Lorentzian in the $z=z_{\infty}+rac{Ae^{i\phi}}{\omega-\omega_{0}+rac{i\Gamma}{2}}$ complex plane

$$-\frac{Ae^{i\varphi}}{\omega - \omega_0 + \frac{i\Gamma}{2}}$$

$$z' - z_{\infty} = \frac{|z_0 - z_{\infty}|^2}{(z - z_{\infty})^*}$$

$$l = |z' - z_0| = |z_0 - z_\infty| \frac{\omega - \omega_0}{\Gamma/2}$$

 $z_{\pi/2}$ z_0

$$\omega = \infty$$
 maps into point z_{∞} .

$$\omega = \omega_0$$
 maps into point z_0 .

$$\omega = \omega_0 + \Gamma/2$$
 maps into point $z_{\pi/2}$.

$$\theta = \arctan \frac{\omega - \omega_0}{\Gamma/2}$$

$$z_0 - z_\infty = 2\frac{A}{\Gamma}e^{i(\phi - \pi/2)}$$

$$z - z_c = \frac{1}{\omega - \omega_0 + i\Gamma/2} - \frac{1}{i\Gamma}$$

$$= \left(\frac{i}{\Gamma}\right) \frac{\omega - \omega_0 - i\Gamma/2}{\omega - \omega_0 + i\Gamma/2}$$

$$= \frac{i}{\Gamma} e^{-2i\theta}$$