- 2) сходится при a = b; расходится при $a \neq b$;
- 3) сходится при a = b = 0; расходится при $a \neq 0$ или $b \neq 0$;
- 4) сходится при a=b=0; расходится при $a\neq 0$ или $b\neq 0$.
- **230.** 1) 0; 2) 0. **231.** 1) 3; 2) 2; 3) 4. **232.** 1)-3) 0.
- **234.** 1) -1; 2) $+\infty$; 3) -1; 4) $+\infty$. **235.** 1. **236.** 1)-3) 1/2.
- **238.** 1) Сходится $\kappa 1/2$; 2) сходится $\kappa 2$.
- **239.** Сходится к p, если $0 \le p a \le 1$.
- **240.** 0 при a=0 или |b|<|c|; (b-c)/d при |b|>|c|.
- **241.** $(1+\sqrt{1+4b})/2$ при $a \neq (1-\sqrt{1+4b})/2$ и $a \neq 0$; a при $a = (1-\sqrt{1+4b})/2$.
 - **242.** $+\infty$ при $a \ge 1$; $\sqrt{b/(1-a)}$ при 0 < a < 1. **243.** 0.
 - **244.** $x_2 = a(5 \sqrt{41})/4$, $\lim_{n \to \infty} x_n = 0$. **247.** 0.
 - **252.** 1) 1/e; 2) 0; 3) 4/e; 4) 0; 5) $+\infty$.
 - **255.** 1) 1/(p+1); 2) 1/2.
 - 274. 1) 1;
 - 2) 0 при $\alpha > -1$; ∞ при $\alpha < -1$; не существует при $\alpha = -1$.
 - **276.** $\lim_{n\to\infty} M_n = M$, где $AM = \frac{2}{3}AC$.
 - **279.** 1) ∞ при $\alpha \le 1$; 0 при $\alpha > 1$; 2) 0; 3) \sqrt{ab} .

§ 9. Предел функции

СПРАВОЧНЫЕ СВЕДЕНИЯ

- 1. Определение предела функции. Пусть функция f(x) определена в проколотой δ_0 -окрестности точки x_0 , т. е. на множестве $\dot{U}_{\delta_0}(x_0)=\{x\colon\ 0<|x-x_0|<\delta_0\}.$
- 1) Число a называется пределом (по Коши) функции f(x) в точке x_0 (или при $x \to x_0$), если для каждого $\varepsilon > 0$ существует такое число $\delta > 0$, что для всех x, удовлетворяющих условию $0 < |x x_0| < \delta$, выполняется неравенство $|f(x) a| < \varepsilon$.

Если число a является пределом функции f(x) в точке x_0 , то пишут

 $\lim_{x \to x_0} f(x) = a$ или $f(x) \to a$ при $x \to x_0$.

Используя логические символы, определение Коши можно записать следующим образом:

 $\lim_{x \to \infty} f(x) = a \Leftrightarrow \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ (0 < |x - x_0| < \delta \Rightarrow |f(x) - a| < \varepsilon).$

Утверждение $\lim_{x \to x_0} f(x) \neq a$ записывается так:

 $\lim_{x \to x_0} f(x) \neq a \Leftrightarrow \qquad \Leftrightarrow \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \quad (0 < |x - x_0| < \delta \land |f(x) - a| \geqslant \varepsilon).$

Из определения следует, что функция не может иметь двух разных пределов в одной точке. Из определения следует также, что значения функции f(x) в точках x, лежащих вне некоторой окрестности точки x_0 , и значение функции f(x) в точке x_0 не влияют ни на существование, ни на величину предела функции f(x) в точке x_0 .

2) Число a называется пределом (по Гейне) функции f(x) в точке x_0 , если для любой последовательности $\{x_n\},\ x_n\in \dot{U}_{\delta_0}(x_0)$, сходящейся к x_0 , последовательность $\{f(x_n)\}$ сходится к a.

Для того чтобы доказать, что функция f(x) не имеет предела в точке x_0 , достаточно указать какую-нибудь последовательность $\{f(x_n)\}$, не имеющую предела, или указать две последовательности $\{f(x_n)\}$ и $\{f(x_n')\}$, имеющие разные пределы.

