ETH zürich

Selektionsindex - Zuchtwert - Verwandtschaft

Peter von Rohr

Zusammenfassung Zuchtwert aus Quantitativer Genetik

Modell der phänotypischen Beobachtung

- Zerlegung der gemessenen phänotypischen Wertes (Beobachung) (p)
- Komponenten sind genotypischer Wert (g) und Umweltabweichung (e)
- p = g + e
- Erwartungswerte: Im Schnitt über eine Population werden die Umweltabweichungen e als Null angenommen
- E[e] = 0 und somit E[p] = E[g]

Genotypischer Wert (GW)

- GW erfasst den genetisch bedingten Teil des phänotypischen Wertes
- Annahme: 1 Genort, 2 Allele, Population im Hardy-Weinberg Gleichgewicht
- Für bestimmten Genotypen G_iG_i ist der genotypische Wert V_{ii} definiert als der mittlere Wert aller Individuen in der gleichen Umwelt mit Genotyp G_iG_i

Genotypischer Wert (GW) II

- Nullpunkt der Skala in Mitte zwischen Homozygoten G_1G_1 und G_2G_2
- Wahl des Nullpunkts beliebig, so am einfachsten

Zusammenfassung Genotypische Werte

genotypischer Wert
$V_{11}=a$
$V_{12}=d$
$V_{22}=-a$

Populationsmittel - Erwartungswert

- Populationsmittel μ als Erwartungswert E[V] der genotypischen Werte
- Allgemeine Definition des Erwartungswertes einer diskreten Zufallsvariablen X

$$E[X] = \sum_{x_i \in \mathcal{X}} x_i * f(x_i)$$

wobei \mathcal{X} : Menge aller möglichen x-Werte

 $f(x_i)$ Wahrscheinlichkeit dass x den Wert x_i

annimmt

Erwartungswert der genotypischen Werte

Für unser Beispiel mit den genotypischen Werten

- Menge an möglichen Werten $\mathcal{X} = \{V_{11}, V_{12}, V_{22}\}$
- Frequenzen der genotypischen Werte entspricht Frequenz der Genotypen
- Mit Allelfrequenzen $f(G_1) = p$ und $f(G_2) = q = 1 p$ folgen die Genotypfrequenzen

Genotyp	Frequenzen
G_1G_1	$p*p=p^2$
G_1G_2	p*q+q*p=2pq
G_2G_2	$q*q=q^2$

Populationsmittel als Erwartungswert

Einsetzen der genotypischen Werte und der Genotypfrequenzen in Definition des Erwartungswertes

$$\mu = E[V]$$

$$= f(G_1G_1) * V_{11} + f(G_1G_2) * V_{12} + f(G_2G_2) * V_{22}$$
(1)

Populationsmittel unter Hardy-Weinberg

Aufgrund der Genotypfrequenzen folgt

$$\mu = p^{2} * a + 2pq * d - q^{2} * a$$

$$= (p^{2} - q^{2})a + 2pqd$$

$$= (p + q)(p - q)a + 2pqd$$

$$= (p - q)a + 2pqd$$
(2)

→ Das Populationsmittel ist somit abhängig von den Allelfrequenzen und somit von der Selektion

Zuchtwert

- Bei Zucht interessiert, welche genetischen Anlagen von Eltern an Nachkommen weitergegeben werden
- Eltern geben nicht Genotypen sondern zufällige Stichprobe der Allele an Nachkommen weiter
- $\blacksquare \to \mathsf{Frage},$ welche Leistung kann von Nachkommen eines bestimmten Elterngenotyps erwartet werden
- Zuchtwert wird verwendet als Mass für die mittlere Leistung von Nachkommen eines bestimmten Tieres im Vergleich zum Populationsmittel
- Definition **Zuchtwert**: entspricht der doppelten Abweichung des erwarteten Mittelwertes von Nachkommen vom Populationsmittel

Herleitung des Zuchtwertes für Genotyp G_1G_1

Frequenz der Nachkommen

	Vater	
	$f(G_1)=p$	$f(G_2)=q$
Mutter		
$f(G_1)=1$	$f(G_1G_1)=p$	$f(G_1G_2)=q$

Erwarteter mittlerer genotypischer Wert μ_{11} der Nachkommen einer Mutter mit Genotyp G_1G_1

$$\mu_{11} = pa + qd$$

lacktriangle Gemäss Definition, entspricht der Zuchtwert ZW_{11} der Mutter mit Genotyp G_1G_1 der doppelten Abweichung des mittleren genotypischen Wertes μ_{11} der Nachkommen vom Populationsmittel μ

