UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA

TESTOVI IZ ALGEBRE

Rade Doroslovački Ljubo Nedović Edicija: "TEHNIČKE NAUKE - UDŽBENICI"

Naziv udžbenika: "Testovi iz algebre"

Autori:

Rade Doroslovački

Ljubo Nedović

Recenzenti:

prof. dr Zoran Stojaković, Prirodno - matematički fakultet u Novom Sadu

prof. dr Ilija Kovačević, Fakultet tehničkih nauka u Novom Sadu

Izdavač: Fakultet tehničkih nauka, Univerzitet u Novom Sadu

Glavni i odgovorni urednik:

Prof. dr Rade Doroslovački, dekan Fakulteta tehničkih nauka, Univerzitet u Novom Sadu

Priprema i štampa: FTN - Grafički centar GRID, Trg Dositeja Obradovića 6, Novi Sad

Štampanje odobrio:

Savet za bibliotečku i izdavačku delatnost Fakulteta tehničkih nauka, Univerzitet u Novom Sadu

Predsednik Saveta za bibliotečku i izdavačku delatnost:

Dr Radoš Radivojević, redovni profesor Fakulteta tehničkih nauka, Univerzitet u Novom Sadu

Ауторска права припадају издавачу

СІР-Каталогизација у публикацији Библиотека Матице српске, Нови Сад

512(075.8)(079.1)

DOROSLOVAČKÍ, Rade

Testovi iz algebre / Doroslovački Rade, Nedović Ljubo. - 1. izd. - Novi Sad : Fakultet tehničkih nauka, 2016 (Novi Sad : Grid). - 88 str. ; 24 cm. - (Edicija "Tehničke nauke - udžbenici"; 599)

Тираж 600. - Библиографија.

ISBN 978-86-7892-862-8

1. Nedović, Ljubo [autor]

a) Algebra - Testovi COBISS.SR-ID 309162503

PRIMER 1 KOLOKVIJUM 1,

(*)Za relaciju poretka \subseteq skupa $\mathcal{A}=\{A,B,C,D\}$, gde je $A=\{a,b\},B=\{b,c\},C=\{a,b,c\},D=\{b\}$ i minimalne el: \bigcirc najveći el: \bigcirc maksimalne el: \bigcirc navesti: najmanji el: /`\

Zaokružiti brojeve ispred sirjektivnih funkcija:

$$\begin{array}{c} \text{ (1)} \ f: (0,\frac{\pi}{4}) \rightarrow (0,\infty), \ \ f(x) = \operatorname{tg} x \\ \text{ (2)} \ f: \mathbb{R}^+ \rightarrow \mathbb{R}, \ \ f(x) = 3-x \\ \text{ (3)} \ f: \mathbb{R} \rightarrow [0,\infty), \ \ f(x) = x^2 \\ \end{array}$$

 \bigcirc Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$:

$$(2)a + a' = 0$$

$$(3) a \cdot 0 = 0$$

$$4) 1 + a = a$$

$$5(a+b)'=a'+b'$$

(1) (a')' = a (2) a + a' = 0 (3) $a \cdot 0 = 0$ (4) 1 + a = a (5) (a + b)' = a' + b' (2) $e^{i\frac{\pi}{4}}$, (2) $e^{-i\frac{\pi}{4}}$, (3) $-e^{i\frac{\pi}{4}}$, (4) $-e^{-i\frac{\pi}{4}}$, Koreni (nule) polinoma $x^2 - i$ su:

$$1) e^{i\frac{\pi}{4}},$$

2)
$$e^{-i\frac{\pi}{4}}$$

$$(3)$$
 $-e^{i\frac{\pi}{4}}$,

4)
$$-e^{-i\frac{\pi}{4}}$$

 $(\hat{m{\cdot}}_ullet)^{m{\cdot}}$ Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z=\sqrt{3}-iz$ $Re(z) = \sqrt{3}$, Im(z) = -7 , |z| = , $\arg(z) = -\frac{5C}{6}$, $\overline{z} = \sqrt{3} + \gamma$.

$$Re(z) = \sqrt{3}$$

,
$$Im(z) = - \Im$$

$$|z| =$$

$$arg(z) = -\frac{\Im \zeta}{\zeta}$$

$$, \overline{z} = \sqrt{z} = \gamma$$

Sledeće kompleksne brojeve napisati u algebarskom obliku: $e^{i\pi} = 1$ $2e^{i\frac{\pi}{2}} = 7$, $2e^{0\cdot i} = 2$ $e^{-i\pi} = -7$ $e^{-i\frac{3\pi}{2}} = 7$

$$e^{i\pi} = 1$$

$$2e^{i\frac{\pi}{2}} = 77$$

$$2e^{\mathbf{U}\cdot\imath}=$$
 \mathfrak{Z}

$$e^{-in}=-7$$

$$e^{-i\frac{3\pi}{2}} =$$

🗘 Zaokružiti brojeve ispred struktura koje su komutativni, asocijativni, grupoidi sa neutralnim elementom.

$$(2)$$
 (\mathbb{N},\cdot)

$$(3)^{\mathbb{N}}(\mathbb{R},+)$$

$$(4)$$
 $\forall (\mathbb{R}, \cdot)$

(4)
$$(\mathbb{R},\cdot)$$
 (5) $(\{-1,1\},\cdot)$

$$(6)^{1}$$
 $(0,\infty),\cdot)$

Pri delenju polinoma $x^8 - 2x^4 + 1$ sa $x^2 + 1$ nad \mathbb{R} , količnik je $x^6 - x^7 - x^7 + 7$, a ostatak je $x^6 - x^7 - x^7 + 7$, a ostatak je $x^6 - x^7 - x^7 + 7$

igotimesZaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakoj grupi (P,\cdot) u kojoj je \hbar neutralni element, a sa x^{-1} je označen inverzni element od elementa x: 1) $a \cdot \hbar = \hbar$ (2) $a^{-1} \cdot a = \hbar$ (3) $\hbar \cdot \hbar = \hbar$ (4) $\hbar^{-1} = \hbar$ (5) $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$ (6) $a \cdot a = a$

Koreni (nule) polinoma $x^2 - x\sqrt{2} + 1$ su: $(1)e^{i\frac{\pi}{4}}, (2)e^{-i\frac{\pi}{4}}, (3) - e^{i\frac{\pi}{4}}, (4) - e^{-i\frac{\pi}{4}},$

$$\begin{pmatrix} 4 & n \\ 1 \end{pmatrix}_{i}$$

$$(2)e^{-i\frac{\pi}{4}}$$

3)
$$-e^{i\frac{\pi}{4}}$$

4)
$$-e^{-i\frac{\pi}{4}}$$

NZD za polinome $x^2 - x\sqrt{2} + 1$ i $x^2 - i$ 1) Ne postoji $2\sqrt{j}$ je linearni polinom 3) je konstantni polinom

Zaokružiti slova (ili slovo) ispred jednakosti koje su tačne u skupu kompleksnih brojeva:

$$(\mathbf{a}) z \overline{z} = |z|^2$$

$$(\mathbf{b})_{|z_1|}^{z_1} = \frac{z_2}{|z_2|} \Leftrightarrow (\exists k \in \mathbb{R}^+) \overline{Oz}$$

Zaokruziti slova (ili slova) ispred jednakosti koje su tačne u skupu kompleksnih brojeva:

(a)
$$z\overline{z} = |z|^2$$
(b) $\overline{z_1} = \frac{z_2}{|z_2|} \Leftrightarrow (\exists k \in \mathbb{R}^+) \overline{Oz_1} = k \overline{Oz_2}$
(c) $\overline{z} \in \mathbb{R} \Rightarrow z = \overline{z}$
(d) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
(e) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
(f) $arg z_1 = arg z_2 \Leftrightarrow \frac{z_1}{|z_1|} = \frac{z_2}{|z_2|}$
(g) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
(h) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
(j) $|z| = 1 \Rightarrow z^{-1} = \overline{z}$

$$\underbrace{\mathbf{d}}_{\mathbf{z}_1 + \mathbf{z}_2} = \overline{z}_1 + \overline{z}_2$$

$$z^{-1} = |z|^2 \overline{z}$$

$$-\operatorname{arg} z_2 \to \overline{z_1} = \overline{z_2}$$

$$|z_1| = 1 \to z^{-1} = \overline{z}$$

a)
$$arg(-13i) = 2$$

$$\mathbf{h}$$
) arg(6) = $\langle \gamma \rangle$

$$|z| = 1 \Rightarrow z^{-1} = \overline{z}$$

Elzračunati: a) $\operatorname{arg}(-13i) = \underbrace{\mathbb{Z}}_{i}$ b) $\operatorname{arg}(6) = \underbrace{\mathbb{Z}}_{i}$ c) $\operatorname{arg}(-9) = \underbrace{\mathbb{Z}}_{i}$ d) $\operatorname{arg}(2i) = \underbrace{\mathbb{Z}}_{i}$ e) $\operatorname{arg}(-1+i) = \underbrace{\mathbb{Z}}_{i}$ f) $\operatorname{arg}(-1+i\sqrt{3}) = \underbrace{\mathbb{Z}}_{i}$ g) $\operatorname{arg}(0) = \operatorname{arg}(0) = \operatorname{arg}(2+i)(3+i) = \underbrace{\mathbb{Z}}_{i}$

$$i\sqrt{3}) = \frac{2\sqrt{3}}{3}$$

c)
$$arg(-9) = \mathcal{I}(d)$$
 a

d)
$$arg(2i) = \frac{a}{3}$$

+ i)(3+i) = 5

• Napisati Kejlijeve tablice grupoida $(\mathbb{Z}_4,+)$ i (\mathbb{Z}_4,\cdot) , odrediti inverzne elemente i izračunati:

Da li je $\rho = \{(1,1),(2,2),(3,3),(4,4),(5,5),(5,1),(5,2),(5,3),(5,4),(4,1),(3,1),(2,1)\}$ relacija poretka skupa $A = \{1, 2, 3, 4, 5\}$: $\mathbb{N}A$ NE, i ako jeste, nacrtati njen Haseov dijagram. Odrediti minimalne: 5 , maksimalne: 7 najveći element: 4 i najmanji element: 💸

Neka je z=6, u=4+i i w=5+3i. Rotacijom tačke z oko tačke u za ugao $\frac{\pi}{2}$ dobija se tačka $\frac{5+3}{1}$, translacijom tačke z za vektor w dobija se tačka $\frac{77737}{3}$, a $\sqrt[3]{wuz} = \frac{1}{3}$

- Napisati primere konačnog prstena bez jedinice $(A,+,\cdot)$ i beskonačnog prstena bez jedinice $(B,+,\cdot)$. B = { 1.2 | 1 + 2 } していりん
 - Ako je p polinom stepena 2 nad nekim poljem R i ako ima tačno jedan koren u tom polju, tada je p: (1) uvek svodljiv 2) uvek nesvodljiv 3) nekada svodljiv a nekada nesvodljiv 4) ništa od prethodnog 5) uvek normalizovan
- Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost. $\rho_1: \mathsf{RS}(A) \cap \rho_2: (R) \cap \rho_3: \mathsf{RS}(A) \cap \rho_4: (R) \cap \rho_5: \mathsf{RS}(A) \cap \rho_6: \mathsf$
- Neka je A najveći podskup od $(0,\infty)=\mathbb{R}^+$ a B najmanji podskup skupa \mathbb{R} za koje je funkcija $f:A\to B$ definisana sa $f(x)=\sqrt{1-x^2}$. Tada je $A=\underbrace{(0,1)}_{}, f(\underbrace{)}_{}=1$ i $B=\underbrace{(0,1)}_{}$. Funkcija $f:A\to B$ 2) injektivna ali ne sirjektivna 3) niti injektivna niti sirjektivna 1) sirjektivna ali ne injektivna
- **5)** $f^{-1}: O \to S$, $f^{-1}(x) = \sqrt{1-x^{-1}}$ O = (0.1)(4) bijektivna $(\tilde{\bullet})$ Neka je $A=\{1,2,3,4,5\}$ i $B=\{1,2,3\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f\nearrow$ označava rastuću funkciju f i $f\nearrow$ označava neopadajuću funkciju f:
 - $\begin{vmatrix} \{f|f:A\longrightarrow B\} & = \underbrace{3}^{\frac{5}{2}} & |\{f|f:A\xrightarrow{1-1}B\} & = \underbrace{\mathcal{O}} & |\{f|f:A\longrightarrow B\land f\nearrow\} & = \underbrace{\mathcal{O}} & |\{f|f:B\xrightarrow{na}B\} & = \underbrace{3}^{\frac{1}{2}} & = \underbrace{5}^{\frac{1}{2}} & |\{f|f:A\xrightarrow{1-1}A\} & = \underbrace{5}^{\frac{1}{2}} & |\{f|f:B\to A\land f\nearrow\} & = \underbrace{5}^{\frac{5}{2}} & |\{f|f:A\setminus\{5\}\xrightarrow{na}B\} & = \underbrace{3}^{\frac{5}{2}} & \underbrace{1}^{\frac{5}{2}} & = \underbrace{3}^{\frac{5}{2}} & \underbrace{1}^{\frac{5}{2}} & \underbrace{1}^{\frac{5}{2}} & = \underbrace{1}^{\frac{5}{2}} & \underbrace{1}^{\frac{5$
- Neka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je $f:A \to B$ definisana sa $f(x) = \ln(x^2 - e)$. Tada je $A = \underbrace{f \circ \varphi(e), \psi(e)}_{e} f(\underbrace{t \cdot \int e \cdot e^2}_{e}) = -1$ i $B = \underbrace{-\frac{1}{2}}_{e} f(\underbrace{t \cdot \int e \cdot e^2}_{e})$ Eunkcija $f: A \to B$ je: 1) bijektivna 3) injektivna ali ne sirjektivna 4) niti injektivna niti sirjektivna (2)/sirjektivna ali ne injektivna
- Funkcija $f: \mathbb{R}^+ \to \mathbb{R}$ definisana sa $f(x) = \ln x$ 1) je izomorfizam $(\mathbb{R}^+, \cdot)u(\mathbb{R}, +)$ je homomorfizam $(\mathbb{R}^+, \cdot)u(\mathbb{R}, +)$ 3) ima inverznu f^{-1} 1) je homomorfizam $(\mathbb{R}^+, \cdot)u(\mathbb{R}, +)$ 5) f^{-1} je izomorfizam $(\mathbb{R}^+,\cdot)u(\mathbb{R},+)$
- \bullet Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$. (1) xx = x + x (2) xy = x + y (3) xx' = (x+1)' (4) $xy = 1 \Rightarrow x = 1$ (5) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ (6) $(x = 0 \lor y = 0) \Rightarrow xy = 0$ (7) x = xy + xy' (8) $(\forall x \in B)(\exists y \in B) \ x + y = 1 \land xy = 0$
- Zaokružiti grupoide sa neutralnim elementom, koji nisu grupe: 1) $(\mathbb{Z}_7 \setminus \{1,3,5\}, \cdot)$ 2) $(\mathbb{Z}_7 \setminus \{1,3,5\}, +)$ 3) $(\{f|f: \mathbb{R} \to \mathbb{R}\}, \circ)$ 4) $(\mathbb{N} \cup \{0\}, +)$ 5) $(\mathbb{Z}_7 \setminus \{1,3,5\}, \cdot)$ 6) $(\{7k|k \in \mathbb{Z}\}, \cdot)$ 7) $(\mathbb{R}[x], \cdot)$ β) $(\{f|f:\mathbb{R}\to\mathbb{R}\},\circ)$
- Zaokružiti podgrupe grupe ($\mathbb{C}\setminus\{0\},\cdot$): $\mathbb{Z}\setminus(\mathbb{R}\setminus\{0\},+)$ 2 ((0, ∞), \cdot) 3) (($-\infty$,0), \cdot) 4) ($\{e^{i\theta}|\theta\in\mathbb{R}\},\cdot$) 5) ($\mathbb{Z}\setminus\{0\},\cdot$) 8) ($\mathbb{C}\setminus\{0\},\cdot$) ($\mathbb{C$
- \mathbb{Z}_{5} . Saokružiti oznaku polja za koje važi da je polinom t^4+t^2+1 nesvodljiv nad njima. $\mathbb{Q} \ \mathbb{R} \ \mathbb{C} \ \mathbb{Z}_2 \ \mathbb{Z}_3 \ \mathbb{Z}_5$
 - $\{0, \dots, \infty\}$ Ako je p polinom stepena 3 nad poljem \mathbb{R} , tada je p nad poljem \mathbb{R} : 3) ništa od prethodnog. 1) uvek svodljiv (2) uvek nesvodljiv
 - $f \in \mathbb{R}[x], \ f(a+ib) = 0, \ b \neq 0. \ \text{Zaokruži tačno: (a)} \ x-a+ib \ | \ f(x) \ \text{ (b)} \ x-a-ib \ | \ f(x) \ \text{ (c)} \ x-e^{ia} \ | \ f(x) \ \text{ (d)} \ x^2-2ax+a^2+b^2 \ | \ f(x); \ \text{ (e)} \ x^2+2ax+a^2+b^2 \ | \ f(x); \ \text{ (f)} \ x^2-ax+a^2+b^2 \ | \ f(x); \ \text{ (g)} \ x-e^{+ia} \ | \ f(x)$
 - Ako je $A = \{e^{i\varphi} + e^{i\psi} \mid \psi \in \mathbb{R}\}$ i $B = \{1 e^{i\psi} \mid \psi \in \mathbb{R}\}$ tada je (a) $A \cap B \neq \emptyset$, (b) $A \subset B$, (c) $A \subseteq B$, (d) $A \not\subseteq B$, (e) $A \supseteq B$, (f) $A \not\supseteq B$, (g) $A \supset B$, (k) $A \cap B = \emptyset$, (l) $A \cap B = \emptyset$.
 - Neka je $\{i,-i\}$ skup nekih korena polinoma $f(x)=x^3+ax^2+bx+c$, gde su $a,b,c\in\mathbb{R}$. Tada skup svih $a \in \mathbb{R}$ vrednosti za a, b i c je asc

100 Miles

11

KOLOKVIJUM 1, PRIMER 2

1	 Iza oznake svake od 	datih relacija u skup	u Z zaokružiti samo ona slova koja označavaju svojstvo relacije
	koju ona poseduje:	R- refleksivnost S - si	metričnost A- antisimetričnost T- tranzitivnost.
	$\leq : \widehat{R}, S, \widehat{A}, \widehat{T})$	$\langle R, S, \widehat{A}, \widehat{T} \rangle$	\equiv_3 definisana sa $x\equiv_3 y \Leftrightarrow 3 (x-y):\widehat{R},S,A(\widehat{T}) $

Neka je funkcija
$$f: \mathbb{R} \to (0, \infty)$$
 definisana sa $f(x) = 2^x$. Tada je: 1) $f^{-1}(x) = x^2$, 2) $f^{-1}(x) = \sqrt{x}$, 3) $f^{-1}(x) = \log_2 x$, 4) $f^{-1}(x) = 2^{-x}$, 5) $f^{-1}(x) = \frac{2}{x}$, 6) $f^{-1}(x) = \log_{\frac{1}{2}} x^{-1}$, 7) $f^{-1}(x) = \log_{\frac{1}{2}} x^{-1}$

$$\ragged$$
 . \ragged Ako su P i Q polinomi i $dg(P)=3$ i $dg(Q)=4$, tada je $dg(PQ)=$ \ragged i $dg(P+Q)=$ \ragged

Zaokružiti brojeve ispred tvrđenja koja su tačna u Bulovoj algebri.

(1)
$$c + ab = (b+c)(a+c)$$
(2) $(ab)' = a' + b'$
(3) $(aa)' = a' + a'$
(4) $(a+b)' = a' + b'$
(5) $(a+a)' = a' + a'$
(6) $(a+b)' = a' + b'$
(7) $(a+a)' = a' + a'$
(8) $(a+b)' = a' + b'$

Zaokružiti brojeve ispred struktura koje su asocijativni grupoidi sa neutralnim elementom (tj. monoidi):
$$(\mathbb{Z}, +)$$
 $(\mathbb{Z}, +)$ $(\mathbb{Z},$

Za kompleksne brojeve
$$z_1 = 1 + i$$
 i $z_2 = 2 - 2i$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ $z_1 \cdot z_2 = \mathcal{L}$ $z_1 \cdot z_2 = \mathcal{L}$ $z_2 = -2i$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ $z_1 \cdot z_2 = \mathcal{L}$ $z_2 = -2i$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ $z_2 = -2i$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ $z_2 = -2i$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ $z_2 = -2i$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ $z_2 = -2i$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ $z_2 = -2i$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ izračunati $z_1 + z_2 = \hat{z} - \hat{i}$ izračunati $z_2 = -2i$ izračunati $z_2 = -2i$

Koreni (nule) polinoma
$$x^2 - i$$
 su: 1 $e^{i\frac{\pi}{4}}$, 2) $e^{-i\frac{\pi}{4}}$, 3 $e^{i\frac{\pi}{4}}$, 4) $-e^{-i\frac{\pi}{4}}$.

Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja
$$z=-1-i\sqrt{3}$$
:
$$Re(z)=-1 \qquad , Im(z)=-\sqrt{3} \qquad , |z|=-1 \qquad , \arg(z)=-\frac{\sqrt{3}}{3} \qquad , \overline{z}=-1 + i\sqrt{3}.$$

$$e^{i\pi} = -1$$
 $2e^{i\frac{\pi}{2}} = 1$ $e^{i2k\pi} = 1$ $2e^{0 \cdot i} = 1$ $e^{i(2k+1)\pi} = -1$ $e^{-i\pi} = -1$ $e^{-i\frac{3\pi}{2}} = 1$

Sledeće kompleksne brojeve napisati u algebarskom obliku:

$$\text{\P} ? \text{$\stackrel{?}{\otimes}$ Ako su P i Q polinomi, $P+Q \neq 0$ i $dg(P) = 2$ i $dg(Q) = 2$, tada je $dg(PQ) \in \{\P^{\circ}\}$ i $dg(P+Q) \in \{\P^{\circ}\}$. }$$

Ako je
$$z_1 \neq w$$
, $z_2 \neq w$, $z_1 \neq 0$ i $z_2 \neq 0$, tada važi:

$$(3) \text{ arg } z_1 = \text{arg } z_2 \Leftrightarrow \frac{z_1}{|z_1|} = \frac{z_2}{|z_2|} \Leftrightarrow (\exists k \in \mathbb{R}^+) \overrightarrow{Oz_1} = k \overrightarrow{Oz_2} 2) \text{ arg } (z_1 - w) = \text{arg}(z_2 - w) \Leftrightarrow \frac{z_1 - w}{|z_1 - w|} = \frac{z_2 - w}{|z_2 - w|}$$

$$(3) (\exists k \in \mathbb{R}^+) \overrightarrow{wz_1} = k \overrightarrow{wz_2} \Leftrightarrow \frac{z_1 - w}{|z_1 - w|} = \frac{z_2 - w}{|z_2 - w|}$$

$$(4) (\exists k \in \mathbb{R}^+) \overrightarrow{wz_1} = k \overrightarrow{wz_2} \Leftrightarrow \text{arg}(z_1 - w) = \text{arg}(z_2 - w)$$

$$(5)) \text{ Množenjem kompleksnog broja realnim pozitívnim brojem argument se ne menja.}$$

ੴDBrojevi iz ℂ koji pripadaju istoj polupravoj koja ishodi iz koordinatnog početka imaju jednake argu-

Množenje broja $z \in \mathbb{C}$ realnim brojem k je homotetija sa centrom O(0,0) i koeficijentom k tj. $H_{O(k)}(z)$.

 $\P arphi_*(\widehat{m{e}})$ Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakoj grupi (P,\cdot) u kojoj je e neutralni

element, a sa
$$x^{-1}$$
 je označen inverzni element od elementa x :

1) $a \cdot e = e$
2) $a \cdot x = b \cdot x \Rightarrow a = b$
3) $e \cdot e = e$
4) $e^{-1} = e$
5) $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
6) $a \cdot a = a$

45. • Koreni (nule) polinoma
$$x^2 - x\sqrt{2} + 1$$
 su: (1) $e^{i\frac{\pi}{4}}$, (2) $e^{-i\frac{\pi}{4}}$, (3) $-e^{i\frac{\pi}{4}}$, (4) $-e^{-i\frac{\pi}{4}}$

NZD za polinome $x^2 - x\sqrt{2} + 1$ i $x^2 - i$ 1) Ne postoji 2) je linearni polinom 3) je konstantni polinom

Zaokružiti brojeve ispred jednakosti koje su tačne u skupu kompleksnih brojeva:

(1)
$$\overline{z} \in \mathbb{R} \Rightarrow z = \overline{z}$$
(2) $\overline{z_4 + z_2} = \overline{z_1} + \overline{z_2}$
(3) $|z_1 + z_2| \le |z_1| + |z_2|$
(4) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
(5) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
(6) $|z| = |z|^2$
(7) $|z| = |z|^2$
(8) $|z| = |z|^2$

- Neka je A najveći podskup od \mathbb{R} a B najmanji podskup skupa \mathbb{R} za koje je $f:A \to B$ definisana sa $f(x) = \arccos(x+1)$. Tada je $A = \underbrace{f \circ g}_{0} \circ f(\underbrace{f \circ g}_{0}) = \underbrace{\frac{3\pi}{4}}_{0}, f(\underbrace{f \circ g}_{0}) = \underbrace{\frac{\pi}{4}}_{0}$ i $B = \underbrace{f \circ g}_{0} \circ f(\underbrace{f \circ g}_{0}) = \underbrace{\frac{\pi}{4}}_{0}$ i njektivna ali ne sirjektivna 1) niti injektivna niti sirjektivna
- $\uparrow^{\circ}) \underbrace{ \left(\bullet \right)}_{A} A = \{1,2,3\}, B = \{x,y,z,u\}, f_1 = \{(1,x),(2,y)\}, f_2 = \{(1,x),(2,y)(3,x)\}, f_3 = \{(1,u),(2,y),(3,x)\}.$ Svako polje obavezno popuniti sa da ili ne.

\	f_i je funkcija	$f_i: A \longrightarrow B$	$f_i: \{1,2\} \longrightarrow B$	$f_i: A \xrightarrow{1-1} B$	$f_i: A \stackrel{na}{\longrightarrow} B$	$f_i: A \overset{\mathbf{1-1}}{\underset{\mathbf{na}}{ ightarrow}} B$
f_1	da	hن	da	he	ካየ	n E.
f_2	ol a	da	Na 7	yl a	hr	p.t.
f_3	da	da	da.	da	Иř	ne

1.

Ö٠

10

11.

11

13. (

78. G

115 6

- $\sqrt[4]{6}$ Funkcija $f: (-\pi, -\frac{\pi}{4}) \longrightarrow (-1, \frac{1}{\sqrt{2}})$ definisana sa $f(x) = \cos x$ je:
 - 1) sirjektivna i nije injektivna 2) injektivna i nije sirjektivna
 - 3) nije injektivna i nije sirjektivna 🗗 bijektivna
- $\uparrow \land \bullet$ Funkcija $f: (\frac{\pi}{4}, \frac{3\pi}{4}) \longrightarrow (0, 1)$ definisana sa $f(x) = \sin x$ je:
 - 1) sirjektivna i nije injektivna 2) injektivna i nije sirjektivna
 - (3) nije injektivna i nije sirjektivna 4) bijektivna
- Funkcija $f: (\frac{\pi}{6}, \frac{5\pi}{4}) \setminus \{\frac{\pi}{2}\} \longrightarrow \mathbb{R}$ definisana sa $f(x) = \operatorname{tg} x$ je:
 - Dsirjektivna i nije injektivna 2) injektivna i nije sirjektivna
 - 3) nije injektivna i nije sirjektivna 4) bijektivna
- Napisati primere konačnog prstena bez jedinice $(A, +, \cdot)$ i beskonačnog prstena bez jedinice $(B, +, \cdot)$. $A = \left(\begin{array}{c} A \\ \end{array} \right) \left(\begin{array}{c} A \\ \end{array} \right) \left(\begin{array}{c} A \\ \end{array} \right)$
- $(0, 1)^{-1}$ Ako je p polinom stepena 2 nad proizvoljnim poljem F i ako ima tačno jedan koren u tom polju F, tada je p nad tim poljem F: (1) svodljiv 2) nesvodljiv 3) nekada svodljiv a nekada nesvodljiv 4) ništa od prethodnog
- Neka je A najveći podskup od $(0, \infty) = \mathbb{R}^+$ a B najmanji podskup skupa \mathbb{R} za koje je funkcija $f: A \to B$ definisana sa $f(x) = -\sqrt{1-x^2}$. Tada je $A = \underbrace{\left(\frac{\delta_1 1}{2}\right)}_{0}$, $f(\underbrace{1}) = 0$ i $B = \underbrace{\left(\frac{\delta_1 1}{2}\right)}_{0}$. Funkcija $f: A \to B$ je:

 1) sirjektivna ali ne injektivna

 2) injektivna ali ne sirjektivna

 3) niti injektivna niti sirjektivna

 4) bijektivna

 5) $f^{-1}: O \to S$, $f^{-1}(x) = \underbrace{\left(\frac{\delta_1 1}{2}\right)}_{0}$, $O = \underbrace{\left(\frac{\delta_1 1}{2}\right)}_{0}$, $O = \underbrace{\left(\frac{\delta_1 1}{2}\right)}_{0}$

$$\left| \left\{ f | f: A \longrightarrow B \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: A \xrightarrow{1-1} B \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: A \longrightarrow B \land f \nearrow \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{A} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na} A \right\} \right| = \underbrace{\mathcal{I}}_{+}, \left| \left\{ f | f: B \xrightarrow{na}$$

- Neka je A najveći podskup od \mathbb{R} a B najmanji podskup skupa \mathbb{R} za koje je $f:A \to \text{definisana}$ sa $f(x) = \ln(x^2 + 2)$. Tada je $A = \underbrace{1}_{A} \underbrace{$
- Neka je $\{-2,1\}$ skup svih korena polinoma $f(x) = x^3 + ax^2 + bx + c$ nad poljem realnih brojeva. Tada skup svih mogućnosti za a je $a \in \{0, 0, 1\}$.
- Zaokružiti grupoide sa neutralnim elementom, koji nisu grupe: A) $(\mathbb{Z}_7 \setminus \{1,3,5\}, \cdot)$ $(\mathbb{Z}_7 \setminus \{$
- $ightharpoonup^{0}$ · ODa li postoji polje nad kojim je polinom t^4+t^2+1 nesvodljiv? DA
- Ako je p polinom stepena 3 nad poljem \mathbb{Q} , tada je p nad poljem \mathbb{Q} :

 1) uvek svodljiv

 2) uvek nesvodljiv

 3) ništa od prethodnog.

35. Neka je $\{i,-i,1\}$ skup korena polinoma x^3+ax^2+bx+c . Tada je a= 3 b=4 c=-7 .

KOLOKVIJUM 1, PRIMER 3

£

3

iti

da

(x)

 $\{1, \{2\}, \{3\}, \{1, 2, 3\}\}$ je data relacija \subseteq . Navesti ako postoje (napisati / ako ne postoji): , minimalne elemente: $\binom{1}{2}$, $\binom{1}{2}$ najmanji element: najveći element: (१,२,३) , maksimalne elemente: $\langle \gamma_{\lambda\lambda} \rangle$

Neka su $f: \mathbb{R}^+ \to \mathbb{R}$ i $g: \mathbb{R}^+ \to \mathbb{R}$ definisane sa $f(x) = \sqrt{x}$ i $g(x) = \ln x$. Izračunati (napisati / ako ne postoji): 1) $f^{-1}(x) = \chi$, $x \in \mathbb{R}^+$ 2) $g^{-1}(x) = \chi$, $x \in \mathbb{R}^+$ 3) $(f \circ g)(x) = \mathbb{R}$, $x \in \mathbb{R}^+$ 4) $(g \circ f)(x) = \chi$, $\chi \in \mathbb{R}^+$ hx >0 x>1

 χ Napisati SDNF Bulovog izraza (x'y + xy + xy')': $\chi'\gamma'$

Zaokružiti broj (ili brojeve) ispred struktura koja su grupoidi:

(I) $(\mathbb{Z},+)$

6. Koreni (nule) polinoma $x^2 + i$ su: 1) $e^{i\frac{\pi}{4}}$, (2) $e^{-i\frac{\pi}{4}}$, 3) $-e^{i\frac{\pi}{4}}$, (4) $-e^{-i\frac{\pi}{4}}$,

4. Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z = -i\sqrt{3}$: $, Im(z) = -\sqrt{2}$ $, |z| = \sqrt{3}$ $, arg(z) = -\frac{3}{7}$ $, \overline{z} = -\gamma\sqrt{3}$. Re(z) = 0

 δ - Pri deljenju polinoma x^4-1 sa x^2+x+1 nad \mathbb{R} , količnik je x^3-y , a ostatak je x-1.

 Saokružiti broj (ili brojeve) ispred struktura koja su grupe: (\mathbb{Z},\cdot) (2) (2,+) (3) ({-1,1},·) (4) ($(\mathbb{Z}_4,+)$ 5) ($(\mathbb{N} \cup \{0\},+)$ (6) ((0, ∞),·)

1°. (a) Koje od navedenih struktura su polja:
(b) $(\mathbb{Z}_7, +, \cdot)$ (c) $(\mathbb{Z}_7, +, \cdot)$ (d) $(\mathbb{Z}_7, +, \cdot)$ (e) $(\mathbb{Z}_7, +, \cdot)$ (f) $(\mathbb{Z}_4, +, \cdot)$ (g) $(\mathbb{Z}_4, +, \cdot)$

11. (•) Zaokružiti broj (ili brojeve) ispred jednakosti koje su tačne u skupu kompleksnih brojeva: (1) $z\overline{z} = |z|^2$ 2) $Re(z) = \frac{1}{2}(z - |z|)$ 3) $Im(z) = \frac{1}{2}(z + |z|)$ 4) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ 5) $|z_1 + z_2| = |z_1| + |z_2|$ 6) $\overline{z} \in \mathbb{R} \Rightarrow z = \overline{z}$ 7) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ 8) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ 9) $z \neq 0 \Rightarrow z^{-1} = |z|^{-2}\overline{z}$ 10) $|z| = 1 \Rightarrow z^{-1} = \overline{z}$

Izračunati: 1) $\arg(-13i) = -\frac{3i}{5}$ 2) $\arg(6) = 0$ 3) $\arg(-9) = 3i$ 4) $\arg(2i) = \frac{3i}{5}$ 5) $\arg(-1+i) = \frac{3i^{3}}{5}$ 6) $\arg(-1+i\sqrt{3}) = 2i^{3}$ 7) $\arg(0) = 2i$ 🗥 🕞 Izračunati:

1) Napisati Kejlijeve tablice grupoida $(\mathbb{Z}_3, +)$ i (\mathbb{Z}_3, \cdot) , odrediti inverzne elemente i izračunati:

 $\text{The } \bigcirc \text{Da li je } \rho = \{(1,1),(2,2),(3,3),(4,4),(5,5),(5,1),(5,2),(5,3),(5,4),(4,1),(3,1)\} \text{ re-}$ lacija poretka skupa $A = \{1, 2, 3, 4, 5\}$: \cancel{pA} NE, i ako jeste, nacrtati njen Haseov dijagram. Određiti , maksimalne: 1, 1 minimalne: 5

i najmanji: 5 najveći: element.

Neka je $z=3+2i,\,u=1+i$ i w=2-i. Rotacijom tačke z oko tačke u za ugao $\frac{\pi}{2}$ dobija se tačka $\frac{\Im i}{1}$, translacijom tačke z za vektor w dobija se tačka $\frac{5+i}{1}$, a $\sqrt[3]{wuz} = \frac{\sqrt{x}}{1}$

 $(2) (\mathbb{Z}_4,+,\cdot) \quad (3) (\mathbb{Q},+,\cdot) \quad (4) (\mathbb{Z}_3,+,\cdot) \quad (5) (\mathbb{N},+,\cdot) \quad (6) (\mathbb{C},+,\cdot) \quad (7) (\mathbb{R}[t],+,\cdot) \quad (8) (\mathbb{R}^+,+,\cdot)$ (•) U polju \mathbb{Z}_5 izračunati $3(2^3+4)+3=\frac{1}{2}$ $2^{-1}=\frac{3}{2}$ $3^{-1}=\frac{2}{2}$ $-2=\frac{3}{2}$ $-3=\frac{3}{2}$ 17 \bullet) U skupu $\mathbb{N}=\{1,2,\ldots\}$ date su relacije: $\rho_1=\{(x,3x)|x\in\mathbb{N}\},\, \rho_2=\{(x,y)|x+y=0,x,y\in\mathbb{N}\},$ 15 $\rho_3 = \{(x,x)|x \in \mathbb{N}\}, \ \rho_4 = \{(x,y)|x,y \in \mathbb{N}, xy < 4\}, \ \rho_5 = \{(2x,2x)|x \in \mathbb{N}\}, \ \rho_6 = \mathbb{N} \times \mathbb{N}.$ Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost, S- simetričnost, A- antisimetričnost, T- tranzitivnost. $\rho_2: \mathsf{R}(\mathsf{S})\mathsf{A}(\mathsf{T}) \quad \rho_3: \mathsf{R}(\mathsf{S})\mathsf{A}(\mathsf{T}) \quad \rho_4: \mathsf{R}(\mathsf{S})\mathsf{A}(\mathsf{T})$ $ho_5: \mathsf{R}(\overline{\mathbb{S}})\mathsf{A}(\overline{\mathbb{T}})$ $\rho_1: \mathsf{RS}(A)\mathsf{T}$ Neka je $A = \{1, 2, 3, 4\}$ i $B = \{1, 2\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f \nearrow$ označava neopadajuću funkciju f: $\left|\left\{f|f:A\longrightarrow B\right\}\right|=\underbrace{\text{16}},\left|\left\{f|f:A\xrightarrow{1-1}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\longrightarrow B\land f\nearrow\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:B\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\longrightarrow B\land f\nearrow\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left|\left\{f|f:A\xrightarrow{na}B\right\}\right|=\underbrace{\emptyset},\left\{f|f:A\xrightarrow{na}B\right\}$ $\left|\{f|f:B\longrightarrow A\}\right|=rac{16}{2},\ \left|\{f|f:A\stackrel{1-1}{\longrightarrow}A\}\right|=rac{16}{2},\ \left|\{f|f:B\longrightarrow A\land f\nearrow\}\right|=rac{10}{2},\ \left|\{f|f:A\stackrel{na}{\longrightarrow}B\}\right|=rac{16}{2}.$ $\{o \mid f \bullet \}$ Neka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je $f:A \to B$ definisana sa $f(x) = \ln(x^2 + e^{-1})$. Tada je $A = \underline{\emptyset}$, $f(\underline{o}) = -1$ i $B = \underline{\S^{\gamma}, \sqrt{\gamma}}$ Funkcija $f: A \to B$ je: 1) bijektivna (2) sirjektivna ali ne injektivna niti injektivna niti sirjektivna injektivna ali ne sirjektivna (A, A, A) Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$. (1) xx = x + x (2) xy = x + y (3) xx' = (x+1)' (2) $xy = 1 \Rightarrow x = 1$ (5) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ (6) $(x = 0 \lor y = 0) \Rightarrow xy = 0$ (7) x = xy + xy' (8) $(\forall x \in B)(\exists y \in B) x + y = 1 \land xy = 0$ \bullet Zaokružiti asocijativno komutativne grupoide sa neutralnim elementom, koji nisu grupe: \bigcirc ($\mathbb{R}[x]$, \cdot) 2) $(\{z \in \mathbb{C} | Im(z) = Re(z)\}, +)$ 3) $(\{f|f: \mathbb{R} \to \mathbb{R}\}, \circ)$ 4) $(\mathbb{N} \cup \{0\}, +)$ 5) (\mathbb{Z}, \cdot) 6) $(\{7k|k \in \mathbb{Z}\}, \cdot)$ \mathbb{Q}_{+} Zaokružiti broj (ili brojeve) ispred struktura koje su prsteni. $\mathbb{Q}(\mathbb{Z},+,\cdot)$ $\mathbb{Q}(\mathbb{Z}_4,+,\cdot)$ $\mathbb{Q}(\mathbb{Q}\setminus\{0\},+,\cdot)$ $\textbf{A)} \ \left((0,\infty),+,\cdot \right) \quad \textbf{5)} \ (\mathbb{N},+,\cdot) \quad \textbf{6)} \ (\mathbb{C},+,\cdot) \quad \boxed{7} \ (\mathbb{R}[t],+,\cdot) \quad \textbf{8)} \ \left(\{-1,1\},+,\cdot \right) \quad \boxed{9} \ \left(\{7k|k\in\mathbb{Z}\},+,\cdot \right)$ Usualiti oznaku polja za koje važi da je polinom t^2+2t+1 svodljiv nad njima. \mathbb{Q} \mathbb{R} \mathbb{C} \mathbb{Z}_2 \mathbb{Z}_3 \mathbb{Z}_3 7 6. (a) Ako je p polinom stepena 2 nad poljem \mathbb{R} , tada je p nad poljem \mathbb{R} : (3) ništa od prethodnog. 2) uvek nesvodljiv 1) uvek svodljiv Neka je $\{1,-1\}$ skup svih korena polinoma $f(x)=x^3+ax^2+bx+c$ nad poljem realnih brojeva. Tada skup svih mogućnosti za c je $c \in \{$ ullet Navesti geometrijsku interpretaciju skupova A,B,C,D i sledećih kompleksnih funkcija $f:\mathbb{C} \to \mathbb{C},\ g:$ $\mathbb{C} \to \mathbb{C}$, $h: \mathbb{C} \to \mathbb{C}$ i $t: \mathbb{C} \to \mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f, g, h i $f(z) = \overline{z}e^{i2\arg(z)} \text{ je } \frac{i \operatorname{oleh | i \operatorname{cha}} + \operatorname{minion}}{i \operatorname{oleh | i \operatorname{cha}} + \operatorname{minion}},$ $g(z) = -zi \text{ je } \frac{i \operatorname{oleh | i \operatorname{cha}} + \operatorname{oleh | i \operatorname{cha}}}{i \operatorname{oleh | i \operatorname{ole$ $A = \{z | (z-i)^3 = i\} \text{ je} \xrightarrow{\text{lemena jedua Aertrovieva trende so senten.}} i$ $B = \{z | |z|^{2010} = 1\} \text{ je} \xrightarrow{\text{lemena jedual review of lember jedille structure}} i$ $C = \{z | |z - i|^3 = i\}$ je range An An $D = \{z|z = -\overline{z}\}$ je <u>cela</u> D₄₁ - Oa

 $\mathcal{A}_{\mathcal{C}}$ (ili brojeve (ili broj) ispred struktura koje su prsteni ali nisu polja: (1) $(\mathbb{Z}, +, \cdot)$

Za koje vrednosti realnih parametara a,b i c formula $f(x) = a^2e^{bx} + c^2$ 1) definiše funkciju $f: \mathbb{R} \to \mathbb{R}^+$ 2) definiše injektivnu funkciju $f: \mathbb{R} \to \mathbb{R}^+$ 3) definiše sirjektivnu funkciju $f: \mathbb{R} \to \mathbb{R}^+$ 4) definiše bijektivnu funkciju $f: \mathbb{R} \to \mathbb{R}^+$ 5) definiše rastuću funkciju $f: \mathbb{R} \to \mathbb{R}^+$ 6) definiše neopadajuću funkciju $f: \mathbb{R} \to \mathbb{R}^+$ $\frac{d \in \mathbb{R} \setminus \{0\}}{d} = \frac{d \in \mathbb{R}^+}{d} = d $
KOLOKVIJUM 1, PRIMER 4
Iza oznake svake od datih relacija u skupu prirodnih brojeva N zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija.
$(\text{relacija ",deli"}): \hat{B}S\hat{A}\hat{D}F \qquad ho = \{(1,1),(3,2),(2,1)\}: RS\hat{ATF} \qquad ho = \{(1,3),(1,2),(2,1)\}: RSATF$
$\begin{array}{c} \text{(i)} \text{Neka su } f: (0,\infty) \to (0,\infty) \text{ i } g: (0,\infty) \to (0,\infty) \text{ definisane sa } f(x) = \frac{1}{2x} \text{ i } g(x) = e^x - 1. \text{ Izračunati:} \\ \text{(1)} \ f^{-1}(x) = \frac{f}{2x} & \text{(2)} \ g^{-1}(x) = \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}^n} \left(f \circ g \right)^{-1}(x) = \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}^n} \left(g \circ g $
Zaokružiti brojeve ispred bijektivnih funkcija: (1) $f: \mathbb{R} \to \mathbb{R}, f(x) = -x^3$ (2) $f: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}), f(x) = \operatorname{arctg} x$ (3) $f: \mathbb{R} \to [0, \infty), f(x) = x^2$ (4) $f: [-3, -1) \to [9, 1), f(x) = x^2$ (5) $f: (0, \frac{\pi}{2}) \to (0, \infty), f(x) = \operatorname{tg} x$
$ \zeta_{1} $ Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$: $ (1)_{1}(a')' = a + 1' $ $ (2)_{2}(ab)' = a'b' $ $ (3)_{3}(ab)' = a'b' $
ξ . Skup kompleksnih rešenja jednačine $x^2 = -9$ je $S = \{$ $3 \times 7 \times 3 \times 7 \times 10^{-3} \times 10^{-3$
6. Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z = \pi e^{i\frac{7\pi}{3}}$: $Re(z) = \frac{\pi}{3}, z = \pi, z = \pi, z = \pi, z = \pi, z = \pi e^{i\frac{7\pi}{3}}, z = \pi e^{i\frac{7\pi}{3}}.$
7 Sledeće kompleksne brojeve napisati u algebarskom obliku: $e^{i\pi}=-1$, $2e^{i\frac{\pi}{2}}=-1$, $\sqrt{2}e^{i\frac{\pi}{4}}=-1$, $\sqrt{2}e^{i\frac{\pi}{4}}=-1$, $2e^{0\cdot i}=-2$ $2e^{i2k\pi}=-2$
Zaokružiti broj (ili brojeve) ispred struktura koje su grupoidi a nisu grupe. (1) $(\mathbb{N},+)$ (2) (\mathbb{N},\cdot) (3) $(-1,0,1),\cdot$ (1) $(\mathbb{R},+)$ (5) (\mathbb{R},\cdot) (6) $((0,\infty),+)$ (7) $((0,\infty),\cdot)$
$^{\circ}$. Neka su $P=(a_0,a_1,\ldots,a_4)$ i $Q=(b_0,b_1,\ldots,b_3)$ polinomi. Tada je $dg(P+Q)=\frac{1}{2}$ i $dg(PQ)=\frac{1}{2}$
Pri delenju polinoma x^4+x^2+1 sa x^2-x+1 nad \mathbb{R} , količnik je ${}$
* * * * * * * * * * * * * * * * * * * *
Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri: A) $a \cdot ab = a \cdot 0'$ $a \cdot ab = a \cdot 0'$ $a \cdot b = (ab)'$ $a \cdot b = (a' + b')'$ $a \cdot b = a \cdot 0'$ $a \cdot ab = a \cdot 0'$ $a \cdot ab = a \cdot 0'$ $a \cdot b = ab \cdot ab$ $a \cdot b = ab \cdot ab$ $a \cdot b = ab \cdot ab$
Broj svih antisimetričnih relacija skupa $A = \{1,2\}$ je:
1). U skupu $\mathbb C$ date su relacije: $\rho_1 = \{(z,w) \in \mathbb C^2 \mid z = w \}, \rho_2 = \{(z,w) \in \mathbb C^2 \mid z \cdot w = 0\},$ $\rho_3 = \{(0,0)\} \cup \{(z,w) \in \mathbb C^2 \mid \arg(z) = \arg(w)\}, \rho_4 = \{(0,0)\} \cup \{(z,w) \in \mathbb C^2 \mid z \cdot w = 1\},$ $\rho_5 = \{(z,w) \in \mathbb C^2 \mid R_e(z) = I_m(w)\}, \rho_6 = \mathbb C^2$ Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnostS- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija.
Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnostS- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija. $\rho_1: \widehat{\mathbb{D}} \widehat{\mathbb{S}} A \widehat{\mathbb{D}} F = \rho_2: R \widehat{\mathbb{S}} A T F = \rho_3: \widehat{\mathbb{D}} \widehat{\mathbb{S}} A \widehat{\mathbb{D}} F = \rho_4: R \widehat{\mathbb{S}} A T \widehat{\mathbb{F}}$ $\rho_5: R - S - A T F = \rho_6: \widehat{R} \cdot \widehat{S} A \overset{\circ}{T} F$

- (•) Ako je $f:A\to B$ sirjektivna funkcija i $b\in B$, tada broj rešenja po $x\in A$ jednačine f(x)=b može biti (zaokruži) 0 (1) (2) (3) (8) 1 Ako je $f:A \to B$ injektivna funkcija i $b \in B$, tada broj rešenja po $x \in A$ jednačine f(x) = b može biti (zaokruži) 1 2 3 ∞ , \bullet) Naći najveći podskup A skup
a $\mathbb R$ i zatim najmanji podskup B skup
a $\mathbb R$ tako da je izrazom $f(x)=\arccos x$ dobro definisana funkcija $f:A \to B$. Tada je $A = \underbrace{\mathbb{C} \to \mathbb{A}}$ i $B = \underbrace{\mathbb{C} \to \mathbb{A}}$. Funkcija $f:A \to B$ 1) sirjektivna i injektivna 2) ni sirjektivna ni injektivna 3) sirjektivna ali nije injektivna 4) nije sîrjektivna a jeste injektivna 1 † . () Neka je $A=\{1,2,3,4,5\}$ i $B=\{6,7\}$. Odrediti broj elemenata sledećih skupova funkcija: $\begin{vmatrix} \{f|f:A \longrightarrow B\} \end{vmatrix} = \underbrace{3 \, \underline{1}} \quad \begin{vmatrix} \{f|f:A \xrightarrow{1-1} B\} \end{vmatrix} = \underbrace{0} \quad \begin{vmatrix} \{f|f:A \xrightarrow{na} B\} \end{vmatrix} = \underbrace{30} \quad \begin{vmatrix} \{f|f:A \xrightarrow{1-1} B\} \end{vmatrix} = \underbrace{0} \quad \begin{vmatrix} \{f|f:B \xrightarrow{na} A\} \end{vmatrix} = \underbrace{0} \quad \begin{vmatrix} \{f|f:B \xrightarrow{na} A\} \end{vmatrix} = \underbrace{0} \quad \begin{vmatrix} \{f|f:B \xrightarrow{1-1} A\} \end{vmatrix} = \underbrace{0} \quad \begin{vmatrix} \{f|f:B \xrightarrow{na} A\} \end{vmatrix} = \underbrace{0} \quad \begin{vmatrix} \{f|f$ $(\{2k|k\in\mathbb{Z}\},\cdot)$ (2) $(\mathcal{P}(\mathbb{N}),\cap)$ (3) $(\{a+ai|a\in\mathbb{R}\},+)$ (4) (\mathbb{Z},\cdot) (5) $(\{f|f:\mathbb{N}\to\mathbb{N}\},\circ)$ Zaokružiti brojeve ispred struktura koje su prsteni a nisu polja: $(1)(\mathbb{Z},+,\cdot)$ $(2)(\mathbb{Z}_4,+,\cdot)$ $(3)(\mathbb{Q},+,\cdot)$ $(2)(\mathbb{Z}_3,+,\cdot)$ $(3)(\mathbb{Q},+,\cdot)$ $(4)(\mathbb{Z}_3,+,\cdot)$ $(4)(\mathbb{Z}_3,+,\cdot)$ (4)(ℓ ℓ . $igcite{G}$ Skup svih stepena nesvodljivih polinoma nad poljem $\Bbb R$ je $\{$ 4, ℓ $\}$, a nad poljem $\Bbb C$ je $\{$ }. \mathcal{C} . (*) Navesti geometrijsku interpretaciju skupova A,B,C,D i sledećih kompleksnih funkcija $f,g:\mathbb{C}\to\mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f i g. $f(z) = z \cdot (-i) \text{ je } \frac{10^{-1} \text{ or } a \text{ to } \frac{1}{2} - \frac{1}{2} \text{ Aycher a}}{f(z) = \overline{z}e^{i2} \operatorname{arg}(z) \text{ je } \frac{10^{-1} \text{ or } h_{z}}{10^{-1} \text{ or } h_{z}} - \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{ or } h_{z}^{2}}{10^{-1} \text{ or } h_{z}^{2}} + \frac{h_{z}^{2} \text{$ $A = \{z \mid z^2 = \overline{z}\} = \{0, 1, e^{i\frac{z}{2}}, e^{i\frac{z}{2}}\} \xrightarrow{\text{temples}} \text{jednosher borine}, \text{fron years } a \text{ so in the second of the sec$ $C = \{z \mid \frac{z + \overline{z}}{2} = \frac{z - \overline{z}}{2i}\} \text{ je } \frac{\int \mathcal{N} C \mathcal{N} \alpha}{\int \mathcal{N} C \mathcal{N} \alpha} \frac{\sqrt{z} \chi}{\sqrt{z}}$ $D = \{z \mid |z| \le 2 \land 0 \le \arg z \le \pi\} \text{ je } \frac{\int \mathcal{N} C \mathcal{N} \alpha}{\int \mathcal{N} C \mathcal{N} \alpha} \frac{\sqrt{z} \chi}{\sqrt{z}} \frac{2\pi g \pi c \sqrt{z} \pi}{\sqrt{z}} \frac{2\pi g \pi c \sqrt{z} \pi}{\sqrt{z}} \frac{2\pi g \pi c \sqrt{z} \pi}{\sqrt{z}}$ $E = \{z | (z-i)^3 = i\} \text{ je} \underbrace{\begin{array}{c} \{e_{in}e_{no}\} \\ \text{ jednafesteen, school} \end{array}}_{\text{jednafesteen, school}} \underbrace{\begin{array}{c} J_{ee_{in}e_{no}} \\ J_{ee_{in}e_{no}} \\ J_{ee_{in}e_{no}} \end{array}}_{\text{jednafesteen, school}} \underbrace{\begin{array}{c} J_{ee_{in}e_{no}} \\ J_{ee_{in}e_{no}} \end{array}}_{\text{jednafesteen, sc$ $G = \{z | |z - i|^3 = i\} \text{ je } \frac{ralan}{\sqrt{n}} \frac{\sqrt{n}}{\sqrt{n}}$ $H = \{z | z = -\overline{z}\} \text{ je } \frac{rela}{\sqrt{n}} \frac{\sqrt{n}}{\sqrt{n}} \frac{\sqrt{n}}{\sqrt{n}}$ \mathcal{L} Zaokružiti broj (ili brojeve) ispred jednakosti koje su tačne u skupu kompleksnih brojeva: \mathcal{L} $z\bar{z}=|z|^2$ 2) $Re(z) = \frac{1}{2}(z - |z|)$ 3) $Im(z) = \frac{1}{2}(z + |z|)$ 4) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ 5) $|z_1 + z_2| = |z_1| + |z_2|$ 6) $\overline{z} \in \mathbb{R} \Rightarrow z = \overline{z}$ 7) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ 8) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ 9) $z \neq 0 \Rightarrow z^{-1} = |z|^{-2}\overline{z}$ 1) $\arg(-13i) = -\frac{31}{2}$ 2) $\arg(6) = 0$ 3) $\arg(-9) = 3$ 4) $\arg(2i) = \frac{31}{2}$ 5) $\arg(-1+i) = \frac{332}{4}$ 6) $\arg(-1+i\sqrt{3}) = \frac{332}{4}$ $\text{Da li je } \rho = \{(1,1),(2,2),(3,3),(4,4),(5,5),(5,1),(5,2),(5,3),(5,4),(4,1),(3,1)\} \text{ re-}$
 - lacija poretka skupa $A = \{1, 2, 3, 4, 5\}$: DA NE, i ako jeste, nacrtati njen Haseov dijagram. Odrediti minimalne: δ , maksimalne: δ , najveći: f i najmanji: f element.

Neka je z=3+2i, u=1+i i w=2-i. Rotacijom tačke z oko tačke u za ugao $\frac{\pi}{2}$ dobija se tačka $\frac{2\pi}{2}$, translacijom tačke z za vektor w dobija se tačka $\frac{5+2}{2}$, a $\sqrt[3]{wuz} = \frac{\pi}{2}$

Ako je p polinom stepena 4 nad nekim poljem F i ako ima koren u tom polju, tada je p 1 uvek svodljiv 2) uvek nesvodljiv 3) nekada svodljiv a nekada nesvodljiv 4) ništa od prethodnog 5) uvek normalizovan

- \mathbb{Z}^{Q} Zaokružiti oznaku polja za koje važi da je polinom t^2+t+1 nesvodljiv nad njima. \mathbb{Q} \mathbb{R} $\mathbb{C}(\mathbb{Z}_2)$ \mathbb{Z}_3 \mathbb{Z}_3
- 29 (• Ako je p polinom stepena 2 nad poljem \mathbb{R} , tada je p nad poljem \mathbb{R} : 1) uvek svodljiv 2) uvek nesvodljiv (3) ništa od prethodnog.
- Neka je $f \in \mathbb{R}[x]$ i $f(e^{-i\frac{\pi}{6}}) = 0$. Zaokruži tačno: (a) $x e^{-i\frac{\pi}{6}} \left| f(x) \right|$ b) $x + e^{i\frac{\pi}{6}} \left| f(x) \right|$ (c) $x e^{i\frac{\pi}{6}} \left| f(x) \right|$ d) $x^2 x\sqrt{3} + 1 \left| f(x); \right|$ e) $x^2 2x\sqrt{3} + 1 \left| f(x); \right|$ f) $x^2 + x\sqrt{3} + 1 \left| f(x); \right|$ g) $x^2 x + 1 \left| f(x) \right|$
- Zaokruži tačno: 1) $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \iff R_e(z) \ge 0$ (2) $-\frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \Leftrightarrow \left(R_e(z) \ge 0 \land z \ne 0\right)$ (3) $-\frac{\pi}{2} < \arg z < \frac{\pi}{2} \Leftrightarrow R_e(z) > 0$ (4) $\arg z < 0 \Rightarrow I_m(z) \le 0$ (5) $\arg z < 0 \Leftarrow I_m(z) \le 0$
- $\Im f(\widehat{\bullet})$ Neka je $\{2,3\}$ skup svih korena polinoma $f(x)=x^3+ax^2+bx+c$ nad poljem realnih brojeva. Tada skup svih mogućnosti za a je $a \in \{$

- 4. 📦 Iza oznake svake od datih relacija u skupu {1,2,3} zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseđuje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija. (relacija "deli"): (PSA)(T) F $\rho = \{(1,1),(2,2),(3,3),(2,1)\} : \Re S \Re T F$ $\rho = \{(1,3), (1,2), (2,1)\}$: R.S.A.T.F
- Neka su $f:(0,\infty)\to (0,\infty)$ i $g:(0,\infty)\to (0,\infty)$ definisane sa $f(x)=\frac{1}{\sqrt{x}}$ i $g(x)=2^x-1$. Izračunati: 1) $f^{-1}(x) = \frac{1}{x^2}$ 2) $g^{-1}(x) = \frac{3}{\sqrt{3}} (f \circ g)(x) = \frac{\sqrt{3}}{\sqrt{3}} (f \circ g)^{-1}(x) = \int_{\partial g} (g) (g \circ g) (g \circ g$
- Zaokružiti brojeve ispred sirjektivnih funkcija: ① $f: \mathbb{R} \to \mathbb{R}, \ f(x) = -x^3$ ② $f: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}), f(x) = \arctan x$ ③ $f: \mathbb{R} \to [0, \infty), \ f(x) = x^2$ ④ $f: (0, \frac{\pi}{3}) \to (0, \sqrt{3}], \ f(x) = \operatorname{tg} x$
- \S . S Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$:

1)
$$(a')' = a + 0'$$
 (2) $a + a' = 1$

(3)
$$a \cdot 0 = 1'$$

4)
$$1 + a = 0'$$
 5) $a + a = 0'$

$$(a')' = a + 0' \qquad (2) \ a + a' = 1 \qquad (3) \ a \cdot 0 = 1' \qquad (4) \ 1 + a = 0' \qquad (5) \ a$$

$$Skup \text{ kompleksnih rešenja jednačine } x^3 = -1 \text{ je } S = \{ e^{i\frac{\pi i}{3}}, -1, e^{-i\frac{\pi i}{3}} \}.$$

- 6. Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z=\frac{\pi}{6}e^{i\frac{13\pi}{6}}$: $Re(z)=\frac{\sqrt{3}}{42}$, $Im(z)=\frac{\pi}{42}$, $|z|=\frac{\pi}{6}$, $arg(z)=\frac{1}{6}$, $arg(z)=\frac{1}{6}$, $arg(z)=\frac{\pi}{6}e^{i\frac{2\pi}{6}}$.
- $\overline{\phi}$. Sledeće kompleksne brojeve napisati u eksponencijalnom obliku, odnosno u obliku $ho e^{i arphi},
 ho \in [0,\infty), arphi \in [0,\infty)$ $.2i = 2e^{i\frac{\sqrt{3}}{2}} \qquad .1 + i = \int \widetilde{\mathcal{L}} e^{i\frac{\sqrt{3}}{2}} \qquad .2 = 2e^{i\frac{\pi}{2}} \qquad -\pi i = \int \widetilde{\mathcal{L}} e^{i\frac{\pi}{2}}$
- 🔊 Zaokružiti broj (ili brojeve) ispred struktura koje su grupe. 1) $(\mathbb{N},+)$ 2) (\mathbb{N},\cdot) 3) $(\{-1,0,1\},\cdot)$ 4) $(\mathbb{R},+)$ 5) (\mathbb{R},\cdot) 6) $((0,\infty),+)$ 7) $(\{-1,1\},\cdot)$ 8 $((0,\infty),\cdot)$
- \circlearrowleft Neka su P i Q proizvoljni nenula polinomi trećeg stepena. Tada je $dg(P+Q) \in \{\delta_i^{(n)}\}$ i $dg(PQ) \in \{6\}$.
- 10. Pri delenju polinoma $x^3 + x^2 + x + 1$ sa x + 1 nad \mathbb{R} , količnik je $X^2 + Y$, a ostatak je
- Neka su f i g funkcije definisane sa $f = \begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix}$, $g = \begin{pmatrix} a & b & c & d \\ b & d & c & a \end{pmatrix}$. Tada je $f \circ g = \begin{pmatrix} a & b & c & d \\ d & 2 & a & c \end{pmatrix}$, $f \circ g = \begin{pmatrix} a & b & c & d \\ d & 2 & a & c \end{pmatrix}$, $g^{-1} = \begin{pmatrix} a & b & c & d \\ d & a & c & d \end{pmatrix}$, $g^{-1} = \begin{pmatrix} a & b & c & d \\ d & a & c & d \end{pmatrix}$, $g^{-1} \circ f^{-1} = \begin{pmatrix} a & b & c & d \\ d & d & a & d \end{pmatrix}$, $g^{-1} \circ f^{-1} = \begin{pmatrix} a & b & c & d \\ d & d & a & d \end{pmatrix}$

 $\text{N.OZajednički koren polinoma } P(x) = x^2 - \sqrt{2}x + 1 \text{ i } Q(x) = x^2 - i \text{ je } \left(2^{\frac{1}{i} \frac{A}{i}}, \text{ a } NZD(P,Q) = \left(\sqrt{-\left(\frac{J_1}{i} + \frac{J_2}{i}\right)} \right) \right)$

q) (e) Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom prstenu (F,+,-): 1) a + bc = (a + b)(a + c) 2) (F, +) je grupa 3) (F, \cdot) je grupa Neka je $g:(0,\underline{1}]\to\mathbb{R},\ g(x)=-\sqrt{1-x^2},$ inverzna funkcija je $g^{-1}(x) = \underbrace{\sqrt{\gamma - \chi^{-1}}}_{, \sigma^{-1}}, g^{-1}: A \to \mathbb{R}, A = \underbrace{(-\gamma, \sigma)}_{, \sigma^{-1}}$ Neka je funkcija $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$ definisana sa $f(x) = \frac{x}{x-2}$. Tada je $f^{-1}(x) = \frac{\chi_{\chi_{-1}}}{\chi_{-1}}$ Zaokruži brojeve ispred tačnih iskaza. 1) arg $z>0 \Leftrightarrow I_m(z)>0$ 2) arg $z<0 \Leftrightarrow I_m(z)<0$ 3) arg $z<0 \Rightarrow I_m(z)\leq 0$ 4) $-\frac{\pi}{2}<\arg z<\frac{\pi}{2} \Rightarrow R_e(z)>0$ 5) arg $z<0 \Leftrightarrow I_m(z)<0$ $\text{Neka je A najveći podskup od } \mathbb{R} \text{ a B najmanji podskup skupa } \mathbb{R} \text{ za koje je } f: A \to B \text{ definisana sa}$ $f(x) = \ln(x^2 + e). \text{ Tada je } A = \underbrace{\mathbb{R}}_{-1}, \ f(\underbrace{0}_{-1}) = 1, \ f(\underbrace{-1}_{-1}) = 0 \text{ i } B = \underbrace{\mathbb{R}}_{-1}^{-1}, \underbrace{-1}_{-1}^{-1}, a \ f: A \to B \text{ je}$ a) bijektivna 6) sirjektivna ali ne injektivna g) injektivna ali ne sirjektivna d) niti injektivna niti sirjek-Neka je $z=3+2i,\,u=1+i$ i w=2-i. Rotacijom tačke zoko tačke u za ugao $\frac{\pi}{2}$ dobija se tačka _____, translacijom tačke z za vektor w dobija se tačka $\underline{5+i}$ _____, a $\not = \underline{vuz} = \underline{-\frac{\pi}{2}}$ 76 . () Neka je A najveći podskup od $\mathbb R$
a B najmanji podskup skupa $\mathbb R$ za koje je $f:A\to B$ definisana sa $f(x) = \arccos(x+1)$. Tada je $A = \underbrace{\text{Fig. 0}}_{0}$, $f(\underbrace{-\frac{1}{2}}_{0}) = \frac{3\pi}{4}$, $f(\underbrace{-\frac{1}{2}}_{0}) = \frac{\pi}{4}$ i $B = \underbrace{-\frac{\pi}{4}}_{0}$, a $f: A \to B$ (1) bijektivna 2) sirjektivna ali ne injektivna 3) injektivna ali ne sirjektivna 4) niti injektivna niti sirjektivna Funkcija $f:(-\pi,-\frac{\pi}{4}) \longrightarrow (-1,\frac{1}{\sqrt{2}})$ definisana sa $f(x)=\cos x$ je: 1) sirjektivna i nije injektivna 2) injektivna i nije sirjektivna ž3) nije injektivna i nije sirjektivna 4) bijektivna \uparrow Funkcija $f:(\frac{\pi}{4},\frac{3\pi}{4})\longrightarrow (0,1]$ definisana sa $f(x)=\sin x$ je: 1) sirjektivna i nije injektivna (2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna Funkcija $f: (\frac{\pi}{6}, \frac{5\pi}{4}) \setminus \{\frac{\pi}{2}\} \longrightarrow \mathbb{R}$ definisana sa $f(x) = \operatorname{tg} x$ je: 1) sirjektivna i nije injektivna 2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna $\mathbb{C} C$. • Navesti geometrijsku interpretaciju skupova A,B,C,D,E i sledećih kompleksnih funkcija $f:\mathbb{C} \to \mathbb{C}$, $g:\mathbb{C}\to\mathbb{C},\ h:\mathbb{C}\to\mathbb{C}$ i $s:\mathbb{C}\to\mathbb{C},$ kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f i g. $f(z) = \overline{z}e^{i\pi}$ je Ona zibelnja u odvoru na Janon $g(z) = -z \text{ je} \frac{\int \varphi \, h \left(v \, a \right) \, dv \, dv \, dv}{\int \varphi \, h \left(v \, a \right) \, dv \, dv \, dv \, dv} \frac{\int \varphi \, h \left(v \, a \right) \, dv \, dv \, dv}{\int \varphi \, h \left(v \, a \right) \, dv \, dv \, dv} \frac{\int \varphi \, h \left(v \, a \right) \, dv \, dv \, dv}{\int \varphi \, dv \, dv \, dv} \frac{\int \varphi \, h \left(v \, a \right) \, dv \, dv}{\int \varphi \, dv \, dv \, dv} \frac{\partial \varphi \, dv \, dv}{\partial v \, dv} \frac{\partial \varphi \, dv}{\partial v \, dv$ $A = \{z | z^{11} = i\} \text{ je } \frac{\left(e^{\mu e ro} + rovi \ln e q + M - long le - rovi \ln e v + O\right)}{B = \{z | |z^{11}| = |i|\} \text{ je } \frac{\mathcal{N}(e, q)}{\mathcal{N}(e, q)}$ $C = \{z | z = -\overline{z}\}$ je <u>(ela)</u>m - o a $D = \{z \mid \arg z = \overline{\arg(-z)}\} \text{ je } \frac{ranan}{2} \frac{2hr}{r}$ Neka je $\{1,0\}$ skup svih korena polinoma $f(x)=x^3+ax^2+bx+c$, gde su $a,b,c\in\mathbb{R}$. Tada skup svih mogućnosti za a je $a \in \{-2, -7 \}$, skup svih mogućnosti za b je $b \in \{0, 1 \}$ i skup svih mogućnosti za c

 $je c \in \{ 0 \}$.

