Khoảng tin cậy

Nguyễn Thị Hồng Nhung

Ngày 6 tháng 5 năm 2020

Table of contents

- 🚺 Ước lượng điểm, Các tiêu chuẩn ước lượng
 - Ước lượng điểm
 - Các tiêu chuẩn ước lượng
 - Ước lượng không chệch
 - Ước lượng hiệu quả
 - Trung bình của bình phương sai số-MSE
 - Ước lượng bền vững
- Uớc lượng tham số bằng khoảng tin cậy
 - Giới thiêu
 - Khoảng tin cậy (KTC), độ tin cậy
- Khoảng tin cậy cho kỳ vọng
 - Trường hợp biết phương sai
 - Trường hợp không biết phương sai
 - Trường hợp không biết phương sai, mẫu nhỏ
 - Trường hợp không biết phương sai, mẫu lớn
- 4 Khoảng tin cậy cho tỷ lệ
 - Xác định kích thước mẫu
- Sác định độ tin cậy

Ước lượng điểm

- ullet Giả sử cần khảo sát một đặc tính X trên một tổng thể xác định.
- Biến ngẫu nhiên X có phân phối $F(x,\theta)$, tham số θ chưa biết.
- ullet Bài toán: tìm tham số heta
 - Chọn một mẫu ngẫu nhiên cỡ n: $X = (X_1, \dots, X_n)$.
 - Thống kê $\hat{\Theta} = h(X_1, \dots, X_n)$ gọi là một ước lượng điểm cho θ .
 - Với một mẫu thực nghiệm x_1, \ldots, x_n , ta gọi $\hat{\theta} = h(x_1, \ldots, x_n)$ là một giá trị ước lượng điểm cho θ .

Ước lượng điểm

Ví du 1

• X= Chiều cao dân số trong một khu vực, $X\sim\mathcal{N}(\mu,\sigma^2)$. Phân phối của X phụ thuộc vào kỳ vọng μ và phương sai σ^2 . Thống kê trung bình mẫu và phương sai mẫu

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i; \ S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

là những ước lượng điểm cho μ và σ^2

• Với một mẫu thực nghiệm $x_1=150, x_2=155, x_3=167$, giá trị ước lượng điểm của μ và σ^2 lần lượt là $\bar{x}=157.333, s^2=76.333$

Ước lượng không chệch

Định nghĩa 1

Ước lượng điểm $\hat{\Theta}$ gọi là **ước lượng không chệch (Unbiased estimator)** cho tham số θ nếu

$$\mathbb{E}(\hat{\Theta}) = \theta. \tag{1}$$

Nếu $\hat{\Theta}$ là ước lượng chệch của θ , độ sai khác

$$\mathbb{E}(\hat{\Theta}) - \theta$$

gọi là $d\hat{o}$ chệch của ước lượng, ký hiệu là Bias($\hat{\Theta}$).

Ước lương không chệch-Ví du

i. X là một ước lương không chệch của μ

$$\mathbb{E}(\bar{X}) = \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{\sum_{i=1}^{n}\mathbb{E}X_{i}}{n} = \mu.$$

ii . S^2 là một ước lương không chệch của σ^2

$$\mathbb{E}(S^2) = \sigma^2$$

iii . $\hat{S}^2 = \frac{1}{\pi} \sum_{i=1}^n (X_i - \bar{X})^2$ là ước lượng chệch của σ^2

Ước lượng hiệu quả

Dinh nghĩa 2

Xét $\hat{\Theta}_1$ và $\hat{\Theta}_2$ là hai lượng không chệch của θ , $\hat{\Theta}_1$ gọi là ước lượng hiệu quả hơn $\hat{\Theta}_2$ nếu với cỡ mẫu n cho trước

$$\mathbb{V}ar(\hat{\Theta}_1) < \mathbb{V}ar(\hat{\Theta}_2).$$

Định lý 1

Trong một mẫu ngẫu nhiên cỡ n: X_1, \ldots, X_n được chọn từ $X \sim \mathcal{N}(\mu, \sigma^2)$ thì \bar{X} là ước lượng hiệu quả nhất cho μ .