- Определения предела функции по Коши и по Гейне эквивалентны.
- 4) Если функция f(x) определена в точке x_0 , существует $\lim_{x\to x_0}f(x)=a$ и $a=f(x_0)$, то функцию f(x) называют непрерывной в точке x_0 (см. § 10).

Отметим, что основные элементарные функции (§ 7) непрерывны во всех точках их области определения.

2. Бесконечно малые функции.

- 1) Если $\lim_{x \to x_0} \alpha(x) = 0$, то функцию $\alpha(x)$ называют бесконечно малой при $x \to x_0$.
- 2) Сумма конечного числа бесконечно малых при $x \to x_0$ функций есть бесконечно малая функция при $x \to x_0$.
- 3) Если $\alpha(x)$ бесконечно малая при $x \to x_0$ функция, а $\beta(x)$ функция, ограниченная в некоторой проколотой окрестности точки x_0 , то $\alpha(x)\beta(x)$ бесконечно малая функция при $x \to x_0$.

В частности, произведения двух (или конечного числа) бесконечно малых при $x \to x_0$ функций есть бесконечно малая функция при $x \to x_0$.

3. Теоремы о пределах.

Теорема 1 (о пределе "зажатой" функции). Если в некоторой проколотой окрестности точки x_0 выполняются неравенства $g(x)\leqslant \leqslant f(x)\leqslant h(x),$ и если

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = a,$$

mo

$$\lim_{x \to x_0} f(x) = a.$$

T е о р е м а $\, 2 \,$ (о пределе суммы и произведения). $\mathit{Ecau} \lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} g(x) = b, \, \mathit{mo}$

$$\lim_{x\to x_0} (f(x)\pm g(x)) = a\pm b, \quad \lim_{x\to x_0} (f(x)g(x)) = ab.$$

T е о р е м а 3 (о пределе частного). Eсли $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = a$ = b, $r\partial e \ b \neq 0$, mo

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}.$$

Теорема 4 (о пределе сложной функции). Если существуют $\lim_{x o x_0} arphi(x) = a, \, \lim_{y o a} f(y),$ причем в некоторой проколотой окрестности точки x_0 выполняется условие $\varphi(x) \neq a$, то сложная функция $f(\varphi(x))$ имеет предел в точке x_0 и справедливо равенство

$$\lim_{x \to x_0} f(\varphi(x)) = \lim_{y \to a} f(y). \tag{1}$$

В случае непрерывности функции f(y) в точке a равенство (1) можно записать в виде

$$\lim_{x\to x_0} f(\varphi(x)) = f(\lim_{x\to x_0} \varphi(x)).$$

4. Различные типы пределов.

1) Предел функции при $x \to \infty$. Число a называется пределом функции f(x) при $x \to \infty$, если для каждого числа $\varepsilon > 0$ существует такое число $\delta > 0$, что для всех x, удовлетворяющих условию $|x| > \delta$, выполняется неравенство $|f(x) - a| < \varepsilon$.

Если число a является пределом функции f(x) при $x \to \infty$, то пишут

 $\lim_{x \to \infty} f(x) = a.$

Теоремы о пределах справедливы и для пределов функций при $x \to \infty$.

2) Бесконечный предел. Говорят, что предел функции f(x) в точке x_0 равен бесконечности, и пишут

$$\lim_{x\to x_0}f(x)=\infty,$$

если для каждого числа $\varepsilon>0$ существует такое число $\delta>0$, что для всех x, удовлетворяющих условию $0 < |x - x_0| < \delta$, выполняется неравенство $|f(x)| > \varepsilon$.

Аналогично,

$$\lim_{x\to\infty}f(x)=\infty,$$

если для каждого числа $\varepsilon > 0$ существует такое число $\delta > 0$, что для всех x, удовлетворяющих условию $|x| > \delta$, выполняется неравенст-BO $|f(x)| > \varepsilon$.