Neka je $A=\{1,2,3\}$ i $B=\{1,2\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f\nearrow$ označava rastuću funkciju f i $f\nearrow$ označava neopadajuću funkciju f:

$$\left| \left\{ f | f : A \longrightarrow B \right\} \right| = \underbrace{\mathcal{G}}_{,} \left| \left\{ f | f : A \xrightarrow{1-1} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \rightarrow B \land f \nearrow \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : B \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \rightarrow A \land f \nearrow \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{na} B \right\} \right| = \underbrace{\mathcal{O}}_{,} \left| \left\{ f | f : A \xrightarrow{$$

Zaokružiti brojeve ispred jednakosti koje su tačne u skupu kompleksnih brojeva: (1) arg $z_1 = \arg z_2 \Leftrightarrow \frac{z_1}{|z_1|} = \frac{z_2}{|z_2|}$

2)
$$\sqrt{z\overline{z}} = |z|$$
 3) $Re(z) = \frac{1}{2}(z - |z|)$ 1) $Im(z) = \frac{1}{2}(z + |z|)$ 5) $\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$ 6) $|-z_1 - z_2| = |z_1| + |z_2|$ 7) $\overline{z} \in \mathbb{R} \Rightarrow z = \overline{z}$ 8) $\overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2$ 9) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ 1) $|z| = 1 \Rightarrow z^{-1} = \overline{z}$

Ako je $P(x) = ax^2 + bx + c$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada stepen dg(P) polinoma P je:

A) dg(P) = 2, $dg(P) \in \{1,2\}$, $dg(P) \in \{0,2\}$, $dg(P) \in \{0,1,2\}$

Zaokružiti brojeve ispred struktura koje su prsteni ali nisu polja:
$$\widehat{\mathbb{Q}}$$
 ($\mathbb{Z},+,\cdot$) ($\{9k|k\in\mathbb{Z}\},+,\cdot$) ($\{9k|k\in\mathbb{Z}\},+,\cdot$) ($\mathbb{Z},+,\cdot$) (\mathbb

Ako je p polinom stepena 4 nad nekim poljem F i ako ima tačno jedan koren u tom polju, tada je p:

uvek svodljiv 2) uvek nesvodljiv 3) nekada svodljiv a nekada nesvodljiv 4) ništa od prethodnog 5) uvek normalizovan

• Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri
$$\mathcal{B}=(\{0,1\},+,\cdot,',0,1)$$
.

(1) $xx=x+x$ (2) $xy=x+y$ (3) $xx'=(x+1)'$ (4) $xy=1$ \Rightarrow $x=1$ (5) $xy=0$ \Rightarrow $(x=0 \lor y=0)$ (6) $(x=0 \lor y=0)$ \Rightarrow $xy=0$ (7) $x=xy+xy'$ (8) $(\forall x \in B)(\exists y \in B)$ $x+y=1$ \land $xy=0$

Zaokružiti asocijativno komutativne grupoide sa neutralnim elementom, koji nisu grupe: $\underbrace{1}(\{z \in \mathbb{C} | Im(z) = Re(z)\}, +) \underbrace{2}(\{f | f : \mathbb{R} \to \mathbb{R}\}, \circ) \underbrace{3}(\mathbb{N} \cup \{0\}, +) \underbrace{4}(\mathbb{Z}, \cdot) \underbrace{5}(\{7k | k \in \mathbb{Z}\}, \cdot) \underbrace{6}(\mathbb{R}[x], \cdot) \underbrace{5}(\{7k | k \in \mathbb{Z}\}, \cdot) \underbrace{6}(\mathbb{R}[x], \cdot) \underbrace{6$

 $\mathbb{Z}^{\mathcal{O}}$ Zaokružiti oznaku polja za koje važi da je polinom t^2+2t+1 svodljiv nad njima. $\mathbb{Q}\mathbb{R}\mathbb{Z}_2\mathbb{Z}_3\mathbb{Z}_3\mathbb{Z}_5$

74. Neka je
$$f \in \mathbb{R}[x]$$
 j $f(\frac{1+i\sqrt{3}}{2}) = 0$. Zaokruži tačno: 1) $x^2 + x + 1 \mid f(x)$; 2) $x^2 + x\sqrt{3} + 1 \mid f(x)$; 3) $x - e^{-i\frac{\pi}{3}} \mid f(x)$ 4) $/x - e^{i\frac{\pi}{3}} \mid f(x)$ 5) $x - e^{i|\frac{\pi}{3}|} \mid f(x)$ 6 $x^2 - x + 1 \mid f(x)$; 7) $x^2 - x\sqrt{3} + 1 \mid f(x)$

Ako je
$$z \in \mathbb{C}$$
 tada: 1 $\arg z + \arg(-\overline{z}) \in \{-\pi, \pi\}$ 2 $\arg z = -\arg \overline{z}$ 3 $|z| = |\overline{z}|$ 4 $|z| = \overline{z}$ 5

KOLOKVIJUM 1, PRIMER 6

 $\exists, (\bullet)$ Neka su $f: (0,1) \rightarrow (0,1)$ i $g: (0,1) \rightarrow (0,1)$ definisane sa $f(x) = \sqrt{1-x^2}$ i g(x) = -x+1. Izračunati:

1)
$$f^{-1}(x) = \int_{1+x^{-1}}^{1+x^{-1}} 2 g^{-1}(x) = \int_{1+x^{-1}}^{1+x^{-1}} 3 g^{-1}(x) = \int_{1+x^{-1}}^{1+x^{-1}} 4 g^{-1}(x) = \int_{1+x^{-1}}^{1+x^{-1}} 5 g^{-1}(x) = \int_{1+x^{-1}}^{1+x^{-1}} (1+x) g^{-1}(x) = \int_{1+x^{-1}}^{1+x^{-1}} (1+x)$$

Bijektivne funkcije su: 1) $f: \mathbb{R}^+ \to \mathbb{R}^+$, $f(x) = x^2$ 2) $f: [-1,1] \to [0,\pi]$, $f(x) = \arccos x$ $f: [\pi, \frac{3\pi}{2}] \to [-1,0]$, $f(x) = \cos x$ $f: (1,\infty) \to [0,\infty)$, $f(x) = \ln x$

 Σ Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$:

$$(a')' = a + 1'$$

$$(a')$$

Skup kompleksnih rešenja jednačine $x^4=1$ je $S=\{$

- $\begin{array}{c} \text{($\phi$)$Sledeće kompleksne brojeve napisati u eksponencijalnom obliku, tj. u obliku $\rho e^{i\varphi}$, $\rho \in [0,\infty)$, $\varphi \in (-\pi,\pi]$:} \\ -2^2 = \Psi \, \ell^{\frac{127}{3}} \, , (\sqrt{2i}\,)^2 = \frac{1}{2} \, \ell^{\frac{127}{3}} \, , \sqrt{(2i)^2} \, \stackrel{?}{=} \, \ell^{\frac{127}{3}} \, \stackrel{?}{=} \, \ell^{\frac{127}{3}} \, \stackrel{?}{=} \, \ell^{\frac{127}{3}} \, , 3\pi = \ell^{\frac{127}{3}} \, -2\pi i = \ell^{\frac{127}{3}} \, \stackrel{?}{=} \, \ell^{\frac{$ Zaokružiti broj (ili brojeve) ispred struktura koje su asocijativno komutativni grupoidi ali nisu grupe. (1) $(\mathbb{N},+)$ (2) (\mathbb{N},\cdot) (3) $(\{-1,0,1\},\cdot)$ (4) $(\mathbb{R},+)$ (5) (\mathbb{R},\cdot) (6) $((0,\infty),+)$ (7) $(\{-1,1\},\cdot)$ (8) $((0,\infty),\cdot)$ • Neka su P i Q proizvoljni nenula polinomi nultog stepena. Tada je $dg(P+Q) \in \{ \bigcirc \}$ i $dg(PQ) \in \{ \cap \}$. lacktrianglePri delenju polinoma x sa x+1 nad \mathbb{R} , količnik je ______, a ostatak je ______ Neka su fi g funkcije definisane sa $f=\begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix}, \ g=\begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix}$. Tada je $f^{-1}=\begin{pmatrix} a & b & c & d \\ d & c & b & c & d \end{pmatrix}, \ g^{-1}=\begin{pmatrix} a & b & c & d \\ d & c & d & c & b \end{pmatrix}, \ (f\circ g)^{-1}=\begin{pmatrix} a & b & c & d \\ d & c & d & c & b \end{pmatrix}, \ (f\circ g)^{-1}=\begin{pmatrix} a & b & c & d \\ d & c & d & c & b \end{pmatrix}, \ (f\circ g)^{-1}=\begin{pmatrix} a & b & c & d \\ d & c & d & c & b \end{pmatrix}$ $\gamma\gamma$ (\bullet Iza oznake svake od datih relacija u skupu $\mathbb R$ zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija. $\begin{array}{l} \rho = \{(x,\sqrt{1-x^2})|x\in(0,1)\}: \ \mathsf{R} \text{ $(0,1)$} \ \mathsf{R} \text{ $(0,1)$ $\sqrt{1+(1+x^2-1)^2}$ Zajednički koren polinoma $P(x)=x^2-\sqrt{2}x+1$ i $Q(x)=x^2+i$ je $\sqrt{1+(1+x^2-1)^2}$, a $NZD(P,Q)=-\sqrt{1+(1+x^2-1)^2}$ Q_{AA} . (a) Zajednički koren polinoma $P(x)=x^2+rac{1}{2}-irac{\sqrt{3}}{2}$ i $Q(x)=x^3+1$ je $C^{rac{3}{3}}$, a $NZD(P,Q)=\sqrt{1+irac{3}{2}}$ 1) a + bc = (a + b)(a + c) (2) (F, +) je grupa (3) (F, \cdot) je grupa (4) operacija + je distributivna prema · (5) $ab = 0 \Rightarrow a = 0 \lor b = 0$ (6) $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ (7) $a \cdot 0 = 0$ (8) $a \cdot (-a) = -a^2$ $(9)^{a} + (-a)^{b} = 0$ Neka je $g:[0,1)\to\mathbb{R},\ g(x)=\sqrt{1-x^2},$ inverzna funkcija je $g^{-1}(x)=\sqrt{2-x^2},\ g^{-1}:A\to\mathbb{R},\ A=\underline{\left(\begin{smallmatrix} v&\gamma\end{smallmatrix}\right)}$ Neka je funkcija $f:(-\infty,0]\to [0,\infty)$ definisana sa $f(x)=x^2$. Tada je $f^{-1}(x)=-\sqrt{\chi}$ Zaokruži brojeve ispred tačnih iskaza. (1) arg $z \in (0,\pi) \Leftrightarrow I_m(z) > 0$ (2) arg $z < 0 \Rightarrow I_m(z) \le 0$ (3) arg $z < 0 \Leftrightarrow I_m(z) \le 0$ (5) $0 < \arg z < \frac{\pi}{2} \Rightarrow I_m(z) > 0$ \mathcal{A} \mathscr{F} • Neka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je $f:A \to B$ definisana sa $f(x) = -\sqrt{x+1}$. Tada je $A = [-2, \omega)$, f(0) = -1, f(-2) = 0 i $B = (-2, \omega)$, a $f: A \to B$ je: (1) bijektivna 2) sirjektivna ali ne injektivna 3) injektivna ali ne sirjektivna 4) ni injektivna ni sirjektivna (19) Koje od navedenih struktura su asocijativni grupoidi koji nisu grupe: $\text{ 1)} \left(\left\{ f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = k^2 x, k \in \mathbb{R} \right\}, + \right) \text{ 2)} \left(\left\{ f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = k x, k \in \mathbb{R} \right\}, + \right)$ $\widehat{\textbf{3}}) \left(\{ f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = kx, k \in \mathbb{R} \}, \circ \right) \quad \widehat{\textbf{M}} \left(\{ f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = k^2x, k \in \mathbb{R} \}, \circ \right)$ $f(\{f_k:\mathbb{R} o\mathbb{R}ig|f_k(x)=kx,k\in\mathbb{R}^+\},\circig)$ Neka su z, y, w kompleksni brojevi. Tada rotacijom tačke z oko tačke u za ugao $\frac{\pi}{2}$ dobija se tačka (3.4) e, translacijom tačke z za vektor w dobija se tačka (3.5) . , a (3.2) (3.4) $\gamma \cap (\bullet)$ Neka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je f:A o B definisana sa \cdot $f(x) = \operatorname{arctg}(x-2)$. Tada je $A = \frac{\widehat{\mathbb{R}}}{1}$, $f(1) = -\frac{\pi}{4}$, f(2) = 0 i $B = \frac{\widehat{\mathbb{R}} \cdot \widehat{\mathbb{R}}}{1}$, a $f: A \to B$ je: (1) bijektivna 2) sirjektivna ali ne injektivna 3) injektivna ali ne sirjektivna 4) niti injektivna niti sirjektivna \bigcirc Funkcija $f:(0,\frac{5\pi}{6})\longrightarrow (-\frac{9}{10},1)$ definisana sa $f(x)=\cos x$ je: 1) sirjektivna i nije injektivna
 - 12

Funkcija $f:(-\frac{2\pi}{3},-\frac{\pi}{6})\longrightarrow [-1,-\frac{1}{3}]$ definisana sa $f(x)=\sin x$ je: 1) sirjektivna i nije injektivna

(2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna

injektivna i nije sirjektivna (3) nije injektivna i nije sirjektivna 4) bijektivna

2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna $_{\gamma,\zeta}$ (• Navesti geometrijsku interpretaciju skupova A,B,C,D,E i sledećih kompleksnih funkcija $f:\mathbb{C}\to\mathbb{C},$ $g:\mathbb{C} \to \mathbb{C},\ h:\mathbb{C} \to \mathbb{C}$ i $s:\mathbb{C} \to \mathbb{C},$ kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f i g. $f(z) = \overline{z}e^{-i\pi}$ je <u>Abolika zaste</u> $\frac{1}{2\pi i} \int_{-1}^{\infty} e^{-i\pi z} dz$ $q(z) = \overline{-z}$ je $\underline{\delta} h c$ $h(z) = I_m(z)$ je ___\^ f 0 \ \delta' \ \frac{1}{2} $a_{q' \in A} = z \cdot \frac{i - \sqrt{3}}{2\sqrt{2}} \text{ je } \underline{\hspace{1cm}}$ $B = \{z | |z^3| = -1\} \text{ je } \underbrace{\qquad \qquad }_{t \in \mathcal{T}_C} \underbrace{\downarrow_t}_{t_t}$ $C = \{z | z = \overline{-\overline{z}}\}$ je ____ $D = \{z | \arg(-z) = \overline{\arg(-z)}\} \text{ je } \underline{ce^{f}a}$ $E = \{z | I_m(z) = iR_e(z)\}$ je $\frac{\text{door of in } d \text{ in }}{\text{or it }}$ Zaokružiti slova ispred tačnih iskaza: a) $A \subset B$ b) $C \subseteq D$ c) $D \subseteq C$ d) $B \subseteq D$ e) $D \subseteq E$ Neka je $\{1, i\}$ skup nekih korena polinoma $f(x) = x^3 + ax^2 + bx + c$, gde su $a, b, c \in \mathbb{R}$. Tada je $a \in \{1, i\}$ skup nekih korena polinoma $f(x) = x^3 + ax^2 + bx + c$, gde su $a, b, c \in \mathbb{R}$. Tada je $a \in \{1, i\}$ skup nekih korena polinoma $a \in \{1, i\}$ skup nekih korena polinoma skup nekih korena polin γh Neka je $A = \{1,2,3\}$ i $B = \{1,2,3,4\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f \nearrow$ označava neopadajuću funkciju $f\colon$ $\left|\{f|f:A\longrightarrow B\}\right|=\underbrace{64},\,\left|\{f|f:A\xrightarrow{1-1}B\}\right|=\underbrace{12},\,\left|\{f|f:A\to B\land f\nearrow\}\right|=\underbrace{4},\,\left|\{f|f:B\xrightarrow{na}B\}\right|=\underbrace{24},\,\left|\{f|f:B\xrightarrow{na}B\right|=\underbrace{24},\,\left|\{f|f:B|f:B\Big|=\underbrace{24},\,\left|\{f|f:B|f:B\Big|=\underbrace{24},\,\left|\{f|f:B|f:B\Big|=\underbrace{24},\,\left|\{f|f:B\Big|=\underbrace{24},\,\left|\{f|f:B\Big|=\underbrace{2$ $\left|\{f|f:B\to A\}\right|=\underbrace{\lozenge{1}},\,\left|\{f|f:A\to A\,\wedge\,f\,\nearrow\}\right|=\underbrace{1},\,\left|\{f|f:B\to A\,\wedge\,f\,\nearrow\}\right|=\underbrace{1},\,\left|\{f|f:A\stackrel{na}{\to}B\}\right|=\underbrace{Q}.$ (9) Ako je $P(x) = ax^3 + bx + c$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada stepen dg(P) polinoma P je: 1) dg(P) = 3, (2) $dg(P) \in \{1,3\}$, (3) $dg(P) \in \{0,3\}$, (4) $dg(P) \in \{0,1,3\}$, 5) $dg(P) \in \{0,1,2,3\}$ \mathfrak{Z}_0 Zaokružiti brojeve ispred struktura koje su domeni integriteta ali nisu polja: (1) $(\mathbb{Z},+,\cdot)$ 2) $(\{9k|k\in\mathbb{Z}\},+,\cdot)$ 3) $(\mathbb{Z}_9,+,\cdot)$ 4) $(\mathbb{Q},+,\cdot)$ 5) $(\mathbb{Z}_3,+,\cdot)$ 6) $(\mathbb{N},+,\cdot)$ 7) $(\mathbb{C},+,\cdot)$ (8) $(\mathbb{R}[t],+,\cdot)$ 9) $(\mathbb{R}^+,+,\cdot)$ 34 (a) Ako je p polinom stepena 4 nad nekim poljem F i ako nema koren u tom polju, tada je p: 1) uvek svodljiv 2) uvek nesvodljiv (3) nekada svodljiv a nekada nesvodljiv 4) ništa od prethodnog 5) uvek normalizovan New Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B} = (\{0,1\},+,\cdot,',0,1)$. (1) xx = x + x (2) xy = x + y (3) xx' = (x+1)' (4) $xy = 1 \Rightarrow x = 1$ (5) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ (6) $(x = 0 \lor y = 0) \Rightarrow xy = 0$ (7) x = xy + xy' (8) $(\forall x \in B)(\exists y \in B) \ x + y = 1 \land xy = 0$ $\mathfrak{I}^{\mathfrak{I}}$ () Zaokružiti asocijativno komutativne grupoide sa neutralnim elementom, koji nisu grupe: (1) $(\mathbb{R}[x],\cdot)$ $2)'(\{z \in \mathbb{C}|Im(z) = Re(z)\}, +) \quad 3)'(\{f|f: \mathbb{R} \to \mathbb{R}\}, \circ) \quad 4) \quad (\mathbb{N} \cup \{0\}, +) \quad 5) \quad (\mathbb{Z}, \cdot) \quad 6)'(\{7k|k \in \mathbb{Z}\}, \cdot)$ $5)'(\mathbb{Z}\setminus\{0\},\cdot) -6)'(\mathbb{Q}\setminus\{0\},+) -7)'((0,1),\cdot) -8)'(\{-1,1\},\cdot) -9)'(\{-1,0,1\},\cdot) -10)'(\mathbb{Q}\setminus\{0\},\cdot)$ $^{3.5}$ (•)Zaokružiti oznaku polja za koje važi da je polinom t^2+2t+1 svodljiv nad njima. (\mathbb{Q} \ \mathbb{R})(\mathbb{C} \mathbb{Z}_2 \mathbb{Z}_3 \mathbb{Z}_5 Neka je $f \in \mathbb{R}[x]$ i $f(e^{i\pi}) = 0$. Tada važi: 1) $x - 1 \mid f(x)$; (2) $x + 1 \mid f(x)$; 3) $x^2 + 1 \mid f(x)$; 4) $x^2 - 1 \mid f(x)$; 5) $x - e^{-i\pi} \mid f(x)$ (6) $x - e^{i\pi} \mid f(x)$

Koje jednakosti su tačne za sve kompleksne brojeve z za koje su i definisane: $\widehat{1}$ $|\arg z + \arg(-\overline{z})| = \pi$ $\widehat{2}$ $|z\overline{z}| = |z|^2$ $|z|^2$ $|z|^2$

KOLOKVIJUM 1, PRIMER 7

- η . Neka je funkcija $f: \mathbb{R} \to (0, \infty)$ definisana sa $f(x) = e^{3-2x}$. Tada je:
 - 1) $f^{-1}(x) = e^{\frac{3-x}{2}}$ 2) $f^{-1}(x) = e^{3-2x}$ 3) $f^{-1}(x) = \ln x$ 4) $f^{-1}(x) = \frac{3-\ln x}{2}$ 5) $f^{-1}(x) = \ln(3-2x)$
 - 6) $f^{-1}(x) = \log_{3-2x} x$ 7) $f^{-1}(x) = \ln \sqrt{x^{-1}e^3}$
- Neka su $f:(0,\infty)\to (0,\infty)$ i $g:(0,\infty)\to (0,\infty)$ definisane sa $f(x)=e^x-1$ i $g(x)=\frac{1}{x^2}$. Izračunati:
 - 1) $f^{-1}(x) = \int_{\mathbb{R}^{N-1}} (0, \infty) = \frac{\sqrt{3}}{\sqrt{3}} (0, \infty) \cdot (0, \infty) = \frac{\sqrt{3}}{\sqrt{3}} (0, \infty) = \frac{\sqrt{3}}{\sqrt{3}}$
- Injektivne funkcije su: 1) $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = x^{\frac{2}{2}}$ $f: [-1,1] \to [0,2\pi], f(x) = \arccos x$ 3) $f: [-\frac{\pi}{3}, \frac{\pi}{4}] \to \mathbb{R}, \ f(x) = \cos x$ 4) $f: [-3,3] \to [0,9], \ f(x) = x^2$ 5) $f: (1,\infty) \to [0,\infty), \ f(x) = \ln x^2$
- \mathbb{Q}_{+} Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$:
 - $(a')'0' = a + 1' (a) a + a' = 1' (a) a \cdot 0' = (1')' (a) 1 + a = 0' (b) ab = (a' + b')'$
- \circ Skup S svih kompleksnih rešenja jednačine $x^4=0$ je $S=\{$
- $R_{e}(z) = -\frac{1}{3} \quad , I_{m}(z) = \frac{\sqrt{3}}{7} \quad , |z| = 1 \quad , \arg(z) = \frac{2\sqrt{3}}{7} \quad , \overline{z} = e^{\sqrt{3}} \quad , z^{2} = e^{\sqrt{3}} \quad .$
- Sledeće kompleksne brojeve napisati u eksponencijalnom obliku, odnosno u obliku $\rho e^{i\varphi}, \rho \in [0, \infty), \varphi \in (-\pi, \pi]:$ $-2^{-2} = \frac{4}{\zeta} e^{i\widetilde{\mathcal{J}}_{i}} \quad , (\sqrt{-2i})^{2} = \chi e^{i\widetilde{\mathcal{J}}_{i}} \quad , \sqrt{(-2i)^{2}} = \chi e^{i\widetilde{\mathcal{J}}_{i}} \cdot (-2 2i) = \chi \int_{\mathbb{R}^{2}} e^{i\widetilde{\mathcal{J}}_{i}} \cdot (-5\pi 5\pi 5\pi e^{i\widetilde{\mathcal{J}}_{i}}) = \chi e^{i\widetilde{\mathcal{J}}_{i}} \cdot (-2\pi 2i) = \chi \int_{\mathbb{R}^{2}} e^{i\widetilde{\mathcal{J}}_{i}} \cdot (-2\pi 2i) = \chi \int_{\mathbb$
- Zaokružiti brojeve ispred struktura koje su grupe. Z) $(\{-1,1\},+)$ Z) $(\{z\in\mathbb{C}|Im(z)=Re(z)\},+)$ Z) $(\{f|f:\mathbb{R}\to\mathbb{R}\},\circ)$ Zi) $(\{f|f:\mathbb{R}\to\mathbb{R}\},\circ)$ Zi) Zi) Zi) Zi) Zi) Zi) Zi)
- Ako su P i $Q \neq -P$ polinomi i dg(P) = dg(Q) = 3, tada je $dg(PQ) \in \{ \underline{\quad 6 \quad } \} \text{ i } dg(P+Q) \in \{ \underline{\quad d , ? > 3 \quad } \}$
- Za polinome $p(x)=(x+1)^2x(x-2)^6$ i $q(x)=x^5(x+1)(x-5)^2(x-1)^3$ nad poljem realnih brojeva izračunati: $NZD(p,q)=(x+1)\chi$
 - ****************
- $\begin{array}{c} \text{\ref{fig:partial points}} & \text{\ref{fi$

(A, ρ) :	
3 1	٠.
5/25	
4 1	•

(B,θ) :	
o o	٠, ٨,

	(A, ρ)	(B, θ)
minimalni	А, Ч	10 10
maksimalni	5,4	8.3
najveći	3.	
næjmanji	/	

- Iza oznake svake od datih relacija u skupu R zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija.
 - $\rho = \{(x, \sqrt{1-x^2}) | x \in (-1, \underline{0})\} : \mathsf{RS} \ \ \mathsf{A} \ \mathsf{TF} \qquad \rho = \{(x, e^x) | x \in \mathbb{R}\} : \mathsf{RS} \ \ \mathsf{A} \ \mathsf{TF}$
 - $\rho = \{(x, \ln x) | x \in \mathbb{R}\} : \operatorname{RS}(\widehat{\mathsf{F}}) \qquad \rho = \{(x, -\frac{1}{x}) | x > 0\} : \operatorname{RS}(\widehat{\mathsf{A}}) \cap \widehat{\mathsf{F}}\}$
 - $\rho = \{(x, -\sqrt{1-x^2}) | x \in (-1,0)\} : \mathsf{R}(\widehat{S}) \mathsf{A} \mathsf{T}(\widehat{F})$
- Ako je $f: A \to B$ sirjektivna funkcija i $b \in B$, tada broj rešenja po $x \in A$ jednačine f(x) = b može biti (zaokruži) 0 (1)(2)(3) (8)

```
\emptyset Ako je f:A\to B injektivna funkcija i b\in B, tada broj rešenja po x\in A jednačine f(x)=b može biti (zaokruži) 0 0 0 0 0 0 0
```

Zaokružiti brojeve ispred tvrđenja koja su tačna u polju $(F, +, \cdot)$, a nisu u domenu integriteta. L) $a \cdot 0 = 0$ 2) a + bc = (a + b)(a + c) 3) (F, +) je grupa 4) $(F \setminus \{0\}, \cdot)$ je grupa 5) operacija + je distributivna prema 6) $ab = 0 \Rightarrow a = 0 \lor b = 0$ 7) $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ 8) $(\forall a \in F \setminus \{0\}) (\exists b \in F) ab = 1$ 9) a + (-a) = 0

Neka je
$$g:(0,1]\to\mathbb{R},\ g(x)=-\sqrt{1-x^2},$$
 inverzna funkcija je $g^{-1}(x)=\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}},\ g^{-1}:A\to\mathbb{R},\ A=\frac{(-1-a)^2}{\sqrt{1-x^2}}$

7 § Neka je funkcija $f:(-\infty,-\frac{1}{2}]\to\mathbb{R}$ definisana sa $f(x)=x^2+x+1$. Tada $f^{-1}:A\to\mathbb{R},\ A=\underbrace{\left[\frac{3}{4},x^{p^2}\right]}$

Zaokruži brojeve ispred tačnih iskaza. Y arg
$$z \in (0, \pi] \Leftrightarrow I_m(z) > 0$$
 arg $z \leq 0 \Rightarrow I_m(z) \leq 0$ $\Rightarrow I_m(z) \leq 0$

Komutativne grupe su:

2x

) ∈

eva

niti

1)
$$\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big|f_k(x)=k^2x,k\in\mathbb{R}\},+\right)$$
 2) $\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big|f_k(x)=kx,k\in\mathbb{R}\},+\right)$
3) $\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big|f_k(x)=kx,k\in\mathbb{R}\},\circ\right)$ 4) $\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big|f_k(x)=k^2x,k\in\mathbb{R}\},\circ\right)$
5) $\left(\{f\Big|f:\mathbb{R}\overset{1-1}{\to}\mathbb{R}\},\circ\right)$

Neka su u, z, w kompleksní brojevi. Tada rotacijom tačke w oko tačke z za ugao $-\frac{\pi}{2}$ dobija se tačka $\frac{2+(4'-3)}{2}e^{-\frac{\pi}{2}}$ translacijom tačke z za vektor w dobija se tačka $\frac{2+w}{2}$, a $\frac{2}{3}wzu = \frac{2}{3}\frac{(w-2)}{2}$.

Navesti geometrijsku interpretaciju sledećih kompleksnih funkcija
$$f: \mathbb{C} \to \mathbb{C}, g: \mathbb{C} \to \mathbb{C}, h: \mathbb{C} \setminus \{0\} \to \mathbb{C}$$
 i $s: \mathbb{C} \to \mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f,g,h i s .

$$f(z) = \overline{z}e^{-i\frac{\pi}{2}} \text{ je} \frac{O \log_{\mathbb{C}} \left(\frac{2i \ln \sqrt{1 + \log_{\mathbb{C}} \left(\frac{1}{2} \log_{\mathbb{C}} \left(\frac{1}{2$$

Neka je $\{1,3\}$ skup svih korena polinoma $f(x)=x^3+ax^2+bx+c$, gde su $a,b,c\in\mathbb{R}$. Tada je $a\in\{-1,-5\}$, $b\in\{-2,-3\}$, $c\in\{-3,-3\}$

Neka je $A = \{1, 2, 3\}$ i $B = \{1, 2\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f \nearrow$ označava neopadajuću funkciju f:

$$\left| \{ f | f : A \longrightarrow B \} \right| = \underbrace{\frac{9}{9}}, \ \left| \{ f | f : A \xrightarrow{1-1} B \} \right| = \underbrace{9}, \ \left| \{ f | f : A \to B \land f \nearrow \} \right| = \underbrace{0}, \ \left| \{ f | f : B \xrightarrow{na} B \} \right| = \underbrace{2}, \\ \left| \{ f | f : B \to A \} \right| = \underbrace{\frac{9}{9}}, \ \left| \{ f | f : A \to A \land f \nearrow \} \right| = \underbrace{4}, \ \left| \{ f | f : B \to A \land f \nearrow \} \right| = \underbrace{6}, \ \left| \{ f | f : A \xrightarrow{na} B \} \right| = \underbrace{6}.$$

1 Skupu kompleksnih brojeva je: 1 $\sqrt{z\overline{z}} = \pm |z|$ 2 $z = e^{i\varphi} \Rightarrow z^{-1} = \overline{z}$ 3 $|z_1z_2| = |z_1||z_2|$ 4 $R_e(z) = \frac{1}{2}(z+\overline{z})$ 5 $\overline{z_1-z_2} = \overline{z}_1-\overline{z}_2$ 6 $|z| = 1 \Leftarrow z^{-1} = \overline{z}$ 7 $|-z_1-z_2| = |z_1|+|z_2|$ 8 $|z_1|z_2| = z_2|z_1| \Leftarrow \arg z_1 = \arg z_2$

(a) Ako je $P(x) = ax^4 + bx^2 + cx$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada stepen dg(P) polinoma P je; (b) dg(P) = 4, (c) $dg(P) \in \{0,4\}$, (d) $dg(P) \in \{1,2,4\}$, (e) $dg(P) \in \{0,1,2,4\}$

Zaokružiti brojeve ispred struktura koje su prsteni ali nisu domeni integriteta:

1) $(\mathbb{Z}, +, \cdot)$ (2) $(\{9k | k \in \mathbb{Z}\}, +, \cdot)$ (3) $(\mathbb{Z}_9, +, \cdot)$ (4) $(\mathbb{Q}, +, \cdot)$ (5) $(\mathbb{Z}_3, +, \cdot)$ (6) $(\mathbb{N}, +, \cdot)$ (7) $(\mathbb{C}, +, \cdot)$ (8) $(\mathbb{R}[t], +, \cdot)$ (9) $(\mathbb{R}^+, +, \cdot)$

Ako je p polinom stepena 3 nad nekim poljem F i ako nema koren u tom polju, tada je p: 1) uvek svodljiv 2) uvek nesvodljiv 3) nekada svodljiv a nekada nesvodljiv 4) ništa od prethodnog 5) uvek normalizovan

iti

- Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$. (xy)' = x + y (xy)' = (x + 1)' (xy)' = (x + 1)'(5) $xy \neq 0 \Rightarrow (x \neq 0 \land y \neq 0)$ (6) x = xy + xy' + x (7) xx = x + x(8) $(\forall x \in B)(\exists y \in B) \ x + y = 1 \land xy = 0$
- 🔀 🕝 Napisati jedan primer konačne nekomutativne grupe i jedan primer beskonačne nekomutativne grupe . Beskonačna: ({ } ∫ }; 展 → R () Konačna:
- Zaokružiti podgrupe grupe ($\mathbb{C}\setminus\{0\}$, ·): 1/($\mathbb{R}\setminus\{0\}$, +) 2/($(0,\infty)$, ·) 3/($(-\infty,0)$, ·) 4/(\mathbb{N} , ·) 5/($\mathbb{Z}\setminus\{0\}$, ·) 6/($\mathbb{Q}\setminus\{0\}$, +) 7/((0,1), ·) 8/((-1,1), ·) 9/((-1,0,1), ·) 10/($\mathbb{Q}\setminus\{0\}$, ·)
- $\mathcal{N} \cdot \bullet$ Zaokružiti oznaku polja za koje važi da je polinom $t^4 + t^2 + 1$ svodljiv nad njima. \bullet \bullet \bullet \bullet \bullet \bullet Za
 - Neka je $f \in \mathbb{R}[x]$ i $f(e^{-i\frac{\pi}{2}}) = 0$. Tada važi: $(1) x - i | f(x); (2) x + i | f(x); (3) x^2 + 1 | f(x); (4) x^2 - 1 | f(x); (5) x - e^{-i\frac{\pi}{2}} | f(x) (6) x - e^{i\frac{\pi}{2}} | f(x)$
 - Koje jednakosti su tačne za sve $z \in \mathbb{C}$ i sve $\varphi \in (-\pi, \pi]$ za koje su i definisane: 1) $\overline{e^{i\varphi}} = e^{i\overline{\varphi}}$ $\overline{2}$ $\overline{e^{i\varphi}} = e^{i\overline{\varphi}}$ $\overline{2}$ \overline

KOLOKVIJUM 1, PRIMER 8

- ? Neka su $f: \mathbb{R} \to \mathbb{R}$ i $g: \mathbb{R} \to \mathbb{R}$ definisane sa f(x) = 2x + 1 i $g(x) = x^3 1$. Izračunati:

1)
$$f^{-1}(x) = \frac{1}{2} \frac{2}{2} 2$$
) $g^{-1}(x) = \sqrt[2]{x^2} 3$) $(f \circ g)(x) = \sqrt[2]{x^2} 4$) $(f \circ g)^{-1}(x) = (2x + 2)^2 - 1$

- 1) $f^{-1}(x) = \frac{1}{2} 2$ $g^{-1}(x) = \frac{1}{2} \sqrt{x} 3$ $(f \circ g)(x) = \frac{2\sqrt{x} \cdot 4}{4}$ $(f \circ g)^{-1}(x) = 5$ $(g^{-1} \circ f^{-1})(x) = (2x + 7)^{2} 7$ Sirjektivne funkcije su: 1) $f: \mathbb{R}^{+} \to \mathbb{R}$, $f(x) = x^{2}$ 2) $f: [-1, 1] \to [0, 2\pi]$, $f(x) = \arccos x$ 3) $f: [-\frac{\pi}{3}, \frac{\pi}{4}] \to [\frac{1}{2}, 1]$, $f(x) = \cos x$ 4) $f: [-3, 3] \to [0, 9]$, $f(x) = x^{2}$ 5) $f: (1, \infty) \to [0, \infty)$, $f(x) = \ln x^{2}$
- ζ , \bullet Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$:

(a')'0' =
$$a + 1$$
 (2) $a' + a' = a' + 1'$ (3) $a \cdot 0' = (a')'$ (4) $1 + a = a'$ (5) $(ab) = (a' + b')'$

S Skup S svih kompleksnih rešenja jednačine $e^{ix}=0$ je $S=\left\{ 2\, \text{Li} \mid \text{Li} \in \mathbb{Z} \right\}$

A. (•) Sledeće kompleksne brojeve napisati u eksponencijalnom obliku, odnosno u obliku $\rho e^{i\varphi}, \rho \in [0, \infty), \varphi \in (-\pi, \pi]$:

$$\frac{-2i^{-2}}{-2i} = 0 \quad , (\sqrt[3]{i})^3 = e^{i\frac{\pi}{2}} \quad , \sqrt[3]{i^3} \in \{e^{i\frac{\pi}{2}}, e^{i\frac{\pi}{2}}, e^{i\frac{\pi}{2}}\}, -2 + 2i = 0 \quad \text{for } 3\pi i = 0 \text{ for } 3\pi$$

Zaokružiti brojeve ispred struktura koje su asocijativni grupoidi sa neutralnim elementom.

(5)
$$(\mathbb{R}[x],\cdot)$$
 (6) $(\{\frac{m}{2} \mid m \in \mathbb{Z}\},+)$

- Ako su $P i Q \neq -P$ polinomi i dg(P) = dg(Q) = 0, tada je $dg(PQ) \in \{ \begin{array}{c} 0 \\ \end{array} \} i dg(P+Q) \in \{ \begin{array}{c} 0 \\ \end{array} \}$
- Quality Za polinome $p(x)=(x+1)^2x(x-2)^6$ i $q(x)=x^5(x+1)^3(x-5)^2(x-2)^3$ nad poljem realnih brojeva izračunati: $NZD(p,q)=(\chi_{A(x)})^2\chi_{A(x-2)}$

Neka je
$$A = \{1, 2, 3\}, \ f: A \to A \ \text{i} \ g: A \to A \ \text{funkcije definisane sa} \ f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \ g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
. Tada je $f^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 1 \end{pmatrix}$ $g^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$ $f \circ f = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \end{pmatrix}$ $g \circ f = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 2 \end{pmatrix}$ $g \circ f = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 3 \end{pmatrix}$ $(g \circ f)^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 3 \end{pmatrix}$

 γ i , (\bullet Neka je ρ relacija "deli" skupa $A = \{2, 3, 4, 6, 9, 12, 18\}$ i neka je θ relacija "deli" skupa $B = \{1, 2, 3, 6, 12, 18, 36\}$. Nacrtati Haseove dijagrame i popuniti tabelu, odnosno staviti / tamo gde traženo ne postoji.

	are posseji.
[(A, ρ) :
	AZ / 5 2 3

(B,θ) :	
12 3.19	
·X.	
2 /3	
σ	ļ

	(A, ρ)	(B, θ)
minimalni	۲,٦	-1
maksimalni	12,18	2.6
najveći		3.6
najmanji	/	1

U Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$ važi: x + y = x'y' 2 xy = (x' + y') 3 $xy = 1 \Rightarrow y = 1$ 4 $x = y \Rightarrow x' = y'$ 5 $x' = y' \Rightarrow x = y$ 6 $f(x) = x' \Rightarrow f: B \xrightarrow{\text{na}} B$ 7 $f(x) = x' \Rightarrow f: B \xrightarrow{\text{1-1}} B$

74. Pa funkciju $f: \mathbb{R} \to (0, \infty)$ iz grupe $(\mathbb{R}, +)$ u grupu $((0, \infty), \cdot)$, definisanu sa $f(x) = 2^x$, važi:

1) f je homomorfizam 2) f je izomorfizam 3) f^{-1} postoji i f^{-1} je homomorfizam 4) f^{-1} je izomorfizam

 $\langle q\hat{S} \rangle$ Zaokružiti polja nad kojima je polinom $t^3 + t + 1$ svodljiv:

16 Skup svih mogućih stepena nesvodljivih polinoma nad poljem realnih brojeva R je (1,)

A) ako je p jednak proizvodu dva polinoma, tada je p svodljiv 2) ako je p=0, tada je on svodljiv 3) ako je p=0, tada je on nesvodljiv 4) ako je p svodljiv tada je $p \neq 0$ i $dg(p) \neq 0$ i p je jednak proizvodu dva polinoma stepena većeg od 0 (5) ako je $p \neq 0$ i $dg(p) \neq 0$ i p je jednak proizvodu dva polinoma stepena većeg od 0, tada je p je svodljiv

 q_q (Neka su p(x)=2x+1 i $q(x)=x^2+2$ polinomi nad poljem \mathbb{Z}_7 i $\mathcal{A}=(\mathbb{Z}_7[x]/p,+,\cdot)$ i $\mathcal{B}=(\mathbb{Z}_7[x]/q,+,\cdot)$. Tada su polja: d) Ni A ni B.

19. Neka je $g:(-\infty,1]\to(-\infty,0],\ g(x)=-\sqrt{1-x}.$ Tada inverzna funkcija je $g^{-1}(x)=\sqrt{1-x}$

Neka je funkcija $f:(-\infty,-\frac{1}{4}]\to\mathbb{R}$ definisana sa $f(x)=-2x^2-x-2$. Tada $f^{-1}:A\to\mathbb{R},\ A=\frac{(-\infty,-\frac{1}{2})}{2}$

aza. A) $\arg z > 0 \Rightarrow I_m(z) > 0$ (2) $\arg z < 0 \Rightarrow I_m(z) < 0$ (4) $\arg z > 0 \Leftarrow I_m(z) > 0$ (5) $\arg z \notin [-\frac{\pi}{2}, \frac{\pi}{2}] \Rightarrow R_e(z) < 0$ A. • Zaokruži brojeve ispred tačnih iskaza. (3) $\arg z < 0 \Leftrightarrow I_m(z) < 0$

 $\mathcal{N}^{\{\cdot\}} \bullet \text{ Grupe su: } \mathcal{N} \left(\{f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = k^2 x, k \in \mathbb{R} \}, + \right) \text{ (2) } \left(\{f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = k x, k \in \mathbb{R} \setminus \{0\} \}, \circ \right)$ $(3) \left(\{f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = kx, k \in \mathbb{R} \}, + \right) (4) \left(\{f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = k^2x, k \in \mathbb{R} \setminus \{0\} \}, \circ \right)$

(5) $\left(\{ f \mid f : \mathbb{R} \stackrel{1-1}{\underset{na}{\rightarrow}} \mathbb{R} \}, \circ \right)$

Neka su u, z, w kompleksni brojevi. Tada rotacijom tačke u oko tačke w za ugao $-\frac{\pi}{4}$ dobija se tačka w_t (w w) $e^{-i\frac{\pi}{2}}$ translacijom tačke w za vektor u dobija se tačka $w + \omega$, a $wz = \frac{\pi}{2}$

 $\{\gamma \in \mathbb{N}\}$ Navesti geometrijsku interpretaciju sledećih kompleksnih funkcija $f: \mathbb{C} o \mathbb{C}, g: \mathbb{C} o \mathbb{C}, h: \mathbb{C} \setminus \{0\} o \mathbb{C}$ i $s:\mathbb{C}\to\mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f,g,h i s.

 $f(z) = \overline{z}e^{i\pi} \text{ je } \frac{\partial Ha}{\partial z} \frac{\partial Ha}{\partial z}$

Neka je {1} skup svih korena polinoma $f(x) = x^3 + ax^2 + bx + c$, gde su $a, b, c \in \mathbb{R}$. Tada je $a \in \{ c \in \{$

 $A \in \mathcal{N}$ Neka je $A = \{1\}$ i $B = \{1, 2, 3, 4, 5\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f \geq 0$ označava neopadajuću funkciju f:

 $\left|\{f|f:A\longrightarrow B\}\right|=\widehat{\sum}\,\left|\{f|f:A\xrightarrow{1-1}B\}\right|=\widehat{\sum}\,\left|\{f|f:A\to B\land f\nearrow\}\right|=\underline{\sum}\,\left|\{f|f:B\xrightarrow{na}B\}\right|=\underline{\triangle}$ $\left|\{f|f:B\to A\}\right|=\underbrace{1}\left|\{f|f:A\to A\ \land\ f\nearrow\}\right|=\underline{1}\left|\{f|f:B\to A\ \land\ f\nearrow\}\right|=\underline{1}\left|\{f|f:A\stackrel{no}{\to}B\}\right|=\underline{0}$

- (8) $|z_1|z_2| = |z_2|z_1| \Rightarrow \arg z_1 = \arg z_2$
- \bigcap Ako je $P(x) = ax^3 + bx + c$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada stepen dg(P) polinoma $P \text{ je:} \quad \textbf{1)} \ dg(P) = 3 \ \textbf{2)} \ dg(P) \in \{0,1,3\} \ \textbf{2)} \ dg(P) \in \{0,3\} \ \textbf{4)} \ dg(P) \in \{0,1,3,4\} \ \textbf{5)} \ dg(P) \in \{0,1,2,3\} \ dg(P) \in \{0,1,3,4\} \ \textbf{5)} \ dg(P) \in \{0,1,2,3\} \ dg(P) \in \{0,1,3,4\} \ \textbf{5)} \ dg(P) \in \{0,1,3,4\} \ \textbf{5)} \ dg(P) \in \{0,1,2,3\} \ dg(P) \in \{0,1,3,4\} \ \textbf{5)} \ dg(P) \in \{0,1,3,4\} \ \textbf{5)} \ dg(P) \in \{0,1,3,4\} \ \textbf{6)} \ dg(P) \in \{0,1,3,4\} \ dg$
- Zaokružiti brojeve ispred struktura koje su domeni integriteta, a nisu polja: $\widehat{\mathbb{Q}} \left(\mathbb{Z}, +, \cdot \right) \quad \widehat{\mathcal{Z}} \left(\{9k | k \in \mathbb{Z}\}, +, \cdot \right) \quad \widehat{\mathcal{Z}} \left(\mathbb{Z}_{9}, +, \cdot \right) \quad \widehat{\mathcal{A}} \left(\widehat{\mathbb{Q}}, +, \cdot \right) \quad \widehat{\mathcal{D}} \left(\mathbb{Z}_{3}, +, \cdot \right) \quad \widehat{\mathcal{D}} \left(\mathbb{N}, +, \cdot \right) \quad \widehat{\mathcal{T}} \right) \left(\mathbb{C}, +, \cdot \right)$ (8) $(\mathbb{R}[t],+,\cdot)$ (8) $(\mathbb{R}^+,+,\cdot)$
- \sim 0 $^\bullet$ Ako je p svodljiv polinom stepena 4 nad nekim poljem F, tada polinom p: 1) uvek ima korena u polju F2) nikada nema korena u polju ${\cal F}$ \mathfrak{F}) nekada ima a nekada nema korena u polju Fprethodnog
- \mathcal{S}^{\wedge} Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B}=(\{0,1\},+,\cdot,',0,1\}$ $(xy)' = x + y \quad (xx')' = (x+1)' \quad (x \neq 1) \quad (x \neq 1) \quad (x \neq 0) \quad$ (5) $xy \neq 0 \Rightarrow (x \neq 0) \land y \neq 0$) (6) x = xy + xy' + x (7) xx = x + x
- Napisati jedan primer konačnog prstena bez jediice i jedan primer beskonačnog prstena bez jediice.

 Konačan: ((Z, <1;), +,)

 Beskonačan: ((), /(2), +,)
- Neka je $f \in \mathbb{R}[x]$ i $f(e^{i\pi}) = 0$. Tada važi: 1 $x e^{i\pi} | f(x)$ 2 $x e^{-i\pi} | f(x)$ 3 $x^2 + 1 | f(x)$ 6 $x^2 1 | f(x)$
- ** Koje jednakosti su tačne za sve $z \in \mathbb{C}$ i sve $\varphi \in (-\pi, \pi]$ za koje su i definisane:

 (1) $\overline{e^{i\varphi}} = e^{-i\overline{\varphi}}$ (2) $e^{i\varphi} = e^{-i\varphi}$ (3) $e^{i(\arg z + \arg(-\overline{z}))} = -1$ (4) $e^{i(\arg z + \arg\overline{z})} = 1$ (5) $z^{-1} = \overline{z}|z|^{-2}$ (6) $|-z| = |\overline{z}|$ $\boxed{7} |\arg(-z)| + |\arg\overline{z}| = \pi$

KOLOKVIJUM 1, PRIMER 9

- Neka su $f:(0,\infty) \to (0,\infty)$ i $g:(0,\infty) \to (0,\infty)$ definisane sa $f(x)=e^x-1$ i $g(x)=\frac{1}{x^2}$. Izračunati:
- 1) $f^{-1}(x) = f_{0}(x) = \frac{1}{x^{2}}$ 3) $(f \circ g)(x) = 4$ $(f \circ g)^{-1}(x) = 5$ $(g^{-1} \circ f^{-1})(x) = 6$ 1) $(g^{-1}(x) = \frac{1}{x^{2}})$ 12 racumal 1) $f: \mathbb{R}^{+} \to \mathbb{R}^{-}$ 3) $(f \circ g)(x) = 4$ 1 $(f \circ g)^{-1}(x) = 5$ 2 $(g^{-1} \circ f^{-1})(x) = 6$ 3) $(g^{-1} \circ f^{-1})(x) = 6$ 4) $(g^{-1} \circ f^{-1})(x) = 6$ 5) $(g^{-1} \circ f^{-1})(x) = 6$ 6) $(g^{-1} \circ f^{-1})(x) = 6$ 7. $(g^{-1} \circ f^{-1})(x) = 6$ 8. $(g^{-1} \circ f^{-1})(x) = 6$ 9. $(g^{-1} \circ f^{-1})(x$
- igcepsylonZaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$: (1) (a')'0' = a (2) a' + 0' = 1 + 0 (3) $a \cdot 1' = (a')'$ (4) 1 + a = a' + 0' (5) (ab)' = (a' + b')'
- § Skup S svih kompleksnih rešenja jednačine $e^{ix} = 1$ je $S = \langle \gamma \lambda \rangle / \lambda \in \mathbb{Z} \rangle$
- Za kompleksni broj $z = e^{i\frac{\pi}{3}} 1$, naći: $R_e(z) = \frac{2}{3} \qquad , |z| = \frac{12}{3} \qquad$
- & . (•) Sledeće kompleksne brojeve napisati u eksponencijalnom obliku, odnosno u obliku $\rho e^{i\varphi}, \rho \in [0, \infty), \varphi \in (-\pi, \pi]:$ $-2 = 2e^{i\tilde{x}}, \theta = \beta e^{i\tilde{x}}, e^{i\frac{\pi}{3}} - 1 = \beta e^{i\tilde{x}}, -2i = 2e^{i\tilde{x}}, 5\pi = \tilde{x} e^{i\tilde{x}}, 5\pi = \tilde{x} e^{i\tilde{x}}$
- Zaokružiti brojeve ispred struktura koje su grupe. 1 ($\{-1,1\},\cdot$) 2 ($\{f|f:\mathbb{R}\xrightarrow{1-1}_{na}\mathbb{R}\},\circ$) 3 ($\mathbb{N},+$) $\cancel{A} \big(\{2k|k \in \mathbb{Z}\}, \cdot \big)$ $(\{2k|k\in\mathbb{Z}\},+)$ $\stackrel{na}{\cancel{7}} \left(\left\{ \frac{m}{5} \mid m \in \mathbb{Z} \right\}, + \right)$ 6) $(\mathbb{R}[x],\cdot)$
- Åko su P i $Q \neq -P$ polinomi i dg(P) = dg(Q) = 1, tada je $dg(PQ) \in \{ \underline{ 1} \} i dg(P+Q) \in \{ \underline{ 0} 1 \}$
-). Ea polinome $p(x)=(x-5)^3x(x-2)^6$ i $q(x)=x^5(x+1)^3(x-5)^2(x-2)^3$ nad poljem realnih brojeva izračunati: $NZD(p,q) = \times (\gamma - 5)^{\tau} (\gamma - \tau)^{\gamma}$

- Neka su $f:(0,\infty) \to (0,\infty)$ i $g:(0,\infty) \to (1,\infty)$ definisane sa $f(x) = \frac{1}{2x}$ i g(x) = 2x + 1. Izračunati:

 1) $f^{-1}(x) = \frac{1}{2x}$, 2) $(f \circ g)(x) = \frac{1}{(x+1)}$, 3) $(f \circ g)$ $(f \circ g)(x) = \frac{1}{na}$ $(f \circ g)(x) = \frac{$
- Where $f = \{1, 2, 3, 4, 5\}$, $f : A \to A$ is $g : A \to A$ funkcije definisane sa $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 5 & 3 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$. Tada je $f^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 1 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 3$
- $\text{Neka je } \rho \text{ relacija "deli" skupa } A = \{1,2,3,,6,12,18,36\} \text{ i neka je } \theta \text{ relacija "deli" skupa } B = \{1,2,4,6,12\}$ Nacrtati Haseove dijagrame i popuniti tabelu, odnosno staviti / tamo gde traženo ne postoji.

	 1
(A,ρ) :	
12 6 18	
1	

	(A, ho)	(B,θ)
minimalni	-1	1
maksimalni	3%	45
najveći	76	19 L
najmanji	4	1

- $\{f\}$. (•) U Bulovoj algebri $B = (B, +, \cdot, ', 0, 1)$ definisana je relacija $f = \{(x, x') | x \in B\}$. Relacija f je: 1) Refleksivna (2) Simerična (3) Tranzitivna (4) Antisimetrična (5) Funkcija (6) $f: B \to B$ (7) $f: B \to B$
- Za funkciju $f: \mathbb{R} \to \mathbb{R}$ iz grupe $(\mathbb{R}, +)$ u grupų $(\mathbb{R}, +)$, definisanu sa f(x) = 7x, važi: f je homomorfizam f je izomorfizam f je izomorfizam f je homomorfizam f je izomorfizam f je izomorfizam
- 🔥 💽 Skup svih mogućih stepena nesvódljivih polinoma nad poljem kompleksnih brojeva C je {
- No je p jednak proizvodu dva nesvodljiva polinoma, tada je p svodljiv 2) ako je p=4, tada je on svodljiv 3) ako je p=3, tada je on nesvodljiv 4) ako je pnesvodljiv tada je $p \neq 0$ i $dg(p) \neq 0$ i p nije jednak proizvodu dva polinoma stepena većih od O(5) ako je $p \neq 0$ i $dg(p) \neq 0$ i p je jednak proizvodu dva polinoma stepena manjeg od dg(p), tada je p je svodljiv
- $\mathcal{A}^{\{\frac{1}{6}\}}$ (•) Neka su p(x) = x + 2 i $q(x) = x^2 + 1$ polinomi nad poljem \mathbb{Z}_5 i $\mathcal{A} = (\mathbb{Z}_7[x]/p, +, \cdot)$ i $\mathcal{B} = (\mathbb{Z}_7[x]/q, +, \cdot)$. a) Samo A b) Samo B
- Tada su polja: a) Samo \mathcal{A} b) Samo \mathcal{B} © \mathcal{A} i \mathcal{B} d) Ni \mathcal{A} ni \mathcal{B} .

 2 aokruži brojeve ispred tačnih iskaza. (1) arg $z > 0 \Leftarrow I_m(z) > 0$ (2) arg $z < 0 \Leftrightarrow I_m(z) < 0$ 3 arg $z \ge 0 \Rightarrow I_m(z) \ge 0$ 4) arg $z \ge 0 \Leftarrow I_m(z) \ge 0$ (5) arg $z \notin [-\frac{\pi}{2}, \frac{\pi}{2}] \Rightarrow R_e(z) < 0$
- $\mathcal{T}^{\mathcal{O}}$ U Bulovoj algebri $\mathcal{B}=(B,+,\cdot,',0,1)$, broj rešenja sistema jednačina $x+a=1 \land xa=0$, po nepoznatoj x, u zavisnosti od $a \in B$, može biti (zaokružiti tačna rešenja): 0 (1) 2
 - Zaokružiti brojeve ispred struktura koje su asocijativni grupoidi sa neutralnim elementom:
- Zaokružiti brojeve ispred struktura koja su polja: $(\mathbb{Z},+,\cdot)$ $(\mathbb{Z$
- Neka su z_1, z_2, z_3 kompleksni brojevi. Tada rotacijom tačke z_3 oko tačke z_2 za ugao $-\frac{\pi}{3}$ dobija se tačka $\frac{1}{2}, \frac{1}{2}, \frac{1}{$
 - Navesti geometrijsku interpretaciju sledećih kompleksnih funkcija $f:\mathbb{C} \to \mathbb{C}, \, g:\mathbb{C} \to \mathbb{C}, \, h:\mathbb{C} \setminus \{0\} \to \mathbb{C}$ i $s:\mathbb{C}\to\mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f,g,h i s.
 - $f(z) = ze^{-i\frac{\pi}{4}} \text{ je} \frac{\gamma e^{-i\alpha} \text{ cij } \alpha}{-i\alpha}$ $f(z) = ze^{-i\frac{\pi}{4}} \text{ je} \frac{r}{g(z)} = \frac{r}{|z|} \frac{a}{|z|} \frac{$

- Neka je $\{-1,0,1\}$ skup svih korena polinoma $f(x) = x^3 + ax^2 + bx + c$, gde su $a,b,c \in \mathbb{R}$. Tada je $a \in \{ \bigcirc \bigcirc \}$, $b \in \{ \bigcirc \bigcirc \}$
- γ 5 \nearrow Neka je $A = \{4,7\}$ i $B = \{1,2,5\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f\nearrow$ označava neopadajuću funkciju f:

$$\left| \{f|f:A \longrightarrow B\} \right| = \frac{9}{2} \left| \{f|f:A \xrightarrow{1-1} B\} \right| = \underline{6} \left| \{f|f:A \to B \land f \nearrow \} \right| = \underline{3} \left| \{f|f:B \xrightarrow{na} B\} \right| = \underline{6} \left| \{f|f:B \to A \land f \nearrow \} \right| = \underline{1} \left| \{f|f:B \to A \land f \nearrow \} \right| = \underline{9} \left| \{f|f:A \xrightarrow{na} B\} \right| = \underline{9} \left| \{f$$

- $(3) |z_1|z_2| = z_2|z_1| \Rightarrow \arg z_1 = \arg z_2$
- Ako je $P(x) = ax^3 + c$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada stepen dg(P) polinoma P je: M dg(P) = 3, M $dg(P) \in \{0,1,3\}$, M
- Zaokružiti brojeve ispred struktura koje su domeni integritata: 1) $(\mathbb{Z},+,\cdot)$ 2) $(\{9k|k\in\mathbb{Z}\},+,\cdot)$ 3) $(\mathbb{Z}_{9},+,\cdot)$ 4) $(\mathbb{Q},+,\cdot)$ 5) $(\mathbb{Z}_{3},+,\cdot)$ 6) $(\mathbb{N},+,\cdot)$ 7) $(\mathbb{C},+,\cdot)$ 8) $(\mathbb{R}[t],+,\cdot)$ 9) $(\mathbb{R}^{+},+,\cdot)$
- (a) Ako je p nesvodljiv polinom stepena 4 nad nekim poljem F, tada polinom p: 1) uvek ima korena u polju F (2) nikada nema korena u polju F 3) nekada ima a nekada nema korena u polju Fod prethodnog
- Napisati primere dva konačna prstena i dva primera beskonačnih prstena koji nisu polja. Konačni: $(\{s\}, \cdot, \cdot)$, $(\mathbb{Z}_{s}, \cdot, \cdot)$ Beskonačni: $((\mathbb{Z}, \cdot, \cdot), \cdot)$
- $d) x^2 - x\sqrt{2 - \sqrt{3}} + 1 | f(x) | e x^2 - x\sqrt{2 + \sqrt{3}} + 1 | f(x) | f x^2 - 2x\sqrt{2$
- Koje jednakosti su tačne za sve $z \in \mathbb{C}$ i sve $\varphi \in (-\pi, \pi]$ za koje su i definisane: $\overline{(e^{-i\varphi} = e^{-i\overline{\varphi}})} = e^{-i\overline{\varphi}}$ $\overline{(e^{-i\varphi} = e^{-i\overline{\varphi}})} = 1$ $\overline{(e^{-i\varphi} = e^{-i\overline{\varphi}})} = 1$ **6)** $\arg z > 0 \Rightarrow \arg z - \arg(-z) = \pi$

KOLOKVIJUM 1, PRIMER 10

🗸 . 🕟 Iza oznake svake od datih relacija u skupu R zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija.

