \right\rangle \cdot 86400 \,,$$

 $T_{\text{БШВL1OCdN}_A+1}$ — момент по БШВL1OCd HKA с номером j_{A} , соответствующий моменту начала суток (N $_{\text{A}}$ +1) по МДВ;

 $\langle \cdot \rangle$ – оператор взятия ближайшего целого числа.

Примечание — Значение τ_A в ЦИ альманаха каждого КА является одинаковым и представляется с точностью порядка 1 мс для всех сигналов этого КА.

- 5.3.2.10~ Поле λ_A геодезическая долгота 1-го восходящего узла орбиты НКА с номером j_A внутри суток N_A в геоцентрической системе, принятой для использования в ГЛОНАСС.
- $5.3.2.11 \ \ \text{Поле} \ \ t_{\lambda_A} \ \ \text{момент прохождения HKA c номером} \ \ j_A \ \ 1\text{-го восходящего}$ узла орбиты внутри суток $\ N_A \ \ (\text{по MДB}).$
- 5.3.2.12 Поле Δi_A поправка к номинальному значению (64,8°) наклонения орбиты НКА с номером j_A в момент t_{λ_A} (по МДВ).
- 5.3.2.13 Поле ϵ_{A} эксцентриситет орбиты НКА с номером j_{A} в момент $t_{\lambda_{A}}$ (по МДВ).
- $5.3.2.14 \ \ \text{Поле} \ \ \omega_{_{\! A}} \text{аргумент перигея орбиты HKA c номером} \ \ j_{_{\! A}} \ \ \text{в момент} \ \ t_{_{\! \lambda_{_{\! A}}}} \ \ (\text{по}$ МДВ).
- 5.3.2.15~ Поле $\Delta T_A~$ поправка к номинальному значению (40544 c) среднего драконического периода обращения НКА с номером j_A на орбите в момент t_{λ_A} (по МДВ).
- $5.3.2.16 \ \ \text{Поле} \ \ \Delta \dot{T}_{_{\! A}} \text{скорость изменения драконического периода обращения НКА}$ с номером $j_{_{\! A}}$ на орбите в момент $t_{_{\! \lambda_{_{\! A}}}}$ по МДВ.

Алгоритм расчета координат и составляющих вектора скорости центра масс НКА по данным альманаха описан в приложении H в общем ИКД.

5.4 Строка 25-го типа сигнала L1OCd

5.4.1 Состав и структура строки 25-го типа

На рисунке 5.5 приведена структура строки 25-го типа. Этот тип строк предназначен для передачи ПВЗ (см. приложение М в общем ИКД), параметров модели ионосферы (см. приложение С в общем ИКД), параметров модели расхождения шкал времени UTC(SU) и ТАІ (см. приложение И в общем ИКД), а также некоторых других параметров.

Рисунок 5.5 – Структура строки 25-го типа ЦИ сигнала L1OCd

Параметры полей строки 25-го типа приведены в таблице 5.5.

Поле	Число	Цена младшего	Диапазон	Единица
	разрядов	разряда	значений	измерения
$N_{\scriptscriptstyle \mathrm{B}}$	11	1	1 – 1461	Сутки
X_p, Y_p	16	2^{-14}	±1	угл.с
\dot{x}_p, \dot{y}_p	9	2^{-14}	$\pm 8.10^{-3}$	угл.с/сутки
\ddot{x}_p, \ddot{y}_p	7	2^{-14}	$\pm 2 \cdot 10^{-3}$	углс/сутки ²
B_0	25	2^{-16}	±256	С
\mathbf{B}_{1}	10	2^{-16}	$\pm 7.8 \cdot 10^{-3}$	c/ccc
\mathbf{B}_2	8	2^{-16}	$\pm 1,9 \cdot 10^{-3}$	c/ccc ²
c_A	9	2^{-7}	0 - 4	Безразмерная
c_F _{10.7}	13	2^{-4}	0 - 500	с.е.п.
c_A_p	9	2^{0}	0 - 500	нТл
UTC-TAI	9	1	± 255	c

