# Aula 4 CÁLCULO 3

Eber Vizarreta

**UABJ-UFRPE** 



# Conteúdo

- 1 Trabalho
- 2 Integral de linha de um campo vetorial
- 3 Exercícios
- 4 Integral de escoamento e circulação

# Definição

Seja D um subconjunto de  $\mathbb{R}^3$ . Um **campo vetorial** em  $\mathbb{R}^3$  é uma função  $\overrightarrow{F}:D\to\mathbb{R}^3$ , isto é, para cada ponto  $(x,y,z)\in D$  é associado um vetor tridimensional  $\overrightarrow{F}(x,y,z)$ .

# Definição

Seja D um subconjunto de  $\mathbb{R}^3$ . Um **campo vetorial** em  $\mathbb{R}^3$  é uma função  $\overrightarrow{F}:D\to\mathbb{R}^3$ , isto é, para cada ponto  $(x,y,z)\in D$  é associado um vetor tridimensional  $\overrightarrow{F}(x,y,z)$ .

Assim,

$$\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j} = \langle P(x,y), Q(x,y) \rangle$$

$$\vec{F}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$$

$$= \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$$



Figure: Campo vetorial  $\vec{F}(x,y) = \langle x,y \rangle$ 



Figure: Campo vetorial  $\vec{F}(x,y) = \langle -y,x \rangle$ 



Figure: Campo vetorial  $\vec{F}(x, y, z) = \langle z, y, x \rangle$ 

### **Problema:**

Como calcular o trabalho exercido por uma força  $\overrightarrow{F}(x,y,z)$  ao mover uma partícula ao longo de uma curva lisa C parametrizada por  $\overrightarrow{r}(t),\ t\in[a,b]$ ?

#### **Problema:**

Integral de linha de um campo vetorial

Como calcular o trabalho exercido por uma força  $\overrightarrow{F}(x, y, z)$  ao mover uma partícula ao longo de uma curva lisa C parametrizada por  $\overrightarrow{r}(t), t \in [a, b]$ ?

Se  $\overrightarrow{F}$  for uma força constante agindo sobre um objeto que se desloca em linha reta de P a Q, então o trabalho realizado pela forca  $\overrightarrow{F}$  é definido como

$$W = \left( \left\| \overrightarrow{F} \right\| \cos \theta \right) \left( \left\| \overrightarrow{d} \right\| \right) = \overrightarrow{F} \cdot \overrightarrow{d}$$



Seja  $\vec{F}(x,y,z)$  um campo de força contínuo. Vamos dividir o intervalo [a,b] em subintervalos de igual tamanho  $a=t_0 < t_1 < \cdots < t_{n-1} < t_n = b$  e, portanto, a curva C é dividido em subarcos  $P_{i-1}P_i$  de comprimento  $\Delta s_i$ .

Seja  $\overrightarrow{F}(x,y,z)$  um campo de força contínuo. Vamos dividir o intervalo [a,b] em subintervalos de igual tamanho  $a=t_0 < t_1 < \cdots < t_{n-1} < t_n = b$  e, portanto, a curva C é dividido em subarcos  $P_{i-1}P_i$  de comprimento  $\Delta s_i$ .

Escolhemos  $P_i^* = (x_i^*, y_i^*, z_i^*)$  no i-ésimo subarco correspondente a  $t_i^* \in [t_{i-1}, t_i]$ . Se  $\Delta s_i$  é pequeno, o movimento da partícula de  $P_{i-1}$  a  $P_i$  na curva ocorre aproximadamente na direção de  $\overrightarrow{T}(t_i^*)$ , vetor tangente unitário à curva C em  $P_i^*$ , e então o trabalho feito por  $\overrightarrow{F}$  para mover a partícula de  $P_{i-1}$  a  $P_i$  é aproximadamente

$$\left[\overrightarrow{F}(x_i^*, y_i^*, z_i^*) \cdot \overrightarrow{T}(t_i^*)\right] \Delta s_i$$

e o trabalho total executado para mover a partícula ao longo de  $\it C$  é aproximadamente

$$\sum_{i=1}^{n} \left[ \vec{F}(x_i^*, y_i^*, z_i^*) \cdot \vec{T}(t_i^*) \right] \Delta s_i$$

As aproximações melhoram à medida que *n* aumenta.