 $\rho = \{(-1, -1), (0, 0), (1, 1)\} : \widehat{\mathbb{R}} \widehat{S} \widehat{\mathbb{A}} \widehat{V} \widehat{\mathbb{R}}$ >: R S(A)(T) F

• Neka su $f:(0,\infty)\to (0,\infty)$ i $g:(0,\infty)\to (0,\infty)$ definisane sa $f(x)=\frac{1}{2x}$ i $g(x)=2^x-1$. Izračunati:

1) $f^{-1}(x) = \frac{4}{2x}$ 2) $g^{-1}(x) = \int_{0}^{x} \int_{x}^{t_{k+1}(x)} dt$ 3) $(f \circ g)(x) = \int_{0}^{x} \int_{x}^{t_{k+1}(x)} dt$ 4) $(f \circ g)^{-1}(x) = \int_{0}^{x} \int_{x}^{t_{k+1}(x)} dt$ 5) $(g^{-1} \circ f^{-1})(x) = \int_{0}^{x} \int_{x}^{t_{k+1}(x)} dt$

Ĵ, Zaokružiti brojeve ispred bijektivnih funkcija:

1) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 3 - x$ 2) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$ 3) $f: \mathbb{R} \to [0, \infty), \ f(x) = x^2$ 4) $f: [0, \infty) \to [0, \infty), \ f(x) = x^2$ 5) $f: (0, \frac{\pi}{2}) \to (0, \infty), \ f(x) = \operatorname{tg} x$ 6) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x$

(\bullet Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B, +, \cdot, ', 0, 1)$:

1)
$$(a')' = a'$$
 2) $a + a' = 0$ 3) $a \cdot 0 = 0$ 4) $1 + a = a$ 5) $(a + b)' = a' + b'$

- Skup kompleksnih rešenja jednačine $x^2 = -1$ je $S = \{$
- 6 Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z=-\frac{1}{2}-\frac{1}{2}iz$ $Re(z) = -\frac{4}{2}$, $Im(z) = -\frac{2}{3}$, $|z| = \frac{5}{3}$, $\arg(z) = -\frac{3}{3}$, $\overline{z} = -\frac{4}{3} + \frac{1}{3}$.

7... Sledeće kompleksne brojeve napisati u algebarskom obliku: $, 2e^{i\frac{\pi}{2}} = i i$, $2e^{0-i} = i$ Laokružiti broj (ili brojeve) ispred struktura koje su komutativne grupe. 2) (N,·) (3) $(\mathbb{R},+)$ 1) (N, +) _4) (R,·) $5Y((0,\infty),+)$ \bigcirc ($(0,\infty),\cdot$) \mathcal{G} Neka su $P=(a_0,a_1,\ldots,a_4)$ i $Q=(b_0,b_1,\ldots,b_3)$ polinomi. Tada je $dg(P+Q) = \underline{\qquad}_{i} dg(PQ) = \underline{\qquad}_{i}$ ********* $\langle \mathcal{O}, G \rangle$ Napisati jednu relaciju skupa $A = \{1,2,3\}$ koja je refleksivna, simetrična, antisimetrična i tranzitivna: 10,00, 10,000 12,77 } 11. (a) Broj svih antisimetričnih relacija skupa $A = \{1, 2\}$ je: $\text{Neka je } A = \{1, 2, 3, 4, 5\}, \ \rho = \{(x, x) | x \in A\} \cup \{(1, 2), (1, 3), (2, 3), (4, 5), (4, 3), (5, 3)\},$ $B = \{a, b, c, d\}$ i $\theta = \{(x, x) | x \in B\} \cup \{(a, c), (a, d), (c, d)\}$. Nacrtati Haseove dijagrame i popuniti tabelu, odnosno staviti / tamo gde traženo ne postoji. (A, ρ) : (B,θ) : (A, ρ) (B, θ) a, to minimalni maksimalni al, 10 najveći najmanji $\begin{array}{ll} \text{$\rho_3$} & \text{$0$} \text{$U$ skupu \mathbb{C} date su relacije:} & \rho_1 = \{(z,w) \in \mathbb{C}^2 \mid |z| = |w|\}, \quad \rho_2 = \{(z,w) \in \mathbb{C}^2 \mid z \cdot w = 0\}, \\ & \rho_3 = \{(0,0)\} \cup \{(z,w) \in \mathbb{C}^2 \mid \arg(z) = \arg(w)\}, \quad \rho_4 = \{(0,0)\} \cup \{(z,w) \in \mathbb{C}^2 \mid z \cdot w = 1\}, \\ & \rho_5 = \{(z,w) \in \mathbb{C}^2 \mid R_e(z) = I_m(w)\}, \quad \rho_6 = \mathbb{C}^2 \end{array}$ Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija. $\rho_1: (\widehat{\mathbb{R}} S) \land \widehat{\mathbb{T}} F \quad \rho_2: R(\widehat{S}) \land T F \quad \rho_3: (\widehat{\mathbb{R}} S) \land \widehat{\mathbb{T}} F \quad \rho_4: R(\widehat{S}) \land T(\widehat{F}) \quad \rho_5: R S \land T F \quad \rho_6: R(\widehat{S}) \land \widehat{\mathbb{T}} F$

- 44. Ako je $f:A\to B$ sirjektivna funkcija i $b\in B$, tada broj rešenja po $x\in A$ jednačine f(x)=b može biti (zaokruži) 0 (2) 3 (8)
- OAko je $f:A\to B$ injektivna funkcija i $b\in B$, tada broj rešenja po $x\in A$ jednačine f(x)=b može biti (zaokruži) 0 1^j 2 3 ∞
- Naći najveći podskup A skupa \mathbb{R} i najmanji podskup B skupa \mathbb{R} tako da je izrazom $f(x) = \ln(x^2 4)$ dobro definisana funkcija $f: A \to B$. Tada je $A = \frac{f(x) \cdot f(x)}{f(x)}$ i $B = \frac{f(x)}{f(x)}$. Funkcija $f: A \to B$ je: 1) sirjektivna i injektivna 2) ni sirjektivna ni injektivna 3) sirjektivna ali nije injektivna 4) nije sirjektivna a jeste injektivna
- Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$.

 1) xx = x + x 2) xy = x + y 3) xy = (x + y)' 4) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ 5) $(x = 0 \lor y = 0) \Rightarrow xy = 0$ 6) x = xy + xy' 7 $(\forall x \in B)(\exists y \in B) \ x + y = 1 \land xy = 0$
 - ① U Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$, broj rešenja sistema jednačina $x + a = 1 \land xa = 0$, po nepoznatoj x, u zavisnosti od $a \in B$, može biti (zaokružiti tačna rešenja): 0 ① 2 ∞
- Zaokružiti brojeve ispred struktura koje su asocijativni grupoidi sa neutralnim elementom:

 1) $(\{2k|k\in\mathbb{Z}\},\cdot)$ 2) $(\mathcal{P}(\mathbb{N}),\cap)$ 3) $(\{a+ai|a\in\mathbb{R}\},+)$ 4) (\mathbb{Z},\cdot) 5) $(\{f|f:\mathbb{N}\to\mathbb{N}\},\circ)$
- Zaokružiti slova (ili slovo) ispred struktura koje su prsteni a nisu polja: $(\mathbb{Z},+,\cdot)$ (2) $(\mathbb{Z}_4,+,\cdot)$ (3) $(\mathbb{Q},+,\cdot)$ (4) $(\mathbb{Z}_3,+,\cdot)$ (5) $(\mathbb{N},+,\cdot)$ (6) $(\mathbb{C},+,\cdot)$ (7) $(\mathbb{R}[t],+,\cdot)$ (8) $(\mathbb{R}^+,+,\cdot)$

- Zaokružiti homomorfizme $f: \mathbb{Z} \to \mathbb{Z}_2$ iz grupe $(\mathbb{Z}, +)$ u grupu $(\mathbb{Z}_2, +)$: (1) $\forall x \in \mathbb{Z}, f(x) = 0$ 2) $\forall x \in \mathbb{Z}, f(x) = 1$ (3) $f(x) = \begin{cases} 0 & x \text{ je paran broj} \\ 1 & x \text{ je neparan broj} \end{cases}$ 4) $f(x) = \begin{cases} 0 & x \text{ je neparan broj} \\ 1 & x \text{ je paran broj} \end{cases}$
- 12. (Ako je $z_1 = -1 \sqrt{3}i$, $z_2 = 1 i$, tada je $z_1 + z_2 = -(2iJ_1)^{\frac{1}{2}}$ $z_1 \cdot z_2 = -2iJ_2$ $\frac{z_1}{z_2} = \frac{1+\sqrt{2}-2iJ_2}{2}$ $\arg(z_1) = -\frac{2J_2}{2}$ $\arg(z_2) = -\frac{2J_2}{2}$ $\arg(z_1z_2) = -\frac{2J_2}{2}$ $\arg(z_2) = -\frac{2J_2}{2}$
- Zaokružiti brojeve za koje je prsten ($\mathbb{Z}_3[t]/P,+,\cdot$) polje:

 (1) P(t) = t + 2 (2) $P(t) = t^2 + 1$ (3) $P(t) = t^2 + t + 1$ (4) $P(t) = t^3 + t + 1$ (5) $P(t) = t^{2005} + 1$
- Pri delenju polinoma t^5+t+1 polinomom t^2+t+1 nad poljem \mathbb{Z}_7 dobija se količnik $\frac{\frac{t^2+\frac{t}{2}+\frac{t}{2}}{t^2}}{1}$ i ostatak $\underline{\mathcal{O}}$. Da li dobijeni rezultat važi nad proizvoljnim poljem? DA
 - Skup svih stepena nesvodljivih polinoma nad poljem \mathbb{R} je $\{ \begin{array}{c} 1/2 \\ 1/2 \end{array} \}$, a nad poljem \mathbb{C} je $\{ \begin{array}{c} 1/2 \\ 1/2 \end{array} \}$.
- Navesti geometrijsku interpretaciju skupova A,B,C,D i sledećih kompleksnih funkcija $f,g:\mathbb{C}\to\mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f i g.
 - $f(z) = z \cdot (-i) \text{ je } \underbrace{-tota_{C_1, c_1}}_{tota_{C_1, c_2}} \underbrace{-tota_{C_2, c_3}}_{tota_{C_2, c_4}} \underbrace{-tota_{C_2, c_4}}_{tota_{C_2, c_4}} \underbrace{-tot$
 - U Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$ definisana je relaija $f = \{(x', x) | x \in B\}$. Relacija f je:

 1) Refleksivna
 2) Simetrična
 3) Tranzitivna
 4) Antisimetrična
 5) Funkcija
 6) $f: B \to B$ 1-1
 - Neka su z_1, z_2, z_3 kompleksni brojevi. Tada rotacijom tačke z_1 oko tačke z_3 za ugao $-\frac{\pi}{2}$ dobija se tačka $\frac{1}{2} + (n \cdot z_1) e^{\frac{\pi}{2}}$, translacijom tačke z_2 za vektor z_1 dobija se tačka $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$, a $\frac{1}{2} z_2 z_1 z_3 = \frac{1}{2} + \frac{1}{$
 - Neka je $A = \{4,7,5\}$ i $B = \{1,2\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f \nearrow$ označava neopadajuću funkciju f: $\left| \{f | f : A \longrightarrow B\} \right| = \frac{\Im}{2} \left| \{f | f : A \xrightarrow{1-1} B\} \right| = \frac{\Im}{2} \left| \{f | f : A \to B \land f \nearrow\} \right| = \frac{\Im}{2} \left| \{f | f : B \xrightarrow{na} B\} \right| = \frac{\Im}{2} \left| \{f | f : A \to A \land f \nearrow\} \right| = \frac{\Im}{2} \left| \{f | f : B \to A \land f \nearrow\} \right| = \frac{\Im}{2} \left| \{f | f : A \xrightarrow{na} B\} \right| = \frac{\Im}{2}$
- U skupu kompleksnih brojeva je: 1) $\sqrt{z\overline{z}} = |z|$ 2) $z = e^{i\frac{\pi}{7}} \Rightarrow z^{-1} = \overline{z}$ 3) $|z_1z_2| = |z_2||z_1|$ 4) $R_e(z) = \frac{1}{2}(z+\overline{z})$ 5) $\overline{z_1-z_2} = \overline{z}_2 \overline{z}_1$ 6) $|z| = 1 \Leftrightarrow z^{-2} = \overline{z}^2$ 7) $|-z_1-z_2| \leq |z_1| + |z_2|$ 8) $|z_1|z_2| = |z_2||z_1| \Rightarrow \arg z_1 = \arg z_2$

KOLOKVIJUM 1, PRIMER 11

Iza oznake svake od datih relacija u skupu R zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija.

$$\geq: \widehat{\mathbb{R}} \setminus \mathbb{S} \setminus \widehat{\mathbb{R}} \setminus \mathbb{F}$$

$$\rho = \{(x,x) | x \in \mathbb{R}\} : \widehat{\mathbb{R}} \setminus \widehat{\mathbb{R}} \setminus \widehat{\mathbb{R}} \setminus \widehat{\mathbb{R}}$$

$$\rho = \{(1,2),(1,3)\} : \mathbb{R} \setminus \widehat{\mathbb{R}} \setminus \widehat{\mathbb{R}} \setminus \widehat{\mathbb{R}} \setminus \widehat{\mathbb{R}}$$

Neka su $f:(0,\infty)\to (0,\infty)$ i $g:(0,\infty)\to (0,\infty)$ definisane sa $f(x)=\frac{1}{\sqrt{x}}$ i $g(x)=\ln(\sqrt{x}+1)$. Izračunati:

1)
$$f^{-1}(x) = \frac{1}{\lambda^2}$$
 2) $g^{-1}(x) = (2-4)^2$ 3) $(f \circ g)(x) = \frac{1}{(2-4)^2}$ 4) $(f \circ g)^{-1}(x) = \frac{1}{(2-4)^2}$ 5) $(g^{-1} \circ f^{-1})(x) = \frac{1}{(2-4)^2}$

- Neka su f i g funkcije definisane sa $f = \begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix}$, $g = \begin{pmatrix} a & b & c & d \\ b & a & d & c \end{pmatrix}$ i $h = \begin{pmatrix} a & b & c & d \\ d & c & b & a \end{pmatrix}$. Tada je $f \circ g = \begin{pmatrix} a & b & c & d \\ d & c & d & c & d \end{pmatrix}$ $f^{-1} = \begin{pmatrix} a & b & c & d \\ c & d & d & c & d \end{pmatrix}$, $f \circ g^{-1} = \begin{pmatrix} a & b & c & d \\ d & c & d & c & d \end{pmatrix}$, $g^{-1} \circ f^{-1} = \begin{pmatrix} a & b & c & d \\ d & c & d & c & d \end{pmatrix}$
- Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u Bulovoj algebri:

 1) ab + bc + ac + a = (a + b)(a + c) (2) a' + a' = a' (3) a + a' = 0 (4) $a \cdot 0 = 0$ (5) $a \cdot 0 = 1$ (6) a + 1 = 1

U grupi ($\mathbb{Z}_5 \setminus \{0\}$, ·) neutralni element je, a inverzni elementi su: $2^{-1} = \underline{\hspace{1cm}}, 3^{-1} = \underline{\hspace{1cm}}, 4^{-1} = \underline{\hspace{1cm}},$
6
$ z_1 + z_2 = z_2 + z_2 = $
?) Pri delenju polinoma $x^3 - 3x^2 + 3x - 1$ sa $x - 1$ nad \mathbb{R} , količnik je $\frac{y^2 - 1}{y^2 + 1}$, a ostatak je $\frac{0}{y^2 - 1}$.
Zaokružiti slova (ili slovo) ispred struktura koje su asocijativni i komutativni grupoidi sa neutralnim elementom. $ \widehat{(1)}(\mathbb{Z},\cdot) \widehat{(2)}(\{-1,0,1\},+) \widehat{(3)}(\mathbb{N},\cdot) \widehat{(4)}(\mathbb{N}\cup\{0\},+) \widehat{(5)}(\mathbb{C},+) \widehat{(6)}(\mathbb{Q},\cdot) \widehat{(7)}(\{-1,0,1\},\cdot) $

Napisati jednu relaciju ρ skupa $A=\{1,2,3\}$ koja nije refleksivna, nije simetrična, nije antisimetrična nije tranzitivna i nije funkcija: $\rho=\{$
75. Napisati jednu relaciju ρ skupa $A = \{1, 2, 3\}$ koja je refleksivna, simetrična, antisimetrična tranzitivna i funkcija: $\rho = \{ (2, 2)^{\lfloor 1/2 \rfloor}, (3, 5) \}$
4). OBroj svih antisimetričnih relacija skupa $A=\{1,2\}$ je: 4) $\{1,2\}$
The Hallovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$ važi: (a) $x + y = (x'y')'$ (b) $xy = (x' + y')'$ (c) $xy = 1 \Rightarrow x = 1$ (d) $x = y \Rightarrow x' = y'$ (e) $x' = y' \Rightarrow x = y$ (f) $f(x) = x' \Rightarrow f : B \xrightarrow{n=1}^{n-1} B$
Za funkciju $f:(0,\infty)\to\mathbb{R}$ iz grupe $((0,\infty),\cdot)$ u grupu $(\mathbb{R},+)$, definisanu sa $f(x)=\ln x$, važi: (1) f je homomorfizam (2) f je izomorfizam (3) f^{-1} postoji i f^{-1} je homomorfizam (4) f^{-1} postoji i f^{-1} je izomorfizam (5) ništa od prethodno navedenog
Zaokružiti podgrupe grupe $(\mathbb{R}\setminus\{0\},\cdot)$: 1) $(\mathbb{R}\setminus\{0\},+)$ 2) $((0,\infty),\cdot)$ 3) $((-\infty,0),\cdot)$ 4) (\mathbb{N},\cdot) 5) $(\mathbb{Z}\setminus\{0\},\cdot)$ 6) $(\mathbb{Q}\setminus\{0\},+)$ 7) $((0,1),\cdot)$ 8) $(\{-1,1\},\cdot)$
Da li su sledeći uređeni parovi asocijativni grupoidi sa neutralnim elementom: (N,+) (N,-) (N,-) (N,-) (R\{0\},:).
Ako je $f: G \to H$ izomorfizam grupoda $(G, +)$ sa neutralnim elementom 0 u grupoid (H, \cdot) sa neutralnim elementom 1, tada je: (1) $f(0) = 1$ (2) $f(-a) = a^{-1}$ (3) $f(x \cdot y) = f(x) + f(y)$
1) Navesti dva primera domena integriteta koji nisu polja: (Fig. 1, 1), (Z. 1, 1)
1 h \bigcirc U polju \mathbb{Z}_7 izračunati $(3^2)^{-1} + 2^{-1} \cdot 3 = \underline{\qquad \bigcirc}$
$\mathbb{C}(U)$ polju \mathbb{Z}_5 , skup rešenja po $x\in\mathbb{Z}_5$ jednačine $3+4(x^{-1}+2x^2)=x$ je
10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\operatorname{Parg}(e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}}) = \underline{\qquad}, e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}} = \underline{\qquad}, R_e(e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}}) = \underline{\qquad}, I_m(e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{3}}) = \underline{\qquad}.$
\mathbb{C}^{2} Zaokružiti polja nad kojima je polinom t^2+t+1 svodljiv: \mathbb{Q} \mathbb{R} \mathbb{C} \mathbb{Z}_2 \mathbb{Z}_3
\mathfrak{tho} Skup svih mogućih stepena svodljivih polinoma nad poljem realnih brojeva $\mathbb R$ je $\{ \ell_i , \ell_j , \ell_j , \ldots \}$
U prstenu polinoma, za svaki polinom p važi: 1) ako je p jednak proizvodu dva polinoma, tada je p svodljiv 2) ako je $p=0$, tada je on nesvodljiv 4) ako je p svodljiv tada je $p \neq 0$ i $dg(p) \neq 0$ i p je jednak proizvodu dva polinoma stepena većeg od 0 5) ako je $p \neq 0$ i $dg(p) \neq 0$ i p je jednak proizvodu dva polinoma stepena većeg od 0, tada je p je svodljiv

- Neka su p(x) = 2x + 1 i $q(x) = x^2 + 2$ polinomi nad poljem \mathbb{Z}_5 i $\mathcal{A} = (\mathbb{Z}_5[x]/p, +, \cdot)$ i $\mathcal{B} = (\mathbb{Z}_5[x]/q, +, \cdot)$.

 Tada su polja: (a) Samo \mathcal{A} (b) Samo \mathcal{B} (c) \mathcal{A} i \mathcal{B} (d) Ni \mathcal{A} ni \mathcal{B} .
- U skupu kompleksnih brojeva je: 1) $\sqrt{z\overline{z}} = |z|$ 2) $z = e^{i\frac{\pi}{7}} \Rightarrow z^{-1} = \overline{z}$ 3) $|z_1z_2| = |z_2||z_1|$ 4) $R_e(z) = \frac{1}{2}(z+\overline{z})$ 5) $\overline{z_1-z_2} = \overline{z_2}-\overline{z_1}$ 6) $|z| = 1 \Leftrightarrow z^{-2} = \overline{z^2}$ 7) $|-z_1-z_2| \leq |z_1|+|z_2|$ 2 $|z_1|=|z_2||z_1| \Rightarrow \arg z_1 = \arg z_2$
- Neka su $z_1 = 2 + 2i$, $z_2 = -3 i$ i $z_3 = -1 i$. Izraziti u zavisnosti od z_1 , z_2 i z_3 ugao $z_2z_3z_1 = \frac{2}{\sqrt{1-1}}$ i zatim ga efektivno izračunati $z_2z_3z_1 = -\frac{2\sqrt{1-1}}{\sqrt{1-1}}$ Da li je ovaj ugao pozitivno orijentisan? DA NE
- $\supset \mathcal{C} + \bigcirc$ Ako je p svodljiv polinom nad poljem \mathbb{Q} , tada skup svih mogućih vrednosti za dg(p) je $\left(\otimes \mathcal{C} \otimes \mathcal{C} \otimes \mathcal{C} \right)$
- Neka je $\{1\}$ skup svih korena polinoma $f(x) = x^3 + ax^2 + bx + c$, gde su $a, b, c \in \mathbb{R}$. Tada skup svih mogućnosti za a je $a \in \{-1\}$, skup svih mogućnosti za b je $b \in \{-1\}$ i skup svih mogućnosti za c je $c \in \{-1\}$.
- Neka je $A = \{1, 2, 3, 4, 5\}$ i $B = \{1, 2\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f \nearrow$ označava neopadajuću funkciju f:

$$\begin{vmatrix} \{f|f:A \longrightarrow B\} \end{vmatrix} = \underbrace{\Im 2} \begin{vmatrix} \{f|f:A \xrightarrow{1-1} B\} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:A \to B \land f \nearrow \} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:B \xrightarrow{na} B\} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:B \to A \land f \nearrow \} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:B \to A \land f \nearrow \} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:A \xrightarrow{na} B\} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:A \xrightarrow{na} B\} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:B \to A \land f \nearrow \} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:A \xrightarrow{na} B\} \end{vmatrix} = \underbrace{\Im} \begin{vmatrix} \{f|f:A$$

- Ako je $f \in \mathbb{R}[x]$, $f(e^{-i\alpha}) = 0$ i $\alpha \in \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$, tada je: 1 $x e^{-i\alpha} \mid f(x)$ 2 $x e^{i\alpha} \mid f(x)$ 3 $x e^{i|\alpha|} \mid f(x)$ 4 $x^2 2x\cos\alpha + 1 \mid f(x)$ 5 $x^2 x\cos\alpha + 1 \mid f(x)$ 6 $x^2 + x\cos\alpha + 1 \mid f(x)$ 7 $x^2 x\cos\alpha + \alpha^2 \mid f(x)$
- Ako je $f \in \mathbb{R}[x]$, $f(e^{-i\alpha}) = 0$ i $\alpha \in \mathbb{R}$, tada je: 1 $x e^{-i\alpha} | f(x)$ 2 $x e^{i\alpha} | f(x)$ 3 $x e^{i|\alpha|} | f(x)$ 4 $x^2 2x \cos \alpha + 1 | f(x)$ 5 $x^2 x \cos \alpha + 1 | f(x)$ 6 $x^2 + x \cos \alpha + 1 | f(x)$ 7 $x^2 x \cos \alpha + \alpha^2 | f(x)$
- Ako je $z_1 \neq w$, $z_2 \neq w$, $z_1 \neq 0$ i $z_2 \neq 0$, tada je:

 1 arg $z_1 = \arg z_2 \Leftrightarrow \frac{z_1}{|z_1|} = \frac{z_2}{|z_2|} \Leftrightarrow (\exists k \in \mathbb{R}^+) \overrightarrow{Oz_1} = k \overrightarrow{Oz_2}$
 - 2) $\arg(z_1 w) = \arg(z_2 w) \Leftrightarrow \frac{z_1 w}{|z_1 w|} = \frac{z_2 w}{|z_2 w|}$
 - (3) Množenjem kompleksnog broja s realnim pozitivnim brojem argument se ne menja.
 - $(\exists k \in \mathbb{R}^+) \overrightarrow{wz_1} = k\overrightarrow{wz_2} \Leftrightarrow \arg(z_1 w) = \arg(z_2 w)$
 - 5) $(\exists k \in \mathbb{R}^+)\overline{wz_1} = k\overline{wz_2} \Leftrightarrow \frac{z_1 w}{|z_1 w|} = \frac{z_2 w}{|z_2 w|}$
 - (6) Kompleksni brojevi koji pripadaju istoj polupravoj koja ishodi iz koordinatnog početka imaju jednake argumente.
 - Množenje kompleksnog broja z realnim brojem k je homotetija sa centrom O(0,0) i koeficijentom k odnosno $H_{O,k}(z)$.
- Funkcija $f: (\frac{\pi}{6}, \frac{5\pi}{4}) \setminus \{\frac{\pi}{2}\} \longrightarrow \mathbb{R}$ definisana sa $f(x) = \operatorname{tg} x$ je: 1) injektivna i nije sirjektivna 2) sirjektivna i nije injektivna 3) bijektivna 4) nije injektivna i nije sirjektivna
- Funkcija $f: (\frac{\pi}{4}, \frac{3\pi}{4}) \longrightarrow (0, 1)$] definisana sa $f(x) = \sin x$ je: 1) injektivna i nije sirjektivna 2) sirjektivna i nije injektivna 3) bijektivna $f(x) = \sin x$ je: 1) injektivna i nije sirjektivna 2) sirjektivna i nije sirjektivna 3) bijektivna $f(x) = \sin x$ je: 1) injektivna i nije sirjektivna 2) sirjektivna i nije sirjektivna 3) bijektivna 4) nije injektivna i nije sirjektivna 3) bijektivna 4) sirjektivna 1)

KOLOKVIJUM 1, PRIMER 12

 γ . Pri deljenju polinoma $x^3 - x^2 - x + 1$ sa x + 1 nad \mathbb{R} , količnik je $\frac{x^3 - 1}{2} = \frac{x^3 - 1}{2}$, a ostatak je

1) $(a')' = a' \cdot a'$ 2) $a \cdot a' = 0$ 3) $a \cdot 1' = 1'$ 4) 1 + a' = 0' 5) $a' \cdot b' = (a' + b')'$ γ odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z=-\sqrt{2}-i\sqrt{6}$: $Re(z) = -\int_{\overline{z}} , Im(z) = -\int_{\overline{z}} , |z| = \sqrt{\overline{z}} , \operatorname{arg}(z) = -\frac{z\overline{z}}{3} , \overline{z} = -\overline{z} + \sqrt{\overline{z}}$ ζ $\widehat{\bullet}$ Za \subseteq u skupu $\mathcal{A} = \{A, B, C, D, E\}$, gde je $A = \{a, b, c\}, B = \{a, b, c, d\}, C = \{a, b\}, D = \{a, b, c, e\}, E = \{a, c\}$ minimalne el: 🥤 🗦 najmanji el: 🧼 najveći el: ____ maksimalne el: 🗧 🂽 Sledeće kompleksne brojeve napisati u algebarskom obliku: 🚋 🌏 Zaokružiti brojeve ispred sirjektivnih funkcija: (1) $f: [-1, \infty) \to [-1, \infty), \ f(x) = x^3, 2$ $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = \sqrt{x}$ (3) $f: (-\infty, 0] \to [0, \infty), \ f(x) = x^2$ (4) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$ (5) $f: (-\infty, 1) \to (0, \infty), \ f(x) = e^{-x}$ (6) $f: (\frac{\pi}{2}, \frac{5\pi}{4}) \to (-1, 1), \ f(x) = \sin x$ Zaokružiti brojeve ispred injektivnih funkcija: (4) $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = x^2(5), f: (-\infty, 1) \to (0, \infty), \ f(x) = e^{-x}(6), f: (\frac{\pi}{2}, \frac{5\pi}{4}) \to (-1, 1), \ f(x) = \sin x$ 🌠 Zaokružiti brojeve ispred struktura koje su komutativni grupoidi sa neutralnim elementom i nisu grupe. **4)** (\mathbb{R}, \cdot) **5)** $(\{-1,1\}, \cdot)$ **6)** $((0,\infty), \cdot)$ **7)** $((0,1], \cdot)$ (2) (\mathbb{N},\cdot) $(\mathbb{R},+)$ \bullet Za polinome $p(x)=(x+1)^3x^3(x-2)^6$ i $q(x)=x^5(x+1)^4(x-5)^2(x+2)^3$ nad poljem realnih brojeva izračunati: $NZD(p,q) = (\chi_{AB} - \chi_{AB})$ 40 Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj grupi (P,+), gde je \hbar neutralni, a -x inverzni $(2) (a + \hbar = \hbar (2), -a + a = \hbar (3) - \hbar + \hbar = \hbar (4) - \hbar = \hbar (5) - (a + b) = -b + (-a) (6) - (a + b) = -a + (-b)$ Koreni polinoma $x^2 - x\sqrt{2} + 1$ su: 1) $e^{i\frac{3\pi}{4}}$, 2) $e^{-i\frac{\pi}{4}}$, 3) $e^{-i\frac{3\pi}{4}}$, 4) $-e^{i\frac{3\pi}{4}}$ 5) $-e^{-i\frac{3\pi}{4}}$ 6) $e^{i\frac{\pi}{4}}$, 7) $-e^{i\frac{\pi}{4}}$ We keen polinoma $x^2 - i$ su: 1) $e^{i\frac{3\pi}{4}}$, 2) $e^{-i\frac{3\pi}{4}}$, 3) $-e^{i\frac{3\pi}{4}}$, 4) $-e^{-i\frac{3\pi}{4}}$, 5) $e^{i\frac{\pi}{4}}$, 6) $e^{-i\frac{\pi}{4}}$, 7) $-e^{i\frac{\pi}{4}}$. $^{\gamma_i}$ NZD za polinome $x^2-x\sqrt{2}+1$ i x^2-i je polinom : NZD $(x^2-x\sqrt{2}+1,\;x^2-i)=$ imes = $e^{\int \frac{x^2-i}{2}}$ 4y (Izračunati: 1) $arg(-7) = \widehat{\jmath}($ 2) $arg(-3i) = -\frac{\widehat{\jmath}(}{7}$ 3) $arg(9) = \emptyset$ 4) $arg(-0) = \sqrt{3}$ 5) $arg(8i) = \frac{1}{2}$ 6) $arg(-1+i) = \frac{2\widehat{\jmath}(}{3}$ 7) $arg(\sqrt{3}-i) = \frac{3}{2}$ 8) $arg(-\sqrt{3}+1) = \frac{3\widehat{\jmath}(}{3}$ € Napisati tablicu grupoida ({1,3,7,9},·), gde je · množenje po modulu 10. Odrediti inverzne elemente i izračunati: $1^{-1} = 7$, $3^{-1} = 7$, $7^{-1} = 7$, $9^{-1} = 7$, $(9 \cdot 7)^{-1} = 7$, $7^{-1} \cdot 9^{-1} = 7$ Da li je $(\{1,3,7,9\},\cdot)$ Abelova grupa? \widehat{DA} NE. Zaokružiti tačan odgovor. Da li je $(\{1,3,7,9\},\cdot)=(\{3^n|n\in\mathbb{N}\},\cdot)$? \widehat{DA} NE. Zaokružiti tačan odgovor. 16. The li je $\rho = \{(1,1), (2,2), (3,3), (4,4), (5,5), (3,5), (4,3), (4,2), (4,5), (2,5)\}$ Haseov dijagram relacija poretka skupa $A = \{1, 2, 3, 4, 5\}$: (DA)NE, i ako jeste, nacrtati njen Haseov dijagram. Odrediti , maksimalne: 💛 🦈 minimalne: najveći element: i naimanji element: Ako je p polinom stepena 4 nad poljem R i ako je svodljiv u tom polju, tada p: 1) uvek ima korena u polju R 2) nema korena u polju R 3) nekada ima, a nekad nema korena u polju R 4) je uvek normalizovan _5) ništa od prethodnog

(A, A, A, A, B, B) Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri (B, +, A, A, 0, 1):

- Koje jednakosti su tačne za sve $z \in \mathbb{C}$ i sve $\varphi \in \{-\pi, \pi\}$ za koje su i definisane: A) $e^{-i\varphi} = e^{-i\varphi}$ $e^{-i\varphi} = e^{-i\varphi}$ $e^{i(\arg z \arg(-z))} = -1$ A) $e^{i(\arg z + \arg(-z))} = 1$ 5) $1 = z\overline{z}|z|^{-2}$ 6) $\arg z > 0 \Rightarrow \arg z \arg(-z) = \pi$
- 4 \(\gamma\) skupu kompleksnih brojeva je: 1) $\sqrt{z\overline{z}} = |z|$ 2) $z = e^{i\frac{\pi}{7}} \Rightarrow z^{-1} = \overline{z}$ 3) $|z_1z_2| = |z_2||z_1|$ 4) $R_e(z) = \frac{1}{2}(z+\overline{z})$ 5) $\overline{z_1-z_2} = \overline{z}_2 \overline{z}_1$ 6) $|z| = 1 \Leftrightarrow z^{-2} = \overline{z}^2$ 7) $|-z_1-z_2| \leq |z_1| + |z_2|$ 2 8) $|z_1|z_2| = |z_2|z_1| \Rightarrow \arg z_1 = \arg z_2$
- $\begin{array}{ll} \text{$\cap$} & \bullet \\ \text{$\cap$} & \bullet \\ & \rho_3 = \{(x,y)|y \in \{1,2,\ldots,x\}, x \in \mathbb{N}\}, \quad \rho_4 = \{(x,y)|x,y \in \mathbb{N}, \ x \cdot y \text{ je neparan broj}\}, \\ & \rho_5 = \{(1,1),(2,2)\}, \quad \rho_6 = \emptyset, \quad \rho_7 = \mathbb{N}^2 \end{array}$

Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost.

 \mathbf{K}

 $\rho_1: \mathbb{R} S \triangle T \vdash \rho_2: \mathbb{R} S \triangle T \vdash \rho_3: \mathbb{R} S \triangle T \vdash \rho_4: \mathbb{R} S \triangle T \vdash \rho_5: \mathbb{R} S \triangle T \vdash \rho_6: \mathbb{R} S \triangle T \vdash \rho_7: \mathbb{R}$

- Za kompleksní broj $z=1+e^{i\frac{\pi}{6}}$, nači: $R_e(z)=\frac{2+\sqrt{2}}{2} \quad , I_m(z)=\frac{\sqrt{2}}{2} \quad , |z|=\sqrt{2+\sqrt{2}} \quad , \arg(z)=\frac{\sqrt{2}}{\sqrt{2}} \quad , \overline{z}=\sqrt{2+\sqrt{2}} e^{-iz} \quad .$
- Neka je $A = \{1, 2, 3\}$ i $B = \{1, 2\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f \nearrow$ označava rastuću funkciju f i $f \nearrow$ označava neopadajuću funkciju f:

$$\begin{vmatrix} \{f|f:A\longrightarrow B\} \end{vmatrix} = \underbrace{3} \begin{vmatrix} \{f|f:A\xrightarrow{1-1}B\} \end{vmatrix} = \underbrace{0} \begin{vmatrix} \{f|f:A\longrightarrow B\land f\nearrow \} \end{vmatrix} = \underbrace{2} \begin{vmatrix} \{f|f:B\xrightarrow{na}B\} \end{vmatrix} = \underbrace{2} \begin{vmatrix} \{f|f:A\xrightarrow{na}B\} \end{vmatrix} = \underbrace{6} \begin{vmatrix} \{f|f:B\longrightarrow A\land f\nearrow \} \end{vmatrix} = \underbrace{6} \begin{vmatrix} \{f|f:B\longrightarrow A\} \end{vmatrix} = \underbrace{3} \begin{vmatrix} \{f|f:B\longrightarrow A\} \end{vmatrix} = \underbrace{3}$$

- Neka su $f:(0,\infty)\to (0,\infty)$ i $g:(0,\infty)\to (0,\infty)$ definisane sa $f(x)=e^x-1$ i $g(x)=\frac{1}{x^2}$. Izračunati:
 - 1) $f^{-1}(x) = \frac{1}{(f \circ g)^{-1}(x)}$ 2) $g^{-1}(x) = \frac{1}{\sqrt{2}\pi}$ 3) $(f \circ g)(x) = \frac{1}{\sqrt{2}\pi}$ 4) $(f \circ g)^{-1}(x) = \frac{1}{\sqrt{2}\pi}$ 5) $(g^{-1} \circ f^{-1})(x) = \frac{1}{\sqrt{2}\pi}$
- Zaokružiti brojeve ispred tvrđenja koja su tačna u Bulovoj algebri $\mathcal{B} = (\{0,1\},+,\cdot,',0,1)$. (x = xy + xy') (x = xy + xy')
 - (1) x = xy + xy' (2) xx' = (x+1)' (3) xx = x + x (4) xy = x + y (5) $xy = 1 \Rightarrow x = 1$ (6) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ (7) $(x = 0 \lor y = 0) \Rightarrow xy = 0$
 - (8) $(\forall x \in B)(\exists y \in B) \ x + y = 1 \land xy = 0$
- - $(5) \left(\{ f_k : \mathbb{R} \to \mathbb{R} \middle| f_k(x) = kx, k \in \mathbb{R}^+ \}, \circ \right) (6) \left(\{ f \middle| f : \mathbb{R} \xrightarrow{1-1}^{1-1} \mathbb{R} \}, \circ \right)$
- Napisati primere beskonačnog prstena bez jedinice $(A, +, \cdot)$ i konačnog prstena bez jedinice $(B, +, \cdot)$. $A = \begin{pmatrix} 7 & 1 \\ 1 & 2 \end{pmatrix}$ $A \in \mathbb{Z}$ $A \in \mathbb{Z}$
- \mathbb{Z}_{2} Zaokružiti oznaku polja za koje važi da je polinom t^3+t+1 svodljiv nad njima. \mathbb{Q} \mathbb{R} \mathbb{C} \mathbb{Z}_2 \mathbb{Z}_3 \mathbb{Z}_5
- Ako je p polinom stepena manjeg od 3 nad poljem C tada je polinom p:

 1) uvek svodljiv
 2) uvek nesvodljiv
 3) ništa od prethodnog.

PRIMER 13 KOLOKVIJUM 1, Neka su $f: (-1, \infty) \to (-\infty, 0)$ i $g: (-1, \infty) \to (-\infty, 0)$ definisane sa $f(x) = -\sqrt{1+x}$ i $g(x) = -(x+1)^3$.

Izračunati:

1) $f^{-1}(x) = \chi^3$ 2) $g^{-1}(x) = 3$ 3) $(f \circ g)(x) = 4$ 4) $(f \circ g)^{-1}(x) = 5$ 5) $(g^{-1} \circ f^{-1})(x) = 4$ Injektivne funkcije su: (1) $f: \mathbb{R} \to \mathbb{R}^+$, $f(x) = x^2$ (2) $f: [-1, 1] \to [0, 2\pi]$, $f(x) = \arccos x$ (3) $f: [\pi, \frac{3\pi}{2}] \to [-1, 1]$, $f(x) = \cos x$ (4) $f: [-3, 0] \to [0, 11]$, $f(x) = x^2$ (5) $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \ln x$ γ (\bullet Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$: $(a')' = (a+1')' \qquad (2) \ aa' = 1' \qquad (3)' \ a \cdot 1' = (1')' \qquad (4) \ 1 + a = 0' \qquad (5)' \ ab = (a'+b')'$'s Skup kompleksnih rešenja jednačine $x^3 = 1$ je $S = \{$ 6. Sledeće kompleksne brojeve napisati u eksponencijalnom obliku, odnosno u obliku $\begin{array}{lll} \rho e^{i\varphi}, \rho \in [0,\infty), \varphi \in (-\pi,\pi]; \\ 2^2 = \mathcal{L}_1 e^{i\cdot c} &, (\sqrt{i}\,)^2 = e^{i\cdot c} &, \sqrt{(i)^2} = [\ell] \cdot \mathcal{L}_2 &, -1 - i = \frac{\ell}{2} \cdot e^{i\cdot c} &, \frac{\pi}{2} = \frac{\pi}{2} \cdot e^{i\cdot c} - \frac{\pi}{2} i = \frac{\pi}{2} \cdot e^{i\cdot c} &, -\frac{\pi}{2} i$ 🖟 (• Zaokružiti broj (ili brojeve) ispred struktura koje su asocijativno komutativni grupoidi. 1) $(\mathbb{N},+)$ 2) (\mathbb{N},\cdot) 3) $(\{-1,0,1\},\cdot)$ 4) $(\{-1,1\},+)$ 5) (\mathbb{R},\cdot) 6) $((0,\infty),+)$ 7) $(\{-1,1\},\cdot)$ 8) $((0,\infty),\cdot)$ b. Neka su P i Q polinomi drugoga stepena i $P \neq -Q$. Tada je $dg(P+Q) \in \{\uparrow, \uparrow, \downarrow \downarrow \}$ i $dg(PQ) \in \{\uparrow\}$. \mathfrak{I} . Pri delenju polinoma x^2+1 sa x+1 nad \mathbb{R} , količnik je $\underline{\qquad} \mathfrak{I}$, a ostatak je Neka su f i g funkcije definisane sa $f = \begin{pmatrix} a & b & c & d \\ a & d & b & c \end{pmatrix}$, $g = \begin{pmatrix} a & b & c & d \\ d & b & c & d \end{pmatrix}$. Tada je $f^{-1} = \begin{pmatrix} a & b & c & d \\ c & c & c & d \end{pmatrix}$, $g^{-1} = \begin{pmatrix} a & b & c & d \\ d & d & c & d \end{pmatrix}$, $(f \circ g)^{-1} = \begin{pmatrix} a & b & c & d \\ c & c & c & d \end{pmatrix}$, $f^{-1} \circ g^{+1} = \begin{pmatrix} a & b & c & d \\ d & d & c & c \end{pmatrix}$ 4º ∱Iza oznake svake od datih relacija u skupu R zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija.
$$\begin{split} \rho &= \{(x,-\frac{1}{x})|x>0\}: \ \mathsf{R} \ \widehat{\mathsf{S}} \ \widehat{\mathsf{A}} \ \widehat{\mathsf{T}} \ \widehat{\mathsf{F}} \\ \rho &= \{(x,y)|x+y=0\}: \ \mathsf{R} \ \widehat{\mathsf{S}} \ \widehat{\mathsf{A}} \ \widehat{\mathsf{T}} \ \widehat{\mathsf{F}} \) \end{split}$$
 $\rho = \{(x, \sqrt{1-x^2}) | x \in (0,1]\} : \mathsf{RSAT}$ $\rho = \{(x,y)|x^2 + y^2 = 0\}: \text{ RSATE}$ $\rho = \{(x,y)|xy < 0\}: \mathsf{R} \ \widetilde{\mathsf{S}} \ \mathsf{A} \ \mathsf{T} \ \widetilde{\mathsf{F}}$ $\rho = \{(x,y) | x \le y < x+5\} : (R) S \text{ (A)} T F$ A jednički koreni polinoma $P(x) = x^2 - (i+1)x + i$ i $Q(x) = x^2 + 1$ su $\{-i, -i, -1\}$, a $NZD(P,Q) = \sqrt{-i}$ B. ČZajednički koreni polinoma $P(x)=x^2-i$ i $Q(x)=x^4+1$ su $\{e^{i\phi_{x}}\}$, a $NZD(P,Q)=\{e^{i\phi_{x}}\}$ \hat{x} Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom prstenu $(F,+,\cdot)$: (1) a+(-a)=02) a + bc = (a + b)(a + c) (3) (F, +) je grupa 4) (F, \cdot) je grupa 5) operacija + je distributivna prema 6) $ab = 0 \Rightarrow a = 0 \lor b = 0$ 7) $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ (8) $a \cdot 0 = 0$ (9) $a \cdot (-a) = -a^2$ Zaokruži brojeve ispred tačnih iskaza. $\widehat{\mathbb{1}}$ arg $z \in (0,\pi] \Leftarrow I_m(z) > 0$ $\widehat{\mathbb{2}}$ arg $z \leq 0 \Rightarrow I_m(z) \leq 0$ $\widehat{\mathbb{2}}$ arg $z \leq 0 \Rightarrow I_m(z) \leq 0$ $\widehat{\mathbb{2}}$ arg $z \leq 0 \Rightarrow I_m(z) \leq 0$ $\widehat{\mathbb{2}}$ arg $z \leq 0 \Rightarrow I_m(z) \leq 0$ $\widehat{\mathbb{2}}$ arg $z \leq 0 \Rightarrow I_m(z) \leq 0$ lacktriangleNeka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je f:A o B definisana sa $f(x) = \ln(x^2 + e^{-1})$. Tada je $A = \underbrace{\mathbb{N}}_{\bullet}$, $f(\underbrace{\hspace{0.2cm} 0}_{\bullet}) = -1$ i $B = \underbrace{\mathbb{N}}_{\bullet}$. Funkcija $f: A \to B$ je: 1) bijektivna 2 sirjektivna ali ne injektivna 3) injektivna ali ne sirjektivna 4) niti injektivna niti sirjektivna

Neka je $z=1+i,\ u=4+2i$ i w=2+3i. Rotacijom tačke z oko tačke w za ugao $\frac{\pi}{2}$ dobija se tačka

translacijom tačke z za vektor w dobija se tačka $\frac{\partial^2 \partial x^2}{\partial x^2}$, $\sqrt[4]{zuw} = \frac{1}{2}$

 \bullet Koje od navedenih struktura su grupe: 1) $\Big(\{f_k:\mathbb{R} o\mathbb{R}\,|\,f_k(x)=k^2x,k\in\mathbb{R}\},+\Big)$ $\widehat{\text{(2)}}\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big|f_k(x)=kx,k\in\mathbb{R}\},+\right) \qquad \widehat{\text{(3)}}\left(\{f_k:\mathbb{R}\to\mathbb{R}\Big|f_k(x)=kx,k\in\mathbb{R}\},\circ\right)$ $\text{ (} \left\{ f_k: \mathbb{R} \to \mathbb{R} \middle| f_k(x) = k^2 x, k \in \mathbb{R} \right\}, \circ \text{ (5)} \left(\left\{ f_k: \mathbb{R} \to \mathbb{R} \middle| f_k(x) = k x, k \in \mathbb{R}^+ \right\}, \circ \right)$ Neka su $z_1=1,\,z_2=5+2i$ i $z_3=2+3i$ kompleksni brojevi. Tada rotacijom tačke z_1 oko tačke z_3 za ugao $\frac{\pi}{2}$ dobija se tačka $\frac{f+\gamma f}{f}$, translacijom tačke z_1 za vektor z_2 dobija se tačka $\frac{f+\gamma f}{f}$, a $rac{1}{2}z_2z_3=\frac{-\gamma f}{2}$ Neka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je $f:A \to B$ definisana sa $f(x) = -\sqrt{1-x^2}$. Tada je $A = [-1, f(\underline{0})] = -1, f(\underline{1}) = 0$ i $B = \underline{\hspace{1cm}}$, a $f: A \to B$ je: 1) bijektivna (2), sirjektivna ali ne injektivna 3) injektivna ali ne sirjektivna 4) niti injektivna niti sirjektivna (•) Funkcija $f: (\frac{\pi}{6}, \frac{7\pi}{6}) \longrightarrow (-1, \frac{9}{10})$ definisana sa $f(x) = \cos x$ je: 1) sirjektivna i nije injektivna 2) injektivna i nije sirjektivna (3), nije injektivna i nije sirjektivna 4) bijektivna Funkcija $f:(-\frac{4\pi}{3},-\frac{2\pi}{3}) \longrightarrow [-\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2}]$ definisana sa $f(x)=\sin x$ je: 1) sirjektivna i nije injektivna (2) injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna • Funkcija $f: \left[\frac{\pi}{3}, \frac{4\pi}{3}\right] \setminus \left\{\frac{\pi}{2}\right\} \longrightarrow \mathbb{R}$ definisana sa $f(x) = \lg x$ je: A sirjektivna i nije injektivna injektivna i nije sirjektivna 3) nije injektivna i nije sirjektivna 4) bijektivna igorup Navesti geometrijsku interpretaciju skupova A,B,C,D,E i sledećih kompleksnih funkcija $f:\mathbb{C} \to \mathbb{C},$ $g:\mathbb{C}\to\mathbb{C}$, $h:\mathbb{C}\to\mathbb{C}$ i $s:\mathbb{C}\to\mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f,g,g $f(z) = -\overline{z}i \quad \text{je} \quad \frac{\text{Find 2inh figure for the Con}}{g(z) = -(-z)} \quad \text{je} \quad \frac{\text{Find 2inh figure for the Con}}{g(z)} = \frac{\text{Find 2inh figure for t$ $h(z) = R_{e}(z) \text{ je} \xrightarrow{f} \frac{c}{z} \frac{c}{z}$ $C = \{z | z^2 = \overline{-\overline{z}}\}$ je $\frac{\sqrt{-1}}{2}$ $D = \{z \mid \arg(-z) = \overline{\arg(-z)}\} \text{ je } \frac{1}{z} = \frac{1}{z} \frac{1}{z}$ Zaokružiti slova ispred tačnih iskaza: (a) $A \subset B$ b) $C \subseteq D$ c) $D \subseteq C$ (d) $B \subseteq D$ e) $D \subseteq E$ Neka je $\{1,2\}$ skup svih korena polinoma $f(x) = x^3 + ax^2 + bx + c$, gde su $a,b,c \in \mathbb{R}$. Tada je $a \in \{-c,-c,-c\}$ $b \in \{-c,-c,-c\}$ rastuću funkciju f i $f \nearrow$ označava neopadajuću funkciju f: $\left|\{f|f:A\longrightarrow B\}\right|=\underline{\mathcal{F}}\left|\{f|f:A\xrightarrow{1-1}B\}\right|=\underline{\bigcirc}\left|\{f|f:A\to B\land f\nearrow\}\right|=\underline{\bigcirc}\left|\{f|f:B\xrightarrow{na}B\}\right|=\underline{\triangle}$ $\left|\{f|f:B\to A\}\right|=\frac{3}{2}\left|\{f|f:A\to A\ \land\ f\nearrow\}\right|=\frac{q}{2}\left|\{f|f:B\to A\ \land\ f\nearrow\}\right|=\frac{6}{2}\left|\{f|f:A\xrightarrow{na}B\}\right|=\frac{6}{2}\left|\{f|f:A\to A\ \land\ f\nearrow\}\right|=\frac{6}{2}\left|\{f|f:A\to A\ \land\ f\nearrow\}\right|=\frac{6$ U skupu kompleksnih brojeva je: 1) $\sqrt{i^2} = i$ 2) $(\forall \varphi \in (-\pi, \pi])$ $(e^{i\varphi})^{-1} = \overline{e^{i\varphi}}$ 3) $|z| = 1 \Rightarrow z^{-1} = \overline{z}$ 4) $z^{-1} = \overline{z}|z|^{-2}$ 5) $\overline{|z_1 z_2|} = |z_1||z_2|$ 6) $\overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2$ 7) $|z| = 1 \Leftarrow z^{-1} = \overline{z}$ $|z_1-z_2|=|-z_1|+|-z_2|$ Ako je $P(x) = ax^3 + bx^2 + c$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada stepen dg(P)polinoma P je: 1) dg(P) = 3 2) $dg(P) \in \{1,3\}$ 3) $dg(P) \in \{0,3\}$ 4) $dg(P) \in \{0,2,3\}$ 5) $dg(P) \in \{0,1,2,3\}$

- Taokružiti brojeve ispred struktura koje su domeni integriteta: (1) $(\mathbb{Z}, +, \cdot)$ ($(9k|k \in \mathbb{Z}\}, +, \cdot)$ 3) $(\mathbb{Z}_9, +, \cdot)$ (4) $(\mathbb{Q}, +, \cdot)$ (5) $(\mathbb{Z}_3, +, \cdot)$ (6) $(\mathbb{N}, +, \cdot)$ (7) $(\mathbb{C}, +, \cdot)$ (8) $(\mathbb{R}[t], +, \cdot)$ (9) $(\mathbb{R}^+, +, \cdot)$
- 😭 . 🎍 Ako je p polinom stepena 3 nad nekim poljem F i ako nema koren u tom polju, tada je $p\colon \mathbf{1}$) uvek svodljiv (2) uvek nesvodljiv 3) nekada svodljiv a nekada nesvodljiv 4) ništa od prethodnog 5) uvek normalizovan
- \mathcal{F} Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B}=(B,+,\cdot,',0,1)$.
 - ① xx = x + x 2) x'y' = (x + y)' 3) xx' = (x + 1)' 4) $xy = 1 \implies x = 1$
 - (5) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ (6) $(x = 0 \lor y = 0) \Rightarrow xy = 0$ (7) y = xy + xy'
 - (8) $(\forall x \in B)(\exists y \in B) \ x + y = 1 \land xy = 0$
- Zaokružiti asocijativno komutativne grupoide, koji nisu grupe: 1) $(\{z \in \mathbb{C} | Im(z) = Re(z)\}, +)$ 2) $(\{f|f: \mathbb{R} \to \mathbb{R}\}, \circ)$ 3) $(\mathbb{N} \cup \{0\}, +)$ 4) (\mathbb{Z}, \cdot) 5) $(\{7k|k \in \mathbb{Z}\}, \cdot)$ 6) $(\mathbb{R}[x], \cdot)$
- \mathcal{N} Zaokružiti grupoide: 1) $(\mathbb{R} \setminus \{0\}, +)$ 2) $((0, \infty), \cdot)$ 3) $((-\infty, 0), \cdot)$ 4) (\mathbb{N}, \cdot)

- Zaokružiti oznaku polja za koje važi da je polinom t^2+t+1 svodljiv nad njima. $\mathbb{Q} \mathbb{R} \mathbb{C} \mathbb{Z}_2 \mathbb{Z}_3 \mathbb{Z}_5$ Neka je $f \in \mathbb{R}[x]$ i f(1+i) = 0. Tada važi: $(1) x 1 i \mid f(x);$ $(2) x 1 + i \mid f(x);$ $(3) x^2 2x + 2 \mid f(x);$ $(5) x \sqrt{2}e^{i\frac{\pi}{4}} \mid f(x)$

KOLOKVIJUM 1, PRIMER 14

- Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona. poseduje: R- refleksivnost, S- simetričnost, A- antisimetričnost, T- tranzitivnost. F. <:(R)S(R)(T) F <: R S(A)(T) F $\equiv_3 (x \equiv_3 y \Leftrightarrow 3|(x-y)) : \mathbb{R} \nearrow \mathbb{A} \nearrow \mathbb{A}$
- l. (a) Neka su $f:(-1,0) \to (-\frac{\pi}{2},0)$ i $g:(-1,0) \to (-\frac{\pi}{2},0)$ definisance sa $f(x)=\arcsin x$ i $g(x)=2\arctan x$.

1)
$$f^{-1}(x) = \frac{1}{2} \ln x$$

4) $(g^{-1} \circ f^{-1})(x) = \frac{1}{2} \frac{1}{$

- 3) $f: [-1,1] \to [-\pi,\pi], f(x) = \arcsin x$ 3) $f: [\frac{\pi}{2},\pi] \to [-1,1], f(x) = \cos x$ 4) $f: [-3,0] \to [-8,1], f(x) = 1 x^2$ 5) $f: \mathbb{R}^+ \to \mathbb{R}, f(x) = \ln x$
- \leftarrow Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$:

$$(1)(1')' = (a \cdot 1')'$$

$$(2)(aa')' = 0'$$

$$(3)(a+1') = (a')'$$

$$(4)(1+a) = (1')'$$

$$(5)(ab)' = (a'+b')'$$

• Skup kompleksnih rešenja jednačine $x^2 = 2i$ je $S = \{$

Sledeće kompleksne brojeve napisati u eksponencijalnom obliku, odnosno u obliku

$$\rho e^{i\varphi}, \rho \in [0, \infty), \varphi \in (-\pi, \pi]:$$

$$-2^2 = \frac{\sqrt{3}}{2}, (\sqrt[3]{i})^3 = e^{i\varphi}, \sqrt[3]{(i)^3} = \frac{1}{2} e^{i\varphi}, -\sqrt{3} - i = 2 e^{i\varphi}, \frac{\pi}{6} = \frac{1}{6} e^{i\varphi}, \frac{\pi}{6} = \frac{1}{6$$

- Zaokružiti broj (ili brojeve) ispred struktura koje su komutativne grupe. $\cancel{1}(\mathbb{N},+)\cancel{2}(\mathbb{N},\cdot)\cancel{3}(\{-1,0,1\},\cdot)\cancel{4}(\{-1,1\},+)\cancel{5}(\mathbb{R},\cdot)\cancel{6}((0,\infty),+)(7)(\{-1,1\},\cdot)\cancel{8}((0,\infty),\cdot)$
- ${}^{\circ}$ Neka su P i Q polinomi trećega stepena i $P \neq -Q$. Tada je $dg(P+Q) \in \{{}^{\circ},{}^{\circ}\}$ i $dg(PQ) \in \{{}^{\circ}\}$.
- $\mathcal{AO}(\widehat{\bullet})$ Pri delenju polinoma x^3-1 sa x+1 nad \mathbb{R} , količnik je $\underline{\hspace{1cm}} \xrightarrow{\hspace{1cm}} \xrightarrow{\hspace{1cm}} \xrightarrow{\hspace{1cm}} \xrightarrow{\hspace{1cm}} \xrightarrow{\hspace{1cm}}$, a ostatak je $\underline{\hspace{1cm}} \xrightarrow{\hspace{1cm}} \xrightarrow{\hspace{1cm}} \xrightarrow{\hspace{1cm}}$
- Neka su f i g funkcije definisane sa $f = \begin{pmatrix} a & b & c & d \\ d & c & b & a \end{pmatrix}$, $g = \begin{pmatrix} a & b & c & d \\ b & a & d & c \end{pmatrix}$. Tada je $f \circ g = \begin{pmatrix} a & b & c & d \\ c & c & d & c & d \end{pmatrix}$, $f^{-1} = \begin{pmatrix} a & b & c & d \\ d & c & d & c & d \end{pmatrix}$, $f \circ g = \begin{pmatrix} a & b & c & d \\ c & c & d & c & d \end{pmatrix}$, $f^{-1} \circ g^{-1} = \begin{pmatrix} a & b & c & d \\ c & c & d & c & d \end{pmatrix}$

Neka su $f: (-1,0) \to (-1,0)$ i $g: (-1,0) \to (-1,0)$ definisanc sa $f(x) = -\sqrt{1-x^2}$ i $g(x) = x^2 - 1$.

Izračunati:

1)
$$f^{-1}(x) = -\int_{0}^{\pi} \frac{1}{x^{2}} dx$$
 2) $g^{-1}(x) = \frac{1}{x^{2}} \frac{1}{x$

- $A \cap A \cap B$ roj svih simetričnih relacija skupa $A = \{1, 2\}$ je: \emptyset
 - Zaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$.

 ① xx = x + x 2) xy = x + y 3) xy = (x + y)' 4) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ (5) $(x = 0 \lor y = 0) \Rightarrow xy = 0$ (6) x = xy + xy' (7) $(\forall x \in B)(\exists y \in B) \ x + y = 1 \land xy = 0$
- Neka je $A = \{1, 2, 3\}$ i $B = \{2, 3, 4\}$ i binarne relacije $f_1 = \{(1, 3), (2, 4)\}$, $f_2 = \{(1, 3), (3, 4), (2, 3)\}$, $f_3 = \{(3, 3), (2, 2), (1, 4)\}$, $f_4 = \{(3, 3), (2, 3), (1, 3)\}$. Popuniti obavezno sa da ili ne:

23	33 ((3,3), (3,3), (3,3), (3,3), (1,3)					
١	f_i je funkcija	f_i je funkcija skupa A u skup B	$f_i: A \xrightarrow{1-1} B$	$f_i: A \xrightarrow{na} B$	$f: A \stackrel{1-1}{\underset{\text{na}}{\rightarrow}} B$	
f_1	7a	$n\epsilon$	r.	7¢	7.6	
f_2	7.	-3 Th	24,	al a	+ 1,	
f_3	1 d	2 0	4.0	***	-7.4	
f_4	da	<i>f</i> 2	Λĥ	Hp.	r 3 ·	

- Neka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je $f:A\to B$ definisana sa $f(x)=\frac{x}{x^2+1}$. Tada je $A=\frac{|H|}{|H|}$, $f(\underline{\mathcal O})=1$ i $B=\frac{f(x)}{2}$. Funkcija $f:A\to B$ je:
 - (a) sirjektivna ali ne injektivna b) injektivna ali ne sirjektivna
 - c) niti injektivna niti sirjektivna d) bijektivna
- Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom polju $(F, +, \cdot)$:

 1) a + bc = (a + b)(a + c) 2) (F, \cdot) je grupa 3) (F, \cdot) je grupoid 4) operacija + je distributivna prema \cdot 3) $ab = 0 \Rightarrow a = 0 \lor b = 0$ 6) $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ 7) $a \cdot 0 = 0$ 8) $a \cdot (-a) = -a^2$ 9) a + (-a) = 0
- Neka su z_1, z_2 i z_3 kompleksni brojevi. Tada rotacijom tačke z_2 oko tačke z_1 za ugao $\frac{\pi}{2}$ dobija se tačka $\frac{2+2+3}{2}$ translacijom tačke z_1 za vektor z_2 dobija se tačka $\frac{2+2+3}{2}$, a $\frac{3}{2}z_3z_1z_2 = \frac{4+2+3}{2}$
- づら、 / Zaokružiti brojeve ispred sirjektivnih funkcija:
 - (1) $f: \mathbb{R}^+ \to (-\infty, 3), \ f(x) = 3 x$ (2) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3$ (3) $f: \mathbb{R}^+ \to (0, \infty), \ f(x) = \sqrt{x}$ (4) $f: [0, \infty) \to [0, \infty), \ f(x) = x^6$ (5) $f: (0, \frac{\pi}{2}) \to (0, \infty), \ f(x) = \operatorname{tg} x$ (6) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x$
- Funkcija f je injektivna ako i samo ako za svako x, y, a i b važi: (1) $((x, a) \in f \land (y, a) \in f) \Rightarrow x = y$ 2) $((x, a) \in f \land (y, a) \in f) \Rightarrow x \neq y$ (3) $x = y \Rightarrow f(x) = f(y)$ (4) $f(x) = f(y) \Rightarrow x = y$ (5) $f(x) = f(y) \Leftrightarrow x = y$
- Neka je $A = \{1, 2, 3\}$ i $B = \{1, 2, 3, 4\}$. Odrediti broj elemenata sledećih skupova funkcija: $\left| \{f | f : A \longrightarrow B\} \right| = \underbrace{65}_{-1} \left| \{f | f : A \xrightarrow{1-1}_{-1} B\} \right| = \underbrace{25}_{-1} \left| \{f | f : A \longrightarrow B \land f \nearrow \} \right| = \underbrace{5}_{-1} \left| \{f | f : B \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{1-1}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : B \longrightarrow A \land f \nearrow \} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_{-1} A\} \right| = \underbrace{5}_{-1} \left| \{f | f : A \xrightarrow{na}_$
- Navesti geometrijsku interpretaciju skupova A, B, C, D, E i sledećih kompleksnih funkcija $f: \mathbb{C} \to \mathbb{C}$, $g: \mathbb{C} \to \mathbb{C}$, $h: \mathbb{C} \to \mathbb{C}$ i $s: \mathbb{C} \to \mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija f, g, h i s. $f(z) = -\overline{z} \frac{1+i}{\sqrt{2}} \text{ je } \frac{a \cdot i \cdot c^{\frac{1}{2}} \cdot c^{\frac{1}{2}}}{2} \frac{a \cdot i \cdot c^{\frac{1}{2}}}{2}$
 - $f(z) = -\overline{z} \frac{1+i}{\sqrt{2}} \text{ je } \frac{2^{i+i}e^{\frac{i}{2}} \cdot (z z) \cdot (z z) \cdot (z z)}{2^{i+i}e^{\frac{i}{2}} \cdot (z z) \cdot (z z)} \frac{1}{2^{i+i}e^{\frac{i}{2}} \cdot (z$

```
C = \{z | z^3 = -\overline{z}\} \text{ je } -i 
         D = \{z | \arg(-z) = \overline{\arg(-z)}\} \text{ je } \underline{\qquad \qquad \downarrow_{z, z}, \qquad \downarrow_{z, z}, \qquad }
         Zaokružiti slova ispred tačnih iskaza: a) A \subset B b) C \subseteq D c) D \subseteq C d) B \subseteq D e) D \subseteq E
   Neka je \{1,-1,2\} skup svih korena polinoma f(x)=x^3+ax^2+bx+c, gde su a,b,c\in\mathbb{R}. Tada je
                                                                  b \in \{
                                                                                                                                                             }
     U skupu kompleksnih brojeva je: A) \sqrt{4} = 2 Q) (e^{i\varphi})^{-1} = \overline{e^{i\varphi}} 3) |z|^2 = 1 \Rightarrow z^{-1} = \overline{z} 4) z \neq 0 \Rightarrow z = z^2 \overline{z} |z|^{-2} 5) \overline{|z_1 z_2|} = |z_1||z_2| 6) \overline{z_1 \overline{z_2}} = \overline{z_1} \overline{z_2} 7) |z|^3 = 1 \Leftarrow z^{-1} = \overline{z}
         (8) |-z_1-z_2| \leq |-z_1| + |-z_2|
        (\widehat{9}) \ (\forall z_1, z_2 \in \mathbb{C} \setminus \{0\}) (\exists k \in \mathbb{R}^+) \ \overrightarrow{Oz_1} = k \overrightarrow{Oz_2} \Leftrightarrow \arg z_1 = \arg z_2 \Leftrightarrow \frac{z_1}{|z_1|} = \frac{z_2}{|z_2|}
     (**) Ako je P(x) = ax^3 + bx^2 + cx + d polinom nad poljem realnih brojeva i ako je d \neq 0, tada stepen dg(P)
         polinoma P je: A) dg(P) = 3 (2) dg(P) \in \{1,3\} (3) dg(P) \in \{0,3\} (4) dg(P) \in \{0,2,3\}
        (5) dg(P) \in \{0, 1, 2, 3\}
   Zaokružiti brojeve ispred struktura koje su domeni integriteta: (1) (\mathbb{Z},+,\cdot) (\{9k|k\in\mathbb{Z}\},+,\cdot\}
         (\mathbb{Z}_9,+,\cdot) \quad (4) ) (\mathbb{Q},+,\cdot) \quad (5) ) (\mathbb{Z}_3,+,\cdot) \quad (6) (\mathbb{N},+,\cdot) \quad (7) ) (\mathbb{C},+,\cdot) \quad (8) \ (\mathbb{R}[t],+,\cdot) 
\mathfrak{P} \not = \mathbb{A}ko je p svodljiv polinom stepena 3 nad nekim poljem F tada polinom p: \textcircled{1} uvek ima koren upolju F
          2) nekad ima koren upolju F 3) nema koren u polju F 4) ništa od prethodnog 5) je uvek normalizovan
 19 \bigcircZaokružiti oznaku polja za koje važi da je polinom t^{2015}+1 svodljiv nad njima.
19. Neka je f \in \mathbb{R}[x] i f(1) = 0. Tada važi:
                                                                                         ① x-1 \mid f(x);
(5) x-e^{i2\pi} \mid f(x)
                                                                                                                                  2) x + 1 | f(x);

6) x - e^{-i2\pi} | f(x);
        3) x^2 - 1 | f(x); 4) x^2 - 2x + 1 | f(x);
```

KOLOKVIJUM 1, PRIMER 15

- ① Da li je $\rho = \{(1,1),(2,2),(3,3),(4,4),(5,5),(5,1),(1,2),(5,3),(5,4),(4,1),(3,1)\}$ relacija poretka skupa $A = \{1,2,3,4,5\}$: DA (NE) i ako jeste, nacrtati Haseov dijagram, odrediti minimalne: , najveći: najmanji: element.
- Ve Neka su $f:(-1,0)\to (\frac{\pi}{2},\pi)$ i $g:(-1,0)\to (\frac{\pi}{2},\pi)$ definisane sa $f(x)=\arccos x$ i $g(x)=\frac{\pi}{2}x+\pi$. Izračunati:
 - 1) $f^{-1}(x) = 600$ 4) $(g^{-1} \circ f^{-1})(x) = 6000$ 2) $g^{-1}(x) = \frac{9000}{5000}$ 3) $(f \circ g)(x) = 30000(\frac{5}{5000})$ 5) $(f \circ g)^{-1}(x) = 60000(\frac{5}{5000})$
- Injektivne funkcije su: (1) $f: \mathbb{R}^- \to \mathbb{R}^-$, $f(x) = -x^2$ (2) $f: [-1, 1] \to [-\pi, \pi]$, $f(x) = \arcsin x$ (3) $f: [\frac{\pi}{2}, \pi] \to [-1, 1]$, $f(x) = \cos x$ (4) $f: [-3, 1] \to [-8, 0]$, $f(x) = 1 x^2$ (5) $f: \mathbb{R}^+ \to \mathbb{R}$, $f(x) = \ln x^2$
- Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$:

- Skup kompleksnih rešenja jednačine $x=\sqrt{9}$ je $S=\{$
- Za kompleksni broj $z=e^{i\frac{\pi}{2}}+e^{i\frac{\pi}{6}}$, naći: $Re(z^2)=\frac{1}{2},\quad Im(z^2)=\frac{1}{2},\quad ,|z|=\frac{1}{2},\quad ,\arg(z)=\frac{1}{2},\quad ,\overline{z}=\frac{1}{2},\quad ,z^3=\frac{1}{2}$
- Napisati u eksponencijalnom obliku, odnosno obliku $\rho e^{i\varphi}, \rho \in [0, \infty), \varphi \in (-\pi, \pi]$ ako je $\sqrt{}$ kompleksni : $2^{-2} = \frac{1}{4} \left(\frac{\pi}{4}\right)^2 = \frac{$
- Zaokružiti broj (ili brojeve) ispred struktura koje su grupoidi. (N, +) (2) (N, -) (3) ($\{-1,0,1\}$, ·) 4) ($\{-1,1\}$, +) (5) (\mathbb{R} , ·) (6) ($(0,\infty)$, +) (7) ($\{-1,1\}$,)-8) ($(-\infty,0)$, ·)
- Neka su P i Q polinomi četvrtog stepena i $P \neq -Q$. Tada je $dg(P+Q) \in \{\gamma_1 \cdots \gamma_{k+1}\}$ i $dg(PQ) \in \{\mathcal{E}\}$.