Функция f(x) называется бесконечно большой при $x \to x_0$, если $\lim_{x\to x_0} f(x) = \infty.$

3) Односторонние пределы. Пусть область определения функции f(x) содержит интервал $(\alpha; x_0)$. Число a называется пределом слева функции f(x) в точке x_0 (или при $x \to x_0 - 0$), если для каждого числа $\varepsilon > 0$ существует такое число $\delta > 0$, что для всех x, удовлетворяющих неравенствам $x_0 - \delta < x < x_0$, выполняется неравенство $|f(x)-a|<\varepsilon.$

Предел слева функции f(x) в точке $x_0
eq 0$ обозначают $\lim_{x o x_0 - }$ или $f(x_0-0)$. Если $x_0=0$, то пишут $\lim_{x\to 0} f(x)$ или f(-0).

Аналогично, в случае, когда область определения функции f(x)содержит интервал $(x_0; \beta)$, вводится понятие *предела справа*. Предел $\lim_{x \to x_0 + 0} f(x)$ или $f(x_0 + 0)$, если $x_0 \neq 0$, и справа обозначают так: $\lim_{x \to +0} f(x)$ или f(+0), если $x_0 = 0$.

Функция f(x) имеет предел в точке x_0 тогда и только тогда, когда существуют предел слева и предел справа и они равны; при этом

$$\lim_{x \to x_0} f(x) = f(x_0 - 0) = f(x_0 + 0).$$

Для функций, область определения которых содержит интервал $(\alpha; +\infty)$ или интервал $(-\infty; \beta)$, вводятся понятия предела при $x \to \infty$ $\rightarrow +\infty$ и соответственно *при* $x \rightarrow -\infty$. Эти пределы обозначают $\lim_{x \to +\infty} f(x)$ и $\lim_{x \to -\infty} f(x)$.

Например, число a называют пределом функции f(x) $x \to +\infty$, если для каждого числа $\varepsilon > 0$ существует такое число $\delta>0$, что для всех x, удовлетворяющих условию $x>\delta$, выполняется неравенство $|f(x) - a| < \varepsilon$.

Для односторонних пределов справедливы теоремы о пределе суммы (разности), произведения, частного и о пределе композиции функций.

По аналогии с конечными односторонними пределами определяются и односторонние бесконечные пределы:

$$\lim_{x o x_0-0}f(x)=\infty,\quad \lim_{x o x_0+0}f(x)=-\infty,\quad \lim_{x o -\infty}f(x)=+\infty$$
 ит. д.

 $\lim_{x o x_0 - 0} f(x) = \infty, \quad \lim_{x o x_0 + 0} f(x) = -\infty, \quad \lim_{x o -\infty} f(x) = +\infty$ и т. д. Например, запись $\lim_{x o x_0 + 0} f(x) = -\infty$ означает, что для каждого числа ε существует такое число $\delta > 0$, что для всех x, удовлетворяющих условию $x_0 < x < x_0 + \delta$, выполняется неравенство $f(x) < \varepsilon$.

5. Некоторые замечательные пределы. Вычисление пределов во многих случаях производится с помощью двух важных формул:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,\tag{2}$$

$$\lim_{x \to 0} (1+x)^{1/x} = e. (3)$$

Часто используются также следующие формулы, являющиеся следствием формулы (3):

 $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e,$ (4)

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}, \quad a > 0, \quad a \neq 1,$$
 (5)

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, \quad a > 0.$$
 (6)

В частности, при a=e

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1,\tag{7}$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1. \tag{8}$$

Приведем еще одну формулу:

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha, \quad \alpha \in R.$$
 (9)

5. Сравнение функций.

- 1) Эквивалентные функции. Символы O(f) и o(f). Пусть функция g(x) не обращается в нуль в некоторой проколотой окрестности точки x_0 . Тогда:
- а) если $\lim_{x\to x_0} \frac{f(x)}{g(x)}=1$, то говорят, что функция f(x) эквивалентна функции g(x) при $x\to x_0$, и пишут $f(x)\sim g(x)$ при $x\to x_0$;
- б) если существует число C>0 такое, что в некоторой проколотой окрестности точки x_0 справедливо неравенство $\left|\frac{f(x)}{g(x)}\right|\leqslant C,$ то говорят, что f(x) есть O большое от g(x) при $x\to x_0,$ и пишут f(x)=O(g(x));
- в) если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, то говорят, что f(x) есть o малое от g(x) при $x \to x_0$, и пишут

$$f(x) = o(g(x)), \quad x \to x_0. \tag{10}$$

Равенство вида (10) следует читать только слева направо, так как его правая часть обозначает класс функций, бесконечно малых по сравнению с g(x) при $x \to x_0$.

