

Lumaria

SuperLife Saving Lives
March 2024

Table of Contents

EXECUTIVE SUMMARY	3
1. OBJECTIVES	3
1.1 BACKGROUND	3
1.2 OBJECTIVES	
1.3 PROGRAM METRICS	
2. PRODUCT DESIGN	4
2.1 SMOKING CESSATION PROGRAM	4
2.2 ANNUAL HEALTH SCREENINGS	
2.3 ACTIVE AGEING	
2.4 FITNESS TRACKING PROGRAM	
3 PRICING/COSTS	7
3.1 MORTALITY SAVINGS	7
3.2 ECONOMIC VALUE OF PROPOSED PROGRAM	
3.3 PRICING CHANGES	
4. ASSUMPTIONS	9
4.1 MORTALITY ASSUMPTIONS	9
4.2 PRICING MODEL ASSUMPTIONS	
5. RISK AND RISK MITIGATION CONSIDERATIONS	
6. DATA AND DATA LIMITATIONS	12
7. FINAL RECOMMENDATIONS & CONCLUSION	12
8 APPENDIX	13
8.1 Product Design	13
8.1.1 Smoking Cessation.	
8.1.2 Annual Health Screenings	
8.1.3 Active Ageing	
8.1.4 Fitness Tracking	
8.2 Pricing/Costs	
8.2.1 Mortality table	
8.2.2 Loading Factors Methodology	
8.2.3 Mortality difference (Baseline vs Incentive)	
8.2.4 Pricing Calculations	21
8.2.5 Single Premium Whole Life Insurance Model	
8.2.6 20 Year Term Life Insurance Model	
8.2.7 R Code	
8.3 ASSUMPTIONS	
8.3.1 Pricing Model Assumptions	44
REFERENCES	46

Executive Summary

Actualnsight, an actuarial consulting firm, has been engaged by SuperLife, a life insurance agency, to enhance its policyholders' expected mortality. In response, our team has devised four incentive programs: a smoking cessation program, annual health screenings, an active aging initiative, and a fitness tracking program. The primary objectives of these programs are to incentivize healthy behaviours, decrease expected mortality, increase sales, improve marketability, and add economic value to SuperLife.

The proposed program design is rooted in data analysis at the policyholder level, ensuring tailored interventions for maximum effectiveness. Short-term and long-term evaluations have been delineated for each incentive to gauge program efficacy, participant engagement, and health outcomes over time.

Mortality rates were calculated for four cohorts: male smokers, male non-smokers, female smokers, and female non-smokers, providing essential insights for premium determination. Premium calculations were executed in R, followed by financial modelling in Excel.

Risk and risk mitigation considerations have been intricately woven into the report to proactively address potential challenges and uncertainties. Given the inherent limitations and uncertainties of the data, various assumptions were made based on internal data and supplementary research, with detailed rationale and analysis provided in the Appendix. These measures ensure a robust and resilient program implementation strategy.

1. Objectives

1.1 Background

The proposed targeted health incentives in SuperLife's life insurance policies are designed to ensure that SuperLife's policyholders have an improved expected mortality after the policyholder has purchased a life insurance policy. The health interventions/incentives aim to increase healthy behaviours through participation, decrease expected mortality and add economic value to SuperLife through improved marketability and competitiveness as that would increase sales of their long-term life insurance products. More details are below:

1.2 Objectives

A) Incentivise healthy behaviours through the product design.

- Smoking Cessation Program
- Annual Health Screenings (includes Heart Health, Lung Health, and Cancer Prevention Initiatives)
- Active Ageing
- Fitness Tracking Program
- Decrease expected mortality rates.
- Healthy behaviours from incentives should lead to lower mortality rates.
- Increased healthy behaviours leads to reductions in policyholder mortality
- Enhance product marketability and competitiveness.
- Promotion of health programs improves marketability.
- Decreased expected mortality rates would lead to more competitive premiums.
- B) Increase sales of life insurance policies.
 - Improvements in marketability and competitiveness should lead to increased sales of life insurance policies.
- C) Add economic value to SuperLife's offerings.
 - More policies imply more premiums and hence sustained profits in the long term.

1.3 Program Metrics

The program's success will be assessed using the following targets:

Incentive Participation Rates	Customer Satisfaction	Increases in SuperLife's
	Surveys	Economic Value
Claims Frequency	Policy Sales	Reduced Mortality Rates

2. Product Design

The primary objective of life insurance is to protect policyholders from the risk of premature death. The team at Actualnsight has carefully designed the following programs to ensure that SuperLife is not only covering policyholders from such risks but also to actively mitigate risk. The product design incorporates four primary interventions/incentives, meticulously derived from data-driven insights based on policyholder-level data analysis.

Due to the distinct nature of the two products offered by SuperLife, certain programs may be more applicable for either policy type. However, due to the unknown nature of applicability, the program intervention currently assumes equal effectiveness and participation across both policy types. This assumption is a key consideration in the Short Term and Long-Term monitoring processes.

2.1 Smoking Cessation Program

Cigarette smoking can have adverse impacts on the human body in the long term and opens avenues for multiple diseases that can be of great severity. According to the National Library of Medicine (2020), smoking causes a 70% increase in risk for adverse health conditions. This is evident in the data as the death rate for smokers is approximately 8x higher than non-smokers as seen in Figure 2.

SuperLife's Smoking Cessation Program will work with qualified professionals to help their policyholders quit smoking for the better. Research reports have demonstrated that smoking cessation improves well-being, including higher quality of life and improved health status. Smoking cessation reduces mortality as it lowers the risk of smoking-induced health complications (National Library of Medicine, 2020). The most common causes of death for smokers are diseases of the circulatory and respiratory system (86% of smoker deaths) as seen in Appendix Figure 4 while the most common causes of death for non-smokers are Neoplasms and external causes (60% of non-smoker deaths) as seen in Appendix Figure 5. It is evident that through a smoking cessation program, the likelihood of deaths due to diseases in the circulatory/respiratory system can be significantly reduced.

In terms of participation, it is estimated that 81% (*Tobacco in Australia, 2020*) of smokers in a developed country attempted to quit smoking. Considering behavioural bias and assuming a person who insures themselves from premature death would also take steps to reduce the risk, the 81% can be inflated. By providing an avenue within the policy such that the policyholders have access to free expert services, we believe this would incentivise policyholders to participate in the program. Quitting smoking has been proven to result in improved well-being and health status, allowing policyholders to live happier and longer lives (in expectation).

Policyholders who participate in the program will go through a structured approach, optimising their aim to quit smoking.

- Counselling from health professionals giving further reasons to quit that could be specific to the policyholder and their medical condition.
- Cessation medications (if required) to overcome the addiction.
- Continuous follow-up support to avoid relapse from a care team ensures efficiency and a coordinated care approach.

Finally, from SuperLife's perspective, currently, all smokers are classified as moderate to high risk in the Underwriting Classifications as seen in Figure 3 Underwriting Class Distribution by Smoking Class. Through the Smoking Cessation Program, SuperLife will be able to reduce their high frequency and high severity risks. This allows the program to be mutually beneficial, assisting both parties.

Short-Term and Long-Term Program Evaluations

- Short-term Evaluation (1-2 years): The program can be evaluated based on metrics such as attendance rates and reported smoking cessation rates, which would demonstrate effectiveness. This timeframe allows for assessing initial program effectiveness with data available on a potentially new cohort of policyholders and allows identification of any challenges and requirements based on stakeholder experience.
- Long-term Evaluation (5-7 years): Long-term evaluation is essential for measuring sustained behaviour change and its impact on mortality rates as they are assumed to be refreshed every 4 years. Tracking participants over a longer period allows for observing long-term smoking cessation outcomes and determining the program's overall effectiveness in reducing mortality associated with smoking-related illnesses.

2.2 Annual Health Screenings

Annual health screenings, particularly focusing on cardiovascular and oncological prevention, are pivotal in mitigating mortality rates. Empirical evidence underscores the efficacy of regular health screenings in reducing mortality. A study conducted on a Korean cohort (pg. 19-25, Preventative Medicine, 2015) observed a marked decrease in all-cause mortality and cardiovascular disease (CVD) rates among participants of regular health screenings. Notably, this study reported an increased detection rate of CVD-related conditions and a subsequent reduction in long-term healthcare utilisation and costs, an objective of SuperLife.

SuperLife's Annual Health Examination Program aims to collaborate with healthcare facilities to offer comprehensive screenings, assessment, and risk stratification. This initiative focuses on early detection of neoplasms (both benign and malignant), and conditions related to the circulatory and respiratory systems, among other non-lethal health issues. These conditions are among the leading causes of fatality in the data presented in Figure 4 and Figure 5, and approximately 63% of policyholders who died from the above conditions are situated in the moderate to high-risk bracket. By facilitating early-stage intervention, the program aims to prevent the progression of these diseases.

An integral component of the initiative is to offer subsidised medical coverage for early-stage oncological interventions, emphasising the surgical removal of neoplastic growths to halt their progression and thereby significantly enhance patient survival rates, as depicted in the American Journal of Managed Care (2019).

Furthermore, the program enriches patient care with follow-up check-ups and a suite of support services, including disease abstinence programs. This initiative is critical for enhancing treatment plan adherence, fostering healthier lifestyles, and improving the overall quality of life for participants.

Policyholders who participate in this program will have access to the following incentives:

- Affordable Health Screenings: The program aims to overcome economic barriers and the impact of the COVID-19 pandemic on medical systems, ensuring widespread access to crucial health services.
- Comprehensive Screening Facilities: Offering wide-ranging disease and risk factor screenings, the program supports early health issue detection through a holistic assessment approach, aimed at preventing and managing health conditions effectively.

• Enhanced Longevity through Early Detection: Focused on early detection, intervention, and preventive measures, the program aims to improve quality of life, individual health status and extend life expectancy by reducing the risk of disease progression and mortality.

Short-Term and Long-Term Program Evaluations

- Short-Term Evaluations (1-3 Years): Within the initial 1 to 3 years, the focus would be on metrics like participation rates, satisfaction surveys and early detection rates that can provide immediate feedback on the program's operational effectiveness and its early impact on participant health behaviours. This is critical for identifying areas of success and opportunities for improvement in the program's design and delivery. See Appendix 8.1.2 Annual Health Screenings for further details.
- Long-Term Evaluations (6-8 Years): Over a longer horizon of 6 to 8 years, the evaluation shifts towards assessing the program's overarching goal of reducing mortality and morbidity rates among participants, healthcare utilisation and cost analysis, the broader health behaviour changes at the population level and monitoring prevalence of conditions detected through the program's screenings. See Appendix 8.1.2 Annual Health Screenings for further details.

2.3 Active Ageing

During the later phases of life, it is imperative to remain active as it keeps one physically and mentally fit. Regular exercise has also shown to reduce the probability of a person contracting cardiovascular diseases by 60-70%. Furthermore, regular exercise has also assisted in lowering the risk of cancer due to the regulation of hormones like insulin which implies a reduced exposure to potential carcinogens.

From the explanatory analysis it was found that the top three causes of death for policyholder's aged 55 and over were: Neoplasms (potentially cancerous) (36%), Diseases of the Circulatory System (32%) and Diseases of the Respiratory System (8%) as seen in Figure 6. These deaths also account for approximately two-thirds of all deaths.

Further analysis has also shown that almost two-thirds of the policies were issued for policyholders between the ages of 35 and 55, as shown in Figure 7. As such, it was realised that the introduction of an Active Ageing Program will be able to transition majority (assuming high participation) of the policyholders into lower risk classes as they age and surpass the age of 55. Resultantly, the mortality is expected to decline by proactively mitigating or averting the predominant causes of mortality among the aging demographic, thereby extending life expectancy significantly.

Active ageing programs not only promote physical activity but also increase social engagement and mental stimulation. Given the demographic of Lumaria where approximately 90% of the population works in the industry or services sector it is assumed that a program like active ageing will have high perceived benefits and thus a high level of participation within both the rural and urban demographic.

The programs key features would include:

- Voluntary participation through registrations for free/subsidised classes with industry partners and government organisations. This allows of rural and urban availability.
- An emphasis on physical activity, active learning and supportive environments facilitating positive attitudes and wellbeing.
- Promotion of health, maintenance, and independence through learning within the classes.

Overall, these program features would allow the ageing policyholders to be physically fit and aware of their bodies. This would tie in with the healthcare program that SuperLife would offer based on our advice creating a holistic system of healthcare.

Monitoring the effectiveness of the program would require an assessment of various metrics and outcomes in both the short term and the long term.

Short-Term (6 months - 1 year): In the short-term SuperLife should investigate the participation rates and how actively policyholders are enrolling for the program. Additionally, utilising the annual healthcare program offered simultaneously would allow SuperLife to assess any immediate benefits in policyholder health. Surveys are to be conducted to measure policyholder satisfaction with program features, allowing for adjustments to be made.

Long Term (>1 Year): In the long term it would be important for SuperLife to assess the exact health outcomes by looking at potential improvements in parameters like fitness levels, and chronic disease risks. Additionally, a strong part of the program is to improve policyholder wellbeing and thus it would be important to monitor and measure perceived wellbeing improvements. Finally, risk reduction, cost savings and retention rates are important factors to evaluate program effectiveness.

2.4 Fitness Tracking Program

The relative risk of death is approximately 20-35% lower for people who are physically active and fit compared to sedentary people (*National Library of Medicine, 2012*). As such, the final incentive that is part of the program design is the fitness tracking program which will provide rewards for policyholders using fitness trackers to monitor and improve physical activity. The program primarily aims to reach out to the current/future young demographic of Lumaria and incentivise healthy behaviours using technology. Additionally, the program allows both the urban and rural populations to stay healthy and get rewarded at their own ease.

Some key features of the program include:

- Policyholders who participate will have to provide SuperLife access to their health data through their personal devices.
 - Would include metrics like physical activity (through exercise regime), heart rate and sleep cycle.
 - Such data will allow SuperLife to obtain a clear image of policyholder lifestyle and their likelihood of developing any adverse illness.
- Policyholders will be able to choose their goals and will be rewarded accordingly (relative to what their initial health status might be).
 - Currently, the rewarding system is consistent for all policyholders, however, this is planned to change post the initial monitoring phase.

Even though the program is designed for the younger generation, it was also found that approximately two-thirds of the population in each of Lumaria's regions are classified as living in an urban area (inforce data) as seen in Figure 8. As such, it is expected that the program is more effective in the urban areas where the likelihood of wearing/owning devices to track everyday health is assumed to be higher.

3 Pricing/Costs

3.1 Mortality Savings

From our mortality calculations, we observe a decline in the overall mortality rates for both males and females in the presence of incentives within the policy calculations, across all cohorts of smokers and non-smokers. This trend is illustrated in Appendix Table 5 wError!

Reference source not found.ith its methodology, which presents the mortality tables for both genders in both scenarios.

Table	1 · Average	mortality	savinos	for all	ages based	on scenarios	for SPWL
Indic	1. HIVEIUSE	mortante	Suvings 1	or an	uges ouseu	on seemanos	JUI DI II L

	- more every every survive of a more every						
Average Mortality saving (ages 1 to 120)							
MNS MS FNS FS							
Low Cost	- Č 26,307	- Č 96,681	- Č 15,455	- Č 61,072			
Average Cost - Č 14,780 - Č 95,594 - Č 12,778 - Č 60							
High Cost	- Č 7,912	- Č 94,887	- Č 11,185	- Č 60,464			

Table 2: Average mortality savings for all ages based on scenarios for T20

Average Mortality saving (ages 1 to 120)							
MNS MS FNS FS							
Low Cost	- Č 2,482.67	- Č 12,478.98	- Č 1,624.42	- Č 10,269.04			
Average Cost	- Č 2,494.60	- Č 12,277.19	- Č 1,642.62	- Č 10,029.02			
High Cost	- Č 2,498.87	- Č 12,052.69	- Č 1,652.72	- Č 9,771.81			

Error! Reference source not found. and Error! Reference source not found. illustrate the average mortality savings across all ages (1 to 120) based on four cohorts for T20 and WLI policies. For calculation details, see Appendix 8.2.3 Mortality difference (Baseline vs Incentive). Our model examines three distinct cost scenarios and juxtaposes the mortality savings with three corresponding cost profiles associated with the incentives: lower, average, and maximum costs derived from each implemented incentive within our policy framework.

While the values are negative, from the company's standpoint, these signify the savings accrued to policyholders due to program incentives. This is attributable to the following reasons:

- 1. Mortality saving through Pure Premiums: Decreases in mortality rates directly impact the pure premium component of our insurance policies. As policyholders enjoy extended lifespans, the associated mortality risk diminishes, prompting a downward adjustment in pure premium rates to reflect this reduced risk exposure. Lower mortality rates require smaller allocation of funds to cover potential payouts, and lead to more competitive pricing.
- 2. Mortality saving through Profit: Lower mortality rates have the potential to increase the profitability of insurance firms. The anticipation of fewer payouts due to prolonged policyholder lifespans enables the retention of a larger share of premium income as profit. Despite the apparent negativity in both profit figures, the introduction of incentives results in an overall profit increase. The negative profit metric is contingent upon various factors including investment returns, administrative overheads, and prevailing market competition.

3.2 Economic Value of Proposed Program

For the economic value of the proposed program into the future, we have looked at how policies will reduce the pure premium of SuperLife's insurance products and whether costs of the program will be able to be subsidized by the premiums.