 ${}^{2}\mathcal{O}$. Pri delenju polinoma x^3+2 sa x+1 nad \mathbb{R} , količnik je $\underline{\times}^2 \times \underline{+} \times \underline{-}$, a ostatak je _ Neka su f i g funkcije definisane sa $f = \begin{pmatrix} a & b & c & d \\ c & a & d \end{pmatrix}$, $g = \begin{pmatrix} a & b & c & d \\ d & c & a & d \end{pmatrix}$. Tada je $f^{-1} = \begin{pmatrix} a & b & c & d \\ d & d & d & d \end{pmatrix}, \quad g = \begin{pmatrix} a & b & c & d \\ d & c & a & d \end{pmatrix}, \quad f = \begin{pmatrix} a & b & c & d \\ d & d & d & d \end{pmatrix}, \quad f = \begin{pmatrix} a & b & c & d \\ d & d & c & d \end{pmatrix}, \quad f = \begin{pmatrix} a & b & c & d \\ d & d & d & d \end{pmatrix}, \quad f = \begin{pmatrix} a & b & c & d \\ d & d & d & d \end{pmatrix}, \quad f = \begin{pmatrix} a & b & c & d \\ d & d & d & d \end{pmatrix}$ ****************************** $\text{Neka su } f: (-1,0) \to (-1,0) \text{ i } g: (-1,0) \to (-1,0) \text{ definisane sa } f(x) = -\sqrt{1-x^2} \text{ i } g(x) = x^2 - 1.$ Zada je: 1) f(x) > g(x) 2) f(x) < g(x) 3) f(x) = g(x) 4) $f(x) \ge g(x)$ 5) ništa od prethodnog Žaokružiti broj (ili brojeve) ispred tvrđenja koje je tačno u Bulovoj algebri $\mathcal{B} = (\{0,1\},+,\cdot,',0,1)$. ① xx = x + x ② $xy = 1 \Rightarrow x = 1$ 3) $x = 1 \Rightarrow xy = 1$ 4) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ ⑤ $(x = 0 \lor y = 0) \Rightarrow xy = 0$ ⑥ (x = xy + xy) ② $(x = 0 \land y = 0) \Rightarrow xy = 0$ $\text{Neka je } A = \{1,2\}, \ B = \{5,6,7,8\}, \ f_1 = \{(1,5),(2,6),(1,7)\}, \ f_2 = \{(1,5),(1,5)\}, \ f_3 = \{(1,8),(2,5)\},$ $f_4 = \{(1,7),(2,7)\}$ Popuniti sa da ili ne ili -. f_i je funkcija | f_i je funkcija skupa Au skupB $f_i: A \xrightarrow{1-1} B \mid f_i: A \xrightarrow{na} B$ f_1 he f_2 ne 110 $B_{\widetilde{\chi}}$ da f_3 do ďα igotimesNeka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je f:A o B definisana sa $f(x) = \frac{x-1}{x+1}$. Tada je $A = \frac{R(x)}{R(x)}$, f(x) = 1 i $B = \frac{R(x)}{R(x)}$. Funkcija $f: A \to B$ je: a) bijektivna b) injektivna ali ne sirjektivna c) niti injektivna niti sirjektivna d) sirjektivna ali ne injektivna d) sirjektivna ali ne injektivna igoplus Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom polju $(F,+,\cdot)$: A) ac + bc = (a + b)c (2) $(F \setminus \{0\}, \cdot)$ je grupa (3) (F, \cdot) je grupoid (4) operacija + je distributivna . prema · (5) $ab = 0 \Rightarrow a = 0 \lor b = 0$ (6) $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ (7) $a \cdot 0 = 0$ (8) $a \cdot (-a) = -a^2$ (9) a + (-a) = 0 Neka su z_1,z_2 i z_3 kompleksni brojevi. Tada rotacijom tačke z_3 oko tačke z_2 za ugao $\frac{\pi}{3}$ dobija se tačka $2\underline{((x,y)\ell}$, translacijom tačke z_2 za vektor z_1 dobija se tačka $\underline{z_1, z_2}$, a $z_3z_1z_2 = \underline{z_2}$ 1). (•)Zaokružiti brojeve ispred bijektivnih funkcija: $\bigcirc \bigcirc \bigcirc$ Funkcija f nije injektivna ako i samo ako postoje $x,\,y,\,a$ i b takvi da važi: $\mathcal{Y}\left((x,a)\in f\land (y,a)\in f\right)\Rightarrow x=y\quad \text{(3)}\ \left((x,a)\in f\land (y,a)\in f\right)\Rightarrow x\neq y\quad \text{(3)}\ x=y\Rightarrow f(x)=f(y)$ $(4) f(x) = f(y) \Rightarrow x \neq y \quad 5) f(x) = f(y) \Leftrightarrow x = y$ ો ્રે Neka je $A=\{1\}$ i $B=\{1,2,3,4\}$. Odrediti broj elemenata sledećih skupova funkcija: $\begin{vmatrix} \{f|f:A\longrightarrow B\} \end{vmatrix} = \frac{4}{4} \cdot \begin{vmatrix} \{f|f:A\xrightarrow{1-1}B\} \end{vmatrix} = \frac{4}{4} \cdot \begin{vmatrix} \{f|f:A\longrightarrow B\land f\nearrow \} \end{vmatrix} = \frac{4}{4} \cdot \begin{vmatrix} \{f|f:A\xrightarrow{na}B\} \end{vmatrix} = \frac{4}{4} \cdot \begin{vmatrix} \{f|f:A\xrightarrow{1-1}A\} \end{vmatrix} = \frac{4}{4} \cdot \begin{vmatrix} \{f|f:A\xrightarrow{na}A\} \end{vmatrix} = \frac{4}{4} \cdot \begin{vmatrix} \{f|f:A\xrightarrow{na}A + \{$ $\mathcal{H}_{\mathcal{H}}$ Navesti geometrijsku interpretaciju skupova A,B,C,D,E i sledećih kompleksnih funkcija $f:\mathbb{C}\to\mathbb{C}$, $g:\mathbb{C}\to\mathbb{C},\ h:\mathbb{C}\to\mathbb{C}$ i $s:\mathbb{C}\to\mathbb{C}$, kao i odgovoriti na pitanje injektivnosti i sirjektivnosti funkcija $f,\ g,$

17

 $f(z) = -\overline{z} \frac{1-i}{\sqrt{2}} \text{ je } \frac{\gamma_{inf}(v) \rho}{\sqrt{2}} \text{ see } \frac{1}{\rho} \frac{\partial \rho}{\partial z} \frac{\partial$

```
s(z) = z \cdot \frac{1+i\sqrt{3}}{2} je <u>rofar, o</u> to
                     A = \{z | z^3 = -1\} \text{ je } \frac{\int_{z}^{z} dz}{\int_{z}^{z} dz} \int_{z}^{z} \frac{\int_{z}^{z} dz}{\int
                     C = \{z | z^3 = \overline{-\overline{z}}\} \text{ je } \sqrt{\frac{\sigma}{c^{+\overline{z}}}}
                                                                                                                                                                                                                        In taila
                                                                                                                                                                                                         Landreday printle
                      E = \{z | iI_m(z) = R_e(z)\} je <u>factolinoli, prio fak</u>
                      Zaokružiti slova ispred tačnih iskaza: 
a) A \subset B 
b) C \subseteq D 
e) D \subseteq C 
d) B \subseteq D 
e) D \subseteq E
 Neka je \{1,0\} skup svih korena polinoma f(x)=x^3+ax^2+bx+c, gde su a,b,c\in\mathbb{R}. Tada je
           U skupu kompleksnih brojeva je: 1) \sqrt{4} = 2 2) \sqrt{4} = \pm 2 3) (e^{i\varphi})^{-1} = \overline{e^{-i\varphi}} 1) |z|^2 = 1 \Rightarrow z^{-1} = \overline{z} 5) z \neq 0 \Rightarrow z = z^3 \overline{z}|z|^{-2} 1) |z_1z_2| = |\overline{z_2}||\overline{z_1}||\overline{z_1}||\overline{z_1}||\overline{z_1}||\overline{z_2}||\overline{z_1}||\overline{z_1}||\overline{z_2}||\overline{z_1}||\overline{z_1}||\overline{z_2}||\overline{z_1}||\overline{z_2}||\overline{z_1}||\overline{z_2}||\overline{z_1}||\overline{z_2}||\overline{z_1}||\overline{z_2}||\overline{z_1}||\overline{z_2}||\overline{z_1}||\overline{z_2}||\overline{z_2}||\overline{z_1}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}||\overline{z_2}
Ako je P(x) = ax^5 + bx^3 + d polinom nad poljem realnih brojeva i ako je d \neq 0, tada stepen dg(P)
                       polinoma P je: (A) dg(P) = 5, (A) dg(P) \in \{0,5\}, (A) dg(P) \in \{0,3,5\},
                     (5) dg(P) \in \{0,1,3,5\}
            Zaokružiti brojeve ispred struktura koje su prsteni bez delitelja nule: (1) (\mathbb{Z},+,\cdot) (2) (\{9k|k\in\mathbb{Z}\},+,\cdot)
                       (3) (\mathbb{Z}_9,+,\cdot) \quad \textcircled{4} (\mathbb{Q},+,\cdot) \quad \textcircled{5} (\mathbb{Z}_3,+,\cdot) \quad \textcircled{6} (\mathbb{N},+,\cdot) \quad \textcircled{7} (\mathbb{C},+,\cdot) \quad \textcircled{8} (\mathbb{R}[t],+,\cdot) \quad \cancel{9} (\mathbb{R}^+,+,\cdot) 
             (ullet)Ako je p svodljiv polinom stepena 4 nad nekim poljem F tada polinom p:1) uvek ima koren u polju F
                     (2)nekad ima koren upolju F 3) nema koren u polju F 4) ništa od prethodnog 5) je uvek normalizovan
             (1) x - i | f(x);
(5) x - e^{i\frac{\pi}{2}} | f(x)
                                                                                                                                                                                                                                                                                                                                                           2) x + i | f(x);
            (*) Neka je f \in \mathbb{R}[x] i f(i) = 0. Tada važi:
                                                                                                                                                                                                                                                                                                                                             (6) x - e^{-i\frac{\pi}{2}} | f(x)
                                                                                                                          (4) x^2 + 1 f(x);
                      (3) x^2 - 1 | f(x);
             (•)Proveriti koje od sledećih ekvivalencija i implikacija su tačne za svaki kompleksni broj z:
                                                                                                                                                                                                                                             (X) - \frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \iff R_e(z) \ge 0
                                                                                                                                                        (4) \arg z < 0 \Rightarrow I_m(z) \le 0 (5) \arg z < 0 \Leftarrow I_m(z) \le 0
                      (3) -\frac{\pi}{2} < \arg z < \frac{\pi}{2} \Leftrightarrow R_e(z) > 0
    KOŁOKVIJUM 1,
                                                                                             PRIMER 16
     1.6 Pri deljenju polinoma x^3+1 sa x^2-x+1 nad \mathbb{R}, količnik je x + 1, a ostatak je x + 1
       <br/> Neka je ffunkcija definisana sa f=\begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix} <br/>ig=\begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}. Tada je:
                         f^{-1} = \begin{pmatrix} a & b & c \\ \mathcal{L} & \zeta & \alpha \end{pmatrix}, \quad f \circ g = \begin{pmatrix} a & b & c \\ \mathcal{L} & \mathcal{L} & \zeta \end{pmatrix}, \quad (f \circ g)^{-1} = \begin{pmatrix} a & b & c \\ \mathcal{L} & \mathcal{L} & \zeta \end{pmatrix}, \quad g^{-1} = \begin{pmatrix} a & b & c \\ \mathcal{L} & \mathcal{L} & \zeta \end{pmatrix}, \quad g^{-1} \circ f^{-1} = \begin{pmatrix} a & b & c \\ \mathcal{L} & \mathcal{L} & \zeta \end{pmatrix}.
      \uparrow. Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri (B,+,\cdot,',0,1):
                       Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja z=-2+2i\sqrt{3}: R_e(z)=-\gamma, I_m(z)=\sqrt{5}, |z|=\sqrt{2}, |z|=\sqrt{2}, |z|=\sqrt{2}, |z|=\sqrt{2}, |z|=\sqrt{2}, |z|=\sqrt{2}.
                Sledeće kompleksne brojeve napisati u algebarskom obliku:
                                                                             e^{-9\pi i} = -1 3e^{-i\frac{5\pi}{2}} = -3i e^{i1\pi i} = -1 e^{i\frac{7\pi}{2}} = -1
                          7e^{-6\pi i} = 7
        Zaokružiti brojeve ispred injektivnih funkcija: 1 f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^{-x} 2 f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2
                                                              (3) f: [-1, \infty) \to [-1, \infty), \quad f(x) = (x+1)^2

(4) f: \mathbb{R}^+ \to \mathbb{R}, \quad f(x) = \sqrt{x}

(5) f: (\frac{\pi}{2}, \frac{5\pi}{4}) \to [-1, 1], \quad f(x) = \cos x
```

- 7. \bigcirc Zaokružiti broj (ili brojeve) ispred struktura koje su komutativac grupe. (\(\begin{align*} (-1,1\), \cdot \end{align*} (\mathbb{Z}) (\mathbb{Z}\) (\mathbb{Z}\), \(\begin{align*} (\mathbb{
- 7. Neka je $f: \mathbb{R} \to \mathbb{R}$ definisana sa $f(x) = ax^2 + (a+1)x + 2$. Za koje vrednosti parametar $a \in \mathbb{R}$ funkcija f je:
 - 1) injektivna (1:0), 2) sirjektivna (1:0), 3) bijektivna (1:0)
- $(2) \arg z < 0 \Leftrightarrow I_m(z) \le 0$ $(3) -\frac{\pi}{2} < \arg z < \frac{\pi}{2} \Rightarrow I_m(z) \in \mathbb{R}$ $(4) \arg z > 0 \Rightarrow I_m(z) > 0$ $(5) -\frac{\pi}{2} < \arg z < \frac{\pi}{2} \Leftrightarrow R_e(z) > 0$ $(6) -\frac{\pi}{2} \le \arg z \le \frac{\pi}{2} \Leftrightarrow R_e(z) \ge 0$
- Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj grupi (P,\cdot) , gde je e neutralni, a x^{-1} inverzni za x: $a \cdot e = e$ $a \cdot e = e$
- Neka su $a,b \in \mathbb{R}$ i $w \in \mathbb{C}$ koeficijenti polinoma $P(x) = x^2 + ax + b$ i $Q(x) = x^2 + w$. Ako je 2 3i zajednički koren polinoma P i Q, tada preostali koreni polinoma P i Q su redom $\alpha_1 = \underbrace{1+27}$ j $\alpha' = \underbrace{-747}$, dok je $a = \underbrace{-74}$, $b = \underbrace{-73}$ i $w = \underbrace{-5+31}$.
- 77 (Izračunati: 1) $\arg(-13i) = \frac{1}{2}$ 2) $\arg(-31) = \mathcal{K}$ 3) $\arg(29) = \emptyset$ 4) $\arg(0) = \mathbb{K}$ 5) $\arg(11i) = \frac{1}{2}$ 6) $\arg(-5-5i) = -\frac{1}{2}$ 7) $\arg(\sqrt{3}+i) = \frac{5}{6}$ 8) $\arg(-\sqrt{3}+1) = \frac{5}{6}$
- Napisati tablicu grupoida ({1,3,5,7}, ·), gde je · množenje po modulu 8. Odrediti inverzne elemente i . izračunati:
- $\rho = \{(1,1),(2,2),(3,3),(4,4),(5,5),(1,4),(4,5),(1,5),(2,3),(2,5),(3,5)\} \ \text{je} \\ \text{relacija poretka skupa } A = \{1,2,3,4,5\}: \ \text{DANE, i ako jeste, nacrtati njen} \\ \text{Haseov dijagram. Odrediti} \\ \text{minimalne:} \ \ ^{1}_{i} \ ^{2}_{i} \ \ \text{, maksimalne:} \ \ ^{5}_{i} \ \text{najweći element:} \ \ ^{i}_{i} \ \text{najmanji element:} \ \ \text{najmanji element:} \ \ ^{i}_{i} \ \text{najmanji element:} \ \ \text{najmanj$

med?usi

KC

- 15. Papisati normalizovani polinom P(x) nesvodljiv nad poljem $\mathbb R$ i nesvodljiv nad poljem $\mathbb C$ čiji zbir koeficijenata je 2015. $P(x) = \frac{X 2 \circ 74}{2}$
- 76, Noje jednakosti su tačne za sve $z \in \mathbb{C}$ i sve $\varphi \in (-\pi, \pi]$ za koje su i definisane: 1) $\overline{e^{-i\varphi}} = e^{-i\overline{\varphi}}$ 2) $e^{-i\overline{\varphi}} = e^{i\overline{\varphi}}$ 3) $e^{i(\arg z + \arg z^{-1})} = z^2|z|^{-2}$ 4) $e^{i(\arg z + \arg z^{-1})} = 1$ 5) $1 = z\overline{z}|z|^{-2}$ 6) $\arg z > 0 \Leftrightarrow \arg z \arg(-z) = \pi$
- U skupu kompleksnih brojeva je: 1 $z\overline{z} = |z\overline{z}|$ 2 $z = \frac{1+i}{\sqrt{2}} \Rightarrow z^{-1} = \overline{z}$ 3 $|z_1z_2| = |z_2||z_1|$ $R_e(z) = \frac{1}{2}(z-\overline{z})$ 5 $\overline{z_1-z_2} = \overline{z}_1-\overline{z}_2$ 6 $|z|=1 \Leftrightarrow z^{-3}=\overline{z}^3$ 7 $|z_1-z_2| \geq |z_1|+|z_2|$ 8 $|z_1|z_2|=z_2|z_1| \Leftrightarrow \arg z_1=\arg z_2$
- Neka je A najveći podskup od $\mathbb R$ a B najmanji podskup skupa $\mathbb R$ za koje je funkcija $f:A\to B$ definisana sa f(x)=2 arctg x. Tada $A=\frac{\mathbb N}{2}$, $f(\frac{1}{2})=\frac{\pi}{2}$, $f(\frac{c}{2})=0$ i $B=\underbrace{\mathbb N}_{\mathbb N}$. Funkcija $f:A\to B$ je:
 - 1) sirjektivna i neinjektivna 2) injektivna i nesirjektivna 3) ni injektivna ni sirjektivna 6) bijektivna 5) $f^{-1}(x) = \frac{1}{2} \frac{x}{2}$. Ako $f^{-1}: O \to S$, tada je $O = \frac{(\sqrt{x}, x)}{2}$, $S = \frac{1}{2}$
- Za kompleksni broj $z=e^{i\frac{\pi}{3}}-e^{i\frac{\pi}{6}},$ naći: $R_e(z)=\frac{1-\sqrt{2}}{2} \quad , |z|=\frac{\sqrt{1-\sqrt{2}}}{2} \quad , |z|=\frac{\sqrt{1-\sqrt{2}}}{2} \quad , \arg(z)=\frac{\sqrt{1-\sqrt{2}}}{2} \quad , \overline{z}=\frac{\sqrt{1-\sqrt{2}}}{2} \stackrel{\text{define } \overline{z}}{\overline{z}} \stackrel{\text{define } \overline{z}}{\overline{z}}$
- Neka je $A=\{1,2,3,4\}$ i $B=\{1,2,3\}$. Odrediti broj elemenata sledećih skupova funkcija ako $f\nearrow$ označava rastuću funkciju f i $f\nearrow$ označava neopadajuću funkciju f:
 - $\left| \{ f | f : A \longrightarrow B \} \right| = \frac{g \, \gamma}{2} \left| \{ f | f : A \xrightarrow{1-1} B \} \right| = \underbrace{0} \left| \{ f | f : A \longrightarrow B \land f \nearrow \} \right| = \underbrace{0} \left| \{ f | f : B \xrightarrow{na} B \} \right| = \underbrace{6} \left| \{ f | f : B \rightarrow A \} \land f \nearrow \right| = \underbrace{1} \left| \{ f | f : A \xrightarrow{1-1} A \} \right| = \underbrace{v_1} \left| \{ f | f : B \rightarrow A \land f \nearrow \} \right| = \underbrace{0} \left| \{ f | f : B \rightarrow A$

Neka su $f: \mathbb{R} \to \mathbb{R}$ i $g: \mathbb{R} \to \mathbb{R}$ definisane sa f(x) = 2x + 1 i $g(x) = \sqrt[5]{x}$. Izračunati:

1) $f^{-1}(x) = \frac{x-1}{2}$ 2) $g^{-1}(x) = \chi^{5}$ 3) $(f \circ g)(x) = \chi^{5} \chi^{4}$ 4) $(f \circ g)^{-1}(x) = \chi^{5}$ 5) $(g^{-1} \circ f^{-1})(x) = (\chi^{5} \chi^{5})^{5}$

Zaokružiti brojeve ispred tvrđenja koja su tačna u Bulovoj algebri $\mathcal{B} = (\{0,1\},+,\cdot,',0,1)$.

(C) x = xy + xy'(D) xx' = (x+1)'(D) x = x + x(E) xy = x + y(E) xy = x + y

6) $xy = 0 \Rightarrow (x = 0 \lor y = 0)$ 7 $(x = 0 \lor y = 0) \Rightarrow xy = 0$ (8) $(\forall x \in B)(\exists y \in B) \ x + y = 1 \land xy = 0$

Zaokružiti slova (ili slovo) ispred struktura koje su prsteni a nisu polja: $(\mathbb{Z},+,\cdot)$ $(\mathbb{Z},+,\cdot)$

Zaokružiti oznaku polja za koje važi da je polinom t^3+t^2+1 svodljiv nad njima. $\mathbb Q$ $\mathbb R$ $\mathbb C$ $\mathbb Z_2$ $\mathbb Z_3$

Neka je z=1, u=2i i w=2+3i. Rotacijom tačke z oko tačke w za ugao $\frac{\pi}{2}$ dobija se tačka $\underbrace{5+7}$ translacijom tačke z za vektor w dobija se tačka $\underbrace{9+3i}$, $4zwu=\frac{4}{5}+\frac{2}{5}i$.

Neka je $A = \{1, 2\}, B = \{1, 2, 3, 4\}, f_1 = \{(1, 1), (2, 2), (3, 1), (4, 2)\}, f_2 = \{(1, 1), (2, 2)\}, f_3 = \{(1, 4), (2, 1)\}, f_4 = \{(1, 3), (2, 3)\}$ Popuniti sa da ili ne ili -.

	f_i je funkcija	$f_i: A \longrightarrow B$	$f_i: B \longrightarrow A$	$f_i: A \xrightarrow{1-1} B$	$f_i: A \xrightarrow{na} B$	$f:A\overset{1-\mathbf{i}}{\underset{\mathbf{na}}{ ightarrow}}B$
f_1	da	n e	ઇવ	110	3/12	. 48
f_2	. છ(a	d a	n e	da	h p	h _g e
f_3	da	det	h @	र्ल म	ьp	1.0
f_4	80	da	ភ ់ Υ	5.5	h f	* £

KOLOKVIJUM 1, PRIMER 17

Za relaciju < u skupu celih brojeva Z zaokružiti ona slova koja označavaju svojstvo relacije koju ona poseduje: R-refleksivnost, S-simetričnost, A-antisimetričnost, T-tranzitivnost: R S(A)T)F

Neka je f funkcija definisana sa $f = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$ i $g = \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}$. Tada je:

$$f^{-1} = \begin{pmatrix} a & b & c \\ \ell & c & \alpha \end{pmatrix}, \quad f \circ g = \begin{pmatrix} a & b & c \\ \alpha & \ell & c \end{pmatrix}, \quad (f \circ g)^{-1} = \begin{pmatrix} a & b & c \\ \alpha & \ell & c \end{pmatrix}, \quad g^{-1} = \begin{pmatrix} a & b & c \\ c & \ell & \ell \end{pmatrix}, \quad g^{-1} \circ f^{-1} = \begin{pmatrix} a & b & c \\ c & \ell & \ell \end{pmatrix}.$$

 \bigcirc Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B,+,\cdot,',0,1)$:

$$(a')' = a'$$
 (2) $a + a' = 0$ (3) $a \cdot 0 = 0$ (4) $1 + a = a$ (5) $(a + b)' = a' + b'$

Zaokružiti slova (ili slovo) ispred struktura koja su grupe:

A)
$$(\mathbb{Z} \setminus \{0\}, \cdot)$$
 2) (\mathbb{R}, \cdot) 3) $(\mathbb{N}, +)$ 4) $(\mathbb{N} \cup \{0\}, +)$ 5) (\mathbb{N}, \cdot)

lacktriangle Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom prstenu $(P,+,\cdot)$:

The property is presented by the property of the property of

lacktriangle Ako za polinome p i q važi dg(p)=5 i dg(q)=2, tada je $dg(p^2)=10$ i dg(p+q)=10

- 🎖 🕞 Zaokružiti brojeve ispred injektivnih funkcija:). \bigodot Za svaku injektivnu funkciju f postoje skupovi A i B, takvi da je funkcija $f:A \to B$ bijektivna? 3) samo pod još nekim uslovima 2) nikada (1) uvek A \emptyset . Neka je f:S o S i $(orall x\in S)$ f(f(x))=x. Tada je f:S o S sirjekcija. D $\widehat{\mathbb{A}}$ NE Neka su ρ_i relacije skupa \mathbb{R} : $\rho_1 = \{(x,x+1)|x\in\mathbb{R}\}, \quad \rho_2 = \{(x,y)|x\in\mathbb{R},\ y\in[x-1,x+1]\},$ $\rho_3 = \{(x,y) \in \mathbb{R}^2 | x \ge 0 \land y \ge 0\}, \quad \rho_4 = \{(x,y) \in \mathbb{R}^2 | y^2 = x^2\},$ Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost, S- simetričnost, A- antisimetričnost, T- tranzitívnost. P2: (RIS) XTX P3: RIS) A TOF P4: RIS) A TOF Ispitati da li relacija "deli" skupa $A = \{2, 3, 4, 5, 6, 7, 9, 12, 18\}$ jeste relacija poretka $\{DA, NE (zaokruži), esta verbija ver$ i ako jeste, nacrtati Haseov dijagram, i naspisati minimalne el. { 5,3,2,3 maksimalne el. { 5,3,47,75}} najveći el. { najmanji el. { $\text{(S) U Bulovoj algebri } \mathcal{B} = (B, +, \cdot, ', 0, 1) \text{ važi:} \\ \text{(S) } xy = 1 \Rightarrow y = 1$ $\text{(A) } x = y \Rightarrow x' = y'$ $\text{(B) } x + y = x'y' \\ \text{(E) } x' = y' \Rightarrow x = y$ $\text{(D) } f(x) = x' \Rightarrow f : B \underset{\text{na}}{\rightarrow} B$ $\land \forall \cdot \bigcirc \text{Za funkciju } f : \mathbb{R} \to (0, \infty) \text{ iz grupe } (\mathbb{R}, +) \text{ u grupu } ((0, \infty), \cdot), \text{ definisanu sa } f(x) = 2^x, \text{ važi: } (1) \text{ } f \text{ je}$ homomorfizam (2) f je izomorfizam (3) f^{-1} postoji i f^{-1} je homomorfizam (4) f^{-1} postoji i f^{-1} je izomorfizam 5) ništa od prethodno navedenog Zaokružiti podgrupe grupe $(\mathbb{R}\setminus\{0\},\cdot)$: 1) $(\mathbb{R}\setminus\{0\},+)$ 2) $((0,\infty),\cdot)$ 3) $((-\infty,0),\cdot)$ 4) (\mathbb{N},\cdot) 5) $(\mathbb{Z}\setminus\{0\},\cdot)$ 6) $(\mathbb{Q}\setminus\{0\},+)$ 7) $((0,1),\cdot)$ 8) $(\{-1,1\},\cdot)$ 16 . Da li su sledeći uređeni parovi grupoidi sa neutralnim elementom: (a) Ako je $f:G \to H$ izomorfizam grupoda (G,+) sa neutralnim elementom 0 u grupoid (H,\cdot) sa neutralnim elementom 1, tada je: (1) f(0) = 1 (2) f(-a) = a (3) $f(x+y) = f(x) \cdot f(y)$ Navesti 4 beskonačna polja: (Q,+,·) (\(\hat{R},+)\) ((\(\hat{R},+)\) ((\(\hat{R},+)\) ((\(\hat{R},+)\)) ((\(\hat{R},+)\)) \bigcirc U polju \mathbb{Z}_7 izračunati $3(2^3+5)^{-1}+6=\underline{}$ \mathbb{Z}_{0} . \mathbb{Q} U polju \mathbb{Z}_{5} , skup rešenja po $x \in \mathbb{Z}_{5}$ jednačine $x^{2} + 4(x^{-1} + 2x + 1) = 3$ je \mathbb{Z}_{4} $\text{Therefore, } |e^{i\frac{\pi}{6}} - e^{-i\frac{\pi}{6}}| = \frac{\frac{1}{2}}{2}, |e^{i\frac{\pi}{6}} - e^{-i\frac{\pi}{6}}| = \frac{1}{2}, R_e(e^{i\frac{\pi}{6}} - e^{-i\frac{\pi}{6}}) = \frac{0}{2}, I_m(e^{i\frac{\pi}{6}} - e^{-i\frac{\pi}{6}}) = \frac{1}{2}$ 14. Naokružiti polja nad kojima je polinom $t^3 + t + 1$ svodljiv: ${\mathcal Q}_{\mathcal G}$ Skup svih mogućih stepena nesvodljivih polinoma nad poljem realnih brojeva ${\mathbb R}$ je $\{$
 - tada je $p \neq 0$ i $dg(p) \neq 0$ i p je jednak proizvodu dva polinoma stepena većeg od $0 \stackrel{\textstyle \leftarrow}{0}$ ako je $p \neq 0$ $dg(p) \neq 0$ i p je jednak proizvodu dva polinoma stepena većeg od 0, tada je p je svodljiv

l 6. igotimes U prstenu polinoma, za svaki polinom p važi: $oldsymbol{\mathscr{X}}$ ako je p jednak proizvodu dva polinoma, tada je $oldsymbol{p}$

svodljiv 2) ako je p=0, tada je on svodljiv 3) ako je p=0, tada je on nesvodljiv 4) ako je p svodljiv

 $(aa')' = 0' \qquad (3) \ a + 1' = (a')' \qquad (4) \ 1 + a' = (1')' \qquad (5) \ a + b = (a'b')'$ $(5) \text{Skup kompleksnih rešenja jednačine } x = \sqrt[3]{-8} \text{ je } S = \{ -1, 2e^{-i\frac{\pi}{2}}, 2e^{-i\frac{\pi}{2}} \}.$ $(5) \text{Za kompleksni broj } z = e^{-i\frac{\pi}{2}} + e^{i\frac{\pi}{6}}, \text{ naći:}$ $Re(z^2) = \frac{4}{2}, Im(z^2) = -\sqrt{2}, |z| = 1, \arg(z) = -\frac{\sqrt{2}}{6}, \pi = e^{-i\frac{\pi}{2}}.$

Napisati u eksponencijalnom obliku, odnosno obliku $\rho e^{i\varphi}, \rho \in [0, \infty), \varphi \in (-\pi, \pi]$ ako je $\sqrt[3]{}$ kompleksni: $-2^{-2} = \int_{\mathbb{R}^{3}} e^{i\pi} , (\sqrt[3]{1})^{3} = e^{c^{i\pi}} , \sqrt[3]{1^{3}} \in \{e^{i\frac{\pi}{2}}, e^{i\frac{\pi}{2}}, e^{i\frac{\pi}{2}}\}$, $-1 + i = \int_{\mathbb{R}^{3}} e^{i\frac{\pi}{2}}, \frac{\pi}{3} \cdot (3i) = \int_{\mathbb{R}^{3}} e^{i\frac{\pi}{2}} \frac{\pi}{3}(-i) = \int_{\mathbb{R}^{3}} e^{i\frac{\pi}{2}} e^{i\frac{\pi}{2}}$

KOLOKVIJUM 1, PRIMER 18

Za relaciju ekvivalencije $\rho = \{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,1),(3,4),(4,3)\}$ particija \mathcal{P} skupa $\{1,2,3,4,5\}$ koja joj odgovara je $\mathcal{P} = \{\begin{array}{c} \langle \gamma, \lambda \rangle, \langle \gamma, \lambda \rangle, \langle \gamma, \lambda \rangle \\ \langle \gamma, \lambda \rangle, \langle \gamma, \lambda \rangle \end{array} \}$

Neka su funkcije $f,g:(-1,0)\to (-1,0)$ definisane sa $f(x)=-\sqrt{x+1}$ i $g(x)=x^2-1$. Tada je $f^{-1}(x)=\chi^{\alpha}$, $(f\circ g)(x)=\chi^{\alpha}$, $(f\circ g)^{-1}(x)=\chi^{\alpha}$, $(g^{-1}\circ f^{-1})(x)=\chi^{\alpha}$

© U svakoj Bulovoj algebri $(B, +, \cdot, ', 0, 1)$ tačno je:

(1) $ab = 1 \Rightarrow a = 1 \land b = 1$ (2) $(a')' = a \cdot 1$ (3) a + a' = 1'(5) 1 + a = 0'(6) a + b = (a' + b')'

Zaokružiti broj (ili brojeve) ispred struktura koja su asocijativni grupoidi sa neutralnim elementom:

lacktriangleZaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom polju $(F,+,\cdot)$:

(a+b)(a+c) (a+b)(a+c) (a+c) (a+c) (a+c) je grupa (a+b)(a+c) je komutativna grupa (a+b)(a+c) je grupa (a+b)(a+c) operacija je komutativna

©Za kompleksne brojeve $z_1 = 1 + i\sqrt{3}$ i $z_2 = 1 - i\sqrt{3}$ izračunati: $\left|\frac{z_1}{z_2}\right| = 1$ arg $\left|\frac{z_1}{z_2}\right| = 1$

• Ako za polinome p i q važi $p+q\neq 0$, dg(p)=2 i dg(q)=2, tada je $dg(p^2)\in \{4\}, \qquad \qquad dg(p+q)\in \{0,1,2\}.$

Zaokružiti brojeve ispred sirjektivnih funkcija:

- \mathfrak{I} Za svaku injektivnu funkciju $f:A\to B$ postoji skup $C\subseteq B$ takv da je funkcija $f:A\to C$ bijektivna?

 (I) uvek

 2) nikada

 3) samo pod još nekim uslovima
- $\text{Neka je } f:S\to S \text{ i } (\forall x\in S) \ f(f(x))=x. \text{ Tada je } f:S\to S: \textbf{1} \text{ injektivna} \textbf{2} \text{) sirjektivna} \textbf{3} \text{) bijektivna}$
- $\rho_{1} = \{(2,5), (5,7), (2,7)\}, \qquad \rho_{2} = \{(x,y)|x^{2}+y^{2}=1 \land x \in \mathbb{R} \land y \in \mathbb{R}\}, \\ \rho_{3} = \{(x^{2},x)|x \in \mathbb{R}\}, \qquad \qquad \rho_{4} = \{(x,y)|x^{2}=y^{2} \land x \in \mathbb{R} \land y \in \mathbb{R}\}, \qquad \qquad \rho_{5} = \{(|x|,x)|x \in \mathbb{R}\},$

Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost, S- simetričnost, A- antisimetričnost, T- tranzitivnost, F- funkcija. $\rho_1: \mathbb{R} \text{ SATF} \quad \rho_2: \mathbb{R} \text{ SATF} \quad \rho_3: \mathbb{R} \text{ SATF} \quad \rho_4: \mathbb{R} \text{ SATF} \quad \rho_5: \mathbb{R} \text{ SATF} \quad \rho_6: \mathbb{R} \text{ SATF} \quad \rho_6: \mathbb{R} \text{ SATF}$

minimalne el. { 2 } } maksimalne el. { 3 n,73 } } najveći el. { 2 }

- 7) Du Bulovoj algebri $\mathcal{B} = (B, +, \cdot, ', 0, 1)$ važi: \mathcal{X} x + y = x'y' 2) xy = (x' + y')' 3) $xy = 1 \Rightarrow x + y = 1$ 4) $x + y = 1 \Leftrightarrow xy = 1$ 5) $x = y \Rightarrow x' = y'$ 6) $x' = y' \Rightarrow x = y$ 7) $f(x) = x' \Rightarrow f : B \xrightarrow{\text{na}} B$
- 74. La funkciju $f:(0,\infty)\to\mathbb{R}$ grupe $((0,\infty),\cdot)$ u grupu $(\mathbb{R},+)$, definisanu sa $f(x)=-\log_3 x$ važi da je:

 1) homomorfizam
 2) izomrfizam
 3) f^{-1} homomorfizam
 4) f^{-1} funkcija
 5) f^{-1} izomorfizam
- Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom prstenu $(R, +, \cdot)$:

 (1) (b+c)a = ca + ba 2) (b+c)a = ca + ab (3) (R, +) je grupa (4) (R, \cdot) je asocijativni grpoid

 5) $ab = 0 \Leftrightarrow a = 0 \lor b = 0$ (6) seperacija \cdot je distributivna prema operaciji + $) a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ (8) $a \cdot 0 = 0$ (9) $a \cdot (-a) = -a^2$
- 76. Neka je $g: [-1,0) \to \mathbb{R}, \ g(x) = -\sqrt{1-x^2},$ inverzna funkcija je $q^{-1}(x) = -\sqrt{1-x^2}, \ q^{-1}: A \to \mathbb{R}, \ A = (-1, \theta)$
- $f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{2\}$ definisana sa $f(x) = \frac{2x}{x-2}$. Tada je: a) $f^{-1}(x) = \frac{2x}{x-2}$
- Neka je funkcija $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ definisana sa $f(x) = 2x^{-5}$. Tada je: $f^{-1}(x) = \sqrt[5]{\frac{1}{x}} \qquad , \qquad (f \circ f)(x) = \frac{x^{1.5}}{\sqrt{6}} \qquad , \qquad f(x+1) = \sqrt[5]{(x+1)^5} \qquad , \qquad f(\frac{1}{x}) = \sqrt[5]{x}$
 - Neka je A najveći podskup od \mathbb{R} a B najmanji podskup skupa \mathbb{R} za koje je $f:A\to B$ definisana sa $f(x)=\arccos(x+1)$. Tada je $A=\underbrace{E^2,\sigma J}, f(\underbrace{\frac{L^2}{2}})=\frac{\pi}{4}, f(\underbrace{-\frac{2}{2}})=\frac{2\pi}{3}$ i $B=\underbrace{E\circ,\Im J},$ a $f:A\to B$ je: a bijektivna b) sirjektivna ali ne injektivna g) injektivna ali ne sirjektivna d) niti injektivna niti sirjektivna
- Napisati 4 beskonačna prstena: $(\mathbb{R}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Z}, +, \cdot)$ 1. ① U polju $(\mathbb{Z}_3, +, \cdot)$, skup rešenja po $x \in \mathbb{Z}_3$ jednačine $x^2 + 2(x^{-1} + 2x + 1) = 0$ je
- ጊ ፡ ⑥Zaokružiti brojeve koji su koreni odgovarajućih jednačina:

 $z \in \{0, 1, e^{i\frac{2\pi}{3}}, e^{-i\frac{2\pi}{3}}\} \Rightarrow z^2 = \bar{z}$ $z \in \{0, 1, e^{i\frac{2\pi}{3}}, e^{-i\frac{2\pi}{3}}\} \Rightarrow z^3 = |z|$ $z \in \{0, 1, e^{i\frac{2\pi}{3}}, e^{-i\frac{2\pi}{3}}\} \Rightarrow z^4 = z$ $z \in \{0, 1, e^{i\frac{2\pi}{3}}, e^{-i\frac{2\pi}{3}}\} \Rightarrow z^4 = z$ $z \in \{0, 1, e^{i\frac{2\pi}{3}}, e^{-i\frac{2\pi}{3}}\} \Rightarrow z^3 = 1.$

16.

 \odot Skup svih mogućih stepena nesvodljivih i svodljivih polinoma nad poljem realnih brojeva $\mathbb R$ je { 2

 $^{\iota}$ $^{\circ}$ U prstenu polinoma, za svaki polinom p važi: \mathcal{Y} ako je p jednak proizvodu dva polinoma, tada je psvodljiv 2) ako je p = 0, tada je on svodljiv 3) ako je p = 0, tada je on nesvodljiv 4) ako je p svodljiv tada je $p \neq 0$ i $dg(p) \neq 0$ i p je jednak proižvodu dva polinoma stepena većeg od 0 (5) ako je p jednak proizvodu dva polinoma stepena većeg od 0, tada je p svodljiv

 Neka su $A = \{1, 2, 3\}$ i $B = \{2, 3, 4\}$ i neka je $f_1 = \{(1, 3), (2, 4)\}, f_2 = \{(1, 3), (3, 4), (2, 3)\},$ $f_3 = \{(3,3),(2,2),(1,4)\}, f_4 = \{(3,3),(2,3),(1,3)\}.$ Popuniti obavezno sa da ili ne:

	<i>3</i>	((*) *)) (=) =)) (=	7 - 7) 7 3 % CV	-3-71 (-1-7) (-1-)) ob #:::or 4		
	\	f_i je funkcija	$f_i:A o B$	$f_i: A \stackrel{1-1}{\rightarrow} B$	$f_i: A \xrightarrow{\mathrm{na}} B$	$f: A \stackrel{1-1}{\underset{\mathbf{na}}{\mapsto}} B$	f_i je rastuća funkcija
	$ f_1 $	ola	ne	n P	ne	2° €	do
	$\overline{f_2}$	da	ं æ	r '	07"	20	ne
	f_3	da	<i>वे</i> ब	त्र	قے قبر	ક લ	;• *
- h	f_4	da	da	r (6/	ئى	u [

 $(\buildrel \bullet)$ Neka je $A=\{1,2,3\}$ i
 $B=\{1,2,3,4\}.$ Odrediti broj elemenata sledećih skupova funkcija:

$$\left| \left\{ f | f: A \longrightarrow B \right\} \right| = \underbrace{ \left\{ \frac{1}{2} \cdot \left| \left\{ f | f: A \xrightarrow{1-1} B \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \longrightarrow B \land f \nearrow \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: B \xrightarrow{na} B \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{1-1} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: B \longrightarrow A \land f \nearrow \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A \xrightarrow{na} A \right\} \right| = \underbrace{\frac{1}{2}} \cdot \left| \left\{ f | f: A$$

Neka je f funkcija definisana sa $f = \begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix}$. Tada je

$$f^{-1} = \begin{pmatrix} a & b & c \\ \lozenge & \lozenge & \& \end{pmatrix}, \quad g = f \circ f = \begin{pmatrix} a & b & c \\ \lozenge & \& \lozenge & \lozenge \end{pmatrix}, \quad h = g \circ f = \begin{pmatrix} a & b & c \\ \lozenge & \lozenge & \& \end{pmatrix}$$

($\{f,g,h\},\circ$) je grupoid; ($\{f,g,h\},\circ$) je asocijativan grupoid; ($\{f,g,h\},\circ$) je komutativan grupoid; ($\{f,g,h\},\circ$) je asocijativan grupoid sa neutralnim elementom; ($\{f,g,h\},\circ$) je grupa.

Skup kompleksnih rešenja jednačine $x = \sqrt[4]{-4}$ je $S = \{ \int_{\mathbb{T}_{2}} e^{i\frac{\pi x}{2}} \int_{\mathbb{T}_{2}} e^{-i\frac{\pi x}{2}} \int_{\mathbb{T}_{2}} e$

Za kompleksni broj $z = 1 + e^{i\frac{\pi}{6}}$, naći: $Re(z^2) = \sqrt{\frac{5}{2}} \frac{t2}{2} , Im(z^2) = \frac{2 + \frac{15}{6}}{2} , |z| = \sqrt{\frac{1}{2}} \frac{\sqrt{6}}{4} , \arg(z) = \frac{\tilde{\lambda}}{22} , |z| = \sqrt{\frac{1}{2}} \frac{1}{\sqrt{6}}$

Napisati u eksponencijalnom obliku, odnosno obliku $\rho e^{i\varphi}, \rho \in [0, \infty), \varphi \in (-\pi, \pi]$ ako je $\sqrt[3]{\pi}$ kompleksni: $-2^{-2} = \sqrt[3]{e^{i\pi}}, (\sqrt[3]{1})^3 = e^{i\pi}, \sqrt[3]{1^3} \in \{e^{i\frac{\pi}{2}}, e^{i\frac{\pi}{2}}\}$ $-1 + i = \int_{\mathbb{R}^3} e^{i\pi}, (3i) = \int_{\mathbb{R}^3} e^{i\pi} e^{i\pi}$

KOŁOKVIJUM 1, PRIMER 19

- Funkcija $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 2^x$ je:
 - (2), injektivna ali ne sirjektivna

2) injektivna ali ne sirjektivna

- 1) sirjektivna ali ne injektivna
 - 3) niti injektivna niti sirjektivna
- 4) bijektivna

- Funkcija $f: \mathbb{R} \to \mathbb{R}, \ f(x) = (x-1)^9$ je:
- 1) sirjektivna ali ne injektivna
- 3) niti injektivna niti sirjektivna

4) bijektivna

ਓ U Bulovoj algebri su tačna tvrđenja

$$(a + ab = a \cdot 1') \quad (b) \quad (a + b = (a'b')' \quad (b) \quad (a' + b')' \quad (b' + b')' \quad (a' + b')' \quad (b' + b') \quad (a' + b')' \quad (b' + b') \quad (b' + b')$$

(•) Od sledećih struktura, grupe su

Od stedechi struktura, grupe su (1)
$$(\mathbb{Z},+)$$
 (2) $(\{-1,0,1\},+)$ (3) $(\{-1,1\},\cdot)$ (2) $(\mathbb{Z}_6 \setminus \{0\},\cdot)$ (5) $(\mathbb{Z}_5 \setminus \{0\},\cdot)$ (6) $(\{-1,0,1\},\cdot)$ Neka su $f: (-\infty,0) \to (-\infty,0)$ i $g: (-\infty,0) \to (-\infty,0)$ definisane sa $f(x) = \frac{1}{x}$ i $g(x) = -\sqrt{-x}$.

Izračunati:

1)
$$f^{-1}(x) = \frac{1}{2}$$

4) $(g \circ f)(x) = \frac{1}{2}$
5) $(g^{-1} \circ f^{-1})(x) = \frac{1}{2}$
3) $(f \circ g)(x) = \frac{1}{2}$
6) $(f \circ g)^{-1}(x) = -\frac{1}{2}$

 \odot U Bulovoj algebri $(B,+,\cdot,',0,1)$ tačna su tvrđenja

- NZD(P,Q) za polinome $P = (t-3)^4(t+7)^2(t-1)^5(t+13)^3$ i $Q = (t-3)^2(t-15)(t-1)^7(t+13)^5$ je polinom δ Skup kompleksnih rešenja jednačine $x=\sqrt[4]{1}$ je $S=\{-1, \frac{1}{1}, -\frac{1}{2}, -\frac{1}{2}\}$ "> ② Za kompleksni broj $z=\pi$, naći: $Re(z^2)=\widetilde{\mathfrak{I}}^{\mathfrak{I}} \qquad, Im(z^2)=\widetilde{\mathfrak{I}} \qquad, |z|=\widetilde{\mathfrak{I}}_{\widetilde{\mathfrak{I}}} \qquad, \arg(z)=\widetilde{\mathfrak{I}} \qquad, z^3=\widetilde{\mathfrak{I}}^{\mathfrak{I}}$ $\sqrt{0}$ \(\text{ \text{\$\text{Q}\$ Za nenula polinome }} p(x) = a^2x^2 + b \text{ i } q(x) = c^2x^2 + dx \text{ je} $dg(p) \in \{0,1\}, dg(p \cdot q) \in \{1,2,3,4\} dg(p+q) \in \{1,2,3\}$ ************** Meka su funkcije $f,g:(-1,0)\to(-1,0)$ definisane sa $f(x)=-\sqrt{x+1}$ i $g(x)=x^2-1$. Tada je $f^{-1}(x) = x^{-1} \land \quad , (f \circ g)(x) = x \qquad , (f \circ g)^{-1}(x) = x \qquad , g^{-1}(x) = x \xrightarrow{\sum_{x \in \mathcal{I}}}, (g^{-1} \circ f^{-1})(x) = x \xrightarrow{\sum_{x \in \mathcal{I}}}, (g^{-1} \circ f^{$ 47. (a) Broj n relacija skupa $A = \{1, 2, 3\}$ koje su refleksivne, simetrične, antisimetrične, tranzitivne i funkcije je **②** Zaokružiti brojeve ispred injektivnih funkcija: ① $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 3 - x$ 13 (7) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x$ \bigcirc Za svaku injektivnu funkciju $f:A\to B$ postoji skup $C\subseteq B$ takv da je funkcija $f:A\to C$ bijektivna? 🗘 uvek 2) nikada 3) samo pod još nekim uslovima $\{ullet$ Za svaku sirjektivnu funkciju f:A o B postoji skup $C\subseteq A$ takv da je funkcija f:C o B bijektivna? 2) nikada 3) samo pod još nekim uslovima Neka je funkcija $f: A \to A$ injektivna. Tada: f je sirjektivna f je bijektivna f postoji f^{-1} Neka je skup A konačan i $f:A\stackrel{1-1}{\to}A$. Tada: (1) f je sirjektivna (2) f je bijektivna (3) postoji f^{-1} f(x) = f(x) Neka je $f: S \to S$ i $(\forall x \in S)$ f(f(x)) = x. Tada je $f: S \to S$: W injektivna sirjektivna bijektivna \bullet Napisati bar jednu funkciju $f:S\to S$ za koju važi da je $(\forall x\in S)\ f(f(x))=x$ (involucija tj. reflektor, odnosno $f \circ f = i_d$ ili $f = f^{-1}$), ako je $S = \{1, 2, 3, 4\}$. Napomena: i_d je identička funkcija, odnosno $(\forall x \in S) \ i_d(x) = x$. Koliko ih ima ukupno? 10 $\{C_i\}$ (•) Ispitati da li relacija "deli" skupa $A=\{1,2,3,6,12,18\}$ jeste relacija poretka: (DA NE (zaokruži), i ako jeste, nacrtati Haseov dijagram, i naspisati minimalne el. { maksimalne el. { 47, 18 najveći el. { najmanji el. { ① U Bulovoj algebri $\mathcal{B}=(B,+,\cdot,',0,1)$ važi: \mathcal{X} x+y=x'y' ② xy=(x'+y')' ③ $xy=1\Rightarrow x+y=1$ $x+y=1\Leftrightarrow xy=1$ ⑤ $x=y\Rightarrow x'=y'$ ⑥ $x'=y'\Rightarrow x=y$ ⑦ $f(x)=x'\Rightarrow f:B\underset{\mathbf{na}}{\rightarrow}B$ \mathcal{T} , \odot Za funkciju $f: \mathbb{R} \to (0, \infty)$ grupe $(\mathbb{R}, +)$ u grupu $((0, \infty), \cdot)$, definisanu sa $f(x) = e^{-x}$ važi da je: homomorfizam (2) izomrfizam (3), f^{-1} homomorfizam (4), f^{-1} funkcija (5), f^{-1} izomorfizam
- Zaokružiti broj (ili brojeve) ispred tvrđenja koja su tačna u svakom polju $(R, +, \cdot)$: (1) (b+c)a = ab+ac(2) (b+c)a = ca+ba (3) (R, +) je grupa (4) (R, \cdot) je asocijativni grpoid (5) $ab = 0 \Leftrightarrow a = 0 \lor b = 0$ (6) operacija + je distributivna prema operaciji \cdot (7) $a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$ (8) $a \cdot 0 = a$ (9) $a \cdot (-a) = -a^2$

(•)Neka je $g:[-1,\underline{0}) \to \mathbb{R}, \ g(x) = -\sqrt{4-4x^2},$ inverzna funkcija je $g^{-1}(x) = \frac{-\int_{-\infty}^{\infty} g^{-1}(x)}{1}, g^{-1}: A \to \mathbb{R}, A = \frac{f(-1, p)}{1}$ Neka je funkcija $f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ definisana sa $f(x) = \frac{2x+1}{x-1}$. Tada je: a) $f^{-1}(x) = \frac{f(-1, p)}{1}$ Napisati 4 beskonačna prstena: $(\mathbb{Z}, \ell, \cdot)$, $(\mathbb{Q}, \dagger, \cdot)$, $(\mathbb{R}, \ell, \cdot)$, (ℓ, \cdot, \cdot) ullet U polju ($\mathbb{Z}_5,+,\cdot$), skup rešenja po $x\in\mathbb{Z}_5$ jednačine $x^2+1=0$ je $\{$ lacksquare Ako je z
eq 0 tada je: 1 $ze^{-2i \arg z} = \overline{z}$ 2 $\arg z = \arg \overline{z}$ 3 $|z| = |\overline{z}|$ 4 $|z|z|^{-2} = \overline{z}^{-1}$ 5 $|\arg z| = |\arg \overline{z}|$ $(\bullet) \arg(e^{i\frac{\pi}{6}} - e^{-i\frac{\pi}{6}}) = \underbrace{\frac{1}{\sqrt{1}}}_{,}, |e^{i\frac{\pi}{6}} - e^{-i\frac{\pi}{6}}| = \underbrace{1}_{,}, R_e(e^{i\frac{\pi}{6}} - e^{-i\frac{\pi}{6}}) = \underbrace{1}_{,}, I_m(e^{i\frac{\pi}{6}} - e^{-i\frac{\pi}{6}}) = \underbrace{1}_{,}.$ lacktriangle Zaokružiti polja nad kojima je polinom t^2+1 nesvodljiv: lacktriangle $\mathbb C$ $\mathbb Z_2$ $\mathbb Z_3$ ${\mathfrak S}$ Skup svih mogućih stepena nesvodljivih polinoma nad poljem kompleksnih brojeva ${\mathbb C}$ je $\{$ Neka su $A = \{1, 2, 3\}$ i $B = \{2, 3, 4\}$ i neka je $f_1 = \{(1, 3), (2, 4)\}, f_2 = \{(1, 3), (3, 4), (2, 3)\},$

 $f_3 = \{(3,3),(2,2),(1,4)\}, f_4 = \{(3,3),(2,3),(1,3)\}.$ Popumiti obavezno sa da ili ne:

\	f_i je funkcija	$f_i:A\to B$	$f_i: A \stackrel{1-1}{\rightarrow} B$	$f_i:\ A\stackrel{\mathtt{na}}{ ightarrow} B$	$f_i: A \overset{1-1}{\underset{\mathbf{na}}{\rightarrow}} B$	f_i je rastuća funkcija
f_1	ola	ne	ne	JI C	Pr C	da
f_2	el a	7 f A	N. E.	Y C	- h7	he
f_3	da	da	30	ર્સ વ	do	n e
f_4	da	da	ክሮ	h P	'ne	সং

 \odot Neka je $A = \{1\}$ i $B = \{1, 2, 3, 4\}$. Odrediti broj elemenata sledećih skupova funkcija:

$$\left| \{ f | f : A \longrightarrow B \} \right| = \frac{\iota_{f}}{4} \left| \{ f | f : A \xrightarrow{1-1} B \} \right| = \frac{\iota_{f}}{4} \left| \{ f | f : A \longrightarrow B \land f \nearrow \} \right| = \frac{\iota_{f}}{4} \left| \{ f | f : B \xrightarrow{na} B \} \right| = \frac{2\iota_{f}}{4} \left| \{ f | f : B \xrightarrow{na} A \} \right| = \frac{1}{4} \left| \{ f | f : A \xrightarrow{na} A \} \right| = \frac{1}{4} \left| \{ f | f :$$

 \odot Skup kompleksnih rešenja jednačine $x=\sqrt[4]{0}$ je $S=\{$

② Za kompleksni broj
$$z = 1 + e^{i\frac{\pi}{3}}$$
, naći:
$$Re(z^2) = \frac{3}{2} , Im(z^2) = \frac{3\sqrt{3}}{2} , |z| = \sqrt{3} , \arg(z) = \frac{\sqrt{3}}{6} , \overline{z} = \sqrt{3} e^{i\frac{\sqrt{3}}{2}}, z^3 = 3\sqrt{3} e^{i\frac{\sqrt{3}}{2}}.$$

Napisati u eksponencijalnom obliku, odnosno obliku $\rho e^{i\varphi}, \rho \in [0, \infty), \varphi \in (-\pi, \pi]$ ako je $\sqrt[3]{}$ kompleksni: $-2^3 = \sqrt[3]{}$, $(\sqrt[3]{1})^3 = e^{i\varphi}$, $\sqrt[3]{13} \in \{e^{i\varphi}, e^{i\varphi}, e^{i\varphi}\}$ $(\sqrt[3]{13})$, $(\sqrt[3]{13})$ $(\sqrt[$

18:15 85

KOLOKVIJUM 2, PRIMER 1

- ② Za ravan $\alpha: -x = 2^2$ napisati jedan njen vektor normale $\vec{n}_{\alpha} = (-1, 0, 0)$ i koordinate jedne njene tačke $A(\sim 4, \mathcal{O}, \mathcal{O})$
- \bullet Za koje vrednosti parametra $a \in \mathbb{R}$ sistem linernih jednačina $x-y=1 \land x-y=a$ nad poljem realnih brojeva je: 1) neodređen: $\alpha = 1$ 2) određen: $\beta = 0$ 3) kontradiktoran: a 19
- Za vektore $\vec{a} = (-1, 0, 1)$ i $\vec{b} = (2, 2, -1)$ izračunati: 1) $|\vec{a}| = \sqrt{2}$ 2) $|\vec{b}| = \sqrt{3}$ 3) $\vec{a} 2\vec{b} = (-5, -4, 3)$ 4) $\vec{a} \cdot \vec{b} = -3$ 5) $\vec{a} \times \vec{b} = (-7, -7, -1)$ 6) $(\vec{a}, \vec{b}) = \frac{4\vec{c}}{4}$
- (6) Koje od sledećih uređenih n-torki su generatorne za vektorski prostor \mathbb{R}^3 : (7) (0,0,-1),(0,4,0),(9,0,0)2) ((1,0,0),(0,-1,0)) (3) ((0,0,1),(0,1,0),(1,0,0),(1,2,3)) 4) ((1,1,1),(2,2,2),(3,3,3))
- - $M_{f} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad M_{h} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad M_{s} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Simple Spod svake matrice napisati broj koji predstavlja njen rang.
- - $\begin{bmatrix} 2 & 0 & 0 & 4 \\ 2 & 3 & 1 & 2 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -2 & 2 \\ 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 5 & 1 & 1 \\ 5 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 0 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 3 & 3 \end{bmatrix}$
- Odrediti sve vrednosti realnog parametara a za koje je sistem linearnih jednačina