Integral de linha de um campo vetorial

### Definicão

O trabalho W feito pela força continua  $\vec{F}(x,y,z)$  ao mover uma partícula ao longo de uma curva C parametrizada por  $\vec{r}(t)$ ,  $t \in [a, b]$ é definida por

$$W = \int_{C} \vec{F} \cdot \vec{T} ds = \int_{C} \vec{F}(x, y, z) \cdot \vec{T}(x, y, z) ds$$
$$= \int_{a}^{b} \left( \vec{F}(\vec{r}(t)) \cdot \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} \right) \|\vec{r}'(t)\| dt = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

isto é, o trabalho é a integral em relação ao comprimento do arco da componente tangencial da força.

Isso motiva a definição da integral de linha de um campo vetorial.

### Definição

Seja  $\overrightarrow{F}$  um campo vetorial continuo definido sobre uma curva lisa C parametrizada por  $\overrightarrow{r}$ ,  $t \in [a,b]$ . A integral de linha de  $\overrightarrow{F}$  ao longo de C é

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \vec{F} \cdot \vec{T} \, ds = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

Seja 
$$\overrightarrow{F} = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$$
 e
$$\overrightarrow{r}(t) = \langle x(t), y(t), z(t) \rangle, \text{ então } \int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} \text{ é}$$

$$= \int_{a}^{b} \langle P(\overrightarrow{r}(t)), Q(\overrightarrow{r}(t)), R(\overrightarrow{r}(t)) \rangle \cdot \langle x'(t), y'(t), z'(t) \rangle dt$$

$$= \int_{a}^{b} \left[ P(\overrightarrow{r}(t))x'(t) + Q(\overrightarrow{r}'(t))y'(t) + R(\overrightarrow{r}(t))z'(t) \right] dt$$

$$= \int_{C} P dx + Q dy + R dz$$

### Exemplo

Determine o trabalho feito pela força  $\vec{F}(x,y) = \langle x^2, -xy \rangle$  agindo sobre uma partícula se deslocando ao longo de  $\vec{r}(t) = \langle \cos t, \sin t \rangle$ ,  $0 \le t \le \frac{\pi}{2}$ .

# Solução:

### Exemplo

Determine o trabalho feito pela força  $\vec{F}(x,y) = \langle x^2, -xy \rangle$  agindo sobre uma partícula se deslocando ao longo de  $\vec{r}(t) = \langle \cos t, \sin t \rangle$ ,  $0 \le t \le \frac{\pi}{2}$ .

Solução: Temos

$$W = \int_C \vec{F} \cdot d\vec{r} = \int_0^{\pi/2} \vec{F}(x(t), y(t)) \cdot \vec{r}'(t) dt$$

$$= \int_0^{\pi/2} \langle \cos^2 t, -\cos t \sec t \rangle \cdot \langle -\sec t, \cos t \rangle dt$$

$$= -\int_0^{\pi/2} 2 \sec t \cos^2 t dt = 2 \int_0^1 u^2 du = 2 \left[ \frac{u^3}{3} \right]_0^1 = -\frac{2}{3}$$



Figure: O trabalho W é negativo pois o campo de força impede o movimento ao longo da curva

Se -C denota a curva parametrizada C com sentido oposto, então  $\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}$ 

Se -C denota a curva parametrizada C com sentido oposto, então  $\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}$ 

## Exemplo

Determine  $\int_C \vec{F} \cdot d\vec{r}$ , onde  $\vec{F} = \langle xy, yz, xz \rangle$  e C é parametrizada por  $x = t, \ y = t^2, \ z = t^3, \ 0 \le t \le 1$ .