We have projected ahead by 20 years, to 2043 and have considered the following factors:

- 1. Increases in number of policyholders: Analysing historical data on the yearly acquisition of new policyholders allows for the prediction of future growth in the total number of policyholders.
- 2. Changes to participation rates: It is expected that participation rates will increase as policyholders move to take advantage of the benefits that come with their policy and also allows us to stress test whether the programs are economically viable.
- **3. Different cost scenarios:** Three different scenarios have been examined, each with different assumptions regarding costs per policyholder.

On average pure premiums are found to be reduced by Č 9412 for WLI and Č 3186.55 for T20 policies. The expected reduction in premium due to the program intervention enables the adjustment of base premiums to cover program costs, whist still being lower than the original premium. Policyholders will experience a reduction in their premiums while also enjoying the benefits of the program.

Table 3: T20 and WLI New Premium + Costs Difference

	WLI	T20
Low Cost	Č 9066.56	Č 2842.17
Average Cost	Č 8443.82	Č 2220.76
High Cost	Č 7821.08	Č 1599.36

This analysis indicates that the value of policy benefits with the program surpasses the value of policy benefits without the program, demonstrating the economic viability of the design.

3.3 Pricing Changes

The following recommendations aim to optimise sales and policy value by implementing strategic pricing adjustments within the insurance company's financial model.

- 1. Profit Margin Assessment: Examine the current profit margin of our existing policies and pricing structure with the goal to identify where adjustment can be made to boost profitability while still staying competitive and retaining our valued customers. This can be done through the evaluation of the loss ratio of each policy by dividing incurred claims by earned premiums. If the loss ratio is higher than desired or expenses are excessive, then premiums might need to be increased to improve profitability.
- 2. Value-Based Pricing: Implementing value-based pricing methods involves aligning insurance policy premiums with the perceived value to customers, considering factors like coverage scope, service quality, brand reputation, and supplementary benefits. One way to do this is by estimating the price elasticity of demand. We can use econometric models like linear or log-linear regression, which analyse baseline premiums, sales data, and additional variables to project price elasticity of demand. This comprehensive approach enables informed pricing decisions, optimizing market performance by ensuring premiums accurately reflect customer value and drive policy sales.

4. Assumptions

The following mortality and model assumptions had the most significant impact on analysis as they directly affect the pricing and profitability of the program design.

4.1 Mortality Assumptions

Mortality analysis in Lumaria is essential in understanding policyholder characteristics and behaviours, enabling SuperLife to price products with precision, particularly in relation to sex and smoker status. Due to the inherent limitations of the available data which solely represents the base population of Lumaria, it was necessary to make assumptions that give insight into the diverse risk profiles associated with policyholders. By performing this analysis and recognising the impact of important risk factors, SuperLife can enhance its pricing strategy to adjust insurance products that align closely with policyholder needs whilst maintaining a competitive advantage.

Gender and smoking cohorts: For mortality modelling, policyholders are categorised into 4 cohorts to accurately capture mortality differences that arise due to the universal variables of sex and smoker status: Male Smokers, Male Non-Smokers, Female Smokers, Female Non-Smokers.

Age Bracketing: Individuals under the legal age of 18 are presumed non-smokers. During this period, the influence of sex on mortality is considered minimal, and all cohorts exhibit uniform base mortality rates from ages 0 to 17.

Mortality Loading Factors: From the ages of 18 onwards, each cohort is assigned a mortality loading factor, which when applied to the base population mortality at each age yields a new mortality rate. This factor reflects the differential impact of smoking and gender on mortality:

Cohort	Male Smokers	Female Smokers	Male Non-Smokers	Female Non-Smokers
Gender impact	1.52	0.91	1.52	0.91
Empirical estimation	4.08	10.12	0.697	0.74
Loading Factor	6.91	9.16	1.06	0.67

See Appendix 8.2.2 Loading Factors Methodology' for the Calculation.

- Uniform smoking intensity: All smokers in Lumaria exhibit a uniform level of smoking intensity, leading to a consistent adverse mortality impact among the smoking cohorts. This assumption allows smoking to be treated as a homogeneous risk factor, irrespective of individual smoking habits.
- **No Cohort Effects:** The mortality of individuals is not affected by factors relating to their circumstances (birth year, socio-economic status, region etc.).

4.2 Pricing Model Assumptions

The financial model for the Single Premium Whole Life Insurance (SPWL) and 20-Year Term Insurance products hinges on several pivotal assumptions.

- Lapse Rate: Assumed to be 0% for SPWL insurance as none of the SPWL policyholders in the in-force dataset lived through the duration of the policy. However, for the 20-year term policy, the lapse rate was computed based on each issue age and issue year. See Appendix 8.3.1 Pricing Model Assumptions for the formula utilised.
- **Death Benefit Amount:** The death benefit was calculated through a weighted average of the percentage of policyholders with the face value for both the 20-year term and SPWL policies. This was fixated to provide a conservative approach for the calculation of the profit.
- **Expense Loading:** The amount added to the premium to cover the insurer's expenses, calculated using the highest and lowest averages from the economy sheet.
- **Surrender Value:** For the SPWL insurance policy, we assumed there would be a surrender rate as some policyholders may want to withdraw from the insurance before the end of the policy and it was assumed to be the highest average percentage from the economy sheet. See Appendix 8.3.1 Pricing Model Assumptions for the formula utilised.

• Reserves:

- For the SPWL policy, the reserves were based on the probabilities of survival and death directly to ensure the reserves were an accurate representation of the scenario at hand. See Appendix 8.3.1 Pricing Model Assumptions for the formula utilised.
- O In the 20-year term policy, the reserves were calculated using the APRA and BASEL III frameworks. A loss ratio was fixated using multiple resources and reports available online, see Appendix 8.3.1 Pricing Model Assumptions for a snapshot of the calculation methodology and the formula utilised. It was decided to keep the reserves fixed for a conservative approach, across the model, despite the introductions of the incentives.

See Appendix 8.3.1 Pricing Model Assumptions for the remaining assumptions made.

5. Risk and Risk Mitigation Considerations

The most significant risks to the program are displayed in Figure 1 as a risk matrix. These risks arise from data limitations, uncertainty faced during mortality and program analysis, and projection of future claims cost.

		1 2 3 4 5
Risk	Explanation	Risk Mitigation
Assumption Risk	Foundational for modelling and ideally help simplify complex procedures. If they are incorrect, the model can produce inaccurate results, leading to poor decision making.	Follow the challenge, validate, review procedure regularly. Apply appropriate modelling techniques like: - Bayesian: update based on experience. This would assist in reducing uncertainty and improve accuracy of results Ensemble: allow for the usage of multiple models and combining them. Allows us to not rely on one single assumption.
Product Design Risk	SuperLife is looking to introduce new elements to their already existing long term life insurance products. There is a risk that the product might not be perceived beneficial, issues in management and potential obsolescence by going backwards rather than forwards.	SuperLife should look at testing the proposed changes through pilot testing and look at marketing and distribution channels to analyse market properly. Should also ensure the changes are drafted as desired in legal documents. Finally, have an implementation plan is in place to ensure product launch is well managed.
Pricing Risk	Pricing risk may occur when the expected claims, lapse rates, expenses and investments are inaccurately estimated. Could result in heavy financial losses.	Scenario Testing to identify impacts of each variable considered in pricing. Practicing this regularly would allow for monitoring and updating based on any deviations.
Underwriting Risk	Keeping required data to ensure that that SuperLife is only taking on risks they are capable of can be challenging and may lead to adverse selection.	Being a developed country, Government of Lumaria should allow SuperLife to access relevant health data through their universal healthcare system. This would allow a proper assessment for everyone.
Liquidity Risk	During a Black Swan event, such as a pandemic, SuperLife faces the risk of simultaneous claims surpassing reserves and capital, potentially destabilizing the company. Moreover, sudden withdrawals or surrenders by customers may occur if they perceive the insurer as financially vulnerable.	SuperLife should aim to maintain strong capital positions and ensure that they are conducting stress testing and cash flow projections on an ongoing basis. Furthermore, it would also be viable to ensure close management and optimal asset allocation to mitigate liquidity risk.

Interest rate	There is always a risk of discounting	This is mitigated using historical data to project
risk	our future premiums and payouts whilst	future interest rates. It would also be viable to
	pricing, as the future interest rate is not	use financial instruments like futures and
	certain.	forwards to hedge against the interest rate risk.
Moral	Participants inappropriately filing	Assumptions of program participation and
Hazard	claims and misuse of program features	effectiveness to be monitored during
	will inflate costs associated with the	implementation stages and adjusted
	program.	accordingly.

6. Data and Data Limitations

Data Limitation	Assumption	Justification
Lack of complete data	Assumed policyholders for both	Maximise data availability for more
availability for	policies have similar mortalities	accurate loading factors.
mortality tables (35 to	when finding loading factors from	Developed countries like USA and
65 for SPWL and 26 to	policyholder data. Usage of external	Australia are similar to Lumaria's in
55 for T20).	data from developed countries like	terms of operations and have been
	USA and Australia.	considered as ideal replacements.
Lumaria's pricing	It is assumed that policies can be	Legal in countries like Australia (base
regulations are	priced based on sex and smoking	location of Actualnsight), however, is a
unspecified, with no	status.	limitation since it is illegal in Europe
available guidelines.		(pricing based on gender).
No information on	Assumed that the program will make	Program impact and its incentives
competitors in the life	significant impact on existing	cannot be valued against competitors in
insurance market.	policyholders and incentivise	the existing life insurance market. This
	prospective clients to purchase	puts SuperLife at a strategic
	products.	disadvantage.
No data relating to	Assumptions related to the pricing	This data limitation reduces the
company expenses or	model, including expenses, reserves.	accuracy of pricing modelling.
existing capital.		

7. Final Recommendations & Conclusion

Actualnsight has found that through the implementation of our 4 incentive programs, a significant decrease in expected mortality can be achieved by encouraging healthier lifestyles. The reductions in mortality lead to lower pure premiums and allow SuperLife to cover the costs of the programs while still reducing the overall premiums for customers. This provides a competitive advantage for SuperLife and mutual benefits to them and their customers. Considerations with regards to potential risks and data limitations have also been addressed with potential methods to mitigate and deal with these issues. Additionally, Actualnsight has provided metrics for monitoring the effectiveness of these incentive programs into the future.

8 Appendix 8.1 Product Design

8.1.1 Smoking Cessation

Figure 2 Death Rates of Smokers and Non-Smokers by Region

Figure 3 Underwriting Class Distribution by Smoking Class

Figure 4 Distribution of Causes of Death All Smokers

Figure 5 Distribution of Causes of Death All Non-Smokers

8.1.2 Annual Health Screenings

Short-Term Evaluations (1-3 Years): Within the initial 1 to 3 years, the focus would be to receive immediate feedback on the program's operational effectiveness and its early impact on participant health behaviours. This is critical for identifying areas of success and opportunities for improvement in the program's design and delivery. The metrics that can be utilised include:

- Participation Rates: Measure the number of policyholders enrolling in and actively participating in the health screenings, indicating the program's accessibility and appeal to the target demographic.
- Satisfaction Surveys: Conduct periodic surveys among participants to gauge satisfaction with various aspects of the program. This will identify refinements needed to enhance user experience and engagement.
- Early Detection Rates: Analyse data on the early detection of conditions targeted by the program, particularly CVD, cancer, and respiratory conditions.

Long-Term Evaluations (6-8 Years): Over a longer horizon of 6 to 8 years, the evaluation shifts towards assessing the program's overarching goal of reducing mortality and morbidity rates among participants, as well as the broader health behaviour changes at the population level. The metrics that can be used include:

- Mortality and Morbidity Rates: Analysing mortality and morbidity rates among participants, focusing on conditions targeted by the health screenings and baseline comparisons.
- **Healthcare Utilisation and Cost Analysis:** Evaluate changes in healthcare utilisation patterns and associated costs among participants, particularly in hospital admissions for advanced-stage diseases and chronic condition management.
- Changes in Health Behaviours and Lifestyles: Assess shifts in lifestyle and health behaviours among participants (e.g. improved diet, increased exercise, etc.)
- **Prevalence of Detected Conditions:** Monitor changes in the prevalence of conditions detected through the program's screenings over time.

8.1.3 Active Ageing

Figure 6 Causes of Death for Participants Aged 55 and Over

Figure 7 Distribution of Issue Age

Figure 8 Proportion of Rural vs Urban P/H by Region

8.2 Pricing/Costs 8.2.1 Mortality table

		Baseline - Population			Incentive Mort	ality			
Age	Mortality Rate (BASE)	MS	FS	MNS	FNS	MS	FS	MNS	FNS
1	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035	0.0035
2	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
3	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
4	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
6	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
8	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
9	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
10	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
11	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
12	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
13	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
14	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
15	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
16	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
17	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
18	0.0004	0.0023	0.0034	0.0004	0.0003	0.0017	0.0025	0.0004	0.0002
19	0.0004	0.0026	0.0039	0.0004	0.0003	0.0019	0.0028	0.0004	0.0003
20	0.0005	0.0028	0.0042	0.0005	0.0003	0.0020	0.0030	0.0004	0.0003
21	0.0005	0.0031	0.0045	0.0005	0.0003	0.0022	0.0032	0.0005	0.0003
22	0.0005	0.0032	0.0048	0.0006	0.0004	0.0023	0.0034	0.0005	0.0003
23	0.0005	0.0033	0.0049	0.0006	0.0004	0.0024	0.0035	0.0005	0.0003
24	0.0005	0.0034	0.0050	0.0006	0.0004	0.0024	0.0036	0.0005	0.0003
25	0.0005	0.0034	0.0050	0.0006	0.0004	0.0024	0.0036	0.0005	0.0003
26	0.0006	0.0034	0.0051	0.0006	0.0004	0.0025	0.0036	0.0005	0.0003
27	0.0006	0.0035	0.0052	0.0006	0.0004	0.0025	0.0037	0.0005	0.0003