Таблица 5.5 – Параметры информационных полей строки 25-го типа сигнала L1OCd

Примечания

Резерв

26

5.4.2 Смысловое содержание полей строки 25-го типа

- 5.4.2.1 Поля СМВ, Тип, j, $\Gamma^{\rm j}$, $1^{\rm j}$, Π 1, Π 2, KP, A, OMB, ЦК служебные поля. Описаны в 4.2.
- $5.4.2.2~{
 m Поле}~{
 m N}_{
 m B}$ календарный номер суток по МДВ внутри четырехлетнего интервала, к которому относятся передаваемые в текущей строке параметры. Суткам 1 января високосного года соответствует ${
 m N}_{
 m B}=1.$ Суткам 1 января 2100 года, который согласно григорианскому календарю не является високосным, также соответствует ${
 m N}_{
 m B}=1.$ Значение ${
 m N}_{
 m B}$ может отличаться от номера текущих суток в четырехлетии.
- 5.4.2.3~ Поля $\,{\rm x_p},\,\,{\rm y_p},\,\,{\rm \dot{x}_p},\,\,{\rm \dot{y}_p},\,\,{\rm \ddot{x}_p},\,\,{\rm \ddot{y}_p}$ параметры полинома 2-й степени для определения положения мгновенного полюса Земли. Эти параметры заданы на момент начала суток $\,{\rm N_B}\,$ по МДВ ($\,{\rm T_{MЛB}}$).

¹ Для поля B_0 диапазон ± 256 выбран на случай возможной отмены в будущем коррекций шкалы UTC(SU) на плюс или минус 1 с.

² с.е.п. – солнечная единица потока, 1 с.е.п. = $1 \cdot 10^{-22}$ Вт/(м² · Γ ц).

 $5.4.2.4~{\rm Поля}~{\rm B_0},~{\rm B_1},~{\rm B_2}~-$ параметры полинома 2-й степени для определения расхождения

$$\tau_{\rm UT1} = T_{\rm UT1} - T_{\rm UTC},$$

где $T_{\rm UT1}$ — всемирное время на среднем гринвичском меридиане, рассчитанное с учетом движения полюса;

 $T_{\rm UTC}$ – координированное время Госэталона РФ, определяемое атомными часами, показания которых периодически корректируются на плюс или минус 1 с, чтобы расхождение $\tau_{\rm UT1}$ не превышало 0,9 с.

Параметры B_0 , B_1 , B_2 заданы на момент начала суток N_B по МДВ:

 B_0 – величина расхождения T_{UT1} ;

 ${\rm B_{1}}$ — величина суточного изменения расхождения за средние солнечные сутки (ССС);

В₂ - скорость изменения расхождения.

Алгоритм расчета времени по шкале UT1 описан в приложении Б в общем ИКД.

5.4.2.5 Поля с_A, с_ $F_{10.7}$, с_ A_p – текущие параметры модели ионосферы Земли:

 c_A — значение численного множителя максимальной концентрации электронов F2-слоя ионосферы;

 $c_F_{10.7}$ – значение индекса солнечной активности;

 c_A_p – значение индекса геомагнитной активности.

5.4.2.6 Поле UTC–TAI – расхождение шкалы UTC(SU) и шкалы TAI в момент начала суток $N_{\rm B}$ по МДВ:

$$UTC-TAI = T_{UTC} - T_{TAI}.$$

Переход со шкалы времени UTC(SU) на шкалу TAI описан в приложении И в общем ИКД.

5.5 Строка 16-го типа сигнала L1OCd

5.5.1 Состав и структура строки 16-го типа

На рисунке 5.6 приведена структура строки 16-го типа. Этот тип строк предназначен для передачи параметров, позволяющих осуществлять пересчет координат центра масс НКА в координаты фазового центра антенны, излучающей сигнал L1OC, в режиме упреждающего разворота.

Рисунок 5.6 – Структура строки 16-го типа ЦИ сигнала L1OCd

Параметры полей строки 16-го типа приведены в таблице 5.6.

Поле	Число	Цена младшего	Диапазон значений	Единица
	разрядов	разряда		измерения
$T_{_{ m BX}}$	22	2^{-5}	0 – 86399	c
$\Psi_{\scriptscriptstyle \mathrm{BX}}$	15	2^{-14}	0-2	Полуцикл
sn	1	1	0, 1	Безразмерная
$\omega_{ ext{max}}$	17	2^{-26}	$0 - 16 \cdot 10^{-4}$	Полуцикл/с
ω _{bx}	17	2^{-26}	$0 - 16 \cdot 10^{-4}$	Полуцикл/с
ώ	15	2^{-30}	$0 - 2,96 \cdot 10^{-5}$	Полуцикл/с ²
τ_1	13	2^{-5}	0 - 200	С
τ_2	17	2^{-5}	0 – 3480	С
Резерв	67	_	_	_

Таблица 5.6 – Параметры информационных полей строки 16-го типа сигнала L1OCd

Ниже приведено краткое описание информационных полей строки 16-го типа. Подробное описание параметров ориентации и алгоритм их использования приведен в приложении Т в общем ИКД.