Se -C denota a curva parametrizada C com sentido oposto, então  $\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}$ 

## Exemplo

Determine  $\int_C \vec{F} \cdot d\vec{r}$ , onde  $\vec{F} = \langle xy, yz, xz \rangle$  e C é parametrizada por  $x = t, \ y = t^2, \ z = t^3, \ 0 \le t \le 1$ .

Solução:

Se -C denota a curva parametrizada C com sentido oposto, então  $\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}$ 

## Exemplo

Determine  $\int_C \vec{F} \cdot d\vec{r}$ , onde  $\vec{F} = \langle xy, yz, xz \rangle$  e C é parametrizada por  $x = t, \ y = t^2, \ z = t^3, \ 0 \le t \le 1$ .

**Solução:** Temos  $\int_C \vec{F} \cdot d\vec{r}$  é

$$= \int_0^1 \vec{F}(x(t), y(t), z(t)) \cdot \vec{r}'(t) dt = \int_0^1 \langle t^3, t^5, t^4 \rangle \cdot \langle 1, 2t, 3t^2 \rangle dt$$
$$= \int_0^1 (t^3 + 5t^6) dt = \frac{1}{4} + \frac{5}{7} = \frac{27}{28}.$$

### Exemplo

Seja 
$$\overrightarrow{F}(x,y) = \left\langle \frac{-y^3}{(x^2+y^2)^2}, \frac{xy^2}{(x^2+y^2)^2} \right\rangle$$
. Calcule  $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ , onde  $C$  é a circunferência  $x^2+y^2=R^2$  orientada no sentido anti-horário. **Solução:**

## Exemplo

Seja 
$$\vec{F}(x,y) = \left\langle \frac{-y^3}{(x^2 + y^2)^2}, \frac{xy^2}{(x^2 + y^2)^2} \right\rangle$$
. Calcule  $\int_C \vec{F} \cdot d\vec{r}$ , onde  $C$  é a circunferência  $x^2 + y^2 = R^2$  orientada no sentido anti-horário.

**Solução:** A curva C é parametrizada por  $\overrightarrow{r}(t) = \langle R \cos t, R \sin t \rangle$ ,  $t \in [0, 2\pi]$ . Logo,

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} \left\langle -\frac{R^{3} \operatorname{sen}^{3} t}{R^{4}}, \frac{R^{3} \cos t \operatorname{sen}^{2} t}{R^{4}} \right\rangle \cdot \left\langle -R \operatorname{sen} t, R \cos t \right\rangle dt$$

$$= \int_{0}^{2\pi} \left( \operatorname{sen}^{4} t + \cos^{2} t \operatorname{sen}^{2} t \right) dt = \int_{0}^{2\pi} \operatorname{sen}^{2} t dt$$

$$= \int_{0}^{2\pi} \frac{1 - \cos(2t)}{2} dt = \pi - \frac{1}{2} \int_{0}^{2\pi} \cos(2t) dt = \pi.$$

Se  $C=C_1\cup C_2\cup\cdots\cup C_n$  é uma curva lisa por partes então

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C_{1}} \overrightarrow{F} \cdot d\overrightarrow{r} + \int_{C_{2}} \overrightarrow{F} \cdot d\overrightarrow{r} + \dots + \int_{C_{n}} \overrightarrow{F} \cdot d\overrightarrow{r}$$

Se  $C = C_1 \cup C_2 \cup \cdots \cup C_n$  é uma curva lisa por partes então

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C_{1}} \vec{F} \cdot d\vec{r} + \int_{C_{2}} \vec{F} \cdot d\vec{r} + \dots + \int_{C_{n}} \vec{F} \cdot d\vec{r}$$

### Exemplo

Seja  $\vec{F}(x,y) = \langle x^2, xy \rangle$  e C o quadrado de vértices (0,0), (1,0), (1,1) e (0,1) percorrido no sentido anti-horário. Calcule  $\int_C \vec{F} \cdot d\vec{r}$ .