28										
30	28	0.0006	0.0036	0.0053	0.0006	0.0004	0.0026	0.0038	0.0006	0.0004
31	29	0.0006	0.0037	0.0055	0.0006	0.0004	0.0027	0.0039	0.0006	0.0004
32	30	0.0006	0.0038	0.0057	0.0007	0.0004	0.0027	0.0041	0.0006	0.0004
33	31	0.0007	0.0040	0.0060	0.0007	0.0004	0.0029	0.0043	0.0006	0.0004
34	32	0.0007	0.0043	0.0063	0.0007	0.0005	0.0030	0.0045	0.0007	0.0004
35	33	0.0007	0.0045	0.0066	0.0008	0.0005	0.0032	0.0047	0.0007	0.0004
36	34	0.0008	0.0048	0.0070	0.0008	0.0005	0.0034	0.0050	0.0007	0.0005
37	35	0.0008	0.0051	0.0075	0.0009	0.0006	0.0034	0.0050	0.0008	0.0005
38 0.0010 0.0064 0.0095 0.0011 0.0007 0.0043 0.0063 0.0010 0.0006 39 0.0011 0.0070 0.0104 0.0012 0.0008 0.0046 0.0069 0.0011 0.0007 40 0.0012 0.0076 0.0112 0.0013 0.0008 0.0050 0.0074 0.0012 0.0008 41 0.0013 0.0083 0.0122 0.0014 0.0009 0.0055 0.0081 0.0013 0.0008 42 0.0014 0.0090 0.0133 0.0015 0.0010 0.0060 0.088 0.0014 0.0009 43 0.0016 0.0097 0.0144 0.0017 0.0011 0.0065 0.0095 0.0015 0.0010 44 0.0017 0.0106 0.0157 0.0018 0.0012 0.0070 0.0104 0.0016 0.0010 45 0.0019 0.0115 0.0170 0.0020 0.0013 0.0086 0.0127 0.0018 0.0011 <	36	0.0009	0.0054	0.0080	0.0009	0.0006	0.0036	0.0053	0.0008	0.0005
39 0.0011 0.0070 0.0104 0.0012 0.0008 0.0046 0.0069 0.0011 0.0007 40 0.0012 0.0076 0.0112 0.0013 0.0008 0.0050 0.0074 0.0012 0.0008 41 0.0013 0.0083 0.0122 0.0014 0.0009 0.0055 0.0081 0.0013 0.0008 42 0.0014 0.0090 0.0133 0.0015 0.0010 0.0060 0.0088 0.0014 0.0009 43 0.0016 0.0097 0.0144 0.0017 0.0011 0.0065 0.0095 0.0015 0.0010 44 0.0017 0.0106 0.0157 0.0018 0.0012 0.0070 0.0104 0.0016 0.0010 45 0.0019 0.0115 0.0170 0.0020 0.0013 0.0086 0.0127 0.0018 0.0011 46 0.0020 0.0125 0.0184 0.0021 0.0014 0.0093 0.0137 0.0018 0.0011	37	0.0010	0.0059	0.0087	0.0010	0.0006	0.0039	0.0058	0.0009	0.0006
40 0.0012 0.0076 0.0112 0.0013 0.0008 0.0050 0.0074 0.0012 0.0008 41 0.0013 0.0083 0.0122 0.0014 0.0009 0.0055 0.0081 0.0013 0.0008 42 0.0014 0.0090 0.0133 0.0015 0.0010 0.0660 0.088 0.0014 0.0009 43 0.0016 0.0097 0.0144 0.0017 0.0011 0.0655 0.0095 0.0015 0.0010 44 0.0017 0.0106 0.0157 0.0018 0.0012 0.0070 0.0104 0.0016 0.0010 45 0.0019 0.0115 0.0170 0.0020 0.0013 0.0086 0.0127 0.0018 0.0011 46 0.0020 0.0125 0.0184 0.0021 0.0014 0.0093 0.0137 0.0018 0.0011 47 0.0022 0.0136 0.0201 0.0023 0.0015 0.0102 0.0150 0.0023 0.0015 <	38	0.0010	0.0064	0.0095	0.0011	0.0007	0.0043	0.0063	0.0010	0.0006
41 0.0013 0.0083 0.0122 0.0014 0.0009 0.0055 0.0081 0.0013 0.0008 42 0.0014 0.0090 0.0133 0.0015 0.0010 0.0060 0.0088 0.0014 0.0009 43 0.0016 0.0097 0.0144 0.0017 0.0011 0.0065 0.0095 0.0015 0.0010 44 0.0017 0.0106 0.0157 0.0018 0.0012 0.0070 0.0104 0.0016 0.0010 45 0.0019 0.0115 0.0170 0.0020 0.0013 0.0086 0.0127 0.0018 0.0011 46 0.0020 0.0125 0.0184 0.0021 0.0014 0.0093 0.0137 0.0019 0.0012 47 0.0022 0.0136 0.0201 0.0023 0.0015 0.0102 0.0150 0.0021 0.0014 48 0.0024 0.0149 0.0221 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016	39	0.0011	0.0070	0.0104	0.0012	0.0008	0.0046	0.0069	0.0011	0.0007
42 0.0014 0.0090 0.0133 0.0015 0.0010 0.0060 0.0088 0.0014 0.0009 43 0.0016 0.0097 0.0144 0.0017 0.0011 0.0065 0.0095 0.0015 0.0010 44 0.0017 0.0106 0.0157 0.0018 0.0012 0.0070 0.0104 0.0016 0.0010 45 0.0019 0.0115 0.0170 0.0020 0.0013 0.0086 0.0127 0.0018 0.0011 46 0.0020 0.0125 0.0184 0.0021 0.0014 0.0093 0.0137 0.0019 0.0012 47 0.0022 0.0136 0.0201 0.0023 0.0015 0.0102 0.0150 0.0021 0.0014 48 0.0024 0.0149 0.0221 0.0025 0.0016 0.0111 0.0165 0.0023 0.0015 50 0.0026 0.0163 0.0241 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016	40	0.0012	0.0076	0.0112	0.0013	0.0008	0.0050	0.0074	0.0012	0.0008
43 0.0016 0.0097 0.0144 0.0017 0.0011 0.0065 0.0095 0.0015 0.0010 44 0.0017 0.0106 0.0157 0.0018 0.0012 0.0070 0.0104 0.0016 0.0010 45 0.0019 0.0115 0.0170 0.0020 0.0013 0.0086 0.0127 0.0018 0.0011 46 0.0020 0.0125 0.0184 0.0021 0.0014 0.0093 0.0137 0.0019 0.0012 47 0.0022 0.0136 0.0201 0.0023 0.0015 0.0102 0.0150 0.0021 0.0014 48 0.0024 0.0149 0.0221 0.0025 0.0016 0.0111 0.0165 0.0023 0.0015 49 0.0026 0.0163 0.0241 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016 50 0.0029 0.0178 0.0264 0.0030 0.0019 0.0133 0.0197 0.0028 0.0018	41	0.0013	0.0083	0.0122	0.0014	0.0009	0.0055	0.0081	0.0013	0.0008
44 0.0017 0.0106 0.0157 0.0018 0.0012 0.0070 0.0104 0.0016 0.0010 45 0.0019 0.0115 0.0170 0.0020 0.0013 0.0086 0.0127 0.0018 0.0011 46 0.0020 0.0125 0.0184 0.0021 0.0014 0.0093 0.0137 0.0019 0.0012 47 0.0022 0.0136 0.0201 0.0023 0.0015 0.0102 0.0150 0.0021 0.0014 48 0.0024 0.0149 0.0221 0.0025 0.0016 0.0111 0.0165 0.0023 0.0015 49 0.0026 0.0163 0.0241 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016 50 0.0029 0.0178 0.0264 0.0030 0.0019 0.0133 0.0197 0.0028 0.0018 51 0.0031 0.0195 0.0288 0.0033 0.0021 0.0145 0.0215 0.0030 0.0019	42	0.0014	0.0090	0.0133	0.0015	0.0010	0.0060	0.0088	0.0014	0.0009
45 0.0019 0.0115 0.0170 0.0020 0.0013 0.0086 0.0127 0.0018 0.0011 46 0.0020 0.0125 0.0184 0.0021 0.0014 0.0093 0.0137 0.0019 0.0012 47 0.0022 0.0136 0.0201 0.0023 0.0015 0.0102 0.0150 0.0021 0.0014 48 0.0024 0.0149 0.0221 0.0025 0.0016 0.0111 0.0165 0.0023 0.0015 49 0.0026 0.0163 0.0241 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016 50 0.0029 0.0178 0.0264 0.0030 0.0019 0.0133 0.0197 0.0028 0.0018 51 0.0031 0.0195 0.0288 0.0033 0.0021 0.0145 0.0215 0.0030 0.0019 52 0.0034 0.0214 0.0316 0.0036 0.0023 0.0159 0.0235 0.0033 0.0021	43	0.0016	0.0097	0.0144	0.0017	0.0011	0.0065	0.0095	0.0015	0.0010
46 0.0020 0.0125 0.0184 0.0021 0.0014 0.0093 0.0137 0.0019 0.0012 47 0.0022 0.0136 0.0201 0.0023 0.0015 0.0102 0.0150 0.0021 0.0014 48 0.0024 0.0149 0.0221 0.0025 0.0016 0.0111 0.0165 0.0023 0.0015 49 0.0026 0.0163 0.0241 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016 50 0.0029 0.0178 0.0264 0.0030 0.0019 0.0133 0.0197 0.0028 0.0018 51 0.0031 0.0195 0.0288 0.0033 0.0021 0.0145 0.0215 0.0030 0.0019 52 0.0034 0.0214 0.0316 0.0036 0.0023 0.0159 0.0235 0.0033 0.0021 53 0.0038 0.0235 0.0348 0.0040 0.0026 0.0175 0.0259 0.0037 0.0259	44	0.0017	0.0106	0.0157	0.0018	0.0012	0.0070	0.0104	0.0016	0.0010
47 0.0022 0.0136 0.0201 0.0023 0.0015 0.0102 0.0150 0.0021 0.0014 48 0.0024 0.0149 0.0221 0.0025 0.0016 0.0111 0.0165 0.0023 0.0015 49 0.0026 0.0163 0.0241 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016 50 0.0029 0.0178 0.0264 0.0030 0.0019 0.0133 0.0197 0.0028 0.0018 51 0.0031 0.0195 0.0288 0.0033 0.0021 0.0145 0.0215 0.0030 0.0019 52 0.0034 0.0214 0.0316 0.0036 0.0023 0.0159 0.0235 0.0033 0.0021 53 0.0038 0.0235 0.0348 0.0040 0.0026 0.0175 0.0259 0.0037 0.0023 54 0.0042 0.0259 0.0383 0.0044 0.0028 0.0193 0.0285 0.0040 0.0026	45	0.0019	0.0115	0.0170	0.0020	0.0013	0.0086	0.0127	0.0018	0.0011
48 0.0024 0.0149 0.0221 0.0025 0.0016 0.0111 0.0165 0.0023 0.0015 49 0.0026 0.0163 0.0241 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016 50 0.0029 0.0178 0.0264 0.0030 0.0019 0.0133 0.0197 0.0028 0.0018 51 0.0031 0.0195 0.0288 0.0033 0.0021 0.0145 0.0215 0.0030 0.0019 52 0.0034 0.0214 0.0316 0.0036 0.0023 0.0159 0.0235 0.0033 0.0021 53 0.0038 0.0235 0.0348 0.0040 0.0026 0.0175 0.0259 0.0037 0.0023 54 0.0042 0.0259 0.0383 0.0044 0.0028 0.0193 0.0285 0.0040 0.0026 55 0.0046 0.0286 0.0423 0.0049 0.0031 0.0213 0.0315 0.0045 0.0028	46	0.0020	0.0125	0.0184	0.0021	0.0014	0.0093	0.0137	0.0019	0.0012
49 0.0026 0.0163 0.0241 0.0028 0.0018 0.0122 0.0180 0.0025 0.0016 50 0.0029 0.0178 0.0264 0.0030 0.0019 0.0133 0.0197 0.0028 0.0018 51 0.0031 0.0195 0.0288 0.0033 0.0021 0.0145 0.0215 0.0030 0.0019 52 0.0034 0.0214 0.0316 0.0036 0.0023 0.0159 0.0235 0.0033 0.0021 53 0.0038 0.0235 0.0348 0.0040 0.0026 0.0175 0.0259 0.0037 0.0023 54 0.0042 0.0259 0.0383 0.0044 0.0028 0.0193 0.0285 0.0040 0.0026 55 0.0046 0.0286 0.0423 0.0049 0.0031 0.0213 0.0315 0.0045 0.0028 56 0.0051 0.0316 0.0468 0.0054 0.0034 0.0245 0.0362 0.0048 0.0033	47	0.0022	0.0136	0.0201	0.0023	0.0015	0.0102	0.0150	0.0021	0.0014
50 0.0029 0.0178 0.0264 0.0030 0.0019 0.0133 0.0197 0.0028 0.0018 51 0.0031 0.0195 0.0288 0.0033 0.0021 0.0145 0.0215 0.0030 0.0019 52 0.0034 0.0214 0.0316 0.0036 0.0023 0.0159 0.0235 0.0033 0.0021 53 0.0038 0.0235 0.0348 0.0040 0.0026 0.0175 0.0259 0.0037 0.0023 54 0.0042 0.0259 0.0383 0.0044 0.0028 0.0193 0.0285 0.0040 0.0026 55 0.0046 0.0286 0.0423 0.0049 0.0031 0.0213 0.0315 0.0045 0.0028 56 0.0051 0.0316 0.0468 0.0054 0.0034 0.0245 0.0362 0.0048 0.0030 57 0.0056 0.0348 0.0515 0.0059 0.0038 0.0270 0.0398 0.0053 0.0033	48	0.0024	0.0149	0.0221	0.0025	0.0016	0.0111	0.0165	0.0023	0.0015
51 0.0031 0.0195 0.0288 0.0033 0.0021 0.0145 0.0215 0.0030 0.0019 52 0.0034 0.0214 0.0316 0.0036 0.0023 0.0159 0.0235 0.0033 0.0021 53 0.0038 0.0235 0.0348 0.0040 0.0026 0.0175 0.0259 0.0037 0.0023 54 0.0042 0.0259 0.0383 0.0044 0.0028 0.0193 0.0285 0.0040 0.0026 55 0.0046 0.0286 0.0423 0.0049 0.0031 0.0213 0.0315 0.0045 0.0028 56 0.0051 0.0316 0.0468 0.0054 0.0034 0.0245 0.0362 0.0048 0.0030 57 0.0056 0.0348 0.0515 0.0059 0.0038 0.0270 0.0398 0.0053 0.0033 58 0.0062 0.0382 0.0565 0.0065 0.0041 0.0296 0.0437 0.0058 0.0036 <td>49</td> <td>0.0026</td> <td>0.0163</td> <td>0.0241</td> <td>0.0028</td> <td>0.0018</td> <td>0.0122</td> <td>0.0180</td> <td>0.0025</td> <td>0.0016</td>	49	0.0026	0.0163	0.0241	0.0028	0.0018	0.0122	0.0180	0.0025	0.0016
52 0.0034 0.0214 0.0316 0.0036 0.0023 0.0159 0.0235 0.0033 0.0021 53 0.0038 0.0235 0.0348 0.0040 0.0026 0.0175 0.0259 0.0037 0.0023 54 0.0042 0.0259 0.0383 0.0044 0.0028 0.0193 0.0285 0.0040 0.0026 55 0.0046 0.0286 0.0423 0.0049 0.0031 0.0213 0.0315 0.0045 0.0028 56 0.0051 0.0316 0.0468 0.0054 0.0034 0.0245 0.0362 0.0048 0.0030 57 0.0056 0.0348 0.0515 0.0059 0.0038 0.0270 0.0398 0.0053 0.0033 58 0.0062 0.0382 0.0565 0.0065 0.0041 0.0296 0.0437 0.0058 0.0036	50	0.0029	0.0178	0.0264	0.0030	0.0019	0.0133	0.0197	0.0028	0.0018
53 0.0038 0.0235 0.0348 0.0040 0.0026 0.0175 0.0259 0.0037 0.0023 54 0.0042 0.0259 0.0383 0.0044 0.0028 0.0193 0.0285 0.0040 0.0026 55 0.0046 0.0286 0.0423 0.0049 0.0031 0.0213 0.0315 0.0045 0.0028 56 0.0051 0.0316 0.0468 0.0054 0.0034 0.0245 0.0362 0.0048 0.0030 57 0.0056 0.0348 0.0515 0.0059 0.0038 0.0270 0.0398 0.0053 0.0033 58 0.0062 0.0382 0.0565 0.0065 0.0041 0.0296 0.0437 0.0058 0.0036	51	0.0031	0.0195	0.0288	0.0033	0.0021	0.0145	0.0215	0.0030	0.0019
54 0.0042 0.0259 0.0383 0.0044 0.0028 0.0193 0.0285 0.0040 0.0026 55 0.0046 0.0286 0.0423 0.0049 0.0031 0.0213 0.0315 0.0045 0.0028 56 0.0051 0.0316 0.0468 0.0054 0.0034 0.0245 0.0362 0.0048 0.0030 57 0.0056 0.0348 0.0515 0.0059 0.0038 0.0270 0.0398 0.0053 0.0033 58 0.0062 0.0382 0.0565 0.0065 0.0041 0.0296 0.0437 0.0058 0.0036	52	0.0034	0.0214	0.0316	0.0036	0.0023	0.0159	0.0235	0.0033	0.0021
55 0.0046 0.0286 0.0423 0.0049 0.0031 0.0213 0.0315 0.0045 0.0028 56 0.0051 0.0316 0.0468 0.0054 0.0034 0.0245 0.0362 0.0048 0.0030 57 0.0056 0.0348 0.0515 0.0059 0.0038 0.0270 0.0398 0.0053 0.0033 58 0.0062 0.0382 0.0565 0.0065 0.0041 0.0296 0.0437 0.0058 0.0036	53	0.0038	0.0235	0.0348	0.0040	0.0026	0.0175	0.0259	0.0037	0.0023
56 0.0051 0.0316 0.0468 0.0054 0.0034 0.0245 0.0362 0.0048 0.0030 57 0.0056 0.0348 0.0515 0.0059 0.0038 0.0270 0.0398 0.0053 0.0033 58 0.0062 0.0382 0.0565 0.0065 0.0041 0.0296 0.0437 0.0058 0.0036	54	0.0042	0.0259	0.0383	0.0044	0.0028	0.0193	0.0285	0.0040	0.0026
57 0.0056 0.0348 0.0515 0.0059 0.0038 0.0270 0.0398 0.0053 0.0033 58 0.0062 0.0382 0.0565 0.0065 0.0041 0.0296 0.0437 0.0058 0.0036	55	0.0046	0.0286	0.0423	0.0049	0.0031	0.0213	0.0315	0.0045	0.0028
58 0.0062 0.0382 0.0565 0.0065 0.0041 0.0296 0.0437 0.0058 0.0036	56	0.0051	0.0316	0.0468	0.0054	0.0034	0.0245	0.0362	0.0048	0.0030
	57	0.0056	0.0348	0.0515	0.0059	0.0038	0.0270	0.0398	0.0053	0.0033
59 0.0068 0.0419 0.0621 0.0072 0.0045 0.0325 0.0480 0.0063 0.0040	58	0.0062	0.0382	0.0565				0.0437	0.0058	
	59	0.0068	0.0419	0.0621	0.0072	0.0045	0.0325	0.0480	0.0063	0.0040