5.5.2 Смысловое содержание полей строки 16-го типа

- 5.5.2.1 Поля СМВ, Тип, j, $\Gamma^{\rm j}$, $1^{\rm j}$, Π 1, Π 2, KP, A, OMB, ЦК служебные поля. Описаны в 4.2.
- $5.5.2.2~{
 m Поле}~{
 m T}_{_{
 m BX}}~-$ момент времени по бортовой шкале входа НКА в режим упреждающего разворота.
 - 5.5.2.3 Поле $\psi_{\text{вх}}$ угол рыскания в момент $T_{\text{вх}}$.
 - 5.5.2.4 Поле sn знак упреждающего разворота (см. приложение Т в общем ИКД).
 - 5.5.2.5 Поле ω_{max} максимальная скорость разворота НКА.
 - 5.5.2.6 Поле $\omega_{_{\text{RX}}}$ угловая скорость разворота НКА в момент $T_{_{\text{BX}}}$.
 - 5.5.2.7 Поле $\dot{\omega}$ постоянное угловое ускорение (замедление) НКА.
- 5.5.2.8 Поле τ_1 длительность интервала времени от момента T_{BX} до момента окончания наращивания угловой скорости с постоянным угловым ускорением $\dot{\omega}$. Вследствие симметричности маневра разворота, значение τ_1 равно длительности интервала времени уменьшения с постоянным угловым ускорением $\dot{\omega}$ угловой скорости разворота НКА до значения $\omega_{_{BMX}} = \omega_{_{BX}}$ в момент выхода НКА из режима упреждающего разворота.

5.5.2.9 Поле $\, \tau_2 \, - \,$ длительность интервала времени разворота НКА с заданной максимальной угловой скоростью $\, \omega_{max} \, . \,$

5.6 Строки 31-го и 32-го типа сигнала L1OCd

5.6.1 Состав и структуры строк 31-го и 32-го типа

Структуры строк 31-го и 32-го типа приведены на рисунках 5.7 и 5.8. Строки предназначены для передачи ПДМД. ПДМД позволяют использовать параметры прогнозирования движения НКА на получасовом или меньшем интервале времени, для прогнозирования его движения на 4-часовом интервале.

Рисунок 5.7 – Структура строки 31-го типа ЦИ сигнала L1OCd

Рисунок 5.8 – Структура строки 32-го типа ЦИ сигнала L1OCd

Параметры полей строк 31-го и 32-го типа приведены в таблице 5.7. В этой таблице горизонтальной двойной линией разделены поля, относящиеся к различным строкам.

Поле	Число	Цена младшего	Диапазон	Единица
	разрядов	разряда	значений	измерения
t_b	10	90	0 – 86310	c
$\Delta a_{x0}^{j}(t_{b}), \Delta a_{y0}^{j}(t_{b}), \Delta a_{z0}^{j}(t_{b})$	5	2^{-42}	$\pm 3,41 \cdot 10^{-12}$	$\kappa M/c^2$
$a_{x1}^{j}(t_{b}), a_{y1}^{j}(t_{b}), a_{z1}^{j}(t_{b})$	18	2^{-54}	$\pm 7,276 \cdot 10^{-12}$	$\kappa M/c^3$
$a_{x2}^{j}(t_{b}), a_{y2}^{j}(t_{b}), a_{z2}^{j}(t_{b})$	18	2^{-67}	$\pm 2^{-50}$	км / c ⁴
Резерв	51	_	_	_
t _b	10	90	0 – 86310	c
$a_{x3}^{j}(t_{b}), a_{y3}^{j}(t_{b}), a_{z3}^{j}(t_{b})$	18	2^{-80}	$\pm 2^{-63}$	км/c ⁵
$a_{x4}^{j}(t_{b}), a_{y4}^{j}(t_{b}), a_{z4}^{j}(t_{b})$	18	2^{-95}	$\pm 2^{-78}$	км/ c ⁶
Резерв	66	_	_	_

Таблица 5.7 – Параметры информационных полей строк 31-го и 32-го типа сигнала L1OCd

5.6.2 Смысловое содержание полей строк 31-го и 32-го типа

- 5.6.2.1 Поля СМВ, Тип, ОМВ, $\Gamma^{\rm j}$, $1^{\rm j}$, j, Π 1, Π 2, KP, A, $\coprod K$ служебные поля. Описаны в 4.2.
- 5.6.2.2 Поле t_b описано в 5.2.2.6. В строках 31-го и 32-го типа поле t_b одинаково и обозначает момент МДВ, на который заданы параметры $\Delta a^j(t_b)$, $a^j(t_b)$ (см. 5.6.2.3), предназначенные для совместного использования с параметрами ЭИ строк 10, 11 и 12-го типа на тот же момент времени t_b .
- 5.6.2.3 Поля $\Delta a^j(t_b)$, $a^j(t_b)$ содержат коэффициенты полиномов 4-й степени, позволяющие вычислять дополнительные ускорения $a_x(t,t_b)$, $a_y(t,t_b)$, $a_z(t,t_b)$ НКА. Использование этих ускорений путем суммирования с ускорениями $\ddot{x}^j(t_b)$, $\ddot{y}^j(t_b)$, $\ddot{z}^j(t_b)$ (см. 5.2.2.17) позволяет прогнозировать движение НКА с высокой точностью на интервале времени от 0 до +4 ч относительно момента времени t_b .