Trung bình của bình phương sai số-MSE

- Trong một số trường hợp, ước lượng $\hat{\Theta}_2$ là ước lượng chệch (với độ chệch nhỏ), nhưng lại có phương sai nhỏ hơn các ước lượng không chệch $\hat{\Theta}_1$ khác. Khi đó, ta có thể muốn chọn $\hat{\Theta}_2$, mặc dù là ước lượng chệch nhưng nó có độ phân tán nhỏ hơn nhiều so với các ước lượng $\hat{\Theta}$ khác.
- Một độ đo kết hợp giữa độ chệch (Bias) và phương sai mẫu của một ước lượng là trung bình của bình phương sai số (Mean Squarred Error - MSE)

$$MSE(\hat{\Theta}) = \mathbb{E}(\hat{\Theta} - \theta)^2$$
 (2)

$$MSE(\hat{\Theta}) = \mathbb{V}ar(\hat{\Theta}) + (Bias(\hat{\Theta}))^{2}.$$
 (3)

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Trung bình của bình phương sai số (tt)

- Nếu $\hat{\Theta}$ là ước lượng không chệch: $MSE(\hat{\Theta}) = \mathbb{V}ar(\hat{\Theta})$
- Cho trước hai ước lượng $\hat{\Theta}_1$ và $\hat{\Theta}_2$, tiêu chuẩn MSE cho phép ta chon $\hat{\Theta}_2$ nếu, với cỡ mẫu n

$$\textit{MSE}(\hat{\Theta}_2) < \textit{MSE}(\hat{\Theta}_1)$$

• Hoặc $\mathbb{V}ar(\hat{\Theta}_1) - \mathbb{V}ar(\hat{\Theta}_2) > (Bias(\hat{\Theta}_2))^2 - (Bias(\hat{\Theta}_1))^2$.

Trung bình của bình phương sai số-MSE (tt)

- Nếu cả $\hat{\Theta}_1$ và $\hat{\Theta}_2$ là ước lượng không chệch, tiêu chuẩn MSE trở thành tiêu chuẩn so sánh dựa trên phương sai mẫu.
- Tiêu chuẩn MSE tương đương với việc so sánh tỷ số

$$Eff(\hat{\Theta}_1, \hat{\Theta}_2) = \frac{MSE(\hat{\Theta}_2)}{MSE(\hat{\Theta}_1)} \tag{4}$$

và chọn $\hat{\Theta}_2$ nếu $\mathit{Eff}(\hat{\Theta}_1,\hat{\Theta}_2) < 1.$

Sai số chuẩn - Standard Error

Dinh nghĩa 3

Sai số chuẩn (SE) của một ước lượng Ô chính là độ lệch tiêu chuẩn của nó, cho bởi

$$SE(\hat{\Theta}) = \sqrt{\mathbb{V}ar(\hat{\Theta})}$$
 (5)

Ký hiệu khác: σ̂_Â

Ví dụ 2

Tham số	Ước lượng T	<i></i> ₩ ar	SE(T)
μ	X	$\frac{\sigma^2}{n}$	$\frac{S}{\sqrt{n}}$
р	ρ̂	$\frac{p(1-p)}{n}$	$\sqrt{rac{\hat{ ho}(1-\hat{ ho})}{n}}$
σ^2	<i>S</i> ²	$\frac{2\sigma^4}{n-1}$	$\int S^2 \sqrt{\frac{2}{n-1}}$

Ước lượng bền vững

Định nghĩa 4

Gọi $\hat{\Theta}_n = h(X_1, \dots, X_n)$ là một ước lượng điểm của tham số θ . Ước lượng $\hat{\Theta}_n$ gọi là bền vững(consistency) nếu $\hat{\Theta}_n \to^{\mathbb{P}} \theta$, tức là

$$\lim_{n\to\infty} \mathbb{P}\left(|\hat{\Theta}_n - \theta| \le \epsilon\right) = 1, \ \forall \epsilon > 0.$$

Giới thiệu

- Giả sử cần khảo sát đặc tính X trên một tổng thể xác định.
- Biến ngẫu nhiên X có phân phối $F(x,\theta)$, tham số θ chưa biết.
- Chọn một mẫu ngẫu nhiên cỡ n: $X = (X_1, \dots, X_n)$.

Định nghĩa 5

Một ước lượng khoảng (interval estimator) của một tham số θ là một cặp các thống kê $L(X_1,\ldots,X_n)$ và $U(X_1,\ldots,X_n)$ của một mẫu ngẫu nhiên thỏa $L(X) \leq U(X)$ và $L(X) \leq \theta \leq U(X)$. Nếu một mẫu thực nghiệm $x = (x_1,\ldots,x_n)$ được quan trắc, [I(x),u(x)] gọi là một khoảng ước lượng (interval estimator) cho θ .