60	0.0075	0.0464	0.0687	0.0079	0.0050	0.0360	0.0531	0.0070	0.0044
61	0.0083	0.0512	0.0758	0.0087	0.0055	0.0397	0.0586	0.0077	0.0049
62	0.0090	0.0560	0.0828	0.0096	0.0061	0.0434	0.0641	0.0085	0.0053
63	0.0099	0.0612	0.0906	0.0105	0.0066	0.0474	0.0701	0.0092	0.0059
64	0.0108	0.0668	0.0989	0.0114	0.0072	0.0518	0.0764	0.0101	0.0064
65	0.0118	0.0730	0.1080	0.0125	0.0079	0.0566	0.0836	0.0110	0.0070
66	0.0130	0.0802	0.1186	0.0137	0.0087	0.0642	0.0948	0.0121	0.0076
67	0.0142	0.0878	0.1300	0.0150	0.0095	0.0703	0.1039	0.0132	0.0083
68	0.0155	0.0960	0.1420	0.0164	0.0104	0.0768	0.1135	0.0144	0.0091
69	0.0170	0.1051	0.1556	0.0180	0.0114	0.0842	0.1243	0.0158	0.0100
70	0.0187	0.1155	0.1709	0.0198	0.0125	0.0924	0.1365	0.0174	0.0110
71	0.0206	0.1273	0.1883	0.0218	0.0138	0.1019	0.1505	0.0191	0.0121
72	0.0228	0.1409	0.2085	0.0241	0.0153	0.1128	0.1667	0.0212	0.0134
73	0.0253	0.1567	0.2318	0.0268	0.0170	0.1254	0.1853	0.0235	0.0149
74	0.0283	0.1754	0.2595	0.0300	0.0190	0.1404	0.2074	0.0264	0.0166
75	0.0318	0.1970	0.2915	0.0337	0.0213	0.1577	0.2330	0.0296	0.0187
76	0.0358	0.2218	0.3282	0.0380	0.0240	0.1776	0.2623	0.0333	0.0210
77	0.0405	0.2505	0.3707	0.0429	0.0271	0.2005	0.2962	0.0377	0.0238
78	0.0456	0.2825	0.4181	0.0484	0.0306	0.2262	0.3341	0.0425	0.0268
79	0.0514	0.3182	0.4709	0.0545	0.0344	0.2547	0.3763	0.0478	0.0302
80	0.0577	0.3571	0.5285	0.0612	0.0387	0.2859	0.4224	0.0537	0.0339
81	0.0646	0.3999	0.5918	0.0685	0.0433	0.3202	0.4730	0.0601	0.0379
82	0.0724	0.4481	0.6631	0.0767	0.0485	0.3587	0.5299	0.0674	0.0425
83	0.0811	0.5022	0.7431	0.0860	0.0544	0.4020	0.5939	0.0755	0.0476
84	0.0910	0.5632	0.8334	0.0964	0.0610	0.4509	0.6661	0.0847	0.0534
85	0.1016	0.6291	0.9310	0.1077	0.0681	0.5036	0.7440	0.0946	0.0597
86	0.1128	0.6980	1.0000	0.1195	0.0756	0.5588	0.7992	0.1049	0.0662
87	0.1249	0.7732	1.0000	0.1324	0.0837	0.6190	0.7992	0.1162	0.0734
88	0.1380	0.8544	1.0000	0.1463	0.0925	0.6840	0.7992	0.1284	0.0811
89	0.1525	0.9439	1.0000	0.1616	0.1022	0.7556	0.7992	0.1419	0.0895
90	0.1685	1.0000	1.0000	0.1786	0.1129	0.8005	0.7992	0.1568	0.0989
91	0.1844	1.0000	1.0000	0.1954	0.1235	0.8005	0.7992	0.1715	0.1083

92	0.2015	1.0000	1.0000	0.2136	0.1350	0.8005	0.7992	0.1875	0.1183
93	0.2195	1.0000	1.0000	0.2326	0.1471	0.8005	0.7992	0.2042	0.1289
94	0.2380	1.0000	1.0000	0.2523	0.1595	0.8005	0.7992	0.2215	0.1398
95	0.2580	1.0000	1.0000	0.2734	0.1728	0.8005	0.7992	0.2400	0.1515
96	0.2785	1.0000	1.0000	0.2952	0.1866	0.8005	0.7992	0.2591	0.1635
97	0.3002	1.0000	1.0000	0.3182	0.2011	0.8005	0.7992	0.2793	0.1763
98	0.3231	1.0000	1.0000	0.3425	0.2165	0.8005	0.7992	0.3007	0.1898
99	0.3465	1.0000	1.0000	0.3673	0.2322	0.8005	0.7992	0.3224	0.2035
100	0.3710	1.0000	1.0000	0.3932	0.2486	0.8005	0.7992	0.3452	0.2179
101	0.3956	1.0000	1.0000	0.4193	0.2650	0.8005	0.7992	0.3681	0.2323
102	0.4198	1.0000	1.0000	0.4450	0.2813	0.8005	0.7992	0.3906	0.2465
103	0.4446	1.0000	1.0000	0.4713	0.2979	0.8005	0.7992	0.4137	0.2611
104	0.4698	1.0000	1.0000	0.4980	0.3148	0.8005	0.7992	0.4371	0.2759
105	0.4953	1.0000	1.0000	0.5250	0.3319	0.8005	0.7992	0.4609	0.2909
106	0.5209	1.0000	1.0000	0.5522	0.3490	0.8005	0.7992	0.4847	0.3059
107	0.5467	1.0000	1.0000	0.5795	0.3663	0.8005	0.7992	0.5086	0.3210
108	0.5726	1.0000	1.0000	0.6069	0.3836	0.8005	0.7992	0.5328	0.3363
109	0.5985	1.0000	1.0000	0.6345	0.4010	0.8005	0.7992	0.5569	0.3515
110	0.6244	1.0000	1.0000	0.6619	0.4183	0.8005	0.7992	0.5810	0.3667
111	0.6544	1.0000	1.0000	0.6937	0.4384	0.8005	0.7992	0.6089	0.3843
112	0.6842	1.0000	1.0000	0.7253	0.4584	0.8005	0.7992	0.6367	0.4018
113	0.7139	1.0000	1.0000	0.7567	0.4783	0.8005	0.7992	0.6642	0.4192
114	0.7433	1.0000	1.0000	0.7879	0.4980	0.8005	0.7992	0.6916	0.4365
115	0.7724	1.0000	1.0000	0.8188	0.5175	0.8005	0.7992	0.7187	0.4536
116	0.8014	1.0000	1.0000	0.8495	0.5369	0.8005	0.7992	0.7457	0.4706
117	0.8304	1.0000	1.0000	0.8802	0.5564	0.8005	0.7992	0.7726	0.4877
118	0.8594	1.0000	1.0000	0.9109	0.5758	0.8005	0.7992	0.7996	0.5047
119	0.8884	1.0000	1.0000	0.9417	0.5952	0.8005	0.7992	0.8266	0.5217
120	1.0000	1.0000	1.0000	1.0000	0.6700	0.8005	0.7992	0.8778	0.5873

8.2.2 Loading Factors Methodology

- 1. Data split into Male and Female cohorts such that smoking and non-smoking death and policies issued data is available from 2001 to 2023.
- 2. Calculate empirical mortality rates for each year of issue:

Cohort Mortality =
$$\frac{\text{No. cohort deaths of policies issued in year } x}{\text{No. policies issued in year } x}$$

3. Now using the baseline mortality table calculate the loading factor for smokers and non-smokers. For example, for smokers:

$$Smo\ker Factor = \frac{Smo\ker Cohort Mortality}{Baseline mortality}$$

- 4. Average all these factors for each year giving us a final factor for non-smoker and smoker mortality.
- 5. This factor is multiplied by the provided mortality to then calculate mortality for specific cohorts. Note, as mentioned before this is done for Males and Females and hence there are 4 mortality tables to exist.
- 6. Finally, the same procedure is followed for the male and female loading factor where, for example, for male loading factor, the male mortality would be divided by the overall mortality.

8.2.3 Mortality difference (Baseline vs Incentive)

Mortality difference is calculated as the following:

- Calculate the difference between profit with and without incentive for all four cohorts.
- Multiply the profit difference with for No incentive premium levels calculated in R.

Table 5 Mortality Difference by Gender

	M	ortality difference (Baseline vs Incentiv	re)
Age Group	MS	FS	MNS	FNS
0 to 14	0.000	0.000	0.000	0.000
15 to 24	0.006	0.009	0.000	0.000
25 to 54	0.081	0.121	0.004	0.003
55 to 64	0.104	0.154	0.009	0.006
65+	7.900	8.616	2.236	1.433

8.2.4 Pricing Calculations
The whole life model is calculated using assumptions and financial calculations.

Item	Calculation
Premium	Calculation as per R code
Commission	$Premuim \times Commission$
Expensive	Fixed Expense + incentive expense per policy
Death benefit	Weighted average of face value per cohort wise
SV per 1000	1000 * NPV(Surrender Rate, Mortality Rate in Each Year for Age x)
1	-Loading Factor * (survival rate at the next year +
	$NPV(Surrender\ Rate, Survival\ Rate\ in\ Each\ Year\ for\ Age\ x\))$
	Survival Rate
	Sui vivai Raic
Reserve per	1000 * NPV (Reserve Rate, Mortality Rate in Each Year for Age x)
1000	-Loading Factor * (Survival rate at the next year +
	$NPV(Reserve\ Rate, Survival\ Rate\ in\ Each\ Year\ for\ Age\ x\))$
	Survival Rate
Withdrawal	(CV may 1000 V magazina may 1000) /1000
Benefit	$(SV \ per \ 1000 \times reserve \ per \ 1000)/1000$
Reserve	(Death Benefit \times Rerserve per 1000)/1000
Mortality rate	Mortality Rate × 1000
per 1000	<u> </u>
Lapse rate	$lapse\ rate = rac{No.\ policyholders\ lapsed\ at\ age\ x\ in\ year\ y}{$
	$No. \ policyholders \ issued \ at \ age \ x \ in \ year \ y$
In Force (sop)	year y — 1 In Force(eop) is In Force(sop)in year y
Deaths	(Mortality rate per 1000) × In Force (sop))/ 1000
Lapse	$lapse\ rate = \frac{No.\ policyholders\ lapsed\ at\ age\ x\ in\ year\ y}{No.\ policyholders\ lapsed\ at\ age\ x}$
	$\frac{tapse rate}{No. policyholders issued at age x in year y}$
In Force (eop)	In Force (sop) — death rate — lapse rate
Reserve (sop)	Year X balue of Reserve (eop) as year $(X + 1)$ value for Reseve (sop)
Capital (sop)	year $y - 1$ Capital (eop) is Capital (sop) in year y
Reserve (eop)	In Force (eop) × Reserve
Capital (eop)	Required Capital (per 1000 death benefit) × In Force (eop) ×Death Benefit
Premium (sop)	In Force (eop) × premium
Commision	Negative In Force (eop) ×commission
(sop)	Negative in Polee (cop) Acommission
Expense (eop)	Negative In Force (eop) ×Expenses
death benefit	Death rate×death benefit
(eop)	Death Interregalit centent
Withdrawals	Lapse rate×withdrawal Benefit
(eop)	-
Cash Flow	Premium (sop) + Commision (sop) + Expense (eop) + death benefit (eop)
Reserve	Reserve (sop) – Reserve (eop)
Increase	
Interest	(Premium (sop) + Commision (sop)+capital (sop)+reserve (sop))* Investment
	Earnings Rate

Calculation of net present value of profit: net present value of all the profit with the discount rate

Appendix showing all the pricing calculations performed:

The 20 year term insurance model is calculated using assumptions and financial calculations.

Item	Calculation
Premium	Calculation as per R code
Commission	Premuim × Commission
Expensive	Fixed Expense + incentive expense per policy
Death benefit	Weighted average of face value per cohort wise
Reserve per 1000	Assumption based
Capital	Required Capital (per 1000) rate × Death benefit/1000
Reserve	Death Benefit × Reserve per 1000/1000
Mortality rate per 1000	Mortality rate × 1000
Lapse rate	$lapse\ rate = rac{No.\ policyholders\ lapsed\ at\ age\ x\ in\ year\ y}{}$
_	$tapse\ rate = \frac{1}{No.\ policyholders\ issued\ at\ age\ x\ in\ year\ y}$
In Force (sop)	year $y - 1$ In Force(eop) is In Force(sop)in year y
Deaths	Mortality rate per $1000 \times (\text{In Force (sop)}/1000)$
In Force (eop)	In Force (sop) – death rate – lapse rate
Reserve (sop)	Year y value of Reserve (eop) as year y+1 value for Reserve (sop)
Capital (sop)	year y — 1 Capital (eop) is Capital (sop)in year y
Reserve (eop)	In Force (eop) × Reserve
Capital (eop)	Required Capital (per 1000 death benefit) ×In Force (eop) ×Death Benefit
Premium (sop)	In Force (eop) × premium
Commision (sop)	Negative In Force (eop) × commission
Expense (eop)	Negative In Force (eop) × Expenses
Claims (eop)	Death rate × death benefit
Cash Flow	Premium (sop) + Commision (sop) + Expense (eop) + death benefit (eop)
Reserve Increase	Reserve (sop) – Reserve (eop)
Interest	(Premium (sop) + Commision (sop)+capital (sop)+reserve (sop)) × Investment Earnings Rate
Profit	Cash flow + reserve interest + interest

Calculation of net present value of profit: net present value of all the profit with the discount rate