 - ax ay = a
- 2) određen: ____
- 3) I puta neodređen: Grovet 1 4) 2 puta neodređen: .
- Neka je ABCD paralelogram, a tačke P i Q redom sredine duži BC i CD. (BD je dijagonala paralelograma). Izraziti vektor \overrightarrow{PQ} kao linearnu kombinaciju vektora $\vec{a} = \overrightarrow{AB}$ i $\vec{b} = \overrightarrow{BC}$. $\overrightarrow{PQ} = \vec{4}$
- 10. ① Izraziti vektor $\vec{x} = (4, 4, 4)$ kao linearnu kombinaciju vektora $\vec{a} = (1, 0, 1)$, $\vec{b} = (0, 1, 1)$ i $\vec{c} = (1, 1, 0)$: $\vec{x} = \mathcal{I}(\vec{a}, \vec{k}, \vec{k}, \vec{k})$
- 11. OU vektorskom prostoru slobodnih vektora, petorka vektora (a, b, c, d, e) je:
 - (1), uvek zavisna
- (2) nikad baza,
- 3) može ali ne mora da bude generatorna.
- $q \in U$ vektorskom prostoru slobodnih vektora, par vektora (a,b) je:
 - uvek nezavisan,
- 2) uvek zavisan,
- (3) nekad nezavisan a nekad zavisan.
- Noji od vektora su karakteristični vektori za matricu $\begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix}$? 17 $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ 20 $\begin{bmatrix} 6 \\ -3 \end{bmatrix}$ 3) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- Ako je matrica A' dobijena od matrice $A = [a_{ij}]_{nn}, a_{ij} \in \mathbb{R}$ elementarnim transformacijama, tada je: 1) $|\det(A)| = \lambda |\det(A')|$ za neko $\lambda \in \mathbb{R}$ 2) $\operatorname{rang}(A) = \operatorname{rang}(A')$ 3) $A \cdot A' = I(4)$ $\det A \neq 0 \Leftrightarrow \det A' \neq 0$
- 1/2 Koje od tvrđenja je tačno za bilo koje komutativne matrice A, B, C reda 2 i svaki skalar λ :
 - $(AB) = \det(A) + \det(B) (B + C)A = BA + CA \quad (AA) = \lambda^3 \det(A)$ $\underbrace{\textbf{det}(AB) = \det(B)\det(A) \quad \underbrace{\textbf{5}}_{\bullet}(AB)^2 = A^2B^2 \quad \textbf{6}_{\bullet} \mathbf{rang}(AB) = \mathbf{rang}(A)\mathbf{rang}(B) }$
 - 7) A(B+C) = BA + CA (8) A(BC) = (AB)C

```
16
    \sqrt{\bullet} Koja od sledećih tvrdnji je tačna za svaka dva slobodna vektora \vec{x} i \vec{a}:
                                                                                                   \mathbf{c})(\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a}) \parallel \vec{x} \parallel
          (a) (\vec{a} - \operatorname{pr}_{\vec{a}} \vec{a}) \perp \vec{x} (b) (\vec{x} - \operatorname{pr}_{\vec{a}} \vec{x}) \perp \vec{a}
                                                                                                                                            d (\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \parallel \vec{a} = 0 ništa od prethodnog
      Neka su a, b i c proizvoljni vektori. Tada uređena trojka vektora (a + b + c, b + c, b + c) je:
           a) uvek zavisna b) uvek nezavisna c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c.
    (a) Neka su a, b i c proizvoljni vektori. Tada uređena trojka vektora (a+c, a+b, a-b+2c) je:
          (a) uvek zavisna b) uvek nezavisna c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c.
Vektori \vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} i \vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k} su kolinearni ako i samo ako: (1) \vec{a} \times \vec{b} = 0 2) \vec{a} \cdot \vec{b} = 0 3. \vec{b} = 0 4. \vec{b} = 0 3. \vec{b} = 0 4. \vec{
         \vec{\beta} (\exists \lambda \in \mathbb{R}) \ \vec{a} = \lambda \vec{b} \quad \text{ (3)} \ (\exists \lambda \in \mathbb{R}) \quad (\vec{a} = \lambda \vec{b} \lor \lambda \vec{a} = \vec{b}) \quad (\vec{0}) \ \alpha \vec{a} + \beta \vec{b} = 0 \land \alpha^2 + \beta^2 \neq 0 
     Neka je \vec{x} = x_1 \vec{i} + x_2 \vec{j} + x_3 \vec{k} proizvoljni vektor i neka je f : \mathbb{R}^3 \to \mathbb{R} definisana sa f(x_1, x_2, x_3) = \vec{m} \cdot \vec{x}, gde je \vec{m} = m_1 \vec{i} + m_2 \vec{j} + m_3 \vec{k} dati slobodni vektor različit od nule. Funkcija f : \mathbb{R}^3 \to \mathbb{R} je:
        1) linearna transformacija 2) injektivna
                                                                                                                       3) sirjektivna
                                                                                                                                                                 4) bijektivna 5) izomorfizam
      (\bullet)^2Za svaku linearnu transformaciju f: \mathbb{R} \to \mathbb{R} i svako x, y, \lambda, v \in \mathbb{R} tačno je: (\flat)^2 x = 0 \Leftarrow f(x) = 0
          (2) f(0) = 0 3) f(2xy) = f(x)f(2y) (4) f(xy) = x f(y) (5) f(x) = ax + 1 za neko a \in \mathbb{R}
           (2\lambda + v) = 2f(\lambda) + f(v) 
     Neka je \varphi: V \to \mathbb{R}^3 definisana sa \varphi(x_1\vec{i} + x_2\vec{j} + x_3\vec{k}) = (x_1, x_1, x_1) tj. \varphi(\vec{x}) = (\vec{x}\vec{i}, \vec{x}\vec{i}, \vec{x}\vec{i}), gde su (V, \mathbb{R}, +, \cdot)
           i (\mathbb{R}^3, \mathbb{R}, +, \cdot) vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija \varphi: V \to \mathbb{R}^3
  (1) linearna transformacija
                                                                          2) injektivna
                                                                                                                      3) sirjektivna
                                                                                                                                                                   4) bijektivna
     🕥 Neka je {\mathcal M} skup svih kvadratnih matrica reda 3 čiji svi elementi su iz skupa realnih brojeva R. Tada je:
          ① det: \mathcal{M} \longrightarrow \mathbb{R} 2) det: \mathcal{M} \xrightarrow{1-1} \mathbb{R} 3) det: \mathcal{M} \xrightarrow{na} \mathbb{R} 4) det: \mathcal{M} \xrightarrow{na} \mathbb{R} 5) det je linearna
    Neka je M skup svih matrica formata (2,3) čiji svi elementi su iz skupa realnih brojeva ℝ. Tada je:
         Tyrang: \mathcal{M} \to \mathbb{R} 2) rang: \mathcal{M} \to \mathbb{N} 3) rang: \mathcal{M} \stackrel{na}{\to} \mathbb{N} \cup \{0\} 4) rang: \mathcal{M} \stackrel{1-1}{\to} \mathbb{N} \cup \{0\}
         (5) rang: \mathcal{M} \stackrel{na}{\rightarrow} \{0,1,2\}
      Ako je f(0) = 0, tada f: \mathcal{X} jeste linearna transformacija 2 nije linearna transformacija 3 može a ne
           mora biti linearna transformacija
                                                                                         4) jeste linearna transformacija ako preslikava vektorski prostor u
    vektorski prostor
     (a) Neka je (a_1, a_2, \ldots, a_n) generatorna u prostoru V, (c_1, c_2, \ldots, c_m) nezavisna za prostor V i dimV = k.
      (1) m \le k \le n  2) n \le k \le m  3) n \le m \le k  4) k \le m \le n  5) k \le n \le m  6) m \le n \le k 
     Neka je \vec{r}_A vektor položaja tačke A, |\overrightarrow{AB}| = 2. Odrediti \vec{r}_B u zavisnosti od \vec{r}_A i \vec{a}, ako je vektor \vec{a} istog pravca kao i vektor |\overrightarrow{AB}|, a suprotnog smera od vektora |\overrightarrow{AB}|, |\overrightarrow{r}_B| = |\overrightarrow{r}_A| - |\overrightarrow{a}|. |\overrightarrow{r}_B| = |\overrightarrow{r}_A| - |\overrightarrow{a}|. |\overrightarrow{r}_B| = |\overrightarrow{r}_A| - |\overrightarrow{r}_A|. Neka je |\overrightarrow{r}_A| torka vektora |\overrightarrow{r}_B| nezavisna i neka je |\overrightarrow{r}_A| zavisna |\overrightarrow{r}_B| torka vektora.
     Tada je: 1) k \le \ell 2) \ell \le k 3) k = \ell 4) \ell < k 5) \ell > k 6) ništa od prethodnog
     oldsymbol{oldsymbol{\circ}} Koji od sledećih podskupova U\subseteq\mathbb{R}^3 je potprostor i za one koji jesu napiši desno od njih njihovu
           dimenziju: (\mathfrak{C})U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}, \quad \dim U = 2
          (2) U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + x^2 = 0\} dim U = 2
          (3) U = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot 0 = 0\} \text{ dim } U = \underline{\mathcal{C}}
U = \{(x, y, z) \in \mathbb{R}^3 \mid x = z + 0\} \quad \text{dim } U = \underline{\qquad}
     Neka je a = (0, 2, 2), b = (0, -3, 3), c = (0, 1, -1), d = (0, -1, 1), e = (1, 0, 0), f = (0, 1, 0), g = (0, 1, 2).
            Odrediti dimenzije sledećih potprostora V vektorskog prostora \mathbb{R}^3:
           1) V = L(a, b, c) \Rightarrow dim(V) = 2 2) V = L(a) \Rightarrow dim(V) = 1
           3) V = L(a,b) \Rightarrow dim(V) = 2 4) V = L(b,c,d) \Rightarrow dim(V) = 2
           5) V = L(b, c, e) \Rightarrow dim(V) = 2. 6) V = L(a, g) \Rightarrow dim(V) = 2
            7) V = L(e, f, g) \Rightarrow dim(V) = 3
```

```
31. (a) Izračunati bar jedan nenula vektor \vec{n} koji je normalan i na vektor \vec{i} + \vec{j} i na vektor \vec{k}.
                     \vec{n} = \{1, -1, 0\}
    \mathcal{T} \cdot \mathcal{T} Ako je A kvadratna matrica reda n, tada je: 17 det A=0 \Rightarrow \operatorname{rang} A=0
                    ② \det A = 0 \Leftrightarrow \operatorname{rang} A \leq n - 1, 3) \det A = 0 \Rightarrow \operatorname{rang} A = n ④ \operatorname{rang} A = n \Rightarrow \det A \neq 0,
                  (5) rang A = n \Leftarrow \det A \neq 0, (6) rang A = n \Leftarrow \exists A^{-1}
    A_{nn} = [a_{i,j}]_{nn}, \text{ neka je } V = \text{Lin}(\mathbf{a_1, a_2, \dots a_n}) = \{\alpha_1 \mathbf{a_1} + \alpha_2 \mathbf{a_2} + \dots + \alpha_n \mathbf{a_n} | \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}\} \text{ i neka je } I = \{\alpha_1 \mathbf{a_1} + \alpha_2 \mathbf{a_2} + \dots + \alpha_n \mathbf{a_n} | \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}\}
                    \mathbf{a_i}^2 skalarni proizvod vektora \mathbf{a_i} sa samim sobom. Tada je: \mathbf{a_1} = \dots \mathbf{a_n} = 0 \Leftrightarrow \mathbf{a_1}^2 + \dots + \mathbf{a_n}^2 = 0
                   (3) \dim V = 0 \Leftrightarrow \operatorname{rang} A = 0 \quad (3) \dim V = 0 \Leftrightarrow \mathbf{a_1} = \dots \mathbf{a_n} = 0 \quad (4) \dim V = 0 \Leftrightarrow \mathbf{a_1}^2 + \dots + \mathbf{a_n}^2 = 0 
                                                   (5) \operatorname{rang} A = 0 \Leftrightarrow \mathbf{a_1} = \dots \mathbf{a_n} = 0
                                                                                                                                                     (6) rang A = 0 \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 = 0
              ⓒ Linearne transformacije f: \mathbb{R}^2 \to \mathbb{R}^3, g: \mathbb{R}^2 \to \mathbb{R} i h: \mathbb{R} \to \mathbb{R} su uvek oblika:
                   f(x,y)=( Lx+px, xx+5x, px +7x)
                                                                                       g (x,y) = ( 1x+py)
                                                                                                                                                            h(x) = \frac{1}{2} \chi
               \bullet) Postoji linearna transformacija f: \mathbb{R}^3 \to \mathbb{R}^2 za koju važi da je:
                                                                                                                                                                                                   (1) sirjektiyna
                  injektivna
                                                                     3) bijektivna
                                                                                                                                                                                  5) ništa od prethodnog
                                                                                                                          4) izomorfizam
   \bigcirc Postoji linearna transformacija f: \mathbb{R}^2 \to \mathbb{R}^3 za koju važi da je:
                                                                                                                                                                                                 (1)) injektivna
                                                                       3) bijektivna
                                                                                                                       4) izomorfizam
                                                                                                                                                                                 5) ništa od prethodnog.
               \widehat{ullet} Za svaki vektorsk prostor V i svaku sirjektivnu linearna transformaciju f:\!\!V\!\!	o\!\!V sledi da je transformacija
                                                                                   2) bijektivna
                                                                                                                               (3) izomorfizam
                                                                                                                                                                                4) ništa od prethodnog.
   \mathcal{N} (a) Za svaki vektorsk prostor V i svaku injektivnu linearna transformaciju f:V	o V sledi da je transformaciju f:V	o V sledi da je transformaciju f:V\to V sledi 
                   macija f:
                                                       (1) sirjektivna
                                                                                                       (2) bijektivna
                                                                                                                                                       (3) izomorfizam
                                                                                                                                                                                                            4) ništa od
                   prethodnog
             \widehat{ullet}Za svaki izomorfizam f:\mathbb{R}^n	o\mathbb{R}^m i njegovu matricu A važi: \widehat{\mathbb{Q}} f je injektivnaq \widehat{\mathbb{Q}}, postaoji A^{-1}
                  3) n=m (4) f je sirjektivna (5) f je bijektivna (6) A je regularna (7) \det A \neq 0 (8) ništa od
                   prethodnog
         lacktriangleZa svaki vektorski prostor V postoji homogen sistem linearnih jednačina, čiji skupsvih rešenja je vektorski
                  prostor izomorfan prostoru V. Zakruží tačan odgovor(DA) NE
      KOLOKVIJUM 2,
                                                        PRIMER 2
             Neka tačke P(1,0,0), Q(0,1,0)i R(0,0,1) pripadaju ravni \alpha. Tada je
                 \overrightarrow{PQ} = (\ \ \ \ \ \ \ \ )i \overrightarrow{PR} = (\ \ \ \ \ \ ). Napisati bar jedan vektor \overrightarrow{n} normalan na \alpha, \overrightarrow{n} = (\ \ \ \ \ ). Ako je (A,B,C,D) = (\ \ \ \ \ ,\ \ \ \ ), tada je Ax + By + Cz + D = 0 jednačina ravni \alpha. Napisati bar
                 jednu tačku M \in \alpha i M \notin \{P,Q,R\}, M(\frac{1}{1},\frac{4}{1},\frac{4}{1}).
           \odot Za koje vrednosti parametra a\in\mathbb{R} sistem linernih jednačina x-y=1 \land ax-y=1 nad poljem realnih
                 brojeva je: 1) neodređen: a: 1
                                                                                                     2) određen: a z 7
                                                                                                                                                             3) kontradiktoran: /
  3) \vec{a} - 2\vec{b} = \underline{(1, 1, 0)} i \vec{b} = (-1, 0, 1) izračunati: 1) |\vec{a}| = \underline{\sqrt{2}}
3) \vec{a} - 2\vec{b} = \underline{(1, 1, 2)} 4) \vec{a} \cdot \vec{b} = \underline{\sqrt{1}} 5) \vec{a} \times \vec{b} = \underline{\sqrt{1}} 6
            ulletKoje od sledećih uređenih n-torki <u>nisu</u> generatorne za vektorski prostor \mathbb{R}^3:
               (1,1,1),(2,2,2),(3,3,3)
\bigcirc Matrice linearnih transformacija f(x,y)=(2x,x,y), g(x,y,z)=(x,z), h(x,y)=(x,y) i s(x,y,z)=z su:
                M_f = \begin{bmatrix} 2 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad M_g = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad M_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

⟨♠ Ispod svake matrice napisati broj koji predstavlja njen rang. (Odrediti sve vrednosti realnog parametara 1) kontradiktoran: 2) određen: $\triangle \in \mathbb{R}$ a za koje je sistem linearnih jednačina 3) 1 puta neodređen: ax +y = a-4+ ay = a+94) 2 puta neodređen: _ (\bullet) Neka je ABCD paralelogram, a tačke P i Q redom sredine duži BC i CD. (BD je dijagonala paralelograma). Izraziti vektor \overrightarrow{PQ} kao linearnu kombinaciju vektora $\vec{a} = \overrightarrow{AD}$ i $\vec{b} = \overrightarrow{AC}$. $\overrightarrow{PQ} = \vec{o}^2 - \frac{\ell}{2}$ Napisati $\vec{x}=(1,2,3)$ kao linearnu kombinaciju vektora $\vec{a}=(0,0,1), \vec{b}=(0,1,1)$ i $\vec{c}=(1,1,1)$: $\vec{x}=\vec{\delta}+\vec{\delta}+\vec{\delta}+\vec{c}$ Naći vektor položaja projekcije A' tačke A(1,2,3) na pravu p određenu sa $x=8 \land z=9$: $\vec{r}_{_A}=(9,7,5)$ Naći vektor položaja \vec{r}_T tačke T, prodora prave $p: \frac{x-1}{2} = \frac{y}{2} = \frac{z-1}{2}$ kroz ravan $\alpha: x+y+z=0$. Noji od vektora su karakteristični vektori za matricu $\begin{bmatrix} -1 & 2 \\ 4 & 1 \end{bmatrix}$? $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ Koje od tvrđenja je tačno za bilo koje komutativne matrice A,B,C reda 3 i svaki skalar λ : A $\det(AB) = \det(A)\det(B)$ B (B+C)A = BA + CA 3 $\det(\lambda A) = \lambda^3 \det(A)$ $(4) \det(AB) = \det(B)\det(A) \quad (5) \quad (AB)^2 = A^2B^2 \quad (6) \quad \operatorname{rang}(AB) = \operatorname{rang}(BA)$ (7) A(B+C) = BA+CA (8) A(BC) = (AB)C© Neka su a, b i c proizvoljni **zavisni** vektori. Tada uređena trojka vektora (a+b+c, b+c, b-c) je: (1)) uvek zavisna 2) uvek nezavisna 3) nekad zavisna, a nekad nezavisna, zavisi od izbora vektora a, b, c. \bigcirc Neka su a,b i c proizvoljni **nezavisni** vektori. Tada uređena trojka vektora (a+c,a+b,-a+c-2b) je: D uvek zavisna, 2) uvek nezavisna, 3) nekad zavisna, a nekad nezavisna, zavisi od izbora vektora a, b, c. Ako su $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ i $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$ nekomplanarni tada važi:

1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 2$ 2) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 3$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$ $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0 \quad \text{5)} \ \vec{a}(\vec{b} \times \vec{c}) = 0 \quad \text{6)} (\exists \alpha, \beta \in \mathbb{R}) \ \vec{a} = \alpha \vec{b} + \beta \vec{c}$ (7) $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \wedge \alpha^2 + \beta^2 + \gamma^2 = 0$ 8 $(\vec{a}, \vec{b}, \vec{c})$ je zavisna.

Neka je $\varphi:V o\mathbb{R}^3$ definisana sa $\varphi(x_1\vec{i}+x_2\vec{j}+x_3\vec{k})=(x_1,x_1+x_2,x_1+x_2+x_3)$ gde su $(V,\mathbb{R},+,\cdot)$ i $(\mathbb{R}^3,\mathbb{R},+,\cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi:V\to\mathbb{R}^3$

γο (1) linearna transformacija 3) sirjektivna (4) bijektivna (5) izomorfizam (2) injektivna

Neka je M skup svih matrica formata (3,5) čiji svi elementi su iz skupa realnih brojeva ℝ. Tada je:

 $\begin{array}{ll} \text{(1)} \ \operatorname{rang}:\mathcal{M}\to\mathbb{R} & \text{(2)} \ \operatorname{rang}:\mathcal{M}\to\mathbb{N} & \text{(3)} \ \operatorname{rang}:\mathcal{M}\to\mathbb{N}\cup\{0\} & \text{(4)} \ \operatorname{rang}:\mathcal{M}\overset{1-1}\to\mathbb{N}\cup\{0\} \\ \text{(5)} \ \operatorname{rang}:\mathcal{M}\overset{na}\to\{0,1,2,3\} & \text{(4)} \ \operatorname{rang}:\mathcal{M}\overset{na}\to\mathbb{N} & \text{(5)} \ \operatorname{rang}:\mathcal{M}\overset{1-1}\to\mathbb{N}\cup\{0\} \\ \end{array}$

• Ako je f(0) = 0, tada $f: \mathcal{N}$ jeste linearna transformacija \mathcal{N} nije linearna transformacija \mathcal{N} može a ne A) jeste linearna transformacija ako preslikava vektorski prostor u mora biti linearna transformacija vektorski prostor

- Neka je (a_1,a_2,\ldots,a_n) generatorna u prostoru $V,\,(c_1,c_2,\ldots,c_m)$ nezavisna za prostor V i dimV=k. (1) $m \le k \le n$ 2) $n \le k \le m$ 3) $n \le m \le k$ 4) $k \le m \le n$ 5) $k \le n \le m$ 6) $m \le n \le k$ Neka je \vec{r}_A vektor položaja tačke $A(1,2,4), \ |\overrightarrow{AB}| = 3$. Odrediti \vec{r}_B ako je $\vec{a} = (1,2,2)$ i ako je vektor \vec{a} istog pravca kao i vektor \overrightarrow{AB} , a suprotnog smera od vektora \overrightarrow{AB} . $\overrightarrow{r}_B = (o_{,C}, \tau_{,C})$ ${\bigodot}$ Koji od sledećih podskupova $U\subseteq\mathbb{R}^3$ je potprostor i za one koji jesu napiši desno od njih njihovu dimenziju: (1) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 1\}, \quad \text{dim } U = 2$ (2) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 0\}$ dim U = 7(a) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot 0 = 0\} \text{ dim } U = \frac{3}{2}$ (4) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = z + 0\}$ dim U = 2Neka je a = (0,0,0), b = (1,0,1), c = (1,0,-1), d = (-1,0,1), e = (1,1,1), f = (1,0,0), g = (2,0,2).Odrediti dimenzije sledećih potprostora V vektorskog prostora \mathbb{R}^3 : 1) $V = L(a) \Rightarrow dim(V) = 0$ 2) $V = L(a,b) \Rightarrow dim(V) = 0$ 3) $V = L(a,b,c) \Rightarrow dim(V) = 2$ 4) $V = L(b,c,d) \Rightarrow dim(V) = 2$ 5) $V = L(b, c, e) \Rightarrow dim(V) = 3$ 6) $V = L(e, f, g) \Rightarrow dim(V) = 3$ 76 (2) Ako je A kvadratna matrica reda n, tada je: 1) $\det A = 0 \Rightarrow \operatorname{rang} A = 0$ (2) $\det A = 0 \Leftrightarrow \operatorname{rang} A \le n - 1$, 3) $\det A = 0 \Rightarrow \operatorname{rang} A = n$ (4) $\operatorname{rang} A = n \Rightarrow \det A \ne 0$, (5) rang $A = n \Leftarrow \det A \neq 0$, (6) rang $A = n \Leftarrow \exists A^{-1}$. £7. • Neka su $a_1 = (a_{11}, \ldots, a_{n1}), a_2 = (a_{12}, \ldots, a_{n2}), \ldots, a_n = (a_{1n}, \ldots, a_{nn})$ vektori kolone matrice $A = (a_{1n}, \ldots, a_{nn})$ $A_{nn}=[a_{ij}]_{nn}$, neka je $V=\mathrm{Lin}(\mathbf{a_1,a_2,\ldots,a_n})=\{lpha_1\mathbf{a_1}+lpha_2\mathbf{a_2}+\ldots+lpha_n\mathbf{a_n}|lpha_1,lpha_2,\ldots,lpha_n\in\mathbb{R}\}$ i neka je $\mathbf{a_i}^2$ skalarni proizvod vektora $\mathbf{a_i}$ sa samim sobom. Tada je: $\mathbf{1}$ $\mathbf{a_1} = \ldots = \mathbf{a_n} = \mathbf{0} \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 = \mathbf{0}$ (2) $\dim V = 0 \Leftrightarrow \operatorname{rang} A = 0$ (3) $\dim V = 0 \Leftrightarrow \mathbf{a_1} = \ldots = \mathbf{a_n} = 0$ (4) $\dim V = 0 \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 = 0$ (5)/rang $A = 0 \Leftrightarrow \mathbf{a_1} = \ldots = \mathbf{a_n} = 0$ \mathcal{N} . Linearne transformacije $f:\mathbb{R}^3 \to \mathbb{R}^2, \, g:\mathbb{R} \to \mathbb{R}^2$ i $h:\mathbb{R} \to \mathbb{R}$ su uvek oblika: $f(x,y,y) = (0, p_{y+}, x_{1}, x_{2}, x_{3}, y_{3})$ $g(x) = (\lambda x, \beta x)$ 79. Postoji linearna transformacija $f: \mathbb{R}^3 \to \mathbb{R}^2$ za koju važi da je: (1) sirjektivna 2) injektivna 3) bijektivna 4 izomorfizam 5) ništa od prethodnog $\mathcal{GO}(\bullet)$ Postoji linearna transformacija $f: \mathbb{R}^2 \to \mathbb{R}^3$ za koju važi da je: (1) injektivna 4) izomorfizam 3) bijektivna 5) ništa od prethodnog. 2) sirjektivna \mathfrak{I} Za svaki vektorski prostor V i svaku sirjektivnu linearnu transformaciju $f: V \to V$ sledi da je transformacija f: (1)) injektivna (2) bijektivna (3) izomorfizam (4) ništa od prethodnog. $\mathcal{I}^{\mathfrak{q}}\cdot \bigodot$ Za svaki vektorski prostor V i svaku injektivnu linearnu transformaciju $f:V \to V$ sledi da je transformaciju $f:V \to V$ macija f: (1) sirjektivna (2) bijektivna (3) izomorfizam (4) ništa od prethodnog \mathfrak{F}^{n} (a) Za svaki izomorfizam $f:\mathbb{R}^{n}\to\mathbb{R}^{m}$ i njegovu matricu A važi:
 - Za svaki izomorfizam $f: \mathbb{R}^n \to \mathbb{R}^m$ i njegovu matricu A važi:

 The properties of the first postoji A^{-1} for A is A in the properties of A is regularna for A det $A \neq 0$ for instance of A is A in the properties of A in the properties A is A in the properties A in the properti
 - $\mathfrak{I}^{\mathcal{G}}$. \bullet Za svaki vektorski prostor V postoji homogen sistem linearnih jednačina, čiji skup svih rešenja je vektorski prostor izomorfan prostoru V. Zakruži tačan odgovor DA NE

KOLOKVIJUM 2, PRIMER 3

Neka tačke P(0,0,0) i Q(0,1,0) pripadaju ravni α koja je paralelna sa vektorom (1,1,1). Napisati bar jedan vektor \vec{n} normalan na ravan α , $\vec{n}=(-1,0,1)$. Ako je (A,B,C,D)=(-1,0,1,0), tada jednačina Ax+By+Cz+D=0 jeste jednačina ravni α . $(\forall t,s\in\mathbb{R})\ M(t,s,t)\in\alpha$. DA

poljem realnih brojeva je: 1) neodređen: $\alpha \in \mathbb{N}$ 2) određen: © Za vektore $\vec{a} = (-1, 0, 0)$ i $\vec{b} = (-1, 0, 1)$ izračunati: 1) $|\vec{a}| = \underline{}$ 2) $|\vec{b}| = \underline{}$ 2) $|\vec{b}| = \underline{}$ 3) $\vec{a} - 2\vec{b} = \underline{}$ 4) $\vec{a} \cdot \vec{b} = \underline{}$ 5) $\vec{a} \times \vec{b} = \underline{}$ 6) $\not\prec (\vec{a}, \vec{b}) = \underline{}$ Noje su od sledećih uređenih n-torki baze vektorskog prostora \mathbb{R}^3 : (1) $\{(0,0,1),(0,1,0),(1,0,0)\}$ $2) \left((1,0,0), (0,2,0) \right) \quad 3) \left((1,3,2), (1,1,0), (3,0,4), (1,2,3) \right) \quad 4) \left((1,0,0), (2,0,0), (3,0,0) \right)$ $\begin{vmatrix} 3 & -1 \\ 7 & -2 \end{vmatrix} = 4 \qquad \begin{bmatrix} 3 & -1 \\ 7 & -2 \end{bmatrix}^{-1} = \begin{bmatrix} 7 & 7 & 7 \\ -1 & 3 \end{bmatrix}$ Matrica linearne transformacije f(x,y) = (2y, x - y, 3x + y) je: (i) Ispod svake matrice napisati broj koji predstavlja njen rang. Odrediti sve vrednosti realnog parametara 1) kontradiktoran: 2) određen: 0.50 10 11 a za koje je sistem linearnih jednačina 3) 1 puta neodređen: ___a=o √ a = -1 ax + ay = a-x + ay =4) 2 puta neodređen: $^{\circ}$). \bigcirc Neka je ABCD paralelogram, a tačke P i Q redom sredine duži AC i BP. (BD je dijagonala paralelograma). Izraziti vektor \overrightarrow{AQ} kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AB}$ i $\overrightarrow{b} = \overrightarrow{BC}$. $\overrightarrow{AQ} = \underbrace{2\overrightarrow{K}}_{b+1} \underbrace{\$}_{b+1}$ Napisati $\vec{z} = (0, -2, -1)$ kao linearnu kombinaciju vektora $\vec{a} = (1, 0, -1)$, $\vec{b} = (0, -1, 1)$ i $\vec{c} = (1, 1, 1)$: Naći vektor položaja projekcije A' tačke A(1,1,-1) na ravan x+y+z=0: $\vec{r}_A = \left(\frac{2}{3},\frac{2}{3},-\frac{4}{3}\right)$ Na'ei vektor položaja \vec{r}_T tačke T, prodora prave $p: \frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{1}$ kroz ravan $\alpha: x+2y-z=0$ $\vec{r}_T = (1,0,1)$ igcellarKarakteristični polinom matrice $\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ je: $\underbrace{ \bigwedge^{7} - \emptyset}_{}$, a karakteristični koreni λ su $\lambda \in \{ 2 \sqrt{2}, -2 \sqrt{2} \}$ Noje od tvrđenja je tačno za bilo koje matrice A,B,C reda 1 i svaki skalar λ : \bigcirc Neka su a,b i c projzvoljni vektori. Tada uređena trojka vektora (a+b+c,b+c,b-c) je: X) uvek zavisna (3) uvek nezavisna(3) nekad zavisna, a nekad nezavisna, zavisi od izbora vektora a,b,c. e Neka su a,b i c proizvoljni nezavisni vektori. Tada uređena trojka vektora (a+c,a+b,b+c) je: \mathcal{Y} uvek zavisna 2) uvek nezavisna 3) nekad zavisna, a nekad nezavisna, zavisi od izbora vektora a,b,c. Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ su nekolinearni ako i samo ako: 1) $\vec{a} \times \vec{b} = 0$ 2) $\vec{a} \cdot \vec{b} = 0$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ 4) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 2$ 5) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 1$ **6**) \vec{a} i \vec{b} su nezavisni \vec{Z} $(\exists \lambda \in \mathbb{R})$ $\vec{a} = \lambda \vec{b}$ **8**) $\vec{a} \parallel \vec{b}$ **9**) $(\exists \lambda \in \mathbb{R})$ $(\vec{a} = \lambda \vec{b} \vee \lambda \vec{a} = \vec{b})$ 10) $(\exists \alpha, \beta \in \mathbb{R}) \ \alpha \vec{a} + \beta \vec{b} = 0 \ \land \ \alpha^2 + \beta^2 \neq 0$

 \bullet Za koje vrednosti parametra $a \in \mathbb{R}$ sistem linernih jednačina $ax - ay = a \land -2ax + 2ay = -2a$ nad

 $\begin{array}{c} \text{Yektori } \vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}, \ \vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k} \ \text{i} \ \vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k} \ \text{su komplanarni ako i samo ako:} \\ \text{Yrang} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 2 \quad \text{Yrang} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \leq 3 \quad \text{Yrang} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3 \\ \text{Al} \quad \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \neq 0 \quad \text{Decomplanarni ako i samo ako:} \\ \text{Proposition of } \vec{b} = \vec{b} =$ $\mathcal{F}(\vec{a}\vec{a}+\beta\vec{b}+\gamma\vec{c}=0 \ \land \ \alpha^2+\beta^2+\gamma^2=0 \ (8) \ (\vec{a},\vec{b},\vec{c}) \text{ je zavisna.}$ $\text{? Neka je } \varphi: V \to \mathbb{R}^3 \text{ definisana sa } \varphi(x_1\vec{i} + x_2\vec{j} + x_3\vec{k}) = (x_1 - x_2, x_1 + x_3, -x_1 - x_2 - 2x_3) \text{ gde su } (V, \mathbb{R}, +, \cdot)$ i ($\mathbb{R}^3, \mathbb{R}, +, \cdot$) vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi: V \to \mathbb{R}^3$ (1)) linearna transformacija 2) injektivna (3) sirjektivna (4) bijektivna \mathcal{O} Neka je \mathcal{M} skup svih matrica formata (1,1) čiji svi elementi su iz skupa realnih brojeva \mathbb{R} . Tada je: $(1) \text{ rang}: \mathcal{M} \to \mathbb{R} \quad \textbf{2)} \text{ rang}: \mathcal{M} \to \mathbb{N} \quad (3) \text{ rang}: \mathcal{M} \to \mathbb{N} \cup \{0\} \quad \textbf{4)} \text{ rang}: \mathcal{M} \overset{1-1}{\to} \mathbb{N} \cup \{0\}$ (5) rang : $\mathcal{M} \stackrel{na}{
ightarrow} \{0,1\}$ $(\forall x \in \mathbb{R}^5) f(x) = 0$, tada $f: \mathbb{R}^5 \to \mathbb{R}$: (1) jeste linearna transformacija (2) nije linearna transformacija cija 3) može a ne mora biti linearna transformacija 4) jeste injektivna 5) jeste sirjektivna 6) jeste izomorfizam Neka je (a_1, a_2, \ldots, a_n) zavisna, a (c_1, c_2, \ldots, c_m) nezavisna za prostor V i dimV = k. Tada je moguće (1) $m \le k \le n$ (2) $n \le k \le m$ (3) $n \le m \le k$ (4) $k \le m \le n$ (5) $k \le n \le m$ (6) $m \le n \le k$ Neka je \vec{r}_A vektor položaja tačke $A(1,1,1), |\overrightarrow{AB}| = 3$ i $|\overrightarrow{BC}| = 9$. Odrediti \vec{r}_C ako je $\vec{a} = (1,2,2), \vec{b} = (1,4,8)$ i ako su vektori \vec{a} i \vec{b} istog pravca i smera redom kao i vektori \overrightarrow{AB} i \overrightarrow{BC} . $\vec{r}_C = (3,2,2), \vec{c}$ lacktriangleKoji od sledećih podskupova $U\subseteq\mathbb{R}^3$ je potprostor i za one koji jesu napiši desno od njih njihovu dimenziju: (1) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = y\}, \quad \text{dim } U = 2.$ ② $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^4 + y^4 = 0\}$ dim U = 1 \mathfrak{S} $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = x\}$ dimU = 3(4) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = z = y\}$ dim U = 1Ako je $f:V \to V$ homomorfizam prostora V u samog sebe, tada je: Af mora biti izomorfizam 2) dim(V) = dim(f(V))(3) f(0) = 0 (gde je 0 nula-vektor prostora V) Δ ža svaku nezavisnu n-torku vektora $(v_1,...,v_n)$ iz V, n-torka $(f(v_1),...,f(v_n))$ je nezavisna u V(5) za svaku zavisnu n-torku vektora $(v_1,...,v_n)$ iz V, n-torka $(f(v_1),...,f(v_n))$ je zavisna u VAko je A kvadratna matrica reda 5, tada je: A det $A = 0 \Rightarrow \operatorname{rang} A = 0$ (2) $\det A = 0 \Leftrightarrow \operatorname{rang} A \le 4$, 3) $\det A = 0 \Rightarrow \operatorname{rang} A = 5$ (4) $\operatorname{rang} A = 5 \Rightarrow \det A \ne 0$. (5) rang $A = 5 \Leftarrow \det A \neq 0$, (6) rang $A = 5 \Leftarrow \exists A^{-1}$. Neka su $\mathbf{a_1}=(a_{11},\ldots,a_{n1}),\ \mathbf{a_2}=(a_{12},\ldots,a_{n2}),\ldots,\ \mathbf{a_n}=(a_{1n},\ldots,a_{nn})$ vektori kolone matrice A= $A_{nn}=[a_{ij}]_{nn}, \text{ neka je } V=\text{Lin}(\mathbf{a_1,a_2,\ldots,a_n})=\{\alpha_1\mathbf{a_1}+\alpha_2\mathbf{a_2}+\ldots+\alpha_n\mathbf{a_n}|\alpha_1,\alpha_2,\ldots,\alpha_n\in\mathbb{R}\} \text{ i neka je } V=\mathbb{R}\}$ $\mathbf{a_i}^2$ skalarni proizvod vektora $\mathbf{a_i}$ sa samim sobom. Tada je: $(1) \mathbf{a_1} = \dots = \mathbf{a_n} = 0 \Leftrightarrow \mathbf{a_1}^2 + \dots + \mathbf{a_n}^2 = 0$ $(2) \dim V = 0 \Leftrightarrow \operatorname{rang} A = 0 \quad (3) \dim V = 0 \Leftrightarrow \mathbf{a_1} = \dots = \mathbf{a_n} = 0 \quad (4) \dim V = 0 \Leftrightarrow \mathbf{a_1}^2 + \dots + \mathbf{a_n}^2 = 0$ $(5) \operatorname{rang} A = 0 \Leftrightarrow \mathbf{a_1} = \dots = \mathbf{a_n} = 0 \quad (6) \operatorname{rang} A = 0 \Leftrightarrow \mathbf{a_1}^2 + \dots + \mathbf{a_n}^2 = 0$ 6 rang $A = 0 \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 = 0$ \mathbb{R}^3 . (Linearne transformacije $f: \mathbb{R}^4 \to \mathbb{R}^2, \, g: \mathbb{R} \to \mathbb{R}^3$ i $h: \mathbb{R} \to \mathbb{R}$ su uvek oblika: h (1) = 2 x \mathfrak{I} \mathfrak{I} Postoji linearna transformacija $f:\mathbb{R}^5 o \mathbb{R}^4$ za koju važi da je: 1) sirjektivna

43

4) izomorfizam

4) izomorfizam

5) ništa od prethodnog

5) nista od prethodnog.

(1) injektivna

3) bijektivna

Postoji linearna transformacija $f: \mathbb{R}^4 \to \mathbb{R}^5$ za koju važi da je:

3) bijektivna

2) sirjektivna

- ©Za vektorski prostor \mathbb{R}^5 i svaku sirjektivnu linearnu transformaciju $f: \mathbb{R}^5 \to \mathbb{R}^5$ sledi da je transformacija (3) izomorfizam 4) ništa od prethodnog. 2) bijektivna 1) injektivna Ta svaki vektorski prostor X i svaku injektivnu linearnu transformaciju $f: V \to V$ sledi da je f: (2) bijektivna 3) izomorfizam AY ništa od prethodnog (1)) sirjektivna \widehat{f} Za svaki izomorfizam $f:\mathbb{R}^n o\mathbb{R}^m$ i njegovu matricu A važi: $\widehat{igcup 1}$ f je injektivna $\widehat{old 2}$ postoji A^{-1} (3)n = m (4)f je sirjektivna (5)f je bijektivna (6)A je regularna (7) det $A \neq 0$ (8) ništa od prethodnog \mathcal{L} za svaki vektorski prostor \mathbb{R}^n postoji homogen sistem linearnih jednačina, čiji skup svih rešenja je vektorski prostor izomorfan prostoru \mathbb{R}^n . Zaokruži tačan odgovor (DA) NE Ako je A regularna kvadratna matrica i $\alpha \in \mathbb{R} \setminus \{0\}$, tada važi: $(\alpha A)^{-1} = \frac{1}{\alpha}A^{-1}$ $(\alpha A)^{-1} = \alpha A^{-1}$ $(\alpha A)^{-1} = \alpha A^{-1}$ KOLOKVIJUM 2, PRIMER 4 ' Neka tačke P(0,0,0) i Q(1,1,1) pripadaju ravni α koja je paralelna sa vektorom (1,1,-1). Napisati bar jedan vektor \vec{n} normalan na ravan α , $\vec{n}=(2,2,0)$. Ako je (A,B,C,D)=(-1,2,0), tada jednačina Ax+By+Cz+D=0 jeste jednačina ravni $\alpha.$ $(\forall\,t,s\in\mathbb{R})\;M(t,s,t)\in\alpha.$ DA (NE)🔊 Za koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $ax - ay = a \land ax + ay = a$ nad poljem realnih brojeva je: 3) određen: a 10 4) kontradiktoran: 1) dvostruko neodređen: a : ^ 2) jednostruko neodređen:
- Zaokružiti cifru (cifre) ispred uređenih *n*-torki koje su linearno NEZAVISNE u vektorkom prostoru trojki $(\mathbb{R}^3,+,\cdot)$: 1 (0,1,0) 2 (1,2,0),(1,1,0),(2,-1,1) 3 (1,0,0),(2,0,2) 4 (1,0,0),(0,2,0),(0,0,3) 5 (1,1,1),(2,2,2) 6 (0,0,2),(0,0,0),(3,0,0)

5 🕑 Ispod svake matrice napisati broj koji predstavlja njen rang.

 $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 2 \\ \frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 & 3 \\ 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0$

Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, f(x) = (2x, 3x) i $g, h, r, s: \mathbb{R}^3 \to \mathbb{R}^2$, g(x, y, z) = (y, x + z), h(x, y, z) = (x - y, 0), r(x, y, z) = (z, y), s(x, y, z) = (x - y - z, z - x - y), p(x, y, z) = (0, 0) su: (Rang upisati ispod odgovarajuće matrice)

 $M_{f} = \begin{bmatrix} \gamma \\ \gamma \\ \gamma \end{bmatrix} \qquad M_{g} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{h} = \begin{bmatrix} \gamma & \gamma & \gamma \\ 0 & 0 & \alpha \end{bmatrix} \qquad M_{r} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \alpha & \gamma & \alpha \end{bmatrix} \qquad M_{g} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \alpha & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_{p} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma$

7. SZa vektore $\vec{a} = (1, 1, -3)$ i $\vec{b} = (-3, -3, 9)$ važi: (1) $\vec{a} \parallel \vec{b}$ (2) $\vec{a} \perp \vec{b}$ (3) $\vec{a} \parallel \vec{b}$ (4) $\vec{a} \perp \vec{b}$

Neka je je ABCD paralelogram, gde mu je BD dijagonala. Tada u zavisnosti od \vec{r}_D , \vec{r}_B i \vec{r}_A napisati vektor položaja tačke $C: \vec{r}_C = \overrightarrow{r_0} - \overrightarrow{\gamma}_A + \overrightarrow{\Gamma}_Q$

9,	 Odrediti sve vrednosti realn a za koje je sistem linearni 	og parametara : h jednačina :	1) kontradiktoran:	
	$\begin{array}{rcl} x & + & ay & = & a \\ -x & + & ay & = & a \end{array}$		3) 1 puta neodređen: <u>a = 1</u>	>
10.	Ako je A regularna kvadrat 3) $(\alpha A)^{-1} = \alpha \frac{1}{\det A} A^{-1}$ 4)		4) 2 puta neodređen: $\mathbb{R} \setminus \{0\}, \text{ tada važi: } (\alpha A)^{-1}$ $(\alpha A)^{-1} = A^{-1} \alpha^{-1}$	
	Neka je ABCD paralelogra	\mathbf{m} , a tačke P i Q		P. (BD je dijagonala paralelo-
ባኒ .	Napisati $\vec{x}=(4,1,4)$ kao lin			4
	Naći vektor položaja projek			
14.	Koji od vektora su karakter	ristični vektori za i	matricu $\begin{bmatrix} -1 & 2 \\ 4 & 1 \end{bmatrix}$?	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 2) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 3) $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
15.	① Da li je $ (a\vec{b} + b\vec{a}) \times (a\vec{b} - b\vec{a}) $	$ ec{a} = aec{b} + bec{a} \cdot aec{b} $	$ ec{b}-bec{a} $? $ ec{\mathrm{DA}} $ NE (Nap	omena $ \vec{a} = a$ i $ \vec{b} = b$)
16.	$ \bullet $ Za vektorski prostor \mathbb{R}^5 i sv f :	zaku sirjektivnu lir	nearnu transformaciju $f: \mathbb{R}^5$ -	$ ightarrow \mathbb{R}^5$ sledi da je transformacija
	1) injektivna 2) bijektivna	(3) izomorfizam	4) ništa od prethodnog.
17.	Za svaki vektorski prostor D sirjektivna	V i svaku injektiv $)$ bijektivna	nu linearnu transformaciju f (3) izomorfizam	$V \to V$ sledi da je f : 4) ništa od prethodnog
19.	Ako su \vec{a} i \vec{b} nekolinearni ve (Napomena $ \vec{a} = a$ i $ \vec{b} = b$	ktori, da li je $ (aec{b}) $	$(a\vec{b} - b\vec{a}) \times (a\vec{b} - b\vec{a}) = a\vec{b} + b\vec{a} $	$ \vec{a} \cdot a\vec{b} - b\vec{a} $? DA NE
79 1	Ža koje vrednosti paramet odgovarajuću matricu i disk	ara $a,b\in\mathbb{R}$ naveutovati njen rang:	edene funkcija je linearne tr	ansformacija i ako jesu, naći
-	$f: \mathbb{R}^3 o \mathbb{R}^2, \ f(x,y,z) = (x,y,z)$	$c\sin(a+b)-y-a$	(x,y) a bell (o 3	a freeze
		$ (\exists \lambda \in \mathbb{R}) (\vec{a} = 1) $	$\lambda \vec{b} \vee \lambda \vec{a} = \vec{b}$) (10) $(\exists \alpha, \beta \in \mathbb{I})$	$\mathbb{R}) \alpha \vec{a} + \beta \vec{b} = 0 \wedge \alpha^2 + \beta^2 \neq 0$
L1.	Wektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ ako: 1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \neq 0 5$	$\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{j} + b_4 \vec{j}$ $\vec{a}(\vec{b} \times \vec{c}) = 0 6$	$c_3ec{k} ext{ i } ec{c} = c_1ec{i} + c_2ec{j} + c_3ec{k} ext{ su n}$ $egin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \end{bmatrix} \leq 3 ext{ (3) ra}$	nekomplanarni ako i samo $ \operatorname{ng} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3 $
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\beta^2 + \gamma^2 = 0 \text{8})$	$(\vec{a}, \vec{b}, \vec{c})$ je zavisna.	
	Neka je $\varphi: V \to \mathbb{R}^3$ definisar i $(\mathbb{R}^3, \mathbb{R}, +, \cdot)$ vektorski prost linearna transformacija	na sa $\varphi(x_1\vec{i} + x_2\vec{j} + x_3\vec{i} + x_3\vec{j} + x_3\vec{i})$ ori slobodnih vekt	$(x_3 \vec{k}) = (x_1 - x_2, x_1 + x_3, -x_3)$ ora i uređenih trojki. Da li (3) sirjektivna (4) b	ijektivna 5) izomorfizam
($\forall x \in \mathbb{R}$ $f(x) = 0$, tada f cija 3) može a ne mora biti izomorfizam	$\mathbb{R} o \mathbb{R}^5$: $\widehat{\mathbb{Q}}$ jest linearna transform	ste linearna transformacija nacija 4) jeste injektivna	2) nije linearna transforma- 5) jeste sirjektivna 6) jeste
ر4 (Neka je (a_1, a_2, \dots, a_m) zavis $n \leq k \leq n$ (2) $n \leq k \leq n$	sma, a (c_1, c_2, \dots, c_n) m 3) $n \leq m \leq n$	k) nezavisna za prostor V i o (5) $k \le m \le n$	$\lim V = n \text{Tada je moguće} $ $k \le n \le m \qquad \text{(6)} m \le n < k$

- Neka je \vec{r}_A vektor položaja tačke $A(1,1,1), |\overrightarrow{AB}| = 3$ i $|\overrightarrow{BC}| = 9$. Odrediti \vec{r}_C ako je $\vec{a} = (1,2,2), \vec{b} = (1,4,8)$ i ako su vektori \vec{a} i \vec{b} istog pravca i suprotnog smera redom sa vektorima \overrightarrow{AB} i \overrightarrow{BC} .
- $\mathcal{U} \subseteq \mathbb{R}^3$ je potprostor i za one koji jesu napiši desno od njih njihovu dimenziju:
 - ① $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = y + x\}, \quad \text{dim } U = 3$
 - (2) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^4 = 0\}$ dim U = 2
 - (3) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = 4\} \text{ dim } U = \underline{\qquad \qquad }$
 - $\text{A)} \ U = \{(x,y,z) \in \mathbb{R}^3 \mid x=z=1\} \quad \text{dim} \ U = \underline{\qquad \qquad }$
 - Ako je $f: V \to V$ izomorfizam prostora V u samog sebe, tada je: ① f mora biti homomorfizam ② dim(V) = dim(f(V)) ③ f(0) = 0 (gde je 0 nula-vektor prostora V)
 - (4) za svaku nezavisnu n-torku vektora $(v_1,...,v_n)$ iz V, n-torka $(f(v_1),...,f(v_n))$ je nezavisna u V
 - (5) za svaku zavisnu n-torku vektora $(v_1,...,v_n)$ iz V, n-torka $(f(v_1),...,f(v_n))$ je zavisna u V
 - Ako je A kvadratna matrica reda 4, tada je: 1) $\det A = 0 \Rightarrow \operatorname{rang} A = 0$ (2) $\det A = 0 \Leftrightarrow \operatorname{rang} A \leq 3$, 3) $\det A = 0 \Rightarrow \operatorname{rang} A = 4$ (4) $\operatorname{rang} A = 4 \Rightarrow \det A \neq 0$, (5) $\operatorname{rang} A = 4 \Leftrightarrow \det A \neq 0$, (6) $\operatorname{rang} A = 4 \Leftrightarrow \exists A^{-1}$.
 - Linearne transformacije $f: \mathbb{R}^4 \to \mathbb{R}^2$, $g: \mathbb{R} \to \mathbb{R}^3$ i $h: \mathbb{R} \to \mathbb{R}$ su uvek oblika: $f(x,y,y,h) = \emptyset \times \mathbb{P}_{\mathcal{F}^{n}}^{(k)} \times \mathbb{P}_{\mathcal$
 - Postoji linearna transformacija $f: \mathbb{R}^5 \to \mathbb{R}^4$ za koju važi da je: 2) injektivna 3) bijektivna 4) izomorfizam
 - 2) injektivna 3) bijektivna 4) izomorfizam 5) ništa od prethodnog Postoji linearna transformacija $f: \mathbb{R}^4 \to \mathbb{R}^5$ za koju važi da je: 1) injektivna 2) sirjektivna 3) bijektivna 4) izomorfizam 5) ništa od prethodnog:

(1) sirjektivna

- Za neki izomorfizam $f: \mathbb{R}^n \to \mathbb{R}^n$ i njegovu matricu A važi: 1) f je injektivna 2) postoji A^{-1} 3) f je sirjektivna 4) f je bijektivna 5) A je regularna 6) det $A \neq 0$ 7) ništa od prethodnog
 - Za svaki vektorski prostor \mathbb{R}^n postoji homogen sistem linearnih jednačina, čiji skup svih rešenja je vektorski prostor izomorfan prostoru \mathbb{R}^n . Zaokruži tačan odgovor $\widehat{\mathbb{O}}$ NE

KOLOKVIJUM 2, PRIMER 5

- 7. Neka tačke P(1,1,1), Q(1,0,1) i R(0,1,1) pripadaju ravni α . Napisati bar jedan jedinični vektor \vec{n} normalan na α i jedan vektor \vec{m} paralelan sa α , $\vec{n}=(0,0,4)$, $\vec{m}=(\gamma,6,0)$. Ako je (A,B,C,D)=(0,0,1,-1), tada je Ax+By+Cz+D=0 jednačina ravni α . Napisati koordinate tačke $M\in\alpha$ ravni α koja je najbliža koordinatnom početku. M(0,0,-1).
- Za koje vrednosti parametra $a \in \mathbb{R}$ sistem linernih jednačina $x y = 1 \land ax y + z = 1$ nad poljem realnih brojeva je: 1) neodređen: $\alpha \in \mathbb{R}$ 2) određen: 3) kontradiktoran:
- Za vektore $\vec{a} = (8, 1, 4)$ i $\vec{b} = (1, 2, 2)$ izračunati: 1) $|\vec{a}| = \frac{9}{2}$ 2) $|\vec{b}| = \frac{3}{2}$
 - 3) $2\vec{a} \vec{b} = \frac{(75 \ 0 \ 6)}{(-6 \ 77 \ 75)}$ 4) $\vec{a} \cdot \vec{b} = \frac{79}{5}$ 5) $\vec{a} \times \vec{b} = \frac{(-6 \ 77 \ 75)}{5}$ 6) $\sin \frac{1}{2}(\vec{a}, \vec{b}) = \frac{7}{5}$
 - . SKoje od sledećih uređenih n-torki jesu generatorne za vektorski prostor \mathbb{R}^3 :
- $\begin{bmatrix} 9 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 7 \end{bmatrix} \quad \begin{bmatrix} 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\$

G.	$\widehat{oldsymbol{eta}}$ Matrice linearnih transformacija $f(x)=(2x,x,x),g(x,y,z)=x,h(x,y)=(y,y)$ i $s(x,y,z)=z+x$ su:
	$M_f = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $M_g = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ $M_h = \begin{bmatrix} 0 & 4 \\ 0 & 1 \end{bmatrix}$ $M_s = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$
7.	Ispod svake matrice napisati broj koji predstavlja njen rang.
	$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 3 \\ 1 & 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$

8.	Odrediti sve vrednosti realnog parametara a za koje je sistem linearnih jednačina ax + ay = a ax + ay = a 3) jednostruko neodređen:
<u>٩</u>	Neka je \overrightarrow{ABCD} paralelogram, a tačke P i Q redom sredine duži \overrightarrow{BC} i \overrightarrow{CD} . $(\overrightarrow{BD}$ je dijagonala paralelograma). Izraziti vektor \overrightarrow{PQ} kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AQ}$ i $\overrightarrow{b} = \overrightarrow{AB}$. $\overrightarrow{PQ} = \underbrace{\overrightarrow{a}}_{i} - \underbrace{\cancel{AB}}_{i}$
VC	Napisati $\vec{x} = (1,0,1)$ kao linearnu kombinaciju vektora $\vec{a} = (0,0,1)$, $\vec{b} = (0,1,1)$ i $\vec{c} = (1,1,1)$: $\vec{x} = \vec{c}^{\gamma} - \vec{c}^{\gamma} + \vec{c}^{\gamma}$
11.	Koordinate projekcije A' tačke $A(9,a,4)$ na pravu određenu sa $x=3 \land z=2$ za svako $a \in \mathbb{R}$ su: $A'(\Im,\alpha,\mathbb{Z})$
12.	$ \textcircled{Vektor položaja } \vec{r}_T \text{ tačke prodora prave } p: \vec{r} = \vec{r}_S + t\vec{a} \text{ kroz ravan } \alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_R \text{ je } \vec{r}_T = \overrightarrow{r}_S + $
13,	(•) Projekcija vetora \vec{x} na ravan α : $\vec{n}\vec{r} = 0$ je: $\mathbf{pr}_{\alpha,\vec{a}}(\vec{x}) = \vec{\lambda} - \vec{n}$
14.	
15.	Koje od tvrđenja je tačno za bilo koje komutativne matrice A, B, C reda 2 i svaki skalar λ : (1) $\det(AB) = \det(A) \det(B)$ (2) $(B+C)A = AB + CA$ (3) $\det(\lambda A) = \lambda^3 \det(A)$ (4) $\det(AB) = \det(B)\det(A)$ (5) $(AB)^2 = A^2B^2$ (6) $\operatorname{rang}(AB) = \operatorname{rang}(BA)$ (7) $A(B-C) = BA - CA$ (8) $A(BC) = (BA)C$
16,	Neka su a,b i c proizvoljni zavisni vektori. Tada uređena trojka vektora $(2a+b+3c,a-2b+c,b-5c)$
	je: (I) uvek zavisna 2) uvek nezavisna 3) nekad zavisna, a nekad nezavisna, zavisi od izbora vektora a, b, c .
17	Neka su a, b i c proizvoljni nezavisni vektori. Tada uređena trojka vektora $(a + c, a + b, -a + 2c)$ je: 1) uvek zavisna 2) uvek nezavisna 3) nekad zavisna, a nekad nezavisna, zavisi od izbora vektora a, b, c .
45,	Ako su $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ nekolinearni, tada važi: $\vec{k} = 0$ 2) $\vec{a} \cdot \vec{b} = 0$
	$ \text{Frang} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1 \text{ (a) } \text{rang} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \leq 25 \text{ (rang} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \leq 1 \text{ (b) } \vec{a} \text{ i } \vec{b} \text{ su zavisni} $ $ \text{(A) } (\exists \lambda \in \mathbb{R}) \vec{a} = \lambda \vec{b} \text{ (B) } \vec{a} \parallel \vec{b} \text{ (B) } (\exists \lambda \in \mathbb{R}) (\vec{a} = \lambda \vec{b} \vee \lambda \vec{a} = \vec{b}) \text{ (B) } (\exists \alpha, \beta \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} = 0 \Rightarrow \alpha^2 + \beta^2 \neq 0 $
19.	
,	Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ i $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$ su komplanarni ako je: (1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 2$ Yrang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 3$ Yrang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$
ებ.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Neka je $\varphi: V \to \mathbb{R}^3$ definisana sa $\varphi(x_1\vec{i} + x_2\vec{j} + x_3\vec{k}) = (x_3, x_1 + x_2, x_1 + x_2 + x_3)$ gde su $(V, \mathbb{R}, +, \cdot)$ i $(\mathbb{R}^3, \mathbb{R}, +, \cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi: V \to \mathbb{R}^3$ [I) linearna transformacija 2) injektivna 3) sirjektivna 4) bijektivna 5 izomorfizam

```
\widetilde{(\bullet)}Neka je \mathcal M skup svih matrica formata (2,5) čiji svi elementi su iz skupa realnih brojeva \mathbb R. Tada je:
       5 rang: \mathcal{M} \stackrel{na}{\rightarrow} \{0,1,2,3\}
Neka je (a_1,a_2,\ldots,a_k) generatorna u prostoru V,\,(c_1,c_2,\ldots,c_n) nezavisna za prostor V i \dim V=m.
        \cancel{1} \quad m \leq k \leq n \quad \cancel{2} \quad n \leq k \leq m \quad \cancel{3} \quad n \leq m \leq k \quad \cancel{4} \quad k \leq m \leq n \quad \cancel{5} \quad k \leq n \leq m \quad \cancel{6} \quad m \leq n \leq k
Neka je \vec{r}_A vektor položaja tačke A(1,2,4), |\overrightarrow{AB}| = |\overrightarrow{BC}| = 3. Odrediti \vec{r}_C ako je \overrightarrow{AB} || \vec{a} = (1,2,2),
         \overrightarrow{BC}||\overrightarrow{b}=(-2,1,2)| i ako su smerovi vektora \overrightarrow{a} i \overrightarrow{b} suprotni smerovima redom vektora \overrightarrow{AB} i \overrightarrow{BC}.
         \vec{r}_c = \left(2 - 7 0\right)
  Koji od sledećih podskupova U\subseteq\mathbb{R}^3 je potprostor i za one koji jesu napiši desno od njih njihovu
        (1) U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}, \quad \text{dim } U = \underline{\mathcal{L}}
        2) U = \{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\} dim U = 
         (3) U = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot 1 = 0\} dimU = \underline{\lambda}
        (4) U = \{(x, y, z) \in \mathbb{R}^3 \mid x = x\} dim U = 3
      • Neka je a = (0,0,0), b = (1,0,1), c = (1,0,-1), d = (-1,0,1), e = (1,1,1), f = (1,0,0), g = (2,0,2).
         Odrediti dimenzije sledećih potprostora V vektorskog prostora \mathbb{R}^3:
      Ako je A kvadratna matrica reda 5, tada je: 1) det A = 0 \Leftarrow \operatorname{rang} A = 0 (2) det A = 0 \Leftrightarrow \operatorname{rang} A \leq 4,
       3) \det A = 0 \Rightarrow \operatorname{rang} A = 5 (4) \operatorname{rang} A = 5 \Rightarrow \det A \neq 0, (5) \operatorname{rang} A = 5 \Leftarrow \det A \neq 0,
         (6) rang A = 5 \Leftarrow \exists A^{-1}.
     Neka su \mathbf{a_1} = (a_{11}, \ldots, a_{n1}), \mathbf{a_2} = (a_{12}, \ldots, a_{n2}), \ldots, \mathbf{a_n} = (a_{1n}, \ldots, a_{nn}) vektori kolone matrice A = (a_{1n}, \ldots, a_{nn})
         A_{nn}=[a_{ij}]_{nn}, neka je V=\mathrm{Lin}(\mathbf{a_1,a_2,\ldots,a_n})=\{lpha_1\mathbf{a_1}+lpha_2\mathbf{a_2}+\ldots+lpha_n\mathbf{a_n}|lpha_1,lpha_2,\ldots,lpha_n\in\mathbb{R}\} i neka je
         \mathbf{a_i}^2skalarni proizvod vektora \mathbf{a_i} sa samim sobom. Tada je(1) \mathbf{a_1} = \ldots = \mathbf{a_n} = 0 \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 = 0
        (2) \dim V = 0 \Leftrightarrow \operatorname{rang} A \neq 0 (3) \dim V = 0 \Leftrightarrow \mathbf{a_1} = \ldots = \mathbf{a_n} = 0 (4) \dim V = 0 \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 \neq 0
                             (5)/rang A = 0 \Leftrightarrow a_1 = \ldots = a_n = 0
                                                                                                6) rang A = 0 \Leftrightarrow a_1^2 + ... + a_n^2 \neq 0
     18.
      Postoji linearna transformacija f: \mathbb{R}^3 \to \mathbb{R}^2 za koju važi da je:
                                                                                                                             (1) sirjektivna
                                            3) bijektivna
                                                                             4) izomorfizam
                                                                                                                   5) nista od prethodnog
         2) injektivna
      Postoji linearna transformacija f: \mathbb{R}^2 \to \mathbb{R}^3 za koju važi da je:
                                                                                                                              1) injektivna
                                           3) bijektivna
                                                                              4) izomorfizam
                                                                                                                  5) ništa od prethodnog.
        ∠2) sirjektivna
      \stackrel{\smile}{\circ}Za svaku sirjektivnu linearnu transformaciju f: \mathbb{R}^2 \to \mathbb{R}^2 sledi da je transformacija f: \mathbb{R}^2 \to \mathbb{R}^2
                                          (2) bijektivna
                                                                             3) Zizomorfizam
                                                                                                                 4) ništa od prethodnog.
         (1) injektivna
     37.
     (a) Za svaku injektivnu linearnu transformaciju f: \mathbb{R}^2 \to \mathbb{R}^2 sledi da je transformacija f: \mathbb{R}^2 \to \mathbb{R}^2
                                           (2))bijektivna
                                                                              (3) Izomorfizam
                                                                                                                  4) ništa od prethodnog
         (1) sirjektivna
      \odot Za svaki izomorfizam f: \mathbb{R}^n \to \mathbb{R}^m i njegovu matricu A važi: (1) f je injektivna (2) postoji A^{-1}
                                                                                                              (7) \det A \neq 0 8) ništa od
         (3) n = m (6) f je sirjektivna (5) f je bijektivna (6) A je regularna
     go prethodnog

Ø Za svaki konačno dimenzioni vektorski prostor V postoji homogen sistem linearnih jednačina, čiji skup