Khoảng tin cậy

Định nghĩa 6

Xét vector ngẫu nhiên $X=(X_1,\ldots,X_n)$ có hàm mật độ đồng thời phụ thuộc vào tham số $\theta\in\Theta$, L(X) và U(X) là hai thống kê sao cho $L(X)\leq U(X)$. Khi đó, khoảng ngẫu nhiên [L(X),U(X)] gọi là khoảng tin cậy cho tham số θ với độ tin cậy $100(1-\alpha)\%$ nếu

$$\mathbb{P}\left(L(X) \le \theta \le U(X)\right) = 1 - \alpha. \tag{6}$$

• Với mẫu thực nghiệm $x=(x_1,\ldots,x_n)$ ta có khoảng tin cậy cụ thể cho tham số θ là $I(x) \leq \theta \leq u(x)$.

Khoảng tin cậy

Ý nghĩa: với 100% lần lấy mẫu cỡ n thì

```
i có 100(1-\alpha)\% lần giá trị tham số \theta \in [I,u];
```

ii có $100\alpha\%$ lần giá trị tham số $\theta \notin [I, u]$.

Khoảng tin cậy cho kỳ vọng

Bài toán 1

Cho tổng thể có trung bình μ với phương sai có thể đã biết hoặc chưa biết. Từ mẫu ngẫu nhiên (X_1, X_2, \ldots, X_n) , hãy ước lượng μ với độ tin cậy $1-\alpha$.

Trường hợp biết phương sai

Các giả định

- Mẫu ngẫu nhiên được chọn từ tổng thể có phân phối chuẩn, tức là $X_1,\ldots,X_n\sim^{i.i.d}\mathcal{N}(\mu,\sigma^2)$.
- Phương sai σ^2 của tổng thể đã biết.

Xây dựng khoảng tin cậy

- ullet Chọn mẫu ngẫu nhiên cỡ n: $X_1,\ldots,X_n\sim^{i.i.d}\mathcal{N}(\mu,\sigma^2)$
- Thống kê trung bình mẫu $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- Phân phối mẫu của \bar{X} : $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$.
- Đăt

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \tag{7}$$

thì $Z \sim \mathcal{N}(0, 1)$.

Xây dựng khoảng tin cậy

Với độ tin cậy $100(1-\alpha)\%$, ta có

$$\mathbb{P}\left(\left\{-z_{1-\frac{\alpha}{2}} \leq \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq z_{1-\frac{\alpha}{2}}\right\}\right) = 1 - \alpha. \tag{8}$$

hay

$$\mathbb{P}\left(\left\{\bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right\}\right) = 1 - \alpha \tag{9}$$

với $z_{1-rac{lpha}{2}}$ là phân vị mức $1-rac{lpha}{2}$ của phân phối chuẩn hóa $\mathcal{N}(0,1)$

Định nghĩa 7

Nếu \bar{x} là trung bình mẫu của một mẫu ngẫu nhiên cỡ n được chọn từ một tổng thể có phương sai σ^2 đã biết, khoảng tin cậy $100(1-\alpha)\%$ cho kỳ vọng μ được xác định như sau

$$\bar{x} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$
 (10)

với z $_{1-\frac{lpha}{2}}$ là phân vị mức $1-\frac{lpha}{2}$ của $Z\sim\mathcal{N}(0,1)$

Đô chính xác và cỡ mẫu

- $\epsilon=z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}$ gọi là độ chính xác (hay sai số) của ước lượng.
- ullet Chiều dài khoảng tin cậy 2ϵ
- Cho trước sai số và độ tin cậy $100(1-\alpha)\%$, từ đó suy ra công thức tính cỡ mẫu

$$n = \left(\frac{\sigma * Z_{1-\frac{\alpha}{2}}}{\epsilon}\right)^2 \tag{11}$$

Ví du 4

Đường kính của một ống piston trong động cơ xe máy có phân phối chuẩn với độ lệch chuẩn $\sigma=0.001$ mm. Một mẫu ngẫu nhiên gồm 15 ống piston có đường kính trung bình $\bar{x}=74.036$ mm.