8.2.5 Single Premium Whole Life Insurance Model

Single Premium Whole-Life Insurance

Age 35 < change input Sensitivity Testing	Low <	change this to	either Law, mid,	, high for sensit	tivity testing											
Current Year 2023 Gender M	Lov Mic	1														
Smoker S Sheet name	Hig Age_35	h														
Incentive No Incentive Incentive Scenario Incentive Loading 4% Avg premium per scenario	SPWL_MS				Amounts	without Decre	ements			Decrement I	Information		Res	erves & Capital	(Decremented)	
Expense Loading 11% Premium:	150,523.82 Ye	ear Premium 150,524	Commission 105,367	Expenses D 185	eath Benefit 640.019	SV per 1000	Reserves per 1000 44.876	Withdrawal Benefit Reserve 28,722	Mortality Rate per 1000 Lapse Ra	ate In Ford	ce(sop) Death 1.00000	hs Lapses In Force(eop) 1.00000	Reserve(sop)	Capital(sop) R	eserve(eop) Ca 28.722	pital(eop) 6.400
Assumptions		0.00	-	35	640,019 640,019	-	59.222 74.021	- 37,903 - 47,375		0% 1	1.00000 0.003 0.99664 0.003	36 - 0.99664	28,722 37,776	6,400 6,379	37,776 47,046	6,379 6,356
Investment Earnings Rate: 5.7%		0.00		35 35	640,019 640,019	10.639	89.222 104.809	6,809 57,104 14,688 67,080	3.908	0% 0	0.99306 0.003	88 - 0.98918	47,046 56,486	6,356 6.331	56,486 66,070	6,331
Discount Rate: 11.0% "Refer to the Economy Sheet		0.00		35	640,019	35.784	120.804	22,902 77,317	4.649	0% 0	0.98495 0.004	58 - 0.98037	66,070	6,304	75,799	6,304 6,275
however, for discounting, 10 year average + inflation		0.00 0.00	-	35 35	640,019 640,019	49.170 63.101	137.221 154.042	31,470 87,824 40,386 98,590	5.500	0% 0	0.98037 0.004 0.97543 0.005	36 - 0.97006	75,799 85,666	6,275 6,243	85,666 95,638	6,243 6,209
Lapse Rate: 0% "No one lapses but some may surrender	8	0.00	-	35 35	640,019 640,019	77.633 92.763	171.305 188.995	49,687 109,639 59,370 120,960			0.97006 0.005 0.96429 0.006		95,638 105,723	6,209 6,172	105,723 115,888	6,172 6,132
Death Benefit Amount: 640019 "Check spwl with incentive premiums workbook		0 0.00	- :	35 35	640,019 640,019	108.517	207.118 224.940	69,453 132,560 79,414 143,966			0.95805 0.006 0.95131 0.008	74 - 0.95131	115,886 126,106	6,132 6,089	126,106 135,781	6,089
Required Capital (per 1000 death benefit): Age Rate		2 0.00	-	35 35	640,019 640,019	140.206 156.853	243.134 261.651	89,735 155,610 100,389 167,462			0.94315 0.008 0.93437 0.009		135,781 145,397	6,036 5,980	145,397 154,880	5,980 5,919
less than 40 0.01 https://www.apra.gov.au/capital-explained	1			35	640,019	173.987	280.448	111,355 179,492	11.145	0% 0	0.92487 0.010 0.91456 0.011	31 - 0.91456	154,880	5,919	164,156	5,853
Breate tital alle edeal	1	6 0.00	-	35 35	640,019 640,019	191.634 209.794	299.541 318.914	134,272 204,111	13.318	0% 0	0.90342 0.012	03 - 0.89139	164,156 173,197	5,853 5,782	173,197 181,943	5,782 5,705
Commissions (as % premium): Duration Rate		8 0.00		35 35	640,019 640,019	228.484 247.655	338.574 358.466	146,234 216,694 158,504 229,425	15.943	0% 0	0.89139 0.012 0.87843 0.014	01 - 0.86443	181,943 190,351	5,705 5,622	190,351 198,321	5,622 5,532
1 70% 2+ 5%	1 2			35 35	640,019 640,019	267.258 287.272	378.539 398.763	171,050 242,272 183,860 255,216			0.86443 0.015 0.84926 0.016		198,321 205,752	5,532 5,435	205,752 212,559	5,435 5,330
Fixed Expenses (per policy):	2 2		- :	35 35	640,019 640,019	307.635 327.668	419.081 438.917	196,892 268,220 209,714 280,915	21.324 24.491		0.83286 0.017 0.81510 0.019		212,559 218,626	5,330 5,217	218,626 223,366	5,217 5,089
Duration Amount 1 100	2	3 0.00	-	35 35	640,019 640.019	347.939 368.464	458.756 478.606	222,688 293,613 235,824 306,317	26.956	0% 0	0.79514 0.021 0.77370 0.022	43 - 0.77370	223,366 227,169	5,089 4,952	227,169 229,985	4,952 4,805
2+ 20	2	5 0.00		35	640,019	389.211	498.439	249,103 319,011	32.501	0% 0	0.75081 0.024	40 - 0.72640	229,985	4,805	231,730	4,649 4,482
Incentives Expenses (per policy):	2	7 0.00		35 35	640,019 640,019	409.979 430.784	518.085 537.561	262,395 331,584 275,710 344,049	39,686	0% 0	0.72640 0.026 0.70027 0.027	79 - 0.67248	231,730 232,198	4,649 4,482	232,198 231,366	4.304
Duration Amount Low 1 85	2 2	9 0.00	- :	35 35	640,019 640,019	451.800 473.012	557.010 576.414	289,161 356,497 302,737 368,916	47.442	0% 0	0.67248 0.029 0.64331 0.030	52 - 0.61279	231,366 229,337	4,304 4,117	229,337 226,067	4,117 3,922
2+ 15 Mid 1 115	3		-	35 35	640,019 640,019	494.487 516.206	595.826 615.224	316,481 381,340 330,382 393,755			0.61279 0.031 0.58107 0.032		226,067 221,584	3,922 3,719	221,584 215,854	3,719 3,509
2 40	3		-	35 35	640,019 640,019	537.046 557.920	633.715 652.044	343,720 405,590 357,080 417,321	64.181	0% 0	0.54819 0.035 0.51301 0.036		215,854 208,071	3,509 3,283	208,071 199,036	3,283 3,052
High 1 170 2 50	3	4 0.00	-	35 35	640,019 640.019	578.936 600.058	670.297 688.442	370,530 429,003 384,049 440,616	76.823	0% 0	0.47694 0.036	64 - 0.44030	199,036	3,052 2.818	188,889 177,676	2,818 2,581
	3	6 0.00		35	640,019	621.255	708.454	397,615 452,144	92.427	0% 0	0.40324 0.037	27 - 0.36597	177,676	2,581	165,473	2,342
	3	8 0.00	- :	35 35	640,019 640,019	642.455 663.560	724.278 741.837	411,184 463,552 424,691 474,790	112.813	0% 0	0.36597 0.037 0.32868 0.037	08 - 0.29160	165,473 152,362	2,342 2,104	152,362 138,451	2,104 1,866
	3 4	9 0.00 0 0.00	- :	35 35	640,019 640,019	684.473 704.936	759.058 775.749	438,076 485,812 451,173 496,494	140.404		0.29160 0.036 0.25504 0.035		138,451 123,899	1,866 1,632	123,899 108,845	1,632 1,403
	4		- :	35 35	640,019 640.019	724.806 743.948	791.810 807.148	483,890 506,774 476,141 516,590			0.21923 0.034 0.18465 0.032		108,845 93,578	1,403 1,182	93,578 78.452	1,182 972
	4		- 1	35 35	640,019 640,019	762.154 779.380	821.622 835.214	487,793 525,854 498.818 534,553	200.518	0% 0	0.15187 0.030 0.12141 0.027		78,452 63,846	972 777	63,846 50,223	777 601
	4	5 0.00 6 0.00	-	35 35	640,019 640.019	795.597 810.916	847.921 859.841	509,198 542,686 519.002 550.315	254.734	0% 0	0.09395 0.023 0.07002 0.020	93 - 0.07002	50,223 37,999	601 448	37,999 27,516	448 320
	4	7 0.00		35	640,019	825.439	871.065	528,297 557,499	320.164	0% 0	0.05000 0.016	01 - 0.03399	27,516	320	18,951	218 140
	4	9 0.00		35 35	640,019 640,019	839.119 851.885	881.569 891.310	537,052 564,221 545,223 570,456	402.021	0% 0	0.03399 0.012 0.02180 0.008	76 - 0.01304	18,951 12,300	218 140	12,300 7,436	140 83 46
	5			35 35	640,019 640,019	863.522 874.038	900.143 908.086	552,671 576,109 559,401 581,193	503.640	0% 0	0.01304 0.005 0.00716 0.003	61 - 0.00355	7,436 4,124	83 46	4,124 2,085	23
	5 5	3 0.00	-	35 35	640,019 640,019	883.737 892.540	915.375 921.959	565,609 585,858 571,243 590,072	618.971	0% 0	0.00355 0.001 0.00157 0.000	97 - 0.00060	2,065 918	23 10	918 352	10 4
	5	4 0.00 5 0.00		35 35	640,019 640,019	900.164 904.195	927.630 930.617	576,122 593,701 578,702 595,613			0.00060 0.000 0.00019 0.000		352 112	4	112 27	1
	5	6 0.00	-	35 35	640,019 640,019	904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613	800.539	0% 0	0.00005 0.000 0.00001 0.000	0.00001	27	0	5	ō
	5	8 0.00	-	35 35	640,019 640,019	904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613	800.539	0% 0	0.0000 0.000	0.00000	1 0	ő	0	ő
	6	0.00	-	35 35	640,019 640,019	904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613 578,702 595,613	800.539	0% 0	0.00000 0.000	0.00000	0	0	0	0
	6	2 0.00	-	35	640,019	904.195	930.617	578,702 595,613	800.539	0% 0	0.0000 0.000	0.00000	0	ō	ŏ	0
	6	4 0.00		35 35	640,019 640,019	904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613	800.539	0% 0	0.0000 0.000 0.0000 0.000	0.00000	0	0	0	0
	6	6 0.00	-	35 35	640,019 640,019	904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613	800.539	0% 0	0.0000 0.000 0.0000 0.000	0.00000	0	0	0	0
	6	8 0.00	-	35 35	640,019 640,019	904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613			0.0000 0.000 0.0000 0.000		0	0	0	0
	6	0.00		35 35	640,019 640,019	904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613	800.539	0% 0	0.0000 0.000	0.00000	0	0	0	0
	7			35 35	640,019 640,019	904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613	800.539	0% 0	0.0000 0.000	0.00000	0	0	0	0
	7 7 7	3 0.00	-	35 35	640,019 640,019	904.195 904.195 904.195	930.617 930.617	578,702 595,613 578,702 595,613 578,702 595,613	800.539	0% 0	0.0000 0.000	0.00000	0	0	0	0
	7	5 0.00	-	35	640,019	904.195	930.617	578,702 595,613	800.539	0% 0	0.0000 0.000	0.00000	0	0	0	ō
	7 7	7 0.00		35 35	640,019 640,019	904.195 904.194	930.617 930.617	578,702 595,613 578,702 595,613	800.539	0% 0	0.0000 0.000 0.0000 0.000	0.00000	0	0	0	0
		9 0.00		35 35	640,019 640,019	904.193 904.187	930.616 930.609	578,701 595,612 578,697 595,608	800.539	0% 0	0.0000 0.000 0.0000 0.000	0.00000	0	0	0	0
	8 8	1 0.00	- :	35 35	640,019 640,019	904.156 903.989	930.572 930.379	578,677 595,584 578,571 595,481	800.539	0% 0	0.0000 0.000 0.0000 0.000	0.00000	0	0	0	0
	8		-	35 35	640,019 640,019	903.092 898.294	929.372 924.108	577,996 594,816 574,926 591,447	800.539	0% 0	0.0000 0.000	0.00000	0	0	0	0
	8		-	35 35	640,019 640,019	872.620 721.386	896.579 738.313	558,494 573,828 461,701 472,535	800.539	0% 0	0.0000 0.000	0.00000	0	0	0	0
		6 0.00		35 35	640,019	121.380	0.000	401,701 472,035			0.0000 0.000		0	0	-	0

	P,	C _t	E,	DB,	W ₁		CR,	I,	PR,		
	Premium(sop)	Commission(sop)	Expenses(eop)	Death Benefits(eop)	Withdrawals(eop)	Cash Flow	Reserve Increase	Interest	Profit	Present Value of Profit:	(54.547)
	150,524	(105,367)	(185)	(2,151)	_	44,972 (2,151)	(28,722) (9,054)	1,995	16,251 (9,210)		(51,547)
	-	-	(35)	(2,291)	-	(2,326)	(9,270)	2,508	(9,088)		
	-	-	(35)	(2,484)	-	(2,519)	(9,440)	3,033	(8,925)		
			(34)	(2,706) (2,930)		(2,740) (2,965)	(9,584) (9,729)	3,568 4,111	(8,757) (8,583)		
	_	-	(34)	(3,165)	-	(3,199)	(9,867)	4,662	(8,403)		
	-	-	(34)	(3,434)	-	(3,468)	(9,972)	5,221	(8,219)		
	-	-	(34)	(3,696)	-	(3,729)	(10,085)	5,785 6.356	(8,029)		
			(34)	(3,994) (4,311)		(4,027) (4,344)	(10,163) (10,220)	6,356	(7,834) (7,633)		
	-	-	(33)	(5,227)	-	(5,260)	(9,675)	7,509	(7,426)		
	-	-	(33)	(5,620)	-	(5,652)	(9,616)	8,056	(7,213)		
	-	-	(32)	(6,079) (6,597)	-	(6,111) (6,629)	(9,483) (9,276)	8,599 9,134	(6,995) (6,772)		
		-	(32)	(7,130)	-	(7,161)	(9,040)	9,657	(6,544)		
	-	-	(31)	(7,700)	-	(7,732)	(8,746)	10,167	(6,311)		
	-	-	(31)	(8,294)	-	(8,325)	(8,408)	10,659	(6,074)		
		-	(30)	(8,964) (9,705)	-	(8,994) (9,735)	(7,970) (7,431)	11,132 11,580	(5,832) (5,587)		
	-	-	(29)	(10,498)	-	(10,527)	(6,807)	11,996	(5,337)		
	-	-	(29)	(11,367)	-	(11,395)	(6,067)	12,377	(5,085)		
	-	-	(28)	(12,776) (13,718)	-	(12,804) (13,745)	(4,740)	12,715 12,977	(4,830) (4,571)		
		-	(26)	(14.655)	-	(14.681)	(2,816)	13,185	(4.311)		
	-	-	(25)	(15,618)	-	(15,643)	(1,746)	13,337	(4,052)		
	-	-	(25)	(16,727)	-	(16,751)	(468)	13,427	(3,792)		
	-	-	(24)	(17,787) (18,670)	-	(17,810) (18,693)	833 2,029	13,444 13,387	(3,534)		
	-	-	(21)	(19,533)	-	(19,555)	3,270	13,261	(3,024)		
	-	-	(20)	(20,302)	-	(20,322)	4,483	13,064	(2,775)		
	-	-	(19) (18)	(21,040) (22,518)	-	(21,059) (22,536)	5,730 7,783	12,798 12,460	(2,531) (2,293)		
		-	(18)	(22,518)		(22,530)	9,035	12,460	(2,293)		
	-	-	(15)	(23,450)	-	(23,465)	10,147	11,479	(1,839)		
	-	-	(14)	(23,715)	-	(23,729)	11,213	10,890	(1,626)		
	-	-	(13) (12)	(23,854) (23,866)	-	(23,867) (23,878)	12,203 13,111	10,239 9,532	(1,424) (1,234)		
	-	-	(10)	(23,732)	-	(23,742)	13,911	8,774	(1,254)		
	-	-	(9)	(23,405)	-	(23,414)	14,551	7,970	(892)		
	-	-	(8)	(22,918)	-	(22,926)	15,054	7,131	(741)		
	-	-	(6) (5)	(22,127) (20,986)	-	(22,134)	15,267 15,126	6,262 5.383	(604) (482)		
		-	(4)	(19,490)	-	(19.494)	14,606	4,512	(376)		
	-	-	(4)	(17,576)	-	(17,579)	13,623	3,671	(285)		
	-	-	(2)	(15,318)	-	(15,320)	12,224	2,887 2,184	(209)		
		-	(2) (1)	(12,812) (10,246)	-	(12,814) (10,247)	10,483 8,566	1.581	(148)		
	-	-	(1)	(7,804)	-	(7,805)	6,651	1,089	(65)		
	-	-	(0)	(5,609)	-	(5,609)	4,863	707	(39)		
		-	(0) (0)	(3,762) (2,307)	-	(3,762)	3,312 2,059	427 237	(22) (12)		
	-	-	(0)	(1,271)	-	(1,271)	1,147	119	(6)		
	-	-	(0)	(621)	-	(621)	566	53	(2)		
	-	-	(0) (0)	(261) (91)	-	(261) (91)	240 85	20 6	(1) (0)		
			(0)	(24)		(24)	22	2	(0)		
	-	-	(0)	(5)	-	(5)	4	0	(0)		
	-	-	(0)	(1)	-	(1)	1 0	0	(0)		
	-		(0) (0)	(0)		(0)	0	0	(0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0)	(O) (O)	-	(0)	0	0	(0)		
	-	_	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0) (0)	(O) (O)	-	(O) (O)	0	0	(0) (0)		
	-	_	(0)	(0)	-	(0)	ō	0	(0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0) (0)	(0) (0)	-	(O) (O)	0	0	(0) (0)		
			(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0) (0)	(0)	-	(0)	0	0	(0)		
			(0)	(O) (O)		(O) (O)	0	0	(0) (0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0) (0)	(O) (O)	-	(0)	0	0	(0)		
			(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0)	(0)	-	(0)	0	0	(0)		
	-	-	(0) (0)	(O) (O)	-	(O) (O)	0	0	0 (0)		
Total:	150,524	(105,367)	(1,213)	(640,019)		(596,075)	0	406,250	######		
Present Value at 5.68%:	150,524	(105,367)	(628)	(137,784)	-	(93,255)	(117,623)	122,646	(88,232)		
Present Value at 11.03%:	150,524	(105,367)	(443)	(50,116)	-	(5,402)	(101,382)	55,237	(51,547)		

4.29% 6.74%	17.021 13.136	0.29917 0.17077	14.9399 14.7748	
Year	Lives	Deaths	Reserve	sv
0	1.000000	0.003361	44.876 59.222	-
2	0.996639	0.003579	74.021	
3	0.993060	0.003881	89.222	10.639
4 5	0.989179 0.984951	0.004228	104.809 120.804	22.950 35.784
6	0.980372	0.004944	137.221	49.170
7	0.975428	0.005365	154.042	63.101
8	0.970063	0.005774	171.305	77.633
9 10	0.984288	0.006240	188.995	92.763 108.517
11	0.958049	0.008166	207.118 224.940	124.080
12	0.943147	0.008781	243.134	140.206
13	0.934366	0.009498	261.651	156.853
14 15	0.924868 0.914561	0.010308 0.011140	280.448 299.541	173.987 191.634
16	0.903421	0.012031	318.914	209.794
17	0.891390	0.012959	338.574	228.484
18 19	0.878431	0.014005 0.015164	358.466 378.539	247.655 267.258
20	0.849261	0.016402	398.763	287.272
21	0.832859	0.017760	419.081	307.635
22	0.815099	0.019963	438.917	327.668
23 24	0.795137 0.773703	0.021434 0.022897	458.756 478.606	347.939 368.464
25	0.750806	0.024402	498,439	389.211
26	0.726404	0.026135	518.085	409.979
27	0.700269	0.027791	537.561	430.784
28 29	0.672478 0.643306	0.029172	557.010 576.414	451.800 473.012
30	0.612786	0.031720	595.826	494.487
31	0.581066	0.032874	615.224	516.206
32	0.548192	0.035184	633.715	537.046
33 34	0.513009 0.476938	0.036070 0.036640	652.044 670.297	557.920 578.936
35	0.440299	0.037054	688.442	600.058
36	0.403245	0.037271	706.454	621.255
37	0.365974	0.037290	724.278	642.455
38 39	0.328684	0.037080	741.837 759.058	663.560 684.473
40	0.255036	0.035808	775.749	704.936
41	0.219228	0.034573	791.810	724.806
42	0.184655	0.032789	807.148	743.948
43 44	0.151866 0.121414	0.030452 0.027461	821.622 835.214	762.154 779.380
45	0.093953	0.023933	847.921	795.597
46	0.070020	0.020019	859.841	810.916
47 48	0.050001	0.016009 0.012193	871.065 881.569	825.439 839.119
49	0.021799	0.008764	891.310	851.885
50	0.013035	0.005877	900.143	863,522
51 52	0.007158	0.003605	908.086	874.038
52 53	0.003553	0.001985	915.375 921.959	883.737 892.540
54	0.000597	0.000409	927.630	900.164
55	0.000189	0.000143	930.617	904.195
56 57	0.000046	0.000037	930.617 930.617	904.195 904.195
58	0.000009	0.000007	930.617	904.195
59	0.000000	0.000000	930.617	904.195
60	0.000000	0.000000	930.617	904.195
61 62	0.000000	0.000000	930.617 930.617	904.195 904.195
63	0.000000	0.000000	930.617	904.195
64	0.000000	0.000000	930.617	904.195
65 66	0.000000	0.000000	930.617 930.617	904.195 904.195
67	0.000000	0.000000	930.617	904.195
68	0.000000	0.000000	930.617	904.195
69	0.000000	0.000000	930.617	904.195
70 71	0.000000	0.000000	930.617 930.617	904.195 904.195
72	0.000000	0.000000	930.617	904.195
73	0.000000	0.000000	930.617	904.195
74	0.000000	0.000000	930.617	904.195
75 76	0.000000	0.000000	930.617 930.617	904.195 904.195
77	0.000000	0.000000	930.617	904.195
78	0.000000	0.000000	930.616	904.193
79 80	0.000000	0.000000	930.609	904.187
80 81	0.000000	0.000000	930.572 930.379	904.156 903.989
82	0.000000	0.000000	929.372	903.092
83	0.000000	0.000000	924.108	898.294
84 85	0.000000	0.000000	896.579 738.313	872.620 721.386
86	0.000000	0.000000	130.313	121.380