          Neka je a = (2, 2, 0), b = (-3, 3, 0), c = (1, -1, 0), d = (-1, 1, 0), e = (0, 0, 1), f = (1, 0, 0), g = (1, 2, 0).
          Zaokružiti broj koji je dimenzija potprostora V vektorskog prostora \mathbb{R}^3: 1) V = L(b, c, d) \Rightarrow dim(V) je:
         (1)2,3
                                                                                       3) V = L(a,b) \Rightarrow dim(V) je: 1(2)3
                         2) V = L(e, f, g) \Rightarrow dim(V) je: 1,2(3)
                                                                                       5) V = L(b, c, e) \Rightarrow dim(V) je: 1(2,3)
                         4) V = L(e, f, g) \Rightarrow dim(V) je: 1,2(3)
                                                                                                     7) V = L(a, q) \Rightarrow dim(V) je: 1(2)3
                                6) V = L(a, b, c) \Rightarrow dim(V) je: 1(2)3
```

21,

30.	
,,,	$lacktriangle$ Koje od tvrđenja je tačno za bilo koje kvadratne matrice A, B, C reda 2 i svaki skalar λ :
	$(AB)^2 = (AB)^2 (AB)^2 (AB)^2 = A^2B^2 (AB)^2 = A^2 (AB)^2 =$
	5) $\det(AB) = \det(B)\det(A)$ 6) $\operatorname{rang}(AB) = \operatorname{rang}(A)\operatorname{rang}(B)$ 7) $\det(A \cdot B) = \det(A) + \det(B)$
	8) $\det(\lambda A) = \lambda \det(A)$

Neka su
$$a$$
, n , x matrice kolone istog formata nad poljem \mathbb{R} . Tada je: $(n^{\mathsf{T}}x)a = (an^{\mathsf{T}})x$

$$(n^{\mathsf{T}}a)x = (xn^{\mathsf{T}})a \quad (3) \quad n^{\mathsf{T}}a = a^{\mathsf{T}}n \quad (n^{\mathsf{T}}x)a = n^{\mathsf{T}}(xa) \quad (6) \quad a^{\mathsf{T}}n = 0 \Rightarrow a \perp n$$
Napomena $[\lambda] \cdot A \stackrel{def}{=} \lambda A$, za svaku matricu A .

KOLOKVIJUM 2, PRIMER 6

- Za ravan α : z=1 napisati jedan njen vektor normale $\vec{n}_{\alpha}=(\ \bigcirc\ ,\ \bigcirc\ ,\ \nearrow\)$ i koordinate neke njene tri različite nekolinearne tačke $A(\ \bigcirc\ ,\ \bigcirc\ ,\ \nearrow\),\ B(\ \bigcirc\ ,\ \smallfrown\ ,\ \nearrow\),\ C(\ \bigcirc\ ,\ \nearrow\ ,\ \nearrow\).$
- Ako je $\vec{a} = (1, 0, 1)$ i $\vec{b} = (0, 2, 0)$, tada je $\vec{a}\vec{b} = \underline{0}$ $(\vec{a}\vec{b}) = \underline{90}^{\circ}$ $\vec{a} \times \vec{b} = \underline{(-1, 0, 1)}$.
- OZa koje vrednosti parametra a ∈ R sistem jednačina ax + y = 1 ∧ x + ay = a nad poljem realnih brojeva je:
 1) neodređen: a: y ∨ a: y
 2) određen: a ≠ y ∧ a ≠ y
 3) kontradiktoran:

$$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 7 & 0 \\ 7 & 7 & 0 \\ -1 & 7 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

$$\begin{bmatrix} 7 & -6 \\ 8 & -7 \end{bmatrix}^{-1} = \begin{bmatrix} 7 & -6 \\ 3 & 7 \end{bmatrix}$$

- Zaokružiti cifru (cifre) ispred uređenih n-torki koje su GENERATORNE u vektorkom prostoru trojki $(\mathbb{R}^3,+,\cdot)$: (0,1,0) (0,1,0) (1,2,0), (1,1,0), (2,-1,1) (1,0,0), (2,0,2) (1,0,0), (0,0,2), (0,0,0), (0,0,0), (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
- () Ispod svake matrice napisati broj koji predstavlja njen rang.

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, f(x) = (0, 9x) i $g, h, r, s: \mathbb{R}^3 \to \mathbb{R}^2$, g(x,y,z) = (x+y,x+z), h(x,y,z) = (x-y,0), r(x,y,z) = (0,y), s(x,y,z) = (x-y-z,6y) i p(x,y,z) = (z,0) su: (Rang upisati ispod odgovarajuće matrice)

$$M_{f} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad M_{g} = \begin{bmatrix} 7 & 7 & 0 \\ 7 & 0 & 7 \end{bmatrix} \qquad M_{h} = \begin{bmatrix} 7 & 7 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad M_{r} = \begin{bmatrix} 7 & 7 & 0 \\ 0 & 7 & 6 \end{bmatrix} \qquad M_{g} = \begin{bmatrix} 7 & 7 & 0 \\ 0 & 6 & 7 \end{bmatrix} \qquad M_{p} = \begin{bmatrix} 9 & 0 & 7 \\ 0 & 6 & 6 \end{bmatrix}$$

Neka je je ABCD paralelogram, gde mu je $\vec{B}D$ dijagonala, a S presek dijagonala. U zavisnosti od \vec{r}_S , \vec{r}_B i \vec{r}_A napisati vektore položaja tačaka C i D $\vec{r}_C = \gamma \vec{r}_S - \vec{r}_B$ $\vec{r}_D = \gamma \vec{r}_S - \gamma \vec{r}_B$

Odrediti sve vrednosti realnog parametara a za koje je sistem linearnih jednačina

- 1) kontradiktoran: QFOAQF7
- 4) 2 puta neodređen:
- $\sqrt[4]{c}$ Neka je ABCD paralelogram, a tačke P i Q redom sredine duži BC i AB. (BD je dijagonala paralelograma). Izraziti vektor $\overrightarrow{DQ} + \overrightarrow{DP}$ kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AC}$ i $\overrightarrow{b} = \overrightarrow{BD}$. $\overrightarrow{DQ} + \overrightarrow{DP} = -2\frac{\overrightarrow{A}}{2}$
- \overrightarrow{q} . © Izraziti vektor $\vec{x}=(1,2,2)$ kao linearnu kombinaciju vektora $\vec{a}=(1,2,1)$, $\vec{b}=(1,1,-1)$ i $\vec{c}=(1,1,0)$: $\vec{x}=(1,2,2)$ i $\vec{c}=(1,1,0)$:

i2- •	1) uvek zavisna	2) nikad ba		3) može ali ne m	ora da bude g	generatorna.
13.	U vektorskom prostoru V uvek nezavisan,	$(\mathbb{R},\mathbb{R},+,\cdot)$, par vek 2) uvek		3) nekad ne	ezavisan a ne	kad zavisan.
14.	●Koji od vektora su kara	akteristični vektori z	ta matricu $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$]?	$\textcircled{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\mathfrak{F}\left[\begin{array}{c}2\\2\end{array}\right].$
15.	Ako je matrica A' dobi $ A \det(A) = \lambda \det(A') $					
	Koje od tvrđenja je tač A det $(AB) = \det(A) + \det(A) + \det(AB) = \det(B) dA$ A det $(AB) = \det(B) dA$ A A A A A A A A A A	$et(B)$ 2) $(B + et(A)$ 5) $(AB)^2 =$	C)A = BA + CA : A^2B^2 6) $\operatorname{rang}($	3) $\det(\lambda A) = \lambda$	$\det(A)$	$\in \mathbb{R}$:
, (1	(a) $(\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a})\vec{x} = 0$ (b) \vec{a}) ništa od prethodnog	$(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x})\vec{a} = 0$	$e\!$	$=0$ $d\vec{y}(\vec{x}-\mathbf{pr}_{\vec{a}}\vec{x})$		
	Neka su a, b i c proizvo a) uvek zavisna b) uve	ljni vektori. Tada u ek nezavisna Ĉ neka	ređena trojka vekto d zavisna, a nekad	ora $(a+b+c,b+$ nezavisna, zavisi	(c,b-c) je: od izbor vekt	cora a, b, c .
	Neka su a, b i c nezavis a) uvek zavisna b) uve		•		, •	tora a, b, c .
	• Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{j} + a_4 \vec{j} + a_5 \vec{j} + a_5$	$= 1 \text{ for } rang \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$	$\begin{bmatrix} a_2 & a_3 \\ b_2 & b_3 \end{bmatrix} \le 2 $ r	$\operatorname{ang} \left[egin{array}{cccc} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{array} ight]$	$ = 2 6) \vec{a} i$	$ec{b}$ su zavisni
~	Ako je $\vec{x} = x_1 \vec{i} + x_2 \vec{j} + \vec{i}$ jeste: ① linearna tra	$x_3 ec{k}$ i $f: \mathbb{R}^3 o \mathbb{R}$ densformacija z inje	finisana sa $f(x_1, x_2)$ ektivna 3 sirjekti	$(x,x_3)=ec{m}\cdotec{x}$ i $ec{m}\cdotec{y}$ bijektivn	≤ 0, tada funl na 5) izomo	cija ∫ uvek rfizam
	② Za neku linearnu tran ② $f(0) = 0$ 3) $f(xy)$ ⑥ $f(2\lambda - v) = 2f(\lambda)$) = yx 4 f(xy) =				x) = 0
	Neka je $\varphi:V o\mathbb{R}^3$ vektorski prostori slobova 1 linearna transforma	odnih vektora i uređ	lenih trojki. Da li j	je funkcija $arphi:V$ –	$ ightarrow \mathbb{R}^3$	$(\mathbb{R}^3,\mathbb{R},+,\cdot)$ izomorfizam
	Neka je M skup svih l					Tada je: ; je linearna _{/s,}
	Neka je \mathcal{M} skup svih r \mathbb{C} rang : $\mathcal{M} \to \mathbb{R}$ 2) ra	matrica formata $(1,2)$ ang : $\mathcal{M} o \mathbb{N}$ $\{\!\!ig)$ ran	2) čiji svi elementi: $g: \mathcal{M} { ightarrow} \mathbb{N} \cup \{0\} \boxed{4}$	su iz skupa realni $: \mathcal{M} \stackrel{na}{ ightarrow} \{0,1\}$	h brojeva R. } 5) rang : M	Tada je: [$\stackrel{na}{ ightarrow}$ $\{0,1,2\}$
n	Ako je $f(x+y) = f(x+y)$ može a ne mora bit	+f(y), tada $f: 1$	jeste linearna trar	nsformacija <u>2</u>)-ni	ie linearna tr	ansformacija
	Neka je (a_1, a_2, \dots, a_n) Tada je (a_1, a_2, \dots, a_n)) generatorna u pro $n \ 2 \ n \le 4 \le m$	storu V , $(c_1, c_2, \ldots, 3)$ $n \leq m \leq 4$	(c, c_m) nezavisna z $(a, c_m) \le m \le n$	a prostor V : $4 \le n \le m$	$i \dim V = 4.$
و م	Neka je \vec{r}_A vektor pok $\overrightarrow{AB} \parallel \vec{a}, \overrightarrow{BC} \parallel \vec{b}$ i vekt	ožaja tačke $A, \overrightarrow{AB} $ ori \overrightarrow{AB} i \overrightarrow{a} su istog s	$= 2 i \overrightarrow{BC} = 3.$ Genera, a vektori \overrightarrow{BC}	Odrediti $ec{r}_{m{c}}$ u zavid $ec{c}$ i $ec{b}$ suprotnog. $ec{r}$	snosti od \vec{r}_A , $c = \overrightarrow{\gamma}_A^{>} + 7$	\vec{a} i \vec{b} , ako je $\frac{\vec{a}}{\vec{b}} = \gamma \frac{\vec{c}}{\vec{b}}$
ν,	Neka je ℓ - torka vekto 1) $k \le \ell$ 2) ℓ <			(d_2,\ldots,d_k) neka k - (5) $\ell>k$		та. Tada je: l prethodnog

- Noji od sledećih podskupova $U \subseteq \mathbb{R}^3$ je potprostor i za one koji jesu napiši desno od njih njihovu dimenziju: (1) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\}, \quad \dim U = 1$
 - **2)** $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 0\}$ dim U = 1
 - (3) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot 0 = 0\}$ dim $U = \frac{1}{2}$
 - (4) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 0\}$ dim U = 0
- Ako je A kvadratna matrica reda 2, tada je: 1) $\det A = 0 \Rightarrow \operatorname{rang} A = 0$ 2) $\det A = 0 \Leftarrow \operatorname{rang} A \le 1$, 3) $\det A = 0 \Leftarrow \operatorname{rang} A = 1$ 4) $\operatorname{rang} A = 1 \Rightarrow \det A \neq 0$, 5) $\operatorname{rang} A = 1 \Leftarrow \det A \neq 0$, 6) $\operatorname{rang} A = 2 \Leftarrow \exists A^{-1}$.
- Linearne transformacije $f: \mathbb{R}^2 \to \mathbb{R}^3$, $g: \mathbb{R}^2 \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$, $f: \mathbb{R}^3 \to \mathbb{R}^2$, i $G: \mathbb{R} \to \mathbb{R}^2$ su uvek oblika: $f(x,y) = \frac{1}{2} \frac{1}$
- Linearne transformacije f i g definisane su sa $f(x_1, x_2) = (x_1 x_2, 2x_1 + x_2)$ i $g(x_1, x_2) = (x_1 x_2, x_1 + x_2)$.

 a) Po definiciji kompozicije \circ odrediti $(f \circ g)(x_1, x_2) = f(g(x_1, x_2)) = (-\chi \times_1 \chi_2 \times_2 \chi_1 + \chi_2 \chi_2 \chi_2 \times_2 \chi_1 + \chi_2 \chi_2 \chi_2 \times_2 \chi_2 \chi_1 + \chi_2 \chi_2 \chi_1 + \chi_2 \chi_1 + \chi_2$
 - b) Napisati matrice M_f i M_g koje odgovaraju linearnim transformacijama f i g

$$M_f = \begin{bmatrix} \gamma & -\gamma \\ \gamma & \gamma \end{bmatrix}, M_g = \begin{bmatrix} \gamma & -\gamma \\ \gamma & \gamma \end{bmatrix}$$

- c) Izračunati proizvod matrica $M_f \cdot M_g = \begin{bmatrix} 0 & -\gamma \\ 3 & -\gamma \end{bmatrix}, M_g^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{3} \\ -\frac{1}{2} & 0 \end{bmatrix}$ i $g^{-1}(x_1, x_2) = \begin{pmatrix} -\frac{1}{2} \times_{\gamma} + \frac{1}{2} \times_{\gamma} \end{pmatrix} \frac{1}{2} \times_{\gamma}$
- d) Napisati linearnu transformaciju $h(x_1,x_2)$ kojoj odgovara matrica $M_f\cdot M_g$ tj. $h(x_1,x_2)=(-1,-1,-1)$
- e) Da li je $h=f\circ g$ tj. da li je $(\forall x_1,x_2\in\mathbb{R})\ h(x_1,x_2)=(f\circ g)(x_1,x_2)$? \widehat{DA} NE
- Neka su a, n, x matrice kolone istog formata nad poljem \mathbb{R} . Tada je: $(1)(n^{\mathsf{T}}x)a = (an^{\mathsf{T}})x$ $(n^{\mathsf{T}}a)x = (xn^{\mathsf{T}})a \quad (2)(n^{\mathsf{T}}a)x = a^{\mathsf{T}}n \quad (n^{\mathsf{T}}x)a = a^{\mathsf{T}}(xa) \quad (6)(a^{\mathsf{T}}n) = 0 \Rightarrow a \perp n$ Napomena $[\lambda] \cdot A \stackrel{\text{def}}{=} \lambda A$, za svaku matricu A.

KOLOKVIJUM 2, PRIMER 7

- 7. ② Za ravan α kojoj pripadaju tačke A(3,0,0), B(0,3,0) i C(0,0,3) napisati jedan njen vektor normale $\vec{n}_{\alpha} = (1,1,1)$ i koordinate njene tačke M(1,1,1) koja je jednako udaljena od koordinatnih osa. Takvih tačaka M ima: ① 1 2 2 3 3 4 4 5 više od 4
- Za koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $ax + y = 1 \land ax y = a$ nad poljem realnih brojeva je: 1) neodređen: 2) određen: $ax \neq a$ 3) kontradiktoran: $ax \neq a$ 3
- $\left[\begin{array}{c} -2 \\ 1 \end{array} \right] \cdot \left[\begin{array}{c} 4 \quad 3 \end{array} \right] \cdot \left[\begin{array}{c} -1 \\ 2 \end{array} \right] = \left[\begin{array}{c} -4 \\ 2 \end{array} \right] \left[\begin{array}{c} 1 \quad 1 \end{array} \right] \cdot \left[\begin{array}{c} -1 \\ 1 \end{array} \right] = \left[\begin{array}{c} 0 \quad 0 \quad 2 \\ 0 \quad 2 \quad 4 \\ 2 \quad 7 \quad 9 \end{array} \right] = -8 \quad \left[\begin{array}{c} 1 \quad 2 \\ -3 \quad -6 \end{array} \right]^{-1} = \boxed{ }$
- Zaokružiti cifru (cifre) ispred uređenih n-torki koje su ZAVISNE u vektorkom prostoru uređenih trojaka $(\mathbb{R}^3,+,\cdot)$: \cancel{X} (0,1,0) $\cancel{2}$ (1,2,1),(1,1,0),(2,3,1) $\cancel{3}$ (1,0,0),(2,0,2) \cancel{A} (1,0,0),(0,2,0),(0,0,3) $\cancel{5}$ (1,1,1),(2,2,2) $\cancel{6}$ (0,0,2),(0,0,0),(3,0,0) $\cancel{7}$ (0,1,0),(0,2,0) $\cancel{8}$ (1,0,0),(0,1,0),(0,0,1),(1,2,3)
- 6. Slspod svake matrice napisati broj koji predstavlja njen rang.

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 \\ -2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, f(x) = (0, 9x) i $g, h, r, s, p: \mathbb{R}^3 \to \mathbb{R}^2$, g(x, y, z) = (0, 9x)(x+y,x+z), h(x,y,z)=(x-y,0), r(x,y,z)=(0,y), s(x,y,z)=(x-y-z,6y) i p(x,y,z)=(z,0) su: (Rang upisati ispod odgovarajuće matrice) $M_f = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad M_g = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} M_h = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} M_r = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} M_s = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} M_p = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Neka je je ABCD paralelogram, gde mu je BD dijagonala, a S presek dijagonala. U zavisnosti od \vec{r}_A , \vec{r}_B i \vec{r}_B napisati vektore položaja tačaka S i C. $\vec{r}_S = \overline{\vec{\chi}_S + \vec{\chi}_S}$ $\vec{r}_B = \overline{\vec{\chi}_S} + \overline{\vec{\chi}_S} - \overline{\vec{\chi}_A}$ 1) kontradiktoran: ___ Odrediti sve vrednosti realnog parametra 2) određen: _____ a za koje je sistem linearnih jednačina 3) 1 puta neodređen: <u>a ≠ o</u> ax + ay = a4) 2 puta neodređen: ____a = o ax + ay = a10 (Neka je ABCD paralelogram, a tačke P i Q redom sredine duži AD i DC. (BD je dijagonala paralelograma). Izraziti vektor $\overrightarrow{BQ} + \overrightarrow{BP}$ kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AC}$ i $\overrightarrow{b} = \overrightarrow{BD}$. $\overrightarrow{BQ} + \overrightarrow{BP} = 3\cancel{.}$ Izraziti vektor $\vec{x} = (1,0,-2)$ kao linearnu kombinaciju vektora $\vec{a} = (1,2,1), \vec{b} = (1,1,-1)$ i $\vec{c} = (1,1,0)$: $\vec{x} = -\vec{\alpha} + \vec{b}^2 + \vec{c}$ W vektorskom prostoru $(\mathbb{R}^5, \mathbb{R}, +, \cdot)$, petorka vektora (a, b, c, d, e) je: -X) uvek zavisna 2) nikad baza, (3) može ali ne mora da bude generatorna. 13. (•) U vektorskom prostoru ($\mathbb{R}, \mathbb{R}, +, \cdot$), vektor $a \neq 0$ je: (3) uvek baza. uvek nezavisan, 75 SAko je matrica A' dobijena od matrice $A = [a_{ij}]_{nn}, a_{ij} \in \mathbb{R}$ elementarnim transformacijama, tada je: $(\exists \lambda \in \mathbb{R}) |det(A')| = \lambda |det(A)| (2) \mathbf{rang}(A) = \mathbf{rang}(A')$ (3) $\det A = 0 \Leftrightarrow \det A' = 0$ (4) $\det A \neq 0 \Leftrightarrow \det A' \neq 0$ \bigodot Koje od tvrđenja je tačno za bilo koje komutativne matrice A,B,C red $oldsymbol{4}$ nad poljem $\mathbb R$ i svaki skalar $\lambda \in \mathbb{R}$: 1) $\det(AB) = \det(A) + \det(B)$ 2) (B+C)A = BA + CA 3) $\det(\lambda A) = \lambda^4 \det(A)$ $(4) \det(AB) = \det(B)\det(A) \quad (5) \quad (AB)^2 = A^2B^2 \quad (6) \operatorname{rang}(AB) = \operatorname{rang}(A)\operatorname{rang}(B)$ (7)A(B+C) = BA + CA (8) A(BC) = (AB)CKoja od sledećih tvrdnji je tačna za svaka dva slobodna nenula vektora \vec{x} i \vec{a} : $(\vec{a})(\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a})\vec{x} = 0$ $(\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a}) \times \vec{x} = 0$ $(\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a}) \times \vec{x} = 0$ e)ništa od prethodnog \odot Neka su a,b i c proizvoljni nezavisni vektori. Tada uređena trojka vektora (a+b+c,b+c,b-c) je: a) uvek zavisna (b) uvek nezavisna (c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora (a,b,c)19. Neka su a,b i c zavisni vektori. Tada uređena trojka vektora (a+c,a+b,a-b+c) je: (a) uvek zavisna b) uvek nezavisna c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_2 \end{vmatrix} = 0 \quad \text{(5)} \quad \vec{a}(\vec{b} \times \vec{c}) \neq 0 \quad \text{(6)} \quad (\exists \alpha, \beta \in \mathbb{R}) \quad \vec{a} = \alpha \vec{b} + \beta \vec{c}$ $\widehat{\langle \vec{0} \rangle} \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \implies \alpha^2 + \beta^2 + \gamma^2 = 0 \quad \text{8} \quad (\vec{a}, \vec{b}, \vec{c}) \text{ je zavisna.}$ Ako je $\vec{x} = x_1 \vec{i} + x_2 \vec{j} + x_3 \vec{k}$ i $f: \mathbb{R}^3 \to \mathbb{R}$ definisana sa $f(x_1, x_2, x_3) = \vec{m} \cdot \vec{x}$, tada funkcija f uvek jeste:

(1) linearna transformacija
(2) injektivna
(3) sirjektivna
(4) bijektivna
(5) izomorfizam

- Za svaku nenula linearnu transformaciju $f: \mathbb{R} \to \mathbb{R}$ i svako $x, y, \lambda, v \in \mathbb{R}$ tačno je: T $x = 0 \Leftarrow f(x) = 0$ (2) f(0) = 0(3) f(xy) = yx(4) f(xy) = y f(x)(5) f(x) = ax za neko $a \in \mathbb{R}$ (6) f je izomorfizam
- Neka je $\varphi: V \to \mathbb{R}^3$ definisana sa $\varphi(x_1\vec{i} + x_2\vec{j} + x_3\vec{k}) = (x_1 + x_2, x_1 + x_3, x_2 + x_3)$, gde su $(V, \mathbb{R}, +, \cdot)$ i $(\mathbb{R}^3, \mathbb{R}, +, \cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi: V \to \mathbb{R}^3$ injektivna (3) sirjektivna (4) bijektivna (5) izomorfizam
- Neka je \mathcal{M} skup svih kvadratnih matrica reda 2 čiji elementi su iz skupa realnih brojeva \mathbb{R} . Tada je:

 ① det: $\mathcal{M} \longrightarrow \mathbb{R}$ 2) det: $\mathcal{M} \stackrel{1-1}{\longrightarrow} \mathbb{R}$ 3) det: $\mathcal{M} \stackrel{na}{\longrightarrow} \mathbb{R}$ 4) det: $\mathcal{M} \stackrel{1-1}{\longrightarrow} \mathbb{R}$ 5) det je linearna
- Neka je \mathcal{M} skup svih matrica formata (3,2) čiji svi elementi su iz skupa realnih brojeva \mathbb{R} . Tada je:

 1) rang: $\mathcal{M} \to \mathbb{R}$ 2) rang: $\mathcal{M} \to \mathbb{N}$ 3) rang: $\mathcal{M} \to \mathbb{N} \cup \{0\}$ 4) rang: $\mathcal{M} \to \{0,1,2\}$
- Neka je (a_1, a_2, \ldots, a_n) generatorna u prostoru $V, (c_1, c_2, \ldots, c_m)$ zavisna za prostor V i dimV=4. Tada je 1) $m \le 4 \le n$ 2) $n \le 4 \le m$ 3) $n \le m \le 4$ 4) $4 \le m \le n$ 5) $4 \le n \le m$ 6) $n \ge 4$
- Neka je $\vec{r_A}$ vektor položaja tačke A, $|\overrightarrow{AB}| = 5$ i $|\overrightarrow{BC}| = 7$. Odrediti $\vec{r_C}$ u zavisnosti od $\vec{r_A}$, \vec{i} i \vec{j} , ako je $|\overrightarrow{AB}| | \vec{i}$, $|\overrightarrow{BC}| | \vec{j}$ i vektori $|\overrightarrow{AB}| | \vec{i}$ su istog smera, a vektori $|\overrightarrow{BC}| | \vec{j}$ suprotnog. $|\vec{r_C}| = |\overrightarrow{f_A}| + |\overrightarrow{f_C}| + |\overrightarrow{$
- ? S. Neka je ℓ -torka vektora $(b_1, b_2, \ldots, b_\ell)$ nezavisna i (d_1, d_2, \ldots, d_k) generatorna k- torka vektora. Tada je: 1) $k \le \ell$ 2) $\ell \le k$ 3) $k = \ell$ 4) $\ell < k$ 5) $\ell > k$ 6) ništa od prethodnog
- Koji od sledećih podskupova $U\subseteq\mathbb{R}^3$ je potprostor i za one koji jesu napiši desno od njih njihovu dimenziju:

(1)
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x = y^2 = 0\}, \text{ dim } U = 1$$

2)
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - y^2 = 0\}$$
 dim $U = \mathbb{R}^3$

(3)
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot 3 = 0\}$$
 dim $U = 2$

$$\textcircled{4D}U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \ge 0\} \text{ dim } U = \boxed{3}$$

- Ako je A kvadratna matrica reda 4, tada je: A det $A = 0 \Rightarrow \operatorname{rang} A = 0$ det $A = 0 \Leftarrow \operatorname{rang} A \le 3$, det $A = 0 \Leftarrow \operatorname{rang} A = 3$ frang $A = 3 \Rightarrow \det A \neq 0$, frang $A = 3 \Leftarrow \det A \neq 0$, frang $A = 4 \Leftarrow \exists A^{-1}$.
- The linear transformacije $f: \mathbb{R}^2 \to \mathbb{R}^3$, $g: \mathbb{R}^2 \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$, $f: \mathbb{R}^3 \to \mathbb{R}^2$, if $G: \mathbb{R} \to \mathbb{R}^2$ so uvek oblika: $f(X,y) = \lim_{x \to \infty} g(x,y) = \lim_{x \to \infty$
- The linearne transformacije f i g definisane su sa $f(x_1,x_2)=(x_1-x_2,2x_1+x_2)$ i $g(x_1,x_2)=(x_1-x_2,x_1-x_2)$
 - a) Po definiciji kompozicije o odrediti $(f\circ g)(x_1,x_2)=f\big(g(x_1,x_2)\big)=(\bigcirc_{\Gamma} \Im X_{\Gamma} \Im X_{\Gamma})$
 - b) Napisati matrice M_f i M_g koje odgovaraju linearnim transformacijama f i g:

$$M_f = \begin{bmatrix} \gamma & -\gamma \\ \ell & \gamma \end{bmatrix}, M_g = \begin{bmatrix} \gamma & \gamma \\ \gamma & -\gamma \end{bmatrix}$$

- c) Izračunati proizvod matrica $M_f \cdot M_g = \begin{bmatrix} \mathcal{O} & \mathcal{O} \\ \mathcal{I} & \mathcal{I} \end{bmatrix}, M_g^{-1} = \begin{bmatrix} \mathcal{O} & \mathcal{O} \\ \mathcal{I} & \mathcal{I} \end{bmatrix}$ i $g^{-1}(x_1, x_2) = \mathcal{O}$
- d) Napisati linearnu transformaciju $h(x_1,x_2)$ kojoj odgovara matrica $M_f\cdot M_g$ tj. $h(x_1,x_2)=\langle \cdot \cdot \cdot \rangle_{\mathcal{C}_g}$
- e) Da li je $h=f\circ g$ tj. da li je $(\forall x_1,x_2\in\mathbb{R})\ h(x_1,x_2)=(f\circ g)(x_1,x_2)$ NE
- Neka su a, n, x matrice kolone istog formata nad poljem \mathbb{R} . Tada je: $(\widehat{\mathbf{n}}^{\top}x)a = (an^{\top})x$ $(n^{\top}a)x = (xn^{\top})a$ $(n^{\top}a)x = (xn^{\top}a)x = (xn^{\top}a)x$

KOLOKVIJUM 2, PRIMER 8

7. Neka tačke $O(0,0,0), A(1,0,1)$ i $B(1,1,1)$ pripadaju ravni α . Napisati vektor $\overrightarrow{AB} = (0,0,0)$. Na-
pisati bar jedan vektor \bar{n} normalan na α , $\bar{n}=(-1,0,4)$. Ako je $(A,B,C,D)=(-1,0,4,0)$, tada je $Ax+By+Cz+D=0$ jednačina ravni α . Napisati bar jednu tačku $M\in\alpha$ i $M\notin\{O,A,B\}$, $M(A,A,B)$, $M(A,A,B)$.
\tilde{l} Ako je $\tilde{a}=(2,-1,1)$ i $\tilde{b}=(-1,1,1)$, tada je $_{r}$
$ \vec{a} = \frac{\sqrt{6}}{\sqrt{6}} \vec{b} = \frac{\sqrt{2}}{\sqrt{6}} \vec{a}\vec{b} = \frac{\sqrt{6}}{\sqrt{6}} \vec{a}\vec{b} = \frac{\sqrt{6}}{\sqrt{6}} $
Sa koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $ax + y = 1 \land -x + ay = a$ nad poljem realnih brojeva je: 1) neodređen: (2) određen: $\land \notin \mathbb{R}$ 3) kontradiktoran:
$ \begin{bmatrix} -3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 4 \\ 2 & 7 & 9 \end{bmatrix} = -5 \begin{bmatrix} 1 & 2 \\ -3 & -6 \end{bmatrix}^{-1} = \begin{bmatrix} -3 & -6 & 2 \\ -3 & -6 & 2 \end{bmatrix} $
Zaokružiti cifru (cifre) ispred uređenih n -torki koje su NEZAVISNE u vektorkom prostoru uređenih trojaka ($\mathbb{R}^3,+,\cdot$): (0,1,0) (1,2,1), (1,1,0), (2,3,1) (1,0,0), (2,0,2)
$\textcircled{4} \left((1,0,0), (0,2,0), (0,0,3) \right) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(0,1,0),(0,2,0)) 8) ((1,0,0),(0,1,0),(0,0,1),(1,2,3))
် . ()Ispod svake matrice napisati broj koji predstavlja njen rang.
$ \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 \\ -2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} $
Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, $f(x) = (x, x)$ i $g, h, r, s, p: \mathbb{R}^3 \to \mathbb{R}^2$, $g(x, y, z) = (x + x, z + z)$, $h(x, y, z) = (x, z)$, $r(x, y, z) = (x, y)$, $s(x, y, z) = (x, x + y + z)$ i $p(x, y, z) = (0, 0)$ su: (Rang upisati ispod odgovarajuće matrice)
$M_f = \begin{bmatrix} \gamma \\ \gamma \end{bmatrix} \qquad M_g = \begin{bmatrix} \gamma & C & C \\ C & C & C \end{bmatrix} \qquad M_h = \begin{bmatrix} \gamma & C & C \\ C & C & C \end{bmatrix} \qquad M_r = \begin{bmatrix} \gamma & C & C \\ C & \gamma & C \end{bmatrix} \qquad M_s = \begin{bmatrix} \gamma & C & C \\ \gamma & \gamma & \gamma \end{bmatrix} \qquad M_p = \begin{bmatrix} C & C & C \\ C & C & C \end{bmatrix}$ Neka je je $ABCD$ paralelogram, gde mu je BD dijagonala, a S presek dijagonala. U zavisnosti od \vec{r}_A ,
\vec{r}_D i \vec{r}_S napisati vektore položaja tačaka B i C . $\vec{r}_B = \gamma \sum_{s} - \gamma_{s}$

Odrediti sve vrednosti realnog parametra 1) kontradiktoran:
a za koje je sistem linearnih jednačina 2) određen: 2) određen: 3) 1 puta neodređen: $ax + ay = 1$ 3) 1 puta neodređen: $ax + ay = 1$
ax + ay = 1 4) 2 puta neodređen:
Neka je $ABCD$ paralelogram, a tačke P i Q redom sredine duži AD i DC . (BD je dijagonala paralelograma). Izraziti vektor $\overrightarrow{BQ} + \overrightarrow{BP}$ kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AC}$ i $\overrightarrow{b} = \overrightarrow{BC}$.
$\overrightarrow{BQ} + \overrightarrow{BP} = 3\overrightarrow{L} - 3\overrightarrow{a}$
Izraziti vektor $\vec{x} = (1, 2, 0)$ kao linearnu kombinaciju vektora $\vec{a} = (1, 2, 1)$, $\vec{b} = (1, 1, -1)$ i $\vec{c} = (1, 1, 0)$: $\vec{x} = (1, 2, 0)$
U vektorskom prostoru (\mathbb{R}^4 , \mathbb{R} , $+$, ·), petorka vektora (a,b,c,d,e) je: uvek zavisna nikad generatorna, može ali ne mora da bude generatorna.
U vektorskom prostoru $(\mathbb{C}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: 1) uvek nezavisan, 2) uvek zavisan, 3) uvek baza. 74. Noji od vektora su karakteristični vektori za matricu $\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$? 2) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$
74. Koji od vektora su karakteristični vektori za matricu $\begin{vmatrix} 1 & 3 \\ 1 & -1 \end{vmatrix}$? A $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ $\begin{vmatrix} 3 \\ 1 \end{vmatrix}$ $\begin{vmatrix} 3 \\ 1 \end{vmatrix}$
Ako je matrica A' dobijena od matrice $A = [a_{ij}]_{nn}, a_{ij} \in \mathbb{R}$ elementarnim transformacijama, tada je: (1) $(\exists \lambda \in \mathbb{R}) det(A') = \lambda det(A) $ (2) $\operatorname{rang}(A) = \operatorname{rang}(A')$ (3) $\det A = 0 \Leftrightarrow \det A' = 0$ (4) $\det A \neq 0 \Leftrightarrow \det A' \neq 0$

16. (a) Ako su vektori $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$, $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$ i $\vec{c} = c_1\vec{i} + c_2\vec{j} + c_3\vec{k}$ komplanarni tada je:

1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 2$ 2) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \leq 3$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$ 4) $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$ 5) $\vec{a}(\vec{b} \times \vec{c}) \neq 0$ 6) $(\exists \alpha, \beta \in \mathbb{R}) \ \vec{a} = \alpha \vec{b} + \beta \vec{c}$ 7) $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = 0$ 8) $(\vec{a}, \vec{b}, \vec{c}) \text{ je zavisna.}$ 47 \odot Ako je $\vec{x} = x_1\vec{i} + x_2\vec{j} + x_3\vec{k}$ i $f: \mathbb{R}^3 \to \mathbb{R}$ definisana sa $f(x_1, x_2, x_3) = \vec{m} \cdot \vec{x}$ i $\underline{\vec{m} \neq 0}$, tada funkcija f uvek jeste: ① linearna transformacija 🗷 injektivna 🔞 sirjektivna 👍 bijektivna 🏂 izomorfizam $\{f_{i}\}$ $\{f_{i}\}$ za svaki izomorfizam $f:\mathbb{R} o\mathbb{R}$ i svako $x,y\in\mathbb{R}$ tačno je: $\{f_{i}\}$ $\{f_{i}\}$ za neko $a\in\mathbb{R}\setminus\{0\}$ $\{f_{i}\}$ $f(xy) = 0 \leftarrow f(x) = 0$ 4) f(xy) = yx f(xy) = y f(x) f(x) = ax za neko $a \in \mathbb{R}$ 7) f je sirjektivna The Neka je $\varphi:V o\mathbb{R}^3$ definisana sa $\varphi(x_1\vec{i}+x_2\vec{j}+x_3\vec{k})=(x_1-x_2,x_1-x_3,x_2-x_3),$ gde su $(V,\mathbb{R},+,\cdot)$ is $(\mathbb{R}^3,\mathbb{R},+,\cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi:V o\mathbb{R}^3$ Winearna transformacija 2) injektivna 3) sirjektivna 4) bijektivna 🔍 🔾 Neka je ${\cal M}$ skup svih kvadratnih matrica reda 3 čiji elementi su iz skupa realnih brojeva R. Tada je: 1) $\det: \mathcal{M} \longrightarrow \mathbb{R}$ 2) $\det: \mathcal{M} \xrightarrow{1-1} \mathbb{R}$ 3) $\det: \mathcal{M} \xrightarrow{na} \mathbb{R}$ 4) $\det: \mathcal{M} \xrightarrow{1-1} \mathbb{R}$ 5) \det je linearna $\ref{eq:constraint}$ Neka je $\mathcal M$ skup svih matrica formata (3,1) čiji svi elementi su iz skupa realnih brojeva $\mathbb R$. Tada je: 1) rang : $\mathcal{M} \to \mathbb{R}$ /2) rang : $\mathcal{M} \to \mathbb{N}$ (3) rang : $\mathcal{M} \to \mathbb{N} \cup \{0\}$ (4) rang : $\mathcal{M} \to \{0,1\}$ (5) rang : $\mathcal{M} \stackrel{\eta_a}{\to} \{0,1\}$? ? (•) Neka (a_1, a_2, \ldots, a_n) nije generatorna u prostoru V, (c_1, c_2, \ldots, c_m) nezavisna za prostor V i dimV=4. Tada: A) $m \le 4 \le n$ A) $n \le 4 \le m$ (3) $m \le 4$ A) $4 \le m \le n$ 5) $4 \le n \le m$ 6) $n \ge 4$ Neka je $\vec{r_A}$ vektor položaja tačke A, $|\overrightarrow{AB}| = 3$ i $|\overrightarrow{BC}| = 4$. Odrediti $\vec{r_C}$ u zavisnosti od $\vec{r_A}$, \vec{a} i \vec{b} , ako je $|\overrightarrow{AB}| ||\vec{a}|$, $|\overrightarrow{BC}| ||\vec{b}|$ i vektori $|\overrightarrow{AB}|$ i $|\vec{a}|$ su suprotog smera, a vektori $|\overrightarrow{BC}|$ i $|\vec{b}|$ istog smera. $|\vec{r_C}| = |\vec{r_A}| ||\vec{a}| ||\vec{b}|| ||\vec{b}||$ Neka je k-torka vektora (b_1,b_2,\ldots,b_k) nezavisna i (d_1,d_2,\ldots,d_ℓ) generatorna ℓ - torka vektora. Tada je: (1) $k \le \ell$ 2) $\ell \le k$ 3) $k = \ell$ 4) $\ell < k$ 5) $\ell > k$ 6) ništa od prethodnog \widehat{C} Koji od sledećih podskupova $U\subseteq\mathbb{R}^3$ je potprostor i za one koji jesu napiši desno od njih njihovu dimenziju: (1) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}, \quad \dim U = \sqrt{\frac{1}{2}}$ (2) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\}$ dim $U = \underline{\mathcal{L}}$ 3) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 \ge 0\}$ dimU = 1(4) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 0\}$ dim U = 0 \bigcap (a) A ko je A kvadratna matrica reda 5, tada je: A) det $A=0 \Rightarrow \operatorname{rang} A=0$ (b) det $A=0 \Leftarrow \operatorname{rang} A \leq 4$, 3 det $A = 0 \Leftarrow \operatorname{rang} A = 4$ A rang $A = 4 \Rightarrow \det A \neq 0$, 5 rang $A = 4 \Leftarrow \det A \neq 0$, (6) rang $A=5 \Leftarrow \exists A^{-1}$. $\begin{array}{c} \text{ } \textcircled{\begin{tikzpicture}{0.5\textwidth} \mathbb{R}^2} & \text{ } \textcircled{\begin{tikzpicture}{0.5\textwidth} \mathbb{R}^2} & \mathbb{R}^3, \ g: \mathbb{R}^2 \to \mathbb{R}, \ h: \mathbb{R} \to \mathbb{R}, \ h: \mathbb{R} \to \mathbb{R}^2, \ i: G: \mathbb{R} \to \mathbb{R}^2 \ \text{su uvek oblika:} \\ & f(x,y) = (h, y, x) + \delta y, \epsilon x + \delta y) & g(x,y) = \lambda_{x,y} & h(x) = \delta x \\ & f(x,y) = (h, y, x) + \delta y, \epsilon x + \delta y) & g(x,y) = \lambda_{x,y} & h(x) = \delta x \\ & f(x,y) = (h, y, x) + \delta y, \epsilon x + \delta y) & g(x,y) = \lambda_{x,y} & h(x) = \delta x \\ & f(x,y) = (h, y, x) + \delta y, \epsilon x + \delta y) & g(x,y) = \lambda_{x,y} & h(x) = \delta x \\ & f(x,y) = (h, y, x) + \delta y, \epsilon x + \delta y) & g(x,y) = \lambda_{x,y} & h(x) = \delta x \\ & f(x,y) = (h, y, x) + \delta y, \epsilon x + \delta y) & g(x,y) = \lambda_{x,y} & h(x) = \delta x \\ & f(x,y) = (h, y, x) + \delta y, \epsilon x + \delta y) & g(x,y) = \lambda_{x,y} & h(x) = \delta x \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y) & g(x,y) = \lambda_{x,y} & h(x) = \delta x \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y, \epsilon x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y + \delta x + \delta y \\ & f(x,y) = (h, y) + \delta x + \delta y + \delta x + \delta y + \delta x + \delta y \\ & f(x,y) = (h, y) + \delta x +$ $\{0,1,1,2,\dots,n\}$ Postoji linearna transformacija $f:\mathbb{R}^3\to\mathbb{R}^2$ za koju važi da je: 1) sirjektivna 2) injektivna 3) bijektivna 4) izomorfizam 5) ništa od prethodnog γ). Postoji linearna transformacija $f:\mathbb{R}^2\to\mathbb{R}^3$ za koju važi da je: (1) injektivna A) izomorfizam 3) bijektivna 2) sirjektivna 5) ništa od prethodnog. \mathcal{C} Za svaki vektorski prostor V i svaku sirjektivnu linearnu transformaciju $f:V\to V$ sledi da je transformacija f: (1) injektivna (2) bijektivna (3) izomorfizam (4) ništa od prethodnog. \mathcal{Y}^{f_i} • Za svaki vektorski prostor V i svaku injektivnu linearnu transformaciju $f:V \to V$ sledi da je f:

(3) izomorfizam

4) ništa od prethodnog

(2) bijektivna

1) sirjektivna

- Za svaki izomorfizam $f: \mathbb{R}^n \to \mathbb{R}^m$ i njegovu matricu A važi: ① f je injektivna ② postoji A^{-1} ③ n = m ④ f je sirjektivna ⑤ f je bijektivna ⑥ f je regularna ⑦ f det f je ništa od prethodnog
- Za svaki vektorski prostor V postoji homogen sistem linearnih jednačina, čiji skup svih rešenja je vektorski prostor izomorfan prostoru V. Zakruži tačan odgovor(DA) NE
- Neka su $\vec{x}, \vec{i}, \vec{j}, \vec{k}$ slobodni vektori i $\vec{i}, \vec{j}, \vec{k}$ jedinični međusobno normalni. Tada je:

 (1) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}$ (2) $(\vec{x}\vec{i}, \vec{x}\vec{j}, \vec{x}\vec{k}) \in \mathbb{R}^3$ (3) $(\vec{x}\vec{i})^2 + (\vec{x}\vec{j})^2 + (\vec{x}\vec{k})^2 = \vec{x}\vec{x}$ (2) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} \in \mathbb{R}^3$ (5) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}\vec{x}$
- Neka su \vec{a} i \vec{b} vektori iz skupa svih slobodnih vektora V. Tada $(\vec{a} \times \vec{b})(\vec{a} \times \vec{b}) + (\vec{a}\vec{b})(\vec{a}\vec{b}) = (\vec{a}\vec{a})(\vec{b}\vec{b})$ akko je: 1) \vec{a}, \vec{b} proizvoljni vektori iz V 2) $\vec{a} = 0 \lor \vec{b} = 0$ 3) $\vec{a} \parallel \vec{b}$ 4) $\vec{a} \perp \vec{b}$

KOLOKVIJUM 2, PRIMER 9

- Ako je $\vec{a} = (3, -3, 0)$ i $\vec{b} = (-3, 0, 3)$, tada je $|\vec{a}| = 2\sqrt{2}$ $|\vec{b}| = 2\sqrt{2}$ $|\vec{a}\vec{b}| = 2\sqrt{2}$
- 7. Ža koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $2ax 2y = 1 \land -4x + ay = a$ nad poljem realnih brojeva je:
 - 1) neodređen:

2) određen: $\alpha \neq -2 \land \alpha \neq 2$ 3) kontradiktoran: $\alpha = -2 \lor \alpha = 2$

$$\begin{bmatrix} -1 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ 10 \end{bmatrix} \begin{bmatrix} -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 9 \end{bmatrix} = -7 \quad \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

- Sho je A kvadratna matrica reda 3, tada je: 1) det $A = 0 \Rightarrow \operatorname{rang} A = 0$ 2) det $A = 0 \Leftarrow \operatorname{rang} A \le 2$, 3) det $A = 0 \Leftarrow \operatorname{rang} A = 2$ 4) rang $A = 3 \Rightarrow \det A \neq 0$, 5) rang $A = 2 \Leftarrow \det A \neq 0$, 6) rang $A = 3 \Leftarrow \exists A^{-1}$.
- $\begin{array}{c} \mathbb{G} \text{ . Clinearne transformacije } f: \mathbb{R}^2 \to \mathbb{R}^3, \ g: \mathbb{R}^2 \to \mathbb{R}, \ h: \mathbb{R} \to \mathbb{R}, \ F: \mathbb{R}^3 \to \mathbb{R}^2, \ \text{i} \ G: \mathbb{R} \to \mathbb{R}^2 \ \text{su uvek oblika:} \\ f(\mathbf{x}, \mathbf{y}) \circ (bx\partial_{\mathcal{I}}g_{x}, \phi) \circ g(\mathbf{x}, \phi) \circ$
- 7. ② Za svaki izomorfizam $f: \mathbb{R}^n \to \mathbb{R}^m$ i njegovu matricu A važi: ① f je injektivna ② postoji A^{-1} ③ n = m ④ f je sirjektivna ⑤ f je bijektivna ⑥ f je regularna ⑦ f Ø f je ništa od prethodnog
- \mathcal{G} Za svaki vektorski prostor V postoji homogen sistem linearnih jednačina, čiji skup svih rešenja je vektorski prostor izomorfan prostoru V. Zakruži tačan odgovor $\overset{\bullet}{\mathbb{D}}$ A NE
- ② Zaokružiti cifre ispred uređenih n-torki koje su GENERATORNE u vektorskom prostoru uređenih trojki $(\mathbb{R}^3,+,\cdot)$: (1,2,3) ② (1,0,1), (1,1,0), (0,1,1) ③ (1,0,0), (0,1,0) 4 (1,2,3), (4,5,6), (7,8,9) 5 (1,1,1), (2,2,3), (3,3,4) 6 (0,0,2), (0,0,0), (3,0,0), (0,7,0) 7 (1,0,9), (0,1,0), (0,0,1), (1,2,3)
- (10) Ispod svake matrice napisati broj koji predstavlja njen rang.

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 3 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

71,	Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, $f(x) = (2x, 3x)$ i $g, h, r, s, p: \mathbb{R}^3 \to \mathbb{R}^2$, $g(x, y, z) = (x + y, y + y + y)$, $h(x, y, z) = (2x, 3x)$, $r(x, y, z) = (z, y)$, $s(x, y, z) = (x + y + z, x + y + z)$ i $p(x, y, z) = (0, 0 + 0)$ su: (Rang upisati ispod odgovarajuće matrice)
	$M_{f} = \begin{bmatrix} \gamma \\ \gamma \end{bmatrix} \qquad M_{g} = \begin{bmatrix} \gamma & \gamma & \phi \\ \phi & \gamma & \phi \end{bmatrix} M_{h} = \begin{bmatrix} \gamma & \epsilon & \epsilon \\ \gamma & \epsilon & \epsilon \end{bmatrix} M_{r} = \begin{bmatrix} \epsilon & \epsilon & \gamma \\ \phi & \gamma & \epsilon \end{bmatrix} M_{g} = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \gamma & \epsilon \end{bmatrix} M_{p} = \begin{bmatrix} \gamma & \epsilon & \epsilon \\ \gamma & \gamma & \epsilon \end{bmatrix}$
11.	Neka je je $ABCD$ paralelogram, gde mu je BD dijagonala, a S sredina od CD . U zavisnosti od \vec{r}_A , \vec{r}_D i \vec{r}_S napisati vektore položaja tačaka B i C . $\vec{r}_B = \vec{r}_A + l \hat{t} \hat{t} \hat{t} - l \hat{t} \hat{t} \hat{t} \hat{t} \hat{t} \hat{t} \hat{t} \hat{t}$

13.	Projekcija vektora \vec{x} na pravac vektora \vec{n} je $\vec{x}' = \vec{n}'$ $\frac{\sum_{\vec{n}} \vec{r}'}{ \vec{n} \vec{n} }$ a na ravan $\alpha : \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ je $\vec{x}'' = \sum_{\vec{n}} -\vec{n} \cdot \frac{\sum_{\vec{n}} \vec{r}'}{ \vec{n} \vec{n} }$
14.	Napisati vektore položaja bar dve tačke M i N u zavisnosti od $\vec{n}, \vec{r_Q}$ i d , koje su sa različitih strana ravni $\alpha : \vec{n}\vec{r} = \vec{n}\vec{r_Q}$ i od nje udaljene za d . $\vec{r_M} = \overrightarrow{\hat{r_Q}} + d$
15.	Neka je tačka P presk ravni $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ i prave $a: \vec{r} = \vec{r}_A + t\vec{a}$ i $\vec{n}\vec{a} \neq 0$. Tada je: 1) $\vec{r}_P = \vec{r}_Q + \frac{(\vec{r}_A - \vec{r}_Q)\vec{n}}{\bar{\sigma}\vec{n}}\vec{a}$ 2) $\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{a}}{\bar{n}\vec{n}}\vec{n}$ 3) $\vec{r}_P = \vec{r}_A - \frac{(\vec{r}_A - \vec{r}_Q)\vec{n}}{\bar{a}\vec{n}}\vec{a}$ 4) $\vec{r}_P = \vec{r}_A - \frac{(\vec{r}_A - \vec{r}_Q)\vec{n}}{\bar{a}\vec{n}}\vec{a}$ 5) $\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\bar{a}\vec{n}}\vec{n}\vec{n}$
16.	Neka su a, b i c zavísni vektori. Tada uređena trojka vektora $(2a - 3b + c, 3b - c, a - 5b + c)$ je: 1 vek zavisna 2 uvek nezavisna 3 zavísna ili nezavisna, tj. zavisi od izbora vektora a, b, c .
17,	Neka su a, b i c nezavisni vektori. Tada uređena trojka vektora $(a + b - c, a + b, -c)$ je: Olivek zavisna 2) uvek nezavisna 3) zavisna ili nezavisna, tj. zavisi od izbora vektora a, b, c
18,	Ta prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ i $n: \frac{x-5}{-6} = \frac{y}{4} = \frac{z-5}{-10}$ važi: a) mimoilazne su $(m \cap n = \emptyset \land m \not\parallel n)$ b) paralelne su î različite $(m \parallel n \land m \neq n)$ c) poklapaju se $(m = n)$ d) seku se $(m \cap n = \{M\})$
19	Za proizvoljne vektore \vec{n} i \vec{r} važi:
∅.	 Odrediti sve vrednosti realnog parametra a za koje je sistem linearnih jednačina ax + ay = 1 bkontradiktoran:
74	ax - ay = 1 4) 2 puta neodređen:
₹1,	• Neka je $ABCD$ paralelogram, a tačke P i Q redom sredine duži AD i \overrightarrow{DC} . $(BD$ je dijagonala paralelograma). Izraziti vektor $\overrightarrow{BQ} + \overrightarrow{BP}$ kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{BD}$ i $\overrightarrow{b} = \overrightarrow{AB}$. $\overrightarrow{BQ} + \overrightarrow{BP} =$
27.	©Izraziti vektor $\vec{x} = (1, 2, 2)$ kao linearnu kombinaciju vektora $\vec{a} = (1, 2, 1)$, $\vec{b} = (1, 1, -1)$ i $\vec{c} = (1, 1, 0)$: $\vec{x} = \frac{2}{3} \vec{a}$
ኂ ົን,	U vektorskom prostoru (\mathbb{R}^6 , \mathbb{R} , +, ·), petorka vektora (a, b, c, d, e) je: 1) uvek nezavisna 2) nikad generatorna, 3) nekada zavisna, a nekada nezavisna .
<i>ጊ</i> ዓ.	OU vektorskom prostoru $(\mathbb{C}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: 1) uvek nezavisan, 2) uvek baza.
٩5,	(1) uvek nezavisan, 2) uvek zavisan, 3) uvek baza. SKoji od vektora su karakteristični vektori za matricu $\begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix}$? (1) $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ (2) $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ (3) $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
\ 6.	Ako je matrica A' dobijena od matrice $A = [a_{ij}]_{nn}$, $a_{ij} \in \mathbb{R}$ elementarnim transformacijama, tada je: (1) $(\exists \lambda \in \mathbb{R}) det(A') = \lambda det(A) $ (2) $\operatorname{rang}(A) = \operatorname{rang}(A')$ (3) $\det A = 0 \Leftrightarrow \det A' = 0$
1 1.	Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ i $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$ su nekomplanarni akko: 1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 2$ 2) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 3$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$ 4) $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$ 5) $\vec{a}(\vec{b} \times \vec{c}) \ne 0$ 6) $(\vec{c}a, \beta, \epsilon, \mathbb{R}) \vec{a} = a\vec{b} + \beta\vec{c}$ 7) $(\vec{c}a, \beta, \epsilon, \beta) \vec{b} + \gamma\vec{c} = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = 0$ 8) $(\vec{a}, \vec{b}, \vec{c})$ je zavisna
	$aY : A \rightarrow B \rightarrow A \rightarrow B \rightarrow$

- (• Ako je $\vec{x} = x_1\vec{i} + x_2\vec{j} + x_3\vec{k}$ i $f: \mathbb{R}^3 \to \mathbb{R}$ definisana sa $f(x_1, x_2, x_3) = \vec{m} \cdot \vec{x}$, tada funkcija f uvek jeste: (1) linearna transformacija 2) injektivna 3) sirjektivna 4) bijektivna 5) izomorfizam / $f:\mathbb{R}^2 o \mathbb{R}^2$ i svako $x,y \in \mathbb{R}$ tačno je: (1) f(x,y) = (ax+by,cx+dy) za neke $(a,b,c,d \in \mathbb{R} \setminus \{0\}) f(0) = 0$ (5) $f(x,y) = 0 \Leftarrow f(x,y) = 0$ (5) $f(x,y) = 0 \Leftrightarrow (x,y) = 0$ (5) $f(x,y) = 0 \Leftrightarrow (x,y) = 0$ injektivna (6) f je sirjektivna \mathcal{N} Neka je $\varphi:V \to \mathbb{R}^3$ definisana sa $\varphi(x_1\vec{i}+x_2\vec{j}+x_3\vec{k})=(x_1,x_1+x_2,x_1+x_2+x_3)$, gde su $(V,\mathbb{R},+,\cdot)$ i $(\mathbb{R}^3, \mathbb{R}, +, \cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi: V \to \mathbb{R}^3$ (2) injektivna 3) sirjektivna (1) linearna transformacija (4) bijektivna Neka je \mathcal{M} skup svih kvadratnih matrica reda 1 čiji elementi su iz skupa realnih brojeva \mathbb{R} . Tada je:

 1 det: $\mathcal{M} \to \mathbb{R}$ 2 det: $\mathcal{M} \stackrel{1-1}{\longrightarrow} \mathbb{R}$ 3 det: $\mathcal{M} \stackrel{na}{\longrightarrow} \mathbb{R}$ 4 det: $\mathcal{M} \stackrel{1-1}{\longrightarrow} \mathbb{R}$ 5 det je linear ⊙) (♦) Neka je M skup svih matrica formata (3,2) čiji svi elementi su iz skupa realnih brojeva ℝ. Tada je: $\widehat{\textbf{1}}) \text{ rang} : \mathcal{M} \rightarrow \mathbb{R} \text{ } \widehat{\textbf{2}}) \text{ rang} : \mathcal{M} \rightarrow \mathbb{N} \widehat{\textbf{3}}) \text{ rang} : \mathcal{M} \rightarrow \mathbb{N} \cup \{0\} \text{ } 4) \text{ rang} : \mathcal{M} \rightarrow \{0,1\} \widehat{\textbf{5}}) \text{ rang} : \mathcal{M} \stackrel{\textit{na}}{\rightarrow} \{0,1,2\}$ Tada: (1) $m \le 4 \le n$ (2) $n \le 4 \le m$ (3) $m \le 4$ (4) $4 \le m \le n$ (5) $4 \le n \le m$ (6) $n \ge 4$
- (γ) Neka je (a_1, a_2, \ldots, a_n) generatorna u prostoru V, (c_1, c_2, \ldots, c_m) nezavisna za prostor V i dimV = 4.
- Neka je $\vec{r_A}$ vektor položaja tačke A, $|\overrightarrow{AB}| = |\overrightarrow{BC}| = 1$. Odrediti $\vec{r_C}$ u zavisnosti od $\vec{r_A}$, \vec{a} i \vec{b} , ako je $|\overrightarrow{AB}| ||\vec{a}| ||\overrightarrow{BC}|| ||\vec{b}|| ||\vec{b}|| ||\vec{a}| ||\vec{b}|| ||\vec{a}|| ||\vec{b}|| ||\vec{a}|| ||\vec{b}|| ||\vec{a}|| ||\vec{a}|| ||\vec{a}|| ||\vec{b}|| ||\vec{a}|| |$ Seka je k—torka vektora (b_1,b_2,\ldots,b_k) nezavisna i (d_1,d_2,\ldots,d_ℓ) baza. Tada je: 2) $\ell \le k$ 3) $k = \ell$ 4) $\ell < k$ 5) $\ell > k$ 6) ništa od prethodnog
- \mathcal{F}_{i} Koji od sledećih podskupova $U\subseteq\mathbb{R}^3$ je potprostor i za one koji jesu napiši desno od njih njihovu

1)
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = z\}, \quad \text{dim } U = \underline{\mathcal{L}}$$

(2)
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\}$$
 dim $U = 2$

(3))
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 0\}$$
 dim $U = \frac{1}{2}$

4)
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \ge 0\}$$
 dim $U = \frac{?}{}$

KOŁOKVIJUM 2, PRIMER 10

- Neka tačke M(1,-1,2), N(-1,1,2) i P(1,1,0) pripadaju ravni α . Napisati bar jedan vektor \vec{n} normalan na α , $\vec{n}=(\ \ \gamma,\ \ \gamma\)$. Ako je $(A,B,C,D)=(\ \ \ \gamma,\ \ \gamma,\ \ \gamma)$, tada je Ax+By+Cz+D=0 jednačina ravni α . Napisati koordinate tačke Q koja pripada ravni α i x osi. Q(2, 0, 0).
- Ako je $\vec{a} = (2, -2, 0)$ i $\vec{b} = (-2, 0, 2)$, tada je $|\vec{a}| = \frac{i \sqrt{1}}{2} |\vec{b}| = \frac{1}{2} \sqrt{1} |\vec{a}| = \frac{i \sqrt{1}}{2} |\vec{a}|$
- \bigcirc Za koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $ax y = 1 \land x + ay = a$ nad poljem realnih brojeva je: 1) neodređen: 2) određen: × ∈ € 3) kontradiktoran:

- \mathcal{I} . Noje su od sledećih uređenih n-torki zavisne za vektorskog prostora \mathbb{R}^3 : 1 (0,0,1),(0,1,0),(1,0,0)2) ((1,0,0),(0,-1,0)) (3) ((0,0,1),(0,1,0),(1,0,0),(1,2,3)) (4) ((1,1,1),(2,2,2),(3,3,3))
- () Matrice linearnih transformacija h(x) = 5x, f(x,y) = x + 2y, g(x,y,z) = (x,x-y) i s(x,y) = (3x,y) su: $M_h = \left[S \right]$ $M_f = \begin{bmatrix} 1 & 7 \end{bmatrix}$ $M_g = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma - \gamma & \gamma \end{bmatrix} \qquad M_s = \begin{bmatrix} \gamma & \gamma \\ \gamma & \gamma \end{bmatrix}$

y (•)Ispod svake matrice napisati broj koji predstavlja njen rang

$$\begin{bmatrix} 1 & 0 & 0 & 4 \\ 2 & 3 & 1 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -4 & 2 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 & 3 \end{bmatrix}$$

Ţ.	ONeka je je $ABCD$ paralelogram, gde mu je BD dijagonala, a S sredina od BC . U zavisnosti od \vec{r}_A , \vec{r}_D i \vec{r}_S napisati vektore položaja tačaka B i C . $\vec{r}_B = 2 \overrightarrow{Y_S} - \overrightarrow{Y_D}$ $\vec{r}_C = 2 \overrightarrow{Y_S} - \overrightarrow{Y_{A}}$

9.	Izraziti vektor $\vec{x} = (1, 2, 2)$ kao linearnu kombinaciju vektora $\vec{a} = (1, 2, 1)$, $\vec{b} = (1, 1, -1)$ i $\vec{c} = (1, 1, 0)$: $\vec{x} = (1, 2, 2)$
0.	• U vektorskom prostoru (\mathbb{R}^6 , \mathbb{R} , +, ·), petorka vektora (a , b , c , d , e) je: 1) uvek nezavisna 2) nikad generatorna, 3) nekada zavisna, a nekada nezavisna.
71,	OU vektorskom prostoru ($\mathbb{C}, \mathbb{R}, +, \cdot$), vektor $a \neq 0$ je: 1) uvek nezavisan, 2) uvek zavisan, 3) uvek baza.
て、	Neka su $a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$, $n = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ matrice kolone nad poljem \mathbb{R} . Tada je: (1) $a^{T} n = 0 \Rightarrow a \perp n$ (2) $na = an$ (3) $n^{T} a = a^{T} n$ (4) $(n^{T} x) a = (an^{T}) x$ (5) $(n^{T} a) x = (xn^{T}) a$
13.	© Linearne transformacije f i g definisane su sa $f(x_1,x_2)=(x_1-x_2,2x_1+x_2)$ i $g(x_1,x_2)=(x_1-x_2,x_1+x_2)$. a) Po definiciji kompozicije \circ odrediti $(f\circ g)(x_1,x_2)=f(g(x_1,x_2))=({}^{\sim \wr} \chi_{\wr}\ ,{}^{\circ} \chi_{\wr}\ {}^{\sim} \chi_{\wr}\)$ b) Napisati matrice M_f i M_g koje odgovaraju linearnim transformacijama f i g
	$M_f = egin{bmatrix} \gamma & -\gamma \ \gamma & \gamma \end{bmatrix}, M_g = egin{bmatrix} \gamma & -\gamma \ \gamma & \gamma \end{bmatrix}.$
	c) Izračunati proizvod matrica $M_f \cdot M_g = \begin{bmatrix} \mathcal{O} & -7 \\ 3 & -7 \end{bmatrix}, M_g^{-1} = \begin{bmatrix} -7 & 2 \\ -3 & 0 \end{bmatrix}$ i $g^{-1}(x_1, x_2) = \begin{pmatrix} -x_1 & 2 \\ -1 & x_2 \end{pmatrix}$
	d) Napisati linearnu transformaciju $h(x_1,x_2)$ kojoj odgovara matrica $M_f\cdot M_g$ tj. $h(x_1,x_2)=(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-$
14.	Odrediti vrednosti parametara $a, b \in \mathbb{R}$ za koje je sistem $x + by = 1$ (b) određen: $2 \neq -2$ (c) 1 puta neodređen: $2 \neq -2$ (d) 2 puta neodređen:
Ŝ.	Ako su \vec{a} i \vec{b} različiti nekolinearni vektori, tada je neorijentisani, konveksni ugao između vektora $\vec{m} = a\vec{b} - b\vec{a}$ i $\vec{n} = \frac{\vec{a}}{a} + \frac{\vec{b}}{b}$: 1) 0 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{3}$ 6) $\frac{\pi}{2}$ 6) π
5.	Nzračunati vektore položaja $\vec{r_{T'}}$ i $\vec{r_{T''}}$ projekcija tačke $T(-1,1,-1)$ na pravu $a: \vec{r} = (-1,0,-2) + t(1,-1,1), \ t \in \mathbb{R}$ i ravan $\alpha: (1,-1,0) \cdot \vec{r} = (1,-1,0) \cdot (1,0,0).$ $\vec{r_{T'}} = \left(\begin{array}{c} \gamma \\ \gamma \end{array}\right), \begin{array}{c} \gamma \\ \gamma \end{array}\right)$
7	(a) Izračunati α i β ako je $\alpha(1, -3, 2) + \beta(3, 7, -3) = (0, 0, 0)$: $(\alpha, \beta) \in \{ (0, 0) \}$
	© Izračunati α i β ako je $\alpha(1,-3,2)+\beta(2,-6,4)=(0,0,0)$: $(\alpha,\beta)\in\{(-1,\lambda,\lambda)\}$
1")."	Neka je $(\vec{a}, \vec{b}, \vec{c})$ uređena trojka nekoplanarnih slobodnih vektora. Tada: 1) trojka $(\vec{a}, \vec{b}, \vec{c})$ je uvek linearno nezavisna 2) trojka $(\vec{a}, \vec{b}, \vec{c})$ je uvek linearno zavisna 3) postoji takav vektor \vec{d} da je četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna 4) postoji takav vektor \vec{d} da je četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ zavisna 5) za svaki vektor \vec{d} je četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna 6) za svaki vektor \vec{d} je četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ zavisna 7) svaki vektor \vec{d} je linearna kombinacija uređene trojke vektora $(\vec{a}, \vec{b}, \vec{c})$
0, (Neka su $\mathbf{a_1} = (a_{11}, \dots, a_{1n}), \mathbf{a_2} = (a_{21}, \dots, a_{2n}), \dots, \mathbf{a_n} = (a_{n1}, \dots, a_{nn})$ vektori vrste matrice $A = A_{nn} = [a_{i,j}]_{nn}$ i neka je $V = \text{Lin}(\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}) = \{\alpha_1 \mathbf{a_1} + \alpha_2 \mathbf{a_2} + \dots + \alpha_n \mathbf{a_n} \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}\}$. Tada 1) det $A \neq 0 \Leftrightarrow \text{rang } A < n$ 2) $(\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n})$ je zavisna akko det $A = 0$ 3) dim $V \neq 0 \Leftrightarrow \text{rang } A \geq 1$ 4) det $A \neq 0 \Leftrightarrow \text{dim } V < n$ 5) det $A \neq 0 \Leftrightarrow \text{rang } A \leq n$ 6) $(\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n})$ je zavisna akko rang $A < n$
1.	U vektorskom prostoru svih slobodnih vektora, uređen par vektora (a,b) je: 1) uvek nezavisan, 2) uvek zavisan, 3) nekad nezavisan a nekad zavisan, 4) uvek generatoran.

- \odot Ako je uređena trojka vektora (a,b,c) zavisna, tada je uređena trojka vektora (a+b,a+c,a+2b-c)e) nekada zavisna, a nekada nezavisna. (b) uvek zavisna
- $igoplus_{ ext{N}}$ Neka je ABCD paralelogram, a tačka T težište trougla BCD (BD je dijagonala paralelograma). Izraziti vektor \overrightarrow{DT} kao linearnu kombinaciju vektora $\vec{a} = \overrightarrow{AB}$ i $\vec{b} = \overrightarrow{BC}$. $\overrightarrow{DT} = \underbrace{\vec{2} \, \vec{a}}_{\vec{a}}$
 - Neka je u sedmodimenzionalnom vektorskom prostoru V, k-torka vektora (a_1, \ldots, a_k) generatorna. Tada je uvek: 1) k < 7 2) $k \le 7$ 3) k = 7 4) k > 7 6) ništa od prethodnog
 - lacktriangle Ako je f:V o W izomorfizam, tada je: lacktriangle postoji f^{-1} lacktriangle V i W su izomorfizam \mathcal{S} V=W
 - (4) za svaku nezavisnu n-torku vektora $(v_1,...,v_n)$ iz V, n-torka $(f(v_1),...,f(v_n))$ je nezavisna u W
 - 5 za svaku zavisnu n-torku vektora $(v_1,...,v_n)$ iz V, n-torka $(f(v_1),...,f(v_n))$ je zavisna u W

Potreban i dovoljan uslov da ravan α bude potprostor vektorskog prostora \mathbb{R}^3 je: $\delta \alpha \gg \delta r$ is $\delta \alpha \sim \delta r$ $(\forall_{\lambda,\gamma} \in \mathbb{R}) (\forall_{(x_1,y_2,\lambda_1)} (x_3,y_3,\lambda_1) \in d) (\chi_{(x_1,y_3,\lambda_1)} + \beta(x_2,y_3,\lambda_1)) \in \mathbb{R}^2 \text{ i tada je } \alpha \text{ potprostor dimensije: } \underline{2}$

- $\mathcal{C}_{\mathcal{C}}$ \otimes Za proizvoljne kvadratne regularne matrice A,B,C reda 2 važi:
 - ① A(BC) = (AB)C 2) AB = BA ③ $(AB)^{-1} = B^{-1}A^{-1}$ 4) $\det(AB) = \det(A) + \det(B)$ ⑤ $\det(AB) = \det(A) \det(B)$ Ø $(AB)^2 = A^2B^2$ 7) $\det(A + B) = \det(A) + \det(B)$
- $\cap Z$ aokružiti brojeve ispred podskupova $U_i\subseteq \mathbb{R}^3$ koji su podprostori i za one koji jesu napisati njihove dimenzije.
 - $(x, y, z) \in \mathbb{R}^3 \mid x = y \lor x = -y) (2) U_2 = \{ (x, y, z) \in \mathbb{R}^3 \mid x = -y \}$
 - **3)** $U_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^3 = -y^3\}$ **4)** $U_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = 0\}$
 - **5**) $U_5 = \{(x,y) \in \mathbb{R}^3 \mid xy = 0\}$ **6**) $U_6 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 0\}$

 $\dim U_1 = / \dim U_2 = \gamma \qquad \dim U_3 = \langle \dim U_4 = \langle \dim U_5 = / \dim U_6 = \mathcal{O} \rangle$

- $\text{Neka je } a = (2,2,0), \ b = (-3,3,0), \ c = (1,-1,0), \ d = (-1,1,0), \ e = (0,0,1), \ f = (1,0,0), \ g = (1,2,0).$
 - 1) $V = L(b, c, d) \Rightarrow dim(V) = 1$ 2) $V = L(a, f, g) \Rightarrow dim(V) = 2$ 3) $V = L(a) \Rightarrow dim(V) = 1$
 - 4) $V = L(0,0,0) \Rightarrow dim(V) = \emptyset$ 5) $V = L(a,b) \Rightarrow dim(V) = 2$ 6) $V = L(e,f,g) \Rightarrow dim(V) = 3$
 - 7) $V = L(b, c, e) \Rightarrow dim(V) = ?$ 8) $V = L(a, b, c) \Rightarrow dim(V) = ?$ 9) $V = L(a, g) \Rightarrow dim(V) = ?$
- 7 9 (•) Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ su nekolinearni akko je: (1) $\vec{a} \times \vec{b} \neq 0$ (2) $\vec{a} \cdot \vec{b} = 0$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ 4) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 2$ (6) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 2$ (6) \vec{a} i \vec{b} su zavisni

KOLOKVIJUM 2, PRIMER 11

- 1. \bigcirc Neka tačke M(1,0,0), N(-1,1,1) i P(0,-1,-1) pripadaju ravni α . $\overrightarrow{MP} = (\neg ?, \neg ?, \neg ?) \ \overrightarrow{MN} = (\neg ?, \neg ?, \neg ?)$. Napisati bar jedan vektor \vec{n} normalan na α , $\vec{n} = (\ 0\ ,\ ?,\ ?)$. Ako je $(A,B,C,D)=(\ \mathcal{O}\ ,\ \mathcal{I}\ ,\ \mathcal{I}\ ,\ \mathcal{I}\)$, tada je Ax+By+Cz+D=0 jednačina ravni α . Napisati bar jednu tačku $S \in \alpha$ i $S \notin \{M, N, P\}$, S(14, 2, 2).
- Neka je p prava čija je jednačina $x-1=\frac{y+1}{2}=\frac{z}{-2}$. Napisati jedan vektor pravca prave p: $\vec{p} = (1, 2, -1)$, i koordinate jedne tačke prave p: (1, -1, 0).
 - ^t₊. Matrica linearne transformacije f(x,y,z) = (x+y-2z,x-z) je: $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$
 - $\begin{bmatrix} 1 & -1 \\ 2 & -3 \end{bmatrix} \cdot \begin{bmatrix} 5 & 0 & 1 \\ -1 & 2 & -2 \end{bmatrix} = \begin{bmatrix} 6 & -7 & 3 \\ 13 & -6 & 5 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 \\ 2 & -3 \end{bmatrix} = -7 \qquad \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$

6. 💽 Ispod svake matrice napisati broj koji predstavlja njen rang. $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ Ako je $\vec{a} = (1, -1, 0)$ i $\vec{b} = (1, 1, -1)$, tada je $|\vec{a}| = \sqrt{7}$ $|\vec{b}| = \sqrt{3}$ $|\vec{a} \times \vec{b}| = \sqrt{1 + 1 + 1}$ $|\vec{a} \times \vec{b}| = \sqrt{5}$ $|\vec{a} \times \vec{b}| = \sqrt{5}$ Proizvoljna linearna transformacija $f: \mathbb{R}^2 \to \mathbb{R}^3$ je oblika $f(x,y) = (\langle d\chi + \hat{\beta} \gamma, \uparrow \chi + \mathcal{J} \gamma, \xi_{\lambda}, \gamma_{\gamma} \rangle)$ (a) $\vec{r}_S = \frac{1}{2}\vec{r}_A + 0 \cdot \vec{r}_B + \frac{1}{2}\vec{r}_C + 0 \cdot \vec{r}_D$ (b) $\vec{r}_S = 0 \cdot \vec{r}_A + \frac{1}{2}\vec{r}_B + 0 \cdot \vec{r}_C + \frac{1}{2}\vec{r}_D$ (c) $\vec{r}_S = \frac{1}{4}\vec{r}_A + \frac{1}{4}\vec{r}_B + \frac{1}{4}\vec{r}_C + \frac{1}{4}\vec{r}_D$ ********************* 70 – SZa koje vrednosti parametra $a \in \mathbb{R}$ je sistem linernih jednačina $x+y+z=0 \ \land \ ax+ay+az=1$ nad poljem realnih brojeva a) neodređen: b) određen: c) kontradiktoran: (•) Broj rešenja homogenog sistema linernih jednačina nad poljem realnih brojeva može da bude: /d) ∞. (a) $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ b) f zadovo e) $f: V \to W$ je bijektivna funkcija. b) f zadovoljava osam aksioma vektorskog prostora. 13. Ako je $f:V \to W$ linearna transformacija, koje od sledećih tvrđenja je tačno? (b) f(-x) = -x za svako $x \in V$. $f(\lambda v) = f(\lambda) + f(v)$ za svako $\lambda \in F$, $v \in V$. Linearna transformacija $f: V \to W$ je izomorfizam ako (a) $(\forall x \in V)(\forall y \in V) \ f(x) = f(y) \Leftrightarrow x = y \ i \ (\forall z \in W)(\exists v \in V) \ f(v) = z$ b) $V \ i \ W \ \text{su izomorfni}$. \mathcal{S} za svaku n-torku vektora $(v_1,...,v_n)$ iz V, n-torka vektora $(f(v_1),...,f(v_n))$ je baza od W. Izračunati vektore položaja $\vec{r_{T'}}$ i $\vec{r_{T''}}$ projekcija tačke T(-1,1,-1) na pravu $a: (A(-1,0,-2), \vec{a} = (1,-1,1))$ i ravan $\alpha: x-y=1$. $r_{x'}^{\rightarrow} = \left(-1.0 \,\mathrm{l}\right)$ $r_{T''}^{-1} = \left(\frac{1}{2}, -\frac{1}{2}, -1 \right)$ 16. Koje od tvrđenja je tačno za bilo koje kvadratne matrice A, B, C reda 4: $\det(A+B) = \det(A) + \det(B) \qquad \text{(b)} \ \det(AB) = \det(BA) \qquad \text{(e)} \ \det(AB) = \det(BA) \Rightarrow AB = BA$ (d) $det(A) = det(A^{\top})$ 17. Napisati analitičke izraze za funkcije $f, g, h, s, t, u, v : \mathbb{R}^2 \to \mathbb{R}^2$, čije su geometrijske interpretacije redom: Osna simetrija u odnosu na x-osu: f(x,y) = (λ , \rightarrow Osna simetrija u odnosu na pravu y = -x: $h(x,y) = (-y^l)$, $- \times (-y^l)$ Osna simetrija u odnosu na y=x: s(x,y)=(Centralna simetrija u odnosu na koordinatni početak: t(x,y)=(Postacija za 90° oko koordinatnog početka: $u(x,y) = (-\gamma, \times)^{n}$ Projekcija na x-osu: v(x,y) = (\times , \circ Od navedenih funkcija linearne transformacije su: 200 , izomorfizmi su: $f_{i,j}$, $k_{i,j}$ $\mathcal{D}(\exists \lambda \in \mathbb{R}) \ \vec{a} = \lambda \vec{b}(8) \ \vec{a} \parallel \vec{b}(9) \ (\exists \lambda \in \mathbb{R}) (\vec{a} = \lambda \vec{b} \lor \lambda \vec{a} = \vec{b}) \ \text{(10)} \ (\exists \alpha, \beta \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} = 0 \land \alpha^2 + \beta^2 \neq 0$

Vektori
$$\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$$
, $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$ i $\vec{c} = c_1\vec{i} + c_2\vec{j} + c_3\vec{k}$ su komplanarni akko:

1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 2$
2) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 3$
3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$
4) $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0$
5) $\vec{a}(\vec{b} \times \vec{c}) = 0$
6) $(\exists \alpha, \beta \in \mathbb{R})$ $\vec{a} = \alpha \vec{b} + \beta \vec{c}$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0 \quad \boxed{5} \vec{a}(\vec{b} \times \vec{c}) = 0 \quad \cancel{6}) \ (\exists \alpha, \beta \in \mathbb{R}) \ \vec{a} = \alpha \vec{b} + \beta \vec{c}$$

- 7) $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \wedge \alpha^2 + \beta^2 + \gamma^2 = 0$ (8) $(\vec{a}, \vec{b}, \vec{c})$ je zavisna.
- Neka je ABCD kvadrat, M sredina dijagonale AC, a N težište trougla ABC, napisati \overrightarrow{MN} kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AB}$ i $\overrightarrow{b} = \overrightarrow{BC}$.
- \mathcal{M} . Koje od tvrđenja je tačno ako je A kvadratna matrica reda n: a) $Rang(A) = 0 \Rightarrow det(A) = 0$ $\text{Didet}(A) = 0 \Leftrightarrow Rang(A) \leq n - 1 \text{ (c)} \ Rang(A) = n \Rightarrow \det(A) \neq 0 \ , \text{ (d)} \ Rang(A) = n \Rightarrow \det(A) = 0.$
- Napisati vektor položaja \vec{r}_B tačke B koja je simetrična tački A u odnosu na tačku T: $\vec{r}_B = f(\vec{r}_A, \vec{r}_T) = \sqrt[2]{\widetilde{r}_\tau} \sqrt[2]{\widetilde{r}_\tau}$
- \odot (m+1) torka vektora u m dimenzionalnom vektorskom prostoru je: (m+1) uvek linearno nezavisna, (b) uvek linearno zavisna, (c) nekad linearno nezavisna, a nekad linearno zavisna.
- 15 m torka vektora u m dimenzionalnom vektorskom prostoru je: A uvek linearno nezavisna, wek linearno zavisna, 🕝 nekad linearno nezavisna, a nekad linearno zavisna.
- $\mathcal{N} \otimes (m-1)$ torka vektora u m dimenzionalnom vektorskom prostoru je: 3) uvek linearno nezavisna, by uvek linearno zavisna, (c) nekad linearno nezavisna, a nekad linearno zavisna.
- $^{\text{QU}}$ vektorskom prostoru ($\mathbb{R}^3,+,\cdot$), linearno nezavisna trojka (a,b,c) je: a) uvek baza, ratorna, c) nikad generatorna, a) nikad baza.
- N vektorskom prostoru ($\mathbb{R}^3,+,\cdot$), generatorna trojka (a,b,c) je: (a) uvek baza, (b) uvek linearno nezavisna, e) nikad linearno nezavisna, a) nikad baza.
 - 💌 Za koje vrednosti parametara a, b su navedene funkcije linearne transformacije, i za one koje jesu, naći odgovarajuću matricu i diskutovati njen rang:

$$f:\mathbb{R}^3\to\mathbb{R},\ f(x,y,z)=(x+y+z+a)^b\quad\text{asomber }f:\mathbb{R}^3\to\mathbb{R},\ f(x,y,z)=(x+y+z+a)^b\quad\text{asomber }f:\mathbb{R}^3\to\mathbb{R},\ f(x,y,z)=(x+y+z+a)^b$$

$$g:\mathbb{R}\to\mathbb{R}^2,\ g(x)=\left(\tfrac{a}{x},ax+b\right)\quad\text{a.s.}\quad \text{for}\quad\text{$$

Postoji linearna transformacija $f: \mathbb{R}^3 \to \mathbb{R}^2$ za koju važi da je:

2) injektivna

3) bijektivna

4) izomorfizam

5) ništa od prethodnog

3) bijektivna

 $\mathcal{P}^{\mathcal{O}}$. Postoji linearna transformacija $f: \mathbb{R}^2 \to \mathbb{R}^3$ za koju važi da je: 1) injektivna

4) izomorfizam

5) ništa od prethodnog.

- $^{>q}$ $_{C}$ Za svaki vektorski prostor V i svaku sirjektivnu linearnu transformaciju f:V
 ightarrow V sledi da je transformacija f: (1) injektivna (2)) bijektivna (3) izomorfizam (4) ništa od prethodnog.
- \mathcal{N} ©Za svaki vektorski prostor V i svaku injektivnu linearnu transformaciju $f:V\to V$ sledi da je transformacija f: 4) sirjektivna 2) bijektivna 3) izomorfizam 4) ništa od prethodnog

PRIMER 12 KOLOKVIJUM 2,

Neka tačke M(2,0,0), N(0,2,0) i P(1,1,1) pripadaju ravni α . $\overrightarrow{MP} = (-7,7,7)$ $\overrightarrow{MN} = (-7,7,7)$. Napisati bar jedan vektor \vec{n} normalan na α , $\vec{n} = (-7, -7, 0)$. Ako je (A, B, C, D) = (1, 1, 0, -7), tada je Ax + By + Cz + D = 0 jednačina ravni α . Napisati bar jednu tačku $S \in \alpha$ i $S \notin \{M, N, P\}$, S(1, 1, 14).

4 2 puta neodređen.

- Neka je p prava čija je jednačina $x + 5 = \frac{y-1}{2} = \frac{z}{-2}$. Napisati jedan vektor pravca prave p: $\vec{p} = (? ? , ? ?)$, i koordinate jedne tačke prave p: (-5 , ? ?).
- Za koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $ax + y = 1 \land x + ay = a$ nad poljem realnih brojeva je: 1) neodređen: $a = 1 \lor a = 1$ određen: $a \neq 1 \land a \neq 1$ (3) kontradiktoran:
- Zaokružiti cifru (cifre) ispred uređenih n-torki koje su GENERATORNE u vektorkom prostoru trojki $(\mathbb{R}^3,+,\cdot)$: 1) ((0,1,0)) 2) ((1,2,0),(1,1,0),(2,-1,1)) 3) ((1,0,0),(2,0,2)) 4) ((1,0,0),(0,2,0),(0,0,3)) 5) ((1,1,1),(2,2,2)) 6) ((0,0,2),(0,0,0),(3,0,0)) 7) ((0,1,0),(0,2,0)) 8) ((1,0,0),(0,1,0),(0,0,1),(1,2,3))
- 3 · Ispod svake matrice napisati broj koji predstavlja njen rang.

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, f(x) = (0,9x) i $g,h,r,s: \mathbb{R}^3 \to \mathbb{R}^2$, g(x,y,z) = (x+y,x+z), h(x,y,z) = (x-y,0), r(x,y,z) = (0,y), s(x,y,z) = (x-y-z,6y) i p(x,y,z) = (z,0) su: (Rang upisati ispod odgovarajuće matrice)

$$M_{f} = \begin{bmatrix} 0 \\ 5 \end{bmatrix} \qquad M_{g} = \begin{bmatrix} 7 & 7 & 0 \\ 7 & 0 & 7 \end{bmatrix} M_{h} = \begin{bmatrix} 7 & 7 & 0 \\ 0 & 0 & 0 \end{bmatrix} M_{r} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 7 & 0 \end{bmatrix} M_{s} = \begin{bmatrix} 7 & 7 & 0 \\ 0 & 0 & 0 \end{bmatrix} M_{p} = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$

Neka je je ABCD paralelogram, gde mu je \overrightarrow{BD} dijagonala, a S presek dijagonala. U zavisnosti od \vec{r}_S , \vec{r}_B i \vec{r}_A napisati vektore položaja tačaka C i D $\vec{r}_C = \chi \overrightarrow{V}_S - \overrightarrow{V}_A$ $\vec{r}_D = \chi \overrightarrow{V}_S - \overrightarrow{V}_B$

- Izračunati vektore položaja $\vec{r}_{Q'}$ i $\vec{r}_{Q''}$ projekcija tačke Q(5,-3,4) na pravu a i ravan α , ako je $A\in a$, $a\parallel\vec{a}, B\in\alpha, \ \vec{n}\perp\alpha$ i pri čemu je $A(0,-5,-4), \ \vec{a}=(6,3,1), B(3,2,2), \ \vec{n}=(1,-1,1).$ $\vec{r}_{Q'}=\left(\begin{array}{cc} r^{31} \\ \hline 1 \end{array}\right), -\frac{59}{13}, -\frac{59}{13} \end{array})$
- 11. U vektorskom prostoru (R³, R, +, ·) navesti po jedan primer vektorskog podprostora koji je redom dimenzije 0,1,2 i 3. Primer navesti jednačinom ili geometrijskim opisom.

 dim Voco Voci x zyzazo dim Voca Voci x zyzazo dim Voci x zyzazo dim Voca Voci x zyzazo dim Voci x zyzazo zyzazo dim Voci x zyzazo zyzazo
 - $\begin{array}{c} \text{$\bigcap$} \ \text{Koji od sledećih podskupova} \ U \subseteq \mathbb{R}^n = \{x = (x_1, \ldots, x_n) | x_1, \ldots, x_n \in \mathbb{R}\} \ \text{je podprostor:} \\ \text{\triangle} \ U = \{x \in \mathbb{R}^n \mid x_1 + x_2 + \cdots + x_n = 0\} \\ \text{\triangle} \ U = \{x \in \mathbb{R}^n \mid \forall i, \ x_i \in \{0, 1\}\} \end{array}$
 - 13. Navesti dve baze vektorkog prostora \mathbb{R}^3 : $\frac{\left((2,0,0),(0,1,0),(0,0,1)\right)}{\left((2,0,0),(0,0,1)\right)} \frac{\left((2,0,0),(0,0,1)\right)}{\left((2,0,0),(0,0,1)\right)}$
 - 75. Neka je p = (1,0,1), q = (0,2,2), r = (0,0,3), s = (0,4,0). Zaokružiti slovo ispred zavisne n-torke:

 a) (p,q,r),
 b) (q,r,s),
 c) (p,q),
 d) (p,r),
 e) (p,s),
 f) (q,r),
 g) (q,s),
 h) (r,s).
 - (6. Trojka (v_1, v_2, v_3) je generatorna za V ako: a) svaki od vektora v_1, v_2, v_3 je različit od nula-vektora.

 (b) Za svaki vektor v važi $v = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_n v_3$ za neke skalare $\lambda_1, \lambda_2, \lambda_3$. (c) dim(V) = 3.
 - \bigcirc Za linearno zavisnu trojku vektora (v_1, v_2, v_3) prostora V važi; a) par (v_1, v_2) je uvek linearno zavisan \bigcirc par (v_1, v_2) može biti linearno zavisan ili nezavisan u zavisnosti od izbora vektora (v_1, v_2, v_3) \bigcirc par (v_1, v_2) je uvek linearno nezavisan

