WHAT IS CLAIMED IS:

1	1. A beverage container, comprising:		
2	a vessel having an interior that is adapted to hold a beverage, wherein the		
3	vessel has a closed bottom end and an open top end, and wherein the bottom end defines a		
4	cavity that is fluidly sealed from the interior of the vessel;		
5	a cooling element that is configured to be coupled to the vessel and to fit		
6	within the cavity; and		
7	a base comprising a bottom member and a stem extending vertically upward		
8	from the bottom member, wherein the base includes a connector that is configured to be		
9	coupled to the cooling element.		
1	2. A container as in claim 1, wherein the connector comprises a threaded		
2	end on the stem, wherein the cooling element includes a threaded section, and wherein the		
3	threaded end on the stem is configured to be screwed into the threaded section of the cooling		
4	element.		
1	3. A container as in claim 2, wherein the threaded section of the cooling		
2	element has threads, and wherein an angle defined by the threads is about 65 degrees to about		
3	75 degrees.		
1	4. A container as in claim 2, wherein the cooling element also includes a		
2	threaded section, wherein the vessel includes a threaded section at the bottom end, and		
3	wherein the threaded section of the cooling element is configured to be screwed into the		
4	threaded section of the vessel.		
1	5. A container as in claim 4, wherein the threaded section of the cooling		
2	element has threads, and wherein an angle defined by the threads is about 45 degrees to about		
3	90 degrees.		
1	6. A container as in claim 4, wherein the base and the vessel are		
2	constructed of glass, and wherein the cooling element is constructed of a material that is		
3	different from glass.		
1	7. A container as in claim 6, wherein the cooling element is constructed		
2	of an acrylic		

1	8. A co	ontainer as in claim 7, wherein the acrylic has a durometer of about	
2	30 to about 40.		
1	9. A co	ontainer as in claim 1, wherein the base and the vessel are	
2	constructed of a material selected from a group consisting of glass, plastics and acrylics.		
1	10. A co	ontainer as in claim 1, wherein the vessel has a shape selected from	
2	a group consisting of a mug, a regular wine glass, a red wine glass, a white wine glass, a		
3	martini glass, a tumbler, a stein glass, a margarita glass, a brandy snifter, a water glass, a beer		
4	glass and a champagne glass.		
1	11. A co	ontainer as in claim 2, wherein the cooling element has a bottom	
2	end and a top end, and wherein the bottom end tapers inward and mates with a mating taper		
3	on the base.		
J	on the base.		
1	12. A co	ontainer as in claim 11, wherein the top end of the cooling element	
2	is generally hemispherical in geometry.		
,	12		
1		ontainer as in claim 12, wherein the bottom end of the vessel	
2	includes a generally hemis	pherical surface that partially defines the interior of the vessel.	
1	14. A b	everage container kit comprising:	
2	a vessel having an interior that is adapted to hold a beverage, wherein the		
3	vessel has a closed bottom end and an open top end, and wherein the bottom end defines a		
4	cavity that is fluidly sealed from the interior of the vessel;		
5	a cooling element that is configured to be coupled to the vessel and to fit		
6	within the cavity;		
7	a base comprising a bottom member and a stem extending vertically upward		
8	from the bottom member, wherein the base includes a connector that is configured to be		
9	coupled to the cooling element; and		
10	a tray having a plurality of holding regions for holding cooling elements,		
11	whereby the tray may be placed in a freezer to cool the cooling elements.		
1	15. A k	it as in claim 14, wherein the tray includes a plurality of recesses	
-	15. 11 K		

integrally formed in the tray to define the holding regions.

- 1 16. A kit as in claim 15, wherein the recesses are in a shape selected from 2 a group consisting of semi-cylindrical, ice cube shaped, pyramidal and semi-spherical.
 - 17. A kit as in claim 14, wherein the base further comprises a bottom member and a stem extending vertically upward from the bottom member.

1

2

- 1 18. A kit as in claim 17, wherein the connector comprises a threaded end 2 on the stem, wherein the cooling element includes a threaded section, and wherein the 3 threaded end on the stem is configured to be screwed into the threaded section of the cooling 4 element.
- 1 19. A kit as in claim 18, wherein the cooling element also includes a threaded section, wherein the vessel includes a threaded section at the bottom end, and wherein the threaded section of the cooling element is configured to be screwed into the threaded section of the vessel.