8.2.6 20 Year Term Life Insurance Model

20 Year Term Life Insurance

Age		42	< change input 65,525.17	Sensitivity Testing	Low	< char	nge this to either Low, mid, high	for sensitivity te	esting				
Current Year		2023				Mid							
Gender		M				High							
Risk Level		Moderate											
Smoker		NS		Sheet name	Age_42								
Incentive/No Incentive		Incentive		Scenario	T20_MNS			Am	ounts withou	it Decrements			
Incentive Loading		4%		Avg premium per	sc∈ 19932.802	2							
Expense Loading		11%		Premium:	21275.90	Year	Premium	Commission	Expenses	Death Benefit	Reserves per 1000	Reserve	Capital
						0	21275.895	12765.537	185	639170	0.935	597.624	12.8
Assumptions						1				639170	0.561	358.574	12.8
						2	21275.895	1063.795	35	639170	0.842	537.861	12.8
Death Benefit		639170	**Check t_20 with base premiums workbook			3	21275.895	1063.795	35	639170	0.757	484.075	12.8
Investment Earning Rate		5.7%	**Assumption based on average 1 year risk free spot rate			4	21275.895	1063.795	35	639170	0.682	435.668	12.8
						5	21275.895	1063.795	35	639170	0.613	392.101	12.8
Discount Rate		11%	Refer to the economy sheet, 1 year spot rate			6	21275.895	1063.795	35	639170	0.552	352.891	12.8
			however, for discounting, 10 year average + inflation			7	21275.895	1063.795	35	639170	0.497	317.602	12.8
						8	21275.895	1063.795	35	639170	0.447	285.842	12.8
Required Capital (per 100)	0 death benefit):					9	21275.895	1063.795	35	639170	0.402	257.257	12.8
	Age	Rate				10	21275.895	1063.795	35	639170	0.362	231.532	12.8
less than	40	0.01	https://www.apra.gov.au/capital-explained			11	21275.895	1063.795	35	639170	0.326	208.379	12.8
greater than and equal	40	0.02	https://www.legislation.gov.au/F2023L00673/asmade/text			12	21275.895	1063.795	35	639170	0.293	187.541	12.8
						13	21275.895	1063.795	35	639170	0.264	168.787	12.8
Fixed Expenses (per polic		**Assumption				14	21275.895	1063.795	35	639170	0.238	151.908	12.8
	Duration	Amount				15	21275.895	1063.795	35	639170	0.214	136.717	12.8
	1	100				16	21275.895	1063.795	35	639170	0.193	123.045	12.8
	2+	20				17	21275.895	1063.795	35	639170	0.173	110.741	12.8
						18	21275.895	1063.795	35	639170	0.156	99.667	12.8
Commission as a % of pre						19	21275.895	1063.795	35	639170	0.140	89.700	12.8
**Assumption	Duration	Rate				20	21275.895	1063.795	35	639170	0.126	80.730	12.8
	1	60%											
	2+	5%											

Incentives Expenses (per	policy):	
	Duration	Amount
Low	1	85
LOW	2+	15
Mid	1	115
IVIIU	2	40
High	1	170
підії	2	50

1.391 1.513 1.643 1.794 1.946 2.125 2.329 2.546 2.784 3.039 3.332 3.667 4.037 4.457 4.771 5.251 5.765 6.332 7.009 7.731

	Decrem	ent Information					Reserves & Cap	pital (Decrement	ed)			A	mounts with Dec	rements			
										P _t	C,	E,	CL,		CR,	Ļ	PR,
r 1000	Lapse Rate	Inforce (sop)	Deaths	Lapse	Inforce (eop)	Reserve(sop) Capital(sop)	Reserve(eop)	Capital(eop)	Premium(sop) Commission(sop	Expenses(eop)	Claims(eop)	Cash Flow	Reserve Increase	Interest	Prof
		0.976			0.965			576.591	12.334	20527.		-178.489		8032.362	-576.591		7455.7
	0.114	0.965			0.853	576.591	12.334	306.006	10.909	0.000		0.000	-858.081	-858.081	270.585	33.453	-554.04
	0.114	0.853	0.001	0.097	0.755	306.006	10.909	405.950	9.648	16057.1		-26.416	-825.086	14403.533	-99.944		
	0.114	0.755	0.001	0.086	0.667	405.950	9.648	323.073	8.532	14199.0		-23.359	-792.799	12673.468	82.876	789.860	
	0.114	0.667	0.001		0.590	323.073	8.532	257.073	7.543	12554.		-20.652	-765.378	11140.457	66.000	696.298	
	0.114	0.590	0.001	0.067	0.522	257.073	7.543	204.521	6.668	11097.		-18.256	-733.899	9790.517	52.552	613.888	
	0.114	0.522	0.001		0.461	204.521	6.668	162.678	5.893	9807.9		-16.135	-708.337	8593.062	41.842		9176.16
	0.114	0.461	0.001	0.053	0.407	162.678	5.893	129.367	5.207	8666.1		-14.256	-686.377	7532.225	33.312		
	0.114	0.407	0.001	0.046	0.360	129.367	5.207	102.851	4.600	7655.4		-12.594	-662.820	6597.257	26.516		7044.52
	0.114	0.360	0.001	0.041	0.318	102.851	4.600	81.748	4.062	6760.7		-11.122	-640.179	5771.438	21.103		
	0.114	0.318	0.001		0.281	81.748	4.062	64.956	3.586	5968.9		-9.819	-617.171	5043.508	16.792		5387.27
	0.114	0.281		0.032	0.248	64.956	3.586	51.596	3.165	5268.1		-8.666	-597.556	4398.473	13.360		4700.00
	0.114	0.248	0.001	0.028	0.218	51.596	3.165	40.969	2.793	4647.7		-7.646	-580.301	3827.447	10.628		4091.99
	0.114	0.218	0.001	0.025	0.193	40.969	2.793	32.517	2.463	4098.7		-6.743	-563.641	3323.467	8.452		
	0.114	0.193	0.001	0.022	0.170	32.517	2.463	25.796	2.171	3612.9		-5.943	-548.816	2877.514	6.721	196.951	
	0.114	0.170		0.019	0.150	25.796	2.171	20.457	1.913	3183.5		-5.237	-517.850	2501.247	5.339	173.380	
	0.114	0.150	0.001		0.132	20.457	1.913	16.214	1.685	2803.6		-4.612	-502.235	2156.580	4.243		
	0.114	0.132			0.116	16.214	1.685	12.844	1.483	2467.6		-4.059	-485.587	1854.574	3.370	134.176	
	0.114	0.116	0.001	0.013	0.102	12.844	1.483	10.168	1.304	2170.4		-3.571	-469.368	1589.005	2.676	117.939	
	0.114	0.102	0.001		0.090	10.168	1.304	8.043	1.146	1907.6		-3.138	-457.022	1352.098	2.125	103.594	
	0.114	0.090	0.001	0.010	0.079	8.043	1.146	6.357	1.007	1675.2	63 -83.763	-2.756	-443.075	1145.669	1.686	90.924	1238.27
										Total: 145131	36 -18546.49	-383.47	-12455.58	113745.82	-6.36	6890.47	120629.9

	T20	** Calculations are located in the capital reserve spreadshed
Year	Reserve % per 1000	
0	0.935	
1	0.561	
2	0.842	
3	0.757	
4	0.682	
5	0.613	
6	0.552	
7	0.497	
8	0.447	
9	0.402	
10	0.362	
11	0.326	
12	0.293	
13	0.264	
14	0.238	
15	0.214	
16	0.193	
17	0.173	
18	0.156	
19	0.140	
20	0.126	