```
	hinspace{1}{2}Za linearno nezavisni par vektora (v_1,v_2) prostora V važi: _a) trojka (v_1,v_2,v_3) je uvek linearno zavisna
                       \textcircled{b} trojka (v_1, v_2, v_3) može biti linearno zavisna ili nezavisna u zavisnosti od izbora vektora (v_1, v_2, v_3)
                       (v_1, v_2, v_3) je uvek linearno nezavisna.
1°). ①Uređena trojka nekomplanarnih slobodnih vektora (\vec{a}, \vec{b}, \vec{c}) je: ② uvek linearno nezavisna b) uvek linearno
                         zavisna e) u zavisnosti od datih vektora nekada zavisna, a nekada nezavisna.
Za svaku linearnu transformaciju f: \mathbb{R}^2 \to \mathbb{R} i svako x, y \in \mathbb{R} tačno je:

A f(x, x) = 2x.

B f(0, 0) = 0.

L f(x, y) = x + y.
                                                                                                                                                                                                                                                                                                                                                      f(x,y) = xy
  The Šta od navedenog nije aksioma vektorskog prostora: (\forall x,y \in V) (\forall \alpha \in F) \alpha(x+y) = \alpha x + \alpha y
                       (\forall x \in V)(\forall \alpha, \beta \in F) \ (\alpha + \beta)x = \alpha x + \beta x \ (c) \ (\forall x, y \in V) \ x \cdot y = y \cdot x \ (d) \ (\forall x \in V) \ 0 \cdot x = 0
 {\mathfrak I}^{\mathfrak I} {\mathfrak O} Za proizvoljne kvadratne matrice A,B,\widetilde{C} reda n važi:
                     (AB) = Rang(A)rang(B) \qquad (B) \quad A + (B+C) = (A+B) + C \qquad (C) \det(AB) = \det(A)\det(B)
                                                                                        (d) A + B = B + A
                     AB = BA
               \bigodot Linearna transformacija f:\mathbb{R}^2\to\mathbb{R}^2,\,f(x,y)=(px+y,x+py)je izomorfizam akko p\in\widehat{\underline{\mathbb{R}}}
     Sistem linernih jednačina nad poljem realnih brojeva ax + y = 1 \land x + by = 0 je:
                        Vektor \vec{s} simetrale \not BAC trougla ABC izraziti kao linearnu kombinaciju vektora \vec{a} = \overrightarrow{AB} i \vec{b} = \overrightarrow{AC}:
      \mathcal{C}_{\bullet} Koji od vektora su karakteristični vektori za matricu \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}? \Rightarrow \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 \\ -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 2 \end{bmatrix}.
    Karakteristični polinom matrice \begin{bmatrix} 2 & 3 \\ -2 & 1 \end{bmatrix} je: \underline{ }  
   ^{1g} ( )Koje od tvrđenja je tačno za bilo koje kvadratne matrice A,B,C reda 3 i svaki skalar \lambda
                                                                                                                                                                   (b) det(\lambda A) = \lambda^3 det(A)
                     \det(A - B) = \det(A) - \det(B)
                                                                                                                                                                                                                                                                  (c) det(ABC) = det(A)det(B)det(C).
      {}^{19} <a>©</a>Neka A \sim Bznači da su matrice A <br/>iBekvivalentne. Tada važi:
                       \textbf{(A)} A \sim B \Leftrightarrow |\det(A)| = |\det(B)|, \textbf{(b)} \det(A) = \det(B) \Rightarrow A \sim B, \textbf{(c)} A \sim B \Rightarrow \det(A) = \det(B),
                       (\mathbf{d}) \ A \sim B \Rightarrow \Big( det(A) = 0 \Leftrightarrow det(B) = 0 \Big). \text{ (A) } A \sim B \Leftrightarrow \Big( Rang(A) = 0 \Leftrightarrow Rang(B) = 0 \Big).
               (•) Koje od tvrđenja je tačno ako je matrica A' dobijena od matrice A elementarnim transformacijama.
                                                                                                                                                                                                                                                                                                                        (b)) Rang(A) = Rang(A')
                        (a) det(A) \neq 0 \Leftrightarrow det(A') \neq 0
                                                                                                                                                                                                                                                                      c \neq det(A) = \lambda^2 det(A') za neki skalar \lambda.
                        (c) det(A) = \lambda det(A') za neki skalar \lambda
               WKoje od tvrđenja je tačno ako je A kvadratna matrica reda n: (a) Rang(A) = 0 \Rightarrow det(A) = 0
                    (b) det(A) = 0 \Leftrightarrow Rang(A) \leq n - 1 (c) Rang(A) = n \Rightarrow det(A) \neq 0, Rang(A) = n \Rightarrow det(A) = 0.
    Izračunati vektor položaja \vec{r}_T tačke T, prodora prave p: \vec{r}=(7,7,4)+t(2,2,1), \ t\in \mathbb{R} kroz ravan
                          \alpha: \vec{r} \cdot (-1,0,1) = (2,5,2) \cdot (-1,0,1). \vec{r}_r = (7,7,7)
    Ako je f:V	o W izomorfizam vektorskih prostora, tada je:(a) postoji f^{-1}, b) V=W,
                                   (c) za svaku zavisnu n-torku vektora (v_1,...,v_n) iz V, n-torka (f(v_1),...,f(v_n)) je zavisna u W.
                 🖲 Za koje vrednosti parametara a, b su navede funkcije linearne transformacije, i za one koje jesu, naći
                          odgovarajuću matricu i diskutovati njen rang:
                          g: \mathbb{R}^2 \to \mathbb{R}^1, \ g(x,y) = \sin(a)x + \cos(b)y \quad \frac{\alpha}{\alpha}, \quad \frac{1}{\beta} \in \mathbb{R}^1, \quad \frac{\beta}{\alpha} \in \mathbb{R}^1, \quad \frac{\beta}{\alpha
```

Neka tačke P(1,2,0), Q(2,1,0) i R(1,1,1) pripadaju ravni α . Napisati bar jedan jedinični vektor \vec{n} normalan na α i jedan vektor \vec{m} paralelan sa α , $\vec{n}=(1,1,1)$, $\vec{m}=(1,1,1)$. Ako je dinate tačke $M \in \alpha$ ravni α koja je najbliža koordinatnom početku. $M(\mathcal{I}, \mathcal{I}, \mathcal{I})$. · \odot Za koje vrednosti parametra $a \in \mathbb{R}$ sistem linernih jednačina $x + ay = 1 \land ax + y = 1$ nad poljem realnih brojeva je: 1) neodređen: $\alpha \neq -1$ $\alpha \neq +12$) određen: $\alpha = 1$ 3) kontradiktoran: $^{\wedge}$, $^{\bullet}$ Za vektore $\vec{a}=(1,1,0)$ i $\vec{b}=(0,1,1)$ izračunati: 1) $|\vec{a}|=$ 3) $2\vec{a} - \vec{b} = (277)$ 4) $\vec{a} \cdot \vec{b} = 1$ 5) $|\vec{a} \times \vec{b}| = \sqrt{3}$ 6) $\sin \langle (\vec{a}, \vec{b}) =$ -2) ((1,3,-2),(-2,-6,4)) -3) ((0,0,1),(0,1,0),(1,0,0),(1,2,3)) -4) ((1,0,1),(1,1,0),(2,1,1))

$$\mathcal{G} \left[\begin{array}{c} 1 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 1 \\ 3 \end{array} \right] \cdot \left[\begin{array}{c} 2 \\ 1 \end{array} \right] = \left[\begin{array}{c} 5 \\ 1 \end{array} \right] \cdot \left[\begin{array}{c} 2 \\ 3 \end{array} \right] \cdot \left[\begin{array}{c} 2 \\ 1 \end{array} \right] = \left[\begin{array}{c} 7 \\ 6 \end{array} \right] \cdot \left[\begin{array}{c} 5 \\ 2 \end{array} \right] = -8 \qquad \left[\begin{array}{c} 1 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right]^{-1} = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 2 \\ 1 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 2 \\ 1 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 3 \\ 2$$

- $\c igc$, $\c igc igc$ Matrice linearnih transformacija $f(x,y)=(2x,x,y),\,g(x,y,z)=y,\,h(x,y)=(x,y)$ i s(x, y, z) = (y, z, x + x) su: $M_s = \left(egin{array}{ccc} 0 & j & \wp \ \wp & \wp & j \ j & \wp & \wp \end{array}
 ight)$ $M_h = \begin{bmatrix} \gamma & 0 \\ 0 & 7 \end{bmatrix}$ $M_f = \begin{bmatrix} 7 & 0 \\ 7 & 0 \\ 0 & 7 \end{bmatrix}$ $M_g = \begin{bmatrix} 0 & 7 & 0 \end{bmatrix}$
- Ispod svake matrice napisati broj koji predstavlja njen rang.
- (•)Odrediti sve vrednosti realnog parametara 1) kontradiktoran: a za koje je sistem linearnih jednačina 2) određen: a 🚓 3) jednostruko neodređen: ax +y = a4) dvostruko neodređen:
- (*)Neka je ABCD paralelogram, a tačke P i Q redom sredine duži AB i AD. (BD je dijagonala paralelo-9 grama). Izraziti vektor \overrightarrow{PQ} kao linearnu kombinaciju vektora $\vec{a} = \overrightarrow{AC}$ i $\vec{b} = \overrightarrow{BC}$. $\overrightarrow{PQ} = \overrightarrow{\mathcal{K}}' - \overrightarrow{\mathcal{L}}'$
- 10. (a) Napisati $\vec{x}=(2,0,1)$ kao linearnu kombinaciju vektora $\vec{a}=(1,0,1),\,\vec{b}=(2,1,1)$ i $\vec{c}=(1,1,1)$: $\vec{x} = (\vec{a}) + (\vec{k}) - (\vec{c})$
- 11. Noordinate projekcija A' tačke A(1,1,2) na pravu određenu sa x=y=z je: $A'(\frac{4}{2},\frac{4}{3},\frac{4}{3})$
- Normalna projekcija vetora $\vec{x} = 3\vec{i} + 3\vec{j} + 3\vec{k}$ na ravan α : x + 2y + z = 0 je: $\operatorname{pr}_{\alpha}(\vec{x}) = \vec{1} \vec{j} + \vec{k}$
- Koji od vektora su karakteristični vektori za matricu $\begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$? (a) $\begin{bmatrix} -3 \\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} -3 \\ -3 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$.
- Koje od tvrđenja je tačno za bilo koje kvadratne matrice A, B, C reda 3 i svaki skalar λ : $\text{(A)} \det(AB) = \det(A)\det(B) \quad \text{(B)} \quad \text{(B)} \quad \text{(B)} \quad \text{(B)} \quad \text{(A)} \quad \text{(B)} \quad \text{$ (4) $\det(AB) = \det(B)\det(A)$ (5) $(AB)^2 = A^2B^2$ (6) $\operatorname{rang}(AB) = \operatorname{rang}(BA)$ (7) A(B-C) = BA - CA (8) A(BC) = (BA)C
- $\mathcal{T}_{\mathcal{E}}$. \odot Koja od sledećih tvrdnji je tačna za svaka dva slobodna nenula vektora \vec{x} i \vec{a} : \odot $(\vec{a} \mathbf{pr}_{\vec{x}}\vec{a})\vec{x} = 0$ $(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x})\vec{a} = 0 \quad c)(\vec{a} - \mathbf{pr}_{\vec{a}}\vec{a}) \times \vec{x} = 0 \quad d)(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \times \vec{a} = 0 \quad e)$ mista od prethodnog
- 17. (a) Neka su a,b i c nezavisni vektori. Tada uređena trojka vektora (a+b+c,b+c,b+c) jest a) uvek zavisna (b) uvek nezavisna (c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora (a,b,c)

19. Neka su a, b i c zavișni vektori. Tada uređena trojka vektora (a+c, a+b, a-b+2c) je: (a)) uvek zavisna b) uvek nezavisna g) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c. 19. Nenula vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ su nekolinearni ako je 17. $\vec{a} \times \vec{b} = 0$ 29. $\vec{a} \cdot \vec{b} = 0$ 39. $rang\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ 49. $rang\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 2$. 59. $rang\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 1$ 6) \vec{a} i \vec{b} su zavisni \vec{J} ($\exists \lambda \in \mathbb{R}$) $\vec{a} = \lambda \vec{b}$ 8) $\vec{a} \parallel \vec{b}$ (9) ($\forall \lambda \in \mathbb{R}$) ($\vec{a} \neq \lambda \vec{b} \wedge \lambda \vec{a} \neq \vec{b}$) 10) $(\exists \alpha, \beta \in \mathbb{R}) \alpha \vec{a} + \beta \vec{b} = 0 \Rightarrow \alpha^2 + \beta^2 \neq 0$ Vektori $\vec{a}=a_1\vec{i}+a_2\vec{j}+a_3\vec{k},\ \vec{b}=b_1\vec{i}+b_2\vec{j}+b_3\vec{k}$ i $\vec{c}=c_1\vec{i}+c_2\vec{j}+c_3\vec{k}$ su nekomplanarni ako je: 4) $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0 \quad \text{(5)} \quad \vec{a}(\vec{b} \times \vec{c}) \neq 0 \quad \text{(6)} \quad (\exists \alpha, \beta \in \mathbb{R}) \quad \vec{a} = \alpha \vec{b} + \beta \vec{c}$ $(\vec{a}, \vec{b}, \vec{c}) = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 \neq 0 \quad \text{(8)} \quad (\vec{a}, \vec{b}, \vec{c}) \text{ je nezavisna.}$ ullet Neka je $arphi:V o\mathbb{R}^3$ definisana sa $arphi(x_1ec{i}+x_2ec{j}+x_3ec{k})=(x_3,x_2,x_1)$ gde su $(V,\mathbb{R},+,\cdot)$ i $(\mathbb{R}^3,\mathbb{R},+,\cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi: V \to \mathbb{R}^3$ (2) injektivna B) sirjektivna (I) linearna transformacija ${}^{\text{to}}$ ${}^{\text{to}}$ Neka je ${\cal M}$ skup svih matrica formata (3,5) čiji svi elementi su iz skupa realnih brojeva ${\mathbb R}$. Tada je: (1) rang : $\mathcal{M} \to \mathbb{R}$ (2) rang : $\mathcal{M} \to \mathbb{N}$ (3) rang : $\mathcal{M} \to \mathbb{N} \cup \{0\}$ (0) rang : $\mathcal{M} \stackrel{na}{\to} \{0,1,2,3\}$ Neka je (a_1,a_2,\ldots,a_k) generatorna u prostoru $V,\,(c_1,c_2,\ldots,c_n)$ zavisna za prostor V i dimV=m. Tada je 1) $m \le k \le n$ 2) $n \le k \le m$ 3) $m \le k$ 4) $k \le m \le n$ 5) $k \le n \le m$ 6) $m \le n \le k$ Neka je \vec{r}_A vektor položaja tačke $A(3,1,2), \ |\overrightarrow{AB}| = |\overrightarrow{BC}| = 9$. Odrediti \vec{r}_C ako je $\overrightarrow{AB} \| \vec{a} = (1,4,8),$ $\overrightarrow{BC} \| \overrightarrow{b} = (-8, 1, 4)$ i ako su smerovi vektora \overrightarrow{a} i \overrightarrow{b} suprotni smerovima redom vektora \overrightarrow{AB} i \overrightarrow{BC} . $\vec{r}_c = (10, -4, -10)$ $^{\mathbf{V}_{5}}$ (*) Koji od sledećih podskupova $U\subseteq\mathbb{R}^{3}$ je potprostor i za one koji jesu napiši desno od njih njihovu (1) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}, \quad \text{dim } U = \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}}$ **2)** $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = 0\}$ dim U = 1(3) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot 1 = x\} \text{ dim } U = \underline{\ \ \ \ \ \ \ \ \ \ \ }$ $(4)U = \{(x, y, z) \in \mathbb{R}^3 \mid x = 2x\} \text{ dim } U = \underline{\mathcal{L}}$ A Ako je A kvadratna matrica reda 5, tada je: A det $A = 0 \Leftarrow \operatorname{rang} A = 0$ A det $A = 0 \Leftrightarrow \operatorname{rang} A \leq 4$, 3) $\det A = 0 \Rightarrow \operatorname{rang} A = 5$ (4) $\operatorname{rang} A = 5 \Rightarrow \det A \neq 0$, (5) $\operatorname{rang} A = 5 \Leftarrow \det A \neq 0$, (6) rang $A = 5 \Leftarrow \exists A^{-1}$ 1. Neka su $a_1 = (a_{11}, \ldots, a_{n1}), \ a_2 = (a_{12}, \ldots, a_{n2}), \ldots, \ a_n = (a_{1n}, \ldots, a_{nn})$ vektori kolone matrice $A = (a_{1n}, \ldots, a_{nn})$ $A_{nn}=[a_{ij}]_{nn}$, neka je $V=\mathrm{Lin}(\mathbf{a_1,a_2,\ldots,a_n})=\{\alpha_1\mathbf{a_1}+\alpha_2\mathbf{a_2}+\ldots+\alpha_n\mathbf{a_n}|\alpha_1,\alpha_2,\ldots,\alpha_n\in\mathbb{R}\}$ i neka je $\mathbf{a_i}^2$ skalarni proizvod vektora $\mathbf{a_i}$ sa samim sobom. Tada je: \mathbf{O} $\mathbf{a_1} = \ldots = \mathbf{a_n} = 0 \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 = 0$ \mathbf{O} dim $V \neq 0 \Leftrightarrow rang \ A \neq 0$ \mathbf{O} dim $V = 0 \Leftrightarrow \mathbf{a_1} = \ldots = \mathbf{a_n} = 0$ \mathbf{A} dim $V = 0 \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 \neq 0$ 6) rang $A = 0 \Leftrightarrow \mathbf{a_1}^2 + \ldots + \mathbf{a_n}^2 \neq 0$ (5) rang $A \neq 0 \Leftrightarrow \mathbf{a_1} = \ldots = \mathbf{a_n} = 0$ $f: \mathbb{R} \to \mathbb{R}$ važi da je: (1) sirjektivna 5) ništa od prethodnog (3) bijektivna (4) izomorfizam (2) injektivna γ 9 Postoji linearna transformacija $f: \mathbb{R} \to \mathbb{R}^2$ za koju važi da je: (1) injektivna

 \bullet Za svaku sirjektivnu linearnu transformaciju $f: \mathbb{R}^2 \to \mathbb{R}^2$ sledi da je transformacija $f: \bullet$ injektivna \bullet bijektivna \bullet is

3) bijektivna

(2) bijektivna

2) sirjektivna

A) izomorfizam

5) ništa od prethodnog.

A) ništa od prethodnog.

- \mathfrak{I} . \mathfrak{S} Za svaku injektivnu linearnu transformaciju $f: \mathbb{R}^2 \to \mathbb{R}^2$ sledi da je transformacija $f: \mathbb{R}^2 \to \mathbb{R}^2$ (2) bijektivna 3) izomorfizam AY ništa od prethodnog
- $\mathfrak{I}_{\mathfrak{I}}$ Za svaki izomorfizam $f:\mathbb{R}^n \to \mathbb{R}^m$ i njegovu matricu A važi: (1) f je injektivna (2) postoji A^{-1} (3) n = m (4) f je sirjektivna (5) f je bijektivna (6) A je regularna (7) det $A \neq 0$ (8) ništa od prethodnog
- \Im , (e) Za svaki konačno dimenzioni vektorski prostor V postoji homogen sistem linearnih jednačina, čiji skup svih rešenja je vektorski prostor izomorfan prostoru V. Zakruži tačan odgovor(DA) NE
- 3 4 Neka je a = (2, 2, 0), b = (-3, 3, 0), c = (1, -1, 0), d = (-1, 1, 0), e = (0, 0, 1), f = (1, 0, 0), g = (1, 2, 0).Zaokružiti broj koji je dimenzija potprostora V vektorskog prostora \mathbb{R}^3 :
 - 1) $V = L(b, c, d) \Rightarrow dim(V)$ je: (£2.3)

 - 2) $V = L(e, f, g) \Rightarrow dim(V)$ je: 1,2,3
 3) $V = L(a, b) \Rightarrow dim(V)$ je: 1,2,3
 4) $V = L(e, f, g) \Rightarrow dim(V)$ je: 1,2,3
 5) $V = L(b, c, e) \Rightarrow dim(V)$ je: 1,2,3
- 6) $V = L(a, b, c) \Rightarrow dim(V)$ je: 1,23 7) $V = L(a, q) \Rightarrow dim(V)$ je: 1,23
 - (a) Neka su $\vec{x}, \vec{i}, \vec{j}, \vec{k}$ slobodni vektori i $\vec{i}, \vec{j}, \vec{k}$ jedinični međusobno normalni i α, β i γ uglovi koje vektor \vec{x} obrazuje sa redom vektorima $\vec{i}, \vec{j}, \vec{k}$. Tada je: (1) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}$ (2) $(\vec{x}\vec{i}, \vec{x}\vec{j}, \vec{x}\vec{k}) \in \mathbb{R}^3$ (2) $(\vec{x}\vec{i}, \vec{x}\vec{j}, \vec{x}\vec{k}) \in \mathbb{R}^3$ (2) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} \in \mathbb{R}^3$ (2) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}\vec{x}$ (6) $(|\vec{x}|\cos\alpha)\vec{i} + (|\vec{x}|\cos\beta)\vec{j} + (|\vec{x}|\cos\gamma)\vec{k} = \vec{x}$ (7) $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$

KOLOKVIJUM 2, PRIMER 14

- A, Ω Za ravan α kojoj pripadaju tačke A(2,0,0), B(0,2,0) i koja je paralelna sa z-osom napisati jedan njen vektor normale $\vec{n}_{\alpha} = (1, 1, 0)$ i koordinate njene tačke M(1, 1, 0) koja je najbliža koordinatnom početku.
- ? . Ako je $\vec{a} = (1, 2, 2)$ i $\vec{b} = (2, 1, -2)$, tada je $|\vec{a}| = \underline{3} \quad |\vec{b}| = \underline{3} \quad \vec{a}\vec{b} = \underline{0} \quad \langle (\vec{a}\vec{b}) = \underline{\hat{x}} \quad \vec{a} \times \vec{b} = \underline{9}$
- \bigcirc Za koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $ax + y = 1 \land ax ay = a$ nad poljem realnih brojeva je: 1) neodređen: 🐧 = 0 2) određen: a ton a to

$$\left[\begin{array}{c} -3 \\ 2 \end{array} \right] \cdot \left[\begin{array}{c} 2 & 1 \end{array} \right] \cdot \left[\begin{array}{c} -1 \\ 3 \end{array} \right] = \left[\begin{array}{c} -3 \\ 2 \end{array} \right] \left[\begin{array}{c} -1 \\ 1 \end{array} \right] \cdot \left[\begin{array}{c} 1 & 1 \end{array} \right] = \left[\begin{array}{c} -3 \\ 2 & 7 \end{array} \right] \left[\begin{array}{c} 0 & 0 & 2 \\ 0 & 2 & 4 \\ 2 & 7 & 9 \end{array} \right] = - \mathcal{F} \quad \left[\begin{array}{c} 3 & 1 \\ 5 & 2 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right] = \left[\begin{array}{c} 3 & 1 \\ 3 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right] = \left[\begin{array}{c} 3 & 1 \\ 3 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right] = \left[\begin{array}{c} 3 & 1 \\ 3 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right] = \left[\begin{array}{c} 3 & 1 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{c} 2 & 3 \\ 2$$

- Zaokružiti cifru (cifre) ispred uređenih n-torki koje su NEZAVISNE u vektorkom prostoru uređenih trojaka ($\mathbb{R}^3,+,\cdot$): (1,2,1),(1,1,0),(2,3,1) (1,0,0),(2,0,2)
 - $\underbrace{4} \left((1,0,0), (0,2,0), (0,0,3) \right) \underbrace{5} \left((1,1,1), (2,2,2) \right) \underbrace{6} \left((0,0,2), (0,0,0), (3,0,0) \right)$ (0,1,0),(0,2,0) (1,0,0),(0,1,0),(0,0,1),(1,2,3)
 - (Ispod svake matrice napisati broj koji predstavlja njen rang.
 - $\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & -3 & 1 & -2 \\ 0 & -6 & 2 & -4 \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 \\ -2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, f(x) = (2x, 9x) i $g, h, r, s, p: \mathbb{R}^3 \to \mathbb{R}^2$, g(x, y, z) = (2x, 9x)(x,y), h(x,y,z) = (0,0), r(x,y,z) = (y,y), s(x,y,z) = (x-y-z,6y+x) i p(x,y,z) = (z,z) su: (Range upisati ispod odgovarajuće matrice)
 - $M_{f} = \begin{bmatrix} 2 \\ 9 \end{bmatrix} \qquad M_{g} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} M_{h} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} M_{r} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} M_{s} = \begin{bmatrix} 7 & 7 & 7 \\ 1 & 6 & 0 \end{bmatrix} M_{p} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
- \S , \bigodot Neka je je ABCD paralelogram, gde mu je BD dijagonala, a S presek dijagonala. U zavisnosti od $ec{r}_A,ec{r}_B$ i \vec{r}_s napisati vektore položaja tačaka C i D. $\vec{r}_c = 2\vec{r}_s - \vec{r}_s$

🖔. 🕟 Odrediti sve vrednosti realnog parametra a za koje je sistem linearnih jednačina

2ax + ay = a3ax + 2ay = 5a 1) kontradiktoran: _

2) određen: ___

3) 1 puta neodređen:

4) 2 puta neodređen: ____

- Neka je ABCD paralelogram, a tačke P i Q redom sredine duži AD i DC. (BD je dijagonala paralelogram) grama). Izraziti vektor $\overrightarrow{BQ} + \overrightarrow{BP}$ kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AC}$ i $\overrightarrow{b} = \overrightarrow{BC}$. $\overrightarrow{BQ} + \overrightarrow{BP} = -\frac{3}{5}\overrightarrow{a} + 2\overrightarrow{\mathcal{L}}$
- Olzraziti vektor $\vec{x}=(3,4,0)$ kao linearnu kombinaciju vektora $\vec{a}=(1,2,1), \vec{b}=(1,1,-1)$ i $\vec{c}=(1,1,0)$: $\vec{x} = \vec{\alpha} + \vec{b} + \vec{c}$
- U vektorskom prostoru $(\mathbb{R}^5, \mathbb{R}, +, \cdot)$, šestorka vektora (a, b, c, d, e, f) je:

 (1)/uvek zavisna

 (2) nikad baza,

 (3) može (3) može ali ne mora da bude generatorna.
- 13. \bigodot U vektorskom prostoru ($\mathbb{R}, \mathbb{R}, +, \cdot$), vektor $a \neq 0$ je: ① uvek nezavisan, ② uvek zavisan, ③ uvek baza.

 15. Koji od vektora su karakteristični vektori za matricu $\begin{bmatrix} -1 & 2 \\ 4 & 1 \end{bmatrix}$? ③ $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ ② $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ ③ $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
- 15. Noje od tvrđenja je tačno ako je kvadratna matrica B dobijena od matrice A elementarnim transformacijama. 1) det(A) = det(B) 2) $det(A) \neq 0 \land det(B) \neq 0$ (3) Rang(A) = Rang(B) 4) $A \cdot B = I$ 5) $A = \alpha B$ za neki skalar α 6) matrice A i B imaju iste karakteristične korene (7) $\exists A^{-1} \Leftrightarrow \exists B^{-1}$
- 76. Neka su $\vec{x}, \vec{i}, \vec{j}, \vec{k}$ slobodni vektori i $\vec{i}, \vec{j}, \vec{k}$ jedinični međusobno normalni. Tada je: ① $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}$ ② $(\vec{x}\vec{i},\vec{x}\vec{j},\vec{x}\vec{k}) \in \mathbb{R}^3$ ③ $(\vec{x}\vec{i})^2 + (\vec{x}\vec{j})^2 + (\vec{x}\vec{k})^2 = \vec{x}\vec{x}$ $\cancel{\cancel{A}}$ $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} \in \mathbb{R}^3$ 5 $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}\vec{x}$
- Neka je $(\vec{a}, \vec{b}, \vec{c})$ uređena trojka nekolinearnih slobodnih vektora. Tada: 1) trojka $(\vec{a}, \vec{b}, \vec{c})$ je uvek linearno nezavisna $(\vec{a}, \vec{b}, \vec{c})$ je uvek linearno zavisna $(\vec{a}, \vec{b}, \vec{c})$ postoje takvi vektori $\vec{a}, \vec{b}, \vec{c}$ da je trojka $(\vec{a}, \vec{b}, \vec{c})$ nezavisna (4) postoje takvi vektori $\vec{a}, \vec{b}, \vec{c}$ da je trojka $(\vec{a}, \vec{b}, \vec{c})$ zavisna
- 7) (•) U vektorskom prostoru slobodnih vektora, par vektora (a,b) je: 1) uvek nezavisan, 2) uvek zavisan, 3) nekad nezavisan a nekad zavisan.
- 79. OIzračunati vektor položaja \vec{r}_T tačke T, projekcije tačke (1,1,1) na pravu $p: \frac{x-1}{-1} = \frac{y}{1} = \frac{z}{1}$. $\vec{r}_T = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$
- χ_{ϕ} . Koja od sledećih tvrdnji je tačna za svaka dva slobodna nenula vektora \vec{x} i \vec{a} : $(\vec{a})(\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a})\vec{x} = 0 \quad (\vec{b})(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x})\vec{a} = 0 \quad (\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a}) \times \vec{x} = 0 \quad (\vec{a} - \mathbf{pr}_{\vec{a}}\vec{x}) \times \vec{a} = 0$ shista od prethodnog
- \mathcal{V}^{γ} ©Neka su a,b i c proizvoljni nezavisni vektori. Tada uređena trojka vektora (a+b-c,b+c,a+b-c) je: (a) uvek zavisna b) uvek nezavisna c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c.
- $_{7}$? Neka su a,b i c zavisni vektori. Tada uređena trojka vektora (2a+3c,a+4b,7a-b+5c) je: (a) uvek zavisna b) uvek nezavisna c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c.

- $+\gamma\vec{c}=0 \Rightarrow \alpha^2+\beta^2+\gamma^2=0$ 8) $(\vec{a}, \vec{b}, \vec{c})$ je zavisna.
- Ako je $\vec{x} = x_1\vec{i} + x_2\vec{j} + x_3\vec{k}$ i $f: \mathbb{R}^3 \to \mathbb{R}$ definisana sa $f(x_1, x_2, x_3) = \vec{k} \cdot \vec{x}$, tada funkcija f uvek jeste: (1) linearna transformacija 2) injektivna 3) sirjektivna 4) bijektivna 5) izomorfizam

- 7 5 ② Za svaku nenula linearnu transformaciju $f: \mathbb{R} \to \mathbb{R}$ i svako $x, y, \lambda, v \in \mathbb{R}$ tačno je: ① $x = 0 \Leftarrow f(x) = 0$ ② f(0) = 0 ③ f(xy) = yx ④ f(xy) = y f(x) ⑤ f(x) = ax za neko $a \in \mathbb{R}$ ⑥ f je izomorfizam
- Neka je $\varphi: V \to \mathbb{R}^3$ definisana sa $\varphi(x_1\vec{i} + x_2\vec{j} + x_3\vec{k}) = (x_1 + x_2, x_1 + x_3, 2x_1 + x_2 + x_3)$, gde su $(V, \mathbb{R}, +, \cdot)$ i $(\mathbb{R}^3, \mathbb{R}, +, \cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi: V \to \mathbb{R}^3$ D linearna transformacija 2) injektivna 3) sirjektivna 4) bijektivna 5) izomorfizam
- ① Neka je \mathcal{M} skup svih kvadratnih matrica reda 2 čiji elementi su iz skupa realnih brojeva \mathbb{R} . Tada je:
 ① $\det: \mathcal{M} \longrightarrow \mathbb{R}$ ② $\det: \mathcal{M} \stackrel{1-1}{\longrightarrow} \mathbb{R}$ ③ $\det: \mathcal{M} \stackrel{na}{\longrightarrow} \mathbb{R}$ ④ $\det: \mathcal{M} \stackrel{1-1}{\longrightarrow} \mathbb{R}$ 5) \det je linearna $\frac{1}{n_0} \frac{1}{n_0} \frac{1}$
- Neka je \mathcal{M} skup svih matrica formata (1,2) čiji svi elementi su iz skupa realnih brojeva \mathbb{R} . Tada je: (1,2) rang : (1,2) rang
- 7 9 Neka je (a_1, a_2, \ldots, a_n) generatrna u prostoru V, (c_1, c_2, \ldots, c_m) nezavisna za prostor V i dimV=4. Tada je ① $m \le 4 \le n$ ② $n \le 4 \le m$ ③ $n \le m \le 4$ 4) $4 \le m \le n$ 5) $4 \le n \le m$ ⑥ $n \ge 4$
- - (1) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^3 + y^3 = 0\}, \text{ dim } U = \underline{\mathcal{C}}$
 - ② $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 0\}$ dim U = 1
 - 3) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 0\} \text{ dim } U = 0$
 - **4** $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \ge 0\}$ dim $U = \frac{3}{2}$
- $\begin{array}{c} \text{Linearne transformacije } f: \mathbb{R}^2 \to \mathbb{R}^3, \ g: \mathbb{R}^2 \to \mathbb{R}, \ h: \mathbb{R} \to \mathbb{R}, \ F: \mathbb{R}^3 \to \mathbb{R}^2, \ \text{i} \ G: \mathbb{R} \to \mathbb{R}^2 \ \text{su uvek oblika:} \\ f(\times): (\lambda \times f) \times f(\times f): \lambda \times f(\times f$
- 3. Shinearne transformacije f i g definisane su sa $f(x_1,x_2)=(x_1-2x_2,2x_1+3x_2) \text{ i } g(x_1,x_2)=(x_1-2x_2,x_1-3x_2).$
 - a) Po definiciji kompozicije o odrediti $(f \circ g)(x_1, x_2) = f(g(x_1, x_2)) = (- \times_{\gamma} f(X_{\gamma_{-1}}) \times_{\gamma_{-1}} f(X_{\gamma_{$
 - b) Napisati matrice M_f i M_g koje odgovaraju linearnim transformacijama f i g:

$$M_f = \begin{bmatrix} \gamma & -1 \\ \gamma & \gamma \end{bmatrix}, \, M_g = \begin{bmatrix} \gamma & -1 \\ \gamma & -1 \end{bmatrix}.$$

- c) Izračunati proizvod matrica $M_f \cdot M_g = \begin{bmatrix} -\frac{\gamma}{2} & \frac{\zeta_1}{2} \\ \frac{\zeta}{2} & -\frac{\gamma}{2} \end{bmatrix}, M_g^{-1} = \begin{bmatrix} \frac{\gamma\gamma}{2} & \frac{\zeta_1}{2} \\ \frac{\zeta}{2} & \frac{\gamma}{2} \end{bmatrix}$ i $g^{-1}(x_1, x_2) = \begin{pmatrix} \frac{\gamma\gamma}{2} \times_{\gamma} & \frac{\zeta_1}{2} \times_{\gamma} & \frac{\zeta_2}{2} \times_{\gamma} \\ \frac{\zeta_1}{2} & \frac{\gamma}{2} & \frac{\zeta_1}{2} & \frac{\zeta_2}{2} \end{pmatrix}$
- d) Napisati linearnu transformaciju $h(x_1,x_2)$ kojoj odgovara matrica $M_f \cdot M_g$ tj. $h(x_1,x_2) = (\times_{\mathcal{A}} + \psi_{\mathcal{L}_j} \xi_j, \dots, \chi_{\mathcal{L}_j})$
- e) Da li je $h=f\circ g$ tj. da li je $(\forall x_1,x_2\in\mathbb{R})\ h(x_1,x_2)=(f\circ g)(x_1,x_2)$? \widehat{DA} NE

KOLOKVIJUM 2, PRIMER 15

- 7. Ža pravu p kojoj pripadaju tačke A(2,0,0), B(0,2,0) napisati jedan vektor koji je paralelan sa njom $\vec{p} = (-1, 2, 0)$, jedan vektor normalan na nju i na vektor \vec{k} i koordinate njene tačke M(1, 1, 0) koja je najbliža z-osi.
- Ako je $\vec{a} = (1, 1, 2)$ i $\vec{b} = (2, 1, 0)$, tada je $|\vec{a}| = \frac{\int \vec{b}}{|\vec{b}|} = \frac{\Im}{3} \cos \frac{1}{2} (\vec{a}\vec{b}) = \frac{\sqrt{3}\vec{c}}{|\vec{c}|} = \vec{a} \times \vec{b} = \frac{(23.9)}{100}$
- Za koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $2ax + y = 1 \land ax + ay = a$ nad poljem realnih brojeva je: 1) neodređen: $\frac{1}{2} \otimes \sqrt{2} \otimes \frac{1}{2}$ 2) određen: $\frac{1}{2} \otimes \sqrt{2} \otimes \frac{1}{2}$ 3) kontradiktoran:
- $\begin{bmatrix} -1 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 5 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 5 \end{bmatrix} = 4 \begin{bmatrix} 1 & 9 & 2 \\ 0 & 2 & 0 \\ 2 & 7 & 9 \end{bmatrix} = 90 \begin{bmatrix} -3 & -1 \\ 5 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 4 \\ 5 & 2 \end{bmatrix}$

Zaokružiti cifru (cifre) ispred urcđenih n-torki koje su GENERATORNE u vektorkom prostoru uređenih
$\operatorname{parova}_{\bullet}(\mathbb{R}^{2},+,\cdot): 1) \left((0,1) \right) \left(2 \right) \left((1,2), (1,1), (2,3) \right) 3) \left((1,0), (2,0) \right) 4 \right) \left((1,0), (0,2), (0,0) \right)$
$(1,1),(2,2) \qquad \textbf{6)} \ \left((0,0),(0,0),(3,0)\right) \qquad \textbf{7)} \ \left((0,1),(0,2)\right) \qquad \textbf{8)} \ \left((1,0),(0,1),(0,0),(1,2)\right)$
$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & -3 & 1 & -2 \\ 0 & -6 & 2 & -4 \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 \\ -2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} $
Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, $f(x) = (x,0)$ i $g,h,r,s,p: \mathbb{R}^3 \to \mathbb{R}^2$, $g(x,y,z) = (x+z,y)$, $h(x,y,z) = (x,x)$, $r(x,y,z) = (z,0)$, $s(x,y,z) = (x-y-z,0)$ i $p(x,y,z) = (z,z)$ su: (Rang upisati ispod odgovarajuće matrice) $M_f = \begin{bmatrix} 0 & M_g = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} & M_h = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} & M_r = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} & M_p = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} & M_p = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
Neka je je \overrightarrow{ABCD} paralelogram, gde mu je \overrightarrow{BD} dijagonala, S presek dijagonala i \overrightarrow{P} sredina od SC . U zavisnosti od $\overrightarrow{a} = \overrightarrow{AS}$ i $\overrightarrow{b} = \overrightarrow{AD}$ napisati vektore $\overrightarrow{BD} = \mathcal{I}(\overrightarrow{k} - \overrightarrow{a})$ i $\overrightarrow{BP} = \overrightarrow{k} - \frac{4}{3} \overrightarrow{a}$
· ************************************
) Odrediti sve vrednosti realnog parametra 1) kontradiktoran: a + o
a za koje je sistem linearnih jednačina 2) određen: $a = a$ 3) 1 puta neodređen: $a = a$ 3
x + 2ay = 2a 4) 2 puta neodređen:
Neka je \overrightarrow{ABCD} paralelogram, a tačke P i Q redom sredine duži AC i BC . (BD je dijagonala paralelograma). Izraziti vektor $\overrightarrow{BQ} + \overrightarrow{AQ}$ kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AC}$ i $\overrightarrow{b} = \overrightarrow{BD}$. $\overrightarrow{BQ} + \overrightarrow{AQ} = \overrightarrow{Q}$
1) Eraziti vektor $\vec{x} = (1,0,-2)$ kao linearnu kombinaciju vektora $\vec{a} = (1,2,1), \vec{b} = (1,1,-1)$ i $\vec{c} = (1,1,0)$:
$\vec{x} = -\vec{\alpha} + \vec{\ell} + \vec{\epsilon}$
1 L \odot U vektorskom prostoru (\mathbb{R}^5 , \mathbb{R} , +, ·), četvorka vektora (a,b,c,d) je: 1) úvek zavisna 2) nikad baza 3) uvek nezavisna 4) nikad nezavisna 5) nikad generatorna
U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je: U vektorskom prostoru $(\mathbb{R}, \mathbb{R}, +, \cdot)$, vektor $a \neq 0$ je:
Tuvek nezavisan 2 uvek generatoran 3 uvek zavisan 4 uvek baza -44 Karakteristični polinom matrice $\begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$ je $h^2 - f$, a karakteristični koreni su: $\{\sqrt{f}, \sqrt{f}\}$
73 Noje od tvrđenja je tačno ako je kvadratna matrica B dobijena od matrice A elementarnim transformacijama. 19 $\det(A) = \det(B)$ 2 $\det(A) \neq 0 \Rightarrow \det(B) \neq 0$ 3 $\det(A) = 0 \Rightarrow \det(B) = 0$ 4 $Rang(A) = Rang(B)$ 5 $\det(A) = \alpha \det(B)$ za neki skalar α 6 $\exists A^{-1} \Leftrightarrow \exists B^{-1}$
ONeka su $\vec{x}, \vec{i}, \vec{j}, \vec{k}$ slobodni vektori i $\vec{i}, \vec{j}, \vec{k}$ jedinični međusobno normalni. Tada je: (1) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}$ (2) $(\vec{x}\vec{i}, \vec{x}\vec{j}, \vec{x}\vec{k}) \in \mathbb{R}^3$ (3) $(\vec{x}\vec{i})^2 + (\vec{x}\vec{j})^2 + (\vec{x}\vec{k})^2 = \vec{x}\vec{x}$ (2) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} \in \mathbb{R}^3$ (5) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}\vec{x}$
Neka je $(\vec{a}, \vec{b}, \vec{c})$ uređena trojka nekolinearnih slobodnih vektora. Tada: 1) postoje takvi vektori $\vec{a}, \vec{b}, \vec{c}$ da je trojka $(\vec{a}, \vec{b}, \vec{c})$ baza 2) trojka $(\vec{a}, \vec{b}, \vec{c})$ nikada generatorna 3) trojka $(\vec{a}, \vec{b}, \vec{c})$ uvek generatorna 4) postoje takvi vektori $\vec{a}, \vec{b}, \vec{c}$ da je trojka $(\vec{a}, \vec{b}, \vec{c})$ zavisnav
18 OU vektorskom prostoru slobodnih vektora, par vektora (a, b) je: 17 može biti generatoran 2) uvek nezavisan 3) uvek zavisan 4) nekad nezavisan a nekad zavisan 5) nikada baza
19. \bigcirc Izračunati vektore položaja \vec{r}_p i \vec{r}_Q projekcija tačke $T(1,2,3)$, redom na pravu $x=y=z$ i ravan
$x + y + z = 9. \vec{r}_P = \begin{pmatrix} \ell_1 & \ell_2 \\ \ell_3 & \ell_4 \end{pmatrix} \qquad $

- Neka su a,b i c proizvoljni nezavisni vektori. Tada uređena trojka vektora (a+b-c,b+c,a+2b) je: (a) uvek zavisna b) uvek nezavisna c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c.
- ONeka su a,b i c zavisni vektori. Tada uređena trojka vektora (3a+9c,7a+8b,7a-4b+5c) je: (a) uvek zavisna (b) uvek nezavisna c) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c.
- $\mathbf{V}\cdot\mathbf{O}$ Ako su $\vec{a}=a_1\vec{i}+a_2\vec{j}+a_3\vec{k},\ \vec{b}=b_1\vec{i}+b_2\vec{j}+b_3\vec{k}\ i\ \vec{c}=\underline{c_1}\vec{i}+c_2\vec{j}+c_3\vec{k}\ \mathbf{komplanarni}$ tada:

Alto su
$$a = a_1i + a_2j + a_3k$$
, $b = b_1i + b_2j + b_3k$ i $c = c_1i + c_2j + c_3k$ komplanarni tada:

1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 2$ 2) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 3$ 7 rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0 \quad 5 \quad \vec{a}(\vec{b} \times \vec{c}) \neq 0 \quad 6 \quad (\exists \alpha, \beta \in \mathbb{R}) \quad \vec{a} = \alpha \vec{b} + \beta \vec{c}$$

$$\nearrow \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = 0 \quad (8) \quad (\vec{a}, \vec{b}, \vec{c}) \text{ je zavisna.}$$

Ako je $\vec{x} = x_1 \vec{i} + x_2 \vec{j} + x_3 \vec{k}$ i $f: \mathbb{R}^3 \to \mathbb{R}$ definisana sa $f(x_1, x_2, x_3) = \vec{p} \cdot \vec{x}$ gde je \vec{p} proizvoljan slobodni vektor, tada funkcija f uvek jeste:

3) sirjektivna (1) linearna transformacija 2) injektivna

- Use Neka je $\varphi: V \to \mathbb{R}^3$ definisana sa $\varphi(x_1\vec{i} + x_2\vec{j} + x_3\vec{k}) = (x_1 + x_2 + x_3, x_2 + x_3, x_3)$, gde su $(V, \mathbb{R}, +, \cdot)$ i $(\mathbb{R}^3, \mathbb{R}, +, \cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi: V \to \mathbb{R}^3$ Dlinearna transformacija 2) injektivna (1) sirjektivna 4) bijektivna
- 76. 🕟 Neka je ${\mathcal M}$ skup svih kvadratnih matrica reda 1 čiji elementi su iz skupa realnih brojeva R. Tada je: (2) $\det: \mathcal{M} \xrightarrow{1-1} \mathbb{R}$ (3) $\det: \mathcal{M} \xrightarrow{na} \mathbb{R}$ 4) Alet: $\mathcal{M} \xrightarrow{1-1} \mathbb{R}$ $(\widehat{\mathbf{1}})$ det : $\mathcal{M} \longrightarrow \mathbb{R}$
- \nearrow Neka je $\mathcal M$ skup svih matrica formata (9,2) čiji svi elementi su iz skupa realnih brojeva $\mathbb R$. Tada je: ① rang : $\mathcal{M} \to \mathbb{R}$ 2) rang : $\mathcal{M} \to \mathbb{N}$ 3 rang : $\mathcal{M} \to \mathbb{N} \cup \{0\}$ 4 rang : $\mathcal{M} \to \{0, 1, 2\}$ (5) Prang: $\mathcal{M} \stackrel{na}{\rightarrow} \{0,1,2\}$
- Neka je (a_1, a_2, \ldots, a_n) nezavisna u prostoru V, (c_1, c_2, \ldots, c_m) generatrna za prostor V i dimV=4. Tada je 1) $m \le 4 \le n$ 2) $n \le 4 \le m$ 3) $n \le m \le 4$ 4) $4 \le m \le n$ 5) $4 \le n \le m$ 6) $n \ge 4$
- \mathfrak{I} \mathfrak{O} . Chinearne transformacije $f:\mathbb{R}^2 \to \mathbb{R}^3$, $g:\mathbb{R}^2 \to \mathbb{R}$, $h:\mathbb{R} \to \mathbb{R}$, $f:\mathbb{R}^3 \to \mathbb{R}^2$, i $G:\mathbb{R} \to \mathbb{R}^2$ su uvek oblika: $h(x) = dx \qquad F(x,y,t) = \lim_{n \to \infty} G(n) \cdot dx \beta \gamma$ f(x,y)=(1,p), Tenly to x) (7,y) = 2++py
- J. j., $r_i d_i \xi_i \notin \mathbb{R}$!

 Linearne transformacije f i g definisane su sa $f(x_1, x_2) = (x_1 2x_2, 2x_1 4x_2)$ i $g(x_1, x_2) = (x_1 + x_2, 2x_1 + 3x_2).$
 - a) Po definiciji kompozicije \circ odrediti $(f \circ g)(x_1, x_2) = f(g(x_1, x_2)) = (-2 \times_1 5 \times_1 6 \times_1 6 \times_1 + 2 \times_1 + \times$
 - b) Napisati matrice M_f i M_g koje odgovaraju linearnim transformacijama f i g:

$$M_f = \begin{bmatrix} \gamma & -1 \\ 2 & -\gamma \end{bmatrix}, M_g = \begin{bmatrix} \gamma & \gamma \\ 2 & 3 \end{bmatrix}.$$

- d) Napisati linearnu transformaciju $h(x_1,x_2)$ kojoj odgovara matrica $M_f \cdot M_g$ tj. $h(x_1,x_2) = (-2\chi_{\eta^{-1}}\chi_{\chi_{\eta^{-1}$
- e) Da li je $h = f \circ g$ tj. da li je $(\forall x_1, x_2 \in \mathbb{R}) \ h(x_1, x_2) = (f \circ g)(x_1, x_2)?(\widehat{DA})$

PRIMER 16 KOLOKVIJUM 2,

7. © Za ravan $\alpha: z=1$ napisati jedan njen vektor normale $\vec{n}_{\alpha}=(0,0,1)$ i koordinate neke njene tri različite nekolinearne tačke A(2,3,4), B(3,3+1,1), C(5,3,4).

Ako je $\vec{a} = (1,0,1)$ i $\vec{b} = (0,2,0)$, tada je $\vec{a}\vec{b} = \underline{0}$ $\not \preceq (\vec{a}\vec{b}) = \underline{\zeta}$ $\vec{a} \times \vec{b} = \underline{\zeta}$
). Ca koje vrednosti parametra $a \in \mathbb{R}$ sistem jednačina $ax + y = 1 \land x + ay = a$ nad poljem realnih brojeva je: 1) neodređen: $a : x \lor d : = 1$ određen: $a \not\in A \land d \not\in A$ 3) kontradiktoran:
$ \left\{ \begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right\} \cdot \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
Zaokružiti cifru (cifre) ispred uređenih n -torki koje su GENERATORNE u vektorkom prostoru trojki $(\mathbb{R}^3,+,\cdot)$: $\mathcal{Y}\left((0,1,0)\right)$ $\widehat{\mathcal{D}}\left((1,2,0),(1,1,0),(2,-1,1)\right)$ $\widehat{\mathcal{J}}\left((1,0,0),(2,0,2)\right)$
$4) \gamma ((1,0,0),(0,2,0),(0,0,3)) \qquad 5) \gamma ((1,1,1),(2,2,2)) \qquad 6) \gamma ((0,0,2),(0,0,0),(3,0,0))$ $\gamma \gamma ((0,1,0),(0,2,0)) \qquad 8) \gamma ((1,0,0),(0,1,0),(0,0,1),(1,2,3))$
Ispod svake matrice napisati broj koji predstavlja njen rang. $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, $f(x) = (0, 9x)$ i $g, h, r, s: \mathbb{R}^3 \to \mathbb{R}^2$, $g(x, y, z) = (x + y, x + z)$, $h(x, y, z) = (x - y, 0)$, $r(x, y, z) = (0, y)$, $s(x, y, z) = (x - y - z, 6y)$ i $p(x, y, z) = (x - y, 0)$
$(z,0) \text{ su: (Rang upisati ispod odgovarajuće matrice)}$ $M_{f} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \qquad M_{g} = \begin{bmatrix} 1 & 7 & 0 \\ 7 & 0 & 7 \end{bmatrix} M_{h} = \begin{bmatrix} 1 & 7 & 0 \\ 9 & 0 & 0 \end{bmatrix} M_{r} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 7 & 0 \end{bmatrix} M_{s} = \begin{bmatrix} 1 & 7 & -1 \\ 0 & 6 & 0 \end{bmatrix} M_{p} = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix}$ $M_{g} = \begin{bmatrix} 1 & 7 & 0 \\ 7 & 0 & 7 \end{bmatrix} M_{h} = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix} M_{r} = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix} M_{p} = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix}$ $M_{g} = \begin{bmatrix} 1 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix} M_{h} = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix} M_{r} = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix} M_{p} = \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix}$ $M_{g} = \begin{bmatrix} 1 & 7 & -1 \\ 0 & 0 & 0 \end{bmatrix} M_{h} = \begin{bmatrix} 0 & 0 & 7 $

Broj rešenja homogenog sistema linernih jednačina nad poljem realnih brojeva može da bude: (a) 0 (b) 1 (c) $\frac{F_2}{2}$ (d) ∞ .