**Solução**: Temos que  $C = C_1 \cup C_2 \cup C_3 \cup C_4$  onde

$$C_1 = \{(t,0): 0 \le t \le 1\};$$
  $C_2 = \{(1,t): 0 \le t \le 1\};$   $C_3 = \{(1-t,1): 0 \le t \le 1\};$   $C_4 = \{(0,1-t): 0 \le t \le 1\};$ 

Logo,

$$\begin{split} \int_{C_1} \vec{F} \cdot d\vec{r} &= \int_0^1 \left\langle t^2, 0 \right\rangle \cdot \left\langle 1, 0 \right\rangle dt = \int_0^1 t^2 dt = \frac{1}{3} \\ \int_{C_2} \vec{F} \cdot d\vec{r} &= \int_0^1 \left\langle 1, t \right\rangle \cdot \left\langle 0, 1 \right\rangle dt = \int_0^1 t \ dt = \frac{1}{2} \\ \int_{C_3} \vec{F} \cdot d\vec{r} &= \int_0^1 \left\langle (1 - t)^2, 1 - t \right\rangle \cdot \left\langle -1, 0 \right\rangle dt = -\int_0^1 (1 - t)^2 dt \\ &= -\frac{1}{3}. \\ \int_{C_4} \vec{F} \cdot d\vec{r} &= \int_0^1 \left\langle 0, 0 \right\rangle \cdot \left\langle 0, -1 \right\rangle dt = 0 \end{split}$$
 Portanto, 
$$\int_C \vec{F} \cdot d\vec{r} = \frac{1}{2}.$$

Eber Vizarreta

Determine o trabalho realizado pelo campo de força  $\overrightarrow{F}$  em uma partícula que se move sobre a curva C

- $\overrightarrow{F}(x,y) = \langle x, y+2 \rangle, C \text{ \'e parametrizada por } \overrightarrow{r}(t) = \langle t-\operatorname{sen} t, 1-\cos t \rangle, 0 \leq t \leq 2\pi$
- 2  $\vec{F}(x,y) = \langle x \operatorname{sen} y, y \rangle$ , C é o arco da parábola  $y = x^2$  de (-1,1) a (2,4)
- $\vec{F}(x,y,z) = \langle y+z, x+z, x+y \rangle, C \text{ \'e o segmento de reta de}$  (1,0,0) a (3,4,2)
- 4  $\vec{F}(x,y) = \langle e^{x-1}, xy \rangle$ , C é dada por  $\vec{r}(t) = \langle t^2, t^3 \rangle$ ,  $0 \le t \le 1$ .
- 5  $\vec{F}(x,y,z) = \langle z^3, yz, x \rangle$ , C é a circunferência de raio 2 no plano yz centrado na origem com orientação horária quando visto do eixo x positivo.

Suponha que uma partícula se mova através do campo de forças  $\overrightarrow{F}(x,y) = \langle xy, x-y \rangle$  do ponto (0,0) para o ponto (1,0), ao longo da curva  $x=t,\ y=\lambda t(1-t)$ . Com qual valor de  $\lambda$  o trabalho realizado pelo campo de forças será igual a 1?

#### Exercício

Calcule  $\int_C \vec{F} \cdot d\vec{r}$ , onde C é parametrizada por  $\vec{r}$ .

$$\overrightarrow{F}(x,y) = \langle xy, 3y^2 \rangle, \overrightarrow{r}(t) = \langle 11t^4, t^3 \rangle, 0 \le t \le 1$$

$$\overrightarrow{F}(x,y,z) = \langle x+y,y-z,z^2 \rangle, \ \overrightarrow{r}(t) = \langle t^2,t^3,t^2 \rangle, \ 0 \le t \le 1$$

$$\overrightarrow{F}(x,y,z) = \langle \operatorname{sen} x, \operatorname{cos} y, xz \rangle, \ \overrightarrow{r}(t) = \langle t^3, -t^2, t \rangle, \ 0 \le t \le 1$$

$$\overrightarrow{F}(x,y,z) = \langle z,y,-x\rangle\,, \ \overrightarrow{r}(t) = \langle t,\operatorname{sen} t,\cos t\rangle\,,\,0 \leq t \leq \pi.$$