- Lập KTC 95% cho đường kính trung bình của piston.
- 2 Lập KTC 99% cho đường kính trung bình.

Trường hợp biết phương sai

Ví du 5

Đo chỉ số IQ của các sinh viên trong 1 trường đại học, khảo sát 18 sinh viên thu được kết quả sau:

```
130 122 119 142 136 127 120 152 141 132 127 118 150 141 133 137 129 142
```

Biết rằng chỉ số lQ của sinh viên tuân theo phân phối chuẩn với $\sigma=10.50$

- i Lập khoảng tin cậy 95% cho chỉ số IQ trung bình.
- ii Lập khoảng tin cậy 99% cho chỉ số IQ trung bình.

Trường hợp không biết phương sai, mẫu nhỏ $(n \leq 30)$

Các giả định

- Mẫu ngẫu nhiên được chọn từ tổng thể có phân phối chuẩn
- Phương sai σ^2 của tổng thể không biết; ta có thể dùng phương sai mẫu S^2 để thay thế.
- Trường hợp cỡ mẫu nhỏ : $n \le 30$.

Trường hợp không biết phương sai, mẫu nhỏ (n < 30)

Xây dựng khoảng tin cậy

- Chọn mẫu ngẫu nhiên cỡ n: $X_1, \ldots, X_n \sim^{i.i.d} \mathcal{N}(\mu, \sigma^2)$
- Thống kê trung bình mẫu và phương sai mẫu

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \ S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

• Thay σ bởi S trong công thức (7) thu được biến ngẫu nhiên

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Trường hợp không biết phương sai, mẫu nhỏ (n < 30)

Phân phối Student -t .

Dinh nghĩa 8

Xét $X=(X_1,\ldots,X_n)\sim\mathcal{N}(\mu,\sigma^2)$ với μ,σ^2 không biết. Biến ngẫu nhiên $T = \frac{X - \mu}{S \sqrt{n}}$ có phân phối Student với (n - 1) bậc tự do.

Hàm mật đô của T có dang

$$f(t) = \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})\sqrt{k\pi}\left(\frac{t^2}{k}+1\right)^{\frac{k+1}{2}}}, -\infty < t < \infty.$$

Trường hợp không biết phương sai, mẫu nhỏ (n < 30)

- Gọi t^n_α là phân vị mức α của biến ngẫu nhiên $\mathcal T$ có phân phối Student với n bậc tự do.
- t_{α}^{n} được xác định như sau

$$\mathbb{P}(T < t_{\alpha}^{n}) = \alpha \tag{12}$$

• Tìm t_{α}^{n} : tra bảng Student.

Trường hợp không biết phương sai, mẫu nhỏ (n < 30)

Xây dựng khoảng tin cậy

Với độ tin cậy $100(1-\alpha)\%$ và $T=\frac{X-\mu}{S_*/\pi}$ ta có

$$\mathbb{P}\left(\left\{-t_{1-\frac{\alpha}{2}}^{n-1} \le \frac{\bar{X}-\mu}{S/\sqrt{n}} \le t_{1-\frac{\alpha}{2}}^{n-1}\right\}\right) = 1 - \alpha \tag{13}$$

hay

$$\mathbb{P}\left(\left\{\bar{X} - t_{1-\frac{\alpha}{2}}^{n-1} \frac{S}{\sqrt{n}} \le \mu \le \bar{X} + t_{1-\frac{\alpha}{2}}^{n-1} \frac{S}{\sqrt{n}}\right\}\right) = 1 - \alpha \tag{14}$$

với $t_{1-\frac{\alpha}{2}}^{n-1}$ là phân vị mức $1-\frac{\alpha}{2}$ của phân phối Student với bậc tự do (n-1)

4 D > 4 B > 4 B > 4 B > B

Trường hợp không biết phương sai, mẫu nhỏ (n < 30)

Định nghĩa 9

Nếu \bar{x} và s lần lượt là trung bình mẫu và đô lệch tiêu mẫu của một mẫu ngẫu nhiên cỡ n được chọn từ một tổng thể có phân phối chuẩn với kỳ vong μ và phương sai σ^2 không biết, khoảng tin cây $100(1-\alpha)\%$ cho kỳ vọng μ được xác định như sau

$$\bar{x} - t_{1 - \frac{\alpha}{2}}^{n - 1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{1 - \frac{\alpha}{2}}^{n - 1} \frac{s}{\sqrt{n}}$$

với $t_{1-\frac{\alpha}{2}}^{n-1}$ là phân vị mức $1-\frac{\alpha}{2}$ của $T\sim t(n-1)$.