Zuchtwert ZW_{11} für **Genotyp** G_1G_1

- Doppelte Abweichung der Nachkommen vom Populationsmittel
- Einsetzen der berechneten Grössen für μ_{11} und μ

$$ZW_{11} = 2 * (\mu_{11} - \mu)$$

$$= 2(pa + qd - [(p - q)a + 2pqd])$$

$$= 2(pa + qd - (p - q)a - 2pqd)$$

$$= 2(qd + qa - 2pqd)$$

$$= 2(qa + qd(1 - 2p))$$

$$= 2q(a + d(1 - 2p))$$

$$= 2q(a + (q - p)d)$$
(3)

Falls Locus G rein additiv $\rightarrow d = 0$, somit ist $ZW_{11} = 2qa$

Zuchtwert ZW_{22} für **Genotyp** G_2G_2

Frequenz der Nachkommen

	Vater	
	$f(G_1)=p$	$f(G_2)=q$
Mutter		
$f(G_2)=1$		

- Erwarteter mittlerer genotypischer Wert μ_{22} =
- Zuchtwert $ZW_{22} =$

Zuchtwert ZW_{12} für **Genotyp** G_1G_2

■ Frequenz der Nachkommen

	Vater	
	$f(G_1)=p$	$f(G_2)=q$
Mutter		
$f(G_1)=0.5$		
$f(G_2)=0.5$		

- Erwarteter mittlerer genotypischer Wert $\mu_{12} =$
- Zuchtwert $ZW_{12} =$

Allelsubstitution

- Bei allen Zuchtwerten kommt der Term a + (q p)d vor. Dieser wird mit α bezeichnet
- **Zuchtwerte** als Funktion von α

Genotyp	Zuchtwert
G_1G_1	$2q\alpha$
G_1G_2	$(q-p)\alpha$
G_2G_2	$-2p\alpha$

Allelsubstitution II

- Vergleicht man einen G_2G_2 Genotyp mit einem G_1G_2 Genotyp, dann wurde ein G_2 -Allel durch ein G_1 -Allel ersetzt
- Die Zuchtwerte ändern sich von ZW_{22} zu ZW_{12}
- Anderung der Zuchtwerte:

$$ZW_{12} - ZW_{22} = (q - p)\alpha - (-2p\alpha)$$

$$= (q - p)\alpha + 2p\alpha$$

$$= (q - p + 2p)\alpha$$

$$= (q + p)\alpha$$

$$= \alpha$$
(4)

Allelsubstitution III

■ Analoger Vergleich zwischen Genotypen G_1G_2 und G_1G_1 führt zu

$$ZW_{11} - ZW_{12} = 2q\alpha - (q - p)\alpha$$

$$= (2q - (q - p))\alpha$$

$$= \alpha$$
(5)

- Zuchtwerte sind von den Allelfrequenzen abhängig
- Differenzen zwischen Zuchtwerten sind additiv

Dominanzabweichung

- Zuchtwert definiert als doppelte Abweichung des erwarteten mittleren Wertes der Nachkommen vom Populationsmittel
- Somit wird für einen bestimmten Genotypen G_iG_i der genotypische Wert V_{ii} vom Zuchtwert ZW_{ii} abweichen.
- Für die Genotypen G_1G_1 , G_1G_2 und G_2G_2 sehen die Abweichungen wie folgt aus

$$V_{11} - ZW_{11} = a - 2q\alpha$$

$$= a - 2q [a + (q - p)d]$$

$$= a - 2qa - 2q(q - p)d$$

$$= a(1 - 2q) - 2q^{2}d + 2pqd$$

$$= [(p - q)a + 2pqd] - 2q^{2}d$$

$$= \mu + D_{11}$$
(6)

Dominanzabweichung II

■ Für Genotyp G_1G_2

$$V_{12} - ZW_{12} = d - (q - p)\alpha$$

$$= d - (q - p)[a + (q - p)d]$$

$$= [(p - q)a + 2pqd] + 2pqd$$

$$= \mu + D_{12}$$
(7)

■ Für Genotyp G_2G_2

$$V_{22} - ZW_{22} = -a - (-2p\alpha)$$

$$= -a + 2p[a + (q - p)d]$$

$$= [(p - q)a + 2pqd] - 2p^2d$$

$$= \mu + D_{22}$$
(8)

Zusammenfassung Dominanzabweichung

Genotyp	genotypischer Wert	Zuchtwert	Dominanzabweichung
G_iG_j	V_{ij}	ZW _{ij}	D_{ij}
G_1G_1	а	$2q\alpha$	$-2q^2d$
G_1G_2	d	$(q-p)\alpha$	2pqd
G_2G_2	—a	$-2p\alpha$	$-2p^2d$