Calcule o trabalho realizado pelo campo de forças  $\overrightarrow{F}(x,y) = \left\langle \frac{1}{x^2+y^2}, \frac{4}{x^2+y^2} \right\rangle$  em uma partícula que se move ao longo de cada curva C mostrada nas seguintes figuras





Calcule a integral  $\int_{-C} \frac{x \, dy - y \, dx}{x^2 + y^2}$ , onde C é uma circunferência  $x^2 + y^2 = a^2$  percorrido no sentido anti-horário.

#### Exercício

Calcule a integral  $\int_C y \, dx + z \, dy - x \, dz$  para C em cada caso:

- **1** A cúbica torcida x = t,  $y = t^2$ ,  $z = t^3$  de (0,0,0) até (1,1,1).
- **2** A hélice  $x = \cos(\pi t)$ ,  $y = \sin(\pi t)$ , z = t de (1,0,0) até (-1,0,1)

Suponha que  $\vec{F}(x,y,z)$  represente o campo de velocidades de um fluido em estado estacionário (a velocidade em um ponto fixado não varia com o tempo) escoando por uma região no espaço.

#### Definição

Se  $\vec{r}(t)$  parametriza uma curva lisa C no domínio de um campo de velocidade contínuo  $\vec{F}$ . O **escoamento** ao longo da curva C entre  $A = \vec{r}(a)$  e  $B = \vec{r}(b)$  é

$$\int_{C} \vec{F} \cdot \vec{T} \, ds \tag{1}$$

A integral também é conhecida como integral de escoamento. Se a curva C for fechada, o escoamento é denominado **circulação** ao redor da curva.

# Fluxo através uma curva plana

Para encontrar a taxa na qual um fluido está entrando ou saindo de uma região delimitada por uma curva lisa e fechada simples C no plano xy, calculamos a integral de linha sobre C de  $\overrightarrow{F} \cdot \overrightarrow{n}$ , a componente normal do campo de velocidade na direção do vetor normal exterior da curva.

# Fluxo através uma curva plana

Para encontrar a taxa na qual um fluido está entrando ou saindo de uma região delimitada por uma curva lisa e fechada simples C no plano xy, calculamos a integral de linha sobre C de  $\overrightarrow{F} \cdot \overrightarrow{n}$ , a componente normal do campo de velocidade na direção do vetor normal exterior da curva.

### Definição

Seja C uma curva lisa, fechada e simples no domínio de um campo vetorial no plano e seja  $\vec{n}$  for o vetor normal unitário exterior de C. O **fluxo** de  $\vec{F} = \langle P(x,y), Q(x,y) \rangle$  através de C é

$$\int_{C} \vec{F} \cdot \vec{n} \, ds$$

# Exemplo

Encontre o fluxo de  $\overrightarrow{F}=\langle x-y,x\rangle$  através da circunferência  $x^2+y^2=1$  no plano xy.

Solução:

### Exemplo

Encontre o fluxo de  $\overrightarrow{F}=\langle x-y,x\rangle$  através da circunferência  $x^2+y^2=1$  no plano xy.

**Solução**: A circunferência é parametrizada por  $\vec{r}(t) = \langle \cos t, \sin t \rangle$ ,  $0 \le t \le 2\pi$  e é percorrida no sentido anti-horário. Neste caso,  $\vec{n} = \langle \cos t, \sin t \rangle$ . Então, o fluxo através da circunferência é

$$\int_{C} \vec{F} \cdot \vec{n} \, ds = \int_{0}^{2\pi} \langle \cos t - \sin t, \cos t \rangle \cdot \langle \cos t, \sin t \rangle \, dt$$

$$= \int_{0}^{2\pi} \left( \cos^{2} t - \sin t \cos t \sin^{2} t + \cos t \sin t \right), dt$$

$$= \int_{0}^{2\pi} \cos^{2} t \, dt = \pi.$$