8.2.7 R Code

```
Whole Life Insurance Base:
# Setting Up ------
cat("\014") # Clear console
rm(list=ls()) # Clear Environment
# Directory ------
setwd("") #change to your own
# Packages -------
# install.packages('tidyverse')
# install.packages('dplyr')
# install.packages('readxl')
# install.packages('openxlsx')
library(tidyverse)
library(dplyr)
library(readxl)
library(tidyr)
library(openxlsx)
# Read in the Data (files in the drive) ------
inforce_data <- read.csv("inforce_data.csv", header = TRUE)
intervention data <- read.csv("intervention data.csv", header = TRUE)
eco_data <- read.csv("economy_data.csv", header = TRUE)
mortality_data <- read.csv("mortality_data.csv", header = TRUE)
mortality_modified <- read.csv("base_mortmod.csv", header = TRUE)
# Split the Inforce Data -----
splitbypolicytype <- split(inforce data, inforce data$Policy.type)
t_20 <- splitbypolicytype[["T20"]]
spwl <- splitbypolicytype[["SPWL"]]
# Base Mortality Table Calculation -----
#Removing the additional column
#mortality data <- mortality data[,-c(1)]
#finding the probability of survival at each age
#mortality data$p x <- 1- mortality data$Mortality.Rate
#Renaming the Header
colnames(mortality_modified) <- c("Age","MS", "FS", "MNS", "FNS")
#Calculating the survival p_x
mortality modified$MS.p x <- 1 - mortality modified$MS
mortality_modified$FS.p_x <- 1 - mortality_modified$FS
mortality_modified$MNS.p_x <- 1 - mortality_modified$MNS
mortality_modified$FNS.p_x <- 1 - mortality_modified$FNS
```

```
# Average Spot Rate -----
average_spot_rate <- mean(eco_data[,4])</pre>
#This is used, if current year is past 2023
# Whole Life Function ------
whole_life <- function(x, issue_year, face_value, gender, s_status) {
 max_age <- max(which(!is.na(mortality_modified$MS.p_x)))
 n_years <- max_age - x
 # Calculate survival probabilities (kpx)
 if(gender == "M" & s_status == "S") {
 MS.kpx <- numeric(n_years + 1)
 MS.kpx[1] <- 1 # Initial survival probability is 1
 for (i in 2:length(MS.kpx)) {
  MS.kpx[i] <- MS.kpx[i-1] * mortality_modified$MS.p_x[x + i - 2] # Corrected to use actual
survival rates
 }
} else if(gender == "F" & s_status == "S") {
 FS.kpx <- numeric(n_years + 1)
 FS.kpx[1] <- 1 # Initial survival probability is 1
 for (i in 2:length(FS.kpx)) {
  FS.kpx[i] <- FS.kpx[i-1] * mortality_modified$FS.p_x[x + i - 2] # Corrected to use actual
survival rates
 }
 } else if(gender == "M" & s_status == "NS"){
  MNS.kpx <- numeric(n_years + 1)
  MNS.kpx[1] <- 1 # Initial survival probability is 1
  for (i in 2:length(MNS.kpx)) {
   MNS.kpx[i] <- MNS.kpx[i-1] * mortality_modified$MNS.p_x[x + i - 2] # Corrected to use
actual survival rates
  }
 }else if(gender == "F" & s_status == "NS") {
  FNS.kpx <- numeric(n_years + 1)
  FNS.kpx[1] <- 1 # Initial survival probability is 1
  for (i in 2:length(FNS.kpx)) {
   FNS.kpx[i] <- FNS.kpx[i-1] * mortality_modified$FNS.p_x[x + i - 2] # Corrected to use actual
survival rates
  }
 }
 # Calculate spot rates for each year
 spot_rate_x <- rep(average_spot_rate, n_years) # Default to average if no data available
 for (i in 1:n_years) {
 current_year <- issue_year + i - 1
 if (current_year <= 2023) { # Assuming you have spot rate data up to 2023
  spot_rate_x[i] <- ifelse(is.na(eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year ==
current_year]), average_spot_rate,
eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year == current_year])
 }
```

```
}
 # Calculate present value factors (discount factors)
 v <- 1 / (1 + spot_rate_x) # Direct calculation of discount factors
 # Calculate the values (present value of expected benefits)
 value <- numeric(n_years)
 for(i in 1:n_years) { if (gender == "M" & s_status == "S") {
 value[i] <- MS.kpx[i] * mortality_modified$MS[x+i-1] * prod(v[1:i])</pre>
 } else if (gender == "F" & s_status == "S") {
 value[i] <- FS.kpx[i] * mortality_modified$FS[x+i-1] * prod(v[1:i])</pre>
 } else if (gender == "M" & s_status == "NS") {
 value[i] <- MNS.kpx[i] * mortality_modified$MNS[x+i-1] * prod(v[1:i])
 } else if (gender == "F" & s_status == "NS") {
 value[i] <- FNS.kpx[i] * mortality_modified$FNS[x+i-1] * prod(v[1:i])</pre>
 }
 }
 final_value <- face_value*sum(value)
 return(final_value)
}
whole_life(54,2001, 1000000, 'F', 'S')
# Finding the Premiums for the SPWL Dataset ------
premiums <- mapply(whole_life, spwl$Issue.age, spwl$Issue.year, spwl$Face.amount,
spwl$Sex, spwl$Smoker.Status)
spwl$prem_at_issue_year <- premiums
# Discount/Accumulate to 2004 ------
adjustment_factor <- function(issueYear, prem_wli) {</pre>
 if (issueYear > 2004) {
  # Policy issued after 2004: Calculate discount factor
 years <- 2004:(issueYear - 1)
  rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 / (1 + rates))
 } else if (issueYear < 2004) {
  # Policy issued before 2004: Calculate accumulation factor
 years <- issueYear:2003
  rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 + rates)
 } else {
 # Issue year is 2004, no adjustment needed
 factor <- 1
 value <- prem_wli*factor
 return(value)
```

```
}
premiums_at2004 <- mapply(adjustment_factor, spwl$Issue.year, spwl$prem_at_issue_year)
spwl$prem at 2004 <- premiums at 2004
# Discount/Accumulate to 2023 ------
adjustment_factor2 <- function(issueYear, prem_wli) {
if (issueYear > 2023) {
 # Policy issued after 2023: Calculate discount factor
 years <- 2023:(issueYear - 1)
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 / (1 + rates))
 } else if (issueYear < 2023) {
 # Policy issued before 2023: Calculate accumulation factor
 years <- issueYear:2023
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 + rates)
} else {
 # Issue year is 2023, no adjustment needed
 factor <- 1
}
value2 <- prem_wli*factor
return(value2)
}
premiums_at2023 <- mapply(adjustment_factor2, spwl$Issue.year,
spwl$prem_at_issue_year)
spwl$prem_at_2023 <- premiums_at2023
# Exporting the premiums for the SPWL ------
write_csv(spwl, "spwl_with_premiums.csv")
Whole Life Insurance Incentive:
# Setting Up ------
cat("\014") # Clear console
rm(list=ls()) # Clear Environment
# Directory ------
setwd("") #change to your own
# Packages ------
# install.packages('tidyverse')
# install.packages('dplyr')
# install.packages('readxl')
# install.packages('openxlsx')
library(tidyverse)
```

```
library(dplyr)
library(readxl)
library(tidyr)
library(openxlsx)
# Read in the Data (files in the drive) ------
inforce_data <- read.csv("inforce_data.csv", header = TRUE)
eco_data <- read.csv("economy_data.csv", header = TRUE)
mortality modified <- read.csv("incentive modmort.csv", header = TRUE)
# Split the Inforce Data ------
splitbypolicytype <- split(inforce_data, inforce_data$Policy.type)
t_20 <- splitbypolicytype[["T20"]]
spwl <- splitbypolicytype[["SPWL"]]
# Base Mortality Table Calculation ------
#Removing the additional column
#mortality_data <- mortality_data[,-c(1)]
#finding the probability of survival at each age
#mortality_data$p_x <- 1- mortality_data$Mortality.Rate
#Renaming the Header
colnames(mortality modified) <- c("Age","MS", "FS", "MNS", "FNS")
#Calculating the survival p_x
mortality_modified$MS.p_x <- 1 - mortality_modified$MS
mortality_modified$FS.p_x <- 1 - mortality_modified$FS
mortality_modified$MNS.p_x <- 1 - mortality_modified$MNS
mortality_modified$FNS.p_x <- 1 - mortality_modified$FNS
# Average Spot Rate ------
average_spot_rate <- mean(eco_data[,4])</pre>
#This is used, if current year is past 2023
# Whole Life Function -------
whole_life <- function(x, issue_year, face_value, gender, s_status) {
 max_age <- max(which(!is.na(mortality_modified$MS.p_x)))
n_years <- max_age - x
 # Calculate survival probabilities (kpx)
 if(gender == "M" & s_status == "S") {
 MS.kpx <- numeric(n_years + 1)
 MS.kpx[1] <- 1 # Initial survival probability is 1
 for (i in 2:length(MS.kpx)) {
  MS.kpx[i] <- MS.kpx[i-1] * mortality_modified$MS.p_x[x + i - 2] # Corrected to use actual
survival rates
 }
```

```
} else if(gender == "F" & s_status == "S") {
  FS.kpx <- numeric(n_years + 1)
  FS.kpx[1] <- 1 # Initial survival probability is 1
 for (i in 2:length(FS.kpx)) {
   FS.kpx[i] <- FS.kpx[i-1] * mortality_modified$FS.p_x[x + i - 2] # Corrected to use actual
survival rates
 } else if(gender == "M" & s_status == "NS"){
  MNS.kpx <- numeric(n years + 1)
  MNS.kpx[1] <- 1 # Initial survival probability is 1
  for (i in 2:length(MNS.kpx)) {
   MNS.kpx[i] <- MNS.kpx[i-1] * mortality_modified$MNS.p_x[x + i - 2] # Corrected to use
actual survival rates
  }
 }else if(gender == "F" & s_status == "NS") {
   FNS.kpx <- numeric(n_years + 1)
   FNS.kpx[1] <- 1 # Initial survival probability is 1
  for (i in 2:length(FNS.kpx)) {
   FNS.kpx[i] <- FNS.kpx[i-1] * mortality_modified$FNS.p_x[x + i - 2] # Corrected to use actual
survival rates
  }
 }
 # Calculate spot rates for each year
 spot_rate_x <- rep(average_spot_rate, n_years) # Default to average if no data available
 for (i in 1:n_years) {
  current_year <- issue_year + i - 1
  if (current_year <= 2023) { # Assuming you have spot rate data up to 2023
   spot_rate_x[i] <- ifelse(is.na(eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year ==
current_year]), average_spot_rate,
eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year == current_year])
 }
}
# Calculate present value factors (discount factors)
v <- 1 / (1 + spot_rate_x) # Direct calculation of discount factors
 # Calculate the values (present value of expected benefits)
 value <- numeric(n_years)</pre>
 for(i in 1:n_years) { if (gender == "M" & s_status == "S") {
 value[i] <- MS.kpx[i] * mortality_modified$MS[x+i-1] * prod(v[1:i])</pre>
 } else if (gender == "F" & s_status == "S") {
 value[i] <- FS.kpx[i] * mortality_modified$FS[x+i-1] * prod(v[1:i])</pre>
} else if (gender == "M" & s_status == "NS") {
 value[i] <- MNS.kpx[i] * mortality_modified$MNS[x+i-1] * prod(v[1:i])
 } else if (gender == "F" & s_status == "NS") {
 value[i] <- FNS.kpx[i] * mortality_modified$FNS[x+i-1] * prod(v[1:i])</pre>
}
}
```

```
final_value <- face_value*sum(value)
return(final_value)
}
whole life(54,2001, 1000000, 'F', 'S')
# Finding the Premiums for the SPWL Dataset ------
premiums <- mapply(whole life, spwl$Issue.age, spwl$Issue.year, spwl$Face.amount,
spwl$Sex, spwl$Smoker.Status)
spwl$prem_at_issue_year <- premiums
# Discount/Accumulate to 2004 ------
adjustment factor <- function(issueYear, prem wli) {
 if (issueYear > 2004) {
 # Policy issued after 2004: Calculate discount factor
 years <- 2004:(issueYear - 1)
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 / (1 + rates))
 } else if (issueYear < 2004) {
 # Policy issued before 2004: Calculate accumulation factor
 years <- issueYear:2003
 rates <- eco data$X1.yr.Risk.Free.Annual.Spot.Rate[eco data$Year %in% years]
 factor <- prod(1 + rates)
} else {
 # Issue year is 2004, no adjustment needed
 factor <- 1
}
value <- prem_wli*factor
return(value)
}
premiums_at2004 <- mapply(adjustment_factor, spwl$Issue.year, spwl$prem_at_issue_year)
spwl$prem_at_2004 <- premiums_at2004
# Discount/Accumulate to 2023 ------
adjustment factor2 <- function(issueYear, prem wli) {
if (issueYear > 2023) {
 # Policy issued after 2023: Calculate discount factor
 years <- 2023:(issueYear - 1)
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 / (1 + rates))
 } else if (issueYear < 2023) {
 # Policy issued before 2023: Calculate accumulation factor
 years <- issueYear:2023
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 + rates)
```

```
} else {
 # Issue year is 2023, no adjustment needed
 factor <- 1
value2 <- prem_wli*factor
return(value2)
}
premiums at 2023 <- mapply(adjustment factor2, spwl$Issue.year,
spwl$prem_at_issue_year)
spwl$prem_at_2023 <- premiums_at2023
# Exporting the premiums for the SPWL ------
write_csv(spwl, "spwl_with_incentivepremiums.csv")
Term Insurance Base:
# Setting Up ------
cat("\014") # Clear console
rm(list=ls()) # Clear Environment
# Directory ------
setwd("") #change to your own
# Packages ------
# install.packages('tidyverse')
# install.packages('dplyr')
# install.packages('readxl')
# install.packages('openxlsx')
library(tidyverse)
library(dplyr)
library(readxl)
library(tidyr)
library(openxlsx)
# Read in the Data (files in the drive) ------
inforce_data <- read.csv("inforce_data.csv", header = TRUE)
eco_data <- read.csv("economy_data.csv", header = TRUE)
mortality_modified <- read.csv("incentive_modmort.csv", header = TRUE)
# Split the Inforce Data ------
splitbypolicytype <- split(inforce_data, inforce_data$Policy.type)
t_20 <- splitbypolicytype[["T20"]]
spwl <- splitbypolicytype[["SPWL"]]
```

```
# Base Mortality Table Calculation -----
#Removing the additional column
# mortality_data <- mortality_data[,-c(1)]
# #finding the probability of survival at each age
# mortality_data$p_x <- 1- mortality_data$Mortality.Rate
colnames(mortality_modified) <- c("Age", "MS", "FS", "MNS", "FNS")
mortality modified$MS.p x <- 1 - mortality modified$MS
mortality_modified$FS.p_x <- 1 - mortality_modified$FS
mortality_modified$MNS.p_x <- 1 - mortality_modified$MNS
mortality_modified$FNS.p_x <- 1 - mortality_modified$FNS
mortality_modified <- mortality_modified[-c(121:998), ]
# Average Spot Rate -----
average_spot_rate <- mean(eco_data[,4])
#This is used, if current year is past 2023
# 20 Year Term Life Function ------
insurance_20_year <- function (x, issue_year, face_value, gender, s_status) {
 if(gender == "M" & s status == "S") {
 MS.kpx < -rep(0,20)
 MS.kpx[1] <- mortality_modified$MS.p_x[x]
 for(i in 2:20) {
  MS.kpx[i] <- prod(MS.kpx[i-1], mortality_modified$MS.p_x[x+i-1])
 }
} else if(gender == "F" & s_status == "S") {
 FS.kpx < -rep(0,20)
 FS.kpx[1] <- mortality_modified$FS.p_x[x]
 for(i in 2:20) {
  FS.kpx[i] <- prod(FS.kpx[i-1], mortality_modified$FS.p_x[x+i-1])
 }
} else if(gender == "M" & s_status == "NS") {
 MNS.kpx <- rep(0,20)
 MNS.kpx[1] <- mortality_modified$MNS.p_x[x]
 for(i in 2:20) {
  MNS.kpx[i] <- prod(MNS.kpx[i-1], mortality_modified$MNS.p_x[x+i-1])
 }
 } else if(gender == "F" & s status == "NS") {
 FNS.kpx < -rep(0,20)
 FNS.kpx[1] <- mortality_modified$FNS.p_x[x]
 for(i in 2:20) {
  FNS.kpx[i] <- prod(FNS.kpx[i-1], mortality_modified$FNS.p_x[x+i-1])
 }
}
```

```
#Find kpx values, will use formula k|q_x=kpx*q_(x+k)
 spot_rate_x < -rep(0,20)
 #This checks if current year is less than 2023, if so, use spot rate, otherwise use average
 for (i in 1:20) {
  current_year <- issue_year + i - 1
  if (length(eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year == current_year]) == 0)
  spot_rate_x[i] <- average_spot_rate
 } else {
  spot_rate_x[i] <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year ==
current_year]
 }
}
 #This should generate a vector of (1+i,(1+i)^2,...,(1+i)^2)
 effective_interest <- c(1+spot_rate_x[1])
 for (i in 2:20) {
  effective_interest[i] <- prod(effective_interest[i-1], (1 + spot_rate_x[i]))
}
 #Finding the components of the sum for the final value
 # Using sum of v^{(k+1)*kpx*q_(x+k)}
 value <- rep(0,20)
 if(gender == "M" & s_status == "S"){
 value[1] <- prod(mortality_modified$MS[x], (1/(effective_interest[1])))</pre>
 for (i in 1:19) {
  value[i+1] <- prod(MS.kpx[i], mortality_modified$MS[x+i], (1/(effective_interest[i+1])))</pre>
 }
 } else if(gender == "F" & s_status == "S"){
 value[1] <- prod(mortality_modified$FS[x], (1/(effective_interest[1])))</pre>
 for (i in 1:19) {
  value[i+1] <- prod(FS.kpx[i], mortality_modified$FS[x+i], (1/(effective_interest[i+1])))</pre>
 }else if(gender == "M" & s_status == "NS"){
 value[1] <- prod(mortality_modified$MNS[x], (1/(effective_interest[1])))</pre>
 for (i in 1:19) {
  value[i+1] <- prod(MNS.kpx[i], mortality_modified$MNS[x+i], (1/(effective_interest[i+1])))</pre>
 }else if(gender == "F" & s_status == "NS"){
 value[1] <- prod(mortality_modified$FNS[x], (1/(effective_interest[1])))</pre>
 for (i in 1:19) {
  value[i+1] <- prod(FNS.kpx[i], mortality_modified$FNS[x+i], (1/(effective_interest[i+1])))</pre>
 }
}
final <- face_value*sum(value)
```

```
return(final)
}
insurance_20_year(40, 2000, 50000, 'M', 'S')
#Annuity
annuity due term <- function (x, issue year, gender, s status) {
 if(gender == "M" & s_status == "S") {
  MS.kpx <- rep(0,20)
  MS.kpx[1] <- mortality_modified$MS.p_x[x]
 for (i in 2:20) {
  MS.kpx[i] <- prod(MS.kpx[i-1], mortality modified$MS.p x)
 } else if(gender == "F" & s_status == "S") {
  FS.kpx < -rep(0,20)
  FS.kpx[1] <- mortality_modified$FS.p_x[x]
 for (i in 2:20) {
   FS.kpx[i] <- prod(FS.kpx[i-1], mortality_modified$FS.p_x)
 } else if(gender == "M" & s_status == "NS") {
  MNS.kpx \leftarrow rep(0,20)
  MNS.kpx[1] <- mortality_modified$MNS.p_x[x]
 for (i in 2:20) {
   MNS.kpx[i] <- prod(MNS.kpx[i-1], mortality_modified$MNS.p_x)
 }else if(gender == "F" & s_status == "NS") {
 FNS.kpx < -rep(0,20)
 FNS.kpx[1] <- mortality_modified$FNS.p_x[x]
 for (i in 2:20) {
   FNS.kpx[i] <- prod(FNS.kpx[i-1], mortality_modified$FNS.p_x)
 }
 }
 spot_rate_x < -rep(0,19)
 #This checks if current year is less than 2023, if so, use spot rate, otherwise use average
 for (i in 1:19) {
  current_year <- issue_year + i - 1
  if (length(eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year == current_year]) == 0)
{
   spot_rate_x[i] <- average_spot_rate
 } else {
   spot_rate_x[i] <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year ==
current_year]
 }
 }
```

```
#This should generate a vector of (1+i,(1+i)^2,...,(1+i)^2)
 effective_interest <- c(1+spot_rate_x[1])
 for (i in 2:19) {
  effective_interest[i] <- prod(effective_interest[i-1], (1 + spot_rate_x[i]))
 }
 value <- rep(0,20)
 value[1] <- 1
 if(gender == 'M' & s_status == 'S') {
 for (i in 1:19) {
  value[i+1] <- prod(MS.kpx[i], (1/effective_interest[i]))</pre>
 }
 } else if(gender == 'F' & s_status == 'S') {
 for (i in 1:19) {
  value[i+1] <- prod(FS.kpx[i], (1/effective_interest[i]))</pre>
 } else if(gender == 'M' & s_status == 'NS') {
 for (i in 1:19) {
  value[i+1] <- prod(MNS.kpx[i], (1/effective_interest[i]))</pre>
 } else if(gender == 'F' & s_status == 'NS') {
 for (i in 1:19) {
  value[i+1] <- prod(FNS.kpx[i], (1/effective_interest[i]))</pre>
 }
 }
 final <- sum(value)
 return(final)
}
insurance_20_year(54,2001,100000, 'M', 'S')/annuity_due_term(54,2001, 'M', 'S')
# Finding the Premiums for the t_20 Dataset ------
insurance <- mapply(insurance_20_year, t_20$Issue.age, t_20$Issue.year, t_20$Face.amount,
t_20$Sex, t_20$Smoker.Status)
annuity <- mapply(annuity_due_term, t_20$Issue.age, t_20$Issue.year, t_20$Sex,
t_20$Smoker.Status)
yearly.prem <- insurance/annuity
t_20$prem_at_issue_year <- yearly.prem
# Discount/Accumulate to 2004 ------
adjustment_factor <- function(issueYear, prem_t20) {
 if (issueYear > 2004) {
  # Policy issued after 2004: Calculate discount factor
```

```
years <- 2004:(issueYear - 1)
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 / (1 + rates))
 } else if (issueYear < 2004) {
 # Policy issued before 2004: Calculate accumulation factor
 years <- issueYear:2003
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 + rates)
 } else {
 # Issue year is 2004, no adjustment needed
 factor <- 1
}
value <- prem_t20*factor
return(value)
}
premiums_at2004 <- mapply(adjustment_factor, t_20$Issue.year, t_20$prem_at_issue_year)
t_20$prem_at_2004 <- premiums_at2004
# Discount/Accumulate to 2023 ------
adjustment_factor2 <- function(issueYear, prem_t20) {
if (issueYear > 2023) {
 # Policy issued after 2023: Calculate discount factor
 years <- 2023:(issueYear - 1)
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 / (1 + rates))
 } else if (issueYear < 2023) {
 # Policy issued before 2023: Calculate accumulation factor
 years <- issueYear:2023
 rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 + rates)
 } else {
 # Issue year is 2023, no adjustment needed
 factor <- 1
value2 <- prem t20*factor
return(value2)
}
basepremiums_at2023 <- mapply(adjustment_factor2, t_20$Issue.year,
t 20$prem at issue year)
t_20$baseprem_at_2023 <- basepremiums_at2023
# Exporting the premiums for the t_20 ------
write_csv(t_20, "t20_with_incentivepremiums.csv")
```