5.7 Строка 50-го типа сигнала L1OCd

На рисунке 5.9 приведена структура строки 50-го типа, предназначенная для передачи квитанций Коспас-Сарсат. В строке содержатся две квитанции, по 92 бита каждая.

Рисунок 5.9 – Структура строки 50-го типа ЦИ сигнала L1OCd

Структура квитанции Коспас-Сарсат представлена в таблице 5.8. Описание отдельных полей приведено ниже.

Таблица 5.8 – Структура квитанции Коспас-Сарсат

Поле	Beacon ID	КС	Информация от ПСС	Резерв ГК
Число бит	60	4	16	12

Beacon ID – идентификационный номер аварийного буя (АРБ-406).

КС – контрольная сумма.

Информация от ПСС – информация от поисково-спасательных служб (ПСС) для АРБ (в настоящее время находится на этапе согласования).

Резерв ГК – резерв Главного конструктора для передачи обобщенной телеметрической информации о прохождении квитанций в бортовом радиокомплексе.

5.8 Строка 60-го типа сигнала L1OCd

5.8.1 Состав и структура строки 60-го типа

На рисунке 5.10 представлена структура строки 60-го типа, предназначенная для передачи текстовых сообщений. Для этого в строке 60-го типа выделено 184 бита.

Рисунок 5.10 – Структура строки 60-го типа ЦИ сигнала L1OCd

Параметры информационных полей строки 60-го типа приведены в таблице 5.9.

Таблица 5.9 – Параметры информационных полей строки 60-го типа сигнала L1OCd

Поле	Число	Цена младшего	Диапазон	Единица
	разрядов	разряда	значений	измерения
Текстовое	184	_	_	_
сообщение				

5.8.2 Смысловое содержание полей строки 60-го типа

- 5.8.2.1 Поля СМВ, Тип, j, $\Gamma^{\rm j}$, $1^{\rm j}$, Π 1, Π 2, KP, A, OMB, ЦК служебные поля. Описаны в 4.2.
- 5.8.2.2 Поле текстового сообщения содержит текстовую информацию, структура которой описана в отдельном документе.

5.9 Строка 0-го типа сигнала L1OCd

5.9.1 Состав и структура строки 0-го типа

На рисунке 5.11 приведена структура строки 0-го типа. Этот тип строки предназначен для решения технологических задач введения НКА в состав орбитальной группировки. Аппаратура потребителя должна игнорировать строки 0-го типа.

Рисунок 5.11 – Структура строки 0-го типа ЦИ сигнала L1OCd

Параметры информационных полей строки 0-го типа приведены в таблице 5.10.

Таблица 5.10 – Параметры информационных полей строки 0-го типа сигнала L1OCd

Поле	Число	Цена младшего	Диапазон	Единица
	разрядов	разряда	значений	измерения
Технологическая	184	_	_	_
информация				

5.9.2 Смысловое содержание полей строки 0-го типа

- 5.9.2.1 Поля СМВ, Тип, j, Γ^j , 1^j , $\Pi1$, $\Pi2$, KP, A, OMB, ЦК служебные поля. Описаны в 4.2.
- 5.9.2.2 Поле технологической информации содержит технологическую информацию.

5.10 Аномальные строки 1-го и 2-го типа сигнала L1OCd

Строка 1-го типа описана в 4.3.2.

Строка 2-го типа описана в 4.3.3.

Номера битов, отведенных на информационные поля, приведены в 5.1. Эти биты образуют резервные поля.

Лист регистрации изменений

Изм. ненных пенных п		Номера листов		Всего		Входящий №			
	Изм.		заме-	изъятых	листов в	Номер докум.	сопроводит.	Подпись	Дата

По всем вопросам, связанным с ИКД системы ГЛОНАСС, вы можете обращаться в акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы»).

e-mail: contact@spacecorp.ru

Website: http://russianspacesystems.ru

[©] Акционерное общество «Российская корпорация ракетно-космического приборостроения и информационных систем» (АО «Российские космические системы») 2016