Приведем примеры таких равенств:

$$x^2 = o(x)$$
, $\cos x \sin^2 x = o(x)$, $\tan^3 x \sin \frac{1}{x} = o(x)$, $x \to 0$.

В частном случае, когда g(x)=1, запись f(x)=o(1) при $x\to x_0$ означает, что функция f(x) является бесконечно малой при $x\to x_0$.

Если $f(x) = o(g(x)), x \to x_0$, где g(x) — бесконечно малая функция при $x \to x_0$, то функцию f(x) называют бесконечно малой более высокого порядка по сравнению c g(x) при $x \to x_0$.

Запись f(x) = O(1) при $x \to x_0$ означает, что функция f(x) ограниченна в некоторой проколотой окрестности точки x_0 .

2) Замена функций эквивалентными при вычислении пределов. Пусть функции g(x) и $g_1(x)$ не обращаются в нуль в некоторой проколотой окрестности точки $x_0,\ f(x)\sim g(x)$ и $f_1(x)\sim g_1(x)$ при $x\to x_0,$ существует $\lim_{x\to x_0} \frac{f_1(x)}{g_1(x)}$. Тогда существует $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ и справедливо равенство

 $\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f_1(x)}{g_1(x)}.$

3) Критерий эквивалентности функций. Для того чтобы функция f(x) была эквивалентна функции g(x) при $x \to x_0$, необходимо и достаточно, чтобы выполнялось равенство

$$f(x) = g(x) + o(g(x)), \quad x \to x_0.$$

При вычислении пределов часто используется следующая таблица эквивалентных функций:

Эквивалентность при $x o 0$	Равенство при $x o 0$
$\sin x \sim x$	$\sin x = x + o(x)$
$\operatorname{sh} x \sim x$	$\operatorname{sh} x = x + o(x)$
$\operatorname{tg} x \sim x$	$\operatorname{tg} x = x + o(x)$
$\arcsin x \sim x$	$\arcsin x = x + o(x)$
$\operatorname{arctg} x \sim x$	arctg x = x + o(x)
$1 - \cos x \sim x^2/2$	$1 - \cos x = x^2/2 + o(x^2)$
$\operatorname{ch} x - 1 \sim x^2/2$	$ch x - 1 = x^2/2 + o(x^2)$
$e^x - 1 \sim x$	$e^x - 1 = x + o(x)$
$\ln(1+x) \sim x$	$\ln(1+x) = x + o(x)$
$(1+x)^{\alpha}-1\sim\alpha x$	$(1+x)^{\alpha} = 1 + \alpha x + o(x)$
$a^x - 1 \sim x \ln a$	$a^x = 1 + x \ln a + o(x), \ a > 0, \ a \neq 1$

7. Частичный предел функции. Число a называется частичным пределом функции f(x) при $x \to x_0$, если существует последовательность $\{x_n\},\ x_n \neq x_0$, такая, что $x_n \to x_0$ и $\lim_{n \to \infty} f(x_n) = a$.

Аналогично определяются бесконечные и односторонние частичные пределы.

Наименьший и наибольший частичные пределы функции f(x) при $x \to x_0$ называют соответственно нижним и верхним пределом функции и обозначают $\varinjlim_{x \to x_0} f(x)$ и $\varinjlim_{x \to x_0} f(x)$.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Доказать, используя определение Коши предела функции, что $\lim_{x\to 4} \frac{x^2-16}{x^2-4x}=2.$

A Рассмотрим функцию $f(x) = \frac{x^2 - 16}{x^2 - 4x}$ в некоторой окрестности точки x = 4, например на интервале (2; 5).

Возьмем произвольное положительное число ε и преобразуем |f(x)-2| при $x \neq 4$ следующим образом:

$$\left| \frac{x^2 - 16}{x^2 - 4x} - 2 \right| = \left| \frac{x + 4}{x} - 2 \right| = \frac{|x - 4|}{x}.$$

Учитывая, что $x \in (2; 5)$, получаем неравенство

$$\left| \frac{x^2 - 16}{x^2 - 4x} - 2 \right| < \frac{|x - 4|}{2},$$