4 D > 4 B > 4 B > 4 B > B

Trường hợp không biết phương sai, mẫu lớn (n > 30)

Các giả định

- Mẫu ngẫu nhiên được chọn từ một tổng thể với kỳ vọng μ và phương sai σ^2 không biết, sử dụng phương sai mẫu S^2 thay thế cho σ^2 .
- Cỡ mẫu: n > 30

Trường hợp không biết phương sai, mẫu lớn (n > 30)

Khi cỡ mẫu lớn, đại lượng ngẫu nhiên

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

sẽ xấp xỉ với phân phối chuẩn hóa $\mathcal{N}(0,1)$ theo định lý giới hạn trung tâm. Do đó, khoảng tin cậy cho kỳ vọng μ với độ tin cậy $100(1-\alpha)\%$ cho bởi

$$\bar{x} - z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$
 (15)

với $z_{1-\frac{\alpha}{2}}$ là phân vị mức $1-\frac{\alpha}{2}$ của phân phối chuẩn hóa.

Ví du 6

Biết lương tháng (Dv: triệu đồng) của thanh niên trong độ tuổi 25-35 ở một khu vực có phân phối chuẩn. Khảo sát 50 thanh niên.

Lương tháng	1.8	2.5	3.2	3.9	4.6	5.3	6.0	6.7	7.4
Số thanh niên	3	3	8	9	11	7	5	2	2

- a Lập khoảng tin cậy 95% cho lương tháng của thanh niên trong khu vực này.
- b Nếu muốn sai số ước lượng $\epsilon=0.10$ mà vẫn giữ cỡ mẫu n=50 thì độ tin cậy là bao nhiều ?

Bài toán 2

Cho tổng thể X, trong đó tỷ lệ cá thể mang đặc tính \mathcal{A} nào đó trong tổng thể là p. Từ mẫu ngẫu nhiên (X_1, \ldots, X_n) hãy tìm khoảng tin cậy cho p với đô tin cây $(1-\alpha)$.

- Goi Y là số phần tử thỏa tính chất $\mathcal A$ trong n phần tử khảo sát, thì $Y \sim \mathcal B(n,p)$.
- Đặt

$$\hat{P} = \frac{Y}{n}$$

ullet Biến ngẫu nhiên \hat{P} có kỳ vọng và phương sai lần lượt là

$$\mathbb{E}(\hat{P}) = \mu_{\hat{P}} = p$$
; $\mathbb{V}ar(\hat{P}) = \sigma_{\hat{P}}^2 = \frac{p(1-p)}{n}$.

Mệnh đề 1

Thống kê

$$Z = rac{\hat{P} - \mu_{\hat{P}}}{\sigma_{\hat{P}}} = rac{\hat{P} - p}{\sqrt{rac{p(1-p)}{n}}} \leadsto \mathcal{N}(0,1)$$

và

$$W = \frac{\hat{P} - p}{\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}} \rightsquigarrow \mathcal{N}(0,1).$$

Do đó, với độ tin cậy $100(1-\alpha)\%$

$$\mathbb{P}\left(\left\{-z_{1-\frac{\alpha}{2}} \leq \frac{\hat{P}-p}{\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}} \leq z_{1-\frac{\alpha}{2}}\right\}\right) = 1 - \alpha \tag{16}$$

hay

$$\mathbb{P}\left\{\hat{P}-z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}\leq p\leq \hat{P}+z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}\right\}=1-\alpha \ \ (17)$$

Vậy

ullet Với mẫu ngẫu nhiên, khoảng tin cậy 100(1-lpha)% cho p là

$$\left[\hat{P}-z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{P}(1-\hat{P})}{n}},\hat{P}+z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}\right]$$

ullet Với mẫu cụ thể, khoảng tin cậy 100(1-lpha)% cho p là

$$\left[\hat{\rho}-z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}},\hat{\rho}+z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}}\right]$$

Khoảng tin cậy cho tỷ lệ

Nhân xét 1

- Chất lượng của ước lượng phản ánh qua độ tin cậy $(1-\alpha)$ và dung sai ϵ .
- Độ tin cậy càng cao và dung sai càng nhỏ thì ước lượng càng tốt.
- Tuy nhiên, dung sai ϵ lại phụ thuộc vào kích thước mẫu n và độ tin cậy $(1-\alpha)$.