11. Noji od sledeća tri vektora je karakteristični vektor za matricu $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$
$ \begin{array}{c} $
Koji od sledeća tri polinoma je karakteristični polinom za matricu $\begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix}$
$(a) \lambda^2 + \lambda + 6$ $(b) \lambda^2 + \lambda + 6$
Koji od tvrđenja je tačno za bilo koje matrice A, B, C i svaki skalar λ a) $det(A+b) = det(A) + det(B)$ b) $det(\lambda A) = \lambda det(A)$ c) $det(ABC) = det(A)det(B)det(C)$.
$A_{1} = \frac{1}{2} \cos \alpha = \sin \alpha$

				•	
18	$ \begin{array}{ccc} & 3 & 3 \\ & 3 & 3 \end{array} $ je	a) 0	6)1	_c) 2	_d) 3.
19.	Odrediti tačke A_1, A_2, A_3, A_4 simetr dinatni početak. $A_1(\gamma, \zeta, -3)$ $A_2(\gamma, \zeta, -3)$	ične tački $A(1,2,3)$, $\{3,3,3\}$	3) redom u odnos $A_4(?,?,?)$.	su na ravni xOy, xOz	yOz i koor-
Jo	Koja od sledećih tvrdnji je tačna za $(\vec{a} - \mathbf{pr}_{\vec{a}}\vec{a}) \perp \vec{x}$ $(\mathbf{\vec{b}})(\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \perp \vec{a}$. svaka dva slobodi $(\vec{a} - \mathbf{p} \mathbf{r}_{\vec{x}} \vec{a})$	na nenula vektor $\ \vec{x}-\vec{p}\ $	$(\vec{a} \cdot \vec{x} \cdot \vec{a} : \vec{a} \cdot \vec{x}) \parallel \vec{a} = \vec{o}$ ništa od	prethodnog
21,	Ako je (d_1, \ldots, d_ℓ) ne zavisna u pros 1) $k \leq \ell$ 2) $\ell \leq k$ 3) $k = \ell$ 4)				
22.	(a) Po definiciji kompozicije o odredi b) Napisati matrice M_f i M_g koje o $M_f = \begin{bmatrix} 7 & -1 \\ 2 & 1 \end{bmatrix}, M_g = \begin{bmatrix} 7 & -2 \\ 2 & 2 \end{bmatrix}.$	iti $(f\circ g)(x_1,x_2)=$	$= f(g(x_1,x_2)) =$	(-6x213x3 x	$-x_2, x_1+x_2$).
	c) Izračunati proizvod matrica M_f ·	$M_g = \begin{bmatrix} 0 & -2 \\ 3 & -1 \end{bmatrix}, N$	$M_g^{-1} = \begin{bmatrix} -\frac{4}{6} & \frac{4}{3} \\ \frac{4}{2} & 0 \end{bmatrix}$	i $g^{-1}(x_1,x_2)=\left(egin{array}{c} rac{4}{5} \end{array} ight)$	(1:3/2-1x1).
ŕ	d) Napisati linearnu transformaciju e) Da li je $h = f \circ g$ tj. da li je $(\forall x_1)$				=(-127 1987-187)
73.	Nesvodljiv polinom nad poljem kom	ıpleksnih brojeva (C može biti step	ena ∈ { 1	· ·
૧५.		∈ ℝ za koje je si-	(a) kontradik(b) određen:(c) 1 puta ne(d) 2 puta ne	toran: $\frac{Q + L^2}{Q + L^2}$ određen: $\frac{Q - L^2}{Q + L^2}$	
Σ 5.	Ako su \vec{a} i \vec{b} različiti nekolinearni vek i $\vec{n} = \frac{\vec{a}}{a} + \frac{\vec{b}}{b}$: 1) 0 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{4}$			ni ugao između vektora	a $ec{m}=aec{b}-bec{a}$
56	ØIzračunati α i β ako je $\alpha(1, -3, 2)$ +	$-\beta(3,7,-3) = (0,0)$	$(\alpha,\beta)\in$	(0,0)	}
f J	, ${\cal C}$ Izračunati $lpha$ i eta ako je $lpha(1,-3,2)$ +	$-\beta(2,-6,4)=(0,0)$	$(\alpha,\beta)\in$	{ \(\lambda_{1}^{2}\) \ \n \cdot \(\lambda_{1}^{2}\)	}
1 8.	Neka je $(\vec{a}, \vec{b}, \vec{c})$ uređena trojka nel linearno nezavisna 2) trojka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna ($\vec{a}, \vec{b}, \vec{c}, \vec{d}$) nezavisna ($\vec{a}, \vec{b}, \vec{c}, \vec{d}$) nezavisna (\vec{b}) postoji ta je četvorka ($\vec{a}, \vec{b}, \vec{c}, \vec{d}$) nezavisna (\vec{b}) je linearna kombinacija uređene tro	, c) je uvek linearno kav vektor d da je) za svaki vektor d	o zavisna \overrightarrow{a} po c četvorka $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ \overrightarrow{d} je četvorka $(\overrightarrow{a}, \overrightarrow{c})$	ostoji takav vektor d d (\vec{d}) zavisna (\vec{b}) za sv	a je četvorka $ec{d}$ vaki vektor $ec{d}$
79	Neka su $\mathbf{a_1} = (a_{11}, \dots, a_{1n}), \mathbf{a_2} = (a_{11}, \dots, a_{1n$	$\mathbf{a}_{-1} = \{\alpha_1 \mathbf{a}_1 + \alpha_2\}$	$\mathbf{a_2} + \ldots + \alpha_n \mathbf{a_n}$	$\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$.	Laga
30.	U vektorskom prostoru svih slobodi U uvek nezavisan, 2 uvek zavis	nih vektora, uređe an, (3), nekad ne	n par vektora (<i>a</i> zavisan a nekad	b) je: zavisan, 🗚 uvek ge	neratoran.
31	Ako je uređena trojka vektora (a, b, a) uvek nezavisna	, c) zavisna, tada je Juvek zavisna	e uređena trojka	vektora ($a+b,a+c,a$ kada zavisna, a nekad	a+2b-c) la nezavisna.
31 33,	 Neka je ABCD paralelogram, a tač vektor DT kao linearnu kombinacij Ako je f: V → W izomorfizam, tač za svaku nezavisnu n-torku vekto za svaku zavisnu n-torku vektor 	da je: $egin{array}{c} egin{array}{c} egin$	f^{-1} (2) V i W V , n -torka $\left(f(v_1)\right)$	su izomorfni 3) V ,, $f(v_n)$ je nezavis	' = W na u W.
	2 La Byanu Zavishu // Wind ventor	~ (~1), ~)			

KOLOKVIJUM 2, PRIMER 17

- (1, 1)Neka je prava p data presekom ravni x + y = 0 i y z = 0. Napisati bar jedan vektor $\vec{p} = (-1, 1, 1, 1)$ paralelan sa pravom p i jedan vektor $\vec{m} = (7, 7, 9)$ normalan na pravu p.
- \mathbb{R} . lacktriangle Za koje vrednosti parametra $a\in\mathbb{R}$ sistem linernih jednačina x+ay=1 A ax-y=1 nad poljem realnih brojeva je: 1) neodređen: 2) određen: a∈k 3) kontradiktoran: 🤛
- Za vektore $\vec{a} = (0, -1, 1)$ i $\vec{b} = (0, 1, 0)$ izračunati: 1) $|\vec{a}| = \sqrt{2}$ 2) $|\vec{b}| = \sqrt{2}$ 3) $3\vec{a} - 2\vec{b} = (0, 5, 3)$ 4) $\vec{a} \cdot \vec{b} = -1$ 5) $|\vec{a} \times \vec{b}| = \underline{\qquad}$ 6) $\langle (\vec{a}, \vec{b}) = \underline{\qquad}$
- Koje od sledećih uređenih n-torki su zavisne za vektorski prostor \mathbb{R}^3 : 1) ((0,0,-1),(0,4,0),(9,0,0))(1,3,-2),(-2,-6,4)) (3) ((0,0,1),(0,1,0),(1,0,0),(1,2,3)) ((1,0,1),(1,1,0),(2,1,1))
- (a) Matrice linearnih transformacija f(x,y) = x + 2y, g(x,y,z) = (y,z), h(x,y) = (x,y,y) i s(x, y, z) = (0, 0, x + x) su: $M_g = \left[\begin{array}{ccc} O & ? & O \\ O & O & ? \end{array} \right]$ $M_h = \begin{bmatrix} \gamma & 0 \\ 0 & \gamma \\ \gamma & \gamma \end{bmatrix}$ $M_f = \begin{bmatrix} 1 & 2 \end{bmatrix}$ $M_s = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- 📵 🕑 Ispod svake matrice napisati broj koji predstavlja njen rang.
- § Odrediti sve vrednosti realnog parametara 1) kontradiktoran: __ a za koje je sistem linearnih jednačina 2) određen: _ ax + ay = a3) jednostruko neodređen: ___ 4) dvostruko neodređen: _____Q__ = Q -ax + ay = a
- \P o Neka je ABCD paralelogram, a tačke P i Q redom sredine duži BC i CD. (BD je dijagonala paralelograma). Izraziti vektor \overrightarrow{PQ} kao linearnu kombinaciju vektora $\vec{a} = \overrightarrow{AB}$ i $\vec{b} = \overrightarrow{BC}$. $\overrightarrow{PQ} = \underbrace{\cancel{b \cdot a}}$
- . To Conapisati $\vec{x}=(0,0,1)$ kao linearnu kombinaciju vektora $\vec{a}=(1,0,1),\, \vec{b}=(2,1,1)$ i $\vec{c}=(1,1,1)$: $\vec{x} = \vec{x} - \vec{k} + \vec{z}$
- (1) Noordinate projekcija A' tačke A(1,1,4) na ravan određenu sa x+y+z=0 je: A'(-1,2)
- $\overrightarrow{r_T} = \overrightarrow{r_S} + \underbrace{(\overrightarrow{r_S} \cdot \overrightarrow{r_S})_{\overrightarrow{\alpha}}^2}_{\overrightarrow{r_S}} + \underbrace{(\overrightarrow{r_S} \cdot \overrightarrow{r_S})_{\overrightarrow{\alpha}}^2}_{\overrightarrow{r_S}} + \underbrace{\overrightarrow{r_S} + t \overrightarrow{l} \text{ kroz ravan } \alpha: \ \overrightarrow{ar} = \overrightarrow{ar_D} \text{ jet}$
- 13. Normalna projekcija vetora $\vec{x}=\vec{i}+2\vec{j}+3\vec{k}$ na ravan $\alpha:\ 2x-y+z=0$ je: $\operatorname{pr}_{\alpha}(\vec{x}) = \left(\bigcirc, \underbrace{5}_{2}, \underbrace{5}_{2} \right)$
- 74. © Koji od vektora su karakteristični vektori za matricu $\begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$? (a) $\begin{bmatrix} -3 \\ -3 \end{bmatrix}$ (b) $\begin{bmatrix} 5 \\ 5 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$
- $\P_{\mathfrak{I}}$. (6) Koje od tvrđenja je tačno za bilo koje kvadratne matrice A,B,C reda 2 i svaki skalar λ : 1) det(A+B) = det(A) + det(B) 2) $det(\lambda A) = \lambda^3 det(A)$ (3) det(AB) = det(A) det(B)1) rang(A+B) = rang(A) + rang(B) 5) rang(AB) = rang(A)rang(B) 6) A(BC) = (AB)C(7) A(B+C) = AB + AC (8) AB = BA (9) A+B = B+A

46. (•) Koja od sledećih tvrdnji je tačna za svaka dva slobodna nenula vektora \vec{x} i \vec{g} : ($\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a}$) $\vec{x} = 0$ $\widehat{\mathbf{2}}) \ (\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x})\vec{a} = 0 \quad \mathbf{3}) \ (\vec{a} - \mathbf{pr}_{\vec{x}}\vec{a}) \times \vec{x} \neq 0 \quad \mathbf{A}) \ (\vec{x} - \mathbf{pr}_{\vec{a}}\vec{x}) \times \vec{a} = 0 \quad \mathbf{5}) \text{ ništa od prethodnog}$ 7. Neka su a,b i c nezavisni vektori. Tada uređena trojka vektora (a+b,b+c,c) je: I) uvek zavisna 2) uvek nezavisna 3) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a,b,c. 48. (• Neka su a, b i c zavisni vektori. Tada uređena trojka vektora (3a + 5c, 7a + 9b, 6a - 5b - 8c) je: (1) uvek zavisną 2) uvek nezavisna 3) nekad zavisna, a nekad nezavisna, zavisi od izbor vektora a, b, c. Nenula vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ i $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ su nekolinearni ako je \vec{k}) $\vec{a} \times \vec{b} = 0$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ 4) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 2.5$) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 1$ 6) \vec{a} i \vec{b} su zavisni 7) $(\exists \lambda \in \mathbb{R}) \ \vec{a} = \lambda \vec{b} \ \textcircled{8}) \ \vec{a} \not | \ \vec{b} \ \textcircled{9}) \ (\forall \lambda \in \mathbb{R}) (\vec{a} \neq \lambda \vec{b} \wedge \lambda \vec{a} \neq \vec{b}) \ \cancel{18}) \ (\exists \alpha, \beta \in \mathbb{R}) \ \alpha \vec{a} + \beta \vec{b} = 0 \ \Rightarrow \ \alpha^2 + \beta^2 = 0$ $\begin{array}{c} \text{(O) Ako su ektori } \vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}, \ \vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k} \ \text{i} \ \vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k} \ \text{komplanarni tada je:} \\ \text{(1) } \operatorname{rang} \left[\begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array} \right] \leq 2 \quad \text{(2) } \operatorname{rang} \left[\begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array} \right] \leq 3 \quad \text{(3) } \operatorname{rang} \left[\begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array} \right] = 3 \end{aligned}$ $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0 \quad \vec{a}(\vec{b} \times \vec{c}) \neq 0 \quad \vec{b}) \quad (\exists \alpha, \beta \in \mathbb{R}) \quad \vec{a} = \alpha \vec{b} + \beta \vec{c}$ $\gamma \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 \neq 0$ (\$\vec{a}, \vec{b}, \vec{c}\$) je nezavisna. $\gamma \in \mathbb{N}$ Neka je $\varphi: V \to \mathbb{R}^3$ definisana sa $\varphi(x_1\vec{i} + x_2\vec{j} + x_3\vec{k}) = (x_3, x_2 + x_3, x_1 + x_2 + x_3)$ gde su $(V, \mathbb{R}, +, \cdot)$ i $(\mathbb{R}^3,\mathbb{R},+,\cdot)$ vektorski prostori slobodnih vektora i uređenih trojki. Da li je funkcija $\varphi:V\to\mathbb{R}^3$ (4)/bijektivna (3) sirjektivna (1))linearna transformacija (2) injektivna $(1, c_1, c_2, \ldots, c_n)$ generatorna u prostoru $V, (c_1, c_2, \ldots, c_n)$ nezavisna za prostor V i dimV = m. Tada je 1) $m \le k \le n$ 2) $n \le k \le m$ 3) $m \le k$ 4) $k \le m \le n$ 5) $k \le n \le m$ 6 $n \le m \le k$ \(\begin{aligned} \bigcirc\). \(\overline{O}\) Neka je \vec{r}_A vektor položaja tačke $A(1,1,1), \ |\overrightarrow{AB}| = |\overrightarrow{BC}| = 18.$ Odrediti \vec{r}_C ako je $\overrightarrow{AB} \| \vec{a} = (1,4,8),$ $\overrightarrow{BC} \| \overrightarrow{b} = (-8, 1, 4)$ i ako su smerovi vektora \overrightarrow{a} i \overrightarrow{b} suprotni smerovima redom vektora \overrightarrow{AB} i \overrightarrow{BC} . $\vec{r}_{c} = (7,7,7) - (2,8,76) - (-16,2,8) = (45,-3,-23)$ Ako je A kvadratna matrica reda 7, tada je: 1 det $A = 0 \Leftarrow \operatorname{rang} A = 0$ det $A = 0 \Leftrightarrow \operatorname{rang} A \le 6$ 3) $\det A = 0 \Rightarrow \operatorname{rang} A = 7$ (1) $\operatorname{rang} A = 7 \Rightarrow \det A \neq 0$ (5) $\operatorname{rang} A = 7 \Leftarrow \det A \neq 0$ (6) rang $A = 7 \Leftarrow \exists A^{-1}$ 7). Opostoji linearna transformacija $f: \mathbb{R} \to \mathbb{R}$ za koju važi da je: (1) sirjektivna 5) ništa od prethodnog (3) bijektivna 4) izomorfizam \mathfrak{I} Napisati bar jednu, ukoliko postoji, linearnu transformaciju $f:\mathbb{R} \to \mathbb{R}^2$ za koju važi da: 1) je injektivna $f(x) = (x, \theta)$ 2) nije injektivna f(x) = (0, 0) 3) nije sirjektivna f(x) = (0, 0) $\{\ \}$. (• Napisati bar jednu, ukoliko postoji, linearnu transformaciju $f:\mathbb{R}^2 \to \mathbb{R}^3$ za koju važi da 2) nije injektivna f(x,y) = (0,0,0)1) je injektivna f(x,y) = (x, y, o)4) nije sirjektivna f(x,y) = (0, 0, 0)3) je sirjektivna f(x,y) = $\int^{rac{d}{2}}$ Napisati bar jednu, ukoliko postoji, linearnu transformaciju $f: \mathbb{R}^3 o \mathbb{R}^2$ za koju važi da: 2) nije injektivna f(x, y, z) = f(x, y, z)1) je injektivna f(x, y, z) =3) je sirjektivna f(x, y, z) = (x, y, z)4) nije sirjektivna $f(x, y, z) = \langle 9, 8 \rangle$? Neka je M skup svih matrica formata (8,3) čiji elementi su iz skupa realnih brojeva R. Tada funkcija rang je: (1) rang: $\mathcal{M} \to \mathbb{R}$ (2) rang: $\mathcal{M} \to \mathbb{N}$ (3) rang: $\mathcal{M} \to \mathbb{N} \cup \{0\}$ (4) rang: (4) ra (5) rang : $\mathcal{M} \stackrel{no}{\rightarrow} \{0,1,2,3\}$ 30.
② Zaokružiti one skupove $V \subseteq \mathbb{R}^3$ za koje važi $(1,0,2) \in V$:
③ $V = Lin \big(\{(2,0,4)\}\big)$ $2)V = Lin(\{(-8,10,4),(4,-5,-2)\}) \quad 3)V = Lin(\{(-8,10,4),(4,-5,-2),(0,0,0)\})$ $(7) V = Lin(\{(1,0,0),(0,2,0),(0,0,3)\})$

- $\{\gamma \in (\bullet) \text{ Koji od sledećih podskupova } U \subseteq \mathbb{R}^3 \text{ je potprostor i za one koji jesu napiši desno od njih njihovu$ dimenziju:
 - (1) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}, \quad \text{dim } U = \frac{1}{2}$
 - (2) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + x^2 = 0\}$ dim U = 2
 - (3) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot 0 = 0\}$ dim $U = \frac{7}{3}$
 - 4) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x = z + 0\}$ dim $U = \frac{1}{2}$
 - $\{\gamma \text{ @Neka su } \vec{x}, \vec{i}, \vec{j}, \vec{k} \text{ slobodni vektori i } \vec{i}, \vec{j}, \vec{k} \text{ jedinični međusobno normalni i } \alpha, \beta$ i γ uglovi koje vektor \vec{x} obrazuje sa redom vektorima $\vec{i}, \vec{j}, \vec{k}$. Tada je: (1) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}$ (2) $(\vec{x}\vec{i}, \vec{x}\vec{j}, \vec{x}\vec{k}) \in \mathbb{R}^3$ (3) $(\vec{x}\vec{i})^2 + (\vec{x}\vec{k})^2 = \vec{x}\vec{x}$ (4) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} \in \mathbb{R}^3$ (5) $(\vec{x}\vec{i})\vec{i} + (\vec{x}\vec{j})\vec{j} + (\vec{x}\vec{k})\vec{k} = \vec{x}\vec{x}$ (6) $(|\vec{x}|\cos\alpha)\vec{i} + (|\vec{x}|\cos\beta)\vec{j} + (|\vec{x}|\cos\gamma)\vec{k} = \vec{x}$ (7) $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$

KOLOKVIJUM 2, PRIMER 18

- 1 (a) Za pravu a: x = y = z napisati jedan njen vektor $\vec{a} = (1, 1, 1)$ | a i koordinate jedne njene tačke A(O,O,O)
- $\mathbb{C} = \mathbb{C} \mathbb{Z}$ a koje vrednosti parametra $a \in \mathbb{R}$ sistem linernih jednačina $x+y=1 \land x+ay=a$ nad poljem realnih brojeva je: 1) neodređen: 🐧 = 🗇 2) određen: $\mathcal{A} \not= 1$ 3) kontradiktoran:
- Za vektore $\vec{a} = (2,1,2)$ i $\vec{b} = (1,1,0)$ izračunati: 1) $|\vec{a}| = \frac{\Im}{2}$ 2) $|\vec{b}| = \frac{\Im}{2}$ 3) $\vec{a} 2\vec{b} = (\bigcirc -1, \bigcirc)$ 4) $\vec{a} \cdot \vec{b} = \underline{\Im}$ 5) $\vec{a} \times \vec{b} = (\bigcirc -1, \bigcirc -1)$ 6) $\Rightarrow (\vec{a}, \vec{b}) = \underline{\Im}$
- Koje od sledećih uređenih n-torki su nezavisne za vektorskog prostora $\mathbb{R}^3: \textcircled{1}$ $\Big((0,0,1),(0,1,0),(1,0,0)\Big)$ $\textcircled{3} \left((1,0,0), (0,-1,0) \right) \qquad \textcircled{3} \left((0,0,1), (0,1,0), (1,0,0), (1,2,3) \right) \qquad \textcircled{4} \left((1,1,1), (2,2,2), (3,3,3) \right)$
- 6. (a) Matrice linearnih transformacija h(x) = 5x, f(x,y) = x, g(x,y,z) = y i s(x,y) = (x+y,x+y) su: $M_g = \left[\begin{array}{ccc} \gamma & \gamma & \gamma \end{array} \right] \qquad \qquad M_s = \left[\begin{array}{ccc} \gamma & \gamma & \gamma \\ \gamma & \gamma \end{array} \right]$ $M_f = \begin{bmatrix} 7 & 7 & 7 \end{bmatrix}$ $M_b = \lceil 5 \rceil$
- 🖟, 💿 Ispod svake matrice napisati broj koji predstavlja njen rang.

$$\begin{bmatrix} 2 & 0 & 0 & 4 \\ 2 & 3 & 1 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -4 & 2 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 8 \\ 0 & 2 & 0 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 5 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 & 3 \\ 3 & 3 \end{bmatrix}$$

- $\stackrel{\circ}{b}$. $\stackrel{\circ}{\bullet}$ Ako je $\stackrel{\circ}{ABCD}$ paralelogram, S presek dijagonala $\stackrel{\circ}{AC}$ i $\stackrel{\circ}{BD}$, T težište trougla $\stackrel{\circ}{SCD}$ i ako je $\stackrel{\longrightarrow}{AB} = \vec{a}$ i $\stackrel{\circ}{BC} = \vec{b}$, tada je: $\stackrel{\bullet}{ABC} = \vec{a}$ i $\stackrel{\circ}{BC} = \vec{b}$, tada je: $\stackrel{\bullet}{ABC} = \vec{b}$ 2) $\stackrel{\circ}{BC} = -\frac{1}{2}\vec{a} + \frac{2}{3}\vec{b}$ 2) $\stackrel{\circ}{BC} = -\frac{1}{2}\vec{a} + \frac{5}{6}\vec{b}$ 4) $\stackrel{\circ}{BC} = -\frac{1}{2}\vec{a} + \frac{3}{4}\vec{b}$ (5) $\overrightarrow{BT} = -\frac{1}{2}\vec{a} + \frac{5}{6}\vec{b}$
- Ako je $\vec{x} = (5,4,3)$, $\vec{a} = (1,0,1)$, $\vec{b} = (0,1,1)$, $\vec{c} = (1,1,0)$ i $\vec{x} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, tada (α,β,γ) je:1) (3,2,1) 2) (2,3,1) 3) (3,1,2) 4) (1,2,3) 5) (1,3,2) 6) (2,-1,3) 7) (2,2,3) 8) (2,1,3) 9) (2,3,3) 10) (1,1,3)

70. • Neka je tačka
$$P$$
 presek ravni $\alpha: \vec{n}\vec{r} = \vec{n}\vec{r}_Q$ i prave $a: \vec{r} = \vec{r}_A + t\vec{a}$ i $\vec{n}\vec{a} \neq 0$. Tada je:

(1) $\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\bar{a}\vec{n}}\vec{a}$ 2) $\vec{r}_P = \vec{r}_Q + \frac{(\vec{r}_A - \vec{r}_Q)\vec{n}}{\bar{a}\vec{n}}\vec{a}$ 3) $\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\bar{n}\vec{a}}\vec{n}$
(1) $\vec{r}_P = \vec{r}_A - \frac{(\vec{r}_A - \vec{r}_Q)\vec{n}}{\bar{a}\vec{n}}\vec{a}$ 5) $\vec{r}_P = \vec{r}_A + \frac{(\vec{r}_Q - \vec{r}_A)\vec{n}}{\bar{a}\vec{n}}\vec{n}$

- Meka su a, b i c zavisni vektori. Tada uređena trojka vektora (a + b, a + c, b + c) je:
 - \bigcirc uvek zavisna 2) uvek nezavisna 3) zavisna ili nezavisna, tj. zavisi od izbora vektora a, b, c.
- Neka su a,b i c nezavisni vektori. Tada uređena trojka vektora (a+b,a+c,-a+2b-2c) je: \mathcal{X}) uvek zavisna \mathcal{Y}) uvek nezavisna \mathcal{Y} zavisna ili nezavisna, tj. zavisi od izbora vektora a,b,c.

- 7) (5) Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z+1}{5}$ i $n: \frac{x-5}{-6} = \frac{y+1}{4} = \frac{z-5}{-10}$ važi: a) mimoilazne su $(m \cap n = \emptyset \land m \not\parallel n)$ paralelne su i različite $(m \parallel n \land m \neq n)$ c) poklapaju se (m = n) d) seku se $(m \cap n = \{M\})$
- $\vec{A} \cdot \vec{a} = \vec{b} \text{ ako i samo ako:} \vec{A} \cdot \vec{a} \times \vec{b} = \vec{0} \cdot \vec{a} \cdot \vec{b} = \vec{0} \cdot \vec$
- As (a) Broj svih linearnih transformacija $f: \mathbb{R} \to \mathbb{R}$ za koje važi f(xy) = f(x)f(y) je: (a) 0 2 d) 3 e) 4 f) 5
- Neka su matrice $A = [a_{ij}]_{nn}$ i $B = [b_{ij}]_{nn}$ nad poljem \mathbb{R} . Tada postoji $\lambda \in \mathbb{R}$ takav da je:

 (1) $\operatorname{rang}(A) = \operatorname{rang}(B) \Rightarrow |\det(A)| = \lambda |\det(B)|$ (2) $\operatorname{rang}(A) = \operatorname{rang}(B) \Rightarrow \det(A) = \lambda \det(B)$ (3) $|\det(A)| = \lambda |\det(B)| \Rightarrow \operatorname{rang}(A) = \operatorname{rang}(B)$
- 11. (a) Par (\vec{a}, \vec{b}) je kolinearan ako je on par: 1) nenula vektora 2) različitih vektora 3) neparalelnih vektora (a) vektora istoga pravca (b) za koji je $\vec{a} \times \vec{b} = 0$ (c) za koji je $\vec{a} = 0$ (d) za koji je $\vec{a} = 0$ (e) za koji je $\vec{a} = 0$ (e) za koji je $\vec{a} = 0$ (f) za koji je za koji je
- Trojka slobodnih vektora $(\vec{a}, \vec{b}, \vec{c})$ je komplanarna ako je ona trojka: (nije ekvivalencija!) 1) nenula vektora 2) različitih vektora 3) paralelnih vektora 4) vektora istoga pravca 5) za koju je $\vec{a}(\vec{b}\times\vec{c})=0$ 5) za koju je $\vec{a}\times\vec{b}=0$ 7) zavisnih vektora 8) vektora čiji pravci su paralelni istoj ravni
- Zaokružiti brojeve ispred podskupova $U_i \subseteq \mathbb{R}^3$ koji su podprostori i brojeve koji su njihova dimenzija. 1) $U_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y\}$ 2) $U_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x = -y\}$ 3) $U_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - y^2 = 0\}$ 3) $U_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$ 5) $U_5 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 0\}$ dim U_1 je: 0 12) dim U_2 je: 0 12) dim U_4 je: 0 12 dim U_5 je: 0 12
- Neka je a = (2, 2, 0), b = (-3, 3, 0), c = (1, -1, 0), d = (-1, 1, 0), e = (0, 0, 1), f = (1, 0, 0), g = (1, 2, 0).Zaokružiti broj koji je dimenzija potprostora V vektorskog prostora \mathbb{R}^3 :
 - 1) $V = L(b, c, d) \Rightarrow dim(V)$ je: (1),2,3 2) $V = L(e, f, g) \Rightarrow dim(V)$ je: 1,2,3
 - 3) $V = L(a,b) \Rightarrow dim(V)$ je: 1,2,3 4) $V = L(e,f,g) \Rightarrow dim(V)$ je: 1,2,3
 - 5) $V = L(b, c, e) \Rightarrow dim(V)$ je: 1(2)3 6) $V = L(a, b, c) \Rightarrow dim(V)$ je: 1(2)3
 - 7) $V = L(a,g) \Rightarrow dim(V)$ je: $1 \bigcirc 3$
- 1 (a) Ako je A kvadratna matrica reda 3, tada je: (b) rang $A=3 \Leftarrow \det A \neq 0$, (c) $A=0 \Rightarrow \operatorname{rang} A=0$ (det $A=0 \Rightarrow \operatorname{rang} A=0 \Rightarrow \operatorname{rang} A=0$) $A=0 \Rightarrow \operatorname{rang} A=0 \Rightarrow \operatorname{rang} A=0$ (det $A=0 \Rightarrow \operatorname{rang} A=0 \Rightarrow \operatorname{rang} A=0$) $A=0 \Rightarrow \operatorname{rang} A=0 \Rightarrow \operatorname{rang} A=0$
- Koje od tvrđenja je tačno za bilo koje kvadratne matrice A, B, C reda 2 i syaki skalar λ :

 (1) A(BC) = (AB)C (2) (B+C)A = BA + CA (3) $(AB)^2 = A^2B^2$ (4) A-B=B-A(5) $\det(AB) = \det(B)\det(A)$ (6) $\operatorname{rang}(AB) = \operatorname{rang}(A)\operatorname{rang}(B)$ (7) $\det(A \cdot B) = \det(A) + \det(B)$ (8) $\det(\lambda A) = \lambda \det(A)$
- Ako su vektori $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$ i $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$ kolinearni tada je: ① $\vec{a} \times \vec{b} = 0$ 2) $\vec{a} \cdot \vec{b} = 0$ 3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = 1$ ① rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 2$ ① rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \le 1$ ⑥ \vec{a} i \vec{b} su zavisni \vec{a} \vec{b} \vec{b} \vec{a} \vec{b} \vec
- Vektori $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ i $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$ su nekomplanarni ako je:

 1) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 2$ rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \le 3$ (3) rang $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = 3$
 - $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0 \quad \text{(3)} \ \vec{a}(\vec{b} \times \vec{c}) \neq 0 \quad \text{(3)} \ (\exists \alpha, \beta \in \mathbb{R}) \ \vec{a} = \alpha \vec{b} + \beta \vec{c}$
 - 7) $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 \neq 0$ (8) $(\vec{a}, \vec{b}, \vec{c})$ je nezavisna.
- Linearne transformacije f i g definisane su sa $f(x_1, x_2) = (x_1 x_2, 2x_1 + x_2)$ i $g(x_1, x_2) = (x_1 x_2, x_1 + x_2)$.
 - a) Po definiciji kompozicije o odrediti $(f \circ g)(x_1, x_2) = f(g(x_1, x_2)) = (-\chi_{\chi_1} \chi_2 \chi_1)$
 - b) Napisati matrice M_f i M_g koje odgovaraju linearnim transformacijama f i g

$$M_f = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}, M_g = \begin{bmatrix} 1 & -1 \\ 1 & 4 \end{bmatrix}$$

- d) Napisati linearnu transformaciju $h(x_1,x_2)$ kojoj odgovara matrica $M_f \cdot M_g$ tj. $h(x_1,x_2) = \left(-\frac{1}{2}\chi_{2-1}\Im X_f \frac{1}{2}\chi_{3-1}\Im X_f \frac{1}$
- e) Da li je $h=f\circ g$ tj. da li je $(\forall x_1,x_2\in\mathbb{R})\ h(x_1,x_2)=(f\circ g)(x_1,x_2)?$ NE

(1) Neka je \mathcal{M} skup svih kvadratnih matrica čiji svi elementi su iz skupa realnih brojeva \mathbb{R} . Tada je:

(1) det : $\mathcal{M} \longrightarrow \mathbb{R}$ (2) det : $\mathcal{M} \stackrel{1-1}{\longrightarrow} \mathbb{R}$ (3) det : $\mathcal{M} \stackrel{na}{\longrightarrow} \mathbb{R}$ (4) det : $\mathcal{M} \stackrel{1-1}{\longrightarrow} \mathbb{R}$ (5) det je linearna

Neka je \mathcal{M} skup svih matrica formata (5,2) čiji svi elementi su iz skupa realnih brojeva \mathbb{R} . Tada je: \mathfrak{A} rang : $\mathcal{M} \xrightarrow{na} \{0,1,2\}$ 2 rang : $\mathcal{M} \to \mathbb{R}$ 3 rang : $\mathcal{M} \xrightarrow{na} \mathbb{N} \cup \{0\}$ 4 rang : $\mathcal{M} \to \mathbb{N} \cup \{0\}$ 5 rang : $\mathcal{M} \to \mathbb{N}$

Neka je (a_1, a_2, \ldots, a_m) nezavisna u prostoru V, (c_1, c_2, \ldots, c_k) generatorna za prostor V i dimV = n. Tada je \widehat{J} $m \le n$ \widehat{J} $m \le k \le m$ \widehat{J} $m \le n$ \widehat{J} $m \le n \le k$

1) . Napisati bar jednu, ukoliko postoji, linearnu transformaciju $f: \mathbb{R}^3 \to \mathbb{R}^2$ za koju važi da:

1) je injektivna f(x, y, z) =2) nije injektivna $f(x, y, z) = \langle \gamma \lambda_1 \gamma \gamma \rangle$

3) je sirjektivna $f(x, y, z) = (2 \times 10^{-3})$ 4) nije sirjektivna $f(x, y, z) = (2 \times 10^{-3})$

KOLOKVIJUM 2, PRIMER 19

Ako je $\vec{a} = (1,0,1)$ i $\vec{b} = (0,2,0)$, tada je $\vec{a}\vec{b} = \underline{0} \Rightarrow (\vec{a}\vec{b}) = \underline{\hat{0}}$ $\vec{a} \times \vec{b} = \underline{1}$

S Zaokružiti cifru (cifre) ispred uređenih n-torki koje su GENERATORNE u vektorkom prostoru trojki $(\mathbb{R}^3,+,\cdot)$: 1) ((0,1,0)) 2) ((1,2,0),(1,1,0),(2,-1,1)) 3) ((1,0,0),(2,0,2)) 4) ((1,0,0),(0,2,0),(0,0,3)) 5) ((1,1,1),(2,2,2)) 6) ((0,0,2),(0,0,0),(3,0,0)) 7) ((0,1,0),(0,2,0)) 8) ((1,0,0),(0,1,0),(0,0,1),(1,2,3))

(Ispod svake matrice napisati broj koji predstavlja njen rang.

 $\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

7.
 Matrice i rangovi linearnih transformacija $f: \mathbb{R} \to \mathbb{R}^2$, f(x) = (0, 9x) i $g, h, r, s: \mathbb{R}^3 \to \mathbb{R}^2$, g(x,y,z) = (x+y,x+z), h(x,y,z) = (x-y,0), r(x,y,z) = (0,y), s(x,y,z) = (x-y-z,6y) i p(x,y,z) = (z,0) su: (Rang upisati ispod odgovarajuće matrice)

 $M_f = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad M_g = \begin{bmatrix} \gamma & \gamma & \rho \\ \gamma & \rho & \gamma \end{bmatrix} \qquad M_h = \begin{bmatrix} \gamma & \gamma & \rho \\ \gamma & e & \rho \end{bmatrix} M_r = \begin{bmatrix} \gamma & e & \rho \\ \rho & \gamma & e \end{bmatrix} M_s = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & e & e \end{bmatrix} M_p = \begin{bmatrix} \gamma & \gamma & \gamma \\ e & \gamma & e \end{bmatrix}.$

Neka je je ABCD paralelogram, gde mu je BD dijagonala, a S presek dijagonala. U zavisnosti od \vec{r}_S , \vec{r}_B i \vec{r}_A napisati vektore položaja tačaka C i D:

 $\vec{r}_c = 2\vec{r}_s^2 - \vec{r}_A$ $\vec{r}_D = 2\vec{r}_s^2 - \vec{r}_B^2$

. J.	(•) Odrediti vrednosti parametara $a, b \in \mathbb{R}$ za koje je si-	(a) kontradiktoran:
	$ stem \begin{cases} x + by = 1 \\ bx - ay = b \end{cases} $	(b) određen: Ø≠·L¹
	bx - ay = b	(c) 1 puta neodređen:
		(d) 2 puta neodređen:
10.	Ako su \vec{a} i \vec{b} različiti nekolinearni vektori, tada je neorijeni i $\vec{n} = \frac{\vec{a}}{a} + \frac{\vec{b}}{b}$: 1) 0 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{3}$ 5) $\frac{\pi}{2}$ 6	tisani, konveksni ugao između vektora $ec{m}=aec{b}-bec{a}$
11.	Izračunati vektore položaja $\vec{r_{T'}}$ i $\vec{r_{T''}}$ projekcija tačke T $a: \vec{r} = (-1,0,-2) + t(1,-1,1), \ t \in \mathbb{R}$ i ravan $\alpha: (1,-1,1)$	
	$\vec{r_{T'}} = \begin{pmatrix} -1, 0, -1 \end{pmatrix}, \vec{v} = \begin{pmatrix} 1, 1, 1 \end{pmatrix}, \vec{v} = \begin{pmatrix} 1, 1$,-1)
12.		$0): (\alpha,\beta) \in \{ (0,0) \} $
13	Izračunati α i β ako je $\alpha(1,-3,2)+\beta(2,-6,4)=(0,0,0)$	0): $(\alpha, \beta) \in \{ (\alpha, k) k \in \mathbb{N} \}$
14	Neka je $(\vec{a}, \vec{b}, \vec{c})$ uređena trojka nekoplanarnih slobodni linearno nezavisna 2) trojka $(\vec{a}, \vec{b}, \vec{c})$ je uvek linearno z $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna 4) postoji takav vektor \vec{d} da je č je četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna 6) za svaki vektor \vec{d} je linearna kombinacija uređene trojke vektora $(\vec{a}, \vec{b}, \vec{c})$	(\vec{a}, b, \vec{c}, d) zavisna 5) za svaki vektor d
15	Neka su $\mathbf{a_1} = (a_{11}, \dots, a_{1n}), \mathbf{a_2} = (a_{21}, \dots, a_{2n}), \dots, \mathbf{a_n}$ $[a_{i,j}]_{nn} \text{ i neka je } V = \text{Lin}(\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}) = \{\alpha_1 \mathbf{a_1} + \alpha_2 \mathbf{a_2}\}$ $V \det A \neq 0 \Leftrightarrow \operatorname{rang} A < n \text{(2)} (\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}) \text{ je zavis}$ $A) \det A \neq 0 \Leftrightarrow \dim V < n \text{(5)} \det A \neq 0 \Leftrightarrow \operatorname{rang} A \leq n$	$\{a_1+\ldots+lpha_n\mathbf{a}_n lpha_1,lpha_2,\ldots,lpha_n\in\mathbb{R}\}$. Tada ma akko det $A=0$ 3 dim $V eq 0\Leftrightarrow \mathrm{rang}A\geq 1$
16,	U vektorskom prostoru svih slobodnih vektora, uređen V uvek nezavisan, W uvek zavisan, W nekad neza	par vektora (a,b) je: wisan a nekad zavisan, 4) uvek generatoran.
17.	Ako je uređena trojka vektora (a, b, c) zavisna, tada je u abuvek nezavisna b) uvek zavisna	uređena trojka vektora $(a+b,a+c,a+2b-c)$ c) nekada zavisna, a nekada nezavisna.
18.	Neka je \overrightarrow{ABCD} paralelogram, a tačka T težište trougla vektor \overrightarrow{DT} kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AB}$ i $\overrightarrow{DT} = \frac{1}{2} \overrightarrow{\alpha} - \frac{\overrightarrow{C}}{3}$	
13.	Neka je u sedmodimenzionalnom vektorskom prostoru $k \le 7$ je uvek: 1) $k \le 7$ 2) $k \le 7$ 3) $k = 7$ 4) $k > 6$	7, k-torka vektora (a_1, \ldots, a_k) generatorna. Tada 7 (5) $k \ge 7$ (6) ništa od prethodnog
	Ako je $f: V \to W$ izomorfizam, tada je: \mathbb{C} postoji f za svaku nezavisnu n -torku vektora $(v_1,, v_n)$ iz V ,	V = W i W su izomorfni 3) $V = W$
	$\stackrel{\frown}{(5)}$ za svaku zavisnu n -torku vektora $(v_1,,v_n)$ iz V,n	-torka $\Big(f(v_1),,f(v_n)\Big)$ je zavisna u W
71	★ Koji od sledećih podskupova $U \subseteq \mathbb{R}^n = \{x = (x_1, \dots, x_n) \mid U = \{x \in \mathbb{R}^n \mid x_1 = x_2 = \dots = x_n\}$ ↓ $U = \{x \in \mathbb{R}^n \mid x_1^2 + x_2^2 + \dots + x_n^2 = 1\}$ ↓ $U = \{x \in \mathbb{R}^n \mid x_1 = 2x_2 = 3x_3 = \dots = nx_n\}$	$ \mathbb{R}^n \mid x_1 = x_2 = \dots = x_n = n \} \in \mathbb{R}^n \mid x_1 = 0 \} $
	$(\text{gde je } \dot{x} = (x_1, \dots, x_n))$	
J.	Potreban i dovoljan uslov da ravan α bude potprostor v	vektorskog prostora \mathbb{R}^3 je:
ζ).	Za proizvoljne kvadratne regularne matrice A, B, C red (1) $A(BC) = (AB)C$ 2) $AB = BA$ (3) $(AB)^{-1}$ (5) $\det(AB) = \det(A)\det(B)$ 6) $(AB)^2 = A^2B^2$	a $n > 1$ važi: $1 = B^{-1}A^{-1}$ $A \det(AB) = \det(A) + \det(B)$

 \mathcal{T}^{ℓ_f} . \mathcal{G} Linearne transformacije f i g definisane su sa $f(x_1,x_2)=(x_1-x_2,2x_1+x_2)$ i $g(x_1,x_2)=(x_1-x_2,x_1+x_2)$.

a) Po definiciji kompozicije o odrediti $(f \circ g)(x_1, x_2) = f(g(x_1, x_2)) = (-i \times_{i=1}^{n} \mathcal{I}_{i=1}^{n} \mathcal$

b) Napisati matrice M_f i
 M_g koje odgovaraju linearnim transformacijama
 fi g

$$M_f = \begin{bmatrix} \gamma & -\gamma \\ \gamma & \gamma \end{bmatrix}, M_g = \begin{bmatrix} \gamma & -\gamma \\ \gamma & \gamma \end{bmatrix}.$$

c) Izračunati proizvod matrica $M_f \cdot M_g = \begin{bmatrix} 0 & -2 \\ 2 & -1 \end{bmatrix}, M_g^{-1} = \begin{bmatrix} -\frac{2}{6} & \frac{2}{3} \\ -\frac{2}{4} & 0 \end{bmatrix}$ i $g^{-1}(x_1, x_2) = \left(-\frac{1}{6} \times_1 + \frac{2}{3} \times_1 \right)^{-\frac{2}{5}} \times_2$

d) Napisati linearnu transformaciju $h(x_1,x_2)$ kojoj odgovara matrica $M_f\cdot M_g$ tj.

$$h(x_1, x_2) = \left(-2 \times_{t-1} 3 \times_{t} - \times_{t-1} \right)$$

e) Da li je $h=f\circ g$ tj. da li je $(\forall x_1,x_2\in\mathbb{R})\ h(x_1,x_2)=(f\circ g)(x_1,x_2)$? DA

25. • Karakteristični polinom matrice $\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$ je: $\underbrace{\lambda^{1} - 4}$

 $\mathbb{R}[G]$ Koje od tvrđenja je tačno za bilo koje kvadratne matrice A,B reda 3 i svaki skalar λ

a)
$$det(A - B) = det(A) - det(B)$$

b)
$$det(\lambda A) = \lambda det(A)$$

$$(c) \det(A^n) = \left(\det(A)\right)^n.$$

KOLOKVIJUM 2, PRIMER 20

1. Sistem linearnih jednačina x + y + z = 1 je y + z = 1 je 1) kontradiktoran, 2) određen, 3) 1 puta neodređen, 4) 2 puta neodređen.

Neka je p prava čija je jednačina $x-1=\frac{y+1}{2}=\frac{z}{-2}$. Napisati jedan vektor pravca prave p: $\vec{p}=(7,7,7)$, i koordinate jedne tačke prave p: (7,7,7).

 \nearrow Ča koje vrednosti parametra $a \in \mathbb{R}$ je sistem linernih jednačina $x + ay = 0 \land x + ay = a$ nad poljem realnih brojeva: 1) neodređen: $\alpha \in \mathcal{O}$ 2) određen: 3) kontradiktoran: $q \not = 0$

Za vektore
$$\vec{a} = (-2, 1, 1)$$
 i $\vec{b} = (4, -2, -2)$ izračunati:

1) $2\vec{a} + \vec{b} = (0, 0, 0)$
2) $\vec{a} \cdot \vec{b} = 12$
3) $\vec{a} \times \vec{b} = (0, 0, 0)$
4) $|\vec{a}| = 56$

 $^{rac{1}{2}}$. Koje su od sledećih uređenih n-torki baze vektorskog prostora \mathbb{R}^3 : $\widehat{1}$ $\Big((0,0,1),(0,1,0),(1,0,0)\Big)$

$$2) \left((1,0,0), (0,-1,0) \right) \quad 3) \left((0,0,1), (0,1,0), (1,0,0), (1,2,3) \right) \quad \text{(1,1,1), (2,2,2), (3,3,3)}$$

f. Napisati u obliku Ax + By + Cz + D = 0 jednačinu ravni koja sadrží tačku (1,2,3) i paralelna je sa osama x i z, gde su A, B, C, D realni brojevi:

🦹 🔊 Ispod svake matrice napisati broj koji predstavlja njen rang.

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Napisati \vec{r}_p vektor položaja projekcije tačke A(0,0,0) na pravu $p: \frac{x-3}{1} = \frac{y}{1} = \frac{z}{1}$. $\vec{r}_p = (t_1 - t_1 - 1)$

②Za prave $m: \frac{x-2}{3} = \frac{y-1}{-2} = \frac{z}{5}$ i $n: \frac{x-5}{-6} = \frac{y+1}{4} = \frac{z-5}{-1}$ važi: a) mimoilazne su $(m \cap n = \emptyset \land m \not\parallel n)$ paralelne su i različite $(m \parallel n \land m \neq n)$ g) poklapaju se (m = n) d) seku se $(m \cap n = \{M\})$

1). Odrediti vrednosti parametara $a,b\in\mathbb{R}$ za koje je sistem	(b) određen:
رم. (ع) Za koje $\alpha, \beta \in \mathbb{R}$ su vektori $\vec{a} = (1,2,3)$ i $\vec{b} = (1,\alpha,\beta)$:	1) nekolinearni delivita 2) ortogonalni de tra
Neka je $a=(0,0,0), b=(1,0,1), c=(1,0,-1), d=0$ Odrediti dimenzije sledećih potprostora V vektorskog 1) $V=L(a) \Rightarrow dim(V) = 0$ 2) $V=0$ 3) $V=0$ 2) $V=0$ 3) $V=0$ 4) 5) $V=0$ 6)	(-1,0,1), e = (1,1,1), f = (1,0,0), g = (2,0,2). prostora \mathbb{R}^3 : $EL(a,b) \Rightarrow dim(V) = 1$
15. Ako su \vec{a} i \vec{b} različiti nekolinearni vektori, tada su vek	
1) kolinearni ② ortogonalni 3) ni kolinearni ni o	
16. Potreban i dovoljan uslov da prava p bude potprostor i tada je p potprostor dimenzije:1	vektorskog prostora R3 je: da polasi sins leed piche
Noje od tvrđenja je tačno ako je A kvadratna matrica A det A	a reda $n > 1$: 1) $Rang(A) = 0 \Leftrightarrow det(A) = 0$ $\Rightarrow det(A) > 0$, $Rang(A) = n \Rightarrow det(A) \neq 0$.
∧¶. ⊙Koji od vektora su karakteristični vektori za matricu	$\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}? \mathcal{V}\begin{bmatrix} 2 \\ 1 \end{bmatrix} \mathcal{Q}\begin{bmatrix} 3 \\ 3 \end{bmatrix} \mathcal{B}\begin{bmatrix} 2 \\ 2 \end{bmatrix}.$
$(0,0)$. OIzračunati α i β ako je $\alpha(1,-3,2)+\beta(3,7,-3)=(0,0)$	$(0,0): (\alpha,\beta) \in \{ (o,o) \}$
γ 0. Tzračunati α i β ako je $\alpha(1, -3, 2) + \beta(2, -6, 4) = (0, 6)$	$(0,0): (\alpha,\beta) \in \{ \ \bigwedge(-1,7) \ \bigwedge \in \mathbb{R} \}$
Neka je $(\vec{a}, \vec{b}, \vec{c})$ uređena trojka nekoplanarnih slobod linearno nezavisna $(\vec{a}, \vec{b}, \vec{c})$ je uvek linearno $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ postoji takav vektor \vec{d} da je je četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ postoji takav vektor \vec{d} da je je četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ postoji takav vektor $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ postoji takav vektor $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ postoji takav vektor $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ postoji takav vektor $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ nezavisna $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$	o zavisna \vec{a} postoji takav vektor \vec{d} da je četvorka e četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ zavisna \vec{b} za svaki vektor \vec{d} \vec{d} je četvorka $(\vec{a}, \vec{b}, \vec{c}, \vec{d})$ zavisna \vec{d} svaki vektor \vec{d}
Neka su $\mathbf{a_1} = (a_{11}, \dots, a_{1n}), \mathbf{a_2} = (a_{21}, \dots, a_{2n}), \dots, \mathbf{a_1}$ $[a_{i,j}]_{nn} \text{ i neka je } V = \text{Lin}(\mathbf{a_1}, \mathbf{a_2}, \dots \mathbf{a_n}) = \{\alpha_1 \mathbf{a_1} + \alpha_2, \dots, \alpha_n\} \text{ det } A \neq 0 \Leftrightarrow \text{rang } A < n \text{ (2) } (\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}) \text{ je zav}$ $4 \text{ det } A \neq 0 \Leftrightarrow \text{dim } V < n \text{ (3) } \text{det } A \neq 0 \Leftrightarrow \text{rang } A \leq n$	$\mathbf{a_2} + \ldots + lpha_n \mathbf{a_n} lpha_1, lpha_2, \ldots, lpha_n \in \mathbb{R} \}.$ Tada v isna akko det $A = 0$ (3) dim $V eq 0 \Leftrightarrow \operatorname{rang} A \geq 1$
U vektorskom prostoru svih slobodnih vektora, uređe U uvek nezavisan, 2) uvek zavisan, 3 nekad ne	n par vektora (a,b) je: zavisan a nekad zavisan, 4) uvek generatoran.
Ako je uređena trojka vektora (a,b,c) zavisna, tada je uvek nezavisna (a,b,c) uvek zavisna	e uređena trojka vektora $(a+b,a+c,a+2b-c)$ c) nekada zavisna, a nekada nezavisna.
Neka je \overrightarrow{ABCD} paralelogram, a tačka T težište trougl vektor \overrightarrow{DT} kao linearnu kombinaciju vektora $\overrightarrow{a} = \overrightarrow{AB}$ $\overrightarrow{DT} = \frac{2}{3} \overrightarrow{a} - \frac{\cancel{2}}{3}$	la BCD (BD je dijagonala paralelograma). Izraziti i $\vec{b} = \overrightarrow{BC}$.
Neka je u sedmodimenzionalnom vektorskom prostoru je uvek: 1) $k < 7$ 2) $k \le 7$ 3) $k = 7$ 4) k	> 7 (5) $k \ge 7$ (6) mista od prethodnog
27. • Ako je $f: V \to W$ izomorfizam, tada je: ①postoji ①postoji ②postoji ③postoji ②postoji ②postoji ②postoji ②postoji ②postoji ②postoji ②postoji ③postoji ①postoji ②postoji ①postoji ①	i f^{-1} 2) V i W su izomorfni 3) $V = W$ V , n -torka $(f(v_1),, f(v_n))$ je nezavisna u W
$\stackrel{\frown}{\mathfrak{S}}$ za svaku zavisnu n -torku vektora $(v_1,,v_n)$ iz $V,$	
Potreban i dovoljan uslov da ravan α bude potprosto	r vektorskog prostora K° je: i tada je o potprostor dimenzije:

- Za proizvoljne kvadratne regularne matrice A, B, C reda n > 1 važi:

 (1) A(BC) = (AB)C(2) AB = BA(3) $(AB)^{-1} = B^{-1}A^{-1}$ (4) $\det(AB) = \det(A) + \det(B)$ (5) $\det(AB) = \det(A) \det(B)$ (6) $\det(AB)^2 = A^2B^2$ (7) $\det(A+B) = \det(A) + \det(B)$
- $\text{Solution} \text{ Linearne transformacije } f \text{ i } g \text{ definisane su sa } f(x_1,x_2) = (x_1-x_2,2x_1+x_2) \text{ i } g(x_1,x_2) = (x_1-x_2,x_1+x_2).$
 - a) Po definiciji kompozicije \circ odrediti $(f \circ g)(x_1, x_2) = f(g(x_1, x_2)) = (-7 \times_7) \times_7 \times_7)$
 - b) Napisati matrice M_f i M_g koje odgovaraju linearnim transformacijama f i g

$$M_f = \begin{bmatrix} \gamma & -\gamma \\ \gamma & \gamma \end{bmatrix}, M_g = \begin{bmatrix} \gamma & -\gamma \\ \gamma & \gamma \end{bmatrix}.$$

- c) Izračunati proizvod matrica $M_f \cdot M_g = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}, M_g^{-1} = \begin{bmatrix} -\frac{1}{6} & \frac{4}{3} \\ -\frac{1}{4} & 0 \end{bmatrix}$ i $g^{-1}(x_1, x_2) = \left(-\frac{1}{6} \chi_1 + \frac{4}{2} \chi_{1-1} + \frac{$

$$h(x_1, x_2) = \left(-\chi \times_{\chi_1} \chi \times_{\chi_2} - \chi_{\chi_1} \right)$$

- e) Da li je $h = f \circ g$ tj. da li je $(\forall x_1, x_2 \in \mathbb{R}) \ h(x_1, x_2) = (f \circ g)(x_1, x_2)$? (DA) NE
- $\mathfrak{J} \sim \mathbb{K}$ Karakteristični polinom matrice $\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$ je: $\underline{\hspace{1cm}} \stackrel{\mathfrak{I}}{\longrightarrow} \stackrel{\mathfrak{I$
- Noje od tvrđenja je tačno za bilo koje kvadratne matrice A,B reda 3 i svaki skalar λ av det(A-B)=det(A)-det(B) by $det(\lambda A)=\lambda det(A)$ c) $det(A)=\lambda det(A)$

$$a) \det(A - B) = \det(A) - \det(B)$$

$$\int det(\lambda A) = \lambda det(A)$$

$$(c) det(A^n) = (det(A))^n.$$