Term Insurance Incentive:

```
# Setting Up ------
cat("\014") # Clear console
rm(list=ls()) # Clear Environmen
# Directory ------
setwd("") #change to your own
# Packages -------
# install.packages('tidyverse')
# install.packages('dplyr')
# install.packages('readxl')
# install.packages('openxlsx')
library(tidyverse)
library(dplyr)
library(readxl)
library(tidyr)
library(openxlsx)
# Read in the Data (files in the drive) ------
inforce_data <- read.csv("inforce_data.csv", header = TRUE)
intervention_data <- read.csv("intervention_data.csv", header = TRUE)
eco_data <- read.csv("economy_data.csv", header = TRUE)
mortality data <- read.csv("mortality data.csv", header = TRUE)
mortality_modified <- read.csv("base_mortmod.csv", header = TRUE)
# Split the Inforce Data ------
splitbypolicytype <- split(inforce_data, inforce_data$Policy.type)
t_20 <- splitbypolicytype[["T20"]]
spwl <- splitbypolicytype[["SPWL"]]
# Base Mortality Table Calculation ------
#Removing the additional column
# mortality_data <- mortality_data[,-c(1)]</pre>
# #finding the probability of survival at each age
# mortality_data$p_x <- 1- mortality_data$Mortality.Rate
colnames(mortality_modified) <- c("Age", "MS", "FS", "MNS", "FNS")
mortality_modified$MS.p_x <- 1 - mortality_modified$MS
mortality modified$FS.p x <- 1 - mortality modified$FS
mortality_modified$MNS.p_x <- 1 - mortality_modified$MNS
mortality_modified$FNS.p_x <- 1 - mortality_modified$FNS
mortality_modified <- mortality_modified[-c(121:998), ]
# Average Spot Rate ------
average_spot_rate <- mean(eco_data[,4])</pre>
```

```
#This is used, if current year is past 2023
# 20 Year Term Life Function -----
insurance_20_year <- function (x, issue_year, face_value, gender, s_status) {
 if(gender == "M" & s status == "S") {
  MS.kpx <- rep(0,20)
  MS.kpx[1] <- mortality_modified$MS.p_x[x]
 for(i in 2:20) {
  MS.kpx[i] \leftarrow prod(MS.kpx[i-1], mortality_modified$MS.p_x[x+i-1])
 }
 } else if(gender == "F" & s_status == "S") {
 FS.kpx < -rep(0,20)
 FS.kpx[1] <- mortality_modified$FS.p_x[x]
 for(i in 2:20) {
  FS.kpx[i] <- prod(FS.kpx[i-1], mortality_modified$FS.p_x[x+i-1])
 }
 } else if(gender == "M" & s_status == "NS") {
  MNS.kpx <- rep(0,20)
  MNS.kpx[1] <- mortality_modified$MNS.p_x[x]
 for(i in 2:20) {
  MNS.kpx[i] <- prod(MNS.kpx[i-1], mortality_modified$MNS.p_x[x+i-1])
 }
 } else if(gender == "F" & s_status == "NS") {
 FNS.kpx <- rep(0,20)
 FNS.kpx[1] <- mortality_modified$FNS.p_x[x]
 for(i in 2:20) {
  FNS.kpx[i] <- prod(FNS.kpx[i-1], mortality_modified$FNS.p_x[x+i-1])
 }
 }
 #Find kpx values, will use formula k|q_x=kpx*q_(x+k)
 spot_rate_x < -rep(0,20)
 #This checks if current year is less than 2023, if so, use spot rate, otherwise use average
 for (i in 1:20) {
  current_year <- issue_year + i - 1
  if (length(eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year == current_year]) == 0)
{
  spot_rate_x[i] <- average_spot_rate
  spot_rate_x[i] <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year ==
current_year]
 }
 }
 #This should generate a vector of (1+i,(1+i)^2,...,(1+i)^2)
 effective_interest <- c(1+spot_rate_x[1])
```

```
for (i in 2:20) {
  effective_interest[i] <- prod(effective_interest[i-1], (1 + spot_rate_x[i]))
 }
 #Finding the components of the sum for the final value
 # Using sum of v^{(k+1)*kpx*q_(x+k)}
 value <- rep(0,20)
 if(gender == "M" & s status == "S"){
  value[1] <- prod(mortality_modified$MS[x], (1/(effective_interest[1])))</pre>
  for (i in 1:19) {
  value[i+1] <- prod(MS.kpx[i], mortality_modified$MS[x+i], (1/(effective_interest[i+1])))</pre>
 } else if(gender == "F" & s_status == "S"){
  value[1] <- prod(mortality_modified$FS[x], (1/(effective_interest[1])))</pre>
  for (i in 1:19) {
  value[i+1] <- prod(FS.kpx[i], mortality_modified$FS[x+i], (1/(effective_interest[i+1])))</pre>
 }else if(gender == "M" & s_status == "NS"){
  value[1] <- prod(mortality_modified$MNS[x], (1/(effective_interest[1])))</pre>
  for (i in 1:19) {
  value[i+1] <- prod(MNS.kpx[i], mortality_modified$MNS[x+i], (1/(effective_interest[i+1])))</pre>
 }else if(gender == "F" & s_status == "NS"){
  value[1] <- prod(mortality_modified$FNS[x], (1/(effective_interest[1])))</pre>
  for (i in 1:19) {
  value[i+1] <- prod(FNS.kpx[i], mortality_modified$FNS[x+i], (1/(effective_interest[i+1])))</pre>
  }
 }
 final <- face_value*sum(value)
 return(final)
}
insurance_20_year(40, 2000, 50000, 'M', 'S')
#Annuity
annuity_due_term <- function (x, issue_year, gender, s_status) {
 if(gender == "M" & s_status == "S") {
  MS.kpx <- rep(0,20)
  MS.kpx[1] <- mortality_modified$MS.p_x[x]
  for (i in 2:20) {
   MS.kpx[i] <- prod(MS.kpx[i-1], mortality_modified$MS.p_x)
  }
 } else if(gender == "F" & s_status == "S") {
  FS.kpx < -rep(0,20)
```

```
FS.kpx[1] <- mortality_modified$FS.p_x[x]
  for (i in 2:20) {
   FS.kpx[i] <- prod(FS.kpx[i-1], mortality_modified$FS.p_x)
 } else if(gender == "M" & s_status == "NS") {
  MNS.kpx < -rep(0,20)
  MNS.kpx[1] <- mortality_modified$MNS.p_x[x]
  for (i in 2:20) {
  MNS.kpx[i] <- prod(MNS.kpx[i-1], mortality modified$MNS.p x)
 }else if(gender == "F" & s_status == "NS") {
  FNS.kpx < -rep(0,20)
  FNS.kpx[1] <- mortality_modified$FNS.p_x[x]
  for (i in 2:20) {
   FNS.kpx[i] <- prod(FNS.kpx[i-1], mortality modified$FNS.p x)
  }
 }
 spot_rate_x < -rep(0,19)
 #This checks if current year is less than 2023, if so, use spot rate, otherwise use average
 for (i in 1:19) {
  current_year <- issue_year + i - 1
  if (length(eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year == current_year]) == 0)
{
   spot_rate_x[i] <- average_spot_rate
  } else {
   spot_rate_x[i] <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year ==
current_year]
  }
 }
 #This should generate a vector of (1+i,(1+i)^2,...,(1+i)^2)
 effective_interest <- c(1+spot_rate_x[1])
 for (i in 2:19) {
  effective_interest[i] <- prod(effective_interest[i-1], (1 + spot_rate_x[i]))
 }
 value <- rep(0,20)
 value[1] <- 1
 if(gender == 'M' & s_status == 'S') {
  for (i in 1:19) {
  value[i+1] <- prod(MS.kpx[i], (1/effective_interest[i]))</pre>
 } else if(gender == 'F' & s_status == 'S') {
  for (i in 1:19) {
  value[i+1] <- prod(FS.kpx[i], (1/effective_interest[i]))</pre>
  }
```

```
} else if(gender == 'M' & s_status == 'NS') {
 for (i in 1:19) {
  value[i+1] <- prod(MNS.kpx[i], (1/effective_interest[i]))</pre>
 } else if(gender == 'F' & s_status == 'NS') {
 for (i in 1:19) {
  value[i+1] <- prod(FNS.kpx[i], (1/effective_interest[i]))</pre>
 }
 }
 final <- sum(value)
 return(final)
}
insurance_20_year(54,2001,100000, 'M', 'S')/annuity_due_term(54,2001, 'M', 'S')
# Finding the Premiums for the t_20 Dataset ------
insurance <- mapply(insurance_20_year, t_20$Issue.age, t_20$Issue.year, t_20$Face.amount,
t_20$Sex, t_20$Smoker.Status)
annuity <- mapply(annuity_due_term, t_20$Issue.age, t_20$Issue.year, t_20$Sex,
t 20$Smoker.Status)
yearly.prem <- insurance/annuity
t_20$prem_at_issue_year <- yearly.prem
# Discount/Accumulate to 2004 ------
adjustment factor <- function(issueYear, prem t20) {
 if (issueYear > 2004) {
  # Policy issued after 2004: Calculate discount factor
 years <- 2004:(issueYear - 1)
  rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 / (1 + rates))
 } else if (issueYear < 2004) {
  # Policy issued before 2004: Calculate accumulation factor
 years <- issueYear:2003
  rates <- eco_data$X1.yr.Risk.Free.Annual.Spot.Rate[eco_data$Year %in% years]
 factor <- prod(1 + rates)
 } else {
 # Issue year is 2004, no adjustment needed
 factor <- 1
 value <- prem_t20*factor
 return(value)
}
premiums_at2004 <- mapply(adjustment_factor, t_20$Issue.year, t_20$prem_at_issue_year)
t_20$prem_at_2004 <- premiums_at2004
```

```
# Discount/Accumulate to 2023 ------
adjustment_factor2 <- function(issueYear, prem_t20) {
 if (issueYear > 2023) {
 # Policy issued after 2023: Calculate discount factor
 years <- 2023:(issueYear - 1)
 rates <- eco data$X1.yr.Risk.Free.Annual.Spot.Rate[eco data$Year %in% years]
 factor <- prod(1 / (1 + rates))
 } else if (issueYear < 2023) {
 # Policy issued before 2023: Calculate accumulation factor
 years <- issueYear:2023
 rates <- eco data$X1.vr.Risk.Free.Annual.Spot.Rate[eco data$Year %in% years]
 factor <- prod(1 + rates)
 } else {
 # Issue year is 2023, no adjustment needed
 factor <- 1
}
value2 <- prem_t20*factor
 return(value2)
}
basepremiums_at2023 <- mapply(adjustment_factor2, t_20$Issue.year,
t_20$prem_at_issue_year)
t_20$baseprem_at_2023 <- basepremiums_at2023
# Exporting the premiums for the t 20 ------
write csv(t 20, "t20 with premiums.csv")
```

8.3 Assumptions

8.3.1 Pricing Model Assumptions

There were an additional set of assumptions made in the pricing model, and they include:

- Investment Earnings Rate: Assumed to be 5.7% which is the average 1 year risk free spot rate for the last 60 years. It affects the expected return on the invested premiums.
- **Discount Rate:** Set at 11% and is based off the sum of the average of the 10-year spot rates and average inflation. It impacts the present value of future cash flows and is crucial for determining the profitability and pricing of both products.
- Lapse Rate: The formula we utilised was:

```
lapse rate = \frac{\text{No.policyholders lapsed at age x in year y}}{\text{No.policyholders issued at age x in year y}}
```

- Commission Structure: This outlines the percentage of premium that goes to the sales commission, which is significantly high in the first year at 70% for SPWL and 60% for the 20-year term and 5% in subsequent years for both.
- **Incentive Loading:** The amount of discount for the purchase of the incentive program. This is set at 4.3%, the average inflation of the last 60 years.
- **Fixed and Incentive Expenses**: These outline specific costs associated with policy management and the implementation of incentives and would be negative values.
- Surrender Value: The surrender was calculated by:

1000 * NPV (Surrender Rate, Mortality Rate in Each Year for Age x)
-Loading Factor * (survival rate at the next year +
NPV (Surrender Rate, Survival Rate in Each Year for Age x))

Survival Rate

• Reserves:

o For the SPWL insurance policy, the reserves were calculated using the following formula:

1000 * NPV(Reserve Rate, Mortality Rate in Each Year for Age x)
-Loading Factor * (Survival rate at the next year +
NPV(Reserve Rate, Survival Rate in Each Year for Age x))

Survival Rate

o For the 20-year term policy, the formula utilised was:

$$Reserve[x] = Reserve[x-1] * (1 - \frac{loss\ ratio}{2})$$

- Sensitivity testing for expense assumptions: model encompasses scenarios representing lowest, average, and highest costs, allowing for a comprehensive assessment of the potential impacts on policy profitability.
- Required capital (per 1000 death benefit): Policyholders less than age 40 face a rate of 0.01 and policyholder aged 40 or above face a rate of 0.02 as there is higher mortality risk associated with older age groups.

References

Risk Management

Apra Prudential Practice Guide https://www.apra.gov.au/sites/default/files/Prudential-Practice-Guide-LPG-240-Life-Insurance-Risk-and-Life-Reinsurance-Risk 0.pdf

Assumptions: Challenging Assumptions to Manage Model Risk Effectively

https://fastercapital.com/content/Assumptions--Challenging-Assumptions-to-Manage-Model-Risk-Effectively.html#:~:text=Assumptions%20are%20the%20foundation%20upon,leading%20to%20poor%20decision-making

Hayes, A. Adverse Selection: Definition, How It Works, and The Lemons Problem, Investopedia. *Investopedia. https://www.investopedia.com/terms/a/adverseselection.asp*

Assessing Liquidity Risk of Insurers www.ecb.europa.eu/pub/financial-stability/fsr/focus/2009/pdf/ecb~a80decdc72.fsrbox200906 16.pdf.

Global, EY. "How Insurers Are Managing Liquidity Risks in a Volatile Market." EY Australia, EY, 26 Feb. 2021, www.ey.com/en_au/insurance/how-insurers-are-managing-liquidity-risks-in-a-volatile-market.

Smoking Cessation

United States Public Health Service Office of the Surgeon General. "The Benefits of Smoking Cessation on Overall Morbidity, Mortality, and Economic Costs." Smoking Cessation: A Report of the Surgeon General [Internet]., U.S. National Library of Medicine, 1970, www.ncbi.nlm.nih.gov/books/NBK555593/.

Tobacco in Australia. 7-2 *Quitting Activity* Tobacco in Australia, <u>www.tobaccoinaustralia.org.au/chapter-7-cessation/7-2-quitting-activity</u>.

"Smoking Cessation-The Role of Healthcare Professionals and Health Systems." Centers for Disease Control and Prevention, 25 Oct. 2023, <a href="https://www.cdc.gov/tobacco/sgr/2020-smoking-cessation/fact-sheets/healthcare-professionals-health-systems/index.html#:~:text=Offering%20brief%20counseling,support%20to%20help%20prevent%20relaps

United States Public Health Service Office of the Surgeon General. "The Benefits of Smoking Cessation on Overall Morbidity, Mortality, and Economic Costs." Smoking Cessation: A Report of the Surgeon General [Internet]., U.S. National Library of Medicine, 1970,

 $\underline{www.ncbi.nlm.nih.gov/books/NBK555593/\#:\sim:text=For\%20example\%2C\%20persons\%20who\%20quit,the}\\ \underline{\%20risk\%20of\%20premature\%20death}$

Rosenberg, Marjorie A, et al. "Chapter 3: Cohort Life Tables by Smoking Status, Removing Lung Cancer as a Cause of Death." Risk Analysis: An Official Publication of the Society for Risk Analysis, U.S. National Library of Medicine, 1 July 2012, www.ncbi.nlm.nih.gov/pmc/articles/PMC3594098/#R17

John P. Pierce, PhD. "Quitting Smoking by Age 35 Years and Reducing Mortality." JAMA Network Open, JAMA Network, 24 Oct. 2022,

jamanetwork.com/journals/jamanetworkopen/fullarticle/2797599#:~:text=Although%20approximately%2 030%25%20to%2050,only%207.5%25%20managing%20to%20succeed.&text=Recent%20data%20show% 20that%20younger,the%20same%20low%20success%20rate

Prescott E; Osler M; Andersen PK; Hein HO; Borch-Johnsen K; Lange P; Schnohr P; Vestbo J; "Mortality in Women and Men in Relation to Smoking." International Journal of Epidemiology, U.S. National Library of Medicine, pubmed.ncbi.nlm.nih.gov/9563690/

Janssen, Fanny, and Frans van Poppel. "The Adoption of Smoking and Its Effect on the Mortality Gender Gap in Netherlands: A Historical Perspective." BioMed Research International, U.S. National Library of Medicine, www.ncbi.nlm.nih.gov/pmc/articles/PMC4529900/

Banks, Emily, et al. BMC Medicine, vol. 13, no. 1, 24 Feb. 2015, doi:10.1186/s12916-015-0281-z. https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-015-0281-z#:~:text=Compared%20to%20never-smokers%2C%20the,and%20according%20to%20birth%20cohort

Annual Health Incentives

"Association of Cardiovascular Health Screening with Mortality, Clinical Outcomes, and Health Care Cost: A Nationwide Cohort Study." Preventive Medicine, Academic Press, 20 Nov. 2014, www.sciencedirect.com/science/article/abs/pii/S0091743514004186#preview-section-references.

Maren S. Fragala, Dov Shiffman. "Population Health Screenings for the Prevention of Chronic Disease Progression." AJMC, MJH Life Sciences, <u>www.ajmc.com/view/population-health-screenings-for-the-prevention-of-chronic-disease-progression</u>.

Active Ageing

Joyner, Michael J, and Daniel J Green. "Exercise Protects the Cardiovascular System: Effects beyond Traditional Risk Factors." The Journal of Physiology, U.S. National Library of Medicine, 1 Dec. 2009, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805367/#:~:text=In%20many%20studies%2C%20regular%20vigorous,up%20to%2060%E2%80%9370%25.

"Move Your Body." Cancer Council, <u>www.cancer.org.au/cancer-information/causes-and-prevention/diet-and-exercise/move-your-body</u>.

"Active Aging Adds Life to Your Years." Columbia University Irving Medical Center, 16 Sept. 2022, www.cuimc.columbia.edu/news/active-aging-adds-life-your-years.

Active Ageing A Policy Framework WHO extranet.who.int/agefriendlyworld/wp-content/uploads/2014/06/WHO-Active-Ageing-Framework.pdf

Fitness Tracking Program

Reimers, C D, et al. "Does Physical Activity Increase Life Expectancy? A Review of the Literature." Journal of Aging Research, U.S. National Library of Medicine, www.ncbi.nlm.nih.gov/pmc/articles/PMC3395188/.

Henning, Laurel. "Wellness Apps and Fitness Trackers: Why Insurers Love Your Smartwatch." The Sydney Morning Herald, 14 July 2022, www.smh.com.au/business/banking-and-finance/wellness-apps-and-fitness-trackers-why-insurers-love-your-smartwatch-20220712-p5b0y9.html.

Sara Berg. "Massive Study Uncovers How Much Exercise Is Needed to Live Longer." American Medical Association, 2024, <a href="https://www.ama-assn.org/delivering-care/public-health/massive-study-uncovers-how-much-exercise-needed-live-longer#:~:text=Participants%20who%20performed%20two%20to,of%20non-cardiovascular%20disease%20mortality

"How Activity Tracking can reduce Life Insurance Premiums" www.unitelife.org/blog/activity-tracking-can-reduce-life-insurance-premiums

Klein, Sarah. "How Does Exercise Fight Aging?" Health, 6 Apr. 2023, www.health.com/fitness/anti-aging-exercise#:~:text=Research%20has%20shown%20that%20being,get%20potential%20anti-aging%20benefits.&text=MedlinePlus

Models

Response to Submissions APRA www.apra.gov.au/sites/default/files/lagic-response-to-submissions-october-2012 0.pdf.

Cummings, Briallen, and David Akers. "Life Insurance Insights 2023." KPMG, 10 Oct. 2023, kpmg.com/au/en/home/insights/2023/10/life-insurance-insights.html

"APRA Releases General Insurance Statistics for March 2022." Cross-Industry, <u>www.apra.gov.au/news-and-publications/apra-releases-general-insurance-statistics-for-march-2022</u>

Insurance Industry's 18 Most Critical Metrics (2023) Guiding Metrics. https://quidingmetrics.com/content/insurance-industrys-18-most-critical-metrics/

"Capital Explained." Cross-Industry, www.apra.gov.au/capital-explained

"Life Insurance (Prudential Standard) Determination No. 6 of 2023." Australian Government Coat of Arms, scheme, <u>www.legislation.gov.au/F2023L00673/asmade/text</u>

OpenAI. (2023). ChatGPT (March 21st version) [Large language model], https://chat.openai.com/chat

Life Insurance and Wealth Management Practice Committee, *Actuaries Institute*, <u>www.actuaries.asn.au/Library/Standards/LifeInsuranceWealth/2015/DNIBNRDec2014.pdf</u>