Câu hỏi 1

Với độ tin cậy $(1-\alpha)$, nếu ta muốn dung sai ϵ đạt được ở một mức nào đó cho trước thì kích thước mẫu n tối thiểu là bao nhiều ?

Khi ước lượng trung bình tổng thể

Bài toán 3

Tìm giá trị nhỏ nhất của n sao cho $\epsilon \leq \epsilon_0$, với ϵ_0 và α cho trước.

a Nếu biết $\mathbb{V}ar(X) = \sigma^2$, từ công thức

$$\epsilon = z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

Để $\epsilon \leq \epsilon_0$ ta cần chọn

$$n \ge \left(z_{1-\frac{\alpha}{2}}\right)^2 \frac{\sigma^2}{\epsilon_0^2}$$

Khi ước lượng trung bình tổng thể

b Nếu chưa biết σ^2 , ta căn cứ vào mẫu đã cho để tính s^2 . Từ đó ta xác định được kích thước mẫu tối thiểu

$$n \geq \left(z_{1-\frac{\alpha}{2}}\right)^2 \frac{s^2}{\epsilon_0^2}.$$

Khi ước lượng tỷ lệ tổng thể

a Khi đã biết \hat{p} , để $\epsilon \leq \epsilon_0$ thì từ công thức

$$\epsilon = z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \Rightarrow n \geq \left(z_{1-\frac{\alpha}{2}}\right)^2 \frac{\hat{p}(1-\hat{p})}{\epsilon_0^2}$$

b Khi chưa biết \hat{p} , ta có $\epsilon = z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$

Do $\hat{p}(1-\hat{p})$ đạt giá trị cực đại 0.25 khi $\hat{p}=0.5$ nên $\epsilon \leq z_{1-\frac{\alpha}{2}}\sqrt{\frac{0.25}{n}}$.

Do đó, để $\epsilon \leq \epsilon_0$ ta chọn n sao cho $z_{1-\frac{\alpha}{2}}\sqrt{\frac{0.25}{n}} \leq \epsilon_0$, tức là

$$n \ge \frac{0.25 \left(z_{1-\frac{\alpha}{2}}\right)^2}{\epsilon_0^2}$$

Xác định độ tin cậy

Câu hỏi 2

Khi ước lượng các số đặc trưng của tổng thể bằng các số liệu quan sát của một mẫu kích thước n, nếu ta muốn dung sai ϵ đủ nhỏ thì độ tin cậy $(1-\alpha)$ sẽ là bao nhiều ?

Bài toán 4

Tìm $(1 - \alpha)$ khi biết n và ϵ .

Khi ước lượng trung bình tổng thể

a Nếu biết $\mathbb{V}ar(X) = \sigma^2$ thì từ công thức

$$\epsilon = z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

ta suy ra $z_{1-\frac{\alpha}{2}}=\frac{\epsilon\sqrt{n}}{\sigma}$. sau khi xác định được $z_{1-\frac{\alpha}{2}}$ ta suy ra độ tin cậy $(1-\alpha)$.

b Nếu chưa biết $\mathbb{V}ar(X)=\sigma^2$, khi đó ta căn cứ vào mẫu đã cho để tính s. Từ đó xác định $z_{1-\frac{\alpha}{2}}$ theo công thức $z_{1-\frac{\alpha}{2}}=\frac{\epsilon\sqrt{n}}{s}$ Sau đó suy ra độ tin cậy $(1-\alpha)$ như ở trên.

Khi ước lượng tỷ lệ tổng thể

Từ công thức

$$\epsilon = z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

ta suy ra

$$z_{1-\frac{\alpha}{2}} = \epsilon \sqrt{\frac{n}{\hat{p}(1-\hat{p})}}$$

Từ đó ta suy ra $(1-\alpha)$ như ở trên.

Ví du 7

Theo dõi 1000 bệnh nhân ung thư phối thấy có 823 bệnh nhân chết trong vòng 10 năm.

- a Lập KTC 95% cho tỷ lệ bệnh nhân chết vì ung thư phổi.
- b Nếu muốn sai số bé hơn 0.03 thì phải theo dõi tối thiểu bao nhiều bệnh nhân trong 10 năm ?