Die genotypischen Werte können mit folgendem Modell beschrieben werden

$$V_{ij} = \mu + ZW_{ij} + D_{ij}$$

Varianzen

- Populationsmittel der genotypischen Werte ($\mu = E(V)$) gibt Informationen zur Lage einer Population
- Varianz $\sigma_C^2 = Var[V]$ gibt an, wie gross Streuung um **Populationsmittel**
- Definition der Varianz für diskrete Zufallsvariable X

$$Var[X] = \sum_{x_i \in \mathcal{X}} (x_i - \mu_X)^2 * f(x_i)$$

wobei \mathcal{X} : Menge aller möglichen x-Werte

 $f(x_i)$ Wahrscheinlichkeit dass x den Wert x_i

annimmt

Erwartungswert E[X] von X μ_X

Varianzen der genotypischen Werte

Einsetzen der Frequenzen und der genotypischen Werte in die Definition der Varianz

$$\sigma_{G}^{2} = Var[V] = (V_{11} - \mu)^{2} * f(G_{1}G_{1})$$

$$+(V_{12} - \mu)^{2} * f(G_{1}G_{2})$$

$$+(V_{22} - \mu)^{2} * f(G_{2}G_{2})$$

$$= (a - \mu)^{2} * p^{2}$$

$$+(d - \mu)^{2} * 2pq$$

$$+(-a - \mu)^{2} * q^{2}$$

$$(9)$$

wobei $\mu = (p - q)a + 2pqd$ das Populationsmittel

Herleitung der Varianz

Zur Herleitung der Varianz σ_C^2 verwenden wir, dass $V_{ii} = \mu + ZW_{ii} + D_{ii}$ und somit

$$\sigma_G^2 = (ZW_{11} + D_{11})^2 * p^2$$

$$+ (ZW_{12} + D_{12})^2 * 2pq$$

$$+ (ZW_{22} + D_{22})^2 * q^2$$

$$= (2q\alpha - 2q^2d)^2 * p^2$$

$$+ ((q - p)\alpha + 2pqd)^2 * 2pq$$

$$+ (-2p\alpha - 2p^2d)^2 * q^2$$
...
$$= 2pq\alpha^2 + (2pqd)^2$$
(10)

Aufteilung der Varianz

- Aufteilung von $\sigma_G^2 = 2pq\alpha^2 + (2pqd)^2$ in die zwei Terme
- Term $2pq\alpha^2$ heisst **genetisch additive Varianz** und wird mit σ_A^2 bezeichnet
- Term $(2pqd)^2$ heisst **Dominanzvarianz** und wird mit σ_D^2 bezeichnet.
- Somit ist $\sigma_C^2 = \sigma_A^2 + \sigma_D^2$

Verwandtschaft

- Bei künstlicher Selektion sollen Tiere mit günstigen Eigenschaften ausgewählt werden
- Ausgewählte Elterntiere sind in wichtigen Eigenschaften ähnlich
- Herkunft der Ähnlichkeit ist entscheidend
- Es wird unterschieden zwischen **zustandsgleich** (identical by state -IBS) und **herkunftsgleich** (identical by descent - IBD)

IBD vs. IBS

Definition Verwandtschaft

- Zwei Tiere x und y sind verwandt, wenn die Wahrscheinlichkeit, dass sie an einem beliebigen Locus herkunftsgleiche Allele (IBD) aufweisen, > 0 ist.
- **Verwandtschaftsgrad** *a_{xy}* beschreibt die mittlere Wahrscheinlichkeit über alle Loci, dass diese IBD sind
- lacktriangle Allgemeine Berechnung des Verwandtschaftsgrades a_{xy} zwischen Tieren x und y

$$a_{xy} = \sum_{Pf \in J_2} \left(\frac{1}{2}\right)^{t_1 + t_2} (1 + F_Z)$$

wobei \sum_{Pfade} die Summe über alle Pfade im Pedigree meint, t_1 und t_2 die Anzahl Generationen von x und y zum gemeinsamen Ahnen Z und F_Z den Inzuchtgrad von Z

Inzucht

- Tier x ist ingezüchtet, falls seine Eltern M_x und V_x verwandt sind miteinander
- Inzucht beschreibt, ob in einem Tier x an einem beliebigen Locus herkunftsgleiche Allele vorliegen
- Sind Allele IBD, dann müssen sie Kopien vom gleichen Ahnenallel sein.
- Berechnung des Inzuchtgrades für das Tier x

$$F_{X} = \frac{1}{2} a_{M_{X},V_{X}} = \frac{1}{2} \sum_{Pfodo} \left(\frac{1}{2}\right)^{t_{1}+t_{2}} (1+F_{Z}) = \sum_{Pfodo} \left(\frac{1}{2}\right)^{t_{1}+t_{2}+1} (1+F_{Z})$$

Matrixmethode

Zur Berechnung der Verwandtschaftsgrade und der Inzuchtgrade wurde folgende Methode entwickelt

- Tiere dem Alter nach von links nach rechts in einer symmetrischen Matrix anordnen
- Oberhalb jedes Tieres werden Eltern angefügt
- Ausfüllen der Matrix getrennt nach Diagonalelementen und anderen
 - Diagonalelemente: $1 + F_x$
 - Off-Diagonal Elemente: $a_{xy} = \frac{1}{2}(a_{x,M_v} + a_{x,V_v})$

Beispielpedigree

